BUKALAPAK DATA SCIENTIST TEST

Write a MySQL query to pivot the *Occupation* column in table OCCUPATIONS, so that each *Name* is sorted alphabetically and displayed underneath its corresponding *Occupation*. The output column headers should be Dancer, Photographer, Salesman, and Actress, respectively. Note: Print NULL when there are no more names corresponding to an occupation.

Sample Input

Name	Occupation
Satria	Dancer
Juli	Actress
Mario	Actress
Memet	Salesman
Alan	Photographer
Kiky	Photographer
Chacha	Photographer
Joko	Actress
Juni	Dancer
Putra	Salesman

Sample Output

Dancer	Photographer	ographer Salesman			
Juni	Alan	Memet	Joko		
Satria	Chacha	Putra	Juli		
NULL	Kiky	NULL	Mario		

2. The total score of a hacker is the sum of their maximum scores for all of the challenges. Write a MySQL query to print the hacker_id, name, and total score of the hackers ordered by the descending score. If more than one hacker achieved the same total score, then sort the result by ascending hacker_id. Exclude all hackers with a total score of 0 from your result.

Sample Input HACKERS Table

hacker_id	name
4072	Rosa
4807	Anjani
26072	Frodo
49439	Palma
74843	Lina
80306	Kipuw
84073	Boni
87869	Mita
92119	Toni
95896	Joko

SUBMISSIONS Table

submission_id	hacker_id	challenge_id	score
67195	74843	63133	76
64480	74843	19798	98
40743	26072	49594	20
17514	4807	49594	32
69847	80306	19798	19
41003	26072	89344	36
52827	49439	49594	9
31094	26072	19798	2

81615	84073	49594	100
44830	26072	89344	17
75148	80306	49594	48
14116	4807	49594	76
6944	4072	19798	95
12856	4807	25918	13
73344	80306	49594	42
84265	84073	63133	0
9952	4072	49594	43
45105	49439	25918	34
53796	74843	19798	5
26364	26072	19798	29
10064	4072	49594	96

Sample Output

hacker_id	name	totalScore
4072	Rosa	191
74843	Lina	174
84073	Boni	100
4807	Anjani	89
26072	Frodo	85
80306	Kipuw	67
49439	Palma	43

3. Write an R-script (or Python) to create multiple linear regression analysis of "mtcars" data (if using R, "mtcars" is available in "datasets" package), then create a model to predict mpg (miles per gallon) using best variable(s) available. Explain the diagnostic tests and make a conclusion about the model! Note: Do not split the data into train and test.

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21	6	160	110	3.9	2.62	16.46	0	1	4	4
Mazda RX4 Wag	21	6	160	110	3.9	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.32	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.44	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.46	20.22	1	0	3	1
Duster 360	14.3	8	360	245	3.21	3.57	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.19	20	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.15	22.9	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.44	18.3	1	0	4	4
Merc 280C	17.8	6	167.6	123	3.92	3.44	18.9	1	0	4	4
Merc 450SE	16.4	8	275.8	180	3.07	4.07	17.4	0	0	3	3
Merc 450SL	17.3	8	275.8	180	3.07	3.73	17.6	0	0	3	3
Merc 450SLC	15.2	8	275.8	180	3.07	3.78	18	0	0	3	3
Cadillac Fleetwood	10.4	8	472	205	2.93	5.25	17.98	0	0	3	4
Lincoln Continental	10.4	8	460	215	3	5.424	17.82	0	0	3	4
Chrysler Imperial	14.7	8	440	230	3.23	5.345	17.42	0	0	3	4

Fiat 128	32.4	4	78.7	66	4.08	2.2	19.47	1	1	4	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.9	1	1	4	1
Toyota Corona	21.5	4	120.1	97	3.7	2.465	20.01	1	0	3	1
Dodge Challenger	15.5	8	318	150	2.76	3.52	16.87	0	0	3	2
AMC Javelin	15.2	8	304	150	3.15	3.435	17.3	0	0	3	2
Camaro Z28	13.3	8	350	245	3.73	3.84	15.41	0	0	3	4
Pontiac Firebird	19.2	8	400	175	3.08	3.845	17.05	0	0	3	2
Fiat X1-9	27.3	4	79	66	4.08	1.935	18.9	1	1	4	1
Porsche 914-2	26	4	120.3	91	4.43	2.14	16.7	0	1	5	2
Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.9	1	1	5	2
Ford Pantera L	15.8	8	351	264	4.22	3.17	14.5	0	1	5	4
Ferrari Dino	19.7	6	145	175	3.62	2.77	15.5	0	1	5	6
Maserati Bora	15	8	301	335	3.54	3.57	14.6	0	1	5	8
Volvo 142E	21.4	4	121	109	4.11	2.78	18.6	1	1	4	2

- [, 1] mpg Miles/(US) gallon
- [, 2] cyl Number of cylinders
- [, 3] disp Displacement (cu.in.)
- [, 4] hp Gross horsepower
- [, 5] drat Rear axle ratio
- [, 6] wt Weight (1000 lbs)
- [, 7] qsec 1/4 mile time
- [, 8] vs V/S
- [, 9] am Transmission (0 = automatic, 1 = manual)
- [,10] gear Number of forward gears
- [,11] carb Number of carburetors