Advanced Study of Non-Associative Zeta Functions and Implications for the Riemann Hypothesis

Pu Justin Scarfy Yang September 15, 2024

1 Introduction

The study of non-associative zeta functions, particularly $\zeta_{\mathbb{Y}_3}(s)$, extends classical analytic number theory into a novel framework where the underlying algebraic structures are non-associative. This document explores advanced aspects of non-associative algebra, functional analysis, and their implications for the Riemann Hypothesis.

2 Non-Associative Algebra and Analysis

2.1 Non-Associative Algebras

Definition 2.1. A non-associative algebra over a field \mathbb{F} is a vector space \mathfrak{A} equipped with a bilinear map $\cdot : \mathfrak{A} \times \mathfrak{A} \to \mathfrak{A}$ such that:

$$(x \cdot y) \cdot z \neq x \cdot (y \cdot z)$$

for some $x, y, z \in \mathfrak{A}$.

Example 2.2. The octonions \mathbb{O} are a well-known example of a non-associative algebra where:

$$(x\cdot y)\cdot z\neq x\cdot (y\cdot z)$$

in general, but they satisfy alternative properties.

2.2 Non-Associative Harmonic Analysis

Definition 2.3. A non-associative Fourier transform for an algebra $\mathfrak A$ is defined as:

$$\mathcal{F}_{NA}(f)(\xi) = \int_{\mathfrak{A}} f(x)e^{-i\xi \cdot x} \, d\mu(x),$$

where $e^{-i\xi \cdot x}$ is interpreted in the non-associative context.

Theorem 2.4. The Fourier transform in non-associative settings provides new insights into the spectral properties of operators. Specifically, the non-associative Fourier transform helps analyze the distribution of eigenvalues in non-associative contexts.

3 Non-Associative Zeta Functions

3.1 Definition and Basic Properties

Definition 3.1. The non-associative zeta function $\zeta_{\mathbb{Y}_3}(s)$ is defined for $s \in \mathbb{Y}_3$ as:

$$\zeta_{\mathbb{Y}_3}(s) = \sum_{n=1}^{\infty} \frac{1}{n^s},$$

where n^s is interpreted in the non-associative structure of \mathbb{Y}_3 .

Theorem 3.2. The series for $\zeta_{\mathbb{Y}_3}(s)$ converges for values of s in a certain non-associative analog of the region $\Re(s) > 1$. The exact region of convergence depends on the specific properties of \mathbb{Y}_3 .

3.2 Analytic Continuation and Functional Equation

Definition 3.3. The analytic continuation of $\zeta_{\mathbb{Y}_3}(s)$ extends the domain beyond the initial region of convergence, often involving integral representations:

$$\zeta_{\mathbb{Y}_3}(s) = \int_C f(x) x^{s-1} d\mu(x),$$

where C is a contour in the non-associative context.

Theorem 3.4. The functional equation for $\zeta_{\mathbb{Y}_3}(s)$ may have the form:

$$\zeta_{\mathbb{Y}_3}(s) = \frac{\phi(s)}{\zeta_{\mathbb{Y}_3}(1-s)},$$

where $\phi(s)$ is a function derived from the non-associative structure.

4 Implications for the Riemann Hypothesis

4.1 Generalized Riemann Hypothesis in Non-Associative Context

Definition 4.1. The Generalized Riemann Hypothesis (GRH) for $\zeta_{\mathbb{Y}_3}(s)$ posits that all non-trivial zeros of $\zeta_{\mathbb{Y}_3}(s)$ lie on a generalized critical line:

$$\Re(s) = \frac{1}{2}.$$

Theorem 4.2. If $\zeta_{\mathbb{Y}_3}(s)$ satisfies the generalized Riemann Hypothesis, then it would imply corresponding results in the distribution of zeros and primes within the non-associative framework.

4.2 Applications to Non-Associative Number Theory

Definition 4.3. Non-associative prime number theorem states that the distribution of non-associative primes follows a generalized form of the classical theorem, potentially revealing new patterns in the non-associative setting.

Theorem 4.4. The non-associative prime number theorem provides new insights into the distribution of non-associative primes and their connection to $\zeta_{\mathbb{Y}_3}(s)$, influencing the understanding of non-associative zeta functions.

5 Advanced Topics and Further Developments

5.1 Non-Associative Geometries and Topologies

Definition 5.1. Non-associative manifolds are geometric structures where the tangent spaces are equipped with non-associative algebras. These manifolds may exhibit unique curvature properties and topological invariants.

Theorem 5.2. The study of non-associative manifolds provides new insights into the geometric and topological aspects of spaces where \mathbb{Y}_3 is the underlying structure.

5.2 Non-Associative Quantum Mechanics and Field Theory

Definition 5.3. In non-associative quantum mechanics, observables are modeled using non-associative algebras. This framework leads to novel interpretations of quantum states and measurements.

Theorem 5.4. Non-associative quantum mechanics may lead to new results regarding the behavior of particles and fields, influencing the analysis of $\zeta_{\mathbb{Y}_3}(s)$ and its applications.

6 Conclusion

This document has outlined an advanced and rigorous study of non-associative zeta functions, including $\zeta_{\mathbb{Y}_3}(s)$, and their implications for classical number theory, geometry, and quantum mechanics. The exploration into non-associative algebras, harmonic analysis, and their applications provides a novel perspective on longstanding mathematical problems and opens avenues for further research.