A Comparison of Land Classification Algorithms

CSC 497 - Interdisciplinary Project 2019
By Andrea Nesdoly
Supervisor: Dr. Neil Ernst

Outline

- 1. Goal
- 2. Background
- 3. Study Area
- 4. Data
- 5. Methods
- 6. Results
 - a. Accuracy Assessment
 - b. Statistical Comparison
- 7. Conclusion

Goal

To perform an in depth assessment between maximum likelihood estimation, support vector machine, and neural networks machine learning algorithms for land cover classification models.

Background

- Land development, natural resource management, or impact assessment studies
- ☐ Tangible product
- ☐ Satellites technology
- Advancements in machine learning
- PCI Geomatica, Jupyter Notebook, Python

Figure 2: Electromagnetic Spectrum

Study Area

Area 2,890 km² 28,896,685 pixels 11 bands

Land Cover Classes [1]

- 1. Urban/Barren
- 2. Forest
- 3. Shrub
- 4. Agriculture
- 5. Grassland
- 6. Wetland
- 7. Water

Data

Sentinel 2A

- ☐ European Space Agency
- ☐ Level 1C product
- □ 13 spectral bands
- □ 10, 20, and 60 metre spatial resolution [2]

Band Number	Type	Central Wavelength (nm)	Bandwidth (nm)	Resolution (m)
1	Violet	442.7	27	60
2	Blue	492.4	98	10
3	Green	599.8	45	10
4	Red	664.6	38	10
5	VNIR	704.5	19	20
6	VNIR	740.5	18	20
7	VNIR	782.8	28	20
8	NIR	832.8	145	10
8a	VNIR	864.7	33	20
9	MIR	945.1	26	60
10	MIR	1373.5	75	60
11	SWIR	1613.7	143	20
12	SWIR	2202.4	242	20

Methods

- 1. Data Preprocessing
- 2. Training Sample Selection
- 3. Data Processing
- 4. Land Classification
 - a. PCI Maximum Likelihood Estimation
 - b. Maximum Likelihood Estimation
 - c. Support Vector Machine
 - d. Neural Network
- 5. Algorithm Accuracy Assessment
- 6. Statistical Comparison Between Algorithms

Methods

Data Preparation

Atmospheric Correction

Spatial and Spectral Subset

Training Samples

Train/Test Split

Accuracy Assessment

Overall Accuracy

Stratified K-Fold Cross Validation

Confusion Matrix

Producer's & User's Accuracy

Precision, Recall, F-Measure

Kappa Coefficient

Statistical Comparison

Each Model 's Output

McNemar Test

Data Processing

- 1. Preprocessing
- ☐ Atmospheric Correction
- ☐ Spatial and Spectral Subset
- 2. Training Sample Selection
- ☐ Homogenous sites
- ☐ Spectral Signature Separability
- 3. Processing
- ☐ Train/Test Split of 70%/30%

Training Samples

Bhattacharyya Distance→1.86

Wavelength (nm)

PCI Maximum Likelihood Estimation

Black box

PCI Maximum Likelihood Estimation

- 1. Determine if the pixel is within the hyperellipsoid for the class
- 2. If not assign a NULL class, otherwise calculate the *Mahalanobis minimum* distance classifier
- 3. Calculate the "a posteriori" with Bayes Rule
 - a. Assumes Gaussian distribution for all feature classes [3]

Maximum Likelihood Estimation

- □ Very common in remote sensing
- ☐ Class Mean and Covariance Matrix
- ☐ Gaussian Probability Distribution
 - □ Assumed Independent and Identical [4,5]

$$P(x_i|y) = \frac{1}{\sqrt{2\pi C_y^2}} \exp\left(-\frac{(x_i - M_y)^2}{2C_y^2}\right)$$

Support Vector Machines

- **□** Kernels:
 - \square Radial Basis Function \rightarrow attempted
 - ☐ Linear
 - \square Polynomial \rightarrow 3rd order

- \Box Cost = 1.0
- \Box Gamma = 1/Number of Features

[[0.01	0.01	0.99083487]
[0.01	0.1	0.99083487]
[0.01	0.5	0.99083487]
[0.01	1.	0.99083487]
[0.01	1.5	0.99083487]
[0.01	5.	0.99083487]
[0.01	10.	0.99083487]
[0.1	0.01	0.99157229]
[0.1	0.1	0.99157229]
[0.1	0.5	0.99157229]
[0.1	1.	0.99157229]
[0.1	1.5	0.99157229]
[0.1	5.	0.99157229]
[0.1	10.	0.99157229]
[0.3	0.01	0.99141427]
[0.3	0.1	0.99141427]
[0.3	0.5	0.99141427]
[0.3	1.	0.99141427]
[0.3	1.5	0.99141427]
[0.3	5.	0.99141427]
[0.3	10.	0.99141427]
[0.8	0.01	0.99094022]
[0.8	0.1	0.99094022]
[0.8	0.5	0.99094022]
[0.8	1.	0.99094022]
[0.8	1.5	0.99094022]
[0.8	5.	0.99094022]
[0.8	10.	0.99094022]
[1.	0.01	0.99130893]
Contract		-

Neural Network: Multi-Layer Perceptron

Number of hidden Layers: 1

Activation Functions: Tahn \rightarrow 55 nodes Identity \rightarrow 30 nodes

Adam Solver [6]

Alpha = 0.0001

Learning Rate = 0.001

Algorithm Accuracy Assessment

- □ Overall Accuracy
- □ Confusion Matrix
- ☐ Stratified K-fold Cross Validation
 - □ Average Accuracy
 - □ Average F-measure
- ☐ Precision, Recall, and F-measure [7]
- ☐ Producer's and User's Accuracy
 - ☐ Probability reference pixel is correctly labelled
 - ☐ Probability a pixel's classification represents ground truth [8]
- ☐ Kappa Coefficient
 - □ Different from random [9]

$$k = \frac{p_o - p_c}{1 - p_c} = \frac{1 - p_o}{1 - p_c}$$

Statistical Assessment Between Algorithm

McNemar Test

- ☐ Statistically Significant Difference of Errors
- \blacksquare Binary metrics \rightarrow Contingency Table
- ☐ Chi-square Statistic
- **p**-value [10]

Contingency Table

	MLA 2	A 2 MLA 2	
MLA 1	True/True	True/False	
MLA 1	False/True	False/False	

Overall Accuracy

- □ Visual inspection
- \supset > 96% overall accuracy score

Ranking:

- 1. SVM polynomial kernel
- 2. PCI MLE
- 3. SVM linear kernel
- 4. NN identity activation function
- 5. MLE
- 6. NN tahn activation function

Overall Accuracy

PCI MLE

 \Box Errors \rightarrow water

PCI Maximum Likelihood Estimation

Accuracy Score 0.9932

NN

- \Box Errors \rightarrow forest
- ☐ Lacking Complexity

Overall Accuracy

MLE

 \Box Errors \rightarrow water

SVM

Complex

NN

- \Box Errors \rightarrow forest
- ☐ Lacking Complexity

Stratified K-fold Cross Validation

MLA	Overall Accuracy	Mean Accuracy
PCI MLE	99.32%	97.38%
MLE	96.67%	97.8%
SVM Linear	99.13%	99.44%
SVM Polynomial	99.84%	99.90%
NN Tahn	96.44%	96.06%
NN Identity	97.16%	97.38%

Confusion Matrices

Sup	port	Vector	Machi	ne - L:	inear		
]]	801	0	0	28	0	0	0]
]	0	2697	8	0	0	0	0]
]	0	5	179	1	1	0	0]
]	44	0	4	836	23	0	0]
]	1	0	3	37	341	0	0]
]	0	0	10	0	0	74	0]
[0	0	0	0	0	0	13892]]

```
PCI Maximum Likelihood Estimation
40 Random Samples

[[ 3  0  0  1  0  0  1]

[ 0  9  1  0  0  0  0]

[ 0  3  2  0  0  0  0]

[ 1  0  0  1  1  0  0]

[ 0  0  0  0  0  0  0]

[ 0  1  1  0  0  0  0]

[ 0  0  0  0  0  0  0]
```

```
Maximum Likelihood Estimation
    690
                                           0]
         2554
                140
                                    11
                                           0]
                160
                                           0]
    187
                       687
                              33
                                           0]
                             316
                                           0]
                                     0 13892]]
```

Sup	port	Vector	Machine	- 3rd	Order	Po.	lynomial
1]	824	0	0	0	5	0	0]
]	0	2700	5	0	0	0	0]
]	0	4	178	0	1	3	0]
]	1	0	0	904	2	0	0]
]	0	0	4	2	376	0	0]
]	0	0	4	0	0	80	0]
]	0	0	0	0	0	0	13892]]

Kappa Coefficient - Producer's & User's Accuracy

Kappa Coefficient

PCI MLE \rightarrow 98.47

 $MLE \rightarrow 92.43$

SVM Linear \rightarrow 98.02

SVM Polynomial \rightarrow 99.63

NN Tahn \rightarrow 91.93

NN Identity \rightarrow 93.53

Producer's & User's Accuracy

- \Box Water $\rightarrow 100\%$
- \square Shrub & Wetland \rightarrow lowest
- □ SVM Polynomial best overall
- □ NN Tahn worst overall

```
Support Vector Machine - Polynomial
Producer's Accuracy is:
[ 99.8788 99.8521 93.1937 99.7792 97.9167 96.3855 100. ]
User's Accuracy is:
[ 99.3969 99.8152 95.6989 99.6692 98.4293 95.2381 100. ]
Neural Network - Tahn Activation
Producer's Accuracy is:
[ 96.5116 98.545 43.662 77.9643 52.9412 0. 100. ]
User's Accuracy is:
[ 90.1086 92.6433 33.3333 81.9184 94.2408 0. 100. ]
```

Precision, Recall, & F-Measure

MLA	Overall Accuracy	Mean Accuracy	F-Measure
PCI MLE	99.32%	97.38%	N/A
MLE	96.67%	97.8%	83.79%
SVM Linear	99.13%	99.44%	96.18%
SVM Polynomial	99.84%	99.90%	98.86%
NN Tahn	96.44%	96.06%	57.58%
NN Identity	97.16%	97.38%	76.96%

McNemar Test

- ☐ Statistically Significantly Different
 - \Box All p-values < 0.001
- ☐ Pixels classified differently for each MLA
 - □ Largest Percent Difference $\rightarrow 26.6\%$
 - \square Smallest Percent Difference $\rightarrow 17.9\%$

Conclusion

1st: SVM 3rd Order Polynomial was the best across all statistics $\rightarrow Slow\ Speed$

2nd: MLE performed well overall \rightarrow Medium Speed

3rd: NN was the worst across all statistics \rightarrow Fast Speed

Conclusion

- ☐ Limitations:
 - ☐ Uneven sample sizes for each feature class
 - ☐ Difficulty finding optimal parameters for SVM and hyperparameters for Neural Network
 - □ Computing power/time limited for RBF kernel
- **→** Future Studies:
 - ☐ More even distribution of pixels between feature classes
 - □ Parameters/hyperparameters taylored to this study area
 - Exploration of different spectral bands and higher levels products (eg. NDVI) []

Acknowledgements

Thank you to Dr. Neil Ernst for supervising this project, and to David Johnson for his advice during this process.

Special thanks to Dr. Randy Scharien and Terry Evans for giving me a broad understanding of remote sensing throughout my degree; and to Dr. George Tzanetakis and Dr. Alex Thomo for providing a solid base to build my machine learning abilities on.

References

- [1] Frisk, J. 2011. Guidance for the preparation of ESTR products land classification scheme. Canadian Biodiversity: Ecosystem Status and Trends 2010, Technical Thematic Report No. 3. Canadian Councils of Resource Ministers. Ottawa, ON. iv + 34 p. http://www.biodivcanada.ca/default.asp?lang=En&n=137E1147-1
- [2] ESA (2019) Sentinel Online User Guides: https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/radiometric
- [3] PCI Geomatic's (2018) Maximum Likelihood Classifier: http://www.pcigeomatics.com/geomatica-help/references/pciFunction_r/modeler/M_mlc.html
- [4] Pedregosa et al., (2011) Scikit-learn: Machine Learning in Python. JMLR 12, pp. 2825-2830.
- [5] Tzanetakis, G. (2017) Course Slides from SENG 474 Introduction to Machine Learning. University of Victoria.
- [6] Kingma, D. & Ba, J. (2015) Adam: A Method for Stochastic Optimization. ICLR conference paper
- [7] Di Martino, M., Hernadez, G., Fiori, M., & Fernandex, A.(2013) New framework for optimal classifier design. Pattern Recognition, 46, 2249-2255; doi:https://doi.org/10.1016/j.patcog.2013.01.006
- [8] Comber, A.J. (2013) Geographically weighted methods for estimating local surfaces of overall, user and producer accuracies. Remote Sensing Letters, 4:4, 373-380; doi:10.1080/2150704X.2012.736694
- [9] Ganbold, G. & Chasia, S. (2017) Comparison between Possibilistic c_means (PCM) and Artificial Neural Network (ANN) Classification Algorithms in Land use/Land cover Classification. International Journal of Knowledge Content Development & Technology, Vol. 7, No.1, 57-78; doi:https://doi.org/10.5865/IJKCT.2017.7.1.057
- [10] Li, X., Chen, W., Cheng, X., & Wang, L. (2016) A Comparison of Machine Learning Algorithms for Mapping of Complex Surface-Minded and Agricultural Landscapes Using ZiYuan-3 Stero Satellite Imagery. Remote Sensing, 8, 514; doi:10.3390/rs8060514