

TP2

ASSUNTO - Algoritmia

OBJETIVOS GERAIS

Analisar e conceber algoritmos para resolução computacional de problemas

OBJETIVOS ESPECÍFICOS:

- Compreender e utilizar o conceito de variável e algoritmo na resolução computacional de
- Compreender e utilizar estruturas de controlo de fluxo sequência e decisão.
- Compreender e utilizar pseudocódigo e fluxogramas na descrição de algoritmos
- Mediante apresentação de um algoritmo que inclui estruturas de controlo de fluxo sequência e decisão, descrever a sua funcionalidade e adaptá-lo a novas especificações.
- Compreender e utilizar estruturas de controlo de fluxo sequência e decisão.
- Compreender e utilizar pseudocódigo e fluxogramas na descrição de algoritmos

Uma proposta de resolução perímetro, A, B INTEIRO ED: INICIO LER(A, B) perímetro ← 2*A + 2*B ESCREVER("perímetro = ", perímetro) FIM

TP2

Exercício 2

Analise o seguinte exercício e a respetiva resolução

Pretende-se um algoritmo em pseudocódigo que, em função dos litros de combustível gastos e dos quilómetros percorridos por dois automóveis, calcule, para cada um dos automóveis, o consumo médio por cada 100 km.

Especificação dos requisitos - Enunciado

Análise - O que fazer?

1. Calcular de consumo aos 100 km de cada carro 15 litros ---- 50Km ---- 100 Km Consumo de litros aos 100Km = 15*100 / 50

Elaborar casos de teste (plano de testes começa a ser pensado nesta fase)

Uma proposta de resolução de a)

```
Conceção (Design) – Como fazer?
                                    Solução algorítmica:
ED: lit1, kilom1, lit2, kilom2, cons100_1, cons100_2 REAL
ALG
INICIO
   LER(lit1, kilom1)
   LER(lit2, kilom2)
   cons100_1 ← (lit1*100)/kilom1
   cons100_2 ← (lit2*100)/kilom2
   ESCREVER("O consumo médio de combustível do automóvel 1 é ",
    cons100_1, "1/100 Km e do automóvel 2 é ",
    cons100_2, "1/100 Km")
FIM
```


TP2

b) Altere o algoritmo de modo a classificar os automóveis de acordo com a seguinte tabela:

CONSUMO/100 (litros)	CLASSIFICAÇÃO
<=5	Económico
5 <c<=9< td=""><td>Normal</td></c<=9<>	Normal
>9	Dispendioso

```
Uma proposta de resolução de b)
           lit1, kilom1, lit2, kilom2, cons100 1, cons100 2 REAL
     ALG
      INICIO
           LER(lit1, kilom1)
           LER(lit2, kilom2)
           cons100_1 \leftarrow (lit1*100)/kilom1
           cons100 2 \leftarrow (lit2*100)/kilom2
           ESCREVER ("O automóvel 1 ")
           SE (cons100 1 \le 5)
             ENTÃO ESCREVER ("é um carro económico")
             SENÃO SE (cons100 1 <= 9)
                        ENTÃO ESCREVER ("é um carro de consumo normal")
                        SENÃO ESCREVER("é um carro dispendioso")
           FIMSE
           ESCREVER ("O automóvel 2")
           SE (cons100 2 \le 5)
           ENTÃO ESCREVER ("é um carro económico")
           SENÃO SE (cons100 2 \leq 9)
                        ENTÃO ESCREVER("é um carro de consumo normal")
                         SENÃO ESCREVER("é um carro dispendioso")
                  FIMSE
           FIMSE
     FIM
```


TP2

c) Descreva este algoritmo através de um fluxograma.

Uma proposta de resolução de c)

TP2

d) Elabore um adequado plano de testes.

Uma proposta de resolução de d)

Plano de Testes

Teste	Entrada	Saída Esperada	Saída Obtida	Verificação (√ ou X)
1	lit1 = 15.0 kilom1 = 300 lit2 = 12.0 kilom2 = 150	O automóvel 1 é um carro económico O automóvel 2 é um carro normal		
2	lit1 = 14.0 kilom1 = 200 lit2 = 20 kilom2 = 150	O automóvel 1 é um carro de consumo normal O automóvel 2 é um carro de consumo dispendioso		
3	lit1 = 9.0 kilom1 = 120 lit2 = 20.0 kilom2 = 240	O automóvel 1 é um carro de consumo normal O automóvel 2 é um carro de consumo normal		
4	lit1 = 22 kilom1 = 160 lit2 = 9 kilom2 = 200	O automóvel 1 é um carro dispendioso O automóvel 2 é um carro económico		

e) Faça a traçagem para um dos testes definidos anteriormente relativos à classificação "Normal".

Uma resolução de e)

Traçagem para o teste 1: lit1 = 15, kilom1 = 300, lit2 = 12, kilom2 = 150

Algoritmo	Traçagem	
INICIO		
LER(lit1, kilom1)	lit1 ← 15, kilom1← 300	
LER(lit2, kilom2)	lit2 ← 12, kilom2← 150	
cons100_1 ((lit1*100)/kilom1	cons100_1 ← 5	
cons100_2 ((lit2*100)/kilom2	cons100_2 ← 8	
ESCREVER("O automóvel 1 ")	SAÍDA: O automóvel 1	
SE (cons100_1 <= 5)	(5 <= 5) ⇒ VERDADEIRO	
ENTÃO ESCREVER (" carro de consumo económico")	SAÍDA:	
	carro de consumo económico	
SENÃO SE (cons100_1 <= 9)		
ENTÃO ESCREVER("é um carro de consumo normal")		

TP2

SENÃO ESCREVER("é um carro dispendioso")	
FIMSE	
FIMSE	
ESCREVER("O automóvel 2 ")	SAÍDA: O automóvel 2
SE (cons100_2 <= 5)	(8 <= 5) ⇒ FALSO
ENTÃO ESCREVER (" carro económico")	
SENÃO SE (cons100_2 <= 9)	(8 <= 9) ⇒ VERDADEIRO
ENTÃO ESCREVER(" carro de consumo normal")	SAÍDA: carro de consumo normal
SENÃO ESCREVER(" carro dispendioso")	
FIMSE	
FIMSE	
FIM	

f) Como evitar a utilização de literais

Uma proposta de resolução de f)

Deve-se evitar "números mágicos" (i.e. uso direto de números). Por isso deve-se definir constantes com esses valores e usá-los no algoritmo

const LIMITE_ECONOMICO=5

const LIMITE_NORMAL=9

Substituir no algoritmo o 5 e o 9 por LIMITE_ECONOMICO e LIMITE_NORMAL

Exercício 3

Analise o seguinte exercício e a respetiva resolução

a) Pretende-se um algoritmo em pseudocódigo que, em função da altura e peso de uma pessoa, determine o índice de massa corporal (IMC).

O IMC é calculado de acordo com a seguinte fórmula:

 $IMC = Peso / Altura^2$

TP2

```
Uma proposta de resolução de a)

ED: REAL altura, peso, imc

INICIO

LER(altura, peso)
imc ← peso/(altura*altura)

ESCREVER( "O índice de massa corporal (IMC) é de ", imc)

FIM
```

b) Altere o algoritmo de modo a caracterizar a situação atual de acordo com a tabela abaixo.

IMC	Situação	
<= 18.5	Abaixo do Peso Normal	
]18.5, 25]	Peso Normal	
]25, 30]	Acima do Peso Normal	
>30	Obesidade	

```
Uma proposta de resolução de b)
ED: REAL altura, peso, imc
INICIO
   LER(altura, peso)
   imc ← peso/(altura*altura)
   SE (imc \leq 18.5) ENTÃO
      ESCREVER ("Abaixo do peso normal")
   SENÃO
      SE (imc <= 25) ENTÃO
         ESCREVER ("Peso normal")
      SENÃO
         SE (imc <= 30) ENTÃO
            ESCREVER("Acima do peso normal")
         SENÃO
             ESCREVER ("Obeso")
         FIMSE
      FIMSE
   FIMSE
FIM
```


TP2

c) Descreva este algoritmo através de um fluxograma.

Uma proposta de resolução de c)

d) Como evitar a utilização de literais

Uma proposta de resolução de d)

Evitar "números mágicos" i.e. uso direto de números

Definindo constantes com esses valores e usá-los no algoritmo **const** limiteInfNormal=18.5

TP2

const limiteSupNormal=25
const limiteInfObeso=30

e) Elabore um adequado plano de testes.

Uma proposta de resolução de e)

Plano de Testes

Teste	Entrada	Saída Esperada	Saída Obtida	Verificação (√ ou X)
1	Altura = 1.75 Peso = 56.8	Abaixo do peso normal		
2	Altura = 1.75 Peso = 56.9	Peso normal		
3	Altura = 1.75 Peso = 76.7	Peso normal		
4	Altura = 1.75 Peso = 76.8	Acima do peso normal		
5	Altura = 1.75 Peso = 92.0	Acima do peso normal		
6	Altura = 1.75 Peso = 92.1	Obeso		

f) Faça a traçagem para um dos testes definidos anteriormente relativos à situação "Acima do Peso Normal".

Uma proposta de resolução de f)

Traçagem para o teste 4: Altura=1.75m e Peso= 76.8kg

Algoritmo	Traçagem	
INICIO		
LER(altura, peso)	altura ← 1.75 , peso ← 76.8	
imc ← peso/(altura*altura)	imc ← 25.1	
SE (imc <= 18.5)	(25.1 <= 18.5) ⇒ FALSO	
ENTÃO ESCREVER ("Abaixo do peso normal")		
SENÃO SE (imc <= 25)	(25.1 <= 25) ⇒ FALSO	
ENTÃO ESCREVER ("Peso normal")		
SENÃO SE (imc <= 30)	(25.1 <= 30) ⇒ VERDADEIRO	
ENTÃO ESCREVER("Acima peso normal")	SAÍDA: Acima peso normal	
SENÃO ESCREVER("Obeso")		
FIMSE		
FIMSE		
FIMSE		

TP2

FIM *

Exercício 4

Com base na expressão abaixo, resolva as seguintes questões:

$$x = \frac{(a+b)(a-b)^2}{2a-b} + 3a - c$$

- a) Elabore um algoritmo que permita calcular o valor da expressão. Os valores a, b e c devem ser pedidos ao utilizador e considere que garantem a condição 2 a b <> 0.
- b) Altere o algoritmo de forma a mostrar também uma mensagem que classifique a expressão como valor positivo, negativo ou nulo.

Exercício 5

Analise o seguinte algoritmo que lê um número inteiro e que diz se o número é par ou ímpar.

Nota: MOD – operador MÓDULO - devolve o resto da divisão inteira.

DIV – operador DIVISÃO INTEIRA – devolve o quociente inteiro.

- a) Faça uma traçagem para o valor de entrada 5 e outra para o valor de entrada 10.
- b) Altere o algoritmo de forma a verificar se o número de entrada é par e, em caso afirmativo, transforma-o no número que imediatamente o segue e mostra-o ao utilizador.