

Introducción al Cálculo - MAT1107

Rodrigo Vargas

¹ Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Chile

²LIES Laboratorio Interdisciplinario de Estadística Social, Pontificia Universidad Católica de Chile, Chile

10 de Abril de 2022

Reflexión

- Para graficar y = -f(x), refleje la gráfica de y = f(x) en el eje X.
- Para graficar y = f(-x), refleje la gráfica de y = f(x) en el eje Y.

EJEMPLO 1 En la imagen se muestra la gráfica de la función $f: [-3, -1] \rightarrow [2, 4]$.

Considere la función

$$g(x) = -f(-x).$$

- Esboce el gráfico de g.
- Determine el dominio y el recorrido de *g*.

Alargamiento y contracción verticales

Supongamos que A > 0. Para graficar y = Af(x):

- Si A > 1, alargue la gráfica de y = f(x) verticalmente en un factor A.
- ② Si 0 < A < 1, contraiga la gráfica de y = f(x) verticalmente en un factor de A.

Alargamiento y contracción horizontales

Supongamos que $\omega > 0$. Para graficar $y = f(\omega x)$:

- Si $\omega > 1$, contraiga la gráfica de y = f(x) horizontalmente en un factor $1/\omega$.
- ② Si $0 < \omega < 1$, alargue la gráfica de y = f(x) verticalmente en un factor de $1/\omega$.

EJEMPLO 2 A partir de la gráfica de $f: [-3, -1] \to \mathbb{R}$ definida por f(x) = |x + 2| + 1, trace la gráfica de la función

$$g(x) = 2f\left(\frac{x}{2}\right)$$
.

EJEMPLO 3 Use la gráfica de y = f(x) que se muestra en la figura.

Trace la gráfica de cada función

$$y = f(2x)$$

$$y = f\left(\frac{1}{2}x\right)$$

Desplazamientos verticales de gráficas

Para graficar y = f(x) + k

- Si k > 0, desplace la gráfica de y = f(x), k unidades hacia arriba.
- ② Si k < 0, desplace la gráfica de y = f(x), k unidades hacia abajo.

Desplazamientos horizontales de gráficas

Para graficar y = f(x + h)

- Si h > 0, desplace la gráfica de y = f(x), h unidades a la izquierda.
- ② Si h < 0, desplace la gráfica de y = f(x), h unidades a la derecha.

EJEMPLO 4 Trace la gráfica de $f(x) = \sqrt{x-1} + 3$. Determine el dominio y el recorrido.

Resumen

$$g(x) = \pm Af(\pm \omega(x+h)) + k$$

Transformación	Identificación	Descripción
Fase 1	-A	Reflexión eje X
Reflexión	$-\omega$	Reflexión eje Y
Fase 2	0 < A < 1	Comprime vertical
Compresión	A > 1	Elonga vertical
у	$0<\omega<1$	Elonga horizontal
Reflexión	$\omega > 1$	Comprime horizontal
Fase 3	h > 0	Traslada a la izquierda
	h < 0	Traslada a la derecha
Traslación	k > 0	Traslada hacia arriba
	<i>k</i> < 0	Traslada hacia abajo

EJEMPLO 5 Considere la función $f: [-2,4] \rightarrow [-2,2]$ dada en la siguiente gráfica.

Definimos la función $g(x) = 2 - \frac{1}{2}f(-x+3)$, determine:

- Las transformaciones apropiadas que aplicadas a f den como resultado la función g.
- 2 El dominio y recorrido de la función g.

Solución Considere las transformaciones

$$h_1(x) = -f(x)$$
 Reflexión eje X
 $h_2(x) = h_1(-x)$ Reflexión eje Y
 $h_3(x) = \frac{1}{2}h_2(x)$ Comprime vertical
 $h_4(x) = h_3(x-3)$ Traslación derecha
 $g(x) = h_4(x) + 2$ Traslación arriba.

Note que

$$g(x) = h_4(x) + 2 = h_3(x-3) + 2 = \frac{1}{2}h_2(x-3) + 2$$
$$= \frac{1}{2}h_1(-(x-3)) + 2 = -\frac{1}{2}f(-(x-3)) + 2$$