2 pages 1

```
Source | Model | Option
| Model Option | Help on fd methods | Archived Tests
```

fd brennanschwartz

Input parameters:

- SpaceStepNumber N
- \bullet TimeStepNumber M

Output parameters:

- Price
- Delta

/*Time Step/*

Define the time step $k = \frac{T}{N}$.

/*Space localisation/*

Define the integration domain D = [-l, l] using inequality there.

/*Space Step/*

Define the space step $h = \frac{2l}{M}$.

At each time, we have to solve the linear complementarity problem cf. there

/*Peclet Condition*/

If $|r - \delta|/\sigma^2$ is not small, then a more stable finite difference approximation is used. there.

/*Neumann Boundary Conditions/*

/*Lhs factor of implicit scheme/*

Initialize the matrix M issued from the totally implicit method in the cases of Neumann Boundary conditions. there

2 pages 2

/*Gauss algorithm/*

This procedure transforms the tridiagonal matrix M in the lower triangular matrix \tilde{M}

/*Terminal value/*

Put the value of the payoff saved in Obst into a vector P which will be used to save the option value.

/*Finite difference Cycle/*

At any time step, described by the loop in the variable *TimeIndex*, we have to solve the linear complementarity problem cf. there

/*First Loop/*

Compute the right hand side \tilde{G} of the linear complementarity problem cf. there and save it in P.

/*Second Loop/*

/*Memory Desallocation*/

Solve the algorithm cf. there and save the option value in P.

```
/*Price*/
/*Delta*/
```