Raphael Gaedtke, Paul Neumann

University of Bonn

January 10, 2025

- 1 Representation Theory
- 2 Finite abelian groups
- 3 Formalization
- Mathlib
- 5 Future work

Definition

For a group G and a field k, a **representation** of G over k is a pair (V, ρ) where V is a vector space over k and $\rho : G \to GL(V)$ is an action of G on V.

Definition

For a group G and a field k, a **representation** of G over k is a pair (V, ρ) where V is a vector space over k and $\rho : G \to GL(V)$ is an action of G on V.

Convention: V has finite dimension, unless explicitly stated otherwise.

Definition

 $\dim(V)$ is the **dimension** or **degree** of (V, ρ) .

Representation Theory

$$D_{2n} = \langle a, b | a^n = b^2 = 1, bab = a^{-1} \rangle$$

Example

Representation Theory

$$D_{2n} = \langle a, b | a^n = b^2 = 1, bab = a^{-1} \rangle$$

Representation $\rho: D_{2n} \to \mathsf{GL}(\mathbb{R}^3)$ with

- $\rho(a)$ as rotation about the Z-axis
- ullet $\rho(b)$ as a rotation about a suitable axis in the XY-plane

Invariant subspaces, Irreducibility

Definition

Let V be a representation and $U \subseteq V$ a subspace. U is an **invariant subspace** if $gu \in U$ for $\forall u \in U, g \in G$.

Invariant subspaces, Irreducibility

Definition

Let V be a representation and $U \subseteq V$ a subspace. U is an **invariant subspace** if $gu \in U$ for $\forall u \in U, g \in G$.

Example

Invariant subspaces, Irreducibility

Definition

Representation Theory

Let V be a representation and $U \subseteq V$ a subspace. U is an **invariant subspace** if $gu \in U$ for $\forall u \in U, g \in G$.

Example

The XY-Plane is an invariant subspace.

Irreducibility, Representation Homomorphisms

Definition

A representation V is **irreducible** provided $V \neq 0$ and the only invariant subspaces are 0 and V.

Irreducibility, Representation Homomorphisms

Definition

Representation Theory

A representation V is **irreducible** provided $V \neq 0$ and the only invariant subspaces are 0 and V.

Definition

For representations V and W, a **homomorphism** is a linear map $\theta: V \to W$ with $\theta(gv) = g\theta(v)$ for $\forall g \in G, v \in V$.

Irreducibility, Representation Homomorphisms

Definition

A representation V is **irreducible** provided $V \neq 0$ and the only invariant subspaces are 0 and V.

Definition

For representations V and W, a **homomorphism** is a linear map $\theta: V \to W$ with $\theta(gv) = g\theta(v)$ for $\forall g \in G, v \in V$.

- $Im(\theta)$ and $Ker(\theta)$ are invariant subspaces
- If V and W are irreducible, then $\theta: V \to W$ is 0 or bijective.

This theorem is listed on the "Missing undergraduate mathematics in mathlib"-page.

Main theorem formalized in this project

This theorem is listed on the "Missing undergraduate mathematics in mathlib"-page.

Theorem

Let G be a finite abelian group.

Let V be a non-null vector space over an algebraically closed field k.

Let $\rho: G \to GL(V)$ be a representation.

Main theorem formalized in this project

Finite abelian groups

This theorem is listed on the "Missing undergraduate mathematics in mathlib"-page.

Theorem

Let G be a finite abelian group.

Let V be a non-null vector space over an algebraically closed field k.

Let $\rho: G \to GL(V)$ be a representation.

Then ρ is irreducible if and only if $\dim_k(V) = 1$.

$\mathsf{Theorem}$

 ρ is irreducible if and only if $\dim_k(V) = 1$.

"⇐" is trivial

For " \Rightarrow ", we use the following two lemmas:

Lemma

For all $g \in G$, $\rho(g)$ is a Representation Endomorphism.

Lemma

Every Representation Endomorphism is given by multiplication with a scalar.

With these two lemmas, we can prove the following fact:

Lemma

Every one-dimensional subspace of V is an invariant subspace.

With these two lemmas, we can prove the following fact:

Lemma

Every one-dimensional subspace of V is an invariant subspace.

With these two lemmas, we can prove the following fact:

Lemma

Every one-dimensional subspace of V is an invariant subspace.

Now, we can use proof by contradiction:

1 Assume $\dim(V) > 1$.

With these two lemmas, we can prove the following fact:

Lemma

Every one-dimensional subspace of V is an invariant subspace.

- **1** Assume dim(V) > 1.
- 2 Then, V has a proper subspace with dimension 1.

With these two lemmas, we can prove the following fact:

Lemma

Every one-dimensional subspace of V is an invariant subspace.

- 1 Assume $\dim(V) > 1$.
- 2 Then, V has a proper subspace with dimension 1.
- 3 So V has a proper invariant subspace.

With these two lemmas, we can prove the following fact:

Lemma

Representation Theory

Every one-dimensional subspace of V is an invariant subspace.

- 1 Assume $\dim(V) > 1$.
- 2 Then, V has a proper subspace with dimension 1.
- 3 So V has a proper invariant subspace.
- 4 This is a contradiction to the irreducibility of V.

Mathlib

Future work