Lecture 17: Accountability

https://web3.princeton.edu/principles-of-blockchains/

Professor Pramod Viswanath Princeton University

This lecture:

Accountability – malicious actors can be identified by public log; Provides a new kind of security via "slashing"; allows "insurance"

Governance System

Legislative

Executive

Judicial

Protocol description

Incentives and Fees

???

Legislative: BFT Protocols

BFT-SMR(t)

When $f \leq t$, non-faulty parties eventually agree on the same sequence of values.

What happens when f > t?

BFT Protocol Forensics

Safety / liveness violation

Judicial: BFT Protocol Forensics

Forensic support: provide irrefutable evidence of bad behavior

Q1: How many bad actors?
As many as possible

Q2: How to obtain such evidence? As distributed as possible

Safety / liveness violation

Forensic Support

k: number of honest witnesses

d: number of Byzantine replicas detected

Intuition for Forensics

Double vote

Multi-stage protocol

This Talk

Case Study: HotStuff

- Partially synchronous protocol, tolerates 1/3 Byzantine faults (n=3t+1)
- Linear communication complexity and responsiveness
- Consensus engine for multiple blockchains

Case Study: HotStuff

Messages in some view e

Case Study: HotStuff

Safety $(f \le t)$ = uniqueness of QC + voting rule

A node locked on v will not vote differently unless *hQC* shared by leader is from a higher view

Messages in some view e

Safety Violation of HotStuff

Safety violation (f > t) = uniqueness of QC

or vote for different values without hQC from a higher view

Messages in some view e

An Attack Across Views

An Attack Across Views

Case1: B, C are malicious if $hQC.view \le e$

Case2: If hQC.view > e, look back, find a view where Case1 happens

An Attack Across Views

 e^* : first view > e, where a prepareQC for a different value was formed

Forensic Support for HotStuff

 $prepareQC(v') = \{ \langle vote1, e^*, v', hQC.view \rangle \}_{2t+1}$

- d = t + 1 $commitQC(v) \cap prepareQC(v')$
- k = 1: one node who receives prepareQC(v') =

```
{< \text{vote1}, e^*, v', hQC. view >}_{2t+1}
where hQC. view \le e
```

View e'

Strong Forensic Support

Case Study: Algorand BA

- Algorand BA: Synchronous protocol, tolerating 1/3 faults [CM'16]
- Player replaceable

All Users Committee

Case Study: Algorand BA

- Propagate local value b
- Receive values within a synchronous step:
 - #(0) > 2t, update b = 0 (terminate if step 1)
 - #(1) > 2t, update b = 1 (terminate if step 2)
 - Else
 - Step 1: set b = 0
 - Step 2: set b = 1
 - Step 3: set b = common coin

Safety intuition $(f \le t)$: Suppose a party commits b = 0

- All (> 2t) honest parties have b = 0
- Honest parties never change their value to b=1

Step 1

Step 2

Step 3

Safety Violation of Algorand

- Propagate local value b
- Receive values within a synchronous step:
 - #(0) > 2t, update b = 0 (terminate if step 1)
 - #(1) > 2t, update b = 1 (terminate if step 2)
 - Else
 - Step 1: set b = 0
 - Step 2: set b = 1
 - Step 3: set b = common coin

Safety intuition (f > t Suppose a party commits b = 0

- $\leq 2t$ honest parties have b = 0
- Honest parties r can hange their value to b=1

Step 1

Step 2

Step 3

Attack on Algorand BA

World 1: Culprits Do Not Send b

World 2: Culprits Change b

What Impairs Forensic Support?

Question: Does Player replaceability mean no forensic support?

What Impairs Forensic Support?

Question: Does Player replaceability mean no forensic support?

Summary

Legislative

Protocol description

Executive

Incentives

Judicial

Forensic Support

Protocol-level forensics

- Case studies
- Protocol designs: player replaceable
 + strong forensic support
- Practicality: CBDC

Application-level forensics

- NFT marketplace: wash trades
- Anomaly detection

Summary: Accountability boosts security

- Security is one side of the coin
 - Enough participants follow protocol
- What happens if the security is broken? Forensics.
 - Allows accountability
- Slashing conditions
 - Participants put up collateral that can be "slashed" if found culpable
 - Objective "slashing conditions"

- Key distinguishing feature of PoS
 - Ethereum 2.0; 32 ETH staked by each participant

Attendance: NFT Drop

https://poap.website/well-style-individual

- Mint token to Metamask.
- Submit tx hash for attendance claim.

Instructions in Ed pinned posts.