①実用新案出願公告

## ⑫実用新案公報(Y2)

平4-51928

SInt. Cl. 5

差別記号

庁内整理番号

❷❸公告 平成4年(1992)12月7日

B 23 C 5/10

В 7347-3C

(全6頁)

日考案の名称 ポールエンドミル

審 判 平2-18773 到実 顧 昭61-169434 每公 第 昭63-74210

❷出 顧 昭61(1986)11月4日

@昭63(1988) 5月18日

四分 案 者 渡 辺 浩 志 神奈川県鎌倉市腰越2-26-15 の出 顧 人 日進工具株式会社

東京都品川区南大井4-6-4

29代 理 人 弁理士 福 岡 要

審判の合議体 審判長 舟 田 類二 典秀 客判官 伊藤 審判官 高 木 進 実開 昭60-10011 (JP, U) 領文专会网 実公 昭58-35368 (JP, Y2)

1

## ②実用新案登録請求の範囲

(1) ボールエンドミル本体の先端部に底切刃が設 けられていると共に、同本体の外周から先端部 にかけて周切刃が設けられているポールエンド ミルにおいて、

底切刃の形状が被削材に点接触しながら該被 削材を切削可能な曲率半径をもつ回転方向に凸 なる円弧状に形成され、かつ該曲率半径が、底 面視においてポールエンドミル本体の直径の約 刃の始端から終端までの全長にわたつて略一定 であり、かつ底切刃の回転方向最先端部(頂 点) が、ポールエンドミル本体 2 の直径の1/2 円の近傍に位置し、さらに底切刃の終端間の距 にあり、しかも円弧状に形成された底切刃の始 鎖と終端とが、軸中心からの同一の放射線上に あることを特徴とするポールエンドミル。

- (2) 各底切刃は、相互に異なる曲率半径のもので ンドミル。
- (3) 底切刃を有する底切刃チップが、ポールエン ドミル本体にロー付け固着されていることを特 徴とする第1項または第2項に配載のポールエ ンドミル。
- (4) 底切刃が、2枚刃の形式であることを特徴と する第1項~第3項の何れかに記載のポールエ

2

#### ンドミル。

### 考案の詳細な説明 〈産業上の利用分野〉

本考案は、ポールエンドミルに関し、特に点接 5 触のみで被削材の切削を行うことにより、被削材 との接触面積を減少させ、重切削を可能とすると 共に、広範囲の回転数において対応させ、生産性 と加工精度とを著しく向上し、さらに被削材に対 する汎用性を著しく拡大することができ、加工範 25%~75% (1/4~3/4) の範囲であつて、底切 10 囲を拡大し、これによつて加工性と、生産性を大 幅に向上させ得るポールエンドミルに関するもの である。

#### 〈従来の技術〉

従来より、金型の彫込等にポールエンドミルが 離がポールエンドミル本体の直径の約80%付近 15 使用されているが、主に切刃形状に起因して、生 産性、加工精度および被削材に対する汎用性の点 で不満足な点があつた。

すなわち、第3図に良く示されているように、 従来のポールエンドミルaの底切刃bは、その曲 あることを特徴とする第1項に記載のポールエ 20 率半径 r が、主に加工上の理由から、ポールエン ドミルaの直径Dに比して約100%以上あり、比 較的大きく形成されている。

> このため、被削材に対する切込みが底切刃もの 始端から終端にかけて比較的早く移行し、同刃b 25 に衝撃荷重が作用することになる。従つて、チツ ピングを生じ安く、しかも重切削を行うのが不可 能であるという欠点がある。

また、底切刃bの曲率半径ェが大であることか ら、同刃bと被削材との接触が線接触状態とな り、接触面積が大きいため、切削拡大が大となる 欠点がある。

刃bと被削材との接触面積が大であることと相俟 つて、切屑が同刃bに押付けられるようになり、 切屑切削抵抗が大であるばかりでなく、切屑の排 出が流れ難く、切屑がスムースに行われ難いとい う欠点がある。

従つて、これらの欠点に起因して、切削速度が 低く抑制されるため、生産性が低いばかりでな く、切削面の加工精度も不良であるという問題点 がある。

て、外周部の切刃曲線より中心部の切刃曲線の方 を大きな曲率半径に形成したものが提案された (実公昭58-35366号)。しかし、これは該切刃の 曲線は点接触を意識したものでなく、切刃の外層 部では直線状態にある等被削材との接触が線接触 20 〈作用〉 状態にあるため、大なる切削抵抗によって低生産 性となることや、切屑排出性不足に起因する切刃 への切削切断用切欠きの設定が必要となる等の間 題点がある。

して、ポールエンドミルの先端部における切刃の 底面視形状を円弧状に形成したものが提案された (実開昭60-100111号公報)。しかし、該切刃は周 切刃がポールエンドミルの先端部にまで延伸され る為、該切刃の曲率半径が大なるものに限定され た。従つて、該切刃は、被切削材との接触面積が 大となり、上記従来技術の問題点が依然として解 消されないものであつた。

#### 〈考案が解決しようとする問題点〉

このような従来技術の欠点に鑑み、本考案の主 な目的は、切削抵抗を著しく減少させ、切削性を 向上させて切削速度を向上させ、さらに切屑の排 出性を高め、送り量を増大化させ、重切削を可能 範囲の回転数において対応でき、これによって生 産性が高く、しかも、加工精度に優れ、また被削 材に対する汎用性を著しく拡大することができ、 さらに工具寿命を伸長化し得るポールエンドミル を提供することにある。

〈問題点を解決するための手段〉

このような目的は、本考案によれば、ポールエ ンドミル本体の先端部に底切刃が設けられている さらに、同刃bの曲率半径が大であるため、同 5 と共に、同本体の外周から先端部にかけて周切刃 が設けられているポールエンドミルにおいて、底 切刃の形状が被削材に点接触しながら該被削材を 切削可能な曲率半径をもつ回転方向に凸なる円弧 状に形成され、かつ該曲率半径が、底面視におい 10 てポールエンドミル本体の直径の約25%~75% (1/4~3/4) の範囲であつて、底切刃の始端から 終始までの全長にわたつて略一定であり、かつ底 切刃の回転方向最先端部(頂点)が、ポールエン ドミル本体2の直径の1/2円の近傍に位置し、さ そこで、これらの問題点を解消するものとし 15 らに底切刃の終始間の距離がポールエンドミル本 体の直径の約80%付近にあり、しかも円弧状に形 成された庭切刃の始端と終端とが、軸中心からの 同一の放射線上にあることを特徴とするポールエ ンドミルを提供することにより達成される。

このように、被削材に対して点接触しながら切 削可能な曲率半径を持つ円弧状に底切刃を形成す ることにより、ポールエンドミルを用いて点接触 のみで被削材の切削を行うことになり、該切刃と また、このようような問題点を解決するものと 25 被削材との接触面積を微少化することにより、切 削抵抗が激減して、切削時に同刃に加わる衝撃荷 重が激減して、チッピングが阻止される。このた め、切削性が向上して切削速度が向上し、さらに 切屑の排出性が高められ、送り量が増大化し、重 た底切刃と周切刃とが一体に形成されたものであ 30 切削が可能となり加工範囲が拡大することにな

> しかも、広範囲の回転数において対応できるよ うになり、切削抵抗も著しく減少し、また切屑の 排出の流れもスムースになる。この結果、被削材 35 に対する汎用性を著しく拡大することができると 共に、生産性が大幅に上昇し、しかも加工精度が 著しく優れたものとなり、さらに工具寿命が大幅 に伸長化する。

さらに加えて、底切刃の終錮をポールエンドミ として加工範囲を拡大することができ、しかも広 40 ル本体の外周まで延伸することなく、庭切刃の終 端間の距離がポールエンドミル本体の直径の約80 %付近にあるように構成した為、底切刃の終端が ポールエンドミル本体の外周まで延伸されている 場合に比して、底切刃の始端と終端との周速の差 5

が可及的に短縮され、底切刃全体に加わる荷重が 減少するばかりでなく、底切刃各部に加わる荷重 の差が小さくなり、底切刃に作用する応力が減少 する。この為、工具寿命が伸長化されると共に、 工具交換の機会が著しく減少するから、生産性が 5 れ角(正の掬い角)に形成されている。 向上する。

#### 〈実施例〉

以下に添付の図面を参照して、本考案を特定の 実施例について詳述する。

第1図~第2図は、ポールエンドミル1は、後 10 端にシヤンク2を有するポールエンドミル本体3 の先端部4が半球状に形成されている。

該先端部4には、底切刃用チップポケット5と 周切刃用チップポケット 8 とが、底面視において 交叉方向に夫々一対づつ相対向して設けられてい 15 中から適宜選択すればよい。

該底切刃用チップポケット5の回転方向後傾に は、庭切刃用チップ7がロー付等の手段により固 着され、また上記周切刃用チップポケット6の回 手段により固着されされている。

該底切刃用チップ7は、回転方向先鐘に底切刃 9を有している。

該底切刃8は、底面視において、始始8 aが回 しながら同材を切削可能な曲率半径Rの円弧状に 形成され、しかも、同半径Rが円弧の全長にわた つて略同一である回転方向に凸なる曲線に構成さ れている。さらに、同刃9は、その始端9aと終 り、かつ該終着 9 b間の距離Leがポールエンド ミル本体3の直径Dの約80%付近にあり、しかも ポールエンドミル本体3の直径Dの1/2円の近傍 に、同刃9の回転方向最先端部(頂点)が位置す る円弧状に形成されている。上記曲率半径は、ポ 35 一致するものでもよい。 ールエンドミル本体3の直径Dの約25%~75% (1/4~3/4) の範囲で選択すればよく、これは被 削材の材質と底切刃8の材質、その他の条件によ つて変化させればよい。

一方、前記周切刃用チップ8は、先編に周切刃 40 10を有している。

該周切刃10は、底面視において始端10a間 の距離Lrがポールエンドミル本体3の直径Dの 約70%付近にあつて、終端10bがポールエンド

ミル本体3の外周上に於て、始端10aを通る軸 中心からの放射線より回転方向後方に位置し、第 1図に良く示されているように、側面視において 終端10bが始端10aより後方に位置する右捩

従つて、底切刃9の終端部と周切刃10の始端 部とは、夫々回転軌跡上において、ポールエンド ミル本体 3の直径Dの約5%ずつ放射方向にオー パラツブ (Lo) した状態に形成されている。

上記庭切刃用チップ7と周切刃用チップ8の材 質としては、タングステンカーパイド (WC) を 主成分とした超硬合金が好適であるが、被削材の 材質その他の条件により、このほか高速度鋼(ハ イス)、サーメツト、セラミツクその他の材質の

また、本実施例においては、これらのチップ 7, 8がポールエンドミル本体3にロー付にて固 着されたものについて示したが、該チップ7.8 は、同本体3にクランクポルト等により着脱自在 転方向後側には、周切刃用チップ6がロー付等の 20 に設けたもの(スローアウエイタイプ)であつて もよい。

さらに、本実施例においては、底切刃9と周切 刃10とが夫々2枚刃の形式のものについて資用 したが、それら切刃8,10が一枚刃の形式のも 転中心(軸中心)付近にあつて、被削材に点接触 25 のや、3枚刃以上の多刃形式のものにも適用でき るものである。

また、本実施例においては、各底切刃8相互が 同一曲率半径Rのものについて適用したが、該各 切刃9の曲率半径Rが前配条件を充足するものな 端 8 b とが、軸中心からの同一の放射線上にあ 30 らば、相互に異なる曲率半径のものであつてもよ

> さらに、本実施例においては、底切刃8の始端 8 aがポールエンドミル本体3の軸中心から僅か に離隔したものについて適用したが、同軸中心に

> また、本実施例においては、各周切刃9がボー ルエンドミル本体 3 の軸中心に対して点対称に形 成したものについて適用したが、同軸中心に対し て偏心させて形成したものであつてもよい。

更に、本実施例に於ては、底切刃9の終端9b がポールエンドミル本体3の直径Dの内側に位置 するものについて示したが、該終着9 bが該本体 3の外周まで延伸されたものにも適用することが できる。

次に、本実施例の実施例について説明する。 従来例と本実施例との比較切削試験は、堅型フ ライス盤により、次の工具仕様と被削材仕様とに より行つた。

#### (1) 工具仕様

ポールエンドミルの直径 : D=50= 従来例の曲率半径 r = 50本実施例の曲率半径 : R = 25mm 底切刃始着と軸中心との距離 : 1 = 1 == 庭切刃形式 周切刃形式 :2枚刃形式

底切刃用チップの取付 :ロー付固着 底切刃用チップの材質 :超硬合金M20

(2) 被削材仕様

材質 上配切削試験の結果は、次の通りである。

切削速度 送り 切削抵抗 (m/min) (ma/rev)

本実施例 156 536 0.65 從来例 80 400 1

上記切削試験の結果より、本実施例のものは、 従来例のものに比べて、切削時に受ける衝撃が少 なく、かつ切削抵抗も減少し、しかも切屑の排出 もスムースであることが判明した。この結果、何 等不具合を生ずることなく、切削速度と送り量を 25 顕著に高めることができ、しかも工具寿命を大幅 に伸長させることができ、かつ切削面の加工精度 を著しく向上させることができる。

#### 〈考案の効果〉

定の円弧状としたため、被削材に対して点接触し ながら切削することにより、該切刃と被削材との 接触面積が微少となり、切削抵抗が激減して、切 前時における切刃に加わる荷重が減少し、衝撃荷 重を回避することができ、広範囲の回転数におい 35 ボールエンドミルの底面図である。 て対応でき、さらに切削抵抗の減少による重切削 の可能化によって、被削材に対する汎用性を著し く拡大することができる利点がある。

また、これによつて、切屑の排出を円滑化する 止して工具寿命を伸長化すると共に、工具交換を せずに鋼材や鋳鉄等の幅広い範囲の被削材を切削 することができる利点がある。

さらに、切削速度と送りを上昇させることによ

り、重切削可能となったことと相俟って加工範囲 が拡大する利点がある。

この結果、生産性が大幅に向上すると共に、さ らに切削面の加工精度が著しく向上し、しかも工 5 具寿命を伸長化し得るという大なる効果がある。

この切削抵抗の減少によって、送り量を比較的 大きくとるようにすることが出来、切削速度を増 大させることが出来る為、従来不可能であった高 速での切削が可能となり、生産性を向上させるこ : 2枚刃形式 10 とができる。

さらに加えて、本願考案は、底切刃の終始をポ ールエンドミル本体の外周まで延伸することな く、底切刃の終端間の距離がポールエンドミル本 体の直径の約80%付近にあるように構成した為、 :FC-25 15 底切刃の終端がポールエンドミル本体の外周まで 延伸されている場合に比して、該底切刃の始端と 終端との周速の差が可及的に短縮され、底切刃全 体に加わる荷重が減少するばかりでなく、抜底切 刃各部に加わる荷重の差が小さくなり、底切刃に 20 作用する応力が減少する。この為、工具寿命が伸 長化されると共に、工具交換の機会が著しく減少 するから、生産性を向上させることが出来ると共 に、生産コストと工具コストとを安くすることが 出来る利点がある。

また、このように、底切刃の終端間の距離を所 定長さとする構成を採用することにより、広範囲 の回転数において幅広く使用可能となり、どの様 な切削速度においても応力集中を回避でき、切刃 の強度を向上させることが出来ると共に、生産性 このように本考案によれば、底切刃の形状を特 30 の向上と加工精度の向上とを図ることができる。

#### 図面の簡単な説明

第1図は本考案に基ずく底切刃が設けられたポ ールエンドミルの側面図である。第2図は第1図 の底面図である。第3図は従来例の底切刃をもつ

1 ----・ポールエンドミル、2 ----・シャンク、3 ······ボールエンドミル本体、4······先端部、5··· …底切刃用チップポケット、8……周切刃用チッ プポケット、7……底切刃用チップ、8……周切 ことができる。この結果、チッピングの発生を阻 40 刃用チップ、8……底切刃、8a……始端、8b 0 b……終端、D……ポールエンドミル本体の直 径、R……底切刃の曲率半径、Le……底切刃の 終端間の距離、上……底切刃の始端間の距離、

10

Lo……回転軌跡上における底切刃終端部と周切 刃始端部との放射方向のオーパラップ。







# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

| Defects in the images include but are not limited to the items checked: |
|-------------------------------------------------------------------------|
| BLACK BORDERS                                                           |
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES                                 |
| ☐ FADED TEXT OR DRAWING                                                 |
| ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING                                  |
| ☐ SKEWED/SLANTED IMAGES                                                 |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS                                  |
| ☐ GRAY SCALE DOCUMENTS                                                  |
| ☐ LINES OR MARKS ON ORIGINAL DOCUMENT                                   |
| ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY                 |
| П отигр.                                                                |

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.