1 Initial Value Problems (IVP's)

Denoted by conditions that are specified at a point in space.

1.1 Linear

1.1.1 First Order

1.1.2 Second Order

y'' + p(t)y' + q(t)y = g(t) and $y(t_o) = y_o$, $y'(t_o) = y'_o$ has a unique solution in the interval where p(t), q(t), and g(t) are continuous.

Lets form the matrix $\mathbf{X} = \begin{pmatrix} y_1 & y_2 \\ y_1' & y_2' \end{pmatrix}$, where y_1 and y_2 are solutions to the ODE.

The Wronskian is defined as $W(\mathbf{X})(t) = det(\mathbf{X}(t))$

• Homogenous ODE

Def: one for which zero is a solution. Look like y'' + p(t)y' + q(t)y = 0If $W(\mathbf{X})(t_o) \neq 0$, then c_1 and c_2 are well defined for any y_o and y'_o specified at t_o , and therefore $y = c_1y_1 + c_2y_2$ is the solution to any y_o and y'_o , which makes it the general solution.

If $W(\mathbf{X})(t_o) \neq 0$ then y_1 and y_2 are independent, and are the fundamental solutions, and \mathbf{X} becomes the fundamental matrix.

- Constant Coefficient

Assume e^{rt} , gives characteristic equation.

- * Real distinct roots $r = r_1, r_2$: $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$
- * Real repeated roots $r_1 = r_2$: $y = c_1 e^{r_1 t} + c_2 t e^{r_1 t}$
- * Complex roots $r = \lambda \pm i\mu$: $y = c_1 e^{\lambda t} cos(\mu t) + c_2 e^{\lambda t} sin(\mu t)$
- Non-Constant Coefficient

• Nonhomogeneous ODE

Def: not a homogeneous ODE. Look like y'' + p(t)y' + q(t)y = g(t)The general solution is $y = c_1y_1 + c_2y_2 + y_p$

- Undetermined Coefficients (works for constant coefficients only) Assume a particular solution analogous to the forcing term up to undetermined coefficients, plug in the ODE to get the coefficient, form the general solution, and find coefficients through the initial conditions. - Variation of Parameters

$$y_p(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$$
. Compute $y^{p'}$ (assuming $u'_1(t)y_1(t) + u'_2(t)y_2(t) = 0$) and $y^{p''}$, plug them in ODE to obtain $u'_1(t)y'_1(t) + u'_2(t)y'_2(t) = g(t)$. Finally, solve for $u_1(t)$ and $u_2(t)$, which gives $\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \int_0^t \mathbf{X}(\sigma)^{-1} \begin{pmatrix} 0 \\ g(\sigma) \end{pmatrix} d\sigma$.

1.1.3 Higher Order

1.1.4 System of eqs.

$$\mathbf{x}' = \mathbf{P}(\mathbf{t})\mathbf{x} + \mathbf{g}(\mathbf{t})$$

Lets form the matrix $\mathbf{X} = [\mathbf{x}^{(1)}(t)...\mathbf{x}^{(n)}(t)].$

• Homogenous System $\mathbf{x}' = \mathbf{P}(\mathbf{t})\mathbf{x}$

As with second order equations, if $W(\mathbf{X}) \neq 0$, then $\mathbf{x} = c_1 \mathbf{x}^{(1)} + ... c_n \mathbf{x}^{(n)}$ is the general solution, $\mathbf{x}^{(1)} ... \mathbf{x}^{(n)}$ are linearly independent, they are the fundamental solutions, and \mathbf{X} becomes the fundamental matrix.

- Constant Coefficient $\mathbf{x}' = \mathbf{A}\mathbf{x}$

Assume
$$\boldsymbol{\xi}e^{rt}$$
, gives $(\mathbf{A} - r\mathbf{I})\boldsymbol{\xi} = 0$

- * real distinct eigenvalues: $\mathbf{x} = c_1 \boldsymbol{\xi}^{(1)} e^{r_1 t} + ... + c_n \boldsymbol{\xi}^{(n)} e^{r_n t}$
- * real repeated eigenvalues: $\mathbf{x} = c_1 \boldsymbol{\xi}^{rt} + c_2 \left[\boldsymbol{\xi} t e^{rt} + \boldsymbol{\eta} e^{rt} \right]$, where $\boldsymbol{\xi}$ is the eigenvector and $\boldsymbol{\eta}$ satisfies $(\mathbf{A} r\mathbf{I})\boldsymbol{\eta} = \boldsymbol{\xi}$.
- * complex conjugate eigenvalues (r_1, r_2) with corresponding complex conjugate eigenvectors $(\boldsymbol{\xi}^{(1)}, \boldsymbol{\xi}^{(2)})$: $\mathbf{x} = c_1 \text{Re}[\boldsymbol{\xi}^{(1)} e^{r_1 t}] + c_2 \text{Im}[\boldsymbol{\xi}^{(1)} e^{r_1 t}] + c_3 \boldsymbol{\xi}^{(3)} e^{r_3 t} + ... + c_n \boldsymbol{\xi}^{(n)} e^{r_n t}$
- Non-Constant Coefficient
- Nonhomogenous System

The general solution is $\mathbf{x} = c_1 \mathbf{x}^{(1)}(t) + ... + c_n \mathbf{x}^{(n)} + \mathbf{v}(t)$

- Diagonalization

If **A** can be diagonalize, perform diagonalization, form uncoupled system, solve and recombine to obtain general solution.

- Undetermined Coefficients

Assume a particular solution analogous to the forcing term up to undetermined vectors of coefficients, plug in the ODE to get these undetermined vectors. The result is the particular solution.

- Variation of Parameters $\mathbf{v}(t) = \mathbf{X}(t)\mathbf{u}(t)$. Follow same approach as in second order case, the end result is $\mathbf{u}(t) = \int_0^t \mathbf{X}(\sigma)^{-1}\mathbf{g}(\sigma)d\sigma$.

1.2 Nonlinear

2 Boundary Value Problems (BVP's)

Denoted by conditions that are specified at more than one point in space.

2.1 Linear

2.1.1 First Order

2.1.2 Second Order

• Sturm-Liouville BVP

One that satisfies the S-L homogeneous or nonhomogeneous ODE, has be's $a_1y(a) + a_2y'(a) = 0$ and $b_1y(b) + b_2y'(b) = 0$, and has p(x) > 0, r(x) > 0. These are also known as regular Sturm Liouville BVP.

The goal is to find λ 's (known as eigenvalues) that give non-zero solutions (known as eigenfunctions) to the ODE. This is analogous to finding λ 's that give non-zero solutions (known as eigenvectors) to the matrix equation $\mathbf{A}\xi = \lambda \xi$.

Common S-L solutions : Fourrier, Bessel, Chebyshev, Legendre, Hermite, Laguerre.

- Homogenous Sturm-Liouville

$$My = -\lambda^2 y$$
 where $M = \frac{1}{r(x)} \left[\frac{d}{dx} \left(p(x) \frac{d}{dx} \right) + q(x) \right]$

- * To solve, find general solution, apply boundary conditions to figure out eigenvalues that will give non zero solutions, obtain the eigenfunctions up to a multiplicative constant.
- * Infinite series of real, non-negative, distinct eigenvalues $\lambda_1 < \lambda_2 < \dots$
- * One to one correspondence between eigenvalue and LI eigenfunction.
- * All eigenfunctions of S-L problem are orthogonal $\int_a^b r(x)\phi_m(x)\phi_n(x)dx = N_m\delta_{nm}$, where $N_m = \int_a^b r(x)\phi_m^2(x)dx$

* A square integrable function f can be expanded as $f = \sum_{n=1}^{\infty} c_n \phi_n(x)$,

where
$$c_m = \frac{\int_a^b r(x)f(x)\phi_m(x)dx}{\int_a^b r(x)\phi_m^2(x)dx}$$

- Nonhomogenous Sturm-Liouville

$$My = -\mu^2 y + f(x)$$

- * Solution is of the form: $\phi = \sum_{n=1}^{\infty} b_n \phi_n(x)$
- * If $\mu \neq \lambda_n$ for all n, then $b_n = \frac{c_n}{\mu^2 \lambda_n^2}$, where $c_n = \int_a^b r(x) f(x) \phi_n(x) dx$.
- * If $\mu = \lambda_m$
 - · If $c_m \neq 0$, then no solution
 - · If $c_m = 0$, b_n is arbitrary, and there are infinite solutions
- Singular Sturm-Liouville
 - * A SL problem can be rewritten as $y'' + \frac{p'(x)}{p(x)}y' + \frac{q(x) + \lambda^2 r(x)}{p(x)}y = 0$.
 - * A singular point of an ODE is one where the coefficients blow up. For this case, p(x) = 0.
 - * A Singular SL problem is one where we allow a singularity at either or both of the boundaries (i.e. p=0), and the bc at the singular point is one that ensures the following is satisfied $\lim_{x\to aorb} p(x)(y'_n y_m y'_m y_n) \to 0$
 - * Since we now allow p=0 at boundaries, this is an extension of the regular S-L BVP.
 - * A boundary condition that ensures $\lim_{x\to aorb} p(x)(y'_ny_m-y'_my_n)\to 0$ is satisfied basically forces the general solution to exclude the singular fundamental solution, that is, the one that blows up.
- Other BVP's (i.e. do not satisfy Sturm-Liouville ODE or bc's, are higher order, etc.)

2.1.3 Higher Order

2.2 Nonlinear