Introduction to Wireless Communication

PROF. NAVRATI SAXENA

Department of Computer Science, SJSU

Early History & Developments

- Electro Magnetic (EM) waves
 - 1678: Huygens works on light reflection and refraction
 - 1819: Fresnel demonstrates the wavelike nature of light
 - 1831: Faraday demonstrates electromagnetic induction
 - Rotating electric coil -> magnetic field and vice versa
 - 1864: J. Maxwell introduces the theory of electromagnetic fields, wave equations
 - 1886: H. Hertz demonstrates experimentally the transmission and detection of an EM wave between two points a few meters apart

What is Wireless Communication?

 Transmitting voice and data using electromagnetic waves in open space (atmosphere)

Electromagnetic waves

- Travel at speed of light (c = 3x10⁸ m/s)
- Has a frequency (f) and wavelength (λ : lambda)

$$c = f \times \lambda$$

- Higher frequency means higher energy
- The higher the energy the more penetrating is the radiation

Basics of Waves

Electromagnetic Spectrum

Electromagnetic Spectrum – Types

Electromagnetic Carrier Selection

- Distance (between the sender and receiver) is short, e.g. TV box and a remote control
 - Infrared waves are used
- Long range distances (between sender and receiver), e.g. TV broadcasting)
 - Microwaves good when large areas need to be covered and no obstacles exist in the transmission paths

Radio waves

- Can penetrate obstacles and also relatively large areas
- Used for most wireless communications

Wireless Communications: Advantages and disadvantages

Advantages:

- An ideal solution in areas where cables are impossible to install (e.g. hazardous areas, long distances etc.)
- Easier to maintain
- Supports Mobility

Disadvantages:

- Security vulnerabilities
- High costs for setting the infrastructure
- Influenced by physical obstructions, climatic conditions, interference from other wireless devices

Frequency Carriers/Channels

- The information from sender to receiver is carrier over a well defined frequency band, often called channel
 - Similar it to a freeway or a city-water transmission
- Each channel has a fixed frequency bandwidth and capacity (bit-rate)
 - Similar to the width of a lane or tap
- Different frequency bands (channels) can be used to transmit information in parallel and independently

Example of Frequency Channels

- Assume a **spectrum** of **90KHz** is allocated over a **base frequency b** for communication between **stations A and B**
- Assume each channel occupies **30KHz**.
- There are 3 channels
- Each channel is **simplex**, i.e. only one-way transmission

Station A	Channel 1 (b ~ b+30)	Station B
	Channel 2 (b+30 ~ b+60)	
	Channel 3 (b+60 ~ b+90)	

Types of Communications

- Simplex one-way
- Half-duplex two-way, but one-way at a time
- Duplex always two-way

Transmission in both directions simultaneously

Radio Waves – Generation

- A high-frequency alternating current (AC) is passed through a copper conductor – Radio waves are generated
- Transmitted using a transmitter (antenna)

Radio Wave Propagation (1)

- Propagate in all directions as a straight line
- Travel at light velocity, i.e. 186,000 miles per second
- Gets weaker as they travel a long distance

Radio Wave Propagation (2)

- Properties similar to visible light
 - Reflection and refraction

• Law of Reflection $\Theta_1 = \Theta_1$

• Law of Refraction $sin\theta_1 / sin\theta_2 = R$

(R is constant)

Radio Wave Propagation (3)

Diffraction

- Bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture
- Helps houses in shadows of hills to receive wireless signal (radio waves)

Radio Wave Propagation (4)

Absorption,

 How matter (typically electrons) takes up a photon's energy — and so transforms electromagnetic energy into internal energy

Scattering

 Quanta of waves are forced to deviate from a straight trajectory by localized non-uniformities in the medium through which they pass

Radio signal Attenuation (Path Loss)

- Signal's energy reduces (attenuates) as it travels
- Energy is lost in reflection, refraction, diffraction, scattering, interference, during propagation
- Weak waves attenuates faster than strong waves

Radio Frequency Noise

- Unfortunately, any signal can use the wireless medium
- Any signal other than primary signal is noise

Radio Interference (1)

- Any other signal (e.g. noise) interferes with the primary signal
 - Interference disturbs and reduces the power of primary signal

Radio Interference (2)

Digital and Analog Signals (1)

- Digital messages are constructed with a finite number of symbols.
 - For example, a text file is a digital message, constructed from 50 symbols, consists of 26 letters, 10 numbers, space and several punctuation marks.
 - Messages are typically represented by sequence of 0 and 1

Digital and Analog Signals (2)

Analog Signal

- Characterized by data whose values vary over a continuous range.
- For example, a speech waveform has amplitudes that vary over a continuous range.

Advantages of Digital Signal (1)

Noise Immunity

- Digital signal: Can be recovered without any error, as long as the distortion and noise are within limit.
- Analog signal: Even a slight distortion or interference in the waveform will cause an error in the received signal.

Advantages of Digital Signal (2)

Regenerative Repeaters

- During long distance signal transmissions, regenerative repeaters are placed at short distances to ensure that distortion remain within limit.
- These intermediate repeaters recovers the original signal and boost up the signal strength and transmits again along the same path.
- The viability of regenerative repeaters is the main reason for the superiority of digital systems over analog ones.

Advantages of Digital Signal (3)

Easy to Transmit Signal

- Communication can be carried on with only two symbols, i.e., by using a proper binary sequence.
- Over last 20 years, digital communication has gradually replaced analog communications

Global Wireless Standards

- 1. PAN: Personal Area Networks
- 2. LAN: Local Area Networks
- 3. MAN: Metropolitan Area Networks
- 4. WAN: Wide Area Networks

Personal Area Networks (PAN)

Infra-Red (IR) Spectrum

IR Wireless

- Uses beams of light in the infrared spectrum
 - Remote controls
- Fairly reliable and low-cost
- IrDA Infrared Data Association
 - IrDA devices communicate using infrared LED's
 - Wavelength 875nm +-30nm
 - IrDA support data transmission of 1.15Mb/s and 4Mb/s

IR Applications

- PDAs
- Phones
- Organizer
- Printers
- Cameras
- Laptops and Notebooks
- Other Applications

IR – Advantages & Disadvantages

Advantages

- Point-to-point
- Line of sight
- Transfer data up to 1m
- Security
- Low power consumption
- Low cost

Disadvantages

- Line of sight
- One device at a time
- Transfer rate 4Mbps
- Needs stability during data transmission
- Essentially PANs quite short range

IEEE 802.15 (Bluetooth)

Special interest Group founded by Ericsson, IBM, Intel, Nokia, and Toshiba in 1998.

Open specification for short-range wireless connectivity between laptops, computers, cellular telephones etc.

Local Area Networks (LAN)

Wireless Fidelity (Wi-Fi)

Also referred as WLANs (Wireless Local Area Networks)

Wireless LANs

Advantages:

- Fast (11 Mbps)
- Range (up to 1000 ft outdoors, 400 ft indoors)
- Easy integration to wired networks
- Advanced WLANs (802.11n/802.11ac/802.11ax) support hundreds of Mbps of data rates

Disadvantages:

- Speed often fluctuates a lot
- Collision between carriers, originated from different clients
- Only local area networks limited mobility, indoor or need hotspots
- Doesn't work in outdoors need hotspots

Metropolitan Area Networks (MAN)

Worldwide Interoperability for Microwave Access (WiMAX)

- Commonly known as WiMAX IEEE 802.16 (2004)
- Mobility is introduced in 802.16e (Mobile WiMAX)

WiMAX vs. WiFi

- WiMax eliminates most constraints of Wi-Fi.
- Unlike Wi-Fi, WiMax is intended to work outdoors over long distances.
- WiMax can handle important issues, like QoS guarantee, carrier-class reliability, NLOS.
- WiMax is not intended to replace Wi-Fi. Instead, the two technologies complement each other.

Wide Area Networks (WAN)

Major Challenge – Mobility

- Remember: Traditional phones were wired
 - Do not support mobility!
 - Even WLANs and WPANs provide limited (shortrange) mobility
- How to ensure moving with a phone?
 - The biggest challenge in 20th century's wireless communications

Cellular Wireless

 Total area is divided into many coverage areas – termed cells

 A tower with antenna and processing c provided in each cell

■ Tower is called **Base Station (BS)**

Mobile phones or User Equipments (UE communicate with the nearest BS

 Radio-based technology and uses radio waves to communicate (propagating through antennas in BS and UE)

Cellular Networks

- Multiple base stations can use the same spectrum
- Relay nodes are used to boost-up signal strength of digital electro-magnetic waves (Recap: digital communications)

Different Types of Coverage

Each BS can accommodate a maximum number of UEs

 Different seizes of coverage (cell) depending on density of UEs in the area, e.g. rural, urban, dense-

urban

Advantages of Cellular Networks

- Provides voice/data services even while moving
- Connects both fixed and wireless telephone users.
- Used in areas where cables can not be laid out due to its wireless nature.
- Easy to maintain and upgrade.
- Almost immediate connectivity as the phone is switched on.

Disadvantages of Cellular Networks

- Relatively less data rate compare to wired networks
- Data rates depend on type of cellular networks (2G/3G/4G/5G)
- Affected by challenges of EM waves (loss, attenuation, interference etc.)
- Capacity is lower and depends on channels.
- Security vulnerabilities, as communications is over the air
- Needs very high capital expenditure to set up the network
 - Many BSs and many processing equipments etc.

Multiple Access Protocols

Multiple Access Protocols in Cellular Networks

FDMA

TDMA

CDMA

Cellular Architecture

Types of Wireless Channels

1. Control channels

- Carry information about coordination and management among different users or channels
- a) Forward (Downlink) control channel
- b) Reverse (Uplink) control channel

2. Traffic channels

- Carry actual data traffic
- a) Forward (DL) traffic (data or information) channel
- b) Reverse (UL) traffic (data or information) channel

Multiple Access Protocols (MAP)

- MAP allows multiple users to share a common channel.
- Conflict-free protocols ensure successful transmission.
- Static conflict-free protocols –Current cellular mobile communications
 - FDMA
 - TDMA
 - CDMA

Static Conflict-free protocols

- Frequency Division Multiple Access (FDMA)
 - Fraction of the frequency range to each user for all the time
- Time Division Multiple Access (TDMA)
 - Entire frequency band to a single user for a fraction of time
- Code Division Multiple Access (CDMA)
 - A portion of bandwidth for a fraction of time

Frequency Division Multiple Access (FDMA)

- Channels assigned to user for the duration of a call.
- No other user access the channel during that time.
- When call terminates
 - Same channel can be re-assigned to another user
- 1st Generation (1G) mobile communication systems
 - AMPS (30 KHz channels), NMT, Japanese TACS/NTT

Time Division Multiple Access (TDMA)

Instead of dividing the frequency, split the time into small slots

Time Division Multiple Access (TDMA)

- The whole channel is assigned to each user for a particular time slot
 - Users multiplexed over time during communication.
 - During that time slot, users use the entire frequency spectrum
- Channel Data rate: Sum of data rates of all the multiplexed transmissions
- Channel interference between transmission in two adjacent slots
 - Transmissions tend to overlap in time.
 - This interference limits the number of users that can share the channel

Code Division Multiple Access (CDMA)

- Users share bandwidth by using sequence of orthogonal codes
- No more division of frequency or time

GSM: System Architecture

BTS and BSC

BTS/BS

- One per cell
- Consists of high speed transmitter and receiver
- Function of BTS
 - Provides two channels
 - Signalling & Data Channel
 - Performs error protection coding for the radio channel

BSC

- Controls multiple BTS
 - Performs radio resource management
 - Assigns and releases frequencies and time slots for all the MSs in its area
 - Reallocation of frequencies among cells
 - Hand over protocol is executed here

Mobile Switching Centre (MSC)

- Switching node of a PLMN (Public Land Mobile Network)
- Allocation of radio resource (RR)
 - Handover
- Mobility of subscribers
 - Location registration of subscriber

Databases of MSC

HLR - Home Location Register
For all users registered with
the network
HLR keeps user profile

VLR - Visitor Location Register
VLR is responsible for a group of location areas, typically associated with an MSC

Gateway MSC (GMSC)

- Connects mobile network to a fixed network
 - Entry point to a PLMN

Usually one per PLMN

 Request routing information from the HLR and routes the connection to the local MSC

Outgoing call setup

- User keys in the number and presses send
- Mobile transmits request on uplink signaling channel
- If network can process the call, BS sends a channel allocation message
- Network proceeds to setup the connection

Network activity:

- MSC determines current location of target mobile using HLR, VLR and by communicating with other MSCs
- Source MSC initiates a call setup message to MSC covering target area

Incoming call setup

- Target MSC initiates a paging message
- BSs forward the paging message on downlink channel in coverage area
- If mobile is on (monitoring the signaling channel), it responds to BS
- BS sends a channel allocation message and informs MSC

Network activity:

Network completes the two halves of the connection

Thank You!