Fill in the + and - symbols in these charts for the 4 target expressions in the matrix product—these are the ones we need for our final answer:

Now fill in the symbols for the three key products figured out by Strassen, namely m_1 , \Rightarrow m_2 , and m_3 :

 $m_1 = (a+d)(e+h)$:

ae + ah + de + dh

	e	f	g	h
a	+			4
b				
c				
d	+			+

 $m_2 = (c-a)(e+f)$:

Ce+CF-ae-af

	e	f	g	h
a	_	_		
c				
c	+	+		
d				

 $m_3 = (b-d)(g+h)$:

bg+bh-dg-dh

Fill in the symbols for these two suggested sums:

CS 4050 Fall 2020

hint: do my ... m, to get patterns to add or subtract from M, + mz, m, + mz to get diagonal targets.

Thun, turns out, can combine some of these 7 charts to get off-diagonal targets

Page 7

