

Schéma numérique pour la résolution de l'équation du transport des neutrons avec la méthode des caractéristiques

François FÉVOTTE Simone SANTANDREA Richard SANCHEZ

CEA/DEN/DM2S/SERMA

Rencontres Jeunes Chercheurs 2006

Plan

Introduction

Intérêt de la simulation neutronique

Modélisation de la neutronique : éq. de Boltzmann

Modélisation de la neutronique Equation de Boltzmann

Méthode des caractéristiques (MOC)

Étude de l'équation de Boltzmann Fonctionnement de la méthode

Améliorations de la méthode des caractéristiques

Méthode des « bandes » Traçage modulaire

Plan

Introduction

Intérêt de la simulation neutronique

Modélisation de la neutronique : éq. de Boltzmann Modélisation de la neutronique

Equation de Boltzmann

Méthode des caractéristiques (MOC)

Étude de l'équation de Boltzmanr Fonctionnement de la méthode

Améliorations de la méthode des caractéristiques

Méthode des « bandes »

Traçage modulaire

Introduction

Introduction

Problème multi-échelles

crayon /cellule

Introduction

Utilité des calculs de simulation neutronique

- Conception :
 - Conception des assemblages combustibles
 - Dimensionnement du coeur
 - Dossiers de sûreté
- Exploitation :
 - Plans de chargement
 - Confrontation avec les détecteurs
- Démantèlement :
 - Radioprotection
 - Transport des déchets

Plan

Introduction
Intérêt de la simulation neutronique

Modélisation de la neutronique : éq. de Boltzmann Modélisation de la neutronique Equation de Boltzmann

Méthode des caractéristiques (MOC) Étude de l'équation de Boltzmanr Fonctionnement de la méthode

Améliorations de la méthode des caractéristiques Méthode des « bandes » Traçage modulaire

Grandeurs fondamentales de la neutronique

- 7 variables :
 - \vec{r} : position du neutron
 - $\triangleright \vec{\Omega}$: direction du neutron
 - ► E ou v : énergie ou vitesse du neutron ($E = \frac{1}{2} m v^2$)
 - t: temps

Grandeurs fondamentales de la neutronique

- 7 variables :
 - \vec{r} : position du neutron
 - $ightharpoonup \vec{\Omega}$: direction du neutron
 - ► E ou v : énergie ou vitesse du neutron ($E = \frac{1}{2} m v^2$)
 - t : temps
- ▶ densité de neutrons : $n(\vec{r}, \vec{\Omega}, E, t)$ [cm^{-3}] nombre de neutrons par unité de volume

Grandeurs fondamentales de la neutronique

flux de neutrons : $\Phi(\vec{r}, \vec{\Omega}, E, t)$ [$cm^{-2} s^{-1}$] nombre de neutrons traversant une surface élémentaire orthogonale par unité de temps

Grandeurs fondamentales de la neutronique

- ▶ flux de neutrons : $Φ(\vec{r}, \vec{\Omega}, E, t)$ [$cm^{-2} s^{-1}$] nombre de neutrons traversant une surface élémentaire orthogonale par unité de temps
- courant neutronique : $\vec{J}(\vec{r}, \vec{\Omega}, E, t)$ [$cm^{-2} s^{-1}$] $\vec{J} \cdot \vec{N}$: nombre de neutrons traversant une surface orthogonale à \vec{N}

Grandeurs fondamentales de la neutronique

- ▶ flux de neutrons : $\Phi(\vec{r}, \vec{\Omega}, E, t)$ [$cm^{-2} s^{-1}$] nombre de neutrons traversant une surface élémentaire orthogonale par unité de temps
- courant neutronique : $\vec{J}(\vec{r},\vec{\Omega},E,t)$ [$cm^{-2}s^{-1}$] $\vec{J}\cdot\vec{N}$: nombre de neutrons traversant une surface orthogonale à \vec{N}
- $\Phi(\vec{r}, \vec{\Omega}, E, t) = v \, n(\vec{r}, \vec{\Omega}, E, t)$ $\vec{J}(\vec{r}, \vec{\Omega}, E, t) = \vec{\Omega} \, \Phi(\vec{r}, \vec{\Omega}, E, t)$

Transport libre (sans collision)

Opérateur de transport :

$$\frac{1}{v} \frac{d\Phi}{dt} = \vec{\Omega} \cdot \vec{\nabla}_{\vec{r}} \Phi$$

Transport libre (sans collision)

Opérateur de transport :

$$\frac{1}{v}\frac{d\Phi}{dt} = \vec{\Omega} \cdot \vec{\nabla}_{\vec{r}} \Phi$$

Bilan du nombre de neutrons dans un cylindre :

neutrons dans le cylindre
$$dS dI dn(\vec{r})$$

Transport libre (sans collision)

Opérateur de transport :

$$\frac{1}{v} \frac{d\Phi}{dt} = \vec{\Omega} \cdot \vec{\nabla}_{\vec{r}} \Phi$$

Bilan du nombre de neutrons dans un cylindre :

neutrons dans le cylindre
$$\overrightarrow{dS \ dl \ dn(\vec{r})}$$

$$= \underbrace{dS \ dt \ \Phi(\vec{r} - \frac{dl}{2}\vec{\Omega})}_{\text{neutrons aui rentrent}}$$

Transport libre (sans collision)

Opérateur de transport :

$$\frac{1}{v} \frac{d\Phi}{dt} = \vec{\Omega} \cdot \vec{\nabla}_{\vec{r}} \Phi$$

Bilan du nombre de neutrons dans un cylindre:

00000 0

neutrons dans le cylindre
$$\overrightarrow{dS \ dl \ dn(\vec{r})} = \underbrace{dS \ dt \ \Phi(\vec{r} - \frac{dl}{2}\vec{\Omega})}_{neutrons \ aui \ rentrent} - \underbrace{dS \ dt \ \Phi(\vec{r} + \frac{dl}{2}\vec{\Omega})}_{neutrons \ aui \ sortent}$$

Interactions avec la matière : grandeurs fondamentales

Section efficace (macroscopique) : Σ [cm^{-1}] sur un petit parcours dx, la probabilité de collision est Σdx $1/\Sigma$ est la longueur moyenne de parcours entre deux collisions

Interactions avec la matière : grandeurs fondamentales

- Section efficace (macroscopique): Σ [cm⁻¹] sur un petit parcours dx, la probabilité de collision est Σ dx 1/Σ est la longueur moyenne de parcours entre deux collisions
- ► Taux de réaction : $\tau = \Sigma \Phi$ [cm⁻³ s⁻¹] nombre d'interactions par unité de temps et de volume :
 - τ_f: fission (le neutron provoque la fission du noyau rencontré)
 - τ_s : diffusion (le neutron repart dans une autre direction avec une vitesse moindre)
 - au_c : capture radiative (le neutron est absorbé par le noyau)
 - **.**..

Interactions avec la matière : opérateur de collision et sources

$$\frac{1}{v} \frac{d\Phi}{dt} = \underbrace{-\sum_{t} \Phi}_{disparition:} + \underbrace{Q}_{sources:}$$

$$- scattering - scattering$$

$$- capture - fission$$

Forme stationnaire intégro-différentielle simplifiée

Equation stationnaire :

Forme stationnaire intégro-différentielle simplifiée

► Equation stationnaire :

$$\underbrace{\vec{\Omega} \cdot \vec{\nabla}_{\vec{r}} \Phi}_{\textit{transport}}$$

Forme stationnaire intégro-différentielle simplifiée

► Equation stationnaire :

$$\underline{\vec{\Omega}\cdot\vec{
abla}_{ec{r}}^{\Delta}}+\underbrace{\Sigma\,\Phi}_{ ext{interactions}}$$

Forme stationnaire intégro-différentielle simplifiée

Equation stationnaire :

$$\frac{\vec{\Omega} \cdot \vec{\nabla}_{\vec{I}} \Phi}{\text{transport}} + \underbrace{\sum \Phi}_{\text{interactions}} = \underbrace{S}_{\text{sources}}$$
$$- \text{internes}$$
$$- \text{externes}$$

Forme stationnaire intégro-différentielle simplifiée

Equation stationnaire :

$$\frac{\vec{\Omega} \cdot \vec{\nabla}_{\vec{r}} \Phi}{\text{transport}} + \underbrace{\sum \Phi}_{\text{interactions}} = \underbrace{S}_{\text{sources}}$$
$$- \text{internes}$$
$$- \text{externes}$$

- Conditions aux limites :
 - réflexion
 - translation
 - flux nul
 - · ...

Plan

Introduction
Intérêt de la simulation neutronique

Modélisation de la neutronique : éq. de Boltzmann Modélisation de la neutronique Equation de Boltzmann

Méthode des caractéristiques (MOC) Étude de l'équation de Boltzmann Fonctionnement de la méthode

Améliorations de la méthode des caractéristiques Méthode des « bandes » Traçage modulaire

Étude de l'équation de Boltzmann Motivations pour MOC

Equation sur le flux Φ et le courant \vec{J} :

$$ec{\Omega}\cdotec{
abla}_{ec{r}}\Phi=\operatorname{div}ec{J}$$

Étude de l'équation de Boltzmann Motivations pour MOC

Equation sur le flux Φ et le courant \vec{J} :

$$ec{\Omega}\cdotec{
abla}_{ec{r}}\Phi=\operatorname{div}ec{J}$$

L'opérateur de transport n'est pas "compatible" avec les termes sources provenant de l'opérateur de collision.

Étude de l'équation de Boltzmann

Motivations pour MOC

Equation sur le flux Φ et le courant \vec{J} :

$$ec{\Omega}\cdotec{
abla}_{ec{r}}\Phi=\operatorname{div}ec{J}$$

- L'opérateur de transport n'est pas "compatible" avec les termes sources provenant de l'opérateur de collision.
- Il est intéressant de :
 - ▶ simplifier l'opérateur de transport (loi de Fick → diffusion)
 - ▶ mettre en place un schéma numérique permettant de bien intégrer le transport (→ méthode des caractéristiques)

Inversion de l'opérateur de transport

Equation stationnaire de transport libre des neutrons :

$$\vec{\Omega} \cdot \vec{\nabla}_{\vec{r}} \Phi = 0$$

Inversion de l'opérateur de transport

Equation stationnaire de transport libre des neutrons :

$$\vec{\Omega} \cdot \vec{\nabla}_{\vec{r}} \Phi = 0$$

Le long d'une droite de direction $\vec{\Omega}$, le flux Φ est constant

Inversion de l'opérateur de transport

Equation stationnaire de transport libre des neutrons :

$$\vec{\Omega}\cdot\vec{\nabla}_{\vec{r}}\Phi=0$$

- Le long d'une droite de direction $\vec{\Omega}$, le flux Φ est constant
 - ⇒ la connaissance du flux aux bords du domaine suffit pour retrouver le flux en chaque point.

Prise en compte des absorptions

Transport libre et absorption :

$$\vec{\Omega}\cdot\vec{\nabla}_{\vec{r}}\Phi+\Sigma\Phi=0$$

Prise en compte des absorptions

Transport libre et absorption :

$$\vec{\Omega}\cdot\vec{\nabla}_{\vec{r}}\Phi+\Sigma\Phi=0$$

Durant un parcours de longueur I dans un matériau de section efficace Σ, la probabilité de non-absorption d'un neutron est : $e^{-ΣI}$

Prise en compte des absorptions

Transport libre et absorption :

$$\vec{\Omega}\cdot\vec{\nabla}_{\vec{r}}\Phi+\Sigma\Phi=0$$

- ▶ Durant un parcours de longueur I dans un matériau de section efficace Σ , la probabilité de non-absorption d'un neutron est : $e^{-\Sigma I}$
- Traversée de la région i le long d'une caractéristique (t, Ω):

Prise en compte des absorptions

Transport libre et absorption :

$$\vec{\Omega}\cdot\vec{\nabla}_{\vec{r}}\Phi+\Sigma\Phi=0$$

- ▶ Durant un parcours de longueur I dans un matériau de section efficace Σ , la probabilité de non-absorption d'un neutron est : $e^{-\Sigma I}$
- Traversée de la région i le long d'une caractéristique (t, Ω):

$$\Phi_i^+(t,\vec{\Omega}) = \Phi_i^-(t,\vec{\Omega}) e^{-\Sigma_i l_i(t,\vec{\Omega})}$$

Prise en compte des sources

Equation complète :

$$\vec{\Omega} \cdot \vec{\nabla}_{\vec{r}} \Phi + \Sigma \Phi = S$$

Prise en compte des sources

Equation complète :

$$\vec{\Omega} \cdot \vec{\nabla}_{\vec{r}} \Phi + \Sigma \Phi = S$$

Les sources apparaissent tout au long du parcours et sont soumises à l'absorption jusqu'à la sortie de la région.

Prise en compte des sources

Equation complète :

$$\vec{\Omega} \cdot \vec{\nabla}_{\vec{r}} \Phi + \Sigma \Phi = S$$

Les sources apparaissent tout au long du parcours et sont soumises à l'absorption jusqu'à la sortie de la région. Le flux issu de sources sortant de la région est :

$$\int_0^l s \, e^{-\sum(l-x)} \, dx$$
$$= \frac{1 - e^{-\sum l}}{\sum} \, s$$

Résolution de l'équation de Boltzmann complète

Equation de Boltzmann complète :

$$\vec{\Omega} \cdot \vec{\nabla}_{\vec{r}} \Phi + \Sigma \Phi = S$$

Mise à jour du flux lors de la traversée d'une région i le long d'une caractéristique $(t, \vec{\Omega})$:

$$\Phi_{i}^{+}(t,\vec{\Omega}) = \Phi_{i}^{-}(t,\vec{\Omega}) e^{-\sum_{i} l_{i}(t,\vec{\Omega})} + \frac{1 - e^{-\sum_{i} l_{i}(t,\vec{\Omega})}}{\sum_{i}} s_{i}(\vec{\Omega})$$

Mise en place en pratique

Plan

Introduction
Intérêt de la simulation neutronique

Modélisation de la neutronique : éq. de Boltzmann Modélisation de la neutronique Equation de Boltzmann

Méthode des caractéristiques (MOC) Étude de l'équation de Boltzmann Fonctionnement de la méthode

Améliorations de la méthode des caractéristiques Méthode des « bandes » Traçage modulaire

Méthode des « bandes » Problématique

- Mauvaise approximation de la géométrie :
 - Longueurs d'intersection non représentatives
 - Volumes approchés
- Discontinuités matérielles non prises en compte

1. Découpage du domaine en « bandes »

2. Découpage des bandes en « sections »

3. Projection des discontinuités dans les sections

4. Intégration semi-exacte dans les zones inter-discontinuités

Méthode des « bandes »

- Meilleure convergence en pas de traçage :
 - Convergence monotone
 - Meilleure précision à pas de traçage égal

Traçage modulaire Problématique

- Problème fortement multi-échelle
- Présence de réseaux réguliers à tous les niveaux
- Présence de symétries

crayon /cellule

Traçage modulaire Problématique

crayon /cellule

François FÉVOTTE

- Problème fortement multi-échelle
- Présence de réseaux réguliers à tous les niveaux
- Présence de symétries

Est-il possible de construire un traçage sur une cellule uniquement?

Traçage modulaire

Conditions à vérifier pour le traçage:

- nombre fini de segments
- compatibilité avec les translations
- compatibilité avec les réflexions
- si possible, pas constant

Traçage modulaire

Exemples de traçages invariants

Traçage modulaire

Exemples de traçages invariants

Conclusions

La méthode des caractéristiques permet de résoudre efficacement le problème du transport des neutrons.

- La méthode des caractéristiques peut être améliorée en prenant en compte les spécificités des problèmes traités :
 - Discontinuités matérielles
 - → Intégration transverse semi-exacte
 - Périodicité de la géométrie
 - \rightarrow Traçage modulaire

Conclusions

- Améliorations possibles
 - méthode des « bandes » :
 - augmentation du pas de traçage
 - représentation linéaire du flux
 - traçage modulaire:
 - implémentation en pratique
 - combinaison avec les bandes
 - parallélisation
 - vers le calcul 3D?

Principe de la fission nucléaire

Réaction en chaîne

