QF IIA

Resolução de Problemas Semana 5 22 a 26 de maio 2017

- A tensão superficial da água é de 72 mN m⁻¹ a 298K. Calcule a elevação capilar num tubo de 0,5 mm de diâmetro para um ângulo de contacto de 30 °. $[\rho_{H2O}=1.0~g.cm^{-3}]$
- Aplica-se a equação de Young-Laplace

$$P_{i} - P_{e} = \frac{2\gamma}{r}$$

O raio de curvatura $r=a/\cos\theta$, em que a é o raio interno do tubo capilar

 $\Delta p = \rho gh$ - a diferença de pressão através do menisco curvo iguala a pressão exercida pela coluna de líquido de altura h que subiu pelo capilar.

```
h = 2\gamma \cos \theta / (\rho ga) =

2x 72x10^{-3}x (0.866)/

(1.0 x10^{3}x9.8x0.25x10^{-3}) =

= 0.051 m = 5,1 cm
```

 Medidas de tensão superficial de soluções aquosas do tensioativo CTAB16, a 20ºC, deram os seguintes resultados:

Cx10 ⁴ /M	1	2	5	10	50	100
γ/mN m ⁻¹	68	60	48	39	36	36

- a) Utilizando a isotérmica de adsorção de Gibbs, calcule a área ocupada por molécula de CTAB16 à superfície da solução
- b) Calcule a concentração micelar crítica.

Cx10^4	С	In C	γ (mN m-1)	γ (N m-1)
1	1.00E-04	-9.21034	68	0.068
2	2.00E-04	-8.51719	60	0.06
5	5.00E-04	-7.6009	48	0.048
10	1.00E-03	-6.90776	39	0.039
50	5.00E-03	-5.29832	36	0.036
100	1.00E-02	-4.60517	36	0.036

• Representando γ vs. In C

Os 4 primeiros pontos seguem a isotérmica de adsorção de Gibbs, os dois últimos já estão no domínio da formação de micelas C> CMC

- A isotérmica de Gibbs Γ =(-1/RT) $d\gamma/dlnC$ só se aplica no ramo descendente, isto é, só aos primeiros 4 pontos.
- Do declive da reta, $d\gamma/dlnC = -0.0127$, e $\Gamma = 5.2 \times 10^{-6} \text{ mol m}^{-2}$.
- Multiplicando pelo nº de Avogadro, temos o nº de moléculas por m². Invertendo este nº, obtemos a área por molécula, 32 x 10⁻²⁰ m².

- CMC obtém-se igualando a expressão de variação linear da tensão superficial ao valor estabilizado a altas concentrações (0.036)
- -0,0127 ln (CMC) 0.0483 = 0.036
 CMC = 0,0013 M

• 3) A tabela seguinte dá o volume de azoto (a 0°C e 1 bar) adsorvido por grama de carvão ativado a diferentes pressões:

p/mbar	5.17	17.08	30.18	44.75	73.99
V/cm ³ g ⁻¹	0.987	3.04	5.08	7.04	10.31

- a) Construa um gráfico de forma a verificar a aplicabilidade da isotérmica de Langmuir
- b) Determine a área superficial por grama de carvão, admitindo que a área ocupada por molécula de azoto é 16 Å².

Rearranjando a isotérmica de Langmuir $1/n=1/n_{max}+1/(Kn_{max}p)$

Representação de 1/n vs. 1/p deve ser linear (calculam-se <u>n</u> a partir de <u>V</u> de gás a 273 K e 1 bar)

p/mbar	5.17	17.08	30.18	44.75	73.99
V/cm³ g-1	0.987	3.04	5.08	7.04	10.31
n/mol	4.35E-05	0.000134	0.000224	0.00031	0.000454
1/p	0.193424	0.058548	0.033135	0.022346	0.013515
1/n	23008.81	7470.293	4470.412	3225.808	2202.686

- a) A representação é linear isotérmica de Langmuir ajusta-se aos dados experimentais
- b) $n_{max} = 1/$ ordenada na origem = 0.00153 mol Área = 0.00153x N_{Av} x 16x 10^{-20} m 2 g $^{-1}$ = 147,6 m 2 g $^{-1}$

 Mediu-se a adsorção de metano em carvão ativado, a 20 º C, obtendo-se os seguintes resultados:

```
n ads/mol g-1 p/bar
4.20E-04 0.133
6.38E-04 0.267
8.01E-04 0.400
9.25E-04 0.533
```

• Utilizando a isotérmica de adsorção de Langmuir, calcule a fração de área ocupada pelo metano, θ_{CH4} , à pressão de 0.4 bar.

n	р	1/p	1/n
4.20E-04	0.133	7.518797	2.38E+03
6.38E-04	0.267	3.745318	1.57E+03
8.01E-04	0.4	2.5	1.25E+03
9.25E-04	0.533	1.876173	1.08E+03

	n max		
	1/677.39	0.001476	mol
		$\theta =$	
8.01E-04/n max		0.54	

Proponha mecanismos baseados na isotérmica de adsorção de Langmuir para as seguintes reações catalisadas heterogeneamente:

a) A decomposição de NO em N₂ e O₂ catalisada numa superfície de Pt obedece à lei de velocidade

$$\frac{dp_{NO}}{dt} = -k \frac{p_{NO}}{p_{O_2}}$$

b) A cinética da reacção entre NO e CO sobre Rh(100) para dar N₂ e CO₂ é dada por

$$\frac{dp_{CO_2}}{dt} = k \frac{p_{NO}p_{CO}}{p_{CO_2}}$$

a) Adsorção de dois ou mais gases

 Inibição pelo produto – o produto da reação adsorvese fortemente à superfície do catalisador, competindo com o reagente. Quando há dois gases a competir por área de adsorção, a fração ocupada é dada por

$$\theta_r = \frac{K_r p_r}{1 + K_r p_r + K_p p_p}$$

Se a adsorção do produto for muito forte, $K_p >> K_r$ e, à medida que p_p aumenta, $K_p p_p$ torna-se $>> 1 + K_r p_r$

$$v \propto k \frac{K_r p_r}{K_p p_p}$$

b) Reação entre dois gases + inibição pelo produto

- Numa reação bimolecular (dois reagents) com catálise heterogénea, há dois mecanismos possíveis:
- Um gás B reage com uma substância adsorvida A

$$v = k\theta_{A}p_{B} = \frac{kK_{A}p_{A}p_{B}}{1 + K_{A}p_{A}}$$

$$A \ e \ B \ reagem \ depois \ de \ adsorvidos$$

$$v = k\theta_{A}\theta_{B} = \frac{kK_{A}p_{A}K_{B}p_{B}}{(1 + K_{A}p_{A} + K_{B}p_{B})^{2}}$$

• A inibição pelo produto CO2 acrescenta a parcela $K_{CO2}p_{CO2}$ a cada um dos denominadores.

Como não aparece o quadrado (expoente 2), o mecanismo deve ser o primeiro, com adsorção de CO2 >> adsorção do reagent adsorvido (que pode ser NO ou CO, não temos informação que permita decider entre eles)

 A decomposição do óxido nitroso sobre metais nobres e óxidos de cálcio e alumínio dá-se segundo:

$$2N_2O \xrightarrow{cat} 2N_2 + O_2$$

• Foram obtidos os tempos de semireação da tabela para diferentes pressões parciais iniciais de óxido nitroso a 925 °C. Com base nos dados experimentais apresentados, proponha um mecanismo de catálise heterogénea para esta reação.

p _{N20} (bar)	t <u>% (s)</u>
0.1	3460
0.5	3450
0.7	3460
1.0	3458
1.4	3450
3.4	8625
6.4	16235
13.4	34000

- Às pressões iniciais mais baixas (<1,5 bar), $t_{1/2}$ é constante reação de 1º ordem.
- Às pressões mais altas, $t_{1/2}$ varia com a pressão inicial reação de ordem 2 ou 0 (??).
- Ordem $0 \rightarrow p(N_2O) = p(N_2O)_0 k t$ qd. $p(N_2O) = p(N_2O)_0 / 2$, $t = t_{1/2} e$ $t_{1/2} = p(N_2O)_0 / (2k)$

Se o tempo de semi-reação for diretamente proporcional à pressão parcial inicial do reagente, a reação é de ordem 0.

- O gráfico demonstra essa proporcionalidade ordem 0 a pressões altas.
- Ordem 1 a baixas pressões e 0 a altas catálise heterogénea segundo o mecanismo de Langmuir ou unimolecular (ver Aula 17)

$$v = k \frac{K_{N20} p_{N20}}{1 + K_{N20} p_{N20}}$$

t_{1/2} não varia com p a baixa pressão – 1^a ordem,
 varia linearmente a alta pressão – ordem 0