Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg Fakultät für Maschinenbau

Prof. Dr. Thomas Carraro Dr. Frank Gimbel Janna Puderbach

Mathematik III

Blatt 7

FT 2022

Integration, Laplacetransformation

Einführende Bemerkungen

- Vermeiden Sie die Verwendung von Taschenrechnern oder Online-Ressourcen.
- Die mit einem Stern *) markierten (Teil-)Aufgaben entfallen in diesem Trimester. Stattdessen werden einzelne Online-Aufgaben im ILIAS-Kurs kenntlich gemacht, zu denen Sie dort Ihre Lösungswege zur Korrektur hochladen können.
- Die mit zwei Sternen **) markierten (Teil-)Aufgaben richten sich an Studierende, die die übrigen Aufgaben bereits gelöst haben und die Inhalte weiter vertiefen möchten.

Aufgabe 7.1: Laplace-Transformierte

Bestimmen Sie unter Verwendung von $\mathcal{L}\{\sin(t)\}=\frac{1}{s^2+1}$ und geeigneten Rechenregeln folgende Ausdrücke

$$\mathbf{a)} \ \mathcal{L}\left\{\frac{\sin(t)}{t}\right\} \ , \quad \mathbf{b)} \ \mathcal{L}\left\{\int\limits_{0}^{t} \frac{\sin(\tau)}{\tau} \ \mathrm{d}\tau\right\} \ , \quad \mathbf{c)} \ \int\limits_{0}^{\infty} \frac{\sin(t)}{t} \ \mathrm{d}t \ , \quad \mathbf{d)} \ \mathcal{L}\left\{\mathrm{e}^{-t} \, \frac{\sin(t)}{t}\right\} \ .$$

Aufgabe 7.2: Anfangswertprobleme zu linearen Differentialgleichungen n-ter Ordnung

Gegeben seien die folgenden Anfangswertprobleme:

a)
$$y''(t) - 2y'(t) - 3y(t) = 4e^t$$
, $y(0) = 0$, $y'(0) = 6$,

b)
$$y''(t) + 4y'(t) + 4y(t) = 4e^{-2t}, \quad y(0) = 1, \quad y'(0) = 0.$$

Bestimmen Sie die Lösungen jeweils mit Hilfe des Exponentialansatzes ${\bf und}$ zusätzlich mit Hilfe der Laplace-Transformation.

Aufgabe 7.3: Heaviside-Funktion

Gesucht ist die Laplace-Transformierte von

$$f(t) := h(t-2) \cdot t^2 ,$$

wobei h die Heaviside-Funktion ist.

- a) Mit Hilfe der Integraldarstellung der Definition.
- b) Mit Hilfe des Verschiebungssatzes und der Tabelle der Laplace-Transformierten.

Aufgabe 7.4: Lineare Differentialgleichung

Gegeben sei das Anfangswertproblem für u(t)

$$u'' + 4u' + 3u = 12 \cdot (1 - h(t - 2)), \quad u(0) = u'(0) = 0$$

wobei h(t) die Heaviside-Funktion ist.

- a) Bestimmen Sie die Lösung mit Hilfe der Laplace-Transformation.
- b) Geben Sie die Lösung in den Bereichen $0 \le t < 2$ und $2 \le t$ ohne Verwendung der Heaviside–Funktion an und fassen Sie die Terme sinnvoll zusammen.

Aufgabe 7.5: LR-Kreis mit Hilfe der Laplace-Transformation

Ein Stromkreis habe einen Widerstand von R=0.8 Ohm und eine Selbstinduktion von L=4 Henry. Bis zur Zeit $t_0=0$ fließe kein Strom. Dann wird eine Spannung von U=5 Volt angelegt. Nach 5 Sekunden wird die Spannung abgeschaltet. Gesucht ist der Stromverlauf I(t) für $0 \le t \le 5$ und t>5. Ermitteln Sie I(t) mit Hilfe der Laplace-Transformation.

Hinweis: In diesem Stromkreis gilt $L\dot{I}(t) + RI(t) = U(t)$ mit

$$U(t) = 5 \cdot (1 - h(t - 5)) = \begin{cases} 5, & 0 \le t \le 5 \\ 0, & t > 5 \end{cases}.$$

mit der Heaviside-Funktion h(t).

Aufgabe 7.6: Zylinderkoordinaten

Skizzieren Sie den Körper K, der in Zylinderkoordinaten durch folgende Bedingungen charakterisiert wird:

$$\tilde{K} = \left\{ (r, \varphi, z) | \varphi \le 2\pi r \le \sqrt{\varphi}, \ 0 \le z \le \frac{r\varphi}{2\pi} \right\}$$

Berechnen Sie das Volumen des Körpers K.

1

Aufgabe 7.7: Online Aufgabe

Bearbeiten Sie die aktuelle Online-Aufgabe im ILIAS-Kurs.

Beachten Sie, dass Sie dort auch die Lösungswege zu einzelnen Aufgaben zur Korrektur hochladen können.

Ergebnisse zu Aufgabe 7.1:

a)
$$\frac{\pi}{2} - \arctan s$$
, b) $\frac{\pi/2 - \arctan s}{s}$, c) $\frac{\pi}{2}$, d) $\frac{\pi}{2} - \arctan(s+1)$,

Ergebnisse zu Aufgabe 7.2:

a)
$$y(t) = -e^t - e^{-t} + 2e^{3t}$$

b)
$$y(t) = (2t^2 + 2t + 1)e^{-2t}$$

Ergebnisse zu Aufgabe 7.3:

$$\left(\frac{2}{s^3} + \frac{4}{s^2} + \frac{4}{s}\right) \cdot e^{-2s}$$

Ergebnisse zu Aufgabe 7.4:

$$4 + 2e^{-3t} - 6e^{-t} - h(t-2) \cdot \left(4 + 2e^{-3(t-2)} - 6e^{-(t-2)}\right)$$

Ergebnisse zu Aufgabe 7.5:

$$I(t) = \frac{25}{4} \cdot \begin{cases} (1 - e^{-t/5}), & 0 \le t \le 5\\ (e - 1)e^{-t/5}, & t > 5 \end{cases}$$

Ergebnisse zu Aufgabe 7.6:

$$\frac{1}{560\pi^4}$$