2[^] Esercitazione - Secondo Semestre Analisi Numerica - Calcolo Numerico A.A. 2014-2015

1. Costruire la fattorizzazione LU delle seguenti matrici:

$$A_1 = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 2 & 3 & 4 & 5 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 4 & 0 & 2 & 4 \\ 0 & 1 & 1 & 1 \\ 2 & 2 & 11 & 9 \\ 4 & 1 & 9 & 25 \end{pmatrix}$$

Confrontare i risultati ottenuti con l'output della function Matlab 1u.

2. Studiare la convergenza dei metodi di Jacobi e Gauss-Seidel applicati ai sistemi lineari $A_i x = b_i$, i = 1, 2 dove

$$A_1 = \begin{pmatrix} -3 & 3 & -6 \\ -4 & 7 & -8 \\ 5 & 7 & -9 \end{pmatrix}, \quad b_1 = \begin{pmatrix} -6 \\ -5 \\ 3 \end{pmatrix}, \qquad A_2 = \begin{pmatrix} 4 & 1 & 1 \\ 2 & -9 & 0 \\ 0 & -8 & -6 \end{pmatrix}, \quad b_2 = \begin{pmatrix} 6 \\ -7 \\ -14 \end{pmatrix},$$

utilizzando eventualmente il comando eig per il calcolo degli autovalori. Seguendo come traccia il seguente codice per il metodo di Jacobi,

function [xnew,err]=Jacobi(A,b,x0,Nmax,toll)

```
D=diag(diag(A));
B=D-tril(A);
C=D-triu(A);
invD=diag(1./diag(A));
J=invD*(B+C);
xold=x0;
i=1;
test=1;
err=zeros(1,Nmax);
while i<Nmax && test>toll
        xnew=J*xold+invD*b;
        err(i)=norm(xnew-xold);
        test=err(i);
        xold=xnew;
        i=i+1;
end
err=err(1:i-1);
```

end

scrivere una function Matlab che implementa il metodo iterativo di Gauss-Seidel (utilizzando un algoritmo opportuno per il calcolo della matrice inversa). Utilizzare i programmi per risolvere i sistemi lineari proposti e visualizzare, in tabella (si utilizzi il comando fprintf) e grafico in scala semi-logaritmica, l'andamento dell'errore. Confrontare i risultati con le considerazioni sulla convergenza dei metodi.

```
close all
clc
A1 = [1 \ 0 \ 0 \ 1;
    1 0 0 1;
   0 0 1 1;
   2 3 4 5];
A2 = [4 \ 0 \ 2 \ 4;
   0 1 1 1:
   2 2 11 9;
   4 1 9 25];
% Fattorizzazione LU della matrice A1 con nostra funzione
[11,u1] = Fatt_LU(A1)
% Fattorizzazione LU della matrice A1 con matlab
[L1, U1] = lu(A1)
% Fattorizzazione LU della matrice A2 con nostra funzione
[12,u2] = Fatt LU(A2)
% Fattorizzazione LU della matrice A2 con matlab
[L2, U2] = lu(A2)
diary off
COMMAND WINDOW
                                                      L1 =
11 =
  0.5000
          1.0000
                          1.0000
                                                         0.5000
                                                                 1.0000
                                                                             0
                                                                                1.0000
                      0
                                                         0.5000
                                                                  1.0000
                                                                             0
           1.0000
                                                                                   0
  0.5000
                      0
                             0
                   1.0000
                                                            0
                                                                          1.0000
                                                                                   0
     0
              0
                            0
                                                                     0
                                                         1.0000
                                                                                    0
                            0
                                                                     0
                                                                             0
  1.0000
              0
                      0
                                                      U1 =
u1 =
                                                         2.0000
                                                                 3.0000 4.0000
                                                                                   5.0000
  2.0000 3.0000 4.0000
                            5.0000
                                                                 -1.5000 -2.0000
                                                            0
                                                                                  -1.5000
     0
          -1.5000 -2.0000 -1.5000
                                                            0
                                                                    0
                                                                          1.0000
                                                                                   1.0000
     0
             0
                   1.0000
                            1.0000
                                                                    0
                                                            0
                                                                            0
                                                                                     0
     0
             0
                     0
                              0
                                                      L2 =
12 =
  1.0000
              0
                      0
                               0
                                                         1.0000
                                                                     0
                                                                             0
                                                                                      0
           0.5000
                    1.0000
     0
                               0
                                                                  0.5000
                                                                           1.0000
                                                                                      0
                                                            0
  0.5000
          1.0000
                               0
                      0
                                                         0.5000
                                                                  1.0000
                                                                             0
                                                                                      0
  1.0000
          0.5000 -0.5000
                            1.0000
                                                         1.0000
                                                                  0.5000 -0.5000
                                                                                   1.0000
u2 =
                                                       U2 =
                                                         4.0000
                                                                   0
                                                                        2.0000
                                                                                  4.0000
             0
   4.0000
                  2.0000
                            4.0000
                                                                                  7.0000
                                                            0
                                                               2.0000 10.0000
     0
         2.0000
                10.0000
                            7.0000
                                                            0
                                                                   0
                                                                        -4.0000 -2.5000
                  -4.0000 -2.5000
     0
             0
                                                            0
                                                                   0
                                                                                  16.2500
                                                                            0
      0
             0
                      0
                           16.2500
```

% Esercizio 1 - Esercitazione 8

diary esercizio_1.txt

clear all

FUNZIONE FATTORIZZAZIONE LU

```
function [ L, U ] = Fatt_LU( A )
% Fattorizzazione LU
% -----INPUT-----
% A: matrice da fattorizzare
% -----
  % dimensioni matrice n righe, m colonne
  [n,m] = size(A);
  % iterazioni sulle n righe
  L=zeros(n,m);
  U=A;
  for i = 1:n
    % PIVOTING
    % inizializziamo max con la prima riga i
    % impostiamo max uguale alla riga con il massimo valore, cioe
    % scegliamo la riga del pivot
    for j = i+1 : n
       if (abs(U(j,i)) > abs(U(max,i)))
         max = i;
       end
    end
    % scambio della riga i con la riga max(del pivot)
    L([i max],:) = L([max i],:);
    % memorizziamo il pivot per la permutazione
    pivot(i) = max;
    U([i max],:) = U([max i],:);
    % SCALING
    for j=i+1:n
       if U(i,i) \sim =0
       % Costruice matrice valori coefficienti di gauss
       L(j,i)=-U(j,i)/U(i,i);
       % costruisce matrice riduzione di gauss
       U(j,:)=U(i,:).*L(j,i) + U(j,:);
       end
    end
  end
  % Permutazione per ordinare la matrice L, cioè la matrice P è la
  % permutazione che applico su L
  P = diag(ones(size(U,1),1));
  for i = 1:n-1
    P([i \text{ pivot}(i)],:) = P([pivot(i) i],:);
  L = L + diag(ones(size(U,1),1));
  L = P \setminus L;
end
```

```
% Esercizio 2 - Esercitazione 8
diary esercizio 2.txt
clear all
close all
clc
% Matrice dei coefficienti A1
A1 = [-3 \ 3 \ -6; -4 \ 7 \ -8; 5 \ 7 \ -9];
% Vettore dei termini noti b1
b1 = [-6.5 3]';
% Matrice dei coefficienti A2
A2 = [4 \ 1 \ 1; 2-9 \ 0; 0-8 -6];
% Vettore dei termini noti b2
b2 = [6 - 7 - 17]';
% vettori soluzione
x=zeros(3,1);
% numero massimo di iterazioni
iter max=50;
% tolleranza 1*10^-4
toll = 0.0001;
% errore metodo Jacobi per il sistema lineare A 1*x=b 1
disp('il metodo di Jacobi per il sistema lineare A 1*x=b 1 è ');
errJ1 = Jacobi(A1,b1,x,iter_max,toll);
% errore metodo Gauss-Seidel per il sistema lineare A 1*x=b 1
disp('il metodo di Gauss-Seidel per il sistema lineare A 1*x=b 1 è ');
errGS1 = GaussSeidel(A1,b1,x,iter max,toll);
% errore metodo Jacobi per il sistema lineare A_2*x=b_2
disp('il metodo di Jacobi per il sistema lineare A_2*x=b_2 è ');
errJ2 = Jacobi(A2,b2,x,iter max,toll);
% errore metodo Gauss-Seidel per il sistema lineare A 2*x=b 2
disp('il metodo di Gauss-Seidel per il sistema lineare A 2*x=b 2 è ');
errGS2 = GaussSeidel(A2,b2,x,iter_max,toll);
% GRAFICI
hold all
subplot(2,1,1);
plot(1:length(errJ1),errJ1,1:length(errGS1),errGS1)
subplot(2,1,2);
plot(1:length(errJ2),errJ2,1:length(errGS2),errGS2)
% TABELLE ERRORI (con comando matlab fprintf
file_id = fopen('err_Jac_A1.txt','w');
fprintf(file_id,'%3i %12.8f\n',[1:length(errJ1); errJ1]);
fclose(file id):
file id = fopen('err GS A1.txt','w');
fprintf(file_id,'%3i %12.8f\n',[1:length(errGS1); errGS1]);
fclose(file id);
file id = fopen('err Jac A2.txt', 'w');
fprintf(file_id,'%3i %12.8f\n',[1:length(errJ2); errJ2]);
fclose(file id);
file id = fopen('err GS A2.txt','w');
fprintf(file id,'%3i %12.8f\n',[1:length(errGS2); errGS2]);
fclose(file id);
diary off
```

COMMAND WINDOW Esercizio 2 - Esercitazione 8

il metodo di Jacobi per il sistema lineare A_1*x=b_1 è Convergente il metodo di Gauss-Seidel per il sistema lineare A_1*x=b_1 è Non convergente il metodo di Jacobi per il sistema lineare A_2*x=b_2 è Convergente il metodo di Gauss-Seidel per il sistema lineare A_2*x=b_2 è Convergente

Grafico Esercizio 2 - Esercitazione 8

FUNZIONE GAUSS-SEIDEL

```
function [err, xnew] = GaussSeidel(A, b, x0, iter_max, toll)
% valutiamo l'errore del metodo di Jacobi iterando fino a raggiungere una
% determinata tolleranza(toll).
% -----INPUT-----
% iter_max : numero massimo iterazioni
% toll: tolleranza
% -----
  D = diag(diag(A));
  B = D-tril(A);
  C = D-triu(A);
  Qgs = zeros(size(A,1));
  for i = 1:size(b)
    Qgs(i,i) = 1/A(i,i);
    for j = i+1:size(b)
       Qgs(j,i) = -A(j,:)*Qgs(:,i)/A(j,j);
    end
  end
  GS = Qgs*C;
  % esaminiamo la convergenza del metodo valutando la norma infinita
  % degli autovalori di J
  rag_spet = norm(eig(GS),inf);
  if (rag spet < 1)
    disp('Convergente');
  else
    disp('Non convergente');
  end
  xold = x0;
  i = 1;
  test = 1;
  err = zeros(1, iter_max);
  while i < iter max && test > toll
    % ricaviamo il vettore soluzione di quella spefica iterazione i
    xnew = GS*xold+Qgs*b;
    err(i) = norm(xnew-xold);
    test = err(i);
    xold = xnew;
    i = i+1;
  end
  err = err(1:i-1);
end
```

FUNZIONE JACOBI

```
function [err, xnew] = Jacobi(A, b, x0, iter_max, toll)
% valutiamo l'errore del metodo di Jacobi iterando fino a raggiungere una
% determinata tolleranza(toll).
% -----INPUT-----
% iter_max : numero massimo iterazioni
% toll: tolleranza
% -----
  D = diag(diag(A));
  B = D-tril(A);
  C = D-triu(A);
  invD = diag(1./diag(A));
  % matrice di iterazione
  J = invD*(B+C);
  % esaminiamo la convergenza del metodo valutando la norma infinita
  % degli autovalori di J
  rag_spet = norm(eig(J),inf);
  if (rag\_spet < 1)
    disp('Convergente');
  else
    disp('Non convergente');
  end
  xold = x0;
  i = 1;
  test = 1;
  err = zeros(1, iter_max);
  while i < iter_max && test > toll
    % ricaviamo il vettore soluzione di quella spefica iterazione i
    xnew = J*xold+invD*b;
    err(i) = norm(xnew-xold);
    test = err(i);
    xold = xnew;
    i = i+1;
  end
  err = err(1:i-1);
end
```

errore metodo Jacobi	
per il sistema lineare	
-	1*x=b 1
_	_
1	2.14972445
2	0.94414428
3	0.90098166
4	0.74367165
5	0.12498717
6	0.10532058
7	0.15189491
8	0.03129344
9	0.06881143
10	0.03659135
11	0.02514329
12	0.03010791
13	0.01773172
14	0.01667270
15	0.01379642
16	0.01032093
17	0.00904704
18	0.00710360
19	0.00577917
20	0.00477818
21	0.00382212
22	0.00313620
23	0.00254818
24	0.00206588
25	0.00168634
26	0.00136857
27	0.00111355
28	0.00090619
29	0.00073643
30	0.00059925
31	0.00048731
32	0.00039629
33	0.00032236
34	0.00026215
35	0.00021322
36	0.00017341
37	0.00014103
38	0.00011471
39	0.00009329

Esercitazione 8		
errore metodo Gauss-		
Seidel per il sistema		
lineare A_1*x=b_1		
1 2.32771162		
2 1.98161260		
3 2.18363293		
4 2.42089422		
5 2.68830372		
6 2.98654000		
7 3.31824137		
8 3.68689477		
9 4.09653796		
10 4.55170538 11 5.05744941		
12 5.61938793		
13 6.24376428		
14 6.93751584		
15 7.70835093		
16 8.56483436		
17 9.51648263		
18 10.57386959		
19 11.74874398		
20 13.05415998		
21 14.50462220		
22 16.11624689		
23 17.90694099		
24 19.89660110		
25 22.10733456		
26 24.56370506		
27 27.29300562		
28 30.32556181		
29 33.69506867		
30 37.43896519 31 41.59885021		
32 46.22094468		
33 51.35660520		
34 57.06289467		
35 63.40321630		
36 70.44801811		
37 78.27557568		
38 86.97286186		
39 96.63651318		
40 107.37390353		
41 119.30433726		
42 132.56037473		
43 147.28930526		
44 163.65478362		
45 181.83864847		
46 202.04294274		

47 224.49215860 48 249.43573178 49 277.15081309

errore metodo Jacobi per il sistema lineare $A_2*x=b_2$ 1 3.29889619 2 1.41476664 3 0.51838990 4 0.31477878 5 0.00000417 5 0.09937825 6 0.05089049 7 0.02791274 8 0.00701968 9 0.00501298 10 0.00232662 11 0.00055683 12 0.00047938 13 0.00018319 14 0.00005378

errore metodo Gauss-Seidel per il sistema lineare A_1*x=b_1 1 2.30479312 2 0.65661589 3 0.01215955 4 0.00022518