

Homework 4: TV distance, KL-Divergence, and Introduction to

课程 □ Unit 3 Methods of Estimation □ MLE

5. Constrained maximum likelihood

estimator

5. Constrained maximum likelihood estimator

Instruction:

What can we do when we have prior knowledge about the estimator? Imagine that an expert told you that the parameter θ lies between a and b. Would that additional knowledge change the MLE calculation? We will start by calculating just normal MLE and think about what we can do in part (c).

Let X_1, \ldots, X_n be n i.i.d. random variables with probability density function

$$f_{ heta}\left(x
ight)= heta x^{- heta-1}, heta>0, x\geq 1.$$

To encourage you to do the computations carefully rather than eliminate choices, you will be given only **1-2 attempts per question** .

(a)

1/1 point (graded)

What is the likelihood function for θ ?

- lacksquare $heta^n \prod_{i=1}^n x_i^{- heta-1}$ \Box
- $igcap heta^n \prod_{i=1}^n x_i^{- heta-1} \mathbf{1}\{\min_i X_i \geq 1\}$ \Box
- $igcap heta^n \prod_{i=1}^n x_i^{- heta-1} \mathbf{1}\{\min_i X_i < 1\}$
- $igcup_{i=1}^n x_i^{- heta-1} \mathbf{1}\{\max_i X_i \geq 1\}$
- ullet $heta^n \prod_{i=1}^n x_i^{- heta-1} \mathbf{1}\{\max_i X_i < 1\}$
- $n \ln \theta (\theta + 1) \sum_{i=1}^{n} \ln X_i$

Solution:

$$egin{aligned} L_n &= \prod_{i=1}^n heta x_i^{- heta-1} \mathbf{1}\{X_i \geq 1\} \ &= heta^n \prod_{i=1}^n x_i^{- heta-1} \mathbf{1}\{\min_i X_i \geq 1\} \end{aligned}$$

But since we assume our statistical model to be well-specified, $\min_i X_i \geq 1$ will always be satisfied, and so we can drop the corresponding indicator function. Hence, $L_n = \theta^n \prod_{i=1}^n x_i^{-\theta-1}$ is correct under the well-specified assumption.

提交

你已经尝试了1次(总共可以尝试1次)

Answers are displayed within the problem

(b)

1/1 point (graded)

What is the maximum likelihood estimator for θ ?

- $lacksquare rac{n}{\sum_{i=1}^n \ln X_i}$
- $-\frac{n}{\sum_{i=1}^{n} \ln X_i}$
- $-\frac{\sum_{i=1}^n \ln X_i}{n}$
- $\bigcirc \quad \frac{n}{\sum_{i=1}^n X_i}$

Solution:

Take the derivative of the likelihood function with respect to $oldsymbol{ heta}$.

$$rac{\partial L_n}{\partial heta} = rac{n}{ heta} - \sum_{i=1}^n \ln X_i = 0$$

Solving the equation for $oldsymbol{ heta}$, we get

$$\hat{ heta} = rac{n}{\sum_{i=1}^n \ln X_i}$$

提交

你已经尝试了1次(总共可以尝试1次)

☐ Answers are displayed within the problem

(c)

1/1 point (graded)

Suppose we have two numbers 0 < a < b . We are interested in the value of θ that maximizes the likelihood in the set [a,b] .

Let $\hat{\boldsymbol{\theta}}$ denote the maximum likelihood estimator you found in part (b) above, and let $\hat{\boldsymbol{\theta}}_{const}$ denote the maximum likelihood estimator within the interval [a,b], where 0 < a < b. Choose all correct answers.

- lacksquare If $b \leq \hat{ heta}$, then $\hat{ heta}_{\mathrm{const}} = a$
- $ilde{m{artheta}}$ If $b \leq \hat{m{ heta}}$, then $\hat{m{ heta}}_{ ext{const}} = b \,\, \Box$
- lacksquare If $b \leq \hat{ heta}$, then $\hat{ heta}_{ ext{const}} = \hat{ heta}$
- lacksquare If $a < \hat{ heta} < b$, then $\hat{ heta}_{\mathrm{const}} = a$

