3. Контрольные задания по МКТ

- 1(А) Как зависит скорость диффузии от агрегатного состояния вещества при постоянной температуре?
- 1) не зависит
- 2) скорость максимальна в газах
- 3) скорость максимальна в жидкостях
- 4) скорость максимальна в твердых телах.
- 1) 10^{-4} m/c

2) 1 m/c

- 4) 10^8 m/c
- 3(A) Как связаны между собой температура t по Цельсию и абсолютная температура T, измеряемая в кельвинах:
- 1) t = T + 273
- 3) T = t
- 2) T = t + 273
- 4) T = 273 t
- 4(A) Молекулы газов находятся на больших расстояниях друг от друга по сравнению с их размерами, силы притяжения между ними незначительны. Этим можно объяснить следующие свойства газов:
- А. Не имеют своей собственной формы.
- Б. Не сохраняют своего объема.
- В. Легко сжимаются.

Какие из утверждений правильны?

- 1) только А и Б
- 3) только Би В
- 2) только А и В
- 4) А, Б, В
- 5(А) Как изменится давление идеального газа на стенки сосуда, если в данном объеме средняя квадратичная скорость молекул удвоится, а концентрация молекул не изменится?
- 1) увеличится в 4 раза
- 2) увеличится в 2 раза
- 3) уменьшится в 4 раза
- 4) не изменится
- **6(A)** В таблице представлен диаметр D пятна, наблюдаемого через промежуток времени t на мокрой пористой бумаге, лежащей на горизонтальном столе, после того как на нее капнул каплю концентрированного красителя.

		1 - I - I		1
t, ч	0	1	2	4
D, MM	6	10	11,5	13.5

Какое явление стало причиной роста размеров пятна с течением времени?

- 1) растворение
- 3) распад красителя
- 2) диффузия
- 4) броуновское движение

7(А) На рисунке приведен график зависимости давления идеального газа от температуры при постоянном объеме.

Какой температуре соответствует точка А?

- 1) 273 K
- 3) 273 °C

2) 0 K

4) 0°C

8(A) Плотность железа примерно в 3 раза больше плотности алюминия. В алюминии количеством вещества 1 моль содержится N_1 атомов. В железе, количеством вещества 1 моль содержится N_2 атомов. Можно утверждать, что

1)
$$N_2 = 3 N_1$$

3)
$$N_2 = \frac{N_1}{3}$$

2)
$$N_2 = N_1$$

3)
$$N_2 = \frac{N_1}{3}$$

4) $N_2 - N_1 = 6 \cdot 10^{23}$

9(A) Какой из графиков, $_{p,\kappa\Pi A}$ изображенных на рисунке, соответствует процессу, проведенному при постоянной температуре газа?

1) A

2) Б

10(А) Зависимость давления идеального газа р от температуры Т при постоянной плотности (см. рис.) представлена графиком...

11(A) Как соотносятся средние квадратичные скорости атомов кислорода $\bar{\nu}_{\text{кисл}}$ и водорода $\overline{v}_{\text{вод}}$ в смеси этих газов в состоянии теплового равновесия, если отношение молярных масс кислорода и водорода 16?

1)
$$\overline{v}_{\text{кисл}} = \overline{v}_{\text{вод}}$$
 3) $\overline{v}_{\text{кисл}} = 4\overline{v}_{\text{вод}}$

3)
$$\bar{v}_{\text{KMCII}} = 4\bar{v}_{\text{BOII}}$$

2)
$$\bar{v}_{\text{кисл}} = 16\bar{v}_{\text{вод}}$$

2)
$$\bar{v}_{\text{кисл}} = 16\bar{v}_{\text{вод}}$$
 4) $\bar{v}_{\text{кисл}} = \frac{1}{4}\bar{v}_{\text{вод}}$

12(A) В баллоне объемом 1,66 M^3 находится 2 кг азота при давлении 10^5 Па. Чему равна температура этого газа?

13(A) При температуре T_o и давлении p_o один моль идеального газа занимает объем V_o . Каков объем этого же газа, взятого в количестве 2 моль, при давлении 2ро и температуре $2T_0$?

1)
$$4V_0$$

3)
$$V_o$$
 4) $8V_o$

14(А) При изобарном нагревании водорода массой 2 г, находившегося в начале процесса под давлением 83 кПа, его температура возросла от 200 К до 500 К. Его объем при этом

- 1) не изменился
- 2) увеличился на 0.03 м^3
- 3) уменьшился в 2,5 раза
- 4) увеличился на 20 л

15(А) На рисунке показан цикл, осуществляемый идеальным газом. Изотермическому расширению соответствует участок

2) DA

3) CD

4) BC

16(A) Из стеклянного сосуда выпускают сжатый газ, одновременно охлаждая сосуд. При этом температура газа снизилась в 4 раза, а его давление уменьшилось в 6 раз. Во сколько раз уменьшилась масса газа в сосуде? Газ можно считать идеальным.

- 1) в 2 раза
- 3) в 6 раз
- 2) в 3 раза
- 4) в 1,5 раза

<u>17(A)</u> Атомы в кристалле находятся друг от друга на таких расстояниях, при которых силы притяжения...

- 1)...больше сил отталкивания
- 2)...меньше сил отталкивания
- 3)... равны силам отталкивания
- 4)... равны нулю.

18(A) Ученик, наблюдая процесс испарения жидкости при комнатной температуре, заметил, что вода, налитая в блюдце, испарилась быстрее, чем вода такой же массы, налитая в чашку. Какой вывод он должен сделать из этого наблюдения?

- 1) Скорость испарения жидкости не зависит от ее температуры.
- 2) Скорость испарения жидкости зависит от площади ее поверхности.
- 3) Скорость испарения жидкости зависит от ее температуры.
- 4) Скорость испарения жидкости зависит от плотности водяного пара над поверхностью жидкости.

<u>19(A)</u> С уменьшением относительной влажности воздуха разность показаний термометров психрометра...

- 1) увеличивается
- 2) уменьшается
- 3) не изменяется
- 4) становится равной нулю.

20(A) Относительная влажность воздуха в комнате равна 25%. Каково соотношение парциального давления р водяного пара в комнате и давления $p_{\rm H}$ насыщенного водяного пара при такой же температуре?

- 1) р меньше р_н в 4 раза
- 2) р больше р_н в 4 раза
- 3) р меньше р_н на 25%
- 4) р больше р_н на 25%

21(В) Идеальный газ, количество которого 1,5 моля, совершает процесс а-b, изображенный на графике. Чему равна температура газа,

находящегося в состоянии, которому соответствует точка b? Ответ округлите до целого числа. Ответ выразите в К.

22(B) Температура воздуха в помещении объемом 60 м^3 при нормальном атмосферном давлении равна $15 \, ^{\circ}$ С. После подогрева воздуха калорифером его температура поднялась до $20 \, ^{\circ}$ С. Найти массу воздуха, вытесненного из комнаты за время нагревания. Молярная масса воздуха $M = 29 \cdot 10^{-3} \, \text{кг/моль}$. Ответ округлите до сотых.

23(B) В баллоне содержится газ при температуре 17 °C и давлении 1 МПа. На сколько изменится давление, когда температура понизится до - 23 °C?

24(C) Как изменится температура идеального газа, если увеличить его объем в 2 раза при осуществлении процесса, описываемого формулой $pV^2 = const$?

25(C) Воздушный шар с газонепроницаемой оболочкой массой 400 кг заполнен гелием. На высоте, где температура воздуха 17 °C и давление 10^5 Па, шар может удерживать груз массой 225 кг. Какова масса гелия в оболочке шара? Считать, что оболочка шара не оказывает сопротивления изменению объема шара.

4.Ответы к заданиям по МКТ

1.Ответы к обучающим заданиям.

1A	2A	3A	4A	5A	6A	7A	8A	9A	10A	11A	12A	13A	14A
2	2	1	4	3	1	3	3	4	4	4	1	3	3
15A	16A	17A	18A	19A	20A	21B	22B		23C	24C			25C
2	1	1	3	2	1	3	•	· 10 ⁵ Ia	0,54 кг	Умен. в 8 раз		2,8·10 ⁻¹⁰	

2. Ответы к тренировочным заданиям.

1A	2A	3A	4A	5A	6A	7A	8A	9A	10A	11A	12A	13A	14A	15A	16A
4	1	3	3	4	2	1	1	2	3	4	4	3	4	1	3
17	A	18A	19	A	20B		21B		22	2B	23B	24	IC .	25	SC
3	3	3	4	.	6 Г	Ia	10,2 1	МПа	425	м/с	25 cm ²	0.	,5	3300) Па

24С При изотермическом увеличении объема жидкость начинает испаряться. Давление пара при этом не изменяется до тех пор, пока вся жидкость не испариться (пар остается насыщенным, и его давление определяется температурой). Дальнейшее увеличение объема вызывает уменьшение давления по закону Бойля-Мариотта. Пусть p_1, V_1, T_1 ; p_2, V_2, T_2 - начальное и конечное давление пара, его объем и

температура. Уравнения состояния при этом имеют вид: $p_1 V_1 = \frac{m_1}{M} RT \;, \qquad p_2 V_2 = \frac{m_1 + m_2}{M} RT \;.$

По условию V_2/V_1 =3, p_1/p_2 =2. Разделив уравнения, находим $\frac{p_2V_2}{p_1V_1}=\frac{m_1+m_2}{m_1}$, $\frac{m_2}{m_1}=\frac{3}{2}-1=0$,5.

25С Условие равновесия поршня: $mg + F_1 = F_2$, где m — масса поршня; F_1 - сила давления на поршень газа, находящегося в верхнем отсеке; F_2 - сила давления на поршень газа, находящегося в нижнем отсеке. Силы давления рассчитываются по формулам F = pS, где p-давление газа; S-площадь поршня. Давление газа может быть определено из уравнения Менделеева — Клапейрона. По условию $V_1 = V_2$, $T_1 = T_2$, $V_2 = 4V_1$.

$$p_1 = rac{v_1 RT}{V}\,, \;\; p_2 = rac{4v_1 RT}{V}\,,\;$$
 следовательно $rac{p_2}{p_1} = 4$ $mg + rac{p_2}{4}S = p_2 S\,,\;$ отсюда $\;\; p_2 = rac{mg}{S(1-rac{1}{4})} pprox 3300 \Pi a$

3. Ответы к контрольным заданиям.

1A	2A	3A	4A	5A	6A	7A	8A	9A	10A	11A	12A	13A	14A	15A
2	3	3	1	2	2	2	2	3	4	1	3	2	2	2
16A	17A	18A	19A	20A	21B	22B		23B		24C			25C	
4	3	2	1	1	160 K	1,24кг		$\Delta p = 0.14 \text{ M}\Pi a$		Умен. в 2 раза			100 кг	

24C

Решение.
$$p_1V_1=\nu RT_1$$

$$p_22V_1=\nu RT_2$$

$$\frac{T_2}{T_1}=\frac{2p_2}{p_1}=\frac{2p_2}{4p_2}=\frac{1}{2}\,,$$
 температура уменьшится в 2 раза.
$$p_1V_1^2=p_2(2V_1)^2$$

25С Шар с грузом удерживается в равновесии при условии, что сумма сил, действующих на него, равна нулю: $(M+m)g+m_{\Gamma}g-m_{B}g=0$, где М и m- массы оболочки и груза, $m_{\Gamma}-$ масса гелия, а $F=m_{B}g-$ сила Архимеда, действующая на шар. Из условия равновесия следует: $M+m=m_{B}+m_{\Gamma}$.

Давление р гелия и его температура Т равны давлению и температуре окружающего воздуха. Следовательно, согласно уравнению Клапейрона-Менделеева,

$$pV=rac{m_{\Gamma}}{M_{\Gamma}}RT$$
 и $pV=rac{m_{B}}{M_{B}}RT$, где V – объем шара. Отсюда: $rac{m_{\Gamma}}{M_{\Gamma}}=rac{m_{B}}{M_{B}}$; $m_{B}=rac{m_{\Gamma}M_{B}}{M_{\Gamma}}=7,25m_{\Gamma}$; $M+m=6,25m_{\Gamma}$.

Следовательно,
$$m_{\varGamma}=\frac{M+m}{6{,}25}=\frac{400\kappa z+225\kappa z}{6{,}25}=100\kappa z$$
 . Ответ: 100кг.