数学乙問題

(120分)

【選択問題】 次の Z1 $\sim Z3$ の 3 題の中から 2 題選択し、解答せよ。

Z1 座標平面上において、円 C は 2 点 A(0, 3), B(0, 5) を通り、半径が $\sqrt{5}$ である。また、円 C の中心は第 1 象限にある。

(1) 円 C の中心の座標を求めよ。

(2) 直線 $\ell: y = mx$ (m は定数) がある。円 C が直線 ℓ から切り取る線分の長さが線分 AB の長さに等しいとき、m の値を求めよ。

Z2 関数 $f(x) = \sin 2x + 4\sin x - \cos x + a$ があり、 $f\left(\frac{\pi}{6}\right) = 0$ である。ただし、a は定数とする。

- (1) a の値を求めよ。
- (2) $0 \le x < 2\pi$ のとき,不等式 $f(x) \le 0$ を解け。 (配点 20)

 $\mathbb{Z}3$

- (1) 5x-7y=3 を満たす1桁の自然数x, yの組をすべて求めよ。
- (2) 5で割ると2余り,7で割ると5余る3桁の自然数の個数を求めよ。 (配点 20)

【選択問題】 次の Z4 , Z5 から1題選択し、解答せよ。

- $\mathbf{Z4}$ 関数 $f(x) = \frac{\log x}{\sqrt{x}}$ がある。f(x) が極大値をとるときの x の値を a とする。
 - (1) f(x) の増減を調べ、a の値を求めよ。
 - (2) 1 < t < a とし、曲線 y = f(x) 上の点 P(t, f(t)) における接線に垂直で、点 P を通る直線を ℓ とする。また、 ℓ と x 軸との交点を Q とし、R(t, 0) とする。線分 QR の長さを t を用いて表せ。

(3) t が 1 < t < a の範囲で変化するとき、(2)の線分 QR の長さが最大になる t の値を求めよ。 (配点 40)

- **Z5** 方程式 $z^2-6\sqrt{2}z+27=0$ の解のうち、虚部が正であるものを α とする。また、〇 を原点とする複素数平面上に 2 点 $A(\alpha)$, $B(\beta)$ があり、 $\triangle OAB$ の重心を表す複素数は $\frac{4\sqrt{2}}{3}+\frac{7}{3}i$ である。
 - (1) α を求めよ。また、 β を求めよ。
 - (2) $\frac{\alpha}{\beta}$ を求めよ。また、 \angle OBA の大きさを求めよ。
 - (3) △OAB において、∠OBA の三等分線と辺 OA との交点のうち、O に近い方を C とする。点 C を表す複素数を求めよ。(配点 40)

【必答問題】 Z6 ~ Z8 は全員全問解答せよ。

- **Z6** 袋の中に、0、1、2の数が1つずつ書かれたカードが各2枚ずつ、計6枚入っている。 1枚の硬貨を1回投げ、表が出たら袋の中からカードを3枚同時に取り出し、裏が出たら袋 の中からカードを4枚同時に取り出す。取り出されたカードに書かれた数の総和をXとする。
 - (1) X=1 である確率を求めよ。

- (2) X=3 である確率を求めよ。
- (3) *X*が奇数であるという条件のもとで、取り出されたカードに書かれた数が3種類である 条件付き確率を求めよ。

Z7 右の図のような三角柱 OAB-CDE があり、3 辺 OC, AD, BE はそれぞれ上面 OAB, 底面 CDE に垂直で

$$OA = 3$$
, $OB = 2$, $OC = 2$, $\cos \angle AOB = \frac{2}{3}$

である。辺 BE を 2:1 に内分する点を F , 辺 CD を 2:1 に内分する点を G とする。また, $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, $\overrightarrow{OC} = \overrightarrow{c}$ とする。

- (1) \overrightarrow{OF} , \overrightarrow{OG} をそれぞれ \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} を用いて表せ。
- (2) 直線 FG と 3 点 O, D, E を通る平面との交点を P とするとき, \overrightarrow{OP} を \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} を 用いて表せ。
- (3) (2)のとき,直線 OB 上に点 Q を OQ L PQ となるようにとる。線分 PQ の長さを求めよ。 (配点 40)

 ${f Z8}$ 等差数列 $\{a_n\}$ において, $a_1=\frac{3}{2}$, $a_3=\frac{7}{2}$ である。数列 $\{a_n\}$ の初項から第 n 項までの和

を S_n とする。また、数列 $\{b_n\}$ は、0でない定数pに対して

 $pb_1+p^2b_2+p^3b_3+\cdots\cdots+p^nb_n=2^n-1$ ($n=1, 2, 3, \cdots\cdots$) を満たしている。

- (1) Snをnを用いて表せ。
- (2) b_n をp, nを用いて表せ。また、 $\lim_{n\to\infty}\sum_{k=1}^n b_k = \frac{1}{2}$ であるとき、pの値を求めよ。
- (3) (2)のとき, $\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k}S_kb_k$ を求めよ。ただし、必要ならば $\lim_{n\to\infty}\frac{n}{2^n}=0$ を用いてよい。

(配点 40)