Computer Vision Techniques for Food Segmentation

Stanislao Bellantoni

Supervisors: Claudio Piciarelli, Kyamakya Kyandoghere Università di Udine & Alpen-Adria-Universität Klagenfurt Academic years: 2023/2024

Thesis Objectives

01

Comparing

Compare various deep learning segmentation models.

04

Analyze Results

Analyze and provide insights into the effectiveness of deep neural networks.

02

Dataset

Utilize UEC FoodPixComplete, with 10.000 images across 103 food classes. 03

Performances

Assess model performance using a range of metrics.

Motivation

02

Proliferation of Food Images

In today's digital age, social media platforms and recipe websites are **flooded** with appetizing **food photos**. This trend has sparked a demand for sophisticated systems **capable of analyzing culinary content**.

Leveraging Technological Advances

Recent progress in deep learning has improved image recognition and segmentation. This research aims to tackle the **unique challenges** of food image segmentation, such as **texture variation** and **complex plating**, enhancing the **accuracy and reliability** of these models for practical applications.

Semantic Images Segmentation

The goal is to **assign a class label to each pixel in the image**, effectively partitioning the image into meaningful **regions or objects.** This approach is particularly useful in applications such as scene understanding, autonomous driving, and medical image analysis, where it is **crucial to accurately identify and delineate** different objects or structures within the image.

Methodology

Methodological Steps

Literature Review

Comprehensive analysis of existing segmentation techniques and datasets.

01

Implementation

Utilized Python 3.8 and PyTorch to implement six segmentation algorithms.

02

Training & Validation

Models were trained and validated on the UECFoodPix dataset.

03

Evaluation

Evaluated and compared the models' performances using standard segmentation metrics.

04

Literature Review

2016

01

UNIMIB2016

Ciocca et al.

Introduced a
dataset for canteen
tray image
segmentation and
classification.
Evaluated
classification
strategies based on
global and local
features.

2019

02

Enhanced Food50Chen

Alan et al.

Created a comprehensive dataset with augmented images to evaluate food localization and semantic segmentation algorithms.

2021

03

FoodSeg103

Wu et al.

Developed a
large-scale dataset
with fine-grained
ingredient labels,
and proposed a
multi-modality
pre-training
approach
incorporating recipe
information.

2023

04

Automated Nutritional Estimation

Sultana et al.

Reviewed methods

for food image classification, volume/weight estimation and nutrition estimation, emphasizing the transition to deep learning.

Dataset UEC-FoodPixComplete

70%

Training Set

Used to train the model.

[7200 images]

20%

Validation Set

Used to tune model parameters and for early stopping.

[1800 images]

Model Input & Output

Input

Dataset food images and manually refined segmented GT Masks.

Output

Pixel-wise classification of the images, distinguishing food items from the background.

Segmentation Models

UNet

UNet++

Feature Pyramid Network

PSPNet

DeepLabV3

DeepLabV3+

Encoder-decoder for precise localization

Enhanced U-Net with dense skip connections

Top-down, multi-scale feature extraction

Pyramid pooling for global and local context

Atrous convolutions for multi-scale context

Atrous convolutions with encoder-decoder

Evaluation Metrics

Single Metrics

Accuracy

Correctness of segmentation predictions.

Recall

True positives out of actual positives.

Precision

True positives out of predicted positives.

Combined Metrics

Jaccard Score

Overlap between predicted and true masks.

F1 Score

Harmonic mean of precision and recall.

Results Comparison

*	Model	Accuracy	Precision	Recall	F1 Score	Jaccard Score
05	UNet	0.904	0.809	0.963	0.880	0.785
06	UNet++	0.895	0.800	0.951	0.869	0.769
02	FPN	0.928	0.860 🥏	0.959	0.907	0.829
03	PSPNet	0.923	0.853	0.952	0.900	0.818
04	DeepLabV3	0.917	0.831	0.97	0.895	0.810
01	DeepLabV3+	0.929 🤣	0.853	0.974 🤣	0.909 🤡	0.834 🤡

 $[\]star$ ranking of the best and worst models according to evaluation metrics.

Worst Model: UNet

Jaccard Score

0.785

Image

Predicted Mask

Lower precision, struggles with complex textures, inefficiency in handling scale variations.

Ground Truth Mask

Reference segmentation used for evaluating.

Best Model: DeepLabV3+

Image

Predicted Mask

High precision and recall, excellent in capturing local and global contexts, robust against scale and texture variations.

Ground Truth Mask

Reference segmentation used for evaluating.

Summary of Findings

Insights

Provided valuable insights into model performance and suggest practical applications in health and nutrition.

Effectiveness

Demonstrated the effectiveness of deep learning models for the semantic segmentation of food images.

Datasets

The use of large and diverse dataset like UEC FoodPixComplete improve model robustness and generalizability.

Practical Applications

Dietary Planning

Facilitates precise calculation of nutritional intake and meal planning.

Food Logging

02

Supports automated food logging for restaurant and tracking apps.

Food Quality Assessment

Enhances the ability to assess and monitor food quality and presentation.

03

Future Work

THANK YOUFor the Attention!

On Device Test

Using the Gradio interface and weights of our best trained model, DeepLabV3+

Insights

With ResNet34 preprocessing, the model recognizes more food and is more accurate.