Resource counts for quantum floating-point multiplication and division

Shaun Miller
Department of Mathematical Sciences
Florida Atlantic University

Floating-Point Arithmetic in Lattice Based Cryptography

Resource Counts for High Precision

Floating-Point Values

$$x \approx (-1)^{x_s} x_M 2^{x_E}$$

 $x \in \mathbb{Z}$ has binary representation $x_{(0)}, x_{(1)}, \dots, x_{(n-1)}$

$$x_M \in [1,2)$$
 so $x_{M(n-1)} = 1$

- ▶ precision¹: $k = width \lceil (4 * log_2(width)) \rfloor + 13$
- ightharpoonup exponent width: $\ell = \overline{\text{width} k 1}$
 - lacksquare embedded in $\ell+1$ qubit register
- ▶ 1 qubit needed for sign

Lattice-Based Cryptography

- many post-quantum public-key proposals reduce to hard lattice problems²
- primal attack creates a lattice with a shortest vector that reveals key information

²Joppe Bos et al. "Frodo: Take off the ring! Practical, quantum-secure key exchange from LWE". In: *Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security*. 2016, pp. 1006–1018; Erdem Alkim et al. "Post-quantum key exchange—a new hope". In: *25th* {*USENIX*} *Security Symposium* ({*USENIX*} *Security 16*). 2016, pp. 327–343; M Seo et al. "Proposal for NIST post-quantum cryptography standard: EMBLEM and R". In: *EMBLEM. NIST PQC Round* 1 ♠), p ♣4 ← ≥ ▶ ← ≥ ▶ ♦ ♦ ♦

b

Figure: Lattice Generated by $b_1=(4,3)$ and $b_2=(3,1)$ with $\lambda_1(\Lambda)=\sqrt{5}$.

Lattice Reduction

- ► LLL³
- ▶ fp-arithmetic is required for large dimensional lattices⁴
 - ▶ precision of $log_2(3) * d$
- ightharpoonup a variant of BKZ- β^5 most successful
 - focuses resources on smaller sublattices or "blocks"

³Hendrik Willem Lenstra, Arjen K Lenstra, L Lovfiasz, et al. "Factoring polynomials with rational coefficients". In: (1982).

⁴Phong Q Nguyen and Damien Stehlé. "An LLL algorithm with quadratic complexity". In: *SIAM Journal on Computing* 39.3 (2009), pp. 874–903.

⁵Claus-Peter Schnorr and Martin Euchner. "Lattice basis reduction: Improved practical algorithms and solving subset sum problems". In:

Mathematical programming 66.1-3 (1994), pp. 181–199 → ← □ → ← ≧ → ← ≧ →

$$\beta$$
 b_1 b_2 b_3 b_4 b_5 b_6 b_7 b_8 b_9 b_{10}

$$\beta$$
 b_1 b_2 b_3 b_4 b_5 b_6 b_7 b_8 b_9 b_{10}

$$\beta$$
 b_1 b_2 b_3 b_4 b_5 b_6 b_7 b_8 b_9 b_{10}

$$\beta$$
 b_1 b_2 b_3 b_4 b_5 b_6 b_7 b_8 b_9 b_{10}

$$eta_1 \quad b_2 \quad b_3 \quad b_4 \quad b_5 \quad b_6 \quad b_7 \quad b_8 \quad b_9 \quad b_{10}$$

BKZ- β algorithm calls SVP solver on "blocks" of size β

BKZ- β algorithm calls SVP solver on "blocks" of size β

$$\begin{bmatrix} b_1 & b_2 & b_3 & b_4 & b_5 & b_6 & b_7 & b_8 & b_9 & b_{10} \end{bmatrix}$$

$$\beta - 3$$
 $b_1 \quad b_2 \quad b_3 \quad b_4 \quad b_5 \quad b_6 \quad b_7 \quad b_8 \quad b_9 \quad b_{10}$

$$eta = 4$$
 $lacksquare$ $b_1 \ b_2 \ b_3 \ b_4 \ b_5 \ b_6 \ b_7 \ b_8 \ b_9 \ b_{10}$

BKZ- β algorithm calls SVP solver on "blocks" of size β

$$\begin{bmatrix} b_1 & b_2 & b_3 & b_4 & b_5 & b_6 & b_7 & b_8 & b_9 & b_{10} \end{bmatrix}$$

analysis of BKZ- β

cost of BKZ- β dominated by SVP solver sieving runs in time $2^{O(n)}$ but requires exponential space enumeration runs in $2^{O(n\log(n))}$

[2] suggests sieving more efficient for $n \ge 250$

lower bound for attack cost is given as $2^{c\beta}$

Scheme	β for Primal Attack ⁶	$\log_2(3) * \beta$	ℓ	width
NewHope	386	612	23	636
Frodo	481	763	24	788
Emblem	337	535	22	558

Figure: Precision Requirements for L^2 algorithm on sublattice of dimension β

operation	width	qubits	T-count
fp	32	2207	28672
int	32	95	14525
fp	64	8511	114688
int	64	191	57757
fp	n	$2n^2 + 5n - 1$	$28n^{2}$
int	n	3n - 1	$14n^2 + 7n + 7$

Figure: Comparison of Integer⁷ and Floating-Point⁸ Division Circuits

⁷Himanshu Thapliyal et al. "Quantum circuit designs of integer division optimizing T-count and T-depth". In: *IEEE Transactions on Emerging Topics in Computing* (2019).

- ► T-Count of 7 for Toffoli (CCX) and Fredkin (CSWAP) gates⁹
- the cost of adding a control to any controlled gate is at most 8 additional T-gates¹⁰
 - ▶ I assume a CCCX gate has a T-count of 7+8

⁹Matthew Amy et al. "A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits". In: *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems* 32.6 (2013), pp. 818–830.

¹⁰ Peter Selinger. "Quantum circuits of T-depth one". In: *Physical Review A* 87.4 (2013), p. 042302.

Figure: Floating-Point Multiplication Circuit¹¹

Figure: Floating-Point Multiplication Circuit (Modified). High $|\emptyset_i\rangle$ signals an underflow or overflow has occurred.

Figure: 6-qubit Addition Circuit¹²

¹² Yasuhiro Takahashi, Seiichiro Tani, and Noboru Kunihiro. "Quantum addition circuits and unbounded fan-out". In: arXiv preprint arXiv:0910.2530 (2009).

	width	qubits	CCX	CCCX
×	763	3052	2907030	1163575
×	612	2448	1869660	748476
×	535	2140	571915	1428450
+	25	51	120	49
+	24	49	115	47
+	23	47	110	45

Figure: Resource Counts¹⁴ for Fixed-Point Operations Required for High Precision FP Arithmetic

¹³Damian S. Steiger, Thomas Häner, and Matthias Troyer. "ProjectQ: an open source software framework for quantum computing". In: *Quantum* 2 (2018), p. 49; Thomas Häner et al. "A software methodology for compiling quantum programs". In: *Quantum Science and Technology* 3.2 (2018), p. 020501.

width	qubits	CSWAP
1526	1527	1525
1224	1225	1223
1070	1071	1069

Figure: L1 Circuit and Resource Requirements

	width	k	ℓ	qubits	T-count
fp ×	788	763	24	3133	37816660
fp ×	636	612	23	2526	24326341
fp ×	558	535	22	2215	25440528
fp ÷	788	_	_	1245827	17386432
fp ÷	636	_	_	812171	11325888
fp ÷	558	_	_	625517	8718192

Figure: Resource Counts for High Precision Floating-Point Arithmetic

- The resource requirements for high-precision fp arithmetic are demanding
- qubit cost seems to be drastically improved by hand-optimized circuits
 - a hand-optimized fp circuit would probably benefit similarly
- for component circuit implementations see https://github.com/shaunmillerc1010