Subjectul D. OPTICĂ

Nr. item	Soluţie/Rezolvare
III.a.	$\frac{hc}{\lambda_1} = L + eU_{s1}$ $\frac{hc}{\lambda_2} = L + eU_{s2}$
	$\frac{hc}{\lambda_2} = L + eU_{s2}$
	$e = \frac{hc\left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right)}{U_{s1} - U_{s2}}$
	Rezultat final: $e = 1.6 \cdot 10^{-19} C$
b.	$L = \frac{hc}{\lambda_1} - eU_{s1} \text{ sau } L = \frac{hc}{\lambda_2} - eU_{s2}$
	Rezultat final: $L \cong 4.9 \cdot 10^{-19} J$
C.	$L = hc/\lambda_0$
	Rezultat final: $\lambda_0 = 400 nm$
d.	$E_c = eU_{s1}$ $E_c = 9.6 \cdot 10^{-19} J$
	$E_c = 9.6 \cdot 10^{-19} J$