Universidad de Buenos Aires Facultad de ingenieria

66.17 - Sistemas digitales

Trabajo práctico Nro. 2

Voltímetro digital con salida VGA

Lucas Simonelli

Buenos Aires - 22 de octubre de 2013

Contacto: lucasp.simonelli@gmail.com

Índice

1.	Objetivo	3
2.	Diagramas en bloques 2.1. Diagrama general	3 3
3.	Descripción de los componentes 3.1. Contador BCD	4
4.	Tests realizadas	4
5.	Resumen del output de la sintetización	4
6	Conclusiones	7

1. Objetivo

En el presente trabajo práctico se detallará el diseño, desarrollo e implementación en FPGA de un sistema digital para un voltímetro digital con salida VGA.

2. Diagramas en bloques

2.1. Diagrama general

Figura 1: Diagrama en bloques de la arquitectura propuesta por el enunciado.

2.2. Diagrama bloque procesamiento de datos y control

Figura 2: Diagrama del bloque de procesamiento.

3. Descripción de los componentes

3.1. Contador BCD

El contador BCD de 0000 a 9999 se tomó del trabajo práctico anterior. Está implementado con 4 contadores binarios de 4 bits.

3.2. Contador binario de N bits

Este contador se implementó mediante el generador de enable utilizado en el trábajo práctico 1. Luego de N ciclos activa el registro, y en el ciclo N+1 resetea el contador BCD y desactiva el enable del registro.

3.3. Multiplexor

El multiplexor se implementó mediante un process en el controlador VGA; en base a la posición actual en pantalla y el valor de la cuenta BCD almacenada en el registro, se elige el índice que corresponde a este en la memoria ROM.

3.4. Controlador VGA - ROM

Estos controladores se tomaron de la página de la materia; se agregaron los caracteres necesarios en la memoria y se modificó la integración VGA-ROM para poder mostrar varios dígitos.

4. Tests realizadas

Los componentes tomados del trabajo N 1 ya habían sido probados en éste. Respecto de los componentes de este trabajo, sólo se tuvo que agregar un registro, que se probó fácilmente:

Figura 3: Captura de pantalla del test del registro.

La integración de los bloques se testeó directamente por la pantalla.

5. Resumen del output de la sintetización

	Board_Top Project Status (10/22/2013 - 13:31:34)					
Project File:	testXilinx.xise	Parser Errors:	No Errors			
Module Name:	aplicVGA	Implementation State:	Placed and Routed			
Target Device:	xc3s500e-4fg320	• Errors:	No Errors			
Product Version:	ISE 14.2	• Warnings:	50 Warnings (0 new)			
Design Goal:	Balanced	• Routing Results:	All Signals Completely Routed			
Design Strategy:	Xilinx Default (unlocked)	• Timing Constraints:	All Constraints Met			
Environment:	System Settings	Final Timing Score:	0 (Timing Report)			

Device Utilization Summary							
Logic Utilization	Used	Available	Utilization	Note(s)			
Total Number Slice Registers	104	9,312	1%				
Number used as Flip Flops	85						
Number used as Latches	19						
Number of 4 input LUTs	228	9,312	2%				
Number of occupied Slices		4,656	3%				
Number of Slices containing only related logic	166	166	100%				
Number of Slices containing unrelated logic	0	166	0%				
Total Number of 4 input LUTs		9,312	3%				
Number used as logic	228						
Number used as a route-thru	56						
Number of bonded IOBs		232	5%				
Number of BUFGMUXs		24	4%				
Average Fanout of Non-Clock Nets	3.21						

Performance Summary				
Final Timing Score: 0 (Setup: 0, Hold: 0) Pinout Data: Pinout Rep				
Routing Results:	All Signals Completely Routed	Clock Data:	Clock Repor	t
Timing Constraints:	All Constraints Met			

Detailed Reports						[-]
Report Name	Status	Generated	Errors	Warnings	Infos	
Synthesis Report	Current	Tue Oct 22	0	46 Warnings (0	6 Infos (0	new)

		13:31:09 2013		new)	
Translation Report	Current	Tue Oct 22 13:31:13 2013	0	0	0
Map Report	Current	Tue Oct 22 13:31:16 2013	0	3 Warnings (0 new)	4 Infos (0 new)
Place and Route Report	Current	Tue Oct 22 13:31:30 2013	0	1 Warning (0 new)	2 Infos (0 new)
Power Report					
Post-PAR Static Timing Report	Current	Tue Oct 22 13:31:32 2013	0	0	6 Infos (0 new)
Bitgen Report	Out of Date	Tue Oct 22 13:21:20 2013	0	3 Warnings (0 new)	0

Secondary Reports				
Report Name	Status	Generated		
WebTalk Report	Out of Date	Tue Oct 22 13:21:20 2013		
WebTalk Log File	Out of Date	Tue Oct 22 13:21:41 2013		

Date Generated: 10/22/2013 - 13:31:34

6. Conclusiones

El presente trabajo sirvió para aprender a utilizar vhdl en un nivel básico. Además, se vió como sintetizar el código y subirlo al FPGA.