DATENVERARBEITUNG

TR 440 Große Befehlsliste

Lfd.Nr.	Datum	Seite	Befehl	Spalte	Berichtigung

	10.2.70	2		3	Bei einem Teil der letzten Auflage ist unter " 12 Takte" der Text verstümmelt.
					Bei einem Teil der letzten Auflage ist unter "Werk" Befehls- und Rechenwerk aufgeführt so gilt die Zeit für beide Werke. Tragen Sie als letzte Zeile ein: Für genaue Zeitberechnung siehe "TR 440 Befehls-Lexikon".
		4	BSS	Bemerkungen	In der 2. Zeile muß es heißen: sa ist ohne Bedeutung, muß aber angegeben werden.
		5	CNZ	Wirkung	In diese Spalte ist vor der ersten Zeile einzutragen: Voraussetzung: $\langle A \rangle$ = 0, f Bits
		6	QBR QCR }	Bemerkungen	Bitte eintragen: (nicht zugreifbares Register)
		13	PDP	Werk	Der Befehl belegt auch das Befehlswerk; bitte in dieser Spalte zusätzlich ein B eintragen.
		15	MABI	Bemerkungen	statt 2 Sternchen bitte 4 Sternchen eintragen:
					unter den Fußnoten einkleben:
6					****für c die Sprungbefehle von Seite 12 u. 13 (mit Ausnahme Jer Befehle NULL, FDF. 335 und WB) bei erfüllter Sprungbedingung ist ein Sprung in eine andere Großseite möglich.
		19	Zentral- code	Feld 107	In dieses Feld ist das Zeichen "inverser Schrägstrich" (\) einzutragen.
				Feld 35 u.36	Die Zeichen "T1" und "T2" sind zu tilgen; die Felder bleiben leer.
		23	TRX	im Text	Es muß in der ersten Zeile heißen: Von den Bits 9 - 12 darf höchstens eines = L sein,
		29	ZTO	Code	Der Befehlscode wird ZTO geschrieben (Ziffer O statt Buchstabe O)
		Umschlag innen	M MFU		Auf Anregung eines Benutzers ist zu empfehlen, in der Spalte Int. (Interncode) bei diesen Befehlen ein Sternchen zu machen und als Fußnote einzukleben:
			XB XC XCN RX MRX	Int.	*Diese Befehle benutzen gemeinsame Interncodes. Unterschiede liegen im Adressenteil siehe Seiten 22/23 "Spezifikationen-Intern".
			. 7		
				- 1	
				-	

TR 440 Große Befehlsliste

zum Programmieren von Operatoren in der Programmiersprache TAS

Einleitung

Dem Programmierer des Digital-Rechners TR 440 soll mit dieser Liste eine handliche Arbeitsunterlage zum Programmieren von Operatoren gegeben werden. In knapper Tabellenform stehen hier die wesentlichen Informationen zur Verfügung. Auf weitergehende Einzelheiten ist, um eine gute Übersichtlichkeit zu erzielen, verzichtet worden. Die hier nicht angegebenen Einzelheiten sind dem "TR 440 - Befehlslexikon" zu entnehmen.

Diese erste Ausgabe soll erweitert werden und zu einem späteren Zeitpunkt weitere Informationen und Arbeitshilfen bieten.

2 Bedeutung der Spalten Erklärung der Zeichen 3 Transportbefehle 4-6 Festkomma-Arithmetik 7 Gleitkomma-Arithmetik 8 Boolesche Operationen Halbwort-Arithmetik Teilwort-Arithmetik Index-Arithmetik 10 Setzen und Löschen 10,11 12, 13 Sprünge Modifizieren 14 Ersetzen (und modifizieren) 15 Aufbereitung 16, 17 Tabelle durchsuchen 17 Zentralcode 19 Potenzen von 2 20 Konvertierungstafel 21 22 Interncode - Externcode Internspezifikationen 23 Wortstruktur 24 Blockschaltbild 25 29 Alphabetische Liste der Befehle

Seite

Inhaltsverze ichn is

Transporte

Bedeutung der Spalten

Bezeichnung	Code	adr	Wirkung	mod2	R	veränderliche Spalten	(M)	Al BÜ	orm TK	Werk	Takte	Int	Bemerkungen
1	2	3	4	(5)	6		8)	9	(10)	10	12		(4)
Erläuterungen des Mnemocodes	EMC	n	Hauptwirkung	+	x	(7)	×	E>	<u>≠</u> 1		22		Spezielles
	 	$\stackrel{\downarrow}{=}$			~			<u></u>			<u></u>	AD AD	Spezielles

* 15

*** Fußnoten

1 Bezeichnung: Hier steht die Befehlsbezeichnung. Die Buchstaben die zum Mnemocode führen, sind unterstrichen.

2 Code: Externcode (mnemotechnische Abkürzung der Befehlsbezeichnung)

(3) adr: Adressenteil des Befehls

Wirkung: Hier wird die hauptsächliche Wirkung des Befehls angegeben. In den veränderlichen Spalten () werden auch evtl. auftretende Nebenwirkungen angegeben.

5) mod2: Vom vorhergehenden Befehl kann ein Modifikator 2. Art (mod2) vorhanden sein. Es ist hier angegeben wie dieser Modifikator auf den beschriebenen Befehl einwirkt.

> = mod2 wird während der Abrufphase zum Adressenteil des Befehls addiert. Anschließend wird mod2 gelöscht. adr := adr + mod2 mod2:= 0

sp = Der Befehl wird während der Ausführungsphase speziell modifiziert. Die Art der Modifizierung ist bei diesen Befehlen angegeben.

mod2 := 0

Ein x in dieser Spalte zeigt an, daß der Befehl als Zweitcode beim Registerbefehl R zugelassen ist.

veründerliche Spalten: Diese Spalten sind je nach Wirkung des Befehls unterschiedlich benannt. Im allgemeinen definieren diese Spalten den Inhalt der angegebenen Register nach Ausführung des Befehls. Bei Spalten ohne Eintragung und Registern die nicht aufgeführt sind, erfolgt keine Änderung des betreffenden Inhaltes.

Folgende Schreibweisen werden verwendet: Bei allen Registern mit Typenkennung und bei den Speicherzellen wird vor einem Semikolon die Typenkennung angegeben (t_n ; = Typenkennung der Speicherzelle n).

Steht nach dem Semikolon und vor einem Komma O bzw. v, so wird damit ausgesagt, daß das Register links mit Null oder vorzeichengleich aufgefüllt wird (t_{m} ;v, $\langle m \rangle =$ In dem Register, das in dieser Spalte angegeben ist, steht der Inhalt der Speicherzelle m, links mit Vorzeichen aufgefüllt; beim Transport wird die TK aus der Speicherzelle m mit in dieses Register gebracht).

Ist eine Klammer in zwei Registerspalten eingetragen, so steht in beiden Registern der gleiche Wert.

M: Für das Markenregister ist durch x angegeben, daß bei diesem Befehl das Markenbit berücksichtigt wird. Als Wirkung gehört dazu, daß beim Transport eines Zahlwortes in ein Register das erste Bit dem zweiten angeglichen wird. Ist das Zahlwort markiert, so wird außerdem das Markenregister M gesetzt.

 $\langle M \rangle := \langle M \rangle \forall \langle n \rangle_1$ a = beliebiges Register $\langle a \rangle_1 := \langle a \rangle_2$

O TK-Alarm: Diese Spalte gibt an, bei welcher Bedingung ein Typenkennungs-Alarm auftritt.

(B), das Rechenwerk (R) oder beide belegt.

Takte: Hier wird die Ausführungszeit in Takten angegeben.
Es handelt sich zum Teil um Mittelwerte. Sind unter
"Werk" Befehls- und Rechenwerk aufgeführt, so gilt
die Zeit für beide Werke. Für das Rechenwerk kann
in vielen Fällen eine kürzere Zeit benötigt werden,
die aber dann ohne Vorteil ist. Ist unter Werk nur
das Rechenwerk aufgeführt, dann können während der
angegebenen Zeit parallel dazu alle Befehle ablaufen, die nur das Befehlswerk ansprechen.

Zu den angegebenen Zeiten kommen, für einfache Zeitberechnungen nachfolgend diese Zeiten hinzu, die in der Abrufphase liegen und das Befehlswerk belegen:

Takte (Mittelwert)

	Befehlsabruf	8
	belegt Rechenwerk	
	Modifizierung 1. Art	8
	Modifizierung 2. Art (wenn bei "mod2: +")	8
	bei Operand aus dem Speicher	8
	bei erfüllter Sprungbed.	
,	ama Zaithea-lann an an bloman	-

Für genauere Zeitberechnungen s. TR 440 Befehls-Lexikon.

- 13) Int.: Diese Spalte nennt den Interncode des Befehls in zwei Sedezimalen.
- (4) Bemerkungen: Hier sind spezielle Vermerke und Erläuterungen zum Befehl aufgeführt.
- (15) Fußnoten: Sternchen in den Spalten werden in den Fußnoten erläutert.

Erklärung der Zeichen

	Bezeichnung der Register im Rechenwerk:		Zeichen und ihre Bedeutung:		Indizes für Teile eines Wortes:
A Q D H Y M A,Q H,Q	Akkumulator Quotientenregister Multiplikandenregister Hilfsregister Schiftzähler Markenregister doppeltlanges Register A und Q doppeltlanges Register H und Q Bezeichnung der Register im Befehlswerk:	:=:	Die links stehende Zielgröße ergibt sich aus der rechts stehenden Quellengröße Beispiel: (A) := (n) Der Inhalt von A ergibt sich aus dem Inhalt von n. Links- und rechtsstehende Größen werden miteinander vertauscht. Beispiel: (A) :=: (H) Die Inhalte von A und H werden vertauscht.	()v ()t ()u (A)1 (A)41-48 (n)9-24 (n)1,2	Vorzeichen vom Inhalt Typenkennung vom Inhalt Marke vom Inhalt Bit 1 im Register A Bits 41 bis 48 im Register A Bits 9 bis 24 in der Speicherzelle (Drittelwort) Bits 1 und 2 in der Speicherzelle zur Zählung der Bits siehe Seite Wortstruktur
B F	Bereitadressenregister Befehlsfolgeregister 24 Bits	t _x ;	Typenkennung im Register $\mathbf x$ oder in der Speicherzelle $\mathbf x$		Logische Verknüpfungen:
X K U	Indexbasisregister 22 Bits Merklichterregister Unterprogrammregister Bits	1,1; 0,	Typenkennung in beiden Registern eines doppeltlangen Registers der linke Teil des Registers ist mit Null aufge- füllt	۸	UND-Verknüpfung (Konjunktion) a := b ^ c 0
	Variable:	ν,	der linke Teil des Registers ist vorzeichen- gleich aufgefüllt	٧	ODER-Verknüpfung (Disjunktion)
mod1 mod2 op adr	Modifikator erster Art oder in einem nicht adressierbaren Register B oder in einem nicht adressierbaren Register Operationscode eines Befehls 8 Bits Inhalt des Adressenteils eines Befehls (16 Bits auf 24 Bits erweitert)	< >	Inhalt eines Registers, einer Speicher- oder Indexzelle Beispiel: (A) Inhalt des Registers A (einschließ- lich Typenkennung)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
n	Speicheradresse eines Ganzwortes nur geradzahlige Adressen, ungerad- zahlige werden um 1 vermindert.	< >,< >	Inhalt von zwei getrennten Registern Beispiel: (A),(Q) Inhalt von A und Q	‡	Antivalenz-Verknüpfung (exklusives ODER) $\frac{a := b \neq c}{0 0 0}$
m z i	Speicheradresse eines Halbwortes Zahl oder Operand	< , >	Inhalt zweier Register, die zusammengefaßt sind Beispiel: (A,Q) Inhalt der zu einem doppelt langen Re-		O T T O O T T
p s	Indexadresse Parameter Spezifikation (s evtl. unterteilt in s ₁ ,s ₂ ,) Zweitcode (Code für den Zweitbefehl)	1 1	gister vereinigten Register A und Q Betrag einer Größe, Beispiel: (n) Betrag vom Inhalt der Speicherzelle n	٦	Negation $ \begin{array}{c c} a := \neg \ b \\ \hline 0 & L \\ L & 0 \end{array} $

Transportbefehle

Bezeichnung	Code	adr	Wirkung	mod:	,	⟨ A ⟩	(Q)	(H)	(D)	(Y)	⟨₿⟩	(M)			Int.	Bemerkungen
Bringe (nach A)	В	n	⟨A⟩ := ⟨n⟩	+	x	$t_n; \langle n \rangle$						x	R	2	70	
Bringe <u>u</u> nverändert	BŲ	n	⟨A⟩ := ⟨n⟩	+	x	$t_n; \langle n \rangle$							R	2	D3	unverändert bei jeder TK
Bringe und reserviere	BR	n	$\langle H \rangle := \langle A \rangle$ $\langle A \rangle := \langle n \rangle$	+	x	t_n ; $\langle n \rangle$		t _A ;(A)				x	R	5	76	
Bringe negativ	BN	n	⟨A⟩ :=-⟨n⟩	+	x	$t_n; -\langle n \rangle$						х	R	5	75	
Bringe negativ und reserviere	BNR	n	⟨H⟩ := ⟨A⟩ ⟨A⟩ :=-⟨n⟩	+	x	$t_n ; -\langle n \rangle$		t _A ; (A)				х	R	5	77	
Bringe Betrag	ВВ	n	⟨A⟩ := ⟨n⟩	+	x	$t_n; \langle n \rangle $						х	R	5	74	
Bringe nach Q	BQ	n	⟨Q⟩ := ⟨n⟩	+	x		$t_n;\langle n \rangle$					х	R	3	72	
Bringe nach D	BD	n	⟨D⟩ := ⟨n⟩	+	x				$t_n;\langle n \rangle$			x	R	3	71	
Bringe nach H	ВН	n	⟨H⟩ := ⟨n⟩	+	x			$t_n;\langle n \rangle$				x	R	3	73	
Bringe mach Q und bringe (mach A)	вав	n	$\langle A \rangle := \langle n \rangle$ $\langle Q \rangle := \langle n \rangle$	+	×	t_n ; $\langle n \rangle$	$t_n;\langle n \rangle$					x	R	2	DA	
Bringe zwei Wörter	BZ	n	$\langle A \rangle := \langle n \rangle$ $\langle Q \rangle := \langle n+2 \rangle$	+		$t_n; \langle n \rangle$	$t_{n+2};\langle n+2\rangle$					х	B R	15	D9	
Bringe zwei Wörter negativ	BZN	n	⟨A⟩ :=-⟨n⟩ ⟨Q⟩ :=-⟨n+2⟩	+		$t_n ; -\langle n \rangle$	t _{n+2} ;-(n+2)					х	ВR	15	D1	
Bringe Teilwort	ВТ	n	$\langle A \rangle_{\mathbf{x}} := \langle n \rangle_{\mathbf{x}} \text{ falls } \langle Q \rangle_{\mathbf{x}} = 0$ $\langle A \rangle_{\mathbf{x}} := 0 \text{ falls } \langle Q \rangle_{\mathbf{x}} = L$	+	x	t _n ; (s. Wirk.) (A) wird um p	Stellen rech	ts gesch	iftet,	O nac	ngezoge	n	R	7 +2p	F6	p: Anzahl der L, die rechts- bündig in Q stehen. x: 1,2,,48
<u>B</u> ringe <u>n</u> ächstes <u>Z</u> eichen	BNZ	it ig	$\langle A \rangle := 0$, Zeichen gemäß a und b rechtsb. $\langle A \rangle_{\mathfrak{t}} := \langle a \rangle_{\mathfrak{t}}$ b $:= b + 1$ wenn b $<$ d b $:= +0$ $\langle i_{R} \rangle := \langle i_{R} \rangle + 2$ wenn b $=$ d	sį		t _a ; 0, (s. Wirk.)			undefi	niert	⟨i _L ⟩ _{a1t}		ΒR	41	E 6	a: (i _R) + mod2 lauf. Adr. eines Wortes der Liste b: (i _L) ₁₇₋₂₄ lauf. Nummer eines Zeichens im Wort(0,1,) d: (48/f)-1 max. Zeichennummer f: (i _L) ₉₋₁₂ Anzahl der Bits pro Zeich. (4,6,8 oder 12) andere Bits von(i _L) bedeutungslo
Bringe zwei Halbwörter	BZ2	m	⟨A⟩ := ⟨m,m+1⟩	+		t_m ; $\langle m, m+1 \rangle$							B R	10	D8	
Bringe Halbwort	В2	m	⟨A⟩ := ⟨m⟩	+	х	t_u ; $0,\langle m \rangle$							R	9	6E	
Bringe Halbwort mit Vorzeichen	B2V	m	⟨A⟩ := ⟨m⟩	+	х	1; v, <m></m>							R	10	6F	
Bringe <u>Halbwort</u> mit <u>Vorzeichen negativ</u>	B2VN	m	⟨A⟩ :=-⟨m⟩	+	x	1;-(v, (m))							R	12	67	
Bringe Drittelwort	В3	m	⟨A⟩ := ⟨m⟩ ₉₋₂₄	+	x	1; 0,(m) ₉₋₂₄							R	9	6C	
Bringe Drittelwort mit Vorzeichen	B3V	m	$\langle A \rangle := \langle m \rangle_{9-24}$	+	x	1; v, (m) 9-24							R	10	6D	

 $\langle A \rangle$

Bringe aus Leitblock	BLEI	p	⟨A⟩ := ⟨⟨BL⟩ • 2 ⁸ + p⟩	+	$t; \langle \langle BL \rangle^{\bullet} 2^{\bullet} + p \rangle$	B R	13	В	p: +0255 BL = Leitadressenregister
Bringe (und setze) Steuerbits (und Sperren)	BSS	S _ရ S _ရ	<pre>A> := Steuerbits falls a_g=L</pre>		2; Steuerbits falls a _g =L	ВК	3	F	B s _R :Bits a _p bis a ₁₆ s _R :Bits a ₁₇ bis a ₂₄

Bezeichnung	Code	adr	Wirkung	mod2 R	(n	⟩ _e ⟨n⟩	(n+2)	(A)		(M)	Alar BÜ	n TKW	irk I	akte	Int.	Bemerkungen
Bringe und <u>l</u> ösche	BL	n	⟨A⟩ := ⟨n⟩ ⟨n⟩ := +0	+		0;0		$t_n;\langle n \rangle$				В	R 1	7	во	unverändert bei jeder TK
Bringe und speichere	вс	n	⟨A⟩ :=:⟨n⟩	+	(n)	t _A ;(A)		$t_n;\langle n \rangle$		x	2	Е	R 1	3	А3	
	•								(x)	(U)		_				
Bringe und speichere Indexbasis	всі	n	⟨X⟩ :=:⟨n⟩ ₃₋₂₄ ⟨U⟩ :=:⟨n⟩ _{4 1-48}			3;0, <x>,0,<u></u></x>			⟨n⟩ ₃₋₂₄	(n)41-48		В	1+	7x 66	в6	<pre>x = Anzahl der zurückge- speicherten Indexreg.</pre>
Spei <u>c</u> here	С	n	⟨n⟩ := ⟨A⟩	+	0	$t_A;\langle A \rangle$					>	В	R	8	80	
Speichere unverändert	cu	n	⟨n⟩ := ⟨A⟩	+	$\langle A \rangle$	t _A ; (A)						В	R	8	DO	unverändert bei jeder TK
Speichere und bringe Reserve	CR	n	⟨n⟩ := ⟨A⟩ ⟨A⟩ := ⟨H⟩	+	0	t_A ; $\langle A \rangle$		t _H ;(H)			>	В	R	9	81	
Spei <u>c</u> here <u>n</u> egativ	CN	n	⟨n⟩ :=-⟨A⟩	+	0	t _A ;-⟨A⟩					2	В	R	9	84	
Speichere Betrag	СВ	n	(n) := (A)	+	0	$t_A : \langle A \rangle $					2	В	R	9	85	
Spei <u>c</u> here <u>m</u> arkier <u>t</u>	CMT	n	⟨n⟩ := ⟨A⟩	+	L	t _A ;(A)					≥ 2	,3 B	R	8	82	
Speichere mit Marke aus Register	CMR	n	⟨n⟩ := ⟨A⟩	+	(M)	t _A ; (A)					> 2	,3 B	R	8	83	
Spei <u>c</u> here mit <u>M</u> arke aus Spei <u>c</u> her	СМС	n	⟨n⟩ := ⟨A⟩	+	(n),	t _A ;(A)					≥ 2	,3 B	R 1	3	A2	
Spei <u>c</u> here aus <u>Q</u>	୯ହ	n	⟨n⟩ := ⟨Q⟩	+	0	t _Q ;(Q)					2	В	R	9	87	
Spei <u>c</u> here aus <u>D</u>	CD	n·	⟨n⟩ := ⟨D⟩	+	0	t ₀ ;(D)					2	В	R	9	86	···
Spei <u>c</u> here aus <u>H</u>	СН	n	⟨n⟩ := ⟨H⟩	+	0	tn ;〈H〉					2	В	R	9	8F	
Spei <u>c</u> here <u>z</u> wei Wörter	cz	n	⟨n⟩ := ⟨A⟩ ⟨n+2⟩ := ⟨Q⟩	+	0	$t_A;\langle A \rangle$	t _Q ;⟨Q⟩				≥	B	R 1	6	DВ	
				1 1	⟨A⟩	um p Stellen li	/irkung nks im K	reis ge	schiftet	(D)	1 I	ı	1			an Angell den T. die angelt.
Spei <u>c</u> here <u>T</u> eilwort	CT	n	$\langle n \rangle_x := \langle A \rangle_x$	+	(n) (n) (A)	x:= 〈A〉x für 〈Q〉 x:= 〈n〉x für 〈Q〉 im Kreis zurück	x = 0 x = L geschift	et		$t_n;\langle n \rangle$		E	R 2	2 2p	F7	p: Anzahl der I, die rechts- bündig im Reg. Q stehen x: 1,2,,48
						(A)(n)	⟨B⟩	⟨ Y ⟩	(Q)	(D)						
Spei <u>c</u> here <u>n</u> ächstes <u>Z</u> eichen	CNZ	il i _R	rechte f Bits von $\langle A \rangle$ in a gemäß b eingesetzt $\langle A \rangle$:= $\langle a \rangle$ $\langle A \rangle_t$:= $\langle a \rangle_t$ b := b + 1 wenn b < d b := +0 $\langle i_R \rangle$:= $\langle i_R \rangle$ +2 wenn b = d	ga		t _a ; ⟨a⟩	⟨i _L ⟩ _{alt}	undef.	abzusp. Zeichen aus A, gem.b geschif tet; andere Bits=0	undef.		Ι	R	55	E7	a: (i _R) + mod2 lauf. Adr. eines Wortes der Liste b: (it) ₁₇₋₂₄ lauf. Nummer eines Zeichens im Wort (0,1,) d: (48/f)-1 max. Zeichennummer f: (it)=-12 Anzahl der Bits pro Zeich. (4,6,8 oder 12) andere Bits (it) bedeutungslos
Spei <u>c</u> here <u>Halb</u> wort	C2	m	⟨m⟩ := ⟨A⟩ ₂₅₋₄₈	+		(M) (A) ₂₅₋₄₈						1	R	15	AO	Das Halbwort wird unverändert eingesetzt
Spei <u>c</u> here <u>Drittel</u> wort	С3	m	⟨m⟩ _{g-24} :=⟨A⟩ ₃₃₋₄₈	+		⟨m⟩ ₉₋₂₄ ⟨A⟩ ₃₃₋₄₈]	R	15	A 1	Das Drittelwort wird unver- ändert eingesetzt

Sprünge

Transportbefehle (Fortsetzung)

Bezeichnung	Code	adr	Wirkung	mad2 R	R	(B)	(i)	<1 ₂ >	(i,)	(₅₁)	$\langle m \rangle$	(K)	Werk	Takte	Int.	Bemerkungen
Register <u>t</u> ausch	RT	æ	⟨s ₁ ⟩:=:⟨s ₂ ⟩	+	<	$\langle s_1 \rangle$ und	⟨s₂⟩ wer	den ver	tauscht	einschl. Th			R	4	97	$s_1, s_2: A,Q,D$ oder H; $s_1 \neq s_2$
Index: Bringe	ΧВ	i	⟨B⟩ := ⟨i⟩			<i>)</i>							В	1	08	Bits 9 - 11 = OLO
Index: Speichere	ХC	i	⟨i⟩ := ⟨B⟩		T		⟨B⟩						В	3	18	Bit 9 = 0
Index: Speichere negativ	XCN	i	⟨i⟩ :=-⟨B⟩		T		- ⟨B⟩						В	5	10	Bit 9 = L
Tausch-Transport in Indexzellen	TTX	i _L i _R	⟨B⟩ := ⟨i _L ⟩ ⟨i _R ⟩:=:⟨i _L ⟩			(i _L)		⟨i _R ⟩	(i _L)				В	11	OD	
Transport aus Indexzelle nach Indexzelle	TXX	iı i _R	⟨i _L ⟩:= ⟨i _R ⟩ ⟨B⟩ := ⟨i _R ⟩			⟨i _R ⟩		⟨i _R ⟩					В	4	oc	
Transport aus Indexzelle nach Rechenwerk	TXR	si	⟨s ₁ ⟩:=±⟨i⟩ ⟨B⟩ :=±⟨i⟩			±(i)				1;v,±⟨i⟩			В В	5	8c	s_1 : A,Q,D und H s_2 : leer: + N: - s_3 : statt ±
Transport aus Rechenwerk nach Indexzelle	TRX	si	$\langle i \rangle$:= $\pm \langle s_1 \rangle_{25-48}$ $\langle B \rangle$:= $\pm \langle s_1 \rangle_{25-48}$			±(s ₁)	25-48						ВR	6	9C	s ₁ : A,Q,D,H oder leer s ₂ : leer: + N : -} statt ±
<u>Transport aus Speicher nach B</u>	тсв	m	⟨B⟩ := ⟨m⟩	+ 2	x	<m></m>							В	2	39	
Transport aus B nach Speicher	TBC	m	⟨m⟩ := ⟨B⟩								⟨B⟩		В	7	07	
Bringe und speichere Merklichter	BCL	m	⟨m⟩ ₁₇₋₂₄ :=: ⟨K⟩								<k></k>	(m) ₁₇₋₂₄	В	18	06	$\langle m \rangle_{1-16}$ bleiben erhalten
Wortgruppentransport vorwärts Wortgruppentransport rückwärts		i, i,	$\langle\langle i_L \rangle + 2k \rangle := \langle\langle i_R \rangle + 2k \rangle$ $\langle B \rangle := \langle i_L \rangle + 2(\langle B \rangle - 1)$ $\langle\langle i_L \rangle - 2k \rangle := \langle\langle i_R \rangle - 2k \rangle$ $\langle B \rangle := \langle i_L \rangle - 2(\langle B \rangle - 1)$			$\langle i_R \rangle = n :$ $\langle i_L \rangle = n :$ $\langle B \rangle = L :$ $\langle i_R \rangle = h :$	iederste iederste änge der	Adresse Adresse Wortgru resse d	des Qu des Zi ppen in es Quel	Ganzwörter dellenbereic delbereichs Ganzwörter lenbereichs bereichs	n = a		В	21a +10 21a +10	27	k; 0, 1, 2, 3,, (B-1) a: Anzahl der Ganzwörter
Bequemes <u>B</u> ringen aller <u>R</u> egister	QBR	n	Die Register werden un- verändert gebracht			⟨D⟩ := ·	$\langle n \rangle_{1-24}$ t_{n-2} ; $\langle n-t_{n-4}$; $\langle n-t_{n-6}$; $\langle n-t_{n$	4> 6>	<pre></pre>	L, falls 0, falls (n-10)1-24 (n-10)25-3 (n-10)33-4 (n-10)41-4	(n-10). s	t=1 oder 3 t=0 oder 2	1	84	FE	T: Prüfregister
Bequemes Speichern aller Register	QCR	n	Die Register werden unver- ändert abgespeichert			$\langle n \rangle_t$ $\langle n \rangle_{1-24}$ $\langle n \rangle_{25-3}$ $\langle n \rangle_{33-4}$ $\langle n \rangle_{41-4}$	$o := \langle X \rangle$	M>	(n+4) (n+6) (n+8)	:= t _A ; (A) := t _Q ; (Q) := t _D ; (D) := t _H ; (H) := 2; (T),0			ВБ	55	FF	T: Prüfregister
									Spezifik	ationen						
<u>F</u> eichen <u>k</u> ettenverarbeitung <u>Version Bringen</u> <u>Version Speichern</u>	ZK	s i	(A)bzw.(A,Q):= p Oktaden gem.a;ggf.verkürzen zu Tetraden (a):=(A)bzw.(A,Q)p Okt. ggf.verlängern aus Tetraden	-		s2:leer s3:leer s4:leer s5: p	um p /V = nich /R = Okta = Anza	denadr. (<u>I</u> nkre t verän denadre	ringen nicht (ment) dern/ve sse in Oktade		taden- /oder	-Tetraden) Register nr. s4 = R) ^B F	min. 122	FC	$\begin{array}{l} a=\langle i \rangle_{\texttt{Wenn}} \ s_{4}=\texttt{leer} \\ a=\langle D \rangle_{\texttt{25-48}} \ \texttt{wenn} \ i=\texttt{D} \\ a=\langle H \rangle_{\texttt{25-48}} \ \texttt{wenn} \ i=\texttt{H} \\ a=\langle B \rangle \ \ \texttt{wenn} \ i=\texttt{B} \\ a: \ \texttt{Oktadenadresse} \end{array}$

			A	D,	117	(2)	- 13	M			
Transportiere Oktaden $\frac{\text{wenn } \langle H \rangle_{t} = 3}{\text{wenn } \langle H \rangle_{t} = 2}$	TOK z	(a+x):=(q+x)Quellgeb.z Okt. (a+6)≥a (a+x):=(q+y)Quellgeb.6 Okt. i.ein Ganzwort q=3n+0	3;Inhalt d.letzter Zielgebiet 3;Inhalt d.letzter Zielgebiet	,	+	3;0	letzte Halbw. adr.i. Zielg.	х	B R mi	p1 in. FD	z: 165535 a: (H) ₁₋₂₄ =0kt.adr.Zielgebiet q: (H) ₂₅₋₄ =0kt.adr.Quellgebiet x: 0,1,2,,z-1 y: 0,1,2,3,4,5, 0, 1, 2,

Fastkomma-Arithmatik

Rezeichnung	Code	adr	Wirkung	mod2	R	А	(Q	D.	n	Υú	M B	j ik	Werk	Takte	Int.	Bemerkungen
Addiere	A	n	$\langle A \rangle := \langle A \rangle + \langle n \rangle$	+	x	$t_{nax};\langle A \rangle + \langle n \rangle$		$t_n;\langle n \rangle$		2	: ;	2	R	8	42	
Addiere Betrag	AB	n	$\langle A \rangle := \langle A \rangle + \langle n \rangle $	+	х	$t_{n,n};\langle A \rangle + \langle n \rangle $		$t_n;\langle n\rangle$,	E	<u> </u>	R	8	40	
Addiere im Speicher	AC	n	$\langle n \rangle := \langle n \rangle + \langle A \rangle$	+				$t_{max};$ $\langle n \rangle + \langle A \rangle$	$t_{nnx};$ $\langle n \rangle + \langle A \rangle$,	.	}	ВR	17	43	
<u>Sub</u> trahiere	SB	n	$\langle A \rangle := \langle A \rangle - \langle n \rangle$	+	x	$t_{nn};\langle A \rangle - \langle n \rangle$		$t_n;\langle n \rangle$,	, ;	<u> </u>	R	8	46	
Subtrahiere Betrag	SBB	n	$\langle A \rangle := \langle A \rangle - \langle n \rangle $	+	x	$t_{max};\langle A \rangle - \langle n \rangle $		$t_n;\langle n\rangle$,	;	}	R	8	41	
Subtrahiere im Speicher	SBC	n	⟨n⟩ := ⟨n⟩ - ⟨A⟩	+				$t_{n,x};$ $\langle n \rangle - \langle A \rangle$	$t_{mnx};$ $\langle n \rangle - \langle A \rangle$,	c ;	^	B R	17	47	
Subtrahiere invers	SBI	n	⟨A⟩ := ⟨n⟩ - ⟨A⟩	+	x	$t_{aax};\langle n \rangle - \langle A \rangle$		$t_n;\langle n \rangle$,	;	2	R	8	44	
Subtrahiere von D	SBD	n	⟨A⟩ := ⟨D⟩ - ⟨n⟩	+	x	$t_{max};\langle D \rangle - \langle n \rangle$,	,	2	R	11	45	
Multipliziere mit Rundung	MLR	n	⟨A⟩ := ⟨A⟩ • ⟨n⟩	+	x	1;((A)*(n))*	1;+0	$t_n;\langle n \rangle$		+0	r	≠1	R	57	55	
Multipliziere negativ mit Rundung	MNR	n	⟨A⟩ :=-⟨A⟩ • ⟨n⟩	+	x	1;(-{A}·{n})*	1;+0	$t_n;\langle n \rangle$		+0	c	≠1	R	57	59	
Multipliziere akkumulierend mit Rundung	MAR	n	$\langle A \rangle := \langle A \rangle \cdot \langle n \rangle + \langle H \rangle$	+	x	1;(〈A〉·〈n〉)*+〈H〉	1;+0	$t_n;\langle n \rangle$		+0 2	c i	≥ ≠1	R	67	57	
Multipliziere akkumulierend negativ m. Rund.	MANR	n	$\langle A \rangle := -\langle A \rangle \cdot \langle n \rangle + \langle H \rangle$	+	x	1;(-{A}·{n})*+{H}	1;+0	$t_n;\langle n\rangle$		+0 :	c :	<u></u> ≱1	R	67	5B	
Dividiere	D V	n	$\langle A \rangle := \langle A \rangle : \langle n \rangle$	+	x	1; (A): (n)	1;Rest•2 ⁴⁶	1;+0		+0	c *	* ≠1	R	220	60	Operanden, Quotient und Rest
Dividiere invers	DVI	n	$\langle A \rangle := \langle n \rangle : \langle A \rangle$	+	×	1; (n): (A)	1;Rest·2 ⁴⁶	1;+0		+0	ĸ *	* ≠1	R	222	62	sind als echte Brüche betrach-
Dividiere doppelt lang	D V D	n	$\langle A \rangle := \langle A, Q \rangle : \langle n \rangle$	+	х	1;{A,Q}:{n}	1;Rest•2 ⁴⁸	1;+0		+0 :	, *	* ≠1	R	228	61	tet (Komma links)
		ı	ı	1		(A,Q)		7		1 1	,	1		1	,	1
Addiere in AQ	AQ	n	$\langle A,Q \rangle := \langle A,Q \rangle + \langle n \rangle$	+	x	1,1;(A,Q)+(n)		$t_n;\langle n \rangle$		-	x	≥ ≠1	R	17	7E	operand und Ergebhis.
Subtrahiere in AQ	SBQ	n	$\langle A,Q \rangle := \langle A,Q \rangle - \langle n \rangle$	+	x	1,1; (A,Q)-(n)		$t_n;\langle n\rangle$	<u> </u>		x i	≥ ≠1	R	17	7F	⟨A⟩, kann ≠ ⟨Q⟩,
Multipliziere	ML	n	$\langle A,Q \rangle := \langle A \rangle \cdot \langle n \rangle$	+	×	1,1;(A)•(n)		$t_n;\langle n \rangle$		+0 :	x	≠ 1	R	55	54	■ prgepure:
Multipliziere negativ	MLN	n	$\langle A,Q \rangle := -\langle A \rangle \circ \langle n \rangle$	+	×	1,1;-〈A〉·〈n〉		$t_n;\langle n \rangle$		+0 :	ĸ	≠ 1	R	55	58	$\langle A \rangle_{\mathbf{v}} = \langle Q \rangle_{\mathbf{v}}$
Multipliziere akkumulierend	MLA	n	$\langle A,Q \rangle := \langle A \rangle \cdot \langle n \rangle + \langle H,Q \rangle$	+	x	1,1;〈A〉•〈n〉+〈H,Q〉		$t_n;\langle n \rangle$		+0 :	x	≥ ≠1	R	66	56	(H)t und (Q)t ohne Bedeutung für die Ausführung des Befehls
Multipliziere akkumulierend negativ	MAN	n	$\langle A,Q \rangle := -\langle A \rangle \circ \langle n \rangle + \langle H,Q \rangle$	+	x	$1,1;-\langle A \rangle \cdot \langle n \rangle + \langle H,Q \rangle$		$t_n;\langle n \rangle$		+0	x ?	≥ ≠1	R	66	5A	Operand: $\langle H \rangle_{\mathbf{v}} \text{ kann } \neq \langle Q \rangle_{\mathbf{v}}$ Ergeb. : $\langle A \rangle_{\mathbf{v}} \text{ kann } \neq \langle Q \rangle_{\mathbf{v}}$
			4			(A		-								•
Addiere Adressenteil	AA	z	⟨A⟩ := ⟨A⟩ + z	+		$TK = 0: 0: \langle A \rangle \cdot 16^{\pm z}$ $TK = 1: 1: \langle A \rangle \pm v \cdot z$		1:0.2 1:v.2		-+		<u>}</u>	R	13	98	$TK = 0: z \le \frac{2^7}{2^{23}}$ $TK = 1: z \le \frac{2^{23}}{2^{23}}$ nach Modifiz.
Subtrahiere Adressenteil	SBA	z	⟨A⟩ := ⟨A⟩ - z	+	$\ $	$TK = 2: 2:\langle A \rangle_{1-32}$ $TK = 3: 3:\langle A \rangle_{2-32}$	(A)33-48±Z)				7	<u> </u>	R	13	99	

^{*} gerundet ** Voraussetzung: bei DV, DVD: $|\langle A \rangle| < |\langle n \rangle|$

im anderen Fall: Gleitkommaergebnis, BÜ-Alarm : | (n) | < | (A) |

Gleitkomma-Arithmetik

Bezeichnung	Code	adr	Wirkung	mod2	? R	〈A 〉	(n)	(D)	(Q)	(Y){		∖larm SÜ TK	Werk	Takte	Int.	Bemerkungen
Gleitkomma addiere	GA	n	$\langle A \rangle := \langle A \rangle + \langle n \rangle$	+	х	0; \(\lambda\rangle + \lambda n\rangle *		$t_n;\langle n \rangle$	0;+0	**		> ≠0	$\overline{}$	28	$\overline{}$	
Gleitkomma addiere Betrag	GAB	n	$\langle A \rangle := \langle A \rangle + \langle n \rangle $	+	x	0;(A)+ (n) *		$t_n;\langle n \rangle$	0;+0	**	x	> ≠0	R	28	52	
<u>G</u> leitkomma <u>a</u> ddiere im Spei <u>c</u> her	GAC	n	$\langle n \rangle := \langle A \rangle + \langle n \rangle$	+			0; \(\lambda\rangle + \lambda n \rangle *	0; \(\lambda\rangle + \lambda n \rangle *	0;+0	**	x	> ≠0	BR	37	44	
Gleitkomma <u>sub</u> trahiere	GSB	n	⟨A⟩ := ⟨A⟩ - ⟨n⟩	+	x	0;(A)-(n)*		$t_n;\langle n \rangle$	0;+0	**	х	> ≠0	F	28	4F	
Gleitkomma subtrahiere Betrag	GSBB	n	$\langle A \rangle := \langle A \rangle - \langle n \rangle $	+	х	0;(A)- (n) *		$t_n;\langle n \rangle$	0;+0	**	х	> #0	R	28	53	
Gleitkomma subtrahiere im Speicher	GSBC	n	⟨n⟩ := ⟨n⟩ - ⟨A⟩	+	Ī		0;(n)-(A)*	0;(n)-(A)*	0;+0	**	х	> ≠0	BR	37	4E	
Gleitkomma subtrahiere invers	GSBI	n	⟨A⟩ := ⟨n⟩ - ⟨A⟩	+	x	0;(n)-(A)*		$t_n;\langle n \rangle$	0;+0	**	х	> #0) F	28	48	
Gleitkomma subtrahiere von D	GSBD	n	⟨A⟩ := ⟨D⟩ - ⟨n⟩	+	x	0;(D)-(n)*			0;+0	**	х	> ≠ 0) F	30	4C	
Gleitkomma multipliziere	GML	n	⟨A⟩ := ⟨A⟩ • ⟨n⟩	+	x	0;{A}•{n}*		$t_n;\langle n\rangle$	0;+0	**	х	> ≠0	F	54	5E	
Gleitkomma <u>mul</u> tipliziere <u>n</u> egativ	GMLN	n	$\langle A \rangle := -\langle A \rangle \cdot \langle n \rangle$	+	x	0;-{A}•{n}*		$t_n;\langle n \rangle$	0;+0	**	х	> ≠0) F	54	5C	
Gleitkomma <u>mul</u> tipliziere <u>a</u> kkumulierend	GMLA	n	$\langle A \rangle := \langle A \rangle \cdot \langle n \rangle + \langle H \rangle$	+	x	0; \(\lambda\) • \(\lambda\) + \(\lambda\) *		$t_n ; \langle n \rangle$	0;+0	**	х	> ≠0) F	97	5F	
Gleitkomma multipliziere akkum. negativ	GMAN	n	$\langle A \rangle := -\langle A \rangle \cdot \langle n \rangle + \langle H \rangle$	+	x	0;-{A}•{n}+{H}*		$t_n;\langle n \rangle$	0;+0	**	х	> ≠(F	97	5D	
<u>G</u> leitkomma <u>d</u> ividiere	GDV	n	⟨A⟩ := ⟨A⟩ : ⟨n⟩	+	x	0;(A):(n)*		0;+0	0;+0	**	х	> ≠0	R	213	64	
Gleitkomma dividiere invers	GDVI	n	⟨A⟩ := ⟨n⟩ : ⟨A⟩	+	x	O;(n):(A)*		0;+0	0;+0	**	x	> #0	R	216	66	
Addiere unnormalisiert	AU	n	⟨A⟩ := ⟨A⟩ + ⟨n⟩	+	х	0; \(\lambda\rangle + \lambda n\rangle		$t_n;\langle n \rangle$	0;+0	+0	x	> ≠0	R	26	49	
Subtrahiere unnormalisiert	SBU	n	⟨A⟩ := ⟨A⟩ - ⟨n⟩	+	x	0; (A)-(n)		t _n ;(n)	0;+0	+0	х	> ≠0	F	26	4D	
Bilde <u>rez</u> iproken Wert	REZ.	n	⟨A'⟩ := 1 : ⟨n⟩	+	х	0;1:\n*		0;+0	0;+0	**	х	> ≠0) R	213	65	
•						(A,Q)			: H*-							
Doppelte Genauigkeit: Addiere	DA	n	$\langle A,Q \rangle := \langle A,Q \rangle + \langle n,n+2 \rangle$			0,1;〈A,Q〉+〈n,n+2)*		1;+0	1;+0	**	x	> 2,	3 ві	106	FO	
Doppelte Genauigkeit: Subtrahiere	DSB	n	$\langle A,Q \rangle := \langle A,Q \rangle - \langle n,n+2 \rangle$			0,1;(A,Q)-(n,n+2)*		1;+0	1;+0	**	x	> 2,	3 BI	106	F1	$\langle A \rangle_{t} = \langle n \rangle_{t} = 0$
Doppelte Genauigkeit: Multipliziere	DML	n	$\langle A,Q \rangle := \langle A,Q \rangle \cdot \langle n,n+2 \rangle$			0,1;〈A,Q〉·〈n,n+2〉		1;+0	1;+0	长长	х	> 2,	3 BI	243	F2	$\langle Q \rangle_{t} = \langle n+2 \rangle_{t} = 1$
Gleitkomma <u>mul</u> tipliz. auf <u>d</u> oppelte Genauigk.	MLD	n	$\langle A,Q \rangle := \langle A \rangle \cdot \langle n \rangle$		x	0,1;(A)•(n)*		1;+0	1;+0	**	х	> #	ОВ	R 64	F3	
			•		1	₹ A ½										
$\underline{\underline{A}} \underline{d} \underline{d} \underline{d} \underline{e} \underline{A} \underline{d} \underline{r} \underline{e} \underline{s} \underline{e} \underline{n} \underline{t} \underline{e} \underline{t} \underline{f} \underline{f} \underline{f} \underline{f} \underline{f} \underline{f} \underline{f} f$	AA	z	$\langle A \rangle := \langle A \rangle \cdot 16^z$	+		0; (A)•16 ^{+z}		1;0,z				>	F	13	98	nur bei ⟨A⟩ _t = O; bei TK ≠ O
$\underline{\underline{Sub}}$ trahiere $\underline{\underline{A}}$ dressenteil (TK = 0)	SBA	z	⟨A⟩ := ⟨A⟩ ° 16 ^{-z}	+		0; (A)•16 ^{-z}		1;0,z				>	F	13	99	siehe Festkomma-Arithmetik. z < 2° nach Modifizierung

^{*} normalisiert und gerundet

^{**} Anzahl der Binärstellen um die das Ergebnis normalisiert wurde. Falls Ergebnis = ±0 oder Exponentenunterlauf: ⟨Y⟩ := +0

Boolesche Operationen

Bezeichnung	Code	adr	Wirkung	mod2	R	(A)	(D)	Aldım ⟨M⟩BÜ Werk Takte Int. Bemerkungen
<u>VET</u>	VEL	n	$\langle A \rangle := \langle A \rangle \lor \langle n \rangle$	+	x	$t_{max};\langle A \rangle V \langle n \rangle$	$t_n;\langle n \rangle$	x R 5 68
AUT	AUT	n	⟨A⟩ := ⟨A⟩ ‡ ⟨n⟩	+	x	$t_{max};\langle A \rangle \neq \langle n \rangle$	$t_n;\langle n \rangle$	x R 5 69
ET	ET	n	$\langle A \rangle := \langle A \rangle \wedge \langle n \rangle$	+	x	$t_{max};\langle A \rangle ^{\wedge} \langle n \rangle$	$t_n;\langle n \rangle$	x R 5 6A
Setze <u>zus</u> ammen	zus	n	$\langle A \rangle_x := \langle A \rangle_x : \text{ für } \langle H \rangle_x = 0$ $\langle A \rangle_x := \langle n \rangle_x : \text{ für } \langle H \rangle_x = L$	+	x	t _{max} (_A , _n); (s. Wirkung)	$t_n;\langle n \rangle$	x R 5 6B
<u>VEL</u> Adressenteil	VLA	z	⟨A⟩ := ⟨H⟩ ∨ z	+		tн ;⟨H⟩∨(O,z)	1;0,z	R 8 88]
AUT Adressenteil	ATA	z	⟨A⟩ := ⟨H⟩ ≢ z	+		tн;⟨H⟩≢(O,2)	1;0,z	R 8 89 z: 065535
ET Adressenteil	ETA	z	⟨A⟩ := ⟨H⟩ ∧ _Z	+		tн ; (Н)^(О, z)	1;0,z	R 8 8A

Halbwort-Arithmetik

						(A)	(Q)	(D)	(Y)					
Addiere Halbwort	A2	m	$\langle A \rangle := \langle A \rangle_{25 \rightarrow 48} + \langle m \rangle$	+	х	$t_A; v, (\langle A \rangle_{25-4e} + \langle m \rangle)$		t _A ;+0.		>	F	14	7C	
Subtrahiere <u>Halbwort</u>	SB2	m	$\langle A \rangle := \langle A \rangle_{25-48} - \langle m \rangle$	+	х	$t_A; v, (\langle A \rangle_{25-4e} - \langle m \rangle)$		t _A ;+0		>	F	14	7D	
Multipliziere Halbwort	M2	m	⟨A⟩ := ⟨A⟩ • ⟨m⟩	+	х	t_A ; $\langle A \rangle \circ \langle m \rangle$	t _A ;+0	t, ;+0	÷0	≥	F	49,	5 7A	beim Ergebnis entfallen
Multipliziere Halbwort negativ	M2N	m	⟨A⟩ :=-⟨A⟩ • ⟨m⟩	+	x	$t_A ; -\langle A \rangle \cdot \langle m \rangle$	t,;+0	t,;+0	+0	2	F	49,	5 78	die linken 24 Bits
Multipliziere Halbwort mit Rundung	M2R	m	$\langle A \rangle := \langle A \rangle \cdot \langle m \rangle$ gerundet	+	x	$t_A;(\langle A \rangle \cdot \langle m \rangle)$ gerundet	t,;+0	t,;+0	+0		F	36,	5 7B	Beim Ergebnis entfallen
Multipliziere Halbwort negativ mit Rundung	M2NR	m	$\langle A \rangle := -\langle A \rangle \cdot \langle m \rangle$ gerundet	+	х	t_{A} ; (- $\langle A \rangle \cdot \langle m \rangle$) gerundet	t,;+0	t,;+0	+0		F	36,	5 79	die rechten 24 Bits und

Teilwort-Arithmetik

		(A)	⟨ D ⟩
Addiere Teilwort	AT $n \langle A \rangle := \langle A \rangle_x + \langle n \rangle_x$	Hilfsgröße qr := um p Stellen rechts im Kreis geschifteter (Q) + X Hilfsgröße nr := um p Stellen rechts geschif-	stehenden L-Bits F4 Falls \langle Q \rangle = LLL dann p = 0
<u>Sub</u> trahiere <u>T</u> eilwort	SBT $n \langle A \rangle := \langle A \rangle_x - \langle n \rangle_x$	+ x Das Nullfeld von qr schneidet in nr und (A) Teilwörter aus; diese werden addiert bzw. sub- trahiert. Die anderen Stellen werden auf O ge- löscht. t _A ; Ergebnis	

Index-Arithmetik

Bezeichnung	Code	adr	Wirkung	mod2	? R	⟨B⟩	i>	(i _R)	Werk	Takte	I⊓t.	Bemerkungen
Erhöhe B um Speicher	нвс	m	$\langle B \rangle := \langle B \rangle + \langle m \rangle$		x	⟨B⟩+⟨m⟩			В	6,5	3C	
<u>Vermindere B</u> um Speicher	VBC	m	$\langle B \rangle := \langle B \rangle - \langle m \rangle$		x	⟨B⟩-⟨m⟩]		В	8,5	15	
Erhöhe B um Adressenteil	нва	z	⟨B⟩ := ⟨B⟩ + z			⟨B⟩+ z			В	7,5	11	0 CF 575
Vermindere B um Adressenteil	VBA	z	⟨B⟩ := ⟨B⟩ - z	T		⟨B⟩- z			В	8,5	13	z: 065 535
Erhöhe B um Parameter mal Indexzelle	нврх	рi	$\langle B \rangle := \langle B \rangle + p \cdot \langle i \rangle$			⟨B⟩+ p•⟨i⟩			В	5,5 p +3	OF	p: ±1±15
Er <u>h</u> öhe Inde <u>x</u> zelle um <u>P</u> arameter	нхр	p i	$\langle B \rangle := \langle i \rangle + p$ $\langle i \rangle := \langle i \rangle + p$			⟨i⟩ + p	⟨i⟩ + p		В	10,5	20	p: ±0±127
Erhöhe Indexzelle um Indexzelle	нхх	iL iR	$\langle B \rangle := \langle i_R \rangle + \langle i_L \rangle$ $\langle i_R \rangle := \langle i_R \rangle + \langle i_L \rangle$			(i♠)+(i。)		$\langle i_R \rangle + \langle i_L \rangle$	В	14,5	2E	
Vermindere Indexzelle um Indexzelle	vxx	il i _R	⟨B⟩ := ⟨i _R ⟩ - ⟨i _L ⟩ ⟨i _R ⟩:= ⟨i _R ⟩ - ⟨i _L ⟩			(i _R >-(i _L >		⟨i _R ⟩-⟨i _L ⟩	В	14,5	2F	
Register und Indexzelle	RX		$\langle B \rangle := \langle i \rangle \pm \langle s_1 \rangle$ Falls $s_3 = C$: $\langle i \rangle := \langle i \rangle \pm \langle s_1 \rangle$			⟨i⟩±⟨s ₁ ⟩ ⟨i⟩±⟨s ₁ ⟩	nur fælls $s_3 = C$ $\langle i \rangle \pm \langle s_1 \rangle$		В R	12	* 8D	s ₁ : A,Q,D,H (rechtes Halbwort) oder B s ₂ : leer = positiv + N = negativ - s ₃ : leer = nicht zurückspeich. C = zurückspeichern

^{*}siehe Internspezifikation auf Seite 23

Setzen und Löschen

					(A)	⟨ H ⟩	⟨s₂ \						
Bringe Adressenteil	ВА	z	⟨A⟩ := z	+	1;v,z					R	2	8E	
Bringe Adressenteil und reserviere	BAR	z	⟨H⟩ := ⟨A⟩ ⟨A⟩ := z	+	1; v ,z	$t_A;\langle A \rangle$				R	3	DC	_
Bringe Adressenteil negativ	BAN	z	⟨A⟩ := -z	+	1;-(v,z)					R	5	DF	z: 065535
Bringe Adressenteil negativ und reserviere	BANR	z	⟨H⟩ := ⟨A⟩ ⟨A⟩ := -z	+	1;-(v,z)	$t_A;\langle A \rangle$				R	5	DD	
<u>L</u> ösche <u>R</u> egister	LR	s	$\langle s_2 \rangle$:= +0 $\langle s_2 \rangle_t$:= s_1	+			s ₁ ;+0			R	3	9 A	s ₁ : 0,1,2 oder 3 (TK) s ₂ : A,Q,D und H
Lösche in A	LA	8	⟨A⟩ _s := 0 ⟨M⟩ := 0 nur bei s = M	+	s = F: \(\A \)_1. s = 2: \(\A \)_2. s = E: \(\A \)_4. s = 3: \(\A \)_3. s = V: \(\A \)_1. s = M: \(\M \) s = H: \(\A \)_1. s = T: \(\A \)_1.	-40 := 0 -24 := 0 1-40 := 0 3-40 := 0 -2 := 0	<pre>≜ linkes ≜ Exponer ⊜ rechtes ≙ Vorzeic ≘ Marken</pre>	Halbwort itenteil i Drittel chenstellen register	Die Spezifika- tionen F bis M können kombi- niert verwendet werden H und T nur einzeln od. mit M erlaubt	R	4	8E	

Bezeichnung	Code	adr	Wirkung	mod2	R 〈B〉	<;>	(υ)	>				Werk	Takte	Int.	Bemerkungen
Index: Bringe Adressenteil	ХВА	z	⟨B⟩ := z		z						·	В	1	01	
Index: Bringe Adressenteil negativ	XBAN	z	⟨B⟩ := -z		-z			\neg				В	2	19	z: 065535
Setze Index	zx	рi	<ia>(i) := p <a>⟨B⟩ := p</ia>		v,p	v,p					• 11	В	6	1A	p: ±0±127
Setze <u>U</u> nterprogrammregister	zu	i	⟨U⟩ := i	+			i			-		В	1	3E	
					n /.	· s _p · .		· M							
Setze Typenkennung im Register	ZTR	s	$\langle s_2 \rangle_t := s_1$ $\langle M \rangle := L, \text{ falls } s_3 = M$	+		s ₁	L, fa	lls s	s ₃ = M			R	5	92	s ₁ : 0,1,2,3 oder leer s ₂ : A,Q,D,H oder leer s ₃ : leer oder M
Setze Typenkennung O	ZTO	n	⟨n⟩ _t := 0	+	0							В	13	с8	
Setze Typenkennung 1	ZT1	n	⟨n⟩ _t := 1	+	1							В	13	C 9	
Setze Typenkennung 2	ZT2	n	⟨n⟩ _t := 2	+	2			 -				В	13	CA	
Setze Typenkennung 3	ZT3	n	⟨n⟩ _t := 3	+	3						<u></u>	В	13	СВ	
				·	⟨n⟩	·n "		K	К	x 7	Alarm TK	•		<u> </u>	
<u>Lösche Speicher</u>	LC	n	$\langle n \rangle := +0$ $\langle n \rangle_{\mathbf{n}} := \langle n \rangle_{\mathbf{n}}$	+	t _n ; +0	⟨ n⟩						В	13	33	
Lösche markiert	LMT	n	⟨n⟩ := +0 ⟨n⟩ _n := L	+	tn; +0	L					2,3	В	13	32	
<u>L</u> ösche <u>M</u> arke im Spei <u>c</u> her	LMC	n	$\langle n \rangle_n := 0$	+		0					2,3	В	13	31	
Setze <u>M</u> arke im Spei <u>c</u> her	ZMC	n	⟨n⟩ _m := L	+	7	L					2,3	В	13	30	
Lösche und setze Merklichter	LZL	SL SR	$\langle K \rangle_{a_R} := O$ $\langle K \rangle_{a_L} := L$					L	o			В	3	10	s: Merklichter 0,1,2,3,4,5,6,7 und 8 0 bedeutet kein Merklicht
<u>N</u> egiere Merk <u>l</u> ichter	NL	s	$\langle K \rangle_s := \langle K \rangle_s$ invertient					inver	tiert			В	3	12	(O muß angegeben werden)
Setze <u>I</u> ndexbasis	ZI	m	⟨X⟩ := ⟨m⟩ ₃₋₂₄							(m) ₃₋₂₄		В	17 x + 58	В7	x: Anzahl der Indexregister, die zurückgespeichert werden

U-Alarm Werk Takte Int. Bemerkungen

Sprünge

Code adr Wirkung

						3-24	1-194		ι= /						
<u>Null</u> befehl .	NULL	z	keine Wirkung		x							В	1	00	Nur übliche Erhöhung des Befehlsfolgeregisters. z: ohne Bedeutung, muß angegeben werden.
<u>Wartebefehl</u>	₩B	z	z Uhrimpulse warten (Uhrimpulse alle 10µs									вя	s.Be mer- kung	F8	z: 065535 Takte: bei z = 0: 3 Takte bei z ≠ 0: (10z-5)µs
<u>S</u> pringe	s	m	⟨F⟩ ₈₋₂₄ := m	+		m		-				В	1	36	
Springe nach Ersetzung	SE	m	$\langle F \rangle := \langle m \rangle + mod2$	sp	x		(m) + mod2			_		В	2	BC	Sprung in and. Großseite mögl.
Springe und bringe $\langle \underline{F} \rangle$ + 1 nach \underline{B}	SFB	m	$\langle B \rangle := \langle F \rangle + 1$ $\langle F \rangle_{9-24} := m$	+		m			〈F〉 + 1			В	1	3A	
Springe mach Ersetzung und bringe $\overline{\langle \underline{F} \rangle}$ + 1 mach $\overline{\underline{B}}$	SFBE	m	$\langle B \rangle := \langle F \rangle + 1$ $\langle F \rangle_{1-24} := \langle m \rangle + mod2$	sp			(m) + mod2		⟨ F ⟩+1			ВR	15	FA	Sprung in andere Großseite mögl
Springe in Unterprogramm	SU	m		+		m				⟨ឃ⟩ + 1	⟨υ⟩ _{α1t} = 254	В	8	38	⟨U⟩: 0255 (⟨U⟩: 255 + 1 = 0)
Springe in Unterprogramm nach Ersetzung	SUE	m		sp	x		(m) + mod2			⟨U⟩ + 1	(U) _{alt} = 254	В	8	BD	(U): 0255 ((U): 255 + 1 = 0) Sprung in and. Großseite mögl.
<u>S</u> pringe ins <u>S</u> ystem und <u>r</u> eserviere	SSR	PL PR	⟨F⟩ := ⟨a + 6⟩ ⟨B⟩ := adr	+			(a + 6) Ing in den Abstungen gem.	wickler pund p	adr zur Erb R;s.spez	ringung voielle Beso	on Dienst- Chreibungen	ΒR	48	вв	pr }: 0255 a = (BL) • 2 ⁸ = Anfangsadresse des Leitblocks
			Sprungbedingung				Ά`								
Springe wenn identisch O	sio.	m	⟨A⟩ = O]+ [m *				1		ВЯ	1 1	A4	1
Springe wenn nicht O	SNO	m	<a>> ≠ 0	+		m *						ВЯ	1	A7	
Springe wenn größer gleich O	SGGO	m	<a>> ≥ 0	+	П	m *						вк	1	A6	$\langle A \rangle_t = 2$ oder 3: Sprung immer!
Springe wenn größer O	SGO	m	⟨A⟩ > 0	1	П	m *						ВЯ	1	D4	
<u>S</u> pringe wenn <u>k</u> leiner <u>g</u> leich <u>O</u>	SKGO	m	<a> ≤ 0	+	П	m *		-				ВR	1	A5	
Springe wenn kleiner O	sko	m	⟨A⟩ < 0	+		m *						ВR	1	D5	$\langle A \rangle_t = 2$ oder 3: Sprung nie!
Springe wenn rechtes Bit in A gesetzt	SR	m	$\langle A \rangle_{48} = L$	+	П	m *						ВR	1	в8	
Springe wenn rechtes Bit in A nicht gesetzt	SRN	m	$\langle A \rangle_{48} = 0$	+	П	m *						ВR	1	ВА	
Springe wenn identisch	sī	m	$\langle A \rangle = \langle H \rangle$	+	П	m *	norm**	norm**				ВК	** 6	AC	
Springe wenn nicht identisch	SN	m	<a> ≠ <h>></h>	+	П	m *	norm**	norm**				B R	** 6		
Springe wenn größer gleich	sag	m	⟨A⟩ ≥ ⟨H⟩	+	П	m *	norm.**	norm**				ВR	** 6	AF	
Springe wenr größer	SG	m	$\langle A \rangle > \langle H \rangle$	+	П	n. *	norm.**	norm**				ΒR	** 6	AB	
Springe wenn kleiner gleich	SKG	m	$\langle A \rangle \leq \langle H \rangle$	+		m *	norm**	norm.**		-		ВВ	** 6	ΑE	
Springe wenn kleiner	sĸ		⟨A⟩ < ⟨H⟩		-			norm##					** e	1	

Bezeichnung	Code	adr	Sprungbed ingung	11	⟨F⟩ ₉₋₂₄ ⟨i⟩	Ť.	ı i	⟨D⟩ ⟨U) Alaim	D	$\overline{}$	$\overline{}$	Bemerkungen
Springe wenn Index identisch O	SXI	m	⟨B⟩ = ±0	\perp	m *					В	$\perp \downarrow$	1 24	
Springe wenn Index nicht identisch O	SXN	m	⟨B⟩ ≠ ±0		m *	↓	_			В	ш	1 27	
Springe wenn Index größer gleich O	SXGG	m	⟨B⟩ ≥ ±0		m *	<u> </u>				В	11	1 25	$\langle B \rangle_1 = \langle B \rangle_v$
<u>Springe wenn Index größer O</u>	SXG	m	⟨B⟩ > ±0		m *					В	1	1 CE	
Springe wenn Inde <u>x k</u> leiner gleich O	SXKG	m	⟨B⟩ ≤ ±0		m *					В	1	1 26	
Springe wenn Inde <u>x k</u> leiner O	sxk	m	⟨B⟩ < ±0		m *					В	1	1 CF	
Springe wenn Indexgröße rechtes Bit = L	SXR	m	$\langle B \rangle_{24} = L$		m *					В	1	1 B2	
Springe wenn Indexgröße rechtes Bit nicht L	SXEN	m	$\langle B \rangle_{24} = 0$		m *					В	1	1 B3	
Springe und zähle wenn Index kleiner 0	szx	рi	⟨i⟩ < ±0		(F) + p * (i) + 1 *					В	11	2 OA	(i) ₁ = (i) _y p: ±0±127
Springe wenn <u>M</u> arke	SM	m	⟨M⟩ = L	+	m *	0				В	1	1 34	
Springe wenn <u>M</u> arke <u>n</u> icht	SMN	m	⟨M⟩ = 0	+	m *	0				В	1	1 35	
Springe wenn arithmetischer Alarm (BÜ-Alarm)	SAA	m	B Ü- Alarm	+	m *				BU-Alarm wird gelöscht	B R	1	1 A9	
Springe wenn Alarm (Typenkennung)	SAT	m	TK-Alarm	+	m *				TK-Alarm wird gelöscht	ВR	1	1 A8	
Springe wenn Typenkennung	ST	рs	$\langle s_2 \rangle_t = s_1$	+	⟨F⟩ + p *					B R	10	3 90	p: ±0±127
Springe wenn Typenkennung nicht	STN	рs	$\langle s_2 \rangle_t \neq s_1$	+	⟨F⟩ + p *	Į, T				B R	10	3 91	s ₁ : 0,1,2 oder 3 (TK) s ₂ : A,Q,D oder H
<u>S</u> pringe wenn <u>B</u> it gesetzt	SBIT	рв	⟨s₂⟩ _{s₁} = L		(F) + p * s ₁ 1 2 q 16 15	Zeit	tbere 4 15 2	chnung: 16 17 31 1 16 2	32 33 ··· 47 48 1 16 ··· 2 1	ВЯ	7+2	2q F 9	s ₁ : Bitnummer 148 s ₂ : Register A, Q, D oder H p: Sprungweite ±0±127 q: s. Tab. für Zeitberechn
Springe wenn Exponent größer gleich	SEGG	pl pa	⟨A⟩ ₄₁₋₄₈ ≥ p _R	+	⟨F⟩ + p ι*			t _A ;(A)	falls ⟨A⟩ _t ≠0: TK-Alarm	B R	10	4 93	p _L : Sprungweite p:±0±127 p _R : VerglExponent ****
Springe wenn Merk <u>l</u> icht	SL	ps	eines der (K) = L		⟨F⟩ + p *					В	9	1 1E	
Springe wenn Merklicht und lösche	SLL	рs	eines der $\langle K \rangle_s = L$	11	⟨F⟩ + p *		0			В	9	1 1F	p: ±0±127
Springe wenn Merklicht nicht	SLN	рs	alle (K), = 0		⟨F⟩ + p *		†			В	9	1 10	s: Merklichter 1,2, und 8
Springe wenn Merklicht nicht sonst <u>l</u> ösche	SNL	p s	alle (K) = 0		⟨F⟩ + p *		0			В	9	1 11	
Springe wenn Merklicht nicht Springe wenn Merklicht nicht sonst lösche	1-	 					0	(A)	(Y)	\vdash	++	+-	
<u>Dreierprobe und springe wenn richtig</u>	PDP	n	DP = richtig	+	⟨F⟩ + 2 *			$t_n;\langle n \rangle$	$\langle n \rangle_{5-6}$ OL, DP, $\langle n \rangle_{t}$	R	21	21 B	DP: Dreierprobenbits Transp. unverän. bei jeder TK DP <u>nicht</u> richt.: kein DP-Alar

^{*} bei erfüllter Sprungbedingung

wenn $\langle A \rangle_t = \langle H \rangle_t = 0 \colon \langle A \rangle := \langle A \rangle \text{ normalisiert}$ $\langle H \rangle := \langle H \rangle \text{ normalisiert}$ ist der Exponent +0 wird er zu -0, zur Ausführungszeit kommt ein Takt hinzu

^{***} bei nicht erfüllter Sprungbedingung

^{**** 0...127 (}positiv), NO...N127 (negativ)

Modifizieren

Bezeichnung	Code	adr	Wirkung	mod2 l	R	mod l	mod2, at	< B >	(i)	Werk	Takte	Int.	Bemerkungen
Modifiziere in jedem Fall	MF	i	$mod1 := \langle i \rangle + mod2$ $\langle B \rangle := \langle i \rangle + mod2$	sp	K	(i) *	0	⟨i⟩ *		В	1	ОВ	
Modifiziere in jedem Fall mit unveränd. B	MFU	i	$mod1 := \langle i \rangle + mod2$	sp	1	(i) *	0			В	1	08	Bits 9 - 11 = 00L
Modifiziere aus Speicher in jedem Fall	MCF	m	$mod1 := \langle m \rangle + mod2$ $\langle B \rangle := \langle m \rangle + mod2$	sp	x <	(m) *	0	⟨m⟩ *		В	2	16	
Modifiziere aus Speicher in jedem <u>F</u> all mit <u>u</u> nverändertem B	MCFU	m	mod1 := (m) + mod2	sp	×	(m) *	0			В	1	3D	
Modifiziere doppelt	м D	i, i,	mod1 := ⟨i _R ⟩ + mod2 mod2 := ⟨i _L ⟩ ⟨B⟩ := ⟨i _L ⟩	sp	\((i _R) *	(i,)	(i _L)		В	5	09	
Modifiziere	М	i	$\langle B \rangle := \langle i \rangle + mod2$ $mod2 := \langle i \rangle + mod2$	sp	Ī		⟨i⟩ *	<i>*</i>		В	1	08	Bits 9 - 11 = LOO
Modifiziere nach Erhöhung	мн	рi	$\begin{array}{lll} \operatorname{mod2} := \langle \mathtt{i} \rangle + \mathtt{p} \\ \langle \mathtt{B} \rangle := \langle \mathtt{i} \rangle + \mathtt{p} \\ \langle \mathtt{i} \rangle := \langle \mathtt{i} \rangle + \mathtt{p} \end{array}$				⟨i⟩ + p	⟨i⟩ + p	⟨i⟩ + p	В	10,5	2 D	p: ±0±127
Modifiziere nach Erhöhung um Indexzelle	МНХ	i _L i,	$\begin{array}{lll} \text{mod2} := \langle i_L \rangle + \langle i_R \rangle \\ \langle 3 \rangle := \langle i_L \rangle + \langle i_R \rangle \\ \langle i_R \rangle := \langle i_L \rangle + \langle i_R \rangle \end{array}$				(i,) + (i _R)	(i _L) + (i _R)	$\langle i_R \rangle := \langle i_L \rangle + \langle i_R \rangle$	В	14,5	OE	
Modifiziere mit Register und Indexzelle	MRX	s i	$\begin{array}{lll} \operatorname{mod2} := \langle \mathbf{i} \rangle \ \pm \langle \mathbf{s_1} \rangle \\ \langle \mathbf{B} \rangle &:= \langle \mathbf{i} \rangle \ \pm \langle \mathbf{s_1} \rangle \end{array}$ $\begin{array}{ll} \operatorname{falls} \ \mathbf{s_3} = \mathbf{C} : \\ \langle \mathbf{i} \rangle := \langle \mathbf{i} \rangle \ \pm \langle \mathbf{s_1} \rangle \end{array}$				⟨i⟩ ± ⟨s₁⟩	(i) ± (s ₁)	falls $s_3 = C$: $\langle i \rangle \pm \langle s_1 \rangle$	В	12	8D **	s ₁ :A,Q,D,H (rechtes Halbwort) oder B s ₂ :leer: + :N : - s ₃ :leer: nicht speichern :C : zurückspeichern
Modifiziere aus Spei <u>c</u> her	мс	m	$\langle B \rangle := \langle m \rangle + mod2$ $mod2 := \langle m \rangle + mod2$	ga	x		<m> *</m>	(m) *		В	2	14	
Modifiziere aus Spei <u>c</u> her nach <u>E</u> rsetzungen	MCE	m	⟨B⟩ :=⟨⟨⟨m⟩⟩⟩+mod2 mod2:=⟨⟨⟨m⟩⟩⟩+mod2	g	×		<pre><!--(m))* das 1. Bit wire glichen</pre--></pre>	(((m)))* d dem 2. ange-		В	13x -9	17	x: Anzahl der Halbwörter in der Ersetzkette Abbruch wenn: \langle \langle \ldots \langle \langle \ldots \ldots \ldots \rangle \rangle \ldots \ldots \rangle \rangle \ldots \ldots \rangle \rangle \rangle \ldots \ldots \rangle \rangl
Modifiziere mit Adressenteil	MA	z	$\langle B \rangle := z + mod2$ mod2 := z + mod2	sp			z *	z *		В	1	03	z : 065 535
Modifiziere mit negativem Adressenteil	MNA	z	$\langle B \rangle := -z + mod2$ mod2 := -z + mod2	sp			-2 *	-z *		В	2	02	

^{* 1}st vom vorhergehenden Befehl ein Modifikator 2. Art vorhanden, so wird er addiert

^{**} siehe Internspezifikation auf Seite 23

Ersetzen (und modifizieren)

Bezeichnung	Code	adr	Wirkung	mod2	R	ႃၣ	adr	(B)	νiλ	mod2, es	Werk	Takte	Int.	Bemerkungen
<u>E</u> rsetze	E	сi	adr := (i) mod2 := mod2	вp		С	(i)			mod2	В	4	29	
<u>E</u> rsetze <u>z</u> ählend	EZ		adr := $\langle i \rangle$ + 2 + mod2 $\langle B \rangle$:= $\langle i \rangle$ + 2 $\langle i \rangle$:= $\langle i \rangle$ + 2	sp		С	(i) + 2 *	⟨i⟩ + 2	(i) + 2	0	В	5	2В	
Ersetze negativ zählend	ENZ	сi	adr := $\langle i \rangle$ + mod2 $\langle B \rangle$:= $\langle i \rangle$ - 2 $\langle i \rangle$:= $\langle i \rangle$ - 2	sp		С	<i>'i' *</i>	⟨i⟩ - 2	⟨i⟩ - 2	0	В	8	2A	
Ersetze und modifiziere mit B	EMB	сi	adr := (i) mod2 := (B)			С	<i>)</i>			⟨B⟩	В	4	28	
Modifiziere Adressenteil mit B	MAB	ср	adr := (P) + p (B) := (B) + p			С	⟨B⟩ + p	⟨B⟩ + p		0	В	9,5	20	p: ±0±127
Modifiziere Adressenteil mit B bei <u>I</u> nvarianz der Sprungadresse	MABI	ср	adr := \langle B \rangle + p \langle B \rangle + p			С	⟨B⟩ + p	⟨B⟩ + p		0	P	9,5	3F	p: ±0±127 **
Modifiziere über <u>U</u>	MU	ср	$adr := \langle\langle U \rangle\rangle + p$			С	⟨⟨U⟩⟩ + p			0	В	14,5	05	⟨U⟩ := ⟨U⟩ -1 wenn c Sprungbef. u. Bedingung erfüllt ist** p: ±0±127
Ersetze nach Modifizierung über <u>U</u>	EMU	ср	adr := $\langle\langle\langle U\rangle\rangle + p\rangle$ mod2 := mod2	вp		c	⟨⟨⟨U⟩⟩ + p⟩			mod2	В	29,5	04	p: ±0±127
Relativ-Adressierung mit Registerinhalt	RLR	сѕ	adr := (s) + (F) mod2 := mod2	sp		С	⟨s⟩ + ⟨F⟩	falls s = F: ad			ΒR	10	EO	s: A, Q, D, H = rechte Hälfte AL,QL,DL,HL = linke Hälfte F,B, U,Y
Registeradressierung	R	сs	operand := $\langle s_1 \rangle$	+		c	Reg (s ₁) = Opera	nd: $\begin{cases} \frac{s_1}{s_1} = A, Q, D \\ \frac{s_1}{s_1} = \frac{Y}{B}, U \\ \frac{s_1}{s_1} = \frac{B}{F} \end{cases}$: ro := 1 : ro := 1 : ro := 1	$\langle 0, \langle s_1 \rangle \rangle$ $\langle v, \langle B \rangle \rangle$	B R	4 	96	s ₂ : L : linke 24 Bits : leer : rechte 24 Bits c : erlaubter Code ro: Registeroperand
<u>Tue</u>	T		op, adr := (m) mod2 := mod2	sp	x	(m) ₁₋₈	0,(m) ₉₋₂₄			mod2	В	5	СС	⟨m⟩ _t : beliebig

^{*} Ist vom vorhergehenden Befehl ein Modifikator 2. Art vorhanden, so wird er addiert

Als Zweitcodes (c) sind alle Befehlscodes zugelassen. Bei dem Befehl R jedoch nur:

A A2 AB AQ AT AU AUT

B B2 B2V B2VN B3 B3V BB BD BH BN BNR BQ BQB BR BT BU

DV DVD DVI

ET

GA GAB GDV GDVI GMAN GML GMLA GMLN GSB GSBB GSBD GSBI

HBC

M2 M2N M2NR M2R MAN MANR MAR MC MCE MCF MCFU ML MLA MLD MLN MLR MNR

NULL

REZ

SB SB2 SBB SBD SB1 SBQ SBT SBU SE

SUE

T TCB

VBC VEL

ZUS

^{**} Sprung in eine andere Großseite ist möglich

^{***}bei $s_1 = A,Q,D$ oder H und $\langle s_1 \rangle_t = 0$ oder 1: $\langle s_1 \rangle_1 := \langle s_1 \rangle_t = \langle s_1 \rangle_v$

Aufbereitung

Bezeichnung	, Code	adr	; Wirkung	, mod2	R Voraussetzung √A ⟨B ⁺	(Q)	(Y)	Werk	Takte	Int.	Bemerkungen
<u>Ums</u> chlüsseln	US	si	⟨A⟩ := ⟨A⟩umgeschlüsselt	qa	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	sse $s_2 = G$ s $Jm - t_n ; \langle A \rangle$ A $umge - t_n$	Talls 5 ₂ = G unzahl der umgeschlüs- selt. Zeich	ВК	s ₂ =E:32 s ₂ =G:und s ₁ =6:176 =8:136 =C: 96	E3	 s₁: Bitlänge der Zeichen 6, 8 oder C (12 Bits) s₂: E = ein Zeichen rechtsbünd. G = alle Zeich. 8, 6 oder 4 t_n: Typenkennung des Wortes, in dem das linke Zeichen steht
<u>Invertiere Register</u>	IR	s	$\langle s \rangle := \neg \langle s \rangle$ $\langle s \rangle := \langle s \rangle $		falls s2: leer, invertiere falls s2: B, bilde Betrag im Re	Register		F	4p + 1	E1	s ₁ : Register A,Q,D und H p: Anzahl der adr. Register
<u>S</u> c <u>h</u> ifte	SH	s p	Schift gemäß Spezifika- tion um p Stellen	+	Spezifikotion S1: A = Register A Q = Register Q AQ = Register A und Q Z = doppelt langes Re s2: leer, L = Rechtsschift, Lin s3: leer, K = gestreckter Schif s4: leer, R = ohne Rundung, mit s5: leer, U = abhängig von TK, s6: leer, B = nicht zählen, zäh geschifteten 'L'-	egister A,Q nksschift ft, <u>K</u> reissch t <u>Rundung</u> unabh. von thlen der aus	TK A	R	2(q+r)+5 p:4-q Rest r zusätzl. 5 wenn s4=R u.gerundet wurde	9В	1) BU Alarm möglich: nur bei Linksschift in A mit TK=0. oder 1; bei Rechtsschift höchstens um 1 Stelle mit Rundung p= Anzahl der Schiftschritte ±0+127 p:4 = q Rest r
<u>Sch</u> ifte in <u>B</u>	SHB	s p	<pre>⟨B⟩ := ⟨B⟩ geschiftet um p Stellen nach rechts oder links mit Nachziehen von O-Bits</pre>		s: R = Schift nach rechts L = Schift nach links			В	4°p+6	21	p: Anzahl der Schiftschritte 0255
						Y	Alarm BÜ TK				
Vorzeichenangleich zwischen A und Q	VAQ		$\langle A, Q \rangle := \langle A \rangle + \langle Q \rangle $	+	VAQ gleicht die Vorzeichen an u berichtigt das Ergebnis unter E haltung des Zahlenwertes		⟨A⟩ _t ≠1	R	2 bei $\langle A \rangle_1 = \langle Q \rangle_{v}$ 17 bei $\langle A \rangle_1 \neq \langle Q \rangle_{v}$	63	Adressenteil z ist ohne Bedeutung, muß aber an- gegeben werden
			bei s = G: ⟨A⟩ := ⟨A⟩normalisiert			4+	<i>≠</i> 0		2t + 3		s = G, FG, F, F4, N oder L
			bei $s = FG$: $\langle A \rangle_{Gleitk} := \langle A, Q \rangle_{Festk}$.		Die Festkommazahl wird als echt Bruch aufgefaßt (A) _t := 0;(A,Q)gerundet, (Q) :=	+0	$\langle Q \rangle_1$		2t + 10		t: Anzahl der Tetraden- schifte
Normalisiere	NRM	s	bei $s = F$: $\langle A,Q \rangle := \langle A,Q \rangle$ normalisier	5		4+	⟨A⟩₁ ≠ ⟨Q⟩₁ ≠1	R	2t + 7	9 F	
			bei $s = F4$: $\langle A,Q \rangle := \langle A,Q \rangle$ normalisier				$\langle \overline{A} \rangle_1$ \neq $\langle Q \rangle_1$ \neq 1	1 "	2t + 7		
			bei s = N falls $\langle A \rangle \neq +0$ $\langle A \rangle := \langle A \rangle$ links geschift bis $\langle A \rangle_1 = L$ bei s = L: $\langle A \rangle := \langle A \rangle$ links geschift bis $\langle A \rangle_1 = 0$	1	beim Schiften werden Nullen nac falls $\langle A \rangle$ = +0: $\langle A \rangle$:= $\langle A \rangle$ beim Schiften werden Nullen nac	48	T		2e + 3		e: Anzahl der Einerschifte

^{*}Tabelle in Viertelwörtern.
Die Anfangsadresse ist eine Halbwortadresse

Bezeichnung	Code	adr	Wirkung	mod2	R Varaussetzung	Υ	вÜ	arm TK w	lerk	Takte	Int.	Bemerkungen
Konvertiere Dezimalzahl in Festkommazahl rechtsbündig	KDFR	р	$\langle A \rangle_{festk}$:= $\langle A, Q \rangle_{Dez}$.	+	$\langle A,Q \rangle = \text{pos.}$ $\langle A \rangle := 1; \langle A,Q \rangle \langle D \rangle := 1; +$ $\langle Q \rangle := 1; +0 \langle H \rangle := 1; +$ Komma rechts	0 +0			R	7p + 22	94	p: 113 Anzahl der Dezimalstellen, die konvertiert werden
Konvertiere <u>F</u> estkommazahl <u>l</u> inksbündig in <u>D</u> ezimalzahl	KFLD	р	⟨A,Q⟩ _{Dez} :=⟨A⟩r _{estk} .	+	$\langle A \rangle$ = pos. FestkZahl Komma links $\langle A \rangle_t = 0$ oder 1 mit Typenkennung = 1. Im $\langle A \rangle_1 = \langle A \rangle_2 = 0$ Reg. D steht mit TK = 1 der Rest	+0	\ \ \	2,3	R	(A) > 0 9p + 5	95	p: 113 Anzahl der gewünschten Dezi- malstellen

^{*} Tabelle in Viertelwörtern Die Anfangsadresse ist eine Halbwortadresse

Tabelle durchsuchen

	<u> </u>		Suchbedingung	Eingangsgrößen	⟨B⟩	(A) ((Q)	\ \ \ \ \ D \	Ala BÜ	TK				
Tabelle durchsuchen auf Identität	TLI	n	$\langle n+2k \rangle = \langle D \rangle$ ** Tabellenende: TK $\neq t_b$	$\langle D \rangle = Suchwort$ $\langle D \rangle_1 = \langle D \rangle_2$ bei $\langle D \rangle_t = 0$ oder 1		t _D ; <d>***</d>		***		≠ ⟨D⟩ _t	ВВ	15p + 10	EC	k: 0,1,2,
Tabelle durchsuchen mit Dehnung	TLD	n	<pre>\(\n+k\langle B\rangle\) \rangle \langle (D) ** Tabellenende: TK ≠ t₀</pre>	$\langle D \rangle$ =Suchwort $\langle D \rangle_1 = \langle D \rangle_2$ bei $\langle D \rangle_t = 0$ oder 1 $\langle B \rangle = Dehnungs-$ wert	n*	t _o ;(D)***		***		≠ ⟨D⟩ _t	вк	14,5r + 10,5	EB	p: Anzahl der untersuchten Worte in der Tabelle x: 148
Tabelle durchsuchen mit Dehnung und Maske	TDM	n	$\begin{array}{l} \langle n+k\langle B\rangle \rangle_{x} = \langle \mathbb{D}\rangle_{x} \\ \text{für } \langle H\rangle_{x} = 0 & ** \\ \text{Tabellenenåe: TK } \neq \text{ t}_{0} \end{array}$	⟨D⟩ =Suchwort ⟨H⟩ =Maske ⟨B⟩=Dehnungs- wert	_#	tн; (Н)^(n*)				≠ ⟨D⟩ _t	ВБ	14,5r + 2,5	EA	falls Dehnungswert
Tabelle durchsuchen auf Maximum	TMAX	n	$\langle n+k\langle B \rangle \rangle_x = Max.$ für $\langle H \rangle_x = 0$ Tabellenende: TK $\neq t_n$	⟨H⟩=Maske ⟨B⟩=Dehnungs- wert	n*	t _n *; (H)^(n	*>	t _n *;¬⟨H⟩^⟨n*⟩			ВБ	17p + 4	EF	Wirkung wie Nullbefehl
Tabelle durchsuchen auf Minimum	TMIN	n	$\langle n+k\langle B \rangle \rangle_x = Min.$ für $\langle H \rangle_x = 0$ Tabellenende: TK $\neq t_n$	<pre> (H)=Maske (B)=Dehnungs-</pre>	n*	t _n *;(H)^(n	*>	$t_n *; \neg \langle H \rangle \land \langle n * \rangle$			ВЕ	17p + 4	EE	
Tabelle durchsuchen <u>log</u> arithmisch	TLOG	n	$\langle n+2k \rangle_{\mathbf{x}} \geq \langle D \rangle_{\mathbf{x}}$ Voraussetzung: $\langle n \rangle_{\mathbf{x}} < \langle D \rangle_{\mathbf{x}}$ $\langle n \rangle_{\mathbf{x}} < \langle D \rangle_{\mathbf{x}}$	⟨A⟩=Tabellen- länge in Ganzwört. 2≤⟨A⟩≤22° ⟨D⟩=Suchwort ⟨H⟩=Maske		tn+; \langle H \rangle \langle n + falls kein Wort gefund 3;0		t₀;¬⟨H⟩^⟨D⟩	kein Wort gef.		ВЕ	23q + 46	ED	$\langle F \rangle := \langle F \rangle_{\theta-24} + 2 \text{ falls}$ $\langle n+2k \rangle_x > \langle D \rangle_x \text{ oder kein}$ Wort gefunden $q: (_2\log(A))-1 \le q \le 2\log(A)$ q: ganzzahlig

^{*} Adresse des zuerst gefundenen Wortes, das den Suchbedingungen genügt oder Adresse des ersten Wortes hinter der Tabelle (bei TMAX und TMIN immer Adresse des zuerst gefundenen Wortes)

^{**} Wird kein Wort gefunden: Abbruch mit TK-Alarm

^{***} falls $\langle D \rangle_t = 0$: $\langle D \rangle_t = \langle D \rangle_t = \langle D \rangle_t = \langle D \rangle_t$ Nergleichsoperand normalisiert (im Speicher unverändert)

n⁺ niedrigste Adresse der nach den Suchbedingungen gefundenen Wörter oder erstes Wort hinter der Tabelle

Zentralcode

		•														z z	imale zimal
0000	000L	00L0	00LL	0L00	0 L0 L	OLLO	OLLL	L000	LOOL	LOLO	LOLL	LLOO	LLOL	LLLO	LLLL		
0	1	2	3	4	5	6	7	8	9	Α	8	С	D	Е	F		
NUL	16 NL6	SUB	48	64	80	96 //	¹¹² 0/ ₀	128	+	180 (176 O	19 2 A	208 Q	224 Q	24 ₀	0	000 0
1	¹⁷ NL5	33 EM	49	65	81	97	¹¹³ §	129 V	145 —	161	177	193 B	²⁰⁹ R	²²⁵ b	241 Г	1	000L
2	¹⁸ NL4	34	50	66	82	98 /	114 #	130	14 6	¹⁶² [178 2	194 C	²¹⁰ S	226 C	242 S	2	00L0
3	¹⁹ NL3	35 T1	51	67	83	99	115	131	147	163	¹⁷⁹ 3	195 D	211 T	²²⁷ d	243 t	3	00LL
4	NL2	³⁶ T2	52	68	84	100	116 ¢	132	148	164 {	180	196 E	²¹² U	228 e	244 U	4	0L00
5	NL	37 TE	FL FL	69	85	101 ^	117	133	149	165 }	181	¹⁹⁷ F	²¹³ V	2 29 f	245 V	5	OLOL
6	²² CR	38	54	70	86	102 0	118	134	150	166	182	¹⁹⁸ G	214 W	²³⁰ g	246 W	6	OLLO
7	NF	39	55	71	87	103 _	119 &	135	151 =	167	183	199 H	215 X	231 h	247 X	7	OLLL
8	24 VT	40	56	72	88	104	120 *	136	152	168 MZ	184	200	216 Y	232 j	248 V	8	L000
9	²⁵ VT3	41	57	73	89	105	121	137	153	169	185	²⁰¹ J	²¹⁷ Z	233	249 Z	9	LOOL
10	²⁶ VT4	42	5 8	74	90	106	122	138	154	170	186	²⁰² K	218 Ä	234 K	250 Ö	Α	LOLO
11	²⁷ VT5	43	59	75	91	107	123	139	155	171	187	203 L	²¹⁹ Ö	235 L	251 Ö	В	LOLL
12	^{2 8} VT6	44	60	76	9 2	108	124 🎞	140	156	172	188	204 M	²²⁰ Ü	236 M	252 Ü	С	LL00
13	²⁹ VT7		61	77	93	109	125	141	¹⁵⁷ ≦	173	189	205 N	221	237 n	253 B	D	LLOL
14	30 V T 8	46	62	78	94	110	126	142	158 ≥	174 ?	190	²⁰⁶ O	22 2	238	254	E	LLLO
15	³¹ NL7	47	63	79	95	111	127 T	143	159	¹⁷⁵ SP	¹⁹¹ PZ	²⁰⁷ P	223	239 p	255	F	LLLL
CR Wa		rzeichen			NE N	Akzente	Sonstige Zeichen	Zeich	matische en	Satz- zeichen	Ziffern		chstaben		ıchstaben		GR 2a

CR Wagenrücklauf (Carriage Return)

19

EM Ende der Aufzeichnung (End af Medium)

FL Fluchtsymbol

MZ Minus Null (Minus Zera)

Neues Formular (New Form)

NL Neue Zeile (New Line)

NLx Varschub um x Zeilen

NUL Nil (Null)

Plus Null (Plus Zera)

SP Zwischenraum (Space)

SUB Substitution (Substitute Character)

^[] Textumschaltung 1

T2 Textumschaltung 2

TE Textende

VT Vertikal-Tabulatar (Vertical Tabulation)

VTx Zeilenvorschub gemäß Spur x

Potenzen von 2

2 ⁿ	n	2·n	2"	j n	1 2-7
	_			-	
2	1	0.5	2 251 799 813 685 248	51	0.(15) 444 089 209 850 062 616 169 452 667 236 328 125
4	2	0.25	4 503 599 627 370 496	52	0. 222 044 604 925 031 308 084 726 333 618 164 062 5
8	3	0.125	9 007 199 254 740 992	53	0. 111 022 302 462 515 654 042 363 166 809 082 031 25
16	4	0.062 5	18 014 398 509 481 984	54	0. 055 511 151 231 257 827 021 181 583 404 541 015 625
32	5	0.031 25	36 028 797 018 963 968	55	0. 027 755 575 615 628 913 510 590 781 702 270 507 812 5
64	6	0.015 625	72 057 594 037 927 936	56	0.(15) 013 877 787 807 814 456 755 295 395 851 135 253 906 25
128	7	0.007 812 5	144 115 188 075 855 872	57	0. 006 938 893 903 907 228 377 647 697 925 567 626 853 125
256	8	0.003 906 25	288 230 376 151 711 744	58	0. 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
512	9	0.001 953 125	576 460 752 303 423 488	59	0. 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25
1 024	10	0.000 876 562 5	1 152 921 504 606 846 976	60	0. 000 867 361 737 988 403 547 205 962 240 695 953 389 140 625
2 048	11	0.000 488 281 25	2 305 843 009 213 693 852	61	0.(18) 433 680 868 994 201 773 602 981 120 347 876 684 570 312 5
4 096	12	0. 244 140 625	4 611 688 018 427 387 904	62	0. 216 840 434 497 100 886 801 490 560 173 888 342 285 156 25
8 192	13	0. 122 070 312 5	9 223 372 036 854 775 808	63	0. 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125
16 384	14	0. 061 035 156 25	18 446 744 073 709 551 616	64	0. 054 210 108 624 275 221 700 372 640 043 497 085 571 289 062 5
32 768	15	0. 030 517 578 125	36 893 488 147 419 103 232	85	0. 027 105 054 312 137 610 850 186 320 021 748 542 785 644 531 25
65 536	16	0.000 015 258 789 062 5	73 786 976 294 838 206 464	88	0.(18) 013 552 527 156 068 805 425 093 160 010 874 271 392 822 265 625
131 072	17	0. 007 629 394 531 25	147 573 952 589 676 412 928	67	0. 006 776 263 578 034 402 712 546 580 005 437 135 696 411 132 812 5
262 144	18	0. 003 814 697 265 625	295 147 905 179 352 825 856	68	0. 003 388 131 789 017 201 356 273 290 002 718 567 848 205 566 406 25
524 28 8	19	0. 001 907 348 632 812 5	590 295 810 358 705 651 712	69	0. 001 694 065 894 508 600 678 136 645 001 359 283 924 102 783 203 125
1 048 576	20	0. 000 953 674 316 406 25	1 180 591 620 717 411 303 424	70	0. 000 847 032 947 254 300 339 068 322 500 679 841 962 051 391 601 562 5
2 097 152	21	0.000 000 476 837 158 203 125	2 361 183 241 434 822 606 848	71	0.(21) 423 516 473 627 150 169 534 161 250 339 820 981 025 695 800 781 25
4 194 304	22	0. 238 418 579 101 562 5	4 722 366 482 869 645 213 696	72	0 211 758 236 813 575 084 767 080 625 189 910 490 512 847 900 390 625
8 388 608	23	0. 119 209 289 550 781 25	9 444 732 965 739 290 427 392	73	0. 105 879 118 406 787 542 383 540 312 584 955 245 256 423 950 195 312 5
16 777 216	24	0. 059 604 644 775 390 625	18 889 465 831 478 580 854 784	74	0. 052 939 559 203 393 771 191 770 156 292 477 622 628 211 975 097 656 25
33 554 432	25	0. 029 802 322 387 695 312 5	37 778 931 862 957 161 709 568	75	
67 108 864	26	0.000 000 014 901 161 193 847 656 25	75 557 863 725 914 323 418 136	76	0.(21) 013 234 889 800 848 442 797 942 539 073 118 405 657 052 993 774 414 062 5
134 217 728	27	0. 007 450 580 596 923 828 125	151 115 727 451 828 648 838 272	77	0. 006 617 444 900 424 221 398 971 269 538 559 702 828 528 496 887 207 031 25
268 435 456	28	0. 003 725 290 298 481 914 062 5	302 231 454 903 657 293 676 544	78	0. 003 308 722 450 212 110 699 485 634 768 278 851 414 283 248 443 603 515 625
536 870 912	28	0. 001 862 645 149 230 957 031 25	604 462 909 807 314 587 353 088	78	0. 001 854 361 225 106 055 349 742 817 384 139 825 707 131 624 221 801 757 812 5
1 073 741 824	30	0. 000 931 322 574 815 478 515 625	1 208 825 819 614 629 174 706 176	80	0. 000 827 180 612 553 027 674 871 408 692 069 962 853 565 812 110 900 878 906 25
2 147 483 648	31	0.000 000 000 465 661 287 307 738 257 812 5	2 417 851 639 229 258 349 412 352	81	0.(24) 413 590 306 276 513 837 435 704 346 034 981 426 782 906 055 450 439 453 125
4 294 967 296	32	0. 232 830 643 653 869 628 906 25	4 835 703 278 458 516 688 824 704	82	0. 206 795 153 138 256 918 717 852 173 017 490 713 391 453 027 725 218 726 562 5
8 589 934 592	33	0. 116 415 321 826 934 814 453 125	9 671 406 556 917 033 397 649 408	83	0. 103 397 576 569 128 459 358 826 088 508 745 356 695 728 513 862 609 863 281 25
17 179 869 184	34	O. 058 207 660 813 467 407 228 582 5	19 342 813 113 834 066 795 298 818	84	0. 051 698 788 284 564 229 679 463 043 254 372 678 347 863 256 931 304 931 640 625
34 359 738 368	35	0. 029 103 830 458 733 703 613 281 25	38 685 626 227 668 133 590 597 632	85	0. 025 848 394 142 282 114 839 731 521 627 186 339 173 931 628 465 652 465 820 312 5
88 719 476 736	36	0.000 000 000 014 551 915 228 366 851 806 640 625	77 371 252 455 336 267 181 195 264	86	0.(24) 012 924 697 071 141 057 419 865 760 813 593 169 586 865 814 232 826 232 810 156 25
137 438 953 472	37	0. 007 275 957 614 183 425 903 320 312 5	154 742 504 910 672 534 362 390 528	87	0. 006 462 348 535 570 528 709 932 880 406 796 584 793 482 907 118 413 116 455 078 125
274 877 906 944	38	0. 003 637 878 807 091 712 851 660 156 25	309 485 009 821 345 068 724 781 056	88	0. 003 231 174 267 785 264 354 966 440 203 398 292 396 741 453 558 206 558 227 539 062 5
549 755 813 888	39	0. 001 818 989 403 545 856 475 830 078 125	618 870 019 842 690 137 449 562 112	88	0. 001 615 587 133 892 632 177 483 220 101 699 146 198 370 726 779 103 279 113 769 531 25
1 099 511 627 776	40	0. 000 909 494 701 772 928 237 915 038 062 5	1 237 940 039 285 380 274 899 124 224	90	0. 000 807 793 566 946 316 068 741 610 050 849 573 099 185 363 389 551 639 556 884 765 625
2 199 023 255 552	41	0.000 000 000 000 454 747 350 888 464 118 957 519 531 25	2 475 880 078 570 760 549 798 248 448	81	0.(27) 403 896 783 473 158 044 370 805 025 424 786 549 592 881 694 775 819 778 442 382 812 5
4 398 046 511 104	42	0. 227 373 675 443 232 069 478 759 765 625	4 951 760 157 141 521 099 596 496 896	92	0. 201 948 391 738 579 022 185 402 512 712 393 274 796 340 847 387 909 889 221 181 406 25
8 796 093 022 208	43	0. 113 686 837 721 816 029 739 378 882 812 5	9 903 520 314 283 042 199 192 993 792	93	0. 100 974 195 868 289 511 092 701 256 356 196 637 398 170 423 693 954 944 610 595 703 125
17 592 186 044 416	44	0. 056 843 418 860 808 014 869 889 941 406 25	19 807 040 628 566 084 398 385 987 584	94	0. 050 487 097 934 144 755 546 350 628 178 098 318 699 085 211 846 877 472 305 297 851 562 5
35 184 372 088 832	45	0. 028 421 709 430 404 007 434 844 970 703 125	39 614 081 257 132 188 796 771 975 168	95	0. 025 243 548 967 072 377 773 175 314 089 049 159 349 542 605 823 488 736 152 648 925 781 25
70 368 744 177 664	48	0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5	79 228 162 514 264 337 593 543 950 336	98	0.(27) 012 621 774 483 536 188 886 587 657 044 524 579 674 771 302 961 744 368 076 324 462 890 825
140 737 488 355 328	47	0. 007 105 427 357 601 001 858 711 242 675 781 25	158 456 325 028 528 675 187 087 900 672	97	0. 006 310 887 241 768 094 443 293 828 522 262 289 837 385 651 480 872 184 038 162 231 445 312 5
281 474 976 710 656	48	0. 003 552 713 678 800 500 929 355 621 337 890 625	318 912 650 057 057 350 374 175 901 344	98	0. 003 155 443 620 884 047 221 646 914 261 131 144 918 692 825 740 436 092 018 081 115 722 656 25
562 949 953 421 312	48	0. 001 776 358 839 400 250 464 677 810 668 945 312 5	633 825 300 114 114 700 748 351 602 688	99	0. 001 577 721 810 442 023 810 823 457 130 565 572 459 346 412 870 218 046 009 540 557 861 328 125
1 125 899 906 842 624	50	0. 000 888 178 419 700 125 232 338 905 334 472 858 25	1 267 850 600 228 229 401 496 703 205 376	100	0. 000 788 860 905 221 011 805 411 728 565 282 786 229 673 206 435 109 023 004 770 278 930 664 062 5

Konvertierungstafel

sedezimal	dezimal										
100 000 200 000	1 048 576 2 097 152	010 000 020 000	65 536 131 072	001 000 002 000	4 096 8 192	000 10 0 000 200	256 512	000 010 000 020	16 32	000 00 000 00	
300 000	3 145 728	030 000	196 608	003 000	12 288	000 300	768	000 030	48	000 00	
400 000	4 194 304	040 000	262 144	004 000	16 384	000 400	1 024	000 040	64	000 00	4 4
		050 000	327 680	005 000	20 480	000 500	1 280	000 050	80	000 00	5 5
		060 000	393 216	006 000	24 576	000 600	1 536	000 060	96	000 00	6 6
		070 000	458 752	007 000	28 672	000 700	1 792	000 070	112	000 00	7 7
		080 000	524 288	008 000	32 76 8	000 800	2 048	080 080		000 00	
		090 000	589 824	009 000	36 864	000 900	2 304	000 090		000 00	
		0A0 000	655 360	000 A00	40 960	000 A00	2 560	0A0 000	160	000 00	A 10
		080 000	720 896	008 000	45 056	000 800	2 816	000 080	176	000 00	B 11
		000 000	786 432	000 000	49 152	000 C00	3 072	000 000	192	000 00	C 12
		ODO 000	851 968	00D 000	53 248	000 D00	3 328	000 OD0		000 00	-
		0E0 0 0 0	917 504	00E 000	57 344	000 E00	3 584	000 0E0		000 00	
		0F0 000	983 040	00F 000	61 440	000 F00	3 840	000 OF0	240	000 00)F 15
	1 1										
dezimal	sedezimal										
1 000 000	OF4 240	100 000	018 6A 0	10 000	002 710	1 000	000 3E8	100	000 064	10	000 00A
2 000 000	1E8 480	200 000	030 D40	20 000	004 E20	2 000	000 7D0	200	8 0 0 0 0 0	20	000 014
3 000 0 0 0	2DC 6C0	300 00 0	049 3E0	30 000	007 530	3 000	000 BB8	30 0	000 12C	30	000 01E
4 000 0 00	3D 0 9 00	400 000	061 A80	40 000	009 C40	4 000	0 0 0 F A 0	400	000 190	40	000 028
		500 000	07A 120	50 000	00C 350	5 000	001 388	500	000 1F4	50	000 032
		600 000	092 700	60 000	00E A60	6 000	001 770	600	000 258	6 0	000 03C
		700 000	OAA E60	70 000	011 170	7 000	001 85 8	700	000 28C	70	000 046
		800 000	0 C 3 500	80 000	013 880	8 000	001 F40	800	000 320	80	000 050
		900 000	OD8 8A0	90 0 0 0	015 F90	9 000	002 328	90 0	000 384	90	000 05A

Befehlscode Intern - Extern

																	dezi-2. Sed ıle mal
0000	000L	00L0	00LL	0L00	OLOL	OLLO	OLLL	L000	LOOL	LOLO	LOLL	LL00	LLOL	LLLO	ננננ		
0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F		
NULL	LZL	МАВ	ZMC	АВ		DV	В	С	ST	C2	BL		CU	RLR	DA	0	0000
XBA	НВА	SHB	LMC	SBB		D∨D	BD	CR	STN	С3	VPU *		BZN	1R	DSB	1	000L
MNA	NL	WT∨	LMT	Α	GAB	D∨I	BQ	СМТ	ZTR	CMC	SXR		ZDP *		DML	2	00L0
MA	∨BA	WTR	гc	AC	GSBB	VAQ	вн	CMR	SEGG	ВС	SXRN		BU	US	MLD	3	00LL
EMU	мс	sxı	SM	SBI	ML	GD∀	ВВ	CN	KDFR	SIO	Y *	•	SG0		AT	4	0L00
MU	∨BC	SXGG	SMN	SBD	MLR	REZ	BN	СВ	KFLD	SKG0	LEI *		SK0		SBT	5	OLOL
BCL	MCF	SXKG	S	SB	MLA	GD∀I	BR	CD	R	SGG0	BCI			BNZ	вт	6	OLLO
TBC	MCE	SXN	∨ss *	SBC	MAR	B2∨N	BNR	CQ	RT	SN0	ZI			CNZ	СТ	7	OLLL
MFU** M,XB	XC ** XCN	EMB	SU	GSBI	MLN	VEL	M2N	VLA	AA	SAT	SR	ZT0	BZ2		WB	8	L000
MD	XBAN	E	ТСВ	AU	MNR	AUT	M2NR	ATA	SBA	SAA	PDP	ZT1	ΒZ		SBIT	9	LOOL
szx	zx	ENZ	SFB	GAC	MAN	ET	M2	ETA	LR	SK	SRN	ZT2	BQB	TDM	SFBE	Α	LOLO
MF	SW *	EZ		GA	MANR	ZUS	M2R	LA	SH	sG	SSR	ZT3	cz	TLD	BSS	В	LOLL
TXX	SLN	НХР	НВС	GSBD	GMLN	вЗ	A2	TXR	TRX	SI	SE	Т	BAR	TLI	ZK	С	LL00
ттх	SNL	мн	MCFU	SBU	GMAN	B3∨	SB2	RX **	HALT *	SN	SUE		BANR	TLOG	ток	D	LLOL
MHX	SL	нхх	ZU	GSBC	GML	В2	AQ	ВА		SKG	BLEI	sxG		TMIN	QBR	E	LLLO
НВРХ	SLL	VXX	MABI	GSB	GMLA	B2∨	SBQ	СН	NRM	sgg	∨MO*	SXK	BAN	TMAX	QCR	F	LLLL

*nicht für die Pragrammierung van Operataren. Der Befehl SSR findet in Abwicklerdiensten Verwendung. **Unterscheidung im Adressenteil (siehe Internspezifikationen)

Spezifikationen - Intern

GR 1

IR s

College Sec-142	16"	'4'	'2'	11	181	141	*2"	111
-	A	Q	D	H	В	-	-	-
9 16	17	10	10	20	21	22	23	24

Es sind slle 20 möglichen Bitsnordnungen erlsubt. Fslls die Bits 17 - 20 = 0; Wirkung wie Nullbefehl.

LA s

		8	4	.5,	'1'	'8'	14"	'2'	111	
-		F	2	E	3	Н	T	V	M	l
9	16	17	16	19	20	21	22	23	24	

s: F, 2, E, 3, V und M können beliebig kombiniert werden. H oder T dürfen nur einzeln oder mit M verwendet werden. Nicht erlsubte Spezifikationen ergeben undefinierte Befehlssusführungen.

LR s

			'8'	"4"	'2'	11	'8'	141	121	111
	-		8	31	A	Q	D	H	-	-
9		16	17	18	19	20	21	23	23	24

Es sind slle 20 möglichen Bitsnordnungen erlaubt. $s_1\colon$ Typenkennung 0,1,2 oder 3

LZL SL SR

						. 5.		1							
1	2	3	4	5	6	7	8	1	2	3	4	5	6.	7	8
9	10					15									

Es sind in jedem Adressenteil jeweils slle $2^{\mathbf{8}}$ möglichen Bitsnordnungen erlaubt.

MFU, XB, M i

18" "	4"	'2'	+1+	181	141	121	711
0 0		L	-	-	-	-	-
OI		0	-	-	-	-	_
TO	0	0	-	-	-	-	-
9 1	0	11	12	13	14	15	16

MFU: Bits 9 - 11 (Linkssdresse) = OOL
XB: Bits 9 - 11 (Linkssdresse) = OLO
M: Bits 9 - 11 (Linkssdresse) = LOO

MRX, RX si

'6'	'4'	.5,	111	18"	141	12"	111	
A	Q	D	Н	В	N	*	C	i
9	10	11	12	13	14	15	16	17 24

*MRX: Bit 15 = L RX: Bit 15 = 0 Von den Bits 9 - 13 darf höchstens eines = L sein, sonst undefinierte Befehlssusführung.

NL s

SL, SLL, SLN, SNL, SW ps

				'8"	*4"	12"	111	18"	14"	.5.	. 1.
	(bei	NL:	bedeutungslos)	1	2	3	4	5	6	7	8
9			16	17	18	10	20	21	22.	22	24

Es sind slle 28 möglichen Bitsnordnungen erlsubt.

NRM s

		.8.	*4"	'2'	,1,	.8.	.4.	'2'	' 1'
-		8		-	-	-	-	-	
9	16	17	18	19	20	21	22	23	24
s besteht nur sus	N	D	0	0					
len Bits 17 - 19	L	D	0	L					
ten D108 17 - 19	F	0	L	0					
	F4	0	L	L					
	G	L	0	0					
* diese Bitanordnungen	**	L	0	L					
Wihren zu undefinierten	FG	L	L	0					
Befehlsausführungen.	**	L	L	L					

R, RLR cs

		181	141	121	111	18"	'4'	.3.	.1.
		A	Q	D	H	0	-	-	*
C	C		U	В	Y	L	-	-	*
9	16	17	16	19	20	21	22	23	24

Gensu eines der Bits 17 - 20 muß = L sein, sonst undefinierte Befehlssusführung. (Ausnshme: Falls c = Null, so ist Bit 17 - 20 = 0 erlaubt) * Bit 24 = L rechte 24 Bits | nur bei Hslbwortbefehlen * Bit 24 = 0 linke 24 Bits | von Bedeutung

RT s

	'8'	141	'2'	111	. 8 .	.41	. 2.	111
_	A	Q	D	Н	-	-	-	-
9 16	17	18	19	20	21	22	22	24

Gensu zwei der Bits 17 - 20 müssen = L sein, sonst undefinierte Befehlsausführung.

SBIT ps

SH sp

'8'	141	'2'	"1"	181	'4'	12'	111		
A	Q	L	K	Z	R	U	В	p	
9	10	11	12	13	14	15	16	17	24

Es sind slle 2^6 möglichen Bitsnordnungen erlsubt. Wenn Bit 13 = L, sind die Bits 9 und 10 bedeutungslos. Wenn Bit 12 = L, ist Bit 14 bedeutungslos. Wenn Bit 11 = L und Bit 13 = 0, ist Bit 14 bedeutungslos. Wenn Bit 9,10 und 13 = 0, so sind die Bits 11,12,14 und 15 bedeutungslos.

SHB sp

	"8"	141	'2'	111	181	141	'2'	'1'			
1	*	-	-	-	-	-	-	-		р	
	9	10	11	12	13	14	15	16	17		24

Es sind slle 2⁸ möglichen Bitsnordnungen erlsubt * Bit 9 = L : links Bit 9 = 0 : rechts

ST, STN ps

Von den Bits 19 - 22 dsrf nur eines = L sein, sonst erfolgt eine undefinierte Befehlssusführung. Bit 23 muß = O sein, sonst wird in jedem Fall gesprungen.

TRX, TXR si

TRX: Von den Bits 9 - 12 dsrf nur eines = L sein, sonst undefinierte Befehlssusführungen.

TXR: Es sind slle 2ª möglichen Bitsnordnungen erlsubt.

US si

Von den Bits 9 - 11 muß gensu eines = L sein, sonst undefinierbare Bsfehlsausführung. Wenn dss Bit 12 = 0, dsnn Tsilspezifikstion E.

XC, XCN i

XC : Bit 9 (Linkssdresse) = 0
XCN: Bit 9 (Linkssdresse) = L

ZK si

* Wenn Bit 12 = L(R), muß gensu eines der Bits 19-21 = L sein sonst undefinierte Befehlssusführung

Wenn Bit 12 = O(leer), wird in den Bits 17-24 die Adresse einer Indexzelle erwsrtet

ZTR s

	1	181	1.41	'2'	11	'8'	141	121	111
-		2	31	A	Q	D	Н	M	-
9	16	17	18	19	20	21	22	23	24

 s_1 : Typenkennung 0,1,2 oder 3 Von den Bits 19 - 22 dsrf höchstens eines = L sein, sonst undefinierte Befehlsausführung.

Wortstruktur (im Speicher)

ALLGEMEIN

GLEITKOMMAZAHL (Basis 16)

Einfache Länge

Dappelte Länge

FESTKOMMAZAHL

Einfache Länge

Halbe Länge (zwei Zahlen pra Wort)

Dappelte Länge

BEFEHLE (zwei Befehle pra Wort)

DP	LL		Beliebige Codierung , z.B. 6 Oktaden	48
	$\overline{}$	1		48

DP = Bits für Prüfzwecke (Dreierprabe)

TK = Bits für Typenkennung

t = Typenkennung

m = Marke (nur im Speicher, im Register gleich der v-Stelle)

v = Vorzeichen

Blockschaltbild

Alphabetische Liste der Befehle

Code Int. Seite mod2 R Op	Code Int. Seite mod2 R Op	Code Int. Seite mod2 R Op	Code Int. Seite mod2 R Op	Code Int. Seite mod2 R Op
A 42 7 + x + A2 7C 9 + x + AA 98 78 +	CN 84 5 + CNZ E7 5 sp CQ 87 5 +	LA 8B 10 + LC 33 11 + + LMC 31 11 + +	S 36 12 + SAA A9 13 + SAT A8 13 +	SXRN B3 13 SZX 0A 13
AB 40 7 + x + AC 43 7 + + AQ 7E 7 + x + AT F4 9 + x +	CR 81 5 + CT F7 5 + + CU D0 5 + CZ DB 5 +	LMT 32 11 + + LR 9A 10 + LZL 10 11	SB 46 7 + x + SB2 7D 9 + x + SBA 99 78 + SBB 41 7 + x +	T CC 15 sp x + TBC 07 6 + TCB 39 6 + x +
ATA 89 9 + AU 49 8 + x + AUT 69 9 + x +	DA FO 8 +	M 08 14 sp M2 7A 9 + x + M2N 78 9 + x +	SBC 47 7 + + SBD 45 7 + x + SBI 44 7 + x +	TDM EA 17 + TLD EB 17 + TLI EC 17 + TLOG ED 17 +
B 70 4 + x + B2 6E 4 + x + B2V 6F 4 + x +	DML F2 8 + DSB F1 8 + DV 60 7 + x + DVD 61 7 + x +	M2NR 79 9 + x + M2R 7B 9 + x + MA 03 14 sp MAB 20 15	SBIT F9 13 SBQ 7F 7 + x SBT F5 9 + x + SBU 4D 8 + x +	TMAX EF 17 + TMIN EE 17 + TOK FD 6
B2VN 67 4 + x + B3 6C 4 + x + B3V 6D 4 + x +	DVI 62 7 + x + E 29 15 sp	MABI 3F 15 MAN 5A 7 + x + MANR 5B 7 + x +	SE BC 12 sp x + SEGG 93 13 + SFB 3A 12 +	TRX 9C 6 TTX 0D 6 TXR 8C 6 TXX 0C 6
BA 8E 10 + BAN DF 10 + BANR DD 10 + BAR DC 10 +	EMB 28 15 EMU 04 15 sp ENZ 2A 15 sp	MAR 57 7 + x + MC 14 14 sp x + MCE 17 14 sp x + MCF 16 14 sp x +	SFBE FA 12 sp SG AB 12 + SGO D4 12 + SGG AF 12 +	US E3 16 sp
BB 74 4 + x + BC A3 5 + + BCI B6 5 +	ET 6A 9 + x + ETA 8A 9 + EZ 2B 15 sp	MCFU 3D 14 sp x + MD 09 14 sp MF 0B 14 sp	SGG0 A6 12 + SH 9B 16 + SHB 21 16	VAQ 63 16 + VBA 13 10 VBC 15 10 x +
BCL 06 6 + BD 71 4 + x + BH 73 4 + x + BL BO 5 +	GA 4B 8 + x + GAB 52 8 + x + GAC 4A 8 + +	MFU 08 14 sp MH 2D 14 MHX 0E 14 ML 54 7 + x +	SI AC 12 + SIO A4 12 + SK AA 12 + SKO D5 12 +	VEL 68 9 + x + VLA 88 9 + VXX 2F 10
BLEI BE 4 + BN 75 4 + x + BNR 77 4 + x + BNZ E6 4 sp	GDV 64 8 + x + GDVI 66 8 + x + GMAN 5D 8 + x + GML 5E 8 + x + GMLA 5F 8 + x +	MLA 56 7 + x + MLD F3 8 + MLN 58 7 + x + MLR 55 7 + x +	SKG AE 12 + SKG0 A5 12 + SL 1E 13 SLL 1F 13	WB F8 12 WTR 23 6 WTV 22 6
BQ 72 4 + x + BQB DA 4 + x + BR 76 4 + x + BSS FB 4 BT F6 4 + x +	GMLN 5C 8 + x + GSB 4F 8 + x + GSBB 53 8 + x + GSBC 4E 8 + +	MNA 02 14 sp MNR 59 7 + x + MRX 8D 14 MU 05 15	SLN 1C 13 SM 34 13 + SMN 35 13 + SN AD 12 + SNO A7 12 +	XB 08 6 XBA 01 11 XBAN 19 11 XC 18 6
BU D3 4 + x + BZ D9 4 + + BZ2 D8 4 + + BZN D1 4 + +	GSBD 4C 8 + x + GSBI 48 8 + x +	NL 12 11 NRM 9F 16 + NULL 00 12 x	SNL 1D 13 SR BB 12 + SRN BA 12 + SSR BB 12 +	XCN 18 6 ZI B7 11 +
C 80 5 + C2 A0 5 + + C3 A1 5 + + CB 85 5 +	HBA 11 10 HBC 3C 10 x + HBPX 0F 10 HXP 2C 10 HXX 2E 10	PDP B9 13 + + QBR FE 6 + QCR FF 6	STN 90 13 + STN 91 13 + SU 38 12 + SUE BD 12 sp x + SXG CE 13	ZK FC 6 ZMC 30 11 + + ZTO C8 11 + + ZT1 C9 11 + + ZT2 CA 11 + +
CB 85 5 + CD 86 5 + CH 8F 5 + CMC A2 5 + + CMR 83 5 + CMT 82 5 +	IR E1 16 KDFR 94 17 + KFLD 95 17 +	R 96 15 + REZ 65 8 + x + RLR E0 15 sp RT 97 6 + RX 8D 10	SXGG 25 13 SXI 24 13 SXK CF 13 SXKG 26 13 SXN 27 13 SXR B2 13	ZT3

Code: Befehlscode

Int.: Interncode in 2 Sedezimalen

mod2: + = Modifizierung 2. Art

mod2: sp = spezielle Modifizierung 2. Art

R: x = als Zweitcode beim Befehl R zugelassen