Introduction to Topology 拓撲學簡介

Vincent Chen

Introduction to Topology

outline · outcomes · prerequisites

Outline

- Topology
 - What the hell is it?
 - Chaotic, discrete, and standard topology
 - Upgrading old definitions
- Topological space
- Continuity
- Homeomorphism
 - What do I mean by this crazy word?
 - A coffee mug is a donut.
 - · Luckily, we can draw a map of Hong Kong.

Outcomes

- Understand basic (but rigorous) notations and terminologies of topology
- Even the odds of browsing Wiki
- Have fun

Prerequisites

- High-school set theory
- MATH1510

Topology What the hell is it?

Why topology?

Allows defining continuity!

TopologyWhat the hell is it?

Any set M

Its power set $\mathcal{P}(M)$

Topology axioms

A set $\mathcal{O} \subset \mathcal{P}(M)$ is a topology of M, iff:

- $\emptyset \in \mathcal{O}, M \in \mathcal{O};$
- For any $U \in \mathcal{O}$ and $V \in \mathcal{O}$, we have $U \cap V \in \mathcal{O}$; (对有限个 intersection 封闭)

For any
$$U_{\alpha}\in \mathcal{O}$$
, $\bigcup_{\alpha\in A}U_{\alpha}\in \mathcal{O}$. (对有限与无限个 union 封闭)

Topology

chaotic · discrete · standard

- 对任意一个集合 M,很容易找出它的两个 topology:
 - chaotic topology: $\mathcal{O} = \{\emptyset, M\}$.

• discrete topology: $\mathcal{O} = \mathcal{P}(M)$.

Topology

chaotic · discrete · standard

现在介绍 Standard topology (\mathbb{R}^k 特有)

请问,在 Euclidean metric 下, \mathbb{R}^k 上的开集是怎么定义的?

「其中每个点都是内点 (interior point) 的集合。」

定义 standard topology $\mathcal{O}_{\mathit{std}}$: Euclidean metric范畴内,全体开集的集合。

⚠ 我们一会要重新定义开集!现在的定义是初等的!

Topology upgrading old definitions

现在重新定义开集!

Suppose $\mathscr O$ is a topology of M. A subset $U\subset M$ is open (w.r.t. $\mathscr O$), iff $U\in\mathscr O.$

By def., topology is a collection of open subsets of set M.

比用 metric 定义出来的开集更广泛。

Topology upgrading old definitions

现在重新定义闭集!

U is closed iff U^c is open.

还可以继续定义 neighbourhood, limit point, compactness(紧致性), ... 自行Wiki,已经没有阅读障碍了。

Topological Space

给集合 M 指定一个 topology \mathcal{O} ,则形成 topological space (M,\mathcal{O}) 。 空间 = 集合 + 某种/某些结构

考虑一个 map $x:U\to V$,希望定义 map 的连续性。

MATH1510:提到了 $x: \mathbb{R} \to \mathbb{R}$ 的连续性。

ESTR1005: 定义了 $x: \mathbb{R} \to \mathbb{R}$ 的连续性。

炸鸡曰: $\lceil \forall \varepsilon > 0, \exists \delta > 0 : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon \circ \rfloor$

拓扑空间是能定义连续性的最基本的空间。

首先介绍一个记号: $\operatorname{preim}_f(V) = \{u \mid f(u) \in V\}.$ (原像/preimage)

Consider two topological spaces $(M, \mathcal{O}_M), (N, \mathcal{O}_N)$. A map $f: M \to N$ is said to be continuous (w.r.t. \mathcal{O}_M and \mathcal{O}_N), iff:

$$\forall V \in \mathcal{O}_N, \operatorname{preim}_f(V) \in \mathcal{O}_M.$$

「开集的原像是开集。」

simple but makes sense (拓扑定义能否符合初等的几何直觉?)

fact: 当情况退化到 $\mathbb{R} \to \mathbb{R}$ 并采用 \mathcal{O}_{std} 时,topological continuity 等价于:函数处处满足 Jaggi continuity。

先证 topo implies Jaggi. 对任意 $x_0 \in X$,取任意半宽为 ε 的开区间 $E = (f(x_0) - \varepsilon, f(x_0) + \varepsilon)$ 。它显然是 std topo 规定的开集。据 topo cont.,

 $D \triangleq \operatorname{preim}_f(E)$ 是开集。显然有 $x_0 \in D$ 。据开集之定义, 这个点是内点,即 $\exists \delta : (x_0 - \delta, x_0 + \delta) \subset D$ 。 于是, $|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$ 。此即 Jaggi cont.

再证 Jaggi implies topo. 反证法。任取开集 $E \subset \mathbb{R}$ 。 若 $D \triangleq \operatorname{preim}_f(E)$ 不是开集,则在 D 中存在 x,使 得 $\forall \delta: (x-\delta,x+\delta) \not\subset D$ 。 但由于 E 开,f(x) 一定 是 E 的内点,即存在 $P \triangleq (f(x)-\varepsilon,f(x)+\varepsilon) \subset E$ 。 据 Jaggi cont,

 $\exists \delta : (x - \delta, x + \delta) \subset \operatorname{preim}_f(P) \subset \operatorname{preim}_f(E) = D$ 。矛盾!

若f和g连续,则 $g \circ f$ 连续 (easy to show)

Homeomorphism

What do I mean by this crazy word?

描绘两个拓扑空间在连续变换意义下的 equivalence relation。

Two topological spaces $(M, \mathcal{O}_M), (N, \mathcal{O}_N)$ are said to be homeomorphic, iff there exists a map $f: M \to N$, such that:

- f is bijective;
- both f and f^{-1} are continuous.

Notation: $(M, \mathcal{O}_M) \simeq (N, \mathcal{O}_N)$.

容易验证此定义满足 equivalence relation 的三个公理。

Homeomorphism A coffee mug is a donut.

Homeomorphism

Luckily, we can draw a map of Hong Kong.

Claim: 地球上的香港 is homeomorphic to 地图上的香港。

k-dimensional topological manifold(拓扑流形): "locally homeomorphic to

 $\mathbb{R}^{k_{\prime\prime}}$.

References

- Chapter 2: Basic topology, Principles of Mathematical Analysis, 3rd Edition,
 Walter Rudin.
- Lecture 1: Topology, A Thorough Introduction to the General Theory of Relativity. https://www.youtube.com/watch?v=7G4SqIboeig&feature=emb_logo
- Wikipedia and Google Images