Homework & Tutorial Problems

- Tutorial
 - Property of DTFT: 5.24
 - ▶ Difference equation of LTI systems: 5.36
- Homework
 - **5**.23, 5.29, 5.33

Recap: Definition of DTFT

• Therefore, we get the discrete-time Fourier transform pair

Discrete-Time Fourier Transform

Synthesis Equation:
$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Analysis Equation:
$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

- Observations
 - Continuous spectrum: Similar to CTFT
 - ▶ Periodic with period 2π : Different from CTFT
 - ▶ Low frequency: close to 0 and 2π ; high frequency: close to π

Recap: DTFT of Periodic Signals

• According to the Fourier series, for a periodic signal with period N:

$$x[n] = a_0 + a_1 e^{j(2\pi/N)n} + ... + a_k e^{jk(2\pi/N)n} + ... + a_{N-1} e^{j(N-1)(2\pi/N)n}$$

- $e^{jk(2\pi/N)n} \longleftrightarrow \sum_{l=-\infty}^{\infty} 2\pi\delta(\omega k(2\pi/N) 2\pi l)$
- Then, due to the linearity of Fourier transform

$$\mathcal{F}\left\{x[n]\right\} = \sum_{k=0}^{N-1} a_k \mathcal{F}\left\{e^{jk(2\pi/N)n}\right\} = \sum_{k=0}^{N-1} a_k \sum_{l=-\infty}^{\infty} 2\pi\delta(\omega - k(2\pi/N) - 2\pi l)$$
$$= \sum_{l=-\infty}^{\infty} \sum_{k=0}^{N-1} a_k 2\pi\delta(\omega - k(2\pi/N) - 2\pi l)$$

- Fourier transform of a periodic signal is a periodic sequence of impulses
 - What's the period? How many impulses within one period?

4 D > 4 B > 4 B > 4 B > 9 Q P

Recap: Fourier Series v.s. Fourier Transform

Recap: Periodicity, Linearity and Shifting

Periodicity

$$X(e^{j(\omega+2\pi)})=X(e^{j\omega})$$

- ► How about CTFT? Why?
- Linearity

$$ax_1[n] + bx_2[n] \longleftrightarrow aX_1(e^{j\omega}) + bX_2(e^{j\omega})$$

Time Shifting and Frequency Shifting

$$x[n-n_0] \longleftrightarrow e^{-j\omega n_0}X(e^{j\omega})$$

 $e^{j\omega_0 n}x[n] \longleftrightarrow X(e^{j(\omega-\omega_0)})$

What's the physical meaning?

Conjugation, Differencing and Accumulation

Conjugation

$$x^*[n] \longleftrightarrow X^*(e^{-j\omega})$$

- $X(e^{j\omega}) = X^*(e^{-j\omega}) \Leftrightarrow x[n]$ is real
- ▶ If x[n] is real, then $\Re\{X(e^{j\omega})\}$ is even, $\Im\{X(e^{j\omega})\}$ is odd
- Differencing

$$x[n] - x[n-1] \longleftrightarrow (1 - e^{-j\omega})X(e^{j\omega})$$

- ► High-pass or low-pass?
- Accumulation

$$\sum_{m=-\infty}^{n} x[m] \longleftrightarrow \frac{1}{1-e^{-j\omega}} X(e^{j\omega}) + \pi X(e^{j0}) \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$$

► How to derive it via differencing?

Effect of Differencing

•
$$J(i,j) = |M(i,j) - M(i+1,j+1)| + |M(i+1,j) - M(i,j+1)|$$

Fourier Transform of u[n]

- How to derive the Fourier transform of u[n]?
- Option 1: From definition of Fourier transform

$$\mathcal{F}\{u[n]\} = \sum_{n=-\infty}^{+\infty} u[n]e^{-j\omega n} = \sum_{n=0}^{+\infty} e^{-j\omega n} \quad \text{Converge??}$$

• Option 2: Since $u[n] = \sum_{m=-\infty}^{n} \delta[m]$, according to the property of accumulation

$$\mathcal{F}\{u[n]\} = \frac{1}{1 - e^{-j\omega}} + \pi \sum_{k = -\infty}^{\infty} \delta(\omega - 2\pi k)$$

• Observation: Fourier transform of u[n] does not exist according to the definition; however, it can be expressed in terms of $\delta(\cdot)$

Time Reversal and Expansion

Time Reversal

$$x[-n]\longleftrightarrow X(e^{-j\omega})$$

- Time Expansion
 - ▶ Define $x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n \text{ is a multiple of k} \\ 0, & \text{Otherwise} \end{cases}$, then

$$x_{(k)}[n] \longleftrightarrow X(e^{jk\omega})$$
 (1)

Differentiation and Parseval

Differentiation in Frequency

$$nx[n] \longleftrightarrow j\frac{dX(e^{j\omega})}{d\omega}$$

Parseval's Relation

$$\sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(e^{j\omega})|^2 d\omega$$

► Energy density spectrum — $\frac{|X(e^{j\omega})|^2}{2\pi}$

Problem

- See textbook, Example 5.10
- \bullet Spectrum within $[-\pi,\pi]$
- Is it periodic, real, even, of finite energy?

Problem

- 1. Let $X(e^{j\omega})$ be the Fourier transform of x[n]. Derive expressions in terms of $X(e^{j\omega})$ for the Fourier transforms of the following signals.
 - **Re**{*x*[*n*]}
 - $x^*[-n]$
 - **Ev**{x[n]}
 - $(n-2)^2x[n]$
- 2. Please calculate the Fourier transform of $(n-1)(\frac{1}{4})^{|n|}$

Convolution Property & LTI Systems

Convolution Property

If
$$y[n] = x_1[n] * x_2[n]$$
, then

$$Y(e^{j\omega}) = X_1(e^{j\omega})X_2(e^{j\omega})$$

• For general input signal x[n]:

$$y[n] = x[n] * h[n] \longleftrightarrow Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$$

- Observation: It's easier to evaluate LTI systems in frequency domain
- Drawback: Not every LTI system has frequency response
 - $h[n] = a^n u[n] \ (a > 1)$
 - Stable LTI system has frequency response, because

$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty$$

Example: Ideal Low-Pass Filter (1/2)

- What's ideal low-pass filter?
- Perfectly maintain the low-frequency component
- Perfectly cancel the high-frequency component

Example: Ideal Low-Pass Filter (2/2)

• Impulse response:

$$h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega = \frac{\sin \omega_c n}{\pi n}$$

- Pros: no distortion in frequency domain
- Cons: non-causal
- See textbook, Example 5.12

Example: Band-Stop Filter (1/2)

• Given low-pass filter $H_{lp}(e^{j\omega})$, how to generate band-stop effect from low-pass filter?

Example: Band-Stop Filter (2/2)

• Two branches: low-pass + high-pass

$$\bullet (-1)^n = e^{j\pi n} \Rightarrow W_1(e^{j\omega}) = X(e^{j(\omega-\pi)})$$

$$\Rightarrow W_2(e^{j\omega}) = H_{lp}(e^{j\omega})X(e^{j(\omega-\pi)})$$

$$\Rightarrow W_3(e^{j\omega}) = H_{lp}(e^{j(\omega-\pi)})X(e^{j(\omega-2\pi)}) = H_{lp}(e^{j(\omega-\pi)})X(e^{j\omega})$$

See textbook, Example 5.14

Multiplication Property

Multiplication Property

Let $y[n] = x_1[n]x_2[n]$, then

$$Y(e^{j\omega}) = \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) X_2(e^{j(\omega-\theta)}) d\theta,$$

which is periodic convolution of $X_1(e^{j\omega})$ and $X_2(e^{j\omega})$

• Comparison: Multiplication of periodic signals

$$x_1[n] \longleftrightarrow a_k$$
 and $x_2[n] \longleftrightarrow b_k$

$$\Rightarrow x_1[n]x_2[n] \longleftrightarrow \sum_{k=< N>} a_k b_{n-k}$$
 discrete-time periodic convolution

Example: Sampling on Discrete-Time Signals

- In digital signal processing, we may sample the discrete-time signals
- Example: image, audio, video compression
- Its mathematical model is give below:

Review: Discrete-Time Impulse Chain

- What's the Fourier transform of $x[n] = \sum_{k=0}^{+\infty} \delta[n kN]$?
- First of all, we calculate the Fourier series:

$$a_k = \frac{1}{N} \sum_{n=} x[n] e^{-jk\frac{2\pi}{N}n}$$

$$= \frac{1}{N} \sum_{n=} \sum_{k=-\infty}^{+\infty} \delta[n-kN] e^{-jk\frac{2\pi}{N}n}$$

$$= \frac{1}{N} \sum_{n=} \delta[n] e^{-jk\frac{2\pi}{N}n} = \frac{1}{N}$$

• Then, we have

$$X(e^{j\omega}) = \sum_{l=-\infty}^{\infty} \sum_{k=0}^{N-1} \frac{2\pi}{N} \delta(\omega - k(2\pi/N) - 2\pi I) = \frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \delta(\omega - \frac{2\pi k}{N})$$

• Time domain period × Frequency domain period = ?

Example: Frequency Analysis

Summary of Duality

	Continuous time		Discrete time	
	Time domain	Frequency domain	Time domain	Frequency domain
Fourier Series	$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$a_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t}$	$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$	$a_k = \frac{1}{N} \sum_{k=\langle N \rangle} x[n] e^{-jk(2\pi i N)n}$
	continuous time periodic in time	discrete frequency aperiodic in frequency	discrete time periodic in time	discrete frequency periodic in frequency
Fourier Transform	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$	$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$	$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$
	continuous time aperiodic in time	continuous frequency aperiodic in frequency	discrete time aperiodic in time	continuous frequency periodic in frequency

• See textbook, Table 5.3

LTI by Difference Equation

 A number of DT LTI systems can be written as the following linear constant-coefficient difference equation

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

What's the frequency response?

Taking Fourier transform on both side, we have

$$\sum_{k=0}^{N} a_k e^{-jk\omega} Y(e^{j\omega}) = \sum_{k=0}^{M} b_k e^{-jk\omega} X(e^{j\omega})$$

$$\Rightarrow H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{\sum_{k=0}^{M} b_k e^{-jk\omega}}{\sum_{k=0}^{N} a_k e^{-jk\omega}}$$

What's the impulse response?

Problem: Difference Equation

Please calculate the frequency and impulse response of the following LTI systems

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n].$$

Solution

According to the last slide,

$$H(e^{j\omega}) = \frac{2}{1 - \frac{3}{4}e^{-j\omega} + \frac{1}{8}e^{-2j\omega}}.$$

Moreover, by partial fraction expansion

$$H(e^{j\omega}) = \frac{4}{1 - \frac{1}{2}e^{-j\omega}} - \frac{2}{1 - \frac{1}{4}e^{-j\omega}} \Rightarrow h[n] = 4(\frac{1}{2})^n u[n] - 2(\frac{1}{4})^n u[n]$$

