مهلت تحویل: ۱۴۰۴/۰۲/۲۶ دکتر باقری

بهنام خدا

پروژه سوم کنترل تطبیقی (رگلاتورهای خودتنظیم تصادفی)

گروه مهندسی کنترل دانشکده مهندسی برق و کامپیوتر

$G(s) = \frac{4(0.6s+1)(s+0.8)}{(3s+1)^2(2s-1)}$	شيوا ناصح
$G(s) = \frac{-0.3(s+2)(s+0.8)}{(s^2+s+0.3)(s-1)}$	حسن هادى جوحى اللامى
$G(s) = \frac{3(0.6s+1)(s+0.8)}{(3s+1)^2(s-1)}$	سیدعلی رضوی
$G(s) = \frac{-2(0.6s+1)(s+0.8)}{(2s+1)^2(s-1)}$	محمد زرندی
$G(s) = \frac{3(0.4s+1)(s+0.8)}{(3s+1)^2(s-1)}$	مرتضى اسعدى
$G(s) = \frac{3(0.4s+1)(s+0.8)}{(2s+1)^2(s-1)}$	ياسمن پورتقى
$G(s) = \frac{4(0.8s+1)(s+0.8)}{(3s-1)(s+1)^2}$	مهدی جودی
$G(s) = \frac{-3(0.5s+1)(s+0.8)}{(3s-1)(2s+1)^2}$	مهدی حاجیزاده
$G(s) = \frac{2(0.6s+1)(s+0.8)}{(2s+1)^2(s-2)}$	امین دیبائی
$G(s) = \frac{-2(0.4s + 1)(s + 0.8)}{(3s + 1)^2(s - 2)}$	رضا على اكبرى
$G(s) = \frac{2(0.4s+1)(s+0.8)}{(2s+1)^2(s-2)}$	محمدحسين نوراللهى
$G(s) = \frac{3(0.8s+1)(s+0.8)}{(3s-1)(s+2)^2}$	امید ملکی

با توجه به سیستم دینامیکی تعیین شده، با درنظر گرفتن زمان نمونهبرداری مناسب مدل زمان گسسته سیستم خود را بدست آورید. سپس موارد زیر را بر روی سیستم خود بیاده کرده و تحلیل نمایید.

ا. با فرض معلوم بودن سیستم، برای سیستم خود در حضور نویز رنگی کنترل کننده حداقل واریانس (Minimum Variance) طراحی کنید و عملکرد آن را از دید سیگنال خروجی، سیگنال کنترلی و تلفات انباشته بررسی کنید. نویز رنگی را به صورت $e(t) + c_1 e(t-1) + c_2 e(t-2)$ درنظر بگیرید و ضرایب آن را به دلخواه ولی پایدار فرض کنید. نویز سفید e(t) و را هم فرض کنید دارای میانگین صفر و واریانس ۱ باشد.

- ۲. به سیستم مدنظر به اندازه ۲ زمان نمونهبرداری تاخیر اضافه کرده و بخش ۱ را تکرار کنید.
 - ٣. با فرض نامعلوم بودن سيستم، بخش ١ را به صورت تطبيقي غيرمستقيم تكرار كنيد.
 - ۴. با فرض نامعلوم بودن سیستم، بخش ۱ را به صورت تطبیقی مستقیم تکرار کنید.
- له را Moving Average که با فرض معلوم بودن سیستم، بخش ۱ را با درنظر گرفتن کنترل کننده Moving Average تکرار کنید (d. جداقل یک واحد بیشتر از d درنظر بگیرید).
- ۶. هر دو صفر سیستمتان را به خارج دایره واحد تصویر کنید. برای سیستم نامینیممفاز ایجاد شده بخش ۵ را تکرار کنید.
- ۷. با فرض نامعلوم بودن سیستم، بخش ۵ را به صورت تطبیقی مستقیم و یا غیرمستقیم (به دلخواه) تکرار کنید.
- در تمامی بندهای فوق، نتایج شبیه سازی پاسخ خروجی سیستم، سیگنال کنترلی و پارامترهای تخمین زده شده (در حالت تطبیقی) را در گزارش بیاورید.

جواب تمرینها و پروژه را در موعد تعیین شده، به آدرس زیر ارسال کنید:

peyman.bk@gmail.com

- ✓ با توجه به محدود بودن ظرفیت ایمیل دانشگاهی، لطفا پاسخ تمرینها را به ایمیل فوق ارسال کنید.
- ✓ در ارسال ایمیل، عنوان ایمیل را تمرین شماره ... درس کنترل تطبیقی قرار دهید و حتماً در متن ایمیل مشخصات دانشجویی تان را ذکر کنید.
- rar کل فایلهای تان را به صورت مرتب و به صورت فشرده شده با فرمت zip یک جا ارسال کنید (به صورت ارسال نشود).
- ✓ تا چند روز پس از دریافت ایمیل، پاسخی از من دریافت خواهید کرد والا مطمئن شوید که ایمیل به دست
 من نرسیده است.
 - \checkmark به پروژههایی که بیش از دو روز بعد از موعد تحویل دریافت شوند، نمره کمتری تعلق خواهد گرفت.
- ✓ با توجه به نیاز به شبیهسازی، لازم است که گزارشکار ارسال شود و در آن هر کاری که انجام داده و نتیجهای که گرفتهاید را بیاورید و فایلهای MATLAB را هم ارسال نمایید.

موفق، سربلند و سلامت باشید