Übungsblatt 12

zur Vorlesung Mannigfaltigkeiten

Sommersemester 2016

- **Aufgabe 1.** a) Sei $M=\{(x,y,z,w)\in\mathbb{R}^4\mid x^2+y^2=1=z^2+w^2\}=S_L^1\times S_R^1$ mit Orientierung gegeben durch $\omega_L\wedge\omega_R$, wobei ω_L,ω_R die Standard-Volumenformen auf S_L^1,S_R^1 bezeichnet. Sei $\omega=xyzdx\wedge dz$. Berechnen Sie $\int_M\omega$.
- b) Sei $\omega = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy \in \Omega^2(\mathbb{R}^3)$. Berechnen Sie $\int_{S^2} \omega$ auf zwei verschiedene Arten: Einmal über eine geeignete Parametrisierung und einmal mit dem Satz von Stokes.
- **Aufgabe 2.** a) Sei $F: S^3 \to \mathbb{RP}^3$ die Abbildung $p \mapsto [p]$ und nehmen Sie an, dass S^3 und \mathbb{RP}^3 so orientiert sind, dass F orientierungserhaltend ist. Sei $\nu \in \Omega^3(\mathbb{RP}^3)$. Zeigen Sie:

$$\int_{\mathbb{RP}^3} \nu = \frac{1}{2} \int_{S^3} F^* \nu.$$

- b) Sei $\omega \in \Omega^n(S^n)$ eine Form mit $\sigma^*\omega = \omega$. Zeigen Sie, dass ein $\nu \in \Omega^n(\mathbb{RP}^n)$ existiert mit $F^*\nu = \omega$.
- **Aufgabe 3.** a) Sei (M^{2n}, ω) eine kompakte symplektische Mannigfaltigkeit. Zeigen Sie, dass $H^{2k}(M) \neq 0$ für alle $0 \leq k \leq n$.
- b) Zeigen Sie, dass auf S^n genau dann eine symplektische Form existiert, wenn n=2 ist. (Hinweis: Zeigen Sie, dass $H^2(S^n)=0$ gilt für alle $n\geq 3$.)

Aufgabe 4. Sei (M, ν) eine glatte orientierte Mannigfaltigkeit mit Rand und sei $X \in \Gamma(TM)$ ein Vektorfeld. Die Divergenz von X bezüglich ν ist die glatte Funktion $\operatorname{div}(X) \in C^{\infty}(M)$ definiert durch

$$\mathcal{L}_X \nu = \operatorname{div}(X) \nu.$$

- a) Sei $M = \mathbb{R}^n$ und $\nu = dx^1 \wedge \cdots \wedge dx^n$. Zeigen Sie, dass $\operatorname{div}(X) = \sum_{i=1}^n \frac{\partial X^i}{\partial x^i}$. Die Definition reproduziert also die übliche Formel auf \mathbb{R}^n .
- b) Beweisen Sie den Satz von Gauß: Sei (M, ν) eine kompakte orientierte Mannigfaltigkeit mit Rand und sei $X \in \Gamma(TM)$. Dann gilt

$$\int_{M} \operatorname{div}(X)\nu = \int_{\partial M} i_{X}\nu.$$

c) Sei $M = \overline{B_1(0)} \subset \mathbb{R}^n$ mit Standardorientierung und Rand $\partial M = S^{n-1} \subset \mathbb{R}^n$. Sei weiter $N = \sum_{i=1}^n x^i \frac{\partial}{\partial x^i}$. Zeigen Sie, dass in diesem Fall die Formel aus Teil b) zu

$$\int_{B_1(0)} \operatorname{div}(X) = \int_{S^{n-1}} (X \cdot N) \omega_{S^{n-1}},$$

wird, wobei $X \cdot N = \sum_{i} X^{i} x^{i}$.

d) Können Sie die obigen Formeln auf beliebige Hyperflächen $M = F^{-1}(0) \subset \mathbb{R}^n$ mit $F : \mathbb{R}^n \to \mathbb{R}$ verallgemeinern?

Abgabe Donnerstag, 07.07.2016 in der Vorlesung.