Applications of Duality

Total Unimodularity
Matchings, Flows, and Shortest paths

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M' with $M' \supseteq M$.

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M' with $M' \supseteq M$.

 ${\cal M}$ is \max imum if it has the largest number of edges among all matchings.

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M' with $M' \supseteq M$.

M is maximum if it has the largest number of edges among all matchings.

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M' with $M' \supseteq M$.

 ${\cal M}$ is \max imum if it has the largest number of edges among all matchings.

Remark: Not every matching can be extended to a maximum one.

A company is assigning workers to jobs. In the bipartite graph an edge connects a worker to a job they are willing to take.

A company is assigning workers to jobs. In the bipartite graph an edge connects a worker to a job they are willing to take.

Can every person be matched to a job?

A company is assigning workers to jobs. In the bipartite graph an edge connects a worker to a job they are willing to take.

Can every person be matched to a job? No! Why not?

A company is assigning workers to jobs. In the bipartite graph an edge connects a worker to a job they are willing to take.

Can every person be matched to a job? No! Why not?

Hall's Theorem: Let G be a bipartite graph with bipartition $V=X\cup Y$. Then G has a matching covering $X\Leftrightarrow |\mathsf{Neighborhood}(X')|\geq |X'|$ for all $X'\subseteq X$

due to Hall, in 1935.

Hall's Theorem: Let G be a bipartite graph with bipartition $V=X\cup Y$. Then G has a matching covering $X\Leftrightarrow |{\sf Neighborhood}(X')|\geq |X'|$ for all $X'\subseteq X$

due to Hall, in 1935.

Proof: \Rightarrow is clear.

← will follow from König's Theorem.

Vertex Cover and König's Theorem

König's Theorem: In a bipartite graph the size of a minimum vertex cover equals the size of a maximum matching.

due to König, and independently, Egarvary, in 1931.

Vertex Cover and König's Theorem

König's Theorem: In a bipartite graph the size of a minimum vertex cover equals the size of a maximum matching.

due to König, and independently, Egarvary, in 1931.

We will proof this using duality!

Let G = (V, E) be a bipartite graph with bipartition $V = X \cup Y$.

Let G = (V, E) be a bipartite graph with bipartition $V = X \cup Y$.

If $|\text{Neighborhood}(X')| \ge |X'|$ for all $X' \subseteq X$, we must show G has a matching covering X.

Let G = (V, E) be a bipartite graph with bipartition $V = X \cup Y$.

If $|\mathsf{Neighborhood}(X')| \geq |X'|$ for all $X' \subseteq X$, we must show G has a matching covering X. We'll show any vertex cover has size at least |X|, which by König's Theorem gives a matching of size |X|, which obviously covers X.

Let G = (V, E) be a bipartite graph with bipartition $V = X \cup Y$.

If $|\mathsf{Neighborhood}(X')| \geq |X'|$ for all $X' \subseteq X$, we must show G has a matching covering X. We'll show any vertex cover has size at least |X|, which by König's Theorem gives a matching of size |X|, which obviously covers X.

For a contradiction, suppose there is a vertex cover C with

- k vertices from X
- < |X| k vertices from Y

Let G = (V, E) be a bipartite graph with bipartition $V = X \cup Y$.

If $|\mathsf{Neighborhood}(X')| \geq |X'|$ for all $X' \subseteq X$, we must show G has a matching covering X. We'll show any vertex cover has size at least |X|, which by König's Theorem gives a matching of size |X|, which obviously covers X.

For a contradiction, suppose there is a vertex cover C with

- k vertices from X
- <|X|-k vertices from Y

Then $X \backslash C$ has size |X| - k and satisfies $|\text{Neighborhood}(X \backslash C)| \geq |X| - k$ by assumption.

Let G = (V, E) be a bipartite graph with bipartition $V = X \cup Y$.

If $|\mathsf{Neighborhood}(X')| \geq |X'|$ for all $X' \subseteq X$, we must show G has a matching covering X. We'll show any vertex cover has size at least |X|, which by König's Theorem gives a matching of size |X|, which obviously covers X.

For a contradiction, suppose there is a vertex cover ${\cal C}$ with

- k vertices from X
- <|X|-k vertices from Y

Then $X \setminus C$ has size |X| - k and satisfies $|\text{Neighborhood}(X \setminus C)| \geq |X| - k$ by assumption.

This gives a vertex in Neighborhood $(X \backslash C)$ that is not in $C \cap Y$ – showing C is not a cover.

A matrix is totally unimodular if every square submatrix has determinant 0, 1, or -1.

Example

$$\begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 1 & -1 \end{bmatrix}$$

What does this matrix represent?

A matrix is totally unimodular if every square submatrix has determinant 0, 1, or -1.

Example

	e_1	e_2	e_3	e_4	e_5	<i>e</i> ₆
v_1	$\lceil -1 \rceil$	-1	0	0	0	$1 \rceil$
v_2	1	0	-1	-1	0	0
v_3	0	1	1	0	-1	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$
v_4	0	0	0	1	1	-1

What does this matrix represent?

A matrix is totally unimodular if every square submatrix has determinant 0, 1, or -1.

Example

What does this matrix represent?

In particular, each entry must be 0, -1, or 1.

A matrix is totally unimodular if every square submatrix has determinant 0, 1, or -1.

Example

What does this matrix represent?

In particular, each entry must be 0, -1, or 1. Why?

A matrix is totally unimodular if every square submatrix has determinant 0, 1, or -1.

Example

What does this matrix represent?

In particular, each entry must be 0, -1, or 1.

Non-Example A matrix of this form is not totally unimodular $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$

A matrix is totally unimodular if every square submatrix has determinant 0, 1, or -1.

Example

In particular, each entry must be 0, -1, or 1.

Non-Example A matrix of this form is not totally unimodular $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$

Example If matrix A is totally unimodular, then so is $\begin{bmatrix} A & 0 \\ 0 \\ 1 \end{bmatrix}$

Theorem: Consider the linear program $\max c^T x$ subject to $Ax \leq b, x \geq 0$. If A is totally unimodular, if $b \in \mathbb{Z}^m$, and if there is an optimal solution, then there is an optimal integral solution $x^* \in \mathbb{Z}^n$.

Theorem: Consider the linear program $\max c^T x$ subject to $Ax \leq b, x \geq 0$. If A is totally unimodular, if $b \in \mathbb{Z}^m$, and if there is an optimal solution, then there is an optimal integral solution $x^* \in \mathbb{Z}^n$.

Proof: Bring in equational form: $\bar{A}\bar{x}=b$ with $\bar{A}=(A|I)$ and $\bar{x}\in\mathbb{R}^{n+m}$.

Theorem: Consider the linear program $\max c^T x$ subject to $Ax \leq b, x \geq 0$. If A is totally unimodular, if $b \in \mathbb{Z}^m$, and if there is an optimal solution, then there is an optimal integral solution $x^* \in \mathbb{Z}^n$.

Proof: Bring in equational form: $\bar{A}\bar{x}=b$ with $\bar{A}=(A|I)$ and $\bar{x}\in\mathbb{R}^{n+m}$.

Solve via simplex method to find an optimal bfs \bar{x}^\star corresponding to basis $B\subseteq\{1,2,\ldots,n+m\}$ with nonzero entries solving $\bar{x}_B^\star=\bar{A}_B^{-1}b$.

Theorem: Consider the linear program $\max c^T x$ subject to $Ax \leq b, x \geq 0$. If A is totally unimodular, if $b \in \mathbb{Z}^m$, and if there is an optimal solution, then there is an optimal integral solution $x^* \in \mathbb{Z}^n$.

Proof: Bring in equational form: $\bar{A}\bar{x}=b$ with $\bar{A}=(A|I)$ and $\bar{x}\in\mathbb{R}^{n+m}$.

Solve via simplex method to find an optimal bfs \bar{x}^\star corresponding to basis $B\subseteq\{1,2,\ldots,n+m\}$ with nonzero entries solving $\bar{x}_B^\star=\bar{A}_B^{-1}b$.

 \bar{A} totally unimodular \bar{A} nonsingular What do we know about $\det(\bar{A})$?

Theorem: Consider the linear program $\max c^T x$ subject to $Ax \leq b, x \geq 0$. If A is totally unimodular, if $b \in \mathbb{Z}^m$, and if there is an optimal solution, then there is an optimal integral solution $x^* \in \mathbb{Z}^n$.

Proof: Bring in equational form: $\bar{A}\bar{x}=b$ with $\bar{A}=(A|I)$ and $\bar{x}\in\mathbb{R}^{n+m}$.

Solve via simplex method to find an optimal bfs \bar{x}^\star corresponding to basis $B\subseteq\{1,2,\ldots,n+m\}$ with nonzero entries solving $\bar{x}_B^\star=\bar{A}_B^{-1}b$.

 $ar{A}$ totally unimodular \Rightarrow $\det(ar{A}_B) \in \{-1,0,1\}$.

 \bar{A} nonsingular $\Rightarrow \det(\bar{A}_B) \in \{-1, 1\}$.

Theorem: Consider the linear program $\max c^T x$ subject to $Ax \leq b, x \geq 0$. If A is totally unimodular, if $b \in \mathbb{Z}^m$, and if there is an optimal solution, then there is an optimal integral solution $x^* \in \mathbb{Z}^n$.

Proof: Bring in equational form: $\bar{A}\bar{x}=b$ with $\bar{A}=(A|I)$ and $\bar{x}\in\mathbb{R}^{n+m}$.

Solve via simplex method to find an optimal bfs \bar{x}^\star corresponding to basis $B\subseteq\{1,2,\ldots,n+m\}$ with nonzero entries solving $\bar{x}_B^\star=\bar{A}_B^{-1}b$.

 $ar{A}$ totally unimodular $\Rightarrow \det(ar{A}_B) \in \{-1,0,1\}$. $ar{A}$ nonsingular $\Rightarrow \det(ar{A}_B) \in \{-1,1\}$.

By Cramer's rule the coefficients of \bar{x}^* are rational numbers with denominator $\det(A_B)$, i.e., integer numbers! That is $\bar{x}^* \in \mathbb{Z}^{n+m}$ and hence $x^* \in \mathbb{Z}^n$.

Total Unimodularity and König's Theorem

Lemma: The incidence matrix A of a bipartite graph $G=(X\cup Y,E)$ is totally unimodular.

Example e_4 $\overline{e_5}$ v_3

Total Unimodularity and König's Theorem

Lemma: The incidence matrix A of a bipartite graph $G=(X\cup Y,E)$ is totally unimodular.

Proof: We must show that ever $\ell \times \ell$ submatrix X of A has determinant 0, 1, or -1. We show this by induction(ℓ).

Example $\overline{e_5}$

Total Unimodularity and König's Theorem

Lemma: The incidence matrix A of a bipartite graph $G=(X\cup Y,E)$ is totally unimodular.

Proof: We must show that ever $\ell \times \ell$ submatrix X of A has determinant 0, 1, or -1. We show this by induction(ℓ).

Base case $\ell=1$: Clear by definition of incidence matrix.

Total Unimodularity and König's Theorem

Lemma: The incidence matrix A of a bipartite graph $G=(X\cup Y,E)$ is totally unimodular.

Proof: We must show that ever $\ell \times \ell$ submatrix X of A has determinant 0, 1, or -1. We show this by induction(ℓ).

Base case $\ell=1$: Clear by definition of incidence matrix.

Inductive step: Assume true for $\ell-1$.

Let Q be an $\ell \times \ell$ submatrix.

If any column of Q is all zero, determinant is zero.

If any column of Q has one 1, true by induction.

Else all columns of Q have two 1.

Example

Total Unimodularity and König's Theorem

Lemma: The incidence matrix A of a bipartite graph $G=(X\cup Y,E)$ is totally unimodular.

Proof: We must show that ever $\ell \times \ell$ submatrix X of A has determinant 0, 1, or -1. We show this by induction(ℓ).

Base case $\ell=1$: Clear by definition of incidence matrix.

Inductive step: Assume true for $\ell-1$.

Let Q be an $\ell \times \ell$ submatrix.

If any column of Q is all zero, determinant is zero.

If any column of Q has one 1, true by induction.

Else all columns of Q have two 1.

The sum of all rows for vertices in X gives $(1, 1, \ldots, 1)$.

The sum of all rows for vertices in Y gives $(1, 1, \ldots, 1)$.

Hence the rows of Q are linearly dep. and so $\det(Q)=0$.

Example

Theorem: In a bipartite graph the size of a minimum vertex cover equals the size of a maximum matching.

Theorem: In a bipartite graph the size of a minimum vertex cover equals the size of a maximum matching.

Theorem: In a bipartite graph the size of a minimum vertex cover equals the size of a maximum matching.

minimum vertex cover

maximum matching

Theorem: In a bipartite graph the size of a minimum vertex cover equals the size of a maximum matching.

Proof:

Let A be the incidence matrix of the bipartite graph.

What are their LP's?

minimum vertex cover

maximum matching

Theorem: In a bipartite graph the size of a minimum vertex cover equals the size of a maximum matching.

Proof:

Let A be the incidence matrix of the bipartite graph.

Cover

min $\sum y_i$ subject to $A^T y \ge 1$

$$y \ge 0$$

Matching

$$\begin{array}{ll} \max & \sum x_j \\ \text{subject to} & Ax \leq 1 \\ y \geq 0 \end{array}$$

optionally:
$$y_i, x_j \in \{0, 1\}$$

minimum vertex cover

maximum matching

Theorem: In a bipartite graph the size of a minimum vertex cover equals the size of a maximum matching.

Proof:

Let A be the incidence matrix of the bipartite graph.

Cover

min subject to $A^T y \ge 1$

$$\sum_{A} y_i \\ A^T y \ge 1$$

$$y \ge 0$$

Matching

$$\begin{array}{ll} \max & \sum x_j \\ \text{subject to} & Ax \leq 1 \\ y \geq 0 \end{array}$$

optionally:
$$y_i, x_j \in \{0, 1\}$$

We can drop the integrality constraints since Ais totally unimodular.

minimum vertex cover

maximum matching

Theorem: In a bipartite graph the size of a minimum vertex cover equals the size of a maximum matching.

Proof:

Let A be the incidence matrix of the bipartite graph.

Cover

min

min
$$\sum y_i$$
 subject to $A^T y \ge 1$

$$y \ge 0$$

Matching

$$\begin{array}{ll} \max & \sum x_j \\ \text{subject to} & Ax \leq 1 \\ y \geq 0 \end{array}$$

optionally:
$$y_i, x_j \in \{0, 1\}$$

We can drop the integrality constraints since Ais totally unimodular.

The duality of these linear programs then proves the theorem.

minimum vertex cover

maximum matching

Duality shows Max Flow = Min Cut

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction \rightarrow need to determine orientation and amount per edge (with direction)

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction \rightarrow need to determine orientation and amount per edge (with direction)

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction

→ need to determine orientation and amount per edge (with direction)

- \rightarrow introduce variable x_{uv} for each edge (u,v) and require
 - 1. flow \leq capacities on edges
 - 2. inflow = outflow on all nodes (except origin, destination)

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction

→ need to determine orientation and amount per edge (with direction)

- \rightarrow introduce variable x_{uv} for each edge (u,v) and require
 - 1. flow \leq capacities on edges
 - 2. inflow = outflow on all nodes (except origin, destination)

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction

→ need to determine orientation and amount per edge (with direction)

- ightarrow introduce variable x_{uv} for each edge (u,v) and require
 - 1. flow \leq capacities on edges
 - 2. inflow = outflow on all nodes (except origin, destination)

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction

 \rightarrow need to determine orientation and amount per edge (with direction)

- ightarrow introduce variable x_{uv} for each edge (u,v) and require
 - 1. flow \leq capacities on edges
 - 2. inflow = outflow on all nodes (except origin, destination)

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction

→ need to determine orientation and amount per edge (with direction)

- ightarrow introduce variable x_{uv} for each edge (u,v) and require
 - 1. flow \leq capacities on edges how?
 - 2. inflow = outflow on all nodes (except origin, destination)

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction

→ need to determine orientation and amount per edge (with direction)

- ightarrow introduce variable x_{uv} for each edge (u,v) and require
 - 1. flow \leq capacities on edges how?
 - 2. inflow = outflow on all nodes (except origin, destination)

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction

 \rightarrow need to determine orientation and amount per edge (with direction)

- \rightarrow introduce variable x_{uv} for each edge (u,v) and require
- 1. flow \leq capacities on edges how?
- 2. inflow = outflow on all nodes (except origin, destination)

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction

→ need to determine orientation and amount per edge (with direction)

- ightarrow introduce variable x_{uv} for each edge (u,v) and require
 - 1. flow \leq capacities on edges how?
 - 2. inflow = outflow on all nodes (except origin, destination)

 $x_{be} + x_{ce} = x_{en}$

Linear Program Formulation

maximize
$$x_{oa} + x_{ob} + x_{oc}$$
 subject to $-3 \le x_{oa} \le 3$, $-1 \le x_{ob} \le 1$, $-1 \le x_{oc} \le 1$ $-1 \le x_{ab} \le 1$, $-1 \le x_{ad} \le 1$, $-3 \le x_{be} \le 3$ $-4 \le x_{cd} \le 4$, $-4 \le x_{ce} \le 4$, $-4 \le x_{dn} \le 4$ $-1 \le x_{en} \le 1$ $x_{oa} = x_{ab} + x_{ad}$ $x_{ob} + x_{ab} = x_{be}$ $x_{oc} = x_{cd} + x_{ce}$ origin $x_{ad} + x_{cd} = x_{dn}$

 $x_{be} + x_{ce} = x_{en}$

Linear Program Formulation

maximize
$$x_{oa} + x_{ob} + x_{oc}$$
 subject to $-3 \le x_{oa} \le 3$, $-1 \le x_{ob} \le 1$, $-1 \le x_{oc} \le 1$ $-1 \le x_{ab} \le 1$, $-1 \le x_{ad} \le 1$, $-3 \le x_{be} \le 3$ $-4 \le x_{cd} \le 4$, $-4 \le x_{ce} \le 4$, $-4 \le x_{dn} \le 4$ $-1 \le x_{en} \le 1$ $x_{oa} = x_{ab} + x_{ad}$ $x_{ob} + x_{ab} = x_{be}$ $x_{oc} = x_{cd} + x_{ce}$ origin $x_{ad} + x_{cd} = x_{dn}$

Optimal solution: 4

 $x_{oc} = x_{cd} + x_{ce}$

 $x_{ad} + x_{cd} = x_{dn}$

 $x_{be} + x_{ce} = x_{en}$

Linear Program Formulation

maximize
$$x_{oa} + x_{ob} + x_{oc}$$
 subject to $-3 \le x_{oa} \le 3$, $-1 \le x_{ob} \le 1$, $-1 \le x_{oc} \le 1$ $-1 \le x_{ab} \le 1$, $-1 \le x_{ad} \le 1$, $-3 \le x_{be} \le 3$ $-4 \le x_{cd} \le 4$, $-4 \le x_{ce} \le 4$, $-4 \le x_{dn} \le 4$ $-1 \le x_{en} \le 1$ $x_{oa} = x_{ab} + x_{ad}$ $x_{ob} + x_{ab} = x_{be}$

Optimal solution: 4

(n) destination

well-known "max flow = min cut" \rightarrow now via LP-duality!

Linear Program Formulation

maximize
$$x_{oa}+x_{ob}+x_{oc}$$
 let the vertices be numbered subject to $-3 \le x_{oa} \le 3$, $-1 \le x_{ob}$ capacity and x_{ij} the following and x_{ij} the following capacity capacity and x_{ij} the following capacity and x_{ij} the follow

 $x_{be} + x_{ce} = x_{en}$

first we formulate the LP more concisely: let the vertices be numbered $1, \ldots, n$, let c_{ij} the capacity and x_{ij} the flow on directed edge (i, j), and let f be the max flow.

Optimal solution: 4

well-known "max flow = min cut" \rightarrow now via LP-duality!

Linear Program Formulation

first we formulate the LP more concisely: let the vertices be numbered $1, \ldots, n$, let c_{ij} the capacity and x_{ij} the flow on directed edge (i, j), and let f be the max flow.

Linear Program Formulation

first we formulate the LP more concisely: let the vertices be numbered $1, \ldots, n$, let c_{ij} the capacity and x_{ij} the flow on directed edge (i, j), and let f be the max flow.

actually we can relax the constraint without changing the optimum

Linear Program Formulation

first we formulate the LP more concisely: let the vertices be numbered $1, \ldots, n$, let c_{ij} the capacity and x_{ij} the flow on directed edge (i, j), and let f be the max flow.

A, x, b, c?

Let's write this in Matrix form $\max f$ subject to $Ax \leq b, x \geq 0$.

Linear Program Formulation

in Matrix form $\max f$ subject to $Ax \leq b, x \geq 0$ where

$$x = \begin{bmatrix} f \\ x_{ij} \\ \vdots \\ x_{ij} \end{bmatrix} c = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} A = \begin{bmatrix} -1 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 1 & \dots & \dots & \dots & \dots \\ 0 & 1 & 0 & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots \\ 0 & \dots & \dots \\ \vdots \\ 0 & \dots & \dots \\ 0 & \dots & \dots \\ \vdots \\ 0 & \dots & \dots \\ 0 & \dots \\ 0 & \dots & \dots \\ \vdots \\ 0 & \dots & \dots \\ 0 & \dots \\$$

Linear Program Formulation

in Matrix form $\max f$ subject to $Ax \leq b, x \geq 0$ where

$$x = \begin{bmatrix} f \\ x_{ij} \\ ... \\ ... \end{bmatrix} c = \begin{bmatrix} 1 \\ 0 \\ ... \\ ... \end{bmatrix} A = \begin{bmatrix} -1 & ... & ... & ... \\ 0 & ... & ... & ... \\ 1 & ... & ... & ... \\ 0 & 1 & 0 & ... & ... \\ ... & 0 & ... & ... \\ 0 & ... & ... & 0 \\ 0 & ... & ... & 0 & 1 \end{bmatrix} b = \begin{bmatrix} 0 \\ ... \\ 0 \\ c_{ij} \\ ... \\ ... \\ ... \\ ... \end{bmatrix}$$
 every column contains exactly one -1 and one 1

Linear Program Formulation

in Matrix form $\max f$ subject to $Ax \leq b, x \geq 0$ where

$$x = \begin{bmatrix} f \\ x_{ij} \\ \vdots \\ x_{ij} \end{bmatrix} c = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} A = \begin{bmatrix} -1 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 1 & \dots & \dots & \dots & \dots \\ 0 & 1 & 0 & \dots & \dots & \dots \\ 0 & 1 & 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots \\ 0 & \dots & \dots \\ \vdots \\ 0 & \dots & \dots \\ 0 & \dots \\ 0 & \dots \\ 0 & \dots \\ 0 & \dots & \dots \\$$

What is the dual?

Linear Program Formulation

in Matrix form $\min \sum c_{ij}y_{ij}$ subject to $A^Ty \geq c, x \geq 0$ where

every row contains exactly one -1 and one 1

$$c = \begin{bmatrix} 1 \\ 0 \\ \cdots \\ \vdots \end{bmatrix}$$

Linear Program Formulation

in constraint form

minimize
$$\sum c_{ij}y_{ij}$$
 subject to $-u_1+u_n\geq 1$
$$u_i-u_j+y_{ij}\geq 0$$

$$u_i\geq 0$$

$$y_{ij}\geq 0$$
 origin 1 0 destination

Linear Program Formulation

in constraint form

actually, we can restrict all variables to be integer, even 0-1

total unimodular!

Linear Program Formulation

in constraint form

actually, we can restrict all variables to be integer, even 0-1

total unimodular!

Flows and Cuts in a Network

Alternative LP

Let P be the set of all paths $q \leadsto s$ use variables x_p , for all $p \in P$

$$\max \sum_{p \in P} x_p$$

subject to

$$\sum_{p\ni e} x_p \le c(e) \ \forall e \in E$$
$$0 \le x_p \ \forall p \in P$$

primal

Max Flow

Flows and Cuts in a Network

Alternative LP

Let P be the set of all paths $q \leadsto s$ use variables x_p , for all $p \in P$

$$\max \sum_{p \in P} x_p$$

subject to

$$\sum_{p\ni e} x_p \le c(e) \ \forall e \in E$$
$$0 \le x_p \ \forall p \in P$$

primal

Max Flow

What is the dual?

Flows and Cuts in a Network

Alternative LP

Let P be the set of all paths $q \leadsto s$ use variables x_p , for all $p \in P$

$$\max \sum_{p \in P} x_p$$

subject to

$$\sum_{p\ni e} x_p \le c(e) \ \forall e \in E$$
$$0 \le x_p \ \forall p \in P$$

primal

Max Flow

$$\min \sum_{e \in E} c(e) y_e$$

subject to

$$\sum_{e \in p} y_e \ge 1 \quad \forall p \in P$$
$$y_e \ge 0 \quad \forall e \in E$$

dual

Min Cut

Given a directed graph G=(V,E) with edge weights w, we are looking for a shortest path from s to t.

Can we also model this as ILP? Yes! How?

Idea 1: use variable x_{uv} for whether edge (u, v) is used.

minimize
$$\sum_{(u,v)\in E} w(u,v)x_{uv}$$
 subject to $\sum_{(u,v)\in E} x_{uv} = \sum_{(v,w)\in E} x_{vw}$ for each vertex $v\in V\setminus\{s,t\}$, and $\sum_{(u,t)\in E} x_{ut} = 1.$ $x_{uv}\in\{0,1\}$ for each edge $(u,v)\in E$.

Given a directed graph G=(V,E) with edge weights w, we are looking for a shortest path from s to t.

Can we also model this as ILP? Yes! How?

Idea 1: use variable x_{uv} for whether edge (u, v) is used.

minimize
$$\sum_{(u,v)\in E} w(u,v)x_{uv}$$
 subject to $\sum_{(u,v)\in E} x_{uv} = \sum_{(v,w)\in E} x_{vw}$ for each vertex $v\in V\setminus\{s,t\}$, and $\sum_{(u,t)\in E} x_{ut} = 1.$ LP-relaxation has $\{0,1\}$ -solution, like MinWeight Perfect Matching $x_{uv}\in\{0,1\}$ for each edge $(u,v)\in E$.

Given a directed graph G=(V,E) with edge weights w, we are looking for a shortest path from s to t.

Can we also model this as ILP? Yes! How?

Idea 1: use variable x_{uv} for whether edge (u, v) is used.

minimize
$$\sum_{(u,v)\in E} w(u,v)x_{uv}$$
 subject to
$$\sum_{(u,v)\in E} x_{uv} = \sum_{(v,w)\in E} x_{vw} \text{ for each vertex } v\in V\setminus\{s,t\}\text{, and}$$

$$\sum_{(u,t)\in E} x_{ut} = 1.$$
 LP-relaxation has $\{0,1\}$ -solution, like MinWeight Perfect Matching
$$x_{uv}\in\{0,1\} \text{ for each edge } (u,v)\in E.$$

Why?

Given a directed graph G=(V,E) with edge weights w, we are looking for a shortest path from s to t.

Can we also model this as ILP? Yes! How?

Idea 1: use variable x_{uv} for whether edge (u, v) is used.

minimize
$$\sum_{(u,v)\in E} w(u,v)x_{uv}$$
 subject to $\sum_{(u,v)\in E} x_{uv} = \sum_{(v,w)\in E} x_{vw}$ for each vertex $v\in V\setminus\{s,t\}$, and $\sum_{(u,t)\in E} x_{ut} = 1.$ LP-relaxation has $\{0,1\}$ -solution, like MinWeight Perfect Matching $x_{uv}\in\{0,1\}$ for each edge $(u,v)\in E$.

Why? A is total unimodular

Given a directed graph G=(V,E) with edge weights w, we are looking for a shortest path from s to t.

Can we also model this as ILP? Yes! How?

Idea 2: use variable d_v for distance from s to v. Then we want that $d_v \leq d_u + w(u,v)$ for all edges (u,v).

Given a directed graph G=(V,E) with edge weights w, we are looking for a shortest path from s to t.

Can we also model this as ILP? Yes! How?

Idea 2: use variable d_v for distance from s to v. Then we want that $d_v \leq d_u + w(u,v)$ for all edges (u,v).

maximize d_t

subject to

$$d_v - d_u \le w(u, v) \ \forall (u, v) \in E$$

$$d_s = 0$$

Actually an LP!

Given a directed graph G=(V,E) with edge weights w, we are looking for a shortest path from s to t.

Can we also model this as ILP? Yes! How?

Idea 2: use variable d_v for distance from s to v. Then we want that $d_v \leq d_u + w(u,v)$ for all edges (u,v).

maximize d_t

subject to

$$d_v - d_u \le w(u, v) \ \forall (u, v) \in E$$

$$d_s = 0$$

Why do we maximize?

Actually an LP!

Given a directed graph G=(V,E) with edge weights w, we are looking for a shortest path from s to t.

Can we also model this as ILP? Yes! How?

Idea 2: use variable d_v for distance from s to v. Then we want that $d_v \leq d_u + w(u,v)$ for all edges (u,v).

maximize d_t

subject to

$$d_v - d_u \le w(u, v) \ \forall (u, v) \in E$$

$$d_s = 0$$

Why do we maximize?

otherwise we could set all d_v to zero

Actually an LP!

Given a directed graph G=(V,E) with edge weights w, we are looking for a shortest path from s to t.

Can we also model this as ILP? Yes! How?

Idea 2: use variable d_v for distance from s to v. Then we want that $d_v \leq d_u + w(u,v)$ for all edges (u,v).

maximize d_t

subject to

$$d_v - d_u \le w(u, v) \ \forall (u, v) \in E$$

$$d_s = 0$$

Why do we maximize?

otherwise we could set all d_v to zero

Is there a connection between the two LPs?

Given a directed graph G=(V,E) with edge weights w, we are looking for a shortest path from s to t.

Can we also model this as ILP? Yes! How?

Idea 2: use variable d_v for distance from s to v. Then we want that $d_v \leq d_u + w(u,v)$ for all edges (u,v).

maximize d_t

subject to

$$d_v - d_u \le w(u, v) \ \forall (u, v) \in E$$

$$d_s = 0$$

Why do we maximize?

otherwise we could set all d_v to zero

Is there a connection between the two LPs? They are dual to each other!