MATH 2052 Notes

Kevin L

Winter Term 2 2022

Contents			
1	Inte	ntegration 2	
	1.1	Darboux Sums	2
	1.2	Integration Formulas	6
	1.3	Fundamental Theorem of Calculus I	11
	1.4	Integration by Parts	13
	1.5	Fundamental Theorem of Calculus II	15
	1.6	Trig Substitution	21
	1.7	Partial Fractions	23
2	Differential Equations		25
3	Series and Sequences of Functions		26
	3.1	Power Series	27
		3.1.1 Series not Centered at 0	28
	3.2	Uniform Convergence	30
	3.3	Cauchy Convergence	33
	3.4	Series of Functions	34
	3.5	Taylor Series	38

1 Integration

1.1 Darboux Sums

Remark. See OneNote for graphs and figures for this section.

Definition 1.1. Let f be a bounded function on [a,b]. Letting $S \subseteq [a,b]$, we let

$$M(f,S) = \sup\{f(x) \mid x \in S\}$$

$$m(f,S) = \inf\{f(x) \mid x \in S\}$$

Definition 1.2. A partition of the closed interval [a, b] is a finite sequence (t_n) where $t_0 = a$ and $t_n = b$ with $t_0 < t_1 < \ldots < t_n$.

Definition 1.3. The upper Darboux sum U(f, P) of a function f with respect to a partition P is

$$U(f,P) = \sum_{k=1}^{n} M(f,[t_{k-1},t_k])(t_k - t_{k-1})$$

and the **lower Darboux sum** L(f, P) is

$$L(f,P) = \sum_{k=1}^{n} m(f,[t_{k-1},t_k])(t_k - t_{k-1})$$

See Fig. 1 thru 4 in Note.

Remark. We see that the LDS is underestimating the area under the curve while the UDS is overestimating it.

Example. Let f(x) = x - 1 on [0, 2] with partitions $t_0 = 0, t_1 = \frac{1}{2}, t_2 = \frac{3}{2}, t_3 = 2$. We have

$$U(f,P) = \sum_{k=1}^{3} M(f,[t_{k-1},t_k])(t_k - t_{k-1})$$

$$= M\left(f,\left[0,\frac{1}{2}\right]\right)\left(\frac{1}{2} - 0\right) + M\left(f,\left[\frac{1}{2},\frac{3}{2}\right]\right)\left(\frac{3}{2} - \frac{1}{2}\right) + M\left(f,\left[\frac{3}{2},2\right]\right)\left(2 - \frac{3}{2}\right)$$

$$= \left(-\frac{1}{2}\right)\left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)(1) + (1)\left(\frac{1}{2}\right)$$

$$= \frac{3}{4}$$

Note that changing the partitions will change the result, for example:

Let
$$t_0 = 0, t_1 = \frac{3}{2}, t_2 = \frac{7}{4}, t_3 = 2.$$

Then,

$$U(f,P) = \sum_{k=1}^{3} M(f,[t_{k-1},t_k])(t_k - t_{k-1})$$

$$= M\left(f,\left[0,\frac{3}{2}\right]\right)\left(\frac{3}{2} - 0\right) + M\left(f,\left[\frac{3}{2},\frac{7}{4}\right]\right)\left(\frac{7}{4} - \frac{3}{2}\right) + M\left(f,\left[\frac{7}{4},2\right]\right)\left(2 - \frac{7}{4}\right)$$

$$= \left(\frac{1}{2}\right)\left(\frac{3}{2}\right) + \left(\frac{3}{4}\right)\left(\frac{1}{4}\right) + (1)\left(\frac{1}{4}\right)$$

$$= \frac{19}{16}$$

Corollary 1.4. We note that

$$U(f,P) = \sum_{k=1}^{n} M(f,[t_{k-1},t_k])(t_k - t_{k-1})$$
 (Note that the second term is always greater than 0)

$$\leq \sum_{k=1}^{n} M(f,[a,b])(t_k - t_{k-1})$$
 (if $A \subseteq B$, then $\sup A \leq \sup B$)

$$= M(f,[a,b]) \sum_{k=1}^{n} (t_k - t_{k-1})$$

$$= M(f,[a,b]) ((t_1 - t_0) + (t_2 - t_1) + \dots + (t_n - t_{n-1}))$$

$$= M(f,[a,b])(-t_0 + t_n)$$

$$= M(f,[a,b])(b-a)$$

Similarly, $L(f, P) \ge m(f, [a, b])(b - a)$.

Proposition 1.5. Thus,

$$m(f, [a, b])(b - a) \le L(f, P) \le U(f, P) \le M(f, [a, b])(b - a)$$
 (1)

Definition 1.6. The upper Darboux integral U(f) of f over [a,b] is

$$U(f) = \inf\{U(f, P) \mid P \text{ is a partition of } [a, b]\}$$

and the **lower Darboux integral** L(f) of f over [a,b] is

$$L(f) = \sup\{L(f, P) \mid P \text{ is a partition of } [a, b]\}$$

We are taking the "most accurate" Darboux sums to get the area under the curve.

Lemma 1.7. By (1), U(f, P), L(f, P) are bounded and so U(f), L(f) exists.

Remark. We will eventually prove $L(f) \leq U(f)$, but this is not obvious.

Definition 1.8. If L(f) = U(f), then we say f is integrable on [a, b], and write $\int_a^b f(x) dx$ or $\int_a^b f(x) dx$.

Example. Let f(x) = c on [a, b]. Then for all sub-intervals $[t_{k-1}, t_k]$ of a partition P,

$$M(f, [t_{k-1}, t_k]) = c = m(f, [t_{k-1}, t_k])$$

and so for any partition P,

$$U(f, P) = \sum_{k=1}^{n} c(t_k - t_{k-1})$$

$$= c \sum_{k=1}^{n} (t_k - t_{k-1})$$

$$= c(b - a)$$

$$= L(f, P)$$
(By similar argument)

therefore, $U(f) = \inf\{c(b-a) \mid P \text{ is a partition of } [a,b]\} = c(b-a) = L(f)$. Thus, $\int_a^b c \, dx = c(b-a)$.

Remark. Recall:

$$\sum_{k=1}^{n} = \frac{n(n+1)}{2}$$

Example. Let f(x) = x on [0, b] with b > 0.

For any sub-interval $[t_{k-1}, t_k]$ of any partition P, $M(f, [t_{k-1}, t_k]) = t_k$ and $m(f, [t_{k-1}, t_k]) = t_{k-1}$. Thus,

$$U(f, P) = \sum_{k=1}^{n} t_k (t_k - t_{k-1})$$
$$L(f, P) = \sum_{k=1}^{n} t_{k-1} (t_k - t_{k-1})$$

How do we find the inf of an infinite number of possible partitions?

Consider the family of partitions P_n with $t_k = \frac{kb}{n}$. There will be n sub-intervals of the same width. For those P_n ,

$$U(f, P_n) = \sum_{k=1}^n \frac{kb}{n} \left(\frac{kb}{n} - \frac{(k-1)b}{n} \right)$$

$$= \frac{b^2}{n^2} \sum_{k=1}^n k(k - (k-1))$$

$$= \frac{b^2}{n^2} \sum_{k=1}^n k(1)$$

$$= \frac{b^2}{n^2} \left(\frac{n(n+1)}{2} \right)$$

$$= \frac{b^2}{2} \left(\frac{n^2 + n}{n^2} \right)$$

Since $\frac{n^2+n}{n^2} > \frac{n^2}{n^2} = 1$ and $\lim_{n\to\infty} \frac{n^2+n}{n^2} = 1$,

$$\inf\{\frac{b^2}{2}\left(\frac{n^2+n}{n^2}\right)\mid n\in\mathbb{N}\}=\frac{b^2}{2}$$

Thus $U(f) \leq \frac{b^2}{2}$ as U is the infimum over all partitions. Similarly for these P_n ,

$$L(f, P_n) = \sum_{k=1}^n \frac{(k-1)b}{n} \left(\frac{kb}{n} - \frac{(k-1)b}{n}\right)$$

$$= \frac{b^2}{n^2} \sum_{k=1}^n k - 1(k - (k-1))$$

$$= \frac{b^2}{n^2} \sum_{k=1}^n k - 1$$

$$= \frac{b^2}{n^2} \left(\frac{n(n+1)}{2} - n\right)$$

$$= \frac{b^2}{2} \left(\frac{n^2 - n}{n^2}\right)$$

Since $\frac{n^2-n}{n^2} < \frac{n^2}{n^2} = 1$ and $\lim_{n \to \infty} \frac{n^2-n}{1}$,

$$\sup\{\frac{b^2}{2}\left(\frac{n^2-n}{n^2}\right)\mid n\in\mathbb{N}\}=\frac{b^2}{2}$$

Thus $L(f) \geq \frac{b^2}{2}$ as L is the supremum over all partitions. Thus we have $\frac{b^2}{2} \leq L(f) \leq U(f) \leq \frac{b^2}{2}$ and so $L(f) = U(f) = \frac{b^2}{2}$. Thus $\int_b^a x \, dx = \frac{b^2}{2}$.

Example. Consider

$$f(x) = \begin{cases} 1, & x \in Q \\ 0, & x \in \overline{Q} \end{cases}$$

Note that between any 2 distinct real numbers, there exists both a rational and irrational number between them. Thus, $M(f, [t_{k-1}, t_k]) = 1$ and $m(f, [t_{k-1}, t_k]) = 0$. Thus for any P,

$$U(f, P) = \sum_{k=1}^{n} (t_k - t_{k-1})$$

$$= b - a$$

$$L(f, P) = \sum_{k=1}^{n} (0)(t_k - t_{k-1})$$

$$= 0$$

Hence U(f) = b - a and L(f) = 0, and so $U(f) \neq L(f)$, and thus $\int_{h}^{a} f(x) dx$ does not exist.

Lemma 32.2. Let f be a bounded function on [a,b]. If P,Q are partitions of [a,b] with $P\subseteq Q$ (i.e., Q is a "finer" partition), then

$$L(f,P) \leq L(f,Q) \leq U(f,Q) \leq U(f,P)$$

Proof. $L(f,Q) \leq U(f,Q)$ is clear by definition. We show $L(f,P) \leq L(f,Q)$ as the proof of the other case is similar. Assume that Q has 1 more point than P, for we could then apply this lemma repeatedly to get the general result. If P consists of $a=t_0,t_1,\ldots,t_n=b$, let Q consist of $a=t_0,t_1,\ldots,t_{k-1},u,t_k,\ldots,t_n=b$ for some k with $1\leq k\leq n$. Then most terms in L(f,P) and L(f,Q) are the same. In particular, we have

$$L(f,Q) - L(f,P) = m(f,[t_{k-1},u])(u - t_{k-1}) + m(f,[u,t_n])(t_n - u) - m(f,[t_{k-1},t_k])(t_k - t_{k-1})$$
(2)

Since $[t_{k-1}, u] \subseteq [t_{k-1}, t_k]$, we have $\inf\{f(x) \mid x \in [t_{k-1}, u]\} \ge \inf\{f(x) \mid x \in [t_{k-1}, t_k]\}$ and so $m(f, [t_{k-1}, u]) \ge m(f, [t_{k-1}, t_k])$, similarly $m(f, [u, t_k]) \ge m(f, [t_{k-1}, t_k])$. Thus, by (2), we have

$$L(f,Q) - L(f,P) \ge m(f,[t_{k-1},t_k])(u - t_{k-1} + t_k - u - (t_k - t_{k-1}))$$

$$= 0$$

Thus $L(f,Q) \geq L(f,P)$ as required.

Lemma 32.3. Let f be bounded on [a, b], and let P, Q be partitions of [a, b]. Then $L(f, P) \leq U(f, Q)$.

Proof. Note that $P \cup Q$ is a partition of [a,b]. Since $P \subseteq P \cup Q$ and $Q \subseteq P \cup Q$, by Lemma 32.2, we have

$$L(f, P) \le L(f, P \cup Q)$$
$$\le U(f, P \cup Q)$$
$$\le U(f, Q)$$

Theorem 32.4. Let f be bounded on [a, b]. Then $L(f) \leq U(f)$.

Proof. Fix a partition P of [a,b]. By Lemma 32.3, L(f,P) is a lower bound of the set $\{U(f,Q) \mid Q \text{ is a partition of } [a,b]\}$. Thus for any P, $L(f,P) \leq U(f)$ since U(f) is the infimum. Thus implies U(f) is an upper bound of $\{L(f,P) \mid P \text{ is a partition of } [a,b]\}$. Since $L(f) = \sup\{L(f,P)\}$, $L(f) \leq U(f)$.

1.2 Integration Formulas

Theorem 32.5. A bounded function f on [a, b] is integrable iff

$$\forall \varepsilon > 0, \exists P \text{ of } [a, b] \text{ s.t. } U(f, P) - L(f, P) < \varepsilon$$

Proof. We prove the forwards direction:

Suppose f is integrable. Let $\varepsilon > 0$ be given. Then there exists partitions P_1, P_2 with $L(f, P_1) > L(f) - \frac{\varepsilon}{2}$ and $U(f, P_2) < U(f) + \frac{\varepsilon}{2}$. Recall that L(f) and U(f) are the sup/inf of all the L/U(f, P). Let $P = P_1 \cup P_2$. Then use Lemma 32.2 to get

$$U(f,P) - L(f,P) \le U(f,P_2) - L(f,P_1)$$
 (Since $P_1, P_2 \subseteq P$)

$$< U(f) + \frac{\varepsilon}{2} - \left(L(f) - \frac{\varepsilon}{2}\right)$$

$$= U(f) - L(f) + \varepsilon$$

$$= \varepsilon$$
 ($U(f) = L(f)$ in integrable functions)

We now show the reverse:

Suppose $\forall \varepsilon > 0, \exists P \text{ of } [a,b] \text{ s.t. } U(f,P) - L(f,P) < \varepsilon \text{ holds for some partition } P$. Then $U(f) \leq U(f,P)$ and $L(f) \geq L(f,P)$. Then, we have

$$U(f, P) = U(f, P) - L(f, P) + L(f, P)$$

$$< \varepsilon + L(f, P)$$

$$\le \varepsilon + L(f)$$

Since $\varepsilon > 0$ is arbitrary, we have $U(f) \le L(f)$, for if U(f) > L(f), we can set $\varepsilon = U(f) - L(f)$ and we will get U(f) < U(f). But since $L(f) \le U(f)$, we must have U(f) = L(f). Thus f is integrable.

Definition 1.9. A function f is monotonic on an interval I if it is either increasing or decreasing on I. In other words,

$$x < y \implies f(x) \le f(y)$$

 $(or \geq)$

Definition 1.10. The **mesh** of a partition P is the maximum length of the sub-intervals comprising P.

Theorem 33.1. Every monotonic function f on [a, b] is integrable.

Proof. We prove the increasing case.

We may assume that $b > a \implies f(b) > f(a)$, for otherwise f is constant. Since $f(a) < f(x) < f(b) \forall x \in [a, b]$, f is bounded on [a, b].

Let $\varepsilon > 0$ be given. Take a partition of [a, b] with mesh

$$\{t_k - t_{k-1} \mid 1 \le k \le n\} < \frac{\varepsilon}{f(b) - f(a)}$$

Then

$$U(f,P) - L(f,P) = \sum_{k=1}^{n} (M(f,[t_{k-1},t_k]) - m(f,[t_{k-1},t_k])(t_k - t_{k-1})$$

$$= \sum_{k=1}^{n} (f(t_k) - f(t_{k-1}))(t_k - t_{k-1})$$

$$< \sum_{k=1}^{n} (f(t_k) - f(t_{k-1})) \left(\frac{\varepsilon}{f(b) - f(a)}\right)$$

$$= \left(\frac{\varepsilon}{f(b) - f(a)}\right) \sum_{k=1}^{n} (f(t_k) - f(t_{k-1}))$$

$$= \left(\frac{\varepsilon}{f(b) - f(a)}\right) (-f(a) + f(b))$$
(Telescoping Series)
$$= \varepsilon$$

By Theorem 32.5, f is integrable.

Example. The following functions are integrable:

- \sqrt{x}
- \bullet $\frac{1}{x}$
- $\left(\frac{1}{x}\right)^n$
- $\ln x$
- e^x
- $\frac{1}{\ln x}$
- $\frac{1}{e^x}$
- [x]
- [x]
- $\tan x$

Theorem 33.2. Every continuous function f on [a, b] is integrable.

Proof. Let $\varepsilon > 0$ be given. Since f is cts. on [a, b], then by Theorem 19.2, f is uniformly cts. on [a, b]. Thus there is a

$$\delta > 0$$
 such that $x, y \in [a, b]$ and $|x - y| < \delta \implies |f(x) - f(y)| < \frac{\varepsilon}{b - a}$

Let P be a partition with mesh less than δ .

By Theorem 18.1, f assumes its max and min in each closed sub-interval. Thus the above implies

$$M(f, [t_{k-1}, t_k]) - m(f, [t_{k-1}, t_k]) < \frac{\varepsilon}{b-a}$$

and $M(f, [t_{k-1}, t_k]) = f(x)$ for some $x \in [t_{k-1}, t_k]$ and the same for m with y. Thus

$$U(f,P) - L(f,P) = \sum_{k=1}^{n} (M(f,[t_{k-1},t_k]) - m(f,[t_{k-1},t_k]))(t_k - t_{k-1})$$

$$< \sum_{k=1}^{n} \frac{\varepsilon}{b-a} (t_k - t_{k-1})$$

$$= \frac{\varepsilon}{b-a} b - a$$

Thus f is integrable on [a, b].

Example. The following functions are integrable:

- $\sin x$
- cos a
- $\bullet \quad \frac{p(x)}{q(x)}$
- e^{-x^2}
- $\bullet \quad \frac{\sin x \ln x}{x^2 + 1}$

Theorem 33.3. Let f, g be integrable on [a, b] and let c be constant. Then,

- 1. cf is integrable with $\int_a^b cf = c \int_a^b f$
- 2. f+g is integrable with $\int_a^b (f+g) = \int_a^b f + \int_a^b g$
- 3. One can show fg is integrable, but there is not a nice formula for this

Lemma 1.11. 1. If c > 0, then $\inf\{cs \mid s \in S\} = c\inf S$ and $\sup\{cs \mid s \in S\} = c\sup S$

- 2. $\inf\{-s \mid S \in S\} = -\sup S \text{ and } \sup\{-s \mid s \in S\} = -\inf S$
- 3. $\inf\{f(x) + g(x) \mid x \in S\} \ge \inf\{f(x) \mid x \in S\} + \inf\{g(x) \mid x \in S\}$ and $\sup\{f(x) + g(x) \mid x \in S\} \le \sup\{f(x) \mid x \in S\}$

Proof. Proof of (1):

If c = 0, the result is clear. First suppose c > 0, then for all sub-intervals we have $M(cf, [t_{k-1}, t_k]) = cM(f, [t_{k-1}, t_k])$ and $m(cf, [t_{k-1}, t_k]) = cm(f, [t_{k-1}, t_k])$. Thus for all partitions P, we have U(cf, P) = cU(f, P) and L(cf, P) = cL(f, P). Lemma (i) implies U(cf) = cU(f) and L(cf) = cL(f). We then have

$$\begin{split} L(cf) &= cL(f) \\ &= cU(f) \\ &= U(cf) \end{split} \tag{f is integrable)}$$

thus cf is integrable with integral $\int_a^b cf = U(cf) = cU(f) = c \int_a^b f$.

Now take c = -1. Then Lemma (ii) implies $M(-f, [t_{k-1}, t_k]) = -m(f, [t_{k-1}, t_k])$ and $m(-f, [t_{k-1}, t_k]) = -M(f, [t_{k-1}, t_k])$. Then U(-f, P) = L(f, P) and L(-f, P) = U(f, P). Thus

$$\begin{split} U(-f) &= \inf\{U(f,P) \mid P \text{ is a partition of } [a,b]\} \\ &= \inf\{-L(f,P) \mid P \text{ is a partition of } [a,b]\} \\ &= \sup\{L(f,P) \mid P \text{ is a partition of } [a,b]\} \\ &= -L(f) \end{split}$$

One can similarly show L(-f) = -U(f). Hence,

$$U(-f) = -L(f)$$
$$= -U(f)$$
$$= L(-f)$$

Hence, -f is integrable with integral $\int_a^b -f = U(-f) = -U(f) = -\int_a^b f$.

Finally suppose c < 0. Then,

$$\int_{b}^{a} cf = -\int_{a}^{b} (-c)f$$
$$= -(-c) \int_{a}^{b} f$$
$$= c \int_{a}^{b} f$$

Proof. Proof of (2):

We use Theorem 32.5. Let $\varepsilon > 0$ be given. Then there exist partitions P_1, P_2 of [a,b] with $U(f,P_1) = L(f,P_2) < \frac{\varepsilon}{2}$ and $U(g,P_2) - L(g,P_2) < \frac{\varepsilon}{2}$. Let $P = P_1 \cup P_2$, and using Lemma 32.2 yields $U(f,P) - L(f,P) < \frac{\varepsilon}{2}$ and $U(g,P) - L(g,P) < \frac{\varepsilon}{2}$. By Lemma (iii), we have $m(f+g,[t_{k-1},t_k]) \geq m(f,[t_{k-1},t_k]) + m(g,[t_{k-1},t_k])$ and so $L(f+g,P) \geq L(f,P) + L(g,P)$. Similarly, $U(f+g,P) \leq U(f,P) + U(g,P)$. Thus,

$$\begin{split} U(f+g,P) - L(f+g,P) &\leq U(f,P) + U(g,P) - L(f,P) - L(g,P) \\ &= \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon \end{split}$$

Thus by Theorem 32.5, f + g is integrable. We have

$$\begin{split} \int_b^a (f+g) &= U(f+g) \leq U(f+g,P) \\ &\leq U(f,P) + U(g,P) \\ &< L(f,P) + L(g,P) + \varepsilon \\ &\leq L(f) + L(g) + \varepsilon \\ &= \int_a^b f + \int_a^b g + \varepsilon \end{split}$$

Since $\varepsilon > 0$ is arbitrary, $\int_b^a (f+g) \le \int_a^b f + \int_a^b g$. Also,

$$\begin{split} \int_a^b (f+g) &= L(f+g) \geq L(f+g,P) \\ &\geq L(f,P) + L(g,P) \\ &> U(f,P) + U(g,P) - \varepsilon \\ &\geq U(f) + U(g) - \varepsilon \\ &= \int_a^b f + \int_a^b g - \varepsilon \end{split}$$

Since $\varepsilon > 0$ is arbitrary, we have $\int_a^b (f+g) \ge \int_a^b f + \int_a^b g$. Thus $\int_a^b (f+g) = \int_a^b f + \int_a^b g$.

Theorem 33.4. • If f, g are integrable on [a, b] and $f(x) \leq g(x) \ \forall x \in [a, b]$ then $\int_a^b f \leq \int_a^b g \, dx$

• If g is a cts. non-negative function on [a,b] with $\int_a^b g = 0$, then $g(x) = 0 \ \forall x \in [a,b]$

Proof. Theorem 33.3 implies that h = g - f is integrable on [a, b]. Since $h(x) \ge 0 \ \forall x \in [a, b]$, we have $L(h, P) \ge 0 \ \forall$ partitions P of [a, b].

Thus $\int_a^b h = L(h) \ge 0$. Thus since g = f + h, we have

$$\int_a^b g = \int_a^b (f+h) = \int_a^b f + \int_a^b h \ge \int_a^b f$$

Theorem 33.5. If f is integrable on [a,b], then |f| is integrable with

$$\left| \int_a^b f \right| \le \int_a^b |f|$$

Proof. Since $-|f| \le f \le |f|$, Theorem 33.3, 33.4 implies $-\int_a^b |f| \le \int_a^b |f|$ hence $\left|\int_a^b |f| \le \int_a^b |f|\right| \le \int_a^b |f|$.

Theorem 33.6. Let f defined on [a, b] and let a < c < b. If f is integrable on [a, c] and [c, b], then f is integrable on [a, b] with

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

Proof. Since f is bounded on [a, c] and [c, b], so f is bounded on [a, b]. Let $\varepsilon > 0$ be given. Theorem 32.5 implies there exist partitions P_1 of [a, c] and P_2 of [c, b] with

$$U(f, P_1) - L(f, P_1) < \frac{\varepsilon}{2} \text{ and } U(f, P_2) - L(f, P_2) < \frac{\varepsilon}{2}$$

Then $P = P_1 \cup P_2$ is a partition of [a, b].

Thus,

$$U(f, P) - L(f, P) = U(f, P_1) + U(f, P_2) - L(f, P_1) - L(f, P_1) < \varepsilon$$

Thus f is integrable on [a, b].

Also, we have

$$\int_{b}^{a} \leq U(f, P)$$

$$= U(f, P_{1}) + U(f, P_{2})$$

$$< L(f, P_{1}) + L(f, P_{2}) + \varepsilon$$

$$\leq \int_{a}^{c} f + \int_{c}^{b} f + \varepsilon$$

for any $\varepsilon > 0$, and hence

$$\int_{a}^{b} f \le \int_{a}^{c} f + \int_{c}^{b} f$$

Also, we have

$$\int_{b}^{a} \ge L(f, P)$$

$$= L(f, P_{1}) + L(f, P_{2})$$

$$> U(f, P_{1}) + U(f, P_{2}) - \varepsilon$$

$$\ge \int_{a}^{c} f + \int_{a}^{b} f - \varepsilon$$

for any $\varepsilon > 0$, and hence

$$\int_{a}^{b} f \ge \int_{a}^{c} f + \int_{c}^{b} f$$

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

Definition 1.12. A function f is **piecewise monotonic** on [a,b] if there is a partition P such that f is monotonic on each open subinterval (t_{k-1},t_k) .

Definition 1.13. A function f is **piecewise continuous** if f is uniformly continuous on each open subinterval (t_{k-1}, t_k) .

Theorem 33.8. If f is piecewise cts. or is a bounded piecewise monotonic function on [a, b], then f is integrable on [a, b].

Proof. We first show in either case, if we consider f on the open subinterval (t_{k-1}, t_k) , we can extend it to an integrable function f_k defined on the closed interval $[t_{k-1}, t_k]$. If f is uniformly cts. on (t_{k-1}, t_k) , then f can be extended to a cts. function on $[t_{k-1}, t_k]$. Since f_k is cts. on $[t_{k-1}, t_k]$, by 33.2 it is integrable here.

If f is bounded and monotonic on (t_{k-1}, t_k) , say f is increasing, then we can set $f_k(t_{k-1}) = \inf\{f(x) \mid x \in (t_{k-1}, t_k)\}$ and $f_k(t_k) = \sup\{f(x) \mid x \in (t_{k-1}, t_k)\}$ to yield an increasing function f_k on $[t_{k-1}, t_k]$. A similar extension can be made for a decreasing function. Since the resulting function f_k is monotonic on $[t_{k-1}, t_k]$, by 33.1 it is integrable there.

In either case, we have $f = f_k$ on $[t_{k-1}, t_k]$ except possibly at the endpoints, and f_k is integrable on the closed subinterval. By Exercise 32.7, f is integrable on $[t_{k-1}, t_k]$ since they differ at only finitely many points. 33.6 then implies that f is integrable over [a, b].

1.3 Fundamental Theorem of Calculus I

FTC I. If g is cts on [a, b], diff-able on (a, b) and if g' is integrable on [a, b], then

$$\int_{b}^{a} g' = g(b) - g(a)$$

Proof. Let $\varepsilon > 0$ be given. Since g' is integrable, by 32.5 there is a partition P of [a, b] with

$$U(g', P) - L(g', P) < \varepsilon$$

Since g is cts and diff-able, we can apply MVT to g on each sub-interval t_{k-1}, t_k to get $x_k \in (t_{k-1}, t_k)$ with

$$g'(x_k) = \frac{g(t_k) - g(t_{k-1})}{t_k - t_{k-1}}$$

Thus,

$$g'(x_k)(t_k - t_{k-1}) = g(t_k) - g(t_{k-1})$$

Summing this over k yields

$$\sum_{k=1}^{n} g'(x_k)(t_k - t_{k-1}) = \sum_{k=1}^{n} (g(t_k) - g(t_{k-1})) = g(b) - g(a)$$

Since $x_k \in [t_{k-1}, t_k]$, we have

$$m(g', [t_{k-1}, t_k]) \le g'(x_k) \le M(g', [t_{k-1}, t_k])$$

Multiplying by $t_k - t_{k-1} > 0$ yields

$$m(g', [t_{k-1}, t_k])(t_k - t_{k-1}) \le g'(x_k)(t_k - t_{k-1}) \le M(g', [t_{k-1}, t_k])(t_k - t_{k-1})$$

Summing this over k and using the above equality and definitions yields

$$L(g', P) \le g(b) - g(a) \le U(g', P)$$

On the other hand, we have

$$L(g', P) \le \int_a^b g' \le U(g', P)$$

Subtracting the first from the second yields

$$L(f', P) - U(g', P) \le \int_a^b g' - (g(b) - g(a)) \le U(g', P) - L(g', P)$$

However, recall that we have $U(g',P)-L(g',P)<\varepsilon.$ Using this, we have

$$-\varepsilon < \int_a^b g' - (g(b) - g(a)) < \varepsilon$$

Thus

$$0 \le \left| \int_a^b g' - (g(b) - g(a)) \right| < \varepsilon$$

and so

$$\left| \int_{a}^{b} g' - (g(b) - g(a)) \right| = 0$$

and so

$$\int_a^b g' = g(b) - g(a)$$

Remark. If we are trying to integrate an integrable function f, FTC(I) shows us that we should look for a function F such that F' = f. Then we'd have

$$\int_{a}^{b} f = F(b) - F(a)$$

Definition 1.14. Let f be an integrable function. F is the function where F' = f, and is called the **antiderivative** of f. It is common to write

$$F(x)\Big|_a^b$$

for F(b) - F(a).

Example. Consider $\int_0^b x^3 dx$. Can we find F such that $F'(x) = x^3$? Let $F(x) = \frac{1}{4}x^4$.

We thus have

$$\int_0^b x^3 dx = \frac{1}{4}x^4 \Big|_0^b = \frac{1}{4}b^4 - \frac{1}{4}0^4 = \frac{1}{4}b^4$$

Proposition 1.15. In general, if $n \neq -1$ and if in the case that n < 0, we have either a, b > 0 or a, b < 0, then

$$\int_{a}^{b} x^{n} dx = \frac{1}{n+1} x^{n+1} \Big|_{a}^{b} = \frac{1}{n+1} b^{n+1} - \frac{1}{n+1} a^{n+1}$$

Example. Consider $\int_0^1 \sqrt{x} \, dx$ which is the area under $f(x) = \sqrt{x}$ between x = 0 and x = 1. We have

$$\int_0^1 \sqrt{x} \ dx = \int_0^1 x^{\frac{1}{2}} \ dx = \frac{2}{3} x^{\frac{3}{2}} \Big|_0^1 = \frac{2}{3}$$

Remark. We know how to integrate x^n for $n \neq -1$. What if n = -1? For a, b > 0 we have

$$\int_{a}^{b} x^{-1} dx = \int_{a}^{b} \frac{1}{x} dx = \ln x \Big|_{a}^{b} = \ln b - \ln a$$

Remark. Consider $\int_a^b f$. Suppose it is unknown if f is integrable, but there is a function F with F' = f. Does this imply f is integrable?

No! Consider

$$F(x) = \begin{cases} x^2 \sin\left(\frac{1}{x^2}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

We have

$$f = F' = \begin{cases} 2x \sin\left(\frac{1}{x^2}\right) - \frac{2}{x} \cos\left(\frac{1}{x^2}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

So if we were to start with f, then F is a diff-able function with F' = f. However, f is unbounded near 0 and hence not integrable.

Definition 1.16. We call the integral $\int_a^b f(x) dx$ where $a, b \in \mathbb{R}$ the **definite integral**.

Remark. If 2 functions have the same derivative, they must differ by at most a constant. Thus if F is an antiderivative of f, so is F(x) + c for any constant c, and these give all the antiderivatives for f.

Definition 1.17. F(x) + c is called the **indefinite integral** of f(x), and is written

$$\int f(x) \ dx$$

Example.

$$\int \frac{1}{x} dx = \ln|x| + c$$

$$\int x^2 dx = \frac{1}{3}x^3 + c$$

$$\int 2x^3 - 7x + 3 dx = 2 \int x^3 dx - 7 \int x dx + \int 3 dx = \frac{1}{2}x^4 - \frac{7}{2}x^2 + 3x + c$$

$$\int e^x dx = e^x + c$$

$$\int e^{2x} dx = \frac{1}{2}e^{2x} + c$$

$$\int e^{-x^2} dx$$

has no obvious antiderivative.

$$\int \sin x \, dx = -\cos x + c$$

$$\int \cos x \, dx = \sin x + c$$

Example. What is the area under one bump of the sine curve?

$$\int_0^{\pi} \sin x \, dx = -\cos x \Big|_0^{\pi} = -\cos \pi - (-\cos 0) = 2$$

What is the area between 0 and 2π ?

$$\int_{0}^{2\pi} \sin x \, dx = -\cos x \Big|_{0}^{2\pi} = -\cos 2\pi - (-\cos 0) = 0$$

1.4 Integration by Parts

Integration by Parts. Suppose u, v are cts. on [a, b], diff-able on (a, b), and suppose u', v' are integrable on [a, b].

Then,

$$\int_{a}^{b} u(x)v'(x) \ dx = u(x)v(x)\Big|_{a}^{b} - \int_{a}^{b} u'(x)v(x) \ dx$$

This is often written as

$$\int udv = uv - \int vdu$$

Proof. Let g(x) = u(x)v(x), so that g'(x) = u'(x)v(x) + u(x)v'(x). Since u, v are cts. then they are integrable. By assumption u', v' are integrable, so it follows that u'v and uv' are integrable.

BY FTC I, we have

$$\int_{a}^{b} g'(x) dx = g(x) \Big|_{a}^{b} = u(x)v(x) \Big|_{a}^{b}$$

By 33.3, we have

$$\int_{a}^{b} g'(x) dx = \int_{a}^{b} u'(x)v(x) + u(x)v'(x) dx$$
$$= \int_{a}^{b} u'(x)v(x) dx + \int_{a}^{b} u(x)v'(x) dx$$

Equating yields

$$\int_{a}^{b} u'(x)v(x) \ dx + \int_{a}^{b} u(x)v'(x) \ dx = u(x)v(x) \Big|_{a}^{b}$$

and rearranging this yields the theorem.

Remark. To use integration by parts, we view the function that we are integrating as a product, ideally one where one factor simplifies after it is differentiated, and the other factor doesn't get too much more complicated when integrating it.

Example. Evaluate $\int_0^{\pi} x \sin x \, dx$.

Let's let u(x) = x, $v'(x) = \sin x$. Then u'(x) = 1 and $v(x) = -\cos x$. Then

$$\int_0^\pi x \sin x \, dx = -x \cos x \Big|_0^\pi - \int_0^\pi -\cos x \, dx$$
$$= -\pi(-1) - 0 + \int_0^\pi \cos x \, dx$$
$$= \pi + \sin x \Big|_0^\pi$$
$$= \pi + 0 - 0$$
$$= \pi$$

and

$$\int x \sin x \, dx = -x \cos x - \int -\cos x \, dx$$
$$= -x \cos x + \int \cos x \, dx$$
$$= -x \cos x + \sin x + c$$

Example. Find $\int \ln x \ dx$. The trick here is to view the integrand as $(1)(\ln x)$. So $u(x) = \ln x$, v'(x) = 1. Then $u'(x) = \frac{1}{x}$ and v(x) = x. Integration by parts yields

$$\int \ln x \, dx = x \ln x - \int (x) \left(\frac{1}{x}\right) \, dx$$
$$= x \ln x - x + c$$

Now let's find

$$\int_{1}^{e} \ln x \, dx = (x \ln x - e) \Big|_{1}^{e} = e \ln e - e - (\ln 1 - 1) = 1$$

Example. Find

$$\int xe^x dx$$

Let u(x) = x and $v'(x) = e^x$. Then u'(x) = 1 and $v(x) = e^x$.

Integration by parts yields

$$\int xe^x dx = xe^x - \int e^x dx$$
$$= xe^x - e^x + c$$

Example. Find $\int \arctan x \ dx$.

Recall that $(\arctan x)' = \frac{1}{x^2+1}$. Let $u(x) = \arctan x$ and v'(x) = 1. Then $u'(x) = \frac{1}{x^2+1}$ and v(x) = x. We have

$$\int \arctan x \, dx = x \arctan x - \int \frac{x}{x^2 + 1} \, dx$$
$$= x \arctan x - \frac{1}{2} \ln(x^2 + 1) + c$$

Example. Find $\int (\ln x)^2 dx$.

Let $u(x) = (\ln x)^2$ and v'(x) = 1. Then $u'(x) = 2 \ln x \frac{1}{x}$ and v(x) = x. Then

$$\int (\ln x)^2 dx = x(\ln x)^2 - 2 \int \ln x dx$$
$$= x(\ln x)^2 - 2(x \ln x - x) + c$$
$$= x((\ln x)^2 - 2 \ln x + 2) + c$$

Example. Find $\int x^2 \cos(2x) dx$. Let $u(x) = x^2, v'(x) = \cos(2x)$. Thus u'(x) = 2x and $v(x) = \frac{1}{2}\sin(2x)$. We have

$$\int x^{2} \cos(2x) \ dx = \frac{x^{2}}{2} \sin(2x) - \int x \sin(2x) \ dx$$

For the integral on the right side, we can use integration by parts again with u(x) = x and $v'(x) = \sin(2x)$. Then we have u'(x) = 1 and $v(x) = \frac{-1}{2}\cos(2x)$. Thus

$$\int x^2 \cos(2x) \, dx = \frac{x^2}{2} \sin(2x) - \left(-\frac{x}{2}\cos(2x) - \int \left(\frac{-1}{2}\cos(2x)\right)\right) dx$$
$$= \frac{x^2}{2}\sin(2x) + \frac{x}{2}\cos(2x) - \frac{1}{2}\int\cos(2x) \, dx$$
$$= \frac{x^2}{2}\sin(2x) + \frac{x}{2}\cos(2x) - \frac{1}{4}\sin(2x) + c$$

1.5 Fundamental Theorem of Calculus II

Definition 1.18. If b > a, define

$$\int_{a}^{b} f = -\int_{b}^{a} f$$

Corollary 1.19. We have

$$\int_a^a f(x) dx = \int_a^b f(x) dx + \int_b^a f(x) dx$$
$$= \int_a^b f(x) dx - \int_a^b f(x) dx$$
$$= 0$$

FTC II. Let f be integrable on [a,b]. For a point $x \in [a,b]$, define $F(x) = \int_a^x f(t) dt$. Then f is continuous on [a,b]. Furthermore, if f is continuous at $x_0 \in [a,b]$, then F is diff-able at x_0 and $F'(x_0) = f(x_0)$. In Leibniz notation,

$$\frac{d}{dx} \int_{a}^{x} f(t) \ dt = f(x)$$

Proof. Since f is integrable on I := [a, b], it is bounded there, thus $\exists B > 0$ with $|f(x)| \leq B \ \forall x \in I$. Let $\varepsilon > 0$ be given, and suppose $x, y \in I$ with $|x - y| < \frac{\varepsilon}{B}$. WLOG, suppose x < y. Then

$$|F(y) - F(x)| = \left| \int_{a}^{y} f(t) dt - \int_{a}^{x} f(t) dt \right|$$

$$= \left| \int_{a}^{y} f(t) dt + \int_{x}^{a} f(t) dt \right|$$

$$= \left| \int_{x}^{y} f(t) dt \right|$$

$$\leq \int_{x}^{y} |f(t)| dt \qquad (Theorem 33.5)$$

$$\leq \int_{x}^{y} B dt$$

$$= B(y - x)$$

$$< B \frac{\varepsilon}{B}$$

$$= \varepsilon$$

Thus f is uniformly continuous on I.

For $x = x_0$, we have

$$F(x) - F(x_0) = \int_a^x f(t) dt - \int_a^{x_0} f(t) dt$$
$$= \int_a^x f(t) dt + \int_{x_0}^a f(t) dt$$
$$= \int_{x_0}^x f(t) dt$$

and

$$\frac{F(x) - F(x_0)}{x - x_0} = \frac{1}{x - x_0} \int_{x_0}^{x} f(t) dt$$

as

$$\lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = F'(x_0)$$

We also have

$$\frac{1}{x - x_0} \int_{x_0}^{x} f(t) dt = \frac{f(x_0)}{x - x_0} \int_{x_0}^{x} 1 dt$$
$$= \frac{f(x_0)}{x - x_0} (x - x_0)$$
$$= f(x_0)$$

Thus $\frac{F(x)-F(x_0)}{x-x_0}-F(x_0)=\frac{1}{x-x_0}\int_{x_0}^x (f(t)-f(x_0))\ dt$. Let $\varepsilon>0$ be given. Since f is continuous at x_0 , then $\exists \delta>0$ s.t. $t\in(a,b)$ and $|t-x_0|<\delta\implies|f(t)-f(x_0)|<\varepsilon$. In the case $x > x_0$, we have

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - F(x_0) \right| = \frac{1}{|x - x_0|} \left| \int_{x_0}^x (f(t) - f(x_0)) dt \right|$$

$$\leq \frac{1}{x - x_0} \int_{x_0}^x |f(t) - f(x_0)| dt \qquad (Theorem 33.5)$$

$$\leq \frac{1}{x - x_0} \int_{x_0}^x \varepsilon dt \qquad (Theorem 33.4 (i))$$

$$= \varepsilon (x - x_0) \left(\frac{1}{x - x_0} \right)$$

$$= \varepsilon$$

In the other case

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - F(x_0) \right| = \frac{1}{|x - x_0|} \left| \int_{x_0}^x (f(t) - f(x_0)) dt \right|$$

$$\leq \frac{1}{x_0 - x} \int_{x_0}^x |f(t) - f(x_0)| dt \qquad (Theorem 33.5)$$

$$\leq \frac{1}{x_0 - x} \int_{x_0}^x \varepsilon dt \qquad (Theorem 33.4 (i))$$

$$= \frac{-1}{x_0 - x} \int_x^{x_0} \varepsilon dt$$

$$= \varepsilon(x_0 - x) \left(\frac{1}{x_0 - x} \right)$$

Thus by a definition of a limit, we've shown that

$$\lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = f(x_0)$$

which implies $F'(x_0) = f(x_0)$.

Example. Let

$$g(x) = \int_{1}^{x} t^2 dt$$

By FTC II, $q'(x) = x^2$

Example. Let

$$p(x) = \int_1^x e^{-t^2} dt$$

By FTC II, $p'(x) = e^{-x^2}$

Example. Let $F(x) = \int_{2x}^{x^2} e^{-t^2} dt$. Find F'. Let $p(x) = \int_{0}^{x} e^{-t^2} dt$, then by FTC II $p'(x) = e^{-x^2}$.

Thus

$$F(x) = \int_{2x}^{0} e^{-t^2} dt + \int_{0}^{x^2} e^{-t^2} dt$$
$$= -\int_{0}^{2x} e^{-t^2} dt + \int_{0}^{x^2} e^{-t^2} dt$$
$$= -p(2x) + p(x^2)$$

Thus $F'(x) = -2p'(x) + 2xp'(x^2)$. Since $2x, x^2, p(x)$ are diff-able, we have

$$F'(x) = -2e^{-4x^2}2xe^{-x^4}$$

Example. Let $Li(x) = \int_2^x \frac{1}{\ln t} dt$. Then $Li'(x) = \frac{1}{\ln x}$.

Change of Variables. Let u be a diff-able function on an open interval J with u' continuous. Let I be an open interval with $u(x) \in I$ for $x \in J$. If f is continuous on I, then $f \circ u$ is continuous on J with

$$\int_{a}^{b} (f \circ u)(x)u'(x) \ dx = \int_{u(a)}^{u(b)} f(u) \ du$$

for $a, b \in J$.

Proof. $f \circ u$ is continuous by Theorem 17.5. Let $c \in I$, define

$$F(u) = \int_{c}^{u} f(t) \ dt$$

By FTC II, F'(u) = f(u) for all $u \in I$. Let $g = f \circ u$, then g'(x) = F'(u(x))u'(x) = f(u(x))u'(x). Hence,

$$\int_{a}^{b} (f \circ u)(x)u'(x) dx = \int_{a}^{b} g'(x) dx$$

$$= g(b) - g(a)$$

$$= F(u(b)) - F(u(a))$$

$$= \int_{c}^{u(b)} f(t) dt - \int_{c}^{u(a)} f(t) dt$$

$$= \int_{c}^{u(b)} f(t) dt + \int_{u(a)}^{c} f(t) dt$$

$$= \int_{u(a)}^{u(b)} f(t) dt$$

Remark. Look for integrals in the form

$$\int f(u(x))u'(x) \ dx$$

Example. Find

$$\int_0^2 x e^{-x^2} dx$$

We have $u(x) = -x^2$, so u'(x) = -2x. Then $f(u) = -\frac{1}{2}e^u$, this yields $f(u(x))u'(x) = -\frac{1}{2}e^{-x^2} \cdot -2x = xe^{-x^2}$. Then

$$\int_{u(0)=0}^{u(2)=4} -\frac{1}{2}e^u du = -\frac{1}{2}e^u \Big|_0^4$$
$$= -\frac{1}{2}(e^{-4} - 1)$$

We often write this as $u=-x^2, du=-2xdx$ so $-\frac{1}{2}du=xdx$

Example. Find

$$\int_0^2 \frac{x^2}{\sqrt{x^3 + 1}} \ dx$$

Let $u = x^3 + 1$, $du = 3x^2 dx$ and $\frac{1}{3}du = x^2 dx$. Then we have

$$\int_0^2 \frac{x^2}{\sqrt{x^3 + 1}} dx = \frac{1}{3} \int_1^9 \frac{1}{\sqrt{u}} du$$
$$= \frac{2}{3} u^{\frac{1}{2}} \Big|_1^9$$
$$= \frac{2}{3} (3 - 1)$$
$$= \frac{4}{3}$$

Example. Find

$$\int xe^{-x^2} dx$$

Let $u = -x^2 \implies du = -2x \ dx \implies = \frac{1}{2} du = x \ dx$. Then we have

$$\int xe^{-x^2} dx = \int -\frac{1}{2}e^u du$$

$$= -\frac{1}{2}e^u + c$$

$$= -\frac{1}{2}e^{-x^2} + c$$

Example. Find

$$\int x\sqrt{4-x}\ dx$$

Let $u = 4 - x \implies du = -1 dx$ and x = 4 - u. Then we have

$$\int x\sqrt{4-x} \, dx = -\int 4 - u \, du$$

$$= -\int 4u^{0.5} - u^{1.5} \, du$$

$$= -(4 \cdot \frac{2}{3}u^{1.5} - \frac{2}{5}u^{\frac{5}{2}}) + c$$

$$= -\frac{8}{3}u^{\frac{3}{2}} + \frac{2}{5}u^{\frac{5}{2}} + c$$

$$= -\frac{8}{3}(4-x)^{\frac{3}{2}} + \frac{2}{5}(4-x)^{\frac{5}{2}} + c$$

Example. Find

$$\int \frac{x+1}{x^2+1} \, dx$$

Let $u = x^2 + 1 \implies du = 2x \ dx \implies \frac{1}{2} du = x \ dx$. Then we have

$$\int \frac{x+1}{x^2+1} dx = \int \left(\frac{x}{x^2+1} + \frac{1}{x^2+1}\right) dx$$

$$= \frac{1}{2} \int \frac{1}{u} du + \arctan x$$

$$= \frac{1}{2} \ln|u| + \arctan x$$

$$= \frac{1}{2} \ln|x^2+1| + \arctan x + c$$

Example. Find

$$\int \frac{1}{1+e^x} \, dx$$

Let $u = e^{-x+1} \implies du = -e^{-x} dx \implies -du = e^{-x} dx$. Then we have

$$\int \frac{1}{1+e^x} dx = \int \frac{e^{-x}}{e^{-x}+1} dx$$
$$= \int \frac{-1}{u} du$$
$$= -\ln|u| + c$$
$$= -\ln|e^{-x}+1| + c$$

Example. Find

$$\int \sec x \ dx$$

Note that $\sec' x = \sec x \tan x$ and $\tan' x = \sec^2 x$ so $\sec' x + \tan' x = \sec x (\tan x + \sec x)$. Let $u = \sec x + \tan x \implies du = \sec x (\tan x + \sec x) dx$. Then we have

$$\int \sec x \, dx = \int \frac{\sec x (\sec x + \tan x)}{\sec x + \tan x}$$
$$= \int \frac{1}{u} \, du$$
$$= \ln|u| + c$$
$$= \ln|\sec x + \tan x| + c$$

Example. Find

$$\int \cos(\ln x) \ dx$$

Let $t = \ln x \implies x = e^t \implies dt = \frac{1}{x} dx \implies dx = xdt = e^t dt$.

Then we have

$$\int \cos(\ln x) dx = \int e^t \cos t dt$$

$$= \frac{1}{2}e^t(\cos t + \sin t) + c$$

$$= \frac{1}{2}x(\cos \ln x + \sin \ln x) + c$$

Example. Find

$$\int x^5 e^{x^2} dx$$

Let $t = x^2 \implies dt = 2x \ dx \implies x dx = \frac{1}{2} dt$.

Then we have

$$\int x^5 e^{x^2} dx = \frac{1}{2} \int t^2 e^t dt$$

$$= \frac{1}{2} \left(t^2 e^t - 2 \int t e^t dt \right)$$

$$= \frac{1}{2} t^2 e^t - \left(t e^t - \int e^t dt \right)$$

$$= \frac{1}{2} e^{x^2} (x^4 - 2x^2 + 2) + c$$
(Integration by parts)

1.6 Trig Substitution

Trig substitution. For factors like $\sqrt{a^2-x^2}$, $\sqrt{a^2+x^2}$, $\sqrt{x^2-a^2}$ for some constant a. Recall that $\sin^2\theta + \cos^2\theta = 1$, which yields $1-\sin^2\theta = \cos^2\theta$, and $\tan^2\theta + 1 = \sec^2\theta$. We use these identities to remove square roots.

Example. Find

$$\int \frac{1}{\sqrt{1-x^2}} \, dx$$

Let $x = \sin \theta \implies dx = \cos \theta \ d\theta$, and $1 - x^2 = 1 - \sin^2 \theta = \cos^2 \theta$ and so $\sqrt{1 - x^2} = \sqrt{\cos^2 \theta} = |\cos \theta| = \cos \theta$ since $\cos \theta$ is positive for $-\frac{\pi}{2} < x < \frac{\pi}{2}$, and for these θ , -1 < x < 1, which is our domain.

$$\int \frac{1}{\sqrt{1-x^2}} dx = \int \frac{\cos \theta}{\cos \theta} d\theta$$
$$= \int 1 d\theta$$
$$= \theta + c$$
$$= \arcsin x + c$$

Example. Find

$$\int_2^{2\sqrt{2}} \sqrt{x^2 - 4} \, dx$$

Let $x = 2 \sec \theta \implies x^2 - 4 = 4(\sec^2 \theta - 1) = 4 \tan^2 \theta$ and $dx = 2 \sec \theta \tan \theta \ d\theta$.

Then we have

$$\sqrt{x^2 - 4} = \sqrt{4 \tan^2 \theta}$$
$$= 2|\tan \theta|$$

and we can drop the absolute value if theta is in the 1st or 3rd quadrant.

$$\frac{\pi}{2} = \sec \theta = \frac{1}{\cos \theta} \implies \cos \theta = \frac{2}{x}$$

When $x = 2, \cos \theta = 1 \implies \theta = 0$.

When $x = 2\sqrt{2}, \cos\theta = \frac{1}{\sqrt{2}} \implies \theta = \frac{\pi}{4}$.

The integral becomes:

$$\begin{split} \int_{2}^{2\sqrt{2}} \sqrt{x^2 - 4} \, dx &= \int_{0}^{\frac{\pi}{4}} (2 \tan \theta) (2 \sec \theta \tan \theta) \, d\theta \\ &= 4 \int_{0}^{\frac{\pi}{4}} \sec \theta \tan^2 \theta \, d\theta \\ &= 4 \int_{0}^{\frac{\pi}{4}} \sec \theta (\sec^2 \theta - 1) \, d\theta \\ &= 4 \int_{0}^{\frac{\pi}{4}} \sec^3 \theta - \sec \theta) \, d\theta \\ &= 4 \left(\frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \ln |\sec \theta + \tan \theta| = -\ln |\sec \theta + \tan \theta| \right) \Big|_{0}^{\frac{\pi}{4}} \\ &= 2 (\sec \theta \tan \theta = \ln |\sec \theta + \tan \theta|) \Big|_{0}^{\frac{\pi}{4}} \\ &= 2 (\sqrt{2} - \ln \left(\sqrt{2} + 1 \right)) \end{split}$$

Say we want $\int \sqrt{x^2 - 4} \, dx$. By above, this would be

$$2(\sec\theta\tan\theta - \ln|\sec\theta + \tan\theta|) + c$$

Our substitution was $\sec \theta = \frac{x}{2}$. We also have $\tan^2 \theta = \sec^2 - 1 = \frac{x^2 - 4}{4} \implies \tan \theta = \frac{\sqrt{x^2 - 4}}{2}$. Then,

$$\int \sqrt{x^2 - 4} \, dx = 2 \left(\frac{x}{2} \cdot \frac{\sqrt{x^2 - 4}}{2} - \ln \left| \frac{x}{2} + \frac{\sqrt{x^2 - 4}}{2} \right| \right) + c$$

$$= \frac{x}{2} \sqrt{x^2 - 4} - 2 \ln |x + \sqrt{x^2 - 4}| + 2 \ln 2 + c$$

$$= \frac{x}{2} \sqrt{x^2 - 4} - 2 \ln |x + \sqrt{x^2 - 4}| + c \qquad \text{(constant can be absorbed into } c\text{)}$$

Example. Let's find the area of a circle, $x^2+y^2=r^2 \implies y^2=r^2-x^2 \implies y=\pm\sqrt{r^2-x^2}$. Integrate $y=\sqrt{r^2-x^2}$ from $0\to r$ and multiply this by 4 to get the area of the whole circle. Let $x=r\sin\theta\implies dx=r\cos\theta\;d\theta$ and $r^2-x^2=r^2-r^2\sin^2\theta=r^2(1-\sin^2\theta)=r^2\cos\theta$. Thus $\sqrt{r^2-x^2}=r\cos\theta$. Then we have

$$A = 4 \int_{0}^{r} \sqrt{r^{2} - x^{2}} dx$$

$$= 4 \int_{0}^{\frac{\pi}{2}} r \cos \theta r \cos \theta d\theta \qquad (x = 0 \implies \theta = 0, x = r \implies \theta = \frac{\pi}{2})$$

$$= 4r^{2} \int_{0}^{\frac{\pi}{2}} \cos^{2} \theta d\theta$$

$$= 4r^{2} \int_{0}^{\frac{\pi}{2}} \frac{1 + \cos 2\theta}{2} d\theta$$

$$= 2r^{2} \int_{0}^{\frac{\pi}{2}} 1 + \cos 2\theta d\theta$$

$$= 2r^{2} (\theta + \frac{1}{2} \sin 2\theta) \Big|_{0}^{\frac{\pi}{2}}$$

$$= 2r^{2} (\frac{\pi}{2} + 0 - 0)$$

$$= \pi r^{2}$$

Example. Find

$$\int \frac{x^3}{(4x^2+9)^{\frac{3}{2}}} \ dx$$

We use $\tan^2 \theta + 1 = \sec^2 \theta$.

Let $x = \frac{3}{2} \tan \theta$, $\implies dx = \frac{3}{2} \sec^2 \theta \ d\theta$, so $4x^2 + 9 = 9 \tan^2 \theta + 9 = 9 (\tan^2 \theta / + 1) = 9 \sec^2 \theta$.

We have $(4x^2 + 9)^{\frac{3}{2}} = (9\sec^2\theta)^{\frac{3}{2}} = 27\sec^3\theta$. So $x^3 = \frac{27}{8}\tan^3\theta$.

Then we have

$$\int \frac{x^3}{(4x^2 + 9)^{\frac{3}{2}}} dx = \frac{27}{8} \cdot \frac{3}{2} \cdot \frac{1}{27} \int \frac{\tan^3 \theta \sec^2 \theta}{\sec^3 \theta} d\theta$$

$$= \frac{3}{16} \int \frac{\tan^3 \theta}{\sec^2 \theta} d\theta$$

$$= \frac{3}{16} \int \frac{\sin^3 \theta}{\cos^2 \theta} d\theta$$

$$= \frac{3}{16} \int \frac{\sin^2 \theta (1 - \cos^2 \theta)}{\cos^2 \theta} d\theta \qquad (\text{Let } u = \cos \theta \implies du = -\sin \theta d\theta)$$

$$= -\frac{3}{16} \int \frac{1 - u^2}{u^2} du$$

$$= -\frac{3}{16} \int \frac{1}{u^2} - 1 du$$

$$= -\frac{3}{16} \left(-\frac{1}{u} - u \right) + c$$

$$= \frac{3}{16} \left(\frac{1}{u} + u \right) + c$$

$$= \frac{3}{16} \left(\frac{u^2 + 1}{u} \right) + c$$

$$= \frac{3}{16} \left(\frac{\cos^2 \theta + 1}{\cos \theta} \right) + c$$

$$= \frac{3}{16} \left(\frac{\left(\frac{3}{\sqrt{4x^2 + 9}} \right)^2 + 1}{\frac{3}{\sqrt{4x^2 + 9}}} \right) + c$$

$$(\tan \theta = \frac{2x}{3})$$

1.7 Partial Fractions

Remark. Let's find A, B with

$$\frac{1}{x^2 - 1} = \frac{A}{x - 1} + \frac{B}{x + 1}$$

We multiply by the denominator which yields

$$1 = A(x+1) + B(x-1)$$

= $Ax + A + Bx - B$
= $(A+B)x + (A-B)$

so A+B=0 and A-B=1. We can solve this using linear algebra techniques, or we can substitute values for x. Let x=1, then $1=A(x+1)+B(x-1) \implies 1=A(2)+B(0) \implies A=\frac{1}{2}$. Similarly, setting x=-1 yields $B=-\frac{1}{2}$. Note that the above method assumes an unique solution exists.

Partial Fraction Decomposition. Consider a ratio of polynomials f(x)/g(x). If $\deg f \geq \deg g$, we may use long division to write the ratio as $h(x) + \frac{f_1(x)}{g(x)}$, with h a polynominal and $\deg f_1 < \deg g$. Thus we may assume $\deg f < \deg g$. Suppose g factors over $\mathbb R$ as follows,

$$g(x) = p_1(x)^{n_1} \dots p_k(x)^{n_k}$$

where each p_i is co-prime and irreducible and $n_i \in \mathbb{Z}^+$. By the Fundamental Theorem of Algebra, each p_i will either

be degree 1 or 2. We may then write

$$\frac{f(x)}{g(x)} = \sum_{i=1}^{k} T_i(x)$$

where T_i is as follows:

1. If deg $p_i = 1$, then $T_i(x) = \frac{A_1}{p_i(x)} + \dots + \frac{A_{n_i}}{P_i(x)^{n_i}}$ for $A_j \in \mathbb{R}$.

2. If deg $p_i = 2$, then $T_i(x) = \frac{A_1 x + B_1}{p_i(x)} + \dots + \frac{A_{n_i} x + B_{n_i}}{p_i(x)^{n_i}}$ for $A_j, B_j \in \mathbb{R}$.

Example. Find the PFD of

$$\frac{2x-1}{x^2+x-2} = \frac{2x-1}{(x-1)(x+2)} = \frac{A}{x-1} + \frac{B}{x+2}$$

We multiply by the denominator and get

$$2x + 1 = A(x+2) + B(x-1)$$

Let x = 1, this yields $3 = 3A \implies A = 1$.

Let x = -2, this yields $-3 = -3B \implies B = 1$.

Thus

$$\frac{2x-1}{x^2+x-2} = \frac{1}{x-1} + \frac{1}{x+2}$$

and

$$\int \frac{2x-1}{x^2+x-2} \ dx = \int \frac{1}{x-1} + \frac{1}{x+2} \ dx = \ln|x-1| + \ln|x+2| + c$$

Example. Find the PFD of

$$\frac{4}{x^3 + x^2 - x - 1} = \frac{4}{(x - 1)(x + 1)^2} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{C}{(x + 1)^2}$$

Note we get the above by factoring by grouping.

We multiply by the denominator and get

$$4 = A(x+1)^{2} + B(x-1)(x+1) + C(x-1)$$

Let x = -1, this yields $4 = 4A \implies A = 1$.

Let x = 1, this yields $4 = -2C \implies C = -2$.

Let x = 0, this yields $4 = 1 - B + 2 \implies B = -1$.

Thus

$$\frac{4}{x^3+x^2-x-1} = \frac{1}{x-1} - \frac{1}{x+1} - \frac{2}{(x+1)^2}$$

and

$$\int \frac{4}{x^3 + x^2 - x - 1} \, dx = \int \frac{1}{x - 1} - \frac{1}{x + 1} - \frac{2}{(x + 1)^2} \, dx = \ln|x - 1| + \ln|x + 1| + \frac{2}{x + 1}$$

Example. Find the PFD of

$$\frac{6x-3}{x^3-1} = \frac{6x-3}{(x-1)(x^2+x+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$$

We multiply by the denominator and get

$$6x - 3 = A(x^2 + x + 1) + (Bx + C)(x - 1)$$

Let x = 1, this yields $3 = 3A \implies A = 1$.

Let x = 0, this yields $-3 = (1)(1) - C \implies C = 4$.

Let x = 2, this yields $9 = 7 + (2B + 4)(1) \implies B = -1$.

Thus

$$\frac{6x-3}{x^3-1} = \frac{1}{x-1} + \frac{4-x}{x^2+x+1}$$

How do we integrate $-\int \frac{x-4}{x^2+x+1} dx$?

The ideal substitution would be $u = x^2 + x + 1 \implies du = 2x + 1 dx$. Thus we will try to get this to appear.

$$-\int \frac{x-4}{x^2+x+1} dx = -\frac{1}{2} \int \frac{2x+1-9}{x^2+x+1} dx$$
$$= -\frac{1}{2} \int \frac{2x+1}{x^2+x+1} dx + \frac{9}{2} \int \frac{1}{x^2+x+1} dx$$

Let's integrate the first term for now:

$$-\frac{1}{2} \int \frac{2x+1}{x^2+x+1} dx = -\frac{1}{2} \int \frac{1}{u} du$$
$$= -\frac{1}{2} \ln|u|$$
$$= -\frac{1}{2} \ln(x^2+x+1)$$

Now for the second term, we complete the square: Note that

$$x^{2} + x + 1 = \left(x^{2} + x + \frac{1}{4}\right) + \frac{3}{4} = \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}$$

$$\frac{9}{2} \int \frac{1}{x^2 + x + 1} dx = \frac{9}{2} \int \frac{1}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} dx$$
$$= \frac{9}{2} \int \frac{1}{\frac{3}{4} \left(\frac{4}{3} \left(x + \frac{1}{2}\right)^2 + 1\right)} dx$$
$$= 6 \int \frac{1}{\left(\frac{2}{\sqrt{3}} \left(x + \frac{1}{2}\right)\right)^2 + 1} dx$$

Let $u = \frac{2}{\sqrt{3}} \left(x + \frac{1}{2} \right) \implies du = \frac{2}{\sqrt{3}} dx \implies dx = \frac{\sqrt{3}}{2}$. Thus,

$$6 \int \frac{1}{\left(\frac{2}{\sqrt{3}}\left(x+\frac{1}{2}\right)\right)^2+1} dx = 6 \cdot \frac{\sqrt{3}}{2} \int \frac{1}{u^2+1} du$$
$$= 3\sqrt{3} \arctan u + c$$
$$= 3\sqrt{3} \arctan \left(\frac{2}{\sqrt{3}}\left(x+\frac{1}{2}\right)\right) + c$$

Thus,

$$-\int \frac{x-4}{x^2+x+1} dx = -\frac{1}{2} \ln|x^2+x+1| + 3\sqrt{3} \arctan\left(\frac{2x+1}{\sqrt{3}}\right) + c$$

and so

$$\int \frac{6x = 3}{x^3 - 1} \ dx = \ln|x - 1| - \frac{1}{2} \ln|x^2 + x + 1| + 3\sqrt{3} \arctan\left(\frac{2x + 1}{\sqrt{3}}\right) + c$$

2 Differential Equations

Definition 2.1. A differential equation is an equation that relates a function to its derivative.

Example. Solve y' = ky for some fixed $k \in \mathbb{R}$.

Note that y(x) = 0 is a solution, and for non-zero y we can divide it out. This yields

$$\frac{1}{y}y' = k$$

$$\Rightarrow \int \frac{1}{y}y' \, dx = \int k \, dx$$

$$\Rightarrow \int \frac{1}{u} \, du = kx + c_1 \qquad (\text{with } u = y \implies du = y' \, dx)$$

$$\Rightarrow \ln|u| + c_2 = kx + c_1$$

$$\Rightarrow \ln|y| + c_2 = kx + c_1$$

$$\Rightarrow \ln|y| = kx + c_3 \qquad (\text{where } c_3 = c_1 - c_2)$$

$$\Rightarrow |y| = e^{kx} + c_3$$

$$= e^{kx} \cdot e^{c_3}$$

$$\Rightarrow y = \pm e^{kx} \cdot e^{c_3}$$

$$\Rightarrow ce^{kx} \qquad (\text{where } c = \pm e^{c_3}, \text{ and since 0 is a solution, we have } c \in \mathbb{R})$$

Remark. This works because we could rearrange the differential equation to the form

$$F(y)y' = G(x)$$

Such an equation is called **separable**. Integration wrt x yields

$$\int F(y)y' dx = \int G(x) dx$$

$$\implies \int F(y) dy = \int G(x) dx$$

Example. Solve $y' = \frac{-x}{y}$. We have

$$yy' = -x$$

$$\implies \int yy' \, dx = \int -x \, dx$$

$$\implies \int y \, dy = \int -x \, dx$$

$$\implies \frac{1}{2}y^2 = -\frac{1}{2}x^2 + c$$

$$\implies x^2 + y^2 = 2c$$

This is a circle with radius $\sqrt{2c}$. So, the slope of the tangent lines on a circle are $-\frac{x}{y}$

3 Series and Sequences of Functions

Integral Test. Let f be a continuous, non-negative, and decreasing function on $[k,\infty)$ and let $f(n)=a_n$, then

$$\int_{k}^{\infty} f(x) dx \text{ is convergent } \Leftrightarrow \sum_{n=k}^{\infty} a_n \text{ converges}$$

3.1 Power Series

Definition 3.1. Given a sequence $(a_n)_{n=0}^{\infty}$, the series $\sum_{n=0}^{\infty} = a_n x^n$ is a **power series** centered at 0 with coefficients a_n and x is a variable. This series may converge for some values of x and diverge for others. Since

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots$$

the series converges to a_0 when x = 0.

Example.

 $\sum_{n=0}^{\infty} n^n x^n$

SC

$$a_n = \begin{cases} 0 & n = 0 \\ n^n & n \ge 1 \end{cases}$$

Let's fix x and use the root test. Have $\lim_{n\to\infty} |n^n x^n|^{\frac{1}{n}} = \lim_{n\to\infty} n|x|$. We need this < 1 to converge, which only happens when x=0. Thus the series converges only at x=0.

Example.

$$\sum_{n=0}^{\infty} x^n$$

so $a_n = 1$ is a power series. This is the geometric series! Proved in 1052 this converges for |x| < 1 and diverges for |x| > 1. Know that it converges to $\frac{1}{1-x}$ when it converges.

Example.

$$\sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

so $a_n = \frac{1}{n!}$. Let's fix x and use the ratio test.

$$\lim_{n \to \infty} \left| \frac{\frac{1}{(n+1)!} x^{n+1}}{\frac{1}{n!} x^n} \right| = \lim_{n \to \infty} \frac{n!}{(n+1)!} |x| = |x| \lim_{n \to \infty} \frac{1}{n+1} = 0 < 1$$

Thus this power series converges absolutely for all x.

Theorem 3.2. For the power series $\sum_{n=0}^{\infty} a_n x^n$, let

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

Then the power series converges absolutely for |x| < R and diverges for |x| > R. R is called the **radius of convergence**.

Proof. We use the ratio test on $\sum_{n=0}^{\infty} a_n x^n$. Have

$$\lim_{n \to \infty} \left| \frac{a_{n+1} x^{n+1}}{a_n x^n} \right| = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x|$$

Case 1: $0 < R < \infty$

Then by Theorem 9.6 implies $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\frac{1}{\left|\frac{a_{n+1}}{a_n}\right|}=\frac{1}{R}$ and so the limit above is $\frac{|x|}{R}$.

By the ratio test, the series converges absolutely if $\frac{|x|}{R} < 1 \Leftrightarrow |x| < R$, and diverges if |x| > R.

Case 2: $R = \infty$

Theorem 9.10 implies $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\frac{1}{\left|\frac{a_n}{a_{n+1}}\right|}=0$ and so the limit above is $0<1\forall x,$ so the series converges absolutely for all x.

Case 3: R = 0. Theorem 9.10 implies $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{1}{\left| \frac{a_n}{a_{n+1}} \right|} = \infty$. Thus the limit above is ∞ for all x and so the series converges only for x = 0.

Example.

$$\sum_{n=1}^{\infty} \frac{1}{n} x^n$$

so
$$a_n = \begin{cases} 0 & n = 0 \\ \frac{1}{n} & n = 1 \end{cases}$$

What about for $x = \pm 1$? When x = 1, the series is $\sum_{n=1}^{\infty} \frac{1}{n}$ which is the harmonic series and diverges. When x = -1, the series is $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ which converges conditionally. Thus the series converges for $x \in [-1, 1)$.

Remark. In general, the endpoints must be checked separately.

Definition 3.3. The interval on which a power series converges is called the **interval of convergence**.

Example.

$$\sum_{n=1}^{\infty} \frac{1}{n^2} x^n$$

We have $\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=\lim_{n\to\infty}\left|\frac{\frac{1}{n^2}}{\frac{1}{(n+1)^2}}\right|=\lim_{n\to\infty}\frac{(n+1)^2}{n^2}=1$. Thus it converges for |x|<1. At x=1, the series is $\sum_{n=1}^{\infty}\frac{1}{n^2}$ and at x=-1, the series is $\sum_{n=1}^{\infty}\frac{(-1)^n}{n^2}$ which both converge.

Example.

$$\sum_{n=0}^{\infty} 3^n x^{2n}$$

so $a_{2n}=3^n$ and $a_{n+1}=0$ (the series is $3^0+3x^2+3^2x^4+\dots$)
We have $\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|$ which doesn't exist as every second term is 0. Let's fix x and use the ratio test, $\lim_{n\to\infty}\left|\frac{3^{n+1}x^{2(n+1)}}{3^n2^n}\right|=\lim_{n\to\infty}3x^2=3x^2$. So, we must have $3x^2<1\implies|x|<\frac{1}{\sqrt{3}}$ for it to converge. At $x=\frac{1}{\sqrt{3}}$, series is $\lim_{n\to\infty}3^n\left(\frac{1}{\sqrt{3}}\right)^{2n}=\sum_{n=0}^\infty 1$ which diverges, at $x=-\frac{1}{\sqrt{3}}$, series is $\sum_{n=0}^\infty 3^n\left(-\frac{1}{\sqrt{3}}\right)^{2n}=\sum_{n=0}^\infty 1$

which diverges. Thus the radius of convergence is $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$. An alternative method to solve is let $y = x^2$, so series is $\sum_{n=0}^{\infty} 3^n y^n$. Then $R = \lim_{n \to \infty} \frac{3^n}{3^{n+1}} = \frac{1}{3}$. Then series converges for $|y| < \frac{1}{\sqrt{3}} \implies |x^2| < \frac{1}{3} \implies |x| < \frac{1}{\sqrt{3}}$ as before.

3.1.1 Series not Centered at 0

Definition 3.4. The power series $\sum_{n=0}^{\infty} a_n(x-x_0)$ centered at x_0 will still have a radius of convergence of R and will converge for $|x - x_0| < R$. That is, for $x_0 - R < x < x_0 + R$. It for diverge for $|x - x_0| > R$. Convergent of endpoints needs to be checked separately.

Example.

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (x-1)^n$$

so
$$a_n = \begin{cases} 0 & n = 1 \\ \frac{(-1)^{n+1}}{n} & n \ge 1 \end{cases}$$
 and $x_0 = 1$.

Have

$$\lim_{n \to \infty} \left| \frac{\frac{(-1)^{n+1}}{n}}{\frac{(-1)^{n+2}}{n+2}} \right| = \lim_{n \to \infty} \left| \frac{n+1}{n} \right|$$

$$= 1$$

$$= R$$

and so this converges for |x-1| < 1 or 0 < x < 2.

At x = 0, series is

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (-1)^n = \sum_{n=1}^{\infty} \frac{(-1)^{2n+1}}{n}$$
$$= -\sum_{n=1}^{\infty} \frac{-1}{n}$$

which diverges.

At x = 2, series is

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (1)^n = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

which converges conditionally.

Thus the interval of convergence is (0, 2].

Remark. A power series is a function of x with domain its interval of convergence. Want to know is it continuous, differentiable, integrable.

The partial sums of a power series are polynomials, which are continuous. If the series converges, its sum is the limit of the sequence of partial sums.

Is the limit of a convergent sequence of continuous functions necessarily continuous?

The answer is no.

Example. Let $f_n(x) = x^n$ for $x \in [0,1]$. These are the functions x, x^2, x^3, \ldots Each of these functions is continuous on [0,1]. For x < 1, have $\lim_{n \to \infty} x^n = 0$, but at x = 1, have $\lim_{n \to \infty} 1^n = 1$. Thus the sequence of continuous functions

 $f_n(x)$ converges to the discontinuous function $f(x) = \begin{cases} 0 & x < 1 \\ 1 & x = 1 \end{cases}$

We are essentially fixing a point x and looking at the sequence $f_n(x)$ separately for each value of x. This is called point-wise convergence.

Definition 3.5. The sequence of functions f_n on $S \subseteq \mathbb{R}$ converges **pointwise** to a function f on S if for all $x \in S$, $\lim_{n\to\infty} f_n(x) = f(x)$. Formally,

$$\forall x \in S, \forall \varepsilon > 0, \exists N, n > N \implies |f_n(x) - f(x)| < \varepsilon$$

Here, N may depend on ε and/or x. That is, can choose N differently for different x.

Example. In the previous example, given a fixed $\varepsilon = 0.1$, increasingly large N are needed for x near 1.

At $x = \frac{1}{2}$, we have

$$\left(\frac{1}{2}\right)^n < 0.1$$

$$\implies 2^n > 10$$

$$\implies n > 4$$

so take N=4 for this x and ε .

Now with the same ε take $x = \frac{9}{10}$. Have

$$\left(\frac{9}{10}\right)^n < 0.1$$

$$\implies \left(\frac{10}{9}\right)^n > 10$$

$$\implies n \ln \frac{10}{9} > \ln 10$$

$$\implies n > \frac{\ln 10}{\ln \frac{10}{9}} \approx 21.8$$

so take N = 22 for this x and ε .

Now with the same ε take $x = \frac{99}{100}$. Have

$$\left(\frac{99}{100}\right)^n < 0.1$$

$$\implies n > \frac{\ln 10}{\ln \frac{100}{99}} \approx 229.1$$

so take N = 230 for this x and ε .

At x = 1, sequence is $1, 1, 1, 1, 1, \ldots$ It seems that N will not change wrt x. We can strengthen the definition so that one N must work for all x.

3.2 Uniform Convergence

Definition 3.6. The sequence of functions f_n on $S \subseteq \mathbb{R}$ converges uniformly to a function f on S if

$$\forall \varepsilon > 0, \exists N, \forall x \in S, n > N \implies |f_n(x) - f(x)| < \varepsilon$$

Remark. If f_n converges to f uniformly, it also does pointwise as well.

Example. Let's return to our example.

We have
$$f(x) = \begin{cases} 0 & x < 1 \\ 1 & x = 1 \end{cases}$$

Does this converge uniformly?

Suppose so for contradiction. Take $\varepsilon = \frac{1}{2}$. The definition implies we have

$$\exists N, \forall x \in [0, 1], n > N \implies |x^n - f(x)| < \frac{1}{2}$$

Take $x \in [0,1)$ so we can simplify f(x) as it is always 0. Take n = N+1. We then have $x^{N+1} < \frac{1}{2}$.

Let $x_1 = \frac{1}{2^{\frac{1}{N+1}}}$, and thus have $0 < x_1 < 1$, but $x_1^{N+1} = \frac{1}{2}$, so we have $\frac{1}{2} < \frac{1}{2}$ from the $\varepsilon - N$ definition, which is a contradiction. Thus these functions do not converge uniformly.

Corollary 3.7. Any uniformly convergent sequence is pointwise convergent. (trivial)

Example. Let $f(x) = \frac{1}{n}\sin(nx)$ on \mathbb{R} .

Have $f_1(x) = \sin x$, $f_2(x) = \frac{1}{2}\sin 2x$, and so on. The period and the amplitude are decreasing.

Looks like f(x) approaches the constant zero function. We can show this is convergent uniformly on \mathbb{R} . Have

$$|f_n(x) - 0| = \frac{1}{n} |\sin nx|$$

$$< \frac{1}{n} (1)$$

so $n > \frac{1}{\varepsilon} = N$.

Let $\varepsilon > 0$ be given. Let $N = \frac{1}{\varepsilon}$. Then for $x \in \mathbb{R}$ and n > N implies

$$|f_n(x) - 0| < \varepsilon$$

as required.

Theorem 24.3. The uniform limit of continuous functions is continuous. In other words, let $f_n \to f$ be uniformly convergent on $S \subseteq \mathbb{R}$ where f is a function on S. If each f_n is continuous at $x_0 \in S$, then f is continuous at x_0 .

Proof. We want $|f(x) - f(x_0)|$ small when x is near x_0 . Since $f_n \to f$ uniformly, can make $|f_n(x) - f(x)|$ and $|f_n(x_0) - f(x_0)|$ small for large enough n. Since each f_n is continuous, $|f_n(x) - f_n(x_0)|$ is small provided x close to x_0 .

Have

$$|f(x) - f(x_0)| = |f(x) - f_n(x) + f_n(x) - f_n(x_0) + f_n(x_0) - f(x_0)|$$

$$\leq |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)|$$

Let $\varepsilon > 0$ be given. Since f_n converges uniformly to f, $\exists N$ such that $\forall x \in S$, including $x_0, n > N \implies |f_n(x) - f(x)| < \frac{\varepsilon}{3}$. In particular,

$$|f_{N+1}(x) - f(x)| < \frac{\varepsilon}{3} \tag{1}$$

Since f_{N+1} is continuous at x_0 , $\exists \delta > 0$ such that $x \in S$ and

$$|x - x_0| < \delta \implies |f_{N+1}(x) - f_{N+1}(x_0)| < \frac{\varepsilon}{3}$$

$$\tag{2}$$

Thus $x \in S$ and $|x - x_0| < \delta \implies$

$$|f(x) - f(x_0)| = |f(x) - f_{N+1}(x)| + |f_{N+1}(x) - f_{N+1}(x_0)| + |f_{N+1}(x_0) - f(x_0)|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$
(From 1 and 2 above)
$$= \varepsilon$$

Corollary 3.8. If f is discontinuous, and f_n is continuous, then f_n does not uniformly converge.

Example. Let $f_n = (1 - |x|)^n$ on (-1, 1).

If x = 0, then (1 - |x|) = 1 and so $f_n = 1^n = 1$ as $n \to \infty$.

If $x \neq 0$, then (1 - |x|) < 1 and so $f_n = 0$ as $n \to \infty$.

Thus,
$$f_n \to f$$
 where $f(x) = \begin{cases} 0 & x \neq 0 \\ 1 & x = 0 \end{cases}$

Since f is not continuous, it does not uniformly converge.

Example. Consider $f_n(x) = x^n$ on [0, 1).

The pointwise limit is f(x) = 0 which is continuous.

However, this does not imply that f_n converges uniformly.

This is the same example as before.

Example. Let 0 < b < 1 be fixed and consider $f_n = x^n$ on [0, b]. Then $f_n \to 0$ uniformly.

Let $\varepsilon > 0$ be given. Find N first.

Have

$$|x^n - 0| = x^n$$
 (We want $b^n < \varepsilon$) $< \varepsilon$

Then

$$b^n < \varepsilon$$

$$n \ln b < \ln \varepsilon$$

$$n > \frac{\ln \varepsilon}{\ln b}$$

$$(\ln b < 0 \text{ since } b < 1 < e)$$

Let $\varepsilon>0$ be given. Take $N=\frac{\ln \varepsilon}{\ln b}.$ Then $\forall x\in[0,b],\, n>N$

$$|x^n-0|=x^n$$

$$\leq b^n$$

$$< b^N$$

$$=b^{\frac{\ln\varepsilon}{\ln b}}$$

$$=e^{\ln\varepsilon}$$

$$=\varepsilon$$

Thus, let $f_n(x) = x^n$, so $f(x) = \begin{cases} 0 & x \neq 1 \\ 1 & x = 1 \end{cases}$ On [0, 1], $f_n \to f$ pointwise only.

On [0,1), $f_n \to f$ pointwise only. On [0,b], where b < 1, $f_n \to f$ pointwise uniformly.

Theorem 25.2. Let (f_n) be a sequence of continuous functions on [a,b] that converges uniformly to f on [a,b]. Then $\lim_{n \to \infty} \int_a^b f_n(x) \ dx = \int_a^b f(x) \ dx$

Proof. Theorem 24.3 implies that f is continuous. Thus $f_n \to f$ is continuous and integrable on [a,b] for all n. Let $\varepsilon > 0$ be given. Since $f_n \to f$ uniformly on [a,b], then $\exists N, \forall x \in [a,b], n > N \implies |f_n(x) - f(x)| < \frac{\varepsilon}{b-a}$.

Thus, have

$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| = \left| \int_{a}^{b} f_{n}(x) - f(x) dx \right|$$

$$\leq \int_{a}^{b} |f_{n}(x) - f(x)| dx$$

$$< \int_{a}^{b} \frac{\varepsilon}{b - a} dx$$

$$= \frac{\varepsilon}{b - a} \int_{a}^{b} 1 dx$$

$$= \frac{\varepsilon}{b - a} b - a$$

$$= \varepsilon$$

Example. Consider $f_n(x) = x^n$ on [0, b] for b < 1. By 25.2,

$$\lim_{n \to \infty} \int_0^b f_n(x) \ dx = \int_0^b f(x) \ dx$$
$$= \int_0^b 0 \ dx$$
$$= 0$$

Let's check.

$$\lim_{n \to \infty} \int_0^b f_n(x) \, dx = \lim_{n \to \infty} \frac{1}{n+1} x^{n+1} \Big|_0^b$$

$$= \lim_{n \to \infty} \frac{b^{n+1}}{n+1}$$

$$= 0 \qquad (0 < b < 1)$$

3.3 Cauchy Convergence

Definition 3.9. Let (f_n) be a sequence of functions $S \subseteq \mathbb{R}$. The sequence is **uniformly Cauchy** on S if

$$\forall \varepsilon > 0, \exists N, \forall x \in S, m, n > N \implies |f_n(x) - f_m(x)| < \varepsilon$$

Theorem 3.10. Suppose $f_n \to f$ uniformly on S. Then f_n is uniformly Cauchy on S.

Proof. Let $\varepsilon > 0$ be given. Then $\exists N, x \in S, n > N \implies |f_n(x) - f(x)| < \frac{\varepsilon}{2}$. Then m, n > N implies

$$|f_n(x) - f_m(x)| = |f_n(x) - f(x) + f(x) - f_m(x)|$$

$$\leq |f_n(x) - f(x)| + |f(x) - f_m(x)|$$

$$\leq |f_n(x) - f(x)| + |f_m(x) - f(x)|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Theorem 25.4. Let (f_n) be a uniformly convergent sequence of functions on $S \subseteq \mathbb{R}$, then $\exists f$ on S such that $f_n \to f$ uniformly.

Proof. We must first find f. Since (f_n) is uniformly Cauchy, given $\varepsilon > 0$, have $\exists N, \forall x \in S, m, n > N \implies |f_n(x) - f_m(x)| < \varepsilon$.

Fix $x_0 \in S$. Then the above for $x = x_0$, the sequence $(f_n(x_0))$ is a Cauchy sequence of numbers that converge. Thus $\exists \lim_{n\to\infty} f_n(x_0)$. We define $f(x) = \lim_{n\to\infty} f_n(x)$ for each $x \in S$. Thus, $f_n \to f$ converges pointwise. We now show that $f_n \to f$ uniformly on S. Let $\varepsilon > 0$ be given. Since (f_n) is uniformly Cauchy, $\exists N, \forall x \in S, m, n > N \Longrightarrow |f_n(x) - f_m(x)| < \frac{\varepsilon}{2}$. Let n > N and $x \in S$, the above implies

$$f_n(x) - \frac{\varepsilon}{2} < f_m(x) < f_n(x) + \frac{\varepsilon}{2}$$

for all m > N and

$$f_n(x) - \frac{\varepsilon}{2} < f(x) < f_n(x) + \frac{\varepsilon}{2}$$

since $\lim_{m\to\infty} f_m(x) = f$. Thus, have $|f(x) - f_n(x)| \leq \frac{\varepsilon}{2} < \varepsilon$ for all $x \in S$ and n > N. Thus, it converges uniformly.

3.4 Series of Functions

Definition 3.11. We say that the series of functions $\sum_{k=0}^{\infty} g_k(x)$ converges to a function g if and only if $\lim_{n\to\infty} \sum_{k=0}^n g_k(x) = g$.

If the sequence of partial sums converges uniformly on S, then we say the series converges uniformly on S. If the sequence of partial sums diverges to $\pm \infty$, then we say the series diverges to $\pm \infty$. Otherwise the series has no meaning.

Remark. A power series $\sum_{k=0}^{\infty} a_k x^k$ is a series of functions with $g_k(x) = a_k x^k$. $\sum_{k=0}^{\infty} \frac{x^k}{1+x^k}$ is a series of functions that is not a power series as written.

Theorem 25.5. Let $\sum_{k=0}^{\infty} g_k(x)$ be a series on $S \subseteq \mathbb{R}$. If then $g_k(x)$ is continuous on S and the series converges uniformly on S, then $\sum_{k=0}^{\infty} g_k(x)$ is continuous on S.

Proof. The partial sum $\sum_{k=0}^{n} g_k(x)$ is a finite sum of continuous functions and are continuous. Thus the sequence of partial sums is a uniformly convergent sequence of continuous functions. Then 24.3 implies that the limit $\sum_{k=0}^{\infty} g_k(x)$ is continuous.

Corollary 3.12. Let's write the Cauchy criterion for the sequence of partial sums of the series $\sum_{k=0}^{\infty} g_k(x)$ is uniformly convergent on S if and only if $\forall \varepsilon > 0, \exists N, \forall x \in S, n \geq m > N$ (WLOG) $\implies |\sum_{k=m}^{n} g_k(x)| < \varepsilon$.

Weierstrass M-test for uniform convergence. Let (M_k) be a sequence of non-negative numbers with $\sum M_k < \infty$. If $|g_k(x)| \leq M_k \forall x \in S$, then $\sum g_k(x)$ converges uniformly on S.

Proof. Let $\varepsilon > 0$ be given. Since $\sum M_k$ converges, the sequence of partial sums $\sum_{k=0}^n M_k$ is Cauchy. Then, $\exists N$ such that $n \geq m > N \implies \sum_{k=m}^n M_k < \varepsilon$. Thus, if $n \geq m > N$ and $x \in S$, have

$$\left| \sum_{k=m}^{n} g_k(x) \right| \le \sum_{k=m}^{n} |g_k(x)| \le \sum_{k=m}^{n} M_k < \varepsilon$$

Thus $\sum g_k$ is Cauchy and thus uniformly convergent on S.

Lemma 3.13. If $\sum g_k(x)$ converges uniformly on S, then $\lim_{n\to\infty}\sup_{x\in S}\{|g_n(x)|\mid x\in S\}=0$

Proof. Let $\varepsilon > 0$ be given. Since $\sum g_k(x)$ is Cauchy, $\exists N$ such that $\forall x \in S, n \geq m \implies |\sum_{k=m}^n g_k(x)| < \frac{\varepsilon}{2}$. Let m = n, have that $\forall x \in S, n > N \implies |g_n(x)| < \frac{\varepsilon}{2}$. Then $n > N \implies \sup_{x \in S} \{|g_n(x)| \mid x \in S\} \leq \frac{\varepsilon}{2}$. Since $\forall \varepsilon > 0, \exists N$ such that $n > N \implies 0 \leq \sup_{x \in S} \{|g_n(x)| \mid x \in S\} \leq \frac{\varepsilon}{2} < \varepsilon$, and so $\lim_{n \to \infty} (\sup_{x \in S} \{|g_n(x)| \mid x \in S\})$.

Example. Consider $\sum_{n=0}^{\infty} 3^{-n} x^n$. Have $R = \lim_{n \to \infty} \left| \frac{3^{-n}}{3^{-(n+1)}} \right| = 3$. At $x = \pm 3$, the series diverges by *n*-th term test. Thus, the interval of pointwise convergence is (-3,3).

Let 0 < b < 3. For $x \in [-b, b]$, we have $|3^{-n}x^n| \le 3^{-n}b^n = \left(\frac{b}{3}\right)^n$. Note that $\sum \left(\frac{b}{3}\right)$ converges since it is a geometric

series with $\left|\frac{b}{3}\right| < \frac{3}{3} < 1$. Thus, the Weierstrass M-test implies $\sum_{n=0}^{\infty} 3^{-n} x^n$ converges uniformly on [-b,b]. By Theorem 25.5, since $3^{-n} x^n$ is continuous on all x for each n, the sum is continuous on [-b,b]. Since this holds for all b < 3, given any $-3 < x_0 < 3$ we can find b with $x_0 < b < 3$ and so $x_0 \in [-b,b]$. Thus, the sum is continuous on (-3,3).

However, we note that $\sup_{x\in(-3,3)}\{|3^{-n}x^n|\mid x\in(-3,3)\}=1 \forall n$. Thus $\lim_{n\to\infty}(\sup_{x\in(-3,3)}\{|3^{-n}x^n|\mid x\in(-3,3)\}=1 \neq 0$. By previous lemma, the power series does not converge uniformly on (-3,3). In summary, $\sum_{n=0}^{\infty}3^{-n}x^n$ converge pointwise (-3,3) to a continuous function. It converges uniformly on [-b,b] for any 0< b<3, but does not converge uniformly on (-3,3). In fact, since we know that $\sum_{n=0}^{\infty}x^n=\frac{1}{1-x}$ for |x|<1, we can replace x with $\frac{x}{3}$ to get $\sum_{n=0}^{\infty}3^{-n}x^n=\sum_{n=0}^{\infty}\left(\frac{x}{3}\right)^n=\frac{1}{1-\frac{x}{2}}=\frac{3}{3-x}$ for $\left|\frac{x}{3}\right|<1$.

Theorem 26.1 + Corollary 26.2. Let $\sum_{n=0}^{n} a_n x^n$ be a power series with R > 0 (possibly ∞). If $0 < R_1 < R$, then the power series converges uniformly on $[-R_1, R_1]$ and converges to a continuous function on (-R, R).

Proof. The series $\sum a_n x^n$ and $\sum |a_n| x^n$ have the same R of convergence (23.1). Since $|R_1| < R$, R_1 is in the interval of convergence and so $\sum |a_n| R_1^n < \infty$.

Since $\forall x \in [-R_1, R_1]$, we have $|a_n x^n| \le |a_n| R_1^n$, the W-M test implies $\sum a_n x^n$ converges uniformly on $[-R_1, R_1]$ By 25.5, the limit function is continuous on this interval. If $x_0 \in (-R, R)$, then $x_0 \in [-R_1, R_1]$ for some $R_1 < R$. Thus, the above implies the limit function is continuous at x_0 .

Lemma 26.3. If $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R, then $\sum_{n=1}^{\infty} n a_n x^{n-1}$ and $\sum_{n=\infty}^{\infty} \frac{a_n}{n+1} x^{n+1}$ also have radius of convergence R.

Note that the interval of convergence may change.

Proof. Note that $\sum na_nx^{n-1}$ and $\sum na_nx^n$ have the same R as do $\sum \frac{a_n}{n+1}x^{n+1}$ and $\sum \frac{a_n}{n+1}x^n$. We have

$$\lim_{n \to \infty} \left| \frac{na_n}{(n+1)(a_{n+1})} \right| = \left(\lim_{n \to \infty} \frac{n}{n+1} \right) \left(\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \right)$$

$$= 1 \cdot R$$

and

$$\lim_{n\to\infty}\left|\frac{\frac{a_n}{n+1}}{\frac{a_{n+1}}{a_{n+2}}}\right|=\left(\lim_{n\to\infty}\frac{n+2}{n+1}\right)\left(\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|\right)=1(R)$$

Note if $\lim_{n\to\infty} \frac{a_n}{a_{n+1}}$ does not exist, the ratio test can be used to complete the proof.

Theorem 26.4. Suppose $f(x) = \sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R > 0. Then

$$\int_0^x f(t) \ dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$$

Proof. Fix |x| < R. We prove the case where x > 0. By 26.1, $\sum_{n=0}^{\infty} a_n t^n$ converges uniformly to f(t) on [0, x] and

so the sequence of partial sums $\sum_{k=0}^{n} a_k t^k$ with $t \in [0, x]$ converges uniformly to f(t). Thus

$$\int_{0}^{x} f(t) dt = \lim_{n \to \infty} \int_{0}^{x} \sum_{k=0}^{n} a_{k} t^{k}$$

$$= \lim_{n \to \infty} \sum_{n=0}^{n} a_{k} \int_{0}^{x} t_{k} dt$$

$$= \lim_{n \to \infty} \sum_{k=0}^{n} a_{k} \left(\frac{x^{k+1} - 0^{k+1}}{k+1} \right)$$

$$= \lim_{n \to \infty} \sum_{k=0}^{n} \frac{a_{k}}{k+1} x^{k+1}$$

$$= \sum_{k=0}^{\infty} \frac{a_{k}}{k+1} x^{k+1}$$
(33.3)

Example. $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ for |x| < R. Integrate term by term from $0 \to x$.

$$\sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1} = \int_0^x \frac{1}{1-t} dt$$

$$= -\ln|1-t| \Big|_0^x$$

$$= -\ln|1-x| - (-\ln|1|)$$

$$= -\ln(1-x)$$
(Since $-1 < x < 1$)

Thus, $\sum_{n=1}^{\infty} \frac{x^n}{n} = -\ln(1-x)$ for |x| < 1. If we let $x = \frac{1}{2}$, we get $\sum_{n=1}^{\infty} \frac{1}{n2^n} = \ln 2$.

Remark. We can integrate term-by-term, but can we also differentiate? E.g.,

$$\frac{d}{dx}\frac{1}{n}\sin(nx) = \cos(nx)$$

The first function converges but the second one does not.

Theorem 26.5. Suppose $f(x) = \sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R > 0. Then f is differentiable on (-R, R) with $f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$

Proof. Consider $g(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$ which will converge for |x| < R (Lemma 26.5). By 26.4, can integrate G term by term. $\int_0^x g(t) dt = \sum_{n=1}^{\infty} a_n x^n = f(x) - a_0$ for |x| < R. For R_1 with $0 < R_1 < R$, we have

$$\int_{-R_1}^{x} g(t) dt = \int_{-R_1}^{0} g(t) dt + \int_{0}^{x} g(t) dt$$
$$= \int_{-R_1}^{0} g(t) dt + f(x) - a_0$$

These are both constants, so $f(x) = \int_{-R_1}^x g(t) dt + k$. By 26.1, $g(x) = \sum_{n=1}^n n a_n x^{n-1}$ is continuous. f is differentiable on $(-R_1, R_1)$ with f'(x) = g(x). Since $R_1 < R$ is arbitrary, $f'(x) = \sum_{n=1}^n n a_n x^{n-1}$ for |x| < R.

Theorem 26.6 - Abel's Theorem. Let f be a power series $f(x) = \sum_{n=0}^{\infty} a_n x^n$ with radius of convergence $R < \infty$. If the series converges at $x = \pm R$, then f is continuous there.

Example. We saw that $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ for |x| < 1. Differentiating yields

$$\sum_{n=1}^{\infty} nx^{n-1} = -\frac{1}{(1-x)^2}$$

for the same R. Differentiating again,

$$\sum_{n=2}^{\infty} n(n-1)x^{n-2} = \frac{2}{(1-x)^3} = \sum_{n=0}^{\infty} (n+1)(n+2)x^n$$

We can multiply the first equation by x,

$$\sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2}$$

for |x| < 1. Let $x = \frac{1}{2}$. Then $\sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{\frac{1}{2}}{\left(1 - \frac{1}{2}\right)^2} = 2$. Now we integrate the series term by term

$$\sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1} = \int_0^x \frac{1}{t} dt = -\ln|1 - x|$$

Hence, $\ln(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n}$. R is still 1, but now the series converges at x = -1. By Abel's Theorem, $-\sum_{n=1}^{\infty} \frac{x^n}{n}$ is continuous at x = -1, as is $\ln(1 - x)$. Thus they must be equal at x = -1.

$$\ln(1 - (-1)) = \ln 2 = -\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

and so

$$\sum_{n=1} \infty \frac{(-1)^{n+1}}{n} = \ln 2$$

Example. Consider $f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$. This converges $\forall x$. Thus,

$$f'(x) = \sum_{n=1}^{\infty} \frac{n}{n!} x^{n-1}$$
$$= \sum_{n=1}^{\infty} \frac{1}{(n-1)!} x^{n-1}$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$
$$= f(x)$$

We have f'(x) = f(x)! This can only happen if $f(x) = ce^x$. Letting x = 0 yields $\frac{1}{0!} = ce^0 \implies c = 1$. Thus,

$$\sum_{n=0}^{\infty} \frac{1}{n!} x^n = e^x$$

For example, when x = 1, $\sum_{n=0}^{\infty} \frac{1}{n!} = e$.

Example. Consider the Fibonacci numbers $F_1 = 1, F_2 = 1, F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$. Let's form the power series with coefficients F_n , called a generating series for F_n .

$$g(x) = \sum_{n=1}^{\infty} F_n x^n$$

We have

$$g(x) = F_1 x + F_2 x^2 + \sum_{n=3}^{\infty} (F_{n-1} + F_{n-2}) x^n$$

$$= x + x^2 + x \sum_{n=3}^{\infty} F_{n-1} x^{n-1} + x^2 \sum_{n=3}^{\infty} r_{n-2} x^{n-2}$$

$$= x + x \sum_{n=2}^{\infty} F_n x^n + x^2 \sum_{n=3}^{\infty} r_n x^n$$

$$= x + x \sum_{n=1}^{\infty} F_n x^n + x^2 \sum_{n=3}^{\infty} r_n x^n$$

$$= x + x g(x) = x^2 g(x)$$

Sc

$$g(x) = \frac{x}{1 - x - x^2} = \frac{-x}{x^2 - x - 1}$$

Thus,

$$\frac{-x}{x^2 - x - 1} = \frac{-x}{(x + r_1)(x + r_2)}$$
$$= \frac{A}{x + r_1} + \frac{B}{x + r_2}$$
$$\implies A = -\frac{r_1}{\sqrt{5}}, B = \frac{r_2}{\sqrt{5}}$$

where $r_1 = \frac{1+\sqrt{5}}{2}$ and $r_2 = \frac{1-\sqrt{5}}{2}$. Thus,

$$g(x) = \frac{1}{\sqrt{5}} \left(\frac{r_2}{x + r_2} - \frac{r_1}{x + r_1} \right)$$

$$= \frac{1}{\sqrt{5}} \left(\frac{1}{1 + \frac{x}{r_2}} - \frac{1}{1 + \frac{x}{r_1}} \right)$$

$$= \frac{1}{\sqrt{5}} \left(\frac{1}{1 - r_1 x} - \frac{1}{1 - r_2 x} \right)$$

$$= \frac{1}{\sqrt{5}} \left(\sum_{n=0}^{n} (r_1 x)^n - \sum_{n=0}^{n} (r_2 x)^n \right)$$

$$= \frac{1}{\sqrt{5}} \left(\sum_{n=0}^{n} (r_1^n - r_2^n) x^n \right)$$
(Using $r_1 r_2 = -1$)

Since $g(x) = \sum_{n=1}^{\infty} F_n x^n$, we have

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

3.5 Taylor Series

Remark. Suppose have power series centered at c. $\sum_{n=0}^{\infty} a_n(x-c)^n$ for |x-c| < R.

We have

$$f(x) = a_0 + a_1(x - c) + a_2(x - c)^2 + a_3(x - c)^3 + \dots$$

$$= \sum_{n=0}^{\infty} a_n(x - c)^n$$

$$f'(x) = a_1 + 2a_2(x - c) + 3a_3(x - c)^2 + \dots$$

$$= \sum_{n=1}^{\infty} na_n(x - c)^{n-1}$$

$$= \sum_{n=2}^{\infty} n(n-1)a_n(x - c)^{n-2}$$

$$= \sum_{n=3}^{\infty} n(n-1)(n-2)a_n(x - c)^{n-3}$$

Let x = c. Then,

$$f(c) = a_0$$

$$f'(c) = a_1$$

$$f''(c) = 2a_2$$

$$f'''(c) = 6a_3$$

Thus starting with the power series, there is a formula for its coefficients $a_n = \frac{f^{(n)}(c)}{n!}$. What if we start with f(x), not necessarily a power series and form the power series $\sum a_n(x-c)^n$ with $a_n = \frac{f^{(n)}(c)}{n!}$. Will it converge to f?

Definition 3.14. Let f be defined on (a,b) with $c \in (a,b)$ and suppose all order of derivatives of f exist at c. Then the series

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x-c)^k$$

is the **Taylor Series** for f centered at c.

A Taylor Series centered at 0 is called a Maclaurin Series.

For $n \ge 1$, the remainder is $R_n(x) = f(x) - \sum_{k=0}^n -1 \frac{f^{(k)}(c)}{k!} (x-c)^n$. Thus, $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x-c)^k \Leftrightarrow \lim_{n \to \infty} R_n = 0$.

Example. Find the Taylor Series of $\sin x$ centered at 0.

$$f(x) = \sin x \qquad \Longrightarrow f(0) \qquad = 0$$

$$f'(x) = \cos x \qquad \Longrightarrow f'(0) \qquad = 1$$

$$f''(x) = -\sin x \qquad \Longrightarrow f''(0) \qquad = 0$$

$$f'''(x) = -\cos x \qquad \Longrightarrow f'''(0) \qquad = -1$$

and this pattern repeats.

Thus,

$$f^{(k)} = \begin{cases} 0 & \text{k=2n} \\ 1 & \text{k=4n+1} \\ -1 & \text{k=4n+3} \end{cases}$$

Thus, the Taylor series centered at 0 is

$$\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} = \sum_{n=0}^{\infty} \frac{f^{(2n+1)}(c)}{(2n+1)!}$$

where n = 2k + 1.

We then have

$$f^{(2n+1)}(0) = \begin{cases} 1 & \text{n is even} \\ -1 & \text{n is odd} \end{cases} = (-1)^n$$

Thus the series becomes

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

Let's find the radius of convergence. We have

$$\lim_{n \to \infty} \left| \frac{\frac{(-1)^{n+1}}{(2n+3)!} x^{2n+3}}{\frac{(-1)^n}{(2n+1)!} x^{2n+1}} \right| = x^2 \lim_{n \to \infty} \left| \frac{(2n+1)!}{(2n+3)!} \right|$$
$$= x^2 \lim_{n \to \infty} \left| \frac{1}{(2n+2)(2n+3)} \right|$$
$$= 0$$

This converges for all x.

Remark. If we know that a function f is equal to a power series, then we saw that $a_n = \frac{f^{(n)}}{n!}$ and so that power series is the Taylor Series centered at c.

Example. We saw that $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ on \mathbb{R} so the Taylor series for e^x centered at 0 is $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ and converges. Find the Taylor series for e^{-x^2} centered at 0 and for e^x centered at 2. By above, we have $e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-x^2)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^{2n}$. Also, $e^{x-2} = \sum_{n=0}^{\infty} \frac{1}{n!} (x-2)^n = e^x e^{-2}$. So $e^x = \frac{1}{n!} (x-2)^n = e^x e^{-2}$.

 $\sum_{n=0}^{\infty} \frac{e^2}{n!} (x-2)^n.$

Taylor's Theorem (31.3). If f is defined in (a,b) with a < c < b not necessarily finite. Suppose the nth derivative $f^{(n)}(x)$ exists on the interval. Then $\forall x \in (a,b) \neq c$, there is some y in between c and x such that $R_n(x) =$ $\frac{f^{(n)}(y)}{n!}(x-c)^n.$

Lemma 3.15. Let b > 0 be constant. Then

$$\lim_{n \to \infty} \frac{b^n}{n!} = 0$$

Corollary 3.16. Let f be defined on (a, b) with a < c < b. If all derivatives $f^{(n)}(x)$ exist on (a, b) and are bounded by a single constant B, then

$$\lim_{n \to \infty} R_n(x) = 0$$

for all $x \in (a, b)$ where R_n is the remainder for the Taylor Series centered at c.

Example. Recall that we found the Taylor series for $\sin x$ which converges everywhere. Since all derivatives of $\sin x$ are bounded by $1 \in \mathbb{R}$, by corollary $R_n \to 0$ as $n \to \infty$. Thus, the Taylor series converges to $\sin x$ on \mathbb{R} .

Example. Find the Taylor series for $\cos x$ centered at 0.

We can use the same technique for sin, but we can just differentiate instead.

$$\cos x = \sum_{n \to \infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

Example. Show that the Taylor series for e^x converges to e^x (centered at 0).

We have $f(x) = e^x \implies f^{(n)}(x) = e^x \implies f^{(n)}(0) = e^0 = 1$. Thus, the Taylor series is $\sum_{n=0}^{\infty} \frac{1}{n!} x^n$. By usual formula for R, we have $R = \infty$. On (-b, b), $|f^{(n)}(x)| < e^b$ so by corollary, the Taylor series converges to e^x on (-b, b). Since b is arbitrary in \mathbb{R} , it converges pointwise to e^x for all x.

Example. This example is of a Taylor series for a function f centered at 0 that does not converge to f on any interval (-b,b).

Let
$$f(x) = \begin{cases} e^{\frac{1}{x}} & x > 0\\ 0 & x \le 0 \end{cases}$$

We will show that $f^{(n)}(0) = 0 \forall n \in \mathbb{Z}^+$. This implies that the Taylor series for f centered at 0 is $\sum \frac{f^{(n)}(0)}{n!} x^n = 0$. However, in any interval (-b,b), $\exists x$ for $f(x) \neq 0$. It is clear that f has derivatives of all orders for $x \neq 0$, namely

$$f'(x) = e^{-\frac{1}{x}} \frac{1}{x^2}$$

and

$$f''(x) = e^{-\frac{1}{x}} \left(\frac{1}{x^4} - \frac{2}{x^3} \right)$$

We claim that for each n, there is a polynominal P_n of degree 2n such that $f^{(n)}(x) = e^{-\frac{1}{x}}P_n(\frac{1}{x})$. For example, $P_1(t)m = t^2$ and $P_2(t) = t^4 - 2t^3$. Suppose for x > 0, the n-th derivative of f is $f^{(n)}(x) = e^{-\frac{1}{x}}P_n(\frac{1}{x})$ where $P_n(t) = a_0 + a_1t + \dots + a_{2n}t^{2n}$ and $a_{2n} \neq 0$. Then, $f^{(n)}(x) = e^{-\frac{1}{x}}\sum_{k=0}^2 na_k \cdot \frac{1}{x^k}$. Differentiating, $f^{(n+1)}(x) = e^{-\frac{1}{x}} \cdot -\frac{1}{x^2}\sum_{k=0}^2 n\frac{a_k}{x^k} + e^{-\frac{1}{x}}\sum_{k=0}^2 n\frac{-ka_k}{x^{k+1}}$ so $p_{n+1} = t^{-2}\sum_{k=0}^{2n} a_kt_k - \sum_{k=0}^{2n} ka_kt^{k+1}$. We now show that $f^{(n)}(0)$. Suppose $f^{(n)}(0)$. Want to prove $f^{(n+1)}(0) = 0$. Have

$$f^{(n+1)}(0) = \lim_{x \to 0} \frac{f^{(n)}(x) - f^{(n)}(0)}{x - 0}$$
$$= \lim_{x \to 0} \frac{f^{(n)}(x)}{x}$$
$$= 0$$

We also show that $\lim_{x\to 0}e^{-\frac{1}{x}}q(\frac{1}{x})=0$ for all polynomials q. Since $f^{(n+1)}(x)=\lim_{x\to 0}e^{-\frac{1}{x}}p(\frac{1}{x})$. This is a polynominal evaluated at $\frac{1}{x}$. This implies $\lim_{x\to 0}\frac{f^{(n)}(0)}{x}(0)=0$. Since $q(\frac{1}{x})$ is finite sum of form $\frac{b_k}{x^k}$. We show $\lim_{x\to 0}\frac{e^{-\frac{1}{x}}}{x^k}=0$. Let $g=\frac{1}{x}$ As $x\to 0, g\to \infty$. Thus $\lim_{x\to 0^+}=\frac{e^{-\frac{1}{x}}}{x^k}=\lim_{g\to \infty}g^ke^{-g}=\lim_{g\to \infty}\frac{g^k}{e^g}$. Apply L'Hopital's rule k times to get 0.