```
For project 8, we will plot proportional plots.
In [50]: import pandas as pd
```

c=pd.read_csv("https://covid.ourworldindata.org/data/owid-covid-data.csv")

	iso_code	continent	location	date	total_cases	new_cases	new_cases_smoothed	total_deaths	new_deaths	new_dea
0	AFG	Asia	Afghanistan	2020- 02-24	1.0	1.0	NaN	NaN	NaN	
1	AFG	Asia	Afghanistan	2020- 02-25	1.0	0.0	NaN	NaN	NaN	
2	AFG	Asia	Afghanistan	2020- 02-26	1.0	0.0	NaN	NaN	NaN	
3	AFG	Asia	Afghanistan	2020- 02-27	1.0	0.0	NaN	NaN	NaN	
4	AFG	Asia	Afghanistan	2020-	1.0	0.0	NaN	NaN	NaN	

5 rows × 59 columns

Now as this a very big data we will focus on the dataset of united states. As a result we will filter out all other data

```
In [51]: #Time series plot for USA
         dat_USA = c[c['iso_code']=="USA"]
         dat_USA.shape
         dat_USA.head()
```

Out[51]:

Out[52]:

Out[50]:

	iso_code	continent	location	date	total_cases	new_cases	new_cases_smoothed	total_deaths	new_deaths	new_de
74951	USA	North America	United States	2020- 01-22	1.0	NaN	NaN	NaN	NaN	
74952	USA	North America	United States	2020- 01-23	1.0	0.0	NaN	NaN	NaN	
74953	USA	North America	United States	2020- 01-24	2.0	1.0	NaN	NaN	NaN	
74954	USA	North America	United States	2020- 01-25	2.0	0.0	NaN	NaN	NaN	
74955	USA	North	United	2020-	5.0	3.0	NaN	NaN	NaN	

5 rows × 59 columns

dtype='object')

5 rows × 58 columns

```
In [67]: dat_USA.columns
```

Out[67]: Index(['iso_code', 'continent', 'location', 'date', 'total_cases', 'new_cases', 'new_cases_smoothed', 'total_deaths', 'new_deaths',
'new_deaths_smoothed', 'total_cases_per_million', 'new_cases_per_million', 'new_cases_smoothed_per_million',

'total_deaths_per_million', 'new_deaths_per_million', 'new_deaths_smoothed_per_million', 'reproduction_rate', 'icu_patients', 'icu_patients_per_million', 'hosp_patients', 'hosp_patients_per_million', 'weekly_icu_admissions', 'weekly_icu_admissions_per_million', 'weekly_hosp_admissions', 'weekly_hosp_admissions_per_million', 'new_tests', 'total_tests', 'total_tests_per_thousand', 'new_tests_per_thousand', 'new_tests_smoothed', 'new_tests_smoothed_per_thousand',

'positive_rate', 'tests_per_case', 'tests_units', 'total_vaccinations',

'people_vaccinated', 'people_fully_vaccinated', 'new_vaccinations', 'new_vaccinations_smoothed', 'total_vaccinations_per_hundred', 'people_vaccinated_per_hundred', 'people_fully_vaccinated_per_hundred', 'new_vaccinations_smoothed_per_million', 'stringency_index', 'population', 'population_density', 'median_age', 'aged_65_older', 'aged_70_older', 'gdp_per_capita', 'extreme_poverty', 'cardiovasc_death_rate', 'diabetes_prevalence', 'female_smokers', 'male_smokers', 'handwashing_facilities', 'hospital_beds_per_thousand', 'life_expectancy', 'human_development_index'],

In [52]: #We will convert date to index for variations with time dat_USA['date'] = pd.to_datetime(dat_USA['date'], utc=True) dat_USA_index = dat_USA.set_index('date') dat_USA_index.head() C:\Users\shams\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykernel_launcher.py:2: S ettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/ indexing.html#returning-a-view-versus-a-copy

iso_code continent location total_cases new_cases new_cases_smoothed total_deaths new_deaths new_de

date								
2020-01-22 00:00:00+00:00	USA	North America	United States	1.0	NaN	NaN	NaN	NaN
2020-01-23 00:00:00+00:00	USA	North America	United States	1.0	0.0	NaN	NaN	NaN
2020-01-24 00:00:00+00:00	USA	North America	United States	2.0	1.0	NaN	NaN	NaN
2020-01-25 00:00:00+00:00	USA	North America	United States	2.0	0.0	NaN	NaN	NaN
2020-01-26 00:00:00+00:00	USA	North America	United States	5.0	3.0	NaN	NaN	NaN
00:00:00+00:00 2020-01-23 00:00:00+00:00 2020-01-24 00:00:00+00:00 2020-01-25 00:00:00+00:00 2020-01-26	USA USA USA	America North America North America North America North America	States United States United States United States United States United	1.0 2.0 2.0	0.0 1.0 0.0	NaN NaN NaN	NaN NaN NaN	NaN NaN NaN

```
In [85]: slices = [1.2, 151.089,10.79, 43.7]
         activities = ['poverty', 'cardiovasc_death_rate', 'diabetes_prevalence', 'smokers']
         cols=['yellow','#00e061','#fe073a','red']
         exp = [0.2, 0.02, 0.02, 0.02]
         plt.pie(slices, labels=activities,
                 textprops=dict(size=15,color='black'),
                 radius=2,
                 colors=cols,
                 autopct='%2.2f%%',
                 explode=exp,
                 shadow=True,
                 startangle=90)
         plt.title('Pie Chart of Death Rate with various complications\n\n\n\n\n\n\n\n\n\r',color='bl
         ack', size=20)
```

Out[85]: Text(0.5, 1.0, 'Pie Chart of Death Rate with various complications\n\n\n\n\n\n\n\n\n\n\n\n') Pie Chart of Death Rate with various complications

Now we will plot the distribution plot.

In [97]: dat_USA_index['new_cases'].resample('A').sum()

```
Out[97]: date
         2020-12-31 00:00:00+00:00
                                     20099089.0
         2021-12-31 00:00:00+00:00
                                     10509276.0
```

Freq: A-DEC, Name: new_cases, dtype: float64 In [94]: slices1 = [46921310,43784426] activities1 = ['2020', '2021']

cols=['yellow', 'red'] exp = [0.2, 0.02]plt.pie(slices1, labels=activities1, textprops=dict(size=15, color='black'), radius=1.5, colors=cols, autopct='%2.2f%%', explode=exp, shadow=True, startangle=90) plt.title('Pie Chart of total deaths during 2020 and 2021\n\n\n', color='black', size=15) Out[94]: Text(0.5, 1.0, 'Pie Chart of total deaths during 2020 and 2021\n\n\n\n') Pie Chart of total deaths during 2020 and 2021

activities2 = ['2020','2021']

```
cols=['yellow', 'red']
         exp = [0.2, 0.02]
         plt.pie(slices2, labels=activities2,
                 textprops=dict(size=15,color='black'),
                 radius=1.5,
                 colors=cols,
                 autopct='%2.2f%%',
                 explode=exp,
                 shadow=True,
                 startangle=90)
         plt.title('Pie Chart of new cases during 2020 and 2021\n\n\n',color='black',size=15)
Out[98]: Text(0.5, 1.0, 'Pie Chart of new cases during 2020 and 2021\n\n\n\n')
           Pie Chart of new cases during 2020 and 2021
```


We can see that there were a lot many new cases during the 2020.