4.2.4 Globale Konvergenz	4.2.4	Globale Konvergenz																											(i2
--------------------------	-------	--------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	----

Einteilung der angewandten und numerischen Mathematik

0.1 Aufgaben

- Modellbildung (mathematische Formulierung für physikalische, technische, biologische, ökonomische, ... Prozesse)
- Diskretes Modell (Reduktion auf ein Modell mit endlich vielen zu bestimmenden Parametern)
- Algorithmenentwurf (Befehlsfolge zur Lösung des diskreten Problems)
- Nachweis der "Konvergenz" und "Stabilität"
- Komplexität und Effizienz

0.2 Hilfsmittel

- Ana I-III, lineare Algebra, Funktionalanalysis, partielle Differentialgleichungen und andere "reine Mathematik"
- Programmiersprachen
- Rechnerarchitekturen
- Kenntnisse im Anwendungsgebiet
- Bandbreite: Numerische Analysis wissenschaftliches Rechnen

1 Anwendungsbeispiele

1.1 ComputerTomographie

1.1.1 Modell

Tomographie-Problem:

Rekonstruiere aus den Intensitätsmessungen die innere Struktur von Ω .

1.1.2 Das Tomographie-Problem

x Koordinate längs eines Strahles S,

I(x) Intensität in $x, I(0) = I_0, I_S = I(x_D), S = [0, x_D]$

 $\varrho(x)$ Absorptionskoeffizient in x: $\varrho(x) \geq 0$ für $x \in [0, x_D]$ und $\varrho = 0$ außerhalb von Ω