Problem 5.12. Consider the problem of determining whether a single-tape Turing machine ever writes a blank symbol over a non-blank symbol during the course of its computation on any input string. Formulate this problem as a language and show that it is undecidable.

Proof. Let $T = \{\langle M \rangle \mid M \text{ is a single-tape } \mathbf{TM} \text{ that writes a blank symbol over a non-blank symbol during the course of its computation on any input string}. Show that <math>A_{TM}$ reduces to T. Assume for the sake of contradiction that \mathbf{TM} R decides T. Then construct a \mathbf{TM} S that uses R to decide A_{TM} .

S = "On input $\langle M, w \rangle$, where M is a **TM** and w is a string:

- 1. Use M and w to construct the following TM M_w . M_w = "On any input:
 - 1. Simulate M on w.
 - 2. If the simulation shows that M accepts, write a blank symbol over a non-blank symbol."
- 2. Run R on $\langle M_w \rangle$.
- 3. If R accepts, M accepts w, so accept. Otherwise, reject."

Thus, if **TM** R exists, we can decide A_{TM} , but we know that A_{TM} is undecidable¹. By virtue of this contradiction, we can conclude that R does not exist. Therefore, T is undecidable.

¹Theorem 4.11 A_{TM} is undecidable.