and $\alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_r$. Furthermore, the ideals $\alpha_1 A, \ldots, \alpha_r A$ are the invariant factors of f(F) with respect F'.

Proof. Let F_0 be the kernel of f. Since M' = f(F) is a submodule of the free module F', it is free, and similarly F_0 is free as a submodule of the free module F (by Proposition 35.23). By Proposition 35.2, we have

$$F = F_0 \oplus F_1$$
,

where F_1 is a free module, and the restriction of f to F_1 is an isomorphism onto M' = f(F). Proposition 35.32 applied to F' and M' yields a basis (e'_1, \ldots, e'_m) of F' such that $(\alpha_1 e'_1, \ldots, \alpha_r e'_r)$ is a basis of M', where $\alpha_1 A, \ldots, \alpha_r A$ are the invariant factors for M' with respect to F'. Since the restriction of f to F_1 is and isomorphism, there is a basis (e_1, \ldots, e_r) of F_1 such that

$$f(e_i) = \alpha_i e_i', \quad i = 1, \dots, r.$$

We can extend this basis to a basis of F by picking a basis of F_0 (a free module), which yields the desired result.

The matrix version of Proposition 35.34 is the following proposition.

Proposition 35.35. If X is an $m \times n$ matrix of rank r over a PID A, then there exist some invertible $n \times n$ matrix P, some invertible $m \times m$ matrix Q, and a $m \times n$ matrix D of the form

$$D = \begin{pmatrix} \alpha_1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & \alpha_2 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha_r & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}$$

for some nonzero $\alpha_i \in A$, such that

- (1) $\alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_r$,
- (2) $X = QDP^{-1}$, and
- (3) The $\alpha_i s$ are uniquely determined up to a unit.

The ideals $\alpha_1 A, \ldots, \alpha_r A$ are called the *invariant factors* of the matrix X. Recall that two $m \times n$ matrices X and Y are *equivalent* iff

$$Y = QXP^{-1},$$

for some invertible matrices, P and Q. Then, Proposition 35.35 implies the following fact.