PERANCANGAN DECISION SUPPORT SYSTEM PADA BIBIT SALAK BERBASIS SIMPLE ADDITTIVE WEIGHTING

Teri Mengkasrinal

Program Studi Manajemen Informatika Akademi Manajemen Informatika & Komputer (AMIK) "Boekittinggi"

email: mengkasrinal110@gmail.com

ABSTRACT

Computers have a system that has the ability to help people in solving problems, with their decision support systems can improve the quality of decision support system that will be created. For example, the bark berkualitas. Sistem seed selection to be made in the decision making is by using SAW (Simple Additive Weighting). These applications seek a weighted summation of the performance rating for each alternative on all attributes, and requires a decision matrix normalization process to a scale that can be compared with all the ratings of existing alternatives. The report will describe the decision support system in the process of selection of seeds with good quality bark. Application of the method of this SAW, obtained seeds of good quality bark and accurately.

Keywords: Decision Support Systems, Seed Salak, SAW

1. Pendahuluan

Banyak kegiatan yang harus di perhatikan pada pemilihan bibit tanaman salah satu faktor yang diperhatikan dalam usaha pembibitan salak adalah penggunaan bibit unggul. Tanaman salak merupakan tanaman tahunan, karena itu kesalahan dalam pemakaian bibit akan berakibat buruk terhadap penghasilan masyarakat. Perlakuan dan teknis yang baik tidak akan memberikan hasil maksimal sesuai dengan yang diinginkan, sehingga modal yang dikeluarkan tidak akan kembali karena adanya kerugian. Untuk itu pemilihan bibit dan penegcekan bibit harus dilakukan sebelum ditanam. Ciri-ciri dan kriteria setiap jenis bibit berbeda, dengan adanya perbedaan inilah sering mengakibatkan hasil produksi juga bermacam-macam dan tergantung kepada bibit salak tersebut.

Salah satu penyebabnya adalah masyarakat sebetulnya membutuhkan sebuah teknologi dalam menentukan jenis bibit yang tepat untuk mereka budidayakan. Dalam menghadapi kendala pemilihan bibit salak yang berkualitas dapat dilakukan dengan menggunakan metode Simple Additive Weighting (SAW). Metode ini merupakan salah satu metode dalam mengambil keputusan untuk mencari alternatif yang optimal dari kriteria-kriteria yang ada. Dengan alur algoritma yang sederhana tetapi dapat menjadi bahan solusi terhadap permasalahan dalam menentukan bibit salak yang berkualitas baik.

2. Rumusan Masalah

- a. Bagaimana menerapkan metode Simple Additive Weight (SAW) pada Sistem Pendukung Keputusan (SPK) dalam pemilihan Bibit Salak?
- b. Bagaimana merancang aplikasi Sistem Pendukung Keputusan (SPK) untuk memilih bibit salak dengan metode Simple Additive Weight (SAW)?
- c. Apakah penerapan sistem pendukung keputusan pemilihan bibit salak sudah efektif dan efisien?

3. Tujuan dan Maksud

- a. Untuk menerapkan metode Simple Additive Weighting (SAW) pada Sistem Pendukung Keputusan (SPK) dalam pemilihan bibit salak.
- b. Untuk merancang aplikasi Sistem Pendukung Keputusan (SPK) untuk memilih bibit salak dengan metode Simple Additive Weighting (SAW)

Adapun Maksud Penelitian ini adalah:

1. Menambah wawasan dan pengetahuan tentang penelitian dalam bidang pembibitan salak selanjutnya akan

- dapat lebih cermat dalam melakukan penelitian berikutnya.
- 2. Mempermudah pemilik usaha dalam pemilihan bibit salak yang akan di tawarkan kepada masyarakat.
- 3. Mempermudah mengetahui pemilihan bibit salak dalam waktu yang relatif singkat.

4. Teori Pendukung

Definisi klasik lainnya yaitu "Sistem pendukung keputusan memadukan sumber intelektual dari individu dengan kapabilitas komputer untuk meningkatkan kualitas keputusan. Sistem pendukung keputusan adalah sistem pendukung berbasis komputer bagi para pengambil keputusan manajemen yang menangani masalah-masalah tidak terstruktur". (Turban, 2005). Jenis-jenis keputusan menurut (Herbert A. Simon):

- a. Keputusan Terprogram, Keputusan ini bersifat berulang dan rutin, sedemikian hingga suatu prosedur pasti telah dibuat menanganinya.
- b. Keputusan Tidak Terprogram, Keputusan ini bersifat baru, tidak terstruktur dan jarang konsekuen.

Pengambilan Tahap-tahap Keputusan menurut Herbet A. Simon.

- Tahap Intelligence, Tahap intelligence adalah tahap pengakuan adanya masalah.
- Tahap Design, Tahap Design adalah tahap perancangan berbagai alternatif yang akan dipilih.
- Tahap Choice, Tahap choice adalah tahap memilih salah satu diantara berbagai alternatif yang sudah disiapkan dalam tahap design.
- Tahap implementation, Setelah memutuskan untuk memilih salah satu alternatif. maka manajemen melaksanakan keputusan itu.

Menurut (Kusrini, 2007) yaitu

- Membantu manajer dalam pengambilan keputusan atas masalah semi terstruktur.
- b. Memberikan dukungan atas pertimbangan manajer dan bukannya dimaksudkan untuk menggantikan fungsi manajer.
- Meningkatkan efektivitas keputusan yang diambil manajer lebih dari pada perbaikan efisiensinya.

Metode SAW membutuhkan proses normalisasi matriks keputusan (X) ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada. Metode ini merupakan metode yang paling terkenal dan paling banyak digunakan dalam menghadapi situasi Multiple Attribute Decision Making (MADM). MADM itu sendiri merupakan suatu metode yang digunakan untuk mencari alternatifoptimal dari sejumlah alternatif dengan kriteria tertentu.

Metode SAW ini mengharuskan pembuat keputusan menentukan bobot bagi setiap atribut. Skor total untuk alternatif diperoleh dengan menjumlahkan seluruh hasil perkalian antara rating (yang dapat dibandingkan lintas atribut) dan bobot tiap atribut. Rating tiap atribut haruslah bebas dimensi dalam arti telah proses melewati normalisasi matriks sebelumnya. Langkah Penyelesaian SAW sebagai berikut:

- Menentukan kriteria-kriteria yang akan dijadikan acuan dalam pengambilan keputusan, yaitu Ci.
- Menentukan rating kecocokan setiap alternatif pada setiap kriteria.
- Membuat matriks keputusan berdasarkan kemudian criteria (Ci). melakukan normalisasi matriks berdasarkan persamaan yang disesuaikan dengan jenis atribut (atribut keuntungan ataupun atribut sehingga diperoleh biaya) matriks ternormalisasi R.
- d. Hasil akhir diperoleh dari proses perankingan yaitu penjumlahan dari perkalian matriks ternormalisasi R dengan vektor bobot sehingga diperoleh nilai terbesar yang dipilih sebagai alternatif terbaik (Ai) sebagai solusi.

Formula untuk melakukan normalisasi tersebut adalah:

$$r_{ij} = \begin{cases} \frac{x_{ij}}{\text{Max } x_{ij}} \\ \text{jika j adalah atribut keberuntungan (benefit)} \\ \frac{\text{Min } x_{ij}}{x_{ij}} \\ \text{jika j adalah atribut biaya (cost)} \end{cases}$$

Persamaan....(1,1)

Dimana:

rij = rating kinerja ternormalisasi

= nilai maksimum dari setiap baris Maxij dan kolom

Minij = nilai minimum dari setiap baris dan

Xi j = baris dan kolom dari matriks Benefit = jika nilai terbesar adalah terbaik

Cost = jika nilai terkecil adalah terbaik Dengan rij adalah rating kinerja ternormalisasi dari alternatif Ai pada atribut Cj; i =1,2,...m dan j = 1,2,...,n. Nilai preferensi untuk setiap alternative (Vi) sebagai berikut:

$$V_i = \sum_{j=1}^n w_j r_{ij}$$

Persamaan....(1,2)

Dimana:

Vi = Nilai akhir dari alternatif

wj = Bobot yang telah ditentukan

rij = Normalisasi matriks

Nilai Vi yang lebih besar mengindikasikan bahwa alternatif Ai lebih

5. Metode Penelitian

Menggunakan metode analisa yang umum dibidang komputer yaitu System Development Life Cycle (SLDC). Adapun fase-fase analisa tersebut antara lain:

- 1. Perencanaan Sistem (System Planning), Merencanakan sistem yang akan dikembangkan sesuai dengan perumusan masalah yang didapat, kemudian mendefenisikan masalah yang ada untuk ditinjau lebih lanjut sehingga terkait dengan tahapan selanjutnya.
- 2. Analisis Sistem (System Analyze), Dari proses analisa ini akan didapatkan cara untuk membangun sistem baru dengan cara menganalisa sistem yang lama dengan mengidentifikasi masalah, memahami masalah, serta menganalisis masalah sesuai dengan permasalahan yang ada dan membangun sistem yang baru dengan tidak merubah sistem lama secara keseluruhan.
- 3. Desain Sistem Secara Umum (Design Logic), Merupakan proses penentuan cara kerja sistem dalam hal desain arsitektur, desain antar muka, basis data, spesikasi file dan desain program. Hasil dari proses perancangan sistem ini akan didapatkan spesifikasi sistem
- 4. Evaluasi dan Seleksi Sistem. Menterjemahkan atau memetakan hasil rancangan sistem kedalam suatu teknologi dimana para analis mengevaluasi dan menyeleksi sistem yang telah dirancang secara terinci, seperti menyeleksi bahasa pemograman, database, software, sistem operasi dan spesifikasi hardware yang digunakan dalam pengembangan sistem.

- Desain Sistem Secara Rinci (Design Analis mengevaluasi Phisvc). menyeleksi sistem yang telah dirancang secara terinci. Seperti menyeleksi bahasa pemograman, database, software, sistem operasi, dan spesifikasi hardware yang digunakan pengembangan sistem.
- 6. Implementasi (Implementation), Proses pembangunan dan pengajian sistem, instalasi sistem, dan rencana dukungan sistem. Sistem yang telah dirancang kemudian dikoding, diuji, dan installasi. Sistem Perawatan (Maintanance), Merupakan tahapan akhir dimana data dapat dipastikan bahwa secara sistematik sistem informasi dapat diperbaiki dan dikembangkan.
- 7. Desain Sistem Secara Rinci (Design Phisvc), Analis mengevaluasi menyeleksi sistem yang telah dirancang secara terinci. Seperti menyeleksi bahasa pemograman, database, software, sistem operasi, dan spesifikasi hardware yang digunakan pengembangan sistem.
- Implementasi (Implementation), Proses pembangunan dan pengajian sistem, instalasi sistem, dan rencana dukungan sistem. Sistem yang telah dirancang kemudian dikoding, diuji, dan installasi. Perawatan Sistem (Maintanance), Merupakan tahapan akhir dimana data dapat dipastikan bahwa secara sistematik sistem informasi dapat diperbaiki dan dikembangkan.

Gambar. 1 System Development Life Cyle (SLDC)

6. Pembahasan

Pada aliran sistem informasi baru ini dapat dilihat beberapa perubahan dari sistem lama.

Gambar 2 Aliran Sistem Informasi Lama

Pada menerapkan sistem baru ini dengan baik dibutuhkan pegawai yang sudah terlatih agar tidak terjadi kesalahan dalam pemakaiannya dan sesuai dengan prosedur yang benar.

Gambar 3 Aliran Sistem Informasi Baru

Untuk menggambarkan sistem secara keseluruhan, DFD yang menjelaskan gambaran logika pembuatan sistem informasi secara umum.

Gambar 4 Context Diagram

Untuk menjelaskan secara detail kerja sistem dibutuhkan Data flow sebagai pemodelan rancangan global logika pembuatan software sistem informasi.

Gambar 5 Flow Diagram

Gambar 6 Relasi Antar Tabel

Analisis Penerapan metode simple additive weighting

1. Alternatif pemiihan Jenis bibit salak:

Tabel 1. Nama Salak dan Kode

Nama Salak	Kode Salak
Salak Condet	A1
Salak Madu	A2
Salak Pondoh	A3
Salak Sidempuan	A4

2. Kriteria dan Pembobotan

a) Kriteria

Tabel 2. Kriteria Salak

Keterangan	Kriteria
Tinggi	CI
Daun	C2
Rasa Buah	C3
Tebal Daging Buah	C4
Jumlah Buah Pertandan	C5

b) Bobot

Tabel 3. Pembobotan

Bobot	Nilai
Cukup/Manis Dan Asam	1
Sedang/Manis	2
Tinggi/Manis dan Wangi	3
Sangat Tinggi/Manis Seperti	
Madu	4

Kriteria dan bobot nilai ditentukan dalam pemilihan bibit:

1. Tinggi

Tabel 4. Tinggi

No	C1(meter)	Bobot	Nilai
1	1-1,5 meter	Cukup	1
2	1,5-3 meter	Sedang	2
3	3 - 4 meter	Tinggi	3
		Sangat	
4	4-4.5 meter	Tinggi	4

2. Daun

Tabel 5. Daun, Bobot dan Nilai

No	Daun	Bobot	Nilai
1	2 - 3 m	Cukup	1
2	2,5-3,5 m	Sedang	2
3	3-4 m	Tinggi	3
4	4–6 m	Sangat Tinggi	4

3. Rasa Buah

Tabel 6. Rasa Buah

No	C3	Bobot	Nilai
1	Manis dan		
	Asam	Cukup	1
2	Manis dan Gurih	Sedang	2
3	Manis dan		
	Wangi	Tinggi	3
4	Manis Seperti	Sangat	
	Madu	Tinggi	4

4. Tebal Daging Buah

Tabel 7. Tebal Daging Buah

No	C4	Bobot	Nilai
1	0,4 - 0,6 cm	Cukup	1
2	0.5 - 1.5 cm	Sedang	2
3	0,6 - 2,0 cm	Tinggi	3
4	0,8 - 1,5 cm	Sangat Tinggi	4

5. Jumlah Pertandan

Tabel 8. Jumlah Pertandan

No	C5 Bobot		Nilai
1	14-20 buah	Cukup	1
2	30-45 buah	Sedang	2
3	45 – 90 buah	Tinggi	3
4	90- 120 buah	Sangat Tinggi	4

6. Adapun data hasil seleksi alternatif yang diajukan

Tabel 8. Jumlah Pertandan

		Kriteria					
No	Alternatif	Tinggi	Daun	Rasa Buah	Tebal Daging	Jumlah Buah	
		(m)	(m)	Kasa Duan	Buah(m)	Pertandan	
1	Salak Condet	4 – 4,5	2,5-3,5	Manis dan Wangi	0,5-1,5	45-90	
2	Salak Madu	3 – 4	2 – 3	Manis seperti Madu	0,4 - 0,6	30-45	
3	Salak Pondoh	1-1,5	3-4	Manis dan Gurih	0,8 - 1,5	14-20	
4	Salak Sidempuan	1,5-3	4–6	Manis dan Asam	0,6 - 2,0	90-120	

Menentukan rating kecocokan setiap alternatif pada setiap kriteria. Adapun data rating kecocokan dari setiap alternatif

Tabel 9. Kritris dari Beberapa Alternatif

NI.	A 14 4°C	Kriteria					
No	Alternatif	C 1	C2	С3	C4	C5	
1	A1	4	2	3	2	3	
2	A2	3	1	4	1	2	
3	A3	1	3	2	4	1	
4	A4	2	4	1	3	4	

Menormalisasikan matriks X menjadi matriks R berdasarkan persamaan 1

Alternatif: A1 (salak condet)
$$r11 = \frac{4}{\text{Max } \{1,2,3,4\}} = \frac{4}{4} = 1,00 \qquad r21 = \frac{3}{\text{Max } \{1,2,3,4\}} = \frac{3}{4} = 0,75$$

$$r12 = \frac{2}{\text{Max } \{1,2;3;4\}} = \frac{2}{4} = 0,50 \qquad r22 = \frac{1}{\text{Max } \{1,2;3;4\}} = \frac{1}{4} = 0,25$$

$$r13 = \frac{3}{\text{Max } \{1,2;3;4\}} = \frac{3}{4} = 0,75 \qquad r23 = \frac{4}{\text{Max } \{1,2;3;4\}} = \frac{4}{4} = 1,00$$

$$r14 = \frac{2}{\text{Max } \{1,2;3;4\}} = \frac{2}{4} = 0,25 \qquad r24 = \frac{1}{\text{Max } \{1;2;3;4\}} = \frac{1}{4} = 0,25$$

$$r15 = \frac{3}{\text{Max } \{1;2;3;4\}} = \frac{3}{4} = 0,75 \qquad r25 = \frac{2}{\text{Max } \{1;2;3;4\}} = \frac{2}{4} = 0,50$$

Alternatif: A3 (Salak Pondoh)

Alternatif: A3 (Salak Pondon)

r31 =
$$\frac{1}{\text{Max} \{1,2,3,4\}} = \frac{1}{4} = 0.25$$

r32 = $\frac{3}{\text{Max} \{1,2;3;4\}} = \frac{3}{4} = 0.75$

r33 = $\frac{2}{\text{Max} \{1,2;3;4\}} = \frac{4}{4} = 0.50$

r34 = $\frac{4}{\text{Max} \{1,2;3;4\}} = \frac{4}{4} = 1.00$

r35 = $\frac{3}{\text{Max} \{1;2;3;4\}} = \frac{4}{4} = 0.75$

r41 = $\frac{2}{\text{Max} \{1,2,3,4\}} = \frac{2}{4} = 0.50$

r42 = $\frac{4}{\text{Max} \{1,2;3;4\}} = \frac{4}{4} = 1.00$

r43 = $\frac{1}{\text{Max} \{1,2;3;4\}} = \frac{1}{4} = 0.25$

r44 = $\frac{4}{\text{Max} \{1;2;3;4\}} = \frac{4}{4} = 1.00$

r45 = $\frac{3}{\text{Max} \{1;2;3;4\}} = \frac{3}{4} = 0.75$

Dari hasil perhitungan di atas maka diapat matriks ternomalisasi R sebagai berikut

Proses perangkingan diperoleh bersarkan persaman sebagai berikut:

Vector bobot : W = [3, 2, 4, 3, 4], Hasil akhir diperoleh dari perkalian matrik adalah:

$$V1 = (1*3) + (0.5*2) + (0.75*4) + (0.5*3) + (0.75*4) = 3 + 1 + 3 + 1.5 + 3 = 11.5$$

$$V2 = (0.75*3) + (0.25*02) + (1*4) + (0.25*3) + (0.5*4) = 2.25 + 0.5 + 4 + 0.75 + 2 = 9.5$$

$$V3 = (0.25*3) + (0.75*2) + (0.5*4) + (1*3) + (0.75*4) = 0.75 + 1.5 + 2 + 3 + 3 = 8.25$$

$$V4 = (0.5*3) + (1*2) + (0.25*4) + (1*3) + (0.75*4) = 1.5 + 2 + 1 + 3 + 3 = 10.5$$

Langkah terakhir adalah proses perankingan. Hasi lperankingan diperoleh: V1 0.11.5; V2 9,5;V38.25; V4 10.5, Jadi alternative keputusan pemilihan bibit salak yang di pilih adalah salak condet.

Desain Input Data Salak

Gambar 7 Desain Form Input Data Salak

b. Desain Input Kriteria

Gambar 8 Desain Form Input Kriteria

Desain Penilaian

Gambar 9 Desain Form Input Penilaian

Desain Keputusan

Gambar 10 Desain Form Keputusan

Desain Output

Gambar 12 Desain Output

Tabel. 10. File Data Salak, Nama tabel: salak, Field kunci: kodesalak

Nama Field	Type	Panjang	Keterangan
Kodesalak	Varchar	5	Kode salak
Namasalak	Varchar	20	Nama salak
Daerahsalak	Varchar	20	Daerah salak
Idsuplier	Integer		Id Suplier

Tabel. 11 File Keputusan, Nama tabel: Keputusan, Field kunci: Nokep

Field	Type	Panjang	Keterangan
Nokep	Varchar	5	No keputusan
Tanggal	Date	5	Tanggal
Kodesalak	Integer	5	Kodesalak
Nama salak	Varchar	5	Nama salak
Nilai	Integer	5	Nilai
Keputusan	Varchar	5	Keputusan

Gambar 13. Flowchart Menu Utama

Flowchart Input Data Salak

Gambar 13. Input Data Salak

- Flowchart Kriteria b.
- Flowchart Keputusan c.

Gambar 14. Flowchart Keputusan

DAFTAR PUSTAKA

- Daihani, D.Umar. 2001. Komputerisasi Pengambilan Keputusan. PT Elex Media Komputindo, Jakarta
- Fajar Nugraha. Sistem Pendukung Keputusan Evaluasi Pemilihan Pemenang Pengadaan Aset dengan Metode Simple Additive Weighting (SAW). Jurnal SistemInformasiBisnis02(2012)Onlin: http://ejournal.undip.ac.id/index.php/j sinbis
- Khamaludin, Asep Penentuan Penerimaan Beasiswa Dengan Menggunakan Metode SAW. Seminar nasional Informatika 2012.
- Kusrini, 2007, "Konsep Dan Aplikasi Sistem Pendukung Keputusan", Yogyakarta, STMIK Amikom
- Kussnassrivanto ,"Belajar Pemograman Delphi", Penerbit Modula, Bandung, Agustus 2011.
- Marakas, George M. "Decision Support Systems in the 21st Century", 2nd Edition, Prentice Hall, 2003
- Sprague, Ralph, H & Hugh, J. Watson, "Decision Support Systems", Prentice Hall, Inc., 1993
- Turban, Efraim & Aronson, Jay E., "Decision Support Systems and Intelligent Systems", 8th edition, Prentice Hall, Upper Saddle River, NJ, 2007
- Turban, E. and Jay E.Aronson and Ting Peng Liang. 2005. Decision Support Systems and Intelligent Systems. Seventh Edition, Pearson Prentice-Hall, New Jersey.
- Suryadi, K. dan M.Ali Ramdhani. 1998. Sistem Pendukung Keputusan. PT. Remaja Rosdakarya, Bandung.
- Yohana, Verina, & Katrina sistem Pendukung Keputusan Untuk Menentukan Penerimaan Beasiswa dengan Metode SAW (Simple Additive Weighting). Jurnal Teknologi Informasi DINAMIK Volume 16, No. 2, Juli 2012.