Assignment 3: Assigned Wed 09/19. Due Wed 09/26

- 1. Let X be a topological space, and μ be a regular Borel measure on X. Show that X has a maximal open set of measure 0. Namely, show that there exists $U \subseteq X$, such that U open set, $\mu(U) = 0$ and further for any open set $V \subseteq X$ with $\mu(V) = 0$, we must have $V \subseteq U$. [The complement of U is defined to be the support of the measure μ , and denoted by $\sup(\mu)$.]
- 2. Let $\Sigma \supseteq \mathcal{B}(\mathbb{R}^d)$, and μ be a regular measure on (\mathbb{R}^d, Σ) . Suppose $A \in \Sigma$ is σ -finite (i.e. $A = \bigcup_{1}^{\infty} A_n$, and $\mu(A_n) < \infty$). Show that $\mu(A) = \sup\{\mu(K) \mid K \subseteq A \text{ is compact}\}$. [This remains true if we replace \mathbb{R}^d with any Hausdorff space.]
- 3. Let μ, ν be two measures on (X, Σ) . Suppose $\mathcal{C} \subseteq \Sigma$ is a π -system such that $\mu = \nu$ on \mathcal{C} .
 - (a) Suppose $\exists C_i \in \mathcal{C}$ such that $\bigcup_{1}^{\infty} C_i = X$ and $\mu(C_i) = \nu(C_i) < \infty$. Show that $\mu = \nu$ on $\sigma(\mathcal{C})$.
 - (b) If we drop the finiteness condition $\mu(C_i) < \infty$ is the previous subpart still true? Prove or find a counter example.
- 4. Let $\kappa \in (0,1)$. Does there exist $E \in \mathcal{L}(\mathbb{R})$ such that for all $a < b \in \mathbb{R}$, we have $\kappa(b-a) \leq \lambda(I \cap (a,b)) \leq (1-\kappa)(b-a)$? Prove or find a counter example. [I'm aware that this looks suspiciously like a homework problem you already did. Also, this problem has a short, elegant solution using only what we've seen in class so far.]
- 5. For $i \in \{1, 2\}$, let (X_i, Σ_i, μ_i) be two measure spaces with $\mu_i(X_i) < \infty$. Define $\Sigma_1 \otimes \Sigma_2 = \sigma\{A_1 \times A_2 \mid A_i \in \Sigma_i\}$.
 - (a) Let $x_1 \in X_1$ and $A \in \Sigma_1 \otimes \Sigma_2$. Let $S_{x_1}(A) = \{x_2 \in X_2 \mid (x_1, x_2) \in A\}$, and $T_{x_2}(A) = \{x_1 \in X_1 \mid (x_1, x_2) \in A\}$. Show that $S_{x_1}(A) \in \Sigma_2$ and $T_{x_2}(A) \in \Sigma_1$.
 - (b) If $A \in \mathcal{P}(X_1 \times X_2)$ is such that for all $x_i \in X_i$, $S_{x_1}(A) \in \Sigma_2$ and $S_{x_2}(A) \in \Sigma_1$. Must $A \in \Sigma_1 \otimes \Sigma_2$?
 - (c) Show that there exists a measure ν on $(X_1 \times X_2, \Sigma_1 \otimes \Sigma_2)$ such that for all $A_i \in \Sigma_i$ we have $\nu(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2)$.
- 6. (An alternate approach to λ -systems.) Let $\mathcal{M} \subseteq P(X)$. We say \mathcal{M} is a Monotone Class, if whenever $A_i, B_i \in \mathcal{M}$ with $A_i \subseteq A_{i+1}$ and $B_i \supseteq B_{i+1}$ then $\bigcup_{1}^{\infty} A_i \in \mathcal{M}$ and $\bigcap_{1}^{\infty} B_i \in \mathcal{M}$. If $\mathcal{A} \subseteq P(X)$ is an algebra, then show that the smallest monotone class containing \mathcal{A} is exactly $\sigma(A)$. [You should also address existence of a smallest monotone class containing \mathcal{A} .]

Optional problems, and details in class I left for you to check.

- * Let X be a second countable locally compact Hausdorff space, and μ be a Borel measure on X that is finite on compact sets. Show that μ is regular.
- * Is any σ -finite Borel measure on \mathbb{R}^d regular?
- * Show that any λ -system that is also a π -system is a σ -algebra.
- * If Π is a π -system, then $\lambda(\Pi) = \sigma(\Pi)$. (We only proved $\lambda(\Pi) \subseteq \sigma(\Pi)$.)

Assignment 4: Assigned Wed 09/26. Due Wed 10/03

- 1. Let $f: X \to \mathbb{R}$ be measurable, and $g: \mathbb{R} \to \mathbb{R}$ be Lebesgue measurable. True or false: $g \circ f: X \to \mathbb{R}$ is measurable? Prove or find a counter example.
- 2. Let (X, Σ) be a measure space, and $f, g: X \to [-\infty, \infty]$ be measurable. Suppose whenever $g = 0, f \neq 0$, and whenever $f = \pm \infty, g \in (-\infty, \infty)$. Show that $\frac{f}{g}: X \to [-\infty, \infty]$ is measurable. [Note that by the given data you will never get a 'meaningless' quotient of the form $\frac{0}{0}$ or $\frac{\pm \infty}{\pm \infty}$. The remainder of the quotients (e.g. $\frac{1}{\infty}$) can be defined in the natural manner.]
- 3. Let $f_n: X \to \mathbb{R}$ be a sequence of measurable functions such that $(f_n) \to f$ almost everywhere (a.e.). Let $g: \mathbb{R} \to \mathbb{R}$ be a Borel function.
 - (a) If for a.e. $x \in X$, g is continuous at f(x), then show $(g \circ f_n) \to g \circ f$ a.e.
 - (b) Is the previous part true without the continuity assumption on g?
- 4. Let $C \subseteq \mathbb{R}^d$ be convex. Must C be Lebesgue measurable? Must C be Borel measurable? Prove or find counter examples. [The cases d = 1 and d > 1 are different.]
- 5. Let (X, Σ, μ) be a measure space, and $(X, \Sigma_{\mu}, \bar{\mu})$ it's completion. Show that $g: X \to [-\infty, \infty]$ is Σ_{μ} -measurable if and only if there exists two Σ -measurable functions $f, h: X \to [-\infty, \infty]$ such that f = h μ -almost everywhere, and $f \leq g \leq h$ everywhere.
- 6. Let X be a metric space, $\Sigma \supseteq \mathcal{B}(X)$ a σ -algebra on X, and μ a regular finite measure on (X, Σ) . Let $f: X \to \mathbb{R}$ be measurable.
 - (a) For any $\varepsilon > 0$ and $i \in \mathbb{N}$, show that there exists finitely many disjoint compact sets $\{K_{i,j} \mid |j| \leq N_i\}$ such that

$$\mu\left(X - \bigcup_{i=-N_i}^{N_i} K_{i,j}\right) < \frac{\varepsilon}{2^i}, \text{ and } f(K_{i,j}) \subseteq \left[\frac{j}{2^i}, \frac{j+1}{2^i}\right)$$

(b) (Lusin's Theorem) For any $\varepsilon > 0$ show that there exists $K_{\varepsilon} \subseteq X$ compact such that $f: K_{\varepsilon} \to \mathbb{R}$ is continuous, and $\mu(X - K_{\varepsilon}) < \varepsilon$. [Hint: Let $K_{\varepsilon} = \bigcap_{i=1}^{\infty} \bigcup_{|j| \leqslant N_i} K_{i,j}$. Define $g_i: K_{\varepsilon} \to \mathbb{R}$ by $g_i(x) = j/2^i$ if $x \in K_{i,j}$ and $|j| \leqslant N_i$. Show $g_i: K \to \mathbb{R}$ is continuous and $(g_i) \to f$ uniformly on K_{ε} .]

A standard extension theorem now shows that for any $f: X \to \mathbb{R}$ measurable and $\varepsilon > 0$, there exists $g_{\varepsilon}: X \to \mathbb{R}$ continuous such that $\mu\{f \neq g_{\varepsilon}\} < \varepsilon$.

Optional problems, and details in class I left for you to check.

- * Show that $f:X\to [-\infty,\infty]$ is measurable if and only if any of the following conditions hold
 - (a) $\{f < a\} \in \Sigma \text{ for all } a \in \mathbb{R}.$
- (c) $\{f \leqslant a\} \in \Sigma$ for all $a \in \mathbb{R}$.
- (b) $\{f > a\} \in \Sigma$ for all $a \in \mathbb{R}$.
- (d) $\{f \geqslant a\} \in \Sigma$ for all $a \in \mathbb{R}$.
- * Let $f:[0,1] \to [0,1]$ be the Cantor function, and $g(x) = \inf\{f=x\}$. Show that f is continuous, and the range of g is the Cantor set. Are f,g Hölder continuous? If yes, what are the largest exponents α,β for which f,g are respectively Hölder- α and Hölder- β continuous.