

MDP: Markov Decision Problem

Outline

- Markov decision problem
- Optimal state-value function and optimal action-value function
- Value iteration
- Example

- A framework for sequential decision making of a single agent
- Markovian transition model and fully observable
 - i.e., we assume it verifies the Markov property and $s_t = \theta_t$
- Planning horizon can be infinite

- We can formally define an MDP with following elements:
 - Discrete time t = 0, 1, 2, ...
 - A discrete set of states $s \in S$
 - A discrete set of actions $a \in A$
 - A stochastic transition model P(s'|s,a)
 - the world transitions stochastically to state s' when the agent takes action a at state s
 - A reward function $R: S \times A \rightarrow \mathbb{R}$
 - An agent receives a reward R(s, a) when it takes action a at state s
 - A discount rate γ

- The task of the agent is to maximize a function of accumulated reward over its planning horizon
- A standard function is the discounted future reward:

$$R(s_t, a_t) + \gamma R(s_{t+1}, a_{t+1}) + \gamma^2 R(s_{t+2}, a_{t+2}) + \dots$$

- where γ is the **discount rate** and $0 \le \gamma \le 1$
 - γ is a value between 0 and 1 in order to ensure the sum remains finite for infinite horizon

Which trajectory would you choose?

What is the best sequence of actions in this MDP?

Discounted future reward for the blue trajectory:

$$0 + \gamma 0 + \gamma^2 0 + \gamma^3 0 + \gamma^4 0 + \gamma^5 0 + \gamma^6 0 + \gamma^7 0 + \gamma^8 100$$

Discounted future reward for the red trajectory:

$$0 + \gamma 0 + \gamma^2 100$$

The red sequence has the highest value!

■ A stationary policy $\pi: S \to A$ of the agent in an MDP is a mapping $\pi(s)$ from states to actions.

$$\pi: S \to A$$

- Different policies will produce different discounted future rewards
 - Each policy will take the agent through different trajectories

■ **Definition**: the **state-value function** of a state s under a policy π is the expected return the agent can receive when starting in state s and then following policy π :

$$V^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) | s_{0} = s, a_{t} = \pi(s_{t})\right]$$

Definition: the **action-value function (Q-values)** of taking an action a in state s under a policy π is the expected return the agent can receive when starting in state s, taking action a, and then following policy π :

$$Q^{\pi}(s,a) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) | s_{0} = s, a_{0} = a, a_{t>0} = \pi(s_{t})\right]$$

Outline

- Markov decision problem
- Optimal state-value function and optimal action-value function
- Value iteration
- Example

• A policy π is defined to be better than or equal to a policy π' if the expected return of π is greater or equal to expected return of π' :

$$\pi \geq \pi'$$
 if and only if $V^{\pi}(s) \geq V^{\pi'}(s)$, for all $s \in S$

- There is always at least one policy that is better than or equal to all other policies, which is the optimal policy
 - Note that an MDP might have more than one optimal policy
 - We denote all the optimal polices by π^*

• These policies π^* share the same state-value function, called **optimal** state-value function, with the following definition:

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$
, for all $s \in S$

• These policies π^* also share the same action-value function, called **optimal action-value function**, with the following definition:

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$$
, for all $s \in S$ and $a \in A$

- But how do we find this optimal policy?
 - Naïve solution: compute the state-value function for all policies

Outline

- Markov decision problem
- Optimal state-value function and optimal action-value function
- Value iteration
- Example

• Lets us now define the **stationary policy** π of the agent in an MDP as a mapping from states to a distribution over actions

$$\pi: S \to \Delta(A)$$

■ An example of a distribution for an MDP with $S = \{x, y\}$, $A = \{b, c\}$, P, R:

$$\pi = \begin{bmatrix} 1 & 0 \\ 0.5 & 0.5 \end{bmatrix}$$

- Thus, we can use the notation $\pi(a|s)$
 - For instance, $\pi(a = b | s = x) = 1$

$$V^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) | s_{0} = s, a_{t} = \pi(s_{t})\right]$$

$$V^{\pi}(s) = E_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} R_{t} \mid s_{0} = s \right]$$

$$V^{\pi}(s) = E_{\pi}[R_0 + \gamma R_1 + \gamma^2 R_2 + \dots | s_0 = s]$$

$$V^{\pi}(s) = E_{\pi}[R_0 + \gamma R_1 + \gamma^2 R_2 + \dots | s_0 = s]$$

$$V^{\pi}(s) = E_{\pi}[R_0 + \gamma(R_1 + \gamma R_2 + \cdots) | s_0 = s]$$

$$V^{\pi}(s) = E_{\pi}[R_0|s_0 = s] + E_{\pi}[\gamma(R_1 + \gamma R_2 + \cdots)|s_0 = s]$$

$$V^{\pi}(s) = R_{\pi}(s) + E_{\pi}[\gamma(R_1 + \gamma R_2 + \cdots) | s_0 = s]$$

Policy-averaged reward

Policy-averaged probabilities

$$V^{\pi}(s) = R_{\pi}(s) + \gamma \sum_{s' \in S} P_{\pi}(s'|s) V^{\pi}(s')$$

We now take recursion

$$V^{\pi}(s) = R_{\pi}(s) + \gamma \sum_{s' \in S} P_{\pi}(s'|s) V^{\pi}(s')$$

And make the following substitutions

$$V^{\pi}(s) = \sum_{a \in A} \pi(a|s)R(s,a) + \gamma \sum_{s' \in S} \sum_{a \in A} \pi(a|s)P(s'|s,a)V^{\pi}(s')$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(a|s) \left[R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V^{\pi}(s') \right]$$

$$Q^{\pi}(s,a)$$

■ The **optimal state-value function** can be written in a special form without reference to a specific policy (so-called **Bellman equation**):

$$V^*(s) = \max_{a \in A} \left[R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^*(s') \right]$$

■ A similar recursive equation holds for the **Q-values**:

$$Q^*(s, a) = R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) \max_{a' \in A} Q^*(s', a')$$

Value Iteration

Value iteration is a simple and efficient method for computing optimal values in an MDP

Value Iteration

- We initialize arbitrarily a state-value function (e.g., with zeros, ones, etc.)
- Then we iteratively apply the Bellman equation (in the previous slides) turned into an assignment operation:

$$Q(s,a) \coloneqq R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V(s'), \ \forall s, \forall a$$
$$V(s) \coloneqq \max_{a \in A} Q(s,a), \forall s$$

 Repeat the above two equations until V does not change significantly between two consecutive steps

Value Iteration

- Value iteration converges to the optimal Q^* for any initialization
- lacktriangle After computing the optimal Q^* , we can extract the policy as follows:

$$\pi^*(s) \in \operatorname*{argmax}_{a \in A} Q^*(s, a)$$

Outline

- Markov decision problem
- Optimal state-value function and optimal action-value function
- Value iteration
- Example

We have the following MDP:

$$S = \{1, 2, 3\}$$

$$\bullet A = \{left, right\}$$

$$P(s'|s, a = left) = \begin{bmatrix} 1 & 0 & 0 \\ 0.8 & 0.2 & 0 \\ 0 & 0.8 & 0.2 \end{bmatrix}$$

$$P(s'|s, a = right) = \begin{bmatrix} 0.2 & 0.8 & 0 \\ 0 & 0.2 & 0.8 \\ 0 & 0 & 1 \end{bmatrix}$$

We have the following MDP:

$$R(s,a) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$$

•
$$\gamma = 0.9$$

- Let us use value iteration:
 - We initialize state-value function with ones

$$V = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

• we iteratively apply the following equation (i = 0)

$$Q(s,a) \coloneqq R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V(s'), \ \forall s, \forall a$$

$$Q(1, left) \coloneqq 0 + 0.9(1 \times 1 + 0 \times 1 + 0 \times 1) = 0.9$$

 $Q(2, left) \coloneqq 0 + 0.9(0.8 \times 1 + 0.2 \times 1 + 0 \times 1) = 0.9$
 $Q(3, left) \coloneqq 1 + 0.9(0 \times 1 + 0.8 \times 1 + 0.2 \times 1) = 1.9$

$$Q(1,right) \coloneqq 0 + 0.9(0.2 \times 1 + 0.8 \times 1 + 0 \times 1) = 0.9$$

 $Q(2,right) \coloneqq 0 + 0.9(0 \times 1 + 0.2 \times 1 + 0.8 \times 1) = 0.9$
 $Q(3,right) \coloneqq 1 + 0.9(0 \times 1 + 0 \times 1 + 1 \times 1) = 1.9$

• we iteratively apply the following equations (i = 0)

$$Q(s,a) \coloneqq R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a)V(s'), \ \forall s, \forall a$$

$$Q = \begin{bmatrix} 0.9 & 0.9 \\ 0.9 & 0.9 \\ 1.9 & 1.9 \end{bmatrix}$$

$$V(s) \coloneqq \max_{a \in A} Q(s, a), \forall s$$

$$V = \begin{bmatrix} 0.9 \\ 0.9 \\ 1.9 \end{bmatrix}$$

• we iteratively apply the following equation (i = 1)

$$Q(s,a) \coloneqq R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V(s'), \ \forall s, \forall a$$

$$Q(1, left) \coloneqq 0 + 0.9(1 \times 0.9 + 0 \times 0.9 + 0 \times 1.9) = 0.81$$

 $Q(2, left) \coloneqq 0 + 0.9(0.8 \times 0.9 + 0.2 \times 0.9 + 0 \times 1.9) = 0.81$
 $Q(3, left) \coloneqq 1 + 0.9(0 \times 0.9 + 0.8 \times 0.9 + 0.2 \times 1.9) = 1.99$

$$Q(1,right) \coloneqq 0 + 0.9(0.2 \times 0.9 + 0.8 \times 0.9 + 0 \times 1.9) = 0.81$$

 $Q(2,right) \coloneqq 0 + 0.9(0 \times 0.9 + 0.2 \times 0.9 + 0.8 \times 1.9) = 1.53$
 $Q(3,right) \coloneqq 1 + 0.9(0 \times 0.9 + 0 \times 0.9 + 1 \times 1.9) = 2.71$

• we iteratively apply the following equations (i = 1)

$$Q(s,a) \coloneqq R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a)V(s'), \ \forall s, \forall a$$

$$Q = \begin{bmatrix} 0.81 & 0.81 \\ 0.81 & 1.53 \\ 1.99 & 2.71 \end{bmatrix}$$

$$V(s) \coloneqq \max_{a \in A} Q(s, a), \forall s$$

$$V = \begin{bmatrix} 0.81 \\ 1.53 \\ 2.71 \end{bmatrix}$$

• we iteratively apply the following equations (i = 2)

$$Q(s,a) \coloneqq R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a)V(s'), \ \forall s, \forall a$$

$$Q = \begin{bmatrix} 0.73 & 1.25 \\ 0.86 & 2.23 \\ 2.59 & 3.44 \end{bmatrix}$$

$$V(s) \coloneqq \max_{a \in A} Q(s, a), \forall s$$

$$V = \begin{bmatrix} 1.25 \\ 2.23 \\ 3.44 \end{bmatrix}$$

• After a few iterations...

• we iteratively apply the following equations (i = 47)

$$Q(s,a) \coloneqq R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V(s'), \ \forall s, \forall a$$

$$Q = \begin{bmatrix} 6.88 & 7.65 \\ 7.07 & 8.72 \\ 9.06 & 9.94 \end{bmatrix}$$

$$V(s) \coloneqq \max_{a \in A} Q(s, a), \forall s$$

$$V = \begin{bmatrix} 7.65 \\ 8.72 \\ 9.94 \end{bmatrix}$$

• we iteratively apply the following equations (i = 48)

$$Q(s, a) := R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V(s'), \ \forall s, \forall a$$

$$Q = \begin{bmatrix} 6.89 & 7.66 \\ 7.08 & 8.73 \\ 9.07 & 9.95 \end{bmatrix}$$

$$V(s) \coloneqq \max_{a \in A} Q(s, a), \forall s$$

$$V = \begin{bmatrix} 7.66 \\ 8.73 \\ 9.95 \end{bmatrix}$$

lacktriangle The algorithm repeated until V did not change significantly between two consecutive steps.

Result:

$$V^* = \begin{bmatrix} 7.66 \\ 8.73 \\ 9.95 \end{bmatrix}$$

$$Q^* = \begin{bmatrix} 6.89 & 7.66 \\ 7.08 & 8.73 \\ 9.07 & 9.95 \end{bmatrix}$$

• After computing the optimal Q^* , we can extract the policy as follows:

$$\pi^*(s) \in \operatorname*{argmax} Q^*(s, a)$$
 $a \in A$

$$\pi^* = egin{bmatrix} right \ right \end{bmatrix}$$

Python Code

```
import numpy as np
np.set_printoptions(precision=2, suppress=True)
# States
S = ['1', '2', '3']
# Actions
A = ['L', 'R']
# Transition probabilities
L = np.array([[1.0, 0.0, 0.0],
              [0.8, 0.2, 0.0],
              [0.0, 0.8, 0.2]])
R = np.array([[0.2, 0.8, 0.0],
              [0.0, 0.2, 0.8],
              [0.0, 0.0, 1.0]])
P = [L, R]
# Reward function
R = np.array([[0.0, 0.0],
              [0.0, 0.0],
              [1.0, 1.0]])
gamma = 0.9
```

Python Code

```
# Initialize V
V = np.ones(len(S))
err = 1
i = 0
while err > 1e-2:
    0 = []
    # Compute Q-values associated with each action
    for a in range(len(A)):
        Q \leftarrow [R[:, a] + gamma * P[a].dot(V)]
    print('Q values at time ',i)
    print(Q)
    # Compute maximum for each state
    Vnew = np.max(Q, axis=0)
    print('V-function at time ',i)
    print(Vnew)
    # Compute error
    err = np.linalg.norm(V - Vnew)
    # Update V
    V = Vnew
    i += 1
print('\nV* =')
print(V[:, None])
print('\nQ* =')
print(Q)
```

Thank You

sardinha@inf.puc-rio.br