LA2 Subspaces, Linear Combination, Spanning Sets, Linearly Independent

KYB

Thrn, it's a Fact
mathrnfact@gmail.com

February 9, 2021

Overview

Ch2. Fields and vector spaces

- 2.3 Subspaces Linear Combinations and Spanning Sets
- 2.5 Linear Independence

Polar Coordinate

Definition

Let V be a vector space over a field F, and let S be a subset of V. Then S is a subspace of V if and only if the following are true:

- 1. 0 ∈ *S*
- 2. If $\alpha \in F$ and $u \in S$, then $\alpha u \in S$
- 3. If $u, v \in S$, then $u + v \in S$.

Theorem

Suppose S is a subspace of a vector space V over a field F. Then S is a vector space over F, where the operations on S are the same as the operations on V.

Let V be a vector space over a field F.

- (a) Let $S = \{0\}$ be the subset of V containing only the zero vector. Prove that S is a subspace of V.
- (b) Prove that V is a subspace of itself.

Ex 2.3.2, Another Definition of a Subspace

A subspace S of a vector space V is a nonempty subset of V that is closed under addition and scalar multiplication. Prove that this is equivalent to our definition of subspace.

Let V be a vector space over \mathbb{R} and let $v \in V$ be a nonzero vector. Prove that the subset $\{0, v\}$ is not a subspace of V.

Proof.

1) Since \mathbb{R} is infinite, if W is a subspace, then either |W| or W is infinite. Since $|\{0,v\}|=2,\ \{0,v\}$ is not a subspace.

Proof.

2) Suppose $\{0, v\}$ is a subspace. Then $v + v \in \{0, v\}$. So v + v = 0 or v + v = v. Both cases, v = 0 (contradiction).

Let V be a vector space over a field F, let $u \in V$, and define $S \subset V$ by $S = \{\alpha v : \alpha \in F\}$. Then S is a subspace of V.

Let V be a vector space over a field F, and let X, Y be two subspaces of V. Prove or give a counterexample:

- (a) $X \cap Y$ is a subspace of V.
- (b) $X \cup Y$ is a subspace of V.

Proof.

(a) Yes.

Let V be a vector space over a field F, and let X, Y be two subspaces of V. Prove or give a counterexample:

- (a) $X \cap Y$ is a subspace of V.
- (b) $X \cup Y$ is a subspace of V.

Proof.

(b) No.
$$F = \mathbb{R}$$
, $X = \{\alpha(1,0) : \alpha \in \mathbb{R}\}$, $Y = \{\alpha(0,1) : \alpha \in \mathbb{R}\}$. Then $(1,1) \notin X \cup Y$. \square

Fx 2 3 20

Let V be a vector space over a field and let S be a nonempty subset of V. Define \mathcal{T} be the collection of all subspace of V containing S, that is,

$$\mathcal{T} = \{ T_{\alpha} | S \subset T_{\alpha}, T_{\alpha} \text{ is a subspace of } V \} /$$

Let T be the intersection of all subspaces of V that containing S:

$$T = \bigcap_{T_{\alpha} \in \mathcal{T}} T_{\alpha}.$$

Prove:

- (a) T is a subspace of V;
- (b) T is the smallest subspace of V containing S, in the following sense: If U is a subspace of V and $S \subset U$, then $T \subset U$.

Proof.

- (a) For all $T_{\alpha} \in \mathcal{T}$, $0 \in T_{\alpha} \Longrightarrow 0 \in \mathcal{T}$. $a \in F$, $u, v \in \mathcal{T}$. Then $y, v \in \mathcal{T}_{\alpha}$ for all $T_{\alpha} \in \mathcal{T}$. So $u + v, \alpha u \in \mathcal{T}_{\alpha}$ for all T_{α} and $u + v, \alpha u \in \mathcal{T}$.
- (b) Let $U \in \mathcal{T}$. We want to show $T \subset U$. Let $v \in T$. Then for all $T_{\alpha} \in \mathcal{T}$, $v \in T_{\alpha}$. Since $U \in \mathcal{T}$, $v \in U$.

Let V be vector space over a field F, and let S and T be subspaces of V. Define

$$S + T = \{s + t : s \in S, t \in T\}.$$

Prove that S + T is the smallest subspace of V containing $S \cup T$.

Proof.

Clearly $S \cup T \subset S + T$.

- (1) $0 = 0 + 0 \in S + T$
- (2) $\alpha(s+t) = \alpha s + \alpha t \in S + T$
- (3) $(s_1 + t_1) + (s_2 + t_2) = (s_1 + s_2) + (t_1 + t_2) \in S + T$
- (4) Suppose U is a subspace of V such that $S \cup T \subset U$. Then $s+t \in S+T \implies s,t \in U \implies s+t \in U$.

Definition

Let V be a vector space over a field F, let $u_1, \dots, u_k \in V$ and let $\alpha_1, \dots, \alpha_k \in F$. Then

$$\alpha_1 u_1 + \cdots + \alpha_k u_k$$

is called a linear combination of u_1, \dots, u_i .

Definition

Let S be a subset of V. The spanning set span $\{S\}$ is the set of all linear combination of S,

$$span\{S\} = \{\alpha_1 v_1 + \cdots + \alpha_k v_k : \alpha_i \in F, v_i \in S, k \in \mathbb{N}\}.$$

Tutoring Linear Algebra

└Ch2. Fields and vector spaces

Linear Combinations and Spanning Sets

Theorem $span{S}$ is a subspace of V.

Let $S = \text{span}\{(-1, -2, 4, -2), (0, 1, -5, 4)\}$ in \mathbb{R}^4 . Determine if each vector v belongs to S:

(a)
$$v = (-1, 0, -6, 6)$$

Proof.

Suppose $v \in S$. Then $v = \alpha(-1, -2, 4, 2) + \beta(0, 1, -5, 4)$ for some $\alpha, \beta \in \mathbb{R}$.

$$\begin{cases}
-\alpha = -1 \\
-2\alpha + \beta = 0 \\
4\alpha - 5\beta = -6 \\
2\alpha + 4\beta = 6
\end{cases} \implies \begin{cases}
\alpha = 1 \\
-2 + \beta = 0 \implies \beta = 2 \\
4 - 10 = -6 \\
2 + 4 = 6
\end{cases}$$

Let $S = \text{span}\{(-1, -2, 4, -2), (0, 1, -5, 4)\}$ in \mathbb{R}^4 . Determine if each vector v belongs to S:

(b)
$$v = (1, 1, 1, 1)$$

Proof.

Suppose $v \in S$. Then $v = \alpha(-1, -2, 4, 2) + \beta(0, 1, -5, 4)$ for some $\alpha, \beta \in \mathbb{R}$.

$$\begin{cases} -\alpha = 1 \\ -2\alpha + \beta = 1 \\ 4\alpha - 5\beta = 1 \\ 2\alpha + 4\beta = 1 \end{cases} \implies \begin{cases} \alpha = -1 \\ \beta = -1 \\ -4 + 5 = 1 \\ -2 - 4 = 1 \text{(contradiction)} \end{cases}$$

Show that

$$S_1 = \text{span}\{(1,1,1),(1,-1,1)\}$$
 and $S_2 = \text{span}\{(1,1,1),(1,-1,1),(1,0,1)\}$

are the same subspace of \mathbb{R}^3 .

Proof.

Need to show $S_1 \subset S_2$ and $S_1 \supset S_2$.

Let V be a vector space over a field F, and let u be a nonzero vector in V. Prove that, for any scalr $\alpha \in F$, span $\{u\} = \text{span}\{u, \alpha u\}$.

Ex 2.4.16

Let V be a vector space over a field F, and suppose

$$x, u_1, \cdots, u_k, v_1, \cdots, v_l$$

are vectors in V. Assume $x \in \text{span}\{u_1, \dots, u_k\}$ and $u_j \in \text{span}\{v_1, \dots, v_l\}$ for $j = 1, 2, \dots, k$. Prove that $x \in \text{span}\{v_1, \dots, v_l\}$.

- 1. Let V be a vector space over \mathbb{R} , and let u, v be any two vectors in V. Prove that $span\{u, v\} = span\{u + v, u v\}$.
- 2. $F = \mathbb{Z}_2$ and $V = \mathbb{Z}_2^2$, u = (1,0), v = (0,1). Then

$$span\{u, v\} = V, span\{u + v, u - v\} = \{(0, 0), (1, 1)\}.$$

Definition

Suppose V is a vector space over a field F and X is a subset of V. We say X is linearly independent if for any distinct $x_1, \dots, x_k \in X$ and $\alpha_1, \dots, \alpha_k \in F$, $\alpha_1 x_1 + \dots + \alpha_k x_k = 0$ implies $\alpha_1 = \dots = \alpha_k = 0$. Otherwise, X is linearly dependent.

Goal

Find $S \subset V$ such that span $\{S\} = V$ and S is linearly independent. Suppose $V = \text{span}\{u_1, \dots, u_n\}$.

- (1) if $\{u_1, \dots, u_n\}$ is linearly independent, we are done.
- (2) if $\{u_1, \dots, u_n\}$ is linearly dependent, there is $u_k \in \text{span}\{u_1, \dots, \hat{u}_k, \dots, u_n\}$. (WLOG, assume k = n)
- (3) repeat for $\{u_1, \dots, u_n\}$.

Note that if $u \neq 0$, $\{u\}$ is always linearly independent. So these process $(1)\sim(3)$ must stop only after finitely many times.

Definition

Let V be a vector space over a field F, and B be a subset of V. We say B is a basis if

- \triangleright \mathcal{B} is linearly independent
- ▶ span ${}B = V$.

Remark

- ► Every vector space *V* has a basis.
- ► A basis may not be unique.
- ▶ Every basis has the same cardinality.
- ▶ We we can define dimension of V over F by $|\mathcal{B}|$ for some basis \mathcal{B} .

Example

Suppose V is a nontrivial vector space over a field F.

- ▶ $\{u_1, u_2\}$ is linearly dependent if and only if $u_1 = \alpha u_2$ for some $\alpha \in F$.
- \blacktriangleright {v} is linearly dependent if and only if v = 0.
- ▶ If $0 \in \{u_1, \dots, u_n\}$, then $\{u_1, \dots, u_n\}$ is linearly dependent.
- ▶ If $\{u_1, \dots, u_k\}$ is linearly independent and $v \notin \text{span}\{u_1, \dots, u_k\}$, then $\{u_1, \dots, u_k, v\}$ is linearly independent.

2.5 Linear Independence

Ex 2.5.14

Let V be a vector space over a field F and let $\{u_1, \dots, u_k\}$ be a linearly independent subset of V. Prove or give a counterexample: if $\{v, w\}$ is linearly independent and $v, w \notin \text{span}\{u_1, \dots, u_k\}$, then $\{u_1, \dots, u_k, v, w\}$ is linearly independent.

Proof.

In
$$\mathbb{R}^3$$
, let $v = (1,0,0)$, $w = (1,1,0)$, $u = (0,1,0)$. Then $\{v,w\}$ and $\{u\}$ are linearly independent and $v,w \notin \text{span}\{u\}$ but $v-w+u=0$.

Let V be a vector space over a field F, and suppose S and T are subspaces of V satisfying $S \cap T = \{0\}$. Suppose $\{s_1, \dots, s_k\} \subset S$ and $\{t_1, \dots, t_l\} \subset T$ are both linearly independent sets. Prove that

$$\{s_1, s_2, \cdots, s_k, t_1, t_2, \cdots, t_l\}$$

is a linearly independent subset of V.

Let V be a vector space over a field F, and let $\{u_1, \dots, u_k\}$ and $\{v_1, \dots, v_l\}$ be two linearly independent subsets of V. Find a condition that implies that

$$\{u_1,\cdots,u_k,v_1,\cdots,v_k\}$$

is linearly independent.

Let U and V be vector spaces over a field F, and define $W=U\times V$. Suppose $\{u_1,\cdots,u_k\}\subset U$ and $\{v_1,\cdots,v_l\}\subset V$ are linearly independent. Prove that

$$\{(u_1,0),\cdots,(u_k,0),(0,v_1),\cdots,(0,v_l)\}$$

is a linearly independent subset of W.

Let V be a vector space over a field F, and let u_1, \dots, u_n be vectors in V. Suppose a nonempty subset S of $\{u_1, \dots, u_n\}$ is linearly independent. Prove that $\{u_1, \dots, u_n\}$ itself is linearly dependent.

L 2.5 Linear Independence

Ex 2.5.20

Let V be a vector space over a field F, and suppose $\{u_1, \dots, u_n\}$ is a linearly independent subset of V. Prove that every nonempty subset of $\{u_1, \dots, u_n\}$ is also linearly independent. Prove that $\{u_1, \dots, u_n\}$ itself is linearly dependent.

Let V be a vector space over a field F, and suppose $\{u_1, \dots, u_n\}$ is linearly dependent. Prove that, given any $i, 1 \le i \le n$, either u_i is linear combination of $\{u_1, \dots, \hat{u}_i, \dots, u_n\}$ or $\{u_1, \dots, \hat{u}_i, \dots, u_n\}$ is linearly depedent.

Summary

lf

$$\underbrace{\{u_1\}\subset\{u_1,u_2\}\subset\cdots\{u_1,\cdots,u_n\}}_{\text{linearly independent}}\subset\underbrace{\{u_1,\cdots,u_n,u_{n+1}\}\subset\cdots}_{\text{linearly dependent for all }u_{n+1}},$$

then $\{u_1, \dots, u_n\}$ is a basis for V.

The End