Comments on HW 8.

Ex 33: Determine the sign of $r \in \mathbb{Q}$ by considering the canonical p-adic expansion of r.

Multiplying $r \in \mathbb{Q}$ by the appropriate power of p^k makes the product $r = p^k q$ a p-adic integer and does not change the sign of $p^k > 0$. Thus, we may assume $p^k > 0$.

It is not hard to show that you can assume that the non-repeated part b of a canonical p-adic expansion can be assumed to be the same length as the repeating part a. You can either consider cases (length a= length b, or not) or consider the repeating pattern given by $a\cdot\frac{\mathrm{lcm}(a,b)}{a}$ and the non-repeating part $b\cdot\frac{\mathrm{lcm}(a,b)}{b}$. These both have the same length $\mathrm{lcm}(a,b)$.

By these observations, we may assume that r is a rational p-adic integer with the length of the repeating part a the same as the length of the non-repeating part b. Call this length ℓ . Then, using Σ -notation we have

$$x = b + \sum_{i=1}^{\infty} a \cdot (p^{\ell})^{i}.$$

Summing the convergent infinite series,

$$x = b + a \frac{p^{\ell}}{1 - p^{\ell}} = \frac{(a - b)p^{\ell} + b}{1 - p^{\ell}}.$$

Note that the denominator $1-p^{\ell}<0$ and $b< p^{\ell}$ since b's p-adic expansion has ℓ digits in it. Thus, x>0 if, and only if, the expression a-b<0, or b>a as needed.

Ex 37: Let p be an odd prime, find representatives for the quotient group $\mathbb{Q}_p^*/(Q_p^*)^2$ and show that this group is of order q. We will show something additional: This group is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

As the proof of this problem is rather complicated, we will prove a series of lemmas needed in the solution. The symbol p will denote an odd prime throughout.

Lemma 1. If \mathbb{F}_p^* denotes the multiplicative group of the finite field with p elements, then the map $\varphi: \mathbb{F}_p^* \to \{\pm 1\}$ given by

$$a_0 \mapsto \begin{cases} 1, & \text{if } a_0 \text{ is a quadratic residue} \pmod{p} \\ -1, & \text{if } a_0 \text{ is a quadratic non-residue} \pmod{p} \end{cases}$$

is a surjective group homomorphism. Thus, $\mathbb{F}_p^*/(\mathbb{F}_p^*)^2\cong\{\pm 1\}$ as groups.

Proof. Since \mathbb{F}_p^* is a multiplicative subgroup of a field, it is cyclic. Let ξ be a generator for the group, and note that the map φ sends $\xi^{2k}\mapsto 1$, and $\xi^{2k+1}\mapsto -1$. If $\xi^k,\xi^l\in\mathbb{F}_p^*$, then it is easy to see that $\varphi(\xi^k\xi^l)=\varphi(\xi^{k+l})=\varphi(\xi^k)\varphi(\xi^l)$, by considering all the parities of k,l (both k,l even; both k,l odd; exactly one of k,l odd). The second statement follows from the First Isomorphism Theorem for groups.

Before continuing we make a few observations about the significance of Lemma 1. A first consequence is that the number of quadratic residues \pmod{p} equals the number of quadratic non-residues $\pmod{p} = \frac{p-1}{2}$. Secondly, since φ is a homomorphism, we see that the product of

1

two non-residues is a residue \pmod{p} , the product of a residue and a non-residue is a non-residue \pmod{p} , etc. Finally, and this will be a key ingredient in our proof, since every quadratic residue is in the identity coset in $\mathbb{F}_p^*/(\mathbb{F}_p^*)^2$, and every quadratic non-residue is in the non-trivial coset in $\mathbb{F}_p^*/(\mathbb{F}_p^*)^2$, it follows that if c, c' are both quadratic non-residues \pmod{p} , then $c \equiv c'u^2 \pmod{p}$ for some $u^2 \in (\mathbb{F}_p^*)^2$.

We now prove a series of lemmas that were outlined in office hours.

Lemma 2. Every class in $\mathbb{Q}_p^*/(\mathbb{Q}_p^*)^2$ has a representative a in \mathbb{Z}_p whose canonical padic expansion is of the form $a=a_0+a_1p+\cdots$ where $a_0\neq 0$, or $a_0=0$ and $a_1\neq 0$.

Proof. Let $b\in\mathbb{Q}_p$ be a representative for a coset in $\mathbb{Q}_p^*/(Q_p^*)^2$. If $b=\ldots b_2b_1b_0\wedge b_{-1}b_{-2}\ldots b_{-m}$ where $b_{-m}\neq 0$, then multiply b by p^m if m is even, or by p^{m+1} if m is odd to get $a\in\mathbb{Z}_p$. In the first case, the first non-zero digit in the canonical expansion of a is b_{-m} and is located in the units place (a_o) . In the second case, the canonical expansion of a looks like $a=\cdots b_{-m+1}b_{-m}0_{\wedge}$. To finish, note that a and b are in the same coset in $\mathbb{Q}_p^*/(\mathbb{Q}_p^*)^2$ since they differ by multiplication by a square. \square

Lemma 3. Every element $x \in \mathbb{Z}_p^*$ satisfying $x \equiv 1 \pmod{p}$ is an square in \mathbb{Z}_p^* . That is, $x \in (\mathbb{Z}_p^*)^2 \subset (\mathbb{Q}_p^*)^2$.

Proof. This is a straight-forward application of Hensel's Lemma, but you should give the details.

Lemma 4. Every coset in $\mathbb{Q}_p^*/(Q_p^*)^2$ can be represented by an element $x \in \mathbb{Z}_p$ whose canonical expansion is of one of the following forms

$$x = a_0$$
 OR $x = a_1 p$,

where $a_0, a_1 \neq 0$.

Proof. Using Lemma 2, suppose first that a represents a class in $\mathbb{Q}_p^*/(\mathbb{Q}_p^*)^2$ where a has canonical p-adic expansion $a=\cdots a_2a_1a_0$, where $a_0\neq 0$. Then a_0 has an inverse \pmod{p} (or if you prefer, it has an inverse in \mathbb{Z}_p^*) and

$$a = a_0 \left(1 + a_0^{-1} a_1 p + a_0^{-1} a_2 p^2 + \cdots \right)$$

= $a_0 \ u^2$

by Lemma 3.

Now suppose a has canonical p-adic expansion of the form $a = \sum_{i=1}^{\infty} a_i p^i$ for $a_1 \neq 0$, then

$$a = a_1 p (1 + a_0^{-1} a_2 p + a_0^{-1} a_3 p^2 + \cdots) = a_1 p u^2,$$

again by Lemma 3. This shows that every class in $\mathbb{Q}_p^*/(Q_p^*)^2$ has a representative of the form a_0 or a_1p where $a_0, a_1 \neq 0$.

We next show that any two quadratic non-residues represent the same element in $\mathbb{Q}_p^*/(Q_p^*)^2$.

Lemma 5. Suppose c, c' are in the set $\{1,\ldots,p-1\}$ and both are quadratic non-residues \pmod{p} , then c and c' are in the same coset in $\mathbb{Q}_p^*/(\mathbb{Q}_p^*)^2$. That is, any two quadratic non-residues \pmod{p} represent the same element in $\mathbb{Q}_p^*/(\mathbb{Q}_p^*)^2$.

Proof. Since (c,p)=1, c has an inverse in \mathbb{Z}_p^* . Consider the polynomial $F(x)=x^2-c'c^{-1}\in\mathbb{Z}_p[x]$. Using Hensel's Lemma, note that F(x) has a root (mod p) by Lemma 1 and that $F'(x)\equiv 0\ (\text{mod }p)$ from which it follows that F(x) has a unique root $u\in Z_p$. Thus, $c'c^{-1}=u^2$ and $c'=c'u^2$.

Now

Theorem 6. The group $\mathbb{Q}_p^*/(Q_p^*)^2 \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}2\mathbb{Z}$ and has elements $\{\mathbb{Q}_p^2, c\mathbb{Q}_p^2, p\mathbb{Q}_p^2, cp\mathbb{Q}_p^2\}$ where c is a quadratic non-residue (mod p).

Proof. For simplicity, we work with representatives of the cosets, and $a \sim b$ means $a\mathbb{Q}_p^2 = b\mathbb{Q}_p^2$. It is clear that any two quadratic residues \pmod{p} are represented by 1, and by Lemma 5 that $c \sim c'$ for any two quadratic non-residues \pmod{p} . Combining this with Lemma 4, the set $\{1,c,p,cp\}$ must contain a complete set of representatives for $\mathbb{Q}_p^*/(\mathbb{Q}_p^*)^2$. Clearly, $1 \nsim c$, and $1 \nsim p$ since both c and p are not squares in \mathbb{Q}_p^* . It is also the case that $c \nsim p$, since $|c|_p = 1$ and $|p|_p = \frac{1}{p}$ and if c and p were to differ by a square, then their norms would differ by an *even* power of $\frac{1}{p}$. (Stated otherwise, $c = u^2 p^{2k} p$ which is impossible.) Since $\mathbb{Q}_p^*/(\mathbb{Q}_p^*)^2$ is a group, the product cp is also in $\mathbb{Q}_p^*/(\mathbb{Q}_p^*)^2$.

A moments's thought yields that we have actually shown that the cosets represented by c,p generate $\mathbb{Q}_p^*/(Q_p^*)^2$. Since $c^2 \sim 1$, and $p^2 \sim 1$ in $\mathbb{Q}_p^*/(Q_p^*)^2$, this group is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Ex 40: The statement of the stronger version of Hensel's Lemma had two typos in it. **Correct** these if you have not already done so.