

Moonshot CExA, Calcul Exascale Au CEA

Catalyseur logiciel pour calcul GPU

Contexte

- Le calcul intensif : un outil transverse de **souveraineté** et de **compétitivité**
 - Jumeaux numériques, modélisation du climat, dissuasion nucléaire, physique aux échelles extrêmes, conception multi-échelle des matériaux, médecine personnalisée, respect de la vie privée, etc.
 - Largement dans la société, transverse à toutes les DOs du CEA
- Arrivée de l'Exascale (1 ere machine aux USA)
 - Architectures accélérées (GPU)
 - Premières machines en Europe pour 2024/2025
 - Consortium Jules Vernes => Machine France au CEA/TGCC
 - Besoin de re-développer les applications pour en tirer parti
- Les intergiciels GPU : des catalyseurs
 - Portabilité de performances
 - Aux États-Unis : porté par l'Exascale Computing Project (ECP)
 - Stratégie open-source pour assurer un transfert vers les industriels
 - Europe et France : recherche amont, mais pas de production
- Un besoin criant de solution pérenne
 - Maîtriser la feuille de route
 - Adapter à nos spécificités matérielles et logicielles

Puissance de calcul des 500 supercalculateurs les plus puissant au monde de juin 2003 a 2023 (source Top500)

pointe

Le projet

démonstrateurs applicatifs

Offrir un
catalyseur logiciel
de calcul GPU
pérenne basé sur
Kokkos

CExA en bref

Stratégie "adopter et adapter" basée suk Kokkos

- Kokkos : une base solide
 - Une architecture logicielle prête pour le futur
 - Mature, libre et open-source
 - Une fondation indépendante pour posséder le produit
 - Sous l'égide de la Linux Foundation
 - Une standardisation dans le C++ ISO
 - Un tremplin en avance de phase vers le C++ parallèle
- Des adaptations nécessaires
 - Pour le matériel Européen
 - Pas de souveraineté matérielle sans logiciel souverain
 - Pour les applications CEA, françaises et européennes
 - Prendre en compte nos spécificités

Adéquation à nos architectures

- •Transferts mémoires efficaces
- •Support de compilation multi-architectures
 - Support processeurs EPI

Simplification du déploiement sur nos machines

- •Intégration continue sur nos machines
- •Installation sur calculateurs nationaux
 - •Interfaçage avec MPI

Spécificités matérielles

Interface avec les outils externes

- •Interface avec JAX, Pytorch, Tensorflow
 - •Solveurs linéaire par lot
 - •FFT, splines, ...
 - Compilation ONNX

Ajout de fonctionnalités

- •Support de dimensions nommées
- •Gestion des problèmes de précision numérique

Spécificités logicielles

L'Écosystème CExA: l'amont

- Équipe de développement Kokkos
 - Lien fort établi
 - Présent au Kickoff
 - La fondation HPSF
- Bibliothèques HPC CEA
 - MPC, DDC, Arcane, etc.
 - Intégration et échanges
- Bibliothèques GPU & HPC
 - Tensorflow, Pytorch, MAGMA, etc.
 - Interfaçage grâce à l'aspect libre & open-source
 - En lien avec PEPR NumPEx

L'Écosystème CExA : les partenaires

- Kokkos & comité ISO C++
 - Standardisation
 - au travers Kokkos
 - Normalisation et pérennisation des approches CEA
- Projet Jules Vernes (Exa France)
 - Liens forts avec GENCI, le TGCC et NumPEx
 - AAP fin 2023
 - exigence de CExA
 - Réponse 2024
 - Choix de l'architecture prioritaire
 - Livraison fin 2025
 - CExA prêt à la production

L'Écosystème CExA: l'aval

- Aval à deux niveaux
 - Étage d'accélération ⇒ applications
 - Second étage ⇒ enjeux sociétaux
- Démonstrateurs intégrés
 - Co-développement en binôme
 - Formation des équipes
 - Retombées dans domaines prioritaires
- Applications CEA
 - Formation, hackathons, expérience
 - Effet d'entraînement, choix clair
 - Création d'une communauté
 - Contribution CEA ⇒ défis sociétaux
- Communauté FR et EU
 - Visibilité et place du CEA

L'Écosystème CExA

- Préparation de l'outil pour le calcul numérique sur GPU
 - Après les graphismes (milieu 1990)
 - Après les réseaux de neurones (fin 2000)
 - Positionnement au cœur de la pile logicielle
 - Expertise de pointe sur l'outil
 - En avance de phase
 - Avec une feuille de route adaptée
- Un avantage compétitif unique pour les décennies à venir

L'organisation du projet

Équipe cœur

- Pilotage, Réalisation et Dissémination
- Equipe 9 permanents / 3 DOs en place
- 4 recrutements identifiés + 2 à venir
 - Dont 1 en CDI!

■ Équipe étendue

- Porteurs des démonstrateurs
- Non financé
- Motivés par leur besoins et leurs intérêts propres

Communauté

- Fédération d'un réseau d'experts
- Co-conception de CExA:
 - Remontée des besoins
 - Redescente de CExA dans les applications
- Cible privilégiée de la dissémination
- Pérennisation des travaux

CExA et le PTC-SN

- Vous êtes porteurs d'un code?
- Vous visez le GPU?
- L'approche Kokkos vous intéresse?
- Rejoignez la dynamique !!!
 - Adoptez un outil partagé au CEA
- Déposons un PTC ensemble, avec CExA
 - Contribuez a la pérennisation de CExA
 - Profitez du support d'une équipe d'experts

contact@cexa-project.org

Rendez-vous déposer un projet le 18 janvier!

Pour conclure

Une dynamique inter-DO forte

 Un impact fort sur les programmes du CEA et sur de nombreux défis sociétaux

Notre organisation agile

L'équipe

L'équipe cœur

Julien Bigot

product owner

DRF

Ansar Calloo

Animateur groupe

DES

Mathieu Lobet

Animateur groupe

DRF

Cedric Chevalier

Animateur groupe

DAM

L'équipe cœur

François Letierce

développeur / porteur code

DAM

Thomas Padioleau

développeur / architecte

DRF

Rémi Baron développeur DES

Yuuichi Asahi

développeur

DRF

L'équipe

Marc Pérache
référent technique
DAM

Patrick Carribault

interface upstream

DAM

Julien Jaeger
interface upstream
DAM

Édouard Auditanimateur réseau

DRF

17

L'équipe

Pierre Ledac

porteur de code

DES

Virginie Grandgirard

porteuse de code

DRF

Samuel Kokh

interface DO

DES