Progettazione di un sistema reattivo per la navigazione autonoma di un drone in ambienti sconosciuti

Luca Di Stefano

Relatore: Prof. Eliseo Clementini Correlatore: Dott. Enrico Stagnini

Università degli Studi dell'Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

UAV (Unmanned Aerial Vehicles)

Applicazioni in ambito civile:

- ▶ Monitoraggio, telerilevamento, raccolta dati
- Supporto alla produzione (ad es. agricoltura di precisione)
- Trasporto di pacchi e carichi postali...

UAS (Unmanned Aerial System)

- UAV
- GCS (Ground Control Station o "stazione di terra")
- Sistemi di comunicazione

UAV Multirotore

- Costi ridotti
- Payload adeguati a molte applicazioni
- ► Elevata manovrabilità

Navigazione e guida autonoma

Missione: sequenza di operazioni da eseguire. Esempio:

- 1. Decolla; raggiungi 50 m di altezza dal suolo
- 2. Raggiungi il waypoint W_1
- 3. Acquisisci una fotografia
- 4. Ritorna al punto di decollo
- 5. Atterra

Navigazione e guida autonoma

Missione: sequenza di operazioni da eseguire. Esempio:

- 1. Decolla; raggiungi 50 m di altezza dal suolo
- 2. Raggiungi il waypoint W_1
- 3. Acquisisci una fotografia
- 4. Ritorna al punto di decollo
- 5. Atterra

Navigazione (navigation): attraversamento di uno o più waypoint Guida (guidance): decisioni di alto livello relative alla missione: valutazione dell'andamento, modifica, cancellazione Autonomia di un UAS: capacità di eseguire una missione senza l'intervento di un operatore umano o di un sistema esterno

Stato dell'arte

Gerarchia di sottosistemi con obiettivi differenti

- Sistemi anticollisione (sensori di bordo)
 Evitare l'impatto con altri oggetti
- Navigazione locale (sensori di bordo)
 Raggiungere il prossimo waypoint
- Navigazione globale (mappe dell'area di missione)
 Gestire il piano di volo (sequenza di waypoint)
- Controllo di missione (sistemi semantici/decisionali)
 Modificare/annullare la missione; monitorarne l'andamento

Esempio di architettura stratificata

Pattern architetturale *Layers* (grado di astrazione crescente) Sistema distribuito tra UAV e GCS

Navigazione locale

- 1. Costruzione di una mappa (grafo o DB di *voxels*) a partire dai dati dei sensori
- 2. Applicazione di uno dei seguenti metodi:
 - ► Cammino minimo su un grafo
 - Ottimizzazione numerica
 - Campi di potenziale

Campi di potenziale

Obiettivi

Sistema di navigazione locale autonoma

Requisiti

Capacità di operare a partire da pochi dati sull'ambiente Elevata compatibilità Basso costo computazionale

Architettura

Sistema anticollisione onboard (misura di sicurezza rispetto a folate di vento, malfunzionamenti ecc.)

Sistema di navigazione locale sulla GCS

- ▶ Mapless: non mantiene un modello dell'ambiente
- ▶ Reattivo: decisione in funzione degli stimoli sensoriali

Mappa di profondità (depth map)

Acquisita dal drone: LIDAR, TOF, ecc.
Raster con pixel a valori *float* compresi tra 0 e 1
Valore = distanza normalizzata rispetto al *range* del sensore
L'angolo di visione (orizzontale/verticale) del sensore è noto:

possiamo risalire alla posizione 3D dell'ostacolo rispetto al drone

Luca Di Stefano

Visibilità

Note le coordinate (GPS) di W e del drone, possiamo:

- 1. Ottenere le coordinate sferiche di W rispetto al drone
- 2. Proiettare W sulla mappa di profondità (pixel W')
- 3. Recuperare i valori della depth map in un intorno di W'

Confrontando i valori con la distanza da W possiamo determinare se un ostacolo ostruisce la visibilità di W. Il raggio dell'intorno dipende da:

- Raggio del drone
- Distanza drone-waypoint
- Un margine di sicurezza (configurabile)

Descrizione generale dell'algoritmo

Input: un waypoint obiettivo T

- 1. W = T
- 2. Finché il drone non si trova in T:
 - 2.0 Se il drone si trova in W e W != T:
 - W = T
 - 2.1. Orienta il drone verso W
 - 2.2. Acquisisci la depth map
 - 2.3. Valuta se W è visibile:
 - Se è visibile, raggiungilo
 - Altrimenti:
 - Se W == T: W = (waypoint intermedio)
 - Altrimenti W = T

Replanning (1)

Se l'obiettivo non è visibile, bisogna generare un nuovo waypoint W_{new} nello spazio visibile. $DW_{new} \leq DW$ Dobbiamo tener conto del volume del drone! In 2D si ricorre alla *dilatazione* della mappa degli ostacoli:

Replanning (2)

Dividiamo la depth map in *n* strati in base ai valori dei pixel Gli strati più vicini al drone vengono dilatati maggiormente

Replanning (3)

Impostiamo a 1 tutti i pixel superiori a un valore di soglia Scegliamo il migliore tra i pixel adiacenti all'ostacolo dilatato

Otteniamo così ϑ , φ del nuovo waypoint.

ho = valore del primo pixel < 1 sul segmento che va da W_{new} a W (bordo dell'ostacolo)

Piattaforma di simulazione

- Framework di simulazione V-REP
- ▶ Algoritmo scritto in Python 3.5
 - API V-REP
 - Numpy
 - OpenCV

Grazie a classi *adapter* che gestiscono la comunicazione con V-REP si prevede una rapida portabilità su un'implementazione reale

Scenario 1

Luca Di Stefano

Scenario 2 - Descrizione

12 simulazioni Risoluzione del LIDAR: da 256x256 a 32x32 AOV fisso, 90° (orizzontale/verticale) Bassa velocità del drone (0.6 m/s)

Scenario 2 - Risultati (1)

#	Risoluzione	Waypoint		Distanza (m)		Тоши о
		Raggiunti	Scartati	Assoluta (m)	Normalizzata	Tempo
1	256	2	0	24.16	1.04	00:58.6
2	256	2	1	23.83	1.03	01:12.0
3	256	3	0	23.43	1.01	01:22.5
4	128	2	1	23.62	1.02	01:13.0
5	128	4	1	24.08	1.03	01:32.0
6	128	3	1	23.54	1.01	01:12.1
7	64	4	5	24.99	1.07	02:09.6
8	64	3	2	24.19	1.04	01:20.7
9	64	3	1	23.68	1.02	01:20.3
10	32	4	1	23.73	1.02	01:25.8
11	32	3	2	24.05	1.03	01:46.2
12	32	3	2	23.79	1.02	01:18.3

Scenario 2 - Risultati (2)

(a) Simulazione 1.

(c) Simulazione 9.

(d) Simulazione 10.

Conclusioni

- ▶ Buona robustezza rispetto alla risoluzione della depth map
- Alta qualità dei risultati rispetto alla distanza ottima

Possibili sviluppi futuri

- Implementazione reale
- Adattamento dinamico dei margini di sicurezza in base alla qualità del fix GPS
- Elaborazione della depth map per ricostruire una mappa degli ostacoli (supporto a successive missioni nella stessa area)

