Devoir de la company de la com rcices:"Calculs dans IR" les pages sont numérotes de 1 -5

- 1. On donne les réels $a = \sqrt{37 20\sqrt{3}}$ et $b = \sqrt{7 4\sqrt{3}}$
 - (a) Calculer $(2 \sqrt{3})^2$ et $(2\sqrt{3} 5)^2$
 - (b) Écrire a et b à l'aide d'un seul radical.
 - (c) En déduire que a-2b est entier.
- 2. (a) Soit n un entier naturel non nul, montrer que :

$$\frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}$$

(b) Calculer alors:

her
$$a-2b$$
 est entier.
$$\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n(n+1)}$$
 set
$$\frac{1}{2}+\frac{1}{6}\oplus\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}$$
 soour tout $n\in\mathbb{N}$: les réels $\sqrt{n+1}+\sqrt{n}$ et $\sqrt{n+1}-\sqrt{n}$ sont inverses
$$S=1+\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\cdots+\frac{1}{\sqrt{2023}}+\frac{1}{\sqrt{2024}}$$

Exercice N° 2

- 1. (a) Montrer que pour tout $n \in \mathbb{N}$ les réels $\sqrt{n+1} + \sqrt{n}$ et $\sqrt{n+1} \sqrt{n}$ sont inverses
 - (b) Calculer:

$$S = 1 + \frac{1}{\sqrt{2} + 1} + \frac{1}{\sqrt{3} + \sqrt{2}} + \dots + \frac{1}{\sqrt{2033} + \sqrt{2024}}$$

- 2. (a) Saehant que $|x-1|<\frac{1}{2},$ montrer que $|x^2-1|<\frac{5}{4}$
 - (b) Soit $x \in \mathbb{R}^+$. Montrer que $\sqrt{1+x} < 1 + \frac{x}{2}$ et que $2(\sqrt{x}-1) \le x-1$
 - (c) Montrer que si |x| < 1 alors $\left| \frac{2x+1}{x+2} \right| < 1$
- 3. (a) Soit 0 < a < 3 et 0 < b < 3. Montrer que $\frac{a+b}{ab+9} < \frac{1}{3}$ (b) Soit a > 0 et b > 0 tels que : a > b, $a^2 + \frac{1}{b^2} = 21$ et $\frac{a}{b} = 2$ Montrer que $\frac{a}{b} > \frac{b}{a}$ Calculer : $a + \frac{1}{b}$, $a^3 + \frac{1}{b^3}$ et $\left| a \frac{1}{b} \right|$
- 4. Soit x > 0 et y > 0 tels que $x \le y$
 - (a) Montrer que $\sqrt{y-x} \ge \sqrt{y} \sqrt{x}$
 - (b) Déduire que pour tout réel $a \in [0,4], \sqrt{a-a^2} \ge \sqrt{a+1} \sqrt{a^2+1}$

- Soit x, y et z trois réels strictemen.

 1. (a) Montrer que $\frac{xy}{x+y} \le \frac{x+y}{4}$ (b) Déduire que si x + y = 2 alors $xy \le 1$ 2. (a) Montrer que $\frac{8}{(\sqrt{x}+\sqrt{y})^2} \le \frac{2}{\sqrt{xy}}$ $\frac{8}{(\sqrt{3}+2)^2} \le \frac{1}{\sqrt{3}}$
- - (b) Déduire que $(x+y) \cdot (x+z) \cdot (y+z) \ge x \cdot y \cdot z$
- 6. (a) Montrer que $\frac{3}{x+y+\frac{1}{z}} \le \frac{x+y+z}{3}$
 - (b) Déduire que $\frac{x}{y+z} + \frac{y}{x+z} + \frac{z}{x+y} \ge \frac{3}{2}$

Le plan étant muni d'un repère orthonormé (O,I,J) on donne les points :

A(1,1), B(0,2), C(a,2a-3) avec $a \in \mathbb{N}$

- Devolratna ©202 1. (a) Montrer que pour n'importe quelle valeur de a, les points A,B et C ne sont pas alignés.
 - (b) Déterminer la valeur de a pour que le triangle ABC soit un triangle rectangle en A
- 2. Dans toute la suite on prend a = 3, et soit D(2,4)
 - (a) Montrer que ABDC est un parallélogramme
 - (b) En déduire que ABDC est un rectangle
 - (c) Montrer que $\overrightarrow{OA} = \frac{1}{3}\overrightarrow{OC}$
- 3. (a) Construire le point E tel que : $\overrightarrow{AE} = -\frac{1}{2}\overrightarrow{AB}$
 - Pepèr CVoiratna © 2025 (b) Déterminer les coordonnées des points O et E dans le repère $(A, \overrightarrow{AC}, \overrightarrow{AB})$

Exercice N° 5

Résoudre dans \mathbb{R} :

1.
$$\sqrt{x-4} + \sqrt{9-x} = \sqrt{2x-1}$$

$$2. \ x + \sqrt{x - 20} = 0$$

$$3. \frac{x^2 - 6x + 5}{2x^2 - 11x + 5} = \frac{x^2 + 4x + 3}{x^2 + 14x + 13}$$

4.
$$\frac{2x-1}{x} = \frac{4x-1}{2x+1}$$

5.
$$\sqrt{1-2x} = 3$$

5.
$$\sqrt{1-2x} = 3$$

6. $|2x-3| \le 2|x-1|$

7.
$$\frac{x+2}{3x-1} < 1$$

Exercice N° 6

1. Soient a, b et c trois réels strictement positifs.

(a) Montrer que : $\frac{a}{b} + \frac{b}{a} \ge 2$.

(b) Déduire que : $\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{3}{2}$.

2. Résoudre dans \mathbb{R}^2 :

$$\begin{cases} x^2 + y^2 = 40\\ \frac{1}{x} + \frac{1}{y} = \frac{1}{3} \end{cases}$$

Devoiratna ©2025 3. Solent x et y deux hombres tels que 2x - y = 3. Determiner la valeur imminate de A = x + y.

4. Dans un repère orthonormé du plan soit l'ensemble $C = \{M(x,y), x^2 - 2y^2 + xy + x + 5y - 2 = 0\}$. Déterminer l'ensemble C.

Exercice \mathbb{N}° 8

Résoudre dans \mathbb{R} :

1. $\frac{-2}{3}x + 1 \times |2x - 9| < 0$ 2. $\frac{-3x + 2}{3} + 1 \times |2x - 9| < 0$

$$1. \ \frac{-2}{3}x + 1 \times |2x - 9| < 0$$

$$2. \ \frac{-3x+2}{-3} - \frac{1}{2} \ge \frac{-5}{3}$$

3.
$$(2x-1)(-3x+4) \ge 0$$

4.
$$x^2(1-x)(2x+8) \le 0$$

5.
$$x^2 - 4x < 4$$

6.
$$(4-x^2)(-3x+7) > 0$$

7.
$$\left(\frac{x-1}{3}\right)^2 + \left(\frac{x-2}{2}\right)(x+3) < \left(\frac{5x-1}{6}\right)(x-4)$$

8.
$$(1+x^2)(1-x^2) > 0$$

9.
$$9 - x^2 > 3 + x$$

10.
$$x^2 - 3x + 2 < 0$$

11.
$$|2x+3| \le -3$$

- 12. $|2x+3| \ge -1$
- 13. |2x+3| < 5
- 14. $|2x+3| \ge 2$
- 15. $\frac{|x|+3}{|x|-2} \le 0$
- 16. (2x-1)(1-x) > 0
- 17. $\frac{x^2 4x}{1 x} \le 0$
- 17. $\frac{1}{1-x}$ 18. $\frac{5-2x}{1-x} > 0$ 19. $\sqrt{\frac{5-2x}{1-x}} < 1$

Soient a et b deux réels strictement positifs et distincts :

- 1. Montrer que $\sqrt{a} + \sqrt{b} > \sqrt{a+b}$.
- 2. Montrer que $\frac{1}{a} + \frac{1}{b} > \frac{1}{a+b}$.
- 3. (a) Montrer que $\frac{a}{b} + \frac{b}{a} > 2$.
 - (b) En déduire que pour a distinct de 1, on a : $a + \frac{1}{a} > 2$.

Soient x et y deux réels tels que |x| < 1 et |y| < 1. Montrer que $\left| \frac{x+y}{xy+1} \right|$

Exercice N° 12

1. Écrire sans le symbole de la valeur absolue chacun des réels suivants :

pour
$$a$$
 distinct de 1, on $a:a+\frac{1}{a}>2$.

tels que $|x|<1$ et $|y|<1$. Montrer que $\left|\frac{x+y}{xy+1}\right|<1$.

e de la valeur absolue chacun des réels suivants :
$$|1-\sqrt{2}|; \ |\pi-\sqrt{3}|; \ |2\sqrt{2}-1-\sqrt{3}|; \ |3\sqrt{2}-2\sqrt{3}|; \ |-3+\frac{1}{3}+\sqrt{2}|$$

Devoiratna ©20

- 2. Soit x un réel appartenant à l'intervalle [-1,1].
 - (a) Simplifier l'écriture de l'expression A(x) = 2|1-x| + |2x-2|
 - (b) En déduire A(0,33) et A(-0,001).
 - (c) Donner un encadrement de l'expression B(x) = x + 2|1 x| + |2x 2|
- 3. Soient a, b et c trois réels. On pose $m=\frac{a+b+c}{2}$. Montrer que $(m-a)^2+(m-b)^2+(m-c)^2=a^2+b^2+c^2-m^2$.

Exercice N° 14

On donne deux réels a et b tels que : 2 < a < 3 et -2 < b < -1.

- 1. Encadrer les réels suivants : $\frac{1}{3}a 3$ et -2b + 4.
- 2. (a) Encadrer chacune des expressions suivantes : $a^2 + b^2$, $\frac{1}{ab}$ et $a^2 b^2$.
 - (b) Comparer les réels suivants : $\frac{a^2+b^2}{ab}$ et $\frac{a^2-b^2}{ab}$.
 - (c) Montrer que : $\frac{a}{b} + \frac{b}{a} < \frac{5}{ab}$.

- 1. On pose $x = \frac{\sqrt{2}-3}{1+\sqrt{2}}$
 - (a) Démontrer que $x = 5 4\sqrt{2}$
 - (b) Sachant que $1,41 \le \sqrt{2} \le 1,42$, donner sans calculatrice un encadrement de x.
- (b) Sachant que $1,41 \le \sqrt{2} \le 1,42$, donner sans calculatrice un encadrement de x.

 2. On donne $A = \frac{a^2-1}{1+a^2}$ et $B = \frac{2a}{1+a^2}$, avec a réel quelconque. Montrer que les nombres A,B et A^2-B^2 appartiennent à l'intervalle [-1,1].

 3. Soient a et b deux réels strictement positifs, montrer que :

 (a) $\frac{3a-b}{a} \le \frac{4a}{a+b}$ (b) $\frac{2a}{a+1} \le \sqrt{a} \le \frac{a+1}{2}$ (c) $(1+a)(1+b) \ge 4\sqrt{ab}$

- 4. Soient a, b et c trois réels strictement positifs.
 - (a) Montrer que $\frac{2ab}{a^2+b^2} \leq 1$
 - (b) Montrer que $\frac{1}{a} + \frac{1}{b} \ge \frac{2(a+b)}{a^2+b^2}$
 - (c) En déduire que $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge \frac{a+b}{a^2+b^2} + \frac{a+c}{a^2+c^2} + \frac{b+b}{b^2+c^2}$

- Diraina O21 1. Écrire sous forme $a + b\sqrt{c}$, où a, b et c sont des entiers.
 - (a) $\sqrt{16 6\sqrt{7}}$
 - (b) $\sqrt{43+30\sqrt{2}}$
 - (c) $\sqrt{18 + 2\sqrt{77}}$
- 2. Écrire sans radicaux au dénominateur :
 - (a) $-\sqrt{7}$
 - (b) $\sqrt{6+\sqrt{3}}$
 - (c) $\sqrt{7-1}$
 - (d) $\sqrt{7+1}$
 - (e) $\sqrt{3-1}$
 - (f) $\sqrt{3-1}$
- 3. On donne les réels : $A = 9 + 4\sqrt{5}$ et $B = 9 4\sqrt{5}$
 - (a) Écrire plus simplement $\frac{A}{B}$
 - (b) Écrire A et B sous la forme d'un carré.
 - (c) Simplifier l'écriture suivante : $A\sqrt{A} + B\sqrt{B}$
- 4. (a) Écrire sans radical au dénominateur : $\frac{1}{\sqrt{3}+2}$ -
 - (b) Soit un entier naturel n:
 - i. Montrer que $\frac{-1}{\sqrt{n}+\sqrt{n+1}} = \sqrt{n} \sqrt{n+1}$
 - ii. En déduire la valeur de $X = \frac{-1}{1+\sqrt{2}} + \frac{-1}{\sqrt{2}+\sqrt{3}} + \frac{-1}{\sqrt{3}+\sqrt{2}}$

Exercice N°20

- 1. Soit la somme $S=1+x+x^2+x^3+\cdots+x^{10}$. Calculer $x\cdot S$ puis $(1-x)\cdot S$
- 2. On suppose que x est différent de 1; montrer que $S = \frac{x^{11}-1}{x-1}$
- 3. En déduire les valeurs des sommes suivantes : atna O21

$$S_1 = 1 + 2 + 4 + 8 + 16 + \dots + 1024$$

Devoiratna ©2025

evoiratha ©2

oiratna O20

et

$$S_2 = 1 + 3 + 9 + 27 + 81 + \dots + 3^{10}$$

- x, y étant deux réels de l'intervalle I =]-1, 1[
- 1. Donner un encadrement du réel $\frac{x+4}{x+3}$
- Montrer que ^{x⋅y}/_{1+xy} ∈ I
 Lorsqu'on augmente le numérateur et le dénominateur que la Vérifier que pour tout entier naturel k > 1, on a ½ ≤ ½ 1/(k-1) ½
 En déduire que pour tout entier naturel n > 1, on a :
 ½ + ½ + ½ + ··· + ½ ≤ 1 ½ 3. Lorsqu'on augmente le numérateur et le dénominateur de la fraction $\frac{3}{4}$ d'un réel x on obtient $\frac{7}{9}$. Déterminer x.

$$\frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \le 1 - \frac{1}{n}$$

1. Montrer que pour tout $n \in \mathbb{N}^*$:

$$\frac{1}{\sqrt{n+1}+\sqrt{n}} = \sqrt{n+1} - \sqrt{n}$$

En déduire la valeur de

$$A = \frac{1}{\sqrt{2+1}} + \frac{1}{\sqrt{3+\sqrt{2}}} + \dots + \frac{1}{\sqrt{9+\sqrt{8}}}$$

2. Montrer que pour tout $n \in \mathbb{N}^*$:

$$2\sqrt{n+1} < \frac{1}{\sqrt{n}} + 2\sqrt{n}$$

En déduire que

$$\frac{1}{\sqrt{9}} + \frac{1}{\sqrt{10}} + \dots + \frac{1}{\sqrt{15}} > 2$$

Exercice N°23

x, y et z trois réels strictement positifs :

- 1. Montrer que : $x^2 + y^2 \ge 2xy$
- 2. Montrer alors que :

(a)
$$2(x^2 + y^2) \ge (x+y)^2$$

(b)
$$x^2 + y^2 + z^2 \ge xy + yz + xz$$

3. En déduire que :

$$\frac{x}{yz} + \frac{y}{xz} + \frac{z}{xy} \geq \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$$

Soit a et b deux réels strictement positifs :

1. Montrer que :

$$\frac{a^2}{b} + \frac{b^2}{a} \ge a + b$$

2. Montrer que : si $a \le b$ et a+b=1, alors on a : $\sqrt{a^2}$

$$\sqrt{a^2 + b^2} \le \frac{b}{\sqrt{a}}$$

Série d'exercices:"Calculs dans IR"

Les pages sont numérotées de 1 à 3.

Exercice N° 1

A) Soient a et b deux réels positifs tel que $a \ge b \ge 0$

$$U = \sqrt{a+b+2\sqrt{ab}} + \sqrt{a+b-2\sqrt{ab}}.$$

- (a) Développer $(\sqrt{a} + \sqrt{b})^2$ puis $(\sqrt{a} \sqrt{b})^2$.
- (b) Montrer que $U = 2\sqrt{a}$.
- B) x et y sont deux réels qui vérifient : $\frac{7}{5} < x < 4$ et -5 < y < -2Toiratha ©2025
 - (a) Encadrer -3x + y, xy et $(x + y)^2$.
 - (b) Déduire un encadrement de $x^2 + y^2$

Exercice N° 2

Indiquer la réponse exacte. Aucune justification n'est demandée.

- 1. Une baisse de 25% suivie d'une augmentation de 20% est :
 - (a) Une baisse de 5%
 - (b) Une baisse de 5,5%
 - (c) Une baisse de 10%
- 2. Une valeur approchée par excès à 10^{-2} près du réel $\sqrt{5}$ est :
 - (a) 2,24
 - (b) 2,23
 - (c) 2,22
- 3. Soit (O, \vec{i}, \vec{j}) un repère orthonormé du plan,

$$\vec{u} = \vec{i} + 2\vec{j}$$
 et $\vec{v} = (m^2 - 1)\vec{i} + \vec{j}$.

- (\vec{u}, \vec{v}) est une base de l'ensemble des vecteurs si et seulement si :
- (a) $m \neq \sqrt{\frac{3}{2}}$
- (b) $m \neq -\sqrt{\frac{3}{2}}$
- (c) $m \neq \sqrt{\frac{3}{2}} \text{ et } m \neq -\sqrt{\frac{3}{2}}$
- 4. Montrer que pour tout $x \in]0,1[:\frac{1}{x} \le \sqrt{\frac{1+x^2}{x^2}} \le \frac{\sqrt{2}}{x}$. Déduire que $:10 \le \sqrt{101} \le 10\sqrt{2}$.

- 1. Résoudre dans \mathbb{R} :
 - (a) $\sqrt{6x-5} = 2$
 - (b) $\frac{2}{x-1} + \frac{3}{x+1} = \frac{1}{x^2-1}$ (c) |3x-2| > 2x-4
- 2. Soit x un réel strictement positif tel que $x^2 + \frac{1}{x^2} = 14$ calculer alors $\sqrt{x} + \frac{1}{\sqrt{x}}$.
- 3. Soient x et y deux réels positifs tels que $x \geq y$
 - (a) Montrer que $\sqrt{x} \sqrt{y} \le \sqrt{x y}$.
 - (b) En déduire que pour tout $n \in \mathbb{N}^*$, $\sqrt{(n+1)^3} \sqrt{(n-1)^3} \le \sqrt{6n^2+2}$.
 - (c) On pose $S = \sqrt{3 \times 1^2 + 1} + \sqrt{3 \times 3^2 + 1} + \dots + \sqrt{3 \times 2017^2 + 1} + \sqrt{3 \times 2019^2 + 1}$ Montrer que $S \geq 2020\sqrt{1010}$.

Exercice N° 4

Soit a, b et c trois réels tels que : a + b + c = 0

- 1. (a) Factoriser $a^3 + b^3$.
 - (b) Montrer que $a^2 + b^2 = c^2 2ab$.
 - (c) En déduire que $a^3 + b^3 + c^3 = 3abc$.
- 2. Résoudre $(-2x+1)^3 + (3x-4)^3 + (-x+3)^3 = 0$.

Exercice N° 5

Soit $B = (\vec{i}, \vec{j})$ une base orthonormée de l'ensemble des vecteurs du plan.

1. Soient $\vec{u} = \frac{1}{2}\vec{j} + \frac{\sqrt{3}}{2}\vec{i}$ et $\vec{v} = \frac{\sqrt{3}}{2}\vec{i} - \frac{1}{2}\vec{j}$.

Montrer que $B'=(\vec{u},\vec{v})$ est une base orthonormée de l'ensemble des vecteurs du plan.

2. Soit $R = (O, \vec{i}, \vec{j})$ un repère orthonormé du plan.

On donne les points A(-2;1), B(3;-2), C(6;3) et $D(4;\frac{5}{2})$.

- (a) Montrer que \overrightarrow{AB} et \overrightarrow{BC} sont orthogonaux
- (b) Montrer que les points A, C et D sont alignés.
- (c) Calculer les distances AB et BC et en déduire l'aire du triangle ABC

Exercice N° 6

1. Soit les deux réels x et y tels que :

$$x = \sqrt{2}(1 - 3\sqrt{2}) + 2\sqrt{3}\left(\sqrt{3} + \frac{1}{2}\right)$$
$$y = |\sqrt{3} - 1| + |\sqrt{2} - 5| - 4$$

$$y = |\sqrt{3} - 1| + |\sqrt{2} - 5| - 4$$

- (a) Montrer que $x = \sqrt{3} + \sqrt{2}$ et $y = \sqrt{3}$
- (b) En déduire que x est l'inverse de y puis que $\sqrt{\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}} = \sqrt{3}+\sqrt{2}$.
- (c) Calculer x^2 et y^2 . En déduire que $\frac{x}{y} + \frac{y}{x} = 10$.
- 2. (a) Montrer que : $\sqrt{2} = 1 + \frac{1}{1+\sqrt{2}}$
 - (b) En déduire la simplification de

$$A = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{1 + \sqrt{2}}}}$$

1. Résoudre dans $\mathbb R$:

(a)
$$\frac{3x-1}{\sqrt{x}} = \frac{3x}{\sqrt{x}-2}$$

(b) $\sqrt{5x-4} \ge \sqrt{x+1}$

(b)
$$\sqrt{5x-4} \ge \sqrt{x+1}$$

- 2. Dans un triangle ABC rectangle en A tel que AB=6 et AC=2. On place les points D et E respectivement sur [AC] et [AB] tels que AD = BE = x.

 (a) Déterminer un encadrement de x.

 (b) Résoudre dans \mathbb{R} l'équation : $-x^2 + 6x - 6 = 0$.

 - (c) Déduire la valeur de x pour que l'aire du triangle ADE soit égale à la moitié de celle du triangle ABC.
- 3. Soit $n \in \mathbb{N}^*$, on pose

$$B = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n(n+1)}$$

- (a) Simplifier l'expression B.
- (b) Déterminer le plus petit entier naturel n tel que $B \geq \frac{96875}{100000}$.

