F-128 – Física Geral I

Aula exploratória 13 UNICAMP – IFGW

Exercício 01

Em um jogo de bilhar, uma tacada horizontal, na altura do centro de massa, comunica a uma bola de bilhar de raio \mathbf{R} e massa \mathbf{m} uma velocidade inicial \mathbf{v}_0 (velocidade de translação do CM). Suponha que o coeficiente de atrito cinético entre a bola e a mesa é μ . Determine:

- a) o tempo decorrido entre a tacada e o instante em que a fase inicial de deslizamento cessa, e a bola passa a rolar sem deslizar;
- b) a velocidade angular da bola neste instante.

Exercício 02

Uma esfera de massa M e raio R desce rolando ao longo de um plano inclinado de um ângulo θ em relação à horizontal. Determine a velocidade da esfera ao atingir a base do plano utilizando:

- a) a 2^{-a} lei de Newton (para o CM e para o eixo instantâneo);
- b) considerações sobre energia (idem);
- c) calcule a força de atrito que age sobre o cilindro.

Exercício extra

Uma pessoa em uma bicicleta, de massa total m, sobe uma rampa de inclinação θ com velocidade constante. A bicicleta possui as seguintes características (ver figura): rodas de raio R, catraca na roda traseira de raio r_t , coroa ligada ao pedal de raio r_c , e braço do pedal de tamanho l.

- a) Faça um diagrama das forças atuando no problema. Calcule a força de atrito.
- b) Relacione a força aplicada no pedal com a tensão na corrente;
- c) Relacione a tensão na corrente com a força de atrito na roda traseira;
- d) Considerando uma bicicleta de marcha (r_t e r_c variáveis), discuta as modificações na marcha que devem ser feitas para subir uma ladeira mais íngrime.

Exercício extra

Uma fita leve está enrolada em volta de um disco circular de massa m e raio r, que rola sem deslizar sobre um plano inclinado áspero de inclinação q. A fita passa por uma roldana fixa de massa desprezível e está presa a um bloco suspenso de massa m, como mostra a figura. Calcule:

- a) a aceleração a da massa m';
- b) a tração T na fita.
- c) Discuta o movimento do disco em função de m, m' e q.

