AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A 1,3-dioxolo-[4,5-

h] [2,3] benzodiazepine compound of the formula I

$$X$$
 Y
 CH_3
 N
 R
 (I)
 H_2N
 CH_3
 R
 (I)
 R
 (I)

wherein

X and Y each stand for hydrogen or together form a double bond;

R is a group of the formula $\frac{-(CH_2)_n-R^2}{n}-\frac{-(CH_2)_n-R^2}{n}$, wherein n is 0, 1 or 2 and

 R^1 is halogen or a group of the formula NR^2R^3 , wherein R^2 and R^3 independently represent hydrogen, \mathbf{c}_{1-4} alkowy, C_{3-6} cycloalkyl or C_{1-4} alkyl optionally substituted with a 5 to 6 membered saturated heterocyclic ring, which contains one nitrogen, or one nitrogen and one oxygen atom and may optionally have an oxo group sutstituent substituent;

with the proviso that if X and Y together form a double bond, then n is 1 or 2; or n is 0 and one of R^2 and R^3 is hydrogen and the other is C_{1-4} alkyl optionally substituted with a 5 to 6 membered saturated heterocyclic ring, which contains one nitrogen, or one nitrogen and one oxygen atom and may optionally have an oxo group sutstituent substituent;

and pharmaceutically suitable acid addition salts thereof.

2. - 8. (Canceled)

9. (Currently Amended) A pharmaceutical composition comprising a compound of the formula I

$$V$$
 V
 CH_3
 CH_3

wherein

X and Y each stand for hydrogen or together form a double bond;

 \mathcal{Y}^{I}

R is a group of the formula $\frac{-(CH_2)_n-R^2}{n}-\frac{-(CH_2)_n-R^2}{n}$, wherein n is 0, 1 or 2 and

 R^1 is halogen or a group of the formula NR^2R^3 , wherein R^2 and R^3 independently represent hydrogen, $\mathbf{c_{1.4}}$ alkoxy, C_{3-6} cycloalkyl or C_{1-4} alkyl optionally substituted with a 5 to 6 membered saturated heterocyclic ring, which contains one nitrogen, or one nitrogen and one oxygen atom and may optionally have an oxo group sutstituent substituent;

with the proviso that if X and Y together form a double bond, then n is 1 or 2; or n is 0 and one of R² and R³ is hydrogen and the other is C₁₋₄ alkyl optionally substituted with a 5 to 6 membered saturated heterocyclic ring, which contains one nitrogen, or one nitrogen and one oxygen atom and may optionally have an oxo group sutstituent,

or a pharmaceutically suitable acid addition salt thereof as the active ingredient and one or more conventional carrier(s).

10. - 15. (Canceled)

91

16. (Currently Amended) A method of treatment in which a patient suffering from epilepsy or being in a state after stroke is treated with a non-toxic dose of the compound of formula I,

$$X$$
 Y
 CH_3
 O
 N
 R
 (I)
 H_2N
 (I)
 CH_3
 O
 N
 R
 (I)

wherein

X and Y each stand for hydrogen or together form a double bond;

R is a group of the formula $\frac{-(CH_2)_n-R^4}{n}-\frac{-(CH_2)_n-R^4}{n}$, wherein n is 0, 1 or 2 and

 R^1 is halogen or a group of the formula NR^2R^3 , wherein R^2 and R^3 independently represent hydrogen, \textbf{c}_{1-4} alkowy C_{3-6} cycloalkyl or C_{1-4} alkyl optionally substituted with a 5 to 6 membered saturated heterocyclic ring, which contains one nitrogen, or one nitrogen and one oxygen

atom and may optionally have an oxo group sutstituent
substituent;

 \mathcal{J}'

with the proviso that if X and Y together form a double bond, then n is 1 or 2; or n is 0 and one of R^2 and R^3 is hydrogen and the other is C_{1-4} alkyl optionally substituted with a 5 to 6 membered saturated heterocyclic ring, which contains one nitrogen, or one nitrogen and one oxygen atom and may optionally have an oxo group sutstituent;

or a pharmaceutically suitable acid addition salt thereof.

17. (Currently Amended) A process for preparing a pharmaceutical composition suitable for the treatment of epilepsy or a state after stroke, characterized in that a compound of the formula I,

$$X$$
 Y
 CH_3
 R
 (I)
 R
 R
 H_2N
 (I)

wherein

 \mathcal{Y}'

X and Y each stand for hydrogen or together form a double bond;

R is a group of the formula $\frac{-(CH_2)_n-R^2}{n}-\frac{-(CH_2)_n-R^2}{n}$, wherein n is 0, 1 or 2 and

 R^1 is halogen or a group of the formula NR^2R^3 , wherein R^2 and R^3 independently represent hydrogen, \textbf{c}_{1-4} alkowy, C_{3-6} cycloalkyl or C_{1-4} alkyl optionally substituted with a 5 to 6 membered saturated heterocyclic ring, which contains one nitrogen, or one nitrogen and one oxygen atom and may optionally have an oxo group substituent;

with the proviso that if X and Y together form a double bond, then n is 1 or 2; or n is 0 and one of R^2 and R^3 is hydrogen and the other is C_{1-4} alkyl optionally substituted with a 5 to 6 membered saturated heterocyclic ring, which contains one nitrogen, or one nitrogen and one oxygen atom and may optionally have an oxo group substituent;

or a pharmaceutically suitable acid addition salt thereof, together with one or more conventional carrier(s), is converted to a pharmaceutical composition.

91

- 18. (Previously Added) A compound which is selected from the group consisting of (\pm) -5-(4-aminophenyl)-7,8-dihydro-8methyl-7-/N-(4-morpholinoethyl)carbamoyl/-9H-1,3-dioxolo/4,5h//2,3/-benzodiazepine, (±)-5-(4-aminophenyl)-7-(Ncyclopropylcarbamoyl) -7,8-dihydro-8-methyl-9H-1,3-dioxolo/4,5h//2, 3/benzodiazepine, (±)-5-(4-aminophenyl)-7,8-dihydro-8methyl-7-(N-methoxycarbamoyl)-9H-1,3-dioxolo-/4,5 $h//2,3/benzodiazepine, (\pm)-5-(4-aminophenyl)-7-(N$ aminocarbamoyl)-7,8-dihydro-8-methyl-9H-1,3-dioxolo/4,5-h/-/2,3/benzodiazepine, 5-(4-aminophenyl)-8-methyl-7H-1,3-dioxolo-/4,5-h//2,3/benzodiazepine-7-carboxylic acid-(2-morpholino-4ylethyl)amide, 5-(4-aminophenyl)-7-(2-chloroacetyl)-8-methyl-7H-1,3-dioxolo/4,5-h//2,3/benzodiazepine, 5-(4-aminophenyl)-7-(3chloropropionyl)-8-methyl-7H-1,3-dioxolo/4,5h//2,3/benzodiazepine, and 1-[2-/5-(4-aminophenyl)-8-methyl-7H-1,3-dioxolo/4,5-h//2,3/benzodiazepine-7-yl/-2-oxoethyl] pyrrolidine-2-one monohydrate.
- 19. (NEW) A process for the preparation of a 1,3-dioxolo- [4,5-h][2,3]benzodiazepine compound of formula I, wherein X, Y, and R are as defined in Claim 1, and pharmaceutically suitable acid addition salts thereof, wherein

a. for the preparation of a compound of the formula I, where R represents a group of the formula $-(CH_2)_n-R^1$, wherein R^1 is a halo atom, n has a value of 0, 1 or 2, X and Y represent a hydrogen atom, the 7,8-dihydro-8-methyl-5-(4-nitrophenyl)-9H-1,3-dioxolo[4,5-h][2,3]benzodiazepine of Formula III

is reacted with a reagent of the Formula VI

$$Z \xrightarrow{O} (CH_2)_n R^5$$
 (VI)

wherein Z represents a leaving group and R⁵ is a halo atom; or

b. for the preparation of a compound of the formula I, wherein R represents a group of the formula $-(CH_2)_n-R^1$, wherein R^1 represents a group of Formula NR^2R^3 , wherein R^2 , R^3 and n are as defined in Claim 1, X and Y represent hydrogen atoms, the 7,8-dihydro-8-methyl-5-(4-nitrophenyl)-9H-1,3-dioxolo[4,5-h][2,3]benzodiazepine of Formula III is reacted with a reagent of formula VI, wherein Z and R^5 represent, independently, a

leaving group, n is as stated above, and the obtained benzodiazepine compound of the formula IV

$$\begin{array}{c}
O \\
O \\
N
\end{array}$$

$$\begin{array}{c}
CH_3 \\
(CH_2)_n
\end{array}$$

$$\begin{array}{c}
R^5 \\
(IV)
\end{array}$$

wherein R^5 stands for a leaving group and n is as stated above, is reacted with an amine of the formula VII

$$R^2$$
NH (VII)

wherein R^2 and R^3 are as stated above; or

c. for the preparation of a compound of the formula I, wherein R stands for a group of the formula $-(CH_2)_n-R^1$, wherein R^1 represents a halogen atom, n has a value of 1 or 2, Y together with X forms a valence bond, the 8-methyl-5-(4-nitrophenyl)-9H-1,3-dioxolo[4,5-h][2,3]benzodiazepine of the formula II

is reacted with an acylating agent of the formula IX

$$C$$
 $(CH_2)_{\widehat{n}}$
 V
 (IX)

y

wherein Z' represents a leaving group, W stands for a halogen atom and n has a value of 1 or 2; or

d. for the preparation of a compound of formula I, wherein R represents a group of the formula $-(CH_2)_n-R^1$, wherein R^1 stands for a group of the formula $-NR^2R^3$, wherein R^2 , R^3 and n are as defined in Claim 1, Y together with X forms a valence bond, the 8-methyl-5-(4-nitrophenyl)-9H-1,3-dioxolo[4,5-h][2,3]benzodiazepine of the formula II is reacted with an acylating agent of the formula IX, wherein each of Z' and W represents, independently, a leaving group, n is as stated above, and the obtained acylated compound of the formula VIII

$$\begin{array}{c}
O \\
O \\
N \\
O \\
N \\
(CH_2)_n
\end{array}$$
(VIII)

wherein W and n are as defined above, is reacted with an amine of the formula HNR^2R^3 , wherein R^2 and R^3 are as stated above;

and the 5-(4-nitrophenyl) substituted benzodiazepine compound resulting from the processes of a-e, wherein R^1 , X and Y and n are as defined in Claim 1, is transformed into a compound of the formula I by reduction;

