به نام خدا

دانشگاه صنعتی امیر کبیر (پلی تکنیک تهران)

تمرین درس یادگیری ماشین-سری چهارم

فردين آيار

شماره دانشجویی: ۹۹۱۳۱۰۴۰

استاد: دكتر ناظرفرد

دانشکده کامپیوتر– زمستان ۹۹

سوالات تشريحي

()

الف)درست/نادرست؛ ماشینهای بردار پشتیبان پارامتریک هستند. زیرا برای ساخت مدل، تعداد محدودی پارامتر در نظر می گیرد که با افزایش تعداد دادههای آموزش، افزایش نمییابند. به عنوان مثال در کرنل خطی، بردار وزن W به صورت مجموعهای از ضرایب است که صرفنظر از SVM تعداد دادهها ثابت است.(هرچند ممکن است تعداد بردارهای پشتیبان افزایش یابد، اما تعداد پارامترها در مدل نهایی ثابت است) در این بین RBF با هسته RBF یک استثنا است؛ RBF دادهها را به فضای بینهایت بعدی می برد و در آن فضا، همه ی دادهها می توانند در شکل نهایی مدل تاثیرگذار باشند. به بیان بهتر با افزایش تعداد دادههای آموزش، شکل مدل پیچیده تر می شود که یعنی تعداد پارامترهای آن افزایش می یابد. در این حالت SVM غیرپارامتریک خواهد بود.

ب) نادرست؛ مدلهایی که دارای هستههای متفاوت هستند، در فضاهای متفاوتی قراردارند و لزوماً حاشیه بیشتر نشان دهنده کارایی بیشتر نیست. به عنوان مثال درصورت وجود داده های نوییزی، هسته RBF نسبت به هسته خطی احتمالا حاشیه بیشتری ایجاد کند. اما ممکن است به علت بیشبرازش کارایی آن کمتر باشد.

ج) نادرست؛ در مدل خطی در صورت تنظیم نبودن پارامتر C در Soft-Marin SVM) و وجود دادههای نویزی، SVM دچار بیشبرازش خواهد شد. همچنین در صورت استفاده از هستههای غیرخطی امکان وجود بیشبرازش وجود خواهد داشت. به عنوان مثال در هسته RBF با کاهش پارامتر سیگما، پتانسیل بیشبرازش در SVM افزایش خواهدیافت.

د) نادرست؛ همانطور که در مورد قسمت ج گفته شد، در صورت تنظیم نبودن پارامتر C و یا استفاده از هستههای غیرخطی، دادهای نویزی می توانند منجر به مدلهای ناکارآمد شوند.

ه) درست؛ می توان ثابت کرد خطای این الگوریتم، به صورت نمایی (نسبت به تعداد گامها t) به صفر میل خواهد کرد.

و) وزن دسته بندها در مرحله t از رابطه $t = \frac{1}{2} \ln \frac{1-\varepsilon_t}{\varepsilon_t}$ بدست می آید. این رابطه زمانی منفی می شود که $t = \frac{1}{2} \ln \frac{1-\varepsilon_t}{\varepsilon_t}$ که یعنی خطای مرحله t از ۰.۵ بیشتر شود. می دانیم خطای دسته بندی کننده از ۰.۵ بیشتر نخواهد بود؛ بنابراین وزنهای اختصاص داده شده همواره نامنفی است.

(1

در هسته ی RBF، پارامتر سیگما نشان دهنده ی محدوده هر یک از دادههای آموزش می باشد. اگر مقدار سیگما کوچک باشد، مرز تصمیم تنها به نقاطی بستگی دارد در نزدیکی مرز تصمیم قراردارند. از سوی دیگر بزرگ بودن پارامتر سیگما باعث می شود مرز تصمیم به محدوده بزرگتری از نقاط وابسته باشد. به طور خلاصه سیگمای کوچکتر باعث افزایش واریانس و سیگمای بزرگتر باعث افزایش بایاس می شود.

با توجه به توضیحات فوق، شکل سمت راست مربوط به سیگما ۲۰۰، شکل وسط مربوط به سیگما ۱۰ و شکل سمت چپ مربوط به سیگما ۱ است.

(٣

در روش hard voting نظر هر دستهبند*ی ک*ننده درباره برچسب داده پرسیده میشود و سپس بدون درنظر گرفتن احتمالات خروجی، برچسب داده با توجه به نظر اکثریت، تعیین میشود. در روش soft voting برخلاف روش قبل، احتمال تعلق داده به هر کلاس از هر دسته بندی کننده دریافت می شود. برچسب داده برابر است با کلاسی که بیشترین میانگین وزن دار احتمالات را دارد. منظور از ((وزن)) اهمیت هر دسته بند است.

(۴

ابتدا به بررسی روش hard voting میپردازیم. در این روش احتمالات کلاسها را در نظر نمی گیریم و خروجی هر الگوریتم، کلاسی است که بیشترین احتمال را دارد. بنابراین خروجی دستهبندهای یک تا ۳ بهترتیب عبارتند از class1 ،class2 و class1. خروجی روش voting که بیشترین است که بیشترین فراوانی را دارد؛ یعنی class1.

برای روش soft voting میانگین وزن دار احتمالات را برای هر کلاس محاسبه می کنیم.

$$\begin{cases} p(x \in class1) = \frac{2 \times 0.1 + 1 \times 0.6 + 2 \times 0.4}{2 + 1 + 2} = 0.32\\ p(x \in class2) = \frac{2 \times 0.5 + 1 \times 0.3 + 2 \times 0.3}{2 + 1 + 2} = 0.38\\ p(x \in class3) = \frac{2 \times 0.4 + 1 \times 0.1 + 2 \times 0.3}{2 + 1 + 2} = 0.3 \end{cases}$$

بنابراین داده مربوط به class2 است.

سوالات پیادهسازی

()

کد مربوط به این سوال در فایل 1.py قراردارد. دادهها را بعد از وارد کردن شافل میکنیم و ستون مربوط به ویژگی name را، به علت بی ارتباط بودن، حذف میکنیم.

۱-۱) برای هر پارامتر ۵ مقدار متفاوت در نظر گرفته شده است. لازم به ذکر است از آنجا که دیتاست در ابتدای کد شافل میشود و تعداد نمونههای موجود در دیتاست نسبتاً کم است؛ در اجراهای متفاوت ممکن است نتایج متفاوتی بدست آید.

کرنل خطی:

accuracy	f1	
0.847458	0.901099	

کرنل چندجملهای:

d	r	accuracy	f1
2	0	0.813559	0.884211
2	1	0.813559	0.884211
2	3	0.813559	0.884211

2	5	0.813559	0.884211
2	10	0.813559	0.884211
4	0	0.813559	0.886598
4	1	0.830508	0.895833
4	3	0.830508	0.895833
4	5	0.830508	0.895833
4	10	0.830508	0.895833
8	0	0.79661	0.875
8	1	0.79661	0.866667
8	3	0.847458	0.894118
8	5	0.847458	0.891566
8	10	0.830508	0.875
10	0	0.79661	0.87234
10	1	0.779661	0.857143
10	3	0.830508	0.878049
10	5	0.830508	0.878049
10	10	0.813559	0.864198
12	0	0.79661	0.87234
12	1	0.79661	0.869565
12	3	0.864407	0.904762
12	5	0.79661	0.85
12	10	0.762712	0.825

مطابق جدول فوق مقادیر بهینه برای کرنل چندجمله ای d=12 و d=12 میباشد. در این حالت مقدار Accuracy برابر با d=12 و مقدار d=12 و مقدار d=12 و مقدار d=12 برابر با d=12 میباشد.

کرنل RBF:

gamma	accuracy	f1
0.001	0.762712	0.847826
0.01	0.779661	0.865979
0.1	0.745763	0.851485
1	0.728814	0.843137
10	0.728814	0.843137

بهترین مقدار برای پارامتر گاما ۰۰۰۱ می باشد که مقادیر Accuracy و F1 متناظر با اَن 0.7796 و 0.8659 می باشد.

کرنل سیگموید:

r	accuracy	f1
0	0.728814	0.843137

1	0.728814	0.843137
3	0.728814	0.843137
5	0.728814	0.843137
10	0.728814	0.843137

در این حالت همانطور که مشاهده می شود مقدار ضریب r تاثیری روی نتیجه نداشته است و مقدار بهینه وجود ندارد.

(۲–۱

کرنل چندجملهای:

به طور کلی به ازای مقدار ثابت ۲، افزایش پارامتر d باعث افزایش دقت و سپس کاهش آن می شود (به علت بیش برازش). از طرف مقابل نیز، افزایش پارامتر r با ثابت نگه داشتن d، موجب افزایش و سپس کاهش دقت می شود. البته این افزایش برای درجات بالاتر بیشتر مشهود است؛ به طوری که در درجه ۲، تغییر پارامتر r تاثیر خاصی روی دقت ندارد اما در درجه ۱۲، افزایش r سبب تغییرات زیادی در دقت می شود.

کرنل RBF:

در اینجا منظور از پارامتر گاما، معکوس سیگما است. در سوال ۲ تشریحی توضیح داده شد که با افزایش سیگما، از واریانس بالا به سمت بایاس بالا حرکت می کنیم. در این سوال نیز مطابق انتظار، با شروع از مقدار یک هزارم برای گاما، دقت ابتدا افزایش یافته و سپس به علت کمبرازش، کاهش می باید.

کرنل سیگموید:

در کرنل سیگموید پارامتر r تاثیری روی نتایج این مسئله نداشته است.

۱-۳) برای این کار می توان از روشهای ارزیابی(مانند cross-validation) و الگوریتمهای بهینه سازی برای جستوجوی پارامترهای بهینه استفاده کرد.

(٢

۱-۲) کد مربوط به این قسمت در فایل 2.py قراردارد. دو مدل که بهترین نتیجه را داشتهاند در جدول زیر به صورت bold مشخص شدهاند. منظور از بهترین مدل، بیشترین دقت روی مجموعه اَزمون است.

n_estimators	max_features	max_depth	train accuracy	test_accuracy
10	2	2	0.756052	0.748918
10	2	5	0.86406	0.796537
10	2	8	0.94041	0.796537
10	5	2	0.780261	0.792208
10	5	5	0.860335	0.805195
10	5	8	0.960894	0.787879

10 8 2 0.772812 0.78355 10 8 5 0.873371 0.792208 10 8 8 0.951583 0.800866 100 2 2 0.765363 0.766234 100 2 5 0.865922 0.792208 100 2 8 0.962756 0.809524 100 5 2 0.769088 0.787879 100 5 5 0.865922 0.792208 100 5 8 0.979516 0.800866 100 8 2 0.776536 0.770563 100 8 5 0.867784 0.792208 100 8 8 0.975791 0.805195 1000 2 2 0.761639 0.770563 1000 2 3 0.96648 0.809524 1000 5 2 0.765363 0.774892 1000 5 2 0.765363					
10 8 8 0.951583 0.800866 100 2 2 0.765363 0.766234 100 2 5 0.865922 0.792208 100 2 8 0.962756 0.809524 100 5 2 0.769088 0.787879 100 5 5 0.865922 0.792208 100 5 8 0.979516 0.800866 100 8 2 0.776536 0.770563 100 8 5 0.867784 0.792208 100 8 8 0.975791 0.805195 1000 2 2 0.761639 0.770563 1000 2 3 0.9648 0.809524 1000 5 2 0.765363 0.774892 1000 5 2 0.765363 0.774892 1000 5 8 0.977654 0.805195 1000 8 2 0.769088 <td>10</td> <td>8</td> <td>2</td> <td>0.772812</td> <td>0.78355</td>	10	8	2	0.772812	0.78355
100 2 2 0.765363 0.766234 100 2 5 0.865922 0.792208 100 2 8 0.962756 0.809524 100 5 2 0.769088 0.787879 100 5 5 0.865922 0.792208 100 5 8 0.979516 0.800866 100 8 2 0.776536 0.770563 100 8 5 0.867784 0.792208 100 8 8 0.975791 0.805195 1000 2 2 0.761639 0.770563 1000 2 2 0.761639 0.770563 1000 2 5 0.862197 0.792208 1000 5 2 0.765363 0.774892 1000 5 5 0.867784 0.800866 1000 5 8 0.977654 0.805195 1000 8 2 0.76908	10	8	5	0.873371	0.792208
100 2 5 0.865922 0.792208 100 2 8 0.962756 0.809524 100 5 2 0.769088 0.787879 100 5 5 0.865922 0.792208 100 5 8 0.979516 0.800866 100 8 2 0.776536 0.770563 100 8 5 0.867784 0.792208 100 8 8 0.975791 0.805195 1000 2 2 0.761639 0.770563 1000 2 5 0.862197 0.792208 1000 2 8 0.96648 0.809524 1000 5 5 0.867784 0.800866 1000 5 5 0.867784 0.800866 1000 5 5 0.867784 0.800866 1000 5 5 0.867784 0.800866 1000 5 8 0.97765	10	8	8	0.951583	0.800866
100 2 8 0.962756 0.809524 100 5 2 0.769088 0.787879 100 5 5 0.865922 0.792208 100 5 8 0.979516 0.800866 100 8 2 0.776536 0.770563 100 8 5 0.867784 0.792208 100 8 8 0.975791 0.805195 1000 2 2 0.761639 0.770563 1000 2 5 0.862197 0.792208 1000 2 8 0.96648 0.809524 1000 5 2 0.765363 0.774892 1000 5 5 0.867784 0.800866 1000 5 8 0.977654 0.805195 1000 8 2 0.769088 0.78355 1000 8 2 0.769088 0.78355 1000 8 5 0.875233	100	2	2	0.765363	0.766234
100 5 2 0.769088 0.787879 100 5 5 0.865922 0.792208 100 5 8 0.979516 0.800866 100 8 2 0.776536 0.770563 100 8 5 0.867784 0.792208 100 8 8 0.975791 0.805195 1000 2 2 0.761639 0.770563 1000 2 5 0.862197 0.792208 1000 2 8 0.96648 0.809524 1000 5 2 0.765363 0.774892 1000 5 0.867784 0.800866 1000 5 8 0.977654 0.805195 1000 8 2 0.769088 0.78355 1000 8 2 0.769088 0.792208	100	2	5	0.865922	0.792208
100 5 5 0.865922 0.792208 100 5 8 0.979516 0.800866 100 8 2 0.776536 0.770563 100 8 5 0.867784 0.792208 100 8 8 0.975791 0.805195 1000 2 2 0.761639 0.770563 1000 2 5 0.862197 0.792208 1000 2 8 0.96648 0.809524 1000 5 2 0.765363 0.774892 1000 5 5 0.867784 0.800866 1000 5 8 0.977654 0.805195 1000 8 2 0.769088 0.78355 1000 8 5 0.875233 0.792208	100	2	8	0.962756	0.809524
100 5 8 0.979516 0.800866 100 8 2 0.776536 0.770563 100 8 5 0.867784 0.792208 100 8 8 0.975791 0.805195 1000 2 2 0.761639 0.770563 1000 2 5 0.862197 0.792208 1000 2 8 0.96648 0.809524 1000 5 2 0.765363 0.774892 1000 5 5 0.867784 0.800866 1000 5 8 0.977654 0.805195 1000 8 2 0.769088 0.78355 1000 8 5 0.875233 0.792208	100	5	2	0.769088	0.787879
100 8 2 0.776536 0.770563 100 8 5 0.867784 0.792208 100 8 8 0.975791 0.805195 1000 2 2 0.761639 0.770563 1000 2 5 0.862197 0.792208 1000 2 8 0.96648 0.809524 1000 5 2 0.765363 0.774892 1000 5 5 0.867784 0.800866 1000 5 8 0.977654 0.805195 1000 8 2 0.769088 0.78355 1000 8 5 0.875233 0.792208	100	5	5	0.865922	0.792208
100 8 5 0.867784 0.792208 100 8 8 0.975791 0.805195 1000 2 2 0.761639 0.770563 1000 2 5 0.862197 0.792208 1000 2 8 0.96648 0.809524 1000 5 2 0.765363 0.774892 1000 5 5 0.867784 0.800866 1000 5 8 0.977654 0.805195 1000 8 2 0.769088 0.78355 1000 8 5 0.875233 0.792208	100	5	8	0.979516	0.800866
100 8 8 0.975791 0.805195 1000 2 2 0.761639 0.770563 1000 2 5 0.862197 0.792208 1000 2 8 0.96648 0.809524 1000 5 2 0.765363 0.774892 1000 5 5 0.867784 0.800866 1000 5 8 0.977654 0.805195 1000 8 2 0.769088 0.78355 1000 8 5 0.875233 0.792208	100	8	2	0.776536	0.770563
1000 2 2 0.761639 0.770563 1000 2 5 0.862197 0.792208 1000 2 8 0.96648 0.809524 1000 5 2 0.765363 0.774892 1000 5 5 0.867784 0.800866 1000 5 8 0.977654 0.805195 1000 8 2 0.769088 0.78355 1000 8 5 0.875233 0.792208	100	8	5	0.867784	0.792208
1000 2 5 0.862197 0.792208 1000 2 8 0.96648 0.809524 1000 5 2 0.765363 0.774892 1000 5 5 0.867784 0.800866 1000 5 8 0.977654 0.805195 1000 8 2 0.769088 0.78355 1000 8 5 0.875233 0.792208	100	8	8	0.975791	0.805195
1000 2 8 0.96648 0.809524 1000 5 2 0.765363 0.774892 1000 5 5 0.867784 0.800866 1000 5 8 0.977654 0.805195 1000 8 2 0.769088 0.78355 1000 8 5 0.875233 0.792208	1000	2	2	0.761639	0.770563
1000 5 2 0.765363 0.774892 1000 5 5 0.867784 0.800866 1000 5 8 0.977654 0.805195 1000 8 2 0.769088 0.78355 1000 8 5 0.875233 0.792208	1000	2	5	0.862197	0.792208
1000 5 5 0.867784 0.800866 1000 5 8 0.977654 0.805195 1000 8 2 0.769088 0.78355 1000 8 5 0.875233 0.792208	1000	2	8	0.96648	0.809524
1000 5 8 0.977654 0.805195 1000 8 2 0.769088 0.78355 1000 8 5 0.875233 0.792208	1000	5	2	0.765363	0.774892
1000 8 2 0.769088 0.78355 1000 8 5 0.875233 0.792208	1000	5	5	0.867784	0.800866
1000 8 5 0.875233 0.792208	1000	5	8	0.977654	0.805195
	1000	8	2	0.769088	0.78355
1000 8 8 0.979516 0.796537	1000	8	5	0.875233	0.792208
	1000	8	8	0.979516	0.796537

۲-۲) با توجه به جدول فوق، پارامتر **max_depth** بیشترین تاثیر را در افزایش دقت دارد و دو پارمتر دیگر تاثیر زیادی در افزایش دقت نداشته اند. به طور کلی همه پارامترهای فوق در حد پایین خود می توانند موجب کمبرازش و در حد بالای خود موجب بیش برازش شوند.

۲-۳)کد مربوط به این بخش در فایل 2-3.py قراردارد. برای این بخش از سه الگوریتم متفاوت استفاده می کنیم:

الف) SVM با هسته RBF و گاما ۰.۰۰۰۹ – دقت بدست آمده روی مجموعه آزمون: ۰.۷۷۹۲

ب) الگوريتم Bagging با ۴۰ دستهبند رگرسيون لاجستيک – دقت بدست آمده روی مجموعه آزمون: ۷۹۲۲.

ج) الگوريتم Adaboost با ۵۰ مرحله درخت تصميم بدون محدوديت عمق- دقت بدست اَمده روى مجموعه اَزمون: ٧٩۶٥.

بنابراین بهترین عملکرد مربوط به مدل ج است.