Bureau of Standards
Library, N. W. Bldg.
MAR 7 1951

Reference book not to be taken from the Library.

IONOSPHERIC DATA

ISSUED FEBRUARY 1951

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
CENTRAL RADIO PROPAGATION LABORATORY
WASHINGTON, D. C.

Issued 27 Feb. 1951

IONOSPHERIC DATA

CONTENTS

		Page
Symbols, Terminology, Conventions	• •	2
World-Wide Sources of Ionospheric Data	• •	5
Hourly Ionospheric Data at Washington, D. C.	• •	7. 12, 21, 46
Ionospheric Storminess at Washington, D. C.	•	7. 33
Radio Propagation Quality Figures	•	7. 34
Relative Sunspot Numbers	•	8. 35
Observations of the Solar Corona	•	9. 36
Observations of Solar Flares	•	10, 42
Indices of Geomagnetic Activity	•	10. 43
Sudden Ionosphere Disturbances	•	11, 44
Tables of Ionospheric Data	•	12
Graphs of Ionospheric Data	•	46
Index of Tables and Graphs of Ionospheric Data in CRPL-F78		70

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1949, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Fifth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Stockholm, 1948, and given in detail on pages 2 to 10 of the report CRPL-F53, "Ionospheric Data," issued January 1949.

For symbols and terminology used with data prior to January 1949, see report IRPL-C61, "Report of International Radio Propagation Conference, Washington, 17 April to 5 May, 1944," previous issues of the F series, in particular, IRPL-F5, CRPL-F24, F33, F50, and report CRPL-7-1, "Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records."

Following the recommendations of the Washington (1944) and Stockholm (1948) conferences, beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

In addition to the conventions for the determination of medians given in Appendix 5 of Document No. 293 E of the Stockholm conference, which are listed on pages 9 and 10 of CRPL-F53, the following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given on pages 2-9 of CRPL-F53 (Appendixes 1-4 of Document No. 293 E referred to above).

a. For all ionospheric characteristics:

Values missing because of A, B, C, F, L, M, N, Q, R, S, or T (see terminology referred to above) are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic. This practice represents a change from that listed in issues previous to CRPL-F78.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of E or G (no Es reflections observed, the equipment functioning normally otherwise) are counted as equal to or less than the median foE, or equal to or less than the lower frequency count of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- l. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present
- b. Omission of values when foF2 is less than or equal to foF1. leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zurich sunspot numbers were used in constructing the contour charts:

Month		Pro	dicted	Sunspot	Number		
-	1951	1950	1949	1948	1947	1946	1945
December		86	108	114	126	85	38
Movember		87	112	115	124	83	36
October		90	114	116	119	81	23
September		91	115	117	121	79	22
August		96	111	123	122	77	20
July		101	108	125	116	73	
June		103	108	129	112	67	
May		102	108	130	109	67	
April		101	109	133	107	62	
March		103	111	133	105	51	
february		103	113	133	90	46	
January	85	105	112	130	88	42	

WORLD-WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 49 and figures 1 to 95 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Commonwealth of Australia, Ionospheric Prediction Service of the Commonwealth Observatory:

Brisbane, Australia Canberra, Australia Hobart, Tasmania

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geology and Geophysics: Watheroo, Western Australia Mational Laboratory of Radio-Electricity (French Ionospheric Bureau): Domont, France

Poitiers, France

Institute for Ionospheric Research, Lindau Uber Northeim, Hannover, Germany: Lindau/Harz, Germany

The Royal Metherlands Meteorological Institute: De Bilt, Holland

All India Radio (Government of India), New Delhi, India: Bombay, India Delhi, India Madras. India Tiruchy (Tiruchirapalli), India

Radio Regulatory Commission, Tokyo, Japan: Akita, Japan Tokyo (Kokubunji), Japan Wakkanai, Japan Yamagawa, Japan

Radio Wave Research Laboratories, National Taiman University, Taipeh, Formosa. China: Formosa, China

Christchurch Geophysical Observatory. New Zealand Department of Scientific and Industrial Research:

Campbell I.

Christchurch, Hew Zealand Rarotonga, Cook Is.

Horwegian Defense Research Establishment, Kjeller per Lillestrom, Norway: Oslo, Morway

South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa

United States Army Signal Corps: Okinawa I.

National Bureau of Standards (Central Radio Propagation Laboratory): Baton Rouge, Louisiana (Louisiana State University) Boston, Massachusetts (Harvard University) Huancayo, Peru (Instituto Geofisico de Huancayo) Maui, Hawaii San Francisco, California (Stanford University) San Juan, Puerto Rico (University of Puerto Rico) Trinidad, British West Indies Washington, D. C. White Sands, New Mexico

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 50 to 61 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Belvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D. C.

Table 62 presents ionosphere character figures for Washington, D. C., during January 1951, as determined by the criteria given in the report IRPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

RADIO PROPAGATION QUALITY FIGURES

Table 63 gives provisional radio propagation quality figures for the North Atlantic and North Pacific areas, for 01 to 12 and 13 to 24 GCT, December 1950, compared with the CRPL daily radio disturbance warnings, which are primarily for the North Atlantic paths, the CRPL weekly radio propagation forecasts of probable disturbed periods, and the half-day Cheltenham, Maryland, geomagnetic K-figures.

The radio propagation quality figures are prepared from radio traffic and ionospheric data reported to the CRPL, in a manner basically the same as that described in IRPL-R31, "North Atlantic Radio Propagation Disturbances, October 1943 through October 1945," issued February 1, 1946. The scale conversions for each report are revised for use with the data beginning January 1948, and statistical weighting replaces what was, in effect, subjective weighting. Separate master distribution curves of the type described in IRPL-R31 were derived for the part of 1946 covered by each report; data received only since 1946 are compared with the master curve for the period of the available data. A report whose distribution is the same as the master is thereby converted linearly to the C-figure scale. Each report is given a statistical weight which is the reciprocal

of the departure from linearity. The half-daily radio propagation quality figure, beginning January 1948, is the weighted mean of the reports received for that period.

These radio propagation quality figures give a consensus of opinion of actual radio propagation conditions as reported by the half day over the two general areas. It should be borne in mind, however, that though the quality may be disturbed according to the CRPL scale, the cause of the disturbance is not necessarily known. There are many variables that must be considered. In addition to ionospheric storminess itself as the cause, conditions may be reported as disturbed because of seasonal characteristics such as are particularly evident in the pronounced day and night contrast over North Pacific paths during the winter months, or because of improper frequency usage for the path and time of day in question. Insofar as possible, frequency usage is included in rating the reports. Where the actual frequency is not shown in the report to the CRPL, it has been assumed that the report is made on the use of optimum working frequencies for the path and time of day in question. Since there is a possibility that all disturbance shown by the quality figures is not due to ionospheric storminess alone, care should be taken in using the quality figures in research correlations with solar, auroral, geomagnetic, or other data. Nevertheless, these quality figures do reflect a consensus of opinion of actual radio propagation conditions as found on any one half day in either of the two general areas.

ME

18

ht

11

780

ate:

11

RELATIVE SUNSPOT NUMBERS

Table 64 lists the daily provisional Zurich relative sunspot numbers, R_Z^{\bullet} , as communicated by the Swiss Federal Observatory. The American sunspot numbers which in the past were included in this table are now being prepared on a slower schedule and therefore do not appear in this issue.

OBSERVATIONS OF THE SOLAR CORONA

Table 65 through 67 give the observations of the solar corona during January 1951 obtained at Climax, Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. Tables 68 through 70 list the coronal observations obtained at Sacramento Peak, New Mexico, during January 1951, derived by the High Altitude Observatory from spectrograms taken by Harvard University as a part of its performance of an Air Materiel Command research and development contract administered by the Air Force Cambridge Research Laboratories. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the nearest tenth of a day, GCT.

Table 65 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 66 gives similarly the intensities of the first red (6374A) coronal line; and table 67, the intensities of the second red (6702A) coronal line; all observed at Climax in January 1951.

Table 68 gives the intensities of the green (5303A) coronal line; table 69, the intensities of the first red (6374A) coronal line; and table 70, the intensities of the second red (6702A) coronal line; all observed at Sacramento Peak in January 1951.

The following symbols are used in tables 65 through 70: a, observation of low weight; -, corona not visible; and X, position angle not included in plate estimates.

OBSERVATIONS OF SOLAR FLARES

Table 71 gives the preliminary record of solar flares reported to the CRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRPL are the following observatories: Mt. Wilson, McMath-Hulbert, U.S. Naval, Wendelstein, Kanzel, and High Altitude at Boulder, Colorado. The remainder report to Meudon (Paris), and the data are taken from the Paris URSIgram broadcast, monitored fairly regularly by the CRPL. The data on solar flares reported from Boulder, Colorado are provided by Harvard University as the result of work undertaken on an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories.

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total area (corrected for foreshortening), and heliographic coordinates. For the maximum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GCT).

INDICES OF GEOMAGNETIC ACTIVITY

Table 72 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary mean 3-hourly K-indices, Kw; (2) preliminary international character-figures, C; (3) geomagnetic planetary three-hour-range indices, Kp; (4) magnetically selected quiet and disturbed days.

Kw is the arithmetic mean of the K-indices from all reporting observatories for each three hours of the Greenwich day, on a scale O (very quiet) to 9 (extremely disturbed). The C-figure is the arithmetic mean of the subjective classification by all observatories of

each day's magnetic activity on a scale of O (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of Terrestrial Magnetism and Atmospheric Electricity.

Kp is the mean standardized K-index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 to 9, expressed in thirds of a unit, e.g., 5- is 4 2/3, 50 is 5 0/3, and 5 + is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics. Tables of Kp for 1945-48 are in Bulletin 12b; for 1940-44 and 1949, in these CRPL-F reports, F65-67; for 1950, monthly in F68 and following issues. Current tables are also published quarterly in the Journal of Geophysical Research along with data on sudden commencements (sc) and solar flare effects (sfe).

The Committee on Characterization of Magnetic Disturbance, ATME, IUGG, has kindly supplied this table. The Meteorological Office, De Bilt, Holland, collects the data and compiles Kw, C and selected days. The Chairman of the Committee computes the planetary index.

SUDDEN IONOSPHERE DISTURBANCES

Tables 73, 74, and 75 list the sudden ionosphere disturbances observed at Fort Belvoir, Virginia, January 1951; at Riverhead, New York, January 1951; and Lindau/Harz, Germany, November 1950, respectively,

Washin	gton, D.	C. (38.7	7°№. 77.]	Ow) Tal	ole 1		J	anuary 1951
Time	h¹F2	foF2	h'Fl	foFl	h E	foE	fEs	(M3000)F2
00	280	2.7						2.9
01	290	2.7						2.9
02	290	2.9						2.8
03	280	3.0						2.9
04	260	3.2						3.0
05	250	3.0						3.0
06	260	2.7						3.0
07	250	3.1						3.1
98	230	5.4	maked	G-700	110	2.0		3.4
09	240	6.5	230	-	110	2.4	4.7	3.3
10	250	7.8	220	Market P	110	2.7	2.4	3.3
11	250	8.2	230	-	110	3.0		3.3
12	250	8.4	210		110	3.0		3.2
13	260	8.3	210	-	110	3.0		3.2
24	260	8.1	220	40 3000	110	2.8		3.2
15	250	7.8	220	-	110	2.6		3.2
16	240	7.5	220	-	110	2.2		3.2
17	230	7.1				-		3.2
18	230	6.3						3.2
19	230	5.1						3.2
20	240	3.9						3.1
21	260	3.2						3.0
22	280	3.0						2.9
23	(280)	2.8						2.9

Time: 75.0°W. Sweeps 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	3			
De Bil	t, Holland	(52.1°N	, 5.2°E)		_		Dec	ember 1950
Time	h'F2	foF2	h'Fl	foFl	h * E	foE	fBe	(M3000)F2
00	290	2.6					2.6	3.0
01	290	(2.8)					2.7	3.0
02	300	(2.5)					2.5	3.0
03	300	(2.3)					2.8	2.9
04	300	(2.2)					3.0	(2.9)
05	280	(2.0)					2.8	3.1
06	260	(2.0)					2.8	(3.0)
07	270	(2.6)				B	2.4	(3.1)
08	220	4.5			140	1.9	2.5	3.4
09	200	6.4			120	2.2	3.0	3.5
10	210	7.0			110	2.4	3.0	3.6
11	550	7.3	200	3.3	120	2.5	2.7	3.5
12		7.6	210		120	2.5	3.1	3.5
13	210	7.2			120	2.4	3.0	3.5
14	210	6.9			120	2.3	3.0	3.5
15	500	6.4			160	1.9	2.9	3.5
16	200	5.5				E	2.8	3.4
17	550	4.2					2.9	3.3
18	500	3.3						3.3
19	270	3.0						3.1
50	550	2.6						3.0
21	300	(2.5)						3.0
22	300	(2.8)					2.0	2.9
23	300	(2.8)					2.4	2.8

Time: 0.0°.
Sweep: 1.4 Mc to 16.0 Mc in 7 minutes, automatic operation.

San Fra	ancisco.	Californ	ia (37.4°	N, Table			Dec	ember 1950
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fBe	(M3000)F2
00	280	(3,2)					2.8	3,1
01	280	3.0					2.8	3.1
02	300	2.9					2.3	3.0
03	290	3.0						3.0
04	280	3.0						3.0
05	280	3.0						3.0
06	280	(3,2)						3.1
07	240	(4.0)						3.1
08	220	6.6			120	(2.2)		3.5
09	230	7.4		3.9	120	(2.6)	2.8	3.4
10	230	7.6	210	4.3	120	(3.1)		3.4
11	230	8.5	(220)	4.2	120	(3.2)		3.3
12	240	9.4	210		110			3.3
13	240	8.7			120			3.3
14	240	8.6			110	(2.9)		3,3
15	230	8.0			110	2.7		3.4
16	220	7.6			110	The difference	2.8	3.4
17	550	6.2					3.0	3.4
18	550	4.3					3.0	3.4
19	240	3.0					2.8	3.3
20	260	2.7					2.7	3.4
21	280	(2.6)					2.8	3.2
22	S50	(2.8)					2.8	3.0
23	300	3.1					2.9	3.0

Time: 120.0°W. Sweep: 1.3 Mc to 18.0 Mc in 4 minutee.

Oslo,	Norway (60	0.0°E, 1	1.0°E)	Table	2		Dec	ember 1950
Time	P13.5	foF2	h'Fl	foFl	h I E	foE	fBs	(M3000)13
00	360	(1.9)						
01	350	(1.8)						(2.9)
02	330	(1.6)						(2.8)
03	320	1.8					1.5	(2.9)
04	320	1.7					1.6	(2.9)
05	320	1.7					1.4	3.0
06	300	1.7						3.0
07	300	1.8						3.1
08	250	(2.3)						(3.2)
09	220	(4.3)					1.7	3.4
10	220	5.4					2.2	3.5
11	220	6.0				(2.1)	2.4	3.6
12	220	6.6			~ ~~	(2.2)	2.5	3.6
13	220	6.5				(2.2)	2.4	3.6
14	220	6.2					2.4	3.6
15	210	5.6					1.9	3.5
15	220	(5.0)						3.4
17	220	(4.2)						3.3
18	220	2.8						3.4
19	270	2.4						3.2
20	300	1.9						(3.0)
21	(350)	(1.8)						3.1
22	340	1.8						(3.0)
23	350	(1.7)						- dest

| 10.0 |

Time: 15,0°E.
Sweep: 1.3 Mc to 14.0 Mc in 8 minutes. gutomatic operation.

Boston.	Massach	usetts	(42.4°),	71.3°W)	4		Dec	ember 1950
Time	P.LS	foF2	h'F1	foFl	h ! E	foE	fEe	(M3000)F2
00	280	2.6						3.0
01	280	2.4						3.0
02	270	2.6						3.0
03	250	2.8						3.0
04	240	2.8						3.2
05	230	2.6					2.5	3.2
06	260	2.4					3.0	3.0
07	220	3.7						3.2
80	500	6.4			110	2.2		3.5
09	200	7.3	200	2.9	110	2.4		3.4
10	210	8.4	500	3.6	100	2.7		3.4
11	210	8.9	200	4.0	110	2.8		3,4
12	220	8.5	200	3.8	110	2.9		3,4
13	220	8.6	210	3.8	110	2.8		3.4
14	220	8.6	210	3.4	110	2.6		3,3
15	210	8.6			100	2.4		3.4
16	500	8.0						3.4
17	200	6.4						3.3
18	220	5.5						3, 3
19	220	4.3						3.3
20	240	3.5						3.2
21	260	2.9						3.1
22	280	2.8						3.0
22	280	2 7						2.0

Time: 75.0°W. Sweep: 0.8 Mc to 15.0 Mc in 1 minute.

White S	ands, New	Mexico	(32,3°N,	Table 106.5			Dec	December 1950		
Time	h¹F2	foF2	h'Fl	foFl.	hil	foE	fBs	(M2000)13		
00	280	3,5					4.4	3.0		
01	260	3.5					3.9	3.0		
02	260	3.5					4.3	3.0		
03	260	3.5					4.3	3.0		
04	260	3.4					3.8	3.0		
05	260	3,2					3.9	3.0		
06	260	3.1					3.0	3.0		
07	240	4.8					3.1	3.2		
08	230	7.1			(120)	(2.4)	4.3	3.3		
09	240	7.7	220		(110)	(2.7)	4.9	3.3		
10	240	8.3	220		(110)	(3.0)	5.2	3.3		
11	250	8.7	220		(110)	(3.2)	5.1	3.2		
12	260	9.2	220		110	(3.3)	5.5	3.2		
13	260	9.5	230		(110)	(3, 2)	5.5	3.1		
14	250	9.3	230		(110)	(3.0)	5.6	3.2		
15	240	8.6	230		(110)	(2.8)	5.5	3.2		
16	230	7.9			(110)	(2.3)	5.3	3.3		
17	550	7.1					4.7	3.3		
18	220	4.6					3.9	3.3		
19	230	(3.6)					4.8	(3,2)		
50	(250)	(3.0)					5.6	3.1		
21	(270)	2.8					3.8	3.0		
22	280	3.3					4.0	2.9		
23	280	3.5					3.8	2.8		

23 280 3.5

Time: 105.0°W.

Sweep: 0.8 Mc to 14.0 Mc in 2 minutee.

			_	Table	7			
Okinaw	a I. (26.	3°N, 127	.7°E)				Decem	ber 1950
Time	P.LS	foF2	h'Fl	foFl	h 1 E	foE	fEs	(M3000)F2
. 00	(280)	3,1						2.9
01	(270)	3.2						3.0
02	(240)	3.3						3.1
03	(250)	(3.0)						(3.2)
04	(230)	3.0						3.0
05	(270)	(2.5)						(2.9)
06	(270)	(2.7)						3.0
07	230	5.7			(140)	(2.0)		3.3
08	240	7.4	230		310	(2.6)		3.4
09	250	9.0	230		100	2.9	2.9	3.4
10	240	10.7	550		(110)	3.1		3.4
11	260	10.3	550		(110)	(3.2)	3.4	3.2
12	250	11.4	210		110	(3.3)	3.6	3.2
13	250	12.0	550		(110)	(3.3)	3.7	3.2
14	250	12.0	220		(110)	(3.2)	3.3	3.2
15	240	11.2	550		110	2.9	3.4	3.3
16	550	9.4	550		110	(2.4)	3.1	3.4
17	210	8.2					2.6	3.4
18	(500)	6.8					2.8	3.4
19	(550)	6.2						3.2
. 20	550	6.3						3,2
21	(220)	5.4						3.3
22	(220)	4.7						3.3
23	(240)	(3.2)						(3.0)

Time: 127.5°E.
Sweep: 1.0 Mc to 25.0 Mc in 15 eeconde, automatic operation.

				Table	2			
San Jua	n, Puerto	Rico	(18.4°N,	66.0°W)			De	ember 1950
Time	P:12S	foF2	h'F1	foFl	h!E	foE	fEs	(M3000)12
00	210	4.5						3.8
01	210	4.7						2.9
02	200	(4.7)						2.9
03	190	(4.6)						(3.0)
04		4.0						2.7
05		3.6						8.8
06		3.8						2.8
07	200	(5.8)						(3,3)
08	250	7.8				(3.0)		3.3
09	250	8.9		4.8		3.1		3.3
10	270	9.2		5.0		3.3		3.2
11	270	8.9		4.9				3.2
12	270	8.7		4.8			3.7	3.2
13	240	(9.0)		4.8				(3.2)
14	250	9.3		4.5		3.4	4.4	3.2
15	250	9.0		4.2		3.2	3.8	3.2
16	250	8.9					3.9	3.2
17	220	8.6						3.3
18	190	(6.9)						(3.4)
19	190	(5.5)						3.3
20	(180)	4.4						3.0
21	(200)	(4.0)						(8.8)
55	(220)	4.0						2.8
23	210	4.2						2.8

Time: 60.0°W.

Sweep: 2.8 Mc to 13.0 Mc in 9 minutee, automatic operation; eupplemented by manual operation.

Trinid	ad, Briti	eh West	Indies (10.6°N,	61.2°W)		Dec	ember 1950
Time	p.ls	foF2	h'F1	foFl	h'E	foE	fEe	(M3000)F2
00	250	1.4						3.2
01	240	4.2						3.3
02	240	3.9						3.4
03	240	3.6						3.4
04	260	3.1						3.1
05	260	3.4						3.2
06	250	3.6					2.2	3.2
07	550	6.3			120	2.2	3.0	3.6
08	240	8.0	220	4.1	120	2.8	3.6	3.6
09	250	9.0	220	4.5	120	3.2	3.8	3.6
10	260	9.0	210	4.8	120	3.4	4.2	3.5
11	260	9.0	210	4.9	120	3.5	4.5	3.4
12	280	9.0	210	5.0	120	3.6	4.7	3.3
13	270	9.8	210	4.9	120	3.9	4.7	3.3
14	270	9.4	200	4.8	120	3.4	4.6	3.2
15	260	9.2	\$50	4.6	120	3.3	4.4	3.3
16	250	8.8	230	4.0	120	2.9	4.4	3.3
17	230	8.8			110	2.3	4.0	3,4
18	220	7.6					3.7	3.4
19	550	6.4					3.4	3.4
20	230	4.8					3,2	3.4
21	260	4.2					3.1	3.2
55	270	4.0					2.5	3.0
23	270	4.0						3.0

Time: 60.0°W.
Sweep: 1.2 Mc to 19.5 Mc, manual operation.

Mand	Hawaii (2	n 00 1 1	ee e0w1	Table	8		D	mber 1950
Time	P.LS	foF2	h'Fl	foFl	h!E	foE	fEs	(M300C) F2
00	260	3.6						2.8
01	250	4.1					1.3	3.0
02	230	4.0						3,3
03	220	3.0						3,4
04	240	(2.5)					1.9	3.2
05	280	(2.0)					2.7	2.8
06	300	2.2					2.4	2.9
07	260	4.6			150	1.8	2.4	3.1
08	240	7.3	230		110	2.4	4.1	3.3
09	270	9.7	550		110	2.9	5.6	3.2
10	260	11.3	550	4.5	110	3.1	5.8	3.3
11	270	11.2	210	4.8	100	3.3	4.8	3.2
12	260	11.4	210	4.8	110	3.4	4.9	3.1
13	270	12.2	200	4.7	(110)	3.4	4.7	3.1
14	260	12.4	550	4.6	110	3.2	4.5	3.2
15	250	11.8	230	4.3	(110)	3.0	4.2	3.2
16	240	10.8	230		110	2.7	4.8	3.4
17	220	8.5			120	2.2	4.9	3.5
18	210	6.0					4.8	3.5
19	210	4.8					4.5	3.5
20	230	4.2					2.8	3.1
21	220	4.7					2.8	3.2
22	230	4.6					2.2	3.2
23	240	4.0					1.5	3.3

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 eeconds.

				Table	10			(N3000)F2 3.2 3.2 3.2 3.3 3.2 3.1 3.0 3.3 3.2 3.1 2.7 2.6 2.6 2.6 2.7 2.8 3.0 3.1		
Guam I	. (13.6°N,	144.9°E)				Dac	ember 1950		
Tims	h'F2	foF2	h'Fl	foFl	h1E	foE	fEs	(M3000)#2		
00	230	5.8					1.8	3.2		
01	230	6.0					1.6	3.2		
02	240	5.4						3.2		
03	240	4.4						3.3		
04	240	3.8						3.2		
05	240	3.0					1.5	3.1		
06	260	2.7					1.6	3.0		
07	260	5.7			130	1.8		3.3		
80	270	8.6	240		110	2.5		3.2		
09	280	10.2	220		110	(2.9)	4.0	3.1		
10	290	10.6	210	4.6	110	(3.1)	4.4	2.7		
11	300	10.2	200	4.6	110	3.3	4.8	2.6		
13	300	9.8	200	4.7	110	(3.3)	5.0	2.6		
13	320	9.8	200		110	3.4	4.3	2.6		
14	310	10.2	210		110	3.2	4.2	2.7		
15	290	10.8	220		110	(3.1)	4.6	2.8		
16	280	11.0	230		110	2.8	5.4	3.0		
17	250	11.0	240		120	2.3	4.0	3.1		
18	240	10.6					3.9	3.2		
19	240	10.0					3.1	3.1		
20	240	9.3					3.4	3.0		
21	240	8.6					3.4	3.1		
22	230	8.2					4.0	3.2		
23	230	6.9					2 2	2 2		

23 230 6.9 Time: 150.0°E. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Huanca	yo. Peru	(12.0°S,	75.3°W)	Table	12		Dogo	mber 1950
Time	h'F2	foF2	h'F1	foFl	h1E	foE	fSc	(M3000)#2
00	320	4- May-					4.8	
01	310	(3.7)					4.8	(2.8)
02	300	(4.2)					2.7	(3,1)
03	280	(3.6)					4.8	(3.2)
04	260	(3.2)					4.8	3.2
05	270	(3.4)					4.8	(2.9)
06	250	6.4			110	2.1	4.8	3.1
07	280	8.5	230		110	2.8	7.8	3.1
80	300	9.4	220	4.7	110	3.1	10.7	2.9
09	310	10.2	210	4.8	110	3.4	12.0	2.6
10	330	10.3	210	4.9	110	(3.6)	12.1	2.4
11	360	10.1	210	4.9	110		12.2	2.4
12	360	9.3	200	4.9	110		12.2	2.4
13	360	9.5	200	4.8	110		12.0	2.4
14	340	9.6	200	4.7	110		11.4	2.5
15	320	10.0	210	4.7	110	3.2	10.6	2.5
16	300	10.6	210		110	2.9	8.4	2.6
17	250	10.6			110	2.5	7.7	2.6
18	280	10.6			110	1.6	3.4	2.6
19	290	10.2					3.2	2.6
20	300	(9.0)					3.2	2,6
21	320	(8.1)					3.2	(2.5)
32	360	(7,6)					3.2	(2.6)
23	320	(6.8)					3.4	(2.7)

Time: 75.0°W. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

Lindau/Harz, Germany (51.6°N, 10.1°E) November 1950 foF2 h'Fl foFl h E (M3000)F2 Time PIES foE fEs 2.7 00 01 2.8 290 300 300 2.9 2.8 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 2.8 2.8 2.7 2.8 3.4 3.9 4.4 4.5 3.8 3.6 3.5 3.1 270 2.7 3.0 260 2.0 3.1 250 3.0 3.3 5.2 6.7 7.2 130 220 2.6 2.6 2.6 2.5 2.4 2.1 1.6 100 100 100 100 100 210 220 8.0 8.2 7.4 7.8 7.6 6.6 3.4 3.4 3.3 \$50 \$50 100 \$10 \$50 110 140 3.4 210 2.8 220 5.5 3.2 550 230 3.4 3.2 2.4 3.0 SS 300 2.8 23 300 2.8

Time: 15.0°E. Sweep: 1.0 Mc to 16.0 Mc in 8 minutes. Sweep:

Akita,	Japan (3	9.7°N, 1	40.1°E)	Table	15		Nov	2.8 2.8 2.9 3.0 2.9 3.1 3.4 3.4 3.4 3.3		
Time	P.ES	foF2	h'F1	foFl	h!E	foE	fBe	SI(000EM)		
00	290	3.4					8.8	2.8		
01	300	3.5					2.4	2.8		
02	300	3.4					2.4	2.8		
03	290	3.4					2.2	2.9		
04	270	3.5					2.0	3.0		
05	250	3.4					1.7			
06	250	3.7					1.9	3.1		
07	220	6.8			120	1.9	2.8			
08	220	8.2	220		110	2.4	3.0			
09	230	8.8	220		110	2.6		3.4		
10	230	9.0	220		110	2.9				
11	250	10.4	SSO		110	3.0		3.3		
12	250	9.7	550		110	3.0	3.4	3.3		
13	240	8.8	230		110	2.9		3.3		
14	240	8.7	230		110	2.8	3.3	3.4		
15	230	8.4	230		110	2.4	3.4	3.4		
16	520	7.2	210			1.9	3.3	3.4		
17	550	5.3					3.2	3.4		
18	230	4.3					3.1	3.2		
19	250	3.7					3.0	3.1		
20	260	3.6					2.6	3.1		
21	270	3.4					2.2	3.0		
22	300	3.4					2.4	2.8		
23	300	3.4					2.4	2.8		

23 \ 300 \ 3.4 \ 2.4 Time: $135.0^{\circ}\Xi$. Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

				Table	17			
Yamagak	a, Japan	(31.2°N,	130.6°E)				Now	ember 1950
Time	P.125	foF2	h'Fl	foF1	h * E	foE	fFa	(M3000)F2
00	290	3.3					2.2	8.8
01	280	3.4					1.8	3.0
02	280	3.5					2.0	2.9
03	280	3.4					1.7	3.0
04	260	3.5					1.8	3.1
05	280	3.0					1.6	2.9
06	270	3.2					1.2	2.9
07	240	5.7			110	1.6	2.2	3.2
08	230	7.7	230		110	2.4	2.7	3.5
09	250	8.7	220	direct distributions	110	8.8	3.0	3.4
10	250	9.6	230	**********	110	3.0	3.8	3.3
11	260	10.2	230	-	100	3.2	4.4	3.3
12	260	10.1	220	4.6	110	3.3	4.4	3.2
13	260	11.0	230		110	3.2	4.4	3.2
14	260	11.2	240		710	3.2	4.4	3.3
15	250	10.6	240		110	3.0	4.0	3.3
16	250	9.6	230		110	2.6	4.0	3.4
17	230	8.1	240			1.9	3.2	3.4
18	550	6.3					3.2	3.4
19	240	4.9					3.0	3.2
50	240	4.7					2.8	3.2
21	250	4.3					2.4	3.1
22	260	3.8					2.4	3.1
.23	280	3.4					2.4	2.9

Time: 135.0°E. Sweep: 1.0 Mc to 18.5 Mc in 15 minutes, manual operation.

Wakkan	ai. Japan	(45.4°N,	141.70	E)			Nove	ember 1950
Time	FILS	foF2	h'Fl	foF1	h I E	foE	fRe	(M3000) T2
00	310	3,5						2.7
01	310	3.4					1.3	2.7
02	320	3.4					1.4	2.6
03	310	3.4						2.7
04	300	3.4						2.9
05	280	3.4						2.9
06	280	3.6						3.0
07	240	6.3			110	1.8	2.4	3.2
08	230	7.7			110	2.2		3.2
09	250	8.8	240	****	120	2.7		3.2
10	270	9.1	240	********	110	2.8		3.2
11	250	9.2	250		110	3.0		3.2
12	250	8.9	240		110	2.9		3.2
13	250	8.6	230	-	110	2.9		3.3
14	250	8.0	250		110	2.6		3.3
15	240	7.8			110	2.3		3.3
16	220	6.6		****	110	1.9	2.5	3.2
17	240	5.2					2.6	3.1
18	260	4.3					1.8	3.1
19	280	3.6					2.4	3.0
20	280	3.5					2.2	2.9
21	300	3.4					1.4	2.8
22	320	3,5					2.2	8.7
23	310	3.4						2.7

23 21 21

Time: 135.0°E. Sweep: 1.0 Mc to 14.0 Mc in 15 minutes, manual operation.

Tokyo,	Japan (3	5.7°N, 139	.5°E)	Table	16		Nove	mber 1950
Time	P₁1\S	foF2	h'Fl	foFl	h * E	foE	fEs	(M3000)#2
00	290	3.6					2.6	2.8
01	280	3.4					2.4	2.9
02	280	3.4					2.6	2.8
03	270	3.5					2.3	3.0
04	250	3.5					2.4	3.2
05	250	3.2					2.4	3.0
06	230	3.8					2.0	3.2
07	220	7.2	and the format of		120	2.1	2.7	3.5
08	220	8.5			100	2.6	3,4	3,5
09	230	9.2	210		100	2.7	3.6	3.5
10	230	10.2	550		100	3.0	3.6	3.4
11	240	10.4	210		100	3.1	3,8	(3.4)
12	240	10.0	220		100	3.1	3.6	3.4
13	240	9.4	220	-	300	3.1	4.0	3,4
14	230	9.2	220		100	2.9	3.9	3.4
15	220	8.3	220	-	100	2.5	3.6	3,5
16	220	7.5			100	2.0	3.2	3.5
17	210	5.8					3.2	3.5
18	230	4.2					2.8	3.2
19	230	4.0					2.8	3.2
20	240	3.7					2.6	3,1
21	250	3.5					2.6	3,1
SS	290	3.6					2.5	2.9
23	280	3.5					2 2	2.9

Time: 135.0°E.

Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

Baton	Rougo, Lo	ulelana	(30.5°N.	91.20W)			Nov	ember 1950
Time	p'F2	foF2	h'Fl	foFl	h * E	foE	fEs	(M3000)F2
00	330	3.6						2.8
01	320	3.6						2.9
02	320	3.6						2.9
03	320	3.8						2.9
04	300	3.6						3.0
05	340	3.4						2.9
06	330	3.5						2.9
07	270	6.0						3.1
08	270	7.8	260		120	(2.7)		3.2
09	290	8.7	260		130	3.0		3.1
10	290	8.9	250		120	3.2		3.1
11	290	9.5	240		130	(3.4)		3.0
12	290	9.1	250	Section ST	120	(3.4)		3.0
13	290	9.4	260		120	(3.4)		3.0
14	290	9.6	270		120	3.2		3.0
15	280	9.0	270		130	(3.0)		3.0
16	270	8.5	-		130	(2.6)		3.1
17	260	7.6						3.1
18	270	5.4						3.1
19	280	4.0						3.0
20	290	3.5						3.1
21	320	3.2						3.0
22	330	3.4						2.8
23	320	3.6						2.9

Time: 90,00 W. Sweep: 2.05 Me to 14.1 Kc in 5 minutes, automatic operation.

Formose	a, China	(25.0°N,	121.0°E)	_		No⊽e	mber 1950
Time	h'F2	foF2	h'Fl	foF1	h*E	foE	fBa	(M2000)#2
00				_				
01	ļ							
02								
03								
04	1							
05	ì							
06								
07								
08	200	9.0	180	3.9	300	3.0	3.3	3.9
09	200	9.4	180	4.3	100	3.0	3.4	3.9
10	240	10.8	190	4.8	100	3.2	3.9	3.8
11	240	12.5	200	4.6	100	3.3	4.2	3.6
12	240	12.8	180	4.7	100	3.2	4.2	3.7
13	240	12.6	200	4.6	100	3.2	4.2	3.7
14	240	13.5	200	4.7	100	3.1	4.3	3.7
15	230	13.7	200	4.6	100	3.2	4.2	3.7
16	500	13.8			100	3.0	3.8	3.9
17	200	12.0				-	3.4	4.0
18	200	10.2					3.2	3.9
19	200	8.6					2.7	3.7
20								
21								
55								
23	ļ							

Time: 120.00%. Sweep: 2.5 Mc to 14.5 Mc in 15 minutes, manual operation.

				Table				
Capeto	n, Union	of S.	Africa (34	1.2°S, 1	8.3°E)		Nove	mber 1950
Time	h'F2	foF2	h'F1	foFl	h'E	fol	fBe	(M2000)#2
00	(290)	4.1					2.0	2.8
01	(290)	4.1					2.3	2.8
02	(290)	4.0					2.2	2.8
03	(270)	4.0					2,2	2.8
04	(260)	3.7					1.9	2.9
05	280	3.4					1.6	2.8
06	250	4.8				1.9		3.0
07	280	6.0	240		120	(2.4)		3.0
08	310	6.8	550	4.3	110	(2.9)		2,8
09	320	7.8	220	4.6	110	(3.2)	3.5	2.8
10	320	8.2	210	4.8	110	(3.4)	3.8	2.8
11	340	8.6	210	4.9	110	(3.5)	4.0	2.7
12	330	8.8	220	5.0	110	(3.6)	4.0	2.7
13	340	9.2	210	5.0	110		3.6	2.8
14	320	9.4	220	4.9	110	(3.6)	3.6	2.8
15	310	9.2	550	4.8	110	(3,5)	3.2	2.8
16	310	9.2	250	4.5	110	(3.2)	3.3	2.9
17	290	8.8	520	4.1	110	3.0	2.6	2.9
18	270	8.5	240		110	2.5		3.0
19	250	8.1	250			1.8		3.1
20	230	7.0					1.4	3.0
21	230	5.9						3.1
22	(250)	4.9					1.6	3.0
23	(270)	4.4					2,0	2,8

23 (270) 4.4 Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

Wather	00, W. Au	stralia	(30.3°S,	Table			0c	tober 1950
Time	FILS	foF2	h'F1	foF1	h'E	foE	fBe	SE(000EM)
00	270	4.5					2,5	2.8
01	260	4.4					2,5	2.9
02	260	4.2					2.5	2.9
03	260	3.9					2.5	2.8
04	280	3.5					2.6	2.9
05	280	3.6					2.4	2.9
06	260	4.9					2.2	3,3
07	260	5.9	240	3.8		2.5	2.7	3.3
80	280	6.8	230	4.3		3.0	3.2	3.2
09	310	6.8	220	4.7		3.2	3.6	3.1
10	330	7.4	530	4.8		3.4	3.7	3.0
11	320	7.8	220	4.9		3.5	4.0	3.0
12	320	8.6	220	5.0		3.5	3.8	2.9
13	320	8.6	220	4.8		3.4	3.6	3.0
14	300	9.1	230	4.8		3.3	3.5	3.0
15	290	8.0	230	4.6		3.3	3.3	3.0
16	280	7.8	240	4.3		3.0	3.2	3.1
17	260	7.2	240	3.7		2.4	2.8	8.2
18	250	7.0				-	2.0	3,2
19	240	7.0					2.4	3.0
20	240	6.0					2.1	3.0
21	260	5.3					2.4	2.9
22	270	5.0					2.4	2.8
23	270	4.9					2.4	2.8

Time: 120.0 3. Sweep: 16.0 Mo to 0.5 Mc in 15 minutes, automatic operation.

Johanne	eaburg. Un	nion of S	3. Africa	Table 2 (26.2°)	3, 28.1	°E)	Nove	Movember 1950 f8e (M3000)F2 2.0 2.9 1.8 2.9 1.6 2.9 1.7 2.9 3.0 3.1 3.5 2.9 3.6 2.8 3.7 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.8 2.8 3.6 2.9 3.7 3.1 3.1 3.1		
Time	F.LS	foF2	h'Fl	foF1	h1E	fol	fFe	(M2000)15		
00	270	4.7					2,0	2.9		
01	270	4.5					1.8	2.9		
02	260	4.2					1.6			
03	260	3.9					1.8	2.9		
04	250	3.6					1.7			
05	270	4.0								
06	240	5.6	240		120	(2.1)				
07	270	6.6	230	4.0	110	(2.7)	3.0	3.1		
08	320	7.4	220	4.4	110	(3.1)				
09	310	8.2	210	4.6	110	(3.4)	3.6			
10	320	8.6	200	4.8	110	3.5	3.7			
11	330	9.0	210	4.9	110		3.8	2.8		
12	320	9.2	210	5.0	110			2.8		
13	330	9.4	210	4.9	110	(3.7)	3.8	2.8		
14	320	9.4	220	4.8	110	(3,6)		2.8		
15	310	9.0	230	4.6	110	3.4	3.6	2.9		
16	300	8.9	550	4.4	110	3.0	3.3	2,9		
17	280	9.0	230	3.9	110	2.6	2.9	3.0		
18	250	9.2	250		120	(2.0)	2.1	3.1		
19	230	8.2						3.1		
20	230	7.0						3.1		
21	240	5.8					1.8	3.0		
22	260	5.0						2.9		
23	280	4.7					1.9	2.8		

23 230 4.7 Time: 30.0°S. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

Lindau	Harz, Ge	rmany (5	1.6°N, 10).1°E)			00	tober 1950
Time	hils	foF2	h'F1	foFl	h ! E	fol	fEs	(ME000)F2
00	300	3,3					2.0	2.7
01	310	3.3					2.1	2.7
02	300	3.3					2.2	2.8
0.3	300	3.0					2.0	2.7
04	290	2.9					2.0	2.8
0.5	290	2.2					2.0	3.9
06	280	2,6					2.8	3.0
07	250	4.3				36	3.2	3.2
08	240	5.4	220		100	2.2	3.3	3.3
09	250	6.6	210	3.8	100	2.5	3.4	3.3
10	260	7.0	210	4.0	100	2.7	3.6	3.2
11	240	7.3	210	4.0	100	2.9	3.6	3.0
12	240	8.1	210	4.2	100	2.9	7.9	3.2
13	240	8.7	210	4.2	100	2.8	3.6	3.2
14	240	8.0	210	3.9	100	2.8	3.4	3.2
15	230	8.0	220		100	2.6	3.5	3.2
16	230	7.6	230		100	2.2	3.4	3.3
17	220	7.0			-	E	2,7	3.3
18	230	6.2				E	2.8	3.7
19	230	5.6		-			2.6	3.7
20	230	4.8					2.3	3.0
21	250	3.8					2.0	2.9
22	270	3.5					2,2	2.8
23	300	3.3					2.0	2.7

23 300 3.3 Time: 15.0°E. Sweep: 1.0 Mc to 16.0 Mc in 8 minutee.

Raroto	nga I. (2	September 1950						
Time	h'F2	foF2	h'Fl	foFl	h'Z	foE	fEs	(H3000) F2
00	280	6.0						3.0
01	260	6.0						3.1
20	270	5.7						3.0
03	260	5.0						3.0
04	300	4.]						3.0
05	300	4.2						2.9
06	300	4.2						3.0
07	250	7.1	230	4.1	110	2.3	3.5	3.2
08	280	8.8	240	4.8	11.0	2.9	4.0	3,1
0.0	280	9.4	220	5.0	110	3,2	4.5	3.1
10	280	10.9	\$50	5.1	110	3.4	4.7	3.2
11	280	10.2	230	5.0	110	3,5	4.6	3.2
12	270	9.8	210	5.0	110	3.6	4.5	3.2
13	300	9.4	210	5.0	100	3.6	4.6	3.1
14	280	9.1	230	5.0	110	3.4	4.6	3.1
15	300	9.2	230	5.0	110	3.3	4.4	3.0
16	300	8.6	240	4.5	110	3.4	4.3	3,1
17	260	8.5	250	5.2			4.0	3.0
18	250	7.9					3.8	3,2
19	250	7.8					3.4	3.1
20	250	7.6					3,2	3.8
31	260	6.8					3.1	3.1
22	290	6.0						3.0
23	290	5.4						3.0

23 | 290 5,4 Time: 157,5°W. Sweep: 2,0 Mc to 16.0 Mc, manual operation.

Time: 150.0°E.

1.0 Mc to 16.0 Mc in 1 minute 55 seconds. Sweep:

				Table	27			
Hobart	Tasmani	a (42.8°	S, 147.4	OE)			Sept	ember 1950
Time	h'T2	foF2	h'Fl	foFl	h ' E	foE	fEe	(M3000)F2
00	250	3.0						3.0
01	250	2.6						3.0
02	260	2.4						3.0
03	250	2.3					2.0	3.0
04	240	2.0						3.1
05	260	1.8						3.0
06	260	2.6				E		3.1
07	230	4.3			110	2.0		3.4
08	230	6.0	210	4.0	100	2.5		3.4
09	260	5.5	200	4.3	100	2.8		3.4
10	280	6.2	200	4.4	100	3.0		3.3
11	280	6.7	200	4.6	100	3.1		3.2
12	590	6.8	200	4.5	100	3.2		3.3
13	270	7.1	200	4.5	100	3.2		3.3
14	270	6.9	200	4.4	100	3.1		3.3
15	250	6.8	200	4.2	100	3.0		3.4
16	250	6.5	200	3.8	100	2.6		3.4
17	220	6.0	220	3.0	110	2.1		3.3
18	230	6.0				E		3.2
19	220	5.7						3.1
20	230	5.0						3.0
21	240	4.5						3.1
22	250	3.8						3.0
23	250	3.2						3.0

Time: 150.0°E. Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 eeconde.

Delhi,	India (2	8.6°H, 7	7.1°E)	Table	29		Auguet 1950		
Time	0	foF2	P111	foFl	h'E	foE	fEg	(M3000)F2	
00	320	5,9						3.3	
01	320	5.8							
02		-							
03									
04	280	5.0						3.2	
05	280	5.0							
06	280	5.9							
07	280	7.0							
80	280	7.7						3.3	
09	300	8.0							
10	320	8.5							
11	340	9.5							
12	340	10.5						2.3	
13	340	11.3							
14	320	11.6							
15	320	11.9							
16	320	11.0						3.0	
17	300	10.7							
18	300	10.3							
19	280	9.3							
20	280	8.4						3,2	
21	300	7.4							
SS	320	6.5							
23	320	6.2							

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

**Average values; other columne, median values.

Canber	ra, Auetr	alia (35	.3°S, 14	9.0°E)			Sept	ember 1950
Time	h'F2	foF2	h'Fl	foFl	hIE	foB	fEs	(M3000)F2
00	260	(4.1)					2.0	(3.0)
01	250	(4.0)					2.4	(3.0)
02	240	(4.0)					2.2	3.0
03	240	(3.6)					2.5	3.0
04	250	(3.3)					2.3	3.0
06	260	(3.1)						2.9
06	250	3.5				(<1.3)	2.6	3.0
07	240	5.4			110	2.1	2.6	3.4
08	275	6.0	225	4.0	100	2.6		3,3
09	280	6.6	210	4.5	100	3.1		3.2
10	290	7.0	200	4.5	100	3.3		3.2
11	290	7.6	200	4.5	100	3.4		3.2
12	280	7.9	200	4.5	100	3.4	3.3	3.2
13	270	7.7	200	4.6	100	3.4	3.1	3.3
14	270	7.0	200	4.5	100	3.3		3.3
15	270	7.0	500	4.1	100	3.1		3.2
16	250	6.6	210	3.6	110	2.8		3.2
17	230	6.2	216	-	110	2.2	2.5	3.2
18	230	6.2				(<1.5)		3.1
19	240	5.6						3.0
20	250	5.4						3.0
21	250	(5.1)						2.9
22	250	(4.8)					2.1	(2.9)
23	260 .	(4.2)						(2.9)

Pic

Time: 150.0°E.
Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 eeconde.

Christ	church, N	Sept	.2 2.8 2.9 2.9 6 2.9 3.1 3.0 3.0 9 3.1 4 3.3 4.4 3.1 5.5 3.1 4 3.2 5 3.1 3.1 3.1					
Time	h'F2	foF2	h'F1	foFl	h1E	foE	fEe	(M3000) T2
00	290	3,6					1.2	2.8
01	280	3.4						2.9
02	280	3,2					1.6	
03	260	2.7						
04	(280)	2.0					1.8	
05	590	5.0						3.0
06	280	3.3				1.4	1.9	
07	260	4.8	250	3.2		2.0	2.4	
80	280	5.3	240	3.8		2.5	2.8	
09	310	5.6	230	4.3		2.9	3.4	3.1
10	3:30	5.9	220	4.4		3.0	3,5	
11	300	6.4	230	4.5		3.2	3.4	3.2
12	310	6.6	230	4.6		3.2	3,5	
13	300	6.8	230	4.5		3.2		
14	290	6.8	230	4.4		3.1	3.0	3.2
15	280	6.5	240	4.2		2.9	2.8	3.2
16	270	6.3	240	3.7		2.5	2.5	3.2
17	250	6.0	250	2.9		1.9	2.0	3.2
18	250	6.7					, -	3.0
19	260	6.4						2.8
20	280	6.0						2.8
21	290	4.8						2.8
22	290	4.4						2.8
23	280	4.1						2 0

Time: 172.5°E. Sweep: 1.0 Mc to 13.0 Mc.

Bombay,	India (19.0°N,	73.0°%)	Table	30	August 1950		
Time	0	foF2	h'Fl	foFl	hIE	foE	fEs	(M3000)F2
00								
01								
02								
03								
04								
05								
06								
07	270	7.6						
80	330	8.9						3.0
09	360	9.3						
10	420	10.2						
11	420	10.8						0.0
12	450	11.6						2.6
13	460	12.2						
14	480	12.6						
15	480 480	12.8						2.5
16 17	480	13.0 13.0						2.0
18	480	12.8						
19	450	12.0						
50	420	10.6						2.6
21	420	9.3						
22	420	8.2						2.7
23	420	7.8						

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

*Height at 0.83 foF2.

**Average values; other columns, median values.

				Table	31			
Madras,	India	(13.0°N,	80.2°E)				An	gue 🗼 1950
Time	٠	foF2	h'Fl	fo¥1	h'E	foE	fBs	SI(000EK)
00								
01								
02								
03								
04								
05								
06								
07	360	8.2						
08	390	9.0						2.8
09	420	9.7						
10	450	9.6						
11	480	9.4						
12	480	9.4						2.5
13	480	10.0						
14	500	10.4						
15	500	10.9						
16	500	11.3						2.5
17	480	12.0						
18	450	12.1						
19	420	11.6						
20	420	10.6						2.7
21	420	10.0						
22	380	9.1						
23								

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

"Height at 0.83 foFZ.

"average values; other columne, median values.

Raroto	nga I. (2	1.3°S. 1	59.8°W)	Table	33		Au	guet 1950
Time	F.LS	foF2	h'F1	foF1	h * E	foE	fEe	(M3000)F2
00	270	4.7						3.1
01	280	4.2						3.0
02	260	4.3						3.0
03	270	4.2						3.1
04	290	3.9						3.0
05	300	3.7						2.9
06	290	4.1					2.8	3.0
07	250	6.4	250				3.3	3.2
08	250	8.2	250	4.6	110	3.2	4.1	3.2
09	250	9.1	230	4.8	110	3.3	4.5	3.2
10	260	9.8	210	4.9	110	3.4	4.6	3.2
11	260	9.4	240	5.0	110	3.5	4.6	3.2
12	270	8.8	220	5.5	100	3.5	4.7	3.2
13	280	9.1	210	5.3	110	3.7	4.8	3.2
14	280	9.1	250	5.4	110	3.4	4.7	3.2
15	300	8.9	240	5.4	110	3.2	4.3	3.1
16	280	8.7	250	5.0	110	3.0	4.4	3.1
17	260	8.5	250	5.1	110	3.0	4.2	3.1
18	260	8.3	250	4.6	120	3.0	3.6	3.1
19	250	7.5	250	4.4		-	3.5	3.1
20	250	6.6					3.1	3.1
21	250	6.2						3.2
22	260	6.0						3.1
23	270	5.0						3.1

Time: 157.6°W.
Sweep: 2.0 Mc to 16.0 Mc, manual operation.

Bombay, India (19.0°N, 73.0°E) Table 35

omon,	india (July 1950					
Time	•	foF2	h'F1	foF1	h1E	fol	fBs	(M3000)F2
00				-				
01								
02	l							
03								
04	1							
05								
06								
07	270	7.5						
08	330	8.3						3.0
09	360	8.6						
10	390	9.3						
11	420	9.7						
12	450	10.4						2.5
13	480	10.9						
14	480	11.5						
15	480	12.0						
16	480	12.6						2.3
17	480	13.0						
18	480	12.8						
19	420	11.9						•
20	420	10.5						2.6
21	420	9.1						
22	420	8.2						2.6
23	420	7.1						

Time: Local.

Sweep: 1.8 Me to 16.0 Me in 5 minutes, manual operation.

"Height at 0.83 foF2.

"average values; other columns, median values.

Tiruch	y. India	(10.8°N.	78.8°E)	Table	32	august 1950		
Time		foF2	h'F1	foF1	h!E	foE	fEe	(M3000)F2
00								
01								
0.5	1							
03								
04								
05	}							
06	}							
07	360	7.6						
08	420	9.5						
09	480	9.8						
10	480	9.1						
11	480	9.0						
12	610	9.2						
13	540	9.7						
14	540	9.8						
15	(510)	(9.7)						
16	480	10.5						
17	480	10.7						
18	480	11.0						
19	480	10.4						
20	480	10.4						
21	480	10.5						
22	450	10.2						
23								

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 6 minutes, manual operation.

*Height at 0.83 foF2.

Delhi.	India (2	8.6°N, 7	7.1°E)	Table	-			July 1950
Time	- 4	fo#2	h'F1	foF1	h'E	foE	fBe	(M3000)F2
00	320	7.0						3.0
01	320	6.9						
0.5								
03								
04		6.1						3.2
05	320	6.1						
06	300	6.7						
07	300	7.5						
08	300	8.2						3.1
09	320	8.7						
10	320	9.4						
11	340	9.9						
12	360	10.4						2.9
13	340	10.4						
14	340	10.7						
15	340	10.8						
16	340	10.8						3.0
17	320	10.3						
18	320	9.9						
19	320	9.4						
20	320	8.8						
21	320	8.0						3,2
22	320	7.8						
23	320	7.3						3.3

7.3 320 7.3
Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.
"Height at 0.83 foF2.
""Average valuee; other columns, median values.

Madras,	India	(13.0°N,	80.2°E)	Table	<u>36</u>			July 1950
Time		foF2	h'F1	foFl	h * E	foE	fEe	(M3000)F2
00								
ot								
0.5								
03								
04								
05								
06								
07	360	8.5						
08	360	9.1						2.7
09	420	9.5						
10	480	9.6						
11	480	9.8						
12	500	10.0						2.5
13	610	10.2						
14	500	10.5						
15	480	10.7						
16	480	11.1						2.5
17	480	11.5						
18	450	11.2						
19	450	10.9						
50	420	10.2						2.7
21	390	(9.5)						
55	360	(8.9)						
23								

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

"Height at 0.83 foF2.

"Average values; other columns, median values.

Tiruch	July 1950							
Time		foF2	h'F1	foF1	h E	foB	fBs	SI(000EK)
00								
01								
SO								
03								
04								
05								
06								
07	360	7.9						
08	420	9.4						
09	450	9.6						
10	480	9.4						
11	480	9.4						
12	480	9.3						
13	480	9.6						
14	510	9.5						
15	540	10.2						
16	480	10.8						
17	480	11.0						
18	480	31.0						
19	450	10.7						
20	420	9.6						
31	420	9.0						
SS	390	8.6						

23

Time: Local. Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

				Table	39			
Poitie	rs. Franc	e (46.6°	N, 0.3°E)					April 1950
Time	h1F2	foF2	h'Fl	foFl	h'E	foB	fEe	(M3000)F2
00	330	6.6						2.6
01	320	6.4						2.6
02	300	6.0						2.6
03	300	5.5						2.6
04	300	5.3						2.7
05	280	5.0						2.8
06	260	6.1						3.1
07	260	6.8	230					3.1
08	280	7.6	230	4.5				2.9
09	280	8.5	220	4.6				2.9
10	300	9.0	550	4.8				2.8
11	300	9.0	220	4.9				2.8
12	300	9.2	220	5.0				2.8
13	310	9.6	230					2.8
14	300	9.4	230	(5.3)				2.8
15	390	9.6	230					2.9
16	280	9.5	230					2.8
17	270	9.6	240					3.0
18	260	9.5	240					3.0
19	250	8.8						3.0
20	260	7.5						2.8
21	280	7.2						2.7
22	300	6.7						2.6
23	330	6.6						2.5

Time: 0.0°E. Sweep: 3.1 Mc to 11.8 Mc in 1 minute 15 seconds.

Campbe	11 1. (52	.5°s, 16	9.2°E)	Table	41			June 1949
Time	p, LS	foF2	h'F1	foFl	h 1 E	foE	fEe	(M3000)F2
00								
01								
02								
03								
04								
05	270	(2.9)					2.0	
06								
07	(260)	3.2					5.1	
08	230	5.4				1.8	2.5	3.2
09	230	7.0			120	2.2	2.5	3.3
10	230	7.9			110	2.4	2.8	3.3
11	230	8.7			110	2.6	3.4	3.2
12	230	9.1			710	2.7	3.8	3.2
13	230	9.3			120	2.7	3.5	3.2
14	240	9.1			150	2.4	3.0	3.2
15	230	9.0			140	2.0	2.7	3.2
16	220	7.6				1.6	2.1	3.1
17	550	6.6					2.1	3.1
18	230	5.8					2.1	3.0
19	250	4.7					2.2	(3.0)
20								
23	(280)	(3.7)					2.0	
22								
23	(320)	(4.2)					2.9	

Time: 165.0°E.
Sweep: 1.0 Mc to 15.0 Mc, manual operation.
*Observations taken on a 16-hour working schedule.

				Table	88			
Domont.	France	(49.0°N,	3.30E)		_			April 1950
Time	h'F2	foF2	h'Fl	foFl	h ! E	foE	fBs	(M3000)F2
00	300	6.2						2.6
01	300	6.0						2.7
02	300	6.4						2.7
03	(300)	5.0						2.6
04	290	4.7						2.7
05	250	4.8	280	(1.8)		16		2.9
06	230	6.0	220	(3.3)	100	2.2		3.1
07	250	6.8	220	3.6	100	2.8		3.0
08	290	7.6	200		100	3.1.		3.0
09	280	8.3	200		100	3.3		2.9
10	290	8.6	500		100	3.4		2.9
11 l	300	9.6	200		100	3.4		2.9
12	290	9.8	200		100	3.4		2.9
13	300	9.6	200		100	3.5		2.8
14	300	9.6	220		100	3.4		3.0
15	280	9.6	210		100	3.3		3.0
16	(280)	9.6	220		100	3.1		3.0
17	240	9.7	220		100	2.7		3.0
18	230	9.4	240		100	2.1		3.0
19	230	8.6			100	2.1		3.0
20	220	7.6						2.9
21	230	6.9						2.7
22	260	6.4						2.7
23	300	6.4						2,6

Cumples (100 of 120 of

Time: 0.0°. Sweep: 1.5 Mc to 16.0 Mc in 1 minute 30 seconds.

Guam I	wam I. (13.6°F, 144.9°E)				<u>40</u> (su	persede		10, CRPL-F68 ruary 1950
Time	h'F2	foF2	h'F1	foFl	h ' E	foE	fEe	(M3000)F2
00	220	(10.4)					4.0	3.0
01	230	10.4					4.0	3.1
02	520	(10.0)						(3.2)
03	210	6.6						(3.2)
04	230	5.5						3.1
05	230	4.8					2.0	3.1
06	240	4.1					3.0	3.0
07	260	6.4			140	1.8	4.0	3.1
08	240	9.2			110	2.8	4.7	3.0
09	260	11.3	220		100	3.3	5.4	2.8
10	270	12.0	210		100	3.6	4.8	2.6
11	280	12.5	200	4.8	100	3.8	4.6	2.5
12	280	11.8	200	4.9	110	3.9	4.5	2.4
13	290	11.9	200	4.8	100	3.9	4.6	2.4
14	300	(12.0)	200		100	3.6	4.7	2.4
15	300	(12.4)	210		110	3.6	4.4	(2.4)
16	(280)	(13.1)	550		110	3.2	4.7	(2,5)
17	240	(13.5)	240		110	2.9	4.2	(2.6)
18	260	(13.3)					5.0	(2.7)
19	290	(13.0)					3.4	2.5
20	310	(12.6)						(2.4)
21	280	(I2.2)						(2.6)
22	250	(11.9)					2.2	(2,7)
23	240	(11.0)					4.2	(2.9)

23 240 (11.0) Tims: 150.0°E. Sweep: 1.0 Mc to 25.0 Mc in 15 eeconds.

Campbe	11 1. (52	.5°s. 16	9.2°E)	Table	42*		June 1948	
Time	F.L.S.	foF2	h'Fl	foFl	h B	foE	fEs	(M3000)F2
00								
01								
50 ¢								
03								
04								
05	260	4.2					3.0	(8.8)
06								
07	250	(4.0)					2.8	(2.8)
08	230	6.8				1.8	3.8	3.1
09	220	9.0			110	2.2	4.0	3.2
10	550	10.8			110	2.6	4.0	3.2
11	230	11.8			120	2.7	3.9	3.1
12	230	12.0			110	2.8	4.0	3.1
13	220	12.1			120	2.7	3.9	3.1
14	230	11.4			120	2.5	3.8	3.1
15	230	10.9			150	2.1	3.5	3.1
16	550	10.0				E	2.9	3.0
17	220	8.3					2.8	3.0
18	230	7.0					2.3	2.9
19	250	6.0					2.4	2.9
20								
21	250	4.9					2.6	2.8
SS								
22	(220)	4 7					4 0	(0.7)

23 (270)

Time: 165,0°E.
Sweep: 1.0 Mc to 16.0 Mc, manual operation.
"Observations taken on a 16-hour working schedule.

	11 I. (52	-Oo .o	0.007	Table	43.	June 1947		
Time	P.LS	foF2	P.LI	foFl	P.E	foE	fBo	(M3000)F2
00								
01								
02								
03	ĺ							
04								
05	260						2.9	
06	1							
07	250	(4.2)					2.8	(8.8)
08	240	6.5				1.8	3.1	3.0
09	240	9.2			120	2.3	2.9	3.1
10	230	10.4			120	2.6	2.9	3.1
11	230	11.8			120	2.8	3.1	3.1
12	240	12.0			120	2.8	2.9	3.1
13	240	12.3			120	2.8		3.0
14	240	12.3			120	2.6	2.9	3.1
15	230	11.8			130	2.1	2.9	3.1
16	230	10.5				E	2.2	3.0
17	230	9.0						2.9
18	250	7.4					2.4	2.8
19	250	(7.1)					2.2	(8.8)
50								
21	260	(5.8)					2.9	(2.8)
22								
.23	300						2.9	

Time: 165,0°E.
Sweep: 1.0 Mc to 15.0 Mc, manual operation.
°Observations taken on a 16-hour working schedule.

				Table	45*			
Campbe	11 I. (52	.5ິລ, 16	9.2°E)				No ve	mber 1945
Time	P.LS	foF2	h'Fl	foF1	h'E	foE	fBs	(M3000)#2
00								
01								
0.2								
03	ļ							
04	ĺ							
05	250	5.2			120	2.2	2.5	3.0
0.6								
07	300	6.1	220	4.4	110	2.8	3.0	3.0
08	315	6.6	225	4.5	115	3.0	3.2	3.0
09	315	7.1	220	4.7	110	3.2	3.3	3.0
10	315	7.1	215	4.8	116	3.2	3.4	2.9
11	310	7.2	550	4.8	115	3.2	3.3	2.9
12	320	7.2	210	4.9	115	3.3	3.6	2.9
13	315	7.4	215	4.8	115	3.2	3.2	2.9
14	320	7.2	220	4.8	110	3,2		2.9
15	315	7.3	225	4.5	115	3.0	3.0	2.9
16	305	7.2	230	4.2	150	2.8	2.9	2.9
17	285	7.6	245	4.0	120	2,5	2.9	2.8
18	255	8.0	250	3.5	135	2.0	2.8	8.8
19	255	8.0					2.8	2.8
50								
21	260	7.6					2.4	2.7
55								
23	270	5.7					2.8	2.7

Table 45"

270 Time: 165.0°E.

Sweep: 1.0 Mc to 15.0 Mc, manual operation.
*Observations taken on a 16-hour working echedule.

Campbe	11 1. (52	.5°S, 16	9.2°E)				Sept	ember 1945
Time	P112	foF2	p.1.	foF1	hIE	foE	fBs	(M3000)#2
00	l							
01	į							
0.2								
03								
04	l .							
05	(300)	2.6						2.8
06								
07	230	4.5			110	2.0	2.0	3.3
08	240	5.2	200	3.6	105	2.4		3.2
09	265	5.5	200	4.0	105	2.6		3.3
10	280	5.8	200	4.1	100	2.8		3.2
11	590	5.9	500	4.3	100	2.8		3.2
12	280	6.1	200	4.2	105	3.0		3.2
13	275	6.2	200	4.2	105	2.9		3.3
14	270	6.1	205	4.0	105	2.8		3.2
15	260	6.1	205	3.7	105	2.6		3.2
16	235	6.1	210	3.3	110	2.1		3.2
17	230	5.8				1.8	1.8	3.2
18	220	5.4						3.1
19	235	5.1						2.9
SO								
21	255	(4.2)						2.9
22								
23	280	(3.1)						2.8

Table 47°

23 | 280 (3.1)
Time: 165,0°E.
Sweep: 1.0 Mc to 16.0 Mc, manual operation.
*Observations taken on a 16-hour working echedule.

Campbe	11 I. (52			June 1946				
Time	F ₁ 1.5	foF2	P112	foFl	h1X	foB	fBs	(M3000)#2
00								
01								
02								
03								
04								
05	ł	3.5						(2.9)
06								1-4-7
07	ŀ	2.5						(2.9)
08		4.8						3.1
09		6.3						3.1
10		7.7						3.1
11		7.6						3.2
12		8.1						3.2
13		8.2						3.1
14		8.5						3.1
15		7.9						3.2
16		7.0						3.0
17	1	6.0						3.0
18		4.8						2.9
19		4.4						(2.7)
50								
21		(3.7)						(2.6)
22								
23	ļ	(3,1)						

Time: 165.0°E.
Sweep: 1.0 Mc to 15.0 Mc, manual operation,
*Observations taken on a 16-hour working echedule.

Campbe	11 I. (52		0e	tober 1945				
Time	P.L.S.	foF2	h'F1	fo F 1	P.E	foE	fBa	(M3000)F2
00								
01	ļ							
02								
03								
04	ŀ							
05	250	4.0			-	1.9	1.8	2.9
06	i							
07	260	5.4	230	4.0	110	2.5	2.4	3.0
08	300	6.0	220	4.2	110	2.8		3.1
09	300	6.4	215	4.5	105	3.0		3.0
10	305	6.6	210	4.5	110	3.0		3.0
11	305	6.7	510	4.6	110	3.1		2.9
12	310	7.1	220	4.6	110	3.2		3.0
13	310	6.8	220	4.5	110	3.1		3.0
14	305	6.6	220	4.4	310	3.0		3.0
15	300	6.8	230	4.2	110	2.8		3.0
16	275	7.0	235	4.0	110	2.6		3.0
17	250	6.7	240	3.4	120	2.2		3.0
18	250	6.8			~	1.8	1.9	2.9
19	250	7.3						2.9
20								
21	260	(6.2)						(8.8)
22								
23	280	(5.0)					2.2	

23 280 (5.0)
Time: 165.0°E.
Sweep: 1.0 Mc to 15.0 Mc, manual operation.
*Observatione taken on a 16-hour working echedule.

Campbe	11 I. (52			June 1945				
Time	P.LS	foF2	h'F1	foFl	hII	foE	fBe	(M3000)#2
00								
01								
02								
03								
04								
05	370	-					3.1	
06								
07	(350)						3.1	
08	230	4.2					2.4	3.3
09	220	5.3					2.9	3.4
10	230	6.0	205	3.1	130	2.3	3.0	3.4
11	235	6.4	220	3.4	125	2.5	3.0	3.4
12	240	6.3	225	3.5	125	2.5	3.1	3.4
13	230	5.9	220	3.4	125	2.4	3.0	3.4
14	235	6.4	220	2.9	130	2.2	2.5	3.3
15	225	6.2					2.1	3.4
16	225	5.4						3.3
17	240	4.6						3.2
18	255	3.9						3.0
19	280	3.2						2.8
50								
21	330	(2.8)					3.0	(2.7)
22								
23	370						3.3	die Brend

Time: 165.0°E.
Sweep: 1.0 Mc to 15.0 Mc, manual operation.
*Observations taken on a 16-hour working echedule.

Table 49*
Hourly Monthly Medians of foF2 and (M3000)F2

			cuth weats	ans of fors an	na (Menn	0)12
Guam I	. (13.6°	N, 144.9°E)				1949
		er 1949	Nо ≭ ев	her 1949	Decem	ber 1949
TIME	f°F2	(M3000) F2	f°F2	(M3000)F2	toks	(M3000)F2
00	(12.8)	(2.9)	11.3	3.0	9,1	3.0
01	13.2	(3.0)	10.5	3.1	8.8	3,1
02	10.8	3.2	9.1	3,2	7.4	3.2
03	8.4	3.1	7.2	3,2	5.6	3.1
04	7.3	3.0	5.8	3.1	4.6	3.0
05	6.2	3.0	5.1	3.0	4.2	3.0
06	6.3	3.0	5.1	2.8	3.5	3.0
07	10.3	3.0	9.2	3.1	7.5	3.0
08	12.8	2.9	12.4	3.0	11.6	3.0
09	(14.0)	(2.6)	14.3	2.9	13.8	2.8
10	(14.0)	(2.4)	14.8	2.5	13.2	2,6
11	(13.2)	(2.3)	14.4	2.3	11.9	2.3
12	12.9	2.3	13.0	2.2	11.6	2.2
13	(13.6)	(2.4)	13.0	2.2	11.4	2.3
14	(14.4)	(2.5)	13.3	2.3	12,2	2.4
15	(15.3)	(2.5)	13.8	2.3	12.8	2.5
16	(>15.5)	(2.5)	14.4	2.4	13.4	2.5
17	(>15.0)	(2.5)	14.4	2.4	13.4	2.6
18	(15.2)	(2.4)	14.3	2.4	13.3	2.6
19	(>14.4)	(2.2)	13.6	2,4	13.2	2.6
SO	(>14.0)	(2.4)	(13.0)	(2.3)	12.8	2.6
21	(>13.5)	(2.4)	(12.9)	(2.5)	11.8	2.8
22	(13.1)	(2.7)	12.9	2.7	10.6	3.0
23	(12.9)	(8.8)	12.2	2.8	10.1	3.0

23 (12.9) (2.8) 12.2 2.8 10.1 3.0

Time: 150.0°E.

Sweep: 1.0 %c to 25.0 %c in 15 ecconde.

"Correctione to previouely published values in CRPL-F64 through 66.

In these issues, corresponding changes should be made in the graphe of these data.

n

'n

- m

m

Medion Count

ì

n

0/7

[000]

(060)

(0000)

(230)

(040)

U

(050) (000)

(020)

U

TABLE 50
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

DATA IONOSPHERIC

ō

Day

_, Long 77.1°W

Lot 38.7°N

Washington, D.C.

Observed of

January 1951

(040)

270 (

(300)

05 50

(080) (080)

08.00

(300) [onc] [560] (270) (08=) (08=)

D

W C

(0800)

(300)

S

М

-220

(220)

(040)

Q

D

(080)

(060) (080)

(300)

D

Q

S

œ

(000)

D

D

(320) A

Q

Q

Q

08 %

Ξ

(J)

O

07 0

08 E

220 (280)

(360)

National Bureau of Standards Scoled by: B.E.B., L.H.E.

form adopted June 1946

By. H., McC.

(300)

270 1260

Ŋ

(0400)

(0900)

(0220)

V)

1.0 Mc to 25.0 Mc in 0.25 Monuol

Automotic

Monuol Form adopted June 1946

Janual (Month of January) 1	Januage Monthal Montha	ا ا		02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	3.3 F 3.5 F (39) = [44] = (42) = 39 (5.9) H 6.54	84 447	3.8	(3.1) 3	[22]	S.L.	3.2 × 3.1 × 3.5 [28] 4 (21) 2 26 5.4 × 6.0 × (78) × 8.1 7.2 × 7.2 7.4 7.2 6.8 5.4 × 6 × (20) 5 (2.9) 5	F 2.7 F 2.7 F 3.2 3.5 F 3.3 F 6.0 F 7.8 8.4 F 88 8.4 9.6 9.6 9.6 9.4 7.85 (7.7)5 (7.0)5 (5.6)3 3.3 F	3.35 4.26 3.05 2.75 3.15 (5.6) 7.2 8.1 90 8.42 7.4 7.3 7.6 7.5 7.4 6.25 4.75 3.5 3.5	3.45 3.8	38 39F 45F 41F 39 3.25 S.	3.95	3.6 56F 2.8 2.7 2.7 5.2V 5.0	2.5 2.4K 3.1F 2.8 8 2.2F 2.4	2.8F 31F 3.4F 56F 3.2F 2.6F 5.0F J.g 70 7.5	(1.8) 3 2.3 F 3.1 = 2.1 F 2.1	2.52 35 37 30 20 2.85	2.03 2.1 2.38 2.58 2.75 2.85 4	C [22] 24F 26F 30F (48)5 5.1V 6.6 7.4H 0.4F 6.9F 6.6	2 3.27 3.15 30 255 3.08 5.2 5.8 6.4 76	2.18 2.28 2.58 2.68 3.3 5.4 5.6 7.58 8.58 10.08 10.48 10.28 8.68 7.18 6.6 5.2 4.5 4.1 4.4	2.9 2.7 [2.6] 25 55 3.2 4.7 C C 6.6 7.0	2.3 £ 2.4 £ 2.4 £ 2.3 £ 2.1 £ 2.6 £ 5.1 £ [5.9] # (7.4) £ 8.6 F 8.4 F 8.8 8.5 8.5 8.1 7.0 6.1 +7 = [3.0] * (2.7) *	26 28 26 21 21 218 248 548 518 80 80 158 788 845 76 81 69 545 465 35 25 236	2.65 2.88 2.68 2.48 2.78 3.48 5.8 6.53 7.98 8.0 8.6 8.78 8.1 8.0 (8.1)5 (7.0)7 6.2 4.93 3.75 3.08 2.88	265 3.00 3.06 2.81 2.92 3.4 6.0 6.25 7.7 9.0 8.4 9.4 10.2 10.65 10.3 88 5.) 41 36 3.3 (3.3	255 (2.7) 3.24 3.24 3.24 3.54 6.1 7.0 8.4 10.0 9.7 9.6 92 9.4 8.4 8.7 7.7 6.6 5.7 4.74 3.84	345 (33) (33) 31 3.7 34 6.26 6.8 8.16 9.9 9.1 9.2 9.2 106 102 1	C C C C C C 7.0 8.4 9.7 9.2 10.0 9.8 9.3 9.3 9.3 9.3 9.3 9.3 8.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9	28F 26F 26F 25F 25F 26F 37F 61F 7.3F 83F 101F 10.0F [60] 105F 105 105 105	30F [3.		2.9 3.0 3.2 3.0 4.7 3.1 5.4 6.5 7.8 8.2 8.4 8.3 8.1 7.8 7.5 7.1 6.3 5.1 3.9 3.2 3.0 2.8
-----------------------------	--	-----	--	---	--	--------	-----	---------	------	------	--	--	--	----------	---------------------------	------	------------------------------	------------------------------	---	-------------------------------	-----------------------	--------------------------------	--	--	---	---	--	---	--	--	---	---	--	---	---------	--	---

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Form adopted June 1946

National Bureau of Standards
Scoled by: B.E.B., L.H.E., B.H., McC.

IONOSPHERIC DATA

Mc January 1951

foF2 (Characteristic)

Observed of Washington, D.C.

		Lot	Lot 38.7°N , Long 77.1°W	, Long. 7	W.1.7							75°W		Mean Time	0					Calculated by:	1 by: L,	H.E., E	B. E.B.	McC., By.H.
Day	0030	0130	0230	0330		0530	0630	0730	0830	0930	1030	1130	1230	1330	1430	1530 16	1630 17	1730 16	1830	1930 20	2030 2130	50 2230	0 2330	0
-	(3.4)5	(35)3	3.2 F	3.8 F	4.0 F	(8.4)	14.87	4.84	(0.0)	4.7	7.8	8.1	8.2 9	9.2 8.	8.3	7.8 (8.	(8.0) 5 7.	× 6.0		4.6 4.	1 4.0		20	
2	4.15	4.5F	4.3 F	5.2 F	5.3 F	44 F		47F	7.7	6.6	8.9	8.5	8.2	8.4.8	60	8.1.8	0 7.2		6.2)5	5.4 4.	5 3.6	7.0	3.0	
3	(3.3)	3.7	3.9F	4.0 F	4.3 F	4.3	2.95	4.4	6.5	7.8	8.6	8.8	9.0	8.0	7.4 7.	7.6 7	7.0 6.	6.8	6.0 4	4.3 [3.	18 3	3) 8 [3.0]	70(2.7)	8
4	2.4	3.09	2.29	2.7 =	(3.2)A	A	4	4.2	4.9	7.92	8.0	8.1 F	78F 8	/	82 (6	(7) (8.9)	7.2.)5 6.	6.8F 5.		4.03 (2	9)A 2.5	5 2.3	~	2
5	2.37	2.0 F		2.6 F	3.1 F	3.0F	0	4	4.9	8.2 F	8.5 F	1:8	7.6 7	7.6 8	8.0F	7.4 8	80 (7.	17.4) 5 (4.7)		3.8 [3	3JA	8.3	3.2	4
9	12.27	1	2.5	(3 2)A	3.4F	3.0	2.73	4.4	4.9	2.8	8.0F	78F	Н	8.8	8.2	9) 8.0	6.6)5 58	5	2)3		2.8 (2.5)	2	H	+ F
7	2.9 F	3.2	2.8 F	3.2 F	3.6 F	3.6	2.1			8.3	7.6	8.2	-		H	Z Z	6.0 F (6	4 (2.9)	4.5F (7	(4,0) 5 [3	[8.8] STO.	8]5 (3.0)	8	0
8	5.3		(3.0) F		2.8 F	(3.6)	(3.6) F (3.6) A	5.0F	[6.9]M	8.8	8.2	9.2	9.2F 9	9.6	9.6	1) 7.8	(7.2)5 (7.	(7.3) 3 (6	Y	4.6F 3.	P 0 J	3.05 (2.9))= [2.4]	15
6	[2.6]5	(2.7)5	3.8 F	3.7 F	3.3 F	287	1 2.7 F		6.6F	7.6	9.1	8.8 F	8.2	7.9	7.6 7	7.5 7	ŀ!	7.0 5	5.7F 1	4.0F 3	5 3.	5 3.4	7 3.3	
01	3.17	7 6.8	3.6	(3.9)5	4.0	3.9 5	(3.0)3			2.0	9.6	9.7	8.0	9.0 9.		10.0	4	6.5 6	6.2	4.9 4	4.7 4.	8 4.7	7 5.0	
Ξ	4.1	3.4	3.6	4.5F	4.7F	4.0 F	3.3 F	4.0	5.7	8.9	8.3	87	9.5 9.	9 1.	0	8.7 9.	7 9.1	1 7	4	5.7 4.	9	48F 5.0	5 47	>
12	41E	3.9 F	(4.0)F	4.7	3.8 F	3.5F	2.75	3.7	5.6	2.0	9.8	8.8	8.7 8.	2	8.0 7.	1,0	6.9	6.05	5/7	3.4E 3.	a	.43	P W	7 X
13	(3.5)F	3.8 E	3.3F	2.9 F	2.75	2.7 F	2.9	40	5:74	1.7	7.7	8.0	7.6 2	7.2 8	8.0	7.9 7.	2 6.	6.0 5.	6	4.2 3	0 2	67 25	-7 2.81	7
14	2.7	2.5 F	2 2 F	(2.5)F	3.0 F	[2.5]S				6.9 F	7.5%	8.2	7.1F	7.4 7	7.7 6	8.9	6.7 6	6.95	5.76	4.8 4	4.0 3.6	6 3.0	1	ابر
15	25 F	2.8 F	29 F	3.3 F	3.3 F	3.3 F			8.4	4.9	7.5	7.2	6.9	6.8	6.9H 6	6.8		7.05	w	3.95	405 3.	2.6	17	PIL
91	2.6 F	[2.0] F	1.9F	A(2.6)	3.1	2.5 F		3.00	5:0	5.8 F	1.9	8.1	7.3 7	7.5	77 6	6.6 5	5.8	6.2 4	4.43	P 0	2	3 7 (2.2)	B	20
17	P.T.	2.15	29F	3.67	3.1E	3.0	2.00		5:6	6.2	2.0	7.2	6.5 6	5.2	9.5	6.4	5.5 4	4.85 4.		4.05 2	1.57 2.1		1.4 4.	20
18	2.15	1.9	(0.0)	2.1 F	2.47		-			5.1 H	6.63	4.4	b. 4 4.0	9) 9.9	(6.0) 5	5-215	5.9 5.	4.5	7)5	3.7) 5 2)		2.2	7
61	2.47	O	U	2.23	12.37	2.5 F		P	5:0	6.6	7.10	6.9	6.8 6	6.8 F 6	.6.	6.4 (6	S	6.4 (6	6.7) 5.	7	4 3.9	7	10(29)	9(
20	3.0	3 2	J. 59 D	3.2	3.1 I	Si	2.57		5.5	6.0	7.0	7.0	0	82	7.2 6	6.7 6	6.3		5.3 4	45 (2	7.57 P 2.1	1 2.3	2.3	
2.1	2.2		2.2 F	2.1 %	2.4 F	25F	2.7	4.5	5.7	4.9	8.14	8.4K	10.4K	10.1 4 19	19.4K	8.0K 7	7.0 x 5.	5.8 4	47F 4	42F 4	3 4.7	75 4.9		5
22	3.7	3.4	2.5	2.8	(25)F	274	2.5	3.95	U	O	67	7.1	2/1	7.4 6	6.7 6		6.6 7	45 5	5.75 4	4.9 3	3.3E 2.7	77 23-1	-F 2.1	F
23	1.9F	2.2F	2.3F	2.4 F	2.4 F	2.2 F		3.95	15-6M	6.2 %	7.2F	8.8 F	8.1 9	9.0	8.2	8.5- 4	4.6 6.	6.75 6.	50	3.8 F (2)	(2.7)\$ 2.7	15 2.9	3.5	
24	2.00	4.4	2.6 F	2.8 1	235	2.15	2.2	436	5.75	(7.0)	8.6 F	8.0 F	7.3 5 8	8.2 7	7.5F	7.9 7.	44	6.4 5.2	2 F 4.6	¥	3.0 E 2.3	18	. 4F 2.4	1
25	25F	2.75	2.7 F	2.7	2 if A		- 2.9F		6.0	6.6	47F	86 F	8.2F 8	8.12	82 (8	(8.0) 5 (7.	6)3	7.25 5.3	Ŋ	4.35 3	35 3.1	15 2.7F	75 (2.5)	15/-
26		2.5. F	2.8 F	3.15	3.0 F	2.00	2.8 4		6.5	7.2	8.5	85	9.0	1) 98	(10.2)5 10.	0.0 10.0	85	(10.0) 8 6.	6.8 5 4.	4 6 3	SF 3.	2F [33]	18 (3.5)	5(2)
27	3.2. K	SieA	25.5	3.4E	3.4	3.1 F		5.18	7.3	7.0	4.4	8.9	9.8	9.4	9.2 9	8	8.2 8.	9	9.9	.3 4.8	7 4	2.8	3.8	, F
28	4.0 5	(3.9) 5	(3.2)F	(3.3)	71.E	200	2.5F	5.0 %	6.57	7.2F	9.7	9.7	9.4	9.3	0.01	4.	3 (9	(4)5 6	7	5.0 3.	4 2.	9 128		
29	2.4 6	S	U	0	U	J	J	S	U	787	9.2P	1.6	9.6	9.15 9	7	10.0 9.2	5	18/	88	7 (3	·5/5 3.	2 (3.1)	OR	7.
30	42.50	2.7	2.6 F	26		2.6 1	2.7	(5.6)	B.8 F	8 OF	9.0	0.0/	9.8	0.5 10	737	01 8.01	0.0/	8 50.0%	0 20	6.8 5 4.	9F 34.	5 8 3.8	F 3.8	ن مر
- 10	3.6 7	25F	13275	[3.6]F	2.6F	2.7F	2.6 F	4.9F	6.2	7.0F	2 + 8	16	8.9	0.9	5	9.05	5 6 7	12 F 6	5 12	:7F 3	6 3.8	7.4 7.	4	9 F
	,															culper								
Median	2.6	2.7	8.8	3.2	3./	20	2.7	++	0.0	7.0	8.1	4.8	8.1.8	2	1.2 7	8	2	6.9	4	44 3	7 3.2	2 2.9	~	8.
Count	31	39	29	30	30	29	28	30	39	30	3/	3/	31	_	31 31	0	10)	1 31		31 3	1 31	3/	3/	

 Form adopted June 1946

January 1951

Km Jar (Unit) (M Washington, D.C.

h.

Observed at

IONOSPHERIC DATA

National Bureau of Standards
(Institution)

B.E.B. L.H.E. By. H., McC.

Scoled by: B.E.B.

Observed at		F					1											1						
	Lat	38.7°N	- , Long	77.1°W							7	75°W	Mean Time	9				Co	Iculated	Calculated by: L.H.E.	-	B.E.B.	McC.	By. H.
Day	10 00	0.5	03	04	0.5	90	07	90	60	01	=	12	13	4	15	91	17 18	61	20	-	2 12	22	23	
-									a	230	240	2004	230	230 12	(230)5					_				
2									240	210H	[210]A	210	200 ((250)	a									-
ю,								D014	a	220	210	200	230	230	a					_		_	-	
4									ø	B	Ą	A	130 :	230 2	250					_				
Ŋ									Ø	(240)A	(240)	(230)	236	A	В									
9									240	230	230	210	240	240 2	240				_	_	-	_		
7									Ø	220	(240)A	250	[240]8	220 (2	8(092)									
αο									240	230	230	210	2004	230	8					-				
თ									230	200H	230	210	200 H	220 2	250					-		-		
01									Œ	210H	240	210	200	230 2	240 2	240								
=									240	220	220	240	240 .	240 2	250			_						
12									Ø	230	240	2204	130	220 2.	220									
13									240	230	210	230	210 3	210 2	240			_	_	-				
4									200#	(200]	210	200	210 ;	210 2	240				_					
15									220	230	230	210	220 %	230 2	230									
91									a	230	220		210 3	210H 2.	220 2.	230					:			
17									130	210	210	[210]	210 :	210 2	200					_				
80									Ø	220	200H	220	210	220 2	210 2	210								
61								(220)8	190	200	230	200	200	210 (2	(200)4									
20									220	210	٨	4	₹	A	8				_			_		
21									a	200 H	220K	220 K	210K 2	200K 2	220K				_		-	-		
22									J	J	190H	[200]0	210	210 7	220 2	220								
23									Z	230	200H	200H	210H	230 2	210									
24									Ø	210H	210	200	200M	200 2	220 2.	220			_					
25					`				d	220	210	220	200	200H 2	210 3	210								
56									200	200H	230	130 #	200	210H 2.	220H 2	240					_			
27									210	200	230	200	200H ;	220H (2	(230)4				_	_				
28									В	220	230	200	200	230 2	230 /	A								
29									Ø	210	230	210	200		210									
30						,			Q	a	210	210	200	210 2	220 2.	220								
3.									240	220 H	240	220	220	220 2	230 2	240								
						_								\vdash	-									
Median								1	230	220	230	210	210 2	220 2	220 2	220								
Count							_	`	*	28	44	62	0 %	49	36	6								
										0	-	0 20												

Sweep 1.0 Mc to 25.0 Mc In 0.25 min Monual

Automatic

Monual TABLE 54
Central Radio Propagatian Labaratary, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

, Mc January 1951

(Characteristic) foFi

McC., By.H. By. H., McC. Scoled by: B.E.B., L.H.E., By.H., N 23 Calculated by: L.H.E., B.E.B. 22 2 20 6 <u>a)</u> 17 9 3 6.3 ĺ 2 3 2 2 G 3.87 4 3.9 3 3 3 4.0 4.2 40 15 4:1 2 × × 75°W 2 3 3 O = 3 3.9 0 0 3 3 B 60 3 Q d J Z G 00 a 2 0 G B B G 90 2 07 90 0.5 Lot 38.7°N , Lang 77.1°W 0 4 03 Washington, D.C. 02 0 Observed at __ 00 Median Count Day Ю 9 9 8 4 S 7 ω 6 12 4 2 9 8 20 22 25 = -1 6 24 26 27 28 29 30 31

Sweep 1.0 Mc to 25.0 Mc in 0.25 min 8

Manuol

Automatic

Manuol

Form adopted June 1946

Scoled by: B.E.B., L.H.E., By.H., McC.

IONOSPHERIC DATA

h'E Km January 1951 (Characteristic) (Unit) (Month) Deberved of Washington, D.C.

12 13 14 15 16 17 18	1	Observed at	Lot 38.7°N , Lon	Lot 38.7°N	. 6	77.1°W	7						7.5	75°W	Mean Time	e.					Calculated	Calculated by: L.H.	ш	B. E. B.	McC., By.H.	
(110) ⁵ E B B E E C (10) ⁴ (10) ⁵ (110) ⁵ (110) ⁵ (110) ⁴ (110) ⁵ (110) ⁴ (110) ⁵ (1	(110) 5 B B B B B B C (10) 4 (10) 5 B C (10) 5 B C (10) 4 (100) 4 (100) 4 (110) 5 B C (10) 4 (110) 6 (110) 6 B C (110) 6 (110) 6 (110) 6 (110) 6 B C (110) 6 (1		ō	0.2		0.4	H	-	-	80	60	0	=	12	13	14	15	9	17	H	6	0	H	_	29	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(13a) ⁴ (1/a) ⁴ (1/a) ⁴ (1/a) ⁴ (1/a) ⁴ (1/a) ⁴ (1/a) ⁵ (1/a) ⁶											PA		ρα	PO		4(011					-				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(130) ⁴ (1.20) ⁴ (1.20) ⁴ (1.20) ⁴ (1.20) ⁵ (1.20)										110		1 1			P		₽Q.								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(130) ⁴ (110) ⁴ (110) ⁴ (120) ⁵ (110) ⁴ (11									120	120				120		1 1	30								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(130) ^A (110) ^A (110) ^A (110) ^A (120) ^A B B B B B B B B B B B B B B B A A A A										PD	ρα			_	S	l i	A(01.								
130 [12a] A 12a 13a 3 3 3 3 1 A A S B	130										(130)4	(110)	6110)4	- 1	28	₹		A								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120									pa	/30		120	120	B	8		to		-	-					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120						-				A	A	S	B	R	R										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120										120	120	130			_~		30)8								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120										4	100	2		120)5		4	A								
120	120									5	120	120	120	0//				30)78								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120										₹		[120] B	-	١.	5	2	20)B		_	_	_		_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 110 110 170 170 170 170 170 120									B	120	0	120	-	011			0/.								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 13 13 13 11 11 11 11										110	011	0//	0//	0//	-	_	20								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2 0 1,2 0 1,2 0 1,2 0 1,1 0 1,2									S	R2	100	pa	B	011	\vdash	_	201A								
A (120) ^A (120) ^A (120) ^A 120 120 120 130 ^B A (120) ^A 110 110 110 110 110 110 110 110 110 110 100 110 11	A (120) ^A (₹	120	120	120	120	0/1	ļ		A(00,								
120 120 110 [110] C 110 [110] B 110								_			₹	(120)A	(13 9)	(120)	120	-	_	30)8				-		-		
120 120 110 110 120 110	1,20									A		(120)A	0//	2 [1/3]	0//	\vdash	١	11 011								
100 100 110 120 120 4	1,0 1,00 1,00 1,20 1,20 1,00 1									(120)	12	120	011	011	0//			10)4								
1,20 110 100 100 100 100 1 A A A 100 100 100 100 100 120 120 100 100 120	1,20 1,00							-				001	0	0/1	02/	A(001)		R								
100 100 100 100 100 100 100 120	100 100 100 100 100 100 100 120										120	011	-		001	100	7	< <								
[100] ^A 100 [100] ^B 100 100 100 100 100 [110] ^A 100 100 110 110 110 110 110 [110] ^A 110 100 100 100 100 100 110 [110] ^A 110 110] ^A 100 100 100 100 100 110 [120] ^A 110 110] ^A 100 100 100 100 100 100 [120] ^A 110 110] ^A 100 100 100 100 100 100 [120] ^A 110 110 110 110 110 110 110 [120] ^A 110 110 110 110 110 110 110 [120] ^A 110 110 110 110 [120] ^A 110 110 110 110 110 [120] ^A 110	[1.0] 100 [1.0] 100 [1.0] 100 [1.0] 100 [1.0] 100 [1.0] 100 [1.0] 100 [1.0] 100 [1.0] 110 [1.0]									5	100	1001		100K	100 K	*	*	204						_		
[10] 100 1 110 (10) 110 110 110 110 (100) 110 (100) 110 110 110 110 110 110 110 110 110	[[10]] 100 110 (110) (100) 110 110 (100) [(100)] 100 100 (100) 110 110 110 [(101)] (110) 100 100 100 100 110 [(101)] (110) 110 100 100 100 100 [(101)] (110) 110 100 100 100 110 [(101)] 110 110 110 110 110 [(101)] 110 110 110 110 110 [(101)] 110 110 110 110 110 [(101)] 110 110 110 110 110 [(101)] 110 110 110 110 110 [(101)] 110 110 110 110 [(101)] 110 110 110 110 [(101)] 110 110 110 110 [(101)] 110 110 110 110 [(101)] 110 110 110 110 [(101)] 110 110 110 110 [(101)] 110 110 110 [(101)] 110 110 110 [(101)] 110 110 110 [(101)] 110 110 110 [(101)] 110 110 110 [(101)] 110 110 110 [(101)] 110 110 [(101)] 110 110 110 [(101)] 110 110 [(101)] 110 110 110 [(101)] 110 [(101)] 110 110 [(101)] 110 110 [(101)] 110 1									1.10	J		001	[00]	001	00/	-	001								
(100) 100 (100) 110 (110)	(100) 100 100 100 110 110 110 110 110 110									S	[110]	100	0//		4(001)	0//		1,00								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1,0) ^A (1,									(011)				1 1	011			0//								
[(100)] ((100)] ((10)] (100 100	[100]^A (100]^A (110]^A 100 100 100 100 100 100 100 100 100 10						_			100		110)4	001	100	100	Н	-	1/0/4								
[\(\lambda \) \(\lambda \) \(\l	[[\(\text{Loo}\)]^4 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\											(100)A	9(011)		001	\vdash	-	00.		_						
[100] B B 100 100 100 100 100 100 100 100 100	[100]B 100 B 7B 1/0 1/0 1/0 1/0 1/0 1/0 20] 1 10 1/0 A A [1,0] 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0									120	(120)4		A(011)	_	0,0/	-		0/1						_		
100 100 100 110										(100)			B	PQ	00/		-	A(00)								
[10] 110 A A [100] C 100 A A [10] 110 110 110 110 110 120 110 110 110 110 110 110 110 12 26 23 24 27 27 28 22	[[o]] 10 A A [[o]] (00 A A A A A A A A A A A A A A A A A A									J	S	001	B		-		-	0/1	S							
[10] 10 110 110 110 110 110 120 120 120 120	[[0]] 10 110 110 110 110 110 120 120 120 120									0//	011	011	4		7 601	100	7	A								
110 110 110 110 110 110 110 110 110 110	110 110 110 110 110 110 110 110 110 110									100	[100]	011	011		_	011		20	5		_	_				
110 110 110 110 110 110 110 110 110 110	1/0 //0 //0 //0 //0 //0 //0 //0 //0 //0																									
22 26 23 24 27 27 24	22 24 24 24 27 27 24 24 25 25 24 24 Sweep 10 Mc 10_250 Mc in_0.25_min									110	110		0//	\dashv	0//	-	-		-							
										6	22	26		44	47	47	_	77								

Manual

Automotic

Manual

Form odopted June 1946

Scaled by: B.E.B. L.H.E. By.H., McC. Colculoted by: L. H.E., B.E.B., McC., By. H.

TABLE 56
Central Radio Propagation Labaratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

- Mean Time

75°W

90

07

90

05

04

03

02

ō

8

Poy

Lot 38.7°N , Lang 77.1°W

Observed of Washington, D.C. (Characteristic) (Unit)

January 1951

(Month)

23 22 2 50 6 8 7 [2.0]A 2.04 2.1H (2.2) 9.0 70 'n 33 ∢ T Q (3.0)5 (2.8)2 [2.5]8 [2.4]B (2.4)P 2.8P 26P 7.4 2.5 2.5 2.8 5 B 8 B 3.0 2.6 2.6 2.6 4 Ø 3.0 (3.1) 5 3.3 3.0 1. 00 30 3.1 2.9 (2.9) 8 2.8 10 2.97 (3.0)4 3.0 3.0 3.0 3.0 3.1 3.0 3. 3.0 3.0 3.0 (2.7)\$ 3.0 3.1 3.00 200 (2.2) \$ [2.4] 4 2.6 2.9 2.9 S 90 2.9 200 3. 2,5 2.7 2.5 \$ 2.9 8 60 2.7 30 0 ₹ α 0 T (4.4)A 2.44 2.6 2.5 2.5 2.3 2.5 2.3 2.4 ∢ 60 T S B ⋖

2.1

0

2 9 4 2 9 1 8 <u>6</u> 20 2 22 23

B

₹

φ

Sweep 1.0 Mc to 25.0 Mc In 0.25 min 76 76 34 74

1 ~

7.7

⋄

8 00

3.0

3.0

3.0

2.7

7.4

2.0

Median Count

23

77

70

13

1.9

2.5

⋖

2.7 2 ې 2

3. 2.0

3.2

3.

3.1 4

2.9

5 B

3.

3.

80

₹

9.0

3.06

2.9

√.

3. ∀

3.0

2.0

A(4.5)

6.1

K

e v

2.4

7.0

2.2 K

2.4 K

2.9 K 2.8 K

3.0 K

2.8 K 2.9 F

2.7 K 4.6

2.3

J

00

∢ ∢

2.7

3.0

30

2.9

9

2.5

4

V

∢

4

3.6

3.9

2.978

2.7

7.4

'n

ر 00

3.0 80

3.1 H

5.2

2.8F 3.1

2.5

2.0 200

24

25 97 27 28 53 30 3

3.1

3.1

3.1

2.5H 3.0 12.4JA 2.8

2.0 H

∢

3.0 2.7#

3

[3.0]4

[2.3]M 2.9

2.00

29/8

6:/

2.6

9.0

30

3.0 3.0

3.2

3.1

3.0

3.

3.1

[39]

7. A O

7.4

12.7]4

Monuol

Automotic

Monuol

Form adapted June 1946 McG. Bv. H. Scoled by, B.E.B., L.H.E., By H., McC. National Bureau of Standards E E Coloulated by L.H.E. IONOSPHERIC DATA 75°W Mc, Km January 1951 77 10 W Washington, D.C. . 38.7°N

(Characteristic) Observed at __

				17	40	0	90	07	08	60	0	=	2	13	4	2	91	1	8	6	00	-	00	23
Day	00	10	02	2	-	2						1	-	-	-		-			>	2]	
-	£0110.#	011	E	E	E		Ш	E	E	B	9	9	9	P	9	35/10	E	E	E	E	E	F	3.3 1/10 3.	2/10
2	E	H	E	E	2.81/10	E	W	32/10	2/110	9	9	53110	37110	27,100	32,100	G	9	W	E	E	30/100	E	E	E.
m	Le	EZ	2.8 110	2.4 110	24110	H	01/01/2	o E	9	45/30	33/20	31/5/10	3.0/20	()	011/119	9	B	E	E	E	E	8	8	20
4	E		tu!	120	40/20	4.8 110	73 100		2.0/30	b	B	120	986	01104	Lb	3.1 110	(40)20	E	29/120 ((60)5	E	0/20	E
5	E	E 3	5.0 5	72 120	130	E	19/20	5.0 /30	E	30/30	011/09	52 110	011/89	9	40/20	5	34/20	E	56120 6	38)50	91,50	E	E	.8/20
9	4.7/20 3	120	26/20	13	20	5.0	3.6	o E	6	27/30	2.7 130	5	S	9	9	৬	9	17/20	E /	19/30		E	E	E
~	E	Ш	F	33 130	20	92/20	6.0	01/0.8)011	3.2/20	0110.9	011 5:4	33/10	b	b	(5)	ı	Ш	M			3.2/10 #	4.0/00 3	3.0 100 3	33 110
Ф	120	£120]s	30/20 37 120	37 120	35 110	52 /30	0.0	0 48120	36120	P	42/20		5	v	(5)	G	G	M	E	F	F	E 3	39,20 3	30/10
l l	3.5 110 5	56 100 2	25,00	Ш	1.7 120	73		26110	35/10	3.5 1,00	B	6	29,20	5	6	3/110	29,20	32/20	3.1 110	E	31 110		E	А
0	E	E	H	Ы	E	E	F	E	9	P	y	9	Ŋ	(b)	b	0	P	E	E	F	Щ	E 3	3.1130 4	4.91/20
=	56/20 5	0	39110	31 110	E	E	Ш	33,30	2.4/30	42/30	9	S	G	56,100	9	G	Ġ	E	E	Ч	3.4/20 3	3.0/20	E	E
12	E	E	E	F	E	E	F	E	9	5	9	G	y	P	6	B	5	F	E	E	E	Ш	E	E
10	LLI	E	Ш	Ш	Ш	E	Ш	П	ш	G	P	Ŋ	P	P	B	5	B	Ш	F	Ш	E	F	E	E
4	Ш		3.0/100	Ш	LLI	Ш	ш	Ш	B	B	G	G	0	G	P	r	23 50	Ш	Ш	Ш	E		E	E
15	E	F	Ш	W	E	E	E	Ш	28/110	9	011011	G	U	4	6	0	30/00	F	F	E	30/10	E 4	4.2,100 3.	5,000
91	28100 2.	100/9.	001/	Ш	E	Щ	33/10	011820	E	3.3/00	20/00	1.9 100	23 100	5	9	B	B	F	E	Ш	E		1	E
17	E	E		24 110	H	25 1110	22/10	01107	3.1 1/10	3.4/10	701/00	5	U	b	Ŋ	B	9	Ш	F	M	F	F	F	E
18	E	E	E	Ы	ш	E	E	E	28/20	9	U	0	O	G	20/00	27/100	00/8/	F	2.8/20	ш	ш	E	Ш	H
61	E	Ш	Ú	C	U	Ч	ш	Ŧ	Ш	9	0	9	23/00	28100	39 100	5	6	Ш	ш	Ш	H	E	E	E
20	E	E	Ш	E	Ш	F	ш	F	Ш	5	6	4.8,00	5/100	4.8100	45 100	30100	36100	30/08	F	27 100	E	F	E	E
2 !	E	LLI	Ш	Ш	F	73100	E	E	6	9	S	b	U	5	Ŋ	b	5	E	Ы	F	Ш	ш	F	Ę
22	E	Ш	F	E		F		F		U	U	5	ı	()	b	6	(b	E	F	F	Ш	E	Ш	ш
23	E	E	Ш	F	Ш	28100	N	2.3/00	6	£	5	32,30	3/100	19 100	6	3.8/20	8.2,00	49110	33 110	63 50 6	64,20 5	54,10 2	011 +	LJ
24	Ш	F	Ш	E	E	E	H	Ш	9	3.7/20	9	9	33,00	5	43/20	#0120	33110	E	32,00	2.7 100	Ш	Ш	F	H
25	E	Ы	E	F	F	E	23110	1 3/100	2.5/00	1.8 100	2/100	1.8 100	U	O	B	38/20	23 110	E	E	F	Ā	F	E	F
26	Ш	Ы	F	F	E	Ш	Ш	F	E	431,00	40/00	9	G	U	6	3	(b	Ш	3.0/100	u	E 2	61,30	8.4 110 6	6.0/50
27	(L)	E	Ш	F	Ш	F	F	E	5	35/20	3.9/20	35 110	Ġ	Ó	011/08	2.7 110	6	Ш	E	Ш	Ш	E	A	E
28	E	E	ш	F	Ħ	22110	W	Ħ	2 2/00	6	37,20	6	0	G	6	U	2.7 100	ш	М	A	Ш	A A	120	38/20
29	F	E	C	U	U	C	U	0	U	0	6	90/20	5	6	9	5	Ġ	9	П	M	E	ш	EZ	2.9 1/30
30	2.5/20 4.	011 2.	ш	E	F	2.5 100	2.9,100		B	O	43 110	29,100	00184	U	5	2.5 100	26 100	2.7 100	2.2/00 1	1.8/00	Ш	ш	E	E
-60	F	E	E	Ы	W	Ш	E	U.	ن	100	14 100	G	9	Q	B	G	O	9	E	Ш	듸	E	E	П
Medlan	*	*	*	**	*	*	**	*	*	*	**	*	*	*	*	*	*	*	*	*	*	*	*	**
Count	3/	31	29	2.0	20	20	000	7	7	00		, ,	100	4		-		10	00	2	1.6	4	-	

** MEDIAN fes LESS THAN MEDIAN fOE OR LESS THAN LOWER FREQUENCY LIMIT OF RECORDER.

Form adopted June 1946

Scoled by: B.E.B., L.H.E. By.H. McC. National Bureau of Standards

TABLE 58
Central Radia Propagatian Labaratory, National Bureau of Standards, Washington 25, D.C.

DATA ONOSPHERIC

January 1951

Washington, D.C.

Observed at

(Unit)

(MI500)F2

McC., By. H. (2.1/3 (61) (o.x) 2 (61) (1.9)3 (1.9) 1 61 (1.9) 7.93 (1.9) (1.8) 5.0 2.0 ٠. ک 6.1 23 0. 7.8 3.0 7.1 13 7 1.8 1.8 1.8 ż 7 6.1 6.1 30 Colculated by: L.H.E., B.E.B. 5 (1.2) (2.0) (2.0) 3 (2.0) 1(6.1) (1.9) 5 2.0 F 20 0 5 (6.1) 5(1.2) 2.0 7 1.9 5 1.9 + 6.5 0 5.0 3.0 22 1.9 7 6.1 1.9 - '~ 1.9 9 1.9 pa ₹ 2 1.9 F 7.0 K (1.9)3 (2.2) 1001 2.0 5 5.0 νς, (6.1) 3.0 0 0.4 0.4 6.1 3.0 52 9 6./ 2.2 2 6.1 1.9 00 P T (4.1) 3 (2.1) F 1.9 5 (4.1)3 (25)3 (2.3) 2.1 (2.3) 2.3 4 7.7 3.0 44 6.4 ペヤ 2.0 8 x.x 2.3 8.0 7.4 20 1.4 マ ž 7.7 ر. ج 20 19 7 (2.4)3 (2.2)5 (2.1)3 (7) (2.3) (2.3) ンナマ く 8.0 8 4 7.4 7.7 4 4.3 8.3 7. 2.7 2.3 23 3 3 Ϋ́ 6 7.7 7 4 50 2.2.2 (2 2) F 2,5 (2.2)3 (77) 7.7 (2.3) (2.3) 4 3 2.0 7.1 7 2.0 44 4 4.4 4 7.3 2.2 2.2 2.2 75 77 2.2 1.8 3 7.7 7.8 7 3 ñ (2.2)3 (21) (4.1) (4.3) 2.1.2 2.13 4 2. y.K みと ż 2.4 7.7 4.4 2.3 8 2.3 2.2 7.7 7 2.2 32 3 7.8 3 7.0 7 7 2.2 ~ 7 (23)3 (23)5 (2.2) (2.1)3 5(1.2) 2 2 みよ 7.4 2.4 2.0 マイ 4.4 3.2 چ. ن 7 7 7.4 2.4 4.2 2.3 2.2 4.7 7 4 2.5 7.7 3 7 3 8 3, 9 (2.1)3 22 2.2 2.2 7. 7 24 7.7 2,4 4 73 2.0 7.7 ત જ 3.3 ~ 4.8 2.3 7.7 2.2 η γ 7.4 2.3 53 3 2.1 7.7 7. 7.4 2 3 3 4.4 4 4.6 7.7 4 6.4 ママ 4 7.7 30 2.4 7 2 5 3 ų. 3. 7 7.7 8 4 2.3 3 8.3 7.7 4 7.70 7 7 1.7 J. 7 1.9 7 Mean Time 2.1 1 2.27 227 2.2 بر بر -7 4 7. ر ب 0 7. ۶.3 2.4 7 3.3 8 <u>10</u> 7. 3.2 2.3 7.4 2.2 U 215 x. 4 7 ς ω 2.3 4 7. 7. 4.4 44 <u>-</u> 22 2.3 0 75°W 2.5 4.4 2.3 s, S 4 39 2 U 714 الم بخ (2.3) ~ S D 2.3 2.2 д.3 8.3 3 7 2.3 4.4 د 3 4 2.3 2.7 = 3 2.2 (2.3) 2.2 4 4 (2.3) λ. 3. 2.3 7.4 3 4.2 4 8 4.6 2.3 λ, 3 ج. ع 7.4 4 30 0 5. 7 2 IJ 7.3 2.5 4 7.4 3 'n 4.4 in 7. 8 ا ر ج ن 3.3 2.4 7.4 5 9. 2.3 3 7 4 22 s, is 3. 2.2 60 29 U ₹ 22 2 1/2 2.57 2.2.2 (2.5) 7.4 (2.3) (4. K) 2.4 2.7 20 4.4 2.8 2.3 2.2 3 7 6 بر رن 2.3 7.7 4.6 30 9 2.4 (2.1) 40.5 (22) 20.8 (2.1) (x :x) 4 33 3.0 2.0 0.4 3 1.9 6/ 1.9 4 2.2 4.7 07 2.1 20 30 1.9 F (22) 1.9 7 2.07 2.2 F 125 (2.2) (20)5 (1.4) 2.3 F (2.1)3 20.0 70.2 2.0 20 2.0 8 7.7 0 20 2.0 7.7 7.0 90 T 7.00 7 7 U 33 19 5 2.1 F 7/2 2.0 4.2 0 3 7.7 0.4 2.0 05 9.2 7.7 7 7.7 6.1 1.8 2 U T 19 5 20.4 (22)F 2.05 C(1.2) (2.1)F (19) (0.4) 2.0 1.9 F (61) r 0-1.9 20 2.0 7.0 Lot 38.7°N , Long 77.1°W 04 61 20 1.9 らら 7 7.7 23 7.6 ~ J S ૠ 1.9 F 1.9 F 19 5 2.0 (21)3 20.6 20% (0.0) 03 702 1.9 (2.4) 6. 6.1 1.8 1.9 2.0 0 8 1.9 22 7 1.9 Ц 1.9 ∢ c) i 76 (1.8) (1.9) \$ 2.0 % (0.2) 7 6.1 (1.9) (2.0) (2.0) 1.9 5 200 0 1. 6.1 1.9 2.0 1.9 0 1.9 1.9 6.1 6.1 00 6.1 1.9 O T ્ર 20 % (2.0) F (1.9) 3 (81) 1.9 F (2.0) C(8.1) (1.9)3 20.2 (1.9) 7 - 7 1.97 2.0 12 2.0 0. ŝ 0 1.8 ٥ ٧ 4 6.1 1.9 2.0 1.8 9 7:1 5 R 49 (2.0)3 8(61) (2.0) (1.9) く 0.6 2.0 301 (6:1) 80 (2.0) 6.1 6.1 2.0 6.1 ~ 1.9 00 7. 20 6.1 ż 1.9 1.7 43 ∢ 2 Median Count N Ю 4 2 9 ~ œ თ 0 <u>–</u> 4 9 17 8 20 ĝ = 2 6 24 56 2 22 23 25 27 28 29 30 ы П

Sweep 1.0 Mc to 25.0 Mc in 0.25 min

Form adopted June 1946

Standards

National Bureau of

McC.

B.E.B., L.H.E. By.H.

Scaled by:

TABLE 59
Central Radia Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

January 1951

Washington, D.C.

Day

N

4 2 9 7 00 Φ 0 _ 2 Б 4 12 16 _

(Unit)

(M3000)F2

DATA ONOSPHERIC

McC. 2.8 F (29)3 2.9 F 275 (28)F 2.9 4 (2.9) F (3.1) F (28)F 30F (28)5 (28) 30 2.00 30 0 29 3.0 3.6 2.9 23 83 53 3 30 3. L.H.E., B.E.B. (2.9)5 2.85 (30)3 29 F 3.2 F 295 25.5 (30)3 (30)3 305 3.0 30 5 295 2.9 2.95 3.2 3.0 3.0 3.0 2.8 29 2 31 50 22 8 T (29)5 3.3F 287 (2.7)5 (3.2)3 3.0 30F 30 3.0 78 0 3.0 3 200 30 0 2 3/ 2 T 00 (34)5 (31)5 (30)5 (21)3 3.0 F S. S. (3115 30 32 3.4 (32) 3.1 200 31 301 33 30 3.1 3.5 33 20 3.1 T (32)5 325 3.25 (34)5 34 3.2 (3/)3 30 F 32 3.4 3.4 32 (33) (33) 33 34 3 0 3.2 3.0 34 6 32 34 3 33 3 3 (3.3)5 32 F (33)5 32 3/5 (33)2 (33) 3.2 3.0 32 32 30 32 3 3.18 3.1 32 33 33 32 5 31 (31)F 34 315 3.1 32 33)5 3.25 (31)3 34 3.4 32 30 3 32 6.3 32 32 32 31 3 3 325 35 X (3.0)3 3.33 (3/)3 333 3415 (32)5 32 32 30 305 3.2 3.6 32 22 32 34 3.2 32 32 32 3 3 34 3 3.1 31 9 Š 3/5 31 F 30 34 3.4 7.4× 32 32 3 32 32 32 32 3 3 3 3 32 34 3 3 3.2 32 5 3.2 31 2 34K 3/5 324 200 30 F 32 34 32 34 3/5 27 32 32 36 34 30 32 3 3 4 32 4.8 3.1 31 33 3.4 3. 3 3 315 32 5 325 345 33 K 315 33 F 30 5 31 332 3.0 327 2.2 30 3.1 31 33 3 34 32 2 32 30 33 18 3.2 32 3 30 10 U 3.32 337 3.2 3 34 34 34 34 30K 32F 315 30 3 32 34 3.1 3 3 32 33 30 75°W 7 U (34)5 345 3/5 ر دن ۳ 34 33 3.3 32 23 3.4 34 3 3.2 3.4 34 3 33 3.3 3 = 3 33 33 3 3 3.1 36 31 341 345 345 (33)F 33 33F (33)F 33 7 3.2 3.1 # 35 F 31 + 32 F 3.3 3 34 3.5 3 3 3 3.2 32 3 33 3 3 3 22 3 3 30 3.1 0 U 33 F 345 365 34 # 337 33 F 33 F 3.74 36 5 34 3.4 3.2 34 34 32 34 3.2 3.3 3 3.4 3. 23. 32 3 34 3.1 5 ξ 3 29 60 3 U 365 362 35 F 33 F (33)F 345 (3.5) 5 345 35 36 F 3.1 F 3.4 34 3 34 3 3 345 6.3 35 34 36 3.4 36 36 3.4 30 (35) 08 U 345 (3/) 31 F 295 29 7 305 2.91 32 F 33 F 337 (32)5 31 1 (32) 7 3/5 3.1 200 32 + 31 23. (32) 30 29 325 33 30 30 30 3.2 32 4 3,1 30 32 07 (32) 29 8 3.21 335 30 F (3.2)F 28F 30 5 31 285 30 F 33 F 30 F 295 305 30F 30 F 30 F 30 5 (31)3 (31) A (32) 30 4 31 F 30 31 3.0 90 T 31 U 29 315 295 305 29F 30 F 305 30 30F 31 29 5 30 F 3.2 32 5 305 3/5 305 315 3/5 315 32 5 3.0 285 3.4 32 0.0 32 F 33 27 0.5 ₹ U (29)A 295 285 29F 345 795 30 F 315 32 F 29 F 305 295 305 315 (3.1)F 205 32 F (32)5 30 30)4 30 325 3.0 31 (3.1)F 30 , Long 77.1° W (30) 04 32 U 28 U 298 29 F 29F 28 5 29 5 315 29 F 28F 30 F (31)F 32 F 305 30 F (30) 305 3/5 29 F 275 30 (31)3 (29)5 (30)F 295 50 2.9 4 29 2 00 03 K T U 36 U 30 5 285 29 5 200 (28)F 285 3.0 F Lot 38.7°N 200 295 (29) 5 (28) 5 200 28F 29.5 28 F 29F 285 (2.9)F 29 4 (28)F 245 2.8 30 F 2.8 50 3.0 02 U U 28 (2.7) 5 305 25F (28)3 295 295 30 F 295 30 F (30)F (30)5 (27)5 30 F 295 28 F 295 30 29 295 205 (28)F 23 3.0 294 7 2.9 3.1 29 29 29 0 8 LL_ (2.9)F (29)F (3.0) 305 29F (2.6) F (30)5 (28) 30 F 295 30 F 300 315 305 3.0 4 200 3.0 F (30) 29 F 2.9 F 285 29 29 200 20 32 5.5 00 S 3. 29 T 3. Observed of

6 20 2 22 23 24

18

26 27 28 59

25

Sweep 1.0 Mc to 25.0 Mc In 0.25 min Monual

Automotic

Monual

Median Count

33

Б

TABLE 60
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

Form adopted June 1946

Notional Bureau of Standords
(Institution)
Scoled by: B.E.B. L.H.E. By.H., McC.

ropogotion Loborolory, Notional Bureau of Standards, Washington IONOSPHERIC DATA

(M3000)F1 Januory 1951 (Month)

McC. By. H. 23 Colculated by: L.H.E., B.E.B. 22 2 20 0 0 _ 9 ſ 2 3.8 ľ Q 3.7 4 4 1 [3.7 Meon (a, b) 3.7 3.9 10 2 75°W 2 T (3) (3) = 1 1 0 S a 60 [3 a a 0 Q 0 a a 0 Q 0 a 08 1 07 90 0.5 Lot 38.7°N , Long 77.1°W 0.4 03 Woshington, D.C. 02 0 Observed of 00 8 2 9 = Median Count ю 2 4 9 12 13 4 15 91 O 17 18 6 20 23 23 24 25 Day ~ 28 29 29 31

Sweep_1.0_ Mc to 25.0 Mc in 0.25_min
Monuol □ Automotic 図

Form adopted June 1946

Scoled by: B.E.B., L.H.E. By.H., McC. National Bureau of Standards

IONOSPHERIC DATA

January 1951

(M1500)E (Unit)

N . 00 to 1																				7 7 7 7 7
LOI,	- , Lang.	AA							-	1	Mean Time				Cal	Calculated by: L. M.	L. n. E.,	0.0.0	, MICC	, By H
00 01 05	03	40	0.5	90	0	0.8	60	10	12	13	4	7	91	17 18	61	20	21	22	23	
							S	B B	8	P	9	K								
								BA	4	4.2	₹	4.3	(38)5							
					#	co.	(42)A	A	₹	4.2	4 4	3.9	39							
							- 1	B 4.3	3	A	4.2	4	A							
							-	A	4	B	₹	R	4							
					,-	-B ((4.3)8	A 4.2	7 + 7	7 B	73	73	7							
								S	B	12	e e	pa								
							28	1.4	_	(39)8	5 (88) 5	22	4.0							
							_	98 (04)		(4.0)A (42)S		∢	T							
					w	3.6	S	41 42		1.4.1	7	77	(3.9)							
						-	4	1.7 5 1 4	1.4	1.4.1	1.4	3.8	4.2							
					124	7 8	0	4.0 4.0	1.4	1 4.2	4.2	7 43 P	4.2							
							36 H JE	3.8 4.0		1 42	4.1	4.2	4.1		_					
						S	9	8 8		(42) B 4.2	4.7	(4.0)P	4							
						A	40 3.	3.8 4.0		1.4.1	1.4.1		3.4 #							
						3	*	39 4.1	0.4 /	-	H	4.2	4.2#							
					_	A	3.6	3.9 4.1	0	4.1	4.3	PO	H 9.7							
					V		4.1.4	4.1 4.0	0.4.0	0 4.1	-	Ĺ	4.1							
						1	4.1 3	3.8 4.2	1.4.1	1 4.2	6.4.3	T	82							
						4	3	4.3 4.4		4.3		<u> </u>	K							
					4	4.1 14	43 4	4.4×	4.4 × 4.4	X	5 K 45 K	1 7	*							
					*	4.3	7	C 43	3 F 78	7	5 4.4	1.4	4.1							
						S	W W	4.0 A	4.0	4.4	4.5	4.3	¥							
					4			4.2 F 4.2	2 4.3	3 4.4	H.4	45	4.6							
					*	4.04	4 1 4	4.0.4	4.1 42	7.7	2 4.4	4.5	4.6							
							A	4.5 4.1	1.4.6	4.4	4.5	7.7	4.6							ì
					7	1.7	A	4.3 A		4.6 4.5	5 4.6	A	42							
					A		2	4.3 4.1		4.2 4.2	2 4.3	4.5	T							
					0	C	4.4	4.5 4.3		4.1 4.2	7.4	6.7	4.3	3.7	_					
					2	4.0 1	7.4	4.7 A	4	0	4.3	++	4							
					4	45	₹	41 42	\dashv	4.5 4.6	7.7 7	4.2	4.1	3.6						
		1			7		4.1	4.1 4.1		4.1 4.2	2 4.3	4.2	1.7	1						

Manual [] Automatic [8]

Table 62

Ionospheric Storminess at Washington, D. C.

January 1951

Day	Ionospheric	character* 12-24 GCT	Principal Beginning GCT	storms End GCT	Geomagnetic	character** 12-24 GCT
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	2322332122322223333134312112213	21123223221223333332442213033333	1500	2200	23322212313443322312214422243325	2321211213332333113145321333233

*Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

**Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.
----Dashes indicate continuing storm.

Table 63

Provisional Radio Propagation Quality Figures (Including Comparisons with CRPL Warnings and Forecasts) December 1950

Day	North Atlantic quality figure	CRPL* Warning	CRPL Forecasts (J-reports)	figure	Geo- mag- netic KCh	
	Half day GCT (1) (2)	Half day GCT (1) (2)		Half day GCT (1) (2)	Half day GCT (1) (2)	Scales: Quality Figures (1)- Useless (2)- Very poor (3)- Poor
1 2 3 4 5	(4) 5 (4) (4) (4) 5 5 5 5 5	W U		(3) 5 (3) 6 (4) 6 6 5 5 5	2 1 3 3 2 2 1 1 2 2	(4) - Poor to fair 5 - Fair 6 - Fair to good 7 - Good 8 - Very good 9 - Excellent Geomagnetic KCh - O to 9,
6 7 8 9	5 6 5 6 5 7 5 6	W	X X X	(4) 5 (4) 5 5 6 5 7 5 6	3 2 3 2 2 2 2 1 2 1	<pre>9 representing the greatest disturbance; K_{Ch} > 4 indicates significant disturbance, enclosed in () for emphasis. Symbols: W Disturbed conditions expected.</pre>
11 12 13 14 15	6 5 6 5 (4) (4) 5 (4) (3) 5	U W W (U) U U	X X	(4) 5 (4) (4) 5 (3) (3) (4) (3) (4)	2 1 3 (4). (4) 3 3 (4) 2 2	U Unstable conditions expected N No disturbance expected X Probable disturbed date
16 17 18 19 20	(4) 5 5 5 5 (4) (4) (4) 5 5	u u u u		(4) 6 5 6 (4) 5 (4) 6 5 6	3 2 2 2 2 2 3 2 3 3	Scoring: H Storm (Q < 4) hit (M) Storm severer than predicted M Storm missed
21 22 23 24 25	5 6 5 5 (3) 5 (3) (4) (3) (4)	Ж Ж Ж Ж Ж	X X X	5 6 (4) (4) (3) 5 (3) (4) (3) (4)	1 1 2 (4) (5) 3 (4) (4) (4) 3	G Good day forecast O Overwarning Scoring by half day according to following table: Quality Figure 63 4 5 >> 6
26 27 28 29 30 31	(3) (4) (3) (4) (4) (4) (4) (4) 6 5 5 5	W W W U U	X X	(4) 5 (4) 5 (4) 6 5 6 5 6 (4) 5	(5) 3 (4) 3 3 2 3 1 2 2 2 1	W H H O O U (M) H H O N M M G G X H H O O
Score: H (M) M G	advect or Matt	Warning N.A. N.P. 25 22 1 2 4 7 28 25 4 6	Forscast N.A. N.P. 11 14 0 0 14 13 26 27 11 8			norman half day us handoost

^{*}Broadcast on WWV, Washington, D.C. Times of warnings recorded to nearest half day as broadcast.

() broadcast for one-quarter day. Blanks signify N.

Table 64

Zürich Provisional Relative Sunspot Numbers

January 1951

Date	$\mathtt{R}_{\mathrm{Z}^{\oplus}}$	Date	RZ*
1	32	17	20
2	22	18	25
3	32	19	43
4	42	20	39
5	42	21.	38
6	64	22	38
7	71	23	60
8	75	24	80
9	60	25	100
10	57	26	104
11	54	27	101
12	25	28	106
13	17	29	112
14	26	30	124
15	12	31	111
16	14	Mean:	56.3

^{*}Dependent on observations at Zurich Observatory and its stations at Locarno and Arosa.

<u>Note:</u> The American sunspot numbers for January will appear in a later issue of this bulletin.

Table 65a

Coronal observations at Climax, Colorado (5303A), east limb

ate				De	gre	es	no	rth	0.1	f t	he	sol	ar	eqı	æto	'n				00				Deg	ree	8 8	out	h o	f t	he	sol	ar	eai	ato	r			
GCT	90	85	80	75	70	65	5 6	0 5	5	50	45	40	35	30	25	20	15	10	5		5	10												70		80	85	90
1951																																						
Jan. 2.9	-	-	-	-	-	-	-	-	-	-	-	-	3	3	3	3	3	3	3	-	3	3	3	3	_	_	_	_	_	_	_	_	_	_	_	_	_	
6.9	-	-	-	-	3		3	3	3	5	5	5	8	8	8	10	10	8	5	3	5	8	12	10	5	3	3	3	3	-	_	-		-	_	_	_	
7.78	-	-	-	-	-		3	3	5	8	5	5	8	8	8	10	10	10	3	3	5	5	5	8	5	5	3	3	3	2	2	2	2	_	_	_	_	
9.7	-	_	-	-	-		-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	
10.7	-	_	-	-	-	-	-	-	-	-	-	-	2	3	3	3	3	2	-	-	-	-	-	-	-	_	2	2	2	2	2	2	_	_	_	_	_	
12.7	-	-	-	_	-	-	-	-	-	-	_	-	-	-	_	-	-	3	3	3	3	3	3	3	3	3	-	-	-	-	_	-	_	_	_	_	_	
13.7	-	-	-	-	-		-	-	-	-	-	-	3	3	5	8	8	8	8	8	10	12	12	8	3	_	_	_	_	_	_	_	_	_	_	_	_	
20.8	-	-	-	_	-	-	-	-	-	-	-	3	3	5	8	8	8	8	8	8	8	8	5	5	3	3	_	_	_	_	_	-	_	_	_	_	-	
21.7	-	_	-	-	-	-	-	-	-	_	-	3	3	3	8	17	15	15	25	15	17	25	31	22	15	12	3	3	_	_	_	_	_	_	_	_	_	
23.8a	-	_	_	_	_	-	-	-	-	-	-	-	-	-	-	_	_	-	22	12	15	20	25	20	15	12	10	5	3	-	-	_	_	_	_	-	_	
25.7	-	-	-	-	_	-		3	3	3	5	8	8	15	20	18	15	12	8	5	25	31	28	25	15	10	5	3	3	3	_	_	_	_	_			
26.7	-	-	-	-	-	-	-	-	-	3	3	3	5	15	12	10	10	5	3	5	10			20		5	3	_	_	-	_	_	_	_	_	_	_	

Date							ort				sol	ar	equ	ato	m				00				Deg	ree	8 8	outl	n of	f t	he	sol	ar	θqu	ato.	r			
GCT	90	85	80 '	75	70 (65	60	55	50	45 .	40	35	30	25	20	15	10	5	-	5	10	15	20	25	30	35 1	40 4	45	50	55	60	65	70	75	80	85	90
1951																				ŀ																	
Jan. 2.9	-	-	-	-	-	-	-	-	-	_	-	-	-	-	_	-	_	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-
6.9	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	2	2	2	2	5	5	12	8	15	5	2	3	2	3	3	2	3	2	2	3	3	3
7.7ª	5	3	3	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	8	14	14	15	10	8	5	3	3	5	8	5	3	3	3	3	3	3	3
9.7	-	-	-	_	-	-	-	-	-	-	2	2	2	2	2	2	3	3	3	3	3	3	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2
10.7	3	2	2	3	2	3	3	5	3	3	5	5	5	3	5	5	10	12	12	12	10	10	8	8	10	5	5	3	8	8	5	5	3	3	3	3	3
12.7	-	-	-	-	-	-	-	-	3	3	3	3	5	3	3	3	3	5	12	10	8	8	5	5	5	3	8	5	3	5	5	5	3	3	3	3	3
13.7	3	2	2	2	2	2	3	3	3	5	3	3	3	2	2	2	2	5	5	3	3	5	5	5	3	3	3	2	2	2	2	2	2	2	2	2	2
20.8	-	-	-	-	-	-	-	-	-	-	-	-	_	-	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	-	-	-	-	-	-	-	-
21.7	3	3	3	3	3	3	3	3	3	3	3	3	3	5	10	3	15	12	10	10	12	12	10	5	5	10	8	5	5	10	5	3	3	3	3	3	3
23.88	5	3	3	3	3	3	3	3	3	3	3	3	3	3	8	15	12	15	20	20	10	12	3	3	2	3	8	5	8	5	3	3	2	2	2	2	2
25.7	3	2	2	2	2	2	2	2	2	_	-	_	12	25	8	10	8	10	5	8	12	10	8	3	2	3	3	3	3	3	8	5	3	3	3	3	3
26.7	3	3	3	3	3	3	3	3	3	3	-	3	17	15	3	10	5	8	8	10	10	10	10	3	3	3	3	3	3	3	3	3	3	3	-	-	-

Table 65b

Coronal observations at Climax, Colorado (5303A), west limb

Date										he	80]	lar	eqi	mt	OT.				00				Dea	ree	s r	ort	h o	ft	the	sol	lar	601	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	100	5	10												70		80	85	90
1951																												7-									
Jan. 2.9	-	-	-	-	_	-	-	-	_	-	_	_	_	_	5	5	8	8	8	8	8	8	3	_	_	_	-	_	_	_	_	_					
6.98	-	-	-	-	-	-	-	_	-	3	3	3	5	8	8	8	12	12	10	12	20	15	15	10	8	3	5	3	3	- 3	_	_	_	_	_	_	
7.7	-	-	-	-	-	-	-	-	-	3	3	3	3	8	8	10	12	12	12	12	20	18	15	12	12	8	5	5	5	3	-3	_	_	_	_	_	
9.7	-	-	_	-	-	-	-	-		3	3	3	8	8	10	8	8	5	5	5	5	8	10	5	5	3	3	3	_	_	_	_	_	_	_		
10.7	-	-	-	-	-	-	3	3	3	5	8	10	12	15	25	25	20	18	13	12	15	22	22	17	15	12	5	3	3	-3	_	_	_	_	_	_	
12.7	-	-	-	-	-	-	-	-	3	3	3	3	5	8	12	15	15	15	10	5	5	10	15	20	15	12	10	5	3	_	_	_	_	_	_	_	
13.7	-	-	-	-	-	-	-	3	3	3	3	3	5	8	15	17	15	15	10	8	12	15	20	15	12	12	8	5	3	.3	_	_		_	_		
20.8	-	-	-	-	-	-	-	_	-	-	-	_	_	_	, in	_	_	_	-	_	_	_	_	_	_	_	_	-3	3	3	_	_	_	_	_	_	
21.7	-	-	-	-	-	-	~	-	~	3	3	3	5	8	10	10	10	5	3	3	5	5	8	5	8	5	5	5	5	5	3	3	_	_	_	_	
23.8 a	-	-	-	3	3	3	3	3	3	3	3	3	5	5	3	3	3	3	3	3	8	12	15	12	5	3	3	3	3	_	_	_	_	_	_	3	
25.7	-	-	-	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	15	15	12	12	5	3	3	3	3	3	3	_	_	_	_	_	_	
26.7	-	-	-	-	-	3	3	3	3	3	3	3	3	5	5	5	5	8	3	3	3	3	3	3	3	3	3	3	_	_	_	_	_	_	_	_	

Date				Deg	ree	8 8	out	h c	of t	he	sol	ar	eq	uat	or				00				Deg	ree	s n	ort	h o	of t	he	sol	ar	equ	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	Ľ	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1951																																					
Jεn. 2.9	-	_	-	_	•	_	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-
6.9₿	3	3	3	2	2	2	2	3	3	3	3	3	3	2	3	2	2	2	2	2	10	5	10	2	2	2	2	2	2	2	2	2	2	2	3	3	3
7.7	-	_	-	_	-	2	2	2	3	3	3	2	2	3	2	2	3	3	2	2	8	10	2	2	2	2	2	2	2	2	2	2	2	2	2	2	5
9.7	2	2	2	2	2	2	2	2	2	2	2	2	2	2	-	-	_	3	3	3	3	8	5	-3	-	-	-	***	-	-	-	-	-	-	-	-	-
10.7	3	3	3	3	3	3	2	3	5	3	3	-	-	2	5	3	3	5	8	8	15	15	2	2	2	2	2	2	2	2	3	3	3	3	5	3	3
12.7	3	5	3	3	3	3	3	3	3	3	_	_	-	_	3	14	8	3	3	3	8	15	5	14	12	2	2	2	2	2	2	2	-	-	-	-	-
13.7	2	2	3	3	3	3	3	3	2	2	-	-	3	3	12	8	8	3	5	3	3	5	8	5	2	-	-	-	-	-	-	-	-	2	2	3	3
20.8	_	_	-	_	-	-	-	-	_	_	-	-	-	-	_	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	-	-	-	-
21.7	3	3	3	3	3	3	3	5	5	5	3	3	3	3	5	5	5	10	8	10	5	5	8	-	_	-	-	-	-	3	3	3	3	3	3	3	3
23.88	2	2	2	2	2	3	3	3	2	2	2	2	2	2	3	5	8	10	5	15	20	15	15	8	3	3	2	-	-	-	-	-	2	2	2	2	2
25.7	3	3	3	3	3	3	5	5	3	3	-	3	5	3	3	8	10	8	15	20	25	15	17	8	3	3	3	3	3	3	3	3	3	3	3	3	3
26.7	-	-	-	-	_	-	-	-	-	_	_	-	-	-	2	2	2	2	3	5	5	5	5	3	-	-	-	-	-	_	-	-	-	-	-	_	3

Table 67a

Coronal observations at Climax, Colorado (6709/), east limb

Date				Deg	ree	s n	ort	h c	f t	he	sol	ar	eqı	uta	r				00					ree													
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25 .	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1951																																					
Jen. 2.9	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	_	-	_	_	-	-	-	_	-			-	-	_	-	_	_
6.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	-	_
7.78	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-	_	-	-	-	-	-	_	_	-	_	-	-	_	_	_	-	_
9.7	-	_	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	-	-	_	-	_	-	_	_	_
10.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	_
12.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	_	_	_	_
13.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	_	_	_	_
20.8	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	_	-	-		_	-	_	-	_	_	-	_	-
21.7	-	-	-	-	-	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	5	3	2	2	-	-	-	_	_	_	_	_	_	_	-	_
23.88	-	-	-	-	-	-	-	-	-	-	~	2	2	2	2	2	3	3	3	2	-	-	-	-	-	-	-	_	-	_	_	_	-	-	_	_	-
25.7	-	-	-	-	-	_	-	-	-	-		2	3	3	3	2	-	-	2	3	3	3	5	5	3	2	2	-	-	_	-	_	-	_	-	_	_
26.7	-	-	_	-	-	_	-	-	_	_	-	_	3	3	3	2	2	2	2	2	3	3	5	3	3	2	2	_	_	_	_	_	_	-	_	_	-

Table 68a

Coronal observations at Sacramento Feak, New Mexico (5303k), east limb

Date				Deg	gree	s r	ort	th o	of 1	the	so.	lar	eq1	uat	OI				00				Deg	ree	8 8	out	h d	of t	the	so.	lar	Θq	uato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1951																																					
Tan. 4.8	-	-	-	-	-	3	5	8	8	8	5	8	8	10	20	15	13	12	10	8	8	10	1.7	20	3	3	-	_	_	`-	_	_	-	_	_	_	
5.7	-	-	-	-	3	3	5	8	8	10	8	8	8	8	12	12	12	10	8	8	12	10	20	5	3	-	_	_	_	_	_	_	_	_	-	_	
6.8	-	-	-	-	-	3	5	8	8	8	5	8	8	5	5	8	10	8	8	8	8	10	12	3	3	3	_	_	-	_	-	-	_	_	_	_	
7.7	-	-	-	-	3	3	3	3	8	8	5	5	:3	8	10	10	8	5	3	5	8	8	8	5	3	3	3	3	3	3	-	-	-	-	-	_	
8.7	-	-	-	-	-	-	-	3	5	8	5	5	5	5	8	8	5	5	3	3	3	3	5	8	3	3	3	-	-	-	-	-	_	-	_	-	
9.7	-	-	7	-	-	-	2	2	2	2	2	2	2	3	3	3	2	2	2	-	_	-	-	-	_	-	-	_	-	_	-	-	_	-	-	_	
16.8	-	-	_	_	-	-	-	-	3	3	5	8	8	8	8	15	38	12	17	17	15	12	12	10	10	5	-	-	-	-	-	_	-	-	-	-	
17.7	-	-	-	-	-	-	-	-	3	5	8	10	8	8	8	12	25	12	10	12	13	15	10	10	8	3	-	_	-	_	-	-	-	-	_	-	
18.7	-	-	-	-	-	-	-	3	5	8	10	8	5	5	10	15	15	12	12	12	12	10	5	5	5	3	3	2	_	-	-	-	-	-	-	-	
19.7	-	-	-	-	-	-	-	3	5	8	5	5	5	8	10	17	15	15	10	10	12	10	8	8	5	5	2	2	-	-	-	-	-	_	-	-	
20.7	-		-	-	-	-	-	3	5	8	8	5	5	8	12	15	15	20	14	14	18	20	15	15	12	5	3	_	_	-	_	-	-	-	-	-	
21.7	-	-	-	, —	-	-	3	3	3	3	3	5	8	8	10	15	17	20	15	17	20	22	15	12	12	-	_	_	_	_	-	-	_	-	-	_	
23.0	-	-	-	_	-	-	-	-	_	-	-	3	3	5	12	15	25	28	22	20	22	28	28	18	12	8	3	3	3	3	-	-	-	_	-	_	1
24.92	-	-	-	-	_	-	_	-	_	_	-	3	3	8	10	15	12	5	5	8	12	15	15	15	13	3	3	3	-	-	_	_	-	_	_	9-	
25.9	-	-	-	_	-	-	-	_	-	3	5	8	8	15	12	15	10	5	8	10	10	15	20	15	12	5	3	_	_	_	_	_	_	_	-	-	
26.7	-	-	_	-	-	-	-	-	-	-	3	8	8	12	15	12	12	8	8	10	15	20	25	18	12	5	3	-	-	-	-	-	-	-	-	-	
27.9	-	-	_	-	_	-	_	-	3	8	8	10	10	12	15	12	12	8	3	5	8	8	10	10	5	_	-	_	_	_	-	-	-	-	_	-	
29.7	-	_	-	-	-	-	3	5	8	8	8	10	12	15	20	35	15	8	8	5	5	. 8	8	5	5	3	_	_	_	-	_	_	_	_	_	_	

Date				Deg	ree	9 9	out	h c	f '	the	90]	ar	eqt	nato	or				00	Į			Deg	ree	s r	ort	h c	of ·	the	SO.	lar	eq1	uato	or			
	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	ò
1951																																					
Jan. 2.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
6.9a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	
7.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	2	2	2	2	-	-	-	-	-	-	-	
9.7	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_		-	-	-	-	-		-	-	-	-	-	-	-	-	
10.7	-	_	-	_	_	_	_	_	2	2	2	2	3	3	3	3	2	2	2	2	2	2	3	3	2	2	-	_	-	-	-	-	-	-	-	_	
12.7	-	_	-	-	-	-	-	-	-	-	_	-	_	_	3	3	3	3	3	3	_	-	-	-	-	-	_	_	-	_	-	-	-	_	-	_	
13.7	-	-	-	_	_	-	_	-	-	_	_	2	2	.2	3	3	3	2	2	2	2	2	2	2	2	2	2	2	2	-	-	-	-	_	-	-	
20.8	_	_	-	_	-	_	-	-	-	_	-	_	_	-	-	-	-	-	-	-	-	-	-	-	_	-	_	-	_	-	-	-	-	-	-	-	
21.7	-	-	-	-	-	-	_	-	-	-	_	-	_	-	_	_	-	-	-	-	_	-	-	-	_	_	_	-	-	-	_	-	-	_	-	-	
23.88	-	_	_	_	_	_	_	_	-	-	_	-	_	_	-	_	_	-	_	2	2	3	3	2	_	_	_	-	-	_	_	-	-	_	-	_	
25.7	-	_	-	_	-	-	-	_	-	_	-	-	-	_	-	_	_	_	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	_	_	-	
26.7	-	_	-	_	_	_	-	-	_	_	_	-	_	_	_	_	_	-	-	-	-	-	_	-	-	_	-	_	_	-	_	-	_	_	-	-	

Table 68b

Coronal observations at Sacramento Feak, New Mexico (53034), west limb

Date				Deg	zree	8 8	sout	h c	of t	he	80	ar	equ	ato	æ				00				Deg	ree	s r	ort	h c	of ·	the	go.	lar	equ	1ato	r			
GCT	90	85					60									15	10	5	10	5	10	15				35									80	85	90
1951																																					
Jan. 4.8	-	-	-	-	-	-	-	-	-	-	-	-	3	8	12	10	10	14	15	12	12	12	13	12	8	8	8	10	10	8	3	-	-	-	-	-	
5.7	-	-	-	-	-	-	-	-	-	-	-	-	3	3	10	10	8	8	10	10	12	12	15	12	12	10	8	8	10	5	3	3	-	-	-	-	
6.8	-	-	-	-	-	-	-	-	-	3	3	3	3	5	5	8	10	10	10	12	15	15	15	12	8	5	5	3	3	3	-	-	-	-	-	-	
7.7	-	_	-	-	-	-	-	-	-	3	3	3	5	5	8	10	10	12	12	12	20	28	15	15	10	8	8	5	5	3	3	3	-	-	-	-	
8.7	-	-	-	-	-	-	-	-	-	-	3	3	5	8	10	13	12	12	10	10	15	12	12	10	5	5	3	3	-	-	-	-	-	-	-	-	
9.7	-	-	_	_	-	-	-	-	-	-	3	3	5	8	10	12	15	12	12	15	12	15	20	15	10	5	5	3	-	-	-	-	-	-	-	-	
16.8	-	-	_	-	-	-	-	-	-	-	-	3	5	5	8	12	10	15	3	5	•12	15	25	31	20	12	8	8	8	8	5	5	3	-	-	-	
17.7	-	-	_	_	-	-	-	-	_	-	-	-	3	3	5	12	8	5	8	8	12	12	15	15	10	5	5	3	5	10	5	3	-	-	-	-	
18.7	-	-	_	_	-	-	-	-	-	-	-	5	5	8	10	13	15	12	12	12	12	15	18	15	15	10	8	8	10	10	8	5	-	-	-	-	
19.7	-	-	-	_	-	-	-	-	-	-	3	3	3	5	5	10	12	10	5	5	8	12	10	10	10	,5	5	5	5	5	5	5	-	-	-	-	
20.7	-	_	-	-	-	-	-	_	-	-	-	-	3	3	8	10	10	8	5	3	5	8	8	8	8	5	5	5	5	5	5	5	3	-	-	-	
21.7	-	-	-	-	-	-	-	_	-	-	-	3	3	3	5	8	5	3	-	-	-	-	-	-	-	-	-	3	3	5	5	3	3	-	-	-	
23.0	_	_	_	_	_	_	_	_	_	_	_	_	_	3	5	8	_	_	3	5	8	13	12	13	8	5	5	5	5	5	3	-	-	-	-	-	
24.98	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_		3	12	15	12	10	8	-	_	_	-	-	_	_	-	-	-	-	
25.9	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	3	3	3	5	8	8	5	5	8	3	-	-	-	-	_	-	_	-	-	-	-	
26.7	_	_	_	_	_	3	3	3	3	3	3	3	3	3	3	3	5	5	5	5	5	5	5	5	5	3	_	_	_	-	_	_	-	_	-	-	
27.9	_	_	_	_	_	_	_	_	_	_	-		_	_	_	5	8	8	8	5	5	5	5	5	5	-	_	_	-	-	-	-	-	-	_	-	
29.7	_	_	_	_	_	_	_	_	_	_	_	_	3	3	3	5	8	12	10	10	10	13	17	14	8	5	3	3	3	3	-	_	-	-	-	-	

Table 69a

Coronal Observations at Sacramento Feek, New Mexico (6374A), est limb

Date				Deg	ree	s r	ort	h c	of t	the	30.	lar	equ	ato	or				00				Deg	ree	8 8	out	h c	of t	the	80]	lar	eqt	usto	יצכ			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1951																																					
Jen. 4.8	3	3	2	2	-	-	-	-	-	-	-	2	2	2	2	3	5	3	3	3	3	10	8	12	2	2	3	-	-	-	2	2	2	2	2	2	2
5.7	2	2	2	2	2	2	2	-	-	-	-	-	-	2	2	2	3	3	-	-	-	10	3	10	8	3	3	2	2	2	-	-	-	-	-	-	-
6.8	2	2	2	2	2	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	3	2	10	3	2	2	-	-	-	-	-	-	-	-	-	-	-
7.7	-	-	-	2	2	2	-	-	-	3	2	2	2	2	2	2	2	2	2	2	10	8	8	3	2	2	2	2	2	2	2	2	2	2	2	2	2
8.7	2	2	2	2	2	-	-	-	_	-	-	2	2	2	2	2	2	3	8	5	10	8	5	2	2	-	-	-	-	-	-	-		-	-	ests -	-
9.7	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	3	3	3	2	2	-	-	-	-	-	-	3	3	2	2	2	-	-	-
16.8	-	-	-	-	-	2	2	2	2	2	2	2	2	2	2	3	12	10	5	8	12	5	2	2	2	2	-	-	-	-	2	2	2	2	2	2	2
17.7	1	1	1	1	1	2	2	2	1	1	1	1	2	2	2	2	3	12	3	3	12	3	2	2	2	1	1	1	1	1	2	2	2	2	2	2	2
18.7	-	-	-	2	2	3	3	3	2	2	-	-	-	2	2	2	3	8	2	3	10	3	2	2	3	3	2	2	2	2	2	2	2	2	2	2	2
19.7	2	2	2	2	2	2	2	2	-	-	-	-	-	2	2	2	2	3	5	3	5	8	5	2	2	2	2	2	2	2	3	3	2	2	2	2	2
20.7	2	3	2	2	3	3	3	3	3	2	2	2	2	3	3	10	2	8	5	2	8	5	3	3	3	2	3	5	3	3	3	2	2	2	3	2	2
21.7	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	8	10	5	5	3	8	10	5	3	2	2	2	2	.3	3	2	2	2	2	2	2	2
23.0	3	3	3	3	2	2	2	2	2	2	2	3	3	3	3	3	3	5	12	3	12	12	8	10	2	2	3	3	3	3	2	2	2	2	-	-	-
24.9e	_	-	-	-	-	-	2	2	2	2	-	-	_	-	10	10	8	8	5	3	5	5	3	3	3	-	_	-	-	-	-	-	-	-	-	-	-
25.9	_	_	-	_	_	-	-	-	_	-	_	-	_	-	10	3	5	5	5	2	5	2	3	2	2	-	-	-	-	_	_=	-	-	-	-	-	-
26.7	2	2	2	2	2	3	3	3	3	3	-	-	_	3	10	10	5	3	3	2	3	B	5	5	2	3	3	3	3	3	3	3	3	3	3	3	3
27.9	-	_	-	_	-	-	-	-	-	-	-	2	2	3	10	3	3	3	3	3	3	3	3	3	3	2	2	2	2	2	-	-	-	-	-	-	-
29.7	2	2	2	2	2	2	2	2	2	2	-	-	-	-	2	10	2	-	2	2	3	3	3	3	2	2	2	-	-	-	-	-	-	-	-	-	-

Table 70a

Coronel Observatione et Secremento Feak, New Mexico (6702A), east limb

Date				De	egr	.66	e n	ort	h	f i	the	sol	lar	equ	ato	r				00												lar						
GCT	90	85	80	75	5 7	70 (65	60	55	50	45	40	35	30	25	20	15	10	5	0	5	10	15 2	20	25 :	30	35	40	45	50	55	60	65	70	75	80	85	90
1951			٠.						-																													
Jan. 4.8	-	_		_	-	_	_	_	_	_	_	_		_	_	_	_	_	-	_	-	-	-	_	_	_	_	-	_	_	-	_	_	_	_	_	-	
5.7	-	_		-	_	-	-	-	_	_	-	_	_	_	-	_	_	-	-	-	-	2	2	2	2	2	-	-	_	-	-	_	-	_	-	-	-	
6.8	-	_			_	_	-	_	_	_	2	2	2	2	2	-	_	_	-1	-	_	_	-	_	_	_	-	_	_	_	-	_	-	-	_	_	-	
7.7	_	-		-	-	-	-	_	_	-	_	-	_	_	-	-	-	-	-	2	2	2	2	2	-	-	-	_	-	_	-	_	-	-		-	-	
8.7	_	-			_	-	-	_	_	-	-	-	-	-	-	-	_	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	
9.7	-	-		-	-	_	-	_	-	_	_	-	-	_	_	_	_	-	-1		_	_	-	_	-	-	-	-	_	_	-	_	-	-	_	_	-	
16.8	_	-			_	_	_	_	_	_	_	-	-	_	_	2	2	2	2	2	2	2	2	2	2	2	-	-	-	-	_	_	-	-	_	-	-	
17.7	-	-		_	-	_	-	_	_	_	_	-	_	_	_	2	2	2	2	2	2	2	2	2	2	2	-	_	_	_	-	-	-	-	-	-	-	
18.7	_	_		-	_	-	_	_	-	-	-	-	_	-	-	_	-	-	2	2	2	2	2	2	2	2	_	-	-	-	-	_	-	-	-	-	-	-
19.7		-		_	_	-	-	_	-	_	_	-	-	_	_	_	-	_	2	2	2	2	2	2	2	2	-	-	-	_	_	-	-	-	_	_	-	
20.7	-	-		-	_	-	-	-	-	-	-	-	_	_	-	-	-	-	2	2	2	2	2	2	2	2	-	-	-	_	-	-	-	-	-	-	-	
21.7	-	-		-	-	_	-	_	_	_	-	_	-	2	2	2	2	2	2	2	2	2	3	3	2	2	-	_	-	-	-	-	-	-	-	-	-	
23.0	_	_			_	-	_	_	_	_	_	_	_	_	_	2	2	2	2	2	2	2	2	2	2	2	-	-	_	_	_	_	-	_	_	_	_	
24.98	-	-		-	_	_	_	_	_	_	_	_	_	_	_	_	_	2	2	2	2	2	2	2	2	2	_	_	_	_	_	_	_	_	_	_	_	
25.9	_	_		-	_	_	_	_	_	_	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	_	_	_	_	-	, _	_	_	_	_	_	_
26.7	_	-		-	_	_	_	_	_	_	_	_	2	2	. 2	2	2	2	2	2	2	2	2	2	2	2	_	_	_	_	_	_	_	_	_	_	_	_
27.9	_	_			_	_	_	-	_	_	_	_	_	_	2	2	2	2	_	_	- ,	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
29.7	_	_			_	_	_	_	_	_	_	_	_	-	2	2	2	2	2	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

Table 69b

Coronel Observations at Sacramento Fask, New Mexico (6374A), west limb

Date			1	Deg	ree	8 8	out	h of	tl t	he :	sola	ar	eque	to					Ωª			1	Deg	ree	s no	orth						equa					
GCT	90 8	35	80	75	70	65 (60 :	55 5	50 4	45 .	40 3	35	30 2	25 2	20]	L5 :	10	5	_	5 :	10	15	20	25	30 3	35 4	,0 4	5	50 4	55	60	65 ′	70 '	75	30	85	90
1951																						*															
Jan. 4.8	2	2	2	2	2	2	2	3	3	3	2	2	2	2	3	3	2	10	5	2	2	10	2	2	_	-	_	-	_	_	3	3	3	3	2	2	3
5.7	-	-	2	2	2	3	2	2	3	5	3	2	3	3	3	3	3	3	3	2	3	2	-	-	_	-	-	***	_	-	2	2	2	2	2	2	2
6.8	-	-	-	-	-	_	-	-	-	2	2	2	2	2	3	2	2	2	-	-	3	3	2	_	-	_	_	-	_	3	3	3	2	2	2	2	2
7.7	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	2	3	3	1	1	3	10	8	3	3	2	2	2	2	2	2	2	2	_	3	_	_
8.7	-	_	-	-	-	-	-	-	-	-	-	-	-	-	_	_	_	2	2	2	2	2	2	2	2	2	2	2	-	_	2	2	2	2	2	2	2
9.7	-	-	-	-	-	2	2	2	2	2	2	3	3	2	2	2	2	3	2	2	2	2	12	10	_	-	2	_	-	_	_	-	_	-	-	_	_
16.8	2	2	2	1	1	1	1	1	1	2	2	2	2	8	2	8	5	3	1	1	1	12	3	8	-	_	-	-	-	-	_	***	_	-	_	_	_
17.7	2	2	2	2	2	3	2	2	2	2	2	2	2	2	2	8	5	3	3	3	3	3	3	5	2	2	_	-	-	-	_	-	1	1	1	1	1
18.7	2	2	2	2	2	2	2	2	2	2	2	2	2	2	.8	5	5	2	2	3	5	3	3	2	2	2	_	_	_	-	_	2	2	2	2	2	_
19.7	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	5	8	2	2	3	3	3	2	2	2	2	-	-	_	_	_	_	2	2	2	2	2
20.7	2	2	3	2	2	2	2	3	2	2	2	2	2	5	5	8	3	3	2	5	5	2	***	-	_	_	_		_	_	_	_	2	2	3	3	2
21.7	2	2	2	3	3	3	3	3	3	3	3	2	2	2	3	3	3	5	8	5	3	3	3	3	3	-	_	_	-	_	_	-	2	2	2	2	2
23.0	-	_	_	_	_	_	_	3	3	3	2	2	2	2	2	3	8	8	5	3	10	8	10	5	2	_	_	_	_	_	2	2	3	3	3	3	3
24.9a	_	_	_	_	_	_	_	-	_	_	_	_	_	-	_	_	_	_ [2	12	15	8	10	3	2	2	2	2	_	_	_	_	-	_	_	_	_
25.9	_	-	_	-	_	_	-	-	_	_	_	_	3	3	3	3	3	3	3	10	10	8	5	3	3	_	-	_	-	_	-	_	_	_	_	_	_
26.7	3	3	3	3	3	3	3	3	3	2	2	2	2	2	2	2	3	3	5	10	10	8	8	3	3	2	2	2	2	2	2	2	2	2	2	2	2
27.9	_	_	_	_	_	_	_	2	2	2	2	_	_	_	3	3	3	2	2	2	2	2	2	2	2	_	_	_	_	_	_	_	_	_	_	_	_
29.7	-	_	_	_	_	_	_	_	_	_	-	_	2	2	2	2	2	8	10	3	_	_	_	_	_	_	_	_	_	_	_	_	2	2	2	2	2

Table 70b

Coronal Observations at Sacramento Feak, New Mexico (6702A), west limb

Date				Des	Tee	9 8	ou	th c	of	the	SO.	lar	eat	ato	or				00				Deg	ree	s n	ort	h c	of t	he	80.	lar	eat	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	09	5 :	10										60				80	85	9
1951																																					
Ten. 4.8	-	-	-	-	-	-	-	-	-	-	-	-		_	-	-	-	- 1	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-		
5.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	-	-	-	-	-	-	-	•	-	-	-	-	-	
6.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	
7.7	-	-	-	-	-	-	-	-	_	2	2	2	2	2	2	2	2	2	2	.2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	
_8.7	-	-	-	-	-	-	***	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	
9.7	-	-	_	_	-	-	-	-	-	-	-	-	-	_	-	-	-	-	2	2	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	
16.8	-	_	-	-	_	-	_	-	-	_	-	_	-	-	-	-	-	2	2	2	2	3	3	3	3	3	2	2	2	2	-	-	-	-	-	-	
17.7	-	_	-	-	_	_	-	_	-	-	-	_	-	-	-	-	-	-	2	2	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	
18.7	_		-	-	_	_	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	
19.7	-	_	-	_	_	_	-	_	_	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	-	-	`	-	-	-	-	-	-	-	-	-	
20.7	-	-	_	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	
21.7	-	-	-	_	-	-	-	-	-	-	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
23.0	_	_	_	_	_	_	_	-	_	-	_	_	-	-	-	_	_	-	-	-	-	-	-	-	-	-	-	_	_	-	_	-	-	-	-	-	
24.9e	_	_	_	_	-	_	_	_	-	-	_	-	_	_	-	-	-	-	- 1	-	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	
25.9.	_	_	_	_	_	_	_	-	_	<u>.</u>	-	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
26.7	-	-	_	_	-	_	-	_	-	_	-		_	_	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
27.9	_	-	_	-	_	_	_	_	_	-	-	-	-	_	-	_	_	-	-	-	-	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	
29.7		_	_	_		_	_	_		-	_	_	_	_	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Table 71

Outstanding Solar Flares, December 1950

SID Obser-	
Import- ance	
Relative Area of Maxi- mum (Tenths)	00 0 0 0 0 0
Int. of Maxi- mum	10088
Time of Maxi- mum (GCT)	1930 2010 3108 1711 1747
tion Lati- tude (Deg)	N17 S14 N21 N06 N16
Position Long- Lati- itude tude Diff (Deg) (Deg)	W322 E48 E52 W34
Area (Mill) (of) (Visible) (Hemisph)	40 340 80 250
Dura- tion (Min)	25 13 25
Time Observed Sin- End- ag ing CT) (GCT)	1950 2018 2123 1750 1800
Obser Obser Begin- ning (GCT)	1925 2005 2058 1710 1740
Date	Dec. 5 = = = = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0
Observa- tory	Boulder # #

Table 72

Indices of Geomagnetic Activity

Preliminary values of mean K-indices, Kw, from 35 observatories;
Preliminary values of international character-figures, C;
Geomagnetic planetary three-hour-range indices, Kp;
Magnetically selected quiet and disturbed days

Gr. Day 1950	Values Kw	Sum	С	Values Kp	Sum	Final Sel. Days
1 2 3 4 5	1.0 2.2 2.0 1.2 1.6 1.5 1.2 0.7 1.1 2.4 1.6 1.6 1.7 3.5 2.7 2.1 1.6 1.5 1.3 1.9 1.7 1.4 2.3 2.9 0.3 1.1 0.9 0.9 1.3 2.0 2.2 1.9 1.8 0.7 1.5 1.6 1.9 3.0 3.1 2.0 2.2 1.9 3.3 4.1 3.1 2.6 1.9 2.1 3.1 2.4 1.9 1.5 2.1 1.9 3.0 2.7 1.1 1.3 1.3 2.9 2.6 3.3 2.8 3.0	11.4 16.7 14.6 10.6 15.6 21.2 18.6 18.3	0.2 0.7 0.5 0.2 0.7	10302+1+ 1+1+1+0+ 2-3+202- 203+3-2+ 202-2-2+ 2-1+2+30 002-101- 10202+2- 200+2-2- 2+30302- 2+2+4+4+ 303-2020 4-30201+ 2020303- 1+1+1+30 303+3030	120 190 160 10+ 16- 230 20- 19+	Five Quiet 1 4 11 21 31
9 10	2.6 2.6 2.3 1.6 2.0 1.1 1.4 1.5 1.5 2.1 1.9 1.7 2.0 1.9 2.7 1.9	15.1 15.7	0.4	303+302- 201+1010 20303-20 202-3-2-	16÷ 18-	
11 12 13 14 15	1.3 1.3 0.8 1.1 0.8 0.9 1.1 0.5 0.6 3.4 3.8 2.9 1.9 3.1 5.0 4.3 4.7 3.9 3.6 3.4 3.4 3.6 5.2 4.9 4.5 4.1 1.7 1.9 1.4 3.1 5.4 4.9 2.0 1.7 2.1 2.3 2.2 2.2 3.4 2.7	7.8 25.0 32.7 27.0 18.6	0.0 1.4 1.6 1.4 0.7	1+20101+ 1-1-100+ 0+4-4+30 203+504+ 5+5-5-4- 4-4-5+5+ 6-502-20 1+3+606- 2+3+3-2+ 3-2+4-3-	8÷ 260 36÷ 31- 21÷	Five Dist.
16 17 18 19 20	2.3 2.9 1.7 3.0 2.3 1.4 1.6 1.9 1.1 1.1 1.2 2.9 1.1 1.0 2.0 1.9 2.5 0.9 1.1 1.7 1.9 3.1 4.3 2.2 3.0 2.0 2.2 1.7 2.0 3.0 3.5 1.7 0.8 1.1 0.9 2.2 1.3 2.0 3.1 4.5	17.1 12.3 17.7 19.1 15.9	0.4 0.3 0.9 0.7 0.8	3-4-2+3+ 3-1+1+20 1+2-2-3+ 1010202- 3010102- 2+304+20 3+3-3-20 20304-2- 101+103- 102+3+50	19+ 14- 18+ 210 18-	23 24 Ten
21 22 23 24 25	2.5 1.7 1.0 1.6 1.1 0.6 1.3 1.0 0.5 1.2 0.9 2.4 4.2 4.9 5.6 4.2 4.4 3.9 4.4 3.8 3.5 3.7 2.8 3.6 3.3 3.0 3.3 3.7 3.4 5.8 4.3 3.6 4.0 3.3 3.2 3.7 4.0 4.0 4.1 3.8	10.8 23.9 30.1 30.4 30.1	0.2 1.6 1.3 1.5	3+201+20 1+0+1+1- 1-2-103- 40506+5- 505-6-4+ 404-3-4+ 404-4+40 4-6+5-40 5-404+4+ 4+4+4+40	12+ 260 34+ 35- 34+	Quiet 1 3 4 9
26 27 28 29 30 31	3.8 3.1 3.7 4.2 3.3 3.8 3.6 2.9 2.6 3.0 3.0 3.4 2.6 2.7 3.2 3.5 2.6 2.0 2.3 2.4 2.5 2.5 2.0 1.7 1.8 1.6 1.7 2.0 0.8 1.3 1.7 2.1 2.0 0.7 1.2 1.6 1.6 2.4 2.6 2.6 0.7 0.5 1.2 0.9 0.7 1.0 0.9 2.0	28.4 24.0 18.0 13.0 14.7 7.9	1.2 1.0 0.5 0.2 0.5 0.1	4+405-50 4-404-30 304-4+4- 303-3+40 303-3030 3-2+2+2- 2+2+2+3- 1-1+2-20 2+001020 202+3-3- 100+2-1+ 10101020	32+ 28- 21- 15+ 150 9÷	11 17 21 29 30 31
Mean	2.17 2.03 2.13 2.90 2.08 2.32 2.53 2.62	2.35	0.75			

Sudden Ionosphere Disturbances Observed at Washington, D. C.

January 1951

1951 Day	GC1 Beginnir		Location of transmitters	Relative intensity at minimum*	Other phenomena
January 22	1620	1800	Ohio, D. C., Colombia, England, New Brunswick	0.0	Terr.mag.pulse**
23	1830	1920	Ohio, D. C., Colombia	0.1	
27	1928	2020	Ohio, D. C., Colombia	0.2	

be

*Ratio of received field intensity during SID to average field intensity before and after, for station KQ2XAU (formerly W8XAL), 6080 kilocycles, 600 kilometers distant.

**As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

Table 74

Sudden Ionosphere Disturbances Reported by RCA Communications, Inc.,
as Observed at Riverhead, New York

1951	GCT	
Day	Beginning End	Location of transmitters
January 22	1625 1715	Argentina, California, Canada, England, Italy, Morocco, Panama

Table 75

Sudden Ionosphere Disturbances Reported by Institut fur Ionospharenforschung,

as Observed at Lindau, Harz, Germany, November 1950

Day	GCT Beginning End	Location of transmitters	Relative intensity at minimum*
November 28	1130 1145	München**, Frankfurt***	0.3

*Ratio of received field intensity during SID to average field intensity before and after, for station München, 6161 kilocycles, 400 kilometers distant.

**Station Bayern. Rundfunk 6161 kilocycles, 400 kilometers distant.

**Station Hessen. Rundfunk 6190 kilocycles, 190 kilometers distant.

Note: Observers are invited to send to the CRPL information on times of beginning and end of sudden ionosphere disturbances for publication as above.

Address letters to the Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

Index of Tables and Graphs of Ionospheric Data

in CRPL-178

											Tab	le page	Figure page
4	Mkita, Japan												
	November 1950											14	53
1	Baton Rouge, Louisiana		Ū				Ĭ	Ť	•	•			
	November 1950											14	54
1	Sombay, India					Ī	_	•		•	•		
	August 1950											16	60
	July 1950											17	63
1	Boston, Massachusetts	•	•	•		·	•	•	•	•	•	-,	
	December 1950											12	47
]	Brisbane, Australia	·			•	Ī	•		·	•			•
Ī	September 1950 .											16	58
(Campbell I.	•	•	•	•	•	•	•	•	•	•		,
	June 1949											18	66
	June 1948		•	•			•	•		•	•	18	66
	June 1947											19	67
	June 1946											19	67
	Marray 1046	•	0	•	•	•	•	•	•	•	•		68
	Movember 1945	•	•	•	•	•	•	•	•	•	•	19	68
	October 1945		•	•	•	•	•	•	•	•	•	19	69
	September 1945 .											19	
	June 1945	•	•	•	0	•	•	•	•	•	•	19	69
(Canberra, Australia											-/	~ 0
	September 1950 .					0	•	•		•	•	16	58
(Capetown, Union of S.												
	Movember 1950			•	•	•	•	•	•	•	•	15	56
1	Christchurch, New Zeal											- 1	46
	September 1950 .	•	•	•	•	•	•	•	•	•	•	16	59
	De Bilt, Holland												
	December 1950	•	•	•	•	0	•	•	•	•	•	12	47
	Delhi, India												
	August 1950	•	•	•	•	•	•	•	•	•	•	16	60
	July 1950	•	•	•	•	•	•	•	•	•	•	17	62
	Domont, France												
	April 1950	•	•	•	•	•	•	•	•	•	•	18	64
	Formosa, China												
	November 1950											15	55
	Guam I.			Ť	•	•		•	_		•		
	December 1950											13	50
	February 1950				•	•	_		•	_	•	18	65
	October - Decemb										•	20	
	Hobart, Tasmania		-	<i>)</i> ¬.		•	•	•	•	•	•	~~	
	September 1950 .											16	59
	Huancayo. Peru	•	•	•	•	•	•	•	•	•	•	20)/
	December 1950											13	51
	Pecomogr 1220 • •	•	•	•	•	•	•	•	•	•	•	-)	<i>J</i> *

Index (CEPL-178, continued)

Johannesburg, Union of S. Africa November 1950
November 1950 15 55 Lindau/Harz, Germany November 1950 14 52 October 1950 15 56 Madras, India 17 61 July 1950 17 63 Maui, Hawaii December 1950 13 49 Okinawa I. December 1950 13 49 Oslo, Morway December 1950 12 46 Poitiers, France April 1950 18 65 Rarotonga I. September 1950 15 57 August 1950 17 62 San Francisco, California December 1950 12 48 San Juan, Puerto Rico December 1950 13 50 Tiruchy (Tiruchirapalli), India August 1950 17 61 July 1950 18 64
Lindau/Hars, Germany November 1950
November 1950
October 1950
Madras, India August 1950
August 1950
July 1950
Maui, Hawaii December 1950
December 1950
Okinawa I. December 1950
December 1950
Oslo, Norway December 1950
December 1950
Poitiers, France April 1950
April 1950
Rarotonga I. September 1950 15 57 August 1950 17 62 San Francisco, California 12 48 December 1950 12 48 San Juan, Puerto Rico 13 50 Tiruchy (Tiruchirapalli), India 17 61 July 1950 18 64
September 1950
August 1950
San Francisco, California December 1950
December 1950
San Juan, Puerto Rico December 1950
December 1950
Tiruchy (Tiruchirapalli), India August 1950
August 1950
July 1950
Tokyo, Japan
November 1950
Trinidad, British West Indies
December 1950
Wakkanai, Japan
November 1950
Washington, D. C.
January 1951
Watherco, W. Australia
October 1950
White Sands, New Mexico
December 1950
Yamagawa, Japan
November 1950 14

CRPL and IRPL Reports

[A list of CRPL Section Reports is available from the Central Radio Propagation Laboratory upon request]

Daily: Radio disturbance warnings, every half hour from broadcast station WWV of the National Bureau of Standards.

Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

CRPI.-J. Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly:

CRPL-Ja. Semimonthly Frequency Revision Factors for CRPL Basic Radio Propagation Prediction Reports.

Monthly

CRPL-D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC 13 () series.) CRPL-F. Ionospheric Data.

Quarterly:
*IRPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific. *IRPL-H. Frequency Guide for Operating Personnel.

Circulars of the National Bureau of Standards:

NBS Circular 462. Ionospheric Radio Propagation.

NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

Reports issued in past:
IRPL-C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944.

IRPL-G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions.

IRPL-R. Nonscheduled reports:
R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies. R4. R5. Criteria for Ionospheric Storminess.

**R6.

Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

An Automatic Instantaneous Indicator of Skip Distance and MUF. R7.

R9.

R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.
**R11. A Nomographic Method for Both Prediction and Observation Correlation of Ionosphere Characteristics.

**R12. Short Time Variations in Ionospheric Characteristics.

R14. A Graphical Method for Calculating Ground Reflection Coefficients.
**R15. Predicted Limits for F2-Layer Radio Transmission Throughout the Solar Cycle.

**R17. Japanese Ionospheric Data—1943.
R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October 1943 Through May 1945.

**R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For distances out to 4000 km.)

**R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.

R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.

**R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena.

R26. The Ionosphere as a Measure of Solar Activity.

R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped

by Distance From Center of Disc.

**R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance
Reports to Replace T. D. Figures as Reported.

R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.

**R33. Ionospheric Data on File at IRPL. **R34. The Interpretation of Recorded Values of fEs.

R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess

IRPL-T. Reports on tropospheric propagation:

T1. Radar operation and weather. (Superseded by JANP 101.)

T2. Radar coverage and weather. (Superseded by JANP 102.)

CRPL-T3. Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group-WPG-5.)

^{*}Items bearing this symbol are distributed only by U.S. Navy. They are issued under one cover as the DNC 14 () series. **Out of print; information concerning cost of photostat or microfilm copies is available from CRPL upon request.

