TEST REPORT

Reference No. : WTN16S0448787-4E

FCC ID : 2AFOYL554UCNN

Applicant...... Le Shi Zhi Xin Electronic Technology (Tian jin) Limited

Address : 201-427 2F B1 District, Anime building, No. 126 Anime Middle Road,

Eco-city Tianjin, China

Manufacturer : TPV Technology(Qingdao) Co.,Ltd

City, Shandong Province, China(PRC)

Product Name..... : LED TV

Model No. : L554UCNN

Brand.....: LeEco

Standards...... FCC CFR47 Part 15 Section 15.247:2015

Date of Receipt sample : Apr. 25, 2016

Test Result..... Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By: Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Zero Zhou / Test Engineer

Approved b

Philo Zhong Mar

Reference No.: WTN16S0448787-4E Page 2 of 28

2 Test Summary

Test Items	Test Requirement	Result
Radiated Emissions	15.205(a)	PASS
Radiated Effissions	15.209(a)	PASS
Conducted Emissions	15.207(a)	PASS
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3),(4)	PASS
Power Spectral Density	15.247(e)	PASS
Band Edge	15.247(d)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

3 Contents

		Page
1	COVER PAGE	
2	TEST SUMMARY	
3	CONTENTS	
4	GENERAL INFORMATION	4
	4.1 GENERAL DESCRIPTION OF E.U.T.	4
	4.2 DETAILS OF E.U.T.	
	4.3 CHANNEL LIST	
	4.4 TEST MODE	
	4.5 TEST FACILITY	
5	EQUIPMENT USED DURING TEST	
	5.1 EQUIPMENTS LIST	
	5.2 MEASUREMENT UNCERTAINTY	
	5.3 TEST EQUIPMENT CALIBRATION	
6	CONDUCTED EMISSIONS	
	6.1 E.U.T. OPERATION	
	6.2 EUT SETUP	
	6.3 MEASUREMENT DESCRIPTION	
	6.4 CONDUCTED EMISSION TEST RESULT	
7	RADIATED EMISSIONS	
	7.1 EUT OPERATION	
	7.2 TEST SETUP	
	7.3 SPECTRUM ANALYZER SETUP	
	7.4 TEST PROCEDURE	
8	BAND EDGE MEASUREMENT	
0		
	8.1 TEST PRODUCE	
9	6 DB BANDWIDTH MEASUREMENT	
	9.1 TEST PROCEDURE	
	9.2 Test Result	
10	MAXIMUM PEAK OUTPUT POWER	22
	10.1 Test Procedure	
	10.2 TEST RESULT	22
11	POWER SPECTRAL DENSITY	24
	11.1 Test Procedure	24
	11.2 TEST RESULT	24
12	ANTENNA REQUIREMENT	26
13	RF EXPOSURE	27
	13.1 REQUIREMENTS	
	13.2 THE PROCEDURES / LIMIT	
	13.2 MDE CALCULATION METHOD	28

Reference No.: WTN16S0448787-4E Page 4 of 28

4 General Information

4.1 General Description of E.U.T.

Product Name: LED TV
Model No.: L554UCNN

Model Description: N/A

Operation Frequency: IEEE 802.11b/g/n(HT20):2412MHz ~ 2462MHz

IEEE 802.11n(HT40):2422MHz~2452MHz

IEEE 802.11a/ n(HT20/40)/ac(HT20/40/80): 5150MHz to 5250MHz IEEE 802.11a/ n(HT20/40)/ac(HT20/40/80): 5725MHz to 5850MHz

BT: 2402-2480MHz SRD: 2403-2480MHz

The Lowest Oscillator: 32.768KHz

Antenna Gain: ANT 0

2.4GHz WIFI:3.2 dBi5.2GHz WIFI:4.1 dBi5.8GHz WIFI:4.0 dBi

ANT 1

2.4GHz WIFI:3.2 dBi 5.2GHz WIFI:3.3 dBi 5.8GHz WIFI:3.4 dBi

ANT 2

2.4GHz BT:3.2 dBi

ANT 3

2.4GHz SRD:3.0 dBi

Type of modulation: IEEE 802.11b DSSS(CCK/QPSK/BPSK)

IEEE 802.11g OFDM(BPSK/QPSK/16QAM/64QAM)
IEEE 802.11n OFDM(BPSK/QPSK/16QAM/64QAM)
IEEE for 802.11a: OFDM(BPSK/QPSK/16QAM/64QAM)
IEEE for 802.11n: OFDM(BPSK/QPSK/16QAM/64QAM)

IEEE for 802.11ac: OFDM (BPSK/QPSK/16QAM/64QAM/256QAM)

BT: GFSK,PI/4-DQPSK,8DPSK

SRD: GFSK

Number of WIFI:2*2 (MIMO)

transmitter chains: BT: 1

SRD: 1

4.2 Details of E.U.T.

Technical Data: AC 120V~60Hz, 170W

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2404	2	2406	3	2408
4	2410	5	2412	6	2414	7	2416
8	2418	9	2420	10	2422	11	2424
12	2426	13	2428	14	2430	15	2432
16	2434	17	2436	18	2438	19	2440
20	2442	21	2444	22	2446	23	2448
24	2450	25	2452	26	2454	27	2456
28	2458	29	2460	30	2462	31	2464
32	2466	33	2468	34	2470	35	2472
36	2474	37	2476	38	2478	39	2480

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Transmitting duty cycle is no less 98%.

The software is installed in operation system, named "RFTestTool.apk", Version 1,date 20160518.

Table 1 Tests carried out under FCC part 15.247

Test mode Low channel		Middle channel	High channel		
Transmitting	2402MHz	2440MHz	2480MHz		

Table 2 Tests carried out under FCC part 15.209

Test Item	Test Mode
Radiated Emissions	Communication

4.5 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: 7760A

Waltek Services(Shenzhen) Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A, July 12, 2012.

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

Waltek Services (Shenzhen) Co.,Ltd.

http://www.waltek.com.cn

5 Equipment Used during Test

5.1 Equipments List

1	5.1 Equipments L					
Condu	cted Emissions Test	Site 1#	 			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.14,2015	Sep.13,2016
2.	LISN	R&S	ENV216	101215	Sep.14,2015	Sep.13,2016
3.	Cable	Тор	TYPE16(3.5M)	-	Sep.14,2015	Sep.13,2016
Condu	cted Emissions Test	Site 2#				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.14,2015	Sep.13,2016
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.14,2015	Sep.13,2016
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.14,2015	Sep.13,2016
4.	4. Cable LARGE		RF300	-	Sep.14,2015	Sep.13,2016
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	1#		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.14,2015	Sep.13,2016
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Sep.14,2015	Sep.13,2016
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Sep.14,2015	Sep.13,2016
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.14,2015	Sep.13,2016
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Sep.14,2015	Sep.13,2016
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Sep.14,2015	Sep.13,2016
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Sep.14,2015	Sep.13,2016
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Sep.14,2015	Sep.13,2016
3m Ser	mi-anechoic Chamber	for Radiation Emis	ssions Test site	2#		
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	Sep.14,2015	Sep.13,2016
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Sep.14,2015	Sep.13,2016
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Sep.14,2015	Sep.13,2016
4	Cable	HUBER+SUHNER	CBL2	525178	Sep.14,2015	Sep.13,2016

RF Conducted Testing										
Item	Equipment Manufactu		cturer Model No. Serial No. Cali		Last Calibration Date	Calibration Due Date				
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.14,2015	Sep.13,2016				
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.14,2015	Sep.13,2016				
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.14,2015	Sep.13,2016				

5.2 Measurement Uncertainty

Parameter	Uncertainty	
Radio Frequency	± 1 x 10 ⁻⁶	
RF Power	± 1.0 dB	
RF Power Density	± 2.2 dB	
	± 5.03 dB (Bilog antenna 30M~1000MHz)	
Radiated Spurious Emissions test	± 4.74 dB (Horn antenna 1000M~25000MHz)	
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)	

5.3

Test Equipment CalibrationAll the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTN16S0448787-4E Page 8 of 28

6 Conducted Emissions

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2009

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

6.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2009.

6.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.4 Conducted Emission Test Result

Neutral line:

Reference No.: WTN16S0448787-4E Page 11 of 28

7 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.1:2009

Test Result: PASS
Measurement Distance: 3m

Limit:

_	Field Strei	ngth	Field Strength Limit at 3m Measurement Distance		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

7.1 EUT Operation

Operating Environment:

Temperature: $25.5 \, ^{\circ}\text{C}$ Humidity: $51 \, ^{\circ}\text{RH}$ Atmospheric Pressure: 1016 mbar

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2009.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0° to 360°

Turn Table

Absorbers

Spectrum

Analyzer

Combining

Network

AMP

The test setup for emission measurement above 1 GHz.

System

7.3 Spectrum Analyzer Setup

	•	
Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTN16S0448787-4E Page 14 of 28

7.4 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis,so the worst data were shown as follow.

7.5 Summary of Test Results

Test Frequency: 32.768kHz~30MHz

Frequency	Measurement results		rement Detector Correct Extrapolation		Measurement results (calculated)		Margin	
(MHz)	dΒμV	@3m	PK/QP	dB/m	dB	dBμV/m @30m	dBµV/m @30m	dB
26.951	26.74		QP	19.90	40.00	6.64	29.54	-22.90

Test Frequency: 30MHz ~ 18GHz

	Receiver		Turn	RX Antenna		Corrected	Corrected			
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
GFSK Low Channel										
268.32	36.89	QP	173	1.7	Н	-13.35	23.54	46.00	-22.46	
268.32	41.33	QP	63	1.1	V	-13.35	27.98	46.00	-18.02	
4804.00	46.15	PK	197	1.6	V	-1.06	45.09	74.00	-28.91	
4804.00	43.52	Ave	197	1.6	V	-1.06	42.46	54.00	-11.54	
7206.00	40.62	PK	82	1.7	Н	1.33	41.95	74.00	-32.05	
7206.00	35.37	Ave	82	1.7	Н	1.33	36.70	54.00	-17.30	
2322.26	45.57	PK	324	1.2	V	-13.19	32.38	74.00	-41.62	
2322.26	38.18	Ave	324	1.2	V	-13.19	24.99	54.00	-29.01	
2389.37	44.35	PK	354	1.1	Н	-13.14	31.21	74.00	-42.79	
2389.37	36.44	Ave	354	1.1	Н	-13.14	23.30	54.00	-30.70	
2492.72	43.13	PK	216	1.6	V	-13.08	30.05	74.00	-43.95	
2492.72	38.00	Ave	216	1.6	V	-13.08	24.92	54.00	-29.08	

Frequency	Receiver	Turn	RX Antenna		Corrected	Corrected			
	Reading	Detector ng	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK Middle Channel								
268.32	35.91	QP	355	1.3	Н	-13.35	22.56	46.00	-23.44
268.32	42.76	QP	272	1.9	V	-13.35	29.41	46.00	-16.59
4880.00	46.10	PK	152	1.1	V	-0.62	45.48	74.00	-28.52
4880.00	43.32	Ave	152	1.1	V	-0.62	42.70	54.00	-11.30
7320.00	39.67	PK	229	1.2	Н	2.21	41.88	74.00	-32.12
7320.00	33.93	Ave	229	1.2	Н	2.21	36.14	54.00	-17.86
2337.37	45.68	PK	236	1.6	V	-13.19	32.49	74.00	-41.51
2337.37	38.16	Ave	236	1.6	V	-13.19	24.97	54.00	-29.03
2358.36	42.94	PK	353	1.8	Н	-13.14	29.80	74.00	-44.20
2358.36	36.91	Ave	353	1.8	Н	-13.14	23.77	54.00	-30.23
2498.75	42.89	PK	224	1.6	V	-13.08	29.81	74.00	-44.19
2498.75	38.88	Ave	224	1.6	V	-13.08	25.80	54.00	-28.20

Frequency	Receiver Detector	Turn	RX An	tenna	Corrected	Corrected			
		Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK High Channel								
268.32	35.91	QP	65	1.9	Н	-13.35	22.56	46.00	-23.44
268.32	41.45	QP	110	1.0	V	-13.35	28.10	46.00	-17.90
4960.00	45.38	PK	103	1.6	V	-0.24	45.14	74.00	-28.86
4960.00	43.59	Ave	103	1.6	V	-0.24	43.35	54.00	-10.65
7440.00	40.45	PK	190	1.1	Н	2.84	43.29	74.00	-30.71
7440.00	34.75	Ave	190	1.1	Н	2.84	37.59	54.00	-16.41
2317.67	45.54	PK	358	1.6	V	-13.19	32.35	74.00	-41.65
2317.67	39.76	Ave	358	1.6	V	-13.19	26.57	54.00	-27.43
2362.38	44.74	PK	315	1.4	Н	-13.14	31.60	74.00	-42.40
2362.38	38.62	Ave	315	1.4	Н	-13.14	25.48	54.00	-28.52
2491.94	42.32	PK	91	1.5	V	-13.08	29.24	74.00	-44.76
2491.94	38.68	Ave	91	1.5	V	-13.08	25.60	54.00	-28.40

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported

Reference No.: WTN16S0448787-4E Page 18 of 28

8 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) and

15.205(c).

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

8.1 Test Produce

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto

Detector function = peak, Trace = max hold

- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

8.2 Test Result

Reference No.: WTN16S0448787-4E Page 20 of 28

9 6 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

9.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

9.2 Test Result

Operation mode	Bandwidth (MHz)
Low channel	0.737
Middle channel	0.725
High channel	0.725

Test result plot as follows:

Reference No.: WTN16S0448787-4E Page 22 of 28

10 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

10.1 Test Procedure

KDB558074 D01 DTS Meas Guidance v03r05 section 8.1.2 Option 2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

10.2 Test Result

	Dete	Peak Power(dBm)			
Test Mode	Data Rate	CH00	CH19	CH39	
GFSK BLE	1Mbps	6.59	5.35	5.39	

Reference No.: WTN16S0448787-4E Page 24 of 28

11 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

11.1 Test Procedure

KDB558074 D01 DTS Meas Guidance v03r05 section 9.1 Option 1

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

11.2 Test Result

Power Spectral Density (dBm per 3kHz)								
Low channel	Low channel Middle channel High channel							
-7.43 -8.57 -8.22								
Limit								
8dBm per 3kHz								

12 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

This device uses of an antenna that uses a unique coupling to the intentional radiator. Antenna connector complied with the requirement.

Reference No.: WTN16S0448787-4E Page 27 of 28

13 RF Exposure

Test Requirement: FCC Part 1.1307

Test Mode: The EUT work in test mode(Tx).

13.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

13.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTN16S0448787-4E Page 28 of 28

13.3 MPE Calculation Method

$$E \text{ (V/m)} = \frac{\sqrt{30 \times P \times G}}{d} \qquad \text{Power Density: } \textit{Pd (W/m}^2\text{)} = \frac{E^2}{377}$$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$\mathbf{Pd} = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain	Antenna Gain (numeric)	Max.Peak Output	Peak Output	Power Density	Limit of Power
(dBi)		Power (dBm)	Power (mW)	(mW/cm2)	Density (mW/cm2)
3.20	2.089	6.59	4.56	0.001895	1

=====End of Report=====