

Dados vetoriais

Carlos H. Grohmann 2021

Instituto de Energia e Ambiente USP

Dados Vetoriais

 São usados para informações de objetos lineares ou áreas definidas por linhas fechadas (polígonos). Uma linha conecta dois pontos extremos (end points – nós ou vértices), cada um com suas respectivas coordenadas XY ou XYZ. Cada objeto vetorial pode possuir vários (ou nenhum) atributos, armazenados em um banco de dados

Raster x Vetor

- · o mundo é infinitamente complexo
- o conteúdo de um banco de dados espacial representa uma visão limitada da realidade
- o banco de dados espacial é um modelo da realidade
- o usuário vê o mundo real por meio do banco de dados

Um banco de dados pode incluir

- versões digitais de objetos reais (casas, florestas, rios)
- versões digitais de objetos fictícios (inventados - limites políticos)

- computadores são bons para armazenar dados espaciais discretos, maus para dados contínuos
- algumas coisas são entidades discretas não são problema para representar no computador
- outras existem em todo o espaço e variam continuamente (ex. temperatura)
 a variação precisa ser aproximada usando representações discretas

Estruturas Discretas x Contínuas

Às vezes a distinção entre discreto e contínuo não é muito clara...

Modelo Vetorial

- objetos do mundo real representados por pontos, linhas e áreas.
- pontos identificam localizações
- linhas conectam pontos
- arcos linhas orientadas (vetores s.s.)
- polígonos consistem de segmentos de linhas conectados

Modelo Vetorial

Modelo Vetorial

- Objetos definidos por coordenadas planares x-y (cartesianas)
- Precisão das coordenadas virtualmente infinita só depende do equipamento mas a exatidão é limitada
- · linha (arco): sequência de pares x,y
- · nó: pontos extremos das linhas
- vértices: pontos intermediários

Modelo Vetorial 'Spaghetti'

- · Ponto gravado como par de coordenadas x,y
- · Linha é série de pares x,y
- Polígono = série de pares, com último igual ao primeiro (fechamento)
- simples
- · fácil de manipular
- sem topologia
- duplicação de dados

Modelo Vetorial 'Spaghetti'

A, 6 (identifier of polygon and number of vertex)
1, 3 (coordinates of the first vertex)
1.8, 2.6
2.8, 3
3.3, 4
3.2, 5.2
1, 5.2
1, 3 (coordinates of the first vertex again)
B, 1 (identifier of the point and number of vertex)
4, 4
C, 4 (identifier of the line and number of vertex)
1, 2
3.5, 2
4.2, 2.7

5.2, 2.7

Modelo Vetorial de Dicionário de Vértices

 modelo simples, sem duplicação sem topologia

file 1				
vertex	X	Υ		
i	1	3		
ii	1.8	2.6		
iii	2.8	3		
iv	3.3	4		
V	3.2	5.2		
vi	1	5.2		
vii	1	2		
viii	3.5	2		
ix	4.2	2.7		
X	5.2	2.7		
хi	4	4		

file 2 polygon A: i, ii, iii, iv, v, vi point B: xi line C: vii, viii, ix, x

Modelo Vetorial Arco-Nó (topológico)

- Topologia: ramo da matemática que lida com propriedades geométricas
- Relações de vizinhança se mantém depois de transformações
- Topologia é o que distingue os modelos vetoriais mais complexos

Modelo Vetorial Arco-Nó (topológico)

- Registra coordenadas x, y e códigos de relações espaciais
- · Arco: linha com sentido
- · Nó: ponto inicial ou final
- · Vértice: ponto intermediário
- Pode responder a perguntas:
 - Quais estradas conectam com a praça central ?
 - · Quais rios cruzam uma determinada área?
 - Quais unidades geológicas fazem contato com esta
 ?

Modelo Vetorial Arco-Nó (topológico)

File 1. Coordinates of nodes and vertex for all the arcs			
ARC	F_node	Vertex	T_node
1	3.2, 5.2	1, 5.2	1,3
2	1,3	1.8,2.6 2.8,3 3.3,4	3.2, 5.2
3	1,2	3.5,2 4.2,2.7	5.2,2.7

File 2. Arcs topology				
ARC	F_node	T_node	R_poly	L_poly
1	1	2	External	A
2	2	1	A	External
3	3	4	External	External

File 3. Polygons topology		
Polygon	Arcs	
A	1, 2	

File 4. Nodes topology	
Node	Arcs
1	1,2
2	1,2
3	3
4	4
5	5
	$\overline{}$

Banco de Dados

 O banco de dados ideal em SIG é aquele que maximiza as propriedades singulares de cada feição ao mesmo tempo em que minimiza o volume de dados necessários

Tipos de atributos do BD

Categórico (nomes)

- nominal
 - · sem ordenamento inerente
 - · tipos de uso do solo, nomes de cidades
- ordinal
 - · ordenamento inerente
 - · classe de drenagem, classe de rodovia

normalmente codificado por números, mas não é possível realizar aritimética

Tipos de atributos do BD

Numéricos

- intervalo
 - · sem "zero"
 - · não existe "o dobro de"
- · razão
 - · existe um "zero"
 - razões fazem sentido ("o dobro de")

números inteiros ou decimais (ponto flutuante)

Tipos de Banco de Dados

- · tabular ("flat file") dados em um único arquivo
- · hierárquico
- rede (network)
- · relacional

Banco de Dados - Flat File

Tabela de atributos de polígonos

Da mesma forma tabelas para pontos e linhas

Banco de Dados - Flat File

Armazenar dados de províncias e distritos na mesma tabela é ineficiente – repetição dos dados de província em cada distrito

Banco de Dados - Relacional

Banco de dados relacional permite mais eficiência

GIS file formats

Raster, vector, TIN, etc. are generic models for representing spatial information in digital form

- GIS vendors implement these models in file formats or structures which may be
 - Proprietary: useable only with that vendor's software (e.g. ESRI coverage)
 - Published: specifications available for use by any vendor (e.g ESRI shapefile)
 - Transfer formats: intended only for transfer of data Between different vendor's systems (e.g. AutoCAD .dxf format, or SDTS)
 - Between different users of same vendors' software (e.g. ESRI's E00 format for coverages)

GIS file formats

One GIS vendor may be able to read another file format

- By translation, whereby format is converted externally to vendors own format Usually requires user to carry out conversion prior to use of data
- On-the-fly, whereby conversion is accomplished internally and "automatically" No user action needed, but usually no ability to change data
- Natively, or transparently, which normally implies
 No special user action needed Ability to read and write (change or edit) the data

Commom file formats

ESRI (ArcGIS)

- Coverages (vector-proprietary)
- E00 ("E-zero-zero") for coverage exchange between ESRI users
- · Shapefiles (vector-published) .shp
- Geodatabase (proprietary) .gdb
 Based on current object-oriented software technology
- · GRID (raster)

Commom file formats

AutoCAD

- AutoCAD .DWG (native)
- AutoCAD .DXF for digital file exchange)

Intergraph/Bentley

- · Bentley MicroStation .DGN
- Intergraph/Bentley .MGE

ESRI Shapefile

Is a 'logical' file which comprises several (at least 3) physical disk files, all of which must be present

- · layer.shp (geometric shape described by XY coords)
- layer.shx (indices to improve performance)
- layer.dbf (contains associated attribute data)
- · layer.sbn
- layer.sbx
- · layer.prj

Geopackage

Banco de dados em formato SQLite com extensão .gpkg

- raster + vetor
- 1 único arquivo
- http://www.geopackage.org
- http://switchfromshapefile.org