Firewatch

Vikram Sunil Bajaj (vsb259) Ameya Shanbhag (avs431) Hitarthi Shah (hus206)

Project goal

With the recent events of forest wildfires happening across the globe, we decided to dive into data to develop some insights. The goal of the project is to analyze the wildfires in the United States over time, what effect does it have on the air pollution and to try to understand the factors causing them, and ultimately increase awareness about climate change.

Data Set

We have used the following dataset:

1. 1.88 million US Wildfire:

Source: https://www.kaggle.com/rtatman/188-million-us-wildfires/

Description: This dataset is an SQLite database with a table 'Fires' that contains the following information, for the period of 1992-2015 compiled from US federal, state, and local reporting systems:

Attributes:

- FIRE_NAME = Name of the incident, from the fire report (primary) or ICS-209 report (secondary).(Categorical)
- FIRE_YEAR = Calendar year in which the fire was discovered or confirmed to exist.(Quantitative and Temporal)
- DISCOVERY_DATE = Date on which the fire was discovered or confirmed to exist.(Quantitative and Temporal)
- DISCOVERY_TIME = Time of day that the fire was discovered or confirmed to exist.(Quantitative and Temporal)
- CONT_DATE = Date on which the fire was declared contained or otherwise controlled.
 (Quantitative and Temporal)
- STAT CAUSE DESCR = Description of the (statistical) cause of the fire.(Categorical)
- COUNTY = County, or equivalent, in which the fire burned (or originated), based on nominal designation in the fire report.(Categorical and Spatial)
- STATE = Two-letter alphabetic code for the state in which the fire burned (or originated), based on the nominal designation in the fire report.(Categorical and Spatial)

• FIRE SIZE = Estimate of acres within the final perimeter of the fire.(Quantitative)

Analytical Questions and Proxy Tasks

Make a list of questions you want to answer in your project and corresponding proxy tasks (referring to the attributes described in the previous section).

1. What regions are the most and least fire-prone?

Proxy Task: How do you identify 'region'?

Proxy Value: COUNTY/STATE attribute of the 1.88 million US Wildfire dataset

2. Have wildfires become more or less frequent over time?

Proxy Task: How is time measured?

Proxy Value: FIRE_YEAR attribute of the 1.88 million US Wildfire dataset

3. Why do most wildfires occur?

Proxy Task: How do you identify 'reason'?

Proxy Value: STAT_CAUSE_DESCR attribute of the 1.88 million US Wildfire dataset

4. What causes lead to larger wildfires?

Proxy Task: How do you identify causes?

Proxy Value: STAT_CAUSE_DESCR attribute of the 1.88 million US Wildfire dataset.

5. How long does it usually take to contain a fire?

Proxy Task: How do you measure time?

Proxy Value: CONT_DATE and DISCOVERY_DATE attributes of the 1.88 million US Wildfire

dataset.

6. Does the average fire size vary depending on the average time it took to put out the fire?

Proxy Task: How do you measure the time taken to put out fire?

Proxy Value: CONT_DATE and DISCOVERY_DATE attribute of the 1.88 million US Wildfire

dataset.

Data Analysis and Sketches

Wildfires are becoming increasingly common nowadays. With a large part of California set ablaze, we couldn't help but think: could this be a cause for global warming? What could have been the reason behind the wildfires? With these questions in mind, we turned to data for the answers. What we found was quite surprising!

First, we obtained data that contained details about wildfires in the US, from 1992-2015.

Initially, we wanted to determine which states in the US are most prone to wildfires. California: no surprise there! Georgia is a close second.

Having visualized the number of fires per state, we thought it might be interesting to have a look at the data at a more granular level: the map below shows the number of fires per county!

We also confirmed that wildfires are becoming more frequent over time! This is definitely cause for concern.

But why are wildfires happening? Data had the answer yet again: most wildfires were caused due to burning debris, who'd have thought?

To get a better view of the causes and the number of wildfires caused by them, we thought of visualising all the reasons in a parallel way over the time.

After observing the chart, we can see that the wildfires because of lightning were less than those due to debris burning. This is what surprised us, so we wanted to determine not the cause for the most wildfires, but the cause for the largest wildfires. Turns out, although burning debris caused

the most wildfires, it mostly caused really small fires. Lightning, however, was the cause for the largest wildfires! This is, unfortunately, not something that humans can control. Other causes, such as power line failures, equipment use, campfires etc., however, can and should definitely be controlled.

The second most important part, after identifying the real cause of wildfire is how long does it take to put out the wildfire. This is important because wildfires take away homes, vegetation and wildlife. The soil in the area of wildfire is destroyed because as soon as the wildfire hits the soil, all its nutrients are gone. Ash and smoke produced from the wildfire causes serious health problems to people having allergies. Hence the faster the fire is put down, less is the impact of wildfire on the ecosystem.

Clearly, some fires took longer to put out than others. But does this mean that fires which took longer to put out became more widespread? Did a delay in putting out the fires cause them to grow larger? This is surely a cause for concern, if true.

On comparing the average fire size with the average number of days it took to put the fire out, across the years, a correlation does seem to exist. This correlation has, however, disappeared in recent years.

Changelog and Feedback Implementation

- Removed the sea ice level dataset and the correlation between the wildfire dataset and sea ice extent, based on feedback
- Changed the title from 'Fire and Ice' to 'Firewatch'
- Amended the goal of the project to reflect the removal of the sea ice extent dataset
- Added an air pollution dataset to observe the correlation between the wildfires and their impact on air pollution, but then removed it based on feedback
- Added a new question to determine the average number of days it took to put out the wildfires in each state
- Added a new question to check if wildfires that took longer to put out grew larger
- Added a visualization of number of wildfires per county based on feedback
- Added a visualization of number of fires per year due to each fire cause, based on feedback

GitHub Link

https://github.com/NYU-VIS-FALL2018/storytelling-group-2-online