第二篇 数理逻辑 Mathematics Logic

数理逻辑

- 逻辑学
 - □研究人的思维形式和规律的科学
 - □根据研究的对象和方法
 - ■形式逻辑
 - 辩证逻辑
- 数理逻辑
 - □用数学方法研究推理的规律和形式的科学
 - □ 推理: 由一个或几个判断推出一个新判断的思维形式
 - □数学方法
 - 建立一套表意符号体系,对具体事物进行抽象的形式研究方法
 - □又称符号逻辑
- 两种演算
 - □命题逻辑
 - □谓词逻辑

形式语言与自然语言

- ■数理逻辑需建立一套表意符号体系
- ■形式语言符号体系
- ■自然语言
 - □二义性
 - Double click the mouse, then it'll run.
 - 小王现在不方便接电话,他方便去了
- ■建立形式语言符号体系的目的
 - □消除二义性

主要内容

第二章 命题逻辑

- 2.1 命题的概念与表示
- 2.2 逻辑联结词
- 2.3 命题演算的合式公式
- 2.4 等价与蕴涵
- 2.5 功能完备集及其他联 接词
- 2.6 对偶与范式
- 2.7 命题演算的推理理论

第三章 谓词逻辑

- 3.1 谓词的概念与表示
- 3.2 命题函数与量词
- 3.3 谓词演算的合式公式
- 3.4 变元的约束
- 3.5 谓词公式的解释
- 3.6 谓词演算的永真式
- 3.7 谓词演算的推理理论
- 3.8 自动推理证明

命题逻辑 Proposition Logic

N

2.1 命题 (Proposition)

2.1.1 命题

- □断言
 - ■一个陈述语句
- □命题:具有确定真假含义的陈述句
 - ■命题是一个非真即假(不可兼)的断言
 - ■如果命题是真
 - □ 命题的真值(Truth Values)为真
 - □真命题
 - □ 大写字母 "T"(1)表示
 - ■如果命题是假
 - □命题的真值是假
 - □假命题
 - □ 大写字母 "F"(0)表示

例:

- □今天下雪
- $\Box 3 + 3 = 6$
- □2 是偶数而 3 是奇数
- $\Box 1 + 101 = 110$
- □明年的今天会下雨
- □较大的偶数都可表示为两个质数之和

例:

- $\square x+y>4$
- □真好啊!
- $\square x=3$
- □你去哪里?
- $\Box 0 * x = 0$
- □我正在说谎

- Ŋ,
 - 原子命题(Primitive proposition)
 - □由简单陈述句表示的判断
 - □命题逻辑规定:原子命题是不可再分的
 - ■命题的表示
 - □常用大写英文字母(或带下标)表示
 - P表示"雪是白的"
 - Q表示"北京是中国的首都"
 - 命题变元(命题词)
 - □P表示任一命题时,P就称为命题变元(命题词)
 - □命题词不是命题
 - □ 命题指具体的陈述句,是有确定的真值
 - □ 命题变元的真值不定,只当将某个具体命题代入命题 变元时,命题变元化为命题,方可确定其真值

- Ŋ,
 - 复合命题(Compound proposition)
 - □一个或几个简单命题用联结词联结所构成的命 题
 - □例: "张三学英语和李四学日语"
 - ■两个特殊的命题词
 - □命题常量
 - T: 永远表示真命题
 - ■F: 永远表示假命题
 - □T和F的两种含义
 - ■命题常量
 - ■命题的真值

٧

- ■数理逻辑不关心内容
 - □具体的陈述句的真值究竟为什么或在什么环境 下是真还是假
- ■数理逻辑只关心形式
 - □命题可以被赋予真或假这样的可能性,以及规 定了真值后怎样与其他命题发生联系

M

2.2 逻辑联结词

- 命题和原子命题常可通过一些联结词构成 新命题,这种新命题叫复合命题
- 例:

P: 明天下雪,

Q: 明天下雨

"明天不下雪"

"非P"

"明天下雪并且明天下雨"

"P并且Q"

"明天下雪或者明天下雨"

"P或Q"

1. 否定词┐(~,negation)

■ 设P表示命题,那么"P不真"是另一命题,表示为 $_{1}P$,叫做P的否定,读做"非P"。如果P是假,则 $_{1}P$ 是真,反之亦然。

P	7 <i>P</i>
F	Т
T	F

真值表(Truth Table)

与自然语言中的"不", "否", "非", "没有", "未 必"等类似

例

(a) P: 4 是质数。

¬ P: 4 不是质数。

(b) Q: 这些都是男同学。

 \mathbf{Q} : 这些不都是男同学。

M

2. 合取词 / (Conjunction)

■ 如果P和Q是命题,那么"P并且Q"也是一命题,记为 $P \land Q$,称为P和Q的合取,读做"P与Q"或"P并且Q"。

P	Q	$P \wedge Q$
0	0	0
0	1	0
1	0	0
1	1	1

 \mathbf{M} P: 王华的成绩很好

Q: 王华的品德很好

 $P \land Q$: 王华的成绩很好并且品德很好。

3. 析取词 v (disjunction)

■ 如果P和Q是命题,则"P或Q"也是一命题,记作P \lor Q,称为P和Q的析取,读做"P或Q"。

P	Q	$P \lor Q$
0	0	0
0	1	1
1	0	1
1	1	1

可兼或

(a)今晚我写字或看书

P: 今晚我写字, Q: 今晚我看书。

$$P \lor Q$$
 排斥或

(b)选小王或小李当班长

R:选小王当班长,S:选小李当班长

$$R \vee S$$
?

$$(R \lor S) \land_{\mathsf{T}} (R \land S)$$

$$(R \wedge_{\neg} S) \vee (_{\neg} R \wedge S)$$

4.条件词→(蕴涵,蕴含,implication)

■ 如果P和Q是命题,那么"P蕴含Q"也是命题,记为 $P \rightarrow Q$,称为蕴含式,读做"如果P,那么Q"或"P则Q"。运算对象P 叫做 *前提*,E0 或 *前件*,而E0 叫做 *结论*或 *后件*。

P	Q	$P \longrightarrow Q$
0	0	1
0	1	1
1	0	0
1	1	1

与自然语言中的"如果...则 ...", "如果... 那么 ...", "只要...就..."等类似

例

(a) P: 天不下雨, Q: 草木枯黄。

 $P \rightarrow Q$: 如果天不下雨, 那么草木枯黄。

(b) R: G是正方形, S: G的四边相等。

 $R \rightarrow S$: 如果G是正方形, 那么G的四边相等。

(c) W: 桔子是紫色的, V: 大地是不平的。

 $W \rightarrow V$: 如果桔子是紫色的, 那么大地是不平的。

因果关系

- 引入→的目的是希望用来描述命题间的推理,表示因果关系
- ■使用P→Q能描述推理
 - □ 如果今天是星期二,那么明天是星期天
 - □ 如果今天是星期一, 那么明天是星期天
 - □如果n > 3那么n² > 9(n=4, n=2, n=-4)
- →与 "如果…那么…"有一致的一面,同时也有与 常识不一致的地方
 - □ 数理逻辑不关心具体命题,只关心推理的形式
 - □人为的规定,对P为F时P→Q的值另作规定也是可以的

M

蕴含式 $P \rightarrow Q$ 可以用多种方式陈述:;

"若P,则Q"

"P是Q的充分条件"

"Q是P的必要条件"

"*Q*每当*P*";

"P仅当Q"等。

给定命题 $P \to Q$, 我们把 $Q \to P$, $\gamma P \to \gamma Q$, $\gamma Q \to \gamma P$ 分别叫做命题 $P \to Q$ 的**逆命题**, **反命题**和**逆反命题**.

例

令: P: 天气好。 Q: 我去公园。

- 1. 如果天气好,我就去公园。
- 2. 只要天气好,我就去公园。
- 3. 天气好,我就去公园。
- 4. 仅当天气好,我才去公园。
- 5. 只有天气好,我才去公园。
- 6. 我去公园,仅当天气好。

$$P \rightarrow Q$$

$$P \rightarrow Q$$

$$P \rightarrow Q$$

$$Q \rightarrow P$$

$$Q \rightarrow P$$

$$Q \rightarrow P$$

5. 双条件词↔(等值,Biconditional)

■ 如果P和Q是命题,那么"P等值于Q"也是命题,记为 $P \leftrightarrow Q$,称为X **双条件式**(**等值式**),读做"P当且仅当Q"或"P等值于Q"。

 $P \leftrightarrow Q$ 也读做 "P是Q的充要条件"。

P	Q	$P \longleftrightarrow Q$
0	0	1
0	1	0
1	0	0
1	1	1

M

联结词的注意事项

- 要熟练掌握这五个联结词在自然语言中所表示的 含义以及它们的真值表的定义
- ■特别要注意"或"的二义性,即要区分给定的 "或"是"可兼取的或"还是"不可兼取的或"。
- ■特别要注意"→"的用法,它既表示"充分条件" 也表示"必要条件",即要弄清哪个作为前件, 哪个作为后件
- 联结词的优先级顺序□¬, ∧, ∨, →, ↔

M

练习:填空

- 已知P \ Q 为T , 则P为() , Q为()
- 已知P \ \ Q为F, 则P为(), Q为()
- 己知P为F,则P∧Q为()
- 已知P为T,则P∨Q为()
- 已知 $P \lor Q$ 为T,且P为F ,则Q为()
- 己知P→Q为F,则P为(),Q为()
- 己知P为F,则P→Q为()
- 己知Q为T,则P→Q为()
- 己知 ¬P→¬Q为F, 则P为(), Q为()

2.3 命题演算的合式公式

- ■命题变元与命题常元
 - □命题常元
 - ■命题
 - 有具体含义(真值)的
 - 例: "3是素数。"; T; F
 - □命题变元
 - ■用大写的英字母如P、Q等表示任何命题
 - □真值指派
 - ■解释
 - 将一个命题**常元**赋予命题变元的过程
 - 或者是直接赋给命题变元真值 "T"或 "F"的过程

注意: 命题变元本身**不是**命题,只有给它一个解释,才变成命题。

命题演算的合式公式(命题公式,wff ,well formed formulas)

- 定义2.3.1:
 - (1) 单个命题变元是个合式公式。
 - (2) 若A是合式公式,则¬A是合式公式。
 - (3) 若A和B是合式公式,则 $(A \land B)$, $(A \lor B)$, $(A \rightarrow B)$ 和 $(A \leftrightarrow B)$ 都是合式公式。
 - (4) 当且仅当有限次地应用(1),(2),(3)所得到的含有*命题变元、联结词和圆括号*的符号串是**合式公式**。 此外,称逐次使用规则(1),(2),(3)的过程中所得到的命题公式为最后构成的命题公式的*子公式*。
- 递归定义
 - □ (1)——基本项,是递归的基础
 - □ (2)(3)——递归项,是递推规则
 - □ (4)——极小化,保证所构造集合的唯一性
- 命题函数
 - \square 有n个命题变元的命题公式可用函数 $A(P_1,P_2,...,P_n)$ 的形式表示
 - \square 其中 $P_1,P_2,...,P_n$ 按字典顺序排列

例

(a)
$$(P \rightarrow (P \lor Q))$$

解(i) P是命题公式

(ii) Q是命题公式

(iii) $(P \lor Q)$ 是命题公式

(iv) $(P \rightarrow (P \lor Q))$ 是命题公式

根据条款(1)

根据条款(1)

根据(i)(ii)和条款(3)

根据(i)(iii)和条款(3)

例

- ■下面的式子是否为合式公式:
 - $P \wedge Q$, $P \rightarrow R$, $P \vee Q \wedge R$
- ■修改

$$(P \land Q), (\neg P \rightarrow R), ((P \lor Q) \land R)$$

- M
 - ■圆括号的省略规则
 - □最外层的圆括号可以省去
 - 口符合联结词优先级顺序的, 括号可省去
 - □相同的联结词,按从左至右次序计算时,括号可省去

$$(\neg ((P \land \neg Q) \lor R) \rightarrow ((R \lor P) \lor Q))$$

$$\neg ((P \land \neg Q) \lor R) \rightarrow ((R \lor P) \lor Q)$$

$$\neg (P \land \neg Q \lor R) \rightarrow (R \lor P \lor Q)$$

$$\neg (P \land \neg Q \lor R) \rightarrow R \lor P \lor Q$$

命题符号化

- ■用形式语言所表示的命题公式符号串来表 示给定的命题
- 例
 - □他既有理论知识又有实践经验

P: 他有理论知识 O: 他有实践经验

$$P \wedge Q$$

- □如果明天不是雨夹雪则我去学校

P: 明天下雨 Q: 明天下雪

R: 我去学校

$$\neg (P \land Q) \rightarrow R$$

□如果明天不下雨并且不下雪则我去学校

$$\neg P \land \neg Q \rightarrow R$$

y

□如果明天下雨或下雪则我不去学校

$$P \lor Q \rightarrow \neg R$$

□明天,我将雨雪无阻一定去学校

$$P \land Q \land R \lor \lnot P \land Q \land R \lor P \land \lnot Q \land R \lor \lnot P \land \lnot Q \land R$$

□当且仅当明天不下雪并且不下雨时我才去学校

□仅当明天不下雪并且不下雨时我才去学校

$$R \rightarrow \gamma P \land \gamma Q$$

- □ 说小学生编不了程序, 或说小学生用不了个人计算机, 那是不对的
- P: 小学生会编程序 Q: 小学生会用个人计算机

练习

- ■将下列命题符号化
 - □张三**与**李四是表兄弟
 - □张三**或**李四都能做这件事
 - □今晚我在家里看电视**或**去体育场看球赛
 - □今天我上班,除非今天我病了

代入实例

- 定义2.3.2
 - □ 设*A*和*B*是两个命题公式,如果将*A*中的某些命题变元用命题公式进行代换便可得到*B*,并且此种代换满足:
 - (1) 被代换的是命题变元
 - (2) 如果要代换某个命题变元,则要将该命题变元在**A**中的一切出现进行代换
 - (3) 代换必须同时独立进行

此时称B是A的一个代换实例(代入实例)

- □例
 - $A(P,Q) = P \rightarrow Q$ $A(P,Q \land \neg R) = P \rightarrow Q \land \neg R$
 - $A(P,Q,R,S) = (P \rightarrow Q) \land R \land (S \rightarrow (P \rightarrow Q))$ $(P \rightarrow Q) \land S \land (R \rightarrow (P \rightarrow Q)), (\neg P \rightarrow Q) \land \neg R \land (\neg S \rightarrow (\neg P \rightarrow Q))$ $P \land R \land (S \rightarrow P), (\neg P \rightarrow Q) \land R \land (R \rightarrow (P \rightarrow Q))$

真值指派 (解释)

- 定义2.3.3
 - 口设 $A(P_1, P_2, ..., P_n)$ 是一个命题公式, $P_1, P_2, ..., P_n$ 是出现于其中的全部命题变元。 P_i 有两种取值可能, $P_1, P_2, ..., P_n$ 有 2^n 种取值可能, $P_1, P_2, ..., P_n$ 的任何一种取值称为对 A(中变元)的一种真值指派(或解释),可记为 $I=(P_1, P_2, ..., P_n)$,其中 P_i '=0或1

□例

- $\blacksquare A(P,Q,R)=P\rightarrow (R\rightarrow Q),$
- 真值指派 (1,0,1), (1,1,0)
- ■真值分别为F和T

真值表

- 定义2.3.4
 - 口设 $A(P_1,P_2,...,P_n)$ 是一个命题公式, $P_1,P_2,...,P_n$ 是出现于其中的全部命题变元。如果有一张表列出了在 $P_1,P_2,...,P_n$ 的所有 2^n 种真值指派的每一种下,公式A对应的真值,则称此表为公式A的真值表

□例

P	Q	$(P \land (P \rightarrow Q)) \rightarrow Q$
0	0	1
0	1	1
1	0	1
1	1	1

重言式/矛盾式/可满足式

- 定义2.3.5 重言式 (tautology) /矛盾式 (contradiction)
 - $\Box A(P_1, P_2, ..., P_n)$ 是含有命题变元 $P_1, P_2, ..., P_n$ 的命题公式,如不论对 $P_1, P_2, ..., P_n$ 作任何指派,都使得 $A(P_1, P_2, ..., P_n)$ 为真(假),则称之为重言式(矛盾式),也称之为永真式(永假式)
 - □例: $\neg P \lor P$ 和 $\neg P \land P$
 - □偶然式
 - 不是永真式, 也不是永假式
 - 例: *P*, *P* ∧ *Q*
 - □可满足式 (satisfactable formula)
 - 非矛盾式 $\neg P \lor P$, $P \land Q$

■重言式的证明方法

□方法1: 列真值表

□方法2: 公式的等价变换, 化简成"T"

□方法3: 用公式的主析取范式

证明 $(P \land (P \rightarrow Q)) \rightarrow Q$ 为重言式

P	Q	$(P \land (P \rightarrow Q)) \rightarrow Q$
0	0	T
0	1	T
1	0	T
1	1	T

重言式的性质

- 如果A是重言式,则¬A是矛盾式
 - □如果A是矛盾式,则¬A是重言式
- 定理2.3.1 如果A, B是重言式, 则(A∧B)、 (A∨B)也都是重言式
 - □如果A,B是矛盾式,则(A \ B)、(A \ B)也都是矛盾式
- 如果A,B是重言式 $(A \rightarrow B)$ 和 $(A \leftrightarrow B)$ 也都是重言式
 - □如果A,B是矛盾式, $(A \rightarrow B)$ 和 $(A \leftrightarrow B)$ 是重言式

μ

代入定理

- 定理2.3.2 (Rule of Substitution, 代入规则)
 - □重言式的代入实例是重言式
 - □例

$$P \vee_{\mathsf{J}} P$$

- $\blacksquare (R \land Q) \lor \lnot (R \land Q)$
- $\blacksquare (R \vee Q) \land_{\neg} (R \vee Q) \rightarrow (P \vee Q \rightarrow S \vee Q)$

$$P \wedge \gamma P \rightarrow Q$$

- □矛盾式的代入实例是矛盾式吗?
 - Yes

2.4 等价与蕴含

- 定义2.4.1 恒等式(等价式, equivalent)
 - 口设A: $A(P_1, P_2, ..., P_n)$, B: $B(P_1, P_2, ..., P_n)$ 是两个命题公式,如不论对 $P_1, P_2, ..., P_n$ 作任何指派,都使得A和B的真值相同,则称之为A与B等价(恒等,逻辑相等),记作 $A \Leftrightarrow B$,读做"A等价于B"或"A恒等于B"
- 定理2.4.1 等价定理: $A \Leftrightarrow B$ 当且仅当 $A \leftrightarrow B$ 是重言式
 - □ *注意*: "↔"与"⇔"不同
 - ↔: 逻辑联结词
 - ⇔: 描述两个命题公式之间的关系

1	双重否定律	$A \Leftrightarrow \neg \neg A$
2	交换律	$A \lor B \Leftrightarrow B \lor A$
		$A \land B \Leftrightarrow B \land A$
3	结合律	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
		$(A \land B) \land C \Leftrightarrow A \land (B \land C)$ 常
4	分配律	$A \wedge (B \vee C) \Leftrightarrow (A \wedge B) \vee (A \wedge C)$
		$A \setminus (R \setminus C) \hookrightarrow (A \setminus R) \setminus (A \setminus C)$
5	德摩根律	$\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$
		$\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$
6	幂等律	$A \land A \Leftrightarrow A, A \lor A \Leftrightarrow A$
7	吸收律	$A \lor (A \land B) \Leftrightarrow A, A \land (A \lor B) \Leftrightarrow A$ $A \lor T \Leftrightarrow T, A \land F \Leftrightarrow F$
8	零元律	
9	同一律	$A \lor F \Leftrightarrow A, A \land T \Leftrightarrow A$
10	排中律	$A \bigvee \neg A \Leftrightarrow T$
11	矛盾律	$A \land \neg A \Leftrightarrow F$
12	条件等价式	$A {\rightarrow} B \Leftrightarrow \neg A \lor B$
13	双条件等价式	$A \leftrightarrow B \Leftrightarrow (A \rightarrow B) \land (B \rightarrow A)$
14	假言易位式	$A {\longrightarrow} B \Leftrightarrow \neg B {\longrightarrow} \neg A$
15	双条件否定等价式	$A \leftrightarrow B \Leftrightarrow \neg A \leftrightarrow \neg B$

等价式的证明

■方法1: 列真值表

■方法2: 公式的等价变换

P	Q	$P \rightarrow Q$	¬P∨Q
0	0	T	T
0	1	T	T
1	0	F	F
1	1	T	T

置换定理 (Rule of Replacement,替换规则)

- 口定理2.4.2:设X是合式公式A的子公式,若 $X \Leftrightarrow Y$,如果将A中的X用Y来置换,得到的公式记为B,则B与A等价,即 $A \Leftrightarrow B$
 - \emptyset : $Q \rightarrow (P \lor (P \land Q)) \Leftrightarrow Q \rightarrow P$
- □代入与替换的区别
 - ■代入是对命题变元进行取代,替换对子公式
 - 代入必须取代该命题变元的一切出现,替换不用
 - ■可用任意wff去代换命题变元,只能用与子公式等价的 公式去替换
 - ■代入实例一般不与原公式等价,替换后的公式必与原公式等价

永真蕴含式(implication)

- 定义2.4.2
 - □给定两个命题公式A和B,如果公式 $A \rightarrow B$ 是重言式,则称A重言(永真)蕴含B,或简单的说A蕴含B,记作 $A \Rightarrow B$

■ 注意:

- □"⇒"不是联结词
- 口表示公式间的"永真蕴含"关系
- □也可看成"推导"关系
- $\Box A \Rightarrow B$ 可以理解成由A**可推出B**,即由A为真,可以推出B也为真

■ 蕴含式的证明方法

- □真值表
- □利用一些基本等价式及蕴涵式进行推导
- □逻辑推证
 - 假定前件是真, 若能推出后件是真, 则此蕴含式是真
 - 假定后件是假, 若能推出前件是假, 则此蕴含式是真

P	Q	$P \longrightarrow Q$	
0	0	1	
0	1	1	
1	0	0	
1	1	1	

用真值表证明蕴含关系

■ 证明: $(P \lor Q) \land (P \rightarrow R) \land (Q \rightarrow R) \Rightarrow R$

P	Q	R	$(P \lor Q) \land (P \rightarrow R)$ $\land (Q \rightarrow R)$	$(P \lor Q) \land (P \rightarrow R)$ $\land (Q \rightarrow R) \rightarrow R$
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	1
1	0	0	0	1
1	0	1	1	1
1	1	0	0	1
1	1	1	1	1

例:证明 $\neg Q \land (P \rightarrow Q) \Rightarrow \neg P$

方法 1: 设 $_{1}Q \wedge (P \rightarrow Q)$ 是真则 $_{1}Q$, $P \rightarrow Q$ 是真所以, Q是假, P是假。

因而 $_{\mathsf{T}}P$ 是真。 故 $_{\mathsf{T}}Q \land (P \rightarrow Q) \Rightarrow_{\mathsf{T}} P$ 方法 2: 设 $_{\mathsf{T}}P$ 是假,则 $_{\mathsf{P}}$ 是真。以下分情况讨论。

- (i) 若Q为真,则 $_1Q$ 是假, 所以 $_1Q \land (P \rightarrow Q)$ 是假
- (ii) 若Q是假,则 $P \rightarrow Q$ 是假 所以 $_1Q \land (P \rightarrow Q)$ 是假 故 $_1Q \land (P \rightarrow Q) \Rightarrow P$

永真蕴含式

1	附加律	$A \Rightarrow A \lor B$, $B \Rightarrow A \lor B$
2	化简律	$A \land B \Longrightarrow A$, $A \land B \Longrightarrow B$
3	假言推理	$A \wedge (A \rightarrow B) \Longrightarrow B$
4	拒取式	$\neg B \land (A \rightarrow B) \Longrightarrow \neg A$
5	析取三段论	$\neg A \land (A \lor B) \Rightarrow B, \neg B \land (A \lor B) \Rightarrow A$
6	假言三段论	$(A \rightarrow B) \land (B \rightarrow C) \Longrightarrow (A \rightarrow C)$
7	等价三段论	$(A \leftrightarrow B) \land (B \leftrightarrow C) \Longrightarrow (A \leftrightarrow C)$
8	构造性二难	$(A \lor C) \land (A \rightarrow B) \land (C \rightarrow D) \Rightarrow B \lor D$
		$(A \lor \neg A) \land (A \rightarrow B) \land (\neg A \rightarrow B) \Longrightarrow B$
9	破坏性二难	$(\neg B \lor \neg D) \land (A \rightarrow B) \land (C \rightarrow D) \Rightarrow (\neg A \lor \neg C)$

等价和蕴含的性质

- 等价关系的性质
 - □自反性
 - 任何命题公式A,有 $A \Leftrightarrow A$
 - □对称性
 - 若 $A \Leftrightarrow B$,则 $B \Leftrightarrow A$
 - □ 传递性
 - 若 $A \Leftrightarrow B \perp B \Leftrightarrow C$,则 $A \Leftrightarrow C$

- 蕴含关系的性质
 - □自反性
 - 任何命题公式A,有 $A \Rightarrow A$
 - □反对称性
 - 若 $A \Rightarrow B \perp B \Rightarrow A$, iff $A \Leftrightarrow B$
 - □传递性
 - \square 若 $A \Rightarrow B$, $A \Rightarrow C$, 则 $A \Rightarrow B \land C$

定理2.4.3: 设A和B是两个命题公式,那么 $A \Leftrightarrow B iff A \Rightarrow B$,且 $B \Rightarrow A$

B考: 若 $A \Rightarrow B$,则 $\uparrow A \Rightarrow \uparrow B$?

No! $\neg B \Rightarrow \neg A$

证明

■ 若 $A \Rightarrow B$, $B \Rightarrow C$ 则 $A \Rightarrow C$ 证明: $A \rightarrow B$ 永真; $B \rightarrow C$ 永真, 所以 $(A \rightarrow B) \land (B \rightarrow C)$ 永真 由公式 I_6 得 $A \rightarrow C$ 永真, 既 $A \Rightarrow C$

■ $\overline{A} \Rightarrow B, A \Rightarrow C, \text{则}A \Rightarrow B \land C$ 证明: A是真时, B和C都真, 所以 $B \land C$ 也真 因此 $A \rightarrow B \land C$ 永真, 则 $A \Rightarrow B \land C$

M

等价变换 (等值演算)

- 由己知的等价式按照合理的规则逐步推演 出另外一些等价式的过程
 - □反复应用代入定理和置换定理
 - □例1:

E₁₄:
$$P \rightarrow Q \Leftrightarrow \neg P \lor Q$$

 $(R \lor Q) \rightarrow P \Leftrightarrow \neg (R \lor Q) \lor P$

例

(a) 证明
$$P \land_{\uparrow} Q \lor Q \Leftrightarrow P \lor Q$$

证明: $P \land_{\uparrow} Q \lor Q$
 $\Leftrightarrow Q \lor P \land_{\uparrow} Q$ \to_{4}
 $\Leftrightarrow (Q \lor P) \land (Q \lor_{\uparrow} Q)$ \to_{9}
 $\Leftrightarrow (Q \lor P) \land T$ \to_{20} 和替换规则
 $\Leftrightarrow Q \lor P$ \to_{19}
 $\Leftrightarrow P \lor Q$ \to_{4}

Ŋ

(b) 证明
$$(P \rightarrow Q) \rightarrow (Q \lor R) \Leftrightarrow P \lor Q \lor R$$

证明:
$$(P \rightarrow Q) \rightarrow (Q \lor R)$$

$$\Leftrightarrow (P \lor Q) \rightarrow (Q \lor R)$$

$$\Leftrightarrow \neg (\neg P \lor Q) \lor (Q \lor R) \to \Box_{14}$$

$$\Leftrightarrow P \land \neg Q \lor (Q \lor R)$$

E₁₀、E₁和替换规则

$$\Leftrightarrow (P \land \neg Q \lor Q) \lor R$$

 E_6

$$\Leftrightarrow P \vee Q \vee R$$

例 2(a)和替换规则

(c) 试将语句"情况并非如此:如果他不来, 那么我也不去。" 化简。

解: 设P: 他来, Q: 我去

$$\neg (\neg P \rightarrow \neg Q)$$

$$\Leftrightarrow \neg (P \lor \neg Q)$$

$$\Leftrightarrow$$
 7 $P \land Q$

(d) 找出 $P \rightarrow (P \leftrightarrow Q) \lor R$ 的仅含 $\land n_1$ 两种联结词的等价表达式。

$$P \rightarrow (P \leftrightarrow Q) \lor R$$

$$\Leftrightarrow P \rightarrow (P \rightarrow Q) \land (Q \rightarrow P) \lor R$$

$$\Leftrightarrow_{\mathsf{T}} P \vee_{(\mathsf{T}} P \vee_{Q}) \wedge_{(\mathsf{T}} Q \vee_{P}) \vee_{R}$$

$$\Leftrightarrow (\neg P \lor \neg P \lor Q) \land (\neg P \lor \neg Q \lor P) \lor R$$

$$\Leftrightarrow (\neg P \lor Q) \land T \lor R$$

$$\Leftrightarrow$$
7 $P \lor Q \lor R$

$$\Leftrightarrow \neg (P \land \neg Q \land \neg R)$$

2.5 功能完备集及其他联结词

- ■联结词的扩充
 - □问题的提出:对n个命题变元 $P_1...P_n$ 来说,共可定义出多少个联结词?在那么多联结词中有多少是相互独立的?
 - □4个新联结词:
 - 与非: P↑Q⇔¬ (P∧Q)
 - 或非: P↓Q⇔¬ (P∨Q)
 - 排斥或(异或): P⊕Q⇔¬ (P↔Q)⇔P∧¬ Q∨¬ P∧Q
 - 蕴含否定(条件否定): P→Q⇔ ¬ (P→Q)

Q1: 可定义多少个联结词?

- 命题变元和命题联结词可以构成无限多个 合式公式
- ■把所有的合式公式分类:将等值的公式视为同一类,对于该类合式公式,就可定义一个联结词与之对应

- Ŋ,
 - ■一元联结词的个数
 - □一元联结词是联结一个命题变元的
 - □由一个命题变元P可构成4种不等价的命题公式
 - □相应的可定义出4个不同的一元联结词

P	f_1	f_2	f_3	f_4
	0	0	1	1
1	0	1	0	1
	永假	恒等	否定	永真

- M
 - ■二元联结词的个数
 - □二元联结词联结两个命题变元
 - □由两个命题变元P, Q可构成16种不等价的命 题公式
 - □相应的可定义出16个不同的二元联结词
 - ■n元联结词的个数
 - □对n个命题变元 P_1 , ..., P_n , 每个 P_i 有2种取值, 从而对 P_1 ... P_n 来说共有 2^n 种取值情形
 - □相应的可定义出22ⁿ个n元联结词

二元运算

	20 - 10/2018		899 JOAN		25000000	100 m	37 3270				38	30 - 32 - 3		98-3555			
P	Q	f_1	\int_{2}	$f_{\mathfrak{z}}$	f_4	f_{5}	$f_{\mathfrak{s}}$	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{11}	f_{15}	f_{16}
0	0	0	1	0	0	0	1	1	1	0	0	0	1	1	0	1	1
0	1	0	0	1	0	0	1	0	0	1	1.	0	1	1	1	0	1
1	0	0	0	0	1	0	0	1	0	1	0	1	1	0	1	1	1
1	I	0	0	0	0	1	0	0	1	0	1	1	0	1	1	1	1
		永	或	蕴	蕴	合	P	Q	等	异	恒	恒	与	蕴	析	蕴	水
		假	非	含	含	取	#=	非	值	或	等	等	非	含	取	含	真
				否	否						Q	P					
				定	定												
		* *	Δ	Δ	Δ	*	*	*	*	\triangle	* *	* *	Δ	*	*	*	* *
		70 00															

联结词的归约

- Q2: 联结词是否都是独立的,或者说能否相互表示
- 定义 2.5.1 设*S*是一个联结词集合, 若对于任意给定的命题公式, 总可以找到一个仅含有*S*中的联结词的命题公式与之,则称*S*是一个*联结词功能完备*集
- 定义 2.5.2 设S是一个联结词功能完备集,若S中的任一联接词都不能用S中的其他联接词等价表示,则称S是一个极小的联结词功能完备集

完备集

- ■全体联结词的无限集合是完备的
- {¬, ∨, ∧}是完备的联结词集合
- {¬, ∨}是联结词的完备集
 - □证明: 己知 $\{\neg, \lor, \land\}$ 是全功能的,又 $P \land Q$ $\Leftrightarrow \neg (\neg P \lor \neg Q)$,因此 $\land \neg \exists \{\neg, \lor\}$ 表示,所以 $\{\neg, \lor\}$ 是全功能的
- {¬, ∧}是联结词的完备集
- {¬, →}是完备集
- **■** {¬, ∧, ∨, →, ↔}是完备的

不完备集

- $\blacksquare \{ \lor, \land, \rightarrow, \leftrightarrow \}$
- $\blacksquare \{\neg, \leftrightarrow\}$
- **■** {∨,∧,→, ↔}
 - □其任何子集都是不完备的
- **■** {¬, ↔}
- **{** \, \ \}

其他联接词

- ■异或
- ■与非↑
- ■或非↓
- {↑}是完备集
- {↓}是完备集

Ŋ

2.6 对偶与范式

- 定义2.6.1: 设有公式A, 其中仅有联结词 \land , \lor , \urcorner 。 在A中将 \land , \lor , T, F分别换以 \lor , \land , F, T得公式A*, 则A*称为A的对偶公式
- 例

(a)
$$A = P \lor F$$
, $A^* = ?$
 $A^* = P \land T$
(b) $A = P \lor Q \land R$, $A^* = ?$

$$A^*=_{\mathsf{T}} P \wedge (Q \vee R)$$

定理 2.6.1 设A和A*是对偶式。 $P_1, P_2, ..., P_n$ 是出现于A和A* 中的所有命题变元,于是

$$\neg A(P_1,P_2,\ldots,P_n) \Leftrightarrow A^*(\neg P_1,\neg P_2,\ldots,\neg P_n)$$

□ 证明: 反复地使用德-摩根定律

$$A(P,Q) \Leftrightarrow P \lor Q, \quad A^*(P,Q) \Leftrightarrow P \land Q$$

 $\neg A(P,Q) \Leftrightarrow \neg (P \lor Q) \quad A^*(\neg P, \neg Q) \Leftrightarrow \neg P \land \neg Q$
 $\neg A(P,Q) \Leftrightarrow A^*(\neg P, \neg Q)$

推论: $A(\neg P_1, \neg P_2, ..., \neg P_n) \Leftrightarrow \neg A^*(P_1, P_2, ..., P_n)$ 因为 $\neg A(P_1, P_2, ..., P_n) \Leftrightarrow A^*(\neg P_1, \neg P_2, ..., \neg P_n)$ 所以 $A(P_1, P_2, ..., P_n) \Leftrightarrow \neg A^*(\neg P_1, \neg P_2, ..., \neg P_n)$ 即 $A(P_1, P_2, ..., P_n) \leftrightarrow \neg A^*(\neg P_1, \neg P_2, ..., \neg P_n)$ 是重言式则 $A(\neg P_1, \neg P_2, ..., \neg P_n) \leftrightarrow \neg A^*(P_1, P_2, ..., P_n)$ 是重言式所以 $A(\neg P_1, \neg P_2, ..., \neg P_n) \Leftrightarrow \neg A^*(P_1, P_2, ..., P_n)$ ■ **定理 2.6.2(对偶原理)** 若 $A \Leftrightarrow B$, 且A, B为命题变元 P_1 , P_2 ,...., P_n 及联结词A, \vee , ¬构成的公式,则 $A^* \Leftrightarrow B^*$ 。

证明: 因为 $A(P_1, P_2, ..., P_n)$ ⇔ $B(P_1, P_2, ..., P_n)$ 故 $A(\neg P_1, \neg P_2, ..., \neg P_n)$ ⇔ $B(\neg P_1, \neg P_2, ..., \neg P_n)$ 而 $A(\neg P_1, \neg P_2, ..., \neg P_n)$ ⇔ $\neg A^*(P_1, P_2, ..., P_n)$ 故 $\neg A^*(P_1, P_2, ..., P_n)$ 故 $\neg A^*(P_1, P_2, ..., P_n)$ ⇔ $\neg B^*(P_1, P_2, ..., P_n)$ 所以 $A^*(P_1, P_2, ..., P_n)$ ⇔ $B^*(P_1, P_2, ..., P_n)$

- $\exists A \Rightarrow B$, $\exists A$, B为命题变元 P_1 , P_2 ,....., P_n 及联结词 \land , \lor , \neg 构成的公式, 则 $A^* \Rightarrow B^*$ 成立吗? 如果是,请证明,如果否,为什么?
 - □ 若 $A \Rightarrow B$, 且A, B为命题变元 P_1 , P_2 ,...., P_n 及联结词 \wedge , \vee , ¬构成的公式, 则 $B^* \Rightarrow A^*$

范式

- ■析取范式和合取范式
 - □范式就是命题公式形式的规范形式
 - □范式中只含有联结词¬、∨和∧
- ■基本积、基本和
 - □ 文字(因子)
 - 原子或原子的否定称为文字
 - 例: P, ¬P
 - P与¬P称为互补对
 - □基本积
 - 文字的合取式 (短语)
 - \blacksquare P \Box P
 - □基本和
 - 文字的析取式(子句)
 - \blacksquare P , \neg P , P $\lor \neg$ Q , P $\lor \neg$ Q $\lor \neg$ R

Ŋ.

主析取范式和主合取范式

- 定义 2.6.2 极小项
 - □在n个变元的基本积中, 若每一个变元与其否定不同时存在, 而两者之一必出现一次且仅出现一次, 则这种基本积叫极小项
 - $\Box P \land Q$, $P \land \neg Q$, $\neg P \land Q$, $\neg P \land \neg Q$
 - □n个变元可构成 2ⁿ个不同的极小项
 - □命题变元看成 1, 命题变元的否定看成 0, 那么每一极小项对应一个二进制数, 因而也对应一个十进制数
 - □把对应的十进制数当作足标,用m_i表示这一项

M

$$m_0 \Leftrightarrow_{\mathbb{T}} P \wedge_{\mathbb{T}} Q \wedge_{\mathbb{T}} R$$
 —0000—0
 $m_1 \Leftrightarrow_{\mathbb{T}} P \wedge_{\mathbb{T}} Q \wedge_{\mathbb{R}} R$ —0110—2
 $m_2 \Leftrightarrow_{\mathbb{T}} P \wedge_{\mathbb{T}} Q \wedge_{\mathbb{T}} R$ —0111—3
 $m_4 \Leftrightarrow_{\mathbb{T}} P \wedge_{\mathbb{T}} Q \wedge_{\mathbb{T}} R$ —100—4
 $m_5 \Leftrightarrow_{\mathbb{T}} P \wedge_{\mathbb{T}} Q \wedge_{\mathbb{T}} R$ —1101—5
 $m_6 \Leftrightarrow_{\mathbb{T}} P \wedge_{\mathbb{T}} Q \wedge_{\mathbb{T}} R$ —1110—6
 $m_7 \Leftrightarrow_{\mathbb{T}} P \wedge_{\mathbb{T}} Q \wedge_{\mathbb{T}} R$ —111—7

一般地,对 $P_1, ..., P_n$ 而言, 2^n 个极小项为:

$$m_0, m_1, m_2, ..., m_{2^n-1}$$

- M
 - ■极小项的性质
 - □合取式
 - □每个极小项 m_k 只在与其下标对应的真值指派下为T,其余都为F
 - $\square m_{\rm i} \wedge m_{\rm j} \Leftrightarrow F, i \neq j$
 - $\square \lor m_i \Leftrightarrow T \quad (0 \le i \le 2^{n}-1)$
 - **定义 2.6.3** 设 $P_1,P_2,...,P_n$ 是n个命题变元, m_{k1} , m_{k2} ,..., m_{ks} 为关于 $P_1,P_2,...,P_n$ 的极小项($0 \le k_1 < k_2 < ... < k_s \le 2^n-1$)则称 m_{k1} $\vee m_{k2} \vee ... \vee m_{ks}$ 为关于 $P_1,P_2,...,P_n$ 的*主析取范式,*并简记为 $\sum k_1$, k_2 ,..., k_s

■ 设 $G=(P \land Q) \lor (\neg P \land R) \lor (Q \land R)$

P	Q	R	G
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

- **定理2.6.3** 假若命题公式 $A(P_1, P_2, ..., P_n)$ 不是矛盾式,则必存在且恰好存在一个关于 P_1 , P_2 ,..., P_n 的主析取范式与之等价;且在公式A的真值表中,使A的真值为T的指派所对应的各极小项的析取,即为A的主析取范式
 - □矛盾式的主析取范式是一空公式,用0表示

证明:

存在性:由上页主析取范式的构造过程可证 *唯一性*:设有两个不同的主析取范式B和C都与A等价由于B和C不同,即必存在极小项 m_i 在B中但不在C中,或在C中但不在B中,不妨设其在B中但不在C中。则在i对应的真值指派下, m_i 为T,即B为T,而C为F与B和C都是A的主析取范式矛盾 唯一性得证

- M
 - ■用等价变换求主析取范式
 - □先用相应的公式去掉→和↔
 - □用公式的否定公式或摩根律将¬后移到命题变 元之前
 - \square 用分配律、幂等律等公式进行整理,使之成为析取范式 $A_1 \lor A_2 \lor ... \lor A_n$
 - 口为使每个 A_i 都变成极小项,对缺少变元的 A_i 补 全变元,比如缺变元R,就用 Λ 联结永真式 $(R \lor \neg R)$ 形式补R
 - □消去重复的极小项,并将极小项按下标由小到 大的次序排列

例求G=¬(R→P)∨(Q∧(P∨R))主析取范式

$$G \Leftrightarrow \neg(R \to P) \lor (Q \land (P \lor R))$$

$$\Leftrightarrow \neg(\neg R \lor P) \lor (Q \land P) \lor (Q \land R)$$

$$\Leftrightarrow (\neg P \land R) \lor (Q \land P) \lor (Q \land R)$$

$$\Leftrightarrow ((\neg P \land R) \land (\neg Q \lor Q)) \lor ((Q \land P) \land (\neg R \lor R)) \lor ((Q \land R) \land (\neg P \lor P))$$

$$\Leftrightarrow (\neg P \land Q \land R) \lor (\neg P \land \neg Q \land R) \lor (P \land Q \land R) \lor (P \land Q \land \neg R)$$

$$\Leftrightarrow \Sigma(1, 3, 6, 7)$$

例

证明
$$_{1}P\lor Q$$
和 $P\to ((P\to Q)\land_{1}(_{1}Q\lor_{1}P))$ 二式逻辑等价。
证 $_{1}P\lor Q$
 $\Leftrightarrow_{1}P\land (Q\lor_{1}Q)\lor Q\land (P\lor_{1}P)$
 $\Leftrightarrow_{1}P\land Q\lor_{1}P\land_{1}Q\lor P\land Q$
 $P\to ((P\to Q)\land_{1}(_{1}Q\lor_{1}P))$
 $\Leftrightarrow_{1}P\lor ((_{1}P\lor Q)\land (Q\land P))$
 $\Leftrightarrow_{1}P\lor (_{1}P\land Q\land P)\lor (Q\land Q\land P)$
 $\Leftrightarrow_{1}P\lor P\land Q$
 $\Leftrightarrow_{1}P\land Q\lor_{1}Q)\lor P\land Q$
 $\Leftrightarrow_{1}P\land Q\lor_{1}P\land_{1}Q\lor P\land Q$
 $\Leftrightarrow_{1}P\land Q\lor_{1}P\land_{1}Q\lor P\land Q$
所以, 二式逻辑等价。

■ 定义 2.6.4 极大项

- □在n个变元的基本和中, 若每一个变元与其否定不同时存在, 而两者之一必出现一次且仅出现一次, 则这种基本和叫*极大项*
- $\square P \lor Q$, $P \lor \neg Q$, $\neg P \lor Q$, $\neg P \lor \neg Q$
- □n个变元可构成 2n个不同的极大项
- □命题变元看成 0, 命题变元的否定看成 1, 那么每一极大项对应一个二进制数, 因而也对应一个十进制数
- □把对应的十进制数当作足标,用M_i表示这一项

$$M_{0} \Leftrightarrow P \vee Q \vee R \qquad \qquad \longrightarrow 0 \ 0 \ \longrightarrow 0$$

$$M_{1} \Leftrightarrow P \vee Q \vee \gamma R \qquad \longrightarrow 0 \ 1 \ \longrightarrow 1$$

$$M_{2} \Leftrightarrow P \vee \gamma Q \vee R \qquad \longrightarrow 0 \ 1 \ 0 \longrightarrow 2$$

$$M_{3} \Leftrightarrow P \vee \gamma Q \vee \gamma R \qquad \longrightarrow 0 \ 1 \ 1 \longrightarrow 3$$

$$M_{4} \Leftrightarrow \gamma P \vee Q \vee R \qquad \longrightarrow 1 \ 0 \ 0 \longrightarrow 4$$

$$M_{5} \Leftrightarrow \gamma P \vee Q \vee \gamma R \qquad \longrightarrow 1 \ 0 \ 1 \longrightarrow 5$$

$$M_{6} \Leftrightarrow \gamma P \vee \gamma Q \vee \gamma R \qquad \longrightarrow 1 \ 1 \ 0 \longrightarrow 6$$

$$M_{7} \Leftrightarrow \gamma P \vee \gamma Q \vee \gamma R \qquad \longrightarrow 1 \ 1 \ 1 \longrightarrow 7$$

一般地,对 $P_1, ..., P_n$ 而言, 2^n 个极大项为:

 $M_0, M_1, M_2, ..., M_{2^n-1}$

- M
 - ■极大项的性质
 - □析取式
 - \Box 每个极大项 M_k 只在与其下标对应的真值指派下为F,其余都为T
 - $\square M_i \lor M_j \Leftrightarrow T, i \neq j$
 - $\square \land M_i \Leftrightarrow F (0 \le i \le 2^{n}-1)$
 - 定义 2.6.5 设 $P_1, P_2, ..., P_n$ 是n个命题变元, M_{k1} , M_{k2} , ..., M_{ks} 为关于 $P_1, P_2, ..., P_n$ 的 极大项($0 \le k_1 < k_2 < ... < k_s \le 2^n 1$)则称 $M_{k1} \land M_{k2} \land ... \land M_{ks}$ 为关于 $P_1, P_2, ..., P_n$ 的 主合取范式,并简记为 $\prod k_1$, k_2 , ..., k_s

■ 设 $G=(P \land Q) \lor (\neg P \land R) \lor (Q \land R)$

P	Q	R	G
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$(P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R)$$

$$\Leftrightarrow M_0 \land M_2 \land M_4 \land M_5$$

$$\Leftrightarrow \Pi(0, 2, 4, 5)$$

■ 定理2.6.4 假若命题公式 $A(P_1, P_2, ..., P_n)$ 不是重言式,则必存在且恰好存在一个关于 P_1 , P_2 , ..., P_n 的主合取范式与之等价;且在公式A的真值表中,使A的真值为F的指派所对应的各极大项的合取,即为A的主合取范式。

- M
 - ■用等价变换求主合取范式
 - □先用相应的公式去掉→和↔
 - □用公式的否定公式或摩根律将¬后移到命题变 元之前
 - \square 用分配律、幂等律等公式进行整理,使之成为合取范式 $A_1 \land A_2 \land ... \land A_n$
 - 口为使每个 A_i 都变成极大项,对缺少变元的 A_i 补 全变元,比如缺变元R,就用\联结矛盾式(R $\land \neg R$)形式补R
 - □消去重复的极大项,并将极大项按下标由小到 大的次序排列

例:求G=¬(R→P)∨(Q∧(P∨R))主合取范式

$$G \Leftrightarrow \neg (R \to P) \lor (Q \land (P \lor R))$$

$$\Leftrightarrow \neg (\neg R \lor P) \lor (Q \land (P \lor R))$$

$$\Leftrightarrow (\neg P \land R) \lor (Q \land (P \lor R))$$

$$\Leftrightarrow (\neg P \land R \lor Q) \land (\neg P \land R \lor P \lor R)$$

$$\Leftrightarrow (\neg P \lor Q) \land (R \lor Q) \land (\neg P \lor P \lor R) \land (R \lor P \lor R)$$

$$\Leftrightarrow (\neg P \lor Q \lor (\neg R \land R)) \land (R \lor Q) \land (P \lor R)$$

$$\Leftrightarrow (\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \lor R) \land (P \lor Q \lor R) \land (P \lor \neg Q \lor R)$$

$$\Leftrightarrow (\neg P \lor \neg Q \lor \neg R)$$

$$\Leftrightarrow \neg Q \lor \neg Q \lor \neg Q \lor \neg Q \lor Q$$

$$\Leftrightarrow \neg Q \lor \neg Q \lor \neg Q \lor Q$$

$$\Leftrightarrow \neg Q \lor \neg Q \lor \neg Q \lor \neg Q \lor Q$$

利用主范式判定公式类型

- ■利用主析取范式判定
 - 口若公式 $A(P_1, P_2, ..., P_n)$ 的主析取范式包含所有 2^n 个极小项,则 A是永真式
 - □若A的主析取范式是一空公式且为0,则A是永假式
 - □否则, A为偶然式
- ■利用主合取范式判定
 - 口若公式 $A(P_1, P_2, ..., P_n)$ 的主合取范式包含所有 2^n 个极大项,则 A是永假式
 - □若A的主合取范式是一空公式且为1,则A是永真式
 - \Box 否则,A为偶然式

例:求公式 $A=(Q_{\wedge}(P\rightarrow Q))\rightarrow P$ 的主范式并判定公式的类型

解 (1)求A的主析取范式

$$A\Leftrightarrow \neg (Q\land (\neg P\lor Q))\lor P$$
 $\Leftrightarrow \neg Q\lor (P\land \neg Q)\lor P$
 $\Leftrightarrow (\neg Q\land (P\lor \neg P))\lor (P\land \neg Q)\lor (P\land (Q\lor \neg Q))$
 $\Leftrightarrow (P\land \neg Q)\lor (\neg P\land \neg Q)\lor (P\land \neg Q)\lor (P\land \neg Q)$
 $\Leftrightarrow (P\land Q)\lor (P\land \neg Q)\lor (\neg P\land \neg Q)$
由此可知A是可满足公式

(2) 求A的主合取范式

$$A \Leftrightarrow (\neg Q \lor (P \land \neg Q)) \lor P$$

$$\Leftrightarrow P \vee \neg Q$$

由前分析和举例可知:

仅需求出公式A的任一种主范式即可判定A的类型

- M
 - ■主析取范式和主合取范式的关系
 - □一个命题公式的主析取范式和主合取范式紧密 相关
 - □在它们的简记式中, 代表极小项和极大项的足标 是互补的, 即两者一起构成0, 1, 2, ..., 2ⁿ-1诸数
 - □例
 - $A(P,Q,R) = \Sigma(1,3,5,6,7) \Leftrightarrow \prod (0,2,4)$
 - $\blacksquare B(P,Q,R,S) = \prod (0,1,3,5,6,7) \Leftrightarrow \Sigma ((2,4,8,9,10,11,12,13,14,15)$
 - $\square \neg m_i \Leftrightarrow M_i$
 - $\square \ \ \, \bigcap M_i \Leftrightarrow m_i$

练习

- 通过主范式判断公式
 A=(¬P∨¬Q)→(P↔¬Q)
 是否为重言式或矛盾式?
- 2. 己知A(P,Q,R)的真值表如 右图: 求它的主析取和主 合取范式。
- 3. 已知A(P,Q,R)的主析取范式中含有下面极小项m₁, m₃, m₅, m₇写出它的主合取范式及其对应的命题公式

P	Q	R	A
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Answers

1. 解:

$$A \Leftrightarrow \neg (\neg P \lor \neg Q) \lor ((P \to \neg Q) \land (\neg Q \to P))$$

$$\Leftrightarrow (P \land Q) \lor ((\neg P \lor \neg Q) \land (Q \lor P))$$

$$\Leftrightarrow (P \land Q) \lor ((\neg P \land (Q \lor P)) \lor (\neg Q \land (Q \lor P)))$$

$$\Leftrightarrow (P \land Q) \lor (\neg P \land Q) \lor (\neg P \land P) \lor (\neg Q \land Q) \lor (\neg Q \land P)$$

$$\Leftrightarrow (P \land Q) \lor (\neg P \land Q) \lor (\neg Q \land P)$$

主析取范式既非空公式,又未包含2²=4个项,故F不是重言式和矛盾式,只是可满足式

2. A(P,Q,R)的主析取范式:

$$A(P,Q,R) \Leftrightarrow m_0 \vee m_3 \vee m_4 \vee m_6 \vee m_7$$

$$\Leftrightarrow (\neg P \wedge \neg Q \wedge \neg R) \vee (\neg P \wedge Q \wedge R) \vee$$

$$(P \wedge \neg Q \wedge \neg R) \vee (P \wedge Q \wedge \neg R) \vee (P \wedge Q \wedge R)$$

A(P,Q,R)的主合取范式:

$$A(P,Q,R) \Leftrightarrow M_1 \wedge M_2 \wedge M_5$$

$$\Leftrightarrow (P \vee Q \vee \neg R) \wedge (P \vee \neg Q \vee R) \wedge (\neg P \vee Q \vee \neg R)$$

3.
$$A(P,Q,R) \Leftrightarrow M_0 \land M_2 \land M_4 \land M_6$$

 $\Leftrightarrow (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (\neg P \lor Q \lor R)$
 $\land (\neg P \lor \neg Q \lor R)$

范式的应用

■逻辑设计

例1.加法器的设计,有两个n位二进制数a,b相加和为 s(s=a+b), a,b分别写成:

$$a=a_{n}a_{n-1}...a_{i}...a_{2}a_{1},$$

$$+ b=b_{n}b_{n-1}...b_{i}...b_{2}b_{1}$$

$$s=c_{n}s_{n}s_{n-1}...s_{i}...s_{2}s_{1}$$

其中 s_i 是第i位 a_i 、 b_i 及 c_{i-1} (c_{i-1} 是第i-1位向第i位的进位)的和,显然 s_i 是 a_i b_i 及 c_{i-1} 的函数,写成 s_i (a_i , b_i , c_{i-1}),它与 a_i , b_i , c_{i-1} 的关系如下表:

a_{i}	b _i	c_{i-1}	$s_i(a_i,b_i,c_{i-1})$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

在电路逻辑设计中用如下逻辑部件:

根据前边的表,列出s_i(a_i,b_i,c_{i-1})的主析取范式:

$$\begin{split} s_i(a_i,\!b_i,\!c_{i\text{-}1}) = & (\neg a_i \land \neg b_i \land c_{i\text{-}1}) \lor (\neg a_i \land b_i \land \neg c_{i\text{-}1}) \lor \\ & (a_i \land \neg b_i \land \neg c_{i\text{-}1}) \lor (a_i \land b_i \land c_{i\text{-}1}) \end{split}$$

(在指派001、010、100、111时s_i为1)

智能科学与技术系 (IST)

٧

例2. 安排课表,教语言课的教师希望将课程安排在第一或第三节;教数学课的教师希望将课程安排在第二或第三节;教 师希望将课程安排在第二或第三节;教 原理课的教师希望将课程安排在第一或 第二节。如何安排课表,使得三位教师 都满意。

令L₁、L₂、L₃分别表示语言课排在第一、第二、第三节。

 M_1 、 M_2 、 M_3 分别表示数学课排在第一、第二、第三节。

 P_1 、 P_2 、 P_3 分别表示原理课排在第一、第二、第三节。

三位教师都满意的条件是: $(L_1 \lor L_3) \land (M_2 \lor M_3) \land (P_1 \lor P_2)$ 为真。 将上式写成析取范式(用分配律)得: $((L_1 \land M_2) \lor (L_1 \land M_3) \lor (L_3 \land M_2) \lor$ $(L_3 \wedge M_3) \wedge (P_1 \vee P_2)$ $\Leftrightarrow (L_1 \land M_2 \land P_1) \lor (L_1 \land M_3 \land P_1) \lor$ $(L_3 \wedge M_2 \wedge P_1) \vee (L_3 \wedge M_3 \wedge P_1) \vee$ $(L_1 \wedge M_2 \wedge P_2) \vee (L_1 \wedge M_3 \wedge P_2) \vee$ $(L_3 \land M_2 \land P_2) \lor (L_3 \land M_3 \land P_2)$ 可以取($L_3 \wedge M_2 \wedge P_1$)、($L_1 \wedge M_3 \wedge P_2$)为T, 得到两种排法。

主析取范式的个数

- *n*=1时
 - □极小项有 2¹=2 个,
 - $\blacksquare P, \neg P$
 - □一个命题变元能够构成的不同的主析取范式
 - $\blacksquare F$
 - $\blacksquare P$
 - **■** ¬ *P*
 - $\blacksquare P \lor \neg P$
 - 2² ↑

- ٧
- = n=2
 - □ 极小项有 22=4 个,
 - $\blacksquare \neg P \land \neg Q, \neg P \land Q, P \land \neg Q, P \land Q$
 - □两个命题变元能够构成的不同的主析取范式

$$f_1 \Leftrightarrow F$$

$$f_9 \Leftrightarrow \exists P \land Q \lor P \land \exists Q$$

 $2^{2^2}=16 \uparrow$

$$f_2 \Leftrightarrow \exists P \land \exists Q$$

$$f_{10} \Leftrightarrow \exists P \land Q \lor P \land Q$$

$$f_3 \Leftrightarrow \exists P \land Q$$

$$f_{11} \Leftrightarrow P \land \neg Q \lor P \land Q$$

$$f_4 \Leftrightarrow P \land \neg Q$$

$$f_{12} \Leftrightarrow \exists P \land \exists Q \lor \exists P \land Q \lor P \land \exists Q$$

$$f_5 \Leftrightarrow P \land Q$$

$$f_{13} \Leftrightarrow \exists P \land \exists Q \lor \exists P \land Q \lor P \land Q$$

$$f_6 \Leftrightarrow \exists P \land \exists Q \lor \exists P \land Q$$

$$f_{14} \Leftrightarrow \exists P \land Q \lor P \land \exists Q \lor P \land Q$$

$$f_7 \Leftrightarrow \exists P \land \exists Q \lor P \land \exists Q$$

$$f_{15} \Leftrightarrow \exists P \land \exists Q \lor P \land \exists Q \lor P \land Q$$

$$f_8 \Leftrightarrow \exists P \land \exists Q \lor P \land Q$$

$$f_{16} \Leftrightarrow \exists P \land \exists Q \lor \exists P \land Q \lor P \land \exists Q \lor P \land Q$$

- ■n个命题变元
 - □极小项有 2n 个
 - □不同的主析取范式
 - 2^{2ⁿ} 个(包括*F*)
 - □不同的主合取范式
 - 2^{2ⁿ} 个(包括*T*)

۲

2.7 命题演算的推理理论

例

- 1、如果天不下雨,我就去看电影,我没有去看电影, 说明
- 2、如果李敏出差到学校,若王军不生病,则王军一定去看望李敏。如果李敏出差到长沙,那么李敏一定来学校。王军没有生病。所以,_____
- 3、如果甲是冠军,则乙或丙将得亚军;如果乙得亚军,则甲不能得冠军;如果丁得亚军,丙不能得亚军;事实是甲已得冠军,可知不能得亚军。

推理规则

■推理

- □根据一个或几个已知的判断得出一个新的判断 的思维过程
- 口称这些已知的判断为*前提*
- □得到的新的判断为前提的*有效结论*
- 定义 2.7.1
 - \square 称 $H_1 \land H_2 \land ... \land H_n \rightarrow R$ 为推理的 \mathcal{F} 式结构, H_1 , H_2 ,..., H_n 是推理的前提(组),R为推理的结论。若 $H_1 \land H_2 \land ... \land H_n \rightarrow R$ 为重言式(即 $H_1 \land H_2 \land ... \land H_n \Rightarrow R$),则称从前提组 H_1 , H_2 ,..., H_n 推出结论R的推理正确(或有效),称R是 H_1 , H_2 ,..., H_n 的有效结论或真确结论。否则称推理不正确

如何判断由一个前提集合能否推出某个结论?

- 真值表法
- 等价变换法
- "形式证明"法
 - □ *形式证明*: 一个描述推理过程的命题序列,其中每个命题或者是已知的命题,或者是由某些前提所推得的结论,序列中最后一个命题就是所要求的结论
 - □ *有效的证明*:如果证明过程中的每一步所得到的结论都是根据推理规则得到的,则这样的证明称作是有效的
 - □ *有效的结论*:通过有效的证明而得到结论,称作是有效的结 论
 - □ *合理的证明*: 一个证明是否有效与前提的真假没有关系。如果所有的前提都是真的,那么通过有效的证明所得到的结论也是真的。这样的证明称作是合理的。
 - □ *合理的结论*:一个结论是否有效与它自身的真假没有关系。 通过合理证明而得到的结论称作合理的结论

推理规则

- P规则(引入前提规则): 在推理过程中, 可以随时引入前提。
- T规则(引入结论规则): 在推理过程中, 如果前边有一个或几个公式永真蕴涵公式S, 则可将S纳入推理过程中。
- 教材64页表2.7.1,2.7.2中的等价式和蕴涵 式

٧

例: 求证 $P \rightarrow Q$, $Q \rightarrow R$, $P \rightarrow R$

证明

序号 前提或结论 所用规则 从哪几步得到 所用公式

(1) P P

 $(2) P \rightarrow Q P$

(3) Q T (1)(2) I

 $(4) \quad Q \rightarrow R \qquad P$

(5) R T (3)(4) I

M

例: 求证¬ $(P \land Q) \land (Q \lor R) \land \neg R \Rightarrow \neg P$

(1) Q \vee R

P

(2) $\neg R$

P

(3) Q

T (1) (2) I

 $(4) \neg (P \land Q)$

P

 $(5) \neg P \lor \neg Q$

T (4) E

 $(6) \neg P$

T (3) (5) I

Ŋ

例:用命题逻辑推理方法证明下面推理的有效性

■ 如果我学习,那么我数学不会不及格。如果我不热衷于玩朴克,那么我将学习。但是我数学不及格。因此,我热衷于玩朴克。

解 设 P: 我学习。

Q: 我数学及格。

R: 我热衷于玩朴克。

 $\blacksquare P \rightarrow Q, \neg R \rightarrow P, \neg Q \Rightarrow R$

$$P \rightarrow Q$$
, $\neg R \rightarrow P$, $\neg Q \Rightarrow R$

- $(1) P \rightarrow Q$

(2) - Q

 $(3) \neg P$

- T (1) (2) I
- $(4) \neg R \rightarrow P$

 $(5) \neg R$

T(3)(4)I

(6) R

- T(5)

例: 求证 $P \rightarrow (Q \rightarrow S)$, $\neg R \lor P$, $Q \Rightarrow R \rightarrow S$

证明 (1)
$$P \rightarrow (Q \rightarrow S)$$
 P

$$(2) \neg P \lor (\neg Q \lor S) \qquad T(1) \quad E$$

$$(3) \neg P \lor (S \lor \neg Q) \qquad T(2) \quad E$$

$$(4) (\neg P \lor S) \lor \neg Q \qquad T(3) \quad E$$

(6)
$$\neg P \lor S$$
 T (4)(5) I

(7)
$$P \rightarrow S$$
 T (6) E

$$(8) \neg R \lor P$$
 P

(9)
$$R \rightarrow P$$
 $T(8)$ E

$$(10) R \rightarrow S \qquad T(7)(9) I$$

T(7)(9) 星能科学与技术系(IST) Department of Intelligence Sci. & Tech.

练习

■ 用形式证明方法证明:

$$(P \land Q) \rightarrow R, \neg R \lor S, \neg S \Rightarrow \neg P \lor \neg Q$$

$$(1) \neg R \lor S$$
 P

$$(2) \neg S$$

(3)
$$\neg R$$
 $T(1)(2) I$

$$(4) (P \land Q) \rightarrow R \qquad P$$

(5)
$$\neg (P \land Q) \lor R$$
 T(4) E

(6)
$$\neg$$
 (P\Q) T(3)(5) I

(7)
$$\neg P \lor \neg Q$$
 T(6) E

例: A→B∧C, ¬B∨D , (E→¬P)→¬D, B→A∧¬E

 $\Rightarrow B \rightarrow E$

$$(1) \neg B \lor D$$

 $(2) B \rightarrow D$

$$(3) (E \rightarrow \neg P) \rightarrow \neg D$$

 $(4) D \rightarrow \neg (E \rightarrow \neg P)$

$$(5) B \rightarrow \neg (E \rightarrow \neg P)$$

 $(6) B \rightarrow \neg (\neg E \lor \neg P)$

$$(7) B \rightarrow E \wedge P$$

 $(8) \neg B \lor E \land P$

$$(9) (\neg B \lor E) \land (\neg B \lor P)$$

 $(10) (\neg B \lor E)$

$$(11) B \rightarrow E$$

P

T(1)E

P

T(3)E

T(2)(4) I

T(5)E

T (6) E

T(7)E

T (8) E

T(9)I

T(10) E

智能科学与技术系(IST) Department of Intelligence Sci. & Tech.

证明方法

- ■定理常见的形式
 - □P当且仅当Q,如果P,那么Q
 - $\square P \rightarrow Q \perp Q \rightarrow P, P \rightarrow Q$
- 证明 $P \rightarrow Q$ 为真的方法
 - □无义证明法
 - ■证明P是假,那么P→Q是真
 - □平凡证明法
 - ■证明Q是真,那么P→Q是真
 - □直接证明法
 - □间接证明法
 - ■附加前提证明法
 - 反证法 (归谬法)

附加前提证明法

- 如果要证明的结论是条件式(R→S)形式,则可以把结论中条件式的前件R作为附加前提,与给定的前提一起推出后件S即可
- 如果 $H_1 \wedge H_2 \wedge ... \wedge H_n \wedge R \Rightarrow S$,则 $H_1 \wedge H_2 \wedge ... \wedge H_n \Rightarrow R \Rightarrow S$

证明 因为 $H_1 \wedge H_2 \wedge ... \wedge H_n \wedge R \Rightarrow S$ 则 $(H_1 \wedge H_2 \wedge ... \wedge H_n \wedge R) \rightarrow S$ 是永真式 即 $\neg (H_1 \wedge H_2 \wedge ... \wedge H_n \wedge R) \vee S$ 是永真式 $\neg (H_1 \wedge H_2 \wedge ... \wedge H_n) \vee \neg R \vee S$ 是永真式 $(H_1 \wedge H_2 \wedge ... \wedge H_n) \rightarrow (R \rightarrow S)$ 是永真式 即 $H_1 \wedge H_2 \wedge ... \wedge H_n \Rightarrow R \rightarrow S$

- Н
 - 规则CP(Conditional Proof):
 - $\square 如果H₁ <math>\wedge H_2 \wedge ... \wedge H_n \wedge R \Rightarrow S, 则$ $H_1 \wedge H_2 \wedge ... \wedge H_n \Rightarrow R \rightarrow S$
 - 例
 - $\square P \rightarrow (Q \rightarrow S), \neg R \lor P, Q \Rightarrow R \rightarrow S$

证明 (1) R

P(附加前提)

 $(2) \neg R \lor P$

P

(3) P

T (1)(2) I

 $(4) P \rightarrow (Q \rightarrow S)$

P

 $(5) Q \rightarrow S$

T (3)(4) I

(6) Q

P

(7) S

T (5)(6) I

 $(8) R \rightarrow S$

CP

例: $A \rightarrow B \land C$, $\neg B \lor D$, $(E \rightarrow \neg P) \rightarrow \neg D$, $B \rightarrow A \land \neg E \Rightarrow B \rightarrow E$

- ■直接证明
- ■附加前提法
- (1) B
- $(2) \neg B \lor D$
- (3) D
- $(4) (E \rightarrow \neg P) \rightarrow \neg D$
- $(5) \neg (E \rightarrow \neg P)$
- (6) $E \wedge P$
- (7) E
- $(8) B \rightarrow E$

P附加

P

T(1)(2)I

P

T(3)(4) I

T(5)E

T (6) I

CP

例:用形式推理方法证明下面推理的有效性

■ 如果体育馆有球赛,青年大街交通就拥挤。在这种情况下,如果小王不提前出发,就会迟到。因此,小王没有提前出发那么若他未迟到的话体育馆就没有球赛

证明 先将命题符号化。

设 P: 体育馆有球赛。

Q: 青年大街交通拥挤。

R: 小王提前出发。

S: 小王迟到。

$$P \rightarrow Q$$
, $(Q \land \neg R) \rightarrow S \Rightarrow \neg R \rightarrow (\neg S \rightarrow \neg P)$

$$P \rightarrow Q$$
, $(Q \land \neg R) \rightarrow S \Rightarrow \neg R \rightarrow (\neg S \rightarrow \neg P)$

证明

$$(1) \neg R \land \neg S$$

$$(2)$$
 $\neg R$

$$(3) \neg S$$

$$(4) \quad (Q \land \neg R) \rightarrow S$$

$$(5) \neg (Q \land \neg R)$$

(6)
$$\neg Q \lor R$$

$$(7) - Q$$

(8)
$$P \rightarrow Q$$

$$(9) \neg P$$

$$(10) (\neg R \land \neg S) \rightarrow \neg P$$

反证法 (归谬法)

- 主要思想:假设结论不成立,可以推出矛盾的结论(矛盾式)
- 定义2.7.2
 - 口设 $H_1, H_2, ..., H_n$ 是命题公式, $au_1 \wedge H_1 \wedge H_2 \wedge ... \wedge H_n$ 是可满足式,则称 $H_1, H_2, ..., H_n$ 是相容的(一致的);如果 $H_1 \wedge H_2 \wedge ... \wedge H_n$ 是矛盾式,则称 $H_1, H_2, ..., H_n$ 是不相容的(不一致的)

- 设 $\{H_1, H_2, ..., H_n\}$ 是一致的, C是一命题公式, 如果 $\{H_1, H_2, ..., H_n, \neg C\}$ 是不一致的, 则能从 $H_1, H_2, ..., H_n$ 推出C
- 证明 设 $H_1 \land H_2 \land \ldots \land H_n \land \neg C$ 是矛盾式,则 $\neg (H_1 \land H_2 \land \ldots \land H_n \land \neg C)$ 是个永真式。
- $\neg (H_1 \land H_2 \land \dots \land H_n \land \neg C) \Leftrightarrow \neg (H_1 \land H_2 \land \dots \land H_n) \lor C$ $\Leftrightarrow (H_1 \land H_2 \land \dots \land H_n) \to C$

所以 $H_1 \wedge H_2 \wedge \ldots \wedge H_n \Rightarrow C$

■ 实际上,要证明 $H_1 \wedge H_2 \wedge \ldots \wedge H_n \Rightarrow C$,只要证明 $H_1 \wedge H_2 \wedge \ldots \wedge H_n \wedge \neg C$ 蕴含着矛盾式即可,即 $H_1 \wedge H_2 \wedge \ldots \wedge H_n \wedge \neg C \Rightarrow R \wedge \neg R$

M

例 $P \rightarrow Q$, $(\neg Q \lor R) \land \neg R$, $\neg (\neg P \land S) \Rightarrow \neg S$

 $(1) \neg \neg S$

P(假设前提)

(2) S

T (1)E

 $(3) \neg (\neg P \land S)$

P

(4) $P \lor \neg S$

T(3)E

(5) P

T (2) (4) I

(6) $P \rightarrow Q$

P

(7) Q

T (5) (6) I

(8) $(\neg Q \lor R) \land \neg R$

P

 $(9) \neg Q \lor R$

T (8) I

 $(10) \neg R$

T (8) I

(11) R

T (7) (9) I

(12) $R \land \neg R$

- T (10) (11) I
 - 智能科学与技术系(IST) Department of Intelligence Sci. & Tech.

N

例 证明: $R \rightarrow \neg Q$, $R \lor S$, $S \rightarrow \neg Q$, $P \rightarrow Q \Rightarrow \neg P$

- (1) ¬(¬P) P(假设前提)
- (2) P T(1) E
- $(3) P \rightarrow Q P$
- (4) Q T(1)(2) I
- (5) $R \rightarrow \neg Q$ P
- (6) $\neg R$ T(4)(5) I
- (7) $R \vee S$ P
- (8) S T(6)(7) I
- $(9) S \rightarrow \neg Q \qquad F$
- $(11) Q \land \neg Q \qquad T(4)(10) I$

命题逻辑的应用

- 孙澈, 李美英. 数理命题逻辑在交流电能计量接线上的研究与应用. 《太原科技》, 2003年第1期
- 黄冲.组合优化中的命题逻辑.华中科技大学 硕士学位论文,2011
- 李丹菁,陶振麟.在预测控制中使用命题逻辑及其应用.2001中国控制与决策学术年会论文集,2001年

V

命题逻辑小结

学习重点及要求:

- 逻辑联结词
 - □ 要熟练掌握联结词的真值表定义以及它们在自然语言中的含义
 - □ 特别注意"∨"和"→"的用法
- 命题符号化
- 掌握永真式的证明方法
 - □ 真值表
 - □ 等价变换, 化简成 T
 - □ 主范式
- 掌握永真蕴含式的证明方法
- 掌握等价公式的证明方法
 - □对偶式
- 熟练掌握范式的写法
- 熟练掌握三种推理方法
 - □直接证明
 - □附加前提
 - □ 反证法