

Centro Universitário SENAI CIMATEC Curso de Bacharelado em Engenharia Elétrica

CÁLCULO DE ENLACE DE RÁDIO PONTO A PONTO

Cleber Couto Filho Davi Costa

Cleber Couto Filho Davi Costa

CÁLCULO DE ENLACE DE RÁDIO PONTO A PONTO

Relatório apresentado como requisito parcial para obtenção de aprovação na disciplina Introdução à Propagação e Antenas, no centro universitário SENAI CIMATEC.

Docente: Leonardo Vasconsellos

Orientadora: Ana Beatriz Martins Aguiar

Centro Universitário SENAI CIMATEC

Salvador-BA 13 de julho de 2018

Lista de ilustrações

Figura 1 –	Ponto A
Figura 2 -	Ponto B
Figura 3 -	Gráfico de obstáculo
Figura 4 –	Curvatura parabólica utilizada para aproximação
Figura 5 –	Modelo da zona de Fresnel
Figura 6 -	Gráfico de atenuação
$Figura \ 7 \ -$	Dados de H_c
Figura 8 -	Antena Yagi AirMax Antenna 900Mhz
Figura 9 -	Variáveis do projeto

Introdução

Este relatório descreve o método utilizado para o projeto de um sistema de rádio enlace ponto a ponto, com base nos dois pontos fornecidos.

Segundo TUDE, o enlace de rádio pode ser definido como : "Uma aplicação da transmissão de informação por meio de ondas eletromagnéticas, se caracterizando como uma das aplicação que faz parte das Segundo Tude , "Um enlace rádio digital ponto a ponto é utilizado para o transporte de informação entre dois pontos fixos, tendo o espaço livre como meio de transmissão (wireless)".[1]

Proposta

Projetar um sistema de rádio enlace ponto a ponto, entre os pontos mostrados nos mapas anexados.

Equipe03

| Equipe03 | 968 m | 18%
| Fequipe04 | 968 m | 18%
| Fequipe04 | 18%
| Fequipe05 | 18%
| Fequipe064 | 18%
| Fequipe064 | 18%
| Fequipe07 | 18%
| Fequipe07 | 18%
| Fequipe08 | 18%
| F

Figura 1 – Ponto A

Figura 2 – Ponto B

Foi solicitado que sejam tomadas as seguintes decisões:

- Definir a frequência de operação;
- Calcular a Potência do Rádio Transmissor, Sensibilidade do Receptor e ganhos das Antenas, para o enlace fornecido;
- Definir solução a ser adotada com base em fornecedores comerciais reais (Ex: Intelbras, Ubiquiti, Tp Link, MikroTik, entre outros)

1 Medotologia

1.1 Escolha da frequência

A frequência foi escolhida com base no regulamento da Anatel. O mesmo estabelece que equipamentos de radiocomunicação com faixas restritas de: 902-907,5; 915-928; 2400-2483,5; 5725-5850 MHz, assim para os cálculos iniciais foi escolhida uma frequência de 920MHz.

1.2 Estudo do Obstáculo

O primeiro passado adotado foi a análise dos pontos, verificando se entre os dois existia algum obstáculo. Essa informação pode ser extraída dos mapas que foram fornecidos em anexo, como mostra a figura 3.

Figura 3 – Gráfico de obstáculo

Por meio da análise do gráfico, fica evidenciado que entre os dois pontos existe um grande obstáculo arredondado, assim sendo necessário calcular o seu raio de curvatura e a partir disso ver o quanto ele irá interferir na transmissão. É feita uma aproximação do topo do obstáculo, utilizando uma curvatura parabólica como mostrado na figura 4 ??.

Figura 4 – Curvatura parabólica utilizada para aproximação

O raio r da parábola será calculado o α que possibilita encontrar quantos decibéis de interferência o obstáculo irá causar. O cálculo do raio r é feito utilizando a seguinte

formula:

$$r = \frac{x^2}{8y} * 10^{-3} \tag{1.1}$$

Onde x representa a distância em metros entre os dois pontos de igual nível, sendo um em cada lado do pico considerado e y representa a diferença de cota entre o pico do obstáculo e a curva de nível considerada para medida x.

1.3 Atenuação do Obstáculo

O cálculo do fator α relaciona a frequência f, o raio de curvatura da parábola r, a distância entre o vértice do obstáculo ao ponto de transmissão d_1 e a distância entre o vértice do obstáculo ao ponto de recepção d_2 , ambas em Km.

$$\alpha = 0,0818 \frac{1}{\sqrt[6]{f}} \sqrt[3]{r} \sqrt{\frac{d_1 + d_2}{d_1 * d_2}}$$
(1.2)

A atenuação é encontrada a partir de α e a relação entre os fatores H_c e r_f por meio do gráfico 6. Onde H_c representa a diferença entre ponto máximo do obstáculo e o nivelamento das antenas, enquanto r_f é chamado de raio de fresnel, sendo calculado com as mesmas distâncias d_1 e d_2 . A relação é encontrada como mostrado na figura 6.

Figura 5 – Modelo da zona de Fresnel

O cálculo de r_f se dá por:

$$r_f = \sqrt{\frac{n\lambda d_1 d_2}{d_1 + d_2}} \tag{1.3}$$

Figura 6 – Gráfico de atenuação

Rf	8,866
Нс	5
Hc/rf	0,563

1.4 Atenuação no espaço livre

O sinal também sofrerá atenuação ao ser transmitido no espaço livre, o cálculo da atenuação L se dá por meio da fórmula de Fris:

$$L = 32,45 + 20(\log_{10}(d_1 + d_2) + \log_{10} f)$$
(1.4)

1.5 Atenuação total

A atenuação total é a soma da atenuação no espaço livre com a atenuação do obstáculo, assim :

$$L_{tot} = L + L_{obstaculo} (1.5)$$

2 Resultados

2.1 Dados de entrada

2.1.1 Dados Gerais

A altura escolhida para as torres foi de 0 e 9 para manter a linha de visada direta em paralelo com o chao e assim facilitando os cálculos e diminuindo os erros, os outros dados estão mostrados na tabela abaixo.

Distância Total (m)	0,96713
λ	$0.001086957 \times 10^{-6}$
Altura das torres	0/9

2.1.2 Dados dos Obstáculos

X	325
Y	7
d_1	0,475
d_2	0,49213

2.2 Memorial de Cálculo

2.2.1 Frequência

Não foi necessário calcular a frequência, o valor utilizado foi de 920MHz e sua escolha está justificada em 1.1.

2.2.2 Raio da Parábola

Com os valores de X e Y do obstáculo o valor encontrado para o raio da parábola foi de:

$$r_{parabola} = 1,886160714 \tag{2.1}$$

2.2.3 Atenuação do obstáculo

Com os valores de d_1 e d_2 o α encontrado teve valor de :

$$\alpha = 0,6703932617\tag{2.2}$$

O parâmetro H_c foi encontrado por meio dos dados fornecidos, como mostrado na figura a seguir:

Figura 7 – Dados de H_c

O parâmetro r_f foi cálculado por meio da equação de Fresnel, com o valor dos parâmetros a seguir, foi encontrado no gráfico o valor da atenuação do obstáculo.

r_f	8,866
H_c	5
$\frac{H_c}{r_f}$	0,563
$L_{obstaculo}$	22,5dB

2.2.4 Atenuação no Espaço livre

Com os valores de d_1 , d_2 e f conhecidos o valor encontrado para L foi:

$$L = 91,43dB \tag{2.3}$$

2.2.5 Atenuação total

A atenuação total consiste nas soma das atenuação encontradas, logo:

$$L_{tot} = L + L_{obstaculo} = 91,43 + 22,5 = 113,9dB$$
 (2.4)

2.3 Escolha do tranmissor e da antena

A escolha dos módulos e da antena se deu baseado na frequência escolhida para os cálculos e na versatilidade de cada dispositivo.

O modelo das antenas foi o $Yagi(AirMax\ Antenna\ 900Mhz)$, devido a sua faixa de trabalho e alta potência.

O modelo do transmissor foi o *Ubiquiti Networks(Rocket M9)* pot ser recomendado para trabalhar em conjunto com o modelo de antena *Yagi*.

2.4. Receptor 11

Figura 8 – Antena Yagi AirMax Antenna 900Mhz

Fonte: Ubiquiti Networks

2.4 Receptor

Escolha do receptor é encontrado à partir das potências das antenas, do módulo tranmissor e das perdas durante a transmissão. Sua potência foi calculada da seguinte forma:

$$P_{receptor} = P_{antena_tx} + P_{antena_rx} + P_{transmissor} - L_{tot}$$
 (2.5)

A mesma antena utilizada para transmissão é utilizada para recepção, os dados da sua potência estão disponíveis nos seu datasheet onde $P_{antena_{tx}} = P_{antena_{rx}} = 19dBi$. A potência do transmissõr também está disponível no datasheet, onde $P_{transmissor} = 28dBm$. O valor encontrado para potência do receptor foi de $P_{receptor} = -47.9dBi$

Com o valor de -47.9dBi, o módulo $Ubiquiti\ Networks(Rocket\ M9)$ também poderá ser utilizado para recepção, tornando o sistema mais simplificado já que ambos receptores e transmissores estarão utilizando antenas recomendadas no datasheet.

Variáveis do projeto

Todos os valores utilizados e calculados estão registrados na figura a seguir:

Localização A		Escolha da ant	ena
Latitude	12° 42' 20.14" S		
Longitude	38° 11' 14" O	Transmissor	
Elevação (m)	40	Modelo	Yagi airMAX
Localização B		potencia dBi	19
Latitude	12° 42' 28.13" S		
Longitude	38° 10' 43.03" O	Receptor	
Elevação (m)	31	Modelo	Yagi airMAX
Distancia D (m)	0,96713	potencia dBi	19
Torre A (m)	0		
Torre B (m)	9	Modulo	
Frequencia	920		
		Transmissor	
X obstaculo (m)	325	Modelo	m900 rocket
Y obstaculo (m)	7	potencia dBm	28
R Obstáculo	1,886160714		
D1 (km)	0,475	RECEPTOR	
D2 (km)	0,49213	Modelo	m9 rocket
alfa	0,6703932617	potencia dBm	-47,93545365
Rf	8,866203803		
Altura visada direta (n	40		
Altura obstaculo (m)	45		
Hc (m)	5		
h/rf	0,5639392135		
Atuanação Obstaculo	22,5		
Atenuação espaço liv	91,43545365		
Atenuação total (db)	113,9354536		

Figura 9 — Variáveis do projeto

2.4. Receptor

Referências

 $[1]\ \mathrm{TUDE},$ Eduardo. Enlace rádio digital ponto a ponto. 2004.