ELETRÔNICA BÁSICA I – ELE08497 - LABORATÓRIO 5 CIRCUITOS DE POLARIZAÇÃO

1- OBJETIVO

Avaliar qualitativamente e comparativamente a estabilidade dos circuitos de polarização para transistores bipolares de junção (BJT).

2- INTRODUÇÃO TEÓRICA

O transístor utilizado nas montagens dos circuitos da parte experimental deste laboratório é o BC237 cujos terminais são identificados na figura abaixo.

Seus principais parâmetros são: $I_C \le 100$ mA; $V_{CE0} \le 45$ V; $V_{EB0} \le 6$ V. BC237A: $120 \le h_{FE} = \emptyset \le 220$; BC237B: $180 \le h_{FE} = \emptyset \le 460$; BC237C: $380 \le h_{FE} = \emptyset \le 800$.

2.1- PONTO QUIESCENTE OU PONTO MÉDIO DE OPERAÇÃO

Ponto médio de operação ou ponto quiescente é o ponto de operação do circuito de polarização ou de corrente contínua do transistor. É denominado de ponto médio porque as variações dos circuitos amplificadores se dão em torno desse ponto. Seus parâmetros de especificação recebem o sufixo Q de quiescente, e ele é especificado por: VCEQ, ICQ, VBEQ e IBQ.

A tensão V_{BE} é praticamente constante e igual, nos transistores de silício (0,7V).

2.2- ESTABILIDADE

Uma das principais métricas de qualidade de um circuito de polarização é a estabilidade de seu ponto quiescente. Esta é afetada pela variação dos parâmetros do transístor, principalmente o h_{FE} ou \mathfrak{B} , e pela temperatura de operação, visto que o transistor quando na região ativa sempre produz calor, fruto do seu dispêndio de potência cujo valor médio é dado pelo produto de V_{CEO} por I_{CO} .

O parâmetro h_{FE} ou ß de um transistor geralmente apresenta variações de até 500%.

2.3- REGIÃO ATIVA

Região ativa de um transistor é aquela em que existe linearidade entre as correntes de coletor e de base: . Nesta região a tensão da junção coletor base é reversa, isto é: $V_{CE} > 0,7 \text{ V}$.

O aumento da temperatura de operação com o transistor na região ativa provoca:

- Diminuição de 2,5 mV / ⁰C na tensão da junção V_{BE}. Isto faz aumentar I_B, e por consequência aumento de I_C.
- Grande aumento de h_{FE} = ß, e por consequência grande aumento de l_C.

2.4- RETA DE CARGA

Reta de carga é o gráfico de I_C em função de V_{CE} . Também pode ser entendida como o lugar geométrico das raízes dessa equação. O ponto quiescente do circuito de polarização é determinado pela intersecção da reta de carga com a curva característica de saída do transistor ($I_C * V_{CE}$) para um I_B definido.

O ponto quiescente pode ser escolhido de forma a permitir a máxima excursão simétrica no sinal de saída do transistor. Neste caso, sua localização ideal deve ser no meio da reta de carga, conforme figura abaixo.

Na figura acima, a reta de carga é determinada facilmente por seus pontos notáveis:

- Para V_{CE} = 0 obtém-se o máximo para I_c. Nesta condição o transistor está saturado.
- Para I_C = 0 obtém-se o máximo para V_{CE} = +V_{CC}. Nesta condição o transistor está cortado.

3- PARTE EXPERIMENTAL

3.1- Circuitos Sem Realimentação Negativa

- 3.1.1- Ajuste a tensão V_{CC} para 12 V CC e limite a corrente em 100 mA.
- 3.1.2- Monte o circuito abaixo.

3.1.3- Meça o ponto quiescente I_{BQ} , I_{CQ} e V_{CEQ} e também V_{BE} .

$$I_{BQ} =$$
 $I_{CQ} =$ $V_{CEQ} =$ $V_{BE} =$.

- OBS.: Os jumpers da figura acima têm por finalidade facilitar a medição de corrente. Portanto reponha os jumpers logo após essa medição.
- 3.1.4- Com o ferro de solda já com temperatura estabilizada, aproxime-o do transistor (\pm 2 mm de distância) por 20 segundos e meça a tensão V_{CE} imediatamente. V_{CEQ} = ______ .
- OBS.: Prepare o multímetro antecipadamente, ou seja, com os cabos ligados e na escala de tensão em 20
- 3.1.5- Substitua o resistor de 180 K Ω por um de 6,8 K Ω .

3.1.6- Meça o ponto quiescente I_{BQ} , I_{CQ} e V_{CEQ} e também V_{BE} .

$$I_{BQ} =$$
_____ $I_{CQ} =$ _____ $V_{CEQ} =$ _____ $V_{BE} =$ ____

OBS.: Os jumpers da figura acima têm por finalidade facilitar a medição de corrente. Portanto reponha os jumpers logo após essa medição.

3.2- Circuito de Polarização com Realimentação Negativa pelo Resistor de Emissor

3.2.1- Monte o circuito abaixo.

3.2.2- Meça o ponto quiescente I_{BQ} , I_{CQ} e V_{CEQ} e também V_{BE} .

- OBS.: Os jumpers da figura acima têm por finalidade facilitar a medição de corrente. Portanto reponha os jumpers logo após essa medição.
- 3.2.3- Com o ferro de solda já com temperatura estabilizada, aproxime-o do transistor (\pm 2 mm de distância) por 20 segundos e meça a tensão V_{CE} imediatamente. V_{CEQ} = ______ .
- OBS.: Prepare o multímetro antecipadamente, ou seja, com os cabos ligados e na escala de tensão em 20 Vcc.
- 3.2.4- Compare a variação ocorrida de V_{CEQ} entre os itens 3.1.3 e 3.1.4 com a variação ocorrida entre os itens 3.2.2 e 3.2.3 (sensibilidade à variação de temperatura dos circuitos apresentados).