On the Turing Completeness of Recurrent Neural Networks

Francesco Ballerini

Università degli Studi di Firenze Scuola di Ingegneria

February 27th 2020

Motivations

Deep learning (deep neural networks) is currently the prevalent machine-learning approach for:

Deep learning (deep neural networks) is currently the prevalent machine-learning approach for:

► Computer vision

Deep learning (deep neural networks) is currently the prevalent machine-learning approach for:

- ► Computer vision
- Natural-language processing

Deep learning (deep neural networks) is currently the prevalent machine-learning approach for:

- ► Computer vision
- Natural-language processing
- ▶ In general, all perceptual tasks

Why Turing completeness

From a theory-of-computation standpoint:

Why Turing completeness

From a theory-of-computation standpoint:

► It would be nice to know that neural networks are as powerful as Turing machines (TMs)

Why Turing completeness

From a theory-of-computation standpoint:

- ► It would be nice to know that neural networks are as powerful as Turing machines (TMs)
- ➤ So as to ensure that any effectively calculable function is computable by a neural network (Church—Turing thesis)

As it turns out, given a TM, we can build a recurrent neural network (RNN) with rational weights and biases that computes the same function as the TM

This result bridges two worlds:

► Symbolic computation (TMs):

"Neural" computation (RNNs):

- Symbolic computation (TMs):
 - ► Finite alphabets of symbols

- "Neural" computation (RNNs):
 - Continuous values

- ► Symbolic computation (TMs):
 - ► Finite alphabets of symbols
 - ► Explicit separation of control (state) and memory (tape)
- "Neural" computation (RNNs):
 - Continuous values
 - No intrinsic separation of state vs memory

- ► Symbolic computation (TMs):
 - ► Finite alphabets of symbols
 - Explicit separation of control (state) and memory (tape)
 - ▶ If—then conditionals used for updates
- "Neural" computation (RNNs):
 - Continuous values
 - No intrinsic separation of state vs memory
 - ▶ No intrinsic Boolean logic

The original article

► The original proof is contained in an article named "On the Computational Power of Neural Nets" by Hava Siegelmann and Eduardo Sontag

The original article

- ► The original proof is contained in an article named "On the Computational Power of Neural Nets" by Hava Siegelmann and Eduardo Sontag
- ▶ The article dates back to 1992

What we did was:

► Updating the formalism and terminology according to what is widely used today

- Updating the formalism and terminology according to what is widely used today
- Adding

- Updating the formalism and terminology according to what is widely used today
- Adding
 - Figures

- Updating the formalism and terminology according to what is widely used today
- Adding
 - Figures
 - ▶ Tables

- Updating the formalism and terminology according to what is widely used today
- Adding
 - Figures
 - Tables
 - Explicit calculations

What we did was:

- Updating the formalism and terminology according to what is widely used today
- Adding
 - Figures
 - ► Tables
 - Explicit calculations

What we did was:

- Updating the formalism and terminology according to what is widely used today
- Adding
 - Figures
 - ▶ Tables
 - Explicit calculations

in order to leave as little as possible to the imagination of the reader

 Adding an example in which we apply the construction showed in the proof

What we did was:

- Updating the formalism and terminology according to what is widely used today
- Adding
 - Figures
 - Tables
 - Explicit calculations

- Adding an example in which we apply the construction showed in the proof
 - And providing a Python implementation of such example

What we did was:

- Updating the formalism and terminology according to what is widely used today
- Adding
 - Figures
 - ▶ Tables
 - Explicit calculations

- Adding an example in which we apply the construction showed in the proof
 - And providing a Python implementation of such example
- ► Most importantly, giving a more detailed and (hopefully) pleasant structure to the proof itself

What we did was:

- Updating the formalism and terminology according to what is widely used today
- Adding
 - Figures
 - ▶ Tables
 - Explicit calculations

- Adding an example in which we apply the construction showed in the proof
 - And providing a Python implementation of such example
- ► Most importantly, giving a more detailed and (hopefully) pleasant structure to the proof itself
 - ▶ Which, in our experience, was pretty frustrating to make sense of

Preliminaries

▶ We will not show the formal proof of the general case

- ▶ We will not show the formal proof of the general case
- ► Instead, we will focus on an example of how to build an RNN that simulates a TM

- ▶ We will not show the formal proof of the general case
- ► Instead, we will focus on an example of how to build an RNN that simulates a TM
- And, actually, instead of considering a TM, we will start from a double-stack pushdown automaton (double-stack PDA)

- We will not show the formal proof of the general case
- ► Instead, we will focus on an example of how to build an RNN that simulates a TM
- And, actually, instead of considering a TM, we will start from a double-stack pushdown automaton (double-stack PDA)
- ► This is not a problem, since double-stack PDAs can be proven to be computationally equivalent to single-tape TMs

- ▶ We will not show the formal proof of the general case
- ► Instead, we will focus on an example of how to build an RNN that simulates a TM
- And, actually, instead of considering a TM, we will start from a double-stack pushdown automaton (double-stack PDA)
- ► This is not a problem, since double-stack PDAs can be proven to be computationally equivalent to single-tape TMs
 - ► That is, a function is computable by a double-stack PDA if and only if it is computable by a single-tape TM

Rational stack encoding

▶ We want to encode a stack content as a number

- ▶ We want to encode a stack content as a number
 - ▶ This will turn out to be useful later . . .

- ▶ We want to encode a stack content as a number
 - ▶ This will turn out to be useful later ...
- ▶ We will work with PDAs with two binary stacks

- We want to encode a stack content as a number
 - ▶ This will turn out to be useful later ...
- ▶ We will work with PDAs with two binary stacks
 - ► Equivalent to binary single-tape TMs

- We want to encode a stack content as a number
 - ▶ This will turn out to be useful later ...
- ▶ We will work with PDAs with two binary stacks
 - ► Equivalent to binary single-tape TMs
- ▶ We choose the following encoding, where $a_i \in \{0, 1\}$:

$$\begin{array}{c|c} \hline a_1 \\ \hline a_2 \\ \vdots \\ \hline a_n \end{array} \longrightarrow q = \sum_{i=1}^n \frac{2a_i+1}{4^i} \in \mathbb{Q}$$

- ▶ We want to encode a stack content as a number
 - ▶ This will turn out to be useful later ...
- ▶ We will work with PDAs with two binary stacks
 - ► Equivalent to binary single-tape TMs
- ▶ We choose the following encoding, where $a_i \in \{0, 1\}$:

▶ $q \in [0,1)$

- ▶ We want to encode a stack content as a number
 - ▶ This will turn out to be useful later ...
- ▶ We will work with PDAs with two binary stacks
 - ► Equivalent to binary single-tape TMs
- ▶ We choose the following encoding, where $a_i \in \{0, 1\}$:

- ▶ $q \in [0,1)$
 - ▶ So, it might be a good candidate for a neuron activation . . .

$PDA \rightarrow RNN$

▶ Stack 1 starts with the two unary numbers to add separated by a zero

- ▶ Stack 1 starts with the two unary numbers to add separated by a zero
- ► Stack 2 starts empty

- ▶ Stack 1 starts with the two unary numbers to add separated by a zero
- Stack 2 starts empty

1 1

1 1

▶ At a given time t, the PDA is uniquely described by

- ▶ At a given time t, the PDA is uniquely described by
 - Its state

- ▶ At a given time t, the PDA is uniquely described by
 - Its state
 - ▶ The content of stack 1

- ▶ At a given time t, the PDA is uniquely described by
 - Its state
 - ▶ The content of stack 1
 - ▶ The content of stack 2

- ▶ At a given time t, the PDA is uniquely described by
 - Its state
 - ▶ The content of stack 1
 - ▶ The content of stack 2
- ▶ We want to be able to express the description of the PDA at time t as a neural-network layer

- ▶ At a given time t, the PDA is uniquely described by
 - Its state
 - ▶ The content of stack 1
 - ▶ The content of stack 2
- ► We want to be able to express the description of the PDA at time *t* as a neural-network layer
- ▶ To do so, consider the tuple $(x_0, x_1, x_h, q_1, q_2) \in \mathbb{Q}^5$, where:

- ▶ At a given time t, the PDA is uniquely described by
 - Its state
 - ▶ The content of stack 1
 - ▶ The content of stack 2
- ► We want to be able to express the description of the PDA at time *t* as a neural-network layer
- ▶ To do so, consider the tuple $(x_0, x_1, x_h, q_1, q_2) \in \mathbb{Q}^5$, where:

$$(x_0, x_1, x_h) = \begin{cases} (1, 0, 0) & \text{if the PDA is in state } s_0 \end{cases}$$

- ▶ At a given time t, the PDA is uniquely described by
 - Its state
 - ▶ The content of stack 1
 - ▶ The content of stack 2
- ► We want to be able to express the description of the PDA at time *t* as a neural-network layer
- ▶ To do so, consider the tuple $(x_0, x_1, x_h, q_1, q_2) \in \mathbb{Q}^5$, where:
 - $(x_0, x_1, x_h) = \begin{cases} (1, 0, 0) & \text{if the PDA is in state } s_0 \\ (0, 1, 0) & \text{if the PDA is in state } s_1 \end{cases}$

- ▶ At a given time t, the PDA is uniquely described by
 - Its state
 - ▶ The content of stack 1
 - ▶ The content of stack 2
- ► We want to be able to express the description of the PDA at time *t* as a neural-network layer
- ▶ To do so, consider the tuple $(x_0, x_1, x_h, q_1, q_2) \in \mathbb{Q}^5$, where:

$$(x_0, x_1, x_h) = \begin{cases} (1, 0, 0) & \text{if the PDA is in state } s_0 \\ (0, 1, 0) & \text{if the PDA is in state } s_1 \\ (0, 0, 1) & \text{if the PDA is in state } s_h \end{cases}$$

- ▶ At a given time t, the PDA is uniquely described by
 - ▶ Its state
 - ▶ The content of stack 1
 - ▶ The content of stack 2
- ► We want to be able to express the description of the PDA at time *t* as a neural-network layer
- ▶ To do so, consider the tuple $(x_0, x_1, x_h, q_1, q_2) \in \mathbb{Q}^5$, where:
 - $(x_0, x_1, x_h) = \begin{cases} (1, 0, 0) & \text{if the PDA is in state } s_0 \\ (0, 1, 0) & \text{if the PDA is in state } s_1 \\ (0, 0, 1) & \text{if the PDA is in state } s_h \end{cases}$
 - $q_{1,2} \in [0,1)$ is the rational encoding of the content of stack 1,2

- ▶ At a given time t, the PDA is uniquely described by
 - ▶ Its state
 - ▶ The content of stack 1
 - ▶ The content of stack 2
- ► We want to be able to express the description of the PDA at time *t* as a neural-network layer
- ▶ To do so, consider the tuple $(x_0, x_1, x_h, q_1, q_2) \in \mathbb{Q}^5$, where:
 - $(x_0, x_1, x_h) = \begin{cases} (1, 0, 0) & \text{if the PDA is in state } s_0 \\ (0, 1, 0) & \text{if the PDA is in state } s_1 \\ (0, 0, 1) & \text{if the PDA is in state } s_h \end{cases}$
 - $q_{1,2} \in [0,1)$ is the rational encoding of the content of stack 1,2
- ▶ Therefore, $(x_0, x_1, x_h, q_1, q_2)$ will be the input layer of the neural network we are building

▶ Let $(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$ be the description of the PDA at time t+1

- Let $(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$ be the description of the PDA at time t+1
- ▶ We would like $(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$ to be the output layer of our network

- Let $(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$ be the description of the PDA at time t+1
- ▶ We would like $(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$ to be the output layer of our network
- ▶ Is it possible to go from input to output layer, that is

$$(x_0, x_1, x_h, q_1, q_2) \longrightarrow (x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$$

- Let $(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$ be the description of the PDA at time t+1
- ▶ We would like $(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$ to be the output layer of our network
- ▶ Is it possible to go from input to output layer, that is

$$(x_0, x_1, x_h, q_1, q_2) \longrightarrow (x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$$

using only neural-network operations?

▶ Namely, something like $\sigma(Wa + b)$, where:

- ▶ Let $(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$ be the description of the PDA at time t+1
- ▶ We would like $(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$ to be the output layer of our network
- ▶ Is it possible to go from input to output layer, that is

$$(x_0, x_1, x_h, q_1, q_2) \longrightarrow (x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$$

- ▶ Namely, something like $\sigma(Wa + b)$, where:
 - $ightharpoonup \sigma$ is a sigmoid function

- Let $(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$ be the description of the PDA at time t+1
- ▶ We would like $(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$ to be the output layer of our network
- ▶ Is it possible to go from input to output layer, that is

$$(x_0, x_1, x_h, q_1, q_2) \longrightarrow (x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$$

- ▶ Namely, something like $\sigma(Wa + b)$, where:
 - $ightharpoonup \sigma$ is a sigmoid function
 - ▶ W is a matrix

- Let $(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$ be the description of the PDA at time t+1
- ▶ We would like $(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$ to be the output layer of our network
- ▶ Is it possible to go from input to output layer, that is

$$(x_0, x_1, x_h, q_1, q_2) \longrightarrow (x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$$

- ▶ Namely, something like $\sigma(Wa + b)$, where:
 - $ightharpoonup \sigma$ is a sigmoid function
 - ▶ W is a matrix
 - a and b are vectors

► Yes, it is!

- ► Yes, it is!
- ▶ Let us start from x_0^+ :

- ► Yes, it is!
- ▶ Let us start from x_0^+ :

$$x_0^+ = \sigma(x_0^+)$$

where σ is

(remember that $x_0^+ \in \{0,1\}$)

- Yes, it is!
- ▶ Let us start from x_0^+ :

$$egin{aligned} \mathbf{x}_0^+ &= \sigma(\mathbf{x}_0^+) \ &= \sigma(\mathbf{x}_0 \cdot \mathtt{Nonempty}(q_1) \cdot \mathtt{Top}(q_1) + \ &\mathbf{x}_0 \cdot \mathtt{Nonempty}(q_1) \cdot \lnot \mathtt{Top}(q_1)) \end{aligned}$$

since

- Yes, it is!
- ▶ Let us start from x_0^+ :

$$\begin{aligned} \mathbf{x}_0^+ &= \sigma(\mathbf{x}_0^+) \\ &= \sigma(\mathbf{x}_0 \cdot \texttt{nonempty}(q_1) \cdot \texttt{top}(q_1) + \\ &\quad \mathbf{x}_0 \cdot \texttt{nonempty}(q_1) \cdot \neg \texttt{top}(q_1)) \\ &= \sigma(\sigma(\mathbf{x}_0 + \texttt{nonempty}(q_1) + \texttt{top}(q_1) - 2) + \\ &\quad \sigma(\mathbf{x}_0 + \texttt{nonempty}(q_1) + \neg \texttt{top}(q_1) - 2)) \end{aligned}$$

because of the following lemma:

Lemma

Let
$$a_1,a_2,\ldots,a_k\in\{0,1\}$$
. Then
$$a_1a_2\ldots a_k=\sigma(a_1+a_2+\cdots+a_k-k+1)$$

- Yes, it is!
- ▶ Let us start from x_0^+ :

$$\begin{split} x_0^+ &= \sigma(x_0^+) \\ &= \sigma(x_0 \cdot \text{nonempty}(q_1) \cdot \text{top}(q_1) + \\ &\quad x_0 \cdot \text{nonempty}(q_1) \cdot \neg \text{top}(q_1)) \\ &= \sigma(\sigma(x_0 + \text{nonempty}(q_1) + \text{top}(q_1) - 2) + \\ &\quad \sigma(x_0 + \text{nonempty}(q_1) + \neg \text{top}(q_1) - 2)) \\ &= \sigma(\sigma(x_0 + \sigma(4q_1) + \sigma(4q_1 - 2) - 2) + \\ &\quad \sigma(x_0 + \sigma(4q_1) + 1 - \sigma(q_1 - 2) - 2)) \end{split}$$

because of the following theorem:

Theorem

Let q be the rational encoding of a stack content. Then

$$TOP(q) = \sigma(4q-2)$$
, NONEMPTY $(q) = \sigma(4q)$

- ► Yes, it is!
- ▶ Let us start from x_0^+ :

$$\begin{split} \mathbf{x}_0^+ &= \sigma(\mathbf{x}_0^+) \\ &= \sigma(\mathbf{x}_0 \cdot \texttt{nonempty}(q_1) \cdot \texttt{top}(q_1) + \\ &\quad \mathbf{x}_0 \cdot \texttt{nonempty}(q_1) \cdot \neg \texttt{top}(q_1)) \\ &= \sigma(\sigma(\mathbf{x}_0 + \texttt{nonempty}(q_1) + \texttt{top}(q_1) - 2) + \\ &\quad \sigma(\mathbf{x}_0 + \texttt{nonempty}(q_1) + \neg \texttt{top}(q_1) - 2)) \\ &= \sigma(\sigma(\mathbf{x}_0 + \sigma(4q_1) + \sigma(4q_1 - 2) - 2) + \\ &\quad \sigma(\mathbf{x}_0 + \sigma(4q_1) - \sigma(q_1 - 2) - 1)) \end{split}$$

▶ We did it! We computed x_0^+ using only σ and linear combinations of input-layer activations $(x_0, x_1, x_h, q_1, q_2)$

- ▶ We did it! We computed x_0^+ using only σ and linear combinations of input-layer activations $(x_0, x_1, x_h, q_1, q_2)$
 - ▶ In particular, we used x_0 and q_1

- ▶ We did it! We computed x_0^+ using only σ and linear combinations of input-layer activations $(x_0, x_1, x_h, q_1, q_2)$
 - ▶ In particular, we used x_0 and q_1
- ► From the expression we got, though, we can see that we will not be able to go from $(x_0, x_1, x_h, q_1, q_2)$ to x_0^+ in just one step

- ▶ We did it! We computed x_0^+ using only σ and linear combinations of input-layer activations $(x_0, x_1, x_h, q_1, q_2)$
 - ▶ In particular, we used x_0 and q_1
- ► From the expression we got, though, we can see that we will not be able to go from $(x_0, x_1, x_h, q_1, q_2)$ to x_0^+ in just one step
- ▶ Instead, we will need some inner (i.e. intermediate) layers $\ell_{1,2}$:

- ▶ We did it! We computed x_0^+ using only σ and linear combinations of input-layer activations $(x_0, x_1, x_h, q_1, q_2)$
 - ▶ In particular, we used x_0 and q_1
- From the expression we got, though, we can see that we will not be able to go from $(x_0, x_1, x_h, q_1, q_2)$ to x_0^+ in just one step
- ▶ Instead, we will need some inner (i.e. intermediate) layers $\ell_{1,2}$:

$$(x_0, x_1, x_h, q_1, q_2) \longrightarrow x_1^+$$

$$(x_0, x_1, x_h, q_1, q_2) \longrightarrow x_1^+$$

 $(x_0, x_1, x_h, q_1, q_2) \longrightarrow x_h^+$

$$(x_0, x_1, x_h, q_1, q_2) \longrightarrow x_1^+$$

 $(x_0, x_1, x_h, q_1, q_2) \longrightarrow x_h^+$
 $(x_0, x_1, x_h, q_1, q_2) \longrightarrow q_1^+$

$$(x_0, x_1, x_h, q_1, q_2) \longrightarrow x_1^+$$

 $(x_0, x_1, x_h, q_1, q_2) \longrightarrow x_h^+$
 $(x_0, x_1, x_h, q_1, q_2) \longrightarrow q_1^+$
 $(x_0, x_1, x_h, q_1, q_2) \longrightarrow q_2^+$

We can do the same for:

$$(x_0, x_1, x_h, q_1, q_2) \longrightarrow x_1^+$$

 $(x_0, x_1, x_h, q_1, q_2) \longrightarrow x_h^+$
 $(x_0, x_1, x_h, q_1, q_2) \longrightarrow q_1^+$
 $(x_0, x_1, x_h, q_1, q_2) \longrightarrow q_2^+$

▶ Let us skip the calculations (which are similar to those we have already seen anyway) and just show the final results:

$$x_1^+ = \cdots = \sigma(\sigma(x_0 - \sigma(4q_1)) + \sigma(x_1 + \sigma(4q_2) - 1))$$

$$egin{aligned} x_1^+ &= \cdots = \sigma(\sigma(x_0 - \sigma(4q_1)) + \sigma(x_1 + \sigma(4q_2) - 1)) \ x_h^+ &= \cdots = \sigma(\sigma(x_1 - \sigma(4q_2))) \end{aligned}$$

$$\begin{array}{l} x_1^+ = \cdots = \sigma(\sigma(x_0 - \sigma(4q_1)) + \sigma(x_1 + \sigma(4q_2) - 1)) \\ x_h^+ = \cdots = \sigma(\sigma(x_1 - \sigma(4q_2))) \\ q_1^+ = \cdots = \sigma(\sigma(x_0 + \sigma(4q_1) - \sigma(4q_1 - 2) + 4q_1 - 4) + \\ \sigma(x_0 + \sigma(4q_1) - 3\sigma(4q_1 - 2) + 4q_1 - 3) + \\ \sigma(x_0 - \sigma(4q_1) + q_1 - 1) + \\ \sigma(x_1 + \sigma(4q_2) + \frac{1}{4}q_1 - \frac{5}{4}) + \\ \sigma(x_1 - \sigma(4q_2) + q_1 - 1)) \end{array}$$

$$\begin{array}{l} x_1^+ = \cdots = \sigma(\sigma(x_0 - \sigma(4q_1)) + \sigma(x_1 + \sigma(4q_2) - 1)) \\ x_h^+ = \cdots = \sigma(\sigma(x_1 - \sigma(4q_2))) \\ q_1^+ = \cdots = \sigma(\sigma(x_0 + \sigma(4q_1) - \sigma(4q_1 - 2) + 4q_1 - 4) + \\ \sigma(x_0 + \sigma(4q_1) - 3\sigma(4q_1 - 2) + 4q_1 - 3) + \\ \sigma(x_0 - \sigma(4q_1) + q_1 - 1) + \\ \sigma(x_1 + \sigma(4q_2) + \frac{1}{4}q_1 - \frac{5}{4}) + \\ \sigma(x_1 - \sigma(4q_2) + q_1 - 1)) \\ q_2^+ = \cdots = \sigma(\sigma(x_0 + \sigma(4q_1) - \sigma(4q_1 - 2) + \frac{1}{4}q_2 - \frac{9}{4}) + \\ \sigma(x_0 + \sigma(4q_1) - \sigma(4q_1 - 2) + q_2 - 2) + \\ \sigma(x_0 - \sigma(4q_1) + q_2 - 1) + \\ \sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3) + \\ \sigma(x_1 - \sigma(4q_2) + q_2 - 1)) \end{array}$$

The network

▶ We are done: we built a neural network whose input layer is the description of the PDA at time *t*, namely,

$$(x_0, x_1, x_h, q_1, q_2)$$

The network

▶ We are done: we built a neural network whose input layer is the description of the PDA at time *t*, namely,

$$(x_0, x_1, x_h, q_1, q_2)$$

and whose output layer is the description of the PDA at time t+1, that is,

$$(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$$

The network

▶ We are done: we built a neural network whose input layer is the description of the PDA at time t, namely,

$$(x_0, x_1, x_h, q_1, q_2)$$

and whose output layer is the description of the PDA at time t+1, that is,

$$\big(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+\big)$$

▶ Let us look at its graphical depiction:

Now that we have built the network, how do we simulate a PDA execution with it?

Now that we have built the network, how do we simulate a PDA execution with it?

Simulation algorithm

Initialize the network with input layer

$$(x_0, x_1, x_h, q_1, q_2) = (1, 0, 0, q_1, q_2)$$

Now that we have built the network, how do we simulate a PDA execution with it?

Simulation algorithm

Initialize the network with input layer

$$(x_0, x_1, x_h, q_1, q_2) = (1, 0, 0, q_1, q_2)$$

Now that we have built the network, how do we simulate a PDA execution with it?

Simulation algorithm

1 Initialize the network with input layer

$$(x_0, x_1, x_h, q_1, q_2) = (1, 0, 0, q_1, q_2)$$

where $q_{1,2}$ is the rational encoding of the content of stack 1,2 at the beginning of the PDA execution

② Compute the output layer $(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$

Now that we have built the network, how do we simulate a PDA execution with it?

Simulation algorithm

1 Initialize the network with input layer

$$(x_0, x_1, x_h, q_1, q_2) = (1, 0, 0, q_1, q_2)$$

- **2** Compute the output layer $(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$
- **3** If $x_h^+ = 0$

Now that we have built the network, how do we simulate a PDA execution with it?

Simulation algorithm

Initialize the network with input layer

$$(x_0, x_1, x_h, q_1, q_2) = (1, 0, 0, q_1, q_2)$$

- **2** Compute the output layer $(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$
- **3** If $x_h^+ = 0$
 - Copy the output layer into the input layer

Now that we have built the network, how do we simulate a PDA execution with it?

Simulation algorithm

Initialize the network with input layer

$$(x_0, x_1, x_h, q_1, q_2) = (1, 0, 0, q_1, q_2)$$

- **2** Compute the output layer $(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$
- **3** If $x_h^+ = 0$
 - Copy the output layer into the input layer
 - Go back to point 2

Now that we have built the network, how do we simulate a PDA execution with it?

Simulation algorithm

Initialize the network with input layer

$$(x_0, x_1, x_h, q_1, q_2) = (1, 0, 0, q_1, q_2)$$

- **2** Compute the output layer $(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$
- **3** If $x_h^+ = 0$
 - Copy the output layer into the input layer
 - Go back to point 2

If
$$x_{h}^{+} = 1$$
,

Now that we have built the network, how do we simulate a PDA execution with it?

Simulation algorithm

Initialize the network with input layer

$$(x_0, x_1, x_h, q_1, q_2) = (1, 0, 0, q_1, q_2)$$

where $q_{1,2}$ is the rational encoding of the content of stack 1,2 at the beginning of the PDA execution

- **2** Compute the output layer $(x_0^+, x_1^+, x_h^+, q_1^+, q_2^+)$
- **3** If $x_h^+ = 0$
 - Copy the output layer into the input layer
 - Go back to point 2

If $x_h^+=1$, then $q_{1,2}^+$ is the rational encoding of the content of stack 1, 2 at the end of the PDA execution

Implementation (Python 3 + NumPy)

Fragment of class Network

```
def __init__(self):
    self.weights = [
       numpy.array(...), # matrix W1
       numpy.array(...), # matrix W2
       numpy.array(...) # matrix W3
    self.biases = [
       numpy.array(...), # vector b1
       numpy.array(...), # vector b2
       numpy.array(...) # vector b3
```

Implementation (Python 3 + NumPy)

Fragment of class Network

```
def execute(self, stack1):
    def feedforward(a):
        if a[2] == 1:
            return a[3], a[4]
        for w, b in zip(self.weights, self.biases):
            a = sigmoid(numpy.dot(w, a) + b)
        return feedforward(a)
    a = numpy.array(
        [1, 0, 0, Stack(stack1).encoding, Stack([]).encoding]
    return feedforward(a)
```

▶ What to expect:

▶ What to expect:

What to expect:

What we get:

▶ What to expect:

▶ What we get:

Test

>>> Network().execute([1, 0, 1])

What to expect:

▶ What we get:

Test

>>> Network().execute([1, 0, 1]) (0.9375, 0.0)

Conclusions

Let us consider some implementation issues:

▶ In order to be be able to represent any rational number, no matter with how many digits, we would need arbitrary-precision arithmetic and an infinite amount of memory

- ▶ In order to be be able to represent any rational number, no matter with how many digits, we would need arbitrary-precision arithmetic and an infinite amount of memory
 - But this is just the Turing machine infinite-tape requirement in a different guise

- ▶ In order to be be able to represent any rational number, no matter with how many digits, we would need arbitrary-precision arithmetic and an infinite amount of memory
 - But this is just the Turing machine infinite-tape requirement in a different guise
 - ► And it comes up because we encoded stack contents as rational numbers but we didn't put a limit on stack size

- ▶ In order to be be able to represent any rational number, no matter with how many digits, we would need arbitrary-precision arithmetic and an infinite amount of memory
 - ► But this is just the Turing machine infinite-tape requirement in a different guise
 - And it comes up because we encoded stack contents as rational numbers but we didn't put a limit on stack size
- In the example we saw, the derivation of the network was carried on "by hand", and the implementation needed precomputed weight matrices and bias vectors

- ▶ In order to be be able to represent any rational number, no matter with how many digits, we would need arbitrary-precision arithmetic and an infinite amount of memory
 - ► But this is just the Turing machine infinite-tape requirement in a different guise
 - ► And it comes up because we encoded stack contents as rational numbers but we didn't put a limit on stack size
- ► In the example we saw, the derivation of the network was carried on "by hand", and the implementation needed precomputed weight matrices and bias vectors
 - One might think of automating the construction by devising a program that derives the weight matrices and bias vectors from any given double-stack PDA, and then runs a simulation

Bibliography

Hava T. Siegelmann, Eduardo D. Sontag

On the Computational Power of Neural Nets

Proceedings of the fifth Annual ACM Workshop on Computational Learning Theory (COLT 1992), 440–449

http://binds.cs.umass.edu/papers/1992_Siegelmann_COLT.pdf

Benjamin Wilson

Siegelmann & Sontag's "On the Computational Power of Neural Nets"

Sydney Machine Learning Meetup, 2018

http://drive.google.com/file/d/1HR-dXSI-dX16yibiXeeiz4pP2D8_KYD1/view

Michael A. Nielsen

Neural Networks and Deep Learning

Determination Press, 2015

http://neuralnetworksanddeeplearning.com

Lemma (Properties of q)

Let
$$a_1a_2\ldots a_n\in\{0,1\}^*$$
 and $q=\sum_{i=1}^n\frac{2a_i+1}{4^i}\in\mathbb{Q}$. Then

$$q \in [0,1)$$

$$\omega = 0 \iff \omega = \varepsilon \ (\varepsilon \text{ is the empty string})$$

$$q = \begin{bmatrix} 4 & 2 \\ 4 & 2 \end{bmatrix}$$

Theorem (stack-operation encodings)

1 TOP
$$(q) = \sigma(4q - 2)$$

$$\text{ONEMPTY}(q) = \sigma(4q)$$

$$\begin{aligned}
\mathbf{PTY}(q) &= \sigma(4e) \\
a) &= \frac{q}{2} + \frac{1}{2}
\end{aligned}$$

3 PUSH
$$_0(q) = \frac{q}{4} + \frac{1}{4}$$

3 PUSH
$$_0(q) = \frac{q}{4} + \frac{1}{4}$$

• PUSH₁
$$(q) = \frac{q}{4} + \frac{3}{4}$$

5
$$POP(q) = 4q - 2\sigma(4q - 2) - 1$$

5 POP
$$(q) = 4q - 2\sigma(4q - 2) - 1$$

6 NOOP
$$(q) = q$$

Proof.

$$\begin{aligned} \operatorname{TOP}(q) &= 0 \implies q \in \left[\frac{1}{4}, \frac{1}{2}\right) \\ &\implies 4q - 2 \in [-1, 0) \\ &\implies \sigma(4q - 2) = 0 \end{aligned} \\ \operatorname{TOP}(q) &= 1 \implies q \in \left[\frac{3}{4}, 1\right) \\ &\implies 4q - 2 \in [1, 2) \\ &\implies \sigma(4q - 2) = 1 \end{aligned} \\ \operatorname{NONEMPTY}(q) &= 0 \implies q = 0 \\ &\implies 4q = 0 \\ &\implies \sigma(4q) = 0 \end{aligned} \\ \operatorname{NONEMPTY}(q) &= 1 \implies q \neq 0 \\ &\implies q \in \left[\frac{1}{4}, \frac{1}{2}\right) \cup \left[\frac{3}{4}, 1\right) \\ &\implies 4q \in [1, 2) \cup [3, 4] \end{aligned}$$

$$PUSH_0(q) = \frac{q}{4} + \frac{2 \cdot 0 + 1}{4}$$

$$= \frac{q}{4} + \frac{1}{4}$$

$$push_1(q) = \frac{q}{4} + \frac{2 \cdot 1 + 1}{4}$$

$$= \frac{q}{4} + \frac{3}{4}$$

$$pop(q) = 4q - (2\operatorname{TOP}(q) + 1)$$

$$= 4q - 2\sigma(4q - 2) - 1$$

 $\implies \sigma(4q) = 1$

L

Lemma (technical)

Let $a_1, a_2, ..., a_k \in \{0, 1\}$ and $q \in [0, 1]$. Then

$$a_1 a_2 \dots a_k q = \sigma(a_1 + a_2 + \dots + a_k - k + q)$$

Proof.

Case 1:
$$\exists i : a_i = 0$$

$$\implies a_1 + a_2 + \cdots + a_k \leq k - 1$$

$$\Rightarrow a_1 + a_2 + \dots + a_k - k + q < k - 1 - k + q = q - 1 \in [-1, 0]$$

$$\implies \sigma(a_1+a_2+\cdots+a_k-k+q)=0=a_1a_2\ldots a_kq$$

Case 2:
$$a_i = 1 \ \forall i$$

$$\implies a_1 + a_2 + \cdots + a_k = k$$

$$\implies a_1 + a_2 + \cdots + a_k - k + q = k - k + q = q \in [0, 1]$$

$$\implies \sigma(a_1+a_2+\cdots+a_k-k+q)=q=a_1a_2\ldots a_kq$$

$$\begin{aligned} x_1^+ &= \sigma(x_1^+) \\ &= \sigma(x_0 \cdot \neg \texttt{NONEMPTY}(q_1) + x_1 \cdot \texttt{NONEMPTY}(q_2)) \\ &= \sigma(\sigma(x_0 + \neg \texttt{NONEMPTY}(q_1) - 1) + \sigma(x_1 + \texttt{NONEMPTY}(q_2) - 1)) \\ &= \sigma(\sigma(x_0 + 1 - \sigma(4q_1) - 1) + \sigma(x_1 + \sigma(4q_2) - 1)) \\ &= \sigma(\sigma(x_0 - \sigma(4q_1)) + \sigma(x_1 + \sigma(4q_2) - 1)) \\ x_h^+ &= \sigma(x_h^+) \end{aligned}$$

$$= \sigma(\alpha)$$

$$= \sigma(\alpha)$$

 $= \sigma(x_1 \cdot \neg \text{NONEMPTY}(q_2))$

 $= \sigma(\sigma(x_1 - \sigma(4a_2)))$

 $= \sigma(\sigma(x_1 + \neg \text{NONEMPTY}(q_2) - 1))$

 $= \sigma(\sigma(x_1 + 1 - \sigma(4q_2) - 1))$

$$\begin{aligned} q_1^+ &= \sigma(q_1^+) \\ &= \sigma(x_0 \cdot \text{Nonempty}(q_1) \cdot \text{Top}(q_1) \cdot \text{Pop}(q_1) + \\ &x_0 \cdot \text{Nonempty}(q_1) \cdot \neg \text{Top}(q_1) \cdot \text{Pop}(q_1) + \\ &x_0 \cdot \neg \text{Nonempty}(q_2) \cdot \text{Push}_1(q_1) + \\ &x_1 \cdot \text{Nonempty}(q_2) \cdot \text{Push}_1(q_1) + \\ &x_1 \cdot \neg \text{Nonempty}(q_2) \cdot \text{Noop}(q_1)) \\ &= \sigma(\sigma(x_0 + \text{Nonempty}(q_1) + \text{Top}(q_1) - 3 + \text{Pop}(q_1)) + \\ &\sigma(x_0 + \text{Nonempty}(q_1) + \neg \text{Top}(q_1) - 3 + \text{Pop}(q_1)) + \\ &\sigma(x_0 + \neg \text{Nonempty}(q_1) - 2 + \text{Noop}(q_1)) + \\ &\sigma(x_1 + \neg \text{Nonempty}(q_2) - 2 + \text{Push}_1(q_1)) + \\ &\sigma(x_1 + \neg \text{Nonempty}(q_2) - 2 + \text{Noop}(q_1))) \\ &= \sigma(\sigma(x_0 + \sigma(4q_1) + \sigma(4q_1 - 2) - 3 + 4q_1 - 2\sigma(4q_1 - 2) - 1) + \\ &\sigma(x_0 + \sigma(4q_1) + 1 - \sigma(4q_1 - 2) - 3 + 4q_1 - 2\sigma(4q_1 - 2) - 1) + \\ &\sigma(x_0 + 1 - \sigma(4q_1) - 2 + q_1) + \\ &\sigma(x_1 + \sigma(4q_2) - 2 + \frac{1}{4}q_1 + \frac{3}{4}) + \\ &\sigma(x_1 + \sigma(4q_2) - 2 + q_1)) \\ &= \sigma(\sigma(x_0 + \sigma(4q_1) - \sigma(4q_1 - 2) + 4q_1 - 4) + \\ &\sigma(x_0 + \sigma(4q_1) - 3\sigma(4q_1 - 2) + 4q_1 - 3) + \\ &\sigma(x_0 - \sigma(4q_1) + q_1 - 1) + \\ &\sigma(x_1 + \sigma(4q_2) + \frac{1}{4}q_1 - \frac{5}{4}) + \\ &\sigma(x_1 - \sigma(4q_2) + q_1 - 1)) \end{aligned}$$

$$\begin{aligned} q_2^+ &= \sigma(q_2^+) \\ &= \sigma(x_0 \cdot \text{nonempty}(q_1) \cdot \text{top}(q_1) \cdot \text{push}_1(q_2) + \\ &\quad x_0 \cdot \text{nonempty}(q_1) \cdot \neg \text{top}(q_1) \cdot \text{noop}(q_2) + \\ &\quad x_0 \cdot \neg \text{nonempty}(q_1) \cdot \text{noop}(q_2) + \\ &\quad x_1 \cdot \neg \text{nonempty}(q_2) \cdot \text{pop}(q_2) + \\ &\quad x_1 \cdot \neg \text{nonempty}(q_2) \cdot \text{noop}(q_2)) \\ &= \sigma(\sigma(x_0 + \text{nonempty}(q_1) + \text{top}(q_1) - 3 + \text{push}_1(q_2)) + \\ &\quad \sigma(x_0 + \text{nonempty}(q_1) + \neg \text{top}(q_1) - 3 + \text{noop}(q_2)) + \\ &\quad \sigma(x_1 + \neg \text{nonempty}(q_1) - 2 + \text{noop}(q_2)) + \\ &\quad \sigma(x_1 + \neg \text{nonempty}(q_2) - 2 + \text{pop}(q_2)) + \\ &\quad \sigma(x_1 + \neg \text{nonempty}(q_2) - 2 + \text{noop}(q_2))) \\ &= \sigma(\sigma(x_0 + \sigma(4q_1) + \sigma(4q_1 - 2) - 3 + \frac{1}{4}q_2 + \frac{3}{4}) + \\ &\quad \sigma(x_0 + \sigma(4q_1) + 1 - \sigma(4q_1 - 2) - 3 + q_2) + \\ &\quad \sigma(x_0 + 1 - \sigma(4q_1) - 2 + q_2) + \\ &\quad \sigma(x_1 + \sigma(4q_2) - 2 + 4q_2 - 2\sigma(4q_2 - 2) - 1) + \\ &\quad \sigma(x_1 + 1 - \sigma(4q_2) - 2 + q_2)) \\ &= \sigma(\sigma(x_0 + \sigma(4q_1) - \sigma(4q_1 - 2) + \frac{1}{4}q_2 - \frac{9}{4}) + \\ &\quad \sigma(x_0 + \sigma(4q_1) - \sigma(4q_1 - 2) + q_2 - 2) + \\ &\quad \sigma(x_0 - \sigma(4q_1) + q_2 - 1) + \\ &\quad \sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3) + \\ &\quad \sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3) + \\ &\quad \sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3) + \\ &\quad \sigma(x_1 + \sigma(4q_2) + q_2 - 1) \end{aligned}$$

$$x_0^+ = \sigma(\underbrace{\sigma(x_0 + \sigma(4q_1) + \sigma(4q_1 - 2) - 2)}_{=: \sigma_1} + \underbrace{\sigma(x_0 + \sigma(4q_1) - \sigma(4q_1 - 2) - 1)}_{=: \sigma_2})$$

$$x_1^+ = \sigma(\underbrace{\sigma(x_0 - \sigma(4q_1))}_{=: \sigma_3} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 1)}_{=: \sigma_4})$$

$$x_h^+ = \sigma(\underbrace{\sigma(x_1 - \sigma(4q_2))}_{=: \sigma_5})$$

$$x_1^+$$

$$q_1^+ = \sigma(\underbrace{\sigma(x_0 + \sigma(4q_1) - \sigma(4q_1 - 2) + 4q_1 - 4)}_{=: \sigma_6} + \underbrace{\sigma(x_0 + \sigma(4q_1) - 3\sigma(4q_1 - 2) + 4q_1 - 3)}_{=: \sigma_7} + \underbrace{\sigma(x_0 - \sigma(4q_1) + q_1 - 1) + 4q_1 - 3}_{=: \sigma_7}$$

 $=: \sigma_0$

 $=: \sigma_{10}$

$$\underbrace{\frac{\sigma(x_1 + \sigma(4q_2) + \frac{1}{4}q_1 - \frac{5}{4})}{\sigma(x_1 + \sigma(4q_2) + q_1 - 1)}}_{=: \sigma_9}$$

$$\underbrace{\sigma(x_1 + \sigma(4q_2) + \frac{1}{4}q_1 - \frac{5}{4})}_{=: \sigma_9} +$$

$$=: \sigma_{11}$$

$$\underbrace{\sigma(x_0 + \sigma(4q_1) - \sigma(4q_1 - 2) + q_2 - 2)}_{=: \sigma_{12}} + \underbrace{\sigma(x_0 - \sigma(4q_1) + q_2 - 1)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}} + \underbrace{\sigma(x_1 + \sigma(4q_2) - 2\sigma(4q_2 - 2) + 4q_2 - 3)}_{=: \sigma_{13}}$$

 $\underbrace{\sigma(x_1-\sigma(4q_2)+q_2-1)}_{=:\sigma_{15}})$

 $=: \sigma_{14}$

 $q_2^+ = \sigma(\sigma(x_0 + \sigma(4q_1) - \sigma(4q_1 - 2) + \frac{1}{4}q_2 - \frac{9}{4}) +$

W^1	<i>x</i> ₀	<i>x</i> ₁	x_{h}	q_1	q_2	b^1
<i>x</i> ₀	1	0	0	0	0	0
<i>x</i> ₁	0	1	0	0	0	0
q_1	0	0	0	1	0	0
q_2	0	0	0	0	1	0
т (q_1)	0	0	0	4	0	-2
$\tau(q_2)$	0	0	0	0	4	-2
$\mathtt{NE}(q_1)$	0	0	0	4	0	0
$NE(q_2)$	0	0	0	0	4	0

Table: weights from input layer to layer 1 and biases of layer 1 $\,$

W^2	<i>x</i> ₀	<i>x</i> ₁	q_1	q_2	$\mathtt{T}(q_1)$	$\mathtt{T}(q_2)$	$\mathtt{NE}(q_1)$	$NE(q_2)$	b^2
σ_1	1	0	0	0	1	0	1	0	-2
σ_2	1	0	0	0	-1	0	1	0	-1
σ_3	1	0	0	0	0	0	-1	0	0
σ_4	0	1	0	0	0	0	0	1	-1
σ_5	0	1	0	0	0	0	0	-1	0
σ_6	1	0	4	0	-1	0	1	0	-4
σ_7	1	0	4	0	-3	0	1	0	-3
σ_8	1	0	1	0	0	0	-1	0	-1
σ_9	0	1	$\frac{1}{4}$	0	0	0	0	1	$-\frac{5}{4}$
σ_{10}	0	1	1	0	0	0	0	-1	-1
σ_{11}	1	0	0	$\frac{1}{4}$	1	0	1	0	$-\frac{9}{4}$
σ_{12}	1	0	0	1	-1	0	1	0	-2
σ_{13}	1	0	0	1	0	0	-1	0	-1
σ_{14}	0	1	0	4	0	-2	0	1	-3
σ_{15}	0	1	0	1	0	0	0	-1	-1

Table: weights from layer 1 to layer 2 and biases of layer 2

W^3	σ_1	σ_2	σ_3	σ_{4}	σ_{5}	σ_6	σ_7	σ_8	σ_9	σ_{10}	σ_{11}	σ_{12}	σ_{13}	σ_{14}	σ_{15}	b^3
														0		
x_1^+	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
x_{h}^{+}	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
q_1^+	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
q_2^+	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
								•		_			<i>C</i> 1	_		

Table: weights from layer 2 to layer 3 and biases of layer 3