Understanding the Transformer Architecture

IITG Winter School on Deep Learning, January 2025

Primary job of ANNs: Generate representation

Feed Forward ANNs are rigid

- Fixed number of inputs
- Fixed number of outputs

RNNs can accept input of any size

- One token at time processing
- Output at each step or final step

RNNs can be configured in multiple ways

- One to one: FF ANN
- One to many: Image captioning
- Many to one: Sentiment analysis
- Many to many without delay: Entity detection
- Many to many with delay: Translation

Encoder Decoder architecture can handle any data modality

- Input is a sequence of tokens
- Output is a sequence of tokens

RNNs have multiple limitations

- Sequential input processing
- Vanishing gradient

Attention mechanisms: Focus on important part of input

- Global attention: Consider all input
- Local attention: Select a window of input

Transformer = RNN - Input recurrence

- Encoder Decoder architecture
- Self attention
- Masked attention
- Encoder Decoder attention
- Position encoding
- Residual connections

Each encoder has four components

- Self attention
- Residual connection and normalisation
- Feed Forward NN
- Residual connection and normalisation

•

Self attention block generates context sensitive representation

- Query
- Key
- Value
- Attention weights

Self attention generalises the key value search in databases

- Select value from table where key = query
- Select weighted value from table where key is more similar to query

Each encoder has multiple attention heads

Intuitively each attention head focuses on different aspects of input

Encoder has residual connections to blend old representation with new

• Old is sometimes gold!

Normalisation keeps the values from getting large

- We want to prevent overflow
- Large values can arbitrarily change output

Sequence of encoders generate final representation of input

• More encoders, more parameters, more complex function of the input

•

Decoder generates one output token at a time

Input sequence and partially generated output is the input for the decoder

Each decoder has six components

- Masked multi head attention
- Residual connections and normalisation
- Encoder Decoder attention
- Residual connections and normalisation
- Feed Forward NN
- Residual connections and normalisation

Position embedding allow the model to know the order of input

- Otherwise input simply becomes a bag of words
- Input representation = Original representation + Position specific representation
- Usually done only at the first encoder and decoder

BERT is an encoder only transformer

LLIMs are decoder only transformers

Summary

- Transformers get rid of input side recurrence
- They still have output side recurrence
- They have more refined attention mechanism
- Next token prediction has turned out to be a far more versatile tool than anyone could have expected before