WHAT IS CLAIMED IS:

1	1. A process of imparting corrosion resistance to a substrate for		
2	use in a marine environment by coating said substrate with a polyurethaneurea, said		
3	process comprising:		
4	mixing		
5	a) an A-side of a polyurethaneurea coating comprising an		
6	isocyanate-terminated prepolymer prepared by reacting an excess of a diisocyanate		
7	with at least one hydrophobic polyoxyalkylene diol having a molecular weight o		
8	from 400 Da to 4000 Da;		
9	with		
0	b) a B-side containing a diamine and a hydrophobic		
1	polyoxyalkylene diol having a molecular weight determined by its hydroxyl number		
2	of from 200 Da to 4000 Da, in a weight ratio of diamine to hydrophobic		
3	polyoxyalkylene diol of from 1:10 to 10:1;		
4	to form a curable polyurethaneurea mixture having an NCO/OH ratio		
5	of from 0.85 to 1.15;		
6	c) spraying said curable mixture onto said substrate, and curing		
7	said mixture to form a polyurethaneurea coating on said substrate.		
1	2. The process of claim 1, wherein at least one hydrophobic		
2	polyoxyalkylene diol is selected from the group consisting of polytetramethylene		
3	ether glycols and low unsaturation polyoxypropylene diols.		
1	3. The process of claim 1, wherein the ratio of diamine to		
2	hydrophobic polyoxyalkylene diol in said B-side is from 3:1 to 1:3.		
1	4. The process of claim 1, wherein said A-side polyoxyalkylene		
2	diol comprises at least one polytetramethylene ether glycol having a molecular		
3	weight between 500 Da and 1000 Da and a further polyoxyalkylene diol such that		
4	a diol component having a bimodal molecular weight distribution is reacted with		
5	said diisocyanate.		

	J. 11	ie process of claim 1, wherein said unsocyaliate is toluene
2	diisocyanate.	
1	6. Ti	ne process of claim 1, wherein said diamine comprises
2	diethyltoluene diamine.	·
1	7. Ti	ne process of claim 1, wherein said A-side and said B-side
2	have viscosities of 500 c	ep or less at 160° F.
i	8. Ti	ne process of claim 1, wherein said substrate comprises
2	brass, bronze, bright m	etal, zinc, magnesium, aluminum, non-stainless steel, or
3	stainless steel.	
		•
1	9. Th	ne process of claim 1, wherein said substrate comprises non-
2	stainless steel, magnesiu	m, or aluminum.
•		
1	10. Ti	ne process of claim 1, wherein said substrate comprises a
2	fiber-reinforced polymer	r.
1	11. TI	ne process of claim 1, wherein said substrate comprises both
2	a metal and a fiber-reinf	orced polymer.
1	12. TI	ne process of claim 1, wherein said substrate is first coated
2	with a primer coating pr	ior to coating with said polyurethaneurea.
1	13. A	marine component for mounting on a water vessel,
2	comprising a substrate c	oated by the process of claim 1.
1	14. TI	ne component of claim 13, wherein said component
2	comprises aluminum, no	on-stainless steel, or a mixture thereof.
1		marine component for mounting on a water vessel,
2	comprising a substrate of	oated by the process of claim 2.

1	16. A marine component for mounting on a water vessel		
2	comprising a substrate coated by the process of claim 3.		
1	17. A marine component for mounting on a water vessel		
2	comprising a substrate coated by the process of claim 4.		
1	18. The component of claim 13 which is a radar arch, fishing		
2	platform, bow rail, or rub rail.		
1	19. The component of claim 13 comprising a substrate comprising		
2	a metal frame and a thin plastic or fiber-reinforced polymer sheet overlying said		
3	frame, and a coating of form 100 to 500 mil of polyurethaneurea applied over said		
4	substrate.		
1	20. The component of claim 19, wherein said polyurethaneure		
2	coating is effective to increase the rigidity of the substrate.		