ps4

Xiaolin Cao

Question 1

```
df1 = read_excel("ps4_q1.xls") %>%
    rename(curvatures = ...1)

## New names:
## * `` -> ...1

knitr::kable(df1, caption = "Effects of Different Conditions on Curvatures")
```

Table 1: Effects of Different Conditions on Curvatures

curvatures	est_log	lwr	upr
tot_dist	-0.161	-0.234	-0.089
\max_abs_dev	-0.510	-0.731	-0.289
avg_abs_dev	-0.651	-0.906	-0.396
auc	-0.350	-0.549	-0.150

Question 2

```
## use Stata output to form a table
df2 = read.csv("ps4_q2.csv")
knitr::kable(df2, caption = "Internet Disparity Between Urban and Rural Areas In 10 Different Divisions
```

Table 2: Internet Disparity Between Urban and Rural Areas In 10 Different Divisions

division	diff	lwr	upr
1	0.0178010	-0.0248420	0.0604441
2	-0.0194982	-0.0908940	0.0518976
3	0.0004151	-0.0530456	0.0538758
4	0.0767983	-0.0245220	0.1781186
5	0.0325632	-0.0354069	0.1005334
6	0.0933476	-0.0139532	0.2006484
7	0.0510231	-0.0229654	0.1250116
8	0.0549587	-0.0619455	0.1718629
9	0.1851698	0.0719216	0.2984181
10	0.0343232	-0.0450827	0.1137291

By looking at the result table, division 9 has the largest disparity between urban and rural areas in terms of the proportions of homes with internet access. Division 9 has the largest upper bound.

Question 3

```
c
```

```
df3c = matrix(c(1.130136,
                          1.027747, 1.242726,
                                                 0.024121,
                                                            0.0053218, 0.0429203,
                                                 0.0204689, 0.0019269,
                         1.009919,
               1.109808,
                                     1.219577,
                                                                        0.0390109,
               1.158033,
                         1.128201, 1.188654,
                                                 0.0316543, 0.0256843, 0.0376244,
               0.9737323, 0.9648531, 0.9826932, NA, NA, NA,
                          1.213307, 1.463753,
                                                 0.0564991, 0.0380799, 0.0749184,
               1.33266,
                                                 0.0176006, 0.0115375, 0.0236637),
               1.093849,
                          1.060388,
                                     1.128366,
               nrow = 6, byrow=TRUE)
rownames(df3c) = c("1.weekday", "2.winter", "cage", "cage^2", "2.gender", "cpir")
colnames(df3c) = c("Odds Ratio", "lwr", "upr", "marginal effect", "lwr_marginal_effect", "upr_marginal_effect")
df3c = round(df3c, digits = 4)
df3c
##
            Odds Ratio lwr upr marginal effect lwr_marginal_effect
## 1.weekday
             1.1301 1.0277 1.2427
                                          0.0241
## 2.winter
               1.1098 1.0099 1.2196
                                            0.0205
                                                                0.0019
## cage
               1.1580 1.1282 1.1887
                                           0.0317
                                                                0.0257
               0.9737 0.9649 0.9827
## cage^2
                                                NA
               1.3327 1.2133 1.4638
                                           0.0565
                                                                0.0381
## 2.gender
## cpir
              1.0938 1.0604 1.1284
                                            0.0176
                                                                0.0115
            upr_marginal_effect
## 1.weekday
                        0.0429
## 2.winter
                        0.0390
## cage
                        0.0376
## cage^2
                            NA
## 2.gender
                        0.0749
## cpir
                        0.0237
d
df3d = matrix(c(1.239979, 1.10902, 1.386404, 0.0232385, 0.0111058, 0.0353713,
               1.077818, 0.9369008, 1.23993,
                                                 0.0080304, -0.0069865, 0.0230472,
               1.362175, 1.308046, 1.418544,
                                                0.0359009, 0.0309386, 0.0408632,
               0.9550781, 0.9420468, 0.9682896, NA, NA, NA,
               1.757915, 1.527092, 2.023627, 0.0605507, 0.0455947, 0.0755066,
               1.179018, 1.125907, 1.234633, 0.0176414, 0.0127545, 0.0225282),
               nrow = 6, byrow=TRUE)
rownames(df3d) = c("1.weekday", "2.winter", "cage", "cage^2", "2.gender", "cpir")
colnames(df3d) = c("Odds Ratio", "lwr", "upr", "marginal effect", "lwr_marginal_effect", "upr_marginal_effect")
df3d = round(df3d, digits = 4)
df3d
            Odds Ratio
                                upr marginal effect lwr_marginal_effect
                         lwr
               1.2400 1.1090 1.3864
## 1.weekday
                                            0.0232
                                                                0.0111
## 2.winter
               1.0778 0.9369 1.2399
                                                               -0.0070
                                            0.0080
               1.3622 1.3080 1.4185
                                                                0.0309
## cage
                                            0.0359
## cage^2
               0.9551 0.9420 0.9683
## 2.gender
               1.7579 1.5271 2.0236
                                            0.0606
                                                                0.0456
              1.1790 1.1259 1.2346
                                            0.0176
                                                                0.0128
           upr_marginal_effect
                        0.0354
## 1.weekday
```

##	2.winter	0.0230
##	cage	0.0409
##	cage ²	NA
##	2.gender	0.0755
##	cpir	0.0225

Summary: Those two logistic regressions are similar to each other in terms of odds ratio and marginal effects. And the corresponding confidence intervals also overlap. To answer the question: Yes, people in the US are more likely to drink water on a weekday than on a weekend day. The odds ratios for that are 1.130 and 1.240 respectively in the above models.