МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) Физтех-школа физики и исследований им. Ландау

ЛАБОРАТОРНАЯ РАБОТА №1.3.1

Определение модуля Юнга на основе исследования деформаций растяжения и изгиба

Пилюгин Л. С. Б02-212 10 октября 2022 г.

1 Аннотация

Цель работы: экспериментально получить зависимость между напряжением и деформацией (закон Гука) для двух простейших напряженных состояний упругих тел: одноосного растяжения и чистого изгиба; по результатам измерений вычислить модуль Юнга.

Оборудование: прибор лермантова, проволока из исследуемого материала, зрительная трубка со шкалой, набор грузов, микрометр, рулетка; во второй части - стойка для изгибания балки, индикатор для измерения величины прогиба, набор исследуемых стержней, грузы, линейка, штангенциркуль.

2 Оборудование и инструментальные погрешности

2.1 Определение по измерениям растяжения проволоки

Для определения модуля Юнга используется прибор Лерматова. Верхний конец проволоки П прикреплен к консоли К, а нижний — к цилиндру, которым оканчивается шарнирный кронштейн Ш. На этот же цилиндр опирается рычаг г, связанный с зеркальцем З. Удлинение проволоки можно измерить по углу поворота зеркальца. Натяжение можно менять, перекладывая грузы с площадки М на О. Такая система исключает влияние деформации кронштейна К на точность изерений.

Проволока всегда немного изогнута при отсутствии нагрузки, что сказывается на результатах. Вначале проволока не столько растягивается, сколько распрямляется.

2.2 Определение модуля Юнга по изгибу балки

Установка состоит из прочной стойки с опорными призмами А и Б. На их ребра опирается исследуемый стержень В. В середине стержня на призме Д подвешена площадка П с грузами. Измерять стрелу прогиба можно с помощью индикатора И, укрепляемого на отдельной штанге. Полный оборот большой стрелки индикатора соответствует 1 мм и одному делению малого циферблата.

Модуль Юнга E связан со стрелой прогиба y соотношением

$$E = \frac{Fl^3}{4ab^3y}$$

F — нагрузка, l — расстояние между призмами, a и b — высота сечения стержня.

Перед началом эксперимента грузы надо расположить на рейке над нижней полкой опорно стойки.

Ребра пизм должны находиться на одной горизонтали, P приложена по середине балки.

3 Результаты измерений

3.1 Определение по измерениям растяжения проволоки

По информации со стенда

$$d = 0.73 \, \text{mm}$$

$$S=\frac{\pi d^2}{4}=0.42\,\mathrm{mm}^2$$

Длина проволоки

$$l = 175.7 \pm 0.05$$
cm

Изменение числа делений связано с увеличением длины проволоки связано соотношением

$$\Delta l = \frac{nr}{2h}$$

 $r=13\,{\rm cm}$ — длина рычага, $h=137.8\,{\rm cm}$ — расстояние от зеркала до шкалы.

Таблица 1. Зависимость растяжения от массы добавленного груза

$n_1, \pm 0.5$ мм	$m_1, \pm 0.05\Gamma$	$n_2, \pm 0,5$ мм	$m_2, \pm 0.05r$	$n_3, \pm 0,5$ мм	$m_3, \pm 0.05\Gamma$
128	0		0	121	0
138	246.1	141	246.1	132	245.5
148	245.7	153	245.6	144	245.6
159	246.1	165	245.5	156	246.1
179	245.8	176	245.8	169	245.5
182	245.6	189	247.7	179	245.7
193	245.5	199	245.5	190	245.8
205	245.5	210	245.6	221	245.7
216	245.6	223	246.1	212	246.1
224	245.7	235	245.7		

Общая масса грузов на измерении в строке i равна сумме масс грузов, записанных выше этой строки.

На основе данных в таблице посчитаем Δl и построим график удлинения проволоки от силы, действующей на неё.

Уберём выбросную точку при $n_3=221\,\mathrm{mm}$ и по МНК проведём усредняющую прямую.

Получаем $k=4600\pm 50\,\mathrm{H/m}$ ($\varepsilon\approx 0{,}01$). Относительные погрешности измерений m и l на несколько порядков меньше $0{,}01$, а влияние погрешности измерений n мало, т.к. $\varepsilon_n\approx \frac{\delta n}{\Delta n}\approx 0{,}005$.

$$E=krac{l}{S}=(1{,}93\pm0{,}02)\cdot10^{11}\,{
m \Pi a}$$

Такое значение модуля Юнга соответствует стали.

3.2 Определение модуля Юнга по изгибу балки

Расстояние между рёбрами призмам

$$l_{AB} = 51 \pm 0.05 \, \mathrm{cm}$$

Измерим толщину b и ширину a всех четырёх балок.

Таблица 2. Измерение длин и толщин балок

$a_1 \pm 0.05$ мм	20.0	19.8	19.4	19.6	19.7	19.7	19.9	19.7	19.8	20.2
$b_1 \pm 0.05$ мм	9.3	9.4	9.4	9.2	9.3	9.3	9.2	9.3	9.3	9.3
$a_2 \pm 0.05$ mm	21.8	21.6	21.5	21.5	21.2	21.5	21.2	21.4	21.4	22.0
$b_2 \pm 0.05$ мм	10.9	10.9	11.1	11.0	10.9	10.7	10.9	11.2	11.4	11.1
$a_3 \pm 0.05$ mm	21.5	21.3	21.3	21.4	21.5	21.5	21.5	21.6	21.5	21.5
$b_3 \pm 0.05$ мм	4.3	4.2	4.1	4.1	4.0	3.9	3.9	4.0	3.9	4.0
$a_4 \pm 0.05$ mm	21.2	21.4	21.2	21.1	21.1	21.0	21.0	21.0	21.0	21.4
$b_4 \pm 0.05$ мм	4.0	4.0	3.9	3.9	3.9	3.8	3.9	3.9	3.9	4.0

Итого

$$\begin{array}{l} a_1=19.78\pm0.16\,\mathrm{MM}\ (\varepsilon=0.8\%)\\ b_1=9.3\pm0.1\,\mathrm{MM}\ (\varepsilon=1\%)\\ a_2=21.51\pm0.16\,\mathrm{MM}\ (\varepsilon=0.7\%)\\ b_2=11.01\pm0.15\,\mathrm{MM}\ (\varepsilon=1.4\%)\\ a_3=21.46\pm0.11\,\mathrm{MM}\ (\varepsilon=0.5\%)\\ b_3=4.04\pm0.13\,\mathrm{MM}\ (\varepsilon=3.2\%)\\ a_4=21.14\pm0.14\,\mathrm{MM}\ (\varepsilon=0.6\%)\\ b_4=3.92\pm0.09\,\mathrm{MM}\ (\varepsilon=2.3\%) \end{array}$$

Таблица 3. Изменение прогиба балок

m, Γ	y_{11}	y_{12}	y_{21}	y_{22}	y_{31}	y_{32}	y_{41}	y_{42}
0	667	628	781	731	988	935	819	703
504	601	570	705	659	862	813	750	632
1001.3	537	507	634	589	740	689	681	562
1457.9	476	448	568	522	628	578	618	498
1925.5	415	386	498	463	512	460	554	432
2380.3	354	326	432	393	400	349	490	367
2884.7	288	276	358	318	278	223	421	296
3358.6	226	219	288	247	160	105	355	228
3860	159	153	215	170	37		285	156
3358.6	223	210	282	239	160	105	352	225
2884.7	285	268	348	306	273	220	417	291
2380.3	350	319	420	379	397	347	487	360
1925.5	410	378	485	442	509	458	549	424
1457.9	472	439	552	508	624	574	614	489
1001.3	533	497	618	574	739	686	678	552
504	598	560	692	642	861	810	745	621
0	665	623	770	715	987	934	816	692

Первая цифра в y_{**} — номер балки, а вторая — положение (1 — одной стороной и 2 — другой). Значения y_{**} даны в десятках микрометров с погрешностью 5 мкм. Пропущенное значение y_{32} возникло из-за зашкала прибора.

При небольших смещениях (~ 4 мм) от центра показания при максимальной массе грузов изменяются примерно на 0,2 мм. Вторая (деревянная) и третья (из металла) балки прогибаются несимметрично.

Все балки возвращаются в исходное положение после снятия грузов (с точностью до 0,1 мм). При переворачивании балки 1 и 2 (деревянные) сильно меняют свой модуль Юнга, а 3 и 4 (металлические) почти не меняют их.

$$\begin{array}{l} k_{11} = 7580 \pm 460 \, \mathrm{H/m} \ \, (\varepsilon = 6\%) \\ k_{12} = 8020 \pm 490 \, \mathrm{H/m} \ \, (\varepsilon = 6\%) \\ k_{21} = 6730 \pm 420 \, \mathrm{H/m} \ \, (\varepsilon = 6\%) \\ k_{22} = 6870 \pm 430 \, \mathrm{H/m} \ \, (\varepsilon = 6\%) \\ k_{31} = 4050 \pm 250 \, \mathrm{H/m} \ \, (\varepsilon = 6\%) \\ k_{32} = 4050 \pm 260 \, \mathrm{H/m} \ \, (\varepsilon = 6\%) \\ k_{41} = 7210 \pm 440 \, \mathrm{H/m} \ \, (\varepsilon = 6\%) \\ k_{42} = 7020 \pm 430 \, \mathrm{H/m} \ \, (\varepsilon = 6\%) \end{array}$$

Погрешностью измерения Δy можно пренебречь, т.к. она очень мала ($\sim 0{,}005$).

$$E = k \frac{l^3}{4ab^3}$$

$$\begin{split} E_{11} &= (1,58 \pm 0,12) \cdot 10^{10} \, \Pi \mathrm{a} \\ E_{12} &= (1,67 \pm 0,13) \cdot 10^{10} \, \Pi \mathrm{a} \\ E_{21} &= (7,77 \pm 0,62) \cdot 10^9 \, \Pi \mathrm{a} \\ E_{22} &= (7,93 \pm 0,63) \cdot 10^9 \, \Pi \mathrm{a} \\ E_{31} &= (9,49 \pm 1,07) \cdot 10^{10} \, \Pi \mathrm{a} \\ E_{32} &= (9,49 \pm 1,09) \cdot 10^{10} \, \Pi \mathrm{a} \\ E_{41} &= (1,88 \pm 0,18) \cdot 10^{11} \, \Pi \mathrm{a} \\ E_{42} &= (1,82 \pm 0,17) \cdot 10^{11} \, \Pi \mathrm{a} \end{split}$$

Усредним значения

$$E_1=(1{,}63\pm0{,}13)\cdot10^{10}\,\Pi$$
а
$$E_2=(7{,}85\pm0{,}63)\cdot10^9\,\Pi$$
а
$$E_3=(9{,}49\pm1{,}09)\cdot10^{10}\,\Pi$$
а
$$E_4=(1{,}85\pm0{,}18)\cdot10^{11}\,\Pi$$
а

Балка 4 сделана из железа, третья — из латуни, остальные — деревянные.

4 Вывод

Были сняты зависимости растяжения проволоки на приборе Лерматова и прогиба балки. Для них выполняется закон Гука и были получены модули Юнга материалов.