Image Processing and Computer Vision Joachim Weickert, Summer Term 2019	M I ∰ A
Lecture 23:	1 2
Image Sequence Analysis I:	3 4
Local Methods	5 6
	7 8
Contents	9 10
1. Introduction	11 12
2. The Spatial Approach of Lucas and Kanade	13 14
3. The Spatiotemporal Approach of Bigün et al.	15 16
	17 18
	19 20
	21 22
	23 24
© 2001–2019 Joachim Weickert	25

Introduction (1) Introduction **Basic Problem** 5 • given: image sequence f(x, y, z), 7 8 where (x,y) specifies the location and z denotes time 9 10 wanted: displacement vector field of the image structures: optic flow (optischer Fluss) $\begin{pmatrix} u(x,y,z) \\ v(x,y,z) \end{pmatrix}$ 11 12 13 14 Such *correspondence problems* are key problems in computer vision. 15 16 **Similar Correspondence Problems** 17 18 19 20 computing the displacements (disparities) between the two images of a stereo pair 21 22 matching (registration) of medical images that are obtained with different imaging methods, parameter settings, or at different times 23 24

Introduction (2)

What is Optic Flow Good for?

- recognition of moving pedestrians in driver assistant systems
- tracking of moving objects, e.g. human body motion
- estimation of egomotion in robotics
- flow measurements by means of particle image velocimetry (PIV)
- video processing, e.g. frame interpolation
- efficient video coding

Introduction (3)

Deformation analysis of plastic foam using an optic flow method. **Top left:** Frame 1 of a deformation sequence. **Top right:** Frame 2. **Bottom left:** Vector plot of the displacement field. **Bottom right:** Colour-coded displacement field. Author: J. Weickert.

19 20

21 22

Introduction (4)

A Frequent Assumption: Grey Value Constancy

- ◆ Corresponding image structures should have the same grey value.
- lacktriangle Thus, the optic flow between subsequent frames z and z+1 satisfies

$$f(x+u, y+v, z+1) = f(x, y, z).$$

• Unfortunately the unknown flow field $(u, v)^{\top}$ is not directly accessible.

Introduction (5)

Linearisation by Taylor Expansion

- Let us assume that (u, v) is small and f varies slowly and smoothly.
- Then a first order Taylor expansion around (x, y, z) gives a good approximation (cf. also Lecture 12):

$$0 = f(x+u, y+v, z+1) - f(x, y, z)$$

$$\approx f_x(x, y, z) u + f_y(x, y, z) v + f_z(x, y, z)$$

where subscripts denote partial derivatives.

◆ This yields the *linearised optic flow constraint (OFC)*

$$f_x u + f_y v + f_z = 0$$

where the unknown flow field $(\boldsymbol{u},\boldsymbol{v})^{\top}$ is directly accessible.

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |

3 | 4

5 6

7 | 8

9 | 10

11 12

13 14

15|16

17 18

19 20

21 | 22

23 24

3

5 | 6

Introduction (6)

How Realisitic are These Assumptions?

- The grey value constancy assumption is often surprisingly realistic:
 Many illumination changes happen very slowly, i.e. over many frames.
 More complicated models exist that take into account illumination changes.
- The linearisation assumption is violated more frequently:
 Conventional video cameras often suffer from temporal undersampling:
 They produce displacements over several pixels. Remedies:
 - use original OFC without linearisation (model becomes more difficult)
 - spatial downsampling (after lowpass filtering!)
- Another practical problem: interlacing.
 Some cameras record odd and even rows at different times.
 This creates artifacts for moving objects. Remedies:
 - consider only one of the two subimages
 - use cameras without interlacing (progressive scan cameras)

Introduction (7)

Left: Original image taken with a progressive scan camera, 300×300 pixels. **Right:** When recording odd and even lines at different times, interlacing effects become visible for moving objects. Author: M. Ghodstinat.

Introduction (8)

The Aperture Problem (Blendenproblem, Aperturproblem)

- The OFC $f_x u + f_y v + f_z = 0$ is one equation in two unknowns u, v. Thus, it cannot have a unique solution.
- ◆ To shed some more light on the nonuniqueness, we rewrite the OFC as

$$0 = f_x u + f_y v + f_z = (u, v) \nabla f + f_z.$$

3

5 | 6

7 | 8

9 10

11 12

13 14

15 16

17 18

19|20

21 22

23 24

25

3 | 4

5

7 | 8

9 10

11|12

13 | 14

15 16

17 18

19 20

21 | 22

23 24

- This reformulation shows:
 - We can add arbitrary flow components orthogonal to $\nabla f := (f_x, f_y)^{\top}$ without violating the OFC.
 - Thus, the OFC specifies only the flow component parallel to ∇f .

This is called aperture problem.

lacktriangle Additional assumptions are necessary to obtain a unique solution. Specifying different additional constraints leads to different methods. Before we investigate them, let us first analyse the flow component along ∇f .

Introduction (9)

The Normal Flow

• Let us express $(u,v)^{\top}$ in terms of the basis vectors $\boldsymbol{n}:=\frac{\nabla f}{|\nabla f|}$ and $\boldsymbol{t}:=\frac{\nabla^{\perp} f}{|\nabla^{\perp} f|}$ where $\boldsymbol{\nabla}^{\perp}:=(-\partial_y,\partial_x)^{\top}$.

This gives the flow components normal and tangential to the edge of f:

$$\begin{pmatrix} u \\ v \end{pmatrix} = (u, v) \frac{\nabla f}{|\nabla f|} \frac{\nabla f}{|\nabla f|} + (u, v) \frac{\nabla^{\perp} f}{|\nabla^{\perp} f|} \frac{\nabla^{\perp} f}{|\nabla^{\perp} f|}$$
$$=: \begin{pmatrix} u_n \\ v_n \end{pmatrix} + \begin{pmatrix} u_t \\ v_t \end{pmatrix}.$$

• Since the OFC yields $(u,v) \nabla f = -f_z$, the *normal flow* becomes

$$\begin{pmatrix} u_n \\ v_n \end{pmatrix} = -\frac{f_z}{|\nabla f|} \cdot \frac{\nabla f}{|\nabla f|} = \frac{-1}{f_x^2 + f_y^2} \begin{pmatrix} f_x f_z \\ f_y f_z \end{pmatrix}.$$

- ◆ The normal flow is the only flow component that can be computed from the OFC without additional constraints.
- Unfortunately, it gives poor results that are not very useful.

Introduction (10)

Top left: Image from the Hamburg taxi sequence: A taxi, a car, and a van are moving. **Top right:** Normal flow magnitude without presmoothing the derivatives of f. **Bottom left:** Presmoothing with a Gaussian with standard deviation $\sigma=2$. **Bottom right:** $\sigma=4$. Author: J. Weickert.

The Spatial Approach of Lucas and Kanade (1)

The Spatial Approach of Lucas and Kanade (1981)

- Additional assumption for dealing with the aperture problem: The optic flow in (x_0, y_0) at time z_0 can be approximated by a *constant* vector (u, v) within some disk-shaped neighbourhood $B_{\rho}(x_0, y_0)$ of radius ρ .
- least squares model: flow in (x_0, y_0) minimises the local energy

$$E(u,v) = \frac{1}{2} \int_{B_0(x_0,y_0)} (f_x u + f_y v + f_z)^2 dx dy.$$

lacktriangle Computing the partial derivatives with respect to u and v gives

$$0 \stackrel{!}{=} \frac{\partial E}{\partial u} = \int_{B_0} f_x (f_x u + f_y v + f_z) \, dx \, dy,$$

$$0 \stackrel{!}{=} \frac{\partial E}{\partial v} = \int_{B_{\rho}} f_y(f_x u + f_y v + f_z) \, dx \, dy.$$

5 7 10 11 12 13 14 15 16 17 18 19 20 21 | 22 23 24 25 3 4 5 6

7 | 8

9 10

11 12

13|14

15 16

17 18

19|20

21 22

The Spatial Approach of Lucas and Kanade (2)

 \bullet The unknowns u and v are constants that can be moved out of the integral. This yields the linear system

$$\begin{pmatrix} \int_{B_{\rho}} f_x^2 dx dy & \int_{B_{\rho}} f_x f_y dx dy \\ \int_{B_{\rho}} f_x f_y dx dy & \int_{B_{\rho}} f_y^2 dx dy \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} -\int_{B_{\rho}} f_x f_z dx dy \\ -\int_{B_{\rho}} f_y f_z dx dy \end{pmatrix}.$$

• Often one replaces the pillbox filter with a "hard" window $B_{\rho}(x,y)$ by a "smooth" convolution with a Gaussian K_{ρ} :

$$\begin{pmatrix} K_{\rho} * (f_x^2) & K_{\rho} * (f_x f_y) \\ K_{\rho} * (f_x f_y) & K_{\rho} * (f_y^2) \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} -K_{\rho} * (f_x f_z) \\ -K_{\rho} * (f_y f_z) \end{pmatrix}.$$

• Thus, the Lucas–Kanade method solves a 2×2 linear system of equations. The (spatial) structure tensor J_{ρ} serves as system matrix (cf. Lecture 13).

The Spatial Approach of Lucas and Kanade (3)

Top left: Image from the Hamburg taxi sequence. Top right: Normal flow magnitude. Bottom left: Optic flow magnitude using the Lucas-Kanade method with $\rho=2$. Bottom right: Same with $\rho=4$. Author: J. Weickert.

3

5

7 | 8

9 10

11|12

13 14

15 16

17 18

19|20

21|22

23 24

The Spatial Approach of Lucas and Kanade (4)

When Does the Linear System Have No Unique Solution?

• $rank(\boldsymbol{J}_{\rho}) = 0$ (two vanishing eigenvalues):

Happens if the spatial gradient vanishes in the entire neighbourhood.

Nothing can be said in this case.

Simple criterion: $\operatorname{tr} \boldsymbol{J}_{\rho} = j_{1,1} + j_{2,2} \leq \varepsilon$.

(Recall that the trace is the sum of the eigenvalues.

Moreover, J_{ρ} is positive semidefinite; cf. Lecture 13.)

 $\operatorname{rank}(\boldsymbol{J}_{
ho})=1$ (one vanishing eigenvalue):

Happens if we have the same (nonvanishing) spatial gradient within the entire neighbourhood.

Then both equations are linearly dependent (infinitely many solutions).

Simple criterion:

 $\det J_{\rho} = j_{1,1} j_{2,2} - j_{1,2}^2 \leq \varepsilon$ (while $\operatorname{tr} J_{\rho} > \varepsilon$). (Recall that the determinant is the product of the eigenvalues.)

In this case the aperture problem persists. We can only compute the normal flow

$$\left(\begin{array}{c} u_n \\ v_n \end{array}\right) = \frac{-1}{f_x^2 + f_y^2} \left(\begin{array}{c} f_x f_z \\ f_y f_z \end{array}\right).$$

The Spatial Approach of Lucas and Kanade (5)

Left: Image from a synthetic sequence: The sphere rotates in front of a static background. Middle: False colour representation of the optic flow using the Lucas-Kanade method. Right: Flow classification: black=no information (gradient too small, no flow given), grey=aperture problem (gradient too uniform, normal flow given), white=full flow (space-variant gradient). Author: J. Weickert.

3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	
NΛ	
IVI	A
1	2

7 8

9 10

12 11

13 14

15 | 16

17 18

19|20

21 22

The Spatial Approach of Lucas and Kanade (6) Advantages simple and fast method requires only two frames (low memory requirements)

•	good value for the money:
	results often superior to more complicated approaches

Disadvantages

- inaccurate at locations where the local constancy assumption is violated: flow discontinuities and non-translatory motion (e.g. rotation)
- ◆ local method that does not allow to compute the flow field at all locations

The Spatiotemporal Approach of Bigün et al. (1)

The Spatiotemporal Approach of Bigün et al. (1991)

- Optic flow is regarded as orientation in the space-time domain.
- ◆ It is obtained from an eigenvector problem of the structure tensor (cf. Lecture 13).
- We search for the spatiotemporal direction with the least grey value change. The search is done in a 3-D ball-shaped neighbourhood $B_{\rho}(x_0, y_0, z_0)$ of radius ρ .
- lacktriangle This direction is given by the unit vector $m{w} = (w_1, w_2, w_3)^{ op}$ that minimises

$$E(\mathbf{w}) = \int_{B_{\rho}(x_0, y_0, z_0)} (f_x w_1 + f_y w_2 + f_z w_3)^2 dx dy dz.$$

lacktriangle When renormalising the third component of the optimal w to 1, the first two components give the optic flow:

$$u = \frac{w_1}{w_3}, \qquad v = \frac{w_2}{w_3}.$$

	15	16
	17	18
	19	20
	21	22
	23	24
	25	
	M	
		A
	1	2
	3	4
	5	6
•	7	8
	9	10
	11	12
	13	14
	15	16
	17	18
	19	20
	21	22
	23	24
	25	

3

5

7

9 10

11 12

The Spatiotemporal Approach of Bigün et al. (2)

- Note the differences between Lucas–Kanade and Bigün et al.:
 - Lucas-Kanade searches for a 2-D flow vector with a least squares approach.
 - Bigün et al. search for a 3-D vector, i.e. the time component is also optimised. This is a *total least squares* approach.
- lacktriangle Using the spatiotemporal gradient notation $oldsymbol{
 abla}_3 f := (f_x, f_y, f_z)^ op$ one minimises

$$E(\boldsymbol{w}) := \int_{B_{\rho}} (\boldsymbol{w}^{\top} \nabla_{3} f)^{2} dx dy dz$$

$$= \int_{B_{\rho}} \boldsymbol{w}^{\top} \nabla_{3} f \nabla_{3} f^{\top} \boldsymbol{w} dx dy dz$$

$$= \boldsymbol{w}^{\top} \Big(\int_{B_{\rho}} \nabla_{3} f \nabla_{3} f^{\top} dx dy dz \Big) \boldsymbol{w}$$

under the constraint |w| = 1.

The Spatiotemporal Approach of Bigün et al. (3)

lacktriangle The desired vector $oldsymbol{w}$ is the normalised eigenvector to the smallest eigenvalue of

$$\int_{B_{\rho}} \nabla_3 f \, \nabla_3 f^{\top} \, dx \, dy \, dz.$$

Often the box filter is replaced by Gaussian convolution.
 This leads to a principal component analysis of the spatiotemporal structure tensor

$$\mathbf{J}_{\rho} := K_{\rho} * (\nabla_{3} f \nabla_{3} f^{\top})
= \begin{pmatrix} K_{\rho} * (f_{x}^{2}) & K_{\rho} * (f_{x} f_{y}) & K_{\rho} * (f_{x} f_{z}) \\ K_{\rho} * (f_{x} f_{y}) & K_{\rho} * (f_{y}^{2}) & K_{\rho} * (f_{y} f_{z}) \\ K_{\rho} * (f_{x} f_{z}) & K_{\rho} * (f_{y} f_{z}) & K_{\rho} * (f_{z}^{2}) \end{pmatrix}.$$

3

The Spatiotemporal Approach of Bigün et al. (4)

Flow Classification with the Eigenvalues of the Structure Tensor

- Let $\mu_1 \ge \mu_2 \ge \mu_3 \ge 0$ be the eigenvalues of J_{ρ} .
- $\operatorname{rank}(\boldsymbol{J}_{\rho})=0$ (three vanishing eigenvalues): If $\operatorname{tr}\boldsymbol{J}_{\rho}=j_{1,1}+j_{2,2}+j_{3,3}\leq \tau_1$, nothing can be said: The gradients are too small.
- $\operatorname{rank}(J_{\rho}) = 3$ (no vanishing eigenvalues): If $\mu_3 \geq \tau_2$, then our assumption of a locally constant flow is violated. Either a flow discontinuity or noise dominates.
- $\operatorname{rank}(\boldsymbol{J}_{\rho})=1$ (two vanishing eigenvalues): If $\mu_2 \leq \tau_3$, we have two low-contrast eigendirections. No unique flow exists (aperture problem): One can only compute the normal flow

$$\left(\begin{array}{c} u_n \\ v_n \end{array}\right) = \frac{-1}{f_x^2 + f_y^2} \left(\begin{array}{c} f_x f_z \\ f_y f_z \end{array}\right).$$

• $\operatorname{rank}(J_{\rho}) = 2$ (one vanishing eigenvalue): The optic flow is determined by the eigenvector w to the smallest eigenvalue μ_3 : Normalising its third component to 1, the first two components give u and v.

The Spatiotemporal Approach of Bigün et al. (5)

Left: Image from the sphere sequence. **Middle:** False colour representation of the optic flow using the method of Bigün et al. **Right:** Flow classification: black=no information (three small eigenvalues), dark grey=flow discontinuity or noise (three large eigenvalues), light grey=aperture problem (two small eigenvalues), white=full flow (one small eigenvalue). Author: J. Weickert.

23 24 25 3 5 7 8 9 10 11|1213 14 15|16 17 18 19|20 21 22 23|24

3

5

7

9 10

11|12

13 14

15 16

17 18

19|20

21 22

The Spatiotemporal Approach of Bigün et al. (6)	M	A
Advantages	1	2
• fairly high robustness with respect to noise (due to 3-D integration)	3	4
good results for translatory motion	5	6
 eigenvalues of the spatiotemporal structure tensors provide detailed information on the optic flow 	7 9	8 10
Disadvantages		12 14
$lacktriangle$ more complicated than Lucas–Kanade: requires numerical algorithms for principal component analysis of a 3×3 matrix (suitable method: e.g. Jacobi transformations)		16 18
 problems at flow discontinuities and locations with non-translatory motion (such as divergent motion or rotations) 		20
◆ local method that does not give full flow fields		22 24
 three threshold parameters 	25	

Summary	M	I A
Summary	1	2
 Computing the optic flow is a key problem in computer vision. 	3	4
 Assuming grey value constancy leads to the Optic Flow Constraint (OFC). It allows to compute the normal flow only (aperture problem). Computing the full flow requires additional assumptions. 	5 7 9	6 8 10
 Lucas and Kanade assume a locally constant flow (in 2D). This requires to solve a linear system of equations. Its system mastrix is the spatial structure tensor. 	11 13	12
 Bigün et al. estimate the flow as orientation in the spatiotemporal domain. It leads to a principal component analysis problem. The matrix is given by the spatiotemporal stucture tensor. 	15 17	16 18
	19 21 23	

References

References

 B. Lucas, T. Kanade: An iterative image registration technique with an application to stereo vision. In *Proc. Seventh International Joint Conference on Artificial Intelligence* (Vancouver, Canada, Aug. 1981), pp. 674–679.

(original paper by Lucas and Kanade)

 J. Bigün, G. H. Granlund, J. Wiklund: Multidimensional orientation estimation with applications to texture analysis and optical flow. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, Vol. 13, 775–790, 1991.

(structure tensor method of Bigün et al.)

- B. Jähne: Digital Image Processing. Sixth Edition, Springer, Berlin, 2005.
 (Chapter 14 deals with optic flow.)
- J. L. Barron, D. J. Fleet, S. S. Beauchemin: Performance of optical flow techniques. *International Journal of Computer Vision*, Vol. 12, 43–77, 1994.

(compares the performance of many optic flow methods)

M	
	A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	