Algoritmi e Strutture Dati - 12/01/15

Esercizio 1

E' facile osservare che un limite inferiore per T(n) è $\Omega(2^n)$, in quanto la componente non ricorsiva è pari a 2^n . Proviamo quindi a dimostrare che $T(n) = O(2^n)$.

- Caso base: $T(1) = 1 \le c2^1$, il che è vero è per $c \ge 1/2$.
- Ipotesi induttiva: $T(n') \le c2^{n'}$, per ogni n' < n.
- Passo induttivo:

$$T(n) = T(n/2) + 2^n$$

$$\leq c2^{n/2} + 2^n$$

$$\leq c2^n$$

L'ultima disequazione è vera per $c \geq \frac{2^{n/2}-1}{2^{n/2}}$. Poichè $\lim_{n \to +\infty} \frac{2^{n/2}-1}{2^{n/2}} = 1$ e $\frac{2^{n/2}-1}{2^{n/2}} < 1$ per ogni $n \geq 1$, la disequazione è soddisfatta da c = 1 e m = 1.

Esercizio 2

Per valutare se un alberto T è k-bilanciato, utilizziamo una procedura balance (TREE T, integer k) che restituisce -1 se il T non è k-bilanciato, oppure l'altezza di T se T è k-bilanciato e questa proprietà vale per tutti i suoi sottoalberi.

```
\begin{array}{l} \textbf{if } T = \textbf{nil then} \\ & \bot \textbf{ return } 0 \\ & \textbf{integer } L \leftarrow \textbf{balance}(T.left) \\ & \textbf{integer } R \leftarrow \textbf{balance}(T.right) \\ & \textbf{if } L < 0 \textbf{ or } R < 0 \textbf{ or } |L - R| > k \textbf{ then} \\ & & \vdash \textbf{ return } -1 \\ & \textbf{else} \\ & \bot \textbf{ return } \max(L,R) + 1 \end{array}
```

Trattandosi di visita in profondità, la complessità della procedura è O(n), dove n è il numero di nodi dell'albero.

Esercizio 3

return false

Un modo semplice, ma poco efficiente per scrivere tale algoritmo è il seguente:

Questa procedura ha una complessità pari a $O(n^5)$.

E' possibile costruire una matrice di adiacenza M di dimensione $n \times n$ tale per cui $M[u,v] = \mathbf{true}$ se e solo se esiste w tale per cui $(u,w) \in E$ e $(w,v) \in E$. In quel caso, esiste un ciclo di dimensione 4 se esistono due nodi u,v tali per cui $M[u,v] = M[v,u] = \mathbf{true}$. Tale algoritmo ha complessità $O(n^3)$ per la costruzione della matrice.

Esercizio 4

Il problema si risolve semplicemente utilizzando la programmazione dinamica. Sia T(n) il numero di modi in cui è possibile scegliere n scalini; allora T(n) può essere espresso nel modo seguente:

$$T(n) = \begin{cases} 1 & n = 0\\ \sum_{k=1}^{\min\{n,4\}} T(n-k) & n > 0 \end{cases}$$

Un algoritmo basato su programmazione dinamica per risolvere il problema è il seguente:

La complessità della procedura è pari a O(n). Notate che T(n) è uguale al valore del (n+1)-esimo "Tetranacci number" http://mathworld.wolfram.com/TetranacciNumber.html