Group actions on models

G. A. M. Polymath

ABSTRACT. A set is *strongly generic* if the intersection of any finitely many of its translation is generic. To demostrate the convenience of this notion I use it for a short proof of (a generalization of) Newelski's theorem on the diamter of the Lascar graph, see Theorem 12.

Theorem 14 shows that the condition *strongly generic* = *generic* is roboust. It might be of some interest (it is reminiscent of *forking* = *dividing*). Is it worth investigating?

Section ?? is incomplete. I would like to recover in a natural way the classical theory of stable groups – but something does not add up.

The connections with topological dynamics are commented at the end of the notes.

1. The two perspectives on the invariance of types

This section I review well-known matter and set the terminology.

Below $\Delta \subseteq L_{xz}(\mathcal{U})$. Let $\mathcal{Z} \subseteq \mathcal{U}^z$. We write $\Delta(\mathcal{Z})$ for the set of formulas of the form $\varphi(x;b)$ for some $\varphi(x;z) \in \Delta$ and some $b \in \mathcal{Z}$. We write $\Delta^{\pm}(\mathcal{Z})$ for the set of formulas in $\Delta(\mathcal{Z})$ or negation thereof. We write $S_{\Delta}(\mathcal{Z})$ for the set of complete $\Delta^{\pm}(\mathcal{Z})$ -types.

We write $\Delta^{B}(\mathbb{Z})$ for the set of Boolean combinations of formulas in $\Delta(\mathbb{Z})$.

When $A \subseteq \mathcal{U}$, we may use A for A^z in the notation above.

Finally, define $\Delta^{G}(A)$ to be the set of formulas $\varphi(x) \in L(\mathcal{U})$ that are equivalent to some formula in $\Delta^{B}(A)$ or, equivalently, that are invariant over A. In the literature these formulas are called *generalized* Δ -formulas over A. Note that when A is a model $\Delta^{G}(A)$ -formulas are equivalent to $\Delta^{B}(A)$ -formulas.

1 Assumption Let *G* be a group that acts on some sets $\mathfrak{X} \subseteq \mathfrak{U}^x$ and $\mathfrak{Z} \subseteq \mathfrak{U}^z$. We require that for every $\varphi(x;z) \in \Delta$ the set $\varphi(\mathfrak{X};\mathfrak{Z})$ is invariant under the action of *G*.

Let $\mathcal{D} \subseteq \mathcal{U}^z$. We say that \mathcal{D} is invariant under the action of G, or G-invariant, if $\mathcal{D} \cap \mathcal{Z}$ is fixed setwise by G. Yet in other words, if

is1.
$$a \in \mathcal{D} \leftrightarrow ga \in \mathcal{D}$$
 for every $a \in \mathcal{Z}$ and every $g \in G$.

A formula is invariant if the set it defines is invariant. We say that $p(x) \subseteq L(\mathcal{U})$ is invariant under the action of G, or G-invariant, if for every formula $\varphi(x;z) \in L$

it1.
$$\varphi(x;a) \in p \Leftrightarrow \varphi(x;ga) \in p$$
 for every $a \in \mathbb{Z}$ and every $g \in G$.

It should be evident that invariant under the action of $\operatorname{Aut}(\mathcal{U}/A)$ coincides with invariant over A and that Lascar invariant over A coincides with invariant under the action of $\operatorname{Autf}(\mathcal{U}/A)$.

1

We have just defined invariance using the subsets of \mathcal{Z} (externally) defined by p. Now we discuss invariance using the subsets of \mathcal{X} that are in p.

An immediate consequence of Assumption 1 is that any G-translate of a Δ -definable set is again Δ -definable. In particular for every Δ -formula $\vartheta(x;\bar{b})$ and every $g \in G$

$$g[\vartheta(\mathbf{X};\bar{b})] = \vartheta(\mathbf{X};g\bar{b}).$$

Therefore $p(\mathbf{x}) \subseteq L_{\Delta}(\mathcal{Z})$ is invariant if

```
p(x) \vdash x \in \mathcal{D} \iff p(x) \vdash x \in g\mathcal{D} for every \Delta-definable \mathcal{D} \subseteq \mathcal{U}^x and g \in G,
```

where by $p(x) \vdash x \in \mathcal{D}$ we understand $\vartheta(\mathfrak{X}) \subseteq \mathcal{D}$ for some $\vartheta(x)$ that is conjunction of formulas in p(x).

A set $\mathcal{D} \subseteq \mathcal{X}$ is **generic** under the action of G, or G-generic for short, if finitely many G-translates of \mathcal{D} cover \mathcal{X} ; we say n-G-generic if $\leq n$ translates suffices. Dually, we say that \mathcal{D} is **persistent** under the action of G, or G-persistent for short, if the intersection of any finitely many G-translates of \mathcal{D} is nonempty; we say n-G-persistent when the request is limited to $\leq n$ translates. When \mathcal{X} is not clear from the context, we say that these notions are relative to \mathcal{X} .

The terminology above is non-standard. In [1] the authors write *quasi-non-dividing* for *persistent* under the action of Aut(U/A). Their terminology has good motivations, but it would be a mouthful if adapted to our context. In topological dynamics similar notions have been introduced with different terminology: *syndetic* corresponds to *generic* and *thick* corresponds to *persistent*.

2 Example If $p(x) \subseteq L(\mathcal{U})$ is finitely satisfiable in A then p(x) is persistent under the action of $\operatorname{Aut}(\mathcal{U}/A)$ relative to any $\mathcal{X} \supseteq A^x$. In fact, the same $a \in A^x$ that satisfies $\varphi(x)$ also satisfies every $\operatorname{Aut}(\mathcal{U}/A)$ -translate of $\varphi(x)$.

Notation: for $\mathfrak{D} \subseteq \mathfrak{U}^x$ and $H \subseteq G$ we write $H \mathfrak{D}$ for $\{h\mathfrak{D} : h \in H\}$.

In this notes many proofs require some juggling with negations as epitomized by the following fact.

- 3 Fact (Assume 1) The following are equivalent
 - 1. \mathcal{D} is not *G*-generic
 - 2. $\neg \mathfrak{D}$ is *G*-persistent.

Proof. Immediate by spelling out the definitions

- 1. there are no finite $H \subseteq G$ such that $\mathfrak{X} \subseteq \cup H\mathfrak{D}$.
- 2. $\emptyset \neq \mathcal{X} \cap (\cap H \neg \mathcal{D})$ for every finite $H \subseteq G$.
- **4 Theorem** (Assume 1) Let $p(x) \in S_{\Delta}(\mathcal{Z})$ be finitely satisfiable in X. Then the following are equivalent

- 1. p(x) is *G*-invariant
- 2. $p(x) \vdash x \in \mathcal{D}$ for every G-generic $\Delta^{\mathbb{B}}(\mathbb{Z})$ -definable set \mathcal{D}
- 3. p(x) is *G*-persistent.

Proof. $1\Rightarrow 2$. Let $H\subseteq G$ be finite such that $\mathfrak{X}\subseteq \cup H\mathfrak{D}$. By completeness and finite satisfiability, $p(x)\vdash x\in \cup H\mathfrak{D}$. Again by completeness, $p(x)\vdash x\in h\mathfrak{D}$ for some $h\in H$. Finally, by invariance, $p(x)\vdash x\in \mathfrak{D}$.

2⇒3. Let \mathfrak{D} be defined by a conjunction of formulas in p(x). If \mathfrak{D} is not G-persistent then, by Fact 3, $\neg \mathfrak{D}$ is G-generic. By 2, $p(x) \vdash x \notin \mathfrak{D}$, a contradiction.

3⇒1. If p(x) is not G-invariant then, by completeness, $p(x) \vdash \varphi(x;b) \land \neg \varphi(x;gb)$ for some $g \in G$. Clearly $\varphi(x;b) \land \neg \varphi(x;gb)$ is not 2-G-persistent as it is inconsistent with its g-translate.

The theorem yields a necessary condition for the existence of *G*-invariant global $\Delta^{B}(\mathcal{Z})$ -types.

- **5 Corollary** (Assume 1) If there exists a *G*-invariant global type finitely satisfiable in \mathfrak{X} then for every $\Delta^{B}(\mathfrak{Z})$ -definable set \mathfrak{D}
 - 1. \mathcal{D} and $\neg \mathcal{D}$ are not both *G*-generic
 - 2. if \mathfrak{D} is *G*-generic then it is *G*-persistent
 - 3. the type $\gamma_G(x) = \{\vartheta(x) \in \Delta^B(\mathcal{Z}) : \vartheta(x) \text{ is } G\text{-generic}\}$ is finitely satisfiable in X.

Proof. Clearly, 1 and 2 are equivalent, moreover 1 and 3 are immediate consequences of 2 of Theorem 4.

The following theorem gives a necessary and sufficient condition for the existence of global G-invariant $\Delta^B(\mathcal{Z})$ -type. Ideally, we would like to have that every G-persistent $\Delta^B(\mathcal{Z})$ -type extends to a global persitent type. Unfortunately this is not true – we need a stronger property. A set \mathfrak{D} is hereditarely G-persistent if every finite cover of \mathfrak{D} by $\Delta^B(\mathcal{Z})$ -definable sets contains a G-persistent set. In [1] a similar property is called *quasi-non-forking*. A type is hereditarely G-persistent if every conjunction of formulas in the type is hereditarely G-persistent.

- **6 Theorem** (Assume 1) Let $q(x) \subseteq L(\mathcal{U})$. Then the following are equivalent
 - 1. q(x) is consistent with a G-invariant type $p(x) \in S_{\Delta}(\mathcal{Z})$ finitely satisfiable in \mathfrak{X}
 - 2. q(x) is hereditarely G-persistent.

Proof. $1\Rightarrow 2$. Let $\vartheta(x)$ be a conjunction of formulas in q(x). Suppose $\mathfrak{C}_1, \ldots, \mathfrak{C}_n$ cover $\vartheta(\mathfrak{U}^x)$ and pick p(x) as in 1. By completeness, $p(x) \vdash x \in \mathfrak{C}_i$ for some i. Then, by Theorem 4, $\neg \mathfrak{C}_i$ is not G-generic. Therefore, by Fact 3, \mathfrak{C}_i is G-persistent.

2⇒1. Let p(x) be maximal among the $\Delta^{\mathsf{B}}(\mathcal{Z})$ -types that are consistent with q(x) and are such that $\vartheta(\mathcal{U}^x)$ is hereditarely G-persistent for every $\vartheta(x)$ that is conjunction of formulas in p(x). We claim that p(x) is a complete $\Delta^{\mathsf{B}}(\mathcal{Z})$ -type. Suppose for a contradiction that $\vartheta(x)$, $\neg\vartheta(x) \notin p$. By maximality there is some formula $\psi(x)$, a conjunction of formulas in p(x), and some $\mathcal{C}_1, \ldots, \mathcal{C}_n$ that cover both $\psi(\mathcal{U}^x) \cap \vartheta(\mathcal{U}^x)$ and $\psi(\mathcal{U}^x) \setminus \vartheta(\mathcal{U}^x)$ and such that no \mathcal{C}_i is G-persistent. As $\mathcal{C}_1, \ldots, \mathcal{C}_n$ cover $\psi(\mathcal{U}^x)$ this is a contradiction. It is only left to show that p(x) is finitely satisfiable in \mathcal{X} and G-invariant. Finite satisfiability follows from persistency. From completeness and Theorem 4 we obtain invariance.

We concude with a fact that reminds of Lemma 2.10 in [2]. It is not used below.

7 Fact (Assume 1) Let \mathbb{D} and \mathbb{C} be Δ -definable sets. The relation on G defined by $R(h;k) \Leftrightarrow h \mathbb{D} \cap k \mathbb{C}$ is persistent is stable.

Proof. Let $\langle h_i; k_i : i < 3 \rangle$ be a sequence of elements of G^2 . Assume $h_0 \mathcal{D} \cap k_1 \mathcal{C}$ is persistent. Note that if a set \mathcal{B} is persistent then $\mathcal{B} \cap g \mathcal{B}$ is also persistent for any $g \in G$. Therefore $h_0 \mathcal{D} \cap k_1 \mathcal{C} \cap h_2 \mathcal{D} \cap h_2 h_0^{-1} k_1 \mathcal{C}$ is persistent. A fortiori $h_2 \mathcal{D} \cap k_1 \mathcal{C}$ is persistent. Therefore $R(h_i; k_i) \Leftrightarrow i < j$ fails for some i, j.

2. Strong genericity

Unfortunatelly, *G*-genericy is not preserved under intersection. To obtain closure under intersection, we need to push the concept to a higher level of complexity.

A set $\mathcal{D} \subseteq \mathcal{U}^x$ is strongly *G*-generic if for every finite $H \subseteq G$ the set $\cap H \mathcal{D}$ is generic. Dually, we say that \mathcal{D} is weakly *G*-persistent if for some finite $H \subseteq G$ the set $\cup H \mathcal{D}$ is persistent. Again, the same properties may be attributed to formulas and types.

8 Lemma (Assume 1) The intersection of two strongly *G*-generic sets is strongly *G*-generic.

Proof. We may assume that all sets mentioned below are subsets of \mathfrak{X} . Let \mathfrak{D} and \mathfrak{C} be strongly G-generic and let $K \subseteq G$ be an arbitrary finite set. It suffices to prove that $\mathfrak{B} = \bigcap K (\mathfrak{C} \cap \mathfrak{D})$ is G-generic. Clearly $\mathfrak{B} = \mathfrak{C}' \cap \mathfrak{D}'$, where $\mathfrak{C}' = \bigcap K \mathfrak{C}$ and $\mathfrak{D}' = \bigcap K \mathfrak{D}$. Note that \mathfrak{C}' and \mathfrak{D}' are both strongly G-generic. In particular $\mathfrak{X} = \bigcup H \mathfrak{D}'$ for some finite $H \subseteq G$. Now, from

$$\begin{array}{rcl}
\cup H \, \mathfrak{B} &=& \cup H \Big[\mathfrak{C}' \, \cap \, \mathfrak{D}' \Big] \\
\cup H \, \mathfrak{B} &\supseteq & \cup H \Big[\big(\cap H \, \mathfrak{C}' \big) \, \cap \, \mathfrak{D}' \Big] \\
&=& \big(\cap H \, \mathfrak{C}' \big) \, \cap \, \big(\cup H \, \mathfrak{D}' \big) \\
&=& \cap H \, \mathfrak{C}'
\end{array}$$

As \mathfrak{C}' is strongly G-generic, $\cap H \mathfrak{C}'$ is G-generic. Therefore $\cup H \mathfrak{B}$ is also G-generic. The G-genericity of \mathfrak{B} follows.

9 Corollary (Assume 1) Let ${}^s\gamma_G(x) = \{\vartheta(x) \in L_{\varphi}(\mathfrak{U}) : \vartheta(x) \text{ strongly } G\text{-generic}\}.$ Then ${}^s\gamma_G(x)$ is finitely satisfiable in \mathfrak{X} , strongly G-generic, and G-invariant.

Proof. Strong G-genericity is an immediate consequence of Lemma 8. Finite satisfiability is a consequence of G-genericity. As for invariance, note that any translate of a strongly G-generic formula is also strongly G-generic.

10 Corollary (Assume 1) Let ${}^s\gamma(x)$ be as in Corollary 9. Let $p(x) \subseteq L(\mathcal{U})$ be such that ${}^s\gamma(x) \cup p(x)$ is finitely satisfied in \mathcal{X} . Then p(x) is weakly G-persistent.

П

Proof. Let $\vartheta(x) \in p$. As ${}^{s}\gamma(x)$ is finitely satisfiable in $\vartheta(\mathcal{U}^{x})$, we cannot have that $\neg \vartheta(x)$ is strongly *G*-generic. From Fact 3, we obtain that $\neg \vartheta(\mathcal{U}^{x})$ non strongly *G*-generic is equivalent to $\vartheta(x)$ weakly *G*-persistent.

3. The diameter of a Lascar type

As an application we prove an interesting property of the Lascar types. Recall that $\mathcal{L}(a/A)$, the Lascar strong type of $a \in \mathcal{U}^x$, is the union of a chain of type-definable sets of the form $\{x: d_A(a,x) \leq n\}$. In this section we prove that $\mathcal{L}(a/A)$ is type-definable (if and) only this chain is finite. In other words, only if the connected component of a in the Lascar graph has finite diameter.

It is convenient to address the problem in more general terms. We work under Assumption 1 with $\Delta = L_{xz}$ and $G \subseteq \operatorname{Aut}(\mathcal{U})$. Let $K \subseteq G$ be a set of generators that is

- 1. symmetric i.e. it contains the unit and is closed under inverse
- 2. conjugancy invariant i.e. $g K g^{-1} = K$ for every $g \in G$

Assume G acts transitively on \mathfrak{X} i.e. $Ga = \mathfrak{X}$ for every $a \in \mathfrak{X}$. We define a discrete metric on \mathfrak{X} . For $a,b \in \mathfrak{X}$ let d(a,b) be the minimal n such that $a \in K^nb$. This defines a metric which is G-invariant by 2. The diameter of a set $\mathfrak{C} \subseteq \mathfrak{X}$ is the supremum of d(a,b) for $a,b \in \mathfrak{C}$.

We are interested in sufficient conditions for \mathfrak{X} to have finite diameter. The notions introduced in Section 2 offer some hint.

11 Proposition If \mathfrak{X} has a weakly persistent subset of finite diameter, then \mathfrak{X} itself has finite diameter.

Proof. Let $\mathcal{C} \subseteq \mathcal{X}$ be a weakly persistent set of diameter n. Let $H \subseteq G$ be finite such that $\cup H \mathcal{C}$ is persistent. We claim that also $\cup H \mathcal{C}$ has finite diameter. Let $a \in \mathcal{C}$ be arbitrary. Let m be larger than d(ha,ka) for all $h,k,\in H$. Now, let hb and kc, for some $h,k,\in H$ and $b,c\in \mathcal{C}$, be two arbitrary elements of $\cup H \mathcal{C}$. As $h\mathcal{C}$ and $k\mathcal{C}$ have the same diameter of \mathcal{C} ,

$$d(hb, kc) \leq d(hb, ha) + d(ha, ka) + d(ka, kc)$$

$$\leq n + m + n.$$

This proves that \cup H \mathfrak{C} has finite diameter. Therefore, without loss of generality, we may assume that \mathfrak{C} itself is persistent.

By the transitivity of the action, any two elements of \mathfrak{X} are of the form ha, ka for some $h, k \in G$ and some $a \in \mathfrak{C}$. By percistency, there are $c \in \mathfrak{C} \cap h\mathfrak{C}$ and $d \in \mathfrak{C} \cap k\mathfrak{C}$. Then

$$d(ha, ka) \leq d(ha, c) + d(c, d) + d(d, ka)$$

$$\leq n + n + n.$$

Therefore the diameter of \mathfrak{X} does not exceed 3n.

12 Theorem Suppose that \mathfrak{X} and the sets $\mathfrak{X}_n = K^n a$, for some $a \in \mathfrak{X}$, are type-definable. Then \mathfrak{X} has finite diameter.

Proof. By Proposition 11, it suffices to prove that \mathfrak{X}_n is weakly persistent. Let ${}^s\gamma_G(x)$ be as in Corollary 9, with $L_{x,z}$ for Δ . It suffices to prove that for some n the type ${}^s\gamma_G(x)$ is finitely satisfied in \mathfrak{X}_n . Suppose not. Let $\psi_n(x) \in q$ be a formula that is not satisfied in \mathfrak{X}_n . The type $p(x) = \{\psi_n(x) : n \in \omega\}$ is finitely satisfied in \mathfrak{X} . Then p(x) has a realization in \mathfrak{X} . As this realization belongs to some \mathfrak{X}_n we contradict the definition of $\psi_n(x)$.

13 Example Let $K \subseteq \operatorname{Aut}(\mathcal{U}/A)$ be the set of automorphisms that fix a model containing A. Then the group G generated by K is $\operatorname{Autf}(\mathcal{U}/A)$ and $G \cdot a = \mathcal{X}$ is $\mathcal{L}(a/A)$. Then d(a,b) concides with the dinstance in the Lascar graph. As the sets $K^n \cdot a = \{x : d(x,a) \le n\}$ are type definable from Theorem 12 it follows that $\mathcal{L}(a/A)$ is type definable (if and) only if it has a finite diameter.

4. A tamer landscape

Under suitable assumptions some of the notions introduced in this chapter coalesce and we are left with a tamer landscape. We prove the following theorem.

- 14 Theorem (Assume 1) The following are equivalent
 - 1. *G*-persistent $\Delta^{B}(\mathcal{Z})$ -definable sets are hereditarely *G*-persistent
 - 2. *G*-generic $\Delta^{B}(\mathcal{Z})$ -definable sets are closed under intersection
 - 3. *G*-generic $\Delta^{B}(\mathbb{Z})$ -definable sets are strongly *G*-generic
 - 4. weakly persisent $\Delta^{B}(\mathbb{Z})$ -definable sets are *G*-persistent.

Proof. 2⇔3⇔4. Clear.

1⇒2. Let $\mathfrak C$ and $\mathfrak D$ be G-generic $\Delta^B(\mathfrak Z)$ -definable sets. Suppose for a contradiction that $\mathfrak C \cap \mathfrak D$ is not G-generic. Then $\neg (\mathfrak C \cap \mathfrak D)$ is G-persistent. By 1 and Theorem 6 there is a G-invariant global $\Delta^B(\mathfrak Z)$ -type p(x) containing $x \notin \mathfrak C \cap \mathfrak D$. By completeness either $p(x) \vdash x \notin \mathfrak C$ or $p(x) \vdash x \notin \mathfrak D$. This is a contradiction because by Theorem 4 $p(x) \vdash x \in \mathfrak C$ and $p(x) \vdash x \in \mathfrak D$.

4⇒1. Let $q(x) = \{\vartheta(x) \in L_{\varphi}(\mathbb{U}) : \vartheta(x) \text{ G-generic}\}$. By 2 this is the same type defined in Corollary 10. Therefore, any completion of q(x) is, by 4, G-persistent. Let \mathfrak{D} be a G-persistent $\Delta^{\mathbb{B}}(\mathbb{Z})$ -definable set. By Theorems 4 and 6 it suffices to show that \mathfrak{D} is consistent with q(x). Suppose not, then $q(x) \vdash x \notin \mathfrak{D}$. Therefore, by 3, ¬ \mathfrak{D} is G-generic. This is a contradiction by Fact 3.

- **15 Example** It is not difficult to verify that the equivalent conditions in the theorem hold when Δ is a set of stable formulas, $G = \operatorname{Aut}(\mathcal{U}/A)$, and \mathfrak{X} is the solution set of a complete type over $\operatorname{acl}^{\operatorname{eq}} A$.
- **16 Assumption** For G, X, Z and Δ as in Assumption 1 we also require that the equivalent conditions in Theorem 14 hold.

- **17 Remark** (Assume 16) Note that the types $\gamma_G(x)$ and ${}^s\gamma_G(x)$ defined in corollary 5 and 10 coincide. Then for every $p(x) \in S_{\Delta}(\mathbb{Z})$ the following are equivalent
 - 1. p(x) is *G*-persistent (equivalently, *G*-invariant)
 - 2. p(x) extends $\gamma_G(x)$.

Note also that under Assumption 16 *G*-invariant global types exist because $\gamma_G(x)$ is finitely consistent in X.

It is also worth mentioning that when \mathfrak{D} is G-generic then every positive Bolean combination of G-translates of \mathfrak{D} is G-generic.

5. Notes and references

Connnections with topological dynamics are mentioned everywhere but I ignored them until the very last. I just realized that *persistent* = *thick* and that *weakly persistent* = *piecewise syndetic*. Of course, *generic* = *syndetic*. The notion of *hereditarely persistent* may also have an analogon in topological dynamics, but could not find it yet.

- [1] Artem Chernikov and Itay Kaplan, Forking and dividing in NTP₂ theories, J. Symbolic Logic 77 (2012), 1–20.
- [2] Ehud Hrushovski, *Stable group theory and approximate subgroups*, J. Amer. Math. Soc. **25** (2012), no. 1, 189–243.