

Автор курса: профессор, д.ф.-м.н. Ведюшкина Виктория Викторовна **Автор конспекта:** Цыбулин Егор, студент 108 группы

7 февраля 2025 г.

Оглавление

1	Тест		3
	1.1 (50 б	(50 билет) Поверхности второго порядка	
	1.1.1	Общее уравнение	3
	1.1.2	Квадратичная часть и матрицы	3
	1.1.3	Закон изменения матриц при переходе к новой аффинной системе ко-	
		ординат	4
2	3D-фигу	ры	5

Глава 1

Тест

1.1 (50 билет) Поверхности второго порядка

1.1.1 Общее уравнение

Определение 1.1.1. Поверхностью второго порядка называется множество точек трёхмерного аффинного или точечно-евклидова пространства, координаты которых в некоторой аффинной системе координат удовлетворяют уравнению F(x,y,z)=0, где

$$F(x,y,z) = a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + 2a_{1}x + 2a_{2}y + 2a_{3}z + a_{0}z + a_{0}$$

причём хотя бы одно из чисел a_{11} , a_{22} , a_{33} , a_{12} , a_{13} , a_{23} отлично от нуля. Выражение F(x,y,z) - многочлен второй степени от переменных x,y,z. Уравнение F(x,y,z)=0 называется общим уравнением поверхности второго порядка.

Замечание 1.1.1. Точно так же определяются повехности второго порядка в аффинном или точечно-евклидовом пространстве произвольной конечной размерности n; они задаются многочленами второй степени от n переменных.

Теория поверхностей второго порядка аналогична теории кривых второго порядка.

1.1.2 Квадратичная часть и матрицы

С каждым многочленом F(x,y,z) связано *квадратичное отображение* пространства (с данной системой координат) $f:A^3\to\mathbb{R}$, которое каждой точке X с координатами (x,y,z) ставит в соответствие число F(x,y,z). Говорят, что это отображение представлено многочленом F в данной системе координат. В другой системе координат многочлен, представляющий ту же функцию, станет другим.

Как и в случае линий второго порядка:

$$F(x,y,z) = \begin{pmatrix} x & y & z & 1 \end{pmatrix} A \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x & y & z \end{pmatrix} A_1 \begin{pmatrix} x \\ y \\ z \end{pmatrix} + 2 \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + a_0,$$

где

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_1 \\ a_{12} & a_{22} & a_{23} & a_2 \\ a_{13} & a_{23} & a_{33} & a_3 \\ a_1 & a_2 & a_3 & a_0 \end{pmatrix}$$

ΓΛABA 1. TECT

– большая матрица,

$$A_1 = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

- малая матрица (квадратичной части).

Определение 1.1.2.

$$F_1(x, y, z) = a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz$$

называется $\kappa \epsilon a \partial p a m u u h o \ddot{u} u a c m b \phi$ многочлена F.

1.1.3 Закон изменения матриц при переходе к новой аффинной системе координат

Дословно так же, как в случае линий, доказывается, что при переходе к новой системе координат матрицы A и A_1 многочлена F, представляющие всё ту же функцию $f:A^3\to\mathbb{R}$, меняются по закону $A_1'=C^TA_1C$ и $A'=D^TAD$, где A_1' и A' – матрицы в новых координатах, C – матрица перехода от старого базиса к новому (её столбцы – координаты новых базисных

векторов в старом базисе),
$$D=\begin{pmatrix} C&x_0\\y_0\\z_0\\0&0&1\end{pmatrix}$$
, где x_0,y_0,z_0 - координата нового начала

координат в старой системе координат.

В новой системе координат:

$$F^{'}(x^{'},y^{'},z^{'}) = \begin{pmatrix} x^{'} & y^{'} & z^{'} & 1 \end{pmatrix} A^{'} \begin{pmatrix} x^{'} \\ y^{'} \\ z^{'} \\ 1 \end{pmatrix} + 2 \begin{pmatrix} x^{'} & y^{'} & z^{'} \end{pmatrix} A^{'}_{1} \begin{pmatrix} a^{'}_{1} \\ a^{'}_{2} \\ a^{'}_{3} \end{pmatrix} + a_{0},$$

где буквы со штрихами – координаты, многочлен и матрицы в новой системе координат,

$$\begin{pmatrix} a_1' \\ a_2' \\ a_3' \end{pmatrix} = C^T \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}.$$

Глава 2

3D-фигуры

Klein bottle

Поверхность $z = x^2 + y^2$

