

L. NARAYANA RAO, M. A.

WITH A FOREWORD BY

PROFESSOR M. R. BHAT, (Jyotish Mahopadhyay)

CALICUT:

PRINTED AT THE NORMAN PRINTING BUREAU
1936

PREFACE

Few subjects have been steeped in utter darkness and greater doubt is Indian Astrology which is to day eclipsed in its very antiquity. Astrology with its sister science. Astronomy went hand in hand as early as 2780 B. C. a India according to Mr. Weber but recent astronomers like Cassinibaley. Gatil and Playfair maintain there are Hindu observations which nust have been made more than 3000 years before Christ and which evince wen then a very high degree of astronomical science.

Astrology is something like applied mathematics if Astronomy were o be considered as pure Mathematics. Both of these come under one group and as one of the Shadanaas of the Vedas.

शीक्षाव्याकरण छद निरक्तज्योतिप तथा । फलपश्चेतेपडागानि वेदस्याहुर्मनीपिण ॥

Considerable controversy over the origin of Astronomy and Astrology India was made attributing the science to the Greek or Arabian origin tithese are amply refuted in the light of more recent researches and Inding Prof Wilson and Mr Elphinstone have stated that the Hindu system e found to be their own peculiar in their method and founded on principles with which no other ancient people were acquainted and showed a knowledge of discoveries not even made in Europe till the last two centures. To cite an example is the Precession of the equinoxes. Another is the diurnal rotation of the earth about its polar axis these have been discussed in Vedas in the fifth century. B. C. and which were not known to the European astronomers even till so late as the Copernician system over nowered the Ptolemian one. Which was the only system prevalent then

In passing through the various stages in the developement of the f science the earliest period may be reckoned to extend from 400 B C to 2500 B C. This may be termed as the Orion or Vedic Sutra Period The Aryans were still on the move. At every stage they had to face the uncertainties of the lands and climes. Stars were their only familiar friends and that led them to have a forecast of their future course. Even on settling themselves they had many a difficulty to face—warring against aborginal tribes clearing of forests hunting down wild animals and settling internecine feuds. In all these things they turned to the stars for auspicious moments.

It was thus necessary for them to calculate the positions of Sun, Mos and other planets and they had developed ere long the science to such a extent that later on, during the times of flourishing of the Persian and Bah, lonian kingdoms, people of India were called for and treated honourably appreciation of the progress in every branch of learning and in the scien of the future—Astrology and Astronomy—to hoot

Further later, during the times of Vikramaditya, two such eminipeople were Arya Bhatta and Varahamihira who have done really service in the field of Astronomy and Astrology

तिष्यां नयंच रुविधाविष द्वित्दद्व मोद्योपरागमुखलेचरचारक्चमा । सूर्यस्वयं कुसुमपुर्वभवत् कलोतुभूगोळवित्रुलापार्यभटाभिधानः ॥

Then the study of the sciences was encouraged by the ruling ra and it attained a very high prominence. Some archaelogical preserves ancient Indian observatories are still preserved and it behoves a very h standard of advancement in that branch of study. Records of such rare: peculiar Astronomical phenomenon were made.

" शांकेष्टपटशीत्र गुरुषे (१४४३) वृबकारदिमयोमासिवाणेदुनाडी । सुरुषे द्वेशिक्षिष्णणे दिनकरदिवसे भागुतर्धमशेऽमृत् ॥ तस्मिन् सर्वप्रहेडस्तातमपि सक्छं काव्यसार्विग्रन्था । स्तारा स्पृशंयकाराकलितमिह्न जगतत्तु हाह। चकर ॥ "

At present the science is almost extinct in India, quite Linworthy the heritage it had Out of sloth and indifference to the science and awability of a ready foreign ephements at hand and for want of encourament at the hands of the rubing classes this has been neglected by all, with exception of the few professional almanac-makers, who still carry with their editing of the almanac on the old methods

In contrast, their more fortunate brethren on the Continent have be able to develop the science to a new standard with the progress of the oil sciences. It is high time that we also make ourselves up to date with informat on available from their researches.

It is not anti-patriotic or ureligious to accept, embrace and follow it which has been proved to be true to observation. No proof of accuracy the methods is required as far as Astronomy is concerned except that tabservations.

अप्रत्यक्षाणि शास्त्राणि विवाहस्तेपुरेत्रलं । प्रत्यक्षं ज्योतिषं शास्त्रं चहार्की यत्रशक्षिणी ॥

The systems have to be rectified from time to time by bringing them nearer and nearer to observation by empirical corrections called ''বী গর্মকোর''

॥ - ४ ६ - ४ भ्रहणाद् । स्वीजको ॥
 अपरच
 भ्रहणेमस्योगेच कालभाङ्ग्रसाधने ।
 श्रृंगोभरखदयास्तेष भ्रहे बीज विशेषते ॥

It is seen that the people have of late felt the need for a text book of Astronomy for calculating the planetary positions accurately and independently of any ephemeris and the present book is placed before the learned public for the benefit of the humanity for acceptance with the best of spirits

No pains have been spared in making the book self supporting for the requirements of working. A chapter on Rectification of birth time has been added which is a very useful information to the public to enable them to find out the correct birth time. The procedure indicated is to find out the time difference and thence to rectify the other Tonses and the planets. But in practice it will be better to find out the ascendant and Moon first to find out the rectified ascendant and the time difference and thence with the rectified time to calculate the other planets.

Before concluding I have to note a few lines in appreciation of the quick and near Printing work executed by the Proprietor Mr K V Achtuhan Nair of the Norman Printing Bureau Calicut and of the useful and suggestive criticism of my friend—to mention but a few-Messrs M R Bhat of Mangalore S J Prabhu of Calicut and D Sundar Rao Astrological Bureau Calicut to whom 1 offer my sincere thanks in return,

It is regretted that in spite of special efforts some corrigenda has been found necessary and followers of the book are earnestly requested to please have the corrections made before using the book

Calicut 15th May 1936

L NARAYANA RAO

-The Author

FOREWORD.

Essentially a book such as Mr L, Narayan Rao M A's Astro-Nativity-An Astronomical compendium for Astrologers, 'needs no Foreword Yet in view of the rather revolutionary doctrines promulgated in the original text on the subject, a word or two from one who has seen them put in practice may be of some value. Every man is reputed to be enthusiastic over his own discoveries and corroboration from outside is correspondingly reassuring.

I have for over 20 years practising and have seen in operation the greater part of the practical Astronomical Compendium contained in this volume. It is therefore just to say that the methods (advocated in this self-contained book with the idea of Plane and Spherical Trigonometry as well as Tables of Trigonometrical Sines. Cosines and Tangents.) attain in practice, in most cases especially, a measure of success not achieved by any other system known to me.

Mr. Rao would, I am sure be the last to claim finality for the theoretical part of the work, but it has the ment that it offers a rational basis by its special feature of comparative old and new methods of calculation with well thought out multipliers and corrections whereever necessary

A chapter on 'Recufication of birth time" has been added at the end-a very original research different from the Per-Natal conceptional problem. This is thoroughly Indian for many phases of this as outlined in the work have been shown to be dependent for their existence on Varaha Mihir's Brihajiataka. The inferences drawn in the text may be fairly drawn and are not merely stabs in the dark. In arriving at the conclusions which have been presented the greatest care has been given to the study of the scores of cases which have been analysed and critically examined before these conclusions were accepted. Most of the results have been tested with a view to establishing definitely the modus operanda of cause and effect, and the inferences and opinions expressed are therefore true to experience and if it is desired to test them out. I would earnestly request that very close attention to detail should be demanded of the experimenter before condemning the observations here put forth.

This work is an attempt to bring more light to bear on a subject which bristles with difficulties and one which requires an expenditure of

much time and patience to unravel the problems associated with it. It is the fruit of years of endeavour spent in studying methods and correlating, as well as co-ordinating, the sequence and significance of the results obtained and these results have not been isolated cases, but have been repeated so frequently that in some phases of the problem they have never failed to appear when the premises of the position have been properly established

It is not intended to give the impression, that the author claims perfection for this work. He is only, too well aware, of the difficult ground he has to traverse.

He is entitled to the respect and encouragement from all thinking people so inclined and I am sure that the book deserves to find an important place in Vade Mecum of the All Astrologers Eastern as well as Western

Mangalore, } 9-5-'36 M R BHAT, , Jyotish Mahopadhyay and Sudhakar Ayurvedh Mahopadhyay

ASTRO-NATIVITY.

Introduct	ory.	•	Page
Chapter	· I	Plane Trigonometry	2
Chapter	11	Spherical Trigonometry	13
Chapter	111	Celestial Co-ordinates	19
Chapter	IV	Terrestial Co-ordinates	23
Chapter	v	The Sun-Its apparent path	24
Chapter	vt	Planetary laws-The Sun-Epoch-Position	of
٠.		Sun at any instant and connected problem	26
Chapter	·VII	Tropical longitude	53
Chapter	VIII	Time-The various kinds-Equation of Timu	5G
Chapter	IX	Position of the observer-Correction due to	62
Chapter	X	Position of the Ecliptic	72
Chapter	XI	Moon	89
Chapter	ILX	Planets	122
Chapter	IIIX	Mars	129
Chapter	XIV	Mercury	138
Chapter	XV	Jupiter	147
Chapter	XVI	Veuus	157
Chapter	XVII	Satura	167
Chapter	XVIII	Uranus	176
Chapter	XIX	Neptune	183
Chapter	, XX ,	Rectification of birth timo	189
Chapter	IXX	Transformation of Co-ordinates	201
Chapter	11XX	Hindu method of planetary Longitudes	201
Chapter	IIIXX	Appendix	212

For "Uranns" read "Uranus"

For 481' read 48'

170

G 176 to 178

using this book)

177	-	Against 500000 item read signs '3" for "8",
189	€	For 'l in denominator read "1"
190	27	For "nark" read "mark"
195	16,18	For $\frac{5z}{6}$ read $\frac{23x}{30}$ and $z = \frac{6481}{16560}$
	19	For 21'-36" as the value of x, read 23'-29"
	20	For 19°-30'-7" read 19°-28'-14"

196 In tables IV & X houses read sec 9, V & XI houses sees 14 196 For "HOMSE" read "HOUSE"

In tables IV & X houses read sec 44. V & XI houses read 197 веся 55 Read Mercury 3-23-48-26, vel 71-10 and at end of 198 page 3-23-49-2

15 For $\frac{\sqrt{}}{2}$ against cos 30°=, read $\frac{\sqrt{}3}{7}$ "csat" read "crat" 26

199 207

(It is requested that these corrections may please be made before

॥ श्री ॥

इंदीवरद्वस्यामं इंदिरानंदृषंद्तं । वंदाहजनमंदारं वंदेहम् यहुनंद्दं ॥ १ ॥ गणेशंभारतीनत्वा आदित्यादिनवप्रहान् । प्रणम्यच्युरं भक्त्या ब्रहाणां गणिनं बुवे ॥ २ ॥

If an observer on a clear night were to look at the heavenly vault over his head, he will find countless stars, planets the Moon and such other heavenly bodies, rising at different times in the eastern horizon and setting in the western horizon, after performing their ceaseless journey. A feeling will be created in his mind whether they are definite in their heavenly path, and whether it may be possible to bring their motion under a systematic calculation, as regards their paths times of rising and setting, appearing sometimes luminous, sometimes totally disappeared and at other times some presenting phases etc.

The aim and object of this book is to show how these heavenly bodies can be brought under a regular and systematic calculation. To have a really mathematical treatment of the subject, a thorough knowledge of Trigonometry—Plane and Spherical—is quite indispensable, with the help of which the planetary positions have to be calculated. Application of Logarithms will further facilitate matters but they may not be in the easy reach of all, who may as well work without logarithms. It may be found that during the course of the working of the example chosen logarithm has been applied to facilitate calculation. This may not be considered as a serious block in following this book, for the same results should be otherwise got by regular methods of multiplication and division.

The Hindu methods of calculation have also been given side by side, suggesting recuffications by way of improvement on them and it may be noted with pleasure that the direct knowledge and use of trigonometry has not been employed so much by contrivances called ज्यापदगांवि (Jyapadakani), which give results within a reasonable margin of difference and standard of accuracy.

Chapter I.

PLANE TRIGONOMETRY.

Trigonometry as the name itself suggests is a branch of Mathematics which deals with the computation of triangles. Triangles are either plane or spherical their computations falling under Plane Trigonometry or Spherical Trigonometry respectively

Let ABC be a rt $\angle d$ triangle with $\angle C$ as the rt angle. Then the ratios $\frac{AC}{AB} = \frac{BC}{AB}$ and $\frac{AC}{BC}$ are called respectively the Sine

Cosine and Tangent of the angle B So also the ratios $\frac{BC}{AR}$ $\frac{AC}{AR}$ and $\frac{BC}{AC}$ will be the sine cosine and tangent of the angle A

Therefore in general

Perpendicular Sine of an angle= Hypotenuse Base and Cosine of the angle=

Tangent of the angle = Perpendicular

For AC BC and AB are respectively the perpendicular base and hypotenuse with respect to angle B and BC AC and AB become the respective parts with respect to angle A the hypotenuse AB being the same in both The cases whether LB or LA is taken as the angle of reference

Now as defined above sine $B = \frac{AC}{AB}$ but $\frac{AC}{AB} = \text{cosine of angle A}$

for AC which is the Lar with reference to /B becomes the base with reference to ZA hence what was the sine with respect to ZB becomes the cosine with respect to ZA But as the A BC is a rt Zd one the angles A and B are together equal to a rt Z or complementary to each other

Thus the sine of a given angle is equal to the cosine of its com plement or conversely if it be required to find out the cosine of a given angle it will be enough if we find out the sine of the complement of the

angle given. This truth has been taken great advantage of for a single table of sines of all angles between 0° to 90° will serve to find out their cosines also

The words sine and cosine are used in their shortened forms—sin and cos and these abbreviated forms only will be used hereafter. In Hindi Astronomy the terms \overline{y} a (Bhujam) and \overline{q} (Koti) are respectively used for them

Let the lines XOX and YOY be drawn intersecting each other at right \angle s at the point O. Thus four quadrants are got each containing a rt. \angle

The quadrants XOY YOX XOY and YOX are respectively called the

It should be observed that in the numbering of the quadrants, the order is not clockwise but counterclockwise which is the positive direction. It will be shown in a later chapter that it is only in this direction that the earth revolves about its axis.

All distances measured from O along OX towards the right hand side are considered positive and those along OX towards the left negative Similarly distances measured upwards along OY (i e) above the line XOX are positive and those measured downwards (i e) below XOX negative. These have to be understood very clearly as the assigning of the proper signs to the Trigonometrical ratios are based upon this fundamental conception.

Let XOX and YOY be the axes of coordinates with the four quadrants formed Let OA be any line revolving about the point O in the plane of the lines XOX and YOY

In the course of its revolving about O the line OA will assume different positions in the different quadrants. Let OP be a fixed length cut off the revolving line such that the distance of P from O will be the same always irrespective of the position of the revolving line.

Before the revolving line begins its revolution it would have coincided with the initial line OX and let the position OA be obtained

fter describing an angle of magnitude 0 (pronounced as theeta) degrees is the point whose distance from O is fixed and given

When the revolving line coincided with the initial line the point P would have been on OX itself such that the point P and Q the foot of the Lar from P to OX would have been the same OQ would have been equal to OP itself and the angle between the revolving line and initial line also zero

Thus we would have $\sin 0 = \frac{PQ}{PP} = \frac{Zero}{QP} = 0$ $\cos 0 = \frac{QQ}{QP} = \frac{QP}{QP} = 1$ and $\tan 0 = \frac{PQ}{PQ} = \frac{QP}{QP} = \frac{QP}{QP} = 0$

Next let us consider what happens to these when the revolving line assumes a position along OY. Then we would have PQ becoming PO Q coinciding with O and hence QO becoming zero for YO is Lar to OX P is a point on OY and PQ also Lar to OX (i e) \angle POQ becomes a rt. \angle We should therefore have sin $\Re = \frac{PO}{PO} = 1$, $\cos \Re = \frac{OQ(=0)}{OP}$

=zero and $\tan 90 = \frac{PO}{zero} = \infty$ The symbol ∞ is always used for Infinity which is still bigger than the biggest number we could possibly think of For zero is a number which is less than any positive quantity forgetting for a while the existence of a negative class of numbers. Hence any finite number when divided by the smallest conceivable number should necessarily be the greatest number which is called Infinity.

Thus in the I quadrant the sine ratio increases gradually from 0 to 1 the cosine ratio decreases gradually from 1 to 0 and the tangent ratio increases from 0 to ∞ but not so gradually as the sine does

BEHAVIOUR IN THE II QUADRANT.

Let the revolving line now assume any position in the 11 quadrant say OP_1 , such that the angle YOP_1 is equal to the $\angle \theta$

Then the angle $XOP_{\tau}=90^{\circ}+\theta$ and angle $XOP_{\tau}=180-190^{\circ}+\theta$ for $\angle XOP_{\tau}+\angle X^{\prime}OP_{\tau}=180^{\circ}$

Therefore the sine of $\angle XOP$, is the same as the sine of $\angle XOP$, i. e.) sind of the supplement of $\angle XOP$. Generalising the sine of an angle in the II quadrant (i. e.) when more than 90° but less than 180° will be the sine of its supplement

Further as the sine ratio involves only the \bot ar and the hypotenuse, it will be only positive as the \bot ar from the fixed point P_1 to the line XOX' is still above it

As the revolving line — Radius Vector as it is called - moves on and on there will be a position, when it will be along the line OX, in which case the Lar from P_1 will be P_1 itself — In other words, the Lar from P_1 to the X axis becomes Zero

Now as the revolving line has exactly finished describing the first two quadrants it has described 180°. Therefore, sin 180° becomes Zero as also its tangent as both of them involve the Lar which is Zero in the present case.

Cosine of
$$\angle XOP_1 = \cos \text{ of } \angle XOP_1 = \cos (180^\circ - \angle XOP_1)$$

= $\cos \text{me}$ of supplement of the given angle

But as the cosine ratios involve the base and as the distances towards the left of O, in the direction OX are considered negative, as already explained, they are negative in the II quadrant, until at last when OP₁ falls along OX, the base (i e) the distance of O from the foot of the Lar from P₁ on OX', becomes equal to OP₁, the cosine ratio becomes—1

Therefore in the 11 quadrant sine ratio decreases from 1 to 0, cosine ratio decreases from 0 to—1 and tangent ratio Increases from — ∞ to 0

BEHAVIOUR IN THE III QUADRANT.

Let the radius vector proceed on and occupy a position in the hird quadrant say θ° from the base line XOX such that $\angle P_2OX = \theta^{\circ}$

Then the ratios of the $\angle XOP_2$ will be the same as those of $\angle XOP_2$, but only that the \bot ar from P_2 to the base line will be below the ine XOX' and hence negative. The distance of O and the foot of the \bot ar from P_2 on OX will be negative also for the foot of the \bot ar will fall towards the left of O

As the radius vector approaches OY more and more the Lar distance from P₂ to the base line will be gradually increasing and the foot of the Lar approaching O, until at last when OP₂ falls along OY OP₃ will be the Lar itself and the foot of the Lar will coincide with O

That is the sine ratio will be numerically increasing from 0 to 1 and the cosine ratio numerically decreasing from 1 to 0 though both will be negative algebraically

The tangent ratio as it involves both the Lar and the base which are both negative in this quadrant will be positive and increasing from Zero to positive infinity

Thus the ratios of an angle in the III quadrant are numerically the same as those of the given angle less 180° for as in the example taken the ratios of $\angle XOP_2$ are the same as those of $|X'OP_2|$ Care should be taken to put the proper sign before each of the ratios so got

BEHAVIOUR IN THE IV QUADRANT.

Lastly let the radius vector occupy a position say OP_3 in the IV quadrant. The angle traced by the radius vector from its initial position along $O\lambda_3$ is λOP_3 measured in the positive or counter clock wise direction.

The trigonometrical ratios of the $\angle XOP_3$ will be the same as, those of $\angle P_3OX$, for the \bot ar from P_3 to the initial line OX and its foot will be the same for both the $\angle S$

Also the sine ratio will be negative in this quadrant as the Δa from the point P_3 to the initial line still continue to be below it the costi ratio will be positive as the foot of the Δa has once again fallen to the right of O and towards OX and the tangent ratio will be negative as the Δa is negative while the base is positive

At the end of the third quadrant, the sine cosine and tangent he respectively attained the values—1 0 and $+_{\infty}$. Now in the fourth quaerant the sine increases from—1 to 0 cosine from 0 to +1 and tange from— ∞ to 0

It may not be clear for new learners of Trigonometry how that angent ratio at the ends of the first and third quadrants though approaching the could suddenly begin to increase from—to 0 as the angle it tends to enter the II and IV quadrants. For the tangent is as primarily defined a ratio of the Lar and the base. The Lar is positive in the I are II quadrants and the base positive in the I and IV quadrants. The tangent ration which attains the value the at 90° suddenly turns to—to by dint of the base assuming the negative sign as the angle traced by the radius vector jue comes into the II quadrant as the tangent ratio involves the base in I denominator. So also for the sudden change from the co-to, as the angle just passes from the III to the IV quadrant.

The following diagram gives us the scheme for remembering the signs and natures of the ratios

Sine decreases from +1 to 0 Cosine decreases from 0 to -1 Tangent increases from -x to 0	Y Sine increases from 0 to +1 Cosine decreases from +1 to 0 Fangent increases from 0 to +00
X' Sine decreases from 0 to −1 Cosine increases from −1 to 0 Tangent increases from 0 to +∞	S no increases from—1 to 0 Counce increases from 0 to +1 Tangent increases from—00 to 0

Or

-1 quadrant 11 quadrant	Sine + +	Cosine + -	Tangent +
III quadrant		•	+
IV quadrant		+	<u> </u>

It could have been seen by this time that the tangent of an angle, which has been defined as the ratio of the Lar to the base could be also defined as the ratio of the sine to its cosine,

for, tangent=
$$\frac{Lar}{base} = \frac{Lar}{hypotenuse} \times \frac{hypotenuse}{base} = \frac{Lar/hypotenuse}{base/hypotenuse} = \frac{sine}{cosine}$$

TO FIND THE SINE OF ANY ANGLE.

First of all find out the quadrant wherein the given angle lies (i.e.) whether less than 90° or greater than 90° but less than 180° or greater than 180° but less than 270° or lastly, greater than 270° and less than 360°

When in the I quadrant, the angle itself will be the argument for finding out the sine, when in the II subtract it from 180°, the remainder will be the sine argument in the III quadrant the excess over 180 will be the required sine argument, and lastly in the IV quadrant the defect of the given angle from 360° will be the sine argument. With the argument having got the numerical value of the sine from the tables annexed, the proper sign according to the quadrant the given angle lies in will have to be pre-fixed it it.

TO FIND THE COSINE OF THE SAME.

After having got the sine argument subtract the sine argument from 90° always and the sine of this defect will be the cosine of the angle given Care should be taken to prefix the proper sign according to the quadrant occupied

TO FIND THE TANGENT OF THE SAME.

After having found out the sine and cosine as told above with the proper sign divide the sine by the cosine. The quotient will be the tangent with the proper sign

There are other three ratios viz cosecant scant and cotangent which are the reciprocals of the sine cosine and tangent respectively. They can be as well got rid of by employing $\frac{1}{\sin} \frac{1}{\cos}$, and $\frac{1}{\tan}$ respectively. There are two more—versine and coversine which stand for (1—cosine) and (1—sine), but they occur very seldom

CORRESPONDING DETAILS IN HINDU ASTRONOMY.

The measurement of angles in Sexagesimal measure is found to have been in use since times immemorial and of wide acceptance though in some places centesimal measure also has been used. The former has got decidedly more advantages than the latter and it is only the Sexagesimal measure that Hindus have used.

In the Sexagesimal measure, a degree is divided into 60 parts called minutes and each such minute being further divided into 60 seconds. These minutes and seconds are of arc, as distinguished from the more commoner ones of time.

In the Hindu Astronomy the terms six (or stri), and first are employed corresponding to degrees minutes and seconds 30 degrees are supposed to comprise a tiffit or a sign. These signs are twelve in number, for $\frac{300}{300}$ =12. These signs are called as follows with the corresponding equivalents.

मेप =	Aries	नुसः =	Libra
युपभ =	Taurus	বৃষ্ঠিক ≔	Scorpio
मिधुन =	Gemini	'યનુઃ =	Sagittarius
कर्क=	Cancer	मकर. =	Capricorn
सिंह =	Leo	शुंभ =	Aquarius
कन्या =	Virgo	मीन =	Pisces

THE RADIAN MEASURE (त्रिज्या)

As the necessity to convert angular measure into circular measure and vice versa, will be felt very often, a measure has been employed, called the "Radian" It may seem from its name, that it may have something in relation with the radius of a circle and in fact it does so

A radian is defined as the angle subtended at the centre of a circle, by an arc equal to the radius.

Let a O centre O be drawn and let OA be any radius. Along the circumference step off a portion AB equal to the radius OA [N B—Care should be taken not to cut off an arc with radius ual to that of the given circle. But the portion to be stepped off should by placing a length equal to the radius along the circumference.]

Join OB Then ZAOB will measure the value of a radian

For, $\angle AOB = \frac{\text{arc } AB}{360^{\circ}}$ as the arcs are proportional to the angles subtended at the centre in same circles or equal circles by a well known geometrical truth

LAOB = 360 x arc AB but arc AB-radius by our data = r and circumference = 2πr, where n is the Greek letter (pi) whose values have been taken differently by different mathematicians viz 3; 3 1416 714 etc. The value 313 has been used by Bhaskaracharya the eminent Hindu Astronomer, and approaches very much to the real value which is incommensurable and still under investigation and research

Taking this value 351, the No of degrees in a radian is equal to

$$\frac{360 \times r}{2\pi \times r} = \frac{360}{2\pi} = \frac{36 \times 113}{\pi} = \frac{36 \times 113}{71}$$
$$= 57^{\circ} - 17' - 44''.70$$
$$= 3437' - 44''.79$$
$$= 206265''$$

To find out the भुने or the argument for finding the sine

HINDU METHOD

- l If राशि is 0 l or 2 the same is भुज.
- 2 If सावि is 3, 4 or 5 subtract from 6 signs
- 3 If राशि is 6 7 or 8 subtract 6 signs from the given one
 - lf राशि is 9, 10 or 11, subract from 12 signs

COMPARE

- I quadrant the angle itself will be the argument
- 2 If quadrant given angle subtracted from 180°
- 3 III quadrant subtract 180° from the given angle
- 4 IV quadrant given angle subtracted from 360°

ing the distances of the planets from the earth, given their distances from the Sun, distance of Earth from Sun and the difference of the 11eliocentric longitudes of the planets and Earth, which will be dealt at length in the concerned chapters

Chapter II

SPHERICAL TRIGONOMETRY.

The heavenly vault overhead is hemispherical in shape and concave to the observers on the earth and the positions of the stars and other heavenly bodies as seen by them are merely the projections of the bodies on the spherical vault. The lines of are joining the positions of three bodies joined two at a time, as seen by the observer form spherical triangles, the computation of which cannot be made unless with a fair working knowledge of Spherical Trigonometry.

Let $ABPA'\ B'$ be a sphere-described about an observer O at the centre

Any section of the sphere, say AOA' passing thro' O -or any central section of the sphere is called a great circle, as different from sections of the sphere not passing through O, in which case they are called small circles

We shall have to deal with spherical Δs formed by great circles only

If BB' be another great circle and if S be any star and if its position be poined to P by an arc of another great O passing through S, then the triangle formed by the arcs PS, SB and PB is a spherical triangle of the type described in previous paragraphs

It could be easily conceived that if OS, OP and OB are joined by st lines, they will be all equal for, P, S and B are points on the sphere whose centre is O each being the radius of the sphere. The sides of the spherical triangle are denoted by the angles subtended at the centre of the sphere by the respective aroual sides and the angles of the spherical Δ are

those between the tangents at the vertices to the great circles passing through the vertex and whose arcs are the sides of the spherical triangle

[N B \sim The tangent mentioned here is defined as a line touching a given circle at two ultimately coincident points or as the limiting position of a chord and should not be confusedly mixed up with the trigonometrical tangent which is purely a number

RELATION BETWEEN THE SIDES AND ANGLES OF A SPHERICAL TRIANGLE.

Let ABC be a spherical triangle formed by the arcs AB BC and CA of three great Os of the sphere centre O

The sides AB BC and CA are respectively c, a and b being the measure of the angles subtended at O the centre of the sphere by the arcs mentioned that is a=angle subtended by arc BC at O

= ZBOC

Similarly $b = \angle AOC$ and $c = \angle AOB$

Suppose tangents be drawn to the arcs AB and AC at the point A which is also the vertex of the spherical Δ ABC the angle between the tangents will be the \angle BAC of the spherical triangle. Thus if AD and AE be the tangents drawn at A meeting OB and OC produced at D and E respectively then \angle DAE= \angle BAC of the spherical triangle similarly the angle between the tangents at B to the two arcs AB and BC will measure the \angle ABC of the spherical Δ so also \angle ACB

OA=OB=OC being radii of the same sphere and let each be equal to r.

Since AD is a tangent drawn at A to the arc AB \angle OAD is a rt \angle (for by Geometry a tangent to a O and the radius thro the point of contact are \bot ar to each other)

 $\frac{AD}{AO} = \tan \angle AOD = \tan \angle AOB = \tan c$

(i e) AD=AO tan c= $r \tan c$

Similarly AE = $r \tan b$ and $\angle DAE = \angle A$ of the spherical \triangle

Thus in the plane \triangle ADE AD AE and \angle A are known

:.DE2 = AD2 + AE2 - 2 AD AE cos LDAE

.

(refer plane"Trigonometry portion for the relation of third side with two sides and included angle)

$$\therefore DE^2 = r^2 \tan^2 e + r^2 \tan^2 b - 2 r^2 \tan^2 b \tan c \cos A$$

$$= r^2 (\tan^2 c + \tan^2 b - 2 \tan b \tan c \cos A)$$

$$Ncw \frac{OA}{OD} = \cos c \triangle AOD = \cos c (r e) OA = OD \cos c$$

$$\therefore OD = \frac{OA}{\cos c} = \frac{r}{\cos c}$$

$$Similarly OE = \frac{r}{\cos b} \text{ and } \triangle DOE = \triangle BOC = a$$
but $DE^2 = OD^2 + OE^2 - 2 OD OE \cos c DOE$

$$= \frac{r^2}{\cos^2 c} + \frac{r^2}{\cos^2 b} - \frac{2r^2}{\cos b \cos c} \cos a$$

$$= r^2 \cdot \frac{1}{\cos^2 c} + \frac{1}{\cos^2 c} + \frac{2\cos a}{\cos c} \cos a$$

as these should be equal equating the expressions that are equal to DF2, we get

$$\begin{aligned} & [\tan^2 c + \tan^2 b - 2 \tan b \tan c \cos A] = \begin{bmatrix} \frac{1}{\cos^2 c} + \frac{1}{\cos^2 b} - \frac{2 \cos a}{\cos b \cos c} \\ & \frac{\sin^2 c}{\cos^2 c} + \frac{\sin^2 b}{\cos^2 b} - \frac{2 \sin b \sin c}{\cos b \cos c} \cos A = \frac{1}{\cos^2 c} + \frac{1}{\cos^2 b} - \frac{2 \cos a}{\cos b \cos b} \frac{c}{\cos a} \end{aligned}$$

By plane trigonometry we have $\sin^2 \theta + \cos^4 \theta = 1$ for $\sin \theta = \frac{Lar}{bwood}$ and $\cos \theta = \frac{base}{bwood}$

$$\therefore \sin^2 \theta + \cos^2 \theta = \frac{(1 \text{ an})^2 + (\text{base})^2}{(\text{hypotenuse})^2} = \frac{(\text{hypotenuse})^2}{(\text{hypotenuse})^2} = 1$$

$$\therefore \frac{2 \sin b \sin c}{\cos b \cos c} \cos A = \frac{1 - \sin^2 c}{\cos^2 c} + \frac{1 - \sin^2 b}{\cos^2 b} - \frac{2 \cos a}{\cos b \cos c}$$

$$= 1 + 1 - \frac{2 \cos a}{\cos b \cos c} = \frac{2}{\cos b \cos c} - \frac{2 \cos a}{\cos b \cos c}$$

Dividing by 2 throughout we have, by multiplying thereafter by $\cos b \cos c$

-sin b sin c cos $A = \cos b \cos c - \cos a$ $\therefore \cos a = \cos b \cos c + \sin b \sin c \cos A$

This is a very important formula and similar expressions for the other sides b and c can be written down symmetrically from these as follows

 $\cos b = \cos c \cos a + \sin c \sin a \cos B$ and $\cos c = \cos a \cos b + \sin a \sin b \cos C$

These three formulæ give rise to another set of three formulæ hus, we have already deduced

 $\cos b = \cos c \cos a + \sin c \sin a \cos B$

Substitute for cos a in this, we get

cos $b = \cos a$ (cos $b \cos a + \sin b$ sin $a \cos A$) + sin $a \sin a \cos B$ = $\cos b \cos^2 a + \sin b \sin a \cos a \cos A + \sin a \sin a \cos B$ $\therefore \cos b - \cos b \cos^2 a = \sin a [\sin b \cos a \cos A + \sin a \cos B]$ (1 e) $\cos b ([-\cos^2 a] = \cos b \sin^2 a = \sin a [\sin b \cos a \cos A]$ + $\sin a \cos B$

Dividing by sin e throughout we have

$$\cos b \sin c = \sin b \cos c \cos A + \sin a \cos B$$

= $\sin b (\cos c \cos A + \frac{\sin a}{\sin b} \cos B)$

$$\therefore \frac{\cos b}{\sin b} \sin c = \cos c \cos A + \frac{\sin a}{\sin b} \cos B$$

(i e)
$$\cot b \le \cos c = \cos c + \frac{\sin A}{\sin B} \cos B$$

 $\int_{0}^{\infty} \frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c} \text{ in spherical trigonometry on the}$

analogy of

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \quad \text{in plane trigonometry}$$

The first set of three formulæ are to be used when two sides and contained angle are known and it be regd to find out the third side

The second set of three formula are to be used when any three adjacent parts are known and it be required to find out the fourth

These apply to all spherical Δs formed by three great circles But if two of these arcs meet at $\pi \in S$ (i.e.) if one angle of the spherical Δ becomes a $\pi \in A$, the triangle becomes a $\pi \in A$ spherical triangle. The above formulæ become much simpler and a simpler method has been found out to remember for applying the formulæ suitable to the occasion

- $\therefore \sin (90-b) = \tan (90-C) \times \tan (90-A)$
- (i. e.) cos $\,b\!=\!\cot\,C$ cot $\,A\,$ This also agrees with what has bee independently arrived at
- It can be illustrated how all the other sets of the Napieria analogies are proved

These will be of very great advantage in the transformation of celestial co-ordinates for example—given celestial longitude and latitude the find out the R. A. and declination and vice versa etc.

A table of sines cosines and tangents is given in the appendix a it will save the time and trouble of referring to a book of Trigonometrics tables. Mere sine ratio alone will enable us to find out the other ratio be for the convenience of the users of this book, they are made ready at han and easy of reference.

Chapter III

CELESTIAL CO-ORDINATES.

The heavenly vault appearing to all observers on the earth has already been described as a hemisphere on which the positions of heavenly bodies are projected. The data which are essential in locating the position of any heavenly body as will be apparent on the celestial sphere are called the celestial co-ordinates.

The horizontal section of the celestial sphere with the observer at its centre is called the horizon and the pole of this section (ie) the point just above the head of the observer is called the Zenuth and the corresponding point below, the Nadir [By the word bole is meant that point on the sphere which when joined to any point on the circumference of the circular section of which it is the pole, measures 90° 0 f arc Or it is a point on the sphere such that it measures early 90° 0 f arc to any point on the circumference of a central section whose pole is the point)

When the observer faces the north he will observe the pole star towards which the axis of the earth is always pointing in its diurnal rotation as well as in its annual rotation about the sun. Where this direction cuts

e celestial sphere will be the pole of the celestial equator or the celestial le In other words the celestial equator is that circular central section the sphere perpendicular to the fixed direction of the pole. This ilestial pole should not be confused with other—terrestial pole.

Where the celestial equator cuts the horizon of the observer are e East and West points. That section of the celestial sphere passing irough the Zenith and the East and West points and terminated by the orizon is called the prime vertical.

HOR-horizon
P-pole of the celestial equator
Z-zenith of the observer
N-The Nadir
EZW-prime vertical
E and W-being the East and
West points

CO-ORDINATES REFERRED TO ZENITH AND HORIZON.

Let the celestial sphere of the observer be drawn as in the above figure and be named with the usual notation. Let S be a star. If a great O be drawn thro' Z and S terminating it with the horizon, then ZSL is the vertical through the given star.

If SO be joined LSOL subtended by the art. SL at the centre O of the celestial sphere where the observer is stationed or merely the art SL is called the altitude of the star and its complement ZS the zenith distance. For, Z being the pole of the section HO+R of the sphere ZL is 90°, but ZS+SL=ZL ZS is the complement of SL or the zenith distance is the complement of the altitude. HL is called the Azimuth and is measured from the south point towards the east or west when the North pole is above the horizon or from the North in the other case. Hence the azimuth and the altitude or zenith distance will determine completely the position of a heavenly body at a given instant. The zenith distance and altitude are called in Hindu Astronomy as मैंचे and उन्मते respectively.

Chapter IV.

TERRESTIAL CO-ORDINATES

The different places on the earth's surface are distinguished from one another by their longitudes and latitudes

For an observer on the terrestal equator the celestial pole will appear along his horizon and for one on the terrestial pole the celestial pole will appear directly over head. Thus for any intermediate position the altitude of the celestial pole will be the latitude of the place.

The latitude of a place is the angle subtended at the centre of the earth by an arc equal to the distance of the place from the terrestial equator measured along the terrestial meridian passing through the terrestial pole and the place of the observer

In the figure of the last para of the last chapter PR will be the latitude of the place being altitude of the pole and ZP will be the co-latitude which is only an abridged form of complement of latitude

The longitude of a place is the angle made by the meridian of the ce with some arbitrarily chosen meridian and is measured by the arc of terrese. The unit

ar axis takes plac

led a sidereal da also stated that RA and declination are to the celestial

This day

Chapter V.

THE SUN, ITS APPARENT PATH.

Observations show that the Sun's apparent daily path is constantly changing. The points where he rises and sets the time he is above the horizon the greatest height he attains all vary day by day and hence the declination of the sun also varies. Otherwise he would rise and set always at the some point and attain the same meridian altitude every day. That the apparent Sun has a progressive motion from west to east may be seen from the fact that stars seen near the horizon at sunset each successive day remains a less time visible and after a few evenings will disappear al together or that stars in the east seen before sunrise in the eastern horizon each successive morning will be seen far a longer time and attain a greater altitude before the sun's light can overpower them.

This seeming motion of sun is only apparent due to a motion of translation (i.e.) a motion of the earth round the sun independent of the rotation of the earth on its own axis

If a globe be made of some transparent material and the Sun's position at noon be marked on it by an observer as seen through the globe as also the angle his declination circle makes with that of a known star whose daily position also is marked on the globe it will be found that the different positions of the sun will arrange themselves on a great circle cutting the celestial equator in two opposite points T and he first point of Aries and of Libra respectively and inclined to it at an angle of mean value of about 23°-27 - 30

This great circle the plane of which contains the sun's apparent annual path is called the *Ecliplic* and the angle the ecliptic makes with the equator is called the obliquity of the ecliptic

As the ecliptic is thus the circle formed by the joining of the different points of the declination circles it is called क्रांतिवृत्तं in Hind Astronomy and the equator on which R A is measured the विश्वय वृत्तं. Thi points I and where the equator and the ecliptic cut each other are called the equinocial points or points of zero declination. The two points equidistant from I and either way are called the solutional points.

It should be noted that due to the inclination of the ecliptic to the equator the poles of the equator and the ecliptic are not in the same plant as those of the equator and the horizon

The variation in the lengths of day and night are due to a gradua change in the declination which is at once due to the progress of the sun's apparent position on the ecliptic

With the usual notation let the celestial sphere of the observer be drawn and let the ecliptic and equator be marked on it

Suppose K is the position of the apparent sun at a given instant and let us suppose the declination of the sun to remain stationery throughout the day.

To find where the sun will appear to rise, find out the NPD (=PK) of the sun and draw a !! of declination (marked as a A a') cutting the horizon at the points a a and the meridian at A the point of the highest altitude. Then a A a will be the apparent diurnal path. But due to the slight increase of declination in the course of the day arc a A will not be equal to A a.

As the declination and therefore the NPD are changing every day, the arc α A representing the semidural apparent path will change and hence the change in the duration of day

For different NPD's BP CP DP and EP, we get the semidurnal paths, BB', CC, DD and EE which can be seen to be different in their lengths which indicate the consequent difference in the lengths of the days

The variation in the length of the days is a thing the Hindu tronomy has not lost sight of and is, in fact, one of the elements of a indu Alp. For births at night, the time after night fall is added to a hindure the time elapsed since sunrise of that day, which lar axis takes place of the Hindu day led a sidereal da

This day

Chapter VI

PLANETARY LAWS—SUN—EPOCH—POSITION OF SUN AT ANY INSTANT AND CONNECTED PROBLEMS.

The apparent position of the sun is the first thing to be arrived at for, all other problems depend on it. The apparent position of the sun is really the position of the earth in its orbit about the sun together with 180° For, an observer centred at the centre of the earth will see the sun through an angle of 180° more than he would be seen by a similar observer centred at the centre of the sun.

- It has been enunciated by Kepler, as regards planetary motion that all planets
 - 1 Describe an ellipse about the sun in one of its foci,
- Move such that the radii vectores joining the sun and planets describe equal areas in equal times,
- and 3. Have the squares of their periodic times varying as the cubes of of the semimajor axes

These have been later on found out to be necessary consequences of Newton's Law of Universal attraction

Therefore to find out the position of a planet at a given instant, we require the following elements of its orbit

- 1. Mean heliocentric longitude at a determinate instant called the Epoch
 - 2 Mean angular velocity per day in its orbit
 - 3 The semi-major axis of the ellipse
 - 4 The eccentricity of the orbit
 - 5 The heliocentric longitude of the Node with its annual velocity

- 6 The inclination of the planetary orbit to the ecliptic
- 7 The longitude of the apse of the planetary orbit with its annuvelocity

By the term Heliocentric mean longitude is meant the angle at $t^{\rm T}$ sun formed by the radius vector—the line pointing the sun and the planer its own orbit—and a fixed direction of the first point of Aries from whici all angles are reckoped

The apses are two positions separated by 180° at which the planappears from the sun to have the maximum or minimum Heliocentr velocity

Of the various elements given 3 and 4 determine the magnitud, of the ellipse 5 and 6 determine the position of the plane of the orbit relative to the ecliptic 7 indicates the direction of the major axis in the ellipse determined by 3 and 4 and lastly 1 and 2 determine the mean heliocentric position at a subsequent date

These with the rules of elliptical motions obtain the positions of the planets in their orbits at any subsequent instant

These elements are determined by three complete sets of observations of Right Ascension and declination from which the corresponding geocentric latitudes and longitudes are found, thus giving two equations connecting the elements of the orbit. Though theoretically sufficient it is practically found to be simpler and more accurate to make observations at particular times when the planer occupies selected positions favourable for finding each element in turn.

EPOCH.

The epoch is a date fixed by each astronomer, arbitrarily for obvious reasons such as the beginning of a century or a rare Annular or total eclipse of the sun or a transit of Venus etc. Thus different people have taken different epochs. The foremost of the eighteen suddhantas of the Hindu Astronomy is the Surya Suddhanta and has for its epoch the beginning of the Kaliyuga which commenced in 3102 B C February. The eighteen suddhantas are as follows.

सूर्यः पितामहो ज्यासो वसिष्ठोऽतिः पराहरः । फहयपो नारदो गर्यो मरीचिर्मनुरंतिरा. ॥ छोमहाः पौछिहाश्चेय च्यवनो यवनो मनुः । होनकोऽष्टादश्चेते ज्योतिः हास्त्रवर्तकाः ॥ The extent of the Kaliyuga is $\frac{1}{10}$ of the period called Mahayuga on 320,000 mean solar years. This may seem arbitrary but it into the unitid be seen that this is the L. C. M of the different sidereal olar axis takes placition of the different planets converted to years. The unitid of the different planets converted to years. The different planets converted to years already particular chooser of an Epoch and fixed.

This day he number of days from the epoch we have first to find the bar of days from Kaliyaga commencement to the given date and ence to subtract the former, when we get the required number of days of mepoch

TO CALCULATE THE DAYS ELAPSED FROM THE COMMENCEMENT OF KALIYUGA OR TO FIND OUT THE अहर्गणं

The duration of Kaliyuga as already told is 4.32 000 years. This has been divided into 6 eras named after the kings who last ruled or who are supposed will rule during the Kaliyuga.

- 1 Yudhistrin Era (মুখিছিং ঘট) The first 3044 years from the commencement of the Kaliyuga
- 2. Vihrama Lra (विक्रम शके) The next 135 years from the ending of the Yudhistra Era
- 3. Salvahana Era (মান্ডিমান্ত্ৰ মুক) The next 18000 years from the ending of the Vikrama Era
- . 4 Vij iyabhinandana Era (चित्रयाभिनेदन शके) The next 10000 years from the ending of Salivahana Era
- 5. Nagarjuna Er. (नामान्त सके) The next 400000 years from the ending of Vijayabhinandana Era and lastly
- 6. Kalli Era (কহনী মুক) The last 821 years from the ending of Nagarjuna Era, thus making altogether 4,32 000 years

We are therefore now in the Salivahana Era and 3179 years had elapsed in the Kaliyuga when Salivahana Era began. Thus the number of Salivahana Era years elapsed together with 3179 years will give the years elapsed from the commencement of Kaliyuga.

The Salivahana Saka years are Junar and solar according as the system adopted. The Suryasiddhanta considers the Junar reckoning of the

months and adjusts it to the solar one in the former system, while in title system no reference is made—nor is it necessary—to the lunar reckoning ing at all. The length of the year according to the lunar reckoning 154 367 days, while the solar reckoning has for its year a length of the period of apparent revolution of the sun about the earth viz 365 2586287 period of apparent revolution of the sun about the earth viz 365 256374 day, days though according to modern astronomers it is given as 365 256374 day.

In any case the year as per the lunar reckoning or चांद्रमार्ग, beir ladys shorter than the solar one the adjustment is brought about by adquart lunar month for every 32 5 months nearly or 28 months for a perior of 911 lunar months But this takes us farther and a further correction the rate of 11 days for every 703 days will have to be subtracted to britt in a pace with the solar sidereal year

For, $30 \times 12 \times {}^{2}_{11} \times {}^{2}_{10} = 30 \times 12 (1 + {}^{2}_{11}) (1 - {}^{1}_{10}) = 365 25862872$

This is the method of Suryasiddhanta and we shall adhere to this only for finding the number of days from the commencement of Kaliyuga. We shall not take the modern revised rate for the length of the sidereal year, as there is no loss of generality or accuracy provided we take the respective additive months to suit the particular rate taken and as, both methods give additive months to suit the particular rate taken and as taken and as the particular rate taken and as take

The contraversy as to which rate has to be chosen has still not reached a definite conclusion among the astronomers and in fact it forms one of the important questions discussed during any astronomical conference of the kind held in India. The difference is due to a primary difference in the lengths of the tropical year. The tropical year of the Suryasiddhanta is to that of the Modern Astronomy as 359°-59′-6 to 359°-59 -9′78 and therefore the sidereal years are in the inverse ratio of the same numbers.

The reason why the followers of the Suryasiddhanta do not embrace the more correct value of the modern people, is that the rules for additive and subtractive months as laid down in Suryasiddhanta are not fulfilled in case the present rate were to be accepted

We shall not dwell on this contraversy but content ourselves with the ancient method only as far as finding out the number of days elapser to concerned.

The commencement of Salivahana year (Lunar Reckoning) is the day after the new moon in the lunar month in March or April and the first

nar month of the year usually commences between the 15th of March d 14th Ao The first month is called Chaitram (খন) and the other slow The unife are Vaisakam (খনাৰ), Jyesta (উথিছ), Ashada (বাঘাৰ), olar asis takes plac hadrapada (মানুমুর) 'Asvija (ঝাখিন), Karthika (কারিক), alled a sidereal da থি), Poushya (খাখ), Magha (মাঘ) and Phalguna (খাখান)

This day, the that is added to the number of past lunar months to ing it apace those of the solar reckoning is called the (প্রথিম্মান), dhikamasa (-Additive month) Each lunar month is divided into two lives—the light and the dark fortnight হায়বস্থ and সূত্রবাধ্ব respectively ch fortnight has in general 15 days

TO FIND THE NUMBER OF DAYS ELAPSED FROM THE KALIYUGA EPOCH TO A GIVEN DATE OF THE HINDU LUNAR RECKONING.

To the Salivahana year add 3179 we get the number of years from the epoch of Kaliyuga Multiply this by 12 and add to the product the number of months past from $\frac{1}{2}$ or Chairam. To this sum add $\frac{1}{2}$ of itself cary final balance on division should be left off even if the balance were more than half). This is the correction for additive months and will bring it on a level with the solar reckoning. Multiply the months so corrected by 30 and add to it the number af days passed since the last new moon Subtract therefrom $\frac{1}{2}$ 0 it itself—ignoring the remainder as before. This is the minus correction for equitive or for the extra days included by reckoning 30 thithies instead of 29½ days only which is one lunation of the Moon The remainder will give the number of days from the beginning of Kaliyuga of the present Mahayuga or will give the required $\frac{1}{2}$ 1 in the first product of the present Mahayuga or will give the required $\frac{1}{2}$ 1 in the first product of the present Mahayuga or will give the required $\frac{1}{2}$ 1 in the first product of the present Mahayuga or will give the required $\frac{1}{2}$ 2 in the first product of the present Mahayuga or will give the required $\frac{1}{2}$ 2 in the first product of the present Mahayuga or will give the required $\frac{1}{2}$ 3 in the first product of the present Mahayuga or will give the required $\frac{1}{2}$ 3 in the first product of the pro

TEST Divide the number of days (अस्त्रीण) or Aharganam by 7 and the remainder counted from Friday as 1 will give the weekday of the day hosen. But as the weekday is of a chosen date and hence known the number of days previously arrived at may be increased or decreased by a ay or two as may be required to bring it to the correct weekday required

JUSTIFICATION of the addition or subtraction of a day or two is that the thithies due to the anomalistic changes of motion of the Moon need not necessarily begin or end exactly with the beginning or ending of a weekday

This corrected Aharganam only will have to be used for all further calculations

TO FIND अहरीलं WITH ENGLISH DATE.

Subtract 1800 from the English year and multiply the balance by 365 242216 day—the length of the tropical year on which basis the English calendar has been worked out and which is responsible for the s-asons to appear at regular intervals to mark all civil life. Add to the product the number of days from the 1st of January of the year to the previous day of the date under reference. This divided by 7 will give a remainder which when counted from Thursday as 1 gives the days of the week on the given date.

In cases the day of the week is not known it can be found out as follows. There are twelve constants for the twelve months and they are as follows. — January 23. February 3. March 20. April 0. May 24. June 4. July 0. August 8. September 16. October 12. November 20 and December 16.

Write the year and add the constant of the month. Increase this by a fourth of itself leaving off any remainder got while dividing by 4. Divide this increased sum by 7 and the remainder will give the weekday beginning from Saturday as 1 corresponding to the 1st date of the month under reference. Having got the weekday of the first of the month is the weekday for any other date in that month could be very easily found out.

For dates between 1800 March 1st and 1900 February 28th add I weekday to the final result obtained

Having thus arrived at the correct weekday for the date in question the number of days from 1st January 1800 could now be corrected by adding or subtracting 5 to 2 days as the case may be

This correction is essential for any fraction involved in the length of the tropical year when multiplied by the number of years may magnify so much as to make a difference of 1 or 2 days more or less which has to be recuited.

EXAMPLE.

Suppose an individual was born at Mangalore (South Kanara)-Latitude 12**-45 N and Longitude 75* E G M — on 15th July 1912, at 2 A M Indian standard time

CORRESPONDING TO

Salivahana saka 1834 Paridhavi year (परिवासी) Adhika Ashada month (अधिक आवाउमास), New moon (असायास्या), Sunday (रवितार).

Required to find out the Aharganam and all the planetary positions

This is a very complicate example for the birth has taken place in the right after midright (i.e.) in the early hours of the next morning According to the European Astronomers and their method of reckoning the above birth is 2 A. M. of 15th July 1912 while the Indian will give it as 14th right and 15th early morning to have perfect synchrony with the week-day which is always supposed to commence with the surrise that is the birth has taken place on that weekday which had commenced at surrise on the 14th for our calculation.

I. INDIAN OR HINDU METHOD.

Saka year birth is		1881
Add		3179
Years after Kaliyuga commencement		5013×
multiply by 12	•	12
		60156
Add number of months from चैत्रं to the bird	h)	
month आपाद (take complete months only)	}	3
		60159
Addance mortin=#11/XNVP	=	1810
Addding we get		62008

The birth is in an additive month (i e) in an Adhaikamasa (अधिकसास), which is followed by the real or the निजमास (Nijamasa) of the same name. As the number of past months will be the same for both of these additive and real months bear the same name the number of months arrived at by the correction applied will really refer to the Nijamasa (निजमास). Hence one month will have to be subtracted if the birth happens to be in Adhika-(masa (अधिकसास).

Therefore the number of months	=	62008
	-	1
	=	62007
Multiplying by 30 to convert it to days we have	=	× 30
	==	1860210
No of days past from the last new moon	=	29
Adding	•	1860239
subtractive days or equal $= \frac{1}{10} \times 1860239 = 2$	910	7
Net no of days = 1860239 - 29107 = 1831132		

This should be the Kaliyuga Aharganam or the no of days since the commencement of Kaliyuga. The balance on dividing by 7 is 2 which when counted from Friday as already stated gives the weekday of birth as Saturday. But we know that the weekday is Sunday. Therefore 1 has to be added to the result already obtained and the correct no of days or entirely is 1831(133).

(It is left to the readers to note that the balance of any, while dividing by 911 or 703 should be ignored even if it may be more than half)!

II ENGLISH DATE METHOD.

Year of birth subtract always	1912 1800
No of years from 1800	112
Length of the tropical year is 365 242216 days .: No of days for 112 years = 365 212216 × 112 = 4090	7 1282.
Ignoring the fraction we have	40907
No of days from 1st Jan 1912 to the 13th July 1912 is	195
Adding we get *	41102

This when divided by 7, gives remainder 5 which when counted from Thursday as 1 gives the weekday as Monday but as the day of the week is only a Sunday 1 will have to be subtracted from the above answer 41101 It will be therefore 41101

Now the no of days from the beginning of the Kaliyuga to 1st January 1800 has already been worked out as 1790032. This signify will be the Ecoch throughout this book.

Therefore 41101 when added to 1790032 gives [831133, the result previously obtained by the Indian method

TEST OF WEEKDAY.

Year of birth Constant for July the month of birth	1912 0
Adding f of 1912, (ignoring remainders if any)	1912 478
Adding	2390

Dividing this by 7, we get remainder 3, which when 'counted from Saturday as 1, gives Monday as the weekday corresponding to the first date of the month. Therefore 14th was on a Sunday. (Vide my pamphlet A Dive into weekdays''—costing one anna only)

This is an independent method which can be employed with great advantage to fix the weekday of any given date whose corresponding weekday may not be readily available

Therefore to find out the number of days elapsed from our epochlst Jan 1800- the method II could be used which will directly give the required result with the necessary weekday correction if any or the method I, but taking care to subtract 1790032 from the final result of the I method

The next stage is to find out the mean heliocentric positions for any given instant. For this, we require the mean heliocentric longitudes at epoch of the planets and their mean angular velocities. The adjoining table gives the elements of all the planets with the periodic time or time of one revolution of each planet about the sun

Subtract the epoch 1790032 if Kalyuga Aharganam अहरोण is available or take the no of days from epoch given by Il method from the English date corrected to the weekday in question. Both methods will give the same no of days from Epoch. Divide this by the periodic time of each planet. The first quotient will be revolutions—which are not of any use to us. With the balance by using successive multipliers 12 30 60 and 60 respectively and the same periodic time as divisor, get the signs degrees minutes and seconds. These when added to the respective mean position of each of the planets at Epoch give the mean heliocentric position of each

Tables of mean motions have been annexed at the suitable places to save the followers of this book the time and trouble of the labourious divisions

Table showing the elements of the Sun Moon and planets with their mean Longitudes on the 1st January 1800 at mean sunrise at Tanjore (Latitude 10 - 47 N and Longitude 79 - 15 E of Greenwich Kaliyuga no of days (कर्म्यायम्मोन) 1790032

Names		an Hel gitude			Long	an Hei ptudes each	of Apr	ne of	1	Mean I ongitud tael		to le of
	Sgna	Deg	Mta	Bees	S gus	Degs	Mts	Secs	Sign	Degs	Mts	4004
Sun	8	19	22	58	2	18	25	23	No	node for	Earth	s orl t
Moon	10	21	40	36	0	24	25	16) 0		12	33
Mars	7	1	48	54	4	11	18	0	0		54	48
Mercury	2	29	19	17	7	23	17	49	0		53	38
Jupiter	2 4	0	50	57	5	20	1	37	2		22	44
Venus	4	4	58	80	9	17	42	4	1		50	24
Saturn	3	12	2	23	8	ļ 8	6	40	3		58	16
Uranus	5	2	28	48	10	29	ı	41	1	21	43	44
Neptune	6	24	6	20	6	24	15	32	3	18	28	1
Names	•		of orb	it	the		Inc	ination to ech	pire [Perio	die tir	
Sun		ĺ	100			1675	5°	-	8		3216	~ ~
Moon		i	.00		05490			51		686		. ,,
Mars		1	1.52		09331			1 0				,,
Mercury		ł	*38 5 20		20561 7			19			"	
Jupiter Venus				33		04838 1°			·6 224·70			**
venus Saturn			9 55			5589	2	49		10759		"
Uranus		ļ.,	19 21			1634	į õ°	46		30086		"
Neptune			30.10			.009	1"	46		60186		
Nan	motion ise		ual mo		Moon	s of	at 8	Node Loon s				
Sun Mars			+11		1 0	N ₁ 1]	101	_ 72		E 8 .	have a backward motion)
Mars +16'.86 Mercury + 6".14						6" 82	- 1	0 P	A C		mo ays	3
Jupiter						4*•4	l.	0 8	_ = _	= 1 '	- F	25
Venus						9*•14	- 1	E 9	203	e í	8 S F	a or
Saturn		+16 10				6*57	- 1	Perrodic time of motion of motion of moon s apse is 2237 54681 days (Apse has a forward motion)			3 6 6	E E
Uranus		- }		1,22	-9	2*28	- 1	Perolic time of motion of motion a spire is 2323 75 to 51 d. d.s.s (Ap.e. line a torward motion) I errolic Time of motion of Notice is 8735 39474 d.s.s. a have a haveard motion in the motion of Notice is 8745 motion in the notice in the spire in the spire is 100 motion in the notice in the spire is 100 motion in the notice in the spire is 100 motion in the spire in the spire is 100 motion in the		5		
Neptune + 1° 19				1-1	0*68	- 1	50	_ ₹	- 1	- 60	ŏ	

 $6-10^\circ-19-42$ Add to this the position of sin at epoch viz 8-19-22-5 we get 2-29-42-40 This is the mean longitude of sun at the birth time

TABLE OF MEAN MOTION OF SUN.

Periodic time = 165 256371 days

Daya	8			•	Dijs	8	•			Digs	8	٥		
1	0	0	59	8	200	6	17	7	119	30000	1	18	16	2
	0	1	58	16	300	9	25	10	159	10000		4	21	5
3	0	2	57	25	490	1			38		10		27	
4	0	3		33	500	4			118				32	
5	0	4		42	600	7	21		25	70000	7	22	38	25
6	0		54		700	10			34	89000	0		43	
7	0		53		800		18	29	13	90000	4	24	49	1
8)	0		53	6	900					100000	9	10	54	4
9	0				1000			36	33	200000	G	21	49,	
10	Ŏ		51		2000			113		300000	4		44	
20	0		42		3000		16	49	391	400000	1		89	
80	0		64		4000	11	12	26	12	500000	10	24		
40	2	9	25	20	5000				45	600000	ß		28	
50	1		16		6000		3		18	700000	. 5		23	
60	1	29	8	18	7000		29	15	52	800000	2		18	
70	2	8	59	85	8000	01	24	52	25	900000	Ō			
80	2	18	50	56	9000		20	28	57	1000000	9			5
90	2	28	42	18	10000		16		29					
100	d	8	33	40	20000	9	2		58	1		(1	

HINDU METHOD.

Multiply the number of days from epoch by 4 and divide the product by 1461. Leave off the quotient being the number of revolutions. With the remainder get signs degrees immutes and seconds. Again divide the number of days from epoch by 711 when the quotient obtained will be minutes as before with the remainder get the seconds. The difference between the two results will be the mean motion of sun.

This requires an empirical correction at the rate of 37 -44" for every 100000 days the correction being additive

Let us now try to find out the mean longitude of sun -

FROM TABLES

	•	s d mts sec
Position	at epoch	8 - 19 - 22 - 58
Motion	in 40000 days	6-4-21-55
do	1000 days	8-25-36-33
do	100 days	38-33-40
do	1 day	00-598
do	82153 of a day	00-48-28
Adding_m	otion up to the moment of birth	2-29-42-42

This is found to be the same as that previously arrived at, except with a difference of 2 secs of arc, which is api to occur as the tables have their seconds digits corrected to the nearest integer. The difference is therefore negligible. It is always desirable to take the result of the long division.

BY THE HINDU METHOD.

Dividing the product of the no of days from epoch and 4 by 1461 as indicated in the instructions, we get $\frac{41101 \times 4}{1461} = 112 \frac{772}{1461}$

Ignoring 112, which is merely the no of revolutions, and converting the fraction, $\frac{772}{1461}$ to signs etc., we get 6'-10'-13'-33

Again dividing 41101 by 711 as per instructions we get 57 –48° Subtracting this from the previous result, we get 6^* – 9^* –15–45 Empirical correction for 41101 days is $\frac{2264^* \times 41101}{100,0001} = 15 - 30$ This is additive as already given in the instructions. Adding therefore we get the mean

already given in the instructions Adding therefore	ore we get the mean
motion up to the time of birth from epoch as	69-31-15
Add to this the mean longitude of sun at epoch, viz	8-19-22-58
We get mean longitude of Sun at the mean sunrise	2-28-54-13
Motion in 82153 of a day	004828
Mean longitude of sun at the moment of birth	2-29-42-41

This result is found to tally with those arrived at by the previous two methods

TO FIND THE POSITION OF THE APSF LINE.

Annual motion of apse line =(十)11"86 No of years from 1st Jan 1800 to the 15th July 1912 = 11254... Motion of Apse line in 112:51 years = 11" 86 x 112 54 = 1334" 6 = 1385" nearly $22 - 15^{\circ}$ Position at Epoch '-18°-25'-23" . Position of Apse at birth

Subtract the longitude of the sun from that of the apse. Some used to subtract from the planet the perihelion's position instead of the planet from that of the aphelion as we do here. The planet's position minus that of the perihelion is called the Mean anomaly. In any case, the difference gives the angle between the apse line and that formed by joining the planet (Earth in this case) to the sun. If the position of the planet is subtracted from the aphelion, we get an angle which will be the supplement of that which would be got by subtracting the perihelion from the planet

> In the annexed figure A - Aphelion

P — Perihelion

S - Sun

E - Earth (or Planet)

Sv - The initial line

towards the direction of the first point of Aries

It will be seen that \(\subseteq ESA = \(\nu \ni SA - \subsete \ni SE = Aphelion - Planet and LPSE = Luse + LPSu = Luse+ (360'-Lusp) (Lusp being counted in the counter-clockwise or positive direction) = 2 vSE- 2 vSP = Planet - Perihelion But since ASP is one straight line the angles PSE and ASE will be together equal to 2 rt & s or supplementary

The former has been adopted by the old Hindu methods while the latter by modern astronomers. There is yet a third school of opinion which requires the subtracting of the Apse's position from that of the planet in which case the Equation of centre reverses the sign. As the sine finWe shall any how adhere to the principle of subtracting the planet s position from that of the Apse of the planet s orbit and call it mean anomaly (李老章).

TO FIND OUT THE EQUATION OF CENTRE (मंदफले)

As already stated at the beginning of this chapter according to Kepler's First Law the orbits of the Earth and other planets are all elliptical with the Sun in one of their foci.

Let AP bethe line of Apses and PSE be the angle described by the Earth after a time t measured from perihelion where S is the position of the Sun at the focus S of the ellipse

Let SR be the radius supposed to revolve uniformly about S corresponding to mean longitude. Then \angle RSP is called the Mean Anomaly and \angle PSE the True Anomaly.

Now let the Lar EM from E to ASP be produced to meet the circle on AP as diameter and C as centre at Q. Then PCQ is called the Excentize Anomaly,

The angle ESR is called the equation of centre or $\pi \eta \pi \dot{\eta}$, such that True Anomaly = Mean Anomaly + Equation of centre for $\angle ESP = \angle ESR + \angle RSP$

RELATION BETWEEN MEAN AND EXCENTRIC ANOMALIES:

Let n be the mean angular velocity and T the periodic time whence $n=\frac{2\pi}{T}$ Mean anomaly after a time t=n t. If Q be joined to S then by Kepler's second law, we have $\frac{\text{Area of PSQ}}{\text{Area of circle}} = \frac{\text{Area of PSE}}{\text{Area of Ellipse}} = \frac{t}{T} = \frac{n \, t}{2\pi}$ but, area of $PSQ = \text{sector PCQ} - \Delta SCQ = \frac{1}{2} \, \alpha \times a \, u - \frac{1}{2} \, a \, e \times a \, \text{sin } \, u$ where u is the excentricity of the ellipse and a the excentricity of the ellipse

We have therefore
$$\frac{\frac{1}{2}a^2u - \frac{1}{5}a^2e\sin u}{\pi a^2} = \frac{nt}{2\pi}$$
(1 e) $u - e\sin u = nt$

[NOTE Area of a sector =
$$\frac{1}{2}$$
 the radius \times the bounding are = $\frac{1}{4}$ a \times a \times the no of radians contained in the angle and \triangle SCQ = $\frac{1}{2}$ CS \times CQ sin \angle QCS = $\frac{1}{2}$ CS \times CQ sin \angle QCS = $\frac{1}{4}$ a e \times a sin \times 1

The fact that CS = a e belongs to the realms of Analytical Conics on the properties of the Ellipse a full discussion of which we do not propose to enter into

RELATION BETWEEN TRUE & EXCENTRIC ANOMALY.

If θ (theeta) be the true anomaly SE $\cos \theta = CM$ CS

 $\frac{a(1-e^2)}{1+e\cos\theta}\cos\theta = a\cos\theta \text{ QCM} - ae=a\cos u - ae \text{ (for SE} = \frac{1}{1+e\cos\theta}$ by the polar equation of conics and $l=a(1-e^2)$ for an ellipse)

$$a (1-e^2) \cos \theta = a (\cos u - e) (1+e \cos \theta)$$

(i e)
$$(1-e)\cos\theta = \cos u - e + e\cos\theta\cos u - e^{\alpha}\cos\theta$$

 $(1 - e \cos u) \cos \theta = \cos u - e$

$$(i e) \cos \theta = \frac{\cos u - e}{1 - e \cos u}$$

$$\frac{1 - \cos \theta}{1 + \cos \theta} = \frac{(1 + e)(1 - \cos u)}{(1 - e)(1 + \cos u)}$$

$$(1 e) \tan \frac{\theta}{2} = \sqrt{\frac{1+e}{1-e}} \tan \frac{u}{2}$$

Thus the excentric anomaly serves as a link between mean and true anomalies. We always require θ in terms of t. This is done by employing a succession of trials to approximate to the value of π in I and then to determine θ by II

ΤI

A knowledge of Differential Calculus on the expansion of u in ascending powers of e is essential but we have neither the time nor the place to dwell on it here but merely have to use the expansion already arrived at by such successive approximations

The result to the third power of e is $\theta = nt + 2e \sin nt + \frac{5e^2}{4} \sin 2 nt$

$$+\frac{e^3}{12}$$
 (18 sm 3 nt - 1

, Equation of centre or মহুদত্ত = $2e \sin nt + \frac{5e}{4} \sin 2nt + \text{negli}$ gible terms r being very small for all practical purposes the cube and higher powers of e may be neglected

This formula applies to all planets and can be used for determining the equation of centre corresponding to any mean position of the planet provided we know the mean anomaly and also the excentricity of the planetary orbit

A brief note on the nature of Hindu Astronomy on equation of centre will not be out of place. First of all the Hindus have taken the equation only as far as the first term and secondly the value of the excentricity also is slightly higher than its present value with the result that the maximum equation of centre becomes 128–57 while its real value as found out by modern astronomers is in the neighbour hood of 115–19

By taking only one term of the equation of centre they use the same table for different sets of mean anomaly by taking nt (180-nt) (nt 180) or (360-nt) as the argument according as the mean anomaly is in the 1 II III or IV quadrants care being taken with due regard to the sign of the equation of centre with respect to the mean anomaly

Thus the set of Hindu tables on the equation of centre of Earth and other planets are not giving true values and it is high time they are rectified to be of use and ready acceptance. We propose to rectify it thus—

Equation of centre as derived by formula previously is $2e \sin nt + \frac{5e^n}{4} \sin 2nt$ where nt is the mean anomaly with reference to the Perihe lion and equal to Planet minus Perihelion. But the mean anomaly which we have already defined is Aphelion minus Planet and hence the mean anomaly we use will be only the supplement of that in the formulae. That is if nt be our mean anomaly (180-nt) will have to be taken as the mean anomaly for purposes of the formula of equation of centre.

Equation of centre =
$$2e \sin nt - \frac{5e^2}{4} \sin 2nt$$

= $\frac{e \sin nt}{2} (4-5e \cos nt)$

In the case of Sun (Earth) e= 01675

Equation of centre =
$$\frac{01675}{2} \sin nt \times (4 - 08375 \cos nt)$$

This equation of contre will be only in radians for the mean velocity is angular. Therefore circular measure when multiplied by 206265 the number of seconds in a radian will reduce to seconds of arc of the Sexagesimal measure.

Multiplying the equation of centre in the last para by 206265 we get Equation of centre in seconds of arc

- $= 008375 \times 206265 (4 08375 \cos nt) \sin nt$
- = 1727.5 (4 \leftarrow 08375 cos nt) sin nt. But according to the Hindu tables the equation of centre will be 7737 sin nt

The ratio which will therefore reduce the value of the equation as per the Hindu table to that of the Modern table is $\frac{17(1-02094\cos nt)}{19}$ very nearly

Having thus found the true anomaly if the longitude of Apse be added we get the true heliocentric longitude for the anomaly is only the angle between the radius vector of the planet and the line of Apses

In practice the mean anomaly is found out by subtracting the mean heliocentric longitude from the longitude of Apse. The equation of centre is determined from that mean anomaly and applied to the mean longitude of the planet positive or negative according as the mean anomaly is less than or greater than 180°

Let us now revert to the example taken -

of Apse

Mean longitude of Sun

Mean anomaly = Apse - Sun = 11'-19"-4 -58 = 349"-4 -58

TRIGONOMETRICAL METHOD.

Equation of centre in seconds = $17275 \text{ (4-)} 08375 \cos nt$) sin nt where $nt = 349^{\circ}-4$ -58 in this case

Sin
$$nt = \sin 349^{\circ}-4-58$$

= $\sin (360^{\circ}-\overline{10^{\circ}-55-2})$
= $-\sin 10^{\circ}-55-2$ the given \angle being in the IV quadrant

To find now sin 10°-55'-2 enter the table of Trigonometrical ratios at the end of this book and find sin 10°= 1736482 and 171608 as the difference for 1°

∴ Proportional difference for 55'-2 =
$$\frac{55'-2'}{60'}$$
 × 171608 = 157102
∴ sin 10° - 55'-2" = 1736182+
157402
= 1893861
∴ sin 349°-4'-58" = -1893381

So also,
$$\cos 849^{\circ} - 1' - 58'' = \cos (360^{\circ} - \overline{10^{\circ}} - 55' - 2')$$

 $= \cos 10^{\circ} - 55' - 2'$ being IV quadrant
 $= \sin (90^{\circ} - \overline{10^{\circ}} - 55' - 2')$
 $= \sin (79^{\circ} - 4' - 58')$

$$\sin\,79^\circ\,=\,9816272$$
 , difference for $1^\circ\!=\!31800$

:.difference for 4'-58' =
$$\frac{31806 \times 4' - 58'}{60} = 2633$$

Substituting these values for sin nt and $\cos nt$, we get the Equation of centre as being = $-1893884 \times 17275 \times (4-08375 \times 9818905)$

Equation of centre = 2 - 29 - 42 - 40

∴True longitude = 2°-29°-21 -18

TO FIND THE RADIUS VECTOR OF THE EARTH.

The radius vector, r is usually found by the Polar equation of a conic according to Analytical comes $viz r = \frac{l}{1 + e \cos \theta}$, where θ is the true

anomaly as per the usual convention. But consistent with the definition of mean true anomaly we have laid in here the formula will be $r = \frac{l}{1 - e \cos \theta} = \frac{a(1 - e^2)}{1 - e \cos \theta}$ where e is the excentricity and a the seminary axis of the earth s orbit being equal to l

Radius vector =
$$\frac{1 - e^2}{1 - e \cos \theta} = \frac{(1 + e)(1 - e)}{1 - e \cos \theta}$$

= $\frac{101075 \times 98325}{1 - 01675 \cos \theta} = \frac{99972}{1 - 01075 \cos \theta}$

 θ is the True anomaly as already stated. In the present example True anomaly = Apse — True longitude

$$= (2^{5}-18^{6}-47-38^{6}) - (2^{6}-29^{6}-21-18)$$

$$= 11^{5}-19^{6}-26^{7}-20^{6}$$

$$= 349^{8}-26-20^{6}$$

$$\therefore \text{Radius vector} = \frac{99972}{1 - 01675 \cos (349^\circ - 26 - 20^\circ)}$$

$$\cos 349^\circ - 26 - 20^\circ \approx \cos (360 - 10^\circ - 33 - 40^\circ)$$

$$= \cos 10^\circ - 33^\circ - 40^\circ$$

$$\cos 10^{\circ} = 9848078$$
, difference for $1^{\circ} = -91800$

∴ difference for 33
$$-40^{\circ}$$
 is $\frac{33'-40'\times-31806}{60} = -17574$
∴ $\cos 10^{\circ}-33'-40' = 9848078-$

$$\begin{array}{ll} \cdot \text{ radius vector} &= & \frac{99972}{1 - - 01675 \times 98.0404} \\ &= & \frac{99072}{1 - - 016405} = & \frac{99972}{983535} \\ &= & 101646 \end{array}$$

As it is thus very difficult to calculate the equation of centre and the radius vector, the annexed table could be used. The radius vector could be found out directly from the mean anomaly. The Heliocentric velocity at any instant is also given which has been calculated thus.

Velocity in seconds is usually got by differentiating the expression for θ with respect to the variable t whence velocity

$$= n + 2 n e \cos nt + \frac{5e^{n}n}{2} \cos 2 nt$$

$$= n \left\{ 1 + 2e \cos nt + \frac{5e^{2}}{2} (2 \cos^{n}nt - 1) \right\}$$

$$= n \left\{ \left(1 - \frac{5e^{2}}{2} \right) + 2e \cos nt + 5e^{n} \cos^{n}nt \right\}$$

 $= 35454 + \cos nt (119 + 5\cos nt)$ for in the case of Sun

n=59-8 but our mean anomaly is the angle equal to (Apse -- Planet) and hence the velocity will be 3545 -- $\cos nt \times (119-5\cos nt)$

In the present example velocity = 3545— $\cos 349^{\circ}$ —4— 58° (119— $5\cos 349^{\circ}$ —4—58) $\cos 349^{\circ}$ —4—58 = $\cos (360^{\circ}$ —10—55—2) = $\cos 10$ —55—2 $\cos 10^{\circ}$ = 9848078 difference for 1° =—31806difference for 55—2 = -29173 $\cos 10$ —55—2 = 9818905

Velocity = 3545-9818905 (119-5 × 9818905) = 3645-9818905 (119-4 9094525) = 3545-9818905 × 114 0905475 = 3545-112=3433=57-13

FROM TABLES

To find out the Equation of Centre Heliocentric Velocity and Radius vector of the (Earth) Sun the argument will be the mean anomaly as defined by us viz (Apse — Planet). When the mean anomaly thus defined is less than 180° the tables may be entered into directly but when greater than 180 the same must be subtracted from 360° when the balance will be the argument to be used. In the latter case it should be infailingly noted down that the sign of the equation of centre will be negative while the Heliocentric Velocity and Radius vector always remain positive.

Table showing Equation of Centre, Heliocentric Velocity and Radius vector of Sun's (Earth's) motion.

Each Degree of Argument	Equation Cent		Helioce Velo	entrio	Budius Vector	Each Degree of Argument	Equati Cen		Helioc- Veloc	ntric	Radius Vector
0123 4 5 5 7 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cent		Velor 57 57 57 57 57 57 57 57	11 11 12 12 12 12 12 13 13 14 14 14 15 16 17 18 18 18 18 19 20 22 22 25 25 26 27 28 29 30 31 22 33 33		1	7.5 777 78 80 81 83 84 85 87 86 89 92 93 94 100 100 100 100 100 100 100 110 111 111 112 112	57 26 53 18	Helbory Velovice Velo	41 42 43 44 44 45 50 51 53 54 57 59 0 2 4 5 7 9 11 12 13 13 14 15 16 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	1 0126 1 0124 1 0122 1 0120 1 0118 1 0116
87 88 89 40 41	69 71 72 74	46 21 56 28	57 57 57	35 36 38 39	1·0134 1·0132 1·0130 1.0128	80 81 82	118 118 118 118	7 31 51	58 58 58 58	42 44 46 48 50	1.0035 1.0032 1.0029 1.0026 1.0023

-	31										
Each Degree of Argument	Equato	to no	77-1			Degree of	Equati	on of			
Each gree	Cent	tre .	Helioo Velo		Radius Vector	걸음독	Cen		Helioce	intrie	Radius
H 20 E			1610	~~]	, ecm;	Linch legre o	. ,	,	vens	1115	Vector
	`			!		-04	<u></u>	!			
٠.							- 1			- 1	
84	114	26	58	51	1.0020	129	90	44		21	9896
85	114	40	58	53	1.0017	130	89	29	60	23	9894
86	114	อิน	58	56	1.0015	131	88	11	60	25	9891
87	115	3	58	58	1 0012	132	86	50	60	26	*9889
88	115	9	59	00	1 0009		85	29	60	28	•9887
-89		14		3	1 0006	134	84	6	60	30	9885
90	115	16	59	5	1 0003	135	82	42	60	32	9883
91	115	18	59	7	1 0000	136	81	16	60	33	9881
92	115	19	59	9	9997	137		49	60	35	
93	110						79,				9579
		16	59	12	9994	138	78	21	60	37	9877
94		12	59	14	9991	139	77	51	60	38	9875
95		5	59	16	.9988	140	75	20	60	40	9873
96	114	55	59	19	9985	141	73	48	60	41	9871
97		44	59	20,	•9982	142	72	18	60	43	•9869
98	114	31	59		9979	143	70;	37	60	44	9867
90	114	15	59	25	·9976	144	69	0	60	45	9865
100	113	57	59,	27	9973	145	67	21	60	46	9963
101	113	38	59	29	9971	146	65	41	60	47	.0862
102	113	15	59	31	9968	147	63	59		49	19860
103	112	49	50		9965	148		15	60	50	9858
104		24	59	35	9962	140		30	60	51	0857
105		56	50	37	9959	150	58	44		52	0855
106		26	59	38	-9956	151	56,	56		53	'0853
107	110		59			152		7			
108		54 20	59.	42	·9954 ·0951	153	55 58	17	60	54 55	9852
109			50	44		154		26	CO	56	
110	109	44			9948						.9849
		5	59	46	99 15	155		35	60	57	9848
111		26	59	48	.9942	156	47	43	60	58	9847
112	107	43	59	50	9940	157		51	601	59	9846
113	106	59	59	52	9937	158	43	58	61	0	9845
114	106	13	59	54	9934	159	42	4	61	1	9844
115	105	25	59	56	9931	160	40	9	61	21	9843
116		35	59	58	9929	161	38	14)	61	2	.9842
117		43	60	00	•9926	162	36	18	61	3	·9841
118		49	60	2	9923	163	34	21	611	3	9840
119	101	53	60	4	9921	164	32	24	61	4	•9839
120	100	55	60	6	•9918	165	30	26	61	4	•9833
121		53	60	8	9915	166.	28.	27	61	5	9 837
122	98	48	601	9	9913	167	26	28	61	5	•9837
123		43	60	11	11,99	168	24	28	61	6,	9836
124	96	36	60	13	-9908	169	22	27	C1	6,	•9 835
125	95	28	60	15	9905	170	20	26	61	7'	9835
126	94	19	60	16	9903	171	18	25	61	7	9834
127	93,	9	60	18	-9900	172	16	24	61	7	9834
128		57	60		9898		14	22	61	7.	9833

Fach Degree of Argument	Equat o Cent		Hel oce Veloc		Rad us Vector	Pach D gree of Argument		on of	Hel oce Veloc	Rad us Vector	
174 175 176 177	12 10 8 6	19 17 14 11	61 61 61 61	7 8 8	9838 9833 9832 9832	178 179 180	4 2 0	8 4 0	61 61 61	8 8 9	9832 9832 9832

EQUATION OF CENTRE FROM THE TABLES.

Mean Anomaly (Apse sun)

This is more than 180°
Subtracting this from 360° as per 349
$$-4$$
 58

instructions we get

Argument for entering into the table

From tables equation of centre for 10° is 19 -37 do for 11° is 21 -33

Difference for 1 is 1 -56 ° (+)

Difference for 1 ts $1-56^{\circ}(+)$ Difference for 55-2 is $\frac{116}{60^{\circ}} \times 55-2 = 1-46$ Equation of centre for $10^{\circ}-55-2$ is $19-37^{\circ}$

But since the mean anomaly is more than 6 signs or 180° this equation of centre is negative

The equation of centre is 21-23 (-) Subtracting this equation since negative from the mean longitude we get

True Longitude
$$= \begin{cases} \frac{2-20^{\circ}-42-40^{\circ}}{\text{minus}} & 21-23 \\ \frac{2^{\circ}-20^{\circ}-21^{\prime}-17}{2^{\circ}} & 21-21 \end{cases}$$

Against the same argument, the velocity and Radius vector are seen from the Table to be 57 -13 and 10165 respectively. These have been already arrived at by purely Trigonometrical methods independent of the tables.

HINDU TABLES OF SUN'S EQUATION OF CENTRE.

॥ गविनंदज्यापदकानि ॥

Degree	Equatio Centi	n of	Equat: Velo	on of	Degree	Equation Centre	of	Equatu Veloc	on of least	Equation Cent	n of	Equat Velo	non of
11 2 3 4 4 5 6 7 7 8 9 10 11 11 12 13 14 15 16 17 18 12 22 23 24 25 25 27 28 25 25 25 25 25 25 25 25 25 25 25 25 25	0 2: 4 6 9 11 13; 15 17 20 22 24 25 35, 37 39 41 44 46 50 52 55 41 66 66 60 60 66 66 66 66 66 66 66 66 66	0 15 30 45 0 14 28 43 50 10 23 36 48 0 11 50 50 12 23 23 24 11 50 23 23 24 23 23 24 23 23 24 23 24 24 25 26 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	. 2222222222222222222222222222222222222	13 13 13 13 13 13 13 13 13 13 13 13 13 1	32 33 34 35 36 37 38 40 42 44 44 45 50 51 52 56 57 56 60 61 62	68 70 72 73 75 77 79 81 82 84 87 89 91 92 94 95 97 100 101 105 108 108 108 108 111 111 112	193 57 46 57 187 57 57 57 57 57 57 57 57 57 57 57 57 57		52645 50646 466446 44764 4477 3877 3877 3877 2953 2753 2753 2753 2753 2753 2753 2753 27	115 116 117 118 119 120 120 120 120 120 120 120 120 120 120	511 177 411 322 9 558 197 598 599 222 429 556 57 56 56 57	Velo	57 558 51 49 45 42 42 42 29 9 6 4 4 2 1
31	66	24		1 0.	68	114	58	, 0	59				

INSTRUCTIONS TO USE THE HINDU TABLE.

The Hindu table of Sun's equation of centre gives the equation of centre and equation of Velocity up to 90° of the argument. For, as already told, the Hindus have taken only one term of the formula of Equation of

centre which is a sine function gradually increasing in the 1 quadrant decreasing in the II quadrant and again reversing the same during the III and IV quadrants. Therefore a single table of 90° of argument will suffice all their requirements.

For 0° to 90° of anomaly use the tables as given

90° to 180 of anomaly subtract the anomaly from 180° the maximum for II quadrant and the difference will be the argument to refer the table

180 to 270° of anomaly subtract 180° from the anomaly and the

270° to 360° of anomaly subtract the anomaly from 360° the balance will be the argument required

After the equation of centre is got from the table to bring it to the motitopher already mentioned in a previous para viz $\frac{1}{4}$ (1–02094 $\cos \pi i$) should be applied to it. The rectified equation of centre should be added to or subtracted from the mean longitude according as the Mean anomaly is less than 180° (1918) or greater than 180° (1918).

As for Velocity The equation of Velocity after being obtained from the table should be similarly applied to by the multiplier $\delta + \cos nt \times (119 - 5 \cos nt)$

112 cos nt

This rectified equation of velocity should be added to or subtracted from the mean velocity 59—8" according as the mean anomaly lies between 90" to 270" (क्वमेदि) or between 270" to 90" (मकरादि)

Expressing briefly in Hindu method for Equation of Centre mean anomaly has to be considered as मेपादियमें or तुलादि ऋण and for Equation of Velocity कमर्यादियम or सकरादि ऋण

EXAMPLE.

Mean longitude of Sun previously arrived at by Hindu method
Longitude of Apse

(Apse-Sun) or mean anomaly

s deg mts secs 2—29—42—40 2—18—47—38

11-19-4-58

This is in the IV quadrant, being greater than 270° but less than 360°. Therefore, the argument for referring to the table is got by subtracting the mean anomaly from 360°. It will be 360°—349°—4′—58° or 10°—55′—2°. With this argument now referring to the tables we find as follows:

For 10 Eqn of centre
$$22-23''$$
 Eqn of Velocity $2'-10'$ For 11° do $24'-36'$ do $2'-10'$

Difference for 1° do $2'-13''$

Proportical diff for $55'-2'$ is $2'-3'$

Required eqn, of centre = $\left\{\begin{array}{ccc} 22'-23' + 23' +$

The equation of centre will be negative as the mean anomaly is more than 180° or মুবাহি, and the Equation of Velocity is also negative as the mean anomaly is between 270° and 90° or মহবাহি.

Multiplier for Equation of Centre is
$$\frac{17}{17}$$
 (1—02094 cos nt)
= $\frac{17}{17}$ (1—02094×9819)
= $\frac{17}{17}$ (1—020559) = $\frac{17}{17}$ ×*979441
= *876342

∴ Correct equation of centre
$$= -(24'-26') \times 876342$$

 $= -(21'-24')$
∴ True longitude $= \begin{cases} 2^{2}-29^{2}-42-40' \\ minus & 21-24' \end{cases}$
 $= \frac{2^{2}-29^{2}-21'-16'}{2^{2}-29^{2}-21'-16'}$

Multiplier for equation of Velocity is
$$\frac{3 + \cos nt}{132 \cos nt}$$

$$= \frac{3 + 9819(119 - 5 \times 9819)}{132 \times 9819}$$

$$= \frac{3 + 9819 \times 114 \cdot 1905}{133 \times 9819} = \frac{115 \cdot 11}{130 \cdot 60}$$

the First point of Aries is 126° Thus the tropical longitude has increased by 148°—11' minus 126°, which is equal to 22°—11' The number of years required for this increase is 1580 82 years at the lower rate and 1575 86 years at the mean rate, the higher rate being far higher than the present rate, having been ignored

Therefore, the year when the moving First point of Aries coincided with Virtual fixed Aries or in other words the year when the precession was zero is 1881 minus 1575 86 or 305 14 A D. Motion of Ayanamsa or Amount of precession from 305 14 AD to 1800 AD at the rate of 50 6773 per year is = 50 6773 x (1800 – 305-14) secs

= 75755 secs

= 21°-2'-35"

This is the amount of precession on the 1st January 1800

TO FIND OUT THE PRECESSION AT ANY SUBSEQUENT DATE:--

The present all-accepted value of precession per year is 50 2286 though the Suryasiddhanta has taken 54 and the Graha Laghava 60 as its value. For our calculation we will take only the rate 50° 2286 for years after our epoch.

Therefore if the precession at any subsequent date is required multiply the rate 50° 2286 by the number of years from epoch. The result will be the amount of precession for the interval after the epoch and this added to the amount already preceded up to the epoch viz 21°-2 -35°, will give the amount of precession required.

EXAMPLE.

No of years after epoch
Rate of precession per year

∴ Amount of precession at Epoch

∴ Amount of Precession at Epoch

∴ Amount of precession on 15th
July 1912

112 54
50° 2286

= 112 54 × 50° 2286

= 112 54 × 50° 2286

= 112 54 × 50° 2286

= 112 54 × 50° 2286

= 112 54 × 50° 2286

= 112 54 × 50° 2286

= 12 54 × 50° 2286

= 12 54 × 50° 2286

= 12 54 × 50° 2286

= 12 54 × 50° 2286

= 12 54 × 50° 2286

= 12 54 × 50° 2286

= 12 54 × 50° 2286

= 12 54 × 50° 2286

= 12 54 × 50° 2286

= 12 54 × 50° 2286

= 12 54 × 50° 2286

= 12 54 × 50° 2286

= 563 sec

= 1° -34′ -13°

= 21° -2 -35″

∴ Amount of precession on 15th
July 1912

Chapter VIII

TIME-THE VARIOUS KINDS-EQUATION OF TIME.

For all astronomical purposes the sidereal day is one of the principal units of time. It begins at the instant when the First Point of Aries is on the meridian and at any subsequent instant, the sidereal time will be the hourangle of the First Point of Aries measured westwards.

A solar day is the interval between two successive transits of the centre of the Sun on the meridian. The sun changes his R. A as he is advancing eastwards among the stars at an angle of about 1 per day and therefore the earth will have to turn one more time about its axis to complete a solar day, which will consequently be about 4 minutes longer than a sidereal day.

Thus the solar time at any instant is the hourangle of the sun's centre rackoned westward from 0 hrs to 24 hrs. This is called the Apparent Solar Time and it is only this time that is indicated by a sundial

If the sun's motion in right ascension were uniform the solar days will all be equal to one another, but this is not the case. In the first place the sun's inotion in its own orbit is not uniform, due to the excentricity of the orbit and secondly even if it were, the corresponding motion in R. A. would not be uniform due to the inclination of the orbit to the equator on which R. A's are measured.

The solar day marking the recurrence of light and darkness is obviously that on which man in civil life must regulate his time although the want ofuniformity mentioned above hinders us from employing it as a measuring unit. We may however obtain an uniform measure of time depending upon the sun in the following manner.

Conceive an imaginary body called the Dynamical Mean Sun to move along the equator with the mean angular velocity of the true sun amarked by this mean sun will be uniform and equal and exactly the average of all the solar days during the year. Therefore a clock, whose motion is necessarily uniform may be regulated on the mean sun. To have connection between the two suns, we must establish the starting point of the mean sun and it will be convenient so to choose that the mean solar time and the apparent solar time may never be widely separated.

Conceive another imaginary body say a star to have the same uniform angular velocity as the mean sun but to move along the ecliptic instead of the equator and to pass through the perigee at the same time as the true sun. Then the motion of the mean sun is so adjusted that it may pass through the first point of Aries at the same time as the star.

It could be seen that the connection between the two suns may be expressed by saying that the R. A. of the mean sun is equal to the mean longitude of the true sun because the mean longitude of the true sun is the longitude of the supposed star.

The difference between the Apparent time and Mean time at any instant is called the Equation of Time. It is considered as the correction to be applied to the former to obtain the latter and is therefore called positive when mean noon precedes true noon and vice versa.

It is obvious that the equation of Time is the value expressed in Time the angle between the declination circles of the true and mean suns. To have clear idea of the variations in the equation of time we may consider the individual causes that give rise to the equation and the algebraical sum of the two effects will give us the cumulative effect.

CONSIDER THE INCLINATION OF THE ECLIPTIC TO THE EQUATOR.

ing thro ? at the same time

Let us suppore the sun to describe the orbit "MassN with uniform angular velocity and the mean sun describing the equator "MassN with the same velocity the two pass

When the true sun is at B the mean sun will be at C where TB = TC and if BD is the declination circle through B CD will measure the equation of time due to this cause Further C and D will coincide only at the equinoxes and the solistices

From Υ to M C will be in advance of D and from M to \Rightarrow C will be behind D. Thus from Υ to M the apparent noon will precede mean noon and the equation of time will be subtractive. So also it is additive from solistices to equinoxes (i. e) from M to \Rightarrow

This effect on equation of time due to the inclination of the orbit to the equator is called the " $\pi \tau = T$ in Hindu Astronomy It is found out by solving the $rt \ \angle d$ spherical triangle

Let Υ^*B be the longitude of the true Sun and equal to \bigcirc , Υ^*D be the R A of the true Sun and equal to α and $\Delta B^{**}D = \omega$ the obliquity of the

ecliptic Since BD is Lar to the equator being a declination circle Δ BTD is $rt \angle d$.

Sine of middle part

 \rightleftharpoons product of tangents of adjacents (by Napier's rules for spherical rt $\angle d\Delta s$ vide chapter II)

If \(\angle B\)^D is taken as the middle part \(\gamma^2\) and \(\gamma^2\)^B will be the adjacents and its \(\mathbb{N}\) apter's parts are \(((90^-B\)^2\)^D) \(\gamma^2\) and \((90^-\)^3\)^B) (see chapter II)

(i e)
$$\cos \omega = \tan \Upsilon^*D \times \cot \Upsilon^*B$$

 $= \tan \alpha \times \cot O$
for $\sin (90^\circ - \omega) = \cos \omega$
and $\tan (90^\circ - \Upsilon^*B) = \cot \Upsilon^*B = \cot O$
 $\therefore \tan \alpha = \frac{\cos \omega}{\cot O} = \cos \omega \tan O$
 $\therefore \tan (O - a) = \frac{\tan O - \tan \alpha}{1 + \tan O \tan \alpha}$
 $= \frac{2 \tan O \sin^2 \frac{\omega}{2}}{1 + \tan^2 O \cos \omega}$

 $\therefore (\bigcirc -a) = \tan^{-1} \left[\frac{2 \tan \bigcirc \sin^2 \frac{\omega}{2}}{2} \right]$

.. sin (90°-B7D) = tan TD×tan (90°-TB)

A table of equation of time due to the obliquity of the exliptic is herewith appended The equation is negative for 0° to 90° and 180° to 270° of the tropical longitude and positive for 90° to 180° and 270° to 560° of the same Briefly, it is negative in the odd and positive in the even quadrants of the tropical longitude Expressing in sanskrit it will be "गोप्रपदेसमें and समर्थर धर्म"

TABLE OF EQUATION OF TIME DUE TO OBLI-QUITY OF ECLIPTIC (वाणकरांतां) FOR EACH DEGREE OF THE TROPICAL LONGITUDE MEASURED FROM THE NEAREST EQUINOCTIAL POINT.

(In	arcual	measure)
(411	arçuar	HIGS2016

Degree	Equat	ion "	Degree	Łqua	tion	Degree	E ju	ation	1) L'ree	Fqua	tion "	Deare	I gu	ation.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0 4 9 14 19 24 20 34 89 48 57 62 67 71 80 84 88	0 588 555 51 46 40 34 13 59 32 1 25 45 0 9 14	22 24 25 26 27 20 20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	92 96 99 103 107 110 113 116 119 125 125 128 140 142 143	133 849 49 28 49 28 49 25 49 49 59 55 50 94 11 400 00 42 13 35	41 42 43 44 45 46 47 18 40 50 51 52 52 54 55 56 57	1444 145 146 147 147 148 148 147 147 146 145 145 141 149 137 135 184	47 38 18 47 12 14 11 57 33 57 11	61	128 125 122	53 50 57 55 433 225 14 55 57 19 84 44 48	80 81 82 83 84 85 80 87 88 89 90	52 47 42 87 32 26 21 16 10 5	49 45 87 25 10 52 33 11 48 25 0

II, CONSIDERING THE EXCENTRICITY OF THE ORBIT.

Neglecting the obliquity of the ecliptic let PBA be the sun's elliptical orbit. B the place of true sun between the Perigee and the Apogee and C the corresponding position.

and C the corresponding position of the star or the Dynamical mean sun, the two coinciding at Perigee and Apogee only

At P the true sun has got the greatest velocity and will therefore shoot ahead of the mean sun the interval between them continuing to increase as long as the sun's true angular velocity exceeds its mean value. This will be diminishing later, for both should coincide at Apogee,

The difference between them is only the equation of centre but the actual value is obtained by multiplying the angular interval by $\cos \omega$ see 2 δ , the factor connecting a small arc on the ecliptic with its corresponding projection on the equator

With the usual notation and as per the figure on page 58 let $^{\circ}$ B be the portion of the ecliptic $^{\circ}$ C the portion of the equator \angle B $^{\circ}$ C= ω , the obliquity of the ecliptic $^{\circ}$ C the R A or a $^{\circ}$ B the longitude of B, vz O and BC, the declination δ

If \angle B°°C be the middle part °1'B and °1'C are the adjacents and their Napier's parts are (90° -- ω), (90" -- \bigcirc) and a respectively, than we have

sine of mid part=product of tangents of adjacents

(i e)
$$\sin (90^\circ - \omega) = \tan (90^\circ - \Omega) \times \tan \alpha$$

Now for a small increase of \bigcirc , we have to find the change in a. This could be done by a knowledge of Differential Calculus It could be readily understood by those who know that branch of Mathematics and it may be taken for granted by the rest

Differentiating both sides of the above equation with respect to a small increase of time dt, we have

$$\sec^2 a \frac{da}{dt} = \cos \omega \sec^2 O. \frac{dO}{dt}$$

$$\therefore \frac{du}{dt} = \cos \omega \frac{\sec^2 \bigcirc}{\sec^3 u} \frac{d\bigcirc}{dt}$$

But as this is not independent of or a, we proceed thus

If \bigcirc be the middle part a and δ become the opposites and the Napier's parts are (90° \bigcirc), δ and a respectively

... sine of mid part = product of cosines of opposites

Briefly, it is negative in the odd and positive in the even quadrants of the tropical longitude Expressing in sanskrit, it will be ''ओवारेड्स्प and समपद धर्न ''

TABLE OF EQUATION OF TIME DUE TO OBLI-QUITY OF ECLIPTIC (जाणकरांतर) FOR EACH DEGREE OF THE TROPICAL LONGITUDE MEASURED FROM THE NEAREST EQUINOCTIAL POINT.

(In arcua	l measure)
-----------	------------

_														
Degree	Equa	tion	Ведтев	Lqua	tion	Degree	Equ	ation	l's s. ree	Equa	ition	Degree	Equ	ation
				· _ · _			1		!			1 - 1		
011 93 44 55 67 8 9 10 11 12 13 14 15	0 4 9 14 19 24 29 34 38 48 57 62 67	0 58 55 51 40 40 34 24 13 59 43 28 59 82	20 21 22 23 24 25 26 27 28 29 20 30 30 30 30 30 30 30 30 30 30 30 30 30	92 90 99 103 107 110 113 116 119 122 125 128 180 182 185	13 49 28 25 43 53 55 50 84 11 40 59 10	40 41 42 43 14 45 46 47 48	144 145 146 147 148 148 147 147 146 146 145 144 141 141	47 18 47 19 14 11 57 83 57 11	61 62 63 64 65	128 125 123 119 116 118 109 106 102 98 91 90 85 81	50 57 55 48 22 51 12 25 -29 25 14 55 80 57	80 81 82 83 84 85 86 87 88 80 90	52 47 42 87 82 26 21 16 10 5	49 45 37 25 10 52 83 11 48 25 0
16	75 80	45	37	140	42	57	187	43	77	72 67	19 34	- }		
17 18	84	9.	38	142	13	58	135	41	78	62	44			
19	38	14		148	35	59	183	29	79	57	48	f		
TA	00	1.4	100	110	00	اٽا	200	20	19	31	40	Į	- 1	

II. CONSIDERING THE EXCENTRICITY OF THE ORBIT.

Neglecting the obliquity, of the ecliptic, let PBA be the sun's elliptical orbit. B the place of true sun between the Perigee and the Apogee and C the corresponding position

of the star or the Dynamical mean sun, the two coinciding at Perigee and Apogee only.

At P the true sun has got the greatest velocity and will therefore shoot ahead of the mean sun the interval between them continuing to increase as long as the sun's true angular velocity exceeds its mean value. This will be diminishing later for both should coincide at Apogee.

The difference between them is only the equation of centre but the actual value is obtained by multiplying the angular interval by $\cos \omega$ sec² δ the factor connecting a small arc on the ecliptic with its corresponding projection on the equator

With the usual notation and as per the figure on page 58 let $^{\circ}$ B be the portion of the ecliptic $^{\circ}$ C the portion of the equator \angle B $^{\circ}$ C= ω the obliquity of the ecliptic $^{\circ}$ C the R A or u $^{\circ}$ B the longitude of B viz \bigcirc and BC the declination δ

If \angle BY C be the middle part YB and YC are the adjacents and their Napier's parts are (90° – ω), (90° – \bigcirc) and α respectively than we have

sine of mid part = product of tangents of adjacents

(i e)
$$\sin (90^{\circ} - \omega) = \tan (90^{\circ} - \Omega) \times \tan \alpha$$

$$tan n = cos \omega tan \bigcirc$$

Now for a small increase of O we have to find the change in a This could be done by a knowledge of Differential Calculus. It could be readily understood by those who know that branch of Mathematics and it may be taken for granted by the rest.

Differentiating both sides of the above equation with respect to a small increase of time dt, we have

$$\sec^a a \frac{da}{dt} - \cos \omega \sec^a O \frac{dO}{dt}$$

$$\frac{da}{dt} = \cos \omega \frac{\sec^2 O}{\sec^2 a} \frac{dO}{dt}$$

But as this is not independent of \bigcirc or α , we proceed thus

If O be the middle part α and δ become the opposites and the Napier's parts are (90°—O), δ and α respectively

sine of mid part=product of cosines of opposites

$$\therefore \sin (90^{\circ} - \bigcirc) = \cos a \cos \delta$$

$$\therefore \cos \bigcirc = \cos a \cos \delta$$

$$\therefore \sec \bigcirc = \sec \delta \sec a$$

$$\therefore \sec \bigcirc = \sec \delta$$
Substituting this value for $\frac{\sec \bigcirc}{\sec a}$, we get,

 $\frac{da}{dt} = \cos \omega \sec^2 \delta \frac{d\odot}{dt}.$

(i e) cos ω sectò is the factor by which change in longitude is to be multiplied to set the corresponding change in the R. A.

Since the multiplier varies with the declination it follows that the greatest equation of time due to excentricity will not correspond to the greatest equation of centre. Besides as the apse line is moving forward with respect to the moving first point of Aries annually by 61 *47, the same equation of centre, will not correspond with the same declination.

But for practical purposes the equation of centre may be taken as the equation of time due to ellipticity. This is additive between perigee and apogee measured in the positive direction and negative otherwise (i. e.) it is positive or negative as the equation of centre.

Combining the two parts, we have as equation of time—equation of time due to inclination (प्राणकर्शतर) plus equation of time due to ellipticity (रिविमंदपर्गः).—This is called the real equation of time or उदयोवर संस्कारं

The western method of calculating the planetary positions at a given instant, depends only on the mean time of the instant at the locality. But the Hindu does not mark his day with any such fictitious sun, but at the actual surrise time and measures all subsequent intervals as so many ghatikas etc as having passed from the true surrise.

Thus the necessity of the **AIMMENGIAT** and the **TIME** which will be explained in the following chapter is to a very great extent for the Hindus to calculate the planetary positions correctly at a given instant and place. These have been explained at length to give the readers a thorough idea of the comparative methods of the Hindus and those of the modern astronomers.

Chapter IX

POSITION OF THE OBSERVER-CORRECTIONS DUE TO.

The position of the observer on the surface of the earth has to be fixed first of all, with respect to its latitude and longitude. These require no explanation as they are merely the usual geographical terms. Places north of the equator are reckoned as North or positive Latitude and those to the south of the equator, South or negative latitude.

The longitude is the east or the west direction from an arbitrarily chosen place—arbitrary for different authors but fixed for that particulars mode of calculation. At present Greenwhich has been taken as the zero meridian (Geographical) from which longitudes east or west are reckoned. We propose to take Taniore for the mode of calculation of this work.

Places east of Tanjore (Latitude 10°-47 N and longitude 79°-15 E of Greenwich) will have their local times more or additive and those west of the place chosen less or subtractive as compared with the local time at Tanjore at a particular instant

The planetary positions given at the beginning of the VI Chapter have been calculated for the mean sunrise at Tanjore on 1st January 1800 and the corrections to the planetary positions due to this cause will have to be applied to reversely that is if the desired place is east of of Tanjore the corrections will be negative and if west positive

CORRECTION DUE TO LATITUDE.

This correction has to be made for the reason that at different latitudes on the surface of the earth the sun remains above the visible horizon for different periads of time and the duration of day is this different afferent at different places. Also, the mean duration of day is for 12 hours (i e) 6 hours from sunrise to noon and 6 hours from noon to sunset. Therefore a correction due to the difference in length of the normal day of 12 hours and that of the day in question at a specified place is essential and this is called the Charaphalam (च्यक्ट). In other words it is the difference between the hourangle of sun at sunrise and 90° The difference in degrees converted

to hours @ 15° for an hour when added to or subtracted from 6 hrs according as the hourangle at sunrise is greater or less than 90° will give the duration of half the day.

TO FIND THE HOURANGLE OF SUN AT THE TIME OF SUNRISE.

With the usual notation let HZR be the meridian of the place and HSR be the horizon. S is the position of the sun or body at its rising. P the celestial pole. Then the angle ZPS is the hourangle at its rising.

PR is the latitude ϕ of the place PS is the North polar distance of the sun and equal to $(90^{\circ} - \delta)$

$$\angle$$
 SPR = supplement of \angle ZPS
= $(180^{\circ} - h)$

Now since Z is the pole corresponding to the section HSR of the celestial sphere \angle ZRS is 90° and hence \triangle SPR is a rt \angle d Spherical triangle of which the sides SP and PR are known and \angle SPR could be found out by applying Napier's analogies

If \angle SPR is taken as the middle part SP and RP are its adjacents but the Napier's parts of SP \angle SPR and PR are respectively (90°-SP) (90°- \angle SPR) and PR (i e) (90°- $\overline{90-80}$, (90°- $\overline{180-h}$) and ϕ respectively (i e) δ , (\hbar -90°) and ϕ respectively

Sine of middle part = the product of the tangents of adjacents

(1 e) sin (h-90°)=tan 8 × tan φ

(1 e) -cos h=tan d tan b

lie) cos h= -tan o tan 8

This is a very important formula for it explains how the duration of day varies with the latitude and declination

So long as the declination is positive which is the case when the sun's tropical longitude is between 0 to 180° for places with the North latitude cos h is negative (i e) h will be greater than 90°, indicating thereby that the duration of day is more than the mean duration of 12 hrs

For negative or South declination for those same places with North latitude $\cos h$ is positive indicating thereby h to be less than 90° or that the duration of the day is less than 12 hours

Similarly the conditions are reversed for south latitudes

The formula $\cos h = -\tan \phi \tan \delta$, is thus depending on the declination which in turn depends on the tropical longitude of the sun—It will be convenient to have the same directly as an explicit function of the longitude. This is done as follows

With the usual notation in the figure of page, 58 if δ is taken as the middle part, \bigcirc and ω are the opposites, of which the Napier's parts are tropical $(90^{\circ}-\bigcirc)$ and $(90^{\circ}-\omega)$.

$$: \sin \delta = \cos (90^{\circ} - \bigcirc) \cos (90^{\circ} - \omega)$$

$$= \sin \bigcirc \sin \omega$$

. Substituting this value of $\sin \delta$ in the previous equation, we get $\cos h = \frac{1}{\sqrt{1 - \sin^2 \omega}} \frac{\sin \omega \sin \Omega}{\sin^2 \Omega}$

This formula gives the hourangle required directly from the tropical longitude of the sun

The excess of the hourangle thus arrived at, over 90° or its defect from 90°, gives the चरफले. It is positive between 0° to 180° of tropical, longitude and negative between 180° to 360° of the same for purposes of determination of duration of day

The cases of long duration of day will make the sunrise earlier than 6 A M and set later than 6 P M and those of short duration will make the sunrise later than 6 A M and set earlier than 6 P M. Hence when the wine has to be applied to the apparent sunrise time to correct it to mean sunrise time, the wine positive or negative as derived by the method laid out, will be considered with reversed signs for purposes of applying to the planetary positions. This should be clearly understood

There is no charaphalam for 0° of latitude for $\cos h = -\tan \phi \tan \delta$, when $\phi = 0$, reduces to 0 independent of the value of δ . Therefore at the equator, $\cos h = 0$, (i. e.) $h = 90^{\circ}$ or the duration of day is always 12 hrs

DETERMINATION OF LATITUDE OF A PLACE.

For the determination of latitude by really scientific methods a text book of Mathematical Astronomy may be consulted. Various methods of determination are given based on the directly observed positions of heavenly

Let us now arrive at the values of चरळ for 30°, 60° and 90° by purely trigonometrical method and compare them with the previous values as arrived at by the Hindu method

FOR 30° OF TROPICAL LONGITUDE.

$$cos h = \frac{-tan\phi sin\omega sin\Theta}{\sqrt{1 - s_{in}} '\omega sin'\Theta}$$

$$\phi = 10^{\circ} - 47^{\circ} N, \omega = 23^{\circ} - 27\frac{1}{2}', \Theta = 30^{\circ}$$

$$tan \phi = tan 10^{\circ} - 47^{\circ} N = 1904687$$

$$sin \omega = sin 23^{\circ} - 27\frac{1}{2}' = 3980821$$

$$sin \Theta = sin 30^{\circ} = 5$$

$$∴ cos h = \frac{-1901587 \times 3980821 \times 5}{\sqrt{1 - (3980821 \times 5)^{\circ}}}$$

$$= \frac{-1904587 \times 19904105}{\sqrt{1.19904105 \times 80095895}}$$

$$= \frac{-03790909}{-9799912}$$

$$= -0380881 = cos (92^{\circ} - 13' - 1')$$

Since $\cos h$ is negative, h should be in the 11 quadrant. (vide explanation under the following para)

FOR 60° OF TROPICAL LONGITUDE.

Similarly for 60° of tropical longitude, all the others remain the same in the formula except sin 60° which is '8660254 has to be substituted

$$\cos h = \frac{-1904587 \times 3980921 \times 8660254}{\sqrt{1 - (3980821 \times 8660254)^7}}$$
$$= \frac{-065660642}{\sqrt{88114799}}$$
$$= \frac{-065660042}{9386948} = -06994887$$

Cos 94°-0 -40 = -06994887 for as the cosine is negative the argument should be in the II quadrant and not in the III quadrant though the cosine in the III quadrant is also negative for the matter that the \hbar with which we are concerned cannot be very widely separated from 90° which will be the case if the angle in the III quadrant be taken

. Charaphalam at 60° of the tropical longitude is 4°-0-40° or 240-40

FOR 90 OF THE TROPICAL LONGITUDE.

$$\cos h = \frac{-1904567 \times 3980821 \times 1}{\sqrt{1 - (3980821 \times 1)^2}},$$
for $\sin 90^\circ = 1$

$$\cos h = \frac{-07581838}{\sqrt{13980821 \times 6019179}}$$

$$= \frac{-97581838}{9173497} = -0826494$$

= 43'-47"

Summing up we have

	Trigonometrical method	Hindu method
1 portion	133 −1 *	137 -7" 8
II portion	107 -39"	109 -42" 24
III portion	4347	45 -42" 6
	Total 284 -27	294 -32" 64

From a comparison of the two sets of values at will be seen that there is difference between each corresponding portion and also in the total

the difference being due to the maximum declination having been taken as 24° by Hindus instead of the mean value 23°—27½. Yet the difference in the maximum charaphalams is only 10 of are or less than 2 vighatis of time which is highly commendable for the nearness of the two results.

These tedious yet interesting calculations are not done in vain and their use will be seen as we proceed. Considering the labouriousness of these workings the annexed table could be used to find out the (बर्यक) Charaphalam for a desired tropical longitude taking care to prefix the proper sign with due regard to the quadrant the tropical longitude lies in

TABLE OF CHARAPHALAM FOR EACH DEGREE OF DISTANCE OF TROPICAL LONGITUDE MEASURED FROM THE NEAREST EQUINOX.

Calculated for Tanjore 10-47 N

the difference being due to the maximum declination having been taken as 24° by Hindus instead of the mean value 23°-27½. Yet the difference in the maximum charaphalams is only 10 of arc or less than 2 vighatis of time which is highly commendable for the nearness of the two results.

These tedious, yet interesting calculations are not done in vain and their use will be seen as we proceed. Considering the labouriousness of these workings the annexed table could be used to find out the (अपमें). Charaphalam for a desired tropical longitude, taking care to prefix the proper sign with due regard to the quadrant the tropical longitude lies in

TABLE OF CHARAPHALAM FOR EACH DEGREE OF DISTANCE OF TROPICAL LONGITUDE MEASURED FROM THE NEAREST EQUINOX.

Calculated for Tanjore 10°-47 N

As indicated on the top of the tables of charaphalam, the same has been calculated for Tanjore, whose latitude is 10°-47 N. If it be required to know the corresponding figures for any other latitude proceed as follows.

If the tropical longitude is within 180°, (i. e.) in the I and II quadrants, increase 90° by the charaphalam. Find the cosine of the angle thus arrived at Multiply it by the tangent of latitude of the given place and divide it by the tangent of the latitude of Tanjore—viz 10°-47′ Note the result. Find whose cosine is the result. That angle less 90° will be the required charaphalam.

In the case of III and IV quadrants, diminish 90° by the charaphalam Find the cosine of the angle as before and multiply it by the ratios of the tangents of the latitude of the given place and that of Tanjore Find the angle whose cosine is the result. The difference between 90° and the resultant angle will be the required charaphalam

The method of merely multiplying the charaphalam by the ratio of the tangents is very rough and may fail to give even an approximate value beyond say 20° or so A passing mention guarding against this risky, though short cut, has already been made in the previous pages

Reverting to the example taken tropical longitude of sun

= Longitude of sun + precession

xample, net result is = 0.

Sum strue velocity = 57 - 13 प्रस्ति).

Correction to be applied $= \frac{28}{21600} = 4$

This is positive as the net result is also positive. Hence adding it to the true longitude of sun already found viz $2^{\circ}-29^{\circ}-21^{\prime}-18$, we get $2^{\circ}-29^{\circ}-21^{\prime}-22^{\circ}$

This is the rectified true longitude of sun

Chapter X

POSITION OF THE ECLIPTIC.

If the equator were a bright visible band in the sky, it would occupy a fixed position of which we may readily obtain an idea by means of some of its points namely, the East point with its opposite the west opint and a

The mean longitude of sun at the time of birth is $2^{n}-20^{n}-12-10^{n}$ referred to Tanjore. Place of birth is 255 west of Tanjore. Correction due to this is 42 of are (plus) to be added to the mean longitude of sun referred to above. [255 of longitudinal difference is approximately $1^{n}=12.5$ rightihas of time. As sun's mean velocity is $59-8^{n}$ for a day, correction due to 42.5 rightihas is nearly 42^{n} of are. This is positive as the longitudinal difference is additive for time but subtractive for planets as we proceed east of a chosen point and time-time when proceeding to the west).

... Correct mean longitude of sun at birth at the place of birth is $2^{\circ}-29 - 13^{\circ}-22^{\circ}$. If we add the precession $22^{\circ}-30^{\circ}-48^{\circ}$ to this we get $3^{\circ}-22^{\circ}-20-10^{\circ}$ as the tropical longitude of mean sun

Time of birth is 2 A M. Indian standard time. Therefore local time of birth is 2 A. M. minus 30 6 mis, which is 1 hr. 29 4 mis A. M.

Time passed since the previous noon is 12 hrs + (1 hr --29 4 mts)
 13 hrs -29 mts -24 sec

Converting it into degree etc. 15 per hr we get 202°-21′-0°. Adding this to the mean tropical longitude of sun we get 8°-22°-20 -10° (or 112°-20-10°) plus 202°-21-0°, which is equal to 314°-41′-10°. This is called the Right ascension of midheaven or R A M C as it is usually known among astronomers. It is with this R A M C we proceed to find out the ascending point and the culminating point.

ASCENDING POINT.

We shall take the formula previously derived which gives the point N from which we can get the ascending point by merely adding 90

$$Tan \, \Upsilon N = \frac{\tan \phi \sin \omega}{\cos M} + \cos \omega \tan M$$

$$\phi = 12^{\circ} - 45 \, N \quad \omega = 29^{\circ} - 27\frac{1}{2} \quad \text{and} \quad M = 313^{\circ} - 11^{\circ} - 10^{\circ}$$

$$\tan 12^{\circ} - 15^{\circ} N = 2262769$$

$$\sin 23^{\circ} - 27\frac{1}{2}^{\circ} = 3980821$$

$$\cos 23^{\circ} - 27\frac{1}{2}^{\circ} = 9173498$$

$$\tan 31\frac{1^{\circ} - 41^{\circ} - 10^{\circ}}{\sin 45^{\circ} - 16^{\circ} - 50^{\circ}} = \cos 45^{\circ} - 18 - 50^{\circ}$$

$$= -\tan 45^{\circ} - 16^{\circ} - 50^{\circ}$$

$$= -10110173$$

$$\therefore \tan \Upsilon N = \frac{2262769 \times 3980821}{7032224} + 9173498 \times -10110178$$

$$= 12809014 - 9274565$$

$$= -79936636 = \tan (-38^{\circ} -35' -16')$$
for $\tan 38^{\circ} -38' = 7992425$
 $\tan 38^{\circ} -39' = 7997193$
or $\tan (180^{\circ} -38^{\circ} -38' -16')$

The angle whose tangent is negative may be either in the II or IV quadrant. But we should choose that which is nearer to the R. A. M. C. In this case, the R. A. M. C. is in the IV quadrant. Hence the required value of 'I'N will be (360°-38°-38'-16') or 321°-21'-44. Adding 90° to this we get the longitude of Ascendant as 411°-21'-44" or 51°-21' 44 after subtracting 360°.

- ... The tropical longitude of the ascendant is therefore 51 -21'-41. The precession when subtracted from this will give the longitude of ascending point as per the Hindu Nirayana reckoning. It will be (51°-21'-44') minus (22'-30'-46'), which is equal to 26'-44'-56'.
 - :. Nirayana Longitude of Ascendant = 0'-29°-44' 56

HINDU METHOD.

Take sayanasphuta Ravi (सायमस्ट्राट्सि) that is $(2^{2}-29^{2}-21-22)$ plus $(0^{2}-22^{2}-36-48)$ which is $3^{2}-21^{2}-58^{2}-10$ We have already worked out the यसके and the प्राणककार as (311-36) सूर्ण (-) and 106-5 पर्य (+) respectively. The net result is $205^{2}-31^{2}$ सूर्ण (-) converting this to degrees we have $8^{2}-25^{2}-31^{2}$ सूर्ण (-) Being negative subtract this from the tropical true longitude (सायमस्ट्राटिय).

The result will be the उद्यक्तल्लमं (Udayakala-lagnam) If the ner result had been positive, it should have been added to the true tropical longitude.

We have therefore 3"-21"-58"-10" 3"-25"-31"
This is Udayakala Lagnam 3"-18"-32"-39"

Now take the birth time in ghatikas after true sunnise (i. e.) 49 ghatikas –175 vighaties. Multiplying this by 6 we get degrees etc. It will be 295° - 45′—0″. Converting the degrees to signs etc and adding it to the Udayakala Lagnam we get the कारळन्नं... It is 3°18°-35′-31′-39° plus 91-95°-41′-0″

$$\frac{9^{3}-25-45-0}{1^{3}-14^{\circ}-17'-39''}$$
(Kalalagnam) = $1^{3}-14^{\circ}-17'-39''$

The mean longitude of sun at the time of birth is 2 = 20° = 12 = 10 referred to Tanjore. Place of birth is 255 west of Tanjore. Correction due to this is 42 of are iplus, to be added to the mean longitude of sun referred to above. 255 of longitudinal difference is approximately. "A = 12.5 vighatikas of time. As sun's mean velocity is 50° = 5° for a day correction due to 42.5 vighatikas is nearly 42 of are. This is positive as the longitudinal difference is additive for time but subtractive for planets as we proceed east of a choice point and inscription and the proceed east of a choice point and inscription.

... Correct mean fongitude of sun at birth at the place of birth is 2^2-20-4 3^2-22^2 . If we add the precession $22^2-40-48^2$ to this we get $3^2-22-20-10^2$ as the tropical longitude of mean sun

Time of birth is 2 A. M. Indian standard time. Therefore, local time of birth is 2 A. M. minus 30.6 mis, which is 1 br. 29.4 mis A. M.

. Time passed since the previous noon is 12 hrs + (1 hr -29 4 mts) - 13 hrs -29 mts -24 sec

Converting it into degree etc. 15 per hr we get 202'-21'-0'. Adding this to the mean tropical longitude of sun we get 3'-22'-20'-10' (or 112'-20-10') plus 202'-21-0', which is equal to 114'-11'-10'. This is called the Right ascension of midheaven or R A M C as it is usually known among astronomers. It is with this R A M C we proceed to find out the ascending point and the culminating point.

ASCENDING POINT.

We shall take the formula previously derived, which gives the point N from which we can get the ascending point by merely adding 90.

Tan 'j N =
$$\frac{\tan \phi \sin \omega}{\cos M}$$
 + $\cos \omega \tan M$
 $\phi = 12^{\circ} - 45'N \quad \omega = 29^{\circ} - 27\frac{1}{2}$ and M = $311^{\circ} - 11' - 10'$
 $\tan 12^{\circ} - 15'N = 2262769$
 $\sin 25^{\circ} - 27\frac{1}{2}' = 3989821$
 $\cos 25^{\circ} - 27\frac{1}{2}' = 9173198$
 $\tan 311^{\circ} - 41' - 10' = \tan (360^{\circ} - 45^{\circ} - 18 - 50')$
 $= -\tan 15^{\circ} - 15' - 50'$
 $= -10110173$
 $\therefore \tan 7N = \frac{2262769 \times 3980821}{398221} + 9173498 \times -10110173$

$$= \frac{\cdot 12609014 - \cdot 9274565}{= - \cdot 79936636} = \tan \left(-\frac{38^{\circ} - 36' - 16'}{} \right)$$
(for tan 38° - 38' = \tau 7992425) or tan (180' - 38' - 38' - 16')

The angle whose tangent is negative may be either in the II or IV quadrant. But we should choose that which is nearer to the R A M C in this case, the R A M C is in the IV quadrant. Hence the required value of 'i'N will be (860°-88°-88'-16') or 321°-21'-44". Adding 90° to this, we get the longitude of Ascendant as 411°-21'-44" or 51°-21' 44" after subtracting 360°.

- ... The tropical longitude of the ascendant is therefore 51 -21'-41. The precession when subtracted from this will give the longitude of ascending point as per the Hindu Nirayana reckoning. It will be (51°-21'-44') minus (22'-36'-48'), which is equal to 28'-44-56'.
 - .. Nirayana Longitude of Ascendant = 0'-28°-44' 55"

HINDU METHOD.

Take sayanasphuta Ravi (মাঘনন্দুবারি) that is (2*-29*-21 -22) plus (0*-22*-36*-48) which is 3*-21*-58-10. We have already worked out the আক্ষা and the সাগাকজানা as (311-36) মূর্য্য (-) and 106-5 ঘন (+) respectively. The net result is 205*-31* নুর্যা (-) converting this to degrees we have 8*-25*-31* নুর্যা (--). Being negative subtract this from the tropical true longitude (মাঘনন্দুবারি).

The result will be the उद्यक्षल्डाने (Udayakala-lagnam). If the net result had been positive, it should have been added to the true tropical longitude.

We have therefore 3"-21"-58 -10"
minus 3"-25 -71"
This is Udayakala Lagnam 3"-18"-32"-39

Now take the birth time in ghatikas after true sunrise (i. e.) 49 ghatikas –175 vighaties. Multiplying this by 6 we get degrees etc. It will be 295°-45′-0°. Converting the degrees to signs etc and adding it to the Udayakala Lagnam we get the कारलार्ज. It is 3°-18°-34′-39° plus 93-95°-415′-0°

With this Kalalagnam we find out the charaphalam (चरं) and (प्राण) Equation due to obliquity and apply the net result to the कारुनर्न itself with rectored signs. The process is repeated until two consecutive results agree. This is what is known as स्थित्वर्ण corresponding to 'Successive approximation' and the result got thereby is called the श्वराणकरांतर स्थितिन्तसायनरन्न, The result of the last trial subtracted by the precession will be the Nirayana longitude of Ascendant

We shall do by the Hindu method the same calculation of finding out the ascendant

As the tropical longitude is within 180° and also in the l quadrant আ is negative and মাৰ্গ also is negative

The st found out here is for Tanjore but we want for Mangalore Mulinglying it by the ratio of the tangents of the latitudes of the two places viz 1 1879 we get st for the place of birth as 222 -43 (Though mulinplying by the ratio of the tangents of the latitudes has been stated to be only very rough it has been resorted to only as an example. A tabular statement with instruction to work out a table of st for any desired latitude is appended in the appendix, whereby these will be no need to resort to this rough way.)

Applying this reversedly to atteria, we get 18-14°-17-39" plus 6°-10'-..87"

1s_20°_28'_16"

This is a first approximation

| TRIAL | As this is within 90°, the same is the distance from the nearest equinox | for 50° चर्र is 207°—38° प्राण is 146°—57° | for 51° चर्र is 211°—4° प्राण is 146°—11° |

The former is negative as also the latter, for the II trial tropical longitude is still less than 180° and in the I quadrant

Rectified at for the place of birth

III TRIAL

=
$$209'$$
— $15'' \times 1'1879 = 247'$ — $31''$ $\pi \psi$ 1 $\pi \psi$ 1 = $146' - 35''$ $\pi \psi$ 1 Net result = $304'$ — $6''$ $\pi \psi$ 1 = $6''$ — $34'$ — $6''$ $\pi \psi$ 2 $\pi \psi$ 3 $\pi \psi$ 4 $\pi \psi$ 5 $\pi \psi$ 5 $\pi \psi$ 7 $\pi \psi$ 9 $\pi \psi$

Applying this reversedly to the original Kalalagnam $1^s-14^\circ-17'-39$, we get $1^s-20^\circ-51'-45''$. This is a **H approximation**

As before चर्र 15 कर्ण (—) and प्राणं also 15 फर्ल (—). Rectified चर्र for the place of birth =210′—36″ × 1 1879=250′—10″ फर्ल

Applying this reversedly to the original Kalalagnam, we get $1^s-20^\circ-54^\prime-6^\prime$ as the III approximation

With this Kalalagnam we find out the charaphalam (वर्र) and (प्राण) Equation due to obliquity and apply the net result to the कारणमंत्र itself with received signs. The process is repeated until two consecutive results agree. This is what is known as स्थित्वर्ष corresponding to Successive approximation, and the result got thereby is called the चरताणक्यांतर स्थितिकृतसायन्यन, The result of the last trial subtracted by the precession will be the Nirayana longitude of Ascendani.

We shall do by the Hindu method the same calculation of finding out the ascendant

As the tropical longitude is within 180° and also in the I quadrant আ is negative and মার্ল also is negative

The set found out here is for Tanjore but we want for Mangalore Multiplying it by the ratio of the tangents of the latitudes of the two places viz 1 [879] we get set for the place of birth as 222 -43". (Though multiplying by the ratio of the tangents of the latitudes has been stated to be only very rough it has been resorted to only, as an example. A tabular statement with instruction to work out a table of set for any desired latitude is appended in the appendix whereby there will be no need to resort to this rough way?

. Recurred set is \$222-43" set [-]

पाणं is
$$147'-51$$
 ऋषं $(--)$
Net result is $370-37'$ ऋषं $(--)$
or $6^2-10-37'$ ऋषं
Applying this reversedly to कारूटानं, we get $1^g-14'-17'-39''$ plus

s_20°_28 _16"

This is a first approximation

The former is negative as also the latter for the 11 trial tropical longitude is still less than 180 and in the I quadrant

Rectified at for the place of birth

=
$$209'$$
— $15'' \times 1^{\circ}1579 = 247'$ — $31''$ $\pi \dot{\eta}$
 $\pi i \dot{\eta}$ = $\frac{146' - 35'}{394' - 6'}$ $\pi \dot{\eta}$
Net result = $\frac{394' - 6'}{90}$ $\pi \dot{\eta}$ = $6^{\circ} - 34' - 6'$ $\pi \dot{\eta}$

Applying this reversedly to the original Kalalagnam 1s-14°-17 30, we get 1s-20s-51'-45s. This is a II approximation

∴for 50°-51'-15" चर 18 210'-36" and प्राण 18 146'-17".

As before चर्र 13 सर्च (---) and प्राणं also 15 सर्च (---). Rectified चर्र for the place of birth = 210'--36" × 1 1679=250'--10" प्राणं = 146'-11" अरच

Net result is =396 -27° সংগ or 6°-36'-27' সংগ

Applying this reversedly to the original Kalalagnam we get $1^* - 20^\circ - 51^\circ - 6^\circ$ as the III approximation

It could have been seen that the II trial gave a large difference from the I and that the III trial gave only a small difference from that of the II. If a IV trial also were made, the result would be practically the same as that of the III trial. Thus we can stop with the III trial and take it as the final result. Subtracting there-from the precession, we get the ascendant of the moment.

In this case, the final result of the last trial is $1^{\circ}-20^{\circ}-54'-6'$, Subtracting precession $22^{\circ}-36'-48'$, we get $0^{\circ}-28^{\circ}-17'-18'$. This is the Nirayana longitude of the ascendant according to the Hindu method. There is a difference between this final result and that arrived at by the trigonometrical method the difference is due to our having used the multiplier ratio of the tangents of latitudes, instead of employing a table of $\overline{478\%}$ specially made for the latitude of the place. This point has already been stressed upon and the appendix furnishes the clue to prepare a table of $\overline{478\%}$ for a desired place.

TO FIND THE CULMINATING POINT OR LONGITUDE OF THE TENTH HOUSE.

(TRIGONOMETRICAL METHOD)

The longitude of the tenth house or the culminating point is given by the formula, $\tan {}^{4}C = \frac{\tan M}{\cos \omega}$.

In the present example, $M = 314^{\circ} - 41' - 10''$ and $\omega = 23^{\circ} - 27\frac{1}{2}'$ $\therefore \tan \Upsilon C = \frac{\tan 314'' - 41' - 10''}{\cos 23'' - 27\frac{1}{2}'}$ now, $\tan 314'' - 11' - 10'' = \tan (360'' - 45'' - 18'' - 50')$

now, tan
$$314 - 11 - 10 = \tan (300 - 43 - 18 - 30)$$

= $-\tan 45^{\circ} - 12^{\circ} - 50^{\circ}$
- $-\tan 45^{\circ} - 12^{\circ} - 50^{\circ}$
and $\cos 23^{\circ} - 27\frac{1}{2}'$ = 9173498

$$\therefore \tan {}^{9}\text{'C} = \frac{-1.0110173}{9173198} = -1.1021067$$

$$= \tan \left(-47^{\circ} - 46^{\circ} - 51^{\circ}\right)$$
or $\tan \left(180^{\circ} - 47^{\circ} - 46^{\circ} - 51^{\circ}\right)$

For, an angle whose tangent is negative may be either in the IV or II quadrant. Here the value in the IV quadrant only has to be taken being nearer to the R.A.M.C. than the other.

$$\therefore \text{°C} = -47^{\circ} - 46^{\circ} - 51^{\circ} \text{ or } 360^{\circ} - 47^{\circ} - 46^{\circ} - 51^{\circ}$$
$$= 312^{\circ} - 18^{\circ} - 9^{\circ}$$

This includes precession of $22^{\circ}-36'-48''$, subtracting it we have longitude of midheaven as $289^{\circ}-36-21''$ or $9^{\circ}-19^{\circ}-36'-21$

TENTH HOUSE BY HINDU METHOD.

Take the tropical longitude of the ascendant as arrived at by the last trial lt is 18-20°-54'-6 From this obtain जरकं and प्राणक्लातर.

Ţ			This is within 90° and hence it itself is the
20		50°	argument for referring to the tables of আনুষ্ঠ
54	٥r	54	(Charaphalam) and प्राणरलांतर (Equation of time
6		6	due to obligation)

both are negative ($\pi\pi$) as the tropical longitude of the ascendant taken is less than 180° and also in the l quadrant $\pi \pi \pi \pi$ for the desired latitude is $210'-44'' \times 1\cdot1879 = 250'-20'' \pi \pi (--)$.

. Net result of चरकल and प्राणकस्तातर is −(396'-16) or −(0°-36'-16'). This is applied directly to the tropical longitude 1°-20'-54'-6'. We get 1°-14'-17'-50'. With this again प्राणकशासर is found out. The same is the argument being less than 90.

, For
$$44^{\circ}$$
—17 –50 it is 147 —54 ऋष (——), as the tropical longitude 1° — 14° — $17'$ — $50''$ is in the Louadrant

Being फण, subtract this from the original Nirayana longitude of the ascendant and also 3 signs always, when we get the Nirayana longitude of the Mid-heaven or the tenth house

9°-4'-10"	ऋणं
0"—19°—13′—-8″ 3"—0"—-0′—-0″	
9°-19°-13′8″	
	9°—4′—10″ 0°—19°—13′—8″ 3°—0°—0′—0″

This almost works up to the result arrived at by the trigonometrical method. It would have been still nearer had the चासले for Mangalore calculated for that place been used mistead of the multiplier ratio. But I have already stated that this is only an example giving out the method employed but for followers a method to calculate and have a ready-made table for चासले for any desired latitude is given in the appendix.

CALCULATION OF OTHER HOUSES BY HINDU METHOD.

Write out all the twelve houses adding one sign successively to the Nirayana longitude of the ascendant

	I	II	ш	IV	٧	VI	VII	ViII	ΙΧ	x	ХI	хи
50	0 28 17 18	1 28 17 18	28 17 18	28 17	28 17 18	17	6 28 17 18	28 17	17	17	17	11 28 17 28

Take the net result worked out in the determination of the tenth house, viz 9 -4'-10 ऋषे Find one-third viz $3^\circ-1-23$ (ऋष) and two-thirds viz $6^\circ-2'-47'$ (ऋष) of the same

The net result as also its \(^1\) and \(^2\) being \(^3\) will (negative), subtract net result from the IV and X houses. \(^3\) from the II VI VIII and XII houses, and lastly \(^1\) from the III V, IX and XI houses. The figure for the VII house is obtained by adding \(^6\) signs to the ascendant. We get them as follows and these are called the longitudes of the houses (\(^{127271}\))?

	τ	II	m	ΙV	v	VΙ	VII	VIII	īχ	x	ΧI	XII
S .	0 28	1 25	22 22	3 19				7 25		9 ¹	10 22	11 25
*	17 18	15 55	14 31	13 8		15 55		15 55		. 13 . 8	14 31	15 55

The Hindus consider that these. House longitudes are, the middle of the houses and not the cusps as the moderners do. For, the tenth house has been defined as the midheaven and hence symmetrically situated about the meridian. In other words the culminating point is only the middle of the tenth house. In keeping with this other house longitudes arranged above are only their midpoints and not the cusps.

Then to find the point where a particular house begins and where it ends, they add the longitude of the house with that of the preceeding house and the succeeding house separately and the mean of the two sums will give respectively the beginning and ending of the house taken

(भावसंध्यः) ENDING POINTS OF EACH HOUSE.

	1	II	111	iV	v	γí	vα	VIII	ΙX	х	ΧI	ХU
B .	1 11 46 37	2 8 45 13	3 5 43 50	43		11 40	46	45	43		11 8 45 13	0 11 46 37

As the ending points are given the beginning of each house will be the ending of the previous house

TRIGONOMETRICAL METHOD OF FINDING OUT THE LONGITUDES OF THE HOUSES.

The principle contained in the Hindu method of finding out the longitudes of the houses is the trisection of the semi-arc diurnal and nocturnal while that in the modern use and of common acceptance is the trisection of semi-arc of each degree of ecliptic 3, 1 and whole of the semi-arc (diurnal) of any degree is successively added to the sidereal time of its ascension and

Oblique ascension of 11th house .. R. A of 11th house is

(It is usual to say that the oblique ascension of any house is 90° plus the Right ascension)

... cot (Longitude of 11th house cusp)
$$= \frac{\tan 4^{\circ} - 19' - 10^{\circ} \sin 28^{\circ} - 27' - 5''}{\cos^{2} 2^{\circ} 4^{\circ} - 41' - 10} + \tan 254^{\circ} - 41 - 10 \times \cos^{2} 2^{\circ} - 27^{\circ} + \tan 254^{\circ} - 41 - 10 \times \cos^{2} 2^{\circ} - 27^{\circ} + \tan 254^{\circ} - 41' - 10 \times \cos^{2} 2^{\circ} - 27^{\circ} + \tan 254^{\circ} - 41' - 10 \times \cos^{2} 2^{\circ} - 27^{\circ} + \tan 254^{\circ} - 41' - 10'' = \cos^{2} 2^{\circ} - 27^{\circ} + \tan 254^{\circ} - 41' - 10'' = \cos^{2} 2^{\circ} - 27^{\circ} -$$

'tan (90°+Longitude of 11th house cusp) =8 2362320 = 1an 73°-49'-44"

LONGITUDE OF CUSP OF 12TH HOUSE.

The oblique ascension of the 12th house cusp is 60° plus the-R A of the 10th house,

house, RAMC
$$\begin{array}{c} \text{house,} \\ \text{RAMC} \\ \text{plus} \\ \end{array} \begin{array}{c} 314^{9}-41' \quad 10' \\ 60^{9}-0'-0'' \\ \end{array}$$

$$\therefore \text{Oblique ascension of 12th house is} \\ \therefore \text{RA of the 12th house} \\ \text{and polar elevation is} \\ \text{--cot (Longitude of 12th house)} \\ \text{--\frac{tan 6^{9}-35'-9^{9} \sin 23^{9}-271'}{\cos 284^{9}-41'-10'} + \tan 284^{9} - 41'-10'} \\ \text{--\cos (284^{9}-41'-10' = \cos (360^{9}-75^{9}-18'-50'')} \\ \text{--\cos (70^{9}-18'-50'')} \\ \text{---\cos (70^{9}-18'-50'')} \end{array}$$

=
$$2535235$$

tan $284^{\circ}-41'-10''$ = tan $(360^{\circ}-75^{\circ}-16'-50'')$
= -3.8155086

:- Cot (Longitude of 12th house)

$$=\frac{1509830 \times 3980821}{2535235} + 9173498 \times -3.8155086$$

= 2370723-8 5001552=-3 2630829

: cot (longitude of 12th house) = 3 2630829

$$\tan (90)$$
-longitude of 12th house = $\tan 72^{\circ}$ - 57 - 42°

. longitude of 12th house

$$=90^{\circ} - \overline{72^{\circ} - 57' - 42''}$$

= 17°-2 - '8"

LONGITUDE OF CUSP OF 3RD HOUSE.

As before the oblique ascention of the 3rd house will be 150 plus the R A of 10th house and therefore the R A of the 3rd house will be 90° less than its oblique ascension

. R A of the third house=
$$(314^{\circ}-41-10^{\circ})+150=90^{\circ}$$

= $14^{\circ}-41'-10^{\circ}$

The polar elevation of the 3rd house is the same as that of the 11th house and hence equal to 4°-10'-10'

LONGITUDE OF 2ND HOUSE.

.. Longitude of 3rd house = 105°-11'-26"

The oblique ascension of this house is 120° more than the R A M.C and hence the R A of this house is only 30° more than the R A M C is et the R A of the 2nd house is 344°-41°-10°

The polar elevation of this house is 8-35'-7' - cot (Londgitude of 2nd house)

$$= \frac{\tan 8^{\circ} - 35' - 7' \sin 23' - 27\frac{1}{1}'}{\cos 341' - 41' - 10'} + \tan \frac{9}{4}1' - 41' - 10' \times \cos 23' - 27\frac{1}{2}'$$

$$\cos 314' - 41' - 10'' = \cos (360^{\circ} - \overline{15} - \overline{15}' - 50')$$

$$= \cos 15' - 18' - 50'$$

$$= 9644934$$

$$\tan 341' - 41' - 10' = \tan (360'' - \overline{15}' - 15' - 50')$$

$$= -\tan 15'' - 18' - 50''$$

$$= -2738296$$

$$- \cot (Longitude of 2nd house)$$

$$= \frac{1509830 \times 3980521}{9614934} + .9173498 \times -2738296$$

$$= 062 \cdot 1022 - 25119752 = .18888190$$

$$(1 e) \tan 190'' - longitude of 2nd house = 1888180$$

$$(1 e) \tan 190'' - longitude of 2nd house = 13888180$$

$$(1 e) \tan 190'' - longitude of 2nd house = 13888180$$

$$(1 e) \tan 190'' - longitude of 2nd house = 13888180$$

$$(1 e) \tan 190'' - longitude of 2nd house = 13888180$$

$$(1 e) \tan 190'' - longitude of 2nd house = 13888180$$

$$(1 e) \tan 190'' - longitude of 2nd house = 13888180$$

$$(1 e) \tan 190'' - longitude of 2nd house = 13888180$$

$$(1 e) \tan 190'' - longitude of 2nd house = 13888180$$

$$(1 e) \tan 190'' - longitude of 2nd house = 13888180$$

$$(1 e) \tan 190'' - longitude of 2nd house = 13888180$$

$$(1 e) \tan 190'' - longitude of 2nd house = 13888180$$

$$(1 e) \tan 190'' - longitude of 2nd house = 13888180$$

$$(1 e) \tan 190'' - longitude of 2nd house = 13888180$$

$$(1 e) \tan 190'' - longitude of 2nd house = 13888180$$

$$(1 e) \tan 190'' - longitude of 2nd house = 13888180$$

It should be noted that in finding out the angle whose tangent or cotangent is the simplified result of the R. H. S. of the equation for finding out the longitude of the houses the respective quadrant will have to be decided with reference to the oblique ascension of the particular house so that the oblique ascension and the longitude arrived at are not very widely apart.

Summing up the various results we have the cusps of the houses as follows —

	10th house	11th house	12th house	Asedt	2nd house	3rd house
deg	312	342	17	51	79	105
mts	13	49	2	21	18	11
secq	• 9	44	18	44	14	26

	4th house	5th h ouse	6th house	Descdt	8th house	9th house
deg mts	132 ₁ =	162 - 49 - 44	197 2 18	231 21 44	259 18 14	285 11 26

The cusps of the 10th to 3rd houses being known the cusps of 4th to 9th houses are got by adding 6 signs to the corresponding ones of the former These 1 are tropical longitudes and hence the amount of precession has to be subtracted to make them Nirayana and to compare with the longitudes obtaint of by the Hindu method

NIRAYANA LONGITUDES AS GOT BY TRIGONOMETRICAL METHOD.

	I	11	III	IV	Ŋ.	VΙ	AII	ViII	IX	х	ХI	XII
d mts secs	0 28 44 56	1 26 41 26	34		20 12	25	28 44	26 41	8. 22 34 38	9 19 36 21	10 20 12 56	24 -25

From a comparison of the two results there may be found a difference which is due to a difference in the primary conception of a house. Even among the European astronomers there is a diversity of opinion whether to take an house based on the trisection of primevertical or of equator or of each degree of ecliptic and so on. As such nobody is competent authority to criticise the other and the best will be to cling to that which gives proper results in the experiences of each individual as the effects of houses fall really under the regions of Astrology.

The method given here is only the method in common general use and known as Semi-arc" method. The poles of the houses are calculated for $\frac{1}{7}$, $\frac{2}{7}$ and full of the Ascensional Difference (चरफल). But it appears and appeals to the author that better results will be arrived it if instead of $\frac{1}{7}$, $\frac{1}{7}$ and full of the Ascensional difference, the प्रमाचरलंद, दिसीयचरलंद including

The first and the full of the three charakandas a polar elevations of the houses

These have been explained at length $\sin 944^\circ - 41 - 10^\circ \times$ I hope that the comparative methods of the Hindu and
have been made clear and capable of being followed
patient readers

Chapter XI

MOON.

Periodic time of Moon or time of one sidereal 27 32166 days revolution of Moon about the earth is

No of days since epoch ≈41101 82153

To find out the number of revolutions and the fraction of the revolution left over we have to divide the latter—the number of days from epoch—by the periodic time. The number of revolutions may be left off and the fraction of the revolution is converted to signs degrees etc.

In the present case number of revolutions

 $=\frac{4110182153}{9782150}=1504367653$

The fractional portion 367653 when converted to signs etc. gives $4^{9}-12^{9}-21-18$ adding to this the epoch position viz $10-21^{9}-40-36^{6}$ we get $3^{6}-4^{9}-1-54$

A table of mean motion of moon is herewith appended and it can be used and the long division avoided

			s dgs mts secs
Motion in 4000	0 days		0-14-21-35
do 100	0 days		7-6-21-32
do 10	0 days		7-27-38-9
do	I day		0-13-10-35
do 821	3 of a day		0-10-49-29
Motion in 41	101 82153 days is		4-12-21-20
Position at ep	ooch		10-21-40-36
Mean longitu	ide at Birth time	•	31156

	4th house 5tl	HEAN MOTION OF MOON.						
	. _	dic time = 27 32166 days						
		,-						
deg	132	2 2 2 2						
nits secs	Degi L	Days s plant Deba 4 Peges 1 Peges 1 Peges 2 Pe						
0003	Minu Secor							
	0 13 10 35	306 11 22 54 28 50000 0 17 56 5						
TF.	0 26 21 10	400 7 20 32 37 60000 0 21 32 2						
9th hours!	1 9 31 45	500 3 18 10 46 70000 0 25 7 4						
These . 4	1 22 42 20	600 11 15 48 55 80000 0 28 48 10						
subtrac 5	2 5 52 54	700 7 13 27 4 90000 1 2 18 3						
obtaine 6	2 19 3 29 3 2 14 4	800 8 11 5 14 100000 1 5 53 5						
	3 2 14 4	900 11 8 48 28 200000 2 11 47 5						
8	3 15 24 39	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
10	3 28 35 14	2000 2 12 43 5 400000 4 23 35 5 3000 9 19 4 37 500000 5 29 29 4						
20	4 11 45 49 8 28 81 88	4000 4 25 26 9 600000 7 5 28 40						
30	1 5 17 27	5000 0 14742 700000 8,11174						
40	5 17 3 16	6000 7 8 914 800000 9 17 11 40						
50	9 28 49 5	7000 2 14 30 47 900000 10 23 5 30						
60	2 10 84 54	9000 9'20 52 19 1000000 11 28'59 8						
70	6 22 20 42	9000 4 27 18 51						
80		10000 0 3 35 24						
90	3 15 59 90 F	20000 0 7 10 47						
100	7 27 38 9	30000 0 10 46 11						
200	8 25 16 18	40000 0 14 21 35						

HINDU METHOD TO FIND OUT MEAN MOON.

Multiply the number of days from epoch by 3 and divide by 82. The quotient will be the number of revolutions. With the remainder get signs, degrees minutes and seconds.

Again divide the number of days by 3 The quotient will be minutes and the balance is reduced to seconds. Once again divide the number of days by 260 and get minutes and seconds. The sum of all the three results will be the mean Moon. The empirical correction will be 457—36 for every 1,000 000 days additive.

EXAMPLE.

$$\frac{41101 \times 3}{82} = 1503 \frac{57}{82} \text{ revolutions}$$

| Reducing
$$\frac{57}{82}$$
 of a revolution | 8-10-14-38 | 1 $\frac{41101}{3}$ = 19700'-90 | = 7-18 20-20 | 1 $\frac{41101}{200}$ = 158-5 | = 0-2-38-5 | Motion in \$2153 of a day | = 0-10-49-29 | $\frac{Adding up}{1000000}$ | Empirical correction = $\frac{457}{1000000}$ | $\frac{4-12-2-32}{1000000}$ | $\frac{4-12-21}{1000000}$ | $\frac{4-12-21}{1000000}$

It would be found that there is very finite difference between the results arrived at previously

Mean longitude of Moon at the instant of birth is

The next step is to find out the position of Moon's apse by all the methods

APSES POSITION

 Periodic time of apse
 =
 3232 54051
 days

 Number of days from epoch
 =
 41101 82153

 Number of revolutions =
 41101 82153
 =
 12 715021

Reducing the decimal to signs etc. we have $8^{\circ}-17^{\circ}-24-27''$ to which if the epoch position of moon s apse $0^{\circ}-24^{\circ}-25-15''$ be added we get $9^{\circ}-11^{\circ}-49-49'$ as the position of apse at birth

FROM TABLES

Motion	in 40000 days	4"-14"-422"
do	1000 days	3-21-22-3
do	100 days	0-11-8-12
do	l day	00-6-41
do	82153 day	00-5-29
Adding	motion in 41101 82153 days	8-17-24-27

TABLE OF MOTION OF MOON'S APSE LINE (चंड्रोमं).

Periodic time 3232 54051 days

Dozes A Vinutes Virinites	Dregge Minutes	Degree Degree
1 0 0 6 111 2 0 0 013 128 3 0 0 020 3 4 0 0 026 14 5 0 0 030 25 6 0 0 40 16 7 0 0 040 16 8 0 0 053 27 9 0 1 0 5 10 0 1 640 20 0 2 13 35 80 0 3 20 25 40 0 4 27 17 5 0 0 53 4 6	200 0 22 16 25 300 1 3 24 37 400 1 11 32 49 500 1 25 41 11 32 49 500 12 649 14 700 2 17 75 26 500 2 29 5 36 900 3 10 13 51 1000 3 21 22 3 2000 7 12 44 6 3000 11 4 6 9 4000 2 25 25 12 5000 6 16 50 15 6000 10 5 12 15 7000 1 29 34 21 29 20 20 20 20 20 20 20	30000 3 11 3 1 3 1 10000 4 14 42 2 50000 5 18 22 32 60000 0 (2 2 3 2 3 3 0000 0 (3 22 3 3 3 0000 0 (3 3 4 3 4 0000 0 (3 3 4 3 4 0000 0 (3 3 4 5 2 6 0000 0 (7 10 3 2 6 70000 6 17 15 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5000 5 20 56 24 9000 912 15 27 10000 1 3 40 30 20000 2 7 21 1	900000 5 0 45 39 1000000 1 7 30 43

HINDU METHOD.

Divide the number of days from epoch by 9 The quotient gives degrees and the balance if any, is converted to minutes and seconds. Again divide the number of days by 66 and get minutes etc. Once again divide the number of days by 360 when the quotient will be seconds. The sum of the three will be the mean motion of Apse of Moon.

Empirical correction is additive at 186-15 for every 1 000 000 days

$$\frac{41101}{9} = 4506\%, \text{ degrees} = 4566^\circ - 46 - 40^\circ$$

$$\frac{41101}{100} = 622^{+2} \text{ minutes} = 10^\circ - 22 - 45^\circ$$

$$\frac{11101}{300} - 1146\%, \text{ sec} = 0^\circ - 1 - 54$$

$$\text{Motion in 82153 of a day} = 0^\circ - 5 - 29$$

$$\text{Motion in 41101 82153 days} = 8^\circ - 17^\circ - 16 - 48$$

$$\text{Empirical correction} = \frac{41101 \times 186 - 5^\circ}{10000000} = 0^\circ - 0^\circ - 7 - 39$$

$$\text{Position at Epoch}$$

$$\text{Longitude of Apse of Moon at the}$$

$$= 9^\circ - 11^\circ - 49 - 44$$

All the three methods are found to give the same mean longitude of the Apse and arty method can be employed

Having thus arrived at the mean positions of the Moon and her Apse we can derive the true position of hers in her own orbit

The motion of the Moon is very complicate. For she has a motion of her own about herself secondly about the earth in about 271 days and thirdly about the sun in the annual elliptic motion of the earth about whom she has her orbit.

The earth's motion in the elliptical orbit about the sun is slowly progressing and the Moon also will have to accompany the earth about which she moves in a similar though smaller elliptical orbit

In her own orbit even the Moon's motion is not uniform as the shape and direction of the elliptical orbit in changing every moment due to the processive motion of the Moon's abec line.

All these tend to deflect or accelerate or retard the moon's motion in her own orbit and corrections due to these influences are quite necessary in finding out the correct mean position from which only the true position can be computed by the laws of elliptic orbits.

The corrections are —(1) Annual variation (2) Evection (3) Variation (4) Equation of centre and lastly (5) Reduction These are explained as follows:

EXAMPLE.

$$\frac{41101}{9} = 1366\% \text{ degrees} = 1566\% - 16' - 10'$$

$$\frac{41101}{4100} \text{ doing it will 3 the main when } = 10^\circ - 22 - 15'$$
corrections will give Moon's true p
necessary to refer her position to the ect
the plane of the ecliptic at an angle of $5^\circ - 5^\circ - 20'$
sed hereby will be on the same lines as that or $1577^\circ - 16' - 18'$
of cliptic is to the equator. The formula for the $27^\circ - 16' - 48'$
may be used with the necessary changes. With such $-7' - 39'$
minary examination we have to proceed with the meti.
$$16'$$
apply it in the present example.

Mean Moon a	instant of birth	3"1"1
Mean Apse	do	9-11-19-4-
Mean Sun	do	2-29-42(-40

Now take the net result of the various corrections due to the position of the observer, (बरझाणकर्यांतर रेदांत्तरबांडुक्टरें) on page 72 and multiply it by the daily velocity of Moon Apse and Sun separately, divide the product by 21600 and the respective results applied to them will give the mean longitudes corrected to the place of birth. The net result is 28'-7 क्रं(+)

Applying these to the respective mean longitudes we get their rectified values

With these corrected ones only we have to find out Annual variation, Evection Variation and Equation of centre of the Moon

EXAMPLE.

$$\frac{41101}{9} = 4.066^{7} \text{ degrees} = 4566^{8} - 46 - 40$$

$$\frac{21101}{9} = 4224^{6} \text{ minimizes} = 10^{8} - 22 - 45^{8}$$
This is 8580° sin \$\phi\$ sin \$\phi\$ = 0° - 1 - 54
where \$\phi\$ = Mean Moon-Mean sun ln the present case Moon is $\frac{2^{8} - 20}{577^{8} - 16 - 48}$

$$\frac{2^{8} - 20}{577^{8} - 16 - 48}$$

$$\frac{2^{8} - 20}{577^{8} - 16 - 48}$$

$$\frac{2^{8} - 20}{577^{8} - 16 - 48}$$

$$\frac{4^{8} - 20 - 14}{577^{8} - 16 - 48}$$
Variation = -8560° sin (4*-20 - 14) × 16
$$\frac{4^{8} - 20 - 14 + 88^{8} - 22 - 31}{577^{8} - 16 - 48}$$
sin $\frac{4^{8} - 20 - 14 + 88^{8} - 22 - 31}{577^{8} - 16 - 48}$

= $-8580^{\circ} \sin(4^{\circ}-20-14) \times \sin(46^{\circ}-21-28^{\circ}) \times \sin(-42-1-8^{\circ})$ = $8580^{\circ} \sin(4^{\circ}-20-14^{\circ}) \sin(46^{\circ}-21-23^{\circ}) \sin(42^{\circ}-1-8^{\circ})$ = $8580^{\circ} \times 075640 \times 723051 \times 00937 = 914^{\circ} = 5-14$

 $(\sin -42-1-8)$ is $-\sin 42-1-8$ which minus sign renders the minus sign before 8580 plus?

TABLE OF VARIATION

Argument -(Moon - Sun) If more than 180 its defect from 360 will be the argument but the sign of variation correction will be the opposite of that given in the table

Deg	Var at	on #	Effect Veloc	Deg	Var at	ota	I'ffeet		Deg	\ar t	on	Fflect o	
0 1 2 3 4 5	1 2 3 4	0 12 24 36 47	14 13 13 13	9 10	9 10 11	20 31 42 52	12 12	9 56 44 31 19 6	12 13 14 45 16 17	16 17 18	9 15 20 24 26 26	11 11 10 10	16

Note —The effect on velocity due to this correction retains the her given here and does not depend for its sign on the argument when within 180 or more than 180

In the example taken variation function is 4 20-14. This is will in 180 and as such this iself will be the argument to enter the table.

Variation for 4° of argument is $+4'-47^\circ$ effect on vel +13-94' do for 5° of argument is +3'-58'', do +13-21'' Variation for $4^\circ-26-14''$ is +4-47'' plus 0-24'' or +5-11'' So also effect on velocity is +13-30''

Having thus got the annual variation variation and evection we have to apply their net result to the mean Moon before finding out the equation of centre correction for Moon

Annual variation =
$$1-20^{\circ}+$$
Evection = $5-14^{\circ}+$

Total = $27-23$ ±

Mean moon at birth rectified is $3^{\circ}-4^{\circ}-9-55$ applying to the total 27-23 to this we get $3_{\circ}-4^{\circ}-90-21^{\circ}$. This is the moon which has to be used for finding out the equation of centre.

Position of Moon = $3^4-4^5-30-21$ Position of Apse = $9^5-11^5-49-41^5$ Mean anomaly or (or Apse-Moon) = $6^5-7^5-19-23$ Equation of centre =5562 sin $nt [4-2745 \cos nt] + 37 \sin 8nt$ here $nt = 187^{\circ} - 19^{\circ} - 23^{\circ}$

$$\therefore \sin nt = \sin 187^{\circ} - 19' - 23' = \sin (180^{\circ} + 7^{\circ} - 19' - 23')$$

$$= -\sin 7^{\circ} - 19' - 23' = -1974781$$

$$= -\sin t - 19 - 23 = -12/4781$$

$$\cos nt = \cos 187^{\circ} - 19' - 23' = \cos (180^{\circ} + 7^{\circ} - 19' - 23')$$

 \therefore Eqn of centre in seconds of asc = $5582 \times -1274781 \times$

==
$$-8098 + 37 \sin (561^{\circ} - 58' - 9')$$

== $-3098 + 37 \sin (360^{\circ} + 201^{\circ} - 58' - 9')$
== $-3098 + 37 \sin (201^{\circ} - 58' - 9')$

= $-8098-87 \times .351 = -3098-13 = -8111'$ =-(51'-51')

The equation being negative, has to be subtracted from the Moon $3^*-4^*-30'-21'$ when we get her true position in her own orbit. It will be therefore $3^*-4^*-30'-21'$ minus 51'-51' or $3^*-3^*-35'-30'$.

EFFECT ON VELOCITY.

Moon's velocity at the instant, is

$$= n \left\{ 1 - 2e \cos nt + 5e^2 \cos^2 nt - \frac{5e^2}{2} \right\}$$

where n=790'-6 and c=-0549

It reduces to

784.63 - cos nt (86 8-11.914 cos nt)

"In the present example, cos nt = - 9918414

... Velocity in mts of arc =784.68+.9918 (86.8+11.914×.9918)

Effect of Evection and Variation on Velocity = +15 867 +13:5

.. Moon's Velocity in orbit = 911'-48"

TABLE OF EQUATION OF CENTRE OF MOON.

Argument – (Apse-Rectified Moon) If argument is within 180°, refer table directly. If more than 180° the same subtracted from 360° will be the argument but the equation of centre will be negative then

Deg	E of	lua Ce	tion ntie	Eqn Veloc	of ity	Deg	E of	Quati Cen	tre	Eqn Veloci	of ty	Deg	e of C	Centre		n of locity	*
0 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1	12 18 2 3 4 4 5 1 1 1 1 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 10 2 19 3 28 4 37 4 6 3 5 4 8 2	80 80 80 80 80 80 80 80 80 80 80 80 80 8	112 115 115 120 120 120 120 120 120 120 120 120 120	34 35 36 37 38 39 40 41 42 43 44 45 46 47 18	3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	19 24 30 35 40 45 50 55 0 4 14 23 27 82 36 10 45 55 10 45 55 10 45 55 10 45 10 10 10 10 10 10 10 10 10 10 10 10 10	39 55 6 15 21 23 27 42 21 57 42 21 58 21 57 21 21 21 21 21 21 21 21 21 21 21 21 21	72 72 71 71 70 69 68 67 67 66 64 64 63 62 61 63 65 64	50 22 54 12 30 48 6 24 42 0 18 86 51 12 30 46 51 12 30 35 41	68 69 70 71 72 73 74 75 76 77 78 90 81 82 83 85 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86	5 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 1 6 1 6 1 6	0 4(4) 3 2 3 6 3 3 5 7 3 8 6 8 3 7 3 8 6 8 3 7 3 8 8 9 3 8 9 3	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	43 42 41 40 39 39 35 1 26 1 27 26 1 27 20 1 1 20 1 21 1 21 1 21 21 21 21 21 21 21 21 21	40 33 26 12 15 15 15 15 15 15 15 15 15 15 15 15 15
21 22 23 24 24 26 27 27 27 28 33	1 2 3 3 4 5 6 7	2 2 2 2 2 2 2 2 2 2 2	6 1 2 3 18 1 24 29 4 35 2 11 1 46 5 52 5 9	5 77 1 76 0 74 13 10 52 33 4 84 0	76 3 76 3 75 3 75 1 74 4 71 1	56 57 58 58 59 66 67 68 68 68 68 68 68 68 68 68 68 68 68 68	3000 1 2 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 15 5 15 5 15 5 15 5 2 5 5 2 5 5 3 5 5 3	5 41 2 10 5 31 8 55 2 10 5 2;	55 55 55 55 56 47 48 61 48 61 48 61 61 61 61 61 61 61 61 61 61 61 61 61	6 1 5 19 1 2 3 3 2 3 1 2 0 2 9 1 8	1 90 9 9 9 5 9 9 6 9 9 2 9 5 9 5 9 5 9	0 6 1 2 6 3 6 4 6 5 6 6 6	16 5 17 1 17 2 17 3 17 4 17 2 17 2 17 2 16 4 16 1	2 0 5 7 0 17 25 8	15 13 12 10 9 8 5 3 2	4: 1: 5: 2: 3

					_		_					_		_
	1 1	1	1	fi	1	ΙÌ	ı	1	_	B	f 1	E	1	
102	6 1					6	17	+48	11	156	244		3 + 7	6 48
103			3 54	130			11	44	39	157	2'80	3 4		7 94
104	6 1	1 48	8 5 4 5 2 4	131	4	57	57	46	8					3 20
105	6 10	134	G 54	132	4	58	43	47						0 6
106	6	12	8 24			49			56					52
107	6	1 15		194		44								38
108	6 (3 9	11 24	135	4	40	18	51		162	2 4			24
109	6 4		12 57	136		35		52		163			82	10
110	6 2	2 30		197	4	30	45	54						56
111	6 (42	16 2	138	4	25	53	55 8						42
112	5 58	38		139	4	20	59	56 5						28
113	5 50	; 28			4	15	52	58	12	167	1 90	50	85	14
114 115 116 117	5 54	12	20 39		4	10 4	42	59,8	32	168	1 24	1		
115	5/57	5.1	22 12	142	4		27	60/5	51	169	1 17	10	80	29
110	6 49	7~ 4	20,23	143	4	0	7		ارزا	170	1 10	17	86	57
331	5/46	ins	25 17	144	3	54 4	12	68 8	30[171		10		26
9.		CCI		145		49 1		64 3	37	172				54
100	5 4	4	28 22	146		48		65 4	8	178	49	19	88	29
120	5 38	G	29 54	117	8	37 8	57	6615		174	42	19	88	51
121	5 38		31 23	148	3	92,1	14	67 5	6	175	35	17	80	20
122	5 31	51	32.51	149	- 31	26.5	24	69	9	176	28			48
122		33	94,20	150	8	20 9 14 4	34		9	177	21	12	00	17
124	5 25				3	144	13	71 1		178 (14	9	90	45
125		36	37 17		- 21	- 9.4	71	72'2		179 (5	91	
126		54	98 45		3	2 1 56 8	15	782	9	180 (0	0	+91	42
127	5 14		40 14		2	56 9	38	74 9	5	- 1			•	
128	5 10	18	+41 42	155	2	50'2	1	+75 4	27	1		ĺ		

Let us now obtain the equation of centre and equation of velocity from the tables, in the present instance

As this is more than 6 signs on 187°, subtracting this from 360°, we get 172°—40′—37° as the argument for referring to the tables.

...For 172° \pm 40′ \pm 37′ it is 5.4 \pm 35′, this is negative as the mean anomaly is greater than 180°

. Equation of centre is (-)5i'-35', correction as per next table with the mean anomaly is $(-)14^{\circ}$. Corrected equation of centre is (-)51'-49'. Equation of velocity read from the tables is 88'-14'(+)

As the equation of centre is negative, subtracting it from the mean moon rectified with Evection Variation and annual variation, we get the $5^{\circ}-4^{\circ}-80^{\circ}-21^{\circ}$

longitude of the Moon as

CORRECTIONS TO EQUATION OF CENTRE OF MOON.

FOSTI IV F						7	NFGAIN E						
	1	1	1			1	0		ì	1	1		
	60				300		60						
	59	121	179	241	299		61	119					
	58	122	178	242			62	118					
9	57	123	177	243	297	6	68	117					
4	56	124	176	244			64	116		8230			
	55		175		295		65	115					
	54	126	174				66	114		284	306	' पेशे4	
	53	127	178	247	293	13	67	113			807	859	
	52	123	172	248	292	15	lgs'	112		232	308	852	
	51	129	171	249	291		69	111		281	309	351	
10		130	170)	250	290	19	70	110	190	280	310	850	
		131	169	251	259		71	109		229	311	849	
		132	168	252	258	22	72	108	192	228	812	845	
	47	133	167	253	257	28	73	107	193	227	318	847	
		134	166	251	286 285	24 26		106	191	220	314	846	
15		185	165	255 256	254	27	75	105	195	225	815	845	
16		186	164	257	254	29		101	196	224	316	344	
17		187	162	258	252	30	78	103	197	223	317	343	
19		138	162	259	281	31	158	102	198	222	315	342	
20		140	160	260	250	32	100	100	200	221	319	311	
	39	141	159	261	2791	34	SI	99	201	220	320	340	
22		142	158	262	278	34	52	98	201	218		339	
23		143	157	263	277	85	83	97	203	217	322	99S 997	
24		141	15G	294	276	85	54	96	204	216	323	336	
25		145	153	265	275	35	35.	93	205	215	325	335	
26		146	154	266	274	36	56	94	206	214	826	834	
27		147	153	267	273	36	87	93	207	213	327	833	
28		145	152	268	272	37	88	92	208	212	325	332	
29		149	151	269	271	37	58	91	209	211	329	381	
80		150	150	270	270	37	90	90	210	210	330	380	

As for the equation of velocity the following table should be used when the argument is more than 180

MOON'S EQUATION OF VELOCITY FROM 180° TO 360° OF MEAN ANOMALY.

						J	_		_		
180	. 01 49	217	+ 76 55	0"4	ا . ا		291	26		000	0.5
131	$+9142 \\ 9148$	218	+76 55 75 50	255	+ 28	55	292			32S 329	65 48 66 30
182	91,44	219	74 45	256		24		90	45	330	67 12
183	91 45		73 40	257		52			20	331	
184	91 46		72 35	258			295			332	
185			71 30	259			296			333	
186	91 48		70 25	260			297			834	
187			69 20	261			298			335	
188			68 15	262			299			836	
189			67 10	263			300			337	
190		227	66 5	264	18	12	301	39		338	72 24
191				265			802	40	ç	339	
192			63.40				303	41	17	840	73'24
193			62 21	267	8	39	804	42		341	
194			60 1			8	305	43		812	74 24
195			59 42		5	37	306		39	343	
196			58 22	270	4				47	844	75 24
197	89 51		57 8	271	2	35	308	46	54	845	
198	89.27	235	55 43	272	+ 1	4	309	48	2	346	76 24
199	89 2	236	54 24	273	0	27	310	49	9	347	76 54
200	88 39	237	58 4	274	1.	58	311	50	17	848	77 24
201	88 19	238	51 45	275	3	29	312	51	24	349	77 88
202	87 49	239		276		Q	313	52	22	350	
209		240	49 6	277	1 6	20	314	53		351	78 6
204				278		52				352	78 20
201				279		18				353	78,34
200				280		44	317	56	14	354	78 48
207				281		10	318			355	7S 2
205			41 46	282		36	319			356	79 16
209		246		283		2				357	79 30
210			38 50			28	321	60	6	358	79 44
211						54		61	4	359	79 58
212				286	19	40	323	62 63		360	80 12
218					20	46	324 325	68	49		1
211			32 58	288			326	64			1
215			31 30	289 290			327	65			
211	3 +78 0	1 253	129,58	290	24	20	1021		. 0		

in the present instance the mean anomaly is $187^2-19^2-23^2$. The equation of velocity is found from the table table as 91-49+. The velocity found out at end of page 104 will apply had the mean anomaly been $172^2-40^2-37^2$.

Having got the true position of the Moon in her orbit we have to find her longitude on the ecliptic as the longitudes are distances measured along the ecliptic. The process resembles that in finding out the R. A from a given longitude. The planes of transformation therein are those of the ecliptic and the equator the angle between them having a mean value of 23°-27½. While in the case of the moon her orbit is inclined to the ecliptic at an angle of about 5°-9 or more nearly 5°-8 8 and as such the relation between the distances of the moon from a point common to the ecliptic and her orbit measured respectively along the ecliptic and her orbit, and the inclination of the Moon sorbit to the ecliptic has to be established

Suppose M be the position of the Moon in her own orbit at a particular instant P the foot of the vertical through M and N the common point on the orbit and the ecliptic

The common point is called a Node and there are in general two nodes for each orbit by virtue of its intersecting the ecliptic while projected on the celestial sohere. These Nodes apply for all planetary orbits and they are different for different orbits. That Node through which the planet traverses from the south to the north is called the Ascending Node and its opposite point will be the Descending Node.

As a rule these Nodes always recede Nodes are known in Hindu Astronomy as "(पातानि)" and the Moon's nodes are called Rahu (सङ्) and hetu (नेत्र)

TABLE OF MOTION OF NODES OF MOON.

Periodic time=6793 39477 days

HINDU METHOD.

Divide the number of days past from epoch by 566. The quotient will be signs. Reduce the balance to degrees etc. Again divide the number of days by 3281. The quotient will be minutes and the balance is reduced to seconds. The difference between the two will be the motions of Rahu. The empirical cor-rection is 348—10 for every 1000000 days to the subtracted from the Hindu positions to get its modern value.

ACCORDING TO HINDU METHOD

$$\frac{41101}{560} \approx 72^{6} \frac{349}{500} \approx 0^{5} - 18^{6} - 29 - 54^{6}$$

$$\frac{41101}{5281} \approx 12^{7} \frac{1729}{3281} = 0^{9} - 0^{6} - 12^{7} - 32^{8}$$

Difference = 0°-18°-17'-22"

Empirical correction (negative)

$$=\frac{348'-10''\times41101}{10000000}=0s-6^{\circ}-14'-19$$

Net

Motion in 82153 of a day =0-0-2-37

racting this as before from epoch we get

0s-12°-12'-33" minus

n Rahu

RANSFERENCE OF MOON'S LONGITUDE ALONG THE ORBIT TO THE ECLIPTIC. (REDUCTION)

Let M be the position of (say) in along her own orbit and let P the espoding foot of the vertical through M the pole of the ecliptic If s be the e of inclination of the plane of the lunar t to the ecliptic we can at once find a relation between NP NM and a

For, since MP is a vertical through the pole of the ecliptic AMNP tt Zd spherical one and as such Napier's parts could be applied

Sine of middle part=product of tangents of adjacents If \$ 15 the dle part NM and NP are the adjacents and their Napier's parts are -1), (90°-NM) and NP

Further as M P is the height above the ecliptic measured along the ical through M and the pole of the ecliptic MP is the latitude

If MP is treated as the middle part NM and a are its opposites and r Napier's part are MP. 1907-NMI and 1907-1

: sine of middle part = product of cosines of opposites (ie) sin MP=cos (90 -NM) cos (90 -1 (ie) sin M P=sin NM sin :

This gives the latitude in general but the lunar latitude is subject to perturbations which affect the latitudes to a considerable extent. If correct latitude of the Moon is to be found the following correction in addition to that obtained by the formula's in MP=sin 1 sin NM will have to be made

It is +522 sin (3 M-2 S-N) where M S and N stand respectively for Moon Sun and Rahu

TO FIND REDUCTION IN THE EXAMPLE.

Longitude of Moon as arrived at previously is Distance of node (TE) 3-38-32 11*-24°-6-56* =8*-9°-31-36*

Nodal distance (पातोनचर्कड)

r 99°—31—36

As this is more than 90° it is nearer to the descending Node than the ascending one. The distance to the descending node is 180° minus $90^\circ - 31 - 36$ or $80^\circ - 28 - 24$. Now

tan NP=cos + Xtan NM

 $=\cos 5^{\circ}-8-8^{\circ}\times \tan 80^{\circ}-28-24^{\circ}$ $=9959683\times 59587307$

≈ 9959683 × 5 9687

NP = 80°-26-8"

As N M was originally got by subtracting from 180 the Nodal distance along the orbit the distance from Node to the foot of the vertical through the Moon and the pole the ecliptic is got by subtracting this from 180

N M=180°—30°—25-5=99°—33—52° This is the Nodel distance along the ecliptic to which if longitude of Node is added we get the longitude of the Moon as measured along the ecliptic

As it is thus difficult to find out the distance along the ecliptic the following table may be used with some advantage. The procedure is this Subtract the Longitude of portion of Node from that of Moon, in her own orbit

Empirical correction (negative)
$$= \frac{348' - 10'' \times 41101}{1000000} = 0 = 0 - 14' - 19$$

Motion in 82153 of a day
$$=0-0-2-37$$

Subtracting this as before from epoch we get
$$0^{\circ}-12^{\circ}-12^{\prime}-33^{\circ}$$
 minus $0^{\circ}-18^{\circ}-5^{\prime}-40^{\circ}$

Mean Rahu

TRANSFERENCE OF MOON'S LONGITUDE ALONG THE ORBIT TO THE ECLIPTIC. (REDUCTION)

Let M be the position of (say) Moon along her own orbit and let P the correspoding foot of the vertical through M and the pole of the ecliptic If ; be the angle of inclination of the plane of the lunar orbit to the ecliptic we can at once find out a relation between NP, NM and t

For since MP is a vertical through the pole of the ecliptic AMNP is a rt Zd spherical one and as such Napier's parts could be applied

Sine of middle part = product of tangents of adjacents. If a is the middle part NM and NP are the adjacents and their Napier's parts are (90°-1) (90°-NM) and NP

Further as M P is the height above the ecliptic measured along the vertical through M and the pole of the ecliptic MP is the latitude

If MP is treated as the middle part NM and a are its opposites and their Napier's part are MP. 1903-NM) and 1903-1

: sine of middle part = product of cosines of opposites

(ie) sin MP=cos (90'-NM) cos (90'-1)

(ic) sin M P=sin N M sin i

For 80° we get reduction as 2'-24", for 81° at is 2 -6"

:. For 80°-28'-24" reduction is 2'-17".

The Nodal distance being in the II quadrant, the correction due to this effect is positive

Position of Moon in her own orbit is 35-30-38'-32'.

Reduction correction is plus 2'-17',

: Longitude of Moon referred to ecliptic is 8 -3 -40' - 49".

This is the same as that got by the trigonometrical method. This is called (पात or राहुसंस्कार)

This final answer of the longitude of Moon is quite sufficient but there are some slight optional corrections which may be of some interest for those who would find the time and pleasure to indulge in

The following functions are necessary to find out the correction -

- l) Moon-Sun (अक्रेनचंद्र) (see under variation)
- 2) Sun s mean anomaly as defined by us (रविमंदकेंद्र)
- 3) Moon's mean anomaly (বর্মবুটর)
- 4) Sun-Moon's Apse (इंदुच्चोत्तिकेंद्र) (see under Evection, which function is A+M-2S=(M-S-S-A)

=(अर्कोनचंद्रकेदं--ईद्रुचोनर्विकेदं)

- 5) Nodal distance of Moon (पातीनचंडकेंद्र)
- Nodal distance of Sun (पातोमर्गिकंद्र) (ie) distance of Sun from Moon's Node,

These functions have been all derived incidental to other working except the last one which is not very difficult to find out. Having found items (1) to 60, and assigning them the letters a to f for them, we have the optional corrections as

 $-155 \sin (2a+b)+198 \sin (a+b-d)$

+ 112 sin (b-c)+73 sin (b+c)+85 sin (c+2c)-81 sin 2f,

in seconds of arc

IN THE EXAMPLE TAKEN.

Sun	Мооп	Sun's Apse	Moon's Apse	Node
2	3	2	9	11
29 -	4	18	11	24
42	30	47	49	6
44	21	38	44	56

FROM THESE.

```
a = Moon-Sun
                              4°--20'
                                          2a+b
                                                 =358^{\circ}
b = Sun's Apse-Sun
                            349°---5'
                                          a+b-d=186^{\circ}
                         _
                            187°---19'
c=Moon's Apse-Moon
                                          b-c = 162^{\circ}
                         ==
d=Sun-Moon's Apse
                            167°--53'
                                          b+c =176°
                         =
e=Moon-Node
                            100°---23'
                        =
                                         c + 2s
                                                = 28°
f = Sun-Node
                             95°~36′
                                         2f
                                                 =191°
```

.. Correction in seconds of arc

=545-2079+3461+511+3995+1547= +10059-2079=+70''8=+(1'-20'')

Adding this, since positive, to the true longitude of Moon already found out we get correct longitude of Moon as $3^{9}-3^{9}-40'-48''$ plus 1'-20'' or $3^{9}-3^{9}-12'-8''$

IMPROVED HINDU METHOD OF DETERMINING THE TRUE LONGITUDE OF MOON.

The Moon's mean longitude is $3^{\circ}-4^{\circ}-2'-58'$ and its apse is $9^{\circ}-11^{\circ}-49'-44'$. The mean anomaly is got as usual by subtracting the Moon from the Apse It is $9^{\circ}-11^{\circ}-49'-44'$ mixet: $3^{\circ}-4^{\circ}-2'-58'$ or $6^{\circ}-7'-46'-46'$ Then the Hindu table of equation of centre is entered into The rules for finding out the argument for entering into the tables are the same as those given in the chapter under sun

The mean anomaly in this case is in the III quadrant. Hence the argument is got by subtracting 180° from the mean anomaly. It is 7°-46′-46″.

for 7th item, equation of centre is	36'40"
and equation of velocity is	68'0"
for 8th item equation of centre is	41'52"
and equation of velocity is	67'50"
.: Equation of centre for 7°-46'-46" is	40'43' (-)
and equation of velocity is	67'-52" (+)

HINDU TABLES OF MOON'S EQUATION OF CENTRE.

Deg Fquation of Centre Fqu of Velocity	Deb of Centre Velocity	leg I justion Fon of Centre Velocity
	11	1
0 0 0 68 35	32 159 27,57 51	61 270 38 29 32
1 5 15 68 31	33, 163 58 57 10	65 272 54 28 27
2 10 30 68 32	31 168 15 56 31	66 275 6 27 21
3 15 15 68 28	35 172 36 55 50	67 277 11.26 15
4 20 59 68 23	36 176 52 55 8	68 279 12 25 8
5 26 13 68 16	37 181 6 51 25	69 281 8 24 1
6 31 27,68 9	38 185 16 58 44	70 282 59 22 51
7 36 40 68 0	i 39 189 23 52 86	71 281 45 21 46
8 41 52 67 50	10, 193 27,52 9	72 286 25 20 38
9 17 3,67 39	11 197 27 51 22	78 288 0 19 29
10 52 14 67 25	42, 201,21,50 34	74 289 30 18 20
11 57 25 67 18	13 205 17 19 46	75 290 54 17 10
12 62 33 66 58	11 209 5 18 55	76 292 13 16 1
13 67 40 66 42	15 212 50 48 5	77 293 27 14 51 78 294 86 18 40
14 72 16 66 24	46 216 32 47 20	
15 77 51 66 6 16 82 54 65 46	17 220 9 46 20 18 223 42 45 27	79 295 39 12 30 S0 296 86 11 19
16 82 54 65 46 17 87 57 65 25	19 227 11 14 33	81 297 28 10 8
18 92 57 65 3	50 230 36 43 38	82 298 15 8 57
19 97 57 64 39	51 238 57 12 42	83 299 56 7 46
20 102 54 64 15	52 237 13 41 45	84 299 31 6 34
21 107 49 63 49	53 240 26 40 48	85 300 1 5 23
22 112 43 63 22	51 243 33 39 50	86 300 27 4 11
23 117 34 62 54	55 246 87 38 51	87 300 16 2159
24 122 23 62 29	56 249 36 37 51	88 301 0 1 48
25 127 9 61 58	57 252 30 36 51	89 301 8 0.36
26 131 54 61123	58 255 20 35 50	90 301 11 0 0
27 136 36 60 50	59 258 5 31 19	
28 111 15 60 17	60 260 45 33 47	
29 145 52 59 12	61 263 20 32 44	
30 150 27 59 6	62 265 52 31 50	
31 154 58 58 20	63 268 17 30 36	
		!

These are subject to further corrections as follows -

The correction for bringing the longitude of Moon as found out with the help of the Hindu tables to close approximation to the modern accurate longitude of the Moon has been given by a later astronomer after the founders of the eighteen siddhantas.

The true longitudes of Sun Moon with their daily velocities and the mean longitude of Apse are all noted down Subtract the mean longitude of Apse from the sun's position, the result will be the Indoochona Ravi Kendram (हंद्च्यानरिवर्ध्द) Find the sine argument first, and also the cosine argument by subtracting the former from 90° Find the equations of cent for the two arguments either of which can never exceed 90°, being highest term in the table

Then subtract sun's longitude from that of Moon This is called a Arkona eliandra kendram (अवानचंद्रवन्न). As before find out the equation of centre for the sine argument and also that for the cosine argument Arrange the results thus—

A (इंदुच्चोनरविकेंद्रं) INDOOCHONA RAVI KENDRAM.

Eqn of centre of sine argument (भुजन्या).... र Eqn of centre of cosin do (कोटिन्या).... y

B (अर्कोनचंद्ररेड) ARKONA CHANDRA KENDRAM.

Eqn of centre of sine argument (सुत्रज्या) s Eqn of centre of cosine do (सोटिज्या).. w

Find $\frac{y \times w}{2474}$, where 2474 is a constant. The quotient will be minutes and remainder is converted to seconds. The quotient is positive if A and B are both within 180° or both greater than 180°, and negative other-

wise. That is, positive if both are मेपादि or both तुरुद्धि and negative other-wise.

The result got is added to or subtracted from as found out above, to the mean velocity, when we got the true velocity of Moon.

Next find out $\frac{x \times y}{597}$ in minutes. Multiply the result by the ratio of true valocity arrived at above to the mean valocity $790^{\circ}-35^{\circ}$. The final result will be the correction to be applied to the Moon's longitude already arrived at, as per the rules laid hereunder.

When B is within 180°

Correction is positive if 4 is between 90° and 270° and negative if otherwise

II When B is greater than 180°

Correction is positive, if A is between 270 and 90 and is negative if otherwise

Expressed in Sanskrit

टक्संस्कारः शुरुपञ्जे, धनं यदि इंदूबोनरविकेंद्र कक्ष्यादि, ऋणं यदिमकरादि । कृष्णपक्षे पनवो: विपरीतं । तच्च कक्ष्यादिऋणं, मकरादिधनं ।

This method gives very satisfactory results but when function B approaches 180° or 800°: for, the correction of this method involves a sine function which becomes zero ultimately. Apparently there will be no correction at all. This cannot be: for even though variation may become zero, being function B, Evection which is (B-A) need not be zero.

The following suggestion may be used. The eqn of centre corresponding to the sine argument of A as not been used at all. Multiply it by 60 and divide by 527, find the quotient. As before the quotient is multiplied by the ratio of the true and mean velocities. This will be positive or negative according as A is within 180° or greater than 180°.

EXAMPLE.

(True Longitude of Sun)	(True Longitude of Moon)	(Mean Longitude of Apse)	(Sun-	(Moon-
2	3	9	5	0
29	3	11	17	4
21	23	49	31	0
22	15	44	88	53
	858		Α	В
	27			

$$\frac{y \times 10}{2474} = \frac{300' - 27'' \times 294' - 5''}{2474} = \frac{88348}{2474} = 35' - 42''$$

Now A and 8 are both within 180° whence this 35-42 is positive and therefore additive to the velocity of the moon arrived at viz, 858'-27', we get 894'-9

Next find out
$$\frac{z \times y}{527} = \frac{21' - 4' \times 294' - 3'}{527} \times \frac{894' - 9'}{558' - 27'} = 13' - 17''$$

This is the correction to be applied to the longitude of Moon already found out 8 is within 180% i.e.) Exert and A is between 90° and 270° or Exative. Hence the correction is positive Adding this to the true longitude of Moon already found out, we get $3^{\circ}-22'-15''$ plus $13'-17''=3^{\circ}-85''-32'''$ Sine argument of A is 64'-65''. The correction due to this is

$$\frac{64'-58''\times60}{527}\times\frac{894'-9''}{790'-35''}=8'-22''$$

A is within 180% hence this is positive. Adding this also, to the previously corrected moon, we get $3^9-3^\circ-33^\circ-32^\circ$

8'—22' 3'-3'-43'-54'

... The correct longitude of Moon is 3"—3"—43"—54" and velocity 884"—9". This reaches a closer approximation to the longitude of Moon found out by the modern method but anyhow, the daily velocity fails to reach the standard of accuracy of the more refined way. The higher excentricity of the Moon of the Modern astronomers is responsible for the higher value of the velocity.

A further improvement to the Hindu method is herewith given -

The mean longitudes of the Sun Moon and Apse are first noted down. The functions (Moon–Sun) and (Sun–Apse), a and β respectively are found out. If they are determined, the correction to be applied to the mean Moon can be got by one formula viz, in minutes of arc.

 $r^{1}[-119]$ Equation of centre for $(a-\beta)$ -4 Equation of centre for a+71 Equation of centre for 2a

The correction thus got is applied to the mean Moon. This corrected Moon is subtracted from the position of Apse, when we get the mean anomaly. The Hindu table of equation of centre is entered into and the equation of centre as also the effect on velocity are noted down. These are subject to further corrections as follows.

MULTIPLIER FOR EQUATION OF CENTRE.

This is $\frac{1887 (4 - n^2)^2 \cos nt}{6024}$ The equation of centre previously

found out should be multiplied with this multiplier and applied to the mean longitude of Moon when the correct true longitude of Moon is got

MULTIPLIER FOR EQUATION OF VELOCITY.

The equation of velocity got from the tables is multiplied by this multiplier and then applied to the mean daily velocity of Moon viz 790 -35. A further correction to the velocity is as follows.

$$\frac{1}{3012} \left[-14.9 \times \text{equation of centre of cos arg of } (\alpha - \beta) \right]$$

$$-4 \times \text{equation of centre of cos arg of } a$$

$$+ \frac{1}{3} \cdot \frac{2}{3} \times \text{equation of centre of cos arg of } 2 \cdot n$$

If this is also got with due regard to the sign of the cus ine furnism ain'd applied to the Moon's daify velocity the result will be the true daify velocity

FXAMPLE.

$$a \approx \text{Mean Moon-Mean Sun} = \begin{cases} 3 - 4 - 2 - 59 \\ 3 - 29 - 42 - 14 \end{cases}$$

$$\beta = \text{Mean Sun-apse} = \begin{cases} 3 - 4 - 2 - 59 \\ 3 - 29 - 42 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 59 \\ 3 - 4 - 20 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 59 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 59 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 59 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 59 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 59 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 59 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 59 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 59 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 59 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 14 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 2 - 4 - 2 - 14 \\ 3 - 1 - 4 - 11 \end{cases}$$

$$= \begin{cases} 3 - 2 - 4 - 2 - 14 \\ 3 - 1 - 4 - 11 \end{cases}$$

$$= \begin{cases} 3 - 2 - 4 - 2 - 14 \\ 3 - 1 - 4 - 11 \end{cases}$$

$$= \begin{cases} 3 - 2 - 4 - 2 - 14 \\ 3 - 1 - 4 - 11 \end{cases}$$

$$= \begin{cases} 3 - 2 - 4 - 2 - 14 \\ 3 - 1 - 4 - 11 \end{cases}$$

$$= \begin{cases} 3 - 2 - 4 - 2 - 14 \\ 3 - 1 - 4 - 11 \end{cases}$$

$$= \begin{cases} 3 - 2 - 4 - 2 - 14 \\ 3 - 1 - 4 - 11 \end{cases}$$

$$= \begin{cases} 3 - 2 - 4 - 2 - 14 \\ 3 - 1 - 4 - 11 \end{cases}$$

$$= \begin{cases} 3 - 2 - 4 - 2 - 14 \\ 3 - 1 - 4 - 11 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 4 - 2 - 14 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 4 - 2 - 14 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 4 - 2 - 14 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 4 - 2 - 14 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 4 - 2 - 14 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 4 - 2 - 14 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 4 - 2 - 14 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 4 - 2 - 14 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 4 - 2 - 14 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 4 - 2 - 14 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 4 - 2 - 14 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 4 - 2 - 14 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 4 - 2 - 14 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 4 - 2 - 14 \\ 3 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 4 - 2 - 14 \\ 3 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 4 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 2 - 14 \\ 3 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 2 - 14 \end{cases}$$

$$= \begin{cases} 3 - 4 - 2 - 2 -$$

Correction to mean Moon

It is all -14 9 equation of centre $(a-\beta)$.

1 equation of centre a.

1 equation of centre 2 a.

 $a-\beta=6s-16^{\circ}-27'=196^{\circ}-27'$, in this case the sine argument is $16^{\circ}-27$ and its equation of centre is -85'-11'' [The sign of the equation of centre may not please be ignored]

$$a = 0s - 4^{\circ} - 20 = 4^{\circ} - 20'$$

The sine argument is $4^{\circ}-20'$ and its equation of centre is 22'-24'.

$$2a = 0^{\circ} - 8^{\circ} - 40' = 8^{\circ} - 40$$

The sine argument is 8°-40' and its equation of centre is 45°-19".

Hence the correction to be applied to moon is

$$z_{0}^{1}$$
[-149×-(80'-11')-4×(22-24')+71(45'-19')]
= z_{0}^{1} [+(1269-20')-(8'-58')+(321'-46')]
= z_{0}^{1} [+(1582'-5')]=+25'-22'

Corrected mean longitude of Moon is (3*-4*-2'-58")+(26 -22") = 3*-4*-29 -20"

The argument for referring to the Hindu tables is 7°-20 -24 and the effect of the equation of centre will be negative as the mean anomaly is greater than 180

Equation of centre for 7° is 36′—40′ and for 8° is 11′ 52″ Equation of velocity for 7° is 68 –0′ and for 8° is 67′—50 Equation of centre for 7°—20 – 24′ is 38 –20′ (—) Equation of velocity for 7°—20 —24′ is 67 –55′ (—) Multiplier for equation of centre $\frac{16087}{16084}$ (4—2745 cos π t) $\frac{1}{2}\frac{1}{6}\frac{1}{6}\frac{1}{4}$ (4—2745 cos π t) $\frac{1}{2}\frac{1}{6}\frac{1}{6}\frac{1}{4}$ (4—2745 × 99182) $\frac{1}{2}\frac{1}{6}\frac{1}{6}\frac{1}{4}$ × 4 27275 = 1 339 ... Correct equation of centre $\frac{1}{2}\frac{1}{6}\frac{1}{6}\frac{1}{4}\frac{1}{4}$ × 1 349 $\frac{1}{2}\frac{1}{6}\frac{1}{6}\frac{1}{4}\frac{1}{4}$

True longitude of Moon

$$\begin{cases}
= \frac{4}{3} - 4 - 29 - 30 \\
-51 - 41 \\
3 - 3 - 37 - 31 \\
+1 - 21
\end{cases}$$
(Annual variation = $\frac{1}{16}$ of Sun's equation of centre reversed)
$$\begin{cases}
= \frac{4}{3} - 4 - 29 - 30 \\
-51 - 41 \\
3 - 3 - 37 - 31 \\
4 - 1 - 21
\end{cases}$$

The last may be also added to the mean moon and the mean anomaly found before finding out the equation of centre

Multiplier's for equation of velocity
$$\frac{597 + \cos nt (868 - 11914 \cos nt)}{686 \cos nt}$$

$$\frac{597 - 9918(668 - 11914 \times -9918)}{695 \times -9918}$$

$$\frac{597 - 9918(669 + 1182)}{-0809} = \frac{597 - 97811}{-0809}$$

$$\frac{-91.541}{6808} = 185$$
Rectified equation of velocity = $\frac{1.35 \times 67.56}{695}$

$$= 91.43.5$$
Further correction for velocity -

1 $301\cdot2$ = -14 9 × equation of centre of cos arg of $(a-\beta)$ +15·2 × equation of centre of cos arg of a

 $(a-\beta)=195^*-27^*$. The cosine of this is negative. The equation of the centre of the cosine arg. of this is the same as that of its sine argument viz 73^*-33^* .

 $a=4^{\circ}-20^{\circ}$ The cosine is positive and the equation of centre of the cosine argument of this is the same as that of its sine argument viz $85^{\circ}-40^{\circ}$ $2a=8^{\circ}-40^{\circ}$ The cosine is positive and the equation of centre of the cosine argument of this is the same as that of its sine argument viz $81^{\circ}-20$.

Note equation of centre for 75°-33' is
$$288'-50''$$
do for $85^{\circ}-40'$ is $300''-18''$
do for $81^{\circ}-20'$ is $297''-44$

$$= \left[\frac{-147 \times -288'8 - 1 \times 300''3 + 15^{\circ}2 \times 297''7}{3012} \right]$$

Correction to mean Moon

It is $\vec{v}_0 = -14.9$ equation of centre $(a - \beta)$. -4 equation of centre a. +7.1 equation of centre 2 a.

 $a-\beta=0s-16^{\circ}-27'=196^{\circ}-27'$, in this case; the sine argument is $16^{\circ}-27'$ and its equation of centre is -85'-11'. [The sign of the equation of centre may not please be ignored]

$$a = 0^{9} - 4^{\circ} - 20' = 4^{\circ} - 20'$$

The sine argument is 4°-20' and its equation of centre is 22'-24".

$$2a = 0^{\circ} - 6^{\circ} - 40^{\circ} = 8^{\circ} - 40^{\circ}$$

The sine argument is 8°-40' and its equation of centre is 45°-19".

Hence the correction to be applied to moon is

$$r_{0}$$
[-14 9×-(85'-11')-4×(22'-24')+7·1(45'-19')]
= r_{0} [+(1269'-20')-(6'-58')+(321'-46')]
= r_{0} [+(1562'-6')]=+29'-22'

Corrected mean longitude of Moon is (8°-4°-2′-58″)+(26′-22″) = 3°-4°-29′-20″

The argument for referring to the Hindu tables is 7'-20-24 and the effect of the equation of centre will be negative as the mean anomaly is greater than 180'.

Equation of centre for 7° is $30^{\circ}-40^{\circ}$ and for 8° is 41° 52° Equation of velocity for 7° is $68^{\circ}-0^{\circ}$ and for 8° is $67^{\circ}-50^{\circ}$. Equation of centre for $7^{\circ}-20^{\circ}-21^{\circ}$ is $88^{\circ}-20^{\circ}$ (+) Equation of velocity for $7^{\circ}-20^{\circ}-21^{\circ}$ is $86^{\circ}-20^{\circ}$ (+) Multiplier for equation of centre $-\frac{1677}{2}$ (4-2745 cos π 1) $=\frac{1677}{2}$ (4-2745 cos $167^{\circ}-20^{\circ}-21^{\circ}$) $=\frac{1677}{2}$ (4-2745 x-99182) $=\frac{1677}{2}$ (3-2745 x-99182) $=\frac{1677}{2}$ x 127275 = 1-339 \therefore Correct equation of centre $=-(36^{\circ}-26^{\circ}) \times 1339$

equation of centre
$$\Rightarrow$$
 $-(38 - 29) \times 1339$
 $\Rightarrow -(51 - 45)$

The last may be also added to the mean moon and the mean anomaly found before finding out the equation of centre.

Rectified equation of velocity = $1^{\circ}95 \times 87' - 56''$ = 91' - 43''

Further correction for velocity -

$$\frac{1}{801\cdot2} \left[-14\cdot9 \times \text{ equation of centre of cos arg of } (a-\beta) \right] \\ -4 \times \text{ equation of centre of cos, arg of } a \\ +15\cdot2 \times \text{ equation of centre of cos arg of } 2 \text{ a} \right]$$

 $(a-\beta)=196^{\circ}-27'$. The cosine of this is negative. The equation of the centre of the cosine arg. of this is the same as that of its sine argument viz $73^{\circ}-35'$.

 $a=4^\circ-20^\circ$ The cosine is positive and the equation of centre of the cosine argument of this is the same as that of its sine argument viz 83°-10°. The cosine is positive and the equation of centre of the cosine argument of this is the same as that of its sine argument viz 81°-20.

Now equation of centre for 75° = 33′ is 288′ = 50° da for 85° = 40′ is 300′ = 16′ do for 81° = 20′ is 397′ = 44′
$$= \left[\frac{-14.7 \times -298' \cdot 8 - 4 \times 800' \cdot 3 + 15.2 \times 297' \cdot 7}{301.2 - x} \right]$$

$$= \frac{4245'4 - 120'\cdot12 + 4525\cdot0'}{3012} = \frac{8650'\cdot28}{3012} = 28' - 44''$$

$$\therefore \text{True Velocity} = \begin{cases} 790' - 38' + \\ 91' - 43' + \\ 28' - 44 \\ \hline{911' - -2''} \end{cases}$$

It will be found that of the two improvements to the Hindu method, the latter is better as it will approximate to the true longitude of Moon arrived at by the regular method before the Reduction' and subsequent correction is applied. Reduction also could be applied without much effort as there has been laid out a table for the purpose for each degree of argument of Nodal distance. The subsequent corrections are only optional

The former method of the improvement suggested is from one of the 18 siddhantas—It is learnt to be in Lomash—and it is a pity that though the method speaks very high of and stands in good stead of the inventor does not seem to be in use nor of any remembrance even among many of the old school of almania-compilors. It reaches in close nearness and can well replace the old plain method without any special corrections due to the various causes of Evection. Variation and Annual Variation leaving off the other minor optional corrections. It is found that due to the archaic methods having ignored these causes and their consequent effects on the mean Moon the true longitude of Moon differs in some cases by 4°–18 in the maximum and by 3°–9 in the minimum. It is regretted that even in Kerala where Indian astronomy is yet fostered, the leading Astronomers are deaf to suggestions in this direction and it is hoped that this book will bring about the desired reform.

Both the methods are so given as to base their needs only on the Hindu tables of equation of centre and the trigonometrical tables and it is hoped that the followers of this book will not have any difficulty in practical working

Chapter XII.

PLANETS.

The planets are Mercury Venus Earth Mars Jupiter Saturn, Uranus and Neptune of which the first two are called Inferior and the rest Superior planets. These all perform their ceasless journeys in their own elliptical orbits about the Sun in one of their foci of their respective orbits.

Their distances from the Sun increase in the order enumerated above and the angle formed between the line joining a planet to the Sun and a fixed direction of the First point of Aries—fixed if the first point of Aries were considered to have no precession—is called the Heliocet ric longitude or longitude in its own orbit.

The earth unlike the sun is not fixed but has a motion of its own in an orbit, which has already been defined in its elements. The relative motion of a planet to an observer on the earth, will sometimes be accelerated retarded stationery or retrograde, depending on their mutual positions, with respect to each other and the sun.

The position at which a planet will be seen by an observer at the centre of the earth, is called the Geocentric longitude.

Let S E and P be the sun earth and planet in their respective orbits, the sun being fixed and hence having no orbit

In the case of Inferior planets their orbits will always fall between the sun and the earth's orbit while those of Superior ones always outside the earth's orbit

In the adjoining figure P is an Inferior planet and hence its orbit is within that of the earth

When P intervenes S and E the phenomenon is called an Inferior conjunction and when S intervenes P and E it is an opposition

In the case of Superior planets, their orbits always fall outside the earth's orbit

When E intervenes S and P it is a superior conjunction and as before when S intervenes P and E it is an opposition

Thus when the centres of S E and P are collinear or in one and the same straight line the phenomenon is a superior or an inferior conjunction according as E or P is the intervening body

The interval between one conjunction or one opposition of the vame nature is called the Symalic prind and that of one revolution of the planet about the sun with respect to the fixed stars or the fixed direction of 'f' is called the Sidereal peri d or Periodic Time

The sidereal period which is necessary to find out the mean helio centric longitude cannot be easily found out unless with the help of the Synodic Period Instead of taking the interval between the synodic positions at random it is usually taken at two very favourable positions like Transits of Venus which come far between each other. Thus the interval between two such transits divided by the number of synodic revolutions will give the exact synodic period of the planet.

I. INFERIOR PLANET.

Let P an inferior planet and E the earth SPE is the line of centres at the time of conjunction Let after a time P be at P and E at E

Then Z PSP will be necessarily greater than Z ESE for P has to describe a smaller orbit

Let P be the sidereal period of planet and E that of the earth also let S be the synodic period of the planet Now $\angle PSP = \angle ESE + \angle ESP$

If the interval of time chosen be an unit it reduces to

 $\frac{1}{P} = \frac{1}{L} + \frac{1}{S} \text{ of which S and E are known} \quad \text{Hence P would}$ be found very easily

II. SUPERIOR PLANET.

In the above write E for P and P for E we get

$$\frac{1}{E} = \frac{1}{P} + \frac{1}{S} \text{ for } \frac{1}{P} = \frac{1}{E} - \frac{1}{S} \text{ whence P is found our}$$

Having thus known the sidereal period the advance of mean longitude of a planet for a given interval of time can be very easily found out which when added to the poch position gives the mean longitude at the particular instant reckoned from the epoch

The planes of the different orbits are not in the same plane as that of the ecliptic but inclined to it at different angles but very small

Each orbit being elliptical has got its own asse line formed by joining the Aphelion and Perihelion and the Apse line has a forward motion with the exception of that of Venus

The two points where the orbit of a planet when projected on the celestral sphere cuts the ecliptic are called the Nodes in the same corres pondence to the Nodes of the Lunar orbit. These nodes also have a backword motion

How the apse lines have a forward and the apse line of Venus and the Nodal lines of all planets have a backward motion belong to the investigation of Physical Astronomy which we do not propose to enter into

Thus the following elements should be known first to find out the geocentric latitude at a given place and a given instant

- 1a) Positions in own orbit at epoch (মহব্দহ্য)
 - b) Periodic times (মহধিগাকান্ত)
- ll a) Mean longitude of Apse lines (मद्रोचानि)
 - b) Annual velocity of Apse line (मदोधवर्षगति)
- III a) Mean longitudes of line of Nodes (पातानि)
 - b) Annual velocity of Nodal line (पासपरंगति)
- IV a) Ex-centricity of the orbit of the planets (4 3 = 3 R4;)
 - b) Semi major axes (मध्यममद्कर्णाः)
- Va) Inclination of plane of planess orbit to the ecliptic (परमंगिक्षेपानि)

Having arrived at these we can next proceed to find out the geocen tric latitude as follows —

First we can to find out the position of the body whose geocentric longitude is to be found out in its own orbit for which we require Mean heliocentric longitude at epoch of the body and that of the apse line of its orbit the excentricity of the orbit and the mean daily motion of the planet and that of the apse line

Take the number of days elapsed from epoch and divide it by the number of days in one sidereal revolution or periodic time. The quotient will be revolutions and the balance is converted to signs degrees minutes and seconds. Add the result to the epoch mean longitude of the planet which result will give its mean position at the instant. So also for the position of the apse line. The excentricity of the orbit is known. Thus the elliptical orbit of the planet with its mean position is completely defined and its true longitude in its own orbit can be found out with the help of the same formula which we used to find the Earth's position in its orbit but taking care to use the particular value of the excentricity of the planet chosen.

Subtract the mean longitude of the planet from the mean longitude of its Apse when we get the mean anomaly. Then apply the mean anomaly

in the formula

$$\frac{e \sin nt (4-5e \cos nt)}{2} + \frac{e^3}{12} (13 \sin 3nt - 3 \sin nt)$$

The last term involving e^2 may be neglected except in the case of planets whose e is sufficiently great as to cause any appreciable change in the result

The formula when substituted with the known quantities will give the equation of centre with the proper sign which when applied to the mean heliocentric longitude of the planet gives us the true heliocentric longitude of the planet

The distance of the planet from the sun is called the radius vector ($\pi 3 \pi 6$). This has also to be known. It is given by the formula $r = \frac{l}{1 - r \cos \theta} = \frac{a(1 - e^{\alpha})}{1 - e \cos \theta}$ where $\tilde{\theta}$ is the true anomaly as defined by us and a the length of the semi major axis of the planetary orbit

As the true heliocentric longitude and the length of the radius vector thus having been arrived at the planet is located in its own orbit

" It has already been mentioned that the planes of the orbits of the planets are not in the same plane as that of the ecliptic but inclined to it

Let P be an inferior planet in its own orbit and E the earth in the earth sorbit or the ecliptic which is merely the projection on the celestial sphere of the sun's apparent path

Let PM be drawn Lar to the plane of the ecliptic since as aforesaid the path traced by E is only the ecliptic when projected on the celestial sphere. Let S \(\) and ET be the direction of the First point of Aries

Now for an observer at S the planet will be seen through angle I SP while the same for an observer at E will be seen through an angle I's Pin the positive or counter clockwisedirection. This angle EP is the geocentric longitude but since longitudes are measured along the ecliptic TEM will be the geocentric longitude. It may appear that I EP and I EM should be the same as MEP is one plane. It is true from the present figure but it will be made clear later that there will be a slight difference due to the inclination of the planetary orbit to the ecliptical plane.

When P is at a Node, (i e) at either point where the two planes cut-one, the plane of the planetary orbit and the other the plane of the ecliptic,-it is in the same plane as that of the ecliptic. Hence it has no latitude But when it is exactly 90° from the either Node it has the maximum latitude which is then equal to the inclination of the orbit. Aptly it has been defined by our Hindu Astronomers as परमितिशेष. In any case the I PSM gives the latitude of the planet

In ASPM. SP = radius vector (known) / PSM = fatitude (found out)

... SM is known, for, SM = SP cos & PSM Now in AMSE MS is known, SE = radius vector of earth (known) and LMSE= difference of Heliocentric longitudes of P and E

:: EM2 = SM2 + SE2 - 2 SM SE cos | MSE All the quantities on the R H S being known EM is found out

We have
$$\frac{SE}{\sin 1 SME} = \frac{ME}{\sin 1 MSE}$$

::Sin I SME = SE sin I MSE whence I SME is found out

Of the angles at E the angles MES and SET" are known from which the angle TEM can be easily found out

TYEM = ITSE + IESM + ISME, for, by producing SE to any point X, the exterior angle XEM = | ESM + | SME

To each add | TEX

We get
$$|\underline{\Upsilon}'EX + \underline{XEM} = \underline{ESM} + \underline{SME} + \underline{\Upsilon}'EX$$

(i e) $|\underline{\Upsilon}'EM = \underline{ESM} + \underline{SME} + \underline{\Gamma}'SE$

(i e)
$$|T^*EM| = |ESM| + |SME| + |T^*SE|$$

for E1' is the direction | to S1' and hence | T^*SE| = 1 T EX

In the case of superior planets S P is always greater than SE whence the angle SPE and consequently | SME will always be acute.

Whereas, in the case of inferior planets, there may seem some difficulty in taking the correct value of | SME, for as SP and hence SM is always less than SE angle SME should be always greater than I MES The angle got as the value of | SME should be fixed only with reference to this If this is found to be less than I MES, the supplement of the value of I SME originally got should be taken as the correct value to be applied to

1 TSE for finding out the geocentric longitude. This is so because the angle whose sine = $\frac{SE}{MF} \sin \frac{1}{MSE} \cos \theta$ either say θ or (180°- θ)

EXAMPLE.

In △ SME suppose | ESM=331° and suppose the value of the angle as obtained from the formula $sin 18ME = \frac{SE}{ME} sin 18ME$ be 69° Now (180°-69°) or 111° also will have the same sine. To determine which of the two has to be taken follow this procedure

Take [ESM as given if less than 180 if greater than 180 then take its defect from 360° In this case it is 360°-331° or 29° I SME = 69° MES should be -180°-(29°+69°)=82, but | MES should be always less than SME which is not the case. Therefore the correct value of SME should be the supplement of 69° (1 e) 111° This has to be applied to 17°SM to get ITEM

In finding out | MSE care should be taken for [MS'] is the Helio. centric longitude (H L) of the planet and | EST that of Earth while we have got only the longitude of Sun Therefore adding 180° to the longitude of sun we get the H L of the earth

The rest is very simple

It should be noted that M is the projection of the planet on the ecliptic Referring to the annexed figure NP is known by subtracting the longitude of Node from the H L of the planet

I PNM is known as the inclination of the planetary orbit to the ecliptic

Thus the spherical ANPM is solved and NM and PM are both found out For as the longitudes are measured along the ecliptic we want only NM and not NP

Cos z = tan NM cot NPtan NM=cos s tan NP

NM is known

This is akin to the process of finding out the प्राणकर तरसंस्कार, which

2 tan (Nodal distance) × sin* -2 is given as 1+ tan 2 (Nodal distance) cos \$

The same table can be used by applying the multiplier $\frac{\sin^2 \frac{1}{2}}{\sin^2 \frac{w}{2}}$

which will serve for all practical purposes.

So also sin PM=sin ϵ sin NP whence PM the heliocentric latitude is also obtained. This is same as the angle PSM we used in the previous pages and the longitudes $\P^{\epsilon}M$ will measure the same angle $\P^{\epsilon}M$ shown in the figure page.

We shall now work out each planet separately to afford detailed example to the followers and readers of this work

Chapter XIII.

MARS.

FLEMENTS

1	Mean longitude at epoch	7*-1*-48'-54"
2	Mean Hel longitude of Apse	4°11°18'0"
3	Mean Hel longitude of Node	0°-26°-54'-18"
4	Length of semi major axis	1 5237
5	Excentricity of orbit	09331
6	Inclination of orbit to ecliptic	1*-51'1
7	Periodic time	686 980 days
8	Annual motion of Apse	≈+16°86
9	Annual motion of Nodes	=-22"74

These though already given in the consolidated table have been reproduced here for ready reference

No of days elapsed from epoch to the moment of birth is

Periodic time in days is

∴ No of revolutions

41101.82153
686 980

±41101.8215
686 98

=59 82972

Converting the decimal portion alone to signs etc. we get

Position at epoch $9^{3}-28^{\circ}-41'-57''$ $7^{3}-1^{\circ}-48'-54''$.: Mean Mars at birth $5^{3}-0^{\circ}-30'-51''$

HINDU METHOD.

Divide the number of days by 687 The quotient will be revolutions with the balance get signs degrees minutes and seconds. Let this be A Again divide the number of days by 1788 The quotient will be minutes and the remainder is reduced to seconds. Let this be B. The sum of these two will be the mean motion of Mars. (Empirical correction for 1,000,000 days is 356' additive).

$$\frac{410183153}{687} = 59 \frac{50882153}{68700000} \text{ revolutions}$$

$$\frac{56882153}{687} \text{ of a revolution} = 9^{\circ}-28^{\circ}-4'-21' \text{ (A)}$$

$$\frac{4110162}{1788} = 22'-59' \text{ (B)}$$
Adding up = $9^{\circ}-28^{\circ}-27'-20'$
Empirical correction for $\frac{1}{4101}$ days $\frac{356 \times 41101}{1000000}$ 14'-88' (additive)
$$\therefore \text{Corrected mean motion} = 9^{\circ}-28^{\circ}-41-58'$$
Epoch mean Mars = $7^{\circ}-1'-48'-54'$

$$\therefore \text{Mean longitude of Mars at the } = 5^{\circ}-0''-80''-50''$$

moment of birth

FROM TABLES.

		В
Mean motion	n in 40000 days	=2-21-18-32
do	1000 days	=5-14-1-57
do	100 days	=1-22-24-12
do	1 day	=0— 0 — 31 — 26
do	82153 of a day	=0-0-25-48
Position at ep	ooch	=7 -1 -48 -54
Mean Mars	at birth moment	=5-0-30-49

TABLE OF MEAN MOTION OF MARS

Periodic time 686 980 days

Davs	8	Degrees	Vinutes	Seconds	Days в	Degrees	Vinutes	Seconds	Degrees Munutes Seconds
1 2 3	0	1	31 2 94	59			86	35 47 59	60000 4 1 57 48
4 5	0	2 2	5 97	16 18	600,10 700 0	14 6	25 19	10 22	80000 5,12 37 4 90000 0 2 56 42
6 7 8	0 0	3 9 4	40 11	6 32	900 3 1000 5		37 1	57	200000 1 16 32 40 300000 8 9 49 0
9 10 20		10	14 28	59 25 50	4000 9	12 26	5	55 53 51	500000 9 26 21 40 600000 4 19 97 59
30 40 50	0	20 26	57 12	6,	6000 8 7000 2	10 24 8	9 11 18	49 46 41	700000 11 12 54 19 800000 0 6 10 89 900000 0 29 26 50
60 70 80	1 1 1	6 11	40 55	81 56 22 47	9000 1 10000 6		17 19	89	1000000 7 22 49 19
00 100 200	1 1 9	17 22 14	24	12 23	30000 8		58 18	54	

Now take the धरप्राणकलांतरहरांतर बाहुपर्छ 28'--7' (धने) on page 72 Multiply this by the mean daily velocity of Mars viz 31'--20' and divide by 21600 We get 0'-2' (धने). This being + (धने), adding it to the mean Mars already found out viz 55--0"-30'-51', we get 5'-0'-30'-53'. This is mean Mars which has to be used for further calculations

POSITION OF APSE.

At epoch

Motion in 11254 years @ 16 86 per annum is

$$\frac{4-11-18-0}{0--0-31-37}$$
Adding position of apse at birth
$$= \frac{4-11-49-37}{4-11-49-37}$$
Mean anomaly
$$= \begin{cases}
4^{e-1}1^{e}-49'-37' & \text{minus} \\
5^{e}-0''-30'-53'' & \text{minus}
\end{cases}$$

Equation of centre, as defined by us

$$= \frac{e \sin nt}{2} \left(4 - 5e \cos nt \right) + \frac{e^a}{12} \left(13 \sin 3 nt - 3 \sin nt \right)$$

where a = 09331

This reduces to, in seconds of arc.

9623 (4.05237-46655 cos nt) sin nt - 728 sin nt.

$$\sin 341^{\circ}-18'-44''$$
 = $\sin (360^{\circ}-18'-41'-16')$
= $-\sin 18^{\circ}-41'-16''$
= -3204017
 $\cos 341^{\circ}-18'-44''$ = $\cos (360^{\circ}-18'-41'-16')$
= $\cos 18^{\circ}-41'-16''$
= 9472709

* substituting, we get,

9623 (4·05237—·46655×·9472709) ×
$$\rightarrow$$
32040!—728×(\rightarrow 32...)³ = \rightarrow 11168*+24"= \rightarrow 11144 = \rightarrow 63° \rightarrow 7' \rightarrow 44")

Applying this equation of centre to the mean longitude of Mars we get

True longitude of Mars

$$= \begin{cases} 5 - 0 - 3 - 58 & \text{minus} \\ 8 - 5 - 44 & \\ 4 - 27 - 25 - 0 & \\ \end{cases}$$

TO FIND THE RADIUS VECTOR.

 $r = \frac{a(1-e^2)}{1-a\cos\theta}$, where a is the semi major axis of the ellipse

and θ is the true anomaly

is the true anomaly

Here
$$\alpha = 1.5237$$
 and θ

$$= \begin{cases} 4 - 11 - 49 - 37 - 4 - 27 - 25 - 9 - 9 - 11 - 14 - 21 - 28 - 344^\circ - 24' - 28' - 28' - 24' - 28' - 28' - 28' - 28' - 28' - 28' - 28'$$

The numerator 1:51044 is always same and it is enough if the denominator also is found out and substituted in the formula.

Both the equation of centre and the radius vector can be obtained from the mean anomaly directly, by a reference to the accompanying table. If the mean anomaly were to exceed 180°, then the defect from 360° will be the required argument for purposes of referring to the table. But the equation of centre in the latter case will be negative. The radius vector is always considered positive.

TABLE OF EQUATION OF CENTRE, RADIUS VECTOR AND HELIOCENTRIC VELOCITY OF MARS.

Arg - Mean anomaly of Mars

_	_	_	_			_					_
Deg		Cen:		Radius Vector		el, coly	Deg	Equation of Centre	Badius Vector		le) ncity
	_						h .				,
0	0	0	0	1 6657	26	9	26	4 15 2	3 1.6530	26	34
1	0	10	5		20	9	27	4244	1 1 6527	26	86
1 2	0	20	9	1.6656	26	10	28	4 33 5	4 1.6517	26	88
8	0	30	13	1.6656	26	10 I	29	4 43	4 1.6507	26	40
-4	0	40	17	1.6654	26	10	80	4 52 1	0 1.6497	26	42
5	0	50	20	1.6658	20	11	31	5 111	3 1.6486	26	44
6	1	0	23	1.6651	26	11	32	5 10 1	1 1.6475	26	46
7		10	25	1 6649	26,	12	33	5 19	2 1.6464	26	48
8	1	20	25	1.6646	26	12	84	5 27 5	4 1.6452	26	50
- 9	1	30	24	1.6643	26	18	35 [5 86 3	S 1.6440	26	53
10	1	40	22	1 6640	26	13	36	5 45 1	0 1.6427	26	56
11	1	50	20	1.6636	26	14	87	5 58 5	1 1.6414	26	58
12	2	0	17	1.6632	26	14	38	6 22	5 1.6401	27	1
13	2	10	13	1 6627	26	16	89	6 10 5	0 1.6388	27	4
14	2	20	6	1.6622	26	17	40	6 19 1	0 1.6374	27	6
15	2	29	56	1 6617	26	18	41	6 27 2	5 1.6360	27	9
16	2	39	43	1.6611	26	19	42	6 35 3	5 1.6346	27	12
17	2	49	28	1.6605	26	21	43	6 48 3	9 1.6881/	27	15
18	2	59	10	1.6509	26	22	44	6 51 4	0 1.6316	27	18
19	3	8	51	1.6592	26	28	45	6 59 3	0 16301	27	21
20	3	18	30	1.6585	26	25	46	7 71	7 1.6286	27	25
21	8	28	51	1.6578	26	26	47	7 14 5	7 1 6270	27	28
22	8	37	38	1.6570	26	27	48	7 22 3	2 1.6254	27	32
23					26	29	49	7 30	0 1.6238	27	35
24	3	56	37	1.6554	26	30	50	7 37 2	2 1.6221	27	38
25	4	6	į 2	1.6545	26	32	51	7 44 3	1.6204	27	42
=	_	_	_			==	==				_

	-	_											_			
	۵	_	-1		١,	6187	27	45	96	1.1		10	١.		1	
5 5		7	51	48		6170	27	49	90	10				5227 5200	31	24 30
5		8		13		6152	27	53	98	10		39		. 5200 . 5179		
5			12			6134	27	57	99	10				5146	31	36
5 5		8		10		6116	28	ı	100	10				5120		43
5				46		6097	28	5	101	10		0		5096	31	49
5		8	32	9		6078	23	8	102	10		6	1		31 32	56
5			38			6059	23	12	102	10				5046	32	10
G		8		38		G040	28	16	103	10				5021	32	17
6		8		41		6020	28	20	105	10		1		4997	32	24
6			56			6000	28	24	106	1018				4972	32	30
6		9		23		5980	28	28	107	10		16		4947	32	36
G		9	8	2		5960	28	33	108	10 8		7		4923	32	42
G			13			5940	28	37	109	10 2				4898	32	48
6			18			5919	23	42	110	102		7		4373	32	54
6			24	6		5898	28	47	111	102				4849	33	i
6			29			5877	28	51	112	10 2		18		4824	83	7
9			81	8		5856	28	56	113	10/1		8		4800	33	14
7		9	38	55	1	5884	29	1	114	1011	14	88	1	4776	88	21
7		9	43	31	1	5812	29	G	115	10 1	10	59	1	4752	38	28
7		9	48	2	1	5790	29	11	116	10	7	8		4728	33	35
7	8	9	52	19	1	5768	29	16	1117	10	3	4	1	4704	88	42
7	4	9	5 G	31	. 1	5746	29	20	118		8 8			4680	33	49
		10		81		5729	29	25	119		54 :			4656	83	56
		10		22		5701	29	30	120		19 5			4688	34	4
		10	8	4		5678	29	35	121		4 4			4609	34	11
			11			5655	29	40	122		39 8			4586	34	19
			14			5632	29	45	123		34 1			4568	84	26
			18			5609	29	50	124		28 4			4540	34	32
			21	8		5585	29	56	125		22			4518	34	37
			23			5562 5588	30 30	1	126 127	91	10	2		4496 4475	34	42
			26 29			5514	30	12	127	9 1		32		4452	34 34	48 54
			31			5490	30	18	129		718				34	59
				36		5466	30	28	130		1			4409	35	5
			35			5442	30	29	131		4			4388	35	11
			37			5418	30	35	132		7	7		4367	35	17
			38			5394	30	41	133			17		4846	35	28
				18		5869		47	134		22			4826	35	29
	1		41	33		5345	30	58	135			30		4306	85	35
				33			31	ō	136	8	GE			4286	35	41
				22		5295	31	G	137	7 5	8,2		1	4266	35	47
			44			5272	31	12	133	7 5	i0 1	LO.		4247	85	53
9	5	10	14	28	. 1	5249	31	13	189	7 4	114	12	1	4228	35	38

						,			_		_		==	_
140	7	33	3		1 4210	36	3	161	l _a	55	4	1.8910	87	88
141			11		1 4192		9	162			16	1 3900	37	41
112			11		1 4174	36	14	163			22		37	43
143	7		59		1 415G	36	20	164	3		24	1 3883	37	45
144	6	56	38		1 4139	36	26	165	3			1 3875	37	46
145	6	47	7		14122	86	31	166	2		12	1 3868	37	48
146	6	37	26		1 4106	36	36	167	2			1 3861	37	50
147	6	27	35		1 4090	36	42	168	2	30	43	1 3854	37	52
148	6	17	33		1 4074	36	47	169	2	18	27	1 8848	37	54
119	G	7	26		1 4059	36	52	170	2	6	4	1 3843	37	55
150	6	57	8		1 4044	86	56	171	1	53	33	1 3838	37	57
151			40		1 4030	37	0	172	1	41	7	1 3834	37	59
152		36			1 4016	37	4	173	1	28	34	1 3830	38	1
153	5	25	21		1.4002	37	S	174	1	15	58	1 8826	38	3
154	5	14	29		1 3989	37	12	175	1	3	21	1 8828	38	3
155	5		29		1 3977	37	16	176			43	1 3821	88	4
156			20		1 39 6 5	37	19	177		38		1 8819	38	4
157		41			1 8953	37	23	178			24	1 8818	88	5
158.			47		1 3941	37	27	179			42	1 3817	38	G
159			20		1 8980	37	80	180	0	0	0	1 8816	38	6
-160	4	G	43	_	1 3920	37	34	0			- 7			
		_=	_	_						_				

If mean anomaly is more than 180°, then its defect from 360° will be be the argument for referring to the tables but the equation of centre is negative

In the present instance mean anomaly is $11^{\circ}-11^{\circ}-18-44^{\circ}$ or $341^{\circ}-18^{\circ}-44^{\circ}$.

The argument to refer the tables is 18° - 41'-16",

For 18°, equation to 2°-59-10" and for 19° equation is 3°-8'-51"

heganic, subtracting it from the mean Mars $b^*-b^*-b0'-b0'-b0'-b0'$ we get $4^*-27^*-25'-4$ Radius vector is 1 6596 Heliocentric Velocity is 26'-23' as read from the tables

REDUCTION.

Position of Mars' node at epoch = 0^3 -26°-54'-48" Annual motion = -22" 74

Motion in 112 54 years = -22*-74 x 112 54 = -42′-39*

... Position of Node at birth = 09-26°-12'-9"

∴ Nodal distance of planet =
$$\begin{cases} 0^{\circ} - 20^{\circ} - 12' - 0^{\circ} \\ (PN) \end{cases}$$

= $\frac{4^{\circ} - 1^{\circ} - 13' - 0'}{12^{\circ} - 12' - 0'}$
= $12^{\circ} - 13' - 0'$
Now tan NM = cos s tan PN
L tan NM = L cos s + L tan PN - 10
= $9 \cdot 9997736 + 10 \cdot 2175136 - 10$
= $10 \cdot 2172572$
∴ NM= 180° minus $58^{\circ} - 46' - 12'$
 $\frac{4^{\circ} - 1^{\circ} - 15' - 45'}{12^{\circ} - 20^{\circ}}$ ∴ $\frac{9^{\circ}}{12^{\circ}}$ M = $4^{\circ} - 27^{\circ} - 25' - 57'$

This is the True H L referred to the ecliptic. This correction due to the inclination of the orbit to the ecliptic is very small. It can be found with the help of the reduction table of Moon with the Nodal distance as the argument, the reduction thus got is multiplied by a multiplier. 13, which will be the reduction for Mars.

In this instance reduction from Moon's table for a Nodal distance $121^{\circ}-18^{\circ}-0$ is (+) $(-9)^{\circ}$. Applying the multiplier 13 we get reduction for Mars as 48 (+). This is added, to the H L of Mars It will be $(4^{\circ}-27^{\circ}-23^{\circ}-9^{\circ})+43^{\circ}=4^{\circ}-27^{\circ}-23^{\circ}-67$

HELIOCENTRIC LATITUDE OF PLANET (Arc PM)

That position of the vertical passing thro' the pole of the orbit of the planet and the planet intercepted by the orbit and the ecliptic, it is called the Latitude It is N or S according as the Nodal distance is > or $<180^{\circ}$

We have now found but all the various coordinates which would be observed if one were stationed at the centre of the sun. We will be presently transferring them to the centre of the earth.

$$\therefore M\hat{SE} = \begin{cases}
\frac{144^{\circ} - 25' - 57''}{238^{\circ} - 4' - 35''} \\
\frac{269^{\circ} - 21' - 22'}{238^{\circ} - 4' - 35''}
\end{cases}$$
Now EM² = SM² + SE² - 2SM SE cos M\hat{SE}
= (1.653)² + (1.016)² - 2 \times 1.053 \times 1.016' cos 2.38'' - 4' - 35'
= 2.7326 + 1.032 - 3.359 \times cos 58'' - 4' - 35'
= 3.7646 + 3.359 \times 5.586
= 3.7646 + 3.755 = 5.5401
$$\therefore EM = \sqrt{5.5401} = 2.3587$$
We have \(\frac{EM}{\text{sin \subseteq SEM}} = \frac{SE}{\text{sin \subseteq SME}}
\(\text{sin \subseteq SME} = \frac{SE}{\text{sin \subseteq SME}}
\(\text{sin \subseteq SME} = \frac{1.01646}{2.3537} \times - 8487688
\(\text{sin \subseteq SME} = \frac{1.01646}{2.3537} \times - 8487688
\(\text{sin \subseteq SME} = (20^{\circle{o}} - 29' - 46')
\(\text{Geocentric Longitude} \)
\(\text{(7'EM)} = \subseteq 135'' + \times 123'' - 35'' + \times 23'' - 35'' -

 $= 269^{\circ} - 21' - 22''$

= 125° - 56° - 11° = 4° - 5° - 56° - 11° TO FIND THE GEOCENTRIC LATITUDE.

PM=SP
$$(sin)$$
 PSM=EM tan LPEM

Tan LPEM= $(sp)^{sin}$ PSM= $(sp)^{sin}$ PSM= $(sp)^{sin}$ PSM= $(sp)^{sin}$ PSM= $(sp)^{sin}$ PSM=Heliocentric latitude= $(sp)^{sin}$ PSM= $(sp)^{sin}$

TO FIND THE GEOCENTRIC VELOCITY

*. Rate of change of $\angle SME = \frac{SE \cos \angle ESM}{EM \cos \angle SME} \times rate of change of \angle ESM$

$$= \frac{101646}{2354} \times \frac{-5286}{+9307} \times \left\{ (26'-23') - (57'-12') \right\}$$
= 7'-48''

∴Rate of change of ∠TSM +Rate of change of ∠SME =Rate of change of TEM

(i e) (26'-23")+(7'-48")=velocity of "Y EM

(i e) 34'-11" =geocentric velocity of the planet

Hence the planet is not retrograde

The rate of change of <u>PELM</u> is got thus <u>PESM</u> = <u>PSM</u> - <u>PSM</u> - <u>PSM</u> . Rate of change of <u>PSM</u> = rate of change of <u>PSM</u> - that of <u>PSE</u> = Heliocentric velocity of planet - Heliocentric velocity of Earth]

Chapter XIV.

MERCURY.

ELEMENTS

Mean longitude at epoch 2°-29°-19'-17"

2 Mean Hel longitude of Apse 78-23°-17'-49"

3 Mean Hel longitude of Node 0°-24°-5°-38°
4 Length of semi major axis 3871

5 Excentricity of orbit 20501
6 Inclination of orbit to ecliptic 7°-0

7. Periodic time 87 969 days

8 Annual motion of Apse 6"-14 (+)

9 Annual motion of Nodes 6"82 (—) No of days elapsed from epoch to the

moment of Birth=41101 82153 days

Periodic time = 87 969 days

No of revolutions

 $=\frac{4110182153}{87969}$ =46793075

Converting 2375 of a revolution to signs etc., we get $2^{n}-23^{n}-4^{n}-12^{n}$, to which if epoch mean position viz, $2^{n}-29^{n}-19^{n}-17^{n}$ be added, we get mean longitude of Mercury as $5-22^{n}-23^{n}-29^{n}$.

HINDU METHOD.

Divide the number of days by 88. The quotient will be the number of revolutions. With the balance get signs etc. (A). Again divide the number of days by 708, the quotient will be degrees and the balance if any reduced to minutes and seconds (B).

The sum of the two (A+B) will be the mean motion of Mercury for the number of days taken. Empirical correction is 1751'-35" for 1000 000 days additive.

(A)
$$\frac{4110182153}{68} = 167 \frac{583153}{58} = 0.23.18-55$$
(B) $\frac{4110182153}{708} = 58 \frac{3782153}{708} = 0.58-3.12$

Adding up, we get
Empirical correction
$$= \frac{2-21-52-7}{1751'-35'\times41103}$$
Corrected mean motion
$$= 1^{\circ}-12'-0''$$

$$= \frac{2-23-4-7}{2-29-19-17}$$

$$\therefore \text{Mean longitude of Mercury at birth } \Rightarrow 5-22-23-24$$

Now this is found to tally very much with the result of the long division. Then take the net correction to be applied due to the place of birth etc. $\frac{1}{4\pi}$ or $\frac{1}{$

Applying this to the mean longitude already arrived at viz $5^{\circ}-2^{\circ}-28^{\circ}-28^{\circ}-29^{\circ}-28^{\circ}-28^{\circ}$ If applied to the Hindu result will be $5^{\circ}-22^{\circ}-23^{\circ}-43^{\circ}$ We shall however adhere to the result of the lone division method

TABLE OF MEAN MOTION OF MERCURY

Periodic time = 87 969 days

	_							_						
Days	s	Degrees	Minnies	Seconds	Days	s	Degrees	Vinutes	Seconds	Days	8	Degrees	Minutes	Seconds
1 2 3 4 5 6 7 7 8 8 9 9 10 90 90 90 90 90 90 90 90 90 90 90 90 90	0 0 0 0 1 1 1 2 4 5 6 9 10 0 1	4 8 12 16 20 24 28 2 6 10 21 2 13 24 5 16 27 8 19	5 11 16 22 27 33 93 44 49 55 50 46 41 87 92 27 28 13	32 5 37 10 42 14 47 19 52 24 48 12 36 12 19 19 19	300 400 500 600 700 800 900 1000 3000 4000 5000 6000 7000 8000 9000 10000 20000	6 8 9 111 1 2 4 8 10 2 6 111 8 8 4 0	27 16 6 25 14 3 23 12 24 7 19 14 26 8 21 8	42 56 10 24 38 52 6 21 42 3 45 6 27 48 9 30 0	19 25 32 38 44 50 57 3 11 14 10 22 24 26 52 17	50000 60000 90000 90000 100000 200000 30000 40C0C 500000 60000 700000 900000	0 8 4 1 9 6 3 0 9 7 4 1	17 21 24 28 1 5 10 15 20 25 0 5 10	92 93 93 39 4 8 12 17 21 25 29	9 84 0 26 52 17 34 50 7 24 41 57 14 91
200	ľ	ľ	23	10	40000	1 0	14	1	43	100				

IN THE EXAMPLE

	8 0 1 4
40000 days	8-14-143
1000 days	4-12-21-3
100 days	1-19-116
1 days	015-32
'82153 day	03-21-43
	2-23-47
Epoch mean position	2-29-19-17
Corrections due to observer	19 F
Mean longitude of Mercury	5-22-23-43

State						
State	1		11			
84 10 51 16 4872 174 16 78 21 17 14 4180 207 31 36 11 20 4860 174 48 79 21 20 4156 208 40 37 11 48 4564 175 58 81 21 45 34 4156 201 30 38 12 0 56 4548 177 0 88 22 12 4120 212 12 11 0 20 30 28 2 21 21 12 14 41 21 34 84 84 22 11 21 400 213 29 42 13 89 452 41 450 179 55 85 22 13 20 216 22 216 22 216 22 216 22 20 7 44 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
75 11 8 52 4566 174 48 79 21 26 77 4168 209 40 36 11 26 22 4560 175 26 80 21 36 22 4156 209 50 37 11 484 4564 176 26 82 21 52 4120 213 20 212 12 14 211 210 213 29 21 212 21 14 31 21 45 41 177 70 88 22 13 24 212 21 24 21 22 406 21 22 21 24 20 <td< td=""><td>33 10 33 32</td><td>4577</td><td>173 45</td><td>77 21 7 16</td><td>4192</td><td>206 26</td></td<>	33 10 33 32	4577	173 45	77 21 7 16	4192	206 26
36 11 26 22 4560 175 80 80 21 36 22 4156 209 50 37 11 48 44 4554 175 58 81 21 45 33 4144 211 0 212 14 42 38 12 0 56 4548 176 26 82 21 54 27 4192 212 14 20 212 14 44 39 12 18 2 4541 177 0 88 22 13 2 4120 213 29 40 12 35 14 4584 177 34 84 22 11 21 4107 214 44 41 12 51 49 4527 178 8 85 22 11 22 4095 216 38 21 21 22 4095 216 38 21 21 22 4095 216 38 42 13 8 29 4521 178 48 86 86 22 27 4 4082 217 22 43 18 25 0 4514 179 19 87 22 84 29 4069 218 42 44 18 41 27 4507 179 55 88 22 41 32 4066 220 7 4066 220 7 210 22 54 42 4080 222 55 45 13 57 42 4560 150 32 89 22 48 17 4048 221 32 4066 220 7 218 22 56 407 429 3151 10 90 22 54 42 4080 222 58 481 44 58 7 4477 182 26 92 28 62 92 28 62 92 4004 225 58 225 58 48 14 45 87 4477 182 26 92 28 62 92 28 62 92 88 62 94 4004 225 58 50 15 16 47 4461 188 45 54 95 28 21 28 8964 23 06 29 29 5 51 15 32 8 4458 154 49 7 28 29 12 5 52 21 28 8964 23 04 22 55 55 16 315 449 19 187 8 98 23 32 2 2 28 54 5 55 16 315 449 19 187 8 98 23 32 2 2 28 54 5 56 16 46 28 449 18 54 49 18 7 8 98 23 32 2 2 28 54 5 28 1 19 14 8 98 15 18 18 91 91 91 92 92 7 29 8 9 15 7 8 7 7 17 9 92 92 92 92 92 92 92 92 92 92 92 92 9	34 10 51 16	4572	174 16	78 21 17 14	4180	207 31
37 11 14 3 44 4554 175 58 81 21 45 89 4144 211 0 38 12 0 56 4543 176 26 82 21 54 27 4132 212 14 14 211 0 213 29 4120 213 29 40 213 29 42 4120 213 29 40 213 29 42 4120 213 29 40 213 29 42 4120 213 29 40 214 44 412 51 4584 177 88 86 22 21 92 4095 216 3 42 4133 216 3 4452 178 88 86 22 27 24 4052 216 3 44134 216 3 4452 177 22 84 29 4069 217 22 22 4052 217 22 22 4066 220 7 4468 1357 42 4500 180 34 91 23 046 4077 224 22 22 58 4458 1447 13 50 4493 181 10 90 22 54 42 4080 222 55 49 15 116 4469 133 5 93 28 115 15 3991 227 29 28<	35 11 8 52	4566	174 48	79 21 26 57	4168	208 40
37 11 14 3 44 4554 175 58 81 21 45 89 4144 211 0 38 12 0 56 4543 176 26 82 21 54 27 4132 212 14 14 211 0 213 29 4120 213 29 40 213 29 42 4120 213 29 40 213 29 42 4120 213 29 40 213 29 42 4120 213 29 40 214 44 412 51 4584 177 88 86 22 21 92 4095 216 3 42 4133 216 3 4452 178 88 86 22 27 24 4052 216 3 44134 216 3 4452 177 22 84 29 4069 217 22 22 4052 217 22 22 4066 220 7 4468 1357 42 4500 180 34 91 23 046 4077 224 22 22 58 4458 1447 13 50 4493 181 10 90 22 54 42 4080 222 55 49 15 116 4469 133 5 93 28 115 15 3991 227 29 28<	36 11 26 22	4560	175 20	80 21 36 22	4156	209 50
38 12 0 56 4548 176 26 82 21 54 27 4192 212 14 39 12 18 2 4541 177 0 88 22 18 2 4120 213 29 4120 213 29 40 12 35 1 4584 477 88 84 22 11 21 4107 214 44 41 12 51 49 4527 178 88 85 22 19 22 4095 216 8 410 2 35 14 84 4052 178 88 85 22 19 22 4095 216 84 41 12 51 49 4527 178 88 85 22 19 22 4095 216 22 4052 217 22 4052 216 22 4052 217 22 4052 217 22 41 18 41 27 4507 179 55 88 22 41 32 4056 220 7 451 37 42 4600 180 32 89 22 48 17 4048 221 32 4069 218 42 21 32 46 14 11 56 1 4493 181 10 90 22 54 42 4080 222 55 84 42 4080 222 55 84 42 4080 222 55 84 42 4080 222 55 84 42 4080 222 55 84 42 4080 222 55 84 42 4080 222 55 84 42 4080 222 55 84 42 4080 222 58 91 51 16 4669 138 5 93 28 11 51 3991 227 29 5 50 15 16 47 4461 188 45 94 28 10 5 0 3978 229 5 50 15 16 47 4461 188 45 94 28 10 5 0 3978 229 5 50 15 16 32 8 4458 154 24 95 22 21 28 8964 230 42 25 55 16 22 24 4487 185 44 97 22 89 35 3987 229 5 55 16 22 24 4487 185 44 97 22 89 35 3987 284 25 44 61 17 9 4428 180 25 98 23 36 5 3909 287 27 27 44 16 17 9 4428 180 25 98 23 36 5 3909 287 27 27 28 28 36 44 10 187 52 100 28 38 44 5 385 289 15 55 16 31 55 44 19 187 88 29 23 36 5 3909 287 27 27 28 28 28 17 28 28 28 28 28 28 28 28 28 28 28 28 28						
39 12 18 2 4541 177 0 88 22 13 21 4107 214 44 41 12 51 49 4527 178 8 86 22 11 21 4107 214 44 41 12 51 49 4527 178 8 86 22 19 22 4095 216 38 42 43 18 25 0 4514 179 19 87 22 84 29 4069 218 42 44 18 44 127 4507 179 55 88 22 41 32 4066 220 7 45 13 57 42 4500 160 32 89 22 41 32 4066 220 7 45 13 57 42 4500 160 32 89 22 48 17 4048 221 32 4064 44 14 14 15 16 4498 181 10 90 22 54 42 4080 222 58 48 44 45 7 4477 182 26 92 23 6 29 4004 225 58 49 45 15 44 97 23 24 49 25 55 50 15 16 47 4461 189 45 94 23 10 50 3978 229 5 51 15 32 8 44 45 15 44 97 28 25 8964 230 42 42 43 43 44 44 44 44				82 21 54 27		212 14
40						
41 12 51 49 4527 178 8 85 22 19 22 4095 216 8 217 22 4095 216 8 217 22 4095 217 22 412 318 25 0 4514 179 19 87 22 38 28 4060 218 42 418 134 197 4048 211 32 4060 220 7 45 13 57 42 4408 221 32 4060 220 7 4401 411 606 420 7 221 32 4040 221 32 44080 222 58 421 4048 221 32 4404 225 58 448 444 4587 4477 485 59 32 115 59 3911 51 398 281 15 398 281 15 398 281 15 4469						
42 13 8 29 4521 178 48 86 22 27 4 4062 217 22 21 32 43 13 25 0 4514 179 19 87 22 84 29 4069 218 42 41 18 44 41 18 44 12 4507 179 55 88 22 41 132 4056 220 7 22 18 42 45 13 57 42 4500 180 32 89 22 48 17 4030 222 58 84 24 13 4030 222 58 222 58 47 14 297 4445 181 10 90 22 54 42 4080 222 55 222 58 47 14 297 4445 181 10 90 22 54 42 4080 222 58 48 14 45 87 4477 182 26 92 23 62 9 4004 225 58 49 15 116 4669 133 5 93 28 115 10 3991 227 29 50 15 16 47 4661 188 45 94 28 11 50 3991 227 29 50 15 16 47 4461 188 45 94 28 11 50 3991 227 29 51 15 32 8 4458 155 4 95 23 21 28 8964 230 42 42 20 22 54 497 4455 155 4 96 28 25 48 8950 282 19 51 15 32 8 4458 155 4 96 28 25 48 8950 282 19 51 16 32 4445 155 4 96 28 25 48 8950 282 19 51 16 32 4445 155 4 97 28 29 35 8987 284 2 22 3028 29 19 51 16 34 54 419 187 8 99 28 36 44 3950 282 19 51 16 34 54 419 187 8 99 28 36 44 3950 282 19 51 16 34 54 419 187 8 99 28 36 44 3950 282 19 51 16 34 54 419 187 8 99 28 36 44 3950 282 19 51 17 0 50 4401 188 96 101 28 40 57 8882 24 1 4 58 17 15 3 4892 180 180 180 44 3950 289 17 51 17 0 50 4401 188 96 101 28 40 57 8882 24 1 4 58 17 16 3 444 388 190 6 103 28 44 4 5 8864 24 58 58 17 16 34 44 5 884 44 4 5 886 24 58 58 17 16 34 44 5 88						
43 13 25 0 4514 179 19 87 22,84 29 4066 220 7 44 13 457 4507 179 55 88 22 41 32 4066 220 7 45 13 577 24 4600 180 32 89 22 48 17 4048 221 32 46 14 13 67 4485 151 18 29 22 48 400 222 58 49 15 16 447 4461 183 5 98 28 11 51 3991 227 29 5 50 15 16 74 4461 185 44 98 28 11 51 3991 227 29 5 51 16 22 4487 185 44 96 28 25 48 29						
44 184 197 4507 179 55 88 12 41 12 4056 220 7 45 13 57 42 4600 180 32 89 12 48 17 4048 221 32 47 14 29 7 4485 151 10 90 22 54 42 4080 222 58 48 14 486 131 49 91 23 0 4004 225 58 49 15 116 4469 138 5 92 23 629 4004 225 58 50 15 16 74 4461 188 45 94 281 155 3991 227 29 5 51 16 222 4447 185 4 95 282 21 8960 282 19 5 11 38 390 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
45 1 3 5 7 42 45 60 180 32 89 22 48 17 4048 221 32 46 1 4 1 3 50 4493 181 10 90 22 5 44 2 4080 222 5 5 47 1 4 29 4 7 4485 181 90 22 5 6 92 23 6 29 4004 225 5 8 48 1 4 4 5 37 4477 182 26 92 23 6 29 4004 225 5 8 49 1 5 1 16 4469 183 5 98 28 11 5 1 3991 227 29 50 1 5 16 47 4461 188 45 9 42 95 28 21 28 3964 230 42 51 1 5 32 8 4458 153 4 96 29 25 48 3950 282 10 56 51 6 22 4447 185 44 97 28 29 35 3987 284 22 28 19 52 10 388 23 39 28 10 56 16 17 19 4428 150 25 98 23 32 2 3028 22 28 19 27 27 57 56 66 3 15 449 187 8 98 23 32 2 3028 22 28 19						
46 1 4 1 3 5 0 4498 181 10 90 22 54 42 4080 222 58 47 1 4 29 47 4485 181 1 48 91 23 0 46 4077 224 28 48 1 4 45 87 4477 182 26 92 28 6 29 4004 225 58 49 1 5 1 16 4469 183 5 98 28 11 51 3991 227 29 50 1 5 16 47 4461 188 45 94 28 11 50 3978 229 5 51 1 5 32 8 4458 154 24 95 28 21 28 8960 282 10 57 1 6 2 22 4487 185 44 97 28 29 35 3987 282 10 57 1 6 2 22 4487 185 44 97 28 29 35 3987 284 2 55 1 6 31 55 4419 187 8 92 28 36 5 3909 287 27 56 1 3 45 5 4410 187 8 92 28 36 5 3900 287 27 57 1 7 0 50 4401 187 8 100 28 34 4 3808 242 58 59 17 29 1 4888 190 6 103 38 44 5 3882	45 13 57 42			89 22 48 17		
47 14 29 47 4485 151 48 91 23 0 46 4017 224 25 58 4814 45 77 182 26 92 28 629 4004 225 58 50 15 16 4669 183 5 98 2811 51 3991 227 59 50 15 16 47 4461 188 45 94 281 151 3991 227 29 5 51 15 24 445 185 44 95 282 21 28 964 20 42 25 52 18 3960 28 280 42 25 18 3960 28 280 42 42 44 185 49 95 282 21 28 3961 28 282 22 308 28 285 42 28 28 285 42 28 28 285 42 28 388 282 12 10	46 14 13 50					
48 1 4 4 5 87 4477 182 26 92 28 6 29 4004 225 58 49 15 1 16 47 4461 188 5 98 28 11 51 3991 227 29 227 29 55 15 16 47 4461 188 45 94 28 11 50 3991 227 29 227 29 55 15 15 32 8 4458 154 24 95 28 21 28 8964 230 42 220 42 29 221 28 8964 230 42 220 42 29 221 28 8964 230 42 220 25 48 8950 282 19 222 4487 185 44 97 28 29 35 3987 284 2 220 25 48 8950 282 19 222 4487 185 44 97 28 29 35 3987 284 2 220 25 48 8950 282 19 222 4487 185 44 97 28 29 38 6 5 3909 287 27 237 28 2 2 2 3028 28 29 237 27 28 28 29 238 29 2 2 2 3028 28 29 237 27 28 28 29 238 28 2 2 2 3028 28 29 237 27 28 28 29 238 28 2 2 2 3028 28 29 237 27 28 28 29 238 28 2 2 2 3028 28 29 238 28 2 28 29 248 28 28 29 248 28 28 29 248 28 28 29 248 28 28 29 248 28 28 29 248 28 28 29 248 28 28 29 248 28 28 29 248 28 28 29 248 28 28 29 248 28 28 28 29 248 28 28 28 29 248 28 28 28 29 248 28 28 28 29 248 28 28 28 29 248 28 28 28 29 248 28 28 28 29 248 28 28 28 29 248 28 28 28 28 28 28 28 28 28 28 28 28 28						
49 15 1 16 4469 153 5 98 28 11 51 3891 227 29 50 15 16 47 4461 158 45 94 28 11 50 3978 229 5 51 15 32 8 4448 75 24 24 95 28 21 22 8960 280 22 19 220 22 282 19 282 12 282 12 282 12 282 12 282 12 282 12 282 12 282 12 282 12 282 12 282 12 282 12 282 12 282 12 282 12 282 12 28						
50 15 16 47 4461 189 45 94 28 16 50 3978 229 5 51 15 32 8 4445 185 44 95 29 25 448 8950 282 19 230 42 230 430						
51 15 32 8 4458 154 24 95 220 21 28 3964 230 42 52 15 47 20 4457 155 44 96 29 254 3950 282 10 54 16 17 19 4428 150 25 98 23 2 2 3028 285 45 55 16 16 4419 187 8 69 238 44 3905 289 27 27 56 16 46 28 4410 187 8 69 238 44 3905 289 27 27 56 16 46 28 4410 187 36 101 23 40 57 3882 241 48 3805 289 12 102 284 44 386 242 48 36 101 38 101 38						229 5
72 15 47 20 4445 155 4 96 28 25 48 9950 282 19 284 12 53 16 22 4447 185 44 97 29 29 35 3987 284 2 284 2 54 16 17 19 4428 180 25 98 28,92 2 3028 285 45 5 55 16 31 55 4410 187 8 52 28 36 5 3909 287 27 27 56 16 46 28 4410 187 8 52 28 36 5 3909 289 15 5 57 17 0 50 4401 187 52 100 23 84 4 3895 289 15 5 517 12 3882 241 4 3868 242 58 241 4 3868 242 58 241 4 3868 242 58 241 4 3868 242 58 241 44 3868 242 58 241 44 3868 242 58 241 44 3868 242 58 241 48 246 42 58 241 48 246 42 58 241 48 246 42 58 241 58 244 48 261 17 56 91 4861 191 39 105 21 102 28 44 53 3826 248 37 246 42						230 42
59 1 G 2 22 4497 185 44 97 28,29 35 3987 284 2 54 1 G 17 19 4428 180 25 98 23,92 2 3023 285 45 55 1 G 3185 4410 187 52 100 284854 3909 287 27 56 1 G 46 28 4410 187 52 100 28454 3905 289 15 57 1 7 0 50 4401 187 52 100 28454 44 3968 242 58 59 17 20 1 4883 100 6 103 2844 43 3868 242 58 60 17 42 58 24 23 190 52 104 2814 15 3854 244 44 60 17 42 58 24 27 190 52 104 2814 15 3854 244 44 61 17 56 31 4364 191 39 105 28 4 25 3826 248 37 62 18 10 1 1 4364 192 27 106 28 4 25 3832 252 37 63 18 28 17 4944 198 15 107 28 4 5 5						292 19
54 16 17 19 4428 150 25 98 23 92 2 3028 25 45 45 55 16 3 155 4419 157 8 98 23 36 5 3909 237 27 56 16 46 28 4410 157 52 100 23 38 44 3905 297 27 57 17 0 50 4401 183 96 101 23 40 57 8882 241 4 3688 242 58 58 17 15 3 4892 180 21 102 28 4.44 3688 224 25 8 242 58 60 17 42 58 4273 190 6 103 23 44 5 5884 24 24 58 60 17 42 58 4273 190 52 104 23 15 1 3820 248 37 248 37 60 17 42 58 4273 190 52 104 23 15 1 3820 248 37 248 37 60 18 23 44 58 312 25 3322 250 87 60 18 35 12 25 0 87 60 18 36 12 25 0 87 60 18 36 12 25 0 87 60 18 36 12 25 0 87 60 18 36 12 25 0 87 60 18 36 12 25 0 87 60 18 36 12 25 0 87 60 18 36 12 25 0 87 60 19 15 8 43 41 195 5 100 23 42 34 3769 25 25 87 60 19 15 8 43 41 195 5 100 23 42 34 3769 25 25 87 60 19 15 8 43 41 195 8 111 23 8 111 3741 260 51 60 19 15 8 43 41 195 8 111 23 8 111 3741 260 51 60 19 15 8 43 41 42 19 8 111 23 8 111 3741 260 51 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						285 45
56 1 6 4 6 28 4410 187 52 100 28 38 44 3805 289 1 5 5717 0 50 4401 187 58 101 28 40 57 3882 241 4 5817 15 3 4892 189 21 102 28 44 44 3865 281 4 4 3865 242 58 59 17 20 1 4838 190 6 103 23 44 5 3854 244 48 3806 246 42 59 17 20 1 4838 190 6 103 23 44 5 3854 244 48 246 42 6017 42 58 4873 190 52 104 28 16 1 3840 246 42 246 42 6117 56 91 4861 191 39 105 27 106 23 45 26 3812 250 37 6218 10 1 4354 192 27 106 23 45 26 3812 250 37 6718 23 17 444 193 15 107 28 44 53 3798 252 37 6718 23 17 444 193 15 107 28 44 53 3798 252 37 6618 362 24 434 194 5 108 23 44 13 784 254 37 6618 39 26 44 13 378 4 254 37 6619 18 40 16 4324 194 55 109 23 42 34 3769 256 42 6619 18 58 43 41 195 45 100 23 40 37 375 258 47 6619 36 44 4293 197 33 112 23 35 113 371 260 51 260 32 6619 38 49 4282 198 26 113 23 31 47 3713 266 12 266 12 6619 38 49 4282 189 26 113 23 31 47 3713 266 12 26 12 269 36 12 26 12 269 36 12 26 12 269 36 12 26 12 269 36 12 26 12 269 36 12 26 12 269 36 12 26 12 269 36 12 26 12 269 36 26 12 26 26 12 271 20 2 2						287 27
57 17 0 50 4 401 188 36 101 28 40 57 8982 241 4 58 17 15 3 4892 189 21 102 28 4 4 4 3668 242 58 59 17 20 1 4888 190 6 108 28 4 5 3884 244 45 60 17 42 58 4873 190 6 104 28 4 1 3840 246 42 61 17 56 31 4864 191 38 105 28 4 28 3826 248 37 62 18 10 1 4854 192 27 106 28 45 28 3826 248 37 62 18 38 31 2 25 38 31 2 25 38 31 2 25 38 31 2 25 38 31 2 25 38 31 2 25 38 31 2 25 38 31 2 25 38 31 2 25 38 31 2 25 38 31 2 25 38 31 2 25 38 38 2 25 38 38 2 25 38 38 2 25 38 38 2 25 38 38 2 25 38 38 2 25 38 38 2 25 38 38 2 25 38 38 2 25 38 38 2 25 38 38 2 25 38 38 2 25 38 38 2 25 38 38 2 25 38 38 2 25 38 38 28 28 38 38 28 28					3995	289 15
5917 29 1 4898 409 190 6 61 103 28 44 5 3854 244 48 64 6017 42 58 246 42 64 22 611 1 3840 246 42 246 42 611 1 3840 246 42 246 42 611 1 3840 246 42 246 42 246 42 246 42 246 42 246 42 246 42 246 42 246 42 246 42 246 42 246 42 246 42 246 42 246 42 246 42 246 42 246 42 246 42 246 246			188 96	101 29 40 57	8882	241 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	58 17 15 3	4392	189 21	102 28 44 44	3868	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59 17 29 1	4383				244 49
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60 17 42 59	4273			3840	246 42
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	61 17 56 31				3826	248 37
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
65 18 49 16 48 24 194 55 109 28 42 84 3769 256 42 66 19 158 4314 395 45 110 28 40 37 3755 258 47 67 19 14 26 151 46 151						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65 18 49,16					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	66 19 1 58				3755	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
70 19 50 40 4271 199 23 114 23 27 50 3699 267 22						
71 20 2 19 4260 200 20 115 23 23 20 8654 269 30 72 20 18 44 4249 201 10 116 23 18 17 3670 274 50 78 20 24 54 4288 202 16 117 23 12 44 3656 274 8 74 20 35 52 4227 2C3 16 115 23 6 37 3642 276 22						
72 20 18 44 4249 201 10 116 23 18 17 3670 274 50 78 20 24 54 4288 202 16 117 23 12 44 3656 274 3 74 20 35 52 4227 20 16 117 23 6 37 3642 276 22						
78 20 24 54 4288 202 16 117 23 12 44 3656 274 3 74 20 35 52 4227 263 16 115 23 6 37 3642 276 22						
74,20 35 52 4227 263 16 118 23 6 37 3642 276 22						
				117 23 12 44		
75 20 46 84 4215 [204 17] 119 22[79 57] 3628 275 41						
	75 20 46 84	4215	204 17	119 22[19 57]	1628	275 141

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				_				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	190	22 52 45	.9614	201	151	14 94 54	.9996	951 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
181 20 55 34 3462 307 10 162 9125 10 8136 368 18 182 20 41 26 3449 309 34 163 855 38 3130 369 22 183 20 26 43 8436 312 36 164 8 25 47 3124 376 27 134 20 11 22 -8428 315 38 165 7 55 40 -8118 971 32 136 19 38 59 -8397 320 19 167 65 4 31 -8112 972 27 137 19 21 52 -3334 321 59 163 6 23 37 -3102 874 15 139 18 46 7 -3959 325 55 170 5 21 7 -8094 375 58 140 18 27, 21 -3347 828 11 171 449 33 -8091 376 16 141 18 759 -3352 380 27 172 417 50 3088 376 42 142 17 48 5 -3323 332 37 173 34 5 77								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	130		3475	304 45	161			366 59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	131	20 55 34	3462	307 10	162		·3136	368 18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	132	20 41 26	.8449	309 34	163		-3130	369 22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	133	20 26 43	-3436	312 36	164	8,25,47	·3124	876127
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	134	20 11 22	-3423	315,38	165	7 55 40	.3118	371 32
136 19 38 59 .3997 320 19 167 6 54 31 .8107 878 21 137 19 2152 .3834 321 59 168 6 23 37 .3102 874 15 139 18 46 7 .3959 325 55 170 5 52 14 8098 374 55 140 19 27 21 .3347 328 11 171 4 49 33 .8091 376 16 141 18 7 59 .3935 390 27 172 4 17 50 3088 376 42 142 17 48 5 .3828 32 37 173 34 55 .3082 377 83 143 17 27 39 .3812 384 17 174 3 13 58 .3082 377 83	135	19 55 30	.3410	318 39	166	7 25 14	.3112	372 27
187 19 21 52 -3894 321 59 168 6 28 387 8102 874 15 189 18 4 19 -3872 323 39 169 5 52 34 -8098 874 55 139 18 46 7 -3959 325 55 170 5 21 7 -8094 975 375 375 140 18 7 29 -3395 8302 17 172 4 49 38 -8091 876 16 141 18 7 59 -3395 8302 377 172 4 17 50 3088 376 42 14 17 50 3088 376 42 14 17 50 3088 376 42 14 17 50 3085 376 42 30 34 57 30 377 8 35		19 33 59	-3397	320,19	167	6 54 31	3107	873 21
133 19 4 19 -3872 323 39 169 5 52 84 -8098 874 55 139 18 46 7 -3859 325 55 170 5 21 7 -8094 975 95 140 18 27 21 -3847 828 11 171 4 49 33 -8091 876 16 141 18 7 59 -3935 830 27 172 4 17 50 3088 376 42 142 17 48 5 -9823 382 37 173 3 45 57 -8095 977 8 143 17 27 39 -3312 381 47 174 3 13 58 -3082 377 83	137	19 21 52	-3334	321.59	163	6 23 37	-3102	874 15
139 18 46 7 .3959 325 55 170 5 21 7 .3094 .375 35 140 19 27 21 .3347 828 11 171 449 33 .3091 876 16 141 18 7,59 .3335 830 27 172 417 50 3088 376 42 142 17 48 5 .3823 382 37 173 345 57 .3095 977 8 143 17 27 39 .3312 334 47 174 3 13 58 .3082 .377 8		19 4 19			169	5 52 84	-8098	874 55
140 19 27 21 .3347 828 11 171 49 38 .8091 876 16 141 18 759 .3835 830 27 172 417 50 308 376 42 142 17 48 5 .3828 382 37 178 345 57 .3035 377 8 143 17 27 39 .3312 334 17 174 3 13 58 .3082 377 83		18 46 7			170	5 21 7	-3094	375 35
141 18 759 .3335 830 27 172 4 17 50 3088 376 42 142 17 48 5 .3323 382 37 173 3 45 57 .3095 377 8 143 17 27 39 .3312 381 47 174 3 13 58 .3082 377 83			.3347			4 49 33	-3091	876 16
142 17 48 5 .9829 382 97 173 345 57 .9085 377 8 143 17 27 39 .3312 381 47 174 3 13 58 .9082 377 83							3088	376 42
143 17 27 39 3312 33147 174 3 13 58 3082 377 83			-3323	332 37	173	3 45 57	-3035	377 8
					174	3 13 58	-3082	377 83
144 17 6:40: -3901 936 57 175 2 41 47 -3030 877 41	144	17 6 40	-3301	336 57	175	2 41 47	.3030	877 41
145 10 45 6 2 3289 389 5 176 2 9 82 3078 377 48						2 9 32	-3073	377148
146 16 23 1 3.3278 341 13 177 1 37 14 3077 377 55						1 37 14	-3077	377 55
147 16 0.23 -8267 343.20 178 1 4.51 -8076 377.57							-8076	377 57
148 15 37 16 3256 345 19 179 0 32 26 3075 377 59								
149 15 13 40 3246 347 18 180 0 0 0 3075 378 2								
150 14 49 31 3236 349 16								

In the example taken mean anomaly is 61°-5'-32' Entering the table with this argument, we have for 61° equation of centre as 17°-56'-31" and increase for 1° as 13'-30"

:. Equation for 61° __5' -- 32" = 17" -- 57' -- 46"

This is positive as the mean anomaly is within 180°. Adding this to the mean longitude, we have $6^*-92^*-23'-48''$ plus $0^*-17^*-57'-40''$ =: $6^*_5-10^*-21'-34''$; so also, we get radius vector as '4363 and velocity as 191'-45''. This velocity is subject to the following correction when less than the mean - Find the difference between the velocity got and the mean velocity 245'-32''. Multiply it by $\frac{1}{25}$. If the previously got velocity is less than the mean velocity, subtract the rectified velocity from the mean velocity

The result will be the correct velocity. In the example, difference between the velocity got and the mean velocity is 53'-47. Applying the multiplier we get

$$\frac{27}{25} \times 53$$
 8=58·1 or 58'—6"

subtracting it from the mean velocity we get 187'-26" as the velocity. There is a slight difference between this and that obtained trigonometrically, and it is due to the high value of the mean velocity. But this will not create any appreciable difference in the ultimate geocentric velocity.

REDUCTION.

Position of Node at epoch

Annual motion of Node

∴ Motion in 112 54 years

∴ Position of Node at birth

Position of Node at birth

0°-24°-58′-38°

= 6° 82 × 112 54

= 12′-48″

□ 0°-24°-40′-50°

.. Distance of planet in its own orbit from the Node is

 $6^{\circ}-10^{\circ}-21^{\prime}-97^{\circ} \text{ minus}$ $0^{\circ}-24^{\circ}-40^{\prime}-50^{\circ\prime}$ $NP = 5^{\circ}-15^{\circ}-40^{\prime}-47^{\circ\prime}$

tan NM=cos a tan NP

For i in the case of orbit of Mercury is 7

: tan NM=-cos 7° tan 14°-19′-13′ from which NM = 180°--0′--0″

... Heliocentric longitude corrected for reduction is 6°—10°—27′—46°, for TM=3°N+NM from the figure of page 128

The reduction can also be found out with the help of the Moon's reduction table and applying the multiplier 1 851, which will give the reduction to be made for Mercury

HELIOCENTRIC LATITUDE.

=84792830

∴PM=1°-43′-40″ N as Nodal distance is within 180°
∴SM=SP cos PŜM= 4301 cos 1°-43′-40″
= 4801 x 9995454 = 4350
SE = 101646 (see under Earth's radius vector)

MŜE=TSM-TSE+180° 2/
= (190°-27′-46″) - (80°-12′-22′)+180°
= 281°-6′-24″

ME2=MS2+SE2-2SE SM cos 281°-6′-24″
= (4359)²+ (101646)²-8718 x 1·01646 x cos (281°-6′)
= 19001+1 032-17066, [for cos 281°-6′= cos 78°-54′
= sin 10°-6′= 1990]

=1·05145

∴ME=
$$\sqrt{103143}$$
=1 0251

We have sin SME= $\frac{SE}{ME}$ sin MŜE
= $\frac{101646}{10251}$ sin 281°-6′-24″
= $\frac{101646}{10251}$ x - '9812708=- 973
= sin (-76°-38′-20′) ∴ SME=-(76°-38′-20″)
∴ $\frac{SME}{ME}$ = (6°-10′-27′-46″ + (-70°-39′-20″)
= 6°-10′-27′-46″ minus
2″-16′-38′-20′

=9 0858945+ 9 3933885-

3°-23'-47'-26'

This is the true geocentric longitude of Mercury

The principle in taking the correct value of $S\widehat{ME}$ has been observed here For, $\angle MSE=281^{\circ}-6^{\circ}-24^{\circ}$. This being greater than 180°, subtract from 360°. We get $78^{\circ}-58^{\circ}-36^{\circ}$. $\angle ZME$ has been found out to be $78^{\circ}-39^{\circ}-20^{\circ}$. Then $\angle MES$ will be $180^{\circ}-(70^{\circ}-39^{\circ}-20^{\circ}+78^{\circ}-35^{\circ}-36^{\circ})$ which is equal to $24^{\circ}-27^{\circ}-44^{\circ}$. We require that $\angle SME$ should be greater than $\angle MES$ in magnitude which is found to be true. Hence the value

of \(\sumset SME taken by us is correct \) If we had not had this condition satisfied we should have taken the supplement of the \(\sumset SME \) arrived at

GEOCENTRIC LATITUDE.

tan
$$\angle$$
 PSM (Hel lat) = $\frac{PM}{SM}$ (i. e.) PM=SM tan PSM
but $\frac{PM}{EM}$ = tan Geo latitude

∴ tan (Geo latitude)=
$$\frac{SM}{EM}$$
 tan PSM
= $\frac{.4359}{1.0251}$ × tan 1°-43 - 40′ = $\frac{.4359}{1.0251}$ × *0391646
= *0128205 ∴ Geo latitude = 0-44′-5″

GEOCENTRIC VELOCITY.

This=Velocity of *I'SM+Velocity of SME

but rate of change of ZSME or velocity of ZSME

$$= \underbrace{\begin{bmatrix} SE & \cos MSE \\ ME & \cos SME \end{bmatrix}}_{COS SME} - \underbrace{\frac{SM SE}{ME^2} \cos SME}_{COS SME} \end{bmatrix} \times \left(\begin{array}{c} \text{rate of change} \\ \text{of } \angle MSE \end{array} \right)$$

$$= \underbrace{\begin{bmatrix} 1.01046 \\ 1.0251 \end{bmatrix}}_{COS SME} \times \underbrace{\frac{19.06}{2.900}}_{COS SME} - \underbrace{\frac{4.59 \times 1.01646}{2.900}}_{COS SME} \times \underbrace{\frac{(9813)^2}{2.900}}_{COS SME} \times \underbrace{\frac{(125' - 40')}{2.900}}_{COS SME} \times \underbrace{\frac{(125' - 40')}{2$$

It should be observed that in the expression written here above for the velocity of \angle SME only the first term viz $\frac{SE}{ME}\cos SME$ was given under Mars as the other term varies numerically between thevalues. It to 25 nearly, taking even the most favourable conditions. It is desirable that the elaborate formula only should be used but except for Mars among the major planets the first term is quite sufficient. For Mercury and Venus the entire expression has to be used always. It was therefore why the second term was not spoken of at all under Mars. Even it had been taken the difference in the final geocentric velocity would have been very negligible say 3'. At certain times near the stationery points where the bodies appear to move with zero velocity it would be worth while to use the entire expression.

Considering the labouriousness of the working even the ephimeris give only the daily longitudes of planets and the velocity is got as the difference of the longitudes on any consecutive days but it will fail to give the exact geocentric velocity at a particular instant unless it be with the above detailed formula

Chapter XV.

ILIPITER.

FLEMENTS

I Mean longitude of Jupi	iter at epoch	20 - 50 - 5
2 Mean Hel longitude of	Apse	5-204-37
3 Mean Hel longitude of	f Node	2-17-22-44
4 Length of semi major as	xis	5 2028
5 Excentricity of orbit		= 04833
6 Inclination of orbit to ed	cliptic	=1°-19
7 Annual motion of Apse	:	=663(+)
8 Annual motion of Nod	le	=14"4 ()
9 Periodic time		=4332585 days
No of days from epoch Periodic time	_41101 82153 =4332 585	
No of revolutions	$=\frac{4110182153}{4232585}$	
	=9 48667	

Converting decimal portion of a revolution to signs etc. we get $5^s-25^\circ-12-4$ to which if the epoch mean position viz $2^s-0^\circ-50-57^\circ$ be added we get $7^s-26^\circ-3-1^\circ$ as the mean longitude of Jupiter

HINDU METHOD.

Divide the number of days from epoch by 360 The quotient will be signs. With the remainder we get degrees etc. Let this be A. Again divide the number of days by 67. The quotient will be minutes and the balance if any is converted to seconds. Let this be B. Then (A—B) will be the mean motion of Jupiter. The Empirical correction is 401—33° for 1000 000 days additive.

revo
(B)
$$\frac{1110183153}{67} = 613\frac{3082153}{67}$$
 minutes of arc $= 10^{\circ} - 13 - 28^{\circ}$
A-B $= 5 - 21^{\circ} - 55 - 58^{\circ}$
Empirical correction $= \frac{41101 \times 10155}{1000000}$
 $= 16 - 30 \text{ (+)}$
Rectified motion $= 5 - 25 - 12 - 8$
Epoch position $= 2 - 0 - 50 - 57$
Correct mean longitude of Jupiter at birth $= 7 - 25 - 8 - 5$

The बद्धाणस्त्रातस्यहुन्द correction is got by multiplying the net result 28-7 (+) by Jupiter's mean velocity 4-59 and dividing by 216000 in the present example it is $\frac{28-7^{\circ}\times4-59}{21600}=4$ of a second. As this is very neligible the previously arrived at mean longitude is sufficiently accurate

EXAMPLE

TUUUU days	2-25-39 - -5
1000 days	2-23-5-29
100 days	08-18-33
1 days	00-459
82153 day	00-46
Mean motion	5-25-12-10
Epoch	20-50-57
Mean long tude	7-26-37

TABLE OF JUPITERS' MEAN MOTION.

Periodic time of Jupiter = 4332 585 days

Day,	s	Degrees	Vinutes	Seconds	Digs	s	Degrees	Vinutes	Seconds	Pays	8	Degrees	V nutes	Secon 1s
1	0	0	4	59	300	0	ı .24	55	89	50000	6	14	33	49
2	0	0	9	58	400	1			12	60000	10	5	28	
3	0	0	14	57	500	1	11	32	45	70000	1	26	23	21
4 5	0	0	19	56	600	1	19	51	17	80000	5	17	18	6
5	0		24		700	1	28	9	50	90000	9	8	12	52
G	0		29		800	2			23	100000	0	29	7	38
7	0		34		900	2		46	56	200000			15	
8	0	0		58	1000	2			29	300000			22	54
9	0	0		52	2000				57	400000		26		32
10	0	0		51	3000	8			26	500000			38	
20	0	1		42	4000				54	600000			45	
80	0	2		34	5000				28	700000			53	26
40	0	3		25	6000				52	800000		23		4
50	0	4		16	7000				20	900000		22		42
60	0		59		8000				49	1000000	9	21	16	20
70	0			58	9000			49						
80	0			50	10000				46	1	V			
90	0			41	20000		11	49			1			
100	0			33	30000				17					
200	0	16	37	6	40000	ի 2	23	89	3			ì		

CORRECTION TO MEAN JUPITER DUE TO SATURN'S ATTRACTION.

As Jupiter and Saturn are the two biggest planets of the Solar system and as they are also neighbours to each other the natural attraction between each other affects the mean position of either which cannot be overlooked if a correct value of their true longitude were required

Jupiter's correction will be

 $-20 8 \sin t (5s-2j)-1 3783 \sin tH-h)$

 $+3405 \sin 2(H-h) + 283 \sin 3(H-h)$

where t is the number of years passed after 1558 March and (H-h) = 18° 129 × (t-21175) — $(41^{\circ}-11')$ and (53-2j) = 407492b

In the present instance the year of birth is 1912 July wherefore t = 1912 July -1558 March = 35433

.. Corrected mean longitude of Jupiter =73-26°-17'-31"

POSITION OF APSE.

Mean motion per year = $+6^{\circ}63$ Mean motion in 11254 years = $12-26^{\circ}(+)$ H longitude of Apse at epoch = $5^{\circ}-20^{\circ}-4^{\circ}-37^{\circ}$ = $5^{\circ}-20^{\circ}-17^{\circ}-3^{\circ}$ minus 7-26-17-31 = 9-23-59-32 = $298^{\circ}-59-32$

Equation of centre for Jupiter whose excentricity is 04833 is 2 sin nt (9966 – 599 cos nt) + 26 sin 3 nt It the present case,

sin nt = sin (293° – 59′ – 32″)

= sin (360° – 66° – 0′ – 28″)

= cos (66° – 0′ – 28″ = 9136007

Cos nt = cos (293° – 59′ – 32″)

= cos (360° – 66° – 0′ – 28″ = sin 23° – 59′ – 32″

= '4066126

sin 3nt = sin (881° – 68′ – 36″)

= sin (720° + 161° – 58′ – 36″)

:.Equation of centre= $2 \times -9136007 (9966-599 \times 4066) +26 \times 3094$

 $= \sin 161^{\circ} - 58' - 86''$ = $\sin 18^{\circ} - 1' - 24'' = 3094042$

$$=-17764"+8"=-17756"$$

=-295'-56"=-4"-55'-56"

Applying to the mean longitude we get as the True Helo longitude (7°-26°-17'-31"

TO OBTAIN THE RADIUS VECTOR.

Radius vector= $\frac{\alpha(1-e^2)}{1-e\cos\theta}$ where α for Jupiter is 5.2028 and

e = 04833

$$\therefore \text{ Radius vector} = \frac{5 \, 19064}{1 - e \cos \theta}$$

$$= \frac{5 \, 19064}{1 - 04833 \cos 298^{\circ} - 55' - 28^{\circ}}$$

$$= \frac{5 \, 19064}{1 - 04833 \times 4847} = \frac{5 \, 19064}{976735}$$

$$= 5 \, 8142$$

From the tables equation of centre for argument 66°-0'-28" of the mean anomaly is found out thus -

for 66° equation of centre is 4°-58*-56" for 67° do is 4°-58-27

.. for 66"_0'_28" it is 4"_55'_56"

The radius vector is directly read as 5314 and the Hel Velocity as 4'-46 The Velocity is derived trigonometrically from the formula $299-29\cos nt + 2\cos 2nt$ As the mean velocity of Juptier is not very great the results got from the tables will serve the purpose

TABLE OF EQUATION OF CENTRE OF JUPITER, HELIOCENTRIC VELOCITY AND RADIUS VECTOR.

Arg — Mean anomaly If greater than 180° then its defect from 360° will be the argument but the equation of centre will be negative

			_					-	
ĺ	I q nation	1	-		i	Fg ration			lel
Den	of Centre	la lius lect r	lek	e ir	Deg	of Centre	Ra lins Vector	١e	locity
	- 1	1		•	I	۱ <u></u>			
	1 1 1]				
0	0 0 0	5 453	4	32	35	3 1 34	5 411	4	36
1	0 5 28	5 453	4	32	36	3 6 9	5 409	4	36
2	0 10 56	5 452	4	32	37	3 10 42	5 4 0 6	4	36
3	0 16 25	5 452	4	32	38	3 15 13	5 404	4	87
1	0 21 52	5 452	4	32	89	3 19 40	5 401	4	37
5	0 27 19	5 451	4	32	40	3 24 3	5 398	4	37
6	0 32 46	5 151	4	32		3 28 24	5 39 6	4	38
7	0 38 12	7450	4	32		3 32 41	5 393	4	38
8	0 43 33	5 4.00	4	32	43	3 36 55	5 390	4	38
9	0 49 4	5450	4	32	44	3 41 6	5 388	4	39
10	0 54 29	5 4 4 9	4	32	45	8 45 12	5 385	4	89
11		5 448	4	32	46	3 49 15	5 382	4	89
12		5 448	4	32	47	3 53 15	5 379	4	40
13		5 447	4	33	13	3 57 11	5 376	4	40
14	1 15 58		4	38		4 1 2	5 878	4	41
15		6 445	4	33	50	4 4 50	5 370	4	41
16		5 444	4	33	51	4 8 34	5 367	4	41
17	1 31 52	5 442	4	33	52	4 12 15	5 364	4	42
13			4	33	53	4 15 51	5 361	4	42
19	1 42 21	5 440	4	33	54	4 19 23	5 357	4	42
20	1 47 33	5 433	4	33	55	4 22 50	5 354	4	42
21			4	33	56	4 26 13	5 350	4	43
22	1 57 53		4	34	57	4 29 32	5 347	4	43
23	2 3 0	5 434	, 4	34	58	4 32 17	5 343	4	43
24	2 8 5	5 433	4	34	59	4 35 56	5 340	4	44
25	2 13 9	5 431	4	34	60	4 39 2	5 336	4	44
26	2 18 10	5 4 3 0	4	34	61	4 42 3	5 332	4	45
27	2 23 9	5 428	4	34	62	4 4 4 59	5 329	1	45
28	2 28 5	5 426	4	35	63	4 47 50	5 325	4	45
29		5 424	4	35	64	4 50 37	5 821	4	46
30	2 37 52	5 422	4	35	65	4 53 18	5 318	4	46
31		5 420	4	35	66	4 55 56	5 314	4	46
32		5 4 1 8	4	36	67	4 58 27	5 310	4	47
38		5 416	4	36	68	5 0 52	5 306	4	47
34		5 414	4	36	69	5 3 15	5 302	4	48
	1 -1 -1		_	-	1			_	

1						1
70	5 5 31	5 298	4 48	114 5 10 47	5 111	5 10
71	5 7 43	5 294	4 48	115 5 8 37	5 107	5 10
72	5 9 49	5 290	4 49	116 5 6 22	5 103	5 11
73	5 11 49	5 286	4 49	117 5 4 1	5 099	5 11
74	5 13 44	5 282	4 49	118 5 1 34	5 095	5 11
75	5 15 85	5 278	4 50	119 4 59 1	5091	5 12
76	5 17 20	5 274	4 50	120 4 56 21	5 087	5 13
77	5 18 59	5 270	4 51	121 4 53 36	5 083	5 13
78	5 20 32	5 266	4 52	122 4 50 46	5 079	5 13
79	5 22 0	5 262	4 52	123 4 47 49,	5 075	5 14
80	5 23 21	5 257	4 53	124 4 44 46	5 071	5 15
81	5 24 34	5 253	4 53	125 4 41 38	5 068	5 15
82	5 25 49	5 249	4 54	126 4 38 24	5 064	5 16
83	5 26 55	5 244	4 55	127 4 35 5	5 060	5 16
84	5 27 56	5 240	4 55	128 4 31 39	5 057	5 17
85	5 28 53	5 236	4 56	129 4 28 8	5 058	5 17
86	5 29 35	5 2 3 1	4 56	130 4 24 32	5 049	5 18
87	5 30 17	5 227	4 56	131 4 20 51	5 046	5 18
88	5 30 52	5 223	4 56	132 4 17 4	5 0 4 2	5 19
89	5 81 22	5 218	4 57	133 4 13 12	5 039	5 19
90	5 31 46	5 214	4 57	134 4 9 15	5 035	5 20
91	5 32 4	5 210	4 57	135 4 5,12	5 032	5 20
92	5 32 16	5 205	4 58	136 4 1 5	5 029	5 20
93	5 32 22	5 201	4 59	137 3 56 52	5 025	5 21
94	5 32 28	5 197	5 0	138 3 52 34	5 022	5 21
95	5 32 21	5194	5 1	139 3 48 12	5 019	5 22
96	5 32 4	5 188	5 1	140 3 43 45	5016	5 22
97	5 81 45	5 184	5 1	141 3 39 14	5 013	5 22
98	5 31 20	5 181	5 2	142 3 34 37	5 0 1 0	5 23
99	5 30 49	5 175	5 2	143 3 29 56	5 007	5 23
100	5 30 12	5 171	5 3	144 3 25 11	5 004	5 24
101	5 29 29	5 166	5 3	145 3 20 21	5 001	5 24
102	5,28 40	5 162	5 4	146 3 15 27	4 999	5 25
103	5 27 44	5 158	5 4	147 3 10 29	4 996	5 25
104	5 26 44	5 153	5 5	148 3 5 27	4 994	5 25
105	5 25 35	5 149	5 5	149 3 0 21	4 991	5 25
106	5 24 20	5 145	5 6	150 2 55 11	4 989	5 26
107 108	5 23 0	5 140	5 7	151 2 49 58 152 2 44 40	4 987 4 984	5 26 5 26
	5 21 34 5 20 2	5 186	5 7 5 7			5 26
109 110	5 20 2 5 18 23	5 132 5 128		153 2 39 20 154 2 33 56	4 982 4 980	5 27
111	5 16 38	5 128	5 8	155 2 28 28	4 980	5 27
112	5 14 46	5 124	5 9	156 2 22 56	4 976	5 27
113	5 12 50	5 115	5 9	157 2 17 28	4 974	5 27
119	0,12 50	0 110	9 9	191 7 11 29	2014)	0,21

POSITION OF NODE

At epoch
$$= 2^{4}-17^{6}-22^{7}-41^{8}$$

Annual motion of Node \therefore Motion in 112 54 years \therefore Position at birth $= -14^{8}\cdot4\times112$ 54 = $-27^{7}-1^{8}$
 \therefore Position at birth $= 2^{8}-16^{8}-55^{7}-43^{8}$

REDUCTION. Heliocentric longitude of Jupiter 7*-21°-21′-35′

Langitude of Node

:.NM=154°-26'-13

∴ Nodal distance (NP) =
$$5^*-4^*-25'-52''$$

∴ $\tan NM = \cos i \tan NP$, where $i = 1^*-19$
= $\cos 1^*-19' \tan 164''-25'-52''$
∴ $\tan NM = L \cos 1^*-19' + \tan 154''-25'-52''-10$
= $9.9998853 + 9.6798386 - 10$
= 9.6797239
= $L \tan 154''-26'-13''$

.. True Heliocentric longiture of Jupiter along ecliptic

longiture of Jupiter along ecliptic
$$\begin{cases}
154^{\circ}-26'-13' & plus \\
76^{\circ}-55'-43' & plus
\end{cases}$$
= 231°-21'-56'=7°-21°-21'-56'

= 5°-4°-95'-53"

This can also be done by finding out the reduction from the Moon's reduction table with the same Nodal distance but applying the multiplier

 $\mathbf{T}_{\mathbf{b}}$ to the reduction therefrom obtained. The multiplied reduction should be applied to the orbital Hel. Longitude of the planet previously obtained

TO FIND LATITUDE.

This is the geocentric longitude of Jupiter

GEOCENTRIC VELOCITY.

This is=Velocity of Z TSM+Velocity of Z SME

=
$$\left(4'-16\right) + \frac{101646}{45568} \frac{\cos MSE}{\cos SME} \times \text{Rate of change } \angle MSE$$

= $\left(4'-46'\right) + \frac{101616}{45568} \times \frac{.7880}{.9905} \times \left(-52-28'\right)$

[beacause rate of change of \angle MSE = the difference of the Hel velocities of the planet and the earth]

Thus the planet is retrogade

GEOCENTRIC LATITUDE.

$$\frac{PM}{5M} = \tan \angle PSM \text{ and } \frac{PM}{EM} = \tan \angle PEM$$
∴ $\tan \angle PEM = \frac{SM}{EM} \tan \angle PSM$

$$= \frac{53!4}{45508} \times \tan 34' - 6''$$

$$= \frac{53!4}{45508} \times 0099196$$

$$= 0113487 = \tan 39' - 1''$$

.: LPEM=39'_1' This also N or + c as the Hel Latitude is

Chapter XVI.

VENUS.

ELEMENTS

1	Mean menocentric tonguide at epoch	4-4-58-30
2	Mean Hel longitude of Apse	9-17-42-4
3	Mean Hel Innutrade of Node	1-93-50-24

4	Length of semi major axis	·7233
5	Excentricity of orbit	-00681
6	Inclination of orbit to ecliptic	3°—23′ 6
7	Periodic time	224.700 days
8	Annual motion of Apse	-1"52
9	Annual motion of Node	19" 14
No	of days from epoch =	11101 82153

=224 700 days

No of revolutions $=\frac{4110182153}{224700} = 182918645$ Converting this fraction of a revolution we get $11^{\circ}-0^{\circ}-42^{\prime}-44^{\prime}$, to which if the epoch position $4^{\circ}-4^{\circ}-55^{\prime}-30^{\circ}$ be added we get $3^{\circ}-5^{\circ}-41^{\prime}-14^{\prime}$ as the mean longitude at birth

HINDU METHOD.

Divide the number of days by 225 and leave off the quotient with the remainder get signs etc. Again divide by 471 and get degrees etc. These two when added give the mean motion for the required no of days. The empirical correction for 1 000 000 one days is 782 – 22. additive.

$$\frac{41101}{225} = 152 \frac{151}{225} = 8^{\circ} - 1^{\circ} - 36 - 0^{\circ}$$

$$\frac{41101}{471} = 87^{\circ} \frac{124}{471} = 2 - 27 - 15 - 48$$

$$= 10 - 28 - 51 - 48$$

In 82153 of day at 96 -8" per day 1-18-51

Empirical correction

Periodic time of Venus

Adding we get mean motion = $11^{\circ}-0^{\circ}-42'-51'$ Epoch position = 4-1-58-30

Mean position of Venus = 3-5-41-21

चरप्राणक्लांतरदेशांतरादि is 28'-7"धनं Therefore the correction due to this is $\frac{26'-7"\times96'-8"}{21000}=8"$ t+) Adding this we get Mean longitude of Venus at brith corrected to the observer is $3^{\circ}-5^{\circ}-41'-14'$ plus $8=3^{\circ}-5^{\circ}-41'-29$

TABLE OF MEAN MOTION OF VENUS.

Periodic of revolution = 224 700 days

Day	Desters V nutes	Scon 18	Days s	Degrees Vinutes Secon Is	Dake a Street of street
1 2 3 4 4 5 6 6 7 7 8 9 9 10 20 30 60 60 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	0 6 2 2 0 8 0 0 11 12 0 12 14 0 14 25 0 16 1 1 12 2 2 10 6 3 22 8 4 8 10 4 24 1 5 10 12	15 23 31 31 39 46 25 40 17 34 17 34 17 34 17 34 17 34 18 18 18 18 18 18 18 18 18 18 18 18 18	500 600 700 800 1000 1000 600 6		50000 6 48 98 60000 0 10 13 40 90000 6 12 15 23 100000 0 10 13 37 5 200000 110 51 16 40000 1 10 51 16 40000 2 6 5 27 600000 2 714 11 300000 1 10 51 16 40000 2 6 5 27 600000 2 13 10 51 19 85 800000 1 10 10 10 10 10 10 10 10 10 10 10
	1 1 1			1 1 1 9	

FROM THE TABLES

		9 0 "
	40000 days	05-26-50
	1000 days	5-128-10
	100 days	5-10-12-49
	i day	01-368
		10-29-23-57
	82153 day	0-1-18-54
		11-0-42-51
Epoch		4-4-58-30
		35-41-21

Correction

+8

Mean longitude of Venus at birth

3--5-41-29

This is very nearly that of the other method

POSITION OF APSE.

At epoch $9^{\sharp}-17^{\circ}-12'-4'$ Motion in 11254 years @ -1° 52 per year = 2-61'∴ Position of Apse at birth $= 9^{\sharp}-17^{\circ}-89-13'$

Mean anomaly

=- 587" =- 9'-47"

=
$$\begin{cases} 9-17-39-13 \text{ minus} \\ 3-5-41-22 \end{cases}$$

= $6-11-57-51$
or $191^{\circ}-57'-51'$

Equation of centre for Venus whose excentricity is 00681 in given by the formula $\sin nt$ (2809— $24 \cos nt$) in seconds of arc

In the present case $nt = 191^{\circ}-57'-51''$ and

Applying this to the mean longitude of Venus we get 3'-5°-41-22

RADIUS VECTOR.

$$i = \frac{a(1-e^2)}{1-e\cos\theta}$$
, where $a = 7233$ and $e = 00681$ for venus

It reduces to $\frac{.72327}{1-.00681}$ cos θ where θ in the true anomaly

In the present case True anomally =
$$\begin{cases} 9^{\circ}-17^{\circ}-39^{\prime}-18^{\prime}-\\ 3^{\circ}-6^{\circ}-31^{\prime}-35^{\circ} \end{cases}$$

$$= \frac{6^{\circ}-12^{\circ}-7^{\prime}-38^{\circ}}{192^{\circ}-7^{\prime}-38^{\circ}}$$

$$= \frac{192^{\circ}-7^{\circ}-38^{\circ}}{192^{\circ}-7^{\circ}-38^{\circ}}$$

HELIOCENTRIC VELOCITY.

This is given by the formulae in mts of arc as $(90^{\circ} 13 - 1^{\circ} 31 \cos nt)$ In the present case $\cos nt = \cos 191^{\circ} - 57 - 51$

=
$$-\cos 11^{\circ}$$
 - $57'$ - $51''$ = - 9783
... $| 96' 13 + 1' 28 = 97' 41 = 97 - 25$

We shall now arrive at all these things from the tables appended below

TABLE OF EQUATION OF CENTRE, RADIUS VECTOR AND HELIOCENTRIC VELOCITY OF VENUS.

Arg — Mean anomaly If more than 180° the defect from 360° will be the argument to refer to the table but the equation of centre will be then negative

Deg	Fquation of Centre			Radius Vector	Nels Nels	el ocity	Deg of Ce				Radius Vector	Hel Velocity	
0	0	0	0	7283	94	50	16	0	12	48	7281	94	53
3	0	0	49		94	50	17	0	13	35	7281	94	54
2 3	0	1	37	7283	94	50	18	0	14	21	7281	94	54
3	0	2	26	7283	94	50	19	0	15	7	7281	94	55
4	0	3	16	7283	94	50	20	0	15	33	7280	94	55
5	0	4	3	7283	94	51	21	0	16	40	7780	94	56
6	0	4	51	7283	94	51	22	0	17	24	7280	94	56
7	0	5	39	7283	94	52	23	0	18	9	7279	94	57
8	0	G	28	7283	94	52	24	0	18	54	7279	94	58
9	0	7	16	7283	94	52	25	0	19	38	7279	94	58
10	0	8	4	7283	94	52	26	0	20	22	7278	94	59
11	0	8	51	7282	94	52	27	0	21	G	7278	94	59
12	0	9	39	7282	94	52	28	0	21	49	7278	95	0
13	0	10	27	7282	94	53	29			32	7277	95	0
14	0	11	14	7282	94	53	30		23		7276	95	1
15	0	12	1	7282	94	53	31	0	23	56	7276	95	1

_										
	32	024	00	·7275	95	2	76 0 45 21	.7246	95	40
	33	0 25		-7275	95	2	76 0 45 21 77 0 45 32	.7245		48
	31	0 26		7275	95	3	78 0 45 48	.7244	95	50
	35	0 26		·7275	95	4		.7244		52 54
	36	0 27				G		.7243	95 95	55
	37	0 27			95		80 0 46 2			
	38			.7274	95	G 7	81 0 46 11 82 0 46 18	-7242	95	57
	39	0 25		7273	95	7		-7241	95	58
	40	0 29		-7278	95	S	83 0 46 25	·7240	95	59
		0.30			95	9	84 0 46 31	.7239	96	0
	11		8		95		85 0 46 36	·7288	96	1
	42			7271		10	86 0 46 40	.7237	96 :	2
	43	0'31			95		87, 014644	.7237	96	8
	44	0 32	19	7270		11	88,0 46 47	7236	96	ã
	45	0/32			95	12	89 0 46 48		96 [6
	16	0 33		·7268	95		90 0 46 49	.7234	96	8
	47	0'84	2	·726S	95	155	91 0 46 49	.7233	96	9
	48	0,84			95		92 0 46 48	7232	96	11
	49	0 35	8			17	98 0 46 47	7281	96	13
	50	0 35				18	94 0 46 44	.7230	96	11
	51	0,36	11	·7265	95			.7229		15
	52	0,36			95	19	96 0 16 36	.7229		16
	53	0 37		.7269	95	20		.7228		17
	51	0.87		·7268		22	98 0 46 25	.7227		18
	55	0 38		·7262		23	99 0 46 18	.7226		19
	50	0 88		·7262		25	100, 0,46 11	.7225		21
	57	0 39		·7261	95	26	101 0 46 2	.7224		24
	58	0 39			95	27	10210 45 58	7224		26
	59	0 39		·7260	95	25	103 0 45 42	-7223		26
	60	0 40			95	25	10410 45'31	.7222	96	
	61	0 40	11	•7258	95	29	105 0 45 19	7221		27 29
	62	0 41	10	.7257	95	30 31	106 0 45 7 107 0 44 58	·7220 ·7219		30
	63	0 41	ฮฮ	•7256	95		107 0 44 58	·7219		อบ 32
	64	0 41		.7255	95	33 34	108 0 44 39 109 0 44 24	·7215		32 33
	65	0 42		-7254	95 95	36	109 0 44 24	.7216		оо 34
	66 67	0 42 5		·7254 ·7253	95	37	111:0 43:50	·7216		35
	68	0.43	16	-7252	95	38	112 0 43 33	.7215		37
	69	0 43		-7252	95	39	113 0 43 14	.7214		38
	70	0 43		·7252	95	41	114 0 42 55	-7214		ao 40
	71	044	9	·7250	95	43	115 0 42 35	7213	961	
	72	044		-7249	95	44	116 0 42 14	.7212	96	
	78	0 44		.7249	95	45	117 0 41 53	.7211		45
	74			.7248	95	46	118 0 41 30	.7210		45
	75		7	7247	95	46	119 0 41 7		96	
		0110		!						

	. '					1						l l
120		40		-7209	96	46				7190	97	18
121	0	40		7208	96	48	152	0	22' 9	7189	97	18
122		39		7207	96	49	153	0	21 25	7189	97	18
128	0	89	27	7206	96	51	154	0	20 41	7189	97	19
124		39	0	7205	96	52		0	19 56	7188	97	20
125	0	38	32	7204	96	53	156	0	19 11	7188	97	20
126	0	88	4	.7204	96	54	157	0	18 26	7187	97	20
127	0	37	35	·7203	96	55	158		17 41	7187	197	21
128	0	37	5	7203	96	57	159	0	16 56	7187	97	22
129	0	36	35	7202	96	58	160	0	16 8	7187	97	22
130	0	36	4	7201	96	59	161	0	15 22	8186	. 97	23
131	0	35	32	.7201	97	0	162	0	14 35	7186	97	23
132	0	35	0	7200	97	1	163	0	13 48	7186	97	24
133	0	34		7199	97	2	164	0	13 1	7186	97	25
134	0	33	53	7198	97	3	165	0	12 13	7185	97	25
135	0	39	18	7198	97	4	166	0	11 25	7185	97	26
196		32		-7198	97	5	167	0	10/37	7185	97	26
137		32	8	7197	97	6	168	0	9149	7185	97	26
198		31	32	7197	97	7	169	0	9 0	7185	97	26
139		30		7196	97	8	170	0	8,12	7184	97	26
140		30		7196	97	9	171	0	7 23	7184	97	26
141		29		·7195	97	10	172	0	6 84	7184	97	26
142		29	1	7194	97	11	179	0	5 45	.7184	97	26
149			22		97	13	174		4 56	7184	97	26
144		27		7198	97	14	175	0	4 7	7184	97	26
145		27	2	7192	97	14	176		3 19	7189	97	26
146		26	22	7192	97	15	177	0	2 28	7189	97	26
147			41		97	15	178		1 39	7183	97	26
148		24			97	16	179		0 49	7183	97	27
149		24		.7191	97	17	180	0	0 0	7189	97	27
150	0	123	85	7191	97	17	, ,			l l		

FROM THE TABLES.

Mean anomaly is 6°-11°-57'-51° or 191°-57'-51'

As this is more than 180° defect from 360° is $168^{\circ}-2-9^{\circ}$, this will be the argument to refer to the tables

Equation of centre for 168° is 0-9-49 and difference for 1° is 0-0-49 decreasing

Correct equation of centre for 168-2'-3 15 0'-9'-47 As the mean anomaly is greater than 180", the equation of centre is negative

...Subtracting it from the mean longitude we get 3°-5°-31'-35° as the true longitude. Against the same mean anomaly, the radipus vector and Heliocentre, Velocity are read as 7185 and 97-26"

POSITION OF NODE

At epoch $= 1*-23^{\circ}-50^{\circ}-24^{\circ}$ Annual motion $= -19^{\circ} 14$... Motion in 112 54 years $= -35^{\circ}.54$... Position of Node at birth $= 1^{\circ}-23^{\circ}-14^{\prime}-30^{\circ}$

REDUCTION.

True longitude of Venus (↑P) = 3°.-5°.-31′.-35″
Longitude of Node (↑PN) = 1°.-23°.-14′.-30′.
∴ Nodal distance (NP) = 1°.-12°.-17′.-5″
or 42°.-17′.-5″

tan NM=cos t tan NP, where t in this case of Venus' orbit is 8°-28'6

:.L tan NM = L cos
$$3^{\circ} - 23' \cdot 6 + L_{tan} \cdot 42^{\circ} - 17' - 5'' - 10$$

= $9.9992409 + 9.9587754 - 10$
= $9.9580163 = L_{tan} \cdot 42^{\circ} - 14' - 6'$

...True Heliocentric longitude of Venus referred to the ecliptic is

$$42^{\circ}-14'-6" plus$$

$$53-14-30$$

$$= 95-28-36$$

$$= 3^{\circ}-5^{\circ}-25'-36"$$

The reduction can also be got by using the multiplier $\frac{1}{3}$ to the reduction got from the Moon's tables with the Nodal distance of the planer as the argument

HELIOCENTRIC LATITUDE (PM)

 \therefore PM = 2°-19' (N). This is North or positive as the Nodal distance is less than 180°.

$$SM = SP \cos P\hat{S}M = 7186 \cos 2^{\circ}-19'$$

$$= 7186 \times 9991827 = 7180$$

$$SE = 1 01646$$

$$\angle MSE = \angle 1'SM - \angle 1'SE + 180°$$

$$= (95'' - 28' - 365') - (89'' - 21' - 22'') + 180°$$

$$= 186'' - 7' - 14''$$

$$\therefore ME^{2} = SM^{2} + SE^{2} - 2SM SE \cos \hat{M}SE$$

$$= (718)^{2} + (1 01646)^{2} - 2 \times 718 \times 1^{\circ}01646 \times \cos 186'' - 7' - 14''$$

$$(\cos 186'' - 7'' - 14'' = -\cos 6'' - 7' - 14'' = -9943)$$

$$\therefore ME^{2} = 5155 + 1^{\circ}032 + 1 4597 \times 9943$$

$$= 1^{\circ}5475 + 14514 = 29989 \quad \therefore ME = \sqrt{29989} = 17432$$

$$\frac{ME}{Sin \angle MSE} = \frac{SE}{Sin \angle SME} \cdot \sin \angle SME = \frac{SE}{ME} \sin \angle MSE$$

$$(e) \sin \angle SME = \frac{101646}{17439} \sin 186'' - 7' - 14''$$

$$= \frac{1^{\circ}01646}{17439} \times -\sin 6'' - 7' - 14''$$

In the △SME, ∠MSE =188°-7'-14" this being more than 180°; take the defect from 360 at is 173°-52'-46", ∠SME = 3°-3"-52".

= 101646×·1066208

= - .0621706 $= \sin (-3^{\circ} - 33' - 52')$ $\therefore \angle SME = - (3^{\circ} - 33' - 52)$

$$\therefore \angle SEM = 180^{\circ} - \overline{(173^{\circ} - 52' - 46'' + 3^{\circ} - 33' - 52')}$$

= 180° - (177° - 26' - 38", = 2° - 33' - 22"

Venus being an inferior planet the ZSME should be numerically always greater than ZSEM (see notes under Mercury). It is found to be satisfied in this case taking the numerical values only into consideration.

∴ Geocentric longitude =
$$^{\circ}$$
SM + SME
= $^{\circ}$ 5°-28′ 86′-
 $^{\circ}$ -83′-52′
= $^{\circ}$ -84′-44″ = 3°-1°-54′-42°

GEOCENTRIC VELOCITY.

Rate of change of
$$\angle$$
 SME
$$= \begin{bmatrix} \frac{SE}{ME} & \frac{\cos M\hat{S}E}{\cos S\hat{M}E} - \frac{SMSE}{ME^{-1}} \times \frac{\sin^{3}M\hat{S}E}{\cos S\hat{M}E} \end{bmatrix} \times \text{Diff of Hel velocities}$$

$$= \begin{bmatrix} \frac{1\cdot016\cdot16}{1\cdot74\cdot82} & \frac{\cos 186^{\circ} - 7' - 1 \cdot 1''}{\cos (-3^{\circ} - 3 \cdot 3' - 5 \cdot 2')} - \frac{\cdot718 \times 1\cdot016\cdot46}{(1\cdot74\cdot22)^{3}} & \frac{\sin^{2} \cdot 186^{\circ} - 7' - 14'}{\cos (-3^{\circ} - 33' - 52')} \end{bmatrix}$$

$$\times (97' - 25' - 57' - 14')$$

$$= \begin{bmatrix} \frac{1\cdot016\cdot46 \times -\cdot99\cdot13}{1\cdot74\cdot32 \times 99\cdot80} & \frac{\cdot718 \times 1\cdot016\cdot16 \times (-\cdot10.06)^{2}}{(1\cdot713\cdot2)^{3} \times \cdot99\cdot80} \end{bmatrix} \times (40' - 11')$$

$$= \begin{bmatrix} -\cdot5819 - \cdot00159 \end{bmatrix} \times 40' \cdot 18$$

$$= -\cdot58349 \times 40' \cdot 18 = -(23' - 28')$$

= (73'-57") GEOCENTRIC LATITUDE.

:. Geocentric Velocity = (97'-25") - (23'-28")

PM = tan ∠PSM and PM = tan ∠PEM

∴ tan ∠PEM =
$$\frac{SM}{EM}$$
 tan ∠PSM

= $\frac{718}{1748}$ (an 2°--19′ (N)

= $\frac{718}{1743} \times 0404555 = 016665$

∴ ∠PEM = 0°-57′-14′ (N)

This is the geocentric latitude of planet

Chapter XVII.

SATURN.

ELEMENTS

	ь
1 Mean Heliocentric longitude at epoch	3-122-23
Mean Hel longitude of Apse at epoch	88640
3 Mean Hel longuide of Node at epoch	30-58-16
4 Length of semi major axis	9 5547
5 Excentricity of orbit	05589
6 Inclination of orbit to the ecliptic	2°-49 9
7 Periodic time	10759 22 days
8 Annual motion of Apse	$=+16\ 10$
9 Annual motion of Node	=-18 57
No of days from epoch -41101 82153	
Periodic time = 10759 22 days	
'. No of revolutions = $\frac{4110182153}{1075922}$	
= 3820149	

Leaving off the no of exact revolutions and converting the decimal portion to signs set we get $9^{-2}5^{-1}5 - 13$. If to this epoch mean position $3^{-1}2^{-2} - 23^{\circ}$ be added we get mean longitude at birth as $1^{-7} - 17 - 36$

HINDU METHOD.

Divide the number of days by 900 we get signs etc. Again divide by 146 the number of days. The quotient will be minutes etc. The sum of the two will be the mean longitude. Empirical correction is 731 –9 for every 1,000,000 days, additive.

$$\frac{41191}{900} = 45 \frac{601}{900} = 45^{\circ} - 20^{\circ} - 2 - 0^{\circ}$$

$$\frac{41101}{140} = 291' \frac{124}{140} = 4 - 41 - 31$$

$$= 45 - 24 - 43 - 31$$

$$= 9 - 24 - 43 - 31$$
Motion in \$2153 of a day = 1 - 38

Adding we get = 9° - 24° - 45′ - 9

Empirical correction
$$=\frac{781' \cdot 15 \times 11102}{1.0000000} = 30' \cdot 3''$$

Effect of चरप्राणकलांतरहेशांतरवाहुकले is nil, because $\frac{25'-7'\times2'}{21600}=$ nil

... The mean longitude already obtained in sufficient, It is 1s-72-17'-36"

TABLE OF MEAN MOTION OF SATURN.

Periodic time = 10759 22 days

	_								
Days	*	Degrees	Seconds	Days	•	Degrees	Venutes	Secon 1s	Degrees Vanutes Secon ly
1 2 3 4 4 5 6 6 7 7 8 9 10 20 30 40 50 60 70 90 90 90 90 90 90 90 90 90 90 90 90 90	0 0 0 0	1 0 1 40 2 0 2 20 2 40 3 0	1 2 2 3 8 4 4 5 9 14 18 23 32 32 37 44 1 56	300 400 500 600 700 900 1000 2000 3000 5000 6000 7000 9000 10000 9000 30000 40000	0 0 0 0 0 1 2 3 5 6 7 8 10 11 10 9	16 20 28 0 3 6 10 13 17 20 24 27 1 4 9	28 48 46 6 27 55 22 50 17 40 85 11 47	2 49 33 19 49 35 10 41 19 42 13 48 37	60000 6 2781 56 70000 6 25 10 38 80000 5 646 26 90000 111 22 15 100000 8 15 58 8 200000 7 1 56 6 300000 10 17 54 8 400000 2 85211 500000 5 1950 14 600000 9 5 48 17 700000 0 21 46 20 800000 1 7 23 42 25 1000000 11 940 28
			1 1				1		

FROM THE TABLES

40000 days 8-18-23-13 1000 days 1-3-27-35

100 days 1 day '82153 day	0-3-20-40 0-0-2-0 0-0-1-38
Epoch Total	3-12-2-2

CORRECTION TO MEAN SATURN DUE TO ATTRACTION BETWEEN JUPITER AND SATURN.

Saturn's correction

=
$$-48^{\circ}7 \sin(t \times \cdot 4074926)$$

+7' $\sin(163^{\circ}48 - 5^{\circ}8945 \times t)$

+10'.85 sin (243° 15 --- 11° 794 t)
where t is the number of year's from 1558 AD March.

In the present case, the year of birth is 1912 July and therefore,

the present case, the year of office is t=1912 July = 1558 March = 354 33

$$t \times 4074926 = 354\cdot33 \times \cdot 4074926 = 144^{\circ} 387$$

$$168^{\circ} 48 - 5 \cdot 8945 \times 354\cdot33 = (163^{\circ} - 29') - (2088^{\circ} - 186')$$

$$= -(1925^{\circ} - 7') = -(125^{\circ} - 7')$$

$$248^{\circ} 15 - 11 \cdot 794 \times 354 \cdot 33 = (248^{\circ} - 9') - (4178^{\circ} - 58')$$

$$= -(3935^{\circ} - 49') = (335^{\circ} - 49')$$

$$= 94^{\circ} - 11'$$

... Saturn's correction

=
$$-48^{\circ}$$
 7 sin 144° 23' +7' sin (-125° —7')+10' 85 sin (24°—11')
= -48° 7 × 5824+7' × (-818)+10'85 × 4097
= -28° 35—5' 726+4' 444= -29° 632= -29° -38'

.: Mean longitude of Saturn already arrived at is 1'-7°-17'-36:

applying the attraction correction, we get 1° -6′ -47′ -58″

POSITION OF APSE.

At epoch is

S° -8′ -6′ -40″

Annual motion of apse = +16′ 10

. Motion in 112 54 years = +16″ 10 ×112·54 = 30′ - 12″

. H. longitude of Apse at required time

Mean anomaly

= 8 -8 -36 -52 minus

1 -6 - 47 -58

7 -1 -18 -51 = 911° -48′ -54″

EQUATION OF CENTRE.

The formula in the case of Saturn whose excentricity of the orbit is 05589, is in seconds of arc

In the present instance

$$\sin nt = \sin (211^{\circ} - 48' - 54) = \sin (180^{\circ} + 31^{\circ} - 48' - 54')$$

$$= -\sin (31^{\circ} - 48' - 55') = -5271783$$

$$\sin 2 nt = \sin (423^{\circ} - 37' - 48') = \sin (360^{\circ} + 63^{\circ} - 37 - 48')$$

$$= \sin 63^{\circ} - 37' - 48' = 8958445$$

$$\sin 3 nt = \sin (635^{\circ} - 26' - 42') = \sin (360^{\circ} + \overline{275^{\circ}} - 26 - 42')$$

$$= \sin (630^{\circ} - \overline{64^{\circ}} - 34 - 15)$$

$$= -\sin 84^{\circ} - 33' - 18' = -9954878$$
• Equation of centre = 23047 × -5271783 - 805 × 8959415 + 39× -9954878

=-12149 8-721 2 - 38 8 =-12909" 8=-(3°-35 -10") Applying this to the mean longitude we get 18-68-47-58" minus

3°-35'-10" or 15-3°-12-48" as the true longitude

RADIUS VECTOR.

This is =
$$\frac{a(1-e^2)}{1-e\cos\theta}$$
 where $a=9.5547$ $e=0.5589$ and $\theta=$ the true anomaly

∴ Radius vector =
$$\frac{9.5547 \times (1 - 05559^2)}{1 - 05589 \cos \theta}$$
=
$$\frac{9.5240}{1 - 05589 \cos \theta}$$
=
$$\frac{0.0589 \cos \theta}{1 - 05589 \cos \theta}$$

In the present case

In the present case

True anomaly (6)=
$$\begin{cases}
8^{-8} - 36^{-5} - 52^{*} - \\
1^{-3} - 12^{'} - 48^{*} \\
- 2^{-2} - 2^{4} - 4^{*} = 215^{\circ} - 24 - 4^{*}
\end{cases}$$

* Radius vector =
$$\frac{95246}{1-05589 \times \cos 215^{2}-24-4^{2}}$$

= $\frac{95246}{1+05589 \cos (35^{2}-24^{2}-4)} = \frac{95246}{1+05589 \times 81512}$
= $\frac{95246}{104550} = \frac{91096}{104550}$

HELIOCENTRIC VELOCITY.

This is found from the formula in seconds of arc as $(120-13\cos nt + \cos 2nt)$

The following table will give the equation of centre radius vector and Hel velocity for each degree of mean anomaly —

TABLE OF EQUATION OF CENTRE, RADIUS VECTOR AND HELIOCENTRIC VELOCITY OF SATURN

Arg — Mean anomaly If greater than 180° its defect from 360° will be the argument but the equation of centre will be negative

Deg	Equation of Centre	Ral us Vector	Hel Velocity	Deg	Equation of Centre	Irdina Vector	Hel (el icit)
0	0 0 0	10 082	1 47	27	2 4 4 11	10 030	1 49
1	0 6 16	10 082	1 47	28	2 49 51	10 026	1 49
2	0 12 82	10 082	1 47	29	2 55 80	10 022	1 49
8	0 18 48	10 082	1 47	30	3 1 6	10 017	1 49
4	0 25 3	10 081	1 48	31	3 6 88	10 013	1 49
5	0 31 19	10 081	1 48	32	3 12 8	10 008	1 49
G	0 37 34	10 080	1 48	33	3 17 35	10 004	1 49
7	0 43 48	10 079	1 48	34	8 23 0	9 999	1 50
8	0 50 2	10 077	1 48	35	3 29 20	9 994	1 50
9	0 56 14	10 076	1 48	36	3 33 39	9 990	1 50
10		10 075	1 48	37	3 38 52	9 985	1 50
11		10 074	1,48	38	3,44 5	9 9 7 9	1 50
12		10 072	1 48	39	3 49 11	9 974	1 50
13			1 48	40	3 54 16	9 5 6 8	1 50
14		10 068	1 48	41	3 59 15	9 963	1 50
15		10 066	1 48	42	4 4 13	9 957	1 50
16			1 43		4 9 6	9 951	1 50
17			1 48		4 13 55	9 945	1 50
18				45	4 18 40	9 939	1 50
19		10 056	1,48	46	4 23 16	9 9 9 3 3	1 50
20			1 48	47	4 27 56	9 927	1 51
21	2 9 15	10 050	1 48	48	4 32 29	9 921	1 51
22			1 48	49	4 36 52	9914	1 51
28	2 21 2		1 48	50	4 41 21	9 908	1 51
24	2 26 52		1 48	51	4 45 42	9 901	1 52
28	2 32 41		1 48	52	4 49 56	9894	1 52
20	3 2 38 27	10 034	1 49	53	4 54 6	9 887	1 52

1	111		1			1 1
54	4 58 12	9 880	1 52	98 6 23 28	9501	2 1
55	5 2 13	9873	1 52	99 6 22 56	9 491	2 1
56	5 6 9	9 865	1 52	100 6 22 17	9 482	2 1
57	5 9 59	9 858	1 52	101 6 21 31	9472	2 2
58	5 13 45	9851	1 53	102 6 20 38	9 468	2 2'
59	5 17 27	9843	1 53	103 6 19 37	9 454	2 2
60	5 21 2	9836	1 53	104 6 18 30	9 4 4 4	2, 2
61	5 24 33	9 828	1 53	105 6 17 15	9 435	2 3
62	5 27 58	9 820	1 53	106 6 15 53	9 4 2 6	2 3
63	5 31 17	9812	1 53	107 6 14 24	9 4 1 7	2 3
64	5 34 82	8 804	1 54	108 6 12 48	9 408	2 3
65	5 37 40	9 796	1 54	109 6 11 4	9 399	2 3
66	5 40 44	9 788	1 54	110 6 9 13	9 389	2 1
67	5 43 41	9 780	1 54	111 6 7 14	9 380	2 4
68	5 46 33	9 772	1 54	112 6 5 10	9 871	2 4
69	5 49 18	8 764	1 54	113 6 2 58	9 362	2 5
70	5 52 0	9 755	1,55	114 6 0 39	9 853	2 5
71	5 54 34	9747	1 55	115 5 58 12	9844	2 5
72	5 57 8	9 738	1 55	116 5 55 39	9 336	2 5
78	5 59 24	9 7 2 9	1 56	117 5 52 58	9 327	2 6
74	6 1 41	9 721	1 56	118 5 50 11	9 318	2 6
75	6 3 51	9712	1 56	119 5 47 17	9 810	26
76	6 5 55	9 702	1 56	120 5 44 15	9 301	26
77	6 7 52	9 693	1 56	121 5 41 6	9 292	2 6
78	6 9 44	9 683	1 56	122 5 37 50	9 284	2 7
79	6 11 29	9 675	1 56	128 5 34 28	9 275	2 7
80	6,13 7	9 667	1 57	124 5 31 0	9 267	2 7
81	6 14 39	9 659	1 57	125 5 27 24	9 259	2 7
82	6 16 4	9 650	1 57	126 5 23 42	9 251	2 8
88	6 17 24	9 641	1 57	127 5 19 52	9 243	2 8
84	6 18 36	9 632	1 58	128 5 15 56	9 235	2 8
85	6 19 40	9 623	1 58	129 5 11 55	9 227	2 8
86	6 20 39	9613	1 58	130 5 7 44	9 219	2 9
87	6 21 32	9 604	1 58	131 5 3 25	9 212	2 9
88	6 22 17	9 595	1 58	132 4 59 8	9 204	2 9
89	6 22 55	9 585	1 58	133 4 54 11	9 197	2 9
90		9 576	1 59	134 4 50 3	9 189	2 10 2 10
91	6 23 52	9 567	1 59	135 4 45 28	9 182	
92	6 24 9	9 557	1 59	136 4 40 31	9 175	2 10 2 10
98	6 24 20	9 548	2 0	137 4 35 49	9 168	2 10
94	6 24 23	9 589	2 0	138 4 30 52 139 4 25 49	9 161	2 10
95		9 529	2 1		9 155 9 148	2 10
96	6 24 10	9 520	2 1 2 1		9 148	2 11
97	6 23 52	9 51 0	2 1	141 4 15 24	9 142	-1 TT

1				1 1		1 1
142 4	10, 5	9 196	2 11 2 11 2 11	162 2 7 6	9 039	2 14
148 1	1 38	9 1 2 9	2 11	163 2 0.17	9 036	2 14
141 3		9 123	2 11	161 1 53 27	9 0 3 3	2 14
145 3	58,81	9 117	2 11	165 1 16 31	9 0 3 0	2 14 2 14 2 14
146 3	47 51	9 112	2 12	166 1 39 35	9 028	2 14
117 3	12, 1	9 106	2 12	167 1 92 41	9 025	2 14
148 3	36 13	9 101	2 12	168 1 25 11	9 023	2)11
119 3	30 15		2 12	169 1 18 39	9 021	2 14
150 3	24 6	9 090	2 12	170 1 11 36	9 020	2 14 2 14
151 3	18 19	9 085	2 12	171 1 4 31	9 015	2 1 1
152 3		9 080	2 12	172 0 57 26,	9016	2 14
153 3	5 52	9 075	2 13	173 0 50 17	9 015	2 14 2 14
154 2	59'31	9 070	2 13	174 0 19 5	9013	2 14
	53 13	9 066	2 13	175 0 95 58	9012	2 14
156 2		9 061	2 13 2 13	176 0 25,48	9 011	2 14 2 14
157 2		9 057	2 13	177 1 21 96	9011	
	83,48	9054	2 13		9011	2 14
	27 11		2 13	179 0 7 12	9 010	2 14 2 14
	20 33		2 13	180 0 0 0	9 010	2 14
161 2	19,50	9 0 4 3	2 14			
			i			

Mean anomaly is 211°-48-54" This is greater than 180° and hence the argument will be 118°-11'-6" equation for 148° is 3°-36'-13" and decrease, for 1° of argument is 5-55

. Equation for 148*—11'—6" is 3°—35'—7". This is negative, as the mean anomaly is greater than 180". This when subtracted from the mean longitude gives the true longitude as 1°—6"—47"—58" πιστικ 3°—35"—7" or 1°=—3"—12—51". Against the same argument the radius vector and the Heli velocity are read to be as 9 10 and 2"—12—as the Heliocentric velocity.

POSITION OF NODE

At epoch = 8°-0°-58′-16″ Annual motion = -18′ 57 ∴ Motion in 112 54 years = -112′54 × -18 57 =-34′--50″

.. Position of Node at regd time =35 0°-28'-26"

REDUCTION.

· Nodal distance of Saturn (NP) = 1-3-12-48 minus

$$3-0 - 23 - 26$$
= 10-2-49-22
or 302°-49'-22"

:.tan NM=cos : tan NP, where : in the case of Saturn's orbit is $2^\circ\!\!-\!\!49^\prime$

∴ tan NM=cos
$$2^{\circ}$$
 -49' tan 302° -49' - 22"
∴ L tan NM = L cos 2° -49' + L tan 302° -49' -22" - 10
= 9 9994750 + 10 1904276 - 10
= 10 1899026
= L tan 302° -51' - 16"

...True Heliocentric longitude corrected for "reduction" is 302°-51′-16" plus 90°-23′-26° = 393°-14′-42° = 1°-3'-14′-42°

This could have been also arrived at by the application of the multiplier \(^1\) to the reduction got from the Moon's table of reduction

HELIOCENTRIC LATITUDE (PM)

 $= \sin 2^{\circ} - 49' \times \sin 302^{\circ} - 49' - 22''$

Sin PM = sin i sin NP

=83 8724 + 18 5026 × 5575841

=88 8724 + 10·3167
=94·1891 ∴ ME =
$$\sqrt{94·189}1$$
 = 9·7051
∴ Sin SME = $\frac{SE}{ME}$ sin MSE
= $\frac{101616}{97051}$ × sin 123° -53′ -20°
= $\frac{101646}{97051}$ × 8301204
= $\frac{08694234}{98694284}$ = sin (4° -59′ -16°)
∴ ∠ SME = 4° -59′ -16°
∴ °T' EM = 38° -14 -42 + $\frac{4-59-16}{48-19-58}$ = 1° -8° -13′ -58′

GEOCENTRIC VELOCITY.

Geo Vel of Saturn = Vel of LTSM + Vel of SME

=Hel velocity +
$$\frac{SE}{ME} \frac{\cos \hat{MSE}}{\cos SMF} \left(-55'-9''\right)$$

for rate of change of MSE= diff of Hel Vel of Saturn and sun

= (2'-11'')-(57'-14')=-55'-3''

.: Geocentric Vel of Saturn

=
$$(2'-11'')+\frac{101046}{97051}\times-\frac{.558}{.996}\times-(55'-.05)$$

= 2'-11'')+(3'-12')=5'-54* Hence the planet is not retrogade

GEOCENTRIC LATITUDE (PEM)

tan Geoc Latitude =
$$\frac{SM}{EM}$$
 tan Fiel Latitude
= $\frac{9 \cdot 1016}{9 \cdot 7051} \times tan^{2} - 22'$
= $\frac{9 \cdot 1016}{9 \cdot 7051} \times 0413296 = 03876$

:. Geocentrie latitude = 2°-13. This is also south as the Hel latitude also is of the south direction

Chapter XVIII.

URANUS

ELEMENTS

1	Heliocentric I	Mean longitude at epoch	5-2-28-4
2	do	of Apse	10-29-1-4
3	do	of Node	1-21-43-4
4	Length of sem	ı major axıs	19 2181
5	Excentricity of	orbit	*04634
6	Inclination of	orbit to the ecliptic	46' 4
7.	Periodic time		30686 84 days
8	Annual motion	of Apse	=+ 3" 22
9	Annual motion	of Node	=- 32" 28
	the example no riodic time	of days from epoch is 4116 = 30686 84 days	01 82153

Neglecting the no of revolutions and converting the decimal to signs etc we get 4*-2*-10*-56 to which if the epoch position 5*-2*-28*-48* be added we get the position at birth to be equal to 9 -4*-39 -44*.

: No of revolutions = $\frac{4110182158}{3068684} = 1339395$

Correction due to चग्प्राणकलातरदेशातरादि

$$28'-7"$$
 is $\frac{28-7"\times 7}{21600}$ =nd

FROM THE TABLES

Matten .	n 40000 days 15	3-19-15-24
	•	-
do	1000 days is	0-11-43-53
do	100 days 15	01-10-23
do	1 day is	0-0-42
do	82153 day	000-34
	Epoch	4-2-10-56
		5-22848
a a languada a	f Urange at hieth	=9-439-44

TABLE OF MEAN MOTION OF URANUS.

Periodic time 30686 84 days

		_			
Du, s	Degrees Munutes Seconds	Days	Degrees Vinntes	Det.	Degrees Minutes
2 3 4 5 6 6 6 7 6 6 6 7 6 6	0 0 5 38	300 400) 500 600 700] 900 1000 2000 3000 4000 5000 9000 10000 20000 30000,1	0 S 12 0 9 23 0 10 33 0 11 43 0 23 27 1 5 1 16 55 1 28 39 2 10 28 27 18 3 27 18 3 27 18 3 15 34 37 11 21 56	38	0 11 19 58 5 0 8 11 11 56 0 7 8/30/47 0 11 5 49/88 0 8 3 8 29 0 6 6 16 55 0 9 9/25/27 0 0 12 38/56 0 58 15 42/25 16 (18/50/58) 9 21/59/22 0 0 25 7 51 0 0 25 7 51
	 "				

Position of Apse at epoch is Motion in 112 54 years
$$3$$
 3" 22 per year $6-2$

. Position of Apse at required time $= 10-29-7-43$

Mean anomaly $= \begin{cases} 10-29-7-43 \\ 9-4-39-44 \end{cases}$

or $54^2-27^2-59^2$

Equation of centre for Uranits in seconds of arc, whose excentricity r is 04634 is

19111 sin nt—554 sin 2 nt+22 sin 3 nt. sin 54° — 27′ — 59″ = 8137747

$$\sin 2 (54^{\circ}-27-59^{\circ}) = \sin 108^{\circ}-55-58^{\circ}$$

= $\sin 71^{\circ}-4-27=9458999$
 $\sin 3 (54^{\circ}-27-59^{\circ}) = \sin 163^{\circ}-23-57^{\circ}$
= $\sin 16^{\circ}-36-37=2857023$

Equation of centre in seconds of arc

 $=19111 \times 8137747 - 554 \times 9458999 + 22 \times 2857$

=15552-524+6=15034

In degrees etc the equation is 4°-10-34

Applying this to the mean longitude we get true longitude

$$\begin{cases}
9-4-39-44 & \text{plut} \\
4-10-34 & \\
9-8-50-18
\end{cases}$$

The Heliocentric Velocity is found out from the formula (42-4 oos nt) In the present case it is 42-4 cos 54°-28 in seconds of arc

$$= 42 - 4 \times 58 = 42 - 2 = 40^{\circ}$$

RADIUS VECTOR.

$$r = \frac{a}{1 - e} \frac{(1 - e^n)}{\cos \theta}$$
 where

a in the case of Uranits is 192181

e is 04634

and θ is as usual the true anomaly

In this cose
$$\theta = \begin{cases} 10-29-7-43 \text{ minus} \\ 9-8-50-18 \\ \hline 1-20-17-25 \end{cases}$$

$$r = \frac{192181 \times [1 - (04634)^2]}{1 - 04634 \cos 50^3 - 17 - 23^3} = \frac{191769}{1 - 04634 \times \cos 50^3 - 17}$$
$$= \frac{191769}{1 - 04634 \times 639} = \frac{191769}{9704} = 197619$$

The numerator is always constant it is enough if the denominator

In the example mean anomaly is 54°-27 - 59° Equation of centre for 54° degrees is 4°-9 - 0° and for 55° degrees is 4°-13-19°

Equation of centre for $54^\circ-27-29^\circ$ is $4^\circ-10-33^\circ$ which is the same as that already arrived at against the same item the radius vector and Heliocentric velocity are seen to be 19.75 and 40

TABLE OF EQUATION OF CENTRE, HELIOCENTRIC VELOCITY AND RADING VECTOR OF URANUS.

Arg — Mean anomaly If>180° the defect from 360° will be the argument but the equation of centre will be negative

Post	argum	ent but th	e equation of o	entre	will	be negative	:		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Deg			iel oc ty	Deg		Radius Vector		
2 0 10 30 20 0 91 38 37 3 3 9 10 925 89 30 3 11 43 19 906 39 38 37 29 19 915 39 39 31 43 19 906 39 36 30 31 43 19 906 39 36 30 31 43 19 906 39 30 31 43 19 906 39 30 31 43 19 906 39 30 31 43 30 9 19 888 39 39 30 42 32 41 41 9 87 39 30 41 32 41 41 37 41 30									
3 0 15 45 20 090 981 38 3 7 29 19 916 39 39 4 0 21 0 20 088 38 30 3 11 43 19 906 39 6 0 31 29 20 087 38 40 3 15 57 19 897 6 0 31 29 20 087 38 41 3 20 9 19 888 39 7 0 36 48 20 085 39 42 3 24 14 19 879 8 0 41 56 20 082 38 43 8 28 21 8 19 879 8 0 41 56 20 082 38 43 8 28 21 8 19 858 59 0 47 8 20 080 38 44 932 19 19 585 59 0 47 8 20 080 38 44 932 19 19 585 59 10 05 2 20 20 078 35 45 386 15 10 847 19 887 12 1 2 40 20 074 88 47 3 48 88 10 886 39 14 11 2 58 20 067 38 49 35 12 7 10 806 39 14 11 12 58 20 068 8 49 3 51 27 10 806 39 15 11 12 81 5 20 068 8 38 50 855 4 10 796 39 17 1 28 15 20 056 8 88 50 855 4 10 796 30 17 12 8 15 20 056 8 88 50 855 4 10 796 30 17 12 8 15 20 080 8 88 50 855 4 12 19 19 758 40 19 19 18 11 14 12 12 12 20 036 38 55 4 12 19 19 743 40 19 12 1 148 17 20 036 38 55 4 12 19 19 743 40 12 1 148 17 20 036 38 55 4 12 19 19 743 40 12 1 148 17 20 036 38 55 4 12 19 19 743 40 12 1 148 17 20 036 38 55 4 12 19 19 743 40 12 1 148 17 20 036 38 55 4 12 19 19 743 40 12 1 148 17 20 036 38 55 4 12 19 19 743 40 12 1 148 17 20 036 38 55 4 12 19 19 743 40 12 1 148 17 20 036 38 55 4 12 19 19 743 40 12 1 148 17 20 036 38 56 4 12 19 19 743 40 12 1 148 17 20 036 38 56 4 12 19 19 743 40 12 1 148 17 20 036 38 56 4 12 19 19 743 40 12 1 148 17 20 036 38 56 4 12 19 19 743 40 12 1 148 17 20 036 38 56 4 12 19 19 666 10 25 2 7 17 12 9 20 001 38 60 4 27 50 19 672 40 12 20 21 26 50 19 988 38 60 4 27 50 19 682 10 22 21 21 41 19 994 38 63 436 16 19 965 10 22 21 26 50 19 988 38 62 438 38 21 965 10 30 23 138 19 951 39 65 44 12 19 19 605 10 30 23 138 19 951 39 65 44 12 19 19 605 10 30 23 138 19 951 39 66 44 14 10 19 502 40 30 23 138 19 951 39 66 44 14 10 19 508 40 30 23 138 19 951 39 66 44 14 19 15 78 40 40 30 24 12 15 10 10 10 10 10 10 10 10 10 10 10 10 10									
5 0 26 15 20 088 3S 40 3 15 57 10 807 39 6 0 31 25 20 087 33 41 3 20 9 1988 39 40 3 15 57 10 807 39 7 0 36 43 20 095 30 42 3 24 14 19 579 39 32 4 14 19 579 39 8 0 41 56 20 082 33 44 3 3 25 18 10 868 39 39 47 3 385 18 10 868 39 9 0 47 8 20 080 33 44 3 32 18 10 868 39 36,15 19 847 31 10 0 52 20 20 078 35 44 37 3 48 8 8 10 826 39 36,15 19 847 39 11 0 57 81 20 076 38 46 340 77 19 887 39 39 31 12 1 2 40 20 074 33 47 3 48 8 8 10 826 39 35 15 17 19 866 39 18 1 7 49 20 070 83 49 35 127 19 86 39 35 4 10 796 39 16 1 23 10 20 059 7 3 83 50 355 4 10 796 38 50 3 55 4 10 796 39 17 1 28 15 20 056 1 38 53 4 4 5 37 19 766 39 30 30 18 1 33 18 20 052 83 55 4 12 19 19 766 39 35 4 12 19 19 766 39 18 1 318 20 050 3 35 54 412 19 19 766 39 35 4 42 11 19 19 743 40 22 1 143 20 0047 33 54 42 153 11 19 700 40 40 40 40 40 <td>3</td> <td></td> <td></td> <td>38</td> <td></td> <td></td> <td>19 91ə</td> <td></td> <td>39</td>	3			38			19 91ə		39
6 0 81 29 20 087 83 41 3 20 9 19 888 89 7 0 36 43 20 085 80 90 47 8 20 082 88 43 8,32\$ 18 19 869 90 447 8 20 080 85 44 892,19 19 558 89 10 052 20 20 078 35 15 3 36,15 10 847 39 11 057 31 20 076 85 46 8,40 7 19 897 89 12 1 2 40 20 074 88 47 3 48,58 10 886 89 14 11 12 58 20 067 83 49 3,51 27 10 806 89 15 11 12 12 12 20 067 83 49 3,51 27 10 806 89 16 12 13 10 20 059 ₹ 88 50 855 4 10 796 89 17 1 28 15 20 067 83 49 3,51 27 10 806 89 17 1 28 15 20 067 83 49 3,51 27 10 806 89 17 1 28 15 20 067 83 49 3,51 27 10 806 89 17 1 28 15 20 067 83 49 3,51 27 10 766 89 17 1 28 15 20 067 83 55 4 2 10 10 776 89 17 12 12 12 20 041 88 55 40 10 10 776 89 17 12 12 12 12 20 047 88 55 44 12 19 19 753 40 12 14 14 12 17 20 036 83 56 4 12 19 19 743 40 12 14 14 12 17 20 036 83 56 4 12 19 19 743 40 12 14 14 17 12 00 036 83 56 4 12 19 19 743 40 12 14 14 17 12 00 036 83 56 4 12 19 19 743 40 12 12 12 12 12 12 00 041 88 55 40 12 19 19 743 40 12 12 12 12 12 12 12 12 12 12 12 12 12	4	0 21 0	20 089	38	39	3 11 43	19 906		39
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			20 088		40				
8 0 41 56 20 082 38 43 3 28 18 19 868 9 0 47 8 20 080 38 44 8 32 19 19 358 39 10 052 20 20 078 35 15 3 36,15 19 \$47 11 0 57 81 20 076 38 46 340 7 19 887 99 11 0 12 12 40 20 074 38 47 3 48 8 19 826 99 11 12 12 40 20 070 38 49 351 27 19 86 99 11 12 12 12 12 12 12 12 12 12 12 12 12				38	41	3 20 9	19888		
9 0 47 8 20 080 85 44 8 92 19 19 585 8 89 10 0 52 20 20 078 35 15 3 36 15 10 547 39 11 0 0 57 31 20 076 85 46 340 7 10 587 39 12 1 2 40 20 076 85 46 340 7 10 587 39 12 1 2 40 20 070 83 49 347 13 10 516 39 14 11 2 55 20 067 33 49 351 27 10 506 39 15 11 31 10 20 59 2 18 1 2 3 10 20 50 2 18 1 2 3 10 20 50 2 18 1 2 3 10 20 50 2 18 1 2 3 10 20 50 2 18 1 2 3 10 20 50 2 18 1 2 3 10 20 50 2 18 1 2 3 10 20 50 2 18 1 2 3 10 20 50 2 18 1 2 3 10 20 50 2 18 1 2 3 10 20 50 2 18 1 2 3 10 20 50 2 18 1 2 3 10 20 50 2 18 1 2 3 10 20 50 2 18 1 2 3 10 20 50 2 18 1 2 3 10 20 50 2 18 1 2 3 10 20 50 2 18 1 2 3 10 20 50 2 18 1 2 3 10 20 50 2 18 1 2 3 10 20 50 2 18 1 2 3 1 2 3 10 20 50 2 18 1 2 3 1 3 1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								i	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
17 128 15 20 056 88 53 4 2 10 10 7766 80 81 133 15 20 056 88 53 4 5 37 10 766 80 81 138 19 20 047 88 53 4 5 37 10 766 80 81 138 19 20 047 88 55 4 12 19 19 743 40 40 412 19 19 743 40 412 19 19 743 40 412 19 19 743 40 412 19 19 743 40 412 19 19 743 40 412 19 19 743 40 412 19 19 743 40 412 19 19 743 40 412 19 19 743 40 412 19 19 743 40 412 19 19 743 40 412 19 19 743 40 412 19 19 743 40 412 19 19 743 40 412 19 19 743 40 412 19 19 743 40 412 19 19 743 40 412 19 19 743 40 412 19 19 743 40 40 412 19 19 743 40 40 412 19 19 743 40 412 19 19 743 40 412 1								=	
18 133 S 20 052 83 53 4 5 37 10 766 89 10 138 19 20 047 33 54 4 9 01 19 757 40 20 148 20 20 041 35 55 4 12 19 19 743 40 21 148 17 20 036 33 56 4 15 34 19 728 40 22 153 14 20 031 33 57 4 15 44 19 714 40 23 1,58 9 20 20 26 35 58 4 21 51 19 700 40 24 2 3 2 20 021 35 59 4 24 53 19 686 10 25 2 7, 54 20 007 35 61 4 27 50 19 686 40 26 2 12 42 20 007 35 62 4 33 32 19 645 40 27 2 17 29 20 001 35 62 4 33 32 19 645 40 29 2 26 50 19 98 85 64 4 38 55 19 619 40 30 2 31 38 19 931 39 65 4 41 29 19 605 10 32 2 40 50								2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								- 1	
20 1 48 20 20 041								j	
21 148 17 20 36 38 56 4 15 34 19 728 40 22 153 14 20 31 35 57 44 19 714 40 23 1,58 9 20 20 20 38 59 424 52 19 686 10 24 27 27 26 27 24 20 21 28 59 424 53 19 686 10 25 27 75 4 20 01 78 60 42 27 50 19 67 40 26 27 21 42 20 00 70 38 61 43 430 48 19 65 40 27 21 29 20 00 38 62 43 33 21 64 40 29 22 75 19 99 38 63 43 61 61 96 40 30 23 138 19 98 88 64 438 15 19 61 40 30								- 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								- 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								- 1	40
241 27 24 20 021 38 59 4 24 153 19 686 10 255 2 7;54 20 011; 73 60 4 27 150 19 672 40 26 2 12 142 20 007 38 61 4 30 148 19 659 40 27 2 17 29 20 001 38 62 4 33 32 19 645 40 28 2 12 21 41 19 994 38 63 4 36 161 19 682 10 30 2 21 31 38 19 981 39 64 4 38 155 19 619 40 30 2 31 38 19 981 39 65 4 41 29 19 605 10 31 2 34 050 19 965 39 66 4 41 29 19 505 40 32 2 40 50 19 965 39 67 4 46 25 19 578 10 33 2 145 24 19 957 39 68 4 18 14 19 568 40							19 700	1	40
26 2 12 12 2 20 007	24	2 3		38	59	4 24 53	19 686	Í	10
27 2 17:29 20 001 38 62 4 33:32 19 645 4 0 23 2 22:14 19 994 38 63 4 36:16 19 632 10 29 2 66 50 19 988 88 64 4 38:55 19 619 40 30 2 31:38 19 981 39 65 4 41:29 19 605 10 81 2 36:16 19 973 39 66 4 41:29 19 505 40 32 2 40:50 19 967 89 67 4 46:25 19 578 10 33 2 45:24 19 957 89 68 4 18:44 19 568 40	25	2, 7,5	41 20 01 4	38	60	4 27 50	19 672		40
29 2 22 14 19 994 38 63 4 36 16 19 632 10 29 2 26 50 19 988 83 64 4 35 55 19 619 40 30 2 31 38 19 981 39 65 4 41 29 19 605 10 81 2 36 16 19 973 39 66 4 41 29 19 502 40 32 2 40 50 19 967 39 67 4 46 25 19 578 10 33 2 45 24 19 957 39 68 4 48 44 19 568 40	20	2 12 4	2 20 007	38	61	4 30 43	19 659		10
29 2 2 6 5 6 19 9 8 8 8 6 4 4 3 8 5 5 19 6 19 40 8 8 8 6 5 4 4 1 2 9 19 6 6 5 10 19 9 7 8 9 6 6 1 4 1 6 2 5 19 5 7 8 10 19 19 6 7 8 10 19 19 19 19 19 19 19 19 19 19 19 19 19								1	
30 2 31 38 19 9S1 39 65 4 41 29 19 605 10 81 2 36 16 19 9T3 39 66 14 1 0 19 592 40 32 2 40 50 19 965 89 67 4 46 25 19 578 10 33 2 45 24 19 957 89 68 4 18 4 19 568 40					63				
31 2 36 16 19 973 39 66 14 1 0 19 592 40 32 2 40 50 19 965 39 67 4 4 6 25 19 578 10 33 2 45 24 19 957 39 68 4 18 44 19 568 40								ı	
32 2 40 50 19 965 89 67 4 16 25 19 578 10 83 2 45 24 19 957 89 68 4 18 44 19 568 40								-	
33 2 45 24 19 957 39 68 4 48 44 19 568 40								1	
34 2 49 55 19 949 39 69 4 40 59 19 549 40									
	34	2 19 5	19919	188	H 69	1 4140 59	19 549		40

			1			
70			40	114 4 57 45	18 861	43
71		19 521	40	115 4 55 37	18 846	43
72	4 57 17	19 507	41	116 4 53,27	18 831	43
73	4 59 11	19 492	41	117 4 51 12	18 \$17	43
74	5 1 1	19 477	41	118 4 48150	18 803	43
75	5 2 46	19 462	41	119 4 46 23	18 788	43
76		19 447	41	120 4 43 49	18 774	13
77	5 6, 0	19 433	41	121 4 41 11	18 760	44
78	5 7,29	19 418	41	122 4 38 26	18 746	44
79	5 8 53	19 403	41	123 4 35 36	18 732	44
80		19 387	41	124 4 32 40	18 718	44
81	5 11 24	19 372	41	125 4 29 40	18 704	44
82	5 12 31	19 457	41	126 4 26 34	18 691	44
83	5 13 34	19 342	41	127 4 23 22	18 675	44
84	5 14 29	19 327	41	128 4 20 4	18 65S	44
85	5 15 20	18 311	[41]	129 4 16 44	18 652	44
86	5 16 5	19 296	41	130 4 13 15	18 639	44
87	5 16 44	19 230	41	181 4 9 41	18 626	44
88	5 17 17	19 265	41	132 4 6 5	18 613	44
89	5 17 46	19 249	41	133 4 2 28	18 601	44
90	5 18 8	19 234	41	134 8 58 34	18 589	4.4
91	5 18 24	19 218	41	135 3 54 42	18 577	44
92	5 18 35	19 202	41	136 3 50 45	18 565	45
98	5 18 40	19 186	42	137 3 46 43	18 554	45
94	5 18 39	19 170	42	138 3 42 35	18 542	45
95	5 18 32	19 155	42	139 3 38 28	18 531	45
96	5 18 20	19 189	42	140 3 34 8	18 520	15
97	5 18 2	19 123	42	141 3 29 47	1S 510	45
98	5 17 36	19 107	42	142 3 25 23	18 499	15
99	5 17 6	19 092	12	143 3 20 54	18 488	45
100	5 16 29	19 076	42	144 3 16 20	18 478	45
101	5 15 48	19 060	42	145 3 11 13	18 470	45
102	5 15 0	19 044	42	146 3 7 2	18 462	45
103	5 14 5	19 029	42	147 3 2 15	1S 455	45
104	5'13 6	19 014	42	148 2 57 26	18 444	45
105	5 12 0	18 998	43	1 49 2 52 33	18 494	45
106	5 10 48	18 983	43	150 2 47 37	18 423	45
107	5 9 31	18 967	43	151 2 42 36	18 415	15
108	5 8 S	18 952	43	152 2 37 32	18 407	15
109,	5 6 38	18 937 [43	153 2 32 25	18 100	45
110	5 5 2	18 921	43	154 2 27 14	18 392	45
111	5 3 21	18 906	43	155 2 22 2	18 981	45
112	5, 1 31	18 891	43	· 156 2 16 45	18 376	46
113	4 59 41	18 876	43	157 2 11 26	18 370	46

	1.			1	1 1 1		_
158	2 6 4	18 363	46	170	0 58 39	18-307	46
159	2 0 38	18 857	46	171	0 52 50	18 304	46
160	1 55 12	18 851	46	172	0 47 1	18 901	46
161	1 49 11	18 315	46	178	0 41 10	18 299	47
162	1 44 8	18 339	46	174	0 35 19	18 296	46
163	1 88 84	18 934	46	175	0 29 25	18 295	46
164	1 32 57	18 929	46	176	0 28 35	18 294	46
165	1 27,18	18 325	46	1771	0 17 41	18 293	46
166	1 21 38	18 321	46	178	0 11 48	18 292	46
167	1 15 55	18 316	46	179	0 5 54	18 291	16
168	1 10 11	18 312	46	180	0 0 0	18 291	46
169	1 4 26	18 309					

POSITION OF NODE.

```
At epoch it is

Annual motion is -33° 28

∴ Motion in 112 54 years = 1°-0′-31° minus

∴ Position of Node at birth = 1-20-48-13

True Heliocentric longitude of Uranus = 9-8-50-18
∴ Nodal distance (NP) = 7-18-7-5

tan NM=cos i tan NP, where i= 46′ for the orbit of Uranus
∴ L tan NM=L cos i + L tan NP - 10

= L cos 46′+L tan 228°-7′-5″-10

= 9 9999611+ 10·0169538-10

·=10 0169149
```

 \therefore N M=180°+48°-6′-56″=228°-6_56″

: True Hel longitude = 228-6'-56''+50''-43''-13''=278''-50''-9''The necessary reduction could have been also arrived at from reduction found out with the help of the Moon's tables and applying the multiplier $\frac{1}{4.5}$.

· LATITUDE (P M)

Sin P M ≈ sin a sin N P

Sin PM = sin a sin NP

≈ sin 46' sin 228°-7'-6"

∴L sin PM ≈ L sin 46'+ L sin 228°-7'-15"-10

 \therefore PM = 34′, but as NP is more than 180°, this Hel latitude is south or negative

SM = SP cos PSM = 197619 cos 84'
= 197619 × 9999511=197609
∠MSE= ∠TSM - ∠TSE=278°-50'-9'-89°-21'-22'
+180'
=9°-28'-47'
EM² = SM² + SE²-2 SM. SE cos MŜE
= (19761)²+(101646)²-2×19761×101646×
cos (3°-26'-47')
= 39049+10392-40171×98633
= 391.5232-396218=3519014
∴ EM =
$$\sqrt{351.9014}$$
 = 18758

 $\sin S \hat{M} E = \frac{SE}{EM} \sin \hat{M} SE = \frac{1.01646}{18.758} \times \sin 9^{\circ} - 28' - 47''$ $\therefore S \hat{M} E = 5^{\circ} \cdot 7' - 15''$

∴
$$5 \text{ M E} = 5^{\circ} - 7^{\circ} - 15^{\circ}$$

∴ 7° È $M = 7^{\circ} \text{SM} + \text{SME}$
 $= \frac{278^{\circ} - 50^{\circ} - 9^{\circ} + 5^{\circ} - 7^{\circ} - 15^{\circ}}{= 260^{\circ} - 57^{\circ} - 24^{\circ}}$
 $= 9^{\circ} - 13^{\circ} - 57^{\circ} - 24^{\circ}$

This is the Geocentric longitude of Uranus

GEOCENTRIC VELOCITY.

This=Rate of change of TSM+ SE cos MSE EMcos SME

rate of change of
$$\angle$$
MSE = $40'' + \frac{1016}{1876} \times \frac{\cos 9^{\circ}-29'}{\cos 5^{\circ}-7'} \times -(5844)$
= $40 + \frac{1016}{1876} \times \frac{986}{996} \times -58'44$
= $40'' - \frac{58'}{18765} = 40'' - (3'-8') = -(2'-28')$

.. The planet is therefore retrogace

GEOCENTRIC LATITUDE.

Sine of This is=
$$\frac{SP}{EM} \sin Hel$$
 lat= $\frac{19762}{18758} \times \sin 34'$
= $\frac{19762}{18758} \times 00089 = 010412$

".Geocentric latitude=36"

This is also south or negative according to the direction of the Hel latitude "

Chapter XIX.

NEPTLINE

ELEMENTS

1	Mean Heliocentric longitude at epoch is	0-24-6-20
2	do of Apse	0-24-15-22
3	do of Node	3-18-28-1
4	Length of semi major axis	30 1096
5	Inclination of orbit to plage of the ecliptic	$=1^{\circ}-46'0$
6	Periodic time	60186 64 days
7	Annual motion of Apse	= 1" 19 (+)
8	Annual motion of Node	= 10" 68 ()
9	Excentricity of the orbit	= .008

In the example taken no of days from epoch is 41101 82153 days Dividing this by the Periodic time we get

No of revolutions =
$$\frac{4110182153}{6018064}$$
 = 682906

Converting this to signs etc. we get $8^{-}5^{-}50^{-}46$, to which if the epoch mean longitude $6^{-}24^{\circ}-6^{-}20^{\circ}$ be added we get mean longitude of Neptune as $2^{a}-29^{\circ}-57^{\circ}-6'$ Correction for the observer is nil for

$$\frac{28'-7\times22''}{21600}$$
 = n₁1

TABLE OF MEAN MOTION OF NEPTUNE.

Periodic time 60186 64 days

	_	=	_	_		_		_		
Day.	s	Degrees	Minntes	Seconds	Days	s	Degrees	Vinutes	Seconds	Dayrees Winutes
1	0	0	0	22	300	0	. 1	47	40	50000 929 41
2	0	0	0	43	400	0	2		33	
3	0	0	1	ð	500	0	2	59	27	70000 1 28 41 5
4	0	0	1	26	600	0	3	35	20	80000 3 28 30 4
1 2 3 4 5 6	0	0	1	48	700	0	4	11	13	90000 5 28 19 3
	0	0	2	9	800	0	4	47	6	100000 728 823
7 8	0	0	2	31	900	0	5	23	0	200000 3 26 16 48
	0	0	2		1000	0	5	58	53	300000 11 24 25 4
9	0	0			2000	0	11	57	46	400000 7 22 33 20
10	0	0	3	35	3000	0	17	56	39	500000 3 20 41 47
20	0	0	7	11	4000	0	23	55	32	600000 11 18 50 8
30	0	0	10	46	5000	0	29	54	25	700000 7 16 58 80
40	0	0	14	21	6000	1	5	53	18	800000 3 15 6 51
50	0	0	17	57	7000	1	11	52	11	900000 11 13 15 18
60	0	0	21	32	8000	1	17	51	4	1000000 7 11 23 81
70	0	0	25	7	9000		23			1 1 1 1
80	0		28		10000		29		50	
90	0	0	32	[1S]	20000	3	29	97	40	
100	0	0	35	53	30000	5	29	26	30	
200	0	1	11	47	40000	7	29	15	21	
		i								

FROM TABLES

Motion in 40000 days is 7-29-15-21
do 1000 days is 0-5-55-58
do 100 days is 0-0-35-53
do 1 days is 0-0-25-53
do 1 day is 0-0-0-22
do 82153 of a day is 18
Position at Epoch 6-24-6-20

Correct Mean longitude of Neptune at birth } 2-29-57-7

POSITION OF APSE.

Annual motion is 1° 19 +

0--0--2-14

.. Motion in 11254 years is

.. Position of Apse at required time

=6-24-17-36 $\begin{cases} 6 - 24 - 17 - 36 \text{ minus} \\ 2 - 29 - 57 - -6 \\ \hline 3 - 24 - 20 - 30 \end{cases}$ Mean anomaly

.. Equation of centre in seconds of arc for Neptune whose excentricity e of the orbit is '009, is given by the formula, 3713 sin nt - 21 sin 2 nt

in the present example

Equation of centre = 3713 sin (114°-20'-30")-

$$= 3713 \sin 65^{\circ} - 39 - 30 - 21 \sin (220 - 41 - 0)$$

= $3713 \times 9111038 + 21 \sin 48^{\circ} - 41'$

True Hel longitude =
$$\begin{cases} 2-29-57-6 & \text{plus} \\ 56-39 & \\ \hline 3-0-58-45 & \\ \end{cases}$$

RADIUS VECTOR.

This =
$$\frac{a(1-e^2)}{1-e\cos\theta}$$
, where $\theta = is$ the true anomly $a = 30\cdot1096$

$$a = 30.109$$

$$\therefore r = \frac{30 \cdot 1096 (1 \cdot 009) (991)}{1 - \cdot 009 \cos \theta} = \frac{30 \cdot 108}{1 - \cdot 009 \cos \theta}$$

$$\theta = \begin{cases} 6 - 24 - 17 - 36 \text{ minus} \\ \frac{3 - -0 + 53 - 45}{2} \\ = 3 - 23 - 23 - 51 = 113^* - 23' - 51^* \end{cases}$$

$$\cos \theta = \cos 113^* - 23' - 51^* = -\cos 66^* - 36' - 9' = -3971$$

$$= \frac{30.1066}{1 + 0.09 \times 3971} = \frac{30.1066}{1.00375} = 29.996$$

TABLE OF EQUATION OF CENTRE OF NEPTUNE AND RADIUS VECTOR.

Arg — Mean anomaly. If greater than 180° us defect from 360° will be the argument but the equation of centre. will be negative

Dg Cquation of Centre Vector		Deg	I justion of Centre	Radiou« Vector
0 0 0 0 0 30 313	35 0 35 10	70	0 57 56	1
0 0 0 0 0 30 317	36 0 36 2 30 267	71	0 58 19	
2 0 2 8	37 0 36 55	72	0 58 40	
3 0 3 12 30 310		73	0 59 0	30 199
4 0 4 16	39 0 38 36 30 260	71	0.59 18	
5 0 5 20	10 0 39 26	75	0 59 86	80 1 12
6 0 6 23 30 31		76	0 59 53	00 112
7 0 7 27	42 041 4 80 258	77	1 0 9	
8 0 1 5 31	13 0 41 52	78	1, 0 24	30 129
9 0 9 34 30 315		79	1 0.35	
10 0 10 37	45 0.48 25 80 246	80	1 0.50	
11 0 11 40	16 0 41 10	81	1 1 1,	80 116
12 0 12 43 30 311	17 0 44 55	821	1 1 12	
13 0 18 45	49 045 89 80 289	83	1 1 21	
14 0 14 48	19 0 46 22	84	1 1 29	80 102
15, 0 15, 51, 30, 308		85	1 1 86	
16 0 16 52	51 0 47 45 30 232		1 1 4 1	
17 0 17 58	52 0 48 26		1 146	80 089
18 0 18 55 30 304			1 1 49	
19 0 19 56	54 0 49 44 30 224		1 1 52	
20 0 20 57	55 0 50 22		1 1 53	30 077
21 0 21 57 30 299	56 0 50 59		1 1 53	
22 0 22 56	57 0 51 35 30 214		1 1 52	
23 0 23 55	58, 0 52 10		1 1 50	30 062
24 0 24 55 30 295			1 1 47	
25 0 25 54	1 00 0 0 0		1 1 13	00.010
26 0 26 51	61 0 58 50			90 048
27 0 27 18 30 288	62 0 54 21 63 0 54 52 30 192		1 1 23	
28 0 28 45 29 0 29 42	61 055 21		1 1	30031
			1 1 4	90 091
30 0 30 39 30 282 31 0 31 31	66 0 56 17 30 130		0 53	
32 0 32 23	67 0 56 41			80 021
32 0 32 23 38 0 38 28 30 275	N1 -11 H		0 27	00 021
34 0, 34 17	69 0 57 33 30 163		0 18	
02 04 02 11	11 221 2121 221 22 200 1		, -,	

		757 0:04 00
105 0 59 57 30 008	181: 0 47 8	157 0 24 26
106 0 59 40 1	192' 0 46 20 29 901	158 0 28 25
107 0 59 24	188 0 45 87	159 0 22 25 29 882
108 0 59 5 20 995	134, 0 44 52	160 0 21 24
109, 0 58 45	195 044 7 29 891	161 0 20 22
110 0 58 23	136 0 48 20	162 0 19 20 29 827
111 0 58 8 29 982	137 0 42 34	163 0 18 17
112 0 57 38	138 0 41 45 29 882	164 0 17 15
118 0,57 14	189 0 40 57	165 0 16 12 29 828
114 0 56 48 29 970	140 0 40 7	166 0 15 8
115 0 56 22	141 0 39 18 29 871	167 0 14 4
116 0 55 53	112 0 98 27	168 0 13 0 29 820
117 0,55 26 29 957	148 0 37 85	169 0 11 56
118 0 54 56	144 0,86 42 29 861	170 0 10 52
119 0 54 26	145 0 35 49	171 0 9 47 29 817
120 0 59 54 29 945	146 0 34 56	
121 0 58 22	147 0 34 2 29 956	172 0 8 42 173 0 7 37
122 0 52 48	148 0 33 6	
128 0 52 14 29 933		175 0 5 27
124 0 51,38	150 0 81 15 29 849	174 0 6 82 29 815 175 0 5 27 176 0 4 22
125 0 51 2	151 0 30 18	
126 0 50 24 29 922	152 029 20	177 0 3 17 29 814 178 0 2 11 179 0 1 5
127 0 49 46	158 0 28 22 29 943	179 0 1 5
128 0 49 7	154 027 24	180 0 0 0 29814
129 0 48 26 29 911	155 026 26	
130 0 47 45	156 0 25 26 29 837	
	155 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
1 1 1	u , , , , ,	

In the case of Neptune, the true Hel Velocity does not vary from the mean Hel velocity viz 22 appreciably and hence this may be taken as the true Hel Vel for all practical purposes

In the exapmle the equation of centre and radius vector can be go from the tables

POSITION OF NODE.

.. N M = 342°_46'_46"

"True Hel longitude corrected for 'reduction" is \$42_46'_46" plus 108°-7'-59" that is 90°-54'-45" or 3s-0'-54'-45"

 The value of the reduction could be also got from the Moon's reduction table but applying the multiplier 13 to it

HELIOCENTRIC LATITUDE (PM)

Sin P M = sin 1 sin N P
= sin 1°-47′ sin 342°-43′-46″
: L sin PM = L sin 1°-47′+L sin 342°-43′-46′-10
= 8 4930398+9 471078′-10
= 7 9647183 = L sin
$$\frac{3}{2}$$
1′-41′
: PM = $\frac{3}{2}$ 1′-41″. This is south as the Nodal distance NP is more than 180°
SM=SP cos \angle PSM=29 9996 cos $\frac{3}{2}$ 1′-11″
= 29 9996 × 9999067=29 9983
SE = 101640
 \angle MSE = $\frac{(1^{\circ} \text{SM} - 1^{\circ} \text{SE})}{(90^{\circ} - 54^{\circ} - 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{181^{\circ} - 33^{\circ} - 24^{\circ}}{(29^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{181^{\circ} - 33^{\circ} - 24^{\circ}}{(29^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{199830^{\circ}}{(29^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(29^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(29^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(29^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(29^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(29^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(29^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(29^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(29^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(29^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(29^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(29^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(29^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(29^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(29^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(29^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(20^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(20^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(20^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(20^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(20^{\circ} - 54^{\circ} + 45^{\circ} - 80^{\circ} - 21^{\circ} - 22^{\circ})}$
= $\frac{899}{(20^{\circ}$

	1 1	. 1	- 1	lι	, ,	, ,	1 1
105 0	59 57 30 008	131	0 47	3		157	0 24
106 0	59 40	132	0 46	20	29 901	158	0 23
107 0	59 24	183	0 45	37		159	0 22
108 0	59 5 29 995	134	0 44	52		160	0 21
109 0	58 45	135	0 44	7	29 891	161	0 20
110 0	58 28	186	0 43			162	0 19 -
	58 8 29 982	137	0 42			163	0 18
112 0	57 88	138	0 41	45	29 882	164	0 17
113 0	57 14	139	0 40			165	0 16
114 0	56 48 29 970	140	0 40	1 7		166	0 15
115 0	56 22	141	0 39	18	29 871	167	0 14
116 0	55 53	142	0 98	27		168	0 13
117 0	55 26 29 957	143	0 37	35	}	169	0 11
118 0	54 56	144	0 36	42	29 861	170	0 10
119 0	51 26	145	0 35	49	, ,	171	0 9
	53,54 29 945	146	0 34			172	
	58 22	147	0 34	2	29 8 56	173	0 7
	52 48	148	0 39	6		174	0 6
	52'14 29 933	149				175	0 5
	51,88	150			29849	176	0 4
	51 2	151	0 30			177	0 3
	50 24 29 922	152	0 29			178	0 2
	49 46	153			29 843	179	
	49 7	154	0 27			180	0 0
	48 26 29 911	155	0 20				
130, 0	47 45	156	0 25	26	29837	1	
	<u> </u>	<u> </u>				1	L

In the case of Neptune the true Hel Velocity does not v mean Hel velocity viz 22 appreciably and hence this may be true Hel Vel for all practical purposes

In the exapmle the equation of centre and radius vecto from the tables

POSITION OF NODE.

At epoch is it is	3°_18°_28
Annual mot on is	-10" 68
Motion in 11254 years	= -20 -
Position at regd time Nodal distance (NP)	$= 3 - 18 - 7$ $= 3 - 0 - 58$ $= 3 - 18 - 7$ $= 11 - 12 - 1$ $= 342^{\circ} - 47$

To have a correct estimate of the nature of the influences of these planets their correct positions with their mutual positions also and with respect to the observer their visibility or invisibility their brilliancy or combustion have all to be taken fully into account and only the correct time will determine all these

While the importance of the correct instant is so much let us see what the actual conditions afford us in the matter of finding out the correct instant.

In olden days the time during day was found out by measuring the length of shadow cast by a gnomen at any required time and by computing a spherical Δ , with the length of the shadow the latitude of the place and the sun's declination on the day in question. This will give the correct apparent solar time from sunrise or for sunset.

During the nights, the star crossing the meridian of the place is noted and its RA being known is diminished by the sidereal time at noon on the day. The balance will be the hours mis sees since the proceeding noon in sidereal hours. Which can be easily converted into mean hours by subtracting at the rate of 3 mis 56 sec. for every 24 sidereal hours.

During cloudy days or nights when neither the sun nor the star could be visible they used to have (जल्देस) a light metallic cup with a thin fine hole, capable of floating in water, but when water enters into and reaches a definite "rark the cup will sink with a tick. The interval between two consecutive sinkings will be taken as the unit of time which is previously got ascertained with either of the previous two methods. To allow for the loss of time between sinking and refloating, two such contrivances are had which may be used alternately.

These seem to be very crude and unrefined in the modern times of watches and clocks and wristlets. These are able to show only correct to a minute, which will result in a difference of 15 of arc whereas all the previous methods will exactly measure fractions of the unit employed. The Hindu has for his unit of time a tighalida (चित्रटिका), which is equal to 6' of arc and it will be found to be 2½ times nearer thanthe modern unit of time.

Even if the exact moment be possible to be noted by some process there is yet a wide contest as to what really is the act of birth whose time is to be noted—

1) Whether the appearance of the child out of the mother's body

∴ Geocentric longitude =
$$^{\circ}$$
'S $^{\circ}$ + S $^{\circ}$ E = 90° - $54'$ — $45''$ minus 0° — $3'$ — $1''$ = 90° — $51'$ — $41''$

GEOCENTRIC VELOCITY.

This = Hel velocity +
$$\frac{\text{SE cos } \angle \text{MSE}}{\text{ME cos } \angle \text{SME}} \times \text{Rate of change of MSE}$$

$$= 92'' + \frac{101646}{310144} \times - \frac{99969}{31} \times \times - \left(56' - 52''\right)$$

$$= 92' + 1' - 50' = 9' - 12''$$

GEOCENTRIC LATITUDE

tan (Geo Latitude) =
$$\frac{SM}{EM}$$
sin (Hel Latitude)
= $\frac{29}{31} \frac{9996}{010144} \times \sin 392 = \frac{29}{90} \frac{9996}{010144} \times 0093$
= 009 = tan 31'

... Geocentric latitude=31'. S as the Hel latitude is also south

Chapter XX.

RECTIFICATION OF BIRTH TIME.

It is needless for me to resterate the importance of the exact moment of birth when a being is ushered into this planet to work out its desting. As a body is born, it comes to be under the action of the forces of the earth and has to under go all the changes consequent to the forces real and virtual to which the planet itself is subject to due to other planets and the Sun.

Besides the planets themselves are not always exterting the same nature and amount of forces for their position relative to the sun and the earth on one side and relative to other planets on the other as also the portion of the earth's surface presented to the planets at the instant receiving, different kinds of reflected radiant energy from the planets will be different at different times.

To have a correct estimate of the nature of the influences of these planets their correct positions with their mutual positions also and with respect to the observer their visibility or invisibility their brilliancy or combustion have all to be taken fully into account and only the correct time will determine all these

While the importance of the correct instant is so much let us see what the actual conditions afford us in the matter of finding out the correct instant.

In olden days, the time during day was found out by measuring the length of shadow cast by a gnomen at any required time and by computing a spherical Δ with the length of the shadow, the latitude of the place and the sun's declination on the day, in question. This will give the correct apparent solar time from sunrise or for sunset.

During the nights the star crossing the meridian of the place is noted and its RA being known is diminished by the sidereal time at noon on the day. The balance will be the hours mits sees since the proceeding noon is sidereal hours. Which can be easily converted into mean hours by subtracting at the rate of 3 ints 56 sec for every 24 sidereal hours.

During cloudy days or nights when neither the sun nor the star could be visible they used to have (जल्मा) a light metallic cup with a thin fine hole capable of floating in water but when water enters into and reaches a definite "fack the cup will sink with a tick. The interval between two consecutive sinkings will be taken as the unit of time which is previously got ascertained with either of the previous two methods. To allow for the loss of time between sinking and refloating two such contrivances are had which may be used alternately.

These seem to be very crude and unrefuned in the modern times of watches and clocks and wristlets. These are able to show only correct to a minute which will result in a difference of 15 of arc whereas all the previous methods will exactly measure fractions of the unit employed. The Hindu has for his unit of time a tighatika (चित्रविका), which is equal to 6 of arc and it will be found to be 21 times nearer thanihe modern unit of time.

Even if the exact moment be possible to be noted by some process there is yet a wide contest as to what really is the act of birth whose time is to be noted —

1) Whether the appearance of the child out of the mother's body

- 2) Whether the contact on this planet
- Whether the cutting off of the umbilical cord when the child commences the breath
- 4) Whether the time of first cry which always accompanies the first breath except in cases of still born ones

Each is equally important as the other and at any moment all cannot be correct. There should be some other thing with reference to which alone the time of the moment of the birth could be found out.

The exact moment nearer to an unit less than a minute has no importance as the planetary positions except that of the Moon in whose case it may result about 33 of arc will not be much affected. But for viewing the effects of planets especially in Hindu Astrology each planet is supposed to be changing its occupation or inclination to good or bad for every $\frac{1}{16}$ of a minute

A fitting example can be given here at this stage. Two persons were born to two different mothers at an interval of 2 minutes or so. Due to the short interval the ascendant and other houses planetary positions mutual aspects on the houses and the like could not have changed so much as to admit of any diversity in the growth environments culture prospects and attainments of the two individuals. In due couse one became a District Judicial officer while the other was a revered Village Brahmin preceptor. How could this difference be explained from the practically similar birth charts differing only by a time interval of 2 minutes?

This was a grent perplexity for a long time until it was explained that the change has been wrought up by the change in the planetary occupation due to the small increase of time. The lord of avocation in each of the two cases was considered and also the planetary occupation. For the former it was. Ascending the throne and that for the latter. Making sacred offering. This gives the clue to the inclination of the two natives.

Experience and research have proved beyond any doubt that the conception is brought about by the influence of the Moon on the male and female potence. The Moon our neighbour and satellite is always considered as the source for all impregnation and it is only the Moon which will give us the clue to the determination of the correct time of birth.

Therefore the time of conception is usually worked out from the given time of birth supposed to be incorrect by a laid out method which was

hypothetical at first, but later on found to be true and hence established and thence the time of birth is rectified by going backward or forward to make the Moon and ascendant at birth and conception adjust themselves according to certain formulated principles

The method to be mentioned herein has no reference to the time of conception yet it gives the rectification. It may appear to be hypothetical also but practical working will show that it will give very satisfactory results in a much simpler method than the "Prenatal Epoch Theory"

It was a mis-conception among the Hindus that the European astromoners were the foremost to formulate the Prenatal Theory of Rectification of birth time and that our ancient Indian astronomers have not striven to that end with any success

The source I am quoting herein is a half-sloka from Varahamira's Brihatjataka one of the ancient authorities on Astrology. The sloka has been laid out to be used for predicting the probable time of birth from the time conception or query. Different commentators have given different meanings but not one has made even a passing mention of its application for the purpose of rectification of birth time.

A very deep research was undertaken and a method has been evolved out of it which is explained in the following paragraphs

The sloka reads as follows – तत्कालिंग्डुसहिनो द्विरसायको यः । तत्तुल्य राशिसहिते पुगनः गशाये ॥

(vide sloka Chapter IV of Brihatjataka)

The meaning of this is — Find out the particular dwadasamsa of the Moon in any particular sign which it may be occupying. Note it count from the next sign as many signs as the no of Dwadasamsas the moon might have passed in the sign taken at first. When the moon comes to that last sign the birth will occur.

(Note - Dwadasamsa - means the twelth part of a sign)

The principle contained in applying this sloka is that the birth lagna or according to the instructions in sloka. For, the sloka requires the position of moon at conception which will be the ascendant at birth or its opposite. The Hindus knew the interchangability of the

Moon at conception or its seventh with that of ascendant at birth or its seventh.

On working out according to the instructions given, a particular position of Moon will be arrived at. Compare the position of the Moon thus arrived-at with that of the Moon for the noted time of birth, which we shall hereafter call the observed Moon.

By a comparison of the two moons, we deduce the correction to be applied to the ascendant to make the two moons tally exactly,

In the example of this book, the position of Ascendant is $0^{3}-28^{\circ}-44'-56''$ and that of the Moon is $3^{\circ}-8^{\circ}-42'-8''$

To find out the number of Dwadasamsas passed by the ascendant, convert the degrees etc to seconds of arc and dwiding it by 9000 the number of seconds of arc in a dwadasamsa, we get $\frac{193.69}{20.0000} = 11\frac{34.00}{20.0000}$, dwadasamsa Now as per the instructions, we have to find the sign where this dwadasamsa falls, and from the sign next to that, to count again as many sign as the dwadasamsa. Therefore, converting the ascendant also to signs, we get $\frac{193.600}{20.0000}$ signs (If the ascendant has in its longitude any signs, the no, of signs should be prefixed here). Hence the sign where the Moon at birth should be, will fall at .

should be, will fall at
$$\frac{103496}{108000} + 2 \left(11\frac{4496}{9000}\right) + 1 = 23\frac{4496}{4500} + \frac{103496}{108000}$$

$$= 28 + \frac{107904 + 103496}{1080000} = 23 + \frac{2114}{1080} = 24 + \frac{1034}{1080}$$

subtracting 12, as many times as possible being revolutions, we get it as $\frac{10\%}{100}$ signs or $0^8-28^9-48^9-20^9$. This should be the position of Moon at the observed moment, whereas it is $3^8-3^9-42^9-8^9$. Therefore there is correction to be applied as the arrived-at Moon is within 90° of the observed Moon the position is called an operating one and if it is nearer to the seventh from Moon, it will be a separating one,

In the case of operating positions, the twice the no of dwadasamas are counted from the sign next to ascendant and in the case of separating positions, the twice the no of dwadasamass are subtracted from the sign next to ascendant and the resultant thus got is taken for comparison with the observed moon, to get the time correction.

In the present instance, the case is one of operating influence and therefore the counting of the dwadasamas in the normal order of the signs done by us is correct. Therefore the armed-at moon lags behind the,

observed moon and hence observed time is behind the correct time or the correction to be applied to the ascendant will therefore be additive.

Let x° be the change in the lagna, to be added to the original ascendant. The increase in the L. H. S of the equation already given will be $\left(\frac{x}{30} + \frac{x \times 2 \times 2}{5}\right)$ signs. In the interval of x° of ascendant, the Moon also would have increased by $\left(\frac{x \times 4 \times \text{Moon's daily Velocity in degrees}}{60 \times 24 \times 30}\right)$

signs [for, x^n are correspond to 4x mts of time. Strictly the time should be found out by dividing the product of the duration of the tropical sign and x by 30]

Therefore we have,

$$\begin{array}{c} 1034 + \frac{5x}{6} = 3 \quad \frac{13328}{108000} + \frac{x \times 4 \times 911 \cdot 75}{60 \times 24 \times 60 \times 30} \\ \therefore \frac{5x}{6} - \frac{911 \cdot 75 \times x}{648000} = 3 \quad \frac{13328}{108000} - \frac{1034}{1800} \ \text{LSSO} \end{array}$$

Multiplying throughout by the L C M 648000, we get, (540000-911.75) x=1944000+79938 - 372240

$$= 1651728$$

 $\therefore 53908825 \times x = 1651728$

∴ 539088 25 ×
$$x = 1651728$$

∴ $x = \frac{1651728}{539088 \cdot 25} = \frac{2 \cdot - 3}{1 - 2 \cdot - 3}$ { use liting for further.

... Applying the correction which has arlready been stated to be additive, the observed ascendant, we get

True lagna
$$= \begin{cases} 0-28-44-56 & plu. \\ \hline 2-3-35 & plu. \\ \hline 1-1-35-30 & plu. \end{cases}$$
Rectified ascendant
$$= 1-1-35-30 & plu.$$

EXAMPLE FOR A SEPARATING INFLUENCE.

Let the Observed Ascendant 0°-19°-51'-48' and the observed Moon 9°-14°-10'-26"

As before the Dwadasamsa of the lagna is $\frac{73500}{1000} = 7\frac{7500}{1000}$. Twice this is $15\frac{4300}{1000}$ Adding one sign and counting from the lagna or ascendant, we get that the Moon should be at $15\frac{4900}{4540} + 1 + \frac{71503}{108000}$

$$=16+\frac{96072+71508}{108000}=17$$
 $\frac{59575}{108000}$, subtracting from this an exact no.

those for the next three tropical signs will be

Cancer	Lco	Virgo
322	296.8	279 2
+ 87	+ 213	+ 263
330 7	, 320 1	305 5

The same figures read backwards will give the durations of the remaining six tropical houses

Now write out the tropical longitudes of all the twelve houses for sake of ready reference, from pages 87 and 88

	l ———	II	III	lV	V	VI	VII	VIII	ix	X	ΧI	XII
5	1 21 21 44	2 19 18 14	3 . 15 11 26	12 13 67	5 12 49 41 47	6 17 2 18	7 21 21 44	8 19 18 14	9 15 11 26	10 12 13 7	11 12 49 11	0 17 2 18

Now the rectified ascendant is 19-19-48'-46" Making it tropical. we get, by adding precession 22°-36'-48' the tropical ascendant to be 1s-24°-25'-34". The difference is 3°-3'-50 The tropical ascendant is in Taurus, whose duration is for 277 5 vighatkas If this is for 30° of arc. what will correspond to 3°-3'-50? This is simple rule of three. It will be 0°-3'-50" × 277.5 vighatikas

or
$$\frac{11030 \times 277.5}{108000} = \frac{122433}{4920} = 28341$$
 vighatikas

.. This is the time difference by which the ascendant has progressed

CORRECTION TO SECOND HOMSE.

This tropical house falls in Gemini, whose duration is 313 3 vithatikas Correction in arc for a time increase of 28 341 vighatikas will be. $\times 30^{\circ} = 2^{\circ} - 12' - 50''$

If x^{α} is the difference to the correction $\frac{\delta x}{\delta y}$ signs will be the difference in the results

$$x \cdot \frac{5x}{t_f} = \frac{32407}{108000} \quad x = \frac{0481}{18000}, 500$$
Subtractive correction = 0° - 21′ -30′

Subtractive correction = 0°-21'-80"

"The correct lagna will therefore be 0°-110'-20'-7". Had the moon's change of longitude been taken thro-account also the correction would have been still more accurate It was not done this instance for want of the velocity of the Moon at the instant

Now we shall find out the time difference and apply it to correct the planetary and house positions to the rectified birth time

The durations of the signs (tropical) Aries Taurus etc. will be in the order 279 2 298 8-322-322 298 8 279 2 298 8 322 322 298 8 and 279 2 measured in Vighalikas at the equator. It will be shown how these figures are arrived at the end of the chapter.

At any desired latitude we find the durations of these tropical houses as follows Take the ঘ্ৰের's of the latitude they are 263 213 and 87 for the latitude of the psesent example

The durations of the first three tropical signs will be

Aries	laurus	Gemini
279 2	298 8	322
- 263	- 21 3	- 87
252 9	2775	313 3

those for the next three tropical sions will be

200	Virgo		
298 8	279 2		
+ 213	+ 263		
320 1	305 J		
	+ 213		

The same figures read backwards will give the durations of the remaining six tropical houses

Now write out the tropical longitudes of all the twelve houses for sake of ready reference from pages 87 and 88

=	1	II	i iii	ΙV	V	٧I	VII	VIII	IX	×	ΧI	XII
5	1 21 21 44	2 19 18 14	3 15 11 26	12 13 7	5 12 49 11	6 17 2 18	7 21 21 44	8 19 18 14	9 15 11 26	10 12 13 7	11 12 49 11	0 17 2 18

Now the rectified ascendant is 1s-1°-48-46 Making it tropical we get by adding precession 22-36-48 the tropical ascendant to be Is-24°-25-34 The difference is 3°-3-50 The trop cal ascendant is in Taurus whose duration is for 2775 vighatkas If this is for 30 of arc what will correspond to 3°-3'-50? This is simple rule of three. It will be $\frac{5^{2}-8-50^{\circ}\times 277}{30^{\circ}}$ vighatikas

or
$$\frac{11030 \times 277.5}{108000} = \frac{12248.3}{4320} = 28.341$$
 vighatikas

This is the time difference by which the ascendant has progressed

CORRECTION TO SECOND HOMSE.

This propocal house falls in Gemini, whose duration is 313.3 vithat kas Correction in arc for a time increase of 28341 vighatikas will be $\frac{28341}{2103} \times 30^{\circ} = 2^{\circ} - 42 - 50^{\circ}$

CORRECTION TO THIRD HOUSE.

This tropical house falls in Cancer, whose duration is 330.7 vighatikas Correction in arc for the same time increase of 28 341 vighatikas will be, 29 341 × 36° = 2°-34'-16°

330.7

CORRECTION TO FOURTH HOUSE.

This tropical house falls in Leo, whose duration is 320 l vighatikas $\frac{28 311 \times 30^{\circ}}{31001} = 2^{\circ} - 39^{\circ} - 23^{\circ}$.. Correction in arc

CORRECTION TO FIFTH HOUSE

This tropical house falls in Virgo whose duration is 305.5 vighatikas :. Correction in arc = $\frac{28 \text{ }^311 \times ^30^\circ}{305 \text{ }^5} = 2^\circ - 16' - 59''$

As the durations of the tropical signs from Aries to Virgo are the same for Libra to Pisces read backwards, it is enough if we take any six houses falling in any of the two sets of six signs. This will save us from the necessity of applying the correction to all the twelve houses. In this instance we have taken all the houses falling in the signs Taurus to Virgo and if we also take the twelfth house, whose tropical longitude falls in Aries we can write down the rectified longitudes of the other housus by merely adding 6 signs to the first set of houses

CORRECTION FOR TWELFTH HOUSE.

This tropical house falls in Aries whose duration is 252 9 Vighatikas,

:. Correction in arc= $\frac{28 341 \times 30^{\circ}}{252.9} = 3^{\circ} - 21' - 43''$

Now applying these corrections to the respective house longitudes (Niravana) we get them as follows tabulated as under.

RECTIFIED HOUSE LONGITUDES (NIRAYANA) भावस्त्रहाः

=	ì	li	Ш	١٧	٧	VI	VΙι	Vill	ιx	X	ΧI	XII
s	1	1	- 2	- 8	4	5	7	7	8	9	10	11
	1	29	25	22	22	27	1	29	25	22	22	27
,	48	24	8	15	59	47	48	24	8	15	59	47
,	46	16	54	42			46	16	54	42	22	13
			i	44	55					1 11	55	

CORRECTION TO POSITIONS OF PLANETS.

Write down the planetary longitudes with respective velocities under them. They are

29	9	24	5	23	13	1	8	13	0
21	42	6	56	47	23	54	13	57	51
22	8	56	11	26	16	42	58	24	41
57	911	3	34	7871	4	73	5	2	2
13	46	11	11	36/2	32	57	54	28	16

(Retrograde) (Retrograde)

Hence correction for a time difference of 28 341 vighatikas forward will be obtained by multiplying this by the velocity in mits of the planet and dividing the result by 3600 when the result will be the correction in mits of arc. For retrograde planets and the Moon's Node, the correction will be negative even though the time correction be + ve.

The correction for each planet is as follows -

Sun	Moon	No le	Mars	Vercury	Japt	lenus	Saturn	Uranus	Neptune
0 27"	7' 10"	0 2″	0 16"	0 ვს"	0 2*	0 35"	0 3″	0 1"	0
-4-	+		+	+		+	+		+

RECTIFIED PLANETARY POSITIONS WILL BE.

Sun	Voon	Youn's Node	Vars	Vereury	Jupiter	Venus	Saturn	Uranus	Acptune
2	3	11	4	3	7	-3	1	9	3
29	3	24	5	23	13	1	8	13	0
21	49	G	56	43	28	55	14	57	51
49	18	54	27	2	14	17	1	23	52

We shall now show how the durations of the natural tropical houses, Tropical Aries etc are found out

=
$$58277 = \cos 57^{\circ} - 15'$$

 $\therefore \hat{\Upsilon} P \beta = 57^{\circ} - 48'$. If $\angle a P \beta = h_2$ we have
• $h_2 = \hat{\Upsilon} P \beta - \hat{\Upsilon} P a = (57^{\circ} - 48') - (27^{\circ} - 55') = 29' - 58'$
Sunning up we have,
• $h_1 = 27^{\circ} - 55'$ or in time 4chts 39 $2v_1$, hats
• $h_2 = 29^{\circ} - 53'$ or , 4chat 58 8 vighat
• $h_3 = 90^{\circ} - (h_1 + h_2)$
= $38^{\circ} - 12'$ or , 5chats 32 $9v_2$ haths

As u β and S are 30° 60 and 90° from the point γ ° the first point of Aries these are the durations of the tropical Aries Taurus etc

8efore finishing this chapter, a passing note has to be made about the 'Prenatal Conception Epoch theory', wherein the following suggestion may be adopted. A full detailed working and the theorems involved therein are not supposed to be dwelt upon here and they may be had from any standard book on the subject.

Only the following change is suggested that after finding out the distance of the moon at epoch above or below the horizon as per the rules in degrees the distance is divided by 12° to find out the day of conception when the Moon will be found in the ascendant or desendant at birth. This 12 is only rough as the Moon's motion is not uniform. The actual day of conception should be found out by first subtracting the period of ten lunar or sidereal periods viz 273days 5hrs 29mts 61sec from the date and time of birth and thence going backward or forward according as the intra-uterine period is more or less than 10 lunar sidereal periods by so many degrees etc of the distance of the Moon above or befow the horizon when the actual moment of conception is got. In the case of irregular epochs, half a lunar sidereal period will have to be added or subtracted to suit the condition of the case as per the laws of the method.

If this is also taken notice of the results fairly tally with the Hindu method of rectification of ascendant

Let O, be an observer at a place on the terrestial equator. His celestial equator will be along his prime vertical, as the altitude of the pole, which is the same as the latitude of the place is zero in this case.

Let SW be the plane of the ecliptic, cutting that of the equator at $T = Let \ a. \ \beta$ be the points exactly 30° from T the first point of Aries. Then T PL and a P β will be the hour angles of the two houses of the zodiac or their duration in sidereal hours. As \angle PS $T = 90^{\circ}$, β PS will be the duration of the third house.

In \triangle 1) PL we have $\cos a$ 1) = $\cos a$ P $\cos a$ P $+ \sin a$ P $\cos a$ P $+ \sin a$ P $\cos a$ P,

where h_1 is the duration of the house 1) a (= 0°) $\therefore \cos 0$ 0° = $\cos 9$ 0° $\cos a$ P $+ \sin 9$ 0° $\sin a$ P $\cos h_1$ but $\cos 9$ J = 0, $\sin 9$ 0° = 1 and $\cos 3$ 0° = $\frac{\sqrt{4}}{2}$ $\therefore \frac{\sqrt{4}}{2}$ = $\sin a$ P $\cos h_1 \therefore \cos h_1$ = $\frac{\sqrt{4}}{2} \sin a$ but a P = (declination of a + 90°)

= $(d_1 + 9$ 0°)

 $\therefore \sin \alpha P = \sin (90^{\circ} + d_1) = \cos d_1$ $\therefore \cos h_1 = \frac{\sqrt{3}}{2 \cos d_1} = \frac{\sqrt{3}}{2\sqrt{1 - \sin^2 d_1}}$

but $\sin d = \sin \omega \sin O$ giving the declination (d) in terms of the ropical longitude O

$$\begin{array}{c} \cdot \cos h_1 = \frac{\sqrt{4}}{2\sqrt{1-\sin^2 \omega} \sin^2 O} = \frac{\sqrt{9}}{2\sqrt{1-\sin^2 \omega} \times 4} \\ = \frac{\sqrt{4}}{\sqrt{4-\sin^2 \omega}} = \frac{\sqrt{4}}{\sqrt{4-(3980921)^2}} - \frac{1\cdot732}{1\cdot96} \\ = \cdot 8837 = \cos 27^\circ - 57' \\ \therefore h_1 = 27^\circ \cdot 55' \\ \text{similarly, } \cos 7^\circ \beta = 0 + \sin \beta P \cos 7^\circ P \beta \\ \text{Cos } 60^\circ = \frac{1}{2} = \cos d_2 \cos 7^\circ P \beta \\ \therefore \text{Cos } 7^\circ P \beta = \frac{1}{2\cos d_2} = \frac{1}{3\sqrt{1-\sin^2 \omega} \sin^2 00^\circ} \\ = \frac{1}{2} \frac{1}{\sqrt{1-3}\sin^2 \omega} = \frac{1}{\sqrt{4-3}\sin^2 \omega} = \frac{1}{\sqrt{1-3}\times(.980821)^2} \end{array}$$

=
$$53277 = \cos 57^{\circ} - 46$$

· $\hat{\Gamma}P\beta = 57^{\circ} - 48'$ If $\angle \alpha P\beta = h_2$ we have $h_2 = {}^{\circ}P\beta - {}^{\circ}\Gamma P\alpha = (57^{\circ} - 48) - (27^{\circ} - 55') = 29^{\circ} - 53'$
Sunning up we have $h_1 = 27^{\circ} - 55'$ or in time 4gbts 39 2vighats $h_2 = 29^{\circ} - 53$ or 4gbat 58 8v ghat $h_3 = 90^{\circ} - (h_1 + h_2)$ = 33° -12 or 5gbats 32 Dv ghathva

As $\alpha \beta$ and S are 30 60 and 90 from the point γ the first point of Aries these are the durations of the tropical Aries Taurus etc.

Before finishing this chapter a passing note has to be made about the Prenatal Conception Epoch theory wherein the following suggestion may be adopted. A full detailed working and the theorems involved therein are not supposed to be dwelt upon here and they may be had from any standard book on the subject.

Only the following change is suggested that after finding out the distance of the moon at epoch above or below the horizon as per the rules in degrees the distance is divided by 12° to find out the day of conception when the Moon will be found in the ascendant or desendant at birth. This 12 is only rough as the Moon's motion is not uniform. The actual day of conception should be found out by first subtracting the period of ten lunar or sidereal periods viz 273days 5his 29mis 61sec from the date and time of birth and thence going backward or forward according as the intra uterine period is more or less than 10 lunar sidereal periods by so many degrees etc of the distance of the Moon above or below the horizon when the actual moment of conception is got. In the case of irregular epochs, half a lunar sidereal period will have to be added or subtracted to suit the condition of the case as per the laws of the method.

If this is also taken notice of the results fairly tally with the Hindu method of rectification of ascendant

Chapter XXI.

TRANSFORMATION OF CO-ORDINATES.

The longitude and latitude which we have found out in the previous chapters are with reference to the ecliptic As stated previously in the earlier chapters the same celestial body can also be located with reference to the celestial equator provided the respective co-ordinates are given Such a transformation is called The Transformation of co-ordinates - a very important portion in Spherical Astromony

EXAMPF

Let P be a body whose longitude T M and latitude PM are known and let it be required to know the corresponding Right Ascension 'TQ and Declination Po

Thro P draw the vertical, meeting the equator at Q then Q is the RA and PO the declination Join PT

in the spherical rt 2d APM we have cos TP=cos PM cos 1 M
is 1'P known
Further sin TM=tan PM tan P1'M

and AMTQ is already known as &

PTQ= /MIQ+ /PIM which can be found out

In APTO TP and ZPTQ are known therefore TQ and PQ can be found as follows -

$$sin PQ = sin \angle P'_1 Q sin ^*P$$

$$= sin ^*P sin (\omega + P'_1 M) - (1)$$
and $\cos \angle P'_1 Q = cot ^*P tan ^*Q$

$$tan ^*P = cos \angle P'_1 Q tan ^*P - (2)$$

Thus TQ and PQ are both found out as the RA and declination of the body P

These are very useful to find out the times of rising setting etc of the planets We propose to make use of these to find out if a planet is combust with the sun or not. To do this we have to find out the hour-angle at rising of the planet and that of the sun and if the difference in their times of rising or setting be found to be less than the values to be mentioned hereafter, which are the values within which the rays of the planets are hidden in those of the sun we call the planet to be in combustion or भीवा or अस्वेगत in sanskrit

The RA can be found out for all the planets and the difference between each of them and that of the sun will give the time of rising of the planet after the rising of the sun and so also for the setting after that of sun. This difference if it falls short of the constant value which will be mentioned now we can conclude that the planet is in combust. If more, the planet is illumined and bright.

For this purpose it is enough if only those planets which are with or in close nearness to the sun are considered and not all the planets. In the present example, the longitudes of Venus and Sun are seen to be very near differing only about 2³/₂ nearly. Hence here is a case for trying if she is in combust.

EXAMPLE

Longitude of Venus 91°-55'-17" Geoc Latitude 57'-14" N 89°-21'-49' Longitude of Sun Making these tropical we have to add 22°-36'-48" the precession We get therefore Tropical longitude of Venus 114°-32-5" of Sun 111°-58'-37" do Cos "P=cos 114"-92-5" cos 0"-57'-14" $L \cos ^{9}P = L \cos 114^{\circ} - 32 - 5^{\circ} + L \cos 57 - 14^{\circ} - 10$ =9 61830404-9 9999398-10 $=9.6182438 = 1 \cos 114^{\circ} - 31' - 52''$: PP=114°-31'-52" Cot P3 M = sin 114°-32 -5" cot 57'-14" $I \cot P_1^2 M = L \sin 114^\circ - 32^\prime - 5^{\prime\prime} + L \cot 57 - 14^\prime - 10$ = 9 9589029+11.7785965-[0 - 11 7374994=L cot 1°-2'-55' · PM%=1°-2-55"(+) This is North as the original fat is North

: P(Q = (23°_27'_30" + 1°_2 _55") = 24°_30 _25" The Ptolemian Theory stated that the Earth was at the centre of the universe and that the sun and other planets are performing their ceasless journey about the Earth. This had the consent of the ancient mythologies of the world and the force of religious anthorities with their usual oppression was so much that they could not even entertain any theory which was otherwise.

This theory could not explain the theory of Retrogorade motion and stationary positions of planets and such other things as easily or rationally as the present Copernician theory does

Thanks to the Copernician theory the Kepler's Laws and later on Newton's discoveries a great headway has been made in the field and things have been established on a more solid ground

OLD HINDU METHOD

INFERIOR PLANETS

The different items of calculation are arrange as follows —

Sun Planet Sterger Shegera Vanda Manta Sterger Spitha
kendra rall a Lendra sphuta kendra
বি মত হামিকৈঃ হামিকে সমুহতির চামিকেঃ হন্দুর

The sun and planet are written respectively under the first two headings. Sun is subtracted from the planet when दीमिक is got. There are tables called दीमिक्या which are entered into according as the कीमिक is मकरादि (between 270 to 90) or कर्क्योदि (90 to 270) Half of this equation is added to or subtracted from Sun according as चीमिक is भेपादि (0–180) or जुळादि (180–360°). This is called चीम धै This is subtracted from the Apse of the planet when Manda kendra (मैंक्केट्र) is go. There is a table as महस्मा This is entered into and the effect there of is applied to sun when महस्स्मा is sometimed from the planet when the दिस्मा is got. As before the चीमम्मा is entered into and the effect thereof is applied to the महस्स्मा The result is the true longitude of the planet.

SUPERIOR PLANETS.

In this the order of the items is as follows

Planet Sun Manda Mandar Sheorra Sheoga Manda Manda Sheorra Sph ta ken ita lua keodar riha kenatra sphula ken ita 돼즈 1월 대연주는 제연한 레티플로 테메티 제작구를 제작되는 하나 문학은 기타다운 판단 In this मंद्केंद्र is got by subtracting the planet from the Apse Half of the effects got from the मद्द्रम्य are applied to Planet we get माद्दार्थ. This is subtracted from sun when गीमर्केंद्र is got The शीम्रम्य (फरपांदि मक्तादि) is entered into and half the effects got there of are applied to माद्दार्थ we get शीम्रार्थ. This is again subtracted from Apse when we get the II Mandakendra मंद्रकेंद्र. Again the मंद्रम्य फर्छ is got and applied to the original planet when we get मंद्रस्त. This is subtracted from Sun when II शीमकेंद्र is got The शीमराम्यिक is got and applied to the frequency of the शीमराम्यिक so got and applied to the right when we get मंद्रस्त This is subtracted from Sun when II शीमकेंद्र is got the शीमराम्यिक so got and applied to the मंद्रस्त when the true longitude of the planet is got

It would have been observed that in the case of the inferior planets the position of the planet in the Hel orbit is entirely ignored inasmuchas none of the effects are applied to it. The mutual distances of the planet earth and sun are not taken into consideration at all and it is needless to say that the longitudes worked out according to the old Hindu tables will not be true to observation.

Further the eccentricities being sufficiently high in some cases the higher powers of e, should not have been ignored as appears from the old Hindu tables

RECTIFICATION

The following revised tables are herewith given which could be used while working according to the instructions hereunder

The order of the terms for all plangts are -

Planet	Apse	Manda Kendra	Manda Sphuta	Ravi Sphuta	Sheegra Kendra	*Sphuta
प्रह	मंदो च	मंद्रकेट्र	मंदस्कृट	स्फुटरवि	शीबंकद्र	स्पृट

Subtract planet from Apse, when the मैद्किंद्र is got Enter the Mandajya मैद्क्या. While using Mandajya when the मैद्केंद्र is मेपादि, upto 90° use the top line and above that till 180 the lower one with the मुने or sine argument when तुळादि, reverse the operation but taking care to take the मुने in each case before entering the table

Appy the effect got additive or subtractive to the planet according as the मंद्रकेंद्र is मेपादि or तुलादि. We get मंद्रकुट: Subtract it from sun's

The Ptolemian Theory stated that the Earth was at the centre of the universe and that the sun and other planets are performing their ceasless journey about the Earth. This had the consent of the ancient mythologies of the world and the force of religious anthorities with their usual oppression was so much that they could not even entertain any theory which was otherwise.

This theo y could not explain the theory of Retrogorade motion and stationary positions of planets and such other things as easily or rationally as the present Copernician theory does

Thanks to the Copernician theory the Kepler's Laws and later on Newton's discoveries a great headway has been made in the field and things have been established on a more solid ground

OLD HINDU METHOD

INFERIOR PLANETS

The different items of calculation are arrange as follows -Planet Sheegra Sheegra Manda Man la SI penta So iths Lenden ra lhe kend a sphuta Landra र वि डीब रेंट នាំជាមើ मदर्भेड

The sun and planet are written respectively under the first two headings. Sun is subtracted from the planet when शीम केंग्र is got. There are tables called शीमन्या which are entered into according as the शीम नेंग्र is मकरादि (between 270 to 90) or कर्ममादि (90 to 270) Half of this equation is added to or subtracted from Sun according as शीम ग्रा is subtracted from the Apse of the planet when Manda kendra (मेंग्रेम्प्र) is got. There is a table as मदस्या This is entered into and the effect there of is applied to sun when मदस्युट is got. This is again subtracted from the planet when the lt शीमेंग्र is got. As before the शीम ग्रा is entered into and the effect thereof is applied to the मदस्युट. The result is the true longitude of the planet.

SUPERIOR PLANETS.

In this the order of the stems is as follows
Plant Sun Ma da Vanlar Sheegra Sheegra Manda Manda Sheet
hendra liba kendra niba kendra sphilia kenl
সার াবি মাইকর মার্থি বামিকর হামিথে মারকর মুবকুর রাক্ত্রন্তর হা

A rough way of the determination of the शीपमन्त्रं to be applied, is got by using the multipliers.

$$\frac{\sqrt{1+231+301\cos\left(\varepsilon\widehat{\ln}\sqrt{\varepsilon}z\right)}}{\sqrt{1+\frac{72547}{Hel. Vel}} + \sqrt{Hel. Vel}\cos\left(\varepsilon\widehat{\ln}\sqrt{\varepsilon}z\right)}}$$
 (for Mar.)
$$\frac{1567}{\sqrt{Hel. Vel}}$$
 (for Mercury)
$$\frac{\sqrt{Hel. Vel}}{22323}$$
 (for Jupiter),
$$\frac{98}{\sqrt{Hel. Vel}}$$
 (for Venus) and
$$\frac{\sqrt{Hel. Vel}}{1.4112}$$
 (for Saturn)

to the शीश्रक्त already found out from the tables. This rectified शीश्रक्त is applied to the भेदस्सूट in the case of superior planets and to स्मूटरिय for the rest. The result will be the correct longitude.

GEOCENTRIC VELOCITY.

The difference in the Heliocentrie Velocities of the planet and sun will be the velocity of হামিক?. The effect of হামিক? for this difference, considered between the items where the sine argument of the হামিক? falls is got and multiplied by the multiplier. The rectified correction is applied positive or negative according as the সামিক? is মক্ষাক ক্ষেত্ৰি, to the Helf Vel of Earth, in the case of Mercury and Venus and to the Helf velocity if the planet, in the case of Mars Jupiter and Saturn

Note... The tables that are given here differ from those referred in the Hindu old method especially in the Harry of the inferior planets.

/ TABLE OF MARS.															
1 0	1										11				
											5*9				
				٠,							615	- (
4, 1				- 1			1					1	- 1	1	
	(0-1	125-	1632,	וניני.	01	13.5	***	\$111	2101	7351	es • .	مرو	2121		13-4

longitude (रविस्फुट). We get सीघरेंद्र. Enter शीघरेया कक्योदि ा मकराहि. Find the effect and note it down. In the case of inferior planets subtract स्फुटरिव from the मैद्दस्कुट, as the Hel velocities of inferior planets are always greater than that of sun, to get शीपूरेंद्र.

HELIOCENTRIC VELOCITY (मंदस्कुटगिन)

Multiply the daily mean velocity of the planet in mis by the difference in the items wherein the मंदम्ब्रमुन (sine argument of the mean anomaly) falls, and divide by 360 The quotient will be the correction to be applied to the mean velocity + or — according as the मंदम्ब्राहित कम्पादित or महागदित.

The result is the True Heliocentric Velocity (Even if in कम्पादि, it be a case of decreasing items, the effect shall be taken negative)

The शीमफले got from the tables with the शीमफेंद्र has to be applied with the following multipliers. Find the sine of the शीमफले with the proper sign. Apply the multipliers to the sine. Find whose sine is the product. That angle will be the rectified शीमफलें or स्फुटीहतशीमफलें.

Mars
$$\sqrt{3\cdot31+3\cdot04\cos\theta}$$
 $\sqrt{1+1\cdot2273\cdot\frac{v}{v'}+2\cdot214\cdot\sqrt{\frac{v}{v'}\cos\theta}}$
Mercury $\sqrt{6\cdot706+4\cdot776\cos\theta}$ $\sqrt{\sqrt{1+1\cdot3741\cdot\frac{v'}{v}+2\cdot344\cdot\sqrt{\frac{v'}{v}\cos\theta}}}$
Jupiter $\sqrt{27\cdot97+10\cdot51\cos\theta}$ $\sqrt{\sqrt{1+2\cdot280\cdot2\cdot\frac{v}{v'}+3\cdot02\cdot\sqrt{\frac{v}{v'}\cos\theta}}}$
Venus $\sqrt{2\cdot910+2\cdot765\cos\theta}$ $\sqrt{\sqrt{1+1\cdot17.49\cdot\frac{v}{v'}+2\cdot168\cdot\sqrt{\frac{v'}{v}\cos\theta}}}$
Saturn $\sqrt{91\cdot94+19\cdot07\cos\theta}$ $\sqrt{1+3\cdot0761\cdot\frac{v}{v'}+3\cdot508\cdot\sqrt{\frac{v}{v'}\cos\theta}}$

Where θ is the शिष्केंद्र of the planet v and v^1 are the Heleocentric Velocities of the Earth and planet

If taken without these multipliers, the शीयुम्जे merely got from the tables will not be accurate and that is how the ordinary Hindu almanacs give planetary positions which are at variance with those of the more correctly osat western almanacs

A rough way of the determination of the সীঘুদন্ত to be applied, is got by using the multipliers,

$$\frac{\sqrt{1+231+304\cos{(sil\ddot{\eta}\ddot{\eta}\ddot{z})}}}{\sqrt{1+\frac{72\cdot547}{Hel,Vel.}+\sqrt{\frac{17\cdot04}{Hel.Vel}\cos{(sil\ddot{\eta}\ddot{\psi}\ddot{z})}}}} \qquad \text{(for Mars)}$$

$$\frac{15\cdot07}{\sqrt{Hel.Vel}} \qquad \text{(for Mercury)}, \qquad \frac{\sqrt{Hel.Vel}}{22323} \qquad \text{(for Jupiter)},$$

$$\frac{98}{\sqrt{Hel.Vel}} \qquad \text{(for Venus) and} \qquad \frac{\sqrt{Hel.Vel}}{14142} \qquad \text{(for Saturn)}$$

to the शीमरूछं already found out from the tables. This rectified शीमफ्छं is applied to the मंदस्हर in the case of superior planets and to स्फुटर्ग्व for the rest. The result will be the correct longitude.

GEOCENTRIC VELOCITY.

The difference in the Heliocentric Velocities of the planet and sun, will be the velocity of হামিকৈট. The effect of হামিকট for this difference, considered between the items where the sine argument of the হামিকৈট falls is got and multiplied by the multiplier. The rectified correction is applied positive or negative according as the হামিকৈট is সক্ষাহি or ক্ষমানি, to the Hel. Vel. of Earth, in the case of Mercury and Venus and to the Hel. velocity of the planet, in the case of Mars, Jupiter and Saturn

(Note—The tables that are given here differ from those referred to in the Hindu old method especially in the मैदरया of the inferior planets)

TABLE OF MARS.

												_	_			===
Items	0	1	2	3	1	5	C	7	8	9	10	11	12	13	14	15
, ,			100		62-	202	912	300	450	age	5.5	559	244	G12	629	610
मंद्रज्या {	0	76	151	213	292	357	417	470	517	557	590	615	632	612	C15	C10
मकरादि	0	143	245	420	566	707	813	978	1113	1215	1372	1494	1623	1734	1822	1953
कक्यादि	0	690	1252	1697	2031	2201	232~	234~	2414	2101	2361	2209	2236	2151	2359	1954

TABLE OF MERCURY.

	_					_	<u> </u>									
liems	0	1	2	3	1	5	6	7	8	9	10	11	12	13	11	15
	0	120	239	355	469	\$80	696	789	886	977	1063	1142	1211	1277	1331	1374
मंदज्या (0	191	381	565	735	890	1027	1444	1211	1318	1373	1 109	1121	1123	1406	1371
म करादि	0	101	199	296	390	493	5 G 1	GGO	711	821	900	971	1037	1097	1150	1197
फक्योंदि	0	223	435	621	791	931	1011	1434	1200	1245	1274	1283	1276	1262	1233	1197

TABLE OF JUPITER.

Itemia	6	1	2	3	4	5	6	7	В	9	10	11	12	13	11	15
1	6	33	65	97	127	157	185	211	236	254	277	291	809	310	326	330
मंद्रज्या {	0	37	73	109	112	174	201	231	250	277	295	300	320	327	330	330
मकगदि	0	59	119	176	231	281	325	381	429	472	511	510	576	601	621	637
कक्यंदि	6	89	175	256	330	393	459	510	553	580	615	631	617	619	616	637

TABLE OF VENUS.

Items	0	1	2	3	4	5	6	7	8	9	10	11	12	18	14	15
(0	5	40	15		: 1						43			47	47
मंद्रस्या 🖁	0	5	10	15	19	23	27	31	35	33	41	43	45	46	47	47
मकरादि	0	152	803	454	601	753	501	1050	1197	1340	1483	1623	1761	1893	2022	2150
कक्योदि	0	927	1657	2162	2466	2645	2753	2783	2788	2731	2667	2579	2483	2382	2269	2150

TABLE OF SATURN.

Items	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ال ا											321					
मंद्ज्या {	0	43	86	127	167	204	239	271	299	321	314	361	373	381	394	283
मकरादि	0	36	71	105	138	170	199	228	253	277	297	317	333	345	354	362
कक्योदि	0	45	79	130	170	207	239	270	295	316	332	347	256	362	363	862

Each item in all these tables stands for 6° of the sine argument of the respective functions (就).

EXAMPLE

Mean longitude of Mars	50-30-53
Apse of Mars	4-11-49-37
Suns true longiturde	2-29-21-22

भौम	ـدن				- 2	
माम	मंदोच	मंद्रिह	मदस्फुट	स्फुटरवि	গীমর্কীর	स्फुट
5	4	11	4	2	10	4
0	11	13	27	29	1	G
30	49	18	25	21	56	6
53	37	44	14	22	8	45
_			_			
81			26	57	30	
26			23	13	50	

Harriz is got by subtracting the planet from its apse. This is more than 180° and past 270° also. The item which began from 0 item of the lower line has come to the top line argit. It is $12^n - (11^n - 11^n - 18^n - 44^n) = 18^n - 44^n - 16^n$. As 6^n corresponds to 1 item the no of past items is 3 and $41^n - 16^n$. As 6^n corresponds to 3rd item is 179 and difference for the next is + 58. Proportional for $41^n - 16^n = \frac{41^n - 16 \times 58}{360} = 6^n - 39^n$.

∴Equation for
$$18^{\circ}$$
— $41'$ — 16° = $179'$ — 0° plus 6 — $'89^{\circ}$ = $185'$ — $39'$

As the मंदिनेंद्र is more than 180°, this is negative. Hence subtracting it from the planet we get $4^{\circ} \sim 27^{\circ} \sim 25^{\circ} \sim 14^{\circ}$. The difference between the items wherein the sine argument of the मंदिनेंद्र lies is +58. Find $31^{\circ} \sim 26^{\circ} \times \frac{58}{300}$ it is $5^{\circ} \sim 3^{\circ} \sim 3$. As the मंदिनेंद्र is भक्तगद्दि, this has to be subtracted from the mean velocity of Mars $31^{\circ} \sim 26^{\circ}$ when we get the true heliocentric velocity, of Mars as $26^{\circ} \sim 23^{\circ}$.

Then स्फुटरचि is written This less the मैदस्सूट will give the शीघोरट. It is 10°—1°—56′—8° As this is more than 270° we have to refer to the सकरादित्या, with its sine argument The sine argument is 1°-28-3-52=58°-3′—52°. This will be 9 items plus 4°—3′—52° From the सकरादि

tables we get
$$\left(1215 + \frac{243 - 52 \times 127}{360}\right)$$

which is equal to 1331'-2"=22°-11'-2". This is minus as शीबरेंद्र is more than 180'.

This sine of this is - 2775804

The multiplier is
$$\sqrt{331+304\cos\theta}$$

The multiplier is
$$\frac{\sqrt{331+304\cos 0}}{\sqrt{1+12272\times21695+2\cdot214\times1\cdot173\cos 0}}$$

 $\frac{v}{v} = \frac{5722}{90.98} = 21695 \text{ and } \sqrt{\frac{v}{v^2}} = 1478$

In this case $\theta = 801^{\circ} - 56' - 8'$ and $\cos \theta = 5299$

.. The multiplier becomes
$$\frac{\sqrt{331+3.04\times5299}}{\sqrt{3.6623+3.114\times5299}}$$

$$= \sqrt{\frac{49209}{53124}} = 9624$$

Multiplied sine (शीयक्ले) = -- · 377580 (× 9624

This is sine of -(21°-18'-29")

Applying this to the मैद्रस्ट, we get 48-60-65 This is the geocentric longitude

GEOCENTRIC VELOCITY

The difference in the 9th and 10th items wherein the sine argument lies 15+127 The difference in the Hel velocities of Planet and Earth is 30'-50''. Find $\frac{30'-50'\times127}{900}=10'-52''$

As the शीबनेंद्र is मकरादि; The effect on the velocity is positive and negative if it had been करपीदि. (In कलपीदि also if the difference between the items is negative then the effect on velocity will be positive. This should he noted) .. The effect is +10'-52" Now apply the multiplier 9624 we get +10'-36" This is has to be added to the Hel vel of Mars We $\sigma_{\text{eff}} (26'-28'') + (10'-30'') = 36'-59''$ This is the Geocentric Velocity

The other planetary positions also could be calculated accordingly.

This chapter is specially intended for those who would make use of the Hindu tables as rectified here with as little use of Trigonometry as possible

Chapter XXIII.

APPENDIX
TABLE OF TRIGONOMETRICAL RATIOS.

				· · ·	
Deg	Sines	Common difference	Tangent	Common difference	Deg
0	-0000000	174524	-0000000	174551	90
ĭ	.0174524	174471	0174551	174657	89
2	·0348995	174865	-084920S	174870	88
8	·0528360	174205	-0524078	175190	87
4	-0697565	173992	-0699268	175619	86
ธิ์	·0S71557	178725	-0874887	176155	85
G	1045285	173408	1051042	176804	84
7	-1218693	173038	1227846	177562	88
8	.1891731	172614	·1405408	178486	82
9	·1564345	171997	1583844	179426	81
10	·1736482	171608	-1769270	180533	80
11	·1908090	171027	.1943803	181768	79
12	-2079117	170394	-2125866	188116	78
13	-2249511	169708	-2805652	184598	77
14	-2419219	168971	.2499280	186212	76
15	:2588190	168184	2679492	187962	75
16	2756974	167343	-2867454	189953	74
17	-2923717	166458	-3057807	191890	78
18	-8090170	165512	-3249197	194079	72
· 19	·3255682	164519	•3443276	196426	71
29	-8420201	16947S	-8639702	198988	70
21	-3588679	162387	-8888640	201622	69
22	·3746066	161245	.4040262	204486	68
28	-8907811	160055	-4244748	207539	67
24	4067866	158817	-4452287	210790	66
25	·4226183	157528	-4663077	214249	65
26	4383711	156194	4877826	217928	64
27	•4539905	154811	5095254	221840	63
28	-4694716	159380	5317094	225997	62
29	-4818096	151904	-5548091	230412	61
80	-5000000	150381	-5778508	285108	60
81	-5150381	148812	-6008006	240088	59
32	-5299193	147197	-6248694	245382	58

			1		1
33	5146890	145539	6494076	251009	57
84	5591929	148885	6745085	256990	56
35	5795764	142039	7002075	269950	55
36	5877853	140297	7265425	270116	54
37	6018150	138465	7535541		59
38	6156615	136589	7812956		52
39	6293204	134672	8097840		51
40	6427976	132714	8890996		50
41	6560590	130716	5692867		49
12	6691306	128678	9004040	321111	48
43	6819981	126600	9325151	831737	47
44	6916584	124484	9656888	343112	46
45	7071068	122330	1 0000000	355803	45
46	7199398	120139	1 0355303	368384	44
47	7813597	- 117911	10723687	382438	43
48	7431448	115648	1 1 1 1 0 6 1 2 5	897441	42
40	7547096	113348	1 1503684	413852	41
50	7660444	111016	1 1917586	431436	40
51	7771460	108048	1 2348972	450444	89
52	7880108	100247	1 2790416	471082	88
53	7986855	108815	1 3270448	493371	87
54	8090170	101350	1 3763819	517661	86
55	8191520	98856	1 4281480	544130	35
56	8290376	96330	1 4 825 610	578040	34
57	8386706	99775	1 5398650	604695	33
58	8480481	91192	1 6008345	639450	32
59	8571673	88581	1 6642795	677713	31
60	8660254	85868	1 7820508	719970	30
61	8746197	89279	1 8040478	766787	29
G2	8829476	80589	18807265	818840	28
63	8910065	77875	1 9626105	876933	27
64	8987940	75138	2 0503038	942031	26
65	9003078	72377	2 1445069	1015299	25
66	9135455	69594	2 24 60 368	1098156	24
67	9205049	66790	2 3558521	1192345	23
68	9271839	63965	2 4 75 08 69	1300022	22
69	9335804	61122	2 6050891	1429883	21
70	9396926	58260	27474774	1567885	20
71	9455186	55379	2 9042109	1784726	19
72	9510565	53483	3 0776835	1931691	13
73	9563048	49569	3 2708 526	2165618	17
74	9612617	46641	3 4874144	2446364	16
75	9659258	43699	8 7820508		15
76	9702957	40744	4 01078 09	8206950	14

	1		1		
77	9743701	37775	4 3314759	3731542	18
78	9781476	34796	4 7046301	4899239	12
79	9816272	31806	5 1445510	5267278	11
80	9848078	28805	5 6712818	6424697	10
81	9876883	25798	6 3187515	8016182	9
82	9902681	22781	7 1153697	10289767	8
83	• 9925462	19657	8 1443464	13700181	7
84	9945219	16728	9 5148645	19156875	6
85	9961947	13694	11 130052	2870614	5
86	9975641	10654	1 1 300666	4780471	4
87	9986295	7618	19 081187	9555116	3
88	9993908	1569	28 636253	28653709	2
89	9998477	1528	57 289962	Infinite	1
90	1 0000000	0	600		0
	cosines		Cotangents		

As the change of the tangent ratio from 89° to 90° is very rapid the **hthrowing table for each minute from 89° to 90° is given as hereunder

89°_1′	58 261174 18	81 847041 35'	187 50745 52	400 5255
				429 71757
2	59 265872 10	83 813507 36	148 28712 58	491 10600
3	60 305820'20	85 939791 37	149 46502 54	572 05721
4	61 882905 21	88 143572 88	156 25908 55	687 54887
5	62 499154 22	90 463336 39	163 70019 56	859 48680
G	68 655741 28	92 908487 40	171 88540 57	1145 9153
7	64 858008 24	95 489475 41	180 93220 58	1718 8732
8	66 105473 25	99 217943 42	190 984 19 59	3437 7467
9	67 401854 26	101 106900 43	202 21875 90°	Infinite
10	68 750087 27	104 17094 44	214 85762	
11	70 153346 28	107 42648 45	229 18166	
12	71 615070 29	110 89205 46	245 55198	
18	73 133990 30	114 58865 47	264 44080	
14	74 729165 31	118 54018 48	286 47773	
15,	76 390009 32	122 77396 49	312 52137	
16	78 126342 33	127 32134 50	343 77371	
17	79 943480 34	132 21851 51	381 97099	

TABLE OF CHARAPHALAM FOR DIFFERENT LATITUDES.

(Ascensional difference)

In Chapeter IX on the position of the observer etc. the use of Charaphalam has been explained with a table for Tanjore latitude 10° –47 N

A note has also been given indicating how the चर्र for different land could be obtained by a small calculation. As some of the readers may it slightly difficult. I am herewith appending a table of च्रस्छ for edgree of latitude and for every 30° of the sine argument of tropical longs. With the help of this a table of च्रस्छ for each degree of the stargument of the tropical longitude can be prepared and had for any destaitude.

AN EXAMPLE WILL MAKE THINGS CLEARER.

Question:—Required বাদেও for 27° of latitude corresponding to 25° 47° 69° of sine argument of the tropical longitude —

चरफं for 25° 47° and 69° for latitude of Tanjore are 112′—197′-10°and 264′-83°. The figures for 30°, 60°, 90°of sine argument of tro longitude for Tanjore are 133′—1°, 240′—40° and 284′-27′ and those the given latitude are 356′—22°, 647′—8° and 766′—46° from the tr ∴चरफं for 25° of the sine argument of the tropical longitude at the g

$$latitude = \frac{112' - 48' \times 856' - 22''}{133' - 1''} = 302' - 2''$$

चरफरं for 47° of the same

$$= 356' - 22' + \left(\frac{197' - 10'' - 133' - 1''}{107' - 39''}\right) (290' - 46'')$$

$$= 356' - 22'' + 173' - 15'$$
 and $107' - 39'' = 240' - 4$

चरफलं for 69° of the same

$$=647'-8'+\frac{(264'-33''-240'-40'')}{(284'-27''-240-40)}(766'-48''-647'-8')$$

$$=647'-8''+59'-48''=\underline{706'-56''}.$$

gree	30°	co°	90°	Degree of	30°	60°	90°
titude	' "	, .	· - L	atitude	, ,	, "	, ,
0	0 0	0 01	01 08	34	472,23,	860,95	
1	12 11	22 2	26 3	35	490,30		1061,51
2	24 23	44 5	52 7	36	509 5	928 34	1103 11
3	36 35	66 10	78 14	37	528 10	964 0	1145 46
4	48 48	88 18	104 23	88	547 46	1000 30	1189 37
5	61 5	110 29	130 37	39	567 55	1038 7	1234 5S
G	73 23	192 44	156 55	40	588 41	1076 58	1281 50
7	85 44	155 5	188 20	41			1330¦21
8	98 8	177 31	209 53	32	632 10	1158,39	1380 39
9	110 95	200 5	236 34	43			1432,53
10	123 8	222 48	268 25	44			1487 14
11	135 44	245 88	290 27	45			1543 51
12	148 20	268 38	817 41	46	728 23	1841 12	1602 58
13	161 14	291 50	345 9	47	754,48	1891 89	1664 48
14	174 8	815 14	972 51	48	782 5	1444 22	1729 37
15	187 10	333 51	400 49	49	810 87	1499 32	1797 44
16	200 18	362 48	429 4	50	840 21	1557 25	1869 27
17	218 8	886 49	457 39	51	871 26	1618 16	1945 18
18	227 (486 84	52	908,58		2025 17
19	240 38	485 55	515 50	58	988 4	1750 8	2110 47
20	254 20			54			2201 40
21	268 16	486 17	575,86	55	1011 95	1898 8	2299 4
22	282 2		606 8	56	1051 20	1979 20	2408 51
23	296 4		637 10	57	1093,23	2066 25	2517 12
24	311 1			58	1137 55	2159 50	2640 34
25		2 591 40	700 48	59			2775 52
26		619 8	793 28	60			2925 38
27	356 2						7 8093 22
28	371 5			62			3 3234 12
29	887 4						3 8506 10
80		0 734 32		64	1476 22		3 3773 22
91	420 3			65			411541
32 33	487 2				1628 1		8 4631 20
38	454 4	2 827 55	982 27	66°	1674 18	3468 5	9 5400 0
		1 1		32			
	1	_i_ i_	1 1	30	1 1		

TO FIND THE LOCAL SUNRISE AND SUNSET TIME

This is arrived at from a knowledge of चरं (ascensional difference) of the place সাল (equation of time due to obliquity) and মথদান্ত (equation of time due to eccentricity)

The प्राणं and मंदफ्लं are found and their net result is divided by 6 when the quotient will be vighatikas This is added to or subtracted from 15 ghatikas when the apparent noon is got This converted to hours will give the Apparent Noon time Next the चरं is added to or subtracted from 1524-5 vighatikas after being converted similarly to vighatikas by dividing by 6 according as the tropical longitude of sun is less or greater than 180° This will give the duration of half the day This is added to the noon time one side and subtracted from the true noon on the other when the sunset and sunrise in ghatikas is got These merely converted into hours will give the local time sunset and sunrise

EXAMPLE

On page 72, we have प्राणं = 106'-5"+ and मेदफलं = 21'-22"-Net result This converted to vighatikas = 14.12+ Being. +, this has to be added to 15 ghatikas

We get local apparent noon = 158b-14 12mgbst

€(7 is 311'-36' (-) for planetary correction but reversedly for durtion of day Converted to vighatikas we get 51 98 + Adding this to 15ch - 5righais, we get 15c - 56'93ris or 6brs - 22mts - 46sec

. Local sunrise time
$$\begin{array}{c} = \begin{array}{c} h & m & \sec 1 \\ 12 - 5 - 39 \\ \hline 6 - 22 - 46 \\ \hline 5 - 42 - 53 \end{array} A M \\ \text{and Local sunset time} \\ = \begin{array}{c} 12 - 5 - 39 \\ \hline 6 - 22 - 46 \\ \hline \hline 6 - 28 - 25 \end{array} P M \end{array}$$

DECLINATION.

In the chapter on declinations we have mentioned them to be + or - according as they are North or South Theoretically Astronomically is correct but in the determination of the strength of a planet according to indu Astrology, there is a special consideration for the north and south rections. Which could be had on a refrence to any authoritative book on e subject. Hence these need not be used for those purposes with the rections assigned here which are quite correct for purpose of any Astromical transformation of coordinates etc.

CONCULSION AND RETROSPECTIVE.

Now we have come to the end of the little treatise bringing out for e information of the learned readers the details of Hindu. Astronomy and propean Astronomy striking parallels here and there and giving them an aportunity to have a sound working knowledge of the principles laid erein. I hope the learned readers will encourage me in my literary ursuits and co-operate with me in making the work a thorough success.

Dedicated to the revered feet of my Guru

Tonpat Joshi Raghavendrachariar of Tanjore

