3D Arterial Segmentation via Single 2D Projections and Depth Supervision in Contrast-Enhanced CT Images Supplementary Material

Table 1: Data augmentation and input preprocessing during training. The input volume V is pre-cropped to (300, 300, 150) around the ostia of the superior mesenteric artery.

Transformation	Parameters	Probability
Rescale	[0, 1]	p = 1
Gaussian blur	$\sigma \in [0, 2]$	p = 0.75
Gamma change	$\lambda \in [-3,3]$	p = 0.75
	scaling $s \in [0.8, 0.2]$	p = 0.9
Affine transformation	rotations of up to 15°	p = 0.9
	translation of up to (30, 30, 3) in each axis	p = 0.9
Crop volume	from $(300, 300, 150)$ to $(256, 256, 128)$	p = 1

Table 2: Processing operations for different stages of our pipeline: rib extraction, maximum intensity projection of the input, and postprocessing of the depth maps. \bullet $M_{y_1|y_2} \in \mathbb{R}^{300 \times 300 \times 150}$ denotes a cropping mask M(x,y,z)=1 if $y < y_1$ or $y > (300-y_2)$, else $0. \bullet V * C_a \leq b$ denotes a convolution operation of a volume V with a cube of size a, followed by a thresholding operation at threshold b and re-binarization.

Stage	Operation	Parameters	
Rib extraction	threshold and binarize connected components (CCs) mask out	$V < 300 \rightarrow 0, V \ge 300 \rightarrow 1$ connectivity of 6 (no diagonal pixels) CCs smaller than 100000 pixels CCs c where $\exists (x,y,z) \in c$ such that $M_{80 30}(x,y,z) = 0$	
	mask out		
	binary dilation	structuring element: cube of size 5	
Input MIP	apply mask clip volume crop volume rotate: Euler angles $(\alpha_x, \alpha_y, \alpha_z)$ resample rescale maximum intensity projection	ribs, vertebrae, $M_{80 100}$ [150, 255] (256, 256, 128) (0,0,0), (-90,0,0) or (0,0,-90) (256, 256, 128) [150, 255] \rightarrow [0, 255] y axis	
Depth map	compute depth map remove disconnected pixels remove very sparse areas	intensity fluctuation $th = 0.1$ (Step 3 of depth map generation) $D*C_3 \le 1$ $D*C_{11} \le 9$	

Table 3: Ablation experiment on training with fixed viewpoints (VPs). We train models using 2D projections on fixed viewpoints (same for each training sample). The 3 viewpoints considered are: coronal projection $\rightarrow c$, axial projection $\rightarrow a$, sagittal projection $\rightarrow s$. Each experiment is averaged over 5 cross-validation folds in accordance with our experimental design.

# VPs	Viewpoints	Dice	Precision	Recall	Skeleton Recall	MSD
3	c, a, s	90.78 ± 1.30	90.66 ± 1.30	91.18 ± 3.08	81.77 ± 2.13	1.16 ± 0.13
2	c, a	88.97 ± 1.11	85.26 ± 1.72	93.43 ± 1.35	83.78 ± 2.15	1.22 ± 0.09
	a, s	91.01 ± 0.65	90.20 ± 2.70	92.14 ± 2.09	81.56 ± 2.91	1.13 ± 0.05
	c, s	90.68 ± 0.44	89.03 ± 0.95	92.64 ± 0.96	81.20 ± 1.16	1.07 ± 0.03
	avg	90.22 ± 1.19	88.16 ± 2.86	92.74 ± 1.63	82.18 ± 2.47	1.14 ± 0.09
1	c	77.59 ± 1.91	68.15 ± 2.76	91.17 ± 3.04	79.89 ± 1.69	2.18 ± 0.21
	a	32.82 ± 23.33	24.61 ± 23.13	92.44 ± 3.45	80.73 ± 2.39	4.38 ± 5.17
	s	71.86 ± 3.62	58.66 ± 4.99	93.94 ± 1.91	82.94 ± 1.91	2.32 ± 0.27
	avg	60.76 ± 24.14	50.47 ± 23.21	92.52 ± 3.09	81.19 ± 2.39	2.96 ± 3.15

Fig. 1: Qualitative results. 3D rendering of the predicted segmentation of one of our models (c) compared to a model trained using full 3D supervision (b).

Fig. 2: **Network architecture** Our U-Net has 4 layers. Between each encoder layer we perform a 2× max pooling operation and double the output channels. The number of output channels at each layer are: 16, 32, 64, 128.