Основи програмування – 1. Алгоритми та структури даних

Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження складних циклічних алгоритмів» Варіант <u>13</u>

Перевірив (-ла) <u>Вечерковська Анастасія Сергіївна</u> (прізвище, ім'я, по батькові)

Лабораторна робота 5

Дослідження складних циклічних алгоритмів

Мета — дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Індивідуальне завдання Варіант 13 Постановка задачі

 Натуральне число називається паліндромом, якщо його запис читається однаково з початку та з кінця (наприклад, 575, 9). Знайти всі числа-паліндроми, що не перевищують 100, та при піднесенні до квадрату також дають паліндроми.

Математична модель

Змінна	Тип	Ім'я	Призначенн я
Число	Цілочисе льний	n	Вхідні дані
Число (копія)	Цілочисе льний	n_copy	Проміжні дані
Квадрат числа	Цілочисе льний	n_s	Проміжні дані
К-сть цифр числа	Цілочисе льний	digits_count	Проміжні дані
Ітератор	Цілочисе льний	i	Проміжні дані
Ітератор #2	Цілочисе льний	j	Проміжні дані
Змінна для результату перевірки на поліномність	Логічний	is_polynom e	Проміжні дані
Функція для знаходження конкретної цифри числа	Функція, вихід цілочисел ьний	get_digit(nu mber, digit_positi on)	Проміжні дані

// - цілочисельне ділення. % - знаходження остачі від ділення.

Визначимо п, як ітератор арифметичного циклу від 1 до 100.

Спочатку визначимо к-сть цифр (digits_count) цього числа за допомогою циклу, ділячи копію числа (n_copy) на 10. Потім перевіримо на поліномність за допомогою циклу, що перевіряє рівність відповідних цифр, самі ж цифри знайдемо за допомогою функції get_digit(). Після цього знайдемо квадрат числа (n_s) і так само перевіримо його на поліномність. Якщо поліномність не порушена (is_polynome == true), то вивести число.

Функція get_digit приймає дві змінні, що відповідають числу та номеру цифри з правого боку, а повертає значення цієї цифри. Для цього число number цілочисельно ділиться на 10 (digit_position – 1) разів, а потім знаходиться остання цифра результату за допомогою остачі від ділення на 10, ця ж цифра і повертається.

Розв'язання

- Крок 1. Визначаємо основні дії
- Крок 2. Деталізуємо крок знаходження digits_count
- Крок 3. Деталізуємо крок перевірки на поліномність число та його квадрату

Псевдокод

Крок 1

Початок

Введення п

Знаходження digits_count

Перевірка на поліномність число та його квадрату

Кінепь

Крок 2

Початок

Введення п

Повторити для п від 1 до п=<100

 $digits_count = 0$

n_copy = n

<u>поки n_copy >=1</u>

<u>n_copy</u> /=10

digits_count +=1

все поки

Перевірка на поліномність число та його квадрату

все повторити

Кінець

Крок 3

Початок

Введення п

Повторити для n від 1 до n=<100

 $\underline{\text{digits}}\underline{\text{count}} = 0$

n_copy = n

```
поки n_{copy} >= 1
             n_copy /=10
             digits_count +=1
      все поки
      повторити для і від 1 до digits_count/2
             якщо get_digit(n, (digits_count - i)) != get_digit(n, (1 + i))
                   <u>is_polynome = false</u>
                   break
             все якщо
      все повторити
      <u>is_polynome == true</u>
      n_s = n*n
      n_{copy} = n_{s}
      digits\_count = 0
      n_{copy} = n
      поки n_{copy} >= 1
             n_copy /=10
             digits_count +=1
      все поки
      повторити для і від 1 до digits_count/2
             якщо get_digit(n, (digits_count - i)) != get_digit(n, (1 + i))
                   <u>is_polynome</u> = false
                   break
      все повторити
      <u>is_polynome == true</u>
      Вивести п
      все повторити
Кінець
Функція get_digit(number, digit_position)
Введення number, digit_position
      повторити для ј від 1 до digit_position - 1
                   number //=10
      все повторити
Повернути number %= 10
```

Блок схема Крок 1 Крок 2 Початок Початок n, digits_count n, digits_count n = 1, n =< 100, n++ + Знаходження digits_count digits_count = 0 Перевірка на поліномність число та <u>його квадрату</u> $n_{copy} = n$ Кінець n_copy >=1 $n_copy \not= 10$ digits_count++ Перевірка на поліномність число та його квадрату

Кінець

Блок-схема функції get_digit(number, digit_position)

Випробування

Блок	Дія
	Початок
1.	n = 1
2.	$n_{\text{copy}} = 1$
3.	digits count = 1
4.	<u>n_copy < 1</u>
5.	digits count/2=0,5; 0,5>0
6.	number = 1, digit position = 1
7.	<u>number % 10 = 1</u>
8.	number = 1, digit position = 1
9.	<u>number % 10 = 1</u>
10.	get digit(1, (1)) = get digit(1, (1))
11.	digits count/2<1
12.	is polynome == true
13.	n = n n
14.	n copy = n s
15.	digits count = 0
16.	n copy >= 1
17.	<u>digits_count = 1</u>
18.	<u>n copy < 1</u>
19.	digits count/2=0,5; 0,5>0
20.	number = 1, digit position = 1

Основи програмування – 1. Алгоритми та структури даних

21.	<u>number % 10 = 1</u>
22.	number = 1, digit position = 1
23.	<u>number % 10 = 1</u>
24.	<pre>get_digit(1, (1)) = get_digit(1, (1))</pre>
25.	digits count/2<1
26.	is polynome == true
27.	<u>n = 1</u>
	<u></u>
	<u>n = 1, 2, 3, 11, 22</u>
	Кінець

Висновки

Ми дослідили особливості роботи складних циклів та набули практичних навичок їх використання під час складання програмних специфікацій. В результаті виконання завдання ми виявили те, що існує лише 5 чисел та їх квадратів від 1 до 100, які є паліндромами.