离散数学第一次作业

葛凇铂 PB20061376

2022年10月7日

题目 1.

解答.

(1). 证明:

 \Rightarrow 任何 $A\cap (\bar{A}\cup B)$ 中的元素 x,我们知道 $x\in A$ 且 $x\in (\bar{A}\cup B)$,即 $x\in A$ 且 $x\in ((U-A)\cup B)$

如果 $x \in (U - A)$, 因为 $x \in A$, 则 $x = \emptyset$

如果 $x \in B$,因为 $x \in A$,则 $x \in A \cap B$

 \Leftarrow 任何 $A \cap B$ 中的元素 x,我们知道 $x \in A$ 且 $x \in B$,故 $x \notin \bar{A}$,则 $A \cap (\bar{A} \cup B) = A \cap B$

(2). 证明:

已知 $(A \cap B) \subseteq A$,则 $A \cup (A \cap B) = A$ 恒成立

(3). 证明:

任何 $\overline{\bigcap_i A_i}$ 中的元素 x,我们知道 $x \notin A_1$ 或 $x \notin A_2 \cdots$,即 $\bigcup_i \overline{A_i}$,反 之同理。

任何 $\overline{\bigcup_i A_i}$ 中的元素 x,我们知道 $x \notin A_1$ 且 $x \notin A_2 \cdots$,即 $\bigcap_i \overline{A_i}$,反 之同理。

题目 2.

解答. (1). 设 **A** 的奇子集个数为 a_n , 偶子集个数为 b_n 。

- 1. 当 n=3 时, $a_3=4$
- 2. 设当 n = k 时, $a_k = 2^{k-1}$ 。
- 3. 若 k+1 为偶数,则 a_k 中子集加上该偶数仍为奇数,则 $a_{k+1}=2a_k$ 。
- 4. 若 k+1 为奇数,前 k 个数一共有 2^k 个子集,和为偶数的子集有 2^{k-1} 个,加上该奇数后和变为奇数,则 $a_{k+1}=a_k+2^{k-1}$ 。
- 1. 当 n=3 时, $b_3=4$ 。
- 2. 设当 n = k 时, $b_k = 2^{k-1}$ 。
- 3. 若 k+1 为偶数,则 b_k 中子集加上该偶数仍为偶数,则 $b_{k+1} = 2b_k$ 。
- 4. 若 k+1 为奇数,前 k 个数一共有 2^k 个子集,和为奇数的子集有 2^{k-1} 个,加上该奇数后和变为偶数,则 $b_{k+1}=b_k+2^{k-1}$

则 $|\mathbf{S}| = |\mathbf{T}|$ 。

(2). 由 (1) 可知, 当 $n \ge 3$ 时, |S| = |T|。

对于S

- 1. 当 n=3 时,集合中每个数字出现的次数 $c_3=2$
- 2. 设当 n = k 时,集合中前 k 1 个数字出现的次数 $c_k = 2^{k-2}$,第 k 个数字出现的次数为 2^{k-3} 次。
- 3. 若 k+1 为偶数, $b_{k+1}=2b_k$,那么集合中前 k 个数字出现的次数 $c_{k+1}=2c_k$,第 k+1 个数字出现的次数为 2^{k-2} 次

4. 若 k+1 为奇数, $b_{k+1}=2b_k$,那么集合中前 k 个数字出现的次数 $c_{k+1}=2c_k$,第 k+1 个数字出现的次数为 2^{k-2} 次

对于T同理。

那么对集合 **A** 中的任意数,在 **S** 与 **T** 中出现的次数都相等。则 $\sum_{\mathbf{S}_1 \in \mathbf{S}} \sum_{x \in \mathbf{S}_1} x = \sum_{\mathbf{T}_1 \in \mathbf{T}} \sum_{y \in \mathbf{T}_1} y$

题目 3.

解答.

$$\frac{2a}{\gcd(2a,b)} \equiv 1 \pmod{2}$$
$$\frac{2a}{\gcd(a,b)} \equiv 1 \pmod{2}$$

若要使任何一国的两个代表之间都恰好夹了 b-1 人,则 $k(b-1) = a-1, k \in \mathbb{Z}$,则 $\gcd(a,b) = b$,即 a 可被 b 整除,左侧 $\frac{2a}{b}$ 为偶数,右侧 $1 \pmod{2}$ 为奇数,等式矛盾。

题目 4.

解答. 假设形如 4n + 3 的素数的个数有限 $(p_1, ..., p_n)$ 。

记 $q = p_1 p_2 ... p_n + 2$,q 显然是奇数, p_i 都不是 q 的因子。

若 q 为 4k + 3 型奇数,则 q 的因子中必然有 4k + 3 型素数 p',然而在 $p_1, p_2, ..., p_n$ 中没有 p',与命题矛盾。

若 q 为 4k+1 型奇数,则 q'=q+2 为 4k+3 型奇数,然而在 $p_1,p_2,...,p_n$ 中没有 p',与命题矛盾。

综上 4k+1 型素数有无数个。

题目 5.

解答.
$$1.$$

$$\begin{cases} 4x \equiv 2 \pmod{10} \\ 3x \equiv 2 \pmod{7} \end{cases}$$
 方程组等价为
$$\begin{cases} x \equiv 3 \pmod{10} \\ x \equiv 3 \pmod{7} \end{cases}$$

$$x \equiv 3 \pmod{70}$$

x = 3 + 70t

$$\begin{cases} x \equiv 1 \pmod{4} \\ x \equiv 1 \pmod{4} \\ x \equiv 1 \pmod{3} \\ x \equiv 7 \pmod{30} \end{cases}$$
 方程组等价为
$$\begin{cases} x \equiv 1 \pmod{4} \\ x \equiv 1 \pmod{3} \\ x \equiv 1 \pmod{3} \\ x \equiv 1 \pmod{3} \\ x \equiv 2 \pmod{5} \\ x \equiv 1 \pmod{3} \\ x \equiv 2 \pmod{5} \end{cases}$$

进一步化简
$$\begin{cases} x \equiv 1 \pmod{4} \\ x \equiv 1 \pmod{3} \\ x \equiv 2 \pmod{5} \end{cases}$$

$$M = 60, M_1 = 15, M_2 = 20, M_3 = 12$$

$$15b_1 \equiv 1 \pmod{4} \Rightarrow b_1 = 3$$

$$20b_2 \equiv 1 \pmod{3} \Rightarrow b_2 = 5$$

$$12b_3 \equiv 1 \pmod{5} \Rightarrow b_3 = 3$$

$$15 \times 3 \times 1 + 20 \times 5 \times 1 + 12 \times 3 \times 2 = 217 \equiv 37 \pmod{60}$$

$$x = 37 + 60t$$

题目 6.

解答. 1. 令 a=(n+1)!,则 a 能被任意 $k\in[2,n+1], k\in\mathbb{Z}$ 整除。已知 (a+2),(a+3),...,(a+n+1) 为连续的 n 个正整数相乘的形式,故这 n 个数不是素数。

2. 假设有 n 个素数 $p_1, p_2, ..., p_n$, 那么 $p_1^2, p_2^2, ..., p_n^2$ 两两互素。

同余方程组
$$\begin{cases} x \equiv -1 \pmod{p_1^2} \\ x \equiv -2 \pmod{p_2^2} \\ \vdots \\ x \equiv -n \pmod{P_n^2} \end{cases}$$
 则存在连续 n 个正整数 $x+1,x+1$ 是 $x \equiv -n \pmod{p_n^2}$ $x \equiv -n \pmod{p_n^2}$