Hadoop Dreams

Overview

- I wrote an algorithm to help me win at daily fantasy basketball
- This side project was my intro to data science, and helped me land my first job
- Companies love side projects: they show initiative and can be the only data point for new grads
- We'll talk about how to choose a project that interests you, then execute and deliver a finished product
- We'll also go through my daily fantasy project along the way
- (No, you don't need to know anything about basketball)

About the author

1990-2008

2008-2012

2012-2017

2017

2017

2018 -

Fantasy basketball

Choosing the right problem

- What are your interests?
- What are problems from these areas that could benefit from a statistical model?
- Which of these problems have a reasonable scope? (If none, you need to simplify the problem)

Fantasy basketball primer

- Typical fantasy basketball
 - A league with a number of different teams. Single draft at the beginning of the season where
 NBA players are selected for teams
 - Each player may only be on one team
 - Teams are static
 - League lasts all NBA season
- Daily fantasy basketball
 - No draft. Each participant chooses their team independently every day
 - A single player may be on many teams
 - No permanent teams: participants choose new teams every day (or choose not to play)

More fantasy basketball details

- Sites like Fanduel and DraftKings allow participants to enter lineups each day
- There are many contests each day with varying
 - Payout structures
 - # of participants
 - Entry fee
 - # of lineups per person
- Not all NBA teams play every day. This means the available players change each day

In practice

A single contest's page

Player selection screen

Defining the problem

- Version 0: "Build a model to make money playing daily fantasy basketball" (too broad)
- Ask follow-up questions:
 - What are we modeling?
 - Individual player performance, then optimize lineups based on player projections
 - O How do we determine if the model is successful?
 - Net profit is one way, but a lot of intermediate variables
 - For the model itself, cross-validate with historical data
 - o Is there existing work? If so can we leverage it?
 - Yes, but generally not freely accessible
 - What data will we use? How will we acquire it?
 - basketball-reference.com, ESPN, Vegas lines, depth charts ... Lots of scraping

Now what?

Breaking into subcomponents

- Lineup optimization will be semi-manual
- Everything else should be automated
- How do the components interact?
 - Lineup optimization uses player projections as an input
 - Projections require feature extraction from data sources
 - Data extraction should also include performances in previous day's games (for response variables)

- What are the inputs and outputs of each component?
 - Data extraction
 - Inputs: CSV of day's active players
 - Outputs: pandas dataframe containing relevant player features (to be defined) and responses
 - Player projection model
 - Inputs: pandas dataframe of features, historical data with responses for training
 - Outputs: projected player fantasy points for that day's games
 - Lineup optimization:
 - Inputs: projected player fantasy points, other constraints
 - Outputs: a "winning lineup"
- To simplify our work later, the output of one step should be very similar to the input of the next step

Other considerations

- What is the size of the data?
 - On the order of megabytes, so can be stored locally (otherwise use AWS or Google Cloud)
- What is our compute power? Does this affect our model choice?
 - Running locally on a 2012 Macbook Pro
 - As long as we don't try using deep learning we should be OK
- How should we schedule our jobs?
 - Contests begin at 4PM daily, so the script should be run daily in the afternoon.
- What's an acceptable runtime? Can we design to minimize it?
 - Ideally under an hour end-to-end (in case of last-minute lineup changes it may need a refresh)
 - Scraping takes the longest. Since the data size is small, we can store historical data locally to cut down runtime

Data extraction: key questions

- What is the purpose?
 - Obtain all relevant features for predicting a player's performance in a given game
- What is the approach?
 - Scrape a bunch of different websites
- What are the tools?
 - o urllib, BeautifulSoup
- What are potential issues?
 - Extraction for a given day will only contain features, but to train we need to match to responses.
 - Solution: store historical features locally, then match to responses on subsequent runs

Choosing the right features

- What have other people done already?
 - Common features include a player's season averages or their averages over the past n games
- What is missing in current approaches? (This is where domain knowledge comes in handy)
 - Is the game home or away?
 - # of nights rest
 - Pace of the opposing team (relative to the player's own team)
 - Defensive rating of the opposing team
 - Injuries/depth charts
 - Over/under and Vegas lines (combined with depth charts)

Player projection model: key questions

- What is the purpose?
 - Predict how many fantasy points a player will score in a given game
- What is the approach?
 - First version: throw all features into a linear model
 - Second version: split the problem into pieces
 - Predict how many minutes a player will be on the floor
 - Predict how many points the player will score each minute
- What are the tools?
 - sklearn: linear model and knn (nothing fancy)
- What are potential issues?
 - A lot of highly correlated features
 - o Injuries to teammates are highly predictive, but very difficult to model

Choosing the right model

Lineup optimization: key questions

- What is the purpose?
 - Given a projection for each player's fantasy points, find a lineup that optimizes the total expectation while still satisfying all constraints
- What is the approach?
 - Create dummy variables for whether players are in the lineup, cast as an integer programming problem
- What are the tools?
 - Excel solver (an integer programming module)
- What are potential issues?
 - The optimization problem may require additional constraints that we're unaware of
 - Relies heavily on accuracy of player projections

Optimization in action

Before	After
D 01010	7 (10)

Play?	Name	Position	Team	Salary	EFV	EFV/Cost
0	Pau Gasol	С	CHI	9300	38.15605886	4.102802028
0	Damian Lillard	PG	POR	9300	41.22359315	4.432644424
0	Carmelo Anthony	SF	NY	8900	37.39291836	4.201451501
0	Hassan Whitesid	С	MIA	8400	39.86827823	4.746223599
0	Draymond Green	PF	GS	8400	39.08588843	4.653081956
0	Brook Lopez	С	BKN	8400	44.70223064	5.321694124
0	Kemba Walker	PG	CHA	8200	34.50620984	4.208074371
0	Nikola Vucevic	С	ORL	8100	35.73126175	4.411266883
0	Al Horford	С	ATL	7900	35.21979837	4.458202325
0	Paul Millsap	PF	ATL	7700	33.58379422	4.361531717

Play?	Name	Position	Team	Salary	EFV	EFV/Cost
1	Damian Lillard	PG	POR	9300	41.22359315	4.432644424
1	Carmelo Anthony	SF	NY	8900	37.39291836	4.201451501
1	Brook Lopez	С	BKN	8400	44.70223064	5.321694124
1	Thaddeus Young	PF	BKN	7000	36.07059219	5.152941742
1	Jordan Clarkson	SG	LAL	6000	33.59326208	5.598877013
1	Julius Randle	PF	LAL	6000	32.50687979	5.417813298
1	Deron Williams	PG	DAL	5700	26.90406364	4.720011164
1	Jeremy Lin	SG	CHA	4400	26.78220737	6.086865311
1	Harrison Barnes	SF	GS	4200	22.96604918	5.468106948

Constraints:

- Cannot exceed maximum salary
- Must satisfy positional requirements
- No more than 2-3 players from a given team (heuristic)

	Current	Required
Players	9	9
Salary	59900	60000
EFP	302.1417964)
PG	2	2
SG	2	2
SF	2	2
PF	2	2
С	1	1
Teams		
ATL	0	2
BKN	2	2
BOS	0	2
CHA	1	2
CHI	0	2
CLE	0	2

The finished pipeline

Wrapping up

- Most worthwhile data science projects require substantial amounts of effort.
- Scoping out and properly defining a problem in advance is very important.
- Real-world problems are ambiguous and open-ended. To deal with this:
 - Break large problems into manageable subcomponents
 - Continuously ask yourself clarifying questions
- And don't forget, open source libraries are your friend!

Thank you!!!