Осенний коллоквиум курса «Теория вероятностей»

ФКН НИУ ВШЭ, 2-й курс ОП ПМИ, 2-й модуль, 2016 учебный год

Билет 2

Свойства вероятностной меры. Формула включений и исключений. Парадокс распределения подарков.

Свойства вероятностной меры Формула включений и исключений

Теорема 1. $\Omega = \{w_1, \dots, w_n\}$ — множество всех элементарных исходов. Функция $P \colon 2^{\Omega} \to [0,1]$ — вероятностная мера. Свойства вероятностной меры:

- (1) $P(\Omega) = 1$. С этой точки зрения Ω называется достоверным событием.
- (2) $P(\emptyset) = 0$.
- (3) Если $A \subseteq B$, то $P(A) \leqslant P(B)$.
- (4) Пусть $A \sqcup B$ (это дизъюнктное объединение, это значит, что события предполагаются непересекающимися). Тогда

$$P(A \sqcup B) = P(A) + P(B)$$

- (5) $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- (6) $P(A_1 \cup ... \cup A_k) \leq P(A_1) + ... + P(A_k)$
- (7) Формула включений и исключений

$$P(A_1 \cup \ldots \cup A_n) = P(A_1) + \ldots + P(A_n) - P(A_1 \cap A_2) - P(A_1 \cap A_3) - \ldots - P(A_{n-1} \cap A_n) + \ldots + (-1)^{n-1} P(A_1 \cap \ldots \cap A_n)$$
 или

$$P(A_1 \cup \ldots \cup A_n) = \sum_{k=1}^n (-1)^{k-1} \sum_{i_1 < \ldots < i_k} P(A_{i_1} \cap \ldots \cap A_{i_k}),$$

что то же самое.

(8) \overline{A} — отрицание события A, то есть это те исходы, которые не благоприятствуют событию A. Тогда

$$\overline{A} = \Omega \setminus A \Rightarrow P(\overline{A}) = 1 - P(A)$$

Доказательство.

- (1) Следует из определения.
- (2) Аналогично.
- (3) $B = A \cup (B \setminus A)$. Тогда

$$P(B) = P(A) + \underbrace{P(B \setminus A)}_{\geqslant 0} \geqslant P(A).$$

(4) Следует из определения.

(5)
$$P(A \cup B) = \underbrace{P(A \setminus B) + P(A \cap B)}_{P(A)} + \underbrace{P(B \setminus A) + P(A \cap B)}_{P(B)} - P(A \cap B) = P(A) + P(B) - P(A \cap B)$$

(6) Докажем по индукции:

База: $n = 1 : P(A_1) \leqslant P(A_1)$ очевидно.

Пусть для n доказано. Докажем для n+1:

$$P((A_1 \cup A_2 \cup \ldots \cup A_n) \cup A_{n+1}) \leqslant P(A_1 \cup \ldots \cup A_n) + P(A_{n+1}) \overset{\text{(шаг индукции)}}{\leqslant} P(A_1) + \ldots + P(A_{n+1}).$$

(7) Докажем по индукции:

База: для n=1 и n=2 очевидно (смотри пункт 5).

Пусть для n уже доказано. Докажем для n+1:

Пусть для п уже доказано. Докажем для
$$n+1$$
:
$$P((A_1 \cup \ldots \cup A_n) \cup A_{n+1}) \stackrel{(5)}{=} P(A_1 \cup \ldots \cup A_n) + P(A_{n+1}) - P(\underbrace{(A_1 \cup \ldots \cup A_n) \cap A_{n+1})}_{\text{п штук}})$$

$$\stackrel{\text{(шаг индукции)}}{=} P(A_1) + \ldots + P(A_n) - \sum_{1\leqslant i < j \leqslant n} P(A_i \cap A_j) + \sum_{1\leqslant i < j < k \leqslant n} P(A_i \cap A_j \cap A_k) - \\ - \ldots + P(A_{n+1}) - \left(P(A_1 \cap A_{n+1}) + \ldots + P(A_n \cap A_{n+1}) - \sum_{1\leqslant i < j \leqslant n} P(A_i \cap A_j \cap A_{n+1}) + \ldots \right) \\ = P(A_1) + \ldots + P(A_{n+1}) - P(A_1 \cap A_2) - P(A_1 \cap A_3) - \ldots - P(A_n \cap A_{n+1}) + \ldots + (-1)^n P(A_1 \cap \ldots \cap A_{n+1})$$

(8) Следует из определения.

Замечание 1. В классическом определении вероятности все элементарные исходы равновероятны. Из ровно одного свойства (свойства (4)) следует определение вероятности произвольного события A, состоящего из k элементов, $-P(A) = \frac{k}{n}$.

Доказательство. Заметим, что из свойства (4) следует аналогичное свойство для к непересекающихся событий A_1,\ldots,A_k :

$$P(A_1 \sqcup \ldots \sqcup A_k) = P(A_1) + \ldots P(A_k).$$

Пусть $A = \{w_{i_1}, \dots, w_{i_k}\}$. Тогда

$$P(A) = P(w_{i_1}) + \ldots + P(w_{i_k}) = \underbrace{\frac{1}{n} + \ldots + \frac{1}{n}}_{l_k} = \frac{k}{n}.$$

Парадокс распределения подарков

Задача 1. N человек принесли подарки друг для друга. Затем эти подарки сложили в мешок и каждый вынул себе из мешка подарок. Какова вероятность того, что конкретный человек вынул подарок, который он принес? Какова вероятность того, что никто не вытащил подарок, который сам принес?

Пространство исходов Ω состоит из всех возможных перестановок чисел $1, 2, \ldots, N$, причем все перестановки являются равновозможными. Значит, вероятность конкретной перестановки равна $\frac{1}{N!}$. Событие, состоящее в том, что конкретный человек вытащил подарок, который сам принес, состоит из (N-1)! исходов. Следовательно, вероятность такого события равна $\frac{(N-1)!}{N!} = \frac{1}{N}$. При больших N эта вероятность стремится

Можно было бы думать, что вероятность события: ни один человек не вытащил подарок, который сам принес, стремится к единице, но это ошибочное мнение.

Пусть A_k - событие, состоящее в том, что k-й человек вытащил свой подарок. Тогда $A_1 \cup \ldots \cup A_N$ - событие, состоящее в том, что хотя бы один вытащил свой подарок. По формуле включений и исключений

$$P(A_1 \cup ... \cup A_N) = \sum_{1 \le i \le N} P(A_i) - \sum_{1 \le i < j \le N} P(A_i \cap A_j) + ... + (-1)^{N-1} P(A_1 \cap ... \cap A_N)$$

$$\begin{cases} P(A_i) = \frac{1}{N}, \\ P(A_i \cap A_j) = \frac{(N-2)!}{N!}, \\ \dots \\ P(A_{i_1} \cap \dots A_{i_k}) = \frac{(N-k)!}{N!}, \\ \dots \\ P(A_{i_1} \cap \dots A_{i_k}) = \frac{(N-k)!}{N!}, \end{cases} \Rightarrow P(A_1 \cup \dots \cup A_N) = N \cdot \frac{1}{N} - C_N^2 \cdot \frac{(N-2)!}{N!} - C_N^3 \cdot \frac{(N-3)!}{N!} + \dots + (-1)^{N-1} \frac{1}{N!} \\ \dots \\ P(A_1 \cap \dots \cap A_N) = \frac{1}{N!}, \end{cases}$$

$$P(A_1 \cup \dots \cup A_N) = 1 - \frac{1}{N!} + \frac{1}{N!} - \frac{1}{N!} + \dots + \frac{(-1)^{N-1}}{N!}$$

$$P(A_1 \cup ... \cup A_N) = 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + ... + \frac{(-1)^{N-1}}{N!}$$

Таким образом, вероятность того, что ни один человек не вытащил подарок, который сам принес, равна

$$1 - P(A_1 \cup \ldots \cup A_N) = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \ldots - \frac{(-1)^{N-1}}{N!}$$

и стремится к $\frac{1}{e}$ при $N \to +\infty$.

Замечание 2. Вспомним разложение e^x в ряд Тейлора:

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

Подставляя вместо x число -1, получаем искомую вероятность $1 - P(A_1 \cup \ldots \cup A_N)$.