BACALAUREAT 2013 SESIUNEA SPECIALĂ

Proba E c) mate-info

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

SUBIECTUL I

- 1. Determinați numărul real x pentru care numerele 1, 2x + 2 și 7 sunt termeni consecutivi ai unei progresii aritmetice.
- **2.** Calculați distanța dintre punctele de intersecție cu axa Ox a graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 4x + 3$.
- 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2+4}=x+2$.
- **4.** Determinați câte numere naturale impare \overline{ab} se pot forma, știind că $a, b \in \{2, 3, 4, 5\}$ și $a \neq b$.
- 5. În dreptunghiul ABCD, cu AB = 8 și BC = 6, se consideră vectorul $\overrightarrow{v} = \overrightarrow{AB} + \overrightarrow{AO} + \overrightarrow{AD}$, unde $\{O\} = AC \cap BD$. Calculați lungimea vectorului \overrightarrow{v} .
- **6.** Calculați sinusul unghiului A al triunghiului ABC în care AB=6, BC=10 și $\sin C=\frac{3}{5}$.

SUBIECTUL II

- 1. Pentru fiecare număr real a se consideră matricea $A(a) = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$.
 - a) Calculați $\det(A(0))$.
 - **b)** Determinați valorile reale ale lui a pentru care $5A(a) (A(a))^2 = 4I_3$.
 - c) Determinați inversa matricei A(2).
- 2. Se consideră polinomul $f = X^3 mX^2 + 3X 1$, unde m este număr real.
 - a) Calculați f(2) f(-2).
 - b) Determinați restul împărțirii lui f la X+2, știind că restul împărțirii polinomului f la X-2 este egal cu 9.
 - c) Determinați numerele reale m pentru care $x_1^3 + x_2^3 + x_3^3 = 3$, unde x_1, x_2, x_3 sunt rădăcinile polinomului f.

SUBIECTUL III

- 1. Se consideră funcția $f:(-1,1)\to\mathbb{R}, f(x)=\ln\frac{1-x}{1+x}$.
 - a) Calculați $f'(x), x \in (-1,1)$.
 - b) Verificați dacă funcția f este descrescătoare pe intervalul (-1,1).
 - c) Determinați punctele de inflexiune a funcției f.
- 2. Pentru fiecare număr natural n se consideră numărul $I_n = \int_1^2 x^n e^x dx$.
 - a) Calculați I_0 .
 - b) Arătați că $I_1 = e^2$.
 - c) Demonstrați că $I_{n+1} + (n+1)I_n = 2^{n+1}e^2 e$, pentru orice număr natural n.

1

şt-nat

Filiera teoretică, profilul real, specializarea științe ale naturii

SUBIECTUL I

- 1. Arătați că numărul $2(\sqrt{7}+1)-\sqrt{28}$ este natural.
- **2.** Calculați $f(1) + f(2) + \cdots + f(10)$ pentru funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = 2x 1$.
- 3. Rezolvați în mulțimea numerelor reale ecuația $4^{x+1} = 16$.
- 4. Calculați probabilitatea ca, alegând la întâmplare un element din mulțimea $A = \{1, 2, 3, \dots, 15\}$, acesta să fie multiplu de 7.
- 5. Se consideră punctele A, B și C astfel încât $\overrightarrow{AB} = 2\overrightarrow{i} + \overrightarrow{j}$ și $\overrightarrow{BC} = \overrightarrow{i} \overrightarrow{j}$. Calculați lungimea vectorului \overrightarrow{AC} .
- 6. Determinați $x \in \left(0, \frac{\pi}{2}\right)$ știind că $\frac{3\sin x 2\cos x}{\cos x} = 1$.

SUBIECTUL II

- 1. Pentru fiecare număr real x se consideră matricea $A(x) = \begin{pmatrix} 1 & x & x \\ x & 1 & x \end{pmatrix}$.
 - a) Calculați $\det(A(2))$.
 - **b)** Arătați că $A(1) \cdot A(2) = 5A(1)$.
 - c) Determinați numerele reale x pentru care det(A(x)) = 0.
- 2. Se consideră polinomul $f = X^3 2X^2 2X + m$, unde m este număr real.
 - a) Pentru m=3, calculati f(1).
 - b) Determinați numărul real m știind că restul împărțirii polinomului f la X-2 este egal cu
 - c) Pentru m = 4, arătați că $(x_1 + x_2 + x_3) \left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} \right) = 1$, unde x_1, x_2, x_3 sunt rădăcinile polinomului f.

- 1. Se consideră funcția $f:(0,\infty)\to\mathbb{R},\,f(x)=x\ln x.$
 - a) Calculați $f'(x), x \in (0, \infty)$.

 - b) Calculați $\lim_{x\to +\infty} \frac{f(x)}{x^2}$. c) Demonstrați că funcția f este convexă pe intervalul $(0,\infty)$.
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{1}{x^2 + 1}$.
 - a) Arătați că $\int_{0}^{1} x f(x) dx = \frac{1}{2} \ln 2$.

 - b) Calculați ∫₀¹ xf'(x) dx.
 c) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $h: [0,1] \to \mathbb{R}, \ h(x) = \frac{1}{f(x)}.$

tehnologic

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

SUBIECTUL I

- 1. Arătați că $3(2+\sqrt{2})-3\sqrt{2}=6$.
- **2.** Calculați $f(-2) \cdot f(0)$ pentru funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x + 1$.
- 3. Rezolvați în mulțimea numerelor reale ecuația $\log_3(x^2+1) = \log_3 1$.
- 4. Prețul unui obiect este 1000 de lei. Determinați prețul obiectului după o ieftinire cu 10%.
- 5. În reperul cartezian xOy se consideră punctele P(2,1) și R(2,3). Determinați coordonatele mijlocului segmentului PR.
- **6.** Calculați $\cos B$, știind că $\sin B = \frac{5}{13}$ și unghiul B este ascuțit.

SUBIECTUL II

- **1.** Se consideră matricea $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.
 - a) Calculați $\det(A)$.
 - **b)** Determinați numărul real x pentru care $A \cdot A xI_2 = A$, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
 - c) Determinați matricele $M = \begin{pmatrix} m & m \\ m & 1 \end{pmatrix}$, știind că $\det(M+A) = 0$, unde m este număr real.
- 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă dată de $x \star y = x + y 2$.
 - a) Calculați $5 \star (-5)$.
 - b) Arătați că legea de compoziție "*" este comutativă.
 - c) Calculați $(-3) \star (-2) \star (-1) \star 0 \star 1 \star 2 \star 3$.

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = xe^x$.
 - a) Arătați că $f'(x) = (x+1)e^x$, pentru orice $x \in \mathbb{R}$.
 - **b)** Verificați dacă f''(x) + f(x) = 2f'(x), pentru orice $x \in \mathbb{R}$.
 - c) Arătați că funcția f are un punct de extrem.
- **2.** Se consideră funcția $f:(0,\infty)\to\mathbb{R}, f(x)=\frac{1}{x}$.
 - a) Calculați $\int_{4}^{5} x f(x) dx$.
 - b) Arătați că funcția $F:(0,\infty)\to\mathbb{R},\,F(x)=4+\ln x$ este o primitivă a funcției f.
 - c) Determinați numărul real a, a > 5, pentru care aria suprafeței plane delimitate de graficul funcției f, axa Ox și dreptele de ecuație x = 5 și x = a, este egală cu $\ln 3$.

BACALAUREAT 2013 SESIUNEA IULIE

Proba E c) mate-info

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

SUBIECTUL I

- 1. Arătati că numărul a = 3(3-2i) + 2(5+3i) este real.
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 4x 1. Calculați $f(1) + f(2) + \cdots + f(10)$.
- 3. Rezolvați în mulțimea numerelor reale ecuația $\log_2(2x) = \log_2(1+x)$.
- 4. După o scumpire cu 10% prețul unui produs este 2200 de lei. Calculați prețul produsului înainte de scumpire.
- 5. Determinați numărul real a pentru care vectorii $\overrightarrow{u} = \overrightarrow{i} + 4\overrightarrow{j}$ și $\overrightarrow{v} = 2\overrightarrow{i} + (a+1)\overrightarrow{j}$ sunt coliniari. 6. Determinați $x \in \left(0, \frac{\pi}{2}\right)$, știind că $\frac{3\sin x + \cos x}{\sin x} = 4$.

SUBIECTUL II

- **1.** Se consideră determinantul $D(a,b) = \begin{vmatrix} 1 & 1 & 1 \\ a & a^2 & 1 \\ b & b^2 & 1 \end{vmatrix}$, unde a și b sunt numere reale.
 - a) Arătați că D(2,3)=2.
 - b) Verificați dacă D(a,b) = (a-1)(b-1)(b-a), pentru orice numere reale $a \neq b$.
 - c) În reperul cartezian xOy se consideră punctele $P_n(n,n^2)$, unde n este un număr natural nenul. Determinați numărul natural $n,\ n\geq 3,$ pentru care aria triunghiului $P_1P_2P_n$ este egală cu 1.
- **2.** Se consideră x_1, x_2, x_3 rădăcinile complexe ale polinomului $f = X^3 4X^2 + 3X m$, unde meste număr real.
 - a) Pentru m=4, arătati că f(4)=8.
 - b) Determinați numărul real m pentru care rădăcinile polinomului f verifică relația $x_1+x_2=x_3$.
 - c) Dacă $x_1^3 + x_2^3 + x_3^3 = 7(x_1 + x_2 + x_3)$, arătați că f se divide cu X 3.

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \cos x + \frac{x^2}{2}$.
 - a) Calculați $f'(x), x \in \mathbb{R}$.
 - b) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă $x_0 = 0$, situat pe graficul funcției f.
 - c) Demonstrați că $f(x) \ge 1$, pentru orice $x \in \mathbb{R}$.
- 2. Pentru fiecare număr natural nenul n se consideră numărul $I_n = \int_0^1 x^n e^x dx$.
 - a) Calculați I_1 .
 - b) Arătați că $I_{n+1} + (n+1)I_n = e$, pentru orice număr natural nenul n.
 - c) Arătați că $1 \le (n+1)I_n \le e$, pentru orice număr natural nenul n.

şt-nat

Filiera teoretică, profilul real, specializarea științe ale naturii

SUBIECTUL I

- 1. Arătați că numărul x = 2(1 + i) 2i este real.
- **2.** Calculați $f(1) \cdot f(2) \cdot \ldots \cdot f(5)$ pentru funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x 2$.
- 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2+1}=x+1$.
- 4. Calculați probabilitatea ca, alegând la întâmplare un număr din mulțimea numerelor naturale de două cifre, produsul cifrelor acestuia să fie egal cu 5.
- **5.** Se consideră punctele A, B și C astfel încât $\overrightarrow{AB} = 2\overrightarrow{i} + 2\overrightarrow{j}$ și $\overrightarrow{BC} = 2\overrightarrow{i} + \overrightarrow{j}$. Calculați lungimea vectorului \overrightarrow{AC} .
- **6.** Se consideră $E(x) = \sin x + \cos \frac{x}{2}$, unde x este număr real. Calculați $E\left(\frac{\pi}{3}\right)$.

SUBIECTUL II

- **1.** Se consideră matricea $A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$.
 - a) Calculați $\det(A)$.
 - **b)** Arătați că $A^2 6A = I_2$.
 - c) Determinați inversa matricei $B = A 6I_2$.
- 2. Pe \mathbb{R} se definește legea de compoziție asociativă dată de $x \star y = \sqrt{x^2 + y^2 + 4}$.
 - a) Calculați $2 \star 2$.
 - **b)** Rezolvați în mulțimea numerelor reale ecuația $x \star x = \sqrt{12}$.
 - c) Arătați că numărul $\underbrace{1 \star 1 \star \ldots \star 1}_{\text{de 8 ori}}$ este întreg.

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = e^x(x^2 6x + 9)$.
 - a) Arătați că $f'(x) = e^x(x^2 4x + 3)$, pentru orice $x \in \mathbb{R}$.
 - **b)** Verificați dacă $f(x) + f''(x) = 2(f'(x) + e^x)$, pentru orice $x \in \mathbb{R}$.
 - c) Determinați punctele de extrem ale funcției f.
- **2.** Se consideră funcția $f:(-1,+\infty)\to\mathbb{R}, f(x)=\frac{x}{x+1}$.
 - a) Calculați $\int_0^1 (x+1)f(x) dx$.
 - **b)** Arătați că $\int_0^1 x^2 f(x) dx + \int_0^1 x^3 f(x) dx = \frac{1}{4}$.
 - c) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $h: [0;1] \to \mathbb{R}, h(x) = f(x).$

tehnologic

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

SUBIECTUL I

- 1. Arătați că $3(2-\sqrt{2})+3\sqrt{2}=6$.
- **2.** Calculați $f(0) \cdot f(2)$ pentru funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x 1$.
- 3. Rezolvați în multimea numerelor reale ecuația $5^{x-2} = 25$.
- 4. Prețul unui obiect este 100 de lei. Determinați prețul obiectului după o scumpire cu 10%.
- 5. În reperul cartezian xOy se consideră punctele A(1;1) și B(1;3). Calculați distanța de la punctul A la punctul B.
- 6. Calculați $\cos 45^{\circ} + \cos 135^{\circ}$.

SUBIECTUL II

- **1.** Pentru fiecare număr real a se consideră matricea $M(a) = \begin{pmatrix} 2a & 0 \\ 0 & 2a \end{pmatrix}$.
 - a) Arătați că $M\left(\frac{1}{2}\right) + M\left(-\frac{1}{2}\right) = M(0).$
 - b) Determinați numărul real a pentru care $\det(M(a)) = 0$.
 - c) Determinații matricea M(-2) + M(-1) + M(0) + M(1) + M(2).
- 2. Se consideră polinomul $f = X^3 2X^2 + 1$.
 - a) Arătați că f(1) = 0.
 - b) Determinați câtul și restul împărțirii polinomului f la polinomul $g = X^2 2X + 1$.
 - c) Calculați $x_1^2 + x_2^2 + x_3^2$, unde x_1, x_2, x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f:[0,+\infty)\to\mathbb{R}, f(x)=\sqrt{x}-1.$
 - a) Arătați că $2\sqrt{x}f'(x) = 1$, pentru orice $x \in (0, +\infty)$.
 - b) Verificați dacă dreapta de ecuație $y = \frac{1}{4}x$ este tangentă la graficul funcției f în punctul de abscisă $x_0 = 4$, situat pe graficul funcției f.
 - c) Arătați că funcția f este concavă pe intervalul $(0, +\infty)$.
- **2.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}, f(x)=2x+1+\frac{1}{x}$.
 - a) Calculați $\int_{1}^{2} \left(f(x) \frac{1}{x} \right) dx$.
 - b) Arătați că funcția $F:(0,+\infty)\to\mathbb{R},\ F(x)=x^2+x+\ln x$ este o primitivă a funcției f.
 - c) Calculați aria suprafeței delimitate de graficul funcției f, axa Ox și dreptele de ecuație x=1 și x=2.

pedagogic

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

SUBIECTUL I

- 1. Arătați că $3(1+\sqrt{2})-\sqrt{18}=3$.
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = x 3. Arătați că f(3) + f(-3) = -6.
- 3. Rezolvați în mulțimea numerelor reale ecuația $\log_3(x^2+1) = \log_3 5$.
- **4.** După o scumpire cu 10% prețul unui produs crește cu 70 de lei. Calculați prețul produsului după scumpire.
- 5. În reperul cartezian xOy se consideră punctele P(2;7) și R(2;9). Determinați coordonatele mijlocului segmentului PR.
- 6. Determinați lungimea laturii BC a triunghiului ABC dreptunghic în A, știind că AC=40 și $\sin B=\frac{2}{5}$.

SUBIECTUL II

Pe mulțimea numerelor reale se definește legea de compoziție asociativă dată de $x \star y = xy + x + y$.

- 1. Calculați $(-1) \star 3$.
- 2. Arătați că $x \star y = (x+1)(y+1) 1$, pentru orice numere reale $x \neq y$.
- **3.** Verificați dacă e = 0 este elementul neutru al legii " \star ".
- 4. Determinați numerele reale x pentru care $x \star x = x$.
- **5.** Arătați că $(-1) \star x = -1$, pentru orice număr real x.
- **6.** Calculați $(-1) \star 0 \star 1 \star \ldots \star 2012 \star 2013$.

SUBIECTUL III

Pentru fiecare număr real m se consideră matricea $A(m)=\begin{pmatrix} m & 1 & 1\\ 1 & m & 1\\ 1 & 1 & 1 \end{pmatrix}$.

- 1. Arătați că det(A(1)) = 0.
- **2.** Calculați $A(1) \cdot A(0)$.
- 3. Arătați că $det(A(m)) = m^2 2m + 1$, pentru orice număr real m.
- **4.** Verificați dacă matricea $B=\begin{pmatrix} -1 & 0 & 1\\ 0 & -1 & 1\\ 1 & 1 & -1 \end{pmatrix}$ este inversa matricei A(0).
- 5. Determinați numărul real m pentru care suma elementelor matricei A(m) este egală cu 2013.

6. Pentru
$$m=0$$
, rezolvați sistemul
$$\begin{cases} m \ x+ & y+z=1 \\ x+m \ y+z=1. \\ x+ & y+z=3 \end{cases}$$

BACALAUREAT 2013

SESIUNEA IULIE

Subiecte de rezervă

Proba E c) mate-info

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocatională, profilul militar, specializarea matematică-informatică

SUBIECTUL I

- 1. Arătați că numărul $(\sqrt{3}-1)^2+2\sqrt{3}$ este natural.
- 2. Determinați coordonatele punctului de intersecție a graficelor funcțiilor $f: \mathbb{R} \to \mathbb{R}, f(x) = x+1$ $\operatorname{si} g: \mathbb{R} \to \mathbb{R}, g(x) = 2x - 1.$
- 3. Rezolvați în mulțimea numerelor reale ecuația $2^{6-x^2}=2^x$.
- 4. Calculați probabilitatea ca, alegând la întâmplare un număr din mulțimea numerelor naturale de trei cifre, suma cifrelor acestuia să fie egală cu 2.
- 5. În reperul cartezian xOy se consideră punctele A(1;3) și B(3;1). Determinați ecuația mediatoarei segmentului AB.
- 6. Calculați raza cercului circumscris triunghiului ABC dreptunghic în A, stiind că BC = 8.

SUBIECTUL II

- 1. Pentru fiecare număr real x se consideră matricea $A(x) = \begin{pmatrix} 1 & x & 1 \\ 1 & -1 & 1 \\ x & -1 & 1 \end{pmatrix}$.
 - a) Calculati $A(0) \cdot A(1)$.
 - b) Arătați că $\det(A(x)) = x^2 1$, pentru orice număr real x.
 - c) Determinați numerele întregi x pentru care inversa matricei A(x) are elementele numere întregi.
- 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă dată de $x \circ y = \sqrt{x^2y^2 + x^2 + y^2}$.
 - a) Calculați $2 \circ 3$.
 - b) Arătați că $x \circ y = \sqrt{(x^2+1)(y^2+1)-1}$, pentru orice x și y numere reale.
 - c) Rezolvați în mulțimea numerelor reale ecuația $x \circ x \circ x = x$.

- **1.** Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x$ și $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^2 + 2x + 2$.
 - a) Calculați g'(2)
- a) Calculați g (z).
 b) Arătați că lim_{x→0} (2f(x) g(x))/(2x³) = 1/6.
 c) Demonstrați că 2f(x) ≥ g(x), pentru orice x ∈ [0, +∞).
 2. Se consideră funcțiile f: (-2, +∞) → ℝ, f(x) = x + 2 + 1/(x + 2) și F: (-2, +∞) → ℝ,

$$F(x) = \frac{x^2}{2} + 2x + \ln(x+2).$$

- a) Calculați $\int_0^1 (x+2)f(x) dx$.
- b) Verificați dacă funcția F este o primitivă a funcției f.
- c) Calculați $\int_{-1}^{0} F(x)f(x) dx$.

şt-nat

Filiera teoretică, profilul real, specializarea științe ale naturii

SUBIECTUL I

- 1. Arătati că numărul $\sqrt{8} 2(\sqrt{2} 3)$ este natural.
- **2.** Calculați $(f \circ f)(0)$ pentru funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = 3x + 1$.
- 3. Rezolvați în mulțimea numerelor reale ecuația $\log_2(x^2+1) = \log_2 5$.
- 4. După o ieftinire cu 20% pretul unui produs scade cu 200 de lei. Calculați pretul produsului după ieftinire.
- 5. Determinați numărul real a pentru care vectorii $\vec{u} = (a-1)\vec{i} + 4\vec{j}$ și $\vec{v} = 2\vec{i} 4\vec{j}$ sunt opuși.
- **6.** Calculați lungimea medianei din A în triunghiul dreptunghic ABC cu ipotenuza BC = 10.

SUBIECTUL II

- 1. Se consideră sistemul de ecuații liniare $\begin{cases} x-y+2z=a\\ 2x-y &=0 \text{, unde } a \text{ este un număr real.}\\ y-z=1 \end{cases}$
 - a) Determinați numărul real a știind că (x, y, z) = (1, 2, 1) este soluție a sistemului.
 - b) Calculați determinantul matricei sistemului.
 - c) Rezolvați sistemul pentru a = -2.
- **2.** Se consideră polinomul $f = X^3 X + a$, unde a este număr întreg.
 - a) Pentru a = -2, calculați f(2).
 - b) Arătați că $x_1^2 + x_2^2 + x_3^2 = 2$, unde x_1, x_2, x_3 sunt rădăcinile polinomului f.
 - c) Arătati că, dacă polinomul f are o rădăcină întreagă, atunci a este multiplu de 6.

- **1.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}, f(x)=\frac{2}{x}+\ln x.$
 - a) Arătați că $f'(x) = \frac{x-2}{x^2}$, pentru orice $x \in (0, +\infty)$. b) Determinați punctele de extrem ale funcției f.

 - c) Arătați că funcția f este convexă pe intervalul (0;4).
- **2.** Se consideră funcția $f:(1,+\infty)\to\mathbb{R}, f(x)=\frac{1}{x^2-1}$.
 - a) Arătați că $\int_{2}^{4} (x-1)f(x) dx = \ln \frac{5}{3}$.

 - b) Calculați $\int_2^3 (x^3 1) f(x) dx$. c) Arătați că aria suprafeței delimitate de graficul funcției f, axa Ox și dreptele de ecuație x = 2 și x = 3, este egală cu $\frac{1}{2} \ln \frac{3}{2}$.

tehnologic

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

SUBIECTUL I

- 1. Arătați că $2(5-\sqrt{2})+2\sqrt{2}=10$.
- **2.** Calculați f(-3) + f(3) pentru funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 9$.
- 3. Rezolvați în mulțimea numerelor reale ecuația $5^{2x} = 25$.
- 4. Prețul unui obiect este 100 de lei. Determinați prețul obiectului după o scumpire cu 20%.
- 5. În reperul cartezian xOy se consideră punctele A(1;1) și B(3;1). Calculați distanța de la punctul A la punctul B.
- 6. Calculați $\cos 30^{\circ} + \cos 150^{\circ}$.

SUBIECTUL II

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $B = \begin{pmatrix} x & -1 \\ 0 & x \end{pmatrix}$, unde x este număr real.
 - a) Calculați $\det(A)$.
 - **b)** Pentru x = 0 arătați că $A B = I_2$.
 - c) Determinați numărul real x pentru care det(A + B) = 0.
- 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă dată de $x \circ y = x + y + 3$.
 - a) Calculați $2 \circ (-2)$.
 - b) Arătați că e = -3 este elementul neutru al legii de compoziție " \circ ".
 - c) Determinați numărul real x pentru care $2013 \circ (-2013) = x \circ x$.

- **1.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}, f(x)=\frac{x+1}{x}$.
 - a) Calculați $\lim_{x \to +\infty} f(x)$.
 - b) Arătați că funcția f este descrescătoare pe intervalul $(0, +\infty)$.
 - c) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă $x_0 = 1$, situat pe graficul funcției f.
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = 3x^2 + 1.$
 - a) Calculați $\int_0^1 f'(x) dx$.
 - **b)** Arătați că funcția $F: \mathbb{R} \to \mathbb{R}$, $F(x) = x^3 + x + 1$ este o primitivă a funcției f.
 - c) Calculați aria suprafeței delimitate de graficul funcției f, axa Ox și dreptele de ecuație x=0 si x=1.