In [1]:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import sklearn.metrics

In [2]:

df=pd.read_csv("C:\\heart disease dataset (1).csv")

In [3]:

df

Out[3]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentl
0	1	39	4.0	0	0.0	0.0	0	
1	0	46	2.0	0	0.0	0.0	0	
2	1	48	1.0	1	20.0	0.0	0	
3	0	61	3.0	1	30.0	0.0	0	
4	0	46	3.0	1	23.0	0.0	0	
4233	1	50	1.0	1	1.0	0.0	0	
4234	1	51	3.0	1	43.0	0.0	0	
4235	0	48	2.0	1	20.0	NaN	0	
4236	0	44	1.0	1	15.0	0.0	0	
4237	0	52	2.0	0	0.0	0.0	0	

4238 rows × 16 columns

In [4]:

df.head()

Out[4]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp
0	1	39	4.0	0	0.0	0.0	0	0
1	0	46	2.0	0	0.0	0.0	0	0
2	1	48	1.0	1	20.0	0.0	0	0
3	0	61	3.0	1	30.0	0.0	0	1
4	0	46	3.0	1	23.0	0.0	0	0
4								>

In [5]:

df.tail()

Out[5]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalenth
4233	1	50	1.0	1	1.0	0.0	0	_
4234	1	51	3.0	1	43.0	0.0	0	
4235	0	48	2.0	1	20.0	NaN	0	
4236	0	44	1.0	1	15.0	0.0	0	
4237	0	52	2.0	0	0.0	0.0	0	
4								>

In [6]:

df.isnull

Out[6]:

	d method gsPerDay			isnull of	ma	le	age	educ	ation	current	Smoke
0		39		.0	0			0.0	0.0		
1		46		.0	0			0.0	0.0		
2		48		.0	1			0.0	0.0		
3		48 61		.0	1			0.0	0.0		
<i>3</i>		46		.0	1			3.0	0.0		
4222		 50			1			 1.0	0.0		
4233		51		.0	1 1						
4234				.0	1			3.0	0.0		
4235		48		.0				0.0	NaN		
4236		44		.0	1			5.0	0.0		
4237	0	52	2	.0	0			0.0	0.0		
I \	prevale	entSt	troke p	revalentHyp	o diabe	tes	tot	Chol	sysBP	diaBP	BM
- ` 0 7			0	6)	0	1	95.0	106.0	70.0	26.9
1			0	6)	0	2	50.0	121.0	81.0	28.7
3 2			0	6)	0	2	45.0	127.5	80.0	25.3
4 3			0	1	L	0	2	25.0	150.0	95.0	28.5
8											
4 0			0	6)	0	2	85.0	130.0	84.0	23.1
•••				• • •				• • •			
4233			0	1	<u>_</u>	0	3	13.0	179.0	92.0	25.9
7 4234			0	6)	0	2	07.0	126.5	80.0	19.7
1			Ü		,	Ū	_	07.0	120.5	00.0	13.7
4235 0			0	6)	0	2	48.0	131.0	72.0	22.0
4236			0	6)	0	2	10.0	126.5	87.0	19.1
6 4237			0	6		0	2	69.0	122 E	92 A	21 /
7			V	e)	0	2	09.0	133.5	83.0	21.4
	heartRa	ıte	glucose	TenYearCh	1D						
0		0.0	77.0		0						
1		.0	76.0		0						
2		.0	70.0		0						
3		.0	103.0		1						
4		.0	85.0		0						
7	63				5						
4233		0	 86.0	• •	1						
4233		.0	68.0		0						
4234		1.0	86.0		0						
4235		.0	NaN		0						
4236		0.0	107.0		0						
1 43/	06		10/.0		J						

[4238 rows x 16 columns]>

In [8]:

df.shape

Out[8]:

(4238, 16)

In [9]:

df.describe

A		$\Gamma \cap \Gamma$	1.
()	_	ıu	
υu			

	d metho gsPerDa			lescrib \	e of	male	aį	ge edud	cation	current	:Smoke
0	.gsrei Da	39	riieus	4.0		0		0.0	0.0		
		46									
1	0			2.0		0		0.0	0.0		
2	1	48		1.0		1		20.0	0.0		
3	0	61		3.0		1		30.0	0.0		
4	0	46		3.0		1		23.0	0.0		
• • •	• • •	• • •		• • •		• • •		• • •	• • •		
4233	1	50		1.0		1		1.0	0.0		
4234	1	51		3.0		1		43.0	0.0		
4235	0	48		2.0		1		20.0	NaN		
4236	0	44		1.0		1		15.0	0.0		
4237	0	52		2.0		0		0.0	0.0		
	preval	.entS	troke	preval	.entHyp	diabetes	; †	totChol	sysBP	diaBP	ВМ
I \											
0			0		0	6)	195.0	106.0	70.0	26.9
7											
1			0		0	6)	250.0	121.0	81.0	28.7
3											
2			0		0	6)	245.0	127.5	80.0	25.3
4											
3			0		1	6)	225.0	150.0	95.0	28.5
8											
4			0		0	e)	285.0	130.0	84.0	23.1
0											
					• • •					• • •	
• • •											
4233			0		1	6)	313.0	179.0	92.0	25.9
7											
4234			0		0	6)	207.0	126.5	80.0	19.7
1											
4235			0		0	6)	248.0	131.0	72.0	22.0
0											
4236			0		0	6)	210.0	126.5	87.0	19.1
6											
4237			0		0	6)	269.0	133.5	83.0	21.4
7											
			-	_							
	heartR		glucos		YearCHD						
0		0.0	77.		0						
1		5.0	76.		0	l					
2	7	5.0	70.	0	0	1					
3	6	5.0	103.	0	1						
4	8	5.0	85.	0	0						
4233	6	6.0	86.	0	1						
4234	6	5.0	68.	0	0	1					
4235		4.0	86.		0						
4236		6.0	Na		0						
4237		0.0	107.		0						
					J						

localhost:8888/notebooks/Downloads/Logistic regression To predict heart disease.ipynb#

[4238 rows x 16 columns]>

```
In [10]:
x = df.iloc [:, :-1].values
In [11]:
Х
Out[11]:
array([[
                 39.
                          4.
                                      26.97,
                                              80.
                                                      77.
          0.,
                 46.
                          2.
                                      28.73,
                                              95.
                                                      76.
                                                           ],
       [
                 48.
                                      25.34,
                                              75.
                                                      70.
          1.
                          1.
                                                           ],
                 48.
                          2.
                                      22. ,
                                              84., 86.
                                                          ],
                 44.,
          0.,
                          1.
                                      19.16,
                                              86. , nan],
                                                   , 107. ]])
                 52.
                          2.
                                      21.47,
                                              80.
In [12]:
y = df.iloc [:, :-1].values
In [13]:
У
Out[13]:
array([[
                 39.,
                                      26.97,
                                                     77.
          1.,
                          4. , ...,
                                              80.
                 46.,
          0.,
                          2.
                                      28.73,
                                              95.
                                                      76.
       [
                 48.,
       1.
                          1.
                                      25.34,
                                              75.
                                                      70.
                 48.
                                      22. ,
                                              84.
          0.
                          2.
         0.,
                44.
                          1. , ...,
                                      19.16,
                                              86.,
                                                        nan],
                 52.
                          2. , ...,
                                      21.47,
                                              80., 107.]])
In [16]:
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix
In [28]:
x = np.arange(10).reshape(-1, 1)
Х
Out[28]:
array([[0],
       [1],
       [2],
       [3],
       [4],
       [5],
       [6],
       [7],
       [8],
       [9]])
```

```
In [31]:
y = np.array([0,0,0,0,1,1,1,1,1,1])
У
Out[31]:
array([0, 0, 0, 0, 1, 1, 1, 1, 1, 1])
In [32]:
model = LogisticRegression(solver = 'liblinear', random_state = 0).fit(x,y)
In [33]:
model
Out[33]:
LogisticRegression(random_state=0, solver='liblinear')
In [34]:
model.intercept_
Out[34]:
array([-1.04608067])
In [35]:
model.predict_proba(x)
Out[35]:
array([[0.74002157, 0.25997843],
       [0.62975524, 0.37024476],
       [0.5040632, 0.4959368],
       [0.37785549, 0.62214451],
       [0.26628093, 0.73371907],
       [0.17821501, 0.82178499],
       [0.11472079, 0.88527921],
       [0.07186982, 0.92813018],
       [0.04422513, 0.95577487],
       [0.02690569, 0.97309431]])
In [37]:
model.coef_
Out[37]:
array([[0.51491375]])
In [38]:
model.predict(x)
Out[38]:
array([0, 0, 0, 1, 1, 1, 1, 1, 1, 1])
```

```
In [39]:
model.score(x,y)
Out[39]:
0.9
In [40]:
confusion_matrix(y, model.predict(x))
Out[40]:
array([[3, 1],
       [0, 6]], dtype=int64)
In [46]:
# Improve the model
# regularization strength C equal to 10.0, instead of the default value of 1.0
model = LogisticRegression(solver = 'liblinear', C=10.0, random_state = 0)
model.fit(x,y)
Out[46]:
LogisticRegression(C=10.0, random_state=0, solver='liblinear')
In [47]:
print('Inercept: ', model.intercept_)
print('Coefficient: ', model.coef_)
print('Prediction Probability: ', model.predict_proba(x))
print("X: ", model.predict(x))
Inercept: [-3.51335372]
Coefficient: [[1.12066084]]
Prediction Probability: [[0.97106534 0.02893466]
 [0.9162684 0.0837316 ]
 [0.7810904 0.2189096 ]
 [0.53777071 0.46222929]
 [0.27502212 0.72497788]
 [0.11007743 0.88992257]
 [0.03876835 0.96123165]
 [0.01298011 0.98701989]
 [0.0042697 0.9957303 ]
 [0.00139621 0.99860379]]
X: [0000111111]
In [48]:
#Log Reg with scikit-learn
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix
```

```
In [49]:
x = np.arange(10).reshape(-1,1)
y = np.array([0,1,0,0,1,1,1,1,1,1])
print(x)
print(y)
[[0]]
 [1]
 [2]
 [3]
 [4]
 [5]
 [6]
 [7]
 [8]
 [9]]
[0 1 0 0 1 1 1 1 1 1]
In [50]:
model = LogisticRegression(solver = 'liblinear', C=10.0, random_state = 0)
model.fit(x,y)
Out[50]:
LogisticRegression(C=10.0, random_state=0, solver='liblinear')
In [51]:
p_pred = model.predict_proba(x)
p_pred
Out[51]:
array([[0.81999686, 0.18000314],
       [0.69272057, 0.30727943],
       [0.52732579, 0.47267421],
       [0.35570732, 0.64429268],
       [0.21458576, 0.78541424],
       [0.11910229, 0.88089771],
       [0.06271329, 0.93728671],
       [0.03205032, 0.96794968],
       [0.0161218, 0.9838782],
       [0.00804372, 0.99195628]])
In [52]:
y_pred = model.predict(x)
y_pred
Out[52]:
```

array([0, 0, 0, 1, 1, 1, 1, 1, 1])

```
In [53]:
```

```
conf_m = confusion_matrix(y, y_pred)
conf_m
```

Out[53]:

```
array([[2, 1], [1, 6]], dtype=int64)
```

In [54]:

```
report = classification_report(y, y_pred)
report
```

Out[54]:

```
recall f1-score
                                                                     0
               precision
                                               support\n\n
0.67
          0.67
                  0.67
                                 3\n
                                                       0.86
                                                                 0.86
0.86
             7\n\n
                      accuracy
                                                         0.80
                                                                     10\n
                                    0.76
                                                10\nweighted avg
macro avg
                0.76
                          0.76
                                                                       0.8
                             10\n'
      0.80
                 0.80
```

In [58]:

```
print('x:', x, sep='\n')
print('y:', y, sep='\n', end='\n\n')
print('intercept:', model.intercept_)
print('coef:', model.coef_, end='\n\n')
print('p_pred:', p_pred, sep='\n', end='\n\n')
print('y_pred:', y_pred, end='\n\n')
print('conf_m:', conf_m, sep='\n', end='\n\n')
print('report:', report, sep='\n')
x:
[[0]]
 [1]
 [2]
 [3]
 [4]
 [5]
 [6]
 [7]
 [8]
 [9]]
у:
[0 1 0 0 1 1 1 1 1 1]
intercept: [-1.51632619]
coef: [[0.703457]]
p_pred:
[[0.81999686 0.18000314]
 [0.69272057 0.30727943]
 [0.52732579 0.47267421]
 [0.35570732 0.64429268]
 [0.21458576 0.78541424]
 [0.11910229 0.88089771]
 [0.06271329 0.93728671]
 [0.03205032 0.96794968]
 [0.0161218 0.9838782 ]
 [0.00804372 0.99195628]]
y_pred: [0 0 0 1 1 1 1 1 1 1]
conf m:
[[2 1]
[1 6]]
report:
              precision
                            recall f1-score
                                                support
           0
                    0.67
                              0.67
                                         0.67
                                                      3
                    0.86
                              0.86
                                         0.86
                                                      7
           1
                                         0.80
                                                     10
    accuracy
   macro avg
                    0.76
                              0.76
                                         0.76
                                                     10
                    0.80
                              0.80
                                         0.80
                                                     10
weighted avg
```

```
In [60]:
# Logistic Regression with StatsModels:
import numpy as np
import statsmodels.api as sm
In [68]:
x = np.arange(10).reshape(-1, 1)
y = np.array([0, 1, 0, 0, 1, 1, 1, 1, 1, 1])
x = sm.add constant(x)
model = sm.Logit(y, x)
In [62]:
Х
Out[62]:
array([[1., 0.],
       [1., 1.],
       [1., 2.],
       [1., 3.],
       [1., 4.],
       [1., 5.],
       [1., 6.],
       [1., 7.],
       [1., 8.],
       [1., 9.]])
In [63]:
У
Out[63]:
array([0, 1, 0, 0, 1, 1, 1, 1, 1])
In [69]:
result = model.fit(method='newton')
Optimization terminated successfully.
         Current function value: 0.350471
         Iterations 7
In [70]:
```

```
result.params # Obtain values of b0 and b1
Out[70]:
```

```
array([-1.972805 , 0.82240094])
```

```
In [71]:
result.predict()
Out[71]:
array([0.12208792, 0.24041529, 0.41872657, 0.62114189, 0.78864861,
       0.89465521, 0.95080891, 0.97777369, 0.99011108, 0.99563083])
In [72]:
(result.predict(x) >= 0.5).astype(int)
Out[72]:
array([0, 0, 0, 1, 1, 1, 1, 1, 1])
In [73]:
result.pred_table()
Out[73]:
array([[2., 1.],
       [1., 6.]]
In [74]:
result.summary()
```

Out[74]:

Logit Regression Results

```
Dep. Variable:
                              y No. Observations:
                                                       10
         Model:
                           Logit
                                     Df Residuals:
                                                        8
        Method:
                           MLE
                                         Df Model:
                                                         1
          Date: Wed, 18 Jan 2023
                                    Pseudo R-squ.:
                                                    0.4263
          Time:
                        17:26:13
                                   Log-Likelihood:
                                                   -3.5047
     converged:
                            True
                                          LL-Null:
                                                   -6.1086
Covariance Type:
                       nonrobust
                                      LLR p-value: 0.02248
         coef std err
                          z P>|z| [0.025 0.975]
const -1.9728
               1.737 -1.136 0.256 -5.377
                                           1.431
       0.8224
               1.858
  х1
```

In [75]:

result.summary2()

Out[75]:

Model: Logit Pseudo R-squared: 0.426 11.0094 Dependent Variable: У AIC: Date: 2023-01-18 17:26 BIC: 11.6146 No. Observations: 10 Log-Likelihood: -3.5047 Df Model: LL-Null: -6.1086 1 Df Residuals: 8 LLR p-value: 0.022485 Converged: 1.0000 Scale: 1.0000

No. Iterations: 7.0000

 Coef.
 Std.Err.
 z
 P>|z|
 [0.025
 0.975]

 const
 -1.9728
 1.7366
 -1.1360
 0.2560
 -5.3765
 1.4309

 x1
 0.8224
 0.5281
 1.5572
 0.1194
 -0.2127
 1.8575

In [78]:

df.plot()

Out[78]:

<AxesSubplot:>

In [79]:

df.plot.bar()

Out[79]:

<AxesSubplot:>

In [80]:

df.plot.barh ()

Out[80]:

<AxesSubplot:>

In [81]:

df.plot.hist()

Out[81]:

<AxesSubplot:ylabel='Frequency'>

In [82]:

df.plot.box()

Out[82]:

<AxesSubplot:>

In [85]:

```
# Fixing random state for reproducibility
np.random.seed(19680801)

mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)

# the histogram of the data
n, bins, patches = plt.hist(x, 50, density=True, facecolor='g', alpha=0.75)

plt.xlabel('currentSmoker')
plt.ylabel('HS')
plt.title('Histogram of heartRate ')
plt.text(60, .025, r'$\mu=100,\\sigma=15$')
plt.xlim(40, 160)
plt.ylim(0, 0.03)
plt.grid(True)
plt.show()
```


In []: