PCT

ig the eceipi

lecurents ation perthigh-. surother io nc withds of techs for

ſ	(51) International Patent Classification 4:		UNDER THE PATENT COOPERAT (11) International Publication Number	
	. C12P 21/00, 21/02, C12N 5/00 C07K 7/10, C07H 15/12		(43) International Publication Date:	5 May 1988 (05.05.88)
i	(21) International Application Number: PCT/US (22) International Filing Date: 2 October 1987	(74) Agent: GRUBER Lewis, S.: Marshall, O'Toole, Gers-		
	(31) Priority Application Numbers: PCT/U	Suite 2100, Chicago, IL 60603 (US).		

939,206 60,719 101,680

24 October 1986 (24.10.86) 8 December 1986 (08.12.86) (32) Priority Dates:

(81) Designated States: AT (European patent), BE (European patent), CH (European patent), DE (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).

ſ	No	références, formules, pages à photocopier, etc	No	classement
	1	4 complete	١	(co2K13/00 -1
			-	
	2	P1-12, 27-54, 82-83	2	INF CINIS/12
 ≬כ		Fig 1-10E		·
	000	SURFACTION ASSOC. PRUT.		·
	3	P35,36,49-51, Fig 7	3	INF CINIS/62
		farun . luc Z / SAP		
		- CHP-KDO Synthethese SAP (CKS)		
	4	P35,36, 49-51, Fy 7	Ġ	INF Ciz NIS/70
1 1	5	0-12,69-93	5	INF. AGIK37/02+M
	۵	0-12,69-43	6	INF AGIK35/42+M
	7	0-27, 82-93	3	INF. AGIK 35/42
	Ÿ	0-12,64-66,52-43		INF. C12 P21/USE
	4	0-17, 52-69, 82-93, 100 5,6	۹.	1NF CORKR/OA Modele 3

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4: C12P 21/00, 21/02, C12N 5/00 C07K 7/10, C07H 15/12

A1

(11) International Publication Number:

WO 88/03170

(43) International Publication Date:

5 May 1988 (05.05.88)

(21) International Application Number:

PCT/US87/02536

(22) International Filing Date:

2 October 1987 (02.10.87)

(31) Priority Application Numbers:

PCT/US86/02258

939,206 60,719

101,680

(32) Priority Dates:

24 October 1986 (24.10.86) 8 December 1986 (08.12.86) 10 June 1987 (10.06.87)

10 June 1987 (10.06.87) 1 October 1987 (01.10.87)

33) Priority Country:

US

71)(72) Applicants and Inventors: WHITSETT, Jeffrey, A. [US/US]; 5565 Salem Road, Cincinnati, OH 45229 (US). FOX, J., Lawrence [US/US]; e34 Rockland Avenue, Lake Bluff, IL 60044 (US). PILOT-MATIAS, Tami, J. [US/US]; 205 Appley Avenue, Libertyville, IL 60048 (US). MEUTH, Joseph, L. [US/US]; 310 Charlotte, Mundelein, IL 60060 (US). SARIN, Virender, K. [IN/US];

516 Fairlawn Avenue, Libertyville, IL 60048 (US).

(74) Agent: GRUBER, Lewis, S.: Marshall, O'Toole, Gerstein, Murray & Bicknell, Two First National Plaza, Suite 2100, Chicago, IL 60603 (US).

(81) Designated States: AT (European patent), BE (European patent), CH (European patent), DE (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PULMONARY HYDROPHOBIC SURFACTANT-ASSOCIATED PROTEINS

(57) Abstract

Novel, isolated, substantially pure, hydrophobic surfactant-associated proteins of 4.000-7,000 dalton simple molecular weight, SAP(Val) and SAP(Phe); multimers thereof, and substitution, addition and deletion analogs and fragments thereof. When SAP(Val) and/or SAP(Phe) is combined with lipids, its surfactant-like property imparts to the combination significant pulmonary biophysical activity. Such a combination results in enhanced adsorption of the lipids with properties similar to that of natural pulmonary surfactant material. SAP(Val) and/or SAP(Phe) in combination with lipids is highly useful for replacing or supplementing natural pulmonary surfactant material for reducing or maintaining normal surface tension in the lungs, especially in the lungs of patients suffering from hyaline membrane disease, HMD, or other syndromes associated with the lack or insufficient amounts of natural pulmonary surfactant material. A combination of SAP(Val) and/or SAP(Phe) and lipids may be administered as an aerosol spray or in aqueous normal saline with or without calcium chloride for treating or preventing HMD and other surfactant deficiency states. Also disclosed are methods of isolating the SAP(Val) from animal tissue and methods for making SAP(Val) and SAP(Phe) by recombinant DNA techniques and direct peptide synthesis; genomic clones of SAP(Val) and SAP(Phe); expression systems and products for SAP(Val) DNA; and polycional and monoclonal antibodies to SAP(Val) and SAP(Phe).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	FR	France	ML	Mali
AU	Australia	GA	Gabon	MR	Mauritania
BB	Barbados	GB	United Kingdom	MW	Malawi
ΒE	Belgium	HU	Hungary	NL	Netherlands
BG	Bulgaria	iT	Italy	NO.	Norway
BJ	Benin	JP	Japan	RO	Romania
BR	Brazil	KР	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	S.N	Senega!
CH	Switzerland	LI	Liechtenstein	នប	Soviet Union
	Cameroon	LK	Sri Lanka	TD	Chad
CM	Germany, Federal Republic of	LÜ	Luxembourg	TG	Toso
DE		MC	Мопасо	US	United States of America
DK	Denmark Finland	MG	Madagascar		
FI	riniand	.vi G			

- 1 -

PULMONARY HYDROPHOBIC SURFACTANT-ASSOCIATED PROTEINS

5

10

infants.

35

Background

The present application relates to pulmonary hydrophobic surfaction associated proteins ("SAPs") and methods for the isolation and use thereof. In particular, the present application relates to SAP(Val), methods for isolation thereof and methods for the use thereof.

Hyaline membrane disease ("HMD") is a common 20 disorder of premature infants and is related to diffuse atelectesis, hypoxia and resultant respiratory impairment. More particularly, HMD relates to the lack of vital pulmonary materials necessary for reducing surface tension in the airways of the alveoli. 25 result, the alveoli or terminal respiratory sacs of patients suffering from HMD normally collapse. because the surface tension at the gas-liquid interface in HMD patients is elevated, their alveoli or terminal respiratory sacs are very difficult to reinflate. 30 Consequently, HMD may be associated with significant morbidity and mortality, especially in premature

Present treatments for HMD employ high concentrations of oxygen, positive pressure and/or mechanical ventilation to maintain adequate oxygenation. Such treatments are complicated by oxygen-

and pressure-related injuries as well as by injuries resulting from the need to mechanically access the airway via endotracheal tubes.

Another approch to treatment of HMD and other syndromes associated with a lack of pulmonary surfactant material involves the use of replacement pulmonary surfactant material. Other syndromes associated with a lack of pulmonary surfactant material include adult respiratory distress syndrome ("ARDS") caused by, for example, trauma, sepsis, smoke inhalation and myocardial infarction. In addition, syndromes associated with a lack of pulmonary surfactant material include any chronic obstructive pulmonary diseases, pneumonia or other conditions resulting in damage to pulmonary type II cells.

Therapy for syndromes associated with a lack of pulmonary surfactant material may include the use of aerosolized or liquid synthetic phospholipid mixtures, natural pulmonary surfactant material and various preparations of surfactant material prepared from animal lung. The surface tension lowering ability of naturally derived preparations is in general better than that of synthetic lipid preparations. Modified bovine surfactants are also proposed for use in such preparations. However, problems with human and animal pulmonary preparations include batch—to—batch variability and possible infection and immunologic risks.

When treating patients for HMD, it is

important to employ only the required active substances in order to minimize possible adverse immunologic consequences of therapy. Unfortunately, because the available natural pulmonary surfactant material and preparations are in crude form, they are less specific and are possibly associated with greater immunologic risks.

- 3 -

Natural pulmonary surfactant is a complex material composed primarily of phospholipids and surfactant-associated proteins or apolipoproteins. phospholipids, mainly phosphatidycholine ("PC"), disaturated phosphatidycholine ("DSPC") and 5 phosphatidylglycerol ("PG"), are of paramount importance for the physiological role of natural pulmonary surfactant material in reducing surface tension in the alveoli. Phospholipids, of which DSPC is the principal 10 component, are synthesized in the endoplasmic reticulum of Type II epithelial cells, packaged into lamellar bodies, then secreted into the alveolar space by an exocytotic process. It is believed that several of the phospholipids are not catabolized and resynthesized, but 15 that they are reutilized, primarily as intact molecules, and that they constitute the major components of the natural pulmonary surfactant material.

With respect to the surfactant-associated proteins or apolipoproteins, there is considerable disagreement as to their identity and utility.

Nonetheless, there is an increasing agreement that, in addition to the lung surfactant phospholipids, at least some apolipoproteins are vital for the full biological activity of the natural pulmonary surfactant material in reducing surface tension in the alveoli.

20

30

35

Surfactant-associated proteins or apolipoproteins include both serum- and lung-specific proteins. The major lung specific surfactant-associated protein of M_r =30-40,000 daltons is identified in lung surfactant by King et al., Am. J. Physiol., 244, 788-795 (1973), is a glycoprotein which is rich in glycine and which contains a collagen-like region rich in hydroxyproline. This protein, herein called SAP-35, is synthesized from M_r =28-30,000 dalton translation products which undergo glycosylation, hydroxylation of proline residues and sulfhydryl-dependent cross-linking

10

25

30

35

to form large oligomers which may be detected in the airway. Proteolytic fragments of SAP-35 are found in protein preparations isolated from lavage of patients with alveolar proteinosis and from other mammalian surfactants migrating as proteins of small molecular weight [Whitsett et al., Pediatr. Res., 19, 501-508 (1985)]. While the glycoprotein SAP-35 binds phospholipids and may confer the structural organization of tubular myelin to surfactant lipids, SAP-35 may not be required for the biophysical activity of surfactants. See King et al., J. Appl. Physiol., 42, 483-491 (1977).

Smaller lung specific surfactant-associated proteins are also identified from a variety of mammalian surfactants. A 10,000-12,000 dalton protein may be present in pulmonary surfactant material [King et al., Am. J. Physiol, 223, 715-726 (1972)]. This protein is now believed to be a fragment of the major glycoprotein SAP-35. Smaller surfactant-associated proteins may be present in alveolar lavage material from a number of species and may have molecular weights of approximately 10,000 daltons in the dog and the rabbit, 10,500-14,000 daltons in the rat, 11,500-16,500 daltons in the pig, and 10,000 daltons in the cow.

The nature of and the relationships among these various smaller surfactant—associated proteins and the larger protein, SAP-35 or its fragments, have not been established. Nevertheless, Suzuki et al., J. Lipid. Res., 23, 53-61 (1982), suggests that a small 15,000 dalton protein in pig alveolar lavage may have a greater affinity for lipid than SAP-35. However, Suzuki et al. does not distinguish this protein from SAP-35 or its fragments and does not demonstrate surfactant properties in a purified state. Rather, Suzuki et al. only suggests that this 15,000 daltons protein is possibly a physiological regulator for the clearance of

- 5 -

alveolar phospholipid. A small SAP protein is reported to be isolated from rat alveolar lavage by isolation methods involving ether/ethanol treatment, chloroform/methanol extraction, and chloroform/methanol elution from a silicic acid column, and is reported to increase the uptake of liposome by cultured Type II epithelial cells [Claypool et al., J. Clin. Invest., 74, 677-684 (1984)].

5

Wang et al., Fed. Proc., 44, 1024 (Abstract) (1985), describes two distinct small molecular weight 10 proteins in rat lung surfactant one of which is soluble in ethanol, the other of which is soluble in ether/ethanol. However, these proteins are not reported as purified or characterized, and surfactant-like 15 activity is not identified. Wang et al. indicate that these small molecular weight proteins may be involved with surfactant recycling. The smaller molecular weight proteins, such as those discussed above, may arise as proteolytic fragments of the larger SAP-35 molecule. 20 However, it is unclear whether SAP-35, one or more of the smaller proteins, or all proteins together are active components imparting biophysical activity to natural mammalian pulmonary surfactant.

Tanaka et al., <u>Chem. Pharm. Bull.</u>, <u>31</u>, 4100-25 4109 (1983) describes a 10,000 molecular weight protein isolated by chloroform extraction of a fraction of minced bovine lung.

Fujiwara et al., <u>Biochem.</u>, <u>Biophys. Res.</u>

<u>Comm.</u>, <u>135</u>, 527-532 (1986), reports the isolation of a

30 5,000 dalton molecular weight proteolipid which, based on biophysical testing, may have surface activity when mixed with phospholipids. However, this protein is not well-characterized in Fujiwara et al. The reported amino acid composition of a hydrophobic, small molecular weight protein of M_r=5,000 isolated from bovine surfactant extracts appears to be similar to, but is

15

distinguished by a paucity of valine residues in a reported amino acid composition from, a surfactantassociated protein according to the present invention, SAP(Val), the amino acid sequence of which is identifiable by a high number of valine residues. [Takahashi et al., <u>Biochem. J.</u>, <u>236</u>, 85-89 (1986)]. small molecular weight protein with composition consistent with the protein previously termed "surfactant apolipoprotein B" [King et al., Am. J. Physiol., 224, 788-795 (1973)] is identifiable as a Cterminal domain of SAP-35 [Ross et al., J. Biol. Chem., 261, 14283-14291 (1986)]. Mixtures of phospholipids and a surfactant-associated protein of 35,000 daltons, SAP-35, or its fragments are reported to have relatively weak surface active properties compared to the surfactant proteolipids $M_r=6,000-14,000$ [Whitsett et al., Pediatr. Res., 20, 460-467 (1986); and Ross et al., J. Biol. Chem., 261, 14283-14291 (1986)].

In Schilling et al., PCT Application No. WO86/03408, a human 35,000 dalton protein and nonhuman 20 10,000 dalton proteins are described. Schilling et al. indicates that both classes of proteins may be needed to confer full biophysical activity upon surfactant phospholipids. Schilling et al. also discloses a complete DNA sequence encoding the 35,000 dalton 25 protein, NH2-terminal amino acid sequences for the 10,000 dalton nonhuman proteins and a preliminary (81 bp) partial sequence for a human cDNA clone for the 10,000 dalton protein. The 10,000 dalton canine and 81 bp human sequences have substantial regions indentical 30 in sequence to the sequence of human SAP(Phe) according

In Taeusch, PCT Patent Publication No. WO 87/02037, two separate proteins are characterized by molecular weights of about 35 kd and two separate proteins are characterized by molecular weights of about

to the present invention.

5.5-9 kd. The two approximately 6 kd proteins differ significantly from each other with respect to amino acid composition, as well as from the protein described in Tanaka, Chem. Pharm. Bull., 311, 4100 (1983).

Additionally, the N-terminal peptide sequence of the cold butanol-insoluble 6 kd protein is disclosed as well for a cDNA and deduced amino acid sequence for human SAP(Phe).

Monoclonal antibodies raised against alveolar surfactant protein are disclosed in Lewicki, U.S. Patent No. 4,562,003.

Hydrophobic small molecular weight proteins soluble in organić solvents are detectable in a variety of mammalian surfactants [Phizackerly et al., Biochem. J., 183, 731-736 (1979); Tanaka et al., Chem. Pharm. 15 Bull., 31, 4100-4109 (1983); Suzuki, J. Lipid Res., 23, 62-69 (1982); Claypool et al., J. Clin. Invest., 74, 677-684 (1984); Yu et al., Biochem. J., 236, 85-89 (1986); Takahashi et al., Biochem. Biophys. Res. Commum., 135 527-532 (1986); Whitsett et al., Pediatr. 20 Res., 20, 460-467 (1986); and Whitsett et al., Pediatr Res., 20, 744-749 (1986)]. SAPs, identifiable as proteins of M_r 6,000-14,000 are identified in the etherethanol extracts of surfactant preparations used clinically for treatment of hyaline membrane disease 25 [Whitsett et al., Pediatr. Res., 20, 460-467 (1986); Whitsett et al., Pediatr Res., 20, 744-749 (1986); Fujiwara et al., Lancet, 1, 55-59 (1980); Enhorning et al., Pediatrics, 76, 145-153 (1985); and Kwong et al., Pediatrics, 76, 585-592 (1985)]. cDNAs encoding one of 30 these proteins, human surfactant proteolipid with amino terminus of phenylalanine, designated herein as "SAP(Phe)," an $M_r=7,500$ peptide derived from an

M_r=40,000 precursor, are disclosed in Glasser et al.,

Proc. Nat'l Acad. Sci. (USA), 84, 4007-4011 (1987) and

Jacobs et al., J. Biol. Chem., 262, 9808-9811 (1987).

10

30

35

cDNA encoding a protein homologous to SAP(Phe), SP-18, is reported to be isolated from canine lung [Hawgood et al., Proc. Nat'l Acad. Sci. (USA), 84, 166-170 (1987)]. Reconstitution of small molecular weight weight surfactant proteins with synthetic phospholipids imparts virtually complete surfactant-like properties to the mixture, including rapid surface absorption and decreased surface tension during dynamic compression [Yu et al., Biochem. J., 236, 85-89 (1986); and Takahashi et al., Biochem. Biophys. Res. Commum., 135, 527-532 (1986)].

Summary of the Invention

15 SAP(Val) and SAP(Phe) according to the present invention are isolated, substantially pure, hydrophobic surfactant-associated proteins of 4,000-7,000 dalton simple molecular weight which, when isolated from animal tissue, comprise at least two hydrophobic proteins of molecular weights of 4,000-7,000 daltons each and may also comprise larger multimers thereof. It may be noted that SAP(Val) is also referred to in publications as "SAP-6(Val)," as SPL(pVAL)" and as "SP-C." Similarly, SAP(Phe) is referred to in publications as "SAP-6(Phe),"

Hereinafter, discussions related to SAP(Val) and SAP(Phe) are intended to apply to isolates; recombinant form; multimers; chemically or enzymatically synthesized forms; deletion, substitution or addition analogs; and analogs based on a hydropathy profile or on secondary and tertiary structure.

SAP(Val) and SAP(Phe), when combined with lipids, have significant pulmonary biophysical surfactant activity that may be utilized to effectively treat and prevent HMD and other syndromes associated with lack or insufficient amounts of natural pulmonary

- 9 -

surfactant material. Although it is presently believed that SAP(Val) and SAP(Phe) are lung-specific, their pulmonary biophysical surfactant activity is believed not to be species-specific. Therefore, SAP(Val) and SAP(Phe) may be purified from animal tissue, specifically pulmonary tissue or amniotic fluid, extracted from a variety of animals, such as dog, cow, human, pig, rabbit, rat and the like, or made by recombinant DNA methods or direct peptide synthesis.

5

The concentration of SAP(Val) and SAP(Phe) in pulmonary tissue and lavage is probably greater than that found in aminotic fluid. With respect to other animal tissues or fluid, however, SAP(Val) and SAP(Phe) are believed to be present in substantially smaller or undetectable concentrations or completely absent.

It is believed that when SAP(Val) and SAP(Phe) are combined with lipids, they enhance the surfactant properties of the lipids imparting to the combination significant pulmonary biophysical surfactant activity.

As a result of this remarkable property, such a combination is highly useful for replacing or supplementing natural pulmonary surfactant material and for reducing or maintaining normal surface tension in the lungs, especially in the lungs of patients suffering from HMD and other syndromes associated with the lack or

from HMD and other syndromes associated with the lack or insufficient amounts of natural pulmonary surfactant material. Because SAP(Val) and SAP(Phe) may be highly purified from animal tissue, or made by recombinant DNA techniques or by direct peptide synthesis, the

immunologic risks currently associated with the less pure preparations available heretofore for treating or preventing HMD or related syndromes are substantially reduced.

It is to be understood that the terms

"hydrophobic surfactant-associated protein" and

"SAP(Val) or SAP(Phe)" are used interchangeably herein,

PCT/US87/02536

20

25

30

35

and that whenever referenced herein, they are meant to include any small hydrophobic surfactant-associated proteins having surfactant-like activity, having simple molecular weights of about 4,000-7,000 daltons determined in polyacrylamide gels containing sodium 5 dodecyl sulfate and having substantial resistance to protease enzymes, endoglycosidase F and collagenase. These terms are also meant to include any such proteins or polypeptides having surfactant-like activity which are made by recombinant DNA methods or direct peptide synthesis comprising the amino acid sequences of such hydrophobic surfactant-associated proteins or translations of DNA sequences or portions thereof encoding such proteins, or deletion, substitution, or addition analogs of such proteins. 15

It is also to be understood that the term "hybridization" as used herein is meant to encompass conditions within a range of functional equivalents to and generally according to the conditions set forth in Examples 6, 7, 11, 12, 15 and 16.

The present invention further resides in a method of separating SAP(Val) from animal tissue which involves separating the animal tissue into a particulate fraction and a liquid fraction, and extracting SAP(Val) in a substantially pure state from the liquid fraction. The methods substantially reduces risks currently associated with the less pure preparations available heretofore for treating or preventing HMD or related syndromes.

The methods of this invention are further concerned with separating SAP(Val) from the larger, novel hydrophobic multimers thereof by, for instance, gel electrophoresis or other suitable techniques.

Also described are methods for isolating genes encoding SAP(Val) and SAP(Phe), the characterization of these genes, and methods for making SAP(Val) by

- 11 -

recombinant DNA methods and direct peptide synthesis.

5

10

15

In accordance with the present invention, SAP(Val) and SAP(Phe) may also be made by recombinant DNA methods. The following are examples of such methods. In summary, human lung poly(A) + RNA was used as a template to synthesize complementary DNA (cDNA) copies of which were subsequently cloned into a lambda vector in E.coli. cDNA copies of the genes encoding SAP(Val) and SAP(Phe) were identified, and then characterized by DNA sequence analysis. These DNA sequences allowed for further characterization of SAP(Val) and SAP(Phe) by comparison with the amino acid sequences for both SAP(Val) and SAP(Phe). In addition, the cDNA encoding SAP(Phe) was expressed as a fusion product with the E.coli s-galactosidase (lacZ) gene, and the resulting expressed gene product has been shown to be antigenic by reacting with polyclonal antisera specific for SAP(Phe).

Polypeptides may be made by chemical or 20 enzymatic synthesis based on the sequences given herein including the NH2-terminal amino acid sequences given in Tables 2 and 3 and the translation of DNA sequences given in FIGS. 5 and 6. These chemically synthesized polypeptides include replicas of the amino acid 25 sequences of SAP(Val) or SAP(Phe) or translations of DNA sequences encoding SAP(Val) or SAP(Phe) or portions of these sequences, as well as addition, deletion and substitution analogs of such replicas. The synthetic polypeptides may then be combined with lipids for 30 surfactant preparations. Although these synthetic polypeptides may have a molecular weight less than SAP(Val) or SAP(Phe) isolated from animal tissue, it is to be understood that the terms "SAP(Val)" and "SAP(Phe)," as used herein, encompasses these synthetic 35 peptides.

In particular fragments of synthetic peptides

PCT/US87/02536

5

10

25

35

having less than all, more particularly less than 75% and especially less than 50% of the coding region of SAP(Phe) or SAP(Val) are provided according according to the present inventor.

The present invention also includes novel medicaments, preparations, and methods employed to treat animals, including humans, suffering from HMD and other syndromes related to the lack or insufficient amounts of natural pulmonary surfactant material. Antibodies and antisera according to the present invention may be made which are directed against SAP(Val) or SAP(Phe).

Brief Description Of The Figures

preparation of SAP(Val) isolated from bovine lung;
FIG. 2 is an illustration of an SDS-PAGE
preparation of SAP-6 from human, canine and bovine lung.

FIG. 3 is a nucleotide sequence and deduced amino acid translation of a partial cDNA clone encoding SAP(Phe);

FIG. 4 is a schematic depiction of the structure of SAP(Val) cDNA clones according to the present invention;

FIG. 5 is a nucleotide sequence and deduced amino acid translation of complete SAP(Val) cDNA;

FIG. 6 is a nucleotide sequence and deduced amino acid translation of complete SAP(Phe) cDNA;

FIG. 7 is a flow chart of the construction of a lacZ/SAP-6-Phe fusion product;

FIG. 8A is an illustration of the organization of the SAP(Phe) gene and FIG. 8B is a nucleotide sequence of a genomic clone encoding of SAP(Phe);

FIG. 9 depicts restriction maps and illustrates the organization of two SAP(Val) genes;

- 27 -

at Mr=65,000-70,000. Standard molecular weight markers are seen on the right. There is the possibility that SAP(Phe) is migrating between the 6,000 and 14,000 molecular weight regions, which may arise as a result of proteolysis of a precursor protein. Thus, there may be a slight heterogeneity of the forms between 6,000 and 14,000 which may reflect variable proteolytic processing of both SAP(Phe) and SAP(Val) precursors.

Therefore, at least two distinct 4,000-7,000 dalton SAP monomers exist that are believed to co-elute together, to co-purify together via gel electrophoresis migration, to have similar molecular weights of about 4,000-7,000 daltons determined in a polyacrylamide gel containing sodium dodecyl sulfate, to have similar biophysical surfactant-like activity and to have similar enzyme resistance. Further, it is believed that the larger multimers, i.e., M_=18,000 and 26,000, resulting from one or more SAP(Val) and/or SAP(Phe) monomers are possibly bonded together via sulfhydryl bonds in view of their migration patterns in the absence and presence of s-mercapoethanol, as illustrated in FIGS. 1 and 2. Therefore, it should be understood that any 4,000-7,000 dalton hydrophobic surfactant-associated proteins, SAP(Val) and SAP(Phe), are well within the contemplation of this invention.

EXAMPLE 4

Extraction of mRNA

30

35

25

5

10

15

20

RNA was extracted from lung tissue of an adult male immediately after death. Tissue was provided by the National Diabetes Tissue Interchange, Washington, D.C. The RNA was extracted by the method of Chirgwin et al., Biochem., 18, 5294-5499 (1979). Poly(A) ** RNA was isolated by purification through oligo(dT) column

- 28 -

chromatography essentially as described in Maniatis et al., Molecular Cloning - A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1982) (hereinafter referred to as Maniatis et al.). A cDNA library was constructed in λ gtll as described by Young et al., Proc. Nat'l Acad. Sci. (USA), 80, 1194-1198 (1983).

EXAMPLE 5

10

5

Immunological Screening of cDNA Library

Polyclonal rabbit antisera were raised against bovine surfactant proteolipid, prepared from 15 chloroform/methanol extraction of bovine lung surfactant [see Notter et al., Chem. Phys. Lipids, 33, 67-80 (1980), and were preabsorbed to minimize nonspecific background to E. coli proteins in a screening procedure. The preabsorption was done by the following procedure. An E. coli strain Y1090 lysate was disrupted 20 by treatment with EDTA (pH 8.0) followed by sonication on ice with six bursts from a Branson sonifier at 50 watts for 10 seconds each. The sonicate was centrifuged at low speed to clear the supernatant. This supernatant was incubated with the above antisera for 48 hours at 25 4°C, then centrifuged to remove antibody/antigen complexes.

The library was plated on <u>E</u>. <u>coli</u> strain Y1090 at 20,000 pfu per 150 mm dish, grown for 5 hours at 42°C. and then blotted to nitrocellulose filters soaked in 10 mM isopropylthiogalactoside (IPTG). Filters were incubated overnight at 37°C. and then blocked for 1 hour at 4°C. in 50 mM Tris HCl, pH 7.4, 150 mM NaCl (TBS), and 50 gm/L powdered milk. Primary antibody reactions were conducted at a dilution of 1:1000 by incubation with the filters at 4°C. overnight. The filters were

- 29 -

then incubated with horseradish peroxidase conjugated goat anti-rabbit IgG (GAR-HRP) at a dilution of 1:3000 at 4°C. for 16 hours. Color was developed with 4-chloro-l-napthol for 3-5 minutes and reactions were then terminated by serial washings in distilled H₂O. Second and third screens were performed at 10-fold and 100-fold less phage per plate to identify isolated plagues.

10 EXAMPLE 6

5

35

Synthesis Of Oligonucleotide Probes

An oligonucleotide of mixed sequence was made 15 using the phosphoramidite method of Matteucci and Caruthers, J. Am. Chem. Soc., 103, 3185-3191 (1981) on an Applied Biosystems DNA synthesizer Model No. 380A. The sequence for the probes was (GTN) G wherein N is either deoxycytidine or deoxyinosine [Wood et al., Proc. 20 Nat'l Acad. Sci. (USA), 52, 1585-1588 (1985)]. sequence was based on the stretch of valine residues seen in human, canine and bovine SAP(Val) NH2-terminal amino acid sequences shown in Table 2. The uniqueness of the valine stretch in SAP(Val) allowed for remarkable 25 selectivity in the screening of the cDNA library. to the codon redundancy in this region, it would not have been feasible to utilize this region as a template for a probe without the use of deoxyinosine and the selection of deoxycytidine as a preferred base in the 30 third position.

A second oligonucleotide probe was synthesized corresponding to the reverse translation of the 9 amino acids of the NH₂-terminal sequence of human SAP(Phe) seen in Table 2. The sequence of this probe was 5'-CCAICAITAIGGIATIGGIATIGGIAA-3', where I stands for deoxyinosine.

EXAMPLE 7

Screening With Oligonucleotide Probes

The positive clones selected with bovine surfactant polyclonal antisera were plated out by spotting 1 ul of a phage supernatant on a lawn of \underline{E} . coli strain Y1090 (A lac U169 pro A+ lon ara D139 strA 10 supF {trpC 22:Tnl0} pMC9) (Clontech Laboratories, Palo Alto, California). The plates were incubated at 42°C. for 5-6 hours and then removed and overlaid with nitrocellulose filters. The filters were removed and denatured in 1.5 M NaCl, 0.5 M NaOH for 1 minute, 15 neutralized in 0.5 M Tris, pH 8.0, 1.5 M NaCl for 5 minutes, rinsed in 2 X SSPE (20 X SSPE = 3.6 M NaCl, 200 mM NaH_2PO_4 , 20 mM EDTA, pH 7.4), and air dried. filters were then baked for 1 hour at 80°C. in a vacuum oven. Filters were prehybridized for 6 hours at 45°C. 20 in prehybridization buffer (5 X SSPE, 5 X Denhardt's, 50 mM sodium phosphate pH 7.0, 1 mM sodium pyrophosphate, 100 uM ATP, 50 ug/ml boiled salmon sperm DNA). While the filters were prehybridizing, the SAP(Val) oligonucleotide probe described in Example 6 25 was end-labeled with T_4 polynucleotide kinase and $_{\Upsilon}$ -32 $_{\rm P}$ -ATP essentially as described by Maniatis et al., "Molecular Cloning: A Manual," Cold Spring Harbor, New York (1982). The SAP(Val) probe was added to the prehybridization buffer at a concentration of 30 approximately 12 ng/ml, the filters were added, and incubated at 30°C. overnight. The filters were then washed in 0.2 X SSPE, 0.1% sodium dodecyl sulfate (SDS) at room temperature for 30 minutes, then at 32°C. for 45 minutes in fresh wash solution. They were then air-35 dried and subjected to autoradiography. This procedure

- 31 -

was repeated with a second set of filters using the SAP(Phe) probe described in Example 6.

When the above procedures were completed for both the SAP(Val) and SAP(Phe) probes, it was found that only the SAP(Phe) probe hybridized to any of the clones. The reason for this is not clear, but it is theorized that the antisera used for screening the cDNA library was only sensitive enough to detect SAP(Phe). This may have been because the SAP(Val) was not present in large enough quantities in the bovine lung surfactant 10 preparation used for immunization to elicit an immunogenic response or because the SAP(Val) was less immunogenic than the SAP(Phe). As will be readily appreciated by those skilled in the art, this could be 15 overcome by use of purification and screening of polyclonal antisera prior to use or by use of specific monoclonal antibodies.

Another approach which was used was to simply screen the cDNA library directly for clones encoding SAP(Val) using the SAP(Val) oligonucleotide of Example 20 6, end-labeled as described above. The cDNA library was plated out at approximately 30,000 pfu per 150 mm The plates were incubated at 37°C. overnight then removed and overlaid with nitrocellulose filters. After the first set of filters was removed, a duplicate lift 25 was made from each plate. Both sets of filters were treated as described above, with the following changes. Prehybridization was done in 6 X SSPE, 90 mM sodium citrate pH 7.6, 2 X Denhardt's, and 500 ug/ml 30 boiled salmon sperm DNA at 37°C. for 5 hours. Hybridization was done in 6 X SSPE, 1 X Denhardt's, 50 ug/ml boiled salmon sperm DNA with a probe concentration of 1.5 ng/ml. The filters were hybridized at 55°C. for 1 hour then overnight at 37°C. They were 35 washed in 6 X SSPE 2 times at room temperature and then 2 times at 37°C. Clones found to hybridize to the probe on both sets of filters were isolated and purified by replating and screening at lower densities.

EXAMPLE 8

5

30

35

Characterization Of SAP(Val) and SAP(Phe) cDNA Clones

Several clones found to hybridize with either the SAP(Val) or SAP(Phe) probes were subcloned into the 10 EcoRI site of \underline{E} . \underline{coli} plasmid puCl9 (described in Yanisch-Perron et al., Gene, 33, 108-119 (1985)) for further characterization. The clones selected using the SAP(Phe) probe were mapped by restriction analysis, and then a clone was selected for further characterization 15 by sequence analysis. This clone was subcloned into an Ml3 sequencing vector (described by Messing et al., Methods in Enzymology, 101, 70-78 (1983) and sequenced using M13 oligonucleotide primers according to standard methodologies as described by Sanger et al., Proc. Nat'l 20 Acad. Sci. (USA), 74, 5463-5467 (1977). E. coli JM103 of JM109 (Pharmacia, Inc., Piscatawy, NJ) were used for growth of pUC plasmid and M13 phage subclones. The sequence of this SAP(Phe) clone is shown in FIG. 3. Underlined in this figure is the region which 25 corresponds to the NH2-terminal amino acid sequence for human SAP(Phe) shown in Table 3.

Nucleotide sequence analysis of one SAP(Val) clone, designated 334.2, of 0.3 kilobases comprised an open reading frame predicting close identity to the amino acid sequence determined directly from the human protein and was used to isolate other clones from the same cDNA library, as illustrated in FIG. 4. Sequence analysis of nine unique clones resulted in a consensus sequence predicting a larger polypeptide precursor.

In FIG. 4, clone 334.2 is the initial SAP(Val)

- 33 -

isolate and was used as a probe for re-screening of the cDNA library. Clones 311.3 and 13-1 have an 18 base pair deletion not seen in clones TP9-1 and TP11-2. In FIG. 4: a notched box indicates the valine rich hydrophobic domain of SAP(Val) clones; "A" denotes ApaLl, a restriction endonuclease that cleaves phage λ DNA infrequently and cuts at the start of the valine rich domain of SAP(Val); P=PstI; S=SmaI; a "*" indicates a sequence obtained from human lung mRNA directed dideoxy sequencing utilizing 5' SAP(Val) oligo primers.

In FIG. 5, the nucleotide sequence was determined using overlapping cDNA clones 311.3, 13-1, TP11-2, TP9-1 and RJ2-1. The broken under line indicates sequence from mRNA directed dideoxy sequencing using RJ2-1 as a primer that is present from sequence of the first exon of the SAP(Val) genomic clone VG519. Solid underlined amino acid sequence obtained directly on human SAP(Val) protein. The predicted sequence and obtained sequence match at 16 or 17 amino acids, the difference being His₃₂ instead of Asn. Overlined DNA sequence is the 18 bp sequence that is absent in cDNA clones 311.3 and 13-1.

The Ile-Pro-Cys-Cys peptide was found within the reading frame of a larger polypeptide suggesting that the hydrophobic peptide of $M_r=4,000-7,000$ arises from proteolytic processing of a precursor protein at both the amino- and carboxy-terminus.

Full length cDNAs were not detected within this human lung library. RNA sequencing and analysis of genomic DNA were therefore utilized to predict the complete SAP(Val) mRNA.

5

10

15

20

25

30

20

30

35

A direct nucleotide sequence of SAP(Val) RNA was derived from human lung RNA. Dideoxynucleotide RNA sequencing was done by a modification of one procedure described by Geliebter et al., Proc. Nat'l Acad. Sci.

5 (USA), 83, 3371-3375 (1986). An oligonucleotide primer specific for the 5' terminus of SAP(Val) cDNA was synthesized and end-labelled. Poly (A) mRNA (6 µg) and [32p]labelled primer (5 ng) were heated at 80°C for 3 minutes in 10 µl of annealing buffer (0.25 M KCl, 10 mM Tris, pH 8.3) and then allowed to anneal for 45 minutes at 50°C.

RNA template:primer solution (2 µl) was added to 3.3 µl of transcription buffer (24 mM Tris pH 8.3, 16 mM MgCl₂, 8 mM dithiothreitol, 0.4 mM dATP, 0.4 mM dCTP, 0.4 mM dTTP, 0.8 mM dGTP, 100 µg/ml actinomycin D) containing 5 units of AMV reverse transcriptase (Amersham) and 1 µl of one dideoxynucleotide triphosphate (0.5 mM ddGTP, 0.285 mM ddATP, 1.0 mM ddTTP, or 0.15 mM ddCTP). The reactions were incubated at 50°C for 45 minutes, heated at 80°C for 3 minutes in loading buffer (10 mM EDTA, 0.2% bromphenol blue, 0.2% xylene cyanol in 100% formamide), then loaded onto a sequencing gel.

Analysis after autoradiography revealed that the RNA sequence overlapped with the cDNA sequence and ended at a clear stop.

The SAP(Phe) cDNA clones isolated by antibody screening and oligonucleotide hybridization were incomplete on the 5' and 3' ends. Several of these cDNA clones were used as hybridization probes to isolate additional cDNA clones from the library. Sequence analysis of one of these clones showed it to be complete on both 5' and 3' ends. This sequence is shown in FIG. 6. The SAP(Phe) transcript encodes a precursor protein of approximately 42 kilodaltons.

In order to determine the exact 5' end of the

25

30

35

transcript, S1 nuclease mapping was performed using with a fragment from the 5' end of the SAP(Phe) genomic clone described in Example 11. Probes were prepared and S1 nuclease protection was done by the method of Kay et al., Mol. Cell. Biol. 6, 3134-3143 (1986). In addition, adult human lung poly(A) + RNA was sequenced directly as described above. Both the S1 mapping and the direct RNA sequencing identified the 5' end as shown in FIG. 6.

The hydrophobic regions of SAP(Phe) and

SAP(Val) as shown in FIGS. 3 and 5 in parentheses are somewhat homologous. Although these two proteins are encoded by distinct genes, it is believed that they are structurally related. Therefore, these proteins may be members of a family of related proteins which bind phospholipids and are useful in surfactant replacement therapy and diagnosis.

EXAMPLE 9

Expression of LacZ/SAP(Phe)
Fusion Protein in E.coli

The SAP(Phe) cDNA clone shown in FIG. 3 was inserted into the EcoRI site of plasmid pUC9 in the same orientation as the lac2 gene. The reading frame was then altered by cutting the plasmid DNA with the restriction enzyme SalI, then filling in the ends with T4 polymerase and deoxynucleotides. This resulted in the insertion of 5 nucleotides within the lac2 gene upstream from the site of the fusion with the SAP(Phe) cDNA. This then led to the production of a lac2/SAP(Phe) fusion product, which contains approximately 2400 daltons of lac2 at the NH2-terminal end of the SAP(Phe) gene product. FIG. 7 shows a schematic diagram of this construction.

PCT/US87/02536 WO 88/03170

- 36 -

EXAMPLE 10

Testing of Fusion Protein With SAP(Phe) Polyclonal Antisera

5

10

30

35

E.coli strain JM109 containing the plasmid described in Example 9 was grown up at 37°C. until the optical density at 600 nm reached 0.5, then IPTG was The cells were grown added to a concentration of 1 mM. for an additional 3-4 hours at 37°C. then pelleted and resuspended in 1/15th volume lysis buffer (62.5 mM Tris pH 6.8, 2% SDS, 10% glycerol, 5% 8-mercaptoethanol, 0.1 mg/ml bromphenol blue). The samples were boiled for 5 minutes and loaded on a 12.5% Laemmli electrophoresis gel (Laemmli, Nature, 227, 680-685 (1970). After the gel was run, the proteins were transferred to 15 nitrocellulose essentially by the method of Towbin et al., Proc. Nat'l Acad. Sci. (USA), 76, 4350-4354 (1979).

The nitrocellulose filter was preblocked in TBS containing 50 gm/l powdered milk at room temperature 20 for 1 hour, then incubated with the preabsorbed antisera described in Example 5 at a dilution of 1:1000 at room temperature overnight. After this, the filter was washed 2 times in TBS, then incubated with GAR-HRP at a dilution of 1:2000 for 1 hour at room temperature. 25

A color reaction was developed as described in Example 5. FIG. 7 shows results of this test. Lane B contains the lacz/SAP(Phe) fusion protein, while lane A contains protein from cells containing the plasmid which had not undergone the fill-in as described in Example 9. The SAP(Phe) antisera of Example 5 recognized proteins of 32,000-34,000 daltons in molecular weight which is in agreement with the predicted size of the translation product from the open reading frame of the SAP(Phe) clone plus the 2400 dalton portion of lacZ.

- 39 -

Southern blot analysis of genomic DNA after digestion with various restriction endonucleases. Southern blot analysis was performed using random primer labelled probes labelled with the random primer labelling technique (Pharmacia, Inc., Milwaukee, Wisconsin) hybridized with the DNA in 5 X SSC, 5 X Denhardt's solution, 0.1% SDS at 65°C. The nitrocellulose filters were washed twice (5 minutes each) at room temperature in 2 X SSC, 0.1% SDS, then twice in 2 X SSC, 0.1% SDS at 65°C. and four times in 0.2 X SSC, 0.1% SDS at 65°C. (20-30 minutes per wash). DNA fragments were subcloned into M13 vectors for dideoxy sequencing.

5

10

15

20

25

30

35

An oligonucleotide based on the overlapping sequence was synthesized and utilized to locate this 5' exon from genomic DNA encoding SAP(Val): 5'A-G-C-A-A-G-A-T-G-G-A-T-G-G-G-C-A-G-3'. Sequence from the 5' coding region of genomic clone \(\lambda\text{VG519}\) overlapped exactly with the direct RNA sequence and the 5' cDNA sequences. This genomic sequence is in the first exon of the SAP(Val) gene located 30 base pairs downstream from a consensus TATAA sequence further identifying the 5' untranslated region of the SAP(Val) RNA.

The 5' untranslated portion of the mRNA contains a potential initiation site which fits the criteria for a mammalian ribosomal binding site. There are two potential ATG start sites (bases 26 and 53) at the 5' end of the mRNA, the more 3' one most closely meeting selection criteria. The 3' end of several cDNAs demonstrates a polyadenylation addition sequence predicting the end of SAP(Val) RNA. Two distinct classes of cDNA were isolated which encode the SAP(Val) active region, the predicted mRNA differing in the coding region 3' to the active M_r=4,000-7,000 peptide, wherein a deletion of 18 base pairs may result in two distinct polypeptide precursors differing by six amino acids. However, this deletion does not arise from

- 40 -

nucleotide differences in the 2 types of genomic clones isolated for SAP(Val). Both clones contain the 18 base pair sequence deleted in one class of cDNA. This deletion may arise by alternative splicing, as there are 2 sets of sequences which conform to intron-exon splice sites just before and after the 18 base pairs in the genomic clones.

5

10

15

20

25

30

35

The deleted sequence is located at the start of exon 5 and is preceeded by six nucleotides (TTCCAG) which are also found at the end of exon four. Sequences at the 5' proximal end of exon five show two sets of sequence that conform to an intron-exon splice site consisting of a 10-15 base pair polypyrimidine tract followed by the dinucleotide AG, signaling the end of intronic sequence. The base pairs (CTCACTTCCTACATTCC) comprise a 17 base pair tract preceeding the AG of the major cDNA species. A second sequence (TGCTCTCTGC) preceeds the AG at the end of the deleted 18 base pair sequence and may represent an alternate splice site to account for the two observed SAP(Val) cDNA clones. splicing occurs by a scanning mechanism, then this downstream alternate site may be less favored and result in the minor species lacking the 18 bp of cDNA. Only two of the nine SAP(Val) cDNAs detected during cDNA cloning contained this 18 base pair deletion. In summary, it appears that the 18 bp cDNA deletion arises from alternative splicing. It remains possible that the 18 base pair deletion resides in an allele of the SAP(Val) genes not detected in the present study.

Restriction endonuclease mapping of twelve clones identified by hypridization with SAP(Val) cDNA clone 334.2 demonstrated two distinct patterns of DNA fragments. Seven clones were represented by clone AVG519 and five clones were represented by clone AVG524. Restriction endonuclease fragments containing SAP(Val) coding regions were identified by their

- 41 -

hybridization with cDNA clone 334.2. A distinct 1.8 kb HindIII/EcoRI hybridizing fragment was identified in clone λ VG519, while, a 4 kb HindIII hybridizing fragment was identified in clone λ VG524. Both bands were reduced by 250 bp after digestion with ApaLl which cuts the SAP(Val) cDNAs in the region encoding the active hydrophobic peptide. Thus, these preliminary analyses delineated the restriction endonuclease fragments encoding SAP(Val) and were consistent with the restriction analysis of the cDNA clones encoding SAP(Val).

10

The restriction map and organization of the two SAP(Val) clones are represented in FIG. 9. 9, The first two lines are restriction endonuclease maps 15 of $\lambda VG519$ and $\lambda VG524$ representing two classes of restriction enconuclease patterns identified from the genomic clones. The third line is expanded from the second line and represents sequences in and near the gene for \(\text{VG524.} \) Overbrackets identify sequences hybridizing to the SAP(Val) cDNA probe (exons 2-5). An 20 ApaLl restriction site identifies the polyvaline Restriction enconuclease sites are represented by the following letters: A = ApaLl; H = HindIII; B = BamHI; E = EcoRI; K = KpnI; and S = SmaI. Line C indicates the relative position of exons of SPL(Val). 25 Open blocks indicate untranslated exons; dark blocks indicate translated exons.

The flanking regions of the genomic clones contained restriction site differences identified with SmaI, HindIII, and BamHI restriction enzymes. Restriction maps of the two classes of SAP(Val) genes were readily distinguishable by this analysis. Both SAP(Val) genes were composed of 6 exons and 5 introns from TATAA to the end of the 6th exon. The two SAP(Val) genes demonstrated few but clear differences in nucleotide sequence, as illustrated in FIG. 10.

10

15

20

25

30

35

In preparing FIG. 10, nucleotide sequence analysis was performed as described by Brunner et al., Biochemistry, 25, 5028-5035 (1986). Base pairs are numbered with +1 indicating the transcription initiation site determined as described above. Nucleotides 3' to this site are labelled as (+) and 5' nucleotides are labelled as (-). The overlined sequence TGACGTCA represents a potential cAMP recognition sequence; the sequences TCACCTCT and TATAA representing consensus promoter and sequences are overlined. Alternative donor/acceptor splice sequences are overlined at the 5' end of exon 5. The differences in sequence between $\lambda VG519$ and $\lambda VG524$ -are shown by asterisks, dashes, and letters above the $\lambda VG519$ sequence representing nucleotide insertions, deletions or substitutions, respectively.

Part of the first, fifth and the entire sixth exons of SAP(Val) are untranslated. The $\rm M_r$ =22,000 polypeptide precursor is encoded by exon 2, 3, 4, and 5. The most hydrophobic region of the peptide (beginning NH₂-Ile-Pro-Cys-Cys-Pro-Val...) is located within exon two which encodes a peptide of 44 amino acids.

Because complete cDNAs encoding SAP(Val) were not identified, RNA directed sequencing was performed to identify the nucleotide sequence from the available cDNA sequence to the transcription initiation site. A strong reverse transcriptase stop was detected in the RNA-directed sequence analysis. It is inferred that this demonstrates the site of transcription initiation.

To identify the 5' untranslated exon and upstream flanking sequences of the SAP(Val) genes, an oligonucleotide (3'-CAGCCAGATGGATGTGGGCAG-5') spanning the 5'-most cDNA and eight base pairs of extended RNA directed sequence was synthesized and used to analyze Southern blots of AVG519 and AVG524. Identical

- 43 -

restriction fragment patterns were detected in both classes of genomic clones with this oligonucleotide after digestion with KpnI and KpnI/HindIII. The 1.8 kb KpnI and 1.1 kb KpnI/HindIII fragments were sequenced and found to include nucleotide sequences from the 5'-most cDNA clone (clone RJ2-1) and the 5' nucleotide sequence derived from mRNA-directed sequence analysis.

5

10

15

20

25

30

35

A consensus promoter sequence TATAA was located 30 base pairs 5' to the predicted transcription initiation site in both clones. As used throughout the present application, distances are given with respect to the location of the 3' end of the sequence being discussed. The sequence TCACCTCT nearly matches a consensus eucaryotic promoter sequence TCAATCT in 6 of 7 nucleotides Breatnach et al., Ann. Rev. Biochem., 50, 349 (1981). It was located 55 nucleotides upstream of the transcription initiation site. A sequence, TGATGTCA, was located 504 base pairs upstream from the transcription initiation site and matches the sequence TGACGTCA in 7 of 8 base pairs. This latter element comprises a sequence previously associated with cAMP responsivity [Montminy et al., Proc. Nat'l Acad. Sci. (USA), 83, 6682-6686 (1986)]. Consensus sequences previously recognized as corticosteroid-responsive elements were not detected in these clones, although glucocorticoid enhanced SAP(Val) expression in organ culture of fetal lung.

The predicted protein sequence of the exons encoded by the $\lambda VG519$ and $\lambda VG524$ were identical. No differences were observed in the first five exons of the SAP(Val) gene and three nucleotide differences were detected in the sixth exon, which is untranslated. A high degree of homology was observed even in the introns of the SAP(Val) genes which varied by only 1%.

Hydropathy analysis of the predicted SAP(Val) precursor peptide demonstrates that the hydrophobic,

PCT/US87/02536

5

10

15

20

25

30

35

potentially membrane-associated domain of the $M_r = 22,000$ precursor protein is contained within the second exon of both SAP(Val) genes. The predicted peptide domain derived from exons three and four are rich in charged amino acids which are not compatible with the amino acid composition of the SAP(Val) preparations. The location of the C-terminus of SAP(Val) peptide is suggested by its migration with markers of $M_r=4,000-7,000$ and by its hydrophobic properties, including its association with lipids and its solubility in organic solvents, all of which are consistent with its derivation primarily from the peptide encoded by the second exon. Proteolytic processing in both amino and carboxy termini may account for the generation of the smaller peptide detected in pulmonary surfactant.

No homology was noted between the 5' region of SAP(Val) and a published SAP-35 genomic clone.

The nucleotide sequence of $\lambda VG519$ and $\lambda VG524$ were entirely conserved in the amino acid coding region. The genomic sequences were identical to the SAP(Val) cDNA except for a single nucleotide difference in exon 5 in which leucine is encoded by CTG rather than the TTG observed in the cDNAs. Nucleotide differences were noted in only those exons encoding the 3' untranslated regions. Nucleotide sequence difference frequencies (1-2%) were similar in both introns and the 5' and 3' flanking sequences available for analysis (approximately 500 base pairs from the TATAA). The 5'-most fragment of $\lambda VG519$ (600 bp HindIII fragments) was not present in $\lambda VG524$ by Southern blot hybridization, demonstrating a difference in flanking sequence in that region.

The nearly complete conservation of the nucleotide sequence in the exons, the small divergence in the introns, and the differences in restriction mapping of the 3' and 5' regions are most consistent

PCT/US87/02536

with the interpretation that the SAP(Val) genomic clones represent two distinct gene loci encoding SAP(Val). However, these differences may be due to allelic variation.

The predicted amino acid sequence of the entire SAP(Val) precursor was deduced from the cDNA clones, RNA sequencing and the genomic DNA. precursor comprises 188 or 197 amino acids depending on assignment of the N-terminal methionine (or 182 or 191 with the deletion) representing a 21,000 Dalton 1.0 polypeptide. The size of the predicted polypeptide is consistent in size with the hybrid selected translation product of $M_r=22,000$. There was no discernable signal peptide at the amino terminus and the precursor polypeptide contain no asparagine-linked 15 glycosylation sites, contrasting with the SAP(Phe) precursors which contain one or two potential asparagine-linked glycosylation sites. The SAP(Val) peptide begins at Gly_{25} or Ile_{26} and the domain including amino acids Leu37 to Ser61 is compatible with 20 a membrane-associated or spanning domain of 25 amino acids. This region contains the repeated valine residues. The precise C-terminus of SAP(Val) has not been identified directly and numerous attempts to isolate proteolytic or CNBr fragments of the canine or 25 bovine proteolipid have been unsuccessful.

However, NMR studies of bovine SAP(Val) support a tentative conclusion that the C-terminus is His-Thr, i.e. that SAP(Val) may comprise Gly or Ile to His(65) for a total of 40 or 41 amino acids.

30

35

The N-terminal amino acid sequences of the bovine and canine proteolipid preparations was greater than 90% SAP(Val) in multiple determinations. predicted amino acid sequence of an $M_r=4,000-7,000$ peptides from the human cDNA predicts a hydrophobic peptide lacking in phenylalanine and tyrosine.

contrast, tyrosine and phenylalanine are present in the amino acid sequence of the small molecular weight hydrophobic surfactant protein, human SAP(Phe). Lack of phenylalanine and tyrosine also distinguishes SAP(Val) from SAP(Phe) and from small molecular weight surfactant proteins previously reported.

It is believed that genomic sequences further the ability to clone and express SAP(Val) genes, e.g. by providing regulatory sequences which may be particularly useful for regulating expression.

EXAMPLE 13

SAP(Val) Poly(A+) RNA Sequencing

15

20

25

10

5

SAP(Val) cDNA clones isolated by olignucleotide hybridization were incomplete on the 5' and 3' ends. Additional clones were isolated using SAP(Val) cDNA for the hybridization probe. Several were found to be complete on the 3' end, but none on the 5' Two distinct classes of SAP(Val) cDNA were detected by sequence analysis, differing by the absence of 18 nucleotides in the 3' coding region of some cDNAs. The complete 5' sequence was determined by direct sequencing of adult human lung poly(A) + RNA and by Sl nuclease mapping of a 5' fragment from a SAP(Val) genomic clone as described for SAP(Phe). The complete sequence including the 5' end identified by these two methods is shown in FIG. 5. The SAP(Val) transcript encodes a precursor protein of approximately 21 kilodatons.

30

- 47 -

EXAMPLE 14

Chromosomal Location of SAP(Val) Gene

A [32p]-labeled SAP(Val) cDNA clone was hybridized to DNA obtained from the mouse-human chromosomal panels. The [32p]-labelled SAP(Val) clone was hybridized to mouse-human chromosomal hybrids containing all human chromosomes as previously characterized. Hybridization was only observed with hybrids containing chromosome 8.

EXAMPLE 15

SAP(Val) Northern Blot Analysis

poly (A) + RNA was prepared and isolated by oligo (dT) cellulose chromatography from a fetal lung at 19 weeks gestation and human adult lung. Adult and fetal lung tissue was homogenized in buffer containing 4 M guanidine thiocyanate, 0.5% N-lauroyl sarcosine, 20 mM sodium citrate, 0.1 M s-mercaptoethanol and 0.1% antifoam A. RNA was extracted by centrifugation through a cushion of 5.7 M cesium chloride [Hsu et al., J. Histochem. Cytochem., 29, 577-580 (1981)]. The RNA pellet was dissolved in water, extracted with phenol and chloroform, and precipitated with ethanol. The amount of RNA in an aqueous solution was determined by optical density at 260 nm.

RNA (5µg) was separated on 1.2% agarose, 7% formaldehyde gels, transferred to nitrocellulose and hybridized [Weaver et al., <u>J. Appl. Physiol.</u>, <u>61</u>, 694-700 (1986)] with [³²P]SAP(Val) DNA clone 334.2 (1.4 x 10⁶ cpm/ml, approximate specific activity 4 x 10⁸ cpm/µg), washed and exposed to Kodak XAR-film at -70°C overnight.

PCT/US87/02536

Northern blot analysis of human lung RNA using a SAP(Val) cDNA probe as shown in FIG. 11 detected an approximately 0.9 kilobase RNA, distinct from that of SAP(Phe) or SAP-35 [Glasser, Proc. Nat'l. Acad., Sci. (USA), 84, 4007-4011 (1987); and Whitsett et al., J. Biol. Chem., 262, 5256-5261 (1987)]. SAP(Val) RNA was less abundant in human fetal lung (approximately 19-20 weeks of gestation) than in adult lung. The finding that the RNA for SAP(Val) is developmentally regulated is consistent with the possible role of SAP(Val) in surfactant function required for perinatal adaptation to air breathing at birth.

EXAMPLE 16

15

10

5

Hybrid Arrest Translation

Approximately 5 µg of EcoRl restricted SAP(Val) cDNA was heat denatured at 100°C for 10 minutes and hybridized with 5 µg of human lung RNA for 2 hours 20 at 50°C in 80% formamide, 10 mM Pipes, (pH 6.4), 0.25 mM EDTA and 0.4 M NaCl. Hybridization was terminated by the addition of 200 μl H $_2$ O and 25 μg yeast tRNA. solution was divided into two samples, one of which was melted at 100°C for 1 minute followed by rapid chilling, 25 and the other which was preserved in hybrid form. samples were precipitated in ethanol and translated in a wheat germ transcription assay (Promega Biotec, Inc.) in the presence of 50 µCi [35S]-methionine (New England Nuclear). The proteins were immunoprecipitated with 30 anti-bovine surfactant proteolipid antiserum subjected to 11% SDS-PAGE, transferred to nitrocellulose and subjected to autoradiography.

Hybrid arrested translation and
immunoprecipitation with antiserum generated against
bovine proteolipid resulted in complete arrest of a

- 49 -

single M_r =22,000 polypeptide, as shown by the autoradiograph gels illustrated in FIG. 12. The M_r =22,000 peptide detected by hybrid arrested translation of human lung RNA was consistent with that predicted from the cDNA encoding SAP(Val) further distinguishing it from SPL(Phe) and SAP-35 polypeptide precursors of Mr=40,000 and M_r =26,000 respectively.

EXAMPLE 17

10

5

Expression of SAP(Val) in E. coli

A E. coli expression vector has been developed for expression of heterologous proteins as fusions with the E. coli protein CMP-KDO synthetase (CKS) [Goldman et 15 al., J. Biol. Chem., 261, 15831-15835 (1986)]. vector was deposited including a SAP(Val) insert as ATCC Deposit No. 67517, on September 29, 1987, with the American Type Culture Collection, 12301 Parklawn Drive, 20 Rockville, Maryland 20852. The plasmid is a derivative of pWMll1[Mandecki et al., Gene, 43, 131-138 (1986)] from which the EcoRl-HindIII fragment containing the promoter, operator, ribosome binding site, and C5A gene have been replaced with corresponding ones for CKS. The 25 CKS gene is under the control of a wild type lac operator and a modified lac promoter, designated lacP-The -9 position has been changed from G to T, and there is a 1 nucleotide deletion in the spacer region between the -35 and -10 regions. The plasmid also 30 contains the trpA Rho-independent transcription terminator [Christie et al., Proc. Nat'l. Acad. Sci. (USA), 78, 4180-4184 (1981)] at the 3' end of the CKS gene. In addition, there is a linker region at the 3' end of the CKS gene which contains multiple restriction 35 sites as well as an in-frame Asp-Pro. The peptide bond between Asp and Pro is acid-labile as described by

PCT/US87/02536

5

10

35

Landon, Meth. Enzymol., 47, 145-149 (1977). Under induced conditions (1 mM IPTG) when no insert is present, the CKS protein accumulates to levels >50% of the total cellular protein as shown in FIG. 13, lane 4.

In FIG. 13, a 10% SDS-PAGE stained with Coomassie brilliant blue is illustrated in which: lane 1 contained pre stained high molecular weight standards (BRL Life Technologies, Gaithersburg, Maryland); lane 2 contains <u>E. coli</u> total cell lysate (no plasmid); lane 3 contains <u>E. coli</u> total cell lysate with CKS/SAP(Val) expressed; and lane 4 contains <u>E. coli</u> total cell lysate with CKS alone expressed.

A DNA fragment containing the SAP(Val) cDNA was inserted into the multiple cloning site of this vector at the 3' end of the CKS gene. The two coding 15 regions are in the same frame, so that expression results in a fusion protein containing the CKS protein and the entire SAP(Val) proprotein. The fusion protein is 48.7 kDal; 27.4 kDal from CKS and 21.3 kDal from SAP(Val). There is one Asp-Pro at the fusion junction 20 between CKS and SAP(Val) and one located 20 amino acids in from the C-terminal end of SAP(Val). When a culture of cells containing this plasmid is grown under induced conditions, the CKS/SAP(Val) protein represents approximately 2-5% of the total protein as shown in FIG. 25 13, lane 3. The cells may be lysed by a variety of methods, one example being the use of lysozyme, sodium deoxycholate, and sonication as described in Marston et al., Bio/Technology, 2, 800-804 (1984). When lysed by this method, the CKS/SAP(Val) protein is in the 30 insoluble pellet and may be purified away from the bulk of the Ξ . coli proteins. The CKS/SAP(Val) protein represents >60% of the total insoluble protein as shown in FIG. 14, lanes 2 and 3.

FIG. 14 illustrates a 12.5% SDS-PAGE stained with Coomassie brilliant blue in which: lane 1 contains

- 51 -

pre stained high molecular weight standards (BRL Life Technologies, Gaithersburg, Maryland) lane 2 contains lul of insoluble protein preparation; lane 3 contains 5 ul of insoluble protein preparation; and the arrow indicates CKS/SAP(Val) fusion protein.

Several conditions for acid cleavage of Asp-Pro bonds have been described by Szoka et al., <u>DNA</u>, <u>5</u>, 11-20 (1986), and others. One example is the use of 70% formic acid for 24-48 hours at 37°C. When the isolated protein is treated in this way, the resultant nearly full-length SAP(Val) proprotein is insoluble and can be recovered by extraction with organic solvents.

Similar constructions can be made using the SAP(Val) or SAP(Phe) active regions alone. For example, 15 the SAP(Val) active region, as encoded by nucleotides 100-222 of FIG. 5, may be assembled using synthetic oligonucleotides and inserted into the CKS expression This construction can be designed with an Asp-Pro at the N-terminus of the active region. Acid 20 cleavage at this bond would generate SAP(Val) containing an extra Pro at the N-terminus. As an alternative, assuming that the first 3 amino acids are Gly-Ile-Pro, one may replace the Gly-Ile with Asp such that acids cleavage would leave the SAP(Val) active region minus 25 the first 2 amino acids. An alternative cleavage method using hydroxylamine might also be employed. chemical cleaves at the peptide bond between Asn and Gly as discussed in Bornstein et al., Meth. Enzymol., 47, 132-145 (1977). Assuming that the SAP(Val) N-terminal 30 amino acid is Gly, this cleavage method yields intact SAP(Val).

5

10

- 52 -

EXAMPLE 18

Expression of SAP(Val) and SAP(Phe) in Mammalian Cells

5

10

15

20

25

30

35

SAP(Val) or SAP(Phe) genomic or cDNA may be inserted into, for example, a mammalian expression plasmid adjacent to the herpes simplex type I (HSV) thymidine kinase (tk) promoter. This plasmid is then added to 1 ml HeBS (8 gm/l NaCl, 0.37 gm/l KCl, 0.25 gm/l Na₂HPO₄-12 H₂O, l gm/l dextrose, 5 gm/l Hepes buffer pH 7.1), and mixed well. 2.5M CaCl₂ is added to the mixture to a final concentration of 0.125 M while a gentle stream of air is bubbled through the mixture during the addition of the $CaCl_2$ and for an additional 30 seconds. The DNA is then allowed to precipitate for 30 minutes at room temperature and then 0.5 mls of the DNA suspension is added to 25 cm^2 dishes of baby hamster kidney cells, for example, or other mammalian cells of choice. Four hours after addition of the DNA, the culture medium is removed, the cells washed I time with Eagle's medium containing 5% fetal calf serum (EC-5), and 1 ml 25% dimethyl sulfoxide (DMSO) in HeBS is added to each dish for 4 minutes at room temperature. The 25% DMSO is then removed, the dish is washed 2 times with EC-5, and the cells are then incubated in EC-5. four hours after addition of DNA, the cells are infected with HSV (10 pfu/cell) and the infection allowed to proceed for 48 hours. The expressed SAP(Val) or SAP(Phe) protein is then isolated from the culture fluids by, for example, immunoprecipitation and assayed by, for example, SDS-PAGE.

Genes encoding SAP(Phe) or SAP(Val) may also be expressed in any suitable expression system well-known to those skilled in the art. Examples of such expression systems include <u>E. coli</u>, <u>Bacillus</u>, yeast,

- 53 -

baculovirus or other mammalian cell expression systems.

The sequences shown in FIGS. 3, 5, 6, 8B and 10 indicate that the SAP(Phe) and SAP(Val) are derived from larger precursor proteins. It is believed, based 5 upon a best current estimate of molecular weight of 7500 to 7800 daltons, that a 75-80 residue active portion of the larger precursor protein of SAP(Phe) is encoded by the nucleotide region shown in brackets in FIG. 6. Similarly, it is believed, based upon NMR (NOESY-COSY) 10 analysis of bovine SAP(Val), that the active portion of the larger precursor protein of SAP(Val) is encoded by 120 or 123 nucleotides, depending upon assignment of Nterminus as Ile or Gly, respectively. This nucleotide region is shown in brackets in FIG. 5. Therefore, it 15 should be apparent to those skilled in the art that expression of either SAP(Val) or SAP(Phe) may be accomplished through expression of the DNA encoding the larger precursor proteins followed by a processing step 20 to further isolate the active portion of these proteins.

Alternatively, one skilled in the art recognizes that another approach for producing SAP(Val) or SAP(Phe) proteins is to express smaller regions of DNA encoding portions of the larger precursor proteins. For example, the region encompassing nucleotides 627-851 shown in brackets in FIG. 6 may be selected for expression of a 75 amino acid polypeptide which is homologous to SAP(Phe) at the NH₂-terminal end and has an approximate molecular weight of 7500 daltons.

25

30

35

It is also apparent to those skilled in the art that the genes encoding SAP(Phe) or SAP(Val) or portions of these genes can be made by chemical or enzymatic synthesis. Further, it should be apparent that deletion, substitution, or addition analogs of such

- 54 -

genes or portions of such genes may be made by techniques well known to those skilled in the art. Therefore, it should be understood that SAP(Val) or SAP(Phe) genes or portions thereof, whether isolated from genomic or cDNA libraries or made by chemical synthesis, and the proteins arising from expression of these genes, are well within the contemplation of this invention.

10

5

EXAMPLE 19

Synthesis Of A Polypeptide Based on Canine SAP(Val)

15

A polypeptide having the following sequence, NH2-Tyr-Ile-Pro-Cys-Phe-Pro-Ser-Ser-Leu-Lys-Arg-Leu-Leu-Ile-COOH, was synthesized to provide a replica of the initial 13 NH2-terminal amino acid residues of canine SAP(Val) and to include a terminal tyrosine residue 20 allowing for potential labeling with ^{125}I . This polypeptide was assembled on a resin support by stepwise solid phase synthesis (starting with the carboxy terminal residue) according to the general procedure described in Barany et al., The Peptides, 2, Gross et 25 al., eds., Academic Press, New York, 1284 (1980). A BOC-L-Ile-OCH2-Pam resin was transferred to a reaction vessel on an Applied Biosystems Synthesizer, Model 430A.

30 Protected amino acids were coupled in a stepwise manner to the resin support by preformed symmetric anhydride chemistry, except in the case of arginine addition, wherein the DCC/HOBT protocol [Konig et al., Chem. Ber., 103, 788-798 (1970)] was employed.

35 All NH₂-terminal residues were protected by t-butyloxy carbonyl (t-Boc) linkage, and side chains of various

WHAT IS CLAIMED IS:

 A purified and isolated DNA sequence encoding SAP(Val).

5

20

25

2. A purified and isolated SAP(Val) nucleic acid described by a nucleotide sequence selected from the group consisting of:

the nucleotide sequence as illustrated in FIG.

10 5 or FIG. 10;

a nucleotide sequence comprising 20 sequential nucleotides in the nucleotide sequence illustrated in FIG. 5 or FIG. 10:

a nucleotide sequence describing a nucleic

15 acid which hybridizes with 20 sequential nucleotides in
the nucleotide sequence illustrated in FIG. 5 or FIG.

10;

a nucleotide sequence describing a nucleic acid which would hybridize with 20 sequential nucleotides in the nucleotide sequence illustrated in FIG. 5 or FIG. 10 but for the redundancy of the genetic code; and

a nucleotide sequence encoding an epitope encoded by 18 sequential nucleotides in the nucleotide sequence illustrated in FIG. 5 or FIG. 10.

- 3. A transformation vector comprising the nucleic acid of claim 2.
- 4. A cell transformed with the vector as recited in claim 3.
 - 5. A method for obtaining purified and isolated SAP(Val) comprising the steps of:
- 35 culturing a cell as recited in claim 4 in a medium and under conditions favorable for expression of

SAP(Val); and

isolating SAP(Val) from the contents of the medium.

- 5 6. A purified and isolated SAP(Val) substantially free of other human proteins and encoded by a purified and isolated nucleic acid described by a nucleotide sequence selected from the group consisting of:
- the nucleotide sequence as -illustrated in FIG. 5 or FIG. 10;
 - a nucleotide sequence comprising 20 sequential nucleotides in the nucleotide sequence illustrated in FIG. 5 or FIG. 10; and
- a nucleotide sequence encoding an epitope encoded by 18 sequential nucleotides in the nucleotide sequence illustrated in FIG. 5 or FIG. 10.
- 7. A SAP(Val) synthetic polypeptide made by chemical or enzymatic peptide synthesis.
 - 8. The synthetic peptide as recited in claim 7 having the following amino acid sequence:

Tyr-Ile-Pro-Cys-Phe-Pro-Ser-Ser-Leu-Lys-ArgLeu-Leu-Ile.

9. The synthetic peptide as recited in claim 7 having the following amino acid sequence:

Leu-Ile-Pro-Cys-Cys-Pro-Val-Asn-Ile-Lys-Arg30 Leu-Leu-Ile-Val-Val-Val-Val-Val-Val-Val.

10. The synthetic peptide as recited in claim 7 having the following amino acid sequence:

Leu-Ile-Pro-Cys-Cys-Pro-Val-His-Leu-Lys-Arg
Leu-Leu-Ile-Val-Val-Val-Val-Val-Leu-Ile-Val-Val-Val
Ile-Val-Gly-Ala-Leu-Leu.

1/47

FIG.2

FIG.I

2/47

09	120	180	240	300	360	420	480	540	009	099	720
GAA TITC CGG GAG TGC AAC GTC CTC CCC TTG AAG CTG CTC ATG CCC CAG TGC AAC CAA GTG Glu Phe Arg Glu Cys Asn Val Leu Pro Leu Lys Leu Leu MET Pro Gln Cys Asn Gln Val	CTT GAC GAC TAC TTC CCC CTG GTC ATC GAC TAC TTC CAG AAC CAG ACT GAC TCA AAC GGC Leu Asp Asp Tyr Phe Pro Leu Val Ile Asp Tyr Phe Gln Asn Gln Thr Asp Ser Asn Gly	ATC TGT ATG CAC CTG GGC CTG TGC AAA TCC CGG CAG CCA GAG CCA GAG CAG GAG CCA GGG Ile Cys MET His Leu Gly Leu Cys Lys Ser Arg Gln Pro Glu Pro Glu Gln Glu Pro Gly	ATG TCA GAC CCC CTG CCC AAA CCT CTG CGG GAC CCT CTG CCA GAC CCT CTG CTG GAC AAG MET Ser Asp Pro Leu Pro Lys Pro Leu Arg Asp Pro Leu Pro Asp Pro Leu Leu Asp Lys	CTC GTC CTC CCT GTG CTG CCC GGG GCC CTC CAG GCG AGG CCT GGG CCT CAC ACA CAG GAT Leu Val Leu Pro Val Leu Pro Gly Ala Leu Gln Ala Arg Pro Gly Pro His Thr Gln Asp	CTC TCC GAG CAG CAA TTC CCC ATT CCT CTC CCC TAT TGC TGG CTC TGC AGG GCT CTG ATC Leu Ser Glu Gln Gln Phe Pro Ile Pro Leu Pro Tyr Cys Trp Leu Cys Arg Ala Leu Ile	AAG CGG ATC CAA GCC ATG ATT CCC AAG GGT GCG CTA CGT GTG GCA GTG GCC CAG GTG TGC Lys Arg Ile Gln Ala MET Ile Pro Lys Gly Ala Leu Arg Val Ala Val Ala Gln Val Cys	CGC GTG GTA CCT CTG GTG GCG GGC GGC ATC TGC CAG TGC CTG GCT GAG CGC TAC TCC GTC Arg Val Val Pro Leu Val Ala Gly Gly Ile Cys Gln Cys Leu Ala Glu Arg Tyr Ser Val	ATC CTG CTC GAC ACG CTG GGC CGC ATG CTG CCC CAG CTG GTC TGC CGC CTC GTC CTC Ile Leu Leu Asp Thr Leu Leu Gly Arg MET Leu Pro Gln Leu Val Cys Arg Leu Val Leu	CGG TGC TCC ATG GAT GAC AGC GCT GGC CCA AGG TCG CCG ACA GGA GAA TGG CTG CCG CGA Arg Cys Ser MET Asp Asp Ser Ala Gly Pro Arg Ser Pro Thr Gly Glu Trp Leu Pro Arg	GAC TCT GAG TGC CAC CTC TGC ATG TCC GTG ACC ACC CAG GCC GGG AAC AGC AGC GAG CAG Asp Ser Glu Cys His Leu Cys MET Ser Val Thr Thr Gln Ala Gly Asn Ser Ser Glu Gln	GCC ATA CTA CAG GCA ATG CTC CAG GCC TGT GTT GGC TCC TGG CTG GAC AGG GAA AAG TGC ATA 11e Leu Gln Ala MET Leu Gln Ala Cys Val Gly Ser Trp Leu Asp Arg Glu Lys Cys
					,		137.4				

SUBSTITUTE SHEET

3	/	4	7
_	•	•	,

780	840	006	096	1020	1080	1140	1200	1260	1320	1380	1408
AAG CAA TTT GTG GAG CAG CAC ACG CCC CAG CTG CTG ACC CTG GTG CCC AGG GGC TGG GAT Lys Gln Phe Val Glu Gln His Thr Pro Gln Leu Leu Thr Leu Val Pro Arg Gly Trp Asp	GCC CAC ACC TGC CAG GCC CTC GGG GTG TGT GGG ACC ATG TCC AGC CCT CTC CAG TGT Ala His Thr Thr Cys Gln Ala Leu Gly Val Cys Gly Thr MET Ser Ser Pro Leu Gln Cys	ATC CAC AGC CCC GAC CTT TGA TGA GAA CTC AGC TGT CCA GCT GCA AAG GAA AAG CCA AGT Ile His Ser Pro Asp Leu End	GAG ACG GGC TCT GGG ACC ATG GTG ACC AGG CTC TTC CCC TGC TCC CTG GCC CTC GCC AGC	TGC CAG GCT GAA AAG AAG CCT CAG CTC CCA CAC CGC CCT CCT CAC CGC CCT TCC TCG GCA	GTC ACT TCC ACT GGT GGA CCA CGG GCC CCC AGC CCT GTG TCG GCC TTG TCT GTC TCA GCT	CAA CCA CAG TCT GAC ACC AGA GCC CAC TTC CAT CCT CTC TGG TGT GAG GCA CAG CGA GGG	CAG CAT CTG GAG GAG CTC TGC AGC CTC CAC ACC TAC CAC GAC CTC CCA GGG CTG GGC TCA	GGA AAA ACC AGC CAC TGC TTT ACA GGA CAG GGG GTT GAA GCT GAG CCC CGC CTC ACA CCC	ACC CCC ATG CAC TCA AAG ATT GGA TTT TAC AGC TAC TTG CAA TTC AAA ATT CAG AAG AAT	AAA AAA TGG GAA CAT ACA GAA CTC TAA AAG ATA GAC ATC AGA AAT TGT TAA GTT AAG CTT	TIT CAA AAA AIC AGC AAI ICC GGA AII C

F16.3B

4/47

FIG.4

5 / 4 7

•							
60 GAG Glu	120 GTG Val	180 GTG Val	240 ATG MET	300 ACT Thr	360 ATC Ile	420 ATC Ile	480 CAG Gln
ATG	CCA	ATT Ile	GAG Glu	ACC Thr	CTG	AGC	480 CrG CAG Leu Gln
CTG	TGC	GTG Val	CTG	GTT Val	CTG Leu	GAG Glu	TCT
GTC Val	TGC Cys	GTG Val	GTT	CTG	CAG Gln	CCA	TGC
GAG G1u	CCC	GTC Val	ATG MET	CAC	CAG 31n	SCT	GAA
dad Lys	GGC ATT CCC TGC Gly 11e Pro Cys 26	ATC 11e	GAG Glu	GAG Glu	TAC Tyr	ATA Ile	ATG
GGC AGC G1y Ser	CGA TTT GGC ATT CCC TGC TGC CCA Arg Phe Gly Ile Pro Cys Cys Pro	GTC CTC ATC GTC Val Leu Ile Val	ACG	AGT	TAT GAC TAC (Tyr Asp Tyr (AAG ATA (Lys Ile	CAG ATG GAA TGC TCT Gln MET Glu Cys Ser
955 61y	TTT	GTC Val	CAC His	GCC CTG A	TAT Tyr	ATG MET	T'TC Phe
CTG Val	CGA	GTG Val	AAA Lys	GCC	GTG Val	ATC Ile	AAC Asn
GAT Asp	GGC G1 y	150 GTG GTG Val Val	CAG Gln	CTG Leu	GrG Val	TAC Tyr	CAC
995-	ဝေပက		$\alpha \alpha a$	ဝပက			004
30 ATG MET	90 CGG Arg	15(GT(210 AGC Ser	270 CGC Arg	330 CTC Leu	390 TCC Cys	450 GľC Val
AAG	90 CCC CG Pro Ar	150 Grc Gro Val Va	ATG MET	CAA G1n	3GC 31 y	TGC Cys	450 AAA GIO Lys Va
AAG	90 GCT CCC CG Ala Pro Ar	Gre Gre Gre Val Val Va	ATG MET	CAA G1n	3GC 31 y	TGC Cys	450 AGA AAA GIY Arg Lys Va
AGC AAG	90 GCA GCT CCC CG Ala Ala Pro Ar	Arc GrG GrG GrG Ile Val Val Va	ATG MET	GCC CAG CAA Ala Gln Gln	3GC 31 y	ACC TGC Thr Cys	45) ACT AGA AAA GIY Thr Arg Lys Va
ICC AGC AAG	90 TCC GCA GCT CCC CG Ser Ala Ala Pro Ar	CTT ATC GTG GTG GTG Leu Ile Val Val Va	GGT CTC CAC ATG	CAG CAA Gln Gln	GGC TCC ACT GGC Gly Ser Thr Gly	TGC Cys	45) CTC ACT AGA AAA GTY Leu Thr Arg Lys Va
ACC ICC AGC AAG	GCA GCT CCC Ala Ala Pro	Crr Arc GrG GrG Leu lle Val Val	GGT CTC CAC ATG	GAA GCC CAG CAA Glu Ala Gln Gln	GGC TCC ACT GGC Gly Ser Thr Gly	GCC CCT GGC ACC TGC Ala Pro Gly Thr Cys	CTC ACT AGA AAA Leu Thr Arg Lys
ACC ICC AGC AAG	TAC TCC GCA GCT CCC Tyr Ser Ala Ala Pro	Crr Arc GrG GrG Leu lle Val Val	ATG GGT CTC CAC ATG	CCG GAA GCC CAG CAA Pro Glu Ala Gln Gln	ATC GGC TCC ACT GGC Ile Gly Ser Thr Gly	GCC CCT GGC ACC TGC Ala Pro Gly Thr Cys	GCT
ACC ICC AGC AAG	TAC TCC GCA GCT CCC Tyr Ser Ala Ala Pro	Crr Arc GrG GrG Leu lle Val Val	ATG GGT CTC CAC ATG	CCG GAA GCC CAG CAA Pro Glu Ala Gln Gln	ATC GGC TCC ACT GGC Ile Gly Ser Thr Gly	GCC CCT GGC ACC TGC Ala Pro Gly Thr Cys	GCT
SGN SAG CAT AGC ACC TGC AGC AAG	CCG CCG GAC TAC TCC GCA GCT CCC Pro Pro Asp Tyr Ser Ala Ala Pro	Crr Arc GrG GrG Leu lle Val Val	ATG GGT CTC CAC ATG	GCG GCG CCG GAA GCC CAG CAA Gly Ala Pro Glu Ala Gln Gln	ATC GGC TCC ACT GGC Ile Gly Ser Thr Gly	TAC AAG CCA GCC CCT GGC ACC TGC Tyr Lys Pro Ala Pro Gly Thr Cys	GCT
ACC ICC AGC AAG	CCG GAC TAC TCC GCA GCT CCC Pro Asp Tyr Ser Ala Ala Pro	CAC CTG AAA CGC CTT CTT ATC GTG GTG GTG HIS LEU LYS ATG LEU LEU Ile VAl VAl VA	GGT CTC CAC ATG	CCG GAA GCC CAG CAA Pro Glu Ala Gln Gln	GGC TCC ACT GGC Gly Ser Thr Gly	GCC CCT GGC ACC TGC Ala Pro Gly Thr Cys	450 CCC AGT CTT GAG GCT CTC ACT AGA AAA GTG Pro Ser Leu Glu Ala Leu Thr Arg Lys Va

6/47

F16.5B

J40 TCA Ser	600 GAG Glu	660 AAA	720 CCA	780 GAG	840 AAA
GGC G1У	GGC 61 у	AGG	TGC	TGG GCA	TGA
GCA Ala	TGT Cys	gaa agg	TTC	TGG	CTG ATT
GAT Asp	CTG Leu	ACG	TGC	GAG	CTG
CGA	ACC Thr	CCA		1.66	AGC
666 61y	AGC	ວວອ	GCA AGA AGC	GGA	AGC
GAG Glu	GTG Val	GAA	GCA	AGA	TAA
GCA Ala	GCC	GʻrG	990	999	GAA
CAG Gln	ATG GCC GTG AGC MET Ala Val Ser	TCA	AGA	rtg	810 GCC ACA ACA
GGC G1у	GGC G1 y	999	TGC	AGC	ACA
510 CTG Leu	570 CTG Leu	630 TCC	690 TTT	750 GGG	
AAG Lys	TTC Phe	၁၁၅	AGC	AAT	CCT
TCT Ser	GCC	GAC	TGC	AGA	GGA ACT
ACG	CCG Pro	TAG	TTT	766	GGA
CCT Pro	GAC	ATC Ile	Girc	သသ	ງວວ
GTG CCT ACG Val Pro Thr	666 61y	TAC ATC TYR TYR INE	CAA AGG	ANA	299
GCA Ala	GGA G1y	TAC	CAA	CAC	AGG
CCC Pro	TCC	CTC Leu	999	SSC AGG	CCA CCC
AAG Lys	CCC	CCG	999 333	ວວວ	GCA
GCC	GCA Ala	GrG	ວ໑ວ	CAC	G'I'G

7/47

CCC	GAG Glu	191 GTC Val
56 CTG (Leu	CCT (GAA Glu
CTG	66C G1y	CAG (
CTG	116 CAG Gln	CTA (
CTG	GCC	TGC (
CTG	TGT	176 CAT His
41 TGG Trp	GCC Ala	666 61y
CAG Gln	rrc Leu	CTA
CTG Leu	101 TCC Ser	GCC Ala
CTG Leu	TCA	AGA Arg 50
CAC	ACC Thr	161 TGC Cys
26 TCA Ser	ACC	CAG Gln
GAG Glu	TGG Trp	TTG
GCT	86 GCC Ala	GCA Ala
ATG MET 1	GCT	CAA Gln
TGCC	ACT Thr	146 GAG Glu
10 \GG 1	66c 61y	C'l'G Leu
10 GCTGCAGAGG	CCA	AGC
GCTC	71 GGC G1y	CAA Gln
	TGT Cys	TGC Cys
	CTC	131 TGG Trp
	ACG Thr	TTC
	AC	T

(n n
C AAG n Lys
1 T AAC u Asn
251 C CTT e Leu
C ATC s Ile
C CAC 1 His
C GTC e Val
6 C ATC P Ile
236 G GAC u Asp
T GAG s Glu
GAG TGT Glu Cys
CAA GA Gln Gl
221 'A TGC 'u Cys
sc CTA
GAT GAC Asp [.] Asp
GCC GA Ala As
., 0
CAT GTG His Val
GGA CA Gly Hi
rcc cc Trp G1
77.

	CTC	Leu	
		Val	
	AAC G		
		ı Cys	100
311	GAG		
	CAG	Gln	
	GAG	Glu	
)TG	Leu	
		Phe I	
9			
296	3 AAG		
	AGG	Arc	
	ATG	ME'I	
	ACG	Thr	
	GAC		
281		Gln 1	
2			
		e Phe	
	ATT		
	ည	Ala	
	GAG	Glu	
997			
	200	Ala Lys	
	<u>ა</u>	T.	
	ATG	Ä	

		,
	GAC	Asp
386	ATC	Ile
	STC	/al
	;TG·(Pro Leu Val Ile Asp
	2	ro I
	ပ	e P
	TT	Phe
371	TAC	Tyr
	GAC	Asp
	GAC	Asp
	CTT	Leu
	GTG	Val Leu
356	CAA	Gln
	AAC	Asn
	TGC	Cys Asn
	CAG	Gln (
		Pro (
341	A'I'G CCC	ME.T
	CIC	Leu l
	CIIG (I,eu]
) SVV	[s/ ₁]
	T'I'G AAG	Leu Lys
326	200	Pro I
•	_	

TAC TITC CAG AAC CAG ACT GAC TCA AAC GGC ATC TGT ATG CAC CTG GGC CTG TGC AAA TCC CGG CAG TYR Phe Gln Asn Gln Thr Asp Ser Asn Gly Ile Cys MET His Leu Gly I.eu Cys Lys Ser Arg Gln

F16.6A

8 / 4 7

521 CCA Pro	CCT	GCT Ala	TGC Cys	CTG	851 ATG MET	CTC
CTG (GGG G1y	AGG	716 GTG Val	ATC CTG Ile Leu	TGC TCC Cys Ser	CAC His
CCT	581 CCT Pro	TGC	CAG Gln	CTC Val	TGC Cys	911 TGC Cys
GAC (Asp 1	AGG Arg	CTC	GCC	776 TCC Ser	CGG	GAG Glu
CGG (GCG	641 TGG (Trp	GTG v	TAC Ty <i>r</i>	Crc	TCT Ser
oue CTG Leu	CAG (Glu	TGC	GCA	CGC TAC Arg Tyr	836 Grc Val	GAC
CCT (CTC (TAT Tyr	701 GTG Val	GAG Glu	CTC	CGA
CCC AAA CCT (Pro Lys Pro 1	566 GCC Ala	CCC	CGT	GCT Ala 250	CGC	896 CCG Pro
CCC	666 61y	CTC	CTA	761 CTG Leu	TGC (Cys)	CTG
CTG	CCC	626 CCT Pro	GCG	TGC	GTC Val	TGG Trp
491 CCC Pro	CTG	626 ATT CCT CTC Ile Pro Leu	GGT Gly	CAG	821 CrG Leu	896 GGA GAA TGG CTG CCG CGA GAC Gly Glu Trp Leu Pro Arg Asp
GAC	GTG	CCC	686 AAG Lys	TGC	CAG	GGA
TCA (551 CCT Pro	TTC	CCC	ATC Ile	CCC	881 ACA Thr
ATG ME'I	CTC	CAA G1n	AT'T Ile	746 GGC G1y	CTG Leu	ccc ero
GGG G1y	GTC Val	611 CAG Gln	ATG AET	66C 61y	ATG MET	TCG
476 CCA (Pro (CTC	GAG G1u	671 CAA GCC 1 Gln Ala B	GCG	806 CGC Arg	CCA AGG TCG (Pro Arg Ser E
GAG	AAG	TCC Ser	671 CAA G1n	GrG Val	66c 61y	CCA
CAG (Glu (536 GAC Asp	CTC	ATC Ile	CTG	CTG	866 GGC G1y
GAG	CTG Leu	GAT	CGG	731 CCT Pro	C'l'G Leu	CCT
CCA Pro 150	CTG Leu	596 CAG G1n	AAG CGG Iys Arg	GTA Val	ACG Thr	AGC
461 GAG (Glu 1	CCT	ACA (Thr	ATC Ile	3TG Val	791 GAC Asp	GAC Asp
CCA (Pro (GAC (Asp 1	CAC /	656 CTG ATC 7 Leu Ile 1	CGC (CTC	866 GAT GAC AGC GCT GGC (Asp Asp Ser Ala Gly I
	3 14	-				

F16.6(

9 / 4 7

CAG Gln TCC TGG CTG GAC AGG GAA AAG TGC AAG CAA TTT GTG GAG CAG CAC ACG CCC CAG Ala Cys Val Gly Ser Trp Leu Asp Arg Glu Lys Cys Lys Gln Phe Val Glu Gln His Thr Pro Gln CTG CTG ACC CTG GTG CCC AGG GGC TGG GAT GCC CAC ACC TGC CAG GCC CTC GGG GTG TGT GGG Leu Leu Thr Leu Val Pro Arg Gly Trp Asp Ala His Thr Thr Cys Gln Ala Leu Gly Val Cys Gly 1500 GIGIGAGGCA CAGCGAGGGC AGCATCIGGA GCAGCICIGC AGCCICCACA CCTACCACGA CCICCCAGGG CTGGGCTCAG TGCAAAGGAA AAGCCAAGTG AGACGGGCTC TGGGACCATG GTGACCAGGC TCTTCCCCTG CTCCCTGGCC CTCGCCAGCT GCCAGGCIIGA AAAGAAGCCI' CAGCIICCCAC ACCGCCCIICC ICACCGCCCI' IICCIICGGCAG ICACIIICCAC IGGIGGACCA CGGCCCCCA GCCCTGTGTC GGCCTTGTCT GTCTCAGCTC AACCACAGTC TGACAGCAGA GCCCACTTCC ATCCTCTG GAAAAACCAG CCACTGCTTT ACAGGACAGG GGGTTGAAGC TGAGCCCCGC CTCACACCCA CCCCCATGCA CTCAAAGATT Glu Gln Ala Ile Leu Gln Ala MET Leu GAG CAG GCC ATA CTA CAG GCA ATG CTC 1046 1180 ACC ATG TCC AGC CCT CTC CAG TGT ATC CAC AGC CCC GAC CTT TGA TGAGAACTCA GCTGTCCAGC 1330 1410 1490 1570 1170 1240 1320 1400 1480 1560 \cdot 1031 1091 Ser Ser Pro Leu Gln Cys Ile His Ser Pro Asp Leu 1230 1310 1390 1470 1550 Ser TCC GTG ACC ACC CAG GCC GGG AAC AGC AGC 1151 Ser Val Thr Thr Gln Ala Gly Asn Ser 1016 1300 1380 1460 1540 1076 1210 1290 1370 1450 1530 1136 1200 1280 1360 1440 1520 GCC TGT GTT GGC 1430 1510 TGC ATG Cys MET Thr MET

0
•
り
_
1_

TAGACATCAG	1740 CTGGCATGAT	1770 1780 1790 1800 1810 1820 TTTCTTCCTC GAGATCGTCT GCTGCTTGAG AGCTATTGCT TTGTTAAGAT ATAAAAAGGG	AAGGIGGACT TCCAGCITIT GAITGAAAGI CCTAGGGIGA TICTATITCT GCTGTGAITT	1910 1920 1930 1940 1950 1960 1960 1970 1980 Arctignicar aggregate aggregate aggregate and a statemental and a statement	
CTCTAAAAGA	1730 ATGCACGCGT	1810 TTGTTAAGAT	1890 TTCTATTTCT	1970 GTCTGCACCA	
ACATACAGAA	1720 AAGGGTGGAC	1800 AGCTATTGCT	1880 CCTAGGGTGA	1960 GTAATACAAT	
1590 1600 1600 1610 CAGAAGAATA AAAAATGGGA ACATACAGAA CTCTAAAAGA TAGACATCAG	1690 1700 1710 1720 1730 1740 TICAAAAAAT CAGCAATICC CAGCGTAGTC AAGGGTGGAC ATGCACGCGT CTGGCATGAT	1790 GCTGCTTGAG	1870 GATTGAAAGT	1950 CCATTCCTAT	· ·
CAGAAGAATA AA	1700 CAGCAATTCC	1780 GAGATCGTCT (1860 TCCACCTTTT	1940 AGCTAGGGAC	AAAAAAA
ATTCAAAATT (1770 TTTCTTCCTC	, 1850 AAGGTGGACT	1930 GGGTTGTGCA	2010 GANAAAAAAA
1600 GCTACTTGCA	1670 1680 AAATTGTTAA GTTAAGCTTT	1750 1760 GGGATI'GGCGA CCGGGCAAGC	1830 1840 GTTTCTTTTCTGT	1920 AGCTCAGCTG	1990 2000 2010 AGYCCYATYC YCTYTYTAYGA GAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
1590 GGATTTTACA	1670 AAATTGTTAA	1750 GGGATGGCGA	1830 GTTTCTTTTT	1910 ATCTGCTGAA	1990 AGTCCTATTC

11 / 47

10th codon of		,
pUC19 lacZ gene	••	
3511		IcoRI 214.1 insert
TGC AGG TCG ACT	CTA GAG GAT CCC CGG GTA CCG A	AGC TCG AAT TC CGG GAG TGC
Cys Arg Ser Thr	Leu Glu Asp Pro Arg Val Pro S	Ser Ser Asn Arg Glu Cys
	Sel1	
	TGCAGG TCGACTCT	TAG
	T ₄ Polymer	bse fill-in
	TGCAGGTCGACTCT	TAG
	ACGTCCAGCTAGCTGAGA	
	<u></u>	
TGC AGG TCG ATC GAC Cys Arg Ser Ile Asp	TCT AGA GGA TCC CCG GGT ACC GA Ser Arg Gly Ser Pro Gly Thr Gl	AG CTC GAA TTC CGG GAG TGC

FIG.7

12/47

SUBSTITUTE SHEET

F1G. 8B-1

13/47

70	140	210	280	350	420
GCCCCATCTC	GTATAGAGGC	TGGGGTGGTG	AGCTTTTTCT	rcrrrcrgcr	CACCTCCTGT
60	130	200	270	340	410
Accacacca	rcgrrcccgA	TCACAATGGC	rcAGCCTGTG	GAGGACAGTT	CCATGGGCAG
50	120	190	260	330	400
GGAGTGAGCC	AGCACTGTAG	GATAAATTGA	rcrgrcrccc	TGCAGCTGCA	TCCCCAGGGG
40 50 60 70	110	180	250	320	390
CAGGATTACA GGAGTGAGCC ACCACACCCA GCCCCATCTC	CACCCACAAA AGCACTGTAG	GCAGAGATCA	CAAGATATCC	TGAGAGCCCC	CCTGGAGGGG
30	100	170	240	310	380
CCCAAAGTGC	ccrecccerc	GAGGGCTCCT	TTCTTCCACT	GGGCCCTGCC	CAGCCCCTAC
20	90	160	230	300	360
rccrcggccr	GGTACTAATT	CCACTAGGGA	AATGCTCTCT	CTGCCAGTGG	GAACCATCGC AGCTATGCCC
10	80	150	220	290	360
GGATCCTCCC	TTTTCATCAT	CTGTGAGCCT	GCAATGTGCT	CCAGTGTGCT	GAACCATCGC

490	560	630	4 400 200000000000000000000000000000000	770	840	910
TTGTTTTCTG	TCCAGGGGAA	GAGCCAGGCA		GAGAGGTGGG	AGTCTGGGCA	GTTCCTGCTG
480	550	620	690	760	830	900
TCAGGGTATT	AGAAGATTTT	CCTGGGTTAA	GGGAGGGGAT	CCACGGCCTG	GGAACATGGG	AGGCAGGAGT
470	540	610	680	750	820	890
rgrcrcrgAc	CCATAGAACC	CAGGGCTTGC	GGGAGGCCCA	AACCTCCCTC	CACAAGTCCA	GTGGTAAGGC
460	530	600	670	740	810	880
ACAGAAATCT	AACCATGTGT	rcrgcccrrc	GAGGGGGCCT	CACCCTCCTC	TGGAGGAAGC	GCCAGGACAG
450	520	590	660	730	800	870
crccagggcc	GACTAATGCA	Grerecrese	CTCAAGAGTA	AGATGCCCTC	AGCCCCTGGT	CAGGCCATCA
440	510	580	650	720	790	860
CTGGGAGCCA	ATGCTCTTCT	GGTGGTGAGA GTGTCCTGGG	AAGAGCATTG	GCCCCCAACC	GAGGCTTGAG	GAGGCAGGAA
430	500	570	640	710	780	850
ATAGGGCTGT	TTTTGTGTAA	AAGGTAAGGA	GGAAGCTCTC	CACCCAGGCT	ACCAGGTATG	GGGGGCAAAG

F16.8B-3

	1	5/47			- 4	
980 CTGCCACTCC	1050 CTGCAGAGGT	CTC	1170 CACTCACTGA	1240 GGGTTCAGAG	1310 AGCTGTCTGA	1380 TCATGATGCC
970 ACTGAGGTCG	1040 GGTACCCAGG	1098 CTG CCC Leu Pro	1160 GCAGCTCCAC	1230 AAGGCAGCTG	1300 TGGAACCCAG	1370 GTGGGTGAAA
960 AAAGACAAAC	1030 CCCCAAGCAG	CTG CTG CTG Leu Leu Leu	1150 CCTCTCCTAG	1220 TTTTAAAGAC	1290 CAGGAGCAGG	1360 GGTCTAGAGG
950 rcttcagagc	1020 AGGGGCCATG	1083 CAG TGG CTG Gln Trp Leu	1140 CCCAGCCTCC	1210 rcrgrccrcA	1280 CrGGCGGGrC	1350 AGCAAAACTG
940 cctggagggg	1010 CCCAGCTATA	CTG CTG	1130 GTGAGTCTCC	1200 TTAACCCAAG	1270 GGTCACACAG	1340 TCACACTCCC
930 GGATCAAGCA	1000 CCACGCCCCG	1068 GAG TCA CAC Glu Ser His	GGC ACT G	1190 GTGCTAGGCA	1260 GCTTATCCAA	1330 TTTAATGGCC
920 GGAAAAGGTG	990 Tacagageee	S GCC ATG GCT S HET Ala	TGT GGC CCA TGT GGC CCA Cys Gly Pro	H GCACTGCTTT	1250 AGGGTTCAGA	1320 CGTCCACATG

1698 1708 1718 1728 1738 1748 1758 AGATAGGATAC GATGGGATAC GATGACATAG AATAGATGGA GTCGGATGAA

	16	/47	1618 GGGC	88 TG
ACC	GAG 1 Glu	1549 GGA CAT Gly His	1618 CTGGGTGGGC	1688 AGATGAAATG
GCC TGG	1489 AGC CTG	GTC TGG GGA O	1608 ATGAAGGGTG	1678 AAATGGGATG
CH	CAA	GTC		AAA
1430 CAAACCACAG	1489 TTC TGG TGC CAA AGC Phe Trp Cys Gln Ser	1534 CTA CAG GAA Leu Gln Glu	1598 GGGGTCTGAA	1668 GGATGAGATG
1420 GCTCTGGCCC	1474 GGC CCT GAG Gly Pro Glu	GGG CAT TGC Gly His Cys	1588 TGGCAACTG	1658 CATAGGGGAT
1410 GATTAAGGTT	GCC CAG Ala Gln	1519 TGC AGA GCC CTA G Cys Arg Ala Leu G	1578 CCAAGGATGC	1648 GTGGAGCCCC
1400 CCTGGATCCT (1459 TCA TCC TTG GCC TGT Ser Ser Leu Ala Cys	CAG TGC AGA GCC CTA Gln Cys Arg Ala Leu	1568 GTGAGTACCA	1638 Aggaggaga
1390 AGGTGTGTAG CO	1444 ACC TCA TCC Thr Ser	1504 CAA GCA TTG Gln Ala Leu	1568 GTG GGA GCC GTGAGTACCA Val Gly Ala	1628 1638 1648 TCTGGATGGG CAGGAGGAGA GTGGAGCCCC

2161 2171 2181 2191 2201 2211 2221 GATGAAGGTT GGGGCCCAAG AGATGAGGGA CAGAGCAGG AAGAGCTGAG CCCCCTAAAG GGGCCATTTC

CAG GTAATGATGC CCAGATCCTG Gln

ATG GCC AAG GAG GCC ATT TTC HET Ala Lys Glu Ala Ile Phe

2104 ATC CTT AAC AAG A Ile Leu Asn Lys H

FIG. 8B-5

		1 7	7/47	
1828	1898	1968	2038	GTC CAC
TGGATGGGAT	Aagacatgga	TTGGAGTGCT	GTCCTCCACC	Val His
1818	1888	1958	2028	GAG GAC ATC GT
AGAATAAAGA	Ggatgaatag	TGCATGTGCC	CCACTCATGT	Glu Asp Ile Va
1808	1878	1948	2018	GAG TGT GAG
AGGATGACAT	GGATTGGGAT	GGTGGGCAGC	GGAGCCTCCC	Glu Cys Glu
1798 GGGATAGGAT	1868 AAAGATGGAT	1938 AAGTTGGGCT	2008 ATTGGAGCTG	2074 TGC CAA Cys Gln
1798 1798 1798	1858	1928	1998	G GAT GAC CTA
TGGGATGGAT GGGAGGGGAA GGGATAGGAT	GACACAGAAT	GAGATGGGAC AAGTTGGGCT	GAACCTCCCC	Asp Asp Leu
	1848	1918	1988 19	2058
	GGGATGGGAT	TGATATGGAT	CTTCCTAAGA GAACCTC	rccrccccA
1768	1838	1908	1978	2048
TGGGATGGGA	GGGATGGGAT	TGGGATAAAT	CTGTTGGCCT	TTGGGGCCCC

BETITUTE SHEET

FIG. 8B-6

		1	8/47	
2291 TCATGGCCCT	2361 AACTACTTAA	2431 GGCCTTGTGT	CAG	AAG CTG Lys Leu
2281 TGGGAGCAGG	2351 ACATGTGCCC	2421 GCCCTGGTGG	2491 TCTGGCCTCC	539 CCC TTG Pro Leu
2271 rccrccrggc	2341 AAGGGCCCCT	2411 GGGTCAGTCT	2481 GACGGCCCCC	AAC GTC Asn Val
2261 AAGTCCCAGC	2331 CCCTGAGGGG	2401 GGGGGATTAG	2471 AGGCCCAGCT	2524 CAG GAG TGC Gln Glu Cys
2251 GGTGCCTGGG	2321 AGATGGTCTT	2391 CCAGCACCCT	2461 GACCTCAGAG	TTC CTG GAG (
2241 AGGAGGCCTG	2311 GCACAGCCAG	2381 CTCGTGAACT	2451 GGGCGGGGTA	2509 3 AGG AAG TT r Arg Lys P
2231 CAGGCTGAGG	2301 GAGCTCAATA	2371 CTCCTTGGCA	2441 CCAGGGACTT	2509 GAC ACG ATG AGG AAG Asp Thr MET Arg Lys

GAC 2599 7 ATC Ile CTG TTC 2584 GAC TAC ABD TYF GAC Asp CTT GTG 2569 CAA Gln AAC TGC Cy 8 CAG CCC 2554 CTC ATG Leu HET

0	2740	2810	2880 6 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2950	3020	3090
C AGGCCCCTG	Cacacacaca	CACACACACA		CAGCACTCCA	CACACACACA	AAGGGCCTAG
0 2660	2730	Z800	2870	2940	3010	3080
5C CTCCCCACGC	CACACACACA	CACACACA	CGGACACACA	CACACACACA	CACACACACA	CCTGTCCACA
10 · 2650	2720	2790	2860	2930	3000	3070
	GCCAGACACA	GCCAGCCGGA	CCCAGCTGGC	GCTGGAAACA	CACACACACA	ACACACACAC
10 2640	2710	2780	2850	2920	2990	3060
CG CAAGCTCACC	ACCCCAGCCA	CAGCACCCCA	CACACAGTAC	Accccagcca	CAGCCAGACA	ACACACACAC
2630	2700	2770	2840	2910	2980	3050
T GTGAGGGCTG	CACACACAGC	CACAAACACA	GACACACACA	CACACACAGT	GTACCCCAGC	CCAGCTGGCC
2614 CAG AAC CAG ATT Gln Asn Gln Ile	2690 GGGGGAGCCA	2760 GCCGGCCAGA	2830 CAGCTGGCCG	2900 GACACATACA	2970 TACCCACACA	3040 ACACAGCACC
TAC TTC CAG	2680	2750	2820	2890	2960	3030
Tyr Phe Gln	GCCCACCCAT	CAGCACCCAA	CACAACACCC	ACCCTATCCA	TCCAGACACA	CAGAGCACAC
H H	, U	υ	U	<	H	

		20/4	7		
3160 GTGGGCCTGT	3230 ACATATATGC	3300 TTTGCCTTTT	3370 AGTGGTCCCT	3440 CTGTGCTGTG	cAG g cAG
3150 GGTGCACACG	3220 ATTCATTCTC	3290 CAGCCCTATC	3360 CTCCCATTCC	3430 CACTCCCACC	3491 AAA TCC CGG Lys Ser Arg
3140 CCCAGGTTCA	3210 TTACACACTT	3280 AGTCCCCACA	3350 GGCCTGCTTC	3420 CAGACCCTAA	3476 GGC CTG TGC Gly Leu Cys
3130 ACCATGGGCC	3200 ACACACATGC	3270 CCTGCCCTAA	3340 ACCCCCACTA	3410 GCTTCCCTCC	3476 ATG CAC CTG GGC MET His Leu Gly
3120 CATGCACCCG	3190 CCTCACTCTC	3260 TCCCGGGCCA	3330 AAACCACAGC	3400 ATAGGGGTGG	TGT
3110 GCCCTTCAGC	3180 ACCCTTACAC	3250 TCACACACAA	3320 ATAGAGTTCT	3390 GCCGGCCTGA	3461 CCCCAG GAC TCA AAC GGC ATC ABP Ser Asn Gly Ile
3100 GAAACTACGT	3170 ACGCTCACAC	3240 TCATGCTCAT	3310 GTCCCCCCAC	3380 GAGCCCTTGG	CCCCAG GAC

CTC

3815 3825 3835 3845 3855 GCCTGGAGGA CTCTTCTC AGCACCCAGC CTGGCCTCCA CCTGATTCTT TCCCCAG GAT

AAA CCT CTG CGG Lys Pro Leu Arg 8	7 ÅID OJA NOJ TEV 4 DEO CCC GGG 4 7 TEN DIO GIG	3655 3665 CCCCCACAGC CAGTAAAGTG	3725 3735 GGGAGAGGCA GAGCCGGGAA	3785 3795 3805 GAGAAAGGGA GGAAGAGA GGGGAGGAGA
3536 CCC CTG CCC Pro Leu Pro	GTC CTC CCT	3645 GTGAGGGAGG	3715 ACTGGGCCCT C	
3521 CAG GAG CCA GGG ATG TCA GAC Gln Glu Pro Gly MET Ser Asp	3581 C CCT CTG CTG GAC AAG CTC ip Pro Leu Leu Asp Lys Leu	AGG CCT GGG CCT CAC ACA CAG Arg Pro Gly Pro His Thr Gln	3685 3705 GAGC CACCTCCGAA GCCCATGGGC	3755 3765 3775 AGGC AGGCCTAAG GGAGGAGGGA
3506 CCA GAG CCA GAG CA Pro Glu Pro Glu Gl	3551 GAC CCT CTG CCA GAC CCT Asp Pro Leu Pro Asp Pro	3611 GCC CTC CAG GCG AGG CCT GGG Ala Leu Gln Ala Arg Pro Gly	3675 3685 GAGATCCAGA GGGCTAGAGC	3745 3755 GGTGATAGGA AGCTCCAGGC

		2	.2 / 4 7			
3922 T CTG a Leu	3982 Agagcccagg	4052 CAGACCCAGC	4122 TGGGCTCAGG	4192 GAGGTGCCAG	4262 TGATGGAGAA	4332 GATAGATTCC
TGC AGG GCT	3972 CAGGGCCTCA AGAG	4042 ACACCCCGT	4112 CCAGGGACCC	4182 CCACTGTATG	4252 GCTCACCATC	4322 AATTTCCACA
3907 rgc rgg crc cym rrp Leu	3962 GTGAGGCATC CAGG	4032 CTCCCAACTC	4102 TTGCCCCCAC	4172 CATTAAGCCC	4242 TCCTCCAGCA	4312 TCAAGAGGGG
CTC CCC TAT Leu Pro Tyr	3952 CCC AAG GTGA Pro Lys	4022 TCCCACCTCT	4092 CGCTTGTGCA	4162 ATGCAACAAA	4232 CGCAGCTTTG	4302 CTTTGATCTT
3892 ATT CCT Ile Pro	ATG ATT MET Ile	4012 TCCCTGCAGC	4082 GGGAGAGAGC	4152 GGTACAGTTC	4222 ACGGACAAGA	4292 AGAAAGGTTG
CAA TTC CCC Gln Phe Pro	3937 ATC CAA GCC Ile Gln Ala	4002 TACCTGTAGC	4072 AAGTTAGGAG	4142 GTAGGTGCCA	4212 Aagtacaaaa	4272 4282 AGATCCCCAG AGGTCTCTGT
3877 rcc GAG CAG Ser Glu Gln	ATC AAG CGG Ile Lys Arg	3992 AGCACACGCA	4062 TGGCTGCCAG	4132 CTCAGGCCTG	4202 CCAGGAGCCA	4272 Agatccccag

FIG. 8B-11

	23/4	7		
4472	4542	4612	4682	4752
TCCCAGATTG	TCACTTGAGC	AAATTAGCCA	Acccaggagg	CTCTGTCTCA
4462	4532	4602	4672	4742
CCTCAGCCTT	GGCAGGTGGT	AAGAATACAA	AATCACTTGA	CAGAGCAAGA
4452	4522	4592	4662	4732
GGCCCTGCCC	TTCCTGCTGA	CGTCTCTACT	Gaggcaggag	GCCTGGGTGA
4442	4512	4582	4652	4722
AATGAGGAAA	GCAGGTGAGG	GGCGAAACCC	TCGGGAGGCT	CTGTACTCTA
4432	4502	4572	4642	4712
TTGGGGGCCCA	GCACAAGGCA	TGGCCAACAT	TCCCAGCTAC	CATCACGCCA
4422	4492	4562	4632	4702
CTTGCCCAAA	GCCACCAGGG	AAGACCAGCT	Grgccrgrag	AGTGAGCCGA
4412	4482	4552	4622	4692
CCAGGGCTAC	GGTTGCGTGG	CCAGGAGTTC	Gatgtgacag	CGGAGGTTGC
	4422 4432 4442 4452 4462 CTTGCCCAAA TIGGGGCCCA AATGAGGAAA GGCCCTGCCC CCTCAGCCTT TCCCAG	442244324442445244624472CTTGCCCAAATTGGGGCCCAAATGAGGAAAGGCCCTGCCCCCTCAGCTTTCCCAGCTTTCCCAGCTT44924502451245224542GCCACCAGGGGCAGGTGAGGTTCCTGCTGAGGCAGGTGAGC	4422 4432 4442 4452 4462 4472 CTTGCCCAAA TTGGGGCCCA AATGAGGAAA GGCCCTGCCC CCTCAGCCTT TCCCAGATTG 4492 4502 4512 4522 4532 4542 GCCACCAGGG GCACAAGGCA GCAGGTGAGG TTCCTGCTGA GGCAGGTGAGC 4612 AAGACCAGGT 4562 4582 4592 4602 4612 AAGACCAGCT TGGGCAAACCC CGTCTCTACT AAGAATACAA AAATTAGCCA	4422 4432 4442 4452 4462 4472 CTTGCCCAAA TTGGGGCCCA AATGAGAAA GGCCTGCC GCTCAGCTT TCCCAGATTG 4492 4502 4512 4522 4532 4542 GCCACCAGGG GCACAGGTGAGG TTCCTGCTGA GGCAGGTGAG 4612 AAGACCAGGT TGGGCAACAT GGCGAAACC GGTCTCTACT A602 4612 AAGACCAGCT TGGGCAACAT GGCGAAACCC GTCTCTACT AAGAAAACAA A612 A632 4642 4652 4662 4672 4682 GTGCCTGTAG TCCCAGCTAC TCGGGAGGCT GAGGAGGAGAGAGAACAAAAAAAAAAAAAAAAAAAAAA

SUBSTITUTE SHEET

F16.88-12

4762	4772	4782	4792	4802	4812	4822	
AAAAAAAAGA	AAGAAGGAAA	GATCACTGCA	Gagattgcag	TGAGAGGTGA	TGGACAGGG	Acggagctga	
4832	4842	4852	4862	4872	4882	4892	
GGGCTGGCCT	GGGGATGCAT	TTGGGAGGTG	GGCCCACTGC	TATGGGCATG	GATGGGCCTG	GAGCGTGAGG	
4902	4912	4922	4932	4942	4952	4962	5
ACCAGGGAGG	ACTCCAAAGT	GACTTTTACA	CACTGGCCAG	AGCAACCAGC	CCTCTGTAAT	GCCAGCAGCT	
4972	4982	4992	5002	5012	5022	5032	ιΔ / Λ ~
GAGATGGGGA	Gactaaagaa	Gaaaacaggt	TTGAGCAAAA	AAACAGAGAG	CTCCCTCCTG	GCCATGTTGA	
5042 GTTCAAGATG		5052 CCTGTGAA GTGCAGGAGA	5072 GGAGAGTCAG	5082 GCAAGCAGCT	5092 Gaatcccaag	5102 CATTGGGGGA	
5112	5122	5132	5142	5152	5162	5172	
AGGTCAGGTC	CACCATGICA	GTCTGAGAGT	CACTAGCTGT	GGGCCAGAGC	CTTTGGGGCC	AGACGTAGGT	
5182	5192	5202	5212	5222	5232	5242	
CTGAAGCTGG	crcctacacr	CAGTGACCCT	GTGTGAGTCC	CCTGCATCCC	CTGGACTCTC	TGATCCCCAG	

F16.88-13

25/47			
			5608 CGCTCT
	5490 GAC Asp		rgccc
CTG	CTC	CGG Arg	
430 CCT Pro	CTG	CTC	5598 CCC AA
5 GTA Val	ATC	5535 GTC Val	5598 Cttagcccaa
GTG	GTC Val	CTC	5588 CCTC (
CGC	475 TCC Ser	CGC Arg	ບ
TGC	TAC TYF	TGC	CTGC
415 GTG Val	CGC Arg	GTC Val	5578 ccc A
CAG Gln	GAG Glu	520 CTG Leu	GTGAGC
GCC	GCT	S CAG Gln	A GI
GTG Val	CTG CTG Leu	CCC	CCA
GCA	TGC Cys	CTG	5565 GGC G1y
400 GTG Val	CAG	ATG	GCT Ala
S CGT Arg	TGC	505 CGC Arg	AGC
CTA	ATC Ile	66C 61Y	GAC
GCG		CTG	GAT
GGT			5550 ATG MET
CAG	GCG	ACG	TCC A
	5415 GGT GCG CTA CGT GTG GCC CAG GTG TGC CGC GTG GTA CCT CTG GT Gly Ala Leu Arg Val Ala Val Ala Gln Val Cys Arg Val Val Pro Leu Va	GGT GCG CTA CGT GTG GCC CAG GTG TGC CGC GTG GTA CCT CTG GTG GIY Ala Leu Arg Val Ala Gln Val Cys Arg Val Val Pro Leu Val 5445 5445 GGC GGC ATC TGC CAG TGC CTG GCT GAG CGC TAC TCC GTC ATC CTG CTC GAC GIY Ile Cys Gln Cys Leu Ala Glu Arg Tyr Ser Val Ile Leu Leu Asp	GGT GCG CTA CGT GTG GCA GTG GCC CAG GTG TGC CGC GTG GTA CCT CTG GTG G1y Ala Leu Arg Val Ala Val Ala Gln Val Cys Arg Val Val Pro Leu Val 5445 560 GGC GGC ATC TGC CTG GCT GAG CGC TAC TCC GTC ATC CTG CTC GAC G1y Gly Ile Cys Gln Cys Leu Ala Glu Arg Tyr Ser Val Ile Leu Leu Asp 5505 5505 5505 5506 5507 5508 5509 5509 5509 5509 5509 5509 5509 5509 5509 5509 5500

SUBSTITUTE SHEET

		2 б	/ 47			
5678 CCAAGGAGGA	CAG GG rg	G TCC	ATG CTC MET Leu	5907 .TGGG	5977 GAGACACCTA	6047 TGTAAGTTAG
5668 CTGCAATGCA	5738 CTCACATCTC	S CTC TGC ATG s Leu Cys MET	5845 CAG GCA Gln Ala	GGCACA	5967 TTTGCAGCCA	6037 ATGGTGGGAC
5658 TGTGGTCCCA	5728 CCCCCTAATG	5785 GAG TGC CAC Glu Cys His	GCC ATA CCA Ala Ile Pro	AAG GTATGG Lys	5957 CAGGAAAGGC	6027 GGGGCAGACA
5648 ccrcrcccrc	5718 TGCCTGCTTT	5770 CGA GAC TCT Arg Asp Ser	5830 AGC GAG CAG Ser Glu Gln	GAC AGG GAA Asp Arg Glu	5947 AGGCTGAGCC	6017 GACAGGATGT
5638 ACTGCATGAC	5708 AGGGTGGCCT	CTG CCG	AAC AGC Asn Ser	5875 TGG CTG Trp Leu	5937 TCAAGGCAGA	6007 CAGACAGGCA
5628 C'racccrecc	5698 ACACCTCTGT	5755 GGA GAA TGG Gly Glu Trp	5815 CAG GCC GGG Gln Ala Gly	GTT GGC TCC Val Gly Ser	5927 CAGGGCCCGT	5997 Gaatggagga
5618 ccrccrcccc	5688 CAGAAACCAA	TCG CCG ACA Ser Pro Thr	5800 GTG ACC ACC Val Thr Thr	5860 CAG GCC TGT Gln Ala Cys	5917 GACTCATGGT	5987 GGATGGGCCA

F16.88-15

		27/4	7		
6117	6187	6257	6327	6397	6467
CCAGCAGGCC	ATGAGTAATG	CTGCCCCCAC	GAAGGTCCTA	TTTTGAGAT	CTCTGCCTCC
6107	6177	6247	6317	6387	6457
CTCCAGAGGA	CTACCAGGAG	GATCCCTTTA	GGCTGGACTT	TTTTTTTT	TCACTGCAAC
6097	6167	6237	6307	6377	6447
GGGCTGTGGG	GCCTGGTTAT	CCAGGGTCCT	AAAAGGAGAG	TTTTTTTTT	CAATCTTGGC
6087	6157	6227	6297	357 6367	6437
TCTGGACAAA	GCCTTCAGAG	AGCCTTCTCT	ACCCATTGGC		TGCAATGGCA
6077	6147	6217	6287	6357	6427
Aggagtcgcc	CACCAGGCAA	Gaaagggact	CTCAGGACAA	TCAATGACAG	CAGGCTGGAG
6067	6137	6207	6277	6347	6417
GCTAAGGGTT	GCTGAGTGAG	TTCAAGCCAG	GTGTGACTCA	Caatactcag	rcrrgrrgcc
6057	6127	6197	6267	6337	6407
GGCAGAGCCT	CTCTTCACGG	CTAGGGCCAG	Actcctcaag	666CCCTTGC	GGAGTTTTGC

F1G. 8B-16

		2 8	3 / 4 7			
6537	6607	6677	6747	6817	6887	6957
CCAGGCCCGG	CCCCTGACCT	CCCGGACAGG	AGGCAGCTGT	TCAAGGACCA	CTGAGATTCC	TTTCAGCCTG
6527	6597	6667	6737	6807	6877	6947
GCATGTGCTA	TGGTCTCGAA	AGCCACTGCA	TCTTCCCAGG	ACATCTGGTC	AGGGTGGTGG	AAGTCCTCCA
6517	6587	6657	6727	6797	6867	6937
GGGATTACAG	TTGGTCAGGC	TACAGGCATA	CAGCTGATGC	ACTGCCCATC	GAGGGAGGGG	TTTCTGATGG
6507	6577	6647	6717	6787	6857	6927
TTGAGTAGCT	TTCACCATA	GTGCTGGGAT	TGAGGAAAGC	AAGCCTCCCG	AATGGAGGTG	Gregeerger
6497	6567	6637	6707	6777	6847	6917
CCTCAGCCTC	AGAGACAAGG	GCCTCCCAAA	GATCCTGTCC	AGCAACTCCC	CTAGAACTGA	CGTCTCCAGT
6487	6557	6627	6697	6767	6837	6907
GATTCTCCTG	TATTTTAGT	GCCCGCCTTG	CTTAAAGCGA	CTCCCTGCTC	AAGGTTCCTT	CTGAGTCCTC
6477	6547	6617	6687	6757	6827	6897
GGGTTCAGGC	CTAATTTTTG	GAAGTGATCT	AAATTCCCTT	CCACACTGTG	GATGAACGTT	ACCCCTCTGC

FIG. 8B-17

		29/4	7		
7027 Agtcgggagg	7097 CAAAGGGACC	CAG Gln		7282 GTGATCCTCA	7352 ACCCCTCTCT
7017 CTGATGGAGG	7087 GAGAGTCCTG	7151 CAC ACG CCC His Thr Pro	5 TGC CAG GTACACCCAA r Cys Gln	CITTGGGCCC	7342 Actgggaggg
7007 TCCGTGAGGG	7077 CACACGACAG	7136 GTG GAG CAG Val Glu Gln	7196 GAT GCC CAC ACC ACC Asp Ala His Thr Thr	AGCCCCCACC	7332 CGGGCCAGGG
6997 CCAGAGGTGT	7067 GGCCCAGGAC	CAA TTT Gln Phe		7252 TGGCTCCCAG	7322 CCCAGGTGCA
6987 TCAACTGCAG	7057 Gatgtggaga	TCAG TGC AAG Cys Lys	7181 CCC AGG GGC TGG Pro Arg Gly Trp	7242 GGACTTCCCT	7312 CCAAGGTGGT
6977 GTTAAGGGTT	7047 Grgauccaga	7117 rgrgrcrcc	GTG	7232 GTTGGTCCTA	7302 rcccrgggr
6967 GCTCCAGITT	7037 GAGCCCTAGA	7107 TCCACLGCTG	7166 CTG CTG ACC CTG Leu Leu Thr Leu	7222 CCCCTCCCAA	7292 GAGGCCTCAC

F1G. 8B-18

7422	7492
Gaggagtgcg	GGGTACAAAG
7412	7482
GGGATGGCCT	GGTGGGGTGG
7402	7472
Tgggaaggga	AGTGTGTGCT
7382 7392 CATGG AAAAGGGGGA	7462 7472 TICCCIGGCC AGIGIGGT
7382	7452
GAGAGCATGG	TGGGGCTGTG
7372	7442
AAAAATCAT	CATTATAGGA
7362	7432
GTTTCAGTGT AAAAAATCAT	GCTGGATGTC

7562	AGGGAGTGGC
7552	crerecere
7542	AACCCTAAGG (
7532	TCAGGCTCTA
7522	TCTCACCTCC
7512	GGAGTGAACA
7502	rgggrgrrcr

7622 763;	GIGAGIGCIG IICITICCC
7612	GGGAGGTGGA GTGAG
7602	CCCACTAGGC G
7592	ACTGGTAGCA
7582	ACAGAGTCAC
7572	GAGGGGTCT

	ACAG
7692	rgrcccrgrg
7682	GCCCTGGTGC
7672	CCAGGCCTCA
7662	CTGAGGGGGC
7652	GTGTGGGGAG
7642	GAAGAGCTGG

	SCC	Pro
	AGC	Ser
	AC	~ -
741	ATC	I 1 e
	TGT ATC C	СУЗ
	CAG	Gln
	TCC AGC CCT CTC CAG	ren
	CCT	Pro
1176	AGC	Ser
	TCC	Ser
	ATG	MET
	ACC	Thr
	999	Gly
7711	TGT	Cys
	GTG	Väl
	999	Gly
	CTC	Leu
	ညည	Ala

7	1756		1769	1779		7799	7809	7819	
GAC	CTT	TGA	TGAGAACTCA	GCTGTCCAGG	TGAGTCCAGG	CCCCCAGITG	CGGGGAGGTA	AGGGGGCAGG	
	1								

		31,	47		
7889	GAAAACACCC	8029	8099	8169	8239
Crgccggcrg		CTTCCCCCCC	GCCCTCAGGG	ACCCGAAGCT	CTCTCCCTGA
7879	7949	8019	8089	8159	8229
GCGGCCACTC	TGGCCATCAG	CAACCCCCAG	GGACTCTCTG	ACACTTTGCT	GAGACACATT
7869	7939	8009	8079	8149	8219
GCAGGAAGAG	GGCTTCTGGC	ACTGAGTGCC	CTTGCCCCAG	AGGGAAAATC	CCACCCTCCT
7859	7929	7999	8069	8139	8209
TGCTCCCCAA	GGCTCCTGAG	AACCCCAGTC	CCTCTCAGAG	CCTGGGGGCTC	TCATCTGACT
7849	7919	7989	8059	8129	8199
GAGGCCCTTC	CACAGCTGGA	CCCCGCCCAG	CCCAGGCCTC	GCCAAGCTTT	AAGGCCGTGA
7839	7909	7979	8049	8119	8189
CAGGGCATGG	CCTCTCACCG	CCGAGCACTG	CCTGCCCTGT	TCTGACCAAG	AGATGCCAGG
7829	7899	7969	8039	8109	8179
TCCTGACCAT	CTCCATCCTC	TTTCCGGACC	AACCCCCGG	TTCAATGTAT	GTATCCCTC

8259 8269 8279 CTAAGTCAGC GGAGCACCTT AGGATGGAGG 8329 8339 8349
8469 TCATTTTAAA AAATGTAAGG
8539 CAGGCAGATC ACCTGAGGTC
8619 AAATATTTT TAAAAATTAG
8689 CAGGAGAATC ACTTGAACCT

		3 3	/47		
8799	8869	8939	9009	9079	9149
GTATTTCTTT	CACTTGAGGT	AAAAAAAAAA	GAGGAGAATT	GGGTGACAGA	TCCTAGGGTA
8789	8859	8929	89999	9069	9139
AAAAAAAA AAAAAAAAG	GCGAGTGGAT	AAAAAAAAA	GGAGGCTGAG	ACTCCAGCCT	CCAGGCCACA
8779	8849	8919	8989	9059	9129
AAAAAAAAA	GGAGACCGAG	GTATCTACTA	CAGCTACTTG	GCGCCTCTGC	Grgccrgrgg
8769	8839	8909	8979	9049	9119
GTCTCAGGAA	CAGCACTTTG	ATGAAACCCC	CCTGTAATCC	AGCCAAGATT	AAAGTAGTGG
8759	8829	8899	8969	9039	9109
GCACAACTCT	CCTGTAATCC	TACCAACATG	GTGGCACACA	Gattgcagcg	AAAAAAAAA
8749	8819	8889	8959	9029	9099
AGGCAACAGA	GTGGCTCACA	AGACCAGCCT	GCCAGATGTG	GGGAGGCGGA	GTCTCAAAAA AAAAAAAAA
8739	8809	8879	8949	9019	9089
ACTCTAGCCT	6CTGGGCGCA	CAGGAGIICA	AAAAAAATTA	GCTTGAACCT	GTGAGACTCC
	SHRST	LIUTE	CHEET		

		3	34/47			
9219	9289	9359	9429	9499	9569	9639
Aggcggggaa	GGTCCTCCCC	GGGATCTGGG	TTCCCTGCTG	CCTGGCTGTG	GGAAAAGCCA	AGCTGCCAGG
9209	9279	9349	9419	9489	9559	9629
CTTCCATCTG	GGGGAGGGGA	ATGACAGCTG	GCTCCCGGCC	TCTGCTATCA	CAGCTGCAAA	GGCCCTCGCC
9199	9269	9339	9409	9479	9549	9619
AAGTCCACTT	GGGAGGCAGT	TGCCCCAGTG	AGCTCCTAGG	TCAAACCACC	TCATCCTCCT	ccrgcrcccr
9189	9259	9329	9399	9469	9539	9609
GCTCACAGCC	AAGCCCCTGT	AATGTGTCCT	GCCTTTCCCC	GGCCTGGGCT	rcrcrggccc	AGGCTCTTCC
9179	9249	9319	9389	9459	9529	9599
CCCTCCTGGA	CCTGCATCAC	GGACCAGTȚT	CCGGGCAGTC	rggcgrgggA	ACACAGTCCC	CATGGTGACC
9169	9239	9309	9379	9449	9519	9589
crgagcccrg	TTCCTGAAAC	TGACCCACAG	CACCCAGGAC	ACCAGTGGGT	CAGGACATAC	GCTCTGGGAC
9159	9229	9299	9369	9439	9509	9579
GGGGCTATGG	GCCAGCCCTG	CACTCAGACC	GGTGGGGAGT	AAACAGCAAG	GGTCCCCAGG	AGTGAGACGG

		3 5	/ 47		
9709	9779	9849	9919	9989	10059
CCACTGGTGG	CAGAGCCCAC	CACACCTACC	AAGCTGAGCC	AATTCAGAAG	CTTTTTCAAA
9699	9769	9839	9909	9979	10049
GGAGTCACTT	AGTCTGACAC	CTGCAGCCTC	CAGGGGGTTG	TGCAAȚTCAA	TTAAGTTAAG
9689	9759	9829	9899	9969	10039
CCCTTCCTCG	GCTCAACCAC	TGGAGGAGCT	CTTTACAGGA	TACAGCTACT	TCAGAAATTG
9679	9749	9819	9889	9959	10029
CTCCTCACCG	GTCTGTCTCA	GGGCAGCATC	CCAGCCACTG	GATTGGATTT	AAGATAGACA
CCACACCGCC	9739	9809	9879	9949	10019
	TGTCGGCCTT	GGCACAGCGA	TCAGGAAAAA	TGCACTCAAA	AGAACTCTAA
9659	9729	9799	9869	9939	10009
GCCrcAGCTC	CCCAGCCCTG	rcrggrgrgA	AGGGCTGGGC	CCCACCCCCA	GGGAACATAC
9649 9659	9719	9789	9859	9929	9999
CTGAAAAGAA GCCTCAGCTC	ACCACGGGCC	TTCCATCCTC	ACGACCTCCC	CCGCCTCACA	AATAAAAAT

		36	/47		
10129	10199	10269	10339	10409	AGGATCC
GGCGACCGGG	AAGGGGTTTC	TTTCTGCTGT	ACAATGTCTG	AAGTGCTGCA	
10119	10189	10259	10329	. 10399	10469
ATGATGGGAT	AAGATATAAA	GGTGATTCTA	CCTGTGTAAT	CAGTCCTTTA	CCGAGGCAGG
10109	10179	1.0249	10319	10389	10459
ACGCTCTGGC	TTGCTTTGTT	AAAGTCCTAG	GGGACCCATT	AAAAAGACAC	CCTTAGGAGG
10099	10169	10239	10309	10379	10449
TGGACACTGC	TTGAGAGCTA	CTTTTGATTG	GTGCAAGCTA	TATGAGAAAG	AATCCCAGCA
10089	10159	10229	10299	10369	10439
TAGTCAAGGG	GCTCTGCTGC	GGACTTCCAG	AGCTGGGGTT	TATTCTCTTT	TCACACCTGC
10079	10149	10219	10289	10359	10429
TTCCCCAGCG	TCCTCGAGAT	TCTGTAAGGT	CTGAAAGCTC	AATAAAGTCC	ACGTGGTGGC
10069	10139	10209	10279	10349	10419
AAATCAGCAA	CAAGCTTTCT	TTTTTGTCTT	GATTTATCTG	CACCAGTGCT	GTATGGCCAG

37/47

SUBSTITUTE SHEET

236

144

MetGLUSerProPro

25	ACATATAAGACCCTGGTCACCTGGGAGGGGGGGGGGGGG
/ 4	
3 65-	*
-131	CACCCAGGTTTGCTCTTGCTGGGGCCAAGAGGACTCATGTGCCAGGGCCAAGGGCTCTGGGGGGCTCTCACAGGGGGCTTATCTGGGCTTTCG
-223	AGCAGGGCAGGTGCAGCAAGGAAGGCAGGCACGCCAGGAAGACACCCCATGGGTAGAAGTGCAGATGGCCCGAGGGCACAGTTTGCTCAAC
-315	TGTATCTAGAAATTCTGCTGGGAAATATGATGGTCAGACCCTTGGCCACCTGAAAGTTCAGGGTGGTAGAAGAAAAAGGAAAGCCACAGGG
-407	AAAACTGATGTCAAAGCACCTCCTGCCTTGGGCAGTCCTCTCAGAGTCTACAGGTGCTGCCTCCAGAACCCTCTTCCTGGAGCGCATCCCT
65ħ-	GTACCAGATATGTGGGAGGAGGCAAGGTAAGGGAAAGAGTACTTGAAGTTGGAACTGGTCCTTGCAGGGAAATGCACATTTATGAAACCCC

CCTGTTTCCTTATCCAGATCCATTCACTCAACTAACCTAGGACTGTGATAAGTCAGGATGGGGACACCAAGACCACTAAGCCAGGGACCCTT F16.10A

PCT/US87/02536 WO 88/03170 $^{\circ}996$ 9 147 328 420 512 604 969 **98**/ 9/8 GGGGAGCTGTTTGTGGCCAAGAGCCACTATAGGGGTCCGTAGAACTGGAGTGCGCGTAGACAGCCCTGAGTCAGAAGCCATGAGAACTTCA CCTCCAAGAAGCCTTCTCTGATCTCCTCAGCCCTTCCCTGTCCATCGCATCGCCTGTCCAGCCTAGGAGCCGTGGGAGGGGGGGTGTTCAGC ACAGGTGAAGCAGGCTCTTTGGGTCCCTCAAAACTAGACCCTGCTTCTAAGCTTCTATGTATCTATGGGTTTGTTAGAATCCAGGCCACCT ASPTYRSERALAALAPROARG GGCCGATTTGGCATTCCCTGCTGCCCAGTGCACCTGAAACGCCTTCTTATCGTGGTGGTGGTGGTGGTCGTCATCGTCGTGGTGATTGTG GLYARGPHEGLY]LEPROCYSCYSPROVALHISLEULYSARGLEULEU]LEVALVALVALVALVALVALLEU]LEVALVALVALILEVAL GGAGCCCTGCTCATGGGTCTCCACATGAGCCAGAAACACACGGAGATGGTGAGAGGTGTGGGGATGCACAGCAGTGGGCAGTGGCACAGGACATGCC F16.10B GLYALALEULEUMETGLYLEUHISMETSERGLNLYSHISTHRGLUMET

1056	1146	1236	1326	
AGACAGAGGGGCTAGGTGGGGTGGGCGATAGGAAACTGTCCAAGGGGGGGTGGAGGGGGGGG	LACGAACCAGGCAGCAACCCAGCTCAGGCTTTTCCACAAGGCCCCTGCCCGCGACAGGACAGCCAGC	CAGCCTCCCTGAACTCTTGGGAAAGAGGGGAAGCGCATTTGAGTACAGAGGCCTGAGTATGGGGATGGGTACCACTGGCTGAGTAGGAAAG	GGGAAGACCAGGTGCCTCCATGCCTTTCCCCAGGTTCTGGAGATGAGCATTGGGGCGCCGGGAGCCCCAGCAACGCCTGGCCCTGAGTGAG	

CACCTGGTTACCACTGCCACCTTCTCCATCGGCTCCACTGGCCTCGTGGTGTATGACTACCAGCGGGGGTGTGTGCCAGACCTCCTGACC HISLEUVALTHRTHRALATHRPHESERILEGLYSERTHRGLYLEUVALVALTYRASPTYRGLNGLN

1506 ~

1596

1687

40

LEULEUILEALATYRLYSPROALAPROGLYTHRCYSCYSTYRILEMETLYSILEALAPROGLUSERILEPRO

PCT	/US87	102536
PCI,	/ U.So / .	/02330

2318

AGTCTTGAGGCTCTCACTAGAAAGTCCACAACTTCCAGGTGTGTGT	1777
A AGGAGTGTCCGAATGGTGGCTATTTGTCACCTGTAAAGCACTGTTCCTCATTGGCTGCCGAGCTGCCCCCCTCTCCTATTCCCCTGCAC	1867
T GACTCCTTTCCTTCCCACCCCACTGCCAAGCTGCTGGGCTCAGCTGAGTCCACTCACT	1957
CTTTACTGATGAGAAAACTGAGGCTCAGAGAGATTGCCTGATATACCTGAAGTCCCACAATAAGGGCTGCACATGGGATAGAAACTCACT	4 2h0Z
G TCCTACATTCCAGATGGAATGCTCTCTGCAGGCCCAAGCCCGCAGTGCCTACGTCTAAGCTGGGCCAGGCCAGGGGGGGG	1 / 4 7
GCACCCTCCGGAGGGGACCCGGCCTTCCTGGGCATGGCCGTGAACACCCTGTGTGGCGAGGTGCCGCTCTACTACATCTAGGACGCCTCC AlaproSerglyGlyAspproAlapheLeuGlyMetAlaValAsnThrleuCysGlyGluValProLeuTyrTyr1leEnd	2228

F | G.10D

2820	CACTGTCCACCTCGGGGGGGGGGGGGGGGGGGGGGGGGG
2768	T 6CAGTCCTCGCTGGCGGGCCGGCCAAGAAGGGGCCTTGGGAGGAGCAAGTGGGGTTTCCATTCGCCCTCTGTCCCAGGGGGCTTGG
42/48292	G GGCACCCAGGGGCCCCGGGAACTCCTGCCACAACAGAATAAAGCAGCCTGATTTGAAAAAGGAAAGGGTCTGCTTCTGTTTCCTGCAGGGC
2588	G CAGACGGGCAAGAAGCTGCTTCTGCCCACCGCAGGGACAAACCCTGGAGAAATGGGGAGCTTGGGGAGATGGGAGTGGGAGTGGGCAGAGGT
2498	C TCCATCCTCAACATTCCTTTGCTTCATAGGGTCAGTGGAAGCCCCCAACGGAAAGGAAACGCCCCGGGCAAAGGGTCTTTTGCAGCTTTTG
2408	CT6* TGGGGCGTCCACTGAAGCGGGGTCATCCAGGCAACTCGGGGGGGG

-16.10E

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US87/02**536**

		International Application No			
I. CLASSIFICAT	ION OF SUBJECT MATTER (if several classific	cation symbols apply, indicate all) 3			
According to Inter U.S.CL. INT. CL.	national Patent Classification (IPC) or to both Natio 435/320, 240.2, 70, 68; -4- C12P 21/00,21/02;C	nabclassification and IPS/324 12N 5/00; C07K 7/10;	C07H 15/12		
II. FIELDS SEAF	CHED				
	Minimum Document	ation Searched 4			
Classification Syste	m C	lassification Symbols			
			}		
US	435/320,240.2, 70,68;				
	Documentation Searched other the to the Extent that such Documents	are Included in the Fields Searched 5	:		
III. DOCUMENT	S CONSIDERED TO BE RELEVANT !	and the relevant passages li	Relevant to Claim No. 13		
Category • C	itation of Document, 16 with indication, where appr	opriate, or the relevant passages			
Α,	The Journal of Biolo Issued 5 December 19 15273, (Whitsett)	gical Chemistry, 85, Vol. 260, page:	: 1-6,42 & 44 s.		
Α,	Biochemistry, Issued 184-190, (Hawgood)	1985, Vol. 24, page	s 1-6, 42 & 4		
Α,	The Journal of Biolo Issued 5.July 1986, 261, (Floros)	The Journal of Biological Chemistry, Issued 5. July 1986, pages 9029, Vol. 261, (Floros)			
Α,	The Journal of Biolo Vol. 261, Issued 15 pages 828-831 (Floro	January 1986,	1-6,42 & 44		
, x	Chemical Abstract, V 1986, abstract no. 9 "Immunologic identif pulmonary surfactant of molecular weight"	14932s, (Whitsett) 1-6,42 &4 Sication of a			
"A" document considere "E" earlier do filing date "L" document which is citation o "O" document other met later than	gories of cited documents: 15 defining the general state of the art which is not dito be of particular relevance cument but published on or after the international which may throw doubts on priority claim(s) or cited to establish the publication date of another rother special reason (as specified) referring to an oral disclosure, use, exhibition or ans. I published prior to the international filing date but the priority date claimed.	"T" later document published after or priority date and not in concited to understand the principle invention. "X" document of particular relevation cannot be considered novel (involve an inventive step. "Y" document of particular relevations of the considered to involve document is combined with or ments, such combination being in the art.	nce: the claimed invention of the claimed invention or cannot be considered to the claimed invention in an inventive step when the or more other such docu-		
Date of the Actu	ATION Later than the International Search *	25 FEB 1988	Search Report 3		
		25 FEB 1900			
	ANUARY 1988 arching Authority L	Signature of Authorized Officer 10			
ISA/US		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	73322		

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET								
!								
,P ,A	US, A,	4,659,805 1987	(Schil	ling)	21 Apr.	1-6,	42 &	. <u>4</u> 4
Α,	US, A,	4,016,258	(Said)	5 Apı	r. 1977	1-6,	42 5	. <u>.</u> 4.4
				_				•
•			_	-				
V.; OB:	SERVATIONS WHERE	CERTAIN CLAIMS WE	RE FOUND U	NSEARCH	HABLE 10			
<u> </u>		not been established in res				or the following		
		se they relate to subject m					-	
_								
		-						
					•			
2. Clair	numpers becau	se they relate to parts of th	e international	apolication	that do not comply	with the area	cribed re	auic a -
		o meaningful international				with the pies	CIIDEO IE	40116-
VI X 08	SERVATIONS WHERE	UNITY OF INVENTIO	N IS LACKIN	G 11				
This Intern	ational Searching Author	ity found multiple invention	ns in this interna	ational app	lication as follows:			
I. Claims 1-6, 42 and 44 drawn to DNA sequences Vectors, Cell culturing and protein product.								
II. Claims 7-30, 39-41, 45, 50, 54 drawn to peptides and the use in Assav. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims								
of the international application. 2 As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:								
J. X. No r	equired additional search evention first mentioned is	fees were timely paid by thin the claims; it is covered t	e applicant, Coi by claim numbe	nsequently, rs:	, this international s	earch report :	s restrict	ed to
4 - As a	Claims 1-6	be searched without effort	justifying an ac	cutional fe	e, the international	Searching Au	ithority a	a not
Remark on			•					
=		re accompanied by applical ayment of additional search						
· — ·••		u,em ur saamonar searci						

PCT/US87/02536

ATTACHMENT TO FORM PCT/ISA/210 (SUPPLEMENTAL SHEET (2) CONT"D

- III. Claims 31-36 drawn to peptide Lipid compositions and there use.
- IV. Claims 37, 51-53 drawn to antibodies and methods for Assay using the antibodies.
- V. Claims 38, 46-49 drawn to antibodies and methods for Assay using the antibodies.
- VI. Claims 43, 57 and 53 drawn to protein and methods of use.
- VII. Claims 55 and 56 drawn to methods of delivering peptides.