UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ VARIÁVEIS COMPLEXAS

LISTA Nro. 6

Professores: Iván Gonzáles

1 de junho de 2022

1 Séries de Potências

- Obtenha o desenvolvimento em séries de potências em torno do ponto indicado. Represente graficamente a região de convergência.
 - (a) $f(z) = \frac{1}{z}$ em potências de z + i.
 - (b) $f(z) = \frac{1}{2z 9}$ em torno de $z_0 = 3$.
 - (c) $f(z) = \frac{1}{z^2}$ em potências de z 1.
 - (d) $f(z) = \frac{1}{2z 3}$ em torno de $z_0 = -i$.
 - (e) $f(z) = \frac{i}{z+i}$ em potências de z-1.
 - (f) $f(z) = \frac{1}{z^3}$ em potências de z + 2.
- 2) Lembrando que $R=\lim_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}.$ Encontre o raio de convergência R das séries:
- (a) $\sum_{n=0}^{\infty} nz^n$
- (b) $\sum_{n=0}^{\infty} n! z^n$
- (c) $\sum_{n=0}^{\infty} \frac{(z-i)^n}{n}$
- (d) $\sum_{n=0}^{\infty} ln(3n^2+5)(z+i)^n$
- (e) $\sum_{n=0}^{\infty} (\sinh n) z^n$

- $(f) \sum_{n=1}^{\infty} \frac{4^n}{n} z^{2n}$
- $(g) \sum_{n=0}^{\infty} (\sqrt{2})^{3n} z^n$
- $\text{(h) } \sum_{n=1}^{\infty} \frac{n}{3^n} z^{n^2}$
- 3) Encontre as séries de potências (Séries de Maclaurin) em torno de $z_0=0$ de
- (a) $\sin z$
- (b) $\cos z$
- (c) $\sinh z$
- (d) $\cosh z$

Dica: Lembrar que $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ e $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$. $\cos z = \frac{e^{iz} + e^{-iz}}{2}$, $\sinh z = \frac{e^z - e^{-z}}{2}$ e $\cosh z = \frac{e^z + e^{-z}}{2}$.

- 4) Seja f(z) = ln(1+z). Expandir f(z) em uma série de Taylor em torno de $z_0 = 0$ (Maclaurin) e determine a região de convergência.
- 5) Expandir $ln\left(\frac{1+z}{1-z}\right)$ em série de Taylor em torno de $z_0=0$.
- 6) Expandir $f(z) = \sin z$ em série de Taylor em torno de $z_0 = \pi/4$.
- 7) Desenvolva em torno de $z_0 = 1$ a função $f(z) = z \ln z z$ (Use a determinação ou ramo principal, no qual $\ln 1 = 0$).

8) Desenvolva em séries de potências de z e z-2 as funções

(a)
$$f(z) = \frac{1}{(4-z)^3}$$

(b)
$$g(z) = \frac{1}{z^5}$$

9) Encontre as séries de Laurent para as seguintes funções, nas regiões dadas:

(a)
$$f(z) = \frac{1+z}{z}$$
, $z_0 = 0$, $0 < |z| < \infty$.

(b)
$$f(z) = \frac{z}{z^2 + 1}$$
, $z_0 = 0$, $0 < |z| < \infty$.

(c)
$$f(z) = \frac{1}{(z-i)(z-2)}, z_0 = 2, 0 < |z-2| < \sqrt{5}.$$

(d)
$$f(z) = \frac{z^5}{z-1}$$
, $z_0 = 0$, $|z| > 1$.

(e)
$$f(z) = z^5 e^{1/z}$$
, $z_0 = 0$, $|z| > 0$.

(f)
$$f(z) = \frac{\sin z}{(z-\pi)^3}$$
, $z_0 = \pi$, $z \neq \pi$.

- 10) Expandir $f(z) = \frac{1}{(z+1)(z+3)}$ em série de Laurent para:
- (a) 1 < |z| < 3
- (b) |z| > 3
- (c) 0 < |z+1| < 2
- (d) |z| < 1
- 11) Expandir $f(z) = \frac{z}{(z-1)(2-z)}$ em série de Laurent para:
- (a) |z| < 1
- (b) 1 < |z| < 2
- (c) |z| > 2
- (d) |z-1| > 1
- (e) 0 < |z 2| < 1
- 12) Seja f uma função analítica no ponto z_0 . Mostre que z_0 é um zero de ordem m de f se, e somente se,

$$f(z_0) = 0, \ f'(z_0) = 0, \ \dots, \ f^{(m-1)}(z_0) = 0$$

$$e f^{(m)}(z_0) \neq 0.$$

- 13) Determine a ordem do zero z=0 nas seguintes funções:
- (a) $(\cos z 1)^3 \sin z$

(b)
$$\frac{(1-\cos z)\sin^2 z}{1-e^z}$$

- (c) $(e^z 1 z)^3 \sin^2 z$
- (d) $e^{\sin z} e^z$
- (e) $(e^{z^2} 1)(\sin^2 z z^2)$
 - (f) $e^{\sin z} e^{\tan z}$
- 14) Se $z=z_0$ é zero das funções f e g, de ordens r e s, respectivamente. Prove que ele é zero de ordem r+s de fg. De que ordem é esse zero para a função f+g?