MI-PAA

úkol č.1

Řešení problému batohu metodou hrubé síly a jednoduchou heuristikou

Zadání

- Naprogramujte řešení problému batohu hrubou silou. Na zkušebních datech pozorujte závislost výpočetního času na n.
- Naprogramujte řešení problému batohu heuristikou podle poměru cena/váha. Pozorujte závislost
 - výpočetního času na n. Grafy jsou vítány (i pro exaktní metodu).
 - o průměrnou a maximální relativní chybu (tj. zhoršení proti exaktní metodě)

Řešení

Řešení problému hrubou silou bylo implementováno jako jednoduchý rekurzivní algoritmus. Pro implementaci byl použit jazyk C++ na platformě GNU/Linux. Údaje byly měřeny na desktopové stanici s dostatečným množstvím DDR2 1066MHz paměti, procesorem je Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00GHz.

Naměřené výsledky

velikost instance	prumerny cas brute force [s]	prumerny heuristicky cas [s]	maximalni chyba [%]	prumerna chyba [%]
4	0,00000030754505157474	0,00000011929207324976	0,48292682926829300000	0,03140361771980960000
10	0,00001055717470000000	0,00000036232281684876	0,18877057115198500000	0,02082283005675480000
15	0,00033995151522000000	0,00000059359704971314	0,08542713567839200000	0,00472882222370344000
20	0,01077801227566000000	0,00000079097378253932	0,08433734939759030000	0,00674564275489279000
22	0,04590893268584000000	0,00000094100529193884	0,07228915662650600000	0,00945376257003097000
25	0,36850724697110000000	0,00000104347995758062	0,03678929765886290000	0,00505037064478142000
27	1,38243263244640000000	0,00000114994716167452	0,10601719197707700000	0,00560359896795596000
30	11,15385844707490000000	0,00000131702138900758	0,05513784461152880000	0,00547567373601328000
32	44,30237143516530000000	0,00000139675023555760	0,03340757238307350000	0,00351967356438928000
35	359,73628925800300000000	0,00000155824428081524	0,04609218436873750000	0,00359773290223546000
37		0,00000161135660171508	0,08196721311475410000	0,00356108627803350000
40		0,00000173261894226074	0,02337228714524210000	0,00203439167823683000

Vizualizace výsledků

Průměrná doba trvání výpočtu hrubou silou [s]

Zde chybí dvě instance, o 37 a 40 prvcích, neboť výpočetní složitost takového problému je exponenciální, a při sedmatřiceti prvcích v instanci je to již nad mé možnosti. Řešení těchto instancí bylo převzato z nabídnutého řešení.

Průměrná doba výpočtu jednoduchou heuristikou [s]

Vzhledem k velmi nízkým časům při výpočtu touto heuristickou metodou byl každý konkrétní problém opakován milionkrát, aby bylo možné vůbec nějaký čas změřit. Tato data jsou již převedena na jednotkový výpočet.

Maximální chyba heuristiky nad danou instancí [%]

Tato veličina není příliš vypovídající, neboť je příliš závislá na konkrétní sadě vstupních dat, tedy její částečná snižující se tendenčnost není žádným pravidlem. I u početnější instance by stačila jediná sada "špatných" dat, a ihned by chybovost mohla stoupnout, ačkoli to není příliš pravděpodobné.

Průměrná chyba heuristiky [%]

Tato veličina je již oproti předchozí smysluplnější – ukazuje, jak moc je zvolená heuristika úspěšná v dlouhodobém měřítku. Zde je vidět, že její výsledky jsou velmi dobré, ne horší než 3,5%.

Závěr

Chyby heuristik lze jen težko zobecňovat, neboť na přesné hodnocení je ve vzorcích příliš málo dat. Nicméně lze vysledovat trend zpřesňování nad velkým množstvím předmětů v batohu, zde se díky průměrování chyba zmenšuje.