





### Управление моторными ритмами

Николай Ильич Базенков, к.т.н.

Институт проблем управления им. В.А. Трапезникова РАН

#### Содержание

- 1. Управление движениями в нервной системе
- 2. Моторные ритмы
- 3. Центральные генераторы паттернов (ЦГП)
- 4. Нейроморфное управление
- 5. Нейромодуляция

# Управление движениями



# Приложения

- 1. Медицина: реабилитация, протезирование, диагностика
- 2. Робототехника
- 3. Имитация движений в играх, 3d моделировании и др.







# Проблема степеней свободы



Человеческое тело имеет избыточные степени свободы на всех уровнях:

- **1. Анатомическом** в мышцах и суставах
- **2. Кинематическом** действия могут следовать по разным траекториям с разной скоростью, но достигнуть одной и той же цели
- 3. Нейрофизиологическом мышца может активироваться разными группами мотонейронов, которые могут активироваться разными сигналами от ЦНС

https://en.wikipedia.org/wiki/Degrees\_of\_freedom\_problem

#### Отличие от инженерных систем

Механические системы, даже сложные, обычно имеют немного степеней свободы.





https://en.wikipedia.org/wiki/Jansen%27s\_linkage

# Стереотипные и свободные движения

<u>Стереотипные (ритмические) движения:</u> сердечный ритм, дыхание, ходьба, бег

Свободные (voluntary) движения: взять чашку со стола, ударить по мячу





# Управление движениями в нервной системе

Моторная кора (motor cortex)

планирование, обучение новым сложным движениям

<u>Центральные генераторы паттернов</u> управление ритмическими стереотипными движениями

#### <u>Мотонейроны</u>

непосредственно управляют мышцами

Мышечные веретена (muscle spindles) рецепторы, которые реагируют на

растяжение и сокращение мышц



# Возникновение движений

<u>Рефлексы.</u> Возникают как реакция на внешний стимул: боль, свет и др. <u>Эндогенная генерация.</u> Не требует внешнего стимула.







### Локомоция



# Управление локомоцией



#### Мышцы

Движения конечностей управляются антагонистическими группами мышц (флексор/экстенсор, абдуктор/аддуктор)



(a) and (b) Angular movements: flexion and extension at the shoulder and knees



(e) Angular movements: abduction, adduction, and circumduction of the upper limb at the shoulder

(1

# Управление мышцами



# Управление локомоцией



### Центральные генераторы паттернов

Сети нейронов, способные генерировать упорядоченную активность в отсутствие внешних воздействий

ЦГП участвуют в генерации как простых физиологических ритмов (дыхание), так и сложных движений (локомоция, пение птиц)

Искусственные ЦГП используются в робототехнике





Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: a review. *Neural networks*, *21*(4), 642-653.

#### Механизмы возникновения ритма



Marder, E., Bucher, D. (2001) Central pattern generators and the control of rhythmic movements, Current Biology, Vol. 11, Issue 23, pp. R986–R996, 2001

# Механизмы переключения ритма



# Рефлекторная локомоция

Локомоторный ритм может запуститься сигналами от моторных нейронов



# Общие черты локомоторных ЦГП

- **1. Эндогенная активность.** Внешние команды могут активировать ритм, но фазы генерируются нейронами ЦГП
- **2. Группы антагонистических нейронов.** Координация обеспечивается взаимным торможением.
- **3. Сенсорная обратная связь.** Как от моторных нейронов и мышц, так и от высших центров
- **4. Модулирующие управляющие воздействия.** Управляют скоростью и другими характеристиками ритма. Участвуют в смене ритма.

# Нейроморфное управление





Ijspeert, A. J. (2001). A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. *Biological cybernetics*, *84*(5), 331-348.

Knüsel, J., et.al.. (2020). Reproducing five motor behaviors in a salamander robot with virtual muscles and a distributed CPG controller regulated by drive signals and proprioceptive feedback. *Frontiers in neurorobotics*, 14.

20

#### Модель саламандры



Ijspeert, A. J. (2001). A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. *Biological cybernetics*, *84*(5), 331-348.

# Архитектура сети



# Подбор параметров

- 1. Настройка связей внутри сегмента тела ( Body CPG)
- 2. Настройка связей между сегментами
- 3. Настройка связей в СРG конечностей (Limb CPG)



#### Сеть одного сегмента



BS – входы от «мозга». Обеспечивают тоническое воздействие

А, В, С — интернейроны. Генерируют ритм М — мотонейроны. Управляют мышцами

# Активность в сегменте



### Ритм 1. Плавание



# Ритм 1. Изменение скорости и частоты



# Ритм 2. Ходьба по суше



# Ритм 2. Изменение скорости и частоты



# Поворот

Если приложить асимметричный тонический вход к левой и правой части, саламандра поворачивает





Тонический вход на CPG конечностей:



#### CPG тела получает постоянный тонический вход +1.3



#### Развитие «саламандры»



Knüsel, J., et.al.. (2020). Reproducing five motor behaviors in a salamander robot with virtual muscles and a distributed CPG controller regulated by drive signals and proprioceptive feedback. *Frontiers in neurorobotics*, 14.

# Модульные роботы



**Dynamic Locomotion Group** 

https://www.youtube.com/channel/UCuL-PnIqf4ZsAO1qV99ohwA

# Четурехногий робот

$$\dot{x}_i = \alpha(\mu - r_i^2)x_i - \omega_i y_i$$

$$\dot{y}_i = \beta(\mu - r_i^2)y_i + \omega_i x_i + \sum k_{ij} y_j$$

$$\omega_i = \frac{\omega_{stance}}{e^{-by} + 1} + \frac{\omega_{swing}}{e^{by} + 1}$$



Rutishauser, S., Sprowitz, A., Righetti, L., & Ijspeert, A. J. (2008, October). Passive compliant quadruped robot using central pattern generators for locomotion control. In 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (pp. 710-715). IEEE.

# Пример. Нейромодуляция связей

#### Задачи ЦГП:

- 1. Генерировать правильную последовательность фаз движения
- 2. Переключать ритм в зависимости от команд верхнего уровня



Болдышев, Б. А., & Жилякова, Л. Ю. (2021). Нейромодуляция как инструмент управления нейронными ансамблями. *Проблемы управления*, 2(0), 76-84.

### Типы походки



# Антагонистические нейроны

Движения одной ноги управляются парой антагонистических нейронов:

- 1. Нейрон опоры (O) эндогенно активный, генерирует спайки без внешних воздействий
- 2. Нейрон шага (Ш) активируется только после возбуждения от нейрона опоры



# Цикл опора-шаг



# Схема сети ЦГП

Взаимодействие нейронов при четырехногой походке: темные нейроны активны, светлые — пассивны

В каждой фазе шагает одна левая и одна правая нога



# Четырехногая походка. Активность сети



Разные механизмы отвечают за смену ритма. Здесь реализовано изменение схемы сети за счет нейромодулирующего воздействия



### Трехногая походка. Активность сети



#### Заключение

- 1. Моторные ритмы создаются ЦГП, которые интегрируют сигналы от мозга и моторных нейронов
- 2. Структура ритма определяется нейронами и связями ЦГП
- 3. Частота и другие параметры ритма могут меняться в широких диапазонах, сохраняя последовательность основных фаз
- 4. ЦГП способны переключаться между разными ритмами
- 5. Нейроморфное управление локомоцией успешно применяется в робототехнике