宇宙理工学概論

1.地球、金星、火星の気象の違い

土木工学科 仲吉信人 nakayoshi@rs.tus.ac.jp 5号館3階

専門:都市気象·気候学 温熱生理学 生気象学

✓ 気象とは

大気の組成や流れの状態.

熱・物質・運動量の輸送(移流・拡散)

ex) 台風, 突風, 渴水, 熱波, 寒波

1. 温度と放射
2. 温度と大気循環

✓ 惑星気象を知る利点

- ・宇宙飛行士の作業環境を知る
- ・機器の動作環境を知る
- ・ 定住可能性の検討
- ・生物の生育環境を知る
- ・地球気象のよりよい理解

気象協会tenki.jp

	金星	地球	火星
地表面温度 [K]	730	288	220
太陽定数 [W m-2]	2600	1380	590
惑星アルベド	0.78	0.3	0.24
主要気体の存在比率	CO2:96.5 % N2:3.5%	N2:78.1 % O2:20.9% H2O:~2% CO2:0.04%	CO:95.3% N2:2.7% Ar:1.6%
重力加速度 [m s ⁻²]	8.9	9.8	3.7
地表面気圧[hPa]	92000	1013	6
1昼夜の長さ	117日	1日	1日

金星の地表面気圧はなぜ大きい? 金星はなぜ高温?

気圧とは

a) **気圧** (air pressure) [Pa or N m⁻²]: 高度zより上空の空気の重さ(単位面積あたり)

空気柱の重力と圧力の釣り合い

$$\left\{ p\left(z - \frac{\Delta z}{2}\right) - p\left(z + \frac{\Delta z}{2}\right) \right\} A = \rho(z)gA\Delta z$$

z周りにTaylor展開し2次以上無視すると

$$-\frac{\mathrm{d}p}{dz} = \rho(z)g$$

変数分離し、地上から高度zまで積分

$$\int_{p_0}^{p_z} dp = -\int_0^z \rho(z)g \, dz$$

$$p_z - p_0 = -\int_0^z \rho(z)g \, dz \qquad p_0 = p_z + \int_0^z \rho(z)g \, dz$$

1. 温度と放射

放射エネルギー(Radiation):電磁波によるエネルギー輸送 ex)ハロゲンヒータ

特徴:空気はほとんど暖まらない、物体を直接加熱

放射によるエネルギーフラックス:

フラックス(flux):単位時間当たりに単位面積を通過する物理量

ステファン・ボルツマンの法則: $Flux_{rad} = \varepsilon \sigma T^4$ [Wm⁻²]

ε:物体の射出率[-]

 σ :ステファン・ボルツマン定数5.67×10⁻⁸[W m⁻² K⁻⁴]

T:物体温度[K]

太陽のエネルギースペクトル

エネルギースペクトルのピーク波長:

ウィーンの変位則:
$$\lambda_{max} = \frac{2897}{T} [\mu m]$$

太陽: 6000[K] $\rightarrow \lambda_{max} = 0.48 \, [\mu m]$

短波放射(Shortwave radiation) 3 [µm]以下

地物や雲:300[K]位 $\rightarrow \lambda_{max} = 9.7 [\mu m]$

長波放射(Longwave radiation) 3 [µm]以上

放射と大気組成

②地球表面から宇宙に出て行く長波放射エネルギー $\varepsilon \sigma T_s^4 \times 4\pi r^2$

放射平衡状態:①=②

$$(1 - \alpha)S \times \pi r^{2} = \varepsilon \sigma T_{s}^{4} \times 4\pi r^{2}$$

$$T_{s} = \sqrt[4]{\frac{(1 - \alpha)S}{4\varepsilon \sigma}}$$

地球表面の平均 α =0.3 地球表面の平均 ϵ =1.0

$$T_S = \sqrt[4]{\frac{(1-0.3)\times1360}{4\times1\times5.67\times10^{-8}}} \approx 255 \text{ [K]} = -18 \text{[°C]}$$

平均地球表面温度(15℃)を大きく下回る!

②地球表面から宇宙に出て行く長波放射エネルギー $\varepsilon \sigma T_s^4 \times 4\pi r^2$

放射平衡状態:①=②

$$(1 - \alpha)S \times \pi r^{2} = \varepsilon \sigma T_{s}^{4} \times 4\pi r^{2}$$

$$T_{s} = \sqrt[4]{\frac{(1 - \alpha)S}{4\varepsilon \sigma}}$$

地球表面の平均 α =0.3 地球表面の平均 ϵ =1.0

$$T_S = \sqrt[4]{\frac{(1-0.3)\times1360}{4\times1\times5.67\times10^{-8}}} \approx 255 \text{ [K]} = -18 \text{[°C]}$$

平均地球表面温度(15℃)を大きく下回る!

- 1. 大気は短波放射を完全に透過する
- 2. 大気は長波放射を完全に吸収する
- 3.大気の厚さは無視できる

仮定

- 1. 大気は短波放射を完全に透過する
- 2. 大気は長波放射を完全に吸収する

大気における放射バランス

①大気から出ていく長波放射:

$$2\times\sigma T_a^4\times 4\pi r^2$$

②地球から大気に入射する長波放射: $\varepsilon \sigma T_s^4 \times 4\pi r^2$

$$\varepsilon \sigma T_s^4 \times 4\pi r^2 = 2 \times \varepsilon \sigma T_a^4 \times 4\pi r^2$$

$$T_a^4 = \frac{T_s^4}{2}$$

$$T_a = T_s \sqrt[4]{\frac{1}{2}}$$

$$\mathcal{L}_{S}^{2}$$
 \mathcal{L}_{S}^{4}

地球表面における放射バランス

①地球が受ける短波放射:

$$(1-\alpha)S\times\pi r^2$$

②地球から出ていく長波放射:

$$\varepsilon \sigma T_s^4 \times 4\pi r^2$$

③地球が受ける長波放射:

$$\varepsilon \sigma T_a^4 \times 4\pi r^2$$

$$(1 - \alpha)S \times \pi r^2 + \varepsilon \sigma T_a^4 \times 4\pi r^2$$
$$= \varepsilon \sigma T_s^4 \times 4\pi r^2$$

地球表面における放射バランス

$$(1 - \alpha)S \times \pi r^2 = \varepsilon \sigma (T_s^4 - T_a^4) \times 4\pi r^2$$

大気における放射バランスより

$$T_a^4 = \frac{T_s^4}{2}$$

よって

$$(1 - \alpha)S \times \pi r^2 = \frac{1}{2} \varepsilon \sigma T_S^4 \times 4\pi r^2$$

$$T_S = \sqrt[4]{\frac{(1-\alpha)S}{2\varepsilon\sigma}} \approx 303 \text{ [K]} = 30 \text{[°C]}$$

温室効果ガスの影響

仮定

- 1. 大気は短波放射を完全に透過する
- 2. 大気は長波放射を90%吸収する
- 3. 地面の射出率は98%

大気における放射バランス

①大気から出ていく長波放射:

$$2 \times \varepsilon_a \sigma T_a^4 \times 4\pi r^2$$

②地球から大気に入射する長波放射: $\varepsilon_a \varepsilon_s \sigma T_s^4 \times 4\pi r^2$

 $\varepsilon_{S} \sigma T_{S}^{4}$

$$\varepsilon_{a}\varepsilon_{s}\sigma T_{s}^{4} \times 4\pi r^{2} = 2 \times \varepsilon_{a}\sigma T_{a}^{4} \times 4\pi r^{2}$$

$$T_{a}^{4} = \frac{\varepsilon_{s}T_{s}^{4}}{2}$$

$$T_{a} = T_{s}^{4} \sqrt{\frac{\varepsilon_{s}}{2}}$$

地球表面における放射バランス

①地球が受ける短波放射:

$$(1-\alpha)S\times\pi r^2$$

②地球から出ていく長波放射: $\varepsilon_s \sigma T_s^4 4\pi r^2$

③地球が受ける長波放射: $\varepsilon_s \varepsilon_a \sigma T_a^4 \times 4\pi r^2$

地球表面における放射バランス

$$(1 - \alpha)S \times \pi r^2 = \sigma(\varepsilon_S T_S^4 - \varepsilon_S \varepsilon_a T_a^4) \times 4\pi r^2$$

大気における放射バランスより

$$T_a^4 = \frac{\varepsilon_s T_s^4}{2}$$

よって

$$(1 - \alpha)S \times \pi r^2 = T_s^4 (\varepsilon_s \sigma - \varepsilon_s^2 \varepsilon_a \frac{\sigma}{2}) \times 4\pi r^2$$

$$T_{S} = \sqrt[4]{\frac{(1-\alpha)S}{4\left(\varepsilon_{S}\sigma - \varepsilon_{S}^{2}\varepsilon_{a}\frac{\sigma}{2}\right)}} \approx 295.8 \text{ [K]} = 22.7 \text{[°C]}$$

$$T_a = T_s \sqrt[4]{\frac{\varepsilon_s}{2}} = 247.5[K] \cong -25.6[^{\circ}C]$$

温室効果ガスの影響

有効放射温度~金星と火星~

地表面温度: 金星730 K, 火星220 K

太陽定数: 金星2600 W m⁻², 火星590 W m⁻²

0.723 AU 1.52 AU

アルベド: 金星0.78, 火星0.24

有効放射温度: 金星224 K , 火星210 K

	金星	地球	火星
地表面温度 [K]	730	288	220
太陽定数 [W m-2]	2600	1380	590
惑星アルベド	0.78	0.3	0.24
主要気体の存在比率	CO2:96.5 % N2:3.5%	N2:78.1 % O2:20.9% H2O:~2% CO2:0.04%	CO:95.3% N2:2.7% Ar:1.6%
重力加速度 [m s ⁻²]	8.9	9.8	3.7
地表面気圧[hPa]	92000	1013	6
1昼夜の長さ	117日	1日	1日

金星の地表面気圧はなぜ大きい? 金星はなぜ高温?

大気の層:数百

加熱面から裏面への熱移動は熱伝導によって生じる。熱伝導率が十分小さいと仮定すると、

- ①太陽に正対する衛星が受ける短波放射エネルギー $(1-\alpha)S \times A$
 - ②衛星が射出する長波放射エネルギー $\varepsilon \sigma T_s^4 \times A$

$$T_S = \sqrt[4]{\frac{(1-\alpha)S}{4\epsilon\sigma}} \cong 374 \text{ K (S} = 1360 \text{ W m}^{-2}, \alpha = 0.2、 \epsilon = 0.98$$
で計算)

気圧と大気流れ

水平面

鉛直面

気圧傾度力と風向き

宇宙から見ると(慣性系)

地球から見ると(回転座標系) 進行方向直角に力を受けている ように見える.

コリオリカ

コリオリカ

回転球体上(自転する地球)

北半球:進行方向右向き

南半球:進行方向左向き

ともに風速に比例(-fu, fv), $u: 東西風速[m s^{-1}]$

v: 南北風速[$m s^{-1}$]

地球自転による角速度: $\Omega = \frac{2\pi}{1 \, \text{目}} = 7.292 \times 10^{-5} \, [s^{-1}]$

コリオリパラメータ $f = 2\Omega \sin \phi$ $\phi: 緯度[rad]$

惑星自転の作用により高気圧→低気圧は成立しない

地衡風:コリオリカと気圧傾度力がバランス

地表付近(~1km):摩擦力と気圧傾度力、コリオリカのバランス

摩擦力作用:風速が弱まる→コリオリカの低下→地衡風バランスが崩れる→風速が低圧側に傾く

発達した熱帯低気圧や台風の場合:空気塊は曲線運動

気圧傾度力、コリオリカ、遠心力の釣り合い

傾度風

大気大循環

	金星	地球	火星
1昼夜	117日	1日	1日
地表温度日変化	数K	数10 K	0~100 K
地表面温度季節変化	数K	50 K	150 K
大気量(地球を1として)	100	1	0.01

