

Team 37
Tracking Nitrous
Oxide Level with
Differential Pressure

### **Outline**

- Summary and Background
- Engine Overview
- Differential Pressure Hardware
- Nitrous Oxide Fill Process Data
- Results and Conclusions



## **Summary**

- Bipropellant liquid rocket engine using Nitrous Oxide and Ethanol
- Remote oxidizer loading
- Live tracking of liquid level during fill process
- Differential pressure transducer integrated with rocket

# **Importance of Liquid Level Tracking**

- Desire to fill oxidizer tank with accuracy
- Importance in amateur rocketry:
  - Many teams launching liquid and hybrid rockets using Nitrous Oxide
  - Time constraints while rocket is on the rail
- Could be used to determine oxidizer flow rate

## **Engine Overview**

- Nitrous Oxide and Ethanol tanks with ablative chamber
- ► 11 kN\*s total impulse
- ▶ 215 s Isp
- Compact plumbing and instrumentation
- Integrated differential pressure transducer



#### **Differential Pressure Hardware**

- ► 15 psi range differential pressure transducer
- Stainless steel tubing to top and bottom of Nitrous tank
- JIC and compression-nut fittings





#### **Nitrous Fill Process Data**



### Conclusion

- DP transducer exhibits odd behavior when tank is full
- Can be used reliably for liquid level tracking
- Excessive noise prevents flow rate data from being collected
- Further testing and calibration required