Homework 2

Yuanyou Yao

March 10, 2021

Problem 1 We use runs up and down test here. Note that we are going to delete one 45.3 since the difference is 0. The total runs is V = 17.

Since $n \ge 25$, asymptotic normal distribution is preferred.

Here
$$n = 29$$
, $E_{H_0}(V) = (2n - 1)/3$, $Var_{H_0}(V) = (16n - 29)/90$.

Test statistic

$$\frac{R + .5 - E_{H_0}(V)}{\sqrt{Var_{H_0}(V)}} = -0.68 > -1.96 = z_{0.025}.$$

Therefore, we cannot reject the null hypothesis.

Problem 2

	depressed	not depressed	total
M	10 (13.5)	30(27)	40
F	20(16.5)	30 (33)	50
total	30	60	90

In the parathesis is the theoretical number.

We perform Pearson χ^2 test, where df equals to 1.

$$\chi^2 = \frac{(10 - 13.5)^2}{13.5} + \frac{(30 - 27)^2}{27} + \frac{(20 - 16.5)^2}{16.5} + \frac{(30 - 33)^2}{33} = 2.24,$$

Using Table B in textbook, $\chi_1^2=3.84.$ So we do NOT reject the null hypothesis.

Problem 3

$$H_0: p_A = .34, p_B = .15, p_{AB} = .23, p_O = .28$$

Once again, Pearson χ^2 test is applied, where df = 4 - 1 = 3,

$$\chi^2 = \frac{(12 - 34)^2}{34} + \frac{(56 - 15)^2}{15} + \frac{(2 - 23)^2}{23} + \frac{(30 - 28)^2}{28} = 145.6,$$

Using Table B in textbook, $\chi_1^2 = 3.84$. So we reject the null hypothesis.