

IN THE CLAIMS:

Please amend the claims such that the pending claims read as follows:

- SAC
B
AT*
-
1. (Amended) A method, including steps of wirelessly sending a message from a base station controller, said base station controller being capable of controlling a communication cell, to at least one customer premises equipment, wherein said steps of sending include:
 sending said message from a source within said cell to a first access point associated with said base station controller; and
 sending said message from a second access point to a destination within said cell;
 wherein at least said first access point or said second access point re-adapts, re-schedules, or re-adapts and re-schedules said message.
-

2. A method as in claim 1, wherein said first access point includes a reflector.

28, 13-14

3. A method as in claim 1, wherein said first access point includes a reflector disposed so that said step of sending from a source and said step of sending to a destination occur at a single access point

4. A method as in claim 1, wherein said first access point includes a repeater.

5. A method as in claim 1, wherein said first access point includes a repeater disposed so that said step of sending from a source and said step of sending to a destination occur at a single access point.

6. A method as in claim 1, wherein
said first access point is located within said cell; and
said second access point is located outside said cell.

7. A method as in claim 1, wherein said step of sending from a source is at least partially wireless.

8. A method as in claim 1, wherein said step of sending to a destination is at least partially wireless.

9. A method as in claim 1, wherein said first access point includes a routing or switching device.

10. A method as in claim 9, wherein
said cell includes a plurality of sectors, and
said routing or switching device is disposed so that said first access point and said second access point are in a single one of said sectors.

11. A method as in claim 9, wherein
said cell includes a plurality of sectors, and
said routing or switching device is disposed so that said first access point and said
second access point are in different ones of said sectors.

12. A method as in claim 9, wherein said routing or switching device is disposed
so that said step of sending from a source and said step of sending to a destination occur at a
single access point.

13. A method as in claim 9, wherein said routing or switching device is disposed
so that said step of sending from a source and said step of sending to a destination occur at more
than one access point.

14. (New) A base station controller capable of controlling a communication cell,
comprising:
wireless communication equipment including at least an antenna and a transmitter
and receiver; and
a processor that controls the wireless communication equipment, said processor
programmed to perform instructions including steps of wirelessly sending a message from said
base station controller to at least one customer premises equipment, wherein said steps of
sending include:

*SUB
D
AK*

*B21
Cure*

sending said message from a source within said cell to a first access point associated with said base station controller; and

sending said message from a second access point to a destination within said cell; wherein at least said first access point or said second access point re-adapts, reschedules, or re-adapts and re-schedules said message.

A2

15. (New) A base station controller as in claim 14, wherein said first access point includes a reflector.

SUB C1

16. (New) A base station controller as in claim 14, wherein said first access point includes a reflector disposed so that said step of sending from a source and said step of sending to a destination occur at a single access point

17. (New) A base station controller as in claim 14, wherein said first access point includes a repeater.

18. (New) A base station controller as in claim 14, wherein said first access point includes a repeater disposed so that said step of sending from a source and said step of sending to a destination occur at a single access point.

SUB C1

19. (New) A base station controller as in claim 14, wherein

*B5
core!*

said first access point is located within said cell; and
said second access point is located outside said cell.

A2

20. (New) A base station controller as in claim 14, wherein said step of sending from a source is at least partially wireless.

SUB3

21. (New) A base station controller as in claim 14, wherein said step of sending to a destination is at least partially wireless.

SUB3

22. (New) A base station controller as in claim 14, wherein said first access point includes a routing or switching device.

*SUB
B4*

23. (New) A base station controller as in claim 22, wherein said cell includes a plurality of sectors, and said routing or switching device is disposed so that said first access point and said second access point are in a single one of said sectors.

24. (New) A base station controller as in claim 22, wherein said cell includes a plurality of sectors, and said routing or switching device is disposed so that said first access point and said second access point are in different ones of said sectors.

SUB C1

25. (New) A base station controller as in claim 22, wherein said routing or switching device is disposed so that said step of sending from a source and said step of sending to a destination occur at a single access point.

C2

26. (New) A base station controller as in claim 22, wherein said routing or switching device is disposed so that said step of sending from a source and said step of sending to a destination occur at more than one access point.

SUB B17

27. (New) A memory storing information including instructions, the instructions executable by a processor to control wirelessly sending a message from a base station controller for a communication cell to at least one customer premises equipment, wherein the instructions include:

sending said message from a source within said cell to a first access point associated with said base station controller; and

sending said message from a second access point to a destination within said cell; wherein at least said first access point or said second access point re-adapts, re-schedules, or re-adapts and re-schedules said message.

SUB C1

28. (New) A memory as in claim 27, wherein said first access point includes a reflector.

SUB C

29. (New) A memory as in claim 27, wherein said first access point includes a reflector disposed so that said step of sending from a source and said step of sending to a destination occur at a single access point

A2

30. (New) A memory as in claim 27, wherein said first access point includes a repeater.

SUB B

31. (New) A memory as in claim 27, wherein said first access point includes a repeater disposed so that said step of sending from a source and said step of sending to a destination occur at a single access point.

32. (New) A memory as in claim 27, wherein
said first access point is located within said cell; and
said second access point is located outside said cell.

33. (New) A memory as in claim 27, wherein said step of sending from a source
is at least partially wireless.

34. (New) A memory as in claim 27, wherein said step of sending to a destination
is at least partially wireless.

SCB3

35. (New) A memory as in claim 27, wherein said first access point includes a routing or switching device.

*SUB
B9*

36. (New) A memory as in claim 35, wherein said cell includes a plurality of sectors, and said routing or switching device is disposed so that said first access point and said second access point are in a single one of said sectors.

Q2

37. (New) A memory as in claim 35, wherein said cell includes a plurality of sectors, and said routing or switching device is disposed so that said first access point and said second access point are in different ones of said sectors.

*SCB
C1*

38. (New) A memory as in claim 35, wherein said routing or switching device is disposed so that said step of sending from a source and said step of sending to a destination occur at a single access point.

39. (New) A memory as in claim 35, wherein said routing or switching device is disposed so that said step of sending from a source and said step of sending to a destination occur at more than one access point.