Analysis of Algorithms 91.404, Fall, 2012

Instructor: Prof. Benyuan Liu / bliu@cs.uml.edu

TA: Kaining Shao / skaining@cs.uml.edu

Homework #2

1. (25 points) Rank the following three functions by order of asymptotic growth.

Ans:

Let:

$$g_{1}(n) = \left(\frac{1}{2}\right)^{n^{3}}$$

$$g_{2}(n) = 3^{4\log_{3}n} = n^{4}$$

$$g_{3}(n) = 5 \lg n + n^{2} \lg \lg n$$

1) $g_1(n) \in O(g_2(n))$:

Since $g_1(n) < 1$ and $g_2(n) \ge 1$ for $n \ge 2$, we have $g_1(n) \le c_0 g_2(n) \ \forall n \ge n_0$ where c = 1 and $n_0 = 2$

2) $g_3(n) \in O(g_2(n))$:

Let $G(n) = g_3(n) - g_2(n) = n^4 - 5lgn - n^2lglgn$, we assume $n \ge 3$ then

$$G(n) = n^2 (n^2 - \frac{5}{n^2} l g n - l g l g n)$$

$$\geq n^{2}(n^{2} - \lg n - \lg n)(\forall n \geq 3, \frac{5}{n^{2}} \leq 1 a n d \lg \lg n \leq \lg n)$$

$$= n^{2}(n^{2} - 2 \lg n)$$

$$\geq n^{2}(n^{2} - 2 n)(\forall n \geq 3, \lg n \leq n)$$

$$\geq 0$$

So, we have $g_3(n) \le c_0 g_2(n) \forall n \ge n_0$, where c = 1 and $n_0 = 3$

2. (25 points) i)
$$f_1(n) \in \Omega((\frac{1}{2})^n)$$
 ii) $f_2(n) \in \Theta(n^2 \lg n)$ iii) $f_3(n) \in O(\lg^3 n)$

- a) If statements i) iii) are true, can we conclude that $f_3(n) \in O(f_2(n))$?
- b) If statements i) iii) are true, can we conclude that $f_2(n) \in \mathcal{Q}(f_1(n))$?

Ans:

Since i) - iii) are true, we can have following statements:

- (1) There exist positive constants c_1 and n_1 such that $0 \le c_1(\frac{1}{2})^n \le f_1(n), \forall n \ge n_1$
- (2) There exist positive constants a, b and n_2 such that

 $0 \le a n^2 l g n \le f_2(n) \le b n^2 l g n, \forall n \ge n_2$

- (3) There exist positive constant c_3 and n_3 such that $0 \le f_3(n) \le c_3(lg^3n), \forall n \ge n_3$.
 - a) True. Let $c_{23} = \frac{c_3}{a}$ and $n_{23} = max(1, n_2, n_3)$, from (2) and (3), and we already know that $lg^3 n \le n^2 lg n \forall n \ge 1$, we have:

$$f_2(n) \le c_3 lg^2 n \le c_3 n^2 lgn = \frac{c_3}{a} an^2 lgn \le c_{23} f_2(n), \quad \forall n \ge n_{23}.$$

So we can conclude that $f_3(n) \in O(f_2(n))$.

b) False. Because i) only shows that the lower bound of $f_1(n)$, but we do not know its exact upper bound, we can not say that $f_2(n)$ would be the upper bound of $f_1(n)$ even if n^2 lgn is the upper bound of $(1/2)^n$. It is possible that $f_1(n)$ is the upper bound of $f_2(n)$, for example, $f_1(n) = n^4$ and $f_2(n) = n^2 l g n$. That satisfies statements i) and ii), but it is obvious that $f_1(n) \in \Omega(f_2(n))$.

So we cannot conclude that $f_2(n) \in \Omega(f_1(n))$.

3. (25 points) True or False.

Ans: a) True; b) False; c) False; d) True; e) True

For b), use the limit rule and we get 0, which means $n \lg^2 n \in O(n^{1.05})$.

For d) and e), the cost function T(n) could be: $T(n) = c_1(\log_2 n + 1) + c_2\log_2 n$.

d) is true since $T(n) \le c_1 (\log_2 n + 1) + c_2 \log_2 n = O(n)$, and e) is true since $T(n) \ge c_1 \log_2 n + c_2 (\log_2 n - 1) = \Omega(n)$.

4. (25 points) Pseudocode Analysis: find the tight upper-and-lower bounds on the asymptotic worst-case running time f(n).

Ans:

Mystery(n)		Cost	Times
1.	c ← 1	c 1	1
1.	for $i \leftarrow 1$ to n	c 2	n+1
2.	do for $j \leftarrow i$ to n	c 3	$\sum_{i=1}^{n} \sum_{j=i}^{n+1} 1$
3.	do for $k \leftarrow n$ down to $n/2$	c 4	$\sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=n/2}^{n+1} 1$
4.	do $c \leftarrow c + 1$	c 5	$\sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=n/2}^{n+1} 1$
5.	print c	c 6	1

The procedure Mystery(n) is a 3-level loop, and the worst-case running time is:

$$f(n) = c_1 + c_2(n+1) + c_3 \sum_{i=1}^{n} \sum_{j=1}^{n+1} 1 + c_4 \sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=n/2}^{n+1} 1 + c_5 \sum_{j=1}^{n} \sum_{j=i}^{n} \sum_{k=n/2}^{n+1} 1 + c_6$$

Simplify this,

$$f(n) = c_1 + c_2(n+1) + c_3 \sum_{i=1}^{n} \sum_{i=1}^{n+1} 1 + c_4 \sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=n/2}^{n+1} 1 + c_5 \sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=n/2}^{n+1} 1 + c_6$$

=

$$f(n) = (c_1 + c_2 + c_6) + (c_2 + c_3)n + c_3 \sum_{1}^{n} \sum_{i=1}^{n+1} 1 + c_4 \sum_{i=1}^{n} \sum_{j=i}^{n} (n - \frac{n}{2} + 1) + c_5 \sum_{i=1}^{n} \sum_{j=i}^{n} (n - \frac{n}{2}) + c_6$$

$$= (c_1 + c_2 + c_6) + (c_2 + c_3)n + \frac{n(n+1)}{2}(c_3 + c_4 + \frac{n}{2}(c_4 + c_5))$$

$$= an^3 + bn^2 + cn + d \in \Theta(n^3)$$

That is $f(n) \in \Theta(g(n))$ which $g(n)=n^3$.