(A)

Ideas

Notice that among three options, C(i-1,j-1) and C(i+2,j-2) uses j smaller than current indicies. Thus we need to evaluate j from 1 to n. The remaining one option C(i+j,j) uses i bigger than current indicies, that means we need to evaluate i from n to i, in **decreasing** order. We notice that all three options only uses results in position C(*,j), C(*,j-1), and C(*,j-2), so we only need to store at most 3n entries.

Algorithm

Declare 2D array A[3, n], let A[0, *] = 0 and A[1, *] = 0. Takes O(n)For $j: 0 \rightarrow n$;

- For $i:n\to 0$:
 - Declare three options O_1, O_2, O_3
 - If $j-1 \geq 1$ and $i-1 \geq 1$, let $O_1 = A[0,i-1] + f(i,j)$, otherwise $O_1 = f(i,j)$ Takes $\mathbf{O}(1)$
 - If $j-2 \le n$ and $i+2 \ge 1$, let $O_2 = A[1,i+2] + g(i,j)$, otherwise $O_2 = g(i,j)$. Takes O(1)
 - If $i+j \leq n$, let $O_3 = A[2,i+j] + h(i+j)$, otherwise $O_3 = h(i+j)$. Takes $\mathbf{O}(\mathbf{1})$
 - Let $A[2, i] = \max(O_1, O_2, O_3)$. Takes O(1)
- Let A[0,*] = A[1,*]; Let A[1,*] = A[2,*]. Takes O(n)

Return A[2,n]

Note: Time complexity are noted on in bold. The notation A[0,*] is a shorthand for the array slice, where * is the wildcard.

Complexity

Since f, g, h are constant function, and we loop each i, j once, the total time complexity is $O(n^2)$. Since we only store A[3, n] which requires 3n space, the space complexity is O(n).

(B)

Idea

Notice that C(i, j) depends on only subproblems with k > j, therefore we need to evaluate j from n to 0, in **decreasing** order. It does not depend on subproblem with same j, therefore we could evaluate i in either increasing or decreasing order. Notice that it requires all us to keep all rows of previous data (if we think j represents rows),

and we could not really do optimization as f, g depends on i, j and k. Given that we only need to calculate $O(\lfloor n/2 \rfloor, 1)$, technically all the configuration need to be calculated is like a "waterfall", but that only saves constant factor time and space, so it is not in the discussion.

Algorithm

Declare 2D array A[n, n], where

$$A[i,j] = egin{cases} 0 & ext{if } i=0 ext{ and } i=n \ 0 & ext{if } j=n \ \infty & ext{otherwise} \end{cases}$$

For $j: n-1 \to 0$

- For $i:1 \rightarrow n-1$
 - Let minimum value $m = \infty$
 - For $k \in [j+1, n]$ such that g(i, j, k) > 0:
 - Update $m = \min(m, A[i-1, k] + A[i+1, k] + f(i, j, k))$ Takes O(1)
 - Update A[i, j] = m Takes O(1)

Return $A[\lfloor n/2 \rfloor, 1]$

Complexity

Since we compute all A[i,j], we have $O(n^2)$ tasks, in each tasks, we iterate k which in worst case will have O(n) iterations, in each iteration, we update m with O(1) tasks as f, g are both constant function. So, the time complexity is $O(n^3)$. Since we store A[i,j], the space complexity is $O(n^2)$.