

Hydrogen bonding and methane

### Hydrogen bonding and methane



| Part A | Effects of intermolecular hydrogen bonding                                                                                            |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|--|
|        | Which of the following statements describes a phenomenon which can be explained by intermolecular hydrogen-bonding?                   |  |
|        | The boiling points of the alkanes increase with increasing relative molecular mass.                                                   |  |
|        | One has a lower density than water at $0^{\circ}\mathrm{C}$ .                                                                         |  |
|        | The melting points of the Group 1 hydroxides increase with increasing relative molecular mass ( $M_r$ )                               |  |
|        | Hydrogen chloride forms an acidic solution when dissolved in water.                                                                   |  |
|        | $ m CH_3OCH_3$ ( $M_r$ = 46) has a higher boiling point than $ m CH_3CH_2CH_3$ ( $M_r$ = 44).                                         |  |
| Part B | Condensed methane                                                                                                                     |  |
|        | he Voyager 2 probe has shown that the surface of Triton, a moon of the planet Neptune, contains ondensed methane which flows rapidly. |  |
| W      | /hich statement explains the flow within the condensed methane?                                                                       |  |
|        | Methane molecules have a tetrahedral structure.                                                                                       |  |
|        | Condensed methane has a metallic structure.                                                                                           |  |
|        | Methane molecules contain strong C-H bonds.                                                                                           |  |
|        | The intermolecular forces between methane molecules are weak.                                                                         |  |

Part A adapted with permission from UCLES, A-Level Chemistry, November 1990, Paper 1, Question 4; Part B adapted with permission from UCLES, A-Level Chemistry, November 1996, Paper 4, Question 4





<u>Home</u> Ammonia

#### **Ammonia**



| Part A                                                                                                                  | Lone pair on ammonia                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Which of the following does <b>not</b> involve the lone pair of electrons on the nitrogen atom of the ammonia molecule? |                                                                                                      |
|                                                                                                                         | $igcup$ the formation of $\mathrm{NH_4}^+$ ions in aqueous ammonia                                   |
|                                                                                                                         | the dissolving of silver chloride in aqueous ammonia                                                 |
|                                                                                                                         | $\hfill \bigcirc$ the formation of $\mathrm{NH_2}^-$ ions during the reaction of ammonia with sodium |
|                                                                                                                         | the hydrogen bonding that occurs between molecules of ammonia                                        |
|                                                                                                                         |                                                                                                      |
| Part B                                                                                                                  | Ammonia in water                                                                                     |
| W                                                                                                                       | hich combination of molecules and ions exists in a solution of ammonia in water?                     |
|                                                                                                                         | ions only                                                                                            |
|                                                                                                                         | simple molecules and hydrogen-bonded molecules only                                                  |
|                                                                                                                         | hydrogen-bonded molecules and ions only                                                              |
|                                                                                                                         | simple molecules and ions only                                                                       |
|                                                                                                                         |                                                                                                      |
|                                                                                                                         |                                                                                                      |

Part A adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 4, Question 18; Part B adapted with permission from UCLES, A-Level Chemistry, November 1998, Paper 3, Question 18



Breaking hydrogen bonds

#### Breaking hydrogen bonds

| Dart A | Hydrogon bonding between same melecules |
|--------|-----------------------------------------|

| W | hich of the following molecules will <b>not</b> form a hydrogen bond with another of its own molecules? |
|---|---------------------------------------------------------------------------------------------------------|
|   | $\bigcirc$ CH <sub>4</sub>                                                                              |
|   | $\bigcirc$ H <sub>2</sub> O                                                                             |
|   | ○ CH <sub>3</sub> OH                                                                                    |
|   | $\bigcirc$ NH $_3$                                                                                      |

#### Part B Breaking hydrogen bonds

In which of the following processes will hydrogen bonds be broken?

- $\qquad \qquad H_{2}\left( l\right) \longrightarrow H_{2}\left( g\right)$
- $NH_3(l) \longrightarrow NH_3(g)$
- $2 \operatorname{HI}(g) \longrightarrow \operatorname{H}_{2}(g) + \operatorname{I}_{2}(g)$

Part A adapted with permission from UCLES, A-Level Chemistry, June 1994, Paper 4, Question 8; Part B adapted with permission from OCSEB, A-Level Chemistry, June 1995, Paper 1, Question 5



**Home** Dissolving salts

## **Dissolving salts**



| Part <i>F</i>                                                                                                            | Barium and magnesium sulfates                                                                                                                      |  |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                          | Barium sulfate occurs naturally as barite, which is a solid ore. Magnesium sulfate, however, occurs mainly in solution,                            |  |
| ,                                                                                                                        | ny is this?                                                                                                                                        |  |
|                                                                                                                          | Barium ions are less readily hydrated than magnesium ions.                                                                                         |  |
|                                                                                                                          | Barium sulfate has a stronger crystalline lattice.                                                                                                 |  |
|                                                                                                                          | Barium sulfate is more resistant to oxidation than magnesium sulfate.                                                                              |  |
|                                                                                                                          | Magnesium sulfate is hydrolysed by naturally acidic solutions, but barium sulfate is not.                                                          |  |
|                                                                                                                          |                                                                                                                                                    |  |
|                                                                                                                          |                                                                                                                                                    |  |
| Part E                                                                                                                   | Dissolving ammonium nitrate                                                                                                                        |  |
| Which of the following statements correctly explains why the temperature falls when ammonium nitrate dissolves in water? |                                                                                                                                                    |  |
|                                                                                                                          | The lattice enthalpy of the salt has a negative value.                                                                                             |  |
|                                                                                                                          | The lattice enthalpy of the salt is greater in magnitude than the enthalpy of solvation of the ions.                                               |  |
|                                                                                                                          | Six bonds have to be broken in the crystal and only one is formed in solution.                                                                     |  |
|                                                                                                                          | The vapour pressure over a salt solution is always less than that of the pure solvent.                                                             |  |
|                                                                                                                          |                                                                                                                                                    |  |
|                                                                                                                          | The strength of the bonding between ammonium and nitrate ions in the crystal is greater than that between ammonium and hydroxide ions in solution. |  |

Part A adapted with permission from OCR, A-Level Chemistry, November 1999, Paper 3, Question 14; Part B adapted with permission from OCSEB, A-Level Chemistry, June 1999, Paper 1, Question 7



Dipoles

# Dipoles



| Part A | Dipoles 1                                                       |
|--------|-----------------------------------------------------------------|
| Wh     | nich of the following molecules has <b>no</b> permanent dipole? |
|        | $igcup 	ext{CCl}_2	ext{F}_2$                                    |
|        | ○ CHCl <sub>3</sub>                                             |
|        | $\bigcirc$ C <sub>2</sub> Cl <sub>4</sub>                       |
|        | $\bigcirc$ C <sub>2</sub> H <sub>5</sub> Cl                     |
|        |                                                                 |

#### Part B Dipoles 2

In which pair of molecules is the permanent dipole in molecule I greater than that in molecule II?



Figure 1: Dipoles.

( ) A

( ) C

( ) D

Part A adapted with permission from UCLES, A-Level Chemistry, June 1994, Paper 4, Question 9; Part B adapted with permission from UCLES, A-Level Chemistry, June 1999, Paper 3, Question 18



Van der Waals and paraffin wax

### Van der Waals and paraffin wax



| Part A Van der Waals forces                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Which of the following solids consists of atoms or molecules held together only by van der Waals forces (due to some form of dipole-dipole interaction)? |
| $\bigcirc$ CO <sub>2</sub>                                                                                                                               |
| Ou Cu                                                                                                                                                    |
| $\bigcirc$ H <sub>2</sub> O                                                                                                                              |
| ○ MgO                                                                                                                                                    |
| $\bigcirc$ SiO $_2$                                                                                                                                      |
| Part B Melting point of paraffin wax                                                                                                                     |
| The melting point of paraffin wax (a mixture of saturated hydrocarbons which have high relative molar mass) is determined by                             |
| covalent bonds within hydrocarbon molecules.                                                                                                             |
| covalent bonds between hydrogen carbon molecules.                                                                                                        |
| ionic bonds between molecules.                                                                                                                           |
| hydrogen bonds between molecules.                                                                                                                        |
| van der Waals (London dispersion) forces between the molecules.                                                                                          |
|                                                                                                                                                          |

Part A adapted with permission from UCLES, A-Level Chemistry, November 1990, Paper 1, Question 1; Part B adapted with permission from OCSEB, A-Level Chemistry, June 1994, Paper 1, Question 3



Home H

Hydrogen bonding

### Hydrogen bonding



| Which of the following contain hydrogen bonds? |  |
|------------------------------------------------|--|
| <b>1</b> NH <sub>4</sub> Cl(s)                 |  |
| $2 \mathrm{NH_3} \left( \mathrm{l} \right)$    |  |
| <b>3</b> HNO <sub>3</sub> (l)                  |  |
| 1, 2 and 3                                     |  |
| 1 and 2 only                                   |  |
| 2 and 3 only                                   |  |
| 1 only                                         |  |
| 3 only                                         |  |
|                                                |  |
|                                                |  |

Adapted with permission from UCLES, A-Level Chemistry, November 1998, Paper 3, Question 31



Dry ice and carbon tetrachloride

### Dry ice and carbon tetrachloride



| Part .                                                                                                        | A Interactions in dry ice                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                               | Solid carbon dioxide, ${ m CO_2}\left( { m s} \right)$ , (dry ice) is used as a refrigerating agent because it readily changes directly from the solid into vapour state at a low temperature. |
|                                                                                                               | What does this indicate the main intermolecular interactions in $\mathrm{CO}_2\left(\mathrm{s}\right)$ to be?                                                                                  |
|                                                                                                               | covalent bonding                                                                                                                                                                               |
|                                                                                                               | hydrogen bonding                                                                                                                                                                               |
|                                                                                                               | ionic bonding                                                                                                                                                                                  |
|                                                                                                               | van der Waals' forces                                                                                                                                                                          |
|                                                                                                               |                                                                                                                                                                                                |
| Part                                                                                                          | B Liquid tetrachloromethane                                                                                                                                                                    |
| Which type of interaction is responsible for intermolecular forces in liquid tetrachlomethane, ${ m CCl_4}$ ? |                                                                                                                                                                                                |
|                                                                                                               | covalent bonding                                                                                                                                                                               |
|                                                                                                               | hydrogen bonding                                                                                                                                                                               |
|                                                                                                               | induced dipole - dipole attractions                                                                                                                                                            |
|                                                                                                               | permanent dipole - dipole attractions                                                                                                                                                          |
|                                                                                                               |                                                                                                                                                                                                |

Part A adapted with permission from OCR, A-Level Chemistry, June 1998, Paper 3, Question 7; Part B adapted with permission from UCLES, A-Level Chemistry, June 1998, Paper 3, Question 5



Sulfates and detergents

#### Sulfates and detergents



#### Part A Solubility of sulfates

Which of the following factors helps to explain the differing solubility in water of magnesium sulfate compared with that of barium sulfate?

- **1** Barium sulfate has a numerically (in terms of magnitude) larger lattice energy than magnesium sulfate.
- **2** The enthalpy change of hydration of magnesium ions is more exothermic than that of barium ions.
- **3** The charge density of magnesium ions is greater than that of barium ions.

| 1, 2 and 3 are correct   |
|--------------------------|
| 1 and 2 only are correct |
| 2 and 3 only are correct |
| 1 only is correct        |
| 3 only is correct        |

#### Part B Detergents

Long-chain alkanes are converted on an industrial scale into alkyl sulfates for use as detergents, e.g. sodium lauryl sulfate.

Which of the following are properties of this substance?

- 1 It possesses both a water-attracting and a water-repelling part.
- **2** The sulfate group is anionic in aqueous solutions.
- 3 The alkyl chain is soluble in oil droplets.

$$CH_3(CH_2)_{10}CH_2O$$
 S ONa

Figure 1: Sodium lauryl sulfate

| 1, 2 and 3 are correct   |  |
|--------------------------|--|
| 1 and 2 only are correct |  |
| 2 and 3 only are correct |  |
| 1 only is correct        |  |
| 3 only is correct        |  |

Part A adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 4, Question 35; Part B adapted with permission from UCLES, A-Level Chemistry, November 1990, Paper 1, Question 32