COMP4128 Week 05 Tutorial

Yifan He

z5173587@unsw.edu.au

https://github.com/hharryyf/COMP4128-24T3-tutoring

Reminder

- Contest 2, this weekend
- Topics: binary search, greedy, data structure, dp

Reminder

- Contest 2, this weekend
- Topics: binary search, greedy, data structure, dp
- Hints for Problem Set 4 by email (final time)
 - I'll be traveling to Guangzhou and Hanoi
 - Adam is going to take charge from week 7

Outline

- MST revision
- Shichikuji and Power Grid
- Ehab's Last Corollary
- A quick review for contest 2

Minimum Spanning Tree

Given an undirected weighted connected graph with V vertices and E edges. Each edge e_i is represented by a tuple (u_i, v_i, c_i) meaning this edge connects u_i and v_i with weight c_i . Pick a subset of edges of the graph so that this subset of edges can still make the graph connected. What is the minimum cost of the picked edges?

Kruskal's algorithm

- Sort the edges in increasing order of weights
- Scan the edges one by one, if the edge creates a cycle, skip it, otherwise, add it to the graph
- The added edges form the MST of the graph
- Time complexity: $O(E \cdot log(E))$ with union-find

MST properties

• For a graph G, suppose one of its MST has edge weights $w_1 \le w_2 \le ... \le w_{V-1}$, another MST has edge weights $w_1' \le w_2' \le ... \le w_{V-1}'$. Then, we have $w_1 = w_1', w_2 = w_2'..., w_{V-1} = w_{V-1}'$.

MST properties

- For a graph G, suppose one of its MST has edge weights $w_1 \le w_2 \le ... \le w_{V-1}$, another MST has edge weights $w_1' \le w_2' \le ... \le w_{V-1}'$. Then, we have $w_1 = w_1'$, $w_2 = w_2'...$, $w_{V-1} = w_{V-1}'$.
- If all the edges in the graph have different weights, the MST of the graph is unique

MST properties

- For a graph G, suppose one of its MST has edge weights $w_1 \le w_2 \le ... \le w_{V-1}$, another MST has edge weights $w_1' \le w_2' \le ... \le w_{V-1}'$. Then, we have $w_1 = w_1'$, $w_2 = w_2'...$, $w_{V-1} = w_{V-1}'$.
- If all the edges in the graph have different weights, the MST of the graph is unique
- The MST that must contain a specific edge can be obtained by adding the edge to the MST of the original graph and removing the edge with the largest weight in the cycle created

Given N cities ($N \le 2,000$), each has coordinate (x_i, y_i) . Building a power station at city i has cost c_i and connecting i and j costs $(k_i + k_j) \cdot (|x_i - x_j| + |y_i - y_j|)$. All cites must be connected to power. Calculate the minimum cost.

Given N cities ($N \le 2,000$), each has coordinate (x_i, y_i) . Building a power station at city i has cost c_i and connecting i and j costs $(k_i + k_j) \cdot (|x_i - x_j| + |y_i - y_j|)$. All cites must be connected to power. Calculate the minimum cost.

Analysis

 If we only need to connect all cities together, it is just standard MST.

Given N cities ($N \le 2,000$), each has coordinate (x_i, y_i) . Building a power station at city i has cost c_i and connecting i and j costs $(k_i + k_j) \cdot (|x_i - x_j| + |y_i - y_j|)$. All cites must be connected to power. Calculate the minimum cost.

- If we only need to connect all cities together, it is just standard MST.
- But at least 1 city must connect to power directly

Given N cities ($N \le 2,000$), each has coordinate (x_i, y_i) . Building a power station at city i has cost c_i and connecting i and j costs $(k_i + k_j) \cdot (|x_i - x_j| + |y_i - y_j|)$. All cites must be connected to power. Calculate the minimum cost.

- If we only need to connect all cities together, it is just standard MST.
- But at least 1 city must connect to power directly
- How to solve this additional requirement?

- Create an additional vertex 0
- Connect 0 to city i with cost c_i

- Create an additional vertex 0
- Connect 0 to city i with cost ci
- This forces us to pick at least 1 edge connecting vertex 0, which satisfies the "at least 1 city must connect to power directly" constraints

- Create an additional vertex 0
- Connect 0 to city i with cost c_i
- This forces us to pick at least 1 edge connecting vertex 0, which satisfies the "at least 1 city must connect to power directly" constraints
- The problem is now the standard MST problem
- Time complexity: $O(N^2 \cdot log(N))$

- Create an additional vertex 0
- Connect 0 to city i with cost c_i
- This forces us to pick at least 1 edge connecting vertex 0, which satisfies the "at least 1 city must connect to power directly" constraints
- The problem is now the standard MST problem
- Time complexity: $O(N^2 \cdot log(N))$
- This problem is a standard MST trick. It can be asked in programming interviews ^a

 $[^]a$ https://leetcode.com/problems/optimize-water-distribution-in-a-village/

Demo

Given a connected undirected graph with n $(n \le 2e5)$ vertices and an integer k, you have either:

- find an independent set that has exactly $\lceil \frac{k}{2} \rceil$ vertices.
- or find a simple cycle of length at most k.

An independent set is a set of vertices such that no two of them are connected by an edge. A simple cycle is a cycle that doesn't contain any vertex twice.

- Shortest cycle in a graph: $O(|V| \cdot |E|)$
- Maximum independent set: NP-hard

- Shortest cycle in a graph: $O(|V| \cdot |E|)$
- Maximum independent set: NP-hard
- No chance to solve it with brute force

- Shortest cycle in a graph: $O(|V| \cdot |E|)$
- Maximum independent set: NP-hard
- No chance to solve it with brute force
- Simple case, what if the graph is a tree?

- Shortest cycle in a graph: $O(|V| \cdot |E|)$
- Maximum independent set: NP-hard
- No chance to solve it with brute force
- Simple case, what if the graph is a tree?
- We can "bipartite" the graph, find the part with more vertices, and create an independent set of size K.

- Shortest cycle in a graph: $O(|V| \cdot |E|)$
- Maximum independent set: NP-hard
- No chance to solve it with brute force
- Simple case, what if the graph is a tree?
- We can "bipartite" the graph, find the part with more vertices, and create an independent set of size K.
- What about the general case?

Analysis 2

 Consider the dfs tree of the graph, since the graph is undirected, we only have tree edges and back edges (i.e., no cross edges)

- Consider the dfs tree of the graph, since the graph is undirected, we only have tree edges and back edges (i.e., no cross edges)
- We can extract all simple cycles with no edges cutting through

- Consider the dfs tree of the graph, since the graph is undirected, we only have tree edges and back edges (i.e., no cross edges)
- We can extract all simple cycles with no edges cutting through
- There is at least 1 such cycle

- Consider the dfs tree of the graph, since the graph is undirected, we only have tree edges and back edges (i.e., no cross edges)
- We can extract all simple cycles with no edges cutting through
- There is at least 1 such cycle
- If the cycle has size no more than K, print out the cycle

- Consider the dfs tree of the graph, since the graph is undirected, we only have tree edges and back edges (i.e., no cross edges)
- We can extract all simple cycles with no edges cutting through
- There is at least 1 such cycle
- If the cycle has size no more than K, print out the cycle
- Otherwise, create an independent set

Comments

 This problem examines the property of the dfs tree

Comments

- This problem examines the property of the dfs tree
- A very similar practice problem: Ehab's Last Theorem ^a

ahttps://codeforces.com/contest/1325/problem/F

Demo

Contest 2 Revision

Tips

- If finding min/max is too difficult, think if you can change the problem to a validation problem.
 - Perform binary search
 - Or just perform linear search

Contest 2 Revision

Tips

- If finding min/max is too difficult, think if you can change the problem to a validation problem.
 - Perform binary search
 - Or just perform linear search
- For dp problem: the size of input might be a hint
 - $N \le 20$, bitmask dp
 - $100 \le N \le 10^3$, knapsack dp, interval dp
 - $N \ge 10^5$, 1-d dp
- Make sure you can use sets/multisets well
- Make sure you have a working range tree template

- COMP4128 is a very challenging subject
- Hope you find the tutorials helpful

- COMP4128 is a very challenging subject
- Hope you find the tutorials helpful
- Hope your interview skills have improved a lot

- COMP4128 is a very challenging subject
- Hope you find the tutorials helpful
- Hope your interview skills have improved a lot
- If you are interested in ICPC, this is a good starting point
 - It took me only 1 year after COMP4128 to lead my first team to get the regional 2nd place
 - First team because my second team carried me in 2021

- COMP4128 is a very challenging subject
- Hope you find the tutorials helpful
- Hope your interview skills have improved a lot
- If you are interested in ICPC, this is a good starting point
 - It took me only 1 year after COMP4128 to lead my first team to get the regional 2nd place
 - First team because my second team carried me in 2021
 - Quantitatively: 3 problems/day for 1 year

- COMP4128 is a very challenging subject
- Hope you find the tutorials helpful
- Hope your interview skills have improved a lot
- If you are interested in ICPC, this is a good starting point
 - It took me only 1 year after COMP4128 to lead my first team to get the regional 2nd place
 - First team because my second team carried me in 2021
 - Quantitatively: 3 problems/day for 1 year
- Contest 2, this weekend
 - More challenging compared to contest 1

- COMP4128 is a very challenging subject
- Hope you find the tutorials helpful
- Hope your interview skills have improved a lot
- If you are interested in ICPC, this is a good starting point
 - It took me only 1 year after COMP4128 to lead my first team to get the regional 2nd place
 - First team because my second team carried me in 2021
 - Quantitatively: 3 problems/day for 1 year
- Contest 2, this weekend
 - More challenging compared to contest 1
- Good luck with the rest of the term!