Chapter 5 · Section 5.3 — Exercises (Mazidi)

Chapter 5 · Section 5.3 — Exercises (Mazidi)

Problems are paraphrased to respect copyright. I show the **bit layout**, the **bias math**, and hand-conversion sketches, then give the exact encodings (hex and fields).

6) Disadvantage of using a general-purpose processor for math operations

Answer: Without dedicated math hardware (e.g., hardware multiply/divide or an FPU), a GPP must emulate many operations in software, making them much slower (many more cycles) and often larger in code size than on a DSP or an MCU with an FPU.

7) Bit assignment of the IEEE-754 single-precision (32-bit) format

- Sign: 1 bit (bit31).
- Exponent: 8 bits (bits 30–23), bias = 127.
- Fraction (mantissa): 23 bits (bits22–0).
- Normalized value: $V = (-1)^S \times (1.F) \times 2^(E 127)$.

8) Convert each real number to single precision (by hand)

I outline the steps and then show the final fields. (Fraction is rounded to 23 bits.)

value	sign S	unbiased exp	biased E (bin)	fraction bits (23)	32-bit hex
15.575	0	3	10000010	11110010011001100110011	0x41793333
89.125	0	6	10000101	0110010010000000000000000	0x42B24000
-1022.543	1	9	10001000	11111111010001011000001	0xC47FA2C1
-0.00075	1	-11	01110100	10001001001101110100110	0xBA449BA6

Sketch of the first two:

- 15.575 = 1111.10010011...2 = 1.11110010011... × 2³, so E=3+127=130 (10000010) and F=11110010011001100110011.
- 89.125 = 1011001.0012 = 1.011001001 × 2⁶, so E=6+127=133 (10000101) and F=011001001000...

9) Bit assignment of the IEEE-754 double-precision (64-bit) format

- Sign: 1 bit (bit63).
- Exponent: 11 bits (bits62–52), bias = 1023.
- Fraction (mantissa): 52 bits (bits51–0).
- Normalized value: $V = (-1)^S \times (1.F) \times 2^E = 1023$.

10) Single-precision: the biased exponent is calculated by adding 127 to the exponent portion of the normalized scientific binary number.

11) Double-precision: the biased exponent is calculated by adding 1023 to the exponent portion of the normalized scientific binary number.

12) Convert to double precision

arm-assembly-mazidi-solutions [page]/[toPage]

value	S	unbiased	E (bin)	52-bit fraction F	64-bit hex
		exp			
12.9375	0	3	1000000010	100111100000000000000000000000000000000	0x4029E000000000000
98.8125	0	6	1000000101	1000101101000000000000000000000000000	0x4058B40000000000

Sketch: 12.9375 = 1100.11112 = 1.10011111 × 2³ and 98.8125 = 1100010.11012 = 1.1000101101 × 2⁶ \rightarrow add the bias 1023 and fill the fraction.

Notes for learners

- The hidden 1 is present for all normalized numbers (not for subnormals).
- Rounding mode by default is **round to nearest, ties to even**; that's why some decimal fractions (e.g., 0.00075) get long fraction fields and rounding.
- For quick checks: interpret the hex in a programmer's calculator; confirm S, E, and F by splitting the bit fields.

arm-assembly-mazidi-solutions [page]/[toPage]