Laptop Price Prediction

Martina Speciale

Problem Definition

Dataset Description

EDA

Data Preprocessing

Models

Best Mode

Results

Deploymen

Future Improvements

Laptop Price Prediction

Martina Speciale

Data Mining & Machine Learning Project University of Pisa, Academic Year 2023/2024

Problem Definition

Laptop Price Prediction

 $\begin{array}{c} {\rm Martina} \\ {\rm Speciale} \end{array}$

Problem Definition

Dataset Description

EDA

Data Preprocessing

. M .. J .. l ..

Best Mode

Dogulto

Deploymen

Future Improvements

- **Objective:** Build a system that predicts laptop prices based on their specifications.
- **Purpose:** Helps consumers make informed purchasing decisions and assists retailers in pricing strategies.

▶ Github Repository

▶ Streamlit App

Dataset Description

Laptop Price Prediction

Martina Speciale

Problem Definition

Dataset Description

EDA

Data Preprocessing

Post Mode

Dest Mode

Deploymen

Future Improvements

▶ Data

■ Source: Dataset available on Kaggle (laptop_data.csv)

■ Features:

- Company: Company that manufactured the laptop.
- *TypeName* : type of laptop (e.g. Notebook, Gaming).
- *Inches*: size of the laptop screen measured diagonally.
- Screen Resolution: Additional information about the display.
- Cpu: Type and speed of the CPU.
- \blacksquare Ram: Size of memory (GB).
- *Memory*: Type and capacity of storage (HDD/SSD).
- lacksquare Gpu: specifics about the GPU.
- OpSys : Operating System.
- \blacksquare Weight: weight in kg.

■ Target Variable:

• Price: laptop price, to be predicted

Exploratory Data Analysis

Laptop Price Prediction

Martina Speciale

Problem Definitio

Dataset Descriptio

EDA

Data Preprocessing

3.6 . 1 . 1 .

Best Mode

Deploymen

Future Improvements

EDA Highlights:

- Initial analysis of the dataset revealed the distribution of laptop prices and the relationships between different features and prices.
- Transformation techniques were applied to normalize the price data, ensuring better model performance.

Figure: (before)

Figure: (after)

Data Preprocessing

Laptop Price Prediction

Martina Speciale

Problem Definition

Dataset Descriptio

Descript

Data Preprocessing

Models

Best Mode

Deploymen

Future Improvements

Preprocessing Steps:

- Data cleaning
- Feature engineering included creating new features from existing data and encoding categorical variables.
- The final preprocessed dataset provided a robust foundation for model building.

Building the Models

Laptop Price Prediction

Martina Speciale

Problem Definition

Dataset Description

EDA

Oata Prerocessing

Models

Best Mode

Deploymer

Future Improvements

 Several regression models were tested: Linear Regression, Lasso Regression, Ridge Regression, Decision Tree, Random Forest, and K-Nearest Neighbors.

- Evaluation Metrics:
 - The models were evaluated using Mean Absolute Error (MAE), Mean Squared Error (MSE), and R-squared.
 - These metrics helped in comparing model performances and selecting the best one.

Model	R2 score	MAE	RMSE
Random Forest (with Hyperparameter Tuning)	0.9011	0.1482	0.0378
KNN (with Hyperparameter Tuning)	0.8316	0.1783	0.2538
Linear Regression	0.8068	0.2101	0.0739
Ridge Regression	0.8127	0.2095	0.0716
Lasso Regression	0.8071	0.2116	0.0738
Decision Tree Regressor	0.846	0.1802	0.0589
Random Forest Regressor (Base)	0.8827	0.1622	0.2119

Best Model

Laptop Price Prediction

Martina Speciale

Problem Definition

Dataset Descriptio

EDA

processin

Models

Best Model

Deploymen

Future Improvements

Random Forest with Hyperparameter Tuning:

■ Random Forest was identified as the best model due to its ability to capture non-linear relationships and reduce overfitting. Key hyperparameters tuned included the number of trees, maximum depth, and minimum samples split, which significantly improved performance.

```
# Using parameters found in grid_search.best_params_ after GridSearchCV
rf_best = RandomForestRegressor(
    bootstrap=False,
    max_depth= 15,
    max_features='sqrt',
    min_samples_leaf=1,
    min_samples_split=5,
    n_estimators=300
)
```

Results

Laptop Price Prediction

Martina Speciale

Problem Definitio

Dataset Descriptio

EDA

ata Prerocessing

Models

Best Mode
Results

Deploymen

Future Improvements

▶ Results

Model Performance:

- The Random Forest model showed the highest accuracy among all tested models, making it the ideal choice for predicting laptop prices.
- A comparative study between our models and the ones developed in the paper highlighted similar results and confirmed the superior performance of Random Forest.

Deployment on Streamlit Cloud

Laptop Price Prediction

Martina Speciale

Problem Definition

Dataset Description

EDA

rocessin

Modela

Best Mode

Deployment

Future Improvements

▶ App

Deployment Process:

- The model was prepared and deployed using Streamlit Cloud, making it accessible for real-time predictions.
- Example outputs illustrate the prediction capabilities of the deployed model.

Future Improvements

Laptop Price Prediction

Martina Speciale

Problem Definitio

Dataset Description

EDA

Data Preprocessing

Models

Best Mode

Deploymen

Future Improvements

Future updates may include:

- integration with more recent data
- additional features for prediction and optimization of model performance

Laptop Price Prediction

Martina Speciale

Problem Definition

Dataset

EDA

Data Preprocessin

Models

Best Mode

Results

Deploymen

Future Improvements

