Devoir N° 3 semestre 1

Exercice 1

ABC est un triangle tels que: $BC=5\mathrm{cm}$, $AB=3\mathrm{cm}$ et $AC=4\mathrm{cm}$.

- 1) Montrer que le triangle ABC est un triangle rectangle.
- 2) Calculer $\cos(\widehat{ACB})$, $\sin(\widehat{ACB})$ et $\tan(\widehat{ACB})$
- 3) En déduire $\cos(\widehat{ABC})$, $\sin(\widehat{ABC})$ et $\tan(\widehat{ABC})$.
- 4) Soit le point H est le projeté orthogonal de A sur la droite (BC). Caclculer la distance AH.

Exercice 2

Soint α un angle aigu tel que $\sin(\alpha) = \frac{1}{\sqrt{2}}$

- 1) Calculer $\cos(\alpha)$ et $\sin(\alpha)$.
- 2) Calculer:

$$A = \cos^{2}(20^{\circ}) + 2\sin^{2}(10^{\circ}) + \cos^{2}(70^{\circ}) + 2\sin^{2}(80^{\circ})$$

$$B = \tan 70^{\circ} + \frac{2}{\tan 60^{\circ}} - \frac{1}{\tan 20^{\circ}}$$

Exercice 3

Soit (C) un de centre O.

A, B, E et F sont des ponts appartiennent au cercle (C).

- 1) Calculer la mesure de l'angle \widehat{FEB} .
- 2) Calculer la mesure de l'angle \widehat{FOB} .
- 3) Soint K le point d'intersection de (FA) et (EB). Sachant que AB = EF montrer que les triangles EFK et ABK sont isométriques.