Proyecto Capstone Christian Mallma 2022

AGENDA

- Resumen ejecutivo
- Introducción
- Metodología
- Resultados
- Conclusión

1. Resumen ejecutivo

El presente trabajo incluye técnicas para la obtención de datos, por ejemplo web scrapping y consulta a la api rest de SpaceX.

Se realizó análisis exploratorio de los datos, que incluye la limpieza y visualización de los mismos.

Luego se realizó un análisis predictivo, y para ello se escogió el que tuvo más éxito.

Finalmente se mostraron los resultados obtenidos.

2. Introducción

Objetivo General

El objetivo principal es analizar la viabilidad de la empresa Space Y, respecto a Space X.

3. Metodología

Metodología

Para web scrapping se usó wikipedia:

https://en.wikipedia.org/wiki/List_of_Falcon/_9/_and_Falcon_Heavy_launches

Usando el api rest de Space X:

https://api.spacexdata.com/v4/rockets/)

Para el análisis exploratorio:

Se usó EDA y el lenguaje de consultas SQL.

Metodología

Para la visualización se usó:

Plotly Dash y Folium.

Disputa de datos

Se realizó un análisis exploratorio de datos (EDA) en el conjunto de datos.

Luego los resúmenes de lanzamientos por sitio, ocurrencias de cada órbita y se calcularon las ocurrencias del resultado de la misión por tipo de órbita.

Finalmente, la etiqueta de resultado de aterrizaje se creó a partir de la columna de Resultado.

Visualización de datos

Para explorar los datos, se utilizaron diagramas de dispersión y diagramas de barras.

EDA y SQL

Se realizaron las siguientes consultas SQL:

- Nombres de los sitios de lanzamiento únicos en la misión espacial;
- Los 5 principales sitios de lanzamiento cuyo nombre comienza con la cadena 'CCA';
- Masa total de carga útil transportada por propulsores lanzados por la NASA (CRS);
- Masa de carga útil promedio transportada por la versión de refuerzo F9 v1.1;
- Fecha en que se logró el primer resultado de aterrizaje exitoso en la plataforma de tierra; Nombres de los propulsores que tienen éxito en naves no tripuladas y tienen una masa de carga útil entre 4000 y 6000 kg;
- Número total de resultados de misiones exitosas y fallidas;
- Nombres de las versiones de los propulsores que han transportado la masa máxima de carga útil; Resultados de aterrizaje fallidos en naves no tripuladas, sus versiones de refuerzo y nombres de sitios de lanzamiento para en año 2015;
- Rango del conteo de resultados de aterrizaje entre la fecha 2010-06-04 y 2017-03-20.

4. Resultados

Resultados

- Space X usa 4 sitios de lanzamiento diferentes.
- Los primeros lanzamientos se hicieron al propio Space X y a la NASA.
- La carga útil promedio del propulsor F9 v1.1 es de 2928 kg.
- El primer aterrizaje exitoso ocurrió en 2015, cinco años después del primer lanzamiento.
- Muchas versiones de refuerzo del Falcon 9 lograron aterrizar en naves no tripuladas con una carga útil superior a la media.
- Casi el 100% de los resultados de la misión fueron exitosos;
- Dos versiones de refuerzo fallaron al aterrizar en barcos de drones en 2015: F9 v1.1 B1012 y F9 v1.1 B1015.
- El número de resultados de aterrizaje mejoró con el paso de los años.

Resultados

Usando análisis interactivos fue posible identificar que los sitios de lanzamiento solían estar en lugares seguros, cerca del mar, por ejemplo y tener una buena infraestructura logística alrededor. La mayoría de los lanzamientos ocurren en los sitios de lanzamiento de la costa este:

Resultados

La matriz de confusión de Decision Tree Classifier demuestra su precisión al mostrar los grandes número de verdaderos positivos y verdaderos negativos en comparación con los falsos.

Precisión de clasificación

Se probaron cuatro modelos de clasificación y sus precisiones se representan al lado. El modelo con la mayor precisión de clasificación es el clasificador de árboles de decisión, que tiene una precisión superior al 87 %.

5. Conclusiones

Conclusiones

- Se analizaron diferentes fuentes de datos, refinando las conclusiones a lo largo de la proceso.
- El mejor sitio de lanzamiento es KSC LC-39a.
- Los lanzamientos por encima de los 7000 kg son menos riesgosos; Aunque la mayoría de los resultados de la misión son exitosos, los resultados de los aterrizajes exitosos parecen mejorar con el tiempo, según la evolución de los procesos y los cohetes.
- El clasificador de árbol de decisión se puede utilizar para predecir aterrizajes exitosos y aumentar las ganancias.

GRACIAS