

ENERGY SAVING

IN PUMPING SYSTEMS up to 40 %

IN THERMAL POWER PLANTS 3 to 6 %

SM PUMPS 2021

Our main activity KNOW-HOW TRANSFER

In following sectors

NUCLEAR SECTOR OIL&GAS SECTOR INDUSTRY WATER SUPPLY IRRIGATION

Other activities

SPECIAL PUMPS PRODUCTION
ENERGY SAVING

OPTIMIZATION

REFURBISHMENT

SOFTWARE

TRAINING COURSES

1. ENERGY SAVING IN PUMPING SYSTEMS

Possible reduction of energy consumption up to 40%

95% of analized pumping systems im last 30 years operate outside optimum

Total saved energy more than 50 MW

Payback time for investment 3 -24 months

HOW TO REACH ENERGY SAVING

- APPLY PUMPS WITH HIGHEST EFFCIENCY
- OPTIMIZE THE PUMPS OPERATION IN THE SYSTEMS

Procedure:

- Analyze the pump characteristics
- Analyze the optimal system requirements
- Calculate possible energy saving
- Calculate expenses
- Calculate payback period of time

Optimize the pumps characteristics is possible as follows:

- Replace the impellers
- Replace impellers and casings/diffuser
- Replace the complete pumps

DESIGN, REFURBISHMENT

Improving the pumps characteristics

Optimization of the pumps in the systems and energy saving Efficiency
Cavitation characteristics
Abrasion characteristics
Rotor dynamic characteristics

Pumps refurbishment

Rehabilitation of existing pumps
Improving the life time of hydraulic parts
Improving the shaft characteristics, vibration, critical speed

Customized pump manufacturing

Manufacture pump with same or better characteristics and dimension as existing pumps

– no need pipelines and foundation modification

Machined impellers from forged solid part Improving Life time, efficiency, NPSH

Rotor dynamic shaft analyze

DESIGN, REFURBISHMENT

Optimization the maintenance expenses

Optimized the maintenances expenses and improving life time of the pumps consider as follows: pump type Q —H stability and inclination, flow analyze NPSH analyze Structural analyze Thermal analyze Fatigue analyze

Machined diffuser

Cavitation analyze

Structural analyze

Thermal analyze

Flow analyze

PROJECT: OPTIMISATION OF PUMPS	COUNTRY	INSTALL POWER	ENERGY COSTS REDUCTION	Activity
		kW	%	
Chiller Pumps Rotana DUBAI	UAE	88	35	Regime optimization
Irrigation system	Saudi Arabia	135	31,8	Analyze of energy saving & consulting
MINE INDUSTRY SOUTH AFRICA	South Africa	30	4,6	Design, efficiency improvement
WATER SUPPLY SYSTEM VELIKA PLANA	Serbia	410	25.40%	Analyze of the energy saving, pump refurbishment
Personal references		kW	%	
Istrian Water Supply System	Croatia	425	40	
Istrian Water Supply System	Croatia	1.15	35	
Water Supply System Nova Gorica	Slovenia	65	45	
Paper and Cellulose Factory VIDEM	Slovenia	800	30	
Paper and Cellulose Factory VIDEM	Slovenia	1.2	20	
Water Supply System Rizana	Slovenia	330	25	
Water Supply System Rizana	Slovenia	260	25	
Water Supply System Postojna	Slovenia	1.25	60	
Water Supply System Ljubljana	Slovenia	900	25	
Water Supply System Ljubljana	Slovenia	1.7	25	
Thermo Power Plant Sostanj	Slovenia	1.575	50	
District heating System Saleska Dolina	Slovenia	350	35	
Thermo Power Plant Sostanj	Slovenia	12.8	6	

2. ENERGY SAVING IN THERMAL POWER PLANTS

Improving Enhanced Heat Transfer System

EFFICIENCY IMPROVEMENT OF HEAT EXCHANGERS INCREASING POWER OF THERMAL PLANTS

Unique patented process solutions in the

field of flow dynamics, improvement of heat transfer efficiency and application of new

enhanced heat transfer coefficient and

 real-time cleaning of heat-exchanger equipment during the actually long-life operation

EQUIPMENT HAVE NO IMPACT ON ENVIRONMENT, EQUIPMENT COMPO- NENTS ARE NON-TOXIC AND HAVE NO IMPACT ON WATER RESOURCES

Improvement of condenser efficiency by heat transfer by over 20%, maintenance of clean heat exchange tube condition.

If compared with rubber ball cleaning systems, the savings may amount to over 1.5 g/kWh of coil for a 600 MW generating unit, and over 2 g/kWh — for a 300 MW generating unit.

Application in Alternative Energy Generation equipment is widely used in power plants, generating energy from alternative energy sources, including:

Blast furnace gas power plants, waste-based electricity production, coal powder and biomass fueled power plants, waste heat recovery plants of cement production facilities.

Application in Chemical Industry

This system is used in chemical industry, in particular, in evaporators and similar systems. System allows

for prevention of coking, improvement of production rate and product quality and increase of equipment operational life.

- Oil Refining
- In different processing technologies of
- oil refining industry, the heat exchanger
- fouling and corrosion often result in
- reduction of production rate
- and product quality.
- This technology prevents from
- deposit formation and chemical
- corrosion, providing for increase
- of equipment operational life and
- considerable reduction of
- maintenance costs.

