The following are the Snap picture's part of HW #5. Name Abinet tenore
CS 305D
HUH5
CHAPTER 33 Answers
HI Draw 2-37 For
EASY GUTTON (E) (A) (A) (A) (A) (A) (A) (A) (A)as asu Alalus A Tasi A SALUT NEN 151 MIST BI OI TIU (A) (a) (TU) Draw the Red BLOCK BST for EASK QUITION In order to sauce space I did P#10 Here. 3.3.2 Draw 2-3 tree insert kess KLPMXHC RAES Insert 4 Insert L Insere M bic there Insert X sect H

19) Consider each color as a node

The minimum amount of the nodes a tree can have is n and the maximum is 2^n-1 , 4,5,6... 15 comes under the level 4.

That means 2^4 -1 = 15 It requires 15 bits for the given color with a binary tree.

EXERECISE 3.4 (Solutions)

3.4.4) Source Code in Java.

3.4.10)

(a) Give the contents of the hash table that results when keys E_1 A S_1 Y Q U E_2 S_2 T I O N are inserted in that order into an initially empty 13-item hash table using linear probing (use $h(k) = k \mod 13$ for the hash function for the k-th letter of the alphabeth).

Solution In linear probing, we place an element into h(k)th slot or the first slot available after it (if H[h(k)] is already full).

First, a small helper table for the English alphabeth:

Key 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Letter A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z mod 13 0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12 Probes listing:

So the hashtable ends up being:

0	1	2	3	4	5	6	7	8	9	10	11	12
A	О	N	Q	$\mathbf{E_1}$	\mathbf{S}_1	E_2	U	S_2	\mathbf{T}	I	\mathbf{Y}	