LATEX-kurssi 2005

Arho Virkki arho.virkki@utu.fi

Turun vliopisto, matematiikan laitos

Kurssista...

teTeX hypertext help

Subjects

- Accenting characters (umlauts, graves, etc.)
 Arrays (math mode)
 Commands, defining and redefining
 Comments in input file

- Counters
 Cross Poterson

Kurssista

Kurssin kotisivu:

http://users.utu.fi/avirkki/latex2005/

Esitietosuositukset:

http://users.utu.fi/avirkki/latex2005//lshort.pdf tai suomeksi

http://users.utu.fi/avirkki/latex2005//lyhyt2e.pdf

- + vapaasti verkosta ladattava opus
- pitkähkö

Kurssista...

Helmut Kopka and Patrick W. Daly, Guide to LaTeX, 4th edition.

Mielestäni paras opas, tehty saksalaisella täsmällisyydellä.

Muuta kirjallisuutta:

The LaTeX Companion, The LaTeX Web Companion, The LaTeX Graphics Companion

Peruskirjat, joihin usein viitataan.

Kurssista...

Täydellistä sähköistä yleisopasta ei ole: dokumentteja on valtavasti ja ne ovat usein vanhentuneita → kirja kannattaa ostaa.

Osassa oppaista on kyllä yritystä: teTeXin hypertext help ja TeXnicCenterin LaTeX Help e-Book vaikuttavat kattavilta, joskaan eivät jäsennellyiltä.

Kurssista...

TeXnicCenter LaTeX Help e-Book

Kurssista...

Suurin osa matemaattisista teksteistä kirjoitetaan nykyään LATEXin avulla.

Matematiikan opettajankin on hyvä tuntea LATEX: se on osa kokonaisuutta, jota voisi kutsua matematiikan ja ohjelmistotekniikan tiedeperinnöksi.

Avainsanoja: markup languages, GNU ja vapaa lähdekoodi

Mikä LATEX on?

LATEX, tarkemmin LATEX 2_{ε} on taitto-ohjelma, jolla voi tehdä rakenteisia dokumentteja, esimerkiksi

- kirjoja,
- opintomonisteita,
- tenttikysymyspapereita,
- Pro gradu -tutkielman tai
- esitysgrafiikkaa kuten nyt.

Mikä IATEX on?...

Rakenteisuus tarkoittaa, että käsikirjoituksessa (eli lähdekoodissa) on

- loogisia (\begin{document}) ja
- typografisia (\textbf{lihavoituna})

komentoja sekä leipätekstiä. Lähdekoodin voi kääntää eri muotoihin, joista yleisimmät ovat

- PDF (Portable Document Format) ja
- HTML (HyperText Markup Language)

Kurssi on hyödyllinen, jos

- kirjoitat matemaattista tekstiä tai
- kirjoitat monisatasivuisia tekstejä tai
- arvostat deterministisesti toimivia ohjelmia ja
- avoimen lähdekoodin ohjelmia.

Kurssin sisältö

- 1. lyhyt johdatus
- 2. loogiset rakenteet: luettelot, ympäristöt,...
- 3. typografiset perusrakenteet: viivat, laatikot, kirjasimet, ...
- 4. matematiikan ladonta: $\sqrt[3]{\frac{z-1}{z+1}}, \dots$
- 5. grafiikka: kuvien liittäminen ja piirto,...
- 6. muut työkalut: BibTeX, kuvien piirtäminen,...

Osa 1: Lyhyt johdatus

LATEX-jakelupaketit

Yksi ja sama LATEX eri paketeissa:

- TeXLive (Linux, MacOS X, Windows)
- teTeX (Linux)
- MikTeX (Windows)

Uskonsodat jakeluiden paremmuudesta lienevät turhia.

Dokumentin rakenne

\documentclass[a4paper,10pt]{article} % tyyli \usepackage[latin1]{inputenc} % tai [ansinew]

\usepackage[finnish]{babel} % tavutus

\usepackage{graphicx}

\begin{document}

\section{Sähköinen julkaiseminen} Sähköinen julkaiseminen on ollut mahdollista jo pitkään,

| \end{document}

\dots

Dokumentin kääntö, Linux

\$ latex juttu.tex; dvipdf juttu # tai

\$ pdflatex juttu

Dokumentin kääntö, Windows

Windowsissa osoitetaan hiirellä

Matematiikkaa

Kaavat kirjoitetaan \$-merkkien väliin

$$\gamma \propto (x^3)$$

tai erilliseen kenttään:

\begin{equation}
\sqrt{x^3}
\end{equation}

joista jälkimmäinen tuottaa numeron

kaavan sivuun.

(I)

Rakenteita

Rakenteillä määritellään tekstin esitystapa.

Esimerkkejä:

\begin{enumerate}
\item ensinnäkin,
\item toisekseen\dots
\end{enumerate}

- 1. ensinnäkin,
- 2. toisekseen...

Matematiikkaa

Esimerkkejä:

\begin{equation}\label{eq:gammaf}
 \Gamma (n) :=
 \int_0^\infty x^{n-1}e^{-x} dx
\end{equation}
Huomaa, että (\ref{eq:gammaf}) ei
suppene arvolla \$n=0\$

$$\Gamma(n) := \int_{0}^{\infty} x^{n-1}e^{-x}dx$$

Huomaa, että (1) ei suppene arvolla n=0.

Ail)

Rakenteita...

\begin{itemize}
\item hansikkaat
\item lapaset
\end{itemize}

- hansikkaat
- lapaset

Matematiikkaa...

 $\[\ \ A := X \ \ A \]$

$$\neg A := X \setminus A$$

\[\zeta(s) :=
 \sum_{k=1}^\infty \frac{1}{k^s} \]

$$\zeta(s) := \sum_{k=1}^{\infty} \frac{1}{k^s}$$

4°6

Rakenteita...

Opettajani osasi havainnollistaa: \begin{quote}
Me määritellään determinantti niin kuin virastossa, sillai ikävästi. Se vain paiskataan teidän eteen ja sanotaan että opi tuo tai kuole\dots tai jotenkin näin. \end{quote}

Opettajani osasi havainnollistaa:

Me määritellään determinantti niin kuin virastossa, sillai ikävästi. Se vain paiskataan teidän eteen ja sanotaan että opi tuo tai kuole...tai jotenkin näin.

All Im

Matematiikkaa...

Komentojen nimet

\frac{}{}
\int
\sum

\dots

pitää muistaa. Peruskomentoja on vain muutama ja ne ovat varsin loogisia. \int = integraali, ei integer...

Grafiikkaa

LATEXissa kaiken voidaan ajatella koostuvan sisäkkäisistä laatikoista ja niitä yhdistävistä janoista.

Esimerkkejä:

\begin{center}
\fbox{
\rotatebox{-30}{
\fbox{
\includegraphics[width=2cm]
{soihtu}}}}
\vspace*{1cm}

Grafiikkaa...

```
\reflectbox{
\rotatebox{30}{
\resizebox{!}{5mm}{kikka-3}
```


\vspace*{1cm} \rule{3cm}{1ex}

Käytännössä

- Loogisia määrittelyjä käyttäessä lopputulosta ei kannata lähteä säätämään sivu kerrallaan. Jos kirjoittaja haluaa jonnekin pystysuunnassa tyhjää tilaa tai sivunvaihdon, Enterin hakkaaminen ei auta.
- Liika hienostelu on turhaa: suttupaperit kannattaa edelleen kirjoittaa TeXMacsilla, OpenOfficella tai Wordilla, sillä ne ovat nopeita tähän tarkoitukseen ("Quick and Dirty").

Johdannon yhteenveto

- Käsikirjoitus on raakatekstiä: se vie vähän tilaa ja on helppo lähettää muille.
- Käsikirjoitus alkaa aina \documentclass.. -komennolla: höpinät kannattaa aluksi kopioida jostain vanhasta tekstistä.
- Teksti on sekamelska rakennemäärittelyjä ja itse tekstiä (hyvän kirjoittajan käsikirjoituskaan ei näytä sekamelskalta!)
- Kaikki on helppoa ja kivaa.

Otsikot

Otsikoiden eri tasot ovat

- -1 \part{}
- 0 \chapter{}
- 1 \section{}
- 2 \subsection{}
- 3 \subsubsection{}
- 4 \paragraph{}
- 5 \subparagraph{}

Osa 2: LATEXin loogiset rakenteet

Otsikot...

- Tasot \part{} ja \chapter{} eivät ole käytössä kaikissa dokumenttipohjissa ja ne ovatkin lähinnä kirjankirjoittajia varten.
- Lopetusmerkkiä ei tarvita (toisin kuin HTML-kielessä, jossa kaikki mikä alkaa <tag>, myös loppuu <\tag>**)**.

Logical markup

Ideana on kuvata dokumentin rakenne:

- otsikot (\section{foo})
- ympäristöt (\begin{slide})
- worostukset (\emph{huomaa})

Muotoilut tehdään automaattisesti median mukaan: tiedelehdillä ja HTML-sivuilla on jokaisella oma formaattinsa.

Otsikot...

- Momennolla \setcounter{secnumdepth} {n} $n \in {0, \dots, 5}$ voi säätää, monenteenko otsikkotasoon asti numerointi kirjoitetaan tekstiin.
- Katso esimerkki otsikoista ja sisällysluettelosta kurssin verkkosivulta.

Ympäristöt

Tavallisimpia valmiita ympäristöjä ovat esimerkiksi equation, displaymath ja itemize. Idea:

\begin{env1}
 \dots.
 \begin{env2}
 \dots
 \end{env2}

\end{env1}

Huomaa, että ympäristöjen on oltava sisäkkäisiä: env1 ei voi loppua ennen kuin env2 loppuu.

Ц

Ympäristöt: listat

Ympäristöt: raakateksti

\begin{verbatim}
o o
 *
_/
\end{verbatim}

tuottaa tulokseksi

° ° ' _/

Ympäristöt: raakateksti...

Tietokoneohjelmat kannattaa liittää dokumenttiin käskyllä \verbatiminput {myprog.f90}.

Algoritmien esittämiseen kannattaa käyttää ympäristöä, joka korostaa avainsanat — luettavuus paranee oleellisesti. ^a)

^aEsimerkki harjoitustyöstä: Etsi paketti, joka määrittelee tällaisen ympäristön ja kerro esimerkein, miten pakettia käytetään. Palauta selostuksesi .pdf, .tex, tai .html-muodossa. Käsin tai .doc-muotoon kirjoitettu selostus hylätään lukematta.

Ympäristöt: tekstin asemointi...

center:

 \sum

flushright:

 \sum

flushleft:

 \sum

Osa 2: ME/Lin loogiest siskenteet

Ympäristöt: tekstin asemointi...

\begin{center}
KYNTTILÄT SYTTYVÄT VARHAIN\bigskip

Kiertävät unettavat auringonnousut\\
Kaikkialle harsona niin\\
Aattoni vähiin käynyt\\
Kun kevät uutena nousee\\
\dots
\end{center}
\begin{flushright}
\emph{-- Kuusumun profeetta}
\end{flushright}

Daa 2: MT_EXin loogiset rakenteet – p.1

Ympäristöt: tekstin asemointi...

KYNTTILÄT SYTTYVÄT VARHAIN

Kiertävät unettavat auringonnousut Kaikkialle harsona niin Aattoni vähiin käynyt Kun kevät uutena nousee

Kuusumun profeetta

Ympäristöt: tekstin asemointi...

Joitain LaTEX tarjoaa valmiina:

\begin{quote}
Terve yrittää välttää likaista työtä ja
nähdä asian suoraan, ihan
otsan kirkkaudella. --- a.p.
\end{quote}

Terve yrittää välttää likaista työtä ja nähdä asian suoraan, ihan otsan kirkkaudella. — a.p.

Käsky quotation sopii pidempiin lainauksiin.

Ympäristöt: taulukko

```
\begin{tabular}{|l|c|c|}
\hline
Nimi & J. Foo & G. Bar \\
\hline
\hline
A-pisteet & 1 & 3 \\
B-pisteet & -2 & 0 \\
\hline
```


Ympäristöt: taulukko...

Nimi	J. Foo	G. Bar
A-pisteet	1	3
B-pisteet	-2	0

Jotenkin tämä ei miellyttä...Muutetaan otsikkorivi muotoon

\rule[-7pt]{0pt}{24pt}Nimi & J. Foo & G. Bar \\

Ympäristöt: taulukko...

Nimi	J. Foo	G. Bar
A-pisteet	1	3
B-pisteet	-2	0

Venytimme taulukon reunoja nollapaksuisella viivalla, jolloin saimme siihen hieman ilmavuutta. LateXin taulukot ovat rehellisesti ottaen kankeita. Tämä ei haittaa, jos taulukko generoidaan automaattisesti jollain tilasto-ohjelmalla.

Ympäristöt: omat määritelmät

Määrittelemme todistuksia varten ympäristön, joka laittaa tekstin perään automaattisesti laatikon (\Box) ja kirjoittaa "Todistus"-tekstin ympäristön alkuun:

\newenvironment{todistus}
{\makebox[2cm][1]{\textbf{Todistus.\ }}}
{\hfill \$\Box\$}

sa 2: MI_EXin loogiset rakenteet – p.17

Ympäristöt...

\begin{todistus}
Olkoon \$\epsilon > 0\$ valittu,\dots
\end{todistus}

Todistus. Olkoon $\epsilon > 0$ valittu, . . .

П

Ympäristöt...

Yleinen komento on

\newenvironment{name}[args]{begdef}{enddef}
tai

\renewenvironment{name}[args]{begdef}{enddef}

jos määrittelemme uudelleen jonkin jo olemassa olevan ympäristön.

Ympäristöt...

Lauseiden määrittelyyn on oma komentokin:

\newtheorem{lause}{Lause}[laskuri]
esimerkiksi

\newtheorem{lause}{Lausahdus}[slide]

\begin{lause}[Ahmatin jäännöslause] Älä jätä huomiseksi sitä, minkä voit syödä tänään. \end{lause}

\begin(lause)[Ahmatin toinen jäännöslause] Elämä lyhyt, patonki pitkä.

\end{lause}

Ympäristöt...

Lausahdus 21.1 (Ahmatin jäännöslause) Älä jätä huomiseksi sitä, minkä voit syödä tänään. Lausahdus 21.2 (Ahmatin toinen jäännöslause) Elämä lyhyt, patonki pitkä.

Katsotaan vielä komentoa

\newtheorem{lause} {Lausahdus} [slide]
missä vertailulaskuriksi oli laitettu slide. Näin jokaisella
kalvolla oleva lause numeroidaan
(kalvonumero,lausenumero)

Ympäristöt...

Kolmas lauseemme numeroksi tulee siis

Lausahdus 22.1 (Fubini) Olkoon f mitallinen funktio ja

$$\int_A \int_B f d\mu = \int_B \int_A f d\mu.$$

(Tämä oli esimerkki, ei suositus lauseiden numeroimiseen kalvoesityksessä!)

Ympäristöt...

Päälaskuria ei ole pakko käyttää:

\newtheorem{huomautus}{Huomautus} \begin{huomautus} Huom\dots \end{huomautus}

Huomautus 1 Huomautukset menettävät tehonsa, jos suurin osa tekstistä on huomautuksissa, tai huomatukset ovat itsestään selviä.

Ympäristöt...

Huomautus 2 Numerointia alkaa ensimmäisestä huomautuksesta eikä nollaannu missään vaiheessa.

Huomautus 3 (Triviaa) LETEXissa on paljon laskureita ja niihin voi viitata komennolla \the<laskurin_nimi>: Olemme kalvolla \theslide. Olemme kalvolla 24.

Ympäristöt...

Tekstiä on hankala lukea, jos lauseiden, lemmojen ja huomautusten laskurit kulkevat epäloogisesti toisiinsa nähden. Kannattaakin määritellä vain yksi laskuri ja määrätä muut ympäristöt noudattamaan sitä:

\newtheorem{lemma}[lause]{Lemma}

 $\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$

Ympäristöt...

Tällä numeroinnilla saadaan lukijaa miellyttävä tulos: **Lausahdus 26.1** Jokaiselle neliömatriisille $A \in \mathbb{R}^{n \times n}$

$$A \operatorname{adj}(A) = I \operatorname{det}(A).$$

Lemma 26.2 Gammafunktiolle pätee

$$\Gamma(n+1) = n\Gamma(n)$$
 sekä $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}.$

Ympäristöt: kertaus

Muista komennot

- \newcommand ia
- \newtheorem.

Kaikki muut yksityiskohdat löydät nopeasti ohjekirjoista, online-helpistä (vaikka

http://www.giss.nasa.gov/latex/,

jos et muualta löydä) tai laittamalla Googleen sopivan hakusanan.

Komennot

Joskus halutaan vain yksinkertainen komento, esimerkiksi

\varoitus{teksti}. Määritellään \newcommand{\varoitus}[1]{% \begin{center} \Large \shadowbox{ \textbf{ $\begin{array}{ll} & & \\ & &$ \end{center}

Komennot...

jolloin komennon

\varoitus{ortogonaalit \$\neq\$ ortonormaalit!}

tulokseksi saadaan

ortogonaalit \neq ortonormaalit!

Huomioita edelliseen

- \shadowbox{} saadaan käyttöön paketista fancybox. Vastaavia enemmän ja vähemmän hyödyllisiä paketteja on pilvin pimein — älä keksi pyörää uudelleen. Katso ensi CTANista (Comprehensive TeX Archive Network).
- jotta voimme määritellä loogisia komentoja LaTEXin omien lisäksi, pitää opetella hieman typografisia komentoja.

(4)

Osa 3: LATEXin typografiset komennot

(1)

Typographical markup

Ideana on kuvata rakenteet millintarkasti:

- laatikot
- viivat
- välimatkat
- **Q** ..

Osa 3: MT_EXin typografiset komennot –

Käytännössä

Tutkitaan joitain yleisimpiä komentoja.

- eximerkiksi Foo\rule[-5pt]{2cm}{1ex}:
 Foo______
- e \framebox[width][pos]{text}
 esimerkiksi \framebox[9cm][s]{a b c}:
 a b c
 missä s=stretch (tai sitten l=left, r=right).

(

Käytännössä...

- wmakebox[width][pos]{text}
 sama kuin framebox, mutta ilman reunoja
- \text\ \fbox{text} \ \text\ \ \text\ \quad \quad \text\ \quad \quad \text\ \quad \text\ \quad \text\ \quad \text\ \quad \text\ \quad \text\ \quad \quad \text\ \quad \quad \text\ \quad \quad \quad \text\ \quad \
- \mbox{text}
 aluksi turhan oloinen \mbox{entä nyt?}

 → entä nyt? muuttaa sisältönsä jakamattomaksi
 yksiköksi. Tätä tarvitsemme vielä, ja monesti.

Käytännössä...

- \vspace*{height} ja \hspace*{width} \hspace*{3cm} siirtää meidät 3cm oikealle (tai alas, jos vspace). Negatiiviset arvot siirävät vasemmalle (tai ylös). Tähtimuoto on käsky, ilman tähteä kyseessä on kehoitus.
- \parbox[pos][height][ipos]{width}{text}
 on laatikko, jonne voimme kerätä kamaa. Esimerkiksi
 \fbox{\parbox[t][1cm][c]{4cm}{loo-\\ta}}

loota

Osa 3: IATeXin typografiset komennot – p.4/

Käytännössä...

- pos voi olla t=top line tai b=bottom line
- ipos voi olla t=top, b=bottom, c=centered ja s=stretched
- parbox käyttäytyy miltei kuten sivu, ja sitä voi käsitellä yhtenä elementtinä.

Käytännössä...

\fbox{\parbox[t][3cm][t]{6cm}{%
 \includegraphics[width=1cm]
 {soihtu} \dotfill {\Huge A} \\
 \hspace*{1cm}\rotatebox{45}{%
 \$\scriptstyle\begin{pmatrix}
 a & b \\ c & d \end{pmatrix}\$}}

7

Käytännössä...

Mitä äskeisessä tapahtui?

- \fbox teki laatikkomme näkyväksi,
- \includegraphics latasi kuvan,
- \dotfill täytti tyhjän tilan pisteillä ja
- \hspace* siirsi «kynää« vaakasuunnassa.

Otetaan sama uudelleen ja laatikoidaan kaikki elementit.

Käytännössä...

Nyt nähdään, mitä todella tapahtuu

paitsi että reunukset vievät tilaa, jolloin 2×2 matriisimme ei mahdu enää laatikkoon.

Johtopäätökset

Lisäksi näimme, että $\c L^{A}T_{E}X$ -koodi menee mutkikkaan näköiseksi, jos rakennamme monimutkaisia elementtejä → juuri tässä on LaTEXin idea: Tekstin looginen rakenne ja muotoilunäpertelyt pidetään erillään ja eri tiedostoissa.

- Kaikkea voi säätää ja
- kukaan ei halua säätää kaikkea,

mutta kokemuksesta tiedetään, että kaikki haluavat säätää kirjasintyyliä. Tutkitaan tätä erikseen.

Kirjasintyyli

Helpointa on vaihtaa dokumentin tyyli kerralla ja yhtenäisesti lataamalla jokin valmis tyylipaketti (.sty) heti otsikossa:

\usepackage{tyyli}

missä tyyli on mahdollisesti jokin listasta \mathtt{helvet} , palatino, avant, charter, bookman, newcent tai times (jotka ovat valmiina teTeX-jakelussa).

Kirjasinta voi vaihtaa valitun perustyylin sisällä kuvailevin komennoin, esimerkiksi {\large } ja {\small }.

Kirjasintyyli...

{\tiny Jänis} {\scriptsize Jänis} Jänis {\footnotesize Jänis} Jänis {\small Jänis} Jänis Jänis {\normalsize Jänis} Jänis {\large Jänis} Jänis {\Large Jänis} Jänis {\LARGE Jänis} Jänis {\huge Jänis} {\Huge Jänis}

Kirjasintyyli...

Huomioita:

- Komennot eivät ole funktioita vaan julistuksia: large = tästä alkaen, tämän ympäristön loppuun käytetään suurta kirjasinta.
- Ympäristö on mikä tahansa \begin{} ... \end{} -lohko tai aaltosulkeet { . . . }.
- Kannattaa käyttää aaltosulkeita. Normaalikirjasinta ei tarvitse erikseen vaihtaa takaisin \normalsize-käskyllä.
- Kalvolla kolme viimeistä kokoa olivat samat.

Kirjasintyyli...

Triviaa:

K: Miten tehdään H-U-G-E!! Jänis?

V: \scalebox{4}{Jänis}

Jänis

Kirjasintyyli...

Lisäksi on käytössä funktiot

\texttt{Jänis} Jänis \textit{Jänis} Jänis \textbf{Jänis} Jänis \textsl{Jänis} Jänis JÄNIS \textsc{Jänis} \underline{Jänis} <u>Jänis</u>

Kirjasintyyli...

Nämä komennot riittävät mainiosti tyylikkään tekstin tekoon.

Lisää kirjasimia voi etsiskellä LTEX-jakelustaan metsästämällä .fd (font definition) -tiedostoja. Esimerkiksi tlpbk.fd (T1 encoded postscript Bookman font definition) otetaan käyttöön käskyllä

\fontfamily{pbk}\selectfont
JepJep!

JepJep!

Johtopäätökset...

- Dokumentti, jossa on L^aT_EX-koodia, vanhaa
 T_EX-koodia ja tekstiä täydessä sekamelskassa on painajainen päivittää tai lähettää lehteen.
- LATEX on iso ohjelmisto ja käyttäjistä suurin osa hallitsee vain alkeet, mikä riittääkin usein mainiosti!

Kirjasintyyli...

Kannattaa määritellä joukko komentoja, jotka vastaavat järjestelmään asennettuja kirjasimia:

```
\newcommand{\avantgar}[1]{
{\fontfamily{pag}\selectfont #1}}
```

ine...

\newcommand{\bookman}[1]{(\fontfamily{pbk}\selectfont #1)}
\newcommand(\courier)[1]{(\fontfamily{pcr}\selectfont #1)}
\newcommand(\courier)[1]{(\fontfamily{cmr}\selectfont #1)}
\newcommand(\helvetic)[1]{(\fontfamily{pro}\selectfont #1)}
\newcommand(\newcent)[1]{(\fontfamily{pro}\selectfont #1)}
\newcommand(\tmroman)[1]{(\fontfamily{pro}\selectfont #1)}
\newcommand(\seript)[1]{(\fontfamily{pro}\selectfont #1)}

ligKin typografiset komennot –

Osa 4: Matematiikan ladonta

Kirjasintyyli...

Näin saadaan LATEXin ideaan hyvin istuvat komennot

\avantgar{Jänis} Jönis
\bookman{Jänis} Jänis
\courier{Jänis} Jänis
\cmodern{Jänis} Jänis
\helvetic{Jänis} Jänis
\tmroman{Jänis} Jänis
\script{Jänis}

joilla onkin ilo turmella muuten tyylikäs dokumentti!

Matematiikan ladonta

Tekstiin tulevat kaavat kirjoitetaan \$\$-merkkien väliin näin: $\sum_{k=1}^{n} a_k$, jolloin saadaan $\sum_{k=1}^{n} a_k$. Omalle rivilleen tulevat kaavat kirjoitetaan \begin {equation}..\end{equation} tai \[...\] -ympäristöihin, jolloin saadaan

 $\sum_{k=1}^{\infty} a_k \tag{1}$

ja

 $\sum_{k=1}^{\infty} a_k$

Johtopäätökset...

Toimiva strategia Pro graduun, luentomonisteeseen ja vastaaviin:

- Tee kansisivu suoraan, seuraavalla kerralla se menee kuitenkin uusiksi.
- Kirjoita teksti mahdollisimman puhtaalla L^AT_EXilla, ja mahdollisesti AMS:n (American Mathematical Societyn) makroilla → siirrettävyys.
- Tee oma tyylitiedosta tai lataa jokin valmis.
- Pikkujutut, kuten lyhyet omat komennot tiedoston alkuun ennen \begin{document} avainsanaa

Matematiikan ladonta...

Huomaa ero indeksien sijoittelussa (yläpuolella vai yläkulmassa).

Triviaa: tyyli voidaan pakottaa myös käskyillä

- \textstyle

Matematiikan ladonta...

Matematiikkatilassa kirjamet, eli muuttujat ja vakiot, ladotaan vinokirjaimin ja välilyönnit jätetään huomiotta:

$$\label{eq:begin} $$ I(x) := a_1^2 $$ b_{1,2} c x .$$ \end{equation} $$ tuottaa kaavan$$

 $I(x) := a_1^2 b_{1,2} cx$.

(Triviaa: jos kaavat ovat osa lausetta, niiden perään laitetaan välimerkit käytetyn kielen sääntöjen mukaan. Suomen ja englannin pilkutussäännöt eivät ole samat!)

(2)

Matematiikan ladonta...

Merkeillä

on erikoistulkinta; vertaa f' ja f'. Jos muita edellisistä merkeistä halutaan kaavoihin, on kirjoitettava

$$\label{eq:local_lambda} $$ \left[\mathcal{L}^{f} \right] := \int_0^\infty f(t)e^{-st}dt \ \mathcal{L}^{f}(s) := \int_0^\infty f(t)e^{-st}dt$$

Matematiikan ladonta...

- Koska näppäimistöltä puuttuu suurin osa matematiikan merkinnöistä, erikoiskäskyjä tarvitaan paljon
- Käskyt oppii helpoiten esimerkein ja itse kirjoittamalla.

Käydään seuraavassa ladontaa läpi esimerkkien avulla.

Ylä- ja alaindeksit

Ylä- ja alaindeksit saadaan käskyillä ^ ja _.

$$\[V^2_1 \ge V_{21} \]$$

$$V_1^2 \geq V_{21}$$

Jos indeksejä on monta, ne pitää ryhmitellä aaltosulkein.

Rationaalilausekkeet

\[\frac{a}{b} \] \[\sqrt{2} \approx 1.4142 \] $\frac{a}{b}$ $\sqrt{2} \approx 1.4142$

Rationaalilausekkeet...

\[\left(
 \frac{\sqrt[3]{z-1}}{2}
 \right)^2 \]

$$\left(\frac{\sqrt[3]{z-1}}{2}\right)^2$$

Rationaalilausekkeet...

Kertaus:

- Murtoluku: \frac{numerator}{denominator}
- Juuri: \sqrt{} ja \sqrt[n]{} (!)
- Käskyillä \left(ja \right) saadaan automaattisesti sopivan kokoiset sulut

Rationaalilausekkeet...

Ketjumurtoluvut (continuous fractions):

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2}}}$$

Derivaatat

$$\frac{dy}{dt} = f(y; \lambda)$$

$$\frac{\partial u}{\partial t} = \kappa^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} + \frac{\partial^2 u}{\partial z^2} \right)$$

 $\frac{\partial t}{\partial t} = \kappa^2 \left(\frac{\partial x^2}{\partial x^2} + \frac{\partial y^2}{\partial y^2} + \frac{\partial z^2}{\partial z^2} \right)$

4

Raja-arvot, summat, itegraalit

$$\label{eq:continuity} $$ \prod_{x\to 0} x^2 +7x^3 {x^2 +5x^4} = 3.]$$ $$ \lim_{x\to 0} \frac{3x^2 +7x^3}{x^2 +5x^4} = 3.$$

 $\[\sum_{k=1}^{\inf y frac{1}{2^k} = frac{\pi^2}{6} \]}$

$$\sum_{k=1}^{\infty} \frac{1}{2^k} = \frac{\pi^2}{6}$$

Raja-arvot, summat, itegraalit...

 $\label{eq:linear_condition} $$ \prod_{-\infty}^{\infty} \sin(x) \, dx = \pi $$$

 $\label{eq:cont_norm} $$ \prod_{0 \le z \le 0} h(z) \leq 0 $$$

Raja-arvot, summat, itegraalit...

 $\label{eq:continuity} $$ \left(\left(x \right) dx = \pi \right) dx = \sin(x) dx = \pi $$$

\[\oint\limits_{\partial C} h(z) \ dz = 0 \] $\oint\limits_{\partial C} h(z) \; dz = 0$

Kertaus ja triviaa

- Ylä- ja alaindeksit käskyillä ^ ja _
- Kaavaan voi pakottää välilyönnin käskyllä
 \ (takakeno + välilyönti)
- Käsky \limits latoo ylä- ja alaindeksit näkyvämmin

Välilyönneistä kaavoissa

- \[a\, b \]
 \[a\: b \]
 \[a\ b \]
 \[a\! b \]

 ab
 ab
 ab
- Viimeinen käsky \! on negatiivinen välilyönti.
- Käytä hienosäätöä säästäen

Kirjasintyyli

Metematiikkatilassa leipätekstin kirjasinkomennot eivät toimi. Tarjolla on näiden sijaan komennot

A A \mathrm{A} A \mathrm{A} A \mathrm{A} A \mathrm{A} A \mathrm{A} A \mathrm{A} A

joista kaksi viimeistä toimii vain isoille kirjaimille.

Kirjasintyyli, esimerkkejä

- $$\begin{split} & \text{\setminus [\dot{M}_{\mathrm{CO}_2} } \\ & \dot{M}_{\mathrm{CO}_2} \\ & \text{\setminus [\alpha \in \mbb{C}, \mbb{v} \in X \\ & \text{\cap Alpha \mathbf}\{v\} \in X \\ & \alpha \in \mathbb{C}, \mathbf{v} \in X \Rightarrow \alpha \mathbf{v} \in X \end{split}$$
- Kemialliset kaavat kirjoitetaan pystykirjaimin
- $\textbf{@} \ \ \, (\text{Modernissa kirjallisuudessa vektorit jätetään usen koristelematta; kirjoitetaan vain } v \in X)$

Kirjasinten koko

Kirjasinten kokoa muutetaan samoin eri komennoin:

{\scriptscriptstyle \sum} $_{\Sigma}$ {\scriptstyle \sum} {\textstyle \sum} {\displaystyle \sum}

Funktioiden nimet

LATEXtuntee tavallisimmat funktioiden nimet:

\[\cos (\pi) = -1 \]
$$\cos(\pi) = -1$$

\[\sin (0) = 0 \]
$$\sin(0) = 0$$

Funktioiden nimet...

Tunnettuja nimiä ovat

\arccos	\cos	\csc	\exp	\ker	\limsup
\min	\sinh	\arcsin	\cosh	\def	\gcd
\lg	\ln	\Pr	\sup	\arctan	\cot
\det	\hom	\lim	\log	\sec	\tan
\arg	\coth	\dim	\inf	\liminf	\max
\sin	\tanh				

Funktioiden nimet...

Omia merkintöjä voi julistaa operaattoreiksi käskyllä \operatorname.

 $\[\]$ \[\operatorname{arg min}_ \Theta f(\Theta) \] $\operatorname{argmin}_{\Theta} f(\Theta)$

Funktioiden nimet...

Edellinen esimerkki kaipaa vielä hieman hienosäätöä:

\[\operatorname{arg\ min}_ \Theta f(\Theta) \] $\operatorname{arg\;min}_{\Theta} f(\Theta)$ \[\underset{\Theta} ${\tt \{ \backslash operatorname \{ arg \backslash min \} \} \ f (\backslash Theta) \ \backslash]}$ $\underset{\Theta}{\arg \min} f(\Theta)$

Tekstin ja kaavojen sekoittaminen

LATEX:

```
\[ S := \  (x \in \mathbb{C} ) = C \]
              \mbox{ ja } g(x) < 0 \ \]
           S:=\{x\in\Omega|f(x)=c\text{ ja }g(x)<0\}
AMS-LATEX:
\[ S := \{ x \in \mathbb{N} | f(x) = cko } \]
              \text{text{ ja }} g(x) < 0 \} \]
```


Kolme pistettä(...)

Kolme pistettä:

 $[a_0 + a_2 + \cdots + a_n]$ \[\ldots, \cdots, \ddots, \vdots \] $a_0 + a_2 + \cdots + a_n$...,...,:

Matemaattiset aksentit

\underline{a} \underline{a} \overline{a} \overline{a} $\hat{a} \ \hat{a} \ \hat{a}$ \tilde{a} $\tilde{a} \setminus \mathtt{acute}\{\mathtt{a}\}$ \grave{a} à \dot{a} \dot{a} \ddot{a} $\ddot{a} \ \breve{a}$ \bar{a} $\bar{a} \ \vec{a}$

Normi ja sulut

Normi:

L

Normi ja sulut...

Näkymätön sulku saadaan aikaan pisteellä:

$$$$ \left[\left| \frac{1+z}{1-z} \right| \right] $$ \left[\left| \frac{1+z}{1-z} \right| du \right] $$ du $$ $$$$

Moniriviset kaavat

\begin{eqnarray}
F(x) &= & \int_a^b I(u,x) du \nonumber \\
 &= & \frac{1}{\sqrt{\pi}}G(x)
\end{eqnarray}

$$F(x) = \int_{a}^{b} I(u, x) du$$
$$= \frac{1}{\sqrt{\pi}} G(x)$$
(3)

Moniriviset kaavat...

- eqnarray on kuten taulukko, mutta siinä on kiinteästi kolme riviä
- Numeroinnin voi kieltää komennolla \nonumber
- Jos numeroita ei haluta lainkaan, voidaan käytää muotoa \begin{eqnarray*}
 ...\end{eqnarray*}

Matriisi

Kuten taulukko,

```
\[\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 2 & 0 \\
0 & 0 & a \end{array}\right] \]
\[ \begin{array}{ccc}
1 & 0 & 2 & 0 \\
0 & 0 & a \end{array}\right] \]
```

Ç

Matriisi...

tai AMS-paketilla:

```
\[\begin{bmatrix}
1 & 0 & 2 \\
0 & 2 & 0 \\
0 & 0 & a \end{bmatrix} \]
\[ \begin{bmatrix} 0 & 2 \\
0 & 0 & a \end{bmatrix} \]
\]
```


Matriisi...

....tai

```
\[\begin{pmatrix}
1 & 0 & 2 \\
0 & 2 & 0 \\
0 & 0 & a \end{pmatrix} \]
\[ \begin{pmatrix} \ 0 & 0 & a \end{pmatrix} \]
\[ \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & a \end{pmatrix} \]
```


Paloittain määritellyt funktiot

Kuten taulukko,

$$\begin{array}{lll} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Paloittain määritellyt funktiot...

tai AMS-paketilla:

$$\begin{array}{lll} & & & \\ & x & \text{text} & \text{jos} & x & \text{geq 0;} \\ & -x & \text{text} & \text{jos} & x & \text{o.} \\ & & \text{right.} & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & \\ & &$$

L

Ryhmittely kaarisulkein

Kaavojen ylä- ja alapuolelle voi lisätä sulkeita:

$$\label{eq:lambda} $$ \prod_{\substack{\text{A} \\ \text{A}}} $$$

$$\[\operatorname{B}^{\dag} \]$$

L

Ryhmittely kaarisulkein...

Esimerkki:

\[y' = \overbrace{
 \underbrace{Ay}_{\text{linear part}} +
 \underbrace{By^R}_{\text{nonlinear part}}
 }^{\text{the driving force}} \]

$$y' = \underbrace{\frac{Ay}{Ay} + \underbrace{By^R}_{\text{linear part } \text{nonlinear part}}^{\text{the driving force}}$$

L

Laatikointi

Laatikon lisääminen kaavan ympärille:

$$\label{local_local} $$ \prod_{1+x} \ \frac{1}{1+x} $$$

- Saattaa selventää esitystä
- ...tai sotkea lisää.

Laatikoiti...

Esimerkki:

$$||x - z|| = ||x \overline{|-y + y|} - z||$$

 $\leq ||x - y|| + ||y - z||$

#

AMS:n lisäkäskyt

Tällä kurssilla käytetään AMS-pakettien lisätyökaluja ilman eri mainintaa, mutta seuraavat käskyt ovat erityisesti AMS-paketista amsmath:

$$\begin{array}{ll} \text{\ \ liint\ \ } & \iint \\ \text{\ \ liiint\ \ } & \iiint \\ \text{\ \ \ \ lidotsint\ \ } & \cdots \end{array}$$

W

AMS:n lisäkäskyt...

$$\label{eq:continuous_lambda} $$ \sum_{\substack{k=1...n\\l=1...m\\k\neq l}} a_{k,l} $$$$

AMS:n lisäkäskyt...

Kreikkalaiset kirjaimet

\alpha	α	\beta	β	\gamma	γ
\delta	δ	\epsilon	ϵ	\varepsilon	ε
\zeta	ζ	\eta	η	\theta	θ
\vartheta	ϑ	\iota	ι	\kappa	κ
\lambda	λ	\mu	μ	\nu	ν
\xi	ξ	\pi	π	\varpi	\overline{w}
\rho	ρ	\varrho	ϱ	\sigma	σ
\varsigma	ς	\tau	τ	\upsilon	v
\phi	ϕ	\varphi	φ	\chi	χ
\psi	ψ	\omega	ω		

Symbolit: binäärioperaattorit

\amalg	Ш	\ast	*
\bullet	•	\bigcirc	\circ
\bigtriangledown	∇	\bigtriangleup	\triangle
\cap	\cap	\cdot	
\circ	0	\cup	\cup
\dagger	†	\ddagger	‡
\diamond	\Diamond	\div	÷
\mp	\mp	\odot	\odot

Kreikkalaiset isot kirjaimet

Oma käskynsä on vain niille isoille kirjaimille, joita ei näppäimistöllä ole valmiiksi:

\Gamma	Γ	\Delta	Δ	\Theta	Θ
\Lambda	Λ	\Xi	Ξ	\Pi	П
\Sigma	Σ	\Upsilon	Υ	\Phi	Φ
\Psi	Ψ	\Omega	Ω		

Symbolit: binäärioperaattorit...

\ominus	\ominus	\oplus	\oplus
\oslash	\oslash	\otimes	\otimes
\pm	\pm	\setminus	\
\sqcap	П	\sqcup	\sqcup
\star	*	\times	×
\triangleleft	◁	\triangleright	\triangleright
\uplus	\forall	\vee	\vee
\wedge	\wedge	\wr	7

Symbolit: relaatiot

\approx ≈ \asymp \cong \cong \dashv \dashv \doteq \neq \equiv \equiv \frown \frown \ge $tai \geq <math>\geq$ \gg \gg \in \in \le tai \leq \leq ≪ \mid**tai**| | \models \11 ≠ \ni → \notin ∉ \neq

Symbolit: nuolet

\downarrow \Downarrow \hookleftarrow \hookrightarrow \leftarrow tai \gets ← \Leftarrow \leftharpoondown \leftharpoonup \leftrightarrow \Leftrightarrow

Symbolit: relaatiot...

\parallel | \prec ≺ \preceq \perp \perp \propto \propto \sim \simeq \simeq \smile \smile \sqsubseteq \sqsubseteq $\sqsupseteq \supseteq \subset \subset \subseteq$ \succ \succ \succeq \succeq \supset $\searrow \$ $\supseteq \$ \lor

Symbolit: nuolet...

 $\label{longleftarrow}$ \Longleftarrow $\label{longleftrightarrow} \longleftrightarrow$ \Longleftrightarrow ←⇒ \longmapsto \longrightarrow \Longrightarrow \mapsto \nearrow \nwarrow

Symbolit: nuolet...

Kuvien liittäminen...

Esimerkki:

\includegraphics{foo}

Symbolit: isot symbolit

Kuvien liittäminen...

- \includegraphics{kuvatiedosto} liittää kuvan
- Kuvan tiedostopääte jätettiin tahallaan kirjoittamatta: LTEX ja PDFLTEX valitsevat kykynsä mukaan ne tiedostot, joita ne ymmärtävät:
- LATEX lukee vain .eps-tiedostoja
- PDFLATEX lukee .pdf, .png ja .jpg -tiedostoja, mutta ei .eps-tiedostoja ⇒ kätevää...

Osa 5: Grafiikka

Kuvan kääntäminen

 $.\mathtt{pdf} \leftrightarrow .\mathtt{eps} \leftrightarrow .\mathtt{png} \leftrightarrow .\mathtt{jpg}$

onnistuu kuitenkin vaivoitta.

- UNIXissa työ käy käskyillä epstopdf ja pdftops tai viimeistään
- GIMP ja ImageMagick -ohjelmilla, jotka saa Windowsiinkin.

Kuvien liittäminen

Kuvien liittäminen tekstiin tuli arkipäiväiseksi vasta 90-luvun alussa. Tästä syystä L^ATE/Xin kuvankäsittelykomennot ladataan vieläkin erikseen:

\usepackage{graphicx}
\usepackage{color}

tai

\usepackage{graphicx,color}

tai

\usepackage[dvips]{graphicx,color}

jos edelliset eivät toimi.

Kuvien liittäminen...

Kuvaa etsitään samasta hakemistosta, missä tekstikin on. Jos kuvia on paljon, ne kannattaa laittaa omaan alihakemistoonsa, jolloin kuviin pitää viitata joko

- suhteellisella polulla \includegraphics{kuvat/foo} tai
- antamalla komento \graphicspath{{}}...{}}

Esimerkki:

\includegraphics[]{}

\includegraphics hyväksyy valinnaisiksi parametreikseen joukon avain-arvopareja. Esimerkiksi \includegraphics[width=0.3\textwidth, angle=45]{foo}

Ç.

\setminus includegraphics[]{}...

Yleisimmät lisäparametrit:

- scale=number skaalaa kuvaa alkuperäiseen kokoon verrattun
- width=length määrää leveyden
- height=lenght määrää korkeuden
- angle=degrees kääntää kuvaa matemaattisesti positiiviseen suuntaan

Huom! Pituus sisältää suureen, esim. 1.5cm tai 0.2\textwidth; numero on taas suureeton.

Kuvaympäristöt

Usein kuvien liittäminen halutaan tehdä joustavasti ja numerointi automaattisesti. Esimerkki:

\begin{figure}[!htbp]
\begin{center}
\includegraphics[width=0.3\textwidth]{foo}
\caption{Härpäkkeen rakennekaavio}
\label{fg:foo}
\end{center}
\end{figure}

Kuvaympäristöt...

Kuva 1: Härpäkkeen rakennekaavio

Kuvaan voi viitata myöhemmin käskyllä \ref{fg:foo} (mikä korvataan tekstissä kuvan numerolla).

Kuvaympäristöt...

Lisäkomento [!htbp] tarkoittaa, että

- I really would like(!) to insert
- the picture right here, or at least,
- to the top or
- to the bottom of this page,
- and if this also fails, to a separate picture page.

Kuvaympäristöt...

Lisäpaketilla floatflt kuva saadaan kiertämään tekstiä

\begin{floatingfigure}{4cm}
\includegraphics[width=3cm]{foo}
\caption{Jep!}
\label{fg:fooii}
\end{floatingfigure}
Tähän voi sitten jorista,
mitä kuvasta tulee mieleen...

Kuvaympäristöt...

Tähän voi sitten jorista, mitä kuvasta tulee mieleen. Teksti väistää kuvaa siihen asti kunnes kuva loppuu ja teksti mahtuu koko sivun levyiseksi.

Kuva 2: Jep!

Värit

Värit on helpointa ottaa käyttöön käskyllä

\usepackage[usenames]{color}

jolloin värejä ei tarvitse itse määritellä erikseen (valmiin värikartan voit ladata kurssin kotisivulta). Ikävä kyllä tämä ei toimi PDFLATEXin tapauksessa, vaan värit on määriteltävä käskyllä

definecolor{nimi}{järjestelmä}{määritelmä}
esimerkiksi

\definecolor{vihrea}{rgb}{0.61,0.78,0.05}
\colorbox{vihrea}{Vihreä}

Värit...

Valmiilla väreillä leikkiminen on helppoa:

\colorbox{Dandelion}{Appelsiini} \fcolorbox{Red}{Green}{Päärynä} \textcolor{Blue}{ $\[\sum_{k=1}^{\infty} \sum_{k=1}^{\infty}$

Appelsiini Päärynä

Piirto LATEXilla itsellään

LATEX sisältää itsessään mahdollisuuden piirtää yksinkertaisia käppyröitä. Esimerkki (Kopkan ja Dalyn kirjasta):

\setlength{\unitlength}{0.8cm} \begin{picture}(5,2)\thicklines \put (5,0) {\vector(-1,0) {5}} \put(0,0){\vector(1,1){2}} $\put (2,2) {\vector (3,-2) {3}}$ \end{picture}

Piirto...

Vertailun vuoksi PostScript-kieltä (K&D:n kirja):

%!PS-Adobe-3.0 EPSF-3.0 %%BoundingBox: 169 158 233 242 220 200 moveto 200 200 20 0 360 arc 170 170 moveto 230 220 lineto 170 210 lineto 225 160 lineto 205 240 lineto 170 170 lineto stroke showpage

Piirto...

Edellinen koodi tuottaa kuvan

Seuraavaksi mutkikkaampi esimerkki...

Piirto...

%!ps

/iter 60 def /reso .005 def /sq { dup mul } def /mod { 2 copy div floor mul sub } def /plot { newpath moveto 1 0 rlineto stroke } def gsave 280 420 translate 260 2 div dup scale 2 260 div setlinewidth -2 reso 2 { /x exch def -2 reso 2 { /y exch def /r 0 def /i 0 def /n 0 def iter { r sq i sq add 4 gt { exit } if /rr r sq i sq sub x add def /i 2 r mul i mul y add def /r rr def /n n 1 add def } repeat n 10 mod .1 mul .1 add setgray x y plot } for } for grestore showpage

Piirto...

Piirto...

- Komentokieliä käyttäen piirroksista tulee täsmällisiä, koska jokainen koordinaatti annetaan numerona.
- Käyttö vaatii aina erillisen opettelun.
- Kielet vaihtelevat ilmaisuvoimaltaan. LATEXin oma piirtoympäristö on tässä mielessä aika köyhä, sillä esimerkiksi viivan kaltevuus ei voi olla mielivaltainen.
- Useimmissa piirto-ohjelmissa on mahdollista antaa haluttaessa koordinaatteja, joten välttämätöntä syytä komentokielen opetteluun ei nykyään enää ole.

Piirto...

Millä sitten kannattaa piirtää? Ohjelma kannattaa valita maun ja maksukyvyn mukaan. GNU:n General Public Licensen alaiset ohjelmat saa ladattua suoraan verkosta ja ne ovat periaatteessa kaikkein joustavimpia (koska lähdekoodikin on avointa).

- GIMP on hyvä maalausohjelma
- Xfig on siedettävä vektoripiirto-ohjelma (Linuxille, Windowsille shareware-levitteinen WinFig)
- R ja gnuplot tuottavat mainioita matemaattisia graafeja

Piirto...

Gimp on puhtaasti maalausohjelma, ja erinomainen sellainen

Piirto...

R on parhaimmillaan tilastollisten kuvaajien piirrossa.

Piirto...

Xfig on vanhaa perua ja sen käyttö poikkeaa kaikista nykyaikaisista ohjelmista. Ohjelma sinällään on mainio.

Piirto...

Kaupallisia vaihtoehtoja piirto-ohjelmiksi:

- CorelDraw!,
- Adobe Photoshop,
- Adobe Illustrator,...

sekä symbolisia ja numeerisia ohjelmia, joilla voi piirtää graafeja

- Maple,
- Mathematica,
- Matlab,...

Piirto...

Esimerkki gnuplotin komentokielestä:

```
set pm3d
set contour base
set xrange [-5:5]
set yrange [-5:5]
set isosamples 20,20
set xlabel "x"
set ylabel "y"
unset key
set term post eps enhanced
set output "gnuplotex.eps"
splot x**2-2*y**2 + 2*y -2
```


Osa 6: Muut työkalut

Piirto...

Tämä tuottaa kuvan

Muiden työkalujen tarve

LATEX on mainio taitto-ohjelma, mutta tuottavaan työhön tarvitaan vielä ainakin

- viitteidenhallintaa,
- piirto-ohjelmaa sekä toisinaan joitain
- eksoottisempia LATEXin lisäpaketteja.

BibTeX

BibTeX on LaTeXia varten suunniteltu viitteidenhallintaohjelma (Oren Patashnik ja Leslie Lamport, 1985).

- Yksinkertainen ja laajennettava tiedostomuoto:
 - tietokantaa voi muokata vaikka käsin ja
 - a kantaa käsitteleviä ohjelmia on helppo kirjoittaa.
- BibTeX-työkaluja on tarjolla pilvin pimein:
 - bibtool
 - a bibtex2html
 - **.** . . .

Osa 6: Muut työkalut – p.25

BibTeX...

BibTeX-tietokanta on puhdasta tekstiä. Esimerkki:

```
@Article{
    author = {Fred S. Grodins and ...},
    title = {Mathematical analysis and ...},
    journal = {Journal of Applied Physiology},
    volume = {22},
    number = {2},
    pages = {260-276},
    year = {1967},
    url = {Grodins - Maadsotrcs.pdf}
}
```

Osa 6: Muut työkalut – p.3

BibTeX...

- Tietue alkaa tietueen tyypillä, esimerkiksi @article, @book tai @techreport.
- Ensin kirjoitetaan tietueen tunniste, jotta tekstissä voidaan tehdä viittaus komennolla \cite{lyhenne}.
- Kentät ovat avain-arvopareja, esimerkiksi pages={260-276}.
- Kaikki kentät erotellaan pilkuin.

Tietueen rakenne on siis

```
@tyyppi{kenttä, kenttä, ..., kenttä}
```

Osa 6: Muut työkalut – p.4/2

BibTeX...

- Kirjoittajat tulevat järjestyksessä etunimi sukunimi ja
- joka henkilön väliin kirjoitataan avainsana and.

```
J. Doe and O. Normalverbraucher and M. Meikäläinen and J. Teikäläinen
```

Viiteluettelon tarkan tyylin määrää erillinen tyylitiedosto, jonka useimmiten saa ladatuksi suoraan sen lehden verkkosivulta, jonne on kirjoitustaan lähettämässä.

BibTeX...

Tyylitiedosto voi esimerkiksi määrätä, että otsikko alkaa isolla kirjaimella ja kaikki seuraavat sanat pienellä. Silloin esimerkiksi

Stability of the Human Respiratory Control System I: Analysis of a Two-Dimensional Delay State-Space Model menee muotoon

Stability of the human respiratory control system i: analysis of a two-dimensional delay state-space model

mikä ei välttämättä ollut tarkoitus.

Osa 6: Muut työkalut – p.60

BibTeX...

Jos sanan tai sen osan kirjoitusasu on määrätty, tekstiä voidaan suojata ylimääräisillä aaltosulkeillä { }

 \dots System {I}: {A}nalysis of a \dots

jolloin näitä osia ei muuteta.

Osa 6: Muut työkalut – p.7

BibTeX ja natbib

Lataamalla lisäpaketin

\usepackage {natbib} saadaan käyttöön kaksi uutta komentoa perus-\cite{}:n lisäksi:

- ♠ \citet{} textual ja
- \citep{} parenthetical citation.

jollon viitteet voidaan ottaa osaksi tekstiä.

Osa 6: Muut työkalut – p.8

BibTeX ja natbib...

Esimerkki:

\citet{Foo88} showed that... furthermore ...
in the last decade \citep{Bar93,Baz96}.
tuottaa nyt esimerkiksi

Fooman et al. (1988) showed that... furthermore ... in the last decade (Barnos et al., 1993; Bazel et al., 1996).

valitusta tyylistä riippuen.

BibTeXin käyttö

Esimerkki: Jos BibTeX-tietokanta on tiedostossa

kanta.bib, kantaan viitataan tekstissä käskyllä \cite {avain} ja lähdeluettelo lisätään tekstiin käskyllä

\bibliographystyle{apalike}
\bibliography{kanta}

missä apalike.bst on vakiona tuleva tyylitiedosto.

Ь

Dsa 6: Muut työkalut – p.100

BibTeXin käyttö...

Mikäli dokumenttia käännetään ensi kertaa, tarvitaan kaikkiaan käskyt

latex teksti bibtex teksti latex teksti latex teksti

ennen kuin kaikki on valmista.

Osa 6: Muut työ

Tiedostomuodon helppous

Aikaisemmassa esimerkissämme oli kohta

```
@Article{      gro67,
      ...,
      url = {Grodins - Maadsotrcs.pdf}
```

missä url viittaa tiedostonimeen paikallisessa koneessa. Tällä nimellä ei tietenkään ole merkitystä muille, joten kenttä on hyvä poistaa julkisesta versiosta.

Osa 6: Muut työkalut – p.12:

Tiedostomuodon helppous...

Koska bibtexin .bib-tiedostot ovat tavallista tekstiä, kentän poisto sujuu helposti.

Esimerkki: (sed = strean editor)
sed --in-place '/url/ d' viitteet.bib

Sama sujuu toki sopivalla Python tai Perl -ohjelmalla.

XFig-esimerkki

Tavoitteena on piirtää yläasteikäisille yksinkertaisia geometrisiä tehtäviä. Esimerkki: "Ratkaise alla olevasta kuviosta x".

Osa 6: Must tvříkalut – n 1

XFig-esimerkki...

Osa 6: Must tv/kalut – n 15

XFig-esimerkki...

- Kaavat kirjoitetaan kuviin \$\$-merkkien väliin.
- XFigille pitää sanoa, että teksti on special-muotoa (eli sille ei tehdä mitään, L^aTEX hoitaa tekstityksen) joko valikoista tai muuttamalla oletus komentorivioptioilla -specialtext -latexfonts.
- $\bullet \ \ \, \text{File} \rightarrow \text{Export}: \text{Combined PS/LaTeX (Both parts)}$

Osa 6: Muut työkalut – p.165

XFig-esimerkki...

Saadaan kaksi tiedostoa kuvannimi.pstex ja kuvannimi.pstex_t.

Kuva voidaan nyt liittää dokumenttiin esimerkiksi käskyllä

\begin{center}
\scalebox{0.8}{\input{kuvannimi.pstex_t}}
\end{center}

Jos kuvan koko on väärä, komennolla \scalebox{}{} voidaan korjata tilanne.

XFig-esimerkki...

- XFig ei toimi Windowsissa (kovinkaan helposti)
- f a Vaihtoehtona WinFIG ightarrow
 - $_{ exttt{@}}$ Shareware-ohjelma, maksaa noin 20 \in
 - Windowsin itsensä hintaan verattuna halpa

Osa 6: Muut työkalut – p.18/2

XFig-esimerkki...

Osa 6: Muut työkalut – p.

Prosper

Prosper on lisäpaketti esitysgrafiikkan tekoon:

- kirjoitat normaalia LATEXia ja
- Prosper tekee lopputuloksesta voimapistemenetelmällä tehdyn näköistä
- paitsi kaavojen osalta, joka ovat taattua LATEX-laatua.
- Tämän kalvon tyyli on corners

$$x = \sum_{k} a_k x_k$$

Osa 6: Muut työkalut – p.20:

Prosper, asennus

Asennus ja käyttö (Linux, teTeX):

- Lataa Prosper osoitteesta
 http://prosper.sourceforge.net/ja

Symbolinen linkki esimerkiksi hakemistoon

/usr/share/texmf/tex/latex/

• Aja texhash, jolloin LATEX huomioi asennuksen.

Prosper, asennus...

Kalvojen kääntö on suoraviivaista:

latex kalvot; dvipdf kalvot

- Kalvoja kannattaa katsella xpdf-ohjelmalla.
- Komento Ctrl-L xpdf:n ikkunassa päivittää näkymän, jos tiedosto on muuttunut levyllä.

Osa 6: Muut työkalut – p.22/2

Prosper, asennus...

Asennus ja käyttö (Windows, MiKTeX):

Hanki Prosper MiKTeX Package Managerin kautta.

Huomaa, että Prosper-kalvoja ei voi kääntää suoraan .pdf:ksi (koska Prosper on tehty PSTricks-paketin päälle). Kalvot käännetään niin, että

- valitaan ensin käännös LaTeX ⇒ PS,
- katsellaan lopputulosta GSView-ohjelmalla ja
- käännetään lopuksi valmiit kalvot .pdf-muotoon GSView-ohjelmasta.

Osa 6: Muut työkalut – p.23/2

Prosper, käyttö

Valitaan Prosper käyttöön ensimmäisellä ostikkorivillä:

Osa 6: Muut työkalut – p.240

Prosper, käyttö...

Mahdollisia tyylejä ovat muiden muassa rico, contemporain, darkblue, frames, blends, whitecross, corners ja capsules asennuksesta riippuen.

Kalvo alkaa ja päättyy käskyin

\begin{slide}{Kalvon otsikko}
Tämä tulee kalvolle.
...
\end{slide}

Prosper, käyttö...

Nämä ovat huonoja kalvoja; hyvällä kalvolla teksti on

- suurta ja
- ilmavaa.
- Maksimissaan 4 avainkohtaa / kalvo.
- Yleisö ei kuuntele ja lue yhtä aikaa.

Liite A: Prosper-esimerkit

Prosper

Prosper on lisäpaketti esitysgrafiikan tekoon:

- kirjoitat normaalia LATEXia ja
- Prosper tekee lopputuloksesta voimapistemenetelmällä tehdyn näköistä
- paitsi kaavojen osalta, joka ovat taattua LATEX-laatua.
- Tämän kalvon tyyli on corners

$$x = \sum_{k} a_k x_k$$

Prosper

Prosper on lisäpaketti esitysgrafiikan tekoon:

- kirjoitat normaalia LATEXia ja
- Prosper tekee lopputuloksesta voimapistemenetelmällä tehdyn näköistä
- paitsi kaavojen osalta, joka ovat taattua ETEX-laatua.
- Tämä tyyli on darkblue

$$x = \sum_{k} a_k x_k$$

Prosper

Prosper on lisäpaketti esitysgrafiikan tekoon:

- kirjoitat normaalia LATEXia ja
- Prosper tekee lopputuloksesta voimapistemenetelmällä tehdyn näköistä
- paitsi kaavojen osalta, joka ovat taattua LATEX-laatua.
- Tämä tyyli on whitecross

$$x = \sum_{i} a_k x_k$$

Prosper

Prosper on lisäpaketti esitysgrafiikan tekoon:

- kirjoitat normaalia LATEXia ja
- Prosper tekee lopputuloksesta voimapistemenetelmällä tehdyn näköistä
- Tämä tyyli on capsules

$$x = \sum_{k} a_k x_k$$

Prosper

Prosper on lisäpaketti esitysgrafiikan tekoon:

- kirjoitat normaalia LATEXia ja
- Prosper tekee lopputuloksesta voimapistemenetelmällä tehdyn näköistä
- paitsi kaavojen osalta, joka ovat taattua LATEX-laatua.
- Tämä tyyli on contemporain

$$x = \sum_{k} a_k x_k$$

Prosper

Prosper on lisäpaketti esitysgrafiikan tekoon:

- 6 kirjoitat normaalia LATEXia ja
- 6 Prosper tekee lopputuloksesta voimapistemenetelmällä tehdyn näköistä
- 6 paitsi kaavojen osalta, joka ovat taattua LATEX-laatua.
- Tämä tyyli on rico

$$x = \sum_{i} a_k x_k$$