Parallelising a CNN using 7-nested loops

Introduction

- Convolutional Neural Networks (CNN's).
- Implementing model parallelism using openMP, data parallelism using MPI.
- To achieve a speedup of XX over sequential execution.
- Performed both strong-scaling and weak-scaling.
- Implemented feed-forward as opposed to training on the accelerator.

Methodology and Implementation

- Have used a modified version of Le-Net 5, network architecture provided by Caffe.
- Used the MNIST hand written digit dataset, each image is a 28x28 grayscale image.
- Used ReLU activation function, Sigmoid for FC.

Methodology and Implementation

- Parallelising kernels gives us a speedup of 2 times.
- Initially planned on parallelising both the kernels and channels.
- · Parallelising both kernels & channels makes the algorithm perform worse, owing to false sharing.
- Used OpenMP to parallelise the layers, MPI for parallel execution of multiple images.

	Sequential	Parallel K	K, C	$\mathbf{K}, \mathbf{C}, K_y$	$\mathbf{K}, \mathbf{C}, K_y, K_x$
Tine (sec)	135.3	59.6	432.7	145.4	75.2

Table 1: Exec time in executing the algorithm with different levels of parallelizm; K= Kernels, C= Channels, K_x , K_y = Kernel x and y dimensions

Results

Results

2x execution time

Sensitivity Study (OpenMP v. MPI)

Using MPI over openMP has significant improvement in performance.

Thank you.