Project Design Phase-I

Proposed Solution Template

Date	19 September 202
Team ID	PNT2022TMID18451
Project Name	Project - developing a flight delay prediction
	model using machine learning
Maximum Marks	2 Marks

Proposed Solution Template:

 $\label{project} \mbox{Project team shall fill the following information in proposed solution template}.$

S.No.	Parameter	Description
1.	Problem Statement (Problem to be	we focused the idea and research on LaGuardia
	solved)	International Airport. Compared with the data
		produced by all airports in USA, the data which
		we gathered was very limited, but it gave us a
		great direction on how weather plays a part in
		flight delays.
2.	Idea / Solution description	These delays not only cause inconveniences to
		the airlines but also to the passengers. The
		result is an increase in travel time which
		increases the expenses associated with food and
		lodging and ultimately causes stress among
		passengers. The repositioning, fuel consumption
		while trying to reduce elapse times, and many
3.	Novelty / Uniqueness	The data that I used comes from Kaggle and it
		consists of a multi-year dataset ranging from
		2009 to 2018 separated by year, so one file per
		year. Each one of these files contains an average
		of 28 categories with a few million rows.
		Because of the size of each file I chose to work
		only with of over 7.2 million rows.
4.	Social Impact / Customer Satisfaction	At this point I had to make a pause and decide
		what the definition of a delayed flight would be
		for the project because this is what would be
		determining if I could drop or not any other
		columns and/or rows.
5.	Business Model (Revenue Model)	For the ML the workflow was pretty straight
		forward by starting defining the target, which
		was the FLIGHT_STATUS, and then dropping it
		alongside the DEP_DELAY (for the first set of
		models only) from the dataframe to define X
		(features). With this done, I split the data with a
		25 and 75% for the test and used a typical rate
_		of 42.
6.	Scalability of the Solution	Doing the MLP Deep Neural Network was more
		difficult and time consuming due to the high
		number of tests needed and the size of the
		dataset, which was reduced from +7 million to
		around +4 million rows by limiting the study to
		the top 20 destination cities.