CHAPTER 1: BASIC CONCEPTS

BASIC ELECTRIC QUANTITIES

Quantity	Relationship	Unit
Quantity	Relationship	Offic
Current	$i(t) = \frac{dq(t)}{dt}$	Amperes (A)
Electric Charge	$q(t) = \int_{-\infty}^{t} i(x) dx$	Coulombs (C)
Voltage	$v = \frac{dw}{dq}$	Volts (V)
Power	$p = vi = \frac{dw}{dt}$	Watts (W)
Energy	$\Delta w = \int_{t_1}^{t_2} p dt = \int_{t_1}^{t_2} vi dt$	Joules (J)

THE PASSIVE SIGN CONVENTION			
$vi = +p \rightarrow power is absorbed$ $+ + + + + + + + + + + + + + + + + + + $	$vi = -p \rightarrow power is Supplied$ $\begin{array}{c} +1 \\ \hline \\ \downarrow \\ \downarrow \\ \downarrow \end{array}$		
$\stackrel{ ext{Tellegen's Theorem}}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} \Sigmap = 0W$ in an electrical network			

CHAPTER 2: RESISTIVE CIRCUIT

$$\underbrace{\frac{\text{Ohm's Law}}{\text{Dased on Ohm's law}}}_{\text{Dased on Ohm's law}} V = IR$$

$$V = IR$$

$$V = IR$$

$$V = IR$$

Kirchhoff's	s Laws
Kirchhoff's Voltage Law (KVL)	Kirchhoff's Current Law (KCL)
$\sum_{j=1}^{N} v_{j}(t) = 0$ around any loop N: # of voltages in a loop	$\sum_{j=1}^{N} i_j(t) = 0$ @ any node, N: # of branches at a node
EX: Single-loop circuit $\sum_{j=1}^{3} V_{j} = 0 \Rightarrow -V_{s} + V_{1} + V_{2} = 0$	EX: Single-node circuit $\sum_{j=1}^4 I_j = 0 \Rightarrow \mathrm{I}_1 - \mathrm{I}_2 + \mathrm{I}_3 - \mathrm{I}_4 = 0 \qquad \xrightarrow[\mathrm{R}]{13} \xrightarrow[\mathrm{I}_2]{12} \xrightarrow[\mathrm{R}_2]{13}$

Circuit with Dependent Source(s)

Procedures:

- STEP 1 Treat the dependent source as an independent source
- STEP 2 Apply KVL and/or KCL
- STEP 3 Specify its relationship to its controlling quantity

CHAPTER 3: NODAL & LOOP ANALYSIS TECHNIQUES

Nodal Analysis for an N-node Circuit

Procedures:

- STEP 1 Determine # of nodes (N) and choose a reference node (GN).
- STEP 2 Apply KCL to non GN nodes.
- STEP 3 Express currents in terms of node voltages.
- STEP 4 Solve for node voltages from the resulting N-1 eqn.

Example of Nodal Analysis

N=3 @ V1,V2 and GN N-1= 3-1=2 linear eqn

iv 1- 3 1-2 illicul eqii

KCL @ V2 node:
$$\frac{\mathrm{V_2-V_1}}{\mathrm{R_3}} + \frac{\mathrm{V_2}}{\mathrm{R_4}} - \mathrm{I_s} = 0$$

Nodal Analysis with Supernode

<u>Supernode</u>: a voltage source connected between two voltage nodes.

Procedures:

- STEP 1 Determine # of nodes (N) and choose a reference node (GN).
- STEP 2 Wright a constraint eqn. for voltage source(s) (Nv) that forms supernode(s).
- STEP 3 Apply KCL to non GN nodes.
- STEP 4 Express currents in terms of node voltages.
- STEP 5 Solve for node voltages from the resulting N-1-Nv eqn.

Example of Nodal Analysis with a Supernode

N=3 @ V_1 , V_2 and GN

Nv=1 (1 voltage source)

N-1-Nv=3-1-1= 1 linear eqn.

$$V_x = V_1 - V_2$$
 (constraint eqn.)

KCL @ supernode:
$$\frac{V_1-V_S}{R_1}+\frac{V_1}{R_2}+\frac{V_2}{R_3}-I_S=0$$

Loop Analysis for an N-loop Circuit

Procedures:

- STEP 1 Determine # of meshes (M)
- STEP 2 Apply KVL to each mesh.
- STEP 3 Express voltages in terms of mesh currents.
- STEP 4 Solve for mesh currents from the resulting M eqn.

Example of Loop Analysis

M=2 Loops for I_1 and I_2

M=2 linear eqn

KVL around Loop 1: $-V_s + R_1I_1 + R_2 (I_1 - I_2) = 0$

KVL around Loop 2: $R_2 (I_2 - I_1) + R_3 I_2 = 0$

Loop Analysis for an N-loop Circuit with Supermesh

<u>Supermesh</u>: a current source connected between two current loops.

Procedures:

- STEP 1 Determine # of meshes (M)
- STEP 2 Wright a constraint eqn. for current source(s) (Mc) that forms supermesh(s).
- STEP 3 Apply KVL to each mesh.
- STEP 4 Express voltages in terms of mesh currents.
- STEP 5 Solve for mesh currents from the resulting M-Mc eqn.

Example of Loop Analysis

M=2 Loos for I_1 and I_2

Mc =1 (1 current source)

M-Mc=2-1=1 linear eqn.

 $I_s = I_2 - I_1$ (constraint eqn.)

KVL around Loop 1: $-V_s + R_1I_1 + R_2I_2 = 0$

CHAPTER 4: OPERATIONAL AMPLIFIERS (Op-amp)

<u>Op-amp</u>			
Model		Circuit	
V ₊ o A _o V _{out}	V+: noninverting input voltage V-: inverting input voltage Ao(G): op-amp gain (Typically: 10 ⁴ , 10 ⁶) Vout: output voltage Vout= Ao(V+-V-)	V _s R _{III} R _{VIII}	Op-amp is charactrized by: - Hign R _{in} - Low R _{out} - Very high A _o

Solving Op-amp Circuit				
Procedures:	Inverting op-amp	Noninverting op-amp		
STEP 1 Use the Ideal op-amp model	R1 V R2	R1 V		
STEP 2 Apply nodal analysis to the resulting circuit.	Vin (+)			
STEP 3 Solve for $V_{\rm out}$ (or $V_{\rm o}$) the gain $A_{\rm v}$.	<u> </u>	= ∨in ⊕		
	STEP 1 $V_{+} = V_{-} = V = 0V$	STEP 1 $V_+ = V = V = V_{in}$		
	STEP 2 Apply nodal analysis @ V	STEP 2 Apply nodal analysis @ V		
	$\frac{0 - V_{in}}{R_1} + \frac{0 - V_0}{R_2} = 0$	$\frac{V_{in}}{R_1} + \frac{V_{in} - V_o}{R_2} = 0$		
	STEP 3 $V_o = -V_{\rm in} \frac{R_2}{R_1}$	STEP 3 $V_o = V_{\rm in} \frac{R_1 + R_2}{R_1}$		
	$A_{v} = \frac{v_{o}}{v_{in}} = -\frac{R_{2}}{R_{1}}$	$A_{v} = \frac{v_{o}}{v_{in}} = \frac{R_{1} + R_{2}}{R_{1}}$		

CHAPTER 5: ADDITIONAL ANALYSIS TECHNIQUES

<u>Linearity Property</u>		
Homogeneity (Scaling) Additivity		
$V = IR \rightarrow kV = kIR$	$V_1 = I_1 R \& V_2 = I_2 R \rightarrow V_1 + V_2 = (I_1 + I_2) R$	

$\frac{Source\ Transformation}{Interchange\ between\ Thevenin\ and\ Norton\ equivalent\ circuits.}$

CHAPTER 6: CAPACITANCE and INDUCTANCE

	Capacitance (C)	Inductance (L)
<u>Symbol</u>	vc + C	+vL - → iL L
<u>Unit</u>	Farad (F)	Henry (H)
Main Relationships	$i_c(t) = C \frac{dv_c(t)}{dt}$ $p(t) = Cv_c(t) \frac{dv_c(t)}{dt}$ $w_c(t) = \frac{1}{2}Cv_c^2(t)$	$v_L(t) = L \frac{di_L(t)}{dt}$ $p(t) = Li_L(t) \frac{di_L(t)}{dt}$ $w_L(t) = \frac{1}{2} Li_L^2(t)$
DC Steady State	Open circuit: $i_c(t)=0$	Short circuit: $v_L(t) = 0$ $\xrightarrow{\text{iL}}$
<u>Series Combination</u>	$\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$ $\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$ $\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$	$L_s = L_1 + L_2 + L_3 + \cdots$
Parallel Combination	$C_p = C_1 + C_2 + C_3 + \cdots$	$\frac{1}{L_p} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \cdots$
•	Note: $v_c(t)$ and $i_L(t)$ cannot change instant	anoously

CHAPTER 7: 1ST AND 2ND ORDER TRANSIENT CIRCUITS

1st Order Circuits

1st order differential equation $\longrightarrow \frac{dx(t)}{dt} + ax(t) = f(t)$

Solution:
$$x(t) = x_p(t) + x_c(t) = k_1 + k_2 e^{\frac{-t}{\tau}}, \tau = \frac{1}{a}$$

Particular/forced response $\longrightarrow x_p(t) = k_1$

Complementary/natural response $\longrightarrow x_c(t) = k_2 e^{-at}$

• Solution Procedures:

Step 1: Assume $v_o(t) = k_1 + k_2 e^{\frac{-t}{\tau}}$

$$v_o(0^+) = k_1 + k_2, x(\infty) = k_1, \tau = \frac{L}{R_{eq}} = CR_{eq}$$

Step 2: Draw circuit before switch changes ($t=0^-$), Solve $i_L(0^-)$ or $v_C(0^-)$.

Step 3: Draw circuit after switch changes ($t=0^+$), Solve v_o (0^+).

Step 4: Draw circuit after switch changed ($t=\infty\approx 5\tau$), Solve $v_o(\infty)$.

Step 5: Draw circuit after switch changed ($t=\infty\approx5\tau$), Solve R_{eq} with respect to storage element.

2nd Order Circuits

 $2^{\rm nd} \ {\rm order} \ {\rm differential} \ {\rm equation} \\ \longrightarrow \frac{dx^2(t)}{dt^2} + a_1 \frac{dx(t)}{dt} + a_2 x(t) = 0,$

$$a_1 = 2\zeta$$
 and $a_2 = \omega_o^2$

 ζ = damping ratio

 ω_o = undamped natural frequency

Solution Procedures:

Step 1: Write differential equation that describes circuit.

$$\frac{dx^{2}(t)}{dt^{2}} + a_{1}\frac{dx(t)}{dt} + a_{2}x(t) = 0$$

Step 2: Derive characteristic equation.

$$s^2 + 2\zeta\omega_0 s + \omega_0^2 = 0$$

Step 3: Determine roots of the characteristic equation.

Step 4: Determine damping condition:

Case 1 - roots are real and unequal

 $\zeta > 1 = overdamped$

$$=> x(t) = k_1 e^{-(\zeta \omega_0 - \sqrt{\zeta^2 - 1})t} + k_2 e^{-(\zeta \omega_0 + \sqrt{\zeta^2 - 1})t}$$

Case 2 – roots are real and equal

 $\zeta = 1 = critically damped$

$$\Rightarrow x(t) = B_1 e^{-\zeta \omega_0 t} + B_2 t e^{-\zeta \omega_0 t}$$

Case 3 – roots are complex

 $\zeta < 1 = underdamped$

$$\Rightarrow x(t) = e^{-\zeta \omega_o t} (A_1 \cos(\omega_o \sqrt{1 - \zeta^2} t) + A_2 \sin(\omega_o \sqrt{1 - \zeta^2} t))$$

Step 5: Two initial conditions (given or derived) are used to obtain the two unknown coefficients in the response equation.

Chapter 8: AC Steady-State Analysis

Sinusoids

 $x(t) = X_m \sin(\omega t)$

X_m = peak value/amplitude

 ω = radian frequency (f) (rad/s)

$$f = \frac{1}{r}$$
 (Hz), T = time (s)

$$x_1(t) = X_1 \sin(\omega t + \theta_1)$$

$$\theta_1 = 0^{\circ}$$

$$x_2(t) = X_2 \sin(\omega t + \theta_2)$$

 $\therefore x_1(t)$ "leads" $x_2(t)$ by θ_2

or $x_2(t)$ "lags" $x_1(t)$ by θ_2 , for $\theta_1 \neq \theta_2$

If $\theta_1 = \theta_2$, $x_1(t)$ and $x_2(t)$ are "in phase".

Phase Diagramed

Waveform transforms

$$cos(\omega t) = sin(\omega t + 90^{\circ})$$

$$sin(\omega t) = cos(\omega t - 90^{\circ})$$

$$-\cos(\omega t) = \cos(\omega t \pm 180^{\circ})$$
$$-\sin(\omega t) = \sin(\omega t \pm 180^{\circ})$$

Domains

Time Domain

Frequency Domain

Impedance (Z) and Admittance (Y)

$$\bar{Z} = \frac{\bar{V}}{\bar{I}} = R \pm jX = \frac{V_m}{I_m} / \theta_v - \theta_i = Z / \theta_Z (\Omega)$$

$$\bar{Z}_s = \bar{Z}_1 + \bar{Z}_2 + \dots + \bar{Z}_n$$

$$+\cdots+\bar{Z}_n$$

$$\frac{1}{\bar{Z}_p} = \frac{1}{\bar{Z}_1} + \frac{1}{\bar{Z}_2} + \dots + \frac{1}{\bar{Z}_n}$$

$$Z = \sqrt{R^2 + X^2}, \ \theta_Z = \tan^{-1} \frac{X}{R}$$

$$R=Z\cos\theta_Z\,, X=Z\sin\theta_Z$$

$$\overline{Y} = \frac{1}{\overline{Z}} = G + jB$$
 (S)

$$\frac{1}{\overline{Y}_c} = \frac{1}{\overline{Y}_1} + \frac{1}{\overline{Y}_2} + \dots + \frac{1}{\overline{Y}_{D}}$$

$$\bar{Y}_p = \bar{Y}_1 + \bar{Y}_2 + \dots + \bar{Y}_n$$

AC Analysis

 $\underline{\mathsf{KVL}} \colon \bar{V}_{\!\scriptscriptstyle S} = \bar{I}_{\!\scriptscriptstyle 1} \bar{Z}_{\!\scriptscriptstyle 1} + \bar{V}_{\!\scriptscriptstyle 1}$ $\underline{KCL}: \bar{I}_1 = \bar{I}_2 + \bar{I}_3$

Voltage Division:

$$\bar{V}_1 = \frac{\bar{V}_s(\bar{Z}_2||\bar{Z}_3)}{\bar{Z}_1 + (\bar{Z}_2||\bar{Z}_3)}$$

Current Division:

$$\bar{I}_2 = \frac{\bar{I}_1(\bar{Z}_3)}{\bar{Z}_2 + \bar{Z}_3}$$

Nodal Analysis:

1)
$$\bar{V}_1 - \bar{V}_2 = \bar{V}_S$$

2)
$$\frac{\bar{V}_1}{R} + \frac{\bar{V}_1}{-jX_C} + \frac{\bar{V}_2}{jX_L} = 0$$

Loop Analysis:

1)
$$\bar{I}_2 - \bar{I}_1 = \bar{I}_s$$

2)
$$\bar{I}_1(R - jX_C) + \bar{I}_2(jX_L) = \bar{V}_S$$

Other Analysis Techniques: Superposition, Source Exchange, Thévenin's Theorem, Norton's Theorem

CHAPTER 9: STEADY-STATE POWER ANALYSIS

Instantaneous power

 $p(t) = v(t)i(t) = VmIm cos(\omega t + \theta v) cos(\omega t + \theta i) W$

$$=>p(t)=(\frac{VmIm}{2}\cos(\theta v-\theta i))+(\frac{VmIm}{2}\cos(2\omega t+\theta v+\theta i))$$

constant

double frequency

Average Power

$$P_{AVG} = \frac{V_m I_m}{2} \cos(\theta \mathbf{v} - \theta \mathbf{i})$$

$$\therefore$$
 P_R = $\frac{1}{2}V_mI_m$ W, and P_L = P_C = 0 W

Maximum Average Power Transfer

$$ar{Z}_L = \ ar{Z}_{TH}^*$$
 (i.e. $ar{Z}_{TH} = \ R + jX = > \ ar{Z}_L = R - jX$)

$$P_{max} = \frac{1}{2}I^2R_{TH} = \frac{V_{TH}^2}{8R_{TH}}$$

Effective/RMS Values

$$I_{RMS} = \sqrt{\frac{1}{T}} \int_0^T i^2(t) dt$$

Sinusoid:
$$I_{RMS} = \frac{I_m}{\sqrt{2}} \div P_R = I_{RMS}^2 R = \frac{V_{RMS}^2}{R}$$

Complex Power

$$\bar{S} = \bar{V}_{RMS} \bar{I}_{RMS}^* = V_{RMS} I_{RMS} /(\Theta v - \Theta i)$$
 (VA) = $S/\Theta s = P + jQ$

$$P = Re(\bar{S}) = V_{RMS}I_{RMS}\cos(\theta v - \theta i)$$
 (W)

$$Q = Im(\bar{S}) = V_{RMS}I_{RMS} \sin(\theta v - \theta i)$$
 (VAR)

(Note: +Q = inductor, -Q = capacitor)

Power Factor

$$pf = \frac{P}{S} = \frac{P}{V_{RMS}I_{RMS}} = \cos(\theta v - \theta i) = \cos(\theta c)$$

Power Factor Correction

$$Q_{cap} = Q_{new} - Q_{old} = -j\omega CV_{RMS}^2$$

$$\therefore C = \frac{Q_{cap}}{\omega V_{RMS}^2}$$

Single-Phase Three-Wire Circuits

(Typical AC network in households)

$$\bar{V}_{an} = \bar{V}_{nb}$$

If
$$Z_{line,a} = Z_{line,b}$$

$$\begin{array}{ll} \text{If} & \bar{Z}_{line,a} = \bar{Z}_{line,b} \\ \\ \text{\&} & \bar{Z}_{L,1} = \bar{Z}_{L,2} = \bar{Z}_{LL} \end{array}$$

$$=>\bar{I}=0$$

Safety Considerations

Threshold of sensation

1mA

CHAPTER 10: MAGNETICALLY COUPLED NETWORKS

Mutual Inductance

Dot notation – current $i_1(t)$ and $i_2(t)$:

BOTH entering or BOTH leaving => +M,

otherwise => -M

Examples:

$$v_1(t) = L_1 \frac{di_1(t)}{dt} + M \frac{di_2(t)}{dt}$$

$$v_2(t) = M \frac{di_1(t)}{dt} + L_2 \frac{di_2(t)}{dt}$$

$$v_1(t) = L_1 \frac{di_1(t)}{dt} - M \frac{di_2(t)}{dt}$$

$$v_2(t) = -M\frac{di_1(t)}{dt} + L_2\frac{di_2(t)}{dt}$$

Energy Analysis

$$w(t) = \frac{1}{2}L_1[i_1(t)]^2 + \frac{1}{2}L_2[i_2(t)]^2 \pm Mi_1(t)i_2(t)$$

If $M \leq \sqrt{L_1 L_2}$, instantaneous energy stored is nonnegative.

CHAPTER 11: POLYPHASERS CIRCUITS

	Balanced three-phase (3φ) quantities			
	Frequency domain Representation	Time domain Representation		
l	$A_{an} = A_{peak} \angle \theta$	$A_{an} = A_{peak} \cos(\theta)$		
l	$A_{\rm bn} = A_{\rm peak} \angle (\theta - 120^{\circ})$ $A_{\rm cn} = A_{\rm peak} \angle (\theta + 120^{\circ})$	$A_{bn} = A_{peak} \cos(\theta - 120^{\circ})$ $A_{cn} = A_{peak} \cos(\theta + 120^{\circ})$		
l	A: voltage (V) or current (I)			

Voltage, current, and impedance relationships for Y- Δ configurations			
Y connection	Δ connection		
V _{an} a Z _{\gamma} V _{bn} b Z _{\gamma}	$\begin{bmatrix} \mathbf{a} & & & & \\ & \mathbf{Z}_{\Delta} & & & \\ & \mathbf{V}_{ab} & & \mathbf{b} & & \\ & & \mathbf{V}_{bc} & & \mathbf{c} & \\ \end{bmatrix}$		
$V_{LL} = \sqrt{3}V_{LN}\angle\theta + 30^{\circ}$ (LL: line to line) (LN: line to neutral)	$V_{L} = V_{P} \angle \theta$ (L: line to line) (P: phase voltage)		
$I_L = I_P \angle \theta$	$I_L = \sqrt{3}I_P \angle \theta + 30^\circ$		
$I_n = I_a + I_b + I_c = 0$	$V_{ab} + V_{bc} + V_{ca} = 0$		
$I_{\scriptscriptstyle LN} = rac{V_{\scriptscriptstyle LN}}{Z_{\scriptscriptstyle Y}}$	$I_{LL} = \frac{V_{LL}}{Z_{\Delta}}$		
$Z_{\gamma} = \frac{Z_{\Lambda}}{3}$	$Z_{\Delta} = 3Z_{\gamma}$		

	Power relationships in 3¢ circuits				
Real power	Reactive power	Complex power	Instantaneous power	Power factor	
$P_T = 3P_P$ $= \sqrt{3}V_L I_L \cos \theta$	$Q_T = 3Q_P$ $= \sqrt{3}V_L I_L \sin \theta$	$S_T = P_T + jQ_T$	$p(t) = 3\frac{V_m I_m}{2} \cos \theta \ W$	$pf = \frac{P_T}{S_T}$	
P _P : 1φ real power P _T : 3φ real power L: line	Q _P : 1φ reactive power Q _T : 3φ reactive power L: line	S _T : 3ф complex power	V_m : maximum voltage I_m : maximum current	$= cos(\theta_V - \theta_I)$ θ_V : voltage phase angel θ_I : current phase angel	

CHAPTER 12: VARIABLE-FREQUENCY NETWORK PERFORMANCE

ĺ	Network transfer functions			
	Input	output	Transfer function	
	Voltage	Voltage	Voltage gain $G_v(jw)$	
	Current	Voltage	Transimpedance Z(jw)	
	Current	Current	Current gain $G_i(jw)$	
	Voltage	Current	Transadmittance Y(jw)	

Network function				
$H(jw) = H(s) = \frac{N(s)}{D(s)} = K \frac{(s - z_1)(s - z_2) \dots (s - z_m)}{(s - p_1)(s - p_2) \dots (s - p_n)}$				
K: constant	z_m : zeros of $H(s)$ p_n : poles of $H(s)$			
$s = z_1 \text{ or } z_2 \dots, z_m \rightarrow H(s) = 0$				
$s = p_1 \text{ or } p_2 \dots, p_n \rightarrow H(s) = \infty$				

Bode plot Basics				
	$H(jw) = K \frac{(jw - z_1)(jw - z_2)}{(jw - p_1)(jw - p_2)}$ (stand-	ard form)		
	Decibles(dB) = $20 \log \frac{V_{out}}{V_{in}} = 10 \log \left(\frac{V_{out}}{V_{in}}\right)^2 =$	$10\log\frac{P_{out}}{P_{in}}$		
Bode plots	1. Magnitude $(20 \log H(jw) dB)$ vs w (rad/s) 2. phase angle ($\angle H(jw)$) vs. w (rad/s)			
Magnitude in dB	$ B \qquad 20 \log \mathrm{H(jw)} = 20 \log \mathrm{K} + 20 \log jw - z_1 + 20 \log jw - z_2 + \dots - 20 \log jw - p_1 - 20 \log jw - p_2 - \dots $			
Phase angel	$\angle H(jw) = \angle K + \angle (jw - z_1) + \angle (jw - z_2) + \dots - \angle (jw - p_1) - \angle (jw - z_2) + \dots - \angle (jw - p_1) - \angle (jw - z_2) + \dots - \angle (jw - p_1) - \angle (jw - z_2) + \dots - \angle (jw - z_2$	$-\angle(jw-p_2)-\cdots$		
Sketch bode plot	ketch bode plot STEP 1 Rewrite the transfer function (TF) in Standard form. STEP 2 Separate the TF into its constituent parts and find corner frequency (w_r) i.e. z_1, z_2, p_1, p_2 STEP 3 Draw the magnitude plot @ each w_r by +20dB/dec for a zero and -20dB/dec for a pole. STEP 4 Calculate the phase angle @ each w_r and draw the resulting phase plot.			

Res	<u>Resonance</u>		
Circuit	Circuit topology		
Series resonance	Parallel resonance		
, mm	v 6		
Impedance	Admittance		
$Z(j\omega) = R + j\omega L + \frac{1}{j\omega C}$	$Y(j\omega) = G + j\omega C + \frac{1}{j\omega L}$		
Qual	ity factor		
$Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR} = \frac{1}{R} \sqrt{\frac{L}{C}}$	$Q = \frac{R}{\omega_o L} = \frac{1}{G\omega_o L} = R\omega_o C = \frac{\omega_o C}{G}$		
Resonar	Resonant frequency		
$\omega_0 = \frac{1}{\sqrt{LC}}$			
Bar	ndwidth		
$\omega_{HI} - \omega_{LO} = \frac{R}{L}$	$\omega_{III} - \omega_{LO} = \frac{R}{L}$ $\omega_{III} - \omega_{LO} = \frac{1}{RC}$		

Scaling a circuit			
	Resistor	Inductor	Capacitor
Magnitude scaling	$R' \to K_M R$	$L \to K_M L$	$C \to \frac{C}{K_M}$
Frequency scaling	$R \rightarrow R$	$L \to \frac{L}{K_F}$	$C \to \frac{C}{K_F}$

Passive Filters				
High-pass filter	Low-pass filter	Band-pass filter	Band-reject filter	
	1 C V _n s ₹ V _n		- c	
	Magnitu	de response		
Low-pass ω	High-pass ω	Band-pass ω	$egin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
	Transfer functions			
$G_{v}(j\omega) = \frac{1}{1 + j\omega RC}$	$G_{v}(j\omega) = \frac{j\omega RC}{1 + j\omega RC}$	$G_{\nu}(j\omega) = \frac{1}{1+}$	$\frac{R}{-j(\omega L - 1/\omega C)}$	
	Mag	gnitude		
$M(\omega) = \frac{1}{\sqrt{1 + (\omega \tau)^2}}$ Time constant $\tau = RC$ $M(\omega) = \frac{\omega \tau}{\sqrt{1 + (\omega \tau)^2}}$		$M\left(\omega\right) = \sqrt{\left(RC\right)}$	$RC\omega$ $C\omega)^{2} + (\omega^{2}LC - 1)^{2}$	
Phase angle		Band	dwidth	
$\phi(\omega) = -\tan^{-1}\omega\tau$	$\phi(\omega) = \frac{\pi}{2} - \tan^{-1} \omega \tau$	BW	$V = \frac{R}{L}$	

CHAPTER 13: THE LAPLACE TRANSFORM

<u>Basics</u>
$\mathcal{L}[f(t)] = F(s) = \int_0^\infty f(t)e^{-st} dt$
$\mathcal{L}^{-1}[F(s)] = f(t) = \frac{1}{2\pi i} \int_{\sigma - jw}^{\sigma + jw} F(s)e^{st}dt$
$s = \sigma + jw$
$\int_{t_1}^{t_2} f(t) \delta(t - t_0) = \begin{cases} f(t_0) & t_1 < t_0 < t_2 \\ 0 & t_0 < t_1, t_0 > t_2 \end{cases}$

<u>Laplace</u> ¹	Transform Pairs
f(t)	F(s)
$\delta(t)$	1
u(t)	$\frac{1}{s}$
e^{-at}	$\frac{1}{s+a}$
t	$\frac{1}{s^2}$
$\frac{t^n}{n!}$	$\frac{1}{s^{n+1}}$
te ^{-at}	$\frac{1}{\left(s+a\right)^2}$
$\frac{t^n e^{-at}}{n!}$	$\frac{1}{\left(s+a\right)^{n+1}}$
sin bt	$\frac{b}{s^2 + b^2}$
cosbt	$\frac{s}{s^2 + b^2}$ $\frac{b}{(s+a)^2 + b^2}$
$e^{-at}\sin bt$	$\frac{b}{\left(s+a\right)^2+b^2}$
$e^{-at}\cos bt$	$\frac{s+a}{\left(s+a\right)^2+b^2}$

<u>Laplace Transform Properties</u>			
Property	f(t)	F(s)	
Magnitude scaling	Af(t)	AF(s)	
Addition/ subtraction	$f_1(t) \pm f_2(t)$	$F_1(s) \pm F_2(s)$	
Time scaling	f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right),\ a>0$	
Time shifting	$f(t-t_0)u(t-t_0), \ t \ge 0$	$e^{-t_0s}F(s)$	
Time shifting	$f(t)u(t-t_0), t \ge 0$	$e^{-t_0s} \angle \left[f\left(t+t_0\right) \right]$	
Frequency shifting	$e^{-at}f(t)$	F(s+a)	
Differentiation	$\frac{d^n f(t)}{dt^n}$	$s^{n}F(s)-s^{n-1}f(0)-s^{n-2}f(0)\cdots-s^{0}f(0)$	
NA - Int - Pro- Pro- Inc. A	tf(t)	$-\frac{d^n f(s)}{ds^n}$	
Multiplication by t	$t^n f(t)$	$\left(-1\right)^{n}\frac{d^{n}f\left(s\right)}{ds^{n}}$	
division by t	$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(\lambda) d\lambda$	
Integration	$\int_0^t f(\lambda) d\lambda$	$\frac{1}{s}F(s)$	
Convolution	$\int_0^t f_1(\lambda) f_2(t-\lambda) d\lambda$	$F_1(s)F_2(s)$	
Initial-value theorems	$\lim_{t\to 0}f\left(t\right)$	$\lim_{s\to\infty} sF(s)$	
Final-value theorems	$\lim_{t \to \infty} f(t)$	$\lim_{s\to 0} sF(s)$	

CHAPTER 14: APPLICATION OF THE LAPLACE TRANSFORM TO CIRCUIT ANALYSIS

	<u>Circuit Element Models</u>	
Resistor (R) in s-domain	Inductor (L) in s-domain	Capacitor (C) in s-domain
$R \to R \ V(s) = RI(s)$	$L \to sL \begin{cases} V(s) = sLI(s) - Li(0) \\ I(s) = \frac{V(s)}{sL} + \frac{i(0)}{s} \end{cases}$	$C \to \frac{1}{sC} \begin{cases} V(s) = \frac{I(s)}{sC} + \frac{v(0)}{s} \\ I(s) = sCV(s) - Cv(0) \end{cases}$

Laplace Circuit Solution

Procedures:

- STEP 1 Solve for initial capacitor voltages and inductor currents.
- STEP 2 Draw the circuit at t<0, replace the capacitor with an open circuit and inductor with a short circuit.
- STEP 3 Draw an s-domain circuit by substituting an s-domain representation for all circuit elements.
- STEP 4 Use circuit analysis to solve for the appropriate voltage and/or current.
- STEP 5 Perform the inverse Laplace transform to convert the voltage and/or current back to the time domain.

Example

- Solve for initial conditions	4u(t) 10 10 u.(0)=1V v.(t) 1H v.(0)=1A V.(t)	$V_c(0) = 1V$ $I_L(0) = 1A$
		2- Solve for V _o (s)
- Convert to s-domain	1/5 V ₁ (s)	$V_o(s) = \frac{2}{s}I_2(2) + \frac{1}{s} = \frac{s+3.5}{s^2+1.5s+1}$
	1- Apply mesh analysis to find	3- Convert to time domain
	I_1 and I_2 $(s+1)I_1(s)-sI_2(s)=\frac{4}{s}+1$	$v_o(t) = \left[4.29e^{-0.75t}\cos\left(\frac{\sqrt{7}}{4}t - 76.5^\circ\right)\right]u(t)V$
	$-sI_1(s) + \left(s + \frac{2}{s} + 1\right)I_2(s) = \frac{-1}{s} - 1$	
	$I_1(s) = \frac{4s^2 + 6s + 8}{s(2s^2 + 3s + 2)}$	
	$I_2(s) = \frac{2s-1}{2s^2 + 3s + 2}$	

Steady-State Respone

$$Y(s)=H(s)X(s)$$

Transient comes from the poles of $\mathbf{H}(s)$ & Steady-state portion comes from the poles of $\mathbf{X}(s)$ The steady-state response: X_M is the maximum of $\mathbf{X}(s)$

$$y_{ss}(t) = X_M |H(j\omega_0)| \cos[\omega_0 t + \phi(j\omega_0)]$$

CHAPTER 15: FOURIER ANALYSIS TECHNIQUES

Fourier Series

$$f(t) = f(t + nT_0) \ n = \pm 1, \pm 2, \pm 3 \cdots \Leftrightarrow f(t) = a_0 + \sum_{n=1}^{\infty} D_n \cos(n\omega_0 t + \theta_n)$$

Exponential Fourier series

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t}$$

$$c_{n} = \frac{1}{T_{0}} \int_{t_{1}}^{t_{1}+T_{0}} f(t) e^{-jn\omega_{0}t} dt$$

Trigonometric Fourier series

$$f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos n\omega_0 t + b_n \sin n\omega_0 t)$$

$$a_n = \frac{2}{T} \int_{t_1}^{t_1 + T_0} f(t) \cos n\omega_0 t dt$$

$$a_n = \frac{2}{T_0} \int_{t_1}^{t_1 + T_0} f(t) \cos n\omega_0 t dt \qquad b_n = \frac{2}{T_0} \int_{t_1}^{t_1 + T_0} f(t) \sin n\omega_0 t dt$$

Types Trigonometric Fourier series

Even-function symmetry

$$f(t) = f(-t)$$

$$a_n = \frac{4}{T_0} \int_0^{T_0/2} f(t) \cos n\omega_0 t dt$$
$$b_n = 0$$

$$b_{11} = 0$$

$$a_0 = \frac{2}{T_0} \int_0^{T_0/2} f(t) dt$$

Odd-function symmetry f(t) = -f(-t)

$$a = 0$$
 for all $n > 0$

$$b_n = \frac{4}{T} \int_0^{T_0/2} f(t) \sin n\omega_0 t dt$$

$$a_0 = 0$$

Half-wave symmetry

$$f(t) = -f\left(t - \frac{T_0}{2}\right)$$
 n odd

n even

$$a_n = 0 \quad \text{for all } n > 0$$

$$a_n = 0 \qquad \qquad a_n = \frac{4}{T_0} \int_0^{T_0/2} f(t) \cos n\omega_0 t dt$$

$$b_n = \frac{4}{T_0} \int_0^{T_0/2} f(t) \sin n\omega_0 t dt$$

$$b_n = 0 \qquad \qquad b_n = \frac{4}{T_0} \int_0^{T_0/2} f(t) \sin n\omega_0 t dt$$

$$a_0 = 0$$

$$P = V_{DC}I_{DC} + \sum_{n=1}^{\infty} \frac{V_n I_n}{2} \cos\left(\theta_{v_n} - \theta_{i_n}\right)$$

Fourier Transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt \qquad f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)e^{-j\omega t} d\omega$$

Fourier Transform Pairs

f(t)	$F(\omega)$
$F^{-1}[F(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$	$F\left[f\left(t\right)\right] = \int_{-\infty}^{\infty} f\left(t\right) e^{-j\omega t} dt$
$\delta(t-a)$	$e^{-j\alpha \alpha}$
A	$2\pi A\delta(\omega)$
$e^{j\omega_{b^{\prime}}}$	$2\pi\delta(\omega-\omega_0)$
$\cos \omega_0 t$	$\pi\delta(\omega-\omega_0)+\pi\delta(\omega+\omega_0)$
$\sin \omega_0 t$	$j\pi\delta(\omega+\omega_0)-j\pi\delta(\omega-\omega_0)$
$e^{-at}u(t), a>0$	$\frac{1}{a+j\omega}$
$e^{- a t}$, $a>0$	$\frac{2a}{a^2 + \omega^2}$
$e^{-at}\cos u_0tu(t), a>0$	$\frac{j\omega + a}{\left(j\omega + a\right)^2 + \omega_0^2}$
$e^{-at}\sin u_0tu(t), a>0$	$\frac{\omega_0}{\left(j\omega+a\right)^2+\omega_0^2}$

Fourier Transform Properties

Linearity	Af(t)	$AF(\omega)$
Addition/subtraction	$f_1(t) \pm f_2(t)$	$F_1(\omega) \pm F_2(\omega)$
Time-scaling	f(at)	$\frac{1}{a}F\left(\frac{\omega}{a}\right), \ a > 0$
Time-shifting	$f(t-t_0)$	$e^{-jwt_0}F(\omega)$
modulation	$e^{jwt_0}f(t)$	$F(\omega-\omega_0)$
differentiation	$\frac{d^n f(t)}{dt^n}$	$(j\omega)^n F(\omega)$
Multiplication by t	$t^n f(t)$	$(j)^n \frac{d^n F(\omega)}{d\omega^n}$
	$\int_{-\infty}^{\infty} f_1(x) f_2(t-x) dx$	$F_1(\omega)F_2(\omega)$
convolution	$f_1(t)f_2(t)$	$\frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(x) F_2(\omega - x) dx$
Parseval's Theorem	$\int_{-\infty}^{\infty} f^2(t)dt$	$\frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega) ^2d\omega$

CHAPTER 15: FOURIER ANALYSIS TECHNIQUES

 $f\left(t\right) = f\left(t + nT_0\right) n = \pm 1, \pm 2, \pm 3 \cdots \Leftrightarrow f\left(t\right) = a_0 + \sum_{n=1}^{\infty} D_n \cos\left(n\omega_0 t + \theta_n\right) \quad \text{where } \omega_0 = \frac{2\pi}{T_0}$ Fourier series

Exponential Fourier series	Trigonometric Fourier series
$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{jmst}$	$f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos n\omega_0 t + b_n \sin n\omega_0 t)$
$c_a = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} f(t) e^{-ju\omega_0 t} dt$	$a_{z} = \frac{2}{T_{0}} \int_{\lambda}^{\lambda_{1} T_{0}} f(t) \cos n\omega_{b} dt$ $b_{z} = \frac{2}{T_{0}} \int_{\lambda}^{\lambda_{1} T_{0}} f(t) \sin n\omega_{s} dt$

Special situation for trigonometric Fourier series

Even-function symmetry $f(t) = f(-t)$	Odd-function symmetry $f(t) = -f(-t)$	Half-wave symmetry $f(t) = -f\left(t - \frac{T_0}{2}\right)$	
		n even	n odd
$a_n = \frac{4}{T_0} \int_0^{T_0/2} f(t) \cos n\omega_0 t dt$	$a_n = 0$ for all $n > 0$	$a_n = 0$	$a_n = \frac{4}{T_0} \int_0^{T_0/2} f(t) \cos n\omega_0 t dt$
$b_n = 0$	$b_n = \frac{4}{T_0} \int_0^{T_0/2} f(t) \sin n\omega_0 t dt$	$b_n = 0$	$b_n = \frac{4}{T_0} \int_0^{T_0/2} f(t) \sin n\omega_0 t dt$
$a_0 = \frac{2}{T_0} \int_0^{T_0/2} f(t) dt$	$a_0 = 0$		$a_0 = 0$

Average power $P = V_{DC}I_{DC} + \sum_{i=1}^{\kappa} \frac{V_{ii}I_{s}}{2} \cos\left(\theta_{i_{s}} - \theta_{i_{s}}\right)$ Fourier transform pair	
f(t)	$F(\omega)$
$\digamma^{-1}[F(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega$	$ F\left[f\left(t\right) \right] = \int_{-\infty}^{\infty} f\left(t\right) e^{-j\omega t} dt $
$\delta(t-a)$	$e^{-j \alpha a}$
A	$2\pi A\delta(\omega)$
$e^{i a y}$	$2\pi\delta(\omega-\omega_0)$
$\cos \omega_0 t$	$\pi\delta(\omega-\omega_0)+\pi\delta(\omega+\omega_0)$
$\sin \omega_0 t$	$j\pi\deltaig(\omega+\omega_{\scriptscriptstyle 0}ig)-j\pi\deltaig(\omega-\omega_{\scriptscriptstyle 0}ig)$
$e^{-at}u(t), a>0$	$\frac{1}{a+j\omega}$
$e^{- a t}$, $a>0$	$\frac{2a}{a^2 + \omega^2}$
$e^{-at}\cos u_0tu(t), a>0$	$\frac{j\omega + a}{\left(j\omega + a\right)^2 + \omega_b^2}$
$e^{-at}\sin u_0tu(t),\ a>0$	$\frac{\omega_b}{\left(j\omega+a\right)^2+\omega_b^2}$

Property of Fourier's transform

perty of Fourier's transform		
Property	f(t)	$F(\omega)$
Linearity	Af(t)	$AF(\omega)$
Addition/subtraction	$f_1(t) \pm f_2(t)$	$F_1(\omega) \pm F_2(\omega)$
Time-scaling	f(at)	$\frac{1}{a}F\left(\frac{\omega}{a}\right),a>0$
Time-shifting	$f(t-t_0)$	$e^{-jwt_0}F(\omega)$
modulation	$e^{j\nu t_0}f(t)$	$F(\omega - \omega_0)$
differentiation	$\frac{d^n f(t)}{dt^n}$	$(j\omega)^n F(\omega)$
Multiplication by t	$t^{n}f\left(t\right)$	$(j)^a \frac{d^a F(\omega)}{d\omega^a}$
convolution	$\int_{-\infty}^{\infty} f_1(x) f_2(t-x) dx$	$F_1(\omega)F_2(\omega)$
Convolution	$f_1(t)f_2(t)$	$\frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(x) F_2(\omega - x) dx$

Fourier transform for an aperiodic function

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt \qquad f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)e^{-j\omega t} d\omega$$

Parseval's Theorem

$$\int_{-\infty}^{\infty} f^{2}(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\omega)|^{2} d\omega$$