Model Predictive Control

Lecture 03B - The Van der Pol Oscillator Problem

John Bagterp Jørgensen

Department of Applied Mathematics and Computer Science Technical University of Denmark

02619 Model Predictive Control

Deterministic and Stochastic Differential Equations

Ordinary differential equations (ODEs)

$$dx(t) = f(x(t))dt$$

► Stochastic differential equations (SDEs) with state independent diffusion

$$d\mathbf{x}(t) = f(\mathbf{x}(t))dt + \sigma d\mathbf{\omega}(t)$$

 Stochastic differential equations (SDEs) with state dependent diffusion

$$d\mathbf{x}(t) = f(\mathbf{x}(t))dt + g(\mathbf{x}(t))d\boldsymbol{\omega}(t)$$

Different ways of writing ODEs

▶ The dot-form

$$\dot{x}(t) = f(x(t))$$

► The standard differential form

$$\frac{dx(t)}{dt} = f(x(t))$$

Another differential form

$$dx(t) = f(x(t))dt$$

Integral form

$$x(t) - x(t_0) = \int_{t_0}^{t} f(x(s))ds$$

Numerical methods for ODEs

▶ ODEs

$$dx(t) = f(x(t))dt$$

► Non-stiff system - explicit method (explicit Euler)

$$x_{k+1} - x_k = f(x_k) \Delta t_k$$

 Stiff system - implicit method (implicit Euler)

$$x_{k+1} - x_k = f(x_{k+1})\Delta t_k$$

Different ways of deriving the explicit Euler method

▶ ODEs

$$\dot{x}(t) = f(x(t))$$

► Differential standard form

$$\frac{dx(t)}{dt} = f(x(t)) \qquad \frac{x_{k+1} - x_k}{t_{k+1} - t_k} = \frac{\Delta x_k}{\Delta t_k} = f(x_k)$$

Another differential form

$$dx(t) = f(x(t))dt$$
 $x_{k+1} - x_k = \Delta x_k = f(x_k)\Delta t_k$

► Integral form

$$x(t_{k+1}) - x(t_k) = \int_{t_k}^{t_{k+1}} f(x(t))dt$$
 $x_{k+1} - x_k = f(x_k)\Delta t_k$

► Numerical procedure

$$x_{k+1} = x_k + f(x_k)\Delta t_k$$

Standard Wiener Process (multivariate)

```
function [W, Tw, dW] = StdWienerProcess(T, N, nW, Ns, seed)
    % StdWienerProcess Ns realizations of a standard Wiener process
    % Syntax: [W, Tw, dW] = StdWienerProcess(T, N, Ns, seed)
            W : Standard Wiener process in [0,T]
               : Time points
                 : White noise used to generate the Wiener process
                : Final time
10
           N . Number of intervals
11
           nW : Dimension of W(k)
12
               : Number of realizations
13
            seed : To set the random number generator (optional)
14
15
   if nargin == 4
16
       rng(seed);
17
    end
18
   dt = T/N:
19 dW = sgrt(dt)*randn(nW,N,Ns);
20
    W = [zeros(nW.1.Ns) cumsum(dW.2)];
    Tw = 0:dt:T;
```

Explicit-Explicit SDE Solver

```
function X=SDEsolverExplicitExplicit(ffun,gfun,T,x0,W,varargin)
  N = length(T);
   nx = length(x0);
    X = zeros(nx,N);
   X(:,1) = x0;
   for k=1:N-1
       f = feval(ffun, T(k), X(:,k), varargin{:});
10
       g = feval(gfun, T(k), X(:,k), varargin{:});
11
     dt = T(k+1) - T(k);
12
     dW = W(:,k+1) - W(:,k);
     psi = X(:,k) + g*dW;
13
14
      X(:,k+1) = psi + f*dt;
15
   end
```

Different ways of deriving the implicit Euler method

▶ ODEs

$$\dot{x}(t) = f(x(t))$$

► Differential standard form

$$\frac{dx(t)}{dt} = f(x(t))$$
 $\frac{x_{k+1} - x_k}{t_{k+1} - t_k} = \frac{\Delta x_k}{\Delta t_k} = f(x_{k+1})$

► Another differential form

$$dx(t) = f(x(t)dt$$
 $x_{k+1} - x_k = \Delta x_k = f(x_{k+1})\Delta t_k$

► Integral form

$$x(t_{k+1}) - x(t_k) = \int_{t_k}^{t_{k+1}} f(x(t))dt$$
 $x_{k+1} - x_k = f(x_{k+1})\Delta t_k$

Numerical procedure (solve for x_{k+1} by some root-finding method, e.g. Newton's method)

$$R_k(x_{k+1}) = x_{k+1} - f(x_{k+1})\Delta t_k - x_k = 0$$

Numerical methods for SDEs

▶ SDEs

$$d\mathbf{x}(t) = f(\mathbf{x}(t))dt + g(\mathbf{x}(t))d\boldsymbol{\omega}(t)$$

 Non-stiff system - explicit-explicit method (Euler-Maruyama)

$$x_{k+1} - x_k = f(x_k)\Delta t_k + g(x_k)\Delta w_k, \quad \Delta w_k \sim N_{iid}(0, I\Delta t_k)$$

$$x_{k+1} = f(x_k)\Delta t_k + \psi_k, \qquad \psi_k = x_k + g(x_k)\Delta w_k$$

Stiff system - implicit-explicit method

$$\boldsymbol{x}_{k+1} - \boldsymbol{x}_k = f(\boldsymbol{x}_{k+1}) \Delta t_k + g(\boldsymbol{x}_k) \Delta \boldsymbol{w}_k, \quad \Delta \boldsymbol{w}_k \sim N_{iid}(0, I \Delta t_k)$$
$$R_k(\boldsymbol{x}_{k+1}) = \boldsymbol{x}_{k+1} - f(\boldsymbol{x}_{k+1}) \Delta t_k - \psi_k = 0, \quad \psi_k = \boldsymbol{x}_k + g(\boldsymbol{x}_k) \Delta \boldsymbol{w}_k$$

Implicit-explicit solution method for SDEs

► Stiff system - implicit-explicit method

$$\boldsymbol{x}_{k+1} - \boldsymbol{x}_k = f(\boldsymbol{x}_{k+1}) \Delta t_k + g(\boldsymbol{x}_k) \Delta \boldsymbol{w}_k, \quad \Delta \boldsymbol{w}_k \sim N_{iid}(0, I \Delta t_k)$$

► Residual equation

$$R_k(x_{k+1}) = x_{k+1} - f(x_{k+1}) \Delta t_k - \psi_k = 0, \quad \psi_k = x_k + g(x_k) \Delta w_k$$

- ▶ ODEs: $\psi_k = x_k$. SDEs: $\psi_k = x_k + g(x_k)\Delta w_k$.
- ► This system of nonlinear equations can be solved by Newton's method

$$||R_{k}(x_{k+1})|| > \epsilon :$$

$$M_{k} = \frac{\partial R_{k}}{\partial x_{k+1}} = I - J(x_{k+1})\Delta t_{k}, \quad J(x_{k+1}) = \frac{\partial f}{\partial x}(x_{k+1})$$

$$M_{k}\Delta x_{k+1} = -R_{k}(x_{k+1})$$

$$x_{k+1} := x_{k+1} + \Delta x_{k+1}$$

Newton Method in Implicit-Explicit SDE Solver

```
function [x,f,J] = SDENewtonSolver(ffun,t,dt,psi,xinit,tol,maxit,varargin)
  I = eye(length(xinit));
   x = xinit;
   [f,J] = feval(ffun,t,x,varargin{:});
   R = x - f*dt - psi;
   it = 1;
    while ((norm(R, 'inf') > tol) & (it <= maxit))
     dRdx = I - J*dt;
   mdx = dRdx \R;
10
11
    x = x - mdx;
[f,J] = feval(ffun,t,x,varargin{:});
12
13
     R = x - f*dt - psi;
14
     it = it+1;
15 end
```

Implicit-Explicit SDE Solver

```
function X=SDEsolverImplicitExplicit(ffun,gfun,T,x0,W,varargin)
   tol = 1.0e-8;
   maxit = 100;
   N = length(T);
   nx = length(x0);
   X = zeros(nx,N);
10
   X(:,1) = x0;
11
   k=1:
12
   [f,\sim] = feval(ffun,T(k),X(:,k),varargin{:});
13
   for k=1:N-1
14
       g = feval(gfun, T(k), X(:,k), varargin{:});
15
   dt = T(k+1)-T(k);
16
   dW = W(:, k+1) - W(:, k);
17
   psi = X(:,k) + q*dW;
18
   xinit = psi + f*dt;
19
     [X(:,k+1),f,\sim] = SDENewtonSolver(...
20
                                     ffun, ...
21
                                    T(:,k+1),dt,psi,xinit,...
22
                                    tol.maxit.varargin{:});
23 end
```

The Van der Pol Oscillator Problem

Second order differential equation

$$\ddot{y}(t) = \mu(1 - y(t)^2)\dot{y}(t) - y(t)$$

► Equivalent system of first order ordinary differential equations (ODEs) $[x_1(t) = y(t), x_2(t) = \dot{y}(t)]$

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = \mu(1 - x_1(t)^2)x_2(t) - x_1(t)$$

SDE version (state independent diffusion)

$$d\mathbf{x}_1(t) = \mathbf{x}_2(t)dt$$

$$d\mathbf{x}_2(t) = \left[\mu(1 - \mathbf{x}_1(t)^2)\mathbf{x}_2(t) - \mathbf{x}_1(t)\right]dt + \sigma d\boldsymbol{\omega}(t)$$

► SDE version (state dependent diffusion)

$$dx_1(t) = x_2(t)dt$$

$$dx_2(t) = \left[\mu(1 - x_1(t)^2)x_2(t) - x_1(t)\right]dt + \sigma(1 + x_1(t)^2)d\omega(t)$$

Van der Pol Oscillator Problem - Matlab

▶ Drift

▶ Diffusion 1

```
1 function g = VanderPolDiffusion1(t,x,p)
2
3 sigma = p(2);
4 g = [0.0; sigma];
```

▶ Diffusion 2

```
1  function g = VanderPolDiffusion2(t,x,p)
2
3  sigma = p(2);
4  g = [0.0; sigma*(1.0+x(1)*x(1))];
```

Examples of Numerical Solution

▶ ODEs

$$dx_1(t) = x_2(t)dt$$

$$dx_2(t) = \left[\mu(1 - x_1(t)^2)x_2(t) - x_1(t)\right]dt$$

► Parameter

$$\mu = 3$$

► Initial conditions

$$x_0 = \begin{bmatrix} 0.5\\0.5 \end{bmatrix}$$

► Explicit method (explicit Euler)

$$x_{k+1} - x_k = f(x_k) \Delta t_k$$

► Implicit method (implicit Euler)

$$x_{k+1} - x_k = f(x_{k+1})\Delta t_k$$

Examples of Numerical Solution

► SDE with state independent diffusion

$$d\mathbf{x}_1(t) = \mathbf{x}_2(t)dt$$

$$d\mathbf{x}_2(t) = \left[\mu(1 - \mathbf{x}_1(t)^2)\mathbf{x}_2(t) - \mathbf{x}_1(t)\right]dt + \sigma d\boldsymbol{\omega}(t)$$

▶ Parameters

$$\mu = 3$$
 $\sigma = 1$

► Initial conditions

$$x_0 = \begin{bmatrix} 0.5\\0.5 \end{bmatrix}$$

Explicit-explicit (Euler-Maryuama) solution method

$$\boldsymbol{x}_{k+1} - \boldsymbol{x}_k = f(\boldsymbol{x}_k) \Delta t_k + g(\boldsymbol{x}_k) \Delta \boldsymbol{w}_k, \quad \Delta \boldsymbol{w}_k \sim N_{iid}(0, I\Delta t_k)$$

▶ Implicit-explicit solution method

$$\boldsymbol{x}_{k+1} - \boldsymbol{x}_k = f(\boldsymbol{x}_{k+1}) \Delta t_k + g(\boldsymbol{x}_k) \Delta \boldsymbol{w}_k, \quad \Delta \boldsymbol{w}_k \sim N_{iid}(0, I \Delta t_k)$$

```
mu
       = 3;
   sigma = 1.0;
  x0 = [0.5; 0.5];
   p = [mu; sigma];
6 tf = 5*mu:
7 	 nw = 1:
8 N = 1000;
9 Ns = 5;
10 seed = 100;
11
12
   [W, T, ~] = StdWienerProcess(tf, N, nw, Ns, seed);
13 X = zeros(length(x0), N+1, Ns);
14
   for i=1.Ns
15
      X(:,:,i) = SDEsolverExplicitExplicit(...
16
                           @VanderPolDrift,@VanderPolDiffusion1,...
17
                           T, x0, W(:,:,i), p);
18
   end
19
    Xd = SDEsolverExplicitExplicit(...
                   @VanderPolDrift,@VanderPolDiffusion1,...
20
21
                   T, x0, W(:,:,i), [mu; 0.01);
```

Numerical Solution - Van der Pol - SDE version 1

 $\mu=3\text{, }\sigma=1\text{,}x_0=[0.5;0.5]$

Examples of Numerical Solution

► SDE with state dependent diffusion

$$d\mathbf{x}_1(t) = \mathbf{x}_2(t)dt$$

$$d\mathbf{x}_2(t) = \left[\mu(1 - \mathbf{x}_1(t)^2)\mathbf{x}_2(t) - \mathbf{x}_1(t)\right]dt + \sigma(1 + \mathbf{x}_1(t)^2)d\boldsymbol{\omega}(t)$$

Parameters

$$\mu = 3$$
 $\sigma = 0.5$

► Initial conditions

$$x_0 = \begin{bmatrix} 0.5\\0.5 \end{bmatrix}$$

► Explicit-explicit (Euler-Maryuama) solution method

$$\boldsymbol{x}_{k+1} - \boldsymbol{x}_k = f(\boldsymbol{x}_k) \Delta t_k + g(\boldsymbol{x}_k) \Delta \boldsymbol{w}_k, \quad \Delta \boldsymbol{w}_k \sim N_{iid}(0, I\Delta t_k)$$

▶ Implicit-explicit solution method

$$\boldsymbol{x}_{k+1} - \boldsymbol{x}_k = f(\boldsymbol{x}_{k+1}) \Delta t_k + g(\boldsymbol{x}_k) \Delta \boldsymbol{w}_k, \quad \Delta \boldsymbol{w}_k \sim N_{iid}(0, I\Delta t_k)$$

```
mu
       = 3;
   sigma = 0.5;
3 \times 0 = [0.5; 0.5];
   p = [mu; sigma];
6 tf = 5*mu:
7 	 nw = 1:
8 N = 5000;
9 Ns = 5;
10 seed = 100;
11
12
   [W, T, ~] = StdWienerProcess(tf, N, nw, Ns, seed);
13 X = zeros(length(x0), N+1, Ns);
14
   for i=1.Ns
15
      X(:,:,i) = SDEsolverExplicitExplicit(...
16
                           @VanderPolDrift,@VanderPolDiffusion2,...
17
                           T, x0, W(:,:,i), p);
18
   end
19
   Xd = SDEsolverExplicitExplicit(...
                   @VanderPolDrift,@VanderPolDiffusion2,...
20
21
                   T,x0,W(:,:,i),[mu; 0.0]);
```

Numerical Solution - Van der Pol - SDE version 1

 $\mu=3\text{, }\sigma=1\text{,}x_0=[0.5;0.5]$

Numerical Solution - Van der Pol - SDE version 2

 $\mu=3\text{, }\sigma=0.5\text{,}x_0=[0.5;0.5]$

