Lecture 8: Machine learning for molecular simulation

Lecture #8: Machine learning for molecular simulation

Previously on

- Encoding atomic structures for ML
- Crystal graph neural networks

Goals/Agenda

- Molecular dynamics basics
- Interatomic potentials
 - Energy, forces, stresses
- Machine learning interatomic potentials
 - Generating data
 - Fitting potential
 - Active learning
 - Validating the potential
- Foundational models for atomistic modeling

Zero-temperature density functional theory calculations

- Static density fuctional theory calculations yields the thermodynamic properties at 0 K
- We iteratively optimize the geometry until the forces/energy converge

However

- Sometimes the configurational space is enormous
 - conformers
- Sometimes thermal effects matter
 - phase transition
- Sometimes the rate of some events needs to be estimated
 - diffusion

How to deal with these?

Image source 4

Molecular dynamics

...is used to study the dynamics of atomic systems

• i.e. evolution at finite temperature

Image source

Basic MD principples

The net force acting on particle is directly proportional to its acceleration

$$F_i = m_i rac{\partial^2 r_i}{\partial t^2}$$

at the same time:

 $F_i=-rac{\partial V}{\partial r_i}$, where V is the potential energy (surface), V(R), where $R=R(r_1,\ldots,r_i)$ - is the state of the system, i.e. its geometry

Integrating Newton's laws of motion

We want to find $r_i(t)$, i.e. R(t)

We can't find it analytically for more than two interacting particles (see three-body problem)

We can solve it numerically

Finite difference method

The shape of V(R) is known at the given moment t

The acceleration for each particle is given by

$$a_i = rac{F_i}{m_i} = -rac{1}{m_i}rac{\partial V}{\partial r_i}$$
 eq. (1)

- 0. Initialize velocities
- 1. Select a small timestep δt (it should correctly describe the changes in your system)
- 2. Calculate forces
- 3. Integrate eq. (1) within $(t,t+\delta t)$ window to get velocities $oldsymbol{v_i}(t+\delta t)$
- 4. Update coordinates using calculated velocities for each particle

$$oldsymbol{r_i} = oldsymbol{r_i} + \delta t oldsymbol{v_i}$$

- 5. Repeat 2-4 steps N times
- 6. Analyse the discrete trajectory obtained

Ab initio MD (AIMD)

Pros:

- "Exact"
- Yields electronic structure

Cons:

- QM approches can be applied to small systems (~100 atoms)
 - very expensive
- i.e. length scale ~1 nm
 - poor statistics
 - artificial size-effects (for PBC)
- time scales ~ 0.1 ns
 - poor statistics

Classical MD

Some "empirical" functional relationship f(W,R) = V(R), W - parameters of the model

Pros:

- Large scale simulations (thousands of atoms)
- Long time simulations (~10 nanoseconds)
- 10²-10⁸-fold speed up compared to DFT
- Interpretable

Cons:

- No electronic structure
- Approximate may fail
- Difficult to fit
- ullet The shape of f depends on the cheimcal bonding
 - o no universal approach

Example

Lennard-Jones pair potential

Machine learning assited MD

Some ML model f(W,R)=V(R), W - parameters of the model

Pros:

- Large scale simulations (thousands of atoms)
- Long time simulations (~10 nanoseconds)
- 10²-10[?]-fold speed up compared to DFT
- Easy to fit/refit
- Universal approach to any chemical bonding
- Provides energies/forces with a DFT accuracy

Cons:

- No electronic structure
- Approximate may fail
- Slower compared to classical MD, Difficult to interprete compared to classical MD

Lecture 8: Machine learning for molecular simulation

Example

- Moment-tensor
 potentials developed
 by prof. Shapeev at
 Skoltech
- The NequIP network architecture (at the picture)

Energy calculations with interatomic potentials

• the potential energy is calculated as the sum of atomic potential energies

$$E_{pot} = \sum_{i \in N_{atoms}} E_{i,atomic}$$

forces are calculated as follows

$$ec{F}_i = -
abla_i E_{pot}$$

Fitting (training) the potentials

We run AIMD at elevated temperatures to sample atomic configurations

for a given chemical system

The dataset:

Geometries: $\{R_n\}$

Energies: $\{E_n(R_n)\}$

Forces: $\{F_{i,\alpha}(R_n)\}$

Loss function

$$\mathcal{L}=\lambda_E||\hat{E}-E||^2+\lambda_Frac{1}{3N}\sum_{i=1}^N\sum_{lpha=1}^3\left|\left|-rac{\partial\hat{E}}{\partial r_{i,lpha}}-F_{i,lpha}
ight|\right|^2$$
, where the hat symbol (e.g., \hat{E}) denotes predictions

After the fitting, the potential is deployed to perform large scale MD simulations

Universal interatomic potentials

- Once trained on large datasets covering a wide chemical and structural configuration space
 - For example, the Materials Project dataset
- Can be applied to the unknown systems
 - To perform downstream tasks

Pros:

- Works out of the box
- Can be refitted (finetuned) with a small amount of data

Cons:

- Universality is debatable. Should be carefully validated before using
- A lot of weights -> slower compared to ML potentials developed for a specific system

Example

MACE-MP-0 graph neural network

Take home message

- MD is used to study the evolution of atomic systems at the given conditions
- Machine learning interatomic potentials (MLIPs) are used to accelerate simulations
 - can be easily fitted
- Universal MLIPs are trained on large dataset
 - to solve downstream tasks for a wide range of chemical systems

Ionic conductivity (for the seminar)

"is a measure of a substance's tendency towards ionic conduction. Ionic conduction is the movement of ions. The phenomenon is observed in solids and solutions. Ionic conduction is one mechanism of current." (wiki)

Formulas (for the seminar)

MSD vs. time

$$MSD(\tau) = 6D\tau$$

Arrhenius equation

$$D = D_0 \exp(-E_a/kT)$$

Ionic conductivity

$$\sigma=rac{
ho e^2 D}{kT}$$

- ρ is the diffusing particle density (number of ions N, per volume, V, of the system)
- *e* is the charge of electron
- ullet D is the diffusivity
- *k* Boltzman's constant

Thank you for your attention!