Comparison of exchange-correlation functionals: from LDA to GGA and beyond

Martin Fuchs

Fritz-Haber-Institut der MPG, Berlin, Germany

Density-functional theory

DFT is an exact theory of the ground state of an interacting many-particle system:

$$E_0 = \min_{n \to N} E_v[n] \quad \Leftrightarrow \quad E_0 = \min_{\Psi \to N} \langle \Psi | \hat{H}_v | \Psi \rangle \quad ext{by Hohenberg-Kohn theorem:} \quad v(\mathbf{r}) o v[n(\mathbf{r})]$$

Total energy density functional (electrons: $w(\mathbf{r}, \mathbf{r}') = 1/|\mathbf{r} - \mathbf{r}'|)$

$$E_v[n] = \left[\min_{\Psi \to n} \langle \Psi | \hat{T} + \hat{W} | \Psi \rangle \right] + \int n(\mathbf{r}) v(\mathbf{r}) d\tau = \left[F[n] \right] + \int n(\mathbf{r}) v(\mathbf{r}) d\tau$$

Non-interacting case: $w(\mathbf{r}, \mathbf{r}') \rightarrow 0$

$$F[n] \longrightarrow \min_{\Psi o n} \langle \Psi | \hat{T} | \Psi
angle = \langle \Phi[n] | \hat{T} | \Phi[n]
angle = T_s[n] \qquad \Phi[n] \quad ext{is a Slater determinant}$$

Interacting case rewritten:

$$E_v[n] = T_s[n] + E_{xc}[n] + \frac{1}{2} \int n(\mathbf{r}) w(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') d\tau d\tau' + \int n(\mathbf{r}) v(\mathbf{r}) d\tau$$

XC energy functional: kinetic correlation energy & exchange and Coulomb correlation energy

$$E_{xc}[n] =: \underline{\langle \Psi[n] | \hat{T} | \Psi[n] \rangle - T_s[n]} + \langle \Psi[n] | \hat{W} | \Psi[n] \rangle - \frac{1}{2} \int n(\mathbf{r}) w(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') d\tau d\tau'$$

Kohn-Sham scheme

Minimization of $E_v[n]$ with $n(\mathbf{r}) \to N$ determines groundstate:

$$\frac{\delta E_v[n]}{\delta n(\mathbf{r})} = \mu \longrightarrow \frac{\delta F[n]}{\delta n(\mathbf{r})} + v(\mathbf{r}) = \frac{\delta T_s[n]}{\delta n(\mathbf{r})} + v^{KS}([n]; \mathbf{r}) = \mu$$

 \dots effective non-interacting system \longrightarrow Kohn-Sham independent-particle equations:

$$\left[-\frac{\nabla^2}{2} + v^{KS}(\mathbf{r}) \right] \phi_i(\mathbf{r}) = \epsilon_i \phi_i(\mathbf{r}) \quad \text{with} \quad v^{KS}(\mathbf{r}) = \int w(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') d\tau' + \left| \frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})} \right| + v(\mathbf{r}) ,$$

density $n(\mathbf{r}) = \sum_i f_i |\phi_i(\mathbf{r})|^2$,

occupancies $\epsilon_i < \mu: f_i = 1, \quad \epsilon_i = \mu: 0 \le f_i \le 1, \quad \epsilon_i > \mu: f_i = 0$ (aufbau principle).

- non-interacting kinetic energy treated exactly $T_s[n] = \int \sum_i f_i |\nabla \phi_i(\mathbf{r})|^2 d\tau$
- "classical" electrostatics (e-n & e-e) treated exactly
- "only" need to approximate $E_{xc}[n]$ and $v_{xc}([n]; \mathbf{r}) = \frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})}$ determines accuracy in practice!
- ullet applied is spin density functional theory: $n_{\uparrow,\downarrow}$ treated as separate variables

beware: $v^{KS}(\mathbf{r})$ is a local operator. Direct approximation of whole F[n] possible too: DFT with generalized Kohn-Sham schemes¹ and nonlocal effective potentials, e.g. Hartree-Fock eqs.

¹ Seidl, Görling, Vogl, Majewski, Levy, Phys Rev B 53, 3764 (1996).

Local-density approximation

$$E_{ ext{xc}}^{ ext{LDA}}[n] = \int n(\mathbf{r}) e_{ ext{xc}}^{ ext{hom}}(n(\mathbf{r})) d au$$

- ullet local dependence on density or Wigner-Seitz radius $r_s=(rac{4\pi}{3}n)^{-1/3}$
- XC energy per electron is that of the homogeneous electron gas, $e_{xc}[n]=e_{xc}^{hom}(n)|_{n=n(\mathbf{r})}$
 - \checkmark exchange part $e_{_{\!X}}^{\mathit{hom}}(n)$ known analytically
 - \checkmark correlation part $\stackrel{\widehat{e}_{c}^{\mathrm{hom}}}{e_{c}^{\mathrm{hom}}}(n)$ known
 - * analytically for $r_s \to 0$ and $r_s \to \infty$
 - st numerically "exact" for $2 < r_s < 100$ from QMC data 1
 - ... as parametrization interpolating over all r_s "PW91", "Perdew-Zunger", "VWN" 2
- "workhorse" in DFT applications to solids
- real systems are far from jellium-like homogeneity
 - ... why does LDA work at all?
 - ... where does it fail?
 - ... how to improve beyond it?

¹ Ceperley, Alder, Phys Rev Lett 45, 566 (1980).

² Perdew, Wang, Phys Rev B 45, 13244 (1992); Perdew, Zunger (1980); Vosko, Wilk, Nussair (1980).

Performance of the LDA

- structural, elastic, and vibrational properties often good enough
 - \checkmark crystal bulk lattice constants accurate to within 3%, usually underestimated
 - ✓ bulk moduli somewhat too large, > 10% error not uncommon for d-metals
 - ✓ phonons somewhat too stiff
- binding energies are too negative (overbinding), up to several eV
 - **X** cohesive energies of solids, but formation enthalpies often o.k.
 - $ilde{ iny}$ molecular atomization energies, mean error (148 molecules G2 set) pprox -3 eV
- activation energies in chemical reactions unreliable
 - X too small/absent, e.g. for H_2 on various surfaces (Al, Cu, Si, ...)
- relative stability of crystal bulk phases can be uncertain
 - X SiO₂ high pressure phase more stable than zero pressure phase
 - $m{X}$ underestimated transition pressure e.g. for diamond $\leftrightarrow \beta$ -tin phase transitions in Si & Ge
 - X magnetic phases
- **electronic structure** can be usefully interpreted (density of states, band structures), except for band gaps (a more fundamental issue than LDA!)

View on XC through the XC hole

Definition of the XC energy by a coupling constant integration of the e-e interaction 1:

$$E([n]; \textcolor{red}{\lambda}) = \langle \Psi_{\textcolor{blue}{\lambda}}[n] | \hat{T} + \hat{V}_{\textcolor{blue}{\lambda}} + \textcolor{blue}{\lambda} \hat{W} | \Psi_{\textcolor{blue}{\lambda}}[n] \rangle = \min_{\Psi_{\textcolor{blue}{\lambda}} \rightarrow n} \dots$$

- by Hohenberg-Kohn theorem: $n(\mathbf{r}) \leftrightarrow v_{\lambda}([n]; \mathbf{r})$ for any $0 \leq \lambda \leq 1$
- $\lambda = 0$ \rightarrow non-interacting case/ Kohn-Sham potential, $v_{\lambda=0}([n]; \mathbf{r}) = v^{KS}([n]; \mathbf{r})$
- $\lambda = 1$ \rightarrow external potential, $v_{\lambda=1}([n]; \mathbf{r}) = v(\mathbf{r})$

groundstate energy:
$$E([n];1) = E([n];0) + \int_0^1 \frac{dE([n];\lambda)}{d\lambda} d\lambda$$

$$\Rightarrow E_{xc}[n] = \int_0^1 \left| \langle \Psi_{\lambda}[n] | \frac{\lambda}{\lambda} \hat{W} | \Psi_{\lambda}[n] \rangle \right| d\lambda - \frac{1}{2} \int n(\mathbf{r}) w(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') d\tau d\tau'$$

$$= \frac{1}{2} \int w(\mathbf{r}, \mathbf{r}') n(\mathbf{r}) n(\mathbf{r}') \frac{\langle \Psi_{\lambda}[n] | \sum_{p,q} \hat{\Psi}_{p}^{\dagger}(\mathbf{r}) \hat{\Psi}_{q}^{\dagger}(\mathbf{r}') \hat{\Psi}_{q}(\mathbf{r}') \hat{\Psi}_{p}(\mathbf{r}) | \Psi_{\lambda}[n] \rangle}{n(\mathbf{r}) n(\mathbf{r}')} d\tau d\tau'$$

- \blacktriangleleft XC in terms of the pair correlation function $g_{\lambda}([n]; \mathbf{r}, \mathbf{r}')$
- XC in terms of the adiabatic connection integrand (scaled e-e potential energy)
- ullet may distinguish exchange and correlation, e.g. $E_{ extsf{xc}}=E_{ extsf{x}}+E_{c}$

 $g(\mathbf{r},\mathbf{r}')$

¹ cf. DFT books by Dreizler and Gross & Yang and Parr

... coupling constant averaged XC hole

 \bullet λ -integration implies coupling constant averaged pair correlation function

$$ilde{g}([n];\mathbf{r},\mathbf{r}') = \int_0^1 g_{\lambda}([n];\mathbf{r},\mathbf{r}') d\lambda$$

Identify the XC energy as

$$E_{\mathsf{xc}}[n] = rac{1}{2} \int d au n(\mathbf{r}) \int d au' n(\mathbf{r}') \{ ilde{g}([n]; \mathbf{r}, \mathbf{r}') - 1 \} imes w(\mathbf{r}, \mathbf{r}')$$

ullet interpretation: the electron density $n({f r})$ interacts with the electron density of the XC hole

$$n_{\mathsf{xc}}([n];\mathbf{r},\mathbf{r}') = n(\mathbf{r}')\{\tilde{g}([n];\mathbf{r},\mathbf{r}') - 1\}$$

- → Pauli exclusion principle & Coulomb repulsion
- local density approximation corresponds to

$$n_{xc}([n]; \mathbf{r}, \mathbf{r}') = n(\mathbf{r}) \{ \tilde{g}^{hom}(n(\mathbf{r}); |\mathbf{r} - \mathbf{r}'|) - 1 \}$$

⇒ always centered at reference electron & spherical

(NB: correlation part varies with k_F)

From the XC hole to the XC energy

Focus on $E_{\rm xc}[n]=\int n({\bf r})e_{\rm xc}([n];{\bf r})d au$ (... component of the total energy) $w=rac{1}{|{\bf r}-{\bf r}'|}=rac{1}{|{\bf u}|}$

ullet for e_{xc} only the angle averaged XC hole matters (and LDA hole is always spherical)

$$n_{\mathsf{xc}}(\mathbf{r},\mathbf{r}+\mathbf{u}) = \sum_{lm} n_{lm}^{\mathsf{xc}}(\mathbf{r},u) Y_{lm}(\Omega_{\mathbf{u}})$$

$$E_{xc}[n] = \frac{1}{2} \int n(\mathbf{r}) \int \frac{n_{xc}(\mathbf{r}, \mathbf{r} + \mathbf{u})}{u} d\tau_u d\tau \rightarrow \frac{1}{2} \int n(\mathbf{r}) \int_0^\infty \frac{n_{00}^{xc}(\mathbf{r}, u)}{u} u^2 du d\tau$$

ullet for E_{xc} only the system & angle averaged XC hole matters

$$\langle n_{\mathsf{xc}}(u) \rangle = \frac{1}{N} \int n(\mathbf{r}) n_{00}^{\mathsf{xc}}(\mathbf{r}, u) d\tau$$

ightharpoonup XC energy in terms of averaged XC hole 1

$$E_{ ext{xc}}[n] = rac{N}{2} \int_0^\infty rac{\langle n_{ ext{xc}}(u)
angle}{u} u^2 du = N imes ext{average XC energy per electron}$$

LDA & GGA approximate average holes rather closely \Leftrightarrow work mostly o.k.

¹ Perdew et al., J Chem Phys 108, 1552 (1998).

Sum rule and other constraints on the XC hole

sum rule (constrains global behavior)

$$\int n_{ ext{ iny C}}([n];\mathbf{r},\mathbf{r}')d\mathbf{r}'=-1$$
 ... average hole too

✓ LDA:
$$\int n(\mathbf{r}) n_{xc}^{hom}(n(\mathbf{r}), \mathbf{r}, \mathbf{r}') d\mathbf{r}' = -1$$

- on-top hole $\langle n_{xc}(0) \rangle$ (fixes value at u=0)
 - ✓ LDA: accurate (exact in some limits) for correlation, exact for exchange
- cusp condition (constrains behavior around u = 0)

$$\left. \frac{\partial \langle n_{xc}(u) \rangle}{\partial u} \right|_{u=0} = \langle n_{xc}(0) \rangle + \langle n(0) \rangle$$

LDA works well because the LDA (average) XC hole is that of a physical system, jellium

Beware: • pointwise behavior of $n_{xc}^{LDA}(\mathbf{r}, \mathbf{r}')$ may be incorrect (e.g. outside metal surface), system averaging unweights tail and near-nucleus regions

> ullet XC potential $v_{xc}([n]; {f r})$ for LDA can be locally poor, but again less so for the system average

Generalized Gradient Approximation for E_{xc}

- **1** Gradient expansion of XC energy and (later) hole: $n_{xc}([n]; \mathbf{r}, \mathbf{u}) \to n_{xc}(\mathbf{r}, \mathbf{u} = 0) + \nabla_{\mathbf{u}} n_{xc}|_{\mathbf{u} = 0} + ...,$ and generalized to imposing **constraints** to meet
 - ✓ e.g. $n_x(\mathbf{r},\mathbf{u}) < 0$, $\int n_x(\mathbf{r},\mathbf{u})d\mathbf{r} = -1$, by real space cutoffs \rightarrow numerical GGA
 - \checkmark scaling relations and bounds on E_{xc} by analytic approximation to numerical GGA
 - → parameter-free GGA by Perdew-Wang PW91
 - **⇒** simplified in **PBE** GGA
 - ✓ contains LDA & retains all its good features
- Earlier: analytic model or ansatz + empirical parameter(s)
 - \rightarrow Langreth-Mehl (C), Becke 86(X) + Lee-Yang-Parr(C) **BLYP**, ...
- ❸ Alternative: analytic ansatz + (many) fitted parameters (e.g. fit to thermochemical data)
 see accuracy limit of GGA functionals, can be better & worse than PBE

Generic GGA XC functional

$$E_{ ext{xc}}^{ ext{GGA}}[n] = \int n \ e_{ ext{x}}^{ ext{LDA}}(n) \left[F_{ ext{xc}}^{ ext{GGA}}(n, s) \right]_{n=n(\mathbf{r})} d au, \qquad s = rac{|
abla n|}{2k_F n} \Big|_{n=n(\mathbf{r})}$$

- ullet Enhancement factor $F_{xc}(n,s)$ over LDA exchange: function of density and scaled gradient ullet "understanding" how GGA's work
- Calculations with GGA's are not more involved than with LDA, except that $v_{xc}[n; \mathbf{r}] = v_{xc}(n, \nabla_i n, \nabla_i \nabla_j n)|_{n(\mathbf{r})}$

Differences in present GGA's

. . .

WC-PBE Wu & Cohen '05

xPBE Xu & Goddard '04

HCTH Handy et al. '01

RPBE Hammer et al. '99

revPBE Zhang et al. '98

PBE GGA Perdew et al. '96

PW91 Perdew & Wang '91

PW91 Perdew & Wang '91

BP Becke & Perdew '88

BLYP Becke & Lee et al. '88

- revPBE & BLYP more nonlocal than PBE GGA
 - molecules: more accurate atomization energies
 - solids: bondlengths too large, cohesive energies too small
 - LYP correlation incorrect for jellium
- more local GGAs will make lattice constants smaller (e.g. Tinte et al. PRB 58, 11959 (1998)),
 but make binding energies more negative

. . .

... how GGA's change total energies

Analysis in terms of selfconsistent LDA density shows how GGAs work:

$$E_{\textit{tot}}^{\textit{GGA}}[n^{\textit{GGA}}] = E_{\textit{tot}}^{\textit{LDA}}[n^{\textit{LDA}}] + \boxed{E_{\textit{xc}}^{\textit{GGA}}[n^{\textit{LDA}}] - E_{\textit{xc}}^{\textit{LDA}}[n^{\textit{LDA}}]} + \mathcal{O}(n^{\textit{GGA}} - n^{\textit{LDA}})^2$$

"Spectral decomposition" in terms of s:

$$E_{xc}^{GGA} - E_{XC}^{LDA} = \int \int_{s=0}^{\infty} \left[e_{xc}^{GGA}(\mathbf{r}) - e_{xc}^{LDA}(\mathbf{r}) \right] \delta(s - s(\mathbf{r})) d\tau ds$$

ightharpoonup only $0 \leq s \leq 4$ contribute, similar analysis can be made for $n({f r})$

for more see e.g. Zupan et al., PRB 58, 11266 (1998)

Cohesive properties in GGA

Bulk lattice constants GGA increase due to more repulsive core-valence XC.

Cohesive energies GGA reduction mostly valence effect.

for comparison of LDA, GGA, and Meta-GGA see Staroverov, Scuseria, Perdew, PRB 69, 075102 (2004)

... energy barriers: H_2 on Cu(111)

barrier to dissociative adsorption

- PW91-GGA \approx 0.7 eV

- LDA <0.1 eV

total energy of free H_2

- PW91-GGA -31.8 eV ($\approx \text{ expt.}$)

- LDA −30.9 eV

Hammer et al. PRL 73, 1400 (1994)

Phase transition β -tin - diamond in Si

"Spectral decomposition" in terms of n

diamond: $a_0=10.26$ bohr, semiconductor

 β -tin: c/a = 0.552, metallic

Phase transition β -tin - diamond in Si

Gibbs construction: $E_t^\beta + p_t V_t^\beta = E_t^{\it dia} + p_t V_t^{\it dia}, \quad p_t^{\it exp} = 10.3\dots 12.5 \; {
m GPa}$

- GGA increases transition pressure, "inhomogeneity effect"
- use of LDA-pseudopotentials insufficient

Moll et al, PRB 52, 2550 (1995); DalCorso et al, PRB 53, 1180 (1996); McMahon et al, PRB 47, 8337 (1993).

Performance of PBE GGA vs. LDA

- ✓ atomic & molecular total energies are improved
- ✓ GGA corrects the LDA overbinding:

average error for G2-1 set of molecules:

$$+6 \text{ eV}$$
 HF -1.5 eV LSDA -0.5 eV PBE-GGA 0.2 eV PBE0 hybrid $\pm 0.05 \text{ eV}$ goal,

better cohesive energies of solids

- ✓ improved activation energy barriers in chemical reactions (but still too low)
- ✓ improved description of relative stability of bulk phases
- ✓ more realistic for magnetic solids
- ✓ useful for "electrostatic" hydrogen bonds

- X GGA softens the bonds increasing lattice constants decreasing bulk moduli
 - → no consistent improvement
- LDA yields good relative bond energies for highly coordinated atoms,
 e.g. surface energies, diffusion barriers on surfaces
- GGA favors lower coordination (larger gradient!),
 not always enough where LDA has a problem,
 e.g. CO adsorption sites on transition metal surfaces
 ⇒ significance of GGA ?
- X GGA workfunctions for several metals turn out somewhat smaller than in LDA
- o one-particle energies/bands close to LDA
- X Van der Waals (dispersion) forces not included!

Comparing LDA and (different) GGAs gives an idea about possible errors!

Beyond GGA: orbital dependent XC functionals

Kohn-Sham non-interacting system make $\phi_i[n]$ density-functionals: $n \leftrightarrow v^{KS}[n; \mathbf{r}] \Rightarrow \phi_i$

- ullet LDA and GGA are explicit density-functionals $E_{xc}[n]$
- Implicit density-functionals formulated in terms of $\phi_i[n]$?
 - ightarrow more flexible for further improvements self-interaction free: $E_{\text{xc}}[n]|_{N=1}=0$, $v_{\text{xc}}(|\mathbf{r}|
 ightarrow \infty) = -\frac{1}{r}$, nonspherical $n_{\text{xc}}(\mathbf{r},\mathbf{r}')$... ?
- **⇒** Start with exact exchange:

Exchange-energy
$$E_{\mathbf{x}}[\{\phi_i\}] = \frac{1}{2} \int \frac{\sum_{i,j} \bar{\phi}_i(\mathbf{r}) \bar{\phi}_j(\mathbf{r}') \phi_i(\mathbf{r}') \phi_j(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|} d\tau d\tau'$$

- lacktriangle same as in Hartree-Fock, **but** $-\frac{\nabla^2}{2} v^{KS}(\mathbf{r})|\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r})$ KS and HF orbitals different!
- in KS-DFT: optimized effective potential **OEP** method, local KS potential in Hartree-Fock: variation with respect to orbitals yield HF eqs., nonlocal effective potential

$$E_0^{\mathit{HF}} \leq E_0^{\mathit{KS-EXX}}$$

Groundstate ...

Hybrid functional: mixing exact exchange with LDA/GGA

- \bullet XC = EXX + LDA correlation is less accurate (underbinds) than XC = LDA for molecules
- challenge: correlation functional that is **compatible with exact exchange**?
- ullet hybrid functionals to "interpolate" adiabatic connection, $U_{\mathrm{xc}}^{\lambda}[n]$

$$E_{xc}[n] = \int_0^1 \overline{U_{xc}[n](\lambda)} d\lambda \quad U_{xc}[n](\lambda) = \langle \Psi_{\lambda}[n] | \hat{W} | \Psi_{\lambda}[n] \rangle - U_{\textit{Hartree}}[n]$$

... hybrid functionals

How they are defined:

ullet use exact exchange for $\lambda=0$ and a "local" functional for $\lambda=1$ Hybrid functional = "interpolation"

$$E_{xc}^{hyb} = E_{xc}^{GGA} + a \left\{ E_x - E_x^{GGA} \right\}$$

- mixing parameter $a=0.16\dots0.3$ from fitting thermochemical data
- a = 1/4 by 4th order perturbation theory \rightarrow **PBE0** = PBE1PBE
- B3LYP 3-parameter combination of Becke X-GGA, LYP C-GGA, and LDA
- molecular dissociation energies on average within \approx 3 kcal/mol \approx 0.1 eV (but 6 times larger errors can happen)

How hydbrids and GGAs work:

Adiabatic connection $N_2 \rightarrow 2N$

XC contributions to binding:

(eV)	E_b	$\Delta E_{\scriptscriptstyle X}$	$\Delta E_{\it c}$
PBE	-10.58	-1.82	-2.49
PBE0	-9.62	-1.01	-2.49
exact	-9.75	1.39	-5.07

... X and C errors tend to cancel!

Becke, J Chem Phys 98, 5648 (1993); Perdew et al, J Chem Phys 105, 9982 (1996). comprehensive comparison: Staroverov, Scuseria, Tao, Perdew, J Chem Phys 119, 12129 (2003)

XC revisited: role of error cancellation between X and C

... or: when GGAs or hybrids are not enough

see e.g. Baerends and Gritsenko, JCP 123, 062202 (2005)

... orbital dependent functionals

Meta-GGA's

XC energy functional

$$E_{ ext{ iny xc}}^{ ext{ iny MGGA}}[n] = \int n(\mathbf{r}) e_{ ext{ iny xc}}^{ ext{ iny MGGA}}(n,
abla n,t_s) \Big|_{n(\mathbf{r})} \, d au$$

kinetic energy density of non-interacting electrons $t_s(\mathbf{r}) = \frac{1}{2} \sum_i^{occ} f_i |\nabla \phi_i(\mathbf{r})|^2$

- $\bullet \ \ \text{OEP or HF style treatment of} \ \ \frac{\delta E_{\text{xc}}^{\text{MGGA}}[\phi_i]}{\delta \phi_i(\mathbf{r})} = \dots \frac{1}{2} \nabla \frac{\partial e_{\text{xc}}}{\partial t_s} \nabla \phi_i$
- **TPSS**: Tao, Perdew, Stavroverov, Scuseria, Phys Rev Lett 91, 146401 (2003): $+v_X$ finite PKZB: Perdew, Kurth, Zupan, Blaha, Phys Rev Lett 82, 2544 (1999): $\underline{\mathsf{XC}}$ "non-empirial", LDA limit Van Voorhis, Scuseria, J Chem Phys 109, 400 (1998): $\underline{\mathsf{XC}}$ "highly fitted", no LDA limit Colle, Salvetti, Theoret Chim Acta 53, 55 (1979): $\underline{\mathsf{C}}$, no LDA limit → BLYP GGA Becke, J Chem Phys 109, 2092 (1998): $\underline{\mathsf{XC}}$ + exact exchange "fitted"
- TPSS accomplishes a consistent improvement over (PBE) GGA
- PKZB improved molecular binding energy, but worsened bond lengths in molecules & solids
- hybrid functionals on average still more accurate for molecular binding energies
- TPSS provides sound, nonempirical basis for new hybrids "TPSSh"
 - → next step: MGGA correlation compatible with exact exchange?

ACFDT XC: including unoccupied Kohn-Sham states

• Adiabatic connection: KS system $\lambda = 0 \longrightarrow$ physical system $\lambda = 1$ $E_{xc}[n] = \int_0^1 \langle \Psi_{\lambda} | \hat{W}_{ee} | \Psi_{\lambda} \rangle d\lambda - U[n]$

• Fluctuation-dissipation theorem:

$$W_{\text{xc}}(\lambda) =: \langle \Psi_{\lambda} | \hat{W}_{\text{ee}} | \Psi_{\lambda} \rangle = \frac{1}{2} \int_{|\vec{r} - \vec{r'}|}^{e^2} \left[-\frac{\hbar}{\pi} \int_0^{\infty} \chi_{\lambda}(iu, \vec{r}, \vec{r'}) du - n(\vec{r}) \delta(\vec{r} - \vec{r'}) \right] d\vec{r} d\vec{r'}$$
... using dynamical density response

• From noninteracting Kohn-Sham to interacting response by TD-DFT

$$\chi_0(iu,\vec{r},\vec{r}') = 2\Re\sum_{i,j}^\infty \frac{\varphi_i^*(\vec{r})\varphi_j(\vec{r})\varphi_j^*(\vec{r}')\varphi_i(\vec{r}')}{i\hbar u - (\epsilon_j - \epsilon_i)} \quad \begin{array}{l} \epsilon_i[n] & \dots \text{KS eigenvalues} \\ \varphi_i([n],\vec{r}) & \dots \text{KS orbitals} \end{array}$$

$$\chi_\lambda(iu) = \chi_0(iu) + \chi_0(iu) \cdot \frac{K_\lambda^{\text{hxc}}(iu)}{K_\lambda^{\text{hxc}}(iu)} \cdot \chi_\lambda(iu) \quad \text{"Dyson equation" 6dim.}$$

... using Coulomb and XC kernel from TD-DFT

In principle ACFDT formula gives exact XC functional

In practice starting point for fully nonlocal approximations

- RPA: $K_{\lambda}^{hxc}=\lambda |{\bf r}-{\bf r}'|^{-1}$ and zero XC kernel ... yields exact exchange and London dispersion forces
- combine with XC kernels, hybrids with usual XC functionals, split Coulomb interaction . . .

Status of RPA type functionals

Molecular dissociation energies "RPA for all e-e separations"

- ... no consistent improvement over GGA
- ... not too bad, without X and C error cancellation
- ... better TD-DFT XC kernels needed!

Furche, PRB 64, 195120 (2002), Fuchs and Gonze, PRB 65, 235109 (2002) Stacked benzene dimer (Van der Waals complex) "short-range: GGA + long-range: RPA"

... includes dispersion forces!

Dion et al., PRL 92, 246401 (2004)

Summary

- LDA & GGA are de facto controlled approximations to the average XC hole
- GGA remedies LDA shortcomings w.r.t. total energy differences but may also overcorrect (e.g. lattice parameters)
- still can & should check GGA induced corrections for plausibility by
 ...simple arguments like homogeneity & coordination
 ...results from "quantum chemical" methods (Quantum Monte Carlo, CI, ...)
 ...depends on actual GGA functional
- hybrid functionals mix in exact exchange (B3LYP, PBE0, ... functionals)
- orbital dependent, implicit density functionals: exact Kohn-Sham exchange, Meta-GGA & OEP method, functionals from the adiabatic-connection fluctuation-disspation formula
- Always tell what XC functional you used,
 e.g. PBE-GGA (not just GGA)
 ... helps others to understand your results
 ... helps to see where XC functionals do well or have a problem