Calculus I. Summer 17 Test 2 Review (with answers).

Make sure you also study all the quizzes, then notes and homework examples!

Overview of Derivatives

Power Rule: $y = x^2$, $7x^{-3}$, $\sqrt[5]{x^7}$, $x^{\sqrt{3}}$.

y' = 2x, $-21x^{-4}$, $\frac{7}{5}x^{(\frac{2}{5})}$, $\sqrt{3}x^{(\sqrt{3}-1)}$.

Trig: $y = \sin x$, $\cos x$, $\tan x$, $\sec x$, $\csc x$, $\cot x$, $\sin^{-1} x$, $\cos^{-1} x$, $\tan^{-1} x$.

 $y' = y = \cos x$, $-\sin x$, $\sec^2 x$, $\sec x \tan x$, $-\csc x \cot x$, $-\csc^2 x$, $\frac{1}{\sqrt{1-x^2}}$, $\frac{-1}{\sqrt{1-x^2}}$, $\frac{1}{1+x^2}$.

Hyperbolic Trig: $y = \sinh x$, $\cosh x$, $\tanh x$.

 $y' = \cosh x$, $\sinh x$, $\operatorname{sech}^2 x$.

Exponential: $y = e^x$, 3^x , $(\ln 2)^x$.

 $y' = e^x$, $3^x \ln 3$, $(\ln 2)^x \ln(\ln 2)$.

Logs: $y = \ln x$, $\log_5 x$, $\log_{2\pi} x$.

 $y = \frac{1}{x}, \qquad \frac{1}{x \ln 5}, \qquad \frac{1}{x \ln(2\pi)}.$

Combining functions: sums, products, quotients, compositions. Find y' using implicit differentiation and logarithmic differentiation.

1. Find y'. Don't simplify.

a)
$$y = \frac{x^4 - \sqrt{x}}{\sin 3x}$$

$$y' = \frac{\sin 3x(4x^3 - \frac{1}{2}x^{(-1/2)}) - (x^4 - \sqrt{x})3\cos 3x}{\sin^2 3x}$$

b)
$$y = \frac{1}{\sqrt[7]{t^5}}$$

$$y' = \frac{-5}{7}x^{(-12/7)}$$

c)
$$y = e^p \cosh^3(2^p)$$

$$y' = e^p \cosh^3(2^p) + e^p 3 \cosh^2(2^p) \sinh(2^p) 2^p \ln 2$$

d)
$$y = \sec(\log_2(x))$$

$$y' = \sec(\log_2(x))\tan(\log_2(x))\frac{1}{x\ln(2)}$$

$$e) \quad y = \frac{\tan x}{e^x - \sqrt{x}}$$

$$y' = \frac{(e^x - \sqrt{x})\sec^2 x - \tan x(e^x - \frac{1}{2}x^{(-1/2)})}{(e^x - \sqrt{x})^2}$$

f)
$$x3^y = (x+1)y$$
 Step 1: $3^y + x3^y(\ln 3)y' = y + (x+1)y'$

$$y' = \frac{y - 3^y}{x3^y \ln 3 - x - 1}$$

g)
$$xy = \csc y$$
 Step 1: $y + xy' = -(\csc y \cot y)y'$

$$y' = \frac{-y}{x + \csc y \cot y}$$

h)
$$y = x^{(\frac{5}{x})}$$

$$y' = x^{(\frac{5}{x})} \left(\frac{5}{x^2} - \frac{5}{x^2} \ln x \right)$$

$$i) \quad y = \sin(x^{(\frac{5}{x})})$$

$$y' = \cos\left(x^{(\frac{5}{x})}\right) x^{(\frac{5}{x})} \left(\frac{5}{x^2} - \frac{5}{x^2} \ln x\right)$$

$$j) \quad y = \sin^{-1}(2^r)$$

$$y' = \frac{1}{\sqrt{1 - (2^r)^2}} 2^r \ln 2$$

2. Find the tangent slope to $y = \frac{7^x}{\sin(e^x)}$ at x = 3.

$$m = \frac{\sin(e^3)7^3 \ln 7 - 7^3 \cos(e^3)(e^3)}{\sin^2(e^3)}$$

3. Find the tangent line to the curve given by $xy + y = 7^x$ at (x, y) = (0, 1).

$$y = ((\ln 7) - 1)x + 1$$

4. Find the linearization L(x) to $f(x) = x^3 + 4x$ at $x_1 = 1$. Use it to approximate f(1.01). Also give the differentials dx and dy.

$$L(x) = 7(x - 1) + 5$$

 $f(1.01) \approx L(1.01) = 7(0.01) + 5 = 5.07$
 $dx = 0.01; dy = 7(0.01) = 0.07$

5. Estimate ln(1.01) using linearization.

$$L(x) = x - 1$$

 $\ln(1.01) \approx L(1.01) = 0.01$

- 6. Let the functions f(x) and g(x) be given such that f(2) = 1, f'(2) = 3, g(2) = -1, g'(2) = 5.
 - a) If $y = f(x)g(x) + g(x) \frac{g(x)}{f(x)}$ find the value of the derivative y' at x = 2.

$$y' = -1.$$

b) If $y = \sin(\pi g(x))$ find the value of the derivative y' at x = 2.

$$y' = -5\pi$$

7. A particle is moving along the curve given by $xy = y^2 e^{(x-1)}$. At the point (1,1) the x-coordinate is increasing at the rate 5 m/s. Find the rate of change in the y-coordinate.

$$y'=0$$

8. A light on a 3 ft pole shines on a 1 inch mouse running away at 2 ft/s. How fast is the tip of the mouse shadow moving when it is 4 ft away?

$$y' = \frac{72}{35} \text{ ft/s}$$

9. A cylindrical tank with radius 5 m is being filled at a rate of 3 m^3/min . How fast is the height of the water increasing?

$$h' = \frac{3}{25\pi} \text{ m/min}$$