7

8

9

10

11

sulfide.

sulfate.

22

24

1 CLAIM:

2	1.	A thermal	ly act	ivated,	chemically	based	marking
3	method	comprising	steps	o£:			

- electrostatically applying a layer of an energy
 absorbing marking material to a conductive or
 dielectric substrate to be marked; and
 irradiating said layer with a radiant energy beam
 having a wavelength selected to excite said
 energy absorbing material in accordance with the
 form of a marking to be applied, thereby forming
 a marking layer atop said substrate.
- 12 2. The method of claim 1, further comprising a step of providing a laminar air flow across said substrate during the irradiating step.
- 15 3. The method of dlaim 1, wherein said marking 16 material comprises at least one metal compound.
- 17 4. The method of claim 3, wherein said metal compound 18 is an oxide.
- 19 5. The method of claim 4, wherein said compound is a 20 mixed metal oxide.
- 21 6. The method of claim 3, wherein said compound is a
- 7. The method of claim 3, wherein said compound is a

- 1 8. The method of claim 3, wherein said compound is a 2 carbonate.
- 3 9. The method of claim 1, wherein said marking
- 4 material comprises Kaolin clay.
- 5 10. The method of claim 1, wherein said marking
- 6 material comprises an energy absorbing enhancer.
- 7 11. The method of claim 1, wherein said marking
- 8 material comprises at least one colorant.
- 9 12. The method of claim 10 wherein said energy
- 10 absorbing enhancer comprises carbon black.
- 11 13. The method of claim 1, wherein said substrate
- 12 comprises materials selected from the group consisting of
- 13 metals, glasses, ceramics and plastics.
- 14 14. The method of claim 13, wherein said substrate
- 15 comprises at least one metal.
- 16 15. The method of claim 13, wherein said substrate
- 17 comprises at least one glass.
- 18 16. The method of claim 1, wherein said marking
- 19 material comprises at least one glass frit material.
- 20 17. The method of claim 16, wherein said glass frit
- 21 material comprises at least one oxide selected from oxides
- 22 of alkali metals, alkaline earth metals, silicon, boron and
- 23 transition metals.

- 1 18. The method of claim 1, wherein said marking
- 2 material comprises at least one glass frit material and at
- 3 least one metal compound.
- 4 19. The method of claim 11, wherein said marking
- 5 material comprises at least one organic pigment.
- 6 19. The method of claim 1, wherein said marking
- 7 material is applied by direct electrostatic coating of a
- 8 conductive substrate.
- 9 20. The method of claim 1, wherein said marking
- 10 material is applied by direct electrostatic coating of a
- 11 dielectric substrate, after said substrate has been coated
- 12 with a layer of conductive material.
- 13 21. The method of claim 1, wherein said marking
- 14 material is applied as dry particles.
- 15 22. The method of claim 1, wherein said marking
- 16 material is applied as liquid droplets.
- 17 23. The method of claim 1, wherein said marking
- 18 material is electrostatically applied in the form of a
- 19 marking to be applied to said substrate.
- 20 24. The method of claim 1 wherein said radiant energy
- 21 beam is produced by a laser, diode laser or diode-pumped
- 22 laser.
- 23 25. A substrate as marked by the method of claim 1.
- 24 726. A thermally activated, chemically based marking
- 25 method comprising steps of:

l

electrostatically applying a layer of mixed metal oxide material containing an energy absorbing enhancer to a metal substrate; and irradiating said layer with a radiant energy beam having a wavelength selected to excite the metal oxide material and/or said energy absorbing enhancer in accordance with the form of a marking to be applied, thereby forming a marking layer atop the substrate.

10 27. The method of claim 26 further comprising the step 11 of providing a laminar air flow across the substrate during 12 the irradiating step.

- 28. The method of claim 26, wherein the mixed metal oxide material comprises at least one colorant, and the energy absorbing enhancer comprises carbon black.
- 29. The method of claim 26, wherein the radiant energy beam comprises a laser beam having an energy level ranging between 1 and 30 watts, a spot size ranging between 5 and 200 microns, and a marking speed along the substrate ranging between 25 and 1000mm/sec.
- 30. The method of claim 26, wherein the layer of mixed metal oxide material has a thickness ranging between 5 and 500 microns.
- 31. The method of claim 26 wherein said irradiating 25 step is started at a room temperature of about 70° F.

	/
1	32. A metal substrate as marked by the process
2	according to claim 26.
3	\/33. A thermally activated chemically based marking
4	method comprising steps of:
5	electrostatically applying a layer of mixed metal
6	oxide material containing an energy absorbing
7	enhancer to a substrate selected from the group
8	consisting of aluminum, brass, chrome, copper,
9	nickel, steel, stainless steel, tin, glass,
10	ceramics, porcelain, and plastics; and
11	irradiating said layer with a radiant energy beam
12	having a wavelength selected to excite the
13	energy absorbing enhancer in accordance with the
14	form of a marking to be applied, thereby forming
15	a marking layer atop the substrate.
16	34. The method of claim 33 further comprising the step
17	of providing a laminar air flow across the substrate during
18	the irradiating step.
19	35. The method of claim 33, wherein said mixed oxide
20	material is applied as dry particles.
21	36. The method of claim 33, wherein said mixed oxide
22	material is applied as liquid droplets.
23	37. The method of claim 33, wherein the energy
24	absorbing enhancer comprises carbon black.

1	38. The method of claim 33, wherein the radiant energy
2	beam comprises a laser beam having an energy level ranging
3	between 1 and 30 watts, a spot size ranging between 5 and
4	200 microns, and a marking speed along the substrate ranging
5	between 25 and 1000mm/sec.
6	39. The method of claim 33, wherein the layer of mixed
7	metal oxide material has a thickness ranging between 5 and
8	500 microns.
9	40. The method of claim 33 wherein said irradiating
10	step is started at a room temperature of about 70° F.
11	41. The method of claim 33, wherein the mixed metal
12	oxide material comprises a colorant.
13	42. A substrate material as laser marked by the process
14	according to claim 33.
15	43. A thermally activated, chemically based marking
16	method comprising steps of:
17	electrostatically applying a layer of mixed metal
18	oxide material containing an energy absorbing
19	enhancer to a substrate to be marked in the form
20	of a marking to be applied; and
21	irradiating said layer with a radiant energy beam
22	having a wavelength selected to excite the
23	energy absorbing enhancer, thereby forming a
24	marking layer atop the substrate.

- 1 44. The method of claim 43, further comprising the step
- 2 of providing a laminar air flow across the substrate during
- 3 the irradiating step.
- 4 45. The method of claim 43, wherein said mixed metal
- 5 oxide material is applied as dry particles.
- 6 46. The method of claim 43, wherein said mixed metal
- 7 oxide material is applied as liquid droplets.
- 8 47. The method of claim 43, wherein the energy
- 9 absorbing enhancer comprises carbon black.
- 10 48. The method of claim 43, wherein the radiant energy
- 11 beam comprises a laser beam having an energy level ranging
- 12 between 1 and 30 watts and a marking speed along the
- 13 substrate ranging between 25 and 1000mm/sec.
- 14 49. The method of claim 43, wherein the layer of metal
- oxide material has a thickness ranging between 5 and 500
- 16 microns.
- 17 50. The method of claim 43, wherein the irradiating
- 18 step is started at a room temperature of about 70° F.
- 19 51. The method of claim 43, wherein the mixed metal
- 20 oxide material comprises a colorant.
- 52. A substrate material as marked by the process
- 22 according to claim 43.
- 23 53. A thermally activated chemically based marking
- 24 method comprising steps of:

		^
	1	electrostatially applying a layer having a metal
	2	oxide component and comprising an energy
	3	absorbing enhancing component to a metal
	4	substrate; and
١ .	5	irradiating said layer with a radiant energy beam
(k)	6	having a wavelength selected to excite the
(bus)	J 7	energy absorbing enhancing component, thereby
	8	forming an adhered marking layer atop the
<u>i</u> =	9	substrate.
	10	54. A thermally activated, chemically based marking
IQ.	11	method comprising steps of:
A Transfer	12	electrostatically applying a layer having a mixed
10	13	metal oxide component and an energy absorbing
	14	enhancing component to a substrate selected from
	15	the group consisting of aluminum, brass, chrome,
14	16	copper, nickel, steel, tin, glass, ceramics, and
j.	17	plastics; and
	18	irradiating said layer with a radiant energy beam
	19	having a wavelength selected to excite the
	20	energy absorbing enhancing component, thereby
	21	forming an adhered marking layer atop the
	22	substrate.
	23	55. A thermally activated chemically based marking
	24	method comprising steps of:

	1	electrostatically applying a material containing at
	2	least one metal oxide comprising an energy
	3	absorbing enhancing component to a substrate to
	4	be marked in the form of a marking to be
	5	applied; and
۸,	6	irradiating said layer with a radiant energy beam
	7	having a wavelength selected to excite the
	8	energy absorbing enhancing component, thereby
-	9	forming a marking layer atop the substrate.
H" third thus that that third third third	10	56. A thermally activated chemically based marking
	11	method comprising steps of:
	12	electrostatically applying a layer of a marking
	13	material comprising at least one metal compound
the that then in and that	14	to a markable substrate comprising at least one
	15	material selected from the group consisting of
	16	metals, glasses, ceramics and plastics; and
	17	irradiating said layer with a radiant energy beam
	18	having a wavelength selected to be absorbed by
	19	said marking material, thereby forming a bonded
	20.	marking layer atop the substrate.
	21	57. The method of claim 56, wherein said metal compound
	22	comprises a metal oxide.
	23	58. The method of claim 57, wherein said metal compound
	24	is a mixed metal oxide.

1	59. The method of claim 56, wherein said metal compound
2	is a sulfide.
3	60. The method of claim 56, wherein said metal compound
4	is a sulfate.
5	61. The method of claim 56, wherein said metal compound
6	is a carbonate.
7	62. The method of claim 56, wherein said marking
8	material further comprises at least one energy absorbing
9	enhancing component.
10	63. The method of claim 56, wherein said marking
11	material comprises at least one colorant or pigment.
12	64. The method of claim 63, wherein said marking
13	material comprises at least one organic pigment.
14	(65. A thermally activated chemically based marking
15	method comprising the steps of:
16	electrostatically applying a layer of glass frit
17	material containing an energy absorbing enhancer
18	to a glass substrate; and
19	irradiating said layer with a radiant energy beam
20	having a wavelength selected to excite the
21	energy absorbing enhancer in accordance with the
22	form of a marking to be applied, thereby forming
23	a bonded and permanent marking layer atop the
24	substrate which is visible in contrast with the
25	substrate; and

wherein the layer of glass frit material has a thickness ranging between 5 and 500 microns.

- 3 66. The method of claim 65, further comprising the step 4 of providing a laminar air flow across the substrate during 5 the irradiating step.
- 6 67. The method of claim 65, wherein said glass frit 7 material is applied as dry particles.
- 8 68. The method of claim 65, wherein said glass frit 9 material is applied as liquid droplets.
- 10 69. The method of claim 65, wherein the glass frit
 11 material further comprises a borosilicate glass and the
 12 energy absorbing enhancer comprises carbon black.
- 13 70. The method of claim 65, wherein the radiant energy
 14 beam comprises a laser beam having an energy level ranging
 15 between 1 and 30 watts, a spot size ranging between 5 and
 16 200 microns, and a marking speed along the substrate ranging
 17 between 25 and 1000mm/sec.
- 71. The method of claim 65, wherein said irradiating step is started at a room temperature of about 70° F.
- 72. The method of claim 65, wherein the glass frit 21 material further comprises a colorant.
- 73. The method of claim 72, wherein said colorant comprises at least one organic pigment.
- 74. A glass material as marked by the process according to claim 65.

A thermally activated chemically based marking 1 method comprising the steps of: 2 electrostatically applying a layer of glass frit 3 material containing an energy absorbing enhancer 5 to a metal substrate; and 6 irradiating said layer with a radiant energy beam 7 having a wavelength selected to excite the energy absorbing enhancer in accordance with the 8 9 form of a marking to be applied, thereby forming a bonded and permanent marking layer atop the 10 11 substrate which is visible in contrast with the substrate; and 12 wherein the layer of glass frit material has a 13 thickness ranging between 5 and 500 microns. The method of claim 75 further comprising the step 15 16 of providing a lamihar air flow across the substrate during 17 the irradiating step. 18 The method of claim 75, wherein the glass frit material comprises a borosilicate glass, and the energy 19 absorbing enhancer comprises carbon black. 20 The method of claim 75, wherein the radiant energy 21 78. 22 beam comprises a laser having an energy level between 1 and 30 watts, a spot sike ranging between 5 and 200 microns, and 23 a marking speed along the substrate ranging between 25 and 24 25 1000mm/sec.

	1	79. The method of claim 75 wherein said irradiating
	2	step is started at a room temperature of about 70° F.
	3	80. The method of claim 75, wherein said glass frit
1	4	material is applied as dry particles.
1	5	81. The method of claim 75, wherein said glass frit
, v	6	material is applied as liquid droplets.
	7	82. The method of claim 75, wherein the glass frit
	8	material further comprises a colorant.
1	9	83. A metal substrate as marked by the process
	10	according to claim 75.
	11	84. A thermally activated chemically based marking
	12	method comprising the steps of:
:	13	electrostatically applying a layer of glass frit
	14	material containing an energy absorbing enhancer
:	15	to a substrate selected from the group
	16	consisting of glass, ceramic, porcelain,
•	17	aluminum, brass, steel, stainless steel and tin;
	18	and
	19	irradiating said layer with a beam having a
	20	wavelength selected to excite the energy
	21	absorbing enhancer in accordance with the form
	22	of a marking to be applied, thereby forming a
	23	bonded and permanent marking layer atop the
	24	substrate which is visible in contrast with the
	25	substrace.

25

between 25 and 1000mm/sec.

A thermally activated, chemically based marking 1 method comprising the steps of: 2 electrostatically applying a layer of marking 3 material comprising at least one of a mixed 4 5 organic pigment material and an energy absorbing 6 enhancer to a plastic substrate; and irradiating said layer with a radiant energy beam 7 having a wavelength selected to excite the 8 9 energy absorbing enhancer in accordance with the form of a marking to be applied, thereby forming 10 a bonded and permanent marking layer atop the 11 substrate which is visible in contrast with the 12 13 substrate The method of claim 85, further comprising the step 14 of providing a laminar air flow across the substrate during 15 the irradiating step. 16 The method of claim 85, wherein said organic 17 87. pigment material comprises carbon black. 18 The method of claim 85, wherein the energy 19 88. absorbing enhancer comprises carbon black. 20 The method of claim 85, wherein the radiant energy 21 89. beam comprises a laser beam having an energy level ranging 22 between 1 and 30 watts, a spot size ranging between 5 and 23 200 microns, and a marking speed along the substrate ranging 24

	1
1	90. The method of claim 85, wherein the layer of mixed
2	organic pigment material has a thickness ranging between 5
3	and 500 microns.
4	91. The method of claim 85 wherein said irradiating
5	step is started at a room temperature of about 70° F.
6	92. The method of claim 85, wherein said organic
7	pigment material is applied as dry particles.
8	93. The method of claim 85, wherein said organic
9	pigment material is applied as liquid droplets.
10	94. A plastic substrate material as marked by the
11	process according to claim 85.
12	95. A thermally activated chemically based marking
13	method comprising the steps of:
14	electrostatically applying a layer of glass frit
15	material optionally containing an energy
16	absorbing enhancer to a substrate to be marked
17	in the form of a marking to be applied; and
18	irradiating said layer with a radiant energy beam
19	having a wavelength selected to excite the glass
20	frit material and/or said energy absorbing
21	enhancer, thereby forming a bonded and permanent
22	marking layer atop the substrate which is
23	visible in contrast with the substrate.
24	96. A thermally activated chemically based marking
25	method comprising the steps of:

. 18

22,

	1
1	99. The method of claim 97, wherein the radiant energy
2	beam further comprises a laser beam having an energy level
3	ranging between 1 and 30 watts and a marking speed along the
4	substrate ranging between 25 and 1000mm/sec.
5	100. The method of claim 97, wherein said irradiating
6	step is started at a room temperature of about 70° F.
7	101. The method of claim 97, wherein said organic
8	pigment material is applied as dry particles.
9	102. The method of claim 97, wherein said organic
10	pigment material is applied as liquid droplets.
11	103. The method of claim 97, wherein the layer of mixed
12	organic pigment material has a thicknes ranging between 5
13	and 500 microns.
14	104. A substrate as marked by the process according to
15	claim 97.
16	105. A thermally activated, chemically based marking
17	method comprising steps of:
18	electrostatically applying a layer of a marking
19	material comprising a Kaolin clay to a substrate
20	to be marked; and
21	irradiating said layer with a radiant energy beam
22	having a wavelength selected to excite at least
23	said Kaolin clay in accordance with the form of
24	a marking to be applied, thereby forming a
25	marking layer atop said substrate.

1 106. The method of claim 105, wherein said marking
2 material further comprises an energy absorbing enhancer.
3 107. The method of claim 105, wherein said marking
4 material is applied as dry particles.
5 108. The method of claim 105, wherein said marking
6 material is applied as liquid droplets.
7