$June.7\ 2021$

Check the definitions for yourself from the theorem citing list. I will briefly remind you the definitions when working on the questions. We will focus on the discussion of eigenvalue and eigenvector today.

Questions

- 1. For each of the following linear maps T find all its eigenvalues, and for each eigenvalue λ , find a basis for the eigenspace E_{λ} .
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by the matrix $\begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$

 $\mathrm{June.7\ 2021}$

(b)
$$T: \mathbb{R}^4 \to \mathbb{R}^4$$
 given by the matrix $\begin{pmatrix} 1 & 2 & -3 & 1 \\ 2 & 1 & 7 & 2 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$

June.7 2021

(c) $T: \mathbb{P}_2(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R})$ given by $T(a+bx+cx^2) = (a+2b+3c)+(4a+5b+6c)x+(7a+8b+9c)x^2$ **Remark.** As a further practice, prove for yourself that $T: V \to V$ has an eigenvalue λ if and only if $[T]^{\alpha}_{\alpha}$ has an eigenvalue λ for some basis α . In other words, this method

does not depends on the choice of the basis.

2. Find the eigenvalues and eigenspaces of the transposition map

$$T: M_n(\mathbb{R}) \to M_n(\mathbb{R})$$

given by
$$T(A) := A^T$$

3. Prove that a matrix $A \in M_3(\mathbb{R})$ has at least one real eigenvalue.

matrices have the same trace.

4. Prove that if A, B are $n \times n$ matrices, then trace(AB) = trace(BA). Conclude that similar