Trabajo Practico 2

Modelo Integrate-and-Fire

Desarrollo

Código en Python desarrollado en: https://github.com/lucianoinso/integrateAndFire Usando los siguientes valores:

$$V(0) = V_{reposo} = E_L = -65mV$$

 $V_u = -50mV$ (potencial de umbral)

Nota: como log(0) no existe utilizamos 1×10^{-10} o cualquier otro número cercano a 0 $\tau_m=10ms$ $R_m=10M\Omega$

 $I_e = 2nA, 1.5nA, 1.6nA, 3nA$

 $V_{peak} = 40 mV$ (valor hacia d
onde salta cuando llega al potencial de umbral)

Entre $t_0 = 0ms$ y $t_f = 200ms$ con paso de integración $\Delta = 0.1ms$

Se utilizó el modelo dado por la ecuación:

$$\tau_m \frac{dV}{dt} = E_L - V + R_m I_e$$

Se obtuvieron las siguientes graficas:

En el grafico con $I_e = 1.5nA$ se puede observar que no se genera ninguna espiga, esto es porque si bien se acerca mucho, no se llega al potencial de umbral $V_u = -50mV$.

Tomando $I_e = 1.6nA$ vemos que se llega al potencial de umbral varias veces dentro del tiempo dado, por lo tanto se generan espigas, mientras voy elevando el valor de I_e se observa que se generan mas espigas, se puede concluir que mientras mas alto el valor de la corriente I_e los disparos se producen mas rápidamente entonces obtenemos más espigas en el mismo periodo de tiempo en comparación a con un valor menor de corriente.

Observé ademas una relación proporcional casi lineal entre la cantidad de espigas y el valor de la corriente I_e , probando con diferentes valores de I_e obtuve:

I_e	$Cant_{espigas}(I_e)$
2nA	14
3nA	28
4nA	41
5nA	55
6nA	68
7nA	80
8nA	95

Leyendo la bibliografía encontré que se puede calcular la cantidad de espigas cuando la corriente I_e se mantiene constante, el cual es el caso, el desarrollo es el siguiente:

Cuando I_e es independiente del tiempo, el potencial V(t) bajo el umbral se puede computar analíticamente mediante la resolución de la ecuación utilizada para el modelo, resolviendo la ecuación diferencial nos queda:

$$V(t) = E_L + R_m I_e + (V(0) - E_L - R_m I_e) exp(-t/\tau_m)$$

Donde V(0) es el valor de V en el tiempo t=0, suponiendo que la neurona acaba de disparar un potencial de acción y se encuentra entonces en $V(0)=V_{reset}$, el próximo disparo ocurrirá cuando el potencial de la membrana llegue al potencial de umbral V_u , diremos en un tiempo $t=t_{isi}$, entonces:

$$V(t_{isi}) = V_u = E_L + R_m I_e + (V_{reposo} - E_L - R_m I_e) exp(-t_{isi}/\tau_m)$$

Resolviendo para t_{isi} , o sea en el momento t en el cual se va a dar el próximo disparo, podemos determinar el intervalo entre espigas, teniendo I_e constante:

$$r_{isi} = \frac{1}{t_{isi}} = \left[\tau_m \ln \left(\frac{R_m I_e + E_L - V_{reposo}}{R_m I_e + E_L - V_u} \right) \right]^{-1}$$

Esta expresión es valida si $R_m I_e > V_u - E_L$, si no es el caso $r_{isi} = 0$. Para valores suficientemente grandes de I_e podemos utilizar la aproximación lineal del logaritmo $(\ln(1+z) \approx z)$ para mostrar que:

$$r_{isi} \approx \left[\frac{E_l - V_u + R_m I_e}{\tau_m (V_u - V_{reposo})} \right]$$

Lo cual refleja que la tasa de disparos efectivamente crece linealmente con I_e , para I_e grandes.

En el grafico podemos observar la tasa de disparos entre intervalos r_{isi} en función de la corriente I_e . Los circulos rellenos muestran la inversa del intervalo entre espigas para las primeras dos espigas disparadas, se puede apreciar claramente la linealidad.