Autoencoders

Denote **z** as encoded with encoder E input **x**

$$\mathbf{z} = E(\mathbf{x}, \boldsymbol{\theta}_E)$$

Decoder D recovers **x** from latent representation

$$\hat{\mathbf{x}} = D(\mathbf{z}, \boldsymbol{\theta}_D)$$

Optimal parameters learned w.r.t. loss function L

$$[\boldsymbol{\theta}_E, \boldsymbol{\theta}_D] = \arg\min L(\hat{\mathbf{x}}, \mathbf{x})$$

Autoencoders

Denote z as encoded with encoder E input x

$$\mathbf{z} = E(\mathbf{x}, \boldsymbol{\theta}_E)$$

Decoder D recovers x from latent representation

$$\hat{\mathbf{x}} = D(\mathbf{z}, \boldsymbol{\theta}_D)$$

Simple example: PCA

Optimal parameters learned w.r.t. loss function L

$$[\boldsymbol{\theta}_E, \boldsymbol{\theta}_D] = \arg\min L(\hat{\mathbf{x}}, \mathbf{x})$$

PCA performance on MNIST

16 components

Convolutional performance on MNIST

7 x 7 latent space

One-hot vectors

One-hot vectors:

Problems:

- Huge vectors
- VERY sparse
- No semantics or word similarity information included

Distributional semantics

Does vector similarity imply semantic similarity?

"You shall know a word by the company it keeps"

Why not to learn word vectors?

Embeddings: intuition

Embeddings: intuition

Word2vec

 Word2vec (Mikolov et al. 2013) - a framework for learning word embeddings

Verb tense

Male-Female

44

Country-Capital

GloVe Visualizations

GloVe Visualizations: Company - CEO

Word2vec: word analogies

$$\cos(x-y+y',target) \rightarrow \max_{target}$$

Collocations

- Use statistics:
 - T-criterion

$$t = \frac{\overline{x} - \mu}{\sqrt{\frac{s^2}{N}}}$$

 H_0 : 'social media' occurs with probability:

$$\mu = P(social)P(media) = \frac{C(social)(media)}{N^2}$$

 H_a : 'social media' does not occur with such a probability

Collocations

- Use statistics:
 - Chi-squared

$$\chi^2 = \sum_{ij} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

$$E(social\ media) = \frac{C(social)}{N} \cdot \frac{C(media)}{N} \cdot N$$

$$O_{ij}\ from\ table$$

	w1 = social	w1 != social
w2 = media	C(social media)	C(x media) where x could be any word
w2 != media	C(social x) where x could be any word	C(any pair not starting with social or ending with media)