APPLIED MACHINE LEARNING

Amit Kapoor @amitkaps

Bargava Subramanian @bargava

"WHAT I CANNOT CREATE, I DO NOT UNDERSTAND"

Richard Feynman

APPROACH

- » Understand the ML Process.
- » Code it to learn it.
- » Play with code.

AGENDA MODULE 1: LINEAR MODELS MODULE 2: MODEL EVALUATION MODULE 3: TREE-BASED MODELS MODULE 4: UNSUPERVISED LEARNING

SCHEDULE

```
1000 - 1130: Session 1
1120 - 1130: Break
1130 - 1230: Session 2
1230 - 1330: Lunch
```

- 1330 1530: Session 3
- 1530 1540: Break
- 1540 1700: Session 4

THE FUTURES

Yogi Berra

WHAT IS MACHINE LEARNING (ML)?

"[Machine learning is the] field of study that gives computers the ability to learn without being explicitly programmed."

Arthur Samuel

"Machine learning is the study of computer algorithm that improve automatically through experience"
Tom Mitchell

ML PROBLEMS

- » "Is this cancer?"
- » "What is the market value of this house?"
- » "Which of these people are friends?"
- » "Will this person like this movie?"
- » "Who is this?"
- » "What did you say?"
- "How do you fly this thing?".

ML IN USE EVERYDAY

- » Search
- » Photo Tagging
- » Spam Filtering
- » Recommendation
- **>>** ...

BROAD ML APPLICATION

- » Database Mining e.g. Clickstream data, Business data
- » Automating e.g. Handwriting, Natural Language Processing, Computer Vision
- » Self Customising Program e.g. Recommendations

ML THOUGHT PROCESS

LEARNING PARADIGM

- » Supervised Learning
- » Unsupervised Learning
- » Reinforcement Learning
- » Online Learning

SUPERVISED LEARNING

- » Regression
- » Classification

UNSUPERVISED LEARNING

- » Clustering
- » Dimensionality Reduction

MLPPELINE

- » Frame: Problem definition
- » Acquire: Data ingestion
- » Refine: Data wrangline
- » Transform: Feature creation
- » Explore: Feature selection
- » Model: Model creation & assessment
- » Insight: Communication

LINEAR REGRESSION

LINEAR RELATIONSHIP

$$y_i = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots$$

OBJECTIVE FUNCTION

$$\epsilon = \sum_{k=1}^n (y_i - \hat{y_i})^2$$

Interactive Example: http://setosa.io/ev/

LOGIT FUNCTION

$$\sigma(t) = rac{e^t}{e^t + 1} = rac{1}{1 + e^{-t}}$$

LOGISTIC REGRESSION

LOGISTIC RELATIONSHIP

Find the β parameters that best fit:

$$y=1$$
 if $eta_0+eta_1x+\epsilon>0$

$$y=0$$
, otherwise

Follows:

$$P(x) = rac{1}{1 + e^{-(eta_0 + eta_1 x)}}$$

FITTING A MODEL

High bias (underfit)

"Just right"

High variance (overfit)

BIAS-VARIANCE TRADEOFF

TRAIN AND TEST DATASETS

Split the Data - 80% / 20%

TRAIN AND TEST DATASETS

Measure the error on Test data

MODEL COMPLEXITY

CROSS VALIDATION

REGULARIZATION

Attempts to impose Occam's razor on the solution

MODEL EVALUATION

Mean Squared Error

$$MSE = 1/n \sum_{k=1}^{n} (y_i - \hat{y_i})^2$$

MODEL EVALUATION

Confusion Matrix

		Predicted:	Predicted:	
	n=165	NO	YES	
	Actual:			
	NO	TN = 50	FP = 10	60
	Actual:			
	YES	FN = 5	TP = 100	105
•				
		55	110	
				-

MODEL EVALUATION

Classification Metrics

Recall (TPR) = TP / (TP + FN)

Precision = TP / (TP + FP)

Specificity (TNR) = TN / (TN
+ FP)

relevant elements

w many selected

How many selected items are relevant?

How many relevant items are selected?

MODEL EVALUATION

Receiver Operating
Characteristic Curve

Plot of TPR vs FPR at different discrimination threshold

DECISION TREE

Example: Survivor on Titanic

DECISION TREE

- » Easy to interpret
- » Little data preparation
- » Scales well with data
- » White-box model
- » Instability changing variables, altering sequence
- » Overfitting

BAGGING

- » Also called bootstrap aggregation, reduces variance
- » Uses decision trees and uses a model averaging approach

RANDOM FOREST

- » Combines bagging idea and random selection of features.
- » Similar to decision trees are constructed but at each split, a random subset of features is used.

"IF YOU TORTURE THE DATA ENOUGH, IT WILL CONFESS."

Ronald Case

CHALLENGES

- » Data Snooping
- » Selection Bias
- » Survivor Bias
- » Omitted Variable Bias
- » Black-box model Vs White-Box model
- » Adherence to regulations

REFLECTIONS

- » Steep learning curve
- » Different level
- » Balance speed and coverage
- » Be considerate