1. (12 pts) Assume ideal diodes, find the diode states for the circuits shown in Figure 1, and calculate the current I and voltage V.

- 2. For the BJT amplifier circuit shown in Figure 2, where Vc=20V, β =200, $V_{BEQ}=0.7V$,
- a. Find the value of I_{BQ} , I_{CQ} \circ
- b. Draw the small-signal equivalent circuit of the amplifier.
- c. Find the voltage gain.
- d. Find the input resistance, r_i .
- e. Find the output resistance, r_o .

- 3. The circuit shown in Figure 3 is a common-drain (or source follower) amplifier. The transistor parameters, and component values are: RL = 1 k Ω and R1 = R2 = 2 M Ω . KP=50 μ A/ V^2 , V_{to} =1V, L=2 μ m, W=160 μ m.
- a. Find the value for $\it R_{\it S}$ to achieve $\rm\,I_{\rm DQ}\,$ = 10 mA.
- b. Draw the AC small-signal equivalent circuit.
- c. Determine the values of the input resistance Ri, the output resistance R0, and voltage gain Av.

- 4. The circuit composed of ideal operational amplifiers is shown in Figure 4,
- a. Derive the expression of V_0 .
- **b. When** $R_1 = R_2 = R_3 = R_f$, $V_0 = ?$
- c. What is the feedback type of R_f ?

- 5. (12 pts) The sequential logic circuit and clock signal are shown in Figure 5.
- a. List the truth tables of JK flip flop and D flip flop. (6pts)
- b. Sketch the Q_0 and Q_1 versus time.(Assuming that Q_0 and Q_1 be "0" at beginning)(6pts)

- 6. (16 pts) The operation rules of three motors A, B and C are as follows: when C is not started up, B can not be started up; when B is not started up, A can not be started up. Design a logic circuit outputs the alarm signal F when operation rules are not obeyed.
- a. Let the motor started be 1 and the motor stopped be 0. Let alarm signal appears be 1, otherwise be 0. Construct the truth table of F. (4pts)
- b. Write the sum-of-products implementation for F. (4pts)
- c. Construct a Karnaugh map for above logic function F and reduce it.(4 pts)
- d. Realize the function using AND, OR and NOT gates. (4pts)

- 7. The differential amplifiers is shown below, where β =50, U_{be} =0.7V, input voltage u_{i1} =6mV, u_{i2} =4mV, Ucc=6V, Ee=-6V, R_B =10 k Ω , Rc=5 k Ω , R_E =5 k Ω ; a. Find the values of I_{BQ} , I_{CQ} .
- b. Decompose u_{i1} and u_{i2} to common-mode signals u_{ic1} and u_{ic2} as well as differential signals u_{id1} and u_{id2} .
- c. Calculate the single-ended outputs u_{od1} and u_{od2} for differential signals;
- d. If the gain of common mode signal for single-ended outputs is Ac =
- $-Rc/2R_E$, calculate the single-ended outputs u_{o1} and u_{o2} ;
- e. Calculate the common-mode output u_{oc} and differential output u_{od} .

