再帰的余代数いろいろ

原 将己

2017年10月15日

1 代数と余代数

以下、 \mathbf{C} は圏とし、 $F: \mathbf{C} \to \mathbf{C}$ は自己関手とする。

定義 **1.1** (代数、余代数)**.** C の対象と射の組 (A,α) であって $\alpha: FA \to A$ となるものを F-代数 (F-algebra) と呼ぶ。

C の対象と射の組 (A,α) であって $\alpha:A\to FA$ となるものを F-余代数 (F-coalgebra) と呼ぶ。

F-代数 (A,α) から (B,β) への準同型とは、 $h\colon A\to B$ であって $\beta\circ Fh=h\circ\alpha$ となるもののことである。 F-代数とその準同型のなす圏を $\mathrm{Alg}(F)$ と書く。

F-余代数 (A,α) から (B,β) への準同型とは、 $h:A\to B$ であって $\beta\circ h=Fh\circ\alpha$ となるもののことである。 F-余代数とその準同型のなす圏を Coalg(F) と書く。

定義 **1.2** (余代数-代数準同型)**.** F-余代数 (A,α) から F-代数 (B,β) への余代数-代数準同型 (coalgebra-to-algebra homomorphism) とは、 $h:A\to B$ であって、 $\beta\circ Fh\circ\alpha=h$ となるもののことである。

定義 1.3 (始代数と終余代数). Alg(F) の始対象を始代数 (initial algera) という。Coalg(F) の終対象を終余代数

(terminal coalgebra, final coalgebra) という。

定義より、始代数と終余代数は(存在するならば)同型を除いて一意である。

定義 1.4 (再帰的余代数と余再帰的代数). 余代数であって、任意の代数への準同型が一意に存在するものを再帰的 F-余代数 (recursive F-coalgebra) という。本資料では再帰的余代数からなる Coalg(F) の充満部分圏をRCA(F) と表記する。

代数であって、任意の余代数からの準同型が一意に存在するものを**余再帰的** F-代数 (corecursive F-algebra) という。本資料では余再帰的代数からなる Alg(F) の充満部分圏を CRA(F) と表記する。

注意 1.5. 再帰的余代数と始代数の普遍性は良く似ている。実際、 α が可逆のとき、この 2 つの定義は (α の向きを互いに逆にすることで) 同値になる。

同様に、余再帰的代数と終余代数の定義も、 α が可逆のときに同値になる。

2 Lambek の定理

定理 **2.1** (Lambek). 始代数 (A,α) の α は常に可逆である。双対的に、終余代数も可逆である。

Proof. 始代数について示す。 (A,α) を始代数とする。このとき $(FA,F\alpha)$ も代数だから、代数の準同型 $(h:A \to FA$ であって $F\alpha \circ Fh = h \circ \alpha$ となるもの) が存在する。

h も α も代数の準同型だから、 $\alpha \circ h$ は (A,α) の自己準同型である。一方、 id_A も (A,α) の自己準同型である。始代数からの準同型は一意だから、 $\alpha \circ h = \mathrm{id}_A$ である。

 $\alpha \circ h = \mathrm{id}_A$ と h の準同型性により、 $h \circ \alpha = F\alpha \circ Fh = F \mathrm{id}_A = \mathrm{id}_{FA}$ である。 したがって、 h は α の逆射である。

系 2.2. 始代数 (の逆射) は再帰的余代数である。双対的に、終余代数 (の逆射) は余再帰的代数である。

定理 2.3. 始代数 (の逆射) は RCA(F) の終対象である。双対的に、終余代数 (の逆射) は CRA(F) の始対象である。

Proof. (A,α) を始代数とする。このとき (A,α^{-1}) が RCA(F) の終対象であることを示す。

 $(B,\beta) \in RCA(F)$ とする。 (B,β) から (A,α^{-1}) への代数準同型は、 (B,β) から (A,α) への余代数-代数準同型 に他ならない。したがって B の再帰性から、代数準同型は一意である。

3 逆 Lambek の定理

(逆 Lambek という名前は本資料に固有である。)

補題 **3.1.** (A,α) が再帰的余代数であるとき、 $(FA,F\alpha)$ も再帰的余代数である。双対的に、 (A,α) が余再帰的代数であるとき、 $(FA,F\alpha)$ も余再帰的代数である。

Proof. (A, α) を再帰的余代数とし、 (B, β) を代数とする。

A の再帰性より、 A から B への余代数-代数準同型 $(h: A \to B$ であって $\beta \circ Fh \circ \alpha = h$ となるもの) が一意 に存在する。これを用いて $f = \beta \circ Fh$ と定義する。

この f は $\beta \circ Ff \circ F\alpha = \beta \circ F(\beta \circ Fh \circ \alpha) = \beta \circ Fh = f$ を満たす。したがって f は FA から B への余代数-代数準同型である。

逆に f': $FA \to B$ が $\beta \circ Ff' \circ F\alpha = f'$ を満たすとする。 $h' = f' \circ \alpha$ とおくと、 $\beta \circ Fh' \circ \alpha = \beta \circ Ff' \circ F\alpha \circ \alpha = f' \circ \alpha = h'$ となるから、 h' は A から B への余代数-代数準同型である。

A の再帰性から h'=h となる。したがって、 $f'=\beta\circ Ff'\circ F\alpha=\beta\circ Fh'=\beta\circ Fh=f$ となる。 以上より FA から B への余代数-代数準同型は一意に存在する。したがって、 $(FA,F\alpha)$ は再帰的余代数であ る。

定理 3.2 (逆 Lambek). RCA(F) の終対象は可逆である。双対的に、 CRA(F) の始対象は可逆である。

Proof. (A,α) を RCA(F) の終対象とする。 $(FA,F\alpha)$ も再帰的余代数だから、 (A,α) の終性より、FA から A への余代数準同型 $(h\colon FA\to A$ であって $\alpha\circ h=Fh\circ F\alpha$ となるもの) が存在する。

h も α も余代数の準同型だから、 $h\circ \alpha$ は (A,α) の自己準同型である。一方、 id_A も (A,α) の自己準同型である。終再帰的余代数への準同型は一意だから、 $h\circ \alpha=\mathrm{id}_A$ である。

 $h\circ \alpha=\mathrm{id}_A$ と h の準同型性により、 $\alpha\circ h=Fh\circ F\alpha=F\,\mathrm{id}_A=\mathrm{id}_{FA}$ である。 したがって、 h は α の逆射である。

系 3.3. RCA(F) の終対象 (の逆射) は始代数である。双対的に、CRA(F) の始対象 (の逆射) は終余代数である。

参考文献