Trabajo Práctico 2

Funciones

- Ejercicios sugeridos: 1a, 1h, 1l, 2, 3f, 4, 6, 9, 14a, 14e y 14i. 14i,
- 1. Buscar el conjunto $D \subset \mathbb{R}$, más grande en el sentido de la inclusión, tal que la función $f:D\longrightarrow\mathbb{R}$ es función. Además, realizar un gráfico (se puede usar un programa computacional) y estimar la imagen. Decidir si la función es inyectiva (en caso de no serlo dar un contraejemplo y en caso de serlo dar una prueba).

- a) f(x) = 6x 9b) $f(x) = 3x^2 3x + 1$ c) $f(x) = \sin(x)$ d) $f(x) = 2x^3 4$ f(x) = 6x 9 $f(x) = \frac{x}{1 + x^2}$ $f(x) = \log_2(x^2 + 2)$ $f(x) = \log_2(x^2 + 2)$ $f(x) = \frac{1}{(\cos(6x))^3}$ $f(x) = \frac{1}{(\cos(6x))^3}$
- 2. Realizar $f \circ g \vee g \circ f$:

$$f: \mathbb{R} \longrightarrow \mathbb{R} \text{ tal que } f(x) = 6x - 9$$

 $g: \mathbb{R} \longrightarrow \mathbb{R} \text{ tal que } g(x) = 3x^2 - 3x + 1$

- 3. Buscar la función inversa y comprobar que es la función inversa.
 - a) $f: \mathbb{R} \longrightarrow \mathbb{R}$ dada por f(x) = 4x + 2
 - b) $f: \mathbb{R} \longrightarrow (0, +\infty)$ dada por $f(x) = 3^x$
 - c) $f:(0,+\infty)\longrightarrow \mathbb{R}$ dada por $f(x)=3\log_2(x)$
 - d) $f: \mathbb{R} \longrightarrow \mathbb{R}$ dada por $f(x) = 4x^3 5$
 - e) $f: \mathbb{R} \{0\} \longrightarrow \mathbb{R} \{3\}$ dada por $f(x) = 3 + \frac{1}{x}$
 - f(x) = f(x) + f(x) = f(x) = f(x) = f(x) = f(x)
- 4. Sea $S := \{0,1\}$ y sea $f: S \longrightarrow S$ definida por

$$f(0) = 1 \text{ y } f(1) = 0.$$

- a) Calcular $f \circ f$ y $f \circ f \circ f$.
- b) Intuir cuál es el valor de $f^n(0)$ y probarlo por inducción.
- 5. Sea $S_3 := \{1, 2, 3\}$ y sea $f: S_3 \longrightarrow S_3$ definida por

$$f(1) = 2,$$
 $f(2) = 3$ y $f(3) = 2.$

- a) Calcular $f \circ f$ y $f \circ f \circ f$.
- b) Intuir cuál es el valor de $f^n(1)$ y probarlo por inducción.
- 6. Sea $f: \mathbb{N} \longrightarrow \mathbb{N}$ definida por

$$f(n) = 2n + 3.$$

- a) Calcular $f \circ f$ y $f \circ f \circ f$.
- b) Intuir cuál es la fórmula para $f^n := f \circ f \circ \ldots \circ f$ (n veces) y probarlo por inducción.

1

7. Sea $f: \mathbb{N} \longrightarrow \mathbb{N}$ definida por

$$f(n) = 3n + 2.$$

- a) Calcular $f \circ f$ y $f \circ f \circ f$.
- b) Intuir cuál es la fórmula para $f^n := f \circ f \circ \ldots \circ f$ (n veces) y probarlo por inducción.
- 8. Sea $f: \mathbb{N} \longrightarrow \mathbb{N}$ definida por

$$f(n) = 3n^2.$$

- a) Calcular $f \circ f$ y $f \circ f \circ f$.
- b) Intuir cuál es la fórmula para $f^n := f \circ f \circ \ldots \circ f$ (n veces) y probarlo por inducción.
- 9. * Sean $f: X \longrightarrow Y$, $A \subset X$ y $B \subset Y$, se define

$$f(A) := \{ f(x) : x \in A \}$$
 $f^{-1}(B) := \{ x \in X : f(x) \in B \}$

A f(A) la imagen de A bajo f y a $f^{-1}(B)$ la imagen inversa de B bajo f.

$$g = \{(1, a), (2, c), (3, c)\}$$

una función de dominio $X = \{1, 2, 3\}$ y codominio $Y = \{a, b, c, d\}$. Sea $S = \{1\}$, $T = \{1, 3\}$, $U = \{a\}$ y $V = \{a, c\}$. Encuentre g(S), g(T), $g^{-1}(U)$ y $g^{-1}(V)$.

10. * Sea $f: X \longrightarrow Y$. Probar que f es inyectiva si y sólo si

$$f(A \cap B) = f(A) \cap f(B),$$

para todos los subconjuntos A y B de X.

- 11. * Sea $f: X \longrightarrow Y$. Pruebe que f es inyectiva si y sólo si para toda $g: Z \longrightarrow X$ inyectiva se tiene que $f \circ g$ es inyectiva.
- 12. * Sea $f: X \longrightarrow Y$. Demuestre que f es sobreyectiva si y sólo si para toda $g: Y \longrightarrow Z$ sobreyectiva se tiene que $g \circ f$ es sobreyectiva.
- 13. * Sea $f: X \longrightarrow Y$. Sea

Sea

$$A := \{ f^{-1}(\{y\}) : y \in Y \}.$$

Demuestre que A es una partición de X, es decir,

$$\bigcup_{A \in \mathcal{A}} A = X.$$

- 14. Una función $f: X \times X \longrightarrow Y$ se dice simétrica si f(x,y) = f(y,x) para todo $(x,y) \in X \times X$. Decidir si las funciones son simétricas, en caso de no ser simétricas dar un contraejemplo.
 - a) $f: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ dada por f(x,y) = x + y
 - b) $f: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ dada por f(x,y) = xy
 - c) $f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{Z}$ dada por f(x,y) = xy
 - d) $f: \mathcal{P}(X) \times \mathcal{P}(X) \longrightarrow \mathcal{P}(X)$ dada por $f(A, B) = A \cup B$
 - e) $f: \mathcal{P}(X) \times \mathcal{P}(X) \longrightarrow \mathcal{P}(X)$ dada por f(A, B) = A B
 - f) $f: \mathcal{P}(X) \times \mathcal{P}(X) \longrightarrow \mathcal{P}(X)$ dada por $f(A, B) = A \triangle B$
 - $g) \ f: (\mathbb{R} \{0\}) \times (\mathbb{R} \{0\}) \longrightarrow \mathbb{R} \text{ dada por } f(x, y) = \frac{x}{y}$
 - h) $f: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ dada por $f(x,y) = x^2 + y^2 xy$
 - i) $f: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ dada por $f(x,y) = x^2 + y^2 2xy$
- 15. * Sea $S_3 := \{f \mid f : \{1,2,3\} \rightarrow \{1,2,3\} \text{ biyectiva } \}$. Describir el conjunto y componer las funciones de S_3 . Este conjunto será importante cuando veamos grupos.