

Group Name 老同學

Our Team

何彥南

國立政治大學 | 資訊科學系

莊崴宇

國立政治大學 | 資訊科學系

周倢因

國立台灣科技大學|資訊管理系

Table of Content

o2. 模型介紹

03. 資料集/資料處理/方法

04. 成果展示

05. 研究限制與未來展望

摘要與研究目的

- 採用穩定且公開的實價登陸資料,以其中的土地交易資料與客製 化的需求設定預測目標,並以時間序列角度對未來土地價值預 測,藉此應用在後續的決策上。
- 選擇在交通流量預測上表現很好的 GMAN 模型,使用模型特性 達到 Multi-Step 時間序列的預測。
- 本研究以土地價值指標為範例,此方法還可以應用在其他客製化 的區域指標上,像是下個月目標點附近的交易數量等資訊。
- 目的是能透過此模型與流程,將各地區於不同時段之預測土地價值或是其他客製化指標,以此預測結果去結合其他現有資訊去輔助決策,以產出於不同區域、時段下,最適合該土地的利用選擇與開發順序;並輔助資產活化決策,期望能將利益達到最大化。

模型介紹

GMAN 模型

- Sensors in a road network
- Encoder Decoder 技術
 - → Multi-Step Time Series Forecasting
- Spatio-Tempoal Embedding
 - → SE(地理資訊)、TE(時間資訊)
- Attention 機制
 - → 讓模型可以學習將注意力放在那些特徵上

GMAN 模型中地理與時間上的注意力機制示意圖

GMAN 模型架構圖

本研究透過導入參考點,將問題轉換為 Spatio-Tempoal 問題,以增加資訊的採 樣的廣度,並套用到 GMAN 模型上。

資料集

#1 主辦單位提供之土地資料

- 主要使用欄位:鄉鎮市區、地段、地號、使用分區
- 因研究需爬取大量實價 登錄資料,因此將先以 桃園市資料作為實作範 例進行展示

#2 歷年實價登錄資料

- <u>來源</u>:「內政部不動產成交案 件實際資訊資料供應系統」
- 時間: 2012年7月~2022年 04月。
- 主要使用欄位:鄉鎮市區、 交易標的、土地位置建物門 牌、使用分區(相關)、交易 年月日、單價元平方公尺
- 本研究主要使用不動產買賣中只有土地交易資料,經過前處理後,約78000筆。

#3 各鄉鎮市區人口密度

- 使用「政府資料開放平台」 中「各鄉鎮市區人口之密 度」資料集
- 涵蓋 102 年至 110 年之人 口資料,其中包含:統計 年、區域別、年底人口數、 土地面積、人口密度等欄位
- 本研究使用此資料輔助判斷 土地開發決策

資料前處理

1-資料前處理

- 取用「交易標的」為土地的資料
- 透過 regex (正規表達式,Regular Expression) 切分出地段與地號
- 亂碼、重複值、輸入錯誤與缺失值 編碼、移除等處理

3 - 舊地號轉新地號

量資料

• 使用「桃園地政資訊服務網」

中的「新舊地號查詢」服務

• 使用 python 的 selenium 等工

具進行爬蟲,可以自動處理批

5-資料量與時間區間選擇

- 時價登入資料中的前幾個 月,資料品質較不穩定,所 以不採用。
- 本研究會 101 年 6 月 至 111 年 5 月的資料為主

2-土地爬取經緯度

- <u>資料來源</u>:「地號 GeoJSON API」、「地籍圖資網路便民服 務」
- 大約 68000 筆土地資料,成 功爬取到約 54000 筆經緯

4-土地使用的分類與篩選

• 主要針對商業區和住宅區之 資料,其中商業相關約1,375 筆,住宅相關約13,654筆。

方法

1-目標區域範圍設定

- 計算各自範圍內,在各月中的有效點數量
- 本研究以區域範圍 3000 公尺為 範例

2-目標土地分群

• 將目標土地使用 DBSCAN,以經位度間的實際距離作為分群依據(esp=500),並以該群中心經緯度為代表目標點

DBSCAN 分群結果

3-設置各群參考點

• 採取上下左右四個方向向外推 3000 公尺的距離作為參考點

參考點示意圖

- 4-計算目標點、參考點與交易 土地之距離
- 獲取目標點、參考點到所有交易土地 經緯距離,並使用 geopy 套件計算

目標點、參考點到各土地距離矩陣

	目標點	參考點 1	?	参考點 n
交易 土地 1	20	50		100
交易 土地 2	280	350		500

- 5 篩選目標經緯度一定範圍內 之交易點
- 從交易資料中篩選出 3000 公尺內所 有交易土地點

篩選 3000 公尺內的距離

	目標點	参考點 1	?	參考點 n
交易 土地 1	>	>		>
交易 土地 2	>			

- 6-計算各月之目標點和參考點的區域指標
 - 依需求,計算每個月的區域指標

計算區域指標

	目標點	参考點 1	?	参考點 n
2012.7	50	100		80
2012.8	30	60		70
2022.4	100	50		120

方法-資料建模與預測

訓練資料

	I	Label		
	History1	Target		
	t1	t2	t3	t4
Train -	t2	t3	t4	t5
	t3	t4	t5	t6
Test -	t4	t5	t6	t7
lest]	t5	t6	t7	t8
Predict -	t6	t7	t8	unknow

訓練資料格式 (window_size=3)

建模預測

方法 - Overview

模型指標 - 各群的預測表現

每月單位土地價

Group	MAE	RMSE	MAPE
0	8559	11221	0.1200
1	13177	15033	0.1714
2	4725	6197	0.1551
3	12471	15810	0.1817
4	36140	43242	0.5367
5	36388	37937	0.6182
6	18018	20783	0.3152
7	4718	6186	0.2148
8	3126	4391	0.1766
9	27635	32195	0.4216
10	8805	10027	0.3290
		avg.	0.29

每月交易量

Group	MAE	RMSE	MAPE
0	16.3	22.4	0.4673
1	16.3	20.5	0.4492
2	8.6	10.5	0.4751
3	10.3	12.3	0.3869
4	8.3	10.2	0.7115
5	7.5	8.9	1.1352
6	4.3	4.4	0.7005
7	7.5	9.5	0.4964
8	7.5	8.6	0.4324
9	10.8	13.2	1.8828
10	7.9	10.5	0.6284
		avg.	0.706

模型指標 - Multi-Step Time Series Forecasting

Group1, 3 step 預測結果

	MAE RMS	E MAPE	
train	4912.06	6281.67	7.18%
val	12454.65	13950.57	16.33%
test	14835.74	16654.49	19.32%
performance in	each predict	ion step	
step: 01	15731.80	16938.54	20.56%
step: 02	14642.03	16327.90	19.21%
step: 03	14133.37	16691.37	18.19%
average:	14835.74	16652.60	19.32%

模型成果展示 - 以桃園區、新屋區為例

縣市	重劃區名稱	鄉鎮市區	地段	地號	土地面積(m2)	使用分區	DBSCAN
桃園市	中路重劃區	桃園區	中路二段	101	4316.15	住宅區	0
桃園市	中路重劃區	桃園區	中路二段	103	1532.84	住宅區	0
桃園市	中正五街重劃區	桃園區	長安段	1	1126	住宅區	1
桃園市	中正五街重劃區	桃園區	長安段	10	121	住宅區	1
桃園市	中正五街重劃區	桃園區	長安段	13	890	住宅區	1
桃園市	中正五街重劃區	桃園區	埔子段埔子小段	1913-1	740	住宅區	1
桃園市	中正五街重劃區	桃園區	埔子段埔子小段	1913-199	46	住宅區	1
桃園市	中正五街重劃區	桃園區	埔子段埔子小段	1913-200	108	住宅區	1
桃園市	中正五街重劃區	桃園區	埔子段埔子小段	1913-151	178	住宅區	1
桃園市	中正五街重劃區	桃園區	埔子段埔子小段	1913-177	128	道路	1
桃園市	新屋中華市地重劃區	新屋區	中華段	353	4296.47	農業區、住宅區	7
桃園市	新屋中華市地重劃區	新屋區	中華段	363	1210.07	住宅區	7
桃園市	新屋中華市地重劃區	新屋區	中華段	364	2249.62	住宅區	7
桃園市	新屋中華市地重劃區	新屋區	中華段	388	1536.94	住宅區	7
桃園市	新屋中華市地重劃區	新屋區	中華段	389	1909.66	住宅區	7

成果展示 - 人口密度以桃園區、新屋區為例

• 根據右圖中的資料,可以得知:

	類型	人口密度	人口變化
桃園區	都市	高	不穩定
新屋區	鄉村	低	穩定

結合每月單位土地價預測趨勢

- <u>當價格趨勢平穩 or 上升:</u> 可以考慮較靈活的方案像是短期租約、停車場等設施。等待更好的時機做操作。
- <u>當價格波動大 or 下降</u>: 可以選擇長期租約或外包,減少風險。

- <u>價格平穩地區</u>: 以長期發展的項目為主, 像是發展觀光建設。
- 當價格波動大地區:該區域可以做動態租約調整。像是趨勢為上升短期出租為主,而趨勢下降則以長期出租為準

桃園區

研究限制與未來展望

研究限制

- 資料量不足(每月來看10年只有117筆)
- 區域指標資料不足(區域範圍、時間跨度限制)
- 某些目標區的預測結果較差,其預測目標本質上較為複雜。

#未來展望

- 模型優化、預測目標的調整和增加模型泛化能力。
- 指標優化(是否可找到更專業一點的判斷依據)。
- 將模型實際運用到產業、決策中,進行更實務面的應用。

Thank you for listening

2022 Oct 14

基於實價登錄資料之土地價值預測