Deterministic Quantum Mechanics via T0-Energy Field Formulation:

From Probability-Based to Ratio-Based Microphysics Building on the T0 Revolution: Simplified Dirac Equation, Universal Lagrangian, and Ratio Physics

Johann Pascher

Department of Communications Engineering, Higher Technical Federal Institute (HTL), Leonding, Austria johann.pascher@gmail.com

August 25, 2025

Abstract

This work presents a revolutionary deterministic alternative to probability-based quantum mechanics through the T0-energy field formulation. Building upon the simplified Dirac equation, universal Lagrangian, and ratio-based physics of the T0 framework, we demonstrate how quantum mechanical phenomena emerge from deterministic energy field dynamics governed by the modified Schrodinger equation. Using the empirically determined parameter $\xi = 4/3 \times 10^{-4}$, we provide quantitative predictions that preserve all experimentally verified results while eliminating fundamental interpretation problems.

Contents

1	Intr	roduction: The T0 Revolution Applied to Quantum Mechanics					
	1.1	Building on T0 Foundations					
	1.2	The Quantum Mechanics Problem					
	1.3	T0-Energy Field Solution					
2	T0-Energy Field Foundations						
	2.1	Modified Schrodinger Equation					
	2.2	Energy-Time Duality					
	2.3	Empirical Parameter					
3	From Probability Amplitudes to Energy Field Ratios						
	3.1	Standard QM State Description					
	3.2	T0-Energy Field State Description					
4	Det	erministic Spin Systems					
		Spin-1/2 in T0 Formulation					
		4.1.1 Standard QM Approach					
		4.1.2 T0-Energy Field Approach					
		- 4.1.4 - 1 VELMELEV L'IEIU (ADDIVIOUIL					

5	Det	erministic Quantum Entanglement	4				
	5.1	Standard QM Entanglement	4				
	5.2	T0-Energy Field Entanglement	4				
	5.3	Modified Bell Inequality	4				
6	Deterministic Quantum Computing						
	6.1	Qubit Representation	5				
	6.2	Quantum Gates as Energy Field Operations	5				
			5				
			5				
	6.3	Enhanced Quantum Algorithms	5				
7	Exp	perimental Predictions and Tests	5				
	7.1	Enhanced Single-Measurement Predictions	5				
	7.2	T0-Specific Experimental Signatures	5				
			5				
			6				
		7.2.3 Phase Accumulation in Interferometry	6				
8	Res	Resolution of Quantum Interpretation Problems					
	8.1	Problems Addressed by T0 Formulation	6				
	8.2	Enhanced Quantum Reality	6				
9	Connection to Other T0 Developments						
	9.1	Integration with Simplified Dirac Equation	6				
	9.2	Integration with Universal Lagrangian	7				
10	Futi	ure Directions and Implications	7				
	10.1	Experimental Verification Program	7				
	10.2	Philosophical Implications	7				
11	Con	Conclusion: The Enhanced Quantum Revolution					
	11.1	Revolutionary Achievements	8				
	11.2	Future Impact	۶				

1 Introduction: The T0 Revolution Applied to Quantum Mechanics

1.1 Building on T0 Foundations

This work represents the fourth stage of the theoretical T0 revolution:

- Stage 1 Simplified Dirac Equation: Complex 4×4 matrices to simple field dynamics
- Stage 2 Universal Lagrangian: More than 20 fields to one equation
- Stage 3 Ratio Physics: Multiple parameters to energy scale ratios
- Stage 4 Deterministic QM: Probability amplitudes to deterministic energy fields

1.2 The Quantum Mechanics Problem

Standard quantum mechanics suffers from fundamental conceptual problems:

Standard QM Problems

Probability Foundation Problems:

- Wave function: mysterious superposition
- Probabilities: only statistical predictions
- Collapse: non-unitary measurement process
- Interpretation: Copenhagen vs. Many-worlds vs. others
- Single measurements: unpredictable (fundamentally random)

1.3 T0-Energy Field Solution

The T0 framework offers a complete solution through deterministic energy fields:

T0 Deterministic Foundation

Deterministic Energy Field Physics:

- Universal field: single energy field for all phenomena
- Modified Schrodinger equation with time-energy duality
- Empirical parameter: $\xi = 4/3 \times 10^{-4}$ from muon anomaly
- Measurable deviations from standard QM
- Continuous evolution: no collapse, only field dynamics
- Single reality: no interpretation problems

2 T0-Energy Field Foundations

2.1 Modified Schrodinger Equation

From the T0 revolution, quantum mechanics is governed by:

$$i \cdot T(x,t) \frac{\partial \psi}{\partial t} = H_0 \psi + V_{\text{T0}} \psi$$
(1)

where:

$$H_0 = -\frac{\hbar^2}{2m} \nabla^2 \tag{2}$$

$$V_{\rm T0} = \hbar^2 \cdot \delta E(x, t) \tag{3}$$

2.2 Energy-Time Duality

The fundamental T0 relationship:

$$T(x,t) \cdot E(x,t) = 1 \tag{4}$$

Dimensional verification: [T][E] = 1 in natural units.

2.3 Empirical Parameter

Following precision measurements of the muon anomalous magnetic moment:

$$\xi = \frac{4}{3} \times 10^{-4} \approx 1.333 \times 10^{-4} \tag{5}$$

3 From Probability Amplitudes to Energy Field Ratios

3.1 Standard QM State Description

Traditional approach:

$$|\psi\rangle = \sum_{i} c_i |i\rangle \quad \text{with } P_i = |c_i|^2$$
 (6)

Problems: Mysterious superposition, only probability-based predictions.

3.2 T0-Energy Field State Description

T0 field-theoretic approach:

$$\psi(x,t) = \sqrt{\frac{\delta E(x,t)}{E_0 V_0}} \cdot e^{i\phi(x,t)}$$
(7)

with probability density:

$$|\psi(x,t)|^2 = \frac{\delta E(x,t)}{E_0 V_0}$$
(8)

Advantages:

- Direct connection to measurable energy field density
- Deterministic field evolution through modified Schrodinger equation
- Preservation of probabilistic interpretation with T0 corrections
- Field-theoretic foundation for quantum mechanics

4 Deterministic Spin Systems

4.1 Spin-1/2 in T0 Formulation

4.1.1 Standard QM Approach

State: Superposition of spin-up and spin-down Expectation value: Probability-based

4.1.2 T0-Energy Field Approach

State: Energy field configuration with separate fields for both spin states T0-corrected expectation value:

$$\left| \langle \sigma_z \rangle_{\text{T0}} = \langle \sigma_z \rangle_{\text{QM}} + \xi \cdot \frac{\delta E(x, t)}{E_0} \right| \tag{9}$$

4.2 Quantitative Example

With the empirical parameter $\xi = 4/3 \times 10^{-4}$:

T0 correction to expectation value:

$$\langle \sigma_z \rangle_{\rm T0} = \langle \sigma_z \rangle_{\rm QM} + \frac{4}{3} \times 10^{-4} \times \delta \sigma_z$$
 (10)

5 Deterministic Quantum Entanglement

5.1 Standard QM Entanglement

Bell state: Antisymmetric superposition

Problem: Non-local spooky action at a distance

5.2 T0-Energy Field Entanglement

Entanglement as correlated energy field structure:

$$E_{12}(x_1, x_2, t) = E_1(x_1, t) + E_2(x_2, t) + E_{corr}(x_1, x_2, t)$$
(11)

Correlation energy field:

$$E_{\text{corr}}(x_1, x_2, t) = \frac{\xi}{|x_1 - x_2|} \cos(\phi_1(t) - \phi_2(t) - \pi)$$
(12)

5.3 Modified Bell Inequality

The T0 model predicts a modified Bell inequality:

$$|E(a,b) - E(a,c)| + |E(a',b) + E(a',c)| \le 2 + \varepsilon_{T0}|$$
 (13)

with the T0 term:

$$\varepsilon_{\rm T0} = \xi \cdot \frac{2\langle E \rangle \ell_P}{r_{12}} \tag{14}$$

Numerical estimate: For typical atomic systems with $r_{12} \sim 1$ m:

$$\varepsilon_{\rm T0} \approx 10^{-34} \tag{15}$$

6 Deterministic Quantum Computing

6.1 Qubit Representation

T0-energy field qubit:

$$qubit_{T0} \equiv \{E_0(x,t), E_1(x,t)\}$$
(16)

with field-theoretic amplitudes:

$$\alpha_{\rm T0} = \sqrt{\frac{E_0}{E_0 + E_1}} \tag{17}$$

$$\beta_{\rm T0} = \sqrt{\frac{E_1}{E_0 + E_1}} \tag{18}$$

6.2 Quantum Gates as Energy Field Operations

6.2.1 Hadamard Gate

Corrected T0 transformation:

$$H_{\rm T0}: \quad E_0 \to \frac{E_0 + E_1}{\sqrt{2}}$$
 (19)

$$E_1 \to \frac{E_0 - E_1}{\sqrt{2}}$$
 (20)

6.2.2 Controlled-NOT Gate

T0 formulation:

$$CNOT_{T0}: E_{12} \to E_{12} + \xi \cdot \Theta(E_1 - E_{\text{threshold}}) \cdot \sigma_x E_2$$
 (21)

6.3 Enhanced Quantum Algorithms

Enhanced Grover Algorithm:

- Standard iterations: $\sim \pi/(4\sqrt{N})$
- T0-enhanced: modification through energy field corrections

7 Experimental Predictions and Tests

7.1 Enhanced Single-Measurement Predictions

Example - Enhanced spin measurement:

$$P(\uparrow) = P_{\rm QM}(\uparrow) \cdot \left(1 + \xi \frac{E_{\uparrow}(x_{\rm det}, t) - \langle E \rangle}{E_0}\right)$$
 (22)

7.2 T0-Specific Experimental Signatures

7.2.1 Modified Bell Tests

Prediction: Bell inequality violation modified by $\varepsilon_{\rm T0} \approx 10^{-34}$

7.2.2 Energy Field Spectroscopy

Prediction:

$$\Delta E = \xi \cdot E_n \cdot \frac{\langle \delta E \rangle}{E_0} \tag{23}$$

7.2.3 Phase Accumulation in Interferometry

Prediction:

$$\phi_{\text{total}} = \phi_0 + \xi \int_0^t \frac{E(x(t'), t')}{E_0} dt'$$
 (24)

8 Resolution of Quantum Interpretation Problems

8.1 Problems Addressed by T0 Formulation

QM Problem	Standard Approaches	T0 Solution
Measurement problem	Copenhagen interpretation	Continuous field evolution
Schrodinger's cat	Superposition paradox	Definite field states
Many-worlds vs. Copen-	Multiple interpretations	Single reality
hagen		
Wave-particle duality	Complementarity principle	Energy field patterns
Quantum jumps	Random transitions	Field-mediated transitions
Bell nonlocality	Spooky action at distance	Field correlations

Table 1: Problems addressed by T0 formulation

8.2 Enhanced Quantum Reality

T0-Enhanced Quantum Reality

Field-theoretic quantum mechanics with T0 corrections:

- Energy fields as physical basis of wave functions
- Modified Schrodinger evolution with time-energy duality
- Measurements reveal field configurations with T0 modulations
- Continuous unitary evolution without collapse
- Small but measurable deviations from standard QM
- Empirically grounded through muon anomaly parameter

9 Connection to Other T0 Developments

9.1 Integration with Simplified Dirac Equation

The enhanced QM naturally connects with the simplified Dirac equation through the time-energy duality.

9.2 Integration with Universal Lagrangian

The universal Lagrangian describes:

- Classical field evolution
- Quantum field evolution with T0 corrections
- Relativistic field evolution

10 Future Directions and Implications

10.1 Experimental Verification Program

Phase 1 - Precision Tests:

- Ultra-high precision Bell inequality measurements
- Atomic spectroscopy with T0 corrections
- Quantum interferometry phase measurements

Phase 2 - Technological Enhancement:

- T0-corrected quantum computing architectures
- Enhanced quantum sensor protocols
- Field correlation-based quantum devices

10.2 Philosophical Implications

Beyond Quantum Mysticism

T0-enhanced quantum mechanics provides:

- Physical foundation through energy field theory
- Measurable deviations from pure randomness
- Field-theoretic explanation of quantum phenomena
- Empirical grounding through precision measurements

While preserving:

- All successful predictions of standard QM
- Experimental continuity with established results
- Mathematical rigor and consistency

11 Conclusion: The Enhanced Quantum Revolution

11.1 Revolutionary Achievements

The T0-enhanced quantum formulation has achieved:

- 1. Physical foundation: Energy fields as basis for quantum mechanics
- 2. Experimental consistency: All standard QM predictions preserved
- 3. Measurable corrections: T0-specific deviations for tests
- 4. T0 framework integration: Consistent with other T0 developments
- 5. Empirical grounding: Parameter from precision measurements
- 6. Enhanced predictive power: New testable effects

11.2 Future Impact

Enhanced
$$QM = Standard QM + T0 Field Corrections$$
 (25)

The T0 revolution enhances quantum mechanics with field-theoretic foundations while preserving experimental success.

References

- [1] Pascher, J. (2025). Simplified Dirac Equation in T0 Theory. GitHub Repository: T0-Time-Mass-Duality.
- [2] Bell, J.S. (1964). On the Einstein Podolsky Rosen Paradox. *Physics Physique Fizika*, 1, 195–200.
- [3] Muon g-2 Collaboration (2021). Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. *Physical Review Letters*, **126**, 141801.
- [4] Einstein, A. (1905). Does the Inertia of a Body Depend Upon Its Energy Content? *Annalen der Physik*, 17, 639.
- [5] Schrodinger, E. (1926). Quantisation as a Problem of Proper Values. *Annalen der Physik*, 79, 361–376.
- [6] Dirac, P.A.M. (1928). The Quantum Theory of the Electron. *Proceedings of the Royal Society A*, 117, 610–624.
- [7] Grover, L.K. (1996). A fast quantum mechanical algorithm for database search. *Proceedings* of the 28th Annual ACM Symposium on Theory of Computing, 212–219.
- [8] Shor, P.W. (1994). Algorithms for quantum computation: discrete logarithms and factoring. Proceedings 35th Annual Symposium on Foundations of Computer Science, 124–124.