

Guide

Guía de Usuario del paquete de R #rstats {MATdatatools}, Versión 0.1.0

Miguel Ángel Tarancón Morán

Catedrático de Economía Aplicada. Universidad de Castilla – La Mancha

MATdatatools Guide

Miguel-Ángel Tarancón

2025-01-15

Tabla de contenidos

1	Introdu	ıcción	3
2	Funcio	nes de MATdatatools	3
3	Descar	ga e Instalación	3
	3.1 De	esde GitHub	3
	3.2 En	RStudio	4
4	Detalle	e de Cada Función	4
	4.1 MA	ATfexcel	4
	4.1.1	Uso:	4
	4.1.2	Objetivo	4
	4.1.3	Parámetros	4
	4.1.4	Resultados Esperados	4
	4.1.5	Ejemplo	4
	4.1.6	Resultados Esperados	5
	4.2 MA	ATmv	5
	4.2.1	Uso:	5
	4.2.2	Objetivo	5
	4.2.3	Parámetros	6
	4.2.4	Resultados	6
	4.2.5	Ejemplo	6
	4.2.6	Resultados Esperados	6
	4.3 MA	ATout	8
	4.3.1	Uso:	8
	4.3.2	Objetivo	8
	4.3.3	Parámetros	8
	4.3.4	Resultados	8
	4.3.5	Ejemplo	8
	126	Pacultadas Esparadas	0

4.	.4 MAT	out_Mahalanobis10
	4.4.1	Uso:
	4.4.2	Objetivo10
	4.4.3	Parámetros
	4.4.4	Resultados10
	4.4.5	Ejemplo
	4.4.6	Resultados Esperados
4.	.5 MAT	describe13
	4.5.1	Uso:
	4.5.2	Objetivo
	4.5.3	Parámetros
	4.5.4	Resultados13
	4.5.5	Ejemplo
	4.5.6	Resultados Esperados
4.	.6 MAT	
	4.6.1	Uso:
	4.6.2	Objetivo
	4.6.3	Parámetros
	4.6.4	Resultados14
	4.6.5	Ejemplo14
	4.6.6	Resultados Esperados
4.	.7 MAT	⁻ cor16
	4.7.1	Uso:
	4.7.2	Objetivo16
	4.7.3	Parámetros
	4.7.4	Resultados16
	4.7.5	Ejemplo
	4.7.6	Resultados Esperados
5	Docume	ntación del Paquete17
6	¡Empieza	a a explorar tus datos con MATdatatools!17

1 Introducción

El paquete **MATdatatools** ha sido diseñado para facilitar el análisis de datos y la generación de resultados gráficos y estadísticos en R. Este paquete es una herramienta ágil y accesible, especialmente útil para estudiantes y profesionales de Administración y Dirección de Empresas que buscan una manera intuitiva de explorar, analizar y visualizar sus datos sin necesidad de profundos conocimientos de programación.

3

¿Qué ofrece MATdatatools?

- Automatización de procesos estadísticos comunes.
- Gráficos de alta calidad con interpretaciones claras.
- Análisis descriptivos, exploración de correlaciones y más.

2 Funciones de MATdatatools

El paquete incluye las siguientes funciones principales:

- MATfexcel: Importa datos desde hojas de Excel, convirtiendo fácilmente las primeras columnas en nombres de filas.
- MATmv: Filtra datos con casos completos, muestra gráficamente los datos faltantes y genera un resumen.
- **MATout:** Detecta y elimina valores atípicos en una variable, proporcionando gráficos y tablas explicativas.
- MATout_Mahalanobis: Identifica valores atípicos multidimensionales basándose en la distancia de Mahalanobis.
- MATdescribe: Realiza un análisis descriptivo completo, incluyendo gráficos y estadísticos.
- **MATtaf:** Genera tablas de frecuencias agrupadas en intervalos y crea histogramas relacionados.
- MATcor: Produce una matriz de correlación gráfica entre variables.

Cada función está diseñada para ser intuitiva y generar resultados listos para interpretar. El archivo de Microsoft(R) Excel(R) de los ejemplos, eolica_100_mv.xls, puede descargarse aquí.

3 Descarga e Instalación

3.1 Desde GitHub

Asegúrate de tener instalado el paquete devtools:

```
install.packages("devtools")
```

2. Descarga e instala el paquete desde GitHub:

```
devtools::install_github("teckel71/R_for_Economics/packages/MATdata
tools")
```

3. Carga el paquete:

```
library(MATdatatools)
```

3.2 En RStudio

- 1. Abre RStudio y ve a **Tools > Install Packages**.
- 2. Selecciona Install from GitHub y escribe:

```
teckel71/R_for_Economics/packages/MATdatatools
```

3. Haz clic en Install.

4 Detalle de cada Función

4.1 MATfexcel

4.1.1 Uso:

```
MATfexcel(file_path, sheet_name, na_values = NULL)
```

4.1.2 Objetivo

Importar datos desde hojas de Excel y convertir la primera columna en nombres de filas.

4.1.3 Parámetros

- file_path: Ruta del archivo de Excel.
- sheet_name: Nombre de la hoja a importar.
- na values: Valores que deben ser considerados como NA (opcional).

4.1.4 Resultados Esperados

Un dataframe con las filas correctamente nombradas.

4.1.5 Ejemplo

4.1.6 Resultados Esperados

1. Un dataframe llamado eolica 100

```
##
         RES
                            ACTIVO
                                                 FPIOS
##
    Min.
            : -5661.5
                                    24944
                                                    : -77533
                        Min.
                                            Min.
    1st Qu.:
                669.5
                        1st Qu.:
                                    34547
                                            1st Qu.:
                                                        2305
##
##
    Median :
               2084.5
                        Median :
                                            Median :
                                    46950
                                                       11936
##
    Mean
           : 11529.8
                        Mean
                                   277270
                                            Mean
                                                    : 123743
    3rd Qu.:
               3806.7
                        3rd Qu.:
                                            3rd Qu.:
##
                                    85610
                                                       28292
##
    Max.
           :727548.0
                        Max.
                                :13492812
                                                    :6904824
                                            Max.
    NA's
                        NA's
##
##
##
        RENECO
                          RENFIN
                                              LIQUIDEZ
           :-2.813
                              :-359.773
##
    Min.
                      Min.
                                          Min.
                                                     0.0140
                                                  :
##
    1st Qu.: 1.558
                      1st Qu.:
                                  2.556
                                          1st Qu.:
                                                     0.6567
    Median : 4.236
##
                      Median :
                                 15.326
                                          Median :
                                                     1.0650
                                 17.243
##
    Mean
           : 5.416
                      Mean
                                          Mean
                                                     2.7214
##
    3rd Qu.: 7.970
                      3rd Qu.:
                                 31.307
                                          3rd Qu.:
                                                     1.6078
##
    Max.
           :35.262
                             : 588.190
                                          Max.
                                                  :128.4330
                      Max.
##
    NA's
           :2
##
##
       ENDEUDA
                           MARGEN
                                               SOLVENCIA
           : 0.917
##
    Min.
                       Min.
                               :-2248.157
                                            Min.
                                                    :-40.74
##
    1st Qu.: 50.852
                       1st Qu.:
                                   12.316
                                            1st Qu.: 4.71
    Median : 83.346
                                            Median : 16.65
##
                       Median :
                                   26.618
##
           : 72.227
                                    3.228
                                                    : 27.57
    Mean
                       Mean
                                            Mean
##
    3rd Qu.: 95.388
                       3rd Qu.:
                                   39.590
                                            3rd Qu.: 45.59
##
                               : 400.899
                                                    : 99.08
    Max.
           :140.745
                       Max.
                                            Max.
##
    NA's
                       NA's
            :2
                               :2
##
##
       APALANCA
                           MATRIZ
                                              DIMENSION
##
    Min.
           :-8254.11
                        Length:100
                                            Length:100
##
    1st Qu.:
               16.13
                        Class :character
                                            Class :character
##
    Median :
               161.97
                        Mode :character
                                            Mode :character
##
    Mean
               345.03
##
    3rd Qu.:
               623.13
           :12244.35
    Max.
```

4.2 MATmv

4.2.1 Uso:

MATmv(dataframe, columnas)

4.2.2 Objetivo

Filtrar casos completos de un dataframe y mostrar los valores faltantes de manera gráfica.

4.2.3 Parámetros

- dataframe: El dataframe que se desea analizar.
- columnas: Las columnas (variables) que se desean evaluar (sin comillas).

4.2.4 Resultados

- Un nuevo dataframe con los casos completos de las columnas seleccionadas.
- Gráfico de valores faltantes.

4.2.5 Ejemplo

```
MATmv(eolica_100, c(RENECO, ACTIVO, RES, RENFIN, FPIOS, MARGEN))
## [1] "eolica_100_sm"
```

4.2.6 Resultados Esperados

- 1. Un dataframe llamado eolica_100_sm con los casos completos en las variables seleccionadas.
- 2. Una lista eolica_100_sm_info que contiene:
 - o Gráfico que visualiza los valores faltantes.
 - Tabla con los casos faltantes.

Visualización de Resultados:

```
##
        RES
                        ACTIVO
                                         FPIOS
##
        : -5661.5
                              24944
                                           : -77533
   Min.
                    Min.
                         :
                                     Min.
            739.6
   1st Qu.:
                    1st Qu.:
                              34249
                                     1st Qu.:
                                               2380
   Median : 2114.7
##
                    Median : 46653
                                     Median : 11936
## Mean : 12080.6 Mean : 285091
                                     Mean : 128818
   3rd Qu.: 3844.2 3rd Qu.: 83091
                                     3rd Qu.: 27991
##
##
  Max. :727548.0 Max. :13492812
                                     Max.
                                           :6904824
##
##
                      RENFIN
       RENECO
                                      LIQUIDEZ
##
   Min. :-2.813
                  Min.
                        :-359.773
                                   Min. : 0.0140
   1st Qu.: 1.558
                  1st Qu.:
                           2.212
                                   1st Qu.: 0.6675
                  Median : 15.924
##
   Median : 4.236
                                   Median :
                                            1.0795
##
   Mean : 5.478
                  Mean : 17.906
                                   Mean :
                                            2.8401
   3rd Qu.: 8.107
                  3rd Qu.: 34.167
                                   3rd Qu.: 1.6350
##
   Max.
         :35.262
                  Max. : 588.190
                                         :128.4330
##
##
      ENDEUDA
                                       SOLVENCIA
                       MARGEN
                         :-2248.157
##
   Min.
         : 0.917
                   Min.
                                     Min.
                                            :-40.745
   1st Qu.: 54.406
                   1st Qu.: 12.793
                                     1st Qu.: 4.779
##
##
   Median : 83.346
                   Median :
                             27.638
                                     Median : 16.653
                                     Mean : 27.773
   Mean : 72.002
                             9.393
##
                   Mean :
                            41.264
   3rd Qu.: 95.289
                                     3rd Qu.: 43.812
##
                   3rd Qu.:
   Max. :140.745
                   Max. : 400.899
                                     Max. : 99.082
## NA's
##
```

APALANCA MATRIZ DIMENSION ## Min. :-8254.11 Length:94 Length:94

1st Qu.: 25.71 Class :character Class :character
Median : 223.21 Mode :character Mode :character

Mean : 378.36 ## 3rd Qu.: 670.30 ## Max. :12244.35

eolica_100_sm_info\$grafico_vis_miss

eolica_100_sm_info\$tabla_na

Casos con datos faltantes						
	RENECO	ACTIVO	RES	RENFIN	FPIOS	MARGEN
Viesgo Renovables SL.	NA	269730.00	4609.000	3.200	177707.000	11.818
Biovent Energia SA	4.551	183899.00	NA	11.952	70033.000	22.792
Sargon Energias SLU	NA	85745.00	-2216.000	26.900	-10985.000	-615.625
Parc Eolic Sant Antoni SL	1.361	69654.00	668.000	9.746	9727.000	NA
Eolica La Brujula SA	7.295	42146.98	2306.062	14.174	21694.791	NA
La Caldera Energia Burgos SL	2.643	NA	511.304	-24.857	-2752.605	14.448

4.3 MATout

4.3.1 Uso:

MATout(data, variable)

4.3.2 Objetivo

Detectar valores atípicos unidimensionales basados en el rango intercuartílico (IQR).

4.3.3 Parámetros

- data: El dataframe que contiene los datos.
- variable: La variable numérica a analizar (sin comillas).

4.3.4 Resultados

- Identifica valores atípicos y los muestra en un boxplot.
- Filtra los datos sin valores atípicos.

4.3.5 Ejemplo

```
MATout(data = eolica_100_sm, variable = RENECO)
```

4.3.6 Resultados Esperados

- 1. Un dataframe llamado eolica_100_sm_so con los datos filtrados.
- 2. Una lista eolica_100_sm_so_info que contiene:
 - o Box-Plot de la variable analizada.
 - Tabla de valores atípicos.

Visualización de Resultados:

```
##
        RES
                         ACTIVO
                                           FPIOS
                                              : -77533
##
   Min.
          : -5661.5
                     Min.
                                24944
                                       Min.
                           :
   1st Qu.:
             718.8
                     1st Qu.:
                                34437
                                       1st Qu.:
                                                  2305
   Median : 2016.7
                              46653
                                       Median :
                                                 10870
##
                     Median :
##
   Mean
        : 12109.0
                     Mean
                          : 290312
                                       Mean
                                             : 131112
   3rd Qu.: 3666.9
                                       3rd Qu.: 28292
##
                     3rd Qu.:
                                84061
##
   Max.
          :727548.0
                     Max.
                            :13492812
                                       Max.
                                              :6904824
##
##
       RENECO
                       RENFIN
                                        LIQUIDEZ
##
   Min.
          :-2.813
                   Min.
                          :-359.773
                                     Min.
                                          : 0.0140
   1st Qu.: 1.421
                   1st Qu.:
                             1.951
                                     1st Qu.: 0.6915
##
## Median : 4.144
                   Median : 15.460
                                     Median : 1.1115
          : 4.977
                   Mean : 17.078
                                     Mean :
##
   Mean
                                               2.8952
                   3rd Qu.: 33.163
   3rd Qu.: 7.904
                                     3rd Qu.:
                                               1.6567
## Max. :15.882
                   Max. : 588.190
                                     Max. :128.4330
```

```
##
      ENDEUDA
                         MARGEN
                                          SOLVENCIA
##
   Min.
          : 0.917
                     Min.
                            :-2248.157
                                        Min.
                                              :-40.74
   1st Qu.: 56.187
                     1st Qu.:
                               12.493
                                        1st Qu.: 4.71
   Median : 83.648
                     Median :
                                        Median : 16.35
##
                               27.409
                     Mean
                                             : 27.14
##
   Mean
         : 72.646
                                8.631
                                        Mean
   3rd Qu.: 95.388
                     3rd Qu.:
                               39.580
                                        3rd Qu.: 43.80
##
##
   Max. :140.745
                     Max. : 400.899
                                        Max. : 99.08
   NA's
##
         :2
##
##
      APALANCA
                         MATRIZ
                                         DIMENSION
##
   Min.
         :-8254.11
                      Length:92
                                        Length:92
   1st Qu.: 26.17
                      Class :character
                                        Class :character
   Median : 233.75
                      Mode :character
                                        Mode :character
##
##
   Mean
         : 385.76
##
   3rd Qu.: 693.49
##
   Max. :12244.35
```

eolica_100_sm_so_info\$Boxplot

eolica_100_sm_so_info\$Outliers_Table

10

4.4 MATout_Mahalanobis

4.4.1 Uso:

MATout_Mahalanobis(data, variables)

4.4.2 Objetivo

Detectar valores atípicos multidimensionales usando la distancia de Mahalanobis.

4.4.3 Parámetros

- data: El dataframe que contiene los datos.
- variables: Las variables numéricas para analizar (sin comillas).

4.4.4 Resultados

- Identifica valores atípicos multidimensionales.
- Filtra los datos sin valores atípicos.

4.4.5 Ejemplo

4.4.6 Resultados Esperados

- 1. Un dataframe llamado eolica_100_sm_so con los datos filtrados.
- 2. Una lista eolica_100_sm_so_info que contiene:
 - o Tabla de valores atípicos.
 - o Gráficos de las distancias de Mahalanobis.

Visualización de Resultados:

```
##
        RES
                        ACTIVO
                                         FPIOS
##
   Min. :-5661.5
                    Min. : 24944
                                     Min. :-77533
                    1st Qu.: 33607
   1st Qu.: 650.7
                                     1st Qu.: 2842
##
   Median : 1949.0
                    Median : 43998
                                     Median : 10980
   Mean : 3253.1
                    Mean : 89534
                                     Mean : 28365
##
##
   3rd Qu.: 3497.5
                                     3rd Qu.: 25995
                    3rd Qu.: 79873
   Max. :67033.0
                    Max. :1275939
##
                                     Max. :726783
##
##
       RENECO
                       RENFIN
                                        LIQUIDEZ
##
   Min. :-2.813
                   Min. :-165.348
                                     Min. : 0.029
   1st Qu.: 1.424
                   1st Qu.: 6.904
                                     1st Qu.: 0.690
   Median : 4.237
                   Median : 16.684
                                     Median : 1.177
##
##
   Mean : 5.236
                   Mean : 19.599
                                     Mean : 3.129
   3rd Qu.: 8.560
                   3rd Qu.: 34.669
                                     3rd Qu.: 1.648
##
##
   Max. :15.882
                   Max. : 207.801
                                     Max. :128.433
##
##
      ENDEUDA
                        MARGEN
                                      SOLVENCIA
                    Min. :-302.03
##
   Min. : 0.917
                                     Min. :-40.745
   1st Qu.: 56.193
                    1st Qu.: 11.66
                                     1st Qu.: 5.981
##
   Median : 83.098
                    Median : 28.52
                                     Median : 16.901
   Mean : 72.071
                    Mean : 34.10
                                     Mean : 27.670
##
   3rd Qu.: 94.059
                    3rd Qu.: 42.02
                                     3rd Qu.: 43.796
   Max. :140.745
                    Max. : 400.90
                                     Max. : 99.082
##
##
   NA's :2
##
      APALANCA
                        MATRIZ
                                       DIMENSION
##
##
   Min. :-7770.00 Length:81
                                       Length:81
                     Class :character Class :character
   1st Qu.: 31.93
##
                     Mode :character
                                       Mode :character
   Median : 239.37
   Mean : 435.09
##
##
   3rd Qu.: 684.22
   Max. : 8049.39
##
```


eolica_100_sm_so_info\$Outliers_Table

	Mahalanobis_Distance	RENECO	ACTIVO	RES	RENFIN	FPIOS	MARGEN
Holding De Negocios De GAS SL.	91.048060	5.264	13492812.00	727548.0000	10.287	6904824.0000	91.152
Global Power Generation SA.	72.365163	1.393	2002458.00	39995.0000	1.603	1740487.0000	22.403
Naturgy Renovables SLU	69.684700	1.959	1956869.00	42737.0000	12.043	318475.0000	20.442
Corporacion Acciona Eolica SL	8.471773	4.562	864606.00	29592.0000	28.990	136064.0000	20.09
Saeta Yield SA.	16.650544	0.360	796886.38	2084.4760	0.432	665319.5560	16.25
Parque Eolico Santa Catalina SL	15.261169	4.053	147742.52	3645.2780	-359.773	-1664.7550	31.78
Molinos Del Ebro SA	29.667488	35.262	62114.37	17026.2569	81.149	26991.0714	41.82
Luria De Energias SA	6.816766	4.844	49912.00	1849.0000	267.774	903.0000	20.16
Parque Eolico Sierra De Las Carbas SL	8.424602	3.676	46949.76	1252.4250	-263.639	-654.7640	19.05
Elecdey Lezuza SA	34.902738	4.657	36061.15	1258.6609	588.190	285.5387	22.34
WPD Parque Eolico Navillas SL.	84.604706	-0.416	35511.45	-110.9293	-14.302	1034.1284	-2248.15
Sierra De Selva SL	9.134843	21.761	27728.00	4525.0000	30.856	19555.0000	47.04
El Paramo Parque Eolico SL	9.970725	3.416	26634.00	671.0000	-287.974	-316.0000	16.26

4.5 MATdescribe

4.5.1 Uso:

MATdescribe(data, variable)

4.5.2 Objetivo

Realizar un análisis descriptivo completo de una variable numérica.

4.5.3 Parámetros

- data: El dataframe que contiene los datos.
- variable: La variable numérica a analizar (sin comillas).

4.5.4 Resultados

- Gráficos como histogramas, QQ-plots y boxplots.
- Estadísticos clave como media, desviación típica, y prueba de normalidad.

4.5.5 Ejemplo

MATdescribe(eolica_100_sm_so, RENECO)

4.5.6 Resultados Esperados

- 1. Una lista llamada RENECO_describe_info que contiene:
 - Gráfico resumen con varios paneles.
 - Tabla de estadísticos descriptivos.
 - o Resultado de la prueba de normalidad de Shapiro-Wilk (para significación de 0.05).

Visualización de Resultados:

RENECO_describe_info\$grafico_resumen

RENECO_describe_info\$normalidad

4.6 MATtaf

4.6.1 Uso:

MATtaf(data, variable, breaks = NULL)

4.6.2 Objetivo

Generar una tabla de frecuencias agrupadas en intervalos y un histograma relacionado.

4.6.3 Parámetros

- data: El dataframe que contiene los datos.
- variable: La variable numérica para analizar (sin comillas).
- breaks: Número de intervalos (opcional).

4.6.4 Resultados

- Una tabla de frecuencias.
- Un histograma con los mismos intervalos.

4.6.5 Ejemplo

MATtaf(eolica_100_sm_so, RENECO)

4.6.6 Resultados Esperados

- 1. Una lista llamada RENECO_intervalos_frecuencia que contiene:
 - o Histograma con los mismos intervalos que la tabla de frecuencias.
 - o Tabla de frecuencias agrupadas en intervalos.

Visualización de Resultados:

RENECO_intervalos_frecuencia\$tabla

Distribución de frecuencias agrupadas en intervalos de RENECO

Intervalo	Frecuencia absoluta n(i)	Frecuencia absoluta acum. N(i)	Frecuencia relativa f(i)	Frecuencia relativa acum. F(i)
[-2.83,-0.476]	6	6	0.074	0.074
(-0.476,1.86]	15	21	0.185	0.259
(1.86,4.2]	18	39	0.222	0.481
(4.2,6.53]	13	52	0.160	0.642
(6.53,8.87]	12	64	0.148	0.790
(8.87,11.2]	7	71	0.086	0.877
(11.2,13.5]	6	77	0.074	0.951
(13.5,15.9]	4	81	0.049	1.000

4.7 MATcor

4.7.1 Uso:

MATcor(data, ...)

4.7.2 Objetivo

Crear una matriz de correlación gráfica.

4.7.3 Parámetros

- data: El dataframe que contiene los datos.
- ...: Variables específicas (sin comillas) para incluir en el análisis. Si no se especifican, se usan todas las variables numéricas del dataframe.

4.7.4 Resultados

• Una matriz de correlación gráfica generada con GGally.

4.7.5 Ejemplo

MATcor(eolica_100_sm_so, RENECO, RENFIN, ACTIVO, FPIOS)

4.7.6 Resultados Esperados

- 1. Una lista llamada eolica_100_sm_so_correlaciones_info que contiene:
 - o Gráfico de correlación.

Visualización de Resultados:

eolica_100_sm_so_correlaciones_info\$correlaciones

5 Documentación del Paquete

• Autor: Miguel Ángel Tarancón miguelangel.tarancon@uclm.es

• Versión: 0.1.0

• Fecha: 2025-01-15

• Licencia: GPL-3

6 ¡Empieza a explorar tus datos con MATdatatools!

Este paquete está diseñado para facilitarte el trabajo y ayudarte a generar análisis rápidos y visuales. ¡Pruébalo hoy y optimiza tus estudios de datos!

