Démonstration de la conjecture de Syracuse

b3j0f

February 29, 2016

0.1 ProblÃ"me

La conjecture de syracuse veut que :

Soit la suite d'entiers naturels non nuls U_n tel que:

$$U_{n+1} = \begin{cases} U_n/2 & \text{si } U_n \text{ est pair} \\ 3Un+1 & \text{si } U_n \text{ est impair} \end{cases}$$

Alors $\forall U_n \in \mathbb{N}, \exists m > n \text{ tel que } U_m = 1.$

0.2 Démonstration

Démonstration par récurrence du comportement de U_n dans les sous-ensembles R d'entiers fermés $[2^m; 2^{m+2}]$ où m est pair et $\in N$.

Observons le comportement de U_n sur les ensembles R0 = [1; 4[, R1 = [4; 16[et R2 = [16; 64[.

Pour observer ce comportement, je ne m'attarderai que sur les valeurs impairs de U_n . C'est pourquoi je vais définir la fonction F:N*->N* telle que .

$$F(x) = \begin{cases} F(x/2) & \text{si } x \text{ est pair} \\ x & \text{si } x \text{ est impair} \end{cases}$$

Les tableaux suivants comprennent tous les entiers impairs de R0, R1, et R2, avec respectivement la valeur de F, un indicatif de série remarquable que j'expliquerai par la suite.

R0	\overline{F}	Serie
1	1	2
3	5	1

R1	F	Serie
5	1	3
7	11	1
9	7	2
11	17	1
13	5	3
15	23	1

R2	F	Serie
17	13	2
19	29	2 1 3 1 2 1 3
21	1	3
23	35	1
25	19 41	2
27	41	1
29	11	3
31	47	1 2 1 3 1 2
33	25	2
35	53	1
37	7	3
39	59	1
41	31	2
43	65	1 3
45	17	3
47	17 71	1 2
49	37	2
51	77	1
53	5	3
55	83	1 3 1 2
57	43	2
59	89	1 3
61	23	
63	95	1

0.2.1 Découpage de R en sous-séries remarquables

Afin de mieux isoler des comportements réccursifs de la suite U_n , je vais transformer l'ensemble des entiers naturels en trois suites bien distinctes (sans collision).

Suite 1: $S_{1,n}$

Premièrement, intéressons-nous à la suite 1.

Cette suite a plusieurs propriétés remarquables :

Valeurs Ses valeurs correspondent $\tilde{\mathbf{A}}$ la fonction linéaire $y=3+4x,\,\forall n\in N.$ Par exemple :

- 3 = 4 + 4 * 0
- 7 = 3 + 4 * 1
- 11 = 3 + 4 * 2
- etc.

Application de F L'application de F est donné par la fonction linéaire $y = 5 + 6x, \forall x \in N$.

Par exemple, pour :

- F(3) = 5 = 5 + 6 * 0
- F(7) = 11 = 5 + 6 * 1
- F(11) = 17 = 5 + 6 * 2

Et pour tout $S_{1,n}$, on a $F_n(S_{1,n}) = S_{1,n} * 2 - 2 * n - 1$.

Serie 2: $S_{2,n}$

La seconde suite est très proche de la première.

Valeurs Les valeurs de cette suite sont déterminées par la fonction linéaire $y = 1 + 8x, \forall x \in N$.

Par exemple :

- 1 = 1 + 8 * 0
- 9 = 1 + 8 * 1
- 17 = 1 + 8 * 2

Application de F L'application de F correspond à la fonction linéaire $y=1+6x,\,\forall x\in N.$

Par exemple :

- F(1) = 1 = 1 + 6 * 0
- F(9) = 7 = 1 + 6 * 1
- F(17) = 13 = 1 + 6 * 2

Et pour tout élément de S_2 , on a $F(S_{2,n}) = S_{2,n} * 2 - 2 * n$.

Suite 3: $S_{3,n}$

Cette dernière série est plus particulière.

Valeurs Les valeurs de $S_{3,n}$ sont déterminées par la fonction linéaire $y = 5 + 8n, \forall n \in \mathbb{N}$.

Par exemple:

- 5 = 5 + 8 * 0
- 13 = 5 + 8 * 1
- 21 = 5 + 8 * 2
- 29 = 5 + 8 * 3
- 37 = 5 + 8 * 4
- 45 = 5 + 8 * 5
- 53 = 5 + 8 * 6
- 61 = 5 + 8 * 7

Application de F Contrairement aux précédentes suites, cette fois, l'application de F n'est pas linéaire mais successivement croissante et décroissante.

Par ailleurs, l'application de F provient directement des applications de F dans l'ensemble $R_x, x \in N$ qui précéde celui de $S_{3,n}$.

On a donc : $F(S_{3,n}) = F(\frac{S_{3,n}-1}{4})$

Par exemple:

- $F(21) = F(\frac{21-1}{4}) = F(5) = 1$
- $F(29) = F(\frac{29-1}{4}) = F(7) = 11$
- $F(37) = F(\frac{37-1}{4}) = F(9) = 7$
- $F(45) = F(\frac{45-1}{4}) = F(11) = 17$
- $F(53) = F(\frac{53-1}{4}) = F(13) = 5$
- $F(61) = F(\frac{61-1}{4}) = F(15) = 23$

0.2.2 Conclusion

Par l'observation, nous avons montré un découpage de l'ensemble N en sousensembles R_x , x pair et $\in N$. Dans ces sous-ensembles, nous avons observer des suites disjointes qui couvrent l'ensemble des entiers non nuls en appliquant la fonction F.

De plus, nous avons un cycle comportemental de ces suites tel que :

Les suites $S_{1,n}, S_{2,n}etS_{3,n}$ se suivent successivement et recursivement dans cet ordre :

$${S_{2,n}, S_{1,n}, S_{3,n}, S_{1,n}}.$$

De plus, nous avons un respect des proportions où $\forall x \in N, |R_x| * 2 = |R_{x+1}|$