

Assignment 3

Team Members

Num	Full Name in ARABIC	SEC	BN
1	أحمد حامد جابر	1	3
2	سمية سعد الشيمي	1	26

Table of contents:

1. Part One	3
1.1 Gram-Schmidt Orthogonalization	3
1.2 Signal Space Representation	5
1.3 Signal Space Representation with adding AWGN	6
1.4 Noise Effect on Signal Space	9
A.1 Imports & Global Variables	9
A.2 Functions	10
A.3 Plotting	11
A.4 Effect of noise on the Signal space Representations	12
List of Figures	
Figure 1 Φ1 VS time after using the GM_Bases function	5
Figure 2 Φ2 VS time after using the GM_Bases function	5
Figure 3 Signal Space representation of signals s1,s2	6
Figure 4 Signal Space representation of signals s1,s2 with $E/\Sigma - 2 = -5 dB$	7
Figure 5 Signal Space representation of signals s1,s2 with $E/\Sigma - 2 = 0$ dB	7
Figure 6 Signal Space representation of signals s1,s2 with E/Σ -2 =10dB	8

1. Part One

1.1 Gram-Schmidt Orthogonalization

Here we compute the orthonormal bases function of inputs s1, s2

Figure 1 Φ1 VS time after using the GM_Bases function

Figure 2 Φ2 VS time after using the GM_Bases function

1.2 Signal Space Representation

Here we represent the signals using the base functions.

Figure 3 Signal Space representation of signals s1,s2

1.3 Signal Space Representation with adding AWGN

the expected real points will be solid and the received will be hollow

Case 1:
$$10 \log(E/\sigma^2) = -5 dB$$

Figure 4 Signal Space representation of signals s1,s2 with E/ σ -2 =-5dB

Case 2: $10 \log(E/\sigma^2) = 0 dB$

Figure 5 Signal Space representation of signals s1,s2 with E/ σ -2 =0dB

Case 3: $10 \log(E/\sigma^2) = 10 dB$

Figure 6 Signal Space representation of signals s1,s2 with E/ σ -2 =10dB

1.4 Noise Effect on Signal Space

The noise affects the signal space point by starting to have variations around the base point.

When increasing σ^2 , the noise effect increases. We will not be able to determine the signal because of all the error.

Appendix A: Codes:

A.1 Imports & Global Variables

```
import numpy as np
import matplotlib.pyplot as plt

SAMPLES = 100

s1 = np.ones(SAMPLES)

s2 = np.ones(SAMPLES)

s2[int(0.75 * SAMPLES):] = -1

E = np.sum(s1 ** 2) / SAMPLES
```


A.2 Functions

```
def GM Bases(s1, s2):
        phi1 = s1 / np.linalg.norm(s1)
        s2 proj onto phi1 = np.dot(s2, phi1) * phi1
       u = s2 - s2 proj onto phil
       norm = np.linalg.norm(u)
       phi2 = np.zeros like(s2) if norm == 0 else u / norm
        return phi1, phi2
   def signal space(s, phi1, phi2):
11
       v1 = np.dot(s, phi1) / SAMPLES
12
        v2 = np.dot(s, phi2) / SAMPLES
        return v1, v2
15
    def add noise(s, sigma2):
        noise = np.random.normal(0, np.sqrt(sigma2), s.shape)
        return s + noise
```


A.3 Plotting

```
def plot(title, signals, labels, xlabel="Time", ylabel="Amplitude"):
        plt.figure()
        for i in range(len(signals)):
            plt.plot(signals[i], label=labels[i], linewidth=2)
        plt.xlabel(xlabel, fontsize=12)
        plt.ylabel(ylabel, fontsize=12)
        plt.legend(fontsize=12)
        plt.title(title, fontsize=14)
        plt.grid(True)
        plt.tight layout()
        plt.show()
   def plot scatter(title, xlabel, ylabel, signals, labels):
        plt.figure()
        colors = ['orange', 'yellow', 'red', 'blue']
        for i in range(len(signals)):
            if i \ge len(signals) - 2:
                plt.scatter(signals[i][0], signals[i][1], label=labels[i],
                             color=colors[i], edgecolors='k')
            else:
                plt.scatter(signals[i][0], signals[i][1], label=labels[i],
                             facecolors='none', edgecolors=colors[i])
        plt.xlabel(xlabel, fontsize=12)
        plt.ylabel(ylabel, fontsize=12)
        plt.legend(fontsize=12)
        plt.title(title, fontsize=14)
        plt.grid(True)
        plt.tight layout()
        plt.show()
    phi1, phi2 = GM Bases(s1, s2)
32 plot("S1 Orthonormal Bases Function", [phi1], ["φ1(t)"])
33 plot("S2 Orthonormal Bases Function", [phi2], ["φ<sub>2</sub>(t)"])
35 v1_s1, v2_s1 = signal_space(s1, phi1, phi2)
36 v1 s2, v2 s2 = signal space(s2, phi1, phi2)
37 plot_scatter("Signal Space Representation", "Projection on \phi_1", "Projection on \phi_2",
         [(v1 s1, v2 s1), (v1 s2, v2 s2)], ["s1(t)", "s2(t)"])
```


A.4 Effect of noise on the Signal space Representations