

Introduction to Analytics and Al

Introduction to Analytics and Al

01	What is AI?
02	From ad-hoc data analysis to data-driven decisions
03	Options for ML models on Google Cloud

Introduction to Analytics and Al

01	What is AI?
02	From ad-hoc data analysis to data-driven decisions
03	Options for ML models on Google Cloud

Machine Learning is a type of AI, and deep learning is a type of machine learning

Class of problems we can solve when computers think/act like humans

ML is a way to use standard algorithms to derive predictive insights from data and make repeated decisions

Why are Machine Learning and Deep Learning so exciting?

Class of problems we can solve when computers think/act like humans

Scalably solve those problems using data examples (not custom code)

Even when that data consists of unstructured data like images, speech, video, natural language text, etc.

Keller Williams uses AutoML Vision to automatically recognize common elements of house furnishings and architecture

Kewpie uses ML to sort out the bad potatoes in baby food

kewpie

Original process required humans to identify low-quality ingredients, which was expensive and stressful.

Machine learning was used to replicate the quality control process.

Play around with the power of Al yourself...

cloud.google.com/vision/

- Object detection
- Labeling and confidence
- Web lookup
- Pre-trained (call the API)

Try Google's natural language API

cloud.google.com/natural-language/

- Entity extraction
- Sentiment analysis
- Sentence structure
- Pre-trained (call the API)

Introduction to Analytics and Al

01	What is AI?
02	From ad-hoc data analysis to data-driven decisions
03	Options for ML models on Google Cloud

Imagine you're the owner of a bicycle rental business (in London). How do you stock enough bicycles?

Commuter Bikes

If rental is likely to be for a short duration, we need to have commuter bikes in stock

Road Bikes

If rental is likely to be for a **long duration**, we need to have road bikes in stock

You hire a data analyst to help get you insights on how to keep the right bicycles in stock

Does the duration of a rental vary by station?

How about the day of the week? Hour of day?


```
SELECT
EXTRACT(dayofweek
FROM
start_date) AS dayofweek,
AVG(duration) AS duration
FROM
`bigquery-public-data`.london_bicycles.cycle_hire
GROUP BY
dayofweek
```



```
SELECT
  EXTRACT(hour
  FROM
    start_date) AS hourofday,
  AVG(duration) AS duration
FROM
  `bigquery-public-data`.london_bicycles.cycle_hire
GROUP BY
  hourofday
```

This ad-hoc analysis is great but...

- A lot of manual, repetitive work involved for the data analyst
- Any decisions made will be based on hunches on how all these factors interact
- Wouldn't it be better if we could automate this analysis?

... what we need is an ML model to be able to make predictions

Goal: Augment our dashboards with predicted values e.g. prediction for the duration of a rental

Use the ML model to anticipate what type of bike/how many to stock at your locations

- The ML model takes some of the drudgery out of ad-hoc analysis to help you make truer data-driven decisions.
- Can build a ML model in BigQuery or Vertex Al.

```
CREATE OR REPLACE MODEL
 bike_model.model_bucketized TRANSFORM(* EXCEPT(start_date),
  ΙF
    (EXTRACT(dayofweek
      FROM
        start_date) BETWEEN 2 AND 6,
      'weekday',
      'weekend') AS dayofweek,
    ML.BUCKETIZE(EXTRACT(HOUR
      FROM
        start_date),
      [5, 10, 17]) AS hourofday )
OPTIONS
  (input_label_cols=['duration'],
    model_type='linear_reg') AS
SELECT
  duration,
 start_station_name,
  start_date
FROM
  bigquery-public-data`.london_bicycles.cycle_hire
```

Introduction to Analytics and Al

01	What is AI?
02	From ad-hoc data analysis to data-driven decisions
03	Options for ML models on Google Cloud

