

Cálculo de Predicados: Quantificadores

Prof. Ph.D. Marco Simões

Proposições Categóricas

- Grande parte da atenção de Aristóteles se concentrou no entendimento sobre o que ele chamou de Proposições Categóricas
- São proposições que falam sobre categorias de objetos ou seres vivos
 - Exemplo: Móveis, cadeiras, médicos, engenheiros, aves, mamíferos, animais
 - Tudo pode ser incluído dentro ou fora de uma certa categoria

Proposições Categóricas: Universais x Particulares

Universais

- Afirmam algo sobre toda a categoria
 - Ex: Todos os cachorros são leais
- Relacionam duas categorias (cachorros x leais)

Particulares

- Afirmam a existência de pelo menos um exemplo dentro da categoria
 - Ex: Algumas mulheres
 gostam de cachorro

Termo e Predicado

- Dada uma proposição simples qualquer, pode-se destacar dela dois entes: o termo e o predicado
- O termo pode ser entendido como o sujeito da sentença declarativa e o predicado, o que se declara a respeito do termo.
 - Ex1: Amanda é a responsável pelo destaque

Termo: Amanda

Predicado: é a responsável pelo destaque

Termo e Predicado

– Ex2: Antônio não foi um bom profissional

Termo: Antônio

Predicado: não foi um bom profissional

– Ex3: Eles foram ao baile

Termo: Eles

Predicado: foram ao baile

Cálculo de Predicados: formalização

- Um termo será sempre escrito em letras minúsculas
- O predicado será representado por uma palavra que descreva a propriedade principal expressa no predicado, sempre iniciando com letra maiúscula.
 - Ex1: Responsavel(amanda)
 - Ex2: ~ BomProfissional(antonio)
 - Ex3: Baile(eles)

Proposições Categóricas e Funções Proposicionais

- As proposições categóricas caracterizam-se por serem Universais ou Particulares
- Funções proposicionais podem ser utilizadas para representar as proposições categóricas.
- Função proposicional: os termos sempre serão variáveis e o seu valor lógico só poderá ser definido se for uma proposição universal ou particular

Funções Proposicionais: exemplo

 No conjunto dos inteiros, a seguintes função é proposicional:

$$>$$
 x - 7 > 3

- Se for uma proposição universal, é falsa (Para todo inteiro x, x-7>3 é falso)
- Se for uma proposição particular, é verdadeira (Existe algum x inteiro, para o qual x-7>3 é verdade. Neste caso qualquer valor de x>10 torna proposição verdadeira)

Funções Proposicionais - Exemplos

- A proposição "prestaram concurso e foram aprovados" é uma função proposicional, pois não pode-se avaliar seu valor lógico sem enquadrá-la como uma proposição universal ou particular:
 - Todos que prestaram concurso foram aprovados
 - Alguns dos que prestaram concurso foram aprovados

Quantificadores

Quantificador Universal

- Uma proposição é quantificada universalmente quando refere-se à todo elemento do conjunto do domínio do predicado.
- O símbolo para o quantificador universal é ∀
- Lê-se: Qualquer que seja OU Para todo

Quantificador Existencial

- Uma proposição é dita quantificada existencialmente quando refere-se à algum elemento do conjunto do domínio do predicado.
- O símbolo para o quantificador existencial é 3
- Lê-se: Existe OU Há algum

Retomando os exemplos

$$\forall x \in \mathbb{Z}, x-3 > 7$$

Falso

$$\exists x \in \mathbb{Z}, x-3 > 7$$

Verdade

 $\forall x, \operatorname{Concurso}(x) \to \operatorname{Aprovado}(x)$

 $\exists x, \operatorname{Concurso}(x) \land \operatorname{Aprovado}(x)$

Nestes dois formatos, é possível avaliar o valor lógico a partir dos dados do concurso

Outro exemplo

Todos os Homens são mortais. Sócrates é Homem. Portanto, Sócrates é mortal.

 $\forall x, \operatorname{Homem}(x) \to \operatorname{Mortal}(x)$ Homem(socrates)

... Mortal(socrates)

Proposições Categóricas

Proposições Universais Positivas : Todos

Proposições Universais Negativas : Nenhum

Proposições Particulares Positivas : Algum

Proposições Particulares Negativas : Algum não

 Aristóteles organizou os quatro tipos de proposições categóricas básicas (os tipos listados acima) numa estrutura chamada de o quadrado das oposições

O quadrado das oposições Exemplo montado sobre um gato dormindo

Quadrado das oposições	Formas afirmativas	Formas negativas
Formas Universais	 Todos os gatos estão dormindo Não existe um gato que não esteja dormindo Nenhum gato não está dormindo Todo gato está dormindo 	 Nenhum gato está dormindo Todos os gatos não estão dormindo Não existe um gato que esteja dormindo Não existe um gato dormindo
Formas Particulares	 Alguns gatos estão dormindo Nem todos os gatos não estão dormindo Ao menos um gato está dormindo Há um gato dormindo 	 Nem todos os gatos estão dormindo Alguns gatos não estão dormindo Há ao menos um gato que não está dormindo Nem todo gato está dormindo

Expressa relações diferentes entre a categoria dos gatos e a categoria das coisas que estão dormindo

Negação dos quantificadores

$$\sim (\forall x, P(x)) = \exists x, \sim P(x)$$

$$\sim (\exists x, P(x)) = \forall x, \sim P(x)$$

O quadrado das oposições

Quadrado das oposições	Formas afirmativas	Formas negativas
Formas Universais	 Todos os gatos estão dormindo Não existe um gato que não esteja dormindo Nenhum gato não está dormindo Todo gato está dormindo 	 Nenhum gato está dormindo Todos os gatos não estão dormindo Não existe um gato que esteja dormindo Não existe um gato dormindo
Formas Particulares	 Alguns gatos estão dormindo Nem todos os gatos não estão dormindo Ao menos um gato está dormindo Há um gato dormindo 	 Lem todos os gatos estão dormindo Alguns gatos não estão dormindo Há ao menos um gato que não está dormindo Nem todo gato está dormindo

Hora de Praticar!

Considerando como verdadeira a proposição "Todo estudante de Engenharia gosta de Matemática", é possível inferir que

- a) todo estudante que gosta de Matemática cursa Engenharia.
- b) nenhum estudante de Engenharia gosta de Matemática.
- c) algum estudante de Engenharia não gosta de Matemática.
- d) algum estudante de Engenharia gosta de Matemática
- e) todo estudante que não gosta de Matemática cursa Engenharia.

Suponha que as seguintes afirmações são verdadeiras:

- Todos os corredores de maratona são pessoas dedicadas.
- Nenhuma pessoa dedicada é arrogante.

Logo, podemos concluir que:

- a) algumas pessoas arrogantes são dedicadas.
- b) nenhum corredor é arrogante.
- c) nenhum corredor é uma pessoa dedicada.
- d) algumas pessoas arrogantes são corredores.
- e) algumas pessoas são dedicadas e arrogantes.

Sabe-se que é verdade que:

Todo professor é inteligente. Algum professor é doutor.

Logo, deduz-se que:

- a) Todo professor inteligente é doutor.
- b) Algum professor doutor não é inteligente.
- c) Algum professor não doutor não é inteligente.
- d) Algum professor inteligente é doutor.
- e) Todo professor doutor não é inteligente.

Marcelo foi chamado para uma reunião com seu chefe. Nessa reunião ocorreu o seguinte diálogo:

- Chefe: Pedro disse que todos os relatórios que ele recebeu foram avaliados.
- Marcelo: Não é verdade o que Pedro disse.

Se o chefe considerou que Marcelo falou a verdade, ele pode concluir logicamente que, dos relatórios recebidos por Pedro:

- a) pelo menos um relatório não foi avaliado;
- b) um único relatório não foi avaliado;
- c) nenhum relatório foi avaliado;
- d) mais da metade dos relatórios não foram avaliados;
- e) somente um relatório foi avaliado.

Se não é verdade que "todo ladrão é mau" então é verdade que:

- a) todo ladrão é bom.
- b) nenhum ladrão é mau.
- c) quem não é ladrão é bom.
- d) ao menos um ladrão não é mau.
- e) quem não é ladrão não é bom.

