# Regularization techniques for inhomogeneous Gibbs point process models with a diverging number of covariates

Ismaila Ba (with Jean François Coeurjolly)

2019-05-29

#### Gibbs Point Process

▶ Gibbs Point Processes (GPP) constitute a large class of point processes with interaction between the points.

$$\mathbf{x} = \{x_1, \dots, x_n\}, x_i \in W \subseteq \mathbb{R}^d$$
, (usually d=2,3),  $n$  random.

► The interaction between the points can be repulsive or attractive. This means that GPP can model both clustering or inhibition.



#### Characterization of GPP

- Density with respect to a Poisson Process, say  $f(x; \theta)$  where  $\theta$  is a parameter vector to estimate;
- Papangelou conditional intensity  $\lambda_{\theta}(u, \mathbf{x})$  defined for any location  $u \in W$  as follows:

$$\lambda_{\theta}(u, \mathbf{x}) = \begin{cases} f(\mathbf{x} \cup u; \theta) / f(\mathbf{x}; \theta) & \text{for} \quad u \notin \mathbf{x} \\ f(\mathbf{x}; \theta) / f(\mathbf{x} \setminus u; \theta) & \text{for} \quad u \in \mathbf{x} \end{cases}$$
(1)

with a/0 := 0 for  $a \ge 0$ .

# Data: Barro Colorado Island (Hubell et al., 1999, 2005)

- $D = [0, 1000m] \times [0, 500m]$
- > 300,000 locations of trees
- ightharpoonup pprox 100 spatial covariates observed at fine scale (altitude, nature of soils,...)







# Density of GPP [Daniel et al., 2018]:



$$f(\mathbf{x}; \boldsymbol{\theta}) = c_{\boldsymbol{\theta}} \exp(\beta^{\top} Z(\mathbf{x}) + \psi^{\top} S(\mathbf{x})),$$

$$Z(\mathbf{x}) = \sum_{\mathbf{v} \in \mathbf{x}} Z(\mathbf{v}), \ \psi \in \mathbb{R}^{p_1}, \ \beta \in \mathbb{R}^{p_2}, \ \boldsymbol{\theta} = (\psi^\top, \beta^\top)^\top \in \mathbb{R}^{p},$$

$$\boldsymbol{\theta} = (\psi^{\top}, \beta^{\top})^{\top} \in \mathbb{R}^{p}$$

$$Z(v) = (Z_1(v), \dots, Z_{p_2}(v))^{\top}$$
 and

S(x), the interaction function.

Problem:  $p_2$  large, covariates very correlated, ca intractable.

# Estimation of $\theta$ when $p_2$ is large and $c_{\theta}$ intractable

► The conditional intensity:

$$\lambda_{\boldsymbol{\theta}}(u, \boldsymbol{x}) = \exp(\beta^{\top} Z(u) + \psi^{\top} S(u, \boldsymbol{x}))$$
 (2)

► The log-Pseudolikehood function:

$$LPL(x; \theta) = \sum_{u \in x \cap D} \log \lambda_{\theta}(u, x) - \int_{D} \lambda_{\theta}(u, x) du.$$
 (3)

► The penalized log-Pseudolikelihood function:

$$Q(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{LPL}(\mathbf{x}; \boldsymbol{\theta}) - |D| \sum_{j=p_1+1}^{p} p_{\lambda_j}(|\theta_j|). \tag{4}$$

$$\hat{\boldsymbol{\theta}} = \operatorname{argmax}_{\boldsymbol{\theta}} \ Q(\boldsymbol{x}; \boldsymbol{\theta})$$

## Penalty functions

- $ightharpoonup \ell_1$  norm:  $p_{\lambda}(\theta) = \lambda \theta$ ,
- $\ell_2$  norm:  $p_{\lambda}(\theta) = \frac{1}{2}\lambda\theta^2$ ,
- ▶ Elastic net: for  $0 < \gamma < 1$ ,  $p_{\lambda}(\theta) = \lambda \left\{ \gamma \theta + \frac{1}{2}(1 \gamma)\theta^2 \right\}$ ,
- ▶ SCAD: for any  $\gamma > 2$ ,

$$p_{\lambda}(\theta) = \begin{cases} \lambda \theta & \text{if} \quad \theta \leq \lambda \\ \frac{\gamma \lambda \theta - \frac{1}{2}(\theta^2 + \lambda^2)}{\gamma - 1} & \text{if} \quad \lambda \leq \theta \leq \gamma \lambda \\ \frac{\lambda^2(\gamma^2 - 1)}{2(\gamma - 1)} & \text{if} \quad \theta \geq \gamma \lambda, \end{cases}$$

$$\qquad \text{MC+: for any } \gamma > 1, \; p_{\lambda}(\theta) = \left\{ \begin{array}{ll} \lambda \theta - \frac{\theta^2}{2\gamma} & \text{if } \quad \theta \leq \gamma \lambda \\ \frac{1}{2} \gamma \lambda^2 & \text{if } \quad \lambda \leq \theta \leq \gamma \lambda. \end{array} \right.$$

We also consider adaptive version of the convex penalty functions, i.e. adaptive lasso and adaptive elastic net.

#### Numerical method

From Baddeley, Rubak, and Turner (2015), we have the following finite sum approximation:

$$\int_{D} \lambda_{\boldsymbol{\theta}}(u, \boldsymbol{x}) du \approx \sum_{i=1}^{n+m} w_{j} \lambda_{\boldsymbol{\theta}}(u_{j}, \boldsymbol{x})$$

$$\mathsf{LPL}(\boldsymbol{x};\boldsymbol{\theta}) \approx \sum_{j=1}^{n+m} w_j(y_j \log \lambda_{\boldsymbol{\theta}}(u_j,\boldsymbol{x}) - \lambda_{\boldsymbol{\theta}}(u_j,\boldsymbol{x}))$$

$$Q(\mathbf{x}; \boldsymbol{\theta}) \approx \underbrace{\sum_{j=1}^{n+m} w_j(y_j \log \lambda_{\boldsymbol{\theta}}(u_j, \mathbf{x}) - \lambda_{\boldsymbol{\theta}}(u_j, \mathbf{x}))}_{\mathbf{spatstat}} - \underbrace{|D| \sum_{j=p_1+1}^{p} p_{\lambda_j}(|\theta_j|)}_{\mathbf{glmnet or ncvreg}}$$

where  $y_j = \frac{1}{w_i}$  for  $u_j \in \mathbf{x}$  and  $y_j = 0$  otherwise.

This approximation often requires large m to perform well.

#### Main results

- ▶ D expands to  $\mathbb{R}^d$ , i.e.  $D = D_n$ , n = 1, 2, ...
- $\lambda = \lambda_{n,j}$ , LPL = LPL<sub>n</sub> and  $Q = Q_n$ .
- $\bullet \ \theta = (\theta_1^\top, \theta_2^\top)^\top = (\theta_1^\top, \mathbf{0}^\top)^\top, \ \theta_1 \in \mathbb{R}^{p_1 + s}, \ \theta_2 \in \mathbb{R}^{p_n p_1 s}.$
- Define the sequences

$$\begin{split} a_n &= \max_{j=1,...,s} |p'_{\lambda_{n,j+p_1}}(|\beta_{0j}|)|, \\ b_n &= \inf_{\substack{j=p_1+s+1,...,p_n \ |\theta| \leq \epsilon_n \\ \theta \neq 0}} p'_{\lambda_{n,j}}(\theta), \text{ for } \epsilon_n = K_1 \sqrt{\frac{p_n}{|D_n|}}, \\ c_n &= \max_{\substack{j=1,...,s}} |p''_{\lambda_{n,j+p_1}}(|\beta_{0j}|)| \end{split}$$

where  $K_1$  is any positive constant.

#### Main results

#### Theorem 1 [BaCoeurjolly19+]

- ▶ Under some assumptions such that it works . . .
- $ightharpoonup a_n = O(|D_n|^{-1/2}), c_n = o(1).$

Then there exists  $\hat{\theta}$  such that

$$\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}\|=O_{\mathrm{P}}(\sqrt{p_n}(|D_n|^{-1/2}+a_n))$$

#### Theorem 2 [BaCoeurjolly19+]

- ▶ Under some assumptions such that it works . . .
- $ho p_n^3/|D_n| o 0$ ,  $a_n\sqrt{|D_n|} o 0$ ,  $b_n\sqrt{|D_n|/p_n^2} o \infty$ .

Then, as  $n \to \infty$ 

- (i) Sparsity:  $P(\hat{\theta}_2 = 0) \to 1$  as  $n \to \infty$ ,
- (ii) Asymptotic Normality:

$$|D_n|^{1/2}\mathbf{\Sigma}_n(\mathbf{X};\boldsymbol{\theta})^{-1/2}(\hat{\boldsymbol{\theta}}_1-\boldsymbol{\theta}_1)\overset{d}{\to}\mathcal{N}(0,\mathbf{I}_m),$$

where  $m = p_1 + s$ .

# Values of $a_n$ , $b_n$ and $c_n$ for some given regularization methods

**Possible?** 
$$\Leftrightarrow a_n \sqrt{|D_n|} \to 0$$
 and  $b_n \sqrt{|D_n|/p_n^2} \to \infty$ 

Lasso:

$$a_n = b_n = \lambda_n$$
,  $c_n = 0$  and **Possible?** = **NO**.

► Ridge:

$$a_n = \lambda_n \max_{j=1,\dots,s} \{|eta_{0j}|\}, \quad b_n = 0, \quad c_n = \lambda_n \quad ext{and} \quad extstyle{ extstyle Possible?} = extbf{NO}$$

► Adaptive Lasso:

$$a_n = \max_{j=1,\dots,s} \{\lambda_{n,j+\rho_1}\}, \quad b_n = \inf_{j=\rho_1+s+1,\dots,\rho_n} \{\lambda_{n,j}\}, \quad c_n = 0$$
 and **Possible?=YES**.

### Example of a GPP

**X**: Inhomogeneous strauss point process:

$$\lambda(u; \mathbf{x}) = \beta(u) \gamma^{s_R(u; \mathbf{x})}$$
 where  $s_R(u; \mathbf{x}) = \sum_{v \in \mathbf{x}} 1(\|u - v\| \le R)$ .

- ▶ In log-linear form,  $\beta(u) = \exp(\beta^{\top} Z(u))$  and  $\gamma = \exp(\psi)$ .
- ▶ **x** in  $D = [0, 1000] \times [0, 500]$  with  $Z(u) = (\underbrace{Z_1(u), Z_2(u)}_{\text{BCI cov.}})^{\top}$ ,

$$\beta_1 = 2$$
,  $\beta_2 = 0.75$ ,  $\gamma = 0.5$  and  $R = 12$ .



# Simulation study (similar to Choiruddin et al. (2018))

- ▶  $D = [0, 1000] \times [0, 500]$ ; **X**: Strauss model; m = 500 replications
- $\blacktriangleright$   $\lambda_{n,j}$  is chosen using **BIC**-type criterion for composite likelihood

$$cBIC(\lambda) = -2\mathbf{LPL}(\mathbf{x}; \hat{\boldsymbol{\theta}}_{\lambda}) + \log(n)tr(\hat{J}_{\lambda}\hat{H}_{\lambda})$$
 where

1170 points in average

true BCI cov. noisy correlated cov.

 $\triangleright$   $Z_i$ 's are then standardized,  $\beta_1=2$ ,  $\beta_2=.75$  and  $\psi=\log(.5)$ 

|          | TPR (%) | FPR (%) | MSE  |
|----------|---------|---------|------|
| Lasso    | 100     | 34      | 0.4  |
| A. Lasso | 100     | 22      | 0.05 |
| A. Enet  | 100     | 23      | 0.07 |

#### References

Ba, Ismaila, and Jean François Coeurjolly, "Regularization techniques for inhomogeneous Gibbs models with a diverging number of covariates", in preparation.

Daniel, Jeffrey, Julie Horrocks, and Gary J Umphrey. 2018. Penalized Composite Likelihoods for Inhomogeneous Gibbs PointProcess Models. Computational Statistics & Data Analysis 124:104–16.

Baddeley, Adrian, Ege Rubak, and Rolf Turner. 2015. Spatial Point Patterns: Methodology and Applications with R.

Choiruddin, Achmad, Jean-François Coeurjolly, Frédérique Letue, and others. 2018. "Convex and Non-Convex Regularization Methods for Spatial Point Processes Intensity Estimation." *Electronic Journal of Statistics* 12 (1): 1210–55.