Question 1 (a) BUL = { m, n, p, q, s, t} AU(BU(): {p, q,s, t, m, n} (AUB) = { m, n, p, q, s, t3 (AUB)U(= & m, n, p,q,s, +3 = AU(BU() (shown) (b) & Question not complete. (c) 12.4 \ 4<10, 4(5) 32.9 9(11, 9(2) 18<53 45-11 52-25 R: {(2,16), (2,23), (3,16), (3,23), (4,23)} (d) Let A = number of student in art class = 35 B: number of student in science class : 57 Find AUB (i) ANB=12 AUB=35+57-12 =80 students (ii) AUB=A+B = 35+57 = 92 students

Question 2

(a)(i) p = You try hord

q: You have a talent

r = You get rich

(pvg) -> r

∅ (;;)

⟨ (;;;)

(<i>b</i>)	P	9	r	$\iota \to b$	2v (1→b)	b \ (d \ (t -> b))	7 (pv (q1(1+p)))	
	Τ	7	Т	T	Τ	T	[-	
	T	Т	۴	T	T	T	۴	
	T	۶	T	F	Γ -	T	۴	
	7	٦	۴	7	F	Т	F	
	F	ī	τ	T	T	T	F	
	F	7	٦	τ	T	Τ	f	
	٦	F	T	F	4	F	Τ	
	۴	Ê	F	Т	F	T	F	

Р	9,	٢	9->-	٦P	7p ∧ (q→r)
T	Τ	T	7	F	<u>}-</u>
7	T	ŀ	j -	F	آ
7	۲	T	Т	ات	۲
T	F	ſċ	T	F	۴
F	τ	Т	7	T	7
۲	Т	j-	F	٢	F-
۴	F	7	T	7	Т
F	F	F	T	T	T

A & B not equivalent a

(i)

(c) x=1-24

not all x is true when P(x).

A: J.X

When it is odd, y is integer, and when it even, y will become fraction.

Thus, it must be odd. When it even, P(x,y) will become False

Thus, ¬VxP(x) is true since not all it will lead to true in P(x,y).

$(c)(ii) \exists x \forall (x)$
Existent of x that P(x,y) is time.
Let x=1, 1+2y=1
y=0 (integer)
Since when x=1, y=0, P(x,y) is true, thus FxP(x) is true since there is of
least one true in P (x,y).
(d) Question missing symbol.
Question 3
(a)(i)(= {(s,s), (s,t), (t,t), (t,v), (u,v), (u,s), (v,v)}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
M _K : 4 0 1 1 1
V
~°96e
(iii) Not antisymmetric since consist (t,v) and (t,v). (More than one arrow from t)
Not asymmetric since exist of (1,5), (u,u), (t) and (v,v). (reflexive)
Not partial order since no antisymmetric
no transitive also since exist (u.s), (s,t) but there is no lust)

4 but reflexive. since exise (s,s), (y,u), (t,t) and (v,u).

(b)(;) True. This is because all a map to b.

(ii) False. This is because a con only have one b, but it exist (1,4) and (1,8).

(iii) False. This is because no b for a=2.

Not one-to-one, not onto Y, no bijectio

For
$$w(x)$$
, $-3 = -9$

0 = 0

3 = 9

w(x) is one-to-one, onto Y and bijection.

(d) (i) Let
$$y : 2x + 3$$
 Let $y : x + 5$

$$x = \frac{y - 3}{2}$$

$$x = y - 5$$

$$f^{-1}(x) : \frac{x - 3}{2}$$

$$g^{-1}(x) : x - 5$$

(ii) fogof =
$$f(2x+8)$$
 = $4x+16+3$
= $f(2x+8)$ = $4x+19$
= $2(2x+8)+3$

Question 4

(a) fo = 3.0, F, -25

Ft = Ft-1+ 4 Ft-2 for + 22.

(b) Fo = 3,0 F, = 2.5

F2=F,+4+0 F3=F2+4+1

: 1.5 + 34

= 3.25 + 4 (2.5)

٤ 3,25

= 3.875

(c) warm ((t) {

if t=0

return 3.0

elie if t=1

return 2.5

elie return warm ((+ -1) + 0.25 * warm ((+ -2);

3

```
Question 5
(a)(;) (5-1)! : 4!
               = 24 ways
   (ii) Treat (aptain, two vice-captoin as one block, thu, remain 3 block
      Arrangement for 3 block=(3-1)!
       Assongement for 3 person within single block = 3?
       Total arrangement = 6x2 = 12 ways
(b) Total arrangement = 5!
                    = 120 ways
    Head and aristant as one block = 2! = 2 (next to each other)
    Four block exist=4!=24
                                       that next to each other
     lotal number of arrongement for head & asistant = 2×24
     Valid arrangement: 120-48
                                        (48 is invalid anongement)
                      : 72 ways.
```

Question 5 (c) Buy 6 out of 10 (i) No restriction ((n+1-1,1): ((1016-1,6) : ((\5, 6) 6i di 12j = 5005 ways (ii) At least 4 hazelnyt flavoured 6-4=2 chocalate type from 9 type ((9+1-1,1) = ((10,2): 81.51 101 : 45 ways. (!!!) ((10'4) = 10j 61.41. = 210 vays.

Quetion 5

(9) 13 player

(;) 13 (.. = 78 ways

(ii) 13 Pi, = 3 113 510 400 ways

(::1) 3 (1 × 10 (10 = 3

3(5 × 10 (d : 3 × 10 = 30

3(3 × "(8 : 45

Total ways = 78 mays.

Question 6

(a) Since there is three colour ball, at least need to take I balls.

(b) 10 x 8-80 pieces checiecaker.

number of people = 30+2 = 32 people

32 x3 = 96 pie 18,

Since the number of pieces of cheesecake is small than number

of cheerecake required by people for at least 3 pieres each

person, not all participants can get three pieces.

(c) (ombination sum of 10 = {(2,8), (3,7), (4,4)}
To have at least one pair sum of 10, it is number b, which is
the 4th integer in the set.