The original expression has the form

$$f(x) = \sin\left((x + 5.00)^{2.00}\right)$$

By too simple mathematical transformations: $\sin\left(\left(x+5.00\right)^{2.00}\right) = \sin\left(\left(5.00+x\right)^{2.00}\right)$

Trying to take a derivative of $\sin \left((5.00 + x)^{2.00} \right) \dots$

Trying to take a derivative of $(5.00 + x)^{2.00}$...

Trying to take a derivative of 5.00 + x...

By too simple mathematical transformations: 0.00 + 1.00 = 1.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: (5.00 + x)'(x) = 1.00

By too simple mathematical transformations: $2.00 \cdot (5.00 + x)^{2.00-1.00} \cdot 1.00 = 10.00 + 2.00 \cdot x$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((5.00 + x)^{2.00})'(x) = 10.00 + 2.00 \cdot x$

By too simple mathematical transformations: $\cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\sin\left((5.00+x)^{2.00}\right))'(x) = \cos\left((5.00+x)^{2.00}\right)\cdot(10.00+2.00\cdot x)$

By too simple mathematical transformations: $\cos\left((5.00+x)^{2.00}\right)\cdot(10.00+2.00\cdot x) = \cos\left((5.00+x)^{2.00}\right)\cdot(10.00+2.00\cdot x)$

Trying to take a derivative of $\cos\left((5.00+x)^{2.00}\right)\cdot(10.00+2.00\cdot x)...$

Trying to take a derivative of $\cos \left((5.00 + x)^{2.00} \right) \dots$

Trying to take a derivative of $(5.00 + x)^{2.00}$...

Trying to take a derivative of 5.00 + x...

By too simple mathematical transformations: 0.00 + 1.00 = 1.00

Having counted the most obvious derivative, which the Soviet children were

actually able to calculate in their minds, we get: (5.00 + x)'(x) = 1.00

By too simple mathematical transformations: $2.00 \cdot (5.00 + x)^{2.00-1.00} \cdot 1.00 = 10.00 + 2.00 \cdot x$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((5.00 + x)^{2.00})'(x) = 10.00 + 2.00 \cdot x$

By too simple mathematical transformations: $\sin\left((5.00+x)^{2.00}\right)\cdot(-1.00)\cdot(10.00+2.00\cdot x) = (-1.00)\cdot(10.00+2.00\cdot x)\cdot\sin\left((5.00+x)^{2.00}\right)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\cos((5.00 + x)^{2.00}))'(x) = (-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00})$

Trying to take a derivative of $10.00 + 2.00 \cdot x$...

Trying to take a derivative of $2.00 \cdot x$...

By too simple mathematical transformations: $2.00 \cdot 1.00 = 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: 0.00 + 2.00 = 2.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(10.00 + 2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations:
$$(-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) \cdot (-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) + 2.00 \cdot \cos\left((5.00 + x)^{2.00}\right)$$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $\left(\cos\left((5.00+x)^{2.00}\right)\cdot(10.00+2.00\cdot x))'(x) = (-1.00)\cdot(10.00+2.00\cdot x)\cdot(10.00+2.00\cdot x)\cdot\sin\left((5.00+x)^{2.00}\right) + 2.00\cdot\cos\left((5.00+x)^{2.00}\right)$

By too simple mathematical transformations: $(-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right)$ $(-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) + 2.00 \cdot \cos\left((5.00 + x)^{2.00}\right)$

Trying to take a derivative of $(-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}) + 2.00 \cdot \cos((5.00 + x)^{2.00})$

Trying to take a derivative of $(-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}) \dots$

Trying to take a derivative of $(10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00})...$

Trying to take a derivative of $10.00 + 2.00 \cdot x$...

Trying to take a derivative of $2.00 \cdot x$...

By too simple mathematical transformations: $2.00 \cdot 1.00 = 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: 0.00 + 2.00 = 2.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(10.00 + 2.00 \cdot x)'(x) = 2.00$

Trying to take a derivative of $(10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00})...$

Trying to take a derivative of $10.00 + 2.00 \cdot x$...

Trying to take a derivative of $2.00 \cdot x$...

By too simple mathematical transformations: $2.00 \cdot 1.00 = 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: 0.00 + 2.00 = 2.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(10.00 + 2.00 \cdot x)'(x) = 2.00$

Trying to take a derivative of $\sin \left((5.00 + x)^{2.00} \right) \dots$

Trying to take a derivative of $(5.00 + x)^{2.00}$...

Trying to take a derivative of 5.00 + x...

By too simple mathematical transformations: 0.00 + 1.00 = 1.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: (5.00 + x)'(x) = 1.00

By too simple mathematical transformations: $2.00 \cdot (5.00 + x)^{2.00-1.00} \cdot 1.00 = 10.00 + 2.00 \cdot x$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((5.00 + x)^{2.00})'(x) = 10.00 + 2.00 \cdot x$

By too simple mathematical transformations: $\cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\sin((5.00+x)^{2.00}))'(x) = \cos((5.00+x)^{2.00}) \cdot (10.00+2.00 \cdot x)$

By too simple mathematical transformations: $2.00 \cdot \sin\left((5.00+x)^{2.00}\right) + (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right)$ $2.00 \cdot \sin\left((5.00+x)^{2.00}\right) + (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}))'(x) = 2.00 \cdot \sin((5.00 + x)^{2.00}) + (10.00 + 2.00 \cdot x) \cdot \cos((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x)$

By too simple mathematical transformations: $2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) + (10.00 + 2.00 \cdot x) \cdot 2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) + (10.00 + 2.00 \cdot x) \cdot \left(2.00 \cdot \sin\left((5.00 + x)^{2.00}\right) + (10.00 + 2.00 \cdot x) \cdot x\right)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}))'(x) = 2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00}) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00}))$

By too simple mathematical transformations: $(-1.00) \cdot \left(2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) + (10.00 + 2.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) + (10.00 + 2.00) \cdot (10.00 + 2.00 \cdot x) \cdot \left(2.00 \cdot \sin\left((5.00 + x)^{2.00}\right) + (10.00 + 2.00) \cdot (10.00 + 2.00)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin ((5.00 + x)^{2.00}) - (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin ((5.00 + x)^{2.00}) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin ((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin ((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin ((5.00 + x)^{2.00}))$

Trying to take a derivative of $2.00 \cdot \cos \left((5.00 + x)^{2.00} \right) \dots$

Trying to take a derivative of $\cos ((5.00 + x)^{2.00})...$

Trying to take a derivative of $(5.00 + x)^{2.00}$...

Trying to take a derivative of 5.00 + x...

By too simple mathematical transformations: 0.00 + 1.00 = 1.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: (5.00 + x)'(x) = 1.00

By too simple mathematical transformations: $2.00 \cdot (5.00 + x)^{2.00-1.00} \cdot 1.00 = 10.00 + 2.00 \cdot x$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((5.00 + x)^{2.00})'(x) = 10.00 + 2.00 \cdot x$

By too simple mathematical transformations: $\sin\left((5.00+x)^{2.00}\right)\cdot(-1.00)\cdot(10.00+2.00\cdot x) = (-1.00)\cdot(10.00+2.00\cdot x)\cdot\sin\left((5.00+x)^{2.00}\right)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\cos\left((5.00+x)^{2.00}\right))'(x) = (-1.00) \cdot (10.00+2.00 \cdot x) \cdot \sin\left((5.00+x)^{2.00}\right)$

By too simple mathematical transformations: $2.00 \cdot (-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}) = (-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00})$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot \cos ((5.00 + x)^{2.00}))'(x) =$

$$(-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right)$$

By too simple mathematical transformations: $(-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) - (10.00 + 2.00 \cdot x) \cdot (-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) - (10.00 + 2.00 \cdot x) \cdot \left(2.00 \cdot \sin\left((5.00 + x)^{2.00}\right) + (10.00 + 2.00 \cdot x)^{2.00}\right)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}) - (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00}) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00}))$

By too simple mathematical transformations: $(-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) - (10.00 + 2.00 \cdot x) \cdot (-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) - (10.00 + 2.00 \cdot x) \cdot \left(2.00 \cdot \sin \left((5.00 + x)^{2.00} \right) + (10.00 + 2.00 \cdot x) \cdot (-2.00 \cdot x) \cdot (-2$

Trying to take a derivative of $(-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}) - (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00}))$

Trying to take a derivative of $(-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}) - (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00}))$

Trying to take a derivative of $(-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00})...$

Trying to take a derivative of $(10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00})...$

Trying to take a derivative of $10.00 + 2.00 \cdot x...$

Trying to take a derivative of $2.00 \cdot x$...

By too simple mathematical transformations: $2.00 \cdot 1.00 = 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: 0.00 + 2.00 = 2.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(10.00 + 2.00 \cdot x)'(x) = 2.00$

Trying to take a derivative of $\sin ((5.00 + x)^{2.00})...$

Trying to take a derivative of $(5.00 + x)^{2.00}$...

Trying to take a derivative of 5.00 + x...

By too simple mathematical transformations: 0.00 + 1.00 = 1.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: (5.00 + x)'(x) = 1.00

By too simple mathematical transformations: $2.00 \cdot (5.00 + x)^{2.00-1.00} \cdot 1.00 = 10.00 + 2.00 \cdot x$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((5.00 + x)^{2.00})'(x) = 10.00 + 2.00 \cdot x$

By too simple mathematical transformations: $\cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\sin((5.00+x)^{2.00}))'(x) = \cos((5.00+x)^{2.00}) \cdot (10.00+2.00 \cdot x)$

By too simple mathematical transformations: $2.00 \cdot \sin\left((5.00+x)^{2.00}\right) + (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) + (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}))'(x) =$

$$2.00 \cdot \sin\left((5.00+x)^{2.00}\right) + (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x)$$

By too simple mathematical transformations: $(-2.00) \cdot \left(2.00 \cdot \sin\left((5.00+x)^{2.00}\right) + (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) - (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right))'(x) = (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) - 2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x)$

Trying to take a derivative of $(10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00}) + (10.00 + 2.00 \cdot x) \cdot \cos((5.00 + x)^{2.00})$

Trying to take a derivative of $10.00 + 2.00 \cdot x$...

Trying to take a derivative of $2.00 \cdot x$...

By too simple mathematical transformations: $2.00 \cdot 1.00 = 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: 0.00 + 2.00 = 2.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(10.00 + 2.00 \cdot x)'(x) = 2.00$

Trying to take a derivative of $2.00 \cdot \sin\left((5.00 + x)^{2.00}\right) + (10.00 + 2.00 \cdot x) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x)$

Trying to take a derivative of $2.00 \cdot \sin \left(\left(5.00 + x \right)^{2.00} \right) \dots$

Trying to take a derivative of $\sin \left(\left(5.00 + x \right)^{2.00} \right) \dots$

Trying to take a derivative of $(5.00 + x)^{2.00}$...

Trying to take a derivative of 5.00 + x...

By too simple mathematical transformations: 0.00 + 1.00 = 1.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: (5.00 + x)'(x) = 1.00

By too simple mathematical transformations: $2.00 \cdot (5.00 + x)^{2.00 - 1.00} \cdot 1.00 =$

 $10.00 + 2.00 \cdot x$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((5.00 + x)^{2.00})'(x) = 10.00 + 2.00 \cdot x$

By too simple mathematical transformations: $\cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\sin((5.00+x)^{2.00}))'(x) = \cos((5.00+x)^{2.00}) \cdot (10.00+2.00 \cdot x)$

By too simple mathematical transformations: $2.00 \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = 2.00 \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot \sin\left((5.00 + x)^{2.00}\right))'(x) = 2.00 \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x)$

Trying to take a derivative of $(10.00 + 2.00 \cdot x) \cdot \cos((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x)...$

Trying to take a derivative of $10.00 + 2.00 \cdot x$...

Trying to take a derivative of $2.00 \cdot x$...

By too simple mathematical transformations: $2.00 \cdot 1.00 = 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: 0.00 + 2.00 = 2.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(10.00 + 2.00 \cdot x)'(x) = 2.00$

Trying to take a derivative of $\cos ((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x)...$

Trying to take a derivative of $\cos \left((5.00 + x)^{2.00} \right) \dots$

Trying to take a derivative of $(5.00 + x)^{2.00}$...

Trying to take a derivative of 5.00 + x...

By too simple mathematical transformations: 0.00 + 1.00 = 1.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: (5.00 + x)'(x) = 1.00

By too simple mathematical transformations: $2.00 \cdot (5.00 + x)^{2.00-1.00} \cdot 1.00 = 10.00 + 2.00 \cdot x$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((5.00 + x)^{2.00})'(x) = 10.00 + 2.00 \cdot x$

By too simple mathematical transformations: $\sin\left((5.00+x)^{2.00}\right)\cdot(-1.00)\cdot(10.00+2.00\cdot x) = (-1.00)\cdot(10.00+2.00\cdot x)\cdot\sin\left((5.00+x)^{2.00}\right)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\cos((5.00+x)^{2.00}))'(x) = (-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00+x)^{2.00})$

Trying to take a derivative of $10.00 + 2.00 \cdot x$...

Trying to take a derivative of $2.00 \cdot x$...

By too simple mathematical transformations: $2.00 \cdot 1.00 = 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: 0.00 + 2.00 = 2.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(10.00 + 2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: $(-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) \cdot (-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) + 2.00 \cdot \cos\left((5.00 + x)^{2.00}\right)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\cos\left((5.00+x)^{2.00}\right)\cdot(10.00+2.00\cdot x))'(x) = (-1.00)\cdot(10.00+2.00\cdot x)\cdot(10.00+2.00\cdot x)\cdot\sin\left((5.00+x)^{2.00}\right) + 2.00\cdot\cos\left((5.00+x)^{2.00}\right)$

By too simple mathematical transformations: $2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + \left(10.00 + 2.00 \cdot x\right) \cdot 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + \left(10.00 + 2.00 \cdot x\right) \cdot \left(\left(-1.00\right) \cdot \left(10.00 + 2.00 \cdot x\right) \cdot \left(10.00 + 2.00 \cdot x\right) \cdot \left(10.00 + 2.00 \cdot x\right) \cdot 2.00 \cdot x$

Having counted the most obvious derivative, which the Soviet children were ac-

tually able to calculate in their minds, we get:
$$((10.00 + 2.00 \cdot x) \cdot \cos((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x))'(x) =$$

$$2.00 \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + (10.00+2.00 \cdot x) \cdot \left((-1.00) \cdot (10.00+2.00 \cdot x) \cdot (10.00+2.00 \cdot x) \cdot (10.00+2.00 \cdot x)\right) \cdot (10.00+2.00 \cdot x) \cdot (10.0$$

By too simple mathematical transformations:
$$2.00 \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + 2.00 \cdot \cos\left((5.00+x)^{2.00}\right)$$

$$2.00 \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + 2.00 \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + (10.00+2$$

Having counted the most obvious derivative, which the Soviet children were ac-

tually able to calculate in their minds, we get:
$$(2.00 \cdot \sin\left((5.00 + x)^{2.00}\right) + (10.00 + 2.00 \cdot x) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) + (10.00 + 2.00 \cdot x) + (10.00 + 2.00 \cdot x) + (10.00 + 2.00 \cdot x)$$

By too simple mathematical transformations:
$$2.00 \cdot \left(2.00 \cdot \sin\left(\left(5.00 + x\right)^{2.00}\right) + (10.00 + 2.00 \cdot x) \cdot \cos\left(\left(5.00 - 4.00 \cdot \sin\left(\left(5.00 + x\right)^{2.00}\right) + 2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) + (10.00 + 2.00 \cdot x)\right)$$

Having counted the most obvious derivative, which the Soviet children were ac-

tually able to calculate in their minds, we get:
$$((10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00}) + (10.00 + 2.00 \cdot x) \cdot (4.00 \cdot \sin((5.00 + x)^{2.00}) + 2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \cos((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x) + (10.00 + 2.00 \cdot x)$$

By too simple mathematical transformations:
$$(-4.00) \cdot \sin\left((5.00+x)^{2.00}\right) - 2.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) - 2.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \sin\left((5.00+x)^{2.00}\right) - 2.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \sin\left((5.00+x)^{2.00}\right) - (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) + (10.00+2.00 \cdot x) \cdot \sin\left((5.00+x)^{2.00}\right) + (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) + (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00$$

Having counted the most obvious derivative, which the Soviet children were ac-

tually able to calculate in their minds, we get:
$$((-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}) - (10.00 + 2.00 \cdot x) \cdot \cos((5.00 + x)^{2.00}) - (10.00 + 2.00 \cdot x) \cdot \cos((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin((5.00 + x)^{2.00}) = (10.00 + 2.00 \cdot x) \cdot \cos((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin((5.00 + x)^{2.00}) = (10.00 + 2.00 \cdot x) \cdot \cos((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin((5.00 + x)^{2.00}) = (10.00 + 2.00 \cdot x) \cdot \cos((5.00 + x)^{2.00}) = (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}) = (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}) = (10.00 + 2.00 \cdot x) \cdot \cos((5.00 + x)^{2.00}) = (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}) = (10.00 + 2.00 \cdot x) \cdot \cos((5.00 + x)^{2.00}) = (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}) = (10.00 + 2.00 \cdot x) \cdot \cos((5.00 + x)^{2.00}) = (10.00 +$$

Trying to take a derivative of $2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00})...$

Trying to take a derivative of
$$(10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00})...$$

Trying to take a derivative of $10.00 + 2.00 \cdot x$...

Trying to take a derivative of $2.00 \cdot x$...

By too simple mathematical transformations: $2.00 \cdot 1.00 = 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: 0.00 + 2.00 = 2.00

Having counted the most obvious derivative, which the Soviet children were

actually able to calculate in their minds, we get: $(10.00 + 2.00 \cdot x)'(x) = 2.00$

Trying to take a derivative of $\sin \left((5.00 + x)^{2.00} \right) \dots$

Trying to take a derivative of $(5.00 + x)^{2.00}$...

Trying to take a derivative of 5.00 + x...

By too simple mathematical transformations: 0.00 + 1.00 = 1.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: (5.00 + x)'(x) = 1.00

By too simple mathematical transformations: $2.00 \cdot (5.00 + x)^{2.00-1.00} \cdot 1.00 = 10.00 + 2.00 \cdot x$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((5.00 + x)^{2.00})'(x) = 10.00 + 2.00 \cdot x$

By too simple mathematical transformations: $\cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\sin((5.00+x)^{2.00}))'(x) = \cos((5.00+x)^{2.00}) \cdot (10.00+2.00 \cdot x)$

By too simple mathematical transformations: $2.00 \cdot \sin\left((5.00+x)^{2.00}\right) + (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) + (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right))'(x) = 2.00 \cdot \sin\left((5.00 + x)^{2.00}\right) + (10.00 + 2.00 \cdot x) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x)$

By too simple mathematical transformations: $2.00 \cdot \left(2.00 \cdot \sin\left(\left(5.00 + x\right)^{2.00}\right) + \left(10.00 + 2.00 \cdot x\right) \cdot \cos\left(\left(5.00 - 4.00 \cdot \sin\left(\left(5.00 + x\right)^{2.00}\right) + 2.00 \cdot \left(10.00 + 2.00 \cdot x\right) \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right)\right)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right))'(x) = 4.00 \cdot \sin\left((5.00 + x)^{2.00}\right) + 2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x)$

By too simple mathematical transformations: $(-4.00) \cdot \sin((5.00 + x)^{2.00}) - 2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \cos((5.00 + x)^{2.00})$

$$(-4.00) \cdot \sin\left((5.00+x)^{2.00} \right) - 2.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \sin\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00} \right) = 0.00 \cdot (10.00+x) \cdot (10.$$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) - (10.00 + 2.00 \cdot x) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot (10.00 + 2.00 \cdot x) +$

By too simple mathematical transformations: $(-4.00) \cdot \sin\left((5.00+x)^{2.00}\right) - 2.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) - 2.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \sin\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot (10.00+2.00 \cdot x) + (-4$

Trying to take a derivative of $(-4.00) \cdot \sin\left((5.00+x)^{2.00}\right) - 2.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x)$

Trying to take a derivative of $(-4.00) \cdot \sin \left(\left(5.00 + x \right)^{2.00} \right) - 2.00 \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \cos \left(\left(5.00 + x \right)^{2.00} \right) \cdot \left(10.00 + 2.00 \cdot x \right) \cdot \left(1$

Trying to take a derivative of $(-4.00) \cdot \sin\left((5.00+x)^{2.00}\right) - 2.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x)$

Trying to take a derivative of $(-4.00) \cdot \sin ((5.00 + x)^{2.00})...$

Trying to take a derivative of $\sin \left((5.00 + x)^{2.00} \right) \dots$

Trying to take a derivative of $(5.00 + x)^{2.00}$...

Trying to take a derivative of 5.00 + x...

By too simple mathematical transformations: 0.00 + 1.00 = 1.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: (5.00 + x)'(x) = 1.00

By too simple mathematical transformations: $2.00 \cdot (5.00 + x)^{2.00-1.00} \cdot 1.00 = 10.00 + 2.00 \cdot x$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((5.00 + x)^{2.00})'(x) = 10.00 + 2.00 \cdot x$

By too simple mathematical transformations: $\cos\left((5.00+x)^{2.00}\right)\cdot(10.00+2.00\cdot x) = \cos\left((5.00+x)^{2.00}\right)\cdot(10.00+2.00\cdot x)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\sin((5.00+x)^{2.00}))'(x) = \cos((5.00+x)^{2.00}) \cdot (10.00+2.00 \cdot x)$

By too simple mathematical transformations: $(-4.00) \cdot \cos\left(\left(5.00+x\right)^{2.00}\right) \cdot \left(10.00+2.00 \cdot x\right) =$

$$(-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x)$$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right))'(x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x)$

Trying to take a derivative of $2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) \dots$

Trying to take a derivative of $(10.00 + 2.00 \cdot x) \cdot \cos((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x)...$

Trying to take a derivative of $10.00 + 2.00 \cdot x$...

Trying to take a derivative of $2.00 \cdot x$...

By too simple mathematical transformations: $2.00 \cdot 1.00 = 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: 0.00 + 2.00 = 2.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(10.00 + 2.00 \cdot x)'(x) = 2.00$

Trying to take a derivative of $\cos\left(\left(5.00+x\right)^{2.00}\right)\cdot\left(10.00+2.00\cdot x\right)...$

Trying to take a derivative of $\cos \left((5.00 + x)^{2.00} \right) \dots$

Trying to take a derivative of $(5.00 + x)^{2.00}$...

Trying to take a derivative of 5.00 + x...

By too simple mathematical transformations: 0.00 + 1.00 = 1.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: (5.00 + x)'(x) = 1.00

By too simple mathematical transformations: $2.00 \cdot (5.00 + x)^{2.00-1.00} \cdot 1.00 = 10.00 + 2.00 \cdot x$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((5.00 + x)^{2.00})'(x) = 10.00 + 2.00 \cdot x$

By too simple mathematical transformations: $\sin\left(\left(5.00+x\right)^{2.00}\right)\cdot\left(-1.00\right)\cdot\left(10.00+2.00\cdot x\right)=0$

$$(-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right)$$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\cos((5.00+x)^{2.00}))'(x) = (-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00+x)^{2.00})$

Trying to take a derivative of $10.00 + 2.00 \cdot x$...

Trying to take a derivative of $2.00 \cdot x$...

By too simple mathematical transformations: $2.00 \cdot 1.00 = 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: 0.00 + 2.00 = 2.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(10.00 + 2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations:
$$(-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) \cdot (-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) + 2.00 \cdot \cos\left((5.00 + x)^{2.00}\right)$$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\cos\left((5.00+x)^{2.00}\right)\cdot(10.00+2.00\cdot x))'(x) = (-1.00)\cdot(10.00+2.00\cdot x)\cdot(10.00+2.00\cdot x)\cdot\sin\left((5.00+x)^{2.00}\right) + 2.00\cdot\cos\left((5.00+x)^{2.00}\right)$

By too simple mathematical transformations: $2.00 \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + (10.00+2.00 \cdot x) \cdot (2.00 \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + (10.00+2.00 \cdot x) \cdot ((-1.00) \cdot (10.00+2.00 \cdot x) \cdot (10.00+2.$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((10.00 + 2.00 \cdot x) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x))'(x) = 2.00 \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) + (10.00 + 2.00 \cdot x) \cdot \left((-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x)\right)$

By too simple mathematical transformations:
$$2.00 \cdot \left(2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + \left(10.00 + 2.00 \cdot x\right) + \left(10.00 + 2.00 \cdot x\right) \cdot \left(\left(-1.00\right) \cdot \left(10.00 + 2.00 \cdot x\right) \cdot \left(10.00 + 2$$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x))' + (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.$

By too simple mathematical transformations:
$$(-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - \left(4.00 \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - 2.00 \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - 2.00 \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot (10.00+2.00$$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((-4.00) \cdot \sin\left((5.00 + x)^{2.00}\right) - 2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) - 2.00 \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) - 2.00 \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) - 2.00 \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 +$

Trying to take a derivative of $(-4.00) \cdot \sin\left((5.00+x)^{2.00}\right) - 2.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x)$

Trying to take a derivative of $(-4.00) \cdot \sin\left((5.00+x)^{2.00}\right) - 2.00 \cdot (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x)$

Trying to take a derivative of $(-4.00) \cdot \sin ((5.00 + x)^{2.00})...$

Trying to take a derivative of $\sin \left(\left(5.00 + x \right)^{2.00} \right) \dots$

Trying to take a derivative of $(5.00 + x)^{2.00}$...

Trying to take a derivative of 5.00 + x...

By too simple mathematical transformations: 0.00 + 1.00 = 1.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: (5.00 + x)'(x) = 1.00

By too simple mathematical transformations: $2.00 \cdot (5.00 + x)^{2.00-1.00} \cdot 1.00 = 10.00 + 2.00 \cdot x$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((5.00 + x)^{2.00})'(x) = 10.00 + 2.00 \cdot x$

By too simple mathematical transformations: $\cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\sin((5.00+x)^{2.00}))'(x) = \cos((5.00+x)^{2.00}) \cdot (10.00+2.00 \cdot x)$

By too simple mathematical transformations: $(-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x)$

Having counted the most obvious derivative, which the Soviet children were ac-

tually able to calculate in their minds, we get: $((-4.00) \cdot \sin((5.00 + x)^{2.00}))'(x) = (-4.00) \cdot \cos((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x)$

Trying to take a derivative of $2.00 \cdot \left(10.00 + 2.00 \cdot x\right) \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) \dots$

Trying to take a derivative of $(10.00 + 2.00 \cdot x) \cdot \cos ((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x)...$

Trying to take a derivative of $10.00 + 2.00 \cdot x$...

Trying to take a derivative of $2.00 \cdot x$...

By too simple mathematical transformations: $2.00 \cdot 1.00 = 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: 0.00 + 2.00 = 2.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(10.00 + 2.00 \cdot x)'(x) = 2.00$

Trying to take a derivative of $\cos\left(\left(5.00+x\right)^{2.00}\right)\cdot\left(10.00+2.00\cdot x\right)...$

Trying to take a derivative of $\cos ((5.00 + x)^{2.00})...$

Trying to take a derivative of $(5.00 + x)^{2.00}$...

Trying to take a derivative of 5.00 + x...

By too simple mathematical transformations: 0.00 + 1.00 = 1.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: (5.00 + x)'(x) = 1.00

By too simple mathematical transformations: $2.00 \cdot (5.00 + x)^{2.00-1.00} \cdot 1.00 = 10.00 + 2.00 \cdot x$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((5.00 + x)^{2.00})'(x) = 10.00 + 2.00 \cdot x$

By too simple mathematical transformations: $\sin\left((5.00+x)^{2.00}\right)\cdot(-1.00)\cdot(10.00+2.00\cdot x) = (-1.00)\cdot(10.00+2.00\cdot x)\cdot\sin\left((5.00+x)^{2.00}\right)$

Having counted the most obvious derivative, which the Soviet children were

```
actually able to calculate in their minds, we get: (\cos((5.00 + x)^{2.00}))'(x) = (-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00})
```

Trying to take a derivative of $10.00 + 2.00 \cdot x$...

Trying to take a derivative of $2.00 \cdot x$...

By too simple mathematical transformations: $2.00 \cdot 1.00 = 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: 0.00 + 2.00 = 2.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(10.00 + 2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations:
$$(-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) \cdot (-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) + 2.00 \cdot \cos\left((5.00 + x)^{2.00}\right)$$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\cos\left((5.00+x)^{2.00}\right)\cdot(10.00+2.00\cdot x))'(x) = (-1.00)\cdot(10.00+2.00\cdot x)\cdot(10.00+2.00\cdot x)\cdot\sin\left((5.00+x)^{2.00}\right) + 2.00\cdot\cos\left((5.00+x)^{2.00}\right)$

By too simple mathematical transformations: $2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + \left(10.00 + 2.00 \cdot x\right) \cdot \left(2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + \left(10.00 + 2.00 \cdot x\right) \cdot \left(\left(-1.00\right) \cdot \left(10.00 + 2.00 \cdot x\right) \cdot \left(10.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((10.00 + 2.00 \cdot x) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x))'(x) = 2.00 \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) + (10.00 + 2.00 \cdot x) \cdot \left((-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x)\right)$

By too simple mathematical transformations: $2.00 \cdot \left(2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + \left(10.00 + 2.00 \cdot x\right) + \left(10.00 + 2.00 \cdot x\right) + \left(10.00 + 2.00 \cdot x\right) \cdot \left(\left(-1.00\right) \cdot \left(10.00 + 2.00 \cdot x\right) \cdot \left(10.00 + 2$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \cos ((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x))' \cdot (10.00 + 2.00 \cdot x) + 2.00 \cdot (10.00 + 2.00 \cdot x) \cdot ((-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x))' \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot$

By too simple mathematical transformations: $(-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - \left(4.00 \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - \left(4.00 \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - 2.00 \cdot (10.00+2.00 \cdot x) -$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) - 2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) - 2.00 \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) - 2.00 \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right)$

Trying to take a derivative of $(10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \cos((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x) + 2.00 \cdot \cos((5.00 + x)^{2.00}))$

Trying to take a derivative of $10.00 + 2.00 \cdot x$...

Trying to take a derivative of $2.00 \cdot x$...

By too simple mathematical transformations: $2.00 \cdot 1.00 = 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: 0.00 + 2.00 = 2.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(10.00 + 2.00 \cdot x)'(x) = 2.00$

Trying to take a derivative of $2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot x\right) + 2.00 \cdot x$

Trying to take a derivative of $2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right)...$

Trying to take a derivative of $\cos\left(\left(5.00+x\right)^{2.00}\right)\cdot\left(10.00+2.00\cdot x\right)...$

Trying to take a derivative of $\cos ((5.00 + x)^{2.00})...$

Trying to take a derivative of $(5.00 + x)^{2.00}$...

Trying to take a derivative of 5.00 + x...

By too simple mathematical transformations: 0.00 + 1.00 = 1.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: (5.00 + x)'(x) = 1.00

By too simple mathematical transformations: $2.00 \cdot (5.00 + x)^{2.00-1.00} \cdot 1.00 = 10.00 + 2.00 \cdot x$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((5.00 + x)^{2.00})'(x) = 10.00 + 2.00 \cdot x$

By too simple mathematical transformations: $\sin\left((5.00+x)^{2.00}\right)\cdot(-1.00)\cdot(10.00+2.00\cdot x) = 0$

$$(-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right)$$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\cos((5.00+x)^{2.00}))'(x) = (-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00+x)^{2.00})$

Trying to take a derivative of $10.00 + 2.00 \cdot x$...

Trying to take a derivative of $2.00 \cdot x$...

By too simple mathematical transformations: $2.00 \cdot 1.00 = 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: 0.00 + 2.00 = 2.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(10.00 + 2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations:
$$(-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) \cdot (-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) + 2.00 \cdot \cos\left((5.00 + x)^{2.00}\right)$$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\cos\left((5.00+x)^{2.00}\right)\cdot(10.00+2.00\cdot x))'(x) = (-1.00)\cdot(10.00+2.00\cdot x)\cdot(10.00+2.00\cdot x)\cdot\sin\left((5.00+x)^{2.00}\right) + 2.00\cdot\cos\left((5.00+x)^{2.00}\right)$

By too simple mathematical transformations:
$$2.00 \cdot \left((-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + (-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) + 4.00 \cdot \cos \left((5.00 + x)^{2.00} \right) \right)$$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x))'(x) = (-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) + 4.00 \cdot \cos\left((5.00 + x)^{2.00}\right)$

Trying to take a derivative of $2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + \left(10.00 + 2.00 \cdot x\right) \cdot \left(\left(-1.00\right) \cdot \left(10.00 + 2.00 \cdot x\right)\right)$

Trying to take a derivative of $2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right)...$

Trying to take a derivative of $\cos\left(\left(5.00+x\right)^{2.00}\right)\cdot\left(10.00+2.00\cdot x\right)...$

Trying to take a derivative of $\cos ((5.00 + x)^{2.00})...$

Trying to take a derivative of $(5.00 + x)^{2.00}$...

Trying to take a derivative of 5.00 + x...

By too simple mathematical transformations: 0.00 + 1.00 = 1.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: (5.00 + x)'(x) = 1.00

By too simple mathematical transformations: $2.00 \cdot (5.00 + x)^{2.00-1.00} \cdot 1.00 = 10.00 + 2.00 \cdot x$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((5.00 + x)^{2.00})'(x) = 10.00 + 2.00 \cdot x$

By too simple mathematical transformations: $\sin\left((5.00+x)^{2.00}\right)\cdot(-1.00)\cdot(10.00+2.00\cdot x) = (-1.00)\cdot(10.00+2.00\cdot x)\cdot\sin\left((5.00+x)^{2.00}\right)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\cos((5.00+x)^{2.00}))'(x) = (-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00+x)^{2.00})$

Trying to take a derivative of $10.00 + 2.00 \cdot x$...

Trying to take a derivative of $2.00 \cdot x$...

By too simple mathematical transformations: $2.00 \cdot 1.00 = 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: 0.00 + 2.00 = 2.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(10.00 + 2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: $(-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) \cdot (-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) + 2.00 \cdot \cos\left((5.00 + x)^{2.00}\right)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $\left(\cos\left((5.00+x)^{2.00}\right)\cdot(10.00+2.00\cdot x))'(x) = (-1.00)\cdot(10.00+2.00\cdot x)\cdot(10.00+2.00\cdot x)\cdot\sin\left((5.00+x)^{2.00}\right) + 2.00\cdot\cos\left((5.00+x)^{2.00}\right)$

By too simple mathematical transformations: $2.00 \cdot \left((-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + 2.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) + 4.00 \cdot \cos \left((5.00 + x)^{2.00} \right) \right)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x))'(x) = (-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) + 4.00 \cdot \cos\left((5.00 + x)^{2.00}\right)$

Trying to take a derivative of $(10.00 + 2.00 \cdot x) \cdot ((-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^2) \cdot \sin((5.00 + x)^2)$

Trying to take a derivative of $10.00 + 2.00 \cdot x$...

Trying to take a derivative of $2.00 \cdot x$...

By too simple mathematical transformations: $2.00 \cdot 1.00 = 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: 0.00 + 2.00 = 2.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(10.00 + 2.00 \cdot x)'(x) = 2.00$

Trying to take a derivative of $(-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}) + 2.00 \cdot \cos((5.00 + x$

Trying to take a derivative of $(-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00})...$

Trying to take a derivative of $(10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00})...$

Trying to take a derivative of $10.00 + 2.00 \cdot x$...

Trying to take a derivative of $2.00 \cdot x...$

By too simple mathematical transformations: $2.00 \cdot 1.00 = 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: 0.00 + 2.00 = 2.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(10.00 + 2.00 \cdot x)'(x) = 2.00$

Trying to take a derivative of $(10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00})...$

Trying to take a derivative of $10.00 + 2.00 \cdot x$...

Trying to take a derivative of $2.00 \cdot x$...

By too simple mathematical transformations: $2.00 \cdot 1.00 = 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: 0.00 + 2.00 = 2.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(10.00 + 2.00 \cdot x)'(x) = 2.00$

Trying to take a derivative of $\sin ((5.00 + x)^{2.00})...$

Trying to take a derivative of $(5.00 + x)^{2.00}$...

Trying to take a derivative of 5.00 + x...

By too simple mathematical transformations: 0.00 + 1.00 = 1.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: (5.00 + x)'(x) = 1.00

By too simple mathematical transformations: $2.00 \cdot (5.00 + x)^{2.00-1.00} \cdot 1.00 = 10.00 + 2.00 \cdot x$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((5.00+x)^{2.00})'(x) = 10.00 + 2.00 \cdot x$

By too simple mathematical transformations: $\cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\sin((5.00+x)^{2.00}))'(x) = \cos((5.00+x)^{2.00}) \cdot (10.00+2.00 \cdot x)$

By too simple mathematical transformations: $2.00 \cdot \sin\left((5.00+x)^{2.00}\right) + (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) + (10.00+2.00 \cdot x) \cdot \cos\left((5.00+x)^{2.00}\right) + (10.00+2.00 \cdot x)$

Having counted the most obvious derivative, which the Soviet children were ac-

tually able to calculate in their minds, we get: $((10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}))'(x) = 2.00 \cdot \sin((5.00 + x)^{2.00}) + (10.00 + 2.00 \cdot x) \cdot \cos((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x)$

By too simple mathematical transformations: $2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) + (10.00 + 2.00 \cdot x) \cdot 2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) + (10.00 + 2.00 \cdot x) \cdot \left(2.00 \cdot \sin\left((5.00 + x)^{2.00}\right) + (10.00 + 2.00 \cdot x) \cdot x\right)$

Having counted the most obvious derivative, which the Soviet children were ac-

tually able to calculate in their minds, we get: $((10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}))'(x) = 2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00}) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot x) \cdot (2.00$

By too simple mathematical transformations: $(-1.00) \cdot \left(2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) + (10.00 + 2.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) + (10.00 + 2.00 \cdot x) \cdot \left(2.00 \cdot \sin\left((5.00 + x)^{2.00}\right) + (10.00 + 2.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x)^{2.00}\right) + (10.00 + 2.00 \cdot x) \cdot \left(2.00 \cdot \sin\left((5.00 + x)^{2.00}\right) + (10.00 + 2.00) \cdot (10.00 + 2.00 \cdot x)\right) + (10.00 + 2.00 \cdot x) \cdot \left(2.00 \cdot \sin\left((5.00 + x)^{2.00}\right) + (10.00 + 2.00) \cdot (10.00 + 2.00 \cdot x)\right) + (10.00 + 2.00 \cdot x) \cdot \left(2.00 \cdot \sin\left((5.00 + x)^{2.00}\right) + (10.00 + 2.00) \cdot (10.00 + 2.00) \cdot (10.00 + 2.00)\right) + (10.00 + 2.00 \cdot x) \cdot \left(2.00 \cdot \sin\left((5.00 + x)^{2.00}\right) + (10.00 + 2.00) \cdot (10.00 + 2.00) \cdot (10.00 + 2.00)\right) + (10.00 + 2.00) \cdot (10.00 + 2.00) \cdot$

Having counted the most obvious derivative, which the Soviet children were ac-

tually able to calculate in their minds, we get: $((-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin ((5.00 + x)^{2.00}) - (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin ((5.00 + x)^{2.00}) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin ((5.00 + x)^{2.00}) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin ((5.00 + x)^{2.00}) + (10.00 + 2.00 \cdot x)^{2.00})$

Trying to take a derivative of $2.00 \cdot \cos \left((5.00 + x)^{2.00} \right) \dots$

Trying to take a derivative of $\cos \left(\left(5.00 + x \right)^{2.00} \right) \dots$

Trying to take a derivative of $(5.00 + x)^{2.00}$...

Trying to take a derivative of 5.00 + x...

By too simple mathematical transformations: 0.00 + 1.00 = 1.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: (5.00 + x)'(x) = 1.00

By too simple mathematical transformations: $2.00 \cdot (5.00 + x)^{2.00-1.00} \cdot 1.00 = 10.00 + 2.00 \cdot x$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((5.00 + x)^{2.00})'(x) = 10.00 + 2.00 \cdot x$

By too simple mathematical transformations: $\sin\left((5.00+x)^{2.00}\right)\cdot(-1.00)\cdot(10.00+2.00\cdot x) = (-1.00)\cdot(10.00+2.00\cdot x)\cdot\sin\left((5.00+x)^{2.00}\right)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\cos((5.00 + x)^{2.00}))'(x) =$

$$(-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right)$$
 By too simple mathematical transformations: $2.00 \cdot (-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) = (-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right)$ Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot \cos \left((5.00 + x)^{2.00} \right))'(x) = (-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right)$ By too simple mathematical transformations: $(-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) - (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) + (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) + (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) + (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) + (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) + (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) + (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) + (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) + (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) + (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}) - (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00}) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00})) + (10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \sin((5.00 + x)^{2.00}))$

By too simple mathematical transformations: $2.00 \cdot \left((-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + (-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) + 4.00 \cdot \cos \left((5.00 + x)^{2.00} \right) + (10.00 + 2.00 \cdot x) \cdot (10.$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((10.00 + 2.00 \cdot x) \cdot ((-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00}) + 4.00 \cdot \cos((5.00 + x)^{2.00}) + (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00 + x)^{2.00})$

By too simple mathematical transformations: $(-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) + 4.00 \cdot \cos \left((5.00 + x)^{2.00} \right) + (-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) + (10.00 + 2.00 \cdot x) + (-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) + 4.00 \cdot \cos\left((5.00 + x)^{2.00}\right) + (-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot (-2.00) \cdot (-2.00 \cdot x) \cdot$

By too simple mathematical transformations: $(-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin \left((5.00 + x)^{2.00} \right) + 4.00 \cdot \cos \left((5.00 + x)^{2.00} \right) + (-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) + 2.00 \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) + 4.00 \cdot \cos\left((5.00 + x)^{2.00}\right) + (-2.00) \cdot (10.00 + 2.00 \cdot x) \cdot ($

By too simple mathematical transformations: $2.00 \cdot \left(2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + 2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right)\right)$

$$4.00 \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + 4.00 \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + 2.00 \cdot (10.00+2.00 \cdot x$$

Having counted the most obvious derivative, which the Soviet children were ac-

tually able to calculate in their minds, we get:
$$((10.00 + 2.00 \cdot x) \cdot (2.00 \cdot \cos ((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x) + 4.00 \cdot \cos ((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x) + 4.00 \cdot \cos ((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x) + 2.00 \cdot (10.00 + 2.00 \cdot x$$

By too simple mathematical transformations:
$$(-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - 2.00 \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - 2.00 \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right)$$

Having counted the most obvious derivative, which the Soviet children were ac-

tually able to calculate in their minds, we get:
$$((-4.00) \cdot \sin((5.00 + x)^{2.00}) - 2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \cos((5.00 + x)^{2.00}) - (10.00 + 2.00 \cdot x) \cdot \cos((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \cos((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x) - 2.00 \cdot (10.00 + 2.00 \cdot x) - (10.00 + 2.00 \cdot x) -$$

By too simple mathematical transformations:
$$(-4.00) \cdot \cos\left(\left(5.00+x\right)^{2.00}\right) \cdot \left(10.00+2.00 \cdot x\right) + (-4.00) \cdot \cos\left(\left(5.00+x\right)^{2.00}\right) \cdot \left(10.00+2.00 \cdot x\right) + (-4.00) \cdot \cos\left(\left(5.00+x\right)^{2.00}\right) \cdot \left(10.00+2.00 \cdot x\right) - 2.00 \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left(\left(5.00+x\right)^{2.00}\right) \cdot \left(10.00+2.00 \cdot x\right) - 2.00 \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left(\left(5.00+x\right)^{2.00}\right) \cdot \left(10.00+2.00 \cdot x\right) + (-4.00) \cdot \cos\left(\left(5.00+x\right)^{2.00}\right) \cdot \left(10.00+x\right) + (-4.00) \cdot \cos\left(\left(5.00+x\right)^{2.00}\right) \cdot \left(10.00+x\right) + (-$$

Having counted the most obvious derivative, which the Soviet children were ac-

tually able to calculate in their minds, we get:
$$((-4.00) \cdot \sin((5.00 + x)^{2.00}) - 2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \cos((5.00 + x)^{2.00}) - (10.00 + 2.00 \cdot x) \cdot \cos((5.00 + x)^{2.00}) \cdot (10.00 + 2.00 \cdot x) - (10.00 + 2.00 \cdot x)$$

Trying to take a derivative of
$$(-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) - 2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) \cdot \cos \left((5.00 + x)^{2.00} \right)$$

Trying to take a derivative of $(-4.00) \cdot \sin ((5.00 + x)^{2.00})...$

Trying to take a derivative of $\sin \left(\left(5.00 + x \right)^{2.00} \right) \dots$

Trying to take a derivative of $(5.00 + x)^{2.00}$...

Trying to take a derivative of 5.00 + x...

By too simple mathematical transformations: 0.00 + 1.00 = 1.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: (5.00 + x)'(x) = 1.00

By too simple mathematical transformations: $2.00 \cdot (5.00 + x)^{2.00-1.00} \cdot 1.00 = 10.00 + 2.00 \cdot x$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((5.00 + x)^{2.00})'(x) = 10.00 + 2.00 \cdot x$

By too simple mathematical transformations: $\cos\left((5.00+x)^{2.00}\right)\cdot(10.00+2.00\cdot x) =$

$$\cos\left((5.00+x)^{2.00}\right)\cdot(10.00+2.00\cdot x)$$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\sin((5.00+x)^{2.00}))'(x) = \cos((5.00+x)^{2.00}) \cdot (10.00+2.00 \cdot x)$

By too simple mathematical transformations: $(-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) = (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right))'(x) = (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x)$

Trying to take a derivative of $2.00 \cdot \left(10.00 + 2.00 \cdot x\right) \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) \dots$

Trying to take a derivative of $(10.00+2.00\cdot x)\cdot\cos\left((5.00+x)^{2.00}\right)\cdot(10.00+2.00\cdot x)...$

Trying to take a derivative of $10.00 + 2.00 \cdot x$...

Trying to take a derivative of $2.00 \cdot x$...

By too simple mathematical transformations: $2.00 \cdot 1.00 = 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: 0.00 + 2.00 = 2.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(10.00 + 2.00 \cdot x)'(x) = 2.00$

Trying to take a derivative of $\cos\left(\left(5.00+x\right)^{2.00}\right)\cdot\left(10.00+2.00\cdot x\right)...$

Trying to take a derivative of $\cos ((5.00 + x)^{2.00})...$

Trying to take a derivative of $(5.00 + x)^{2.00}$...

Trying to take a derivative of 5.00 + x...

By too simple mathematical transformations: 0.00 + 1.00 = 1.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: (5.00 + x)'(x) = 1.00

By too simple mathematical transformations: $2.00 \cdot (5.00 + x)^{2.00-1.00} \cdot 1.00 = 10.00 + 2.00 \cdot x$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((5.00 + x)^{2.00})'(x) = 10.00 + 2.00 \cdot x$

By too simple mathematical transformations: $\sin\left((5.00+x)^{2.00}\right)\cdot(-1.00)\cdot(10.00+2.00\cdot x) = (-1.00)\cdot(10.00+2.00\cdot x)\cdot\sin\left((5.00+x)^{2.00}\right)$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(\cos((5.00+x)^{2.00}))'(x) = (-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin((5.00+x)^{2.00})$

Trying to take a derivative of $10.00 + 2.00 \cdot x$...

Trying to take a derivative of $2.00 \cdot x$...

By too simple mathematical transformations: $2.00 \cdot 1.00 = 2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations: 0.00 + 2.00 = 2.00

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(10.00 + 2.00 \cdot x)'(x) = 2.00$

By too simple mathematical transformations:
$$(-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) \cdot (-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x) \cdot \sin\left((5.00 + x)^{2.00}\right) + 2.00 \cdot \cos\left((5.00 + x)^{2.00}\right)$$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $\left(\cos\left((5.00+x)^{2.00}\right)\cdot(10.00+2.00\cdot x))'(x) = (-1.00)\cdot(10.00+2.00\cdot x)\cdot(10.00+2.00\cdot x)\cdot\sin\left((5.00+x)^{2.00}\right) + 2.00\cdot\cos\left((5.00+x)^{2.00}\right)$

By too simple mathematical transformations: $2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + \left(10.00 + 2.00 \cdot x\right) \cdot \left(2.00 \cdot \cos\left(\left(5.00 + x\right)^{2.00}\right) \cdot \left(10.00 + 2.00 \cdot x\right) + \left(10.00 + 2.00 \cdot x\right) \cdot \left(\left(-1.00\right) \cdot \left(10.00 + 2.00 \cdot x\right) \cdot \left(10.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((10.00 + 2.00 \cdot x) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x))'(x) = 2.00 \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) + (10.00 + 2.00 \cdot x) \cdot \left((-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.00 \cdot x)\right)$

By too simple mathematical transformations: $2.00 \cdot \left(2.00 \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + (10.00+2.00 \cdot x) + (10.00+2.00 \cdot x) + (10.00+2.00 \cdot x) \cdot \left((-1.00) \cdot (10.00+2.00 \cdot x) + (10.00+2.00 \cdot x) \cdot (10.00+2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $(2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x))' \cdot (10.00 + 2.00 \cdot x) + 2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \left((-1.00) \cdot (10.00 + 2.00 \cdot x) \cdot (10.00 + 2.0$

By too simple mathematical transformations: $(-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - \left(4.00 \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - 2.00 \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - 2.00 \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot (10.00+2.00$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((-4.00) \cdot \sin\left((5.00 + x)^{2.00}\right) - 2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \cos\left((5.00 + x)^{2.00}\right) - (10.00 + 2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00 + x)^{2.00}\right) \cdot (10.00 + 2.00 \cdot x) - 2.00 \cdot (10.00 +$

By too simple mathematical transformations: $(-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - 2.00 \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - 2.00 \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot (10.00+2$

Having counted the most obvious derivative, which the Soviet children were actually able to calculate in their minds, we get: $((-4.00) \cdot \sin \left((5.00 + x)^{2.00} \right) - 2.00 \cdot (10.00 + 2.00 \cdot x) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) - 2.00 \cdot (10.00 + 2.00 \cdot x) = 0.00 \cdot (10.00 + 2.00 \cdot x) + (-4.00) \cdot \cos \left((5.00 + x)^{2.00} \right) \cdot (10.00 + 2.00 \cdot x) = 0.00 \cdot (10.00 + 2.00 \cdot x) = 0.00$

By too simple mathematical transformations: $(-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - 2.00 \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+2.00 \cdot x) - 2.00 \cdot (10.00+2.00 \cdot x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right) \cdot (10.00+x) + (-4.00) \cdot \cos\left((5.00+x)^{2.00}\right)$

By too simple mathematical transformations: $-0.13 + 9.91 \cdot x^{1.00} + 7.61 \cdot x^{2.00} + (-163.88) \cdot x^{3.00} + (-104.64) \\ -0.13 + 798.99 \cdot x^{5.00} + (-104.64) \cdot x^{4.00} + (-163.88) \cdot x^{3.00} + 7.61 \cdot x^{2.00} + 9.91 \cdot x$

tailor:

$$f(x) = -0.13 + 798.99 \cdot x^{5.00} + (-104.64) \cdot x^{4.00} + (-163.88) \cdot x^{3.00} + 7.61 \cdot x^{2.00} + 9.91 \cdot x$$

