Supplemental Table 1. Reference model

Step	Variable label	Variable name*	Equation/source
1	Incident vaccinations on that day	vac _d	Input data
2	Vaccine effectiveness	ve _d	Input data
3	Incident cases on that day without vaccination	casen _d	Input data
4	Infection rate	r _d	casen _d /popn _{d-1}
5	Incident cases on that day with vaccination	case _d	$r_d \cdot (A_{d-1} + C_{d-1} + B_{d-1})$
6	Non-cases if no vaccination	popn _d	Initial value: starting population Subsequent values: popn _{d-1} - casen _d
7	Averted cases	avert _d	casen _d - case _d
8	Vaccination rate	v_d	$vac_d/(A_{d-1} + E_{d-1})$
9	Vaccinated non-cases incident	b _d	$A_{d-1} \cdot V_d$
10	Non-vaccinated non-cases	A _d	Initial value: starting population Subsequent values: $A_{d-1} \cdot (1 - r_d) - b_d$
11	Vaccinated non-cases from prior 14 days	b _{d-1} b _{d-14}	b _{d-1} · (1 - r _d) b _{d-14} · (1 - r _d)
12	Vaccinated non-cases prevalent	B_d	$B_{d-1} \cdot (1 - r_d) + b_d - b_{d-14}$
13	Vaccinated non-cases susceptible	C_d	$C_{d-1} \cdot (1 - r_d) + b_{d-14} \cdot (1 - ve_d)$
14	Vaccinated non-cases immune	D_d	$D_{d-1} + b_{d-14} \cdot ve_d$
15	Non-vaccinated cases	E _d	$E_{d\text{-}1} + A_{d\text{-}1} \cdot r_{d} - E_{d\text{-}1} \cdot v_{d}$
16	Vaccinated cases	F_d	$F_{d-1} + (C_{d-1} + B_{d-1}) \cdot r_d + E_{d-1} \cdot v_d$

^{*} Single letter variable names correspond to Figure 1 compartments.

Notes:

Subscripts indicate day, i.e., "d" indicates current day, "d-1" indicates prior day, and "d-14" indicates 14 days before.

These equations are for a 14-day immune lag, but lags of different durations were also tested (Table 3).

Supplemental Table 2. Test methods. Note that variable names and concepts are defined separately for each method and apply only to that method.

Method 1. (Current method)

Step	Step Variable label Va		Equation or value
		name	
1	Incident cases during the month	case _m	Input data
2	Incident proportion of the	VC _m	Input data
	starting population vaccinated during the month		
3	Vaccine effectiveness	ve _m	Input data
4	Vaccine coverage lagged	vc_lag _m	$(vc_m + vc_{m-1})/2$
5	Susceptible population	pops _m	Initial value: starting population
			Subsequent values: (pops _{m-1} -case _{m-1})·(1-vc_lag _m ·ve _m)
6	Infection risk	r _m	case _m /pops _m
7	Non-cases if no vaccination	popn _m	Initial value: starting population
			Subsequent values: popn _{m-1} -casen _{m-1}
8	Cases if no vaccination	casen _m	r _m *popn _m
9	Averted cases	avert _m	casen _m -case _m
Note:		•	·
Subsc	ripts indicate month, i.e., "m" indica	ates current m	onth, "m-1" indicates prior month

Method 2.

Step	Variable label	Variable name	Equation
1	Incident cases during the month	case _m	Input data
2	Incident proportion of the starting population vaccinated during the month	VC _m	Input data
3	Vaccine effectiveness	ve _m	Input data
4	No. effectively vaccinated during the month	vef _m	$pop_{m-1} \cdot vc_m \cdot ve_m$
5	Non-cases with vaccination	pop _m	Initial value: starting population Subsequent values: pop _{m-1} - case _m
6	Susceptible population	pops _m	Initial value: starting population Subsequent values: pops _{m-1} - case _m - vef _m
7	Infection risk	r _m	case _m /pops _{m-1}
8	Non-cases if no vaccination	popn _m	Initial value: starting population Subsequent values: popn _{m-1} - casen _{m-1}
9	Cases if no vaccination	casen _m	$r_m \cdot popn_m$
10	Averted cases	avert _m	casen _m - case _m

Note: subscripts indicate month, i.e., "m" indicates current month, "m-1" indicates prior month Method 1 applies vaccine coverage (vc) and vaccine effectiveness (ve) to the susceptible population (i.e., non-cases who have not yet been effectively vaccinated), whereas method 2 applies vc and ve to all non-cases. The latter approach is appropriate since vc data is received as a proportion of the total population, including both cases and non-cases. Cases are assumed to be immune, and so the number effectively immunized equals the total population minus cases multiplied by vc and ve.

Method 3.

Step	Variable name	Variable*	Equation
1	Incident cases during the month	case _m	Input data
2	Incident vaccinations during the	vac _m	Input data
	month		
3	Vaccine effectiveness	ve _m	Input data
4	Infection rate	r _m	$case_{m}/(A_{m-1} + C_{m-1})$
5	Vaccination rate	V _m	$vac_{m}/(A_{m-1} + E_{m-1})$
6	Vaccinated non-cases incident	b _m	$A_{m-1}\cdot V_m$
7	Non-vaccinated non-cases	A _m	Initial value: starting population
			Subsequent values: $A_{m-1} \cdot (1-r_m) - b_m$
8	Vaccinated non-cases	C _m	$C_{m-1} \cdot (1-r_m) + b_m \cdot (1-ve_m)$
	susceptible		
9	Vaccinated non-cases immune	D _m	$D_{m-1} + b_m \cdot ve_m$
10	Non-vaccinated cases	E _m	$E_{m-1} \cdot (1-v_m) + A_{m-1} \cdot r_m$
11	Vaccinated cases	F _m	$F_{m-1} + (C_{m-1} + E_{m-1}) \cdot v_m$
12	Cases if no vaccination	casen _m	popn _{m-1} ·r _m
13	Non-cases if no vaccination	popn _m	Initial value: starting population
			Subsequent values: popn _{m-1} - casen _m
14	Averted cases	avert _m	casen _m - case _m

^{*} Single letter variable names correspond to Figure 1 compartments

Notes: subscripts indicate month, e.g., "m" indicates current month, "m-1" indicates prior month

Includes all features of the reference model, including possible vaccination of unvaccinated cases, except
does not track persons during the 14-day immune lag period (Figure 1, oval B).

Method 4.

Step	Variable name	Variable*	Equation
1	Incident cases during the month	case _m	Input data
2	Incident vaccinations during the	vac _m	Input data
	month		
3	Vaccine effectiveness	ve _m	Input data
4	Infection rate	r _m	$case_m/(A_{ave} + C_{ave})$
5	Vaccination rate	V _m	$vac_m/(A_{ave} + E_{ave})$
6	Vaccinated non-cases incident	b _m	$A_{ave} \cdot v_m$
7	Non-vaccinated non-cases	A _m	Initial value: starting population
			Subsequent values: $A_{m-1} - A_{ave} \cdot r_m - b_m$
8	Vaccinated non-cases	C _m	$C_{m-1} - C_{ave} \cdot r_m + b_m \cdot (1-ve_m)$
	susceptible		
9	Vaccinated non-cases immune	D _m	$D_{m-1} + b_m \cdot ve_m$
10	Non-vaccinated cases	E _m	$E_{m-1} - E_{ave} \cdot v_m + A_{ave} \cdot r_m$
11	Vaccinated cases	F _m	$F_{m-1} + (C_{ave} + E_{ave}) \cdot v_m$
12	Cases if no vaccination	casen _m	popn _{ave} · r _m
13	Non-cases if no vaccination	popn _m	Initial value: starting population
			Subsequent values: popn _{ave} - casen _m
14	Averted cases	avert _m	casen _m - case _m

^{*} Single letter variable names correspond to Figure 1 compartments

Notes: subscript "m" indicates current month, "ave" indicates the average of current and prior months

Method 5.

Step	Variable name	Variable	Equation
1	Vaccine effectiveness	ve _m	Input data
2	Cumulative proportion of population vaccinated by the end of the month	vc_cum _m	Input data
3	The number of cases that month	case _m	Input data
4	Cases without vaccination	casen _m	case _m /(1-ve _m *vc_cum _m)
5	Averted cases	avert _m	casen _m -case _m

Note: Subscript "m" indicates current month, "m-1" indicates prior month

Method 6.

Step	Variable name	Variable	Equation
1	Vaccine effectiveness	ves	Input data
2	Cumulative proportion of population	vc_cum _s	Input data
	vaccinated by the end of the season		
3	Total number of cases during the	case	Input data
	season		
4	Total number of cases without	casen _s	cases/(1-ve _s *ve _s)
	vaccination during the season		
5	Total averted cases for the season	avert _s	casen _s -case
			•

Note: Subscript "s" indicates data for the entire influenza season

Method 7.

Uses the reference model (Appendix 1) with steps 3-5 changed as follows:

Step	Variable name	variable	Equation	
3	Number of cases on that day with	case _d	Input data	
	vaccination			
4	Infection rate	r _d	$case_d / (A_{d-1} + C_{d-1} + B_{d-1})$	
5	Number of cases on that day	casen _d	popn _{d-1} · r _d	
	without vaccination			

Supplemental Table 3. Simulated data used to test methods for determining numbers of influenza cases averted by vaccination

Month	Vaccine	Cases without	Number	Cases with	Averted
	coverage	vaccination	Vaccinated	vaccination	cases
Aug	0.0413	1.0	41,339.7	1.0	0.0
Sep	0.0899	31.6	89,867.8	30.6	0.9
Oct	0.1389	531.4	138,913.2	490.4	41.0
Nov	0.1341	4,102.8	134,121.1	3,526.9	575.9
Dec	0.0919	17,341.9	91,932.0	13,873.2	3,468.7
Jan	0.0400	36,026.0	39,981.1	27,412.6	8,613.4
Feb	0.0109	34,312.4	10,925.0	25,508.9	8,803.4
Mar	0.0026	21,097.1	2,564.3	15,562.6	5,534.6
Apr	0.0003	5,710.8	325.7	4,204.3	1,506.5
May	0.0000	845.0	30.0	621.9	223.1
Total	0.5500	120,000.0	550,000.0	91,232.5	28,767.5

Starting population=1,000,000; vaccine effectiveness=0.48. Values for vaccine coverage, cases without vaccination, and number vaccinated were generated in a normal distribution (Table 2). Cases with vaccination and averted cases were calculated using the Reference Model on day-level data and aggregated by month

Supplemental Table 4. Evaluation of test methods with data simulated based on real data

- 1. Start with real data (counts of influenza cases and vaccinations) aggregated by month and stratified by season and age group
- 2. Divide counts by the number of days per month to create a proxy for daily values (dotted lines in Figure S1).
- 3. Smooth using Loess procedure (solid lines in Figure S1).
- 4. Use reference model on smoothed daily data to calculate "true" averted cases.
- 5. Aggregate daily data by month to simulate the format that real data would be available in.
- 6. Use test methods 1-7 on monthly-aggregated data to estimate averted cases
- 7. Calculate error, i.e., percent difference between averted cases calculated by the reference model on daily data vs. test methods on monthly-aggregated data.
- 8. Test methods with smallest error are considered most accurate

Supplemental Table 5. Effect of modifying specific steps in methods 1 and 2.

Step	Variable	Method 1	Method 1a	Method 1b	Method 1c	Method 2
1	vc_lag _m	(vc _m +vc _{m-1})/2		(vc _m +vc _{m-1})/2		
2	pops _m	pops _{m-1} -case _{m-1}	pops _{m-1} -case _{m-1}	pops _{m-1} -case _{m-1}	pops _{m-1} -case _{m-1}	pops _{m-1} -case _m
3				pop _{m-1} -case _{m-1}	pop _{m-1} -case _{m-1}	pop _{m-1} -case _m
4	vef _m	pops _m ·vc_lag _m · ve _m	$pops_m \cdot vc_m \cdot ve_m$	pop _m · vc_lag _m · ve _m	$\mathbf{pop}_{m} \cdot \mathbf{vc}_{m} \cdot \mathbf{ve}_{m}$	$pop_{m-1} \cdot vc_m \cdot ve_m$
5	pops _m	pops _m -vef _m	pops _m -vef _m	pops _m -vef _m	pops _m -vef _m	pops _m -vef _m
6	r _m	case _m /pops _m	case _m /pops _m	case _m /pops _m	case _m /pops _m	case _m /pops _{m-1}
7	popn _m	popn _{m-1} -case _{m-1}	popn _{m-1} -case _{m-1}	popn _{m-1} -case _{m-1}	popn _{m-1} -case _{m-1}	popn _{m-1} -case _{m-1}
8	casen _m	$r_m \cdot popn_m$	r _m · popn _m	$r_m \cdot popn_m$	$r_m \cdot popn_m$	r _m · popn _m
9	avert _m	casen _m -case _m	casen _m -case _m	casen _m -case _m	casen _m -case _m	casen _m -case _m
Averted cases (number)		26,175.90	27,216.30	29,883.80	31,182.60	28,810.70
Error compared with reference model, %		-9.01	-5.39	3.88	8.39	0.15

Input data described in Table 2 and Supplemental Table 3. True averted cases per reference model = 28,767.5. Variable names: vc, incident proportion of the starting population vaccinated during the month; case, incident cases during the month; vc_lag, vaccine coverage lagged; pops, susceptible population; pop, non-cases with vaccination; vef, number effectively vaccinated during the month; r, infection risk; popn, non-cases if no vaccination; casen, number of cases if no vaccination; avert, cases averted by vaccination.

Bold type indicates a change from method in prior column

Method 1 (current method) and method 2 are described in Methods section and Supplemental Table 2. For method 1, step 5 in Supplemental Table 2 has been expanded to steps 2, 4 and 5 in this table to facilitate comparisons with other methods.

Method 1a: method 1 modified, no immune lag

Method 1b: method 1 modified, includes vaccine lag, vaccine coverage applied to all non-cases. Method 1 applies vaccine coverage (vc) and vaccine effectiveness (ve) to the susceptible population (i.e., non-cases who have not yet been effectively vaccinated), whereas method 2 applies vc and ve to all non-cases. The latter approach is appropriate since vc data is received as a proportion of the total population, including

both cases and non-cases. Cases are assumed to be immune, and so the number effectively immunized equals the total population minus cases multiplied by vc and ve.

Method 1c: method 1 modified, no immune lag, vaccine coverage applied to all non-cases

Method 1d: (not shown above), same as method 2 except for step 4 (= $pop_m \cdot vc_m \cdot ve_m$): 28,635.50 averted cases, -0.46% error

Method 2: no vaccine lag, vaccine coverage applied to all non-cases, and incorporating additional edits