A new generation of effective core potentials Correlation consistent effective core potentials (ccECPs)

Omar Madany, Lubos Mitas

Department of Physics, North Carolina State University, Raleigh, North Carolina

Center for Predictive Simulation of Functional Materials

ccECPs in a few slides

Features:

- Many-body constructions are inherited for many-body use (e.g. beyond mean-field).
- Semi-local gaussian expansions with a minimal number of parameters (great for gaussian-based codes).
- Eliminated Coulomb singularities resulting in finite smooth potential functions for any size of core spaces (great for periodic codes with resulting in low-cutoff of plane waves).

Semi-local averaged relativistic effective potential V^{AREP}

$$V_i^{ ext{AREP}} = \underbrace{V_L(r_i)}_{ ext{Local potential}} + \underbrace{\sum_{\ell=0}^{\ell_{ ext{max}}=L-1} (V_\ell(r_i) - V_L(r_i))}_{ ext{Non-local potential}} imes \underbrace{\sum_{m=-\ell}^{\ell} |\ell m \rangle \langle \ell m|}_{ ext{Non-local potential}},$$

Si AREP ccECP replaces 10 inner core electrons

$$\textbf{Local Potential: } V_L(r_i) = \underbrace{-\frac{Z_{\text{eff}}}{r}\left(1 - e^{\alpha r^2}\right) + \alpha Z_{\text{eff}} r e^{-\beta r^2}}_{\text{Coulomb singularity cancellation}} + \underbrace{\sum_{i=1}^{r} \gamma_i e^{-\delta_i r^2}}_{\text{Smoothing terms}}$$

Non-local Potentials: $V_\ell(r_i) - V_L(r_i) = \sum_{k=1}^{L} \beta_{\ell k} r^{n_{\ell k}-2} e^{-\alpha_{\ell k} r^2}$

 $\alpha_{\ell k}$ $\beta_{\ell k}$ $\beta_{\ell k}$ 9.447023 14.832760 2.553812 26.349664 on-local p channel

Accuracy validation for ccECPs

- Validated against **CCSD(T)** for precise spectra (neutral atom, IP, EA, excitations).
- Stress tested in various bonding environments using molecular binding curves across non-equilibrium geometries, ensuring **chemical accuracy** (1 kcal/mol $\approx 0.043 \, \text{eV}$).
- Quantify the associated locality and fixed-node biases in DMC.
- Determine energy cutoffs for plane-wave codes using the UPF forms:
 - Main Group Elements (large core): $\approx 60 \text{ Ry}$
 - Main Group Elements (small core): $\approx 200 \text{ Ry}$
 - Transition Metals: $\approx 350 \text{ Ry}$
 - Lanthanides: $\approx 400 \text{ Ry}$

PbO molecule binding curve and discrepancy, all-el vs ccECP

(Pb: $core[[Xe]4f^{14}5d^{10}]$, valence $6s^26p^2$)

(a) Comparison of Morse potential fits for PbO: AE vs ccECP.

(b) Binding energy discrepancies for PbO molecule.

Generalization for spin-orbit interactions

• Semi-local, fully spin-orbit relativistic ECP (SOREP):

$$V_i^{
m SOREP} = \underbrace{V_i^{
m AREP}}_{
m Averaged\ relativistic\ effective\ potential} + \underbrace{V_i^{
m SO}}_{
m Spin-orbit\ terms}$$

where:

- V_i^{AREP} : Captures all relativistic effects with averaged spin-orbit coupling (acts on ordinary spatial orbitals).
- V_i^{SO} : Captures relativistic splitting (acts on 2-comp. spinors).

Currently Available Elements on Pseudopotential

Library(https://pseudopotentiallibrary.org/)

• Currently completed: 67 elements ($\sim 60\%$ of the periodic table).

$$\underbrace{12}_{s\text{-block}} + \underbrace{25}_{p\text{-block}} + \underbrace{25}_{d\text{-block}} + \underbrace{5}_{f\text{-block}} = 67$$

Silicon

E.g. Si ccECP on pseudopotential library

- Multiple core choice
- Format support for quantum chemistry codes.
- Optimized (aug)-cc-p(C)VnZ Gaussian basis sets.
- **Semi-local** formats (including radial grid-based ".xml" used in OMCPACK)
- Kleinman-Bylander ".upf" version for plane-wave codes.
 - ".rpt" contains relevant information about the conversion and transferability.

Download directly through the website or using command-line wget http://pseudopotentiallibrary.org/recipes/element/ccECP/element.file.format

ccECP from Chandler Bennett et al

ccECP He core

ccECP from Chandler Bennett et al.

ccECPs library and literature

- Available at pseudopotentiallibrary.org:
- Papers:
 - Lanthanides, heavy 5s, 6s, 5p, 6p and 4d arXiv:2505.18100 (2025)
 - Lanthanides, heavy 4d and 5d: Journal of Chemical Physics 160 084302 (2024)
 - 3d ccECP-soft: J. Chem. Phys. 157, 174307 (2022)
 - Heavy 4d, 5d, 6s, and 6p: Journal of Chemical Physics 157 054101 (2022)
 - 4s, 4p and 1st row: Journal of Chemical Physics 151, 144110 (2019)
 - 3d transition metals: Journal of Chemical Physics 149, 134108 (2018)
 - 2nd row: Journal of Chemical Physics 149, 104108 (2018)
 - 1st and 2nd row: Journal of Chemical Physics 147, 224106 (2017)

6p: Pb with [[Xe] $4f^{14}5d^{10}$] (4 valence e^- : $6s^26p^2$)

• Energy cutoff for plane-wave calculations 40 Ry.

(a) Atomic Spectra Benchmarks

(b) Binding energy discrepancies for PbO molecule.