Week 1: Likelihood Inference

PLSC 40502 - Statistical Models

Welcome!

Course Overview

- Instructor: Anton Strezhnev
- Logistics:
 - Lectures Th 2:00pm 4:50pm;
 - 3 Problem Sets (~ 2 weeks)
 - Final paper project (8-12 pages)
 - My office hours: Tuesdays 4pm-6pm (Pick 328)
- What is this course about?
 - Defining statistical models via their data-generating process
 - Estimating model parameters and conducting inference
 - Interpreting model output and evaluating model quality
- Goals for the course
 - Give you the tools you need to understand descriptive inference via statistical models and comment on other researchers' work.
 - Equip you with an understanding of the fundamentals of likelihood and Bayesian inference to enable you to learn new models that build on these principles.
 - Teach you how to program and implement estimators by yourself!

Course workflow

- Lectures
 - Topics organized by week
 - Lectures are the "course notes" -- readings are the reference manuals.
- Readings
 - Mix of textbooks and papers
 - All readings available digitally on Canvas

Course workflow

- Problem sets (35% of your grade)
 - Meant as a check on your understanding of the material and a way of communicating with me about the course clear
 - Collaboration is strongly encouraged -- you should ask and answer questions on our Ed discussion board.
 - Graded hollistically on a plus/check/minus system.

Course workflow

- Final Project (55% of your grade)
 - The main goal of this class is for you to develop an independent quantitative research project
 - The paper should be in the length and style of a research note (8-12 pages)
 - o One well-motivated question + data and analysis (minimize the lit review!)
 - You can collaborate! (1-3 authors per paper).
 - See the syllabus for published examples of the style/method of a paper that fits the aims of this class.
 - Survey data is a great place to ask descriptive questions
 - But feel free to use other sources or ask different types of questions just talk to me about it!
- Final Project Timeline
 - February 2nd: 1 page project memo due
 - February 29th: Research presentations in-class (10-15 min. talks + Q&A)
 - March 7: Final paper due

Class Requirements

- Overall: An interest in learning and willingness to ask questions.
- Assume a background in intro probability and statistics
 - You should be comfortable thinking about basic estimands/estimators + their properties
 - You should be able to interpret a confidence interval for (e.g.) a difference-in-means.
- You should also be familiar with linear regression
 - $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'Y$ should be a familiar expression
 - \circ You should know under what conditions it's unbiased for E[Y|X], and under what conditions it's efficient.
- If you want some review, check out chapters 1-6 of "Regression and Other Stories"

A brief overview

- Week 1-2: Introduction to likelihood inference and GLMs
 - Concept of the likelihood, MLE as an estimator + asymptotic properties
 - Binary outcome models, count models, duration models
- Week 3-4: Bayesian Inference and Multilevel Models
 - o Principles of Bayesian inference -- posteriors, priors, data
 - Quantities of interest: posterior means, credible intervals
 - Estimation via MCMC
 - Application to multilevel regression models
- Week 5: Survey data
 - Applying multilevel regression methods to survey data
 - Survey weighting to address non-random sampling.
- Week 6: Mixture Models
- Week 7: Item response theory and ideal point models
- Week 8: Penalized regression and model selection
- Week 9: Research presentations + miscellaneous

Defining a statistical model

- ullet A very common goal in statistics is to learn about the conditional expectation function $\mathbb{E}[Y|X]$
 - $\circ Y_i$: Outcome/response/dependent variable
 - $\circ X_i$: Vector of regressor/independent variables
- "How does the expected value of Y differ across different values of X?"
- Suppose we observe N paired observations of $\{Y_i, X_i\}$.
 - How do we construct a "good" estimator of $\mathbb{E}[Y|X]$?
 - What assumptions do we have to make to get...consistency...unbiasedness...efficiency?
- Consider the ordinary least squares estimator $\hat{\beta}$ which solves the minimization problem:

$$\hat{eta} = rg \min_{b} \; \sum_{i=1}^{N} (Y_i - X_i b)^2$$

• We can do some algebra and find a closed form solution for this optimization problem

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'Y)$$

• Assumption 1: Linearity

$$Y = \mathbf{X}\beta + \epsilon$$

• **Assumption 2**: Strict exogeneity of the errors

$$E[\epsilon|\mathbf{X}]=0$$

- These two imply:
 - Linear CEF

$$\mathbb{E}[Y|\mathbf{X}] = \mathbf{X}eta = eta_0 + eta_1 X_1 + eta_2 X_2 + \dots eta_k X_k$$

- Best case: Our CEF is truly linear (by luck or we have a saturated model)
- Usual case: We're at least consistent for the best linear approximation to the CEF

- Assumption 3: No perfect collinearity
 - \circ **X**'**X** is invertible
 - **X** has full column rank
- This assumption is needed for *identifiability* -- otherwise no unique solution to the least squares minimization problem exists!
- Fails when one column can be written as a linear combination of the others
 - \circ Or when there are more regressors than observations k > n

- Under assumptions 1-3, our OLS estimator $\hat{\beta}$ is unbiased and consistent for β
- Let's do a quick proof for unbiasedness

$$egin{aligned} \hat{eta} &= (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'Y) \ &= (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'(\mathbf{X}eta + \epsilon)) \ &= (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{X})eta + (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\epsilon) \ &= eta + (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\epsilon) \end{aligned}$$

• Then we can obtain the conditional expectation of $\mathbb{E}[\hat{\beta}|\mathbf{X}]$

$$\mathbb{E}[\hat{\beta}|\mathbf{X}] = \mathbb{E}\left[\beta + (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\epsilon)\Big|\mathbf{X}\right]$$

$$= \mathbb{E}[\beta|\mathbf{X}] + \mathbb{E}[(\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\epsilon)|\mathbf{X}]$$

$$= \beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbb{E}[\epsilon|\mathbf{X}]$$

$$= \beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'0$$

$$= \beta$$

Lastly, by law of total expectation

$$\mathbb{E}[\hat{eta}] = \mathbb{E}[\mathbb{E}[\hat{eta}|\mathbf{X}]]$$

Therefore

$$\mathbb{E}[\hat{eta}] = \mathbb{E}[eta] = eta$$

- Consistency requires us to show the convergence of $(\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\epsilon)$ to 0 in probability as $N \to \infty$.
 - \circ This actually requires *weaker* assumptions: $\mathbb{E}[\mathbf{X}'\epsilon] = 0$ but not necessarily $\mathbb{E}[\epsilon|\mathbf{X}] = 0$.
- But what have we not assumed?
 - Anything about the distribution of the errors!

• Assumption 4 - Spherical errors

$$Var(\epsilon|\mathbf{X}) = egin{bmatrix} \sigma^2 & 0 & \cdots & 0 \ 0 & \sigma^2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \sigma^2 \end{bmatrix} = \sigma^2 \mathbf{I}$$

- Benefits
 - \circ Simple, unbiased estimator for the variance of \hat{eta}
 - Completes Gauss-Markov assumptions → OLS is BLUE (Best Linear Unbiased Estimator)
- Drawbacks
 - Basically never is true

• Good news! We can relax homoskedasticity (but still keep no correlation) and do inference on the variance of $\hat{\beta}$

$$Var(\epsilon|\mathbf{X}) = egin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \ 0 & \sigma_2^2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \sigma_n^2 \end{bmatrix}$$

- "Robust" standard errors using the "sandwich" estimator Consistent but not unbiased for the true sampling variance of $\hat{\beta}$
 - Extensions to allow for forms of correlation in the error terms (e.g. "clustering")

• Assumption 5 - Normality of the errors

$$\epsilon | \mathbf{X} \sim \mathcal{N}(0, \sigma^2)$$

- Not necessary even for Gauss-Markov assumptions
- Not needed to do asymptotic inference on $\hat{\beta}$
 - Why? Central Limit Theorem!
- Benefits?
 - Finite-sample inference.

- What do we need for OLS to be consistent for the "best linear approximation" to the CEF?
 - Very little!
- What do we need for OLS to be consistent and unbiased for the conditional expectation function?
 - Truly linear CEF
 - But still no assumptions about the outcome distribution!
- What do we need to do inference on $\hat{\beta}$?
 - We almost never assume homoskedasticity because "robust" SE estimators are ubiquitous
 - Even some forms of error correlation are permitted ("cluster" robust SEs)
 - Sample sizes are usually large enough where Central Limit Theorem implies a normal sampling distribution is a reasonable approximation.

Defining a statistical model

- In the regression setting we tried to make as few assumptions about the data-generating process as possible.
 - \circ Our goal is just to estimate and conduct inference on E[Y|X].
- But what if we wanted to make further probabilistic statements about other quantities beyond β ?
 - \circ (e.g.) Can we provide a distribution for Y_{n+1} , the "next" observation given X_{n+1} ?
 - If we're willing to make more assumptions about the data-generating process, we can do a lot more!
- **Statistical models** specify the data-generating process in terms of *systematic* and *stochastic* components.
 - Systematic elements are functions known constants and unknown parameters
 - Stochastic elements are draws from probability distributions
- We will be primarily working with *parametric* models
 - The data will be assumed to come from a particular family of probability distributions
 - The "structure" of the model is assumed fixed (the number of parameters does not grow with the size of the data).

The linear model

- It is common to see the linear model written in its fully parametric form.
- Stochastic:

$$Y_i \sim ext{Normal}(\mu_i, \sigma^2)$$

• Systematic:

$$\mu_i = X_i' eta$$

- What's assumed to be known?
 - \circ X
- What's assumed to have a particular distribution?
 - $\circ Y$
- We are interested in estimating and conducting inference on the parameters: β and (less importantly) σ^2 .

General model notation

- We can specify a broad set of models for Y_i using this framework
- Stochastic

$$Y_i \sim f(heta_i, lpha)$$

Systematic

$$heta_i = g(X_i,eta)$$

- What are these quantities?
 - $\circ Y_i$ is a random variable
 - $\circ f()$ denotes the distribution of that random variable
 - \circ θ_i and α are parameters of that distribution
 - $\circ g()$ is some function
 - $\circ X_i$ are observed, known constants (e.g. regressors)
 - \circ β are parameters of interest
- We will spend some time with a particular class of models called "Generalized Linear Models" where the systematic component has the form

$$heta_i = g(X_i'eta)$$

Types of distributions

Normal

- Continuous on an unbounded support $(-\infty, \infty)$
- Two parameters: Mean μ and Variance σ^2
- Probability Density Function (PDF)

$$f_N(x;\mu,\sigma) = rac{1}{\sigma\sqrt{2\pi}} \mathrm{exp}igg\{-rac{1}{2}igg(rac{x-\mu}{\sigma}igg)igg\}$$

Types of distributions

Poisson

- Discrete, defined on the support of the natural numbers (positive integers + zero)
- ullet Single parameter: Mean and Variance λ
- Probability Density Function (PDF)

$$f(x;\lambda) = rac{\lambda^x \exp\{-\lambda\}}{x!}$$

Types of distributions

Binomial

- Discrete, defined on the support of integers from $\{0,1,2,\ldots,n\}$ (model the sum of repeated i.i.d. coin flips.)
- Two parameters: p probability of success in n trials
 - \circ Special case where n=1 trials is typically called the "Bernoulli"
- Probability Density Function (PDF)

$$f(x;p,n)=inom{n}{x}p^x(1-p)^{n-x}$$

Likelihood inference

Learning about the unknown

- Suppose that I want to learn about an unobserved parameter from a sample of observations.
 - I assume a particular statistical model for the data
 - **Example**: I want to know the level of support for then-President Donald Trump in Wisconsin in 2020 using the 2020 CES
- Frequentist approach
 - Unobserved parameters are fixed constants
 - Data are random variables
- We want to construct an **estimator** that is a *function* of the data and which has desirable properties
 - **Unbiasedness**: The *expected value* of the estimator is equal to the target parameter
 - Consistency: As our sample size gets larger, the estimator converges (in probability) to the target parameter.
 - **Asymptotic normality**: In large samples, the distribution of our estimator is normal (ideally with a variance we can estimate as well!)
- Can we come up with a *generic* framework that yields a "good" estimator for a large class of statistical models?

The Likelihood Function

- Consider data $\mathbf{y} = \{y_1, y_2, \dots, y_n\}$ which we assume comes from a known distribution with density $f(\mathbf{y}|\theta)$ with unknown parameter θ
 - $\circ f()$ could be Bernoulli, Normal, Poisson, Gamma, Beta, etc... -- in this setting it is a *known* distribution
 - \circ θ is an *unknown* parameter that lies in some space Θ of possible values.
- The **likelihood function** is a function of θ that is evaluated at the observed values of y

$$\mathcal{L}(\theta|\mathbf{y}) = f(\mathbf{y}|\theta)$$

- Given some input θ , the likelihood function returns the density of the observed data evaluated at that value.
- The likelihood function is **not** a probability density
 - \circ a pdf is a function that takes x as an input
 - \circ a likelihood is a function that takes θ as an input

The Likelihood Function

- The likelihood function is **not** $f(\theta|\mathbf{y})$
 - That statement doesn't even make sense in a frequentist framework -- parameters are constant
- Even when we (later) move to a *Bayesian* framework $f(\theta|\mathbf{y}) \neq f(\mathbf{y}|\theta)$
- Remember Bayes' Rule:

$$f(heta|\mathbf{y}) = rac{f(\mathbf{y}| heta)}{f(\mathbf{y})} imes f(heta)$$

• Or alternatively, since f(y) is just a normalizing constant, you'll see this written as:

$$\underbrace{f(\theta|\mathbf{y})}_{\mathrm{posterior}} \propto \underbrace{f(\mathbf{y}|\theta)}_{\mathrm{likelihood}} \times \underbrace{f(\theta)}_{\mathrm{prior}}$$

The Likelihood Function

- We often make the assumption that our data are **independently and identically distributed** $\circ y_i \sim f(y_i|\theta)$
- This allows us to factor the likelihood

$$\mathcal{L}(heta|\mathbf{y}) = f(\mathbf{y}| heta) = \prod_{i=1}^n f(y_i| heta)$$

- Since our eventual goal will be to find an *optimum* of the likelihood, we can apply any monotonic function to it since that preserves maxima/minima.
 - The main one we'll apply is the **logarithm**
 - Why? Because logs turn annoying-to-work-with products into easier-to-work-with sums!
- The log-likelihood is typically denoted $\ell(\theta|\mathbf{y})$

$$\ell(heta|\mathbf{y}) = \log f(\mathbf{y}| heta) = \sum_{i=1}^n \log f(y_i| heta)$$

MLE

- We want to come up with an estimator $\hat{\theta}$ for the parameter θ
 - \circ $\hat{ heta}$ is a function of the data (like a sample mean or OLS coefficient)
 - o Is there a principled way to pick $\hat{\theta}$ that has provably "good" properties across a wide variety of models?
- The Maximum Likelihood Estimator (MLE) $\hat{\theta}$ is defined as the value of θ that yields the optimum value of the likelihood function

$$\hat{ heta} = rg \max_{ heta} \ \log f(\mathbf{y}| heta)$$

- The MLE has some desirable properties:
 - \circ Under some regularity conditions, the MLE $\hat{ heta}$ is consistent for the true parameter heta
 - \circ It's asymptotically normal: $\sqrt{n}(\hat{\theta}_n \theta) \to \mathrm{Normal}(0, \frac{1}{\mathcal{I}(\theta)})$
 - \circ It's asymptotically efficient: It's variance approaches the Cramer-Rao lower-bound $rac{1}{n\mathcal{I}(heta)}$
 - \circ It's invariant to reparametarization: If $\hat{\theta}$ is an MLE for $g(\hat{\theta})$ is an MLE for $g(\hat{\theta})$

Score

- Before illustrating consistency, we need to define some additional functions of the log-likelihood.
- The first is the **score** or the gradient of $\ell(\theta|\mathbf{y})$ with respect to θ

$$\mathbf{S} = rac{\partial}{\partial heta} {
m log} \, f(\mathbf{y} | heta)$$

ullet With i.i.d. data, you'll often see the score written in terms of the score for an individual observation i

$$\mathbf{S}_i = rac{\partial}{\partial heta} \mathrm{log} \, f(y_i | heta)$$

• At the value of the true parameter θ_0 , the expected value of the score is 0 (under regularity conditions)

$$\mathbb{E}igg[rac{\partial}{\partial heta} {
m log}\, f(y_i| heta_0)igg] = rac{\partial}{\partial heta} \mathbb{E}[{
m log}\, f(y_i| heta_0)] = 0$$

Consistency

- With this definition of the score, we can show consistency of the MLE under i.i.d. observations.
- By the weak law of large numbers

$$rac{1}{n}\sum_{i=1}^n \log f(y_i| heta) ounderightarrow \mathbb{E}[\log f(y_i| heta)]$$

- The MLE is an optimizer of the left-hand side.
 - Therefore it converges in probability to the optimizer of the right-hand side
- And we just showed that the score is 0 at the true value of θ , denoted θ_0
 - Therefore θ_0 is an extremum of the right-hand side (under a few additional regularity conditions)
- Therefore the MLE $\hat{\theta}$ is consistent for the true value θ_0

Consistency

- There are two important conditions for consistency that can be violated in practice
- Identifiability
 - No "plateaus" in the log-likelihood.
 - \circ Two different values of θ can't both maximize the log-likelihood

$$f(\mathbf{y}|\theta) \neq f(\mathbf{y}|\theta_0) \ \forall \ \theta \neq \theta_0$$

- Fixed parameter space
 - \circ The dimensionality of θ stays fixed and does not depend on n
 - o Violated (e.g.) in ideal point models (new legislators mean new ideal points)

Information

- Having established consistency, we're interested in understanding the variance and distribution (asymptotically) of $\hat{\theta}$
- To do this, we need to define a quantity called the **information**: \mathcal{I}_n
- This is equivalent to the variance of the score at its optimum

$$\mathcal{I}_n = \mathbb{E}\left[\left(rac{\partial}{\partial heta} {
m log}\, f(\mathbf{y}| heta_0)
ight)^2
ight]$$

• We can show (under some more regularity conditions) that this is equivalent to the negative expectation of the second-order partial derivative (Hessian) of the log-likelihood

$$\mathcal{I}_n = -\mathbb{E}\left[rac{\partial^2}{\partial heta^2} {
m log}\, f({f y}| heta_0)
ight]$$

• Intuitively: Captures the curvature of the log-likelihood at its maximum

Information

• You'll sometimes see the information written in terms of the information from a single observation

$$\mathcal{I} = -\mathbb{E}\left[rac{\partial^2}{\partial heta^2} \mathrm{log}\, f(y_i| heta_0)
ight]$$

• Under our i.i.d. assumption, we can write

$$\mathcal{I}_n=n\mathcal{I}$$

This matters a bit for how we write/show consistency of the MLE

Information

• Under our i.i.d. assumption (+ regularity conditions), we can show not only consistency but convergence in distribution to a normal

$$\sqrt{n}(\hat{ heta}- heta) \stackrel{}{ o} \operatorname{Normal}(0,\mathcal{I}^{-1})$$

- So in large samples, a good approximation of the variance of $\hat{ heta}$ is \mathcal{I}_n^{-1}
 - An additional result: The inverse of the information is the lowest possible variance of any unbiased estimator (Cramér-Rao lower bound)
 - MLE achieves this bound asymptotically
- How do we do inference then? Same way as before -- plug in a consistent estimator of \mathcal{I}_n^{-1} .
 - Calculate the hessian of the log-likelihood at the MLE and take the inverse of its negative.

Example

- Suppose I was interested in learning about the proportion of residents in Wisconsin who approved of then-President Donald Trump's performance in 2020.
 - \circ Tobserve a sample of n respondents and observe an approve $(y_i = 1)$ or disapprove $(y_i = 0)$ response.
 - Ignore, for this example, the sample weights and assume we have a true simple random sample from the target populations.
- The data generating process:
 - \circ Stochastic: $y_i \sim \mathrm{Bernoulli}(\pi)$
 - \circ Systematic. $\pi \in (0,1)$
- Let's derive the (log)likelihood!

• Under our assumption of i.i.d. observations:

$$\mathcal{L}(\pi|\mathbf{y}) = f(\mathbf{y}|\pi) = \prod_{i=1}^n f(y_i|\pi)$$

• The log-likelihood is

$$\ell(\pi|\mathbf{y}) = \sum_{i=1}^n \log f(y_i|\pi)$$

• Since y_i is Bernoulli, the PMF is:

$$f(y_i|\pi) = \pi^{y_i}(1-\pi)^{1-y_i}$$

• Plugging back into the log-likelihood

$$\ell(\pi|\mathbf{y}) = \sum_{i=1}^n \log\left(\pi^{y_i}(1-\pi)^{1-y_i}
ight)$$

Log of the product is the sum of the logs

$$\ell(\pi|\mathbf{y}) = \sum_{i=1}^n \log\left(\pi^{y_i}
ight) + \log\left((1-\pi)^{1-y_i}
ight)$$

• Properties of logs: $\log(a^b) = b \log(a)$

$$\ell(\pi|\mathbf{y}) = \sum_{i=1}^n y_i \log(\pi) + (1-y_i) \log(1-\pi)$$

• We'll simplify this further later, but let's take a look at the shape of this likelihood function w.r.t. its input π

Read in the data

```
approval <- read_csv("data/cces2020_trump_approval_WI_TX.csv")
approval <- approval %>% filter(!is.na(trumpapprove)) # Drop missing
approval_WI <- approval %>% filter(inputstate == 55) # Subset down to Wisconsin
approval_TX <- approval %>% filter(inputstate == 48) # Also get TX for comparison
```

Write the likelihood function in code

```
bern_lik <- function(pi, y){
  return(sum(y*log(pi) + (1-y)*log(1-pi)))
}</pre>
```

• Quick summary of the data

```
table(approval_WI$trumpapprove)
```

```
##
## 0 1
## 781 452
```

Visualizing the likelihood

• For Wisconsin

Visualizing the likelihood

• For Wisconsin and Texas

Numerical optimization

- Often the MLEs can be obtained via closed-form solutions, but in most applications, the answer has to be obtained numerically.
- R has a built-in numerical optimizer: **optim** that implements some standard algorithms
 - But tons of other packages: https://cran.r-project.org/web/views/Optimization.html
- Let's use optim() to calculate the MLE

Numerical optimization

• What's the output of **optim()**?

```
mle wi optim
## $par
## [1] 0.367
##
## $value
## [1] -810
##
## $counts
## function gradient
##
        24
##
## $convergence
## [1] 0
##
## $message
## NULL
##
## $hessian
## [,1]
## [1,] -5310
```

Numerical optimization

• Our MLE point estimate is:

```
point_mle <- mle_wi_optim$par
point_mle</pre>
```

```
## [1] 0.367
```

• A consistent estimator of the asymptotic variance is the inverse of the negative hessian

```
var_mle <- solve(-mle_wi_optim$hessian)
sqrt(var_mle) # Standard error</pre>
```

```
## [,1]
## [1,] 0.0137
```

• So our asymptotic 95% CI is

```
c(point_mle - abs(qnorm(.025))*sqrt(var_mle),
  point_mle + abs(qnorm(.025))*sqrt(var_mle))
```

```
## [1] 0.340 0.393
```

• The Bernoulli case is pretty simple, so let's try to find an analytical expression for the MLE. We left off at

$$\ell(\pi|\mathbf{y}) = \sum_{i=1}^n y_i \log(\pi) + (1-y_i) \log(1-\pi)$$

• To find the optimum, we first take the partial derivative with respect to π and set it equal to zero

$$rac{\partial}{\partial \pi} \ell(\pi | \mathbf{y}) = rac{\partial}{\partial \pi} \sum_{i=1}^n y_i \log(\pi) + (1-y_i) \log(1-\pi)$$

Derivatives and sums

$$rac{\partial}{\partial \pi} \ell(\pi | \mathbf{y}) = \sum_{i=1}^n \left[rac{\partial}{\partial \pi} y_i \log(\pi)
ight] + \left[rac{\partial}{\partial \pi} (1 - y_i) \log(1 - \pi)
ight]$$

• Chain rule and product rules

$$rac{\partial}{\partial \pi} \ell(\pi | \mathbf{y}) = \sum_{i=1}^n rac{y_i}{\pi} - rac{1-y_i}{1-\pi}$$

• Split into 3 terms and pull out constants

$$rac{\partial}{\partial \pi} \ell(\pi | \mathbf{y}) = rac{1}{\pi} \sum_{i=1}^n y_i + rac{1}{1-\pi} \sum_{i=1}^n y_i - rac{n}{1-\pi}$$

• Set equal to 0 and solve for π

$$0 = rac{1}{\hat{\pi}} \sum_{i=1}^n y_i + rac{1}{1-\hat{\pi}} \sum_{i=1}^n y_i - rac{n}{1-\hat{\pi}}$$

• Rearrange terms

$$rac{n}{1-\hat{\pi}} = rac{1}{\hat{\pi}} \sum_{i=1}^n y_i + rac{1}{1-\hat{\pi}} \sum_{i=1}^n y_i$$

• Multiply through by $1 - \hat{\pi}$

$$n=rac{1-\hat{\pi}}{\hat{\pi}}\sum_{i=1}^n y_i + \sum_{i=1}^n y_i$$

• Cancel terms

$$n=rac{1}{\hat{\pi}}\sum_{i=1}^n y_i$$

• Divide by n, multiply by $\hat{\pi}$

$$\hat{\pi} = rac{1}{n} \sum_{i=1}^n y_i$$

- Check that the second derivative is negative
 - \circ Here it's strictly negative over the domain of π

$$rac{\partial^2}{\partial \pi^2} \ell(\pi|\mathbf{y}) = \sum_{i=1}^n -rac{y_i}{\pi^2} - rac{1-y_i}{(1-\pi)^2}$$

$$rac{\partial^2}{\partial \pi^2} \ell(\pi | \mathbf{y}) = -rac{1}{\pi^2} \sum_{i=1}^n y_i - rac{1}{(1-\pi)^2} \sum_{i=1}^n (1-y_i)^2$$

- All that work and it turns out the MLE is just the sample mean!
 - Won't always be the case, but here the MLE is also unbiased because of what we know about the sample mean.

CRLB

- Lastly, can we can also show that this particular estimator reaches the Cramer-Rao Lower Bound?
- Start with the known variance of the sample mean $\hat{\pi}$

$$Var(\hat{\pi}) = rac{\pi(1-\pi)}{n}$$

Next, let's write the Fisher information

$$\mathcal{I}_n = -\mathbb{E}\left[rac{\partial^2}{\partial heta^2} \mathrm{log}\, f(\mathbf{y}| heta_0)
ight].$$

From above

$$\mathcal{I}_n = -\mathbb{E}\left[-rac{1}{\pi^2} \sum_{i=1}^n y_i - rac{1}{(1-\pi)^2} \sum_{i=1}^n (1-y_i)
ight].$$

$$\mathcal{I}_n = \mathbb{E}\left[rac{1}{\pi^2} \sum_{i=1}^n y_i + rac{1}{(1-\pi)^2} \sum_{i=1}^n (1-y_i)
ight].$$

CRLB

Pulling out the constants and applying linearity

$$\mathcal{I}_n = rac{1}{\pi^2} \sum_{i=1}^n \mathbb{E}[y_i] + rac{1}{(1-\pi)^2} \sum_{i=1}^n \mathbb{E}[(1-y_i)]$$

• Under the model

$$\mathcal{I}_n=rac{n\pi}{\pi^2}+rac{n(1-\pi)}{(1-\pi)^2}$$

Cancelling and factoring

$$\mathcal{I}_n = n \left(rac{1}{\pi} + rac{1}{(1-\pi)}
ight).$$

CRLB

• Adding the fractions

$$\mathcal{I}_n = rac{n}{\pi(1-\pi)}$$

The CRLB (for an unbiased estimator) is the inverse of the Fisher information

$$rac{1}{\mathcal{I}_n} = rac{\pi(1-\pi)}{n}$$

which is equivalent to the variance of our estimator. This estimator attains the CRLB (it's a minimum-variance unbiased estimator)!

Conclusion

Statistical models

- o Describe the data-generating process in terms of *systematic* and *stochastic* components
- \circ In a parametric model, we assume the data ${f y}$ come from a known *distribution* with unknown parameters heta

Likelihood

- \circ A function of θ evaluated at the observed data \mathbf{y} equal to $f(\mathbf{y}|\theta)$
- \circ How "likely" are my observed results in a world where the true DGP parameter were θ .
- Not $f(\theta|\mathbf{y})$. That quantity only makes sense in the Bayesian context and requires us to formulate a prior $f(\theta)$

Maximum Likelihood Estimator

- A technique to come up with a good estimator in any case where we can write down a (well-behaved) likelihood function for a DGP
- Still a "function" of the data, but that function has useful properties:
- Consistency, Asymptotic Normality, Asymptotic Efficiency