Working Up a High Speed Multiplier

Multiplication Algorithms

- Gradeschool Algorithm
- Modified Gradeschool Algorithm A
- Modified Gradeschool Algorithm B
- Booth's Algorithm
- High Speed Multiply Algorithm

Multiply: Gradeschool Algorithm

Start Condition

10111001 * 11010111 ------10111001 ------0000001000101011

10111001 × 11010111 ------10111001 ------0000010100001111 10111001 × 11010111 -----
00000000

-----0000010100001111

10111001 x 11010111 ------10111001 ------0000010100001111

10111001 x 11010111

10111001 -----0011111011011111

> 10111001 x 11010111

10111001 -----0011111011011111 10111001 * 11010111 ------

0011111011011111

```
\begin{array}{c}
10111001 \\
\times 11010111 \\
----- \\
10111001 \rightarrow \bullet \\
10111001 - \rightarrow \bullet \\
10111001 - - \rightarrow \bullet \\
00000000 - - \rightarrow \bullet \\
10111001 - - - \rightarrow \bullet \\
1001101101011111
```


Start with the Partial Product Array

PPA0(15:0)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
PPA1(15:0)	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0
PPA2(15:0)	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0
PPA3(15:0)	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0
PPA4(15:0)	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
PPA5(15:0)	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0
PPA6(15:0)	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0
PPA7(15:0)	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0

Carry-Save Adder:

Minimal Row Reduction Unit (RRU)

Input: 3 rows Output: 2 rows

Note: Care must be taken to make sure that the significance of the bits is handled properly

Row Reduction: any combination of $2^{N}-1$ rows \rightarrow N rows

