발성과 듣기, 음향모델 (Articulation, Listening, Acoustic Modeling)

서울대 전기정보공학부 성원용

Some slides are from CS224S Spoken Language Processing Dan Jurafsky Stanford University Spring 2014

소리

- 공기압력을 통한 신호전달
- Speech
- Voice
- Sound

Speech Communication

Speech Chain

Production: an idea of thought \rightarrow neurological processes \rightarrow muscular movements \rightarrow acoustic sound pressure wave

Perception: acoustic sound pressure wave \rightarrow human auditory system \rightarrow neurological signals \rightarrow the idea of thought

EE493Q: Digital Speech Processing

말하는 과정

- 어떤 소리를 내고 싶다 (뇌에서 생각)
- 입과 성대를 움직여서 해당 소리를 낸다. 이 때 귀로 들으면서 피드백을 받는다.
- 마치 악보를 보고 피아노를 치며, 피아노에서 소리가 나오는 것과 비교할 수 있다.

음성의 주파수 대역

- 인간은 20Hz ~ 20,000 Hz 사이를 듣는데 보통 음 성에서는 200 ~ 4000 Hz 사이를 사용
- 실제로 전달되는 정보량은 1초에 10 byte 도 안된다. 그렇지만 음성이 반사되던가 일부 훼손이 되어도 잘 전달이 된다. 또 음색은 사람을 나타낸다.
- 유성음과 무성음이 있다. 유성음은 모음 등인데, 주기적 신호(pitch)가 있다.

신경세포의 동작속도

- 시냅스를 통해서 다른 신경세포 또는 센서로 부 터 전기신호를 받는다.
- 신경세포에서 모은 후에 이 것이 threshold 전압을 넘으면 뻥 전기신호를 내보낸다.
- 이런 동작을 하는 시간 단위는? 약 10msec
- 이 까닭으로 수KHz의 신호를 발성, 듣기 위해서 는 간접적인 방법(도구)을 사용. 발성기간, 귀

발성기관 (Human Vocal System)

- Vocal cord: 유성음(pitch), 무성음
- Vocal tract, mouth: Formant (F1, F2, F3, F4) 결정

Piano

- 한 옥타브 주파수가 두배 됨.
- 인간은 한번에 4개 이상의 건반을 누름.
- 건반 -> 소리 (주파수)

유성음과 무성음

- 유성음
 - pitch가 있다 (규칙적으로 떤다)
 - 노래부를 때 도레미파.. 는 pitch가 결정. Pitch는 음의 뜻에는 큰 관계가 없다.
 - 모든 모음과 일부 자음 (d, z, b, g, v,
- 무성음
 - Pitch가 없다. 보기에 잡음 같다.
 - 일부 자음 (t, s, p, k, f, h, ..

음성의 주파수 분석

- 음성을 frame 단위로 나눈다 (보통 10msec ~ 20msec). 이 때 서로 좌우 frame 이 약간씩 겹친다. 그래서 sample 의 수는 200 ~ 500개
- 1초의 음성이라면 100~50 frame 이 얻어진다.
- Discrete Fourier Transform 을 각 frame 에 대해서 적용한다.
- 유성음 frame 과 무성음 frame 의 spectrogram 이 매우 다르다. 유성음은 고조파가 있다 (pitch 가 만드는 고조파)

Spectrogram - 연속된 frame의 spectrum을 연결한 것

Pre-emphasis

- Pre-emphasis: boosting the energy in the high frequen cies (고주파 영역 강조)
- Q: Why do this?
- A: The spectrum for voiced segments has more energy at lower frequencies than higher frequencies.
 - This is called spectral tilt
 - Spectral tilt is caused by the nature of the glottal pulse
- Boosting high-frequency energy gives more info to the Acoustic Model
 - Improves phone recognition performance

Example of pre-emphasis Spectral slice from the vowel [aa] before and after pre-emphasis

Windowing

- Why divide speech signal into successive overlappin g frames?
 - Speech is not a stationary signal; we want infor mation about a small enough region that the sp ectral information is a useful cue.
- Frames
 - Frame size: typically, 10-25ms
 - Frame shift: the length of time between successi ve frames, typically, 5-10ms

Common window shapes

Rectangular window:

$$w[n] = \begin{cases} 1 & 0 \le n \le L - 1 \\ 0 & \text{otherwise} \end{cases}$$

Hamming window

$$w[n] = \begin{cases} 0.54 - 0.46\cos\left(\frac{2\pi n}{L-1}\right) & 0 \le n \le L-1\\ 0 & \text{otherwise} \end{cases}$$

Discrete Fourier Transform

- Input:
 - Windowed signal x[n]...x[m]

- Output:
 - For each of N discrete frequency bands
 - A complex number X[k] representing magnidue and phase of that frequency component in the original signal

• Discrete Fourier Transform (DFT)
$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\frac{\pi}{N}kn}$$

- Standard algorithm for computing DFT: Of the standard
 - Fast Fourier Transform (FFT) with complexity N*log(N)
 - In general, choose N=512 or 1024

Discrete Fourier Transform and Spectrum

- A 25 ms Hamming-windowed signal from [iy]
 - And its spectrum as computed by DFT (plus other smoot hing)

Mel-scale

- Human hearing is not equally sensitive to all frequency bands
- Less sensitive at higher frequencies, roughly > 1000 Hz
- I.e. human perception of frequency is non-linear:

Mel-scale

- A mel is a unit of pitch
 - · Pairs of sounds
 - · perceptually equidistant in pitch
 - are separated by an equal number of mels
- Mel-scale is approximately linear below 1 kHz and logarithmic above 1 kHz

$$Mel(f) = 2595 \log_{10} \left(1 + \frac{f}{700}\right)$$

Mel Filter Bank Processing

- Mel Filter bank
 - Roughly uniformly spaced before 1 kHz
 - logarithmic scale after 1 kHz

Mel-filter Bank Processing

- Apply the bank of Mel-scaled filters to the spectru m
- Each filter output is the sum of its filtered spectral c

Log energy computation

 Compute the logarithm of the square magnitude of the output of Mel-filter bank

Log energy computation

- Why log energy?
- Logarithm compresses dynamic range of values
 - Human response to signal level is logarithmic
 - humans less sensitive to slight differences in amplit ude at high amplitudes than low amplitudes
- Makes frequency estimates less sensitive to slight varia tions in input (power variation due to speaker's mouth moving closer to mike)
- Phase information not helpful in speech

The Cepstrum

- One way to think about this
 - · Separating the source and filter
 - Speech waveform is created by
 - · A glottal source waveform
 - Passes through a vocal tract which because of its shape has a p articular filtering characteristic
- Articulatory facts :
 - The vocal cord vibrations create harmonics
 - · The mouth is an amplifier
 - Depending on shape of oral cavity, some harmonics are amplified more than others

• The spectrum of the log of the spectrum • The spectrum of the log of the spectrum Spectrum

Mel Frequency cepstrum

- The cepstrum requires Fourier analysis
- But we're going from frequency space back to time
- So we actually apply inverse DFT

$$y_t[k] = \sum_{m=1}^{M} \log(|Y_t(m)|) \cos(k(m-0.5)\frac{\pi}{M}), \text{ k=0,...,J}$$

 Details for signal processing gurus: Since the log po wer spectrum is real and symmetric, inverse DFT re duces to a Discrete Cosine Transform (DCT)

Another advantage of the Cepstrum

- DCT produces highly uncorrelated features
- If we use only the diagonal covariance matrix for ou r Gaussian mixture models, we can only handle unc orrelated features.
- In general we'll just use the first 12 cepstral coefficients (we don't want the later ones which have e.g. the FO spike)

"Delta" features

- Speech signal is not constant
 - slope of formants,
 - change from stop burst to release
- So in addition to the cepstral features
- Need to model changes in the cepstral features over time.
 - "delta features"
 - "double delta" (acceleration) features

Typical MFCC features

- Window size: 25msWindow shift: 10ms
- Pre-emphasis coefficient: 0.97
- MFCC:
 - 12 MFCC (mel frequency cepstral coefficients)
 - 1 energy feature
 - 12 delta MFCC features
 - 12 double-delta MFCC features
 - 1 delta energy feature
 - 1 double-delta energy feature
- Total 39-dimensional features

Why is MFCC so popular?

- Efficient to compute
- Incorporates a perceptual Mel frequency scale
- Separates the source and filter
- IDFT(DCT) decorrelates the features
 - Necessary for diagonal assumption in HMM modeling
- There are alternatives like PLP

Feature extraction for DNNs Mel-scaled log energy

- For DNN (neural net) acoustic models instead of Gaussians
- We don't need the features to be decorrelated
- So we use mel-scaled log-energy spectral features instead of MFCCs
- Just run the same feature extraction but skip the discrete cosine transform.

청각기관의 구조

듣기과정

말하기 과정:

- 어떤 소리를 내고 싶다 (뇌에서 생각)
- 입과 성대를 움직여서 해당 소리를 낸다. 이 때 귀로 들으면서 피드백을 받는다.
- 마치 악보를 보고 피아노를 치며, 피아노에서 소리가 나오는 것과 비교할 수 있다.

듣기과정:

- 소리가 들어온다.
- 이 소리를 주파수 영역으로 바꾼다. (소리를 듣고 피 아노의 건반위치를 안다) – 귀의 달팽이관
- 뇌에다 각 주파수 영역에 어떤 세기의 신호가 왔는지 를 알려준다.
- 뇌가 어떤 소리인지를 판다.

듣는 기관 (귀)

- 소리가 들어가면 주파수에 따라 달팽이관의 특정위치 에 진동을 만듦.
- 달팽이관의 중심부분이 낮은 주파수, 바깥이 높은 주파 수임.
- 그 곳에 연결된 hair cell을 통해 신경을 자극함

• https://m.blog.naver.com/PostView.nhn?blogId=ling1134&logNo=70165398365&proxyReferer=https% 3A%2F%2Fwww.google.co.kr%2F

[생리학] 기계식 수용(Mechanoreception) -2

23

Mel Scaled-Filter Bank

• Human auditory system based

Speech features

- Feature 개수가 너무 많으면 계산많고 복잡하다. 반면 너무 적으면 인식률 떨어진다.
- 인간귀의 특징을 고려 (낮은 주파수의 해상도 크다).
- Spectral envelope이 중요. Pitch에 의해 생기는 골의 영향이 적어야함.
- 벽의 반사 등 주변 환경의 영향을 제거할 필요가 있다.

음성발성 및 듣기 과정의 이해

- 인간은 소리의 주파수 변화로 듣는다 (time domain이 아니라 frequency domain이 중요, phase 중요치 않음)
- 인간의 뇌활동에 의한 control은 대개 10 ms (10 밀리세컨드) 전후의 속도로 동작한다.
- 인간이 내는 소리의 스펙트럼(vocal tract가 결 정)은 약 10msec 동안은 안정적이다.

음성인식과 feature extraction

- 귀의 달팽이관에서 일어나는 일을 수행
- 소리 -> 주파수 영역으로 바꾼다
- 이때 낮은 주파수는 좀 미세하게, 높은 주파수는 좀 성기게 채집한다. (Mel frequency filter bank)

음성(speech)의 구조와 모델링

음성의 모델링

- 음성은 매우 짧은 시간 (약 20msec)에서는 스펙 트럼이 변하지 않는다. (phoneme state)
- Phoneme 우리가 언어학적으로 정의하는 어떤 발음 (발음기호), 그런데 이 발음은 아주 정해진 것이 아니라 옆의 발음에 따라 변한다.
- 단어 앞의 phoneme 의 sequence
- 문장 단어의 sequence

Acoustic modeling

- Phoneme: 언어학자가 정의한 기본 발음단위.
- 영어의 경우 40~50개의 phoneme

(There are total of 78 phonemes used in TIMIT database, out of which 46 phonemes are of English language (American), 1 phoneme for silence(sil), 1phoneme for short pause(sp) and the remaining 30 are stressed phonemes.)

• 하나의 phoneme 도 그 음을 처음 발음하는 frame, 중 간 frame, 끝날 때 frame 에서의 발음이 다른데, 이 경 우 이를 통째로 모델하는 것이 mono-phone, 세개의 state로 나누어서 model 하는 것이 tri-phone 이다.

	Phone Label	Example		Phone Label	Example		Phone Label	Example
1	iy	beet	22	ch	<i>ch</i> oke	43	en	button
2 3	iĥ	bit	23	b	bee	44	eng	Washington
3	eh	bet	24	d	day	45	1	<i>l</i> ay
4	ey	bait	25	g	gay	46	r	ray
5	ae	bat	26	p	pea	47	W	way
6	aa	bob	27	t	<i>t</i> ea	48	y	<i>y</i> acht
7	aw	bout	28	k	key	49	hh	hay
8	ay	bite	29	dx	muddy	50	hv	a <i>h</i> ead
9	ah	but	30	S	<i>s</i> ea	51	el	bottle
10	ao	bought	31	sh	she	52	bcl	b closure
11	oy	boy	32	Z	zone	53	dcl	d closure
12	ow	boat	33	zh	azure	54	gcl	g closure
13	uh	book	34	f	<i>f</i> in	55	pcl	p closure
14	uw	boot	35	th	<i>th</i> in	56	tcl	t closure
15	ux	toot	36	v	van	57	kcl	k closure
16	er	bird	37	dh	t∕ıen	58	q	glotal stop
17	ax	about	38	m	mom	59	pau	pause
18	ix	debit	39	n	noon	60 ep	- oni	epenthetic
19	axr	butter	40	ng	sing		epi	silence
20	ax-h	suspect	41	em	bottom	61	h#	begin/end
21	jh	joke	42	nx	winner		n#	marker

```
aa, ao
                                       aa
                         ah, ax, ax-h
                              er, axr
                                       er
                              hh, hv
                                       hh
                               ih, ix
                                       ih
                                 l, el
                                       1
                              m, em
                                       m
                            n, en, nx
                                       n
                             ng, eng
                                       ng
                              sh, zh
                                       sh
                             uw, ux
                                       uw
pcl, tcl, kcl, bcl, dcl, gcl, h#, pau, epi
                                       sil
```

Table 3. Mapping from 61 classes to 39 classes, as proposed by Lee and Hon, (Lee & Hon, 1989). The phones in the left column are folded into the labels of the right column. The remaining phones are left intact. The phone $^{\prime}q^{\prime}$ is discarded.

Tri-phone

- 어떤 phoneme 을 발음하는 과정을 앞부분, 중간 부분, 뒷부분 이렇게 세부분 (tri)의 state 로 나누 어서 모델링
- 이 경우 각 부분은 비교적 일정한 주파수 특성을 보인다.
- 앞부분과 뒷부분은 이어지는 발음에 따라 달라 진다 (context dependent). 따라서 triphone 의 개 수는 엄청 많아질 수 있는데 (수만) 이를 줄여서 수천개로 만들어 쓴다. 이를 CD-triphone states 라 한다. 이 CD-triphone states 가 보통의 hidden Markov model에 사용된다.

Phonetic context

- Context 좌우의 발음에 의해서 가운데 발음이 영 향을 받음 (coarticulation).
- /n/ in ten (dental) and tenth (alveolar)

단어의 발음

- Phoneme 또는 알파벳을 연결함 (sequence)
- [/bʊk/]
- book

Acoustic modeling

- 음성을 듣고서 발음으로 표시함. 이 때 표현하는 발음의 단위에 따라
 - Triphone states (매우 작은 시간 단위로 표현)
 - 매우 안정된 주파수 특징을 보이기 때문에 인식이 쉽다.
 - 이를 꾀어 맞추어서 단어와 문장으로 만들기가 복잡하다. 더 복잡한 hidden Markov model.
 - 전체적으로 정확도 좋다.
 - Monophone (40~70개의 phoneme 으로 표현)
 - Grapheme (알파벳 글자로 표현) 수십개, 1초에 몇번 나옴.
 - Wordpiece 수백 ~ 수만
 - Word 수십만 단어, 1초 정도의 시간