# 数字逻辑设计

王鸿鹏 计算机科学与技术学院 wanghp@hit.edu.cn

### 组合逻辑元件

- ■只读存储器(ROM)
- ■译码器 (Decoders)
- ■多路复用器(multiplexers)
- 三态器件(Three-state Buffer)
- ■编码器 (Encoders)
- **■**异或门和奇偶校验功能
- ■比较器

## ROM (Read-Only Memory)

- ROM是一种具有n个输入b个输出的组合逻辑电路。
- 输入被称为地址输入(address input)
  - 通常命名为A<sub>0</sub>, A<sub>1</sub>, ..., A<sub>n-1</sub>。
- •输出被称为数据输出(data output)
  - 通常命名为 D<sub>0</sub>, D<sub>1</sub>, ..., D<sub>b-1</sub>。



2n \* b位ROM

### ROM和真值表

• ROM"存储"了一个n输入、b输出的组合逻辑功能的真值表。

• 3输入、4输出的组合功能的真值表,可以被存储在一个2<sup>3</sup> \* 4 (8 \* 4) 的只读存储器中。

• 忽略延迟,ROM的数据输出等于真值 表中由地址输入所选择的那行输出。

|    | 输入 |    |    | 输  | 出  |    |
|----|----|----|----|----|----|----|
| A2 | A1 | A0 | D3 | D2 | D1 | D0 |
| 0  | 0  | 0  | 1  | 1  | 1  | 0  |
| 0  | 0  | 1  | 1  | 1  | 0  | 1  |
| 0  | 1  | 0  | 1  | 0  | 1  | 1  |
| 0  | 1  | 1  | 0  | 1  | 1  | 1  |
| 1  | 0  | 0  | 0  | 0  | 0  | 1  |
| 1  | 0  | 1  | 0  | 0  | 1  | 0  |
| 1  | 1  | 0  | 0  | 1  | 0  | 0  |
| 1  | 1  | 1  | 1  | 0  | 0  | 0  |

具有输出极性控制的2-4译码器

## 用ROM实现4位\*4位无符号二进制数乘法

- 多少种组合?
- 乘积最多为几位?



 $Y_3Y_2Y_1Y_0$ 地址 10:00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 20:00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E 30:00 03 06 09 0C 0F 12 15 18 1B 1E 21 24 27 2A 2D 40:00 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C 50:00 05 0A 0F 14 19 1E 23 28 2D 32 37 3C 41 46 4B 60:00 06 0C 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A 70:00 07 0E 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69 80:00 08 10 18 20 28 30 38 40 48 50 58 60 68 70 78 90:00 09 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87 A0 00 0A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96 B0 00 0B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5 C0:00 0C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4 D0:00 0D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3 E0 00 0E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2 F0:00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1

### 基于ROM的设计方法的优点

• 通常可以用高级程序语言来计算存储在ROM中的内容。

```
#include <stdio.h>
/*Procedure tp print d as a hex digit. */
void PrintHexDigit(int d)
    if (d<10) printf("%c", '0'+d);
    else printf("%c", 'A'+d-10);
/*Procedure tp print i as two hex digits. */
void PrintHex2(int i)
    PrintHexDigit((i / 16) % 16);
    PrintHexDigit(i % 16);
void main()
    int x, y;
    for (x=0; x<=15; x++) {
        PrintHex2(x*16); printf(":");
        for (y=0; y<=15; y++) {
            printf(" ");
            PrintHex2(x*y);
        printf("\n");
```

## 可编程逻辑器件(Programmable Logic Device)

• 固定逻辑器件



## 乘积项结构



### FPGA (Field Programmable Gate Array )

- FPGA: 现场可编程门阵列
- FPGA能完成任何数字逻辑功能,上至高性能计算,下至简单的74系列电路,也常用于ASIC流片前的原型验证。



嵌入式硬件算法加速



协处理器

## FPGA中的查找表(LookUp Table)

• 例: 使用LUT实现一个4与门电路逻辑功能

| 实际逻                  | 辑电路  | LUT的家                  | 只现方式      |
|----------------------|------|------------------------|-----------|
| a_<br>b_<br>c_<br>d_ | out  | a16*1 RA<br>地址线 c(LUT) |           |
| a、b、c、d              | 逻辑输出 | 地址                     | RAM中存储的内容 |
| 0000                 | 0    | 0000                   | 0         |
| 0001                 | 0    | 0001                   | 0         |
|                      | 0    |                        | 0         |
| 1111                 | 1    | 1111                   | 1         |

LUT本质就是RAM,主流的FPGA是5输入或6输入LUT A,B,C,D由FPGA芯片的管脚输入后进入可编程连线,然后作为地址线连到 到LUT,LUT中已经事先写入了所有可能的逻辑结果,通过地址查找到相 应的数据然后输出,这样组合逻辑就实现了。



### FPGA内部结构

CMT

FIFO Logic

**BUFG** 

- 内部资源分类:
- 逻辑资源: CLB 、块存储 ( block ram ) 、DSP等;
- 连接资源:可编程互联线(PI)、输入输出块(IOB)等;
- 其他资源: 全局时钟网络、时钟管理模块等
- 高端FPGA还集成ARM核、PCIE核等
- 资源分布采用ASMBL架构,相同资源 BUFIO & BUFIO &





### 哪部分有疑问?

- A ROM实现组合逻辑函数
- 可编程逻辑器件
- FPGA查找表
- □ 无

### 组合逻辑元件

- ■只读存储器(ROM)
- ■译码器(Decoders)
- ■多路复用器(multiplexers)
- **三态器件**(Three-state Buffer)
- ■编码器(Encoders)
- ■异或门和奇偶校验功能
- ■比较器

### 译码器及分类

- •特点:多输入、多输出的组合逻辑电路
- 功能: 将一种编码转换为另一种编码

| 分类      | 特点                                                                                                                                                           | 译码演示                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 二进制译码器  | <ul> <li>输入: n 位二进制码</li> <li>输出: N位(N=2n),每根输出线都与一个输入最小项唯一对应(输出线编号值=最小项编号值)</li> <li>每个最小项输入,只能使 N 根输出线中的一个输出有效</li> <li>N(N=2n)中取一译码器,也称最小项译码器。</li> </ul> | O C Y <sub>0</sub> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 代码转换译码器 | 从一种编码转换为另一种编码<br>(例如:8421BCD码→余3码)                                                                                                                           | $ \begin{array}{c} A \longrightarrow \\ B \longrightarrow \\ C \longrightarrow \\ D \longrightarrow \end{array} $ $ \begin{array}{c} X_1 \\ X_2 \\ X_3 \\ X_4 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 显示译码器   | 将输入的编码信号转换为十进制码或其它特定编码,<br>用来驱动显示器件显示相应的文字符号。                                                                                                                | Seven-Segment Indicator $X_1$ $X_2$ $X_3$ $X_4$ $X_5$ $X_6$ $X_7$ $X_6$ $X_7$ $X_8$ $X_8$ $X_8$ $X_9$ |

## 二进制译码器举例——3线-8线译码器

| 1 | 输入 | • |                  |                | Ì                | 译码               | 输出             | 4     |                  |                |
|---|----|---|------------------|----------------|------------------|------------------|----------------|-------|------------------|----------------|
| C | В  | A | $\mathbf{Y}_{0}$ | $\mathbf{Y}_1$ | $\mathbf{Y}_{2}$ | $\mathbf{Y}_{3}$ | $\mathbf{Y_4}$ | $Y_5$ | $\mathbf{Y}_{6}$ | $\mathbf{Y}_7$ |
| 0 | 0  | 0 | 0                | 1              | 1                | 1                | 1              | 1     | 1                | 1              |
| 0 | 0  | 1 | 1                | 0              | 1                | 1                | 1              | 1     | 1                | 1              |
| 0 | 1  | 0 | 1                | 1              | 0                | 1                | 1              | 1     | 1                | 1              |
| 0 | 1  | 1 | 1                | 1              | 1                | 0                | 1              | 1     | 1                | 1              |
| 1 | 0  | 0 | 1                | 1              | 1                | 1                | 0              | 1     | 1                | 1              |
| 1 | 0  | 1 | 1                | 1              | 1                | 1                | 1              | 0     | 1                | 1              |
| 1 | 1  | 0 | 1                | 1              | 1                | 1                | 1              | 1     | 0                | 1              |
| 1 | 1  | 1 | 1                | 1              | 1                | 1                | 1              | 1     | 1                | 0              |

## 二进制译码器举例——3线-8线译码器



| ,              | 使能站      | 耑                 |   | 输入 |   |       |                       |                | 译码    | 输出    |       |                |                |
|----------------|----------|-------------------|---|----|---|-------|-----------------------|----------------|-------|-------|-------|----------------|----------------|
| G <sub>1</sub> | $G_{2A}$ | $\mathbf{G}_{2B}$ | С | В  | Α | $Y_0$ | <b>Y</b> <sub>1</sub> | Y <sub>2</sub> | $Y_3$ | $Y_4$ | $Y_5$ | Y <sub>6</sub> | Y <sub>7</sub> |
| 0              | X        | X                 | X | X  | X | 1     | 1                     | 1              | 1     | 1     | 1     | 1              | 1              |
| X              | 1        | X                 | X | X  | X | 1     | 1                     | 1              | 1     | 1     | 1     | 1              | 1              |
| X              | X        | 1                 | X | X  | X | 1     | 1                     | 1              | 1     | 1     | 1     | 1              | 1              |
| 1              | 0        | 0                 | 0 | 0  | 0 | 0     | 1                     | 1              | 1     | 1     | 1     | 1              | 1              |
| 1              | 0        | 0                 | 0 | 0  | 1 | 1     | 0                     | 1              | 1     | 1     | 1     | 1              | 1              |
| 1              | 0        | 0                 | 0 | 1  | 0 | 1     | 1                     | 0              | 1     | 1     | 1     | 1              | 1              |
| 1              | 0        | 0                 | 0 | 1  | 1 | 1     | 1                     | 1              | 0     | 1     | 1     | 1              | 1              |
| 1              | 0        | 0                 | 1 | 0  | 0 | 1     | 1                     | 1              | 1     | 0     | 1     | 1              | 1              |
| 1              | 0        | 0                 | 1 | 0  | 1 | 1     | 1                     | 1              | 1     | 1     | 0     | 1              | 1              |
| 1              | 0        | 0                 | 1 | 1  | 0 | 1     | 1                     | 1              | 1     | 1     | 1     | 0              | 1              |
| 1              | 0        | 0                 | 1 | 1  | 1 | 1     | 1                     | 1              | 1     | 1     | 1     | 1              | 0              |

译码器输出: 低电平有效



### 用ROM实现2-4译码器——1

• ROM"存储"了一个n输入、b输出的组合逻辑功能的真值表。

• 3输入、4输出的组合功能的真值表,可以被存储在一个2<sup>3</sup> \* 4 (8 \* 4) 的只读存储器中。

• 忽略延迟,ROM的数据输出等于真值 表中由地址输入所选择的那行输出。

|    | 输入 |    |    | 输  | 出  |    |
|----|----|----|----|----|----|----|
| A2 | A1 | A0 | D3 | D2 | D1 | D0 |
| 0  | 0  | 0  | 1  | 1  | 1  | 0  |
| 0  | 0  | 1  | 1  | 1  | 0  | 1  |
| 0  | 1  | 0  | 1  | 0  | 1  | 1  |
| 0  | 1  | 1  | 0  | 1  | 1  | 1  |
| 1  | 0  | 0  | 0  | 0  | 0  | 1  |
| 1  | 0  | 1  | 0  | 0  | 1  | 0  |
| 1  | 1  | 0  | 0  | 1  | 0  | 0  |
| 1  | 1  | 1  | 1  | 0  | 0  | 0  |

具有输出极性控制的2-4译码器

## 用ROM实现2-4译码器——2

- 两种不同的方式来构建译码器:
  - 使用分立的门
  - •用包含真值表的8\*4ROM
- 使用ROM的物理实现并不是唯一的。









用8 \* 4 ROM构建2-4译码器

### 二进制译码器的典型应用——地址译码

- 微处理器的地址译码
  - \*假设A0—A7连接到各个外设的低8位地址线。



### 原理图示例



### 地址译码

•图示电路整个地址译码范围?各个外设的地址译码范围?





- 1 整个地址译码范围为: [填空1]H—[填空2]H
- 2 外设1的地址译码范围为: [填空3] H--[填空4] H
- 3 外设2的地址译码范围为: [填空5] H-[填空6] H



作答

### 地址译码例题

### ■ 地址译码

图示电路的整个地址译码范围?

各个外设的地址译码范围?

整个译码器的地址译码范围:





最小取值 1000H

最大取值 1FFFH

#### 外设1的地址译码范围:

| A <sub>15</sub> | A <sub>14</sub> | A <sub>13</sub> | A <sub>12</sub> | A <sub>11</sub> | A <sub>10</sub> | $A_9$ | <b>A</b> <sub>8</sub> | <b>A</b> <sub>7</sub> | $A_6$ | <b>A</b> <sub>5</sub> | $A_4$ | $A_3$ | $A_2$ | $A_1$ | $A_0$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------|-----------------------|-----------------------|-------|-----------------------|-------|-------|-------|-------|-------|
| 0               | 0               | 0               | 1               | 0               | 1               | 0     | Ù                     | Ä                     | Ñ     | À                     | Ñ     | À     | Ĥ     | Ñ     | Ñ     |
| :               | :               | ÷               | ÷               | ÷               | ÷               | ÷     | ÷                     | ÷                     | :     | ÷                     | i     | ÷     | ÷     | ÷     | ÷     |
| 0               | 0               | 0               | 1               | 0               | 1               | 0     | 1                     | 1                     | 1     | 1                     | 1     | 1     | 1     | 1     | 1     |

最小取值 1400H

最大取值 15FFH

### 二进制译码器的典型应用——译码器级联

• 3线-8线译码器扩展为4线-16线译码



|   | 输 | 入 |   |                |                | ì              | <b>泽码</b> 车    | 输出I            | L              |                |       |          |                 | ť               | <b>圣码</b> 转 | 俞出 I            | I               |                 |          |
|---|---|---|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------|----------|-----------------|-----------------|-------------|-----------------|-----------------|-----------------|----------|
| D | C | В | A | Y <sub>0</sub> | Y <sub>1</sub> | Y <sub>2</sub> | $\mathbf{Y_3}$ | Y <sub>4</sub> | Y <sub>5</sub> | Y <sub>6</sub> | $Y_7$ | $Y_{0H}$ | Y <sub>1H</sub> | Y <sub>2H</sub> | $Y_{3H}$    | Y <sub>4H</sub> | Y <sub>5H</sub> | Y <sub>6H</sub> | $Y_{7H}$ |
| 0 | 0 | 0 | 0 | 0              | 1              | 1              | 1              | 1              | 1              | 1              | 1     | 1        | 1               | 1               | 1           | 1               | 1               | 1               | 1        |
| 0 | 0 | 0 | 1 | 1              | 0              | 1              | 1              | 1              | 1              | 1              | 1     | 1        | 1               | 1               | 1           | 1               | 1               | 1               | 1        |
| 0 | 0 | 1 | 0 | 1              | 1              | 0              | 1              | 1              | 1              | 1              | 1     | 1        | 1               | 1               | 1           | 1               | 1               | 1               | 1        |
| 0 | 0 | 1 | 1 | 1              | 1              | 1              | 0              | 1              | 1              | 1              | 1     | 1        | 1               | 1               | 1           | 1               | 1               | 1               | 1        |
| 0 | 1 | 0 | 0 | 1              | 1              | 1              | 1              | 0              | 1              | 1              | 1     | 1        | 1               | 1               | 1           | 1               | 1               | 1               | 1        |
| 0 | 1 | 0 | 1 | 1              | 1              | 1              | 1              | 1              | 0              | 1              | 1     | 1        | 1               | 1               | 1           | 1               | 1               | 1               | 1        |
| 0 | 1 | 1 | 0 | 1              | 1              | 1              | 1              | 1              | 1              | 0              | 1     | 1        | 1               | 1               | 1           | 1               | 1               | 1               | 1        |
| 0 | 1 | 1 | 1 | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 0     | 1        | 1               | 1               | 1           | 1               | 1               | 1               | 1        |
| 1 | 0 | 0 | 0 | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1     | 0        | 1               | 1               | 1           | 1               | 1               | 1               | 1        |
| 1 | 0 | 0 | 1 | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1     | 1        | 0               | 1               | 1           | 1               | 1               | 1               | 1        |
| 1 | 0 | 1 | 0 | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1     | 1        | 1               | 0               | 1           | 1               | 1               | 1               | 1        |
| 1 | 0 | 1 | 1 | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1     | 1        | 1               | 1               | 0           | 1               | 1               | 1               | 1        |
| 1 | 1 | 0 | 0 | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1     | 1        | 1               | 1               | 1           | 0               | 1               | 1               | 1        |
| 1 | 1 | 0 | 1 | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1     | 1        | 1               | 1               | 1           | 1               | 0               | 1               | 1        |
| 1 | 1 | 1 | 0 | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1     | 1        | 1               | 1               | 1           | 1               | 1               | 0               | 1        |
| 1 | 1 | 1 | 1 | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1     | 1        | 1               | 1               | 1           | 1               | 1               | 1               | 0        |

## 利用74LS138设计1位二进制全加器

| $\mathbf{a_{i}}$ | b <sub>i</sub> ( | $C_{i-1}$ | $S_{i}$ | $C_{\mathbf{i}}$ |
|------------------|------------------|-----------|---------|------------------|
| 0                | 0                | 0         | 0       | 0                |
| 0                | 0                | 1         | 1       | 0                |
| 0                | 1                | 0         | 1       | 0                |
| 0                | 1                | 1         | 0       | 1                |
| 1                | 0                | 0         | 1       | 0                |
| 1                | 0                | 1         | 0       | 1                |
| 1                | 1                | 0         | 0       | 1                |
| 1                | 1                | 1         | 1       | 1                |

$$S_i = \sum (1,2,4,7) = \overline{\overline{m_1} \overline{m_2} \overline{m_4} \overline{m_7}}$$

$$c_{i-1} = \sum (3, 5, 6, 7) = \overline{m}_3 \overline{m}_5 \overline{m}_6 \overline{m}_7$$

| 1     | 吏能達      | 岩        | į | 输入 | • |                |       | ì              | 泽码    | 输出    | ļ<br>ļ         |                |                       |
|-------|----------|----------|---|----|---|----------------|-------|----------------|-------|-------|----------------|----------------|-----------------------|
| $G_1$ | $G_{2A}$ | $G_{2B}$ | С | В  | Α | Y <sub>0</sub> | $Y_1$ | Y <sub>2</sub> | $Y_3$ | $Y_4$ | Y <sub>5</sub> | Y <sub>6</sub> | <b>Y</b> <sub>7</sub> |
| 0     | X        | X        | X | X  | X | 1              | 1     | 1              | 1     | 1     | 1              | 1              | 1                     |
| X     | 1        | X        | X | X  | X | 1              | 1     | 1              | 1     | 1     | 1              | 1              | 1                     |
| X     | X        | 1        | X | X  | X | 1              | 1     | 1              | 1     | 1     | 1              | 1              | 1                     |
| 1     | 0        | 0        | 0 | 0  | 0 | 0              | 1     | 1              | 1     | 1     | 1              | 1              | 1                     |
| 1     | 0        | 0        | 0 | 0  | 1 | 1              | 0     | 1              | 1     | 1     | 1              | 1              | 1                     |
| 1     | 0        | 0        | 0 | 1  | 0 | 1              | 1     | 0              | 1     | 1     | 1              | 1              | 1                     |
| 1     | 0        | 0        | 0 | 1  | 1 | 1              | 1     | 1              | 0     | 1     | 1              | 1              | 1                     |
| 1     | 0        | 0        | 1 | 0  | 0 | 1              | 1     | 1              | 1     | 0     | 1              | 1              | 1                     |
| 1     | 0        | 0        | 1 | 0  | 1 | 1              | 1     | 1              | 1     | 1     | 0              | 1              | 1                     |
| 1     | 0        | 0        | 1 | 1  | 0 | 1              | 1     | 1              | 1     | 1     | 1              | 0              | 1                     |
| 1     | 0        | 0        | 1 | 1  | 1 | 1              | 1     | 1              | 1     | 1     | 1              | 1              | 0                     |

$$y_i = m_i$$

### 利用74LS138设计1位二进制全加器——续

| 传              | <b>吏能</b> :     | 端               | 2 | 输入 | • |                |                | ï              | 译码             | 输出             | 4                     |                |                       |
|----------------|-----------------|-----------------|---|----|---|----------------|----------------|----------------|----------------|----------------|-----------------------|----------------|-----------------------|
| G <sub>1</sub> | G <sub>2A</sub> | G <sub>2B</sub> | С | В  | A | Y <sub>0</sub> | Y <sub>1</sub> | Y <sub>2</sub> | Y <sub>3</sub> | Y <sub>4</sub> | <b>Y</b> <sub>5</sub> | Y <sub>6</sub> | <b>Y</b> <sub>7</sub> |
| 0              | X               | X               | X | X  | X | 1              | 1              | 1              | 1              | 1              | 1                     | 1              | 1                     |
| X              | 1               | X               | X | X  | X | 1              | 1              | 1              | 1              | 1              | 1                     | 1              | 1                     |
| X              | X               | 1               | X | X  | X | 1              | 1              | 1              | 1              | 1              | 1                     | 1              | 1                     |
| 1              | 0               | 0               | 0 | 0  | 0 | 0              | 1              | 1              | 1              | 1              | 1                     | 1              | 1                     |
| 1              | 0               | 0               | 0 | 0  | 1 | 1              | 0              | 1              | 1              | 1              | 1                     | 1              | 1                     |
| 1              | 0               | 0               | 0 | 1  | 0 | 1              | 1              | 0              | 1              | 1              | 1                     | 1              | 1                     |
| 1              | 0               | 0               | 0 | 1  | 1 | 1              | 1              | 1              | 0              | 1              | 1                     | 1              | 1                     |
| 1              | 0               | 0               | 1 | 0  | 0 | 1              | 1              | 1              | 1              | 0              | 1                     | 1              | 1                     |
| 1              | 0               | 0               | 1 | 0  | 1 | 1              | 1              | 1              | 1              | 1              | 0                     | 1              | 1                     |
| 1              | 0               | 0               | 1 | 1  | 0 | 1              | 1              | 1              | 1              | 1              | 1                     | 0              | 1                     |
| 1              | 0               | 0               | 1 | 1  | 1 | 1              | 1              | 1              | 1              | 1              | 1                     | 1              | 0                     |

$$S_i = \sum (1,2,4,7) = \overline{m_1} \overline{m_2} \overline{m_4} \overline{m_7}$$



## 利用74LS138设计1位二进制全加器——续

| 使              | 能               | 端               | 4 | 腧入 |   |                |                | ï              | 译码             | 输出             | 4              |                |                |
|----------------|-----------------|-----------------|---|----|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| G <sub>1</sub> | G <sub>2A</sub> | G <sub>2B</sub> | С | В  | A | Y <sub>0</sub> | Y <sub>1</sub> | Y <sub>2</sub> | Y <sub>3</sub> | Y <sub>4</sub> | Y <sub>5</sub> | Y <sub>6</sub> | Y <sub>7</sub> |
| 0              | X               | X               | X | X  | X | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              |
| X              | 1               | X               | X | X  | X | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              |
| X              | X               | 1               | X | X  | X | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              |
| 1              | 0               | 0               | 0 | 0  | 0 | 0              | 1              | 1              | 1              | 1              | 1              | 1              | 1              |
| 1              | 0               | 0               | 0 | 0  | 1 | 1              | 0              | 1              | 1              | 1              | 1              | 1              | 1              |
| 1              | 0               | 0               | 0 | 1  | 0 | 1              | 1              | 0              | 1              | 1              | 1              | 1              | 1              |
| 1              | 0               | 0               | 0 | 1  | 1 | 1              | 1              | 1              | 0              | 1              | 1              | 1              | 1              |
| 1              | 0               | 0               | 1 | 0  | 0 | 1              | 1              | 1              | 1              | 0              | 1              | 1              | 1              |
| 1              | 0               | 0               | 1 | 0  | 1 | 1              | 1              | 1              | 1              | 1              | 0              | 1              | 1              |
| 1              | 0               | 0               | 1 | 1  | 0 | 1              | 1              | 1              | 1              | 1              | 1              | 0              | 1              |
| 1              | 0               | 0               | 1 | 1  | 1 | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 0              |



## 利用74LS138设计1位二进制全加器——续

| 使能端            |                 |                 | 输入 |   |   | 译码输出           |                |                |                |                |                |                |                |
|----------------|-----------------|-----------------|----|---|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| G <sub>1</sub> | G <sub>2A</sub> | G <sub>2B</sub> | С  | В | A | Y <sub>0</sub> | Y <sub>1</sub> | Y <sub>2</sub> | Y <sub>3</sub> | Y <sub>4</sub> | Y <sub>5</sub> | Y <sub>6</sub> | Y <sub>7</sub> |
| 0              | X               | X               | X  | X | X | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              |
| X              | 1               | X               | X  | X | X | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              |
| X              | X               | 1               | X  | X | X | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              |
| 1              | 0               | 0               | 0  | 0 | 0 | 0              | 1              | 1              | 1              | 1              | 1              | 1              | 1              |
| 1              | 0               | 0               | 0  | 0 | 1 | 1              | 0              | 1              | 1              | 1              | 1              | 1              | 1              |
| 1              | 0               | 0               | 0  | 1 | 0 | 1              | 1              | 0              | 1              | 1              | 1              | 1              | 1              |
| 1              | 0               | 0               | 0  | 1 | 1 | 1              | 1              | 1              | 0              | 1              | 1              | 1              | 1              |
| 1              | 0               | 0               | 1  | 0 | 0 | 1              | 1              | 1              | 1              | 0              | 1              | 1              | 1              |
| 1              | 0               | 0               | 1  | 0 | 1 | 1              | 1              | 1              | 1              | 1              | 0              | 1              | 1              |
| 1              | 0               | 0               | 1  | 1 | 0 | 1              | 1              | 1              | 1              | 1              | 1              | 0              | 1              |
| 1              | 0               | 0               | 1  | 1 | 1 | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 0              |

$$S_i = \sum (1,2,4,7) = \overline{m_1 m_2 m_4 m_7}$$



### 编码转换译码器

• 例:设计一个译码器,

将输入的4位二进制数转换为典型格雷码。



| CD<br>AB | 00 | 01 | 11 | 10 |
|----------|----|----|----|----|
| 00       | 0  | 0  | 0  | 0  |
| 01       | 0  | 0  | 0  | 0  |
| 11       | 1  | 1  | 1  | 1  |
| 10       | 1  | 1  | 1  | 1  |











| ABCD | WXYZ | ABCD | WXYZ |
|------|------|------|------|
| 0000 | 0000 | 1000 | 1100 |
| 0001 | 0001 | 1001 | 1101 |
| 0010 | 0011 | 1010 | 1111 |
| 0011 | 0010 | 1011 | 1110 |
| 0100 | 0110 | 1100 | 1010 |
| 0101 | 0111 | 1101 | 1011 |
| 0110 | 0101 | 1110 | 1001 |
| 0111 | 0100 | 1111 | 1000 |

### 显示译码器

· 与显示器件(如数码管)配合,将输入代码转换为十进制码或特定编码,并在显示器件上显示相应的字形



8421BCD码驱动的共阴极七段 数码管显示译码器功能表

|   | 输 | 入 |   | 译码输出 |   |   |   |   |   |     |  |
|---|---|---|---|------|---|---|---|---|---|-----|--|
| A | В | С | D | а    | b | С | d | е | f | g   |  |
| 0 | 0 | 0 | 0 | 1    | 1 | 1 | 1 | 1 | 1 | 0   |  |
| 0 | 0 | 0 | 1 | 0    | 1 | 1 | 0 | 0 | 0 | 0   |  |
| 0 | 0 | 1 | 0 | 1    | 1 | 0 | 1 | 1 | 0 | 1   |  |
| 0 | 0 | 1 | 1 | 1    | 1 | 1 | 1 | 0 | 0 | 1   |  |
| 0 | 1 | 0 | 0 | 0    | 1 | 1 | 0 | 0 | 1 | 1   |  |
| 0 | 1 | 0 | 1 | 1    | 0 | 1 | 1 | 0 | 1 | 1   |  |
| 0 | 1 | 1 | 0 | 1    | 0 | 1 | 1 | 1 | 1 | 1   |  |
| 0 | 1 | 1 | 1 | 1    | 1 | 1 | 0 | 0 | 0 | 0   |  |
| 1 | 0 | 0 | 0 | 1    | 1 | 1 | 1 | 1 | 1 | 1   |  |
| 1 | 0 | 0 | 1 | 1    | 1 | 1 | 1 | 0 | 1 | 311 |  |

### 共阴极七段数码管显示译码器逻辑表达式



$$\overline{a} = A + C + BD + \overline{BD}$$



$$\overline{b} = \overline{B} + \overline{C}\overline{D} + CD$$



### 组合逻辑元件

- -只读存储器(ROM)
- ■译码器(Decoders)
- ■多路复用器(multiplexers)
- **三态器件**(Three-state Buffer)
- ■编码器(Encoders)
- ■异或门和奇偶校验功能
- ■比较器

### 多路复用器/数据选择器/多路选择器/多路开关

- 多路选择器是一种数据开关
- •它从n个数据源里选择一个数据,连到输出端
- 多路选择器与二进制译码器相似,因为它们都实现了选择功能,而且都会基于选择实现数据传送。
- 多路选择器可以被当做是一个由二进制译码器控制的单个 开关的集合。

### 用一个译码器和开关实现的多路选择器

多路选择器可以被 当做是一个由二进 制译码器控制的单 个开关的集合。



## 多路选择器



 $Z = \sum_{k=0}^{2^n-1} m_k I_k$  控制端最小项 $m_k$ 的 序号k,指向了第k路数据输入端 $I_k$ 。

 $m_k$  —— n 个控制变量的最小项  $I_k$  ——第 k 路数据输入

#### 2选1多路选择器



$$Z = A'I_0 + AI_1$$

### 多路选择器的功能:

- ① 从多路输入中选择一个送往输出端(2n选1);
- ② 选择哪一路输入送到输出端由控制信号决定;

<mark>用途</mark>:实现多通道的数据传送;

#### 8选1多路选择器



#### 多路选择器级联实现



 $Z = A'B'C'I_0 + A'B'CI_1 + A'BC'I_2 + A'BCI_3 + AB'C'I_4 + AB'CI_5 + ABC'I_6 + ABCI_7$ 

### 多路选择器的典型应用——实现逻辑函数

• 多路选择器的表达式

$$Z = A'B'C'I_0 + A'B'CI_1 + A'BC'I_2 + A'BCI_3 + AB'C'I_4 + AB'CI_5 + ABC'I_6 + ABCI_7$$

$$Z = \sum_{k=0}^{2^n-1} m_k I_k$$

•逻辑函数的标准与或式

$$F = \sum_{k=0}^{2^{n}-1} m_{k}$$
 (对应的第k行输出为1) =  $\sum_{k=0}^{2^{n}-1} m_{k} F_{k}$ 

### 多路选择器的典型应用



 $F = \overline{E}_n(D_0 \overline{A}_1 \overline{A}_0 + D_1 \overline{A}_1 A_0 + D_2 A_1 \overline{A}_0 + D_3 A_1 A_0)$ 

#### 功能表

| E <sub>n</sub> | A <sub>1</sub> | A <sub>0</sub> | F              |
|----------------|----------------|----------------|----------------|
| 1              | ×              | ×              | 0              |
| 0              | 0              | 0              | $D_0$          |
| 0              | 0              | 1              | $D_1$          |
| 0              | 1              | 0              | D <sub>2</sub> |
| 0              | 1              | 1              | $D_3$          |

■ 例如:用四选一多路选择器实现 F= A XOR B

## 使用八选一多路复用器实现逻辑函数

$$F = A\overline{B} + \overline{A}C + B\overline{C}$$

| A | <sub>2</sub> A | y |                  |
|---|----------------|---|------------------|
| 0 | 0              | 0 | $\mathbf{D_0}$   |
| 0 | 0              | 1 | $\mathbf{D_1}$   |
| 0 | 1              | 0 | $\mathbf{D_2}$   |
| 0 | 1              | 1 | $\mathbf{D_3}$   |
| 1 | 0              | 0 | $\mathbf{D_4}$   |
| 1 | 0              | 1 | $D_5$            |
| 1 | 1              | 0 | $\mathbf{D}_{6}$ |
| 1 | 1              | 1 | $\mathbf{D}_7$   |



# 四变量卡诺图变换

| CD<br>AB | 00 | 01 | 11 | 10 | C  | D'   | 0           | 1    | 1    |
|----------|----|----|----|----|----|------|-------------|------|------|
| 00       | 1  | 0  | 1  | 0  | 00 | D'*1 | D* 0        | D*1  | D'*0 |
| 01       | 1  | 1  | 0  | 1  | 01 | D'*1 | <b>D*</b> 1 | D* 0 | D'*1 |
| 11       | 0  | 0  | 1  | 0  | 11 | D'*0 | D* 0        | D*1  | D'*0 |
| 10       | 0  | 1  | 0  | 1  | 10 | D'*0 | <b>D*</b> 1 | D*0  | D'*1 |

# 四变量卡诺图降维

| C  | 0    |            | 1   |      | C<br>AB | 0          | 1        |
|----|------|------------|-----|------|---------|------------|----------|
| 00 | D'*1 | D*0        | D*1 | D'*0 | 00      | D'*1 + D*0 | D*1+D'*0 |
| 01 | D'*1 | D*1        | D*0 | D'*1 | 01      | D'*1 + D*1 | D*0+D'*1 |
| 11 | D'*0 | D*0        | D*1 | D'*0 | 11      | D'*0 + D*0 | D*1+D'*0 |
| 10 | D'*0 | <b>D*1</b> | D*0 | D'*1 | 10      | D'*0 + D*1 | D*0+D'*1 |

# 五变量卡诺图降维

|              | <b>F</b> =: | f(A,B,   | C,D,E    |          |     |          |          |     | CD | 00                     | 01                                             | 11                     | 10                     |  |
|--------------|-------------|----------|----------|----------|-----|----------|----------|-----|----|------------------------|------------------------------------------------|------------------------|------------------------|--|
| CI           | DE<br>00    | 0 001    | 011      | 010      | 110 | 111      | 101      | 100 | AB | 00                     | 01                                             | 11                     | 10                     |  |
| <b>AB 00</b> | 0           | 1        | 3        | 2        | 6   | 7        | 5        | 4   | 00 | $f_0(E,E')$            | <b>f</b> <sub>1</sub> ( <b>E</b> , <b>E</b> ') | $\mathbf{f}_3$         | $\mathbf{f_2}$         |  |
| 01           | 8           | 9        | 11       | 10       | 14  | 15       | 13       | 12  | 01 | $\mathbf{f_4}$         | $\mathbf{f}_{5}$                               | $\mathbf{f}_7$         | $\mathbf{f}_{6}$       |  |
| 11<br>10     | 24<br>16    | 25<br>17 | 27<br>19 | 26<br>18 | 30  | 31<br>23 | 29<br>21 | 28  | 11 | <b>f</b> <sub>12</sub> | <b>f</b> <sub>13</sub>                         | <b>f</b> <sub>15</sub> | <b>f</b> <sub>14</sub> |  |
| 10           | 10          | 17       | 19       | 10       | 22  | 23       | 21       | 20  |    |                        |                                                |                        |                        |  |
|              |             |          |          |          |     |          |          |     | 10 | $\mathbf{f_8}$         | $\mathbf{f_9}$                                 | $\mathbf{f}_{11}$      | <b>f</b> <sub>10</sub> |  |

#### 利用四选一多路选择器设计组合逻辑

•  $F(A,B,C,D,E) = \sum m(0,5,8,9,10,11,17,18,19,20,22,23,28,30,31)$ 





#### 利用四选一多路选择器设计组合逻辑



## 双4选1多路选择器典型器件74LS153

| 1Gn | 2Gn | Α | В | 1Y 2Y                           |
|-----|-----|---|---|---------------------------------|
| 1   | 1   | × | × | 0 0                             |
| 0   | 0   | 0 | 0 | 1C <sub>0</sub> 2C <sub>0</sub> |
| 0   | 0   | 0 | 1 | 1C <sub>1</sub> 2C <sub>1</sub> |
| 0   | 0   | 1 | 0 | 1C <sub>2</sub> 2C <sub>2</sub> |
| 0   | 0   | 1 | 1 | 1C <sub>3</sub> 2C <sub>3</sub> |





### 扩展多路选择器

• 给定8选1多路选择器74LS151

• 实现32选1多路选择器

•用一个2-4译码器对2个最高选择 位进行译码,以从4个74\*151多 路选择器中选择一个



### 多路选择器、多路分配器和总线

- 多路选择器可以用于选择发往总线的n个数据源之一,即从 多路信号中选择一路信号输出。
- 在总线的远端,多路分配器可以用于把总线数据送到m个目的地之一,即将总线数据传送到所选择的输出端口。





开关等效

符号框图



#### 哪部分有疑问?

- A 译码器
- 多路复用器
- 利用译码器实现组合逻辑电路
- D 利用多路复用器实现组合逻辑电路
- E 无

#### 组合逻辑元件

- ■只读存储器(ROM)
- ■译码器(Decoders)
- ■多路复用器(multiplexers)
- ■三态器件(Three-state Buffer)
- ■编码器(Encoders)
- ■异或门和奇偶校验功能
- ■比较器

### 三态缓冲器 three-state buffer

#### ■ 又称三态驱动器

三态缓冲器还可用来增强输出驱动能力。

#### 三态——

- 0
- **1**
- Z: 高阻态 电阻很大, 相当于开路





| В | Α   |   |   | Α      |   |   |     |     |   |     |      |
|---|-----|---|---|--------|---|---|-----|-----|---|-----|------|
| 0 | 0   | Z | 0 | 0<br>1 | Z | 0 | 0   | 0   | 0 | 0   | 1    |
| 0 | 1   | Z | 0 | 1      | Z | 0 | 1   | 1   | 0 | 1   | 0    |
| 1 | 0   | 0 | 1 | 0      | 1 | 1 | 0   | Z   | 1 | 0   | Z    |
| 1 | 1   | 1 | 1 | 0<br>1 | 0 | 1 | 1   | Z   | 1 | 1   | Z    |
|   | (a) |   |   | (b)    |   |   | (c) | 100 |   | (d) | - PP |



# 三态缓冲器 Three-state buffer



三态器件允许多个信号源 共享单个"同线",但线 上每次仅一个器件"谈话"

假如不是全部EN线有效,则没有一个三态缓冲器能被使能,此时SDATA上的逻辑值是"未定义",悬空信号的实际电压值依赖于电路细节。

一般进入高阻态比离开快 可以避免冲突(两个三态 器件同时驱动同一根线)

## 三态缓冲器——截止时间



使用三态器件唯一真正安全的方法是:设计逻辑控制,以保证同线上有一段。 time),在此期间不应有任何器件驱动同线。

## 三态缓冲器的应用



• 管脚输入输出可编程



## 三态缓冲器的应用——双向数据总线





#### 三态缓冲器的应用——续





具有两个三态缓冲器的电路

用三态缓冲器实现数据选择

### 三态缓冲器的应用——MOD 5选择电路

•  $X=X_3X_2X_1X_0$ 为8421BCD码,设计一个MOD 5选择电路,要求选择那些能被5整除的数输出。





| $X_3$ | $X_3 X_2 X_1 X_0$ |   |   | ഥ | X <sub>3</sub> | $X_2$ | $X_1$ | $X_0$ | F |
|-------|-------------------|---|---|---|----------------|-------|-------|-------|---|
| 0     | 0                 | 0 | 0 | 1 | 1              | 0     | 0     | 0     | 0 |
| 0     | 0                 | 0 | 1 | 0 | 1              | 0     | 0     | 1     | 0 |
| 0     | 0                 | 1 | 0 | 0 | 1              | 0     | 1     | 0     | × |
| 0     | 0                 | 1 | 1 | 0 | 1              | 0     | 1     | 1     | × |
| 0     | 1                 | 0 | 0 | 0 | 1              | 1     | 0     | 0     | × |
| 0     | 1                 | 0 | 1 | 1 | 1              | 1     | 0     | 1     | × |
| 0     | 1                 | 1 | 0 | 0 | 1              | 1     | 1     | 0     | × |
| 0     | 1                 | 1 | 1 | 0 | 1              | 1     | 1     | 1     | × |

### MOD 5选择电路——续

#### 2 化简



$$F = \overline{X_2 \overline{X_1} X_0 + \overline{X_3} \overline{X_2} \overline{X_1} \overline{X_0}}$$

$$= \overline{(\overline{X_2} \overline{X_1} X_0)} \overline{(\overline{X_3} \overline{X_2} \overline{X_1} \overline{X_0})}$$

$$\overline{\mathsf{F}} = (\overline{\mathsf{X}_2}\overline{\mathsf{X}_1}\mathsf{X}_0) \ (\overline{\mathsf{X}_3}\overline{\mathsf{X}_2}\overline{\mathsf{X}_1}\overline{\mathsf{X}_0})$$

#### 3 逻辑图



#### 典型三态缓冲器——四线缓冲器74LS125

• 几个独立的三态缓冲器可以封装在单个IC中



74x125三态缓冲器的管脚引线

#### 典型三态缓冲器——八缓冲器74x541

•在宽总线应用中为了减少封装尺寸,多数常用的MSI部件 包含带有公共使能输入的多个三态缓冲器。



8三态缓冲器74x541

## 典型三态缓冲器应用——总线收发器

• 包含三态缓冲器对,每对引脚之间以相反方向连接,所以数据可以双向传输。

• 常用于两个双向总线之间,根据G\_L和DIR的状态,控制

操作模式。



# 双向总线示例



| ENTRF_L | ATOB | 操作     |
|---------|------|--------|
| 0       | 0    | B>A    |
| 0       | 1    | A>B    |
| 1       | X    | AB单独传输 |

#### 组合逻辑元件

- ■只读存储器(ROM)
- ■译码器(Decoders)
- ■多路复用器(multiplexers)
- 三态器件(Three-state Buffer)
- ■编码器(Encoders)
- ■异或门和奇偶校验功能
- ■比较器

#### 编码器

- •特点:多输入、多输出的组合逻辑电路
- ·功能:将二进制码按照一定规律编排,使其具有特定含义,与译码器互逆。

| 常用编码器         | 特点                                                                        | 编码演示                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 普通编码器(二进制编码器) | $N$ 位,任何时刻 $N$ 根输入线中只能有一个输入有效, $N$ ( $N=2^n$ )中取一。 $n$ 位二进制码              | 1 Y <sub>0</sub> C 0 Y <sub>1</sub> C 0 Y <sub>2</sub> B 0 Y <sub>3</sub> B 1 Y <sub>4</sub> A Y <sub>5</sub> A Y <sub>7</sub> O (8 线-3 线编码器)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 优先编码器         | <ul><li>允许同时输入两个以上有效输入信号</li><li>能按照预先设定的优先级别,只对其中优先级最高的输入进行编码。</li></ul> | □ Y <sub>0</sub> C 0 1 1 Y <sub>2</sub> B 1 1 Y <sub>5</sub> A 1 Y <sub>7</sub> C 1 1 Y <sub>7</sub> A 1 Y <sub>7</sub> C 1 1 Y <sub>7</sub> A 1 Y <sub>7</sub> C 1 1 Y <sub>7</sub> A 1 Y <sub>7</sub> A 1 Y <sub>7</sub> A 1 Y <sub>7</sub> A 1 Y <sub>7</sub> C 1 1 Y |

#### 键盘编码器

 $Y = (P_2 \cdot P_3 \cdot P_6 \cdot P_7)'$ 

#### 键盘编码器功能表

| P <sub>9</sub> P <sub>1</sub> | 按键 | WXYZ |
|-------------------------------|----|------|
| 111111111                     | 0  | 0000 |
| 111111110                     | 1  | 0001 |
| 111111101                     | 2  | 0010 |
| 111111011                     | 3  | 0011 |
| 111110111                     | 4  | 0100 |
| 111101111                     | 5  | 0101 |
| 111011111                     | 6  | 0110 |
| 110111111                     | 7  | 0111 |
| 101111111                     | 8  | 1000 |
| 011111111                     | 9  | 1001 |



 $Z=(P_1 \cdot P_3 \cdot P_5 \cdot P_7 \cdot P_9)'$ 



#### 优先编码器

#### 抢答器



#### 4:2编码器

 $A_0$ 

 $B_1$ 

0

 $B_0$ 

 $A_1$ 

计算机配有四个外部设备:声卡(A0),硬盘驱动器(A1),鼠标(A2),网卡(A3), $B_0$ 、 $B_1$ 为编码输出。



0 0 1 0 0 0 1 0 0 1 1 0 0 0 1

0

 $A_2$ 

0

4:2优先编码器



| $A_3$ | $A_2$ | $A_1$ | $A_0$ | B <sub>1</sub> | $B_0$ |
|-------|-------|-------|-------|----------------|-------|
| 0     | 0     | 0     | 1     | 0              | 0     |
| 0     | 0     | 1     | Х     | 0              | 1     |
| 0     | 1     | Χ     | Х     | 1              | 0     |
| 1     | Χ     | Χ     | Х     | 1              | 1     |

某一时刻只允许输入一个编码信号,如 $A_1$ ( $A_1$ =1) 向 CPU 请求传送数据,CPU 根据接收的编码  $B_1B_0$  = 01,启动硬盘驱动器,开始传送数据。

普通编码器:无法避免错误输入(同时输入多路有效信号),容易造成混乱。



#### 二进制编码器:

- 可以对2<sup>n</sup>个输入对象编码
- 只需n个输出端(每个对象获得一个n位编码)
- 编码具有唯一性

#### 优先编码器:

- 允许同时输入多路有效信号
- 按照预先设定的优先级,只对其中优先级最高的输入进行编码。

#### 编码器典型芯片74LS148

#### 输入和输出均为低电平有效

SN54/74LS148 SN54/74LS748 (TOP VIEW)



输入使能

0. 编

8线-3线优先编码器

标志位

0:编码输出;

1: 非编码输出

输出使能

|                    |           | 输           |             |           | )           | \           |             |             | 3                | 输                |                  | 出                   |       |
|--------------------|-----------|-------------|-------------|-----------|-------------|-------------|-------------|-------------|------------------|------------------|------------------|---------------------|-------|
| $\bar{\mathbf{s}}$ | $ar{I}_7$ | $\bar{I}_6$ | $\bar{I}_5$ | $ar{I}_4$ | $\bar{I}_3$ | $\bar{I}_2$ | $\bar{I}_1$ | $\bar{I}_0$ | $\overline{Y}_2$ | $\overline{Y}_1$ | $\overline{Y}_0$ | $\overline{Y}_{EX}$ | $Y_S$ |
| 1                  | ×         | ×           | ×           | ×         | ×           | ×           | ×           | ×           | 1                | 1                | 1                | 1                   | 1     |
| 0                  | 1         | 1           | 1           | 1         | 1           | 1           | 1           | 1           | 1                | 1                | 1                | 1                   | 0     |
| O                  | 0         | $\times$    | $\times$    | $\times$  | $\times$    | $\times$    | $\times$    | $\times$    | 0                | O                | 0                | 0                   | 1     |
| 0                  | 1         | 0           | $\times$    | $\times$  | $\times$    | $\times$    | $\times$    | $\times$    | 0                | O                | 1                | 0                   | 1     |
| 0                  | 1         | 1           | 0           | $\times$  | $\times$    | $\times$    | $\times$    | $\times$    | 0                | 1                | 0                | 0                   | 1     |
| 0                  | 1         | 1           | 1           | 0         | $\times$    | $\times$    | $\times$    | $\times$    | 0                | 1                | 1                | 0                   | 1     |
| 0                  | 1         | 1           | 1           | 1         | 0           | $\times$    | $\times$    | $\times$    | 1                | O                | 0                | 0                   | 1     |
| 0                  | 1         | 1           | 1           | 1         | 1           | 0           | $\times$    | ×           | 1                | 0                | 1                | 0                   | 1     |
| 0                  | 1         | 1           | 1           | 1         | 1           | 1           | 0           | $\times$    | 1                | 1                | 0                | 0                   | 1     |
| 0                  | 1         | 1           | 1           | 1         | 1           | 1           | 1           | 0           | 1                | 1                | 1                | 0                   | 1     |

### 编码器与译码器的实际应用





#### 哪部分有疑问?

- A ROM实现组合逻辑函数
- B 译码器
- 多路复用器/多路开关
- D 三态缓冲器
- E 编码器
- F 优先编码器
- G 无

提交

#### 组合逻辑元件

- ■只读存储器(ROM)
- ■译码器(Decoders)
- ■多路复用器(multiplexers)
- 三态器件(Three-state Buffer)
- ■编码器(Encoders)
- ■异或门和奇偶校验功能
- ■比较器

### 异或门和异或非门

异或门是二输入门,如果两个输入**不同**,则输出为1。 异或非门正好相反,如果两个输入**相同**,则输出为1。

| X | Y | X⊕Y<br>(XOR) | (X⊕Y)′<br>(XNOR) |
|---|---|--------------|------------------|
| 0 | 0 | 0            | 1                |
| 0 | 1 | 1            | 0                |
| 1 | 0 | 1            | 0                |
| 1 | 1 | 0            | 1                |

异或和异或非功能的真值表



2输入异或函数的多门设计

(a)与-或门 (b)三级与非门

#### 奇偶校验器

- ■用来检查数据传输和存取过程中是否产生错误的组合逻辑电路。
  - ■发生一位错误的可能性一般占96%以上;
- ■就是检测数据中包含"1"的个数是奇数还是偶数。
- ■能够检测传送出错,但不能确定错误位置,不能纠错。
- ■电路简单,容易实现。
- ■广泛用于计算机的内存储器以及磁盘等外部设备中。



### 校验位计算方法

n 位

1位

原始数据

校验位

奇偶校验器一般

由异或门构成

校验码: n+1 位

偶校验位逻辑值的表达式:

 $\mathsf{P}_\mathsf{E} = \mathsf{A}_3 \oplus \mathsf{A}_2 \oplus \mathsf{A}_1 \oplus \mathsf{A}_0$ 

奇校验位逻辑值的表达式:

 $P_0 = A_3 \oplus A_2 \oplus A_1 \oplus A_0$ 

#### 异或门真值表

| A | В | F |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

异或门特性

两个输入中有奇数个"1",输出为1;有偶数个"1",输出为0。

◆ 扩展: n个1位二进制数中有奇数个 "1", 输出为1;有偶数个 "1", 输出为0。

4位二进制数校验码真值表

| $A_3A_2A_1A_0$ | P <sub>E</sub> P | 0 |
|----------------|------------------|---|
| 0000           | 0                | 1 |
| 0001           | 1 (              | ) |
| 0010           | 1 (              | ) |
| 0011           | 0 ′              | 1 |
| 0100           | 1 (              | ) |
| 0101           | 0 ′              | 1 |
| 0110           | 0 ′              | 1 |
| 0111           | 1 (              | ) |
| 1000           | 1 (              | ) |
| 1001           | 0 '              | 1 |
| 1010           | 0 '              | 1 |
| 1011           |                  | ) |
| 1100           |                  | 1 |
| 1101           |                  | ) |
| 1110           |                  | ) |
| 1111           |                  | 1 |

#### 奇偶校验器74LS280

奇偶校验器/产生器:

74xx180/<u>74xx280</u>

例)用9位奇偶校验器74LS280设计一个8位二进制码的奇校验位发生器和奇校验检测器。



74XX280功能表

| A~I    | EVEN | ODD |
|--------|------|-----|
| 偶数个"1" | 1    | 0   |
| 奇数个"1" | 0    | 1   |



#### 组合逻辑元件

- ■只读存储器(ROM)
- ■译码器(Decoders)
- ■多路复用器(multiplexers)
- 三态器件(Three-state Buffer)
- ■编码器(Encoders)
- 异或门和奇偶校验功能
- ■比较器

### 数值比较器

- 计算机中对数据的基本处理方法
  - □加、减、乘、除
  - □比较运算
- •数值比较器:一种关系运算电路
  - □ 能对2个n位二进制数A和B进行比较的多输入、多输出的组合逻辑电路
  - □ 比较结果: Y<sub>A>B</sub>、Y<sub>A<B</sub>、Y<sub>A=B</sub>



#### 一位数值比较器

#### 真值表

| Α | В | $Y_{A=B}$ | $Y_{A>B}$ | Y <sub>A<b< sub=""></b<></sub> |
|---|---|-----------|-----------|--------------------------------|
| 0 | 0 | 1         | 0         | 0                              |
| 0 | 1 | 0         | 0         | 1                              |
| 1 | 0 | 0         | 1         | 0                              |
| 1 | 1 | 1         | 0         | 0                              |







$$Y_{A=B} = \overline{A}\overline{B} + AB = (A+\overline{B})(\overline{A}+B) = (\overline{A}+\overline{A}+\overline{B})(B+\overline{A}+\overline{B})$$

$$= (\overline{A}+\overline{A}+\overline{B})+(\overline{B}+\overline{A}+\overline{B})$$

$$Y_{A>B} = A\overline{B} = \overline{A}\overline{B} = \overline{A}+\overline{B}$$

$$Y_{A$$

### 多位数值比较器

接低位芯片的比较结果,用于芯片扩展。

#### 自高而低逐位比较,只有在高位相等时,才需要比较低位。

#### 四位数值比较器74LS85

比较2个4位二进制数的大小时,3个输入端 $I_{A>B}$ 、 $I_{A<B}$ 、 $I_{A=B}$ 应接001;当 $A_3A_2A_1A_0=B_3B_2B_1B_0$ 时,比较器的输出 $Y_{A>B}Y_{A<B}Y_{A=B}=001$ 



当 $A_3A_2A_1A_0$ =  $B_3B_2B_1B_0$ 时, 比较器的输出复现3个输入端  $I_{A>B}$ 、 $I_{A<B}$ 、 $I_{A=B}$ 的状态。

|                       | [四十五十3,7] 而安心权以(立。         |                               |                               |                               |       |                                                                                                                             |       |                     |                                |                  |  |
|-----------------------|----------------------------|-------------------------------|-------------------------------|-------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------|-------|---------------------|--------------------------------|------------------|--|
|                       | 比较输入                       |                               |                               |                               |       | 级联输入I                                                                                                                       |       |                     | 输出O                            |                  |  |
| <b>A</b> <sub>3</sub> | B <sub>3</sub>             | $A_2$ $B_2$                   | A <sub>1</sub> B <sub>1</sub> | $A_0$ $B_0$                   | (A>B) | (A <b)< td=""><td>(A=B)</td><td>O<sub>A&gt;B</sub></td><td>O<sub>A<b< sub=""></b<></sub></td><td>O<sub>A=B</sub></td></b)<> | (A=B) | O <sub>A&gt;B</sub> | O <sub>A<b< sub=""></b<></sub> | O <sub>A=B</sub> |  |
| $\mathbf{A_3}$        | $>$ $\mathbf{B}_3$         | X                             | X                             | X                             | X     | X                                                                                                                           | X     | 1                   | 0                              | 0                |  |
| $\mathbf{A_3}$        | $<$ $B_3$                  | X                             | X                             | X                             | X     | X                                                                                                                           | X     | 0                   | 1                              | 0                |  |
| $\mathbf{A_3}$        | $= \mathbf{B}_3$           | $A_2 > B_2$                   | X                             | Х                             | X     | X                                                                                                                           | X     | 1                   | 0                              | 0                |  |
| $\mathbf{A_3}$        | $= \mathbf{B}_3$           | $A_2 < B_2$                   | X                             | X                             | X     | X                                                                                                                           | X     | 0                   | 1                              | 0                |  |
| $A_3$                 | $= \mathbf{B}_3$           | $\mathbf{A_2} = \mathbf{B_2}$ | $A_1 > B_1$                   | X                             | X     | X                                                                                                                           | X     | 1                   | 0                              | 0                |  |
| $\mathbf{A_3}$        | $= \mathbf{B}_3$           | $\mathbf{A_2} = \mathbf{B_2}$ | $\mathbf{A}_1 < \mathbf{B}_1$ | X                             | X     | X                                                                                                                           | X     | 0                   | 1                              | 0                |  |
| $\mathbf{A_3}$        | $= \mathbf{B}_3$           | $\mathbf{A}_2 = \mathbf{B}_2$ | $\mathbf{A}_1 = \mathbf{B}_1$ | $A_0 > B_0$                   | X     | X                                                                                                                           | X     | 1                   | 0                              | 0                |  |
| $\mathbf{A_3}$        | $= \mathbf{B_3}$           | $\mathbf{A_2} = \mathbf{B_2}$ | $\mathbf{A_1} = \mathbf{B_1}$ | $A_0 < B_0$                   | X     | X                                                                                                                           | X     | 0                   | 1                              | 0                |  |
| $A_3$                 | $= \mathbf{B}_3$           | $\mathbf{A_2} = \mathbf{B_2}$ | $\mathbf{A}_1 = \mathbf{B}_1$ | $\mathbf{A}_0 = \mathbf{B}_0$ | X     | X                                                                                                                           | 1     | 0                   | 0                              | 1                |  |
| <b>A</b> <sub>3</sub> | $= \mathbf{B}_3$           | $\mathbf{A_2} = \mathbf{B_2}$ | $\mathbf{A}_1 = \mathbf{B}_1$ | $\mathbf{A}_0 = \mathbf{B}_0$ | 0     | 1                                                                                                                           | 0     | 0                   | 1                              | 0                |  |
| $\mathbf{A_3}$        | $= \mathbf{B}_3$           | $\mathbf{A_2} = \mathbf{B_2}$ | $\mathbf{A}_1 = \mathbf{B}_1$ | $\mathbf{A}_0 = \mathbf{B}_0$ | 1     | 0                                                                                                                           | 0     | 1                   | 0                              | 0                |  |
| $A_3$                 | $=\overline{\mathbf{B}_3}$ | $\mathbf{A_2} = \mathbf{B_2}$ | $A_1 = B_1$                   | $A_0 = B_0$                   | 1     | 1                                                                                                                           | 0     | 0                   | 0                              | 0                |  |
| $A_3$                 | $=\mathbf{B}_3$            | $\mathbf{A_2} = \mathbf{B_2}$ | $\mathbf{A}_1 = \mathbf{B}_1$ | $\mathbf{A}_0 = \mathbf{B}_0$ | 0     | 0                                                                                                                           | 0     | 1                   | 1                              | 0                |  |
|                       |                            |                               |                               |                               |       |                                                                                                                             |       |                     |                                |                  |  |

## 数值比较器的级联—— ①串行方式



### 数值比较器的级联——②并行方式





#### 哪部分有疑问?

- A 异或门
- B 奇偶校验器
- ← 一位比较器
- D 多位比较器
- E 无

#### 组合逻辑元件

- ■只读存储器(ROM)
- ■译码器(Decoders)
- ■多路复用器(multiplexers)
- 三态器件(Three-state Buffer)
- ■编码器(Encoders)
- **-**异或门和奇偶校验功能
- ■比较器