

Probabilistic energy forecasting for smart grids and buildings

Rob J Hyndman

21 March 2017

Demand forecasting

Demand forecasting in the smart grid

Figure: http://solutions.3m.com

Demand forecasting in the smart grid

Need demand forecasts for outage planning, energy trading, demand response, system management, ...

Predictors

- calendar effects
 - Time of day
 - Day of week
 - Time of year
 - Holidays
- prevailing and recent weather conditions
- demand response incentives
- household characteristics

We build a nonlinear nonparametric stochastic model of demand as a function of these predictors.

Half-hourly data. Blue: 50% region. Grey: 95% region.

- MAE: Mean absolute error
- MSE: Mean squared error
- MAPE: Mean absolute percentage error

- MAE: Mean absolute error
- MSE: Mean squared error
- MAPE: Mean absolute percentage error
- Good when forecasting a typical future value (e.g., the mean or median).

- MAE: Mean absolute error
- MSE: Mean squared error
- MAPE: Mean absolute percentage error
- Good when forecasting a typical future value (e.g., the mean or median).
- Useless for evaluating forecast percentiles and forecast distributions.

- MAE: Mean absolute error
- MSE: Mean squared error
- MAPE: Mean absolute percentage error
- Good when forecasting a typical future value (e.g., the mean or median).
- Useless for evaluating forecast percentiles and forecast distributions.
- $q_t(p)$ = Percentile forecast of y_t , to be exceeded with probability 1-p.

- MAE: Mean absolute error
- MSE: Mean squared error
- MAPE: Mean absolute percentage error
- Good when forecasting a typical future value (e.g., the mean or median).
- Useless for evaluating forecast percentiles and forecast distributions.

$$q_t(p)$$
 = Percentile forecast of y_t , to be exceeded with probability $1-p$.

- If $q_t(p)$ is accurate, then y_t should be less than $q_t(p)$ about 100p% of the time.
- Need to penalize unlikely side more (a "pinball loss" function)

Quantile Score for observation y:

For 0 :

$$S(y_t, q_t(p)) = \begin{cases} p(y_t - q_t(p)) & \text{if } y_t \ge q_t(p) \\ (1 - p)(q_t(p) - y_t) & \text{if } y_t < q_t(p) \end{cases}$$

- Scores are averaged over all observed data for each p to measure the accuracy of the forecasts for each percentile.
- Average score over all percentiles gives the best distribution forecast:

$$QS = \frac{1}{99T} \sum_{p=1}^{99} \sum_{t=1}^{T} S(q_t(p), y_t)$$

- Equivalent to CRPS (Continuous Rank Probability Score).
- Reduces to MAE if we are only interested in p = 0.5.

Hierarchical forecasting

Hierarchical electricity demand data

Aggregations may be based on:

- Geography (suburbs, regions, states)
- Demography (number of people in household, age distributions)
- Appliances (air conditioning, electric heating)

Hierarchical electricity demand data

Hierarchical forecasting

- Easier to forecast at more aggregated levels.
- We forecast at every level and reconcile the forecasts.
- Optimal reconcilation algorithm: Hyndman et al (2011, 2016, 2017)
- Forecast means should add up, but percentiles are more complicated
- Current research topic: How to reconcile percentiles at all levels?

Building-level energy forecasting

Commercial buildings require energy forecasting to help:

- Manage peak demand.
- Quantify the impacts of building management changes.
- Assess performance and energy efficiency.

Buildings Alive works with 150+ commercial buildings which include supermarkets, hospitals and office blocks.

Each require daily forecasts to inform facilities managers.

Building Level Data

Building Level Data

Natural cubic splines for each period of the day (df = 2).

Quantile Regression

Probabilistic forecasts can be produced using quantile regression.

Use the pinball loss function:

$$S_p(y,q_p) = \begin{cases} p(y-q_p) & \text{for } y = q_p, \\ (1-p)(q_p-y) & \text{for } q_p > y. \end{cases}$$

Quantile Regression Forecasting

Assessing performance

- Forecasting a full distribution allows facilities managers to better assess risks and take appropriate actions.
- Allows facilities managers to know the severity and probability of demand peaks.
- Can immediately assess if a building's performance was good compared to historical performance under similar conditions.

Competitions, conferences and

resources

GEFCom

Global Energy Forecasting Competitions

- Organized by Professor Tao Hong (UNC)
- GEFCom 2012: Load, Wind Forecasting
- GEFCom 2014: Load, Price, Wind, Solar Forecasting
- GEFCom 2017: Hierarchical probabilistic forecasts, real-time, rolling origin.
- gefcom.org
- Winning entries published in International Journal of Forecasting.
- Huge improvements in forecast accuracy over previously published methods.

International Symposium on Energy Analytics 2017

Predictive Energy Analytics in the Big Data World

Proudly sponsored by International Institute of Forecasters June 22–23, 2017

Cairns, Australia

Featured speakers

- Yannig Goude, Electricite de France, France
- Rob J Hyndman, Monash University, Australia
- Pierre Pinson, Technical University of Denmark, Denmark
- Richard Povinelli, Marquette University, USA
- Rafal Weron, Wroclaw University of Technology, Poland
- Hamidreza Zareipour, University of Calgary, Canada
- Xun Zhang, Chinese Academy of Sciences, China

International Symposium on Forecasting 2017

Some resources

Blogs

- robjhyndman.com/hyndsight/
- blog.drhongtao.com/

Some resources

Blogs

- robjhyndman.com/hyndsight/
- blog.drhongtao.com/

Organizations

- International Institute of Forecasters: forecasters.org
- IEEE Working Group on Energy Forecasting: linkedin.com/groups/ IEEE-Working-Group-on-Energy-4148276

References

References

- Rob J Hyndman and Shu Fan (2010). "Density forecasting for long-term peak electricity demand". IEEE Transactions on Power Systems 25(2), 1142–1153.
- Shu Fan and Rob J Hyndman (2012). "Short-term load forecasting based on a semi-parametric additive model". IEEE Transactions on Power Systems 27(1), 134–141.
- Souhaib Ben Taieb and Rob J Hyndman (2014). "A gradient boosting approach to the Kaggle load forecasting competition". International Journal of Forecasting 30(2), 382–394
- Souhaib Ben Taieb, Raphael Huser, Rob J Hyndman, and Marc G Genton (2015).
 Probabilistic time series forecasting with boosted additive models: an application to smart meter data. Working paper 15/12. Monash University
- Souhaib Ben Taieb, Raphael Huser, Rob J Hyndman, and Marc G Genton (2016). "Forecasting uncertainty in electricity smart meter data by boosting additive quantile regression". IEEE Transactions on Smart Grid 7 (5), 2448–2455
- Rob J Hyndman, Alan J Lee, and Earo Wang (2016). "Fast computation of reconciled forecasts for hierarchical and grouped time series". Computational Statistics & Data Analysis 97, 16–32.
- Souhaib Ben Taieb, James W Taylor, and Rob J Hyndman (2017). Coherent
 Probabilistic Forecasts for Hierarchical Time Series. Working paper 17/03. Monash
 University