I Exemples

On rappelle que $P \subset NP \subset EXP \subset Décidables$.

Donner la classe de complexité la plus précise possible des problèmes suivants :

1.

REGEXP-EQUIV

Instance : deux expressions régulières e_1 et e_2 .

Question : $L(e_1) = L(e_2)$?

2.

CHEMIN-<

Instance : un graphe G=(S,A), deux sommets $s,t\in S$ et un entier k. Question : existe-t-il un chemin élémentaire de s à t de longueur $\leq k$?

3.

CHEMIN->

Instance : un graphe G = (S, A), deux sommets $s, t \in S$ et un entier k. Question : existe-t-il un chemin élémentaire de s à t de longueur $\geq k$?

4.

CHEMIN-≥-ARBRE

Instance: un arbre G = (S, A).

Question : existe-t-il un chemin élémentaire de s à t de longueur $\geq k$?

5.

CHEMIN-HAMILTONIEN

Instance : un graphe G = (S, A).

Question : G admet-il un chemin hamiltonien, c'est-à-dire un chemin passant exactement une fois par chaque sommet ?

6.

COUPLAGE-PARFAIT-BIPARTI

Instance : un graphe biparti G = (S, A). Question : G admet-il un couplage parfait ?

II k-COLOR

Soit G = (S, A) un graphe non orienté. On appelle k-coloration de G une fonction $c : S \longrightarrow \{1, 2, ..., k\}$ telle que pour tout arc $(u, v) \in A$, on a $c(u) \neq c(v)$.

Pour $k \in \mathbb{N}^*$, on considère le problème suivant :

k-COLOR

Entrée : un graphe G = (S, A) non orienté

Sortie : G est-il k-colorable ?

- 1. Montrer que 1-COLOR et 2-COLOR appartiennent à P.
- 2. Montrer que 3-COLOR appartient à NP.
- 3. Montrer que 3-COLOR se réduit polynomialement à 3-SAT.

Dans la suite, on veut trouver une réduction polynomiale de 3-SAT à 3-COLOR.

On considère une formule φ de 3-SAT de variables $x_1, ..., x_n$ et on veut construire un graphe G qui soit 3-colorable si et seulement si φ est satisfiable.

On ajoute n sommets dans G (encore appelés $x_1, ..., x_n$ par abus de notation) correspondant à $x_1, ..., x_n$, n sommets correspondant à $\neg x_1, ..., \neg x_n$ et 3 sommets V, F, B reliés deux à deux.

Dans un 3-coloriage de G, S et F doivent être de couleurs différentes. Chaque variable x_i sera considérée comme fausse si le sommet correspondant est de la même couleur que F et vraie s'il est de la même couleur que V.

4. Expliquer comment ajouter des arêtes à G pour que chaque variable x_i soit vraie ou fausse (c'est-à-dire coloriée avec la même couleur que F ou la même couleur que V) et de valeur opposée à $\neg x_i$.

On considère un sous-graphe (gadget) de la forme suivante à ajouter dans G:

- 5. Montrer que si v_1 et v_2 sont de la même couleur que F alors la couleur de s est imposée et préciser cette dernière.
- 6. Montrer que si v_1 ou v_2 est de la même couleur que V alors il existe un coloriage de G où s est de la même couleur que V.
- 7. Quelle formule logique le gadget ci-dessus permet-il de représenter ?
- 8. Quel gadget ajouter à G de façon pour représenter une clause $\ell_1 \vee \ell_2 \vee \ell_3$?
- 9. Montrer que 3-COLOR est NP-complet.
- 10. Montrer que k-COLOR est NP-complet pour $k \geq 4$.

III Stable et clique

STABLE

- \bullet Instance : un graphe G et un entier k
- ullet Question : G contient-il un ensemble stable de taille k, c'est-à-dire un ensemble de k sommets deux à deux non adjacents ?

CLIQUE

- \bullet Instance: un graphe G et un entier k
- Question : G contient-il une clique de taille k, c'est-à-dire un ensemble de k sommets deux à deux adjacents?
- 1. Montrer que STABLE \in NP.
- 2. Pour $\varphi = \bigwedge_{k=1}^{p} C_k$ une instance de 3-SAT, on définit $G_{\varphi} = (S, A)$ où :
 - S contient un sommet par littéral, autant de fois qu'il apparaît dans φ .
 - A contient une arête entre deux sommets s'ils sont dans la même clause ou s'ils sont la négation l'un de l'autre. Dessiner G_{φ} si $\varphi = (\overline{x} \vee y \vee \overline{z}) \wedge (x \vee \overline{y} \vee z) \wedge (x \vee y \vee z) \wedge (\overline{x} \vee \overline{y})$.
- 3. Montrer que si G_φ contient un stable de taille p alors φ est satisfiable.
- 4. Montrer que si φ est satisfiable alors G_{φ} contient un stable de taille p. Conclure.
- 5. Montrer que CLIQUE est NP-complet.