Name: Thomas Boyko; UCID: 30191728

1. Let $\{f_n\}$ be the sequence of functions defined by

$$f_n = \begin{cases} nx & \text{if } 0 \le x \le \frac{1}{n} \\ 1 & \text{if } \frac{1}{n} < x < 1 - \frac{1}{n} \\ n - nx & \text{if } 1 - \frac{1}{n} \le x \le 1 \end{cases}.$$

(a) Find the pointwise limit f of the sequence.

Solution: Proceed by cases. If x = 0, then the first case of the function will always be taken since $0 \le x$. So $f_n(0) = n0 = 0$. Likewise if x = 1, then f(1) = n - n1 = n - n = 0.

Now, if $x \in (0, 1)$, then we observe that $\frac{1}{n} \to 0$, and $1 - \frac{1}{n} \to 1$. Therefore the middle case of our piecewise function gives us f(x) = 1 for all x in this open interval.

(b) Does $f_n \xrightarrow{c.u} f$? Justify your answer.

Solution: This sequence is not uniformly continuous. Pick $\varepsilon = \frac{1}{3}$, and let $N \in \mathbb{N}$, and n > N. Pick $x = \frac{1}{2n}$ so that $0 \le x \le \frac{1}{n}$, and then $f_n(x) = nx = \frac{n}{2n} = \frac{1}{2}$. Then: $|f_n(x) - f(x)| = \left|\frac{1}{2} - 1\right| = \frac{1}{2} > \varepsilon$.

Therefore the sequence is not uniformly continuous.

- 2. Let $f_n(x) = \left(\cos\left(\frac{2x}{n}\right)\right)^{n^2}$
 - (a) Compute the pointwise limit f of the sequence $\{f_n\}$.
 - (b) Show that $f_n \xrightarrow[0,1]{c.u} f$.
- 3. Let $a \in \mathbb{R}_+$. Compute the limit

$$\lim_{n\to\infty}\int_a^\pi \frac{\sin(nx)}{nx}\,dx.$$

What happens if a = 0?

We begin by considering our sequence of functions within the integral, each of which is a quotient of continuous functions, and is itself continuous (for all but x=0). Call this $g_n(x)=\frac{\sin(nx)}{nx}$. Note that since $-1 \le \sin(nx) \le 1$, we can find (for nonzero x) that $-\frac{1}{nx} \le g_n(x) \le \frac{1}{nx}$. Both the sequences bounding g have a zero limit at infinity, so by the squeeze theorem on sequences of functions, we can say that for nonzero x, $g_n \to 0$. Now since we have already shown that our sequence g_n is bounded, and since each g_n is integrable, we can say:

$$\lim_{n \to \infty} \int_{a}^{\pi} \frac{\sin(nx)}{nx} dx = \int_{a}^{\pi} \lim_{n \to \infty} \frac{\sin(nx)}{nx} dx$$
$$= \int_{a}^{\pi} 0 dx$$
$$= 0 - 0$$
$$= 0.$$

4. Construct a sequence of functions defined in [0, 1], each of which is discontinuous at every point of [0, 1] and which converges uniformly to a function that is continuous at every point

1

Solution: Take the series $\{f_n\}$ defined by:

$$f_n(x) = \begin{cases} \frac{1}{n} & \text{if } x \in \mathbb{Q} \\ 0 & \text{Otherwise} \end{cases}$$

Claim: $\{f_n\}$ converges uniformly to the constant function 0, which we know to be continuous on the real line, as well as [0,1].

Let $\varepsilon > 0$, and choose (By Archimedian Principle), N such that $0 < \frac{1}{N} < \varepsilon$. Then any $n \ge N$ will have $0 < \frac{1}{n} < \frac{1}{N} < \varepsilon$. Now by cases, if $x \in \mathbb{Q}$, then we have

$$|f_n(x)-f(x)|=\left|\frac{1}{n}-0\right|=\frac{1}{n}<\frac{1}{N}<\varepsilon.$$

And for $x \notin \mathbb{Q}$,

$$|f_n(x)-f(x)| = |0-0| = 0 < \varepsilon.$$

Therefore $\{f_n\}$ is a sequence of functions which are continuous nowhere, convergent to the zero function which is continuous everywhere.

- 5. Consider the series of functions $\sum_{n>1} \frac{x}{n(n+x)}$.
 - (a) Show that the series converges uniformly in the interval [0, b] for any b > 0.

Solution:

$$\frac{x}{n(n+x)} = \frac{x}{n^2 + nx}$$

$$\leq \frac{x}{n^2}$$

$$\leq \frac{b}{n^2}.$$

Define $u_n = \frac{b}{n^2}$, then by the Weierstrass Comparison test, since $\sum_{n \ge 1} u_n$ is convergent as a p-series with p = 2, $\frac{x}{n(n+x)} \le u_n$, this series must converge.

- (b) Let $F(x) = \sum_{n \ge 1} \frac{x}{n(n+x)}$. Show that $F'(x) = \sum_{n \ge 1} \frac{1}{n(n+x)^2}$, $x \ge 0$.
- 6. Consider the series of functions $\sum_{n\geq 1} \frac{x}{1+n^2x^2}$. Show that the series doesn't converge uniformly in \mathbb{R}_+ .

Hint: You could start by showing that $\frac{x}{1+n^2x^2} \ge \int_{n}^{n+1} \frac{x}{1+t^2x^2} dt$, $\forall x \in \mathbb{R}$.