6.-DISEÑO DE MULTIPLEXORES

- a)Conceptos
- -<u>ES UN SELECTOR DE LÍNEAS DE ENTRADA, SELECCIONA INFORMACION BINARIA PROVENIENTE DE DIFERENTES DISPOSITIVOS</u>
- -Multiplexa señales binarias
- -Es un convertidor paralelo-serie con la arquitectura complementaria

MULTIPLEXOR MECANICO

PARENTESIS

PARENTESIS

6.-DISEÑO DE MULTIPLEXORES

- a)Conceptos
- -<u>ES UN SELECTOR DE LÍNEAS DE ENTRADA, SELECCIONA INFORMACION BINARIA PROVENIENTE DE</u> DIFERENTES DISPOSITIVOS
- -Multiplexa señales binarias

-Es un convertidor paralelo-serie con la arquitectura complementaria

SEGUNDO PASO (Tab. De verdad)

Sal=E0S1'S0'+E1S1'S0+E2S1S0'+E3S1S0

¿QUE OBSERVAN?

Sal=E0S1'S0'+E1S1'S0+E2S1S0'+E3S1S0

"SON MINTERMINOS"

CUARTO PASO (implementación)

CUARTO PASO (implementación)

EJEMPLO 2: DISEÑAR UN MUX 8X1

TAREA!!!!!!!!!

EJEMPLO 3: DISEÑAR UN MUX 4X1 CON SEÑAL DE ENABLE

EJEMPLO 3: DISEÑAR UN MUX 4X1 CON SEÑAL DE ENABLE O BIEN ENABLE NEGADA

b)Diseño con Multiplexores

Puesto que los Multiplexores los podemos ya encontrar integrados en una sola componente (CHIP), y pertenecen a los circuitos MSI, podemos diseñar CON ellos.

EJEMPLO 1: DISEÑAR UN MUX 16X1 CON DOS MUX 8X1 CON SEÑAL DE ENABLE

IMPLEMENTACION:

EJEMPLO 2: CONECTAR CUATRO REGISTROS DE MEMORIA DE 4 BITS CADA UNO A UN SOLO BUS DE DATOS DE 4 LINEAS,

- a) TRANSMITIENDO LA INFORMACION DE LOS CUATRO REGISTROS A LA VEZ.
- b) TRANSMITIENDO LA INFORMACION DE UN REGISTRO A LA VEZ

REGISTROS DE MEMORIA REG 3 REG 2 REG 1 REG 0 **b**3 b2 **b1** b0 b2 **b1** b0 **b3** b2 **b1** b0 **b3** b2 **b1** b0 **b3**

EJEMPLO 2: a) TRANSMITIENDO LA INFORMACION DE LOS CUATRO REGISTROS A LA VEZ.

NOTA: SI PONEMOS EN LAS LINEAS DE SELECCION S1SO, UN CONTADOR CON LA SECUENCIA: 00,01,10,11 SE CONVIERTE EN UN CONVERTIDOR PARALELO-SERIE

EJEMPLO 2: b) TRANSMITIENDO LA INFORMACION DE UN REGISTRO A LA VEZ

TAREA!!!!!!!!!

EJEMPLO 3: DISEÑAR UN SISTEMA DE TRANSFERENCIA LOGICA ENTRE REGISTROS DE UNA UNIDAD DE MEMORIA DE 4 REGISTROS DE 2 bits C/U MEDIANTE UN BUS COMUN

NOTA: LA OPERACIÓN A REALIZAR SE LLAMA "FUNCION TRANSFERENCIA" Y SE REPRESENTA:

REGx <= REGy (Se transfiere al REGx el contenido del REGy)

ESTA SIMBOLOGIA ES USADA EN EL LLAMADO "LENGUAJE DE TRANSFERENCIA LOGICA" Y SE UTILIZA EN EL DISEÑO DE SISTEMAS DIGITALES AVANZADOS

EJEMPLO 3: DISEÑAR UN SISTEMA DE TRANSFERENCIA LOGICA ENTRE REGISTROS DE UNA UNIDAD DE MEMORIA DE 4 REGISTROS DE 2 bits C/U MEDIANTE UN BUS COMUN

EJEMPLO 4: IMPLEMENTAR LA SIGUIENTE FUNCION BOOLEANA UTILIZANDO:

a) USANDO UN MUX 8X1

PODEMOS OBSERVAR QUE LA FUNCION BOOLEANA ES DEL TAMAÑO DEL MULTIPLEXOR MUX 8X1, ES DECIR:

- 1.-NUMERO DE MINTERMINOS 8 = NUMERO DE ENTRADAS DEL MUX 8X1
- 2.-NUMERO DE VARIABLES 3 = NUMERO DE LINEAS DE SELECCIÓN DEL MUX 8X1
- 3.-NUMERO DE FUNCIONES A IMPLEMENTAR 1 = UNA SOLA SALIDA DEL MUX 8X1

EJEMPLO 4: IMPLEMENTAR LA SIGUIENTE FUNCION BOOLEANA UTILIZANDO:

a) USANDO UN MUX 8X1

EJEMPLO 4: IMPLEMENTAR LA SIGUIENTE FUNCION BOOLEANA UTILIZANDO:

EJEMPLO 5: DISEÑAR UN DETECTOR DE MULTIPLOS DE 3 EN PALABRAS DE 4 BITS (A,B,C,D) UTILIZANDO UN MUX 4X1.

- a) USANDO COMO LINEAS DE SELECCION LAS VARIABLES A Y B
- b) USANDO COMO LINEAS DE SELECCION LAS VARIABLES C Y D

¡OJO!, PODEMOS OBSERVAR QUE LOS MULTIPLEXORES ME SIRVEN PARA IMPLEMENTAR UN SOLA FUNCION BOOLEANA, MIENTRAS QUE LOS DECODIFICADORES, ME SIRVEN PARA IMPLEMENTAR VARIAS FUNCIONES BOOLEANAS

X	Υ	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

SI RECUERDAN EL FA IMPLEMENTADO CON UN DEC 3X8

Ai	Bi	Ci	Ci+1	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$C_{i+1} = \sum_{m} m(3,5,6,7)$$

 $S_{i} = \sum_{m} m(1,2,4,7)$

EJEMPLOS CON LA TARJETA MAX (ALTERA)

EJEMPLO 1: MUX 2X1

```
LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY MUX2X1 IS

PORT(A,B,SEL: IN STD_LOGIC;

Y: OUT STD_LOGIC);

END ENTITY;

ARCHITECTURE MUX2X1 OF MUX2X1 IS

SIGNAL R,T: STD_LOGIC;

BEGIN

R<=A AND (NOT SEL);

T<=B AND SEL;

Y<=R OR T;

END ARCHITECTURE;
```

IMPLEMENTACION CON VHDL

IMPLEMENTACION GRAFICA

EJEMPLO 2: MUX 4X1

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY MUX4X1 IS
PORT(E3,E2,E1,E0,SEL1,SEL0: IN STD_LOGIC;
         Y: OUT STD_LOGIC);
END ENTITY;
ARCHITECTURE MUX4X1 OF MUX4X1 IS
         SIGNAL R,T,U,V: STD_LOGIC;
         BEGIN
                   R<=E3 AND SEL1 AND SEL0;
                   T<=E2 AND SEL1 AND (NOT SEL0);
                   U<=E1 AND (NOT SEL1) AND SEL0;
                   V<=E0 AND (NOT SEL1) AND (NOT SEL0);
                   Y<=R OR T OR U OR V;
END ARCHITECTURE;
```

IMPLEMENTACION CON VHDL

EJEMPLO 3: MUX 4X1 DE 4 BITS

EJEMPLO 4: MUX 2X1 DE 8 BITS

```
LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY MUX2X1_8BITS IS

PORT (A,B: IN STD_LOGIC_VECTOR(7 DOWNTO 0);

SEL: IN STD_LOGIC;

SAL: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

END ENTITY;

ARCHITECTURE MEX2X1_8BITS OF MUX2X1_8BITS IS

BEGIN

SAL<=A WHEN SEL='0' ELSE B;

END ARCHITECTURE;
```

IMPLEMENTACION CON VHDL

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.