## Problem 1

Focus on the bottom subgame first.



|              | $\mathbf{F}$ | $\mathbf{G}$ | Н                   |
|--------------|--------------|--------------|---------------------|
| $\mathbf{C}$ | 0,0          | <b>2</b> , 0 | 1, <b>1</b>         |
| D            | <b>1</b> , 0 | 1, <b>2</b>  | 2,1                 |
| $\mathbf{E}$ | 0, 1         | 0, 1         | <b>3</b> , <b>2</b> |

Unique Nash of the subgame is (E, H) with payoffs 2, 3, 2. The other subgame is



|              | P                   | $\mathbf{R}$ |
|--------------|---------------------|--------------|
| L            | <b>2</b> , <b>1</b> | <b>1</b> , 0 |
| $\mathbf{M}$ | 0,0                 | 1, 1         |

Two Nashies in the subgame: (L, P) with payoffs 1, 2, 1; and (M, R) with payoffs 4, 1, 1. Hence the bigger game reduces into two reduced games.



In the left game, Player 1 would choose A. Hence its subgame-perfect equilibrium is (A, EL, HP). In the right game, Player 1 would choose B. Hence its subgame perfect equilibrium is (B, EM, HR).

## Problem 2



First note that there are no proper subgames. Hence any subgame-perfect equilibria must also be the Nash equilibria of the entire game.

You only have one information set, thus you only need specify L for lend or N for not-lend. Sketchy cousin has two information sets, however, so actions need be specified for both. An example of a strategy profile, then, is (AD, L), which means: if good idea, cousin asks (A); if bad idea, cousin doesn't ask (D); if asked, you lend money (L).

Now let's calculate payoffs for each strategy profile.

$$(AA, L)$$
:  $0.50[100, 100] + 0.50[0, -100] = [50, 0],$   
 $(AD, L)$ :  $0.50[100, 100] + 0.50[0, 0] = [50, 50],$   
 $(DA, L)$ :  $0.50[0, 0] + 0.50[0, -100] = [0, -50],$   
 $(DD, L)$ :  $0.50[0, 0] + 0.50[0, 0] = [0, 0],$   
 $(AA, N)$ :  $0.50[100, -50] + 0.50[0, -50] = [50, -50],$   
 $(AD, N)$ :  $0.50[100, -50] + 0.50[0, 0] = [50, -25],$   
 $(DA, N)$ :  $0.50[0, 0] + 0.50[0, -50] = [0, -25],$   
 $(DD, N)$ :  $0.50[0, 0] + 0.50[0, 0] = [0, 0].$ 

Hence the strategic form of the game is

|                 | L      | N       |
|-----------------|--------|---------|
| AA              | 50,0   | 50, -50 |
| AD              | 50, 50 | 50, -25 |
| DA              | 0, -50 | 0, -25  |
| $\overline{DD}$ | 0,0    | 0,0     |

Hence the Nash equilibria (and thus SPE) are (AA, L) and (AD, L). I guess the lesson is either: 1. The probability that your cousin has a good idea outweighs his sketchiness; or 2. Just lend to him anyway because you don't want your window smashed.