Uma atualização em projetos de HVAC para Laboratórios

Eng. Felipe Alfaia do Carmo

Programa de Pós-graduação em Engenharia Mecânica Universidade do Estado do Rio de Janeiro

Crise energética de 2001 e 2002;

SOLUÇÃO?

- Programa Brasileiro de Etiquetagem (PBE)
 Edifica;
- ANBT NBR 15220;

SETORES	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	SECTORS
Consumo final (10³ tep)	32.267	33.536	35.443	36.829	36.638	39.964	41.363	42.861	44.373	45.655	FINAL CONSUMPTION (10° toe
setor energético	3,6	3,7	4,2	4,3	4,3	5,8	5,0	5,3	5,8	5,9	ENERGY SECTOR
RESIDENCIAL	22,2	22,0	22,1	22,3	23,6	23,1	23,3	23,6	24,2	24,9	RESIDENTIAL
COMERCIAL	14,3	14,2	14,2	14,6	15,5	15,0	15,4	16,0	16,4	17,1	COMMERCIAL
PÚBLICO	8,7	8,5	8,2	8,1	8,3	8,0	7,9	8,0	8,0	8,0	PUBLIC
AGROPECUÁRIO	4,2	4,2	4,3	4,3	4,2	4,1	4,5	4,7	4,6	5,0	AGRICULTURE AND LIVESTOCK
TRANSPORTES	0,3	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	TRANSPORTATION
INDUSTRIAL	46,7	47,0	46,7	46,1	43,8	43,8	43,5	42,1	40,7	38,8	INDUSTRIAL
TOTAL	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	TOTAL

MOVIMENTO INTERNACIONAL

- LEED (Leadership in Energy and Environmental Design), o qual foi desenvolvido pela organização não governamental americana U.S. Green Building Council (USGBC);
- BREEAM, o qual foi desenvolvido pela empresa BRE Global Ltd;
- CASBEE (Comprehensive Assessment System for Built Environment Efficien), o qual foi desenvolvido no Japão pelo Japan Sustainable Building Consortium (JSBC);
- HQE (Haute Qualité Environnementale), o qual foi desenvolvido pela organização não governamental francesa Association HQE.

POR QUE ESTUDAR LABORATÓRIOS?

- Estão presentes tanto no meio industrial como no meio urbano;
- Sistemas com pouco aproveitamento energético;
- Sistemas com normas e características próprias;
- Poucas pesquisas sobre o assunto.

Tipo de Laboratórios Existentes

- Laboratórios Químicos.
- Laboratórios Rádio-químicos.
- Laboratório de Ensino.
- Laboratório de Pesquisa.
- Laboratório Clínico ou Hospitalar
- Laboratório Biológico.
- Laboratório de Animais.
- Salas Limpas / Sala de Isolamento.
- Laboratório de Testes de Materiais.
- Laboratório de Instrumentação.
- Espaços de suporte.

Tipo de Laboratório Escolhido

Os LABORATÓRIOS QUÍMICOS são um dos tipos de laboratórios mais utilizados no mundo. Este tipo de ambiente é usado para análise e experimentação de uma grande variedade de produtos químicos. Também possuem como característica a utilização de equipamentos específicos como capelas e exaustão localizadas.

Normas regulamentadoras

- NFPA 45 (2004) Standard on Fire Protection for Laboratories Using Chemicals, da associação não governamental norte americana National Fire Protection Association.
- EN 14175 (2012) Requirements for Fume Cupboard, da associação não governamental europeia European Committee for Standardization.
- 29 CFR PART 1910.1450 (1990) Occupational Safety and Health Standards, do departamento Occupational Safety & Health Administration do orgão governamental americano United States Department of Labor.
- Z9.5 (2003) Laboratory Ventilation Standard, da associação não governamental American National Standards Institute.
- ISO 14464 (2015) Cleanrooms and associated controlled environments, da associação não governamental International Organization for Standardization.
- ASHRAE Standard 62.1 (2016) Ventilation for Acceptable Indoor Air Quality, da associação não governamental americana American Society of Heating, Refrigerating, and Air-Conditioning Engineers.

Como projetar o HVAC??

De acordo com a TSI Incorporated (2014) existem quatro maneiras de projetar o sistema de HVAC de um laboratório, os quais são:

- Método por Volume de Ar Constante (VAC);
- Método por Duas Posições (MDC);
- Método por Volume de Ar Variável (VAV);
- Método pela Diversidade.

Método VAC

Método VAC

VANTAGENS	DESVANTAGENS
Baixo custo de projeto;	Equipamentos mecânicos devem ser dimensionados para cargas máximas
Minimização de custos com automação.	Dificuldades reposicionar os equipamentos
	Limitada expansão futura
	Limitada operação nos alarmes de segurança do sistema.

Método por Duas Posições

O método visa à redução do fluxo de ar quando o laboratório está desocupado. Ou seja, este método entende que quando o laboratório estiver desocupado haverá uma redução da carga térmica e das operações realizadas assim o volume de ar requerido diminuiria.

Método por Duas Posições

VANTAGENS	DESVANTAGENS
Baixo custo de projeto	Equipamentos mecânicos devem ser dimensionados para cargas máximas
Minimização de custos com automação quando comparado com o VAV	·
Diminuição dos fluxos de ar durante as horas de desocupação	Limitada expansão futura
	Limitada operação nos alarmes de segurança do sistema.

Método VAV

Método VAV

VANTAGENS	DESVANTAGENS
Redução dos custos de energia	A redução dos fluxos de ar depende que os operadores reduzam ou fechem os equipamentos não utilizados
Usa o modo desocupado para diminuir a insuflação e exaustão de ar	Maior custo com automação
Aplicação de perfis de diversidade	Limitada expansão futura
Controles por VAV	Limitada operação nos alarmes de segurança do sistema.
VAV pode ser controlado por alarmes	

Método por Diversidade

Dimensionamento da vazão de ar

PRESSURIZAÇÃO

EXAUSTÕES

• NÚMERO MÍNIMO DE TROCAS DE AR

COMBATE DA CARGA TÉRMICA

Pressurização

A cascata de pressão tem como intuito a proteção do ambiente de contaminações provenientes do exterior ou de ambientes adjacentes

- V√pressurização =0,827×A×P 1/N
- onde:
- V↓pressurização é a vazão de ar, em metros cúbicos por segundo, na condição-padrão do ar;
- A é a área de restrição, em metros quadrados;
- P é o diferencial de pressão, em pascal;
- N é um índice que varia entre 1 a 2.

Pressurização

Restrições em série

 $1/(A \downarrow \text{total}) \uparrow 2 = 1/A \downarrow 1 \uparrow 2 + 1/A \downarrow 2 \uparrow 2 + 1/A$

A simultaneidade dos sistemas de exaustão será determinada pelo usuário. A partir da informação de quantos sistemas operam simultaneamente e quantos ficam desligados.

- V↓sistemas de exaustão operantes =A↓abertura em operação ×V↓face
- V↓sistemas de exaustão desligados =A↓abertura mínima ×
 V↓face
- $V \downarrow$ exaustão do ambiente $= \sum \uparrow w V \downarrow$ sistemas de exaustão operantes $+ \sum \uparrow w V \downarrow$ sistemas de exaustão desligados

Entidade	Velocidade de Face
SEFA - Scientific Equipment & Furniture Association	0,51 m/s. E informa que velocidades entre 0,64 m/s a 0,38 m/s podem ser usadas em condições especiais
NFPA - National Fire Protection Association	0,41 a 0,61 m/s
ANSI/AIHA - American National Standards Institute	0,41 a 0,61 m/s
NIOSH - National Institute for Occupational Safety and Health	0,5 a 0,76 m/s
ACGIH - Association Advancing Occupational and Environmental Health	0,4 a 0,5 m/s
NAS - National Academy of Sciences	0,4 a 0,5 m/s. E 0,5 a 0,6 m/s para substâncias tóxicas

OSHA - Occupational Safety	and Health Administration	
Condição de Operação	Velocidade de Face	
Painéis de teto devidamente localizados e com velocidade de face inferior a 0,2 m/s. Equipamentos com fechamento horizontal. "Obstáculos" no máximo a 305 mm da face dos exaustores. Exaustores locais longe de portas e corredores.	0,20 m/s	
Idem ao item anterior, com alguns sistema de exaustão de passagem. Permite que "obstáculos" estejam no máximo a 152,4 mm da face dos exaustores.	0,41 m/s	

OSHA - Occupational Safety	and Health Administration
Condição de Operação	Velocidade de Face
Painéis de teto devidamente localizados e com velocidade de face inferior a 0,3 m/s ou difusores de teto locados de maneira apropriada. Nenhum difusor deve estar imediatamente em frente ao sistema de exaustão local; o quadrante do difusor em frente ao sistema de exaustão deve estar fechado; velocidade da flecha deve ser inferior a 0,3 m/s. Equipamentos com fechamento horizontal. "Obstáculos" no máximo a 152,4 mm da face dos exaustores. Exaustores locais longe de portas e corredores.	0,41 m/s

OSHA - Occupational Safety and Health Administration				
Condição de Operação	Velocidade de Face			
Idem ao item anterior, com alguns sistema de exaustão de passagem. Permite que "obstáculos" estejam no máximo a 152,4 mm da face dos exaustores.	0,51 m/s			
Grelhas de parede podem ser utilizadas, mas não são recomendadas.				

Número de renovações

O número de trocas mínimo tem por finalidade garantir condições mínimas de qualidade do ar no ambiente, ou seja, assegurar concentrações mínima de substâncias que possam causar danos à saúde dos usuários. Esta vazão será definida por:

V√n° de trocas mínimo =N° de trocas+Volume do ambiente

Número de renovações

Entidade	Número de trocas
ASHRAE - American Society of Heating, Refrigerating, and Air-Conditioning Engineers	6 a 10 trocas por horas
NFPA - National Fire Protection Association	4 renovações de ar por hora em ambientes não ocupados. E 8 renovações por hora em ambientes ocupados
NIH - National Institutes of Health	6 trocas por horas
NAS - National Academy of Sciences	4 a 12 trocas de ar por hora
ANVISA - Agência Nacional de Vigilância Sanitária *	27 m³/hora.pessoa. E 17m³/ hora.pessoa em ambientes com alta rotatividade

Número de renovações

A ACGIH relata que critérios de ventilação por parâmetros como "renovações de ar por hora" ou "renovações de ar por minuto" é uma BASE FRACA para ambientes com controle ambiental, de calor e de odores. Segundo a associação, a ventilação necessária depende da taxa de GERAÇÃO DE TOXICIDADE E DO CONTAMINANTE, não do tamanho da sala na qual ela ocorre.

A ANVISA estabelece que os valores máximos para contaminação química são:

- Menor igual a 1000 ppm de dióxido de carbono (indicador para renovação de ar);
- Menor igual a 80 micrograma por metro cúbico de aerodispersóides totais do ar (indicador para grau de pureza do ar e limpeza do ambiente).

Vazão em decorrência da carga térmica

A vazão em decorrência da carga térmica é aquela necessária para combater o calor interno do ambiente. A carga térmica pode ser definida como:

Q \downarrow carga térmica =Q \downarrow envoltoria +Q \downarrow pessoas +Q \downarrow iluminação +Q \downarrow equipamento +Q \downarrow ar externo +Q \downarrow infiltração +Q \downarrow motores

Vazão em decorrência da carga térmica

A partir do valor da carga térmica é definida a vazão de ar necessária para o seu combate pela seguinte equação:

V√carga térmica =Q√carga térmica /ρ√ar ×c√p √ar ×(T√ambiente —T√insuflação)

- V↓carga térmica é a vazão de ar para o combate de carga térmica, em metro cúbico por segundo
- $\rho \downarrow$ ar é a massa específica do ar na temperatura de insuflação, em quilograma por metro cúbico;
- $c \downarrow p \downarrow ar$ é o calor específico do ar na temperatura de insuflação, em quilojoule por quilograma grau Celsius.
- T√ambiente é a temperatura do ambiente obtida no levantamento de campo, em graus Celsius;
- T√insuflação é a temperatura do insuflação do sistema de ar condicionado, em graus Celsius;

Recomendações para velocidade em dutos

Condição	Exemplos	Velocidade de Face de Dutos
Vapores, gases e fumaças	Todos os vapores, gases e fumaças	Qualquer velocidade desejada (velocidade usual de 5 a 10 m/s)
Fumos	Fumos proveniente de soldagem	10 a 12,7 m/s
Poeira leve e fina	Fibra de algodão, farinha de madeira, pó de lito	12,7 a 15,2 m/s
Poeira seca e pó	Poeira fina de borracha, Pó de madeira, fiapos de juta, poeira de algodão, pó de sabão, aparas de couro	15,2 a 20,3 m/s

A Pesquisa

A Pesquisa

Como será feita?

Entrevistas com o usuário

• Elaboração de modelo de referência

Elaboração do modelo proposto

Entrevistas com o usuário

Sobre o ambiente:

- Quantidade de usuários que utilizam o espaço, a atividade e vestimenta;
- Temperatura de Bulbo Seco e Umidade Relativa requerida para a operação do laboratório;
- Classificação do ambiente;
- Pressão em relação aos ambientes vizinhos, se é positiva ou negativa;
- Horário de funcionamento
- Quantidade e dissipação das luminárias e equipamentos;
- Posicionamento dos difusores de ar condicionado existentes;
- Tipo de vidro usado nas janelas e suas respectivas dimensões. Este fator influencia na quantidade de calor transferida entre o exterior e o ambiente;
- Tipo de parede externa e suas respectivas dimensões. Este fator influencia na quantidade de calor transferida entre o exterior e o ambiente;
- Tipo de parede interna e suas respectivas dimensões. Este fator influencia na quantidade de calor transferida entre o ambiente e os ambientes vizinhos.

Entrevistas com o usuário

Sobre os equipamentos de exaustão:

- Tipo de equipamentos de exaustão, se são capelas, captores ou coifas;
- Regime de operação destes equipamentos, se é contínuo ou intermitente;
- Tipo de exaustão, se é individual ou coletiva;
- Se são do tipo volume constante ou volume variável;
- Tipo de exaustor, se são ventiladores ou lavadores de gases;
- Tipo de controle utilizado;
- Se há filtragem especial;
- Tipo de fluido que é exaurido por estes equipamentos;

Entrevistas com o usuário

Sobre os equipamentos de condicionamento:

- Tipo de equipamentos utilizados;
- Regime de operação destes equipamentos, se é contínuo ou intermitente;
- Tipo de controle, se é por volume constante ou volume variável;
- Quantidade de ambientes que assistem;
- Vazão de ar por ambiente;
- Tipo de insuflação;
- Tipo de difusor utilizado;
- Velocidade de difusão do ar;
- Se possuem recirculação ou são 100% de ar externo.

Dentre as diversas funções do programa destacam-se:

- É uma interface gráfica gratuita do ENERGYPLUS;
- Suporte para várias alternativas de projeto;
- Criação de geometria versátil com recursos de CAD de importação 2D e 3D;
- Bibliotecas e modelos de materiais de construção, padrão de horários de operação e equipamentos e modelos de climatização e para sistemas de climatização convencionais e de baixa energia;
- Personalização do sistema de HVAC por meio de esquemáticos
- Relatórios de síntese personalizados e visualização interativa de resultados da simulação em diferentes níveis de detalhe

O ENERGYPLUS

Alguns dos recursos do EnergyPlus incluem:

- Solução simultânea das condições das zonas térmicas e da resposta do sistema HVAC para cada zona definida;
- Solução baseada em equilíbrio térmico dos efeitos radiantes e convectivos;
- Intervalos de tempos de interação definidos pelo usuário;
- Modelo combinado de transferência de calor e massa;
- Modelo avançado de frenestação;
- Cálculos de brilho e luminosidade;
- Ferramentas para implantação de sistemas de HVAC;
- Larga gama de controles de iluminação e do sistema de HVAC;
- Diversos relatórios para análise da solução.

O ENERGYPLUS

- Implantação da vazão de ar externo obtida;
- Utilização de condicionadores de ar do tipo "fan coil" com expansão indireta e exclusão de quaisquer equipamentos com expansão direta;
- Implantação de variadores de frequência nos condicionadores de ar;
- Implantação de variadores de frequência nos sistemas de exaustão exaustão;
- Utilização de sistema de exaustão centralizado quando possível;
- Utilização de recuperadores de calor do tipo roda entalpica para o prétratamento do ar externo. A roda entalpica é um equipamento que possibilita a troca de calor entre o ar exaurido e ar novo através de um trocador de contra fluxo que utiliza uma roda de alumínio e preenchida com sílicaUtilização de transmissores de temperatura para controle da temperatura da água gelada que entra nas serpentinas dos condicionadores de ar;
- Utilização de transmissores de pressão diferencial no ambiente, para controle da pressurização;
- Utilização de transmissores de pressão diferencial no equipamento para controle da vazão dos sistemas de exaustão.

Também será avaliado o melhor arranjo para o a central de água gelada que assiste o sistema. Serão testadas as seguintes opções de melhorias:

- Utilização de resfriadores de líquido (Chillers) em série;
- Utilização de resfriadores de líquido (Chillers) em paralelo;
- Aumento da temperatura de evaporação dos Chillers;
- Redução da temperatura de condensação dos Chillers;

$$COP = \frac{Q_L}{W}$$

$$COP = \frac{h_1 - h_4}{h_2 - h_1}$$

Após a simulação do modelo proposto será feita a comparação com o modelo de referência onde serão analisados os seguintes parâmetros:

- Consumo de energia elétrica;
- Eficiência do sistema de HVAC através dos parâmetros COP e IPLV;
- Conforto térmico nos ambientes.

OBRIGADO!

fadc@intertechne.com.br