A Book of Abstract Algebra | (2nd Edition)

	Problem	
Prove each of the following:		
If a point P is constructible from Q × 0	it is constructible from {O, I	}.
By combining parts 2 and 4, we get the \bigcirc iff P is constructible from $\{O, I\}$.		
St	ep-by-step solution	
	Step 1 of 4	
Here, objective is to prove that if a poir	nt p is constructible from $Q \times Q$, then it is constructible from
(I,O).		
(I,O). Comment		

The point is either the end point of given unit segment or it is the intersection of two lines determined by previous constructible points is called as constructible point.

Comment

Step 3 of 4

 $Q \times Q$ is a set of all rational numbers

Let p,q are rational numbers. Then the point $P(p,q) \in Q \times Q$

Let
$$p = \frac{a}{b}$$
 (rational)

But as per the definition of D, (a,0) and (0,b) are constructible from (O,I)

Comment

Step 4 of 4

Consider the below figure:

figure: construction of a/b

by observing there exist two similar triangles.

a and b are constructible lengths.

using the property of equal triangles, we have

$$\frac{b}{a} = \frac{1}{x}$$

$$x = \frac{a}{b}$$

Then,

The length $p = \frac{a}{b}$ is constructible from $\{O, I\}$

Similarly,

q is also constructible from $\{O, I\}$

Therefore, the point P is constructible from (I, O).

Comment

COMPANY

About Chegg
Chegg For Good
College Marketing
Corporate Development
Investor Relations
Jobs
Join Our Affiliate Program
Media Center
Site Map

LEGAL & POLICIES

Advertising Choices
Cookie Notice
General Policies
Intellectual Property Rights
Terms of Use
Global Privacy Policy
Honor Code
Honor Shield

CHEGG PRODUCTS AND SERVICES

Cheap Textbooks Mobile Apps Chegg Coupon Sell Textbooks Chegg Play Solutions Manual Chegg Study Help Study 101 College Textbooks Textbook Rental eTextbooks **Used Textbooks** Flashcards Digital Access Codes Chegg Money Learn Chegg Math Solver

CHEGG NETWORK

EasyBib Internships.com Thinkful

CUSTOMER SERVICE

Customer Service
Give Us Feedback
Help with eTextbooks
Help to use EasyBib Plus
Manage Chegg Study
Subscription
Return Your Books
Textbook Return Policy