CS:616 CRYPTOLOGY

PRACTICE QUESTIONS LECTURE

Instructions

- Try these questions before tutorial next week.
- (1) Let $G:\{0,1\}\to\{0,1\}^3$ be a secure length tripling PRG. For each function below state whether it is also a secure PRG. If the function is a secure PRG, give a proof. If not, then describe a successful distinguisher and give estimates on its advantage. When we write a||b||c:=G(s), each a,b,c have length . (a) H(s):

$$x||y||z := G(s)$$

return $G(x)||G(z)$.

(b) H(s):

$$\begin{aligned} x &:= G(s) \\ y &:= G(0 \) \end{aligned}$$
return $x||y$

(c) H(s):

$$x := G(s)$$
$$y := G(0)$$
 return $x - y$

- (2) Let G and G_2 be deterministic functions, each accepting inputs of length and producing outputs of length 3. De ne the function $H(s \mid \mid s_2) = G(s)$ $G_2(s_2)$. Prove that if either of G or G_2 or both is a secure PRG then so is H.
- (3) Let f be any function. Show that the following G is not a secure PRG, no matter what f is. Describe a successful distinguisher and explicitly compute its advantage:

G(s) : return s||f(s)

September 12 2025; Dept of CSE IIT Hyderabad