TP 3.1 - Réalisation pratique d'une échographie

Objectifs:

Utiliser une démarche expérimentale pour comprendre le principe d'imagerie par échographie.

Contexte: En envoyant des ultrasons sur un corps humain, on observe que les ondes sont plus ou moins réfléchies en fonction des tissus rencontré. Si on détecte beaucoup d'ultrasons réfléchis sur des tissus dur, la zone correspondante apparaît blanche sur l'image (os). Si on ne détecte pas ou peu d'ultrasons réfléchis, c'est qu'ils se sont propagé dans des tissus mou : la zone apparaît sombre sur l'image (liquide ou membrane).

→ Comment reconstruire une image à partir des données mesurée pendant une échographie ?

Document 1 - Onde ultrasonore et matériau

Quand une onde sonore dans le domaine des ultrasons arrive sur une surface, elle peut être transmise, absorbée ou réfléchie en fonction des propriétés du matériau.

- Transmission : l'onde traverse le matériau ;
- Absorption : l'onde est absorbée par le matériau (son amplitude diminue) ;
- **Réflexion** : l'onde est réfléchie comme sur un miroir.

En général, plus un matériau est dense et dur, plus il réfléchira bien les ondes ultrasonore.

Document 2 – Matériel disponible

On dispose

- d'un générateur 12 V;
- d'un émetteur d'ultrasons (noté E), qui émet autour de 40 kHz;
- d'un récepteur d'ultrasons (noté R), sensible autour de 40 kHz;
- d'un oscilloscope;
- de câbles BNC et de câbles banane.

Document 3 - Protocole de mise en place

- Alimenter l'émetteur (E) d'ultrasons en 12 V en mode salve et le relier à la voie 1 de l'oscilloscope.
- Placer le récepteur (R) à environ 15 cm en face de l'émetteur que l'on relie à la voie 2 de l'oscilloscope.
- Allumer et régler l'oscilloscope pour qu'il affiche les signaux des deux voies.
- Changer le calibre de la voie 2 pour augmenter la sensibilité verticale (en Volt par division : V/div) et obtenir 2 signaux de taille similaire à l'écran.
- 🚣 上 Réaliser le protocole du document 3, appeler le professeur en cas de soucis.
- Placer une plaque entre l'émetteur et le récepteur. Compléter le tableau concernant la capacité de transmission des différents matériaux avec les adjectifs : fort, moyen, faible, nul.

Matériau			
Capacité de transmission			

⊥ 	Dans	une	échographie	, l'éme	tteur	et le	récep	teur	sont	côte	à côte.	Placer	l'émet	teur	et le
récepteur	$c\hat{o}te~\hat{a}$	côte	, puis placer	des ob	ostacle	es de	vant l	ense:	mble	pour	remplii	· le tabl	eau sui	ivant	avec
les adjecti	ifs fort	, mog	yen, faible, n	ul.											

Matériau			
Capacité de réflexion			

1 — Mesurer la durée Δt en seconde mise par les ultrasons pour faire l'aller-retour.
${f 2}$ — Trouver la relation entre la célérité c de l'onde ultrasonore, le temps Δt que met l'onde à faire l'aller-retour et la distance d entre l'émetteur-récepteur et l'obstacle.
$\bf 3$ — Calculer d, sachant que $c=340{\rm m\cdot s^{-1}}$ dans l'air.
4 — Vérifier cette mesure avec une règle.
Pour comprendre le fonctionnement de l'échographie médicale, on utilise le dispositif précédant. Une boîte en carton (ventre) contient un objet (fœtus), que l'on va chercher à imager. 5 — Proposer et réaliser une démarche pour identifier la position de l'objet dans la boite.