Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	6
1.2 Описание выходных данных	7
2 МЕТОД РЕШЕНИЯ	9
3 ОПИСАНИЕ АЛГОРИТМОВ	10
3.1 Алгоритм метода Create класса Class	10
3.2 Алгоритм метода SumPara класса Class	10
3.3 Алгоритм метода ProizPara класса Class	11
3.4 Алгоритм метода Print класса Class	11
3.5 Алгоритм конструктора класса Class	12
3.6 Алгоритм функции func	12
3.7 Алгоритм функции main	13
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	15
5 КОД ПРОГРАММЫ	20
5.1 Файл Class.cpp	20
5.2 Файл Class.h	21
5.3 Файл main.cpp	22
6 ТЕСТИРОВАНИЕ	24
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОИНИКОВ	25

1 ПОСТАНОВКА ЗАДАЧИ

Дан объект следующей конструкции:

В закрытом доступе имеется массив целого типа и поле его длины. Количество элементов массива четное и больше двух. Объект имеет функциональность:

- Конструктор по умолчанию, вначале работы выдает сообщение;
- Параметризированный конструктор, передается целочисленный параметр. Параметр должен иметь значение больше 2 и быть четным. Вначале работы выдает сообщение;
- Конструктор копии, обеспечивает создание копии объекта в новой области памяти. Вначале работы выдает сообщение;
- Метод деструктор, который в начале работы выдает сообщение;
- Метод который создает целочисленный массив в закрытой области, согласно ранее заданной размерности.
- Метод ввода данных для созданного массива;
- Метод 1, который суммирует значения очередной пары элементов и сумму присваивает первому элементу пары. Например, пусть массив состоит из элементов {1,2,3,4}. В результате суммирования пар получим массив {3,2,7,4};
- Метод 2, который умножает значения очередной пары элементов и результат присваивает первому элементу пары. Например, пусть массив состоит из элементов {1,2,3,4}. В результате умножения пар получим массив {2,2,12,4};
- Метод который, суммирует значения элементов массива и возвращает это значение;
- Метод последовательного вывода содержимого элементов массива,

которые разделены тремя пробелами.

Разработать функцию func, которая имеет один целочисленный параметр, содержащий размерность массива. В функции должен быть реализован алгоритм:

- 1. Создание локального объекта с использованием параметризированного конструктора.
- 2. Возврат созданного локального объекта.

В основной функции реализовать алгоритм:

- 1. Ввод размерности массива.
- 2. Если размерность массива некорректная, вывод сообщения и завершить работу алгоритма.
- 3. Вывод значения размерности массива.
- 4. Создание первого объекта.
- 5. Присвоение первому объекту результата работы функции func с аргументом, содержащим значение размерности массива.
- 6. Для первого объекта вызов метода создания массива.
- 7. Для первого объекта вызов метода ввода данных массива.
- 8. Для первого объекта вызов метода 2.
- 9. Инициализация второго объекта первым объектом.
- 10. Вызов метода 1 для второго объекта.
- 11. Вывод содержимого массива первого объекта.
- 12. Вывод суммы элементов массива первого объекта.
- 13. Вывод содержимого массива второго объекта.
- 14. Вывод суммы элементов массива второго объекта.

1.1 Описание входных данных

Первая строка:

```
«Целое число»
Вторая строка:
«Целое число» «Целое число» . . .
Пример:
```

4 3 5 1 2

1.2 Описание выходных данных

Если введенная размерность массива допустима, то в первой строке выводится это значение:

«Целое число»

Если введенная размерность массива не больше двух или нечетная, то в первой строке выводится некорректное значение и вопросительный знак:

«Целое число»?

Конструктор по умолчанию в начале работы с новой строки выдает сообщение:

Default constructor

Параметризированный конструктор в начале работы с новой строки выдает сообщение:

Constructor set

Конструктор копии в начале работы с новой строки выдает сообщение:

Copy constructor

Деструктор в начале работы с новой строки выдает сообщение:

Destructor

Метод последовательного вывода содержимого элементов массива, с новой строки выдает:

«Целое число» «Целое число» «Целое число» . . .

Пример вывода:

4
Default constructor
Constructor set
Destructor
Copy constructor
15 5 2 2
24
20 5 4 2
31
Destructor
Destructor

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

• функция func для создание локального объекта с помощью параметризированного конструктора и его возврата.

Класс Class:

- функционал:
 - метод Create создает целочисленный массив в закрытой области согласно ранее заданной размерности;
 - о метод SumPara суммирует значения очередной пары элементов и сумму присваевает первому элементу пары;
 - о метод ProizPara умножает значения очередной пары элементов и результат присваевает первому элементу пары;
 - о метод Print выводит содержимое массива, элементы разделены тремя пробелами;
 - о метод Class(int n) параметризированный конструктор, принимающий параметр типа int и присваивающий его значение значению закрытого поля объекта.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм метода Create класса Class

Функционал: создает целочисленный массив в закрытой области согласно ранее заданной размерности.

Параметры: none.

Возвращаемое значение: none.

Алгоритм метода представлен в таблице 1.

Таблица 1 – Алгоритм метода Create класса Class

N₂	Предикат	Действия	No
			перехода
1		создание целочисленного массива mas размерности п	Ø

3.2 Алгоритм метода SumPara класса Class

Функционал: суммирует значения очередной пары элементов и сумму присваевает первому элементу пары.

Параметры: none.

Возвращаемое значение: none.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода SumPara класса Class

N₂	Предикат	Действия	No
			перехода
1	инициализация переменной і типа int со значением		2

N₂	Предикат	Действия	No
			перехода
		0	
2	i <n< td=""><td>присвоение значению i-го элемента массива mas</td><td>3</td></n<>	присвоение значению i-го элемента массива mas	3
		значения суммы і-го элемента массива mas и	
		следующего от него элемента массива mas	
			Ø
3		увеличение значения переменной і на 2	2

3.3 Алгоритм метода ProizPara класса Class

Функционал: умножает значения очередной пары элементов и результат присваевает первому элементу пары.

Параметры: none.

Возвращаемое значение: none.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода ProizPara класса Class

N₂	Предикат	Действия	N₂
			перехода
1		инициализация переменной і типа int со значением	2
		0	
2	i <n< td=""><td colspan="2">присвоение значению i-го элемента массива mas 3</td></n<>	присвоение значению i-го элемента массива mas 3	
		значения произведения i-го элемента массива mas	
		и следующего от него элемента массива mas	
			Ø
3		увеличение значения переменной і на 2	2

3.4 Алгоритм метода Print класса Class

Функционал: выводит содержимое массива, элементы разделены тремя пробелами.

Параметры: none.

Возвращаемое значение: none.

Алгоритм метода представлен в таблице 4.

Таблица 4 – Алгоритм метода Print класса Class

No	Предикат	Действия	No
			перехода
1		инициализация переменной і типа int со значением	2
		0	
2	i <n< td=""><td>вывод значения i-го элемента массива mas</td><td>3</td></n<>	вывод значения i-го элемента массива mas	3
			Ø
3	i!=(n-1)	вывод трех пробелов	4
			4
4		инкремент і	2

3.5 Алгоритм конструктора класса Class

Функционал: параметризированный конструктор, принимающий параметр типа int и присваивающий его значение значению закрытого поля объекта.

Параметры: int n.

Алгоритм конструктора представлен в таблице 5.

Таблица 5 – Алгоритм конструктора класса Class

No	Предикат	Действия	No
			перехода
1		вывод "Constructor set"	2
2		Свойству п присваевается значение параметра п	Ø

3.6 Алгоритм функции func

Функционал: создает локальный объект с помощью параметризированного конструктора и возвращает его.

Параметры: int size.

Возвращаемое значение: Class.

Алгоритм функции представлен в таблице 6.

Таблица 6 – Алгоритм функции func

N₂	Предикат	Действия	No
			перехода
1		создание локального объекта loc с параметром size	2
2		возврат объекта loc	Ø

3.7 Алгоритм функции main

Функционал: запуск программы.

Параметры: none.

Возвращаемое значение: код ошибки (int).

Алгоритм функции представлен в таблице 7.

Таблица 7 – Алгоритм функции таіп

N₂	Предикат	Действия	No
			перехода
1		объявление переменной size типа int	2
2		вывод значения переменной size	3
3	size<=2 or size %2!=0	вывод значения переменной size со знаком вопроса	18
			4
4		вывод значения переменной size	5
5		вывод переноса на новую строку	6
6		создание объекта obj1 класса Class	7
7		присвоение объекту obj1 значения работы функции func(size)	
8		вывод переноса на новую строку	
9		вызов метода Create объекта obj1	10

N₂	Предикат	Действия	
10		вызов метода Input объекта obj1	11
11		вызов метода ProizPara объекта obj1	12
12		инициализация объекта obj2 класса Class объектом	13
		obj1	
13		вызов метода SumPara объекта obj2	14
14		вызов метода Print объекта obj1	15
15		вывод результата работы метода Sum объекта obj1	
		и переноса на новую строку	
16		вызов метода Print объекта obj2	17
17		вывод результата работы метода Sum объекта obj2	18
18		возврат значения 0	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-5.

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

Рисунок 4 – Блок-схема алгоритма

Рисунок 5 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл Class.cpp

Листинг 1 – Class.cpp

```
#include "Class.h"
#include <iostream>
using namespace std;
Class::Class()
  cout<<"Default constructor"<<endl;</pre>
Class::Class(int n)
  cout<<"Constructor set";
  mas=new int[n];
  this->n=n;
Class::Class(const Class& obj)
  cout<<"Copy constructor"<<endl;</pre>
  n=obj.n;
  mas=new int[n];
  for (int i=0; i<n; i++)
     mas[i]=obj.mas[i];
  }
Class::~Class()
  cout<<endl<<"Destructor";</pre>
  if (mas!=nullptr)
      delete[] mas;
void Class::Input()
  int x;
  for (int i=0; i<n; i++)
      cin>>x;
```

```
mas[i]=x;
  }
}
void Class::SumPara()
  for (int i=0; i<this->n; i+=2)
     mas[i]=mas[i]+mas[i+1];
  }
void Class::ProizPara()
  for (int i=0; i<this->n; i+=2)
     mas[i]=mas[i]*mas[i+1];
int Class::Sum()
  int s=0;
  for (int i=0; i<this->n; i++)
     s+=mas[i];
  return s;
void Class::Create()
  this->mas=new int[n];
void Class::Print()
  for (int i=0; i<n; i++)
     cout<<mas[i];</pre>
     if (i!=(n-1))
        cout<<" ";
}
```

5.2 Файл Class.h

Листинг 2 – Class.h

```
#ifndef __CLASS__H
#define __CLASS__H
using namespace std;
```

```
class Class
  private:
     int n;
     int *mas;
  public:
     Class();
     Class(int n);
     Class(const Class& obj);
     ~Class();
     void Create();
     void Input();
     void SumPara();
     void ProizPara();
     int Sum();
     void Print();
};
#endif
```

5.3 Файл таіп.срр

Листинг 3 – main.cpp

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "Class.h"
using namespace std;
Class func(int size)
  Class loc(size);
  return loc;
int main()
  int size;
  cin>>size;
  if (size<=2||size%2!=0)
     cout<<size<<"?";
     return 0;
  cout<<size;
  cout << end1;
  Class obj1;
```

```
obj1=func(size);
  cout<<endl;
  obj1.Create();
  obj1.Input();
  obj1.ProizPara();
  Class obj2(obj1);
  obj2.SumPara();
  obj1.Print();
  cout<<endl<<obj1.Sum()<<endl;
  obj2.Print();
  cout<<endl<<obj1.Sum();
  return 0;
}</pre>
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 8.

Таблица 8 – Результат тестирования программы

Входные данные	Ожидаемые выходные	Фактические выходные
	данные	данные
4 3 5 1 2	4 Default constructor Constructor set Destructor Copy constructor 15 5 2 2 24 20 5 4 2 31 Destructor Destructor	4 Default constructor Constructor set Destructor Copy constructor 15 5 2 2 24 20 5 4 2 31 Destructor Destructor

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).