# PROJECT 3 DATA CLEANING

Romain Courtois

Hye-Jin Cho-Drugeon

## DATA DESCRIPTION

#### DATA DESCRIPTION

- train.csv: 45,211 rows and 18 columns ordered by date (from May 2008 to November 2010)
- test.csv: 4521 rows and 18 columns with 10% of the examples (4521), randomly selected from train.csv

#### AIM

direct marketing campaigns of a Portuguese banking institution. The marketing campaigns were based on phone calls.

#### **FINANCES**

Term deposits are a major source of income for a bank. A term deposit is a cash investment held at a financial institution. Your money is invested for an agreed rate of interest over a fixed amount of time, or term. The bank has various outreach plans to sell term deposits to their customers such as email marketing, advertisements, telephonic marketing, and digital marketing.



### BANK CLIENT DATA

- 1 age (numeric)
- 2 job : type of job (categorical:
- "admin.", "unknown", "unemployed", "management", "housemaid", "ent repreneur", "student",
- "blue-collar", "self-employed", "retired", "technician", "services")
- 3 marital : marital status (categorical:
- "married", "divorced", "single"; note: "divorced" means divorced or widowed)
- 4 education (categorical:
- "unknown", "secondary", "primary", "tertiary")
- 5 default: has credit in default? (binary: "yes", "no")
- 6 balance: average yearly balance, in euros (numeric)
- 7 housing: has housing loan? (binary: "yes", "no")
- 8 Ioan: has personal Ioan? (binary: "yes", "no")



### BANK CLIENT DATA

- 9 contact: contact communication type (categorical:
- "unknown", "telephone", "cellular")
- 10 day: last contact day of the month (numeric)
- 11 month: last contact month of year (categorical: "jan", "feb",
- "mar", ..., "nov", "dec")
- 12 duration: last contact duration, in seconds (numeric)
- # other attributes:
- 13 campaign: number of contacts performed during this campaign and for this client (numeric, includes last contact)
- 14 pdays: number of days that passed by after the client was last contacted from a previous campaign (numeric, -1 means client was not previously contacted)
- 15 previous: number of contacts performed before this campaign and for this client (numeric)
- 16 poutcome: outcome of the previous marketing campaign (categorical: "unknown", "other", "failure", "success")

|   | age | job     | marital  | education | default | balance | housing | loan | contact   | day  | month | duration | campaign | pdays | previous | poutcome | Bank<br>deposit(target) |
|---|-----|---------|----------|-----------|---------|---------|---------|------|-----------|------|-------|----------|----------|-------|----------|----------|-------------------------|
| 0 | 95  | retired | divorced | primary   | no      | 2282.0  | no      | no   | telephone | 21.0 | apr   | 207.0    | 17.0     | -1.0  | 0.0      | unknown  | yes                     |
| 1 | 95  | retired | married  | secondary | no      | 0.0     | no      | no   | telephone | 1.0  | oct   | 215.0    | 1.0      | -1.0  | 0.0      | unknown  | no                      |
| 2 | 94  | retired | divorced | secondary | no      | 1234.0  | no      | no   | cellular  | 3.0  | mar   | 212.0    | 1.0      | -1.0  | 0.0      | unknown  | no                      |
| 3 | 93  | retired | married  | unknown   | no      | 775.0   | no      | no   | cellular  | 22.0 | jul   | 860.0    | 2.0      | 177.0 | 7.0      | success  | yes                     |
| 4 | 93  | retired | married  | unknown   | no      | 775.0   | no      | no   | cellular  | 4.0  | aug   | 476.0    | 2.0      | 13.0  | 9.0      | success  | yes                     |
| 5 | 92  | retired | married  | unknown   | no      | 775.0   | no      | no   | cellular  | 22.0 | oct   | 313.0    | 3.0      | -1.0  | 0.0      | unknown  | yes                     |
| 6 | 92  | retired | married  | unknown   | no      | 775.0   | no      | no   | cellular  | 26.0 | jan   | 164.0    | 4.0      | 96.0  | 3.0      | success  | yes                     |
| 7 | 90  | retired | divorced | secondary | no      | 1.0     | no      | no   | cellular  | 13.0 | feb   | 152.0    | 3.0      | -1.0  | 0.0      | unknown  | yes                     |
| 8 | 90  | retired | divorced | primary   | no      | 712.0   | no      | no   | telephone | 3.0  | mar   | 557.0    | 1.0      | -1.0  | 0.0      | unknown  | yes                     |
| 9 | 89  | retired | married  | tertiary  | no      | 553.0   | no      | no   | telephone | 19.0 | aug   | 2027.0   | 5.0      | -1.0  | 0.0      | unknown  | no                      |

### STEP1 DATA FRAME HEAD10

```
#Lets count and look at columns names
print(df.columns)
```

#### #We have 17 columns

```
#marital encoding column "marital" as numeric (married: 1
divorced: -1, single; 0)
#education, 27 missing value, 2 bad input (hjkl-unknown,
Tertiary-moved to tertiary) / Unknown 717 + 1 (6 percents)
#default, binary, most frequent method (98 percent
confidence)
#balance, string needed to be float,
#loan, 12 omitting variables, binary, most frequent method
(98 percent confidence)
#contact unknown + 1 bad input (26 percent) except for
cellular and telephone
# month 8 omitting
# campaign: max 43 times for contacting, normal distribution
(maybe)
# pdays, previous: pdays(new customers as -1) and previous's
comparison
# poutcome, no missing but 9214 unknown variables
(encoding column "poutcome" as numeric (unknown: 0 failure:
-1, success; 1 other 0))
```

# Bank deposit

#### CHALLENGE

6 rows, empty
Meta data (4521 rows)
Each column has each problem

| df.dtypes                             |         |
|---------------------------------------|---------|
| age                                   | int32   |
| job                                   | object  |
| marital                               | object  |
| education                             | object  |
| default                               | object  |
| balance                               | float64 |
| housing                               | object  |
| loan                                  | object  |
| contact                               | object  |
| day                                   | float64 |
| month                                 | object  |
| duration                              | float64 |
| campaign                              | float64 |
| pdays                                 | float64 |
| previous                              | float64 |
| poutcome                              | object  |
| Bank deposit(target)<br>dtype: object | object  |

# DATA ANALYSIS DESCRIPTIVE STATISTICS

Clean data

#### columns #1: age is type: <class 'str'>

11222.000000 count 56.411068 mean std 6.141462 min 50.000000 25% 52.000000 50% 55.000000 75% 58.000000 95.000000 max





1000

count 11222 unique 11 top retired freq 2344

Name: job, dtype: object

| retired           | 2344  |
|-------------------|-------|
| management        | 2112  |
| blue-collar       | 1894  |
| technician        | 1375  |
| admin.            | 971   |
| services          | 701   |
| housemaid         | 569   |
| entrepreneur      | 406   |
| self-employed     | 379   |
| unemployed        | 329   |
| unknown           | 142   |
| Name: job, dtype: | int64 |
|                   |       |



count 11216 unique 3 top married freq 8512

Name: marital, dtype: object

married 8512 divorced 2047 single 657

Jod Distribution

technician

PITCH DECK

entrepreneur

self-employed unemployed

housemaid

unknown

Name: marital, dtype: int64



columns #4: education is type: <class 'str'>
Missing values 21

count 11195 unique 6 top secondary freq 4961

Name: education, dtype: object

secondary 4961
primary 2780
tertiary 2735
unknown 717
hjkl 1
Tertiary 1

Name: education, dtype: int64



columns #5: default is type: <class 'str'> Missing values 6

count 11216 unique 2 top no freq 11060

Name: default, dtype: object

no 11060 yes 156

Name: default, dtype: int64

columns #6: balance is type: <class 'str'>
Missing values 6

count 1.121600e+04
mean 7.966974e+03
std 6.421456e+05
min -4.057000e+03
25% 1.080000e+02
50% 6.275000e+02
75% 2.031750e+03

max 6.800000e+07 Name: balance, dtype: float64

columns #7: housing is type: <class 'str'>
Missing values 6

count 11216 unique 2 top no freq 6869

Name: housing, dtype: object

no 6869 yes 4347

Name: housing, dtype: int64

columns #8: loan is type: <class 'str'>
Missing values 12

9

count 11210 unique 2 top no freq 9446

Name: loan, dtype: object

no 9446 yes 1764

Name: loan, dtype: int64

PITCH DECK

```
columns #9: contact is type: <class 'str'>
Missing values 6
count
              11216
unique
top
           cellular
freq
               6814
Name: contact, dtype: object
cellular
              6814
unknown
              2969
telephone
              1432
ghjk
Name: contact, dtype: int64
                Contact Distribution
7000
6000
5000
4000
3000
2000
1000
   0
            cellular
                          unknown
                                        telephone
```

```
columns #10: day is type: <class 'str'>
Missing values 6
         11216.000000
count
            15.786912
mean
std
             8.336913
min
             1.000000
25%
             8.000000
50%
            16.000000
75%
            21.000000
            31.000000
max
Name: day, dtype: float64
```



BITCH DECK







columns #16: poutcome is type: <class 'str'> Missing values 0 11222 count unique unknown top frea 9214 Name: poutcome, dtype: object unknown 9214 failure 1146 485 success 377 other Name: poutcome, dtype: int64

columns #17: Bank deposit(target) is type: <class 'str'>
Missing values 0

count 11222
unique 2

count 11222 unique 2 top no freq 9698

Name: Bank deposit(target), dtype: object

no 9698 yes 1524

Name: Bank deposit(target), dtype: int64

17 Bank deposit(target) Categorical, convert it to True/False







## PROCESS

Analysis of each column

```
#Step 0: 6 lignes ares full empty and will be dropped
df = df.drop(df[df['marital'].isna()].index)
#1 - age (numeric) is in string format and should be convert
to integer (age)
df['age'] = df['age'].astype('Int64')
# 3 - marital: 1 bad imput 'DIV' must be relace by
'divorced', really low impact,
#We encode it in a new column as a numerical category
{'married': 1, 'divorced' : -1, 'single' : 0}
df.loc[df['marital'] == 'DIV','marital'] = 'divorced'
df["n_marital"] = df["marital"].map({'married': 1, 'divorced'
: -1, 'single' : 0})
```

#4 - education #27 missing value, we'll try to impute it using KNN method

#717+1 unknown (6%), we will see wich
impute strategy is best by testing them
#2 bad imput hjkl -> unknown, Tertiary ->
tertiary
#df.loc[(df['education'].str.strip() ==
'primary') & (df['education'].str.strip() ==
'secondary') & (df['education'].str.strip() ==
'tertiary') & (df['education'].str.strip() ==
'unknown')]#,'education'] = 'tertiary'
df.loc[df['education'] == 'hjkl','education'] =
'unknown'

#df["education"].str.replace(r'(.\*Terti.\*)','terti
ary', regex=True,)

```
# 4 - education (categorical:
"unknown","secondary","primary","tertiary")
print('columns #4:', df.columns[3] , ' is type:', type(
df.columns[3]))
print('Missing values',df['education'].isna().sum())
display(df['education'].describe())
print(df['education'].value_counts() )
#5 - default
#Categorical, convert it to True/False
df['b default'] = df['default'] == 'yes'
#6 - balance is string, need to be converted to float(2)
df['balance'] = df['balance'].astype(float)
#7 - housing: has housing loan? (binary: "yes","no")
df['b housing'] = df['housing'] == 'yes'
```

```
#8 - loan Categorical, convert it to True/False
#Missing values 12 ( - 6 dropped ligne) = 6 low impact.
We impute then using most frequent n
df.loc[df['loan'].isna(),'loan'] = 'no'
df['b loan'] = df['loan'] == 'yes'
#9 - contact:
# 1 Bad input ghjk -> unknown
df.loc[df['contact'] == 'ghjk','contact'] = 'unknown'
   #10 - day part of date, need to be concat
```

```
with month in a date
# 11 - month
# 2 missing val We impute the 2 ligne using
most frequent : may
df.loc[df['month'].isna(),'month'] = 'may'
```

```
#12 - duration
#8 - 6 Missing values (6 lignes ares full empty and will be
dropped); We impute the 2 ligne using mean = 2040 (before
removing 2E7 values) after 257.2:
# Max is 20 000 000s = > 231 days let's investigate, 2nd
max = 4918s \rightarrow 20\,000\,000 value will have the mean
assigned
df = df.drop(df[df['duration'] == 20000000].index)
df.loc[df['duration'].isna(),'duration'] = 257
#13 - campaign
#We impute the 2 ligne using mean 3
df.loc[df['campaign'].isna(),'campaign'] = 3
#14 - pdays:
#We impute the 2 ligne using mean 3
df.loc[df['pdays'].isna(),'pdays'] = 35
```

```
#15 - previous
#16 - poutcome
#We can try to encode it as a numerical
category {'unknown': 0, 'success' : 1, 'failure' : -
1, 'other' : 0}
df["n_poutcome"] =
df["poutcome"].map({'unknown': 0, 'success' :
1, 'failure' : -1, 'other' : 0})
7 Bank deposit(target)
```

#17 Bank deposit(target)
#Categorical, convert it to True/False
df['b\_deposit'] = df['Bank deposit(target)'] == 'yes'

# USING SQLALCHEMY TO CONNECT TO DATABASE

## #Read the view v\_performance\_by\_nb\_call

|     | previous | Overal_Percentage |
|-----|----------|-------------------|
| (   | 0.0      | 8.4               |
|     | 1 1.0    | 1.5               |
| - 2 | 2.0      | 1.3               |
| :   | 3.0      | 0.8               |
| 4   | 4.0      | 0.5               |
|     | 5.0      | 0.3               |
| (   | 6.0      | 0.2               |
|     | 7.0      | 0.2               |
|     | 8.0      | 0.1               |
| 9   | 9.0      | 0.1               |
| 10  | 0 10.0   | 0.1               |
| 1   | 1 11.0   | 0.1               |
| 13  | 12.0     | 0.0               |
| 1   | 3 13.0   | 0.0               |
| 14  | 4 14.0   | 0.0               |
| 1   | 5 20.0   | 0.0               |



# THANK YOU