НКА

Уберем ограничение на единственность перехода по символу, тогда получим **недетер**менированный КА:

Кроме того, уберем ограничение на существование перехода, тогда если перехода нет, то слово не допускается в искомый язык. Слово допускается, если существует последовательность недетерменированных выборов, приводящая к допуску.

Пример. Автомат для слов с суффиксом 010:

Алгоритм проверки допуска НКА

$$Q = \{1, 2 \dots q\}$$
 — все вершины

term — массив булевых переменных терминальности состояний.

go[c][i] — вектор вершин, в которые можно попасть из вершины i по символу с

Построим динамику can[i][u] — можно ли за i шагов попасть в состояние u.

accept(x)

Применим для автомата слов с суффиксом 010 и слова 01010:

	1	2	3	4
0	+			
1	+	+		
1 2 3 4 5	+ + + + +		+	
3	+	+		+
4	+		+	
5	+	+		\oplus

Заметим, что 2 строка = 4 строка и 3 символ равен 5 символу, поэтому 3 строка = 5 строка.

Построим по этой динамике ДКА с булевыми векторами строк в вершинах.

Для ускорения можно перебирать не все маски, а только те, которые встретились, т.е. DFS/BFS. Без этого $\mathcal{O}(2^q \cdot poly(q,\sigma))$, с оптимизацией $\mathcal{O}(ans \cdot poly(q,\sigma))$, ans = число состояний ДКА.

Таким образом, мы по любому НКА можем построить ДКА с таким же языков, т.е. выполнятся следующее:

```
Теорема 1. \forall НКА A \exists ДКА A_D : L(A) = L(A_D)
```

Создадим в НКА ребра, по которым можно перейти, не считав символа, и будем обозначать такое ребро ε . Эта конструкция называется ε -НКА.

Докажем, что ε -НКА эквивалентен ДКА построением:

- 1. Построим граф ε -переходов и создадим его транзитивное замыкание. Добавленные замыканием ребра добавим в исходный автомат. Язык автомата от этого не изменился, т.к. переход по новому ребру эквивалентен n переходов по ε -ребрам в исходном графе. Теперь можно не делать два ε -перехода подряд.
- 2. Если из обычной вершины есть ε -переход в терминальную вершину, то сделаем эту вершину терминальной. Язык автомата от этого преобразования не изменился. Теперь последний переход происходит не по ε .

3. Преобразуем

В

Теперь можно не делать ε -переходы.

4. Удалим ε -переходы.

Теорема 2. Клини.

$$L$$
 — регулярный $\Leftrightarrow \exists$ ДКА $A: L = L(A)$

Докажем "⇒"

Докажем "⇐".

Доказательство. $Q := \{1, 2, \dots q\}$

Построим $\sim q^3$ регулярных выражений, занумеруем их как $\xi_{ijk}, i=1\dots q, j=1\dots q, k=0\dots q$.

 ξ_{ijk} задает слова, переводящие автомат из состояния i в j, используя промежуточные состояния с номерами $\leq k$

 $\sphericalangle k=0, i=j, \xi_{ii0}=arepsilon|c_1|c_2|\ldots$ — из i в i без промежуточных состояний, т.к. состояний ≤ 0 \nexists . c_i — петли в i.

$$\xi_{ij0} = c_1 |c_2| \ldots, c_i$$
 — переход $i o j$

 $\xi_{ijk+1} = \xi_{ijk} | \xi_{ik+1k} (\xi_{k+1k+1k})^* \xi_{k+1jk}$ — можем либо идти по пути с промежуточными $\leq k$, либо дойти $i \to k+1$, после чего $n \geq 0$ раз пройти $k+1 \to k+1$ с промежуточными $\leq k$, после чего дойти $k+1 \to j$ с промежуточными k (k, а не k+1, т.к. номера состояний уникальны, а в k+1 мы уже не заходим)

M3137y2019 Лекция 8

Рис. 5: Автомат $A \cup B$

Рис. 6: Автомат A^*