PROPOSITIONAL LOGIC REFERENCE SHEET

Truth Tables for the Logical Operators

	q	$p \wedge q$	p	q	$p \vee q$	p	~p	p	q	$p \rightarrow q$
T	T	T	Т	T	T	T	F		T	
T	F	F F F	T	F	1	F	T	T	F	F
F	T	F	F F	T	T	·-		F	T	
F	F	F	F	F	F			F	F	T

Logical Equivalences

1. Commutative Laws:
$$p \wedge q \equiv q \wedge p$$

 $p \vee q \equiv q \vee p$

2. Associative Laws:
$$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$$
$$(p \vee q) \vee r \equiv p \vee (q \vee r)$$

3. Distributive Laws:
$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$
$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

4. Identity Laws:
$$p \wedge \mathbf{t} \equiv p$$

 $p \vee \mathbf{c} \equiv p$

5. Negation Laws:
$$p \lor \sim p \equiv \mathbf{t}$$

 $p \land \sim p \equiv \mathbf{c}$

6. Double Negation Law:
$$\sim (\sim p) \equiv p$$

7. Idempotent Laws:
$$p \wedge p \equiv p$$

 $p \vee p \equiv p$

8. Universal Bound Laws:
$$p \lor \mathbf{t} \equiv \mathbf{t}$$

 $p \land \mathbf{c} \equiv \mathbf{c}$

9. De Morgan's Laws:
$$\sim (p \land q) \equiv \sim p \lor \sim q$$

 $\sim (p \lor q) \equiv \sim p \land \sim q$

10. Negations of
$$\mathbf{t}$$
 and \mathbf{c} : $\sim \mathbf{t} \equiv \mathbf{c}$ $\sim \mathbf{c} \equiv \mathbf{t}$

More Equivalences for Conditionals

• Conditional written as "or" statement:
$$p \rightarrow q \equiv p \vee q$$

• Biconditional:
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

PROPOSITIONAL LOGIC REFERENCE SHEET

Forms of Conditional Statements

Contrapositive of $p \rightarrow q$: $\sim q \rightarrow \sim p$ (logically equivalent)

Converse of $p \rightarrow q$: $q \rightarrow p$ (not logically equivalent)

Inverse of $p \rightarrow q$: (not logically equivalent) $\sim p \rightarrow \sim q$

Necessary and Sufficient Conditions

"r is a **sufficient condition** for s" means " $r \rightarrow s$ "

"r is a necessary condition for s" means " $\sim r \rightarrow \sim s$ " (or " $s \rightarrow r$ " by contraposition)

"r is a necessary and sufficient condition for s" means " $r \leftrightarrow s$ "

Rules of Inference

Modus Ponens

$$p \to q$$
$$p$$

$$\therefore q$$

Generalization (a.k.a. \vee Introduction)

$$p \\ \therefore p \lor q$$

$$p \lor q$$

 $p \vee q$

Elimination (better, \vee Elimination)

$$p \lor q$$
 $\sim q$

Cases

$$p \lor q$$
$$p \to r$$
$$q \to r$$

Modus Tollens

$$\begin{array}{c} p \to q \\ \sim q \end{array}$$

Specialization (a.k.a. ∧ Elimination)

$$p \wedge q$$

$$\begin{array}{ccc}
p \wedge q & & p \wedge q \\
\therefore & p & & \therefore & q
\end{array}$$

$$p \rightarrow q$$

$$q \rightarrow r$$

$$p \rightarrow r$$

Contradiction

$$\sim p \rightarrow \mathbf{c}$$