The submonoid membership problem for groups

Markus Lohrey¹ Benjamin Steinberg²

¹Universität Leipzig

²City College of New York

bsteinberg@ccny.cuny.edu

 $\verb|http://www.sci.ccny.cuny.edu/\sim|benjamin/|$

January 4, 2012

- Integer Programming:
 - o Given $A\in M_{mn}(\mathbb{Z})$ and ${\pmb b}\in\mathbb{Z}^m$, does $A{\pmb x}={\pmb b}$ have a solution ${\pmb x}\in\mathbb{N}^n$?

- Integer Programming:
 - o Given $A \in M_{mn}(\mathbb{Z})$ and $b \in \mathbb{Z}^m$, does Ax = b have a solution $x \in \mathbb{N}^n$?
- Algebraically speaking, the problem is to determine whether \boldsymbol{b} is a non-negative linear combination of the columns of A.

- Integer Programming:
 - o Given $A \in M_{mn}(\mathbb{Z})$ and $b \in \mathbb{Z}^m$, does Ax = b have a solution $x \in \mathbb{N}^n$?
- Algebraically speaking, the problem is to determine whether b
 is a non-negative linear combination of the columns of A.
- In other words, does b belong to the submonoid of Z^m generated by the columns of A?

• Integer Programming:

- o Given $A \in M_{mn}(\mathbb{Z})$ and $b \in \mathbb{Z}^m$, does Ax = b have a solution $x \in \mathbb{N}^n$?
- Algebraically speaking, the problem is to determine whether b
 is a non-negative linear combination of the columns of A.
- In other words, does b belong to the submonoid of Z^m generated by the columns of A?
- So integer programming is the submonoid membership problem for abelian groups.

• Integer Programming:

- o Given $A \in M_{mn}(\mathbb{Z})$ and $b \in \mathbb{Z}^m$, does Ax = b have a solution $x \in \mathbb{N}^n$?
- Algebraically speaking, the problem is to determine whether b
 is a non-negative linear combination of the columns of A.
- In other words, does b belong to the submonoid of Z^m generated by the columns of A?
- So integer programming is the submonoid membership problem for abelian groups.
- Integer programming is well known to be NP-complete.

• Integer Programming:

- o Given $A \in M_{mn}(\mathbb{Z})$ and $b \in \mathbb{Z}^m$, does Ax = b have a solution $x \in \mathbb{N}^n$?
- Algebraically speaking, the problem is to determine whether b
 is a non-negative linear combination of the columns of A.
- In other words, does b belong to the submonoid of Z^m generated by the columns of A?
- So integer programming is the submonoid membership problem for abelian groups.
- Integer programming is well known to be NP-complete.
- The submonoid membership problem for arbitrary groups is a non-commutative analogue of integer programming.

• Fix a group G and a finite symmetric generating set Σ .

- Fix a group G and a finite symmetric generating set Σ .
- Let $\pi \colon \Sigma^* \to G$ be the canonical projection.

- Fix a group G and a finite symmetric generating set Σ .
- Let $\pi \colon \Sigma^* \to G$ be the canonical projection.
- ullet Consider the following algorithmic problems for G.

- Fix a group G and a finite symmetric generating set Σ .
- Let $\pi \colon \Sigma^* \to G$ be the canonical projection.
- Consider the following algorithmic problems for G.
- The Word Problem:
 - $\quad \text{o Given } w \in \Sigma^* \text{, does } \pi(w) = 1?$

- Fix a group G and a finite symmetric generating set Σ .
- Let $\pi \colon \Sigma^* \to G$ be the canonical projection.
- Consider the following algorithmic problems for G.
- The Word Problem:
 - $\quad \text{o Given } w \in \Sigma^* \text{, does } \pi(w) = 1?$
- The (Uniform) Generalized Word Problem:
 - Given $w, w_1, \ldots, w_n \in \Sigma^*$, is $\pi(w) \in \langle \pi(w_1), \ldots, \pi(w_n) \rangle$?

- Fix a group G and a finite symmetric generating set Σ .
- Let $\pi \colon \Sigma^* \to G$ be the canonical projection.
- ullet Consider the following algorithmic problems for G.
- The Word Problem:
 - $\quad \text{o Given } w \in \Sigma^* \text{, does } \pi(w) = 1?$
- The (Uniform) Generalized Word Problem:
 - \circ Given $w, w_1, \ldots, w_n \in \Sigma^*$, is $\pi(w) \in \langle \pi(w_1), \ldots, \pi(w_n) \rangle$?
- The (Uniform) Submonoid Membership Problem:
 - o Given $w, w_1, \ldots, w_n \in \Sigma^*$, is $\pi(w) \in \pi(\{w_1, \ldots, w_n\}^*)$?

- Fix a group G and a finite symmetric generating set Σ .
- Let $\pi \colon \Sigma^* \to G$ be the canonical projection.
- ullet Consider the following algorithmic problems for G.
- The Word Problem:
 - Given $w \in \Sigma^*$, does $\pi(w) = 1$?
- The (Uniform) Generalized Word Problem:
 - Given $w, w_1, \ldots, w_n \in \Sigma^*$, is $\pi(w) \in \langle \pi(w_1), \ldots, \pi(w_n) \rangle$?
- The (Uniform) Submonoid Membership Problem:
 - Given $w, w_1, \ldots, w_n \in \Sigma^*$, is $\pi(w) \in \pi(\{w_1, \ldots, w_n\}^*)$?
- The (Uniform) Rational Subset Membership Problem:
 - Given $w \in \Sigma^*$ and a finite automaton $\mathscr A$ over Σ , is $\pi(w) \in \pi(L(\mathscr A))$?

- Fix a group G and a finite symmetric generating set Σ .
- Let $\pi \colon \Sigma^* \to G$ be the canonical projection.
- ullet Consider the following algorithmic problems for G.
- The Word Problem:
 - $\quad \text{o Given } w \in \Sigma^* \text{, does } \pi(w) = 1?$
- The (Uniform) Generalized Word Problem:
 - Given $w, w_1, \ldots, w_n \in \Sigma^*$, is $\pi(w) \in \langle \pi(w_1), \ldots, \pi(w_n) \rangle$?
- The (Uniform) Submonoid Membership Problem:
 - Given $w, w_1, \ldots, w_n \in \Sigma^*$, is $\pi(w) \in \pi(\{w_1, \ldots, w_n\}^*)$?
- The (Uniform) Rational Subset Membership Problem:
 - $\hbox{ Given } w \in \Sigma^* \hbox{ and a finite automaton } \mathscr A \hbox{ over } \Sigma, \hbox{ is } \\ \pi(w) \in \pi(L(\mathscr A))?$
- Decidability of these problems is independent of Σ .

• The above decision problems were listed in order of difficulty.

- The above decision problems were listed in order of difficulty.
- It is natural to search for groups distinguishing these problems.

- The above decision problems were listed in order of difficulty.
- It is natural to search for groups distinguishing these problems.
- $F_2 \times F_2$ has undecidable generalized word problem (Mihailova)

- The above decision problems were listed in order of difficulty.
- It is natural to search for groups distinguishing these problems.
- $F_2 \times F_2$ has undecidable generalized word problem (Mihailova)
- Free solvable groups of derived length ≥ 3 and rank ≥ 2 have undecidable generalized word problem (Umirbaev).

- The above decision problems were listed in order of difficulty.
- It is natural to search for groups distinguishing these problems.
- $F_2 \times F_2$ has undecidable generalized word problem (Mihailova)
- Free solvable groups of derived length ≥ 3 and rank ≥ 2 have undecidable generalized word problem (Umirbaev).
- Compare: all finitely generated metabelian groups have decidable generalized word problem (Romanovskii).

- The above decision problems were listed in order of difficulty.
- It is natural to search for groups distinguishing these problems.
- $F_2 \times F_2$ has undecidable generalized word problem (Mihailova)
- Free solvable groups of derived length ≥ 3 and rank ≥ 2 have undecidable generalized word problem (Umirbaev).
- Compare: all finitely generated metabelian groups have decidable generalized word problem (Romanovskii).
- The Rips construction produces hyperbolic groups with undecidable generalized word problem.

• A finite automaton $\mathscr A$ over an alphabet Σ consists of:

- A finite automaton $\mathscr A$ over an alphabet Σ consists of:
 - \circ a finite directed graph with edges labeled by elements of Σ ;

- A finite automaton $\mathscr A$ over an alphabet Σ consists of:
 - \circ a finite directed graph with edges labeled by elements of Σ ;
 - o a distinguished initial vertex;

- A finite automaton $\mathscr A$ over an alphabet Σ consists of:
 - \circ a finite directed graph with edges labeled by elements of Σ ;
 - a distinguished initial vertex;
 - o a set of final vertices.

- A finite automaton $\mathscr A$ over an alphabet Σ consists of:
 - \circ a finite directed graph with edges labeled by elements of Σ ;
 - a distinguished initial vertex;
 - a set of final vertices.
- The language $L(\mathscr{A})$ of the automaton consists of all words labeling a path from the initial vertex to a final vertex.

- A finite automaton $\mathscr A$ over an alphabet Σ consists of:
 - \circ a finite directed graph with edges labeled by elements of Σ ;
 - a distinguished initial vertex;
 - a set of final vertices.
- The language $L(\mathscr{A})$ of the automaton consists of all words labeling a path from the initial vertex to a final vertex.
- A language is called rational if it is accepted by some finite automaton.

- A finite automaton $\mathscr A$ over an alphabet Σ consists of:
 - \circ a finite directed graph with edges labeled by elements of Σ ;
 - a distinguished initial vertex;
 - o a set of final vertices.
- The language $L(\mathscr{A})$ of the automaton consists of all words labeling a path from the initial vertex to a final vertex.
- A language is called rational if it is accepted by some finite automaton.
- Examples:
 - The language of geodesic words in a hyperbolic group;

- A finite automaton $\mathscr A$ over an alphabet Σ consists of:
 - \circ a finite directed graph with edges labeled by elements of Σ ;
 - a distinguished initial vertex;
 - o a set of final vertices.
- The language $L(\mathscr{A})$ of the automaton consists of all words labeling a path from the initial vertex to a final vertex.
- A language is called rational if it is accepted by some finite automaton.
- Examples:
 - The language of geodesic words in a hyperbolic group;
 - The language of geodesic words belonging to a quasiconvex subgroup of a hyperbolic group.

• Let $\operatorname{Rat}(G)$ be the collection of rational subsets of G, i.e., sets of the form $\pi(L(\mathscr{A}))$ with \mathscr{A} a finite automaton.

- Let $\operatorname{Rat}(G)$ be the collection of rational subsets of G, i.e., sets of the form $\pi(L(\mathscr{A}))$ with \mathscr{A} a finite automaton.
- Rat(G) is the smallest collection of subsets of G containing the finite subsets and closed under:

- Let $\operatorname{Rat}(G)$ be the collection of rational subsets of G, i.e., sets of the form $\pi(L(\mathscr{A}))$ with \mathscr{A} a finite automaton.
- Rat(G) is the smallest collection of subsets of G containing the finite subsets and closed under:
 - o union;

- Let $\operatorname{Rat}(G)$ be the collection of rational subsets of G, i.e., sets of the form $\pi(L(\mathscr{A}))$ with \mathscr{A} a finite automaton.
- Rat(G) is the smallest collection of subsets of G containing the finite subsets and closed under:
 - o union;
 - product;

- Let $\operatorname{Rat}(G)$ be the collection of rational subsets of G, i.e., sets of the form $\pi(L(\mathscr{A}))$ with \mathscr{A} a finite automaton.
- Rat(G) is the smallest collection of subsets of G containing the finite subsets and closed under:
 - o union:
 - product;
 - \circ generation of submonoids $X \mapsto X^*$.

- Let $\operatorname{Rat}(G)$ be the collection of rational subsets of G, i.e., sets of the form $\pi(L(\mathscr{A}))$ with \mathscr{A} a finite automaton.
- Rat(G) is the smallest collection of subsets of G containing the finite subsets and closed under:
 - o union;
 - product;
 - \circ generation of submonoids $X \mapsto X^*$.
- Examples:
 - finitely generated subgroups;

- Let $\operatorname{Rat}(G)$ be the collection of rational subsets of G, i.e., sets of the form $\pi(L(\mathscr{A}))$ with \mathscr{A} a finite automaton.
- Rat(G) is the smallest collection of subsets of G containing the finite subsets and closed under:
 - o union;
 - product;
 - o generation of submonoids $X \mapsto X^*$.
- Examples:
 - finitely generated subgroups;
 - finitely generated submonoids;

Rational subsets

- Let $\operatorname{Rat}(G)$ be the collection of rational subsets of G, i.e., sets of the form $\pi(L(\mathscr{A}))$ with \mathscr{A} a finite automaton.
- Rat(G) is the smallest collection of subsets of G containing the finite subsets and closed under:
 - o union;
 - product;
 - \circ generation of submonoids $X \mapsto X^*$.
- Examples:
 - finitely generated subgroups;
 - finitely generated submonoids;
 - o double cosets of finitely generated subgroups.

Examples

• The automaton

recognizes the submonoid $\{g,h\}^*$ generated by g,h.

Examples

• The automaton

recognizes the submonoid $\{g,h\}^*$ generated by g,h.

The automaton

recognizes the double coset $\langle g_1, g_2 \rangle g \langle g_1, g_2 \rangle$.

Theorem (Anissimov, Seifert)

A subgroup $H \leq G$ belongs to Rat(G) iff H is finitely generated.

Theorem (Anissimov, Seifert)

A subgroup $H \leq G$ belongs to Rat(G) iff H is finitely generated.

• Rational submonoids need not be finitely generated.

Theorem (Anissimov, Seifert)

A subgroup $H \leq G$ belongs to Rat(G) iff H is finitely generated.

- Rational submonoids need not be finitely generated.
- Rational subsets are not in general closed under complement and intersection.

Theorem (Anissimov, Seifert)

A subgroup $H \leq G$ belongs to Rat(G) iff H is finitely generated.

- Rational submonoids need not be finitely generated.
- Rational subsets are not in general closed under complement and intersection.
- If $\operatorname{Rat}(G)$ is closed under intersection, then G is a Howson group.

• Diekert, Gutiérrez and Hagenah showed solving equations with rational constraints over free groups is PSPACE-complete.

- Diekert, Gutiérrez and Hagenah showed solving equations with rational constraints over free groups is PSPACE-complete.
- Diekert and Lohrey used this to solve equations and decide the positive theory for graph groups.

- Diekert, Gutiérrez and Hagenah showed solving equations with rational constraints over free groups is PSPACE-complete.
- Diekert and Lohrey used this to solve equations and decide the positive theory for graph groups.
- Dahmani and Guirardel solved equations over hyperbolic groups with special rational constraints.

- Diekert, Gutiérrez and Hagenah showed solving equations with rational constraints over free groups is PSPACE-complete.
- Diekert and Lohrey used this to solve equations and decide the positive theory for graph groups.
- Dahmani and Guirardel solved equations over hyperbolic groups with special rational constraints.
- Dahmani and Groves use rational subsets in their solution to the isomorphism problem for toral relatively hyperbolic groups.

- Diekert, Gutiérrez and Hagenah showed solving equations with rational constraints over free groups is PSPACE-complete.
- Diekert and Lohrey used this to solve equations and decide the positive theory for graph groups.
- Dahmani and Guirardel solved equations over hyperbolic groups with special rational constraints.
- Dahmani and Groves use rational subsets in their solution to the isomorphism problem for toral relatively hyperbolic groups.
- The order of g is finite if and only if $g^{-1} \in g^*$, so decidability of submonoid membership gives decidability of order.

Theorem (Benois (1969))

Rational subset membership is decidable for free groups.

Theorem (Benois (1969))

Rational subset membership is decidable for free groups.

 The proof uses an automata theoretic analogue of Stallings folding.

Theorem (Benois (1969))

Rational subset membership is decidable for free groups.

 The proof uses an automata theoretic analogue of Stallings folding.

Theorem (Eilenberg, Schützenberger (1969))

Rational subset membership in an abelian group is decidable.

Theorem (Benois (1969))

Rational subset membership is decidable for free groups.

 The proof uses an automata theoretic analogue of Stallings folding.

Theorem (Eilenberg, Schützenberger (1969))

Rational subset membership in an abelian group is decidable.

• It reduces to Integer Programming.

 Decidability of rational subset membership is a virtual property (Grunschlag 1999).

- Decidability of rational subset membership is a virtual property (Grunschlag 1999).
- For every $c \geq 2$, there is an $r \gg 1$ so that the free nilpotent group of class c and rank r has undecidable rational subset membership (Roman'kov 1999).

- Decidability of rational subset membership is a virtual property (Grunschlag 1999).
- For every $c \geq 2$, there is an $r \gg 1$ so that the free nilpotent group of class c and rank r has undecidable rational subset membership (Roman'kov 1999).
- The decidability of rational subset membership passes through free products (Nedbaj 2000).

- Decidability of rational subset membership is a virtual property (Grunschlag 1999).
- For every $c \geq 2$, there is an $r \gg 1$ so that the free nilpotent group of class c and rank r has undecidable rational subset membership (Roman'kov 1999).
- The decidability of rational subset membership passes through free products (Nedbaj 2000).
- Independently, with Kambites and Silva, we proved:

- Decidability of rational subset membership is a virtual property (Grunschlag 1999).
- For every $c \geq 2$, there is an $r \gg 1$ so that the free nilpotent group of class c and rank r has undecidable rational subset membership (Roman'kov 1999).
- The decidability of rational subset membership passes through free products (Nedbaj 2000).
- Independently, with Kambites and Silva, we proved:

Theorem (Kambites, Silva, BS (2007))

Decidability of rational subset membership is preserved by free products with amalgamation and HNN-extensions with finite edge groups.

• Let $\mathscr C$ be the smallest class of groups containing the trivial group and closed under:

- Let $\mathscr C$ be the smallest class of groups containing the trivial group and closed under:
 - Taking finitely generated subgroups;

- Let \mathscr{C} be the smallest class of groups containing the trivial group and closed under:
 - Taking finitely generated subgroups;
 - Taking finite index overgroups;

- Let \mathscr{C} be the smallest class of groups containing the trivial group and closed under:
 - Taking finitely generated subgroups;
 - Taking finite index overgroups;
 - Free products with amalgamation and HNN extensions with finite edge groups;

- Let \mathscr{C} be the smallest class of groups containing the trivial group and closed under:
 - Taking finitely generated subgroups;
 - Taking finite index overgroups;
 - Free products with amalgamation and HNN extensions with finite edge groups;
 - \circ Direct product with \mathbb{Z} .

- Let $\mathscr C$ be the smallest class of groups containing the trivial group and closed under:
 - Taking finitely generated subgroups;
 - Taking finite index overgroups;
 - Free products with amalgamation and HNN extensions with finite edge groups;
 - \circ Direct product with \mathbb{Z} .
- The following theorem encompasses all groups known to have decidable rational subset membership.

- Let \mathscr{C} be the smallest class of groups containing the trivial group and closed under:
 - Taking finitely generated subgroups;
 - Taking finite index overgroups;
 - Free products with amalgamation and HNN extensions with finite edge groups;
 - \circ Direct product with \mathbb{Z} .
- The following theorem encompasses all groups known to have decidable rational subset membership.

Theorem (Lohrey, BS (2008))

Every group in the class \mathscr{C} has decidable rational subset membership problem.

ullet For Γ a graph, the associated graph group is

$$\mathscr{G}(\Gamma) = \langle V(\Gamma) \mid [v, w] : (v, w) \in E(\Gamma) \rangle.$$

ullet For Γ a graph, the associated graph group is

$$\mathscr{G}(\Gamma) = \langle V(\Gamma) \mid [v, w] : (v, w) \in E(\Gamma) \rangle.$$

Let

ullet For Γ a graph, the associated graph group is

$$\mathscr{G}(\Gamma) = \langle V(\Gamma) \mid [v, w] : (v, w) \in E(\Gamma) \rangle.$$

Let

• Then $\mathscr{G}(\mathsf{C4}) = F_2 \times F_2$ and so this group has undecidable generalized word problem.

ullet For Γ a graph, the associated graph group is

$$\mathscr{G}(\Gamma) = \langle V(\Gamma) \mid [v, w] : (v, w) \in E(\Gamma) \rangle.$$

Let

- Then $\mathscr{G}(\mathsf{C4}) = F_2 \times F_2$ and so this group has undecidable generalized word problem.
- A graph is chordal if it has no induced cycle of length ≥ 4 .

ullet For Γ a graph, the associated graph group is

$$\mathscr{G}(\Gamma) = \langle V(\Gamma) \mid [v, w] : (v, w) \in E(\Gamma) \rangle.$$

Let

- Then $\mathscr{G}(\mathsf{C4}) = F_2 \times F_2$ and so this group has undecidable generalized word problem.
- A graph is chordal if it has no induced cycle of length ≥ 4 .

Theorem (Kapovich, Myasnikov, Weidmann (2005))

The generalized word problem is decidable for chordal graph groups.

Graph groups: the rational subset problem

Graph groups: the rational subset problem

Theorem (Lohrey, BS (2008))

Let Γ be a graph. Then the following are equivalent:

Graph groups: the rational subset problem

Theorem (Lohrey, BS (2008))

Let Γ be a graph. Then the following are equivalent:

1. rational subset membership is decidable for $\mathscr{G}(\Gamma)$;

Graph groups: the rational subset problem

Theorem (Lohrey, BS (2008))

Let Γ be a graph. Then the following are equivalent:

- 1. rational subset membership is decidable for $\mathscr{G}(\Gamma)$;
- 2. submonoid membership is decidable for $\mathscr{G}(\Gamma)$;

Graph groups: the rational subset problem

Theorem (Lohrey, BS (2008))

Let Γ be a graph. Then the following are equivalent:

- 1. rational subset membership is decidable for $\mathscr{G}(\Gamma)$;
- 2. submonoid membership is decidable for $\mathscr{G}(\Gamma)$;
- 3. Γ contains neither an induced C4 nor P4.

Graph groups: the rational subset problem

Theorem (Lohrey, BS (2008))

Let Γ be a graph. Then the following are equivalent:

- 1. rational subset membership is decidable for $\mathscr{G}(\Gamma)$;
- 2. submonoid membership is decidable for $\mathscr{G}(\Gamma)$;
- 3. Γ contains neither an induced C4 nor P4.

Since P4 is chordal, we obtain the first example of a group with decidable generalized word problem but undecidable submonoid membership problem.

The direct product of two free monoids

Theorem (Lohrey, BS)

Any group containing a direct product of two free monoids has undecidable rational subset membership problem.

The direct product of two free monoids

Theorem (Lohrey, BS)

Any group containing a direct product of two free monoids has undecidable rational subset membership problem.

• This is a simple encoding of the Post correspondence problem.

• The submonoid and rational subset membership problems are equivalent for graph groups.

- The submonoid and rational subset membership problems are equivalent for graph groups.
- We have no examples of a group with decidable submonoid membership but undecidable rational subset membership.

- The submonoid and rational subset membership problems are equivalent for graph groups.
- We have no examples of a group with decidable submonoid membership but undecidable rational subset membership.
- In fact, we have the following result:

- The submonoid and rational subset membership problems are equivalent for graph groups.
- We have no examples of a group with decidable submonoid membership but undecidable rational subset membership.
- In fact, we have the following result:

Theorem (Lohrey, BS (2010))

The submonoid and rational subset membership problems are equivalent for groups with two or more ends.

- The submonoid and rational subset membership problems are equivalent for graph groups.
- We have no examples of a group with decidable submonoid membership but undecidable rational subset membership.
- In fact, we have the following result:

Theorem (Lohrey, BS (2010))

The submonoid and rational subset membership problems are equivalent for groups with two or more ends.

 Recall: a group has 2 or more ends iff it splits over a finite subgroup.

ullet A group G is metabelian if [G,G] is abelian.

- A group G is metabelian if [G,G] is abelian.
- ullet If G is finitely generated, there is an exact sequence

$$1 {\:\longrightarrow\:} [G,G] {\:\longrightarrow\:} G {\:\longrightarrow\:} G/[G,G] {\:\longrightarrow\:} 1$$

with $\left[G,G\right]$ a finitely generated $G/\left[G,G\right]$ -module.

- A group G is metabelian if [G, G] is abelian.
- ullet If G is finitely generated, there is an exact sequence

$$1 {\:\longrightarrow\:} [G,G] {\:\longrightarrow\:} G {\:\longrightarrow\:} G/[G,G] {\:\longrightarrow\:} 1$$

with [G,G] a finitely generated G/[G,G]-module.

 The generalized word problem reduces to the membership problem for finitely generated submodules of modules over group rings of abelian groups.

- A group G is metabelian if [G, G] is abelian.
- If G is finitely generated, there is an exact sequence

$$1 \longrightarrow [G,G] \longrightarrow G \longrightarrow G/[G,G] \longrightarrow 1$$

with [G,G] a finitely generated G/[G,G]-module.

- The generalized word problem reduces to the membership problem for finitely generated submodules of modules over group rings of abelian groups.
- This latter membership problem is decidable.

• A *G*-module is an abelian group with an action of *G* by automorphisms.

- A G-module is an abelian group with an action of G by automorphisms.
- ullet A G-semimodule is a commutative monoid with an action of G by automorphisms.

- A G-module is an abelian group with an action of G by automorphisms.
- A G-semimodule is a commutative monoid with an action of G by automorphisms.
- The Subsemimodule Membership Problem:
 - \circ Given a finitely generated G-module M, a finite subset F of M and an element $m \in M$, decide whether $m \in \mathbb{N}G \cdot F$.

- A G-module is an abelian group with an action of G by automorphisms.
- A G-semimodule is a commutative monoid with an action of G by automorphisms.
- The Subsemimodule Membership Problem:
 - Given a finitely generated G-module M, a finite subset F of M and an element $m \in M$, decide whether $m \in \mathbb{N}G \cdot F$.
- ullet When G is trivial, the subsemimodule membership problem is precisely INTEGER PROGRAMMING.

- A G-module is an abelian group with an action of G by automorphisms.
- A G-semimodule is a commutative monoid with an action of G by automorphisms.
- The Subsemimodule Membership Problem:
 - Given a finitely generated G-module M, a finite subset F of M and an element $m \in M$, decide whether $m \in \mathbb{N}G \cdot F$.
- When G is trivial, the subsemimodule membership problem is precisely INTEGER PROGRAMMING.
- Recall: INTEGER PROGRAMMING is NP-complete.

ullet Let M be a finitely generated $G ext{-module}.$

- Let M be a finitely generated G-module.
- ullet Suppose N is a finitely generated G-subsemimodule with undecidable membership problem.

- Let M be a finitely generated G-module.
- Suppose N is a finitely generated G-subsemimodule with undecidable membership problem.
- Then $N \rtimes G$ is a finitely generated submonoid of $M \rtimes G$ with undecidable membership problem.

- Let M be a finitely generated G-module.
- Suppose N is a finitely generated G-subsemimodule with undecidable membership problem.
- Then $N \rtimes G$ is a finitely generated submonoid of $M \rtimes G$ with undecidable membership problem.

Theorem (Lohrey, BS (2011))

There is a finitely generated free $\mathbb{Z} \times \mathbb{Z}$ -module containing a finitely generated subsemimodule with undecidable membership problem.

- Let M be a finitely generated G-module.
- Suppose N is a finitely generated G-subsemimodule with undecidable membership problem.
- Then $N \rtimes G$ is a finitely generated submonoid of $M \rtimes G$ with undecidable membership problem.

Theorem (Lohrey, BS (2011))

There is a finitely generated free $\mathbb{Z} \times \mathbb{Z}$ -module containing a finitely generated subsemimodule with undecidable membership problem.

• The proof encodes an undecidable problem on planar tilings.

• If G is a group, then $\mathbb{Z} \wr G = \mathbb{Z} G \rtimes G$.

- If G is a group, then $\mathbb{Z} \wr G = \mathbb{Z}G \rtimes G$.
- Set $G=\mathbb{Z}\times\mathbb{Z}$ and let r be large enough so that $\mathbb{Z}G^r$ contains a finitely generated subsemimodule with undecidable membership.

- If G is a group, then $\mathbb{Z} \wr G = \mathbb{Z}G \rtimes G$.
- Set $G=\mathbb{Z}\times\mathbb{Z}$ and let r be large enough so that $\mathbb{Z}G^r$ contains a finitely generated subsemimodule with undecidable membership.
- Let $H = r\mathbb{Z} \times \mathbb{Z}$; so [G:H] = r.

- If G is a group, then $\mathbb{Z} \wr G = \mathbb{Z}G \rtimes G$.
- Set $G=\mathbb{Z}\times\mathbb{Z}$ and let r be large enough so that $\mathbb{Z}G^r$ contains a finitely generated subsemimodule with undecidable membership.
- Let $H = r\mathbb{Z} \times \mathbb{Z}$; so [G:H] = r.
- Then $\mathbb{Z}G$ is a free $\mathbb{Z}H$ -module of rank r and so contains a finitely generated H-subsemimodule with undecidable membership.

- If G is a group, then $\mathbb{Z} \wr G = \mathbb{Z}G \rtimes G$.
- Set $G=\mathbb{Z}\times\mathbb{Z}$ and let r be large enough so that $\mathbb{Z}G^r$ contains a finitely generated subsemimodule with undecidable membership.
- Let $H = r\mathbb{Z} \times \mathbb{Z}$; so [G:H] = r.
- Then $\mathbb{Z}G$ is a free $\mathbb{Z}H$ -module of rank r and so contains a finitely generated H-subsemimodule with undecidable membership.

Theorem (Lohrey, BS (2011))

The wreath product $\mathbb{Z} \wr (\mathbb{Z} \times \mathbb{Z})$ has undecidable submonoid membership problem.

• Let M_2 be a free metabelian group on $\{x,y\}$.

- Let M_2 be a free metabelian group on $\{x, y\}$.
- The word problem for M_2 has a geometric description:

- Let M_2 be a free metabelian group on $\{x, y\}$.
- The word problem for M_2 has a geometric description:
 - o A word w is 1 in M_2 iff it labels a loop in the Cayley graph Γ of $\mathbb{Z} \times \mathbb{Z}$ that is trivial in homology.

- Let M_2 be a free metabelian group on $\{x, y\}$.
- ullet The word problem for M_2 has a geometric description:
 - A word w is 1 in M_2 iff it labels a loop in the Cayley graph Γ of $\mathbb{Z} \times \mathbb{Z}$ that is trivial in homology.
- $[M_2, M_2]$ can be identified with $H_1(\Gamma)$ as a $\mathbb{Z} \times \mathbb{Z}$ -module and hence is free of rank 1 (generated by [x, y]).

- Let M_2 be a free metabelian group on $\{x, y\}$.
- ullet The word problem for M_2 has a geometric description:
 - \circ A word w is 1 in M_2 iff it labels a loop in the Cayley graph Γ of $\mathbb{Z} \times \mathbb{Z}$ that is trivial in homology.
- $[M_2, M_2]$ can be identified with $H_1(\Gamma)$ as a $\mathbb{Z} \times \mathbb{Z}$ -module and hence is free of rank 1 (generated by [x, y]).
- Putting $G = \mathbb{Z} \times \mathbb{Z}$ we have an exact sequence

$$1 \longrightarrow \mathbb{Z}G \longrightarrow M_2 \longrightarrow G \longrightarrow 1$$

- Let M_2 be a free metabelian group on $\{x,y\}$.
- ullet The word problem for M_2 has a geometric description:
 - \circ A word w is 1 in M_2 iff it labels a loop in the Cayley graph Γ of $\mathbb{Z} \times \mathbb{Z}$ that is trivial in homology.
- $[M_2, M_2]$ can be identified with $H_1(\Gamma)$ as a $\mathbb{Z} \times \mathbb{Z}$ -module and hence is free of rank 1 (generated by [x, y]).
- Putting $G=\mathbb{Z}\times\mathbb{Z}$ we have an exact sequence

$$1 \longrightarrow \mathbb{Z}G \longrightarrow M_2 \longrightarrow G \longrightarrow 1$$

• If $H=\langle x^m,y\rangle$, then [H,H] is a rank 1 direct summand (as an $m\mathbb{Z}\times\mathbb{Z}$ -module) in $\mathbb{Z}G$.

- Let M_2 be a free metabelian group on $\{x,y\}$.
- ullet The word problem for M_2 has a geometric description:
 - \circ A word w is 1 in M_2 iff it labels a loop in the Cayley graph Γ of $\mathbb{Z} \times \mathbb{Z}$ that is trivial in homology.
- $[M_2, M_2]$ can be identified with $H_1(\Gamma)$ as a $\mathbb{Z} \times \mathbb{Z}$ -module and hence is free of rank 1 (generated by [x, y]).
- Putting $G = \mathbb{Z} \times \mathbb{Z}$ we have an exact sequence

$$1 \longrightarrow \mathbb{Z}G \longrightarrow M_2 \longrightarrow G \longrightarrow 1$$

- If $H = \langle x^m, y \rangle$, then [H, H] is a rank 1 direct summand (as an $m\mathbb{Z} \times \mathbb{Z}$ -module) in $\mathbb{Z}G$.
- Choosing m large enough, we can encode our subsemimodule with undecidable membership as a finitely generated submonoid of M_2 .

Theorem (Lohrey, BS (2011))

The free metabelian group of rank 2 has undecidable submonoid membership problem.

Theorem (Lohrey, BS (2011))

The free metabelian group of rank 2 has undecidable submonoid membership problem.

Using similar ideas, we proved:

Theorem (Lohrey, BS (2011))

The free metabelian group of rank 2 has undecidable submonoid membership problem.

Using similar ideas, we proved:

Theorem (Lohrey, BS (2011))

The 2-dimensional lamplighter group $\mathbb{Z}/2\mathbb{Z} \wr (\mathbb{Z} \times \mathbb{Z})$ has undecidable rational subset membership problem.

Question

Does there exist a group with decidable submonoid membership and undecidable rational subset membership?

Question

Does there exist a group with decidable submonoid membership and undecidable rational subset membership?

This question is equivalent to the following one.

Question

Does there exist a group with decidable submonoid membership and undecidable rational subset membership?

This question is equivalent to the following one.

Question

Is decidability of submonoid membership preserved by free products?

Question

Does there exist a group with decidable submonoid membership and undecidable rational subset membership?

This question is equivalent to the following one.

Question

Is decidability of submonoid membership preserved by free products?

Question

Does $\mathbb{Z} \wr \mathbb{Z}$ have decidable submonoid membership problem?

Question

Does there exist a group with decidable submonoid membership and undecidable rational subset membership?

This question is equivalent to the following one.

Question

Is decidability of submonoid membership preserved by free products?

Question

Does $\mathbb{Z} \wr \mathbb{Z}$ have decidable submonoid membership problem?

Question

Is submonoid membership decidable for nilpotent groups?

The end

THANK YOU FOR YOUR ATTENTION!