COMP 360 - Fall 2011 - Final Exam

- 1. (10 Points) Let (A, B) be a minimum cut in a flow network, and suppose that there are exactly two edges e_1 and e_2 going from A to B.
 - (a) Prove: Decreasing the capacity of e_1 by 1 and at the same time increasing the capacity of e_2 by 1 cannot increase the value of the maximum flow.

(b) <u>Disprove</u>: Decreasing the capacity of e_1 by 1 and at the same time increasing the capacity of e_2 by 1 cannot <u>decrease</u> the value of the maximum flow.

2. (5 Points) Write the dual of the following linear program:

$$\begin{array}{ll} \min & x_1\\ \text{s.t.} & x_1+x_2\geq 8\\ & x_1-x_2=4\\ & x_1\geq 0 \text{ and } x_2 \text{ is universal} \end{array}$$

3. (5 Points) If a maximization linear program is unbounded, then what can be said about its du	ıal?
(Is it unbounded, feasible and bounded, or infeasible?) Explain.	
4. (5 Points) Show that the following problem belongs to P:	
$X = \{\langle G \rangle \mid G \text{ has an independent set of size } 10\}.$	
5. (5 Points) Describe the complexity class PSPACE.	

6. (10 Points) Write a linear program for solving the following problem: Given an $n \times n$ matrix A and an n-dimensional vector b, we want to find a vector

$$x = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right)$$

such that Ax = b and that $\max_{i=1}^{n} |x_i|$ is minimized (Hint: Try to use the constrains of the form $y \ge a$ and $y \ge -a$).

7. (5 Points) Show that the following language is NP-complete:

 $X = \{ \langle G, k \rangle \ : \ G \text{ has a cycle of length at least } k \}.$

8. (10 Points) A kite is a graph on an even number of vertices, say 2k, in which k of the vertices form a clique and the remaining k vertices are connected in a tail that consists of a path joined to one of the vertices of the clique. Prove that KITE is NP-complete, where

 ${\rm KITE} = \{ \langle G, k \rangle \ : \ G \ {\rm has \ a \ subgraph \ which \ is \ a \ kite \ on \ } 2k \ {\rm vertices} \}.$

9. (10 Points) Show that the following language is NP-complete: $\,$

$$Z = \{\langle \{w_1, \dots, w_n\}, k \rangle \mid w_1, \dots, w_n \text{ and } k \text{ are positive integers and}$$

$$\exists S \subseteq \{w_1, \dots, w_n\} \text{ such that } \sum_{w \in S} w = 2^k\}.$$

- 10. Consider the MAX-SAT problem: Given a CNF formula ϕ on variables x_1, \ldots, x_n , find a truth assignment to the variables that maximizes the total number of satisfied clauses.
 - (a) (10 Points) Show that the following is a $\frac{1}{2}$ -factor approximation algorithm for MAX-SAT: Let $\sigma_{\rm true}$ be the truth assignment that assigns True to every variable, and $\sigma_{\rm false}$ be the truth assignment that assigns False to every variable. Compute the number of clauses satisfied by $\sigma_{\rm true}$ and $\sigma_{\rm false}$, and output the better assignment.

(b)	(5) as t	Point the $\frac{1}{2}$	ts) (Give tor.	a tig	ght e	xamp	ole:	An	inpu	ıt ins	stanc	e wh	nere	this	algor	rithm	perf	orms	as	bad

- 11. (10 Points) Recall the triangle elimination problem: We are given a graph G = (V, E), and want to find the smallest possible set of vertices $U \subseteq V$ such that the subgraph of G induced by V U does not contain any triangles (i.e. cycles of length 3). Consider the following algorithm:
 - \bullet Set U to be the empty set.
 - While there are still triangles in the graph:
 - find a triangle and add all its three vertices to U and remove them from G.

Prove that this is a 3-factor approximation algorithm.

- 12. (10 Points) Given a set U and subsets $S_1, \ldots, S_{2^m} \subseteq U$, each of size m+2, we want to color the elements of U with two colors Red and Blue such that every set S_i contains both colors. Consider the following randomized algorithm:
 - For $i = 1, \dots, 1000$:
 - ullet Pick a random coloring of U with two colors Red and Blue.
 - If every set S_i contains both colors, then return the coloring.
 - \bullet EndFor.

Show that the probability that the algorithm does not succeed in finding the desired coloring is at most 2^{-1000} .