Estructuras Discretas Tarea #6 "Don Grafo ataca!"

Andrés Navarro 201673001-K

- 1. Considere K_{2n} un grafo completo con 2n vértices ($n \in \mathbb{N}$). Verificar la veracidad de las siguientes afirmaciones:
 - a) K_{2n} contiene al menos un *ciclo hamiltoniano*. Es verdadero, debido a que la propiedad de un grafo K_{2n} es que sus 2n vértices están conectados todos entre sí, por lo que fácilmente, si elegimos un vértice cualquiera, de este podremos llegar a cualquiera de los demás, y de este a cualquier otro que no hayamos visitado. Finalmente cuando lleguemos al último vértice sin visitar, desde este podremos llegar al primero ya que está conectado a todos los demás vértices.
 - b) K_{2n} contiene al menos un *circuito de Euler*.
 Es falso, dado a que para que exista un circuito de Euler, todos los vértices del grafo deben tener grado par.
 En este grafo, ya que es de tipo K_{2n}, cada vértice esta conectado a los demás, y debido a esto, el grado de los vértices será 2n-1 (ya que no está conectado consigo mismo).
 - c) K_{2n} tiene un índice cromático $\chi'(K_{2n}) = 2n 1$.

Pista: Para *c*) puede serle útil utilizar inducción sobre *n*.

2. Dado el grafo:

Determinar:

a) Número cromático. $\chi(grafo) = 3$

b) Índice cromático.

$$\chi'(grafo) = 5$$

c) ¿Es un grafo bipartito?

No lo es, sin embargo, si sólo tomamos en cuenta los vértices h, k, j, i, estos si conforman un grafo bipartito.

d) ¿Es este completo?

No es un grafo completo ya que sus vértices no están conectados a todos los demás.