

Pizza

Group members:

Jerrell U2220449D

Melvin U2220256B

Winfred U2221912F

Our goal

We are business owners who want to open a new pizza franchise in the US

- 1. Location
- 2. Pricing
- 3. Competition

Setting the stage

Exploratory Data Analysis

Scatter plot of pizza shops and cities by location

Bar plot of cities by population

Pizza shops

Longitude

Cities

Longitude

Bar plot for cities of the bloom of the bloo

- Cluster every pizza joint into an optimal number of cluster
- Allocate each city into a cluster
- Calculate the population/ pizza shop in each cluster
- Calculate the median price of a pizza in each cluster

- 1 Longitude & Latitude
 - Identify US mainland geographical longitude and latitude
 - Remove outliers (such as Hawaii & Alaska)

```
cleaned = pizza[(pizza['latitude'] < 50) & (pizza['longitude'] > -140)]
long_clean = cleaned["longitude"]
lat_clean = cleaned["latitude"]

cities = cities[(cities['Latitude'] < 50) & (cities['Longitude'] > -140)]
long_clean = cities['Longitude']
lat_clean = cities["Latitude"]
```


- 2 Price of Pizzas
 - Remove the duplicates
 - Calculating the median price / shop

```
pizza_clean = cleaned.drop_duplicates(subset=['address'])

grp = cleaned.groupby('address')
median_price = []
for add in cleaned.address.unique():
    median_price.append(grp.get_group(add)["menus.amountMax"].median())

pizza_clean['Median_Price'] = median_price
```


Process

Clustering Algorithms

K-means

Centroid-based algorithm

Density

Hierarchical

Non-spherical clusters

Madal

Density of data points and handles outliers well

Model

Probabilistic models to identify clusters

Fuzzy

Multi-cluster assignment

Spectral

Data with complex structures

K-Means

Benefits over Others

- Simple to implement
- Easily interpreted and analysed
- Centroid-based algorithm allows for overlay of secondary dataset (population)
- Can form clusters quickly and efficiently for large datasets

Cost Functions / Metrics

Description

- Sums the distance between all data points and its assigned centroid
- Look for 'elbow point'

Ideal k [4:8]

Distortion

Description

- Averages the distance between all data points and its assigned centroid
- Look for 'elbow point'

Ideal k [5:10]

(4)

Silhouette

Description

- Measure of similarity between data points
- Compares *intercluster* to *intracluster* distances
- Look for **highest points**

Ideal k [5,7,11,15]

Step #2: Optimisation

Step #2: Optimisation

David Bouldin

Description

- Measure of similarity between clusters
- Compares *intercluster* to *intracluster* distances
- Look for **lowest points**

Ideal k [5,7,11,15]

Choosing k=7

- k=7 is optimal as supported by all the other metrics
- k=5, k=11 and k=15 are good as well, but they are far from the elbow point in the inertia & distortion graph

Find the centroids of the clusters

Assign city to cluster centroids

Step #4: Cluster analysis

Median prices

After

Outcome

- Cluster 4 has the highest pop/shop
- Lowest level of competition with rivals
- It also has 2nd highest population
- \$10 serves as a good median price in this cluster

What we learned

- Using K-Means clustering
- Using different metrics to optimise the number of clusters

Thank you!

