

I. Fonctions affines, fonctions linéaires

Définitions

a et b sont des nombres quelconques; la fonction qui à tout nombre x, associe le nombre ax + b, est une fonction affine.

Cas particuliers:

- Si b = 0, la fonction est linéaire.
- Si a = 0, la fonction est constante.

Exemples

On considère les fonctions f, g, h et i:

•
$$f(x) = 2x$$

•
$$h(x) = 3x - 4$$

•
$$g(x) = -x + 2$$

•
$$i(x) = 5$$

- f est une fonction linéaire (On a a=2 et b=0).
- g est une fonction affine (On a a=-1 et b=2).
- h est une fonction affine (On a a=3 et b=-4).
- i est une fonction constante (On a a=0 et b=5).

II. Représentation graphique et variations

1) Représentation graphique d'une fonction affine

Propriétés

- La représentation graphique d'une fonction affine f(x) = ax + b et une droite. On dit que y = ax + b est l'équation de la droite. a est le coefficient directeur (ou la pente) de la droite. b est l'ordonnée à l'origine.
- La droite passe par le point de coordonnées (0; b), si la fonction est linéaire elle passe par l'origine du repère.

Exemple

On considère la fonction affine f(x) = 2x + 4. Elle ne passe pas par l'origine du repère, elle n'est pas linéaire. Elle passe par le point de coordonnées (0;4).

2) Sens de variation

Propriété

Le sens de variation d'une fonction affine dépend du signe de a:

- Si a > 0, le droite "monte", la fonction est croissante;
- Si a < 0, la droite "descend" la fonction est décroissante;
- Si a = 0, la droite est horizontale, la fonction est constante.

Exemples

f,g et h sont des fonctions affines telles que :

a=2; a>0, la droite "monte", la fonction est croissante.

a = -1; a < 0, la droite "descend", la fonction est décroissante.

a = 0, la droite est horizontale, la fonction est constante.

3) Calcul du coefficient directeur

Méthode

Pour calculer le coefficient directeur d'une fonction affine f, on a besoin de deux nombres distincts x_1 et x_2 et de leurs images par f, $f(x_1)$ et $f(x_2)$. On a alors :

$$a = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Exemple

La fonction passe par les points de coordonnées (2;4) et (4;8), on a :

$$a = \frac{8-4}{4-2}$$
$$a = \frac{4}{2}$$
$$a = 2$$

III. Résolution graphique