

Claims:

- 1 1. An apparatus for processing tokens having variable length, comprising:
2 a padder to receive the tokens and to pad a portion of the tokens received by
3 adding a tail which produces new tokens having integer numbers of data words of a
4 predetermined length; and
5 a storage buffer configured to store data words of the predetermined length
6 and coupled to receive the new data tokens from the padder.
- 1 2. The apparatus of claim 1, wherein two types of the new tokens have two
2 different numbers of words.
- 1 3. The apparatus of claim 1, wherein different data tokens may have different
2 numbers of data words.
- 1 4. The apparatus of claim 1, further comprising:
2 a multi-stage pipelined decoder; and
3 a two-wire interface coupling the pipeline to an output of the buffer.
- 1 5. The apparatus of claim 4, wherein a portion of the stages of the decoder
2 are reconfigurable to decode video data by a portion of the tokens.
3

1 6. The apparatus of claim 5, wherein configurations of the stages are
2 responsive to standards by which data in the portion of the tokens is formatted.

1 7. The apparatus of claim 6 wherein the standards include two of MPEG,
2 JPEG, and H.261.

1 8. The apparatus of claim 1, further comprising:
2 a start code detector, the buffer being located in the start code detector.

1 9. The apparatus of claim 1, further comprising:
2 a semiconductor chip, the padder and the buffer being located on the chip.

1 10. The apparatus of claim 1, wherein the padder is a hardware device.

1 11. The apparatus of claim 4, wherein the pipeline includes:
2 a Huffman decoder coupled to receive the tokens from the padder;
3 a token formatter coupled to receive data from the Huffman decoder; and
4 an inverse modeler coupled to receive data from the token formatter.

1 12. A method of processing video data, comprising:
2 receiving tokens in a first stage of a pipeline, a portion of the tokens having a
3 plurality of words;
4 padding one of the tokens to have a length equal to an integral number of
5 words;
6 sending the tokens to the remainder of the pipeline; and

7 reconfiguring a portion of the stages of the remainder of the pipeline for data
8 processing in response to receiving the tokens belonging to predetermined token
9 types.

1 13. The method of claim 12, wherein reconfiguring is responsive to standards
2 by which video data in the received tokens are formatted.

1 14. The method of claim 13, wherein the standards include two of MPEG,
2 JPEG, and H.261.

1 15. The method of claim 12, further comprising:
2 detecting a start code in a data stream; and
3 wherein padding is performed in response to detecting the start code.

1 16. The method of claim 12, wherein each word of a token includes one or
2 more extension bits.

1 17. The method of claim 16, wherein reconfiguring one of the stages includes:
2 receiving a first word of one of the tokens in the one of the stages; and
3 reconfiguring the one of the stages to process the word in response to
4 determining that the first word belongs to a type of token processed by the one of the
5 stages.

1 18. The method of claim 17, further comprising:
2 receiving another word in the one of the stages; and

3 reading one or more extension bits of the other word and processing the other
4 word according to the procedure for processing a previous word in response to
5 determining that the other word belongs to a same token as the previous word.

1 19. A system for decoding video frames, comprising:
2 a token padder to pad data tokens of different lengths by adding a tail which
3 produces new tokens having integer numbers of data words of a predetermined
4 length;
5 a Huffman decoder to receive the padded tokens;
6 a token formatter coupled to receive data tokens from the Huffman decoder;
7 a buffer to store tokens from the token formatter; and
8 an inverse modeler coupled to receive the tokens from the buffer.

1 20. The system of claim 19, wherein the Huffman decoder is configured to
2 decode data of at least two of the standards JPEG, MPEG, and H.261.

1 21. The system of claim 19 further comprising:
2 an inverse quantizer coupled to receive data from the inverse modeler; and
3 an inverse discrete cosine transformer coupled to the inverse quantizer.

1 22. The system of claim 19, wherein the decoder is a hardware device.