

VSEPR (Valence shell electron pair repulsion theory)

Order of repulsion

$$Lp-Lp > Lp - Bp > Bp- Bp$$

Lp: lone pair/ non bonding pair

Bp: Bond pair

(Q) Apply concept of hybridisation in NH3 molecule.

Geometry/Shape: trigonal pyramidal

Non planar molecule Electronic geometry: tetrahedral

Example 4: NH3

$$SN = 3 + 1 = 4$$

Hyb: SP3

Calculation of hybridisation

Total hybrid orbital (T.H.O) / steric No. (S.N) = number of sigma bond + lone pair

THO/SN	Hybridisation
2	Sp
3	Sp ²
4	Sp ³
5	Sp ³ d
6	Sp ³ d ²
7	Sp ³ d ³

Note: π Bond not counted in calculating THO

Hybridisation (Atomic orbital used)

- $sp(s+p_x)$
 - $sp^3d^2(s+p_x+p_y+p_z+d_z^2+d_{x-y}^2)$
- $sp^2(s+p_x+p_y)$

 $sp^3d^3(s+p_x+p_y+p_z+d_z^2+d_{x-y}^2+d_{xy})$

- $sp^3(s+p_x+p_y+p_z)$
- $sp^3d(s+p_x+p_y+p_z+d_z^2)$

Total	lectron Pair Bonding	rs Lone	Electron Geometry Arrangement of Pairs	Shape	Molecular Geometry	Hyb	ridisatio	on	Example
SN.	Вр.	Lp							
2	2	0	Linear	Linear AX ₂	—		Sp	BeF_2	F—Be—F
3	3		Trigonal	Trigonal planar AX ₃	Sp2	BF_3	F B F		
3	2		planar	Bent (or angular) AX ₂		Lone p	air	SO ₂	o s o

Calculating steric number for molecule

1.BeF2

$$SN = 53$$
 and 44 P $= 340$

Hybridization: Sp^2 Shape: Trig and plands.

Hybridization: Spa

Shape: V Shape 1 Bent 1 angular.

	SN.	Вр.	Lp	Arrangements of pair	Molecular shape Sp3	
		4	0		Tetrahedral AX_4 CH_4 H C $(nonplanan)$ H	Н
	4	3	1	Tetrahedral	Trigonal pyramidal AX ₃ NH ₃ (nm planm) H) H
		2	2		V/Bent (or angular) AX ₂ H ₂ O H H H	
4					o tanga.	

SN= 0Bmd + 49 = 4+0 SN = 4 Hy6: 3p3

Arrangment: Te trahe dral

Example:SF4

** In TBP lone pair occupy equatorial position and more electro negative atom occupy axial position.

Reason: To minimise lone pair bond pair repulsion.

Among the given below structure of SF4, which is more stable structure.

Element. Be B. C. N. O. F. Ne

Valence e. 2. 3. 4. 5. 6. 7. 8

Find hybridisation / shape for the molecule given below

1.NH3

2.H2O

3.CO2

