Greatient Boosting: (For Both classification and Regnession)

Dataset

Exp	Degree	Salany (target)			
2	BE	50 K			
3	MS	70 K	Avg sal -> [50K+70K+80K		+30K+80K+100K]
5	MS	80 K	0	9.	4
6	PHP	100K	•	= 75 K	1900
	10	75 K (Mean)	ynoles and	CO	90

F5+R(-23)

Step 1: Create a Base Model

Step 2: Compute Residuals, France (185-) + National (185-) + Natio

HI How

	7 (35-23) 7				
Dataset	on every	the fire	2 BOX - soulout for		
Exp	Degree	Salary	R (Yi-Y)		
mara still c	BE	50K	1-25Klomos o franco propo etc.		
3		70KBOOK	EV		
5	MS	Sok	.5K		
Ğ	PHD	100 K	25 K I hade tuglion katsiling ones at		

Step 3: Construct a decision tree. Consider inputs zi and output Ry (x, x2) (4)

Dataset

Exp	Degree	Salary	H	Predicted P.	3
2	BE	50K	- 25K	- 23K)
3	MS	7 0K	-5K	- 314	- We assumed
5	MS	8BK	5 K	3 K	the output have
6	PHD	100K	25 K	2014) //2 04/4

B Final predicted output combining Base model and decision Tree:

2 52K -> output for the first record

At's giving abmost a connect prediction. But for now it's over fitting.

For test data it won't perform well.

So, our predicted output should be:

75+d(-23)
$$L \longrightarrow d = \text{learning reade}$$
(0.01 val in general)

0149

Dataset:					٨	(y;-ŷ
Exp	Degree	Salary	$R_1(y_i - \hat{y})$	Predicted P2		Articles
2	BE	50K	- 25K	-23K	747K	-24.77
3	MS	7 0K	-5K	-3 K	74.97K	- 4.97
5	Ms	80K	5 K	3 K	-	
6	PHD	100 K	251	20 K	-	_

$$\begin{array}{c|c}
\hline
DT_1 \{x_i, R_i\} \\
\hline
DT_2 \{x_i, R_i\} \\
\hline
DT_3 \{x_i, R_i\} \\
\hline
DT_4 \{x_i, R_i\} \\
\hline
DT_5 \{x_i, R_i\} \\
\hline
DT_6 \{x_i, R_i\} \\
\hline
DT_7 \{x_i, R_i\} \\
\hline
DT_8 \{x_i, R_i$$

Mathemetical Function:

$$F(x) = {}^{d_0}(x) + {}^{d_1}(x) + {}^{d_2}(x) + \dots + {}^{d_2}(x)$$

$$\{ \alpha_0, \alpha_1, \alpha_2, \dots \alpha_n \} = \text{ Learning rate } \{ \text{ o to } 1 \}$$

$$F(x) = \sum_{i \ge 0}^{n} \alpha_i h_i(x)$$