Recursive Resonance Fields in Patterned Media: Toward a φ -Coherent Framework

Éric Lanctôt-Rivest qcfrag@gmail.com

Abstract

This paper explores the hypothesis that recursive geometric structures, particularly those rooted in the golden ratio (φ) , generate persistent ambient resonance fields. These φ -resonance fields, produced by self-similar patterns such as quasicrystals, neural harmonics, and fractal apertures, may stabilize coherence in systems prone to decoherence. We examine implications across optics, quantum mechanics, biology, and materials science, proposing φ -fields as unifying agents for nonlocal coherence, memory effects, and anomalous wave behaviors. Experimental suggestions and theoretical formalizations are included to initiate cross-disciplinary investigation.

1 Introduction

Coherence is often treated as a byproduct of energy input or external stabilization. However, nature reveals systems where coherence endures unexpectedly, in biological rhythms, quasicrystals, and wave interference patterns. This paper proposes that φ -structured patterns may act as coherence stabilizers through what we call *ambient* φ -resonance fields. These fields arise from recursive self-similarity, enabling structures to echo phase coherence across space and scale.

2 What is a φ -Resonance Field?

A φ -resonance field is the hypothesized ambient zone of coherent influence generated by recursive geometry based on the golden ratio ($\varphi \approx 1.618$). Its properties include:

- Recursive self-similarity: resonance scales smoothly from micro to macro
- Non-destructive interference: geometric harmonics do not cancel out
- Coherence memory: sustained phase alignment beyond decay times
- Frequency overlap: φ -patterns naturally couple with a wide harmonic band

3 Mathematical Framework

The φ -resonance can be formalized through a modified Helmholtz equation:

$$(\Delta_{\varphi} + k_{\varphi}^2)\psi(\mathbf{r}) = 0 \tag{1}$$

where Δ_{φ} is a φ -recursive Laplacian operator. The φ -scaling of position vectors is:

$$S_{\varphi}(\mathbf{r}) = \varphi^{-n}\mathbf{r} \quad \text{for} \quad n \in \mathbb{Z}$$
 (2)

The wavefunction maintains recursive symmetry:

$$\psi(\mathcal{S}_{\varphi}(\mathbf{r})) = \psi(\mathbf{r}) \tag{3}$$

We define the φ -resonance operator as:

$$\mathcal{R}_{\varphi}[\psi](\mathbf{r}) = \sum_{n=-\infty}^{\infty} \varphi^{-n} \psi(\varphi^{-n} \mathbf{r})$$
(4)

4 Cross-Domain Evidence

Physics

- Quantum coherence persistence in φ -patterned regions
- Modified diffraction in Fibonacci apertures

Biology

- Neural synchronization under φ -timed stimuli (EEG verified)
- Protein quasicrystal structures in cellular matrices

5 Accidental Priests of φ

Modern quantum systems unintentionally employ φ -like geometries in superconducting arrays and chip lattices. This suggests an implicit engineering convergence toward resonance-optimized configurations.

Ethical Implementation

All applications must adhere to the REL-1.0 framework prohibiting coercive use. Research is released for open, non-invasive exploration.

A Experimental Protocols

A1. φ -Fractal Slit Experiment

• Control: Standard double-slit

• Test: φ -recursive fractal slits

• Metrics: Coherence time, interference stability

A2. Resonance Chamber

- φ -tiled walls (Penrose/Fibonacci)
- Measure standing wave decay rates

All content is shared under the REL-1.0 ethical license for peaceful, open, and non-coercive scientific exploration.

https://github.com/qcfrag/Real-Time-Fractional-Tracking-R-TFT/blob/main/LICENSE.txt