# ANEJO DE CÁLCULO DE ESTRUCTURAS

4.- APÉNDICE 4: PASO SUPERIOR PS308.2

## **PASO SUPERIOR 308.20**





| ÍNDICE                                        | Pág.                | 2.1.1.3.4 Acciones accidentales (A)            | 11 |
|-----------------------------------------------|---------------------|------------------------------------------------|----|
| 1 INTRODUCCIÓN Y OBJETO                       | 1                   | 2.1.1.4 Valores de cálculo de las acciones     | 11 |
| 1.1 DESCRIPCIÓN DE LA ESTRUCTURA              |                     | 2.1.1.4.1 Estados límites últimos (E.L.U.)     | 11 |
| 1.2 NORMATIVA UTILIZADA                       |                     | 2.1.1.4.2 Estados límites de servicio (E.L.S.) | 12 |
| 1.2.1 Normas de Acciones                      |                     | 2.1.1.5 Combinación de acciones                | 12 |
| 1.2.2 Normas de Construcción                  | 1                   | 2.1.1.5.1 Estados límites últimos.             | 12 |
| 1.3 PROGRAMAS DE CÁLCULO UTILIZADOS           | 2                   | 2.1.1.5.2 Estados Límite de Servicio           |    |
| 2 BASES DE CÁLCULO                            |                     | 2.1.2 Características de los materiales        | 13 |
| 2.1 CRITERIOS DE SEGURIDAD                    |                     | 2.1.2.1 Especificación de los materiales       | 13 |
| 2.1.1 Acciones                                |                     | 2.1.2.2 Módulo de elasticidad                  | 14 |
| 2.1.1.1 Valores característicos de las accion | nes2                | 2.1.2.3 Módulo de elasticidad transversal      | 14 |
| 2.1.1.1 Acciones permanentes                  |                     | 2.1.2.4 Coeficiente de dilatación térmica      | 14 |
|                                               | constante3          | 2.1.2.5 Recubrimientos                         | 14 |
| 2.1.1.2.1 Acciones variables                  |                     | 2.1.2.6 Requisitos de durabilidad              | 14 |
| 2.1.1.2.2 Acciones del Viento                 | 7                   | 2.1.2.7 Niveles de control                     | 14 |
| 2.1.1.2.3 Acción térmica                      | 8                   | 2.1.2.7.1 Niveles de control establecidos      | 15 |
| 2.1.1.2.4 Acciones accidentales               |                     | 3 CÁLCULO DEL TABLERO                          | 16 |
|                                               | nes10               | 4 CÁLCULO DE ESTRIBOS Y SU CIMENTACIÓN         | 17 |
| 2.1.1.3.1 Acciones permanentes (G)            |                     | 5 CÁLCULO DE PILAS Y SU CIMENTACIÓN            | 18 |
| 2.1.1.3.2 Acciones permanentes de valor n     | no constante (G*)11 |                                                |    |



## 1.- INTRODUCCIÓN Y OBJETO

## 1.1.- DESCRIPCIÓN DE LA ESTRUCTURA

La estructura objeto de este anejo de cálculo perteneciente al Proyecto de Construcción Plan Navarra 2012 del Corredor Cantabrico – Mediterraneo de Alta Velocidad, tramo Castejón – Comarca de Pamplona en su subtramo 3.2: Olite – Tafalla, permite el paso sobre las vías en el P.K. 308+224.

El tablero está constituido por una viga monoartesa prefabricada con losa de compresión, con una longitud total de 65,00 m distribuida en un vano central de 25,00 m y dos vanos extremos de 20,00 m.

La sección transversal está compuesta por la viga monoartesa de 1.10 m de canto y una losa de compresión in situ, de canto variable entre 0.24 y 0.43 m, con un voladizo máximo de 3.87 m. El ancho total de la sección es de 12,20 m distribuidos en una calzada de 9,00 m y dos aceras laterales de 1,60 m provistas de un pretil de hormigón para separación del tráfico y valla de protección antivandálica.

La sección transversal tiene una anchura superior de 12,20 m e inferior de 3,80 m. La longitud de los voladizos es de 3,87 m siendo de canto variable de 0,20 a 0,43 m. El canto total de la sección es de 1,53 m, constante en toda la longitud y con un peralte variable que se consigue con un incremento de canto en las alas de la artesa hasta alcanzar 1,14 m y un canto total de tablero de 1,59 m.

Longitudinalmente, se trata de un puente tipo cantiléver con un tramo central de luz 18.90 m apoyado isostáticamente en dos tramos laterales de longitud total 23,0 m que se sustentan en pilas y estribos y dejan un voladizo de 3 m a cada lado. Toda la estructura tiene un fuerte esviaje de 51.3 gon para adaptarse a la línea del FFCC que circula bajo la misma.

El tablero se apoya en las pilas mediante aparatos de neopreno zunchado. Las pilas son 1,00 m de diámetro separados 3,715 m según el esviaje del FFCC. La cimentación de las pilas se realiza con una zapata combinada de dimensiones 10 x 5 x 1,50 trabajando a una tensión máxima de 320 kPa.

Ambos estribos se realizan con estribos cerrados con aletas, apoyados sobre el terreno natural mediante cimentación directa. Se disponen juntas transversales en ambos estribos.

En cada estribo se han dispuesto cuatro aparatos de apoyo anclados o pegados de neopreno zunchado, dos de ellos de dimensiones 300 x 400 x 93 (56) mm en extremos y dos de 400 x 500 x 84 (55) y dos juntas transversales de 102 mm de recorrido, una en cada estribo.

Para la elaboración del proyecto se emplean las normas y recomendaciones enumeradas a continuación. Se distingue entre documentos relativos a las acciones a considerar y documentos referentes a la resistencia de la estructura.

#### 1.2.- NORMATIVA UTILIZADA

Para la elaboración del proyecto se emplean las normas y recomendaciones enumeradas a continuación. Se distingue entre documentos relativos a las acciones a considerar y documentos referentes a la resistencia de la estructura

#### 1.2.1.- Normas de Acciones

- (1) Ministerio de Fomento. "Instrucción sobre las acciones a considerar en el proyecto de puentes de carretera (IAP-11)" (Orden FOM/2842/2011 de 29 de septiembre). Esta normativa recoge los criterios sobre acciones definidos en la normativa europea EN-1991-:2003/AC:2010 por lo que se puede asegurar el cumplimiento de las especificaciones técnicas de interoperabilidad en el diseño de las estructuras.
- (2) Ministerio de Fomento. "Norma de construcción sismorresistente: puentes. (NCSP-07)" (Real Decreto 637/2007 de 18 de mayo de 2007).
- (3) EN-1991-2:2003/AC:2010. Eurocódigo 1: Acciones en estructuras. Cargas de tráfico en puentes

#### 1.2.2.- Normas de Construcción

- (4) Ministerio de Fomento. "Instrucción de Hormigón Estructural (EHE 08)".
- (5) EN 1337-3:2005 199 "Apoyos estructurales. Parte 3: Apoyos elastoméricos".



## 1.3.- PROGRAMAS DE CÁLCULO UTILIZADOS

Para el cálculo y dimensionamiento de la estructura se han empleado los siguientes programas:

- Programa "Emparrillado" para el cálculo de las acciones sobre las vigas que conforman el tablero
- Programas "Estribos", "Pilas" y "Zapcomb" para la comprobación y dimensionamiento de los estribos, pilas y zapatas combinadas.
- Diversas hojas de cálculo en Excel y Mathcad para el análisis de detalles y cálculos generales.

## 2.- BASES DE CÁLCULO

#### 2.1.- CRITERIOS DE SEGURIDAD

Para justificar la seguridad de las estructuras, objeto de este Anejo y su aptitud en servicio, se utilizará el método de los estados límites.

Los estados límites se clasifican en:

- estados límites de servicio
- estados límites últimos

## a) Estados límites de servicio (E.L.S.)

Se consideran los siguientes:

- E.L.S. de deformaciones que afecten a la apariencia o funcionalidad de la obra, o que causen da

   a elementos no estructurales.
- E.L.S. de vibraciones inaceptables para los usuarios del puente o que puedan afectar a su funcionalidad o provocar daños en elementos no estructurales.

- E.L.S. de plastificaciones en zonas localizadas de la estructura que puedan provocar daños o deformaciones irreversibles. Uno de los objetivos de la comprobación de este E.L.S. es evitar los fenómenos de fatiga.
- E.L.S. de compresión excesiva del hormigón.
- E.L.S. de fisuración del hormigón traccionado.

## b) Estados límites últimos (E.L.U.)

Los estados límites últimos que se deben considerar son los siguientes:

- E.L.U. de pérdida de equilibrio, por falta de estabilidad de una parte o la totalidad de la estructura, considerada como un cuerpo rígido.
- E.L.U. de rotura, por deformación plástica excesiva, inestabilidad local o pérdida de estabilidad de una parte o de la totalidad de la estructura.
  - E.L.U. de fatiga, por fisuración progresiva bajo cargas repetidas.

## 2.1.1.- Acciones

## 2.1.1.1.- Valores característicos de las acciones

Con carácter general se consideran los criterios especificados en la Instrucción relativa a acciones a considerar en puentes de carretera (IAP). Para alguna acción particular se han considerado los criterios definidos en otras instrucciones o recomendaciones, enumeradas en 2.2.1.

#### 2.1.1.1.1.- Acciones permanentes

Se refiere a los pesos de los elementos que constituyen la obra, y se supone que actúan en todo momento, siendo constante en magnitud y posición. Están formadas por el peso propio, las acciones horizontales de terreno sobre estos estribos y muros y la carga muerta.

Peso propio

La carga se deduce de la geometría teórica de la estructura, considerando para la densidad los siguientes valores:

- Acero estructural 78,5 kN/m³
- Hormigón armado pretensado 25,0 kN/m³

## Carga muerta

- Pavimento: Para el cálculo se ha considerado una densidad de 24,0 kN/m3. Dada la diferencia entre los espesores previstos en proyecto y los reales de construcción, se definen dos valores extremos para esta acción:
  - O Valor mínimo: Se obtiene con el espesor teórico de 8 cm previsto en proyecto
  - O Valor máximo: Se obtiene incrementando en un 50% el espesor teórico.
  - Piezas de borde: La carga se ha obtenido a partir de la geometría de las barreras flexibles, aceras, impostas y protecciones antivandálicas dispuestas en ambos extremos del tablero:
    - o Barreras y vallas: Para cada una se considera una carga de 10,0 kN/m.
  - Acera e imposta: La carga se deduce a partir de las dimensiones geométricas de cada elemento:

 $P_{ac} = 5,00 \text{ kN/m}^2$ Hormigón de formas: 1,25 kN/m<sup>2</sup>

## 2.1.1.2.- Acciones permanentes de valor no constante

**Acciones reológicas** Se han considerado los criterios de cálculo y formulación marcados en la EHE-08 para elementos de hormigón armado y pretensado.

#### Acciones debidas a asientos del terreno de cimentación

Para considerar los asientos del terreno de cimentación se emplea un modelo de suelo elástico tipo Winkler con un módulo de reacción variable en función de la estructura y que se define en el anejo de geotecnia del proyecto.

#### Acciones debidas al terreno

En este apartado se consideran las acciones originadas por el terreno natural o de relleno, sobre los elementos del puente en contacto con él, fundamentalmente: estribos, aletas, muros de acompañamiento, etc.

La acción del terreno sobre la estructura es doble: peso sobre elementos horizontales y empuje sobre elementos verticales.

- El peso se determinará aplicando al volumen de terreno que gravita sobre la superficie del elemento horizontal, el peso específico del relleno vertido y compactado. En nuestro caso, se considera una densidad de 20,0 kN/m³.
- El empuje es función de las características del terreno y de la interacción terreno-estructura, de acuerdo con la formulación que se describe más adelante.
- En ningún caso, en que su actuación sea desfavorable para el efecto estudiado, el valor del empuje será inferior al equivalente empuje hidrostático de un fluido de peso específico igual a 5,0 kN/m³.
- En el caso en que exista una incertidumbre sobre la posible actuación del empuje de tierras, deberá
   no considerarse en los casos en que su actuación sea favorable para el efecto en estudio.

Se incluye en esta acción la posible presencia de sobrecargas de uso, actuando en la coronación de los terraplenes, que ocasionan un incremento de los pesos y empujes transmitidos por el terreno al elemento portante. La actuación de estas sobrecargas se considerará como una acción variable.

Se consideran dos límites en el empuje del terreno para el cálculo de la estructura: el empuje activo y el empuje al reposo.

## Empuje activo

A efectos del cálculo de estabilidad y tensiones en el terreno, se considera una ley triangular, actuando sobre un plano vertical desde la parte final del talón. La ley de empujes es efectiva desde la superficie del terreno. Los coeficientes de empuje considerados han sido los que proporciona el Estado de Rankine:

$$\lambda_{h} = \cos^{2}\beta \frac{\cos\beta - \sqrt{\cos^{2}\beta - \cos^{2}\phi}}{\cos\beta + \sqrt{\cos^{2}\beta - \cos^{2}\phi}} \Rightarrow \text{Coef. de empuje horizontal}$$

$$\lambda_{\text{v}} = \sin\beta\cos\beta \, \frac{\cos\beta - \sqrt{\cos^2\beta - \cos^2\phi}}{\cos\beta + \sqrt{\cos^2\beta - \cos^2\phi}} \, \Rightarrow \text{Coef. de empuje vertical}$$

siendo:

- φ ángulo de rozamiento interno del relleno
- β ángulo que forma el talud de coronación con la horizontal

A efectos del cálculo estructural del alzado del muro, se considera una ley triangular actuando desde la sección inferior del mismo hasta su coronación. Se admite que el relleno del trasdós es de la suficiente calidad como para suponer que el empuje es el correspondiente al Estado de Coulomb, con un ángulo de rozamiento tierras-muro de  $\delta$ .

$$\lambda_{h} = \frac{\operatorname{sen}^{2}(\alpha + \varphi)}{\operatorname{sen}^{2}\alpha \left[1 + \sqrt{\frac{\operatorname{sen}(\varphi + \delta)\operatorname{sen}(\varphi - \beta)}{\operatorname{sen}(\alpha + \delta)\operatorname{sen}(\alpha - \beta)}}\right]^{2}} \Rightarrow \operatorname{Coef.de empuje horizontal}$$

siendo:

- δ ángulo de rozamiento tierras-muro
- α ángulo que forma el trasdós con la horizontal

Tomando los siguientes parámetros estándar para el relleno se tiene:

- $\phi = 30^{\circ}$
- C = 0 kPA
- $\alpha = 0^{\circ}$

Se obtiene un coeficiente de empuje activo de valor  $\lambda_H = 0.33$ 

## Empuje al reposo

Para la evaluación del empuje al reposo de las tierras se empleará la fórmula de Jaky

$$\lambda_0 = 1$$
 - sen  $\varphi \Rightarrow$  Coef. de empuje horizontal

Para los parámetros de relleno considerados anteriormente se tiene un coeficiente de  $\lambda_0 = 0.50$ 

## Empuje pasivo

Para la evaluación del empuje pasivo se supone una ley triangular actuando desde la parte superior de la puntera, sin tener en cuenta, por tanto, el relleno situado sobre la misma.

$$\lambda_{\text{h}} \!=\! 0.5 \, \frac{1 \! + \! \text{sen} \, \phi}{1 \! - \! \text{sen} \, \phi} \, \Rightarrow \! \text{Coef} \, . \, \text{de empuje horizontal}$$



Se considera un coeficiente parcial de seguridad de 0,5 en la formulación de Rankine, para tener en cuenta la incertidumbre en el valor de esta acción.

El coeficiente de seguridad al vuelco debe ser superior a 2.00, y el de seguridad al deslizamiento superior a 1.50.

## 2.1.1.2.1.- Acciones variables

## a) Sobrecarga Vertical

## División de la plataforma del tablero en carriles virtuales

Se procede con la división propuesta en la Instrucción IAP-11 de la plataforma en Carriles Virtuales. Para un ancho de plataforma de 12.20 m, se tienen un total de 3 carriles de 3 m c.u. y un ancho remanente de 3.2 m.

| ANCHURA<br>DE LA PLATAFORMA<br>( <i>w</i> ) | NÚMERO<br>DE CARRILES<br>VIRTUALES (n <sub>i</sub> ) | ANCHURA DEL CARRIL<br>VIRTUAL ( <i>w<sub>i</sub></i> ) | ANCHURA DEL ÁREA<br>REMANENTE |
|---------------------------------------------|------------------------------------------------------|--------------------------------------------------------|-------------------------------|
| w < 5,4 m                                   | <i>n<sub>I</sub></i> = 1                             | 3 m                                                    | <i>w</i> − 3 m                |
| 5,4 m ≤ <i>w</i> < 6 m                      | <i>n</i> <sub>l</sub> = 2                            | <u>w</u> 2                                             | 0                             |
| <i>w</i> ≥ 6 m                              | $n_{l} = ent\left(\frac{w}{3}\right)$                | 3 m                                                    | w – 3n <sub>i</sub>           |



## Definición del tren de cargas

El tren de cargas que está compuesto por:

- a)Una carga uniformemente distribuida sobre el carril virtual de valor variable en función de carril virtual considerado
- b)Un vehículo pesado, formado por dos cargas puntuales, también función del carril virtual considerado:





| SITUACIÓN                   | VEHÍCULO PESADO<br>2 <i>Q<sub>ik</sub></i> [kN] | SOBRECARGA UNIFORME $q_{ik}$ (6 $q_{rk}$ ) [kN/m <sup>2</sup> ] |
|-----------------------------|-------------------------------------------------|-----------------------------------------------------------------|
| Carril virtual 1            | 2 - 300                                         | 9,0                                                             |
| Carril virtual 2            | 2 · 200                                         | 2,5                                                             |
| Carril virtual 3            | 2 - 100                                         | 2,5                                                             |
| Otros carriles virtuales    | 0                                               | 2,5                                                             |
| Área remanente ( $q_{rk}$ ) | 0                                               | 2,5                                                             |

## b) Acciones Horizontales

- Frenado y Arranque:

De acuerdo con la Instrucción IAP – 11, se considerará una fracción de la carga vertical, como componente horizontal de frenado y arranque.

$$Q_{1k} = 0.6 \cdot 2Q_{1k} + 0.1 \ q_{1k} \ w_1 \ L$$

Siendo L la distancia entre juntas de dilatación del tablero.

Este valor de Q<sub>lk</sub> está limitado a los siguientes valores:

$$180 \text{ kN} \le Q_{lk} \le 900 \text{ kN}$$

- Fuerza centrífuga y otras fuerzas transversales

Se determinarán de acuerdo al punto 4.1.3.2 de la Instrucción según las siguientes expresiones:

$$Q_{tk} = 0.2 \ Q_v$$
 si  $r < 200 \ \text{m}$ 
 $Q_{tk} = 40 \ \frac{Q_v}{r}$  si  $200 \ \text{m} \le r \le 1500 \ \text{m}$ 
 $Q_{tk} = 0$  si  $r > 1500 \ \text{m}$ 

## c) Grupos de cargas de tráfico

Para la concomitancia de las acciones horizontales y verticales anteriormente definidas se considerarán los siguientes casos, de acuerdo con la tabla 4.1 -C de la Instrucción:

ANEJO Nº 11. Estructuras



|                                   |                                                                      |                                                   | PLATAFORMA                                       |                                                  |                                                  | ACERAS                                           |
|-----------------------------------|----------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
|                                   |                                                                      | CARGAS VERTICALES                                 |                                                  | FUERZAS HORIZONTALES                             |                                                  |                                                  |
| Grupos de Cargas <sup>(1)</sup>   | VEHICULOS<br>PESADOS                                                 | SOBRECARGA<br>UNIFORME                            | AGLOMERACIÓN<br>DE PERSONAS                      | FRENADO Y<br>ARRANQUE                            | FUERZA<br>CENTRIFUGA<br>Y TRANSVERSAL            | CARGAS<br>VERTICALES                             |
| gr 1<br>(Cargas verticales)       | Valor<br>característico<br>(apartado<br>4.1.2.1)                     | Valor<br>característico<br>(apartado 4.1.2.1)     | -                                                | -                                                | -                                                | Valor<br>reducido:<br>2,5 kN/m²                  |
| gr 2<br>(Fuerzas<br>horizontales) | Valor<br>reducido <sup>(2)</sup> :<br>ψ <sub>1</sub> Q <sub>ik</sub> | Valor reducido <sup>(2)</sup> : $\psi_1 \ q_{ik}$ | -                                                | Valor<br>característico<br>(apartado<br>4.1.3.1) | Valor<br>característico<br>(apartado<br>4.1.3.2) | -                                                |
| gr 3<br>(Peatones)                | -                                                                    | . <del></del>                                     | -                                                | =                                                | .53                                              | Valor<br>característico<br>(apartado<br>4.1.2.2) |
| gr 4<br>(Aglomeraciones)          | -                                                                    | ) <del>-</del>                                    | Valor<br>característico<br>(apartado<br>4.1.2.2) | -                                                | <del>n</del> e                                   | Valor<br>característico<br>(apartado<br>4.1.2.2) |

(1) La denominación de los grupos de cargas hace referencia a la componente dominante del grupo

(2) Se define como valor reducido el que corresponde al valor frecuente que figura en la tabla 6.1-a, es decir: ψ<sub>1</sub> = 0,75 para los vehículos pesados

 $\psi_1$  = 0,40 para la sobrecarga uniforme

## 2.1.1.2.2.- Acciones del Viento

La acción de viento se define en el apartado 4.2 de la Instrucción IAP, La velocidad básica fundamental de viento para la localidad de San Bartolomé de Tormes se determina a partir del mapa de isotacas para 50 años de periodo de retorno del CTE, obteniendo un valor de 26 m/s.

Esta velocidad básica fundamentar se obtiene la velocidad básica mediante la expresión:

$$V_b = C_{dir} C_{season} V_{b,0}$$



Donde, para el caso en cuesión todos los valores se pueden considerar como la unidad.

Dado que el periodo de retorno a considerar es de 100 años, la velocidad básica será necesario escalarla por un factor de probabilidad de valor  $C_{prob} = 1.04$ .

En función de la altura del elemento y del tipo de entorno (que se clasifica en el caso de aplicación como entorno tipo II), la velocidad media se obtiene a partir de la expresión:



$$V_m(z) = c_r(z) c_o V_b(T)$$

Finalmente, el empuje del viento se obtiene mediante la expresión:

$$F_{w} = \left[\frac{1}{2}\rho v_{b}^{2}(T)\right] c_{e}(z) c_{f} A_{ref}$$

Donde

 $F_w$  empuje horizontal del viento [N]

 $\frac{1}{2}\rho v_b^2(T)$  presión de la velocidad básica del viento  $q_b$  [N/m<sup>2</sup>]

ρ densidad del aire, que se tomará igual a 1,25 kg/m³

 $v_b(T)$  velocidad básica del viento [m/s] para un periodo de retorno T

 $c_f$  coeficiente de fuerza del elemento considerado (figura 4.2-b)

A<sub>ref</sub> área de referencia, que se obtendrá como la proyección del área sólida expuesta sobre el plano perpendicular a la dirección del viento [m²]

 $c_e(z)$  coeficiente de exposición en función de la altura z calculado según la fórmula siguiente<sup>1</sup>:

$$c_e(z) = k_r^2 \left[ c_o^2 \ln^2 \left( \frac{z}{z_o} \right) + 7 k_I c_o \ln \left( \frac{z}{z_o} \right) \right]$$
 para  $z \ge z_{min}$ 

Los diferentes factores de cf se obtendrán a partir de la tabla 4.2b de la Instrucción:

| w / B / | B                                                                                                                                                                                                                 | ≤0,2         | 0,4  | 0,6   | 0,7                  | 1,0         | 2,0  | 5,0 | ≥ 10,0               |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|-------|----------------------|-------------|------|-----|----------------------|
|         | C <sub>f</sub>                                                                                                                                                                                                    | 2,0          | 2,2  | 2,35  | 2,4                  | 2,1         | 1,65 | 1,0 | 0,9                  |
| W       | sección circular con sección circular con super superficie lisa y tal que: rugosa (°), o lisa tal que $v_b(T)\sqrt{c_e(z)} > 6 \text{ m}^2/\text{s}$ $\emptyset v_b(T)\sqrt{c_e(z)} < 6 $ $c_f = 0.7$ $c_f = 1.2$ |              |      |       | que:                 |             |      |     |                      |
|         |                                                                                                                                                                                                                   |              |      |       | c <sub>f</sub> = 1,3 |             |      |     |                      |
| W       | W                                                                                                                                                                                                                 | <b>′</b> ⇒ [ | > c, | = 2,2 |                      | <b>w</b> ⇒] |      | 3[  | c <sub>f</sub> = 2,0 |

## 2.1.1.2.3.- Acción térmica

La definición de la acción térmica se encuentra en el apartado 4.3 de la Instrucción IAP-11. Para el caso del tablero considerado se adopta un tablero tipo 3 de hormigón.

Se distinguen dos acciones térmicas independientes:

- Componente uniforme de la acción térmica

La componente uniforme de temperatura, para un T = 50 años, se obtiene de la Figura 4.3 a de la Instrucción, obteniendo para la localidad de Segovia un valor de unos 35°C.



(Coincide con el mapa correspondiente del Código Técnico de la Edificación)

En cuanto a la temperatura mínima, de acuerdo con la tabla 4.3 -a de la citada instrucción, y teniendo en cuenta la altitud de la zona, se obtiene un valor mínimo de -20°C, ajustanto los valores para el periodo de retorno de 120 años se tienen respectivamente:

$$T_{ret} = 120 T_{max} := T_{max50} \cdot \left( 0.781 - 0.056 \cdot ln \left( -ln \left( 1 - \frac{1}{T_{ret}} \right) \right) \right) = 36.71$$

$$T_{min} := T_{min50} \cdot \left( 0.393 - 0.156 \cdot ln \left( -ln \left( 1 - \frac{1}{T_{ret}} \right) \right) \right) = -22.784$$

Por lo que siguiendo la definición de la Instrucción los valores máximos y mínimos de la temperatura se obtienen como:

Para tablero mixto se tiene

$$\Delta T_{emin} := 4$$
  $\Delta T_{emax} := 4$ 

$$T_{emin} := T_{min} + \Delta T_{emin} = -18.784$$

$$T_{emax} := T_{max} + \Delta T_{emax} = 40.71$$

- Componente de diferencia de temperatura

Para el tablweo tipo 2 se consideran 18º de diferencia máxima

Teniendo en cuenta el pavimento del tablero y la impermeabilización del mismo se pueden afectar los valores de los siguientes factores reductores.

|                                                          | TABLERO                           | TIPO 1                        | TABLERO TIPO 3                    |                               |  |
|----------------------------------------------------------|-----------------------------------|-------------------------------|-----------------------------------|-------------------------------|--|
| ESPESOR DEL PAVIMENTO                                    | FIBRA<br>SUPERIOR<br>MÁS CALIENTE | FIBRA<br>SUPERIOR<br>MÁS FRÍA | FIBRA<br>SUPERIOR<br>MÁS CALIENTE | FIBRA<br>SUPERIOR<br>MÁS FRÍA |  |
|                                                          | k <sub>sur</sub>                  | k <sub>sur</sub>              | k <sub>sur</sub>                  | k <sub>sur</sub>              |  |
| Sin impermeabilización<br>ni pavimento                   | 0,7                               | 0,9                           | 0,8                               | 1,1                           |  |
| Con impermeabilización y<br>sin pavimento <sup>(1)</sup> | 1,6                               | 0,6                           | 1,5                               | 1,0                           |  |
| 50 mm                                                    | 1,0                               | 1,0                           | 1,0                               | 1,0                           |  |
| 100 mm                                                   | 0,7                               | 1,2                           | 0,7                               | 1,0                           |  |
| 150 mm                                                   | 0,7                               | 1,2                           | 0,5                               | 1,0                           |  |

<sup>(1)</sup> Estos valores representan valores límite superiores para superficies de color oscuro.

## 2.1.1.2.4.- Acciones accidentales

## Acciones sísmicas

Se aplica la Norma de Construcción Sismorresistente, NCSP-07. Esta Norma tiene como objeto proporcionar los criterios que han de seguirse dentro del territorio español para la consideración de la acción sísmica en la realización de los diferentes proyectos.



casos:

Según el apartado 1.2.3. de la Norma, ésta norma es de obligada aplicación, excepto en los siguientes

- En las construcciones de moderada importancia.
- En las construcciones de importancia normal o especial cuando la aceleración sísmica básica ab sea inferior a 0,04 g; siendo g la aceleración de la gravedad.

La Norma considerada que una aceleración sísmica básica inferior a 0,04 g no genera solicitaciones peores que las demás hipótesis de carga, dada la diferencia de coeficientes de seguridad y de acciones simultáneas que deben considerarse con el sismo.

De acuerdo con la NCSP-07, nos encontramos en el grupo de "Importancia del puente NORMAL".

Se define en el apartado 3.1. de la Norma por medio del Mapa de Peligrosidad Sísmica y en el anejo 1 de la norma se detalla por municipios los valores de la aceleración sísmica básica iguales o superiores a 0.04  $\sigma$ 

De esta forma se fija, para cada zona del territorio español, el valor de la aceleración sísmica básica ab. Este valor es característico de la aceleración horizontal de la superficie del terreno, correspondiente a un período de retorno de 500 años.

Se incluye a continuación el mapa de peligrosidad sísmica recogido en la NCSP-07.



En este caso, la aceleración básica de la localidad de Tafalla, no figura en el listado de localidades con aceleraciones básicas superiores a 0,04 g, por lo que la acción sísmica no debe ser considerada.

## 2.1.1.3.- Valores representativos de las acciones

Con carácter general se han seguido los criterios especificados en la Instrucción, IAP relativos a las acciones a considerar en el proyecto de puentes de Carreteras.

Las acciones se definen, en su magnitud, por sus valores representativos.

Una misma acción puede tener un único o varios valores representativos, según se indica a continuación, en función del tipo de acción.



## 2.1.1.3.1.- Acciones permanentes (G)

Para las acciones permanentes se considerará un único valor representativo, coincidente con el valor característico o G<sub>k</sub>.

## 2.1.1.3.2.- Acciones permanentes de valor no constante $(G^*)$ .

- Acciones originadas por presolicitaciones: Se considerará, paras las acciones originadas por las presolicitaciones, definidas en el punto 2.2.3.1.2, un único valor representativo, coincidente con el valor característico P<sub>k,t</sub>, correspondiente al instante "t" en el que se realiza la comprobación.
- Reológicas: se considerará, para las acciones de origen reológico, un único valor representativo, coincidente con el valor característico R<sub>k,t</sub>, correspondiente al instante "t" en el que se realiza la comprobación.

## *2.1.1.3.3.- Acciones variables (Q).*

Cada una de las acciones variables puede considerarse con los siguientes valores representativos:

- Valor característico Q<sub>k</sub>: valor de la acción cuando actúa aisladamente.
- Valor de combinación  $\psi_0$   $Q_k$ : valor de la acción cuando actúa en compañía de alguna otra acción variable.
- Valor frecuente  $\psi_1$   $Q_k$ : valor de la acción que es sobrepasado durante un período de corta duración respecto a la vida útil del puente.
- Valor casi permanente  $\psi_2$  Q<sub>k</sub>: valor de la acción que es sobrepasado durante una gran parte de la vida útil del puente.

Los valores de los coeficientes  $\psi$  son los siguientes:

| Ψ0        | Ψ1        | Ψ2   |
|-----------|-----------|------|
| 0,75/0.40 | 0,75/0.40 | 0,00 |

Nota: Se empleará el valor 0,75 para  $\psi_0$  en el caso del vehículo pesado y 0.40 para la fracción de sobrecarga uniforme

## 2.1.1.3.4.- Acciones accidentales (A)

Para las acciones accidentales se considera un único valor representativo coincidente con el valor característico  $A_k$ .

#### 2.1.1.4.- Valores de cálculo de las acciones

Con carácter general se han seguido los criterios especificados en la Instrucción, IAP relativos a las acciones a considerar en el Proyecto de Puentes de Carreteras.

Los valores de cálculo de las diferentes acciones son los obtenidos aplicando el correspondiente coeficiente parcial de seguridad  $\gamma$  a los valores representativos de las acciones, definidos en el apartado anterior.

## 2.1.1.4.1.- Estados límites últimos (E.L.U.)

Para los coeficientes parciales de seguridad  $\gamma$  se tomarán los siguientes valores básicos:



|                          |                         | Situaciones persistentes y transitorias |                         | Situaciones accidentale |                        |  |
|--------------------------|-------------------------|-----------------------------------------|-------------------------|-------------------------|------------------------|--|
| Concepto                 |                         | Efecto<br>favorable                     | Efecto desfavorable     | Efecto<br>favorable     | Efecto desfavorable    |  |
| Acciones perma           | anentes (1),            | $\gamma_{\rm G}$ = 1,0                  | $\gamma_{\rm G}$ = 1,35 | $\gamma_{\rm G}$ = 1,0  | $\gamma_{\rm G}$ = 1,0 |  |
| Acciones                 | Pretensado<br>(P1), (3) | $\gamma_{\rm G}$ = 1,0                  | $\gamma_{\rm G}$ = 1,0  | $\gamma_G = 1,0$        | $\gamma_{\rm G}$ = 1,0 |  |
| permanentes              | Pretensado<br>(P2), (4) | $\gamma_{\rm G}$ = 1,0                  | $\gamma_{\rm G}$ = 1,35 | $\gamma_{\rm G}$ = 1,0  | $\gamma_{\rm G}$ = 1,0 |  |
| de veler ne              | Reológicas              | $\gamma_{\rm G}$ = 1,0                  | $\gamma_{\rm G} = 1,35$ | $\gamma_G = 1.0$        | $\gamma_{\rm G} = 1.0$ |  |
| de valor no<br>constante | Acciones del terreno    | $\gamma_{\rm G}$ = 1,0                  | $\gamma_{\rm G} = 1,50$ | $\gamma_G = 1,0$        | $\gamma_{\rm G}$ = 1,0 |  |
| Acciones v               | ariables                | $\gamma_Q = 0$                          | $\gamma_{\rm Q} = 1,35$ | $\gamma_Q = 0.0$        | $\gamma_{Q} = 1,0$     |  |
| Acciones acc             | cidentales              |                                         |                         | $\gamma_{A} = 1,0$      | $\gamma_{A} = 1,0$     |  |

## NOTAS.

Los coeficientes  $\gamma_G$  = 1,0 y  $\gamma_Q$  = 1,35, se aplicarán a la totalidad de la acción, según su efecto sea favorable o desfavorable.

En el caso de la carga de pavimento, se considerará para la totalidad de la acción:

- El valor representativo inferior  $G_{k,inf}$  ponderado por  $\gamma_G = 1,0$ , cuando su efecto sea favorable.
- El valor representativo superior  $G_{k,sup}$  ponderado por  $\gamma_G$  = 1,35, cuando su efecto sea desfavorable.

Se ha considerado una única hipótesis de carga tomando el valor representativo superior  $G_{k,sup}$  ponderado por  $\gamma_G$  = 1,35.

## 2.1.1.4.2.- Estados límites de servicio (E.L.S.)

Para los coeficientes parciales de seguridad γ se tomarán los siguientes valores:

| Concept                       | o                            | Situaciones persistentes y transitorias |                        |  |  |
|-------------------------------|------------------------------|-----------------------------------------|------------------------|--|--|
|                               |                              | Efecto favorable                        | Efecto desfavorable    |  |  |
| Acciones permanentes          |                              | $\gamma_{\rm G}$ = 1,0                  | $\gamma_{\rm G}$ = 1,0 |  |  |
|                               | Pretensado (P <sub>1</sub> ) | $\gamma_{\rm G}$ = 0,9                  | $\gamma_G = 1,1$       |  |  |
|                               | Pretensado (P <sub>2</sub> ) | $\gamma_G = 1,0$                        | $\gamma_{\rm G}$ = 1,0 |  |  |
| Acciones permanentes de valor | Reológicas                   | γ <sub>G</sub> = 1,0                    | $\gamma_{\rm G}$ = 1,0 |  |  |
| no constante                  | Acciones del terreno         | γ <sub>G</sub> = 1,0                    | γ <sub>G</sub> = 1,0   |  |  |
| Acciones var                  | riables                      | $\gamma_Q = 0$                          | γ <sub>Q</sub> = 1,0   |  |  |

## 2.1.1.5.- Combinación de acciones

Con carácter general se han seguido los criterios especificados en la Instrucción, IAP, relativos a las acciones a considerar en el proyecto de puentes de carreteras.

Las hipótesis de carga a considerar se formarán combinando los valores de cálculo de las acciones cuya actuación pueda ser simultánea, según los criterios generales que se indican a continuación.

## 2.1.1.5.1.- Estados límites últimos.

## Situaciones persistentes y transitorias

Las combinaciones de las distintas acciones consideradas en estas situaciones, se realizará de acuerdo con el siguiente criterio:



$$\frac{\sum\limits_{j\geq 1} \gamma_{G,j} \ G_{k,j} + \sum\limits_{i\geq 1} \gamma_{G^{^{*}},i} \ G^{^{*}}{}_{k,i} + \gamma_{Q,1} Q_{K,1} + \sum\limits_{l>1} \gamma_{Q,i} \ \psi_{O,i} \ Q_{k,i}}{}$$

## donde:

 $G_{ki}$ = valor representativo de cada acción permanente.

 $G^*_{k,j}$ = valor representativo de cada acción permanente de valor no constante.

 $Q_{k,1}$ = valor representativo (valor característico) de la acción variable dominante.

 $\psi_{o,i}Q_{k,\iota}$  = valores representativos (valores de combinación) de las acciones variables concomitantes con la acción variable dominante.

## Situaciones accidentales.

Por tratarse de una situación accidental en la que no se considera el sismo la combinación de las distintas acciones se realizarán de acuerdo con el siguiente criterio:

$$\textstyle \sum\limits_{i\geq 1} \gamma_{G,j} \cdot G_{k,j} + \sum\limits_{j\geq 1} \gamma_{G^{\star}j} G^{\star}_{k,j} + \gamma_{Q,1} \cdot \psi_{1,1} \cdot Q_{k,1} + \sum\limits_{i>1} \gamma_{Q,i} \ \psi_{2,i} \cdot Q_{k,j} + \gamma_{A} \cdot A_{k}$$

#### donde:

 $G_{k,\iota}$ ,  $G^*_{k\phi}$  = valores representativos.

= valor frecuente de la acción variable dominante.  $\psi_{1,1} Q_{k,1}$ 

 $\psi_{2,1}$   $Q_{k,ii}$  = valores casi-permanentes de las acciones variables concomitantes con la acción variable dominante y la acción accidental.

= valor característico de la acción accidental.

## 2.1.1.5.2.- Estados Límite de Servicio

Para estos estados se considerarán únicamente las situaciones persistentes y transitorias, excluyéndose las accidentales.

Las combinaciones de las distintas acciones consideradas en estas situaciones, se realizarán de acuerdo con el siguiente criterio:

Combinación característica (poco probable o rara):

$$\textstyle \sum\limits_{i \leq 1} \gamma_{G,i} \cdot G_{k,i} + \sum\limits_{j \geq 1} \gamma_{G^*,j} \cdot G_{k,j}^* + \gamma_{Q,1} \cdot Q_{k,1} + \sum\limits_{i > 1} \gamma_{Q,i} \cdot \psi_{0,i} \cdot Q_{k,i}$$

Combinación frecuente:

$$\textstyle\sum_{i\leq 1}\gamma_{G,i}\cdot G_{k,i} + \sum_{i\geq 1}\gamma_{G^*,j}\cdot G_{k,j}^* + \gamma_{Q,1}\cdot \psi_{1,1}. \ Q_{k,1} + \sum_{i\geq 1}\gamma_{Q,i}\cdot \psi_{2,i}\cdot Q_{k,i}$$

Combinación casi-permanente:

$$\sum_{i \leq 1} \gamma_{G,i} \cdot G_{k,i} + \sum_{i \geq 1} \gamma_{G^*,j} \cdot G_{k,j}^* + \sum_{i \geq 1} \gamma_{Q,i} \cdot \psi_{2,i} \cdot Q_{k,i}$$

## 2.1.2.- Características de los materiales

## 2.1.2.1.- Especificación de los materiales

|                              |                   | COEF. SEGUR.      | CONTROL     |
|------------------------------|-------------------|-------------------|-------------|
| Hormigón de limpieza         | HL-150/B/20       | No estructur      | al          |
| Hormigón en cimentaciones    | HA-30/B/20/IIa+Qb | $\gamma$ c = 1,50 | ESTADÍSTICO |
| Hormigón en alzado de pilas  | HA-30/B/20/IIb+H  | $\gamma$ c = 1,50 | ESTADÍSTICO |
| Hormigón de Vigas            | HP-60/AC/12/IIb+H | $\gamma$ c = 1,50 | ESTADÍSTICO |
| Hormigón de losa in situ     | HA-35/B20/IIb+H   | $\gamma$ c = 1,50 | ESTADÍSTICO |
| Acero de armar               | B500S             | $\gamma$ s = 1,15 | NORMAL      |
| Acero de pretensado en vigas | Y 1860 S7         | $\gamma p = 1,15$ | NORMAL      |

## 2.1.2.2.- Módulo de elasticidad

Para tener en cuenta la variación del módulo de elasticidad con el tiempo se ha considerado la siguiente expresión:

$$E_c(t) = E_{c,28} \sqrt{e^{s\left(1 - \sqrt{\frac{28}{t}}\right)}}$$

Siendo:

 $E_c(t)$  el módulo de elasticidad en el instante t

E<sub>c,28</sub> el módulo de elasticidad a los 28 días

t el instante considerado, expresado en días a partir de la fecha de hormigonado.

s un parámetro en función del tipo de cemento:

- 0,20 para cementos con alta resistencia y endurecimiento rápido
- 0,25 para cementos con resistencia con endurecimiento normal
- 0,38 para cementos con endurecimiento lento

Para E<sub>c.28</sub> se tomará el valor:

$$E_{C.28} = 10.000 \sqrt[3]{f_{ck} + 8MPa}$$

Con f<sub>ck</sub> y E<sub>c,28</sub> en MPa.

#### 2.1.2.3.- Módulo de elasticidad transversal

El módulo de elasticidad transversal se obtiene a través de la expresión:

$$G = \frac{G}{2(1+v)}$$

Siendo v el coeficiente de Poisson de valor 0.2

## 2.1.2.4.- Coeficiente de dilatación térmica

Se adopta un valor de  $\alpha$  = 10<sup>-5</sup>

## 2.1.2.5.- Recubrimientos

El valor nominal del recubrimiento, de acuerdo con el Artículo 37.2.4. de la Instrucción EHE, será:

$$r_{mon} = r_{min} + \Delta r$$

Para elementos in situ con nivel intenso de control de ejecución

 $\Delta r = 5 \text{ mm}$ 

Para elementos no prefabricados, ambiente IIa+Qb y hormigones de resistencia inferior a 40 N/mm<sup>2</sup>

 $r_{min} = 40 \text{ mm}$ 

Para elementos no prefabricados, ambiente IIb+H y hormigones de resistencia inferior a 40 N/mm<sup>2</sup>

 $r_{min} = 35 \text{ mm}$ 

Para elementos prefabricados, ambiente IIb+H y hormigones de resistencia superior a 40 N/mm<sup>2</sup>

 $r_{min} = 30 \text{ mm}$ 

## 2.1.2.6.- Requisitos de durabilidad

De acuerdo con el Artículo 37.3.2. de la Instrucción EHE, se deberán cumplir las siguientes especificaciones para los diferentes ambientes:

|                             | Ila + Qb | IIb+ H |
|-----------------------------|----------|--------|
| Máxima relación a/c         | 0,50     | 0,55   |
| Mínimo contenido de cemento | 300      | 300    |

## 2.1.2.7.- Niveles de control

El control de calidad de los elementos de hormigón armado abarca el control de materiales y el control de la ejecución.

## Control de materiales

El control de la calidad del hormigón y de sus materiales componentes, así como el control del acero se efectuará según lo establecido en la "Instrucción de Hormigón Estructural, EHE".

El fin del control es verificar que la obra terminada tiene las características de calidad especificadas en el proyecto, que son las generales de la Instrucción EHE. La realización del control se adecuará al nivel adoptado en el proyecto.

## Control de la ejecución

El control de la calidad de la ejecución de los elementos de hormigón se efectuará según lo establecido en la "Instrucción de Hormigón Estructural, EHE"

Existen diferentes niveles de control. La realización del control se adecuará al nivel adoptando para la elaboración del proyecto.

## 2.1.2.7.1.- Niveles de control establecidos.

En el proyecto se adoptan los siguientes niveles de control según la definición de EHE:

- Acero. Todos los casos: Normal

- Hormigón. Todos los casos: Estadístico

- Ejecución. Todos los casos: Intenso

Corresponde a la Dirección de Obra la responsabilidad de la realización de los controles anteriormente definidos.

## 3.- CÁLCULO DEL TABLERO





# ROVER INFRAESTRUCTURAS

CORREDOR CANTÁBRICO – MEDITERRÁNEO DE ALTA VELCIDAD

TRAMO: CASTEJÓN – COMARCA DE PAMPLONA

**SUBTRAMO: TAFALLA (S) -TAFALLA** 

**PASO SUPERIOR PS-308.2** 

ANEJO DE CÁLCULOS

JULIO 2020 (REV.: 02)

## <u>ÍNDICE</u>

| 1. | BASES DE CÁLCULO Y DIMENSIONAMIENTO                         | 3  |
|----|-------------------------------------------------------------|----|
|    | 1.1. NORMATIVAS EMPLEADAS                                   | 3  |
|    | 1.2. ANÁLISIS ESTRUCTURAL                                   | 3  |
|    | 1.3. CARGAS APLICADAS                                       | 3  |
|    | 1.4. DURABILIDAD                                            | 8  |
|    | 1.5. CARACTERÍSTICAS DE LOS MATERIALES EMPLEADOS            | 9  |
|    | 1.6. COEFICIENTES PARCIALES PARA COMPROBACIONES RESISTENTES | 9  |
|    | 1.7. COMBINACIÓN DE ACCIONES                                | 10 |
|    | 1.8. DIMENSIONAMIENTO DE ELEMENTOS DE HORMIGÓN              | 11 |
|    | 1.9. PROGRAMAS INFORMÁTICOS UTILIZADOS                      |    |
|    | 1.10. MANTENIMIENTO DE LA ESTRUCTURA                        |    |
|    | DESCRIPCION DEL PROGRAMA EMPARRILLADOS                      |    |
| 3. | CALCULO DEL TABLERO                                         |    |
|    | 3.1. MODELO EMPARRILLADO VANO 1                             |    |
|    | 3.1. COMPROBACIÓN DE LA SECCIÓN DEL VANO CENTRAL            | 26 |
|    | 3.2. COMPROBACIÓN A CORTANTE DE LA VIGA CENTRAL             | 28 |
|    | 3.3. ARMADURA DE LOSA                                       | 29 |
| 4. | DISEÑO DE APARATOS DE APOYO                                 |    |
|    | 4.1. REACCIONES VERTICALES                                  | 35 |
|    | 4.2. REACCIONES Y CONCOMITANTES                             | 35 |
|    | 4.3. ACCIONES HORIZONTALES                                  |    |
|    | 4.4. COMPROBACIÓN DE APARATOS DE APOYO                      | 39 |

ALVIPRE S.L. Página 2 de 39

## 1. BASES DE CÁLCULO Y DIMENSIONAMIENTO

La comprobación de la estructura se ha realizado según los principios de mecánica racional, con su adaptación al diseño estructural, establecida por la práctica ingenieril. Se han tenido en cuenta las normas de obligado cumplimiento en el territorio español, así como las recomendaciones y la normativa internacional de aplicación, cuando proceda. De acuerdo con ellas, el cálculo se ha realizado siguiendo el principio de los Estados Límites, que establece que la seguridad de la estructura en conjunto, o cualquiera de sus partes, se garantiza comprobando que la solicitación no supera la respuesta última de las mismas. Este formato de seguridad se expresa sintéticamente mediante la siguiente desigualdad:

#### $Sd \leq Rd$

Donde Sd representa la solicitación de cálculo aplicable en cada caso, y Rd la respuesta última de la sección o elemento.

Para la aplicación de este criterio de seguridad, se consideran tanto situaciones de servicio, como de agotamiento, esto es, Estados Límites de Servicio (ELS) y de Agotamiento (ELU), de acuerdo con las definiciones dadas para los mismos en las normativas de referencia. En principio, los Estados Límites Últimos están asociados a la rotura de las secciones o elementos. Para ello, se evalúan las solicitaciones mediante la mayoración de los valores representativos de las acciones (en general característicos) utilizando los oportunos coeficientes parciales que luego se detallan. Las resistencias de las secciones o elementos se estiman mediante las características geométricas, y las resistencias minoradas de los materiales.

Por el contrario, los Estados Límites de Servicio están asociados a la pérdida de funcionalidad de la estructura. Las solicitaciones se evalúan mediante sus valores representativos, en general sin mayorar, afectados de los oportunos coeficientes de combinación, para tener en cuenta la probabilidad de ocurrencia simultánea de varias acciones. Las resistencias se estiman a partir de los valores nominales de las dimensiones y resistencias de los elementos o secciones de la estructura, sin minorar.

Los cálculos se realizarán mediante programas informáticas de aplicación general al cálculo de estructuras, así como mediante programas propios de diseño de elementos particulares. Los cálculos por ordenador se justifican mediante los oportunos listados de datos y resultados incluidos en el presente anejo. Adicionalmente, cuando sea preciso para la correcta comprensión de los resultados, así como para su oportuno chequeo, se realizarán comprobaciones manuales aproximadas, que justifiquen los órdenes de magnitud.

Se exponen a continuación los criterios y normativas empleadas en la realización de este anejo de cálculo.

#### 1.1. NORMATIVAS EMPLEADAS

Para la realización de este apartado se ha considerado la siguiente normativa:

- Norma de construcción sismoresistente general (NCSE-02) y de puentes (NCSP-07).
- Instrucción sobre las Acciones a considerar en el proyecto de Puentes de carretera (IAP-11).
- Instrucción del hormigón estructural EHE-08.
- Recomendaciones para el proyecto y puesta en obra de los apoyos elastoméricos para puentes de carretera (MOPU 1982).
- Norma UNE-EN 1337-1. Apoyos estructurales. Parte 1: Reglas generales de diseño.
- Norma UNE-EN 1337-3. Apoyos estructurales. Parte 3: Apoyos elastoméricos.

## 1.2. ANÁLISIS ESTRUCTURAL

Para el cálculo del tablero se ha procedido a realizar varios modelos de cálculo que permitan la obtención de los esfuerzos existentes en la estructura de una forma que refleje lo más aproximadamente posible la realidad. Se han desarrollado diferentes modelos, planos con elementos tipo barra y espaciales que combinan elementos tipo placa con elementos barra. En estos modelos, cuyo objeto se detalle en el apartado de desarrollo del cálculo, se discretizan los diferentes elementos que componen el tablero: losas ampliación, zunchos etc.

#### 1.3. CARGAS APLICADAS

#### **Cargas permanentes**

- a) Peso propio
- b) Cargas muertas
- c) Acciones diferidas derivadas de retracción, fluencia y Temperatura
- d) Cargas horizontales

#### Sobrecargas

- e) Sobrecargas de uso: Dentro de ésta última están incluida las acciones horizontales producidas por el frenado, Arranque y fuerza centrífuga.
- f) Acciones térmicas: variación uniforme de la temperatura y gradiente térmico.
- g) Viento

#### **Acciones accidentales**

h) No se han considerado las acciones accidentales de sismo por encontrarse esta estructura en una zona con una aceleración básica inferior a 0.04 g.

ALVIPRE S.L. Página 3 de 39

#### **ACCIONES PERMANENTES:**

#### ACCIONES PERMANENTES DE VALOR CONSTANTE (G):

#### PESO PROPIO

El correspondiente a considerar una densidad de los siguientes materiales:

- Peso específico del hormigón:

 $\gamma h = 2,50 \text{ T/m}^3$ 

#### **CARGAS MUERTAS**

Los tipos de carga a considerar serán los siguientes:

- Peso específico del pavimento:  $\gamma p = 2.40 \text{ T/m}^3$  (e = 8 cm valor medio)

Valor inferior (Gk,inf)  $q=0.192 \text{ T/m}^2$ Valor superior (Gk,sup)  $q=0.288 \text{ T/m}^2$ - Peso barreras: p ba = 1.00 T/ml- Peso aceras:  $p \text{ ac} = 0.50 \text{ T/m}^2$ 

- Hormigón de formas (e = 5 cm valor medio): p h= 0.125 T/m²

#### ACCIONES PERMANENTES DE VALOR CONSTANTE (G):

#### ACCIONES DEBIDAS AL TERRENO

No intervienen en el diseño del tablero

# ACCIONES DEBIDAS AL ACORTAMIENTO DEL TABLERO POR RETRACCIÓN, FLUENCIA, EFECTO TÉRMICO DE VARIACIÓN UNIFORME DE TEMPERATURA

Se engloba en un valor total de 0.750 mm/m, los efectos del acortamiento por retracción y fluencia, junto con la variación uniforme de temperatura.

#### ACCIÓN VARIABLE (Q): SOBRECARGAS DE USO

#### **VERTICAL: TREN DE CARGAS**

A efectos de aplicación de esta Instrucción, se define como plataforma del tablero de un puente de carretera la superficie apta para el tráfico rodado (incluyendo, por tanto, todos los carriles de circulación, arcenes, bandas de rodadura y marcas viales) situada a nivel de calzada y comprendida entre los bordillos de las aceras laterales del tablero -si éstas existencuando tengan más de 150 mm de altura, o entre caras interiores de los pretiles del tablero, para el resto de los casos. A efectos de la aplicación de la componente vertical de la sobrecarga de uso sobre el tablero del puente, la plataforma, de ancho w, se dividirá en nl carriles virtuales, de anchura wl cada uno, con el criterio que se define en la tabla 4.1-a.

Tabla 4.1-a Definición de los carriles virtuales

| Anchura de la plataforma (w) | Número de carriles<br>virtuales ( <i>nl</i> ) | Anchura del carril<br>virtual ( <i>wl</i> ) | Anchura del área remanente |
|------------------------------|-----------------------------------------------|---------------------------------------------|----------------------------|
| w < 5,4 m                    | <i>n₁</i> = 1                                 | 3 m                                         | <i>w</i> − 3 m             |
| 5,4 m< <i>w</i> < 6 m        | n₁= 2                                         | <u>w</u><br>2                               | 0                          |
| w > 6 m                      | $n1 = ent\left(\frac{w}{3}\right)$            | 3 m                                         | w – 3 n <sub>1</sub>       |

En el caso de que la plataforma esté dividida en dos o más partes separadas por una mediana:

- Si en la mediana se dispone una barrera fija e infranqueable, cada parte de la plataforma (incluidos arcenes, marcas viales, etc.) se dividirá de forma independiente en carriles virtuales.
- Si en la mediana se dispone un elemento móvil o rebasable, se tratará toda la plataforma del puente, incluida la mediana, como un único elemento.

La ubicación y numeración de cada carril virtual se determinará conforme a los criterios que se exponen a continuación:

- Para la comprobación de cada estado límite, se considerarán cargados los carriles que sean desfavorables para el efecto en estudio. El carril que genere el efecto más desfavorable se denominará carril 1, el segundo más desfavorable se denominará carril 2, y así sucesivamente (figura 4.1-a)
- Se empleará una única numeración de carriles para todo el tablero, aunque la plataforma soporte dos o más calzadas separadas por barreras fijas y no rebasables. Así pues, para el cálculo del tablero sólo habrá un carril 1, un carril 2, etc.
- Cuando existan varias calzadas soportadas por tableros separados, cada uno de ellos tendrá una numeración de
  carriles independiente, a efectos de las comprobaciones de los estados límite del tablero así como de la
  subestructura, si ésta es independiente para cada tablero. Si dichos tableros están soportados por la misma
  subestructura, pilas o estribos, a efectos del cálculo de esos elementos, se considerará una numeración de
  carriles única para el conjunto de los tableros

ALVIPRE S.L. Página 4 de 39



Figura 4.1-a Ejemplo genérico de distribución de carriles virtuales

Se considerará la acción simultánea de las cargas siguientes:

- a) Uno o más vehículos pesados, según el número de carriles virtuales. Cada vehículo pesado estará constituido por dos ejes, siendo Q<sub>ik</sub> la carga de cada eje, indicada en la tabla 4.1-b., correspondiente al carril i. Se tendrán en cuenta los siguientes criterios:
  - En cada carril virtual se considerará la actuación de un único vehículo pesado de peso 2Qik.
  - La separación transversal entre ruedas del mismo eje será de 2,00 m. La distancia longitudinal entre ejes será de 1,20 m (ver figura 4.1-b).
  - Las dos ruedas de cada eje tendrán la misma carga, que será por tanto igual a 0,5Qik.
  - A efectos de las comprobaciones generales, se supondrá que cada vehículo pesado actúa centrado en el carril virtual (ver figura 4.1-b).
  - Para las comprobaciones locales, cada vehículo pesado se situará, transversalmente dentro de cada carril
    virtual, en la posición más desfavorable. Cuando se consideren dos vehículos pesados en carriles virtuales
    adyacentes, podrán aproximarse transversalmente, manteniendo una distancia entre ruedas mayor o igual que
    0,50 m (ver figura 4.1-c).
  - Para las comprobaciones locales, la carga puntual de cada rueda de un vehículo pesado se supondrá uniformemente repartida en una superficie de contacto cuadrada de 0,4 m x 0,4 m (ver figura 4.1-c). Se considerará que esta carga se reparte con una pendiente 1:1 (H:V), tanto a través del pavimento como a través de la losa del tablero, hasta el centro de dicha losa.

- b) Una sobrecarga uniforme de valor qik, según la tabla 4.1-b, con las consideraciones siguientes:
  - En el área remanente, se considerará la actuación de una sobrecarga uniforme de valor qrk, según la tabla 4.1-b.
  - La sobrecarga uniforme se extenderá, longitudinal y transversalmente, a todas las zonas donde su efecto resulte desfavorable para el elemento en estudio, incluso en aquellas ya ocupadas por algún vehículo pesado.

Tabla 4.1-b Valor característico de la sobrecarga de uso

| Situación                         | Vehículo pesado<br>2 <i>Q<sub>ik</sub></i> [kN] | Sobrecarga uniforme<br>$q_{ik}$ (ó $q_{rk}$ ) [kN/m²] |
|-----------------------------------|-------------------------------------------------|-------------------------------------------------------|
| Carril virtual 1                  | 2 x 300                                         | 9.0                                                   |
| Carril virtual 2                  | 2 x 200                                         | 2.5                                                   |
| Carril virtual 3                  | 2 x 100                                         | 2.5                                                   |
| Otros carriles virtuales          | 0.00                                            | 2.5                                                   |
| Área remanente (q <sub>rk</sub> ) | 0.00                                            | 2.5                                                   |



Figura 4.1-b Distribución de vehículos pesados y sobrecarga uniforme

c) En zonas de uso peatonal se dispondrá una sobrecarga vertical repartida igual a 5 KN/m2.

ALVIPRE S.L. Página 5 de 39

#### HORIZONTAL: FRENADO Y ARRANQUE

El frenado, arranque o cambio de velocidad de los vehículos, dará lugar a una fuerza horizontal uniformemente distribuida en la dirección longitudinal de la carretera soportada por el puente, y se supondrá aplicada al nivel de la superficie del pavimento. En caso de que la vía disponga de carriles de sentidos opuestos de circulación, se considerará como de sentido único si esta hipótesis resulta más desfavorable.

El valor característico de esta acción Qlk será igual a una fracción del valor de la carga característica vertical que se considere actuando sobre el carril virtual número 1, de acuerdo con la expresión:

$$Qlk = 0.6 \cdot 2Q1k + 0.1 q1k w1 L$$

Siendo L la distancia entre juntas contiguas, o longitud del puente si éstas no existieran, y el significado de las demás variables el definido en el apartado anterior.

Para el caso de carril virtual de 3 m de anchura y L>1,20 m, esta expresión queda como sigue:

$$Qlk = 360 + 2.7 L$$

El valor de Qlk estará limitado superior e inferiormente según lo indicado a continuación:

#### 180 kN QIk 900 kN

#### HORIZONTAL: CENTRÍFUGA

En puentes de planta curva, los vehículos generan una fuerza transversal centrífuga Qtk de valor:

$$Q_{tk} = 0.2 \times Q_v \qquad \text{sir < 200 m}$$

$$Q_{tk} = 40 \times \frac{Q_v}{r}$$
 si 200 m< r <1500 m

$$Q_{tk} = 0.00 \hspace{1cm} \text{si r} > \text{1500 m}$$

siendo:

 $\mathbf{Q}_{\mathrm{v}} = \sum \mathbf{Q}_{\mathrm{ik}}$  peso total de los vehículos pesados [kN]

**r** = radio del eje del tablero en planta [m]

La fuerza Qtk así definida se considerará como una fuerza puntual, en la superficie del pavimento, que actúa horizontalmente en dirección perpendicular al eje del tablero y en cualquier sección transversal del mismo. Además, en puentes curvos de radio menor de 1500 m, se tendrá en cuenta el efecto del derrape durante el frenado mediante una fuerza transversal Qtk, en la superficie del pavimento, igual al 25% de la fuerza de frenado o arranque Qlk, definida en el apartado anterior, que actúa simultáneamente con ella.

Dada la geometría de la estructura (tablero recto) la fuerza centrífuga es nula.

#### TREN DE CARGAS PARA LA COMPROBACIÓN DEL ESTADO LIMITE ÚLTIMO DE FATIGA

Para la comprobación del estado límite último de fatiga se considerarán las acciones variables repetidas producidas por la acción del tráfico que se prevé que actúen a lo largo de la vida útil del puente.

El efecto de estas cargas repetidas puede ser representado por el modelo de cargas para fatiga consistente en un vehículo de 4 ejes, de dos ruedas cada eje, que se representa en la figura 4.1-d. La carga en cada eje será de 120 kN y la superficie de contacto de cada rueda se tomará igual a un cuadrado de 0,40 x 0,40 m. La separación entre ejes y entre las ruedas de un mismo eje será la que se indica en la figura 4.1-d. A efectos de comprobación a fatiga no se considerará ninguna carga horizontal.



Figura 4.1-d Tren de cargas para la comprobación del estado límite de fatiga

Para el cálculo de las tensiones máximas y mínimas que produce el modelo de cargas de fatiga se considera la actuación de un sólo vehículo como el definido en el párrafo anterior. Este vehículo se supondrá centrado en el carril virtual 1 (el más desfavorable para el efecto estudiado)

El modelo de cargas definido incluye el coeficiente de impacto correspondiente a una superficie de rodadura de buena calidad (según ISO 8608). Para la comprobación de aquellos elementos estructurales que estén a una distancia menor de 6 m de una junta de calzada se tomará un factor de amplificación dinámico adicional de 1,3.

Alternativamente al vehículo definido anteriormente, para la comprobación del estado límite de fatiga, se podrán emplear datos reales de tráfico, ajustados o extrapolados, en su caso, por métodos estadísticos apropiados, previa autorización de la Dirección General de Carreteras. Estos datos de tráfico deberán ser multiplicados por el correspondiente factor de amplificación dinámico, que tendrá en cuenta entre otros aspectos la regularidad superficial del pavimento.

ALVIPRE S.L. Página 6 de 39

#### EMPUJE SOBRE BARANDILLAS

Se toma una fuerza horizontal perpendicular al elmento superior de la barandilla igual a 1.5 kN/ml.

#### ACCIONES CLIMÁTICAS

#### VIENTO

Para la obtención del valor de esta acción se emplea la formulación proporcionada por la IAP.

## Velocidades de básicas del viento



Mapa de isotacas para la obtención de la velocidad básica fundamental del viento vb,0

A efectos de cálculo se considerarán los cinco tipos de entorno siguientes:

- Tipo 0: mar o zona costera expuesta al mar abierto.
- Tipo I: lagos o áreas planas y horizontales con vegetación despreciable y sin obstáculos.
- Tipo II: zona rural con vegetación baja y obstáculos aislados, (árboles, construcciones pequeñas, etc), con separaciones de al menos 20 veces la altura de los obstáculos.
- Tipo III: zona suburbana, forestal o industrial con construcciones y obstáculos aislados con una separación máxima de 20 veces la altura de los obstáculos.
- Tipo IV: zona urbana en la que al menos el 15% de la superficie esté edificada y la altura media de los edificios exceda de 15 m.

## CÁLCULO SIMPLIFICADO DEL EMPUJE EN TABLEROS Y PILAS

TABLA 4.2-e EMPUJES UNITARIOS EN PUENTES CON ALTURA DE PILA H<sub>max</sub><=10 m

| TIPO DE<br>ENTORNO  | EMPUJE S                  | OBRE TABLE                 | RO [KWm²]                 | EMPUJE                    | SOBRE PILAS               | S [KWm²]                  |
|---------------------|---------------------------|----------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| (APARTADO<br>4.2.2) | V <sub>b,0</sub> = 26 m/s | $V_{b,0} = 27 \text{ m/s}$ | V <sub>b,0</sub> = 29 m/s | V <sub>b,0</sub> = 26 m/s | V <sub>b,0</sub> = 27 m/s | V <sub>b,0</sub> = 29 m/s |
| 0                   | 2.56                      | 2.78                       | 3.21                      | 3.16                      | 3.40                      | 3.93                      |
| - 1                 | 2.29                      | 2.47                       | 2.85                      | 2.79                      | 3.01                      | 3.47                      |
| II                  | 1.94                      | 2.09                       | 2.41                      | 2.37                      | 2.56                      | 2.95                      |
| III                 | 1.47                      | 1.58                       | 1.83                      | 1.80                      | 1.94                      | 2.23                      |
| IV                  | 0.93                      | 1.00                       | 1.15                      | 1.14                      | 1.23                      | 1.42                      |
|                     |                           |                            |                           |                           |                           |                           |

TABLA 4.2-f EMPUJES UNITARIOS EN PUENTES CON ALTURA DE PILA H<sub>max</sub>=20 m

| TIPO DE<br>ENTORNO  | I EMPUJE SOBRE TABLERO (KN/m²) I |                            |                           |                           | EMPWE SOBRE PILAS [KWm²]   |                           |  |  |
|---------------------|----------------------------------|----------------------------|---------------------------|---------------------------|----------------------------|---------------------------|--|--|
| (APARTADO<br>4.2.2) | $V_{b,0} = 26 \text{ m/s}$       | $V_{b,0} = 27 \text{ m/s}$ | V <sub>b,0</sub> = 29 m/s | V <sub>b,0</sub> = 26 m/s | $V_{b,0} = 27 \text{ m/s}$ | V <sub>b,0</sub> = 29 m/s |  |  |
| 0                   | 2.93                             | 3.16                       | 3.65                      | 3.58                      | 3.86                       | 4.45                      |  |  |
| 1                   | 2.64                             | 2.85                       | 3.29                      | 3.23                      | 3.48                       | 4.02                      |  |  |
| II                  | 2.31                             | 2.49                       | 2.88                      | 2.83                      | 3.05                       | 3.52                      |  |  |
| III                 | 1.88                             | 2.03                       | 2.34                      | 2.29                      | 2.47                       | 2.85                      |  |  |
| IV                  | 1.30                             | 1.40                       | 1.62                      | 1.60                      | 1.72                       | 1.99                      |  |  |

 $V_{ref} = 27 \text{ m/s}$ 

Tipo de entorno II.

Presión del viento Tablero= 0.209 T/m<sup>2</sup>.

#### NIEVE

Tal y como indica la IAP-11 no es necesario tener en cuenta esta acción dado que se ha considerado la sobrecarga repartida de uso tal y como se explica en el apartado tren de cargas.

ALVIPRE S.L. Página 7 de 39

## **ACCIONES ACCIDENTALES (A)**

#### **IMPACTO DE VEHÍCULOS SOBRE BARRERAS**

El sistema de contención elegido y sus armaduras de refuerzo correspondientes, deben estar diseñadas para este tipo de solicitación.

#### **ACCIONES SÍSMICAS**

De acuerdo con la normativa de sismicidad (NCSP-07), la aceleración básica de la zona de emplazamiento de esta estructura es inferior a 0.04g por lo cual no es preciso considerar las acciones accidentales de sismo.



## 1.4. DURABILIDAD

La durabilidad de la estructura es la capacidad que presenta para soportar, durante la vida útil para la que ha sido proyectada, las condiciones físicas y químicas a las que está expuesta, y que podría provocar su degradación como consecuencia de efectos diferentes a las cargas y solicitaciones consideradas en el análisis estructural.

Por ello se establecen unos criterios específicos de acuerdo al ambiente al que va estar sometida la estructura. Con carácter genérico para este estudio se establecen los siguientes ambientes:

Vigas: IIb+HPrelosas: IIb+HLosa de tablero y riostra: IIb+H

En cuanto a la vida útil de la estructura, debido a que se trata de un puente de carretera, para los nuevos elementos proyectados se establece un tiempo de 100 años, de acuerdo a los requerimientos de durabilidad exigidos por la EHE y la IAP-11

Con estos criterios se establecen los siguientes recubrimientos.

## RECUBRIMIENTOS SEGÚN EHE-08:

| Elemento estructural | Tipo de ambiente | Tipo de cemento | Recubrimiento<br>mínimo (mm) | Margen de recubrimiento (mm) | Recubrimiento nominal (mm) | Recubrimiento adoptado (mm) |
|----------------------|------------------|-----------------|------------------------------|------------------------------|----------------------------|-----------------------------|
| Vigas prefabricadas  | IIb+H            | CEMI            | 25                           | 0                            | 25                         | 25                          |
| Prelosas             | IIb+H            | CEMI            | 25                           | 0                            | 25                         | 25                          |
| Losa y riostra       | IIb+H            | CEMI            | 35                           | 5                            | 40                         | 40                          |

ALVIPRE S.L. Página 8 de 39

## 1.5. CARACTERÍSTICAS DE LOS MATERIALES EMPLEADOS

Las características de los materiales que se consideran en el proyecto son las detalladas a continuación:

#### HORMIGONES:

- Prefabricados:

- Vigas: HP-50/ AC / 12 / IIb+H

- Prelosas: HA-40/ AC / 12 / IIb+H

- "In situ":

HA-35/B/20/IIb+H - Losa y riostra:

#### **ACEROS**

- Aceros:

- Elementos prefabricados:

- Acero pasivo: B 500 S

Cordones Y 1860 S7 - Acero activo:

- Elementos "in situ":

- Acero pasivo: B 500 S

## 1.6. COEFICIENTES PARCIALES PARA COMPROBACIONES RESISTENTES

TABLA 6.2-b coeficientes parciales para las acciones  $\gamma_r$  (para las comprobaciones resistentes)

TABLA 6.2-c COEFICIENTES PARCIALES PARA LAS ACCIONES  $\gamma_F$  (ELS)

| ACCIÓN -                                 |                                  | EI        | ЕСТО                  | ACCIÓN                                                |                                  | EFECTO    |              |
|------------------------------------------|----------------------------------|-----------|-----------------------|-------------------------------------------------------|----------------------------------|-----------|--------------|
|                                          |                                  | FAVORABLE | DESFAVORABLE          |                                                       |                                  | FAVORABLE | DESFAVORABLE |
| Permanente de valor cons-                | Peso propio                      | 1,0       | 1,35                  | Permanente de valor                                   | Peso propio                      | 1,0       | 1,0          |
| tante (G)                                | Carga muerta                     | 1,0       | 1,35                  | constante (G)                                         | Carga muerta                     | 1,0       | 1,0          |
|                                          | Pretensado P <sub>1</sub>        | 1,0       | 1,0 / 1,2(1) / 1,3(2) |                                                       | Pretensado P <sub>1</sub>        | 0,9(1)    | 1,1(1)       |
|                                          | Pretensado P <sub>2</sub>        | 1,0       | 1,35                  |                                                       | Pretensado P <sub>2</sub>        | 1,0       | 1,0          |
|                                          | Otras presolicitaciones          | 1,0       | 1,0                   |                                                       | Otres presolicitaciones          | 1,0       | 1,0          |
| Permanente de valor<br>no constante (G*) | Reológicas                       | 1,0       | 1,35                  | Permanente de valor<br>no constante (G <sup>*</sup> ) | Reológicas                       | 1,0       | 1,0          |
|                                          | Empuje del terreno               | 1,0       | 1,5                   |                                                       | Empuje del terreno               | 1,0       | 1,0          |
|                                          | Asientos                         | 0         | 1,2 / 1,35(3)         |                                                       | Asientos                         | 0         | 1,0          |
|                                          | Rozamiento de apoyos deslizantes | 1,0       | 1,35                  |                                                       | Rozamiento de apoyos deslizantes | 1,0       | 1,0          |
|                                          | Sobrecarga de uso                | 0         | 1,35                  |                                                       | Sobrecarga de uso                | 0         | 1,0          |
|                                          | Sobrecarga de uso en terraplenes | 0         | 1,5                   |                                                       | Sobrecarga de uso en terraplenes | 0         | 1,0          |
| Variable (0)                             | Acciones climáticas              | 0         | 1,5                   | Variable ( <i>Q</i> )                                 | Acciones climáticas              | 0         | 1,0          |
| variable (U/                             | Empuje hidrostático              | 0         | 1,5                   | variable ( <i>Q</i> )                                 | Empuje hidrostático              | 0         | 1,0          |
|                                          | Empuje hidrodinámico             | 0         | 1,5                   |                                                       | Empuje hidrodinámico             | 0         | 1,0          |
|                                          | Sobrecargas de construcción      | 0         | 1,35                  |                                                       | Sobrecargas de construcción      | 0         | 1,0          |

El coeficiente γ<sub>σ</sub> = 1,2 será de aplicación al pretensado P, en el caso de verificaciones locales tales como la transmisión o de la fuerza de pretensado al hormigón en zonas de anclajes, cuando se toma como valor de la acción el que corresponde a la carga máxima (tensión de rotura) del elemento a tesar.
 El coeficiente γ<sub>σ</sub> = 1,3 se aplicará al pretensado P, en el caso de estructuras pretesas, los coeficientes parciales son 0,95 y 1,05 para efecto favorable y desfavorable, respectivamente.
 El coeficiente γ<sub>σ</sub> = 1,3 se aplicará al pretensado P, en el caso de estructuras pretesas, los coeficientes parciales son 0,95 y 1,05 para efecto favorable y desfavorable, respectivamente.
 El coeficiente γ<sub>σ</sub> = 1,3 se aplicará al pretensado P, en el caso de vetructuras pretesas, los coeficientes parciales son 0,95 y 1,05 para efecto favorable y desfavorable, respectivamente.
 El coeficiente γ<sub>σ</sub> = 1,3 corresponde a un cálculo elastocomo desta pretensado se tomarán los coeficientes que la EHE-08 recoge para el caso de estructuras pretesas, los coeficientes parciales son 0,95 y 1,05 para efecto favorable y desfavorable, respectivamente.

Las hipótesis de carga tomadas en consideración se forman combinando los valores de cálculo de las acciones cuya actuación pueda ser simultánea según los criterios prescritos la IAP, tanto para Estados Límite Últimos, en situaciones persistentes o transitorias y accidentales, como para Estados Límite de Servicio

ALVIPRE S.L. Página 9 de 39

## 1.7. COMBINACIÓN DE ACCIONES

#### ESTADO LÍMITE ÚLTIMO

Situaciones Persistentes o Transitorias:

$$\sum_{j \ge 1} \gamma_{G,j} \cdot G_{K,j} + \sum_{i \ge 1} \gamma_{G^*,i} \cdot G^*_{K,i} + \gamma_P \cdot P_K + \gamma_{Q,1} \cdot Q_{K,1} + \sum_{i > 1} \gamma_{Q,i} \cdot \Psi_{0,i} \cdot Q_{K,i}$$

Dónde:

G<sub>K,j</sub>: Valor representativo de cada acción permanente

G\*K,j: Valor representativo de cada acción permanente de valor no constante.

P<sub>K</sub>: Valor representativo de la acción del pretensado.

Qκ,i: Valor representativo (valor característico) de la acción variable dominante.

ψο,i Valores representativos (de combinación) de las acciones variables concomitantes con la principal

Si la acción de sobrecarga es considerada como dominante, se tomará ésta con su valor representativo y la acción del viento con su valor reducido (reducción del 50%), aplicándose además los coeficientes ψi pertinentes.. Si la acción del viento es considerada como dominante, se tomará ésta con su valor representativo y no se considerará la actuación simultanea de la acción de la sobrecarga de uso.

#### Situaciones Accidentales sin Sismo:

$$\sum_{j \geq 1} \gamma_{G,j} \cdot G_{K,j} + \sum_{i \geq 1} \gamma_{G^*,i} \cdot G^*_{K,i} + \gamma_P \cdot P_K + \gamma_{Q,1} \cdot \Psi_{1,1} \cdot Q_{K,1} + \sum_{i \geq 1} \gamma_{Q,i} \cdot \Psi_{2,i} \cdot Q_{K,i} + \gamma_A \cdot A_K$$

Dónde:

G<sub>K,j</sub>: Valor representativo de cada acción permanente

G\*K,j: Valor representativo de cada acción permanente de valor no constante.

Pk: Valor representativo de la acción del pretensado.

 $\psi_{1,i}$  Q<sub>K,i</sub>: Valor frecuente de la acción variable dominante.

ψ<sub>2,i</sub>. Valores cuasipermanentes de las acciones variables concomitantes con la principal

A<sub>k</sub>: Valor representativo (valor característico) de la acción accidental

#### ESTADO LÍMITE DE SERVICIO

Según EHE:

- Combinación Característica.(poco probable o rara)

$$\sum_{j \geq 1} G_{K,j} + \sum_{i \geq 1} \gamma_{G^*,i} \cdot G^*_{K,i} + \gamma_P \cdot P_K + \gamma_{Q,1} \cdot Q_{K,1} + \sum_{i > 1} \gamma_{Q,i} \cdot \Psi_{0,i} \cdot Q_{K,i}$$

Combinación Frecuente

$$\sum_{i \ge 1} G_{K,j} + \sum_{i \ge 1} \gamma_{G^*,i} \cdot G^*_{K,i} + \gamma_P \cdot P_K + \gamma_{Q,1} \cdot \Psi_{1,1} \cdot Q_{K,1} + \sum_{i > 1} \gamma_{Q,i} \cdot \Psi_{2,i} \cdot Q_{K,i}$$

Combinación Cuasipermanente

$$\sum_{j\geq 1} G_{K,j} + \sum_{i\geq 1} \gamma_{G^*,i} \cdot G^*_{K,i} + \gamma_P \cdot P_K + \sum_{i\geq 1} \gamma_{Q,i} \cdot \Psi_{2,i} \cdot Q_{K,i}$$

Tal y como indica la Tabla 6.1-a de la IAP-11 los valores de los coeficientes de combinación y son:

TABLA 6.1-a FACTORES DE SIMULTANEIDAD ψ

|                             | ACCIÓN                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\psi_0$ | $\psi_1$ | $\psi_2$ |
|-----------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
|                             |                            | Vehículos pesados                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,75     | 0,75     | 0        |
|                             | gr 1, Cargas verticales    | Sobrecarga uniforme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,4      | 0,4      | 0 / 0,2  |
|                             |                            | Carga en aceras                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,4      | 0,4      | 0        |
| Sobrecarga<br>de uso        | gr 2, Fuerzas horizontales |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0        | 0        | 0        |
|                             | gr 3, Peatones             | ng maa an polibaad na ri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0        | 0        | 0        |
|                             | gr 4, Aglomeraciones       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0        | 0        | 0        |
|                             | Sobrecarga de uso en pas   | sarelas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,4      | 0,4      | 0        |
| les partificies .           | a-Demokiger saler axis     | En situación persistente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,6      | 0,2      | 0        |
| Viento                      | F <sub>wk</sub>            | En construcción                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,8      | 0        | 0        |
|                             |                            | En pasarelas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,3      | 0,2      | 0        |
| Acción térmica              | $T_k$                      | n and a second s | 0,6      | 0,6      | 0,5      |
| Nieve                       | Q <sub>Sn,k</sub>          | En construcción                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,8      | 0        | 0        |
| Assida dal saus             | W                          | Empuje hidrostático                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,0      | 1,0      | 1,0      |
| Acción del agua             | W <sub>k</sub>             | Empuje hidrodinámico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,0      | 1,0      | 1,0      |
| Sobrecargas de construcción | $Q_c$                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,0      | 0        | 1,0      |

<sup>(1)</sup> El factor de simultaneidad ψ<sub>2</sub> correspondiente a la sobrecarga uniforme se tomará igual a 0, salvo en el caso de la combinación de acciones en situación sísmica (apartado 6.3.1.3), para la cual se tomará igual a 0,2.

ALVIPRE S.L. Página 10 de 39

## 1.8. DIMENSIONAMIENTO DE ELEMENTOS DE HORMIGÓN

Para el dimensionamiento de los elementos de hormigón pretensado y armado se ha analizado su comportamiento de acuerdo a la vigente norma EHE-08. Como se puede observar en los cálculos, se ha realizado el dimensionado atendiendo al comportamiento de las vigas frente a diversas solicitaciones que marca la vigente normativa. El tipo de pretensado utilizado es interior de armaduras pretesas y adherente.

#### 1.9. PROGRAMAS INFORMÁTICOS UTILIZADOS

Para la realización de esta memoria de cálculos se han empleado diversos programas de modelización y diseño, tanto de elaboración propia como software comercial de uso extendido en el campo de la ingeniería civil.

El programa de cálculo matricial "Emparrillado" y las hojas de cálculo, han sido utilizados para la obtención de los esfuerzos de vigas y losa y armado de las mismas. En los apartados siguientes se incluye una breve explicación de la nomenclatura utilizada y del funcionamiento de dicho programa.

Diversas hojas de cálculo en entorno Excel han sido utilizadas para el estudio de distintas cuestiones de cálculo.

#### 1.10. MANTENIMIENTO DE LA ESTRUCTURA

## 1.10.1. **O**BJETO

El objeto del presente punto es especificar recomendaciones para el mantenimiento de la estructura que se diseña en los siguientes apartados.

Todas las observaciones apuntadas en el presente documento quedan supeditadas a los criterios generales establecidos por el ente que realiza la explotación y mantenimiento de la estructura, los cuales prevalecen o complementan a los indicados. En este apartado simplemente se subrayan los aspectos más importantes, para los que conviene prestar atención durante las labores de mantenimiento.

#### 1.10.2. INTRODUCCIÓN

La finalidad del mantenimiento es conservar todas las condiciones de servicio de la estructura en el mejor nivel posible a lo largo de su fase de servicio. De la misma forma, las inspecciones periódicas según establezcan los criterios de control de la propiedad contribuyen a asegurar una vida útil acorde con lo que las exigencias de durabilidad exigen para este tipo de estructuras. (Según la actual EHE-08 el periodo exigido para la vida útil de este tipo de estructuras es de 100 años)

En líneas generales, las causas y razones más comunes por las que es necesario el mantenimiento de un puente son:

- Errores en el proyecto, errores durante la construcción, vigilancia, mantenimiento o reparaciones inexistentes o inadecuadas.
- Materiales inadecuados o deterioro y degradación de los mismos.
- Variación con el tiempo de las condiciones de trafico (cargas y velocidades).
- Acciones naturales de tipo físico, mecánico o químico.
- Acciones accidentales: terremotos, avenidas, impacto de vehículos con elementos estructurales del puente.

Además del mantenimiento de los elementos estructurales, deben de cuidarse aquellos elementos sobre los que se realiza el tráfico: pavimento, juntas de dilatación y sistemas de contención. De ahora en adelante, se hará referencia exclusivamente a los elementos estructurales, objeto del presente documento.

Al seguirse los requerimientos en durabilidad exigidos por normativa (recubrimientos de armaduras, tipos de cemento, resistencia de hormigones según el ambiente al que están expuestos, etc.) es esperable una buena conservación de la estructura. Así mismo, las cargas con las que se han dimensionado el puente, marcadas por la instrucción, vienen avaladas por años de práctica en los que no se han observado patologías.

De aquí en adelante no se hará más alusión a los fallos que se derivarían como consecuencia de la puesta en obra de materiales defectuosos o incluso de los posibles errores en los que se podría haber incurrido en el proyecto; se entiende además que los controles de calidad aplicados tanto por la Obra, la Asistencia Técnica o incluso la Dirección de Obra, unido al cálculo por parte del proyectista de acuerdo a la normativa vigente, y, por tanto, aplicando los coeficientes de

ALVIPRE S.L. Página 11 de 39

seguridad adecuados en cada caso, objeto también por otro lado de un control exterior por parte de la asistencia, determinan una probabilidad de fallo por estas circunstancias bastante escasa.

En primer lugar, hay que recordar que las inspecciones deberán realizarse inmediatamente antes de la puesta en servicio de la estructura y tras la prueba de carga, y posteriormente cada 15 años como máximo, así como tras un hecho extraordinario, tal como un impacto de un vehículo contra una pila o tras observarse desplazamientos o daños en un elemento de la estructura.

Adicionalmente a lo establecido en el párrafo anterior, estimamos recomendable una cierta vigilancia mediante inspección visual de la estructura durante los primeros meses de su puesta en servicio.

#### 1.10.3. ACCIONES DE MANTENIMIENTO

Se citan a continuación algunos de los principales problemas que pudieran afectar a las estructuras en el caso de darse algunas de las circunstancias enumeradas en el apartado anterior.

- La presencia de agua por una inadecuada evacuación de la misma da lugar a problemas muy diversos, ya sea por la propia acción directa del agua (erosiones, socavaciones, humedad, corrosión...) como por su acción como vehículo de otros agentes agresivos. La humedad también puede originar desperfectos y daños en las zonas de apoyo y juntas.
- Posibles defectos de nivelación en las mesetas para los aparatos de apoyo que podrían originar un contacto defectuoso entre el tablero y los apoyos, derivando en una cierta tendencia a "escupir" los apoyos de neopreno de su posición teórica.
- La existencia de fisuras de apertura no controlada (por encima de la normativa) podría acelerar los procesos de corrosión en armaduras y, por tanto, acortar la vida útil de la estructura.
- Comportamiento inesperado de los elementos de cimentación derivados de la naturaleza real del terreno, con la consecuencia de asientos excesivos o desplazamientos de los mismos.

Se dan a continuación algunos criterios generales para poder desarrollar las labores de mantenimiento cuando correspondan, los cuales deberán ser contrastados con los especificados por el ente que realice la explotación y conservación de la obra, según sus bases generales de mantenimiento de estructuras, si las hubiere, así como para establecer una periodicidad adecuada. Estos criterios están dotados para prevenir o corregir consecuencias de las causas citadas anteriormente.

- Aspecto visual general de las estructuras, con ausencia de deformaciones superiores a los límites impuestos por la normativa vigente.
- Inspección del estado de conservación de las juntas de dilatación en las estructuras, así como la comprobación de que los movimientos de las mismas no superan a los especificados en el proyecto.

La máxima dilatación del tablero se alcanzará en los veranos de los primeros años de funcionamiento, mientras que las máximas contracciones se darán cuando, a las contracciones térmicas en invierno, se les sumen las deformaciones finales de retracción y la fluencia que se alcanzarán con el paso de los años. Dependiendo del estado de la junta de dilatación, será necesario limpiarla, rehabilitarla o incluso sustituirla.

- Verificación del adecuado funcionamiento de los dispositivos de drenaje y comprobación de la ausencia de acumulaciones de agua o humedades importantes en las estructuras (limpieza de los drenajes y sumideros, y la comprobación de su funcionamiento). Es importante verificar que el agua evacuada del tablero caiga libremente o sea evacuada por un colector fuera del entorno de la estructura evitando su contacto y circulación por las superficies de hormigón.
- Adicionalmente, deberá verificarse que tampoco se producen acumulaciones de agua en los rellenos que pudieran ocasionar un empuje no esperado en los diferentes elementos estructurales. Por otro lado, si por lluvia se observan erosiones en los terraplenes de acceso, se deberá proceder a realizar pequeños rellenos y protecciones de la zona (bordillos y bajantes adicionales).
- Inspecciones periódicas visuales de los aparatos de apoyo (cuya cadencia estará establecida por las bases generales de mantenimiento de la propiedad o, en su defecto, por la Instrucción para Inspecciones de Puentes). Se deberá prestar atención especialmente a su integridad, pero también al estado de conservación de las mesetas de apoyo y de la existencia de un contacto adecuado entre apoyos y estructura. El resultado de las mismas, podrá derivar en la necesidad de proceder a labores de reparación o incluso de sustitución de apoyos (mediante el uso de gatos y apeos provisionales, y con la redacción en tal caso un protocolo para su realización en colaboración con la empresa suministradora). Los dispositivos de apoyo podrían requerir además de un programa de limpieza a intervalos regulares y protegerlos con pintura o material galvanizado. Será necesario especialmente inspeccionar los daños sufridos tras un hipotético terremoto.
- Inspecciones periódicas (de la misma forma que antes), también con carácter visual y, si se considera necesario, con aparatos de medida, del aspecto general de las estructuras en lo que se refiere a los materiales y a la posible aparición de fisuras con apertura superior a lo estipulado en la normativa vigente. El resultado de las mismas, puede derivar en la necesidad de realizar campañas de inyecciones o incluso trabajos de refuerzo específicos, que deberán ser estudiados en cada caso.
- Observación del estado general de las cimentaciones (en aquellas zonas que puedan ser accesibles) y verificación de la ausencia de asientos o movimientos por encima de los esperados.
- La acción accidental de impactos de vehículos sobre los sistemas de contención, aunque esté contemplada en el proyecto, requerirá de una inspección posterior en caso de producirse. Si es necesario se elaborará un protocolo de reparación si las consecuencias de esta posible acción accidental así lo requieren.

Todas las operaciones de mantenimiento descritas se refieren sólo a los elementos estructurales; como se ha indicado al principio. Otro tipo de mantenimiento, indispensable para el buen servicio de los puentes, comprende acciones varias la comprobación de los anclajes de barandillas, canalizaciones, señalización y sustitución de la capa de rodadura. Este mantenimiento se considera que se llevará a cabo de forma rutinaria por los equipos encargados del mantenimiento ordinario de las vías y de acuerdo a las bases establecidas para la conservación de la plataforma, pero no son relevantes para la seguridad estructural de la obra de paso.

ALVIPRE S.L. Página 12 de 39

## 2. <u>DESCRIPCION DEL PROGRAMA EMPARRILLADOS</u>

Los cálculos del modelo de emparrillado, que se ha utilizado en la simulación del comportamiento estructural del tablero objeto del presente anejo de cálculos, se han desarrollado mediante el programa "Emparrillado".

Dicho programa discretiza el tablero en nudos y barras correspondiendo los elementos longitudinales con las almas de las vigas y con dos nervios extremos longitudinales, que fijan la anchura total del tablero. Las barras transversales idealizan la losa superior o la combinación viga-losa, en el caso de vigas con dos almas.

Las cargas se general automáticamente:

- Peso propio de viga y losa: como cargas longitudinales sobre las vigas y una respuesta de vigas independientes para la obtención de esfuerzos.
- Cargas permanentes repartidas: se introducen como cargas lineales en las barras transversales, utilizando el modelo de emparrillado para la obtención de los esfuerzos derivados.
- Carga permanente de barrera: como una carga longitudinal en los nervios nominales extremos, resolviendo el modelo de emparrillado.
- Sobrecarga repartida: análoga a las cargas permanentes repartidas.
- Sobrecarga puntual de tráfico: genera automáticamente el paseo del carro de la instrucción, tanto longitudinalmente como transversalmente, permitiendo así la obtención de envolventes.

La resolución del modelo mediante el cálculo matricial arroja las envolventes necesarias en el dimensionamiento de: las vigas, losa y aparatos de apoyo.

## 3. CALCULO DEL TABLERO

## 3.1. MODELO EMPARRILLADO VANO 1

#### 3.1.1. DATOS DE ENTRADA

#### Datos de la Estructura

| Luz de cálculo (m)                | : | 63.310   |
|-----------------------------------|---|----------|
| Ancho (m)                         | : | 12.200   |
| Esviaje (g)                       |   | 51.170   |
| Esviaje 2 (g)                     |   | 44.700   |
| Radio                             | : | -624.800 |
| Dist. Eje Viga a Ext. Losa (m)    |   | 6.100    |
| Ancho de las aceras (m)           | : | 1.600    |
| Dist. Eje Barrera a Ext. Losa (m) | : | 1.300    |
| Espesor de la losa (m)            |   | 0.353    |

#### Datos de las Vigas

| Viga | Tipo        | Canto (m) | Area<br>(m²) | Peso<br>(t/m) | Va (m) | Inercia<br>(m4) |
|------|-------------|-----------|--------------|---------------|--------|-----------------|
| 1    | CJ38-110-25 | 1.100     | 1.552550     | 3.7694        | 0.7668 | 0.169059        |

ALVIPRE S.L. Página 13 de 39

## Acciones sobre estructura

| Peso pavimento (t/m²) : 0.3  Coeficiente valor inferior : 1.4  Coeficiente valor superior : 1.5  Carga uniforme (t/m²) : 0.3  Peso Aceras (t/m²) : 0.3  Peso Barrera (t/m) : 1.4 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coeficiente valor superior : 1.3  Carga uniforme (t/m²) : 0.3  Peso Aceras (t/m²) : 0.5                                                                                          |
| Carga uniforme (t/m²) : 0.1 Peso Aceras (t/m²) : 0.5                                                                                                                             |
| Peso Aceras (t/m²) : 0.5                                                                                                                                                         |
| ,                                                                                                                                                                                |
| Peso Barrera (t/m) : 1.                                                                                                                                                          |
|                                                                                                                                                                                  |
| Sobrecarga uso tipo   :   Eurocódigo                                                                                                                                             |
| Número de carriles : 3.                                                                                                                                                          |
| Ancho carril : 3.                                                                                                                                                                |
| Distancia acera - carril inferior (m) : 0.0                                                                                                                                      |
| Distancia acera - carril superior (m) : 0.0                                                                                                                                      |
| Peso total Tandem (t) : 20.                                                                                                                                                      |
| Distancia de la rueda a la acera (m) : 0.                                                                                                                                        |
| Carga lineal carril (t/m) : 0.3                                                                                                                                                  |
| Sobrecarga uniforme en aceras $(t/m^2)$ : 0.                                                                                                                                     |
| Coeficiente tandem carril 1 : 3.0                                                                                                                                                |
| Coeficiente tandem carril 2 : 2.0                                                                                                                                                |
| Coeficiente tandem carril 3 : 1.                                                                                                                                                 |
| Coeficiente tandem resto carriles : 0.0                                                                                                                                          |
| Coeficiente S.C. Uniforme carril 1 : 9.0                                                                                                                                         |
| Coeficiente S.C. Uniforme carril 2 : 2.                                                                                                                                          |
| Coeficiente S.C. Uniforme carril 3 : 2.                                                                                                                                          |
| Coeficiente S.C. Uniforme resto carriles : 2.                                                                                                                                    |
| Gradiente térmico Positivo (°C) : 10.                                                                                                                                            |
| Gradiente térmico Negativo (°C) : -5.                                                                                                                                            |
| Acciones reológicas (%) : 20.                                                                                                                                                    |

ALVIPRE S.L. Página 14 de 39

## 3.1.2. CROQUIS DEL EMPARRILLADO



Nudos de la estructura

ALVIPRE S.L. Página 15 de 39



Barras de la estructura

ALVIPRE S.L. Página 16 de 39



Tramos de vigas

ALVIPRE S.L. Página 17 de 39

### 3.1.3. DATOS DEL EMPARRILLADO

### Datos del Emparrillado

### Datos de Nudos

| Nudo | X (m)  | Y (m)  |
|------|--------|--------|
| 1    | 0.000  | 0.810  |
| 2    | 0.703  | 1.481  |
| 3    | 3.884  | 0.625  |
| 4    | 4.012  | 4.642  |
| 5    | 4.596  | 5.200  |
| 6    | 6.126  | 6.662  |
| 7    | 7.709  | 8.174  |
| 8    | 7.978  | 0.456  |
| 9    | 8.130  | 4.448  |
| 10   | 8.240  | 8.681  |
| 11   | 11.205 | 11.513 |
| 12   | 11.864 | 0.320  |
| 13   | 11.991 | 4.313  |
| 14   | 12.125 | 8.521  |
| 15   | 12.253 | 12.514 |
| 16   | 13.969 | 0.256  |
| 17   | 14.082 | 4.250  |
| 18   | 14.202 | 8.458  |
| 19   | 14.316 | 12.451 |
| 20   | 16.073 | 0.200  |
| 21   | 16.174 | 4.194  |
| 22   | 16.280 | 8.402  |
| 23   | 16.380 | 12.396 |
| 24   | 18.178 | 0.150  |
| 25   | 18.265 | 4.144  |
| 26   | 18.357 | 8.353  |
| 27   | 18.444 | 12.347 |
| 28   | 20.283 | 0.108  |
| 29   | 20.357 | 4.102  |
| 30   | 20.435 | 8.311  |
| 31   | 20.508 | 12.306 |
| 32   | 22.388 | 0.072  |
| 33   | 22.448 | 4.067  |
| 34   | 22.512 | 8.277  |
| 35   | 22.573 | 12.271 |
| 36   | 24.493 | 0.044  |
| 37   | 24.540 | 4.039  |
| 38   | 24.550 | 4.874  |
| 39   | 24.590 | 8.249  |
| 40   | 24.637 | 12.243 |
| 41   | 25.831 | 0.030  |
| 42   | 25.870 | 4.024  |

| Nudo | X (m)  | Y (m)  |
|------|--------|--------|
| 43   | 25.911 | 8.234  |
| 44   | 25.949 | 12.229 |
| 45   | 27.169 | 0.018  |
| 46   | 27.199 | 4.013  |
| 47   | 27.225 | 7.448  |
| 48   | 27.231 | 8.223  |
| 49   | 27.261 | 12.218 |
| 50   | 28.088 | 0.012  |
| 51   | 28.112 | 4.007  |
| 52   | 28.138 | 8.217  |
| 53   | 28.162 | 12.212 |
| 54   | 29.007 | 0.007  |
| 55   | 29.025 | 4.002  |
| 56   | 29.045 | 8.212  |
| 57   | 29.063 | 12.207 |
| 58   | 30.895 | 0.001  |
| 59   | 30.901 | 3.996  |
| 60   | 30.909 | 8.206  |
| 61   | 30.915 | 12.201 |
| 62   | 32.783 | 0.001  |
| 63   | 32.778 | 3.996  |
| 64   | 32.772 | 8.206  |
| 65   | 32.767 | 12.201 |
| 66   | 34.671 | 0.006  |
| 67   | 34.654 | 4.001  |
| 68   | 34.636 | 8.211  |
| 69   | 34.619 | 12.206 |
| 70   | 36.560 | 0.017  |
| 71   | 36.530 | 4.012  |
| 72   | 36.500 | 8.222  |
| 73   | 36.470 | 12.217 |
| 74   | 38.448 | 0.033  |
| 75   | 38.407 | 4.028  |
| 76   | 38.363 | 8.238  |
| 77   |        | 12.233 |
|      | 38.322 |        |
| 78   | 40.336 | 0.056  |
| 79   |        | 4.050  |
| 80   | 40.227 | 8.260  |
| 81   |        | 12.255 |
| 82   | 42.224 | 0.084  |
| 83   |        | 4.078  |
| 84   | 42.090 | 8.288  |
| 85   | 42.025 | 12.282 |
| 86   | 44.112 | 0.117  |
| 87   | 44.035 | 4.111  |
| 88   | 43.954 | 8.321  |
| 89   | 43.877 | 12.315 |
| 90   | 46.000 | 0.156  |

ALVIPRE S.L. Página 18 de 39

| 27   | ¥ ()   | V ()   |
|------|--------|--------|
| Nudo | X (m)  | Y (m)  |
| 91   | 45.911 | 4.150  |
| 92   | 45.817 | 8.359  |
| 93   | 45.728 | 12.353 |
| 94   | 47.887 | 0.201  |
| 95   | 47.786 | 4.195  |
| 96   | 47.680 | 8.404  |
| 97   | 47.579 | 12.397 |
| 98   | 48.821 | 0.226  |
| 99   | 48.714 | 4.219  |
| 100  | 48.602 | 8.428  |
| 101  | 48.495 | 12.421 |
| 102  | 49.755 | 0.251  |
| 103  | 49.642 | 4.245  |
| 104  | 49.618 | 5.086  |
| 105  | 49.523 | 8.453  |
| 106  | 49.411 | 12.446 |
| 107  | 51.208 | 0.294  |
| 108  | 51.086 | 4.287  |
| 109  | 50.958 | 8.495  |
| 110  | 50.836 | 12.488 |
| 111  | 52.662 | 0.340  |
| 112  | 52.530 | 4.333  |
| 113  | 52.417 | 7.773  |
| 114  | 52.392 | 8.541  |
| 115  | 52.261 | 12.533 |
| 116  | 54.535 | 0.404  |
| 117  | 54.392 | 4.397  |
| 118  | 54.242 | 8.604  |
| 119  | 54.099 | 12.597 |
| 120  | 56.409 | 0.474  |
| 121  | 56.254 | 4.466  |
| 122  | 56.091 | 8.673  |
| 123  | 55.936 | 12.665 |
| 124  | 58.282 | 0.550  |
| 125  | 58.115 | 4.541  |
| 126  | 57.940 | 8.748  |
| 127  | 57.773 | 12.739 |
| 128  | 60.155 | 0.631  |
| 129  | 59.977 | 4.622  |
| 130  | 59.788 | 8.828  |
| 131  | 59.610 | 12.819 |
| 132  | 62.028 | 0.717  |
| 133  | 61.838 | 4.708  |
|      | 61.637 |        |
| 134  |        | 8.913  |
| 135  | 61.447 | 12.904 |
| 136  | 63.901 | 0.810  |
| 137  | 63.698 | 4.799  |
| 138  | 63.485 | 9.004  |

| Nudo | X (m)  | Y (m)  |
|------|--------|--------|
| 139  | 63.283 | 12.994 |
| 140  | 65.097 | 1.956  |
| 141  | 68.366 | 5.090  |
| 142  | 68.185 | 9.260  |
| 143  | 67.952 | 13.248 |
| 144  | 68.970 | 5.670  |
| 145  | 70.718 | 7.346  |
| 146  | 72.446 | 9.002  |
| 147  | 73.071 | 9.601  |
| 148  | 72.871 | 13.555 |
| 149  | 76.876 | 13.249 |
| 150  | 77.536 | 13.882 |

ALVIPRE S.L. Página 19 de 39

### Datos de Barras

| Barra | Nudo<br>I | Nudo<br>J | Ancho<br>(m) | Inercia<br>(m4) | Inercia a<br>torsion (m4) | Area<br>(m²) |
|-------|-----------|-----------|--------------|-----------------|---------------------------|--------------|
| 1     | 1         | 3         | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 2     | 3         | 8         | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 3     | 8         | 12        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 4     | 12        | 16        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 5     | 16        | 20        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 6     | 20        | 24        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 7     | 24        | 28        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 8     | 28        | 32        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 9     | 32        | 36        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 10    | 36        | 41        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 11    | 41        | 45        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 12    | 45        | 50        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 13    | 50        | 54        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 14    | 54        | 58        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 15    | 58        | 62        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 16    | 62        | 66        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 17    | 66        | 70        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 18    | 70        | 74        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 19    | 74        | 78        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 20    | 78        | 82        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 21    | 82        | 86        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 22    | 86        | 90        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 23    | 90        | 94        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 24    | 94        | 98        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 25    | 98        | 102       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 26    | 102       | 107       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 27    | 107       | 111       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 28    | 111       | 116       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 29    | 116       | 120       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 30    | 120       | 124       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 31    | 124       | 128       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 32    | 128       | 132       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 33    | 132       | 136       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 34    | 4         | 9         | 4.103        | 0.525691        | 0.287142                  | 1.976283     |
| 35    | 9         | 13        | 4.103        | 0.520953        | 0.287142                  | 1.976283     |
| 36    | 13        | 17        | 4.103        | 0.530581        | 0.287142                  | 1.976283     |
| 37    | 17        | 21        | 4.103        | 0.530581        | 0.287142                  | 1.976283     |
| 38    | 21        | 25        | 4.103        | 0.530581        | 0.287142                  | 1.976283     |
| 39    | 25        | 29        | 4.103        | 0.530581        | 0.287142                  | 1.976283     |
| 40    | 29        | 33        | 4.103        | 0.530581        | 0.287142                  | 1.976283     |
| 41    | 33        | 37        | 4.103        | 0.530581        | 0.287142                  | 1.976283     |
| 42    | 37        | 42        | 4.103        | 0.530581        | 0.287142                  | 1.976283     |
| 43    | 42        | 46        | 4.103        | 0.530581        | 0.287142                  | 1.976283     |
| 44    | 46        | 51        | 4.103        | 0.530581        | 0.287142                  | 1.976283     |
| 45    | 51        | 55        | 4.103        | 0.530581        | 0.287142                  | 1.976283     |

| Barra | Nudo<br>I | Nudo<br>J | Ancho<br>(m) | Inercia<br>(m4)   | Inercia a<br>torsion (m4) | Area<br>(m²) |
|-------|-----------|-----------|--------------|-------------------|---------------------------|--------------|
| 46    | 55        | 59        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 47    | 59        | 63        | 4.103        | 0.530581 0.287142 |                           | 1.976283     |
| 48    | 63        | 67        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 49    | 67        | 71        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 50    | 71        | 75        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 51    | 75        | 79        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 52    | 79        | 83        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 53    | 83        | 87        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 54    | 87        | 91        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 55    | 91        | 95        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 56    | 95        | 99        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 57    | 99        | 103       | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 58    | 103       | 108       | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 59    | 108       | 112       | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 60    | 112       | 117       | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 61    | 117       | 121       | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 62    | 121       | 125       | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 63    | 125       | 129       | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 64    | 129       | 133       | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 65    | 133       | 137       | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 66    | 137       | 141       | 4.103        | 0.520953          | 0.287142                  | 1.976283     |
| 67    | 10        | 14        | 4.103        | 0.520953          | 0.287142                  | 1.976283     |
| 68    | 14        | 18        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 69    | 18        | 22        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 70    | 22        | 26        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 71    | 26        | 30        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 72    | 30        | 34        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 73    | 34        | 39        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 74    | 39        | 43        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 75    | 43        | 48        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 76    | 48        | 52        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 77    | 52        | 56        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 78    | 56        | 60        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 79    | 60        | 64        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 80    | 64        | 68        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 81    | 68        | 72        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 82    | 72        | 76        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 83    | 76        | 80        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 84    | 80        | 84        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 85    | 84        | 88        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 86    | 88        | 92        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 87    | 92        | 96        | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 88    | 96        | 100       | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 89    | 100       | 105       | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 90    | 105       | 109       | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 91    | 109       | 114       | 4.103        | 0.530581          | 0.287142                  | 1.976283     |
| 92    | 114       | 118       | 4.103        | 0.530581          | 0.287142                  | 1.976283     |

ALVIPRE S.L. Página 20 de 39

| Barra | Nudo<br>I | Nudo<br>J | Ancho<br>(m) | Inercia<br>(m4) | Inercia a<br>torsion (m4) | Area<br>(m²) |
|-------|-----------|-----------|--------------|-----------------|---------------------------|--------------|
| 93    | 118       | 122       | 4.103        | 0.530581        | 0.287142                  | 1.976283     |
| 94    | 122       | 126       | 4.103        | 0.530581        | 0.287142                  | 1.976283     |
| 95    | 126       | 130       | 4.103        | 0.530581        | 0.287142                  | 1.976283     |
| 96    | 130       | 134       | 4.103        | 0.530581        | 0.287142                  | 1.976283     |
| 97    | 134       | 138       | 4.103        | 0.530581        | 0.287142                  | 1.976283     |
| 98    | 138       | 142       | 4.103        | 0.520953        | 0.287142                  | 1.976283     |
| 99    | 142       | 147       | 4.103        | 0.525691        | 0.287142                  | 1.976283     |
| 100   | 15        | 19        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 101   | 19        | 23        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 102   | 23        | 27        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 103   | 27        | 31        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 104   | 31        | 35        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 105   | 35        | 40        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 106   | 40        | 44        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 107   | 44        | 49        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 108   | 49        | 53        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 109   | 53        | 57        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 110   | 57        | 61        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 111   | 61        | 65        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 112   | 65        | 69        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 113   | 69        | 73        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 114   | 73        | 77        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 115   | 77        | 81        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 116   | 81        | 85        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 117   | 85        | 89        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 118   | 89        | 93        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 119   | 93        | 97        | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 120   | 97        | 101       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 121   | 101       | 106       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 122   | 106       | 110       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 123   | 110       | 115       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 124   | 115       | 119       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 125   | 119       | 123       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 126   | 123       | 127       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 127   | 127       | 131       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 128   | 131       | 135       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 129   | 135       | 139       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 130   | 139       | 143       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 131   | 143       | 148       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 132   | 148       | 150       | 1.997        | 0.006067        | 0.010504                  | 0.584282     |
| 133   | 1         | 2         | 0.300        | 0.000911        | 0.001822                  | 0.087752     |
| 134   | 2         | 4         | 0.300        | 0.000911        | 0.001822                  | 0.087752     |
| 135   | 4         | 5         | 0.300        | 0.070773        | 0.149618                  | 0.417752     |
| 136   | 5         | 6         | 0.300        | 0.070773        | 0.149618                  | 0.417752     |
| 137   | 6         | 7         | 0.300        | 0.070773        | 0.149618                  | 0.417752     |
| 138   | 7         | 10        | 0.300        | 0.070773        | 0.149618                  | 0.417752     |
| 139   | 10        | 11        | 0.300        | 0.000911        | 0.001822                  | 0.087752     |

| Barra | Nudo<br>I | Nudo<br>J | Ancho<br>(m) | Inercia<br>(m4) | Inercia a<br>torsion (m4) | Area<br>(m²) |
|-------|-----------|-----------|--------------|-----------------|---------------------------|--------------|
| 140   | 11        | 15        | 0.300        | 0.000911        | 0.001822                  | 0.087752     |
| 141   | 3         | 4         | 3.011        | 0.009147        | 0.018293                  | 0.880841     |
| 142   | 8         | 9         | 3.980        | 0.012090        | 0.024180                  | 1.164285     |
| 143   | 9         | 10        | 3.954        | 0.723934        | 1.972170                  | 2.145293     |
| 144   | 12        | 13        | 2.987        | 0.009074        | 0.018148                  | 0.873829     |
| 145   | 13        | 14        | 2.968        | 0.543332        | 1.480168                  | 1.610102     |
| 146   | 14        | 15        | 2.948        | 0.008956        | 0.017911                  | 0.862428     |
| 147   | 16        | 17        | 2.099        | 0.006375        | 0.012749                  | 0.613880     |
| 148   | 17        | 18        | 2.085        | 0.381701        | 1.039845                  | 1.131126     |
| 149   | 18        | 19        | 2.071        | 0.006291        | 0.012583                  | 0.605871     |
| 150   | 20        | 21        | 2.099        | 0.006375        | 0.012749                  | 0.613880     |
| 151   | 21        | 22        | 2.085        | 0.381701        | 1.039845                  | 1.131126     |
| 152   | 22        | 23        | 2.071        | 0.006291        | 0.012583                  | 0.605871     |
| 153   | 24        | 25        | 2.099        | 0.006375        | 0.012749                  | 0.613880     |
| 154   | 25        | 26        | 2.085        | 0.381701        | 1.039845                  | 1.131126     |
| 155   | 26        | 27        | 2.071        | 0.006291        | 0.012583                  | 0.605871     |
| 156   | 28        | 29        | 2.099        | 0.006375        | 0.012749                  | 0.613880     |
| 157   | 29        | 30        | 2.085        | 0.381701        | 1.039845                  | 1.131126     |
| 158   | 30        | 31        | 2.071        | 0.006291        | 0.012583                  | 0.605871     |
| 159   | 32        | 33        | 2.099        | 0.006375        | 0.012749                  | 0.613880     |
| 160   | 33        | 34        | 2.085        | 0.381701        | 1.039845                  | 1.131126     |
| 161   | 34        | 35        | 2.071        | 0.006291        | 0.012583                  | 0.605871     |
| 162   | 36        | 37        | 1.716        | 0.005213        | 0.010426                  | 0.501998     |
| 163   | 37        | 38        | 1.710        | 0.329335        | 0.852625                  | 1.182472     |
| 164   | 38        | 39        | 1.704        | 0.328282        | 0.849761                  | 1.179355     |
| 165   | 39        | 40        | 1.694        | 0.005145        | 0.010290                  | 0.495449     |
| 166   | 41        | 42        | 1.334        | 0.004051        | 0.008102                  | 0.390116     |
| 167   | 42        | 43        | 1.325        | 0.242568        | 0.660813                  | 0.718821     |
| 168   | 43        | 44        | 1.316        | 0.003998        | 0.007996                  | 0.385026     |
| 169   | 45        | 46        | 1.125        | 0.003417        | 0.006833                  | 0.329022     |
| 170   | 46        | 47        | 1.118        | 0.220962        | 0.557673                  | 0.861627     |
| 171   | 47        | 48        | 1.114        | 0.220272        | 0.555795                  | 0.859584     |
| 172   | 48        | 49        | 1.110        | 0.003372        | 0.006744                  | 0.324730     |
| 173   | 50        | 51        | 0.916        | 0.002782        | 0.005564                  | 0.267929     |
| 174   | 51        | 52        | 0.910        | 0.166594        | 0.453841                  | 0.493681     |
| 175   | 52        | 53        | 0.904        | 0.002746        | 0.005492                  | 0.264433     |
| 176   | 54        | 55        | 1.399        | 0.004250        | 0.008499                  | 0.409254     |
| 177   | 55        | 56        | 1.390        | 0.254467        | 0.693230                  | 0.754084     |
| 178   | 56        | 57        | 1.381        | 0.004194        | 0.008389                  | 0.403914     |
| 179   | 58        | 59        | 1.882        | 0.005717        | 0.011435                  | 0.550579     |
| 180   | 59        | 60        | 1.870        | 0.342341        | 0.932619                  | 1.014487     |
| 181   | 60        | 61        | 1.858        | 0.005643        | 0.011285                  | 0.543395     |
| 182   | 62        | 63        | 1.882        | 0.005717        | 0.011435                  | 0.550579     |
| 183   | 63        | 64        | 1.870        | 0.342341        | 0.932619                  | 1.014487     |
| 184   | 64        | 65        | 1.858        | 0.005643        | 0.011285                  | 0.543395     |
| 185   | 66        | 67        | 1.882        | 0.005717        | 0.011435                  | 0.550579     |
| 186   | 67        | 68        | 1.870        | 0.342341        | 0.932619                  | 1.014487     |
| 100   | . 0,      | 1 30      |              | 1.012011        | 0.552015                  | 1            |

ALVIPRE S.L. Página 21 de 39

| Barra | Nudo<br>I | Nudo<br>J | Ancho<br>(m) | Inercia<br>(m4) | Inercia a<br>torsion (m4) | Area<br>(m²) |
|-------|-----------|-----------|--------------|-----------------|---------------------------|--------------|
| 187   | 68        | 69        | 1.858        | 0.005643        | 0.011285                  | 0.543395     |
| 188   | 70        | 71        | 1.882        | 0.005717        | 0.011435                  | 0.550579     |
| 189   | 71        | 72        | 1.870        | 0.342341        | 0.932619                  | 1.014487     |
| 190   | 72        | 73        | 1.858        | 0.005643        | 0.011285                  | 0.543395     |
| 191   | 74        | 75        | 1.882        | 0.005717        | 0.011435                  | 0.550579     |
| 192   | 75        | 76        | 1.870        | 0.342341        | 0.932619                  | 1.014487     |
| 193   | 76        | 77        | 1.858        | 0.005643        | 0.011285                  | 0.543395     |
| 194   | 78        | 79        | 1.882        | 0.005717        | 0.011435                  | 0.550579     |
| 195   | 79        | 80        | 1.870        | 0.342341        | 0.932619                  | 1.014487     |
| 196   | 80        | 81        | 1.858        | 0.005643        | 0.011285                  | 0.543395     |
| 197   | 82        | 83        | 1.882        | 0.005717        | 0.011435                  | 0.550579     |
| 198   | 83        | 84        | 1.870        | 0.342341        | 0.932619                  | 1.014487     |
| 199   | 84        | 85        | 1.858        | 0.005643        | 0.011285                  | 0.543395     |
| 200   | 86        | 87        | 1.882        | 0.005717        | 0.011435                  | 0.550579     |
| 201   | 87        | 88        | 1.870        | 0.342341        | 0.932619                  | 1.014487     |
| 202   | 88        | 89        | 1.858        | 0.005643        | 0.011285                  | 0.543395     |
| 203   | 90        | 91        | 1.882        | 0.005717        | 0.011435                  | 0.550579     |
| 204   | 91        | 92        | 1.870        | 0.342341        | 0.932619                  | 1.014487     |
| 205   | 92        | 93        | 1.858        | 0.005643        | 0.011285                  | 0.543395     |
| 206   | 94        | 95        | 1.407        | 0.004273        | 0.008545                  | 0.411462     |
| 207   | 95        | 96        | 1.397        | 0.255840        | 0.696970                  | 0.758153     |
| 208   | 96        | 97        | 1.388        | 0.004217        | 0.008434                  | 0.406094     |
| 209   | 98        | 99        | 0.931        | 0.002828        | 0.005656                  | 0.272345     |
| 210   | 99        | 100       | 0.925        | 0.169340        | 0.461322                  | 0.501818     |
| 211   | 100       | 101       | 0.919        | 0.002791        | 0.005582                  | 0.268792     |
| 212   | 102       | 103       | 1.190        | 0.003615        | 0.007231                  | 0.348160     |
| 213   | 103       | 104       | 1.186        | 0.233334        | 0.591334                  | 0.898243     |
| 214   | 104       | 105       | 1.182        | 0.232603        | 0.589347                  | 0.896082     |
| 215   | 105       | 106       | 1.175        | 0.003568        | 0.007136                  | 0.343618     |
| 216   | 107       | 108       | 1.449        | 0.004403        | 0.008805                  | 0.423975     |
| 217   | 108       | 109       | 1.440        | 0.263621        | 0.718166                  | 0.781209     |
| 218   | 109       | 110       | 1.431        | 0.004345        | 0.008690                  | 0.418444     |
| 219   | 111       | 112       | 1.659        | 0.005040        | 0.010079                  | 0.485323     |
| 220   | 112       | 113       | 1.649        | 0.318301        | 0.822589                  | 1.149798     |
| 221   | 113       | 114       | 1.644        | 0.317284        | 0.819819                  | 1.146786     |
| 222   | 114       | 115       | 1.638        | 0.004974        | 0.009948                  | 0.478992     |
| 223   | 116       | 117       | 1.869        | 0.005677        | 0.011353                  | 0.546672     |
| 224   | 117       | 118       | 1.857        | 0.339912        | 0.926001                  | 1.007289     |
| 225   | 118       | 119       | 1.845        | 0.005603        | 0.011205                  | 0.539540     |
| 226   | 120       | 121       | 1.869        | 0.005677        | 0.011353                  | 0.546672     |
| 227   | 121       | 122       | 1.857        | 0.339912        | 0.926001                  | 1.007289     |
| 228   | 122       | 123       | 1.845        | 0.005603        | 0.011205                  | 0.539540     |
| 229   | 124       | 125       | 1.869        | 0.005677        | 0.011353                  | 0.546672     |
| 230   | 125       | 126       | 1.857        | 0.339912        | 0.926001                  | 1.007289     |
| 231   | 126       | 127       | 1.845        | 0.005603        | 0.011205                  | 0.539540     |
| 232   | 128       | 129       | 1.869        | 0.005677        | 0.011353                  | 0.546672     |
| 233   | 129       | 130       | 1.857        | 0.339912        | 0.926001                  | 1.007289     |
|       |           |           | =.007        |                 | 3,323301                  | 1            |

| Barra | Nudo<br>I | Nudo<br>J | Ancho<br>(m) | Inercia<br>(m4) | Inercia a<br>torsion (m4) | Area<br>(m²) |
|-------|-----------|-----------|--------------|-----------------|---------------------------|--------------|
| 234   | 130       | 131       | 1.845        | 0.005603        | 0.011205                  | 0.539540     |
| 235   | 132       | 133       | 1.869        | 0.005677        | 0.011353                  | 0.546672     |
| 236   | 133       | 134       | 1.857        | 0.339912        | 0.926001                  | 1.007289     |
| 237   | 134       | 135       | 1.845        | 0.005603        | 0.011205                  | 0.539540     |
| 238   | 136       | 137       | 3.311        | 0.010057        | 0.020115                  | 0.968541     |
| 239   | 137       | 138       | 3.290        | 0.602223        | 1.640600                  | 1.784618     |
| 240   | 138       | 139       | 3.268        | 0.009926        | 0.019852                  | 0.955905     |
| 241   | 141       | 142       | 4.850        | 0.887797        | 2.418575                  | 2.630885     |
| 242   | 142       | 143       | 4.818        | 0.014633        | 0.029266                  | 1.409196     |
| 243   | 147       | 148       | 3.645        | 0.011071        | 0.022142                  | 1.066128     |
| 244   | 136       | 140       | 0.300        | 0.000911        | 0.001822                  | 0.087752     |
| 245   | 140       | 141       | 0.300        | 0.000911        | 0.001822                  | 0.087752     |
| 246   | 141       | 144       | 0.300        | 0.070773        | 0.149618                  | 0.417752     |
| 247   | 144       | 145       | 0.300        | 0.070773        | 0.149618                  | 0.417752     |
| 248   | 145       | 146       | 0.300        | 0.070773        | 0.149618                  | 0.417752     |
| 249   | 146       | 147       | 0.300        | 0.070773        | 0.149618                  | 0.417752     |
| 250   | 147       | 149       | 0.300        | 0.000911        | 0.001822                  | 0.087752     |
| 251   | 149       | 150       | 0.300        | 0.000911        | 0.001822                  | 0.087752     |

ALVIPRE S.L. Página 22 de 39

### Datos de Tramos de Vigas

| Tramo | Viga | Ancho<br>(m) | Canto (m) | Area<br>(m²) | Va (m) | Vb (m) | Inercia<br>(m4) | Inercia a torsion (m4) |
|-------|------|--------------|-----------|--------------|--------|--------|-----------------|------------------------|
| 1     | 1    | 6.100        | 1.453     | 3.3368       | 0.2624 | 0.8376 | 0.926371        | 2.297135               |
| 2     | 1    | 10.203       | 1.453     | 4.5368       | 0.1463 | 0.9537 | 1.108863        | 2.297135               |
| 3     | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 4     | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 5     | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 6     | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 7     | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 8     | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 9     | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 10    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 11    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 12    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 13    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 14    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 15    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 16    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 17    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 18    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 19    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 20    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 21    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 22    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 23    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 24    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 25    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 26    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 27    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 28    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 29    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 30    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 31    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 32    | 1    | 12.200       | 1.453     | 5.1211       | 0.1095 | 0.9905 | 1.168874        | 2.297135               |
| 33    | 1    | 10.203       | 1.453     | 4.5368       | 0.1463 | 0.9537 | 1.108863        | 2.297135               |
| 34    | 1    | 6.100        | 1.453     | 3.3368       | 0.2624 | 0.8376 | 0.926371        | 2.297135               |

### 3.1.4. RESULTADOS DEL ANÁLISIS

### Envolvente de esfuerzos (Estados límites últimos)

### Cortantes

| Viga | Tramo | Peso<br>Propio | Peso<br>Propio | C.P.   | C.P.    | s.c.  | s.c.   | Tandem | Tandem  | Carril | Carril  | Gradie<br>nte | Gradien<br>te | Acc.           | TOTAL   | TOTAL   |
|------|-------|----------------|----------------|--------|---------|-------|--------|--------|---------|--------|---------|---------------|---------------|----------------|---------|---------|
|      |       | Viga           | Losa           | MAX.   | MIN.    | MAX.  | MIN.   | MAX.   | MIN.    | MAX.   | MIN.    | Positi<br>vo  | Negativ<br>o  | Reológ<br>icas | MAX.    | MIN.    |
| 1    | 1     | -27.55         | -63.91         | -18.83 | -20.69  | 3.55  | -8.80  | 14.85  | -47.40  | 7.75   | -20.69  | -20.86        | 10.43         | -8.91          | -59.35  | -299.86 |
| -    | -     | -19.90         | -52.98         | -18.83 | -20.69  | 3.55  | -8.80  | 14.85  | -47.40  | 7.75   | -20.69  | -20.86        | 10.43         | -8.91          | -40.78  | -274.79 |
| 1    | 2     | -19.90         | -52.98         | -34.88 | -39.71  | 7.04  | -14.31 | 53.18  | -120.81 | 20.10  | -49.41  | -34.16        | 17.08         | -8.91          | 26.28   | -465.72 |
| -    | -     | -5.39          | -18.31         | -34.88 | -39.71  | 7.04  | -14.31 | 53.18  | -120.81 | 20.10  | -49.41  | -34.16        | 17.08         | -8.91          | 75.46   | -399.32 |
| 1    | 3     | -5.39          | -18.31         | 23.31  | 20.78   | 9.32  | -14.32 | 96.55  | -122.57 | 23.09  | -37.80  | -35.46        | 17.73         | -8.91          | 208.45  | -313.58 |
| -    | -     | 2.47           | 4.14           | 23.31  | 20.78   | 9.32  | -14.32 | 96.55  | -122.57 | 23.09  | -37.80  | -35.46        | 17.73         | -8.91          | 241.07  | -274.98 |
| 1    | 4     | 2.47           | 4.14           | 42.11  | 38.23   | 12.85 | -11.55 | 118.59 | -106.28 | 30.82  | -25.76  | -35.57        | 17.79         | -8.91          | 311.50  | -215.73 |
| -    | _     | 10.33          | 26.59          | 42.11  | 38.23   | 12.85 | -11.55 | 118.59 | -106.28 | 30.82  | -25.76  | -35.57        | 17.79         | -8.91          | 352.41  | -185.42 |
| 1    | 5     | 10.33          | 26.59          | 58.65  | 52.95   | 16.33 | -8.49  | 134.47 | -86.91  | 44.09  | -15.86  | -35.50        | 17.75         | -8.91          | 418.75  | -126.94 |
| _    | _     | 18.19          | 49.03          | 58.65  | 52.95   | 16.33 | -8.49  | 134.47 | -86.91  | 44.09  | -15.86  | -35.50        | 17.75         | -8.91          | 459.66  | -96.63  |
| 1    | 6     | 18.19          | 49.03          | 75.42  | 67.85   | 20.70 | -7.61  | 148.14 | -66.32  | 57.74  | -13.65  | -35.43        | 17.72         | -8.91          | 525.01  | -49.67  |
| -    | _     | 26.05          | 71.48          | 75.42  | 67.85   | 20.70 | -7.61  | 148.14 | -66.32  | 57.74  | -13.65  | -35.43        | 17.72         | -8.91          | 565.92  | -19.36  |
| 1    | 7     | 26.05          | 71.48          | 92.93  | 83.42   | 25.90 | -9.21  | 158.46 | -49.41  | 72.27  | -15.00  | -35.64        | 17.82         | -8.91          | 630.30  | 14.74   |
| _    | _     | 33.91          | 93.93          | 92.93  | 83.42   | 25.90 | -9.21  | 158.46 | -49.41  | 72.27  | -15.00  | -35.64        | 17.82         | -8.91          | 671.22  | 45.05   |
| 1    | 8     | 33.91          | 93.93          | 113.60 | 101.83  | 33.10 | -11.76 | 171.18 | -39.12  | 90.43  | -19.49  | -36.97        | 18.48         | -8.91          | 751.53  | 65.85   |
| _    | _     | 41.77          |                | 113.60 |         | 33.10 | -11.76 | 171.18 | -39.12  | 90.43  | -19.49  |               | 18.48         | -8.91          |         |         |
|      |       |                | 116.38         | -54.97 | 101.83  |       |        |        | -148.78 |        |         | -36.97        |               |                | 792.44  | 96.16   |
| 1    | 9     | -0.73          | 4.04           |        | -61.49  | 31.94 | -45.42 | 123.10 |         | 68.83  | -100.57 | 20.42         | -10.21        | 0.68           | 283.63  |         |
| -    | -     | 4.27           | 18.31          | -54.97 | -61.49  | 31.94 | -45.42 | 123.10 | -148.78 | 68.83  | -100.57 | 20.42         | -10.21        | 0.68           | 309.38  | -473.70 |
| 1    | 10    | 4.27           | 18.31          | -44.63 | -49.94  | 35.86 | -38.77 | 144.88 | -130.19 | 84.46  | -84.56  | 22.48         | -11.24        | 0.68           | 378.62  | -403.95 |
| _    | -     | 9.26           | 32.57          | -44.63 | -49.94  | 35.86 | -38.77 | 144.88 | -130.19 | 84.46  | -84.56  | 22.48         | -11.24        | 0.68           | 404.62  | -384.69 |
| 1    | 11    | -42.29         | -120.76        | -89.50 | -100.83 | 16.01 | -36.82 | 39.01  | -174.25 | 22.51  | -101.00 | 6.56          | -3.28         | 0.15           | -137.83 | -782.46 |
| -    | -     | -38.86         | -110.96        | -89.50 | -100.83 | 16.01 | -36.82 | 39.01  | -174.25 | 22.51  | -101.00 | 6.56          | -3.28         | 0.15           | -124.60 | -764.61 |
| 1    | 12    | -38.86         | -110.96        | -80.74 | -90.92  | 13.54 | -32.38 | 38.02  | -166.05 | 19.83  | -90.56  | 5.67          | -2.84         | 0.15           | -125.46 | -719.40 |
| -    | -     | -35.43         | -101.17        | -80.74 | -90.92  | 13.54 | -32.38 | 38.02  | -166.05 | 19.83  | -90.56  | 5.67          | -2.84         | 0.15           | -112.23 | -701.55 |
| 1    | 13    | -35.43         | -101.17        | -69.66 | -78.41  | 11.50 | -27.81 | 37.65  | -155.13 | 17.87  | -78.56  | 5.15          | -2.58         | 0.15           | -107.82 | -647.16 |
| -    | -     | -28.38         | -81.03         | -69.66 | -78.41  | 11.50 | -27.81 | 37.65  | -155.13 | 17.87  | -78.56  | 5.15          | -2.58         | 0.15           | -80.64  | -610.46 |
| 1    | 14    | -28.38         | -81.03         | -56.26 | -63.30  | 9.58  | -22.80 | 48.80  | -144.59 | 16.64  | -65.42  | 5.10          | -2.55         | 0.15           | -56.52  | -551.30 |
| -    | -     | -21.34         | -60.90         | -56.26 | -63.30  | 9.58  | -22.80 | 48.80  | -144.59 | 16.64  | -65.42  | 5.10          | -2.55         | 0.15           | -29.34  | -514.61 |
| 1    | 15    | -21.34         | -60.90         | -43.38 | -48.78  | 8.30  | -18.53 | 63.83  | -133.58 | 16.24  | -53.25  | 5.27          | -2.63         | 0.15           | 1.81    | -458.05 |
| -    | -     | -14.29         | -40.77         | -43.38 | -48.78  | 8.30  | -18.53 | 63.83  | -133.58 | 16.24  | -53.25  | 5.27          | -2.63         | 0.15           | 28.99   | -421.36 |
| 1    | 16    | -14.29         | -40.77         | -30.72 | -34.51  | 7.03  | -14.32 | 79.65  | -121.58 | 16.13  | -41.43  | 5.52          | -2.76         | 0.15           | 61.53   | -364.46 |
| -    | -     | -7.24          | -20.63         | -30.72 | -34.51  | 7.03  | -14.32 | 79.65  | -121.58 | 16.13  | -41.43  | 5.52          | -2.76         | 0.15           | 88.71   | -327.77 |
| 1    | 17    | -7.24          | -20.63         | -18.20 | -20.41  | 7.49  | -10.70 | 94.88  | -108.99 | 17.59  | -29.85  | 5.80          | -2.90         | 0.15           | 124.81  | -271.41 |
| -    | -     | -0.19          | -0.50          | -18.20 | -20.41  | 7.49  | -10.70 | 94.88  | -108.99 | 17.59  | -29.85  | 5.80          | -2.90         | 0.15           | 151.99  | -234.71 |
| 1    | 18    | -0.19          | -0.50          | 19.73  | 17.60   | 10.57 | -7.82  | 108.72 | -95.57  | 29.53  | -18.33  | 6.10          | -3.05         | 0.15           | 236.24  | -152.22 |
| -    | -     | 6.86           | 19.63          | 19.73  | 17.60   | 10.57 | -7.82  | 108.72 | -95.57  | 29.53  | -18.33  | 6.10          | -3.05         | 0.15           | 272.69  | -124.80 |
| 1    | 19    | 6.86           | 19.63          | 34.48  | 30.70   | 14.01 | -6.68  | 122.32 | -80.77  | 41.51  | -16.05  | 6.42          | -3.21         | 0.15           | 332.26  | -87.34  |
| -    | _     | 13.91          | 39.77          | 34.48  | 30.70   | 14.01 | -6.68  | 122.32 | -80.77  | 41.51  | -16.05  | 6.42          | -3.21         | 0.15           | 368.95  | -60.16  |
| 1    | 20    | 13.91          | 39.77          | 49.31  | 43.88   | 18.32 | -7.90  | 134.84 | -65.47  | 53.64  | -16.20  | 6.79          | -3.39         | 0.15           | 428.63  | -28.46  |
| _    | _     | 20.96          | 59.90          | 49.31  | 43.88   | 18.32 | -7.90  | 134.84 | -65.47  | 53.64  | -16.20  | 6.79          | -3.39         | 0.15           | 465.32  | -1.28   |
| 1    | 21    | 20.96          | 59.90          | 64.27  | 57.17   | 22.62 | -9.10  | 145.87 | -50.90  | 66.05  | -16.62  | 7.28          | -3.64         | 0.15           | 523.68  | 29.14   |
| _    |       | 28.01          | 80.03          | 64.27  | 57.17   | 22.62 | -9.10  | 145.87 | -50.90  | 66.05  | -16.62  | 7.28          | -3.64         | 0.15           | 560.38  | 56.32   |
| 1    | 22    | 28.01          | 80.03          | 79.63  | 70.81   | 27.59 | -10.90 | 156.17 | -39.30  | 79.20  | -17.80  | 8.08          | -4.04         | 0.15           | 620.69  | 80.99   |
| _    |       | 35.06          | 100.17         | 79.63  | 70.81   | 27.59 | -10.90 | 156.17 | -39.30  | 79.20  | -17.80  | 8.08          | -4.04         | 0.15           | 657.39  | 108.17  |
| 1    | 23    | 35.06          | 100.17         | 92.26  | 82.00   | 31.77 | -12.49 | 166.67 | -37.39  | 91.01  | -19.63  | 9.33          | -4.66         | 0.15           | 712.08  | 116.39  |
|      |       | 38.54          | 110.13         | 92.26  | 82.00   | 31.77 | -12.49 | 166.67 | -37.39  | 91.01  | -19.63  | 9.33          | -4.66         | 0.15           | 730.23  | 129.84  |
| - 1  | 24    |                | 110.13         | 102.36 |         |       |        | 174.95 |         |        |         |               |               |                |         |         |
| 1    | 24    | 38.54          |                |        | 90.94   | 36.11 | -14.80 |        | -39.36  | 101.34 | -22.18  | 10.92         | -5.46         | 0.15           | 777.23  | 128.34  |
| -    | -     | 42.03          | 120.08         | 102.36 | 90.94   | 36.11 | -14.80 | 174.95 | -39.36  | 101.34 | -22.18  | 10.92         | -5.46         | 0.15           | 795.38  | 141.79  |

ALVIPRE S.L. Página 23 de 39

| Viga | Tramo | Peso<br>Propio | Peso<br>Propio | C.P.    | C.P.    | s.c.  | s.c.   | Tandem | Tandem  | Carril | Carril | Gradie<br>nte | Gradien<br>te | Acc.           | TOTAL  | TOTAL   |
|------|-------|----------------|----------------|---------|---------|-------|--------|--------|---------|--------|--------|---------------|---------------|----------------|--------|---------|
|      |       | Viga           | Losa           | MAX.    | MIN.    | MAX.  | MIN.   | MAX.   | MIN.    | MAX.   | MIN.   | Positi<br>vo  | Negativ<br>o  | Reológ<br>icas | MAX.   | MIN.    |
| 1    | 25    | -9.20          | -34.72         | 43.24   | 38.62   | 37.90 | -34.73 | 125.71 | -144.95 | 81.67  | -83.12 | -29.90        | 14.95         | -0.72          | 368.02 | -421.37 |
| -    | -     | -3.77          | -19.21         | 43.24   | 38.62   | 37.90 | -34.73 | 125.71 | -144.95 | 81.67  | -83.12 | -29.90        | 14.95         | -0.72          | 388.95 | -393.12 |
| 1    | 26    | -3.77          | -19.21         | 55.93   | 49.95   | 44.87 | -32.71 | 147.07 | -122.22 | 98.47  | -66.78 | -26.54        | 13.27         | -0.72          | 464.48 | -321.26 |
| -    | -     | 1.66           | -3.71          | 55.93   | 49.95   | 44.87 | -32.71 | 147.07 | -122.22 | 98.47  | -66.78 | -26.54        | 13.27         | -0.72          | 485.99 | -293.58 |
| 1    | 27    | -41.57         | -114.38        | -104.74 | -116.69 | 12.30 | -34.43 | 41.97  | -171.60 | 20.80  | -91.90 | 41.06         | -20.53        | 8.82           | -84.54 | -801.06 |
| -    | -     | -34.58         | -94.39         | -104.74 | -116.69 | 12.30 | -34.43 | 41.97  | -171.60 | 20.80  | -91.90 | 41.06         | -20.53        | 8.82           | -57.55 | -764.62 |
| 1    | 28    | -34.58         | -94.39         | -87.69  | -97.54  | 9.93  | -27.64 | 49.48  | -160.00 | 16.25  | -74.94 | 38.58         | -19.29        | 8.82           | -43.43 | -689.19 |
| -    | -     | -27.58         | -74.40         | -87.69  | -97.54  | 9.93  | -27.64 | 49.48  | -160.00 | 16.25  | -74.94 | 38.58         | -19.29        | 8.82           | -16.44 | -652.76 |
| 1    | 29    | -27.58         | -74.40         | -73.68  | -81.76  | 8.48  | -22.85 | 63.93  | -150.79 | 14.63  | -61.88 | 37.54         | -18.77        | 8.82           | 11.38  | -594.15 |
| -    | -     | -20.58         | -54.41         | -73.68  | -81.76  | 8.48  | -22.85 | 63.93  | -150.79 | 14.63  | -61.88 | 37.54         | -18.77        | 8.82           | 38.37  | -557.71 |
| 1    | 30    | -20.58         | -54.41         | -60.60  | -67.04  | 8.45  | -18.56 | 83.24  | -140.45 | 15.97  | -49.84 | 36.97         | -18.48        | 8.82           | 78.44  | -501.41 |
| -    | -     | -13.58         | -34.42         | -60.60  | -67.04  | 8.45  | -18.56 | 83.24  | -140.45 | 15.97  | -49.84 | 36.97         | -18.48        | 8.82           | 105.43 | -464.97 |
| 1    | 31    | -13.58         | -34.42         | -47.93  | -52.77  | 11.35 | -15.38 | 102.91 | -127.80 | 22.41  | -38.33 | 36.56         | -18.28        | 8.82           | 156.66 | -408.48 |
| _    | -     | -6.58          | -14.43         | -47.93  | -52.77  | 11.35 | -15.38 | 102.91 | -127.80 | 22.41  | -38.33 | 36.56         | -18.28        | 8.82           | 183.65 | -372.05 |
| 1    | 32    | -6.58          | -14.43         | -35.27  | -38.54  | 14.07 | -12.46 | 119.11 | -109.20 | 33.43  | -27.19 | 36.09         | -18.04        | 8.82           | 236.01 | -308.41 |
| -    | -     | 0.42           | 5.56           | -35.27  | -38.54  | 14.07 | -12.46 | 119.11 | -109.20 | 33.43  | -27.19 | 36.09         | -18.04        | 8.82           | 265.09 | -274.06 |
| 1    | 33    | 0.42           | 5.56           | 40.97   | 36.34   | 15.23 | -6.95  | 117.50 | -60.96  | 47.18  | -20.16 | 33.12         | -16.56        | 8.82           | 369.17 | -101.40 |
| -    | -     | 18.22          | 48.08          | 40.97   | 36.34   | 15.23 | -6.95  | 117.50 | -60.96  | 47.18  | -20.16 | 33.12         | -16.56        | 8.82           | 450.60 | -41.08  |
| 1    | 34    | 18.22          | 48.08          | 18.68   | 17.03   | 8.20  | -3.42  | 41.40  | -15.18  | 19.16  | -7.68  | 20.25         | -10.12        | 8.82           | 251.17 | 32.67   |
| -    | -     | 27.60          | 61.48          | 18.68   | 17.03   | 8.20  | -3.42  | 41.40  | -15.18  | 19.16  | -7.68  | 20.25         | -10.12        | 8.82           | 281.91 | 55.44   |

### Momentos

| Vig<br>a | Tram<br>O | Peso<br>Propio | Peso<br>Propio | C.P.    | C.P.    | s.c.  | s.c.   | Tandem | Tandem  | Carril | Carril  | Gradie<br>nte | Gradient<br>e | Acc.           | TOTAL   | TOTAL    |
|----------|-----------|----------------|----------------|---------|---------|-------|--------|--------|---------|--------|---------|---------------|---------------|----------------|---------|----------|
|          |           | Viga           | Losa           | MAX.    | MIN.    | MAX.  | MIN.   | MAX.   | MIN.    | MAX.   | MIN.    | Positi<br>vo  | Negativo      | Reológ<br>icas | MAX.    | MIN.     |
| 1        | 1         | 0.00           | 0.00           | -0.65   | -1.33   | 1.48  | -0.55  | 12.90  | -15.01  | 2.09   | -6.62   | 9.41          | -4.70         | 35.69          | -38.79  |          |
| -        | -         | 48.14          | 118.58         | 83.97   | 76.98   | 36.12 | -13.53 | 180.35 | -57.02  | 78.68  | -29.84  | 95.40         | -47.70        | 18.59          | 907.88  | 36.62    |
| 1        | 2         | 48.14          | 118.58         | 166.43  | 151.06  | 43.97 | -31.23 | 337.46 | -154.06 | 109.39 | -74.22  | 115.35        | -57.67        | 18.59          | 1313.29 | -119.07  |
| -        | -         | 96.83          | 255.85         | 193.31  | 171.48  | 50.53 | -12.45 | 380.34 | -59.83  | 133.78 | -32.72  | 197.75        | -98.88        | 52.91          | 1875.35 | 234.10   |
| 1        | 3         | 96.83          | 255.85         | 220.35  | 197.59  | 59.07 | -9.31  | 458.60 | -52.82  | 161.43 | -28.16  | 166.49        | -83.25        | 52.91          | 2019.48 | 303.50   |
| -        | -         | 99.87          | 270.63         | 197.61  | 175.76  | 55.80 | -14.29 | 430.84 | -74.50  | 140.96 | -42.10  | 204.45        | -102.23       | 71.49          | 2028.12 | 216.22   |
| 1        | 4         | 99.87          | 270.63         | 216.28  | 193.41  | 62.94 | -15.23 | 482.71 | -81.07  | 170.74 | -45.40  | 199.36        | -99.68        | 71.49          | 2165.54 | 223.10   |
| -        | -         | 86.52          | 238.60         | 173.78  | 154.69  | 57.71 | -20.91 | 444.44 | -107.65 | 148.56 | -61.27  | 233.88        | -116.94       | 90.07          | 2037.89 | 48.12    |
| 1        | 5         | 86.52          | 238.60         | 180.77  | 161.37  | 60.34 | -21.06 | 456.59 | -111.43 | 162.08 | -62.87  | 230.36        | -115.18       | 90.07          | 2080.25 | 49.99    |
| -        | -         | 56.78          | 159.77         | 112.91  | 100.51  | 51.39 | -27.46 | 412.46 | -140.32 | 135.94 | -79.88  | 264.47        | -132.24       | 108.65         | 1814.18 | -215.64  |
| 1        | 6         | 56.78          | 159.77         | 111.66  | 99.56   | 50.76 | -26.76 | 395.08 | -142.37 | 133.82 | -80.62  | 260.17        | -130.09       | 108.65         | 1778.85 | -216.18  |
| -        | -         | 10.66          | 34.13          | -42.81  | -46.56  | 37.94 | -34.04 | 340.29 | -172.48 | 104.50 | -98.00  | 296.27        | -148.13       | 127.23         | 1304.58 | -651.36  |
| 1        | 7         | 10.66          | 34.13          | -30.74  | -33.07  | 37.20 | -46.93 | 299.21 | -173.64 | 90.68  | -98.79  | 288.21        | -144.10       | 127.23         | 1229.44 | -647.15  |
| -        | -         | -51.85         | -138.31        | -169.80 | -189.03 | 25.33 | -66.06 | 243.16 | -204.05 | 57.48  | -166.77 | 330.46        | -165.23       | 145.80         | 794.51  | -1349.54 |
| 1        | 8         | -51.85         | -138.31        | -131.74 | -147.56 | 34.34 | -67.93 | 246.07 | -205.60 | 65.03  | -155.29 | 311.67        | -155.83       | 145.80         | 830.67  | -1268.59 |
|          |           |                |                |         |         |       | _      |        |         |        |         |               |               |                |         |          |
| -        | _         | -130.75        | -357.55        | -343.97 | -384.41 | 29.31 | 114.47 | 145.23 | -360.71 | 17.76  | -300.29 | 371.91        | -185.95       | 164.38         | 231.77  | -2503.97 |
| 1        | 9         | -130.75        | -357.55        | -333.62 | -373.71 | 27.65 | 108.81 | 163.93 | -300.83 | 28.00  | -294.97 | 352.26        | -176.13       | 164.38         | 249.48  | -2379.14 |
| -        | -         | -133.09        | -372.36        | -260.67 | -292.10 | 9.89  | -69.71 | 80.90  | -254.39 | 24.42  | -195.36 | 332.93        | -166.47       | 163.48         | 134.02  | -2027.67 |
| 1        | 10        | -133.09        | -372.36        | -263.28 | -295.59 | 11.50 | -67.69 | 97.17  | -262.12 | 29.27  | -197.91 | 324.21        | -162.10       | 163.48         | 149.01  | -2037.00 |
| -        |           | -142.06        | -406.06        | -264.57 | -299.17 | 36.07 | -95.77 | 143.07 | -340.97 | 65.16  | -277.51 | 307.67        | -153.83       | 162.57         | 222.49  | -2338.84 |
| 1        | 11        | -142.06        | -406.06        | -264.74 | -299.06 | 38.33 | -98.59 | 126.51 | -365.76 | 63.78  | -287.59 | 304.81        | -152.40       | 162.57         | 196.84  | -2387.40 |
| -        | -         | -105.13        | -300.63        | -183.58 | -207.61 | 25.67 | -67.05 | 180.37 | -239.22 | 45.86  | -198.42 | 298.84        | -149.42       | 162.44         | 442.64  | -1733.51 |
| 1        | 12        | -105.13        | -300.63        | -187.28 | -211.61 | 32.68 | -75.22 | 165.94 | -270.39 | 48.77  | -213.68 | 298.68        | -149.34       | 162.44         | 432.60  | -1812.49 |
| -        | -         | -71.33         | -204.11        | -114.06 | -129.15 | 30.72 | -53.26 | 216.24 | -160.95 | 60.97  | -137.47 | 293.51        | -146.76       | 162.30         | 709.92  | -1241.09 |
| 1        | 13        | -71.33         | -204.11        | -123.08 | -139.11 | 34.28 | -62.16 | 204.33 | -215.41 | 49.62  | -167.75 | 295.41        | -147.71       | 162.30         | 677.16  | -1382.37 |
| -        | -         | -11.66         | -33.75         | 7.45    | 7.12    | 44.34 | -44.15 | 283.94 | -133.09 | 101.05 | -95.40  | 285.74        | -142.87       | 162.01         | 1215.87 | -636.54  |
| 1        | 14        | -11.66         | -33.75         | 17.75   | 16.10   | 31.96 | -33.61 | 295.20 | -133.88 | 77.82  | -80.69  | 291.41        | -145.70       | 162.01         | 1205.41 | -598.80  |
| -        | -         | 34.83          | 98.96          | 106.46  | 94.98   | 46.89 | -27.66 | 342.52 | -115.87 | 123.76 | -54.24  | 285.08        | -142.54       | 161.73         | 1687.33 | -252.02  |
| 1        | 15        | 34.83          | 98.96          | 111.04  | 98.99   | 43.41 | -19.59 | 375.47 | -116.09 | 122.83 | -55.79  | 289.07        | -144.53       | 161.73         | 1738.02 | -242.50  |
| -        | -         | 68.14          | 194.02         | 176.56  | 157.20  | 55.86 | -18.40 | 415.98 | -98.36  | 145.26 | -49.98  | 284.64        | -142.32       | 161.45         | 2094.48 | -19.22   |
| 1        | 16        | 68.14          | 194.02         | 178.84  | 159.22  | 57.26 | -19.34 | 437.32 | -98.36  | 157.01 | -50.80  | 287.37        | -143.68       | 161.45         | 2148.20 | -21.64   |
| -        | -         | 88.26          | 251.43         | 218.82  | 194.72  | 64.98 | -18.77 | 463.63 | -85.21  | 170.91 | -45.67  | 283.71        | -141.86       | 161.16         | 2365.65 | 119.61   |
| 1        | 17        | 88.26          | 251.43         | 220.17  | 195.93  | 65.68 | -19.18 | 473.49 | -84.90  | 176.63 | -46.00  | 285.90        | -142.95       | 161.16         | 2392.74 | 118.58   |
| -        | -         | 95.21          | 271.19         | 233.80  | 208.02  | 68.35 | -19.04 | 482.58 | -77.89  | 181.27 | -43.39  | 282.62        | -141.31       | 160.88         | 2463.98 | 173.03   |
| 1        | 18        | 95.21          | 271.19         | 234.66  | 208.81  | 68.60 | -19.08 | 481.96 | -78.01  | 181.48 | -43.54  | 284.49        | -142.25       | 160.88         | 2467.73 | 171.98   |
| -        | -         | 88.97          | 253.30         | 221.74  | 197.32  | 66.15 | -19.34 | 473.73 | -84.13  | 176.73 | -47.03  | 281.49        | -140.75       | 160.60         | 2391.95 | 125.29   |
| 1        | 19        | 88.97          | 253.30         | 222.07  | 197.64  | 65.93 | -19.00 | 463.33 | -84.51  | 171.22 | -46.66  | 283.01        | -141.50       | 160.60         | 2372.91 | 124.93   |
| -        | -         | 69.55          | 197.76         | 182.83  | 162.76  | 58.44 | -19.70 | 436.29 | -96.33  | 157.54 | -50.79  | 280.48        | -140.24       | 160.31         | 2149.44 | -5.51    |
| 1        | 20        | 69.55          | 197.76         | 182.11  | 162.17  | 57.50 | -18.82 | 415.04 | -96.99  | 145.39 | -49.77  | 281.28        | -140.64       | 160.31         | 2103.32 | -5.01    |
| -        | -         | 36.95          | 104.57         | 117.38  | 104.63  | 45.21 | -20.08 | 374.68 | -112.76 | 123.93 | -54.74  | 279.81        | -139.90       | 160.03         | 1743.45 | -216.94  |
| 1        | 21        | 36.95          | 104.57         | 114.12  | 101.82  |       | -28.54 | 341.21 | -112.90 | 122.51 | -52.97  | 278.91        | -139.46       | 160.03         | 1694.56 | -228.29  |
| -        | -         | -8.83          | -26.26         | 26.42   | 23.82   | 33.54 | -34.27 | 295.11 | -129.88 | 80.39  | -79.86  | 280.01        | -140.00       | 159.75         | 1212.41 | -562.97  |
| 1        | 22        | -8.83          | -26.26         | 16.81   | 15.47   |       | -44.17 | 284.87 | -129.86 | 100.74 | -95.79  | 274.91        | -137.46       |                |         | -602.34  |
| -        | -         | -67.79         | -194.75        |         | -132.95 |       | -62.65 | 209.47 | -219.64 | 53.71  | -168.56 | 282.45        | -141.23       |                |         | -1354.39 |
| 1        | 23        | -67.79         | -194.75        | -105.56 | -119.60 | 32.05 | -53.16 | 220.43 | -161.05 | 63.77  | -137.84 | 277.49        | -138.74       | 159.46         |         | -1199.27 |
| -        |           | -101.83        |                | -181.67 | -205.23 |       | -75.89 | 171.57 | -275.07 | 54.32  | -215.64 | 284.54        | -142.27       |                | 441.84  | -1787.06 |
| 1        |           | -101.83        | -292.01        |         | -199.11 | 27.69 | -67.34 | 182.99 | -241.26 | 51.57  | -199.57 | 282.86        | -141.43       |                | 447.45  | -1698.66 |
|          |           | -139.10        | -398.48        |         | -294.11 | 39.83 | -99.25 | 134.46 | -371.13 | 69.12  | -290.58 | 291.38        | -145.69       | 159.18         | 206.44  | -2368.60 |
| -        |           |                |                |         |         |       |        |        |         |        |         |               |               |                |         |          |
| 1        |           | -139.10        | -398.48        | -258.33 | -292.18 | 37.95 | -96.20 | 151.48 | -342.46 | 70.50  | -279.28 | 292.69        | -146.34       | 159.18         | 232.81  | -2308.91 |
| - 1      |           | -129.76        | -359.65        | -252.16 | -283.05 | 11.56 | -65.82 | 106.97 | -260.10 | 30.01  | -189.69 | 320.64        | -160.32       | 160.22         | 180.24  | -1979.37 |
| 1        | 26        | -129.76        | -359.65        | -250.79 | -280.79 | 9.76  | -69.02 | 87.98  | -249.64 | 24.74  | -187.87 | 329.62        | -164.81       | 160.22         | 159.89  | -1970.79 |
| -        | -         | -128.25        | -343.15        | -322.34 | -360.89 | 30.72 | 109.38 | 176.06 | -294.95 | 36.24  | -290.68 | 362.43        | -181.22       | 161.25         | 319.87  | -2333.67 |

ALVIPRE S.L. Página 24 de 39

| Vig<br>a | Tram<br>O | Peso<br>Propio | Peso<br>Propio | C.P.    | C.P.    | s.c.  | s.c.   | Tandem | Tandem  | Carril | Carril  | Gradie<br>nte | Gradient<br>e | Acc.           | TOTAL   | TOTAL    |
|----------|-----------|----------------|----------------|---------|---------|-------|--------|--------|---------|--------|---------|---------------|---------------|----------------|---------|----------|
|          |           | Viga           | Losa           | MAX.    | MIN.    | MAX.  | MIN.   | MAX.   | MIN.    | MAX.   | MIN.    | Positi<br>vo  | Negativo      | Reológ<br>icas | MAX.    | MIN.     |
| 1        | 27        | -128.25        | -343.15        | -334.87 | -373.90 | 32.22 | 115.61 | 157.91 | -352.06 | 20.27  | -297.85 | 382.84        | -191.42       | 161.25         | 293.91  | -2461.73 |
| -        | -         | -57.55         | -149.34        | -141.06 | -157.97 | 34.36 | -68.28 | 242.74 | -198.19 | 66.08  | -156.44 | 319.10        | -159.55       | 144.88         | 811.32  | -1302.82 |
| 1        | 28        | -57.55         | -149.34        | -177.78 | -197.78 | 25.99 | -70.56 | 239.31 | -201.10 | 57.51  | -175.37 | 341.29        | -170.65       | 144.88         | 780.38  | -1405.76 |
| -        | -         | 0.15           | 7.36           | -43.78  | -47.64  | 37.08 | -49.99 | 288.79 | -168.31 | 87.69  | -106.78 | 300.74        | -150.37       | 128.50         | 1168.52 | -721.21  |
| 1        | 29        | 0.15           | 7.36           | -60.92  | -66.75  | 33.05 | -39.39 | 318.16 | -166.68 | 95.42  | -95.01  | 308.36        | -154.18       | 128.50         | 1207.46 | -720.34  |
| -        | -         | 44.86          | 126.94         | 84.84   | 75.69   | 44.81 | -29.77 | 352.59 | -139.44 | 112.91 | -79.20  | 276.58        | -138.29       | 112.12         | 1618.43 | -295.29  |
| 1        | 30        | 44.86          | 126.94         | 89.81   | 80.02   | 45.82 | -26.65 | 381.58 | -136.97 | 123.89 | -78.17  | 278.61        | -139.31       | 112.12         | 1683.51 | -283.56  |
| -        | -         | 76.57          | 209.40         | 156.44  | 139.77  | 55.16 | -20.96 | 419.06 | -110.99 | 144.83 | -62.83  | 250.27        | -125.13       | 95.74          | 1952.00 | -24.91   |
| 1        | 31        | 76.57          | 209.40         | 152.49  | 135.87  | 53.07 | -20.51 | 416.86 | -106.13 | 137.60 | -60.72  | 250.23        | -125.11       | 95.74          | 1931.04 | -18.76   |
| -        | -         | 95.28          | 254.75         | 201.04  | 179.92  | 60.25 | -15.66 | 453.63 | -83.25  | 161.01 | -46.83  | 222.88        | -111.44       | 79.36          | 2108.41 | 166.05   |
| 1        | 32        | 95.28          | 254.75         | 186.29  | 165.92  | 53.95 | -14.35 | 413.18 | -74.72  | 135.35 | -42.52  | 222.78        | -111.39       | 79.36          | 1990.61 | 171.22   |
| -        | -         | 101.01         | 262.98         | 220.73  | 198.03  | 60.43 | -10.44 | 457.61 | -57.89  | 163.21 | -31.15  | 194.41        | -97.20        | 62.99          | 2095.15 | 281.90   |
| 1        | 33        | 101.01         | 262.98         | 218.80  | 194.97  | 60.06 | -13.48 | 418.15 | -73.19  | 148.84 | -40.48  | 227.72        | -113.86       | 62.99          | 2069.33 | 216.51   |
| -        | -         | 57.00          | 136.31         | 196.55  | 178.93  | 52.78 | -35.26 | 367.49 | -180.46 | 126.10 | -84.83  | 138.91        | -69.45        | 21.33          | 1504.27 | -137.68  |
| 1        | 34        | 57.00          | 136.31         | 88.42   | 81.20   | 39.56 | -15.56 | 184.30 | -69.75  | 85.37  | -35.40  | 109.90        | -54.95        | 21.33          | 994.63  | 29.13    |
| -        | -         | 0.00           | 0.00           | -2.19   | -3.08   | 1.17  | -0.61  | 9.23   | -18.54  | 2.24   | -8.47   | 10.73         | -5.36         | 30.97          | -49.49  |          |

### Envolvente de reacciones

| Nudo | Peso<br>Propio | Peso<br>Propio | C.P.    | C.P.    | s.c.   | s.c.    | Tandem  | Tandem  | Carril  | Carril  | Gradiente | Gradiente | Acc.       | TOTAL   | TOTAL   |
|------|----------------|----------------|---------|---------|--------|---------|---------|---------|---------|---------|-----------|-----------|------------|---------|---------|
|      | Viga           | Losa           | MAX.    | MIN.    | MAX.   | MIN.    | MAX.    | MIN.    | MAX.    | MIN.    | Positivo  | Negativo  | Reológicas | MAX.    | MIN.    |
| 2    | 0.000          | 0.000          | 2.641   | 2.545   | 1.079  | -0.046  | 6.594   | -0.208  | 0.976   | -0.115  | 0.432     | -0.216    | 0.000      | 11.721  | 1.960   |
| 5    | 13.775         | 31.953         | 35.082  | 32.092  | 14.148 | -5.041  | 71.458  | -22.243 | 34.380  | -11.621 | 26.039    | -13.019   | 4.455      | 231.290 | 25.895  |
| 7    | 13.775         | 31.953         | 11.133  | 8.033   | 9.336  | -10.784 | 73.295  | -24.923 | 36.493  | -16.071 | -11.379   | 5.690     | 4.455      | 186.129 | -9.396  |
| 11   | 0.000          | 0.000          | 5.562   | 5.368   | 3.331  | -1.189  | 24.539  | -2.446  | 4.276   | -2.368  | -0.272    | 0.136     | 0.000      | 37.844  | -0.908  |
| 38   | 42.495         | 112.337        | 116.305 | 104.116 | 50.163 | -24.298 | 132.369 | -48.563 | 123.391 | -38.246 | -32.271   | 16.136    | -9.594     | 593.196 | 105.976 |
| 47   | 51.555         | 153.334        | 78.594  | 69.127  | 43.718 | -28.827 | 131.226 | -57.012 | 114.327 | -50.611 | 16.647    | -8.323    | 0.532      | 589.933 | 129.243 |
| 104  | 51.224         | 154.800        | 81.987  | 72.151  | 43.620 | -27.977 | 132.982 | -56.952 | 116.003 | -49.842 | 25.490    | -12.745   | 0.871      | 606.978 | 130.658 |
| 113  | 43.235         | 110.672        | 112.548 | 100.814 | 49.698 | -24.570 | 129.735 | -48.877 | 120.745 | -38.729 | -39.675   | 19.837    | -9.541     | 586.470 | 93.329  |
| 140  | 0.000          | 0.000          | 4.954   | 4.765   | 3.063  | -1.182  | 29.967  | -2.582  | 4.216   | -2.367  | 0.057     | -0.028    | 0.000      | 42.257  | -1.395  |
| 144  | 13.799         | 30.739         | 12.411  | 9.077   | 9.268  | -10.538 | 76.320  | -25.283 | 36.415  | -15.046 | -10.722   | 5.361     | 4.410      | 188.723 | -7.975  |
| 146  | 13.799         | 30.739         | 35.155  | 32.250  | 14.031 | -4.792  | 74.366  | -22.273 | 33.775  | -11.311 | 25.210    | -12.605   | 4.410      | 231.485 | 25.806  |
| 149  | 0.000          | 0.000          | 2.260   | 2.180   | 0.922  | -0.029  | 5.720   | -0.150  | 0.806   | -0.075  | 0.444     | -0.222    | 0.000      | 10.153  | 1.704   |

ALVIPRE S.L. Página 25 de 39

### 3.1. COMPROBACIÓN DE LA SECCIÓN DEL VANO CENTRAL

### ✓ Contorno de sección parcial

| Nombre | Material | Clase | Tipo    | No. | Уq    | zq   | No. | Уq    | zq   |
|--------|----------|-------|---------|-----|-------|------|-----|-------|------|
|        |          |       |         |     | [m]   | [m]  |     | [m]   | [m]  |
| C1     | CB2      | H500  | Polígon | 1   | 0.33  | 0    | 2   | 4.13  | 0    |
|        |          |       |         | 3   | 4.46  | 1.10 | 4   | 3.95  | 1.10 |
|        |          |       |         | 5   | 3.95  | 1.00 | 6   | 4.11  | 0.80 |
|        |          |       |         | 7   | 3.96  | 0.32 | 8   | 3.87  | 0.25 |
|        |          |       |         | 9   | 0.59  | 0.25 | 10  | 0.50  | 0.32 |
|        |          |       |         | 11  | 0.35  | 0.80 | 12  | 0.51  | 1.00 |
|        |          |       |         | 13  | 0.51  | 1.10 | 14  | 0     | 1.10 |
| C2     | CS2      | H300  | Polígon | 1   | -3.09 | 1.22 | 2   | 0     | 1.10 |
|        |          |       |         | 3   | 4.46  | 1.10 | 4   | 7.55  | 1.22 |
|        |          |       |         | 5   | 7.55  | 1.50 | 6   | -3.09 | 1.50 |

### $\triangle$ Armadura G0 $\Sigma$ A<sub>s</sub> = 3695 mm<sup>2</sup>, $\rho$ = 0.1 %

| Nombre | Material  | BC | Tipo | У1q<br>[m] | z <sub>1q</sub><br>[m] | У2q<br>[m] | Z <sub>2q</sub> | as/m'<br>[mm²/m] | n,Ø   | exist A <sub>s</sub> |
|--------|-----------|----|------|------------|------------------------|------------|-----------------|------------------|-------|----------------------|
|        |           |    |      | [m]        | [m]                    | [m]        | [m]             | [mm=/m]          |       | [mm <sup>2</sup> ]   |
| R1     | R(AEH500) | 2  | PL   | 0.42       | 0.12                   | 4.04       | 0.12            | 15394            | 24Ø14 | 3695                 |

### $\square$ Tendones G0 $\Sigma$ A<sub>p</sub> = 13440 mm<sup>2</sup>, $\rho$ = 0.2 %

| Nombre | Clase  | BC | Adh. | y1q  | Z <sub>1q</sub> | dy | dz | ε₀+Δε | P <sub>oo/</sub> P <sub>o</sub> | Ap                 |
|--------|--------|----|------|------|-----------------|----|----|-------|---------------------------------|--------------------|
|        |        |    |      | [m]  | [m]             |    |    | [%]   |                                 | [mm <sup>2</sup> ] |
| PP5    | Y1860S | 0  | Con. | 4.04 | 0.12            | 0  | 0  | 5.0   | 1.000                           | 2520               |
| PP7    | Y1860S | 0  | Con. | 3.52 | 0.12            | 0  | 0  | 5.0   | 1.000                           | 1680               |
| PP6    | Y1860S | 0  | Con. | 2.91 | 0.12            | 0  | 0  | 5.0   | 1.000                           | 2520               |
| PP8    | Y1860S | 0  | Con. | 1.57 | 0.12            | 0  | 0  | 5.0   | 1.000                           | 2520               |
| PP3    | Y1860S | 0  | Con. | 0.96 | 0.12            | 0  | 0  | 5.0   | 1.000                           | 1680               |
| PP2    | Y1860S | 0  | Con. | 0.42 | 0.12            | 0  | 0  | 5.0   | 1.000                           | 2520               |

### ✓ Características mecánicas

"(con la contribución de la armadura, material de referencia: CB2)"

|    | Area   | Мо | mento de inercia  | Ce | ntro Gr., Ángulo |  |                  | Masa espec. |
|----|--------|----|-------------------|----|------------------|--|------------------|-------------|
|    | [m²]   |    | [m <sup>4</sup> ] |    | [m]              |  |                  | [kg/m]      |
| Ax | 4.6238 | lx | 0.158570          | ys | 2.23             |  | M <sub>sec</sub> | 13477.7     |
| Ay | (=Ax)  | ly | 1.209933          | ZS | 0.98             |  |                  |             |
| Az | (=Ax)  | lz | 29.371054         | β  | -0.0 [°]         |  |                  |             |

### ✓ Detalles de las características mecánicas

|        | Valor | es básico           |                   |                       | Características mecánicas |                   |                   | Torsión lx |       |     |  |
|--------|-------|---------------------|-------------------|-----------------------|---------------------------|-------------------|-------------------|------------|-------|-----|--|
| Nombre |       |                     |                   |                       | $w=E/E_{ref}$             | w A <sub>xi</sub> | w l <sub>xi</sub> | No.        | u     | 1   |  |
|        |       | espec.              |                   |                       |                           |                   |                   |            |       |     |  |
|        |       | [t/m <sup>3</sup> ] | [m <sup>2</sup> ] | [kN/mm <sup>2</sup> ] | [-]                       | [m <sup>2</sup> ] | [m <sup>4</sup> ] |            | [m]   | [m] |  |
| C1     | CB2   | 2.5                 | 1.5077            | 42                    | 1.00                      | 1.5077            | 0.029969          | 3          | 12.35 |     |  |
| C2     | CS2   | 2.5                 | 3.8833            | 33                    | 0.79                      | 3.0512            | 0.128601          | 3          | 21.84 |     |  |
| Suma   |       | kg/m                | 13477.7           |                       |                           | 4.5589            | 0.158570          |            |       |     |  |

### ✓ Materiales

| ID  | Tipo          | Elemento  | E                     | G                     | ν    | ρ                   | α     | Clase  |
|-----|---------------|-----------|-----------------------|-----------------------|------|---------------------|-------|--------|
|     |               |           | [kN/mm <sup>2</sup> ] | [kN/mm <sup>2</sup> ] |      | [t/m <sup>3</sup> ] | [%]   |        |
| CB2 | Hormigón      | Viga      | 42                    | 18                    | 0.17 | 2.5                 | 0.010 | H500   |
| CS2 | Hormigón      | Losa      | 33                    | 14                    | 0.17 | 2.5                 | 0.010 | H300   |
| R   | Acero para ar | (general) | 205                   | 79                    | 0.30 | 8.0                 | 0.012 | AEH500 |
| PB2 | Acero para pr | Viga      | 200                   | 77                    | 0.30 | 8.0                 | 0.012 | Y1860S |

### ✓ Hormigón

| ID  | Clase | f <sub>ck</sub>      | E <sub>c</sub>        | f <sub>ct</sub>      | f <sub>cv</sub>      | f <sub>ck</sub>      |
|-----|-------|----------------------|-----------------------|----------------------|----------------------|----------------------|
|     |       | [N/mm <sup>2</sup> ] | [kN/mm <sup>2</sup> ] | [N/mm <sup>2</sup> ] | [N/mm <sup>2</sup> ] | [N/mm <sup>2</sup> ] |
| CB2 | H500  | -50.0                | 42                    | 0                    | 0.9                  | 50.0                 |
| CS2 | H300  | -30.0                | 33                    | 0                    | 0.7                  | 30.0                 |

### ✓ Acero para armadura

| I | D Clase | -f <sub>yk</sub>     | E <sub>s</sub> | f <sub>yk</sub>      | ε <sub>uk</sub> | ftk                  |
|---|---------|----------------------|----------------|----------------------|-----------------|----------------------|
|   |         | [N/mm <sup>2</sup> ] | [kN/mm²]       | [N/mm <sup>2</sup> ] | [%0]            | [N/mm <sup>2</sup> ] |
| R | AEH500  | -500.0               | 210            | 500.0                | 20.0            | 500.0                |

### ✓ Acero para pretensado

| II | Clase    | -f <sub>p0.1k</sub><br>[N/mm²] | E <sub>p</sub><br>[kN/mm²] | f <sub>p0.1k</sub><br>[N/mm²] | ε <sub>uk</sub><br>[‰] | f <sub>pk</sub><br>[N/mm²] |
|----|----------|--------------------------------|----------------------------|-------------------------------|------------------------|----------------------------|
| PB | 2 Y1860S | -1670.0                        | 200                        | 1670.0                        | 20.0                   | 1860.0                     |



ALVIPRE S.L. Página 26 de 39



### Solicitaciones / Factores de eficiencia: eff(M,N)=0.89 OK

|     |      |   | F    | ·lexión y esf  | uerzo norm | al       | Es             | fuerzos de | corte y torsi | ón       | Sección completa |
|-----|------|---|------|----------------|------------|----------|----------------|------------|---------------|----------|------------------|
| No. | AP   | P | N    | M <sub>y</sub> | Mz         | eff(M,N) | V <sub>y</sub> | Vz         | T             | eff(V,T) | eff(M,N,V,T)     |
|     |      |   | [kN] | [kNm]          | [kNm]      | [-]      | [kN]           | [kN]       | [kNm]         | [-]      | [-]              |
| 1   | !ELU |   | 0    | 24677.3        | 0          | 0.89     |                |            |               |          |                  |

### ☑ Parámetros de análisis "!ELU" Código: EHE-08. Instr.Hormigón Estruct.

| ID   | D   | iagr | ama | 9 | Límites         | de defor         | mación          |                      |               | Factores | de la re   | sistenci       | a |       | Otros v | alores |  |
|------|-----|------|-----|---|-----------------|------------------|-----------------|----------------------|---------------|----------|------------|----------------|---|-------|---------|--------|--|
|      | c   | s    | р   |   | ε <sub>ε2</sub> | ε <sub>cu3</sub> | $\epsilon_{ud}$ | σ,                   | $\alpha_{cc}$ | γε       | $\gamma_5$ | γ <sub>p</sub> |   | θ     | φ       | P(t)   |  |
|      |     |      |     |   | [%]             | [‰]              | [‰]             | [N/mm <sup>2</sup> ] | [-]           | [-]      | [-]        | [-]            |   | [-]   | [-]     | [-]    |  |
| !ELU | 2/0 | 1    | 1   |   | -2.0            | -3.5             | 10.0            |                      | 0.85          | 1.50     | 1.15       | 1.15           |   | 45.00 | 0       | t=o    |  |

### ✓ Deformaciónes y tensiones extremas

| Nombre | Clase  | Уq   | zq   | 8    | $\sigma_{d}$         | γ    |
|--------|--------|------|------|------|----------------------|------|
|        |        | [m]  | [m]  | [%]  | [N/mm <sup>2</sup> ] | [-]  |
| C2     | H300   | 7.55 | 1.50 | -1.7 | -16.5                | 1.76 |
| C1     | H500   | 0.33 | 0    | 11.0 | 0                    | 1.76 |
| R1     | AEH500 | 3.90 | 0.12 | 10.0 | 434.8                | 1.15 |
| PP5    | Y1860S | 4.04 | 0.12 | 15.0 | 1452.2               | 1.15 |

### ☑ Estado Último "!ELU"

|      | Esfuerzos |       | Defo | rmación y curv  | atura  |                  | Valores rigidez     |                     |
|------|-----------|-------|------|-----------------|--------|------------------|---------------------|---------------------|
| N    | My        | Mz    | ες   | $\chi_{\gamma}$ | χz     | N/ε <sub>κ</sub> | $M_y/\chi_y$        | $M_z/\chi_z$        |
| [kN] | [kNm]     | [kNm] | [%]  | [km-1]          | [km-1] | [kN]             | [kNm <sup>2</sup> ] | [kNm <sup>2</sup> ] |
| 8.5  | 27641.2   | 0.2   | 2.7  | 8.4             | 0.0    | 3097.96          | 3.275E+6            | 2.875E+5            |

ALVIPRE S.L. Página 27 de 39

### 3.2. COMPROBACIÓN A CORTANTE DE LA VIGA CENTRAL

Se calcula el cortante duplicando el valor del alma mas desfavorable para comprobar implícitamente la interacion cortante torsor.

| fck, viga: | 5000 | t/m2 | үс: | fyk:                      | 51000    | t/m2      |      |
|------------|------|------|-----|---------------------------|----------|-----------|------|
| fcd:       | 3333 | t/m2 | 1.5 | fpk:                      | 171000   | t/m2      | γs:  |
| f1cd:      | 2000 | t/m2 |     | fyd:                      | 40000    | t/m2      | 1.15 |
|            |      |      |     |                           |          |           |      |
| fck, losa: | 3000 | t/m2 | үс: | Tensión de tesado (t/m2): | 117      | 895       | t/m2 |
| fcd:       | 2000 | t/m2 | 1.5 | Ti                        | po de ca | ble: 0.6" | 1    |
| f1cd:      | 1200 | t/m2 |     |                           |          |           |      |

### Cuantía mínima vertical de cortante:

| Alma | 0.50 | 8.33 | cm2/m |
|------|------|------|-------|
|      |      |      |       |
|      |      |      |       |
|      |      |      |       |

### ELU Cortante (art. 44.2 EHE-08) Viga 1

| Distancia | Área<br>(m2) | d (m) | bo (m) | As,eqv.<br>traccionada Nd (<br>(cm2) | <u>)</u> ρ | α  | cotgθ (θe)           | Z               | σ'cd<br>(t/m2) | ζ     | tan α | Md,conc<br>(mt) | K            | <b>Vu1</b> (t)   | β            | Vcu (t)        | Vd (t) | nº<br>cables<br>abajo | Vrd (t         | ) <b>As</b><br>(cm2/m) | V <sub>rd</sub> /V <sub>u1</sub> (t) | Adisp<br>(cm2/m) |                    | Armadura dispuesta |
|-----------|--------------|-------|--------|--------------------------------------|------------|----|----------------------|-----------------|----------------|-------|-------|-----------------|--------------|------------------|--------------|----------------|--------|-----------------------|----------------|------------------------|--------------------------------------|------------------|--------------------|--------------------|
| 0.0       | 5.81         | 1.38  | 0.60   | 706<br>564                           | 0.020      | 90 | 0.50 1.0<br>0.50 1.0 | 0<br>1.242<br>0 | 121.4<br>97.1  | 1.381 | 0.00  | -812.9          | 1.02         | 848.10<br>844.08 | 0.67<br>0.67 | 45.42<br>43.41 | 795.4  | 0                     | 795.4<br>795.4 | 151.0<br>151.4         | 0.94<br>0.94                         | 160.85           | 9.9 OK<br>9.5 OK   | 3Ef16 c/0.15       |
| 0.9       | 5.81         | 1.38  | 0.60   | 706<br>564                           | 0.020      | 90 | 0.50 1.0<br>0.50 1.0 | 0<br>1.242<br>0 | 121.4<br>97.1  | 1.381 | 0.00  | -593.0          | 1.02         | 848.10<br>844.08 | 0.67<br>0.67 | 45.42<br>43.41 | 777.2  | 0                     |                | 147.3<br>147.7         | 0.92<br>0.92                         | 160.85           | 13.5 OK<br>13.1 OK | 3Ef16 c/0.15       |
| 1.8       | 5.81         | 1.38  | 0.60   |                                      | 0.020      | 90 | 0.88 1.0<br>0.99 1.0 | 0<br>1.242<br>0 | 242.7<br>194.2 | 1.381 | 0.00  | -398.5          | 1.05<br>1.04 | 868.19<br>860.15 | 0.90<br>0.99 | 74.55<br>76.66 | 712.1  | 72                    | 712.1<br>712.1 | 128.3<br>127.9         | 0.82<br>0.83                         | 160.85           | 32.5 OK<br>32.9 OK | 3Ef16 c/0.15       |
| 3.7       | 5.81         | 1.38  | 0.50   | 141 <i>°</i><br>1129                 | 0.020      | 90 | 0.50 1.2<br>0.89 1.2 | 0<br>1.242<br>0 | 242.7<br>194.2 | 1.381 | 0.00  | -27.7           | 1.05<br>1.04 | 711.63<br>705.04 | 0.53<br>0.72 | 36.98<br>46.23 | 620.7  | 72                    |                | 97.9<br>96.4           | 0.87<br>0.88                         | 107.23           | 9.3 OK<br>10.9 OK  | 2Ef16 c/0.15       |
| 5.6       | 5.81         | 1.38  | 0.50   | 141 <sup>2</sup><br>1129             | 0.020      | 90 | 1.27 1.5<br>1.27 1.5 | 0<br>1.242<br>0 | 242.7<br>194.2 | 1.381 | 0.00  | 244.8           | 1.05         | 667.84<br>661.66 | 0.69<br>0.68 | 47.63<br>44.00 | 523.7  | 72                    | 523.7<br>523.7 | 63.9<br>64.4           | 0.78<br>0.79                         | 74.56            | 10.7 OK<br>10.2 OK | (Ef16+Ef10) c/0.15 |
| 7.4       | 5.81         | 1.38  | 0.50   | 1882<br>1505                         | 0.020      | 90 | 1.57 1.7<br>1.48 1.7 | 5<br>1.242<br>5 | 323.6<br>258.9 | 1.381 | 0.00  | 441.0           |              | 632.94<br>625.24 |              |                | 428.6  | 96                    | 428.6          | 44.1<br>45.4           | 0.68<br>0.69                         | 60.32            | 16.2 OK<br>15.0 OK | 2Ef12 c/0.15       |
| 9.3       | 5.81         | 1.38  | 0.50   | 1882<br>1505                         | 0.020      | 90 | 1.75 2.0<br>1.60 2.0 | 0<br>1.242<br>0 | 323.6<br>258.9 | 1.381 | 0.00  | 559.9           | 1.06<br>1.05 | 587.73<br>580.58 | 0.00         | 0.00<br>0.00   | 332.3  | 96                    |                | 33.4<br>33.4           | 0.57<br>0.57                         | 41.89            | 8.4 OK<br>8.4 OK   | 2Ef10 c/0.15       |
| 11.2      | 5.81         | 1.38  | 0.50   | 1882<br>1505                         | 0.020      | 90 | 1.81 2.0<br>1.64 2.0 | 0<br>1.242<br>0 | 323.6<br>258.9 | 1.381 | 0.00  | 601.1           | 1.06<br>1.05 | 587.73<br>580.58 | 0.00         | 0.00<br>0.00   | 236.2  | 96                    |                | 23.8<br>23.8           | 0.40<br>0.41                         | 30.16            | 6.4 OK<br>6.4 OK   | Ef12 c/0.15        |

En cada uno de los puntos anteriores el primer valor corresponde al cálculo a tiempo inicial y el segundo a tiempo infinito

ALVIPRE S.L. Página 28 de 39

### 3.3. ARMADURA DE LOSA

Se verifica el estado límite de rotura de la sección para los esfuerzos máximos que debe soportar. Las acciones en estado límite último son utilizadas para el posterior dimensionamiento de la armadura de las secciones

Se resumen a continuación los esfuerzos obtenidos:



A continuación, se adjuntan las cuantías de acero necesarias y las comprobaciones correspondientes:

|             |       |       |        |        |         |          |         | MO     | MENTO | S FLECTO | ORES (tr | n m)  |         |          |      |      |          |       |       |       |
|-------------|-------|-------|--------|--------|---------|----------|---------|--------|-------|----------|----------|-------|---------|----------|------|------|----------|-------|-------|-------|
|             | 1     | 2     | 3      | 4 izq. | V 4 izq | V 4 dcha | 4 dcha. | 5      | 6     | 7        | 8        | 9     | 10 izq. | V 10 izq | V 10 | dcha | 10 dcha. | 11    | 12    | 13    |
| H1          | -0.76 | -4.04 | -19.35 | -38.91 | 21.39   | -19.66   | -18.91  | -11.35 | -7    | -3.56    | -1.04    | 0.55  | 1.23    | -0.3     | -7   | .63  | -15.75   | -9.08 | -3.96 | -0.76 |
| H2          | -0.76 | -3.96 | -9.08  | -15.75 | 7.63    | -16.56   | -14.39  | -2.8   | 4.52  | 5.3      | 4.52     | -2.8  | -14.39  | 16.56    | -7   | .63  | -15.75   | -9.08 | -3.96 | -0.76 |
| Н3          | -0.76 | -4.04 | -19.35 | -38.91 | 21.39   | -17.16   | -14.74  | -9.01  | -6.47 | -4.86    | -4.16    | -4.38 | -6.93   | 9.73     | -1!  | 5.71 | -29.92   | -15.5 | -3.98 | -0.76 |
| H4          | -0.76 | -4.04 | -19.35 | -38.91 | 21.39   | -27.46   | -24.26  | -11.03 | -3.09 | 0.44     | 3.39     | 0.87  | -4.12   | 7.5      | -7   | .63  | -15.75   | -9.08 | -3.96 | -0.76 |
| H5          | -0.76 | -3.96 | -9.08  | -15.75 | 7.63    | -20.64   | -13.49  | -1.75  | 2.95  | 6.92     | 3.2      | -4.5  | -13.13  | 12.49    | -7   | .63  | -15.75   | -9.08 | -3.96 | -0.76 |
| Н6          | -0.76 | -3.96 | -9.08  | -15.75 | 7.63    | -20.33   | -12.53  | -1.01  | 3.48  | 7.13     | 3.27     | -5.71 | -20.1   | 20.54    | -1!  | 5.47 | -24.48   | -10.3 | -3.96 | -0.76 |
| H7          |       |       |        |        |         |          |         |        |       |          |          |       |         |          |      |      |          |       |       |       |
|             |       |       |        |        |         |          |         |        |       |          |          |       |         |          |      |      |          |       |       |       |
| MIN         | -0.76 | -4.04 | -19.35 | -38.91 | 7.63    | -27.46   | -24.26  | -11.35 | -7    | -4.86    | -4.16    | -5.71 | -20.1   | -0.3     | -1!  | 5.71 | -29.92   | -15.5 | -3.98 | -0.76 |
| MAX.        | 0.00  | 0.00  | 0.00   | 0.00   | 21.39   | 0.00     | 0.00    | 0.00   | 4.52  | 7.13     | 4.52     | 0.87  | 1.23    | 20.54    | 0    | .00  | 0.00     | 0.00  | 0.00  | 0.00  |
|             |       |       |        |        |         |          |         |        |       |          |          |       |         |          |      |      |          |       |       |       |
| Canto Secc. | 0.29  | 0.33  | 0.36   | 0.40   | 0.40    | 0.40     | 0.40    | 0.40   | 0.40  | 0.40     | 0.40     | 0.40  | 0.40    | 0.40     | 0    | .40  | 0.40     | 0.36  | 0.33  | 0.29  |
|             |       |       |        |        |         |          |         |        |       |          |          |       |         |          |      |      |          |       |       |       |
| As (-)      | 0.84  | 3.82  | 16.21  | 28.82  |         |          | 17.97   | 8.41   | 5.19  | 3.60     | 3.08     | 4.23  | 14.89   |          |      |      | 22.16    | 12.99 | 3.77  | 0.84  |
| φ20         | 0.3   | 1.2   | 5.2    | 9.2    |         |          | 5.7     | 2.7    | 1.7   | 1.1      | 1.0      | 1.3   | 4.7     |          |      |      | 7.1      | 4.1   | 1.2   | 0.3   |
|             |       |       |        |        |         |          |         |        |       |          |          |       |         |          |      |      |          |       |       |       |
| As (+)      | 0.00  | 0.00  | 0.00   | 0.00   |         |          | 0.00    | 0.00   | 3.73  | 5.88     | 3.73     | 0.72  | 1.01    |          |      |      | 0.00     | 0.00  | 0.00  | 0.00  |
| φ12         | 0.0   | 0.0   | 0.0    | 0.0    |         |          | 0.0     | 0.0    | 3.3   | 5.2      | 3.3      | 0.6   | 0.9     |          |      |      | 0.0      | 0.0   | 0.0   | 0.0   |

### Sección 4 exterior:

### Dimensionamiento de secciones a flexión simple

### 1 Datos

### - Materiales

```
Tipo de hormigón : HA-30 Tipo de acero : B-500-S fck [MPa] = 30.00 fyk [MPa] = 500.00 \gamma_c = 1.50 \gamma_s = 1.15
```

### - Sección

```
Sección: LOSA40CM
b [m] = 1.00
h [m] = 0.40
ri [m] = 0.050
rs [m] = 0.100
```



### 2 Dimensionamiento

$$Md [kN \cdot m] = 389.1$$









Plano de deformación de agotamiento x [m] = 0.079 1/r [1/m] ·1.E-3 = 36.7  $\epsilon_s$  ·1.E-3 = 2.9

| Deformación y tensión de armadura | Deformación | У | tensión | de | armadura |
|-----------------------------------|-------------|---|---------|----|----------|
|-----------------------------------|-------------|---|---------|----|----------|

| Profundidad | Armadura | Deformación | Tensión |
|-------------|----------|-------------|---------|
| [m]         | $[cm^2]$ | ·1.E-3      | [MPa]   |
| 0.100       | 0.0      | -0.8        | 0.0     |
| 0.350       | 28.1     | -9.9        | 434.8   |

$$At_est [cm^2] = 28.1$$

| ф [mm]   | 12   | 14   | 16   | 20   | 25   |
|----------|------|------|------|------|------|
| п°ф      | 25   | 19   | 14   | 9    | 6    |
| n° capas | 2    | 1    | 1    | 1    | 1    |
| At [cm²] | 28.3 | 29.2 | 28.1 | 28.3 | 29.5 |
| wk [mm]  | 0.27 | 0.28 | 0.31 | 0.34 | 0.37 |

# Comprobación del Estado Límite de Servicio de fisuración debido a solicitaciones normales

### 1 Datos

### - Materiales

```
Tipo de hormigón: HA-30
Tipo de acero: B-500-S
fck [MPa] = 30.00
fyk [MPa] = 500.00
```

### - Ambiente

Clase general de exposición : IIb Clases específicas de exposición :

### - Geometría de la sección

Sección : LOSA40CM b [m] = 1.00 h [m] = 0.40

### - Armado de la sección

$$\phi \text{ [mm]} = 20$$



| capa | nº barras | Separación [mm] |
|------|-----------|-----------------|
| 1    | 10        | 45.0            |
|      | s [cm     | 2] = 31.4       |

Ac, ef  $[cm^2] = 1000.0$ 

### 2 Resultados

| Mk [kN·m]                                                                                          | = 288.2           |
|----------------------------------------------------------------------------------------------------|-------------------|
| Separación media entre fisuras sm [mm] Deformación media de las armaduras ɛsm [·1.E-3]             | = 122.0<br>= 1.34 |
| Tensión en las armaduras en el instante de fisuración $\sigma$ sr [MPa]                            | = 105.1           |
| Tensión en las armaduras en servicio $\sigma$ s [MPa]<br>Abertura característica de fisura wk [mm] | = 286.6<br>= 0.28 |

| Clasa da avmasición | wk max [mm] |              |  |  |  |
|---------------------|-------------|--------------|--|--|--|
| Clase de exposición | Armado      | Pretensado   |  |  |  |
| I                   | 0.4         | 0.2          |  |  |  |
| IIa, IIb, H         | 0.3         | 0.2          |  |  |  |
| IIIa, IIIb, IV, F   | 0.2         | Dagammasián  |  |  |  |
| IIIc, Qa, Qb, Qc    | 0.1         | Decompresión |  |  |  |

Se colocará 10Ø20 pml en la cara superior de la losa.

ALVIPRE S.L. Página 30 de 39

### Cálculo de secciones a cortante

### 1 Datos

- Materiales

Tipo de hormigón : HA-30 Tipo de acero : B-500-S fck [MPa] = 30.00 fyk [MPa] = 500.00  $\gamma_c$  = 1.50  $\gamma_s$  = 1.15

- Control del hormigón

Control normal

- Tipo de elemento estructural

Tipo : elemento sin armadura a cortante

- Sección

Sección : LOSA40CM b0 [m] = 1.00 h [m] = 0.40



### 2 Comprobación

 $\rho$ l [:1.E-3] = 8 Nd [kN] = 0.0

Vu [kN] = 223.0

Vu = 223.0 kN > Vd = 206.4 kN No se dispone armadura a cortante. No se considera el máximo cortante de 27.46 t por hallarse la rueda del carro a menos de un canto útil de distancia de la sección a dimensionar.

### Sección 7:

### Dimensionamiento de secciones a flexión simple

### 1 Datos

- Materiales

Tipo de hormigón : HA-30 Tipo de acero : B-500-S fck [MPa] = 30.00 fyk [MPa] = 500.00  $\gamma_c$  = 1.50  $\gamma_s$  = 1.15

- Sección

Sección : LOSA40CM b [m] = 1.00 h [m] = 0.40 ri [m] = 0.100 rs [m] = 0.050



### 2 Dimensionamiento

 $Md [kN \cdot m] = 71.3$ 









```
Plano de deformación de agotamiento x [m] = 0.034 
 1/r [1/m] ·1.E-3 = 37.5 
 \epsilon_s ·1.E-3 = 1.3 
 \epsilon_i ·1.E-3 = -13.7
```

Deformación y tensión de armaduras

| Profundidad | Armadura | Deformación | Tensión |
|-------------|----------|-------------|---------|
| [m]         | $[cm^2]$ | ·1.E-3      | [MPa]   |
| 0.050       | 0.0      | -0.6        | 0.0     |
| 0.300       | 7.7      | -10.0       | 434.8   |

At est 
$$[cm^2] = 7.7$$

| ф [mm]   | 12   | 14   | 16   | 20   | 25   |
|----------|------|------|------|------|------|
| n°ф      | 7 5  |      | 5 4  |      | 3    |
| n° capas | 1    | 1    | 1    | 1    | 1    |
| At [cm²] | 7.9  | 7.7  | 8.0  | 9.4  | 14.7 |
| wk [mm]  | 0.22 | 0.25 | 0.25 | 0.23 | 0.15 |

## Comprobación del Estado Límite de Servicio de fisuración debido a solicitaciones normales

### 1 Datos

### - Materiales

```
Tipo de hormigón: HA-30
Tipo de acero: B-500-S
fck [MPa] = 30.00
fyk [MPa] = 500.00
```

### - Ambiente

Clase general de exposición : II Clases específicas de exposición :

### - Geometría de la sección

Sección : LOSA40CM b [m] = 1.00 h [m] = 0.40

### - Armado de la sección

 $\phi \text{ [mm]} = 12$ 



| capa | nº barras | Separación<br>[mm] |
|------|-----------|--------------------|
| 1    | 7         | 41.0               |
| Z    | le [cm:   | 21 = 7 9           |

Ac, ef  $[cm^2] = 1000.0$ 

### 2 Resultados

| Mk [kN·m]                                                               | = 96.2  |
|-------------------------------------------------------------------------|---------|
| Separación media entre fisuras sm [mm]                                  | = 177.0 |
| Deformación media de las armaduras εsm [·1.E-3]                         | = 0.90  |
| Tensión en las armaduras en el instante de fisuración $\sigma$ sr [MPa] | = 357.4 |
| Tensión en las armaduras en servicio $\sigma$ s [MPa]                   | = 357.7 |
| Abertura característica de fisura wk [mm]                               | = 0.27  |

| Clasa da avnosición | wk max [mm] |              |  |  |  |  |
|---------------------|-------------|--------------|--|--|--|--|
| Clase de exposición | Armado      | Pretensado   |  |  |  |  |
| I                   | 0.4         | 0.2          |  |  |  |  |
| IIa, IIb, H         | 0.3         | 0.2          |  |  |  |  |
| IIIa, IIIb, IV, F   | 0.2         | Dagommagión  |  |  |  |  |
| IIIc, Qa, Qb, Qc    | 0.1         | Decompresión |  |  |  |  |

Se colocarán 7Ø12 pml en la cara inferior de la losa.

ALVIPRE S.L. Página 32 de 39

### Sección 4 interior:

### Cálculo de secciones a cortante

### 1 Datos

- Materiales

```
Tipo de hormigón : HA-30 

Tipo de acero : B-500-S 

fck [MPa] = 30.00 

fyk [MPa] = 500.00 

\gamma_c = 1.50 

\gamma_s = 1.15
```

- Control del hormigón

Control normal

- Tipo de elemento estructural

Tipo : elemento sin armadura a cortante

- Sección



### 2 Comprobación

$$\rho$$
l [·1.E-3] = 8  
Nd [kN] = 0.0

Vu [kN] = 223.0

Vu = 223.0 kN > Vd = 206.4 kN No se dispone armadura a cortante, considerando el cortante máximo a un canto útil por el interior del ala de la viga, ya que el máximo de 274.6 kN se produce con una rueda del carro sobre el alma.





| IMPACTO EN BA                                               | ARRERA                            |           |                           |
|-------------------------------------------------------------|-----------------------------------|-----------|---------------------------|
| Longitud voladizo                                           | 3.87 <b>m</b>                     | Mlosa     | 6.10 tn m                 |
| -                                                           | 0.33 m                            | M acera   | 2.46 tn m                 |
| Espesor losa<br>Ancho barrera                               |                                   | M barrera | 2.46 tii iii<br>2.18 tn m |
|                                                             | 0.60 m                            |           | 2.18 tirii<br>16.74 tn m  |
| Ancho acera                                                 | 1.60 m                            | M carro   |                           |
| Carga permanente acera                                      | 0.50 tn/m2                        | M carril  | 2.32 tn m                 |
| Carga permanente barrera                                    | 0.85 tn/m2                        | Mimpacto  | 8.92 tn m                 |
| Carga puntual                                               | 15 tn                             | Мt        | 38.72 tn m                |
| SC carril                                                   | 0.90 tn/m2                        |           |                           |
| Fx base poste barrera                                       | 33.48 tn                          |           |                           |
| Fy base poste barrera                                       | 26.37 tn                          |           |                           |
| Fz base poste barrera                                       | 7.82 tn                           |           |                           |
| Mx base poste barrera                                       | 9.52 tn m                         |           |                           |
| My base poste barrera                                       | 8.13 tn m                         |           |                           |
| Ancho reparto carro                                         | 3.71 m                            |           |                           |
| Ancho reparto barrera                                       | 3.32 m                            |           |                           |
| Coef. Mayoración CP                                         | 1.00                              |           |                           |
| Coef. Mayoración SC                                         | 1.00                              |           |                           |
| Espesor losa:                                               | 0.40 m                            |           |                           |
| Recubrimiento:                                              | 0.045 m                           |           |                           |
| fck losa:                                                   | 300 kg/cm <sup>2</sup>            |           |                           |
| Nd<br>Md                                                    | 7.94 tn<br>38.72 T m              |           |                           |
| Capacidad Mecánica (T/ml):                                  | 121.89 T/ml                       |           |                           |
| Díametro a disponer:                                        | 20 <b>mm</b>                      |           |                           |
| Nº de barras de cálculo:                                    | 8.9                               |           |                           |
| Se dispondrán finalmente:                                   | 10 barras                         |           |                           |
| As (principal) de cálculo: <b>As (principal) dispuesta:</b> | 28.03 cm <sup>2</sup><br>31.42 cm |           |                           |
| As (reparto):                                               | 7.85 cm <sup>2</sup>              |           |                           |
| Cap. Mecánica reparto:                                      | 30.47 T/ml                        |           |                           |
| Díametro Arm reparto:                                       | 12 mm                             |           |                           |
| Nº de barras de cálculo:                                    | 5. <b>4</b>                       |           |                           |
| Se dispondrán finalmente:<br>As (reparto) dispuesta:        | 7 barras<br>7.917 cm <sup>-</sup> |           |                           |

ALVIPRE S.L. Página 34 de 39

### 4. <u>DISEÑO DE APARATOS DE APOYO</u>

### **4.1. REACCIONES VERTICALES**

Se adjuntan a continuación la envolvente de reacciones verticales, así como las acciones máximas en apoyos y reacciones concomitantes.

### Situación de apoyos:



### Envolvente de reacciones

| Nudo | Peso<br>Propio | Peso<br>Propio | C.P.    | C.P.    | s.c.   | s.c.    | Tandem  | Tandem  | Carril  | Carril  | Gradiente | Gradiente | Acc.       | TOTAL   | TOTAL   |
|------|----------------|----------------|---------|---------|--------|---------|---------|---------|---------|---------|-----------|-----------|------------|---------|---------|
|      | Viga           | Losa           | MAX.    | MIN.    | MAX.   | MIN.    | MAX.    | MIN.    | MAX.    | MIN.    | Positivo  | Negativo  | Reológicas | MAX.    | MIN.    |
| 2    | 0.000          | 0.000          | 2.641   | 2.545   | 1.079  | -0.046  | 6.594   | -0.208  | 0.976   | -0.115  | 0.432     | -0.216    | 0.000      | 11.721  | 1.960   |
| 5    | 13.775         | 31.953         | 35.082  | 32.092  | 14.148 | -5.041  | 71.458  | -22.243 | 34.380  | -11.621 | 26.039    | -13.019   | 4.455      | 231.290 | 25.895  |
| 7    | 13.775         | 31.953         | 11.133  | 8.033   | 9.336  | -10.784 | 73.295  | -24.923 | 36.493  | -16.071 | -11.379   | 5.690     | 4.455      | 186.129 | -9.396  |
| 11   | 0.000          | 0.000          | 5.562   | 5.368   | 3.331  | -1.189  | 24.539  | -2.446  | 4.276   | -2.368  | -0.272    | 0.136     | 0.000      | 37.844  | -0.908  |
| 38   | 42.495         | 112.337        | 116.305 | 104.116 | 50.163 | -24.298 | 132.369 | -48.563 | 123.391 | -38.246 | -32.271   | 16.136    | -9.594     | 593.196 | 105.976 |
| 47   | 51.555         | 153.334        | 78.594  | 69.127  | 43.718 | -28.827 | 131.226 | -57.012 | 114.327 | -50.611 | 16.647    | -8.323    | 0.532      | 589.933 | 129.243 |
| 104  | 51.224         | 154.800        | 81.987  | 72.151  | 43.620 | -27.977 | 132.982 | -56.952 | 116.003 | -49.842 | 25.490    | -12.745   | 0.871      | 606.978 | 130.658 |
| 113  | 43.235         | 110.672        | 112.548 | 100.814 | 49.698 | -24.570 | 129.735 | -48.877 | 120.745 | -38.729 | -39.675   | 19.837    | -9.541     | 586.470 | 93.329  |
| 140  | 0.000          | 0.000          | 4.954   | 4.765   | 3.063  | -1.182  | 29.967  | -2.582  | 4.216   | -2.367  | 0.057     | -0.028    | 0.000      | 42.257  | -1.395  |
| 144  | 13.799         | 30.739         | 12.411  | 9.077   | 9.268  | -10.538 | 76.320  | -25.283 | 36.415  | -15.046 | -10.722   | 5.361     | 4.410      | 188.723 | -7.975  |
| 146  | 13.799         | 30.739         | 35.155  | 32.250  | 14.031 | -4.792  | 74.366  | -22.273 | 33.775  | -11.311 | 25.210    | -12.605   | 4.410      | 231.485 | 25.806  |
| 149  | 0.000          | 0.000          | 2.260   | 2.180   | 0.922  | -0.029  | 5.720   | -0.150  | 0.806   | -0.075  | 0.444     | -0.222    | 0.000      | 10.153  | 1.704   |

### **4.2. REACCIONES Y CONCOMITANTES**



### Reacciones en Nudo 2 y concomitantes

|      | P.P.   | P.P.    | C.P.    | C.P.    | S.C.    | S.C.   | Tandem | Tandem  | Carril  | Carril  | Gradiente | Gradiente |            |
|------|--------|---------|---------|---------|---------|--------|--------|---------|---------|---------|-----------|-----------|------------|
| Nudo | Viga   | Losa    | MAX.    | MIN.    | MAX.    | MIN.   | MAX.   | MIN.    | MAX.    | MIN.    | Positivo  | Negativo  | Reológicas |
| 2    | 0      | 0       | 2.641   | 2.545   | 1.079   | -0.046 | 6.594  | -0.208  | 0.976   | -0.115  | 0.432     | -0.216    | 0          |
| 5    | 13.775 | 31.953  | 35.088  | 32.097  | 14.147  | -5.04  | 56.411 | -22.153 | 34.381  | -11.624 | 26.042    | -13.021   | 4.456      |
| 7    | 13.775 | 31.953  | 11.119  | 8.021   | -10.783 | 9.332  | 12.772 | 56.817  | -10.098 | 30.507  | -11.384   | 5.692     | 4.456      |
| 11   | 0      | 0       | 5.561   | 5.367   | -1.189  | 3.33   | -0.688 | 7.475   | -2.139  | 4.047   | -0.272    | 0.136     | 0          |
| 38   | 42.495 | 112.337 | 116.366 | 104.172 | 32.333  | -6.45  | 10.104 | 45.551  | 104.074 | 2.362   | -32.364   | 16.182    | -9.615     |
| 47   | 51.555 | 153.334 | 78.552  | 69.086  | 0.417   | 14.457 | 13.081 | 18.186  | -4.646  | 33.108  | 16.78     | -8.39     | 0.55       |
| 104  | 51.224 | 154.8   | 82.47   | 72.588  | 5.022   | 10.737 | 2.523  | -5.949  | 78.729  | -34.198 | 25.218    | -12.609   | 1.095      |
| 113  | 43.235 | 110.672 | 112.057 | 100.372 | 29.655  | -4.639 | 6.498  | 12.874  | -22.157 | 80.278  | -39.491   | 19.746    | -9.795     |
| 132  | 0      | 0       | 4.953   | 4.769   | -1.178  | 3.069  | -0.377 | 1.442   | -0.874  | 0.488   | 0.099     | -0.05     | 0          |
| 136  | 13.799 | 30.739  | 11.955  | 8.655   | -10.271 | 8.868  | -3.681 | 12.11   | -8.149  | 14.549  | -10.511   | 5.256     | 4.427      |
| 138  | 13.799 | 30.739  | 35.609  | 32.664  | 13.939  | -4.582 | 1.753  | -6.11   | 4.204   | 23.492  | 25.008    | -12.504   | 4.427      |
| 141  | 0      | 0       | 2.263   | 2.182   | 0.922   | -0.028 | 0.01   | -0.036  | 0.025   | 0.741   | 0.443     | -0.221    | 0          |

| Total MAX | 11.721 |
|-----------|--------|
| Total MIN | 1.96   |

### Reacciones en Nudo 5 y concomitantes

|      | P.P.   | P.P.    | C.P.    | C.P.    | S.C.    | S.C.   | Tandem | Tandem | Carril  | Carril  | Gradiente | Gradiente |            |
|------|--------|---------|---------|---------|---------|--------|--------|--------|---------|---------|-----------|-----------|------------|
| Nudo | Viga   | Losa    | MAX.    | MIN.    | MAX.    | MIN.   | MAX.   | MIN.   | MAX.    | MIN.    | Positivo  | Negativo  | Reológicas |
| 2    | 0      | 0       | 2.641   | 2.545   | 1.079   | -0.046 | 4.059  | -0.207 | 0.976   | -0.115  | 0.432     | -0.216    | 0          |
| 5    | 13.775 | 31.953  | 35.088  | 32.097  | 14.147  | -5.04  | 71.46  | -22.24 | 34.381  | -11.624 | 26.042    | -13.021   | 4.456      |
| 7    | 13.775 | 31.953  | 11.119  | 8.021   | -10.783 | 9.332  | 6.585  | 54.339 | -10.098 | 30.507  | -11.384   | 5.692     | 4.456      |
| 11   | 0      | 0       | 5.561   | 5.367   | -1.189  | 3.33   | -1.192 | 6.8    | -2.139  | 4.047   | -0.272    | 0.136     | 0          |
| 38   | 42.495 | 112.337 | 116.366 | 104.172 | 32.333  | -6.45  | 11.293 | 44.801 | 104.074 | 2.362   | -32.364   | 16.182    | -9.615     |
| 47   | 51.555 | 153.334 | 78.552  | 69.086  | 0.417   | 14.457 | 10.78  | 22.381 | -4.646  | 33.108  | 16.78     | -8.39     | 0.55       |
| 104  | 51.224 | 154.8   | 82.47   | 72.588  | 5.022   | 10.737 | 3.288  | -6.442 | 78.729  | -34.198 | 25.218    | -12.609   | 1.095      |
| 113  | 43.235 | 110.672 | 112.057 | 100.372 | 29.655  | -4.639 | 6.06   | 13.129 | -22.157 | 80.278  | -39.491   | 19.746    | -9.795     |
| 132  | 0      | 0       | 4.953   | 4.769   | -1.178  | 3.069  | -0.385 | 1.448  | -0.874  | 0.488   | 0.099     | -0.05     | 0          |
| 136  | 13.799 | 30.739  | 11.955  | 8.655   | -10.271 | 8.868  | -3.751 | 12.168 | -8.149  | 14.549  | -10.511   | 5.256     | 4.427      |
| 138  | 13.799 | 30.739  | 35.609  | 32.664  | 13.939  | -4.582 | 1.792  | -6.141 | 4.204   | 23.492  | 25.008    | -12.504   | 4.427      |
| 141  | 0      | 0       | 2.263   | 2.182   | 0.922   | -0.028 | 0.011  | -0.037 | 0.025   | 0.741   | 0.443     | -0.221    | 0          |

| Total MAX | 231.30 |
|-----------|--------|
| Total MIN | 25.    |

ALVIPRE S.L. Página 35 de 39

### Reacciones en Nudo 7 y concomitantes

|      | P.P.   | P.P.    | C.P.    | C.P.    | S.C.   | S.C.    | Tandem  | Tandem  | Carril  | Carril  | Gradiente | Gradiente |           |
|------|--------|---------|---------|---------|--------|---------|---------|---------|---------|---------|-----------|-----------|-----------|
| Nudo | Viga   | Losa    | MAX.    | MIN.    | MAX.   | MIN.    | MAX.    | MIN.    | MAX.    | MIN.    | Positivo  | Negativo  | Reológica |
| 2    | 0      | 0       | 2.641   | 2.545   | -0.046 | 1.079   | -0.074  | 0.112   | -0.114  | 0.976   | 0.432     | -0.216    | 0         |
| 5    | 13.775 | 31.953  | 35.088  | 32.097  | -5.04  | 14.147  | 2.367   | 12.307  | -10.926 | 33.69   | 26.042    | -13.021   | 4.456     |
| 7    | 13.775 | 31.953  | 11.119  | 8.021   | 9.332  | -10.783 | 73.294  | -24.922 | 36.489  | -16.069 | -11.384   | 5.692     | 4.456     |
| 11   | . 0    | 0       | 5.561   | 5.367   | 3.33   | -1.189  | 10.615  | -2.431  | 4.276   | -2.368  | -0.272    | 0.136     | 0         |
| 38   | 42.495 | 112.337 | 116.366 | 104.172 | -6.45  | 32.333  | 45.974  | 23.896  | 9.473   | 95.675  | -32.364   | 16.182    | -9.615    |
| 47   | 51.555 | 153.334 | 78.552  | 69.086  | 14.457 | 0.417   | -7.736  | 71.093  | 34.166  | -4.053  | 16.78     | -8.39     | 0.55      |
| 104  | 51.224 | 154.8   | 82.47   | 72.588  | 10.737 | 5.022   | -12.762 | 80.113  | -3.412  | 71.37   | 25.218    | -12.609   | 1.095     |
| 113  | 43.235 | 110.672 | 112.057 | 100.372 | -4.639 | 29.655  | 7.841   | -33.411 | 16.591  | -5.202  | -39.491   | 19.746    | -9.795    |
| 132  | 0      | 0       | 4.953   | 4.769   | 3.069  | -1.178  | 0.103   | -1.246  | 1.424   | -1.144  | 0.099     | -0.05     | 0         |
| 136  | 13.799 | 30.739  | 11.955  | 8.655   | 8.868  | -10.271 | 0.901   | -11.578 | 15.263  | -8.43   | -10.511   | 5.256     | 4.427     |
| 138  | 13.799 | 30.739  | 35.609  | 32.664  | -4.582 | 13.939  | -0.52   | 6.033   | -2.989  | 11.608  | 25.008    | -12.504   | 4.427     |
| 141  | . 0    | 0       | 2.263   | 2.182   | -0.028 | 0.922   | -0.003  | 0.036   | -0.024  | 0.238   | 0.443     | -0.221    | 0         |

 Total MAX
 186.111

 Total MIN
 -9.409

### Reacciones en Nudo 11 y concomitantes

|      | P.P.   | P.P.    | C.P.    | C.P.    | S.C.   | S.C.    | Tandem | Tandem | Carril  | Carril  | Gradiente | Gradiente |            |
|------|--------|---------|---------|---------|--------|---------|--------|--------|---------|---------|-----------|-----------|------------|
| Nudo | Viga   | Losa    | MAX.    | MIN.    | MAX.   | MIN.    | MAX.   | MIN.   | MAX.    | MIN.    | Positivo  | Negativo  | Reológicas |
| 2    | 0      | 0       | 2.641   | 2.545   | -0.046 | 1.079   | -0.079 | 0.807  | -0.114  | 0.976   | 0.432     | -0.216    | 0          |
| 5    | 13.775 | 31.953  | 35.088  | 32.097  | -5.04  | 14.147  | -4.817 | 48.811 | -10.935 | 33.693  | 26.042    | -13.021   | 4.456      |
| 7    | 13.775 | 31.953  | 11.119  | 8.021   | 9.332  | -10.783 | 60.464 | -10.71 | 36.475  | -16.065 | -11.384   | 5.692     | 4.456      |
| 11   | 0      | 0       | 5.561   | 5.367   | 3.33   | -1.189  | 24.539 | -2.447 | 4.276   | -2.368  | -0.272    | 0.136     | 0          |
| 38   | 42.495 | 112.337 | 116.366 | 104.172 | -6.45  | 32.333  | 30.67  | 34.78  | 11.256  | 95.18   | -32.364   | 16.182    | -9.615     |
| 47   | 51.555 | 153.334 | 78.552  | 69.086  | 14.457 | 0.417   | -9.958 | 29.091 | 31.881  | -3.419  | 16.78     | -8.39     | 0.55       |
| 104  | 51.224 | 154.8   | 82.47   | 72.588  | 10.737 | 5.022   | 7.163  | 24.817 | -35.849 | 80.381  | 25.218    | -12.609   | 1.095      |
| 113  | 43.235 | 110.672 | 112.057 | 100.372 | -4.639 | 29.655  | 5.23   | -0.254 | 81.297  | -23.176 | -39.491   | 19.746    | -9.795     |
| 132  | 0      | 0       | 4.953   | 4.769   | 3.069  | -1.178  | 1.316  | -0.841 | 0.501   | -0.887  | 0.099     | -0.05     | 0          |
| 136  | 13.799 | 30.739  | 11.955  | 8.655   | 8.868  | -10.271 | 10.986 | -8.053 | 14.663  | -8.264  | -10.511   | 5.256     | 4.427      |
| 138  | 13.799 | 30.739  | 35.609  | 32.664  | -4.582 | 13.939  | -5.482 | 3.975  | 23.426  | 4.27    | 25.008    | -12.504   | 4.427      |
| 141  | 0      | 0       | 2.263   | 2.182   | -0.028 | 0.922   | -0.033 | 0.024  | 0.741   | 0.025   | 0.443     | -0.221    | 0          |

Total MAX 37.842
Total MIN -0.909

### Reacciones en Nudo 38 y concomitantes

|      | P.P.   | P.P.    | C.P.    | C.P.    | S.C.    | S.C.    | Tandem  | Tandem  | Carril  | Carril  | Gradiente | Gradiente |            |
|------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|-----------|------------|
| Nudo | Viga   | Losa    | MAX.    | MIN.    | MAX.    | MIN.    | MAX.    | MIN.    | MAX.    | MIN.    | Positivo  | Negativo  | Reológicas |
| 2    | 0      | 0       | 2.641   | 2.545   | 1.074   | -0.042  | -0.037  | 0.054   | 0.928   | 0.02    | 0.432     | -0.216    | 0          |
| 5    | 13.775 | 31.953  | 35.088  | 32.097  | 13.633  | -4.525  | -1.712  | 5.926   | 29.415  | 2.18    | 26.042    | -13.021   | 4.456      |
| 7    | 13.775 | 31.953  | 11.119  | 8.021   | -10.028 | 8.577   | 29.709  | -10.967 | 1.597   | -4.006  | -11.384   | 5.692     | 4.456      |
| 11   | 0      | 0       | 5.561   | 5.367   | -1.101  | 3.242   | 3.082   | -1.118  | -0.686  | -0.412  | -0.272    | 0.136     | 0          |
| 38   | 42.495 | 112.337 | 116.366 | 104.172 | 50.203  | -24.32  | 132.382 | -48.596 | 123.365 | -38.282 | -32.364   | 16.182    | -9.615     |
| 47   | 51.555 | 153.334 | 78.552  | 69.086  | -28.665 | 43.539  | -37.871 | 110.618 | -36.828 | 90.02   | 16.78     | -8.39     | 0.55       |
| 104  | 51.224 | 154.8   | 82.47   | 72.588  | 27.008  | -11.249 | -16.297 | 44.707  | 85.412  | 13.741  | 25.218    | -12.609   | 1.095      |
| 113  | 43.235 | 110.672 | 112.057 | 100.372 | 3.249   | 21.767  | 10.184  | 9.664   | -5.312  | 39.092  | -39.491   | 19.746    | -9.795     |
| 132  | 0      | 0       | 4.953   | 4.769   | 2.334   | -0.443  | 0.123   | -1.739  | 3.582   | -1.377  | 0.099     | -0.05     | 0          |
| 136  | 13.799 | 30.739  | 11.955  | 8.655   | 2.959   | -4.362  | 1.064   | -16.768 | 32.478  | -13.437 | -10.511   | 5.256     | 4.427      |
| 138  | 13.799 | 30.739  | 35.609  | 32.664  | 7.308   | 2.049   | -0.623  | 8.172   | -1.301  | 6.412   | 25.008    | -12.504   | 4.427      |
| 141  | 0      | 0       | 2.263   | 2.182   | 0.882   | 0.012   | -0.004  | 0.049   | 0.15    | 0.038   | 0.443     | -0.221    | 0          |

Total MAX 593.331
Total MIN 105.827

### Reacciones en Nudo 47 y concomitantes

|    |     | P.P.   | P.P.    | C.P.    | C.P.    | S.C.    | S.C.    | Tandem  | Tandem  | Carril  | Carril  | Gradiente | Gradiente |            |
|----|-----|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|-----------|------------|
| Nu | do  | Viga   | Losa    | MAX.    | MIN.    | MAX.    | MIN.    | MAX.    | MIN.    | MAX.    | MIN.    | Positivo  | Negativo  | Reológicas |
|    | 2   | 0      | 0       | 2.641   | 2.545   | -0.041  | 1.074   | 0.07    | 0.104   | -0.074  | 0.917   | 0.432     | -0.216    | 0          |
|    | 5   | 13.775 | 31.953  | 35.088  | 32.097  | -4.483  | 13.591  | 7.744   | 18.156  | -7.092  | 27.888  | 26.042    | -13.021   | 4.456      |
|    | 7   | 13.775 | 31.953  | 11.119  | 8.021   | 8.493   | -9.944  | -15.208 | 26.097  | 22.003  | 2.887   | -11.384   | 5.692     | 4.456      |
|    | 11  | 0      | 0       | 5.561   | 5.367   | 3.234   | -1.093  | -1.511  | -0.012  | 3.186   | -0.865  | -0.272    | 0.136     | 0          |
|    | 38  | 42.495 | 112.337 | 116.366 | 104.172 | -24.239 | 50.121  | -29.961 | 115.844 | -28.714 | 100.131 | -32.364   | 16.182    | -9.615     |
|    | 47  | 51.555 | 153.334 | 78.552  | 69.086  | 43.66   | -28.786 | 131.283 | -57.078 | 114.425 | -50.623 | 16.78     | -8.39     | 0.55       |
|    | 104 | 51.224 | 154.8   | 82.47   | 72.588  | -27.709 | 43.468  | 46.555  | -26.338 | 20.831  | 29.6    | 25.218    | -12.609   | 1.095      |
|    | 113 | 43.235 | 110.672 | 112.057 | 100.372 | 49.397  | -24.381 | -13.131 | 37.462  | 34.584  | 23.846  | -39.491   | 19.746    | -9.795     |
|    | 132 | 0      | 0       | 4.953   | 4.769   | -1.123  | 3.013   | -1.037  | -0.191  | -1.411  | 3.949   | 0.099     | -0.05     | 0          |
|    | 136 | 13.799 | 30.739  | 11.955  | 8.655   | -9.912  | 8.51    | -9.788  | 2.382   | -13.725 | 35.708  | -10.511   | 5.256     | 4.427      |
|    | 138 | 13.799 | 30.739  | 35.609  | 32.664  | 13.628  | -4.271  | 4.955   | 3.564   | 6.586   | -3.141  | 25.008    | -12.504   | 4.427      |
|    | 141 | 0      | 0       | 2.263   | 2.182   | 0.92    | -0.026  | 0.029   | 0.01    | 0.039   | 0.139   | 0.443     | -0.221    | 0          |

Total MAX 590.139 Total MIN 129.099

### Reacciones en Nudo 104 y concomitantes

|      | P.P.   | P.P.    | C.P.    | C.P.    | S.C.    | S.C.    | Tandem  | Tandem  | Carril  | Carril  | Gradiente | Gradiente |            |
|------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|-----------|------------|
| Nudo | Viga   | Losa    | MAX.    | MIN.    | MAX.    | MIN.    | MAX.    | MIN.    | MAX.    | MIN.    | Positivo  | Negativo  | Reológicas |
| 2    | 0      | 0       | 2.641   | 2.545   | 0.018   | 1.014   | 0.044   | 0.027   | 0.06    | 0.141   | 0.432     | -0.216    | 0          |
| 5    | 13.775 | 31.953  | 35.088  | 32.097  | 2.027   | 7.081   | 4.909   | 4.708   | 6.647   | -3.304  | 26.042    | -13.021   | 4.456      |
| 7    | 13.775 | 31.953  | 11.119  | 8.021   | -4.22   | 2.769   | -9.541  | 1.749   | -13.585 | 35.607  | -11.384   | 5.692     | 4.456      |
| 11   | 0      | 0       | 5.561   | 5.367   | -0.406  | 2.547   | -0.949  | -0.237  | -1.319  | 3.964   | -0.272    | 0.136     | 0          |
| 38   | 42.495 | 112.337 | 116.366 | 104.172 | 22.236  | 3.646   | -12.469 | 36.828  | 36.786  | 24.212  | -32.364   | 16.182    | -9.615     |
| 47   | 51.555 | 153.334 | 78.552  | 69.086  | -12.077 | 26.952  | 44.458  | -25.416 | 19.633  | 28.471  | 16.78     | -8.39     | 0.55       |
| 104  | 51.224 | 154.8   | 82.47   | 72.588  | 43.634  | -27.875 | 132.826 | -56.057 | 116.067 | -49.452 | 25.218    | -12.609   | 1.095      |
| 113  | 43.235 | 110.672 | 112.057 | 100.372 | -24.606 | 49.621  | -30.525 | 114.38  | -30.466 | 98.765  | -39.491   | 19.746    | -9.795     |
| 132  | 0      | 0       | 4.953   | 4.769   | 3.018   | -1.127  | -1.539  | 0.737   | 3.11    | -0.85   | 0.099     | -0.05     | 0          |
| 136  | 13.799 | 30.739  | 11.955  | 8.655   | 8.558   | -9.961  | -14.546 | 28.464  | 21.604  | 4.05    | -10.511   | 5.256     | 4.427      |
| 138  | 13.799 | 30.739  | 35.609  | 32.664  | -4.293  | 13.65   | 7.288   | 14.781  | -6.814  | 27.637  | 25.008    | -12.504   | 4.427      |
| 141  | 0      | 0       | 2.263   | 2.182   | -0.026  | 0.92    | 0.043   | 0.036   | -0.047  | 0.768   | 0.443     | -0.221    | 0          |

Total MAX 607.333
Total MIN 132.618

### Reacciones en Nudo 113 y concomitantes

|      | P.P.   | P.P.    | C.P.    | C.P.    | S.C.    | S.C.    | Tandem  | Tandem  | Carril  | Carril  | Gradiente | Gradiente |            |
|------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|-----------|------------|
| Nudo | Viga   | Losa    | MAX.    | MIN.    | MAX.    | MIN.    | MAX.    | MIN.    | MAX.    | MIN.    | Positivo  | Negativo  | Reológicas |
| 2    | 0      | 0       | 2.641   | 2.545   | 1.014   | 0.018   | -0.005  | 0.075   | 0.158   | 0.059   | 0.432     | -0.216    | 0          |
| 5    | 13.775 | 31.953  | 35.088  | 32.097  | 7.081   | 2.027   | -0.555  | 8.215   | -1.377  | 6.468   | 26.042    | -13.021   | 4.456      |
| 7    | 13.775 | 31.953  | 11.119  | 8.021   | 2.769   | -4.22   | 0.921   | -16.549 | 32.219  | -13.269 | -11.384   | 5.692     | 4.456      |
| 11   | 0      | 0       | 5.561   | 5.367   | 2.547   | -0.406  | 0.099   | -1.618  | 3.609   | -1.286  | -0.272    | 0.136     | 0          |
| 38   | 42.495 | 112.337 | 116.366 | 104.172 | 3.646   | 22.236  | 9.966   | 10.439  | -3.535  | 39.996  | -32.364   | 16.182    | -9.615     |
| 47   | 51.555 | 153.334 | 78.552  | 69.086  | 26.952  | -12.077 | -15.474 | 42.506  | 85.019  | 11.479  | 16.78     | -8.39     | 0.55       |
| 104  | 51.224 | 154.8   | 82.47   | 72.588  | -27.875 | 43.634  | -36.842 | 111.868 | -34.44  | 91.857  | 25.218    | -12.609   | 1.095      |
| 113  | 43.235 | 110.672 | 112.057 | 100.372 | 49.621  | -24.606 | 129.039 | -48.847 | 120.506 | -38.896 | -39.491   | 19.746    | -9.795     |
| 132  | 0      | 0       | 4.953   | 4.769   | -1.127  | 3.018   | 3.21    | -1.163  | -0.745  | -0.38   | 0.099     | -0.05     | 0          |
| 136  | 13.799 | 30.739  | 11.955  | 8.655   | -9.961  | 8.558   | 32.403  | -10.642 | 2.512   | -3.4    | -10.511   | 5.256     | 4.427      |
| 138  | 13.799 | 30.739  | 35.609  | 32.664  | 13.65   | -4.293  | -2.73   | 5.683   | 29.235  | 1.862   | 25.008    | -12.504   | 4.427      |
| 141  | 0      | 0       | 2.263   | 2.182   | 0.92    | -0.026  | -0.032  | 0.034   | 0.775   | 0.011   | 0.443     | -0.221    | 0          |

Total MAX 584.876
Total MIN 92.643

ALVIPRE S.L. Página 36 de 39

### Reacciones en Nudo 140 y concomitantes

|      | P.P.   | P.P.    | C.P.    | C.P.    | S.C.   | S.C.    | Tandem | Tandem  | Carril  | Carril  | Gradiente | Gradiente |            |
|------|--------|---------|---------|---------|--------|---------|--------|---------|---------|---------|-----------|-----------|------------|
| Nudo | Viga   | Losa    | MAX.    | MIN.    | MAX.   | MIN.    | MAX.   | MIN.    | MAX.    | MIN.    | Positivo  | Negativo  | Reológicas |
| 2    | 0      | 0       | 2.641   | 2.545   | -0.045 | 1.077   | -0.053 | 0.055   | 0.875   | 0.041   | 0.432     | -0.216    | 0          |
|      | 13.775 | 31.953  | 35.082  | 32.092  | -4.88  | 13.987  | -5.785 | 6.088   | 23.594  | 4.498   | 26.039    | -13.019   | 4.455      |
| 7    | 13.775 | 31.953  | 11.133  | 8.033   | 9.037  | -10.485 | 11.383 | -11.508 | 13.511  | -8.582  | -11.379   | 5.69      | 4.455      |
| 11   | . 0    | 0       | 5.562   | 5.368   | 3.301  | -1.16   | 1.293  | -1.16   | 0.469   | -0.863  | -0.272    | 0.136     | 0          |
| 38   | 42.495 | 112.337 | 116.305 | 104.116 | -4.104 | 29.969  | 5.579  | -33.048 | 83.788  | -23.126 | -32.271   | 16.136    | -9.594     |
| 47   | 51.555 | 153.334 | 78.594  | 69.127  | 10.367 | 4.523   | 7.181  | 78.487  | -37.319 | 80.132  | 16.647    | -8.323    | 0.532      |
| 104  | 51.224 | 154.8   | 81.987  | 72.151  | 14.871 | 0.772   | -8.612 | 74.082  | 32.108  | -1.075  | 25.49     | -12.745   | 0.871      |
| 113  | 43.235 | 110.672 | 112.548 | 100.814 | -6.984 | 32.112  | 26.719 | 22.423  | 10.099  | 93.044  | -39.675   | 19.837    | -9.541     |
| 140  | 0      | 0       | 4.954   | 4.765   | 3.063  | -1.182  | 29.967 | -2.582  | 4.216   | -2.367  | 0.057     | -0.028    | 0          |
| 144  | 13.799 | 30.739  | 12.411  | 9.077   | 9.268  | -10.538 | 56.932 | -25.281 | 36.415  | -15.046 | -10.722   | 5.361     | 4.41       |
| 146  | 13.799 | 30.739  | 35.155  | 32.25   | -4.792 | 14.031  | -4.551 | 12.369  | -10.857 | 33.321  | 25.21     | -12.605   | 4.41       |
| 149  | 0      | 0       | 2.26    | 2.18    | -0.029 | 0.922   | -0.054 | 0.074   | -0.075  | 0.806   | 0.444     | -0.222    | 0          |

Total MAX 42.257
Total MIN -1.395

### Reacciones en Nudo 144 y concomitantes

|      | P.P.   | P.P.    | C.P.    | C.P.    | S.C.   | S.C.    | Tandem  | Tandem  | Carril  | Carril  | Gradiente | Gradiente |            |
|------|--------|---------|---------|---------|--------|---------|---------|---------|---------|---------|-----------|-----------|------------|
| Nudo | Viga   | Losa    | MAX.    | MIN.    | MAX.   | MIN.    | MAX.    | MIN.    | MAX.    | MIN.    | Positivo  | Negativo  | Reológicas |
| 2    | 0      | 0       | 2.641   | 2.545   | -0.045 | 1.077   | -0.005  | 0.053   | 0.875   | 0.041   | 0.432     | -0.216    | 0          |
| 5    | 13.775 | 31.953  | 35.082  | 32.092  | -4.88  | 13.987  | -0.515  | 5.904   | 23.594  | 4.498   | 26.039    | -13.019   | 4.455      |
| 7    | 13.775 | 31.953  | 11.133  | 8.033   | 9.037  | -10.485 | 0.876   | -11.141 | 13.511  | -8.582  | -11.379   | 5.69      | 4.455      |
| 11   | 0      | 0       | 5.562   | 5.368   | 3.301  | -1.16   | 0.093   | -1.124  | 0.469   | -0.863  | -0.272    | 0.136     | 0          |
| 38   | 42.495 | 112.337 | 116.305 | 104.116 | -4.104 | 29.969  | 8.069   | -33.022 | 83.788  | -23.126 | -32.271   | 16.136    | -9.594     |
| 47   | 51.555 | 153.334 | 78.594  | 69.127  | 10.367 | 4.523   | -12.874 | 77.117  | -37.319 | 80.132  | 16.647    | -8.323    | 0.532      |
| 104  | 51.224 | 154.8   | 81.987  | 72.151  | 14.871 | 0.772   | -6.765  | 74.362  | 32.108  | -1.075  | 25.49     | -12.745   | 0.871      |
| 113  | 43.235 | 110.672 | 112.548 | 100.814 | -6.984 | 32.112  | 45.435  | 23.281  | 10.099  | 93.044  | -39.675   | 19.837    | -9.541     |
| 140  | 0      | 0       | 4.954   | 4.765   | 3.063  | -1.182  | 10.518  | -2.581  | 4.216   | -2.367  | 0.057     | -0.028    | 0          |
| 144  | 13.799 | 30.739  | 12.411  | 9.077   | 9.268  | -10.538 | 76.32   | -25.283 | 36.415  | -15.046 | -10.722   | 5.361     | 4.41       |
| 146  | 13.799 | 30.739  | 35.155  | 32.25   | -4.792 | 14.031  | -1.082  | 12.361  | -10.857 | 33.321  | 25.21     | -12.605   | 4.41       |
| 149  | 0      | 0       | 2.26    | 2.18    | -0.029 | 0.922   | -0.07   | 0.074   | -0.075  | 0.806   | 0.444     | -0.222    | 0          |

 Total MAX
 188.723

 Total MIN
 -7.975

### Reacciones en Nudo 146 y concomitantes

|      | P.P.   | P.P.    | C.P.    | C.P.    | S.C.    | S.C.   | Tandem | Tandem  | Carril  | Carril  | Gradiente | Gradiente |            |
|------|--------|---------|---------|---------|---------|--------|--------|---------|---------|---------|-----------|-----------|------------|
| Nudo | Viga   | Losa    | MAX.    | MIN.    | MAX.    | MIN.   | MAX.   | MIN.    | MAX.    | MIN.    | Positivo  | Negativo  | Reológicas |
| 2    | 0      | 0       | 2.641   | 2.545   | 1.077   | -0.045 | 0.016  | -0.059  | 0.04    | 0.876   | 0.432     | -0.216    | 0          |
| 5    | 13.775 | 31.953  | 35.082  | 32.092  | 13.987  | -4.88  | 1.812  | -6.518  | 4.438   | 23.655  | 26.039    | -13.019   | 4.455      |
| 7    | 13.775 | 31.953  | 11.133  | 8.033   | -10.485 | 9.037  | -3.714 | 12.671  | -8.48   | 13.408  | -11.379   | 5.69      | 4.455      |
| 11   | 0      | 0       | 5.562   | 5.368   | -1.16   | 3.301  | -0.36  | 1.428   | -0.852  | 0.458   | -0.272    | 0.136     | 0          |
| 38   | 42.495 | 112.337 | 116.305 | 104.116 | 29.969  | -4.104 | 5.82   | 14.777  | -22.14  | 82.803  | -32.271   | 16.136    | -9.594     |
| 47   | 51.555 | 153.334 | 78.594  | 69.127  | 4.523   | 10.367 | 3.485  | -8.287  | 78.57   | -35.758 | 16.647    | -8.323    | 0.532      |
| 104  | 51.224 | 154.8   | 81.987  | 72.151  | 0.772   | 14.871 | 12.992 | 23.588  | -2.266  | 33.3    | 25.49     | -12.745   | 0.871      |
| 113  | 43.235 | 110.672 | 112.548 | 100.814 | 32.112  | -6.984 | 7.717  | 42.236  | 101.725 | 1.419   | -39.675   | 19.837    | -9.541     |
| 140  | 0      | 0       | 4.954   | 4.765   | -1.182  | 3.063  | -1.041 | 6.9     | -2.128  | 3.977   | 0.057     | -0.028    | 0          |
| 144  | 13.799 | 30.739  | 12.411  | 9.077   | -10.538 | 9.268  | 5.797  | 55.674  | -8.7    | 30.069  | -10.722   | 5.361     | 4.41       |
| 146  | 13.799 | 30.739  | 35.155  | 32.25   | 14.031  | -4.792 | 74.366 | -22.273 | 33.775  | -11.311 | 25.21     | -12.605   | 4.41       |
| 149  | 0      | 0       | 2.26    | 2.18    | 0.922   | -0.029 | 3.109  | -0.137  | 0.804   | -0.073  | 0.444     | -0.222    | 0          |

 Total MAX
 231.485

 Total MIN
 25.806

### Reacciones en Nudo 149 y concomitantes

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | P.P.   | P.P.    | C.P.    | C.P.    | S.C.    | S.C.   | Tandem | Tandem | Carril  | Carril  | Gradiente | Gradiente |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|---------|---------|---------|---------|--------|--------|--------|---------|---------|-----------|-----------|------------|
| Nudo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | Viga   | Losa    | MAX.    | MIN.    | MAX.    | MIN.   | MAX.   | MIN.   | MAX.    | MIN.    | Positivo  | Negativo  | Reológicas |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2   | 0      | 0       | 2.641   | 2.545   | 1.077   | -0.045 | 0.016  | -0.056 | 0.041   | 0.875   | 0.432     | -0.216    | 0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5   | 13.775 | 31.953  | 35.082  | 32.092  | 13.987  | -4.88  | 1.761  | -6.156 | 4.498   | 23.594  | 26.039    | -13.019   | 4.455      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7   | 13.775 | 31.953  | 11.133  | 8.033   | -10.485 | 9.037  | -3.626 | 12.044 | -8.582  | 13.511  | -11.379   | 5.69      | 4.455      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11  | 0      | 0       | 5.562   | 5.368   | -1.16   | 3.301  | -0.351 | 1.362  | -0.863  | 0.469   | -0.272    | 0.136     | 0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38  | 42.495 | 112.337 | 116.305 | 104.116 | 29.969  | -4.104 | 6.548  | 9.724  | -23.126 | 83.788  | -32.271   | 16.136    | -9.594     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47  | 51.555 | 153.334 | 78.594  | 69.127  | 4.523   | 10.367 | 2.3    | -0.004 | 80.132  | -37.319 | 16.647    | -8.323    | 0.532      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104 | 51.224 | 154.8   | 81.987  | 72.151  | 0.772   | 14.871 | 13.587 | 16.169 | -1.075  | 32.108  | 25.49     | -12.745   | 0.871      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 113 | 43.235 | 110.672 | 112.548 | 100.814 | 32.112  | -6.984 | 9.923  | 14.575 | 93.044  | 10.099  | -39.675   | 19.837    | -9.541     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140 | 0      | 0       | 4.954   | 4.765   | -1.182  | 3.063  | -0.545 | 7.093  | -2.367  | 4.216   | 0.057     | -0.028    | 0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 144 | 13.799 | 30.739  | 12.411  | 9.077   | -10.538 | 9.268  | 13.29  | 62.471 | -15.046 | 36.415  | -10.722   | 5.361     | 4.41       |
| , and the second | 146 | 13.799 | 30.739  | 35.155  | 32.25   | 14.031  | -4.792 | 56.376 | -7.072 | 33.321  | -10.857 | 25.21     | -12.605   | 4.41       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 149 | 0      | 0       | 2.26    | 2.18    | 0.922   | -0.029 | 5.72   | -0.15  | 0.806   | -0.075  | 0.444     | -0.222    | 0          |

 Total MAX
 10.153

 Total MIN
 1.704

ALVIPRE S.L. Página 37 de 39

### **4.3. ACCIONES HORIZONTALES**

### PS 308.2

### REACCIONES HORIZONTALES DEBIDAS A FRENADO

- Propiedades de los materiales (t/m2) E pila : 3.00E+06 G neopreno: 180 Ancho carril1 w Frenado (t): 53.74 Ltablero (m)= 65.70 9.00 Bcalzada (m)=

| APOYOS    | Subest     | ructura      | NEOPI     | RENOS      | CONST   | ANTES ELAS | TICAS    | FREN    | IADO    |                 |                 |
|-----------|------------|--------------|-----------|------------|---------|------------|----------|---------|---------|-----------------|-----------------|
| AFUIUS    | Altura (m) | Inercia (m4) | Area (m2) | Altura (m) | Pila    | Neoprenos  | Total    | Ki / K1 | Hfr (t) | Defor. neop (m) | Defor. pila (m) |
| Estribo 1 | 0.000      | 0.000        | 0.560     | 0.056      | 0.000   | 1800.000   | 1800.000 | 1.000   | 20.137  | 0.0112          | 0.0000          |
| Pila 1    | 10.170     | 0.098        | 0.980     | 0.075      | 840.001 | 2352.000   | 618.948  | 0.344   | 6.924   | 0.0029          | 0.0082          |
| Pila 2    | 10.700     | 0.098        | 0.980     | 0.075      | 721.259 | 2352.000   | 551.988  | 0.307   | 6.175   | 0.0026          | 0.0086          |
| Estribo 2 | 0.000      | 0.000        | 0.560     | 0.055      | 0.000   | 1832.727   | 1832.727 | 1.018   | 20.503  | 0.0112          | 0.0000          |

Total... 2.669 53.739

### PS 308.2

REACCIONES HORIZONTALES DEBIDAS A RETRACCIÓN, FLUENCIA Y VAR. UNIF. Ta

- Propiedades de los materiales (t/m2) E pila : 1.80E+06 G neopreno : 90.00

| APOYO     | SUBEST     | RUCTURA      | NEOPR     | RENOS      | CONSTA  | NTES ELÁSTI | CAS (t/m) | DES    | PLAZAMIEN | TOS Y REAC   | CIONES       | ]            |                 |
|-----------|------------|--------------|-----------|------------|---------|-------------|-----------|--------|-----------|--------------|--------------|--------------|-----------------|
| APOTO     | Altura (m) | Inercia (m4) | Area (m2) | Altura (m) | Pila    | Neoprenos   | Total     | x (m)  | K.∆x (t)  | Desplaz. (m) | Reacción (t) | Desplaz. (m) | Defor. pila (m) |
| Estribo 1 | 0.000      | 0.000        | 0.560     | 0.056      | 0.000   | 900.000     | 900.000   | 0.000  | 0.000     | 0.02440      | 21.958       | 0.0244       | 0.0000          |
| Pila 1    | 10.170     | 0.098        | 0.980     | 0.075      | 504.000 | 1176.000    | 352.800   | 20.000 | 7056.003  | 0.00940      | 3.316        | 0.0028       | 0.0066          |
| Pila 2    | 10.700     | 0.098        | 0.980     | 0.075      | 432.755 | 1176.000    | 316.344   | 45.000 | 14235.482 | -0.00935     | -2.958       | -0.0025      | -0.0068         |
| Estribo 2 | 0.000      | 0.000        | 0.560     | 0.055      | 0.000   | 916.364     | 916.364   | 65.000 | 59563.636 | -0.02435     | -22.315      | -0.0244      | 0.0000          |

0.000 Suma... 2485.508 80855.122

Radio medio 624.80

### PS 308.2

### REACCIONES HORIZONTALES DEBIDAS A LA FUERZA CENTRÍFUGA

| Nº de carriles   | 3     |
|------------------|-------|
|                  |       |
| Qtk (t)          | 7.68  |
| Derrape Qtrk (t) | 13.43 |
| Fc (t)           | 21 12 |

- Propiedades de los materiales (t/m2)

|         |     | G neopreno : | 180          |           |            |         |            |          |         |         |                 |             |
|---------|-----|--------------|--------------|-----------|------------|---------|------------|----------|---------|---------|-----------------|-------------|
| APOY    | ns. | Subest       | ructura      | NEOP      | RENOS      | CONS    | TANTES ELÁ | STICAS   | F. Cent | rifuga  |                 |             |
| AFOI    | 03  | Altura (m)   | Inercia (m4) | Area (m2) | Altura (m) | Pila    | Neoprenos  | Total    | Ki / K1 | Hfc (t) | Defor. neop (m) | Defor. pila |
| Estribo | 1   | 0.000        | 0.000        | 0.560     | 0.056      | 0.000   | 1800.000   | 1800.000 | 0.375   | 7.913   | 0.0044          | 0.0000      |
| Pila 1  |     | 10.170       | 0.098        | 0.980     | 0.075      | 840.001 | 2352.000   | 618.948  | 0.129   | 2.721   | 0.0012          | 0.0032      |
| Pila 2  |     | 10.700       | 0.098        | 0.980     | 0.075      | 721.259 | 2352.000   | 551.988  | 0.115   | 2.427   | 0.0010          | 0.0034      |
| Estribo | 2   | 0.000        | 0.000        | 0.560     | 0.055      | 0.000   | 1832.727   | 1832.727 | 0.382   | 8.057   | 0.0044          | 0.0000      |

Peso vehiculos 120

Total... 1.000 21.117

### PS 308.2

### REACCIONES HORIZONTALES DEBIDAS AL VIENTO

| Zona según          | mapa isotacas B        |             |         |             |      |
|---------------------|------------------------|-------------|---------|-------------|------|
| FV (t)              | Vref (m/s): 27         | Canto viga: | 1.10 m  | Ancho Tab.: | 12.2 |
| 85.269              | Tipo entorno: II       | Esp losa:   | 0.40 m  | Peralte %   | 2.13 |
|                     | Ptablero (t/m2): 0.209 | Esp pav:    | 0.20 m  |             |      |
|                     |                        | Ltablero:   | 65.70 m |             |      |
| - Propiedades de la | os materiales (t/m2)   | hexp cp =   | 6.21 m  |             |      |
| E pil               | a: 3.00E+06            |             |         |             |      |
| G ne                | opreno: 180            |             |         |             |      |

| APOYOS    | Subestructura |              | NEOPR     | ENOS       | CONS  | TANTES ELÁ | STICAS   | F. Vie  | nto    |                 |                 |
|-----------|---------------|--------------|-----------|------------|-------|------------|----------|---------|--------|-----------------|-----------------|
| AFOIOS    | Altura (m)    | Inercia (m4) | Area (m2) | Altura (m) | Pila  | Neoprenos  | Total    | Ki / K1 | Hv (t) | Defor. neop (m) | Defor. pila (m) |
| Estribo 1 | 0.000         | 0.000        | 0.560     | 0.056      | 0.000 | 1800.000   | 1800.000 | 0.375   | 31.952 | 0.0178          | 0.0000          |
| Pila 1    | 10.170        | 0.098        | 0.980     | 0.075      | 840   | 2352.000   | 618.948  | 0.129   | 10.987 | 0.0047          | 0.0131          |
| Pila 2    | 10.700        | 0.098        | 0.980     | 0.075      | 721.3 | 2352.000   | 551.988  | 0.115   | 9.798  | 0.0042          | 0.0136          |
| Estribo 2 | 0.000         | 0.000        | 0.560     | 0.055      | 0.000 | 1832.727   | 1832.727 | 0.382   | 32.533 | 0.0178          | 0.0000          |

Total... 0.618 85.269

### PS 308.2

### REACCIONES HORIZONTALES DEBIDAS AL VIENTO

| FV (t)               | Vref (m/s2): 27        | Canto viga:   | 1.1 m   |             |      |
|----------------------|------------------------|---------------|---------|-------------|------|
| 85.269               | Tipo entorno: II       | Esp losa:     | 0.4 m   | Ancho Tab.: | 12.2 |
|                      | ptablero (t/m2): 0.209 | Esp pav:      | 0.2 m   | Peralte %   | 2.13 |
|                      |                        | Ltablero:     | 65.70 m |             |      |
| - Propiedades de los | materiales (t/m2)      | hexp cp +sc = | 6.21 m  |             |      |
| E pila               | 3.00E+06               |               |         |             |      |

G neopreno : 180

| APOYOS    | Subest     | ructura      | NEOPE     | RENOS      | CONS  | TANTES ELÁ | STICAS   | F. Vie  | nto    |                 |                 |
|-----------|------------|--------------|-----------|------------|-------|------------|----------|---------|--------|-----------------|-----------------|
| AFOIOS    | Altura (m) | Inercia (m4) | Area (m2) | Altura (m) | Pila  | Neoprenos  | Total    | Ki / K1 | Hv (t) | Defor. neop (m) | Defor. pila (m) |
| Estribo 1 | 0.000      | 0.000        | 0.560     | 0.056      | 0.000 | 1800.000   | 1800.000 | 0.375   | 31.952 | 0.0178          | 0.0000          |
| Pila 1    | 10.170     | 0.098        | 0.980     | 0.075      | 840   | 2352.000   | 618.948  | 0.129   | 10.987 | 0.0047          | 0.0131          |
| Pila 2    | 10.700     | 0.098        | 0.980     | 0.075      | 721.3 | 2352.000   | 551.988  | 0.115   | 9.798  | 0.0042          | 0.0136          |
| Estribo 2 | 0.000      | 0.000        | 0.560     | 0.055      | 0.000 | 1832.727   | 1832.727 | 0.382   | 32.533 | 0.0178          | 0.0000          |

Total... 0.618 85.269

ALVIPRE S.L. Página 38 de 39

0.0034

8.057 0.0044 0.0000

### 4.4. COMPROBACIÓN DE APARATOS DE APOYO

|--|

|                      |         | ESTR            | IBO 1            |         | PIL            | .A 1            | PIL     | A 2            |             | ESTR    | IBO 2            |         |
|----------------------|---------|-----------------|------------------|---------|----------------|-----------------|---------|----------------|-------------|---------|------------------|---------|
|                      | APOYO 1 | APOYO 2         | АРОУО З          | APOYO 4 | APOYO 1        | APOYO 2         | APOYO 1 | APOYO 2        | APOYO 1     | APOYO 2 | АРОУО З          | APOYO 4 |
| PP Vigas             | 0,00    | 13,78           | 13,78            | 0,00    | 42.50          | 51,56           | 51,22   | 43,24          | 0,00        | 13.80   | 13,80            | 0.00    |
| PP Losa              | 12,21   | 52,12           | 52,12            | 12,21   | 112.34         | 153,33          | 154.80  | 110,67         | 12,21       | 50.91   | 50.91            | 12,21   |
| Carga Permanente Max | 2.64    | 35,08           | 11,13            | 5,56    | 116.31         | 78.59           | 81.99   | 112,55         | 4.95        | 12,41   | 35,16            | 2,26    |
| Carga Permanente Min | 2,55    | 32.09           | 8,03             | 5,37    | 104.12         | 69.13           | 72,15   | 100,81         | 4,77        | 9.08    | 32,25            | 2.18    |
| SC aceras Max        | 1,08    | 14.15           | 9.34             | 3,33    | 50,16          | 43.72           | 43,62   | 49.70          | 3,06        | 9.27    | 14,03            | 0.92    |
| SC aceras Min        | -0.05   | -5.04           | -10.78           | -1.19   | -24.30         | -28.83          | -27.98  | -24.57         | -1,18       | -10.54  | -4.79            | -0.03   |
| Carril Max           | 0.98    | 34.38           | 36.49            | 4.28    | 123.39         | 114,33          | 116.00  | 120,75         | 4,22        | 36,42   | 33,78            | 0.81    |
| Carril Min           | -0.12   | -11,62          | -16.07           | -2.37   | -38,25         | -50.61          | -49.84  | -38,73         | -2.37       | -15,05  | -11,31           | -0.08   |
| Tandem Max           | 6.59    | 71,46           | 73,30            | 24.54   | 132,37         | 131,23          | 132.98  | 129.74         | 29.97       | 76.32   | 74,37            | 5.72    |
| Tandem Min           | -0.21   | -22,24          | -24.92           | -2.45   | -48.56         | -57,01          | -56.95  | -48.88         | -2.58       | -25,28  | -22,27           | -0,15   |
| Gradiente Positivo   | 0.43    | 26.04           | -11,38           | -0.27   | -32,27         | 16,65           | 25.49   | -39.68         | 0,06        | -10.72  | 25,21            | 0.44    |
| Gradiente Negativo   | -0.22   | -13.02          | 5,69             | 0.14    | 16.14          | -8.32           | -12,75  | 19.84          | -0.03       | 5.36    | -12,61           | -0,22   |
| Reologia             | 0.00    | 4.46            | 4.46             | 0.00    | -9.59          | 0.53            | 0.87    | -9.54          | 0.00        | 4.41    | 4.41             | 0.00    |
| Viento Vertical Max  | 7,03    | 4.47            | 4.47             | 7.03    | 50,52          | 50,52           | 50.52   | 50.52          | 7,03        | 4,47    | 4.47             | 7,03    |
| Viento Vertical Min  | -7.03   | -4.47           | -4.47            | -7.03   | -50.52         | -50.52          | -50.52  | -50,52         | -7.03       | -4,47   | -4.47            | -7.03   |
| Vicino Vernica Min   | 7,00    |                 | 1.17             | 7.00    | 50.52          | 50,52           | 50.52   | 50.52          | 7.00        | 1,17    | 1.17             | 7,00    |
| Viento Trans CP Max  | 12.29   | 3.73            | 3.73             | 12.29   | 21.19          | 21.19           | 18.71   | 18.71          | 12.52       | 3.80    | 3.80             | 12.52   |
| Viento Trans CP Max  | -12.29  | -3.73           | -3.73            | -12.29  | -21,19         | -21,19          | -18,71  | -18,71         | -12,52      | -3.80   | -3.80            | -12.52  |
| Viento Trans Sc Max  | 12.29   | 3.73            | 3.73             | 12,29   | 21.19          | 21.19           | 18.71   | 18.71          | 12.52       | 3.80    | 3.80             | 12.52   |
| Viento Trans Sc Max  | -12.29  | -3.73           | -3.73            | -12.29  | -21.19         | -21.19          | -18.71  | -18.71         | -12.52      | -3.80   | -3.80            | -12.52  |
|                      | ,-,     |                 |                  |         |                |                 |         |                |             | 0.00    | 0.00             |         |
| MAX (Tn)             | 35,5    | 256.4           | 211,2            | 61,6    | 636,2          | 633,0           | 648.5   | 628.0          | 66,2        | 213.9   | 256,6            | 34,1    |
| MIN (Tn)             | 2,6     | 41.1            | 5.9              | 0.0     | 63,0           | 86.2            | 89.1    | 51,8           | 0.0         | 7,2     | 41,0             | 2,2     |
| NEOPRENOS            |         |                 |                  |         | (*)            | (*)             | (*)     | (*)            |             |         |                  |         |
| a (mm)               | 300     | 400             | 400              | 300     | 700            | 700             | 700     | 700            | 300         | 400     | 400              | 300     |
| b (mm)               | 300     | 500             | 450              | 300     | 700            | 700             | 700     | 700            | 300         | 450     | 500              | 300     |
| Nº Neoprenos         | 1       | 1               | 1                | 1       | 1              | 1               | 1       | 1              | 1           | 1       | 1                | 1       |
| Area Neopreno (cm2)  | 900     | 2000            | 1800             | 900     | 4900           | 4900            | 4900    | 4900           | 900         | 1800    | 2000             | 900     |
| Smax                 | 39.47   | 128.19          | 117.34           | 68.49   | 129.84         | 129.18          | 132.35  | 128.16         | 73.55       | 118.81  | 128.31           | 37.88   |
| Smin                 | 2.86    | 20.57           | 3.25             | 0.00    | 12.85          | 17.60           | 18.19   | 10.57          | 0.00        | 4.02    | 20.51            | 2.42    |
|                      |         |                 |                  |         | (*) Neopreno c | ircular Ø 800 m | n       |                |             |         |                  |         |
| NEOPRENOS            |         |                 |                  |         |                |                 |         |                |             |         |                  |         |
|                      | АРОУО 1 | ESTR<br>APOYO 2 | IBO 1<br>APOYO 3 | APOYO 4 | APOYO 1        | A 1<br>APOYO 2  | APOYO 1 | A 2<br>APOYO 2 | APOYO 1     | APOYO 2 | IBO 2<br>APOYO 3 | АРОУО 4 |
| DIST CENTRO (m)      | 32,31   | 32,31           | 32,31            | 32,31   | 14,35          | 14.35           | 14,35   | 14,35          | 32,31       | 32,31   | 32,31            | 32.31   |
| DESPLAZ (m)          | 0,02423 | 0.02423         | 0.02423          | 0.02423 | 0,01076        | 0,01076         | 0,01076 | 0,01076        | 0,02423     | 0,02423 | 0,02423          | 0,02423 |
|                      |         |                 |                  |         |                | <b>.</b>        |         |                |             |         |                  |         |
| a (mm)               | 300     | 400             | 400              | 300     | 700            | 700             | 700     | 700            | 300         | 400     | 400              | 300     |
| b (mm)               | 300     | 500             | 450              | 300     | 700            | 700             | 700     | 700            | 300         | 450     | 500              | 300     |
| Neopreno (mm)        | 8,00    | 11,00           | 11,00            | 8,00    | 15,00          | 15,00           | 15,00   | 15,00          | 8,00        | 11,00   | 11,00            | 8.00    |
| Acero (mm)           | 4.00    | 4.00            | 4.00             | 4,00    | 5,00           | 5.00            | 5,00    | 5,00           | 4,00        | 4.00    | 4.00             | 4.00    |
| de capas de neopreno | 7,00    | 5,00            | 5.00             | 7,00    | 5,00           | 5.00            | 5,00    | 5,00           | 7,00        | 5,00    | 5,00             | 7.00    |
| h neopreno (m)       | 0,056   | 0,055           | 0.055            | 0,056   | 0.075          | 0.075           | 0.075   | 0.075          | 0.056       | 0.055   | 0.055            | 0.056   |
|                      |         |                 |                  |         |                |                 |         |                |             |         |                  |         |
| tang &               | 0,433   | 0,441<br>84     | 0.441            | 0.433   | 0,144          | 0.144           | 0.144   | 0.144          | 0.433<br>93 | 0.441   | 0,441<br>84      | 0.433   |

Módulo de deformación transversal neopreno (Mp/m²) 90

Factor de forma S
Factor de modificación b
Máxima tensión tangencial bajo carga vertical (kp/cm²)
Fuerzas horizantales lentas (Dilatación, retracción y fluencia)
Fuerza horizontal répida (Frenado)
Fuerza horizontal rápida (Fuerza centrífuga)
Fuerza horizontal rápida (Vierta) - CP
Fuerza horizontal rápida (Vierta) - SC
Fuerza horizontal rápida (Vierta) - SC
Fuersá horizontal rápida (Vierta) - SC
Fuersión tangencial bajo acciones horizontales lentas (kp/cm²)
Tensión tangencial bajo acciones horizontales rápidas (kp/cm²)
Tensión tangencial en rotaciones (kp/cm²)

|         | ESTR    | IBO 1   |         | PIL     | A 1     | PIL     | A 2     | ESTRIBO 2 |         |         |         |
|---------|---------|---------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|
| АРОУО 1 | АРОУО 2 | АРОУО З | АРОУО 4 | APOYO 1 | APOYO 2 | APOYO 1 | APOYO 2 | АРОУО 1   | АРОУО 2 | АРОУО З | АРОУО 4 |
| 9.375   | 10,101  | 9.626   | 9.375   | 11,667  | 11,667  | 11,667  | 11,667  | 9.375     | 9.626   | 10,101  | 9.375   |
| 1,000   | 1,000   | 1,000   | 1,000   | 1,000   | 1,000   | 1,000   | 1,000   | 1,000     | 1,000   | 1,000   | 1,000   |
| 6.315   | 19.036  | 18,286  | 10.959  | 16.694  | 16,608  | 17,016  | 16.478  | 11,768    | 18.514  | 19.054  | 6.060   |
| 3,529   | 7.842   | 7,058   | 3,529   | 1,658   | 1,658   | 1.479   | 1.479   | 3.586     | 7.173   | 7.970   | 3,586   |
| 3,236   | 7.192   | 6.473   | 3,236   | 3.462   | 3.462   | 3.088   | 3.088   | 3.295     | 6.590   | 7.322   | 3,295   |
| 1,272   | 2.826   | 2.543   | 1,272   | 1,360   | 1,360   | 1,213   | 1,213   | 1,295     | 2.590   | 2.877   | 1.295   |
| 5,135   | 11.411  | 10,270  | 5.135   | 5.493   | 5.493   | 4.899   | 4.899   | 5,228     | 10,457  | 11,619  | 5,228   |
| 5,135   | 11.411  | 10.270  | 5,135   | 5.493   | 5.493   | 4.899   | 4.899   | 5.228     | 10.457  | 11.619  | 5,228   |
| 3.921   | 3.921   | 3.921   | 3.921   | 0.338   | 0.338   | 0.302   | 0.302   | 3.985     | 3.985   | 3.985   | 3.985   |
| 7.975   | 7.975   | 7.975   | 7.975   | 1,567   | 1,567   | 1.398   | 1.398   | 8.120     | 8.120   | 8.120   | 8.120   |
| 2.712   | 3.570   | 0.000   | 0.000   | 5.880   | 5.880   | 5.880   | 5.880   | 0.000     | 0.000   | 3.570   | 2.712   |

|                                                         |               | ESTRIBO 1    |               | PIL           | A 1          | PIL          | 4 2          |              | ESTR          | IBO 2         |              |               |
|---------------------------------------------------------|---------------|--------------|---------------|---------------|--------------|--------------|--------------|--------------|---------------|---------------|--------------|---------------|
|                                                         | APOYO 1       | APOYO 2      | АРОУО 3       | APOYO 4       | APOYO 1      | APOYO 2      | APOYO 1      | APOYO 2      | APOYO 1       | APOYO 2       | АРОУО З      | APOYO 4       |
| Condición de estabilidad                                |               |              | •             | •             | •            | •            | •            | •            |               |               | •            |               |
| h neta <= a / 5                                         | cumple        | cumple       | cumple        | cumple        | cumple       | cumple       | cumple       | cumple       | cumple        | cumple        | cumple       | cumple        |
| hneta                                                   | 56            | 55           | 55            | 56            | 75           | 75           | 75           | 75           | 56            | 55            | 55           | 56            |
| a/5                                                     | 60            | 80           | 80            | 60            | 140          | 140          | 140          | 140          | 60            | 80            | 80           | 60            |
| Limitación de la tensión tangencial                     |               |              |               |               |              |              |              |              |               |               |              |               |
| Tensión tangencial (lenta) < 0.5 G                      | cumple        | cumple       | cumple        | cumple        | cumple       | cumple       | cumple       | cumple       | cumple        | cumple        | cumple       | cumple        |
| Tension tangencial (lenta)                              | 3.92          | 3.92         | 3.92          | 3.92          | 0.34         | 0.34         | 0.30         | 0.30         | 3.98          | 3.98          | 3.98         | 3.98          |
| 0.5 <i>G</i>                                            | 4.50          | 4.50         | 4.50          | 4.50          | 4.50         | 4.50         | 4.50         | 4.50         | 4.50          | 4.50          | 4.50         | 4.50          |
| 0,5 0                                                   | 4.00          | 4.00         | 4.00          | 4.00          | 4.00         | 4.00         | 4.00         | 4.00         | 4.00          | 4.00          | 4.00         | 4.00          |
| Tensión tangencial (lenta y rápida) < 0.7 G             | cumple        | cumple       | cumple        | cumple        | cumple       | cumple       | cumple       | cumple       | cumple        | cumple        | cumple       | cumple        |
| Tensión tangencial (lenta y rápida frenado)             | 5.72          | 5.72         | 5.72          | 5.72          | 0.69         | 0.69         | 0.62         | 0.62         | 5.82          | 5.82          | 5.82         | 5.82          |
| Tensión tangencial (lenta y rápida viento o centrifuga) | 4.85          | 4.85         | 4.85          | 4.85          | 0.65         | 0.65         | 0.58         | 0.58         | 4.93          | 4.93          | 4.93         | 4.93          |
| 0.7 G                                                   | 6.30          | 6.30         | 6.30          | 6.30          | 6.30         | 6.30         | 6.30         | 6.30         | 6.30          | 6.30          | 6.30         | 6.30          |
|                                                         |               |              |               |               |              |              |              |              |               |               |              |               |
| Tensión tangencial total < 5.0 G                        | cumple        | cumple       | cumple        | cumple        | cumple       | cumple       | cumple       | cumple       | cumple        | cumple        | cumple       | cumple        |
| Tensión tangencial total                                | 21            | 35           | 30            | 23            | 24           | 24           | 25           | 24           | 24            | 31            | 35           | 21            |
| 5.0 G                                                   | 45            | 45           | 45            | 45            | 45           | 45           | 45           | 45           | 45            | 45            | 45           | 45            |
| Limitación de la tensión media                          |               |              |               |               |              |              |              |              |               |               |              |               |
| g <sub>m</sub> < = 150 kp/cm <sup>2</sup>               | cumple        | cumple       | cumple        | cumple        | cumple       | cumple       | cumple       | cumple       | cumple        | cumple        | cumple       | cumple        |
|                                                         | 39            | 128          | 117           | 68            | 130          | 129          | 132          | 128          | 74            | 119           | 128          | 38            |
| $\sigma_{\!m}$                                          | 39            | 120          | 117           | 00            | 130          | 129          | 132          | 120          | /4            | 119           | 120          | 36            |
| Condición de no desplazamiento del apoyo                |               |              |               |               |              |              |              |              |               |               |              |               |
| $\sigma_{m} > = 30 \text{ kp/cm}^2$                     | Apoyo anclado | Apoyo pegado | Apoyo anclado | Apoyo anclado | Apoyo pegado | Apoyo pegado | Apoyo pegado | Apoyo pegado | Apoyo anclado | Apoyo anclado | Apoyo pegado | Apoyo anclado |
| $\sigma_{\!m}$                                          | 2.9           | 20.6         | 3.3           | 0.0           | 12.8         | 17.6         | 18.2         | 10.6         | 0.0           | 4.0           | 20.5         | 2.4           |

| Condición de espesor de los zunchos metálicos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                               |                                                                                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| e > = a / S x $\sigma_m$ / $\sigma_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cumple                                                                                                                                                                              | cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cumple                                                                                                                                                                                                           | cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cumple                                                                                                                                                                                                                        | cumple                                                                                                                                                                                                                       | cumple                                                                                                                                                                                                                        | cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cumple                                                                                                                                                                                                                              | cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cumple                                                                                                                                                                                                   | cumple                                                                                                                                                                                                                                |
| е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                                                                                                                                 | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0                                                                                                                                                                                                              | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.0                                                                                                                                                                                                                           | 5.0                                                                                                                                                                                                                          | 5.0                                                                                                                                                                                                                           | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.0                                                                                                                                                                                                                                 | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0                                                                                                                                                                                                      | 4.0                                                                                                                                                                                                                                   |
| $e > = a / S \times \sigma_m / \sigma_e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5                                                                                                                                                                                 | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0                                                                                                                                                                                                              | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.2                                                                                                                                                                                                                           | 3.2                                                                                                                                                                                                                          | 3.3                                                                                                                                                                                                                           | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0                                                                                                                                                                                                                                 | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1                                                                                                                                                                                                      | 0.5                                                                                                                                                                                                                                   |
| Comprobaciones según norma EN 1337-3:2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                               |                                                                                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                       |
| Espesor total del elastómero en cizalla Tq (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56                                                                                                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55                                                                                                                                                                                                               | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75                                                                                                                                                                                                                            | 75                                                                                                                                                                                                                           | 75                                                                                                                                                                                                                            | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56                                                                                                                                                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55                                                                                                                                                                                                       | 56                                                                                                                                                                                                                                    |
| Espesor total del elastómero en cizalla Te (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56                                                                                                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55                                                                                                                                                                                                               | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75                                                                                                                                                                                                                            | 75                                                                                                                                                                                                                           | 75                                                                                                                                                                                                                            | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56                                                                                                                                                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55                                                                                                                                                                                                       | 56                                                                                                                                                                                                                                    |
| a (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300<br>300                                                                                                                                                                          | 400<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 400<br>450                                                                                                                                                                                                       | 300<br>300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 700<br>700                                                                                                                                                                                                                    | 700<br>700                                                                                                                                                                                                                   | 700<br>700                                                                                                                                                                                                                    | 700<br>700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300<br>300                                                                                                                                                                                                                          | 400<br>450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 400<br>500                                                                                                                                                                                               | 300<br>300                                                                                                                                                                                                                            |
| b (mm)<br>a´ (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 292                                                                                                                                                                                 | 392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 392                                                                                                                                                                                                              | 292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 692                                                                                                                                                                                                                           | 692                                                                                                                                                                                                                          | 692                                                                                                                                                                                                                           | 692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 292                                                                                                                                                                                                                                 | 392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 392                                                                                                                                                                                                      | 292                                                                                                                                                                                                                                   |
| b' (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 292                                                                                                                                                                                 | 492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 442                                                                                                                                                                                                              | 292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 692                                                                                                                                                                                                                           | 692                                                                                                                                                                                                                          | 692                                                                                                                                                                                                                           | 692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 292                                                                                                                                                                                                                                 | 442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 492                                                                                                                                                                                                      | 292                                                                                                                                                                                                                                   |
| Deformación de diseño máxima ( ε t,d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,05                                                                                                                                                                                | 3,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,62                                                                                                                                                                                                             | 2,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,25                                                                                                                                                                                                                          | 3,23                                                                                                                                                                                                                         | 3.26                                                                                                                                                                                                                          | 3,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,37                                                                                                                                                                                                                                | 3.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,52                                                                                                                                                                                                     | 1,34                                                                                                                                                                                                                                  |
| Factor de seguridad parcial (ym)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,00                                                                                                                                                                                | 1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,00                                                                                                                                                                                                             | 1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,00                                                                                                                                                                                                                          | 1,00                                                                                                                                                                                                                         | 1,00                                                                                                                                                                                                                          | 1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,00                                                                                                                                                                                                                                | 1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,00                                                                                                                                                                                                     | 1,00                                                                                                                                                                                                                                  |
| ευ,d"<br>ε†,d <ευ,d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7,00<br>cumple                                                                                                                                                                      | 7,00<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,00<br>cumple                                                                                                                                                                                                   | 7.00<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,00<br>cumple                                                                                                                                                                                                                | 7,00<br>cumple                                                                                                                                                                                                               | 7,00<br>cumple                                                                                                                                                                                                                | 7,00<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,00<br>cumple                                                                                                                                                                                                                      | 7.00<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,00<br>cumple                                                                                                                                                                                           | 7,00<br>cumple                                                                                                                                                                                                                        |
| Factor del tipo de carga (KL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,00                                                                                                                                                                                | 1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,00                                                                                                                                                                                                             | 1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,00                                                                                                                                                                                                                          | 1,00                                                                                                                                                                                                                         | 1,00                                                                                                                                                                                                                          | 1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,00                                                                                                                                                                                                                                | 1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,00                                                                                                                                                                                                     | 1,00                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                               |                                                                                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                       |
| Deformación en cizalla (ε q,d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.91                                                                                                                                                                                | 0,35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,35                                                                                                                                                                                                             | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.19                                                                                                                                                                                                                          | 0.19                                                                                                                                                                                                                         | 0.19                                                                                                                                                                                                                          | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.35                                                                                                                                                                                                                                | 0,36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,36                                                                                                                                                                                                     | 0.35                                                                                                                                                                                                                                  |
| εq,d≤1<br>Deformación en cizalla debida a la rotación angular εa,d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cumple<br>0,29                                                                                                                                                                      | cumple<br>0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cumple<br>0.38                                                                                                                                                                                                   | cumple<br>0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cumple<br>0.64                                                                                                                                                                                                                | cumple<br>0.64                                                                                                                                                                                                               | cumple<br>0.64                                                                                                                                                                                                                | cumple<br>0,64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cumple<br>0.29                                                                                                                                                                                                                      | cumple<br>0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cumple<br>0.38                                                                                                                                                                                           | cumple<br>0.29                                                                                                                                                                                                                        |
| Deformación de diseño debida a carga de compresión e c.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.85                                                                                                                                                                                | 2,77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.88                                                                                                                                                                                                             | 1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,42                                                                                                                                                                                                                          | 2.40                                                                                                                                                                                                                         | 2.44                                                                                                                                                                                                                          | 2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,73                                                                                                                                                                                                                                | 2.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,79                                                                                                                                                                                                     | 0.29                                                                                                                                                                                                                                  |
| Fuerza vertical de diseño Fz,d(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 317199.38                                                                                                                                                                           | 2983024,13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2648075,63                                                                                                                                                                                                       | 673842,38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7790310,00                                                                                                                                                                                                                    | 7732179,00                                                                                                                                                                                                                   | 7838316,00                                                                                                                                                                                                                    | 7649545,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 734484.38                                                                                                                                                                                                                           | 2688130.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2997455.63                                                                                                                                                                                               | 295842,38                                                                                                                                                                                                                             |
| Valor nominal del módulo de cizalla convencional G(MPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.90                                                                                                                                                                                | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.90                                                                                                                                                                                                             | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.90                                                                                                                                                                                                                          | 0.90                                                                                                                                                                                                                         | 0.90                                                                                                                                                                                                                          | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.90                                                                                                                                                                                                                                | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.90                                                                                                                                                                                                     | 0.90                                                                                                                                                                                                                                  |
| Area efectiva reducida Ar(mm2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67826,38                                                                                                                                                                            | 180835,36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 162059,41                                                                                                                                                                                                        | 77444.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 465024.00                                                                                                                                                                                                                     | 465024,00                                                                                                                                                                                                                    | 465024,00                                                                                                                                                                                                                     | 465024,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77354,97                                                                                                                                                                                                                            | 161926.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 180687.93                                                                                                                                                                                                | 77354.97                                                                                                                                                                                                                              |
| Factor de forma (S)  Area en planta efectiva del apoyo A1 (mm2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.13<br>85264.00                                                                                                                                                                    | 9.92<br>192864,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.44<br>173264.00                                                                                                                                                                                                | 9.13<br>85264,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11,53<br>478864,00                                                                                                                                                                                                            | 11.53<br>478864.00                                                                                                                                                                                                           | 11,53<br>478864.00                                                                                                                                                                                                            | 11.53<br>478864.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.13<br>85264,00                                                                                                                                                                                                                    | 9.44<br>173264,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.92<br>192864.00                                                                                                                                                                                        | 9.13<br>85264,00                                                                                                                                                                                                                      |
| Desplazamiento máximo horizontal en dirección "a" Vx,d(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49.72                                                                                                                                                                               | 16.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.48                                                                                                                                                                                                            | 16.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.00                                                                                                                                                                                                                         | 10,00                                                                                                                                                                                                                        | 10,00                                                                                                                                                                                                                         | 10,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.09                                                                                                                                                                                                                               | 16.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.78                                                                                                                                                                                                    | 17.09                                                                                                                                                                                                                                 |
| Desplazamiento máximo horizontal en dirección "b" Vy,d(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.00                                                                                                                                                                               | 10,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.00                                                                                                                                                                                                            | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,00                                                                                                                                                                                                                         | 10.00                                                                                                                                                                                                                        | 10,00                                                                                                                                                                                                                         | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.00                                                                                                                                                                                                                               | 10,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10,00                                                                                                                                                                                                    | 10.00                                                                                                                                                                                                                                 |
| S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04 ***                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                        | 0.77                                                                                                                                                                                                                                  |
| Desplazamiento debido a dilatación (mm)<br>Desplazamiento debido a frenado (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.40<br>11.19                                                                                                                                                                      | 0.00<br>10.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00<br>10.99                                                                                                                                                                                                    | 0.00<br>11.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00<br>2.94                                                                                                                                                                                                                  | 0.00<br>2.94                                                                                                                                                                                                                 | 0.00<br>2.63                                                                                                                                                                                                                  | 0.00<br>2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00<br>11,39                                                                                                                                                                                                                       | 0.00<br>11.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00<br>11.19                                                                                                                                                                                            | 0.00<br>11.39                                                                                                                                                                                                                         |
| Desplazamiento debido a viento (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.75                                                                                                                                                                               | 17,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17,43                                                                                                                                                                                                            | 17.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.67                                                                                                                                                                                                                          | 4.67                                                                                                                                                                                                                         | 4.17                                                                                                                                                                                                                          | 4.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18,07                                                                                                                                                                                                                               | 17.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.75                                                                                                                                                                                                    | 18,07                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                               |                                                                                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                       |
| Ángulo de rotación a través de la anchura "a" a a,d(rad)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,003                                                                                                                                                                               | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,003                                                                                                                                                                                                            | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.003                                                                                                                                                                                                                         | 0.003                                                                                                                                                                                                                        | 0.003                                                                                                                                                                                                                         | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.003                                                                                                                                                                                                                               | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,003                                                                                                                                                                                                    | 0.003                                                                                                                                                                                                                                 |
| Anguio de rotación a traves de la anchura da da,a(rad)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,003                                                                                                                                                                               | 0,003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,003                                                                                                                                                                                                            | 0,003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,003                                                                                                                                                                                                                         | 0,003                                                                                                                                                                                                                        | 0,003                                                                                                                                                                                                                         | 0,003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,003                                                                                                                                                                                                                               | 0,003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,003                                                                                                                                                                                                    | 0,003                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                               |                                                                                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                               |                                                                                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                       |
| Condición límite de rotación                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                     | 4.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                  | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                               |                                                                                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                       |
| Flecha vertical total producida por aa y ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,42<br>2000,00                                                                                                                                                                     | 1,07<br>2000,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.99<br>2000,00                                                                                                                                                                                                  | 0,50<br>2000,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,24<br>2000,00                                                                                                                                                                                                               | 1,30<br>2000,00                                                                                                                                                                                                              | 1,32<br>2000,00                                                                                                                                                                                                               | 1,22<br>2000,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.48                                                                                                                                                                                                                                | 0.99<br>2000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,06<br>2000,00                                                                                                                                                                                          | 0,41<br>2000,00                                                                                                                                                                                                                       |
| Σν z,d-((a´, a a,d+ b´, a b,d) / Kr,d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,13                                                                                                                                                                                | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,60                                                                                                                                                                                                             | 0,21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,55                                                                                                                                                                                                                          | 0,61                                                                                                                                                                                                                         | 0.63                                                                                                                                                                                                                          | 0,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.19                                                                                                                                                                                                                                | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.67                                                                                                                                                                                                     | 0.11                                                                                                                                                                                                                                  |
| Factor de rotación ( Kr,d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,00                                                                                                                                                                                | 3,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,00                                                                                                                                                                                                             | 3,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,00                                                                                                                                                                                                                          | 3,00                                                                                                                                                                                                                         | 3,00                                                                                                                                                                                                                          | 3,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,00                                                                                                                                                                                                                                | 3,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,00                                                                                                                                                                                                     | 3,00                                                                                                                                                                                                                                  |
| Σv z,d-((a´. a a,d+ b´. a b,d) / Kr,d) ≥0`                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cumple                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ou mondo                                                                                                                                                                                                                      | aumonla                                                                                                                                                                                                                      | cumple                                                                                                                                                                                                                        | aumonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cumple                                                                                                                                                                                                                              | ou mondo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | aumonia                                                                                                                                                                                                  | cumple                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oumpio                                                                                                                                                                              | cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cumple                                                                                                                                                                                                           | cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cumple                                                                                                                                                                                                                        | cumple                                                                                                                                                                                                                       | cumple                                                                                                                                                                                                                        | cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cumple                                                                                                                                                                                                                              | cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cumple                                                                                                                                                                                                   | Cumple                                                                                                                                                                                                                                |
| Fstahilidad a la tarsión                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ounpo                                                                                                                                                                               | cumpie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cumpie                                                                                                                                                                                                           | cumpie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cumple                                                                                                                                                                                                                        | cumple                                                                                                                                                                                                                       | cumple                                                                                                                                                                                                                        | cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cumpie                                                                                                                                                                                                                              | cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cumple                                                                                                                                                                                                   | cumple                                                                                                                                                                                                                                |
| Estabilidad a la torsión Factor de forma para capas más gruesas (SI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.13                                                                                                                                                                                | 9.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.44                                                                                                                                                                                                             | 9.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11,53                                                                                                                                                                                                                         | 11,53                                                                                                                                                                                                                        | 11,53                                                                                                                                                                                                                         | 11,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.13                                                                                                                                                                                                                                | 9.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.92                                                                                                                                                                                                     | 9.13                                                                                                                                                                                                                                  |
| Estabilidad a la torsión Factor de forma para capas más gruesas (SI) Presión Fz,d/Ar (N/mm2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                               |                                                                                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                       |
| Factor de forma para capas más gruesas (SI)<br>Presión Fz,d/Ar (N/mm2)<br>2*a´*6*SI/3*Teັ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.13<br>4,68<br>28,55                                                                                                                                                               | 9.92<br>16.50<br>42.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.44<br>16.34<br>40.38                                                                                                                                                                                           | 9.13<br>8.70<br>28.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11,53<br>16,75<br>63,85                                                                                                                                                                                                       | 11,53<br>16,63<br>63,85                                                                                                                                                                                                      | 11,53<br>16,86<br>63,85                                                                                                                                                                                                       | 11,53<br>16,45<br>63,85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.13<br>9.49<br>28.55                                                                                                                                                                                                               | 9.44<br>16.60<br>40.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.92<br>16.59<br>42.41                                                                                                                                                                                   | 9.13<br>3.82<br>28.55                                                                                                                                                                                                                 |
| Factor de forma para capas más gruesas (SI)<br>Presión Fz,d/Ar (N/mm2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.13<br>4.68                                                                                                                                                                        | 9.92<br>16.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9,44<br>16,34                                                                                                                                                                                                    | 9.13<br>8.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.53<br>16.75                                                                                                                                                                                                                | 11,53<br>16,63                                                                                                                                                                                                               | 11,53<br>16,86                                                                                                                                                                                                                | 11,53<br>16,45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.13<br>9.49                                                                                                                                                                                                                        | 9.44<br>16.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.92<br>16.59                                                                                                                                                                                            | 9.13<br>3.82                                                                                                                                                                                                                          |
| Factor de forma para capas más gruesas (SI)<br>Presión Fz,d/Ar (N/mm2)<br>2*a´*6*SI/3*Teັ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.13<br>4,68<br>28,55                                                                                                                                                               | 9.92<br>16.50<br>42.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.44<br>16.34<br>40.38                                                                                                                                                                                           | 9.13<br>8.70<br>28.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11,53<br>16,75<br>63,85                                                                                                                                                                                                       | 11,53<br>16,63<br>63,85                                                                                                                                                                                                      | 11,53<br>16,86<br>63,85                                                                                                                                                                                                       | 11,53<br>16,45<br>63,85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.13<br>9.49<br>28.55                                                                                                                                                                                                               | 9.44<br>16.60<br>40.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.92<br>16.59<br>42.41                                                                                                                                                                                   | 9.13<br>3.82<br>28.55                                                                                                                                                                                                                 |
| Factor de forma para capas más gruesas (SI)<br>Presión Fz.d/Ar (N/mm2)<br>2°a´a°a's'3'3°Te<br>Fz.d/Ar < 2°a´a°a'5'3'3°Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.13<br>4,68<br>28,55                                                                                                                                                               | 9.92<br>16.50<br>42.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.44<br>16.34<br>40.38                                                                                                                                                                                           | 9.13<br>8.70<br>28.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11,53<br>16,75<br>63,85                                                                                                                                                                                                       | 11,53<br>16,63<br>63,85                                                                                                                                                                                                      | 11,53<br>16,86<br>63,85                                                                                                                                                                                                       | 11,53<br>16,45<br>63,85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.13<br>9.49<br>28.55                                                                                                                                                                                                               | 9.44<br>16.60<br>40.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.92<br>16.59<br>42.41                                                                                                                                                                                   | 9.13<br>3.82<br>28.55                                                                                                                                                                                                                 |
| Factor de forma para capas más gruesas (SI) Presión Fz.d/Ar (N/mm2) 2ºa "a*S1/3"TE Fz.d/Ar <2ºa "6*S1/3"TE  Condición de no deslizamiento  CON SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy.d Fz.d min (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.13<br>4.68<br>28.55<br>cumple                                                                                                                                                     | 9,92<br>16,50<br>42,41<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9,44<br>16,34<br>40,38<br>cumple                                                                                                                                                                                 | 9.13<br>8.70<br>28.55<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.53<br>16.75<br>63.85<br>cumple                                                                                                                                                                                             | 11.53<br>16.63<br>63.85<br>cumple                                                                                                                                                                                            | 11.53<br>16.86<br>63.85<br>cumple                                                                                                                                                                                             | 11.53<br>16.45<br>63.85<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.13<br>9.49<br>28.55<br>cumple                                                                                                                                                                                                     | 9.44<br>16.60<br>40.38<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9,92<br>16,59<br>42,41<br>cumple                                                                                                                                                                         | 9.13<br>3.82<br>28.55<br>cumple                                                                                                                                                                                                       |
| Factor de forma para capas más grueses (SI) Presión Fz,d/Ar (N/m70) 2º aº                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.13<br>4.68<br>28.55<br>cumple<br>234962.50<br>3.46                                                                                                                                | 9.92<br>16.50<br>42.41<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.44<br>16.34<br>40.38<br>cumple                                                                                                                                                                                 | 9.13<br>8.70<br>28.55<br>cumple<br>499142.50<br>6.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41                                                                                                                                                                      | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32                                                                                                                                                                     | 11.53<br>16.86<br>63.85<br>cumple<br>5806160.00<br>12.49                                                                                                                                                                      | 11.53<br>16.45<br>63.85<br>cumple<br>5666330.00<br>12.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03                                                                                                                                                                                | 9.44<br>16.60<br>40.38<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.92<br>16.59<br>42.41<br>cumple<br>2220337.50<br>12.29                                                                                                                                                  | 9.13<br>3.82<br>28.55<br>cumple<br>219142.50<br>2.83                                                                                                                                                                                  |
| Factor de forma para capas más gruesas (SI) Presión Fz,d/Ar (N/m2). 2°a´*G*S/3*Te Fz,d/Ar <2°a´*G*S/3*Te Condición de no deslizamiento  CON SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy,d Media del esfuerzo en compresión para Fz,d min (Mya) Coeficiente de fricción (µe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9,13<br>4,68<br>28,55<br>cumple<br>234962,50<br>3,46<br>0,36                                                                                                                        | 9,92<br>16,50<br>42,41<br>cumple<br>2209647.50<br>12,22<br>0,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9,44<br>16,34<br>40,38<br>cumple<br>1961537.50<br>12,10<br>0,17                                                                                                                                                  | 9.13<br>8.70<br>28.55<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41<br>0.17                                                                                                                                                              | 11,53<br>16,63<br>63,85<br>cumple<br>5727540,00<br>12,32<br>0,17                                                                                                                                                             | 11,53<br>16,86<br>63,85<br>cumple<br>5806160,00<br>12,49<br>0,17                                                                                                                                                              | 11,53<br>16,45<br>63,85<br>cumple<br>5666330,00<br>12,19<br>0,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03<br>0.23                                                                                                                                                                        | 9,44<br>16,60<br>40,38<br>cumple<br>1991207.50<br>12,30<br>0,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.92<br>16.59<br>42.41<br>cumple<br>2220337.50<br>12.29<br>0.17                                                                                                                                          | 9,13<br>3,82<br>28,55<br>cumple<br>219142,50<br>2,83<br>0,42                                                                                                                                                                          |
| Factor de forma para capas más grueses (SI) Presión Fz,d/Ar (N/m70) 2º aº                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.13<br>4.68<br>28.55<br>cumple<br>234962.50<br>3.46                                                                                                                                | 9.92<br>16.50<br>42.41<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.44<br>16.34<br>40.38<br>cumple                                                                                                                                                                                 | 9,13<br>8,70<br>28,55<br>cumple<br>499142,50<br>6,45<br>0,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41                                                                                                                                                                      | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32                                                                                                                                                                     | 11.53<br>16.86<br>63.85<br>cumple<br>5806160.00<br>12.49                                                                                                                                                                      | 11.53<br>16.45<br>63.85<br>cumple<br>5666330.00<br>12.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03                                                                                                                                                                                | 9.44<br>16.60<br>40.38<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.92<br>16.59<br>42.41<br>cumple<br>2220337.50<br>12.29                                                                                                                                                  | 9.13<br>3.82<br>28.55<br>cumple<br>219142.50<br>2.83                                                                                                                                                                                  |
| Factor de forma para capas más gruesas (SI) Presión Fz.d/Ar (N/mar) 2ºn "6°31/3"TE Fz.d/Ar <2°n "6°51/3"TE Fz.d/Ar <2°n "6°51/3"TE Condición de no deslizamiento  CON SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy, d Fz.d min (N) Media del esfuerzo en compresión para Fz.d min Resultante de fuerzas horizontales Fxyd(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.13<br>4.68<br>28.55<br>cumple<br>234962.50<br>3.46<br>0.36<br>84539.99<br>98922.19                                                                                                | 9,92<br>16,50<br>42,41<br>cumple<br>2209647,50<br>12,22<br>0,17<br>383716,57<br>219827,09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9,44<br>16,34<br>40,38<br>cumple<br>1961537.50<br>12,10<br>0,17<br>342007.22<br>197844,38                                                                                                                        | 9.13<br>8.70<br>28.55<br>cumple<br>499142.50<br>6.45<br>0.24<br>119613.90<br>98922.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41<br>0.17<br>995581.60<br>78315.88                                                                                                                                     | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32<br>0.17<br>991275.60<br>78315.88                                                                                                                                    | 11.53<br>16.86<br>63.85<br>cumple<br>5806160.00<br>12.49<br>0.17<br>999137.60<br>69853.29                                                                                                                                     | 11.53<br>16.45<br>63.85<br>cumple<br>5666330.00<br>12.19<br>0.17<br>985154.60<br>69853.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03<br>0.23<br>124025.72<br>100631.97                                                                                                                                              | 9.44<br>16.60<br>40.38<br>cumple<br>1991207.50<br>12.30<br>0.17<br>344855.01<br>201263.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9,92<br>16,59<br>42,41<br>cumple<br>2220337,50<br>12,29<br>0,17<br>384652,89<br>223626,61                                                                                                                | 9.13<br>3.82<br>28.55<br>cumple<br>219142.50<br>2.83<br>0.42<br>91533.72<br>100631.97                                                                                                                                                 |
| Factor de forma para capas más grueses (SI) Presión Fz,d/Ar (N/mmz) 2º - º - º - º - S/3 * Te Fz,d/Ar < 2º a ' º - S/3 * Te Fz,d/Ar < 2º a ' º - S/3 * Te  Condición de no deslizamiento  CON SOBRECARGA  Fuerza de diseño vertical mínima coexistente con Fxy, d Fz,d min (N) Media del esfuerzo en compresión para Fz,d min om (Mpa) Coeficiente de fricción (µ e) µ e Fz,d min Resultante de fuerzas horizontales Fxyd(N)  Fxyd s µ e °Fz,d min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.13<br>4.68<br>28.55<br>cumple<br>234962.50<br>3.46<br>0.36<br>84539.99<br>98922.19<br>apoyo anclado                                                                               | 9.92<br>16.50<br>42.41<br>cumple<br>2209647.50<br>12.22<br>0.17<br>383716.57<br>219827.09<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9,44<br>16,34<br>40,38<br>cumple<br>1961537.50<br>12,10<br>0,17<br>342007.22<br>197844,38<br>cumple                                                                                                              | 9.13<br>8.70<br>28.55<br>cumple<br>499142.50<br>6.45<br>0.24<br>119613.90<br>98922.19<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41<br>0.17<br>995581.60<br>78315.88<br>cumple                                                                                                                           | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32<br>0.17<br>991275.60<br>78315.88<br>cumple                                                                                                                          | 11.53<br>16.86<br>63.85<br>cumple<br>5806160.00<br>12.49<br>0.17<br>999137.60<br>69853.29<br>cumple                                                                                                                           | 11.53<br>16.45<br>63.85<br>cumple<br>5666330.00<br>12.19<br>0.17<br>985154.60<br>69853.29<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03<br>0.23<br>124025.72<br>100631.97<br>cumple                                                                                                                                    | 9,44<br>16,60<br>40,38<br>cumple<br>1991207.50<br>12,30<br>0,17<br>344855.01<br>201263.95<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9,92<br>16,59<br>42,41<br>cumple<br>2220337,50<br>12,29<br>0,17<br>384652,89<br>223626,61<br>cumple                                                                                                      | 9.13<br>3.82<br>28.55<br>cumple<br>219142.50<br>2.83<br>0.42<br>91533.72<br>100631.97<br>apoyo anclado                                                                                                                                |
| Factor de forma para capas más gruesas (SI) Presión Fz.d/Ar (N/mar) 2ºn "6°31/3"TE Fz.d/Ar <2°n "6°51/3"TE Fz.d/Ar <2°n "6°51/3"TE Condición de no deslizamiento  CON SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy, d Fz.d min (N) Media del esfuerzo en compresión para Fz.d min Resultante de fuerzas horizontales Fxyd(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.13<br>4.68<br>28.55<br>cumple<br>234962.50<br>3.46<br>0.36<br>84539.99<br>98922.19                                                                                                | 9.92<br>16.50<br>42.41<br>cumple<br>2209647.50<br>12.22<br>0.17<br>383716.57<br>219827.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9,44<br>16,34<br>40,38<br>cumple<br>1961537.50<br>12,10<br>0,17<br>342007.22<br>197844,38                                                                                                                        | 9.13<br>8.70<br>28.55<br>cumple<br>499142.50<br>6.45<br>0.24<br>119613.90<br>98922.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41<br>0.17<br>995581.60<br>78315.88                                                                                                                                     | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32<br>0.17<br>991275.60<br>78315.88                                                                                                                                    | 11.53<br>16.86<br>63.85<br>cumple<br>5806160.00<br>12.49<br>0.17<br>999137.60<br>69853.29                                                                                                                                     | 11.53<br>16.45<br>63.85<br>cumple<br>5666330.00<br>12.19<br>0.17<br>985154.60<br>69853.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03<br>0.23<br>124025.72<br>100631.97                                                                                                                                              | 9.44<br>16.60<br>40.38<br>cumple<br>1991207.50<br>12.30<br>0.17<br>344855.01<br>201263.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9,92<br>16,59<br>42,41<br>cumple<br>2220337,50<br>12,29<br>0,17<br>384652,89<br>223626,61                                                                                                                | 9.13<br>3.82<br>28.55<br>cumple<br>219142.50<br>2.83<br>0.42<br>91533.72<br>100631.97                                                                                                                                                 |
| Factor de forma para capas más gruesas (SI) Presión Fz.d/Ar (N/mm2) 2ºa "a-5*/S-1" Fz.d/Ar < 2ºa "a-5*/S-1" Fz.d/Ar < 2ºa "a-5*/S-1"  Condición de no deslizamiento  CON SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy. d Fz.d min (N) Media del esfuerzo en compresión para Fz.d min (Mpa) Coeficiente de fricción (µ e) µ e "F z.d min Resultante de fuerzas horizontales Fxyd(N)  Fxyd s µ e "F z.d min o cd min = Fz.d min o cd min = Fz.d min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9,13<br>4,68<br>28,55<br>cumple<br>234962,50<br>3,46<br>0,36<br>84539,99<br>98922,19<br>apoyo anclado<br>3,46                                                                       | 9,92<br>16,50<br>42,41<br>cumple<br>2209647,50<br>12,22<br>0,17<br>383716,57<br>219827,09<br>cumple<br>12,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9,44<br>16.34<br>40,38<br>cumple<br>1961537.50<br>12.10<br>0.17<br>342007.22<br>197844.38                                                                                                                        | 9.13<br>8.70<br>28.55<br>cumple<br>499142.50<br>6.45<br>0.24<br>119613.90<br>98922.19<br>cumple<br>6.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41<br>0.17<br>995581.60<br>78315.88                                                                                                                                     | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32<br>0.17<br>991275.60<br>78315.88<br>cumple<br>12.32                                                                                                                 | 11.53<br>16.86<br>63.85<br>cumple<br>5806160.00<br>12.49<br>0.17<br>999137.60<br>69853.29<br>cumple<br>12.49                                                                                                                  | 11.53<br>16.45<br>63.85<br>cumple<br>5666330.00<br>12.19<br>0.17<br>985154.60<br>69853.29<br>cumple<br>12.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03<br>0.23<br>124025.72<br>100631.97<br>cumple<br>7.03                                                                                                                            | 9,44<br>16.60<br>40.38<br>cumple<br>1991207.50<br>12.30<br>0.17<br>344855.01<br>201263.95<br>cumple<br>12.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9,92<br>16,59<br>42,41<br>cumple<br>2220337,50<br>12,29<br>0,17<br>384652,89<br>223626,61<br>cumple<br>12,29                                                                                             | 9.13<br>3.82<br>28.55<br>cumple<br>219142.50<br>2.83<br>0.42<br>91533.72<br>100631.97<br>apoyo anclado<br>2.83                                                                                                                        |
| Factor de forma para capos más gruesos. (SI) Presión Fz.d/Ar (N/mm2) 2°n "6°51/3"TE Fz.d/Ar <2°n "6°51/3"TE  Condición de no deslizamiento  CON SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy. d Fz.d min (N) Media del esfuerzo en compresión para Fz.d min (Mpa) Coeficiente de fricción (µ e "F z.d min Resultante de fuerzas horizontales Fxyd(N) Fxyd S µ e*F z.d min o d min = F z.d min/Ar o cd min = F z.d min/Ar 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9,13<br>4,68<br>28,55<br>cumple<br>234962,50<br>3,46<br>0,36<br>84539,99<br>98922,19<br>apoyo anclado<br>3,46                                                                       | 9,92<br>16,50<br>42,41<br>cumple<br>2209647,50<br>12,22<br>0,17<br>383716,57<br>219827,09<br>cumple<br>12,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9,44<br>16.34<br>40,38<br>cumple<br>1961537.50<br>12.10<br>0.17<br>342007.22<br>197844.38                                                                                                                        | 9.13<br>8.70<br>28.55<br>cumple<br>499142.50<br>6.45<br>0.24<br>119613.90<br>98922.19<br>cumple<br>6.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41<br>0.17<br>995581.60<br>78315.88                                                                                                                                     | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32<br>0.17<br>991275.60<br>78315.88<br>cumple<br>12.32                                                                                                                 | 11.53<br>16.86<br>63.85<br>cumple<br>5806160.00<br>12.49<br>0.17<br>999137.60<br>69853.29<br>cumple<br>12.49                                                                                                                  | 11.53<br>16.45<br>63.85<br>cumple<br>5666330.00<br>12.19<br>0.17<br>985154.60<br>69853.29<br>cumple<br>12.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03<br>0.23<br>124025.72<br>100631.97<br>cumple<br>7.03                                                                                                                            | 9,44<br>16.60<br>40.38<br>cumple<br>1991207.50<br>12.30<br>0.17<br>344855.01<br>201263.95<br>cumple<br>12.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9,92<br>16,59<br>42,41<br>cumple<br>2220337,50<br>12,29<br>0,17<br>384652,89<br>223626,61<br>cumple<br>12,29                                                                                             | 9.13<br>3.82<br>28.55<br>cumple<br>219142.50<br>2.83<br>0.42<br>91533.72<br>100631.97<br>apoyo anclado<br>2.83                                                                                                                        |
| Factor de forma para capas más gruesas (SI) Presión Fz,d/Ar (N/mz) 2ºa^*e^s-S/3*Te Fz,d/Ar <2*a**e^s-S/3*Te Fz,d/Ar <2*a**e^s-S/3*Te  Condición de no deslizamiento  CON SOBRECARGA  Fuerza de diseño vertical mínima coexistente con Fxy, d Fz,d min (N) Media del esfuerzo en compresión para Fz,d min om (Mpa) Coeficiente de fricción (µ e) µ eº Fz,d min Resultante de fuerzas horizontales Fxyd(N)  Fxyd ≤ µ e°Fz,d min σ cd min = Fz,d min/Ar z 3  SIN SOBRECARGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9,13<br>4,68<br>28,55<br>cumple<br>234962,50<br>3,46<br>0,36<br>84539,99<br>98922,19<br>apoyo anclado<br>3,46                                                                       | 9,92<br>16,50<br>42,41<br>cumple<br>2209647,50<br>12,22<br>0,17<br>383716,57<br>219827,09<br>cumple<br>12,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9,44<br>16.34<br>40,38<br>cumple<br>1961537.50<br>12.10<br>0.17<br>342007.22<br>197844.38                                                                                                                        | 9.13<br>8.70<br>28.55<br>cumple<br>499142.50<br>6.45<br>0.24<br>119613.90<br>98922.19<br>cumple<br>6.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41<br>0.17<br>995581.60<br>78315.88                                                                                                                                     | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32<br>0.17<br>991275.60<br>78315.88<br>cumple<br>12.32                                                                                                                 | 11.53<br>16.86<br>63.85<br>cumple<br>5806160.00<br>12.49<br>0.17<br>999137.60<br>69853.29<br>cumple<br>12.49                                                                                                                  | 11.53<br>16.45<br>63.85<br>cumple<br>5666330.00<br>12.19<br>0.17<br>985154.60<br>69853.29<br>cumple<br>12.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03<br>0.23<br>124025.72<br>100631.97<br>cumple<br>7.03                                                                                                                            | 9,44<br>16.60<br>40.38<br>cumple<br>1991207.50<br>12.30<br>0.17<br>344855.01<br>201263.95<br>cumple<br>12.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9,92<br>16,59<br>42,41<br>cumple<br>2220337,50<br>12,29<br>0,17<br>384652,89<br>223626,61<br>cumple<br>12,29                                                                                             | 9.13<br>3.82<br>28.55<br>cumple<br>219142.50<br>2.83<br>0.42<br>91533.72<br>100631.97<br>apoyo anclado<br>2.83                                                                                                                        |
| Factor de forma para capos más gruesos. (SI) Presión Fz.d/Ar (N/mm2) 2°n "6°51/3"TE Fz.d/Ar <2°n "6°51/3"TE  Condición de no deslizamiento  CON SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy. d Fz.d min (N) Media del esfuerzo en compresión para Fz.d min (Mpa) Coeficiente de fricción (µ e "F z.d min Resultante de fuerzas horizontales Fxyd(N) Fxyd S µ e*F z.d min o d min = F z.d min/Ar o cd min = F z.d min/Ar 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9,13<br>4,68<br>28,55<br>cumple<br>234962,50<br>3,46<br>0,36<br>84539,99<br>98922,19<br>apoyo anclado<br>3,46<br>cumple                                                             | 9,92<br>16,50<br>42,41<br>cumple<br>2209647,50<br>12,22<br>0,17<br>38,3716,57<br>219827,09<br>cumple<br>12,22<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9,44<br>16,34<br>40,38<br>cumple<br>1961537,50<br>12,10<br>0,17<br>342007,22<br>197844,38<br>cumple<br>12,10<br>cumple                                                                                           | 9.13<br>8.70<br>28.55<br>cumple<br>499142.50<br>6.45<br>0.24<br>119613.90<br>98922.19<br>cumple<br>6.45<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41<br>0.17<br>995581.60<br>78315.88<br>cumple<br>12.41<br>cumple                                                                                                        | 11.53<br>16.63<br>63.85<br>cumple<br>5727540,00<br>12.32<br>0.17<br>991275.60<br>78315.88<br>cumple<br>12.32<br>cumple                                                                                                       | 11.53<br>16.86<br>63.85<br>cumple<br>5806160.00<br>12.49<br>0.17<br>999137.60<br>69853.29<br>cumple<br>12.49<br>cumple                                                                                                        | 11.53<br>16.45<br>63.85<br>cumple<br>5666330.00<br>12.19<br>0.17<br>985154.60<br>69853.29<br>cumple<br>12.19<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03<br>0.23<br>124025.72<br>100631.97<br>cumple<br>7.03<br>cumple                                                                                                                  | 9,44<br>16,60<br>40,38<br>cumple<br>1991207,50<br>12,30<br>0,17<br>344855,01<br>201263,95<br>cumple<br>12,30<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,92<br>16,59<br>42,41<br>cumple<br>2220337,50<br>12,29<br>0.17<br>384652,89<br>223626,61<br>cumple<br>12,29<br>cumple                                                                                   | 9.13<br>3.82<br>28.55<br>cumple<br>219142.50<br>2.83<br>0.42<br>91533.72<br>100631.97<br>apoyo anciado<br>2.83<br>apoyo anciado                                                                                                       |
| Factor de forma para capas más gruesas (SI) Presión Fz_d/Ar (N/mm2) 2*a**aFs/3*a** Fz_d/Ar <2*a**aFs/3*a** Fz_d/Ar <2*a**aFs/3*a**  Condición de no deslizamiento  CON SOBRECABCA  Fuerza de diseño vertical mínima coexistente con Fxy,d  Media del esfuerzo en compresión para Fz_d min  (Media  Media del esfuerzo en compresión para Fz_d min  Resultante de fuerzas horizantales  Fxyd(N)  Fxyd ≤ µ a*Fz_d min  a cd min = Fz_d min/Ar  a cd min = Fz_d min/Ar  3 SIN SOBRECABCA  Fuerza de diseño vertical mínima coexistente con Fxy,d  Media del esfuerzo en compresión para Fz_d min (Mea)  Coefficiente de fricción (µ a)  Media del esfuerzo en compresión para Fz_d min  (Mea)  Coefficiente de fricción (µ a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.13<br>4.68<br>28.55<br>cumple<br>234962.50<br>3.46<br>0.36<br>84539.99<br>98922.13<br>3.46<br>cumple                                                                              | 9,92<br>16,50<br>42,41<br>cumple<br>2209647,50<br>12,22<br>0.17<br>219827,50<br>cumple<br>12,22<br>cumple<br>979887,50<br>5,42<br>0,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.44<br>16.34<br>40.38<br>cumple<br>1961537.50<br>12.10<br>1.17<br>342007.22<br>197844.38<br>cumple<br>12.10<br>cumple<br>739297.50<br>4.56<br>0.30                                                              | 9.13<br>8.70<br>28.55<br>cumple<br>499142.50<br>6.45<br>0.24<br>119613.90<br>989221.<br>cumple<br>6.45<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41<br>995581.60<br>783158<br>cumple<br>12.41<br>cumple<br>2589480.00<br>5.57<br>0.26                                                                                    | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32<br>0.17<br>991275.60<br>78315.82<br>cumple<br>12.32<br>cumple<br>2740160.00<br>5.89<br>0.25                                                                         | 11.53<br>16.86<br>63.85<br>cumple<br>5806160.00<br>12.49<br>0.17<br>999137.60<br>69853.29<br>cumple<br>12.49<br>cumple<br>2781750.00<br>5.98<br>0.25                                                                          | 11.53<br>16.45<br>63.85<br>cumple<br>5666330.00<br>12.19<br>0.17<br>985154.60<br>69853.29<br>cumple<br>12.19<br>cumple<br>12.19<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03<br>0.23<br>124025.72<br>100631.97<br>cumple<br>169712.50<br>2.19<br>0.51                                                                                                       | 9.44<br>16.60<br>40.38<br>cumple<br>1991207.50<br>12.30<br>0.17<br>344855.01<br>201263.95<br>cumple<br>12.30<br>cumple<br>737837.50<br>4.56<br>0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9,92<br>16,59<br>42,41<br>cumple<br>2220337,50<br>12,29<br>1,29<br>23626,61<br>cumple<br>12,29<br>cumple<br>96,9567,50<br>5,37<br>0,27                                                                   | 9.13<br>3.82<br>28.55<br>cumple<br>219142.50<br>2.83<br>0.42<br>91533.72<br>1006317, 2<br>apoyo anclado<br>2.83<br>apoyo anclado<br>143862.50<br>1.86<br>0.58                                                                         |
| Factor de forma para capas más gruesas (SI) Presión Fz.d/Ar (N/mm2) 2°n "6°51/3"TE Fz.d/Ar <2°n "6°51/3"TE Fz.d/Ar <2°n "6°51/3"TE Condición de no deslizamiento  CON SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy, d Media del esfuerzo en compresión para Fz.d min Resultante de fuerzas horizontales Fxyd(N) Fxyd S µ e°F z.d min Resultante de fuerzas horizontales Fxyd(N) Fxyd S µ e°F z.d min a cd min = F z.d min/Ar a cd min = F z.d min/Ar SIN SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy, d Media del esfuerzo en compresión para Fz.d min Coeficiente de fricción (µ e) µ e°F z.d min (N) Coeficiente de fricción (µ e) µ e°F z.d min (Mpa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.13<br>4.68<br>28.55<br>cumple<br>234962.50<br>3.46<br>0.36<br>84539.99<br>98922.19<br>apoye ancided<br>3.46<br>cumple                                                             | 9,92<br>16,50<br>42,41<br>cumple<br>2209647,50<br>12,22<br>0,17<br>383716,57<br>219827,09<br>cumple<br>12,22<br>cumple<br>979887,50<br>5,42<br>0,54<br>2,60740,57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.44<br>16.34<br>40.38<br>cumple<br>1961537.50<br>12.10<br>13.4207.22<br>197844.38<br>cumple<br>12.10<br>cumple<br>12.10<br>4.56<br>0.30                                                                         | 9.13<br>8.70<br>28.55<br>cumple<br>499142.50<br>6.45<br>0.24<br>119613.90<br>98922.19<br>cumple<br>6.45<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41<br>0.17<br>995581.60<br>78315.88<br>cumple<br>12.41<br>cumple<br>12.41<br>cumple<br>557<br>0.57<br>0.57<br>0.57                                                      | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32<br>7991275.60<br>78315.88<br>cumple<br>12.32<br>cumple<br>2740160.00<br>5.89<br>0.25                                                                                | 11.53<br>16.86<br>63.85<br>cumple<br>5806160.00<br>12.49<br>0.17<br>999137.60<br>69853.29<br>cumple<br>12.49<br>cumple<br>2781750.00<br>5.98<br>0.25                                                                          | 11.53<br>16.45<br>63.85<br>cumple<br>5666330.00<br>12.19<br>7985154.60<br>69853.29<br>cumple<br>12.19<br>cumple<br>2547210.00<br>5.48<br>0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03<br>0.23<br>124025.72<br>100631.97<br>cumple<br>7.03<br>cumple                                                                                                                  | 9.44<br>16.60 40.38<br>cumple<br>1991207.50<br>12.30<br>0.17<br>344855.01<br>201263.95<br>cumple<br>12.30<br>cumple<br>12.30<br>5.01<br>7.37837.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9,92<br>16,59<br>42,41<br>cumple<br>2220337,50<br>12,29<br>0,27<br>384652,89<br>223626,61<br>cumple<br>12,29<br>cumple<br>12,29<br>cumple<br>5,37<br>0,37<br>0,27<br>0,27<br>0,27                        | 9.13<br>3.82<br>28.55<br>cumple<br>219142.50<br>2.83<br>0.42<br>91533.72<br>100631.97<br>apoyo anclado<br>2.83<br>apoyo anclado                                                                                                       |
| Factor de forma para capas más gruesas (SI) Presión Fz,d/Ar (N/mz). 2°a "aG*S/3*Te Fz,d/Ar <2°a "aG*S/3*Te Fz,d/Ar <2°a "aG*S/3*Te Fz,d/Ar <2°a "aG*S/3*Te Fz,d/Ar <2°a "aG*S/3*Te Condición de no deslizamiento  CON SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy,d Media del esfuerzo en compresión para Fz,d min (Mpa) Coeficiente de fricción (µ e) µ e F z,d min Resultante de fuerzas horizontales = Fxyd(N) Fxyd ≤ µ e F z,d min a cd min = F z,d min/Ar o cd min = F z,d min/Ar o cd min = F z,d min/Ar o cd min = F x,d min/Ar o cd min = F x,d min/Ar o cd min = Gx d min/Ar e 3  SIN SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy,d Media del esfuerzo en compresión para Fz,d min o m (Mpa) Coeficiente de fricción (µ e) µ e F z,d min Resultante de fuerzas horizontales = Fxyd(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,13 4,68 28,55 cumple 234962,50 3,46 0,36 84539,99 8922,19 apoyo anciado 3,46 cumple 147512,50 2,17 0,51 7,5794,99 90569,08                                                        | 9,92<br>16,50<br>42,41<br>cumple<br>2209647,50<br>12,22<br>0,17<br>383716,57<br>219827,09<br>cumple<br>12,22<br>cumple<br>979887,50<br>5,42<br>0,27<br>260740,57<br>201264,62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9,44<br>16,34<br>40,38<br>cumple<br>1961537,50<br>12,10<br>0,17<br>342007,22<br>197844,38<br>cumple<br>12,10<br>cumple<br>739297,50<br>4,56<br>0,30<br>219783,22<br>181138,16                                    | 9.13<br>8.70<br>28.55<br>cumple<br>499142.50<br>6.45<br>0.24<br>119613.90<br>98922.19<br>cumple<br>6.45<br>cumple<br>175742.50<br>2.27<br>0.50<br>87273.90<br>90569.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41<br>0.17<br>995581.60<br>78315.88<br>cumple<br>12.41<br>cumple<br>2589480.00<br>2589480.00<br>5.57<br>0.26<br>677469.60<br>85386.88                                   | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32<br>0.17<br>991275.60<br>78315.88<br>cumple<br>12.32<br>cumple<br>2740160.00<br>5.89<br>0.25<br>692537.60<br>95366.88                                                | 11.53<br>16.86<br>63.85<br>cumple<br>5806160.00<br>12.49<br>0.17<br>999137.60<br>69853.29<br>cumple<br>12.49<br>cumple<br>2781750.00<br>5.98<br>0.25<br>696696.60                                                             | 11.53<br>16.45<br>63.85<br>cumple<br>5666330.00<br>12.19<br>0.17<br>985154.60<br>69853.29<br>cumple<br>12.19<br>cumple<br>2547210.00<br>5.48<br>0.26<br>67324.26<br>70.7652.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03<br>0.23<br>124025.72<br>100631.97<br>cumple<br>7.03<br>cumple<br>7.03<br>cumple<br>169712.50<br>2.19<br>0.51<br>86590.72<br>92167.78                                           | 9,44<br>16,60<br>40,38<br>cumple<br>1991207,50<br>12,30<br>0,17<br>344855,01<br>201263,95<br>cumple<br>12,30<br>cumple<br>737837,50<br>4,56<br>0,30<br>219518,01<br>184335,56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9,92<br>16,59<br>42,41<br>cumple<br>2220337,50<br>12,29<br>0,17<br>384652,89<br>223626,61<br>cumple<br>12,29<br>cumple<br>969567,50<br>5,37<br>0,27<br>259575,89<br>204817,29                            | 9.13 3.82 28.55 cumple  219142.50 2.83 0.42 91533.72 100631.97 apoyo anclado 2.83 apoyo anclado 143862.50 14866.0.58 84005.72 82167.78                                                                                                |
| Factor de forma para capas más gruesas (SI) Presión Fz,d/Ar (N/mz). 2°a "aG*S/3*Te Fz,d/Ar <2°a "aG*S/3*Te Fz,d/Ar <2°a "aG*S/3*Te Fz,d/Ar <2°a "aG*S/3*Te Fz,d/Ar <2°a "aG*S/3*Te Condición de no deslizamiento  CON SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy,d Media del esfuerzo en compresión para Fz,d min (Mpa) Coeficiente de fricción (µ e) µ e F z,d min Resultante de fuerzas horizontales = Fxyd(N) Fxyd ≤ µ e F z,d min a cd min = F z,d min/Ar o cd min = F z,d min/Ar o cd min = F z,d min/Ar o cd min = F x,d min/Ar o cd min = F x,d min/Ar o cd min = Gx d min/Ar e 3  SIN SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy,d Media del esfuerzo en compresión para Fz,d min o m (Mpa) Coeficiente de fricción (µ e) µ e F z,d min Resultante de fuerzas horizontales = Fxyd(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.13<br>4.68<br>28.55<br>cumple<br>234962.50<br>3.46<br>0.36<br>84539.99<br>98922.19<br>apoye ancided<br>3.46<br>cumple                                                             | 9,92<br>16,50<br>42,41<br>cumple<br>2209647,50<br>12,22<br>0,17<br>383716,57<br>219827,09<br>cumple<br>12,22<br>cumple<br>979887,50<br>5,42<br>0,54<br>2,60740,57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.44<br>16.34<br>40.38<br>cumple<br>1961537.50<br>12.10<br>13.4207.22<br>197844.38<br>cumple<br>12.10<br>cumple<br>12.10<br>4.56<br>0.30                                                                         | 9.13<br>8.70<br>28.55<br>cumple<br>499142.50<br>6.45<br>0.24<br>119613.90<br>98922.19<br>cumple<br>6.45<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41<br>0.17<br>995581.60<br>78315.88<br>cumple<br>12.41<br>cumple<br>2589480.00<br>2589480.00<br>5.57<br>0.26<br>677469.60<br>85386.88                                   | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32<br>7991275.60<br>78315.88<br>cumple<br>12.32<br>cumple<br>2740160.00<br>5.89<br>0.25                                                                                | 11.53<br>16.86<br>63.85<br>cumple<br>5806160.00<br>12.49<br>0.17<br>999137.60<br>69853.29<br>cumple<br>12.49<br>cumple<br>2781750.00<br>5.98<br>0.25                                                                          | 11.53<br>16.45<br>63.85<br>cumple<br>5666330.00<br>12.19<br>7985154.60<br>69853.29<br>cumple<br>12.19<br>cumple<br>2547210.00<br>5.48<br>0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03<br>0.23<br>124025.72<br>100631.97<br>cumple<br>7.03<br>cumple                                                                                                                  | 9.44<br>16.60 40.38<br>cumple<br>1991207.50<br>12.30<br>0.17<br>344855.01<br>201263.95<br>cumple<br>12.30<br>cumple<br>12.30<br>5.01<br>7.37837.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9,92<br>16,59<br>42,41<br>cumple<br>2220337,50<br>12,29<br>0,27<br>384652,89<br>223626,61<br>cumple<br>12,29<br>cumple<br>12,29<br>cumple<br>5,37<br>0,37<br>0,27<br>0,27<br>0,27                        | 9.13<br>3.82<br>28.55<br>cumple<br>219142.50<br>2.83<br>0.42<br>91533.72<br>100631.97<br>apoyo anclado<br>2.83<br>apoyo anclado                                                                                                       |
| Factor de forma para capas más gruesas (SI) Presión Fz_d/Ar (A/mm2) 2°a "a S1/3"Te Fz_d/Ar < 2°a "a S1/3"Te Fz_d/Ar < 2°a "a S1/3"Te Fz_d/Ar < 2°a "a S1/3"Te Condición de no deslizamiento  CON SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy, d Fz_d min (N) Media del esfuerzo en compresión para Fz_d min (Mépa)  Media del esfuerzo en compresión para Fz_d min Resultante de fuerzas horizontales Fxyd(N)  Fxyd s_y e "Fz_d min a d min = Fz_d min/Ar a d min = Fz_d min/Ar  SIN SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy, d Media del esfuerzo en compresión para Fz_d min Coefficiente de fricción (µe) y e "Fz_d min Resultante de fuerzas horizontales Fxyd(N)  Resultante de fuerzas horizontales Fxyd(N) Fxyd s_y e "Fz_d min Condición de no deslizamiento bajo cargas permanentes (N/mm2) o d min = Fz_d fx/min/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.13 4.68 28.55 cumple  234962.50 3.46 0.36 8.4539.99 989221. apoyo anciado 2.17 75794.99 90569.08 apoyo anciado 2.17                                                               | 9,92 16,50 42,41 cumple 2209647,50 12,22 12,22 12,23 219827,09 12,22 cumple 979887,50 5,42 0,27 2260740,57 201264,62 cumple 5,42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.44<br>16.34<br>40.38<br>cumple<br>1961537.50<br>12.10<br>0.17<br>342007.22<br>197844.38<br>cumple<br>12.10<br>cumple<br>12.10<br>cumple<br>12.10<br>cumple<br>4.56<br>0.30<br>219783.22<br>181138.16<br>cumple | 9.13<br>8.70<br>28.55<br>cumple<br>499142.50<br>6.45<br>0.24<br>119613.90<br>98922.19<br>cumple<br>6.45<br>cumple<br>175742.50<br>2.27<br>0.50<br>87273.90<br>90569.08<br>apeyo anclado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41<br>07.995581.60<br>78315.80<br>cumple<br>12.41<br>cumple<br>12.41<br>cumple<br>5.57<br>0.26<br>67749.60<br>85386.88<br>cumple                                        | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32<br>0.17<br>991275.60<br>783158.8<br>cumple<br>12.32<br>cumple<br>2740160.00<br>5.89<br>0.25<br>692537.60<br>85366.88<br>cumple                                      | 11.53<br>16.86<br>63.85<br>cumple<br>5806160.00<br>12.49<br>0.47<br>999137.60<br>69853.20<br>cumple<br>12.49<br>cumple<br>12.49<br>cumple<br>12.49<br>cumple<br>12.49<br>cumple<br>12.49<br>cumple<br>12.49<br>cumple         | 11.53<br>16.45<br>63.85<br>cumple<br>5666330.00<br>12.19<br>985154.60<br>69853.20<br>cumple<br>12.19<br>cumple<br>12.19<br>cumple<br>12.19<br>cumple<br>5.47210.00<br>5.48<br>0.26<br>673242.60<br>75152.14<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03<br>0.23<br>124025.72<br>100631.97<br>cumple<br>7.03<br>cumple<br>169712.50<br>2.19<br>2.19                                                                                     | 9.44<br>16.60 40.38<br>cumple<br>1991207.50<br>12.30<br>0.17<br>344855.01<br>201263.95<br>cumple<br>12.30<br>cumple<br>737837.50<br>4.56<br>0.30<br>219518.05<br>184335.51<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9,92<br>16,59<br>42,41<br>cumple<br>2220337,50<br>12,29<br>223626,61<br>cumple<br>12,29<br>cumple<br>96,9567,50<br>537<br>0,27<br>259578,89<br>204817,29<br>cumple                                       | 9.13 3.82 28.55 cumple  219142.50 2.83 0.42 91533.72 1006317 2.83 apoyo anciado 2.83 apoyo anciado 143862.50 1.86 84005.72 92167.78 apoyo anciado                                                                                     |
| Factor de forma para capos más gruesos. (SI) Presión Fz.d/Ar (N/mm2) 2°n "6°51/3"TE Fz.d/Ar <2°n "6°51/3"TE Fz.d/Ar <2°n "6°51/3"TE Condición de no deslizamiento  CON SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy, d Fz.d min (N) Media del esfuerzo en compresión para Fz.d min Resultante de fuerzas harizontales Fxyd(N) Fxyd Sy e°Fz.d min a d min = Fz.d min/Ar a cd min = Fz.d min/Ar  SIN SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy, d Fxyd Sy e°Fz.d min Coefficiente de fricción (µ e) µ e°Fz.d min/Ar a cd min = Fz.d min/Ar Condición de no deslizamiento bajo cargas permanentes (N/mm2) a cd min = Fz.d min/Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.13 4.68 28.55 cumple  234962.50 3.46 0.36 8.4539.99 989221. apoyo anciado 2.17 75794.99 90569.08 apoyo anciado 2.17                                                               | 9,92 16,50 42,41 cumple 2209647,50 12,22 12,22 12,23 219827,09 12,22 cumple 979887,50 5,42 0,27 2260740,57 201264,62 cumple 5,42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.44<br>16.34<br>40.38<br>cumple<br>1961537.50<br>12.10<br>0.17<br>342007.22<br>197844.38<br>cumple<br>12.10<br>cumple<br>739297.50<br>4.56<br>0.30<br>219783.22<br>181138.16<br>cumple                          | 9.13<br>8.70<br>28.55<br>cumple<br>499142.50<br>6.45<br>0.24<br>119613.90<br>98922.19<br>cumple<br>6.45<br>cumple<br>6.45<br>cumple<br>7.77<br>0.50<br>2.27<br>0.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9 | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41<br>07.995581.60<br>78315.80<br>cumple<br>12.41<br>cumple<br>12.41<br>cumple<br>5.57<br>0.26<br>67749.60<br>85386.88<br>cumple                                        | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32<br>0.17<br>991275.60<br>78315.88<br>cumple<br>12.32<br>cumple<br>2740160.00<br>5.89<br>0.25<br>692537.60<br>85386.88<br>cumple                                      | 11.53<br>16.86<br>63.85<br>cumple<br>5806160.00<br>12.49<br>0.17<br>999137.60<br>69853.29<br>cumple<br>12.49<br>cumple<br>2781750.00<br>5.58<br>0.25<br>696696.60<br>76.152.14<br>cumple                                      | 11.53<br>16.45<br>63.85<br>cumple<br>5666330.00<br>12.19<br>017<br>985154 60<br>69853.29<br>cumple<br>12.19<br>cumple<br>2547210.00<br>5.48<br>0.26<br>673242.60<br>76152.14<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03<br>0.23<br>124025.72<br>100631.97<br>cumple<br>7.03<br>cumple<br>169712.50<br>2.19<br>0.51<br>86590.72<br>92167.78<br>apoyo anciado                                            | 9.44<br>16.60 40.38<br>cumple<br>1991207.50<br>12.30<br>0.17<br>344855.01<br>201263.95<br>cumple<br>12.30<br>cumple<br>737837.50<br>4.56<br>0.30<br>12918.01<br>184335.56<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9,92 16,59 42,41 cumple 2220337,50 12,29 017 384652,89 223626,61 cumple 12,29 cumple 969567,50 5,37 0,27 259575,89 204817,29 cumple                                                                      | 9.13 3.82 28.55 cumple  219142.50 2.83 0.42 91533.72 100631.97 apoyo anciado 2.83 apoyo anciado 143862.50 1.86 0.58 84005.72 92167.78 apoyo anciado                                                                                   |
| Factor de forma para capas más gruesas (SI) Presión Fz_d/Ar (N/ma) 2*a**a*5-\sis*a*f Fz_d/Ar \ (2*a**a*5-\sis*a*f Fuerza de diseño vertical mínima coexistente can Fxy,d Fz_d min (Na) Media del esfuerzo en compresión para Fz_d min (Mea) Coeficiente de fricción (µ e) µ e Fz_d min Resultante de fuerzas horizontales Fxyd(N) Fxyd ≤ µ e Fz_d min a cd min = Fz_d min/Ar a cd min = Fz_d min/Ar a cd min = Fz_d min/Ar  SIN SOBRECARGA Fuerza de diseño vertical mínima coexistente can Fxy,d Fz_d min (Na) Coeficiente de fricción (µ e) µ e Fz_d min Resultante de fuerzas horizontales Fxyd(N) Fxyd ≤ µ e Fz_d min Condición de no deslizamiento bajo caraos peramentes (N/many) c cd min = Fz_d min/Ar o cd min = Fz_d min/Ar o cd min = Fz_d min/Ar s  Espesor de la placa de refuerzo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.13 4.68 28.55 cumple  234962.50 3.46 0.36 84539.99 98592.99 340 217 257 75794.99 90569.08 apoyo anciado 2.17 apoyo anciado                                                        | 9,92 16,50 42,41 cumple 2209647,50 12,22 0,17 383716,57 219827,50 cumple 12,22 cumple 979887,50 5,42 0,27 20204,67 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.44 16.34 40.38 cumple  1961537.50 12.10 0.17 342007.22 197844.38 cumple 12.10 cumple  739297.50 4.56 0.30 219783.22 18118.16 cumple 4.56 cumple                                                                | 9.13 8.70 28.55 cumple  499142.50 6.45 0.24 119613.90 98922.19 cumple 6.45 cumple  175742.50 2.27 0.50 87273.90 90569.08 apoyo anclado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41<br>0.783158.60<br>783158.60<br>12.41<br>cumple<br>12.41<br>cumple<br>2589480.00<br>5.57<br>0.26<br>677469.60<br>85386.80<br>cumple                                   | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32<br>0.17<br>991275.60<br>78315.82<br>cumple<br>12.32<br>cumple<br>2740160.00<br>5.89<br>0.25<br>6.92537.68<br>cumple<br>5.89<br>cumple                               | 11.53<br>16.86<br>63.85<br>cumple<br>5806160.00<br>12.49<br>0.17<br>999137.60<br>69853.29<br>cumple<br>12.49<br>cumple<br>2781750.00<br>5.98<br>0.25<br>696696.24<br>76152.44<br>cumple                                       | 11.53<br>16.45<br>63.85<br>cumple<br>5666330.00<br>12.19<br>0.17<br>985154.60<br>69853.29<br>cumple<br>12.19<br>cumple<br>2547210.00<br>5.48<br>0.26<br>673242.64<br>75152.64<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03<br>0.23<br>124025.72<br>10063172<br>cumple<br>169712.50<br>2.19<br>0.51<br>86.590.72<br>9216.778<br>apoyo anclado                                                              | 9,44 16,60 40,38 cumple  1991207,50 12,30 12,30 12,30 201263,50 12,30 cumple 12,30 cumple 12,30 cumple 12,30 cumple 4,56 cumple 4,56 cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9,92<br>16,59<br>42,41<br>cumple<br>2220337,50<br>12,29<br>0.17<br>384652.89<br>223626,61<br>cumple<br>12,29<br>cumple<br>969867,50<br>5,37<br>0,27<br>25997,80<br>204817,29<br>cumple                   | 9,13 3,82 28,55 cumple  219142,50 28,30 0,42 91533,72 1006319,73 apoyo anclado 2,83 apoyo anclado 1,86 0,58 84005,72 9216,7,78 apoyo anclado                                                                                          |
| Factor de forma para capas más gruesas (SI) Presión Fz.d/Ar (N/mm2) 2°n "6°51/3"TE Fz.d/Ar <2°n "6°51/3"TE Fz.d/Ar <2°n "6°51/3"TE Condición de no deslizamiento  CON SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy, d Media del esfuerzo en compresión para Fz.d min (Mpa) Coeficiente de fricción (µe) µe°F.z.d min Resultante de fuerzas horizontales Fxyd(N) Fxyd s µe°F.z.d min o ad min = Fz.d. min/Ar o ad min = Fz.d. min/Ar so dini = Fz.d. min/Ar Media del esfuerzo en compresión para Fz.d min Coeficiente de fricción (µe) µe°F.z.d min Resultante de fuerzas horizontales Fxyd min (Npa) Coeficiente de fricción (µe) µe°F.z.d min (Npa) Coeficiente de fricción (µe) µe°F.z.d min Resultante de fuerzas horizontales Fxyd(N) Fxyd s µe°F.z.d min Condición de no deslizamiento bajo cargas permanentes (N/mm2) ad min = Fz.d. min/Ar a Espesor de la placa de refuerzo Espesor de las placas de acero ts estricto (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.13 4.68 28.55 cumple  234962.50 3.46 0.36 8.4539.99 989221. apoyo anciado 2.17 75794.99 90569.08 apoyo anciado 2.17                                                               | 9,92 16,50 42,41 cumple 2209647,50 12,22 12,22 12,23 219827,09 12,22 cumple 979887,50 5,42 0,27 2260740,57 201264,62 cumple 5,42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.44<br>16.34<br>40.38<br>cumple<br>1961537.50<br>12.10<br>0.17<br>342007.22<br>197844.38<br>cumple<br>12.10<br>cumple<br>12.10<br>cumple<br>12.10<br>cumple<br>4.56<br>0.30<br>219783.22<br>181138.16<br>cumple | 9.13<br>8.70<br>28.55<br>cumple<br>499142.50<br>6.45<br>0.24<br>119613.90<br>98922.19<br>cumple<br>6.45<br>cumple<br>175742.50<br>2.27<br>0.50<br>87273.90<br>90569.08<br>apeyo anclado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41<br>07.995581.60<br>78315.80<br>cumple<br>12.41<br>cumple<br>12.41<br>cumple<br>5.57<br>0.26<br>67749.60<br>85386.88<br>cumple                                        | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32<br>0.17<br>991275.60<br>783158.8<br>cumple<br>12.32<br>cumple<br>2740160.00<br>5.89<br>0.25<br>692537.60<br>85366.88<br>cumple                                      | 11.53<br>16.86<br>63.85<br>cumple<br>5806160.00<br>12.49<br>0.47<br>999137.60<br>69853.20<br>cumple<br>12.49<br>cumple<br>12.49<br>cumple<br>12.49<br>cumple<br>12.49<br>cumple<br>12.49<br>cumple<br>12.49<br>cumple         | 11.53<br>16.45<br>63.85<br>cumple<br>5666330.00<br>12.19<br>985154.60<br>69853.20<br>cumple<br>12.19<br>cumple<br>12.19<br>cumple<br>12.19<br>cumple<br>5.47210.00<br>5.48<br>0.26<br>673242.60<br>75152.14<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03<br>0.23<br>124025.72<br>100631.97<br>cumple<br>7.03<br>cumple<br>169712.50<br>2.19<br>2.19                                                                                     | 9.44<br>16.60 40.38<br>cumple<br>1991207.50<br>12.30<br>0.17<br>344855.01<br>201263.95<br>cumple<br>12.30<br>cumple<br>737837.50<br>4.56<br>0.30<br>219518.05<br>184335.51<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9,92<br>16,59<br>42,41<br>cumple<br>2220337,50<br>12,29<br>223626,61<br>cumple<br>12,29<br>cumple<br>96,9567,50<br>537<br>0,27<br>259578,89<br>204817,29<br>cumple                                       | 9.13 3.82 28.55 cumple  219142.50 2.83 0.42 91533.72 1006317 2.83 apoyo anciado 2.83 apoyo anciado 143862.50 1.86 84005.72 92167.78 apoyo anciado                                                                                     |
| Factor de forma para capas más gruesas (SI) Presión Fz.d/Ar (AV/mm2) 2°a "a 57.5/3"Te Fz.d/Ar < 2°a "6 "51.5/3"Te Fz.d/Ar < 2°a "6 "51.5/3"Te Fz.d/Ar < 2°a "6 "6 "51.5/3"Te Condición de no deslizamiento  CON SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy.d Fz.d min (N) Media del esfuerzo en compresión para Fz.d min om (Mpa) Coeficiente de fricción (µe) µe "Fz.d min Resultante de fuerza horizontales Fxyd(N) Fxyd s µ e"Fz.d min o ad min = Fz.d min/Ar o ad min = Fz.d min/Ar de diseño vertical mínima coexistente con Fxy.d  Media del esfuerzo en compresión para Fz.d min Coeficiente de fricción (µe) µe "Fz.d min Resultante de fuerza horizontales Fxyd(N) Media del esfuerzo en compresión para Fz.d min Coeficiente de fricción (µe) µe "Fz.d min Resultante de fuerzas horizontales Fxyd(N) Fxyd s µ e "Fz.d min Condición de no deslizamiento bajo cargos permanentes (N/mn2) o ad min = Fz.d. min/Ar z 3 Espesor de la placa de refuerzo Espesor de las placas de acero ts estricto (mm) Limite elástico del acero fy (1 N/mn2) Factor para esfuerzos en tracción (N/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.13 4.68 28.55 cumple  234962.50 3.46 0.36 84539.99 989221 apoyo ancilado 2.17 apoyo ancilado 2.17 apoyo ancilado 2.17 apoyo ancilado 0.41 240.00                                  | 9,92 16,50 42,41 cumple 2209647,50 12,22 12,22 12,23 219827,09 cumple 12,22 cumple 979887,50 5,42 0,27 2260740,57 201264,52 cumple 5,42 cumple 1,97 240,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.44 16.34 40.38 cumple  1961537.50 12.10 0.17 342007.22 197844.38 cumple 12.10 cumple 12.10 cumple 4.56 0.30 219783.22 181138.16 cumple 4.56 cumple 1.95 240.00 1.00                                            | 9.13 8.70 28.55 cumple  499142.50 6.45 0.24 119613.90 98922.19 cumple 6.45 cumple  175742.50 2.27 0.50 87273.90 9090 anciado 2.27 apoyo anciado 2.27 apoyo anciado 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41<br>0.17<br>995581.60<br>78315.86<br>cumple<br>12.41<br>cumple<br>12.41<br>cumple<br>5.57<br>0.26<br>677469.60<br>85386.80<br>cumple<br>5.57<br>cumple                | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32<br>0.37<br>991275.60<br>78315.88<br>cumple<br>12.32<br>cumple<br>2740160.00<br>5.89<br>0.25<br>692537.60<br>85386.88<br>cumple<br>5.89<br>cumple                    | 11.53<br>16.86<br>63.85<br>cumple<br>5806160.00<br>12.49<br>0.17<br>999137.60<br>69853.29<br>cumple<br>12.49<br>cumple<br>2781750.00<br>5.98<br>0.25<br>696696.60<br>76152.14<br>cumple<br>5.98<br>cumple                     | 11.53<br>16.45<br>63.85<br>cumple<br>5666330.00<br>12.19<br>985154.60<br>69853.29<br>cumple<br>12.19<br>cumple<br>12.19<br>cumple<br>5.48<br>0.26<br>673242.60<br>76152.14<br>cumple<br>5.48<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03<br>0.23<br>124025.72<br>100631.97<br>cumple<br>7.03<br>cumple<br>169712.50<br>2.19<br>86590.72<br>92167.78<br>apoyo anciado<br>2.19<br>apoyo anciado<br>0.82<br>240.00<br>1.00 | 9.44 16.60 40.38 cumple  1991207.50 12.30 12.30 12.30 cumple 1.56 cumple 1.98 240.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,92 16,59 42,41 cumple 2220337,50 12,29 223626,61 cumple 12,29 cumple 12,29 cumple 5,37 cumple 5,37 cumple 1,98 240,00 1,00                                                                             | 9.13 3.82 2.8.55 cumple  219142.50 2.83 0.42 91533,72 1006317 apoyo anciado 2.83 apoyo anciado 1.86 84005,72 92167,78 apoyo anciado 1.86 apoyo anciado 0.58 84005,72 2.83 apoyo anciado                                               |
| Factor de forma para capos más gruesos. (SI) Presión Fz.d/Ar (N/mm2) 2°n "6°51/3"Te Fz.d/Ar <2°n "6°51/3"Te Fz.d/Ar <2°n "6°51/3"Te Fz.d/Ar <2°n "6°51/3"Te Condición de no deslizamiento  CON SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy, d Fz.d min (N) Media del esfuerzo en compresión para Fz.d min Resultante de fuerzas horizontales Fxyd(N) Fxyd Sy e°Fz.d min a d min = Fz.d min/Ar a d min = Fz.d min/Ar b Coeficiente de ficción (µ e)  SIN SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy, d Fz.d min (N) Media del esfuerzo en compresión para Fz.d min Coeficiente de ficción (µ e) µ e°Fz.d min Resultante de fuerzas horizontales Fxyd(N) Fxyd Sy e°Fz.d min Condición de no deslizamiento bajo cargas permanentes (N/mm2) a d min = Fz.d min/Ar a d min = Fz.d min/Ar 5 d min/Ar 6 d min = Fz.d min/Ar 7 d min = Fz.d min/Ar 7 d mi | 9.13 4.68 28.55 cumple  234962.50 3.46 3.46 3.46 3.46 cumple  147512.50 2.17 0.51 75794.99 90559.08 apoyo anclado 0.41 240.00 1.00 1.30                                             | 9,92 16,50 42,41 cumple 2209647,50 12,22 1,22 2,383716,57 219827,09 cumple 12,22 cumple 12,22 cumple 12,22 cumple 12,22 cumple 1,22 cumple 1,22 cumple 1,22 cumple 1,22 cumple 1,22 cumple 1,130 1,130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.44 16.34 40.38 cumple  1961537.50 12.10 12.17 342007.22 197844.38 cumple 12.10 cumple 12.10 cumple 12.10 cumple 12.10 4.56 0.30 6.219783.22 181138.16 cumple 1.95 240.00 1.00 1.30                             | 9.13<br>8.70<br>28.55<br>cumple<br>499142.50<br>6.45<br>0.24<br>119613.90<br>98922.19<br>cumple<br>6.45<br>cumple<br>175742.50<br>2.27<br>0.50<br>87273.90<br>90569.08<br>apoyo anclado<br>100<br>1100<br>1100<br>1100<br>1100<br>1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.53 16.75 63.85 cumple  5770600.00 12.41 799581.60 78315.88 cumple 12.41 cumple 12.41 cumple 2589480.00 5.57 0.26 673469.60 8536.88 cumple 272 240.00 1.00                                                                  | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32<br>7991275.60<br>78315.88<br>cumple<br>12.32<br>cumple<br>12.32<br>cumple<br>2740160.00<br>5.89<br>0.25<br>692537.60<br>85386.88<br>cumple<br>270<br>240.00<br>1.00 | 11.53<br>16.86<br>63.85<br>cumple<br>12.49<br>0.12.49<br>0.12.49<br>0.199137.60<br>69853.29<br>cumple<br>12.49<br>0.25<br>69659.60<br>7.5152.14<br>cumple<br>5.98<br>cumple<br>2.74<br>2.40.00<br>1.10                        | 11.53 16.45 63.85 cumple  5666330.00 12.19 7985154.60 69853.29 cumple 12.19 cumple 12.19 cumple 2547210.00 5.48 0.26 673242.60 76152.14 cumple 267 240.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.13 9.49 28.55 cumple  544062.50 7.03 0.23 124025.72 100631.97 cumple 169712.50 2.19 0.51 86590.72 92167.78 apoyo anclado 0.82 240.00 1.00                                                                                         | 9.44 16.60 40.38 cumple  1991207.50 12.30 0.17 344855.01 201263.95 cumple 12.30 cumple 12.30 cumple 12.30 11 13835.56 cumple 1.98 240.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9,92 16,59 42,41 cumple  2220337,50 12,29 12,29 23626,61 cumple 12,29 cumple 12,29 cumple 12,29 cumple 12,29 cumple 12,29 cumple 13,80 240,00 1,00 1,00 1,130                                            | 9.13 3.82 28.55 cumple  219142.50 2.83 0.42 91533.72 100631.97 apoyo anclado 2.83 apoyo anclado 143862.50 1.86 0.98 84005.72 92157.78 apoyo anclado 0.33 240.00 1.00 1.00                                                             |
| Factor de forma para capas más gruesas (SI) Presión Fz_d/Ar (N/mm2) 2***a*5*/5***E Fz_d/Ar < 2**a**6*5*/5***E Fuerza de diseño vertical mínima coexistente con Fxy, d Media del esfuerzo en compresión para Fz_d min (Mpa) Coeficiente de fricción (µ e)  ### Fz_d min Resultante de fuerzas horizontales Fxyd(N)  ### Fx_d min a de diseño vertical mínima coexistente con Fxy, d Media del esfuerzo en compresión para Fz_d min (Na)  **SIN SOBRECABCA**  Fuerza de diseño vertical mínima coexistente con Fxy, d Media del esfuerzo en compresión para Fz_d min Coeficiente de fricción (µ e)  #### Fz_d min (Na)  **Coeficiente de fricción (µ e)  #### Fz_d min Coeficiente de fricción (µ e)  ##### Fz_d min Coeficiente de fricción (µ e)  ###################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.13 4.68 28.55 cumple  234962.50 3.46 0.36 84539.99 989221 3,46 cumple  147512.50 2.17 75794.99 90569.08 apoyo anciado 2.17 apoyo anciado 2.17 apoyo anciado 0.41 240.00 1.00 1.00 | 9,92 16,50 42,41 cumple 2209647,50 12,22 0,17 383716,57 219827,0 cumple 12,22 cumple 979887,50 5,42 0,27 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 2 | 9.44 16.34 40.38 cumple  1961537.50 12.10 12.10 1342007.22 197844.38 cumple 12.10 cumple 12.10 cumple 12.10 cumple 4.56 cumple 4.56 cumple 1.95 240.00 1.00 1.00                                                 | 9.13 8.70 28.55 cumple  499142.50 6.45 0.24 119613.90 989221.  cumple 6.45 cumple  175742.50 2.27 0.50 87273.90 90569.08 apoyo anclado 2.27 apoyo anclado 0.75 240.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41<br>0.17<br>995581.60<br>78315.85<br>cumple<br>12.41<br>cumple<br>12.41<br>cumple<br>5.57<br>0.26<br>677469.60<br>83386.88<br>cumple<br>5.57<br>cumple                | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32<br>0.17<br>991275.60<br>78315.82<br>cumple<br>12.32<br>cumple<br>12.32<br>cumple<br>12.32<br>cumple<br>5.89<br>cumple<br>5.89<br>cumple<br>5.89<br>cumple           | 11.53<br>16.86<br>63.85<br>cumple<br>5806160.00<br>12.49<br>0.17<br>999137.60<br>69853.29<br>cumple<br>12.49<br>cumple<br>12.49<br>cumple<br>2781750.00<br>5.98<br>0.25<br>696696.60<br>7.5152.14<br>cumple<br>5.98<br>cumple | 11.53<br>16.45<br>63.85<br>cumple<br>5666330.00<br>12.19<br>985154.60<br>69853.29<br>cumple<br>12.19<br>cumple<br>12.19<br>cumple<br>12.19<br>cumple<br>12.19<br>cumple<br>2547210.00<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03<br>0.23<br>124025.72<br>100631.97<br>cumple<br>7.03<br>cumple<br>169712.50<br>2.19<br>86590.72<br>29167.78<br>apoyo anclado<br>0.82<br>240.00<br>1.00<br>1.00<br>1.00<br>1.00  | 9,44 16,60 40,38 cumple  1991207,50 12,30 017 344855.01 201263.95 cumple 12,30 cumple 1,56 cumple 1, | 9,92 16,59 42,41 cumple 2220337,50 12,29 23626,61 cumple 12,29 cumple 12,29 cumple 5,37 cumple 1,98 240,00 1,00 1,00 1,00 1,00 1,00                                                                      | 9.13 3.82 28.55 cumple  219142.50 2.83 0.42 91533.72 10063179 2.83 apoyo anciado 2.83 apoyo anciado 2.83 apoyo anciado 143862.50 1.86 8.4005.72 92167.78 apoyo anciado 1.86 apoyo anciado 1.86 1.86 1.86 0.33 2.40.00 1.00 1.00 1.100 |
| Factor de forma para capas más gruesas (SI) Presión Fz.d/Ar (N/mm2) 2°n "6"51/3"TE Fz.d/Ar <2"0 "6"51/3"TE Fz.d/Ar <2"0 "6"51/3"TE Fz.d/Ar <2"0 "6"51/3"TE Condición de no deslizamiento  CON SOBRECARGA Fuerza de diseño vertical mínima coexistente con Fxy, d Fz.d min (N) Media del esfuerzo en compresión para Fz.d min Coeficiente de fricción (µe) µe "Fz.d min Resultante de fuerzas horizontales Fxyd(N) Fxyd s µ e"Fz.d min o d min = Fz.d. min/Ar o d min = Fz.d. min/Ar o d min = Fz.d. min/Ar Nedia del esfuerzo en compresión para Fz.d min Coeficiente de fricción (µe)  Espesor de la placa de refuerzo Espesor de las placas de acero to testinación (m) Factor de corrección del esfuerzo Factor para esfuerzos en tracción (M) Factor de corrección del esfuerzo Espesor de las placas de acero to ts despuesto (m) Espesor de las placas de acero to ts despuesto (m) Espesor de las placas de acero to ts despuesto (m) Espesor de las placas de acero to ts despuesto (m) Espesor de las placas de acero to ts despuesto (m) Espesor de las placas de acero to ts dispuesto (m) Espesor de las placas de acero to ts dispuesto (m) Espesor de las placas de acero to ts dispuesto (m) Espesor de las placas de acero to ts dispuesto (m) Espesor de las placas de acero to ts dispuesto (m) Espesor de las placas de acero to ts dispuesto (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.13 4.68 28.55 cumple  234962.50 3.46 0.36 84539.99 98922.19 apoyo anclado 2.17 apoyo anclado apoyo anclado 0.41 240.00 1.00 1.30 1.00 4.00                                        | 9,92 16,50 42,41 cumple 2209647,50 12,22 0,17 383716,57 219827,09 cumple 12,22 cumple 12,22 cumple 5,42 0,27 260740,57 201264,62 cumple 5,42 cumple 5,42 cumple 1,97 240,00 1,00 7 1,30 1,00 4,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.44 16.34 40.38 cumple  1961537.50 12.10 0.17 342007.22 197844.38 cumple 12.10 cumple 12.10 cumple 4.56 0.30 219783.22 181188.16 cumple 4.56 cumple 4.56 cumple 1.95 240.00 1.00 7 1.30 1.00 4.00               | 9.13 8.70 28.55 cumple  499142.50 6.45 0.24 119613.90 98922.19 cumple 6.45 cumple 175742.50 87273.90 9059.90 227 apoyo anclado 2.27 apoyo anclado 0.75 240.00 1.30 1.00 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.53 16.75 63.85 cumple  5770600.00 12.41 7995581.60 78315.88 cumple 12.41 cumple 12.41 cumple 12.41 cumple 5.57 0.26 677469.60 85386.88 cumple 5.57 | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32<br>0.17<br>991275.60<br>78315.88<br>cumple<br>12.32<br>cumple<br>2740160.00<br>5.89<br>0.25<br>692537.60<br>85386.88<br>cumple<br>5.89<br>cumple                    | 11.53 16.86 63.85 cumple  5806160.00 12.49 0.17 999137.60 69853.29 cumple 12.49 cumple 12.49 cumple 5.98 0.25 696696.60 7.152.14 cumple 2.74 240.00 1.00 7 1.30 1.00 5.00                                                     | 11.53<br>16.45<br>63.85<br>cumple<br>55666330.00<br>12.19<br>985154.60<br>69853.29<br>cumple<br>12.19<br>cumple<br>12.19<br>cumple<br>5.48<br>0.26<br>673242.60<br>76152.14<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple<br>5<br>cumple<br>5<br>cumple<br>5 | 9.13 9.49 2.8.55 cumple  544062.50 7.03 0.23 124025.72 100631.97 cumple 7.03 cumple 169712.50 2.19 8.6590.72 9.2167.73 apoyo anclado 2.19 apoyo anclado 0.82 2.40.00 1.00 1.100 4.00                                                | 9.44 16.60 40.38 cumple  1991207.50 12.30 0.17 344855.01 201263.95 cumple 12.30 cumple 13.30 1.958.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9,92 16,59 42,41 cumple 2220337,50 12,29 0,17 384652,89 223626,61 cumple 12,29 cumple 12,29 cumple 5,37 0,27 259875,89 204817,29 cumple 5,37 cumple 1,98 240,00 1,00 7 1,30 1,00 4,00                    | 9.13 3.82 28.55 cumple  219142.50 2.83 0.42 91533.72 100631.97 apoyo anclado 2.83 apoyo anclado 1.86 0.58 84005.72 92167.73 apoyo anclado 1.86 apoyo anclado 1.86 apoyo anclado 0.33 240.00 1.00 7.130 1.00 4.00                      |
| Factor de forma para capas más gruesas (SI) Presión Fz_d/Ar (N/mm2) 2***a*5*/5***E Fz_d/Ar < 2**a**6*5*/5***E Fuerza de diseño vertical mínima coexistente con Fxy, d Media del esfuerzo en compresión para Fz_d min (Mpa) Coeficiente de fricción (µ e)  ### Fz_d min Resultante de fuerzas horizontales Fxyd(N)  ### Fx_d min a de diseño vertical mínima coexistente con Fxy, d Media del esfuerzo en compresión para Fz_d min (Na)  **SIN SOBRECABCA**  Fuerza de diseño vertical mínima coexistente con Fxy, d Media del esfuerzo en compresión para Fz_d min Coeficiente de fricción (µ e)  #### Fz_d min (Na)  **Coeficiente de fricción (µ e)  #### Fz_d min Coeficiente de fricción (µ e)  ##### Fz_d min Coeficiente de fricción (µ e)  ###################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.13 4.68 28.55 cumple  234962.50 3.46 0.36 84539.99 989221 3,46 cumple  147512.50 2.17 75794.99 90569.08 apoyo anciado 2.17 apoyo anciado 2.17 apoyo anciado 0.41 240.00 1.00 1.00 | 9,92 16,50 42,41 cumple 2209647,50 12,22 0,17 383716,57 219827,0 cumple 12,22 cumple 979887,50 5,42 0,27 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 201264,57 2 | 9.44 16.34 40.38 cumple  1961537.50 12.10 12.10 1342007.22 197844.38 cumple 12.10 cumple 12.10 cumple 12.10 cumple 4.56 cumple 4.56 cumple 1.95 240.00 1.00 1.00                                                 | 9.13 8.70 28.55 cumple  499142.50 6.45 0.24 119613.90 989221.  cumple 6.45 cumple  175742.50 2.27 0.50 87273.90 90569.08 apoyo anclado 2.27 apoyo anclado 0.75 240.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.53<br>16.75<br>63.85<br>cumple<br>5770600.00<br>12.41<br>0.17<br>995581.60<br>78315.85<br>cumple<br>12.41<br>cumple<br>12.41<br>cumple<br>5.57<br>0.26<br>677469.60<br>83386.88<br>cumple<br>5.57<br>cumple                | 11.53<br>16.63<br>63.85<br>cumple<br>5727540.00<br>12.32<br>0.17<br>991275.60<br>78315.82<br>cumple<br>12.32<br>cumple<br>12.32<br>cumple<br>12.32<br>cumple<br>5.89<br>cumple<br>5.89<br>cumple<br>5.89<br>cumple           | 11.53<br>16.86<br>63.85<br>cumple<br>5806160.00<br>12.49<br>0.17<br>999137.60<br>69853.29<br>cumple<br>12.49<br>cumple<br>12.49<br>cumple<br>2781750.00<br>5.98<br>0.25<br>696696.60<br>7.5152.14<br>cumple<br>5.98<br>cumple | 11.53<br>16.45<br>63.85<br>cumple<br>5666330.00<br>12.19<br>985154.60<br>69853.29<br>cumple<br>12.19<br>cumple<br>12.19<br>cumple<br>12.19<br>cumple<br>12.19<br>cumple<br>2547210.00<br>5.48<br>cumple<br>5.48<br>cumple<br>5.48<br>cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.13<br>9.49<br>28.55<br>cumple<br>544062.50<br>7.03<br>0.23<br>124025.72<br>100631.97<br>cumple<br>7.03<br>cumple<br>169712.50<br>2.19<br>86590.72<br>29167.78<br>apoyo anclado<br>0.82<br>240.00<br>1.00<br>1.00<br>1.00<br>1.00  | 9,44 16,60 40,38 cumple  1991207,50 12,30 017 344855.01 201263.95 cumple 12,30 cumple 1,56 cumple 1, | 9,92 16,59 42,41 cumple 2220337,50 12,29 23626,61 cumple 12,29 cumple 12,29 cumple 5,37 cumple 1,98 240,00 1,00 1,00 1,00 1,00 1,00                                                                      | 9.13 3.82 28.55 cumple  219142.50 2.83 0.42 91533.72 10063179 2.83 apoyo anciado 2.83 apoyo anciado 2.83 apoyo anciado 143862.50 1.86 8.4005.72 92167.78 apoyo anciado 1.86 apoyo anciado 1.86 1.86 1.86 0.33 2.40.00 1.00 1.00 1.100 |
| Factor de forma para capas más gruesas (SI) Presión Fz_d/Ar (N/ma). 2°a "aG"S/3*Te Fz_d/Ar <2°a "aG"S/3*Te Condición de no deslizamiento  CON SOBRECARGA Fuerza de diseño vertical mínima coexistente can Fxy_d Fz_d min (N) Media del esfuerzo en compresión para Fz_d min a (Mpa) Coeficiente de fricción (µ e) µ e Fz_d min Resultante de fuerzas horizontoles Fxyd(N) Fxyd ≤ µ eFz_d min a cd min = Fz_d min/Ar a cd min = Fz_d min/Ar a cd min = Fz_d min/Ar b cd min = Fz_d min/Ar c cd min = Fz_d min/Ar condición de no deslizamiento bajo carass permentes (N/ma) Fxyd ≤ µ eFz_d min Condición de no deslizamiento bajo carass permentes (N/ma) Condición de no deslizamiento bajo carass permentes (N/ma) Espesor de la placa de refuerzo Espesor de las placas de acero to des esturico (min) Factor de corrección del esfuerzo (E) Factor para esfuerzos en tracción (M) Factor de corrección del esfuerzo (E) Factor para esfuerzos en tracción (M) Factor de corrección del esfuerzo (E) Factor de aseguridad parcial (mi) Espesor de las placas de acero to dispuesto (mm) Espesor de las placas de acero to dispuesto (mm) Espesor de las placas de acero to dispuesto (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.13 4.68 28.55 cumple 234962.50 3.46 0.36 84539.99 98922.19 apoyo anclado 2.17 0.51 7.5794.99 90559.08 apoyo anclado 0.41 240.00 1.00 1.30 0.00 cumple                             | 9,92 16,50 42,41 cumple 2209647,50 12,22 0,17 219827,09 cumple 12,22 cumple 12,22 cumple 12,22 cumple 12,22 cumple 12,22 cumple 12,22 cumple 12,20 1,07 20,1264,62 cumple 1,97 240,00 1,00 1,00 4,00 cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.44 16.34 40.38 cumple 1961537.50 12.10 17.34207.22 197844.38 cumple 12.10 cumple 12.10 cumple 12.10 4.56 0.30 219783.22 181138.16 cumple 1.95 240.00 1.00 1.00 4.00 cumple                                     | 9.13 8.70 28.55 cumple  499142.50 6.45 0.24 119613.90 98922.19 cumple 6.45 cumple 175742.50 2.27 0.50 987273.90 90569.08 apoyo anclado 0.75 240.00 1.00 1.00 cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.53 16.75 63.85 cumple 5770600.00 12.41 0.17 995581.60 78315.88 cumple 12.41 cumple 12.71 cumple 2589480.00 5.57 0.26 677469.60 85386.88 cumple 5.57 cumple 2.72 240.00 1.00 1.00 cumple                                    | 11.53 16.63 16.63 63.85 cumple  5727540.00 12.32 0.17 991275.60 78315.88 cumple 12.32 cumple 2740160.00 5.89 0.25 692537.60 85386.88 cumple 2,70 240.00 1.00 1.00 1.00 1.00 cumple                                           | 11.53 16.86 63.85 cumple 5806160.00 12.49 0.17 999137.60 69853.29 cumple 12.49 cumple 2781750.00 5.98 0.25 696696.60 76152.14 cumple 274 240.00 1.00 1.00 cumple                                                              | 11.53 16.45 63.85 cumple 5666330.00 12.19 0.17 985154.60 69853.29 cumple 12.19 cumple 12.19 cumple 2547210.00 5.48 0.26 673242.60 76152.14 cumple 267 240.00 1.00 1.00 cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.13 9.49 28.55 cumple  544062.50 7.03 0.23 124025.72 100631.97  cumple 169712.50 2.19 0.51 86590.72 92167.78 apoyo anclado 0.82 240.00 1.00 1.00 cumple                                                                            | 9.44 16.60 40.38 cumple  1991207.50 12.30 12.30 201263.95 cumple 12.30 cumple 12.30 cumple 12.30 6.36 6.36 6.36 6.36 6.36 6.36 6.36 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9,92 16,59 42,41 cumple  2220337,50 12,29 12,29 23626,61 cumple 12,29 cumple 12,29 cumple 12,29 cumple 12,29 cumple 12,29 cumple 1,07 6,37 0,27 2,59575,89 204817,29 cumple 1,98 240,00 1,00 1,00 cumple | 9.13 3.82 28.55 cumple  219142.50 2.83 0.42 91533.72 100631.97 apoyo anclado 2.83 apoyo anclado 1.86 0.58 84005.72 92167.78 apoyo anclado 0.33 240.00 1.00 1.00 cumple                                                                |

ALVIPRE S.L. Página 39 de 39

4.- CÁLCULO DE ESTRIBOS Y SU CIMENTACIÓN



CÁLCULO DE ESTRIBOS

DETERMINACIÓN ACCIONES EN ESTRIBOS

# ESTRIBO 1 REACCIONES POR APOYO Y CASO DE CARGA

| APOYO     | 2      | 5       | 7       | 11     |
|-----------|--------|---------|---------|--------|
| ×         | 5.1    | 1.55    | -1.55   | -5.1   |
| РР        | 11.725 | 91.147  | 60.955  | 13.771 |
| CM        | 3.286  | 27.743  | 7.29    | 5.549  |
| TANDEM_2  | 6.731  | 55.917  | 13.272  | -0.786 |
| TANDEM_5  | 4.209  | 70.903  | 7.255   | -1.388 |
| TANDEM_7  | -0.071 | 4.264   | 71.718  | 11.045 |
| TANDEM_11 | 60.0-  | -3.778  | 59.106  | 24.883 |
| TANDEM_2  | -0.245 | -21.254 | 52.792  | 7.577  |
| TANDEM_5  | -0.245 | -21.254 | 52.792  | 7.577  |
| TANDEM_7  | 0.128  | 11.412  | -23.935 | -2.771 |
| TANDEM_11 | 0.921  | 48.305  | -9.918  | -2.868 |
| scu_2     | 2.2    | 50.382  | -10.098 | -4.305 |
| SCU_5     | 2.2    | 50.382  | -22.102 | -4.305 |
| scu_7     | -0.207 | -16.738 | 46.193  | 8.077  |
| SCU_11    | -0.207 | -16.738 | 46.193  | 8.437  |
| scu_2     | -0.209 | -17.607 | 40.383  | 8.187  |
| SCU_5     | -0.209 | -17.607 | 40.383  | 8.187  |
| 2_UJS     | 2.199  | 49.52   | -5.929  | -4.555 |
| SCU_11    | 2.199  | 49.52   | -27.897 | -4.555 |

| Momonto [bulm]  |                  |
|-----------------|------------------|
| Total Vort [bN] | lotal vert [NIV] |

|         |        |         |         |          |          |          |          |         |         |         |         |          |          |          |          |         | concomitantes | Moment   |
|---------|--------|---------|---------|----------|----------|----------|----------|---------|---------|---------|---------|----------|----------|----------|----------|---------|---------------|----------|
|         |        |         |         |          |          |          |          |         |         |         |         |          |          |          |          |         | 3             | Vertical |
| 363.63  | 201.61 | 1044.36 | 1271.99 | -1612.45 | -2248.33 | -1546.64 | -1546.64 | 695.73  | 1095.70 | 1269.20 | 1455.26 | -1397.91 | -1416.27 | -1327.04 | -1327.04 | 1203.91 | 1544.42       | •        |
| 1775.98 | 438.68 | 751.34  | 809.79  | 869.56   | 801.21   | 388.70   | 388.70   | -151.66 | 364.40  | 381.79  | 261.75  | 373.25   | 376.85   | 307.54   | 307.54   | 412.35  | 192.67        |          |

| -2248.33 | 801.21   | min | -2248.33 min | -151.66 | min CARRO |
|----------|----------|-----|--------------|---------|-----------|
| -1612.45 | 869.56   | max | 1271.99 max  | 869.56  | max CARRO |
| Momento  | Vertical |     |              |         |           |

| AR                      |
|-------------------------|
| Ü                       |
| Œ                       |
| 0                       |
| $\tilde{S}$             |
| Š                       |
| $\sim$                  |
| 6                       |
| ∑                       |
| P0                      |
| ₹                       |
| R                       |
| В                       |
| S                       |
| 븻                       |
| ō                       |
| $\Box$                  |
| βC                      |
| Ē                       |
| 2 R                     |
| $\ddot{\circ}$          |
| $\mathbf{B}$            |
| $\overline{\mathbb{R}}$ |
| S                       |
| ш                       |
|                         |
|                         |

|                                                | Ve    |       |        |        |            |            |            |            |            |            |            |            |         |         |         |         |         |         |         |         |   |           |           |  |
|------------------------------------------------|-------|-------|--------|--------|------------|------------|------------|------------|------------|------------|------------|------------|---------|---------|---------|---------|---------|---------|---------|---------|---|-----------|-----------|--|
|                                                |       |       |        | 200    |            |            |            |            |            |            |            |            |         |         | 10      |         |         | -       |         |         | 1 | max CARRO | min CARRO |  |
| O DE CARGA                                     | 149   | -5.1  | 13.074 | 3.038  | -0.064     | -0.078     | 3.109      | 3.243      | 0.085      | 0.074      | 3.243      | -0.163     | -0.135  | -0.104  | 1.726   | 1.839   | 1.841   | 1.728   | -0.102  | -0.133  |   |           |           |  |
| APOYO Y CAS(                                   | 146   | -1.55 | 90.28  | 27.728 | -3.765     | 0          | 74.366     | 73.798     | 11.55      | 12.361     | 73.798     | -21.465    | -16.412 | -15.649 | 47.806  | 49.367  | 48.765  | 47.352  | -16.103 | -17.017 |   |           |           |  |
| CCIONES POR                                    | 144   | 1.55  | 826.99 | 8.401  | 55.896     | 74.9       | 5.797      | 6.419      | -24.371    | -25.283    | 6.419      | 53.178     | 46.158  | 45.683  | -19.238 | -20.223 | -26.424 | -25.584 | 39.337  | 39.942  |   |           |           |  |
| ESTRIBO 2 REACCIONES POR APOYO Y CASO DE CARGA | 140   | 5.1   | 14.405 | 5.131  | 30.249     | 11.01      | -1.041     | -1.202     | -2.94      | -2.581     | -1.202     | 7.664      | 8.132   | 7.279   | -3.31   | -4.257  | -4.52   | -3.549  | 7.04    | 7.868   |   |           |           |  |
|                                                | APOYO | ×     | РР     | CM     | TANDEM_140 | TANDEM_144 | TANDEM_146 | TANDEM_149 | TANDEM_140 | TANDEM_144 | TANDEM_146 | TANDEM_149 | SCU_140 | SCU_144 | SCU_146 | SCU_149 | SCU_140 | SCU_144 | SCU_146 | SCU_149 |   |           |           |  |

# Momento Vertical

2290.15

| -293.61 | -192.83 | 2470.71 | 1726.44 | -1274.47 | -1271.07 | -711.05 | -718.89 | -1271.07 | 1556.14 | 1391.45 | 1327.18 | -1296.02 | -1389.54 | -1489.84 | -1399.64 | 1223.56 | 1290.92 |
|---------|---------|---------|---------|----------|----------|---------|---------|----------|---------|---------|---------|----------|----------|----------|----------|---------|---------|
| 1847.17 | 442.98  | 823.16  | 858.32  | 822.31   | 822.58   | -156.76 | -154.29 | 822.58   | 392.14  | 377.43  | 372.09  | 269.84   | 267.26   | 196.62   | 199.47   | 301.72  | 306.60  |

| concomitantes | Vertical Momento | 858.32 1726.44 | 823.16 2470.71 |
|---------------|------------------|----------------|----------------|
|               |                  | max            | min            |
| 1290.92       |                  | 2470.71 max    | -1274.47 min   |
| 306.60        |                  | 858.32         | -156.76        |

| 1489.84 | 196.62 | min | -1489.84 mir | 196.62 | min. SCU |
|---------|--------|-----|--------------|--------|----------|
| 1391.45 | 377.43 | max | 1391.45 max  | 377.43 | max. SCU |
|         |        |     |              |        |          |

PS308E1.SAL 03/03/2022 PS308E1.SAL 03/03/2022

> PROYECTO:PS 308.2 ELEMENTO: ESTRIBO 1

> > DATOS GENERALES \_\_\_\_\_

CARACTERISTICAS DE MATERIALES

\_\_\_\_\_

Resistencia del Hormigón Fck (MPa): 35.00 Resistencia del Acero Fyk (MPa): 500.00 Gamma\_C: 1.50 Gamma\_S: 1.15

COEFICIENTES PARCIALES DE SEGURIDAD

Gamma CP: 1.35 Gamma\_SC: 1.50

Gamma SC (Trafico): 0.60

### COEFICIENTES DE COMBINACION

| Efecto                                   | Chi0 | Chi1 | Chi2 | Chi2* |
|------------------------------------------|------|------|------|-------|
| Vehiculo Pesado<br>  Sobrecarga Uniforme | .75  | .75  | .00  | .00   |
| Temperatura                              | .60  | .60  | .00  | .00   |
| Viento                                   | .60  | .20  | .00  | .00   |

### DATOS DEL RELLENO \_\_\_\_\_

| Angulo de rozamiento interno         | FI (    | °): | 30.00 |
|--------------------------------------|---------|-----|-------|
| Angulo de rozamiento Terreno-Estribo | DELTA ( | °): | 0.00  |
| Densidad del relleno                 | G (kN/m | 3): | 20.00 |
| Sobrecarga de trasdos                | (kN/m   | 2): | 10.00 |
| Coeficiente de empuje activo         | (       | -): | 0.33  |
| Coeficiente de empuje al reposo      | (       | -): | 0.50  |

| GEOMETRIA DEL ESTRIBO                |       |      |       |
|--------------------------------------|-------|------|-------|
|                                      |       |      |       |
| Canto de la zapata del estribo       | H1    | (m): | 1.00  |
| Altura total del estribo             | H2    | (m): | 6.60  |
| Altura del faldon                    | Н3    | (m): | 1.80  |
| Altura del muro del estribo          | H4    | (m): | 4.80  |
| Anchura del estribo                  | В     | (m): | 12.20 |
| Anchura de la zapata del estribo     | BZ    | (m): | 14.20 |
| Vuelo trasero de la zapata           | Vtras | (m): | 3.40  |
| Espesor del muro del estribo         | Esp   | (m): | 1.00  |
| Espesor del espaldon del estribo     | C3    | (m): | 0.60  |
| Vuelo delantero de la zapata         | Vdel  | (m): | 1.10  |
| Longitud total de zapata             | LZ    | (m): | 5.50  |
| Distancia del eje de apoyos al borde | D1    | (m): | 0.43  |

### CARGAS A CONSIDERAR -----

### Cargas Verticales \_\_\_\_\_\_

| Reacción carga permanente                    | (kN):  | 2290.15 |
|----------------------------------------------|--------|---------|
| Reacción sobrecarga unif. maxima             | (kN):  | 412.35  |
| Momento torsor Sobrecarga Unif. concomitante | (kNm): | 1203.91 |
| Reacción Vehiculo pesado maxima              | (kN):  | 869.56  |
| Momento torsor vehiculo Pesado concomitante  | (kNm): | 1203.91 |
| Reacción de Sobrecarga Unif. concomitante    | (kN):  | 192.67  |
| Momento torsor Sobrecarga Unif. maximo       | (kNm): | 1544.42 |
| Reacción de Vehiculo Pesado concomitante     | (kN):  | 801.21  |
| Momento torsor Vehiculo Pesado maximo        | (kNm): | 2248.33 |

Cargas Horizontales

PROGRAMA DE CALCULO DE ESTRIBOS CERRADOS V3.1

INGEDIS, S.C. Ingeniería y Diesño (C) 2011

PROYECTO:PS 308.2 ELEMENTO: ESTRIBO 1

PS308E1.SAL 03/03/2022 PS308E1.SAL 03/03/2022

-----

| Reacción horizontal de retracción,fluencia | (kN): | 0.00   |
|--------------------------------------------|-------|--------|
| Reacción horizontal de frenado             | (kN): | 201.50 |
| Reacción horizontal de temperatura         | (kN): | 219.63 |
| Reacción horizontal de viento              | (kN): | 360.74 |

PROYECTO:PS 308.2 ELEMENTO:ESTRIBO 1

### FUERZAS Y MOMENTOS SOBRE EL ESTIBO

-----

| Fhoriz<br>  [kN]             | Fvert<br>[kN]                 | Exc                     | Mlong<br> kNm]                        | Mtrans  <br>[kNm]              |                      |
|------------------------------|-------------------------------|-------------------------|---------------------------------------|--------------------------------|----------------------|
| 2348.91<br>3523.36<br>309.07 | 0.00                          | 2.53<br>2.53<br>3.80    | 5950.56  <br>  8925.84  <br>  1174.45 | 0.00   0.00   0.00             | ( 1)<br>( 2)<br>( 3) |
| 463.60                       | 0.00                          | 3.80<br>5.75            | 1761.68                               | 0.00                           | ( 4)<br>( 5)         |
| 201.50<br>219.63<br>0.00     | 0.00<br>0.00<br>360.74        | 5.75<br>5.75<br>5.75    | 1158.62  <br>  1262.87  <br>  0.00    | 0.00  <br>0.00  <br>2074.25    | ( 6)<br>( 7)<br>( 8) |
| 0.00                         | 1952.50<br>5475.36<br>1464.00 | -2.75<br>-3.80<br>-1.60 | 0.00  <br>  -5749.13  <br>  1683.60   | 0.00  <br>0.00  <br>0.00       | (9)<br>(10)<br>(11)  |
| 0.00                         | 329.40<br>414.80              | -1.80<br>-3.80          | 312.93<br>-435.54                     | 0.00                           | (12)<br>(13)         |
| 0.00                         | 2290.15<br>412.35<br>192.67   | -1.53<br>-1.53<br>-1.53 | 2793.98  <br>503.07  <br>235.06       | 0.00  <br>1203.91  <br>1544.42 | (14)<br>(15)<br>(16) |

-----

- (1) Emp. tierras en estribo (activo)
- (2) Emp. tierras en estribo (reposo)
- (3) Emp. de sobrecarga (activo)
- (4) Emp. de sobrecarga (reposo)
- (5) Reacción horizontal de retracción y fluencia
- (6) Reacción horizontal de frenado
- (7) Reacción horizontal de temperatura
- (8) Reacción horizontal de viento
- (9) Peso de zapata de estribo
- (10) Peso de tierras en el trasdos
- (11) Peso de muro del estribo
- (12) Peso de faldon de estribo
- (13) Peso de sobrecarga en el trasdos
- (14) Reacción vertical de carga permanente
- (15) Reacción vertical SCU Hip. 1
- (15) Reacción vertical SCU Hip. 2
- (17) Reacción vertical Vehiculo Pesado Hip. 1
- (18) Reacción vertical Vehiculo Pesado Hip. 2

### HIPOTESIS CONSIDERADAS EN EL CALCULO

```
HIPOTESIS N° 1 Estribo en vacio, sin tablero. Empuje activo
HIPOTESIS N° 2 Estribo en servicio, T° dominante Empuje activo
HIPOTESIS N° 3 GR1. Estribo en servicio, Activo, SC Centrada, sin Frenado
HIPOTESIS N° 4 GR1. Estribo en servicio, Activo, SC Excentrica, sin Frenado
HIPOTESIS N° 5 GR2. Estribo en servicio, Activo, SC Centrada, Frenado (+)
HIPOTESIS N° 6 GR2. Estribo en servicio, Activo, SC Excentrica, Frenado (+)
HIPOTESIS N° 7 GR2. Estribo en servicio, Activo, SC Centrada, Frenado (-)
HIPOTESIS N° 8 GR2. Estribo en servicio, Activo, SC Excentrica, Frenado (-)
```

PROYECTO: PS 308.2 ELEMENTO: ESTRIBO 1

### FUERZAS Y MOMENTOS DE SERVICIO EN EL CENTRO DE LA CIMENTACION

-----

| HIP | Fhoriz  <br>[kN] | Fvert  <br>[kN] | Ftrans <br>[kN] | Mlong  <br>[kNm] | Mtrans  <br>[kNm] |
|-----|------------------|-----------------|-----------------|------------------|-------------------|
| 1   | 2657.97          | 9636.06         | 0.00            | 2936.88          | 0.00              |
| 2   | 2800.34          | 12783.94        | 216.44          | 7981.95          | 3356.82           |
| 3   | 2789.75          | 13208.12        | 216.44          | 8052.52          | 4060.91           |
| 4   | 2789.75          | 12920.09        | 216.44          | 7701.12          | 5037.30           |
| 5   | 2991.25          | 12494.44        | 216.44          | 8905.41          | 2935.45           |
| 6   | 2991.25          | 12355.31        | 216.44          | 8735.67          | 3548.57           |
| 7   | 2324.70          | 12494.44        | 216.44          | 5072.71          | 2935.45           |
| 8   | 2324.70          | 12355.31        | 216.44          | 4902.97          | 3548.57           |

### TENSIONES EN CIMENTACION Y ESTABILIDAD DEL ESTRIBO

| HIP | S_Max  <br>[kPa] | S_Min  <br>[kPa] | S_Bar<br>[kPa] | C.DES. <br>  [-] | C.VUEL.  <br>[-] |
|-----|------------------|------------------|----------------|------------------|------------------|
| 1   | 164.40           | 82.36            | 138.76         | 2.18             | 4.31             |
| 2   | 293.34           | 70.36            | 219.90         | 2.74             | 4.36             |
| 3   | 303.57           | 78.61            | 227.13         | 2.84             | 4.59             |
| 4   | 300.25           | 85.11            | 223.48         | 2.78             | 4.53             |
| 5   | 300.25           | 51.47            | 223.34         | 2.51             | 3.82             |
| 6   | 299.42           | 55.38            | 221.93         | 2.48             | 3.79             |
| 7   | 246.72           | 105.01           | 194.11         | 3.22             | 6.62             |
| 8   | 245.88           | 108.91           | 192.67         | 3.19             | 6.58             |
|     |                  |                  |                |                  |                  |

PROYECTO: PS 308.2 ELEMENTO: ESTRIBO 1

### ARMADURAS EN PUNTERA DE ZAPATA POR HIPOTESIS

-----

|     |                 |                   |                |             |               |                  | _ |
|-----|-----------------|-------------------|----------------|-------------|---------------|------------------|---|
| HIP | Sigma1<br>[kPa] | Sigma2<br>  [kPa] | Rd<br>  [kN/m] | Xd<br>  [m] | Td<br>  kN/m] | As  <br> [cm2/m] |   |
| 1   | 224.29          | 197.38            | 274.08         | 0.66        | 230.16        | 5.75             |   |
| 2   | 354.38          | 287.23            | 417.05         | 0.67        | 354.88        | 8.87             |   |
| 3   | 355.39          | 289.87            | 419.42         | 0.67        | 356.55        | 8.91             |   |
| 4   | 350.24          | 286.11            | 413.62         | 0.67        | 351.53        | 8.79             |   |
| 5   | 372.04          | 294.70            | 433.38         | 0.68        | 370.14        | 9.25             |   |
| 6   | 369.55          | 292.89            | 430.58         | 0.68        | 367.71        | 9.19             |   |
| 7   | 291.74          | 252.36            | 353.67         | 0.67        | 297.82        | 7.45             |   |
| 8   | 289.25          | 250.54            | 350.86         | 0.67        | 295.40        | 7.38             |   |

### ARMADURAS EN TALON DE ZAPATA POR HIPOTESIS

-----

| n2] |
|-----|
| 0 ( |
| 0 ( |
| 0 ( |
| 0 ( |
| 0 ( |
| 0 ( |
| 0 ( |
| 0 ( |
|     |

### COMPROBACIÓN E.L.S. FISURACION TALON DE ZAPATA

-----

| HIP. | Mk(cuas) <br>[kNm/m] | As  <br>[cm2/m] | Sep<br>[mm] | ep_med  <br>  [%] | Wk  <br>[ mm] |
|------|----------------------|-----------------|-------------|-------------------|---------------|
| 1    | -83.44               | 15.45           | 158.17      | .044              | 0.12          |
| 2    | -35.86               | 14.94           | 121.29      | .046              | 0.09          |
| 3    | -27.55               | 14.87           | 121.53      | .046              | 0.10          |
| 4    | -26.01               | 14.90           | 121.41      | .046              | 0.10          |
| 5    | -27.24               | 15.22           | 159.51      | .045              | 0.12          |
| 6    | -26.50               | 15.24           | 159.40      | .045              | 0.12          |
| 7    | 15.87                | 14.61           | 122.44      | .003              | 0.01          |
| 8    | 16.71                | 14.60           | 122.49      | .003              | 0.01          |

PS308E1.SAL 03/03/2022

PROYECTO: PS 308.2 ELEMENTO: ESTRIBO 1

### ESFUERZOS EN BASE DE MURO POR HIPOTESIS

-----

| HIP <br> | Mk  <br>[kNm/m] | Vk  <br>[kN/m] | Md<br>[kNm/m] | Vd<br>  [kN/m] |
|----------|-----------------|----------------|---------------|----------------|
| 1        | 392.04          | 167.20         | 540.14        | 229.02         |
| 2        | 459.40          | 179.70         | 641.19        | 247.77         |
| 3        | 443.35          | 178.00         | 617.10        | 245.22         |
| 4        | 443.35          | 178.00         | 617.10        | 245.22         |
| 5        | 521.80          | 194.52         | 734.78        | 270.00         |
| 6        | 521.80          | 194.52         | 734.78        | 270.00         |
| 7        | 262.28          | 139.88         | 345.50        | 188.04         |
| 8        | 262.28          | 139.88         | 345.50        | 188.04         |

### ARMADURAS EN ALZADO DE MURO

-----

| ALTURA                                                                               | Md                                                                                                 | As_int                                                         | As_ext                                                       | As_h*                                                        | Vd                                                                                          | Av                                                          |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| [m]                                                                                  | [kNm/m]                                                                                            | [cm2/m]                                                        | [cm2/m]                                                      | [cm2/m]                                                      | [kN/m]                                                                                      | [cm2/m2]                                                    |
| 0.00<br>0.66<br>1.32<br>1.98<br>2.64<br>3.30<br>3.96<br>4.62<br>5.28<br>5.94<br>6.60 | 734.78<br>570.18<br>431.04<br>314.78<br>218.81<br>140.55<br>77.40<br>26.77<br>7.81<br>1.52<br>0.00 | 19.94 18.30 17.12 16.25 15.60 15.11 14.74 14.46 8.66 8.60 5.40 | 9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00 | 8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00 | 270.00<br>229.45<br>192.83<br>160.13<br>131.34<br>106.48<br>85.54<br>68.52<br>14.44<br>5.26 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |

### COMPROBACIÓN E.L.S. FISURACION ALZADO DE MURO

| ALTURA <br>  [m]                                                                     | Mk(cuas)  <br>[kNm/m]                                                                           | As_int  <br>[cm2/m]                                                                          | Sep<br>[mm]                                                                                                | ep_med<br>  [%]                                                      | Wk  <br>[ mm]                                                        |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| 0.00<br>0.66<br>1.32<br>1.98<br>2.64<br>3.30<br>3.96<br>4.62<br>5.28<br>5.94<br>6.60 | 319.44<br>232.87<br>163.55<br>109.57<br>69.00<br>39.93<br>20.44<br>8.62<br>2.56<br>0.32<br>0.00 | 19.94<br>18.30<br>17.12<br>16.25<br>15.60<br>15.11<br>14.74<br>14.46<br>8.66<br>8.60<br>5.40 | 138.32<br>144.44<br>149.57<br>153.82<br>157.30<br>160.13<br>121.98<br>123.00<br>131.44<br>131.86<br>133.06 | .041<br>.033<br>.025<br>.017<br>.011<br>.007<br>.004<br>.002<br>.001 | 0.10<br>0.08<br>0.06<br>0.05<br>0.03<br>0.02<br>0.01<br>0.00<br>0.00 |
|                                                                                      |                                                                                                 |                                                                                              |                                                                                                            |                                                                      |                                                                      |

7



PROYECTO: AVE TAFALLA PS308.2

EJECUTADO: DIL FECHA 03/03/2022 Hoja 1 de 8

# CALCULO DE ALETA BELGA DEL ESTRIBO E1 PROYECTO:

### 1. Geometría del estribo



Longitud de la aleta

 $h := 6.55 \cdot m$ 

Altura de la alera

 $1_2 := 2.50 \cdot m$ 

 $l_1 := 3.50 \cdot m$ 

Longitud del vuelo

 $h_0 := 0.50 \cdot m$ 

Pendiente de las tierras

Altura de la aleta en el arranque

pte :=  $\frac{2}{3}$ 

Altura en el emporamiento

 $h_2 := h_0 + l_2 \cdot pte = 2.167 \text{ m}$ 

Espesor de la aleta

 $e_{aleta} := 50 \cdot cm$ 

Espesor del espaldón

 $e_{espaldon} := 60 \cdot cm$ 

Longitud total de la aleta

 $l_{\text{tot}} := l_1 + l_2 = 6 \,\text{m}$ 



EJECUTADO: DIL FECHA 03/03/2022 Hoja 2 de 8

### 2. Acciones a considerar

- 2.1 Empuje del relleno
- 2.1.1 Características del material de relleno

Angulo de rozamiento interno

Densidad del relleno

$$r := 20 \cdot \frac{\text{kN}}{\text{m}^3}$$

Coeficiente de empuje activo

$$k_a := \tan \left( 45 \cdot \deg - \frac{\varphi}{2} \right)^2 = 0.333$$

2.1.2 Línea de presiones

Empuje en la base de la aleta

$$p_2 := k_2 \cdot h \cdot \gamma = 43.667 \cdot kPa$$

2.2 Sobrecarga del trasdós

$$q := 10 \cdot kPa = 10 \cdot kPa$$

$$p_1 := q \cdot k_a = 3.333 \cdot kPa$$

2.3 Peso de la barrera y bordillo

$$g_{bord} := 14 \cdot \frac{kN}{m}$$

- 3. Esfuerzos sobre la aleta
- 3.1 Esfuerzos sobre el tramo trapecial
- 3.1.1 Empuje del terreno

$$p_{terr}(x) := \gamma \cdot k_a \cdot (h_0 + x \cdot pte)$$

$$E_{a} := \int_{0}^{l_{2}} p_{terr}(x) \cdot \frac{\left(h_{0} + x \cdot pte\right)}{2} dx = 16.744 \cdot kN$$

$$M_{AA} := \int_{0}^{l_{2}} p_{terr}(x) \cdot \frac{\left(h_{0} + x \cdot pte\right)}{2} \left(l_{2} - x\right) dx = 13.214 \cdot kN \cdot m$$

$$x_{a} := \frac{M_{AA}}{E_{a}} = 0.789 \text{ m}$$

$$M_{DD} := \int_{0}^{l_{2}} p_{terr}(x) \cdot \frac{\left(h_{0} + x \cdot pte\right)^{2}}{6} dx = 9.156 \cdot kN \cdot m$$

$$x_a := \frac{M_{AA}}{E_a} = 0.789 \, r$$

$$M_{DD} := \int_{0}^{2\pi} p_{terr}(x) \cdot \frac{\left(h_0 + x \cdot pte\right)^2}{6} dx = 9.156 \cdot kN \cdot n$$

$$y_a := \frac{M_{DD}}{E_a} = 0.547 \text{ m}$$

 $y(x) := h_0 + x \cdot pte$ 

Aleta Belga E1.xmcd



PROYECTO: AVE TAFALLA PS308.2

EJECUTADO: DIL FECHA 03/03/2022 Hoja 3 de 8

Reparto de esfuerzos entre la parte horizontal y vertical de la aleta

$$E_{y} := \frac{E_{a} \cdot (I_{2} - x_{a})^{3}}{(I_{2} - x_{a})^{3} + (h - y_{a})^{3}} = 0.379 \cdot kN$$

$$E_{x} := \frac{E_{a} \cdot (h - y_{a})^{3}}{(I_{2} - x_{a})^{3} + (h - y_{a})^{3}} = 16.365 \cdot kN$$

$$E_{X} := \frac{E_{a} \cdot (h - y_{a})^{3}}{(l_{2} - x_{a})^{3} + (h - y_{a})^{3}} = 16.365 \cdot kN$$

3.1.2 Empuje de la sobrecarga

$$E_{asc} := \int_{0}^{l_2} p_1 \cdot (h_0 + x \cdot pte) dx = 11.111 \cdot kN$$

$$M_{AAsc} := \int_{0}^{l_2} p_1 \cdot (h_0 + x \cdot pte)(l_2 - x) dx = 10.995 \cdot kN \cdot m \qquad x_{asc} := \frac{M_{AAsc}}{E_{asc}} = 0.99 \text{ m}$$

$$asc := \frac{M_{AAsc}}{E_{asc}} = 0.99 \,\text{m}$$

$$M_{DDsc} := \int_{0}^{12} p_{1} \cdot \frac{\left(h_{0} + x \cdot pte\right)^{2}}{2} dx = 8.372 \cdot kN \cdot m$$

Excentricidad vertical de la carga

$$y_{asc} := \frac{M_{DDsc}}{E_{asc}} = 0.753 \text{ m}$$

Reparto de esfuerzos entre la parte horizontal y vertical de la aleta

$$E_{ysc} := \frac{E_{asc} \cdot (l_2 - x_a)^3}{(l_2 - x_a)^3 + (h - y_a)^3} = 0.251 \cdot kN$$

$$E_{xsc} := \frac{E_{asc} \cdot (h - y_a)^3}{(l_2 - x_a)^3 + (h - y_a)^3} = 10.86 \cdot kN$$

$$E_{xsc} := \frac{E_{asc} \cdot (h - y_a)^3}{(l_2 - x_a)^3 + (h - y_a)^3} = 10.86 \cdot kN$$

3.2 Esbeltez de la placa

$$\gamma_{\text{placa}} := \frac{l_1}{h} = 0.534$$

3.3 Empuje del terreno

3.1.1 Sección C-C (Empotramiento vertical)

$$M_{CCEmp} := -\frac{E_y \cdot (h - y_a)}{(h - y_a) - (l_2 - x_a)} + linterp(X, Y_{Mver}, \gamma_{placa}) \cdot q \cdot h^2 = -9.747 \cdot \frac{kN \cdot m}{m}$$

$$V_{CCEmp} := \frac{E_y}{\left(h - y_a\right) - \left(l_2 - x_a\right)} + linterp(X, Y_{Vver}, \gamma_{placa}) \cdot q \cdot h = 21.453 \cdot \frac{kN}{m}$$

3.1.2 Sección B - B (Empotramiento horizontal)

$$M_{BBEmp} := -1 \cdot \frac{\left(M_{AA} + E_{x} \cdot l_{1}\right)}{y_{a} + l_{1}} + linterp(X, Y_{Mhor}, \gamma_{placa}) \cdot q \cdot l_{1}^{2} = -31.81 \cdot \frac{kN \cdot m}{m}$$



EJECUTADO: DIL FECHA 03/03/2022 Hoia 4 de 8

$$V_{BBEmp} := \frac{E_{x}}{y_{a} + 1_{1}} + linterp(X, Y_{Vhor}, \gamma_{placa}) \cdot q \cdot 1_{1} = 16.891 \cdot \frac{kN}{m}$$

3.1.3 Sección E - E (Empotramiento en el borde)

$$M_{EEEmp} := -\frac{E_{y} \cdot (h - y_{a})}{(h - y_{a}) - (l_{2} - x_{a})} + linterp(X, Y_{Mborde}, \gamma_{placa}) \cdot q \cdot l_{1}^{2} = -11.261 \cdot \frac{kN \cdot m}{m}$$

$$V_{EEEmp} := \frac{E_y}{\left(h - y_a\right) - \left(l_2 - x_a\right)} + linterp(X, Y_{Vborde}, \gamma_{placa}) \cdot q \cdot l_1 = 1.715 \cdot \frac{kN}{m}$$

3.1.4 Sección F - F de borde izquierdo de aleta

$$M_{FFEmp} := -\frac{E_{\mathbf{y}} \cdot \left(h - y_{a}\right)}{\left(h - y_{a}\right) - \left(l_{2} - x_{a}\right)} + linterp\left(X, Y_{MYbor}, \gamma_{placa}\right) \cdot q \cdot h^{2} = -26.018 \cdot \frac{kN \cdot m}{m}$$

3.2 Sobrecarga del trasdós

### 3.2.1 Sección C-C (Empotramiento vertical)

$$M_{CCsc} := -\frac{E_{ysc} \cdot \left(h - y_{asc}\right)}{\left(h - y_{asc}\right) - \left(l_2 - x_{asc}\right)} + linterp(X, Y_{Mver}, \gamma_{placa}) \cdot q \cdot h^2 = -26.869 \cdot \frac{kN \cdot m}{m}$$

$$V_{CCsc} := \frac{E_{ysc}}{\left(h - y_{asc}\right) - \left(l_2 - x_{asc}\right)} + linterp(X, Y_{Vver}, \gamma_{placa}) \cdot q \cdot h = 32.882 \cdot \frac{kN}{m}$$

3.2.2 Sección B - B (Empotramiento horizontal)

$$M_{BBsc} := -1 \cdot \frac{\left(M_{AAsc} + E_{xsc} \cdot l_{1}\right)}{y_{asc} + l_{1}} + linterp(X, Y_{Mhor}, \gamma_{placa}) \cdot q \cdot l_{1}^{2} = -53.461 \cdot \frac{kN \cdot m}{m}$$

$$V_{BBsc} := \frac{E_{Xsc}}{v_{pace} + l_1} + linterp(X, Y_{Vhor}, \gamma_{placa}) \cdot q \cdot l_1 = 34.94 \cdot \frac{kN}{m}$$

3.2.3 Sección E - E (Empotramiento en el borde)

$$M_{EEsc} := -1 \cdot \frac{\left(M_{AAsc} + E_{xsc} \cdot l_1\right)}{y_{asc} + l_1} + linterp(X, Y_{Mborde}, \gamma_{placa}) \cdot q \cdot l_1^2 = -62.829 \cdot \frac{kN \cdot m}{m}$$

$$V_{EEsc} := \frac{E_{Xsc}}{y_{asc} + l_1} + linterp(X, Y_{Vborde}, \gamma_{placa}) \cdot q \cdot l_1 = 35.625 \cdot \frac{kN}{m}$$

3.2.4 Sección F - F de borde izquierdo de aleta

$$M_{FFsc} := -\frac{E_{ysc} \cdot (h - y_{asc})}{(h - y_{asc}) - (l_2 - x_{asc})} + linterp(X, Y_{MYbor}, \gamma_{placa}) \cdot q \cdot h^2 = -51.473 \cdot \frac{kN \cdot m}{m}$$

Aleta Belga E1.xmcd



PROYECTO: AVE TAFALLA PS308.2

EJECUTADO: DIL FECHA 03/03/2022 Hoja 5 de 8

### 4. Esfuerzos de cálculo

### 4.1 Coeficientes de ponderación

Se consideran los siguientes coeficientes de combinación y ponderación

$$\gamma_{cp} := 1.35$$

4.1.2 Sobrecargas (incluidos los empujes)

$$\gamma_{sc} := 1.50$$

4.2 Coeficientes de combinación cargas cuasipermanentes

$$\psi_2 := 0.0$$

### 4.2 Esfuerzos de ELU

### 4.2.1 Sección Horizontal CC

$$M_{dCC} := \gamma_{sc} \cdot M_{CCEmp} + \gamma_{sc} \cdot M_{CCsc} = -54.925 \cdot \frac{kN \cdot m}{m}$$

$$V_{dCC} := \gamma_{sc} \cdot V_{CCEmp} + \gamma_{sc} \cdot V_{CCsc} = 81.503 \cdot \frac{kN}{m}$$

4.2.2 Sección Vertical BB

$$M_{dBB} := \gamma_{sc} \cdot M_{BBEmp} + \gamma_{sc} \cdot M_{BBsc} = -127.907 \cdot \frac{kN \cdot m}{m}$$

$$V_{dBB} := \gamma_{sc} \cdot V_{BBEmp} + \gamma_{sc} \cdot V_{BBsc} = 77.747 \cdot \frac{kN}{m}$$

4.2.3 Sección de borde E-E

$$M_{dEE} := \gamma_{sc} \cdot M_{EEEmp} + \gamma_{sc} \cdot M_{EEsc} = -111.135 \cdot \frac{kN \cdot m}{m}$$

$$V_{\text{dEE}} := \gamma_{\text{sc}} \cdot V_{\text{EEEmp}} + \gamma_{\text{sc}} \cdot V_{\text{EEsc}} = 56.009 \cdot \frac{\text{kN}}{\text{m}}$$

4.2.4 Sección de borde F-F

$$M_{dFF} := \gamma_{sc} \cdot M_{FFEmp} + \gamma_{sc} \cdot M_{FFsc} = -116.236 \cdot \frac{kN \cdot m}{m}$$

4.2.4 Sección de cambio de canto

$$M_{dAA} := \frac{\gamma_{sc} \cdot M_{AA} + \gamma_{sc} \cdot M_{AAsc}}{h_2} = 16.76 \cdot \frac{kN \cdot m}{m}$$

$$V_{dAA} := \frac{\gamma_{sc} \cdot E_a + \gamma_{sc} \cdot E_{asc}}{h_2} = 19.284 \cdot \frac{kN}{m}$$



EJECUTADO: DIL FECHA 03/03/2022 Hoja 6 de 8

### 5. Dimensionamiento de la armadura

5.1 Materiales y Coeficientes parciales de seguridad

Hormigón  $\gamma_c := 1.5$ 

Acero pasivo  $\gamma_{\rm S} \coloneqq 1.15$ 

Datos de los materiales

Resistencia a compresión del hormigón  $f_{ck} := 35 \cdot MPa$   $f_{cd} := \frac{f_{ck}}{\gamma_c}$   $f_{cd} = 23.333 \cdot MPa$ 

Resistencia armadura pasiva  $f_y \coloneqq 500 \cdot \text{MPa} \qquad \qquad f_{yd} \coloneqq \frac{f_y}{\gamma_s} \qquad \qquad f_{yd} = 434.783 \cdot \text{MPa}$ 

Resistencia media a tracción del hormigón  $f_{ctm} \coloneqq 0.3 \cdot \sqrt{\left(\frac{f_{ck}}{MPa}\right)^2 \cdot MPa} \qquad f_{ctm} = 3.21 \cdot MPa$ 

 $\text{Resistencia de c\'alculo inferior a tracci\'on} \qquad \qquad f_{ctd} \coloneqq \frac{0.21}{\gamma_c} \cdot \sqrt{\left(\frac{f_{ck}}{\text{MPa}}\right)^2} \cdot \text{MPa} \qquad f_{ctd} = 1.498 \cdot \text{MPa}$ 

 $\text{Resistencia hormig\'on para cortante} \qquad \qquad f_{1cd} \coloneqq 0.6 \cdot f_{cd} \qquad \quad f_{1cd} = 14 \cdot \text{MPa}$ 

Resistencia acero pasivo cortante  $f_{vtd} := 400 \cdot MP$ 

 $\text{M\'odulo de Young del hormig\'on} \qquad \qquad \text{E}_c \coloneqq 10000 \cdot \text{MPa} \cdot \sqrt{\frac{f_{ck}}{\text{MPa}}} + 8 \qquad \text{E}_c = 35.034 \cdot \text{GPa}$ 

Módulo de Young del acero  $E_g := 200 \cdot GPa$ 

- Cálculo armaduras flexión
- Cálculo armaduras cortante
- Cálculo fisuración
- 5.2 Armadura vertical arranque de aleta

$$A_{sY} \coloneqq A_s \Big( \left| M_{dCC} \right|, 0, e_{aleta} \Big) \qquad \qquad A_{sY} = \begin{pmatrix} 2.827 \\ 0 \\ 3.868 \end{pmatrix} \cdot \frac{cm^2}{m} \qquad \text{Armadura tracción} \\ \text{Armadura de compresión} \\ \text{Armadura mecánica mínima}$$

5.3 Armadura de corte en el arranque vertical de la aleta

$$A_{vY} \coloneqq A_{o}\!\!\left( V_{dCC}, 0, e_{aleta}, A_{sY_1} \right) \qquad \qquad A_{vY} = \! \begin{pmatrix} 0 \\ 11.667 \end{pmatrix} \! \cdot \! \frac{cm^2}{m^2} \qquad \text{Armadura necesria}$$

5.4 Armadura horizontal arranque de aleta

$$A_{sX} \coloneqq A_s \Big( \left| M_{dBB} \right|, 0, e_{aleta} \Big) \qquad \qquad A_{sX} = \begin{pmatrix} 6.645 \\ 0 \\ 7.911 \end{pmatrix} \cdot \frac{cm^2}{m} \qquad \text{Armadura tracción} \\ \text{Armadura de compresión} \\ \text{Armadura mecánica mínima}$$

Aleta Belga E1.xmcd



EJECUTADO: DIL FECHA 03/03/2022 Hoja 7 de 8

5.5 Armadura de corte en el arrangue horizontal de la aleta

$$A_{vX} \coloneqq A_{o}\!\!\left(V_{dBB}, 0, e_{aleta}, A_{sX_1}\right) \qquad \qquad A_{vX} = \begin{pmatrix} 0 \\ 11.667 \end{pmatrix} \cdot \frac{cm^2}{m^2} \qquad \text{Armadura necessian}$$
 
$$A_{vX} = \begin{pmatrix} 0 \\ 11.667 \end{pmatrix} \cdot \frac{cm^2}{m^2} \qquad \text{Armadura minima}$$

5.6 Armadura horizontal arranque de aleta, borde

ingedis

$$A_{sXb} \coloneqq A_s \Big( \left| M_{dEE} \right|, 0, e_{aleta} \Big) \qquad \qquad A_{sXb} = \begin{pmatrix} 5.761 \\ 0 \\ 7.096 \end{pmatrix} \cdot \frac{cm^2}{m} \qquad \text{Armadura tracción} \\ \text{Armadura de compresión} \\ \text{Armadura mecánica mínima}$$

5.7 Armadura de corte en el arranque horizontal, borde

$$A_{vXb} \coloneqq A_0 \! \left( v_{dEE}, 0, e_{aleta}, A_{sXb}_1 \right) \qquad \qquad A_{vXb} = \! \left( \begin{matrix} 0 \\ 11.667 \end{matrix} \right) \cdot \frac{cm^2}{m^2} \quad \text{Armadura necesrial Armadura minima}$$

5.8 Armadura vertical arranque de aleta, borde

$$A_{sYb} \coloneqq A_s \Big( \left| M_{dFF} \right|, 0, e_{aleta} \Big) \qquad \qquad A_{sYb} = \begin{pmatrix} 6.029 \\ 0 \\ 7.351 \end{pmatrix} \cdot \frac{cm^2}{m} \qquad \text{Armadura tracción}$$
 
$$A_{rmadura de compresión} \qquad \text{Armadura mecánica mínima}$$

5.9 Armadura horizontal en el cambio de canto

$$A_{sXAA} := A_s \Big( \left| M_{dAA} \right|, 0, e_{aleta} \Big) \\ A_{sXAA} = \begin{pmatrix} 0.858 \\ 0 \\ 1.253 \end{pmatrix} \cdot \frac{\text{cm}^2}{\text{m}} \\ \text{Armadura tracción} \\ \text{Armadura de compresión} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mínima} \\ \text{Armadura mínima} \\ \text{Armadura mínima} \\ \text{Armadura mínima} \\ \text{A$$

### 6. Comprobación ELS fisuración

- 6.1 Esfuerzos de comprobación
- 6.1.1 Sección Horizontal CC

$$M_{kCC} := M_{CCEmp} + \psi_2 \cdot M_{CCsc} = -9.747 \cdot \frac{kN \cdot m}{m}$$

6.1.2 Sección Vertical BB

$$M_{kBB} := M_{BBEmp} + \psi_2 \cdot M_{BBsc} = -31.81 \cdot \frac{kN \cdot m}{m}$$

6.1.3 Sección de borde E-E

$$M_{\text{kEE}} := M_{\text{EEEmp}} + \psi_2 \cdot M_{\text{EEsc}} = -11.261 \cdot \frac{\text{kN} \cdot \text{m}}{\text{m}}$$



EJECUTADO: DIL FECHA 03/03/2022 Hoja 8 de 8

### 6.2 Comprobación a fisuración

6.2.1 Sección Horizontal CC

$$w_k \left( |M_{kCC}|, 0.001 \cdot \frac{kN}{m}, e_{aleta}, 200 \cdot mm, 20 \cdot mm, 1.3 \right) = 7.233 \times 10^{-3} \cdot mm$$

6.1.2 Sección Vertical BB

$$w_k \left( \left| M_{kBB} \right|, 0.001 \cdot \frac{kN}{m}, e_{aleta}, 200 \cdot mm, 20 \cdot mm, 1.3 \right) = 0.024 \cdot mm$$

6.1.3 Sección de borde E-E

$$w_k \left( \left| M_{kEE} \right|, 0.001 \cdot \frac{kN}{m}, e_{aleta}, 200 \cdot mm, 20 \cdot mm, 1.3 \right) = 8.356 \times 10^{-3} \cdot mm$$

### 7. Dimensionamiento armadura superior de voladizo

7.1 Peso total del voladizo

$$W_{\text{vol}} := \frac{h_0 + h_0 + l_2 \cdot \text{pte}}{2} \cdot l_2 \cdot 25 \frac{\text{kN}}{\text{m}^3} \cdot e_{\text{aleta}} = 41.667 \cdot \text{kN}$$

7.3 Peso total de la barrera en cabeza

$$W_{barrera} := l_2 \cdot g_{bord} = 35 \cdot kN$$

7.4 Carga total de cálculo 
$$W_d \coloneqq \gamma_{cp} \cdot \left(W_{vol} + W_{barrera}\right) = 103.5 \cdot kN$$

7.5 Angulo de la biela inclinada

$$\alpha := \operatorname{atan} \left( \frac{h_2 - 20 \cdot \text{cm}}{\frac{l_2}{2}} \right) = 57.56 \cdot \text{deg}$$

7.6 Compresión en la biela inclinada

$$C_{d} := \frac{W_{d}}{\sin(\alpha)} = 122.637 \cdot kN$$

7.7 Tracción total en el tirante

$$T_d := C_d \cdot \cos(\alpha) = 65.784 \cdot kN$$

7.8 Armadura necesaria en el tirante

$$A_{tirante} := \frac{T_d}{400 \cdot MPa} = 1.645 \cdot cm^2$$

Aleta Belga E1.xmcd

PS308E2.SAL 03/03/2022

PROGRAMA DE CALCULO DE ESTRIBOS CERRADOS V3.1

INGEDIS, S.C. Ingeniería y Diesño (C) 2011

PROYECTO: PS 308.2 ELEMENTO: ESTRIBO 2

PS308E2.SAL 03/03/2022 PS308E2.SAL 03/03/2022

-----

PROYECTO:PS 308.2 ELEMENTO: ESTRIBO 2

> DATOS GENERALES \_\_\_\_\_

CARACTERISTICAS DE MATERIALES \_\_\_\_\_

Resistencia del Hormigón Fck (MPa): 35.00 Resistencia del Acero Fyk (MPa): 500.00 Gamma\_C: 1.50 Gamma\_S: 1.15

COEFICIENTES PARCIALES DE SEGURIDAD \_\_\_\_\_\_

Gamma CP: 1.35 Gamma SC: 1.50

Gamma SC (Trafico): 0.60

#### COEFICIENTES DE COMBINACION

| Efecto                                                                | Chi0              | Chi1                     | Chi2 | Chi2*             |
|-----------------------------------------------------------------------|-------------------|--------------------------|------|-------------------|
| Vehiculo Pesado<br>  Sobrecarga Uniforme<br>  Temperatura<br>  Viento | .75<br>.40<br>.60 | .75<br>.40<br>.60<br>.20 | .00  | .00<br>.20<br>.00 |

#### DATOS DEL RELLENO \_\_\_\_\_

| Angulo de rozamiento interno         | FI (°):    | 30.00 |
|--------------------------------------|------------|-------|
| Angulo de rozamiento Terreno-Estribo | DELTA (°): | 0.00  |
| Densidad del relleno                 | G(kN/m3):  | 20.00 |
| Sobrecarga de trasdos                | (kN/m2):   | 10.00 |
| Coeficiente de empuje activo         | (-):       | 0.33  |
| Coeficiente de empuje al reposo      | (-):       | 0.50  |

| H1    | (m):                                                          | 1.00                                                                                                 |
|-------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| H2    | (m):                                                          | 7.40                                                                                                 |
| Н3    | (m):                                                          | 1.80                                                                                                 |
| H4    | (m):                                                          | 5.60                                                                                                 |
| В     | (m):                                                          | 12.20                                                                                                |
| BZ    | (m):                                                          | 14.20                                                                                                |
| Vtras | (m):                                                          | 3.40                                                                                                 |
| Esp   | (m):                                                          | 1.00                                                                                                 |
| C3    | (m):                                                          | 0.60                                                                                                 |
| Vdel  | (m):                                                          | 1.00                                                                                                 |
| LZ    | (m):                                                          | 5.40                                                                                                 |
| D1    | (m):                                                          | 0.43                                                                                                 |
|       | H2<br>H3<br>H4<br>B<br>BZ<br>Vtras<br>Esp<br>C3<br>Vdel<br>LZ | H1 (m): H2 (m): H3 (m): H4 (m): B (m): BZ (m): Vtras (m): Esp (m): C3 (m): Vdel (m): LZ (m): D1 (m): |

### CARGAS A CONSIDERAR

-----

Cargas Verticales

\_\_\_\_\_ Reacción carga permanente (kN): 2290.00 Reacción sobrecarga unif. maxima (kN): 377.43 Momento torsor Sobrecarga Unif. concomitante (kNm): 1391.45 Reacción Vehiculo pesado maxima (kN): 858.32 (kNm): 1391.45 Momento torsor vehiculo Pesado concomitante Reacción de Sobrecarga Unif. concomitante (kN): 196.62 Momento torsor Sobrecarga Unif. maximo (kNm): 1489.84 (kN): 823.16 (kNm): 2470.71 Reacción de Vehiculo Pesado concomitante Momento torsor Vehiculo Pesado maximo

Cargas Horizontales

3

Reacción horizontal de retracción, fluencia (kN): 0.00 (kN): 201.50 Reacción horizontal de frenado Reacción horizontal de temperatura (kN): 219.63 Reacción horizontal de viento (kN): 360.74

PS308E2.SAL 03/03/2022 PS308E2.SAL 03/03/2022

PROYECTO:PS 308.2 ELEMENTO: ESTRIBO 2

#### FUERZAS Y MOMENTOS SOBRE EL ESTIBO \_\_\_\_\_

\_\_\_\_\_\_

|   | Fhoriz<br>[kN] | Fvert<br>  [kN] | Exc   | Mlong<br> kNm] | Mtrans  <br>[kNm] |      |
|---|----------------|-----------------|-------|----------------|-------------------|------|
| Ī | 2869.44        | 0.00            | 2.80  | 8034.43        | 0.00              | (1)  |
| i | 4304.16        | 0.00            | 2.80  | 12051.65       | 0.00              | (2)  |
| İ | 341.60         | 0.00            | 4.20  | 1434.72        | 0.00              | (3)  |
| j | 512.40         | 0.00            | 4.20  | 2152.08        | 0.00              | (4)  |
| İ | 0.00           | 0.00            | 6.05  | 0.00           | 0.00              | (5)  |
| j | 201.50         | 0.00            | 6.05  | 1219.08        | 0.00              | (6)  |
| İ | 219.63         | 0.00            | 6.05  | 1328.76        | 0.00              | (7)  |
| ĺ | 0.00           | 360.74          | 6.05  | 0.00           | 2182.48           | (8)  |
| ĺ | 0.00           | 1917.00         | -2.70 | 0.00           | 0.00              | (9)  |
| ĺ | 0.00           | 6139.04         | -3.70 | -6139.04       | 0.00              | (10) |
| j | 0.00           | 1708.00         | -1.50 | 2049.60        | 0.00              | (11) |
| İ | 0.00           | 329.40          | -1.70 | 329.40         | 0.00              | (12) |
| İ | 0.00           | 414.80          | -3.70 | -414.80        | 0.00              | (13) |
| İ | 0.00           | 2290.00         | -1.43 | 2908.30        | 0.00              | (14) |
| İ | 0.00           | 377.43          | -1.43 | 479.34         | 1391.45           | (15) |
| İ | 0.00           | 196.62          | -1.43 | 249.71         | 1489.84           | (16) |

- (1) Emp. tierras en estribo (activo) Emp. tierras en estribo (reposo)
- (3) Emp. de sobrecarga (activo)
- Emp. de sobrecarga (reposo)
- Reacción horizontal de retracción y fluencia
- Reacción horizontal de frenado
- Reacción horizontal de temperatura
- Reacción horizontal de viento
- Peso de zapata de estribo
- (10) Peso de tierras en el trasdos
- (11) Peso de muro del estribo
- (12) Peso de faldon de estribo
- (13) Peso de sobrecarga en el trasdos
- (14) Reacción vertical de carga permanente
- (15) Reacción vertical SCU Hip. 1
- (15) Reacción vertical SCU Hip. 2
- Reacción vertical Vehiculo Pesado Hip. 1
- (18) Reacción vertical Vehiculo Pesado Hip. 2

#### HIPOTESIS CONSIDERADAS EN EL CALCULO \_\_\_\_\_

- HIPOTESIS N° 1 Estribo en vacio, sin tablero. Empuje activo HIPOTESIS N° 2 Estribo en servicio, Tª dominante Empuje activo
- HIPOTESIS N° 3 GR1. Estribo en servicio, Activo, SC Centrada, sin Frenado HIPOTESIS N° 4 GR1. Estribo en servicio, Activo, SC Excentrica, sin Frenado
- HIPOTESIS N° 5 GR2. Estribo en servicio, Activo, SC Centrada, Frenado (+)
- HIPOTESIS N° 6 GR2. Estribo en servicio, Activo, SC Excentrica, Frenado (+)
- HIPOTESIS N° 7 GR2. Estribo en servicio, Activo, SC Centrada, Frenado (-)
- HIPOTESIS N° 8 GR2. Estribo en servicio, Activo, SC Excentrica, Frenado (-)

PROYECTO:PS 308.2

ELEMENTO: ESTRIBO 2

FUERZAS Y MOMENTOS DE SERVICIO EN EL CENTRO DE LA CIMENTACION \_\_\_\_\_\_

| HIP  <br> | Fhoriz  <br>[kN] | Fvert  <br>[kN] | Ftrans <br>[kN] | Mlong  <br>[kNm] | Mtrans  <br>[kNm] |
|-----------|------------------|-----------------|-----------------|------------------|-------------------|
| 1         | 3211.04          | 10508.24        | 0.00            | 5294.31          | 0.00              |
| 2         | 3345.27          | 13621.35        | 216.44          | 10453.44         | 3647.90           |
| 3         | 3342.82          | 14033.99        | 216.44          | 10569.27         | 4427.38           |
| 4         | 3342.82          | 13818.02        | 216.44          | 10294.99         | 5270.04           |
| 5         | 3544.32          | 13344.07        | 216.44          | 11477.11         | 3160.90           |
| 6         | 3544.32          | 13245.38        | 216.44          | 11351.77         | 3758.45           |
| 7         | 2877.76          | 13344.07        | 216.44          | 7444.44          | 3160.90           |
| 8         | 2877.76          | 13245.38        | 216.44          | 7319.10          | 3758.45           |

TENSIONES EN CIMENTACION Y ESTABILIDAD DEL ESTRIBO

| HIP  <br> | S_Max  <br>[kPa] | S_Min  <br>[kPa] | S_Bar<br>[kPa] | C.DES. <br>  [-] | C.VUEL. |
|-----------|------------------|------------------|----------------|------------------|---------|
| 1         | 213.76           | 60.32            | 168.48         | 1.96             | 3.44    |
| 2         | 349.21           | 46.27            | 257.91         | 2.44             | 3.52    |
| 3         | 360.57           | 54.27            | 265.62         | 2.52             | 3.66    |
| 4         | 358.42           | 60.07            | 263.01         | 2.48             | 3.63    |
| 5         | 357.75           | 25.13            | 264.19         | 2.26             | 3.14    |
| 6         | 357.94           | 28.96            | 263.60         | 2.24             | 3.13    |
| 7         | 299.31           | 83.57            | 226.92         | 2.78             | 4.84    |
| 8         | 299.50           | 87.39            | 226.23         | 2.76             | 4.82    |
|           |                  |                  |                |                  |         |

PROYECTO: PS 308.2 ELEMENTO: ESTRIBO 2

#### ARMADURAS EN PUNTERA DE ZAPATA POR HIPOTESIS

\_\_\_\_\_

|  | HIP | Sigmal<br>[kPa] | Sigma2<br>  [kPa] | Rd<br>  [kN/m] | Xd<br>  [m] | Td<br>  kN/m] | As  <br> [cm2/m] |
|--|-----|-----------------|-------------------|----------------|-------------|---------------|------------------|
|  | 1   | 291.60          | 244.58            | 321.71         | 0.62        | 251.32        | 6.28             |
|  | 2   | 427.60          | 340.38            | 460.79         | 0.62        | 362.99        | 9.07             |
|  | 3   | 429.45          | 343.38            | 463.70         | 0.62        | 365.02        | 9.13             |
|  | 4   | 425.38          | 340.37            | 459.45         | 0.62        | 361.63        | 9.04             |
|  | 5   | 448.17          | 350.09            | 478.95         | 0.62        | 378.42        | 9.46             |
|  | 6   | 446.31          | 348.71            | 477.01         | 0.62        | 376.87        | 9.42             |
|  | 7   | 360.52          | 301.39            | 397.14         | 0.62        | 310.41        | 7.76             |
|  | 8   | 358.65          | 300.01            | 395.20         | 0.62        | 308.86        | 7.72             |

#### ARMADURAS EN TALON DE ZAPATA POR HIPOTESIS

-----

| H | IP  <br> | Sigma1<br>[kPa] | Sigma2<br>  [kPa] | Md  <br> [kNm/m] | As  <br>[cm2/m] | Vd  <br>[kN/m]  [ | Av  <br>[cm2/m2] |
|---|----------|-----------------|-------------------|------------------|-----------------|-------------------|------------------|
|   | 1        | 80.03           | 221.08            | -308.48          | 16.25           | 188.32            | 0.00             |
|   | 2        | 35.11           | 296.77            | -223.35          | 15.66           | 120.18            | 0.00             |
|   | 3        | 42.15           | 300.35            | -213.23          | 15.60           | 113.81            | 0.00             |
|   | 4        | 42.85           | 297.87            | -217.89          | 15.63           | 117.03            | 0.00             |
|   | 5        | 6.80            | 301.04            | -274.31          | 16.01           | 145.61            | 0.00             |
|   | 6        | 7.12            | 299.91            | -276.51          | 16.03           | 147.08            | 0.00             |
|   | 7        | 94.45           | 271.83            | -54.63           | 14.62           | 40.42             | 0.00             |
|   | 8        | 94.77           | 270.69            | -56.69           | 14.63           | 41.90             | 0.00             |

#### COMPROBACIÓN E.L.S. FISURACION TALON DE ZAPATA

-----

| HIP. | Mk(cuas) <br>  [kNm/m] | As  <br>[cm2/m] | Sep<br>[mm] | ep_med  <br>  [%] | Wk  <br>[ mm] |
|------|------------------------|-----------------|-------------|-------------------|---------------|
| 1    | -160.57                | 16.25           | 153.80      | .042              | 0.11          |
| 2    | -111.39                | 15.66           | 156.96      | .044              | 0.12          |
| 3    | -102.37                | 15.60           | 157.34      | .044              | 0.12          |
| 4    | -101.29                | 15.63           | 157.16      | .044              | 0.12          |
| 5    | -102.67                | 16.01           | 155.07      | .043              | 0.11          |
| 6    | -102.18                | 16.03           | 154.99      | .043              | 0.11          |
| 7    | -57.32                 | 14.62           | 122.41      | .047              | 0.10          |
| 8    | -56.76                 | 14.63           | 122.37      | .047              | 0.10          |

6

#### PROYECTO: PS 308.2 ELEMENTO: ESTRIBO 2

#### ESFUERZOS EN BASE DE MURO POR HIPOTESIS

-----

| HIP <br> | Mk  <br>[kNm/m] | Vk  <br>[kN/m] | Md<br>[kNm/m] | Vd<br>  [kN/m] |
|----------|-----------------|----------------|---------------|----------------|
| 1        | 541.52          | 207.20         | 744.74        | 283.42         |
| 2        | 609.61          | 219.04         | 846.88        | 301.17         |
| 3        | 596.06          | 218.00         | 826.56        | 299.62         |
| 4        | 596.06          | 218.00         | 826.56        | 299.62         |
| 5        | 679.47          | 234.52         | 951.67        | 324.40         |
| 6        | 679.47          | 234.52         | 951.67        | 324.40         |
| 7        | 403.56          | 179.88         | 537.80        | 242.44         |
| 8        | 403.56          | 179.88         | 537.80        | 242.44         |

#### ARMADURAS EN ALZADO DE MURO

-----

| ALTURA <br>  [m] | Md<br>[kNm/m]    | As_int  <br>  [cm2/m] | As_ext  <br>[cm2/m] | As_h*  <br>[cm2/m] | Vd  <br>[kN/m]   | Av  <br>[cm2/m2] |
|------------------|------------------|-----------------------|---------------------|--------------------|------------------|------------------|
| 0.00             | 951.67<br>730.61 | 23.69<br>19.89        | 9.00<br>9.00        | 8.00               | 324.40<br>273.88 |                  |
| 1.48             | 545.12           | 18.07                 | 9.00                | 8.00               | 228.29           |                  |
| 2.22             | 391.53           | 16.81                 | 9.00                | 8.00               | 187.62           | 0.00             |
| 2.96             | 266.22           | 15.92                 | 9.00                | 8.00               | 151.89           | 0.00             |
| 3.70             | 165.52           | 15.27                 | 9.00                | 8.00               | 121.08           | 0.00             |
| 4.44             | 85.80            | 14.79                 | 9.00                | 8.00               | 95.20            | 0.00             |
| 5.18             | 28.73            | 14.47                 | 9.00                | 8.00               | 33.28            | 0.00             |
| 5.92             | 10.34            | 8.68                  | 5.40                | 8.00               | 17.26            | 0.00             |
| 6.66             | 1.98             | 8.61                  | 5.40                | 8.00               | 6.16             | 0.00             |
| 7.40             | 0.00             | 5.40                  | 5.40                | 8.00               | 0.00             | 0.00             |

#### COMPROBACIÓN E.L.S. FISURACION ALZADO DE MURO

-----

| ALTURA   [m] | Mk(cuas)  <br>[kNm/m] | As_int  <br>[cm2/m] | Sep<br>[mm] | ep_med  <br>  [%] | Wk<br>[ mm] |  |
|--------------|-----------------------|---------------------|-------------|-------------------|-------------|--|
| 0.00         | 450.25                | 23.69               | 127.50      | .049              | 0.11        |  |
| 0.74         | 328.23                | 19.89               | 138.48      | .042              | 0.10        |  |
| 1.48         | 230.53                | 18.07               | 145.37      | .033              | 0.08        |  |
| 2.22         | 154.44                | 16.81               | 151.01      | .024              | 0.06        |  |
| 2.96         | 97.25                 | 15.92               | 155.58      | .016              | 0.04        |  |
| 3.70         | 56.28                 | 15.27               | 159.23      | .009              | 0.03        |  |
| 4.44         | 28.82                 | 14.79               | 121.81      | .005              | 0.01        |  |
| 5.18         | 12.16                 | 14.47               | 122.96      | .002              | 0.00        |  |
| 5.92         | 3.60                  | 8.68                | 131.27      | .002              | 0.00        |  |
| 6.66         | 0.45                  | 8.61                | 131.83      | .000              | 0.00        |  |
| 7.40         | 0.00                  | 5.40                | 133.06      | .000              | 0.00        |  |

Aleta Vuelta.xmcd

#### 1. Geometría del estribo



 $\begin{tabular}{lll} Longitud de la aleta & a:= 3.50 \cdot m \\ Altura de la alera & h:= 7.80 \cdot m \\ Espesor de la aleta & e_{aleta} := 50 \cdot cm \\ \end{tabular}$ 

#### 2. Acciones a considerar

#### 2.1 Empuje del relleno

#### 2.1.1 Características del material de relleno

Angulo de rozamiento interno

$$\varphi := 30 \cdot \deg$$

Densidad del relleno

$$\gamma := 20 \cdot \frac{kN}{m^3}$$

Coeficiente de empuje activo

$$k_a := \tan \left( 45 \cdot \deg - \frac{\varphi}{2} \right)^2 = 0.333$$

2.1.2 Línea de presiones

Empuje en la base de la aleta

$$p_2 := k_a \cdot h \cdot \gamma = 52 \cdot kPa$$

2.2 Sobrecarga del trasdós

$$q := 10 \cdot kPa = 10 \cdot kPa$$

$$p_1 := q \cdot k_a = 3.333 \cdot kPa$$

ingedis

PROYECTO: AVE TAFALLA. PS 308.2

EJECUTADO: DIL FECHA 03/03/2022 Hoja 2 de 5

#### 3. Esfuerzos sobre la aleta

3.1 Empuje del terreno

▶-

#### 3.1.1 Sección C-C (Empotramiento vertical)

$$M_{CCEmp} := linterp(X, Y_{Mver}, \gamma_{placa}) \cdot q \cdot h^2 = -7.222 \cdot \frac{kN \cdot m}{m}$$

$$V_{CCEmp} := linterp(X, Y_{Vver}, \gamma_{placa}) \cdot q \cdot h = 22.857 \cdot \frac{kN}{m}$$

3.1.2 Sección B - B (Empotramiento horizontal)

$$M_{BBEmp} := linterp(X, Y_{Mhor}, \gamma_{placa}) \cdot q \cdot a^2 = -17.898 \cdot \frac{kN \cdot m}{m}$$

$$V_{BBEmp} := linterp(X, Y_{Vhor}, \gamma_{placa}) \cdot q \cdot a = 13.592 \cdot \frac{kN}{m}$$

3.1.3 Sección E - E (Empotramiento en el borde)

$$M_{EEEmp} := linterp(X, Y_{Mborde}, \gamma_{placa}) \cdot q \cdot a^2 = -10.497 \cdot \frac{kN \cdot m}{m}$$

$$V_{\text{EEEmp}} := \text{linterp}(X, Y_{\text{Vborde}}, \gamma_{\text{placa}}) \cdot q \cdot a = 0.839 \cdot \frac{kN}{m}$$

3.2 Sobrecarga del trasdós

**I** 

#### 3.2.1 Sección C-C (Empotramiento vertical)

$$M_{CCsc} := linterp(X, Y_{Mver}, \gamma_{placa}) \cdot q \cdot h^2 = -27.074 \cdot \frac{kN \cdot m}{m}$$

$$V_{CCsc} := linterp(X, Y_{Vver}, \gamma_{placa}) \cdot q \cdot h = 33.373 \cdot \frac{kN}{m}$$

3.2.2 Sección B - B (Empotramiento horizontal)

$$M_{BBsc} := linterp(X, Y_{Mhor}, \gamma_{placa}) \cdot q \cdot a^{2} = -47.519 \cdot \frac{kN \cdot m}{m}$$

Aleta Vuelta.xmcd



#### PROYECTO: AVE TAFALLA. PS 308.2

EJECUTADO: DIL FECHA 03/03/2022 Hoja 3 de 5

$$V_{BBsc} := linterp(X, Y_{Vhor}, \gamma_{placa}) \cdot q \cdot a = 34.105 \cdot \frac{kN}{m}$$

3.2.3 Sección E - E (Empotramiento en el borde)

$$M_{EEsc} := linterp(X, Y_{Mborde}, \gamma_{placa}) \cdot q \cdot a^2 = -53.978 \cdot \frac{kN \cdot m}{m}$$

$$V_{EEsc} := linterp(X, Y_{Vborde}, \gamma_{placa}) \cdot q \cdot a = 31.501 \cdot \frac{kN}{m}$$

- 4. Esfuerzos de cálculo
- 4.1 Coeficientes de ponderación

Se consideran los siguientes coeficientes de combinación y ponderación

4.1.1 Cargas permanentes

$$\gamma_{cp} := 1.35$$

4.1.2 Sobrecargas (incluidos los empujes)

$$\gamma_{\rm sc} := 1.50$$

4.2 Coeficientes de combinación cargas cuasipermanentes

$$\psi_2 := 0.0$$

- 4.2 Esfuerzos de ELU
- 4.2.1 Sección Horizontal CC

$$M_{dCC} := \gamma_{sc} \cdot M_{CCEmp} + \gamma_{sc} \cdot M_{CCsc} = -51.443 \cdot \frac{kN \cdot m}{m}$$

$$V_{dCC} := \gamma_{sc} \cdot V_{CCEmp} + \gamma_{sc} \cdot V_{CCsc} = 84.344 \cdot \frac{kN}{m}$$

4.2.2 Sección Vertical BB

$$M_{dBB} := \gamma_{sc} \cdot M_{BBEmp} + \gamma_{sc} \cdot M_{BBsc} = -98.124 \cdot \frac{kN \cdot m}{m}$$

$$V_{dBB} := \gamma_{sc} \cdot V_{BBEmp} + \gamma_{sc} \cdot V_{BBsc} = 71.546 \cdot \frac{kN}{m}$$

4.2.3 Sección de borde E-E

$$M_{dEE} := \gamma_{sc} \cdot M_{EEEmp} + \gamma_{sc} \cdot M_{EEsc} = -96.713 \cdot \frac{kN \cdot m}{m}$$

$$V_{\text{dEE}} := \gamma_{\text{sc}} \cdot V_{\text{EEEmp}} + \gamma_{\text{sc}} \cdot V_{\text{EEsc}} = 48.51 \cdot \frac{\text{kN}}{\text{m}}$$

Aleta Vuelta.xmcd



EJECUTADO: DIL FECHA 03/03/2022 Hoja 4 de 5



#### 5. Dimensionamiento de la armadura

5.1 Materiales y Coeficientes parciales de seguridad

Hormigón  $\gamma_{\rm c}\coloneqq 1.5$ 

Acero pasivo  $\gamma_s := 1.15$ 

Datos de los materiales

Resistencia a compresión del hormigón  $f_{cd} := \frac{f_{ck}}{\gamma_c} \qquad \qquad f_{cd} = 23.333 \cdot MPa$ 

Resistencia armadura pasiva  $\frac{f_y \coloneqq 500 \cdot \text{MPa}}{f_y d} \coloneqq \frac{f_y}{\gamma_s} \qquad \qquad f_{yd} = 434.783 \cdot \text{MPa}$ 

Resistencia media a tracción del hormigón  $f_{ctm} \coloneqq 0.3 \cdot \sqrt{\left(\frac{f_{ck}}{MPa}\right)^2 \cdot MPa} \qquad f_{ctm} = 3.21 \cdot MPa$ 

 $\text{Resistencia de c\'alculo inferior a tracci\'on} \qquad \qquad f_{ctd} := \frac{0.21}{\gamma_c} \cdot \sqrt{\left(\frac{f_{ck}}{\text{MPa}}\right)^2} \cdot \text{MPa} \qquad f_{ctd} = 1.498 \cdot \text{MPa}$ 

 $\text{Resistencia hormig\'on para cortante} \qquad \qquad f_{1cd} \coloneqq 0.6 \cdot f_{cd} \qquad f_{1cd} = 14 \cdot \text{MPa}$ 

Resistencia acero pasivo cortante  $f_{vtd} := 400 \cdot MPa$ 

Módulo de Young del hormigón  $E_c := 10000 \cdot \text{MPa} \cdot \sqrt[3]{\frac{f_{ck}}{\text{MPa}} + 8} \qquad E_c = 35.034 \cdot \text{GPa}$ 

Módulo de Young del acero  $E_S := 200 \cdot GPa$ 

- Cálculo armaduras flexión
- Cálculo armaduras cortante
- Cálculo fisuración
- 5.2 Armadura vertical arranque de aleta

$$A_{SY} \coloneqq A_{S} \Big( \Big| M_{dCC} \Big| \,, 0 \,, e_{aleta} \Big) \qquad \qquad A_{SY} = \begin{pmatrix} 2.646 \\ 0 \\ 3.643 \end{pmatrix} \cdot \frac{cm^2}{m} \qquad \text{Armadura tracción}$$
 
$$A_{TM} = \begin{pmatrix} 2.646 \\ 0 \\ 3.643 \end{pmatrix} \cdot \frac{cm^2}{m} \qquad \text{Armadura mecánica mínima}$$

5.3 Armadura de corte en el arranque vertical de la aleta

 $A_{vY} \coloneqq A_{o}\!\!\left( V_{dCC}, 0, e_{aleta}, A_{sY_1} \right) \qquad \qquad A_{vY} = \! \begin{pmatrix} 0 \\ 11.667 \end{pmatrix} \! \cdot \! \frac{cm^2}{m^2} \qquad \text{Armadura necesria}$ 

5.4 Armadura horizontal arranque de aleta

 $A_{sX} \coloneqq A_s \Big( \left| M_{dBB} \right|, 0, e_{aleta} \Big) \\ A_{sX} = \begin{pmatrix} 5.078 \\ 0 \\ 6.416 \end{pmatrix} \cdot \frac{cm^2}{m} \\ \text{Armadura tracción} \\ \text{Armadura de compresión} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mecánica mínima} \\ \text{Armadura mínima} \\ \text{Armadura mínima$ 

Aleta Vuelta.xmcd



#### PROYECTO: AVE TAFALLA. PS 308.2

EJECUTADO: DIL FECHA 03/03/2022 Hoja 5 de 5

5.5 Armadura de corte en el arranque horizontal de la aleta

$$\mathbf{A}_{vX} \coloneqq \mathbf{A}_{o}\!\!\left(\mathbf{V}_{dBB}, \mathbf{0}, \mathbf{e}_{aleta}, \mathbf{A}_{sX_{1}}\right)$$

$$A_{vX} = \begin{pmatrix} 0 \\ 11.667 \end{pmatrix} \cdot \frac{cm^2}{m^2}$$
 Armadura necesria Armadrura mínima

5.6 Armadura horizontal arranque de aleta, borde

$$A_{sXb} \coloneqq A_s \! \left( \left| M_{dEE} \right|, 0, e_{aleta} \right) \qquad \qquad A_{sXb} = \begin{pmatrix} 5.004 \\ 0 \\ 6.34 \end{pmatrix} \cdot \frac{\text{cm}^2}{\text{m}} \quad \text{Armadura tracción} \\ \text{Armadura de compresión} \\ \text{Armadura mecánica mínima}$$

$$A_{sXb} = \begin{pmatrix} 5.004 \\ 0 \\ 6.34 \end{pmatrix} \cdot \frac{cm^2}{m}$$

5.7 Armadura de corte en el arranque horizontal, borde

$$A_{vXb} \coloneqq A_{\alpha}\!\!\left(V_{dEE}, 0, e_{aleta}, A_{sXb}_{1}\right) \qquad \qquad A_{vXb} = \!\!\left(\begin{matrix} 0 \\ 11.667 \end{matrix}\right) \cdot \frac{cm^{2}}{m^{2}} \quad \text{Armadura necesria} \quad \text{Armadura minima}$$

$$A_{vXb} = \begin{pmatrix} 0 \\ 11.667 \end{pmatrix} \cdot \frac{cm^2}{m^2}$$

### 6. Comprobación ELS fisuración

- 6.1 Esfuerzos de comprobación
- 6.1.1 Sección Horizontal CC

$$M_{kCC} := M_{CCEmp} + \psi_2 \cdot M_{CCsc} = -7.222 \cdot \frac{kN \cdot m}{m}$$

6.1.2 Sección Vertical BB

$$M_{kBB} := M_{BBEmp} + \psi_2 \cdot M_{BBsc} = -17.898 \cdot \frac{kN \cdot m}{m}$$

6.1.3 Sección de borde E-E

$$M_{kEE} := M_{EEEmp} + \psi_2 \cdot M_{EEsc} = -10.497 \cdot \frac{kN \cdot m}{m}$$

- 6.2 Comprobación a fisuración
- 6.2.1 Sección Horizontal CC

$$w_k \left( \left| M_{kCC} \right|, 0.001 \cdot \frac{kN}{m}, e_{aleta}, 200 \cdot mm, 16 \cdot mm, 1.3 \right) = 9.144 \times 10^{-3} \cdot mm$$

6.1.2 Sección Vertical BB

$$w_k \left( \left| M_{kBB} \right|, 0.001 \cdot \frac{kN}{m}, e_{aleta}, 200 \cdot mm, 16 \cdot mm, 1.3 \right) = 0.023 \cdot mm$$

6.1.3 Sección de borde E-E

$$w_k \left( \left| M_{kEE} \right|, 0.001 \cdot \frac{kN}{m}, e_{aleta}, 200 \cdot mm, 16 \cdot mm, 1.3 \right) = 0.013 \cdot mm$$

Aleta Vuelta.xmcd



PS308.sal 16/08/2021 PS308.sal 16/08/2021

#### CALCULO DE MUROS V-01 03/00

## CARACTERISTICAS DEL RELLENO

PESO ESPECIFICO (TN/M3) = 2.00 ANGULO DE ROZAMIENTO FI = 30.00ANGULO ROZAMIENTO TERRENO-MURO = 0.00 ANGULO DE TALUD DEL TERRENO = 0.00 SOBRECARGA (TN/M2) = 1.00 PENDIENTE DE INCLINACION DEL TRASDOS = 0.0000 COEFICIENTE DE EMPUJE ACTIVO = 0.333 COEFICIENTE DE EMPUJE ACTIVO VERTICAL = 0.000 COEFICIENTE MEDIO DE PONDERACION = 1.500

## CARACTERISTICAS DE LOS MATERIALES

RESISTENCIA CARACTERISTICA DEL HORMIGON = 350. KG/CM2

LIMITE ELASTICO DEL ACERO = 5100. KG/CM2

RECUBRIMIENTO DE LAS ARMADURAS = 0.050 M

CALCULO DE MUROS V-01 03/00

GEOMETRIA DEL MURO

ALZADO DEL MURO

ANCHO EN CORONACION

ANCHO EN LA BASE

INCLINACION DEL TRASDOS

ALTURA TOTAL

ALTURA DE TIERRAS

AS = 0.40

CTG(ALFA) = 0.00000

H1 = 4.60

H = 4.30

ZAPATA

 VUELO DELANTERO
 A1
 =
 0.50

 VUELO TRASERO
 A4
 =
 1.90

 LONGITUD TOTAL
 L
 =
 2.80

 CANTO
 C
 =
 0.60

 RESGUARDO SOBRE ZAPATA
 =
 0.30

 TENSION MEDIA PEDIDA SOBRE TERRENO
 =
 20.00
 TN/M2

ARMADURAS DEL ALZADO

COMPROBACION DE FISURACION Mk = 10.07 T\*M W = 0.282 (Wm = 0.300)

INTRADOS AV.= 1.2 CM2/M AH.= 3.2 CM2/M

ARMADURA DE ZAPATA

-----

CARA INFERIOR. A. PRINCIPAL =  $5.4 \text{ CM}_2/\text{M}$ A. DE REPARTO =  $1.6 \text{ CM}_2/\text{M}$ 

CARA SUPERIOR. A. PRINCIPAL = 8.9 CM2/MA. DE REPARTO = 2.7 CM2/M

LATERAL A. DE PIEL =  $(1 \text{ FI } 12) \times 2$ 

COEFICIENTE DE SEGURIDAD AL DESLIZAMIENTO = 1.62 COEFICIENTE DE SEGURIDAD AL VUELCO = 2.51

VOLUMEN DE HORMIGON = 3.52 M3. PESO DE ACERO = 169.3 KG

NOTA: SE DISPONDRAN JUNTAS VERTICALES CADA 7.5 M

CÁLCULO DE PILAS Y CIMENTACIÓN



#### PROYECTO: AVE TAFALLA. PS 308.2

EJECUTADO: DIL FECHA 03/03/2022 Hoja 1 de 3

### COMPROBACIÓN ESBELTEZ DE PILAS CIRCULARES

#### 1. Geometría de la pila

Diámetro de la pila  $\varphi_{\mbox{\scriptsize pila}} \coloneqq 1.00 \cdot \mbox{\scriptsize m}$ 

Altura de la pila  $h_{pila} \coloneqq 10.80 \cdot m$ 

#### 2. Parámetros mecánicos de la pila

2.1 Hormigón de la pila  $f_{ck} := 35 \cdot MPa$ 

2.1.1 Módulo de elasticidad corto plazo 
$$E_c \coloneqq 8500 \cdot \text{MPa} \cdot \sqrt{\frac{f_{ck}}{MPa} + 8} = 29778.884 \cdot \text{MPa}$$

2.1.2 Coeficiente de fluencia adoptado  $\phi := 2.5$ 

2.1.2 Módulo de elasticidad largo plazo 
$$E_{clp} := \frac{E_c}{(1 + \varphi)} = 8508.252 \cdot MPa$$

2.2 Coeficiente de seguridad del hormigón  $\gamma_{\rm C} \coloneqq 1.50$ 

#### 3. Esbeltez mecánica de la pila

- 3.1 Determinación de la longitud de pandeo de la pila
- 3.1.1 Esfuerzos horizontales en cabeza de pila

3.1.1.1 Frenado 
$$F_{fren} := \frac{69.24 \cdot kN}{2} = 34.62 \cdot kN$$

3.1.1.2 Temperatura  $F_{temp} := 331.6 \cdot \frac{kN}{4} = 82.9 \cdot kN$ 

3.1.1.3 REologigas  $F_{reol} := \frac{331.6 \cdot kN}{4} = 82.9 \cdot kN$ 

3.1.1 Rigidez en cabeza del resto del tablero  $k_{corto} := \frac{23520}{2} \cdot \frac{kN}{m} \qquad k_{largo} := \frac{k_{corto}}{2} = 5880 \cdot \frac{kN}{m}$ 

3.1.2 Rigidez en cabeza horizontal media  $k_{hor} := \frac{k_{corto} \cdot F_{fren} + k_{largo} \cdot \left(F_{temp} + F_{reol}\right)}{F_{temp} + F_{reol} + F_{fren}} = 6895.695 \cdot \frac{kN}{m}$ 

3.1.3 Parametros de rigidez de la pila

3.1.3.1 Modulo medio del hormigón  $E_{cmed} := \frac{E_c \cdot \left(F_{fren} + F_{temp}\right) + E_{clp} \cdot F_{reol}}{F_{temp} + F_{reol} + F_{fren}} = 2.098 \times 10^4 \cdot MPa$ 

Esbeltez Pilas.xmcd



PROYECTO: AVE TAFALLA. PS 308.2

EJECUTADO: DIL FECHA 03/03/2022 Hoja 2 de 3

3.1.3.2 Parámetros de rigidez

$$I_{\text{pila}} := \frac{\pi \cdot \phi_{\text{pila}}^{4}}{64} = 0.049 \cdot \text{m}^{4}$$

$$t := \frac{k_{\text{hor}}}{\left(\frac{E_{\text{cmed}} \cdot I_{\text{pila}}}{h_{\text{pila}}}\right)} = 8.435$$

3.1.4 Parámetros de rigidez del empotramiento

$$r := \frac{10^{20} \cdot kN \cdot m}{\left(\frac{E_{cmed} \cdot I_{pila}}{h_{pila}}\right)} = 1.049 \times 10^{15}$$

3.1.5 Determinación de la longitud de pandeo

$$k_{lguess} := 10$$

Dado

$$t = \frac{\left(\frac{k_{lguess} \cdot h_{pila}}{m}\right)^{2} \cdot \left(1 - \frac{k_{lguess} \cdot h_{pila}}{r \cdot m} \cdot tan\left(\frac{k_{lguess} \cdot h_{pila}}{m}\right)\right)}{1 - \left(\frac{k_{lguess} \cdot h_{pila}}{r \cdot m} + \frac{m}{k_{lguess} \cdot h_{pila}}\right) \cdot tan\left(\frac{k_{lguess} \cdot h_{pila}}{m}\right)}$$

$$\alpha := Find(k_{lguess}) = 0.447$$

3.2 Longitud de pandeo  $l_0 := \alpha \cdot h_{pila} = 4.829 \text{ m}$ 

3.3 Radio de giro de la pieza  $i_{\text{c}} := \frac{\varphi_{\text{pila}}}{4} = 0.25\,\text{m}$ 

3.4 Esbeltez mecánica  $\lambda := \frac{I_0}{I_C} = 19.317$ 

#### 4. Esbeltez límite de la pila

4.1 Cuantía mecánica mínima de la sección  $\omega := \frac{0.}{10}$ 

4.2 Axil máximo de cálculo del soporte  $N_d \coloneqq 8265 \cdot kN \qquad \nu \coloneqq \frac{N_d}{\pi \cdot \frac{\varphi_{pila}^2}{4} \cdot \frac{f_{ck}}{\gamma_c}} = 0.451$ 

4.3 Momento en cabeza de pila  $M_{dCab} \coloneqq 0 \cdot kN \cdot m \qquad \qquad e_1 \coloneqq \frac{M_{dCab}}{N_d} = 0$ 

Esbeltez Pilas.xmcd



### PROYECTO: AVE TAFALLA. PS 308.2

EJECUTADO: DIL FECHA 03/03/2022 Hoja 3 de 3

4.4 Momento en base de pila

$$M_{dBase} := 1132.4 \cdot kN \cdot m$$
  $e_2 := \frac{M_{dBase}}{N_d}$ 

4.5 Esbeltez límite para ignorar los efectos de segundo orden

$$\lambda_{\inf} := 35 \cdot \sqrt{\frac{0.27}{\nu} \cdot \left[1 + \frac{0.24}{\frac{e_2}{\phi_{\text{pila}}}} + 3.4 \cdot \left(\frac{e_1}{e_2} - 1\right)^2\right]} = 67.167$$

Esbeltez Pilas.xmcd

P1\_F1.SAL 03/03/2022

PROGRAMA PARA EL CALCULO DE COMBINACIONES DE ESFUERZOS EN PILAS

INGEDIS.S.C. Ingenieria y Diseño (C) 2015

PROYECTO:

PS 308

ELEMENTO:

PILA 1 FUSTE 1

P1\_F1.SAL 03/03/2022 P1\_F1.SAL 03/03/2022

#### DATOS GENERALES

\_\_\_\_\_

COEFICIENTES PARCIALES DE SEGURIDAD

Gamma PP:1.35 Gamma SC(Sobrecarga Vertical):1.35 Gamma SC(Acciones Horizontales):1.

COEFICIENTES DE COMBINACION \_\_\_\_\_ Coeficientes Chi\_0: Vehiculo Pesado Sobrecarga Uniforme 0.40 Aceras 0.40 Viento 0.60 Temperatura 0.60 Coeficientes Chi\_1: Vehiculo Pesado 0.75 Sobrecarga Uniforme 0.40 Aceras 0.40 Viento 0.20 Temperatura 0.60

Coeficientes Chi\_2:
Vehiculo Pesado 0.00
Sobrecarga Uniforme 0.20

Aceras 0.00 Viento 0.00 Temperatura 0.50

ESFUERZOS DEFINIDOS EN LA CABEZA DE PILA

ALTURA DE PILA(m): 10.70 DISTANCIA A LA CABEZA DE PILA:0.00

PESO DE LA PILA (por m): 19.63 PESO DEL CABECERO: 0.00kN

VIENTO SOBRE LA PILA LONG (kN/m): 1.05 TRANSV. (kN/m): 1.05

2

COMBINACION PARA PUENTES DE CARRETERA

UNIDADES: m kN

PROYECTO:PS 308 ELEMENTO:PILA 1 FUSTE 1

ESFUERZOS EN LA PILA

ESFUERZOS DE PESO PROPIO

N.hip N Fx Fy Mx My
----- 1 2669.90 0.00 0.00 0.00 0.00

ESFUERZOS DE CARGA MUERTA

| N.h | ip N    | Fx   | Fy   | Mx   | My   |
|-----|---------|------|------|------|------|
|     |         |      |      |      |      |
| 1   | 1004.17 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2   | 884.07  | 0.00 | 0.00 | 0.00 | 0.00 |

P1\_F1.SAL 03/03/2022 P1\_F1.SAL 03/03/2022

PROYECTO:PS 308

ELEMENTO: PILA 1 FUSTE 1

### ESFUERZOS EN LA PILA

#### ESFUERZOS DE SOBRECARGA UNIFORME

| N.hip | N       | Fx   | Fy   | Mx   | My   |
|-------|---------|------|------|------|------|
|       |         |      |      |      |      |
| 1     | 1183.78 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2     | -338.43 | 0.00 | 0.00 | 0.00 | 0.00 |

#### ESFUERZOS DE CARRO

| N.hip | N       | Fx   | Fy   | Mx   | My   |
|-------|---------|------|------|------|------|
|       |         |      |      |      |      |
| 1     | 1250.45 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2     | -416.17 | 0.00 | 0.00 | 0.00 | 0.00 |

#### ESFUERZOS DE SOBRECARGA SOBRE ACERAS

| N.hip | N       | Fx   | Fy   | Mx   | My   |
|-------|---------|------|------|------|------|
|       |         |      |      |      |      |
| 1     | 480.84  | 0.00 | 0.00 | 0.00 | 0.00 |
| 2     | -229.09 | 0.00 | 0.00 | 0.00 | 0.00 |

PROYECTO:PS 308 ELEMENTO:PILA 1 FUSTE 1

### ESFUERZOS EN LA PILA

#### ESFUERZOS DE VIENTO (PUENTE DESCARGADO)

| N.hip  | N               | Fx          | Fy             | Mx   | Му   |
|--------|-----------------|-------------|----------------|------|------|
| 1<br>2 | -21.19<br>21.19 | 0.00        | 62.27<br>62.27 | 0.00 | 0.00 |
| ESFUE: | RZOS DE VII     | ENTO (PUENT | CE CARGADO)    |      |      |
| N.hip  | N               | Fx          | Fy             | Mx   | Му   |
| 1 2    | -46.59<br>46.59 | 0.00        | 62.27<br>62.27 | 0.00 | 0.00 |

#### ESFUERZOS DE RETRACCION & FLUENCIA

| N.hip | N    | Fx   | Fy   | Mx   | My   |
|-------|------|------|------|------|------|
|       |      |      |      |      |      |
| 1     | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

#### ESFUERZOS DE TEMPERATURA

| N.hip | N      | Fx    | Fy   | Mx   | My   |
|-------|--------|-------|------|------|------|
|       |        |       |      |      |      |
| 1     | 161.82 | 16.58 | 0.00 | 0.00 | 0.00 |

#### ESFUERZOS DE FUERZA CENTRIFUGA

| N.hip | N      | Fx   | Fy    | Mx   | MY   |
|-------|--------|------|-------|------|------|
|       |        |      |       |      |      |
| 1     | 17.83  | 0.00 | 13.63 | 0.00 | 0.00 |
| 1     | -53.49 | 0.00 | 13.63 | 0.00 | 0.00 |

#### ESFUERZOS DE FRENADO Y ARRANQUE

| N.hip | N    | Fx    | Fy   | Mx   | My   |
|-------|------|-------|------|------|------|
|       |      |       |      |      |      |
| 1     | 0.00 | 34.50 | 0.00 | 0.00 | 0.00 |

P1\_F1.SAL 03/03/2022 P1\_F1.SAL 03/03/2022

PROYECTO:PS 308

ELEMENTO: PILA 1 FUSTE 1

ESFUERZOS EN LA PILA

ESFUERZOS SISMICOS. SISMO DIRECCIÓN X

| N.hip | N    | Fx   | Fy   | Mx   | My   |
|-------|------|------|------|------|------|
|       |      |      |      |      |      |
| 1     | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

ESFUERZOS SISMICOS. SISMO DIRECCIÓN Y

| N.hip | N    | Fx   | Fy   | Mx   | My   |
|-------|------|------|------|------|------|
|       |      |      |      |      |      |
| 2     | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

ESFUERZOS SISMICOS. SISMO DIRECCIÓN Z

| N.hip | N    | Fx   | Fy   | Mx   | My   |
|-------|------|------|------|------|------|
|       |      |      |      |      |      |
| 3     | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

PROYECTO: PS 308

ELEMENTO: PILA 1 FUSTE 1

COMBINACION DE ESFUERZOS EN LA PILA

PUENTE DESCARGADO. VIENTO PREDOMINANTE

1.00\*PP+1.00\*(FLUEN.& RETRAC.)+1.50\*VIENTO+.60\*1.50\*TEMP.

| N.hip | N       | Fx    | Fy    | Mx   | My   | Mx INF | My INF  |
|-------|---------|-------|-------|------|------|--------|---------|
|       |         |       |       |      |      |        |         |
| 1     | 3997.96 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 2     | 4061.53 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 3     | 3877.86 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 4     | 3941.43 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |

PUENTE DESCARGADO. TEMPERATURA PREDOMINANTE

1.00\*PP+1.00\*(FLUEN.& RETRAC.)+1.50\*TEMP.+.60\*1.50\*VIENTO

| N.hip | N       | Fx    | Fy    | Mx   | My   | Mx INF | My INF |
|-------|---------|-------|-------|------|------|--------|--------|
|       |         |       |       |      |      |        |        |
| 5     | 4107.77 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 6     | 4145.91 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 7     | 3987.67 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 8     | 4025.81 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |

ELEMENTO: PILA 1 FUSTE 1

## COMBINACION DE ESFUERZOS EN LA PILA

COMBINACION 1: SOBRECARGA UNIF. + CARRO ALTERNATIVA #1 SC PREDOMINANTE

1.35\*PP+1.35\*CP+1.35\*(FLUEN.& RETRAC.)+1.35\*SCU+1.35\*CARRO+0.60\*1.50\*VIENTO(CARGADO)+0.60\*1.50\*TEMP

| N.hip | N       | Fx    | Fy    | Mx   | Му   | Mx INF | My INF |
|-------|---------|-------|-------|------|------|--------|--------|
| 9     | 9282.60 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 10    | 7032.66 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 11    | 8324.19 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 12    | 6074.26 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 13    | 9366.47 | 14.92 |       | 0.00 | 0.00 | 213.76 | 653.76 |
| 14    | 7116.53 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 15    | 8408.06 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 16    | 6158.12 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 17    | 7227.61 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 18    | 4977.68 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 19    | 6269.21 | 14.92 |       |      |      | 213.76 | 653.76 |
| 20    | 4019.27 | 14.92 |       | 0.00 | 0.00 | 213.76 | 653.76 |
| 21    | 7311.48 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 22    | 5061.55 | 14.92 | 56.04 |      | 0.00 | 213.76 |        |
| 23    | 6353.08 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 24    |         | 14.92 |       |      |      |        | 653.76 |
| 25    | 9120.46 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 26    | 6870.53 | 14.92 | 56.04 | 0.00 |      |        | 653.76 |
| 27    | 8162.06 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 28    | 5912.12 | 14.92 | 56.04 |      | 0.00 | 213.76 |        |
| 29    | 9204.33 | 14.92 |       |      |      |        | 653.76 |
| 30    | 6954.40 | 14.92 |       |      |      |        |        |
| 31    | 8245.93 | 14.92 |       | 0.00 | 0.00 | 213.76 | 653.76 |
| 32    | 5995.99 | 14.92 | 56.04 | 0.00 |      | 213.76 | 653.76 |
| 33    | 7065.48 | 14.92 | 56.04 |      |      | 213.76 |        |
| 34    | 4815.54 | 14.92 | 56.04 |      |      | 213.76 |        |
| 35    | 6107.07 | 14.92 |       |      |      |        |        |
| 36    | 3857.14 | 14.92 |       |      |      |        |        |
| 37    | 7149.35 | 14.92 |       |      |      |        |        |
| 38    | 4899.41 | 14.92 | 56.04 |      |      |        |        |
| 39    | 6190.94 | 14.92 | 56.04 |      |      | 213.76 |        |
| 40    | 3941.01 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |

8

PROYECTO: PS 308

ELEMENTO: PILA 1 FUSTE 1

COMBINACION DE ESFUERZOS EN LA PILA

COMBINACION 1: SOBRECARGA UNIF. + CARRO ALTERNATIVA #2 VIENTO PREDOMINANTE

1.35\*PP+1.35\*CP+1.35\*(FLUEN.& RETRAC.)+0.40\*1.35\*SCU+0.75\*1.35\*CARRO+1.50\*VIENTO(CARGADO)+0.60\*1.50\*TEMP

| N.hip | N       | Fx    | Fy    | Mx   | My   | Mx INF | My INF  |
|-------|---------|-------|-------|------|------|--------|---------|
| 41    | 7484.27 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 42    | 5796.82 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 43    | 7100.91 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 44    | 5413.46 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 45    | 7624.05 | 14.92 | 93.40 |      | 0.00 | 249.83 | 1089.59 |
| 46    | 5936.60 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 47    | 7240.69 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 48    | 5553.24 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 49    | 6662.28 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 50    | 4974.83 | 14.92 | 93.40 | 0.00 | 0.00 |        |         |
| 51    | 6278.92 |       |       |      | 0.00 | 249.83 | 1089.59 |
| 52    | 4591.46 |       | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 53    | 6802.06 |       | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 54    | 5114.61 |       | 93.40 |      | 0.00 |        |         |
| 55    | 6418.70 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 56    | 4731.25 | 14.92 | 93.40 |      | 0.00 |        |         |
| 57    | 7322.14 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 |         |
| 58    | 5634.69 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 59    | 6938.78 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 60    | 5251.32 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 61    | 7461.92 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 62    | 5774.47 | 14.92 | 93.40 |      | 0.00 | 249.83 | 1089.59 |
| 63    | 7078.56 |       | 93.40 |      |      |        |         |
| 64    | 5391.10 |       | 93.40 |      | 0.00 |        |         |
| 65    | 6500.14 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 66    | 4812.69 | 14.92 | 93.40 |      | 0.00 | 249.83 | 1089.59 |
| 67    | 6116.78 | 14.92 | 93.40 |      | 0.00 | 249.83 |         |
| 68    | 4429.33 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 |         |
| 69    | 6639.93 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 70    | 4952.47 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 |         |
| 71    | 6256.56 |       | 93.40 |      |      |        |         |
| 72    | 4569.11 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |

ELEMENTO: PILA 1 FUSTE 1

#### COMBINACION DE ESFUERZOS EN LA PILA -----

COMBINACION 1: SOBRECARGA UNIF. + CARRO ALTERNATIVA #3 TEMPERATURA PREDOMINANTE

1.35\*PP+1.35\*CP+1.35\*(FLUEN.& RETRAC.)+0.40\*1.35\*SCU+0.75\*1.35\*CARRO+ 0.60\*1.50\*VIENTO(CARGADO)+1.50\*TEMP

| N.hip | N<br>   | Fx    | Fy    | Mx   | My   | Mx INF | My INF |
|-------|---------|-------|-------|------|------|--------|--------|
| 73    |         | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 74    | 5921.87 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 75    | 7225.96 | 24.87 | 56.04 |      |      | 320.21 | 653.76 |
| 76    | 5538.51 | 24.87 | 56.04 | 0.00 | 0.00 |        | 653.76 |
| 77    | 7693.19 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 78    | 6005.74 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 79    |         | 24.87 |       | 0.00 | 0.00 |        | 653.76 |
| 80    | 5622.38 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 81    |         | 24.87 |       |      |      |        | 653.76 |
| 82    | 5099.88 | 24.87 | 56.04 | 0.00 |      | 320.21 | 653.76 |
| 83    | 6403.97 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 84    | 4716.51 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 85    | 6871.20 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 86    | 5183.74 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 87    |         | 24.87 |       |      | 0.00 |        | 653.76 |
| 88    | 4800.38 | 24.87 | 56.04 |      |      | 320.21 | 653.76 |
| 89    | 7447.19 | 24.87 | 56.04 |      |      | 320.21 | 653.76 |
| 90    | 5759.73 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 91    | 7063.82 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 92    |         | 24.87 |       |      |      |        | 653.76 |
| 93    | 7531.06 | 24.87 | 56.04 | 0.00 |      | 320.21 | 653.76 |
| 94    | 5843.60 | 24.87 | 56.04 |      |      |        | 653.76 |
| 95    | 7147.69 | 24.87 | 56.04 |      | 0.00 | 320.21 | 653.76 |
| 96    |         | 24.87 |       |      |      |        |        |
| 97    |         | 24.87 |       | 0.00 | 0.00 |        | 653.76 |
| 98    |         | 24.87 |       |      |      |        |        |
| 99    | 6241.83 |       |       |      |      |        |        |
| 100   | 4554.38 | 24.87 |       |      |      |        |        |
| 101   |         | 24.87 |       |      |      |        |        |
| 102   |         | 24.87 |       |      |      |        |        |
|       | 6325.70 |       |       |      |      |        | 653.76 |
| 104   | 4638.25 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |

10

PROYECTO:PS 308

ELEMENTO: PILA 1 FUSTE 1

#### ENVOLVENTE DE ESFUERZOS EN LA PILA -----

UNIDADES:m kN

| N.hip | N       | Fx    | Fy        | Mx   | My   | Mx INF My | y INF   |
|-------|---------|-------|-----------|------|------|-----------|---------|
| 1     | 9366.47 | 14.92 | <br>56.04 | 0.00 | 0.00 | 213.76    | 653.76  |
| 2     | 3857.14 | 14.92 | 56.04     | 0.00 | 0.00 | 213.76    | 653.76  |
| 3     | 4107.77 | 24.87 | 56.04     | 0.00 | 0.00 | 320.21    | 653.76  |
| 4     | 9282.60 | 14.92 | 56.04     | 0.00 | 0.00 | 213.76    | 653.76  |
| 5     | 3997.96 | 14.92 | 93.40     | 0.00 | 0.00 | 249.83    | 1089.59 |
| 6     | 9282.60 | 14.92 | 56.04     | 0.00 | 0.00 | 213.76    | 653.76  |
| 7     | 9282.60 | 14.92 | 56.04     | 0.00 | 0.00 | 213.76    | 653.76  |
| 8     | 3997.96 | 14.92 | 93.40     | 0.00 | 0.00 | 249.83    | 1089.59 |
| 9     | 3997.96 | 14.92 | 93.40     | 0.00 | 0.00 | 249.83    | 1089.59 |
| 10    | 3997.96 | 14.92 | 93.40     | 0.00 | 0.00 | 249.83    | 1089.59 |
| 11    | 4107.77 | 24.87 | 56.04     | 0.00 | 0.00 | 320.21    | 653.76  |
| 12    | 9282.60 | 14.92 | 56.04     | 0.00 | 0.00 | 213.76    | 653.76  |
| 13    | 3997.96 | 14.92 | 93.40     | 0.00 | 0.00 | 249.83    | 1089.59 |
| 14    | 9282.60 | 14.92 | 56.04     | 0.00 | 0.00 | 213.76    | 653.76  |

ELEMENTO: PILA 1 FUSTE 1

## RESULTADOS DEL DIMENSIONAMIENTO DE LA SECCION

GEOMETRIA SECCION TRANSVERSAL

-----

TIPO DE SECCION: CILINDRICA

DIAMETRO: 1.000m REC.: 0.060m

CARACTERISTICAS DE MATERIALES

-----

RESISTENCIA DEL HORMIGON Fck: 35.MPa

Gamma\_C: 1.50

RESISTENCIA DEL ACERO Fyk: 500.MPa

Gamma\_S: 1.15

### ARMADURAS MINIMAS POR HIPOTESIS

| N.hip | Nd      | Md      | As[cm2] | Vd    | Av[cm2/m] |
|-------|---------|---------|---------|-------|-----------|
|       |         |         |         |       |           |
| 1     | 9366.47 | 687.82  | 31.42   | 58.00 | 9.61      |
| 2     | 3857.14 | 687.82  | 31.42   | 58.00 | 9.61      |
| 3     | 4107.77 | 727.96  | 31.42   | 61.31 | 9.61      |
| 4     | 9282.60 | 687.82  | 31.42   | 58.00 | 9.61      |
| 5     | 3997.96 | 1117.87 | 31.42   | 94.59 | 9.61      |
| 6     | 9282.60 | 687.82  | 31.42   | 58.00 | 9.61      |
| 7     | 9282.60 | 687.82  | 31.42   | 58.00 | 9.61      |
| 8     | 3997.96 | 1117.87 | 31.42   | 94.59 | 9.61      |
| 9     | 3997.96 | 1117.87 | 31.42   | 94.59 | 9.61      |
| 10    | 3997.96 | 1117.87 | 31.42   | 94.59 | 9.61      |
| 11    | 4107.77 | 727.96  | 31.42   | 61.31 | 9.61      |
| 12    | 9282.60 | 687.82  | 31.42   | 58.00 | 9.61      |
| 13    | 3997.96 | 1117.87 | 31.42   | 94.59 | 9.61      |
| 14    | 9282.60 | 687.82  | 31.42   | 58.00 | 9.61      |

PROGRAMA PARA EL CALCULO DE COMBINACIONES DE ESFUERZOS EN PILAS

INGEDIS.S.C. Ingenieria y Diseño (C) 2015

PROYECTO:

PS 308 ELEMENTO:

PILA 1 FUSTE 1 SERVICIO

P1\_F1S.SAL 03/03/2022 P1\_F1S.SAL 03/03/2022

#### DATOS GENERALES

\_\_\_\_\_

COEFICIENTES PARCIALES DE SEGURIDAD

Gamma PP:1.00 Gamma SC(Sobrecarga Vertical):1.00 Gamma SC(Acciones Horizontales):1.

COEFICIENTES DE COMBINACION \_\_\_\_\_ Coeficientes Chi\_0: Vehiculo Pesado Sobrecarga Uniforme 0.40 Aceras 0.40 Viento 0.60 Temperatura 0.60 Coeficientes Chi\_1: Vehiculo Pesado 0.75 Sobrecarga Uniforme 0.40 Aceras 0.40 Viento 0.20 Temperatura 0.60 Coeficientes Chi 2: Vehiculo Pesado 0.00 Sobrecarga Uniforme 0.20 Aceras 0.00 Viento 0.00

ESFUERZOS DEFINIDOS EN LA CABEZA DE PILA

0.50

ALTURA DE PILA(m): 10.70 DISTANCIA A LA CABEZA DE PILA:0.00

PESO DE LA PILA (por m): 19.63 PESO DEL CABECERO: 0.00kN

VIENTO SOBRE LA PILA LONG (kN/m): 1.05 TRANSV. (kN/m): 1.05

2

COMBINACION PARA PUENTES DE CARRETERA

-----

UNIDADES: m kN

Temperatura

PROYECTO:PS 308

ELEMENTO: PILA 1 FUSTE 1 SERVICIO

ESFUERZOS EN LA PILA

ESFUERZOS DE PESO PROPIO

N.hip N Fx Fy Mx My
----- 1 2669.90 0.00 0.00 0.00 0.00

ESFUERZOS DE CARGA MUERTA

| N.hi | р И     | Fx   | Fy   | Mx   | My   |
|------|---------|------|------|------|------|
| 1    | 1004.17 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2    | 884.07  | 0.00 | 0.00 | 0.00 | 0.00 |

P1\_F1S.SAL 03/03/2022 P1\_F1S.SAL 03/03/2022

PROYECTO:PS 308

ELEMENTO: PILA 1 FUSTE 1 SERVICIO

### ESFUERZOS EN LA PILA

#### ESFUERZOS DE SOBRECARGA UNIFORME

| N.hip | N       | Fx   | Fy   | Mx   | My   |
|-------|---------|------|------|------|------|
|       |         |      |      |      |      |
| 1     | 1183.78 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2     | -338.43 | 0.00 | 0.00 | 0.00 | 0.00 |

#### ESFUERZOS DE CARRO

| N.hip | N       | Fx   | Fy   | Mx   | My   |
|-------|---------|------|------|------|------|
|       |         |      |      |      |      |
| 1     | 1250.45 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2     | -416.17 | 0.00 | 0.00 | 0.00 | 0.00 |

#### ESFUERZOS DE SOBRECARGA SOBRE ACERAS

| N.hip | N       | Fx   | Fy   | Mx   | My   |
|-------|---------|------|------|------|------|
|       |         |      |      |      |      |
| 1     | 480.84  | 0.00 | 0.00 | 0.00 | 0.00 |
| 2     | -229.09 | 0.00 | 0.00 | 0.00 | 0.00 |

PROYECTO:PS 308

ELEMENTO: PILA 1 FUSTE 1 SERVICIO

ESFUERZOS EN LA PILA

#### ESFUERZOS DE VIENTO (PUENTE DESCARGADO)

| N.hip  |            | Fx         | Fy          | Mx   | My   |
|--------|------------|------------|-------------|------|------|
|        | -21.19     | 0.00       |             | 0.00 |      |
| 2      | 21.19      | 0.00       | 62.27       | 0.00 | 0.00 |
| ESFUER | ZOS DE VII | ENTO (PUEN | TE CARGADO) |      |      |
| N.hip  |            | Fx         | Fy          | Mx   | Му   |
| 1      |            |            | 62.27       | 0.00 | 0.00 |
| 2      | 46.59      | 0.00       | 62.27       | 0.00 | 0.00 |
| ESFUER | ZOS DE RET | TRACCION & | FLUENCIA    |      |      |
|        |            | Fx         | Fy          | Mx   | Му   |
|        |            |            |             | 0.00 | 0.00 |
|        |            |            |             |      |      |
| ESFUER | ZOS DE TEN | 1PERATURA  |             |      |      |
| N.hip  |            | Fx         | Fy          | Mx   | Му   |
| 1      |            |            |             | 0.00 | 0.0  |
|        |            |            |             |      |      |

| ESFUER | ZOS DE FUE      | RZA CENTR  | IFUGA          |      |      |
|--------|-----------------|------------|----------------|------|------|
| N.hip  | N               | Fx         | Fy             | Mx   | My   |
| 1      | 17.83<br>-53.49 | 0.00       | 13.63<br>13.63 | 0.00 | 0.00 |
| ESFUER | ZOS DE FRE      | NADO Y ARI | RANOUE         |      |      |

Fx

34.50

Fy

0.00

Mx

0.00

My

0.00

\_\_\_\_\_

N.hip

1

-----

N

0.00

P1\_F1S.SAL 03/03/2022 P1\_F1S.SAL 03/03/2022

PROYECTO:PS 308

ELEMENTO: PILA 1 FUSTE 1 SERVICIO

ESFUERZOS EN LA PILA

ESFUERZOS SISMICOS. SISMO DIRECCIÓN X

| N.hip | N    | Fx   | Fy   | Mx   | My   |
|-------|------|------|------|------|------|
|       |      |      |      |      |      |
| 1     | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

ESFUERZOS SISMICOS. SISMO DIRECCIÓN Y

| N.hip | N    | Fx   | Fy   | Mx   | My   |  |
|-------|------|------|------|------|------|--|
|       |      |      |      |      |      |  |
| 2     | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  |

ESFUERZOS SISMICOS. SISMO DIRECCIÓN Z

| N.hip | N    | Fx   | Fy   | Mx   | My   |
|-------|------|------|------|------|------|
|       |      |      |      |      |      |
| 3     | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

PROYECTO:PS 308

ELEMENTO: PILA 1 FUSTE 1 SERVICIO

COMBINACION DE ESFUERZOS EN LA PILA

PUENTE DESCARGADO. VIENTO PREDOMINANTE

1.00\*PP+1.00\*(FLUEN.& RETRAC.)+1.00\*VIENTO+.60\*1.00\*TEMP.

| N.hip | N       | Fx   | Fy    | Mx   | My   | Mx INF | My INF |
|-------|---------|------|-------|------|------|--------|--------|
|       |         |      |       |      |      |        |        |
| 1     | 3960.01 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 2     | 4002.39 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 3     | 3839.91 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 4     | 3882.29 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |

PUENTE DESCARGADO. TEMPERATURA PREDOMINANTE

1.00\*PP+1.00\*(FLUEN.& RETRAC.)+1.00\*TEMP.+.60\*1.00\*VIENTO

| N.hip | N       | Fx    | Fy    | Mx   | My   | Mx INF | My INF |
|-------|---------|-------|-------|------|------|--------|--------|
|       |         |       |       |      |      |        |        |
| 5     | 4033.22 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 6     | 4058.65 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 7     | 3913.12 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 8     | 3938.55 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |

ELEMENTO: PILA 1 FUSTE 1 SERVICIO

## COMBINACION DE ESFUERZOS EN LA PILA

COMBINACION 1: SOBRECARGA UNIF. + CARRO ALTERNATIVA #1 SC PREDOMINANTE

1.00\*PP+1.00\*CP+1.00\*(FLUEN.& RETRAC.)+1.00\*SCU+1.00\*CARRO+0.60\*1.00\*VIENTO(CARGADO)+0.60\*1.00\*TEMP

| N.hip | N<br>   |      | Fy<br> | Mx   | 4    | Mx INF | My INF           |
|-------|---------|------|--------|------|------|--------|------------------|
| 9     | 6868.32 | 9.95 | 37.36  | 0.00 | 0.00 | 142.51 | 435.84           |
| 10    | 5201.70 | 9.95 | 37.36  | 0.00 | 0.00 | 142.51 | 435.84           |
| 11    | 6158.39 | 9.95 | 37.36  | 0.00 | 0.00 | 142.51 | 435.84           |
| 12    | 4491.77 | 9.95 | 37.36  | 0.00 | 0.00 | 142.51 | 435.84           |
| 13    | 6924.23 | 9.95 | 37.36  | 0.00 | 0.00 | 142.51 | 435.84           |
| 14    |         | 9.95 |        |      | 0.00 | 142.51 | 435.84           |
| 15    | 6214.30 | 9.95 | 37.36  |      | 0.00 | 142.51 | 435.84<br>435.84 |
| 16    | 4547.68 | 9.95 | 37.36  |      | 0.00 | 142.51 | 435.84           |
| 17    | 5346.11 | 9.95 | 37.36  | 0.00 | 0.00 | 142.51 | 435.84           |
| 18    | 3679.49 | 9.95 | 37.36  | 0.00 | 0.00 | 142.51 | 435.84           |
| 19    |         | 9.95 |        |      | 0.00 |        | 435.84           |
| 20    | 2969.56 | 9.95 | 37.36  |      | 0.00 | 142.51 | 435.84           |
| 21    | 5402.02 | 9.95 | 37.36  |      | 0.00 | 142.51 | 435.84           |
| 22    | 3735.40 | 9.95 | 37.36  |      | 0.00 | 142.51 | 435.84           |
| 23    |         | 9.95 |        |      | 0.00 |        | 435.84           |
| 24    |         | 9.95 |        |      | 0.00 |        | 435.84           |
| 25    |         | 9.95 |        |      | 0.00 | 142.51 | 435.84           |
| 26    | 5081.60 | 9.95 | 37.36  |      | 0.00 | 142.51 | 435.84<br>435.84 |
| 27    | 6038.29 | 9.95 | 37.36  |      | 0.00 | 142.51 | 435.84           |
| 28    | 4371.67 | 9.95 | 37.36  |      | 0.00 | 142.51 | 435.84           |
| 29    |         | 9.95 |        |      | 0.00 |        | 435.84           |
| 30    |         | 9.95 |        |      | 0.00 |        | 435.84           |
| 31    | 6094.20 | 9.95 | 37.36  |      | 0.00 | 142.51 | 435.84           |
| 32    | 4427.58 | 9.95 | 37.36  |      | 0.00 | 142.51 | 435.84           |
| 33    | 5226.01 | 9.95 | 37.36  |      | 0.00 | 142.51 | 435.84           |
| 34    |         | 9.95 |        |      | 0.00 |        | 435.84           |
| 35    |         | 9.95 |        |      | 0.00 |        | 435.84           |
| 36    |         | 9.95 |        |      | 0.00 | 142.51 | 435.84           |
| 37    | 5281.92 | 9.95 | 37.36  |      | 0.00 | 142.51 | 435.84<br>435.84 |
| 38    | 3615.30 | 9.95 | 37.36  |      |      | 142.51 | 435.84           |
| 39    |         | 9.95 |        |      | 0.00 | 142.51 | 435.84           |
| 40    | 2905.37 | 9.95 | 37.36  | 0.00 | 0.00 | 142.51 | 435.84           |

PROYECTO:PS 308

ELEMENTO: PILA 1 FUSTE 1 SERVICIO

COMBINACION DE ESFUERZOS EN LA PILA

COMBINACION 1: SOBRECARGA UNIF. + CARRO ALTERNATIVA #2 VIENTO PREDOMINANTE

1.00\*PP+1.00\*CP+1.00\*(FLUEN.& RETRAC.)+0.40\*1.00\*SCU+0.75\*1.00\*CARRO+1.00\*VIENTO(CARGADO)+0.60\*1.00\*TEMP

| N.hip | N       | Fx   | Fy    | Mx   | Му   | Mx INF | My INF |
|-------|---------|------|-------|------|------|--------|--------|
| 41    | 5538.29 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 42    | 4288.33 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 |        |
| 43    | 5254.32 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 |        |
| 44    | 4004.36 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 45    | 5631.48 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 |        |
| 46    | 4381.52 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 |        |
| 47    | 5347.51 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 48    | 4097.55 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 49    | 4929.41 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 50    | 3679.45 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 51    | 4645.44 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 52    | 3395.47 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 53    | 5022.60 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 54    | 3772.63 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 55    | 4738.63 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 56    | 3488.66 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 57    | 5418.19 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 58    | 4168.23 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 59    | 5134.22 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 60    | 3884.26 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 61    | 5511.38 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 62    | 4261.42 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 63    | 5227.41 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 64    | 3977.45 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 65    | 4809.31 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 66    | 3559.35 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 67    | 4525.34 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 68    | 3275.37 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 |        |
| 69    | 4902.50 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 |        |
| 70    | 3652.53 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 71    | 4618.53 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 72    | 3368.56 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |

ELEMENTO: PILA 1 FUSTE 1 SERVICIO

#### COMBINACION DE ESFUERZOS EN LA PILA -----

COMBINACION 1: SOBRECARGA UNIF. + CARRO ALTERNATIVA #3 TEMPERATURA PREDOMINANTE

1.00\*PP+1.00\*CP+1.00\*(FLUEN.& RETRAC.)+0.40\*1.00\*SCU+0.75\*1.00\*CARRO+ 0.60\*1.00\*VIENTO(CARGADO)+1.00\*TEMP

| N.hip | N       | Fx    | Fy    | Mx   | My   | Mx INF | My INF |
|-------|---------|-------|-------|------|------|--------|--------|
| 73    | 5621.66 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 74    | 4371.69 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 75    | 5337.69 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 76    | 4087.72 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 77    | 5677.57 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 78    | 4427.61 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 79    | 5393.60 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 80    | 4143.64 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 81    | 5012.78 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 82    | 3762.81 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 83    | 4728.80 | 16.58 |       |      | 0.00 | 213.47 | 435.84 |
| 84    | 3478.84 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 85    | 5068.69 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 |        |
| 86    | 3818.72 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 87    | 4784.72 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 88    | 3534.75 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 89    | 5501.56 | 16.58 | 37.36 |      |      |        |        |
| 90    | 4251.60 | 16.58 |       |      | 0.00 | 213.47 | 435.84 |
| 91    | 5217.59 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 92    | 3967.62 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 93    | 5557.47 | 16.58 | 37.36 | 0.00 |      | 213.47 | 435.84 |
| 94    |         | 16.58 |       |      |      |        |        |
| 95    | 5273.50 | 16.58 | 37.36 | 0.00 |      |        | 435.84 |
| 96    | 4023.54 | 16.58 |       |      |      |        |        |
| 97    | 4892.68 | 16.58 | 37.36 |      |      |        |        |
| 98    | 3642.71 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 99    | 4608.70 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 100   | 3358.74 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 101   | 4948.59 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 102   | 3698.62 | 16.58 |       | 0.00 | 0.00 | 213.47 | 435.84 |
| 103   | 4664.62 | 16.58 | 37.36 | 0.00 | 0.00 |        |        |
| 104   | 3414.65 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |

10

PROYECTO:PS 308

ELEMENTO: PILA 1 FUSTE 1 SERVICIO

## ENVOLVENTE DE ESFUERZOS EN LA PILA

UNIDADES:m kN

| N.hip | N       | Fx    | Fy    | Mx   | My   | Mx INF M | y INF  |
|-------|---------|-------|-------|------|------|----------|--------|
| 1     | 6924.23 | 9.95  | 37.36 | 0.00 | 0.00 | 142.51   | 435.84 |
| 2     | 2849.46 | 9.95  | 37.36 | 0.00 | 0.00 | 142.51   | 435.84 |
| 3     | 4033.22 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47   | 435.84 |
| 4     | 6868.32 | 9.95  | 37.36 | 0.00 | 0.00 | 142.51   | 435.84 |
| 5     | 3960.01 | 9.95  | 62.27 | 0.00 | 0.00 | 166.55   | 726.40 |
| 6     | 6868.32 | 9.95  | 37.36 | 0.00 | 0.00 | 142.51   | 435.84 |
| 7     | 6868.32 | 9.95  | 37.36 | 0.00 | 0.00 | 142.51   | 435.84 |
| 8     | 3960.01 | 9.95  | 62.27 | 0.00 | 0.00 | 166.55   | 726.40 |
| 9     | 3960.01 | 9.95  | 62.27 | 0.00 | 0.00 | 166.55   | 726.40 |
| 10    | 3960.01 | 9.95  | 62.27 | 0.00 | 0.00 | 166.55   | 726.40 |
| 11    | 4033.22 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47   | 435.84 |
| 12    | 6868.32 | 9.95  | 37.36 | 0.00 | 0.00 | 142.51   | 435.84 |
| 13    | 3960.01 | 9.95  | 62.27 | 0.00 | 0.00 | 166.55   | 726.40 |
| 14    | 6868.32 | 9.95  | 37.36 | 0.00 | 0.00 | 142.51   | 435.84 |

P1\_F2.SAL 03/03/2022 P1\_F2.SAL 03/03/2022

DATOS GENERALES

COEFICIENTES PARCIALES DE SEGURIDAD

Gamma PP:1.35 Gamma SC(Sobrecarga Vertical):1.35 Gamma SC(Acciones Horizontales):1.

\_\_\_\_\_ Coeficientes Chi\_0: Vehiculo Pesado 0.75 Sobrecarga Uniforme 0.40 Aceras 0.40 Viento 0.60 Temperatura 0.60 Coeficientes Chi\_1: Vehiculo Pesado 0.75 Sobrecarga Uniforme 0.40 Aceras 0.40 Viento 0.20 Temperatura 0.60 Coeficientes Chi 2: Vehiculo Pesado 0.00 Sobrecarga Uniforme 0.20 Aceras 0.00 Viento 0.00 Temperatura 0.50

COEFICIENTES DE COMBINACION

ESFUERZOS DEFINIDOS EN LA CABEZA DE PILA

ALTURA DE PILA(m): 10.70 DISTANCIA A LA CABEZA DE PILA:0.00

PESO DE LA PILA (por m): 19.63 PESO DEL CABECERO: 0.00kN

VIENTO SOBRE LA PILA LONG (kN/m): 1.05 TRANSV. (kN/m): 1.05

COMBINACION PARA PUENTES DE CARRETERA

UNIDADES: m kN

PROGRAMA PARA EL CALCULO DE COMBINACIONES DE ESFUERZOS EN PILAS

PROYECTO:

ELEMENTO:

PS 308

PILA 1 FUSTE 2

INGEDIS.S.C. Ingenieria y Diseño (C) 2015

P1\_F2.SAL 03/03/2022 P1\_F2.SAL 03/03/2022

PROYECTO:PS 308

ELEMENTO: PILA 1 FUSTE 2

## ESFUERZOS EN LA PILA

ESFUERZOS DE PESO PROPIO

| N.hip | N       | Fx   | Fy   | Mx   | My   |
|-------|---------|------|------|------|------|
|       |         |      |      |      |      |
| 1     | 1829.77 | 0.00 | 0.00 | 0.00 | 0.00 |

#### ESFUERZOS DE CARGA MUERTA

| N.hip | N      | Fx   | Fy   | Mx   | My   |
|-------|--------|------|------|------|------|
|       |        |      |      |      |      |
| 1     | 714.47 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2     | 618.17 | 0.00 | 0.00 | 0.00 | 0.00 |

3

PROYECTO:PS 308 ELEMENTO:PILA 1 FUSTE 2

## ESFUERZOS EN LA PILA

ESFUERZOS DE SOBRECARGA UNIFORME

| N.hip | N c     | Fx   | Fy   | Mx   | My   |  |
|-------|---------|------|------|------|------|--|
|       |         |      |      |      |      |  |
| 1     | 1080.76 | 0.00 | 0.00 | 0.00 | 0.00 |  |
| 2     | -438.92 | 0.00 | 0.00 | 0.00 | 0.00 |  |

#### ESFUERZOS DE CARRO

| N.hip | N       | Fx   | Fy   | Mx   | My   |  |
|-------|---------|------|------|------|------|--|
|       |         |      |      |      |      |  |
| 1     | 1232.34 | 0.00 | 0.00 | 0.00 | 0.00 |  |
| 2     | -486.98 | 0.00 | 0.00 | 0.00 | 0.00 |  |

#### ESFUERZOS DE SOBRECARGA SOBRE ACERAS

| N.hi | p N     | Fx   | Fy   | Mx   | My   |
|------|---------|------|------|------|------|
|      |         |      |      |      |      |
| 1    | 416.75  | 0.00 | 0.00 | 0.00 | 0.00 |
| 2    | -261.37 | 0.00 | 0.00 | 0.00 | 0.00 |

P1\_F2.SAL 03/03/2022 P1\_F2.SAL 03/03/2022

PROYECTO:PS 308

ELEMENTO: PILA 1 FUSTE 2

### ESFUERZOS EN LA PILA

#### ESFIERZOS DE VIENTO (PHENTE DESCARGADO)

0.00 34.50

| ESFUERZ | ZOS DE VIE | INTO (PUENT | E DESCARGA | ADO)   |      |
|---------|------------|-------------|------------|--------|------|
|         |            | Fx          | Fy         | Mx     | My   |
| 1       | -21.19     | 0.00        | 62.27      | 0.00   | 0.00 |
| ESFUERZ | OS DE VIE  | NTO (PUENT  | E CARGADO) |        |      |
| N.hip   |            | Fx          | Fy         | Mx     | Му   |
| 1       | -46.59     | 0.00        |            | 0.00   | 0.00 |
| ESFUERZ | OS DE REI  | RACCION &   | FLUENCIA   |        |      |
| N.hip   | N          | Fx          | Fy         | Mx<br> | Му   |
|         |            |             | 0.00       |        | 0.00 |
| ESFUERZ | OS DE TEM  | IPERATURA   |            |        |      |
|         |            | Fx          |            | Mx     | Му   |
|         |            |             | 0.00       |        | 0.00 |
| ESFUERZ | OS DE FUE  | RZA CENTRI  | FUGA       |        |      |
| N.hip   | N<br>      | Fx          | Fy         | Mx     | Му   |
| 1       | 17.83      | 0.00        | 13.63      | 0.00   | 0.00 |
| ESFUERZ | OS DE FRE  | NADO Y ARR  | RANQUE     |        |      |
|         |            | Fx          | Fy         | Mx     | My   |

0.00

0.00

5

0.00

PROYECTO:PS 308
ELEMENTO:PILA 1 FUSTE 2

## ESFUERZOS EN LA PILA

ESFUERZOS SISMICOS. SISMO DIRECCIÓN X

| N.hip | N    | Fx   | Fy   | Mx   | My   |
|-------|------|------|------|------|------|
|       |      |      |      |      |      |
| 1     | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

ESFUERZOS SISMICOS. SISMO DIRECCIÓN Y

| N.hip N |      | Fx   | Fy   | Mx   | My   |  |
|---------|------|------|------|------|------|--|
|         |      |      |      |      |      |  |
| 2       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  |

ESFUERZOS SISMICOS. SISMO DIRECCIÓN Z

| N.hip N |      | Fx   | Fx Fy |      | My   |  |
|---------|------|------|-------|------|------|--|
|         |      |      |       |      |      |  |
| 3       | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 |  |

P1\_F2.SAL 03/03/2022 P1\_F2.SAL

PROYECTO:PS 308

ELEMENTO: PILA 1 FUSTE 2

### COMBINACION DE ESFUERZOS EN LA PILA

#### PUENTE DESCARGADO. VIENTO PREDOMINANTE

1.00\*PP+1.00\*(FLUEN.& RETRAC.)+1.50\*VIENTO+.60\*1.50\*TEMP.

| N.hip | N       | Fx    | Fy    | Mx   | My   | Mx INF | My INF  |
|-------|---------|-------|-------|------|------|--------|---------|
|       |         |       |       |      |      |        |         |
| 1     | 2868.13 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 2     | 2931.70 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 3     | 2771.83 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 4     | 2835.40 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |

#### PUENTE DESCARGADO. TEMPERATURA PREDOMINANTE

1.00\*PP+1.00\*(FLUEN.& RETRAC.)+1.50\*TEMP.+.60\*1.50\*VIENTO

| N.hip | N       | Fx    | Fy    | Mx   | My   | Mx INF | My INF |
|-------|---------|-------|-------|------|------|--------|--------|
|       |         |       |       |      |      |        |        |
| 5     | 2977.94 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 6     | 3016.08 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 7     | 2881.64 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 8     | 2919.78 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |

7

P1\_F2.SAL 03/03/2022

PROYECTO:PS 308

ELEMENTO: PILA 1 FUSTE 2

## COMBINACION DE ESFUERZOS EN LA PILA

COMBINACION 1: SOBRECARGA UNIF. + CARRO

ALTERNATIVA #1 SC PREDOMINANTE

1.35\*PP+1.35\*CP+1.35\*(FLUEN.& RETRAC.)+1.35\*SCU+1.35\*CARRO+0.60\*1.50\*VIENTO(CARGADO)+0.60\*1.50\*TEMP

| N.hip | N       | Fx    | Fy    | Mx   | Му   | Mx INF | My INF |
|-------|---------|-------|-------|------|------|--------|--------|
| 9     | 7507.28 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 10    | 5186.20 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 11    | 6591.82 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 12    | 4270.74 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 13    | 7591.15 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 14    | 5270.07 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 15    | 6675.69 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 16    | 4354.61 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 17    | 5455.71 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 18    | 3134.63 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 19    | 4540.25 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 20    | 2219.17 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 21    | 5539.58 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 22    | 3218.50 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 23    | 4624.12 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 24    | 2303.04 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 25    | 7377.27 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 26    | 5056.19 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 27    | 6461.81 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 28    | 4140.73 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 29    | 7461.14 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 30    | 5140.06 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 31    | 6545.68 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 32    | 4224.60 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 33    | 5325.71 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 34    | 3004.63 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 35    | 4410.25 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 36    | 2089.16 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 37    | 5409.58 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 38    | 3088.49 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 39    | 4494.11 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |
| 40    | 2173.03 | 14.92 | 56.04 | 0.00 | 0.00 | 213.76 | 653.76 |

ELEMENTO: PILA 1 FUSTE 2

## COMBINACION DE ESFUERZOS EN LA PILA

COMBINACION 1: SOBRECARGA UNIF. + CARRO ALTERNATIVA #2 VIENTO PREDOMINANTE

1.35\*PP+1.35\*CP+1.35\*(FLUEN.& RETRAC.)+0.40\*1.35\*SCU+0.75\*1.35\*CARRO+

1.50\*VIENTO(CARGADO)+0.60\*1.50\*TEMP

| N.hip | N<br>   | Fx    | Fy    | Mx   | My   | Mx INF | My INF  |
|-------|---------|-------|-------|------|------|--------|---------|
| 41    |         | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 42    | 4109.61 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 43    | 5484.24 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 44    | 3743.43 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 45    | 5990.21 | 14.92 | 93.40 | 0.00 |      |        |         |
| 46    | 4249.40 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 47    | 5624.02 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 48    | 3883.21 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 49    | 5029.80 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 50    | 3288.99 |       | 93.40 |      |      |        |         |
| 51    | 4663.61 |       | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 52    | 2922.80 |       | 93.40 |      |      | 249.83 | 1089.59 |
| 53    | 5169.58 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 54    | 3428.77 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 55    | 4803.40 |       |       | 0.00 |      | 249.83 | 1089.59 |
| 56    | 3062.58 |       |       | 0.00 |      |        |         |
| 57    | 5720.42 | 14.92 | 93.40 |      |      |        | 1089.59 |
| 58    | 3979.61 | 14.92 | 93.40 |      |      |        |         |
| 59    | 5354.24 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |
| 60    | 3613.42 |       | 93.40 |      |      |        |         |
| 61    | 5860.20 |       | 93.40 |      |      |        |         |
| 62    | 4119.39 | 14.92 | 93.40 |      |      |        | 1089.59 |
| 63    | 5494.02 | 14.92 | 93.40 |      |      |        |         |
| 64    | 3753.21 |       | 93.40 |      |      |        |         |
| 65    | 4899.79 |       | 93.40 |      |      |        |         |
| 66    | 3158.98 |       | 93.40 |      |      |        |         |
| 67    | 4533.61 |       | 93.40 |      |      |        |         |
| 68    | 2792.80 |       | 93.40 |      |      |        |         |
| 69    | 5039.58 | 14.92 | 93.40 |      |      | 249.83 |         |
| 70    | 3298.76 | 14.92 | 93.40 |      |      |        |         |
| 71    | 4673.39 |       | 93.40 |      | 0.00 |        |         |
| 72    | 2932.58 | 14.92 | 93.40 | 0.00 | 0.00 | 249.83 | 1089.59 |

9

PROYECTO: PS 308

ELEMENTO: PILA 1 FUSTE 2

COMBINACION DE ESFUERZOS EN LA PILA

COMBINACION 1: SOBRECARGA UNIF. + CARRO ALTERNATIVA #3 TEMPERATURA PREDOMINANTE

1.35\*PP+1.35\*CP+1.35\*(FLUEN.& RETRAC.)+0.40\*1.35\*SCU+0.75\*1.35\*CARRO+0.60\*1.50\*VIENTO(CARGADO)+1.50\*TEMP

| N.hip | N       | Fx    | Fy    | Mx   | My   | Mx INF | My INF |
|-------|---------|-------|-------|------|------|--------|--------|
| 73    | 5975.47 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 74    | 4234.66 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 75    | 5609.29 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 76    | 3868.48 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 77    | 6059.34 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 78    | 4318.53 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 79    | 5693.16 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 80    | 3952.35 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 81    | 5154.85 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 82    | 3414.04 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 83    | 4788.66 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 84    | 3047.85 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 85    | 5238.72 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 86    | 3497.90 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 87    | 4872.53 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 88    | 3131.72 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 |        |
| 89    | 5845.47 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 90    | 4104.66 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 91    | 5479.28 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 |        |
| 92    | 3738.47 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 93    | 5929.34 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 94    | 4188.53 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 95    | 5563.15 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 96    | 3822.34 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 97    | 5024.84 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 98    | 3284.03 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 99    | 4658.66 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 |        |
| 100   | 2917.85 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 101   | 5108.71 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 102   | 3367.90 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |
| 103   | 4742.53 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 |        |
| 104   | 3001.71 | 24.87 | 56.04 | 0.00 | 0.00 | 320.21 | 653.76 |

ELEMENTO: PILA 1 FUSTE 2

## ENVOLVENTE DE ESFUERZOS EN LA PILA

UNIDADES:m kN

| N.hip | N       | Fx    | Fy    | Mx   | My   | Mx INF | My INF |         |
|-------|---------|-------|-------|------|------|--------|--------|---------|
|       |         |       |       |      |      |        |        |         |
| 1     | 7591.15 | 14.92 | 56.04 | 0.00 | 0.00 | 21     | 3.76   | 653.76  |
| 2     | 2089.16 | 14.92 | 56.04 | 0.00 | 0.00 | 21     | 3.76   | 653.76  |
| 3     | 2977.94 | 24.87 | 56.04 | 0.00 | 0.00 | 32     | 0.21   | 653.76  |
| 4     | 7507.28 | 14.92 | 56.04 | 0.00 | 0.00 | 21     | 3.76   | 653.76  |
| 5     | 2868.13 | 14.92 | 93.40 | 0.00 | 0.00 | 24     | 9.83   | 1089.59 |
| 6     | 7507.28 | 14.92 | 56.04 | 0.00 | 0.00 | 21     | 3.76   | 653.76  |
| 7     | 7507.28 | 14.92 | 56.04 | 0.00 | 0.00 | 21     | 3.76   | 653.76  |
| 8     | 2868.13 | 14.92 | 93.40 | 0.00 | 0.00 | 24     | 9.83   | 1089.59 |
| 9     | 2868.13 | 14.92 | 93.40 | 0.00 | 0.00 | 24     | 9.83   | 1089.59 |
| 10    | 2868.13 | 14.92 | 93.40 | 0.00 | 0.00 | 24     | 9.83   | 1089.59 |
| 11    | 2977.94 | 24.87 | 56.04 | 0.00 | 0.00 | 32     | 0.21   | 653.76  |
| 12    | 7507.28 | 14.92 | 56.04 | 0.00 | 0.00 | 21     | 3.76   | 653.76  |
| 13    | 2868.13 | 14.92 | 93.40 | 0.00 | 0.00 | 24     | 9.83   | 1089.59 |
| 14    | 7507.28 | 14.92 | 56.04 | 0.00 | 0.00 | 21     | 3.76   | 653.76  |

11

PROYECTO:PS 308

ELEMENTO: PILA 1 FUSTE 2

RESULTADOS DEL DIMENSIONAMIENTO DE LA SECCION

GEOMETRIA SECCION TRANSVERSAL

TIPO DE SECCION: CILINDRICA

DIAMETRO: 1.000m

REC.: 0.060m

CARACTERISTICAS DE MATERIALES

RESISTENCIA DEL HORMIGON Fck: 35.MPa

Gamma C: 1.50

RESISTENCIA DEL ACERO Fyk: 500.MPa

Gamma\_S: 1.15

### ARMADURAS MINIMAS POR HIPOTESIS

\_\_\_\_\_\_

| N.hip | Nd      | Md      | As[cm2] | Vd    | Av[cm2/m] |
|-------|---------|---------|---------|-------|-----------|
|       |         |         |         |       |           |
| 1     | 7591.15 | 687.82  | 31.42   | 58.00 | 9.61      |
| 2     | 2089.16 | 687.82  | 31.42   | 58.00 | 9.61      |
| 3     | 2977.94 | 727.96  | 31.42   | 61.31 | 9.61      |
| 4     | 7507.28 | 687.82  | 31.42   | 58.00 | 9.61      |
| 5     | 2868.13 | 1117.87 | 31.42   | 94.59 | 9.61      |
| 6     | 7507.28 | 687.82  | 31.42   | 58.00 | 9.61      |
| 7     | 7507.28 | 687.82  | 31.42   | 58.00 | 9.61      |
| 8     | 2868.13 | 1117.87 | 31.42   | 94.59 | 9.61      |
| 9     | 2868.13 | 1117.87 | 31.42   | 94.59 | 9.61      |
| 10    | 2868.13 | 1117.87 | 31.42   | 94.59 | 9.61      |
| 11    | 2977.94 | 727.96  | 31.42   | 61.31 | 9.61      |
| 12    | 7507.28 | 687.82  | 31.42   | 58.00 | 9.61      |
| 13    | 2868.13 | 1117.87 | 31.42   | 94.59 | 9.61      |
| 14    | 7507.28 | 687.82  | 31.42   | 58.00 | 9.61      |

P1\_F2S.SAL 03/03/2022 P1\_F2S.SAL 03/03/2022

DATOS GENERALES

COEFICIENTES PARCIALES DE SEGURIDAD

Gamma PP:1.00 Gamma SC(Sobrecarga Vertical):1.00 Gamma SC(Acciones Horizontales):1.

COEFICIENTES DE COMBINACION \_\_\_\_\_ Coeficientes Chi\_0: Vehiculo Pesado 0.75 Sobrecarga Uniforme 0.40 Aceras 0.40 Viento 0.60 Temperatura 0.60 Coeficientes Chi\_1: Vehiculo Pesado 0.75 Sobrecarga Uniforme 0.40 Aceras 0.40 Viento 0.20 Temperatura 0.60 Coeficientes Chi 2: Vehiculo Pesado 0.00 Sobrecarga Uniforme 0.20 Aceras 0.00 Viento 0.00 Temperatura 0.50

ESFUERZOS DEFINIDOS EN LA CABEZA DE PILA

ALTURA DE PILA(m): 10.70 DISTANCIA A LA CABEZA DE PILA:0.00

PESO DE LA PILA (por m): 19.63 PESO DEL CABECERO: 0.00kN

VIENTO SOBRE LA PILA LONG (kN/m): 1.05 TRANSV. (kN/m): 1.05

COMBINACION PARA PUENTES DE CARRETERA

UNIDADES: m kN

PROGRAMA PARA EL CALCULO DE COMBINACIONES DE ESFUERZOS EN PILAS

PROYECTO:

**ELEMENTO:** 

PS 308

PILA 1 FUSTE 2 SERVICIO

INGEDIS.S.C. Ingenieria y Diseño (C) 2015

P1\_F2S.SAL 03/03/2022 P1\_F2S.SAL 03/03/2022

PROYECTO:PS 308

ELEMENTO: PILA 1 FUSTE 2 SERVICIO

## ESFUERZOS EN LA PILA

ESFUERZOS DE PESO PROPIO

| N.hip | N       | Fx   | Fy   | Mx   | My   |
|-------|---------|------|------|------|------|
|       |         |      |      |      |      |
| 1     | 1829.77 | 0.00 | 0.00 | 0.00 | 0.00 |

#### ESFUERZOS DE CARGA MUERTA

| N.hip | N      | Fx   | Fy   | Mx   | My   |
|-------|--------|------|------|------|------|
|       |        |      |      |      |      |
| 1     | 714.47 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2     | 618.17 | 0.00 | 0.00 | 0.00 | 0.00 |

3

PROYECTO: PS 308
ELEMENTO: PILA 1 FUSTE 2 SERVICIO

ESFUERZOS EN LA PILA

ESFUERZOS DE SOBRECARGA UNIFORME

| N.hi | lp N    | Fx   | Fy   | Mx   | My   |
|------|---------|------|------|------|------|
|      |         |      |      |      |      |
| 1    | 1080.76 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2    | -438.92 | 0.00 | 0.00 | 0.00 | 0.00 |

ESFUERZOS DE CARRO

| N.hip | N       | Fx   | Fy   | Mx   | My   |
|-------|---------|------|------|------|------|
|       |         |      |      |      |      |
| 1     | 1232.34 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2     | -486.98 | 0.00 | 0.00 | 0.00 | 0.00 |

ESFUERZOS DE SOBRECARGA SOBRE ACERAS

| N.hi | p N     | Fx   | Fy   | Mx   | My   |
|------|---------|------|------|------|------|
|      |         |      |      |      |      |
| 1    | 416.75  | 0.00 | 0.00 | 0.00 | 0.00 |
| 2    | -261.37 | 0.00 | 0.00 | 0.00 | 0.00 |

P1\_F2S.SAL 03/03/2022 P1\_F2S.SAL 03/03/2022

PROYECTO:PS 308

ELEMENTO: PILA 1 FUSTE 2 SERVICIO

1 0.00 34.50

### ESFUERZOS EN LA PILA

| FCFIIFPZOC | DE | OTENTO | (DITENTE | DESCARGADO) |
|------------|----|--------|----------|-------------|

| ESFUER. | ZOS DE VIE      | INTO (PUENT | TE DESCARGA    | DO)  |      |
|---------|-----------------|-------------|----------------|------|------|
|         |                 |             |                |      | My   |
| 1       | -21.19          | 0.00        | 62.27          | 0.00 | 0.00 |
| ESFUER  | ZOS DE VIE      | ENTO (PUENT | TE CARGADO)    |      |      |
| N.hip   | N               | Fx          | Fy             | Mx   | Му   |
| 1       | -46.59          | 0.00        | 62.27          | 0.00 | 0.00 |
| ESFUER  | ZOS DE RET      | RACCION &   | FLUENCIA       |      |      |
| N.hip   | N               | Fx          | Fy             | Mx   | My   |
|         |                 |             | 0.00           |      | 0.00 |
| ESFUER. | ZOS DE TEM      | IPERATURA   |                |      |      |
| N.hip   | N               | Fx          | Fy             | Mx   | My   |
|         |                 |             |                |      | 0.00 |
| ESFUER  | ZOS DE FUE      | ERZA CENTRI | FUGA           |      |      |
| N.hip   | N               | Fx          |                | Mx   | My   |
| 1       | 17.83<br>-53.49 | 0.00        | 13.63<br>13.63 | 0.00 | 0.00 |
| ESFUER. | ZOS DE FRE      | ENADO Y ARF | RANQUE         |      |      |
|         |                 |             |                | Mx   |      |

0.00

0.00

5

0.00

PROYECTO: PS 308
ELEMENTO: PILA 1 FUSTE 2 SERVICIO

ESFUERZOS EN LA PILA

ESFUERZOS SISMICOS. SISMO DIRECCIÓN X

| N.hip | N    | Fx   | Fy   | Mx   | My   |
|-------|------|------|------|------|------|
|       |      |      |      |      |      |
| 1     | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

ESFUERZOS SISMICOS. SISMO DIRECCIÓN Y

| N.hip | N    | Fx   | Fy   | Mx   | My   |
|-------|------|------|------|------|------|
|       |      |      |      |      |      |
| 2     | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

ESFUERZOS SISMICOS. SISMO DIRECCIÓN Z

| N.hip | N    | Fx   | Fy   | Mx   | My   |
|-------|------|------|------|------|------|
|       |      |      |      |      |      |
| 3     | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

P1\_F2S.SAL 03/03/2022

PROYECTO:PS 308

ELEMENTO: PILA 1 FUSTE 2 SERVICIO

## COMBINACION DE ESFUERZOS EN LA PILA

#### PUENTE DESCARGADO. VIENTO PREDOMINANTE

1.00\*PP+1.00\*(FLUEN.& RETRAC.)+1.00\*VIENTO+.60\*1.00\*TEMP.

| N.hip | N       | Fx   | Fy    | Mx   | My   | Mx INF | My INF |
|-------|---------|------|-------|------|------|--------|--------|
|       |         |      |       |      |      |        |        |
| 1     | 2830.18 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 2     | 2872.56 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 3     | 2733.88 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 4     | 2776.26 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |

#### PUENTE DESCARGADO. TEMPERATURA PREDOMINANTE

1.00\*PP+1.00\*(FLUEN.& RETRAC.)+1.00\*TEMP.+.60\*1.00\*VIENTO

| N.hip | N       | Fx    | Fy    | Mx   | My   | Mx INF | My INF |
|-------|---------|-------|-------|------|------|--------|--------|
|       |         |       |       |      |      |        |        |
| 5     | 2903.39 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 6     | 2928.82 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 7     | 2807.09 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 8     | 2832.52 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |

7

P1\_F2S.SAL 03/03/2022

PROYECTO: PS 308

ELEMENTO: PILA 1 FUSTE 2 SERVICIO

## COMBINACION DE ESFUERZOS EN LA PILA

COMBINACION 1: SOBRECARGA UNIF. + CARRO

ALTERNATIVA #1 SC PREDOMINANTE

1.00\*PP+1.00\*CP+1.00\*(FLUEN.& RETRAC.)+1.00\*SCU+1.00\*CARRO+0.60\*1.00\*VIENTO(CARGADO)+0.60\*1.00\*TEMP

| N.hip | N<br>   | Fx   | Fy    | Mx   | Му   | Mx INF | My INF |
|-------|---------|------|-------|------|------|--------|--------|
| 9     |         | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 10    | 3833.95 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 11    | 4875.15 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 12    | 3155.83 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 13    | 5609.18 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 14    | 3889.86 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 15    | 4931.06 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 16    | 3211.74 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 17    | 4033.59 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 18    | 2314.27 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 19    |         |      | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 20    | 1636.15 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 21    | 4089.50 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 22    | 2370.18 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 23    | 3411.38 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 24    | 1692.06 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 25    | 5456.97 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 26    | 3737.65 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 27    | 4778.85 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 28    | 3059.53 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 29    | 5512.88 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 30    | 3793.56 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 31    |         | 9.95 |       | 0.00 | 0.00 | 142.51 | 435.84 |
| 32    |         | 9.95 | 37.36 |      | 0.00 | 142.51 | 435.84 |
| 33    |         | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 34    | 2217.97 | 9.95 | 37.36 |      | 0.00 | 142.51 | 435.84 |
| 35    | 3259.17 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 36    | 1539.85 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |
| 37    | 3993.20 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 |        |
| 38    |         | 9.95 | 37.36 |      | 0.00 |        |        |
| 39    |         | 9.95 | 37.36 | 0.00 | 0.00 |        |        |
| 40    | 1595.76 | 9.95 | 37.36 | 0.00 | 0.00 | 142.51 | 435.84 |

ELEMENTO: PILA 1 FUSTE 2 SERVICIO

# COMBINACION DE ESFUERZOS EN LA PILA

COMBINACION 1: SOBRECARGA UNIF. + CARRO ALTERNATIVA #2 VIENTO PREDOMINANTE

1.00\*PP+1.00\*CP+1.00\*(FLUEN.& RETRAC.)+0.40\*1.00\*SCU+0.75\*1.00\*CARRO+

1.00\*VIENTO(CARGADO)+0.60\*1.00\*TEMP

2156.32

9.95

62.27

| N.hip | N<br>   | Fx   | Fy    | Mx   | My   | Mx INF | My INF |
|-------|---------|------|-------|------|------|--------|--------|
| 41    | 4328.04 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 42    | 3038.55 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 43    | 4056.79 | 9.95 | 62.27 | 0.00 |      | 166.55 | 726.40 |
| 44    | 2767.30 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 45    | 4421.23 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 46    | 3131.74 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 47    | 4149.98 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 48    | 2860.49 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 49    | 3720.17 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 50    | 2430.68 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 51    | 3448.92 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 52    | 2159.43 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 53    | 3813.35 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 54    | 2523.86 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 55    | 3542.11 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 56    | 2252.62 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 57    | 4231.74 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 58    | 2942.25 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 59    | 3960.49 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 60    | 2671.00 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 61    | 4324.93 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 62    | 3035.44 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 63    | 4053.68 | 9.95 | 62.27 | 0.00 | 0.00 |        |        |
| 64    | 2764.19 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 65    | 3623.87 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 66    | 2334.38 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 67    | 3352.62 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 68    | 2063.13 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 69    | 3717.05 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 70    | 2427.56 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |
| 71    | 3445.81 | 9.95 | 62.27 | 0.00 | 0.00 | 166.55 | 726.40 |

0.00

9

0.00

166.55

726.40

PROYECTO: PS 308

ELEMENTO: PILA 1 FUSTE 2 SERVICIO

COMBINACION DE ESFUERZOS EN LA PILA

COMBINACION 1: SOBRECARGA UNIF. + CARRO ALTERNATIVA #3 TEMPERATURA PREDOMINANTE

1.00\*PP+1.00\*CP+1.00\*(FLUEN.& RETRAC.)+0.40\*1.00\*SCU+0.75\*1.00\*CARRO+0.60\*1.00\*VIENTO(CARGADO)+1.00\*TEMP

| N.hip | N<br>   | Fx    | Fy    | Mx   | My   | Mx INF | My INF |
|-------|---------|-------|-------|------|------|--------|--------|
| 73    |         | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 74    | 3121.91 | 16.58 | 37.36 | 0.00 | 0.00 |        |        |
| 75    | 4140.16 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 76    | 2850.67 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 77    | 4467.32 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 78    | 3177.83 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 79    | 4196.07 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 80    | 2906.58 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 81    | 3803.53 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 82    | 2514.04 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 83    | 3532.28 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 84    | 2242.79 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 85    | 3859.44 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 86    | 2569.95 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 87    | 3588.20 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 88    | 2298.71 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 89    | 4315.10 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 90    | 3025.61 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 91    | 4043.86 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 92    | 2754.37 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 93    | 4371.02 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 94    | 3081.53 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 95    | 4099.77 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 96    | 2810.28 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 97    | 3707.23 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 98    | 2417.74 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 99    | 3435.98 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 100   | 2146.49 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 101   | 3763.14 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 102   | 2473.65 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 103   | 3491.90 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |
| 104   | 2202.41 | 16.58 | 37.36 | 0.00 | 0.00 | 213.47 | 435.84 |

P1\_F2S.SAL 03/03/2022

#### PROYECTO:PS 308

ELEMENTO: PILA 1 FUSTE 2 SERVICIO

## ENVOLVENTE DE ESFUERZOS EN LA PILA

UNIDADES:m kN

| N.hip | N       | Fx    | Fy    | Mx   | My   | Mx INF | My INF |        |
|-------|---------|-------|-------|------|------|--------|--------|--------|
|       |         |       |       |      |      |        |        |        |
| 1     | 5609.18 | 9.95  | 37.36 | 0.00 | 0.00 | 142    | .51    | 435.84 |
| 2     | 1539.85 | 9.95  | 37.36 | 0.00 | 0.00 | 142    | .51    | 435.84 |
| 3     | 2903.39 | 16.58 | 37.36 | 0.00 | 0.00 | 213    | .47    | 435.84 |
| 4     | 5553.27 | 9.95  | 37.36 | 0.00 | 0.00 | 142    | .51    | 435.84 |
| 5     | 2830.18 | 9.95  | 62.27 | 0.00 | 0.00 | 166    | .55    | 726.40 |
| 6     | 5553.27 | 9.95  | 37.36 | 0.00 | 0.00 | 142    | .51    | 435.84 |
| 7     | 5553.27 | 9.95  | 37.36 | 0.00 | 0.00 | 142    | .51    | 435.84 |
| 8     | 2830.18 | 9.95  | 62.27 | 0.00 | 0.00 | 166    | .55    | 726.40 |
| 9     | 2830.18 | 9.95  | 62.27 | 0.00 | 0.00 | 166    | .55    | 726.40 |
| 10    | 2830.18 | 9.95  | 62.27 | 0.00 | 0.00 | 166    | .55    | 726.40 |
| 11    | 2903.39 | 16.58 | 37.36 | 0.00 | 0.00 | 213    | .47    | 435.84 |
| 12    | 5553.27 | 9.95  | 37.36 | 0.00 | 0.00 | 142    | .51    | 435.84 |
| 13    | 2830.18 | 9.95  | 62.27 | 0.00 | 0.00 | 166    | .55    | 726.40 |
| 14    | 5553.27 | 9.95  | 37.36 | 0.00 | 0.00 | 142    | .51    | 435.84 |

11

|   |         | <b>ESFUERZOS S</b> | ESFUERZOS SOBRE ZAPATA YA ROTADOS | YA ROTADOS |       |
|---|---------|--------------------|-----------------------------------|------------|-------|
| 2 |         | Mx'                | My'                               | Fx'        | Fy'   |
| Ш | 9366.47 | 153.39             | 670.50                            | 19.96      | 54.45 |
|   | 3857.14 | 153.39             | 670.50                            | 19.96      | 54.45 |
|   | 4107.77 | 259.40             | 680.18                            | 29.87      | 53.54 |
|   | 9282.60 | 153.39             | 670.50                            | 19.96      | 54.45 |
|   | 3997.96 | 149.66             | 1107.80                           | 23.36      | 91.66 |
|   | 9282.60 | 153.39             | 05'029                            | 19.96      | 54.45 |
|   | 9282.60 | 153.39             | 05.079                            | 19.96      | 54.45 |
|   | 3997.96 | 149.66             | 1107.80                           | 23.36      | 91.66 |
|   | 3997.96 | 149.66             | 1107.80                           | 23.36      | 91.66 |
|   | 3997.96 | 149.66             | 1107.80                           | 23.36      | 91.66 |
|   | 4107.77 | 259.40             | 680.18                            | 29.87      | 53.54 |
|   | 9282.60 | 153.39             | 670.50                            | 19.96      | 54.45 |
|   | 3997.96 | 149.66             | 1107.80                           | 23.36      | 91.66 |
|   | 9282.60 | 153.39             | 05'029                            | 19.96      | 54.45 |
|   |         | <b>ESFUERZOS S</b> | SOBRE ZAPATA                      | YA ROTADOS |       |
| Z |         | Mx'                | My'                               | Fx'        | Fy'   |
|   | 6924.23 | 102.27             | 447.00                            | 13.31      | 36.30 |
|   | 2849.46 | 102.27             | 447.00                            | 13.31      | 36.30 |
|   | 4033.22 | 172.93             | 453.45                            | 19.91      | 35.70 |
|   | 6868.32 | 102.27             | 447.00                            | 13.31      | 36.30 |
|   | 3960.01 | 99.77              | 738.54                            | 15.57      | 61.11 |
|   | 6868.32 | 102.27             | 447.00                            | 13.31      | 36.30 |
|   | 6868.32 | 102.27             | 447.00                            | 13.31      | 36.30 |
|   | 3960.01 | 22.66              | 738.54                            | 15.57      | 61.11 |
|   | 3960.01 | 99.77              | 738.54                            | 15.57      | 61.11 |
|   | 3960.01 | 99.77              | 738.54                            | 15.57      | 61.11 |
|   | 4033.22 | 172.93             | 453.45                            | 19.91      | 35.70 |
|   | 6868.32 | 102.27             | 447.00                            | 13.31      | 36.30 |
|   | 3960.01 | 99.77              | 738.54                            | 15.57      | 61.11 |
|   | 6868.32 | 102.27             | 447.00                            | 13.31      | 36.30 |
|   |         |                    |                                   |            |       |

5.2

|       |         | FUSTE 1. ELU |       |    |    |          |         |
|-------|---------|--------------|-------|----|----|----------|---------|
| N.hip | z       | Fx           | Fy    | Mx | My | Mx_inf   | My_inf  |
| 1     | 9366.47 | 14.92        | 56.04 | 0  | 0  | 0 213.76 | 653.76  |
| 2     | 3857.14 | 14.92        | 56.04 | 0  | )  | 0 213.76 | 653.76  |
| 3     | 4107.77 | 24.87        | 56.04 | 0  | )  | 320.21   | 653.76  |
| 4     | 9282.6  | 14.92        | 56.04 | 0  | )  | 0 213.76 | 653.76  |
| 5     | 3997.96 | 14.92        | 93.4  | 0  | 0  | 0 249.83 | 1089.59 |
| 9     | 9282.6  | 14.92        | 56.04 | 0  | )  | 0 213.76 | 653.76  |
| 7     | 9282.6  | 14.92        | 56.04 | 0  | 0  | 0 213.76 | 653.76  |
| 8     | 3997.96 | 14.92        | 93.4  | 0  | J  | 0 249.83 |         |
| 6     | 3997.96 | 14.92        | 93.4  | 0  |    | 0 249.83 | 1089.59 |
| 10    | 3997.96 |              | 93.4  | 0  | 0  | 0 249.83 | 1089.59 |
| 11    | 4107.77 | 24.87        | 56.04 | 0  |    | 320.21   | 653.76  |
| 12    | 9282.6  | 14.92        | 56.04 | 0  | 0  | 0 213.76 | 653.76  |
| 13    | 3997.96 | 14.92        | 93.4  | 0  | J  | 0 249.83 | 1089.59 |
| 14    | 9282.6  | 14.92        | 56.04 | 0  | 0  | 0 213.76 | 653.76  |
|       |         | FUSTE 1. ELS |       |    |    |          |         |
| N.hip | Z       | Fx           | Fy    | Mx | My | Mx_inf   | My_inf  |
| 1     | 6924.23 | 9.95         | 37.36 | 0  | )  | 0 142.51 | 435.84  |
| 2     | 2849.46 | 9.95         | 37.36 | 0  | )  | 0 142.51 | 435.84  |
| 3     | 4033.22 | 16.58        | 37.36 | 0  | J  | 0 213.47 | 435.84  |
| 4     | 6868.32 | 9.95         | 37.36 | 0  | )  | 0 142.51 | 435.84  |
| 5     | 3960.01 | 9.95         | 62.27 | 0  | )  | 0 166.55 | 726.4   |
| 9     | 6868.32 | 9.95         | 37.36 | 0  | )  | 0 142.51 | 435.84  |
| 7     | 6868.32 | 9.95         | 37.36 | 0  | )  | 0 142.51 | 435.84  |
| 8     | 3960.01 | 9.95         | 62.27 | 0  | )  | 0 166.55 | 726.4   |
| 6     | 3960.01 | 9.95         | 62.27 | 0  | 0  | 0 166.55 | 726.4   |
| 10    | 3960.01 | 9.95         | 62.27 | 0  | J  | 0 166.55 | 726.4   |
| 11    | 4033.22 | 16.58        | 37.36 | 0  | )  | 0 213.47 | 435.84  |
| 12    | 6868.32 | 9.95         | 37.36 | 0  | )  | 0 142.51 | 435.84  |
| 13    | 3960.01 | 9.95         | 27.79 | 0  | 0  | 0 166.55 | 726.4   |
| 14    | 6868 37 | 9 95         | 95 ZE |    |    | 117 51   | 10 301  |

| Mx'         My'         Fx'         Fy'           153.39         670.50         19.96         19.96           153.39         670.50         19.96         19.96           259.40         680.18         29.87         19.96           153.39         670.50         19.96         19.96           153.39         670.50         19.96         19.96           149.66         1107.80         23.36         149.66         1107.80         23.36           149.66         1107.80         23.36         149.66         1107.80         23.36           149.66         1107.80         23.36         149.66         1107.80         23.36           149.66         1107.80         23.36         19.96         19.96           153.39         670.50         19.96         19.96           153.39         670.50         19.96         19.96           153.39         670.50         19.96         19.96           153.39         670.50         19.96         19.91           102.27         447.00         13.31         102.27         447.00         13.31           102.27         447.00         13.31         102.27         447.00         <                                                                         |         | ESFUERZOS S | SOBRE ZAPATA | YA ROTADOS |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|--------------|------------|-------|
| 7591.15         153.39         670.50         19.96           2089.16         153.39         670.50         19.96           2977.94         259.40         680.18         29.87           7507.28         153.39         670.50         19.96           2868.13         149.66         1107.80         23.36           7507.28         153.39         670.50         19.96           2868.13         149.66         1107.80         23.36           2868.13         149.66         1107.80         23.36           2868.13         149.66         1107.80         23.36           2977.94         259.40         680.18         29.87           2868.13         149.66         1107.80         23.36           2968.13         149.66         1107.80         23.36           2868.13         149.66         1107.80         23.36           2868.13         149.66         1107.80         23.36           7507.28         153.39         670.50         19.96           868.13         149.66         1107.80         23.36           868.13         149.66         1107.80         23.36           869.13         102.27         447.00                                                                                 | z       |             |              | Fx'        | Fy'   |
| 2089.16         153.39         670.50         19.96           2977.94         259.40         680.18         29.87           7507.28         153.39         670.50         19.96           2868.13         149.66         1107.80         23.36           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           2868.13         149.66         1107.80         23.36           2977.94         259.40         680.18         29.87           2977.94         259.40         680.18         29.87           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           7507.28         102.27         447.00         13.31           868.13         102.27         447.00         13.31           8509.18         99.77         738.54         15.57           830.18         99.77         738.54         15.57           830.18         99.77         738.54         15.57           830.18         99.77         738.54         1                                                                                    |         | 153.        | 670.50       | 19.96      | 54.45 |
| 2977.94         259.40         680.18         29.87           7507.28         153.39         670.50         19.96           2868.13         149.66         1107.80         23.36           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           2868.13         149.66         1107.80         23.36           2868.13         149.66         1107.80         23.36           2977.94         259.40         680.18         29.87           2977.94         259.40         680.18         29.87           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           7507.28         102.27         447.00         13.31           868.13         102.27         447.00         13.31           8509.18         99.77         738.54         15.57           830.18         99.77         738.54         15.57           830.18         99.77         738.54         15.57           2830.18         99.77         738.54 <td< td=""><td>2089.16</td><td>153.</td><td>670.50</td><td></td><td>54.45</td></td<>       | 2089.16 | 153.        | 670.50       |            | 54.45 |
| 7507.28         153.39         670.50         19.96           2868.13         149.66         1107.80         23.36           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           2868.13         149.66         1107.80         23.36           2868.13         149.66         1107.80         23.36           2977.94         259.40         680.18         29.87           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           7507.28         102.27         447.00         13.31           8609.18         102.27         447.00         13.31           8553.27         102.27         447.00         13.31           8553.27         102.27         447.00         13.31           830.18         99.77         738.54         15.57           830.18         99.77         738.54         15.57           830.18         99.77         738.54 <t< td=""><td>2977.94</td><td>259.40</td><td>680.18</td><td>29.87</td><td>53.54</td></t<> | 2977.94 | 259.40      | 680.18       | 29.87      | 53.54 |
| 2868.13         149.66         1107.80         23.36           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           2868.13         149.66         1107.80         23.36           2868.13         149.66         1107.80         23.36           2977.94         259.40         680.18         29.87           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           868.13         149.66         1107.80         23.36           7507.28         153.39         670.50         19.96           7507.28         102.27         447.00         13.31           800.33         172.93         453.45         19.91           8130.18         99.77         738.54         15.57           8253.27         102.27         447.00         13.31           830.18         99.77         738.54         15.57           830.18         99.77         738.54         15.57           830.18         99.77         738.54                                                                                             | 7507.28 | 153.39      | 670.50       | 19.96      | 54.45 |
| 7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           2868.13         149.66         1107.80         23.36           2868.13         149.66         1107.80         23.36           2868.13         149.66         1107.80         23.36           2977.94         259.40         680.18         29.87           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           7507.28         102.27         447.00         13.31           1539.85         102.27         447.00         13.31           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2903.39         172.93         453.45                                                                                         | 2868.13 | 149.66      | 1107.80      | 23.36      | 91.66 |
| 7507.28         153.39         670.50         19.96           2868.13         149.66         1107.80         23.36           2868.13         149.66         1107.80         23.36           2868.13         149.66         1107.80         23.36           2977.94         259.40         680.18         29.87           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         19.96           7507.28         153.39         670.50         13.31           8609.18         102.27         447.00         13.31           1539.85         102.27         447.00         13.31           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2903.39         172.93         453.45         19.91           2830.18         99.77         738.54         <                                                                                | 7507.28 | 153.39      | 05'029       |            | 54.45 |
| 2868.13     149.66     1107.80     23.36       2868.13     149.66     1107.80     23.36       2868.13     149.66     1107.80     23.36       2977.94     259.40     680.18     29.87       7507.28     153.39     670.50     19.96       2868.13     149.66     1107.80     23.36       2868.13     149.66     1107.80     23.36       7507.28     153.39     670.50     19.96       Mx'     My'     Fx'     Fy'       5609.18     102.27     447.00     13.31       2903.39     172.93     453.45     19.91       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2903.39     172.93     453.45     19.91       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54 <td>7507.28</td> <td>153.39</td> <td>670.50</td> <td>19.96</td> <td>54.45</td>                                                                                                                          | 7507.28 | 153.39      | 670.50       | 19.96      | 54.45 |
| 2868.13     149.66     1107.80     23.36       2868.13     149.66     1107.80     23.36       2977.94     259.40     680.18     29.87       7507.28     153.39     670.50     19.96       2868.13     149.66     1107.80     23.36       7507.28     153.39     670.50     19.96       7507.28     153.39     670.50     19.96       Mx'     My'     Fx'     Fy'       5609.18     102.27     447.00     13.31       2903.39     172.93     453.45     19.91       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2903.39     172.93     453.45     19.91       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54                                                                                                                                                                                                            | 2868.13 | 149.66      | 1107.80      | 23.36      | 91.66 |
| 2868.13     149.66     1107.80     23.36       2977.94     259.40     680.18     29.87       7507.28     153.39     670.50     19.96       2868.13     149.66     1107.80     23.36       7507.28     153.39     670.50     19.96       7507.28     153.39     670.50     19.96       Mx'     My'     Fx'     Fy'       5609.18     102.27     447.00     13.31       2903.39     172.93     453.45     19.91       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54                                                                                                                                                                                                               | 2868.13 |             | 1107         |            | 91.66 |
| 2977.94     259.40     680.18     29.87       7507.28     153.39     670.50     19.96       2868.13     149.66     1107.80     23.36       7507.28     153.39     670.50     19.96       7507.28     153.39     670.50     19.96       Mx'     My'     Fx'     Fy'       5609.18     102.27     447.00     13.31       2903.39     172.93     453.45     19.91       5553.27     102.27     447.00     13.31       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     738.54     15.57       2830.18     99.77     747.00     13.31       2830.18     99.77     747.00     <                                                                                                                                                                                                          | 2868.13 | 149.66      | 1107.80      | 23.36      | 91.66 |
| 7507.28         153.39         670.50         19.96           2868.13         149.66         1107.80         23.36           7507.28         153.39         670.50         19.96           AFV         FK         19.96           Mx         My         FX           5609.18         102.27         447.00         13.31           2903.39         172.93         453.45         19.91           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2903.39         172.93         453.45         19.91           2553.27         102.27         447.00         13.31           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.7                                                                                                     | 2977.94 | 259.40      | 680.18       |            | 53.54 |
| 2868.13         149.66         1107.80         23.36           7507.28         153.39         670.50         19.96           ESFUERZOS SOBRE ZAPATA YA ROTADOS           Mx'         My'         Fx'         Fy'           5609.18         102.27         447.00         13.31           1539.85         102.27         447.00         13.31           2903.39         172.93         453.45         19.91           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2903.39         172.93         453.45         15.57           2903.39         172.93         453.45         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.1                                                                                               | 7507.28 | 153.39      |              | 19.96      | 54.45 |
| 7507.28         153.39         670.50         19.96           ESFUERZOS SOBRE ZAPATA YA ROTADOS         AW'         Fx'         Fy'           5609.18         102.27         447.00         13.31         Fy'           2903.39         172.93         453.45         19.91         Py'           2830.18         99.77         738.54         15.57         Py'           2830.18         99.77         447.00         13.31         Py'           2830.18         99.77         738.54         15.57         Py'           2830.18                                                                               | 2868.13 | 149.66      | 1107.80      | 23.36      | 91.66 |
| ESFUERZOS SOBRE ZAPATA YA ROTADOS         Mx¹       My¹       Fx¹       Fy¹         5609.18       102.27       447.00       13.31         1539.85       102.27       447.00       13.31         2903.39       172.93       453.45       19.91         2830.18       99.77       738.54       15.57         2830.18       99.77       447.00       13.31         2830.18       99.77       738.54       15.57         2830.18       99.77       738.54       15.57         2830.18       99.77       738.54       15.57         2830.18       99.77       738.54       15.57         2903.39       172.93       453.45       19.91         2553.27       102.27       447.00       13.31         2830.18       99.77       738.54       15.57         2830.18       99.77       738.54       15.57         2830.18       99.77       738.54       15.57         2830.18       99.77       738.54       15.57         2830.18       99.77       738.54       15.57         2830.18       99.77       738.54       15.57         2830.18       99.77                                                                                                                                                                          | 7507.28 | 153.39      | 670.50       | 19.96      | 54.45 |
| Mx'         My'         Fx'         Fy'           5609.18         102.27         447.00         13.31           1539.85         102.27         447.00         13.31           2903.39         172.93         453.45         19.91           2830.18         99.77         738.54         15.57           5553.27         102.27         447.00         13.31           5553.27         102.27         447.00         13.31           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57           2830.18         99.77         738.54         15.57 <td></td> <td></td> <td>ZAPATA</td> <td>~</td> <td></td>                                         |         |             | ZAPATA       | ~          |       |
| 102.27     447.00     13.31       102.27     447.00     13.31       102.27     447.00     13.31       99.77     738.54     15.57       99.77     738.54     15.57       99.77     738.54     15.57       99.77     738.54     15.57       99.77     738.54     15.57       99.77     738.54     15.57       102.27     447.00     13.31       102.27     447.00     13.31       102.27     447.00     13.31       102.27     447.00     13.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7       | Mx'         | My'          | Fx'        | Fy'   |
| 102.27     447.00     13.31       172.93     453.45     19.91       102.27     447.00     13.31       99.77     738.54     15.57       102.27     447.00     13.31       99.77     738.54     15.57       99.77     738.54     15.57       99.77     738.54     15.57       102.27     447.00     13.31       102.27     447.00     13.31       99.77     738.54     15.57       99.77     738.54     15.57       102.27     447.00     13.31       102.27     447.00     13.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5609.18 | 102.27      | 447.00       | 13.31      | 36.30 |
| 172.93     453.45     19.91       102.27     447.00     13.31       99.77     738.54     15.57       102.27     447.00     13.31       99.77     738.54     15.57       99.77     738.54     15.57       99.77     738.54     15.57       172.93     453.45     19.91       102.27     447.00     13.31       99.77     738.54     15.57       99.77     738.54     15.57       102.27     447.00     13.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1539.85 | 102.27      | 447.00       | 13.31      | 36.30 |
| 102.27     447.00     13.31       99.77     738.54     15.57       102.27     447.00     13.31       102.27     447.00     13.31       99.77     738.54     15.57       99.77     738.54     15.57       102.27     447.00     13.31       102.27     447.00     13.31       102.27     447.00     13.31       102.27     447.00     13.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2903.39 | 172.        | 453.45       | 19.        | 35.70 |
| 99.77     738.54     15.57       102.27     447.00     13.31       102.27     447.00     13.31       99.77     738.54     15.57       99.77     738.54     15.57       172.93     453.45     19.91       102.27     447.00     13.31       102.27     447.00     13.31       102.27     447.00     13.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5553.27 | 102.27      | 447.00       |            | 36.30 |
| 102.27     447.00     13.31       102.27     447.00     13.31       99.77     738.54     15.57       99.77     738.54     15.57       99.77     738.54     15.57       172.93     453.45     19.91       102.27     447.00     13.31       102.27     447.00     13.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2830.18 | 72'66       | 738.54       |            | 61.11 |
| 27     102.27     447.00     13.31       18     99.77     738.54     15.57       18     99.77     738.54     15.57       18     99.77     738.54     15.57       29     172.93     453.45     19.91       27     102.27     447.00     13.31       27     102.27     447.00     13.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5553.27 |             | 447.00       | 13.        | 36.30 |
| 18     99.77     738.54     15.57       18     99.77     738.54     15.57       18     99.77     738.54     15.57       29     738.54     19.91       27     102.27     447.00     13.31       27     102.27     447.00     13.31       27     102.27     447.00     13.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5553.27 | 102.27      | 447.00       | 13.31      | 36.30 |
| 18     99.77     738.54     15.57       18     99.77     738.54     15.57       39     172.93     453.45     19.91       27     102.27     447.00     13.31       18     99.77     738.54     15.57       27     102.27     447.00     13.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2830.18 | 99.77       | 738.54       |            | 61.11 |
| 18     99.77     738.54     15.57       39     172.93     453.45     19.91       27     102.27     447.00     13.31       18     99.77     738.54     15.57       27     102.27     447.00     13.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2830.18 | 72.66       | 738.54       | 15.57      | 61.11 |
| 172.93     453.45     19.91       102.27     447.00     13.31       99.77     738.54     15.57       102.27     447.00     13.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2830.18 | .66         | 738.54       |            | 61.11 |
| 102.27     447.00     13.31       99.77     738.54     15.57       102.27     447.00     13.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2903.39 | 172.93      | 453.45       | 19.91      | 35.70 |
| 99.77 738.54 15.57<br>102.27 447.00 13.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5553.27 | 102.27      | 447.00       | 13.31      | 36.30 |
| 102.27 447.00 13.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2830.18 | 72'66       | 738.54       | 15.        | 61.11 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5553.27 | 102.27      | 447.00       | 13.31      | 36.30 |

|       |         | FUSTE 2, FLU |       |    |    |        |         |
|-------|---------|--------------|-------|----|----|--------|---------|
| N.hip | z       | ¥            | Fv    | M× | Ž  | Mx inf | My inf  |
| 1     | 7591.15 | 14.92        | 56.04 | 0  | 0  | 213.76 | 653.76  |
| 7     | 2089.16 | 14.92        | 56.04 | 0  | 0  | 213.76 | 653.76  |
| 8     | 2977.94 | 24.87        | 56.04 | 0  | 0  | 320.21 | 653.76  |
| 7     | 7507.28 | 14.92        | 56.04 | 0  | 0  | 213.76 | 653.76  |
| 9     | 2868.13 | 14.92        | 93.4  | 0  | 0  | 249.83 | 1089.59 |
| 9     | 7507.28 | 14.92        | 56.04 | 0  | 0  | 213.76 | 653.76  |
| 7     | 7507.28 | 14.92        | 56.04 | 0  | 0  | 213.76 | 653.76  |
| 8     | 2868.13 | 14.92        | 93.4  | 0  | 0  | 249.83 | 1089.59 |
| 6     | 2868.13 | 14.92        | 93.4  | 0  | 0  | 249.83 | 1089.59 |
| 10    | 2868.13 | 14.92        | 93.4  | 0  | 0  | 249.83 | 1089.59 |
| 11    | 2977.94 | 24.87        | 56.04 | 0  | 0  | 320.21 | 653.76  |
| 12    | 7507.28 | 14.92        | 56.04 | 0  | 0  | 213.76 | 653.76  |
| 13    | 2868.13 | 14.92        | 93.4  | 0  | 0  | 249.83 | 1089.59 |
| 14    | 7507.28 | 14.92        | 56.04 | 0  | 0  | 213.76 | 653.76  |
|       |         | FUSTE 2. ELS |       |    |    |        |         |
| N.hip | N       | Fx           | Fy    | Mx | My | Mx_inf | My_inf  |
| 1     | 5609.18 | 9.95         | 37.36 | 0  | 0  | 142.51 | 435.84  |
| 2     | 1539.85 | 9.95         | 37.36 | 0  | 0  | 142.51 | 435.84  |
| 3     | 2903.39 | 16.58        | 37.36 | 0  | 0  | 213.47 | 435.84  |
| 4     | 5553.27 | 9.95         | 37.36 | 0  | 0  | 142.51 | 435.84  |
| 5     | 2830.18 | 9.95         | 62.27 | 0  | 0  | 166.55 | 726.4   |
| 9     | 5553.27 | 9.95         | 37.36 | 0  | 0  | 142.51 | 435.84  |
| 7     | 5553.27 | 9.95         | 37.36 | 0  | 0  | 142.51 | 435.84  |
| 8     | 2830.18 | 9.95         | 62.27 | 0  | 0  | 166.55 | 726.4   |
| 6     | 2830.18 | 9.95         | 62.27 | 0  | 0  | 166.55 | 726.4   |
| 10    | 2830.18 | 9.95         | 62.27 | 0  | 0  | 166.55 | 726.4   |
| 11    | 2903.39 | 16.58        | 37.36 | 0  | 0  | 213.47 | 435.84  |
| 12    | 5553.27 | 9.95         | 37.36 | 0  | 0  | 142.51 | 435.84  |
| 13    | 2830.18 | 9.95         | 62.27 | 0  | 0  | 166.55 | 726.4   |
| 14    | 5553.27 | 9:95         | 32.36 | 0  | 0  | 142.51 | 435.84  |

ZAP308\_1.SAL 03/03/2022

PROGRAMA DE CALCULO DE ZAPATAS DE DOS FUSTES

INGEDIS. Ingenieria & Diseño (c) 2017 V1.1

PROYECTO:

AVE TAFALLA ELEMENTO: ZAPATA PS308

ZAP308\_1.SAL 03/03/2022 ZAP308\_1.SAL 03/03/2022

#### DATOS GENERALES

#### CARACTERISTICAS DE MATERIALES

Resistencia del Hormigón Fck (MPa): 35.00 Resistencia del Acero Fyk (MPa): 500.00

#### COEFICIENTES PARCIALES DE SEGURIDAD

Gamma C: 1.50 Gamma S: 1.15

#### GEOMETRIA DE LA ZAPATA

-----

Longitud de la zapata LX (m): 8.00
Anchura de la zapata LY (m): 6.00
Canto de la Zapata H (m): 1.80
Altura de tierras sobre la zapata HT (m): 0.80

#### GEOMETRIA DE LOS FUSTES

Espesor del fuste en direccion XX DX (m): 1.00
Espesor del fuste en direccion YY DY (m): 1.00
Separacion entre fustes SepF (m): 3.72

## FUERZAS, MOMENTOS Y TENSIONES SOBRE EL FUSTE N° 1

| Axil                                                                                                                                        | MLong                                                                                                                     | MTran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FLong                                                                                                                          | FTran                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| [kN]                                                                                                                                        | [kNm]                                                                                                                     | [kNm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [kN]                                                                                                                           | [kN]                                                                                                          |
| 6924.23<br>2849.46<br>4033.22<br>6868.32<br>3960.01<br>6868.32<br>3960.01<br>3960.01<br>3960.01<br>4033.22<br>6868.32<br>3960.01<br>4033.22 | 102.27<br>102.27<br>172.93<br>102.27<br>99.77<br>102.27<br>102.27<br>99.77<br>99.77<br>99.77<br>172.93<br>102.27<br>99.77 | 447.00   447.00   453.45   447.00   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738.54   738 | 13.31  <br>13.31  <br>19.91  <br>13.31  <br>15.57  <br>13.31  <br>15.57  <br>15.57  <br>15.57  <br>19.91  <br>13.31  <br>15.57 | 36.30   36.30   35.70   36.30   61.11   61.11   61.11   35.70   36.30   61.11   35.70   36.30   61.11   36.30 |

## FUERZAS, MOMENTOS Y TENSIONES SOBRE EL FUSTE N° 2

\_\_\_\_\_

|                     | Axil<br>[kN]                                        | MLong<br>[kNm]                                          | MTran<br>[kNm]                                           | FLong<br>[kN]                             | FTran  <br>[kN]                                              |
|---------------------|-----------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|
| <br> <br> <br> <br> | 1539.85<br>5609.18<br>2903.39<br>5553.27<br>2830.18 | 102.27<br>102.27<br>172.93<br>102.27<br>99.77<br>102.27 | 447.00<br>447.00<br>453.45<br>447.00<br>738.54<br>447.00 | 13.31<br>13.31<br>19.91<br>13.31<br>15.57 | 36.30  <br>36.30  <br>35.70  <br>36.30  <br>61.11  <br>36.30 |
|                     | 5553.27<br>2830.18                                  | 102.27                                                  | 447.00<br>738.54                                         | 13.31<br>15.57                            | 36.30<br>61.11                                               |

03/2022 ZAP308\_1.SAL 03/03/2022

|   | 2830.18 | 99.77  | 738.54 | 15.57 | 61.11 |  |
|---|---------|--------|--------|-------|-------|--|
| ĺ | 2830.18 | 99.77  | 738.54 | 15.57 | 61.11 |  |
|   | 2903.39 | 172.93 | 453.45 | 19.91 | 35.70 |  |
|   | 5553.27 | 102.27 | 447.00 | 13.31 | 36.30 |  |
|   | 2830.18 | 99.77  | 738.54 | 15.57 | 61.11 |  |
|   | 5553.27 | 102.27 | 447.00 | 13.31 | 36.30 |  |

5555.27 | 102.27 | 447.00 | 15.51 | 50.50 |

ZAP308\_1.SAL 03/03/2022 ZAP308\_1.SAL 03/03/2022

#### PROGRAMA ZAPATAS DE 2 FUSTES

PROYECTO: AVE TAFALLA ELEMENTO: ZAPATA PS308

### FUERZAS, MOMENTOS Y TENSIONES SOBRE EL C.D.G. DE LA ZAPATA

| Axil<br>  [kN]                                                               | MLong<br>  [kNm]                                                   | MTran<br>[kNm]                                                                 | FLong<br>[kN]                                               | FTran<br>[kN]                                                   | SMax<br>  [kPa]                                                                | SMin<br>  [kPa]                                                                | C.D.                                        | C.V.<br> [-]                                |
|------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|
| 8464.08<br>8458.64<br>6936.61<br>12421.59<br>6790.19<br>12421.59<br>12421.59 | 204.54<br>204.54<br>345.86<br>204.54<br>199.54<br>204.54           | -9120.95<br>6027.08<br>-1194.58<br>-1551.99<br>-624.40<br>-1551.99<br>-1551.99 | 26.62<br>26.62<br>39.82<br>26.62<br>31.14<br>26.62<br>26.62 | 72.60<br>72.60<br>71.40<br>72.60<br>122.22<br>72.60<br>72.60    | 428.24<br>  369.12<br>  233.91<br>  353.01<br>  214.55<br>  353.01<br>  353.01 | 45.76<br>104.66<br>176.45<br>285.89<br>189.71<br>285.89<br>285.89              | 9.9                                         | 5.1<br> 7.4<br> 9.9<br> 9.9<br> 9.9<br> 9.9 |
| 6790.19<br>6790.19<br>6790.19<br>6936.61<br>12421.59<br>6790.19<br>12421.59  | 199.54<br>199.54<br>199.54<br>345.86<br>204.54<br>199.54<br>204.54 | -624.40<br>-624.40<br>-624.40<br>-1194.58<br>-1551.99<br>-624.40<br>-1551.99   | 31.14<br>31.14<br>31.14<br>39.82<br>26.62<br>31.14<br>26.62 | 122.22<br>122.22<br>122.22<br>71.40<br>72.60<br>122.22<br>72.60 | 214.55<br>214.55<br>214.55<br>233.91<br>353.01<br>214.55<br>353.01             | 189.71<br>  189.71<br>  189.71<br>  176.45<br>  285.89<br>  189.71<br>  285.89 | 9.9<br> 9.9<br> 9.9<br> 9.9<br> 9.9<br> 9.9 | 9.9<br> 9.9<br> 9.9<br> 9.9<br> 9.9         |

C.D. Coeficiente de seguridad al deslizamiento > 1.50 C.V. Coeficiente de seguridad al Vuelco > 1.80

Tensión Admisible necesaria del Terreno: 342.59 kPA

#### PROYECTO: AVE TAFALLA ELEMENTO: ZAPATA PS308

#### ESFUERZOS DE CÁLCULO PARA DIMENSIONAMIENTO DE ARMADURA (CDG DE LA ZAPATA) \_\_\_\_\_\_

| Axil                                                                                                            | MLong                                                                                                                | MTran                                                                                                                           | FLong                                                                                                    | FTran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [kN]                                                                                                            | [kNm]                                                                                                                | [kNm]                                                                                                                           | [kN]                                                                                                     | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11455.63<br>11448.29<br>7085.71<br>16789.88<br>6866.09<br>16789.88<br>16789.88<br>6866.09<br>6866.09<br>7085.71 | 306.78<br>306.78<br>518.80<br>306.78<br>299.32<br>306.78<br>306.78<br>299.32<br>299.32<br>299.32<br>518.80<br>306.78 | *******<br>8286.26<br>-741.12<br>-1961.09<br>114.12<br>-1961.09<br>-1961.09<br>114.12<br>114.12<br>114.12<br>-741.12<br>-741.12 | 39.92<br>39.92<br>59.74<br>39.92<br>46.72<br>39.92<br>39.92<br>46.72<br>46.72<br>46.72<br>46.72<br>59.74 | 108.90   108.90   107.08   108.90   183.32   108.90   183.32   183.32   183.32   107.08   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108.90   108 |
| 6866.09                                                                                                         | 299.32                                                                                                               | 114.12                                                                                                                          | 46.72                                                                                                    | 183.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16789.88                                                                                                        | 306.78                                                                                                               | -1961.09                                                                                                                        | 39.92                                                                                                    | 108.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### CALCULO DE ARMADURAS DIRECCION LONGITUDINAL \_\_\_\_\_\_

| SMax<br>  [kPa]                                                                                                      | SMin<br>  [kPa]                                                                                                      | LCont<br>  [m]                                                                                           | TdXX<br>  [kN/m]                                                                                                                                       | AsXX  <br>[cm2/m]                                                                                        | AlfaX<br>[°]                                                                                    | SmaxC  <br>[MPa]                                                         |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 326.48<br>326.32<br>239.31<br>437.61<br>230.93<br>437.61<br>437.61<br>230.93<br>230.93<br>230.93<br>239.31<br>437.61 | 314.64<br>314.49<br>219.73<br>425.77<br>218.95<br>425.77<br>425.77<br>218.95<br>218.95<br>218.95<br>219.73<br>425.77 | 8.00<br>  8.00<br>  8.00<br>  8.00<br>  8.00<br>  8.00<br>  8.00<br>  8.00<br>  8.00<br>  8.00<br>  8.00 | 1527.74<br>  1527.02<br>  1111.89<br>  2050.70<br>  1078.02<br>  2050.70<br>  2050.70<br>  1078.02<br>  1078.02<br>  1078.02<br>  1111.89<br>  2050.70 | 38.19<br>38.18<br>27.80<br>49.27<br>26.95<br>49.27<br>49.27<br>26.95<br>26.95<br>26.95<br>27.80<br>49.27 | 40.27<br>40.27<br>40.14<br>40.29<br>40.22<br>40.29<br>40.29<br>40.22<br>40.22<br>40.22<br>40.22 | 10.17   10.16   7.40   13.65   7.17   13.65   7.17   7.17   7.40   13.65 |
| 230.93                                                                                                               | 218.95<br>  425.77                                                                                                   | 8.00<br>8.00                                                                                             | 1078.02<br>  2050.70                                                                                                                                   | 26.95  <br>49.27                                                                                         | 40.22                                                                                           | 7.17  <br>  13.65                                                        |

#### CALCULO DE ARMADURAS DIRECCION TRANSVERSAL \_\_\_\_\_\_

|   | SMax<br>  [kPa]             | SMin<br>  [kPa]                | LCont [m]            | TdYY  <br>  [kN/m]              | AsYY<br>[cm2/m]      |                           |              |                  | Vd(Int)<br> [kNm/m] | AsY(Int) <br> [cm2/m] | AvYY  <br>  [cm2/m2      |  |
|---|-----------------------------|--------------------------------|----------------------|---------------------------------|----------------------|---------------------------|--------------|------------------|---------------------|-----------------------|--------------------------|--|
| ٠ | 70.58<br> 497.12<br> 218.09 | 570.53<br>143.69<br>240.94     | 6.00<br>6.00<br>6.00 | 33.83<br>170.28<br>77.83        | 0.85<br>4.26<br>1.95 | 75.17<br> 73.05<br> 73.39 | 5.80<br>5.79 | 207.63<br>148.73 | 515.85<br>369.53    | 26.38<br>26.20        | 0.00                     |  |
|   | 394.92<br>234.20<br>394.92  | 468.46<br>  215.69<br>  468.46 | 6.00<br>6.00<br>6.00 | 141.49 <br>  82.82 <br>  141.49 | 3.54<br>2.07<br>3.54 | 73.42<br>73.31<br>73.42   | 5.79         | 145.77           | 362.16              | 26.19                 | 0.00  <br>0.00  <br>0.00 |  |

ZAP308\_1.SAL 03/03/2022

| 394.92 | 468.46 | 6.00 | 141.49 | 3.54 | 73.42 | 5.79 | 279.75 | 695.02 | 26.61 | 0.00 |
|--------|--------|------|--------|------|-------|------|--------|--------|-------|------|
| 234.20 | 215.69 | 6.00 | 82.82  | 2.07 | 73.31 | 5.79 | 145.77 | 362.16 | 26.19 | 0.00 |
| 234.20 | 215.69 | 6.00 | 82.82  | 2.07 | 73.31 | 5.79 | 145.77 | 362.16 | 26.19 | 0.00 |
| 234.20 | 215.69 | 6.00 | 82.82  | 2.07 | 73.31 | 5.79 | 145.77 | 362.16 | 26.19 | 0.00 |
| 218.09 | 240.94 | 6.00 | 77.83  | 1.95 | 73.39 | 5.79 | 148.73 | 369.53 | 26.20 | 0.00 |
| 394.92 | 468.46 | 6.00 | 141.49 | 3.54 | 73.42 | 5.79 | 279.75 | 695.02 | 26.61 | 0.00 |
| 234.20 | 215.69 | 6.00 | 82.82  | 2.07 | 73.31 | 5.79 | 145.77 | 362.16 | 26.19 | 0.00 |
| 394.92 | 468.46 | 6.00 | 141.49 | 3.54 | 73.42 | 5.79 | 279.75 | 695.02 | 26.61 | 0.00 |