Computational Intelligence: A Compendium

Studies in Computational Intelligence, Volume 115

Editor-in-chief

Prof. Janusz Kacprzyk Systems Research Institute Polish Academy of Sciences ul. Newelska 6 01-447 Warsaw

Poland

E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our homepage: springer.com

Vol. 94. Arpad Kelemen, Ajith Abraham and Yuehui Chen

Computational Intelligence in Bioinformatics, 2008 ISBN 978-3-540-76802-9

Vol. 95. Radu Dogaru

Systematic Design for Emergence in Cellular Nonlinear Networks, 2008

ISBN 978-3-540-76800-5

Vol. 96. Aboul-Ella Hassanien, Ajith Abraham and Janusz Kacprzyk (Eds.)

Computational Intelligence in Multimedia Processing: Recent Advances, 2008

ISBN 978-3-540-76826-5

Vol. 97. Gloria Phillips-Wren, Nikhil Ichalkaranje and Lakhmi C. Jain (Eds.)

Intelligent Decision Making: An AI-Based Approach, 2008 ISBN 978-3-540-76829-9

Vol. 98. Ashish Ghosh, Satchidananda Dehuri and Susmita

Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases, 2008

ISBN 978-3-540-77466-2

Vol. 99. George Meghabghab and Abraham Kandel Search Engines, Link Analysis, and User's Web Behavior,

ISBN 978-3-540-77468-6

Vol. 100. Anthony Brabazon and Michael O'Neill (Eds.) Natural Computing in Computational Finance, 2008 ISBN 978-3-540-77476-1

Vol. 101. Michael Granitzer, Mathias Lux and Marc Spaniol

Multimedia Semantics - The Role of Metadata, 2008 ISBN 978-3-540-77472-3

Vol. 102. Carlos Cotta, Simeon Reich, Robert Schaefer and Antoni Ligeza (Eds.)

Knowledge-Driven Computing, 2008 ISBN 978-3-540-77474-7

Vol. 103. Devendra K. Chaturvedi

Soft Computing Techniques and its Applications in Electrical Engineering, 2008

ISBN 978-3-540-77480-8

Vol. 104. Maria Virvou and Lakhmi C. Jain (Eds.) Intelligent Interactive Systems in Knowledge-Based Environment, 2008

ISBN 978-3-540-77470-9

Vol. 105. Wolfgang Guenthner

Enhancing Cognitive Assistance Systems with Inertial

Measurement Units, 2008 ISBN 978-3-540-76996-5

Vol. 106. Jacqueline Jarvis, Dennis Jarvis, Ralph Rönnquist and Lakhmi C. Jain (Eds.)

Holonic Execution: A BDI Approach, 2008

ISBN 978-3-540-77478-5

Vol. 107. Margarita Sordo, Sachin Vaidya and Lakhmi C. Jain

Advanced Computational Intelligence Paradigms

in Healthcare - 3, 2008

ISBN 978-3-540-77661-1

Vol. 108. Vito Trianni

Evolutionary Swarm Robotics, 2008

ISBN 978-3-540-77611-6

Vol. 109. Panagiotis Chountas, Ilias Petrounias and Janusz Kacprzyk (Eds.)

Intelligent Techniques and Tools for Novel System

Architectures, 2008

ISBN 978-3-540-77621-5

Vol. 110. Makoto Yokoo, Takayuki Ito, Minjie Zhang,

Juhnyoung Lee and Tokuro Matsuo (Eds.) Electronic Commerce, 2008

ISBN 978-3-540-77808-0

Vol. 111. David Elmakias (Ed.)

New Computational Methods in Power System Reliability, 2008

ISBN 978-3-540-77810-3

Vol. 112. Edgar N. Sanchez, Alma Y. Alanís and Alexander G. Loukianov

Discrete-Time High Order Neural Control: Trained with Kalman Filtering, 2008

ISBN 978-3-540-78288-9

Vol. 113. Gemma Bel-Enguix, M. Dolores Jimenez-Lopez and Carlos Martín-Vide (Eds.)

New Developments in Formal Languages and Applications,

ISBN 978-3-540-78290-2

Vol. 114. Christian Blum, Maria José Blesa Aguilera, Andrea Roli and Michael Sampels (Eds.)

Hybrid Metaheuristics, 2008

ISBN 978-3-540-78294-0

Vol. 115. John Fulcher and Lakhmi C. Jain (Eds.) Computational Intelligence: A Compendium, 2008

ISBN 978-3-540-78292-6

John Fulcher Lakhmi C. Jain (Eds.)

Computational Intelligence: A Compendium

With 321 Figures and 67 Tables

Prof. John Fulcher School of Computer Science and Software Engineering Faculty of Informatics University of Wollongong Northfields Ave Wollongong NSW 2522 Australia john@uow.edu.au Prof. L.C. Jain
Knowledge-Based Engineering
Founding Director of the KES Centre
SCT-Building
Mawson Lakes Campus
University of South Australia
Adelaide South Australia SA 5095
Australia
Lakhmi.jain@unisa.edu.au

ISBN 978-3-540-78292-6

e-ISBN 978-3-540-78293-3

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: 2008922060

© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: Deblik, Berlin, Germany

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

At this point in time, Computational Intelligence (CI) has yet to mature as a discipline in its own right. Accordingly, there is little consensus as to a precise definition of this emerging field. Nevertheless, most practitioners would include Artificial Neural Network (ANN), Fuzzy and evolutionary techniques (and perhaps others), and more especially *hybrids* of these (this will be expanded upon in Chap. 1.) Our emphasis in this Compendium is very much on *applied* methods – ones which have been tired-and-proven effective on real-world problems.

The 25 chapters have been grouped into the following ten themes (Parts):

- I. Overview, Background
- II. Data Preprocessing, Systems Integration & Visualization
- III. Artificial Intelligence
- IV. Logic and Reasoning
- V. Ontology
- VI. Intelligent Agents
- VII. Fuzzy Systems
- VIII. Artificial Neural Networks
 - IX. Evolutionary Approaches
 - X. DNA and Immunity-based Computing

This grouping is not the only one we could have used – indeed some chapters could have just as easily appeared in alternate Parts of the Handbook. For example, Lam & Lee's iJADE tourist guidance system could just as readily been grouped into Part-VI (Agents) as Part-V (Ontology); likewise, Fyfe's Topographic Maps would have fitted just as well into Part-VIII (ANNs), Ishibuchi et al. would have been just as equally well placed in either Part-VII or Part-IX, and Islam & Yao could have fitted equally well into Parts VIII or IX. Nevertheless, we have attempted to group together chapters with common foci.

Returning briefly to the question of real-world applications, Table 1 summarizes those covered in the chapters herein.

 Table 1. Chapter methods and applications

Chapter	Method	Application(s)	Data set(s)
2	REDR; SOM; Mitra Multi-Scale	handwritten digits; yeast; synthetic	UCI KDD
3	SOM; GTM; HaToM; ToPE	data visualization	UCI-ML (algae; wine)
4	networked selfish agents; probabilistic cellular automata	self-maintenance/repair; 'internet being'	Denial-Of-Service & Traceroute websites
5	affective embodied agent	synthetic therapist; human behaviour change	_
6	paraconsistent annotated logic	pipeline safety process verification	_
7	Data-Oriented Parsing	Natural Language Processing; musical notation, physics problem solving	Penn Treebank; Essen Folksong Collection
8	Conceptual Graph Theory	ontologies: architectural design; air operations officer	_
9	mobile/GPS agents; ontologies	tourist guidance system	DAML; Protége
10	Agent-Based Modelling software	'Stupid' model	Santa Fe Institute artificial stock market
11	agents; Peer-to-Peer & cluster computing	resource allocation; communication; scheduling	_
12	multi-agents; dynamic clustering	sensor networks	_
13	agents; ANN; SVM; Evolutionary Comp.	computational economics; foreign exchange rates	SFI and AI-ECON artificial stock markets
14	reconciliation via optimization	fuzzy rule-based systems	_
15	Evolutionary multi-objective design	fuzzy rule-based classifiers	UCI-ML (breast; glass; heart; iris; wine)
16	ANNs; MAS	network bandwidth prediction	_
17	SOM; ViSOM; SOMN; kernel methods	vector quantization; image compression/ segmentation; text mining	UCI-ML (iris; yeast)
18	neural systems engineering	Blue Brain; SPINN; SpiNNaker	_
19	GenNt; CGA; FPGA	'artificial brain'; UXO robot	_
20	Evolutionary ANN ensembles	Credit Card; Diabetes; Heart Disease; Glass; Letter; Soybean; Breast Cancer	UCI-ML
21	genetic simulated annealing	graph colouring; bin packing; timetabling	DIMACS; Scholl & Klein; Falkenauer
22	Genetic Programming (GP)	modeling; the 'Humies'; image/signal processing; time series prediction; et al.	_

Chapter	Method	Application(s)	Data set(s)
23	Particle Swarm Optimization	finding origin; Rastrigin/ Schwefel functions; timetabling	_
24	DNA computing	multiple elevator scheduling	_
25	immunity-based computing	stable marriage problem; auto sensor diagnosis; noise neutralization	_

Table 1. (continued)

Chapters commence with an overview of the field in question, and conclude with a Resources Appendix. These resources cover key references (classic texts, survey articles, key papers), pertinent journals, professional societies/organizations and research groups, international conferences and workshops, and/or electronic/on-line material (with a particular emphasis on databases and Open Source software). Each chapter is thus complete unto itself for those readers wanting to explore just a single topic from the many on offer. In this mode, the Compendium could be used as a text for graduate programs in Artificial Intelligence, Intelligent Systems, Soft Computing, Computational Intelligence, and the like. The Index doubles as a Glossary of Terms (with acronyms shown in parentheses).

We have gathered together in a single volume chapters by leading experts in their respective fields – all of international repute, as evidenced (in part) by the following:

- I. Learned Society Fellows: IEEE (Furber, Pedrycz, Yao); Intl. Fuzzy Systems Association (Pedrycz); Royal Society (Furber); Royal Academy of Engineering (Furber); British Computer Society (Furber); Intl. Society for Genetic and Evolutionary Computation (Koza, Langdon, Poli); Institution of Engineers, Australia (Jain)
- II. Editors-in-Chief: Computing and Information Systems (Fyfe); IEEE Trans. Evolutionary Computing (Yao); Information Sciences (Pedrycz); Intelligent Decision Technologies (Jain); Intl. J. Hybrid Intelligent Systems (Jain); Intl. J. Knowledge-based Intelligent Engineering Systems (Founding Editor) (Jain); Intl. J. Logic & Reasoning (Nakamatsu); Intl. J. Metaheuristics (Mumford); New Mathematics & Natural Computing (Chen)
- III. Associate/Area Editors: Advances in Natural Computation (Yao); Computer and Information Systems (Jain); Evolutionary Computation (Poli); IEEE Computational Intelligence Magazine (Ishibuchi); IEEE Trans. Evolutionary Computation (Ishibuchi); IEEE Trans. Fuzzy Systems (Ishibuchi, Pedrycz); IEEE Trans. Knowledge and Data Engineering (Wang); IEEE Trans. Neural Networks (Pedrycz, Wang); IEEE Trans. Neural Networks (Chen, Wang); IEEE Trans. Systems, Man and

- Cybernetics (Ishibuchi, Jain, Pedrycz); Intl. J. Advances in Fuzzy Systems (Ishibuchi); Intl. J. Applied Intelligence (Hendtlass); Intl. J. Computational Intelligence Research (Ishibuchi, Poli); Intl. J. Information Technology (Chow); Intl. J. Knowledge-based Intelligent Engineering Systems (Ishida); Intl. J. Metaheuristics (Ishibuchi); Intl. J. Pattern Recognition and Artificial Intelligence (Jain); J. Artificial Evolution and Applications (McPhee); J. Economic Research (Chen); J. Genetic Programming and Evolvable Machines (Poli); J. Intelligent and Fuzzy Systems (Jain); Mathware and Soft Computing (Ishibuchi); Neural Computing and Applications (Jain); Soft Computing J. (Ishibuchi)
- IV. Book Series Editors: CRC Press (Intl. series on CI) (Jain); IGI (CI: Theory and Applications series) (Fyfe, Jain); Kluwer (Genetic Programming) (Koza); Springer (Advanced Information and Knowledge Processing) (Jain)
- V. Invited Keynote/Plenary Conference Speakers: Chen, deGaris, Fulcher, Fyfe, Ishida, Jain, Koza, Nakamatsu, Prokopenko, Wang, Yao
- VI. Awards: Royal Society Wolfson Research Merit Award (Furber); IET Faraday Medal (Furber); Queen's Award for Technology (Furber); Japanese Society for the Promotion of Science Prize (Ishibuchi); IEEE Donald G. Fink Prize Paper (Yao); AJB CEBIT Exhibition Award (Most Innovative Technology) (Prokopenko); Japanese Society for Artificial Intelligence Award (Prokopenko); Best Paper Awards (Chow, Langdon, McPhee, Poli)
- VII. Advisory Boards: UK EPSRC Peer Review College (Poli); EU Expert Evaluator (Poli)

Indeed, this Handbook is a truly international undertaking, with a total of 43 authors from 10 different countries contributing (9 in Australia; 19 in Asia; 11 in UK; and 4 in North America). All chapters were peer reviewed to ensure a uniformly high standard for the Handbook overall.

Next follows an overview of each Chapter.

In Part-I, Fulcher introduces fundamental Computational Intelligence concepts. This Introductory chapter is intended to serve both as background reading (tutorial) for students/newcomers to the field, as well as setting the scene/laying the groundwork for the more specialist chapters that follow.

A critical consideration with applying any CI approach to real-world problems is data pre-processing. Part-II begins with a chapter by Chow & Huang on Data Reduction for Pattern Recognition. They provide an overview of 'filter' and 'wrapper' methods, before focusing on their Representative Entropy Data Reduction (REDR) approach. In their discussion they cover not only data reduction but also feature selection – another key aspect of pre-processing.

Fyfe's concern in Chap.3 is data visualization. He illustrates how the Self-Organizing Map, Generative and Harmonic Topographic Maps, and the

Topographic Product-of-Experts can all be effectively used on the UCI-ML algae and wine data sets.

Ishida adopts a game-theoretic approach to self-maintenance and repair in large-scale, complex systems such as the Internet – more specifically, 'selfish' agents and Probabilistic Cellular Automata. Emphasis is placed on the emergence of intelligent systems at the Nash Equilibrium in such networks. He concludes with speculation as to the conditions necessary for the emergence of a so-called 'Internet Being', in the context of such 'selfishware'.

Part-III covers conventional (traditional) AI, but from a slightly different perspective. In Chap. 5 Creed and Beale provide a fascinating insight into Emotional Intelligence and affective computing. They commence with a discussion of emotion theory, before introducing 'affective embodied' agents. The authors then demonstrate how such agents can be applied in the real world to engender behavioural change in humans, through the medium of a so-called 'simulated (artificial) therapist'.

Part-IV covers logic, reasoning and related approaches to CI. In Chap. 6 Nakamatsu provides a comprehensive discussion of various paraconsistent annotated logics, including his own extended vector-annotated logic program with strong negation – EVALPSN; defeasible reasoning proofs are also included. Nakamatsu then proceeds to show how EVALPSN can be applied to pipeline process safety verification, and by extension to pipeline process order safety verification (by way of before-after EVALPSN).

Bod uses the supervised, corpus-based probabilistic Data-Oriented Parsing approach to reveal the underlying structures in areas as diverse as Natural Language Processing, the melodic analysis of musical scores, and physics problem solving. A mechanism for determining the optimum parse tree is described, and the chapter concludes with an explanation of how DOP could be modified to support unsupervised learning.

Part-V of the Handbook covers ontology, which is often closely related to intelligent agents (Part-VI). In Chap. 8, Corbett takes the view that frameworks for intelligent systems are best represented by a combination of concept type hierarchy, canonical formation rules, conformity relations and subsumption. He illustrates the validity of this approach with regard to both architectural design and air operation officer ontologies, and concludes that his automated reasoning approach could be readily extended to the Semantic Web.

In Chap. 10, Lam and co-authors provide an account of an Intelligent Ontology Agent-based Tourist Guidance System, which they developed using the Intelligent Java Agent-based Development Environment (iJADE).

Part-VI is devoted to (intelligent) software agents. Standish commences with a comparative review in Chap. 11 of open source Agent-based Modelling

platforms, including a performance comparison on a simple pedagogical model (the so-called 'Stupid Model').

Zhang and co-authors follow in Chap. 11 with a discussion of their agent-based SmartGRID model – incorporating both Peer-to-Peer and clustering techniques – and which can yield improved resource allocation, as well as task communication and scheduling in agent grids operating in open environments. Piraveenan and co-authors are likewise interested in grids, but in their case scale-free sensor networks. They use a dynamic, decentralized MAS algorithm for predicting convergence times for cluster formation in such grids (networks).

Chen provides a comprehensive account of agent-based computational economics (ACE)in Chap. 13, with a particular focus on Genetic Algorithms. After introducing the cobweb and overlapping generations models, he describes several applications of ACE, including inflation, foreign exchange rate, and artificial stock markets.

Fuzzy Systems are the focus of Part-VII. Pedrycz commences with a discussion of the semantics and perception of fuzzy sets and fuzzy mapping. He proceeds to show that reconciliation of fuzzy set perception and granular mappings can be expressed in the form of an optimization pattern, which in turn can be subsequently applied to rule-based systems.

In Chap. 15, Ishibushi and co-authors discuss the principles underlying the evolutionary design of fuzzy classifiers, illustrating the effectiveness of their approach by way of data sets selected from the UCI-ML repository (breast cancer; glass; heart; iris; wine).

Part-VIII covers Artificial Neural Networks. Fu and co-authors commence by illustrating how supervised, feedforward networks (MLP/BP) can be used in the data mining of Quality-of-Service aware media grids.

Yin provides a comprehensive coverage of Kohonen's Self-Organizing Map and its more recent variants in Chap. 17. The performance of SOM, ViSOM, SOM Mixture Network and SOM kernel methods is compared on vector quantization, image compression and segmentation, density modelling, data visualization and text mining.

In Chap. 18, Furber & Temple provide an overview of neural systems engineering, namely the realization of ANNs in hardware form, rather than the more usual approach of software simulation. DeGaris follows in a similar vein, describing how Field Programmable Gate Arrays (FPGAs) can be used to build 'artificial brains'.

Evolutionary approaches to CI are the subject of Part-IX of the Handbook. Islam & Yao commence with an account of how ANN ensembles can be first evolved, then used as classifiers on representative data sets from the UCI-ML repository.

In Chap. 21 Mumford concerns herself with a so-called memetic EA – in the form of a Genetic Simulated Algorithm (GSA) – which she proceeds to demonstrate can be used to solve set partitioning problems (graph colouring, bin packing, timetabling).

Genetic Programming is the focus of the Chapter by Langdon and coauthors. An extensive coverage of basic principles is followed by descriptions of how to apply GPs in various application domains, including hints for the novice user ('tricks-of-the-trade', as it were). The Chapter rounds off with a section on theoretical aspects of GP. The authors include an extensive (420 item) reference list.

In Chap. 23, after providing an overview of the basic Particle Swarm Optimization algorithm, Hendtlass then proceeds to describe enhancements to handle multiple optima, niching and 'Waves of Swarm Particles', before outlining how one can minimize the computational cost of such algorithms. He illustrates the effectiveness of the PSO approach by way of finding the origin, solving Rostrigin's and Schwefel's functions, and timetabling.

In the last Part of the Handbook we cover CI approaches inspired by Nature, but which do not fall under the umbrella of ANNs, EAs or Fuzzy. Firstly, Watada provides an overview of DNA Computing, then proceeds to show how this can be successfully applied to the problem of scheduling the movements of a group of elevators in a high-rise building.

Chapter 25 is concerned with Immunity-based computing (IBC). After introducing the basic concepts, Ishida shows how IBC can be applied to automobile sensor diagnosis, noise neutralization, and the 'Stable Marriage Problem'. He concludes by proposing a general (immunity-based) problem solver.

One of your Editors (JF) formatted the Handbook, using MikTex v2.4 and WinEdit v5.4. In this (considerable) endeavour we are indebted to the following for their assistance along the way: Professor Philip Ogunbona (for imparting 'the joy of LaTex'), Associate Professor Willy Susilo, Associate Professor Russell Standish, Professor Riccardo Poli, Dr. Bill Langdon, and Jia Tang for insight into the finer points of LaTex, as well as Nik Milosevic (for creation of .eps figures). Thanks are also due to Dr. Thomas Ditzinger, Senior Editor, and Heather King, Engineering Editorial, respectively at Springer-Verlag GmbH, as well as Srilatha Achuthan, Project Manager at SPi Technologies, Chennai.

We sincerely trust that you find much of interest in the ensuing pages.

Wollongong NSW, Australia Adelaide SA, Australia September 2007 John Fulcher Lakhmi C. Jain

Contents

Pa	rt I C	Overview, Background	
Со	mput	ational Intelligence: An Introduction	
Joh	n Ful	cher	3
1	Intro	oduction, Overview, Definitions	3
2	Histo	orical Background	7
	2.1	Artificial Intelligence (AI)	7
	2.2	Machine Learning (ML)	14
	2.3	Decision Trees	16
3	Appı	roaches to CI	17
	3.1	The Intuitive Appeal of Nature	17
	3.2	Brains versus Computers	20
4	CI P	aradigms	20
	4.1	Pre-Processing	21
5	Expe	ert Systems	21
6		y Systems	24
7	Artif	ficial Neural Networks	26
	7.1	ANN Types	26
	7.2	Multi-Layer Perceptron/BackPropagation	27
	7.3	Other ANN Models	29
8		utionary Methods	31
	8.1	Genetic Algorithms	32
	8.2	Evolutionary Programming	36
	8.3	Genetic Programming	36
	8.4	Swarms	36
9		unity-Based and Membrane-Based Computing	39
	9.1	Immunity-Based Computing	39
	9.2	Membrane-Based Computing	40
10		A Computing	40
11	Intel	ligent Agents	41

XVI	Contents	

12	Hybrid Methods	42
13	Conclusion	48
Ref	erences	50
Re	sources	67
1	Key Books	67
	1.1 Computational Intelligence	67
	1.2 Artificial Neural Networks	68
	1.3 Evolutionary Methods	69
	1.4 Fuzzy Systems	71
	1.5 Other	71
2	Key Survey/Review Articles	72
	2.1 Artificial Neural Networks	72
	2.2 Evolutionary Methods	73
	2.3 Fuzzy Systems	73
	2.4 Other	73
3	Organizations, Societies, Special Interest Groups, Journals	74
	3.1 Computational Intelligence	74
	3.2 Artificial Neural Networks	74
	3.3 Evolutionary Methods	75
	3.4 Fuzzy Systems	75
	3.5 Other	75
4	Key International Conferences/Workshops	76
5	(Open Source) Software	77
6	Data Bases	78
U	Data Dasos	10
Par	rt II Preprocessing, Visualization, Systems Integration	
Da	ta Reduction for Pattern Recognition and Data	
$\mathbf{A}\mathbf{n}$	alysis	
Tor	mmy W.S. Chow and Di Huang	81
1	Introduction	81
2	Data Reduction	82
	2.1 Wrapper Methods	83
	2.2 Filter Methods	83
	2.3 Examples of Filter Methods	84
3	Feature Selection	89
	3.1 Feature Evaluation	91
	3.2 Search Engine	97
	3.3 Example Feature Selection Models	98
4		101
	o contract of the contract of	103

		Contents	XVII
Res	sources		107
1	Key Books		
2	Key Survey/Review Articles		
3	Organizations, Societies, Special Interest Groups		
4	Research Groups		
5	Discussion Groups, Forums		
6	Key International Conferences/Workshops		
7	(Open Source) Software		
8	Data Bases		
Tor	pographic Maps for Clustering and Data Visuali	zation	
_	in Fyfe		111
1	Introduction		
2	Clustering and Visualization		
3	The Self-Organizing Map		
J	3.1 Competitive Learning		
	3.2 Illustrative Example		
	3.3 Alternative Traditional Topology Preserving M.		
	3.4 A Last Word		120
4	The Generative Topographic Mapping		
-1	4.1 Illustrative Examples		
	4.2 Adjusting the Latent Space		
	4.3 Deleting Latent Points		
5	Topographic Product of Experts (ToPoE)		
0	5.1 Comparison with the GTM		
	5.2 Illustrative Example		
	5.3 Projections		
	5.4 Growing and Pruning ToPoEs		
	5.5 Different Noise Models		
	5.6 Twinned ToPoEs		
	5.7 Visualizing and Clustering Real Data Sets		
	5.8 Discussion		
6	Harmonic Averages		
U	6.1 Harmonic k-means		
	6.2 The Harmonic Topographic Map		
	6.3 Simulations		142
	6.4 Generalized Harmony Learning		144
	6.5 Conclusion		146
7	Conclusion		-
•	erences		
1001	orenees		141
Res	sources		151
1	Key Books		151
2	Key Survey/Review Articles		151
3	Key Journals		152

XVIII Contents

4 5	Key International Conferences/Workshops	152 153
6	Data Bases	153
	mplex Systems Paradigms for Integrating Intelligent stems: A Game Theoretic Approach	
	hiteru Ishida	155
1	Introduction	155
2	Economic Theory for the Internet Being with Selfish Agents	157
3	A Microscopic Model: Negotiation Between Agents	159
	3.1 The Prisoner's Dilemma	159
	3.2 Repairing from Outside the System:	
	A Conventional Model [12]	160
	3.3 Mutual Repair within Systems	160
	3.4 Mutual Repair with Selfish Agents	161
4	A Macroscopic Model: Boundary Formation among Agents	163
	4.1 A Model with Uniform Control	163
	4.2 The Spatial Prisoner's Dilemma	167
	4.3 A Model with Selfish Agents	168
	4.4 Strategic Repair with Systemic Payoff	169
	4.5 Comparison Between Uniform Repair	1.70
_	and Strategic Repair	170
5	Selfishware and Internet Being	173
6 D-f	Conclusion	175
Rei	erences	175
Res	sources	179
1	Key Books	179
2	Organisations, Societies, Special Interest Groups	179
3	Research Groups	180
4	Discussion Groups, Forums	180
5	Key International Conferences/Workshops	180
6	(Open Source) Software	181
7	Data Bases	181
Par	rt III Artificial Intelligence	
Em	notional Intelligence: Giving Computers Effective	
Em	notional Skills to Aid Interaction	
Chr	ris Creed and Russell Beale	185
1	Introduction	185
2	Overview of Affective Computing	187
	2.1 What Are Emotions?	187
	2.2 Emotions and Moods	190
	2.3 Expression of Emotion	191

		Contents	XIX
	2.4	Influence of Emotion on Human behavior	193
	2.5	Emotional Intelligence	
	2.6	Approaches Used in Developing Emotionally	100
		Intelligent Computers	197
	2.7	Ethics	203
3		nating Affective Embodied Agents	206
	3.1	What are Affective Embodied Agents?	207
	3.2	Psychological Responses to Simulated Emotion	207
	3.3	Evaluating Agents over Extended Interactions	209
	3.4	Our Affective Embodied Agent	210
4	Appli	cation of Affective Embodied Agents	211
	4.1	Affective Embodied Agents for behavior Change	212
	4.2	Behavior Change Models	213
5	Sumn	nary	216
	_	S	217
100.			
Re	source	es	225
1	Key I	Books	225
2		Survey/Review Articles	226
3		nisations, Societies, Special Interest Groups	226
4		arch Groups	227
5	Discu	ssion Groups, Forums	228
6		International Conferences/Workshops	228
7	(Oper	n Source) Software	229
8	Data	Bases	229
	8.1	Multimodal Databases	229
	8.2	Face Databases	230
	4 TX7	T ' 1D '	
Pa	rt IV	Logic and Reasoning	
Тh	e Para	aconsistent Annotated Logic Program EVALPSN	
		Application	
		Jakamatsu	233
1		duction	
1		Background	233
	1.2	Overview	234
2		ninary	235
_	2.1	Paraconsistent Annotated Logics PT	
	$\frac{2.1}{2.2}$	Generally Horn Program(GHP)	
	$\frac{2.2}{2.3}$	ALPSN (Annotated Logic Program with Strong	∠⊍1
	۵.0	Negation) and Stable Model Semantics	241
	2.4	VALPSN (Vector Annotated Logic Program with	∠ ±1
	4.4	Strong Negation)	243
		Duong meganon/	440

	2.5 EVALPSN (Extended Vector Annotated Logic	
	Program with Strong Negation) and Defeasible	
	Deontic Reasoning	4
	2.6 Defeasible Reasoning and VALPSN	7
	2.7 Defeasible Deontic Reasoning and EVALPSN	6
3	EVALPSN Safety Verification for Control	5
	3.1 Outline of EVALPSN Safety Verification	5
	3.2 EVALPSN Safety Verification for Pipeline Control 26	6
4	Before-after EVALPSN	4
	4.1 Before-after Relation in EVALPSN	5
	4.2 Implementation of bf-EVALPSN	1
	4.3 Safety Verification in bf-EVALPSN	5
5	Conclusion and Future Work	9
Refe	erences	0
Res	sources 30	
1	Logic Programming	
2	Paraconsistent Annotated Logic	
3	Defeasible Logic	
4	Defeasible Deontic Logic	
5	ALPSN, VALPSN, EVALPSN	
6	EVALPSN Safety Verification	6
The	e Data-Oriented Parsing Approach:	
	eory and Application	
	us Bod	7
1	Introduction	
2	A DOP Model for Language: Combining Likelihood	•
_	and Simplicity	8
3	A DOP Model for Music	
4	A DOP Model for Problem Solving in Physics	
5	Towards a Unifying Approach	
6	Test Corpora for DOP+	
7	Computing T_{best}	
8	Experiments with DOP+	
9	Current Developments: Unsupervised DOP	
10	Conclusion	
Refe	erences	
Res	sources	3
1	Key Books	3
1 2	-	
	Key Books	3
2	Key Books34Key Survey/Review Articles34	3
2 3	Key Books34Key Survey/Review Articles34Organisations, Societies, Special Interest Groups34	3 4 5

	Contents	XXI
6 7 8	Key International Conferences/Workshops	347
	8.1 Multimodal Databases	347
Pa	art V Ontology	
	raph-Based Representation and Reasoning r Ontologies	
	an R. Corbett	
1	Introduction	
2	Overview of Conceptual Graphs	
	2.1 The Basics	
	2.3 Canonical Formation Rules	
	2.4 Types and Inheritance	
	2.5 Specialization, Projection and Subsumption	357
3	Projection as an Ontology Operator	358
4	Projection of Ontology Types	360
5	Knowledge Conjunction	362
	5.1 Ontology Comparison and Conjunction	$\frac{362}{364}$
	5.3 Knowledge Structures, Partialness and Unification	365
6	An Architectural Design Tool	367
7	An Architectural Design Tool: Results and Discussion	368
8	The Air Operations Officer	
9	The Air Operations Officer: Results and Discussion	
10	0	
Re	ferences	374
Re	esources	
1	Key Books	
2	Key Survey/Review Articles	
3 4	Research Groups	
5	Key International Conferences/Workshops	378
6	(Open Source) Software	379
۸,	n Ontology-Based Intelligent Mobile System for Tourist	
	uidance	
	by H.W. Lam, Raymond S.T. Lee, and James N.K. Liu	381
1	Introduction	381
2	Background	383
	2.1 The Semantic Web	383
	2.2 Agent	386

XXII	Contents

3 4 5 6 Refe	Ontology-Based Tourist Guide 4.1 iJADE Framework 4.2 Construction of the Travel Ontology 4.3 iJADE FreeWalker 4.4 iJADE System Architecture Performance Evaluation 5.1 Precision Test 5.2 Usability Test Conclusion and Further Work	388 389 390 395 397 400 401 401 402 403
Res	ources	405
1	Key Books	405
2	Key Survey/Review Articles	405
3		405
4	Key International Conferences/Workshops	406
5	(Open Source) Software	406
6	Data Bases	406
	t VI Intelligent Agents	
	en Source Agent-Based Modeling Frameworks	<i>4</i> ∩9
Rus	sell K. Standish	409
	Sell K. Standish	409
Rus 1	sell K. Standish Introduction 1.1 Artificial Life (Alife)	409 409
Rus	sell K. Standish Introduction 1.1 Artificial Life (Alife) Applications	409 409 411
Rus 1	sell K. Standish Introduction 1.1 Artificial Life (Alife) Applications 2.1 Sugarscape	409 409 411 412
Rus 1	sell K. Standish Introduction 1.1 Artificial Life (Alife) Applications 2.1 Sugarscape 2.2 The Santa Fe Artificial Stock Market	409 409 411
Rus 1	sell K. Standish Introduction 1.1 Artificial Life (Alife) Applications 2.1 Sugarscape 2.2 The Santa Fe Artificial Stock Market 2.3 Heatbugs	409 409 411 412 413
Rus 1	sell K. Standish Introduction 1.1 Artificial Life (Alife) Applications 2.1 Sugarscape 2.2 The Santa Fe Artificial Stock Market 2.3 Heatbugs 2.4 Mousetrap.	409 409 411 412 413 416
Rus 1 2	sell K. Standish Introduction 1.1 Artificial Life (Alife) Applications 2.1 Sugarscape 2.2 The Santa Fe Artificial Stock Market 2.3 Heatbugs 2.4 Mousetrap Software Modeling Tools	409 409 411 412 413 416 417
Rus 1 2	sell K. Standish Introduction 1.1 Artificial Life (Alife) Applications 2.1 Sugarscape 2.2 The Santa Fe Artificial Stock Market 2.3 Heatbugs 2.4 Mousetrap Software Modeling Tools 3.1 Open Source versus Freeware	409 409 411 412 413 416 417 417
Rus 1 2	sell K. Standish Introduction 1.1 Artificial Life (Alife) Applications 2.1 Sugarscape 2.2 The Santa Fe Artificial Stock Market 2.3 Heatbugs 2.4 Mousetrap Software Modeling Tools 3.1 Open Source versus Freeware 3.2 Programming Languages 3.3 Reflection	409 409 411 412 413 416 417 417
Rus 1 2	sell K. Standish Introduction 1.1 Artificial Life (Alife) Applications 2.1 Sugarscape 2.2 The Santa Fe Artificial Stock Market 2.3 Heatbugs 2.4 Mousetrap Software Modeling Tools 3.1 Open Source versus Freeware 3.2 Programming Languages 3.3 Reflection 3.4 User Interface and Scripting	409 409 411 412 413 416 417 417 418
Rus 1 2	sell K. Standish Introduction 1.1 Artificial Life (Alife) Applications 2.1 Sugarscape 2.2 The Santa Fe Artificial Stock Market 2.3 Heatbugs 2.4 Mousetrap Software Modeling Tools 3.1 Open Source versus Freeware 3.2 Programming Languages 3.3 Reflection 3.4 User Interface and Scripting 3.5 Discrete Event Scheduling	409 409 411 412 413 416 417 417 418 421 421 422
Rus 1 2	sell K. Standish Introduction 1.1 Artificial Life (Alife) Applications 2.1 Sugarscape 2.2 The Santa Fe Artificial Stock Market 2.3 Heatbugs 2.4 Mousetrap Software Modeling Tools 3.1 Open Source versus Freeware 3.2 Programming Languages 3.3 Reflection 3.4 User Interface and Scripting 3.5 Discrete Event Scheduling 3.6 Random Number Library	409 409 411 412 413 416 417 417 418 421 421 422 422
Rus 1 2	sell K. Standish Introduction 1.1 Artificial Life (Alife) Applications 2.1 Sugarscape 2.2 The Santa Fe Artificial Stock Market 2.3 Heatbugs 2.4 Mousetrap Software Modeling Tools 3.1 Open Source versus Freeware 3.2 Programming Languages 3.3 Reflection 3.4 User Interface and Scripting 3.5 Discrete Event Scheduling 3.6 Random Number Library 3.7 Swarm	409 409 411 412 413 416 417 417 417 418 421 421 422 422 423
Rus 1 2	sell K. Standish Introduction 1.1 Artificial Life (Alife) Applications 2.1 Sugarscape 2.2 The Santa Fe Artificial Stock Market 2.3 Heatbugs 2.4 Mousetrap Software Modeling Tools 3.1 Open Source versus Freeware 3.2 Programming Languages 3.3 Reflection 3.4 User Interface and Scripting 3.5 Discrete Event Scheduling 3.6 Random Number Library 3.7 Swarm 3.8 Repast	409 409 411 412 413 416 417 417 418 421 421 422 423 424
Rus 1 2	sell K. Standish Introduction 1.1 Artificial Life (Alife) Applications 2.1 Sugarscape 2.2 The Santa Fe Artificial Stock Market 2.3 Heatbugs 2.4 Mousetrap Software Modeling Tools 3.1 Open Source versus Freeware 3.2 Programming Languages 3.3 Reflection 3.4 User Interface and Scripting 3.5 Discrete Event Scheduling 3.6 Random Number Library 3.7 Swarm 3.8 Repast 3.9 Mason	409 409 411 412 413 416 417 417 418 421 421 422 423 424 425
Rus 1 2	sell K. Standish Introduction 1.1 Artificial Life (Alife) Applications 2.1 Sugarscape 2.2 The Santa Fe Artificial Stock Market 2.3 Heatbugs 2.4 Mousetrap Software Modeling Tools 3.1 Open Source versus Freeware 3.2 Programming Languages 3.3 Reflection 3.4 User Interface and Scripting 3.5 Discrete Event Scheduling 3.6 Random Number Library 3.7 Swarm 3.8 Repast 3.9 Mason 3.10 Ecqab	409 409 411 412 413 416 417 417 418 421 421 422 423 424 425 426
Rus 1 2	sell K. Standish Introduction 1.1 Artificial Life (Alife) Applications 2.1 Sugarscape 2.2 The Santa Fe Artificial Stock Market 2.3 Heatbugs 2.4 Mousetrap Software Modeling Tools 3.1 Open Source versus Freeware 3.2 Programming Languages 3.3 Reflection 3.4 User Interface and Scripting 3.5 Discrete Event Scheduling 3.6 Random Number Library 3.7 Swarm 3.8 Repast 3.9 Mason 3.10 Ecqab 3.11 The Logos, StarLogo and NetLogo	409 409 411 412 413 416 417 417 418 421 421 422 423 424 425

	Cont	ents λ	XIII
4	Parformance Companisons		428
4 5	Performance Comparisons		
-			
кен	erences		431
Res	sources		435
1	ABM Platforms.		
2	Discussion Fora		
_	Discussion Form		100
_	ent-Based Grid Computing		
Min	njie Zhang, Jia Tang, and John Fulcher		
1	Introduction		
2	Computing Grids		
	2.1 Development of Computing Grids		441
	2.2 Application-Oriented Metacomputing		
	2.3 Service-Oriented Grid Computing		443
	2.4 Convergence of Grids and Peer-to-Peer Computing		444
	2.5 Research Questions of Grid Computing		445
3	Grid Computing in Open Environments		446
4	SmartGrid – A Hybrid Solution to Grid Computing		
	in Open Environments		446
	4.1 Overall Architecture and Core Components		447
	4.2 The Task/Service Model		451
	4.3 The smartGRID Scheduling Process		453
5	A Peer-to-Peer Solution to Grid Computing		
	in Open Environments		462
	5.1 Overall Architecture and Core Components		
	of smartGRID2		462
	5.2 Module – An Improved Task Model		
	5.3 Peer-to-Peer Computing Architecture		
	5.4 Resource Management and Scheduling Mechanisms		
	5.5 Compatibility and Inter-Operability		
6	Conclusion and Further Work		
	erences		
10010			111
Res	sources		481
1	Key Books		481
2	Key Survey/Review Articles		481
3	Journal		482
4	Key International Conferences/Workshops		482
5	Web Resources		
D	t1:1 M14: A4 Cl		
	centralized Multi-Agent Clustering in Scale-free asor Networks		
	hendra Piraveenan, Mikhail Prokopenko, Peter Wang, ! Astrid Zeman		485
$\frac{ana}{1}$	Introduction.		
T	Indioquedion		400

XXIV	Contents

	1.1 Multi-Agent Systems and Self-organization	485
		487
	1.3 Adaptive Topologies and Dynamic Hierarchies	488
2	Dynamic Cluster Formation Algorithm	490
3	Regularity of Multi-Agent Communication-Volume	494
4		496
5	An Application Scenario – Distributed Energy Management	
	and Control	501
6	Conclusions	502
Refe	erences 5	503
Dec	centralised Clustering Algorithm	507
Dro	dictor K_2	511
116	dictor \mathbf{K}_2	911
Res	sources	513
1	Key Books	513
2		513
3		513
4		514
5		514
6	Key International Conferences/Workshops	514
C		
	nputational Intelligence in Agent-Based nputational Economics	
Shar		517
1		517 517
1		517
		518
2		
_	Artificial Neural Networks	
		519
	2.1 Multilayer Perceptron Neural Networks	519 520
	2.1 Multilayer Perceptron Neural Networks 5 2.2 Radial Basis Network 5	519 520 522
	2.1Multilayer Perceptron Neural Networks52.2Radial Basis Network52.3Recurrent Neural Networks5	519 520 522 522
	2.1Multilayer Perceptron Neural Networks52.2Radial Basis Network52.3Recurrent Neural Networks52.4Auto-Associative Neural Networks5	519 520 522 522 524
	2.1Multilayer Perceptron Neural Networks52.2Radial Basis Network52.3Recurrent Neural Networks52.4Auto-Associative Neural Networks52.5Support Vector Machines5	519 520 522 522 524 528
	2.1Multilayer Perceptron Neural Networks52.2Radial Basis Network52.3Recurrent Neural Networks52.4Auto-Associative Neural Networks52.5Support Vector Machines52.6Self-Organizing Maps and k-means5	519 520 522 522 524 528 529
	2.1Multilayer Perceptron Neural Networks52.2Radial Basis Network52.3Recurrent Neural Networks52.4Auto-Associative Neural Networks52.5Support Vector Machines52.6Self-Organizing Maps and k-means52.7K Nearest Neighbors5	519 520 522 522 524 528 529 532
3	2.1Multilayer Perceptron Neural Networks52.2Radial Basis Network52.3Recurrent Neural Networks52.4Auto-Associative Neural Networks52.5Support Vector Machines52.6Self-Organizing Maps and k-means52.7K Nearest Neighbors52.8Instance-Based Learning5	519 520 522 524 528 529 532
3	2.1Multilayer Perceptron Neural Networks52.2Radial Basis Network52.3Recurrent Neural Networks52.4Auto-Associative Neural Networks52.5Support Vector Machines52.6Self-Organizing Maps and k-means52.7K Nearest Neighbors52.8Instance-Based Learning5Evolutionary Computation5	519 520 522 524 528 529 532 533
3	2.1Multilayer Perceptron Neural Networks52.2Radial Basis Network52.3Recurrent Neural Networks52.4Auto-Associative Neural Networks52.5Support Vector Machines52.6Self-Organizing Maps and k-means52.7K Nearest Neighbors52.8Instance-Based Learning5Evolutionary Computation53.1Evolutionary Strategies5	519 520 522 522 524 528 532 533 536
3	2.1Multilayer Perceptron Neural Networks52.2Radial Basis Network52.3Recurrent Neural Networks52.4Auto-Associative Neural Networks52.5Support Vector Machines52.6Self-Organizing Maps and k-means52.7K Nearest Neighbors52.8Instance-Based Learning5Evolutionary Computation53.1Evolutionary Strategies53.2Evolutionary Programming5	519 520 522 522 524 528 529 532 533 536 536
3	2.1Multilayer Perceptron Neural Networks52.2Radial Basis Network52.3Recurrent Neural Networks52.4Auto-Associative Neural Networks52.5Support Vector Machines52.6Self-Organizing Maps and k-means52.7K Nearest Neighbors52.8Instance-Based Learning5Evolutionary Computation53.1Evolutionary Strategies53.2Evolutionary Programming53.3Genetic Programming and Genetic Algorithms5	519 520 522 522 524 528 532 533 536
	2.1Multilayer Perceptron Neural Networks52.2Radial Basis Network52.3Recurrent Neural Networks52.4Auto-Associative Neural Networks52.5Support Vector Machines52.6Self-Organizing Maps and k-means52.7K Nearest Neighbors52.8Instance-Based Learning5Evolutionary Computation53.1Evolutionary Strategies53.2Evolutionary Programming53.3Genetic Programming and Genetic Algorithms5Agent-Based Economic Simulations with CI5	519 520 522 522 524 528 533 536 536 538

	Contents Σ	XXV
	4.3 Foreign Exchange Rate Fluctuations	558
	4.4 Artificial Stock Markets	562
	4.5 Market/Policy Design	568
E		
5	Pushing the Research Frontier with CI	570
	5.1 Developments in Agent Engineering	570
	5.2 Distinguishing Features	572
0	5.3 Future Directions	576
6	Concluding Remarks	579
Ref	erences	580
Res	sources	591
1	Key Books	591
2	Key Survey/Review Articles	592
3	Journals	592
4	Key International Conferences/Workshops	592
•	4.1 Economics	592
	4.2 Agents	593
5	(Open Source) Software	593
6	Data Bases	594
U	Dava Dases	001
Par	rt VII Fuzzy Systems	
Sor	mantias and Danaantian of Fuggy Sats	
	mantics and Perception of Fuzzy Sets	
	d Fuzzy Mappings	507
	told Pedrycz	597
1	Semantics of Fuzzy Sets: Some General Observations	597
2	Domain Knowledge and Problem-Oriented Formation	
	of Fuzzy Sets	599
	2.1 Fuzzy Set as a Descriptor of Feasible Solutions	599
	2.2 Fuzzy set as a Descriptor of the Notion of Typicality	601
	2.3 Membership Functions in the Visualization	
_	of Preferences of Solutions	603
3	User-Centric Estimation of Membership Functions	605
	3.1 Horizontal Membership Function Estimation Scheme	605
	3.2 Vertical Membership Function Estimation Scheme	606
	r	607
4	Fuzzy Sets as Granular Representatives of Numeric Data	609
5	From Multidimensional Numeric Data to Fuzzy Sets:	
	Membership Estimation via Fuzzy Clustering	614
6	Main Design Guidelines	620
7	Nonlinear Transformation of Fuzzy Sets	621
8	Reconciliation of Information Granule Perception	625
9	The Optimization Process	626

XXVI Contents

10	An Application of the Perception Mechanism		
	to Rule-Based Systems	627	
11			
12			
Refe	erences	634	
Res	sources	637	
1	Key Books	637	
2	Key Survey/Review Articles	637	
3	Organisations, Societies, Special Interest Groups	638	
4	Research Groups	638	
5	Key International Conferences/Workshops	639	
E	alutionam Multiphicative Design		
	olutionary Multiobjective Design Fuzzy Rule-Based Classifiers		
	ao Ishibuchi, Yusuke Nojima, and Isao Kuwajima	641	
11115		641	
2	Introduction	644	
2	2.1 Pattern Classification Problems	644	
		644	
	V	-	
	2.3 Fuzzy Reasoning	648	
	2.4 Fuzzy Rule Extraction	650	
9	2.5 Comparison Between Fuzzy and Interval Rules	653	
3	Evolutionary Multiobjective Optimization (EMO)	655	
	3.1 Genetic Algorithms (GAs)	655	
	3.2 Multiobjective Optimization (MO)	657	
	3.3 Evolutionary Multiobjective Optimization (EMO)	658	
4	Two Approaches to Evolutionary Multiobjective Design	001	
	of Fuzzy Rule-Based Classifiers	661	
	4.1 Problem Formulation	662	
	4.2 Multiobjective Fuzzy Rule Selection	663	
	4.3 Multiobjective Fuzzy Genetics-Based Machine Learning	667	
	4.4 Computational Experiments on Test Problems	669	
5	Future Research Directions	673	
6	Concluding Remarks	674	
Refe	erences	675	
ъ		001	
	sources	681	
1	Key Books	681	
	1.1 Fuzzy Rule-Based Classification Systems	681	
	1.2 Genetic Algorithms	681	
	1.3 Genetic Fuzzy Systems	682	
	1.4 Evolutionary Multiobjective Optimization	682	
	1.5 Evolutionary Multiobjective Machine Learning	000	
	and Knowledge Extraction	682	

Contents	XXVII

2	Conferences	682
	2.1 Fuzzy Systems	682
	2.2 Genetic Algorithms	683
	2.3 Genetic Fuzzy Systems	683
	2.4 Evolutionary Multiobjective Optimization	683
	2.5 Hybrid Systems	683
	2.6 Broader Areas, Including Fuzzy Systems	000
	and Genetic Algorithms	683
3	Journals	683
	3.1 Fuzzy Systems	683
	3.2 Genetic Algorithms	684
	3.3 Broader Areas, Including Fuzzy Systems	001
	and Genetic Algorithms	684
4	Websites	684
5	(Open Source) Software	685
6	Data Bases	685
Par	rt VIII Artificial Neural Networks	
Dat	ta Mining in QoS-Aware Media Grids	
	ju Fu, Xiaorong Li, Lipo Wang, David Ong,	
	Stephen John Turner	689
1	Introduction	689
2	Related Work	691
	2.1 Network Bandwidth Prediction	691
	2.2 Brief Overviews on Neural Networks	692
3	System Model of Data Analysis over Media Grid	694
	3.1 Architecture	694
	3.2 System Components	696
4	Data Mining Strategy for Bandwidth Prediction	697
	4.1 Multi-Layer Perceptron Neural Network	697
	4.2 Data Mining Strategy	699
	4.3 Performance Metrics	701
5	Experimental System and Performance Evaluation	702
	5.1 System Hardware and Software	702
	5.2 Request Arrival Pattern	702
	5.3 Results and Analysis	703
6	Conclusions	704
Refe	erences	709
Res	sources	713
1	Key Books	713
2	Key Survey/Review Articles	713
3	Organisations, Societies, Special Interest Groups	714
J	Organisations, societies, special interest Groups	114

XXVIII Contents

4 5	, 1	714 714
	e Self-Organizing Maps: Background, Theories, tensions and Applications	
	- -	715
1		715
2	9	716
	2.1 Biological Background: Lateral Inhibition	710
		716
	2.2 From Von Marsburg and Willshaw's Self-Organization	701
		721
0		725
3		726
	9	726
	1 0	729
4		731
	,	732
		738
		740
5	F F	743
		743
		744
	3	745
	1	747
		749
	9	750
6	v	753
Refe	erences	754
Res	sources	761
1	Key Books	761
2	Key Survey/Review Articles	761
3	* * * * * * * * * * * * * * * * * * * *	762
4	, –	762
Neı	ıral Systems Engineering	
		763
		763
		764
		766
		. 66 766
		. 65 767
	1 0	768
	9	769

		Contents A	XIX
2	Neural Computation		769
2	2.1 Processing		770
	2.2 Communication		771
	2.3 Storage		771
3	The Neuron as a Component		772
0	3.1 Communicating with Spikes		772
	3.2 Point-Neuron Models		773
	3.3 The Spike Response Model		774
	3.4 The Izhikevich Model		774
	3.5 Axons: The Hodgkin-Huxley Model		776
	3.6 Dendritic Trees and Compartmental Models		776
	3.7 The Synapse		777
4	Engineering Neural Systems		777
-1	4.1 Neural Models		778
	4.2 Population Encoding		778
	4.3 Spatio-Temporal Spike Neurons		780
	4.4 Defining 'Connectivity'		780
	4.5 Implementing Connectivity		781
	4.6 Learning, Adapting, and Tuning		781
	4.7 Example Neural Systems		782
	4.8 Neuromorphic Systems		782
5	Large-Scale Projects		783
9	5.1 Blue Brain		783
	5.2 SPINN		784
	5.3 SpiNNaker		785
	5.4 Virtual Communication		786
	5.5 Diverse Approaches		789
6	Future Prospects		789
-	erences		790
10010	siences		130
Res	ources		795
1	Key Books		795
2	Key Reference Source		795
3	Research Groups		796
4	Key International Workshop		796
5	(Open Source) Software		796
	(Open source) solumine		
Art	ificial Brains: An Evolved Neural Net Module	2	
	proach		
Hug	o de Garis		797
1	Introduction		797
2	Related Work		799
	2.1 Some Recent Artificial Brain Projects		800
	2.2 $$ Some Other Recent Artificial Brain Projects		803
3	The Evolution of Neural Network Modules		804

XXX	Contents

	3.1 The Evolutionary Tasks	805	
	3.2 Our Evolutionary Approach	805	
	3.3 The Standard Genetic Algorithm	806	
4	The Celoxica Board	806	
5	Experimental Results	808	
	5.1 IMSI (Inter Module Signaling Interface)	809	
	5.2 How Many Modules?	811	
6	The Robot and Brain-Robot Interface	812	
7			
	7.1 A Simple Artificial Brain Architecture	815	
	7.2 Incrementing the Design	823	
	7.3 Why Not Just Program Everything?	826	
	7.4 Evolving Individual Modules	827	
8 The Need for Generic Evolution			
	8.1 Limitations of Our Approach	832	
	8.2 Evolvability – A Key Issue	832	
	8.3 Book-Keeping of Modules and Circuits	833	
9	Future Work	834	
	9.1 The 'China Brain' Project	836	
10	Conclusion	837	
	10.1 Final Word	839	
Refe	erences	839	
ъ			
		0.41	
	Sources	841	
1	Key Books	841	
	Key Books 1.1 Artificial Brain Architectures	841 841	
	Key Books 1.1 Artificial Brain Architectures 1.2 Brain Theory	841 841 842	
	Key Books1.1Artificial Brain Architectures1.2Brain Theory1.3Cognitive Modeling	841 841 842 842	
	Key Books1.1Artificial Brain Architectures1.2Brain Theory1.31.3Cognitive Modeling1.41.4Evolvable Hardware (EHW)	841 841 842 842 843	
	 Key Books 1.1 Artificial Brain Architectures 1.2 Brain Theory 1.3 Cognitive Modeling 1.4 Evolvable Hardware (EHW) 1.5 Gerald Edelman 	841 841 842 842 843 843	
	Key Books 1.1 Artificial Brain Architectures 1.2 Brain Theory 1.3 Cognitive Modeling 1.4 Evolvable Hardware (EHW) 1.5 Gerald Edelman 1.6 Ethology	841 841 842 842 843 843	
1	Key Books 1.1 Artificial Brain Architectures 1.2 Brain Theory 1.3 Cognitive Modeling 1.4 Evolvable Hardware (EHW) 1.5 Gerald Edelman 1.6 Ethology 1.7 Genetic Algorithms (GA)	841 841 842 842 843 843 844 844	
2	Key Books 1.1 Artificial Brain Architectures 1.2 Brain Theory 1.3 Cognitive Modeling 1.4 Evolvable Hardware (EHW) 1.5 Gerald Edelman 1.6 Ethology 1.7 Genetic Algorithms (GA) Key Journals	841 841 842 842 843 843 844 844 845	
1	Key Books 1.1 Artificial Brain Architectures 1.2 Brain Theory 1.3 Cognitive Modeling 1.4 Evolvable Hardware (EHW) 1.5 Gerald Edelman 1.6 Ethology 1.7 Genetic Algorithms (GA) Key Journals Artificial Brain Research Groups	841 842 842 843 843 844 844 845	
2	Key Books 1.1 Artificial Brain Architectures 1.2 Brain Theory 1.3 Cognitive Modeling 1.4 Evolvable Hardware (EHW) 1.5 Gerald Edelman 1.6 Ethology 1.7 Genetic Algorithms (GA) Key Journals Artificial Brain Research Groups 3.1 Markram's 'Blue Brain' Project	841 842 842 843 843 844 844 845 845	
2	Key Books 1.1 Artificial Brain Architectures 1.2 Brain Theory 1.3 Cognitive Modeling 1.4 Evolvable Hardware (EHW) 1.5 Gerald Edelman 1.6 Ethology 1.7 Genetic Algorithms (GA) Key Journals Artificial Brain Research Groups 3.1 Markram's 'Blue Brain' Project 3.2 Adaptive Development's 'CCortex'	841 842 842 843 843 844 844 845 845 845	
2 3	Key Books 1.1 Artificial Brain Architectures 1.2 Brain Theory 1.3 Cognitive Modeling 1.4 Evolvable Hardware (EHW) 1.5 Gerald Edelman 1.6 Ethology 1.7 Genetic Algorithms (GA) Key Journals Artificial Brain Research Groups 3.1 Markram's 'Blue Brain' Project 3.2 Adaptive Development's 'CCortex' 3.3 Edelman's 'Darwin IV' Robot Brain	841 842 842 843 843 844 845 845 845 845 845	
2	Key Books 1.1 Artificial Brain Architectures 1.2 Brain Theory 1.3 Cognitive Modeling 1.4 Evolvable Hardware (EHW) 1.5 Gerald Edelman 1.6 Ethology 1.7 Genetic Algorithms (GA) Key Journals Artificial Brain Research Groups 3.1 Markram's 'Blue Brain' Project 3.2 Adaptive Development's 'CCortex' 3.3 Edelman's 'Darwin IV' Robot Brain Key International Conferences/Workshops	841 842 842 843 843 844 845 845 845 845 845	
2 3	Key Books 1.1 Artificial Brain Architectures 1.2 Brain Theory 1.3 Cognitive Modeling 1.4 Evolvable Hardware (EHW) 1.5 Gerald Edelman 1.6 Ethology 1.7 Genetic Algorithms (GA) Key Journals Artificial Brain Research Groups 3.1 Markram's 'Blue Brain' Project 3.2 Adaptive Development's 'CCortex' 3.3 Edelman's 'Darwin IV' Robot Brain Key International Conferences/Workshops 4.1 Congress on Evolutionary Computation – CEC (IEEE)	841 842 842 843 843 844 845 845 845 845 845	
2 3	Key Books 1.1 Artificial Brain Architectures 1.2 Brain Theory 1.3 Cognitive Modeling 1.4 Evolvable Hardware (EHW) 1.5 Gerald Edelman 1.6 Ethology 1.7 Genetic Algorithms (GA) Key Journals Artificial Brain Research Groups 3.1 Markram's 'Blue Brain' Project 3.2 Adaptive Development's 'CCortex' 3.3 Edelman's 'Darwin IV' Robot Brain Key International Conferences/Workshops 4.1 Congress on Evolutionary Computation – CEC (IEEE) 4.2 GECCO – Genetic and Evolutionary Computation	841 842 842 843 843 844 844 845 845 845 845 846 846	
2 3	Key Books 1.1 Artificial Brain Architectures 1.2 Brain Theory 1.3 Cognitive Modeling 1.4 Evolvable Hardware (EHW) 1.5 Gerald Edelman 1.6 Ethology 1.7 Genetic Algorithms (GA) Key Journals Artificial Brain Research Groups 3.1 Markram's 'Blue Brain' Project 3.2 Adaptive Development's 'CCortex' 3.3 Edelman's 'Darwin IV' Robot Brain Key International Conferences/Workshops 4.1 Congress on Evolutionary Computation – CEC (IEEE) 4.2 GECCO – Genetic and Evolutionary Computation Conference	841 842 842 843 843 844 845 845 845 845 845 846 846	
2 3	Key Books 1.1 Artificial Brain Architectures 1.2 Brain Theory 1.3 Cognitive Modeling 1.4 Evolvable Hardware (EHW) 1.5 Gerald Edelman 1.6 Ethology 1.7 Genetic Algorithms (GA) Key Journals Artificial Brain Research Groups 3.1 Markram's 'Blue Brain' Project 3.2 Adaptive Development's 'CCortex' 3.3 Edelman's 'Darwin IV' Robot Brain Key International Conferences/Workshops 4.1 Congress on Evolutionary Computation – CEC (IEEE) 4.2 GECCO – Genetic and Evolutionary Computation	841 842 842 843 843 844 844 845 845 845 845 846 846	

Par	rt IX Evolutionary Approaches	
Eve	olving Artificial Neural Network Ensembles	
Md.	. Monirul Islam and Xin Yao	851
1	Introduction	851
2	Evolutionary Ensembles	852
	2.1 An Evolutionary Design System for ANNs – EPNet	853
	2.2 Combination Methods	855
	2.3 Experimental Studies	856
3	Automatic Modularization	859
4	Negative Correlation Learning	860
	4.1 Evolutionary Ensembles with Negative	
	Correlation Learning	862
	4.2 Experimental Studies	864
5	Constructive Approaches to Ensemble Learning	865
	5.1 Experimental Studies	868
6	Multi-Objective Approaches to Ensemble Learning	870
	6.1 Experimental Studies	871
7	Conclusions	872
Ref	erences	872
ъ		0==
	sources	877
1	Key Books	877
2	Key Survey/Review Articles	877
3	Organizations, Societies, Special Interest Groups	878
4	Research Groups	878
5	Discussion Groups, Forums	878
6	Key International Conferences and Workshops	878
7	(Open Source) Software	879
8	Data Bases	879
An	Order Based Memetic Evolutionary Algorithm	
	Set Partitioning Problems	
	ristine L. Mumford	881
1	Introduction	881
2	A Brief History of Genetic Algorithms	883
3	A Generic Genetic Algorithm	
4	Order Based GAs	886
5	A Simple Steady-State GA	891
6	Set Partitioning Problems	892
	6.1 The Graph Coloring Problem	893
	6.2 The Bin Packing Problem	894
	6.3 The Examination Timetabling Problem	894
	6.4 Other Set Partitioning Problems	895

XXXII Contents

7	Motiv	vation for the Present Study	896
8	Culbe	erson and Luo's Grouping and Reordering Heuristics	898
9	Modi	fications to a Standard Order Based GA	
	for Se	et Partitioning	902
	9.1	Performance Measures/Fitness Values	904
	9.2	Comparing Order Based Crossovers	906
	9.3	The Genetic Simulated Annealing (GSA) Algorithm	906
10	Resul	ts on Literature Benchmarks	911
	10.1	Graph Coloring	912
	10.2	Bin Packing	914
	10.3	Timetabling	917
11	Sumr	nary	919
Ref	erence	S	920
Res		es	923
1		Books	923
2		International Conferences	923
3		est Groups/Web sites	924
4		n Source) Software	
5	Data	Sets used in the Chapter	925
Co	notic	Programming: An Introduction and Tutorial,	
		urvey of Techniques and Applications	
		B. Langdon, Riccardo Poli, Nicholas F. McPhee,	
		R. Koza	927
1		duction	927
1	1.1	GP in a Nutshell	928
	1.2	Overview of the Chapter	929
2		esentation, Initialization and Operators in Tree-Based GP	929
2	2.1	Representation	929
	2.1	Initializing the Population	931
	2.3	Selection	934
	2.4	Recombination and Mutation	934
3		ng Ready to Run Genetic Programming	936
J	3.1	Step 1: Terminal Set	937
	3.2	Step 2: Function Set	937
	3.3	Step 3: Fitness Function	
	3.4	-	
4	-	Steps 4 and 5: Parameters and Termination	942
4	4.1	pple Genetic Programming Run	943
		Preparatory Steps	943
۲	4.2	Step-by-Step Sample Run	944
5		nced Tree-Based GP Techniques	948
	E 1		
	5.1	Automatically Defined Functions	948
	5.1 5.2	Automatically Defined Functions	948 949

	5.3	Genetic Programming Problem Solver	949
	5.4	Constraining Syntactic Structures	950
	5.5	Developmental Genetic Programming	954
	5.6	Strongly Typed Autoconstructive GP – PushGP	954
6	Linea	ar and Graph-Based GP	955
	6.1	Linear Genetic Programming	955
	6.2	Graph-Based Genetic Programming	957
7	Appl	ications	958
	7.1	Curve Fitting, Data Modeling, and Symbolic Regression	959
	7.2	Human Competitive Results – The Humies	962
	7.3	Image and Signal Processing	965
	7.4	Financial Trading, Time Series Prediction	
		and Economic Modeling	966
	7.5	Industrial Process Control	967
	7.6	Medicine, Biology and Bioinformatics	968
	7.7	Mixing GP with Other Techniques	969
	7.8	GP to Create Searchers and Solvers – Hyper-Heuristics	969
	7.9	Artistic	969
	7.10	Entertainment and Computer Games	970
	7.11	Where can we Expect GP to Do Well?	970
8	Trick	as of the Trade	971
	8.1	Getting Started	971
	8.2	Presenting Results	972
	8.3	Reducing Fitness Evaluations/Increasing	
		their Effectiveness	973
	8.4	Co-Evolution	975
	8.5	Reducing Cost of Fitness with Caches	976
	8.6	GP Running in Parallel	977
	8.7	GP Trouble-Shooting	981
9	Gene	tic Programming Theory	982
	9.1	Mathematical Models	983
	9.2	Search Spaces	984
	9.3	Bloat	986
10	Conc	clusions	987
Ref	erence	S	989
		es	
1		Books	
2		os1	
3		Journals	
4		International Conferences/Workshops	
5	()nlii	ne Resources	LO97

XXXIV Contents

The	e Part	ticle Swarm Algorithm
Tim	n Hena	ltlass
1	Intro	duction
2	The I	Basic Particle Swarm Optimization Algorithm
	2.1	Pseudo Code Algorithm for the Basic PSO1034
3	Enha	ncements to the Basic Particle Swarm Algorithm 1034
	3.1	Constriction Factors
	3.2	Adding Controlled Diversification
	3.3	Handling Problem Constraints
4	Partic	cle Swarm Optimization of Multiple Optima1036
	4.1	Exploring Multiple Optima
	4.2	Achieving Parallel Exploration
		of Several Positions of Interest (niching)
	4.3	Achieving Serial Exploration
		of Many Positions of Interest (WoSP)
5	Contr	colling the Computational Expense1041
	5.1	Using a Dynamic Swarm Size
	5.2	Fitness Estimation
6	Dyna	mic Optimization Problems
	6.1	Ways to Achieve these Adaptations
	6.2	Preventing Total Convergence
	6.3	Refreshing the Best Positions
	6.4	Forcing Explorer Particles
	6.5	Adapting WoSP to Dynamic Problems
7		cle Swarm and Quantized Problem Spaces
8	Some	Sample Results
	8.1	Problems used as Examples in this Chapter
	8.2	Experimental Details
9	Samp	le Results
	9.1	Minimizing the Distance to the Origin in 100 Dimensions 1051
	9.2	Rastrigin's Function in 100 Dimensions
	9.3	Schwefel's Function in 30 Dimensions
10		luding Remarks
Refe	erences	s
ъ		4004
		es
1		Books
2		nisations, Societies, Special Interest Groups, Journals 1061
3		international Conferences/Workshops
4	(Opei	n Source) Software

Part X DNA and Immunity-Based Computing DNA Computing and its Application 2 3 4 5 6 6.1 6.2 7 8 9 1.1 2 3 4 5 6 The Next Generation of Immunity-Based Systems: From Specific Recognition to Computational Intelligence 1 2 2.1 An Impact of Recognition is a Double-Edged Sword 1094 3 3.2 3.3 4.1 4.2 Solving a Combinatorial Problem: The Stable

XXXVI Contents

	4.3 Mapping the Stable Marriage Problem	
	to Antibody-Based Computing	7
5	Toward a General Problem Solver:	
	Immunity-Based Problem Solver	0
6	Conclusion	3
Refe	erences	4
Res	sources	7
1	Key Books	7
2	Key Survey/Review Articles	8
3	Organisations, Societies, Special Interest Groups	9
4	Research Groups	9
5	Key International Conferences/Workshops	9
Ind	ex	1