Multidimensional scaling as a tool for smoothing over complex spatial regions

David Lawrence Miller

Mathematical Sciences University of Bath

January 16, 2011

Outline

Smoothing over complex regions

The problem
Smoothing with splines
Solutions

Multidimensional Scaling

Details

Finding the within-area distances

Simulation Results

Conclusions

Outline

Smoothing over complex regions The problem Smoothing with splines Solutions

Multidimensional Scaling
Details
Finding the within-area distances
Simulation Results

Conclusions

Smoothing in 2 dimensions

- Have some geographical region and wish to find out something about the biological population in it.
- ▶ Response is eg. animal distribution, wish to predict based on (x, y) and other covariates eg. habitat, size, sex, etc.
- ► This problem is relatively easy if the domain is simple.

Leakage (or, "whales don't live in glaciers")

- Smoothing of complex domains makes this a lot more difficult.
- Problem of leakage.
- Wrong metric.
- Euclidean distance doesn't always make sense.

(modified) Ramsay test function

Thin plate spline fit

Smoothing with penalties

- Do smoothing with splines in an additive model framework.
- ► Take some linear combination of (known) basis functions.
- ▶ Penalize based on integral of second squared derivative $\left(\frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2}\right)^2$.
- ► Here using thin plate regression splines (eg Wood (2003)).

Proposed solutions to leakage problems

Two categories: PDE boundary condition based, within-area distance based.

- ► PDEs:
 - ► FELSPLINE (Ramsay, 2002).
 - ▶ Soap film smoothers (Wood et al, 2008).
- Within-area distance
 - Within-area distance (Wang and Ranalli, 2007).

"The Third Way"

- Domain morphing.
- Takes into account within-area distance.
- Gives a known domain that is easier to smooth over.
- Potentially less computationally intensive.
- ► Eilers (2006) proposes Schwarz-Christoffel transform.

However:

- Don't maintain isotropy distribution of points odd.
- Not clear what this does to the smoothness penalty artefacts, penalty issues.

Outline

Smoothing over complex regions
The problem
Smoothing with splines
Solutions

Multidimensional Scaling

Details
Finding the within-area distances
Simulation Results

Conclusions

Multidimensional scaling and within-area distances

Idea: use MDS to to arrange points in the domain according to their distance within the domain.

Scheme:

- First need to find the within-area distances.
- Perform MDS on the matrix of within-area distances.
- Find the new configuration of the points.
- Smooth over the new points.

Multidimensional scaling refresher

- Use double centred matrix of between point distances, D, using the eigen-decomposition of DD^T we can find new points.
- Finds a configuration of points such that Euclidean distance between points in new arrangement is approximately the same as distance in the domain.
- New points can be added into the MDS configuration via Gower's interpolation (Gower, 1968)

A "new" algorithm for finding within-area distances

- Algorithm "bounces" around inside the polygon.
- ▶ Initial path is just the path around the edge, then iterate over two steps: *delete* and *alter*.
- Delete (iterating over all nodes):
 - ▶ If we can shorten the path by simply deleting a node, do that.
- Alter (iterating over all nodes):
 - If we can find a shorter sub-path by bouncing off the other "side" of the polygon, do that.

Ramsay simulations

A different domain

The Aral sea

So, it looks good, but...

- Computationally costly to find the within-area distances.
 (Esp. prediction.)
- Comparative in MSE terms to the soap film smoother.
- Artefacts.
- ► Taking a *m*-D projection of *n*-D space.

Outline

Smoothing over complex regions

The problem
Smoothing with splines
Solutions

Multidimensional Scaling

Details

Finding the within-area distances Simulation Results

Conclusions

Smoothing using domain transformation manifesto

- No crowding.
- Maintain order.
- Smooth mapping.
- Fast mapping.

The key: transform "just enough" but no more.

References

- S.N. Wood, M.V. Bravington, and S.L. Hedley. Soap film smoothing. JRSSB, 2008
- H. Wang and M.G. Ranalli. Low-rank smoothing splines on complicated domains. Biometrics, 2007
- T.A. Driscoll and L.N. Trefethen. Schwarz-Christoffel Mapping. Cambridge, 2002
- T. Ramsay. Spline smoothing over difficult regions. JRSSB, 2002
- P.H.C. Eilers. P-spline smoothing on difficult domains.
 University of Munich seminar, 2006
- J.C. Gower. Adding a point to vector diagrams in multivariate analysis. Biometrika, 1968.

Slides available at http://people.bath.ac.uk/dlm27