Lista 01 de Cálculo Numérico

Turma do 3° ano

$2^{\underline{0}}$ Período de 2021

1. Faça uma busca binária da raíz da equação f(x) = -x + 8 entre os valores 0 e 10. Considere uma tolerância de erro de 0.6 para f(x), ou seja, a busca deve continuar enquanto |f(x)| > 0.6

Resposta:

Passo 1:
$$x_a = 0$$
; $f(x_a) = 8$, $x_b = 10$; $f(x_b) = -2$, $x = 5$; $f(x) = 3$
Passo 2: $x_a = 5$; $f(x_a) = 3$, $x_b = 10$; $f(x_b) = -2$, $x = 7.5$; $f(x) = 0.5$

2. Faça uma busca binária da raíz da equação $f(x) = x^2 - 7x - 18$ entre os valores 0 e 10. Considere uma tolerância de erro de 0.6 para f(x), ou seja, a busca deve continuar enquanto |f(x)| > 0.6

Resposta

Passo	x_a	$f(x_a)$	x_b	$f(x_b)$	x	f(x)
1	0	-18	10	12	5	-28
2	5	-28	10	12	7.5	-14.25
3	7.5	-14.25	10	12	8.75	-2.6875
4	8.75	-2.6875	10	12	8.75	4.265625
5	8.75	-2.6875	9.265625	4.265625	9.0078125	0.0859985

3. Triangularize e resolva sistema linear

$$3x_1 + 2x_2 + 4x_3 = 1$$
$$x_1 + x_2 + 2x_3 = 2$$
$$4x_1 + 3x_2 - 2x_3 = 3$$

Resposta:

Eliminando a coluna 1 abaixo da linha 1

Subtraindo $(3x_1 + 2x_2 + 4x_3 = 1)(\div 3)(\times a_{i1})$ de todas as linhas abaixo da 1

$$3x_1 + 2x_2 + 4x_3 = 1$$
$$0x_1 + \frac{1}{3}x_2 + \frac{2}{3}x_3 = \frac{5}{3}$$
$$0x_1 + \frac{1}{3}x_2 - \frac{22}{3}x_3 = \frac{5}{3}$$

Eliminando a coluna 2 abaixo da linha 2

Subtraindo $(0x_1 + \frac{1}{3}x_2 + \frac{2}{3}x_3 = \frac{5}{3})(\div \frac{1}{3})(\times a_{i2})$ de todas as linhas abaixo da 2

$$3x_1 + 2x_2 + 4x_3 = 1$$
$$0x_1 + \frac{1}{3}x_2 + \frac{2}{3}x_3 = \frac{5}{3}$$
$$0x_1 + 0x_2 - 8x_3 = 0$$

Vemos que

$$-8x_3 = 0 \Rightarrow x_3 = 0$$
$$\frac{1}{3}x_2 + 0 = \frac{5}{3} \Rightarrow x_2 = 5$$
$$3x_1 + 10 + 0 = 1 \Rightarrow x_1 = -3$$

4. Triangularize e resolva sistema linear

$$6\alpha_0 - 2\alpha_1 + 10\alpha_2 = -50$$
$$-2\alpha_0 + 10\alpha_1 - 14\alpha_2 = 42$$
$$10\alpha_0 - 14\alpha_1 + 34\alpha_2 = -102$$

5. Considere os pontos (-2,-10), (-2,-14), (0,-9), (0,-11), (1,0) e (1,-6). Faça uma regressão pelo método dos quadrados mínimos para encontrar o polinômio de grau 2 que melhor se aproxima dos pontos dados. Encontre os valores de α_0 , α_1 e α_2 que melhor aproxima a função $f(x) = \alpha_2 x^2 + \alpha_1 x + \alpha_0$ dos pontos dados.

Resposta:

Temos os pontos

x	f(x)
-2	-10
-2	-14
0	- 9
0	-11
1	0
1	-6

Considerando $g_0(x) = 1$, $g_1(x) = x$ e $g_2(x) = x^2$ temos

indice	x	f(x)	$g_0(x)$	$g_1(x)$	$g_2(x)$
0	-2	-10	1.0	-2	4
1	-2	-14	1.0	-2	4
2	0	-9	1.0	0	0
3	0	-11	1.0	0	0
4	1	0	1.0	1	1
5	1	-6	1.0	1	1

Considerando

$$a_{ij} = \sum_{k=0}^{5} g_i(x_k) * g_j(x_k)$$

e

$$b_i = \sum_{k=0}^{5} f(x_k) * g_i(x_k)$$

para montar o sistema linear

$$a_{00}\alpha_0 + a_{01}\alpha_1 + a_{02}\alpha_2 = b_0$$

$$a_{10}\alpha_0 + a_{11}\alpha_1 + a_{12}\alpha_2 = b_1$$

$$a_{20}\alpha_0 + a_{21}\alpha_1 + a_{22}\alpha_2 = b_2$$

Ficamos com o sistema linear

$$6\alpha_0 - 2\alpha_1 + 10\alpha_2 = -50$$
$$-2\alpha_0 + 10\alpha_1 - 14\alpha_2 = 42$$
$$10\alpha_0 - 14\alpha_1 + 34\alpha_2 = -102$$

Resultando em

$$\alpha_0 = -10, \, \alpha_1 = 5 \, e \, \alpha_2 = 2.$$

A função que melhor aproxima a curva é $2x^2+5x-10\,$