Cryptography Final - May 14th 2:45pm Review Sheet

Need to know:

• Advantages and Disadvantages of one time pad

Advantages:

- * Impossible to crack if the key is never reused, completely random and kept secret
- * Immune to brute force attacks trying all keys simply yields all plaintexts, all equally likely to be the acual plaintext.

Disadvantages:

- * Hard to find a truly random key, possible by: psuedorandom number generator
- * Security of the one time pad is only as secure as the exchange of the key if this is not secure, then the key isn't either.
- * It is difficult to make sure that it continues to remain a secret dispose of it after first use properly.
- Difference between Stream Ciphers and block ciphers

- Block Ciphers:

- * More general i.e. can you convert a block cipher into a stream cipher? Yes, make block size one bit
- * Have no math involved has to be reversable function
- * Are good in hardware and software but not as good in terms of hardware as stream cipher

- Stream Ciphers:

- * stream ciphers have more mathematical structure statistical attacks easier to break and easier to study
- * stream ciphers are not suitable for software but highly efficient in hardware
- What is 3DES three 56 bit keys
 - * Keys to test in worse case $2^{56\cdot3}$, average 2^{55*3}
 - * 3DES takes in 3 keys, and uses the first key to encrypt a message, the second key to decrypt the encrypted message and then uses the third key to reincrypt the decrypted message.
- DES bit length, keys to test in worse case
 - * Keys to test in worse case 2^{56} , average 2^{55}
- Why is 2 DES not secure?
 - * Not secure because the brute force attack of it is less than 2⁹⁰.
 - * Keys to test in worse case $2^{56\cdot 2}$.
 - * 2DES takes 2 keys and encrypts the message with one of them and then decrypts with the other key.
- What is meet in the middle attack cuts in half the amount of keys to check
- BC what is one time pad attacks on one time pad use same key xoring two messages together gets the messages concatenated together.
- Brute force attacks and time it will take to do.
 - How to brute force decrypt something.

- Most likelyhood of something to happen probability
- Factorization of a number made of 2 primes product of 3 primes instead of 2 primes
 - how to find phi with 3 prime values
 - given some cipher from Alice, how would you decrypt it?
 - think about it for every algorithm thats out there
 - also think about chinese remainder theorem
- diffie helman given g^a and g^b , finding g^{ab} is hard... how?
 - given generator, compute the g^{ab}
 - Elgamal- how it works.
 - how to involve 3 people into this?
 - sending encrypted message from alice to bob, you have g^{ab} and for bob and carol you get g^{bc} .
 - m = 59, g = 2, p = 227. Alice has a = 8, bob b = 6, carol c = 5. H_a = 29, H_b = 64, H_c = 32 (all mod 227). Alice will generate g^{ab} using Bobs half mask. F_{ab} = 12. If you don't get the same full mask for bob and alice, its wrong. Same thing for bob and carol. F_{bc} = 44
 - p = 2q+1 safe prime q = $\frac{p-1}{2}$
 - $-g^1 \neq 1$
 - $-g^2 \neq 1$
 - $-g^q \neq 1$
- Diffie helman Elliptic Curve
 - Same security in EC 128 as Elgamal 256.
 - Given a curve, only thing on the curve will be the quadratic residues.
 - given a set, show me a formula to find the quadratic residues. Legranges symbol. $(\frac{x}{p}) = x^{\frac{p-1}{2}} \mod p$ if we get 1, it is a quadratic residue, -1 is going to be a non quadratic

residue.

- finding the square roots of x raise x to the (p+1)/4 and mod by p
- get ascii character to the (x1, y1) character when turning it into a cipher m is a point on the curve. ALICE has her own multiplier, bob will have his own multiplier. use them to encrypt their own half masks B=4g and A=3g. F=B*3 (bobs halfmask times Alice's multiplier.
- make sure you can find all of the points on the curve. you dont have to find the square roots if the number is not -1 when raised to the power of (p-1)/2 mod the number.
- the generator value is a point on the curve and the message point is a point on the curve. ALL OF THE THINGS YOU GET IS A POINT ON THE CURVE.
- (1) RSA Public Key Encryption.

Given:

n a small prime e smallest odd integer with gcd with ϕ of 1 c an encrypted message

Needed:

p and q two prime numbers whose products are n $\phi = (p-1)(q-1)$ $d = e^{-1}$

- (a) Find the primes p and q. If you do not have a prime factorization on your calculator, then know that one of them is going to be less \sqrt{n} , knowing this, we can test all primes less than \sqrt{n} .
- (b) Calculate $\phi = (p-1)(q-1)$. From here, it should be easy to find e if it is not given. Parse through lowest odd values until you find one where $gcd(e, \phi) = 1$.
- (c) Now that you have e, you have to use pulverizer to solve for d.

$$\phi$$
 e Quotient Remainder x_1 y_1 x_2 y_2