FIRST NAMED APPLICANT: Hanxiang SHI **APPLICATION NO.: 10/563,144** DOCKET NO.: 78199/00002

TITLE OF INVENTION: MULTIPHASE REACTOR

MARKED-UP SUBSTITUTE SPECIFICATION

Substitute Specification

Field of the Invention

This invention relates to a multiphase reactor, particularly, to a gas-liquid-solid or gas-liquid, gas-solid, liquid-solid multiphase reactor.

5

10

15

20

25

Background of the invention

Multiphase reactors are widely used in various industry sectors such as metallurgy, chemical engineering, petrochemical engineering, and environmental protection. Owing to the particularity of different application fields, the reactor components that speed up reactions among gas-liquid-solid three-phase or gas-liquid, gas-solid, liquid-solid two-phase should have their own characteristics, according to practical requirements. For instance, the Chinese patent No. ZL98113470.x, entitled "A Multiphase Jet Osmotic Dissolution reactor", discloses a reactor including a spherical perforated focused injector, a draft tube, an expanding vessel and an osmotic cavity. Its characteristics are that the small conical orifices on the surface of the spherical body of the spherical perforated focused injector are connected to transferring conduits of the multiphase-fluid, respectively; the expanding vessel consists of a cone-shaped cavity and an expanding cone, with clearance between them; there are cylindrical orifices with convex helical bore line on the top end of the small conical orifices of the spherical body, and there is a short inward convex helical bore line on the inner wall of the draft tube terminal. Aiming at improving the osmotic effect of at least two-phase fluids, this prior art invention is made with its own characteristics of a build-in member. The inventor of the present application had presented a set of new technical solutions in the process of solving pollution problems of sulfur dioxide-containing flue gas which was discharged during metallurgical processes, achieving the object of "waste treats waste, waste to wealth." For the said new technical solutions, two Chinese patent applications concerning processes and main apparatuses have been filed with the Chinese Patent Office respectively, with the patent application number 00119453.4 and 02203582.6. In addition, a Chinese

FIRST NAMED APPLICANT: Hanxiang SH1

APPLICATION NO.: 10/563,144

TITLE OF INVENTION: MULTIPHASE REACTOR DOCKET NO.: 78199/00002

MARKED-UP SUBSTITUTE SPECIFICATION

5

10

15

20

application for patent for invention had also been filed, with the patent application

number 01126707.0. The patent for utility model No. ZL02203582.6, with the title

of "A Multiphase Reactor" had been granted. The patent ZL02203582.6 is mainly

concerned about a cone-shaped build-in member, composed of a cone-shaped ring and

a cone body, which is mounted inside the reactor. Owing to the said build-in member,

the velocity and direction of the fluids inside the reactor are forced to change

continuously, so as to strengthen the contact among gas, liquid and solid phases and to

improve the reaction process. Meanwhile, the build-in member can retard the

deposition of solid materials in the reactor. This kind of build-in member is simple in

structure, and can prevent corrosion and abrasion readily. The conical surfaces of the

cone body and conical ring housing of this conical build-in member are rotation

surfaces formed by rotating straight lines, as a generatrix, round a rotation axis.

However, these rotation surfaces can hardly fit for complicated practical situations. If

the generatrix is changed from straight lines to a curved line as required, then the

curved line is rotated round the rotation axis to form rotation surfaces, the rotator

axisymmetric body and annular rotator axisymmetric body, which are formed by the

above-mentioned rotation surfaces, replace the previous cone body and conical ring;

the rotary build-in member, comprised of the rotator axisymmetric body and the

annular rotator axisymmetric body, replace the previous conical build-in member. The

rotary build-in member can effectively improve the flow pattern of the fluids and

improve the contact among gas, liquid and solid phases of the reactants, and speed up

the mass transfer Therefore, the multiphase reactor could fit with more situations, and

could be employed in even more three-phase or two-phase reactions.

25 Summary of the invention

The object of this invention is to provide a multiphase reactor with a simple

structure and an enhanced reaction strength, without dead angles, deposition nor

congestion of the solid phase.

The object of this invention is achieved as follows: based on the teachings of the

Page 2 of 10

FIRST NAMED APPLICANT: Hanxiang SHI APPLICATION NO.:

10/563,144 TITLE OF INVENTION: MULTIPHASE REACTOR

MARKED-UP SUBSTITUTE SPECIFICATION

5

10

15

20

25

30

DOCKET NO.: 78199/00002

Chinese patent for utility model No. ZL02238264.X, according to which the cone body and conical ring which constitute the conical build-in member and were formed by rotating straight line or poly-line round a rotation axis, are changed into a rotator an axisymmetric body and an annular rotator axisymmetric body which are formed by rotating a curved line round a rotation axis as required, the curved line may also include a part of straight line and/or curved line, so as to satisfy different requirements of various reactions. Meanwhile, in order to enhance the maneuverability of the multiphase reactor during its operation, some improvements have been made, which are concerned about the molding of and connection between the shell, the rotator axisymmetric body, and the annular rotator axisymmetric body, as well as about the shape of the shell. The characteristics of the present multiphase reactor are as follows: a rotary build-in member, comprised of a-rotator an axisymmetric body and an annular rotator axisymmetric body, is installed inside the shell of the multiphase reactor. The shell of the reactor is cylindrical. The surface of the shell can be smooth, or can be waved transversely or longitudinally. The waved shape can be formed by a curved line or a poly-line. The shell of the reactor is cylindrical, and the inner surface of the shell is smooth, or waved transversely or longitudinally, wherein the shell with waved inner surface is formed by rotating a curved line or a poly-line round a rotation axis.

The rotator axisymmetric body in the above mentioned rotary build-in member is formed by rotating the curved line, whose two ends are connected with the two ends of the rotation axis respectively and which is in the same plane with the rotation axis, round the rotation axis. It may be hollow with the required wall thickness, or may be solid. The annular rotator axisymmetric body is formed by rotating a straight line and a curved line round the rotation axis, wherein the straight line is parallel to the rotation axis, and the two ends of the curved line are connected with the two ends of the straight line respectively, and the straight line, the curved line and the rotation axis are within one plane. The distance between the straight line and the rotation axis is longer than that between the curved line and the rotation axis, and is exactly equal to the radius of the inner wall of the shell. The annular rotator axisymmetric body may

FIRST NAMED APPLICANT: Hanxiang SHI APPLICATION NO.: 10/563,144

TITLE OF INVENTION: MULTIPHASE REACTOR

DOCKET NO.: 78199/00002

MARKED-UP SUBSTITUTE SPECIFICATION

5

10

15

20

25

30

be hollow. Even the cylindrical surface that is formed by rotating the straight line round the axis can be omitted, as long as the rotation surface formed by rotating the said curved line has the required wall thickness. It may also be a solid rotator axisymmetric body.

The curved line, based on which the rotator axisymmetric body and the annular rotator axisymmetric body are formed, can be composed of curved line segments with different profiles, but these curved line segments are in the same plane with the rotation axis. The curved line is preferred to be simple and to form the rotation surfaces in ease. The top and the bottom ends of the annular rotator axisymmetric body are connected to the shell so that the whole annular rotator axisymmetric body is supported on the shell of the reactor, or can be integrated with the shell by molding. The rotator axisymmetric body is supported on the shell of the reactor by a supporting frame, or can be integrated with the shell by molding. The annular rotator axisymmetric body and the rotator axisymmetric body are installed coaxially in the reactor. The maximum diameter of the rotator axisymmetric body should not be less than the inner diameter of the annular rotator_axisymmetric body. Normally, the rotator axisymmetric body is installed over the annular rotator axisymmetric body with an appropriate distance between them, so as to make sure that there is enough space for feedstocks to pass through.

A rotator An axisymmetric body, an annular rotator axisymmetric body and their corresponding shell constitute a reaction unit. A multiphase reactor can comprise one reaction unit or several reaction units. In the process of manufacturing, assembly, and installation of the reaction units, the shell, the rotator axisymmetric body, and the annular rotator axisymmetric body can be produced separately, then the rotator axisymmetric body and the annular rotator axisymmetric body are installed in order to the shell by welding, riveting, screwing, or bolting, in compliance with the requirements. Alternatively, the finished rotator axisymmetric body and annular rotator axisymmetric body can be installed to a corresponding section of the shell, then the sections of the shell are installed together by welding, riveting, screwing, flanged connection, or bell and spigot joint. In a third way, the rotator axisymmetric

FIRST NAMED APPLICANT: Hanxiang SHI
APPLICATION NO.: 10/563,144

TITLE OF INVENTION: MULTIPHASE REACTOR

DOCKET NO.: 78199/00002

MARKED-UP SUBSTITUTE SPECIFICATION

5

body, the annular rotator axisymmetric body and the corresponding section of the shell are made as an unit in a way of one-shot molding, then the sections of the shell are installed together by welding, riveting, screwing, flanged connection, or bell and spigot joint. In a fourth way, the rotator axisymmetric body and a corresponding section of the shell are installed together in a way of one-shot molding, and the annular rotator axisymmetric body and its corresponding section of the shell are installed together in a way of one-shot molding, then the two parts above-mentioned are connected together into a unit by welding, riveting, screwing, flanged connection,

or bell and spigot joint; finally, all of units are connected together.

FIRST NAMED APPLICANT: Hanxiang SHI

APPLICATION NO.: 10/563,144

TITLE OF INVENTION: MULTIPHASE REACTOR DOCKET NO.: 78199/00002

MARKED-UP SUBSTITUTE SPECIFICATION

This invention possesses the following merits:

1. The previous structure of cone-shaped build-in member is replaced by the

structure of a rotary build-in member, and the previous conical surface is replaced by

a rotary surface. During the design of the reactor, the flow pattern of the fluid can be

controlled by selecting the form of the rotary surface, so as to improve reaction

process.

5

10

15

20

25

The previous structure of the conical build-in member is kept, so that several

fluid curtains with different diameters are formed in the reactor. The previous build-in

member is kept, so that the velocities and directions of the fluid are forced to change

continuously. These measures improve the contact of gas-liquid-solid three-phase and

enhance the reactions among different phases.

The structure of the rotary build-in member is basically the same as the

structure of the conical build-in member except the rotary surface of the build-in

member. Nevertheless this difference does not make the structure of the reactor

complicated, and the characteristics such as simple in structure, easy manufacturing

and low cost are remained.

A variety of methods concerning the connection and combination of the units

or components are provided to the user's option when implementing this invention.

Brief Description of The Drawings

FIG.1 shows a partial cross-section and its three-dimensional view of one

embodiment of the multiphase reactor of the invention.

FIG.2 shows the partial cross-section and its three-dimensional view of another

embodiment of the multiphase reactor of the invention.

FIG.3 shows the partial cross-section and its three-dimensional view of the

multiphase reactor known from the prior art.

30

Page 6 of 10

FIRST NAMED APPLICANT: Hanxiang SH1

APPLICATION NO.: 10/563,144
TITLE OF INVENTION: MULTIPHASE REACTOR DOCKET NO.: 78199/00002

MARKED-UP SUBSTITUTE SPECIFICATION

5

15

20

25

The differences between the multiphase reactor of the present invention and the

prior art multiphase reactor are shown clearly in the Fig 1, Fig 2 and Fig 3. The

rotator axisymmetric body and annular rotator axisymmetric body of the multiphase

reactor of the present invention are formed by rotating curved lines, which are in the

same plane with the rotation axis. However, the cone body and the conical ring in the

cone-shaped build-in member are formed by rotating a straight line or poly-line,

which is in the same plane with the axis.

Embodiments

10 The following is the detailed description of embodiments referring to the Figures.

EXAMPLE 1

As shown in FIG. 1, the multiphase reactor includes a shell and a rotary build-in

member. The shell 1 of the reactor can be made as a cylinder with smooth surface.

The rotary build-in member, consisted of the rotator axisymmetric body 2 and the

annular rotator axisymmetric body 3, is installed inside the shell 1. The rotator

axisymmetric body 2 is formed by rotating the curved line which is formed by

connecting several arcs with different radii. It is obviously different from the cone in

Fig 3. The annular rotator axisymmetric body is also formed by rotating the curved

line, which is formed by connecting several arcs with different radii, and is different

from the conical ring in Fig 3. The annular rotator_axisymmetric body 3 can be

welded or riveted on the shell 1 of the reactor, and the rotator axisymmetric body 2 is

supported on the shell 1 by a fixed bolster. The rotator axisymmetric body is mounted

on the annular rotator axisymmetric body with enough space left in between, whereby

the fluids can flow through smoothly. The diameter of the rotator_axisymmetric body

2 φDA is not less than the inner diameterφDB of the annular rotator axisymmetric

body, so as to strengthen the change of the fluid velocity and to speed up the mass

transfer. This type of structure is suitable for the counter-current contact of the

downward feedstock slurry and the upward gaseous fluid, and also suitable for the

Page 7 of 10

FIRST NAMED APPLICANT: Hanxiang SHI

APPLICATION NO.: 10/563,144

TITLE OF INVENTION: MULTIPHASE REACTOR DOCKET NO.: 78199/00002

MARKED-UP SUBSTITUTE SPECIFICATION

10

15

20

25

co-current contact of the feedstock slurry and the gaseous fluid simultaneously

downward.

EXAMPLE 2

5 As shown in FIG.2, the multiphase reactor includes a shell and a rotary build-in

member. The shell 1 of the reactor can be manufactured into a cylinder shape, the

rotary build-in member, composed of the rotator axisymmetric body 2 and the annular

rotator axisymmetric body 3, is installed inside the shell 1. The rotator axisymmetric

body 2, formed by rotating another curved line, has the shape that is different from the

cone body shown in Fig 3 and the rotator axisymmetric body shown in Fig 1. The

annular rotator axisymmetric body 3, formed by rotating another curved line, has the

shape that is different from the conical ring shown in Fig 3 and the annular rotator

axisymmetric body shown in Fig 1. The rotator axisymmetric body is mounted on the

annular rotator axisymmetric body with enough space left in between, whereby the

fluids can flow through smoothly. The diameter φDA of the rotator axisymmetric

body 2 is not less than the inner diameter DB of the annular rotator axisymmetric

body, so as to strengthen the change of the fluid velocity and to speed up the mass

transfer. This type of structure is suitable for the counter-current contact of the

downward feedstock slurry and the upward gaseous fluid, and also suitable for the

co-current contact of the feedstock slurry and the gaseous fluid simultaneously

downward.

As an embodiment of the present invention, Ningbo East Copper Company

Smeltery modified its previously used cone-shaped build-in member as shown in

FIG.3 by using the rotary build-in member as shown in Fig 2. Under the substantially

same operation conditions, the recycling slurry was decreased by 6%, indicating that

the change of the shape of the build-in member conduces to intensifying the contact of

the gas-liquid-solid three phases, and to speeding up the mass transfer.

Page 8 of 10

FIRST NAMED APPLICANT:

APPLICATION NO.:

TITLE OF INVENTION:

DOCKET NO.:

TREST NAMED APPLICANT:

Hanxiang SHI

10/563,144

MULTIPHASE REACTOR

78199/00002

MARKED-UP SUBSTITUTE SPECIFICATION

The above embodiments describe one technical solution of the present invention.

Some technical modifications based on the present invention without departure from

the spirits of inventive concept, such as those being added with some radial troughs

on the surface of the rotator axisymmetric body and annular rotator axisymmetric

5 body, etc., are all within the protection scope of the invention. FIRST NAMED APPLICANT: Hanxiang SHI APPLICATION NO.: 10/563,144 TITLE OF INVENTION: MULTIPHASE REACTOR DOCKET NO.: 78199/00002

MARKED-UP SUBSTITUTE SPECIFICATION

5

10

15

Abstract

This invention relates to a multiphase reactor which is especially suitable for desulfurization of flue gas. A rotary build-in member comprising a rotator axisymmetric body and an annular rotator_axisymmetric body is fixed on the shell of the reactor. The shell is cylindrical, and its surface is smooth or waved. The maximum diameter of the rotator axisymmetric body is no less than the inner diameter of the annular rotator axisymmetric body. The rotator axisymmetric body is installed on the annular rotator axisymmetric body coaxially. One rotary build-in member and its corresponding shell constitute an unit, and the reactor may have one or more such units. The multiphase reactor can effectively improve the flow pattern of the fluid and the contact of gas-liquid-solid three-phase of the reactants, speed up the mass transfer, and prevent deposition of the solid phase. The reactor is simple in structure and convenient for use. It can be used in the fields such as environmental protection, chemical engineering, metallurgy, and architectural industries.