Lec 1 衔接课

1.1 记号

记号 (数集)

记号 (大平行算数符号)

$$\sum$$
 表示求和,如 $\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n$.

 \prod 表示连乘,如 $\prod_{i=1}^{n} a_i = a_1 \times a_2 \times \dots \times a_n$.

 \bigcap 表示交集,如 $\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \dots \cap A_n$.

 \bigcup 表示并集,如 $\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \dots \cup A_n$.

对于上述运算, 我们经常称 i 为**指标**, 称 i=1 与 i=n 分别为**下限**与**上限**. 有时指标的取值范围以集合的形式给出, 如 $\sum_{i \in I} a_i$ 表示对所有 $i \in I$ 的 a_i 求和, 称 I 为**指标集**.

有时指标的个数不止一个, 如 $\sum_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}} a_{ij}$ 表示对所有 $1 \leqslant i \leqslant m$ 与 $1 \leqslant j \leqslant n$ 的 a_{ij} 求和, 即

$$\sum_{\substack{1 \le i \le m \\ 1 \le j \le n}} a_{ij} = \sum_{i=1}^m \sum_{j=1}^n a_{ij}.$$

正如 0! = 1 一样, 我们规定 \sum 与 \prod 的空和与空积为:

$$\sum_{i \in \varnothing} a_i = 0, \quad \prod_{i \in \varnothing} a_i = 1.$$

1.2 映射,有穷集,无穷集与等势

定义 1.1 (映射) 设 A 与 B 为两个集合, 若对任意 $x \in A$, 都能唯一地指定一个 $y \in B$ 与之对应, 则称从 A 到 B 的这种对应关系为映射, 记为 $f: A \to B$, 并称 x 为自变量, y = f(x) 为因变量.

A 称为映射 f 的定义域,A 在 f 映射下的像 $f(A) = \{f(x) \mid x \in A\} \subset B$ 称为 f 的值域.

我们在验证一个对应关系是否是映射时,或者说,验证一个映射是否良定 (well-defined) 时,需要验证两个条件:

- (1) 对任意 $x \in A$, 都能找到 $y \in B$ 与之对应.
- (2) 对任意 $x \in A$, 只能找到唯一的 $y \in B$ 与之对应.

前者称为映射的存在性,后者称为映射的唯一性.

我们将从数集到数集的映射称为函数, 在这门课之中, 我们几乎只考虑从实数集 \mathbb{R} 到实数 集 \mathbb{R} 的函数.

记号 对于映射

$$f: A \to B$$

$$x \mapsto f(x)$$

我们用 \rightarrow 表示映射的范围, $A \rightarrow B$ 表示该映射是从集合 A 到集合 B 的映射. \mapsto 表示映射的具体规则, $x \mapsto f(x)$ 表示 x 在该映射下对应 f(x).

定义 1.2 (单射) 设 A 与 B 为两个集合, 若映射 $f: A \to B$ 满足: 对任意 $x_1, x_2 \in A$, 当 $x_1 \neq x_2$ 时, 有 $f(x_1) \neq f(x_2)$, 则称 f 为从 A 到 B 的单射.

定义 1.3 (满射) 设 A 与 B 为两个集合, 若映射 $f: A \to B$ 满足: 对任意 $y \in B$, 存在 $x \in A$, 使 得 f(x) = y, 则称 f 为从 A 到 B 的满射.

定义 1.4 (双射) 设 A与 B 为两个集合, 若映射 $f: A \to B$ 既是单射又是满射, 则称 f 为从 A 到 B 的双射. 也称为 A与 B之间存在一一对应关系.

例

$$f: [0,1] \to [0,1)$$

$$x \mapsto x, \qquad x \notin \left\{ \frac{1}{k} \mid k \in \mathbb{N}^+ \right\}$$

$$\frac{1}{k} \mapsto \frac{1}{k+1}, \qquad k \in \mathbb{N}^+$$

不难验证, f 为从 [0,1] 到 [0,1) 的双射. 我们将在后续证明之中使用该思想.

这个双射使用了类似希尔伯特酒店的操作:通过将某些元素映射到不同位置,展示了即使是"满"的区间也可以为新的元素腾出"空间".

下面两个命题建议同学们自己先尝试证明,以加深对双射的理解.

命题 1.1 双射存在逆映射, 且逆映射也是双射,

证明 设 $f: A \to B$ 为双射,则对任意 $y \in B$,存在唯一 $x \in A$,使得 f(x) = y. 定义映射 $g: B \to A$ 为: 对任意 $y \in B$,有 g(y) = x,其中 x 为唯一满足 f(x) = y 的元素.则 g 为 f 的逆

映射. 我们常将 f 的逆映射记为 f^{-1} .

下面我们证明g为双射.

- (1) g 为单射: 对任意 $y_1, y_2 \in B$, 当 $y_1 \neq y_2$ 时, 设 $x_1 = g(y_1), x_2 = g(y_2)$, 则 $f(x_1) = y_1 \neq y_2 = f(x_2)$, 由 f 为单射可知, $x_1 \neq x_2$, 即 $g(y_1) \neq g(y_2)$, 所以 g 为单射.
- (2) g 为满射: 对任意 $x \in A$, 设 y = f(x), 则 $y \in B$, 且 g(y) = g(f(x)) = x, 所以对任意 $x \in A$, 都存在 $y \in B$, 使得 g(y) = x, 所以 g 为满射.

命题 1.2 双射的复合仍为双射.

证明 设 $f: A \to B \ni g: B \to C$ 均为双射,则对任意 $z \in C$,存在唯一 $y \in B$,使得 g(y) = z, 又对该 y,存在唯一 $x \in A$,使得 f(x) = y.定义映射 $h: A \to C$ 为:对任意 $x \in A$,有 h(x) = g(f(x)).则 h 为从 A 到 C 的映射. 我们常将 f 与 g 的复合记为 $g \circ f$,表示先用 f 作用 x,再用 g 作用 f(x),从而得到 g(f(x)).

下面我们证明 h 为双射.

- (1) h 为单射: 对任意 $x_1, x_2 \in A$, 当 $x_1 \neq x_2$ 时, 有 $f(x_1) \neq f(x_2)$, 设 $y_1 = f(x_1), y_2 = f(x_2)$, 则 $y_1 \neq y_2$, 又由 g 为单射可知, $g(y_1) \neq g(y_2)$, 即 $h(x_1) \neq h(x_2)$, 所以 h 为单射.
- (2) h 为满射: 对任意 $z \in C$, 存在唯一 $y \in B$, 使得 g(y) = z, 又对该 y, 存在唯一 $x \in A$, 使得 f(x) = y. 则 h(x) = g(f(x)) = g(y) = z. 所以对任意 $z \in C$, 都存在 $x \in A$, 使得 h(x) = z, 所以 h 为满射.

定义 1.5 (有穷集) 设 A 为一个集合, 称 A 为有穷集, 若存在自然数 n, 使得 A 与 $\{1, 2, \dots, n\} = \{i \mid 1 \le i \le n, i \in \mathbb{N}\}$ 之间存在一一对应关系.

当 n=0 时, $\{1,2,\cdots,n\}=\varnothing$,此时有穷集称为空集.

在此基础上, 我们才可以对有限集合的个数进行计数描述, 具体而言如下例

例 1.1 $A = \{a, b, c, d, e\}$ 为有穷集, 由于 A 与 $\{1, 2, 3, 4, 5\}$ 之间存在——对应关系, 因此 A 中有 5 个元素.

其中的一一对应关系可以取为:

$$f: A \to \{1, 2, 3, 4, 5\}, \quad a \mapsto 1, b \mapsto 2, c \mapsto 3, d \mapsto 4, e \mapsto 5.$$

f 是一个双射, 也可以取为:

$$q: A \to \{1, 2, 3, 4, 5\}, \quad a \mapsto 3, b \mapsto 5, c \mapsto 1, d \mapsto 4, e \mapsto 2.$$

q 也是一个双射.

其中我们可以不在乎 A 与 $\{1,2,3,4,5\}$ 之间具体的对应关系, 只在乎双射到 $\{1,2,\cdots,n\}$ 的自然数 n. 这就是为什么我们说 A 中有 5 个元素.

顺带一提, $A = \{a, b, c, d, e\}$ 与 $\{1, 2, 3, 4, 5\}$ 的双射共有 $A_5^5 = 5! = 120$ 种, 这是 a, b, c, d, e

的全排列.

定义 1.6 (等势) 设 A 与 B 为两个集合, 若存在从 A 到 B 的双射, 则称 A 与 B 等势.

也就是说,A 是有穷集等价于: 存在 $n \in \mathbb{N}$, 使得 A 与 $\{1, 2, \dots, n\}$ 等势.

记号 我们用 s.t. (such that) 来表示"使得", 用 i.e. (id est) 来表示"也就是说".

对于无穷集合, 我们给出两种定义方式:

定义 1.7 (无穷集) 设 A 为一个集合, 称 A 为无穷集, 若 A 不为有穷集.

定义 1.8 (无穷集) 设 A 为一个集合, 称 A 为无穷集, 若存在 A 的真子集 A', 使得 A 与 A' 等势. 下面我们先承认定义 1.7 是无穷集的定义, 证明上述两种定义方式是等价的.

证明 存在真子集与其等势一定是无穷集

考虑 A 满足:A 与某个真子集 A' 等势. 即 $\exists f: A \to A'$ 为双射. 使用反证法, 假设 A 为有 穷集, 根据定义 1.5, 则 $\exists n \in \mathbb{N}$, s.t. A 与 $\{1, 2, \dots, n\}$ 等势, 即存在双射 $g: A \to \{1, 2, \dots, n\}$.

由命题 1.1 与命题 1.2, 可知 $g \circ f^{-1}: A' \to A \to \{1, 2, \dots, n\}$ 为双射. 又由 $A' \subset A$, 可推出 A' = A, 这与 A' 为 A 的真子集矛盾.

其中最后的部分, 我们总结为以下命题

命题 1.3 给定某个 n, 若存在 $f:A \to \{1,2,\cdots,n\}$ 为双射, 且对于 A 的某个子集 A', 存在 $\tilde{f}:A' \to \{1,2,\cdots,n\}$ 为双射, 则 A'=A.

该命题留作思考,这里给出助教的证明.

证明 我们归纳的给出证明, 当 n=0 时, $\{1,2,\cdots,n\}=\varnothing$, 而空集只能双射到空集: 若 $\mu:\varnothing\to S,S\neq\varnothing$, 则 $\exists s\in S$, 考虑 $\mu^{-1}(s)\in\varnothing$ 可知矛盾. 因此 $A=\varnothing$, $A'=\varnothing$, 所以 A'=A.

当 n = k 成立时, 即存在 $f: A \to \{1, 2, \dots, k\}$ 为双射, 且对于 A 的某个子集 A', 存在 $\tilde{f}: A' \to \{1, 2, \dots, k\}$ 为双射, 则 A' = A.

我们希望证明: 若存在 $g: B \to \{1, 2, \cdots, k+1\}$ 为双射, 且对于 B 的某个子集 B', 存在 $\tilde{g}: B' \to \{1, 2, \cdots, k+1\}$ 为双射, 则 B' = B.

取 $b = \tilde{g}^{-1}(k+1) \in B'$, 则 \tilde{g} 将 $B' \setminus \{b\}$ 映射到 $\{1, 2, \dots, k\}$ 上. $g(b) \in \{1, 2, \dots, k+1\}$, 不难证明存在双射 $\tau : \{1, 2, \dots, k+1\} \setminus \{g(b)\} \to \{1, 2, \dots, k\}$. 因此, 存在双射 $\tau \circ g : B \setminus \{b\} \to \{1, 2, \dots, k\}$, 且 $B' \setminus \{b\} \subset B \setminus \{b\}$, 由 n = k 时的归纳假设, 可知 $B' \setminus \{b\} = B \setminus \{b\}$, 从而 B' = B.

证明 无穷集一定存在真子集与其等势

即证明: 已知 A 是无穷集,则不存在 $n \in \mathbb{N}$, 使得 $A = \{1, 2, \dots, n\}$ 等势.

由 n = 0 时的情况可知,A 非空,取 $a_1 \in A$,设 $A_1 = A \setminus \{a_1\}$,则 A_1 为 A 的真子集,且不为有穷集.于是 $A_1 \neq \emptyset$,取 $a_2 \in A_1 \cdots$ 依此类推,可得 A 的一个真子集列 $\{a_i\}_{i=1}^{\infty}$,两两不等.因

此构造出双射:

$$f: A \to A_1$$

$$x \mapsto x, x \notin \{a_i\}_{i=1}^{\infty}$$

$$a_i \mapsto a_{i+1}, i = 1, 2, \cdots$$

由此可知, $A 与 A_1$ 等势.

接下来,我们以定义 1.8 作为无穷集的定义,证明上述两种定义方式是等价的. 这个证明过程留作思考,这里给出助教的证明.

证明 A 存在等势真子集 $\Rightarrow A$ 不为有穷集

当 $A = \emptyset$ 时, A 不存在真子集.

当 $A \neq \emptyset$ 时, 设 $f: A \rightarrow A'$ 为双射, 其中 A' 为 A 的真子集. 取 $x_0 \in A \setminus A'$, 构造序列:

$$x_1 = f(x_0), x_2 = f(x_1), \cdots, x_n = f(x_{n-1}), \cdots$$

则有:

- (1) $x_i \in A' \subset A, i = 1, 2, \dots,$
- (2) $x_i \neq x_i, \forall i \neq j, i, j = 0, 1, 2, \cdots$

否则, 存在 $n, m \in \mathbb{N}, n > m \geqslant 0$, 使得 $x_n = x_m$, 则 $f(x_{n-1}) = f(x_{m-1})$, 由 f 为单射可 知, $x_{n-1} = x_{m-1}$, 依此类推, 可知 $x_{n-k} = x_{m-k}$, $k = 1, 2, \dots, m$, 从而 $x_0 = x_{n-m} \in A'$, 这 与 $x_0 \in A \setminus A'$ 矛盾.

由此得到了A的一个两两不同的无限子集 $\{x_i\}_{i=0}^{\infty}$.

 $\forall n \in \mathbb{N}^+, A$ 都不与 $\{1, 2, \cdots, n\}$ 等势: 否则 $\exists n \in \mathbb{N}^+, g : A \to \{1, 2, \cdots, n\}$. 考虑 $\{g(x_i)\}_{i=0}^{\infty}$ 两两不同, 且都属于 $\{1, 2, \cdots, n\}$. 这就证明了 A 不是有穷集.

证明 A 存在等势真子集 $\Leftarrow A$ 不为有穷集

这与上述定义 1.7定义下的无穷集一定存在真子集与其等势的证明过程完全一样.

1.3 笛卡尔积

定义 1.9 (笛卡尔积) 设 A = B 为两个集合,则 A = B 的笛卡尔积为:

$$A \times B = \{(a, b) \mid a \in A, b \in B\},\$$

其中 (a,b) 为有序对.

例 1.2 设 $A = \{1, 2\}, B = \{x, y, z\},$ 则

$$A \times B = \{(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)\}.$$

如果 A 与 B 均为有穷集, 且 A 中有 m 个元素, B 中有 n 个元素, 则 $A \times B$ 中有 $m \times n$ 个元素, 即

$$\#(A \times B) = \#A \times \#B.$$

给出一列集合 $\{A_i\}_{i=1}^n$, 则

$$\prod_{i=1}^{n} A_i = A_1 \times A_2 \times \dots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_i \in A_i, i = 1, 2, \dots, n\},\$$

其中 (a_1, a_2, \dots, a_n) 为 n 元有序组.

例 1.3
$$\mathbb{R}^n = \prod_{i=1}^n \mathbb{R} = \{(x_1, x_2, \cdots, x_n) \mid x_i \in \mathbb{R}, i = 1, 2, \cdots, n\}$$
, \mathbb{R}^n 称为 n 维欧氏空间.

1.4 等价关系,Cauchy 列与实数

定义 1.10 (等价关系) 设 A 为一个集合, 若在 A 上定义了一个关系 \sim , 且对任意 $x, y, z \in A$, 均满足:

- (1) (自反性) $x \sim x$;
- (2) (对称性) $x \sim y \Rightarrow y \sim x$;
- (3) (传递性) $x \sim y, y \sim z \Rightarrow x \sim z$;

则称 \sim 为 A 上的等价关系.

定义 1.11 集合 A 在等价关系 ~ 下的等价类为: 对任意 $a \in A$, 定义 $[a] = \{b \in A \mid b \sim a\}$, a 称为 [a] 这个等价类的代表元.

注意到

$$[a] \cap [b] = \begin{cases} [a] = [b], & a \sim b \\ \varnothing, & a \nsim b \end{cases}$$

证明

- (1) 若 $a \sim b$, 则对任意 $x \in [a]$, 有 $x \sim a$, 由 $a \sim b$ 与等价关系的传递性可知, $x \sim b$, 所以 $x \in [b]$, 即 $[a] \subset [b]$. 同理可知 $[b] \subset [a]$, 所以 [a] = [b].
- (2) 若 $a \nsim b$, 则对任意 $x \in [a]$, 有 $x \sim a$, 由 $a \nsim b$ 与等价关系的对称性与传递性可知, $x \nsim b$, 所以 $x \notin [b]$, 即 $[a] \cap [b] = \varnothing$.

因此集合 A 可以被拆为若干 (可能是无穷个) 互不相交的等价类的并, 这称为 A 的一个分 拆. 具体而言, 记 A/\sim 为 A 中所有等价类构成的集合, 称为 A 在等价关系 \sim 下的商集, 即

$$A/\!\!\sim:=\{[a]\mid a\in A\}.$$

则 A 可以写为不交并

$$A = \bigcup_{[a] \in A \not\sim} [a].$$

例 1.4 如果 \sim 是集合 A 上的等价关系, 对于自然映射

$$p: A \to A/\sim, a \mapsto [a],$$

这个映射是满射,也称为商映射.

例 1.5 ℤ 上有一种基础的等价关系:

$$a \sim b \iff a - b = 2k, k \in \mathbb{Z},$$

即 a 与 b 同为奇数或同为偶数. 则存在两个等价类

$$[0] = \{\cdots, -4, -2, 0, 2, 4, \cdots\},\$$

$$[1] = {\cdots, -3, -1, 1, 3, 5, \cdots},$$

 $\underline{\mathbb{H}}[0] \cap [1] = \emptyset, \underline{\mathbb{H}}$

$$\mathbb{Z} = [0] \cup [1].$$

我们将 $\mathbb{Z} = [0] \cup [1]$ 称为 \mathbb{Z} 在该等价关系下的一个分拆.

商映射

$$p: \mathbb{Z} \to \mathbb{Z}/\sim, \quad a \mapsto [a]$$

具体为

例 1.6 集族 *A* 上的等价关系:

$$A \sim B \iff \exists X \text{ if } f: A \to B, \quad A, B \in \mathcal{A}.$$

证明

- (1) (自反性) 对任意 $A \in \mathcal{A}$, 恒有 $A \sim A$, 因为恒有恒等映射 $id_A: A \to A$ 为双射.
- (2) (对称性) 对任意 $A, B \in A$, 若 $A \sim B$, 则存在双射 $f: A \to B$, 由命题 1.1 可知, f 的逆映射 $f^{-1}: B \to A$ 也为双射, 所以 $B \sim A$.
- (3) (传递性) 对任意 $A, B, C \in \mathcal{A}$, 若 $A \sim B$ 且 $B \sim C$, 则存在双射 $f: A \rightarrow B$ 与 $g: B \rightarrow C$, 由命题 1.2 可知, $g \circ f: A \rightarrow C$ 也为双射, 所以 $A \sim C$.

例 1.7 ℤ × № 上的等价关系:

$$(p,q) \sim (p',q') \iff pq' = p'q, \quad p,p' \in \mathbb{Z}, q,q' \in \mathbb{N}^*.$$

良定的证明

- (1) (自反性) 对任意 $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$, 恒有 $(p,q) \sim (p,q)$, 因为 pq = pq.
- (2) (对称性) 对任意 $(p,q), (p',q') \in \mathbb{Z} \times \mathbb{N}^*$, 若 $(p,q) \sim (p',q')$, 则 pq' = p'q, 从而 p'q = pq', 所以 $(p',q') \sim (p,q)$.
- (3) (传递性) 对任意 $(p,q), (p',q'), (p'',q'') \in \mathbb{Z} \times \mathbb{N}^*$, 若 $(p,q) \sim (p',q')$ 且 $(p',q') \sim (p'',q'')$,则 $pq' = p'q \neq p'q'' = p''q'$ 成立,从而 pq'q'' = p'qq'' = p''q'q,由于 $q' \neq 0$,可知 pq'' = p''q,所以 $(p,q) \sim (p'',q'')$.

我们将商集

$$(\mathbb{Z} \times \mathbb{N}^*)/\sim = \{[(p,q)] \mid (p,q) \in \mathbb{Z} \times \mathbb{N}^*\}$$

记为 \mathbb{Q} , 并将 [(p,q)] 记为 $\frac{p}{q}$, 则

$$\mathbb{Q} = \left\{ \frac{p}{q} \mid p \in \mathbb{Z}, q \in \mathbb{N}^* \right\},\,$$

即有理数集.

 $\frac{1}{3} = [(1,3)] = [(2,6)] = [(3,9)] = \cdots$,即 $\frac{1}{3}$ 可以表示为 $(1,3),(2,6),(3,9),\cdots$ 等有序对的等价类. 这提供了一个新的看待 $\frac{1}{3} = \frac{2}{6} = \frac{3}{9} = \cdots$ 的视角.

定义 1.12 (Cauchy 列) 设 $\{a_n\}$ 为实数列, 若对任意 $\varepsilon > 0$, 都存在 $N \in \mathbb{N}$, 使得当 m, n > N 时, 有 $|a_n - a_m| < \varepsilon$, 则称 $\{a_n\}$ 为 Cauchy 列.

我们称两个 Cauchy 列 $\{a_n\}$ 与 $\{b_n\}$ 等价, 若对任意 $M \in \mathbb{N}^*$, 都存在 $N \in \mathbb{N}$, 使得当 n > N 时, 有 $|a_n - b_n| < \frac{1}{M}$. 记为 $\{a_n\} \sim \{b_n\}$.

命题 1.4 上述等价关系等价于: 对任意 $\varepsilon > 0$, 都存在 $N \in \mathbb{N}$, 使得当 n > N 时, 有 $|a_n - b_n| < \varepsilon$. 证明 充分性: 对任意 $\varepsilon > 0$, 取 $M = \left[\frac{1}{\varepsilon} + 1\right] \in \mathbb{N}^*$, 使得 $\frac{1}{M} < \varepsilon$, 则存在 $N \in \mathbb{N}$, 使得当 n > N 时, 有 $|a_n - b_n| < \frac{1}{M} < \varepsilon$.

必要性: 对任意 $M\in\mathbb{N}^*$, 取 $\varepsilon=\frac{1}{M}$, 则存在 $N\in\mathbb{N}$, 使得当 n>N 时, 有 $|a_n-b_n|<\varepsilon=\frac{1}{M}$.

命题 1.5 上述等价关系具有传递性, 即: 若 Cauchy 列 $\{a_n\} \sim \{b_n\}$ 且 $\{b_n\} \sim \{c_n\}$, 则 $\{a_n\} \sim \{c_n\}$.

证明 对任意 $M \in \mathbb{N}^*$, 取 $\varepsilon = \frac{1}{2M}$, 则存在 $N_1, N_2 \in \mathbb{N}$, 使得当 $n > N_1$ 时, 有 $|a_n - b_n| < \varepsilon$, 且 当 $n > N_2$ 时, 有 $|b_n - c_n| < \varepsilon$. 取 $N = \ge \{N_1, N_2\}$, 则当 n > N 时, 有

$$|a_n - c_n| \le |a_n - b_n| + |b_n - c_n| < \varepsilon + \varepsilon = \frac{1}{M}.$$

因此 $\{a_n\} \sim \{c_n\}$.

或者我们也可以更简化的写为

证明 对任意 $M \in \mathbb{N}^*$, 取 $M \in \mathbb{N}^*$, 则存在 $N_1, N_2 \in \mathbb{N}$, 使得当 $n > N_1$ 时, 有 $|a_n - b_n| < \frac{1}{M}$, 且 当 $n > N_2$ 时, 有 $|b_n - c_n| < \frac{1}{M}$. 取 $N = \geqslant \{N_1, N_2\}$, 则当 n > N 时, 有

$$|a_n - c_n| \le |a_n - b_n| + |b_n - c_n| < \frac{1}{M} + \frac{1}{M} = \frac{2}{M}.$$

第一种写法用到的是 $\frac{1}{2M}$,第二种方法用的是 $\frac{1}{M}$. 注意到这两种写法本质上是等价的。第二种写法得到的是

$$\forall M' \in \mathbb{N}^* \ \exists \ N \ \forall n > N : \ |a_n - c_n| < \frac{2}{M'},$$

$$\forall M \in \mathbb{N}^* \ \exists \ N \ \forall n > N : \ |a_n - c_n| < \frac{1}{M}.$$

因此两种写法只是参数选择方式不同,通过简单的替换 M' = 2M 就可以互相转化,因而在逻辑上完全等价。

这也启发了我们,以下命题的成立:

命题 1.6 $\{a_n\}$ 为 Cauchy 列等价于: 对任意 $\varepsilon>0$, 都存在 $N\in\mathbb{N}$, 使得当 n>N 时, 有 $|a_n-b_n|< c\varepsilon$. 其中 c 为任意正常数.

对于每一个与n无关的c > 0,这个命题都是成立的.

证明 充分性: 对任意 $\varepsilon > 0$, 取 $\varepsilon' = c\varepsilon > 0$, 则存在 $N \in \mathbb{N}$, 使得当 m, n > N 时, 有 $|a_n - a_m| < \varepsilon' = c\varepsilon$.

必要性: 对任意 $\varepsilon > 0$, 取 $\varepsilon' = \frac{\varepsilon}{c} > 0$, 则存在 $N \in \mathbb{N}$, 使得当 m, n > N 时, 有 $|a_n - a_m| < \varepsilon' = \frac{\varepsilon}{c} < c\varepsilon$.

上述对 Cauchy 列的等价, 就是一个等价关系, 我们仅验证了传递性, 自反性与对称性是显然的.

Cachuy 列之间等价关系的自反性与对称性验证

自反性: 对任意 $M \in \mathbb{N}^*$, 取 N = 1, 则当 n > N 时, 有 $|a_n - a_n| = 0 < \frac{1}{M}$, 所以 $\{a_n\} \sim \{a_n\}$.

对称性: 对任意 $M \in \mathbb{N}^*$, 取 N 使得当 n > N 时, 有 $|a_n - b_n| < \frac{1}{M}$, 则当 n > N 时, 有 $|b_n - a_n| = |a_n - b_n| < \frac{1}{M}$, 所以 $\{b_n\} \sim \{a_n\}$.

现在我们可以定义实数集了. 记 $A = \{\{a_n\} \mid \{a_n\} \text{ b Cauchy } \emptyset, a_n \in \mathbb{Q}\}, \sim \text{ b L述 Cauchy } \emptyset$ 列之间的等价关系, 则实数集 \mathbb{R} 定义为商集

$$\mathbb{R} = A/\sim = \{ [\{a_n\}] \mid \{a_n\}$$
为 Cauchy 列, $a_n \in \mathbb{Q} \}$,

其中 $[\{a_n\}]$ 为 Cauchy 列 $\{a_n\}$ 的等价类.

Lec 2 数列极限

2.1 数列极限的定义

定义 2.1 (数列极限) 对于数列 $\{a_n\}$, 若 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*, \forall n > N$ 都有 $|a_n - a| < \varepsilon$ 成立, 则 $\{a_n\}$ 以常数 a 为极限, 记为 $\lim_{n \to \infty} a_n = a$ 或 $a_n \to a(n \to \infty)$.

我们判断数列是否收敛,就是判断其是否满足数列极限存在的定义.除此之外,也可以使用如下的性质:

命题 2.1 对于数列 $\{a_n\}$, 以下命题等价:

- (1) $\forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \forall n > N$ 都有 $|a_n a| < \varepsilon$ 成立;
- (2) $\forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \forall n > N$ 都有 $|a_n a| < M \varepsilon$ 成立, 其中 M > 0 为常数.;

注 一般而言, 对于语句 $\forall \varepsilon > 0, \exists N \in \mathbb{N}^*,$ 一般暗示了其中 $N = N(\varepsilon)$, 即 N 是依赖于 ε 的. 不太严谨的说, 当 ε 变小时, 对应的 N 会变大.

M 为常数指的是 M 不依赖于 ε 和 n. 例如 M=2, M=1000 等都是常数. 也就是说, 上述 (2) 其实等价于 $\forall M>0, \forall \varepsilon>0, \exists N\in\mathbb{N}^*, \forall n>N$ 都有 $|a_n-a|< M\varepsilon$ 成立.

证明 充分性: 取 M=1,则显然成立.

必要性: 对任意 $\varepsilon > 0$, 取 $\varepsilon' = \frac{\varepsilon}{M} > 0$, 则存在 $N \in \mathbb{N}^*$, 使得当 n > N 时, 有 $|a_n - a| < M\varepsilon' = M \cdot \frac{\varepsilon}{M} = \varepsilon$.

事实上, 所有的收敛的有理数列, 其极限点的全体即是实数集 \mathbb{R} . 即实数集 \mathbb{R} 是有理数列的极限值构成的.

注

- 1. ℚ 对极限是不封闭的, 即: 由 ℚ 组成的数列的极限不一定是 ℚ 中的元素;
- 2. 由 ℚ 组成的数列的极限只能是实数;
- 3. 由 ℚ 组成的所有收敛数列, 他们的极限的集合, 恰好就是 ℝ, 不多不少.

理由如下:

对 $\forall x \in \mathbb{R}$, 设 x 的小数表示为: $x = a_0.a_1a_2a_3\cdots$, 则有理数列: $a_0,a_0.a_1,a_0.a_1a_2,\cdots$ 当 $n \to \infty$ 时, 其极限为 x. 若 x 是有理数, 则 $a_0.a_1a_2\cdots a_n$ 是有限小数或循环小数, 若 x 是无理数, 则 $a_0.a_1a_2\cdots a_n$ 是无限不循环小数, 则极限点 x 是无理数.

此处 $x = a_0.a_1a_2a_3\cdots$,其中每一个 a_i 都是一个数字, a_0 是整数部分, $a_1a_2a_3\cdots$ 是小数部分. 比如, $a_0=3.1415926\cdots$,那么 $a_0=3$, $a_1=1$, $a_2=4$, $a_3=1$, $a_4=5$, $a_5=9$, $a_6=2$, $a_7=1$

 $6, \cdots$

可以由 $x = a_0.a_1a_2a_3\cdots$ 构造出一个数列 $\tau_1 = a_0, \tau_2 = a_0.a_1, \tau_3 = a_0.a_1a_2, \cdots$, 说 x 为极限指的, 是 x 是数列 $\{\tau_n\}$ 的极限, 记为 $\lim_{n\to\infty} \tau_n = x$. 都用 x 代指, 是因为这里不能确定 x 是不是有限小数, 有理数还是无理数. 但是 x 是数列 $\{\tau_n\}$ 的极限是确定的.

定义 2.2 (子列) 一个数列 $\{a_n\}$ 的子列, 是指取自原数列 $\{a_n\}$ 的无穷多项, 按照原数列中的同样顺序写成的一个新的数列. 于是 $\{a_n\}$ 的子列通常形如 $\{a_{n_k}\}(k \ge 1)$, 其中 n_k 是正整数, 满足 $n_1 < n_2 < \cdots < n_k$.

命题 2.2 数列 $\{a_n\}$ 收敛于 a,则其任意一个子列也收敛于 a.

证明 由 $\lim_{n\to\infty} a_n = a \Rightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \forall n > N$ 都有 $|a_n - a| < \varepsilon$ 成立.

对于子列 $\{a_{n_k}\}$, 由于 n_k 是正整数, 且 $n_1 < n_2 < \cdots < n_k$, 因此当 k > N 时, $n_k > N$, 则有 $|a_{n_k} - a| < \varepsilon$. 由数列极限的定义, 可知 $\lim_{k \to \infty} a_{n_k} = a$.

命题 2.3 数列 $\{a_n\}$ 的某个子列收敛于 a 的充要条件在 a 的任意小邻域内有无穷多项.

证明 充分性: 设 $\{a_{n_k}\}$ 为 $\{a_n\}$ 的子列, 且 $\lim_{k\to\infty} a_{n_k} = a$. 则 $\forall \varepsilon > 0, \exists K \in \mathbb{N}^*, \forall k > K$ 都有 $|a_{n_k} - a| < \varepsilon$ 成立. 因此 a 的任意小邻域内有无穷多项.

必要性: 设 a 的任意小邻域内有无穷多项. 则 $\forall \varepsilon > 0$, 在 $(a - \varepsilon, a + \varepsilon)$ 内有无穷多项. 取 $a_{n_1} \in (a - 1, a + 1), a_{n_2} \in (a - \frac{1}{2}, a + \frac{1}{2}), \dots, a_{n_k} \in (a - \frac{1}{k}, a + \frac{1}{k}), \dots$. 则 $\{a_{n_k}\}$ 为 $\{a_n\}$ 的子列, 且 $\lim_{k \to \infty} a_{n_k} = a$.

聚点的定义如下.

定义 2.3 (聚点) 设 $\{a_n\}$ 为实数列, 若对任意 $\varepsilon > 0$, 都存在无穷多个 $n \in \mathbb{N}^*$, 使得 $|a_n - a| < \varepsilon$, 则称 $a \to \{a_n\}$ 的聚点.

聚点是对于集合而言的, 极限是对于数列而言的, 他们之间存在一些联系:

命题 2.4 a 为数列 $\{a_n\}$ 的聚点, 当且仅当存在收敛于 a 的子列 a_{n_k} .

证明 a 为 $\{a_n\}$ 的聚点 \Leftrightarrow a 的任意小邻域内有无穷多项 \Leftrightarrow 存在收敛于 a 的子列 a_{n_k} (由命题 2.3 可知).

例 2.1 证明: $\lim_{n\to\infty} a_n = a \Leftrightarrow \lim_{k\to\infty} a_{2k} = a$, $\lim_{k\to\infty} a_{2k+1} = a$

证明 只证明充分性。

下面两个命题有一定的难度,可以先自行思考,这里给出助教的证明.

命题 2.5 数列有界的充要条件为他的每个子列有收敛子列.

证明 充分性: 设数列 $\{a_n\}$ 有界,则 $\{a_{n_k}\}$ 也有界. 由定理 2.1可知, $\{a_{n_k}\}$ 有收敛子列.

必要性: 设数列 $\{a_n\}$ 无界,则对任意 M>0,都存在 $n\in\mathbb{N}^*$,使得 $|a_n|>M$.取 M=1,则存在 $n_1\in\mathbb{N}^*$,使得 $|a_{n_1}|>1$.取 $M=|a_{n_1}|+1$,则存在 $n_2>n_1$,使得 $|a_{n_2}|>|a_{n_1}|+1$.依此类推,可得数列 $\{a_{n_k}\}$,其中 $k\in\mathbb{N}^*$,且 $|a_{n_k}|>k$.显然, $\{a_{n_k}\}$ 无收敛子列.

命题 2.6 数列收敛的充分必要条件是存在一个数 a, 使数列的每个子列有收敛于 a 的子列.

证明 充分性: 设数列 $\{a_n\}$ 收敛于 a,则其任意子列也收敛于 a. 因此其每个子列都有收敛于 a 的子列.

必要性: 设数列 $\{a_n\}$ 不收敛,则存在 $\varepsilon_0 > 0$,使得对任意 $N \in \mathbb{N}^*$,都存在 n > N,使得 $|a_n - a| \ge \varepsilon_0$. 取 N = 1,则存在 $n_1 > 1$,使得 $|a_{n_1} - a| \ge \varepsilon_0$. 取 $N = n_1$,则存在 $n_2 > n_1$,使得 $|a_{n_2} - a| \ge \varepsilon_0$.依此类推,可得数列 $\{a_{n_k}\}$,其中 $k \in \mathbb{N}^*$,且 $|a_{n_k} - a| \ge \varepsilon_0$.显然, $\{a_{n_k}\}$ 无收敛于 a 的子列.

2.2 数列极限存在的准则

1. 定义判别 如果能够找到合适的 N, 使得后续的定义都成立, 则可以判定数列极限存在. 这里的 N 的存在性一般由构造来得出,

例 2.2 证明 $\lim_{n\to\infty} \sqrt[n]{n+1} = 1$

证明 $\forall \varepsilon > 0$, 欲求 N, 使得 $|\sqrt[n]{n+1} - 1| < \varepsilon$, 记 $a_n = \sqrt[n]{n+1} - 1$, 则

$$1 + n = (1 + \alpha)^n = 1 + n\alpha + \frac{n(n-1)}{2}\alpha^2 + \dots + \alpha^n \geqslant \frac{n(n-1)}{2}\alpha^2$$

因此

$$0 < \alpha < \sqrt{\frac{2(n+1)}{n(n-1)}} \leqslant \sqrt{\frac{4}{n-1}} < \varepsilon$$

对每一个不等号组成的不等式组求解, 就可以得到 n 的范围了, 即得 $N \geqslant \left\{2, \frac{16}{\varepsilon^2} + 1\right\} + 1$.

2. 单调有界准则 数集的上界和下界定义为:

定义 2.4

- 1. $\sup E = \inf\{u \in \mathbb{R} : u \geqslant x, \forall x \in E\};$
- 2. inf $E = \sup\{u \in \mathbb{R} : u \leqslant x, \forall x \in E\}$.

定理 2.1 (单调有界极限存在准则) 若数列 $\{a_n\}$ 单调增 (减) 且有上 (下) 界, 则 $\{a_n\}$ 收敛. 且 $\lim_{n\to\infty} a_n = \sup a_n (\inf a_n)$.

证明 单调增有界极限存在.

设数列 $\{a_n\}$ 单调增且有上界, 由确界存在定理, $\{a_n\}$ 有上确界. 令 $\sup a_n = \beta$, 则 β 满足以下两点:

- 1. $\forall n \in N, a_n \leqslant \beta$;
- 2. $\forall \varepsilon > 0, \exists a_{n_0} \in \{a_n\}, \beta \varepsilon < a_{n_0}$.

又因为 $\{a_n\}$ 单调增, 故 $\forall n > n_0, a_n \geqslant a_{n_0} > \beta - \varepsilon$, 且 $a_n \leqslant \beta < \beta + \varepsilon$. 即 $|\beta - a_n| < \varepsilon$ 在 $n > n_0$ 时成立.

由数列极限定义,有 $\lim_{n\to\infty} a_n = \beta = \sup\{a_n\}$. 同理,单调减有下界极限存在.

3. 夹逼准则

定理 2.2 (夹逼准则) 设数列 $\{a_n\}, \{b_n\}, \{c_n\}$ 满足 $a_n \leqslant b_n \leqslant c_n, \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = a$, 则 $\lim_{n \to \infty} b_n = a$.

证明 从 $\lim_{n\to\infty} a_n = a \Leftrightarrow \forall \varepsilon > 0, \exists N_1 \in \mathbb{N}^*, \forall n > N_1$ 都有 $|a_n - a| < \varepsilon. \Rightarrow a - \varepsilon < a_n < a + \varepsilon$ 当 $n > N_1$ 时恒成立.

再从 $\lim_{n\to\infty} c_n = a \Rightarrow$ 对上述 ε , $\exists N_2 \in \mathbb{N}^*, \forall n > N_2$ 都有 $|c_n - a| < \varepsilon$. $\Rightarrow a - \varepsilon < c_n < a + \varepsilon$ 当 $n > N_2$ 时恒成立.

令 $N = \max\{N_1, N_2\}$, 则 当 n > N 时, $a - \varepsilon < a_n \le b_n \le c_n < a + \varepsilon$, 即 $|b_n - a| < \varepsilon$ 成立. 由数列定义, $\lim_{n \to \infty} b_n = a$.

2.3 数列极限的性质

命题 2.7 (唯一性) 若 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} a_n = b$, 则 a = b.

证明 如果 $\{a_n\}$ 有两个极限值 a 和 b. 根据极限的定义, 对于任意的正数 ε , 注意到 $\frac{\varepsilon}{2}$ 也是一个正数, 因此对应两个极限值, 分别存在正整数 N_1 和 N_2 , 使得当

$$n > N_1$$
 时有 $|a_n - a| < \frac{\varepsilon}{2}$,
 $n > N_2$ 时有 $|a_n - b| < \frac{\varepsilon}{2}$.

因此, 当 $n > \max\{N_1, N_2\}$ 时(即 $n > N_1, n > N_2$), 上面两个不等式都满足, 所以

$$|a-b| = |(a-a_n) + (a_n-b)| \leqslant |a-a_n| + |a_n-b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

两个数的距离要小于任意一个正数,这两个数必须相等,即 a = b.

定义 2.5 (数列有界) 设 $\{a_n\}$ 为实数列, 若存在常数 M>0, 使得对任意 $n\in\mathbb{N}^*$, 都有 $|a_n|< M$, 则称 $\{a_n\}$ 为有界数列.

命题 2.8 (有界性) 若 $\lim_{n\to\infty} a_n = a$, 则数列 $\{a_n\}$ 有界.

证明 取 $\varepsilon = 1$, 由定义知道, 当存在一个自然数 N, 使得当 n > N 时, 有 $|a_n - a| < 1$, 即当 n > N 时, 有 $|a_n| < |a| + 1$. 取

$$M = \max\{|a| + 1, |a_1|, |a_2|, \dots, |a_N|\}.$$

注意到,第一,有有限个数中一定能取得一个最大的;第二,上面确定的 M 显然与 n 无关.则对所有自然数 n,也就是说数列的所有项,都会有 $|a_n| \leq M$.

不难推出如下结论:

命题 数列 $\{a_n\}$ 有界等价于数列 $\{a_n\}$ 自第 N 项之后有界,其中 N 已知.

命题 2.9 (保号性) 若 $\{a_n\}$ 收敛且 $\lim_{n\to\infty}a_n=a, a_n\geqslant 0, \forall n\geqslant n_0, 则必有 <math>a\geqslant 0.$

证明 若 a > l, 取 $\varepsilon = a - l > 0$, 则存在一个自然数 N, 使得当 n > N 时, 有

$$|a_n - a| < \varepsilon = a - l,$$

因此

$$-(a-l) < a_n - a$$

即, 当 n > N 时, 不等式 $a_n > l$ 成立. 对于 a < l 的情况, 可类似证明, 在这种情况下, 只要取 $\varepsilon = l - a > 0$ 即可. 对于此问, 取 l = 0.

由此不难推出:

命题 若 $\{a_n\}$ 收敛且 $\lim_{n\to\infty} a_n = a, a_n \geqslant l, \forall n \geqslant n_0, 则必有 a \geqslant l.$

该命题的逆命题不成立, 如 $a_n = (-1)^n \cdot \frac{1}{n}$, 则 $\lim_{n \to \infty} a_n = 0$, 但 a_n 既不恒大于零, 也不恒小于零. 然而, 加上如果是不严格不等, 则在 N 充分大时成立, 具体而言如下所述:

命题 若 $\{a_n\}$ 收敛且 $\lim_{n\to\infty} a_n = a$, 则 $\forall l > a$, 存在 $N \in \mathbb{N}^*$, 使得当 n > N 时, $a_n < l$.

证明 反证: 若 $\exists l_0 > a$, 使得对任意 $N \in \mathbb{N}^*$, 都存在 n > N, 使得 $a_n \ge l_0$. 取 $\varepsilon_0 = l - a > 0$, 则对任意 $N \in \mathbb{N}^*$, 都存在 n > N, 使得 $|a_n - a| \ge \varepsilon_0$. 与数列极限的定义矛盾.

命题 2.10 (保序性) 若 $a_n \to a, b_n \to b$, 且 $a_n \leqslant (\geqslant)b_n, \forall n \geqslant n_0$, 则必有 $a \leqslant (\geqslant)b$.

证明 令 $c_n = b_n - a_n$,则 $c_n \to b - a$,且 $c_n \leq 0, \forall n \geq n_0$,由保号性可知, $b - a \leq 0$,即 $a \leq b$.

其中唯一性暗示了, 改变数列中有限多项的值, 不会影响数列的收敛性及其极限. 例如, 对于数列 $1,1/2,1/3,1/4,\ldots$, 它的极限是 0, 即 $\lim_{n\to\infty}\frac{1}{n}=0$. 如果我们改变数列的前 10 项, 如 $1,1,1,1,1,1,1,1,1,1/11,1/12,1/13,1/14,\ldots$, 则数列的极限仍然是 0. 这个性质在证明数列极限的存在性时, 常常会被用到.

有界性质给出了收敛数列的一个必要条件. 因此无界数列一定是发散的. 例如对于数列

 $0,1,0,2,0,3,0,4,\cdots$ 显然是无界的,且发散的.

保号性的条件是不严格不等, 若调整为 $a_n > 0$, 则无法说明 a > 0. 例如数列 $1, 1/2, 1/3, 1/4, \dots$ 的极限是 0, 但数列的每一项都是正数.

例 2.3 设 $a \in \mathbb{R}$, $\{a_n\}$ 为实数列, 请考虑以下对命题的语句, 说明了 $\{a_n\}$ 具有什么性质?

- 1. 对于任意的 $\varepsilon > 0$, 存在 $N \in \mathbb{N}$, 使得当 n > N 时, 有 $|a_n a| < \varepsilon$.
- 2. 对于任意的 $\varepsilon > 0$, 存在 $N \in \mathbb{N}$, 存在 n > N, 有 $|a_n a| < \varepsilon$ 成立.
- 3. 存在 $N \in \mathbb{N}$, 对于任意的 $\varepsilon > 0$, 使得当 n > N 时, 有 $|a_n a| < \varepsilon$.
- 4. 对于任意的 $N \in \mathbb{N}$, 存在 $\varepsilon > 0$, 当 n > N 时, 有 $|a_n a| < \varepsilon$.
- 5. 对于任意的 $N \in \mathbb{N}$, 存在 $\varepsilon > 0$, 存在 n > N, 有 $|a_n a| < \varepsilon$.
- 6. 对于任意的 $N \in \mathbb{N}$, 任意 $\varepsilon > 0$, 存在 n > N, 有 $|a_n a| < \varepsilon$.

解

- 1. $\{a_n\}$ 以 a 为极限.
- 2. a 为 $\{a_n\}$ 的聚点, 或者有一项等于 a.
- 3. $\{a_n\}$ 从某一项开始恒等于 a.
- 4. {a_n} 有界.
- 5. 恒成立.
- 6. a 为 $\{a_n\}$ 的聚点.

这里仅给出部分证明.

证明 3. 存在 $N \in \mathbb{N}$, 对于任意的 $\varepsilon > 0$, 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. $\Leftrightarrow \{a_n\}$ 从某一项开始恒等于 a.

相邻的全称量词是可以交换的, 因此上式等价于 $\exists N \in \mathbb{N}$, 使得 $\forall n > N$, $\forall \varepsilon > 0$, $|a_n - a| < \varepsilon$. 由 $\forall \varepsilon > 0$, $|a_n - a| < \varepsilon \Leftrightarrow a_n = a$, 可知 $\exists N \in \mathbb{N}$, 使得 $\forall n > N$, $a_n = a$. 即证.

证明 4. 对于任意的 $N \in \mathbb{N}$, 存在 $\varepsilon > 0$, 当 n > N 时, 有 $|a_n - a| < \varepsilon$. $\Leftrightarrow \{a_n\}$ 有界.

充分性: 取 N=1, 存在 $\varepsilon>0$, 当 n>1 时, 有 $|a_n-a|<\varepsilon$. 则存在 $M=|a|+\varepsilon+|a_1|$, 则

$$|a_1| < |a| + \varepsilon + |a_1| = M$$

$$|a_n| < |a| + \varepsilon < |a| + \varepsilon + |a_1| = M, \forall n > 1$$

即证有界.

必要性: 若有界 M, 则 $\forall N, \exists \varepsilon = M + |a|, \, \exists n > N$ 时,

$$|a_n - a| \le |a_n| + |a| \le M + |a| = \varepsilon.$$

证明 5. 对于任意的 $N \in \mathbb{N}$, 存在 $\varepsilon = |a_{N+1} - a| + 1 > 0$, 存在 n = N + 1 > N, 使得 $|a_n - a| = |a_{N+1} - a| < \varepsilon$ 成立. 恒成立.

证明 6. 对于任意的 $N \in \mathbb{N}$, 任意 $\varepsilon > 0$, 存在 n > N, 有 $|a_n - a| < \varepsilon$. $\Leftrightarrow a \to \{a_n\}$ 的聚点.

充分性: 由 a 为 $\{a_n\}$ 的聚点 $\Rightarrow \forall \varepsilon > 0$, 在 $(a - \varepsilon, a + \varepsilon)$ 内有无穷多项. 则对任意的 $N \in \mathbb{N}$, 存在 n > N, 使得 $|a_n - a| < \varepsilon$.

必要性: 由对任意的 $N \in \mathbb{N}$, 任意 $\varepsilon > 0$, 存在 n > N, 使得 $|a_n - a| < \varepsilon$ 成立. 则 $\forall \varepsilon > 0$, 在 $(a - \varepsilon, a + \varepsilon)$ 内有无穷多项. 因此 $a \to \{a_n\}$ 的聚点.

上述例子给出了数列极限的定义,交换量词后,会得到意义大相径庭的命题.通过理解这些含义不同的命题,可以加深对数列极限的理解.

2.4 数列极限的运算

定理 2.3 (数列极限的线性性质) 设 a,b,c_1,c_2 为常数且 $\lim_{n\to\infty}a_n=a,\lim_{n\to\infty}b_n=b$, 则

$$\lim_{n \to \infty} (c_1 a_n + c_2 b_n) = c_1 a + c_2 b = c_1 \lim_{n \to \infty} a_n + c_2 \lim_{n \to \infty} b_n.$$

证明 由 $\lim_{n\to\infty} a_n = a \Rightarrow \forall \varepsilon > 0, \exists N_1 \in \mathbb{N}^*, \exists n > N_1 \text{ 时}, |a_n - a| < \varepsilon.$ 由 $\lim_{n\to\infty} b_n = b$,对上述 $\varepsilon > 0, \exists N_2 \in \mathbb{N}^*, \exists n > N_2 \text{ 时}, |b_n - b| < \varepsilon.$

令
$$N = \max\{N_1, N_2\}$$
, 则当 $n > N$ 时, $|a_n - a| < \varepsilon, |b_n - b| < \varepsilon$, 则

$$|c_1a_n + c_2b_n - c_1a - c_2b| = |c_1(a_n - a) + c_2(b_n - b)| \le |c_1(a_n - a)| + |c_2(b_n - b)| \le (|c_1| + |c_2|)\varepsilon,$$

$$\lim_{n \to \infty} (c_1a_n + c_2b_n) = c_1a + c_2b.$$

数列的极限具有线性性质,同理函数极限也是具有线性性质的,统称为极限的线性性质. 由极限的线性性质,可导出微积分中绝大多数概念也具有线性性质.如函数的导数、导数、微分、积分,都具有线性性质.

从上述极限的线性性质,不难得到以下结论:

- 1. $\stackrel{\text{def}}{=} c_1 = c_2 = 1 \text{ ltf}, \lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n;$
- 2. $\stackrel{\text{def}}{=} c_1 = 1, c_2 = -1 \text{ Hz}, \lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n;$
- 4. 数列的线性性质可推广到任意有限个收敛数列的情形: 设 $a_{1n} \to a_1, a_{2n} \to a_2, \dots, a_{mn} \to a_m$, 且 $a_1, a_2, \dots, a_m, c_1, c_2, \dots, c_m$ 为常数,则

$$\lim_{n \to \infty} (c_1 a_{1n} + c_2 a_{2n} + \dots + c_m a_{mn})$$

$$= c_1 a_1 + c_2 a_2 + \dots + c_m a_m$$

$$= c_1 \lim_{n \to \infty} a_{1n} + c_2 \lim_{n \to \infty} a_{2n} + \dots + c_m \lim_{n \to \infty} a_{mn}$$

对 $\forall m \in \mathbb{N}^*$ 成立.

定理 2.4 (收敛数列极限的四则运算法则) 设 $\{a_n\}$, $\{b_n\}$ 收敛, 且 $\lim_{n\to\infty}a_n=a$, $\lim_{n\to\infty}b_n=b$, 则有

1.
$$\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n$$
.

$$2. \lim_{n \to \infty} a_n b_n = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

证明

- 1. 由极限的线性性质可得;
- 2. 注意到

$$|a_n b_n - ab| \le |a_n b_n - a_n b| + |a_n b - ab| = |a_n||b_n - b| + |b_n - b||a_n - a|.$$

由于 $\{a_n\}$, $\{b_n\}$ 是收敛数列,故都是有界的,取一个大的界M,使得

$$|a_n|, |b_n| < M(n \geqslant 1)$$

因此 $|b| \leq M$. 对于任意的正数 ε , 对应 $\frac{\varepsilon}{2M}$, 分别存在整数 N_1 和 N_2 , 使得当 n > N 时,

$$|a_n - a| < \frac{\varepsilon}{2M}, |b_n - b| < \frac{\varepsilon}{2M}.$$

同时成立. 因此当n > N时,有

$$|a_n b_n - ab| < M|b_n - b| + M|a_n - a| < M \cdot \frac{\varepsilon}{2M} + M \cdot \frac{\varepsilon}{2M} = \varepsilon.$$

3. 因为

$$\frac{a_n}{b_n} = a_n \cdot \frac{1}{b_n},$$

且 $b \neq 0$, 由 2° 可知, 只需证明数列 $\left\{\frac{1}{b_n}\right\}$ 收敛于 $\frac{1}{b}$ 即可. 假设 b > 0, 则

$$\left| \frac{1}{b_n} - \frac{1}{b} \right| = \left| \frac{|b_n - b|}{|b_n b|} \right|.$$

由于 b_n 收敛于 b, 一方面对于正数 b/2 > 0, 存在 N_1 , 当 $n > N_1$ 时,

$$|b_n - b| < \frac{b}{2}.$$

另一方面, 对于任意给定的正数 ε , 存在 N_2 , 使得当 $n > N_2$ 时,

$$|b_n - b| < \frac{b^2 \varepsilon}{2}.$$

所以, 当 $n > N = \max\{N_1, N_2\}$ 时,

$$\left| \frac{1}{b_n} - \frac{1}{b} \right| \leqslant |b_n - b| \cdot \frac{2}{b^2} \cdot \frac{\varepsilon}{2} = \varepsilon.$$

即

$$\lim_{n \to \infty} \frac{1}{b_n} = \frac{1}{b}.$$

定理 2.4说明有限组收敛数列的极限运算和四则运算是可以交换的,并可推广到有限多个收敛数列与四则运算的情况. 对于 3 中的结论,会因为某些 b_n 为 0 而使得分式没有意义. 但是因为 $\{b_n\}$ 的极限 $b \neq 0$, 所以 b_n 为 0 的项至多只有有限个. 可以改变这有限多项的值,这不会改变 $\{b_n\}$ 的收敛性和极限. 或者在 $\{a_nb_n\}$ 中删去这些没有定义的有限多项,不会改变其收敛性和极限.

有了定理 2.4, 在计算数列极限时, 可以将其化为简极限的四则运算, 而不必再使用 " ε -N" 语言作繁琐的论述.

下面三个命题是定理 2.4的推广,它们说明了极限与指数、对数、幂运算是可以交换的. 大家可以自行尝试证明,正式的证明将在函数极限中给出.

- 命题 2.11 设数列 $\{a_n\}$ 收敛于 a, 则 $\lim_{n\to\infty} e^{a_n} = e^a$.
- 命题 2.12 设数列 $\{a_n\}$ 收敛于 a, 则 $\lim_{n\to\infty} \ln a_n = \ln a$, 其中 $a_n > 0, a > 0$.
- 命题 2.13 设数列 $\{a_n\}$ 收敛于 a, 则 $\lim_{n\to\infty}a_n^{\alpha}=a^{\alpha}$, 其中 $a_n>0, a>0, \alpha\in\mathbb{R}$.

但是极限与极限, 极限与函数, 极限与运算大都是不可交换的, 如课本例 1.2.6, 如下的做法是完全错误的:

例 2.4 请说明错误在哪里

$$\lim_{n\to\infty} \frac{1+2+\cdots+n}{n^2} = \lim_{n\to\infty} \frac{1}{n^2} + \lim_{n\to\infty} \frac{2}{n^2} + \cdots + \lim_{n\to\infty} \frac{n}{n^2} = 0$$

解

第一步将分子拆开是错误的,对内有限,对外无限,无限加法不可交换,

请注意 $0\cdot\infty$ 的意义, 在我们目前学的空间内 ∞ 并不是一个数, 这个表达式实际上没有意义. 在一些特定场合, 他实际上是 $0+0+\cdots+0$ 的简写 (当然也可能有其他的形式), 也就是 0. 这个简写不够严谨, 实际上也交换了极限与加法.

例 2.5 请说明错误在哪里
$$\lim_{n\to\infty}a_n^{1/n}=\left(\lim_{n\to\infty}a_n\right)^{1/n}$$

解 我们对整一个数列做极限运算, 而不是对数列中的每一个数做极限运算. 这个式子的意义是 $\lim_{n\to\infty} a_n^{1/n}$ 是一个数, 而 $\left(\lim_{n\to\infty} a_n\right)^{1/n}$ 是一个数列. 前者与 n 无关, 后者与 n 有关.

例 2.6 设
$$a_n = \left(1 + \frac{1}{n}\right)^n, n \in \mathbb{N}^*$$
, 证明:

1. $\lim_{n \to \infty} a_n = e \approx 2.718281828;$

2.
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x, x \in \mathbb{R};$$

3. $\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e, x \in \mathbb{R}.$

解函数极限还没有讲到,此处仅证明第1问.证明数列 a_n 收敛即可.首先证明该数列是递增

的。事实上, 由二项式定理可得

$$a_n = 1 + \sum_{k=1}^n C_n^k \cdot \frac{1}{n^k} = 1 + \sum_{k=1}^n \frac{1}{k!}.$$

$$= 1 + 1 + \sum_{k=2}^n \frac{1}{k!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \dots \left(1 - \frac{k-1}{n} \right),$$

$$a_{n+1} = 1 + 1 + \sum_{k=2}^n \frac{1}{k!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \dots \left(1 - \frac{k-1}{n+1} \right) + \left(\frac{1}{n+1} \right)^{n+1}.$$

比较 a_n 和 a_{n+1} 两个表达式的右端和号中的对应项,显然,前者较小。而 a_{n+1} 所多出来的一项 $\left(\frac{1}{n+1}\right)^{n+1} > 0$,故 $a_{n+1} > a_n$ 。所以 $\{a_n\}$ 为严格递增数列。

 $\dot{}$ 其次 $\dot{}$,我们将证明数列是有界的。在 a_n 的上述展开式中,

$$0 < \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{k-1}{n}\right) < 1.$$

所以

$$2 < a_n < 2 + \sum_{k=2}^n \frac{1}{k!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}.$$

$$< 2 + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n-1)} = 3 - \frac{1}{n} < 3,$$

即 $n=2,3,\ldots$,也就是说数列 $\{a_n\}$ 是单调递增且有上界的,因此一定收敛。

例 2.7

1.
$$\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}, n \in \mathbb{N}^*.$$

2.
$$\left(\frac{1}{n+1}\right) < \ln\left(1+\frac{1}{n}\right) < \left(\frac{1}{n}\right), n \in \mathbb{N}^*.$$

3.
$$\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n} = \frac{1}{e}, \text{ BF } \sqrt[n]{n!}e \sim n.$$

注
$$a_n \sim b_n$$
 定义为 = $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$.

鼦

1.
$$a_n = \left(1 + \frac{1}{n}\right)^n$$
 单调递增且有上界, $\lim_{n \to \infty} a_n = e$. 故 $e = \sup a_n$, 由于 a_n 单调增的严格单调, 因此 $\left(1 + \frac{1}{n}\right)^n \neq e$, 故 $a_n < e$, $n \in \mathbb{N}^*$. 设 $b_n = \left(1 + \frac{1}{n}\right)^{n+1}$. 由平均值不等式, 有
$$\left(\left(\frac{n}{n+1}\right) \cdot 1\right)^{\frac{1}{n+2}} = \left(\frac{n}{n+1} \cdot \frac{n}{n+1} \cdots \frac{n}{n+1}\right)^{\frac{1}{n+2}} \leqslant \frac{\frac{n}{n+1} + \frac{n}{n+1} + \cdots + \frac{n}{n+1} + 1}{n+2} = \frac{n}{n+1}.$$
 故 ⇒ $\left(\frac{n}{n+1}\right)^{n+1} \leqslant \left(\frac{n+1}{n+2}\right)^{n+2} \Rightarrow b_n = \left(1 + \frac{1}{n}\right)^{n+1} \geqslant \left(1 + \frac{1}{n+1}\right)^{n+2} = b_{n+1}.$ 且 $b_n > 0$, 故 $\{b_n\}$ 单调递减有下界, 故有极限. $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \cdot \left(1 + \frac{1}{n}\right) = e \cdot 1 = e.$

与 a_n 的推导类似, 可得 $b_n > e, n \in \mathbb{N}^*$.

2. 对 1. 中的不等式取对数. 得

$$n\ln\left(1+\frac{1}{n}\right) < 1 < (n+1)\ln\left(1+\frac{1}{n}\right) \Rightarrow \ln\left(1+\frac{1}{n}\right) < \frac{1}{n}, \ln\left(1+\frac{1}{n}\right) > \frac{1}{n+1}.$$

3. 有

$$\left(\frac{2}{1}\right)^1 < e < \left(\frac{2}{1}\right)^2,$$
$$\left(\frac{3}{2}\right)^2 < e < \left(\frac{3}{2}\right)^3,$$

$$\left(\frac{n}{n+1}\right)^n < e < \left(\frac{n}{n+1}\right)^{n+1}.$$

乘积得

$$\left(\frac{2}{3}\right)^2 \left(\frac{3}{4}\right)^3 \cdots \left(\frac{n}{n+1}\right)^{n+1} < e^n < \left(\frac{2}{3}\right)^3 \left(\frac{3}{4}\right)^4 \cdots \left(\frac{n}{n+1}\right)^{n+2}.$$

即

$$\frac{(n+1)^n}{n!} < e^n < \frac{(n+1)^{n+1}}{(n+1)!}$$

$$\Rightarrow \left(\frac{n+1}{e}\right)^n < n! < \left(\frac{n+1}{e}\right)^{n+1}$$

$$\Rightarrow \frac{n+1}{ne} < \sqrt[n]{n!} < \frac{n+1}{ne} \sqrt[n]{n+1}$$

而 $\lim_{n\to\infty} \frac{n+1}{ne} = \lim_{n\to\infty} \frac{\frac{1}{n}+1}{\frac{1}{e}} = \frac{1}{e}, \lim_{n\to\infty} \sqrt[n]{n+1} = 1$, 故由夹逼定理, 得证. 例 2.8 设 $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n, n \in \mathbb{N}^*$, 证明:

- 2. $\lim_{n \to \infty} \frac{1}{n+1} + \dots + \frac{1}{2n} = \ln 2;$ 3. $\lim_{n \to \infty} \frac{1}{3n+1} + \dots + \frac{1}{3n+2n} = \ln \frac{5}{3};$ 4. $1 + \frac{1}{2} + \dots + \frac{1}{n} \sim \ln n.$

解

1. 由例2.6可知,

$$\ln \frac{2}{1} < \frac{1}{1},$$

$$\ln \frac{3}{2} < \frac{1}{2},$$

$$\dots,$$

$$\ln \frac{n+1}{n} < \frac{1}{n}.$$

相加得 $\ln(n+1) < 1 + \frac{1}{2} + \dots + \frac{1}{n}$. 则 $a_n > 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n > 0$. 又 $a_{n+1} - a_n = \frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right) < 0$, 故 $\{a_n\}$ 单调递减有下界, 故有极限.

2

$$\lim_{n \to \infty} \frac{1}{n+1} + \dots + \frac{1}{2n}$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{2n} \right) - \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right)$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{2n} - \ln 2n \right) + \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n \right) + \ln 2n - \ln n$$

$$= \ln 2.$$

3.

$$\lim_{n \to \infty} \frac{1}{3n+1} + \dots + \frac{1}{3n+2n}$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{5n} \right) - \left(1 + \frac{1}{2} + \dots + \frac{1}{3n} \right)$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{5n} - \ln 5n \right) + \left(1 + \frac{1}{2} + \dots + \frac{1}{3n} - \ln 3n \right) + \ln 5n - \ln 3n$$

$$= \ln \frac{5}{3}.$$

4.

$$\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{\ln n}$$

$$= \lim_{n \to \infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n}{\ln n} + 1$$

质
$$\lim_{n\to\infty} 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n = \gamma$$
, $\lim_{n\to\infty} \ln n = +\infty$, 故 $\lim_{n\to\infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n}{\ln n} = 0$. 记 $\lim_{n\to\infty} a_n = \gamma \approx 0.57721$ 称为 Euler 常数.

2.5 高阶无穷大

定义 2.6 (无穷大) 设 $\{a_n\}$ 是一个数列, 若 $\forall M > 0, \exists N \in \mathbb{N}^*, \forall n > N, |a_n| > M, 则称 <math>\{a_n\}$ 是 无穷大数列, 记为 $\{a_n\} \to \infty$.

- 1. $\{a_n\} \to +\infty \Leftrightarrow \forall M > 0, \exists N \in \mathbb{N}^*, \forall n > N, a_n > M.$
- 2. $\{a_n\} \to -\infty \Leftrightarrow \forall M > 0, \exists N \in \mathbb{N}^*, \forall n > N, a_n < -M.$
- 3. $\{a_n\} \to \infty \Leftrightarrow \forall M > 0, \exists N \in \mathbb{N}^*, \forall n > N, |a_n| > M.$

命题 2.14 (常用无穷大数列的比较) 设 a, A, m 为常数, 且 $a > 1, \alpha > 0, m > 0$, 证明: $n^n >>$

 $n! >> a^n >> n^{\alpha} >> (\ln n)^m$, 在 $n \to \infty$, $n \in N^*$ 时成立; 其中 $n^n >> n! \Leftrightarrow \lim_{n \to \infty} \frac{n^n}{n!} = +\infty$, 称 为 n^n 是 n! 的高阶无穷大.

证明

- $\begin{aligned} &1. &\lim_{n \to \infty} \frac{n^n}{n!} = \lim_{n \to \infty} \frac{1}{n} \cdot \frac{2}{n} \cdots \frac{n}{n} < \lim_{n \to \infty} \frac{1}{n} = 0, \text{ if } n^n >> n!. \\ &2. &\lim_{n \to \infty} \frac{a^n}{n!} = \lim_{n \to \infty} \frac{a}{1} \cdot \frac{a}{2} \cdots \frac{a}{[a]+1} \cdots \frac{a}{n} < \frac{a}{1} \cdot \frac{a}{2} \cdots \frac{a}{[a]+1} \cdot \lim_{n \to \infty} \frac{a}{n}, \text{ if } \frac{a}{1} \cdot \frac{a}{2} \cdots \frac{a}{[a]+1} \notin \mathbb{R} \end{aligned}$ 与 n 无关的常数, $\lim_{n\to\infty} \frac{a}{n} = 0$, 故 $\lim_{n\to\infty} \frac{a^n}{n!} = 0$, 故 $n! >> a^n$.
- 3. 先设 $\alpha \in N^*, a = 1 + \lambda$, 则 $\lambda > 0, a^n = (1 + \lambda)^n > C_n^{\alpha + 1} \lambda^{\alpha + 1}$. 故 $0 > \frac{n^\alpha}{a^n} < \frac{n^\alpha}{C^{\alpha + 1} \lambda^{\alpha + 1}} \to 0$ $0, n \to \infty$.
- 4. 仅证 m=1 时, 令 $n^{\alpha}=y$, 则 $n\to\infty$ 时, $y\to+\infty$, 且 $\frac{\ln n}{n^{\alpha}}=\frac{1}{\alpha}\frac{\ln y}{y}$. 设 $k\leqslant y\leqslant k+1$, 则 $\frac{k}{k+1} < \frac{\ln y}{u} < \frac{\ln(k+1)}{k}, \ \ \ \ \lim_{y \to +\infty} \frac{\ln y}{y} = 0, \ \ \ \ \lim_{n \to \infty} \frac{\ln n}{n^{\alpha}} = 0.$

例 2.9Stirling 公式 证明

$$\lim_{n \to \infty} \frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} = 1.$$

证明 这里给出一种使用高中知识以及数列极限的证明方法,没有积分工具,没有复数的工具, 我们不得不先如下证明 Wallis 公式

引理 2.1

$$\sin^2 \frac{2\pi}{4m} \sin^2 \frac{4\pi}{4m} \sin^2 \frac{6\pi}{4m} \cdots \sin^2 \frac{(2m-2)\pi}{4m} = \frac{m}{2^{2m-2}}.$$

证明 复数可以写成 z = x + iy 的形式,也可以写成三角形式,即令 $x = r \cos \theta, y = r \sin \theta$,因 此可以设 $z_0 = r(\cos\theta + i\sin\theta)$ 为 $z^n - 1 = 0$ 的根, 则由 De Moiver 定理: 若 $z_1 = r_1(\cos\alpha + i\sin\theta)$ $i\sin\alpha$), $z_2 = r_2(\cos\beta + i\sin\beta)$, 则 $z_1z_2 = r_1r_2(\cos(\alpha + \beta) + i\sin(\alpha + \beta))$, 因此

$$z^n = 1 = r^n(\cos x + i\sin x)^n = r^n(\cos nx + i\sin nx),$$

得
$$r=1, \theta=\frac{2k\pi}{n}(k\in\mathbb{N})$$
, 故 $z_0=\cos\frac{2\pi}{n}+\mathrm{i}\sin\frac{2\pi}{n}$.
习惯上称 $\omega=\cos\frac{2\pi}{n}+\mathrm{i}\sin\frac{2\pi}{n}$ 称为 n 次单位原根.

由代数学基本定理可得 z^n-1 只有n个复根,且上面验证了 $\{\omega^k\}_{k=1}^n$ 恰为这n个复根,因 此 $z^n - 1 = (z - 1)(z - \omega)(z - \omega^2) \cdots (z - \omega^{n-1})$, 两边同除 z - 1, 得

$$1+z+z^2+\cdots+z^{n-1}=(z-\omega)(z-\omega^2)\cdots(z-\omega^{n-1})$$
 代入 $z=1$,并对两边取模长,由 $\left|1-\omega^k\right|=\sqrt{\left(1-\cos\frac{2\pi k}{n}\right)^2+\left(2\sin\frac{\pi k}{n}\right)^2}=\sqrt{2-2\cos\frac{2\pi k}{2}}=$

$$2\sin\frac{\pi k}{n}$$
, 可得

$$n = \prod_{k=1}^{n-1} |1 - \omega^k| = \prod_{k=1}^{n-1} 2\sin\frac{\pi k}{n}$$

取 n=2m,并注意到对于 $k=1,2,\cdots,2m-1$ 有对称性 $\sin\frac{\pi(2m-k)}{2m}=\sin\frac{\pi k}{2m}$,且当 k=m 时 $\sin\frac{\pi m}{2m}=\sin\frac{\pi}{2}=1$,因此

$$\frac{m}{2^{2m-2}} = \prod_{k=1}^{2m-1} \sin \frac{\pi k}{2m} = \left(\prod_{k=1}^{m-1} \sin \frac{\pi k}{2m}\right)^2 = \sin^2 \frac{2\pi}{4m} \sin^2 \frac{4\pi}{4m} \sin^2 \frac{6\pi}{4m} \cdots \sin^2 \frac{(2m-2)\pi}{4m}$$

引理 2.2

$$\sin^2 \frac{\pi}{4m} \sin^2 \frac{3\pi}{4m} \sin^2 \frac{5\pi}{4m} \cdots \sin^2 \frac{(2m-1)\pi}{4m} = \frac{1}{2^{2m-1}}.$$

证明 已知:

$$\prod_{k=1}^{n-1} \sin \frac{\pi k}{n} = \frac{n}{2^{n-1}}.$$

取 n=4m, 得

$$\prod_{k=1}^{4m-1} \sin \frac{\pi k}{4m} = \frac{4m}{2^{4m-1}}.$$

偶数项 k = 2r(r = 1, ..., 2m - 1) 为:

$$\prod_{r=1}^{2m-1} \sin \frac{2r\pi}{4m} = \prod_{r=1}^{2m-1} \sin \frac{r\pi}{2m} = \frac{2m}{2^{2m-1}}.$$

奇数项为:

$$\prod_{k=1}^{2m} \sin \frac{(2k-1)\pi}{4m} = \left(\prod_{j=1}^{m} \sin \frac{(2j-1)\pi}{4m}\right)^{2},$$

因此

$$\frac{4m}{2^{4m-1}} = \frac{2m}{2^{2m-1}} \cdot \left(\prod_{j=1}^{m} \sin\frac{(2j-1)\pi}{4m}\right)^{2},$$

整理得

$$\left(\prod_{i=1}^{m} \sin \frac{(2j-1)\pi}{4m}\right)^2 = \frac{1}{2^{2m-1}},$$

即

$$\sin^2 \frac{\pi}{4m} \sin^2 \frac{3\pi}{4m} \cdots \sin^2 \frac{(2m-1)\pi}{4m} = \frac{1}{2^{2m-1}}.$$

引理 2.3

$$\frac{\sin(k-1)a}{\sin ka} \frac{\sin(k+1)a}{\sin ka} < \frac{(k-1)a}{ka} \frac{(k+1)a}{ka}.$$

证明 由以下两恒等式

$$\frac{\sin(k-1)a}{\sin ka} \frac{\sin(k+1)a}{\sin ka} = 1 - \left(\frac{\sin a}{\sin ka}\right)^2,$$
$$\frac{(k-1)a}{ka} \frac{(k+1)a}{ka} = 1 - \left(\frac{a}{ka}\right)^2,$$

以及 $\frac{\sin x}{x}$ 在 $0 < x < \pi/2$ 单调减, 因此

$$\frac{\sin a}{\sin ka} > \frac{a}{ka}$$

以及

$$\frac{\sin(k-1)a}{\sin ka} \frac{\sin(k+1)a}{\sin ka} < \frac{(k-1)a}{ka} \frac{(k+1)a}{ka}.$$

引理 2.4 (Wallis 公式)

$$\lim_{m \to \infty} \frac{2}{1} \frac{2}{3} \frac{4}{3} \frac{4}{5} \cdots \frac{2m-2}{2m-3} \frac{2m-2}{2m-1} = \frac{\pi}{2}$$

证明 由引理 2.1,引理 2.2得:

$$\frac{\sin^2 \frac{2\pi}{4m}}{\sin^2 \frac{2\pi}{4m}} \frac{\sin^2 \frac{2\pi}{4m}}{\sin^2 \frac{3\pi}{4m}} \frac{\sin^2 \frac{4\pi}{4m}}{\sin^2 \frac{5\pi}{4m}} \cdots \frac{\sin^2 \frac{(2m-2)\pi}{4m}}{\sin^2 \frac{(2m-3)\pi}{4m}} \frac{\sin^2 \frac{(2m-2)\pi}{4m}}{\sin^2 \frac{(2m-1)\pi}{4m}} = m \sin \frac{\pi}{2m},$$

$$\frac{\sin^2 \frac{2\pi}{4m}}{\sin^2 \frac{4\pi}{4m}} \frac{\sin^2 \frac{4\pi}{4m}}{\sin^2 \frac{5\pi}{4m}} \frac{\sin^2 \frac{6\pi}{4m}}{\sin^2 \frac{5\pi}{4m}} \cdots \frac{\sin^2 \frac{(2m-2)\pi}{4m}}{\sin^2 \frac{(2m-2)\pi}{4m}} \frac{\sin^2 \frac{2m\pi}{4m}}{\sin^2 \frac{(2m-1)\pi}{4m}} = m \tan \frac{\pi}{4m}.$$

由引理 2.3得

$$\frac{\frac{2\pi}{4m}}{\frac{\pi}{4m}} \frac{\frac{2\pi}{4m}}{\frac{4\pi}{4m}} \frac{\frac{4\pi}{4m}}{\frac{\pi}{4m}} \cdots \frac{\frac{(2m-2)\pi}{4m}}{\frac{(2m-3)\pi}{4m}} \frac{\frac{(2m-2)\pi}{4m}}{\frac{(2m-1)\pi}{4m}} < m \sin \frac{\pi}{2m},$$

$$\frac{\frac{2\pi}{4m}}{\frac{4\pi}{4m}} \frac{\frac{4\pi}{4m}}{\frac{\pi}{4m}} \frac{\frac{6\pi}{4m}}{\frac{\pi}{4m}} \cdots \frac{\frac{(2m-2)\pi}{4m}}{\frac{(2m-1)\pi}{4m}} \frac{\frac{2m\pi}{4m}}{\frac{(2m-1)\pi}{4m}} > m \tan \frac{\pi}{4m}.$$

整理得

$$\frac{\pi}{2}\sin\frac{\pi}{2m} > \frac{2}{1}\frac{2}{3}\frac{4}{3}\frac{4}{5}\cdots\frac{2m-2}{2m-3}\frac{2m-2}{2m-1} > \frac{\pi}{2}\left(1-\frac{1}{2m}\right)\tan\frac{\pi}{4m},$$

由夹逼定理即证.

这一条定理在后面学了积分之后可以更快速的得到,而不途径引理中繁琐的等式.

引理 2.5

$$\lim_{n \to \infty} \frac{4^n (n!)^2}{\sqrt{n} (2n)!} = \sqrt{\pi}.$$

证明 将 Wallis 公式写为:

$$\lim_{n \to \infty} \frac{(2n)!!^2}{(2n-1)!!^2(2n+1)} = \frac{\pi}{2}.$$

展开分式,整理得

$$\lim_{n \to \infty} \frac{(2n)!^2(2n)!!^2}{(2n)!!^2(2n-1)!!^2(2n+1)} = \lim_{n \to \infty} \frac{2^{4n}(n!)^4}{(2n)!^2(2n+1)} = \frac{\pi}{2}.$$

利用 $\lim_{n\to\infty} a_n^{\alpha} = \left(\lim_{n\to\infty} a_n\right)^{\alpha}$, α 为常数, 此处 α 取 $\frac{1}{2}$, 得

$$\lim_{n \to \infty} \frac{4^n (n!)^2}{(2n)! \sqrt{2n+1}} = \sqrt{\frac{\pi}{2}} \quad \Rightarrow \quad \lim_{n \to \infty} \frac{4^n (n!)^2 \sqrt{2}}{(2n)! \sqrt{2n+1}} = \lim_{n \to \infty} \frac{4^n (n!)^2}{(2n)! \sqrt{n}} = \sqrt{\pi}.$$

引理 2.6

$$a_n = \frac{n! e^n}{\sqrt{n} n^n}$$

单调递减,收敛到某个正实数.

证明

$$\frac{a_n}{a_{n+1}} = \frac{n!}{\sqrt{n} \, n^n e^{-n}} \cdot \frac{\sqrt{n+1} \, (n+1)^{n+1} e^{-(n+1)}}{(n+1)!} = \frac{\sqrt{n+1}}{\sqrt{n}} \cdot \frac{(n+1)^n}{n^n e} = \frac{1}{e} \left(\frac{n+1}{n}\right)^{\frac{2n+1}{2}}.$$

设 $b_n := \ln(a_n)$, 由2.7有

$$b_n - b_{n+1} = \ln\left(\frac{a_n}{a_{n+1}}\right) = \frac{2n+1}{2}\ln\left(\frac{n+1}{n}\right) - 1$$

 $\Rightarrow k = \frac{1}{2n+1} > 0,$ #

$$b_n - b_{n+1} = \frac{1}{2k} \ln \left(\frac{1+k}{1-k} \right) - 1,$$

分析函数 $f(x) = \frac{1}{2x} \ln \left(\frac{1+x}{1-x} \right) - 1$ 知 $f'(x) > 0, x \in (0,1), f\left(\frac{1}{2n+1} \right) > 0$,即可证明 b_n 单调减,因此 a_n 单调减.

再由类似的分析方式可以得到

$$(b_n - b_{n+1}) - \frac{1}{4n} + \frac{1}{4(n+1)} = \frac{1}{2k} \ln \left(\frac{1+k}{1-k} \right) - 1 + \frac{k^2}{k^2 - 1} < 0,$$

因此

$$b_n - \frac{1}{4n} < b_{n+1} - \frac{1}{4(n+1)}.$$

因此 $b_n > b_n - \frac{1}{4n} > b_1 - \frac{1}{4} = \frac{3}{4} \Rightarrow a_n > e^{0.75}$.

 a_n 单调减, 有正下界, 因此 $\lim_{n\to a_n}=a$ 存在且 a>0.

由a > 0才可以用极限的四则运算(除法),以及由引理 2.5

$$a = \lim_{n \to \infty} \frac{a_n^2}{a_{2n}} = \frac{\left(\frac{n!e^n}{\sqrt{n}n^n}\right)^2}{\frac{(2n)!e^{2n}}{\sqrt{2n}2n^{2n}}} = \sqrt{2} \lim_{n \to \infty} \frac{4^n(n!)^2}{(2n)!\sqrt{n}} = \sqrt{2\pi}$$

由此证明了 Stirling 公式.

更正式的表示无穷大之间的关系需要引入两个记号:O 和 o.

定义 2.7 设 $\{a_n\}$ 和 $\{b_n\}$ 是定义在 \mathbb{N}^* 上的数列。如果 $\lim_{n\to\infty}\frac{a_n}{b_n}=0$,则称 a_n 是 b_n 的 $o(b_n)$,记作 $a_n=o(b_n)(n\to\infty)$ 。

设 $\{a_n\}$ 和 $\{b_n\}$ 是定义在 \mathbb{N}^* 上的数列。如果 $\exists M, \frac{a_n}{b_n} \leqslant M$ 对充分大的 n 成立,则称 a_n 是 b_n 的 $O(b_n)$,记作 $a_n = O(b_n)(n \to \infty)$ 。

o, O 仅表示相对的大小关系, 只有在极限意义下才有意义. $o(a_n)$ 的含义实际是所有 a_n 的无穷小量组成的集合, 因此前面的等号实际含义是 \in . 具体而言

$$o(a_n) = \left\{ t_n | \lim_{n \to \infty} \frac{t_n}{a_n} = 0 \right\}, a_n = o(b_n) \Leftrightarrow a_n \in o(b_n).$$

我们试图用阶定量的表示这种无穷小的比较关系, 以一个有显式表达式的数列 $a_n = \frac{1}{n^2} + \frac{2}{n} + 10$ 为例, 我们可以说 $a_n = 10 + o(1)$, 也可以说 $a_n = 10 + \frac{2}{n} + o(\frac{1}{n})$, 也可以说 $a_n = 10 + \frac{2}{n} + o(\frac{1}{n})$, 也可以说 $a_n = 10 + \frac{2}{n} + \frac{1}{n^2} + o(\frac{1}{n^2})$. 从此可以直观的看出我们逐渐给出了对 a_n 更精确的估计, 可以说这叫做 a_n 的渐近展开, 或者 a_n 的估计.

对于那些不能够给出显式表达式的数列,如何求解其高阶渐近估计,这是一个相当复杂的问题,Stolz 定理是解决这类问题的一个重要工具.

2.6 Stolz 定理及其应用

定理 2.5 (Stolz 定理) 设 $\{a_n\},\{b_n\}$ 是两个数列, 且 $\lim_{n\to\infty}b_n=+\infty$, 若

$$\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}=A,$$

其中A可以是有限数,也可以是 $\pm\infty$; $\{b_n\}$ 是严格单调递增且趋于 $\pm\infty$,则

$$\lim_{n\to\infty}\frac{a_n}{b_n}=A=\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}.$$

注 完整的利用 Stolz 定理的计算过程要求先证明 $\lim_{n\to\infty} \frac{a_n-a_{n-1}}{b_n-b_{n-1}} = A$ 极限存在并求得 A, 然后 再利用 Stolz 定理求 $\lim_{n\to\infty} \frac{a_n}{b_n}$. 不过不严谨的直接写出 $\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{a_n-a_{n-1}}{b_n-b_{n-1}}$ 也是能接受的.

注 当
$$\lim_{n \to \infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}} = \infty$$
 时,Stolz 定理不一定成立. 反例可取 $a_n = (-1)^n, b_n = n$.

证明 先证明 A 是有限数 (实数) 的情况。不妨设 $\{b_n\}$ 是正项数列。假设条件成立,对任意正数 ε ,存在自然数 N_1 使得

$$A - \varepsilon < \frac{a_{n+1} - a_n}{b_{n+1} - b_n} < A + \varepsilon, \quad n > N_1.$$

由于 $\{b_n\}$ 严格单调增, 所以

$$(A - \varepsilon)(b_{n+1} - b_n) < a_{n+1} - a_n < (A + \varepsilon)(b_{n+1} - b_n), \quad n > N_1.$$

在上面不等式中,分别列出 $N_1+1,N_1+2,\ldots,n-1$ 并将所得不等式相加,得到

$$(A-\varepsilon)(b_n-b_{N_1+1}) < a_n-a_{N_1+1} < (A+\varepsilon)(b_n-b_{N_1+1}).$$

同除以 b_n 并整理得

$$\frac{a_{N_1+1}}{b_{N_1+1}} - \frac{Ab_{N_1+1}}{b_{N_1+1}} - \varepsilon \left(1 - \frac{b_{N_1+1}}{b_n}\right) < \frac{a_n}{b_n} - A < \frac{a_{N_1+1}}{b_{N_1+1}} - \frac{Ab_{N_1+1}}{b_{N_1+1}} + \varepsilon \left(1 - \frac{b_{N_1+1}}{b_n}\right).$$

注意到 $\{b_n\} \to +\infty$, 对固定的 N_1 , 存在自然数 N_2 , 使得当 $n > N_2$ 时,

$$-\varepsilon < \frac{a_{N_1+1}}{b_{N_1+1}} - \frac{Ab_{N_1+1}}{b_{N_1+1}} < \varepsilon.$$

取 $N = \max\{N_1, N_2\}$, 于是当 n > N 时,

$$-2\varepsilon < \frac{a_n}{b_n} - A < 2\varepsilon.$$

若 $A = +\infty$, 此时由题设及保号性 $\Rightarrow \exists N_2, N \geqslant N_2$, 使得

$$\frac{a_{n+1} - a_n}{b_{n+1} - b_n} > 1 \Rightarrow a_{n+1} > a_n, \quad n > N.$$

并且 $a_{n+1}-a_n>b_{n+1}-b_n$, $a_n-a_{n-1}>b_n-b_{n-1}$,..., $a_{N_2+1}-a_{N_2}>b_{N_2+1}-b_{N_2}$. 从而 得 $a_{n+1} - a_{N_2} > b_{n+1} - b_{N_2} \Rightarrow \lim_{n \to \infty} a_{n+1} = +\infty$ 且 $\{a_n\}$ 严格增加.

$$\lim_{n \to \infty} \frac{b_{n+1} - b_n}{a_{n+1} - a_n} = 0 \Rightarrow \lim_{n \to \infty} \frac{b_n}{a_n} = +\infty.$$

例 2.10 证明:

1. 若
$$\lim_{n \to \infty} a_n = a$$
, 则 $\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a$;
2. 若 $\lim_{n \to \infty} a_n = a \geqslant 0$, 则 $\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$.
3. 若 $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = a \geqslant 0$, 则 $\lim_{n \to \infty} \sqrt[n]{a_n} = a$.

2. 若
$$\lim_{n\to\infty} a_n = a \geqslant 0$$
, 则 $\lim_{n\to\infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$.

1.
$$\diamondsuit b_n = n, \alpha_n = a_1 + a_2 + \dots + a_n, \ \mathbb{M} \ b_n \uparrow + \infty \ \mathbb{H} \lim_{n \to \infty} \frac{\alpha_n - \alpha_{n-1}}{b_n - b_{n-1}} = \lim_{n \to \infty} \frac{a_n}{n - (n-1)} = a.$$

1.
$$\diamondsuit b_n = n, \alpha_n = a_1 + a_2 + \dots + a_n, \quad \mathbb{N} b_n \uparrow + \infty \quad \mathbb{E} \lim_{n \to \infty} \frac{\alpha_n - \alpha_{n-1}}{b_n - b_{n-1}} = \lim_{n \to \infty} \frac{a_n}{n - (n-1)} = a.$$
2. $\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = \exp \left(\lim_{n \to \infty} \frac{\ln a_1 + \ln a_2 + \dots + \ln a_n}{n} \right) = \exp \left(\lim_{n \to \infty} \frac{\ln a_n}{n - n - 1} \right) = e^{\ln a} = a.$

3. 改变有限项, 不会影响极限值, 不妨假设 $a_0 = 1$, 则 $\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\frac{a_1}{a_0} \frac{a_2}{a_1} \cdots \frac{a_n}{a_{m-1}}} = a$.

例 2.11 设 a_1, a_2, \dots, a_m 是 m 个常数, 证明:

$$\lim_{n \to \infty} \sqrt[n]{|a_1|^n + |a_2|^n + \dots + |a_m|^n} = \max\{|a_1|, |a_2|, \dots, |a_m|\}.$$

解 设 $h = \max\{|a_1|, |a_2|, \cdots, |a_m|\}$, 则 $h < (|a_1|^n + |a_2|^n + \cdots + |a_m|^n)^{\frac{1}{n}} < m^{\frac{1}{n}}h$, 且 $\lim m^{\frac{1}{n}}h = \lim m^{\frac{1}{n}}h$ h. 由夹逼定理, 得证.

例 2.12

1.
$$\lim_{n \to \infty} \frac{1+2+3+\cdots+n}{n^2} = \frac{1}{2}$$
;

2.
$$\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3} = \frac{1}{3};$$

3.
$$\lim_{n \to \infty} \frac{1^3 + 2^3 + 3^3 + \dots + n^3}{n^4} = \frac{1}{4}.$$

4.
$$\lim_{n \to \infty} \frac{1^k + 2^k + 3^k + \dots + n^k}{n^{k+1}} = \frac{1}{k+1}$$

$$2. \lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3} = \frac{1}{3};$$

$$3. \lim_{n \to \infty} \frac{1^3 + 2^3 + 3^3 + \dots + n^3}{n^4} = \frac{1}{4}.$$

$$4. \lim_{n \to \infty} \frac{1^k + 2^k + 3^k + \dots + n^k}{n^{k+1}} = \frac{1}{k+1}.$$

$$\cancel{\text{If }} \cancel{\text{I}} \cancel{\text{I}}$$

... 中的项形如 n^{k-1}, n^{k-2}, \dots 满足 $\lim_{n \to \infty} \frac{n^{k-1}}{n^{k+1}} = 0$. 且至多有 k 项. 有限项极限相加, 可以 用极限的四则运算.

故
$$\lim_{n\to\infty} \frac{n^k}{(k+1)n^k - \cdots} = \frac{1}{(k+1) + \lim_{n\to\infty} \left(C_{k+1}^2 \frac{1}{n} + \cdots + C_{k+1}^{k+1} \frac{1}{n^k}\right)} = \frac{1}{k+1}.$$

定理 2.6 常用的平均值不等式:

设 a_1, a_2, \cdots, a_n 是 n 个正数,则有:

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \leqslant \sqrt[n]{a_1 a_2 \dots a_n} \leqslant \frac{a_1 + a_2 + \dots + a_n}{n} \leqslant \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}}.$$

2.7 实数集完备性的五个等价命题

以下五个命题等价,且都说明了实数集是完备的.

定理 2.7 (确界存在原理) 有上 (下) 界的非空实数集 E 必有上 (下) 确界 $\sup E(\inf E)$.

定理 **2.8** (单调有界极限存在准则) 若数列 $\{a_n\}$ 单调增 (减) 且有上 (下) 界, 则 $\{a_n\}$ 收敛. 且 $\lim a_n = \sup a_n (\inf a_n).$

定理 2.9 (闭区间套定理) 若 $\{[a_n,b_n]\}$ 是一列闭区间, 满足 $[a_n,b_n]\supset [a_{n+1},b_{n+1}], n=1,2,\cdots$ 且 $\lim_{n\to\infty} (b_n-a_n)=0$, 则存在唯一的实数 ξ , 使得 $\xi\in[a_n,b_n], n=1,2,\cdots$.

定理 2.10 (列紧性原理) 若 $\{a_n\}$ 有界且含无穷多项,则 $\{a_n\}$ 必有收敛子列 $\{a_{n_k}\}$.

定理 2.11 (柯西 (Cauchy) 准则) 数列 $\{a_n\}$ 收敛的充要条件是: 对 $\forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \forall n, m > 0$ $N, |a_n - a_m| < \varepsilon.$

证明

- 1 ⇒ 2 设 a_n 单减且有下界 $m, a_n \ge m > m \varepsilon, \forall n \in \mathbb{N}^*$, 由确界存在原理, $E = \{a_n\}$ 有下确界, 记为 $a = \inf E$, 则 $a \ge m$, 且 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*, \forall n > N, a - \varepsilon < a_n \le a$, 即 $|a_n - a| < \varepsilon$. 由定义, $\lim_{n\to\infty} a_n = a = \inf\{a_n\}.$
- $2 \Rightarrow 3$ 所有区间的左端点构成的数列 $\{a_n\}$ 是单调递增有上界的,故有极限,记为 a,即 $\lim_{n \to \infty} a_n =$ a. 同理, 所有区间的右端点构成的数列 $\{b_n\}$ 是单调递减有下界的, 故有极限, 记为 b, 即 $\lim_{n \to \infty} b_n = b$. 因此 $a - b = \lim_{n \to \infty} (a_n - b_n) = 0$, 即 a = b. 即证存在 $\xi = a = b$. 若存在另一实

数 $\eta \in [a_n, b_n], n = 1, 2, \dots, 则 \xi \leq \eta \leq \xi$, 即 $\xi = \eta$. 故唯一性得证.

 $3 \Rightarrow 4$ 设 $|a_n| < M$, 取 $[\alpha_1, \beta_1] = [-M, M]$, 将其二分为 $[\alpha_1, \beta_1] = [\alpha_1, \frac{\alpha_1 + \beta_1}{2}] \cup [\frac{\alpha_1 + \beta_1}{2}, \beta_1]$, 两个子区间中至少有一个子区间包含无穷多个 a_n 的项, 记为 $[\alpha_2, \beta_2]$, 重复上述过程, 得到 $[\alpha_1, \beta_1] \supset [\alpha_2, \beta_2] \supset \cdots$, 且 $\lim_{n \to \infty} (\beta_n - \alpha_n) = \frac{M - (-M)}{2^n} = 0$, 由闭区间套定理, 存在唯一的实数 ξ , 使得 $\xi \in [\alpha_n, \beta_n]$, $n = 1, 2, \cdots$.

然后构造收敛子列 $\{a_{n_k}\}$,令 $n_1=1$,由于区间 $[\alpha_2,\beta_2]$ 中包含无穷多个 a_n 的项,可以找到 $n_2>n_1$,使得 $a_{n_2}\in[\alpha_2,\beta_2]$,以此类推,可以找到 $n_3>n_2>n_1$,使得 $a_{n_3}\in[\alpha_3,\beta_3]$,重复此过程,得到一个收敛子列 $\{a_{n_k}\}$.

 $4 \Rightarrow 5$ 必要性是容易证明的,因为 $\{a_n\}$ 收敛,对于任意的一个正数 ε ,存在整数 N,使得当 m,n>N 时 $|a_m-a|<\frac{\varepsilon}{2}$, $|a_n-a|<\frac{\varepsilon}{2}$,因此就有 $|a_m-a_n|<\varepsilon$. 下面证明充分性. 对于正数 $\varepsilon=1$,存在整数 N_1 ,使得当 $m,n>N_1$ 时,有 $|a_m-a_n|<1$. 令

$$M = \max\{|a_1|, |a_2|, \dots, |a_{N_1}|, |a_{N_1+1}|\},\,$$

则有 $|a_n| \leq M$, $n=1,2,\ldots$ 这说明 $\{a_n\}$ 是有界的. 由列紧性原理存在收敛的子列 $\{a_{n_k}\}$. 因为 $\{a_n\}$ 是 Cauchy 列, 所以对于任意意定的 ε , 存在整数 N_2 , 使得当 $m,n>N_2$ 时, 有 $|a_m-a_n|<\frac{\varepsilon}{2}$. 对于这个 ε , 因为 $\lim a_{n_k}=a$, 存在一个整数 K, 使得当 k>K 时, 有 $|a_{n_k}-a|<\frac{\varepsilon}{2}$; 特別取一个 n_k 使得 $n_k>N_2$ 且 $n>N_2$ 时,

$$|a_n - a| \le |a_n - a_{n_k}| + |a_{n_k} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

所以, $\lim_{n\to\infty} a_n = a$.

Cauchy 收敛准则的强大之处在于,它不要求事先猜出极限值.也正是如此,在我们说明一个数列发散的时候,通常不利用极限定义的否定形式 (可以自行尝试一下这有多么繁琐),而是利用 Cauchy 收敛准则的否命题.

命题 2.15 (Cachuy 收敛准则的否命题) 设数列 $\{a_n\}$, 则 $\{a_n\}$ 发散的充要条件是: 存在 $\varepsilon_0 > 0$, 使得对 $\forall N \in \mathbb{N}^*$, 存在 $n_0, m_0 > N$, 有 $|a_m - a_n| \ge \varepsilon_0$.

例 2.13 证明 $\lim_{n\to\infty} \sin n$ 不存在

证明 对于任意
$$n$$
, 存在 $p_1 = \left[\frac{n}{\pi}\right]\pi + \frac{3}{2}\pi$, $p_2 = \left[\frac{n}{\pi}\right]\pi + \frac{5}{2}\pi > \left[\frac{n}{\pi} + 1\right]\pi > n$, 使得 $|a_{p_1} - a_n|, |a_{p_2} - a_n| > \frac{1}{2}$

二者至少有其一成立。

注其实我们不满足于这个结果,在深入的学习中会发现这个数列的极限点几乎可以取遍 [-1,1],或者对于任 [-1,1] 中的点,都可以找到一个子列收敛到这个点.这个问题的构造从知识结构上

现在就可以解决,请大家尝试进行证明.