Chapter 17

Vector Analysis

17.1 Introduction: Vector Fields

12/29:

- In this chapter, we will consider vector functions of several variables, such as the function giving the velocity $\mathbf{v} = \mathbf{F}(x, y, z, t)$ of a particle in a fluid located at position (x, y, z) at time t.
- Steady-state flow: A flow for which the velocity function does not depend on the time t.
- Vector field: The collection of all vectors $\mathbf{F}(P)$ assigned to each point P in a region G.
- Gradient field: The vector field defined for points in the domain G of a scalar function T such that $\mathbf{F}(P) = \nabla T(P)$.

17.2 Surface Integrals

12/30:

• Just like we have $ds = \sqrt{1 + f_x^2} dx$, we have

$$d\sigma = g(x, y) dA$$

where $d\sigma$ is "an element of surface area in the tangent plane that approximates the corresponding portion $\Delta\sigma$ of the surface itself" (Thomas, 1972, p. 581) and $g(x,y)=\sqrt{1+f_x^2+f_y^2}$.

• Thus, we can think of surface area as either the lefthand or righthand side of the below equation.

$$\iint\limits_{\Sigma} d\sigma = \iint\limits_{R} g(x, y) \, dA$$

- The lefthand interpretation sums infinitely many, infinitely small pieces d σ of the surface Σ .
- The righthand interpretation sums infinitely many, infinitely small pieces dA of the shadow R of the surface Σ on the xy-plane, adjusted by the factor g(x,y).
- These formulations are important because sometimes we want to conceive and evaluate an integral of the form $\iint_{\Sigma} h(x, y, z) d\sigma$.
- Surface integral (of h(x, y, z) over the surface Σ): The limit as $\Delta \sigma \to 0$ of the sum of every $\Delta \sigma_k$ (composing Σ) times h(x, y, z) for some $(x, y, z) \in \Delta \sigma_k$. Mathematically,

$$\iint\limits_{\Sigma} h(x, y, z) d\sigma = \lim_{\Delta \sigma \to 0} \sum_{k=1}^{n} h(x_k, y_k, z_k) \Delta \sigma_k$$

12/31:

- Consider a surface Σ consisting of all points P(x,y,z) satisfying z=f(x,y) for $(x,y) \in R$, where R is a closed, bounded region of the xy-plane and f, f_x, f_y are continuous throughout R and its boundary.
- Approximate R by dividing it into n rectangles using lines parallel to the y-axis spaced Δx apart and lines parallel to the x-axis spaced Δy apart.
- Let the part of Σ above each rectangle be denoted by $\Delta \sigma_k$ for some $1 \leq k \leq n$.
- Now if $P_k(x_k, y_k, z_k)$ is a point in $\Delta \sigma_k$, we can consider the above sum and take its limit.
- To evaluate the surface integral, we substitute $\Delta \sigma_k = g(x_k, y_k) \Delta x \Delta y$ and $z_k = f(x_k, y_k)$ in the sum, and take iterated integrals over R (the shadow of Σ on the xy-plane) instead of Σ .

$$\iint\limits_{\Sigma} h(x, y, z) \, \mathrm{d}\sigma = \iint\limits_{R} h[x, y, f(x, y)] g(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

- We now explore a useful surface integration technique through a problem.
- Evaluate $\iint (x^2 + y^2) d\sigma$ over the hemisphere Σ described by $z = \sqrt{a^2 x^2 y^2}$.
 - Because of a sphere 2Σ of radius a's high degree of symmetry,

$$\iint\limits_{2\Sigma} x^2 \, \mathrm{d}\sigma = \iint\limits_{2\Sigma} y^2 \, \mathrm{d}\sigma = \iint\limits_{2\Sigma} z^2 \, \mathrm{d}\sigma = \frac{1}{3} \iint\limits_{2\Sigma} (x^2 + y^2 + z^2) \, \mathrm{d}\sigma = \frac{1}{3} \iint\limits_{2\Sigma} a^2 \, \mathrm{d}\sigma$$

Thus, for the hemisphere Σ ,

$$\iint_{\Sigma} (x^2 + y^2) d\sigma = \frac{1}{2} \iint_{2\Sigma} (x^2 + y^2) d\sigma$$

$$= \frac{1}{2} \left(\iint_{2\Sigma} x^2 d\sigma + \iint_{2\Sigma} y^2 d\sigma \right)$$

$$= \frac{1}{2} \left(\frac{1}{3} \iint_{2\Sigma} a^2 d\sigma + \frac{1}{3} \iint_{2\Sigma} a^2 d\sigma \right)$$

$$= \frac{a^2}{3} \iint_{2\Sigma} d\sigma$$

$$= \frac{a^2}{3} \cdot 4\pi a^2$$

$$= \frac{4}{3}\pi a^4$$

- Alternate formulations of $d\sigma$.
 - Let the surface Σ be defined by the equation F(x,y,z)=0.
 - For the same reasons discussed in Chapter 17,

$$d\sigma = \frac{dA}{\cos\phi}$$

where ϕ is the angle between $\mathbf{N} = \nabla F$ and the unit vector normal to the plane onto which Σ is projected, which we will take to be the xy-plane at first (this means that this normal vector is \mathbf{k}).

- Since

$$\cos \phi = \frac{\mathbf{N} \cdot \mathbf{k}}{|\mathbf{N}| |\mathbf{k}|} = \frac{|F_z|}{\sqrt{F_x^2 + F_y^2 + F_z^2}}$$

we thus have that

$$d\sigma = \frac{\sqrt{F_x^2 + F_y^2 + F_z^2}}{|F_z|} dx dy$$

- Note that if we project Σ onto a different plane, an analog to the above can easily be derived.

17.3 Line Integrals

• Line integral (of w(x, y, z) along the curve C from A to B): The limit as $\Delta s \to 0$ of the sum of every Δs_k (composing the section of C between points A and B along C) times w(x, y, z) for some $(x, y, z) \in \Delta s_k$. Mathematically,

$$\int_C w \, \mathrm{d}s = \lim_{\Delta s \to 0} \sum_{k=1}^n w(x_k, y_k, z_k) \, \Delta s_k$$

- Suppose that C is a directed curve in three-space from A to B. Let w(x, y, z) be a scalar function of position that is continuous in a region D containing C.
- Divide C into n segments, and let $P_k(x_k, y_k, z_k)$ be an arbitrary point on the kth subarc.
- If the above sum has a limit as $n \to \infty$ and the largest $\Delta s_k \to 0$, and if this limit is the same for all ways of subdividing C and all choices of the points P_k , then we call this limit the line integral.
- If C is parameterized by the functions x = f(t), y = g(t), and z = h(t) for $t_A \le t \le t_B$, where f, g, h are continuous and have bounded and piecewise-continuous first derivatives on $[t_A, t_B]$, then we may evaluate the line integral of w(x, y, z) along C from A to B with the following formula.

$$\int_C w \, \mathrm{d}s = \int_{t_A}^{t_B} w[f(t), g(t), h(t)] \sqrt{\left(\frac{\mathrm{d}f}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}g}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}h}{\mathrm{d}t}\right)^2} \, \mathrm{d}t$$

- Note that the line integral is the same for any appropriate parameterization of C, or no parameterization.
- 9/2: The line integral can be geometrically interpreted as the area of the region R that lies above the curve C, offset by distance w.
 - If C is a straight line, we can take the line integral over it directly wrt. s by expressing f in terms of s and rewriting the limits:
 - For example, "let C be the line segment from A(0,0) to B(1,1) and let $w=x+y^2$. Evaluate $\int_C w \, ds$ " (Thomas, 1972, p. 585).
 - Let x = t and y = t for $0 \le t \le 1$. Then

$$\int_C w \, ds = \int_0^1 (t + t^2) \sqrt{1 + 1} \, dt$$
$$= \sqrt{2} \left[\frac{t^2}{2} + \frac{t^3}{3} \right]_0^1$$
$$= \frac{5\sqrt{2}}{6}$$

- By the Pythagorean theorem, $s = \sqrt{x^2 + y^2} = \sqrt{2x^2} = x\sqrt{2}$. Thus, $w = s/\sqrt{2} + s^2/2$. Additionally, as $0 \le x \le 1$, $0 \le s \le \sqrt{2}$. Therefore,

$$\int_C w \, \mathrm{d}s = \int_0^{\sqrt{2}} \left(\frac{s}{\sqrt{2}} + \frac{s^2}{2} \right) \, \mathrm{d}s$$
$$= \left[\frac{s^2}{2\sqrt{2}} + \frac{s^3}{6} \right]_0^{\sqrt{2}}$$
$$= \frac{5\sqrt{2}}{6}$$

- To generalize the above notion, we can always think of w as a function $\phi(s)$, where s is arc length.
- "If the point of application of a force $\mathbf{F} = \mathbf{i}M(x,y,z) + \mathbf{j}N(x,y,z) + \mathbf{k}P(x,y,z)$ moves along a curve C from a point $A(a_1,a_2,a_3)$ to a point $B(b_1,b_2,b_3)$, then the work done by the force is

$$W = \int_C \mathbf{F} \cdot d\mathbf{R}$$

where **R** [is the position vector]" (Thomas, 1972, p. 586).

- Since $d\mathbf{R} = \frac{d\mathbf{R}}{ds} ds$ and $d\mathbf{R}/ds = \mathbf{T}$, the work can also be thought of as "the value of the line integral along C of the tangential component of the force field \mathbf{F} " (Thomas, 1972, p. 587).
- The line integral between two points A and B is independent of the path C joining them if and only if the force field F is a gradient field, that is, if

$$\mathbf{F}(x,y,z) = \nabla f$$

for some differentiable function f.

- Thomas (1972) proves this.
- If **F** is a gradient field, then

$$\int_{A}^{B} \mathbf{F} \cdot d\mathbf{R} = \int_{A}^{B} \nabla f \cdot d\mathbf{R} = f(B) - f(A)$$

- Furthermore, from \mathbf{F} , we define f by

$$f(x', y', z') = \int_A^{(x', y', z')} \mathbf{F} \cdot d\mathbf{R}$$

- "Find a function f such that if $\mathbf{F} = 2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k}$, then $\mathbf{F} = \nabla f$ " (Thomas, 1972, p. 589).
 - Choose A = (0, 0, 0) to simplify calculations.
 - Assume that **F** is a gradient field, i.e., that evaluating $\int_A^{(x',y',z')} \mathbf{F} \cdot d\mathbf{R}$ along any path will yield the same result.
 - Thus, choose to evaluate the line integral along the line segment from A to (x', y', z'), which we may define by the parameterization x = x't, y = y't, z = z't for $0 \le t \le 1$.
 - Therefore,

$$f(x', y', z') = \int_{(0,0,0)}^{(x',y',z')} \mathbf{F} \cdot d\mathbf{R}$$
$$= \int_{(0,0,0)}^{(x',y',z')} (2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k}) \cdot (\mathbf{i} dx + \mathbf{j} dy + \mathbf{k} dz)$$

$$\begin{split} &= \int_0^1 (2x't\mathbf{i} + 2y't\mathbf{j} + 2z't\mathbf{k}) \cdot (\mathbf{i}x'\,\mathrm{d}t + \mathbf{j}y'\,\mathrm{d}t + \mathbf{k}z'\,\mathrm{d}t) \\ &= \int_0^1 (2x'^2t\,\mathrm{d}t + 2y'^2t\,\mathrm{d}t + 2z'^2t\,\mathrm{d}t) \\ &= (x'^2 + y'^2 + z'^2) \int_0^1 2t\,\mathrm{d}t \\ &= x'^2 + y'^2 + z'^2 \end{split}$$

- Conservative (force field): A force field **F** such that the work integral from A to B is the same for all paths joining them.
- Another criterion besides $\mathbf{F} = \nabla f$ for some differentiable f is that $\mathrm{d}f = \mathbf{F} \cdot \mathrm{d}\mathbf{R} = M\,\mathrm{d}x + N\,\mathrm{d}y + P\,\mathrm{d}z$ is an exact differential.
 - By an extension of Theorem 15.4, we know that M dx + N dy + P dz is an exact differential if and only if

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \qquad \qquad \frac{\partial M}{\partial z} = \frac{\partial P}{\partial x} \qquad \qquad \frac{\partial N}{\partial z} = \frac{\partial P}{\partial y}$$

- "Suppose $\mathbf{F} = \mathbf{i}(e^x \cos y + yz) + \mathbf{j}(xz e^x \sin y) + \mathbf{k}(xy + z)$. Is \mathbf{F} conservative? If so, find f such that $\mathbf{F} = \nabla f$ " (Thomas, 1972, p. 591).
 - Apply the exact differential test:

$$\frac{\partial M}{\partial y} = -e^x \sin y + z = \frac{\partial N}{\partial x} \qquad \qquad \frac{\partial M}{\partial z} = y = \frac{\partial P}{\partial x} \qquad \qquad \frac{\partial N}{\partial z} = x = \frac{\partial P}{\partial y}$$

- Therefore, **F** is conservative.
- To calculate f, we integrate the system of equations

$$\frac{\partial f}{\partial x} = e^x \cos y + yz$$
 $\frac{\partial f}{\partial y} = xz - e^x \sin y$ $\frac{\partial f}{\partial z} = xy + z$

■ Starting with the first one, we obtain

$$f = e^x \cos y + xyz + g(y, z)$$

where g(y, z) is a function of integration.

 \blacksquare Differentiating wrt. y, we get

$$xz - e^{x} \sin y = \frac{\partial f}{\partial y} = -e[x] \sin y + xz + \frac{\partial g}{\partial y}$$
$$\frac{\partial g}{\partial y} = 0$$
$$g(y, z) = h(z)$$

 \blacksquare Differentiating wrt. z, we get

$$xy + z = \frac{\partial f}{\partial z} = xy + \frac{\partial h}{\partial z}$$
$$\frac{\partial h}{\partial z} = z$$
$$h(z) = \frac{1}{2}z^2 + C$$

■ Therefore,

$$f(x, y, z) = e^x \cos y + xyz + \frac{1}{2}z^2 + C$$

• **Potential function**: A function f(x, y, z) which has the property that its gradient gives the force vector \mathbf{F} .

17.4 Two-Dimensional Fields: Line Integrals in the Plane and Their Relation to Surface Integrals on Cylinders

- Features of a two-dimensional field **F**:
 - 1. The vectors in \mathbf{F} are all parallel to one plane, which we have taken to be the xy-plane.
 - Mathematically, the vectors have no \mathbf{k} component.
 - 2. In every plane parallel to the xy-plane, the field is the same as it is in that plane.
 - Mathematically, the vectors do not depend on z.
- Imagine fluid of planar mass density δ flowing out from the origin with velocity defined by a vector velocity function \mathbf{v} .

Figure 17.1: Fluid flowing over a line segment.

- Then the flow rate dM/dt over a curve C in the plane is given by

$$\frac{\mathrm{d}M}{\mathrm{d}t} = \int_C \delta(\mathbf{v} \cdot \mathbf{n}) \,\mathrm{d}s$$

• Flux (of $\mathbf{F} = \delta \mathbf{v}$ across C): The quantity

$$\int_C \mathbf{F} \cdot \mathbf{n} \, \mathrm{d}s$$

- If C is a closed curve, we canonically choose **n** to point outwards and the orientation to be in the counterclockwise direction.
 - We also choose $\mathbf{n} = \mathbf{T} \times \mathbf{k}$.
- With these conventions, if we let $\mathbf{F}(x,y) = \mathbf{i}M(x,y) + \mathbf{j}N(x,y)$, then

$$\operatorname{flux} = \int_{C} \mathbf{F} \cdot \mathbf{n} \, \mathrm{d}s$$

$$= \int_{C} \mathbf{F} \cdot (\mathbf{T} \times \mathbf{k}) \, \mathrm{d}s$$

$$= \int_{C} \mathbf{F} \cdot \left(\left(\frac{\mathrm{d}x}{\mathrm{d}s} \mathbf{i} + \frac{\mathrm{d}y}{\mathrm{d}s} \mathbf{j} \right) \times \mathbf{k} \right) \, \mathrm{d}s$$

$$= \int_{C} \mathbf{F} \cdot \left(\frac{\mathrm{d}y}{\mathrm{d}s} \mathbf{i} - \frac{\mathrm{d}x}{\mathrm{d}s} \mathbf{j} \right) \, \mathrm{d}s$$

$$= \int_{C} \left(M \frac{\mathrm{d}y}{\mathrm{d}s} - N \frac{\mathrm{d}x}{\mathrm{d}s} \right) \, \mathrm{d}s$$

$$= \int_{C} \left(M \, \mathrm{d}y - N \, \mathrm{d}x \right)$$

• Any flux integral can be reinterpreted as a work integral on a related field and vice versa: If $\mathbf{F}(x,y) = \mathbf{i}M + \mathbf{j}N$ and $\mathbf{G}(x,y) = -\mathbf{i}N + \mathbf{j}M$, then

$$\int_C \mathbf{F} \cdot \mathbf{n} \, \mathrm{d}s = \int_C \mathbf{G} \cdot \mathbf{T} \, \mathrm{d}s$$

17.5 Green's Theorem

• The following is a formal statement of **Green's theorem**.

Theorem 17.1 (Green's theorem). Let C be a simple closed curve in the xy-plane such that a line parallel to either axis cuts C in at most two points. Let M, N, $\partial N/\partial x$, and $\partial M/\partial y$ be continuous functions of (x,y) inside and on C. Let R be the region inside C. Then

$$\oint_C M \, dx + N \, dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy \, [1]$$

Proof. We will prove that $\iint_R (-\partial M/\partial y) dx dy = \oint_C M dx$. It will follow by a symmetric argument that $\iint_R (\partial N/\partial x) dx dy = \oint_C N dy$. The sum of these two qualities will yield Green's theorem. Let's begin.

Figure 17.2: Proving Green's theorem.

Consider the curve C enclosing a region R. We divide C into a lower boundary curve C_1 and an upper boundary curve C_2 , both of which are functions of x (the constraint that a line parallel to either axis cuts C in at most two points allows us to do this).

Since $\partial M/\partial y$ is continuous, it is integrable, meaning that at any $x \in [a, b]$, we can determine that

$$\int_{y_1}^{y_2} \frac{\partial M}{\partial y} \, dy = [M(x,y)]_{y=f_1(x)}^{y=f_2(x)}$$
$$= M(x, f_2(x)) - M(x, f_1(x))$$

¹The symbol ϕ denotes a line integral over a closed curve C.

It follows since M is continuous, and therefore integrable, that

$$\iint_{R} -\frac{\partial M}{\partial y} \, \mathrm{d}x \, \mathrm{d}y = \int_{a}^{b} -\int_{f_{1}(x)}^{f_{2}(x)} \frac{\partial M}{\partial y} \, \mathrm{d}y \, \mathrm{d}x$$

$$= \int_{a}^{b} \left[M(x, f_{1}(x)) - M(x, f_{2}(x)) \right] \, \mathrm{d}x$$

$$= \int_{a}^{b} \left[M(x, f_{1}(x)) \, \mathrm{d}x + \int_{b}^{a} M(x, f_{2}(x)) \right] \, \mathrm{d}x$$

$$= \int_{C_{1}} M \, \mathrm{d}x + \int_{C_{2}} M \, \mathrm{d}x$$

$$= \oint_{C} M \, \mathrm{d}x$$

as desired.

It follows by a symmetric argument that

$$\iint_{R} \frac{\partial N}{\partial x} \, \mathrm{d}x \, \mathrm{d}y = \oint_{C} N \, \mathrm{d}y$$

Therefore, we have by addition that

$$\oint_C M \, dx + N \, dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy^{[2]}$$

as desired.

• Green's theorem provides an easy to calculate the area enclosed by a curve.

Corollary 17.1. If C is a simple closed curve such that a line parallel to either axis cuts it in at most two points, them the area enclosed by C is equal to

$$\frac{1}{2} \oint_C (x \, \mathrm{d}y - y \, \mathrm{d}x)$$

Proof. From Section 16.2, we have that

$$A = \iint_{R} 1 \, dx \, dy$$

$$= \iint_{R} \left(\frac{1}{2} - \left(-\frac{1}{2}\right)\right) dx \, dy$$

$$= \iint_{R} \left(\frac{\partial}{\partial x} \left(\frac{x}{2}\right) - \frac{\partial}{\partial y} \left(-\frac{y}{2}\right)\right) dx \, dy$$

$$= \oint_{C} \left(-\frac{1}{2}y \, dx + \frac{1}{2}x \, dy\right)$$
Theorem 17.1
$$= \frac{1}{2} \oint_{C} (x \, dy - y \, dx)$$

as desired.

• Note that Green's theorem also applies to a number of shapes that don't fit the theorem statement's direct criteria

- For instance, we can prove that it holds for a rectangle in the xy-plane with sides parallel to the x- or y-axes.

Figure 17.3: Creating composite regions that satisfy Green's theorem.

- Additionally, we can add together regions that satisfy Green's theorem individually to form bigger regions that satisfy it (the line integrals in the overlapping part of Figure 17.3 cancel).
- In fact, we can add together any finite number of subregions that satisfy Green's theorem.
- Curl (of a vector $\mathbf{F} = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$): The cross product of the del operator and \mathbf{F} . Given by

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F}$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix}$$

$$= \mathbf{i} \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z} \right) + \mathbf{j} \left(\frac{\partial M}{\partial z} - \frac{\partial P}{\partial x} \right) + \mathbf{k} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$$

• It follows that Green's theorem in vector form is

$$\int_{C} \mathbf{F} \cdot d\mathbf{R} = \iint_{R} (\nabla \times \mathbf{F}) \cdot d\mathbf{A}$$

where $\mathbf{F} = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$, $d\mathbf{R} = \mathbf{i} dx + \mathbf{j} dy$, and $d\mathbf{A} = \mathbf{k} dx dy$.

- "In words, Green's theorem states that the integral around C of the tangential component of \mathbf{F} is equal to the integral, over the region R bounded by C, of the component of curl \mathbf{F} that is normal to R; this integral, specifically, is the flux through R of curl \mathbf{F} " (Thomas, 1972, p. 604).
- **Divergence** (of a vector $\mathbf{F} = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$): The dot product of the del operator and \mathbf{F} . Given by

$$\operatorname{div} \mathbf{G} = \nabla \cdot \mathbf{G}$$
$$= \frac{\partial M}{\partial x} + \frac{\partial N}{\partial x} + \frac{\partial P}{\partial x}$$

• If $\mathbf{F} = \mathbf{i} M(x,y) + \mathbf{j} N(x,y)$ is a field and $\mathbf{G} = \mathbf{i} N(x,y) - \mathbf{j} M(x,y)$ is the orthogonal field, then an alternate vector formulation of Green's theorem is

$$\int_{C} \mathbf{G} \cdot \mathbf{n} \, \mathrm{d}s = \iint_{R} \nabla \cdot \mathbf{G} \, \mathrm{d}x \, \mathrm{d}y$$

- "In words, [this] says that the line integral of the normal component of any vector field \mathbf{G} around the boundary of a region R in which \mathbf{G} is continuous and has continuous partial derivatives is equal to the double integral of the divergence of \mathbf{G} over R" (Thomas, 1972, p. 604).