Welcome to EE602

Introduction to Algorithms

Yingfei Dong

Course info

- Instructor: Yingfei Dong
 - yingfei@hawaii.edu
 - Office: Holmes Hall 442
 - Office hours: one hour before the class
- - Did you receive emails (e.g., Syllabus) from Laulima?
- Time and Location: H388, Mon/Wen 3:30-4:45
 - Homeworks and Problems
 - programming assignments
 - Exams
 - Presentations on advanced algorithms ****

Prerequisites

- Data Structure, EE367 or ICS 311, or similar
- Please read Mathematical background in
 - Appendix A: methods for evaluating and bounding summations
 - Appendix B: definitions and notations for sets, relations, functions, graphs, and trees
 - Appendix C: elementary principles of counting
 - Appendix D: matrix operations and basic properties
- If you cannot do the exercises yourself, you will have a hard time to take this class
 - Please take EE367 or ICS311 then
 - I have post slides on the appendixes in Laulima

Prerequisites

- programming experience
 - Install Java 1.8
 - Install Eclipse
- mathematical proofs:
 - proofs by mathematical induction
 - elementary calculus
- Discrete math

Reading Assignment

- Week 1 and Week 2
 - Chapter 1
 - Chapter 2
 - Please read Appendix A, B, C, and D
- VideoLectures.net (recommended)
 - http://videolectures.net/mit6046jf05 introduction a lgorithms
 - + Powerpoint slides in parallel
 - + Topical index to jump to segments of video
- MIT Open Courseware Site
 - http://ocw.mit.edu/courses/electrical-engineeringand-computer-science/6-046j-introduction-toalgorithms-sma-5503-fall-2005/video-lectures/

What is course about?

 "Before there were computers, there were algorithms; now there are more computers, there are even more algorithms.

Algorithms lie at the heart of computing"

- What is an algorithm?
 - Please give me your definition

What is an Algorithm?

- An Algorithm → a well-defined <u>computational</u> procedure
 - take a set of values, as input

 $a_1 < a_2 < ... < a_n$

- produce a set of values as <u>output</u>
- to solve a well-specified computational problem
- Here is how to formulate a <u>sorting problem</u>
 <u>Input</u>: A sequence of numbers {a₁, a₂, ..., a_n}
 <u>Output</u>: a permutation of input sequence such that

Instance Input of a problem {2, 5, 9, 6, 4}

How to play rock-paper-scissor

- Design an algorithm for a player
- ⊕ How to optimize it?

Course Focus

- The theoretical study of <u>design</u> and <u>analysis</u> of computer algorithms
 - Not about programming, not about math
 - <u>Design</u>: design <u>correct</u> algorithms which minimize cost • <u>Efficiency</u> is the design criterion
 - <u>Analysis</u>: predict the cost of an algorithm in terms of resource and performance

What are the main issues of algorithm design?

Course Overview

- Focus: solve application problems with algorithms
- What are the main differences between <u>algorithms</u> and <u>data structures?</u>
 - Algorithm: method for solving a problem
 - <u>Data structure</u>: method to store information
- Textbook: Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein (often referred as CLRS)
 - 3rd edition
 - · An excellent reference you should own
 - One of the most cited books in CS

What are the Basic Goals of Designing Algorithms?

- Basic goals for an algorithm
 - always <u>correct</u>
 - always <u>terminates</u>
- More, we also care about performance
 - Tradeoffs between what is possible and what is impossible
 - · We usually have a deadline
 - E.g., Computing 24-hour weather forecast within 20 hours

Coursework and Grading

- Homework and Programming Assignment: 40%
 - Will be posted in Laulima on-line
 - You are encouraged to discuss your homework with your partner, but you must write your answer alone.
 - Type and email me, or give me a printed copy
 Prefer a non-handwriting copy
- Mid-term: 20%
- - Closed book with one letter-size (8X11) cheatsheet
- Participation in class discussion: 5%
- Presentation: (extra points 5%)

12

Attendance

- Attendance: Daily attendance is strongly encouraged
 - Any student missing a lesson is responsible for any material covered in class during his or her absence
 - I will help, but no makeup class
- Basic Requirements
 - Please be on time: being polite to me and everyone here
 - Turn off your laptop/teblet and silence your phone
 - Every occurrence → bring treats for everyone in the
 - o Or, 1% of your final grade
- Announcements will be sent to you via Laulima
- Notes will be at Laulima after each classes

Main Topics in 17 weeks: a lot!

- You may have seen some before→ Now we need analyze them
- Part.1 Fundamentals of algorithms: growth functions, divideand-conquer, merge-sort, recurrence.
- Part.2 Sorting and Order Statistics: heapsort, quicksort, order statistics.
- Part.3 Review of Data Structures: basic data structure, hash tables, binary search tree, augmenting data structure.
- Part.4 Advanced Design and Analysis Techniques: dynamic programming, greedy algorithms, amortized analysis.
- Part.5 Graph Algorithms. Breadth/depth-first search, minimum spanning tree, shortest path.
- Part.6 Multithreaded algorithms.
- Part.7 NP-complete problems and approximation algorithms.

Tentative Timeline for your reading assignment

- Week 1, 2 and 3
 - The role of computing (Ch.1)
 - Analysis of Algorithms: Insertion Sort, Merge Sort (Ch.2)
 - Growth functions, Asymptotic Notations (Ch 3)
 - Divide and Conquer, Recurrences (Ch 4)
 - Probabilistic Analysis (Ch 5)
- Week 4 and 5
 - Heapsort (Chapter 6)
 - Quicksort (Chapter 7)
 - Linear-time Sorting, Lower Bounds, Counting Sort, Radix Sort. (Ch.8), Order Statistics (Ch.9)

Tentative Timeline

- Week 6, 7, and 8
 - Elementary data structure (Ch.10) (Self study)
 - Hash Tables (Ch.11)
 - Binary Search Trees (Ch.12)
 - Augmenting Data Structure (Ch.14)
 - Midterm →
- Week 9 and 10
 - Dynamic Programming(Ch.15)
 - Greedy Algorithms (Ch.16)
 - Amortized Analysis (Ch.17)
- Week 11 and 12
 - Elementary graph algorithms, Graph representation. DFS. BFS. Topological Sort, strongly connected components (Ch.22)
 - Minimum Spanning Tree. Greedy algorithms. Prim's algorithm, Kruskal algorithm. (Ch.23)

Tentative Timeline

- Week 13 and 14
 - Single source shortest path. Dijkstra's Algorithm, Bellman-Ford, Shortest Paths in Dags (Ch.24)
 - All-Pairs Shortest Paths. Dynamic programming, Matrix Multiplication. Floyd-Warshall Algorithm. Jonson's Algorithm. (Ch.25)
- Week 15, 16 and 17
 - Mutlithreaded algorithms (Ch.27)
 - NP-completeness and approximation algorithms (Ch.34

Let me know a little about you Your Name: _

- Something helps me pronounce your name correctly
- Let me know your experiences in algorithms design
 - EE367 Data Structrue, ICS 311 Algorithms
 - · Other related classes
- Programming in C? Java? Other programming languages?
- Use of UNIX or Linux, Virtual Machine, Cloud Computing
- · How much experiences with Linux?

Most learning occurs outside classroom. Find yourself partners

- Introduce yourself
 - Your name and major
 - Your current research interests
 - Your experience with the course-related topic, e.g. previous classes, projects
 - Something you like to share:
 - Where you are from, your favorites (sports, drinks, foods, surfing spots, etc.)

19

Your suggestions are welcome any time

Please send me an email after the first class

- PLEASE put "EE602" or "ee602" in the subject line of your email. Thanks!
 - So your email will be put into proper folder
- Please briefly state your expectation of this course, suggestions, comments.
- Whenever you have any suggestions, please talk to me or send me an email.

20

Introduction to Algorithms (Ch.1)

- What is an algorithm?
 - the definition
- Why do we study algorithms?
 - Motivations?

21

What is an Algorithm?

- An Algorithm → a well-defined computational procedure
 - take a set of values, as input
 - produce a set of values as <u>output</u>
- to solve a well-specified computational problem
- Here is how to formulate a <u>sorting problem</u>
 <u>Input</u>: A sequence of numbers {a₁, a₂, ..., a_n}

 <u>Output</u>: a permutation of input sequence such that a₁ < a₂ < ... < a_n

<u>Instance Input</u> of a problem {2, 5, 9, 6, 4} <u>Instance Output</u> of a problem {2, 4, 5, 6, 9}

Basics of Algorithms

- An algorithm is said to be <u>correct</u>, if it <u>halts</u> with a <u>correct output</u> for <u>every instance</u>
 - Convergence \rightarrow stop gradually
- An algorithm can be specified
 - In English → pseudo-code
 - as a computer program \rightarrow word count program (wc)
 - a hardware design → TPM
 - The only requirement is that the <u>specification</u> must provide a <u>precise description</u> of the computational procedure to be followed

Hard Problems

- We focus on <u>efficient</u> ALs in this class
- But some problems which we do <u>NOT</u> know any efficient solutions → <u>NP-complete</u> problems
 - NP: non-deterministic polynomial
- E.g., Traveling-salesman problem, knapsack, ...
 - Input: Distance-weighted graph G
 - Problem: Find the shortest route to visit all of the vertices exactly once

NP-complete Problems

- Three interesting facts about NP-complete
 - No existing efficient algorithms to solve them
 - 2. If we find one, then exist one for all of them
 - 3. Some of them similar to solved problems
- Under certain assumptions, efficient algorithms might give a near-optimum solution
 - these are called approximation algorithms

25

Parallelism improve performance, not solving NP complete problems

- Computer performance increase: two key methods
 - Hierarchy: Cache, memory, I/O system, etc.
 - Parallel
 - o Co-processors, Multicore
 - Data Center, Cloud computing
 - $_{\circ}$ \rightarrow hardware improvement does not help with NP-complete
- Map/Reduce: Simplified Data Processing on Large Clusters
 - http://static.googleusercontent.com/external_content/untrusted_dlcp/labs.google.com/en/us/papers/mapreduce-osdi04.pdf
 - Large-Scale Data Processing
 - use 1000s of CPUs but don't want to manage things
 - <u>1st</u> extra credit <u>assignment</u> → who like to make a 30minute presentation on this?

26

Why do we study Algorithms

- Suppose computers were <u>infinitely fast</u> and computer <u>memory was free</u>
 - never true in reality
- Do we still have reasons to study algorithms?
- . VESIII
 - We still need to demonstrate our solution <u>terminates</u> with a correct answer
- Algorithms as technology
 - Resources are always limited → Efficiency is the center of algorithms

27

Why study algorithms? Tech. Com.

- Akamai, 1998
- (old story: \$300 per share in 1998)
- Proxy and cache web contents, MIT Algorithm group
- Google, 1998
 - PageRank, Larry Page, Sergey Brin
 - MapReduce
- Baidu, 2000
 - RankDex site-scoring algorithm for search engines
 - NYU Buffalo, InfoSeek, Yanhong Li
- Cadence Design Systems, 1988
 - electronic design automation
 - Cadence claimed Avanti stole Cadence code!
 - Business Week: "The Avanti case is probably the most dramatic tale of white-collar crime in the history of Silicon Valley"
- Match.com, 1993; eharmony.com, chemistry.com
 - 22 dimension matching! Positive and Negative

..

The List goes on: Why study algorithms?

Their impact is broad and far-reaching

- Internet. Web search, packet routing, distri. file sharing
- Biology. Human genome project, protein folding.
- Computers. Circuit layout, file system, compilers.
- ⊙ Computer graphics. Hollywood movies, video games, 3-D
- Security. Cell phones, e-commerce, voting machines.
- Multimedia. CD player, DVD, MP3/4, JPG, DivX, HDTV.
- Transportation. Airline crew scheduling, map routing.
- Physics. N-body simulation, particle collision simulation.

Course Goals

- Learn critical thinking for problem solving
 - How to think?
 - Learn to design, using well known methods
 - What can we try (e.g., to find a min in a set)?
 - Basic technique: brute-force, divide-andconquer, dynamic programming, greedy
- Implementing algorithms efficiently & correctly
- Efficiency → Analyzing time complexity
- Correctness → Arguing correctness

Consider an algorithm, Main questions we have to answer

- What is the Problem?
 - o Find the position of key x in a sorted array
- What is our **Strategy**?
 - o Binary search
- Efficiency: how to achieve?
 - ∘ Log(n)
- Analysis of correctness
 - o Prove it is correct

Importance of Algorithm Efficiency

- Time → CPU time
- Storage → main memory
- $I/O \rightarrow$ new criterion in our current systems
- Examples
 - Sequential search vs. Binary search
 Basic operation: <u>comparison</u>

 Number of comparisons is grown in different rate
 - n-th Fibonacci sequence Recursive versus Iterative

32

Example: search strategy

□ Sequential search vs. Binary search

 $\frac{\text{Problem:}}{\text{array S of n keys}} \text{ determine whether } x \text{ is in the sorted}$

- Tabuts:
 - A positive integer, n
 - A sorted (non-decreasing order) array of keys, S, indexed from 1 to n
 - A key, x
- Output: the location of x in S (0 if x is not in S)

Example: Sequential search

24

```
Example: Binary search
int Bin_search(int n, const int S[], int x)
  int low, high, mid, location=0;
  low = 1; high =n;
  while (low <= high && location == 0) {
    mid = floor( (low+high)/2 );
    if (x == S[mid])
                        // comparsion
        location = mid;
                                           mid
                                                    high
    else if (x < S[mid])
                high = mid -1;
               low = mid +1:
          else
                                           mid
                                                    high
  return location;
```

Example: number of comparisons

 \square Sequential search: <u>worst case</u> \rightarrow search all n keys

n = 32 128 1024 1,048,576

 \square Binary search: worst case \rightarrow at most lg(n)+1

lg(n) + 1 6 8 11 21

Eg: when n = 32

S[1],..., S[16],..., S[24], S[28], S[30], S[31], S[32] (1st) (2nd) (3rd) (4th) (5th) (6th)

Analysis of Algorithm Complexity

- Two main characters
 - · Input size: n
 - · Basic operation: e.g., comparison
- Time complexity
 - T(n): Single-step time complexity of size n
 - W(n): Worst-case time complexity
 - A(n): Average-case time complexity
 - B(n): Best-case time complexity
- T(n) example
 - Add n array members together T(n) = n-1
 - Matrix multiplication n*n*n
 - Exchange sort n(n-1)/2

Math preparation

- Please read Appendix A, B, C, and D
- You are supposed to know them
- Induction
- Logarithm
- Sets
- · Permutation and combination
- · Limits
- Asymptotic growth functions and recurrence
- Probability theory

Programming preparation

- · Data structure
- C, Java
- Eclipse Develop Environment, http://www.eclipse.org/
 - For Java, C, and many other languages
 Install Eclipse on Linux
 Install Eclipse on Windows

 - http://www.cs.dartmouth.edu/~cs5/install/eclipse-win/index.html
 http://www.java.com/en/download/win10.jsp
 Eclipse And Java: Free Video Tutorials (16 flash videos)
 - - http://eclipsetutorial.sourceforge.net/totalbeginner.html
 Companion Tutorial Document
 - http://eclipsetutorial.sourceforge.net/Total_Begin <u>n_Document.pdf</u>
 Java Code of this book is loaded in the "Resources"
 - Section · You can create a Java project in Eclipse and import

What are Commonly used algorithms?

- Search (sequential, binary)
- Sort (mergesort, heapsort, quicksort, etc.)
- Traversal algorithms (breadth, depth, etc.)
- Shortest path (Floyd, Dijkstra)
- Spanning tree (Prim, Kruskal)
- Knapsack
- Traveling salesman
- Bin packing

Common Design Methods or Strategies

- Divide-and-conquer
- Greedy
- Dynamic programming
- Backtracking
 - depth-first search with pruning
 - an improvement over brute-force
- Branch-and-bound
 - breadth-first search with pruning

Using critical thinking for problem solving

- Considering different approaches for solving a problem
 - dynamic programming or greedy algorithm
 - Analyzing the merits of each
- Considering different implementations for a chosen approach
 - E.g., Prim's algorithm
 - Analyzing the merits of different implementations

Quick Review: Induction

- What is induction?
- Suppose
 - Statement S(k) is true, for fixed constant k
 Often k = 0
 - If we have $S(n) \rightarrow S(n+1)$, for all $n \ge k$
 - Then, S(n) is true, for all n ≥ k

43

Proof By Induction

- ⊙ Claim: formula S(n) is true, for all n ≥ k
- Basis:
 - Show formula S(n) is true when n = k
- Inductive hypothesis:
 - Assume formula S(n) is true, for an arbitrary n > k
- Step:
 - Show that formula S(n+1) is true, for all n > k

44

Induction Example: Gaussian Closed Form

- \bullet Prove 1 + 2 + 3 + ... + n = n(n+1) / 2
 - Basis
 - \circ If n = 0, then 0 = 0(0+1) / 2
 - Inductive hypothesis
 - \circ Assume 1 + 2 + 3 + ... + n = n(n+1) / 2
 - Step: show true for (n+1)

$$1 + 2 + ... + n + (n+1) = (1 + 2 + ... + n) + (n+1)$$

- = n(n+1)/2 + (n+1) = [n(n+1) + 2(n+1)]/2
- = (n+1)(n+2)/2
- = (n+1)(n+1+1) / 2

Induction Example: Geometric Closed Form

- **●** Prove $a^0 + a^1 + ... + a^n = (a^{n+1} 1)/(a 1)$ for all $a \neq 1$
 - Basis: n=0, show that $a^0 = (a^{0+1} 1)/(a 1)$ $a^0 = 1 = (a^1 - 1)/(a - 1)$
 - Inductive hypothesis: S(n) is true
 - \circ Assume $a^0 + a^1 + ... + a^n = (a^{n+1} 1)/(a 1)$
 - Step (show S(n+1) is true)

$$a^0 + a^1 + ... + a^{n+1} = (a^0 + a^1 + ... + a^n) + a^{n+1}$$

- $= (a^{n+1} 1)/(a 1) + a^{n+1}$
- $= (a^{(n+1)+1} 1)/(a 1)$

4

Various Induction Methods

- We've been using weak induction
- Strong induction also holds
 - Basis: show S(0)
 - Hypothesis: assume S(k) holds for arbitrary k≤n
 makes the inductive step easier to prove by using a stronger hypothesis
 - Step: Show S(n+1) follows
- Another variation:
 - Basis: show S(0), S(1)
 - Hypothesis: assume S(n) and S(n+1) are true
 - Step: show S(n+2) follows

...

Analysis of Algorithms (Sec 2.2)

- We perform analysis with respect to a <u>computational model</u> → a generic <u>uniprocessor</u> random-access machine (RAM)
 - All memory equally expensive to access
 - No concurrent operations
 - All reasonable instructions take unit time
 - o In reality, they may take different time
 - Except function calls
 - Constant word size
 - o Unless we are explicitly manipulating bits

Input Size: first parameter

- To find Time- and space-complexity
 - This is generally a function of the input size
 - o E.g., sorting, multiplication
 - How we characterize input size depends on
 - o Sorting: number of input items
 - o Multiplication: total number of bits
 - o Graph algorithms: number of nodes & edges

Running Time of basic operations

- Number of primitive steps that are executed
 - Except for time of executing a function call
 - most statements roughly require the same amount of time

$$y = m * x + b$$

 $c = 5 / 9 * (t - 32)$
 $z = f(x) + g(y)$

• We can be more exact if need

Analysis

- Worst case
 - Provides an upper bound on running time
 - An absolute guarantee
- Average case
 - Provides the expected running time
 - Very useful, but treat with care: what is "average"?
 - o Random (equally likely) inputs
 - o Real-life inputs

An Example: Insertion Sort (Sec. 2.1) InsertionSort(A) { for j = 2 to $n \{ // n \rightarrow A.size$

What is Sorting "in place"?

Correctness: Loop Invariants

- At the start of each iteration of the 'for' loop, subarray A[1..(j-1)] consists of the elements originally in A[1..j-1]but in sorted order: (j-1) cards already sorted; insert a new card
- We must show three things about loop invariants
 - use "induction" to prove the property Initialization
 - -Base case • Maintenance
 - -Induction step
 - Termination
 - The data processed by the loop has this property

An Example: Insertion Sort

An Example: Insertion Sort j=2 i=1key = 1030 10 40 20 A[i+1] = 10A[i] = 303 4 InsertionSort(A, n) { for j = 2 to n { key = A[j] i = j - 1 while (i > 0) and (A[i] > key) { A[i+1] = A[i] i = i - 1 \Rightarrow A[i+1] = key}


```
An Example: Insertion Sort
                                    j=2 i=0
                                                           key = 10
30
       30
              40
                      20
                                                            A[i+1] = 30
                                    A[i] = 30
1 2
               3
                      4
             InsertionSort(A, n) {
                 sertionsort(A, n) {
    for j = 2 to n {
        key = A[j]
        i = j - 1
        while (i > 0) and (A[i] > key) {
            A[i+1] = A[i]
            i = i - 1
        }
}
   \Rightarrow
                      A[i+1] = key
                }
```



```
An Example: Insertion Sort
                             j=3 i=0
                                                key = 40
10
     30
           40
                 20
                                                A[i+1] = 10
                             A[i] = \emptyset
1 2
            3
                  4
            InsertionSort(A, n) {
               for j = 2 to n {
                   r j = 2 to n {
    key = A[j]
    i = j - 1
    while (i > 0) and (A[i] > key) {
        i = i - 1
        i = i - 1
                   A[i+1] = key
               }
            }
```



```
An Example: Insertion Sort
                             j = 4 i = 3
                                               key = 20
     30
           40
                 20
                                                A[i+1] = 20
                            A[i] = 40
1 2
           3
            InsertionSort(A, n) {
               for j = 2 to n {
                   r j = 2 to n {
    key = A[j]
    i = j - 1
    while (i > 0) and (A[i] > key) {
        i = i - 1
        i = i - 1
                   A[i+1] = key
               }
            }
```

An Example: Insertion Sort j=4 i=3key = 2040 10 30 40 A[i+1] = 40A[i] = 403 4 InsertionSort(A, n) { for j = 2 to n { key = A[j] i = j - 1 while (i > 0) and (A[i] > key) { A[i+1] = A[i] i = i - 1 \Rightarrow A[i+1] = key}


```
An Example: Insertion Sort
                                  j = 4 i = 2
                                                        key = 20
10
      30
              40
                     40
                                                         A[i+1] = 40
                                  A[i] = 30
1 2
              3
                     4
               InsertionSort(A, n) {
                  sertionsort(A, n) {
  for j = 2 to n {
    key = A[j]
    i = j - 1
    while (i > 0) and (A[i] > key) {
        A[i+1] = A[i]
        i = i - 1
    }
}
  \Rightarrow
                       A[i+1] = key
                  }
```

```
An Example: Insertion Sort
                            j = 4 i = 2
                                              key = 20
    30
          40
                40
                           A[i] = 30
                                              A[i+1] = 40
1 2
           3
            InsertionSort(A, n) {
               for j = 2 to n {
                  r j = 2 to n {
    key = A[j]
    i = j - 1
    while (i > 0) and (A[i] > key) {
        i = i - 1
        i = i - 1
 A[i+1] = key
              }
            }
```

```
An Example: Insertion Sort
                                    j=4 i=2
                                                            key = 20
       30
              30
                      40
10
                                    A[i] = 30
                                                            A[i+1] = 30
1 2 3
                InsertionSort(A, n) {
                   sertionsoft(a, i) {
    for j = 2 to n {
        key = A[j]
        i = j - 1
        while (i > 0) and (A[i] > key) {
            A[i+1] = A[i]
            i = i - 1
        }
}
  \Rightarrow
                         A[i+1] = key
                   }
               }
```



```
An Example: Insertion Sort
                             j=4 i=1
                                               key = 20
10
     20
           30
                  40
                                                A[i+1] = 20
                             A[i] = 10
1 2
            3
                  4
             InsertionSort(A, n) {
                for j = 2 to n {
                   r j = 2 to n {
    key = A[j]
    i = j - 1
    while (i > 0) and (A[i] > key) {
        A[i+1] = A[i]
        i = i - 1
                    A[i+1] = key
```

```
An Example: Insertion Sort
                            j = 4 i = 1
                                              key = 20
    20
          30
                40
                                               A[i+1] = 20
                            A[i] = 10
1 2
           3
            InsertionSort(A, n) {
               for j = 2 to n {
                  r j = 2 to n {
    key = A[j]
    i = j - 1
    while (i > 0) and (A[i] > key) {
        i = i - 1
        i = i - 1
                   A[i+1] = key
              }
           }
                          Done!
```

```
Sorting Algorithm Animations
```

- http://www.sorting-algorithms.com/
- $\begin{array}{ll} \bullet & Algorithm: \ \underline{Insertion} \cdot \underline{Selection} \cdot \underline{Bubble} \cdot \underline{Shell} \cdot \\ \underline{Merge} \cdot \underline{Heap} \cdot \underline{Quick} \cdot \underline{Quick3} \end{array}$
- Initial Condition: <u>Random</u> · <u>Nearly</u>
 <u>Sorted</u> · <u>Reversed</u> · <u>Few Unique</u>

for 4j = 2 to n {
 key = A[j]
 i = j - 1
 while (i > 0) and (A[i] > key) {
 A[i+1] = A[i]
 i = i - 1
 }
 A[i+1] = key
}

Again: Insertion Sort

What is the precondition

InsertionSort(A, n) {

Insertion Sort

```
InsertionSort(A, n) {
  for j = 2 to n {
     key = A[j]
     i = j - 1
     while (i > 0) and (A[i] > key) {
           A[i+1] = A[i]
           i = i - 1
      }
      A[i+1] = key
}
How many times will
this loop execute?
```

```
Statement
                                               Effort
InsertionSort(A, n) {
  for j = 2 to n {
                                         c_1n
     key = A[j]
                                         c2(n-1)
     i = j - 1
                                         c_3(n-1)
     while (i>0) and (A[i] > key) \{c_4T\}
                                         c_5(T-(n-1))
           A[i+1] = A[i]
                                         c_6(T-(n-1))
           i = i - 1
     A[i+1] = key
                                         c_7(n-1)
  }
}
  T = (t_2 + t_3 + ... + t_n), where t_i is the number of
  'while' expression evaluations for the jth for loop iteration
```

Running time

- \cdot The running time depends on the input:
 - · an already sorted sequence is easier to sort

What is insertion sort's worst-case time?

- <u>Major Simplifying Convention</u>: Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones.
 - $>T_A(n)$ = time of A on length n inputs
- Generally, we seek <u>upper bounds</u> on the running time, to have a guarantee of performance.

Analyzing Insertion Sort

- T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 T + c_5 (T (n-1)) + c_6 (T (n-1)) + c_7 (n-1) = c_8 T + c_9 n + c_{10}
- What can T(n) be?
 - <u>Best case</u> -- inner loop body never executed • $t_i = 1 \rightarrow T(n) = cn + b$, a linear function
 - <u>Worst case</u> -- inner loop body executed for all previous elements
 - ∘ $t_i = i$ → $T(n) = c_{11}n^2 + c_{13}n + c_{12}$, a quadratic function
 - Average case???

Insertion sort analysis

Worst case: Input reverse sorted.

$$T(n) = \sum_{i=2}^{n} \Theta(i) = \Theta(n^{2})$$

[arithmetic series]

Average case: All permutations equally likely.

$$T(n) = \sum_{i=2}^{n} \Theta(i/2) = \Theta(n^{2})$$

- -- Is insertion sort a fast sorting algorithm?
- · Moderately so, for small n.
- Not at all, for large n.

...

Example 2: Integer Multiplication

- \odot Let X = A B and Y = C D
 - \bullet where A,B,C and D are n/2 bit integers
- Simple Method: $X*Y = (2^{n/2}A + B)(2^{n/2}C + D)$
 - → four n/2-bit multiplications
- Running Time Recurrence

$$T(n) < 4T(n/2) + 100n$$

• Solution $T(n) = \theta(n^2)$

Better Integer Multiplication

- \odot Let X = A B and Y = C D
 - where A, B, C and D are n/2 bit integers
- - → three n/2-bit multiplications

 $X*Y = (2^{n/2}+2^n)AC+2^{n/2}(A-B)(C-D) + (2^{n/2}+1) BD$

• Running Time Recurrence T(n) < 3T(n/2) + 100n

• Solution: $\theta(n) = O(n^{\log 3})$

Analysis → Order of growth

- Simplifications
 - Ignore actual and abstract statement costs
 - Order of growth is the interesting measure:
 - o Highest-order term is what counts
 - > we are doing asymptotic analysis
 - As the input size grows larger, it is the high order term that dominates
 - Look at growth of T(n) as $n \to \infty$

റാ

Asymptotic Performance (Ch.3)

- In this course, we care most about <u>asymptotic</u> performance
 - How does the algorithm behave as the problem size gets very large?
 - o Running time
 - o Memory, storage requirements
 - o Bandwidth, power requirements, logic gates, etc.
 - o Power consumption: CPU frequency, data center, etc
 - 2% of world power consumption in 2010 !!!

Asymptotic Notation (Sec 3.1)

- You should have known (big-O) notation:
 - What does O(n) running time mean? $O(n^2)$? $O(n \mid g \mid n)$?
- Let us define this notation more formally and completely

9

Upper Bound Notation (Sec 3.1)

- We say InsertionSort's run time is $O(n^2)$
 - Properly we should say run time is in $O(n^2)$
 - Read O as "Big-O" (you'll also hear it as "order")
- \odot In general, a function f(n) is O(g(n))
 - if there exist positive constants c and n_0
 - such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$
- Formally
 - $O(g(n)) = \{ f(n): \exists positive <u>constants</u> c and <math>n_0$ such that $f(n) \le c \cdot g(n), \forall n \ge n_0 \}$

Insertion Sort is $O(n^2)$

- Proof
 - Suppose runtime is an² + bn + c
 - If any of a, b, and c are less than 0 replace the constant with its absolute value
 - $an^2 + bn + c \le (a+b+c)n^2 + (a+b+c)n + (a+b+c)$
 - $\leq 3(a+b+c)n^2$ for $n \geq 1$
 - Let c' = 3(a+b+c), and let $n_0 = 1$
- Question
 - Is InsertionSort O(n³)?
 - Is InsertionSort O(n)?

Big-O Fact

- A polynomial of degree k is O(nk)
- - Suppose $f(n) = b_k n^k + b_{k-1} n^{k-1} + ... + b_1 n + b_0$ • Let $a_i = |b_i|$
 - $f(n) \le a_k n^k + a_{k-1} n^{k-1} + ... + a_1 n + a_0$

$$\leq n^k \sum a_i \frac{n^i}{n^k} \leq n^k \sum a_i \leq cn^k$$

<u>Lower Bound</u> Notation

- \odot We say InsertionSort's run time is $\Omega(n)$, Omega
- \odot a function f(n) is $\Omega(g(n))$
 - if \exists positive constants c and n_0
 - such that $0 \le c \cdot g(n) \le f(n)$, $\forall n \ge n_0$
- Proof:
 - Suppose run time is (an + b)
 - Assume a and b are positive (what if b is negative?)
 - an \leq an + b

98

Asymptotic Tight Bound, Θ Theta

- A function f(n) is $\Theta(g(n))$
 - if \exists positive constants c_1 , c_2 , and n_0
 - such that $c_1 g(n) \le f(n) \le c_2 g(n)$, $\forall n \ge n_0$
- Theorem
 - f(n) is $\Theta(g(n))$, i.f.f. f(n) is both O(g(n)) and $\Omega(g(n))$

f(n) $c_1g(n)$ n $f(n) = \Theta(g(n))$

 $c_2g(n)$

Figure 3.1 Graphic examples of the Θ , O, and Ω notations. In each part, the value of n_0 shown is the minimum possible value; any greater value would also work. (a) Θ -notation bounds a function to within constant factors. We write $f(n) = \Theta(g(n))$ if there exist positive constants n_0 , c_1 , and c_2 such that to the right of n_0 , the value of f(n) always lies between $c_1g(n)$ and $c_2g(n)$ inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write f(n) = O(g(n)) if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or above cg(n).

Reading Assignment and Homework

- Week 1
 - Read Ch.1, Ch.2, Ch3
 - Appendix A, B, and C
- Week 2
 - Read Ch.4
- Homework 1, due in the first class in Week 3
 - Type and email me before the class

3.2 Standard Notations & Common Functions

- Monotonicity
 - Monotonically increase: if $m \le n$, then $f(m) \le f(n)$
 - Monotonically decrease: if $m \le n$, then $f(m) \ge f(n)$
 - Strictly increase: if m < n, then f(m) < f(n)
 - Strictly decrease: if m < n, then f(m) > f(n)
- Floors and Ceilings
 - $X-1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x+1$
- Modular arithmetic: (a mod n) = a n \[a/n \]
- Polynomials: $p(n) = \sum a_i n^i$
- Exponentials: e(n)= nⁱ
- Logarithms: log(n)
- Factorials: n!
- \odot Functional Iteration: $f^{(i)}(n)=n$, if i=0; $f^{(i)}(n)=f(f^{(i-1)}(n))$, if i>0
- Fibonacci Numbers: F(0)=0, F(1)=1, F(i)=F(i-1)+F(i-2)

Other Asymptotic Notations

- A function f(n) is o(g(n))
 - if \exists positive constants c and n_0
 - such that $f(n) < c g(n), \forall n \ge n_0$
- A function f(n) is $\omega(g(n))$
 - if \exists positive constants c and n_0
 - such that $c g(n) < f(n), \forall n \ge n_0$
- Intuitively,
 - o() is like <
- ω() is like >
- Θ() is like =
- O() is like \leq Ω () is like \geq

10

Up Next

- Divide-and-Conquer
- Solving recurrences
 - Substitution method
 - Iteration method
 - Master theorem

110

111

Example of insertion sort

8 2 4 9 3

Example of insertion sort

L1.115

Example of insertion sort

1 1 116

Example of insertion sort

.

Example of insertion sort

Example of insertion sort

L1.119

Example of insertion sort

L1.120

