224 Exemples de développements asymptotiques de suites et de fonctions.

I - Comparaison de suites et de fonctions

Soit E un espace vectoriel normé sur \mathbb{R} .

[**GOU20**] p. 87

p. 132

1. Relations de comparaison

Définition 1. Soit X un espace métrique. On considère deux applications $f,g:D\to E$ où $D\subseteq X$. Soit x_0 un point d'accumulation de D.

— On dit que f est **dominée** par g au voisinage de x_0 , si

$$\exists C > 0$$
, $\exists V$ voisinage de x_0 tels que $\forall x \in V \cap D$, $||f(x)|| \le C ||g(x)||$

On note alors f(x) = O(g(x)) quand $x \to x_0$.

— On dit que f est **négligeable** devant g au voisinage de x_0 , si

$$\forall \epsilon > 0$$
, $\exists V$ voisinage de x_0 tels que $\forall x \in V \cap D$, $||f(x)|| \le \epsilon ||g(x)||$

On note alors f(x) = o(g(x)) quand $x \to x_0$.

— On dit que f et g sont **équivalentes** au voisinage de x_0 si f(x) - g(x) = o(g(x)) quand $x \to x_0$ et on écrit alors $f(x) \sim g(x)$ quand $x \to x_0$.

Remarque 2. Dans la pratique, on utilisera souvent cette notation pour des fonction de \mathbb{R} dans \mathbb{C} au voisinage d'un point de \mathbb{R} ou de l'infini, ou pour des suites réelles ou complexes (u_n) quand $n \to +\infty$.

Exemple 3. Soit $f : \mathbb{R} \to \mathbb{R}$. Soit $x_0 \in \overline{\mathbb{R}}$.

- f = O(1) si et seulement si f est une application bornée au voisinage de x_0 .
- f = o(1) si et seulement si f admet 0 pour limite en x_0 .
- $f = o\left(\frac{1}{x}\right)$ en +∞ signifie que $x \mapsto xf(x)$ admet pour limite 0 en +∞.

Proposition 4. On considère deux applications $f,g:D\to\mathbb{R}$ où $D\subseteq\mathbb{R}$. Soit $x_0\in\overline{\mathbb{R}}$. On suppose qu'il existe un voisinage V_0 de x_0 tel que g ne s'annule pas. Alors, quand $x\to x_0$:

- (i) f(x) = o(g(x)) si et seulement si $\frac{f(x)}{g(x)} \longrightarrow_{x \to x_0} 0$.
- (ii) $f(x) \sim g(x)$ si et seulement si $\frac{f(x)}{g(x)} \longrightarrow_{x \to x_0} 1$.

Proposition 5. La relation \sim est une relation d'équivalence, compatible avec le produit et la puissance. Si deux fonctions f_1 et f_2 équivalentes au voisinage d'un point admettent des limites ℓ_1 et ℓ_2 en ce point, alors $\ell_1 = \ell_2$.

Contre-exemple 6. — \sim n'est pas compatible avec l'addition. Par exemple, quand $x \to +\infty$,

$$x + \sqrt{x} \sim x$$
, $-x \sim -x + \ln(x)$ mais $\sqrt{x} \sim \ln(x)$

— \sim n'est pas compatible avec la composition. Par exemple, quand $x \to +\infty$,

$$x \sim x + 1$$
 mais $e^x \sim e^{x+1}$

2. Développement limité

Dans cette partie, I désigne un intervalle de $\mathbb R$ non réduit à un point. Soit $f:I\to E$ une application. On suppose $0\in I$.

[**GOU20**] p. 89

Définition 7. On dit que f admet un **développement limité** à l'ordre $n \in \mathbb{N}^*$ s'il existe $a_0, \ldots, a_n \in E$ tels que, au voisinage de 0,

$$f(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$$

Remarque 8. On pourrait de même définir les développements limités au voisinage d'un point $a \in \overline{I}$.

Proposition 9. (i) Un développement limité, s'il existe, est unique.

- (ii) Si f admet un développement limité en 0 à l'ordre $n \ge 1$, f est dérivable en 0 et sa dérivée en 0 vaut a_1 .
- (iii) Si f est paire (resp. impaire), les coefficients du développement limité d'indice impair (resp. pair) sont nuls.
- (iv) Si f est n fois dérivable en 0, f' admet un développement limité en 0 : $f'(x) = \sum_{k=1}^{n} a_k x^{k-1} + o(x^{n-1})$.
- (v) Si f est dérivable sur I et f' admet un développement limité en 0 : $f'(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$; alors, f admet un développement limité en 0 donné par $f(x) = \sum_{k=0}^{n} \frac{a_k}{(k+1)!} x^{k+1} + o(x^{k+1})$.
- (vi) Les règles de somme, produit, quotient et composition obéissent aux mêmes règles que pour les polynômes (sous réserve de bonne définition).

Théorème 10 (Formule de Taylor-Young). On suppose f de classe \mathscr{C}^n sur I telle que $f^{(n+1)}(x)$ existe pour $x \in I$. Alors, quand $h \longrightarrow 0$, on a

$$f(x+h) = \sum_{k=0}^{n+1} \frac{f^{(k)}(x)}{k!} h^k + o(h^{n+1})$$

Proposition 11. Si f est n fois dérivable en 0, alors f admet un développement limité à l'ordre n en 0 :

$$f(x) = \sum_{k=0}^{n+1} \frac{f^{(k)}(0)}{k!} x^k + o(x^{n+1})$$

Exemple 12. En 0, on a les développements limités usuels suivants.

$$-e^x = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n).$$

$$- \sin(x) = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}).$$

$$--\cos(x) = \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} + o(x^{2n+1}).$$

-
$$\sinh(x) = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}).$$

$$-- \cosh(x) = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n+1}).$$

— Pour tout
$$\alpha \in \mathbb{R}$$
, $(1+x)^{\alpha} = \sum_{k=0}^{n} \frac{\alpha(\alpha-1)...(\alpha-k+1)}{k!} + o(x^n)$.

Application 13.

$$\lim_{x \to 0} \frac{\tan(x) - x}{\sin(x) - x} = -2$$

3. Développement asymptotique

Définition 14. Soient X un espace métrique et $x_0 \in X$. On appelle **échelle de comparaison** un ensemble $\mathscr E$ de fonctions définies au voisinage de x_0 dans X, sauf éventuellement en x_0 , et vérifiant la propriété suivante : si $f, g \in \mathscr E$, alors f = g ou bien f = o(g) ou bien g = o(f).

Exemple 15. Au voisinage de $+\infty$ pour les fonctions de la variable réelle, les fonctions du type $x \mapsto x^{\alpha}$ pour $\alpha \in \mathbb{R}$ forment une échelle de comparaison.

Définition 16. Soit X un espace métrique. On considère deux applications $f,g:D\to E$ où $D\subseteq X$. Soient x_0 un point d'accumulation de D et $k\in \mathbb{N}^*$. On appelle **développement asymptotique** à k termes de f par rapport à une échelle de comparaison $\mathscr E$ au voisinage de

 x_0 toute expression de la forme

$$\sum_{i=1}^{k} c_i f_i$$

vérifiant

- (i) $c_1, \ldots, c_k \in E$ sont des constantes multiplicatives.
- (ii) $f_1, \dots, f_k \in \mathcal{E}$ avec pour tout $i \in [1, k], f_{i+1}(x) = o(f_i(x)).$
- (iii) $f(x) = \sum_{i=1}^{k} c_i f_i + o(f_k(x))$ quand $x \to x_0$.

 c_1f_1 est appelée **partie principale** de f au point x_0 .

Remarque 17. En reprenant les notations précédentes :

- $f(x) \sim c_1 f_1(x) \text{ quand } x \to x_0.$
- Un tel développement, s'il existe, est unique.

II - Exemples de développements asymptotiques de suites

1. Séries numériques

[DEV]

Proposition 18 (Comparaison série - intégrale). Soit $f : \mathbb{R}^+ \to \mathbb{R}^+$ une fonction positive, continue par morceaux et décroissante sur \mathbb{R}^+ . Alors la suite (U_n) définie par

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} f(k) - \int_{0}^{n} f(t) dt$$

est convergente. En particulier, la série $\sum f(n)$ et l'intégrale $\int_0^{+\infty} f(t) dt$ sont de même nature.

Lemme 19. Soit $\alpha > 1$. Lorsque n tend vers $+\infty$, on a

$$\sum_{k=n+1}^{+\infty} \frac{1}{n^{\alpha}} \sim \frac{1}{\alpha - 1} \frac{1}{n^{\alpha - 1}}$$

Proposition 20 (Développement asymptotique de la série harmonique). On note $\forall n \in \mathbb{N}^*$, $H_n = \sum_{k=1}^n \frac{1}{k}$. Alors, quand n tend vers $+\infty$,

$$H_n = \ln(n) + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right)$$

Application 21 (Série de Bertrand). La série de Bertrand $\sum \frac{1}{n^{\alpha} \ln(n)^{\beta}}$ converge si et seulement si $\alpha > 1$ ou si $\alpha = 1$ et $\beta > 1$.

p. 212

[**I-P**] p. 380

[**GOU20**] p. 212

2. Suites récurrentes

Définition 22. À toute suite numérique (u_n) on y associe sa suite (v_n) des **moyennes de Cesàro** où

[AMR11] p. 53

$$\forall n \in \mathbb{N}, v_n = \frac{1}{n} \sum_{k=1}^n u_k$$

Théorème 23. Si (u_n) converge vers $\ell \in \mathbb{K}$, alors sa suite des moyennes de Cesàro converge vers ℓ . On dit que (u_n) converge **au sens de Cesàro**.

[**FGN3**] p. 142

Proposition 24. Soit f une application continue définie au voisinage de 0^+ admettant un développement asymptotique en 0 de la forme $f(x) = x - ax^{\alpha} + o(x^{\alpha})$, où a > 0 et $\alpha > 1$. Alors pour $u_0 > 0$ assez petit, la suite (u_n) définie par $u_{n+1} = f(u_n)$ pour $n \in \mathbb{N}$ vérifie

$$u_n \sim \frac{1}{(na(\alpha-1))^{\frac{1}{\alpha-1}}}$$

Exemple 25. Si $f = \sin$ et (u_n) est définie par $u_0 \in [0, 2\pi]$ et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$, on a l'équivalent en $+\infty$:

 $u_n \sim \sqrt{\frac{3}{n}}$

[**GOU20**] p. 228

Proposition 26. En reprenant les notations précédentes, on a, pour $u_0 \in \left]0, \frac{\pi}{2}\right]$,

$$u_n = \sqrt{\frac{3}{n}} - \frac{3\sqrt{3}}{10} \frac{\ln(n)}{n\sqrt{n}} + o\left(\frac{\ln(n)}{n\sqrt{n}}\right)$$

Exemple 27. On définit (u_n) par $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}$, $u_{n+1} = u_n + e^{-u_n}$, on a l'équivalent en $+\infty$:

[**FGN3**] p. 148

[ROU]

p. 152

$$u_n = n + \frac{\ln(n)}{2n} + o\left(\frac{\ln(n)}{n}\right)$$

[DEV]

Théorème 28 (Méthode de Newton). Soit $f:[c,d]\to\mathbb{R}$ une fonction de classe \mathscr{C}^2 strictement croissante sur [c,d]. On considère la fonction

$$\varphi: \begin{bmatrix} [c,d] & \to & \mathbb{R} \\ x & \mapsto & x - \frac{f(x)}{f'(x)} \end{bmatrix}$$

(qui est bien définie car f' > 0). Alors :

(i) $\exists ! a \in [c, d]$ tel que f(a) = 0.

- (ii) $\exists \alpha > 0$ tel que $I = [a \alpha, a + \alpha]$ est stable par φ .
- (iii) La suite (x_n) des itérés (définie par récurrence par $x_{n+1} = \varphi(x_n)$ pour tout $n \ge 0$) converge quadratiquement vers a pour tout $x_0 \in I$.

Corollaire 29. En reprenant les hypothèses et notations du théorème précédent, et en supposant de plus f strictement convexe sur [c,d], le résultat du théorème est vrai sur I = [a,d]. De plus :

- (i) (x_n) est strictement décroissante (ou constante).
- (ii) $x_{n+1} a \sim \frac{f''(a)}{2f'(a)}(x_n a)^2$ pour $x_0 > a$.
- **Exemple 30.** On fixe y > 0. En itérant la fonction $F: x \mapsto \frac{1}{2} \left(x + \frac{y}{x} \right)$ pour un nombre de départ compris entre c et d où 0 < c < d et $c^2 < 0 < d^2$, on peut obtenir une approximation du nombre \sqrt{y} .
 - En itérant la fonction $F: x \mapsto \frac{x^2+1}{2x-1}$ pour un nombre de départ supérieur à 2, on peut obtenir une approximation du nombre d'or $\varphi = \frac{1+\sqrt{5}}{2}$.

3. Suites définies implicitement

Exemple 31. Soit $n \in \mathbb{N}$. Soit a_n la plus grande racine réelle de $X^{2n} - 2nX + 1$. Alors,

 $a_n = 1 + \frac{\ln(2n)}{2n} + o\left(\frac{\ln(n)}{n}\right)$

Exemple 32. Soit (u_n) une suite de réels vérifiant $\forall n \in \mathbb{N}$, $u_n^5 + nu_n - 1 = 0$. Alors,

$$u_n = \frac{1}{n} - \frac{1}{n^6} + o\left(\frac{1}{n^6}\right)$$

Exemple 33. Soit c > 0. On note x_n l'unique racine réelle de $x \mapsto x \sin(x) - c \cos(x)$. Alors,

$$x_n - n\pi \sim \frac{c}{n\pi}$$

[FGN3]

III - Exemples de développements asymptotiques de fonctions

1. Fonctions définies par la somme d'une série

Théorème 34 (Central limite). Soit (X_n) une suite de variables aléatoires réelles indépendantes de même loi admettant un moment d'ordre 2. On note m l'espérance et σ^2 la variance commune à ces variables. On pose $S_n = X_1 + \cdots + X_n - nm$. Alors,

[**G-K**] p. 307

$$\left(\frac{S_n}{\sqrt{n}}\right) \xrightarrow{(d)} \mathcal{N}(0, \sigma^2)$$

Application 35 (Théorème de Moivre-Laplace). On suppose que (X_n) est une suite de variables aléatoires indépendantes de même loi $\mathcal{B}(p)$. Alors,

$$\frac{\sum_{k=1}^{n} X_k - np}{\sqrt{n}} \xrightarrow{(d)} \mathcal{N}(0, p(1-p))$$

Lemme 36. Soient X et Y deux variables aléatoires indépendantes telles que $X \sim \Gamma(a, \gamma)$ et $Y \sim \Gamma(b, \gamma)$. Alors $Z = X + Y \sim \Gamma(a + b, \gamma)$.

p. 180

Application 37 (Formule de Stirling).

p. 556

$$n! \sim \sqrt{2n\pi} \left(\frac{n}{e}\right)^n$$

Proposition 38. Soit $f: \mathbb{R}^+ \to \mathbb{R}$ une fonction continue par morceaux et décroissante, telle que l'intégrale $\int_0^{+\infty} f(t) \, \mathrm{d}t$ converge et est non nulle. Alors, $\sum_{n=1}^{+\infty} f(nt)$ converge et,

[**GOU20**] p. 159

$$\sum_{n=1}^{+\infty} f(nt) \sim \frac{1}{t} \sum_{n=0}^{+\infty} f(t) dt$$

Exemple 39.

$$\sum_{n=1}^{+\infty} x^{n^2} \sim \frac{c}{\sqrt{-\ln(x)}} \sim \frac{c}{\sqrt{1-x}}$$

où
$$c = \int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}$$
.

2. Fonctions définies par une intégrale

Théorème 40. Soient [a,b[un intervalle semi-ouvert de \mathbb{R} (avec $-\infty < a < b \le +\infty$), E un espace de Banach sur \mathbb{R} , $f:[a,b[\to E \text{ et } g:[a,b[\to \mathbb{R}^+_* \text{ deux applications continues par morceaux sur } [a,b[$.

- (i) Si $\int_a^b g(t) dt$ diverge, alors quand $x \to b^-$,
 - Si f(t) = O(g(t)), alors $\int_a^x f(t) dt = O(\int_a^x g(t) dt)$.
 - Si f(t) = o(g(t)), alors $\int_a^x f(t) dt = o\left(\int_a^x g(t) dt\right)$.
 - Si $f(t) \sim g(t)$, alors $\int_a^x f(t) dt \sim \int_a^x g(t) dt$.
- (ii) Si $\int_a^b g(t) dt$ converge, alors quand $x \to b^-$,
 - Si f(t) = O(g(t)), alors $\int_x^b f(t) dt = O\left(\int_x^b g(t) dt\right)$.
 - Si f(t) = o(g(t)), alors $\int_x^b f(t) dt = o\left(\int_x^b g(t) dt\right)$.
 - Si $f(t) \sim g(t)$, alors $\int_x^b f(t) dt \sim \int_x^b g(t) dt$.

Exemple 41. Lorsque $x \to +\infty$:

$$\ln x = \int_1^x \frac{1}{t} dt = o\left(\int_1^x t^{\alpha - 1} dt\right) = o(x^{\alpha})$$

pour tout $\alpha > 0$.

Application 42. Soient $a \in \mathbb{R}$ et $g : [a, +\infty[\to \mathbb{R}$ une application de classe \mathscr{C}^1 . On suppose que g ne s'annule pas au voisinage de $+\infty$ et que lorsque $x \to +\infty$, on a

$$\frac{g'(x)}{g(x)} \sim \frac{\mu}{x}$$

pour μ ∉ {−1,0}. Alors,

- (i) Si $\mu > -1$, $\int_a^{+\infty} g(t) dt$ diverge et $\int_a^x g(t) dt \sim \frac{xg(x)}{\mu+1}$ quand $x \to +\infty$.
- (ii) Si $\mu < -1$, $\int_a^{+\infty} g(t) dt$ converge et $\int_x^{+\infty} g(t) dt \sim -\frac{xg(x)}{u+1}$ quand $x \to +\infty$.

Exemple 43. Lorsque $x \to +\infty$:

$$\int_{2}^{x} \frac{\mathrm{d}t}{\ln(t)} = \sum_{i=1}^{k} \frac{x}{\ln(x)^{i}} (i-1)! + o\left(\frac{x}{\ln(x)^{k}}\right)$$

Proposition 44. La fonction Γ définie pour tout x > 0 par $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$ vérifie :

(i) $\forall x \in \mathbb{R}^+_*$, $\Gamma(x+1) = x\Gamma(x)$.

[ROM21] p. 364

p. 173

p. 163

- (ii) $\Gamma(1) = 1$.
- (iii) Γ est log-convexe sur \mathbb{R}_*^+ .

De plus,

$$\forall x \in]0,1], \Gamma(x) = \lim_{n \to +\infty} \frac{n^x n!}{(x+n) \dots (x+1)x}$$

(que l'on peut étendre à \mathbb{R}_*^+ entier).

Théorème 45 (Formule de Stirling généralisée).

[**GOU20**] p. 166

$$\Gamma(x) \sim \sqrt{2\pi x} \left(\frac{x}{e}\right)^x$$

Bibliographie

Suites et séries numériques, suites et séries de fonctions

[AMR11]

Mohammed El-Amrani. *Suites et séries numériques, suites et séries de fonctions*. Ellipses, 15 nov. 2011.

https://www.editions-ellipses.fr/accueil/3910-14234-suites-et-series-numeriques-suites-et-series-de-fonctions-9782729870393.html.

Mathématiques pour l'agrégation

[DAN]

Jean-François Dantzer. *Mathématiques pour l'agrégation. Analyse et probabilités.* De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332904-mathematiques-pour-1-agregation-analyse-et-probabilites.

Oraux X-ENS Mathématiques

[FGN3]

Serge Francinou, Hervé Gianella et Serge Nicolas. *Oraux X-ENS Mathématiques. Volume 3.* 3^e éd. Cassini, 27 mai 2020.

https://store.cassini.fr/fr/enseignement-des-mathematiques/103-oraux-x-ens-mathematiques-nouvelle-serie-vol-3.html.

De l'intégration aux probabilités

[G-K]

Olivier Garet et Aline Kurtzmann. *De l'intégration aux probabilités*. 2^e éd. Ellipses, 28 mai 2019. https://www.editions-ellipses.fr/accueil/4593-14919-de-l-integration-aux-probabilites-2e-edition-augmentee-9782340030206.html.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487.html.

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie.* 2^e éd. De Boeck Supérieur, 20 avr. 2021.

 $\verb|https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.|$

Petit guide de calcul différentiel

[ROU]

François Rouvière. *Petit guide de calcul différentiel. à l'usage de la licence et de l'agrégation.* 4° éd. Cassini, 27 fév. 2015.

 $\verb|https://store.cassini.fr/fr/enseignement-des-mathematiques/94-petit-guide-de-calcul-differentiel-4e-ed.html.|$