

Mašinsko učenje 2024

Sadržaj

*

Zadatak 4 - Rekapitulacija

*

Zadatak 4 - Rekapitulacija

Zadatak 4 - Rekapitulacija

- Procenat uspešnosti: 82% (28/34).
- Najveće preklapanje izvornih kodova prema alatu za detekciju plagijata: 24%.
- Najbolji rezultati po terminima:

Termin	Tim	Macro F1
Ponedeljak - G4	tim1_24	0.43
Utorak - G5	tim11_24	0.45
Utorak - G3	Tim 10	0.46
Četvrtak - G2	Ruzni kao passsss	0.47
Petak - G1	tim21_24	0.46

Zadatak 4 - Rekapitulacija

- Dobre stvari (na nivou generacije):
 - Pretprocesiranje
 - Propratni izveštaji.

- Stvari koje mogu biti bolje (na nivou generacije):
 - Uklanjanje *outlier*-a
 - o Rad sa LabelEncoder-om.

Klasterovanje:

- Klasterovati države na osnovu njihovih karakteristika u klastere koji predstavljaju geografske regione (kolona region):
 - europe
 - asia
 - africa
 - americas.
- Zadatak je uspešno urađen ukoliko se na kompletnom testnom skupu podataka dobije v mera (eng. v measure score) veća od 0.13.
- Zadatak se rešava upotrebom Modela Gausovih mešavina (eng. Gaussian Mixture Model, GMM), tj. algoritmom Očekivanje - maksimizacija (eng. Expectation-maximization, EM).
- Rok za izradu zadatka je 02.06.2024. u 23:59h.

- Redukcija dimenzionalnosti:
 - Instalirane biblioteke za Zadatak 5:
 - NumPy
 - Pandas
 - SciPy
 - scikit-learn.

• Sledeći i poslednji termin vežbi (odbrana Zadatka 5):

Termin	Datum
Ponedeljak - G4	10.06.2024.
Utorak - G5	04.06.2024.
Utorak - G3	04.06.2024.
Četvrtak - G2	06.06.2024.
Petak - G1	07.06.2024.

Atributi:

- Year Godina za koju važe navedeni podaci
- Population Ukupan broj stanovnika
- GDP per Capita GDP prihod države u toj godini (izražen u \$)
- Urban Population Broj stanovnika u urbanim podnebljima
- Life Expectancy Očekivana dužina životnog veka
- Surface Area Površina države
- Literacy Rate Procenat pismenih stanovnika.

- Koncepti vezani za Zadatak 5:
 - Modeli Gausovih mešavina
 - o Expectation-Maximization algoritam
 - Metrika.

- Trening skup podataka sadrži nedostajuće vrednosti (u pitanju su prazne ćelije).
- Testni skup podataka ne sadrži nedostajuće vrednosti.

- Modeli Gausovih mešavina:
 - Probabilistički modeli koji pretpostavljaju da su podaci predstavljeni kao zbir više Gausovih (normalnih) raspodela
 - Koriste se za probleme klasterizacije gde se podaci dele na klastere na osnovu verovatnoće pripadnosti svakoj Gausovoj komponenti
 - Modeli Gausovih mešavina u <u>scikit-learn</u>.

- Expectation-Maximization algoritam:
 - Iterativna metoda za pronalaženje maksimalno verovatnih parametara u statističkim modelima
 - U scikit-learn biblioteci se ovaj algoritam koristi za estimaciju parametara GMM
 - Zadatak se mora rešiti upotrebom GMM, tj. EM algoritma.
 - Algoritam se može samostalno implementirati, a može se iskoristiti i implementacija <u>scikit-learn</u> biblioteke.

Metrika:

- Kod ovog zadatka, evaluacija klasterovanja je zasnovana na poznavanju ground truth labela klastera.
- Računa se v mera (eng. v measure score), koja se zasniva na intuitivnim metrikama zasnovanim na uslovnoj analizi entropije:
 - homogenost (eng. homogenety) svaki klaster sadrži članove samo jedne grupe/klastera
 - potpunost (eng. completeness) svi članovi iste grupe/klastera su dodeljeni istom klasteru.
- v mera predstavlja harmonijsku sredinu homogenosti i potpunosti:
 - <u>sklearn.metrics.v_measure_score(labels_true, labels_pred)</u>

- Saveti za rešavanje zadatka:
 - Podsetiti se gradiva sa predavanja
 - Uraditi eksplorativnu analizu podataka
 - Isprobati više tehnika za rad sa nedostajućim vrednostima
 - Primeniti klasterovanje i analizirati klastere.