CS23334 -Fundamental Of Data Science

240701463

Data Preprocessing (Missing Values and Encoding)

Exp :3A

Date: 12-08-2025

Aim:

To understand the importance of Data Preprocessing by performing two critical steps on a sample dataset: imputing missing values and encoding categorical variables into a format suitable for machine learning models.

Algorithm:

- 1. Load the dataset and **identify missing values** in 'Age' and 'Salary' and categorical columns ('Country', 'Purchased').
- 2. Impute missing values in the numerical 'Age' column using the median.
- 3. Impute missing values in the numerical 'Salary' column using the mean.
- 4. **Impute missing values** in the categorical 'Country' column using the **mode** (most frequent value).
- 5. Perform **One-Hot Encoding** on the 'Country' column using pd.get_dummies().
- 6. Perform Label Encoding on the binary 'Purchased' column (Yes=1, No=0).

Code:

```
import numpy as np
import pandas as pd

df = pd.read_csv("pre_process_datasample.csv")
print("--- Initial Data ---\n", df)

df.info()
age_median = df.Age.median()
salary_mean = round(df.Salary.mean())
```

```
country_mode = df.Country.mode()[0]

df.Country.fillna(country_mode, inplace=True)

df.Age.fillna(age_median, inplace=True)

df.Salary.fillna(salary_mean, inplace=True)

print("\n--- Data After Missing Value Imputation (Execution Count 7) ---\n", df)

df.info()

country_dummies = pd.get_dummies(df.Country)

updated_dataset = pd.concat([country_dummies, df.iloc[:,[1,2,3]]], axis=1)

print("\n--- Data After One-Hot Encoding for Country (Execution Count 10) ---\n", updated_dataset)

updated_dataset.Purchased.replace(['No','Yes'],[0,1],inplace=True)

print("\n--- Final Preprocessed Data (Execution Count 15) ---\n", updated_dataset)
```

Output:

	Country	Age	Salary	Purchased								
0	France	44.0	72000.0	No								
1	Spain	27.0	48000.0	Yes								
2	Germany	30.0	54000.0	No	<pre><class 'pandas.core.frame.dataframe';<="" pre=""></class></pre>							
3	Spain	38.0	61000.0	No	RangeIndex: 10 entries, 0 to 9							
4	Germany	40.0	NaN	Yes	Data columns (total 4 columns): # Column Non-Null Count Dtype							
5	France	35.0	58000.0	Yes								
6	Spain	NaN	52000.0	No	<pre>0 Country 10 non-null object 1 Age 9 non-null float64</pre>							
7	France	48.0	79000.0	Yes	2 Salary 9 non-null float64							
8	Germany	50.0	83000.0	No	<pre>3 Purchased 10 non-null object dtypes: float64(2), object(2)</pre>							
9	France	37.0	67000.0	Yes	memory usage: 448.0+ bytes							

	France	Germany	Spain		France	Germany	Spain	Age	Salary	Purchased
0	True	False	False	0	True	False	False	44.0	72000.0	No
1	False	False	True	1	False	False	True	27.0	48000.0	Yes
2	False	True	False	2	False	True	False	30.0	54000.0	No
3	False	False	True	3	False	False	True	38.0	61000.0	No
4	False	True	False	4	False	True	False	40.0	63778.0	Yes
5	True	False	False	5	True	False	False	35.0	58000.0	Yes
6	False	False	True	6	False	False	True	38.0	52000.0	No
7	True	False	False	7	True	False	False	48.0	79000.0	Yes
8	False	True	False	8	False	True	False	50.0	83000.0	No
9	True	False	False	9	True	False	False	37.0	67000.0	Yes

≺cla	<pre><class 'pandas.core.frame.dataframe'=""></class></pre>							
Rang	RangeIndex: 10 entries, 0 to 9							
Data	Data columns (total 4 columns):							
#	Column	Non-Null Count	Dtype					
0	Country	10 non-null	object					
1	Age	10 non-null	float64					
2	Salary	10 non-null	float64					
3	Purchased	10 non-null	object					
<pre>dtypes: float64(2), object(2)</pre>								
memory usage: 448.0+ bytes								

	France	Germany	Spain	Age	Salary	Purchased
0	True	False	False	44.0	72000.0	0
1	False	False	True	27.0	48000.0	1
2	False	True	False	30.0	54000.0	0
3	False	False	True	38.0	61000.0	0
4	False	True	False	40.0	63778.0	1
5	True	False	False	35.0	58000.0	1
6	False	False	True	38.0	52000.0	0
7	True	False	False	48.0	79000.0	1
8	False	True	False	50.0	83000.0	0
9	True	False	False	37.0	67000.0	1

Result:

The experiment successfully demonstrates the initial steps of data preprocessing. The importance of this phase is clear:

- 1. **Imputation** ensures that **missing data** does not cause errors or bias model training.
- 2. **Encoding** converts non-numeric **categorical data** (like country names) into a numerical format (like binary columns or 0/1 labels) that **machine learning algorithms** can process effectively.

The final updated_dataset is cleaned and fully digitized, making it ready for model training. Thus the python program was executed successfully, and the output is verified.