Introduction

Why use R?

Why not use a spreadsheet?

Todays workshop

- A common scenario
- A friend has emailed you her data in a spreadsheet
- Todays workshop is about how to get started.
- It's not about impressing with R code

Why not use a spreadsheet?

- Data manipulation in Excel is VERY risk and time consuming
- A range of software packages are available for Excel
- Large data sets can exceed the size limits of standard programs
- Spreadsheets don't have the inherent understanding of statistics that R has
- For example handling of NA's
- R is hot!

Why use R?

Why use R?

- R is free
- R is available on most operating systems Windows, OS X, Linux
- There are huge numbers of packages available
- Its becoming the international standard for statistics

Getting Started

 $Some\ References$

References

- [1] James P. Howard. R Cookbook. O'Reilly Media, Inc, 2011.
- [2] Phil Spector. Data Manipulation with R. Use R series Springer, 2008

Getting Started

Todays Files

Workshop files on Github

https://github.com/pechang03/SizeDoesMatter

- The slides. main.pdf
- The handout.pdf
- $\bullet \ \, {\rm The} \, \, {\rm R} \, \, {\rm code} \, \, {\bf Size Does Matter Eg.R}$
- The spreadsheets
 - 1_RWkshp_dummydata_OTUtable.xlsx
 - 2_RWkshp_dummydata_EnvData_incl2outliersMK.xlsx
 - 3_Followupdatafromcontaminatedsite_MK.xlsx

Getting Started

Installing R!

Download it

- Open http://www.r-project.org
- Click CRAN (Under download on Top Left)
- Click http://cran.ms.unimelb.edu.au/ University of Melbourne

Windows

- Select Windows
- Select Base
- Download R (suggest latest version)

OS X

- Select Select OS X
- Select R-3.2.2.pkg (or the version that matches your OS version)

Getting Started

How about RStudio

- https://www.rstudio.com/products/rstudio/download/
- $\bullet\,$ Its also on your thumb drive

Getting Started

 $Basic\ steps$

```
## [1] 7

# Create a sequence of numbers
X = 2:10

# Display basic statistical measures
summary(X)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2 4 6 6 8 10

# use q() to quit
```

Getting Started

 $Help\ Functions$

To access the documentation type

help.start() help(summary) args(summary) example(sd) ??package

Help Functions

Search the Web

To search R documentation

- RSiteSearch("key phrase")
- help(adf.test,package="tseries")
- To search for a tutorial for a package vignette(package="packagename")
- For an intro to vignettes see https://cran.r-project.org/web/packages/ sos/vignettes/sos.pdf
- Examples on the web http://shiny.rstudio.com/gallery/

Custom Google search focused on R-specific websites

http://rseek.org

Coding Q&A site

http://stackoverflow.com http://stats.stakexchange.com

Some manners

Iterative development

Working Creatively

Research on how to work creatively based on case studies of successful R&D projects developed into Agile

- Keep the 'manager' away
- Work sustainably
- People over process
- Iterative development

Basic R Data types

R Data types

Lists, frames and tables

Vectors

- Vectors $l \leftarrow c(1, 3, 4, 7, 11)$
- Refer to elements using array l[c(2,5)] 2nd and 5th elements of l

Data Frames

```
a <- c(35,23,24,65)
e <- c("Peter", "John", "Mark", NA)
f <- c(TRUE,TRUE,TRUE,FALSE)
team <- data.frame(a,e,f)
names(team) <- c("Age", "Names", "Passed") # variable names
str(team)

## 'data.frame': 4 obs. of 3 variables:
## $ Age : num 35 23 24 65
## $ Names : Factor w/ 3 levels "John", "Mark",..: 3 1 2 NA
## $ Passed: logi TRUE TRUE TRUE FALSE</pre>
```

Reading files

Let's read the first table

Check the current directory

Where are we

```
\begin{array}{lll} \mathbf{getwd} \, (\,) \\ \mathbf{setwd} \, (\, \text{"/Users/pcru/SizeDoesMatter1"} \,) \\ \mathbf{dir} \, (\,) & \# \mathbf{This} & \text{lists the files} \\ \mathbf{ls} \, (\,) & \# \mathbf{This} & \text{lists the variables} \end{array}
```

http://www.statmethods.net/input/contents.html

Reading a table from a file

Reading an excel table

To read a csv table as a table try

```
tab1 \leftarrow as.matrix(read.csv(file="filetable.csv", sep=",", header=FALSE))
```

But our table is an excel file

- What about a package?
- http://www.thertrader.com/2014/02/11/a-million-ways-to-connect-r-and-excel/
- Installing the R package xlsx
- CRAN mirror http://cran.csiro.au
- Change in preferences

Getting help on packages

R Packages

CRAN

Where from

- install command
- install.packages(pkgs)

Citing Packages

- Citing packages
- Getting the bibtex entry into endnote
- http://www.lib.uts.edu.au/question/5955/how-can-i-import-bibliography-endnote-bibtex-latex

```
x=citation()
x1=citation(package="RSQLite")
toBibtex(x)

sessionInfo()
packages_in_use \( \) c( sessionInfo()$basePkgs, names( sessionInfo()$loadedOnly ) )
the_citations_list \( \) lapply( X=packages_in_use, FUN=citation)
the_citations_list
```

Reading an excel table

An example

```
table 1 ← read .xlsx2 ("1_R Wkshp_dummy data_OTU table .xlsx", sheetName =
"Sheet1", header=FALSE, rowNames=FALSE, transpose=TRUE, endRow=18)
```

Loading the xlsx package

```
## Loading required package: xlsx
## Warning: package 'xlsx' was built under R version 3.1.3
## Loading required package: rJava
## Warning: package 'rJava' was built under R version 3.1.3
## Loading required package: methods## Loading required package:
xlsxjars## Loading required package: xtable
```

Reading an excel table

The columns types are wrong

	X1	X2	Х3	X4	X5	X6	X7
1	Group	Contaminated					
2	Site	1			2		
3	Sample ID	10000	10001	10002	10003	10004	10005
4	Rep	1	2	3	1	2	3
5	phormidiaceae	24872	24872	5822	7538	7201	7538
6	streptococcaceae	11	7	14	8	10	8

Reading an excel table

Transpose the table

Transposing

We need to transpose the table and set the column names correctly

```
table1t=setNames(data.frame(t(table1[,-1])),table1[,1])
```

 $http://rgm3.lab.nig.ac.jp/RGM/R_rdfile?f=Ecdat/man/read.transpose.Rd\& d=R_CC http://stackoverflow.com/questions/17288197/reading-a-csv-file-organized-horizontally$

Fields across many columns

Replicating first column

TDD - First do it the easy way first

```
ctridx<-which(table1t$Group=="Control")
table1t$Group[1:48]<-"Contaminated"
table1t$Group[(ctridx+1):48]<-"Control"</pre>
```

```
 \begin{array}{l} \operatorname{ttt} \leftarrow \operatorname{tablelt\$Site} \\ \mathbf{for}(i \ \operatorname{in} \ \mathbf{c}(2: \mathbf{length}(\operatorname{tablelt\$Site}))) \\ \{ \\ \operatorname{temp} \leftarrow \mathbf{as.character}(\operatorname{tablelt\$Site}[i]) \\ \operatorname{tempb} \leftarrow \mathbf{as.character}(\operatorname{ttt}[i-1]) \\ \operatorname{if}(\operatorname{tablelt\$Site}[i] == "") \\ \{ \\ \operatorname{ttt}[i] \leftarrow \operatorname{tempb} \\ \} \\ \operatorname{if}(!\operatorname{tablelt\$Site}[(i)] == "") \\ \{ \\ \operatorname{ttt}[i] \leftarrow \operatorname{temp} \\ \} \\ \} \\ \operatorname{ttt}[i] \leftarrow \operatorname{temp} \\ \} \\ \} \\ \operatorname{tablelt\$Site} \leftarrow \operatorname{ttt} \\ \end{array}
```

```
## X3
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X4
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X5
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X6
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X7
```

```
## Levels: 1 2 3 4 FALSE TRUE
## X8
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X9
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X10
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X11
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X12
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X13
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X14
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X15
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X16
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X17
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X18
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X19
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X20
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X21
## 1
## Levels: 1 2 3 4 FALSE TRUE
## X22
```

```
## Levels: 1 2 3 4 FALSE TRUE
## X23
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X24
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X25
## 2
## Levels: 1 2 3 4 FALSE TRUE
## X26
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X27
## Levels: 1 2 3 4 FALSE TRUE
## X28
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X29
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X30
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X31
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X32
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X33
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X34
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X35
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X36
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X37
```

```
## Levels: 1 2 3 4 FALSE TRUE
## X38
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X39
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X40
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X41
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X42
## Levels: 1 2 3 4 FALSE TRUE
## X43
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X44
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X45
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X46
## 3
## Levels: 1 2 3 4 FALSE TRUE
## X47
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X48
## 4
## Levels: 1 2 3 4 FALSE TRUE
## X49
## Levels: 1 2 3 4 FALSE TRUE
## rowNames
## FALSE
## Levels: 1 2 3 4 FALSE TRUE
## transpose
## TRUE
## Levels: 1 2 3 4 FALSE TRUE
```

Strings

How to work with strings

 $stringr\ package$

• require(stringr)

A look at the stringer package

• stri_c(str1, str2)

concatenates two string

• str_len(str)

```
require(stringr)

## Loading required package: stringr

table1t$Rep<-str_replace(table1t$Rep,"[rep]{3}?","\\1")
table1t$Rep<-str_replace(table1t$Rep,"A","1")
table1t$Rep<-str_replace(table1t$Rep,"B","2")
table1t$Rep<-str_replace(table1t$Rep,"C","3")
table1t$Rep<-as.factor(table1t$Rep)</pre>
```

Reading Tables

Reading a table of other types

- http://www.statmethods.net/input/importingdata.html
- http://stackoverflow.com/questions/17288197/reading-a-csv-file-organized-horizontally
- http://rgm3.lab.nig.ac.jp/RGM/R_rdfile?f=Ecdat/man/read.transpose. Rd&d=R_CC
- Input files from Stata

```
\begin{array}{l} \textbf{library} \, (\, \texttt{foreign} \, ) \\ \texttt{mydata} \, \leftarrow \, \textbf{read} \, . \, \texttt{dta} \, (\, "\, \texttt{c:/mydata.dta"} \, ) \end{array}
```

Morning Tea Time

Back in 20min

Need coffee!!

Types

Let's read the next table

Reading a table using xlxs

```
setwd("/Users/pcru/SizeDoesMatter1")
#dir()
table2<-read.xlsx2("2_R Wkshp_dummy data_Env Data_incl2outliersMK.xlsx", sheetName ="Sheet2",head</pre>
```

	Group	Site	Sample.ID	Rep	Spill.date	Sample.collection.date
1	Contaminated	1	10000	1	14-May-14	15.5.14
2	Contaminated	1	10001	2	14-May-14	15.5.14
3	Contaminated	1	10002	3	14-May-14	15.5.14
4	Contaminated	2	10003	1	14-May-14	15.5.14
5	Contaminated	2	10004	2	14-May-14	15.5.14
6	Contaminated	2	10005	3	14-May-14	15.5.14

Reading the next table

Reading a table I Oh NO

- All columns have been set to factors
- Dates have different formats

```
str(table2[,1:11])
## 'data.frame': 48 obs. of 11 variables:
## $ Group
                         : Factor w/ 2 levels "Contaminated",..: 1 1 1 1 1 1 1 1 1 1 ...
                         : Factor w/ 4 levels "1", "2", "3", "4": 1 1 1 2 2 2 1 1 1 2 ...
## $ Site
                          : Factor w/ 18 levels "10000", "10001", ...: 1 2 3 4 5 6 7 8 9 1 ...
## $ Sample.ID
                         : Factor w/ 9 levels "1", "2", "3", "A", ...: 1 2 3 1 2 3 7 8 9 7 ...
## $ Rep
## $ Spill.date
                          : Factor w/ 2 levels "14-May-14", "N/A": 1 1 1 1 1 1 1 1 1 1 1 ...
## $ Sample.collection.date: Factor w/ 4 levels "15.5.14","17/5/14",...: 1 1 1 1 1 1 2 2 2 2 ...
                         : Factor w/ 36 levels "2000", "2001", ...: 1 2 3 4 5 6 7 8 9 19 ...
## $ labnum
                           : Factor w/ 39 levels "10","105","108",..: 27 30 28 26 25 27 12 15 13 7 .
## $ phosphate..ppb.
## $ ammonia..ppb.
                           : Factor w/ 41 levels "10", "103", "1042", ..: 10 14 15 6 7 4 31 34 32 28 ...
## $ chlorophyll..ug.L.
                           : Factor w/ 38 levels "1","10","11",...: 20 23 21 25 17 18 16 14 15 12 ...
## $ DO....
                         : Factor w/ 31 levels "100", "120", "31", ...: 5 4 3 7 6 5 8 7 9 11 ...
```

Reading the next table

Reading a table II

Break it down

First read a few rows only

```
table2 <- read.xlsx2("2_R Wkshp_dummy data_Env Data_incl2outliersMK.xlsx", sheetName = "Sheet2",
   header = TRUE, rowNames = FALSE, as.Data.frame = FALSE, colindex = c(1:5),
   stringsAsFactors = FALSE, colClasses = c("character", "numeric", "numeric",
        rep("character", 2)), endRow = 4)
sapply(table2, mode)
##
           Group
                           Site
                                    Sample.ID
                                                         Rep
                                                                Spill.date
##
     "character"
                                    "numeric"
                      "numeric"
                                                 "character"
                                                               "character"
##
        rowNames as.Data.frame
       "logical"
                     "logical"
sapply(table2, class)
##
           Group
                           Site
                                    Sample.ID
                                                         Rep
                                                                Spill.date
                     "numeric"
##
     "character"
                                    "numeric"
                                                 "character"
                                                               "character"
##
        rowNames as.Data.frame
##
       "logical"
                     "logical"
```

Reading the next table

Setting the data types

colClasses

- The variable colClasses can be used to specify the row types.
- We need to set **stringsAsFactor=FALSE** or all columns with be loaded as factors
- The dates are in a non-standard format so we need to read them as chars first

```
table2b<-read.xlsx2("2_R Wkshp_dummy data_Env Data_incl2outliersMK.xlsx",
sheetName = "Sheet2", header=TRUE, rowNames=FALSE, as.Data.frame=FALSE,
colIndex=c(1:11), stringsAsFactors=FALSE,
colClasses=c("character",rep("numeric",2),"character",rep("character",2),rep("numeric",6)))
sapply(table2,class)
##
         Group
                      Site
                               Sample.ID
                                                 Rep
                                                       Spill.date
    "character"
                   "numeric"
                                "numeric"
                                            "character" "character"
##
        rowNames as.Data.frame
##
##
       "logical"
                   "logical"
```

Reading table 2

Setting the Date Type

```
table2f <- table2</pre>
table2f$Spill.date <- as.Date(table2f$Spill.date, "%d-%b-%y")</pre>
table2f$Sample.collection.date <- as.Date(table2f$Sample.collection.date, "%d.%m.%y")</pre>
## Error in as.Date.default(table2f$Sample.collection.date, "%d.%m.%y"):
do not know how to convert 'table2f$Sample.collection.date' to
class "Date"
# sapply(table2f,mode)
sapply(table2f, class)
                                                        Spill.date
##
         Group
                       Site
                               Sample.ID
                                                  Rep
                                 "numeric"
                                                               "Date"
##
    "character"
                    "numeric"
                                             "character"
##
        rowNames as.Data.frame
                   "logical"
##
       "logical"
```

Reading table 2

Setting the Date Type Correctly

colClasses

- The as.Data method can take a format string as the second variable
- The format strings are described in help on strptime
- But Spill.data has **two formats**
- We can use the if else function to combine them

```
table2bf<-table2b
table2bf$Spill.date<-as.Date(table2bf$Spill.date,"%d-%b-%y")
cdate1<-as.Date(table2bf$Sample.collection.date,"%d.%m.%y")
cdate2<-as.Date(table2bf$Sample.collection.date,"%d/%m/%y")
table2bf$Sample.collection.date<-as.Date(ifelse
(!is.na(cdate1),as.Date(cdate1),as.Date(cdate2)), origin="1970-01-01")
table2bf$Group<-as.factor(table2bf$Group)
table2bf$Rep<-as.factor(table2bf$Rep)
dated<-table2bf$Sample.collection.date-table2bf$Spill.date</pre>
```

Reading table 2

Setting the Date Type Correctly

Count the NAs

```
na_count <-sapply(table2bf, function(y) sum(length(which(is.na(y)))))</pre>
na_count
##
                   Group
                                           Site
                                                            Sample.ID
##
                                              0
                                  Spill.date Sample.collection.date
##
                   Rep
##
                                             24
##
                 labnum
                               phosphate..ppb.
                                                        ammonia..ppb.
##
                                                                     0
##
      chlorophyll..ug.L.
                                         DO....
                                                             rowNames
##
                                              0
                                                                     0
             as.Data.frame
##
##
```

Strings

Reading table 2

Just fix the Rep column using the stringer package again

```
require(stringr)
table2bf$Rep<-str_replace(table2bf$Rep,"[rep]{3}?","\\1")
table2bf$Rep<-str_replace(table2bf$Rep,"A","1")
table2bf$Rep<-str_replace(table2bf$Rep, "B", "2")
table2bf$Rep<-str_replace(table2bf$Rep, "C", "3")
table2bf$Rep<-as.factor(table2bf$Rep)
str(table2bf)
## 'data.frame': 48 obs. of 13 variables:
                   : Factor w/ 2 levels "Contaminated",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Group
## $ Site
                          : num 1 1 1 2 2 2 1 1 1 2 ...
## $ Sample.ID
                        : num 10000 10001 10002 10003 10004 ...
                       : Factor w/ 3 levels "1", "2", "3": 1 2 3 1 2 3 1 2 3 1 ...
## $ Rep
                      : Date, format: "2014-05-14" "2014-05-14" ...
## $ Spill.date
## $ Sample.collection.date: Date, format: "2014-05-15" "2014-05-15" ...
## $ labnum
                    : num 2000 2001 2002 2003 2004 ...
## $ phosphate..ppb.
                          : num 3020 3253 3169 2999 2879 ...
## $ ammonia..ppb.
                        : num 13880 14598 14676 10984 11657 ...
## $ chlorophyll..ug.L. : num 302 323 315 352 289 296 254 248 250 220 ...
## $ DO....
                         : num 34 33 31 38 36 34 40 38 41 45 ...
## $ rowNames
                        : logi FALSE FALSE FALSE FALSE FALSE ...
## $ as.Data.frame
                    : logi FALSE FALSE FALSE FALSE FALSE ...
```

Merging Tables

How to merge two data sets?

Using the merge command

The inbuilt command merge

- R has a command merge
- To begin, start looking at the first 9 lines of the tables and merge them
- Need to use Group, Site, Sample.ID because otherwise it's not unique

```
\begin{array}{lll} \mathbf{merge}(x,\ y,\ \mathbf{by} = \mathbf{intersect}\,(\mathbf{names}(x)\,,\ \mathbf{names}(y))\,, \\ \mathbf{by}.\,x = \mathbf{by},\ \mathbf{by}.\,y = \mathbf{by},\ \mathbf{all} = \mathrm{FALSE},\ \mathbf{all}.\,x = \mathbf{all}\,,\ \mathbf{all}.\,y = \mathbf{all}\,, \\ \mathbf{sort} = \mathrm{TRUE},\ \mathrm{suffixes} = \mathbf{c}\,(".x",".y")\,, \\ \mathrm{incomparables} = \mathrm{NULL},\ \ldots) \end{array}
```

```
tab1c<-table1t[1:9,]
tab2c<-table2b[1:9,]
m1<-merge(tab1c,tab2c,by.x="Sample ID",by.y="Sample.ID")
m2<-merge(table1t,table2bf,by.x=c("Group","Site","Sample ID"),
by.y=c("Group","Site","Sample.ID"))
m3<-merge(table1t,table2bf,by.x=c("Group","Site","Sample ID","Rep"),
by.y=c("Group","Site","Sample.ID","Rep"))</pre>
```

Lunch Time

Back in 30 min Provided

How do I append two data sets?

To begin load the third data set

Follow up data from contaminated site

```
table3\(\text{-read}.xlsx2("3_Follow up data from contaminated site_MK.xlsx", sheetName = "Sheet1", header=TRUE, rowNames=FALSE, colClasses=c(rep("character",3),

rep("character",2), rep("numeric",18)))
table3f\((-\text{table3}\)
table3f\((\text{Spill}.date\)-as.Date(table3f\((\text{Spill}.date,\)"\)%d.\%m.\%y")
table3f\((\text{Ssample}.collection.date\)-as.Date(table3f\((\text{Ssample}.collection.date,\)"\)%d.\%m.\%y")
sapply(table3f, mode)
sapply(table3f, class)
```

How do I append two data sets?

Loading the third data set

Joining table 3 to the other merged tables

- We need to be careful to match everything
- $\bullet\,$ Install the ${\bf plyr}$ package This has lots of useful functions for renaming var etc
- This means we need columns for corynebacteriaceae and porphyromondaceae
- Should these values be NA or 0?
- We will do one of each.
- Generally we would use NA but in this case 0 is better as its likely the rows were missing as none were detected

How do I append two data sets?

Appending the third set

```
## Loading required package: plyr

## [1] 24

## [1] 27

## [1] "Sample ID" "corynebacteriaceae" "porphyromondaceae"

## character(0)
```

Another Break

Fat or wide

Reshaping Tables

reshape 2

reshape 2

- vignette(reshape) doesn't work
- try http://had.co.nz/reshape/
- and http://seananderson.ca/2013/10/19/reshape.html

A small example for melt

• Suppose we what a box plot to see if there are outliers

- We will use ggplot2 box plot
- The box plot needs data in long format.
- To use this first **melt** the data
- We need to specify the unique key, the variable name and the value name
- The key is not unique.
- Then plot it

Reshaping Tables

melt and boxplot

The code

```
\label{eq:matable4} \begin{array}{l} matable4 \leftarrow\! melt (table4 \left[\;, \mathbf{c} \left(1:4\;, 6:25\right)\right], \mathbf{variable} . name = "microbe", value . name = "abundance", id=\mathbf{c} ("Group", "Site", "Sample . ID", "Rep"), factors AsStrings=FALSE, \mathbf{rm}. \mathbf{na=}TRUE) \end{array}
```

```
require(reshape2)
## Loading required package: reshape2
matable4<-melt(table4[,c(1:4,7:25)],variable.name = "microbe",
value.name = "abundance", id=c("Group", "Site", "Sample.ID", "Rep"),
factorsAsStrings=FALSE,rm.na=TRUE)</pre>
```

Reshaping Tables

Boxplot cont

Using ggplot

- As we have keys we need to specify the x and y
- Let's make the sites different colors
- The variable names are long so flip it with *coord_flip()*
- Looks like we have outliers...hmm

```
require(ggplot2)
## Loading required package: ggplot2
ggplot(matable4,aes(x=microbe,y=abundance,fill=Site)) + geom_boxplot() + coord_flip()
## Warning: Removed 24 rows containing non-finite values (stat_boxplot).
```


Finding Outliers

 $Interquartile\ range$

Finding Outliers

- Outliers are defined 1.5 times the interquartile range above the upper quartile
- Assume that rows 12 and 14 in phosphate are errors as the 9 is typed twice
- Still issues with ammonia to explore

```
phosphate<-table4[,"phosphate..ppb."]
upper.limit <- quantile(phosphate)[4] + 1.5*IQR(phosphate)
lower.limit <- quantile(phosphate)[2] - 1.5*IQR(phosphate)
#table4[phosphate> upper.limit,c("Site","phosphate..ppb.")]
```

Reshaping Tables

Finding Outliers

Removing Outliers

	Site	phosphateppb.
1	1	3020.00
2	1	3253.00
3	1	3169.00
12	1	9982.00
14	1	9982.00
_16	1	1542.00

```
table4[12,"phosphate..ppb."]<-982
table4[14,"phosphate..ppb."]<-982</pre>
```

${\bf Outliers\ check}$

Redo the boxplot

Look again ggplot

Warning: Removed 24 rows containing non-finite values (stat_boxplot).

R package

RQLlite

RSQLite

- Suppose merge is not enough? I know about SQL and want to do joins
- Install RSQLite
- We also need to install DBI

Loading required package: RSQLite

```
db <- dbConnect(SQLite(), dbname="Test.sqlite")</pre>
#getConfig()$staged.queries
# sqldf(attach "Test1.sqlite" as new)
dbBegin(db)
## [1] TRUE
dbWriteTable(db, "table1", table1t, overwrite=TRUE)
## [1] TRUE
dbReadTable(db, "table1")
##
                                               Rep phormidiaceae
                            Site Sample.ID
                     Group
## X2
              Contaminated
                              1
                                      10000
                                                1
                                                            24872
## X3
              Contaminated
                                      10001
                                                 2
                                                            24872
## X4
              Contaminated
                                1
                                      10002
                                                 3
                                                             5822
## X5
                                2
                                      10003
                                                             7538
              Contaminated
                                                 1
## X6
              Contaminated
                                2
                                      10004
                                                 2
                                                             7201
## X7
                                2
              Contaminated
                                      10005
                                                 3
                                                             7538
## X8
                                1
                                      10006
              Contaminated
                                                 1
                                                             8467
## X9
              Contaminated
                                1
                                      10007
                                                 2
                                                             7340
## X10
              Contaminated
                                1
                                      10008
                                                 3
                                                             8467
## X11
              Contaminated
                                2
                                      10000
                                                 1
                                                             2000
## X12
              Contaminated
                                2
                                      10001
                                                 2
                                                             2083
## X13
              Contaminated
                                2
                                      10002
                                                 3
                                                             1899
## X14
              Contaminated
                                1
                                      10003
                                                 1
                                                             1947
## X15
              Contaminated
                                1
                                      10004
                                                 2
                                                             2733
## X16
              Contaminated
                                1
                                      10005
                                                 3
                                                             2385
## X17
              Contaminated
                                2
                                      10006
                                                 1
                                                              800
                                2
                                                 2
                                                              738
## X18
              Contaminated
                                      10007
## X19
              Contaminated
                                2
                                      10008
                                                 3
                                                              800
              Contaminated
## X20
                                      10003
                                                              200
```

	X21	Contaminated	1	10004	2	189
##	X22	Contaminated	1	10005	3	271
##	X23	Contaminated	2	10006	1	46
	X24	Contaminated	2	10007	2	62
##	X25	Contaminated	2	10008	3	94
##	X26	Contaminated	3	10009	1	24
##	X27	Control	3	10010	2	64
	X28	Control	3	10011	3	21
	X29	Control	4	10012	1	56
	X30	Control	4	10013	2	27
##	X31	Control	4	10014	3	53
##	X32	Control	3	10015	1	115
##	X33	Control	3	10016	2	97
##	X34	Control	3	10017	3	45
##	X35	Control	4	10009	1	33
##	X36	Control	4	10010	2	51
##	X37	Control	4	10011	3	47
##	X38	Control	3	10012	1	105
##	X39	Control	3	10013	2	72
##	X40	Control	3	10014	3	115
##	X41	Control	4	10015	1	18
##	X42	Control	4	10016	2	54
##	X43	Control	4	10017	3	33
##	X44	Control	3	10012	1	36
##	X45	Control	3	10013	2	58
##	X46	Control	3	10014	3	36
##	X47	Control	4	10015	1	60
##	X48	Control	4	10016	2	164
##	X49	Control	4	10017	3	79
##	rowNames	FALSE	FALSE	FALSE F	1LSE	FALSE
##	transpose	TRUE	TRUE	TRUE	TRUE	TRUE
##		streptococcad	ceae vib	rionaceae	enterob	acteriaceae
##	X2		11	33		131
##	Х3		7	40		200
##	X4		14	40		200
##	X5		8	95		151
##	Х6		10	83		140
	X7		8	95		151
##	X8		5	29		132
	Х9		5	51		168
##	X10		5	29		132
##	X11		10	34		97
##	X12		17	38		91
##	X13		27	31		51
##	X14		0	0		2

	X15	1	0	1
	X16	0	0	2
	X17	26	33	34
	X18	22	58	42
	X19	26	33	34
	X20	6	5	39
	X21	2	3	23
	X22	5	1	39
	X23	3	9	55
	X24	1	5	95
	X25	3	0	55
	X26	2	6	36
	X27	3	3	36
	X28	0	4	30
	X29	1	30	79
	X30	5	9	129
	X31	1	1	124
	X32	0	10	52
	X33	4	6	13
	X34	0	2	9
	X35	4	4	11
	X36	0	10	41
	X37	0	3	29
	X38 X39	10	39	288
		10	29	413 481
	X40 X41	12 5	34 2	43
	X41 X42	3	5	50
	X42 X43	4	5	86
	X44	10	4	28
	X45	12	1	28
	X46	1	0	44
	X47	4	7	48
	X48	2	11	111
	X49	3	5	88
##	rowNames	FALSE	FALSE	FALSE
##	transpose	TRUE	TRUE	TRUE
##	er anapose	verrucomicrobiaceae		
	X2	977	351	20
	X3	1500	246	76
	X4	844	246	76
	X5	1006	41	1
	X6	1112	83	6
	X7	1195	41	0
	X8	1805	23	0
		. 000	23	J

##	X9	1906 28	0
##	X10	1902 23	0
##	X11	1244 40	1
##	X12	1933 40	1
	X13	1244 80	0
	X14	251 1	0
	X15	271 0	1
	X16	299 0	0
	X17	1348 209	1
	X17	3612 205	0
	X19	1348 209	3
	X20	176 1	0
	X21	211 0	3
	X22	183 1	0
	X23	544 0	9
	X24	611 1	0
	X25	544 0	1
	X26	471 0	0
	X27	500 0	1
	X28	541 0	0
	X29	1405 3	1
	X30	1678 1	1
	X31	1360 0	0
	X32	1590 0	0
	X33	398 0	0
##	X34	195 1	0
##	X35	1213 7	2
##	X36	3461 12	1
##	X37	1688 3	0
##	X38	590 1	1
##	X39	598 0	0
##	X40	639 1	0
##	X41	949 0	0
##	X42	974 0	0
##	X43	662 0	0
##	X44	267 Ø	0
##	X45	249 2	0
##	X46	337 0	0
##	X47	625 0	0
##	X48	886 0	0
##	X49	791 0	0
##	rowNames	FALSE FALSE	FALSE
##	transpose	TRUE TRUE	TRUE
##		staphylococcaceae clostridiaceae oceanospiri	llaceae
##	X2	115 274	1438

##				1789
##	X4	342 342	288 258	1789
##	X5	4	365	5
##	X6	9	365	2
##	X7	4	365	9
	X8	1	643	14
##		1	941	14
	X10	1	711	14
	X11	0	204	93
	X12	0	229	72
##	X13	0	285	93
##	X14	0	8	1080
##	X15	0	12	1633
##	X16	1	12	1080
##	X17	4	400	747
##	X18	7	733	636
##	X19	2	299	747
##	X20	1	76	256
##	X21	0	63	263
##	X22	2	85	256
##	X23	1	136	284
##	X24	20	643	293
##	X25	1	136	293
##	X26	0	31	189
##	X27	1	59	510
##	X28	0	42	215
##	X29	0	143	2096
	X30	0	124	834
	X31	0	100	426
	X32	0	34	263
##	X33	0	33	1095
##		0	18	523
	X35	0	96	273
##	X36	0	100	1432
	X37	0	74	330
	X38	1	119	4584
	X39	1	181	3811
	X40	0	202	3165
	X41	0	38	380
	X42	0	29	548
	X43	0	56	403
	X44	0	62 58	394
	X45 X46	0	58 66	311 376
	X47	0	66	773
1111	ΛT/	V	00	113

	X48	6		1778
	X49	(1289
	rowNames	FALSE		FALSE
##	transpose			TRUE
##				corynebacteriaceae
##		471	1267	0
##		498	1597	0
##		692	1844	0
##		20	70	0
##		20	82	0
##		48	70	0
##		27	97	0
##		83	97	0
	X10	27	97	0
	X11	61	579	0
	X12	61	603	0
	X13	61	579	0
	X14	245	2245	0
	X15	245	2001	0
	X16	142	2834	0
	X17	95	1432	0
	X18	70	1834	0
	X19	95	1432	0
	X20	101	786	0
	X21	104	844	0
	X22 X23	101 65	826 1833	0
	X23	53	2528	0
	X25	65	2999	0
	X26	67	568	0
	X27	128	1877	0
	X28	152	582	0
	X29	769	1699	0
	X30	954	3145	0
	X31	555	1171	0
	X32	45	323	0
	X33	164	911	0
	X34	513	485	0
	X35	75	732	0
	X36	414	3101	0
	X37	298	1262	0
	X38	807	3586	0
	X39	1916	5757	0
##	X40	1120	4168	0
##	X41	276	821	0

	X42	394	489	0
	X43	498	611	0
	X44	212	1001	0
	X45	301	889	0
	X46 X47	330 521	943 1300	0
	X47 X48	1220	3013	0
	X49	383	1255	0
	rowNames	FALSE	FALSE	FALSE
	transpose	TRUE	TRUE	TRUE
##	ci alispose	porphyromondaceae	TROL	TROL
	X2	0		
	X3	0		
	X4	0		
	X5	0		
	X6	0		
	X7	0		
	X8	0		
##	X9	0		
##	X10	0		
##	X11	0		
##	X12	0		
##	X13	0		
	X14	0		
	X15	0		
	X16	0		
	X17	0		
	X18	0		
	X19	0		
	X20	0		
	X21	0		
	X22	0		
	X23	0		
	X24 X25	0		
	X25 X26	0		
	X27	0		
	X27	0		
	X29	0		
	X30	0		
	X31	0		
	X32	0		
	X33	0		
	X34	0		
##	X35	0		

```
## X36
                              0
## X37
                              0
## X38
                              0
## X39
                              0
## X40
                              0
## X41
                              0
## X42
                              0
## X43
## X44
                              0
## X45
                              0
## X46
                              0
## X47
                              0
## X48
                              0
## X49
                              0
                          FALSE
## rowNames
## transpose
                           TRUE
dbListFields(db, "table1")
   [1] "row_names"
                                "Group"
                                                       "Site"
   [4] "Sample ID"
                               "Rep"
                                                     "phormidiaceae"
                              "vibrionaceae"
## [7] "streptococcaceae"
                                                    "enterobacteriaceae"
## [10] "verrucomicrobiaceae" "chloroflexaceae"
                                                     "aeromonadaceae"
## [13] "staphylococcaceae"
                              "clostridiaceae"
                                                     "oceanospirillaceae"
## [16] "synechococcaceae"
                              "rhodospirillaceae"
                                                     "corynebacteriaceae"
## [19] "porphyromondaceae"
dbListTables(db)
## [1] "table1"
dbGetQuery(db, "SELECT * from table1")
                                                  Rep phormidiaceae
##
      row_names
                        Group Site Sample ID
## 1
                                   1
                                         10000
                                                    1
                                                               24872
             X2 Contaminated
## 2
             X3 Contaminated
                                         10001
                                                    2
                                                              24872
## 3
             X4 Contaminated
                                   1
                                         10002
                                                    3
                                                                5822
## 4
             X5 Contaminated
                                   2
                                         10003
                                                    1
                                                                7538
## 5
             X6 Contaminated
                                   2
                                         10004
                                                    2
                                                                7201
## 6
                                   2
             X7 Contaminated
                                         10005
                                                    3
                                                                7538
## 7
             X8 Contaminated
                                   1
                                         10006
                                                    1
                                                                8467
## 8
             X9 Contaminated
                                   1
                                         10007
                                                    2
                                                                7340
## 9
            X10 Contaminated
                                   1
                                         10008
                                                    3
                                                                8467
## 10
            X11 Contaminated
                                         10000
                                                                2000
## 11
                                                    2
                                                                2083
            X12 Contaminated
                                   2
                                         10001
## 12
            X13 Contaminated
                                   2
                                         10002
                                                    3
                                                                1899
## 13
            X14 Contaminated
                                         10003
                                                                1947
```

## 14			V4.5		4	10001	0	0700	
## 16									
## 17									
## 18									
## 19									
## 20									
## 21					-		•		
## 22					-				
## 23									
## 24									
## 25									
## 26									
## 27									
## 28									
## 29									
## 30									
## 31									
## 32									
## 33									
## 34									
## 35									
## 36									
## 37									
## 38									
## 39									
## 40									
## 41									
## 42									
## 43									
## 44 X45 Control 3 10013 2 58 ## 45 X46 Control 3 10014 3 36 ## 46 X47 Control 4 10015 1 60 ## 47 X48 Control 4 10016 2 164 ## 48 X49 Control 4 10017 3 79 ## 49 rowNames FALSE FALSE FALSE FILSE FALSE ## 50 transpose TRUE TRUE TRUE TRUE TRUE TRUE ## streptococcaceae vibrionaceae enterobacteriaceae verrucomicrobiaceae ## 1 11 33 131 977 ## 2 7 40 200 1500 ## 3 14 40 200 844 ## 4 8 95 151 1006 ## 5 10 83 140 1112 ## 6 8 95 151 1195									
## 45									
## 46									
## 47 X48 Control 4 10016 2 164 ## 48 X49 Control 4 10017 3 79 ## 49 rowNames FALSE FALSE FALSE FILSE FALSE ## 50 transpose TRUE TRUE TRUE TRUE TRUE ## streptococcaceae vibrionaceae enterobacteriaceae verrucomicrobiaceae ## 1 11 33 131 977 ## 2 7 40 200 1500 ## 3 14 40 200 844 ## 4 8 95 151 1006 ## 5 10 83 140 1112 ## 6 8 95 151 1195									
## 48 X49 Control 4 10017 3 79 ## 49 rowNames FALSE FALSE FALSE FILSE FALSE ## 50 transpose TRUE TRUE TRUE TRUE TRUE ## streptococcaceae vibrionaceae enterobacteriaceae verrucomicrobiaceae ## 1 11 33 131 977 ## 2 7 40 200 1500 ## 3 14 40 200 844 ## 4 8 95 151 1006 ## 5 10 83 140 1112 ## 6 8 95 151 1195									
## 49 rowNames		47			4				
## 50 transpose TRUE TRUE TRUE TRUE TRUE ## streptococcaceae vibrionaceae enterobacteriaceae verrucomicrobiaceae ## 1 11 33 131 977 ## 2 7 40 200 1500 ## 3 14 40 200 844 ## 4 8 95 151 1006 ## 5 10 83 140 1112 ## 6 8 95 151 1195									
## streptococcaceae vibrionaceae enterobacteriaceae verrucomicrobiaceae ## 1	##								
## 1 11 33 131 977 ## 2 7 40 200 1500 ## 3 14 40 200 844 ## 4 8 95 151 1006 ## 5 10 83 140 1112 ## 6 8 95 151 1195		50	transpose	TRUE	TRUE	TRUE	TRUE	TRUE	
## 2 7 40 200 1500 ## 3 14 40 200 844 ## 4 8 95 151 1006 ## 5 10 83 140 1112 ## 6 8 95 151 1195			streptococ						biaceae
## 3 14 40 200 844 ## 4 8 95 151 1006 ## 5 10 83 140 1112 ## 6 8 95 151 1195	##	1							
## 4 8 95 151 1006 ## 5 10 83 140 1112 ## 6 8 95 151 1195		_		-					
## 5 10 83 140 1112 ## 6 8 95 151 1195									
## 6 8 95 151 1195		-							
		-							
## 7 5 29 132 1805									
	##	7		5	29		132	1805	

11.11	0	_	Г1	1.00	1006
##		5	51	168	1906
##		5	29	132	1902
##		10	34	97	1244
	11	17	38	91	1933
	12	27	31	51	1244
	13	0	0	2	251
	14	1	0	1	271
	15	0	0	2	299
	16	26	33	34	1348
	17	22	58	42	3612
	18	26	33	34	1348
	19	6	5	39	176
	20	2	3	23	211
	21	5	1	39	183
	22	3	9	55	544
	23	1	5	95	611
	24	3	0	55	544
	25	2	6	36	471
	26	3	3	36	500
	27	0	4	30	541
##	28	1	30	79	1405
	29	5	9	129	1678
	30	1	1	124	1360
	31	0	10	52	1590
##	32	4	6	13	398
	33	0	2	9	195
	34	4	4	11	1213
	35	0	10	41	3461
	36	0	3	29	1688
	37	10	39	288	590
	38	10	29	413	598
##	39	12	34	481	639
##	40	5	2	43	949
##	41	3	5	50	974
##		4	5	86	662
##		10	4	28	267
##		12	1	28	249
##		1	0	44	337
##		4	7	48	625
##		2	11	111	886
##		3	5	88	791
##		FALSE	FALSE	FALSE	FALSE
##		TRUE	TRUE	TRUE	TRUE
##				staphylococcaceae	
##		351	20	115	274

## 2	246	76	342	288
## 3	246		342	
		76		258
## 4	41	1	4	365
## 5	83	6	9	365
## 6	41	0	4	365
## 7	23	0	1	643
## 8	28	0	1	941
## 9	23	0	1	711
## 10	40	1	0	204
## 11	40	1	0	229
## 12	80	0	0	285
## 13	1	0	0	8
## 14	0	1	0	12
## 15	0	0	1	12
## 16	209	1	4	400
## 17	205	0	7	733
## 18	209	3	2	299
## 19	1	0	1	76
## 20	0	3	0	63
## 21	1	0	2	85
## 22	0	9	1	136
## 23	1	0	20	643
## 24	0	1	1	136
## 25	0	0	0	31
## 26	0	1	1	59
## 27	0	0	0	42
## 28	3	1	0	143
## 29	1	1	0	124
## 29				
	0	0	0	100
## 31 ## 32	0	0	0	34
	0	0	0	33
## 33	1	0	0	18
## 34	7	2	0	96
## 35	12	1	0	100
## 36	3	0	0	74
## 37	1	1	1	119
## 38	0	0	1	181
## 39	1	0	0	202
## 40	0	0	0	38
## 41	0	0	0	29
## 42	0	0	0	56
## 43	0	0	0	62
## 44	2	0	0	58
## 45	0	0	0	66
## 46	0	0	0	66

## 4	.7 0	0	0	167
## 4		0	0	40
## 4	9 FALSE	FALSE	FALSE	FALSE
## 5		TRUE	TRUE	TRUE
##	oceanospirillaceae			
## 1		471	1267	
## 2		498	1597	
## 3		692	1844	
## 4		20	70	
## 5		20	82	
## 6	9	48	70	
## 7	14	27	97	
## 8	14	83	97	
## 9	14	27	97	
## 1	0 93	61	579	
## 1	1 72	61	603	
## 1	2 93	61	579	
## 1	3 1080	245	2245	
## 1	4 1633	245	2001	
## 1	5 1080	142	2834	
## 1	6 747	95	1432	
## 1	7 636	70	1834	
## 1	8 747	95	1432	
## 1	9 256	101	786	
## 2		104	844	
## 2		101	826	
## 2		65	1833	
## 2		53	2528	
## 2		65	2999	
## 2		67	568	
## 2		128	1877	
## 2		152	582	
## 2		769	1699	
## 2		954	3145	
## 3		555	1171	
## 3		45	323	
## 3		164	911	
## 3		513	485	
## 3 ## 3		75 414	732	
## 3		298	3101 1262	
## 3		807		
## 3		1916	3586 5757	
## 3		1120	4168	
## 4		276	821	
11117 4	300	270	021	

##	41	548	394	489	
##	42	403	498	611	
##	43	394	212	1001	
##	44	311	301	889	
##	45	376	330	943	
##	46	773	521	1300	
	47	1778	1220	3013	
	48	1289	383	1255	
##	49	FALSE	FALSE	FALSE	
##	50	TRUE	TRUE	TRUE	
##		${\tt corynebacteriaceae}$	${\tt porphyromondace} ae$		
	1	0	0		
		0	0		
##	3	0	0		
##		0	0		
##		0	0		
##		0	0		
	7	0	0		
##		0	0		
##		0	0		
	10	0	0		
##	11	0	0		
##	12	0	0		
##	13	0	0		
##	14	0	0		
##	15	0	0		
##	16	0	0		
##	17	0	0		
##	18	0	0		
##	19	0	0		
		0	0		
	21	0	0		
	22	0	0		
	23	0	0		
	24	0	0		
##	25	0	0		
	26	0	0		
	27	0	0		
	28 29	0	0		
	30	0	0		
	31	0	0		
	32	0	0		
	33	0	0		
	34	0	0		
##	54	0	V		

##	35	0	0		
##	36	0	0		
##	37	0	0		
##	38	0	0		
##	39	0	0		
##	40	0	0		
##	41	0	0		
##	42	0	0		
##	43	0	0		
##	44	0	0		
##	45	0	0		
##	46	0	0		
##	47	0	0		
##	48	0	0		
##	49	FALSE	FALSE		
##	50	TRUE	TRUE		
<pre>#dbDisconnect(db)</pre>					

R package

RQLlite

RSQLite

- Some links to RSQL ideas
- $\bullet \ \text{http://stackoverflow.com/questions/12307685/join-more-than-2-tables-in-r-using-rsqlite} \\$
- https://support.rstudio.com/hc/en-us/articles/201057987-Quick-list-of-useful-R-packages
- https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction. html

```
\label{eq:coalesce} select\ coalesce(fileA\ ,fileB\ )\ ,valA\ ,valB\ from\ t1\ LEFT\ OUTER\ JOIN\ t2\ On\ t1\ .fileA=\ t2\ .fileB\ UNION\ select\ coalesce(fileA\ ,fileB\ )\ ,valA\ ,valB\ from\ t2\ LEFT\ OUTER\ JOIN\ t1\ ON\ t1\ .fileA=\ t2\ .fileB\ (CREATE\ TABLE\ all\ _files\ AS\ SELECT\ fileA\ FROM\ t1\ UNION\ SELECT\ fileB\ from\ t2\ UNION\ ...)\ .
```

R package

svUnit

Another important component of TDD is refactoring and unit tests

- Refactoring http://refactoring.com/
- http://www.r-bloggers.com/my-experience-of-learning-r-from-basic-graphs-to-performance-tun
- ullet TDD in R http://www.slideserve.com/andrew/test-driven-development-in-r
- Version Control tortiseSVN ttp://tortoisesvn.net/}\itemGitHub\ url{ttps://github.com/

Cleaning things up

Dropping row and columns

Dropping selected variables

Dropping Row and Columns with too many NAs

```
\begin{array}{l} numNAs\_inData4\_rows \leftarrow \mathbf{apply}(rawData4\,,\,\,1,\,\,\mathbf{function}(z)\,\,\mathbf{sum}(\mathbf{is}\,.\mathbf{na}(z))) \\ numNAs\_inData4\_col \leftarrow \mathbf{apply}(table4\,,\,\,2,\,\,\mathbf{function}(z)\,\,\mathbf{sum}(\mathbf{is}\,.\mathbf{na}(z)))\,\,\#\,\,\mathrm{count}\,\,\mathrm{NAs}\,\,\mathrm{in}\,\,\mathrm{Data4} \\ lessThan20 \leftarrow table4\,[\,!(numNAs\_inData4\_rows\,>\,20)\,,] \qquad \# only\,\,\mathrm{select}\,\,\mathrm{the}\,\,\mathrm{rows}\,\,\mathrm{contain}\,\,\,\mathrm{less}\,\,\mathrm{Than}\,\,20\,\,\mathrm{Nas}\,\,\mathrm{lessThan}\,\,20\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm{col}\,\,\mathrm
```

Dropping row and columns

Dropping selected variables

Tidy Data

In tidy data:

- Each variable forms a column.
- Each observation forms a row.
- Each type of observational unit forms a table.
- https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data. html
- http://pj.freefaculty.org/R/Rtips.html#toc-Subsection-1.11

Spit out the dates and numbers

```
\begin{array}{l} \mathtt{dates}4 \leftarrow \mathtt{table4} \left[ \;, \mathbf{c} \left( \; 5 \;, 6 \; \right) \right] \\ \mathtt{abundance} \leftarrow \mathtt{table4} \left[ \;, \mathbf{c} \left( \; 7 \; : \; 2 \; 5 \; \right) \right] \end{array}
```

Adding a new column

Calculating the number of days

Calculating the number of days

We can just subtract as.Date fields

```
dates4<-table4[,c(5,6)]
abundance<-table4[,c(7:25)]
days<-dates4[,2]-dates4[,1]</pre>
```

Setting the relative abundance

Setting the relative abundance

Normalizing data

sapply

- Also known as centring the data
- Ecological percentage of the sum of the variables
- We an use sweep to centre the data
- options(digits = 1) Just to make things pretty

```
sweepOutContinu \leftarrow sweep(abundance, 2, apply(abundance, 2, min, na.rm=TRUE))\\ afterSweepContinu \leftarrow sweep(sweepOutContinu, 2, apply(sweepOutContinu, 2, max, na.rm=TRUE), "/")\\ table 5 \leftarrow cbind(table 4[, c(1:6)], afterSweepContinu, days)\\ options(digits=1)\\ sweep(abundance, 2, colSums(abundance), FUN="/")\\ scale(abundance, center=FALSE, scale=colSums(abundance))
```

Now let's have some fun

Graphics in R

R has nice graphs

- A graphical output
- http://rcharts.io/gallery/
- R Graph gallery currently down try http://rgraphgallery.blogspot.com/
- A reference on where to go R thumbnails
- ggplot2 (scatter plot of 2 var and then 3 plots)
- To create a correlation heat map

```
library(corrplot)
abuncor—cor(t5lessThan20col[,c(6:22)])
require(corrplot)
corrplot(abuncor, method = "circle")
```

```
## [1] 23
## Loading required package: corrplot
```

Now let's have some fun

Making a heat map

A heat map

Simple Tests

ttests

t tests

There are many t-tests available in R http://www.statmethods.net/stats/ttest.html

```
# independent 2-group t-test
t.test(t5lessThan20col[,12],t5lessThan20col[,8])

##
## Welch Two Sample t-test
##
## data: t5lessThan20col[, 12] and t5lessThan20col[, 8]
## t = -3.4052, df = 180.441, p-value = 0.0008149
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
```

```
## -0.20589367 -0.05481872

## sample estimates:

## mean of x mean of y

## 0.2725146 0.4028708
```

What next

Proposed future talks

Help is on the way

- Parameterized Complexity Research Unit (PCRU) PhD students
- PhD student in Bioinformatics from Central South Uni

Your feedback on some ideas

- Using Sweave or Knitr
- Advanced Data Cleaning
- Network Centric data analysis

Resources

If you want to improve this style

References

- [1] LaTeX Beamer http://latex-beamer.sourceforge.net/
- [2] Sharelatex Site https://www.sharelatex.com
- [3] A Data Cleaning Mooc https://www.sharelatex.com

R Packages Used

Session Info

Output of sessionInfo

```
sessionInfo()

## R version 3.1.2 (2014-10-31)

## Platform: x86_64-apple-darwin13.4.0 (64-bit)

##

## locale:

## [1] C
```

```
## attached base packages:
## [1] methods stats
                       graphics grDevices utils
                                                 datasets base
##
## other attached packages:
## [1] corrplot_0.73 RSQLite_1.0.0 DBI_0.3.1 ggplot2_1.0.0
## [5] reshape2_1.4.1 plyr_1.8.1 stringr_0.6.2 xtable_1.7-4
                    xlsxjars_0.6.1 rJava_0.9-7
## [9] xlsx_0.5.7
                                                  knitr_1.11
##
## loaded via a namespace (and not attached):
## [1] MASS_7.3-39 Rcpp_0.11.5 colorspace_1.2-6 digest_0.6.8
## [5] evaluate_0.7.2 formatR_1.2
                                    grid_3.1.2 gtable_0.1.2
## [9] highr_0.5 labeling_0.3
                                     munsell_0.4.2
                                                    proto_0.3-10
## [13] scales_0.2.4
                      tools_3.1.2
# packages_in_use <- c( sessionInfo()$basePkgs, names( sessionInfo()$loadedOnly ) )</pre>
#the_citations_list <- lapply( X=packages_in_use, FUN=citation)</pre>
#the_citations_list
```