COMPLEX VARIABLES: HOMEWORK DUE MONDAY, 2/19/2018

1. Plug and chug problems based on Sections 5.1, 5.2 and 5.3

- (1) Express $\exp(z)$ in the u + iv-form for the following values of z:
 - (a) $z = \frac{1}{2} i\frac{\pi}{4}$;
 - (b) $z = -1 + i\frac{3\pi}{2}$;
 - (c) $z = \frac{\pi}{3} 2i$.
- (2) Find all values of
 - (a) $Log(ie^2)$;
 - (b) $Log(\sqrt{3} i);$
 - (c) $\operatorname{Log}(-\sqrt{2} + \sqrt{2}i)$;
 - (d) $Log((1+i)^4)$;
 - (e) $\log(-3)$;
 - (f) $\log(8)$;
 - (g) $\log(4i)$;
 - (h) $\log(-\sqrt{3} i)$.
- (3) Find the principal value of
 - (a) 4^i ;
 - (b) $(1+i)^{i\pi}$;
 - (c) $(-1)^{\frac{1}{\pi}}$;
 - (d) $(1+i\sqrt{3})^{i/2}$.
- (4) Find all the values of the following:
 - (a) i^{i} ;
 - (b) $(-1)^{\sqrt{2}}$;
 - (c) $i^{2/\pi}$;
 - (d) $(1+i)^{2-i}$;
 - (e) $(-1)^{3/4}$;
 - (f) $i^{2/3}$.
- (5) Find all values of z for which:
 - (a) $\exp(z) = -4;$
 - (b) $\exp(z) = 2 + 2i;$
 - (c) $\exp(z) = \sqrt{3} i;$
 - (d) $\exp(z) = -1 + i\sqrt{3}$;
 - (e) $Log(z) = 1 i\frac{\pi}{4}$;
 - (f) $Log(z-1) = i\frac{\pi}{2};$
 - (g) $\exp(z) = -ie;$
 - (h) $\exp(z+1) = i$.

2

2. Other problems

- (1) Provide justifications for the following:
 - (a) $\exp(z)^n = \exp(nz)$ for integer values of n;
 - (b) $|\exp(z)| \le \exp(|z|)$. (When does the equality hold?)
 - (c) $|\exp(z)| \le 1$ if Re(z) < 0.
- (2) Find the domain of the function $f(z) = \sum_{n=0}^{\infty} \exp(inz)$.
- (3) Discuss circumstances under which the following are true:
 - (a) $Log(z_1z_2) = Log(z_1) + Log(z_2);$
 - (b) $Log(\frac{z_1}{z_2}) = Log(z_1) Log(z_2);$
 - (c) $Log(z^n) = nLog(z)$. Assume integer values of n.
- (4) Cook up examples which show the following no longer hold.
 - (a) $P.V(z_1z_2)^{1/3} = P.V(z_1)^{1/3} \cdot P.V(z_2)^{1/3}$;
 - (b) $P.Vz^{2/3} = (P.Vz^2)^{1/3}$.
- (5) Find branches of the following logarithmic functions satisfying the following conditions; give an explicit (piece-wise) formula relating the branches to Log(z), and interpret in terms of the Riemann surface. (Note: This is a modification of Problem 9 from your textbook.)
 - (a) Find a branch of $f(z) = \log(z)$ which is continuous at z = -1 and attains the value of πi there
 - (b) Find a branch of $f(z) = \log(z)$ which is continuous at z = 1 and attains the value of $4\pi i$ there.
 - (c) Find a branch of $f(z) = \log(z)$ which is continuous at z = -i and attains the value of $-5\frac{\pi}{2}i$ there.
- (6) Find the images of the following regions under the following maps. Provide an illustration and color code some of the corresponding edges. (Note: This is a modification of Problem 12 from your textbook.)
 - (a) Find the image of the left half-plane (Re(z) ≤ 0) under the exponential map $f(z) = \exp(z)$.
 - (b) Find the image of the rectangle given by $-1 \le \text{Re}(z) \le 1$, $-\frac{\pi}{2} \le \text{Im}(z) \le \frac{\pi}{2}$ under the exponential map $f(z) = \exp(z)$.
 - (c) Find the image of the rectangle given by $0 \le \text{Re}(z) \le 1$, $-\frac{\pi}{4} \le \text{Im}(z) \le \frac{\pi}{4}$ under the map $f(z) = (\exp(z))^2$.
 - (d) Find the image of the second quadrant under the logarithmic map f(z) = Log(z).
 - (e) Find the image of the third quadrant under the map $f(z) = -i \cdot \text{Log}(z) + 1$.
 - (f) Find the image of the unit disk centered at the origin under the map f(z) = Log(2z).
- (7) Consider complex logarithm as a function defined on its Riemann surface. Find the pre-images, on the Riemann surface, of the following subsets of the complex plane. Please provide accompanying illustrations!
 - (a) The pre-image of the imaginary axis.
 - (b) The pre-image of the vertical strip -1 < Re(w) < 1.
 - (c) The pre-image of the real axis.
 - (d) The pre-image of the vertical strip $0 \leq \text{Im}(w) \leq 4\pi$.