Introducción a la Inteligencia Artificial Clase 5

Índice

Clase 5

- 1. Regularización
 - a. Caso general
 - b. Ridge
 - c. Lasso
- 2. Gradient descent
 - a. GD
 - b. GD Estocástico
 - c. GD Mini-Batch
- 3. Entrenamiento de modelos
 - a. Selección de modelos
 - b. Cross-Validation

Regularización - Motivación

$$E_D(\mathbf{w}) = rac{1}{2} \sum_{n=1}^N \{ rac{m{t_n}}{-\mathbf{w^T} \phi(\mathbf{x_n})} \}^2$$

Observado - Predicción \downarrow w está "libre"

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q \quad \text{T\'ermino de regularización "weight decay"} \longrightarrow \text{w afecta la p\'erdida}$$

$$w = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T y$$

Maximum A Posteriori como regularización

$$p(w) \sim D(\theta)$$

 $(\mathcal{X},\mathcal{Y})$

$$p(w|\mathcal{X}, \mathcal{Y}) = \frac{p(\mathcal{Y}|\mathcal{X}, w)p(w)}{p(\mathcal{Y}|\mathcal{X})}$$

Actualizar distribución (Posterior)

$$w_{map} = (\Phi^T \Phi + \frac{\sigma^2}{h^2} I)^{-1} \Phi^T y$$

Gaussian prior con varianza b2

Maximum A Posteriori como regularización - Ridge (L2)

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\max_{\beta} \underbrace{\log p(\{Y_i\}_{i=1}^n | \beta, \sigma^2, \{X_i\}_{i=1}^n}_{\mathsf{Conditional log likelihood}} + \underbrace{\log p(\beta)}_{\mathsf{log prior}}$$

I) Gaussian Prior

$$\beta \sim \mathcal{N}(0, \tau^2 \mathbf{I})$$

$$p(eta) \propto e^{-eta^Teta/2 au^2}$$

Gaussian Prior
$$\beta \sim \mathcal{N}(0,\tau^2\mathbf{I}) \qquad p(\beta) \propto e^{-\beta^T\beta/2\tau^2}$$

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\min_{\beta} \sum_{i=1}^n (Y_i - X_i\beta)^2 + \lambda \|\beta\|_2^2 \qquad \text{Ridge Regression}$$

$$\mathrm{Ridge Regression}$$

$$\widehat{\beta}_{\text{MAP}} = (\boldsymbol{A}^{\mathsf{T}} \boldsymbol{A} + \lambda \boldsymbol{I})^{-1} \boldsymbol{A}^{\mathsf{T}} \boldsymbol{Y}$$

Maximum A Posteriori como regularización - LASSO (L1)

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\max_{\beta} \log p(\{Y_i\}_{i=1}^n | \beta, \sigma^2, \{X_i\}_{i=1}^n + \log p(\beta) \}$$
 Conditional log likelihood log prior

II) Laplace Prior

$$\beta_i \stackrel{iid}{\sim} \mathsf{Laplace}(0,t)$$

$$p(eta_i) \propto e^{-|eta_i|/t}$$

$$\widehat{\beta}_{\text{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|_1 \\ \downarrow_{\text{constant}(\sigma^2, t)} \text{Lasso}$$

.UBAfiuba PACULTAD DE INGENIERÍA

Regularización

(a) L1 Constraint Diamond

(b) L2 Constraint Circle

ElasticNet

$$(\alpha \lambda ||\beta||_1 + \frac{1}{2}(1-\alpha)||\beta||_2^2)$$

¿Qué β se reduce más?

Gradiente Descendente

Implementación de Gradiente Descendente

Solucion analitica

$$\min_{W} \|Y - XW\|_2^2$$

$$W = (X^T X)^{-1} X^T Y$$

Implementación de Gradiente Descendente

Solución numérica

$$\min_{W} \|Y - XW\|_{2}^{2} \implies \min_{W} \sum_{i} (y_{i} - X_{i} \cdot W)^{2}$$

$$W \longleftarrow W - \alpha \nabla \left(\sum_i (y_i - X_i \cdot W)^2 \right)$$

.UBAfiub

Implementación de Gradiente Descendente

Solución numérica

$$\nabla_w J(w) = \nabla_w \left(\sum_i (y_i - X_i W)^2 \right)$$

$$= \sum_i \left(\nabla_w (y_i - X_i W)^2 \right)$$

$$= \sum_i \left(\nabla_w (y_i - (x_{i1} w_1 + x_{i2} w_2 + \dots + x_{im} w_m))^2 \right)$$

$$= \sum_i \left(-2(y_i - \hat{y}_i) x_{ij} \right) \quad \forall j \in (1 \dots m)$$

Implementación de Gradiente Descendente

Solución numérica

$$\nabla \left(\sum_{\text{all samples}} (y_i - f_W(X_i))^2 \right)$$

Gradient Descent algorithm

- compute the predictions for all the samples
- compute the error between truth and predictions
- compute the gradient using all the samples
- update the parameters of the model

Implementación de Gradiente Descendente Estocástico

Solución numérica

$$\nabla \left((y_i - f_W(X_i))^2 \right)$$

Stochastic Gradient Descent algorithm

- shuffle the samples
- for sample in n_samples:
 - compute the predictions for the sample
 - compute the error between truth and predictions
 - compute the gradient using the sample
 - update the parameters of the model

Implementación de Gradiente Descendente Mini-Batch

Solución numérica

$$\nabla \left(\sum_{\text{batch samples}} (y_i - f_W(X_i))^2 \right)$$

Mini-Batch Gradient Descent algorithm

- shuffle the batches
- for batch in n_batches:
 - compute the predictions for the batch
 - compute the error for the batch
 - compute the gradient for the batch
 - update the parameters of the model

Comparativa de gradientes

	Gradient Descent	Stochastic Gradient Descent	Mini-Batch Gradient Descent
Gradient	$\nabla \left(\sum_{\text{all samples}} (y_i - f_W(X_i))^2 \right)$	$\nabla \left((y_i - f_W(X_i))^2 \right)$	$\nabla \left(\sum_{\text{batch samples}} (y_i - f_W(X_i))^2 \right)$
Speed	Very Fast (vectorized)	Slow (compute sample by sample)	Fast (vectorized)
Memory	O(dataset)	O(1)	O(batch)
Convergence	Needs more epochs	Needs less epochs	Middle point between GD and SGD
Gradient Stability	Smooth updates in params	Noisy updates in params	Middle point between GD and SGD

Entrenamiento de modelos - Cross-Validation

Selección de modelos

Entrenamiento de modelos - Selección

Selección de modelos

Entrenamiento de modelos - Selección

Selección de modelos

Entrenamiento de modelos - Cross-Validation

Cross-Validation

Entrenamiento numérico del modelo seleccionado - Obtención de parámetros

Mini-Batch Gradient Descent

- shuffle the batches
- for batch in n_batches:
 - compute the predictions for the batch
 - compute the error for the batch
 - compute the gradient for the batch
 - update the parameters of the model
- plot error vs epoch

Entrenamiento de modelos - Hiper parámetros

Selección de los hiper parámetros

Grid Search

Random Search

Bibliografía

Bibliografía

- The Elements of Statistical Learning | Trevor Hastie | Springer
- An Introduction to Statistical Learning | Gareth James | Springer
- Deep Learning | Ian Goodfellow | https://www.deeplearningbook.org/
- Mathematics for Machine Learning | Deisenroth, Faisal, Ong
- Artificial Intelligence, A Modern Approach | Stuart J. Russell, Peter Norvig
- A visual explanation for regularization of linear models Terence Parr
- A Complete Tutorial on Ridge and Lasso Regression in Python Aarshay Jain

