Python pandas

Part A: Data Handling

Ques = 1) Create a panda's series from a dictionary of values and a ndarray.

Apply all the attributes of series on the above created Series.

Solution:

```
import pandas as pd
import numpy as np
data\_dict = \{ 'a': 10, 'b': 20, 'c': 30 \}
series_dict = pd.Series(data_dict)
data_array = np.array([100, 200, 300])
series_array = pd.Series(data_array)
print("Series from dictionary:")
print(series_dict)
print("\nSeries from ndarray:")
print(series_array)
print("\nAttributes of series_dict:")
print("Index:", series_dict.index)
print("Values:", series_dict.values)
print("Datatype:", series_dict.dtype)
print("Shape:", series_dict.shape)
print("Size:", series_dict.size)
```

Ques = 2) Create a series that stores the area of some states in km^2 .

- a) Write code to find out the biggest and smallest three areas from the given series.
- b) Write code to find out the areas that are more than 50000 km². Solution:

```
import pandas as pd

area_series = pd.Series({'Delhi': 1484, 'Rajasthan': 342239, 'Uttar Pradesh': 243286, 'Maharashtra': 307713, 'Gujarat': 196024, 'Haryana': 44212})

print("Top 3 biggest areas:")

print(area_series.sort_values(ascending=False).head(3))

print("\nTop 3 smallest areas:")

print(area_series.sort_values().head(3))

print("\nAreas more than 50000 km²:")

print(area_series[area_series > 50000])
```

Ques = 3) Write a program to create a Series object with 6 random integers and having indexes as: ['p', 'q', 'r', 'n', 't', 'v']. Also write program to calculate cubes of the Series values.

Solution:

```
import pandas as pd
import numpy as np
data = np.random.randint(1, 100, 6)
index = ['p', 'q', 'r', 'n', 't', 'v']
series = pd.Series(data, index=index)
print("Original Series:")
print(series)
print("\nCubes of Series values:")
print(series ** 3)
```

Ques = 4) Consider the following dataframe: CORONA and answer the questions given below:

ID State Cases

100 Delhi 3000

110 Mumbai 4000

120 Chennai 5000

130 Surat 4500

Create the above-given dictionary with the given indexes.

- (a) Write code to add a new column "Recovery" using the series method to store the number of patients recovered in every state.
- (b) To add a new column "Deaths" using the assign() method to store the number of deaths in every state.
- (c) To add a new row to store details of another state using loc (assume values).
- (d) To add a new column "Percentage" using the insert() method to store the percentage of recovery in every state (assume values). The column should be added as the fourth column in the dataframe.
- (e) To delete the column "Percentage" using del command.
- (f) To delete the column "Deaths" using pop() method.
- (g) To insert a new row of values using iloc[] at the 1st position.
- (h) To delete Cases and State temporarily from the dataframe.
- (i) Create a dataframe from two series Name and Grade, Name and Marks of five students.
 - (a) Display the first three records from student dataframe.
 - (b) Display the last two records from student dataframe.
- (j) Create a dataframe of dictionary consisting of Name, Sub1, Sub2, Sub3, Sub4, Sub5 of five students.
 - (a) Display the dataframe.
- (b) Display the first 5 rows and bottom 3 rows of student dataframe.
- (k) Create two dataframes of salary of five employees and do the following:
 - (a) Display both the dataframes.
 - (b) Add 5000 as bonus in both dataframes and display them.

- (l) Create a dataframe using list [10, 11, 12, 13, 14] [23, 34, 45, 32, 65] [55, 60, 65, 70, 75] and do the following:
 - (a) Display the dataframe.
- (m) Create a dataframe of [23, 25], [34], [43, 44, 45, 46] and do the following:
- (a) Display the dataframe. Notice that the missing value is represented by NaN.
 - (b) Replace the missing value with 0.
- (c) Replace the missing value with -1, -2, -3, -4 for columns 0, 1, 2, 3.
- (d) Replace the missing value by copying the value from the above cell.

Solution:

```
# (j) DataFrame from dictionary
student data = { 'Name': ['A', 'B', 'C', 'D', 'E'], 'Sub1': [90, 80, 85, 75, 88], 'Sub2': [70, 60,
85, 90, 95], 'Sub3': [80, 85, 78, 92, 88 import pandas as pd
import numpy as np
# Initial DataFrame
data = {'State': ['Delhi', 'Mumbai', 'Chennai', 'Surat'], 'Cases': [3000, 4000, 5000, 4500]}
corona = pd.DataFrame(data, index=[100, 110, 120, 130])
# (a) Add Recovery column
recovery = pd.Series([2800, 3900, 4700, 4200], index=[100, 110, 120, 130])
corona['Recovery'] = recovery
# (b) Add Deaths column using assign()
corona = corona.assign(Deaths=[100, 80, 150, 100])
# (c) Add new row using loc
corona.loc[140] = ['Bangalore', 6000, 5800, 200]
# (d) Add Percentage column using insert()
percentage = [93.33, 97.5, 94, 93.33, 96.67]
corona.insert(3, 'Percentage', percentage)
```

```
# (e) Delete Percentage using del
del corona['Percentage']
# (f) Delete Deaths using pop()
corona.pop('Deaths')
# (g) Insert new row at 1st position using iloc
new row = pd.DataFrame({'State': ['Pune'], 'Cases': [3500], 'Recovery': [3300]}, index=[105])
corona = pd.concat([corona.iloc[:1], new row, corona.iloc[1:]])
# (h) Delete Cases and State temporarily
print(corona.drop(['Cases', 'State'], axis=1))
# (i) Dataframe from series: Name + Grade, Name + Marks
names = pd.Series(['A', 'B', 'C', 'D', 'E'])
grades = pd.Series(['A+', 'B', 'A', 'C', 'B+'])
marks = pd.Series([90, 80, 85, 70, 88])
students1 = pd.DataFrame({'Name': names, 'Grade': grades})
students2 = pd.DataFrame({'Name': names, 'Marks': marks})
# (i-a) First 3 records
print(students1.head(3))
# (i-b) Last 2 records
print(students2.tail(2))
], 'Sub4': [85, 89, 90, 86, 87], 'Sub5': [70, 75, 80, 85, 90] }
student df = pd.DataFrame(student data)
# (j-a) Full dataframe
print(student_df)
# (j-b) First 5 and last 3 rows
print(student_df.head(5))
print(student_df.tail(3))
# (k) Employee salary dataframes
df1 = pd.DataFrame({'Employee': ['A', 'B', 'C', 'D', 'E'], 'Salary': [20000, 25000, 22000, 24000,
23000]})
df2 = pd.DataFrame({'Employee': ['A', 'B', 'C', 'D', 'E'], 'Salary': [21000, 26000, 22500, 24500,
23500]})
```

```
# (k-a) Display
print(df1)
print(df2)
# (k-b) Add 5000 bonus
df1['Bonus'] = df1['Salary'] + 5000
df2['Bonus'] = df2['Salary'] + 5000
# (I) Create dataframe from lists
df3 = pd.DataFrame({ 0: [10, 11, 12, 13, 14], 1: [23, 34, 45, 32, 65], 2: [55, 60, 65, 70,
75] })
print(df3)
# (m) DataFrame with missing values
df4 = pd.DataFrame([ [23, 25, np.nan, np.nan], [34, np.nan, np.nan, np.nan], [43, 44, 45,
46]])
print(df4)
# (m-b) Replace missing with 0
df4.fillna(0, inplace=True)
print(df4)
# (m-c) Replace with -1, -2, -3, -4
df4.iloc[0, 2] = -1
df4.iloc[1, 1] = -2
df4.iloc[1, 2] = -3
df4.iloc[1, 3] = -4
print(df4)
# (m-d)
df4.fillna(method='ffill', inplace=True)
print(df4)
```

Part C: Data Management

Ques =i) Hospital table data:

PNo	Name	Age	Department	Dateofadm	Charges	Sex
1	Arpit	62	Surgery	2008-01-12	300	M
2	Zarina	22	ENT	2007-12-12	250	F
3	Kareem	32	Orthopaedic	2008-02-19	200	M
4	Arun	12	Surgery	2008-01-11	300	M
5	Zubin	30	ENT	2008-01-12	250	M
6	Ketaki	16	ENT	2008-02-24	250	F
7	Ankita	29	Cardiology	2008-02-20	800	F
8	Zareen	45	Gynaecology	2008-02-22	300	F
9	Kush	19	Cardiology	2008-01-13	800	M
10	Shilpa	23	Nuclear Medicine	2008-01-20	400	F

Ques =1) Write the command to create HOSPITAL table.

Answer: CREATE TABLE HOSPITAL (PNo INT, Name VARCHAR(30), Age INT, Department VARCHAR(30), Dateofadm DATE, Charges INT, Sex CHAR(1));

Ques =2) Write a command to describe the structure of the above table.

Answer: DESC HOSPITAL;

Ques =3) To select all the information of patients of cardiology department.

Answer: SELECT * FROM HOSPITAL WHERE Department = 'Cardiology';

Quest =4) To list the names of female patients who are in ENT department.

Answer: SELECT Name FROM HOSPITAL WHERE Department = 'ENT' AND Sex = 'F'; **Ques = 5**) **To list names of all patients with their date of admission in ascending order.**

Answer: SELECT Name, Dateofadm FROM HOSPITAL ORDER BY Dateofadm ASC;

Ques =6) To display Patient's Name, Charges, Age of only female patients.

Answer: SELECT Name, Charges, Age FROM HOSPITAL WHERE Sex = 'F';

Ques =7) To count the number of patients with Age < 30

Answer: SELECT COUNT(*) FROM HOSPITAL WHERE Age < 30;

Ques =8) Display the department wise total charges.

Answer: SELECT Department, SUM(Charges) FROM HOSPITAL GROUP BY Department;

Ques =9) Display the department wise total charges whose maximum charges more than equal to 300.

Answer: SELECT Department, SUM(Charges) FROM HOSPITAL GROUP BY Department HAVING MAX(Charges) >= 300;

Ques =10) Add one column in the table with the name Address of type char(20).

Answer: ALTER TABLE HOSPITAL ADD Address CHAR(20);

Ques =11) Modify the column Address as char(25).

Answer: ALTER TABLE HOSPITAL MODIFY Address CHAR(25);

Ques =12) Change the name of the column Address to Home address.

Answer: ALTER TABLE HOSPITAL RENAME COLUMN Address TO Home_address;

Ques =13) Drop the column Home_Address.

Answer: ALTER TABLE HOSPITAL DROP COLUMN Home_address;

Ques =ii) Write the SQL commands for delete (a) to (f) on the basis of the table STUDENT.

TABLE: STUDENT

No.	Name	Age	Department	Dateofadm	Fees	Sex
1	Pankaj	24	Computer	1997-01-10	120	M
2	Shalini	21	History	1998-03-24	200	F
3	Sanjay	22	Hindi	1996-12-12	300	M

4	Sudha	25	History	1997-07-01	400	F
5	Rakesh	22	Hindi	1997-09-05	250	M
6	Shakeel	30	History	1998-06-27	300	M
7	Surya	34	Computer	1997-02-25	210	M
8	Shikha	23	Hindi	1997-07-31	200	F

Ques =a) To show all information about the students of History department.

Answer: SELECT * FROM STUDENT WHERE Department = 'History';

Ques =b) To list the names of female students who are in History department.

Answer: SELECT Name FROM STUDENT WHERE Department = 'History' AND Sex = 'F';

Ques =c) To list names of all students who are in Hindi department.

Answer: SELECT Name FROM STUDENT WHERE Department = 'Hindi';

Ques =d) To display Student's Name, Fees, age of male students in ascending order.

Answer: SELECT Name, Fees, Age FROM STUDENT WHERE Sex = 'M' ORDER BY Name ASC:

Ques =e) To count the number of students with age > 23.

Answer: SELECT COUNT(*) FROM STUDENT WHERE Age > 23;

Ques =f) To insert a new row in the STUDENT table with the following data: 'Zaheer', 36, 'Computer', '1997-03-12', 230, 'M'

Answer: INSERT INTO STUDENT (Name, Age, Department, Dateofadm, Fees, Sex) VALUES ('Zaheer', 36, 'Computer', '1997-03-12', 230, 'M');

Ques =iii) Write SQL for (a) to (f) on the basis of the table TEACHER.

TABLE: TEACHER

No.	Name	Age	Department	Dateofadm	Fees	Sex
1	Jugal	34	Computer	1997-01-10	12000	M
2	Sharmila	31	History	1998-03-24	20000	F
3	Sandeep	32	Maths	1996-12-12	30000	M

4	Sangeeta	35	History	1999-07-01	40000	F
5	Rakesh	42	Maths	1997-09-05	25000	M
6	Shyam	50	History	1998-06-27	30000	M
7	Shiv Om	44	Computer	1997-02-25	21000	M
8	Shalakha	33	Maths	1997-07-31	20000	F

(a) To show all information about the teachers of History department.

Answer: SELECT * FROM TEACHER WHERE Department = 'History';

(b) To list the name of female teachers who are in Maths department.

Answer: SELECT Name FROM TEACHER WHERE Department = 'Maths' AND Sex = 'F';

(c) To list names of all teachers along with their date of joining in ascending order.

Answer: SELECT Name, Dateofjoin FROM TEACHER ORDER BY Dateofjoin ASC;

(d) To display teacher's Name, Salary, age for male teachers only.

Answer: SELECT Name, Salary, Age FROM TEACHER WHERE Sex = 'M';

(e) To count the number of teachers with age > 23.

Answer: SELECT COUNT(*) FROM TEACHER WHERE Age > 23;

- (f) To insert a new row in the TEACHER table with the following data:
- 9, 'Raja', 26, 'Computer', '1995-05-13', 23000, 'M'

Answer: INSERT INTO TEACHER VALUES (9, 'Raja', 26, 'Computer', '1995-05-13', 23000, 'M');

Ques =iv) Write SQL commands for (a) to (d) on the basis of tables CLUB and COACHES:

TABLE: CLUB

COACH_ID	COACH_NAME	AGE	SPORTS	DATEOFAPP	PAY	SEX
1	Kukreja	35	Karate	2002-03-27	1000	M
2	Ravina	34	Karate	2004-01-20	1200	F
3	Karan	34	Squash	2004-02-19	2000	M

4	Tarun	33	Basketball	2004-01-01	1500	M
5	Zubin	36	Swimming	2004-01-12	750	M
6	Ketaki	36	Swimming	2004-02-24	800	F
7	Ankita	39	Squash	2004-02-20	2200	F
8	Zareen	37	Karate	2004-02-22	1100	F
9	Kush	41	Swimming	2004-01-13	900	M
10	Shailya	37	Basketball	2004-02-19	1700	M

a) To show all information about the swimming coaches in the club.

Answer: SELECT * FROM CLUB WHERE SPORTS = 'SWIMMING';

(b) To list names of all coaches with their date of appointment (DATEOFAPP) in descending order.

Answer: SELECT COACH_NAME, DATEOFAPP FROM CLUB ORDER BY DATEOFAPP DESC;

(c) To display a report, showing coach name, pay, age and bonus (15% of pay) for all the coaches.

Answer: SELECT COACH_NAME, PAY, AGE, PAY * 0.15 AS BONUS FROM CLUB;

(d) To insert a new row in the CLUB table with the following data:

11, 'RAJIV', 40, 'Hockey', '2000-05-27', 2006, 'M'

Answer: INSERT INTO CLUB VALUES (11, 'RAJIV', 40, 'Hockey', '2000-05-27', 2006, 'M');

Ques =v) Write SQL for (a) to (d) on the basis of the table GRADUATE.

TABLE: GRADUATE

SNO	NAME	STIPEND	SUBJECT	AVERAGE	DIV1
1	KARAN	400	PHYSICS	68	1
2	DIVAKAR	450	COMPUTER SC	68	1
3	DIVYA	300	CHEMISTRY	62	2
4	ARUN	350	PHYSICS	63	1
5	SABINA	500	MATHEMATICS	70	1
6	JOHN	400	CHEMISTRY	55	2
7	ROBERT	250	PHYSICS	64	1
8	RUBINA	450	MATHEMATICS	68	1
9	VIKAS	500	COMPUTER SC	62	1

(a) List the names of those students who have obtained DIVI = 1 sorted by NAME.

Answer: SELECT NAME FROM GRADUATE WHERE DIVI = 1 ORDER BY NAME;

(b) Display the report, listing NAME, STIPEND, SUBJECT and amount of stipend received in a year assuming that the STIPEND is paid every month.

Answer: SELECT NAME, STIPEND, SUBJECT, STIPEND * 12 AS YEARLY_STIPEND FROM GRADUATE;

(c) To count the number of students who are either PHYSICS or COMPUTER SC graduates.

Answer: SELECT COUNT(*) FROM GRADUATE WHERE SUBJECT = 'PHYSICS' OR SUBJECT = 'COMPUTER SC';

- (d) To insert a new row in the GRADUATE table:
- 11, 'KAJOL', 300, 'COMPUTER SC', 75, 1

Answer: INSERT INTO GRADUATE VALUES (11, 'KAJOL', 300, 'COMPUTER SC', 75, 1);

Ques =vi) Write SQL commands for (a) to (g) on the basis of the table SPORTS.

TABLE: SPORTS

StudentNo	Class	Name	Game1	Grade1	Game2	Grade2
10	7	Sameer	Cricket	В	Swimming	A
11	8	Sujit	Tennis	A	Skating	С
12	7	Kamal	Swimming	В	Football	В
13	7	Veena	Tennis	С	Tennis	A
14	9	Archana	Basketball	A	Cricket	A
15	10	Arpit	Cricket	A	Athletics	C

(a) Display the names of the students who have grade 'C' in either Game1 or Game2 or both.

Answer: SELECT Name FROM SPORTS WHERE Grade1 = 'C' OR Grade2 = 'C';

(b) Display the number of students getting grade 'A' in Cricket.

Answer: SELECT COUNT(*) FROM SPORTS WHERE (Game1 = 'Cricket' AND Grade1 = 'A') OR (Game2 = 'Cricket' AND Grade2 = 'A');

(c) Display the names of the students who have same game for both Game1 and Game2.

Answer: SELECT Name FROM SPORTS WHERE Game1 = Game2;

(d) Display the games taken up by the students, whose names start with 'A'.

Answer: SELECT Game1, Game2 FROM SPORTS WHERE Name LIKE 'A%';

(e) Add a new column named 'Marks'.

Answer: ALTER TABLE SPORTS ADD Marks INT;

(f) Assign a value 200 for Marks for all those who are getting grade 'B' or grade 'A' in both Game1 and Game2.

Answer: UPDATE SPORTS SET Marks = 200 WHERE (Grade1 IN ('A', 'B') AND Grade2 IN ('A', 'B'));

(g) Arrange the whole table in the alphabetical order of Name.

Answer: SELECT * FROM SPORTS ORDER BY Name;

Ques =vii) Given the following lab relations: Write SQL commands for questions (a) to (f).

TABLE: LAB

No	ItemName	CostPerItem	Quantity	DateOfPurchase	Warranty	Operational
1	Computer	60000	9	2006-05-21	2	7
2	Printer	15000	3	2007-05-21	4	2
3	Scanner	18000	1	2008-08-29	3	1
4	Camera	21000	2	2006-06-13	1	2
5	Hub	8000	1	2009-04-13	2	1
6	UPS	5000	5		1	4
7	Plotter	25000	2		2	2

(a) To select the ItemName purchased after 2007-10-31.

Answer: SELECT ItemName FROM LAB WHERE DateofPurchase > '2007-10-31';

(b) To list the ItemName, which are within the Warranty period till present date (i.e. current date).

Answer: SELECT ItemName FROM LAB WHERE DATE_ADD(DateofPurchase, INTERVAL Waranty YEAR) > CURRENT_DATE;

(c) To list the ItemName in ascending order of the date of purchase where quantity is more than 3.

Answer: SELECT ItemName FROM LAB WHERE Quantity > 3 ORDER BY DateofPurchase ASC;

(d) To display ItemName, CostPerItem, and Quantity whose Warranty is over.

Answer: SELECT ItemName, CostPerItem, Quantity FROM LAB WHERE DATE_ADD(DateofPurchase, INTERVAL Waranty YEAR) < CURRENT_DATE;

(e) To count the number of items whose cost is more than 10000.

Answer: SELECT COUNT(*) FROM LAB WHERE CostPerItem > 10000;

(f) To insert a new record in the Lab table with the following data:

8, 'VCR', 10000, 2, '2010-02-02', 1, 2

Answer: INSERT INTO LAB VALUES (8, 'VCR', 10000, 2, '2010-02-02', 1, 2);