International Rectifier

IRF7488PbF

HEXFET® Power MOSFET

Applications

- High frequency DC-DC converters
- Lead-Free

V _{DSS}	R _{DS(on)} max	Qg
80V	29m Ω @V _{GS} =10V	38nC

Benefits

- Low Gate-to-Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units	
V _{DS}	Drain-Source Voltage	80	V	
V _{GS}	Gate-to-Source Voltage	± 20		
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	6.3		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	5.0	Α	
I _{DM}	Pulsed Drain Current①	50	_	
P _D @T _A = 25°C	Maximum Power Dissipation	2.5	W	
P _D @T _A = 70°C	Maximum Power Dissipation	1.6		
	Linear Derating Factor	20	mW/°C	
T _J	Operating Junction and	-55 to + 150	°C	
T _{STG}	Storage Temperature Range			
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	1	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead		20	
$R_{\theta JA}$	Junction-to-Ambient @		50	°C/W

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	80			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.089		V/°C	Reference to 25°C, I _D = 1mA ③
R _{DS(on)}	Static Drain-to-Source On-Resistance		24	29	mΩ	V _{GS} = 10V, I _D = 3.8A ③
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 80V, V_{GS} = 0V$
DSS				250	μΛ	$V_{DS} = 64V, V_{GS} = 0V, T_{J} = 125$ °C
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-200] ''' [V _{GS} = -20V

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
9 _{fs}	Forward Transconductance	9.3			S	$V_{DS} = 15V, I_D = 3.8A$
Qg	Total Gate Charge		38	57		$I_D = 3.8A$
Q _{gs}	Gate-to-Source Charge		9.1		nC	$V_{DS} = 40V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		12			$V_{GS} = 10V$,
t _{d(on)}	Turn-On Delay Time		13			V _{DD} = 40V
t _r	Rise Time		12		ns	$I_D = 3.8A$
t _{d(off)}	Turn-Off Delay Time		44			$R_G = 9.1\Omega$
t _f	Fall Time		16			V _{GS} = 10V ③
C _{iss}	Input Capacitance		1680			$V_{GS} = 0V$
Coss	Output Capacitance		270			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		32		pF	f = 1.0MHz
Coss	Output Capacitance		1760			$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		170			$V_{GS} = 0V$, $V_{DS} = 64V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance		340			V _{GS} = 0V, V _{DS} = 0V to 64V ⑤

Avalanche Characteristics

	Parameter	Тур.	Max.	Units	
E _{AS}	Single Pulse Avalanche Energy®		96	mJ	
I _{AR}	Avalanche Current①		3.8	Α	

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current (Body Diode)			2.3	Α	MOSFET symbol showing the	
I _{SM}	Pulsed Source Current (Body Diode) ①			50		integral reverse p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 3.8A$, $V_{GS} = 0V$ ③	
t _{rr}	Reverse Recovery Time		65	98	ns	$T_J = 25^{\circ}C, I_F = 3.8A$	
Q _{rr}	Reverse RecoveryCharge		190	290	nC	di/dt = 100A/µs ③	

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

International TOR Rectifier

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. On-Resistance Vs. Drain Current

Fig 14a&b. Basic Gate Charge Test Circuit and Waveform

Fig 15a&b. Unclamped Inductive Test circuit and Waveforms

Fig 13. On-Resistance Vs. Gate Voltage

Fig 15c. Maximum Avalanche Energy Vs. Drain Current

6

Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 17. Gate Charge Waveform

International

TOR Rectifier

SO-8 Package Outline

Dimensions are shown in millimeters (inches)

DIM	INC	HES	MILLIMETERS		
DIIVI	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
Ε	.1497	.1574	3.80	4.00	
е	.050 B	ASIC	1.27 BASIC		
e1	.025 B	ASIC	0.635 E	BASIC	
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
У	0°	8°	0°	8°	

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- ① DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

SO-8 Tape and Reel

- NOTES:

 1. CONTROLLING DIMENSION: MILLIMETER.

 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).

 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:
1. CONTROLLING DIMENSION: MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 13mH $R_G = 25\Omega$, $I_{AS} = 3.8A$.
- When mounted on 1 inch square copper board
- $\ensuremath{\mathfrak{G}}$ C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.09/04 www.irf.com 9

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.