
Laboratório de Sistemas Digitais Experimento 06

OBJETIVOS:

 Implementar circuitos sequenciais (um flip-flop e um registrador de deslocamento bidirecional) em VHDL e simular no ModelSim usando a estrutura "process" da linguagem VHDL.

INSTRUÇÕES:

- O experimento deve ser realizado utilizando o ModelSim;
- Cada experimento será avaliado por meio do relatório técnico e dos códigos submetidos pelo aluno, por meio da plataforma Aprender. Os códigos devem ser submetidos comprimidos em um único arquivo.
- A sua simulação deve incluir o arquivo vhdl contendo a entidade (entity), a arquitetura (architecture) do circuito e o arquivo vhdl do test bench desenvolvido para simulá-los Conforme descrito no guia de uso, o seu relatório deve conter os códigos, as telas de compilação e simulação do ModelSim e as formas de ondas obtidas com a simulação.
- O relatório é individual e receberá uma nota de 0 a 10, considerando os seguintes aspectos:
 - Documentação do código, contida no relatorio (pdf) e no codigo vhdl- 20% da nota do projeto;
 - Compilação do código, apresentada no relatorio do projeto econfirmado pelo codigo vhd -10% da nota do projeto;
 - Simulação do código, apresentada no relatório do projeto econfirmado pelo codigo vhd - 70% da nota do projeto.
- Os códigos VHDL das entidades e arquiteturas desenvolvidas neste experimento e no experimento anterior serão utilizadas em experimentos futuros para construir sistemas mais complexos.

Faculdade de Tecnologia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Gleba A, Avenida L3 Norte, CEP 70.910-900, Brasília — DF
Caixa postal 4386, fone +55 61 3107 5510, fax +55 61 3107 5590, secene@ene.unb.br, www.ene.unb.br

QUESTÃO 01.

Usando a estrutura "process", implementar em VHDL e simular no ModelSim um flipflop JK gatilhado pela borda de subida, com funcionamento descrito pela tabela verdade abaixo.

	saída				
PR	CLR	entradas <i>CLK</i>	J	K	Q
1	Х	Х	Х	Х	1
0	1	Х	Х	Х	0
0	0	<u>-</u>	0	0	mantém
0	0	<u>-</u>	0	1	0
0	0	₹	1	0	1
0	0	<u>-</u>	1	1	inverte
0	0	outros	Х	Х	mantém

QUESTÃO 02.

Usando a estrutura "process", implementar em VHDL e simular no ModelSim um registrador de deslocamento bidirecional de 4 bits, com funcionamento descrito pela tabela verdade abaixo.

Respeite a ordem de significância dos bits dos vetores D e Q, de modo que os bits menos significativos (D0 e Q0) fiquem em posições à direita dos mais significativos.

entradas								
CLK	RST	LOAD	D	DIR	L	R	Q	
Ŧ	1	Х	xxxx	Х	х	х	0000	
<u>-</u>	0	1	$D_3D_2D_1D_0$	х	х	х	$D_3D_2D_1D_0$	
<u>-</u>	0	0	XXXX	0	0	Х	$Q_2Q_1Q_0$ 0	
Ŧ	0	0	XXXX	0	1	Х	$Q_2Q_1Q_0$ 1	
<u>-</u>	0	0	xxxx	1	х	0	$0 Q_3Q_2Q_1$	
Ŧ	0	0	xxxx	1	Х	1	1 Q ₃ Q ₂ Q ₁	
outros	Х	Х	xxxx	Х	Х	Х	$Q_3Q_2Q_1Q_0$	