Caleb Logemanr James Rossmanith

Generalized Shallow Wate Equations

Nonconservative Products

Nonconservative DG Formulation

Results

Results

Poforonce

Nonconservative Discontinuous Galerkin Method for Generalized Shallow Water Equations

Caleb Logemann James Rossmanith

Mathematics Department, Iowa State University

logemann@iastate.edu

March 05, 2021

Overview

Caleb Logemann James Rossmanith

Generalized Shallow Wate Equations

Nonconservative Products

Nonconservative DG Formulation

Numerical Method Results

Future vvork

- 1 Generalized Shallow Water Equations
- 2 Nonconservative Products
- 3 Nonconservative DG Formulation
- 4 Results
 - Numerical Methods
 - Results
 - Future Work

Generalized Shallow Water

Caleb Logemann, James Rossmanith

Generalized Shallow Water Equations

Nonconservativ Products

Nonconservativ DG Formulation

Results

Numerical Methods Results Future Work

References

Navier Stokes Equations with a free surface

$$abla \cdot \mathbf{u} = 0$$

$$\mathbf{u}_t +
abla \cdot (\mathbf{u}\mathbf{u}) = -\frac{1}{\rho}
abla p + \frac{1}{\rho}
abla \cdot \sigma + \mathbf{g}$$

$$(h_s)_t + [u(t, x, y, h_s), v(t, x, y, h_s)]^T \cdot \nabla h_s = w(t, x, y, h_s)$$

$$(h_b)_t + [u(t, x, y, h_b), v(t, x, y, h_b)]^T \cdot \nabla h_b = w(t, x, y, h_b)$$

Polynomial Ansatz

Caleb Logemann James Rossmanith

Generalized Shallow Water Equations

Nonconservative Products

Nonconservativ DG Formulation

Results

Numerical Methods Results

References

$$\begin{split} \tilde{u}(t,x,y,\zeta) &= u_m(t,x,y) + u_d(t,x,y,\zeta) \\ &= u_m(t,x,y) + \sum_{j=1}^N \left(\alpha_j(t,x,y)\phi_j(\zeta)\right) \\ \tilde{v}(t,x,y,\zeta) &= v_m(t,x,y) + v_d(t,x,y,\zeta) \\ &= v_m(t,x,y) + \sum_{j=1}^N \left(\beta_j(t,x,y)\phi_j(\zeta)\right) \end{split}$$

Orthogonality Condition

$$\int_0^1 \phi_j(\zeta)\phi_i(\zeta) \,\mathrm{d}\zeta = 0 \quad \text{for } j \neq i$$

$$\phi_0(\zeta) = 1$$
, $\phi_1(\zeta) = 1 - 2\zeta$, $\phi_2(\zeta) = 1 - 6\zeta + 6\zeta^2$

Constant Moments

Generalized Shallow Water Equations

$$\left(hu_m\right)_t + \left(h\left(u_m^2 + \sum_{j=1}^N \frac{\alpha_j^2}{2j+1}\right) + \frac{1}{2}ge_zh^2\right)_x$$
 where the production of the production
$$+ \left(h\left(u_mv_m + \sum_{j=1}^N \frac{\alpha_j\beta_j}{2j+1}\right)\right)_y = -\frac{\nu}{\lambda}\left(u_m + \sum_{j=1}^N \alpha_j\right) + hg\left(e_x - e_z(h_b)_x\right)$$
 and the production
$$\left(hv_m\right)_t + \left(h\left(v_m^2 + \sum_{j=1}^N \frac{\alpha_j\beta_j}{2j+1}\right) + \frac{1}{2}ge_zh^2\right)_y$$

$$+ \left(h\left(u_mv_m + \sum_{j=1}^N \frac{\alpha_j\beta_j}{2j+1}\right)\right)_y = -\frac{\nu}{\lambda}\left(v_m + \sum_{j=1}^N \beta_j\right) + hg\left(e_y - e_z(h_b)_y\right)$$

 $h_t + (hu_m)_v + (hv_m)_v = 0$

Higher Order Moments

Caleb Logemanr James Rossmanith

Generalized Shallow Water Equations

Nonconservativ

Nonconservative

Results

Numerical Methods Results

$$(h\alpha_{i})_{t} + \left(2hu_{m}\alpha_{i} + h\sum_{j,k=1}^{N} A_{ijk}\alpha_{j}\alpha_{k}\right)_{x} + \left(hu_{m}\beta_{i} + hv_{m}\alpha_{i} + h\sum_{j,k=1}^{N} A_{ijk}\alpha_{j}\beta_{k}\right)_{y}$$

$$= u_{m}D_{i} - \sum_{j,k=1}^{N} B_{ijk}D_{j}\alpha_{k} - (2i+1)\frac{\nu}{\lambda}\left(u_{m} + \sum_{j=1}^{N}\left(1 + \frac{\lambda}{h}C_{ij}\right)\alpha_{j}\right)$$

$$(h\beta_{i})_{t} + \left(hu_{m}\beta_{i} + hv_{m}\alpha_{i} + h\sum_{j,k=1}^{N} A_{ijk}\alpha_{j}\beta_{k}\right)_{x} + \left(2hv_{m}\beta_{i} + h\sum_{j,k=1}^{N} A_{ijk}\beta_{j}\beta_{k}\right)_{y}$$

$$= v_{m}D_{i} - \sum_{j,k=1}^{N} B_{ijk}D_{j}\beta_{k} - (2i+1)\frac{\nu}{\lambda}\left(v_{m} + \sum_{j=1}^{N}\left(1 + \frac{\lambda}{h}C_{ij}\right)\beta_{j}\right)$$

Example Systems

Caleb Logemann James Rossmanith

Generalized Shallow Water Equations

Nonconservativ Products

Nonconservative DG Formulation

Results

Results

References

1D model with h_b constant, $e_x = e_y = 0$, and $e_z = 1$ Constant System

$$\begin{bmatrix} h \\ h u_m \end{bmatrix}_t + \begin{bmatrix} h u_m \\ h u_m^2 + \frac{1}{2}gh^2 \end{bmatrix}_x = -\frac{\nu}{\lambda} \begin{bmatrix} 0 \\ u_m \end{bmatrix}$$

Flux Jacobian Eigenvalues, $u_m \pm \sqrt{gh}$ Linear System, $\tilde{u} = u_m + \alpha_1 \phi_1$

$$\begin{bmatrix} h \\ hu_m \\ h\alpha_1 \end{bmatrix}_t + \begin{bmatrix} hu_m \\ hu_m^2 + \frac{1}{2}gh^2 + \frac{1}{3}h\alpha_1^2 \\ 2hu_m\alpha_1 \end{bmatrix}_x = Q \begin{bmatrix} h \\ hu_m \\ h\alpha_1 \end{bmatrix}_x - \mathbf{s}$$

$$Q = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & u_m \end{bmatrix} \quad \mathbf{s} = \frac{\nu}{\lambda} \begin{bmatrix} 0 \\ u_m + \alpha_1 \\ 3(u_m + \alpha_1 + 4\frac{\lambda}{h}\alpha_1) \end{bmatrix}$$

Flux Jacobian Eigenvalues, $u_m \pm \sqrt{gh + \alpha_1^2}, u_m$

Example Systems

Generalized Shallow Water Equations

1 dimensional with h_b constant, $e_x = e_v = 0$, and $e_z = 1$ Quadratic Vertical Profile, $\tilde{u} = u + \alpha_1 \phi_1 + \alpha_2 \phi_2$

$$\begin{bmatrix} h \\ hu \\ h\alpha_1 \\ h\alpha_2 \end{bmatrix}_t + \begin{bmatrix} hu \\ hu^2 + \frac{1}{2}gh^2 + \frac{1}{3}h\alpha_1^2 + \frac{1}{5}h\alpha_2^2 \\ 2hu\alpha_1 + \frac{4}{5}h\alpha_1\alpha_2 \\ 2hu\alpha_2 + \frac{2}{3}h\alpha_1^2 + \frac{2}{7}h\alpha_2^2 \end{bmatrix}_x = Q \begin{bmatrix} h \\ hu \\ h\alpha_1 \\ h\alpha_2 \end{bmatrix}_x - \mathbf{s}$$

Flux Jacobian Eigenvalues, $u \pm c\sqrt{gh}$

$$c^{4} - \frac{10\alpha_{2}}{7}c^{3} - \left(1 + \frac{6\alpha_{2}^{2}}{35} + \frac{6\alpha_{1}^{2}}{5}\right)c^{2} + \left(\frac{22\alpha_{2}^{3}}{35} - \frac{6\alpha_{2}\alpha_{1}^{2}}{35} + \frac{10\alpha_{2}}{7}\right)c - \frac{\alpha_{2}^{4}}{35} - \frac{6\alpha_{2}^{2}\alpha_{1}^{2}}{35} - \frac{3\alpha_{2}^{2}}{7} + \frac{\alpha_{1}^{4}}{5} + \frac{\alpha_{1}^{2}}{5} = 0$$

Nonconservative Products

Caleb Logemann James Rossmanith

Generalized Shallow Wate Equations

Nonconservative Products

Nonconservativ DG Formulation

Results

Results
Future Work

References

Model Equation

$$\mathbf{q}_t + \nabla \cdot \mathbf{f}(\mathbf{q}) + Q_i(\mathbf{q})\mathbf{q}_{x_i} = \mathbf{s}(\mathbf{q}) \quad \text{for } (\mathbf{x}, t) \in \Omega \times [0, T]$$

Traditionally searching for weak solutions, find \mathbf{q} such that

$$\int_0^T \int_{\Omega} (\mathbf{q}_t + \nabla \cdot \mathbf{f}(\mathbf{q}) + Q_i(\mathbf{q}) \mathbf{q}_{x_i}) v \, d\mathbf{x} \, dt = \int_0^T \int_{\Omega} \mathbf{s}(\mathbf{q}) v \, d\mathbf{x} \, dt$$

for all $v \in C_0^1(\Omega \times [0, T])$

leb Logemann, James Rossmanith

Generalized Shallow Water Equations

Nonconservative Products

Nonconservative DG Formulation

DG Formulatio

Numerical Methods

Control March

Manufactured Solution

Caleb Logemann, James Rossmanith

Generalized Shallow Wate Equations

Nonconservation Products

Nonconservative

Results

Numerical Methods

Future Work

Effect of Higher Moments

Caleb Logemann, James Rossmanith

Generalized Shallow Wate Equations

Nonconservative Products

Nonconservative

Results

Numerical Methods

Future Work

Numerical Methods

Caleb Logemann James Rossmanith

Generalized Shallow Wate Equations

Nonconservative Products

Nonconservative DG Formulation

Numerical Methods

Future Wo

References

Model Equation

$$\mathbf{q}_t + \mathbf{f}(\mathbf{q})_x = Q(\mathbf{q})\mathbf{q}_x - \mathbf{P}(\mathbf{q})$$
 for $(x, t) \in [a, b] \times [0, T]$

Weak Form, find q such that

$$\int_{a}^{b} \mathbf{q}_{t} v \, dx + \int_{a}^{b} \mathbf{f}(\mathbf{q})_{x} v \, dx = \int_{a}^{b} Q(\mathbf{q}) \mathbf{q}_{x} v \, dx - \int_{a}^{b} \mathbf{P}(\mathbf{q}) v \, dx$$

for all $v \in L^2([a,b] \times [0,T])$

Notation

Caleb Logemann, James Rossmanith

Generalized Shallow Wate Equations

Nonconservative Products

Nonconservative DG Formulation

Results

Numerical Methods Results

References

■ Partition the domain, [a, b] as

$$a = x_{1/2} < \cdots < x_{j-1/2} < x_{j+1/2} < \cdots < x_{N+1/2} = b$$

- $I_j = [x_{j-1/2}, x_{j+1/2}]$
- $x_j = \frac{x_{j+1/2} + x_{j-1/2}}{2}$
- $\Delta x_j = x_{j+1/2} x_{j-1/2}$
- $\Delta x_j = \Delta x \text{ for all } j.$

Discontinuous Galerkin Space

Caleb Logemann James Rossmanith

Generalized Shallow Wate Equations

Nonconservative Products

Nonconservativ DG Formulation

Numerical Methods Results

References

Finite Dimensional DG Space

$$V^k = \left\{ v \in L^2([a,b]) \middle| v|_{I_j} \in P^k(I_j) \right\}$$

Basis for V^k

$$\left\{\phi_j^\ell\right\} \text{ where } \left.\phi_j^\ell(x)\right|_{I_i} = \phi^\ell(\xi_j(x)) \text{ and } \left.\phi_j^\ell(x)\right|_{\bar{I}_i} = 0$$

for $j=1,\ldots,N$ and $\ell=1,\ldots k$.

Legendre Polynomials

$$\phi^k \in P^k([-1,1])$$
 with $\frac{1}{2} \int_{-1}^1 \phi^k(\xi) \phi^\ell(\xi) \,\mathrm{d}\xi = \delta_{k\ell}$

and

$$\xi_j(x) = \frac{2}{\Delta x_i}(x - x_j)$$

Numerical Methods

Caleb Logeman James Rossmanith

Generalized Shallow Wate Equations

Nonconservativ Products

Nonconservativ DG Formulatio

Results
Numerical Methods

3-f----

Find
$$\mathbf{q}_h \in V^k$$
 such that
$$\int_{I_j} (\mathbf{q}_h)_t \phi_j^\ell(x) \, \mathrm{d}x = \int_{I_j} \mathbf{f}(\mathbf{q}_h)_x \phi_j^\ell \, \mathrm{d}x$$
$$- F_{j+1/2} \phi_j^\ell(x_{j+1/2}) + F_{j-1/2} \phi_j^\ell(x_{j-1/2})$$
$$+ \int_{I_j} Q(\mathbf{q}_h) (\mathbf{q}_h)_x \phi_j^\ell \, \mathrm{d}x - \int_{I_j} \mathbf{P}(\mathbf{q}_h) \phi_j^\ell \, \mathrm{d}x$$

for all ϕ_j^{ℓ} . Local Lax-Friedrichs Flux

$$\mathbf{q}_{h}^{+} = \lim_{x \to x_{j+1/2}^{+}} (\mathbf{q}_{h}(x))$$

$$\mathbf{q}_{h}^{-} = \lim_{x \to x_{j+1/2}^{-}} (\mathbf{q}_{h}(x))$$

$$a = \max_{\mathbf{q} \in [\mathbf{q}_{h}^{-}, \mathbf{q}_{h}^{+}]} \{ \rho(\mathbf{f}'(\mathbf{q}) - Q(\mathbf{q})) \}$$

$$F_{j+1/2} = \frac{1}{2} (\mathbf{f}(\mathbf{q}_{h}^{+}) + \mathbf{f}(\mathbf{q}_{h}^{-})) - \frac{1}{2} a(\mathbf{q}_{h}^{+} - \mathbf{q}_{h}^{-})$$

Nonconservative Flux

Caleb Logemann James Rossmanith

Generalized Shallow Wate Equations

Nonconservative Products

Nonconservativ DG Formulation

Numerical Methods

Results Future Work

References

Need to evaluate

$$\int^{I_j} Q \mathbf{q}_x \phi_j^\ell \, \mathrm{d}x$$

$$\left.\mathbf{q}
ight|_{I_j} = \sum_{\ell=1}^k \left(Q_j^\ell \phi_j^\ell(x)
ight), \quad \left.\mathbf{q}_x
ight|_{I_j} = \sum_{\ell=1}^k \left(Q_x^\ell \phi_j^\ell(x)
ight)$$

where

$$\begin{bmatrix} Q_{x}^{1} \\ Q_{x}^{2} \\ Q_{x}^{3} \\ Q_{x}^{4} \\ Q_{x}^{5} \end{bmatrix} = \frac{1}{2\Delta x} \begin{bmatrix} \Delta Q^{1} - 2\sqrt{5}\Delta Q^{3} + 78\Delta Q^{5} \\ \Delta Q^{2} - \frac{10}{3}\sqrt{3}\sqrt{7}\Delta Q^{4} \\ \Delta Q^{3} - 14\sqrt{5}\Delta Q^{5} \\ \Delta Q^{4} \\ \Delta Q^{5} \end{bmatrix}$$

$$\Delta Q^\ell = Q^\ell_{i+1} - Q^\ell_{i-1}$$

Inviscid Example

aleb Logemanr James Rossmanith

Generalized Shallow Wate Equations

Nonconservative Products

Nonconservative

Results

Numerical Methods Results

Future Wor

$$x \in [-1, 1]$$
 $t \in [0, 2.0]$
 $h(t = 0, x) = 1 + e^{3\cos(\pi(x+0.5))-4}$
 $\tilde{u}(t = 0, x, \zeta) = \begin{cases} 0.25 & \text{constant} \\ 0.5\zeta & \text{linear} \end{cases}$
 $u_m = 0.25$
 $s = -0.25$

Inviscid Example

1.25 -

1.20

1.15 -

£ 1.10

1.05

1.00

Caleb Logemann James Rossmanith

Generalized Shallow Wate Equations

Nonconservative Products

Nonconservativ DG Formulation

Results

Results

Future Worl

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50

0.75

h(t,x) at t=2.0

Higher Moment Equations

Caleb Logemanr James Rossmanith

Generalized Shallow Water

Nonconservative Products

Nonconservativ DG Formulation

Numerical Methods
Results

Future Work

Deferences

1 dimensional with h_b constant, $e_x=e_y=0$, and $e_z=1$ Quadratic Vertical Profile, $\tilde{u}=u_m+s\phi_1+\kappa\phi_2$

$$\begin{bmatrix} h \\ hu \\ hs \\ h\kappa \end{bmatrix}_{t} + \begin{bmatrix} hu \\ hu^{2} + \frac{1}{2}gh^{2} + \frac{1}{3}hs^{2} + \frac{1}{5}h\kappa^{2} \\ 2hus + \frac{4}{5}hs\kappa \\ 2hu\kappa + \frac{2}{3}hs^{2} + \frac{2}{7}h\kappa^{2} \end{bmatrix}_{x} = Q \begin{bmatrix} h \\ hu \\ hs \\ h\kappa \end{bmatrix}_{x} - P$$

Flux Jacobian Eigenvalues, $u_m \pm c\sqrt{gh}$

$$c^{4} - \frac{10\kappa}{7}c^{3} - \left(1 + \frac{6\kappa^{2}}{35} + \frac{6s^{2}}{5}\right)c^{2} + \left(\frac{22\kappa^{3}}{35} - \frac{6\kappa s^{2}}{35} + \frac{10\kappa}{7}\right)c - \frac{\kappa^{4}}{35} - \frac{6\kappa^{2}s^{2}}{35} - \frac{3\kappa^{2}}{7} + \frac{s^{4}}{5} + \frac{s^{2}}{5} = 0$$

Future Work

Caleb Logemanr James Rossmanith

Generalized Shallow Wate Equations

Nonconservative Products

Nonconservativ DG Formulation

_ .

Results

Future Work

- Higher Order Numerical Methods
- Slope Limiters
- Two Dimensional Meshes
- Icosahedral Spherical Mesh
- Positivity Preserving Limiters

Icosahedral Mesh

Caleb Logemann James Rossmanith

Generalized Shallow Water Equations

Nonconservative Products

Nonconservative DG Formulation

Numerical Method

Future Work

References

Subdivide each edge Project vertices onto sphere

Spherical Test Cases

Caleb Logemann James Rossmanith

Generalized Shallow Wate Equations

Nonconservative Products

Nonconservativ DG Formulatio

Numerical Metho

Future Work

Spherical Test Cases

Caleb Logeman James Rossmanith

Generalized Shallow Wate Equations

Nonconservative Products

Nonconservativ DG Formulatio

Results

Results

Future Work

Spherical Test Cases

Caleb Logemanr James Rossmanith

Generalized Shallow Wate Equations

Nonconservative Products

Nonconservative

Results

Results

Future Work

Bibliography I

Caleb Logemann James Rossmanith

Generalized Shallow Wate Equations

Nonconservative Products

Nonconservativ DG Formulation

Numerical Methods Results Future Work

References

[1] Andrea L Bertozzi, Andreas Münch, and Michael Shearer. "Undercompressive shocks in thin film flows". In: *Physica D: Nonlinear Phenomena* 134.4 (1999), pp. 431–464.

- [2] Bernardo Cockburn and Chi-Wang Shu. "The local discontinuous Galerkin method for time-dependent convection-diffusion systems". In: SIAM Journal on Numerical Analysis 35.6 (1998), pp. 2440–2463.
- [3] Bernardo Cockburn and Chi-Wang Shu. "The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems". In: *Journal of Computational Physics* 141.2 (1998), pp. 199–224.
- [4] Y. Ha, Y.-J. Kim, and T.G. Myers. "On the numerical solution of a driven thin film equation". In: *J. Comp. Phys.* 227.15 (2008), pp. 7246–7263.

Bibliography II

Caleb Logemann James Rossmanith

Shallow Water Equations

Nonconservativ

DG Formulatio

Numerical Methods Results Future Work

- [5] Julia Kowalski and Manuel Torrilhon. "Moment Approximations and Model Cascades for Shallow Flow". In: arXiv preprint arXiv:1801.00046 (2017).
- [6] Randall J LeVeque et al. *Finite volume methods for hyperbolic problems.* Vol. 31. Cambridge university press, 2002.
- [7] T.G. Myers and J.P.F. Charpin. "A mathematical model for atmospheric ice accretion and water flow on a cold surface". In: *Int. J. Heat and Mass Transfer* 47.25 (2004), pp. 5483–5500.
- [8] Tim G Myers. "Thin films with high surface tension". In: *SIAM review* 40.3 (1998), pp. 441–462.
- [9] NASA. URL: http://icebox.grc.nasa.gov/gallery/images/C95_03918.html.
- [10] Alexander Oron, Stephen H Davis, and S George Bankoff. "Long-scale evolution of thin liquid films". In: Reviews of modern physics 69.3 (1997), p. 931.

Bibliography III

Caleb Logemanr James Rossmanith

Generalized Shallow Wate Equations

Nonconservativ Products

Nonconservativ DG Formulation

Numerical Methods Results

- [11] J.A. Rossmanith. DoGPACK. Available from http://www.dogpack-code.org/.
- [12] James A Rossmanith. "A wave propagation method for hyperbolic systems on the sphere". In: Journal of Computational Physics 213.2 (2006), pp. 629–658.
- [13] David L Williamson et al. "A standard test set for numerical approximations to the shallow water equations in spherical geometry". In: *Journal of Computational Physics* 102.1 (1992), pp. 211–224.