Stochastic optimization - 5

Training work

Maximization of a building surface on a parcel of land.

The problematic

An architectural firm proposes the following simplified problem:

"find the building with the largest floor area contained in the given parcel".

 Given any polygon (convex or concave), the gal is to find the largest rectangle contained in it..

The optimization problem

The components of the problem are:

- The polygon: the constrained search space;
- The rectangle: the solution of the problem;
- Feasibility (is the rectangle inscribed in the polygon?): A constrained problem;
- The area of the rectangle: the evaluation function;
- => problem of maximization..
- MAIN DIFFICULTY: DESCRIBING THE PROBLEM

The polygon

A polygon is a tuple of pairs, representing the coordinates (abscissa, ordinate) of each vertex:

polygon = ((100,100),(100,400),(400,400),(400,100))

The rectangle

How to model a rectangle?

- Limit the number of parameters (reduce the size of the problem);
- "Thinking Neighborhood": be certain that the "neighbor" of a rectangle is a rectangle;
- Choose it's representation in order to efficiently browse the search space

The search space

Define the search space of the rectangle according to the polygon:

- Coordinates: bounding box of the polygon;
- Angle: 180° with amplitude ([0; 180], [-90; 90], ...).

The feasibility

A rectangle is it valid for the problem?

Clipping algorithm:

Vatti, Weiler-Atherton, Greiner-Hormann, Sutherland-Hodgman...

To Do List - 1/2

The first time, we ask you to discribe the problem:

- Model a rectangle as a candidate solution of the problem;
- Write a function sol2rect (solution) that tranforms on solution of the problem into rectangle (n-tuple of coordinates);
- Test the <u>pyclipper</u> library, allowing clipping according to the Vatti algorithm. Understand its operation and write a predicate isValid(polygon, rectangle) that checks that the rectangle is well contained in the polygon;
- Write the objective function to maximize: area (rectangle).

To Do List - 2/2

In a second step, you are asked to solve the optimization problem and perform statistical tests on their performance:

- Adapt and apply 2 algorithms among those discussed in class;
- Define a fair comparison criterion;
- Create a sample of 30 results by algorithm;
- Make the Tuckey boxes corresponding to the results on the same chart;
- Use an appropriate statistical test to compare the algorithms with each other.

That's all folks!