Claims

A process for the continuous preparation of a 1. silane of the formula I

R⁶R⁵CH-R⁴CH-SiR¹R²R³

(I),

which comprises continuously reacting a silane of the formula II

HSiR1R2R3

(II),

with an alkene of the formula III

R⁶R⁵CH=CHR⁴

(III),

in the presence of an iridium compound of the formula IV as catalyst

[(diene)IrCl]₂

(IV),

and free diene as cocatalyst, where

- R², R³ are each a monovalent Si-C-bonded, R^1 , unsubstituted or halogen-substituted C_1-C_{18} hydrocarbon radical, a chlorine atom or a C_1-C_{18} alkoxy radical,
- R^5 , R^6 are each a hydrogen atom, a monovalent C_1 - \mathbb{R}^4 , C_{18} -hydrocarbon radical which may be unsubstituted or bear F, Cl, OR, NR'2, CN or NCO atoms/groups as substituents, a chlorine atom, a fluorine atom or a C_1-C_{18} -alkoxy radical, where in each case 2 radicals R^4 , R^5 , R^6 together with the carbon atoms to which they are bound may form a cyclic radical, is a hydrogen atom or a monovalent $C_1 - C_{18} -$ R

hydrocarbon radical and

- diene is a C_4 - C_{50} -hydrocarbon compound which may be unsubstituted or bear F, Cl, OR, NR₂, CN or NCO atoms/groups as substituents and has at least two ethylenic C=C double bonds, with the reaction temperature being 30-200°C and the reaction pressure being 0.11-50.0 Mpa.
- 2. The process as claimed in claim 1, wherein R^1 , R^2 and R^3 are C_1-C_6 -alkyl radicals or C_1-C_6 -alkoxy radicals.
- 3. The process as claimed in claim 1 or 2, wherein R^5 , R^6 are $C_1\text{--}C_6\text{--alkyl}$ radicals or $C_1\text{--}C_6\text{--alkoxy}$ radicals.
- 4. The process as claimed in any of claims 1 to 3, wherein R⁴ is selected from among the radicals hydrogen, methyl, ethyl.
- 5. The process as claimed in any of claims 1 to 4, wherein diene is added as cocatalyst in a concentration of from 1×10^{-6} to 1 mol%, based on the silane component of the formula II.
- 6. The process as claimed in any of claims 1 to 4, wherein the reaction temperature is 60-100°C.
- 7. The process as claimed in any of claims 1 to 6, wherein the catalyst of the formula IV used is [(cycloocta-1c,5c-diene)IrCl]₂.
- 8. The process as claimed in any of claims 1 to 7, wherein the cocatalyst used is 1,5-cyclooctadiene.