Introduction to Probability (Spring 2019)

Exam 3

Name:

ATTENTION!!

Show clearly how you derive the result. Only having the right answer without support reasoning

 1 pt only.

1. For two random variables

$$f(x,y) = 1/2, \quad 0 \le x \le 2, 0 \le y \le 1$$

Find

(a)
$$\mathbb{E}(X)$$
. (5 pt)

$$(b)^{\overline{}}\mathbb{E}(Y)$$
. (5 pt)

(c) Cov(X, Y). (5 pt)

(b)
$$EX = \int_{0}^{1/2} x \cdot \frac{1}{2} \cdot dx \cdot dy$$

$$= 1$$

$$EY = \int_{0}^{1/2} x \cdot \frac{1}{2} \cdot dx \cdot dy$$

$$= \frac{1}{2}$$

(c)
$$\mathbb{E} \times Y = \int_{0}^{1} \int_{0}^{2} x \cdot y \cdot \frac{1}{2} \cdot dx \cdot dy$$

$$= \frac{1}{2}$$

$$CN(x, Y) = \mathbb{E} \times Y - \mathbb{E} \times \mathbb{E} Y$$

$$= \frac{1}{2}$$

2. For two random variables

$$f(x,y) = 2e^{-x}, \quad 0 \le y \le x \le 2y$$

Find

- (a) f(x). (5 pt) Note that $x/2 \le y \le x$.
- (b) f(y). (5 pt) Note that $y \le x \le 2y$.
- (c) f(x | y). (5 pt)
- (d) $f(y \mid x)$. (5 pt)

$$f(x) = \int_{\chi/2}^{\chi} f(x,y) \cdot dy$$

$$= \int_{\chi/2}^{\chi} 2 \cdot e^{-\chi} \cdot dy$$

$$= \chi \cdot e^{-\chi}, \quad \chi \geqslant 0$$

(b).
$$f(y) = \int_{y}^{2y} f(x,y) dx$$

= $\int_{y}^{2y} 2e^{-x} dx$
= $2 \cdot (e^{-y} - e^{-2y})$, $y \ge 0$

(c)
$$f(x|y) = \frac{f(x,y)}{f(y)} = \frac{e^{-x}}{e^{-y} - e^{-2y}}, y \le x \le 2y$$

$$f(y|x) = \frac{f(x,y)}{f(x)} = \frac{2}{x} \qquad x \leq 5 \leq x$$

3. For two random variables Y_1 and Y_2 , assume that Y_1 follows a Gamma distribution with $\alpha = 2$ and $\beta = 1$,

$$f(y_1) = y_1 \exp(-y_1), \quad y_1 > 0$$

and Y_2 given $Y_1 = y_1$ follows a uniform distribution $(0, y_1)$

$$f(y_2 \mid y_1) = 1/y_1, \quad 0 < y_2 < y_1.$$

Find

- (a) $f(y_1, y_2)$. (5 pt) Hint: the definition $f(y_1 | y_2) = f(y_1, y_2)/f(y_2)$.
- (b) $\mathbb{E}(Y_2 \mid Y_1 = y_1)$. (5 pt)
- (c) Use result from (a) and to find $f(y_2)$. (5 pt)

(a)
$$f(y_1,y_2) = f(y_2|y_1) \cdot f(y_1)$$

= $exp(-y_1)$, $o(y_2 < y_1)$

(b)
$$E(X_{2}(X_{1}=Y_{1})=\int_{0}^{Y_{1}}Y_{2}f(Y_{2}|Y_{1})\cdot dY_{2}$$

 $=\int_{0}^{Y_{1}}Y_{2}\cdot \frac{1}{Y_{1}}\cdot dY_{2}$
 $=\frac{y_{1}^{2}}{2\cdot y_{1}^{2}}$
 $=\frac{y_{1}^{2}}{2}$

(c).
$$f(y_2) = \int_{y_2}^{\infty} f(y_1, y_2) dy_1$$

 $= -e^{-y_1} \Big|_{y_2}^{\infty}$
 $= e^{-y_2}$
 $= e^{-y_2}$