The Fibonacci word sequence of bit strings is defined as:

$$F(n) = \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ F(n-1) + F(n-2) & \text{if } n \ge 2 \end{cases}$$

Here + denotes concatenation of strings. The first few elements are:

n	F(n)
0	0
1	1.
2	10
3	101
4	10110
5	10110101
6	1011010110110
7	101101011011010110101
8	1011010110110101101101101101101
9	101101011011011011011011011011011011011

Given a bit pattern p and a number n, how often does p occur in F(n)?

Input

The first line of each test case contains the integer n ($0 \le n \le 100$). The second line contains the bit pattern p. The pattern p is nonempty and has a length of at most $100\,000$ characters.

Output

For each test case, display its case number followed by the number of occurrences of the bit pattern p in F(n). Occurrences may overlap. The number of occurrences will be less than 2^{63} .

Sample Input

Output for Sample Input

	<u> </u>
6	Case 1: 5
10	Case 2: 8
7	Case 3: 4
10	Case 4: 4
6	Case 5: 7540113804746346428
01	
6	
101	
96	
10110101101101	