

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>Р3114</u> К ра	аботе допущен	Студент <u>Нуруллаев Даниил</u>	Работа
выполнена			
Преподаватель	Коробков Макси	м Петрович	
Отчет принят			

Рабочий протокол и отчет по лабораторной работе №1

Исследование распределения случайной величины

- 1. Цель работы.
 - 1. Провести многократные измерения определенного интервала времени.
 - 2. Построить гистограмму распределения результатов измерения.
 - 3. Вычислить среднее значение и дисперсию полученной выборки.
 - 4. Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией.
- 2. Задачи, решаемые при выполнении работы.
 - 1) Провести 50 измерений, устанавливая промежуток времени в 5с. Результат каждого измерения заносить во второй столбец Табл. 1;
 - 2) Построим гистограмму, выполняя следующие действия:
 - взять tmin и tmax из Табл. 1.
 - разбить промежуток на m равных интервалов, где m должно быть близко к VN (N число измерений). Измеренные значения tmin и tmax должны попадать внутрь «крайних» интервалов; Границы выбранных интервалов занесем в первый столбец Табл. 2
 - подсчитаем число результатов измерений ΔNi , из Табл. 1, попавших в каждый из интервалов Δt , заполнив таким образом второй столбец Табл. 2;

- **вычислим опытное значение плотности вероятности** (третий столбец Табл. 2);
- построим на миллиметровой бумаге гистограмму.
- 3) По данным Табл. 1 вычислим выборочное значение среднего $\langle t \rangle N$ и выборочное среднеквадратичное отклонение σN ;
- 4) Запишем результат «в подвал» Табл.1;
- 5) По формуле (5) вычислим максимальное значение плотности распределения ρmax , соответствующее $t = \langle t \rangle$, занесём его в «подвал» Табл. 1;
- 6) Найдем значения t, соответствующие серединам выбранных ранее интервалов, занесем их в четвертый столбец Табл. 2. Для этих значений, используя параметры $\langle t \rangle N$ и σN в качестве $\langle t \rangle$ и σ , вычислим значения плотности распределения ρ (t), занесем их в пятый столбец Табл. 2. Нанесем все расчетные точки на график, на котором изображена гистограмма, и проведем через них плавную кривую;
- 7) Проверим, насколько точно выполняется в наших опытах соотношение между вероятностями и долями $\Delta N \sigma N, \Delta N 2 \sigma N, \Delta N 3 \sigma N$. Для этого **вычислим границы интервалов** для найденных вами значений $\langle t \rangle N$ и σN , занесем их во второй и третий столбцы Табл. 3;
- 8) По данным Табл. 1 **подсчитаем** и занесем в Табл. 3 **количество \Delta N измерений**, попадающих в каждый из этих интервалов, и отношение $\Delta N/N$ этого количества к общему числу измерений. Сравним их с соответствующими нормальному распределению значениями P вероятности;
- 9) Рассчитаем среднеквадратичное отклонение среднего значения;
- 10) Найдем табличное значение коэффициента Стьюдента $t\alpha$,N для доверительной вероятности α = 0,95. Запишем доверительный интервал для измеряемого в работе промежутка времени

3. Объект исследования.

Промежуток времени в размере 5 секунд

4. Метод экспериментального исследования.

Многократное измерение времени, заданного стрелочным секундомером, при помощи цифрового секундомера.

- 5. Рабочие формулы и исходные данные.
 - 1)Плотность вероятности p(t):

$$\rho\left(t\right) = \lim_{\substack{N \to \infty \\ \Delta t \to 0}} \frac{\Delta N}{N \Delta t} = \frac{1}{N} \frac{dN}{dt}.$$

2) Плотность вероятности p(t) метод измерения 2:

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right).$$

3) Максимальная плотность вероятности:

$$\rho_{\text{max}} = \frac{1}{\sigma\sqrt{2\pi}}.$$

4) Коэффициент $t_{\alpha,N}$ – коэффициент Стьюдента, где α - доверительная вероятность:

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$$
,

5)Формула вероятности попадания точки в заданный отрезок:

$$P(t_1 < t < t_2) = \int_{t_1}^{t_2} \rho(t) dt \approx \frac{N_{12}}{N}$$

6)Стандартные вероятности попадания точки в интервалы $\sigma 1$, $\sigma 2$, $\sigma 3$ для нормального распределения:

$$t \in [\langle t \rangle - \sigma, \langle t \rangle + \sigma], \qquad P_{\sigma} \approxeq 0.683$$

$$t \in [\langle t \rangle - 2\sigma, \langle t \rangle + 2\sigma], \quad P_{2\sigma} \approxeq 0.954$$

$$t \in [\langle t \rangle - 3\sigma, \langle t \rangle + 3\sigma], \quad P_{3\sigma} \approxeq 0.997$$

7) Среднее t:

$$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + \dots + t_N) = \frac{1}{N} \sum_{i=1}^N t_i,$$

8) Доверительная вероятность

$$\alpha = P(t \in [\langle t \rangle - \Delta t, \langle t \rangle + \Delta t]).$$

9) Среднеквадратичное отклонение среднего значения

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

10) Выборочное среднеквадратичное отклонение

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}.$$

6. Измерительные приборы.

№ π/ π	HOUMAUAGOUII	Тип прибора	Используемы й диапазон	Погрешност ь прибора
1	Секундомер	Электронны й	5 секунд	±0,005c
2	Секундомер	Механически й	5 секунд	±0,1c

7. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*).

Смотреть excel таблицу

$$t_{min}$$
=4,71c t_{max} =5,27c

8. Расчет результатов косвенных измерений (*таблицы, примеры расчетов*).

Смотреть excel таблицу

Примеры расчетов:

Примечание: для расчетов, выполняемых многократно, указан пример вычисления для n=1.

$$<\mathsf{t}>\mathsf{n} = \frac{\sum_{i=1}^{N} t_i}{N} = \frac{\sum_{i=1}^{50} t_i}{50} = 4,988c$$

$$\mathsf{t} 1 - <\mathsf{t}>\mathsf{n} = 4,71 - 4,988 = -0,278c$$

$$(\mathsf{t} 1 - <\mathsf{t}>\mathsf{n})^2 = (4,71 - 4,988)^2 = 0,077284c^2$$

$$\sigma_n = \sqrt{\frac{\sum_{i=1}^{N} (t_i - < t > n)}{N-1}} = \sqrt{\frac{\sum_{i=1}^{50} (t_i - < t > n)}{49}} = 0,128047c$$

$$\sigma_n^2 = 0,128047^*0,128047 = 0,01639603c^2$$

$$\Delta N_1/\mathsf{N}\Delta \mathsf{t} = 2 \ / \ (50 * 0,08) = 0,5c^{-1}$$

$$p_{max} = \frac{1}{\sigma_n * \sqrt{2\pi}} = \frac{1}{0,084 * \sqrt{2*3,1415}} = 3,16c^{-1}$$

$$\mathsf{t} 1 = \frac{t1_{min} + t1_{max}}{2} = \frac{4,71 + 4,79}{2} = 4,75c$$

$$\rho \ (\mathsf{t} 1) = \frac{1}{\sigma_n * \sqrt{2\pi}} * \exp\left(\frac{(t1 - < t >)^2}{2\sigma_n^2}\right) = \frac{1}{0,128 * \sqrt{2*3,1415}} *$$

$$\exp\left(\frac{(4,75 - 4.988)^2}{2*0,128 * 0,128}\right) = 0,53c^{-1}$$

$$\frac{\Delta N_{\sigma 1}}{N} = 34/50 = 0,68$$

$$\frac{\Delta N_{\sigma 2}}{N} = 48/50 = 0,96$$

$$\frac{\Delta N_{\sigma 3}}{N} = 50/50 = 1$$

9. Расчет погрешностей измерений (*для прямых и косвенных измерений*). Смотреть excel таблицу

CKO:

$$\sigma \langle t \rangle = \sqrt{\frac{\sum_{i=1}^{N} (t_i - \langle t \rangle n)}{N(N-1)}} = \sqrt{\frac{\sum_{i=1}^{50} (t_i - \langle t \rangle n)}{50*49}} = 0,012c$$

Коэффициент Стьюдента:

$$t_{\alpha,N} = t_{0.95;50} = 2,01$$
(табличное значение)

Доверительный интервал случайной погрешности:

$$\Delta_{\overline{t}} = t_{\alpha,N} \cdot \sigma \langle t \rangle = 2,01 * 0,012 = 0,024c$$

Смотреть png картинку

- Сравнение реальной гистограммы, идеальной гистограммы, графика функции Гаусса для вычисленных значений.
- 10. Окончательные результаты.

Рассмотрим полученные значения вероятностей попадания точек в стандартные интервалы $\sigma 1$, $\sigma 2$, $\sigma 3$. Все три значения указывают на схожесть полученного распределения с нормальным: $0.68 \approx 0.683$; $0.96 \approx 0.954$; $1.0 \approx 0.997$.

Сравним получившиеся гистограммы :диаграмма, полученная в результате измерений достаточно похожа на гистограмму нормального распределения (с такой же дисперсией и матожиданием).

11. Выводы и анализ результатов работы.

После сравнения гистограммы и графика функции Гаусса. Также проверив и сравнив вероятность попадания измеряемой величины в $\sigma 1$; $\sigma 2$; $\sigma 3$ с стандартными значениями для функции Гаусса, можно понять, что полученное распределение данной случайной величины проходит по закону нормального

распределения, но из-за погрешности гистограмма немного различна от графика функции Гаусса.

Погрешности в Гистограмме вызваны тем что я замеряя время не могу точно определить сколько прошло времени, здесь вина человеческого фактора.

10	ti, c	ti - <t></t>	n,c	(ti - <t>n)^2, c^2</t>	Границы инте	ервалов с	ΔΝ	ΔN/NΔt, c^-1	t	p, c		
1	4	,71	-0,278	0,077284		4,71	L					
2		,78	-0,208			4,79		0,5	4,75	0,553805	5	
3		,79	-0,198			4,79		4.75		4 455044		-
5		,79 ,82	-0,198 -0,168			4,87 4,87		1,75	4,83	1,455211		-
6		,83	-0,108			4,95		2,25	4,91	2,588047	,	
7		,85	-0,138			4,95		,		,		
8	4	,86	-0,128	0,016384		5,03	17	4,25	4,99	3,115269)	
9	4	,86	-0,128			5,03						
10		,88	-0,108			5,11		1,25	5,07	2,538026	5	-
11 12		,88 4,9	-0,108 -0,088			5,11 5,19		1,5	5,15	1,399502	,	-
13		,91	-0,088			5,19		1,3	5,15	1,333302	-	
14		,91	-0,078			5,27		1	5,23	0,52231		
15	4	,91	-0,078									
16		,91	-0,078				ı	1нтервал с				
17		,92	-0,068		40.27		ОТ	до	ΔΝ	ΔN/N	Р	
18 19		,92 ,95	-0,068 -0,038		$(t)N \pm \sigma n$ $(t)N \pm 2\sigma n$		4,8599 4,7319					
20		,95	-0,038		$(t)N \pm 3\sigma n$		4,7513				1 0,997	
21		,96	-0,028		(-)		,,				-,	
22		,97	-0,018									
23		,98	-0,008									
24		,99	0,002									-
25 26		,99 ,99	0,002									
27		,99	0,002									
28		,99	0,002									
29		5	0,012									
30	5	,01	0,022	0,000484								
31		,02	0,032									-
32		,02 ,02	0,032									
34		,02	0,032 0,032									
35		,02	0,032									
36	5	,03	0,042	0,001764								
37	5	,04	0,052	0,002704								
3	5	5,03		0,042	0,001764							
3	7	5,04		0,052	0,002704							
3	8	5,05		0,062	0,003844							_
3	9	5,08		0,092	0,008464							_
4		5,1		0,112	0,012544							_
4		5,11		0,122	0,014884							_
4		5,12		0,132	0,017424							_
4		5,14		0,152	0,023104							_
4		5,14		0,152	0,023104							_
4		5,17		0,182	0,033124							_
4		5,17		0,182	0,033124							_
4		5,21		0,222	0,049284							_
4		5,23		0,242	0,058564							_
49		5,24		0,252	0,063504							_
5		5,27		0,232	0,079524							_
	<t></t>			i - <t>n) , c</t>		σ, c	Δ	t				_
	10									0.00		_
		4,988		0,00	3,11564951	0,128	04/			0,08		_