Exercise 1. Let X be a noetherian scheme, and \mathcal{F} a coherent \mathcal{O}_X -module.

- (i) Show that the \mathcal{O}_X -module \mathcal{F} is locally free of rank r if and only if the $\mathcal{O}_{X,x}$ -module \mathcal{F}_x is free of rank r for every $x \in X$.
- (ii) Show that \mathcal{F} is locally free of rank one if and only if there is a coherent \mathcal{O}_X -module \mathcal{G} such that $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G} \simeq \mathcal{O}_X$.
- (iii) Assume that X is affine. Show that \mathcal{F} is locally free if and only it there is a coherent \mathcal{O}_X -module \mathcal{G} such that $\mathcal{F} \oplus \mathcal{G}$ is free.
- (iv) Give a counterexample for (iii) when X is not affine.

Exercise 2. Let $f: Y \to X$ be a finite morphism of schemes. Assume that $f_*\mathcal{O}_Y$ is locally free \mathcal{O}_X -module of rank r. Let \mathcal{E} be a locally free coherent \mathcal{O}_Y -module of rank e. Show that $f_*\mathcal{E}$ is a locally free coherent \mathcal{O}_X -module of rank re.

Exercise 3. Let A be a commutative ring, and $S = [t_0, \ldots, t_n]$. Show that every closed subscheme Y of \mathbb{P}^n_A is given by some homogeneous ideal of S (in other words Y is the closed subscheme $\operatorname{Proj} S/I = V_+(I)$ of $\operatorname{Proj} S$).