C. Inference Using Bayes' Rule

i) From the definition of Conditional Probabilities and Commutativity of Conjunction we can derive the following <u>Product rules</u>:

$$P(a \land b) = P(a \mid b) * P(b)$$
, where $P(b) > 0$, and $P(a \land b) = P(b \mid a) * P(a)$, where $P(a) > 0$.

ii) From the product rules above we get the **Bayes' rule/ law/ theorem**, $P(b \mid a) = P(a \mid b) * P(b) / P(a), P(a) > 0 \text{ and } P(b) > 0,$ which underlies all modern AI systems for probabilistic inference.
[Probability of hypothesis given the evidence/ effect]

Example 1.

Say, the following facts are known.

'toothache' is caused by 'cavity' 60% of times: P(toothache | cavity) = 0.6

1 in 10 patients investigated has 'cavity': P(cavity) = 1/10 = 0.1

1 in 4 patients investigated has 'toothache': $P(toothache) = \frac{1}{4} = 0.25$

We can now derive: P(cavity | toothache) =

Example 2.

Given, $P(Water \mid Coal) = 0.4,$ P(Coal) = 0.2,P(Water) = 0.8.So, P(Coal | Water) =

D. Inference using Joint Probabilities of Consistent Models of the Environment Recall the Monster that Smells:

?			
1,3			
OK	?		
S			
1,2	2,2		
OK	OK	?	
	S		
1,1	2,1	3,1	

- ✓ 3 reachable squares[fringe/ frontier]: [1,3], [2,2], [3,1]; 3 random variables: M_{1,3}, M_{2,2}, M_{3,1};
 ✓ Pure logical inference can help no more;
- ✓ Probabilistic agent can do much better after computing $P(M_{1,3})$, $P(M_{2,2})$, $P(M_{3,1})$;
- ✓ We assume that OK means 'No Monster', and independent probability of a Monster at any unknown cell is 0.2.

3/5/2022

Consistent models of the Environment for fringe variables $M_{1,3}$, $M_{2,2}$, $M_{3,1}$:

•••••

- i) $P(M_{1,3} \mid \text{evidence}) = < P(m_{1,3} \mid \text{evidence}), P(\neg m_{1,3} \mid \text{evidence}) >$
- ii) $P(m_{1.3} \mid evidence) =$

Sum of the joint probabilities of models where $m_{1,3}$ holds ≈ 0.31 Sum of the joint probabilities of all consistent models

iii) $P(\neg m_{1.3} \mid evidence) \approx 0.69$

iv)
$$P(M_{1,3} \mid \text{evidence}) \approx <0.31, 0.69> = <31\%, 69\%>$$
 $P(M_{2,2} \mid \text{evidence}) \approx <0.86, 0.14> = <86\%, 14\%>$ [Self study]
 $P(M_{3,1} \mid \text{evidence}) \approx <0.31, 0.69> = <31\%, 69\%>$ [Self study]

So, which cell is safer to move to?

M (1,3) AND M (3,1)