Ejercicios sobre categorías

Alexey Beshenov (cadadr@gmail.com)

Universidad de El Salvador. Ciclo par 2019

Primera sesión: categorías, funtores, y transformaciones naturales

- 1. Demuestre que si f es un isomorfismo en $\mathscr C$ y F es un funtor $\mathscr C \to \mathscr D$, entonces F(f) es un isomorfismo en $\mathscr D$.
- 2. Demuestre que las composiciones de iso-, mono-, epimorfismos satisfacen las siguientes propiedades.
 - a) Si $f: X \to Y$ e $g: Y \to Z$ son isomorfismos (resp. monomorfismos, epimorfismos), entonces la composición $g \circ f: X \to Z$ es un isomorfismo (resp. monomorfismo, epimorfismo).
 - b) Si para $m: X \to Y$, $f: Y \to Z$ la composición $f \circ m$ es un monomorfismo, entonces m es un monomorfismo.
 - c) Si para $f: X \to Y$, $e: Y \to Z$ la composición $e \circ f$ es un epimorfismo, entonces e es un epimorfismo.
 - d) Todo isomorfismo es automáticamente mono y epi. (En general, un mono- y epimorfismo no tiene por qué ser un isomorfismo.)
- 3. Demuestre que en la categoría *k*-**Vect** de *k*-espacios vectoriales los isomorfismos, monomorfismos, epimorfismos son las aplicaciones *k*-lineales biyectivas, inyectivas, sobreyectivas respectivamente. Demuestre lo mismo para la categoría **Ab** de grupos abelianos. (Es también cierto para la categoría de grupos **Grp**, pero el argumento es más complicado.)
- 4. Demuestre con todos los detalles la versión covariante del lema de Yoneda. La versión contravariante se encuentra en mis apuntes.
- 5. Sea G un grupo. Definamos una categoría G donde hay un solo objeto *, los morfismos $g: * \to *$ corresponden a los elementos de G y su composición corresponde a la multiplicación en G.
 - Demuestre que un funtor $F: \mathbf{G} \to \mathbf{Set}$ corresponde a un G-conjunto y una transformación natural entre tales funtores es una aplicación G-equivariante. ¿Qué es un funtor representable en este caso? ¿Qué significa el encajamiento de Yoneda?
- 6. Para un conjunto X sea

$$P^+(X) := P^-(X) := 2^X$$

el conjunto de subconjuntos de X. Para una aplicación $f: X \to Y$ definamos

$$P^+(f): 2^X \to 2^Y, \quad Z \mapsto f(Z),$$

У

$$P^{-}(f): 2^{Y} \to 2^{X}, \quad Z \mapsto f^{-1}(Z).$$

Demuestre que P^+ y P^- son funtores **Set** \rightarrow **Set**, uno covariante y el otro contravariante.

- 7. Hay dos modos diferentes de asociar un grupo abeliano a un grupo G: tomar el centro Z(G), o la abelianización $G^{ab} := G/[G,G]$. ¿Cuál de estas dos construcciones es funtorial?
- 8. Ejercicio de álgebra lineal. Sean *k*-**Vect** la categoría de *k*-espacios vectoriales y *k*-**vect** la categoría de *k*-espacios vectoriales de dimensión finita. La construcción del espacio dual es un funtor contravariante

$$k$$
-Vect^{op} $\rightarrow k$ -Vect, k -vect^{op} $\rightarrow k$ -vect.

Analice si estos funtores son fieles o plenos.

- 9. Sean
 - $\mathscr{C}, \mathscr{D}, \mathscr{E}$ tres categorías;
 - F_1 , G_1 dos funtores entre \mathscr{C} y \mathscr{D} ;
 - F_2 , G_2 dos funtores entre \mathcal{D} y \mathcal{E} ;
 - $\alpha: F_1 \Rightarrow G_1 \text{ y } \beta: F_2 \Rightarrow G_2 \text{ dos transformaciones naturales.}$

Todo esto puede ser expresado mediante el diagrama

Entonces, el **producto de Godement** de α y β es la transformación natural

$$\beta * \alpha : F_2 \circ F_1 \Rightarrow G_2 \circ G_1$$

definida como

$$(\beta * \alpha)_X := \beta_{G_1(X)} \circ F_2(\alpha_X) = G_2(\alpha_X) \circ \beta_{F_1(X)}.$$

(Este diagrama conmuta gracias a la naturalidad de β .)

Verifique que $\beta*\alpha$ es de hecho natural y demuestre que el producto de Godement es asociativo: para un diagrama

se cumple

$$(\gamma * \beta) * \alpha = \gamma * (\beta * \alpha).$$

10. Sean $\mathscr{C}, \mathscr{D}, \mathscr{E}$ tres categorías. Sean F, G, H funtores $\mathscr{C} \to \mathscr{D}$ y sean I, J, K tres funtores $\mathscr{D} \to \mathscr{E}$. Consideremos transformaciones naturales

$$\alpha \colon F \Rightarrow G, \quad \beta \colon G \Rightarrow H, \quad \sigma \colon I \Rightarrow J, \quad \tau \colon J \Rightarrow K.$$

Demuestre que

$$(\tau \circ \sigma) * (\beta \circ \alpha) = (\tau * \beta) \circ (\sigma * \alpha).$$