Topics in Computing (CS5160): Problem Set 3

Department of Computer Science and Engineering IIT Hyderabad

- Scan and upload your answer sheets on google classroom.
- Maintain academic honesty. If caught, you will get an F in the course.
- Please write "credit" or "audit" on your answer sheets depending on whether you are crediting or auditing the course.
- Due Date: 30 November (before 11:59pm).
- 1. Given a monotone Boolean function $f: \{0,1\}^n \to \{0,1\}$ and an input $x \in \{0,1\}^n$, say that the *i*-th bit x_i of x is "correct" for f if $f(x) = x_i$. Let c(f) denote the expected number of "correct" bits in a uniformly random string x. Show that $c(f) = (n + \ln f(f))/2$. (10 points)
- 2. Let $f: \{-1,1\}^n \to \{-1,1\}$. Give a Fourier formula for the expression

$$\mathbb{E}_{x,y,z,w \sim \{-1,1\}^n} [f(x)f(y)f(z)f(w)],$$

where x, y, z are chosen uniformly at random from $\{-1, 1\}^n$ and $w = x \oplus y \oplus z$, i.e., $w_i = x_i y_i z_i$ for all $i \in [n]$. (10 points)

3. Let $\rho \in [-1, 1]$ and $x \in \{-1, 1\}^n$. Recall we say $y \sim N_{\rho}(x)$ to denote that the random string y is sampled as follows: $y_i = x_i$ with probability $(1 + \rho)/2$ and $y_i = -x_i$ with probability $(1 - \rho)/2$. For a Boolean function $f : \{-1, 1\}^n \to \{-1, 1\}$, we define noise stability of f at ρ as follows

$$\mathsf{Stab}_{\rho}(f) = \mathbb{E}_{x \sim \{-1,1\}^n, y \sim N_{\rho}(x)}[f(x)f(y)]$$

Give a Fourier formula for $\mathsf{Stab}_{\rho}(f)$.

(10 points)

4. Let $\varepsilon > 0$. Prove that for every Boolean function $f: \{-1,1\}^n \to \{-1,1\}$, there exists a Boolean function $g: \{-1,1\}^n \to \{-1,1\}$ depending on at most $2^{O(\mathsf{as}(f)/\varepsilon)}$ variables such that g differs from f on at most an ε fraction of inputs. Recall $\mathsf{as}(f)$ denotes the average sensitivity of f. (15 points)

Figure 1: A tournament on 4 vertices

5. A tournament is a directed graph obtained by assigning a direction to each edge in an undirected complete graph. (See Figure 1.) We say that a tournament is acyclic if it contains no directed cycles. Note that a tournament can be represented by a string in $\{0,1\}^{\binom{n}{2}}$, where every edge is represented by a bit and its value represents the orientation of the edge. Thus, we can define the following Boolean function $T_{\text{acyclic}} \colon \{0,1\}^{\binom{n}{2}} \to \{0,1\}$ such that $T_{\text{acyclic}}(x) = 1$ if and only if x defines an acyclic tournament.

Prove that $D(T_{\text{acyclic}}) \ge \binom{n}{2} - \frac{n}{2}$. Recall D(f) is the deterministic decision tree complexity of f. (15 points)

You will get partial credit even if you can only prove $\Omega(n^2)$ lower bound. On the other hand you will get extra credit if you can prove the tight lower bound of $\binom{n}{2}$.

6. Let T be a tournament and v be a vertex of T. We say that v is a *source* if all edges incident on v are directed *away* from it. For example, the vertex labelled 4 is the source in the tournament shown in Figure 1. Not every tournament has a source. For example, the tournament obtained by flipping the direction of edge (4,2) in Figure 1. Therefore we can consider the following Boolean function $SRC: \{0,1\}^{\binom{n}{2}} \to \{0,1\}$ defined as SRC(x) = 1 if and only if the tournament given by x has a source.

Show that D(SRC) = O(n). (15 points)

7. For $1 \le t \le n$, let $\mathsf{Th}_t \colon \{0,1\}^n \to \{0,1\}$ be the threshold function defined as follow:

$$\mathsf{Th}_t(x) = \begin{cases} 1 & \text{if } \sum_{i=1}^n x_i \ge t, \\ 0 & \text{otherwise.} \end{cases}$$

Prove that $deg(\mathsf{Th}_t) = n$, i.e., any polynomial representing Th_t must have full degree n. (15 points)