

Advanced Image Processing

Project: Traffic Sign Recognition

Survey and Plan

Team 5

Contents

- 1. Team Introduction
- 2. Project Survey and Proposal
- 3. Plan

1. Team Introduction

Team5

Tran Nam Phuong

2022120207

Ultra-intelligent Computing/Communication

Network Lab

Pham Thi Thu Hien

2022120203

Ultra-intelligent

Computing/Communication

Network Lab

Nguyen Lan Anh (Leader)

2022220111

Systems and Storage Lab

2. Project Survey and Proposal

2.1 The necessity of traffic sign recognition

Figure 1. In 2017, Audi launched the Audi A8 D5 with the Autonomous Intelligent Driving (AID), an Audi's self-driving technology

Figure2. In 2015, Tesla introduced Tesla Autopilot with the Advanced driver-assistance system (ADAS)

- Nowadays, self-driving cars (Autonomous cars) have emerged as essential vehicles in transportation.
- Traffic sign recognition (TSR) is an important tool/ module in all self-driving systems/ driver-assistance systems.

Ex:

- TSR recognizes a speed limit sign -> informs car's driver -> driver takes a suitable action.
- 2. TSR recognizes the red light -> informs the self-driving controller -> Car stops.

Figure3. Car with traffic sign recognition

2. Project Survey and Proposal

2.2 Proposal

- This project addresses the traffic sign recognition problem.
- To solve the problem, we utilize the Convolution Neural Network (CNN) for feature extraction and detection.
- This work follows common steps of the detection problem:

Figure4. Overall process

2. Project Survey and Proposal

2.3 Project setup

- Dataset: German Traffic Sign Recognition Benchmark (GTSRB)[2,3].
- It was created from about 10 hours of video recorded while driving in Germany.
- It consists of about 40.000 colorful photos of traffic signs.
- Images have .ppm extension and their size varies from 15x15 to 250x250 pixels.
- Tools:
- Coding language: *Python.*
- Libraries/ modules:

TensorFlow, OpenCV (in&out),

NumPy, OS, Matplotlib

- IDE: Visual Studio.
- Source Code: GitHub [4]

Figure5. Traffic sign images in GTSRB

3. Plan

Data preprocessing	Model building/training/ testing	Post processing	Final check, and submit	Submit final report
11/09-11/15/202	11/16-	11/23- 11/29/2022	11/30- 12/03/2022	12/04- 12/11/2022

References

- [1] Mogelmose, Andreas, Mohan Manubhai Trivedi, and Thomas B. Moeslund. "Vision-based traffic sign detection and analysis for intelligent driver assistance systems: Perspectives and survey." *IEEE Transactions on Intelligent Transportation Systems* 13.4 (2012): 1484-1497.
- [2] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, "The german traffic sign recognition benchmark: A multi-class classification competition," in *Proc. IJCNN*, 2011, pp. 1453–1460. [Online]. Available: http://benchmark.ini.rub.de/?section=gtsrb
- [3] https://www.kaggle.com/datasets/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign
- [4] https://github.com/phuongtrannam/advanced-image-processing-cau