제 1회 AoMO

Olympiadium

October 10, 2021

Contents

0	Problems	2
1	AoMO 2021/1	3
2	AoMO 2021/2	4
3	AoMO 2021/3	5
4	AoMO 2021/4	6
5	AoMO 2021/5	7
6	AoMO 2021/6	8

§0 Problems

1. 양의 정수 m에 대하여 $m^2 - 2$ 의 소인수 p가 다음 조건을 만족한다.

pa - m + 2가 완전제곱수가 되는 양의 정수 a가 존재한다.

이때, pb + m + 2가 완전제곱수가 되는 양의 정수 b가 존재함을 보여라.

- 2. 삼각형 ABC에서 각 A의 이등분선은 변 BC와 점 D에서 만나고, 변 BC의 중점은 M이다. B에서 마주보는 변에 내린 수선의 발을 E라고 하고, 삼각형 CDE의 외접원과 선분 AD의 교점을 X라 할 때, $\angle BAC + \angle XME = 90^\circ$ 임을 보여라.
- 3. 함수 $f: \mathbb{R}^+ \to \mathbb{R}^+$ 가 다음 조건을 만족한다.

임의의 양의 실수 x,y,z에 대하여 $\frac{f(x)f(y)f(z)}{f(z+xyf(z))}$ 가 일정한 값을 가진다.

이때, f가 상수함수임을 보여라. (단, \mathbb{R}^+ 는 양의 실수 집합이다.)

4. 음이 아닌 실수 a, b, c, d가 a + 2b + 3c + 4d = 5를 만족할 때,

$$a^2(2b^2 + 3c^2 + 4d^2)$$

의 최댓값을 구하여라.

- **5.** 삼각형 ABC에서 D,E,F는 각각 변 BC,CA,AB 위의 점으로 $\overline{BF}=\overline{CE}$ 와 $\angle BAD=\angle CAD$ 를 만족한다. 직선 BE와 CF의 교점을 P라고 하고, 삼각형 BPF,CPE의 내심을 각각 I,J라고 하자. 직선 IJ와 AD가 점 Q에서 만난다고 할 때, $\overline{IP}=\overline{JQ}$ 임을 보여라.
- **6.** a+b=n-1을 만족하는 양의 정수 a,b,n이 주어졌다. 대한수학중학교의 각 학생은 친구가 많아야 n명이라고 한다. 이때, 학급 A에 속한 각 학생은 A반에 친구가 많아야 a명이고, 학급 B에 속한 각 학생은 B반에 친구가 많아야 b명이 되도록 전교생을 두 학급 A,B에 배정할 수 있음을 보여라.

§1 AoMO 2021/1

Problem 1 (AoMO 2021/1)

양의 정수 m에 대하여 m^2-2 의 소인수 p가 다음 조건을 만족한다.

pa - m + 2가 완전제곱수가 되는 양의 정수 a가 존재한다.

이때, pb+m+2가 완전제곱수가 되는 양의 정수 b가 존재함을 보여라.

§2 AoMO 2021/2

Problem 2 (AoMO 2021/2)

삼각형 ABC에서 각 A의 이등분선은 변 BC와 점 D에서 만나고, 변 BC의 중점은 M이다. B에서 마주보는 변에 내린 수선의 발을 E라고 하고, 삼각형 CDE의 외접원과 선분 AD의 교점을 X라 할 때, $\angle BAC + \angle XME = 90^\circ$ 임을 보여라.

§3 AoMO 2021/3

Problem 3 (AoMO 2021/3)

함수 $f: \mathbb{R}^+ \to \mathbb{R}^+$ 가 다음 조건을 만족한다.

임의의 양의 실수 x,y,z에 대하여 $\frac{f(x)f(y)f(z)}{f(z+xyf(z))}$ 가 일정한 값을 가진다.

이때, f가 상수함수임을 보여라. (단, \mathbb{R}^+ 는 양의 실수 집합이다.)

§4 AoMO 2021/4

Problem 4 (AoMO 2021/4)

음이 아닌 실수 a,b,c,d가 a+2b+3c+4d=5를 만족할 때,

$$a^2(2b^2 + 3c^2 + 4d^2)$$

의 최댓값을 구하여라.

§5 AoMO 2021/5

Problem 5 (AoMO 2021/5)

삼각형 ABC에서 D,E,F는 각각 변 BC,CA,AB 위의 점으로 $\overline{BF}=\overline{CE}$ 와 $\angle BAD=\angle CAD$ 를 만족한다. 직선 BE와 CF의 교점을 P라고 하고, 삼각형 BPF,CPE의 내심을 각각 I,J라고 하자. 직선 IJ와 AD가 점 Q에서 만난다고 할 때, $\overline{IP}=\overline{JQ}$ 임을 보여라.

§6 AoMO 2021/6

Problem 6 (AoMO 2021/6)

a+b=n-1을 만족하는 양의 정수 a,b,n이 주어졌다. 대한수학중학교의 각 학생은 친구가 많아야 n명이라고 한다. 이때, 학급 A에 속한 각 학생은 A반에 친구가 많아야 a명이고, 학급 B에 속한 각 학생은 B반에 친구가 많아야 b명이 되도록 전교생을 두 학급 A,B에 배정할 수 있음을 보여라.