Théorème de Féjer :

I Le développement

Le but de ce développement est de démontrer le théorème de Féjer et d'en donner un corollaire.

Théorème 1 : Théorème de Féjer [El Amrani, p.190] :

Pour toute fonction $f: \mathbb{R} \longrightarrow \mathbb{C}$ continue (resp. dans L^p pour $p \in [1; +\infty[)$ et 2π -périodique :

$$\lim_{n \to +\infty} \|\sigma_n(f) - f\|_{\infty} = 0 \quad \text{(respectivement } \lim_{n \to +\infty} \|\sigma_n(f) - f\|_p = 0)$$

Preuve:

On considère une fonction $f: \mathbb{R} \longrightarrow \mathbb{C}$ 2π -périodique.

* Cas où $f \in \mathcal{C}^0(\mathbb{T})$:

L'application f est uniformément continue (théorème de Heine), ainsi pour $\varepsilon > 0$ fixé, il existe $\delta_{\varepsilon} > 0$ tel que :

$$\forall x, y \in \mathbb{R}, |x - y| \le \delta_{\varepsilon} \implies |f(x) - f(y)| \le \varepsilon$$

Pour tout $n \in \mathbb{N}$ et tout $\theta \in \mathbb{R}$, on a alors :

$$|f(\theta) - \sigma_n(f)(\theta)| = |f(\theta) - f * F_n(\theta)| = \left| f(\theta) - \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta - t) F_n(t) dt \right|$$

$$= \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} (f(\theta) - f(\theta - t)) F_n(t) dt \right| \left(\text{car } ||F_n||_1 = 1 \right)$$

$$\leq \frac{1}{2\pi} \int_{-\delta_{\varepsilon}}^{\delta_{\varepsilon}} |f(\theta) - f(\theta - t)| F_n(t) dt$$

$$+ \frac{1}{2\pi} \int_{[-\pi;\pi] \setminus [-\delta_{\varepsilon};\delta_{\varepsilon}]} |f(\theta) - f(\theta - t)| F_n(t) dt$$

$$\leq \varepsilon ||F_n||_1 + \frac{1}{2\pi} \int_{[-\pi;\pi] \setminus [-\delta_{\varepsilon};\delta_{\varepsilon}]} 2 ||f||_{\infty} F_n(t) dt$$

$$\leq \varepsilon + \frac{2}{\pi} ||f||_{\infty} \int_{\delta_{\varepsilon}}^{\pi} F_n(t) dt$$

On en déduit que $\|f - \sigma_n(f)\|_{\infty} \le \varepsilon + \frac{2}{\pi} \|f\|_{\infty} \int_{\delta}^{\pi} F_n(t) dt$.

Or, $\lim_{n\to+\infty} \int_{\delta}^{\pi} F_n(t) dt = 0$, d'où : $\lim_{n\to+\infty} \|f - \sigma_n(f)\|_{\infty} = 0$.

Ainsi, $(\sigma_n(f))_{n\in\mathbb{N}}$ converge uniformément vers f sur \mathbb{R} .

* Cas où $f \in L^p(\mathbb{T})$:

Pour tout $n \in \mathbb{N}$ et tout $\theta \in \mathbb{R}$, on a :

$$f(\theta) - \sigma_n(f)(\theta) = f(\theta) - f * F_n(\theta) = f(\theta) - \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta - t) F_n(t) dt$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} (f(\theta) - f(\theta - t)) F_n(t) dt \quad (\operatorname{car} \|F_n\|_1 = 1)$$

Donc par l'inégalité de Hölder avec la mesure $\mu(t)=F_n(t)\frac{\mathrm{d}t}{2\pi},$ on a :

$$|f(\theta) - \sigma_n(f)(\theta)| \le \left(\int_{-\pi}^{\pi} |f(\theta) - f(\theta - t)|^p d\mu(t) \right)^{\frac{1}{p}} \underbrace{\left(\int_{-\pi}^{\pi} 1^q d\mu(t) \right)^{\frac{1}{q}}}_{=1}$$
$$= \left(\int_{-\pi}^{\pi} |f(\theta) - f(\theta - t)|^p d\mu(t) \right)^{\frac{1}{p}}$$

Ainsi, on a:

$$||f - \sigma_n(f)||_p^p \le \int_{-\pi}^{\pi} \left(\int_{-\pi}^{\pi} |f(\theta) - f(\theta - t)|^p d\mu(t) \right) \frac{d\theta}{2\pi}$$

$$= \int_{-\pi}^{\pi} \left(\int_{-\pi}^{\pi} |f(\theta) - f(\theta - t)|^p \frac{d\theta}{2\pi} \right) d\mu(t)$$

$$= \int_{-\pi}^{\pi} \underbrace{||f - \tau_{-t}(f)||_p^p}_{=g(t)} d\mu(t)$$

Or, par continuité des "petites translations" dans $L^p(\mathbb{R})$, on a la relation : $\lim_{t\to 0} \|f-\tau_{-t}(f)\|_p^p = 0$ et ainsi g et continue et $\lim_{t\to 0} g(t) = g(0) = 0$.

De plus, on a:

$$||f - \sigma_n(f)||_p^p \le \int_{-\pi}^{\pi} g(t) F_n(t) \frac{dt}{2\pi} = \int_{-\pi}^{\pi} g(-u) F_n(-u) \frac{du}{2\pi}$$
$$= \int_{-\pi}^{\pi} g(0 - u) F_n(u) \frac{du}{2\pi} \text{ (car } F_n \text{ est paire)}$$
$$= (g * F_n)(0) = \sigma_n(g)(0)$$

Enfin, puisque g est continue et 2π -périodique, on a par le premier point que $\lim_{n\to+\infty}\sigma_n(g)(0)=g(0)=0$ et ainsi, $\lim_{n\to+\infty}\|f-\sigma_n(f)\|_p^p=0$.

Corollaire 2: [El Amrani, p.194]

Soient $f: \mathbb{R} \longrightarrow \mathbb{C}$ continue et 2π -périodique et $x_0 \in \mathbb{R}$.

Si la suite $(S_N(f)(x_0))_{N\in\mathbb{N}}$ converge de limite notée ℓ , alors on a $\ell=f(x_0)$. De plus, si la suite $(S_N(f))_{N\in\mathbb{N}}$ converge simplement sur \mathbb{R} , alors pour tout $x\in\mathbb{R}$, on a $f(x)=\sum_{n=-\infty}^{+\infty}c_n(f)e_n(x)$.

Preuve:

Soient $f: \mathbb{R} \longrightarrow \mathbb{C}$ continue et 2π -périodique et $x_0 \in \mathbb{R}$.

* Supposons que la suite $(S_N(f)(x_0))_{N\in\mathbb{N}}$ converge de limite notée ℓ . En particulier cette suite converge en moyenne de Cesàro, donc :

$$\lim_{N \to +\infty} \sigma_N(f)(x_0) = \lim_{N \to +\infty} \frac{1}{N} \sum_{n=0}^{N-1} S_n(f)(x_0) = x_0$$

Or comme f est continue sur \mathbb{R} et 2π -périodique, on a par le théorème de Féjer que $\lim_{N\to+\infty} \sigma_N(f)(x_0) = f(x_0)$ et donc par unicité de la limite on a $\ell=f(x_0)$.

* Supposons désormais que la suite $(S_N(f))_{N\in\mathbb{N}}$ converge simplement sur \mathbb{R} . Pour tout $x\in\mathbb{R}$, la suite numérique $(S_N(f)(x))_{N\in\mathbb{N}}$ converge vers f(x) (par le point précédent) et donc on a directement que $f(x) = \sum_{n=-\infty}^{+\infty} c_n(f)e_n(x)$.

II Remarques sur le développement

II.1 Résultat(s) utilisé(s)

Dans ce développement, on a utilisé le fait que F_n est de norme égale à 1 (cf. ci-dessous) et que les "petites translations" sont continues dans L^p pour $p \in [1; +\infty[$. On rappelle la démonstration ci-dessus :

* Supposons d'abord que $f \in \mathcal{C}_c^0(\mathbb{R})$.

La fonction f est donc uniformément continue (par le théorème de Heine) et donc :

$$\forall \varepsilon > 0, \ \exists \eta > 0 \ \text{tq} \ |a| \le \eta \implies \forall x \in \mathbb{R}, \ |f(x-a) - f(x)| \le \varepsilon$$

On fixe un tel ε .

Pour $a \in \mathbb{R}$ tel que $|a| \leq \eta$, on a :

$$\|\tau_{-a}(f) - f\|_{p}^{p} = \int_{\mathbb{R}} |f(x - a) - f(x)|^{p} dx$$

$$= \int_{(a + \{f \neq 0\}) \cup \{f \neq 0\}} |f(x - a) - f(x)|^{p} dx.$$

$$\leq \varepsilon^{p} \left(\lambda(\{f \neq 0\} + \lambda(a + \{f \neq 0\}))\right) \leq 2\lambda \left(\overline{\{f \neq 0\}}\right) \varepsilon^{p}$$

Or, $\lambda\left(\overline{\{f\neq 0\}}\right)$ est fini car $\overline{\{f\neq 0\}}$ est compact. Par conséquent :

$$|a| \le \eta \implies \|\tau_{-a}(f) - f\|_p \le \left(2\lambda\left(\overline{\{f \ne 0\}}\right)\right)^{\frac{1}{p}} \varepsilon$$

* Supposons désormais que $f \in L^p(\mathbb{R})$.

Par densité des fonctions continues à support compact dans $(L^p, \|\cdot\|_p)$, il existe une suite $(f_n)_{n\in\mathbb{N}}$ dans $\mathcal{C}^0_c(\mathbb{R})$ telle que $\lim_{n\to+\infty} \|f_n-f\|_p=0$.

Or, on a:

$$\|\tau_{-a}(f) - f\|_{p} \le \|\tau_{-a}(f) - \tau_{-a}(f_{n})\|_{p} + \|\tau_{-a}(f_{n}) - f_{n}\|_{p} + \|f_{n} - f\|_{p}$$

$$\le 2 \|f_{n} - f\|_{p} + \|\tau_{-a}(f_{n}) - f\|_{p}$$

De plus, par le premier point, pour $\varepsilon > 0$, il existe un entier naturel $n_{\varepsilon} \geq 1$ tel que $||f_{n_{\varepsilon}} - f||_{p} \leq \frac{\varepsilon}{4}$ et par ailleurs, il existe $\eta > 0$ tel que $||\tau_{-a}(f_{n_{\varepsilon}}) - f_{n_{\varepsilon}}||_{p} \leq \frac{\varepsilon}{2}$ pour tout $a \in \mathbb{R}$ tel que $|a| \leq \eta_{\varepsilon}$.

Finalement, on a:

$$|a| \le \eta \implies \|\tau_{-a}(f) - f\|_p \le \varepsilon$$

Remarque 3 : [El Amrani, p.74]

* On a même montré que pour $p \in [1; +\infty[$ et $f \in L^p(\mathbb{R})$, l'application $a \longmapsto \tau_a(f)$ est uniformément continue de \mathbb{R} dans $L^p(\mathbb{R})$ puisque l'on a :

$$\|\tau_{-a}(f) - \tau_{-b}(f)\|_{p} = \|\tau_{-b}(\tau_{b-a}(f) - f)\|_{p} = \|\tau_{b-a}(f) - f\|_{p}$$

* Les résultats précédents sont encore valables pour une fonction f définie sur \mathbb{R}^d .

II.2 Noyaux de Dirichlet et de Féjer

Dans ce développement on a également utilisé quelques résultats sur les noyaux de Féjer. On donne ainsi quelques rappels sur les noyaux de Dirichlet et de Féjer.

Définition 4 : N-ième somme de Cesàro [El Amrani, p.181] :

Pour $f \in \mathcal{C}^0_{2\pi}$, on note $\sigma_N(f)$ la N-ième somme de Cesàro de la série de Fourier de f définie par $\sigma_N(f) = \frac{1}{N} \sum_{k=0}^{N-1} S_k(f)$.

Définition 5: Noyau de Dirichlet [El Amrani, p.184] :

On appelle **noyau de Dirichlet d'ordre** N la fonction $D_N : x \longmapsto \sum_{n=-N}^N e_n(x)$.

Proposition 6: [El Amrani, p.184]

* La fonction D_N est une fonction paire et 2π -périodique.

* La fonction D_N est le prolongement par continuité de \mathbb{R} de la fonction définie de $\mathbb{R} \setminus 2\pi \mathbb{Z}$ sur \mathbb{R} par $x \longmapsto \frac{\sin\left(\frac{2N+1}{2}x\right)}{\sin\left(\frac{x}{2}\right)}$.

* Pour tout $f \in L^1_{2\pi}$ on a $S_N(f) = f * D_N$.

Proposition 7: [El Amrani, p.185]

Lorsque N tend vers $+\infty$, on a $||D_N||_1 = \frac{4}{\pi^2} \ln(N) + O(1)$.

Définition 8 : Noyau de Féjer [El Amrani, p.185] :

On appelle noyau de Féjer d'ordre N la fonction $F_N(x) = \frac{1}{N} \sum_{k=0}^{N-1} D_k$.

Proposition 9: [El Amrani, p.185]

* Pour tout $f \in L^1_{2\pi}$, on a :

$$F_N = \sum_{n=-N}^{N} \left(1 - \frac{|n|}{N} \right) e_n \text{ et } \sigma_N(f) = f * \left(\sum_{n=-N}^{N} \left(1 - \frac{|n|}{N} \right) c_n(f) e_n \right)$$

En particulier, F_N est le prolongement par continuité sur \mathbb{R} de la fonction définie par $x \longmapsto \frac{1}{N} \left(\frac{\sin\left(N\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)} \right)^2$.

* La suite $(F_N)_{N\in\mathbb{N}^*}$ est une approximation de l'unité dans $L^1_{2\pi}$.

II.3 Pour aller plus loin...

Le théorème de Féjer possède comme corollaire le théorème de Weierstrass :

Théorème 10 : Théorème de Weierstrass :

- \ast Toute fonction continue sur un segment [a;b] à valeurs réelles est limite uniforme de fonctions polynomiales à coefficients réels.
- * Pour $p\in[1;+\infty[,$ les polynômes trigonométriques sont denses dans $\Big(L^p(\mathbb{T}),\|\cdot\|_p\Big).$

II.4 Recasages

Recasages : 209 - 241 - 246.

III Bibliographie

— Mohammed El Amrani, Analyse de Fourier dans les espaces fonctionnels.