CS486/686: Introduction to Artificial Intelligence Lecture 7b - Bayesian Networks

Jesse Hoey & Victor Zhong

School of Computer Science, University of Waterloo

February 5, 2025

Readings: Poole & Mackworth Chap. 9-9.5

Review: Semantics of a Bayes' Net

The structure of the BN means that:

every X_i is **conditionally independent** of all its **nondescendants** given its parents:

$$P(X_i|S, Parents(X_i)) = P(X_i|Parents(X_i))$$

for any subset $S \subseteq NonDescendants(X_i)$

The BN defines a **factorization** of the **joint probability** distribution. The joint distribution is formed by multiplying the conditional probability tables together.

$$P(X_1, X_2, \dots, X_n) = \prod_i P(X_i | parents(X_i))$$

Constructing Belief Networks

To represent a domain in a belief network, you need to consider:

- What are the relevant variables?
 - What will you observe? This is the evidence
 - What would you like to find out? This is the query
 - What other features make the model simpler? These are the other variables
- What values should these variables take?
- What is the relationship between them? This should be expressed in terms of local influence.
- How does the value of each variable depend on its parents? This is expressed in terms of the conditional probabilities.

Bayesian Networks - Independence Assumptions

- Test B depends on COVID and Malfunction
- Test A depends only on COVID
- Report depends only on Test B
- Database depends only on Report

What are the independencies?

Database and Test B independent if Report is observed

Test B and Test A are independent if COVID is observed

Malfunction and COVID are independent if Test B is not observed

http://imgs.xkcd.com/comics/bridge.png

Three Basic Bayesian Networks...Recap

Updating belief: Bayes' Rule

Agent has a prior belief in a hypothesis, h, P(h),

Agent observes some evidence e that has a likelihood given the hypothesis: P(e|h).

The agent's **posterior belief** about h after observing e, P(h|e),

is given by Bayes' Rule:

$$P(h|e) = \frac{P(e|h)P(h)}{P(e)} = \frac{P(e|h)P(h)}{\sum_{h} P(e|h)P(h)}$$

Why is Bayes' theorem interesting?

 Often you have causal knowledge: *P*(*symptom* | *disease*) $P(\text{light is off} \mid \text{status of switches and switch positions})$ P(alarm | fire) $P(\text{image looks like } \blacktriangleleft \mid \text{a tree is in front of a car})$ • And want to do evidential reasoning: *P*(*disease* | *symptom*) $P(\text{status of switches} \mid \text{light is off and switch positions})$ $P(fire \mid alarm)$ $P(\text{a tree is in front of a car} \mid \text{image looks like} \blacktriangleleft)$

Before you get any information

- P(COVID) = 0.32
- P(Malfunction) = 0.08

Suppose the doctor reads a **positive Test B in the Database** evidence gives Database=true (not directly Test B= true) we want to know P(COVID = true | Database = true)

- P(COVID = true | Database = true) = 0.80
- P(Malfunction = true | Database = true) = 0.14

Suppose **Test A is positive** as well

we want $P(COVID = true | Database = true \land TestA = true)$

- $\bullet \ \textit{P(COVID} = \textit{true} | \textit{Database} = \textit{true} \land \textit{TestA} = \textit{true}) = 0.95 \\$
- $P(M = true | Database = true \land TestA = true) = 0.08$

(we will see how to get these numbers later)

Suppose **Test A is negative**, though! we want $P(COVID = true | Database = true \land TestA = false)$

- $P(COVID = true | Database = true \land TestA = false) = 0.48$
- $P(M = true | Database = true \land TestA = false) = 0.27$

(we will see how to get these numbers later)

Simple Forward Inference (Chain)

Computing marginal requires simple forward propagation of probabilities

- $P(B) = \sum_{m,c} P(M = m, C = c, B)$ (marginalization - sum rule)
- $P(B) = \sum_{m,c} P(B \mid m,c) P(m \mid c) P(c)$ (chain rule)
- $P(B) = \sum_{m,c} P(B \mid m,c) P(m) P(c)$ (independence)
- $P(B) = \sum_{m} P(m) \sum_{c} P(c) P(B \mid m, c)$ (distribution of product over sum)

Note: all terms on the last line are CPTs in the BN

Note: only ancestors of *B* are considered. Why?

Simple Forward Inference (Chain)

Same idea when evidence COVID = true (denoted by c) "upstream"

- $P(R \mid c) = \sum_{m,b} P(R, b, m \mid c)$ (marginalization)
- $P(R \mid c) = \sum_{m,b} P(R \mid b, m, c) P(b \mid m, c) P(m \mid c)$ (chain rule)
- $P(R \mid c) = \sum_{m,b} P(R \mid b) P(b \mid m,c) P(m)$ (independence and conditional independence)

Simple Forward Inference

With multiple parents the evidence is "pooled"

Simple Forward Inference

Also works with "upstream" evidence

$$\begin{split} &P(\textit{Fev}\,|\,\textit{ts},\overline{m}) = \sum_{\textit{Flu}} P(\textit{Fev},\textit{Flu}\,|\,\overline{m},\textit{ts}) \\ &= \sum_{\textit{Flu}} P(\textit{Fev}\,|\,\textit{Flu},\textit{ts},\overline{m}) P(\textit{Flu}\,|\,\textit{ts},\overline{m}) \\ &= \sum_{\textit{Flu}} P(\textit{Fev}\,|\,\textit{Flu},\overline{m}) P(\textit{Flu}\,|\,\textit{ts}) \end{split}$$

Simple Backward Inference

When evidence is downstream of query, then we must reason "backwards," which requires Bayes' rule

$$P(B \mid r) = P(r \mid B)P(B)/P(r) \propto P(r, B)$$

$$P(r, B) = \sum_{m,c} P(m, c, B, r)$$

$$= \sum_{m,c} P(m)P(c \mid m)P(B \mid m, c)P(r \mid B, m, c)$$

$$(marginalization)$$

$$= \sum_{m,c} P(m)P(c)P(B \mid m, c)P(r \mid B)$$

(independence and conditional independence)

Normalizing constant is $\frac{1}{P(r)}$, but this can be computed as

$$P(r) = \sum_{b} P(r, b)$$

Backward Inference

http://imgs.xkcd.com/comics/bridge.png

F: Bridge on Fire

C: All friends Crazy

J: All friends Jump

What is P(F|J = true)?

Variable Elimination

- Intuitions above: polytree algorithm
- Works for simple networks without loops
- More general algorithm: Variable Elimination
- Applies sum-out rule repeatedly
- Distributes sums

Factors

A **factor** is a representation of a function from a tuple of random variables into a number.

We will write factor f on variables X_1, \ldots, X_j as $f(X_1, \ldots, X_j)$.

We can assign some or all of the variables of a factor

 \rightarrow (this is **restricting** a factor):

- $f(X_1 = v_1, X_2, ..., X_j)$, where $v_1 \in dom(X_1)$, is a **factor on** $X_2, ..., X_j$.
- $f(X_1 = v_1, X_2 = v_2, ..., X_j = v_j)$ is a number that is the **value of** f when each X_i has value v_i .

The former is also written as $f(X_1, X_2, ..., X_j)_{X_1=v_1}$, etc.

Example Factors - Restricting a Factor

X	Y	Ζ	val
t	t	t	0.1
t	t	f	0.9
t	f	t	0.2
t	f	f	0.8
f	t	t	0.4
f	t	f	0.6
f	f	t	0.3
f	f	f	0.7
	t t t f	t t t t f f t f f f f	t t t t t t t f t f t f f t t f f f f t t f f f f t t f f f f t t f f f f t t t f f f f t t t f f f f t t t f f f f t t f

$$r(X=t, Y, Z)$$
: $\begin{tabular}{|c|c|c|c|c|c|c|c|} \hline Y & Z & val \\ \hline t & t & 0.1 \\ t & f & 0.9 \\ f & t & 0.2 \\ f & f & 0.8 \\ \hline \end{tabular}$

$$r(X=t, Y, Z=f)$$
: $x = 0.9$
 $x = 0.8$
 $x = 0.8$
 $x = 0.8$

Multiplying Factors

The **product** of factor $f_1(X, Y)$ and $f_2(Y, Z)$, where Y are the variables in common, is the factor $(f_1 \times f_2)(X, Y, Z)$ defined by:

$$(f_1 \times f_2)(X, Y, Z) = f_1(X, Y)f_2(Y, Z).$$

Multiplying Factors: Example

	Α	В	val
	t	t	0.1
f_1 :	t	f	0.9
	f	t	0.2
	f	f	8.0

	В	C	val
	t	t	0.3
f_2 :	t	f	0.7
	f	t	0.6
	f	f	0.4

	Α	В	С	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
$f_1 \times f_2$:	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

Summing out Variables

We can **sum out** a variable, say X_1 with domain $\{v_1, \ldots, v_k\}$, from factor $f(X_1, \ldots, X_i)$, resulting in a factor on X_2, \ldots, X_i defined by:

$$(\sum_{X_1} f)(X_2, \dots, X_j)$$
= $f(X_1 = v_1, \dots, X_j) + \dots + f(X_1 = v_k, \dots, X_j)$

Summing out a Variable: Example

	Α	В	С	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
<i>f</i> 3:	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

	Δ		val
	7		
	t	t	0.57
$\sum_B f_3$:	t	f	0.43
	f	t	0.54
	f	f	0.46

Evidence

If we want to compute the posterior probability of Z given evidence $Y_1 = v_1 \wedge \ldots \wedge Y_j = v_j$:

$$P(Z|Y_1 = v_1, ..., Y_j = v_j)$$

$$= \frac{P(Z, Y_1 = v_1, ..., Y_j = v_j)}{P(Y_1 = v_1, ..., Y_j = v_j)}$$

$$= \frac{P(Z, Y_1 = v_1, ..., Y_j = v_j)}{\sum_{Z} P(Z, Y_1 = v_1, ..., Y_j = v_j)}.$$

The computation reduces to the **joint** probability of $P(Z, Y_1 = v_1, ..., Y_j = v_j)$.

normalize at the end.

can also restrict the query variable, e.g. compute:

$$P(Z=z|Y_1=v_1,\ldots,Y_j=v_j)$$

Probability of a Conjunction

Suppose the variables of the belief network are X_1, \ldots, X_n .

To compute $P(Z, Y_1 = v_1, ..., Y_j = v_j)$, we sum out the variables other than query Z and evidence Y,

$$Z_1,\ldots,Z_k = \{X_1,\ldots,X_n\} - \{Z\} - \{Y_1,\ldots,Y_j\}.$$

We order the Z_i into an elimination ordering $Z_1 \dots Z_k$.

$$P(Z, Y_{1} = v_{1}, ..., Y_{j} = v_{j})$$

$$= \sum_{Z_{k}} ... \sum_{Z_{1}} P(X_{1}, ..., X_{n}) Y_{1} = v_{1}, ..., Y_{j} = v_{j}.$$

$$= \sum_{Z_{k}} ... \sum_{Z_{1}} \prod_{i=1}^{n} P(X_{i} | parents(X_{i})) Y_{1} = v_{1}, ..., Y_{j} = v_{j}.$$

Computation in belief networks reduces to **computing the sums** of products

• How can we compute ab + ac efficiently?

Computation in belief networks reduces to **computing the sums of products**

- How can we compute ab + ac efficiently?
- **Distribute** out the *a* giving a(b+c)

Computation in belief networks reduces to **computing the sums of products**

- How can we compute ab + ac efficiently?
- **Distribute** out the a giving a(b+c)
- How can we compute $\sum_{Z_1} \prod_{i=1}^n P(X_i | parents(X_i))$ efficiently?

Computation in belief networks reduces to **computing the sums of products**

- How can we compute ab + ac efficiently?
- **Distribute** out the *a* giving a(b+c)
- How can we compute $\sum_{Z_1} \prod_{i=1}^n P(X_i|parents(X_i))$ efficiently?
- Distribute out those factors that don't involve Z₁

Variable elimination algorithm

To compute $P(Z|Y_1 = v_1 \wedge ... \wedge Y_j = v_j)$:

- Construct a factor for each conditional probability.
- Restrict the observed variables to their observed values
- **Sum out** each of the other variables (the $\{Z_1, \ldots, Z_k\}$ from frame 23) according to some **elimination ordering**: for each Z_i in order starting from i = 1:
 - collect all factors that contain Z_i
 - multiply together and sum out Z_i
 - add resulting new factor back to the pool
- Multiply the remaining factors
- Normalize by dividing the resulting factor f(Z) by ∑_Z f(Z)

Summing out a variable

To sum out a variable Z_i from a product f_1, \ldots, f_k of factors:

- Partition the factors into
 - those that don't contain Z_i , say f_1, \ldots, f_i ,
 - those that contain Z_j , say f_{i+1}, \ldots, f_k

We know:

$$\sum_{Z_j} f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \times \left(\sum_{Z_j} f_{i+1} \times \cdots \times f_k \right).$$

- Explicitly construct a representation of the rightmost factor $\left(\sum_{Z_i} f_{i+1} \times \cdots \times f_k\right)$.
- Replace the factors f_{i+1}, \ldots, f_k by the new factor.

Example I

see note variableelim.pdf

Notes on VE

- Complexity is linear in number of variables, and exponential in the size of the largest factor
- When we create new factors: sometimes this blows up
- Depends on the elimination ordering
- For polytrees: work outside in
- For general BNs this can be hard
- simply finding the optimal elimination ordering is NP-hard for general BNs
- inference in general is NP-hard

Variable Ordering: Polytrees

- eliminate singly-connected nodes $(D, A, C, X_1, ..., X_k)$ first
- Then no factor is ever larger than original CPTs
- If you eliminate B first, a large factor is created that includes A, C, X₁,..., X_k

Variable Ordering: Relevance

- Certain variables have no impact
- In ABC network above, computing P(A) does **not require** summing over B and C

$$P(A) = \sum_{B,C} P(C|B)P(B|A)P(A)$$

= $P(A) \sum_{B} P(B|A) \sum_{C} P(C|B) = P(A) * 1.0 * 1.0$

Variable Ordering: Relevance

- Can restrict attention to relevant variables:
- Given query Q and evidence **E**, **complete** approximation is:
 - Q is relevant
 - if any node is relevant, its parents are relevant
 - if $E \in \mathbf{E}$ is a descendent of a relevant variable, then E is relevant
- irrelevant variable: a node that is not an ancestor of a query or evidence variable
- this will only remove irrelevant variables, but may not remove them all

Example II

see note variableelim.pdf

Next

Uncertainty (cont.): Advanced techniques in Modeling Uncertainty