Decision Tree CART

何信賢

什麼是決策樹?

- 用來處理問題的樹狀結構
- 每個內部節點表示一個評估欄位
- 模仿人類決策的過程

特性

- 比較具有解釋力
- 執行速度較快
- 醫藥、商業常用

CART演算法

- Classification & Regression Tree
- 二元樹
- 以吉尼係數(Gini)作為選擇依據 (不純度計算)
- 也可以用資訊增益(Information Gain) (用熵計算)

吉尼係數 (Gini)

•假設資料集合S包含n個類別,吉尼係數 Gini(S) 定義為pj為在S中的值組屬於類別j的機率

$$Gini(S) = 1 - \sum_{j=1}^{n} p_j^2$$

• 利用屬性A分割資料集合S為SI與S2(二元分割)。 則根據此一分割要件的吉尼係數Gini_A(S)為

$$Gini_A(S) = \frac{|S_1|}{|S|}Gini(S_1) + \frac{|S_2|}{|S|}Gini(S_2)$$

• 不純度的降低值為: $\Delta Gini(A) = Gini(S) - Gini_A(S)$

· 挑選擁有最大不純度的降低值、或吉尼係數GiniA(S)最小的屬性作為分割屬性。

舉例

我們想要預測喜歡打板球類型的學生,何者是比較好的分類呢?

Gini怎麼算呢?

		之一。 第一次 第一次 第一次 第一次	8
CHARLES THAT	原本資訊量	$1-(15/30)^2-(15/30)^2=0.5$ 度的降低量	
CHESCH BROCKERS	Female資訊量	$1-(2/10)^2-(8/10)^2=0.32$	ACATTERNSTON
POSSESSION OF THE PERSON	Male資訊量	$1-(13/20)^2-(7/20)^2=0.455$	CERTIFICATION
SCHOOL SECTION	獲得資訊量	0.5-(10/30)*0.32-(20/30)*0.455=0.09	ALCOHOLOGY STATE
	原本資訊量	$1-(15/30)^2-(15/30)^2=0.5$	TO ATT

 $0.5 - (16/30) \times 0.489 - (14/30) \times 0.492 = 0.008$

 $1-(6/14)^2-(8/14)^2=0.489$

 $1-(9/16)^2-(7/16)^2=0.492$

Female資訊量

Male資訊量

獲得資訊量

資訊獲利 (IG)

- 以熵 (Entropy) 為基礎
- 熵(亂度),可當作資訊量的凌亂程度(不確定性)指標,當熵值愈大, 則代表資訊的凌亂程度愈高。

Entropy = -p * log2 p - q * log2q

p:成功的機率(或true的機率) q:失敗的機率(或false的機率)

【範例】丢公平銅板,則丢出正面與反面的機率是一樣的(最凌亂)若不公平銅板,則丢出正面與反面的機率不會是一樣的(愈不凌亂)

• 若丢了14次銅板,出現了9個正面與5個反面(記為[9+, 5-]),則這個 範例的熵為: Entropy([9+, 5-])= -(9/14) $\log_2(9/14) - (5/14)\log_2(5/14) = 0.94$

那Entropy怎麼算呢?

Students =30 Play Cricket = 15 (50%)

Female

Students =10 Play Cricket = 2 (20%)

Students = 20 Play Cricket = 13 (65%)

原本熵	$-(15/30)\log_2(15/30)-(15/30)\log_2(15/30)=1$
• • • • • • • • • • • • • • • • • • • •	

Female % -(2/10) $\log_2(2/10) - (8/10) \log_2(8/10) = 0.72$

Male 熵 $-(13/20) \log_2(13/20) - (7/20) \log_2(7/20) = 0.93$

m權平均 (10/30)*0.72 + (20/30)*0.93 = 0.86

Split on Class

原本熵	$-(15/30)\log_2(15/30)-(15/30)\log_2(15/30)=1$

Female熵 $-(6/14) \log_2(6/14) - (8/14) \log_2(8/14) = 0.99$

Male $\mbox{\em M}_{2}$ = $(9/16) \log_2(9/16) - (7/16) \log_2(7/16) = 0.99$

m權平均 (14/30)*0.99 + (16/30)*0.99 = 0.99

決策樹學習常見問題

- · 決策樹學習可能遭遇模型過度配適 (overfitting) 的問題
- 因此樹的階層越少比較好

修剪

• 事前修剪

運用統計門檻值(Significance Level)加以衡量,譬如卡方值或資訊 獲得值等技術,評估是否該繼續分割某內部節點成數個子分支或是 應該立刻停止。

• 事後修剪

允許決策樹過度配適情形的合理存在,當完成決策樹的建立之後,再進行修剪的程序。

衡量複雜度

need a regularizer, say, $\Omega(G) = \text{NumberOfLeaves}(G)$ want regularized decision tree:

argmin
$$E_{in}(G) + \lambda \Omega(G)$$
 all possible G

- —called pruned decision tree
- cannot enumerate all possible G computationally:
 —often consider only
 - G⁽⁰⁾ = fully-grown tree
 - $G^{(i)} = \operatorname{argmin}_G E_{in}(G)$ such that G is one-leaf removed from $G^{(i-1)}$

systematic choice of λ ? validation

如何修剪

Demo

資料來源: https://www.kaggle.com/mrisdal/exploring-survival-on-the-titanic/data

- 資料匯入
- 資料整理
- 特徵工程
- 建模型
- 修剪
- 決策樹視覺化
- 上傳Kaggle