Devoir surveillé n° 7 Version 1

Durée : 3 heures, calculatrices et documents interdits

I. Approximation de la constante d'Euler.

Le théorème des accroissements finis intervient à plusieurs reprises dans ce problème. Vous devrez préciser chaque fois clairement pour quelle fonction et entre quelles bornes vous l'utilisez.

Ce problème a pour objet l'étude de la constante d'Euler notée γ .

Pour tout entier naturel non nul n, on pose

$$u_n = \left(\sum_{k=1}^n \frac{1}{k}\right) - \ln n.$$

Partie I

- 1) Prouver pour tout $k \in \mathbb{N}^*$ l'encadrement : $\frac{1}{k+1} \leqslant \ln \frac{k+1}{k} \leqslant \frac{1}{k}$.
- 2) a) Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est décroissante.
 - **b)** Montrer que pour tout $n \in \mathbb{N}^*$: $\frac{1}{n} \leqslant u_n \leqslant 1$.
 - c) En déduire que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge.

On note dorénavant γ la limite de la suite $(u_n)_{n\in\mathbb{N}^*}$ (constante d'Euler).

- 3) Montrer que $\gamma \leq 1$.
- 4) a) Étudier, sur l'intervalle [k, k+1] $(k \in \mathbb{N}^*)$, le signe de la fonction f_k définie par

$$f_k(x) = \frac{1}{k} + \left(\frac{1}{k+1} - \frac{1}{k}\right)(x-k) - \frac{1}{x}.$$

- **b)** En déduire le signe de $\int_k^{k+1} f_k(t) dt$.
- c) Prouver l'inégalité : $\ln \frac{k+1}{k} \le \frac{1}{2} \left(\frac{1}{k} + \frac{1}{k+1} \right)$ (*).
- 5) a) Montrer que : $\sum_{k=1}^{n} \frac{1}{k+1} = \sum_{k=1}^{n+1} \frac{1}{k} 1$ et $\sum_{k=1}^{n} \frac{1}{k} \leqslant \sum_{k=1}^{n+1} \frac{1}{k}$.
 - **b)** En déduire, en sommant (\star) , que $\frac{1}{2} \leqslant \gamma$.

Partie II

6) On définit les fonctions g_1 et g_2 sur $]0, +\infty[$ par :

$$g_1(x) = -\frac{1}{x+1} + \ln\left(1 + \frac{1}{x}\right) - \frac{1}{2x^2}$$

 $g_2(x) = g_1(x) + \frac{2}{3x^3}$

Étudier les variations de g_1 et g_2 sur $]0, +\infty[$ et en déduire le signe de chacune.

- 7) Pour tout entier $n \in \mathbb{N}^*$, exprimer $u_n u_{n+1}$ en fonction de $g_1(n)$ et de n.
- 8) Montrer que pour tout entier $n \geqslant 1$: $\frac{1}{2n^2} \frac{2}{3n^3} \leqslant u_n u_{n+1} \leqslant \frac{1}{2n^2}$.
- **9)** Dans cette question $n \ge 2$ et $p \ge n$.
 - a) En utilisant le théorème des accroissements finis appliqué à la fonction $x \mapsto \frac{1}{x}$ entre k et k+1 (k entier), former un encadrement de $\sum_{k=n}^{p} \frac{1}{k^2}$.
 - b) Former par une méthode analogue à celle de la question précédente un encadrement de $\sum_{k=n}^p \frac{1}{k^3}.$
 - c) Montrer que pour tout $n \in \mathbb{N}$ tel que $n \ge 2$,

$$\frac{1}{n} + \frac{1}{n^2} \le \frac{1}{n-1}$$
 et $\frac{1}{n^2} + \frac{2}{n^3} \le \frac{1}{(n-1)^2}$.

- **d)** En déduire $\frac{1}{2n} \frac{1}{3(n-1)^2} \le u_n \gamma \le \frac{1}{2(n-1)}$.
- 10) Un calcul numérique donne $u_{100} \in [0, 582207; 0, 582208]$. Donner une valeur approchée de γ à 10^{-4} près.

II. Espace vectoriel de fonctions périodiques.

Dans tout ce problème, les espaces vectoriels considérés sont réels, et on se place dans l'espace vectoriel E des fonctions réelles $(E = \mathbb{R}^{\mathbb{R}})$.

Si $T \in \mathbb{R}_+^*$, on note \mathscr{P}_T l'ensemble des fonctions réelles T-périodiques, et \mathscr{P} l'ensemble des fonctions réelles périodiques.

On admet dans ce problème l'irrationnalité de $\pi : \pi \notin \mathbb{Q}$.

- 1) Soit $T \in \mathbb{R}_+^*$. Montrer que \mathscr{P}_T a une structure d'espace vectoriel.
- 2) Écrire ensemblistement \mathscr{P} en fonction des \mathscr{P}_T .
- 3) On consider la fonction $f: x \mapsto \cos(x) + \cos(2\pi x)$.
 - a) Justifier que $f \in \text{Vect}(\mathscr{P})$.
 - b) On suppose qu'il existe $T \in \mathbb{R}_+^*$ tel que $f \in \mathscr{P}_T$.
 - i) Montrer que pour tout $n \in \mathbb{Z}$: $\cos(2\pi T) 1 = 2\sin\left(\frac{T}{2}\right)\sin\left(n + \frac{T}{2}\right)$.
 - ii) En déduire que $\sin\left(\frac{T}{2}\right) = 0$, puis que T est un multiple de 2π .
 - iii) Que vaut $\cos(2\pi T)$? Que dire de T? En déduire une contradiction.
 - c) Est-ce que $f \in \mathcal{P}$? Est-ce que \mathcal{P} a une structure d'espace vectoriel?

- **4)** a) Soit $n, m \in \mathbb{N}^*$ vérifiant $n \mid m$. De manière générale, a-t-on $\mathscr{P}_n \subset \mathscr{P}_m$? $\mathscr{P}_m \subset \mathscr{P}_n$?
 - b) Soit $n, m \in \mathbb{N}^*$. Déterminer un entier p vérifiant $\mathscr{P}_n \cup \mathscr{P}_m \subset \mathscr{P}_p$.
 - **c)** Montrer que $\bigcup_{n\in\mathbb{N}^*} \mathscr{P}_n$ a une structure d'espace vectoriel.
- 5) a) Montrer que $C=\bigcap_{T\in\mathbb{R}_+^*}\mathscr{P}_T$ est l'ensemble des fonctions constantes. Est-ce un espace vectoriel ?
 - **b)** Soit $T \in \mathbb{R}_+^*$, on note $Z_T = \{ f \in \mathscr{P}_T \mid f(0) = 0 \}$.
 - i) Montrer que Z_T est un sous-espace vectoriel de \mathscr{P}_T .
 - ii) Montrer que Z_T et C sont supplémentaires dans \mathscr{P}_T .

— FIN —