Convolutional Neural Network and Convex Optimization

Si Chen *and* Yufei Wang {sic046, yuw176}@ucsd.edu

Convolutional neural network (CNN)

- Consists of multiple layers.
- Convolutional layer:

$$h_{ij}^k = f((W^k * x)_{ij} + b_k) \quad f(x) = \max(0, x)$$

- Pooling layer: max-pooling / average-pooling
- Last layer: logistic regression layer:

* Output:
$$P(Y = i | x, W, b) = softmax_i(Wx + b) = \frac{e^{W_i x + b_i}}{\sum_j e^{W_j x + b_j}}$$

* Loss function: $L = \sum_{i=0}^{|D|} \log(P(Y = y^{(i)} | x^{(i)}, W, b))$

- Prediction: $y_{pred} = \operatorname{argmax}_{i} P(Y = i | x, W, b)$

Overall architecture

- * Dataset: CIFAR-10. 10 classes. 50,000 training. 10,000 test.
- * Pooling information: each pooling unit spaced s = 2 pixels apart; summarizing a neighborhood of 3×3 .

Dropout technique

* Training: setting to zero the output of each hidden neuron with probability of 0.5.

- * Sub-model: for every training example, a different architecture
- * Test: use all neurons but multiply their outputs by 0.5
 - an approximation to taking the geometric mean of the predictive distributions.

From dropout to sub-model combination

* Sub-model: for every training example, a different architecture

Linear combination of many sub-models:

$$P_{l.comb}(Y=i) = \sum_{k=1}^{n} l_k \times P_{m_k}(Y=i)$$

Sub-model combination: a convex problem

Optimization problem:

$$\min_{l} \quad \sum_{i=1}^{N} ||P_i \cdot l - y_i||_2^2$$
s.t. $l \geq 0$

Simplified objective function:

$$\sum_{i=1}^{N} ||P_i \cdot l - y_i||_2^2 = \sum_{i=1}^{N} (P_i \cdot l - y_i)^t (P_i \cdot l - y_i) \qquad P = [P_1^t, P_2^t, ..., P_n^t]^t$$

$$= (P \cdot l - y)^t (P \cdot l - y)$$

$$= l^t P^t P l - 2y^t P l + y^t y$$

$$y = [y_1^t, y_2^t, ..., y_N^t]^t$$

$$P = [P_1^t, P_2^t, ..., P_n^t]^t$$

* QP problem:

$$\min_{l} \quad l^{t}P^{t}Pl - 2y^{t}Pl + y^{t}y$$
s.t.
$$l \geq 0$$

Sub-model combination for non-dropout network

* Sub-model in non-dropout network:

$$\Pr(h_{m_i}^j = 2h_{orig}^j) = \Pr(h_{m_i}^j = 0) = \frac{1}{2}.$$

* Same objective function:

$$\min_{l} \quad l^{t}P^{t}Pl - 2y^{t}Pl + y^{t}y$$
s.t.
$$l \geq 0$$

* h_{m_i} : penultimate layer vector of m-th sub-model

 h_{orig} : penultimate layer vector of the trained CNN

Results - the effect of sub-model combination

- Dropout network & non-dropout network
- * Randomly chosen 4500 sub-models for each network

Sub-model combination for dropout network

Sub-model combination for non-dropout network

Results - the role of dropout

Accuracy of each sub-model for both networks:

Accuracies of each sub-model for dropout network

Accuracies of each sub-model for non-dropout network