Plano de Análise Estatística (SAP) Consultoria de Bioestatística

https://github.com/philsf-biostat/analise_dados_DM_2020

Plano de Análise Estatística de estudo de carpectomias comparando vias de acesso dorsal e volar

SAP: analise_dados_DM_2020-v01

De: Felipe Figueiredo Para: Diego Rezende Martins

Data: 07/01/2021

SUMÁRIO

SUMA	.RIO	1
1	LISTA DE ABREVIATURAS	2
2	INTRODUÇÃO	2
2.1	Contexto	2
2.2	Objetivos	2
2.3	Hipóteses	3
3	LIMPEZA DOS DADOS	3
4	VARIÁVEIS DO ESTUDO	4
4.1	Desfechos primário e secundários	4
4.2	Covariáveis	4
5	MÉTODOS ESTATÍSTICOS	4
5.1	Análises estatísticas	4
5.1.1	Análise descritiva	4

Plano de Análise Estatística (SAP) Consultoria de Bioestatística

https://github.com/philsf-biostat/analise_dados_DM_2020

512	Análise inferencial	5
5.2	Significância e Intervalos de Confiança	5
5.3	Tamanho da amostra e Poder	5
5.4	Softwares utilizados	6
6	REFERÊNCIAS	6

Histórico do documento

Versão	Alterações
01	Versão inicial

LISTA DE ABREVIATURAS

- DM: Diabetes mellitus
- EVD:
- HAS: Hipertensão arterial sistêmica
- HT: Hipotireoidismo
- IVC:
- INTRODUÇÃO 2
- 2.1 Contexto
- 2.2 **Objetivos**

Avaliar se há diferença entre uso de das técnicas de acesso cirúrgico volar e dorsal em indicadores clínicos.

Plano de Análise Estatística (SAP)

Consultoria de Bioestatística

https://github.com/philsf-biostat/analise_dados_DM_2020

2.3 Hipóteses

3 LIMPEZA DOS DADOS

Os dados recebidos serão reorganizados em uma tabela retangular, agrupando todos os casos em linhas com uma coluna por variável. A coluna ID será redefinida de modo que haja um ID único para cada participante incluído no estudo, independente do grupo. Com isso, a tabela de dados analíticos apresentará uma linha para cada observação das variáveis, i.e., cada um dos vinte participantes incluídos no estudo.

As seguintes novas variáveis serão criadas a partir para a análise:

- **EVD dif:** diferença entre EVD pré e pós (numérica)
- Dominante: se o lado acometido era o lado dominante do participante (dicotômica)

As seguintes variáveis serão limpas para adequação nas análises:

- Tempo artrose: convertida em valores numéricos
 - valores possíveis: número (anos) ou célula vazia
- Comorbidades: redefinidas como variáveis dicotômicas
 - reorganizadas em colunas independentes
 - valores possíveis: nome da comorbidade ou célula vazia
- Retorno: Esta coluna é repetida em todas as quatro planilhas
 - serão utilizados as duas primeiras ocorrências deste dado:
 - Folha 1 Tabela 1 Volar
 - Folha 1 Tabela 2 Dorsal

A tabela de dados analíticos será criada de acordo com a seguinte estrutura da Tabela 1.

Tabela 1 Estrutura da nova tabela de dados analíticos

ID	Idade	Sexo	Grupo	EVD Pré	EVD Pós	EVD dif	Lado dominante	Lado acometido	Dominante	Artrose	Tempo artrose	Statisfação	Retorno
עו	luaue	Sexu	Grupo	FIE	F05	uli	dominante	acomendo	Dominante	Aitiose	artiose	Statistação	Kelomo
1													
2													
3													
20													

As colunas de comorbidades serão acrescentadas à tabela de dados, seguindo a estrutura apresentada na Tabela 2.

Tabela 2 Representação das comorbidades na tabela de dados analíticos

Felipe Figueiredo	Consultoria de Bioestatística	Ano	Página
prof.felipefigueiredo@gmail.com	https://github.com/philsf-biostat	2021	3/6

Plano de Análise Estatística (SAP)

Consultoria de Bioestatística

https://github.com/philsf-biostat/analise_dados_DM_2020

ID	(colunas tabela 1)	HAS	DM	TABAGISMO	HT	IVC
1						
2						
3						
20						

4 VARIÁVEIS DO ESTUDO

4.1 Desfechos primário e secundários

Serão avaliados quatro desfechos na comparação entre os dois grupos de participantes:

desfecho primário

Diferença na EVD pré e pós nos dois grupos (numérica)

desfechos secundários

- Alteração degenerativa (artrose) (dicotômica)
- Grau de satisfação (numérico)
- Retorno à profissão (dicotômica)

4.2 Covariáveis

- Idade (em anos)
- Sexo (feminino/masculino)
- Acometimento no lado dominante (direito/esquerdo)
- Tempo até a artrose (em anos)
- Comorbidades (dicotômicas)
 - HAS
 - DM
 - Tabagismo
 - HT
 - IVC

5 MÉTODOS ESTATÍSTICOS

5.1 Análises estatísticas

5.1.1 Análise descritiva

As variáveis numéricas serão descritas como média e desvio padrão. As variáveis categóricas serão descritas como frequência e proporção. As proporções serão apresentadas como porcentagem.

Felipe Figueiredo	Consultoria de Bioestatística	Ano	Página
prof.felipefigueiredo@gmail.com	https://github.com/philsf-biostat	2021	4/6

Plano de Análise Estatística (SAP)

Consultoria de Bioestatística

https://github.com/philsf-biostat/analise_dados_DM_2020

A análise descritiva será dividida em duas tabelas:

- tabela das características dos participantes do estudo, apresentando as covariáveis descritas na seção
 4.2
- tabela descritiva dos desfechos do estudo descritos na seção 4.1

Ambas as tabelas apresentarão os dados estratificados nos dois grupos.

5.1.2 Análise inferencial

A comparação de variáveis numéricas entre os dois grupos será avaliada com o teste t de Student não pareado. O p-valor do teste t de student será apresentado na tabela descritiva dos resultados

A comparação de variáveis categóricas entre os dois grupos será avaliada com o teste exato de Fisher.

5.2 Significância e Intervalos de Confiança

Todas as análises serão feitas com nível de significância de 5%. Todos os testes de significância e intervalos de confiança calculados serão bilaterais.

5.3 Tamanho da amostra e Poder

O desfecho primário deste estudo é uma variável numérica e será analisada com o teste t de Student. Na ausência de estimativas prévias da média e desvio padrão do desfecho primário (EVD) a análise de poder só pode ser feita usando-se o método de Cohen (Cohen, 1988) de tamanho de efeito padronizado. Esta abordagem utiliza apenas os dados obtidos na amostra de estudo e Cohen sugere a seguinte interpretação de tamanhos de efeito padronizados:

efeito pequeno: d = 0.2
efeito médio: d = 0.5
efeito grande: d = 0.8

Com 10 participantes incluídos em cada grupo, este estudo é capaz de detectar um tamanho de efeito grande (d = 0.8) com poder de 39.5% e significância de 5%. Por outro lado, se estipularmos o nível de poder tipicamente encontrado na literatura de 80%, o efeito padronizado precisa ser pelo menos 1.32 para que este estudo possa detectá-lo com significância de 5%.

É pouco provável que esta amostra seja suficiente para detectar um efeito estatisticamente significativo entre os grupos.

Felipe Figueiredo	Consultoria de Bioestatística	Ano	Página
prof.felipefigueiredo@gmail.com	https://github.com/philsf-biostat	2021	5/6

Plano de Análise Estatística (SAP) Consultoria de Bioestatística

https://github.com/philsf-biostat/analise_dados_DM_2020

Softwares utilizados 5.4

Esta análise será realizada utilizando-se o software R versão 4.0.3.

REFERÊNCIAS 6

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.

6/6