tinySSB fact sheets

v2b 2024-08-07

tinySSB in a (nut) shell

tinySSB = "tiny Secure Scuttlebutt (SSB)"

- tinySSB inherits SSB's belief system:
 - offline first
 - secure
 - no dependency on intermediaries
 - as decentral as it can be
- Race to the bottom: go where nobody else can go
 ... while keeping all desirable properties
- Unique Selling Points:
 - tinySSB runs on embedded devices, smartphones
 - packet size is 120 Bytes: fits Bluetooth LE, LoRA
 - in the future also short wave radio, satellites ..
 - playground for **teaching** decent(ralized) concepts

Table of Contents

- A) General
 - in a (nut) shell
 - mindset and tenets
 - the Android app
 - bring your own device
- B) Connectivity
 - BLE
 - LoRA
 - websocket, pubs
- C) Teaching
 - decent at BSc level
- D) Security
 - encrypted chat+more
 - security bubbles
 - onboarding
- E) Technology
 - immutable logs, CRDT
 - replication protocol
 - backend/frontend
 - compr. audio, sketch
 - roadmap

tinySSB mindset and tenets

- evolution of Secure Scuttlebutt
 - binary packet format (instead of JSON)
 - "shadow packet headers" (don't send values that are implicit)
 - no "blobs" outside append-only logs -> side chains
- data fountain model
 - data source matters
 - rest is "replication to everywhere"
- replication protocol:
 - connectionless (just let data flow everywhere)
- Works without intermediaries:
 - no Internet? no DNS? no IP address? no problem!
 - use "ionosphere bouncing" instead of Starlink

Table of Contents

A) General

02

- in a (nut) shell
- mindset and tenets
- the Android app
- bring your own device
- B) Connectivity
 - BLE
 - LoRA
 - websocket, pubs
- C) Teaching
 - decent at BSc level
- D) Security
 - encrypted chat+more
 - security bubbles
 - onboarding
- E) Technology
 - immutable logs, CRDT
 - replication protocol
 - backend/frontend
 - compr. audio, sketch
 - roadmap

tinySSB the Android app

"PC experience" is vanishing: smart-

phones are ubiquitous, even dominant

Table of Contents

A) General

03

- in a (nut) shell
- mindset and tenets
- the Android app
- bring your own device
- B) Connectivity
 - BLE
 - LoRA
 - websocket, pubs
- C) Teaching
 - decent at BSc level
- D) Security
 - encrypted chat+more
 - security bubbles
 - onboarding
- E) Technology
 - immutable logs, CRDT

tinySSB and BYOD (bring your ox

(bring your own device)

currently Android-only

- How-to:
 - 1) if necessary allow "apps from unknown sources", as follows:
 - -> settings -> apps -> special access -> install -> Chrome
 - 2) download APK file (dWeb release), install it
 - 3) grant "Localization permission"
- Go live:
 - enable Bluetooth
 - enable Localization

- Customize:
 - go to "contacts" and change"me" to your pseudonym

A) General

04

- in a (nut) shell
- mindset and tenets
- the Android app
- bring your own device
- B) Connectivity
 - BLE
 - LoRA
 - websocket, pubs
- C) Teaching
 - decent at BSc level
- D) Security
 - encrypted chat+more
 - security bubbles
 - onboarding
- E) Technology
 - immutable logs, CRDT
 - replication protocol
 - backend/frontend
 - compr. audio, sketch

see peers

- roadmap

tinySSB

Bluetooth Low Energy (BLE)

Why BLE? (*)
 "hidden" connectivity substrate, used by Apple and others to "identify the context" (AirTags, AppleWatch, etc)

unlike Bluetooth no pairing needed!
 great for seamless → onboarding

range: 30 feet indoors / 300 feet outdoor(10 meters / 100 meters)

- BLE used in tinySSB for:
 - Smartphone to Smartphone coupling
 - Smartphone to LoRA relais coupling (long range radio)

Table of Contents

A) General

05

- in a (nut) shell
- mindset and tenets
- the Android app
- bring your own device
- B) Connectivity
 - BLE
 - LoRA
 - websocket, pubs
- C) Teaching
 - decent at BSc level
- D) Security
 - encrypted chat+more
 - security bubbles
 - onboarding
- E) Technology
 - immutable logs, CRDT
 - replication protocol
 - backend/frontend
 - compr. audio, sketch
 - roadmap

tinySSB

Long-range RAdio (LoRA)

Why LoRA?

Long-range comms requires "carriers" and other intermediaries (Internet, sat). LoRA goes beyond Bluetooth:

- cheap devices (\$30) reaching miles
- no license needed to use this part of the spectrum
- build our own LoRA mesh

- a log-replicating network
- increase coverage by adding new nodes
- still to be sorted out:
 resource management (spectrum, storage)

Table of Contents

A) General

06

- in a (nut) shell
- mindset and tenets
- the Android app
- bring your own device
- B) Connectivity
 - BLE
 - LoRA
 - websocket, pubs
- C) Teaching
 - decent at BSc level
- D) Security
 - encrypted chat+more
 - security bubbles
 - onboarding
- E) Technology
 - immutable logs, CRDT
 - replication protocol
 - backend/frontend
 - compr. audio, sketch

.oRa

- roadmap

LOR

tinySSB data hubs (ws and git)

Table of Contents

A) General

07

- in a (nut) shell
 - mindset and tenets
 - the Android app
 - bring your own device
- B) Connectivity
 - BLE
 - LoRA
 - websocket, pubs
- C) Teaching
 - decent at BSc level
- D) Security
 - encrypted chat+more
 - security bubbles
 - onboarding
- E) Technology
 - immutable logs, CRDT
 - replication protocol
 - backend/frontend
 - compr. audio, sketch

protocol

- roadmap

Default data sync is between end devices.

Arbitrary "assists/hubs" can be added:

- on a voluntary basis
- can always go back to local contact
- or switch to and mix in other assists.
- Useful assists:
 put tinySSB servers on the Internet
 - websocket access (is working)
 - any git server, incl gitHub (planned)
 - USB stick (planned)

 Assists have a problem: how to know these hubs? (so called rendez-vous problem)

tinySSB **decent te**

decent teaching, at BSc level

Communications textbooks are about:

- the Internet
- distributed systems and group comm.

But almost no teaching resources on "decentral system design"

Table of Contents

A) General

08

- in a (nut) shell
- mindset and tenets
- the Android app
- bring your own device
- B) Connectivity
 - BLE
 - LoRA
 - websocket, pubs
- C) Teaching
 - decent at BSc level
- D) Security
 - encrypted chat+more
 - security bubbles
 - onboarding
- E) Technology
 - immutable logs, CRDT
 - replication protocol
 - backend/frontend
 - compr. audio, sketch
 - roadmap
- Several reasons for lack of decent resources:
 - client-server much more relevant in practice, today
 - CRDT results rather recent (since 2011)
 - literature still academic, ongoing research
 - few patterns and libraries for a "complete SW stack"
- Good reasons for not waiting:
 - future engineers are formed now
 - must compete for these talents
 - must push decentral alternatives into BSc studies
 use tinySSB to let students step outside "client/server"

tinySSB encrypted chat + public channel

- tinySSB dWeb demo version has:
 - a) public chat: authenticated but unencrypted
 - b) encrypted chat "to self" (used for private notes, memos, writing down passwords)
 - c) encrypted chat groups (as in Secure Scuttlebutt)
 - up to 7 peers, static
 - metadata protection: encrypted blobs do not reveal to which chat this message was sent, nor that this is a chat message
- Plans for enhancements:
 - dynamic group membership
 (→ "security bubbles")
 - "perfect forward secrecy"(double-ratchet protocol)

A) General

09

- in a (nut) shell
 - mindset and tenets
 - the Android app
 - bring your own device
- B) Connectivity
 - BLE
 - LoRA
 - websocket, pubs
- C) Teaching
 - decent at BSc level
- D) Security
 - encrypted chat+more
 - security bubbles
 - onboarding
- E) Technology
 - immutable logs, CRDT
 - replication protocol
 - backend/frontend
 - compr. audio, sketch
 - roadmap

tinySSB security and resource bubbles

- observation A: global reach is evil, leads to influencer wasteland and massive troll farms
- observation B: willingness to sponsor technical resources works IF for the good of your **community** (i.e. you should never feed trolls, or X)
- A+B lead to the same goal: protect your infrastructure, your chat room, your scarce wireless bandwidth
 - → be in control of your security perimeter!
- novel tinySSB concept: user-defined security bubbles
 - linking crypto protection of chat rooms with "replication horizon", tasking your set of relais
 - first prototype is working (BSc thesis), not yet integrated into the dWeb tinySSB smartphone app

Table of Contents

- A) General
 - in a (nut) shell
 - mindset and tenets
 - the Android app
 - bring your own device
- B) Connectivity
 - BLE
 - LoRA
 - websocket, pubs
- C) Teaching
 - decent at BSc level
- D) Security
 - encrypted chat+more
 - security bubbles
 - onboarding

- immutable logs, CRDT
- replication protocol
- backend/frontend
- compr. audio, sketch
- roadmap

tinySSB **onboarding**

Table of Contents

- A) General
 - in a (nut) shell
 - mindset and tenets
 - the Android app
 - bring your own device
- B) Connectivity
 - BLE
 - LoRA
 - websocket, pubs
- C) Teaching
 - decent at BSc level
- D) Security
 - encrypted chat+more
 - security bubbles
 - onboarding

- E) Technology
 - immutable logs, CRDT
 - replication protocol
 - backend/frontend
 - compr. audio, sketch
 - roadmap

The onboarding problem:

Without servers that store other's data and directories, I have to know from whom I want to read "their data feed".

How can **you** tell **me** to consider your feed, without me already listening to you?

- Two ways of onboarding, both "out-of-band":
 - "direct" (scan QR code with your ID)
 - "by recommendation" (receive your ID via friends)
 Secure Scuttlebutt had some twisted ways ..
- tinySSB's take:
 - use local ad hoc situation (e.g. Bluetooth reach)
 to eagerly import "short-term acquaintances"
 - adopt their ID into long-term → "security bubbles"
 (family, 15 buddies groups, dWeb folk, HAMs..)

tinySSB immutable logs and CRDT

"One append-only log per peer"
we stick to this Secure Scuttlebutt tenet

- Sender can only append. Then,
 - everybody can validate and replicate

Table of Contents

- A) General
 - in a (nut) shell
 - mindset and tenets
 - the Android app
 - bring your own device
- B) Connectivity
 - BLE
 - LoRA
 - websocket, pubs
- C) Teaching
 - decent at BSc level
- D) Security
 - encrypted chat+more
 - security bubbles
 - onboarding
- E) Technology

- replication protocol
- backend/frontend
- compr. audio, sketch
- roadmap

- compressed log format, all parceled in 120B chunks

- applications ship their messages inside log entries
 - use Conflict-Free Replicated Data Types (CRDT) to have "data convergences" without any servers
 - the "set of append-only logs" is by itself a CRDT!
 - → decentral, peer-to-peer, offline-first apps

Trad. replication protocols are heavy or use TCP connections

- → we needed something lightweight
- strictly datagrams, limited to 120 Bytes
 - no connections
 - only three message types:
 - + WANT (announces own "replication frontier" of logs)
 - + CHNK (announces missing side-chain pkts)
 - + DATA (actual log entries and side chain pkts)

mk_want offs=0, vector=[4.4 0.3 1.86 2.1 3.1]
have entry 3.102 with dmx: alddc663070089
have entry 3.103 with dmx: 058226264f64d6
rcvd WANT vector=[2.1 3.102 4.4 0.3 1.86]
mk_want offs=1, vector=[0.3 1.86 2.1 3.104
have astry 3.102 with dmy: alddc663070080

- highly compressed WANT, CHNK vectors:
 - "local names" (1B) for crypto identities (32B)
 - established through a local grow-only-set CRDT
 - also uses 120B packets and one CLAIM msg type

13

Table of Contents

- A) General
 - in a (nut) shell
 - mindset and tenets
 - the Android app
 - bring your own device
- B) Connectivity
 - BLE
 - LoRA
 - websocket, pubs
- C) Teaching
 - decent at BSc level
- D) Security
 - encrypted chat+more
 - security bubbles
 - onboarding
- E) Technology
 - immutable logs, CRDT
 - replication protocol
 - backend/frontend
 - compr. audio, sketch
 - roadmap

tinySSB frontend vs backend

Table of Contents

- A) General
 - in a (nut) shell
 - mindset and tenets
 - the Android app
 - bring your own device
- B) Connectivity
 - BLE
 - LoRA
 - websocket, pubs
- C) Teaching
 - decent at BSc level
- D) Security
 - encrypted chat+more
 - security bubbles
 - onboarding
- E) Technology
 - immutable logs, CRDT
 - replication protocol
 - backend/frontend
 - compr. audio, sketch
 - roadmap

frontend
(JS, HTML)

HTML
storage

backend
(Kotlin)

Android
GPS/
security
dongle

A design challenge: how to keep the "cooked state" of the frontend in sync with the "raw state" in the backend

- Android supports a "browser-in-your-app"
 - -> frontend (in JS+HTML) for most of the app logic
- backend (in Kotlin) for the crypto, HW interfaces, raw append-only logs, replication protocol
- iOS port of the backend is ongoing (considering using the Socket Supply runtime)

frugal data ... and compression

Offline-first means: we have time

- -> invitation to give up expectation of "let's do a facetime"
- starts with images, not advisable:
 - 100kB already too much (=900 tinySSB packets)
- hence limit to frugal content types:
 - text, geo-tags, brief acks
- sketch: uses vector graphics
 - svg-like encoding, typical sketch has 1.5kBytes
- voice: can be done! "codec2" compression library
 - at 1300bps-level
- \rightarrow 15 sec voice = 2.7 kBytes
- open source, free-as-in-speech codec
 https://www.rowetel.com/?page_id=452

Table of Contents

- A) General
 - in a (nut) shell
 - mindset and tenets
 - the Android app
 - bring your own device
- B) Connectivity
 - BLE
 - LoRA
 - websocket, pubs
- C) Teaching
 - decent at BSc level
- D) Security
 - encrypted chat+more
 - security bubbles
 - onboarding
- E) Technology
 - immutable logs, CRDT
 - replication protocol
 - backend/frontend
 - compr. audio, sketch
 - roadmap

tinySSB **Roadmap**

Table of Contents

- A) General
 - in a (nut) shell
 - mindset and tenets
 - the Android app
 - bring your own device
- B) Connectivity
 - BLE
 - LoRA
 - websocket, pubs
- C) Teaching
 - decent at BSc level
- D) Security
 - encrypted chat+more
 - security bubbles
 - onboarding
- E) Technology
 - immutable logs, CRDT
 - replication protocol
 - backend/frontend
 - compr. audio, sketch
 - roadmap

tSSB a prototype, not for daily use:

- no database, hence unable to "select"your data workset all is in memory
- no dynamic app loading: code of all apps is in memory
- Technological roadmap:
 - LoRa, shortwaves "end-to-end"

almost there

- iOS support

partly works (Socket Supply library)

- app store

works.. but not integrated yet

- private key on Ubikey dongle + NFC coupling
- works..

- security bubbles and dyn. groups

works..

- replication via websocket

works..

- replication via git(hub) and USB sticks

new

- log pruning/meta feeds
- need more experience

- support for Lokens

just concept

... and your desirable feature is?

leave a comment

https://github.com/ssbc/tinySSB

