Factor Models, Machine Learning, and Asset Pricing by Stefano Giglio, Bryan Kelly and Dacheng Xiu

Presented by: Firmin Ayivodji

Université de Montréal (UdeM), CIREQ

Econometrics and Machine Learning Reading Group

December 6, 2021

Overview of the paper

- Recent survey of the literature at the intersection of factor models (FM), machine learning (ML) and asset pricing (AP).
- Probably a good starting point for ML and FM in AP.

List of topics covered

Model specifications

- Static Factor Models
- Conditional Factor Models

Methodologies

- Measuring Expected Returns
- Estimating Factors and Exposures
- · Estimating Risk Premia
- · Estimating the SDF
- Model Specification Tests and Model Comparison
- · Alphas and Multiple Testing

Asymptotic theory

- · Fixed N, Large T
- · Large N, Large T
- Large N, Fixed T

Roadmap

- 1. Introduction
- 2. Static factor model
- 3. Conditional factor models
- 4. Estimating factors and exposures
- 5. Theory: "Strong" vs. "weak" factors
- 6. Estimating the SDF and its Loadings
- 7. Hot topics: ESG investing or Green factors
- 8. Conclusion

Introduction

Asset Pricing with Risk Factors

- Most important question in finance: Why are prices different for different assets?
- Fundamental insight: Arbitrage Pricing Theory: Prices of financial assets should be explained by systematic risk factors.
- Problem: "Chaos" in asset pricing factors: Over 300 potential asset pricing factors published!
- Fundamental question: Which factors are really important in explaining expected returns?

Asset Pricing and Machine Learning

- Prediction central to ML and also essential to asset pricing (AP):
 - Forecasting returns
 - Forecasting risk exposures
- ML methods are receiving a lot of attention in asset pricing:
 - · Model selection in data-rich environments (big-data) for prediction
 - · Nonlinear models (Neural Networks, Deep Learning, Trees, etc.)
- ML can be useful: to detect some hidden patterns beyond the documented asset pricing anomalies.
- Blossoming of ML in factor investing has it source at the confluence of three favorable developments: data availability, computational capacity, and economic groundings.
- Machine learning (ML) offers potentially useful toolbox for prediction.

Big Data in asset pricing: Example of corporate financial reports data

 Other sources: Textual data from social media, satellite imagery, or credit card.

Machine learning and asset pricing anomalies

The baseline equation in supervised learning:

$$y = g(X) + \epsilon \tag{1}$$

is translated in financial terms as

$$\mathbf{r}_{t+1,n} = g\left(\mathbf{x}_{t,n}\right) + \epsilon_{t+1,n} \tag{2}$$

where $g(\mathbf{x}_{t,n})$ can be viewed as the expected return for time t+1 computed at time t, that is, $\mathbb{E}_t[r_{t+1,n}]$.

- Building accurate predictions requires to pay attention to all terms in equation 2.
 - · The first step is to gather data and to process it.
 - · Second step: the choice of g.
 - Finally, the errors $\epsilon_{t+1,n}$, are often overlooked.

Choice of Factors

- 1. Statistical approach: use a large set of asset returns to build factors.
 - Factor analysis
 - Principal components
- Economic approach: based on factors capturing economy-wide systematic risks.

SoFie 2021: 3 sessions with factor models...

Choice of factors - Economic approaches

- Specify macroeconomic and financial market variables which capture systematic risks in the economy.
- Specify **characteristics of firms** which could explain differential sensitivity to the systematic risks and form portfolios.
- · For instance, we have:
 - · Expected inflation, industrial production growth,
 - Fama-French factors (size: SMB, value: HML)
 - Factors based on profitability, investment, momentum, volatility,

Complex today...

• Harvey et al. (2015) catalogue 316 factors in some 300 articles related to explaining the cross-section equity returns.

Risk type		Description	Examples				
Common (113)	Financial (46)	Proxy for aggregate financial market movement, including market portfolio returns, volatility, squared market returns, among others	Sharpe (1964): market returns; Kraus and Litzenberger (1976): square market returns				
	Macro (40)	Proxy for movement in macroeconomic fundamentals, including consumption, investment, inflation, among others	Breeden (1979): consumption growth; Cochrane (1991): investment returns				
	Microstructure (11)	Proxy for aggregate movements in market microstructure or financial market frictions, including liquidity, transaction costs, among others	Pastor and Stambaugh (2003): market liquidity; Lo and Wang (2006): market trading volume				
	Behavioral (3)	Proxy for aggregate movements in investor behavior, sentiment or behavior-driven systematic mispricing	Baker and Wurgler (2006): investor sentiment; Hirshleifer and Jiang (2010): market mispricing				
	Accounting (8)	Proxy for aggregate movement in firm-level accounting variables, including payout yield, cash flow, among others	Fama and French (1992): size and book-to-market; Da and Warachka (2009): cash flow				
	Other (5)	Proxy for aggregate movements that do not fall into the above categories, including momentum, investors' beliefs, among others	Carhart (1997): return momentum; Ozoguz (2009): investors' beliefs				
Characteristics (202)	Financial (61)	Proxy for firm-level idioxyncratic financial risks, including volatility, extreme returns, among others	Ang et al. (2006): idiosyncratic volatility; Bali, Cakici, and Whitelaw (2011): extreme stock returns				
	Microstructure (28)	Proxy for firm-level financial market frictions, including short sale restrictions, transaction costs, among others	Jarrow (1980): short sale restrictions; Mayshar (1981): transaction cost				
	Behavioral (3)	Proxy for firm-level behavioral biases, including analyst dispersion, media coverage, among others	Diether, Malloy, and Scherbina (2002): analyst dispersion; Fang and Peress (2009): media coverage				
	Accounting (87)	Proxy for firm-level accounting variables, including PE ratio, debt-to-equity ratio, among others	Basu (1977): PE ratio; Bhandari (1988): debt-to-equity ratio				
	Other (24)	Proxy for firm-level variables that do not fall into the above categories, including political campaign contributions, ranking-related firm intansibles, among others	Cooper, Gulen, and Ovtchinnikov (2010): political campaign contributions; Edmans (2011): intangibles				

Statistical approach: Approximate Factor Model

- Observe excess returns of *N* assets over *T* time periods:
- Matrix notation

$$\underbrace{X}_{T \times N} = \underbrace{F}_{T \times K} \underbrace{\Lambda^{\top}}_{K \times N} + \underbrace{e}_{T \times N} \tag{3}$$

- N assets (large)
- T time-series observation (large)
- · K systematic factors (fixed)
- F is are factors
- · A are loadings
- · e idiosyncratic factors
- F, Λ and e are unknown

Static factor model

Static factor model

A static factor model can be written as:

$$r_t = \mathrm{E}(r_t) + \beta v_t + u_t, \tag{4}$$

where r_t is an $N \times 1$ vector of excess returns, β is an $N \times K$ matrix of factor exposures, v_t is a $K \times 1$ vector of factor innovations, and u_t is an $N \times 1$ vector of idiosyncratic errors.

The expected return can be decomposed as:

$$E(r_t) = \alpha + \beta \gamma,$$

where γ is a $K \times 1$ vector of risk premia and α is an $N \times 1$ vector of pricing errors.

$$f_t = \mu + v_t$$

We can rewrite equation (4) by:

$$r_t = \alpha + \beta f_t + u_t$$

- 1. Factors f_t are **known and observable** (eg: industrial production growth)
- 2. Factor exposures are observable but factors are latent
- 3. All factors and their exposures are assumed **latent**

Conditional factor models

Conditional factor models

The conditional factor model can be specified as:

$$\tilde{r}_t = \alpha_{t-1} + \beta_{t-1}\gamma_{t-1} + \beta_{t-1}v_t + \tilde{u}_t,$$

where \tilde{r}_t and \tilde{u}_t are $M \times 1$ vectors of excess returns and idiosyncratic errors of individual stocks.

- Obviously, the right-hand side contains too many degrees of freedom and the model cannot be identified without additional restrictions.
- Rosenberg (1974) imposes that $\beta_{t-1} = b_{t-1}\beta$, where b_{t-1} is an $M \times N$ matrix of observable characteristics and β is an $N \times K$ vector of parameters.

Consequently, the model becomes

$$\tilde{r}_t = b_{t-1}\tilde{f}_t + \tilde{\varepsilon}_t$$

where $\tilde{f}_t := \beta (\gamma_{t-1} + v_t)$ is a new $N \times 1$ vector of latent factors, and $\tilde{\varepsilon}_t := \alpha_{t-1} + \tilde{u}_t$

Conditional factor models

• Kelly et al. (2019) suggest a new modeling approach know as instrumented principal components analysis (IPCA).

$$\tilde{r}_t = b_{t-1}\beta f_t + \tilde{\varepsilon}_t \tag{5}$$

where β and $\{f_t\}$ have $N \times K$ and $K \times T$ unknown parameters, respectively.

• If we project b_{t-1} on both sides of **equation 5** at each t, we obtain

$$r_t := \left(b_{t-1}^{\mathbf{T}} b_{t-1}\right)^{-1} b_{t-1}^{\mathbf{T}} \tilde{r}_t = \beta f_t + u_t, \quad \text{where} \quad u_t := \left(b_{t-1}^{\mathbf{T}} b_{t-1}\right)^{-1} b_{t-1}^{\mathbf{T}} \tilde{\varepsilon}_t$$

- $(b_{t-1}^T b_{t-1})^{-1} b_{t-1}^T$ can be interpreted as portfolio weights for characteristics-sorted portfolio returns.
- IPCA incorporates stock-level and portfolio-level asset pricing in a single specification.
- Gu et al. (2021) extend the IPCA to a nonlinear setting using a conditional autoencoder model, augmented with additional explanatory variables.

ML for asset pricing (Gu et al. 2020)

Determine the expected return of an asset:

$$r_{i,t+1} = E_t(r_{i,t+1}) + \epsilon_{i,t+1}$$

$$E_t(r_{i,t+1}) = g^*(z_{i,t})$$
(6)

Functional form of g, the paper explores...

- · Linear Models
 - · Ordinary Least Squares [OLS] (standard)
 - · OLS + Elastic Net (ENet) + Huber's Loss (H)
- · Dimension Reduction
 - · Partial Least Squares [PLS]
 - · Principal Component Regression [PCR]
- Generalized Linear Models (GLM)
 - Series Regression + Group Lasso
- · Regression Trees
 - · Random Forest (RF)
 - · Gradient Boosted Regression Trees [GBRT]
- · Neural Networks (with layers K) [NNK]

ML for asset pricing (Gu et al. 2020): The Features

- · 94 characteristics
- · 8 macroeconomic variables +1 constant
- 74 industry dummies (first two digits of SIC codes)
- · Treasury-bill rate to proxy for the risk-free rate
- The characteristic and macroeconomic variables are combined into z as,

$$Z_{i,t} = X_t \otimes C_{i,t}$$

 $c_{i,t}$ is a $P_c \times 1$ matrix of characteristics for each stock i, x_t is a $P_x \times 1$ vector of macroe conomic predictors. # of covariates: $94 \times (8+1) + 74 = 920$

- 30 000 stocks
- From 1957 to 2016 (almost 60 years).

If $g^*(z_{i,t})$ is linear, this reduces to the beta-pricing representation

$$\mathrm{E}_{t}\left(r_{i,t+1}\right)=\beta_{i,t}^{\prime}\gamma_{t}$$

With the betas being the risk exposure and the gammas the dynamic risk premiums.

$$\beta_{i,t} = \theta_1 c_{i,t} \quad \gamma_t = \theta_2 X_t$$

$$g^* \left(z_{i,t} \right) = \operatorname{E}_t \left(r_{i,t+1} \right) = \beta'_{i,t} \gamma_t = c'_{i,t} \theta'_1 \theta_2 X_t = \left(X_t \otimes c_{i,t} \right)' \operatorname{vec} \left(\theta'_1 \theta_2 \right) =: Z'_{i,t} \theta$$

The training objective:

$$\mathcal{L}(\theta) = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} (r_{i,t+1} - g(z_{i,t};\theta))^{2}$$

Heavy tails can cause issues with the least square objective, hence also consider the Huber loss

$$\mathcal{L}_{H}(\theta) = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} H(r_{i,t+1} - g(z_{i,t}; \theta), \xi)$$

where

$$H(x;\xi) = \begin{cases} x^2, & \text{if } |x| \le \xi; \\ 2\xi|x| - \xi^2, & \text{if } |x| > \xi. \end{cases}$$

The hyper-parameter ξ is determined by the model performance in a validation sample.

ML for asset pricing (Gu et al. 2020)

Performance Evaluation Out of sample R-squared

$$R_{\rm oos}^2 = 1 - \frac{\sum_{(i,t) \in \mathcal{T}_3} \left(r_{i,t+1} - \widehat{r}_{i,t+1} \right)^2}{\sum_{(i,t) \in \mathcal{T}_3} r_{i,t+1}^2},$$

 \mathcal{T}_3 denotes the test set

ML for asset pricing (Gu et al. 2020)

Table 2: Annual Out-of-sample Stock-level Prediction Performance (Percentage $R_{\rm oos}^2)$

	OLS +H	OLS-3 +H	PLS	PCR	ENet +H	GLM +H	RF	GBRT +H	NN1	NN2	NN3	NN4	NN5
All	-34.86	2.50	2.93	3.08	1.78	2.60	3.28	3.09	2.64	2.70	3.40	3.60	2.79
Top	-54.86	2.48	1.84	1.64	1.90	1.82	4.80	4.07	2.77	4.24	4.73	4.91	4.86
Bottom	-19.22	4.88	5.36	5.44	3.94	5.00	5.08	4.61	4.37	3.72	5.17	5.01	3.58

Estimating factors and exposures

Estimating factors and exposures

 If the factors are know, we can estimate factor exposures via asset-byasset TSR as:

$$TSR: \quad \widehat{\beta} = \overline{R}\overline{F}^{\top} \left(\overline{F}\overline{F}^{\top}\right)^{-1}$$

2. If the factors are latent but exposures are observable, we can estimate factors by CSR at each time point as:

$$CSR: \quad \widehat{F} = \left(\beta^{\top}\beta\right)^{-1}\beta^{\top}R$$

3. In case, the factors loadings can be proxied by firm characteristics, we obtain for each t:

$$\widehat{\widetilde{f}}_t = \left(b_{t-1}^\top b_{t-1}\right)^{-1} b_{t-1}^\top \widetilde{r}_t$$

4. If factors and exposures are latent, we can use PCA or its variants to estimate them.

Estimating factors and exposures

- A limitation of PCA is that it only applies to static factor models.
- It also lacks the flexibility to incorporate other data beyond returns.
- To address both issues, Kelly et al. (2019) estimate the conditional factor model, by solving the optimization problem:

$$\min_{\beta, \{f_t\}} \sum_{t=2}^{T} \|\tilde{r}_t - b_{t-1}\beta f_t\|^2$$
 (7)

• From the first order condition, we get that for $t=1,2,\ldots,T-1$:

$$\widehat{f}_{t} = \left(\widehat{\beta}^{\top} b_{t-1}^{\top} b_{t-1} \widehat{\beta}\right)^{-1} \widehat{\beta}^{\top} b_{t-1}^{\top} \widetilde{r}_{t}$$

$$\operatorname{vec}\left(\widehat{\beta}^{\top}\right) = \left(\sum_{t=2}^{T} b_{t-1}^{\top} b_{t-1} \otimes \widehat{f}_{t} \widehat{f}_{t}^{\top}\right)^{-1} \left(\sum_{t=2}^{T} \left(b_{t-1} \otimes \widehat{f}_{t}^{\top}\right)^{\top} \widetilde{r}_{t}\right)$$
(8)

- Given conditional betas, factors are estimated from cross section regressions of returns on betas.
- The authors recommend an **iterative algorithm** to update $\widehat{\beta}$ and \widehat{f}_t until convergence.

Autoencoder learning - architecture

- IPCA <u>assumes</u> the factor exposures are a <u>linear function of the covariates</u>.
- Existing literature suggests their relationship might be **nonlinear**.
- · Autoencoder allows betas to depend on stock characteristics

Autoencoder learning - Mathematical representation

 On the left side of the network, factor loadings are a nonlinear function of covariates (e.g., firm characteristics)

$$b_{i,t-1}^{(0)} = b_{i,t-1},$$

$$b_{i,t-1}^{(l)} = g\left(b^{(l-1)} + W^{(l-1)}b_{i,t-1}^{(l-1)}\right), \quad l = 1, \dots, L_{\beta},$$

$$\beta_{i,t-1} = b^{(L_{\beta})} + W^{(L_{\beta})}b_{i,t-1}^{(L_{\beta})}.$$

 On the right side of the network models factors as portfolios of individual stock returns.

$$\begin{split} r_t^{(0)} &= \left(b_{t-1}^\top b_{t-1} \right)^{-1} b_{t-1}^\top r_t, \\ r_t^{(l)} &= \widetilde{g} \left(\widetilde{b}^{(l-1)} + \widetilde{W}^{(l-1)} r_t^{(l-1)} \right), \quad l = 1, \dots, L_f, \\ f_t &= \widetilde{b}^{(L_f)} + \widetilde{W}^{(L_f)} r_t^{(L_f)}. \end{split}$$

Autoencoder learning

• The structure of the neural network is summarized below.

$$\left. \begin{array}{ccc} \text{returns}\left(r_{t}\right) & \stackrel{NN_{1}}{\longrightarrow} & \text{factors} \; \left(f_{t} = NN_{1}\left(r_{t}\right)\right) \\ \text{characteristics}\left(x_{t-1}\right) & \stackrel{NN_{2}}{\longrightarrow} & \text{loadings} \; \left(\beta_{t-1} = NN_{2}\left(x_{t-1}\right)\right) \end{array} \right\} \rightarrow \text{returns}\left(r_{t}\right)$$

• Gu et al. (2021) define the **estimation objective** to be

$$\mathcal{L}(\theta;\cdot) = \frac{1}{NT} \sum_{t=1}^{T} \sum_{i=1}^{N} \left\| \tilde{r}_{i,t} - \beta'_{i,t-1} f_t \right\|^2 + \phi(\theta;\cdot)$$

Where θ summarizes the weight parameters in the loading and factor networks $,\phi(\theta)$ is a penalty function, such as lasso (or l_1) penalization, which takes the form $\phi(\theta;\lambda)=\lambda\sum_j|\theta_j|$.

How to choose the best hyperparameters?

- · Cross-validation
- · Early stopping

Activation Functions

Most commonly used activation functions:

- Sigmoid: $\sigma(z) = \frac{1}{1 + \exp(-z)}$ Tanh: $\tanh(z) = \frac{\exp(z) \exp(-z)}{\exp(z) + \exp(-z)}$
- ReLU (Rectified Linear Unit): ReLU(z) = max(0, z)

Theory: "Strong" vs. "weak" factors

Theory: "Strong" vs. "weak" factors

- Key property: Factor strength
 - 1. **Strong factors**: High variance (⇔ affect many assets)
 - 2. **Weak factors**: Low variance (⇔ affect some assets)
- · Examples:
 - · Stronger factor: Market
 - · Weaker factors: Long/short portfolios
- Standard PCA methods <u>assume</u> that all factors are strong
- But, PCA can fail to identify weak factors with large risk p
- Consequence: PCA captures TS variance but not XS
- · Alternative: RP-PCA (Lettau-Pelger, 2020ab)

Key idea

Apply PCA to a covariance matrix with overweighted mean

$$\frac{1}{T}RR^{\top} + \gamma \overline{r}.\overline{r}^{\top} \quad \gamma = \text{ risk-premium weight}$$

- Eigenvectors of largest eigenvalues estimate loadings $\hat{\Lambda}$.
- \hat{F} estimator for factors: $\hat{F} = \frac{1}{N}R\hat{\Lambda} = R\left(\hat{\Lambda}^{\top}\hat{\Lambda}\right)^{-1}\hat{\Lambda}^{\top}$.

Estimating the SDF and its Loadings

In the setup of 4, an SDF can be written as:

$$m_t = 1 - b^{\mathsf{T}} v_t$$

where $b = \Sigma_v^{-1} \gamma$ and Σ_v is the covariance matrix of factor innovations.

- · The SDF is central to the field of asset pricing
- In the absence of arbitrage, covariances with the SDF unilaterally explain cross-sectional difference inexpected returns.

Estimating SDF and its Loadings

1. GMM estimator:

$$\min_{b,\mu} \widehat{g}_{\mathsf{T}}(b,\mu)^{\top} \widehat{W} \widehat{g}_{\mathsf{T}}(b,\mu)$$

where the sample moments are given by

$$\widehat{g}_{T}(b,\mu) = \begin{pmatrix} \frac{1}{T} \sum_{t=1}^{T} r_{t} \left(1 - b^{T} \left(f_{t} - \mu\right)\right) \\ \frac{1}{T} \sum_{t=1}^{T} f_{t} - \mu \end{pmatrix}_{(N+K) \times 1}.$$

2. Penalized regressions: Kozak et al. (2020) consider an SDF represented in terms of a set of tradable test asset returns:

$$m_t = 1 - \underline{b}^{\top} (r_t - \mathrm{E}(r_t))$$

where \underline{b} satisfies $\mathrm{E}\left(r_{t}\right)=\Sigma\underline{b}$, and Σ is the covariance matrix of r_{t} .

3. To estimate the SDF, they suggest solving an optimization problem, which amounts to a regression of \bar{r} onto $\hat{\Sigma}$:

$$\underline{\underline{b}} = \arg\min_{\underline{b}} \left\{ (\overline{r} - \widehat{\Sigma}\underline{\underline{b}})^{\top} \widehat{\Sigma}^{-1} (\overline{r} - \widehat{\Sigma}\underline{\underline{b}}) + p_{\lambda}(\underline{\underline{b}}) \right\}, \tag{9}$$

with which the estimated pricing kernel is given by

$$\widehat{m}_t = 1 - \widehat{b}^{\top} (r_t - \overline{r}).$$

Estimating SDF and its Loadings

- The objective function in 9 appears to require the inverse of the sample covariance matrix $\widehat{\Sigma}^{-1}$, which is not well-defined when N > T.
- Instead, it is equivalent to optimizing a different form of 9:

$$\widehat{b} = \arg\min_{\underline{b}} \left\{ \underline{b}^{\top} \widehat{\boldsymbol{\Sigma}} \underline{b} - 2\underline{b}^{\top} \overline{\boldsymbol{r}} + \underline{b}^{\top} \widehat{\boldsymbol{\Sigma}} \underline{b} + p_{\lambda}(\underline{b}) \right\},$$

which avoids calculating $\widehat{\Sigma}^{-1}$.

- $p_{\lambda}(\underline{b})$ is a **penalty term** (such as lasso, ridge, elastic-net, etc.)
- · Other papers consider:
 - Deep Learning SDF (Cong et al., 2021, Chen et al., 2021).
 - Double Machine Learning (in the spirit of Chernozhukov et al., 2018).

Hot topics: ESG investing or Green factors

Hot topics: ESG investing or Green factors

- More and more, researchers study the financial impact of climate change
- favorable: ESG investing works (Kempf and Osthoff (2007), Cheema-Fox et al. (2020)), can work (Nagy, Kassam, and Lee (2016), Alessandrini and Jondeau (2020)).
- unfavorable: Ethical investing is not profitable according to Adler and Kritzman (2008) and Blitz and Swinkels (2020).
- mixed: ESG investing may be beneficial globally but not locally (Chakrabarti and Sen (2020)).
- On top of these contradicting results, several articles point towards complexities in the measurement of ESG.
- I end this short section by noting that of course ESG criteria can directly be integrated into ML model, as is for instance done in Franco et al. (2020).

Conclusion

- Machine learning methods can yield great improvement on forecasts as compared to the status quo traditional models (i.e. OLS).
- This is due to their ability to handle a large number of predictors without overfitting and being able to exploit non-linearities that may exist.
- There is a lot more topics in the paper (but not much details).
- · Machine learning is **no magic wand** .