

IN THE CLAIMS:

Claims 1-36 (Cancelled)

- 1 37. (Currently Amended) A direct oxidation fuel cell, comprising
 - 2 (A) a catalyzed membrane electrolyte, having an anode aspect and a cathode
 - 3 aspect;
 - 4 (B) a fuel cell housing enclosing said fuel cell with an anode chamber being
 - 5 defined between said anode aspect of the catalyzed membrane electrolyte and an exterior
 - 6 portion of said cell housing;
 - 7 (C) a direct fuel feed into [[an]]said anode chamber that has no liquid exit port
 - 8 such that liquid that is present in said anode chamber cannot exit said anode chamber ex-
 - 9 cept across said catalyzed membrane electrolyte;
 - 10 (D) at least one gaseous effluent release port located in said anode chamber in
 - 11 close proximity to said anode aspect of the catalyzed membrane electrolyte, which is in
 - 12 substantially direct fluid communication with the ambient environment; and
 - 13 (E) a load coupled across said fuel cell, providing a path for electrons pro-
 - 14 duced in electricity generating reactions of said fuel cell.
-
- 1 38. (Currently Amended) The direct oxidation fuel cell as defined in claim 37
 - 2 wherein a substance delivered by said direct fuel feed into [[said]]a liquid-closed volume
 - 3 in the anode chamber is up to 100% fuel.
-
- 1 39. (Previously Presented) The direct oxidation fuel cell as defined in claim 38
 - 2 wherein said fuel is methanol.

1 40. (Previously Presented) The direct oxidation fuel cell as defined in claim 37
2 wherein fuel is delivered by said direct fuel feed into said anode chamber without anode
3 liquid recirculation.

1 41. (Previously Presented) The direct oxidation fuel cell as defined in claim 37
2 wherein water produced at said cathode is not actively collected or pumped to said anode
3 chamber.

1 42. (Currently Amended) The direct oxidation fuel cell as defined in claim 27
2 wherein gaseous effluent traveling out of said fuel cell through said gaseous effluent re-
3 lease port is at least partially comprised of carbon dioxide.

1 43. (Previously Presented) The direct oxidation fuel cell as defined in claim 37
2 wherein at least a portion of one wall of said anode chamber is gas permeable and liquid
3 impermeable.

1 44. (Previously Presented) A direct oxidation fuel cell, comprising:
2 (A) a catalyzed membrane electrolyte having an anode aspect and a cathode
3 aspect;
4 (B) a fuel cell housing with an anode chamber being defined between said an-
5 ode aspect of said catalyzed membrane electrolyte and an exterior portion of said cell
6 housing, and fuel being delivered to, but not actively recirculated from, said anode cham-
7 ber; and
8 (C) gaseous anodic product removal component disposed between said cata-
9 lyzed membrane electrolyte and said housing.

1 45. (Previously Presented) A direct oxidation fuel cell system, comprising:
2 (A) a direct oxidation fuel cell having:
3 (i) a catalyzed membrane electrolyte, having an anode aspect and a
4 cathode aspect;

5 (ii) a fuel cell housing enclosing said fuel cell with an anode chamber
6 being defined between said anode aspect of the catalyzed membrane electrolyte and an
7 exterior portion of said cell housing;

8 (iii) a direct fuel feed into a liquid-closed volume in said anode cham-
9 ber such that liquid fuel that enters into the chamber by the direct fuel feed cannot exit
10 the chamber except across said catalyzed membrane electrolyte; and

11 (iv) at least one gaseous effluent release port located in said anode
12 chamber in close proximity to said anode aspect of the catalyzed membrane electrolyte;

13 (B) a fuel source coupled to said anode chamber; and

14 (C) means by which current can be collected from the fuel cell and conducted
15 to a load, whereby electricity is generated by said fuel cell as fuel is delivered to said an-
16 ode chamber without external pumping of cathodically-generated water and without ac-
17 tive water removal elements.

1 46. (Previously Presented) A direct oxidation fuel cell, comprising:

2 (A) a catalyzed membrane electrolyte assembly having an anode aspect and a
3 cathode aspect and

4 (B) means for outporting gasses away from the anode aspect of the fuel cell
5 which means for outporting gasses is disposed in close proximity to said anode aspect of
6 the catalyzed membrane electrolyte assembly.

1 47. (Withdrawn) A gas management component for use in a direct oxidation fuel
2 cell having a catalyzed membrane electrolyte with an anode aspect and a cathode aspect,
3 comprising:

4 an element substantially comprised of a gas-permeable, liquid-
5 impermeable material, which element is disposed in close proximity to the anode aspect
6 of the catalyzed membrane electrolyte assembly.

1 48. (Withdrawn) The gas management component as defined in claim 47 wherein
2 said material is gas-selective in such a manner that it is permeable to anodic effluent gas,
3 but is substantially less permeable to oxygen.

1 49. (Withdrawn) The gas management component as defined in claim 47 wherein
2 said gas management component is made part of a flow field element, providing said
3 flow field element with gas releasing properties while effectively delivering fuel to active
4 area of the membrane electrolyte. .

1 50. (Withdrawn) The gas management component as defined in claim 49 wherein
2 fuel is delivered to said active area of the membrane electrolyte through an associated
3 anodic diffusion layer.

1 51. (Withdrawn) The gas management component as defined in claim 49 wherein
2 said flow fields encourage removal of anodically-generated gasses such that they are re-
3 leased from the direct oxidation fuel cell prior to excessive collection of gaseous anodic
4 product within the said anode chamber in said fuel cell.

1 52. (Withdrawn) The gas management component as defined in claim 47 wherein
2 said gas management component is disposed within said fuel cell in such a manner that
3 anodically-generated gasses are released prior to coalescing and impeding the flow of
4 fuel from an associated fuel source into said anode chamber.

- 1 53. (Withdrawn) A membrane electrode assembly of a direct oxidation fuel cell,
2 comprising:
3 (A) a protonically-conductive, electronically non-conductive catalyzed mem-
4 brane electrolyte;
5 (B) a catalyst disposed on said membrane electrolyte;
6 (C) an anode diffusion layer disposed contiguous to an anode aspect of the
7 membrane electrolyte;
8 (D) a cathode diffusion layer disposed contiguous to a cathode aspect of the
9 membrane electrolyte; and
10 (E) a gas-permeable, liquid-impermeable layer coupled to, or in close prox-
11 imity with said anode diffusion layer.

- 1 54. (Withdrawn) The membrane electrode assembly as defined in claim 53 wherein
2 said gas-permeable, liquid-impermeable layer is mechanically attached or bonded to said
3 anode diffusion layer.

- 1 55. (Previously Presented) A direct oxidation fuel cell comprising:
2 (A) a membrane electrode assembly, including:
3 (i) a protonically-conductive, electronically non-conductive catalyzed
4 membrane electrolyte;
5 (ii) a catalyst disposed on said membrane electrolyte;
6 (iii) an anode diffusion layer disposed contiguous to an anode aspect of
7 the membrane electrolyte;
8 (iv) a cathode diffusion layer disposed contiguous to a cathode aspect
9 of the membrane electrolyte; and
10 (B) a gas-permeable, liquid-impermeable layer coupled to said anode diffusion
11 layer; and

- 12 (C) a coupling across said fuel cell to conduct electricity generated by said
13 fuel cell to an associated load; and
14 (D) a fuel cell housing substantially enclosing said fuel cell.

- 1 56. (Previously Presented) A direct oxidation fuel cell system, comprising:
2 (A) a fuel source;
3 (B) a direct oxidation fuel cell including:
4
5 (i) a protonically-conductive, electronically non-conductive catalyzed
6 membrane electrolyte;
7 (ii) a catalyst disposed on said membrane electrolyte;
8 (iii) an anode diffusion layer disposed contiguous to the anode aspect
9 of the membrane electrolyte;
10 (iv) a cathode diffusion layer disposed contiguous to the cathode aspect
11 of the membrane electrolyte; and
12 (v) a gas-permeable, liquid-impermeable layer coupled to said anode
13 diffusion layer; and
14 (vi) a coupling across said fuel cell to conduct electricity generated by
15 said fuel cell to an associated load.

- 1 57. (Previously Presented) The direct oxidation fuel cell system as defined in claim
2 56 wherein the fuel is up to 100% fuel.

- 1 58. (Previously Presented) The direct oxidation fuel cell system as defined in claim
2 57 wherein said fuel is methanol.

- 1 59. (Withdrawn) A method of managing anodic effluent in a direct oxidation fuel
2 cell, said fuel cell having a catalyzed membrane electrolyte with an anode aspect and a
3 cathode aspect, the method including the step of:

4 removing gaseous anodic effluent from a liquid by providing a gas management
5 component comprised substantially of a gas-permeable, liquid-impermeable layer dis-
6 posed in close proximity to the anode aspect of the direct oxidation fuel cell.

1 60. (Withdrawn) The method, as defined in claim 59, including providing said gas-
2 permeable, liquid-impermeable layer in contact with the anode aspect of the membrane
3 electrolyte assembly.

1 61. (Withdrawn) A method of separating anodically-generated gasses in a direct
2 oxidation fuel cell, said fuel cell having a catalyzed membrane electrolyte with an anode
3 aspect and a cathode aspect, and an anode chamber being defined between said anode
4 aspect and an exterior of said fuel cell, the method including the steps of:

5 separating said anodically-generated gasses from a fluid volume of fuel contained
6 within said anode chamber of said fuel cell, without recirculating said volume of fuel.

1 62. (Currently Amended) A direct oxidation fuel cell system, comprising:

2 (A) a fuel source;

3 (B) a direct oxidation fuel cell having a catalyzed membrane electrolyte with
4 an anode aspect and a cathode aspect;

5 (C) a cell housing with an anode chamber defined between the anode aspect of
6 the catalyzed membrane and one exterior portion of said cell housing, with said chamber
7 having no exit port for liquid;

8 (D) an element disposed between said fuel source and said anode aspect of the
9 direct oxidation fuel cell for controlling the delivery of fuel to the membrane electro-
10 lyte[[direct oxidation fuel cell system]].

1 63. (Previously Presented) The direct oxidation fuel cell system as defined in claim
2 62, wherein said element controls the delivery of fuel without pumps or active recircula-
3 tion mechanisms.

1 64. (Withdrawn) The direct oxidation fuel cell system as defined in claim 62 wherein
2 said fuel source is substantially entirely disposed within said fuel cell.

1 65. (Previously Presented) The direct oxidation fuel cell system as defined in claim
2 62 wherein
3 said fuel source is disposed external to the fuel cell.

1 66. (Previously Presented) The direct oxidation fuel cell system as defined in claim
2 62 wherein
3 a pressure differential exists between the fuel in the fuel source and the anode
4 chamber of the fuel cell.

1 67. (Withdrawn) The direct oxidation fuel cell system as defined in claim 62 wherein
2 said element for controlling fuel delivery includes a pump.

1 68. (Previously Presented) The direct oxidation fuel cell system as defined in claim
2 62 wherein
3 said fuel source contains more than one liquid that may be mixed between the fuel
4 source and the anode of the fuel cell.

1 69. (Previously Presented) The direct oxidation fuel cell system as defined in claim
2 68 wherein
3 said fuel source contains methanol and water.

1 70. (Previously Presented) The direct oxidation fuel cell system as defined in claim
2 62 wherein
3 said fuel source is capable of delivering up to 100% fuel to said fuel cell.

1 71. (Previously Presented) The direct oxidation fuel cell system as defined in claim
2 70 wherein said fuel is methanol.

1 72. (Previously Presented) The direct oxidation fuel cell system as defined in claim
2 62 wherein
3 delivery of said fuel is performed by suction.

1 73. (Previously Presented) The direct oxidation fuel cell system as defined in claim
2 62 wherein
3 said delivery by suction is performed by the action of a capillary network in a po-
4 rous component, which is disposed between said fuel source and said anode of said direct
5 oxidation fuel cell.

1 74. (Withdrawn) A method of delivering fuel to a direct oxidation fuel cell compris-
2 ing the steps of delivering fuel to the anode of the fuel cell in such a manner that the vol-
3 ume of fuel that has been consumed at the anode of the fuel cell is replaced by the same
4 volume of fresh fuel or a fuel and water mixture delivered from a fuel source.

1 75. (Withdrawn) A method of controlling delivery of fuel to a direct oxidation fuel
2 cell system wherein said fuel cell system includes a fuel source, a direct oxidation fuel
3 cell having a catalyzed membrane electrolyte with an anode aspect and a cathode aspect
4 and an anode chamber being defined between said anode aspect and an exterior portion of
5 said direct oxidation fuel cell, said anode chamber not having a port by which liquid can
6 exit the anode chamber, the method including the steps of:

7 providing a mass transport controlling element disposed between the anode aspect
8 of the catalyzed membrane and said fuel source whereby fuel delivery to the fuel cell
9 system is controlled without pumps or recirculation components.

1 76. (Withdrawn) The method as defined in claim 75 including the further step of
2 disposing said fuel source entirely within said fuel cell.

1 77. (Withdrawn) The method as defined in claim 75 including the further step of

2 disposing said fuel source external to the fuel cell.

1 78. (Withdrawn) The method as defined in claim 75 including the further step of
2 placing fuel in said fuel source under a slight pressure to induce a pressure differ-
3 ential between the fuel in said fuel source and the fuel in the anode chamber of the fuel
4 cell.

1 79. (Withdrawn) The method as defined in claim 75 including the further step of
2 providing in said fuel source more than one liquid; and
3 mixing said liquids between the fuel source and the anode chamber of the fuel
4 cell.

1 80. (Withdrawn) The method as defined in claim 79 wherein said liquids provided to
2 said fuel source include methanol and water.

1 81. (Withdrawn) The method as defined in claim 75 including providing as said fuel,
2 a substance of up to 100% methanol.

1 82. (Withdrawn) The method as defined in claim 81 wherein said fuel substance is
2 methanol.

1 83. (Withdrawn) The method as defined in claim 75 including the further step of de-
2 livering said fuel to said anode chamber by suction.

1 84. (Withdrawn) The method as defined in claim 75 including the further step of de-
2 livering fuel from said fuel source to said anode by the suction action of a capillary net-
3 work in a porous component that is disposed between said fuel source and said anode
4 chamber of said direct oxidation fuel cell.