On-the-fly steady-state detection for time-bounded reachability in CTMCs

Ivan S. Zapreev, Joost-Pieter Katoen

University of Twente, RWTH Aachen

July 6, 2006

- Introduction
- 2 Model Checking CSL formulas
- 3 Numerical computation of $Prob(s, \Phi U^{[0,t]} \Psi)$
- 4 Steady-state detection and $Prob(s, \Phi U^{[0,t]} \Psi)$, overview
- 5 The Fox-Glynn error-bound refinement
- 6 Steady-state detection, error-bound refinement
- Improved steady-state detection
- 8 Experiments
- Related works
- Conclusions
- Literature

- Introduction
- 2 Model Checking CSL formulas
- 3 Numerical computation of $Prob(s, \Phi U^{[0,t]} \Psi)$
- 4 Steady-state detection and $Prob(s, \Phi U^{[0,t]} \Psi)$, overview
- 5 The Fox-Glynn error-bound refinement
- 6 Steady-state detection, error-bound refinement
- Improved steady-state detection
- 8 Experiments
- Related works
- Conclusions
- Literature

DTMC & CTMC

Definition

A Discrete-time Markov Chain (*DTMC*) is a tuple (S, \mathcal{P}) with S as a finite set of states, $\mathcal{P}: S \times S \to [0, 1]$, where $\mathcal{P} = (p_{i,j})$ and $\forall i \in S: \sum_{j=1}^{|S|} p_{i,j} = 1$, as a state-transition probability matrix.

Definition

A Continuous-time Markov Chain (*CTMC*) is a tuple (S, Q) with S as a finite set of states, $Q: S \times S \to \mathcal{R}_{\geq 0}$, where $Q = (q_{i,j})$ and $\forall i \in S: q_{i,i} = -\sum_{j,\ i \neq j} q_{i,j}$, as a generator matrix. Here $\forall i \neq j,\ q_{i,j}$ defines the rate of going from state i to j.

Stationary probabilities, DTMC (Haverkort, 1998)

Definition

The stationary or steady-state probability of a DTMC is a vector $\overrightarrow{p^*(0)}$ such that:

$$\overrightarrow{p^*(0)} = \lim_{n \to \infty} \overrightarrow{p(0)} \cdot \mathcal{P}^n \tag{1}$$

where $\overrightarrow{p(0)}$ is the initial distribution.

Theorem

An irreducible and aperiodic DTMC with positive recurrent states, has a unique limiting distribution (1) which does not depend on the initial distribution $\overrightarrow{p(0)}$.

Power Iterations (Stewart, 1994)

Definition

For a stochastic matrix \mathcal{P} :

$$\overrightarrow{p(0,i)} = \overrightarrow{p(0)} \cdot \mathcal{P}^i, \ \overrightarrow{p(0)} - \text{initial vector}$$

Theorem

If $\mathcal P$ is aperiodic and irreducible then the Power Method is guaranteed to converge to some $\overrightarrow{p^*}$.

Lemma

For a stochastic matrix \mathcal{P} , the number of iterations K needed to satisfy a tolerance criterion ϵ may be approximated by:

$$K = \frac{\log \epsilon}{\log |\lambda_2|}, \ \lambda_2 - subd. \ e.v. \ of \mathcal{P}$$

Convergence (Stewart, 1994)

Tests for convergence

- Absolute: $\|\overrightarrow{p(0,i)} \overrightarrow{p(0,i+M)}\|_{V}^{\infty} \le \epsilon$, for some M.
- Relative: $\max_{j} \left(\frac{|\overrightarrow{p(s,i+M)_{j}} \overrightarrow{p(s,i)_{j}}|}{|\overrightarrow{p(s,i+M)_{j}}|} \right) < \epsilon$
- **.** . .

Warning!

It is best to envisage a battery of convergence tests, all of which must be satisfied before the approximation is accepted as being sufficiently accurate.

- Introduction
- Model Checking CSL formulas
- 3 Numerical computation of $Prob(s, \Phi U^{[0,t]} \Psi)$
- 4 Steady-state detection and $Prob(s, \Phi U^{[0,t]} \Psi)$, overview
- **1** The Fox-Glynn error-bound refinement
- 6 Steady-state detection, error-bound refinement
- Improved steady-state detection
- 8 Experiments
- Related works
- Conclusions
- Literature

CSL logic (Baier et al., 2003)

The syntax of CSL logic

$$SF ::= tt|a \in \mathcal{AP}|\neg SF|SF \land SF|S_{\leq p}(s, SF)|P_{\leq p}(s, PF)$$

$$PF ::== X^{[0, t]} SF|SF U^{[0, t]} SF$$

Where

 \mathcal{AP} atomic propositionss initial stateSF state formulap probability boundPF path formulat time boundPF states satisfying PF

Forward computations (Baier et al., 2003)

Reduce to transient analysis

Compute $Prob(s, \Phi U^{[0,t]} \Psi)$:

- **1** Obtain a generator matrix $\mathcal{Q}[\neg \Phi \lor \Psi]$
- Compute the transient probabilities vector

$$\overrightarrow{\pi^*(s,t)} = \overrightarrow{1_s} \cdot e^{\mathcal{Q}[\neg \Phi \lor \Psi]t}$$
 (2)

3 Compute $Prob(s, \Phi U^{[0,t]} \Psi) = \sum_{j \in Sat(\Psi)} \pi^*(s,t)_j$

Where

 $\overrightarrow{l_s}$ is the initial distribution for the case when we start in the s state.

Backward computations (Katoen et al., 2001)

Change

Instead of computing (2) compute:

$$\overrightarrow{\pi^*(t)} = e^{\mathcal{Q}[\neg \Phi \lor \Psi]t} \cdot \overrightarrow{i_{\Psi}}$$
 (3)

Advantages

- $\forall s \in 1, ..., N : \pi^*(t)_s = Prob(s, \Phi U^{[0,t]} \Psi)$
- Better time complexity

Where

 $\overrightarrow{i_{\Psi}}$ characteristic vector of the set $Sat(\Psi)$.

- Introduction
- 2 Model Checking CSL formulas
- 3 Numerical computation of $Prob(s, \Phi U^{[0,t]} \Psi)$
- 4 Steady-state detection and $Prob(s, \Phi U^{[0,t]} \Psi)$, overview
- 5 The Fox-Glynn error-bound refinement
- 6 Steady-state detection, error-bound refinement
- Improved steady-state detection
- 8 Experiments
- Related works
- Conclusions
- Literature

Numerical computations

The Jensen's method

Both (2) and (3) can be computed numerically using the Jensen's method (Baier et al., 2003), also known as Uniformization (Stewart, 1978).

Uniformization

Rewriting $\vec{p} \cdot \mathcal{Q} = \vec{0}$ into

$$ec{p}\cdot\mathcal{P}=ec{p},~\mathcal{P}=rac{\mathcal{Q}}{q}+\mathcal{I}$$

where $q \ge \max_i \sum_{i=1}^N q_{i,j}$.

Notice!

Taking

$$q > \max_i \sum_{j=1}^N q_{i,j}$$

makes DTMC \mathcal{P} aperiodic

Using uniformization

The Jensen's method

Substitute Q with P in tailored representation (4) of equation (2)

$$\overrightarrow{\pi^*(s,t)} = \sum_{i=0}^{\infty} \frac{t^i}{i!} \vec{1_s} \cdot \mathcal{Q}^i$$
 (4)

$$\overrightarrow{\pi^*(s,t)} = \sum_{i=0}^{\infty} e^{-qt} \frac{(qt)^i}{i!} \overrightarrow{p(s,i)}$$
 (5)

Here we assume $Q = Q[\neg \Phi \lor \Psi]$ and $\overrightarrow{p(s,i)} = \overrightarrow{1_s} \cdot \mathcal{P}^i$.

Note

The sum in (5) can be computed using the Fox-Glynn algorithm (Fox and Glynn, 1988).

The Fox-Glynn algorithm (Fox and Glynn, 1988)

Lemma

Let f be a real-valued function with $||f|| = \sup_{i \in 0,...,\infty} |f(i)|$ and $\sum_{i=\mathcal{L}_{\epsilon}}^{\mathcal{R}_{\epsilon}} \gamma_i(t) \geq 1 - \frac{\epsilon}{2}$. In exact arithmetic,

$$|\sum_{i=0}^{\infty} \gamma_i(t) f(i) - \frac{1}{W} \sum_{i=\mathcal{L}_{\epsilon}}^{\mathcal{R}_{\epsilon}} w_i(t) f(i)| \le \epsilon \cdot ||f||$$
 (6)

Where

$$egin{aligned} &\gamma_i(t) = e^{-qt} rac{(qt)^i}{i!} \ &lpha
eq 0 ext{, some constant} \ &w_i(t) = lpha \gamma_i(t) \ &W = w(\mathcal{L}_\epsilon) + \ldots + w(\mathcal{R}_\epsilon) \end{aligned}$$

Steady-state, backward computations

Steady-state (Reibman and Trivedi, 1988)

 $\vec{\mathbf{1}_s} \cdot \mathcal{P}^i$ in (5) is the power iteration for uniformized DTMC \mathcal{P} and that is where the steady-state detection comes into play.

Backward computations

Notice that all above is applicable to equation (3), see (Katoen et al., 2001), which gives us

$$\overrightarrow{\pi^*(t)} = \sum_{i=0}^{\infty} e^{-qt} \frac{(qt)^i}{i!} \overrightarrow{p(i)}$$

where
$$\overrightarrow{p(i)} = \mathcal{P}^i \cdot \overrightarrow{i_{\Psi}}$$
.

- Introduction
- Model Checking CSL formulas
- ③ Numerical computation of $Prob(s, \Phi U^{[0,t]} \Psi)$
- 4 Steady-state detection and $Prob(s, \Phi U^{[0,t]} \Psi)$, overview
- 5 The Fox-Glynn error-bound refinement
- 6 Steady-state detection, error-bound refinement
- Improved steady-state detection
- 8 Experiments
- Related works
- Conclusions
- Literature

Forward computation, algorithm (Malhotra et al., 1994)

Computations with Steady-state detection

Let
$$\exists K : \|\overrightarrow{p^*(s)} - \overrightarrow{p(s,K)}\|_{\nu} \leq \delta$$
, $\sum_{i=0}^{\mathcal{L}_{\epsilon}} \gamma_i(t) \leq \frac{\epsilon}{2}$, and $\sum_{i=\mathcal{R}_{\epsilon}}^{\infty} \gamma_i(t) \leq \frac{\epsilon}{2}$.

$$\overrightarrow{\pi^*(s,t)} = \sum_{i=0}^{\infty} \gamma_i(t) \overrightarrow{p(s,i)}$$

$$\overrightarrow{\pi(s,t)} = \begin{cases}
\overrightarrow{p(s,K)}, & \text{if } K < \mathcal{L}_{\epsilon} \\
\sum_{i=\mathcal{L}_{\epsilon}}^{\mathcal{R}_{\epsilon}} \gamma_{i}(t) \overrightarrow{p(s,i)}, & \text{if } K > \mathcal{R}_{\epsilon} \\
\sum_{i=\mathcal{L}_{\epsilon}}^{K} \gamma_{i}(t) \overrightarrow{p(s,i)} + \overrightarrow{p(s,K)} \left(1 - \sum_{i=0}^{K} \gamma_{i}(t)\right), & \text{else}
\end{cases} (7)$$

Then:

$$\|\overrightarrow{\pi^*(s,t)} - \overrightarrow{\pi(s,t)}\|_{v} \leq 2\delta + \frac{\epsilon}{2}$$

Criteria

A corollary

$$\|\overrightarrow{p^*(s)} - \overrightarrow{p(s,K)}\|_{v} \leq \frac{\epsilon}{4} \text{ implies } \|\overrightarrow{\pi^*(s,t)} - \overrightarrow{\pi(s,t)}\|_{v}^{\infty} \leq \epsilon$$

The actual steady-state detection criteria

• Take K = i + M if

$$\|\overrightarrow{p(s,i)} - \overrightarrow{p(s,K)}\|_{v} \leq \frac{\epsilon}{4}$$

• Check for K every M iterations

The known problems

Problems

- The steady-state detection is uncertain due to the criteria
- The error bound is not precise as derived under an assumption of knowing real steady-state.
- **1** The norm $\|.\|_{V}$ is not defined was assumed that:

$$\|\overrightarrow{p(s,i)}\|_{v} \leq 1$$

The weights are not considered - if the complete Fox-Glynn algorithm is used.

Backward computations, algorithm (Younes et al., 2004)

Computations with Steady-state detection

Let
$$\exists K : \|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{v} \leq \delta$$
, $\sum_{i=0}^{\mathcal{L}_{\epsilon}} \gamma_i(t) \leq \frac{\epsilon}{2}$, and $\sum_{i=\mathcal{R}_{\epsilon}}^{\infty} \gamma_i(t) \leq \frac{\epsilon}{2}$.

$$\overrightarrow{\pi^*(t)} = \sum_{i=0}^{\infty} \gamma_i(t) \overrightarrow{p(i)}$$

$$\overrightarrow{\pi(t)} = \begin{cases}
\overrightarrow{p(K)}, & \text{if } K < \mathcal{L}_{\epsilon} \\
\sum_{i=\mathcal{L}_{\epsilon}}^{\mathcal{R}_{\epsilon}} \gamma_{i}(t) \overrightarrow{p(i)}, & \text{if } K > \mathcal{R}_{\epsilon} \\
\sum_{i=\mathcal{L}_{\epsilon}}^{K} \gamma_{i}(t) \overrightarrow{p(i)} + \overrightarrow{p(K)} \left(1 - \sum_{i=\mathcal{L}_{\epsilon}}^{K} \gamma_{i}(t)\right), & \text{else}
\end{cases}$$
(8)

Then:

$$\|\overrightarrow{\pi^*(t)} - \overrightarrow{\pi(t)}\|_{v} \leq 2\delta + \frac{\epsilon}{2}$$

Criteria

A corollary

$$\|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{v} \leq \frac{\epsilon}{8} \text{ implies } \|\overrightarrow{\pi^*(t)} - \overrightarrow{\pi(t)}\|_{v}^{\infty} \leq \epsilon$$

The actual steady-state detection criteria

• Take K = i + M if

$$\|\overrightarrow{p(i)} - \overrightarrow{p(K)}\|_{v} \leq \frac{\epsilon}{8}$$

• Check for K every M iterations

The known problems

Problems

- The error bound for (8) can be refined $\forall j \in 1,...,N, \forall i \in 0,...,\infty : p(i)_j \leq p(i+1)_j$.
- ② An additional error is introduced while switching from (7) to (8), i = 0 became $i = \mathcal{L}_{\epsilon}$.
- The refinement, done in (Younes et al., 2004), for (7) and (8) is incorrect the length of the error interval does not matter.

- Introduction
- 2 Model Checking CSL formulas
- 3 Numerical computation of $Prob(s, \Phi U^{[0,t]} \Psi)$
- 4 Steady-state detection and $Prob(s, \Phi U^{[0,t]} \Psi)$, overview
- 5 The Fox-Glynn error-bound refinement
- 6 Steady-state detection, error-bound refinement
- 7 Improved steady-state detection
- 8 Experiments
- Related works
- Conclusions
- Literature

Choosing the "right" norm

Facts

- The error estimate, is based on Geometrical Convergence
- G.C. is proved, using total variation norm which, in an N-dimensional space, $||v||_{v}^{\infty} = \max_{i \in 1,...,N} |v_{i}|$.
- In a finite dimensional space all norms are equivalent.

Caution!

The $\overrightarrow{i_{\Psi}}$ vector is not a distribution, $\forall j \in 1,..,N : 0 \leq p(i)_j \leq 1$.

Example

For N states and Euclidean Norm $\|.\|_{\nu}^2$:

$$\|\sum_{i=0}^{\mathcal{L}_{\epsilon}-1} \gamma_{i}(t) \overrightarrow{p(i)}\|_{v}^{2} \nleq \frac{\epsilon}{4} \text{ BUT } \|\sum_{i=0}^{\mathcal{L}_{\epsilon}-1} \gamma_{i}(t) \overrightarrow{p(i)}\|_{v}^{2} \leq \frac{\sqrt{N}}{4} \epsilon$$

The Fox-Glynn error-bound refinement

Errors

- ullet \mathcal{L}_{ϵ} and \mathcal{R}_{ϵ} , each, give error $rac{\epsilon}{4}$
- Normalization $\frac{w_i(t)}{W}$ gives additional $\frac{\epsilon}{2}$

Lemma

Let f be a real-valued function with $\|f\|=\sup_{i\in 0,\dots,\infty}|f(i)|$, f does not change sign, and $\sum_{i=\mathcal{L}_\epsilon}^{\mathcal{R}_\epsilon}\gamma_i(t)\geq 1-\frac{\epsilon}{2}$. In exact arithmetic,

$$|\sum_{i=0}^{\infty} \gamma_i(t) f(i) - \frac{1}{W} \sum_{i=\mathcal{L}_{\epsilon}}^{\mathcal{R}_{\epsilon}} w_i(t) f(i)| \le \frac{\epsilon}{2} \cdot ||f||$$
 (9)

Refined steady-state detection error

Forward Computations

Let $\exists K : \|\overrightarrow{p^*(s)} - \overrightarrow{p(s,K)}\|_{v}^{\infty} \leq \delta$, $\sum_{i=0}^{\mathcal{L}_{\epsilon}} \gamma_i(t) \leq \frac{\epsilon}{4}$, $\sum_{i=\mathcal{R}_{\epsilon}}^{\infty} \gamma_i(t) \leq \frac{\epsilon}{4}$, and $Ind \in 2^N$ is a set of indexes.

$$\overrightarrow{\pi^*(s,t)} = \sum_{i=0}^{\infty} \gamma_i(t) \overrightarrow{p(s,i)}$$

$$\overrightarrow{\pi\left(s,t\right)} = \begin{cases} \overrightarrow{p(s,K)}, \text{ if } K < \underline{\mathcal{L}_{\epsilon}} \\ \frac{1}{W} \sum_{i=\mathcal{L}_{\epsilon}}^{\mathcal{R}_{\epsilon}} w_{i}(t) \overrightarrow{p(s,i)}, \text{ if } K > \mathcal{R}_{\epsilon} \\ \frac{1}{W} \sum_{i=\mathcal{L}_{\epsilon}}^{K} w_{i}(t) \overrightarrow{p(s,i)} + \overrightarrow{p(s,K)} \left(1 - \frac{1}{W} \sum_{i=\mathcal{L}_{\epsilon}}^{K} w_{i}(t)\right), \text{ else} \end{cases}$$

Then:

$$\left| \sum_{i \in Ind} \left(\pi^* \left(s, t \right)_j - \pi \left(s, t \right)_j \right) \right| \leq 2\delta |Ind| + \frac{3}{4}\epsilon$$

Refined steady-state detection error

Backward Computations

Let
$$\exists K : \|\overrightarrow{p^*} - \overrightarrow{p(K)}\|_{v}^{\infty} \leq \delta, \sum_{i=0}^{\mathcal{L}_{\epsilon}} \gamma_i(t) \leq \frac{\epsilon}{4}, \sum_{i=\mathcal{R}_{\epsilon}}^{\infty} \gamma_i(t) \leq \frac{\epsilon}{4}.$$

$$\overrightarrow{\pi^*(t)} = \sum_{i=0}^{\infty} \gamma_i(t) \overrightarrow{p(i)}$$

$$\overrightarrow{\pi(t)} = \begin{cases} \overrightarrow{p(K)}, & \text{if } K < \mathcal{L}_{\epsilon} \\ \frac{1}{W} \sum_{i=\mathcal{L}_{\epsilon}}^{\mathcal{R}_{\epsilon}} w_{i}(t) \overrightarrow{p(i)}, & \text{if } K > \mathcal{R}_{\epsilon} \\ \frac{1}{W} \sum_{i=\mathcal{L}_{\epsilon}}^{K} w_{i}(t) \overrightarrow{p(i)} + \overrightarrow{p(K)} \left(1 - \frac{1}{W} \sum_{i=\mathcal{L}_{\epsilon}}^{K} w_{i}(t)\right), & \text{else} \end{cases}$$

Then:

$$\|\overrightarrow{\pi^*(t)} - \overrightarrow{\pi(t)}\|_{v}^{\infty} \leq \delta + \frac{3}{4}\epsilon$$

Steadt-state detection criteria

Forward computations Criterion

- Steady-state is detected if $\|\overrightarrow{p^*(s)} \overrightarrow{p(s,K)}\|_{v}^{\infty} \leq \frac{\epsilon}{8|Sat(\Psi)|}$
- ② Use the Fox-Glynn algorithm with desired error $\frac{\epsilon}{2}$
- **3** Then the overall error bound for the computed probability $Prob(s, \Phi U^{[0,t]} \Psi)$ will be ϵ

→ Error bound details

Backward computations Criterion

- Steady-state is detected if $\|\overrightarrow{p^*} \overrightarrow{p(K)}\|_{V}^{\infty} \leq \frac{\epsilon}{4}$
- **②** Use the Fox-Glynn algorithm with desired error $\frac{\epsilon}{2}$
- **⊙** Then $\forall j \in 1,..,N$ the overall error bound for computed probability $Prob(j, Φ U^{[0,t]} Ψ)$, will be ε

- Introduction
- 2 Model Checking CSL formulas
- 3 Numerical computation of $Prob(s, \Phi U^{[0,t]} \Psi)$
- 4 Steady-state detection and $Prob(s, \Phi U^{[0,t]} \Psi)$, overview
- 5 The Fox-Glynn error-bound refinement
- 6 Steady-state detection, error-bound refinement
- Improved steady-state detection
- 8 Experiments
- Related works
- Conclusions
- Literature

Making states absorbing I

Definition

For a directed graph a subgraph is a *Bottom Strongly Connected Component* (BSCC) if it is a maximum strongly connected component such that it has no edges to outside its vertices.

Lemma

If $\mathcal{Q}\left[\neg\Phi\lor\Psi\right]$ has a BSCC containing at least one Φ state then all its states are Φ states.

▶ Proof details

Where

Q is a generator matrix, Φ and Ψ are CSL state formulas

Making states absorbing II

Definition

 $\mbox{Define } \textit{B}_{\Phi,\Psi} = \{ \textit{s} \in \textit{B} \cap (\textit{Sat}\,(\Phi) \setminus \textit{Sat}\,(\Psi)) \, | \textit{B is a BSCC in } \mathcal{Q}\,[\neg\Phi \vee \Psi] \}$

Define $Q^B[\neg \Phi \lor \Psi]$ obtained from $Q[\neg \Phi \lor \Psi]$ by making all $B_{\Phi,\Psi}$ states absorbing.

Definition

Let $P_{\mathcal{Q}}(s, \Phi)$ be the probability $Prob(s, \Phi)$ of satisfying CSL state formula Φ in state s, for the CTMC, defined by the generator matrix \mathcal{Q} .

Theorem

$$\mathrm{P}_{\mathcal{Q}}(s,\,\Phi\,\mathrm{U}^{[0,t]}\,\Psi) = \mathrm{P}_{\mathcal{Q}[\neg\Phi\vee\Psi]}(s,\,tt\;\mathrm{U}^{[t,t]}\,\Psi) = \mathrm{P}_{\mathcal{Q}^{B}[\neg\Phi\vee\Psi]}(s,\,tt\;\mathrm{U}^{[t,t]}\,\Psi)$$

▶ Proof details

Precise steady-state detection, Forward computations

Theorem

For a uniformized CTMC \mathcal{P}_B , obtained from the generator matrix $\mathcal{Q}^B \left[\neg \Phi \lor \Psi \right]$:

$$\forall \delta \geq 0 : \sum_{j \in Sat(\Phi) \setminus (\mathbf{B}_{\Psi} \cup Sat(\Psi))} p(s, i)_{j} \leq \delta \Rightarrow \|\overrightarrow{p^{*}(s)} - \overrightarrow{p(s, i)}\|_{v}^{\infty} \leq \delta$$

Where

$$\overrightarrow{p^*(s)}$$
 - the steady-state of \mathcal{P}_B when starting from s $p(s,i)_j$ - the j 'th component of $\overrightarrow{p(s,i)} = \vec{1_s} \cdot \mathcal{P}_B^i$

Precise steady-state detection, Backward computations

Theorem

For a uniformized CTMC \mathcal{P}_B , obtained from the generator matrix $\mathcal{Q}^B \left[\neg \Phi \lor \Psi \right]$:

$$\forall \delta \geq 0 : \|\vec{1} - \left(\overrightarrow{p(i)} + \overrightarrow{p^B(i)}\right)\|_{\nu}^{\infty} \leq \delta \Rightarrow \|\overrightarrow{p^*} - \overrightarrow{p(i)}\|_{\nu}^{\infty} \leq \delta$$

Where

$$\begin{array}{ccc} \overrightarrow{p^{B}\left(i\right)} &= \mathcal{P}_{B}^{i} \cdot \overrightarrow{i_{\mathbf{B}_{\Psi} \cup Sat\left(\neg \Phi\right)}} \\ \overrightarrow{p^{*}} &= \lim_{i \rightarrow \infty} \mathcal{P}_{B}^{i} \cdot \overrightarrow{i_{\Psi}} \end{array} \qquad \overrightarrow{p\left(i\right)} &= \mathcal{P}_{B}^{i} \cdot \overrightarrow{i_{\Psi}} \end{array}$$

- Introduction
- Model Checking CSL formulas
- 3 Numerical computation of $Prob(s, \Phi U^{[0,t]} \Psi)$
- 4 Steady-state detection and $Prob(s, \Phi U^{[0,t]} \Psi)$, overview
- 5 The Fox-Glynn error-bound refinement
- 6 Steady-state detection, error-bound refinement
- Improved steady-state detection
- 8 Experiments
- Related works
- Conclusions
- Literature

Premature steady-state detection (Massink et al., 2004)

Tools

Tool Name	Reference	S.s.d. method
Prism v2.1	(Kwiatkowska et al., 2004)	regular
ETMCC v1.4.2	(Hermanns et al., 2003)	regular
MRMC v1.0	(Katoen et al., 2005)	precise

Example

Figure: A slowly convergent CTMC

Computational results

Example

Tool	Error	K	$\mathcal{P}^{K}\cdot\overrightarrow{i_{\Psi}}$	$\overrightarrow{p^*}$
Prism v2.1(abs)	10^{-6}	2	$(5.00025 \cdot 10^{-5}, 2.5 \cdot 10^{-9}, 1.0)$	
Prism v2.1(rel)	10^{-1}	12	$(5.00275 \cdot 10^{-5}, 2.75 \cdot 10^{-8}, 1.0)$	(1.0, 1.0, 1.0)
ETMCC v1.4.2	10^{-6}	20	$(5.00475 \cdot 10^{-5}, 4.75 \cdot 10^{-8}, 1.0)$	(1.0, 1.0, 1.0)
MRMC v1.0	10^{-6}	_		

Workstation cluster (Haverkort et al., 2000)

Computation time

Outline

- Introduction
- 2 Model Checking CSL formulas
- 3 Numerical computation of $Prob(s, \Phi U^{[0,t]} \Psi)$
- 4 Steady-state detection and $Prob(s, \Phi U^{[0,t]} \Psi)$, overview
- 5 The Fox-Glynn error-bound refinement
- 6 Steady-state detection, error-bound refinement
- Improved steady-state detection
- 8 Experiments
- Related works
- Conclusions
- Literature

Related, ...

..., but unused

(Sericola, 1999) - the method, based on Uniformization, to determine the *point availability* and *expected interval availability* of a repairable computer system modeled as a Markov chain with steady-state detection.

Limitation: Results are only applicable for irreducible Markov Chains

(Neuts, 1981) - *Phase Type* distribution, has a theorem limiting the time before absorption.

Limitation: Transient states must form an irreducible matrix

Outline

- Introduction
- 2 Model Checking CSL formulas
- 3 Numerical computation of $Prob(s, \Phi U^{[0,t]} \Psi)$
- 4 Steady-state detection and $Prob(s, \Phi U^{[0,t]} \Psi)$, overview
- 5 The Fox-Glynn error-bound refinement
- 6 Steady-state detection, error-bound refinement
- Improved steady-state detection
- 8 Experiments
- Related works
- Conclusions
- Literature

Conclusions

Results

- The error bound corrections
 - Steady-state detection fixed multiple problems
 - The Fox-Glynn algorithm partial error-bound refinement
 - Uniformization using the Fox-Glynn added weights influence
- Precise steady-state detection criteria
 - Forward computations preserves time complexity, computation time may slightly increase
 - Backward computations preserves time complexity, computation time may approximately double

Outline

- Introduction
- 2 Model Checking CSL formulas
- 3 Numerical computation of $Prob(s, \Phi U^{[0,t]} \Psi)$
- 4 Steady-state detection and $Prob(s, \Phi U^{[0,t]} \Psi)$, overview
- 5 The Fox-Glynn error-bound refinement
- 6 Steady-state detection, error-bound refinement
- Improved steady-state detection
- 8 Experiments
- Related works
- Conclusions
- Literature

Baier, C., Haverkort, B., Hermanns, H., and Katoen, J.-P.: 2003, Model-checking algorithms for continuous-time Markov chains, IEEE Trans. on Softw. Eng. 29(6), 524

Fox, B. L. and Glynn, P. W.: 1988, Computing Poisson probabilities, Commun. ACM 31(4), 440

Haverkort, B., Hermanns, H., and Katoen, J.-P.: 2000, On the use of model checking techniques for dependability evaluation,

in Reliable Distributed Systems (SRDS'00), pp 228-237

Haverkort, B. R.: 1998.

Performance of Computer Communication Systems: A Model-Based Approach, New York, NY, USA

Hermanns, H., Katoen, J.-P., Meyer-Kayser, J., and Siegle, M.: 2003, A tool for model-checking Markov chains, Int. J. on Softw. for Technology Transfer (STTT) 4(2), 153

Katoen, J.-P., Khattri, M., and Zapreev, I. S.: 2005,

A Markov reward model checker,

in Quantitative Evaluation of Systems (QEST), pp 243-244

Katoen, J.-P., Kwiatkowska, M., Norman, G., and Parker, D.: 2001, Faster and symbolic CTMC model checking, in Process Algebra and Probabilistic Methods, Performance Modeling and Verification (PAPM/PROBMIV'01), Vol. 2165 of LNCS, pp 23–38

Kwiatkowska, M., Norman, G., and Parker, D.: 2004,

PRISM 2.0: A tool for probabilistic model checking, in *Quantitative Evaluation of Systems (QEST)*, pp 322–323

Malhotra, M., Muppala, J. K., and Trivedi, K. S.: 1994,

Stiffness-tolerant methods for transient analysis of stiff Markov chains, Microelectronics and Reliability 34(11), 1825 Massink, M., Katoen, J.-P., and Latella, D.: 2004.

Model checking dependability attributes of wireless group communication, in *Dependable Systems and Networks (DSN)*, pp 711–720

Neuts. M. F.: 1981.

Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach

Reibman, A. and Trivedi, K.: 1988,

Numerical transient analysis of Markov models,

Comput. Oper. Res. 15(1), 19

Sericola, B.: 1999,

Availability analysis of repairable computer systems and stationarity detection,

IEEE Transactions on Computers 48(11), 1166

Stewart, W. J.: 1978,

A comparison of numerical techniques in Markov modeling,

Commun. ACM 21(2), 144

Stewart, W. J.: 1994.

Introduction to the Numerical Solution of Markov Chains.

Princeton University Press

Younes, H., Kwiatkowska, M., Norman, G., and Parker, D.: 2004.

Numerical vs. statistical probabilistic model checking: An empirical study,

in Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Vol. 2988 of LNCS, pp 46-60

Appendix Outline

- Appendix
 - Numerical computation of $Prob(s, \Phi U^{[0,t]} \Psi)$
 - The Fox-Glynn, steady-state detection, error bound
 - Improved steady-state detection
 - An example

The Fox-Glynn algorithm (Fox and Glynn, 1988)

The Fox-Glynn, steady-state detection, error bound

The Fox-Glynn error-bound refinement

Proof.

Due to the facts that

$$0 \leq \sum_{i=0}^{\mathcal{L}_{\epsilon}-1} \gamma_i(t) + \sum_{i=\mathcal{R}_{\epsilon}+1}^{\infty} \gamma_i(t) \leq rac{\epsilon}{2}$$

$$-rac{\epsilon}{2} \leq \sum_{i=\mathcal{L}_{\epsilon}}^{\mathcal{R}_{\epsilon}} (\gamma_i(t) - rac{w_i(t)}{W}) \leq 0$$

 $\forall i \in 0,..,\infty : 0 \le f(i) \le \|f\|$, f is non-negative

$$\forall i \in 0,..,\infty : -\|f\| \le f(i) \le 0$$
, f is non-positive

Steadt-state detection criteria

Forward computations Details

Assuming $\forall i \geq K : \|\overrightarrow{p^*(s)} - \overrightarrow{p(s,i)}\|_{\nu}^{\infty} \leq \delta$ and the Fox-Glynn algorithm's error bound $\frac{\epsilon}{2}$ we have:

①
$$(K > \mathcal{R}_{\epsilon})$$
:

$$-\frac{\epsilon}{2} \leq \sum_{j \in Sat(\Psi)} \left(\pi^* \left(s, t\right)_j - \pi \left(s, t\right)_j\right) \leq \frac{\epsilon}{2}$$

$$-2\delta |\mathit{Sat}\left(\Psi\right)| - \frac{3}{4}\epsilon \leq \sum_{j \in \mathit{Sat}\left(\Psi\right)} \left(\pi^*\left(s,t\right)_j - \pi\left(s,t\right)_j\right) \leq 2\delta |\mathit{Sat}\left(\Psi\right)| + \frac{3}{4}\epsilon$$

$$\bigcirc$$
 $(K < \mathcal{L}_{\epsilon})$:

$$-2\delta|\mathit{Sat}\left(\Psi\right)| - \frac{1}{4}\epsilon \leq \sum_{j \in \mathit{Sat}\left(\Psi\right)} \left(\pi^{*}\left(s, t\right)_{j} - \pi\left(s, t\right)_{j}\right) \leq 2\delta|\mathit{Sat}\left(\Psi\right)| + \frac{1}{4}\epsilon$$

◆ Return `

Steadt-state detection criteria

Backward computations Details

Assuming $\forall i \geq K: \|\overrightarrow{p^*} - \overrightarrow{p(i)}\|_{\nu}^{\infty} \leq \delta$ and the Fox-Glynn algorithm's error bound $\frac{\epsilon}{2}$ we have:

$$-\frac{\epsilon}{2} \leq \pi^* (t)_j - \pi (t)_j \leq \frac{\epsilon}{2}$$

$$(\mathcal{L}_{\epsilon} \leq \mathsf{K} \leq \mathcal{R}_{\epsilon}):$$

$$-\delta - \frac{3}{4}\epsilon \le \pi^* (t)_j - \pi (t)_j \le \delta + \frac{3}{4}\epsilon$$

$$(K < \mathcal{L}_{\epsilon})$$
:

$$-\delta - \frac{1}{4}\epsilon \le \pi^* (t)_j - \pi (t)_j \le \delta + \frac{1}{4}\epsilon$$

◆ Return

Making states absorbing I

Proof.

The case of a single state BSCC is trivial.

The rest is also trivial, by contradiction.

Let B be a BSCC of $\mathcal{Q}[\neg\Phi\lor\Psi]$ such that it has at least two states, $s_{\Phi}\in Sat\left(\Phi\right),\ s_{\neg\Phi}\in Sat\left(\neg\Phi\right)$ and $s_{\Phi},\ s_{\neg\Phi}\in B$. All $\neg\Phi$ states in $\mathcal{Q}[\neg\Phi\lor\Psi]$ are made absorbing, thus the $s_{\neg\Phi}$ state has only one self-loop transition. This yields that $s_{\neg\Phi}\not\in B$.

Contradiction.

∢ Return

Making states absorbing II

Proof.

The first part $P_{\mathcal{Q}}(s, \Phi U^{[0,t]} \Psi) = P_{\mathcal{Q}[\neg \Phi \lor \Psi]}(s, tt U^{[t,t]} \Psi)$ was proved in (Baier et al., 2003).

The second part

 $P_{\mathcal{Q}[\neg\Phi\lor\Psi]}(s,\ tt\ U^{[t,t]}\ \Psi) = P_{\mathcal{Q}^B[\neg\Phi\lor\Psi]}(s,\ tt\ U^{[t,t]}\ \Psi)$ is valid due to the fact, that if there is a BSCC consisting of $Sat\ (\Phi)$ states then $Sat\ (\Psi)$ states are not reachable from it.

Unless it is a trivial case when a BSCC consists of one state s which satisfies both Φ and Ψ formulas, but in this case it is already made absorbing while obtaining $\mathcal{Q}[\neg\Phi\vee\Psi]$.

◆ Return

Computational results

Computational results

