

J.R. Esteban

ÁLGEBRA LINEAL Y GEOMETRÍA

Doble Grado en CC. Matemáticas e Ingeniería Informática 2019-2020

Ejercicios 49 a 52

49. Sea E un espacio vectorial sobre \mathbb{R} , bidimensional y con producto escalar $\langle \cdot, \cdot \rangle$ y sea Δ una función determinante en E que define una orientación en E.

A. Dados $\mathbf{u}, \mathbf{v} \in E$ y distintos de $\mathbf{0}$, demostrar que existe un $\theta \in \mathbb{R}$ que es único 2π -mod y tal que

$$\cos \theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|}, \qquad \sin \theta = \frac{\Delta(\mathbf{u}, \mathbf{v})}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

Este θ se suele llamar ángulo orientado desde \mathbf{u} a \mathbf{v} .

Averiguar cómo cambia el ángulo orientado cuando cambia la orientación en E, cuando se intercambian los dos vectores y cuando uno de ellos cambia por su opuesto.

B. Sea $T: E \longrightarrow E$ una aplicación ortogonal con $\det T = 1$.

1. Elegido un $\mathbf{u} \in E$ sea

 θ = ángulo orientado desde **u** a $T(\mathbf{u})$.

Demostrar que

$$\cos \theta = \frac{1}{2} \operatorname{Traza} T$$
, $\sin \theta = \frac{1}{2} \operatorname{Traza} J \circ T$

siendo J como en el ejercicio 48. En particular, resulta que θ es independiente del vector u elegido. Este ángulo se suele llamar ángulo de rotación de T.

2. Demostrar que para todo $\mathbf{u} \in E$ se verifica

$$T(\mathbf{u}) = \mathbf{u} \cos \theta + J(\mathbf{u}) \sin \theta$$

$$T(\mathbf{u}) = \mathbf{u} \, \cos \theta + J(\mathbf{u}) \, \sin \theta$$
y también $\theta(I) = 0$, $\theta(-I) = \pi$ y $\theta(J) = -\pi/2$.

C. Siendo $S: E \longrightarrow E$ otra aplicación ortogonal con det S=1, demostrar que T y S conmutan y

$$\theta(S \circ T) = \theta(T) + \theta(S)$$
 2π -mod.

50. Sea E un espacio vectorial 3-dimensional con producto escalar $\langle \cdot, \cdot \rangle$ y una función determinante Δ que define una orientación en E.

A. Dado $\mathbf{u} \in E$, considérese la aplicación lineal $T_{\mathbf{u}} \,:\, E \longrightarrow E$ dada por

$$T_{\mathbf{u}}(\boldsymbol{\xi}) = \mathbf{u} \times \boldsymbol{\xi}$$

para demostrar que $T_{\mathbf{u}}^{\star} = -T_{\mathbf{u}}$.

B. Demostrar la identidad

$$T_{\mathbf{u} \times \mathbf{v}} = T_{\mathbf{u}} \circ T_{\mathbf{v}} - T_{\mathbf{v}} \circ T_{\mathbf{u}}.$$

- C. Sea $T: E \longrightarrow E$ aplicación lineal con $T^* = -T$.
 - 1. Considérese

$$\Phi\,:\,E\times E\times E\longrightarrow E$$

dada por

$$\Phi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \langle T(\mathbf{y}), \mathbf{z} \rangle \mathbf{x} + \langle T(\mathbf{z}), \mathbf{x} \rangle \mathbf{y} + \langle T(\mathbf{x}), \mathbf{y} \rangle \mathbf{z}$$

para demostrar que existe un único $\mathbf{u} \in E$ tal que $T = T_{\mathbf{u}}$.

2. Dada $\mathcal{B}_0 = \{ \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \}$ base ortonormal, comprobar que

$$\mathbf{u} = a_{23} \, \mathbf{u}_1 + a_{31} \, \mathbf{u}_2 + a_{12} \, \mathbf{u}_3$$

siendo $\mathbf{A} = [T]_{\mathcal{B}_0, \mathcal{B}_0}$.

51. Sean E, un \mathbb{R} -espacio vectorial 3-dim. y dotado de un producto escalar $\langle\cdot\,,\,\cdot\rangle$, y Δ una función determinante en E que define una orientación en E. Considérese

rese
$$T:\, E \longrightarrow E\,, \quad \text{aplicación ortogonal con} \quad \det T = 1\,.$$

A. Demostrar que existe un subespacio E_1 de E formado por vectores fijos 6 por T. Demostrar que si $T \not\equiv I$, este E_1 es 1-dim. y es el único subespacio de E formado por todos los vectores fijos por T.

El subespacio de vectores fijos por T se suele llamar eje de rotación de T.

B. Suponiendo que T no es autoadjunta, sea

$$S = \frac{1}{2} \left(T - T^* \right),$$

que satisface $S^* = -S$. Sea, como en el ejercicio 50, ${\bf u}$ el único vector tal que

$$S(\boldsymbol{\xi}) = \mathbf{u} \times \boldsymbol{\xi}$$
, para todo $\boldsymbol{\xi} \in E$.

Calcular

$$\mathbf{u} \times \boldsymbol{\xi}$$
, cuando $\boldsymbol{\xi}$ está en el eje de rotación de T .

Demostrar que ${\bf u}$ es un vector en el eje de rotación de T . Este vector ${\bf u}$ se llama vector de rotación de T .

 $^{^6}$ Decimos que el vector ${\bf u}$ es fijo por T cuando $T({\bf u})={\bf u}\,.$

- C. Supongamos ahora que T es autoadjunta. ¿Cuáles son los autovalores de T? Demostrar que T es una simetría respecto del eje de rotación.
- **52.** Sea E, un \mathbb{R} -espacio vectorial 3-dim. y dotado de un producto escalar $\langle \cdot \, , \, \cdot \rangle$, y Δ una función determinante en E que define una orientación en E. Considérese

$$T: E \longrightarrow E$$
, aplicación ortogonal con $\det T = 1$,

y el subespacio

$$E_1$$
, eje de rotación de T ,

definido en el ejercicio 51. Sea F el complemento ortogonal de E_1 . Comprobar que F es invariante por T, lo que permite definir

$$T_1 = T_{\Big|_F}$$
, restricción de T al subespacio F .

Comprobar que T_1 es una aplicación ortogonal con $\det T_1 = 1$.

A. Siendo θ el ángulo de rotación de T_1 , demostrar

$$\cos \theta = \frac{1}{2} (\operatorname{Traza} T - 1).$$

- B. Sea ${\bf u}$ el vector de rotación de T .
 - 1. Demostrar que

$$\Delta_1(oldsymbol{\xi}\,,oldsymbol{\eta}) = rac{1}{\|\mathbf{u}\|}\,\Delta(\mathbf{u}\,,oldsymbol{\xi}\,,oldsymbol{\eta})$$

es una función determinante en F, que define la orientación en F inducida por la orientación en E. En particular,

$$\sin \theta = \frac{1}{\|\mathbf{u}\|} \Delta(\mathbf{u}, \boldsymbol{\xi}, T(\boldsymbol{\xi})),$$

independientemente del $\boldsymbol{\xi} \in F$, que se puede tomar $\|\boldsymbol{\xi}\| = 1$.

2. Demostrar la identidad

$$\Delta(\mathbf{u}, \boldsymbol{\xi}, T(\boldsymbol{\xi})) = -\Delta(\mathbf{u}, \boldsymbol{\xi}, T^{-1}(\boldsymbol{\xi}))$$

y obtener

$$\sin \theta = \frac{1}{2 \|\mathbf{u}\|} \Delta(\mathbf{u}, \boldsymbol{\xi}, \mathbf{u} \times \boldsymbol{\xi})$$

y finalmente

$$\sin \theta = \|\mathbf{u}\|.$$

