High-Dimensional Probability: Answers, Theorems, and Definitions

Last revised on May 27, 2021

- Companion notes for *High-Dimensional Probability*, by Roman Vershynin. Link to book (PDF available online): www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.html.
- **Disclaimer:** These notes compile my answers to the exercises, and lift the required theorems and definitions from the book. I wrote these notes to aid my personal study of the book. Read them at your own risk!

Contents

0	Appetizer: Using probability to cover a geometric set	2
1	Preliminaries on random variables	3
	1.1 Basic quantities	3
	1.2 Inequalities	3
	1.3 Limits of random variables	9

Scribe: Alex Bie, alexbie980gmail.com.

0 Appetizer: Using probability to cover a geometric set

A point $z \in \mathbb{R}^n$ is a **convex combination** of points $z_1, z_2, ..., z_m \in \mathbb{R}^n$ if

$$z = \sum_{i=1}^{m} \lambda_i z_i$$
 with each $\lambda_i \ge 0$ and $\sum_{i=1}^{m} \lambda_i = 1$.

The **convex hull** of $T \subseteq \mathbb{R}^n$ is the set of all convex combinations of T.

Theorem 1. 0.0.1 (Catheodory's Theorem) Every point in the convex hull of a set $T \subseteq \mathbb{R}^n$ can be expressed as a convex combination of $\leq n+1$ points from T

1 Preliminaries on random variables

1.1 Basic quantities

The **expection** of a random variable X is denoted as $\mathbb{E}X$, and **variance** is denoted as $\mathrm{Var}(X) = \mathbb{E}(X - \mathbb{E}X)^2$. (We note that the expectation operator \mathbb{E} can be directly defined as the Lebesgue integral of the random variable $X: \Omega \to \mathbb{R}$ in the probability space (Ω, M, μ) .

The **p-th moment** of X is given by $\mathbb{E} X^p$. We also let $||X||_p = (\mathbb{E} X^p)^{\frac{1}{p}}$ denote the **p-norm** of X. For $p = \infty$, we have:

$$||X||_{\infty} = \operatorname{ess\,sup} X$$

recalling that the **essential supremum** of a function f is the "smallest value γ such that $\{\omega \in \Omega : |f(\omega)| > \gamma\}$ has measure 0".

From this, we can define the L^p spaces, given a probability space (Ω, M, μ) :

$$L^p = \{X : ||X||_p < \infty\}^*$$

Results from measure and integration theory tell us that the $(L^p, \|\cdot\|_p)$ are complete. In the case of L^2 , we have that with the inner product:

$$\langle X, Y \rangle = \int_{\Omega} XY(\omega)\mu(\omega)$$

= $\mathbb{E} XY$

 $(L^2, \langle \cdot, \cdot \rangle)$ is a Hilbert space. In this case we can express the **standard deviation** of X as $\sqrt{\operatorname{Var}(X)} = \|X - \mathbb{E} X\|_2$, and the **covariance** of random variable X and Y as

$$Cov(X,Y) = \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y) = \langle X - \mathbb{E}X, Y - \mathbb{E}Y \rangle$$

Remark 1. In this setting, considering random variables as vectors in L^2 , the covariance between X and Y can be interpreted as the *alignment* between the vectors $X - \mathbb{E}X$ and $Y - \mathbb{E}Y$.

1.2 Inequalities

1.3 Limits of random variables

^{*}A technical note is that the objects of L_p are actually equivalence classes of functions [X] with equality almost everywhere, otherwise $\|\cdot\|_p$ is only a semi-norm.