MONASH University Information Technology

COMMONWEALTH OF AUSTRALIA

Copyright Regulations 1969

WARNING

This material has been reproduced and communicated to you by or on behalf of Monash University pursuant to Part VB of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under the Act. Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act.

Do not remove this notice.

FIT3080 – Intelligent Systems

Solving Problems by Searching Chapters 3-6

Problem Solving: Learning Objectives

- Problem formulation
- Control strategies
 - Tentative
 - > Uninformed:
 - Backtracking [Chapter 6]
 - Tree- and Graph search [Chapter 3]
 - > Informed: Best-first (Greedy) search, A, A* [Chapter 3]
 - Irrevocable
 - > **Informed**: Hill climbing, Greedy search, Local beam search, Simulated annealing, Genetic algorithms [Chapter 4]
- Adversarial search algorithms [Chapter 5]
 - Optimal decisions
 - $-\alpha$ - β pruning
 - Imperfect, real-time decisions

Assumptions about the Environment

- Observable
- Known
- Single/multi agent
- Deterministic
- Sequential/episodic
- Static
- Discrete

Problem-solving Agents

```
Function Simple-Problem-Solving-Agent(percept)
          returns seq
persistent: seq – action sequence, initially null
           state - description of current world state
           goal - a goal, initially null
           problem – a problem formulation
state ← UpdateState(state,percept)
goal ← FormulateGoal(state)
problem ← FormulateProblem(state,goal)
seq ← Search(problem)
return seq
```


Example: Romania

- On holiday in Romania; currently in Arad.
 Flight leaves tomorrow from Bucharest.
- Formulate goal:
 - be in Bucharest
- Formulate problem:
 - states: various cities
 - actions: drive between cities
- Find solution:
 - sequence of cities, e.g., Arad, Sibiu, Fagaras,
 Bucharest

Example: Romania

FIT3080 – Intelligent Systems

Problem Formulation

Problem Formulation

- Basic constituents
 - States, Goals, Actions, Constraints
- State space the set of all states reachable from the initial state by any sequence of actions
- Path in the state space any sequence of actions leading from one state to another
- Representing a problem
 - Initial state
 - Operators (Actions) and transition model
 - Constraints
 - Goal test
 - Path cost function
- A solution is a sequence of actions leading from the initial state to a goal state

Problem Formulation: Example

- 1. initial state, e.g., "at Arad"
- 2. actions
 - e.g., {Go(Sibiu),Go(Timisoara), ... }

transition model

- e.g., Result(In(Arad), Go(Zerind)) →In(Zerind)
- 3. constraints nil
- 4. goal test can be
 - explicit, e.g., In(Bucharest)
 - implicit, e.g., Checkmate(x)
- 5. path cost (additive)
 - e.g., sum of distances, number of actions executed
 - c(s,a,s') is the step cost of taking action a at state s to reach state s', assumed to be ≥ 0

Problem Formulation – 8 Puzzle (I)

Start 5 6 1 8 7 3 2

Problem Formulation – 8 Puzzle (II)

States

Operators

- Constraints
- Goal test

Path cost

Problem Formulation – Vacuum World

- States
- Operators

- Constraints
- Goal test
- Path cost

Problem Formulation: Missionaries and Cannibals (I)

- 3 missionaries & 3 cannibals on one side of river
- 1 boat which carries 2 people
- Cannibals should never outnumber missionaries

You can play in:

http://www.novelgames.com/flashgames/game.
php?id=54

Problem Formulation: Missionaries and Cannibals (II)

States

- 2-digit code (m,c) represents the number of m and c on start bank; 1 digit code represents boat position
- Initial state (3,3) + boat position
- Operators (5)
- Constraints
- Goal test
- Path cost
 - Cost function: Minimize number of crossings

Problem Formulation: Robotic assembly

- states?: real-valued coordinates of robot joint angles; parts of the object to be assembled
- <u>actions?</u>: continuous motions of robot joints
- constraints?: arm cannot fully rotate up and down
- goal test?: complete assembly
- path cost?: time to execute

Selecting a State Space

- Real world is complex
 - > state space must be abstracted for problem solving
- (Abstract) state = set of real states
- (Abstract) action = complex combination of real actions
 - e.g., "Arad → Zerind" represents a complex set of possible routes, detours, rest stops, etc
- For guaranteed realizability, any real state ("in Arad")
 must get to some real state ("in Zerind")
- (Abstract) solution = a solution that can be expanded into a set of real paths in the real world
- Each abstract action should be "easier" to perform than solving the original problem

FIT3080 – Intelligent Systems

Control Strategies

Classification of Control Strategies

Tentativeness

- Irrevocable no reconsideration
- Tentative with reconsideration

Informedness

- Uninformed (blind) arbitrary decision
- Informed considered decision

		Irrevocable	Tentative
	Uninformed		Backrack, Tree- and Graph-Search (BFS, DFS, DLS, IDS, UCS)
	Informed	Hill climbing, Greedy search, Local beam search, Simulated annealing, Genetic algorithms	Best first (Greedy), A, A*

FIT3080 – Intelligent Systems

Tentative Search Algorithms: Backtrack, Tree- and Graph-search

Tentative Control Strategies

- Backtracking at any point in time, we keep one path only
 - If we fail, we go back to the last decision point and erase the failed path
 - Backtracking occurs when
 - > we generate a previously encountered state description OR
 - > an arbitrary number of rules has been applied without reaching the goal OR
 - > there are no more applicable rules
- Graphsearch we keep track of several paths simultaneously
 - Done using a structure called a search tree/graph

Basic Backtrack Algorithm

Procedure Backtrack (State)

- 1. If Goal(State) Then return SUCCEED
- 2. If Deadend(State) Then return FAIL
- 3. Operators ← ApplicableOps(State)
- 4. Loop
 - 1. If null(Operators) Then return FAIL
 - 2. Op ← Pop(Operators)
 - 3. State' \leftarrow Op(State)
 - 4. Path ← Backtrack(State')
 - 5. If Path=FAIL Then go Loop
 - 6. Return {Op, Path}

End

Backtrack Algorithm (II)

Procedure Backtrack1(StateList)

- 1. State ← First(StateList)
- 2. If State ε RestOf(StateList) Then return FAIL
- 3. If Goal(State) Then return SUCCEED
- 4. If Deadend(State) Then return FAIL
- 5. If Length(StateList) > Bound Then return FAIL
- 6. Operators ← ApplicableOps(State)
- 7. Loop
 - 1. If null(Ops) Then return FAIL
 - 2. Op \leftarrow Pop(Ops)
 - 3. State' \leftarrow Op(State)
 - 4. StateList' ← {State', StateList}
 - 5. Path ← Backtrack1(StateList')
 - 6. If Path=FAIL Then go Loop
 - 7. Return {Op, Path}

End

Backtrack Example

Backtracking Example – 4 Queens Problem

Start state:

empty chess board

Goal state:

 4 queens placed on chess board

Constraints:

queens don't attack each other

Operators:

place queen on tile (x,y)

Path cost: NA

Graphsearch – Definitions

- Graphsearch is a means of finding a path in a graph from a node representing the initial state to a node that satisfies the goal condition
- Definitions
 - Graph set of nodes
 - Arcs connect between certain pairs of nodes
 - Directed graph formed by arcs directed from one node to another
 - $-n_i$ is a **child of** n_k if $n_k \longrightarrow n_i$
 - $-n_i$ is **accessible from** n_k if there is a path from n_k to n_i
 - Expanding a node finding all its children
 - Search Problem find a path between node s and any member of the goal set {t_i} that represents states satisfying the goal condition

Search Tree

- Tree each node has at most one parent
- Root of search tree is the initial state
- Leaves are states without successors (the "fringe" or "frontier")
- At each step, choose one leaf node to expand

Basic Tree Search Algorithm

function Tree-Search(*problem*) **returns** a solution or failure

- Initialize the frontier using the initial state of problem
- Loop
 - 1. if the frontier is empty then return failure
 - 2. choose a leaf node and remove it from the frontier
 - 3. if the node contains a goal state then return the corresponding solution
 - 4. expand the chosen node, adding the resulting nodes to the frontier

end

Example: Tree Search (I)

Example: Tree Search (II)

Example: Tree Search (III)

Implementation: States vs. Nodes

- state a (representation of a) physical configuration
- node a data structure that is part of a search tree
 - includes state, parent node, action, path cost g(x), depth

- The Expand function
 - creates new nodes, fills in the various fields
 - uses SuccessorFn(Operators) to create the corresponding states

Graph Search Algorithm

function GRAPH-SEARCH(*problem*) **returns** a solution or failure

- Initialize the frontier using the initial state of problem
- Initialize the explored set (closed) to empty
- Loop
 - 1. if the frontier is empty then return failure
 - 2. choose a leaf node and remove it from the frontier
 - 3. if the node contains a goal state then return the corresponding solution
 - 4. add the node to the *explored set*
 - expand the chosen node, merging the resulting nodes with the frontier or the explored set

end

Basic Search Algorithm: Key Issues

Search tree may be unbounded

- Because of loops
- Because the state space is infinite
- Repeated states
 - Failure to detect repeated states can increase the complexity of a problem
- Return a path or a node?
- How is the merge done?
 - Is the graph weighted or unweighted?
 - How much is known about the "quality" of intermediate states?
 - Is the aim to find a minimal cost path or any path asap?

Implementation of the Graphsearch Algorithm

- 1. Create a search graph G consisting only of the start node s
- 2. OPEN $\leftarrow s$
- 3. CLOSED ← empty
- 4. Loop
 - 1. If OPEN is empty Then exit with failure
 - 2. n ← first node in OPENRemove n from OPEN, put it in CLOSED
 - **3.** If n = goal-node Then exit successfully with the solution obtained by tracing a path along the pointers from n to s in G
 - **4. Expand node** *n*, generating a set *M* of its children <u>that are not ancestors of n</u>. Put these members of *M* as children of *n* in *G*.
 - 5. Establish a pointer to *n* from those members of *M* that were not already in *G*. Add these members of *M* to OPEN. For each member of *M* already in *G*, decide whether or not to redirect its pointer to *n*.
 - 6. Reorder OPEN (according to an arbitrary scheme or merit)

End

FIT3080 – Intelligent Systems

Tree and Graph Search Strategies

Search Strategies

- A search strategy is defined by picking the order of node expansion
- Strategies are evaluated along several dimensions:
 - completeness: does it always find a solution if one exists?
 - time complexity: number of nodes generated
 - space complexity: maximum number of nodes in memory
 - optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of
 - b: maximum branching factor of the search tree
 - d: depth of the least-cost solution
 - m: maximum depth of any path in the state space (may be ∞)

FIT3080 – Intelligent Systems

Uninformed Search Strategies

Uninformed Search Strategies

Uninformed search strategies use only the information available in the problem definition

- Breadth-first search (BFS)
- Uniform-cost search (UCS)
- Depth-first search (DFS)
- Depth-limited search (DLS)
- Iterative deepening search (IDS)

Breadth-first Search (I)

- Expand shallowest unexpanded node
- Implementation: managing the frontier
 - QUEUEING-FN: FIFO put successors at end of queue

Breadth-first Search (II)

- Expand shallowest unexpanded node
- Implementation: managing the frontier
 - QUEUEING-FN: FIFO put successors at end of queue

Breadth-first Search (III)

- Expand shallowest unexpanded node
- Implementation: managing the frontier
 - QUEUEING-FN: FIFO put successors at end of queue

Breadth-first Search (IV)

- Expand shallowest unexpanded node
- Implementation: managing the frontier
 - QUEUEING-FN: FIFO put successors at end of queue

Properties of Breadth-First Search

Complete? Yes (if b is finite)

• Time?
$$b + b^2 + b^3 + ... + b^d = b \frac{b^{d-1}}{b-1} \rightarrow O(b^d)$$

- Space? $O(b^d)$ (keeps every node in memory)
- Optimal? Yes (if all actions have the same cost)

Space is the bigger problem

Uniform-cost Search

- Expand least-cost unexpanded node
- Implementation: managing the frontier
 - QUEUEING-FN: insert in order of increasing path cost
- Equivalent to BFS if step costs all equal
- Complete? Yes, if step cost ≥ ε
- Time? $O(b^{1+floor(C*/\varepsilon)})$
 - where C* is the cost of the optimal solution
- Space? $O(b^{1+floor(C^*/\varepsilon)})$
- Optimal? Yes nodes expanded in increasing order of g(n) = cost of path to node n

Uniform-cost Search: Example

Depth-first Search (I)

- Expand deepest unexpanded node
- Implementation: managing the frontier
 - QUEUEING-FN: LIFO insert successors in front of queue

Depth-first Search (II)

- Expand deepest unexpanded node
- Implementation: managing the frontier
 - QUEUEING-FN: FIFO insert successors in front of queue

Depth-first Search (III)

- Expand deepest unexpanded node
- Implementation: managing the frontier
 - QUEUEING-FN: FIFO insert successors in front of queue

Properties of Depth-first Search

- Complete?
 - Infinite-state spaces: No
 - Finite-state spaces: Yes, if we check for ancestors
- Time? $O(b^m)$, terrible if m is much larger than d
- Space? O(bm), i.e., linear space
- Optimal? No

Depth-limited Search

- Depth-first search with depth limit L
 - i.e., nodes at depth *L* have no successors
- Complete? No if d > L

• Time?
$$b + b^2 + b^3 + ... + b^L = b \frac{b^L - 1}{b - 1} \rightarrow O(b^L)$$

- **Space?** *O(bL)*
- Optimal? No

Iterative Deepening Search

function Iterative-Deepening-Search(*problem*) **returns** a solution or failure

- Initialize the frontier using the initial state of problem
- For depth ← 0 to ∞
 - result ← DEPTH-LIMITED-SEARCH(problem,depth)
 - if result ≠ cut-off then return result
- end

indicates failure

Iterative Deepening Search – Generated Nodes

 Number of nodes generated in a depth-limited search to depth d with branching factor b:

$$N_{DLS} = b + b^2 + b^3 + ... + b^d = b \frac{b^{d-1}}{b-1} \rightarrow O(b^d)$$

 Number of nodes generated in an iterative deepening search to depth d with branching factor b:

$$N_{IDS} = db + (d-1)b^2 + \dots + 3b^{d-2} + 2b^{d-1} + b^d \rightarrow O(b^d)$$

• Example: For b = 10, d = 5,

$$-N_{DLS} = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111$$

$$-N_{IDS} = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456$$

- Overhead =
$$\frac{123,456 - 111,111}{111,111} = 11\%$$

Properties of Iterative Deepening Search

- Complete? Yes
- Time?

$$db + (d-1)b^2 + \dots + 3b^{d-2} + 2b^{d-1} + b^d \rightarrow O(b^d)$$

- **Space?** *O*(*bd*)
- Optimal? Yes, if step costs are identical

FIT3080 – Intelligent Systems

Informed Search Strategies: Best-first Search

Heuristic (Informed) Graphsearch Procedures

- Use <u>Heuristic Information</u> (domain dependent information) to help reduce the search
 - Evaluation function a real valued function used to compute the "promise" of a node

Heuristic Graphsearch: Definitions (I)

- $k(n_i,n_j)$ actual cost of minimal cost path between n_i and n_j
- $h^*(n) = min\{k(n,t_i)\}$ minimum of all the $k(n,t_i)$ over the entire set of nodes $\{t_i\}$
- $g^*(n) = k(s,n)$ minimum cost from the start node s to n
- f*(n)=g*(n)+h*(n)
 cost of an optimal path constrained to go through n
- $f^*(s)=h^*(s)$ cost of an unconstrained optimal path from s to goal

Heuristic Graphsearch: Definitions (II)

- f(n) estimate of the minimal cost path constrained to go through node n
- g(n) estimate of $g^*(n)$ ($g(n) \ge 0$)

 Usual choice: Cost of the path in the search tree from s to $n \rightarrow g(n) \ge g^*(n)$
- h(n) heuristic function Estimate of $h^*(n)$ ($h(n) \ge 0$)

Greedy Best-first Search

- Expands the node that is closest to the goal
 - f(n) = h(n)
 - Example: $h_{SLD}(n)$ = Straight-Line Distance to the goal

Properties of Greedy Best-first Search

- Complete?
 - Infinite-state spaces: No
 - Finite-state spaces: Yes, if we check for ancestors
- Time? $O(b^m)$
- **Space?** $O(b^m)$
- Optimal? No

Algorithm A

- Graphsearch using the evaluation function f(n) = g(n) + h(n)
- Expands next the node in the frontier with the smallest value of f(n)

Algorithm A*

Admissibility of h:

If
$$\forall n \ h(n) \leq h^*(n)$$

Then A* is guaranteed to find the optimal solution (if it exists)

Monotonicity (Consistency) of h:

If
$$\forall n \ h(n) \leq c(n,m) + h(m)$$

where m is a child of n

Then A* has found the optimal path to any node it selects for expansion

- Optimality of A*
 - General graphsearch (Nilsson and classnotes) is optimal and terminates (if there is a solution) if h(n) is admissible
 - Restricted graphsearch (Russell & Norvig) is optimal and terminates if h(n) is consistent

Algorithm A* Example – Shortest Path (I)

ROAD DISTANCES						
	A	В	C	D	ш	F
A		10	7			
В			11	9		
С				11	15	
D					5	16
Е						11

AIR DISTANCES							
	Α	В	С	D	Е	F	
Α		4	3	8	12	20	
В			6	5	9	18	
С				7	10	19	
D					5	15	
Е						10	

Algorithm A* Example – Shortest Path (II)

Properties of A and A*

	A	A *
Complete?	Yes	Yes
Time?	?	$O(b^{\Delta})$, where $\Delta \alpha$ max h-h*
Space?	$O(b^d)$	$O(b^d)$
Optimal?	No	Yes

Admissible heuristics: 8 Puzzle

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total *Manhattan distance* (# of squares from desired location of each tile)

• $h_2(S) = ?$

Measuring Performance

Performance is often measured by <u>effective</u> branching factor (EBF) b*

 if N nodes are generated, this is the branching factor that a uniform tree of depth d would have to have to contain N+1 nodes, i.e.,

$$N + 1 = 1 + b^* + (b^*)^2 + ... + (b^*)^d$$

- Example: N=52, d=5 → $b^* \approx 1.9$
- **→**Experimental measurements of *b** on a small set of problems can provide an idea of a heuristic's usefulness
 - − A good heuristic yields $b^* \approx 1$

Dominance

- Given two admissible heuristics h₁ and h₂, if h₂(n) ≥ h₁(n) for all n then h₂ dominates h₁
 → h₂ is better for search
- If we have several admissible heuristics h_1 , h_2 , ..., h_n , none of which dominates, we can take the maximum:

$$h(i) = max\{h_1(i), h_2(i), ..., h_n(i)\}$$

Relaxed problems

- A problem with fewer restrictions on the actions is called a <u>relaxed problem</u>
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- Examples:
 - If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution
 - If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Summary: Tree- and Graph-Search

- When an agent is not clear which immediate action is best, it can consider possible sequences of actions: search
- Before solutions can be found, the agent must formulate a goal and a problem, which consist of:
 - the initial state; a set of operators; a set of constraints; a goal test function; a path cost function
- A single general search algorithm can be used to solve any search problem
- Different search strategies yield different algorithms, which are judged on the basis of:
 - completeness; optimality; time complexity; space complexity

FIT3080 – Intelligent Systems

Irrevocable Search Algorithms

Local Search Algorithms

- In many optimization problems, the goal state is the solution
- State space = set of "complete" configurations
- Find configuration satisfying constraints, e.g., n-queens problem
- In such cases, we can use local search algorithms
 - keep a single "current" state, try to improve it

Example: *n*-Queens Problem

• Put n queens on an $n \times n$ board with no two queens on the same row, column or diagonal

Hill Climbing Algorithm

Procedure Hill Climbing(current-state)

- 1. If current-state = goal-state Then return it
- 2. Else until a solution is found or no more operators can be applied do
 - a. Select an operator that has not been applied yet to current-state and apply it to generate new-state
 - b. Evaluate new-state:
 - i. If new-state = goal-state Then return it and quit
 - ii. Elseif new-state is better than current-state Then current-state ← new-state

Steepest ascent hill-climbing: select the best operator

Hill Climbing – Example 8 Puzzle (I)

• f = - { number of tiles out of place }

Hill Climbing – Example 8 Puzzle (II)

• f = - { number of tiles out of place }

1	2	5
	8	4
7	6	3

Goal

1	2	3
	8	4
7	6	5

$$f=0$$

Stuck in local maximum

Hill-climbing Search

 Problem: depending on initial state, can get stuck in local maxima

Local Greedy Search

 Version of Hill Climbing used for path-finding problems → best action is selected

Procedure GreedySearch(current-state)

- 1. If current-state = goal-state Then return it
- 2. Else until a solution is found or no more operators can be applied do
 - a. Select the best operator that has not been applied yet to current-state and apply it to generate new-state
 - (Best operator does not return to an ancestor state)
 - b. Evaluate new-state:
 - **If** new-state = goal-state **Then** return it and quit

Local Greedy Search: Example

Local Beam Search

- Keep track of k states rather than just one
- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated
 - If any one is a goal state, stop
 - Else select the k best successors from the complete list and repeat

Simulated Annealing

- Based on the physical process of annealing
- Idea: escape local maxima/minima by allowing some "bad" moves but gradually decrease their frequency
- Temperature (T) the temperature at which the annealing takes place
- Annealing schedule the rate at which the temperature is lowered

Simulated Annealing Algorithm

Procedure Simulated Annealing(current-state)

- 1. If current-state = goal-state Then return it and quit
- 2. BestSoFar←current-state
- 3. Initialize T according to the annealing schedule
- 4. Until no more operators can be applied do
 - a. Select an operator that has not been applied yet to current-state and apply it to generate new-state
 - b. Evaluate the new state. Compute:
 - ΔE = Value(current-state) Value(new-state)
 - i. If new-state = goal-state Then return it and quit
 - ii. Elseif new-state is better than current-state Then current-state ← new-state
 - If new-state is better than BestSoFar Then BestSoFar←new-state
 - iii. Else with probability Pr=e^{-ΔE/T} current-state ← new-state
 - c. Revise T according to the annealing schedule
 - d. If T=0 Then return BestSoFar

Properties of Simulated Annealing Search

- One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1
- It is widely used in VLSI layout and airline scheduling

Genetic Algorithms

- A successor state is generated by combining two parent states
- Start with a population of k randomly generated states
- A state (chromosome) is represented as a string over a finite alphabet of genes (often a string of 0s and 1s)
- Evaluation function (fitness function):
 - Higher values for better states
- Produce the next generation of states by selection, crossover and mutation

GAs: Example 8-Queens Problem (I)

- Representation: row # of the queen in each of 8 columns
- Fitness function: number of non-attacking pairs of queens (min = 0, max = $8 \times 7/2 = 28$)
 - Probability of selection: $\frac{24}{24+23+20+11}$ =31%, $\frac{23}{24+23+20+11}$ =29%

GA Crossover: Example 8-Queens Problem

Search Algorithms – A Perspective

Graphsearch

Greedy BestFS, BFS, UCS, **A**, **A***

DFS, DLS, IDS

All algorithms Hillclimbing, Greedy

Simulated annealing

Genetic algorithms

Backtrack

Informedness in Graphsearch depends on g and h

- f(n) = g(n) + h(n) $(g(n) \ge g^*(n), h(n) \ge 0)$ - A* $(h(n) \leq h^*(n))$
- Uninformed Graphsearch
 - BFS ϵ A* when g(n)=depth and h(n)=0
 - UCS ε A* with g(n)≥0 and h(n)=0
- Informed Graphsearch
 - Greedy BestFS with cycle checking ϵ A with g(n)=0 and h(n)≥0

FIT3080 – Intelligent Systems

Adversarial Search Algorithms

Searching Game Trees

Two person, perfect information games

Conventions:

- Players are MAX and MIN
 - > A position favourable to MAX has a value > 0 (winning often ∞)
 - > A position favourable to MIN has a value < 0 (winning often -∞)
- Goal: find a winning strategy for MAX
 - > For all nodes representing a game situation where it is MIN's move next, show that MAX can win from **every** position to which MIN might move
 - > For all nodes representing a game situation where it is MAX's move next, show that MAX can win from **just one** position to which MAX might move

Game Tree (2-player, Deterministic, Turns)

Games versus Search Problems

- Unpredictable opponent

 must specify a move for every possible opponent reply
- Time limits: not all games can be searched to the end → find a good first move

Minimax Ideas

- If MAX were to choose among tip nodes, s/he would take the node with the largest value
- If MIN were to choose among tip nodes, s/he would take the node with the smallest value
- Choose move to position with highest <u>minimax value</u>: best achievable payoff against best play
- E.g., 2-ply game:

Minimax Algorithm

```
function Minimax-Decision(state) returns an action
   v \leftarrow \text{Max-Value}(state)
   return the action in Successors(state) with value v
function Max-Value(state) returns a utility value
   if Terminal-Test(state) then return Utility(state)
   v \leftarrow -\infty
   for a, s in Successors(state) do
      v \leftarrow \text{Max}(v, \text{Min-Value}(s))
   return v
function Min-Value(state) returns a utility value
   if Terminal-Test(state) then return Utility(state)
   v \leftarrow \infty
   for a, s in Successors(state) do
      v \leftarrow \text{Min}(v, \text{Max-Value}(s))
   return v
```

Properties of Minimax

- Complete? Yes (if tree is finite)
- Optimal? Yes (against an optimal opponent)
- Time complexity? O(b^m)
- Space complexity? O(bm) (depth-first exploration)
- For chess, b ≈ 35, m ≈100 for "reasonable" games
 → exact solution completely infeasible

Resource Limits

- Suppose we have 100 secs per move, and we explore 10⁴ nodes/sec
 - → 10⁶ nodes per move
- Standard approach:
 - Cutoff test depth limit (perhaps add quiescence search)
 - Evaluation function estimates the desirability of a position
 - > E.g., for chess typically a linear weighted sum of features $Eval(s) = w_1 f_1(s) + w_2 f_2(s) + ... + w_n f_n(s)$, where $w_1 = 9$ and $f_1(s) = (\# \text{ of white queens}) (\# \text{ of black queens})$
 - Forward pruning
 - > beam search that looks only at n-best moves

Minimax Example: Tic-Tac-Toe

Evaluation function:

{ # rows, columns, diagonals available to MAX – # of rows, columns, diagonals available to MIN }

α-β Procedure

- α-value lower bound for a MAX backed-up value
- β-value upper bound for a MIN backed-up value
- Rules for discontinuing the search:
 - α cut-off: search can be discontinued below any MIN node having a β-value ≤ α-value of any of its MAX node ancestors
 - > The final backed-up value of this MIN node can be set to its β-value
 - β cut-off: search can be discontinued below any MAX node having an α-value ≥ β-value of any of its MIN node ancestors
 - > The final backed-up value of this MAX node can be set to its α-value

Calculating α and β Values

- α-value of a MAX node current largest final backed-up value of its successors
- β-value of a MIN node current smallest final backed-up value of its successors

Termination Condition

- All the successors of the start node are given final backed-up values
- The best first move is that which creates the successor with the highest backed-up value

The α - β Algorithm (I)

```
function Alpha-Beta-Search(state) returns an action
   inputs: state, current state in game
   v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty)
   return the action in Successors(state) with value v
function Max-Value(state, \alpha, \beta) returns a utility value
   inputs: state, current state in game
             \alpha, the value of the best alternative for MAX along the path to state
             \beta, the value of the best alternative for MIN along the path to state
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow -\infty
   for a, s in Successors(state) do
       v \leftarrow \text{Max}(v, \text{Min-Value}(s, \alpha, \beta))
                                        B cut-off
      if v \geq \beta then return v
      \alpha \leftarrow \text{Max}(\alpha, v)
   return v
```

The α - β Algorithm (II)

```
function Min-Value(state, \alpha, \beta) returns a utility value inputs: state, current state in game \alpha, the value of the best alternative for MAX along the path to state \beta, the value of the best alternative for MIN along the path to state if Terminal-Test(state) then return Utility(state) v \leftarrow +\infty for a, s in Successors(state) do v \leftarrow \text{Min}(v, \text{Max-Value}(s, \alpha, \beta)) if v \leq \alpha then return v \alpha cut-Off \beta \leftarrow \text{Min}(\beta, v) return v
```


α - β Pruning – Example

α-β Pruning – Large Example

Move Ordering

- The effectiveness of the $\alpha\beta$ algorithm depends on the order in which states are examined
- With perfect ordering, time complexity = $O(b^{m/2})$
 - depth of search can be doubled
- Adding dynamic ordering schemes brings us close to the theoretical limit

Deterministic Games in Practice

- Checkers: Chinook defeated the world champion in an abbreviated game in 1990. It uses αβ search combined with a pre-computed database defining perfect play for 39 trillion endgame positions.
- Chess: Deep Blue defeated human world champion Garry
 Kasparov in a six-game match in 1997. Deep Blue searches 30
 billion positions per move (200 million per second), normally
 searching to depth 14, and extending the search up to depth 40 for
 promising options. Heuristics reduce the EBF to about 3.
- Othello: In 1997, a computer defeated the world champion 6-0.
 Humans are no match for computers.
- Go: b > 361, which is too large for $\alpha\beta$, so the top programs make random moves in the first few iterations, and over time guide a sampling process to prefer moves that were successful in previous games. Game level is amateur.

Summary: Adversarial Search

Games illustrate important points about Al

- Perfection is unattainable → must approximate
- It is a good idea to think about what to think about

Reading

- Russell, S. and Norvig, P. (2010), Artificial Intelligence – A Modern Approach (3nd ed), Prentice Hall
 - Chapter 3 (excluding 3.5.3, 3.5.4, 3.6.3, 3.6.4)
 - Chapter 4, Section 4.1
 - Chapter 6, Sections 6.1, 6.3 (only backtrack algorithm)
 - Chapter 5, Sections 5.1-5.4

