```
In [51]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         %matplotlib inline
         import seaborn as sns
         import warnings
         warnings.filterwarnings('ignore')
         ## Sklearn Library
         from scipy.stats import uniform
         from sklearn.metrics import accuracy_score , precision_score, recall_score, f1_score, roc_auc_score
         from sklearn.model_selection import GridSearchCV
         from sklearn.metrics import confusion_matrix
         from sklearn.metrics import matthews_corrcoef
         from sklearn.metrics import accuracy_score
         from sklearn.model_selection import train_test_split
         from sklearn.linear_model import LogisticRegression
         import sklearn.metrics as sm
```

```
In [2]: df=pd.read_csv(r"C:\Users\DD\OneDrive\Desktop\ML PROJECTS\credit fraud\creditcard.csv")
```


In [3]: df

Out[3]:

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V21	1
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	 -0.018307	0.277
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	 -0.225775	-0.638
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	 0.247998	0.771
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	 -0.108300	0.005
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	 -0.009431	0.798
284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.305334	1.914428	 0.213454	0.111
284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	0.584800	 0.214205	0.924
284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.708417	0.432454	 0.232045	0.578
284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	0.392087	 0.265245	0.800
284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.414650	0.486180	 0.261057	0.643
284807	rows × 31	columns										

In [4]: df.info


```
Out[4]: <bound method DataFrame.info of</pre>
                                                  Time
                                                                                             ۷4
                                                                                                       V5 \
                                                               V1
                                                                          V2
                                                                                   V3
                    0.0 -1.359807 -0.072781 2.536347 1.378155 -0.338321
                         1.191857
                                                        0.448154 0.060018
                                     0.266151 0.166480
                    1.0 -1.358354 -1.340163 1.773209 0.379780 -0.503198
        3
                    1.0 -0.966272 -0.185226 1.792993 -0.863291 -0.010309
        4
                    2.0 -1.158233
                                     0.877737 1.548718 0.403034 -0.407193
                     . . .
               172786.0 -11.881118
                                    10.071785 -9.834783 -2.066656 -5.364473
        284802
        284803
               172787.0 -0.732789
                                   -0.055080 2.035030 -0.738589 0.868229
                         1.919565 -0.301254 -3.249640 -0.557828 2.630515
        284804 172788.0
              172788.0 -0.240440
                                     0.530483 0.702510 0.689799 -0.377961
        284805
        284806 172792.0 -0.533413 -0.189733 0.703337 -0.506271 -0.012546
                     ۷6
                               ٧7
                                         V8
                                                   ۷9
                                                                V21
                                                                          V22 \
        0
               0.462388 0.239599
                                   0.098698 0.363787
                                                       ... -0.018307
                                                                     0.277838
               -0.082361 -0.078803
                                  0.085102 -0.255425
                                                      ... -0.225775 -0.638672
        2
               1.800499 0.791461 0.247676 -1.514654
                                                       ... 0.247998 0.771679
        3
               1.247203 0.237609 0.377436 -1.387024
                                                       ... -0.108300
                                                                     0.005274
        4
               0.095921 0.592941 -0.270533 0.817739
                                                       ... -0.009431 0.798278
        284802 -2.606837 -4.918215
                                  7.305334 1.914428
                                                           0.213454
                                                                    0.111864
        284803 1.058415 0.024330
                                  0.294869
                                            0.584800
                                                           0.214205 0.924384
        284804 3.031260 -0.296827
                                  0.708417 0.432454
                                                           0.232045 0.578229
        284805 0.623708 -0.686180 0.679145 0.392087
                                                           0.265245 0.800049
        284806 -0.649617 1.577006 -0.414650 0.486180
                                                           0.261057 0.643078
                                                      . . .
                    V23
                              V24
                                        V25
                                                  V26
                                                            V27
                                                                     V28
                                                                          Amount \
               -0.110474 0.066928 0.128539 -0.189115 0.133558 -0.021053
                                                                          149.62
               0.101288 -0.339846 0.167170 0.125895 -0.008983 0.014724
                                                                            2.69
        2
               0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752
                                                                          378.66
        3
               -0.190321 -1.175575 0.647376 -0.221929
                                                     0.062723 0.061458
                                                                          123.50
               -0.137458 0.141267 -0.206010 0.502292 0.219422
                                                               0.215153
                                                                           69.99
                                                                             . . .
        284802 1.014480 -0.509348 1.436807 0.250034
                                                      0.943651
                                                                0.823731
                                                                            0.77
        284803 0.012463 -1.016226 -0.606624 -0.395255 0.068472 -0.053527
                                                                           24.79
        284804 -0.037501 0.640134 0.265745 -0.087371 0.004455 -0.026561
                                                                           67.88
        284805 -0.163298 0.123205 -0.569159 0.546668 0.108821 0.104533
                                                                           10.00
        284806 0.376777 0.008797 -0.473649 -0.818267 -0.002415 0.013649 217.00
               Class
        0
                    0
```


0

0

1

2

3	0
4	0
• • •	
284802	0
284803	0
284804	0
284805	0
284806	0

[284807 rows x 31 columns]>

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 284807 entries, 0 to 284806 Data columns (total 31 columns): Column Non-Null Count Dtype _____ 0 Time 284807 non-null float64 1 ٧1 284807 non-null float64 2 284807 non-null float64 V2 3 V3 284807 non-null float64 4 284807 non-null float64 V4 5 **V**5 284807 non-null float64 6 V6 284807 non-null float64 7 284807 non-null float64 V7 8 **V8** 284807 non-null float64 9 ۷9 284807 non-null float64 284807 non-null float64 10 V10 11 V11 284807 non-null float64 12 V12 284807 non-null float64 V13 284807 non-null float64 13 V14 284807 non-null float64 14 284807 non-null float64 15 V15 16 V16 284807 non-null float64 17 V17 284807 non-null float64 V18 284807 non-null float64 18 19 V19 284807 non-null float64 V20 284807 non-null float64 20 21 V21 284807 non-null float64 22 V22 284807 non-null float64 284807 non-null float64 23 V23 284807 non-null float64 24 V24 V25 284807 non-null float64 25

30 Class 284807 non-null int64 dtypes: float64(30), int64(1)

284807 non-null float64

284807 non-null float64

284807 non-null float64

Amount 284807 non-null float64

memory usage: 67.4 MB

26 V26

27 V27

28 V28

In [7]: df.isnull()

Out[7]:

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9		V21	V22	V23	V24	V25	V26	V27	V28	Am
0	False	False	False	False	False	False	False	False	False	False		False	F							
1	False	False	False	False	False	False	False	False	False	False		False	F							
2	False	False	False	False	False	False	False	False	False	False		False	F							
3	False	False	False	False	False	False	False	False	False	False		False	F							
4	False	False	False	False	False	False	False	False	False	False		False	F							
284802	False	False	False	False	False	False	False	False	False	False		False	F							
284803	False	False	False	False	False	False	False	False	False	False		False	F							
284804	False	False	False	False	False	False	False	False	False	False		False	F							
284805	False	False	False	False	False	False	False	False	False	False		False	F							
284806	False	False	False	False	False	False	False	False	False	False		False	F							
284807	284807 rows × 31 columns																			


```
In [8]: df.isnull().sum()
Out[8]: Time
                    0
          V1
                    0
         V2
                    0
          V3
          ٧4
                    0
          V5
          ۷6
          ٧7
          ٧8
                    0
          ۷9
                    0
         V10
         V11
                    0
         V12
                    0
         V13
                    0
         V14
         V15
                    0
         V16
                    0
         V17
                    0
         V18
         V19
         V20
                    0
         V21
                    0
         V22
         V23
         V24
                    0
         V25
                    0
         V26
         V27
         V28
                    0
          Amount
                    0
          Class
                    0
          dtype: int64
In [11]: df['Class'].value_counts()
Out[11]: Class
               284315
          0
                  492
          1
          Name: count, dtype: int64
```

In [12]: # separating the data for analysis legit = df[df.Class == 0] fraud = df[df.Class == 1]

In [13]: legit.head()

Out[13]:

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V21	V22	1
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	 -0.018307	0.277838	-0.110
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	 -0.225775	-0.638672	0.101
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	 0.247998	0.771679	0.909
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	 -0.108300	0.005274	-0.190
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	 -0.009431	0.798278	-0.137

5 rows × 31 columns

In [14]: fraud.head()

Out[14]:

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V21	V22	
541	406.0	-2.312227	1.951992	-1.609851	3.997906	-0.522188	-1.426545	-2.537387	1.391657	-2.770089	 0.517232	-0.035049	_
623	472.0	-3.043541	-3.157307	1.088463	2.288644	1.359805	-1.064823	0.325574	-0.067794	-0.270953	 0.661696	0.435477	
4920	4462.0	-2.303350	1.759247	-0.359745	2.330243	-0.821628	-0.075788	0.562320	-0.399147	-0.238253	 -0.294166	-0.932391	(
6108	6986.0	-4.397974	1.358367	-2.592844	2.679787	-1.128131	-1.706536	-3.496197	-0.248778	-0.247768	 0.573574	0.176968	-(
6329	7519.0	1.234235	3.019740	-4.304597	4.732795	3.624201	-1.357746	1.713445	-0.496358	-1.282858	 -0.379068	-0.704181	-(

5 rows × 31 columns


```
In [15]: # statistical measures of the data
          legit.Amount.describe()
Out[15]: count
                    284315.000000
                        88.291022
          mean
                       250.105092
          std
          min
                         0.000000
          25%
                         5.650000
          50%
                        22.000000
          75%
                        77.050000
                     25691.160000
          max
          Name: Amount, dtype: float64
          fraud.Amount.describe()
In [16]:
Out[16]: count
                     492.000000
                     122.211321
          mean
          std
                     256.683288
          min
                       0.000000
          25%
                       1.000000
          50%
                       9.250000
          75%
                     105.890000
                    2125.870000
          max
          Name: Amount, dtype: float64
In [17]: # compare the values for both transactions
          df.groupby('Class').mean()
Out[17]:
                        Time
                                   V1
                                            V2
                                                      V3
                                                               V4
                                                                        V5
                                                                                  V6
                                                                                           V7
                                                                                                    V8
                                                                                                             V9 ...
                                                                                                                         V20
           Class
              0 94838.202258
                              0.008258 -0.006271
                                                 0.012171 -0.007860
                                                                   0.005453
                                                                            0.002419
                                                                                     0.009637 -0.000987
                                                                                                        0.004467 ...
                                                                                                                    -0.000644 -0.00
              1 80746.806911 -4.771948
                                       3.623778 -7.033281 4.542029 -3.151225 -1.397737 -5.568731 0.570636 -2.581123 ... 0.372319
          2 rows × 30 columns
```

sample

```
legit_sample = legit.sample(n=800)
In [19]:
          new_dataset = pd.concat([legit_sample, fraud], axis=0)
In [20]:
          new_dataset
In [21]:
Out[21]:
                                V1
                                          V2
                                                   V3
                                                            V4
                                                                      V5
                                                                               V6
                                                                                        V7
                                                                                                  V8
                                                                                                           V9 ...
                                                                                                                      V21
                     Time
                                                                                                                                V
           256222 157591.0 -2.456527
                                    2.457377 -0.278652 -1.334673 -0.388679 -0.391650 -0.056992 0.619518
                                                                                                      1.626584 ... -0.380373 -0.6583
                                    -0.697003 -2.172062 -0.869045 -0.185080 -1.774343
                                                                                   0.265166 -0.576818 -0.790990 ... 0.352996
                  142745.0
                           2.192551
                                                                                                                           0.8723
                  135497.0
                           2.095278
                                    -0.693180 -1.575512 -0.753739
                                                               -0.248853 -0.635268
                                                                                  -0.491066 -0.243448 -0.351194 ... 0.123200
                  123796.0 -0.089165
                                    0.807445 -0.169992 -0.959017
                                                                1.048850 -0.200202
                                                                                   0.876518 -0.042459 -0.201535 ... -0.263317 -0.6290
            68959
                                    -0.505091
                                                               -0.970255 -0.376154
                   53206.0
                           1.316849
                                              0.660849
                                                      -0.788016
                                                                                  -0.728547
                                                                                            0.076743 -1.054445 ... -0.005768 -0.1273
           279863
                  169142.0 -1.927883
                                    1.125653 -4.518331
                                                       1.749293 -1.566487 -2.010494
                                                                                  -0.882850
                                                                                            0.697211 -2.064945 ... 0.778584 -0.3191
           280143
                  169347.0
                           1.378559
                                    1.289381
                                             -5.004247
                                                       1.411850
                                                                0.442581 -1.326536 -1.413170
                                                                                            0.248525 -1.127396 ... 0.370612
                  169351.0 -0.676143
                                    1.126366 -2.213700
                                                       0.468308 -1.120541 -0.003346 -2.234739
                                                                                           1.210158 -0.652250 ... 0.751826
                                                                                                                          0.8341
                  169966.0 -3.113832
                                    0.585864
                                             -5.399730
                                                       1.817092 -0.840618 -2.943548
                                                                                  -2.208002
                                                                                           1.058733 -1.632333 ... 0.583276
           281674 170348.0 1.991976 0.158476 -2.583441
                                                       1292 rows × 31 columns
In [24]: | new_dataset['Class'].value_counts()
Out[24]: Class
               800
               492
          Name: count, dtype: int64
```

Train the model


```
In [25]: X = new_dataset.drop(columns='Class', axis=1)
Y = new_dataset['Class']
```

In [27]: X

Out[27]:

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V20	V
256222	157591.0	-2.456527	2.457377	-0.278652	-1.334673	-0.388679	-0.391650	-0.056992	0.619518	1.626584	 0.712993	-0.3803
221908	142745.0	2.192551	-0.697003	-2.172062	-0.869045	-0.185080	-1.774343	0.265166	-0.576818	-0.790990	 -0.031527	0.3529
204906	135497.0	2.095278	-0.693180	-1.575512	-0.753739	-0.248853	-0.635268	-0.491066	-0.243448	-0.351194	 0.234644	0.1232
178821	123796.0	-0.089165	0.807445	-0.169992	-0.959017	1.048850	-0.200202	0.876518	-0.042459	-0.201535	 0.000569	-0.2633
68959	53206.0	1.316849	-0.505091	0.660849	-0.788016	-0.970255	-0.376154	-0.728547	0.076743	-1.054445	 0.030210	-0.0057
279863	169142.0	-1.927883	1.125653	-4.518331	1.749293	-1.566487	-2.010494	-0.882850	0.697211	-2.064945	 1.252967	0.7785
280143	169347.0	1.378559	1.289381	-5.004247	1.411850	0.442581	-1.326536	-1.413170	0.248525	-1.127396	 0.226138	0.3706
280149	169351.0	-0.676143	1.126366	-2.213700	0.468308	-1.120541	-0.003346	-2.234739	1.210158	-0.652250	 0.247968	0.7518
281144	169966.0	-3.113832	0.585864	-5.399730	1.817092	-0.840618	-2.943548	-2.208002	1.058733	-1.632333	 0.306271	0.5832
281674	170348.0	1.991976	0.158476	-2.583441	0.408670	1.151147	-0.096695	0.223050	-0.068384	0.577829	 -0.017652	-0.1643

1292 rows × 30 columns


```
In [28]: Y
Out[28]: 256222
                    0
         221908
                    0
         204906
                    0
         178821
                    0
         68959
                    0
         279863
                    1
         280143
         280149
                    1
         281144
                    1
         281674
         Name: Class, Length: 1292, dtype: int64
In [29]: X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, random_state=80)
In [30]: print(X.shape, X_train.shape, X_test.shape)
         (1292, 30) (1033, 30) (259, 30)
```

Modelbuilding


```
In [33]: |model.coef
Out[33]: array([[-3.13211986e-05, 1.60897874e-01, 1.75202609e-01,
                 -4.87694883e-01, 5.18734888e-01, 1.44712143e-01,
                 -1.54600926e-01, -6.63488710e-02, 2.40804930e-02,
                 -1.54601006e-01, -3.08508230e-01, 2.31229140e-01,
                 -4.64667805e-01, -6.49880243e-02, -7.97302869e-01,
                 -1.03700161e-01, -2.05438190e-01, -1.99380275e-01,
                  1.56797814e-02, -1.88022527e-02, 1.02826591e-01,
                  1.74783658e-01, 3.55219889e-02, 1.40924217e-02,
                  1.54015796e-04, -3.31503607e-02, -4.30602551e-02,
                 -1.71895557e-02, 6.36357850e-02, 1.54872525e-03]])
In [34]: # accuracy on training data
         X train prediction = model.predict(X train)
         training_data_accuracy = accuracy_score(X_train_prediction, Y_train)
In [35]: print('Accuracy on Training data : ', training_data_accuracy*100)
         Accuracy on Training data : 94.09486931268151
In [36]: print('Accuracy on Training data : ', training_data_accuracy)
         Accuracy on Training data: 0.9409486931268151
In [37]: # accuracy on testing data
         X test prediction = model.predict(X test)
         testing data accuracy = accuracy score(X test prediction, Y test)
In [39]: print('Accuracy on Testing data : ', training_data_accuracy*100)
         Accuracy on Testing data: 94.09486931268151
In [40]: print('Accuracy on Testing data : ', training_data_accuracy)
         Accuracy on Testing data: 0.9409486931268151
```

```
In [41]: Trainpred = model.predict(X_train)
Testpred = model.predict(X_test)
```

In [43]: print(sm.classification_report(Y_test, Testpred))

	precision	recall	f1-score	support
0	0.94	0.95	0.95	160
1	0.92	0.91	0.91	99
accuracy			0.93	259
macro avg	0.93	0.93	0.93	259
weighted avg	0.93	0.93	0.93	259

AUC_ROC Curve

In [46]: sm.roc_auc_score(Y_train, roc)

Out[46]: 0.9673942430025445


```
In [48]: sm.roc_auc_score(Y_test, roc1)
```

Out[48]: 0.9758838383838384

Grid search

```
In [49]: param_grid = {
             'penalty':['l1','l2'],
             'C': [0.1,0.5,1,5,10],
             'solver': ['liblinear']
In [52]: grid = GridSearchCV(estimator=model , param_grid=param_grid, cv=5)
In [53]: grid.fit(X_train,Y_train)
Out[53]:
                    GridSearchCV
           ▼ estimator: LogisticRegression
          LogisticRegression()
                ▼ LogisticRegression
                LogisticRegression()
In [54]:
         best_param = grid.best_params_
         best model = grid.best estimator
In [55]: y_pred = best_model.predict(X_test)
In [56]: | acc = accuracy_score(Y_test,y_pred)
         pre = precision_score(Y_test,y_pred)
         rec = recall_score(Y_test,y_pred)
         f1 = f1_score(Y_test,y_pred)
         roc_auc = roc_auc_score(Y_test,y_pred)
```



```
In [57]: print(f'''
         Best param :{best_param}
         Accuracy: {acc}
         Precision: {pre}
         Recall: {rec}
         f1 score: {f1}
         AUC-ROC: {roc_auc}
         ''')
         Best param :{'C': 0.5, 'penalty': 'l1', 'solver': 'liblinear'}
         Accuracy: 0.9536679536679536
         Precision: 0.9578947368421052
         Recall: 0.91919191919192
         f1 score: 0.9381443298969072
         AUC-ROC: 0.9470959595959595
In [ ]:
In [ ]:
```

