

Barak Gonen

Barak Gonen

Topics

- Router
- Routing table
- Routing protocols
 - Link state vs distance vector

Router

Router used by ISP, made by Cisco & Fujitso

Home router, TP-Link

Router Tasks

- Routing find the best path to destination
- Forwarding connect networks
- Routers are typically filled with more capabilities:
 - DHCP server
 - NAT
 - Local DNS server
 - etc
 - We shall focus only on core router tasks

Highway 9. Japan

Network Interface Card

May have one or more ports

Intra Network Connectivity

- Two networks are connected by a router:
 - 1.1.1.0/24
 - 2.2.2.0/24
- The router has a NIC in each network
 - Each NIC has an IP
 - 1.1.1.1
 - 2.2.2.2
- Since the router is connected to both networks, it can handle connectivity

Router Architecture

Input Ports

- Handle PHY layer and encapsulation
- Extract dest. IP

Output ports

- Opposite tasks of input ports
- The input is layer 3 and above
 - Add data link layer
 - Transmit using PHY layer

Routing Processor

- Sets the route for each packet
 - "Packets destined to 1.2.3.4 forward to output port #6"
- Route is deduced from routing table
- Routing table is created by routing algorithms
 - We shall review an example

Routing Table

- Assume network:
 - Router R1 knows 192.168.0.0/16 and R2
 - Router R3 knows 100.200.0.0/16 and R2
 - R2 is connected to 3 networks, has 3 IP addresses
- How will R2 forward a packet who's dest. IP is 100.200.5.8?

Routing Table

Assume R2 routing table is

מספר שורה	Network) יעד (Destination (Mask		(Interface) ממשק	
1	0.0.0.0	0.0.0.0	3.3.3.3	
2	192.168.0.0	255.255.0.0	1.1.1.1	
3	100.200.0.0	255.255.0.0	2.2.2.2	

- Router will scroll from *bottom up* and look for matches
- ▶ IP dest 100.200.5.8 will match line #3
 - Interface 2.2.2.2

Routing Table

- ▶ What will be the interface for 192.168.6.6?
- For 5.5.5.5?
- The rule in line #1 captures and packet
 - Default Gateway

מספר שורה	Network) יעד (Destination	,	
1	0.0.0.0	0.0.0.0	3.3.3.3
2	192.168.0.0	255.255.0.0	1.1.1.1
3	100.200.0.0	255.255.0.0	2.2.2.2

Route Print

Cmd -> route print

Route Print

Routing Protocols

- Distance Vector (DV) each node has information only about it's neighbors
 - R1 knows "R2 can get to R5 cost 20"
- Link State (LS) each node has full network link data
 - R1 know "R2 can get to R4 cost 10, R4 can get to R5 cost 10"

Routing Protocols

- Example to clarify the difference
- Suppose R1-R2 link changes to 40, what will change in LS? DV?

Routing Protocols – LS

- R3 to R1: "Update: my direct connection to R2 costs 40"
- R1 recalculates best route to R2
 - No longer cost 2

Routing Protocols – DV

- R3 to R1: "Update: I can get to R2, cost 3"
 - Why? R1 told R3 it can get to R2 cost 2...
 - Plus 1 for R3->R1
- R1 to R3: "Update: I can get to R2 cost 4"
 - Why? R1->R3 is 1, R3->R2 is "3"
- ...And so on until finally R1->R2 is better

Routing Protocols

- DV updates only from neighboring nodes
 - Relatively few updates
 - Changes propagate slowly
 - Efficient for large networks
- LS all nodes share the same link information
 - Relatively many updates
 - Changes propagate fast
 - Not efficient in large networks

Barak Gonen

Topics

- Metric
- Link State Advertisements
- Areas
- Minimal cost algorithm Dijkstra
- Note: this is not a full OSPF review, goal is only to get familiar with routing protocol concepts
 - OSPF Areas not fully discussed
 - OSPF Hello simplified
 - "Down" to "Full" not discussed

Metric

- Routers' PHY operate at max possible speed that link / other side allows
 - R1: "My link with R2 is 100Mbps"
- Cost: 100 / link speed
 - 100 Mbps -> cost 1
 - 10 Mbps -> cost 10
 - 5 Mbps -> cost 20
 - etc
 - The default 100 can be changed
- Cost is summed up
 - R1: "My cost to reach R3 is 11"

Neighbors Table

Routers make sure they belong to same network: Network mask, password, time intervals, area ID and type

Neighbors Table

Neighbor ID	State	Dead Time	Address	Interface
2.2.2.2 (R2)	Full	00:15	10.20.0.1	GigaEther 1
3.3.3.3 (R3)	Full	00:07	10.20.10.1	GigaEther 2

Link State Advertisement

Link State Advertisement

Topology Table

All of the LSA's a router has

Known as LSDB – Link State Data Base

Network converged = Identical LSDB's

 The LSDB will be used to create routing table

Example (missing 3 links):

Link ID	Advertising Router	Connected to	Address	Cost
1.1.1.1	R1	R2	10.20.0.1	1
2.2.2.2	R2	R4	10.20.10.1	10
4.4.4.4	R4	Subnet	10.20.30.0/8	5

R1

Link State Packet Types

Areas

Do *everyone* need to know about R5, R6?

Areas

Assume the red connection is dead. Who needs to know about it?

R1does not need to propagate changes to R2, R3, R4

Areas

- OSPF is a star topology
- Areas can be connected only to the backbone, no loops

Types of Routers

Internal routers – all interfaces are only in one area

Types of Routers

Backbone routers – at least one interface in the backbone

Types of Routers

- Area Border Routers -interfaces in backbone and another area
 - Maintain LSDB for each area
 - Summarize LSA's and distributes

Types of Routers

37

BGP, EIGRP, RIR etc)

- Type 1 Router LSA
 - Router shares links info
 - Used to create full LSDB among routers
 - Intra area Confined to specific area

- Type 2 Network LSA
 - If several routers share the same link (layer 2)
 - DR Designated "king" Router
 - ADR Alternative DR, in case DR fails
- Only the DR will send updates R5 Intra area Here's my LSDB, ask me if you need anything **R6**

- Type 3 Summary LSA
 - Sent by the ABR
 - Summary of LSAs from foreign areas
 - ABR will replace the dest IP to it's own
- Inter area

R7 connected to

10.20.40.0/8

- Type 5 ASBR External LSA
 - Propagates without change to all areas
- External area

- Type 4 ASBR Summary LSA
 - Instructions how to reach ASBR

OSPF LSA Types – Summary

- ▶ Type 1 + 2 intra area
- Type 3 inter area
- ▶ Type 4 + 5 foreign area

Dijkstra's link-state routing algorithm

```
Initialization:
   N' = \{u\}
    for all nodes \nu
       if \nu adjacent to u
          then D(v) = c_{\mu}
       else D(v) = \infty
   Loop
    find w not in N' such that D(w) is a minimum
10 add w to N'
11 update D(v) for all v adjacent to w and not in N':
       D(v) = \min (D(v), D(w) + c_{w,v})
13 /* new least-path-cost to \nu is either old least-cost-path to \nu or known
14 least-cost-path to w plus direct-cost from w to v^*/
15 until all nodes in N'
```

		V	W	X	У	Z
Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1						
2						
3						
4						
5						

Initialization (step 0):

For all a: if a adjacent to u then $D(a) = c_{u,a}$

		V	W _	X	У	Z
Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	(1,u)	∞	∞
1	u(X)					
2						
3						
4						
5						

- 8 Loop
- 9 find a not in N' such that D(a) is a minimum
- 10 add a to N'

		V	W	X	У	Z
Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	(1,u)	∞	∞
1	ux	2,u	4,x		2,x	∞
2						
3						
4						
5						

- 9 find a not in N' such that D(a) is a minimum
- 10 add *a* to *N'*
- update D(b) for all b adjacent to a and not in N':

$$D(b) = \min (D(b), D(a) + c_{a,b})$$

$$D(v) = min (D(v), D(x) + c_{x,v}) = min(2, 1+2) = 2$$

 $D(w) = min (D(w), D(x) + c_{x,w}) = min (5, 1+3) = 4$
 $D(y) = min (D(y), D(x) + c_{x,y}) = min(inf, 1+1) = 2$

		V	W	X		Z
Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,U	(1,u)	∞	∞
1	ux	2,u	4,x		2,x	∞
2	uxy					
3						
4						
5						

- 8 Loop
- 9 find a not in N' such that D(a) is a minimum
- 10 add *a* to *N'*

		V	W	X	У	Z
Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	(1,u)	∞	∞
1	ux	2,u	4,x		2,x	∞
2	uxy	2,u	3,y			4,y
3						
4						
5						

- find a not in N' such that D(a) is a minimum
- 10 add *a* to *N'*
 - 1 update D(b) for all b adjacent to a and not in N':

$$D(b) = \min (D(b), D(a) + c_{a,b})$$

$$D(w) = min (D(w), D(y) + c_{y,w}) = min (4, 2+1) = 3$$

 $D(z) = min (D(z), D(y) + c_{y,z}) = min(inf, 2+2) = 4$

		V	W	X	У	Z
Step	N'	D (v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	/ 2,u	5,u	(1,u)	∞	∞
_1	ux	/ 2,u	4,x		2,x	∞
2	uxy /	2,u	3,y			4,y
3	uxyv		.,			
4						
5						

- 9 find a not in N' such that D(a) is a minimum
- 10 add a to N'

		V	W	X	У	Z
Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	(1,u)	∞	∞
1	ux	2,u	4,x		2 ,x	∞
2	uxy	2,u	3,y			4,y
3	uxyv		3,y			4,y
4						<u>-</u>
5						

- 9 find a not in N' such that D(a) is a minimum
- 10 add a to N'
 - 1 update D(b) for all b adjacent to a and not in N':

$$D(b) = \min (D(b), D(a) + c_{a,b})$$

$$D(w) = min(D(w), D(v) + c_{v,w}) = min(3, 2+3) = 3$$

		V	W	X	У	Z
Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	(1,u)	∞	∞
_ 1	ux	2,u	4,x		2,x	∞
2	uxy	(2,u)	3,y			4,y
3	uxyv		3 ,y			4,y
4	uxyvw					_
5						

- 9 find a not in N' such that D(a) is a minimum
- 10 add *a* to *N'*

		V	W	X	У	Z
Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	(1,u)	∞	∞
1	ux	2,u	4,x		2,x	∞
2	uxy	2,u	3,y			4,y
3	uxyv		3 ,y			4,y
4	uxyvw					4,y
5	<u> </u>					 _

- 9 find a not in N' such that D(a) is a minimum
- 10 add *a* to *N'*
- update D(b) for all b adjacent to a and not in N':

$$D(b) = \min (D(b), D(a) + c_{a,b})$$

$$D(z) = min(D(z), D(w) + c_{w,z}) = min(4, 3+5) = 4$$

		V	W	X	У	Z
Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	(1,u)	∞	∞
_1	ux	2,u	4,x		2,x	∞
2	uxy	2,u	3,4			4 ,y
3	uxyv		3 ,y			4 ,y
4	uxyvw					<u>(4,y)</u>
5	UXVVWZ •					

- 8 Loop
- 9 find a not in N' such that D(a) is a minimum
- 10 add a to N'

			V	W	X	У	Z
Ste	ep	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	(1,u)	∞	∞
	1	ux	2,u	4,x		2,x	∞
	2	uxy	2,u	3,y			4 ,y
	3	uxyv		3 ,y			4,y
	4	uxyvw					<u>(4,y)</u>
_	5	UXVVW7					

- 8 Loop
- 9 find a not in N' such that D(a) is a minimum
- 10 add a to N'
- update D(b) for all b adjacent to a and not in N': $D(b) = \min (D(b), D(a) + c_{a,b})$

Summary

- Metric
- Link State Advertisements
- Areas
- Minimal cost algorithm Dijkstra