Lecture 19/20: Introduction to Graphs

BT 3051 - Data Structures and Algorithms for Biology

Karthik Raman

Department of Biotechnology Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras

History of Graph Theory The Seven Bridges of Königsberg

- ► Problem set in the picturesque Prussian city of Königsberg in 1735 (present day Kaliningrad, Russia), around the Pregel river
- City's residents had a question "Is it possible to set out from my house, cross each bridge exactly once, and return home?"

Figure Courtesy: http://rosalind.info/glossary/eulerian-cycle/

History 00000

- No discussion of any math can be complete without discussing Euler!
- Euler's solution to the problem laid the foundations for graph theory!

Leonhard Euler 1707-1783

History of Graph Theory

The Seven Bridges of Königsberg

- ► What did Euler do?
- Thus you see, most noble Sir, how this type of solution bears little relationship to mathematics, and I do not understand why you expect a mathematician to produce it, rather than anyone else, for the solution is based on reason alone, and its discovery does not depend on any mathematical principle. Because of this, I do not know why even questions which bear so little relationship to mathematics are solved more quickly by mathematicians than by others.^a
- ► This question is so banal, but seemed to me worthy of attention in that [neither] geometry, nor algebra, nor even the art of counting was sufficient to solve it.

ahttp://www.maa.org/press/periodicals/convergence/leonard-eulers-solution-to-the-konigsberg-bridge-problem

History of Graph Theory The Seven Bridges of Königsberg

► What did Euler do?

History of Graph Theory The Seven Bridges of Königsberg

What did Euler do?

- Can you find the *walk* that the citizens were looking for?
- What did Euler prove? He proved that there is no Eulerian circuit in this graph!

Many interesting questions can be asked of graphs

Social Networks

- ▶ Do I know someone who knows someone ... who knows X?
 - existence of a path
- ► How long is that chain to *X*?
 - shortest path problem
- Is everyone in the world connected to one another?
 - identification of connected components
- Who has the most friends?
 - ► most connected nodes/centrality analyses
- Can you predict if X and Y are friends?
 - link prediction

Many interesting questions can be asked of graphs

Biological Networks

- ► Is there a way to produce metabolite *X* from *A*?
 - existence of a path
- ► How long is that chain to *X* from *A*?
 - shortest path problem
- Are all proteins connected to others by a path?
 - ► identification of connected components
- ▶ Which is the most influential protein in a network?
 - ► most connected nodes/centrality analyses
- Can you predict if proteins X and Y interact?
 - ► link prediction

Graph Algorithms

Many many problems in science and engineering can be cast back on to a graph!

- Shortest path problem
- ► Travelling salesperson problem
- Finding [strongly] connected components
- Graph isomorphism
- Vertex cover problem
- Minimum spanning tree problem
- Hamiltonian path problem
- Eulerian path problem
- ► *k*-shortest path problem
- Centrality measures

Graph Algorithms in Biology

Many biological problems map back on to graph problems

- ► Path finding in metabolic networks
- Identifying important proteins in networks
- Clusters of proteins in interaction networks
- Assembling reads of a genome from a next-generation sequencer
- Chemoinformatics problems

What are Graphs?

- One of the most important themes of computer science!
- A graph G(V, E) is defined by a set of *vertices* V and a set of *edges* E, consisting of pairs of vertices from V
- Graphs are often referred to as networks, for example
 - Road networks
 - Social networks
 - Metabolic networks
 - Gene regulatory networks
 - Scientific citation networks
 - **.**..
- Graphs are classified elaborately also influences the choice of algorithms

Some Examples of Graphs

Network	Nodes	Edges
Facebook	People	Friendships
Twitter	People/Businesses	'Follows'
Protein interaction network	Proteins	Interactions
Gene regulatory network	Genes	Regulatory effects
Metabolic network	Metabolites	Reactions
Citation networks	Research articles	Citations
Co-authorship networks	Authors	Co-authors
Food web	Species	Who eats whom
Protein structure	Amino acid residues	Contact maps

Directed vs. Undirected Graphs

▶ G(V, E) is undirected if edge $(A, B) \in E$ implies that $(B, A) \in E$

Undirected graph

Directed graph

Examples

- ► Road networks between cities are typically undirected, while street networks within cities are often directed (why?)
- Facebook is undirected, while Twitter is directed
- ► Protein-interaction networks are undirected, while gene regulatory networks are directed

Weighted vs. Unweighted Graphs

 In a weighted graph, each edge is assigned a numerical value, or weight, often denoting a cost

Unweighted graph

Weighted graph

Examples of weights

- Distance between cities
- Strength of an interaction

Sparse vs. Dense Graphs

► Graphs are sparse, when only a small fraction of the possible vertex pairs have edges defined between them

- ► Typically dense graphs have a quadratic number of edges, while sparse graphs are linear in size
- Many real graphs are usually sparse

Cyclic vs. Acyclic Graphs

- ► An acyclic graph does not contain any cycles
- ► Trees are connected acyclic undirected graphs
- Directed acyclic graphs (DAGs) arise naturally in many scenarios

Labelled vs. Unlabelled Graphs

► In a labelled graph, each vertex has a unique name/label/identifier, distinguishing it from other vertices

Unlabelled graph

Labelled graph

- Important in graph alignment
- Graph isomorphism

Other Graph Types

- Implicit graphs
- ▶ Bi-partite graphs
- Hypergraphs

Other graph terminology:

- Converse/Transpose/Reverse
- ► Complete graph/Clique
- ► Walk (from A to B)

Mathematical Representations of Graphs

- Data Structures
 - Edge List
 - Adjacency List
- Adjacency Matrix
 - Sparse Matrices
- Laplacian Matrix

Graph Representations of Biological Networks

- Protein interaction networks
- Signalling networks
- Protein structure networks
- Gene regulatory networks
- Metabolic networks
 - Substrate graphs
 - Reaction/enzyme graphs
 - ► Bi-partite graphs