Metody Obliczeniowe w Nauce i Technice Laboratorium 8 Page Rank

17 kwietnia 2024

Literatura

- http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
- https://snap.stanford.edu/data/

Zadanie 1 Prosty ranking wierzchołków

Zaimplementuj prosty model błądzenia przypadkowego po grafie skierowanym:

$$\mathbf{r}(u) = d \sum_{v \in B_n} \frac{\mathbf{r}(v)}{N_v},\tag{1}$$

gdzie $\mathbf{r}(u)$ oznacza ranking wierzchołka u, parametr d jest używany w normalizacji, B_u jest zbiorem wierzchołków, z których wychodzą krawędzie do wierzchołka u, F_v oznacza zbiór wierzchołków, do których dochodzą krawędzie z wierzchołka v, a $N_v = |F_v|$. W zapisie macierzowym:

$$\mathbf{r} = d\mathbf{A}\mathbf{r},\tag{2}$$

gdzie ${\bf A}$ jest macierzą adiacencji grafu, w której każdy wiersz u jest przeskalowany wyjściowym stopniem wierzchołka u.

$$\mathbf{A}_{u,v} = \begin{cases} \frac{1}{N_u} & \text{jeśli krawędź } (u,v) \text{ istnieje} \\ 0 & \text{w przeciwnym wypadku} \end{cases}$$
 (3)

Zauważ, że \mathbf{r} może zostać obliczony jako dominujący wektor własny macierzy \mathbf{A} za pomocą metody potęgowej (dominujący wektor własny \mathbf{q}_1 znormalizowany za pomocą normy L1). Przetestuj poprawność obliczeń korzystając z 3 dowolnych silnie spójnych grafów skierowanych o liczbie wierzchołków większej niż 10.

Zadanie 2 Page Rank

Rozszerz model z poprzedniego zadania, dodając możliwość skoku do losowego wierzchołka grafu:

$$\mathbf{r}(u) = d \sum_{v \in B_n} \frac{\mathbf{r}(v)}{N_v} + (1 - d)\mathbf{e}(u), \tag{4}$$

W zapisie macierzowym:

$$\mathbf{r} = (d\mathbf{A} + (1 - d)\mathbf{e} \otimes \mathbf{1})\mathbf{r} \tag{5}$$

gdzie $||\mathbf{r}||_1 = 1$, a e jest wektorem zawierającym prawdopodobieństwa odwiedzania wierzchołków przez losowy skok. Wykorzystaj metodę potęgową do obliczenia Page Rank jako dominującego wektora własnego macierzy $\mathbf{B} = d\mathbf{A} + (1-d)\mathbf{e} \otimes \mathbf{1}$.

- 1. ${\bf r}_0$
- 2. do
- 3. $\mathbf{r}_{i+1} = \mathbf{Br}_i$
- 4. $d = ||\mathbf{r}_i||_1 ||\mathbf{r}_{i+1}||_1$
- 5. $\mathbf{r}_{i+1} = \mathbf{r}_{i+1} + d\mathbf{e}$
- 6. $\delta = ||\mathbf{r}_{i+1} \mathbf{r}_i||_1$
- 7. while $\delta > \epsilon$

Przetestuj działanie zaimplementowanego algorytmu Page Rank dla wybranych grafów z bazy SNAP. Przetestuj różne wartości parametru d (0.9, 0.85, 0.75, 0.6, 0.5) oraz różne postacie wektora \mathbf{e} , przykładowo $\mathbf{e} = \frac{1}{n}[1, 1, \dots, 1]$.