Folha 7A – Derivação sob o sinal de integral, áreas de regiões planas

1. Determine uma função contínua $f: \mathbb{R} \longrightarrow \mathbb{R}$ e uma constante $k \in \mathbb{R}$ tais que

$$\int_{k}^{x} f(t) dt = \operatorname{sen} x + \frac{1}{2}, \quad \forall x \in \mathbb{R}.$$

2. Determine a derivada da função definida por:

(a)
$$f(x) = \int_{1}^{x} \frac{\sqrt{1+t^4}}{t^2} dt$$
, $\forall x \in \mathbb{R}^+$;

(b)
$$f(x) = \int_{1}^{\ln x} \operatorname{sen}(u + e^{u}) du, \ \forall x \in \mathbb{R}^{+}.$$

3. Determine a área da região plana limitada pelas curvas de equações:

(a)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1;$$

(b)
$$x = 0$$
, $x = 1$, $y = 3x$, $y = -x^2 + 4$;

(c)
$$x = 0$$
, $x = \frac{\pi}{2}$, $y = \sin x$, $y = \cos x$;

(d)
$$y = 0$$
, $x = -\ln 2$, $x = \ln 2$, $y = \sinh x$.

4. Estabeleça um integral (ou uma soma de integrais) que dê a área de cada uma das seguintes regiões planas:

(a)
$$A = \{(x,y) \in \mathbb{R}^2 : (x-2)^2 + y^2 \le 4 \land 0 \le y \le x\};$$

(b)
$$B = \{(x, y) \in \mathbb{R}^2 : |x| + |y| \le 1\};$$

(c)
$$C = \{(x, y) \in \mathbb{R}^2 : x \le 3 \land y \ge x^2 - 4x + 3 \land y \le -x^2 + 5x - 4\}.$$