The Fundamental Problem of Econometrics

EC 320: Introduction to Econometrics

Winter 2022

Prologue

Statistics Inform Policy

Policy: In 2017, the University of Oregon started requiring first-year students to live on campus.

Rationale: First-year students who live on campus fare better than those who live off campus.

- 80 percent more likely to graduate in four years.
- Second-year retention rate 5 percentage points higher.
- GPAs 0.13 points higher, on average.

Do these comparisons suggest that the policy will improve student outcomes?

Do they describe the effect of living on campus?

Do they describe **something else?**

Other Things Equal

The UO's interpretation of those comparisons warrants skepticism.

- The decision to live on campus is probably related to family wealth and interest in school.
- Family wealth and interest in school are also related to academic achievement.

Why? The difference in outcomes between those on and off campus is not an *other things equal** comparison.

Upshot: We can't attribute the difference in outcomes solely to living on campus.

^{*} Other things equal = ceteris paribus, all else held constant, etc.

Other Things Equal

A high bar

When all other factors are held constant, statistical comparisons detect causal relationships.

(Micro)economics has developed a comparative advantage in understanding where **other things equal** comparisons can and cannot be made.

- Anyone can retort "correlation doesn't necessarily imply causation."
- Understanding why is difficult, but useful for learning from data.

The Fundamental Problem of Econometrics

Causal Identification

Goal

Identify the effect of a **treatment** on an **outcome**.

Ideal data

Ideally, we could calculate the treatment effect for each individual as

$$Y_{1,i}-Y_{0,i}$$

- $Y_{1,i}$ is the outcome for person i when she receives the treatment.
- $Y_{0,i}$ is the outcome for person i when she does not receive the treatment.
- Known as potential outcomes.

Causal Identification

Ideal data

The ideal data for 10 people

#>		i	trt	y1i	y0i	effect_i
#>	1	1	1	5.01	2.56	2.45
#>	2	2	1	8.85	2.53	6.32
#>	3	3	1	6.31	2.67	3.64
#>	4	4	1	5.97	2.79	3.18
#>	5	5	1	7.61	4.34	3.27
#>	6	6	0	7.63	4.15	3.48
#>	7	7	0	4.75	0.56	4.19
#>	8	8	0	5.77	3.52	2.25
#>	9	9	0	7.47	4.49	2.98
#>	10	10	0	7.79	1.40	6.39

Calculate the causal effect of treatment.

$$au_i=y_{1,i}-y_{0,i}$$

for each individual i.

The mean of τ_i is the average treatment effect (ATE).

Thus,
$$\overline{ au}=3.82$$

Fundamental Problem of Econometrics

Ideal comparison

$$\tau_i = y_{1,i} - y_{0,i}$$

Highlights the fundamental problem of econometrics.

The problem

- If we observe $y_{1,i}$, then we cannot observe $y_{0,i}$.
- If we observe $y_{0,i}$, then we cannot observe $y_{1,i}$.
- Can only observe what actually happened; cannot observe the counterfactual.

Fundamental Problem of Econometrics

A dataset that we can observe for 10 people looks something like

```
i trt v1i
#>
                v0i
#> 1
    1 1 5.01
                NA
#> 2
     2 1 8.85
                NA
    3 1 6.31
#> 3
                NA
#> 4
    4 1 5.97
                NA
#> 5
    5 1 7.61
               NA
    6 0 NA 4.15
#> 6
#> 7
    7 0 NA 0.56
#> 8
    8 0 NA 3.52
#> 9
         0 NA 4.49
#> 10 10
            NA 1.40
```

We can't observe $y_{1,i}$ and $y_{0,i}$.

But, we do observe

- $y_{1,i}$ for i in 1, 2, 3, 4, 5
- $y_{0,j}$ for j in 6, 7, 8, 9, 10

Q: How do we "fill in" the NA's and estimate $\overline{\tau}$?

Estimating Causal Effects

Notation: D_i is a binary indicator variable such that

- $D_i = 1$ if individual i is treated.
- $D_i = 0$ if individual *i* is not treated (*control* group).

Then, rephrasing the previous slide,

- We only observe $y_{1,i}$ when $D_i = 1$.
- We only observe $y_{0,i}$ when $D_i = 0$.

Q: How can we estimate $\bar{\tau}$ using only $(y_{1,i}|D_i=1)$ and $(y_{0,i}|D_i=0)$?

Estimating Causal Effects

Q: How can we estimate $\overline{\tau}$ using only $(y_{1,i}|D_i=1)$ and $(y_{0,i}|D_i=0)$?

Idea: What if we compare the groups' means? *I.e.*,

$$Avg(y_i \mid D_i = 1) - Avg(y_i \mid D_i = 0)$$

Q: When does a simple difference-in-means provide information on the **causal effect** of the treatment?

Q_{2.0}: Is $Avg(y_i \mid D_i = 1) - Avg(y_i \mid D_i = 0)$ a good estimator for $\overline{\tau}$?

Estimating Causal Effects

Assumption: Let $\tau_i = \tau$ for all i.

• The treatment effect is equal (constant) across all individuals i.

Note: We defined

$$\tau_i = \tau = y_{1,i} - y_{0,i}$$

which implies

$$y_{1,i} = y_{0,i} + \tau$$

Q: Is $Avg(y_i \mid D_i = 1) - Avg(y_i \mid D_i = 0)$ a good estimator for τ ?

Difference-in-means

$$egin{aligned} &= Avg(y_i \mid D_i = 1) - Avg(y_i \mid D_i = 0) \ &= Avg(y_{1,i} \mid D_i = 1) - Avg(y_{0,i} \mid D_i = 0) \ &= Avg(au + y_{0,i} \mid D_i = 1) - Avg(y_{0,i} \mid D_i = 0) \ &= au + Avg(y_{0,i} \mid D_i = 1) - Avg(y_{0,i} \mid D_i = 0) \ &= ext{Average causal effect} + ext{Selection bias} \end{aligned}$$

Our proposed difference-in-means estimator gives us the sum of

- 1. τ , the causal, average treatment effect that we want.
- 2. **Selection bias:** How much treatment and control groups differ, on average.

Selection Bias

Problem: Existence of selection bias precludes all else equal comparisons.

• To make valid comparisons that yield causal effects, we need to shut down the bias term.

Potential solution: Conduct an experiment.

- How? Random assignment of treatment.
- Hence the name, randomized control trial (RCT).

Example: Effect of de-worming on attendance

Motivation: Intestinal worms are common among children in less-developed countries. The symptoms of these parasites can keep schoolaged children at home, disrupting human capital accumulation.

Policy Question: Do school-based de-worming interventions provide a cost-effective way to increase school attendance?

Example: Effect of de-worming on attendance

Research Question: How much do de-worming interventions increase school attendance?

Q: Could we simply compare average attendance among children with and without access to de-worming medication?

A: If we're after the causal effect, probably not.

Q: Why not?

A: Selection bias: Families with access to de-worming medication probably have healthier children for other reasons, too (wealth, access to clean drinking water, *etc.*).

Can't make an all else equal comparison. Biased and/or spurious results.

Example: Effect of de-worming on attendance

Solution: Run an experiment.

Imagine an RCT where we have two groups:

- **Treatment:** Villages that where children get de-worming medication in school.
- **Control:** Villages that where children don't get de-worming medication in school (status quo).

By randomizing villages into **treatment** or **control**, we will, on average, include all kinds of villages (poor vs. less poor, access to clean water vs. contaminated water, hospital vs. no hospital, *etc.*) in both groups.

All else equal!

54 villages of varying levels of development plus randomly assigned treatment

Example: Effect of de-worming on attendance

We can estimate the **causal effect** of de-worming on school attendance by comparing the average attendance rates in the treatment group (\bigcirc) with those in the control group (no \bigcirc).

$$Attendance_{Treatment} - Attendance_{Control}$$

Alternatively, we can use the regression

$$Attendance_i = \beta_0 + \beta_1 Treatment_i + u_i$$
 (1)

where $\mathbf{Treatment}_i$ is a binary variable (=1 if village i received the deworming treatment). **Q:** Should trust the results of (1)? Why?

A: On average, **randomly assigning treatment should balance** treatment and control across the other dimensions that affect school attendance.

Randomization can go wrong!

Causality

Example: Returns to education

The optimal investment in education by students, parents, and legislators depends in part on the monetary return to education.

Thought experiment:

- Randomly select an individual.
- Give her an additional year of education.
- How much do her earnings increase?

The change in her earnings describes the **causal effect** of education on earnings.

Causality

Example: Returns to education

Q: Could we simply compare the earnings those with more education to those with less?

A: If we want to measure the causal effect, probably not.

- 1. People choose education based on their ability and other factors.
- 2. High-ability people tend to earn more and stay in school longer.
- 3. Education likely reduces experience (time out of the workforce).

Point (3) also illustrates the difficulty in learning about the effect of education while *holding all else constant*.

Many important variables have the same challenge: gender, race, income.

Causality

Example: Returns to education

Q: How can we estimate the returns to education?

Option 1: Run an experiment.

- Randomly assign education (might be difficult).
- Randomly encourage education (might work).
- Randomly assign programs that affect education (e.g., mentoring).

Option 2: Look for a *natural experiment* (a policy or accident in society that arbitrarily increased education for one subset of people).

- Admissions cutoffs
- Lottery enrollment and/or capacity constraints