Bakalářská práce

České vysoké učení technické v Praze

F3

Fakulta elektrotechnická Katedra elektromagnetického pole

Přenos telemetrických dat z meteorologického balónu

Jakub Dvořák

Vedoucí: Ing. Tomáš Kořínek, Ph.D.

Květen 2022

Poděkování

Děkuji vedoucímu Tomáši Kořínkovi za cenné rady a pomoc při realizaci práce. Děkuji Ing. Martinu Motlovi za pomoc s vypouštěním sondy. (tmobile tracker)

Prohlášení

Prohlašuji, že jsem tuto práci vypracoval samostatně s použitím literárních pramenů a informací, které cituji a uvádím v seznamu použité literatury a zdrojů informací.

V Praze, 20. května 2022

Abstrakt

Abstract

Abstract

Aaaabstrakt

Klíčová slova: slovo, klíč

 $\textbf{Keywords:} \quad word, \ key$

Vedoucí: Ing. Tomáš Kořínek, Ph.D.

Technická 2,

Praha 6

Title translation: Telemetric Data Transmission from Meteorological

Balloon

Obsah	4.1.1 Použitė komponenty	11
1 Úvod 1	4.1.2 Testování elektroniky	13
2 Cíl práce 3	4.1.3 PCB pro připojení modulů	13
2.1 Šíření vln ve troposféře 3	4.1.4 Napájení	14
2.2 Způsob řešení / návrh experimentu 3	4.2 Mechanická zástavba	15
2.2.1 Měřená data 3	4.3 Firmware	17
2.3 Součásti experimentu 4	4.3.1 Obsluha senzorů	17
3 Návrh systému 5	4.3.2 Rozebírání GPS dat	19
3.1 Požadavky 5	4.3.3 Zjištění náklonu sondy	21
3.2 Elektronika sondy 6	4.4 Pozemní stanice	22
3.2.1 Sledování sondy 7	4.5 Software pro zobrazení telemetrických údajů	24
3.3 Firmware sondy 9	4.6 Testování a měření	25
3.4 Mechanická zástavba 9	5 Experiment	27
3.5 Pozemní stanice 10	5.1 Průběh experimentu	27
3.6 Software pro zobrazení telemetrických údajů 10	5.2 Naměřená data	27
4 Realizace 11	6 Výsledky	29
4.1 Elektronika	6.1 Výstup z experimentu	29

6.2 Zpracování dat	29
7 Závěr	31
7.1 Shrnutí experimentu	31
7.2 Možná vylepšení	31
A Zadání práce	33

Obrázky

4.1 Redukční desky pro moduly 14
4.2 Schéma spínaného zdroje umístěného na spodní redukční desce
4.3 Schéma lineárních regulátorů umístěných na horní redukční desce 15
4.4 Příklad ošetření vstupů TVS diodami
4.6 Vývojový diagram pro kompenzaci měřených hodnot senzorem MS5607, převzato z https: //www.parallax.com/package/ altimeter-module-ms5607-datasheet/

Tabulky

4.1 Módy GPS přijímačů u-blox	12
4.2 Rozsah senzoru MS5607, převzato z https: //www.parallax.com/package/ altimeter-module-ms5607-datash	
4.3 Formát \$GPGLL zprávy	19
4.4 Formát telemetrické zprávy	21
4.5 Formát dat ukládaných na SD kartu	22
4.6 Formát GPGGA zprávy	23
4 6 Formát GPGGA zprávy	24

Úvod

tato práce ze zabývá... ano zabývá se...

Cíl práce

- 2.1 Zemská atmosféra
- 2.2 Elektromagnetická vlna
- 2.3 Základní parametry antén
- 2.4 Šíření vln ve troposféře

jak to funguje, na čem to závisí (přečíst literaturu)

2. Cíl práce

- 2.4.1 Troposférická refrakce
- 2.4.2 Troposférický rozptyl
- 2.4.3 Troposférická vlna
- 2.5 Způsob řešení / návrh experimentu

výroba sondy, vypuštění spolu s čhmú, naměření dat z tropo a naměření dat na zemi a kombinace do modelu šíření vlny, anténa na trackeru, zjištění směrové charakteristiky, napočítat výkonovou bilanci -> výkon pro vysílání.

2.5.1 Měřená data

jaká data budou měřena - podle literatury

2.6 Součásti experimentu

co je potřeba udělat - hw, firmware, sw, mechaniku, naměření dat, naměření charakteristik antény, zpracování dat.

Návrh systému

3.1 Požadavky

Hlavním požadavkem je posílání telemetrických údajů o poloze a ukládání zbylých naměřených dat na SD kartu umístěnou na palubě sondy. S ohledem na panující podmínky ve vyšších vrstvách zemské atmosféry musí být sonda schopna operovat za nízkého tlaku a teploty. Toto se vztahuje jak na mikročipy a senzory, tak na baterie, používané k napájení sondy. Další podmínkou je spolehlivé fungování v oblasti vysoké vlhkosti - oblačnosti a za deště.

Z důvodu dlouhé čekací doby na povolení vypuštění balónu, které vydává Úřad pro civilní letectví, je využito povolení, které má dlouhodobě sjednané ČHMÚ. Toto povolení se vztahuje na vypouštění volných balónů s užitečným zatížením do celkové hmotnosti 600 g. Denní sonda Vaisala RS41, kterou ČHMÚ posílá $3\times$ denně, váží 84 g. Sonda vyvíjená v rámci této práce tedy musí splňovat požadavek na hmotnost do 516 g.

Značná část GPS přijímačů je od výrobce zablokována pro použití ve výškách větších jak 10 km n. m. a je nutné zvolit přijímač, jehož maximální pracovní výška je alespoň 40 km.

3.2 Elektronika sondy

V samotném návrhu elektroniky sondy bylo možné zvolit jednu ze dvou cest. Níže práce popisuje výhody, nevýhody a možná rizika každé z nich. Dále zdůvodňuje cestu, která byla zvolena při řešení této práce. Zmíněny jsou jak robustnost řešení, tak možná rizika způsobené lidským faktorem a časová náročnost.

Využití vývojových modulů

V dnešní době existuje veliké množství mikročipů a MEMS čipů, které lze zakoupit ve formě modulů. Jedná se zpravidla o malé deky plošných spojů osazených konkrétními čipy s minimem potřebných součástek zajišťujících správné fungování. Zpravidla se jedná o blokovací kondenzátory umístěné v bezprostřední blízkosti čipů, poskytující elektrickou energii při rázovém odběru. Moduly mají vyvedené piny mikročipů na pinové lišty nacházející se na okraji PCB.

V případě mikroprocesoru se jedná o vývojový kit Nucleo od firmy *ST Microelectronics*. Jedná se o PCB s mikroprocesorem a minimem součástek, nutných pro správné fungování procesoru. Součástí desky je také zdroj pro napájení čipu a programátor, kterým lze do mikroprocesou nahrát firmware. Jednotlivé piny mikroprocesoru jsou vyvedeny na pinové lišty na kraji desky a slouží ke snadnému propojení s moduly.

Výhodou tohoto řešení ve fázi vývoje je snadná záměna zapojení modulů a rychlé odstranění chyb způsobené chybným výběrem komunikačních pinů mikroprocesoru.

Nevýhoda tohoto řešení je malá robustnost zapojení. Komunikační cesty mezi mikroprocesorem a senzory jsou zbytečné dlouhé, jelikož jsou podřízeny umístění pinů na pinových lištách. Další nevýhodou je nemožnost ovlivnit umístění blokovacích kondenzátorů u mikroprocesoru a nebo zvýšení jejich počtu. Vývojový kit Nucelo není tvořen s ohledem na malé rozměry a velikost PCB tohoto kitu ovlivňuje celkovou velikost elektroniky sondy.

Samostatné senzory

Druhá cesta, kterou je možná se vydat při vývoji elektroniky v sondě je samostatná deska, která obsahuje jednotlivé mikročipy bez jejich modulů a separátních PCB. Díky tomu je

možné minimalizovat vzdálenost mezi mikroprocesorem a senzory a zvýšit robustnost napájení čipů. Celková velikost desky je poté dána především schopnostmi návrháře.

Toto řešení je ale časové náročné a v případě způsobené chyby se špatně ladí. V případě zničení, nebo nefunkčnosti nějaké elektronické součástky je nutné její odpájení z desky, což může ohrozit komponenty v okolí. V případě modulů lze vyměnit modul samotný.

Při řešení této práce byla zvolena cesta modulů. Důvodem bylo malé množství času neumožňující případné zdlouhavé odlaďování zapojení a také nedostatek součástek samotných. V tomto případě byly dostupnější senzory ve formě modulů a mikroprocesor ve formě vývojového kitu.

3.2.1 Sledování sondy

Sledování sondy lze realizovat několika způsoby. Níže jsou popsány nejčastější z nich a jsou diskutovány výhody, nevýhody a možná rizika.

GSM tracker

Amatéry často využívána, nicméně velmi nedoporučovaná https://www.highaltitudescience.com/pages/tracking-a-weather-balloon metoda je zasílání dat skrze mobilní sítě. GSM sítě, přes které se data posílají, jsou aktivní přibližně do výšky $10\,\mathrm{km}$ (odkaz), není tudíž možné sledovat sondu po celou dobu letu. Velké množství sond také přistane v neobydlených a odlehlých oblastech, ve kterých nemusí být dostatečný signál pro přenos dat.

APRS

APRS (Automatic Packet Reporting System) je radioamatéry často využívaný způsob sledování sondy, jelikož jde o způsob levný a spolehlivý a mnoho radioamatérů má vlastní vybavení pro posílání dat přes APRS. Základem je APRS vysílač, který lze koupit, nebo postavit. GPS data, spolu například s teplotou a tlakem, jsou následně takto vysílána a přijímána amatérskými rádii https://www.highaltitudescience.com/pages/tracking-a-weather-balloon. Data se poté buď pošlou dál, nebo se nahrají na internetovou stránku k tomuto účelu zřízenou (aprs.fi), odkud je může každý sledovat.

Nevýhodou APRS sledovače je bohužel fakt, že pokud sonda přistane v neobydlené a odlehlé oblasti, kde nejsou žádné amatérské rádiové stanice, není možno data odeslat. Proto je APRS sledovač vhodný pouze jako záloha, nebo doplnění, není dobré na něj spoléhat se stoprocentní jistotou. Pokud se vysílači nepovede vyslat souřadnice místa dopadu, můžeme přesto APRS vysílač najít pomocí radiového přijímače, naladěného na vysílací frekvenci, a směrové antény. Další nevýhoda je potřebná licence pro vysílání na frekvenci 144,8 MHz, na které probíhá APRS https://www.zakonyprolidi.cz/cs/2005-156#cast1

Satelitní sledovač

Další způsob je využité satelitního sledovače. Jedná se zpravidla o zařízení na sledování majetku v případě odcizení. Získaná data o poloze se posílají přes síť satelitů na nízké oběžné dráze Země. Využívána je služba *Globalstar*, jež se specializuje na provoz satelitních telefonů. Ze satelitů jsou následně data poslána na speciální internetovou stránku, kde jsou přístupná například z počítače, nebo mobilní aplikace. Pozice lze také zaslat přes SMS bránu, jako zprávu na mobilní telefon. Výhodou je širší pokrytí oproti GSM síti.

Toto řešení má nicméně i své nevýhody. GPS čip ve sledovači je omezený do maximální výšky 6 500 m n. m. https://www.findmespot.com/downloads/SPOT_TRACE_User_Guide.pdf. Kvůli tomu nastane po dosažení takové výšky tzv. blackout, kdy GPS čip přestane reagovat. Po následném sestupu sondy pod hladinu 6 500 m n. m. se GPS čip opět připojí a sledovač opět začne fungovat. Další z problémů je fakt, že sledovač musí mít GPS anténu neustále nasměrovanou k obloze, tudíž, pokud se při dopadu sonda nějak překlopí, není možné zaměřit její pozici.

Přímé posílání GPS dat

Pro tuto práci je implementačně nejjednodušším řešením přímé posílání GPS dat. S ohledem na zadání je nutné v rámci práce telemetrická data o poloze ze sondy posílat a tedy tyto informace lze využít k samotné lokalizaci a následnému nalezení sondy. Rizikem je dopad do oblasti, kde se omezí dosah telemetrického signálu. Např. do hustého lesa, nebo do zástavby.

S ohledem na hmotnost, kterou by předešlá řešení přidala k celkové hmotnosti, bylo zvoleno tohoto způsobu sledování.

Zjištění pozice sondy ČHMÚ

Jak již bylo zmíněno, sonda ČHMÚ je při letu zavěšena pod vyvíjenou sondou. Data vysílaná sondou ČHMÚ jsou přijímána a dekódována v místě vypuštění, ale také jsou zachytávána amatérskými rádii a informace o poloze jsou sdílena na internetu. Tento způsob je spolehlivý, jelikož vysílací část je komerčně prodávaná a určena pro profesionální použití. Přijímacích stanic je velké množství a tedy je vysoká pravděpodobnost, že budou data ze sondy zachycena.

Nevýhodou je, že sonda ČHMÚ není přímou součástí vyvíjené sondy a tedy může dojít k odtržení. Tento způsob sledování je tedy brán jako záloha.

3.3 Firmware sondy

Firmware pro mikroprocesor v sondě zajišťuje inicializaci senzorů, správné čtení dat ze senzorů, jejich zpracování. Dále je nutné načítání data z GPS modulu a jejich rozdělení na dané zprávy a bloky informací využívaných pro určení pozice v prostoru. Všechny získané informace je poté nutno sešít do zprávy poslané telemetrií na zem a uložit na externí pamět.

Nutnou součástí firmwaru je také ošetření chybových stavů a možných errorů, vyvolaných chybným čtením dat a nebo fyzickými podmínkami prostředí.

3.4 Mechanická zástavba

Mechanická zástavba celé sondy musí splňovat požadavky pracovníků ČHMÚ, aby nedošlo k poničeni balónu a způsobení škod při dopadu na zem. Jelikož je sonda Vaisala RS41 pověšena pod sondu vznikající v rámci této práce, je nutné zajistit robustnost a zamezit odpojení sondy Vaisala, nebo rozpadu vyvíjené sondy.

3.5 Pozemní stanice

Firmware pro mikroprocesor v pozemní stanici zodpovídá za správné dekódování přijatých telemetrických údajů. Firmware musí určit, která data jsou validní. Přijatá data je poté nutno zformátovat do zprávy určené pro anténní tracker, umístěný na střeše budovy FEL. Firmware musí být odolný vůči náhodným chybám způsobených přenosem na velkou vzdálenost. Příjem i posílání dat probíhá přes sériovou linku.

Elektronika pozemní stanice není vystavena extrémním podmínkám a není nutné řešit její odolnost vůči vnějším vlivům.

3.6 Software pro zobrazení telemetrických údajů

Software určený pro příjem dat na počítači umístěném v automobilu jedoucí ve směru dopadu sondy. Software musí určit validní data a vyznačit GPS pozici sondy na mapě. Další funkcí softwaru je výpis souřadnic, výšky a rychlosti sondy a teploty okolí sondy. Data jdoucí do programu jsou posílána přes sériovou linkou z přijímače signálu vysílaného sondou.

Realizace

Tato kapitola se zabývá samotnou realizací sondy. Popisuje cestu, kterou byla práce směřována při vývoji elektroniky a popisuje výběr jednotlivých komponent. Dále vysvětluje dílčí části firmwaru sondy a způsob, jakým byly řešeny problémy. Popisuje jak vysílací část - sondu, tak přijímací části. Jednak pozemní stanici, která formátovala data do zprávy čitelné anténním trackerem a jednak přijímací software na zobrazení pozice na mapě.

4.1 Elektronika

4.1.1 Použité komponenty

Níže jsou zmíněny druhy senzorů, které jsou nutné pro měření podmínek v troposféře, které ovlivňují přenos radiového signálu. Jak již bylo zmíněno, senzory musí být schopny měřit veličiny v rozsahu hodnot, které panují ve troposféře. Velký výběr modulů s mnohými senzory a dalšími elektrickými součástkami nabízí firma *Microelektronika*. Jená se o produky využívané pro výuku a rychlý vývoj. Výhodou je jejich sjednocený pinout a stejné rozměry konektoru (pinové lišty).

4. Realizace

Dlatforms	Mary Altituda[ma]	MAX Horizontal	MAX Vertical	Max Position
Platform	Max Altitude[m]	Velocity [m/s]	Velocity [m/s]	Deviation
Portable	12000	310	50	Medium
Stationary	9000	10	6	Small
Pedestrian	9000	30	20	Small
Automotive	6000	84	15	Medium
At sea	500	25	5	Medium
Airborne <1g	50000	100	100	Large
Airborne <2g	50000	250	100	Large
Airborne <4g	50000	500	100	Large

Tabulka 4.1: Módy GPS přijímačů u-blox

GPS modul

GPS moduly jsou zpravidla omezeny dvěma parametry. Maximální nadmořsou výškou 18 km a maximální rychlostí 515 m/s vůči zemi https://www.ecfr.gov/current/title-22/part-121. Někteří výrobci GPS modulů berou tato omezení v konjunkci, kdy pro zablokování modulu musí platit obě podmínky, někteří výrobci uvažují disjunkci, kdy stačí, aby nastala jedna z pomínek a modul přestane dávat validní data. Modul, který byl vybrán je u-blox SAM-M8Q. Podle dokumentace GPS modulu (https://www.u-blox.com/sites/default/files/SAM-M8Q_DataSheet_%28UBX-16012619%29.pdf) je maximální výška 50 km a maximální rychlost 500 m/s. V případě letu balónu nebude splněna ani jedna z podmínek. Tento GPS modul je součástí vývojového modulu GNSS 4 Click od firmy *Microelektronika*.

U-blox moduly nabízí široké množství pracovních módů podle charakter použití. Pro běžné použití se využívá mód *Portable*. Jedná se o kompromis mezi rozsahem a přesností určení pozice. Další módy jsou zobrazeny v tabulce 4.1. V případě sondy byl zvolen mód Airborne <1g. Při letu sondy není očekáváno zrychlení přesahující 1 g a rychlosti nad 100 m/s (360 km/h).

Teplotní a tlakový senzor

Podle (https://www.sensorsone.com/altitude-pressure-units-conversion/) se tlak ve výšce 30 km pohybuje kolem hodnoty 10 mbar. S ohledem na očekávané rozsahy měřeného tlaku a teploty byl vybrán senzor MS5607 od firmy *TE Connectivity*. Rozsahy měřitelných hodnot jsou zaneseny v tabulce 4.2. Teplotní a tlakový senzor je součástí modulu od firmy *Parallax*. Výrobce na stránkách produktu https://www.parallax.com/product/altimeter-module-ms5607/ uvádí, že senzor byl úspěšně testován ve výšce 36 km.

Pressure	Min	Тур	Max	Unit
Range	10		1200	mbar
Range	-40		85	$^{\circ}\mathrm{C}$
Resolution		< 0.01		$^{\circ}\mathrm{C}$
Accuracy	-0.8		0.8	$^{\circ}\mathrm{C}$

Tabulka 4.2: Rozsah senzoru MS5607, převzato z https://www.parallax.com/package/altimeter-module-ms5607-datasheet)

Vlhkostní senzor

Vlhkostní senzor byl zvolen AM2320, který je součástí modulu DHT22 Click od firmy *Microelektronika*. Senzor je schopen měřit v rozsahu od -40 do 80 °C a 0 až 100 % relativní vlhkosti (https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf).

Senzor orientace

Pro zjištění orientace bylo použito senzoru MPU9250, který je součástí modulu 9DOF Click. Jedná se o gyroskop Senzor resp. modul byl vybrán, jelikož byl již dříve používán na jiných projektech a byl ihned dostupný. Díky tomu bylo ihned možné přejít ke psaní ovladače pro vyčítání dat a jeho implementaci do systému. Senzor také splňuje rozsah pracovních teplot a lze tedy využít v podmínkách, které při letu nastanou (https://invensense.tdk.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf).

4.1.2 Testování elektroniky

měření odběru, energie pro poslání dat

4.1.3 PCB pro připojení modulů

Ve vývojové fázi práce byly moduly zapojeny skrze nepájivé pole a propojeny propojovacími kabely s piny Nucleo desky. Moduly byly postupně přidávány souběžně s vývojem softwaru. Po odladění komunikace se všemi použitými moduly byly vytvořeny dvě redukční PCB na propojení Nucleo kitu a modulů. Moduly jsou vyobrazeny na obr. 4.1a a 4.1b.

(a): Vrchní redukční deska

(b): Spodní redukční deska

(c): Sestava PCB

Obrázek 4.1: Redukční desky pro moduly

4.1.4 Napájení

Jako zdroj energie po dobu letu byly vybrány tužkové baterie *Energizer ultimate lithium*. Dle technického listu (https://data.energizer.com/pdfs/191.pdf) jsou schopny operovat až do teploty -40 °C při poklesu kapacity z xxx na xxx mAh. S ohledem na teploty panující ve stratopauze, které klesají až k -60 °C, byl počet zvýšen na 10 ks, nechávající kapacitní rezervu.

Zdroje

Vstupní napětí se v závislosti na teplotě a momentálním odběru pohybuje od 18 V do 10 V. Pro zvýšení účinnosti byl jako hlavní regulátor využit spínaný zdroj. S ohledem na dostupnost součástek a ověřenost funkčnosti byl vybrán spínaný zdroj *LMR33630* od firmy *Texas Instruments*. Účinnost tohoto zdroje se pohybuje od TODO: zjistit z DSH.

Další výhodou spínaného zdroje je minimální PSRR - *Power Source Rejection Ratio*. Výstupní napětí zůstává konstantní bez ohledu na změnu napětí na vstupu, dokud není překročeno minimální napájecí napětí. TOTO: kolik pro 5V vout.

Nevýhodou spínaných zdrojů je zanášení šumu do obvodu. Tento problém se vyřeší využitím lineárního regulátoru. Šum generovaný spínacím regulátorem by mohl způsobit nesprávné fungování mikroprocesoru a snižovat kvalitu příjmu GPS modulu. V tomto případě byla napájecí topologie následující. Napětí baterií bylo na spodní redukční desce spínacím regulátorem sníženo na 5 V. Toto napětí bylo následně skrze nevyužité piny vývojového kitu Nucleo přivedeno na horní redukční desku, kde bylo lineárním regulátorem sníženo na 3,3 V. Celkem jsou na desce tři větve s tímto napětím. Mikrokontrolér a senzory mají vlastní větev. Další lineární regulátor napájí pouze GPS modul a třetí lineární regulátor je určen pro radiový vysílač. Díky tomu nebude docházet k poklesu napětí napájení ve zbytku přístroje při vysílání dat.

Obrázek 4.2: Schéma spínaného zdroje umístěného na spodní redukční desce

Obrázek 4.3: Schéma lineárních regulátorů umístěných na horní redukční desce

Ochrana pinů

Jelikož většina pinů využívaných ke komunikaci byla snadno dostupná na dotyk při manipulaci, bylo potřeba je ošetřit vůči elektrostatickému výboji (ESD), který by měl za následek zničení čipu. Příklad ošetření GPIO pinů pomocí TVS diody BAV99 je na obr. 4.4.

4.2 Mechanická zástavba

Součástí práce je i mechanická zástavba kryt pro elektroniku. Pro přehlednost a optimální model krytu bylo potřeba vymodelovat i jednotlivé moduly. Kolem přesného 3D modelu elektroniky mohl být vymodelován kryt bez nutnosti čekat na výrobu redukčních desek.

Díky jednotlivým modelům bylo možné vytvořit kompletní model elektronické části, kolem kterého byl poté vymodelován kryt (obr. 4.5b). Kryt byl modelován s ohledem na anténu umístěnou ve spodní části. Stěny kolem antény jsou ztenčené, aby co nejméně ovlivnily ladění antény na 868 MHz. Malá mechanická odolnost stěn je kompenzována čtyřmi výztužemi vedoucí po obvodu stěny.

Obrázek 4.4: Příklad ošetření vstupů TVS diodami

(a): Vymodelované moduly

(b): Řez vrchní částí krytu sondy

Pro splnění hmotnostního limitu byl model krytu postupně odlehčován. Při ubírání materiálu bylo nutné brát v potaz, že hlavní původ velké hmotnosti není při 3D tisku objem tělesa, ale jeho stěny. Při tvorbě otvorů v modelu se tedy neušetřila hmotnost odpovídající objemu válce odebraného ze stěny, ale pouze dvěma jeho podstavám. Naopak materiál byl potřeba na plášť odebraného válce.

TODO: názorný jednoduchý model s dírou a bez, iterace

Připojení sondy ČHMÚ bylo provedeno pomocí gumového pásu, do kterého se zastrčila skoba odvíječe. To je zařízení, které zajistí postupné odmotání 50m lanka. 50 m je vzdálenost daná výrobcem, která musí být od balónu a dalších součástí sondy, aby byla zajištěna validní měření.

TODO: obrázek připojení sondy

V případě, že by došlo k delaminaci 3D tisku, byla jak elektronika, tak sonda ČHMÚ přivázána pojistným provázkem uchyceným k hlavnímu závěsu spolu s padákem a balónem. Díky tomu by sonda stále zůstala pohromadě i když by došlo k rozbití/rozlomení krytu.

model PCB, model sondy, iterace, odlehčování, připojení sondy čhmú, bezpečnostní závěsy

4.3 Firmware

4.3.1 Obsluha senzorů

Pro vyčítání dat ze senzorů bylo potřeba napsání driveru. Ten má za úkol jak vyčtení dat ze senzoru, tak jeho samotnou inicializaci a nastavení.

Výčet dat ze senzoru AM2320 probíhá příkazem

```
uint8_t registers[3] = { 0x03, 0x00, 0x04 };

HAL_I2C_Master_Transmit(am2320->i2c_handle, am2320->device_address,
    registers, 3, HAL_MAX_DELAY);
```

Senzor následně vyšle data obsahující informace o vlhkosti a teplotě. Jejich příjem zajišťuje funkce

```
HAL_I2C_Master_Receive(am2320->i2c_handle, am2320->device_address,
am2320->data, 8, HAL_MAX_DELAY;
```

Způsob přepočtu získaných dat na hodnoty teploty a tlaku je popsán v dokumentaci senzoru. Kód pro přepočet je následující:

```
int16_t temp_temperature = (am2320->data[5] | am2320->data[4] << 8);
if (temp_temperature & 0x8000) {
   temp_temperature = -(int16_t) (temp_temperature & 0x7fff);
} else {
   temp_temperature = (int16_t) temp_temperature;
}
*temp_temperature = (float) temp_temperature / 10.0;
*humidity = (float) (am2320->data[3] | am2320->data[2] << 8) / 10.0;</pre>
```

Pro senzor teploty a tlaku MS5607 je způsob výčtu dat obdobný. Nejdříve se pošle žádost o převod hodnoty jdoucí ze senzoru.

4. Realizace

Obrázek 4.6: Vývojový diagram pro kompenzaci měřených hodnot senzorem MS5607, převzato z https://www.parallax.com/package/altimeter-module-ms5607-datasheet/

```
SPITransmitData = CONVERT_D1_COMMAND | Pressure_OSR;
HAL_SPI_Transmit(hspi, &SPITransmitData, 1, 10);
```

Následně se pošle žádost o vyčtení hodnot 24bit analogově digitálního převodníku pomocí následujícího kódu.

```
SPITransmitData = READ_ADC_COMMAND;
HAL_SPI_Transmit(hspi, &SPITransmitData, 1, 10);
HAL_SPI_Receive(hspi, reply, 3, HAL_MAX_DELAY);
uncompValues->pressure = ((uint32_t) reply[0] << 16) | ((uint32_t) reply[1] << 8) | (uint32_t) reply[2];
```

Hodnoty změřené tímto způsobem jsou nekompenzované a jsou ovlivněny nelinearitou senzoru. Pro správnou kompenzaci teploty a tlaku je zapotřebí využít vývojový diagram na obr. 4.6.

Na rozdíl od předešlých senzorů, tento senzor měří hodnoty a ukládá je do příslušných registrů průběžně. Registry senzoru jsou popsány v dokumentu https://invensense.tdk.com/wp-content/uploads/2015/02/RM-MPU-9250A-00-v1.6.pdf. Slouží k nastavení senzoru samotného, jeho identifikaci a k výčtu naměřených dat. U senzoru je potřeba nastavit vzorkovací frekvenci, rozsahy měřených hodnot a zdroj hodin. Pro následný přístup k datům na dané adrese se využije následujícího příkazu.

```
uint8_t data = ReadAddr | READWRITE_CMD;
HAL_SPI_Transmit(&MPU9250_SPI, &data, 1, HAL_MAX_DELAY);
```

Senzor následně vyšle hodnoty daného registru a jejich příjem proběhne pomocí funkce níže. Hodnoty ReadAddr a READWRITE_CMD jsou definovány v https://invensense.tdk.com/wp-content/uploads/2015/02/RM-MPU-9250A-00-v1.6.pdf.

```
HAL_SPI_Receive(&MPU9250_SPI, pBuffer, NumByteToRead, HAL_MAX_DELAY);
```

4.3.2 Rozebírání GPS dat

<CR> <LF>

Data jsou GPS přijímačem posílána každou sekundu přes sériovou linku ve formátu NMEA zpráv (https://www.sparkfun.com/datasheets/GPS/NMEA%20Reference%20Manual-Rev2.1-Dec07.pdf). Jedná se o standardizovaný formát GPS dat specifikovaný organizací NMEA (National Marine Electronics Association). Příklad NMEA zpráv je zanesen níže.

```
1 $GPRMC,132456.00,A,5005.77089,N,01421.46534,E,1.157,,290122,,,A*78
2 $GPVTG,,T,,M,1.157,N,2.144,K,A*22
3 $GPGGA,132456.00,5005.77089,N,01421.46534,E,1,05,1.79,294.0,M,44.4,M,,*5D
4 $GPGSA,A,3,17,06,24,02,15,,,,,,2.46,1.79,1.70*0B
5 $GPGSV,4,1,13,02,11,134,21,06,20,090,23,10,02,270,,11,06,128,19*76
6 $GPGSV,4,2,13,12,70,261,,15,10,185,15,17,17,041,13,19,37,054,*7B
7 $GPGSV,4,3,13,22,10,325,,24,72,147,23,25,31,257,08,28,08,068,21*7B
8 $GPGSV,4,4,13,32,25,313,*4C
9 $GPGLL,5005.77089,N,01421.46534,E,132456.00,A,A*69
```

Příklad formátu \$GPGLL zprávy je v tabulce . Informace obsažené v této zprávě jsou vysvětleny v tabulce 4.3.

Název Příklad Popis Identifikátor zprávy \$GPGLL GLL hlavička Zem. Šířka 5005.77089 ddmm.mmmm N/S (Sever/Jih) dddmm.mmmm Zem. Délka 01421.46534 E/W (Východ/Západ) \mathbf{E} UTC Čas 132456.00 hhmmss.sss A - data jsou validní Status Α V data nejsou validní A - autonomous Mód D - DGPS Α E - DRKontrolní součet *69

Tabulka 4.3: Formát \$GPGLL zprávy

Konec zprávy

4. Realizace

Délka zprávy odeslané GPS přijímačem se liší podle dostupných údajů. Pokud GPS nezná svou polohu, pole pro zeměpisnou šířku a délku jsou prázdná. Proto nemůžeme očekávat zprávy fixní velikosti. Způsob, kterým se ve firmwaru sondy NMEA zpráva přijímá je znározněn v ukázce kódu 4.1.

```
HAL_UARTEx_ReceiveToIdle_IT(&huart1, GPSbuffer, sizeof(GPSbuffer));

Ukázka kódu 4.1: Funkce pro příjem dat z GSP
```

Tato funkce přijímá data až do doby, kdy nenastane klidový stav - GPS přestane vysílat data. V ten moment se vyvolá callback funkce.

```
void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size)
{
DataRecieved = Size;
}
```

Ukázka kódu 4.2: Callback funkce vyvolaná interruptem

V této funkci se do globální proměnné uint16_t DataRecieved uloží velikost přijatých dat. Pokud je v hlavní smyčce programu splněna podmínka, že DataRecieved > 0, program začne rozebírání přijatých dat funkcí 4.3. Pro rozdělení přijatých dat na jednotlivé NMEA zprávy se využívá znaků <CR> <LF>, které se nacházejí na konci každého řádku.

Součástí vyslaných dat jsou i \$GPGSV zprávy obsahující informace o viditelných satelitech. Zpráv tohoto typu je vysílá několik po sobě a počet vyslaných zpráv je zanesen v prvním poli této zprávy. Pro správně rozdělení přijatých dat je informace o počtu \$GPGSV zpráv nutná, jelikož ovlivňuje pořadí dalšách zpráv.

Funkce mainParse v ukázce 4.3 rozdělí a uloží data do bufferu uint8_t GPSparse[15][200] = {} tvořeného 2D polem a zjistí počet \$GPGSV zpráv.

```
void mainParse(uint8_t* buffer, uint8_t* parse, uint8_t linelen, uint8_t*
      nsat){
    uint8_t k[15] = {};
                          //k-ty znak v n-tem radku
    uint16_t iter = 0;
                          //iteracni promenna
3
   uint8_t n = 0;
                        //n-ty radek
    while(iter < DataRecieved){</pre>
     if(!(buffer[iter] == '\n') || (buffer[iter] == '\r')){ //dokud
     nenastane konec radku
        parse[n*linelen + k[n]] = buffer[iter];
        if((k[n] == 7) && (parse[n*linelen + 5] == 'V')){ //hledani GSV
9
     zpravy, 7. znak je pocet satelitu
          *nsat = parse[n*linelen + k[n]] - '0';
10
```

ctuthesis t1606152353

4.3. Firmware

```
k[n]++; //posun o znak dopredu

k[n]++; //posun o znak dopredu

else{
    parse[n*linelen + k[n]] = '\n'; //enter na konec radku
    n++; //novy radek

}

iter++; //posun v RAW zprave - GPSbuffer

}

}
```

Ukázka kódu 4.3: Hlavní parsovací funkce

Příklad volání funkce v hlavní smyčce programu je znázorněn v ukázce kódu 4.4.

```
uint8_t GPSparse[15][200] = {}; //NMEA rozdelena podle radku
uint8_t nsat = 0; //pocet GSV zprav

uint8_t GLLposition[8] = {}; //delka daneho pole v GLL
uint8_t GLL[8][11] = {}; //GLL buffer

mainParse(GPSbuffer, GPSparse, 200, &nsat);
parseFrame(GPSparse, GLL, GLLposition, 13, 11, 0);

//analogicky pro ostatni NMEA zpravy, GGA, RMC...
```

Ukázka kódu 4.4: Volání funkcí v hlavní smyčce programu

Ve stejné větvi programu, kde se vykonává rozebírání NMEA zpráv, se vyčtou data ze senzorů. Tyto číslené hodnoty se poté převedou do textové podoby a přidají mezi vysílaná data. Převod z číselné hodnoty na textovou, obsahující ASCII znaky, slouží funkce ftoa(), která převádí číslo typu float a funkce itoa() pro převod čísla typu int.

Z rozebraných NMEA zpráv jsou poté vybrána data, která se spolu s naměřenými hodnotami ze senzorů, převedené do textové podoby, sešijí do první zprávy. Tato zpráva se posléze pošle skrze sériovou linku do radiového vysílače. K této zprávě se po odeslání přidají další data a zpráva je poslána do záznamníku, kde se uloží na SD kartu v lidsky čitelném formátu. Příklady vysílaných zpráv jsou v tabulkách 4.4 a 4.5.

UTC čas	Zem. šířka	(°)	Zem. Délka (°)		Nadmořská výška (m)	Ryhlost (m/s)	(- 01)	Tlak (Pa)
114231.00	5001.76165	N	01430.16855	Е	9510.0	23.428	-039.65	0028254

Přijatá zpráva: 114231.00;5001.76165;N;01430.16855;E;9510.0;23.428;-039.65;0028254

Tabulka 4.4: Formát telemetrické zprávy

4.3.3 Zjištění náklonu sondy

TODO:

4. Realizace

UTC čas	Zem. šířka	(°)	Zem. Délka (°)	Nadmořská výška (m)	Ryhlost (m/s)	Teplota (°C)	Tlak (Pa)	Teplota 2 (°C)	Relativní vlhkost (%)	Typ GPS fixu
114231.00	5001.76165	N	01430.16855	Е	9510.0	23.428	-039.65	0028254	-40.5	003.2	2

Počet viditelných satelitů	PDOP	HDOP	VDOP	Nejmenší změřené zrychlení v ose Z	Vel	ikost zr	ychlení	Vel	ikost úl	hlové rychlost		ost inte nag. pol	
12	1.32	0.70	1.12	7062	12	-232	8452	52	-117	245	-4218	3765	-3276

Tabulka 4.5: Formát dat ukládaných na SD kartu

- 1. Obr. kyvadla a sil nelze měřit náklon pomocí acc
- 2. Nelze měřit přes mag vizualizace rotace kolem vektoru mag. pole
- 3. Řešení v flightcontrollerech na dronech kalman, příliš složité na implementaci, komplementární filtr
- 4. Moje řešení

4.4 Pozemní stanice

výstřizky kódu z driverů, sample GPS dat, vyčítání z teplota/tlak, tlak/vlhkost, gyro/acc/mag, parsovací funkce, změřené minimum accelerace v z-ose, sešití dat, watchdog, reset při erroru

Jak již bylo zmíněno v kapitole 3.5, úkolem pozemní stanice je překládat přijímaná data zpět do formátu NMEA GPGGA zprávy, určené pro tracker. Rozdělení příchozí zprávy vyslané sondou probíhá obdobně jako v sondě. Přijatá data jsou znak po znaku iterována a zkoumá se, jestli se nenarazilo na oddělovací znak - v tomto případě středník viz ukázka kódu 4.6. Pro samotný příjem dat nelze jako v sondě využít funkce, která přijímá, dokud nenastane prodleva. Vysílací modul sám posílá data po 30 znacích a i mezi těmito balíky dat je prodleva. Zpráva se tedy musí načítat znak po znaku, jak je ukázáno v kódu 4.5, a jako konec zprávy brát až znak "\n".

Ukázka kódu 4.5: Příjem dat pozemní stanicí

```
uint8_t framelen[10] = {};  //pozice v aktualnim poli
uint8_t frame[10][13] = {};  //buffer pro data rozdelena do
jednotlivych poli
```

```
4 for(int i = 0; i < len; i++){</pre>
      if(rx[i] != ';'){ //pokud znak neni oddelovaci
          frame[n][framelen[n]] = rx[i]; //do bufferu se ulozi aktualni
     znak
          framelen[n]++;
                                //presun na dalsi pozici v poli
      }
8
      else{
9
                               //presun na dalsi pole
10
          n++:
          framelen[n] = 0;
                               //vynulovani pozice v tomto poli
11
12
13 }
```

Ukázka kódu 4.6: Rozdělení příchozí zprávy do jednotlivých polí

Jelikož některé informace, které \$GPGGA zpráva obsahovala, nebyly přeneseny telemetrií, musely být na zemi doplněny. Pro tracker nicméně nejsou důležité a tudíž mohly být jakékoliv. Jedná se o jednotky, odchýlení od geoidu a HDOP - Horizontal Dillution of Precision (Horizontální zředění přesnosti), viz tabulka 4.6. Poslední pole, obsahující kontrolní součet muselo být spočítáno podle údajů posílaných do trackeru. Kontrolní součet je podle (https://nmeachecksum.eqth.net/) logický XOR všech znaků mezi znaky \$ a *. Funkce pro výpočet kontrolního součtu je ukázána v kódu 4.7.

```
uint16_t xor = 0;
for ( uint8_t i = 1 ; i < cpypos ; i ++ ) {
    xor = xor ^ tx[i]; //XOR mezi aktualnim znakem a predeslym vysledkem
}

uint8_t checksum[2] = {};
itoa(xor, checksum, 16); //prevod kontrolniho spouctu do hexadecimalniho textoveho formatu

if((checksum[0] > 96) && (checksum[0] < 123)) checksum[0] ^=0x20; //zmena z malych pismen na velka

if((checksum[1] > 96) && (checksum[1] < 123)) checksum[1] ^=0x20;</pre>
```

Ukázka kódu 4.7: Výpočet kontrolního součtu

TODO - ukázat na osciloskopu/log analyzátoru balíky dat

Tabulka 4.6:	Formát	GPGGA	zprávy
--------------	--------	-------	--------

Název	Příklad	Jednotky	Popis
Identifikátor zprávy	\$GPGGA		GGA hlavička
UTC Čas	132456		hhmmss.sss
Zem. Šířka	5005.77089		ddmm.mmmm
N/S (Sever/Jih)	N		
Zem. Délka	1421.46534		dddmm.mmmm
E/W (Východ/Západ)	W		

Tabulka	4.6:	Formát	GPGGA	zprávy
---------	------	--------	--------------	--------

Název	Příklad	Jednotky	Popis
			0 data nejsou validní
Druh určení pozice	1		1 data jsou validní
			2 diferenciáln í GPS
Počet využitých satelitů	5		
HDOP	1.79		
Nadmořská výška	294	metry	
Jednotky	M	metry	
Odchýlení od geoidu	44.4	metry	Separace geoidu a elipsoidu
Jednotky	M	metry	
Stáří rozdílové korekce	-	sekundy	
Diff. Ref. Station ID	-		
Kontrolní součet	*5D		
<cr> <lf></lf></cr>			Konec zprávy

4.5 Software pro zobrazení telemetrických údajů

Zpracování telemetrických údajů pro zobrazení pozice sondy na mapě, výpis výšky sondy a teploty okolí probíhá v Python skriptu. Ten čte skrze sériovou linku data jdoucí z radiopřijímače. Data jsou příjmána do bufferu a následně rozdělena podle dělících znaků viz kód 4.8.

```
def getNewData(self):
    try:
        new_data = self.handler.readline().decode(encoding="UTF-8")

except UnicodeDecodeError:
    print("Couldn't parse new data")
    return None

if new_data == "\n":
    return None

parsed = []*24
parsed = new_data.split(sep=";")
```

Ukázka kódu 4.8: Blok kódu pro příjem a rozdělení telemetrických údajů

Ingormace o poloze jdoucí z GPS senzoru nelze rovnou využít pro zobrazení pozice na mapě. Formát souřadnic, který posílá GPS přijímač, je ve stupních a minutách – DDMM.MMMM DDDMM.MMMM viz tabulka 4.3. Pro zobrazení souřadnic pomocí *gmplot* je nutné souřadnice převést do formátu desetinných stupňů DD.MMMMM DDD.MMMMM. Tento převod je proveden následovně. První dvě resp. tři číslice ze zeměpisné šířky resp. délky se ponechají a reprezentují DD resp. DDD v novém formátu. Zbylé číslo ve formátu MM.MMMM se vydělí

60. Výsledek se dosadí za desetinnou tečku. Algoritmus pro převod v jazyce Python je znázorněn v kódu ??.

```
latitude = int(latitude_str[:2]) + float(latitude_str[2:]) / 60
longitude = int(longitude_str[:3]) + float(longitude_str[3:]) / 60
```

Ukázka kódu 4.9: lst:track:GPS

Zobrazení souřadnic na mapě je provedeno pomocí modulu *qmplot* (https://github.com/gmplot/gmplot).

parsování příchozích dat, doplnění NMEA zprávy pro tracker, python - parsování a přepočítání souřadnic, zobrazení na mapě, zobrazení v terminálu

4.6 Testování a měření

Měření směrové charakteristiky proběhlo na katedře elektromagnetického pole v bezodrazné komoře. Sonda připevněna na pohyblivou osu byla otáčena motorem a byl měřen přijatý výkon anténou umístěné naproti sondě. Díky tomu byla změřena vyzařovací charakteristika antény v rozsahu 360 °C. Celkem byly měřeny 4 směrové charakteristiky a to pro různá natočení sondy kolem své osy. Směrové charakteristiky jsou zaneseny na (obr)

TODO - graf směrových charstik.

Dále byla měřena polarizace antény. V tomto případě byla sonda pevně umístěna na podstavci a otáčeno bylo přijímací anténou v její ose. Pro ideální kruhově polarizovanou anténu by nezáleželo na natočení přijímací antény. V případně antény umístěné v sondě je přenos znárorněn na obr. xxx.

TODO - graf polarizace

směrová charakteristika, teplotní odolnost v klimakomoře, proudový odběr telitu, výlet na Říp, mapa viditelnosti z bodu na mapě.

Experiment

příjem dat, umístění antény na střeš e , nastavení spektráku

5.1 Průběh experimentu

jak to probíhalo, co se stalo, proč sonda přestala vysílat, proč doletěla jen do 17 km, nalezení pomocí sondy čhmú, sundání sondy

5.2 Naměřená data

co bylo na SD kartě, výsledky měření - čístě změřená data

Výsledky

6.1 Výstup z experimentu

výsledky, co bylo změřeno a zjištěno

6.2 Zpracování dat

zkombinovat data ze země a data ze strato, vzorečky, určit refrakci, výkonovou bilanci podle podmínek, vzít v potaz směrovou charstiku. vyrobit model šíření, grafy

Závěr

7.1 Shrnutí experimentu

co se povedlo, co se nepovedlo. Vyrobil jsem sondu a sw, přestala vysílat - proč?

7.2 Možná vylepšení

malé pcb bez modulů, optimalizace sw, nepoužívat HAL, programovat přes registry, měření náklonu sondy, častější posílání dat, nezávislost na GPS

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

	Příjmení:	Dvořák	Jméno: Jakub	Osobní číslo: 4	192178
--	-----------	--------	---------------------	-----------------	--------

Fakulta/ústav: Fakulta elektrotechnická

Zadávající katedra/ústav: Katedra elektromagnetického pole

Studijní program: Elektronika a komunikace

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Přenos telemetrických dat z meteorologického balónu

Název bakalářské práce anglicky:

Telemetric Data Transmission from Meteorological Balloon

Pokyny pro vypracování:

Navrhněte a realizujte rádiový spoj mezi meteorologickým balónem a pozemním segmentem.

Přenášená data z meteorologického balónu musí obsahovat minimálně informace o jeho poloze (GNSS). Ostatní data ze senzorů (poloha, teplota, tlak, vlhkost, inerciální informace) budou logovány přímo v měřícím systému balónu.

Na základě parametrů vysílaného / přijímaného signálu a informací z telemetrie vytvořte model šíření pro daný typ spoje (případně i jiné možnosti propojení) během jeho vzestupné trasy.

Za předpokladu možnosti vypuštění meteorologického balónu vše experimentálně ověřte a porovnejte model šíření zahrnující měřený profil atmosférických parametrů s reálnými daty.

Seznam doporučené literatury:

- [1] PECHAČ, Pavel, ZVÁNOVEC, Stanislav. Základy šíření vln pro plánování pozemních rádiových spojů. Praha: BEN technická literatura. 2007. ISBN 978-80-7300-223-7.
- [2] ŘEZÁČOVÁ, Daniela. Fyzika oblaků a srážek. Praha: Academia, 2007. Gerstner, sv. 2. ISBN 978-80-200-1505-1.
- [3] McNamara, Marilyn C. An Analysis of Burst Altitude for Weather Balloons. Antonian Scholars Honors Program, 2016, [online], citováno 27.1.2022, dostupné z: https://sophia.stkate.edu/shas honors/43.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Tomáš Kořínek, Ph.D. katedra elektromagnetického pole FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Datum zadání bakalářské práce: 30.01.2022 Termín odevzdání bakalářské práce: 20.05.2022

Platnost zadání bakalářské práce: 30.09.2023

Ing. Tomáš Kořínek, Ph.D. podpis vedoucí(ho) ústavu/katedry prof. Mgr. Petr Páta, Ph.D. podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ

Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

Datum převzetí zadání Podpis studenta