Devoir maison n°2: Autour de la continuité

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier TE1

Partie 1 - Bornitude et continuité

1) Soient $f: \mathbb{R} \longrightarrow \mathbb{R}$ continue et $g: \mathbb{R} \longrightarrow \mathbb{R}$ bornée. Il existe ainsi $m, M \in \mathbb{R}$ tels que pour tout $x \in \mathbb{R}$, $m \leqslant g(x) \leqslant M$.

D'une part, $f(x) \in \mathbb{R}$ donc puisque g est bornée, $m \leqslant g(f(x)) \leqslant M$ i.e. $g \circ f$ est bornée.

D'autre part, pour tout $x \in \mathbb{R}$, $g(x) \in [m, M]$. f est continue donc d'après le TVI, l'image du segment [m, M] par f est aussi un segment [m', M'] $(m', M' \in \mathbb{R})$. Donc $f(g(x)) \in [m', M']$ i.e. $f \circ g$ est bornée.

Partie 2 - Injectivité et continuité

1) Soit f une fonction strictement monotone d'un intervalle I dans \mathbb{R} . Pour tout x et y tel que x < y, soit f(x) < f(y) soit f(x) > f(y) donc $f(x) \neq f(y)$. Il n'existe pas deux antécédants qui donnent la même image donc f est injective.

Prenons la fonction:

$$\begin{split} f: \mathbb{R}_+ &\to \mathbb{R} \\ f: x &\mapsto \begin{cases} -1 \text{ si } x = 1 \\ x \text{ sinon} \end{cases} \end{split}$$

f est une bijection puique $-1 \notin \mathbb{R}_+$ donc f est injective. Or f(1) < f(0) < f(2) donc f n'est pas monotone. La réciproque est fausse.