Assessment of the yellowfin sole stock in the Bering Sea and Aleutian Islands

Thomas K. Wilderbuer, Daniel G. Nichol and James Ianelli

Executive Summary

Summary of Changes in Assessment Inputs

Changes to the input data

- 1) 2016 fishery age composition.
- 2) 2016 survey age composition.
- 3) 2017 trawl survey biomass point estimate and standard error.
- 4) Estimate of the discarded and retained portions of the 2015 catch.
- 5) Estimate of total catch made through the end of 2017. Catch of 150,000 t assumed for 2018 and 2019 projection.

Changes to the assessment methodology

No changes were made to this assessment.

Summary of Results

The assessment updates last year's with results and management quantities that are higher than the 2016 assessment primarily due to 1) including 2016 fishery weight-at-age information, 2) including two more years in the spawner-recruit time-series, and 3) a lower estimated survey catchability. Yellowfin sole continue to be well-above B_{MSY} and the annual harvest remains below the ABC level. The female spawning stock is in a slow downward trend.

	As estimated or		As estimated or	
0 "	specified las	t year for:	recommended t	his year for:
Quantity	2017	2018	2018	2019
M (natural mortality rate)	0.12	0.12	0.12	0.12
Tier	1a	1a	1a	1a
Projected total (age 6+) biomass (t)	2,290,000	2,202,300	2,553,100	2,460,700
Female spawning biomass (t)				
Projected	778,600	770,900	895,000	890,000
B_0	1,202,700		1,204,000	
B_{MSY}	424,000		456,000	
F_{OFL}	0.125	0.125	0.12	0.12
$maxF_{ABC}$	0.114	0.114	0.109	0.109
F_{ABC}	0.114	0.114	0.109	0.109
OFL (t)	287,000	276,000	306,700	295,600
maxABC (t)	260,800	250,800	277,500	267,500
ABC (t)	260,800	250,800	277,500	267,500
	As determined	<i>last</i> year for:	As determined t	his year for:
Status	2015	2016	2016	2017
Overfishing	No	n/a	No	n/a
Overfished	n/a	No	n/a	No
Approaching overfished	n/a	No	n/a	No

Projections are based on estimated catches of 150,000 t used in place of maximum ABC for 2018 and 2019.

Responses to SSC and Plan Team Comments on Assessments in General

General comments for all assessments:

SSC encourages assessment authors to adopt the current model naming convention.

This assessment now complies with the desired naming convention.

Responses to SSC and Plan Team Comments Specific to this Assessment

The yellowfin sole stock assessment has set an example for its inclusion of ecosystem factors in the assessment. Temperature was found to be related to survey catchability and growth. Interestingly, after conducting a field experiment to further examine relationships between temperature and catchability, it was found that survey biomass is more strongly correlated to wave height than temperature, which is in turn confounded with temperature. The SSC supports the approach outlined in the SAFE to further elucidate the effects of sea state and/or bottom temperature on q, noting that these covariates may act on the assessment in different ways (i.e., availability versus gear efficiency). If an effect of wave height on catchability is confirmed, implying that rougher seas adversely affect the ability of the trawl to tend the seafloor, then this would beg the question whether other assessed species are similarly affected. So, the outcome of this work has the potential for important, far-reaching implications.

The results of last summer's sampling efficiency experiment indicated that sea-state had a much larger effect on yellowfin sole herding, and trawl efficiency in general, than bottom temperature. Dan Nichol looked at the time-series of eastern Bering Sea yellowfin sole biomass estimates and found that they also were strongly correlated to wave height. To confuse things more, wave height was correlated to temperature.

- 1. The experimental results were analyzed and a paper on wave height effect on yellowfin sole catchability was submitted to Fisheries Bulletin (*The effects of wave-induced vessel motion on the geometry of a bottom survey trawl and the herding of yellowfin sole by Somerton, Weinberg, Munro, Rugolo and Wilderbuer, In Review*). However, this still does not answer the question of why you find a strong temperature effect on the survey catchability function in the stock assessment model. One possibility is that trawl sampling efficiency is more influenced by waves but yellowfin sole availability to the survey is more influenced by temperature.
- 2. Dan Nichol has completed a CPUE versus waves analysis back to 2005. Although RACE surveys have recorded sea state data for many years it was not entered into the database earlier than 2005, so Dan will do some hand entry, then repeat the analysis with more years and considering wave height and temperature together in a model. This work is viewed as secondary to the availability research (see #3), given that availability likely has a much greater influence on biomass estimates than sea-state/temperature.
- 3. Dan Nichol also has made progress toward showing that yellowfin sole availability changes with temperature using sex ratio, based on the notion that males arrive first and leave the spawning areas later than females, and that the timing of annual spawning is temperature-dependent.
- 4. A CIE review is scheduled for May 2018 for yellowfin sole, northern rock sole and Alaska plaice. We will solicit comments from the expert panel on exploring an additional waves parameter to fit the survey biomass.

One ongoing issue with the yellowfin sole assessment is a strong retrospective pattern illustrated by Figure 4.21. More recent assessments tend to yield higher estimates of female spawning biomass. Attempts to determine the cause have been unsuccessful so far. The PT suggested that the author consider examining the potential effects of q and M on the retrospective patterns. The SSC encourages ongoing efforts to understand this phenomenon so that appropriate model adjustments can be made. The SSC also recommends updating weight-at-age with each assessment as new data become available annually. Finally, the SSC looks forward to the use of the adopted model naming convention in next year's yellowfin sole assessment.

The retrospective comment is addressed in this assessment under the *retrospective analysis* heading. Weight-at-age is routinely updated, both for the fishery and the survey.

Introduction

The yellowfin sole (*Limanda aspera*) is one of the most abundant flatfish species in the eastern Bering Sea (EBS) and currently is the target of the largest flatfish fishery in the world. They inhabit the EBS shelf and are considered one stock. Abundance in the Aleutian Islands region is negligible.

Yellowfin sole are distributed in North American waters from off British Columbia, Canada, (approx. lat. 49° N) to the Chukchi Sea (about lat. 70° N) and south along the Asian coast to about lat. 35° N off the South Korean coast in the Sea of Japan. Adults exhibit a benthic lifestyle and occupy separate winter, spawning and summertime feeding distributions on the eastern Bering Sea shelf. From over-winter grounds near the shelf margins, adults begin a migration onto the inner shelf in April or early May each year for spawning and feeding. The directed fishery has typically occurred from winter through autumn (Wilderbuer et al. 1992). Yellowfin sole are managed as a single stock in the BSAI management area as there is presently no evidence of stock structure.

Fishery

Yellowfin sole have annually been caught with bottom trawls on the Bering Sea shelf since the fishery began in 1954 and were overexploited by foreign fisheries in 1959-62 when catches averaged 404,000 t annually (Fig. 4.1, top panel). As a result of reduced stock abundance, catches declined to an annual average of 117,800 t from 1963-71 and further declined to an annual average of 50,700 t from 1972-77. The lower yield in this latter period was partially due to the discontinuation of the U.S.S.R. fishery. In the early 1980s, after the stock condition had improved, catches again increased reaching a peak of over 227,000 t in 1985.

During the 1980s, there was also a major transition in the characteristics of the fishery. Yellowfin sole were traditionally taken exclusively by foreign fisheries and these fisheries continued to dominate through 1984. However, U.S. fisheries developed rapidly during the 1980s in the form of joint ventures, and during the last half of the decade began to dominate and then take all of the catch as the foreign fisheries were phased out of the EBS. Since 1990, only domestic harvesting and processing has occurred.

The management of the yellowfin sole fishery changed significantly in 2008 with the implementation of Amendment 80 to the BSAI Fisheries Management Plan. The Amendment directly allocated fishery resources among BSAI trawl harvesters in consideration of their historic harvest patterns and future harvest needs in order to improve retention and utilization of fishery resources by the non-AFA trawl catcher/processor fleet. This was accomplished by extending the groundfish retention standards to all H&G vessels and also by providing the ability to form cooperatives within the newly formed Amendment 80 sector. In addition, Amendment 80 also mandated additional monitoring requirements which included observer coverage on all hauls, motion-compensating scales for weighing samples, flow scales to obtain accurate catch weight estimates for the entire catch, no mixing of hauls and no on-deck sorting. The partitioning of TAC and PSC (prohibited species catch) among cooperatives has significantly changed the

way the annual catch has accumulated (Fig 4.1, bottom panel) and the rate of target catch per bycatch ton. There is now a more even and slow attainment of the annual catch relative to the pre-Amendment 80 fishing behavior.

Yellowfin sole are usually headed and gutted, frozen at sea, and then shipped to Asian countries for further processing (AFSC 2016). The first wholesale value of Alaska yellowfin sole totaled \$97.8 million in 2014. In 2010, following a comprehensive assessment process, the yellowfin sole fishery was certified under the Marine Stewardship Council environmental standard for sustainable and well-managed fisheries. The certification also applies to all the major flatfish fisheries in the BSAI and GOA. The total annual catch (t) since implementation of the MFCMA in 1977 is shown in Table 4.1.

In 2011, federally permitted vessels using non-pelagic trawl gear whose harvest results in flatfish retained catch that is greater than any other retained fishery category were required to use modified trawl gear. The modifications required the use of elevating devices to raise the section of the trawl warps between the doors and the trawl wing tips by 2.5 inches off the seafloor. The purpose of the management action was to reduce damage of non-target animals, particularly those that form habitat structure or support other fisheries while not substantially reducing flatfish catch rates or causing gear handling problems (Rose et al. 2010).

The 1997 catch of 181,389 t (retained and discards) was the largest since the fishery became completely domestic but was at lower levels from 1998 – 2010, averaging 94,004 t (Table 4.2). From 2011-2014 the catch increased, averaging 155,000 t. The 2013 catch totaled 165,000 t (73% of the ABC), the highest annual catch in the past 19 years. For 2017, the catch distribution has been spread out from January through May with the majority coming from 4 BSAI management areas (509, 513, 514, 516). As of mid-October 2017, the fishing season is ongoing. In order to estimate the total 2017 catch for the stock assessment model, the average proportion of the 2010-2016 cumulative catch attained by the 37th week of the year (mid-September) was applied to the 2017 catch amount at the same time period and results in a 2017 catch estimate of 143,100 t (55% of the ABC). The size composition of the 2017 catch for both males and females, from observer sampling, are shown in Figure 4.2, the catch proportions by month and area are shown in Figure 4.3, and maps of the locations where yellowfin sole were caught in 2017, by month (through mid-September), are shown in Figure 4.4. The average age of yellowfin sole in the 2016 catch is estimated at 12.9 and 12.3 years for females and males, respectively.

The time-series of catch in Table 4.1 also includes yellowfin sole that were discarded in domestic fisheries during the period 1987 to the present. Annual discard estimates were calculated from at-sea sampling (Table 4.2). The rate of discard has ranged from a low of 2% of the total catch in 2012 (and 2015) to 30% in 1992. The trend has been toward fuller retention of the catch in recent years, and with the advent of the Amendment 80 harvest practices, discarding is at its lowest level since these estimates have become available. Historically, discarding primarily occurred in the yellowfin sole directed fishery, with lesser amounts in the Pacific cod, Pollock, rock sole, flathead sole, and "other flatfish" fisheries (Table 4.3).

Data

The data used in this assessment include estimates of total catch, bottom trawl survey biomass estimates and their attendant 95% confidence intervals, catch-at-age from the fishery, and population age composition estimates from the bottom trawl survey. Weight-at-age and proportion mature-at-age are also available from studies conducted during the bottom trawl surveys.

Data source	Years
Fishery catch	1954-2017
Fishery age composition	1964-2016
Fishery weight-at-age	Avg wt at age from 2008-16 used for 2008-2016
Survey biomass and standard error, bottom temperature	1982-2017
Survey age composition	1979-2016
Annual length-at-age and weight-at-age from surveys	1979-2016
Maturity at age	Combined 1992 and 2012 samples

Fishery Catch and Catch-at-Age

This assessment uses fishery catch data from 1955-2017 (shown for 1964-2017 in Table 4.1), including an estimate of the 2017 catch, and fishery catch-at-age (proportions) from 1964-2016 (Table 4.4, 1975-2016). The 2016 fishery age composition was primarily composed of fish older than 9 years with a large amount of 20+ fish.

Survey Biomass Estimates and Population Age Composition Estimates

Indices of relative abundance available from AFSC surveys have shown a major increase in the abundance of yellowfin sole during the late 1970s, increasing from 21 kg/ha in 1975 to 51 kg/ha in 1981 (Fig. 4.2 in Bakkala and Wilderbuer 1990). These increases have also been documented through Japanese commercial pair trawl data and catch-at-age modeling in past assessments (Bakkala and Wilderbuer 1990).

Since 1981, the survey CPUEs have fluctuated widely (Fig. 4.5). Biomass estimates for yellowfin sole from the annual bottom trawl survey on the eastern Bering Sea shelf are shown in Table 4.5 and Figure 4.6. The data show a doubling of survey biomass between 1975 and 1979 with a further increase to over 3.3 million t in 1981. Total survey abundance estimates fluctuated erratically from 1983 to 1990 with biomass ranging from as high as 3.5 million t in 1983 to as low as 1.9 million t in 1986. Biomass estimates since 1990 indicate an even trend at high levels of abundance for yellowfin sole, with the exception of the results from the 1999 and 2000 summer surveys, which were at lower levels. Surveys from 2001-2005 estimated an increase each year but the estimates since 2006 indicate a stable level with some annual variability. However, the 2012 estimate is a 19% decrease from 2011 and the 2013 and 2014 surveys have estimated a 17% increase over 2012. Similarly, there was a 24% decrease from 2014 to 2015 followed by a 48% increase from 2015 to 2016, the highest biomass estimate since 1984. Fluctuations of the magnitude shown between 1980 and 1990, 1998 and 1999, 2008 and 2009, 2011and 2012, 2014 and 2015 and 2015 and 2016 are unreasonable considering the elements of slow growth and long life span of yellowfin sole combined with low to moderate exploitation rate, characteristics which should produce more gradual changes in abundance.

Variability of yellowfin sole survey biomass estimates (Fig. 4.6) is in part due to the availability of yellowfin sole to the survey area (Nichol, 1998). Yellowfin sole are known to undergo annual migrations from wintering areas off the shelf-slope break to near shore waters where they spawn throughout the spring and summer months (Nichol, 1995; Wakabayashi, 1989; Wilderbuer et al., 1992). Exploratory survey sampling in coastal waters of the eastern Bering Sea during early summer indicate that yellowfin sole concentrations can be greater in these shallower areas not covered by the standard AFSC survey than in the survey proper. Commercial bottom trawlers have commonly found high concentrations of yellowfin sole in areas such as near Togiak Bay (Low and Narita, 1990) and in more recent years from Kuskokwim Bay to just south of Nunivak Island. The coastal areas are sufficiently large enough to offer a substantial refuge for yellowfin sole from the current survey.

Over the past 18 years, survey biomass estimates for yellowfin sole have shown a positive correlation with shelf bottom temperatures (Nichol, 1998); estimates have generally been lower during cold years. The 1999 survey, which was conducted in exceptionally cold waters, indicated a decline in biomass that was unrealistic. The bottom temperatures during the 2000 survey were much warmer than in 1999, and the biomass increased, but still did not approach estimates from earlier years. Average bottom temperature and biomass both increased again during the period 2001 - 2003, with the 2003 value the highest temperature and biomass observed over the 22 year time series up to that time. Given that both the 1999 and 2000 surveys were conducted two weeks earlier than previous surveys, it is possible that the time difference may also have also affected the availability of yellowfin sole to the survey. If, for example, the timing of peak yellowfin sole spawning in nearshore waters corresponded to the time of the survey, a greater proportion of the population would be unavailable to the standard survey area. This pattern was observed again in 2009 and 2012 when the temperatures and the bottom trawl survey point estimates were lower. Summer shelf bottom temperatures in 2012 were the 2nd coldest recorded by the survey and the time-series and resulted in a 19% decline from 2011. In 2016 the Bering Sea had the highest recorded bottom temperature since measurements began in 1982 and the 2016 estimate of biomass was the highest in 32 years and 48% higher than the 2015 estimate. The 2017 survey estimate of 2,787,700 t was 3% lower than 2016.

We propose two possible reasons why survey biomass estimates are lower during years when bottom temperatures are low. First, catchability may be lower because yellowfin sole may be less active when cold. Less active fish may be less susceptible to herding, and escapement under the footrope of survey gear may increase if fish are less active. Secondly, bottom temperatures may influence the timing of the inshore spawning migrations of yellowfin sole and therefore affect their availability to the survey area. Because yellowfin sole spawning grounds include nearshore areas outside the survey area, availability of fish within the survey area can vary with the timing of this migration and the timing of the survey. In the case of 2016, a very warm year in the Bering Sea, it appears that a higher portion of the adult biomass was distributed on the shelf (outside of the spawning areas) relative to the average of all previous survey years, indicating earlier spawning migration (Fig 4.7).

Yellowfin sole population numbers-at-age estimated from the annual bottom trawl surveys are shown in Table 4.6 and their occurrence in trawl survey hauls and associated collections of lengths and age structures since 1982 are shown in Table 4.7. Their total tonnage caught in the resource assessment surveys since 1982 are listed in Table 4.8 and also in an appendix table with IPHC survey catches.

Age Determination

Yellowfin sole ages have been determined at the AFSC by using the break and burn method on collected otoliths since 1979 in surveys and from fisheries. In 2016 the age determination methods for yellowfin sole were validated using the bomb-produced uptake measurement of ¹⁴C method (Kastelle et al. 2016).

Length and Weight-at-Age

Past assessments of yellowfin sole have used sex-specific, time-invariant growth based on the average length-at-age and weight-at-length relationships from the time-series of survey observations summed over all years since 1982. These weight-at-age estimates were estimated from the following relationships:

Parameters of the von Bertalanffy growth curve have been estimated for yellowfin sole, by sex, from the trawl survey database as follows:

	L_{inf}	K	t_0	n
Males	33.7	0.161	-0.111	656
Females	37.8	0.137	0.112	709

A sex-specific length-weight relationship was also calculated from the survey database using the usual power function, weight $(g) = a \text{ Length}(cm)^b$, where a and b are parameters estimated to provide the best fit to the data (Fig. 4.8).

	a	b	n
males	0.00854	3.081	2,701
females	0.0054	3.227	3,662

These estimates of weight at length were applied to the annual trawl survey estimates of population length at age, by sex, to calculate the weight at each age (Fig. 4.8). Since the resulting estimates of annual weight-at-age were highly variable for fish older than 11 years, ages 11-20 were smoothed using a five year average smoothing method for 1982-2016.

Recent applications of dendrochronology (tree-ring techniques) have been used to develop biochronologies from the otolith growth increments of northern rock sole (*Lepidopsetta polyxystra*), yellowfin sole and Alaska plaice (*Pleuronectes quadrituberculatus*) in the eastern Bering Sea. These techniques ensure that all growth increments are assigned the correct calendar year, allowing for estimation of somatic growth by age and year for chronologies that span approximately 25 years (Matta et al. 2010). The analysis indicated that yellowfin sole somatic growth exhibits annual variability and has a strong positive correlation with May bottom water temperature in the Bering Sea (Fig. 4.9).

The relationship between temperature and growth was further explored by reanalyzing yellowfin sole growth by age and year. Length-weight data collected when obtaining otolith (age) samples in RACE surveys (n=7,000 from 1987, 1994 and 1999-2009) also indicate that weight at age exhibits annual variability and is highly correlated with summer bottom water temperature observations with a lag of 2-3 years for the temperature effect to be seen (shown for age 5 fish in figure 4.10). These observations were then extended back to 1979 using survey population length-at-age estimates (since weight-at-age is a power function of the length-at-age, Clark et al. 1999, Walters and Wilderbuer 2000).

In order to incorporate time-varying (year effect on growth) and temperature-dependent growth functions into the age-structured stock assessment model we used the annual observed population mean weight-atage (time-varying) from the trawl survey. These empirical data indicate good somatic growth correspondence with annual bottom temperature anomalies from 1982-2017 (Fig. 4.11). Fishery weight at age data available from 2008-2016 were averaged across years for each age to provide updated estimates for the fishery

Maturity-at-age

Maturity information collected from yellowfin sole females during the 1992 and 1993 eastern Bering Sea trawl surveys have been used in this assessment for the past 20 years (Table 4.10). Nichol (1995) estimated the age of 50% maturity at 10.5 years based on the histological examination of 639 ovaries. Maturity has recently been re-evaluated from a histological analysis of ovaries collected in 2012 (Table 4.10). Results were very similar to the earlier study with only a 2% difference in estimates of yellowfin sole female spawning biomass (TenBrink and Wilderbuer 2015). In addition, the SSC requested that the assessment use a maturity schedule that uses estimates derived from both the 1992 and the 2012 collections (Table 4.10). For yellowfin sole sexual maturity occurs well after the age of entry into the fishery. Yellowfin sole females are 82% selected to the fishery by age 10 whereas they have been found to be only 40% mature at this age.

Analytic Approach

Model Structure

The abundance, mortality, recruitment and selectivity of yellowfin sole were assessed with a stock assessment model using the AD Model Builder language (Fournier et al. 2012; Ianelli and Fournier 1998). The conceptual model is a separable catch-age analysis that uses survey estimates of biomass and age composition as auxiliary information (Fournier and Archibald 1982). The assessment model simulates the dynamics of the population and compares the expected values of the population characteristics to the characteristics observed from surveys and fishery sampling programs. This is accomplished by the simultaneous estimation of the parameters in the model using the maximum likelihood estimation procedure. The fit of the simulated values to the observable characteristics is optimized by maximizing a log(likelihood) function given some distributional assumptions about the observed data.

The model starts at age one and fish older than twenty are allowed to accumulate into a plus group. Since the sex-specific weight-at-age for yellowfin sole diverges after age of maturity (about age 10 for 40% of the stock) with females growing larger than males, the current assessment model is coded to accommodate the sex-specific aspects of the population dynamics of yellowfin sole. The model allows for the input of sex-specific estimates of fishery and survey age composition and weight-at-age and provides sex-specific estimates of population numbers, fishing mortality, selectivity, fishery and survey age composition and allows for the estimation of sex-specific natural mortality and catchability. The model retains the utility to fit combined sex data inputs.

Distributional assumption

The suite of parameters estimated by the model are classified by three likelihood components:

Data component

Trawl fishery catch-at-age Multinomial
Trawl survey population age composition Multinomial
Trawl survey biomass estimates and S.E. Log normal

The total log likelihood is the sum of the likelihoods for each data component (Table 4.11). The likelihood components may be weighted by an emphasis factor, however, equal emphasis was placed on fitting each likelihood component in the yellowfin sole assessment except for the catch. The AD Model Builder software fits the data components using automatic differentiation (Griewank and Corliss 1991) software developed as a set of libraries (AUTODIFF C++ library). Table 4.11 also presents the key equations used to model the yellowfin sole population dynamics in the Bering Sea and Table 4.12 provides a description of the variables used in Table 4.11.

Sharp increases in trawl survey abundance estimates for most species of Bering Sea flatfish between 1981 and 1982 indicate that the 83-112 trawl was more efficient for capturing these species than the 400-mesh eastern trawl used in 1975, and 1979-81. Allowing the model to tune to these early survey estimates would most likely underestimate the true pre-1982 biomass, thus exaggerating the degree to which biomass increased during that period. Although this underestimate would have little effect on the estimate of current yellowfin sole biomass, it would affect the spawner and recruitment estimates for the time-series. Hence, the pre-1982 survey biomass estimates were omitted from the analysis.

The model of yellowfin sole population dynamics was evaluated with respect to the observations of the time-series of survey and fishery age compositions and the survey biomass trend since 1982.

Parameters Estimated Outside the Assessment Model

Natural mortality (M) was initially estimated by a least squares analysis where catch-at-age data were fitted to Japanese pair trawl effort data while varying the catchability coefficient (q) and M simultaneously. The best fit to the data (the point where the residual variance was minimized) occurred at

a M value of 0.12 (Bakkala and Wespestad 1984). This was also the value which provided the best fit to the observable population characteristics when M was profiled over a range of values in the stock assessment model using data up to 1992 (Wilderbuer 1992). Since then, natural mortality has been estimated as a free parameter in some of the stock assessment model runs which have been evaluated the past five years. A natural mortality value of 0.12 is used for both sexes in the base model presented in this assessment.

Yellowfin sole maturity schedules were estimated from in-situ observations from two studies as discussed in a previous section (Table 4.10).

Parameters Estimated Inside the Assessment Model

The parameters estimated by the model are presented below:

Fishing		Survey	Year class	Spawner-	
mortality	Selectivity	catchability	strength	recruit	Total
65	264	2	104	2	437

The increase in the number of parameters estimated in this assessment compared to last year (6) can be accounted for by the input of another year of fishery data and the entry of another year class into the observed population and four more sex-specific fishery selectivity parameters.

Year class strengths

The population simulation specifies the numbers-at-age in the beginning year of the simulation, the number of recruits in each subsequent year, and the survival rate for each cohort as it moves through the population over time using the population dynamics equations given in Table 4.11.

Selectivity

Fishery and survey selectivity was modeled separately for males and females using the two parameter formulation of the logistic function (Table 4.11). The model was run with an asymptotic selectivity curve for the older fish in the fishery and survey, but still was allowed to estimate the shape of the logistic curve for young fish. The oldest year classes in the surveys and fisheries were truncated at 20 and allowed to accumulate into the age category 20+ years. A single selectivity curve, for both males and females, was fit for all years of survey data.

Given that there have been annual changes in management, vessel participation and most likely gear selectivity, time-varying fishing selectivity curves were estimated. A logistic equation was used to model fishery selectivity and is a function of time-varying parameters specifying the age and slope at 50% selection, φ_t and η_t , respectively. The fishing selectivity (S^f) for age a and year t is modeled as,

$$S_{a,t}^{f} = \left[1 + e^{\eta_{t}(a - \varphi_{t})}\right]^{-1}$$

where η_t and φ_t are time-varying and partitioned (for estimation) into parameters representing the mean and a vector of deviations (log-scale) conditioned to sum to zero. The deviations are constrained by a lognormal prior with a variance that was iteratively estimated. The process of iterating was to first set the variance to a high value (diffuse prior) of 0.5^2 and estimate the deviations. The next step was to compare the variability of model estimates. The variance of the model estimates were then rounded up slightly and fixed for subsequent runs. The 2016 values were fixed as the average of the 3 most recent years.

Fishing Mortality

The fishing mortality rates (F) for each age and year are calculated to approximate the catch weight by solving for F while still allowing for observation error in catch measurement. A large emphasis (300) was placed on the catch likelihood component to force the model to closely match the observed catch.

Survey Catchability

A past assessment (Wilderbuer and Nichol 2001) first examined the relationship between estimates of survey biomass and bottom water temperature. To better understand how water temperature may affect the catchability of yellowfin sole to the survey trawl, catchability was estimated for each year in the stock assessment model as:

$$q = e^{-\alpha + \beta T}$$

where q is catchability, T is the average annual bottom water temperature anomaly at survey stations less than 100 m, and α and β are parameters estimated by the model. The catchability equation has two parts. The e^{- α} term is a constant or time-independent estimate of q. The second term, e^{β T} is a time-varying (annual) q which responds to metabolic aspects of herding or distribution (availability) which can vary annually with bottom water temperature. The result of incorporating bottom temperature to estimate annual q has resulted in an improved fit to the survey (shown in Figure 4.12 for the base model).

Spawner-Recruit Estimation

Annual recruitment estimates from 1978-2012 were constrained to fit a Ricker (1958) form of the stock recruitment relationship as follows:

$$R = \alpha S e^{-\beta S}$$

where R is age 1 recruitment, S is female spawning biomass (t) the previous year, and α and β are parameters estimated by the model. The spawner-recruit fitting is estimated in a later phase after initial estimates of survival, numbers-at-age and selectivity are obtained.

Results

Model Evaluation

The model evaluation for this stock assessment involved a two-step process. The first step was to evaluate the productivity of the yellowfin sole stock by an examination of which sets of years to include for spawner-recruit fitting (increased from 1978-2010 to 1978-2012 in this assessment). The second step evaluated various hypothesized states of nature by fitting natural mortality and catchability estimates in various combinations.

The SSC determined in December 2006 that yellowfin sole would be managed under the Tier 1 harvest guidelines, and therefore future harvest recommendations would be based on MSY and F_{MSY} values calculated from a spawner-recruit relationship. MSY is an equilibrium concept and its value is dependent on both the spawner-recruit estimates which are assumed to represent the equilibrium stock size-recruitment relationship and the model used to fit the estimates. In the yellowfin sole stock assessment model, a Ricker form of the stock-recruit relationship was fit to various combinations of these data and estimates of F_{MSY} and B_{MSY} were calculated, assuming that the fit to the stock-recruitment data represents the long-term productivity of the stock.

For this assessment, 2 different stock-recruitment time-series were investigated: the full time-series 1955-2012 (Model 14_2) and the post-regime shift era, 1978-2012 (Model 14_1) (Fig. 4.13) (see Joint Plan Team recommendations for September 2012). Very different estimates of the long-term sustainability of the stock (F_{MSY} and B_{MSY}) are obtained, depending on which years of stock-recruitment data are included in the fitting procedure (Table 4.13). When the entire time-series from 1955-2012 was fit, the large recruitments that occurred at low spawning stock sizes in the 1960s and early 1970s determined that the yellowfin sole stock was most productive at a smaller stock size with the result that F_{MSY} (0.19) is higher than $F_{35\%}$ ($F_{35\%}$ = 0.14) and B_{MSY} is 333,700 (Model 14_2). If we limit the analysis to consider only recruitments which occurred after the well-documented regime shift in 1977 (Model 14_1), a lower value of F_{MSY} is obtained (0.114) and B_{MSY} is 456,200 t. Table 4.13 indicates that the ABC values from the

Model 14_2 harvest scenario for 2018 would be 193,800 t higher than Model 14_1 . Posterior distributions of F_{MSY} for these models indicate that this parameter is estimated with less uncertainty for Model 14_1 resulting in the reduced buffer between ABC and OFL relative to Model 14_2 (11% for Model 14_1 versus 1% for Model 14_2 , Table 4.13 and Fig 4.14).

It is important for the Tier 1 calculations to identify which subset of the stock recruitment data is used. Using the full time series to fit the spawner recruit curve estimates that the stock is most productive at a small stock size. Thus MSY and F_{MSY} are relatively high values and B_{MSY} is a lower value. If the stock was productive in the past at a small stock size because of non-density dependent factors (environment), then reducing the stock size to low levels could be detrimental to the long-term sustainability of the stock if the environment, and thus productivity, have changed from the earlier period. Since observations of yellowfin sole recruitment at low stock sizes are not available from multiple time periods, it is uncertain if future recruitment events at low stock conditions would be as productive as during the late 1960s-early 1970s.

Given the uncertainty of the productivity of yellowfin sole at low spawning stock sizes, and because the AFSC policy for reference point time-series selection is to use the post 1977 regime shift values unless there is a compelling reason to do otherwise, the productivity of yellowfin sole in this assessment is estimated by fitting the 1977-2012 spawner-recruit data in the model (Model 14 1).

The second step in the model evaluation for this assessment entails the use of a single structural model to consider the uncertainty in the key parameters M and catchability. This is the Model which has been the model of choice is the past 7 assessments (Model 14_1) and operates by fixing M at 0.12 for both sexes and then estimates q using the relationship between survey catchability and the annual average water temperature at the sea floor (from survey stations at less than 100 m). The other models used in the evaluation represented various combinations of estimating M or q as free parameters with different amounts of uncertainty in the parameter estimates (Wilderbuer et al. 2010). The results are detailed in those assessments and are not repeated here except for the following observations.

Modeling survey catchability as a nonlinear function of bottom water temperature returns q estimates > 1.0 for years when the bottom temperature is anomalously warm (greater than the mean temperature) and less than 1.0 when below the temperature mean. These values are consistent with our hypothesis that more fish are available to the survey in warm years relative to cooler years due to the timing of the annual spawning migration to nearshore areas that occurs sooner in warm years.

Experiments examining the bridle efficiency of the Bering Sea survey trawl indicate that yellowfin sole are herded into the trawl path from an area between the wing tips of the net and the point where the bridles contact the seafloor (Somerton and Munro 2001). The herding experiments suggest that the survey trawl catchability is greater than 1.0. The likelihood profile of q from the model indicated a small variance with a narrow range of likely values with a low probability of q being equal to the value of 1.0 in a past assessment (Wilderbuer and Nichol 2003).

A model that allows M to be estimated as a free parameter for males with females fixed at 0.12 provided a better fit to the sex ratio estimated from the annual trawl survey age compositions than did the base model (both sexes fixed at M = 0.12). However, since the population sex ratio annually observed at the time of the survey is a function of the timing of the annual spawning in adjacent inshore areas, it is questionable that providing the best fit to these observations is really fitting the population sex ratio better. Thus, the model configuration which utilizes the relationship between annual seafloor temperature and survey catchability with M fixed at 0.12 for both sexes (Model 14_1) is the preferred model used to base the assessment of the condition of the Bering Sea yellowfin sole resource for the 2018 fishing season.

Time Series Results

Before presenting the preferred model results, a brief consideration of the inputs and changes to the assessment methodology relative to last year (Model 14_1) is given. Primary updates for Model 14_1 were the 2017 catch, the fishery and survey age compositions from 2016 and the 2017 survey biomass (3% lower than 2016) and standard error estimates. The fishery and survey weights-at-age were also changed in a small amount to include the latest year of data and the spawner-recruit data was increased by 2 years to include the 2011 and 2012 year-class recruitment estimates. In their totality, these changes produced a Model 14 1 FABC estimate that was 5% lower than 2016 and a FOFL that was 4% lower.

This increase was mostly due to refitting the spawner-recruit curve with the averaged fishery weight-atage data which had the effect of moving the curve and B_{MSY} to the right (higher B_{msy} , lower F_{msy} for Tier 1 stocks).

The 2017 overall estimate (1982 – 2017) of trawl survey catchability decreased from 0.95 to 0.9. This resulted in higher model estimates of population numbers at age and biomass for the time-series back to the mid-1960s relative to last year's assessment and increased the estimated level of female spawning biomass. The model results indicate the stock has been in a slowly declining condition since the mid-1980s. The estimates of total biomass and ABC are higher than those used to manage the stock in 2017. Seven of the past 11 years have had negative bottom temperature anomalies in the Bering Sea but the last four have been above the mean. The temperature-dependent q adjustment for 2017 was 0.92.

Fishing Mortality and Selectivity

The assessment model estimates of the annual fishing mortality in terms of age-specific annual F and on fully selected ages are given in Tables 4.14 and 4.15, respectively. The full-selection F has averaged 0.08 over the period of 1978-2017 with a maximum of 0.12 in 1978 and a minimum of 0.04 in 2001. Selectivities estimated by the model (Table 4.16, Fig. 4.15) indicate that both sexes of yellowfin sole are 50% selected by the fishery at about age 9 and nearly fully selected by age 13, with annual varability.

Abundance Trend

The model estimates q at an average value of 0.9 for the period 1982-2017 which results in the model estimate of the 2016 age 2+ total biomass at 2,878,100 t (Table 4.17). Model results indicate that yellowfin sole total biomass (age 2+) was at low levels during most of the 1960s and early 1970s (700,000-1,000,000 t) after a period of high exploitation (Table 4.17, Fig. 4.16, center left panel).

Sustained above average recruitment from 1967-76 combined with light exploitation resulted in a biomass increase to a peak of 3.5 million t by 1985. The population biomass has since been in a slow decline as the strong 1981 and 1983 year-classes have passed through the population, with only the 1991, 1995 and 2003 year-classes at levels observed during the 1970s. The present biomass is estimated at 82% of the peak 1985 level.

The female spawning biomass has also declined since the peak in 1994, with a 2017 estimate of 884,800 t (22% decline). The spawning biomass has been in a gradual decline for the past 22 years and is 30% above the $B_{40\%}$ level and 1.9 times the B_{MSY} level (Fig. 4.16). The model estimate of yellowfin sole population numbers at age for all years is shown in Table 4.18 and the resulting fit to the observed fishery and survey age compositions input into the model are shown in the Figure 4.17. The fit to the trawl survey biomass estimates are shown in Figure 4.16. Allowing q to be correlated with annual bottom temperature provides a better fit to the bottom trawl survey estimates than using a q fixed at the average value (Fig. 4.18). Table 4.19 lists the numbers of female spawners estimated by the model for all ages and years. The estimated average age of yellowfin sole in the population is 6.7 years for males and females.

Both the trawl survey and the stock assessment model indicate that the yellowfin sole resource increased during the 1970s and early 1980s to a peak level during the mid-1980s. The yellowfin sole population biomass slowly decreased over the 22 years since the mid-1990s as the majority of year-classes during those years were below average strength. Average to above average recruitment from 2006 to 2009 is expected to maintain the abundance of yellowfin sole at a level above B_{MSY} in the near future. The stock assessment projection model indicates a mildly decreasing trend in female spawning biomass through 2024 if the fishing mortality rate continues at the same level as the average of the past 5 years (Fig. 4.22).

Recruitment Trends

The primary reason for the sustained increase in abundance of yellowfin sole during the 1970s and early 1980s was the recruitment of a series of stronger than average year classes spawned in 1967-76 (Figure 4.19 and Table 4.20). The 1981 year class was the strongest observed (and estimated) during the 47 year period analyzed and the 1983 year class was also very strong. Survey age composition estimates and the assessment model also estimate that the 1987 and 1988 year classes were average and the 1991 and 1995 year classes were above average. With the exception of these 4 year classes, recruitment from 15 of the following 19 years estimated from 1984-2005 (since the strong 1983 year-class) were below the 48 year average, which caused the population to gradually decline. The 2003 year-class has now been observed multiple times in the age compositions and is clearly a strong year class, similar to some of the strong recruitment mentioned above and are contributing to the reservoir of spawning fish in the current population. In addition, recruitment from 2006-2009 appear also to be average to above average.

Historical Exploitation Rates

Based on results from the stock assessment model, annual average exploitation rates of yellowfin sole since 1977 ranged from 3 to 7% of the total biomass, and have averaged 4% (Table 4.15). Posterior distributions of selected parameters from the preferred stock assessment model used in the assessment are shown in Figure 4.20. The values and standard deviations of some selected model parameters are listed in Table 4.21.

Retrospective analysis

A within-model retrospective analysis is also included for the recommended assessment model (Model 14_1) where retrospective female spawning biomass is calculated by working backwards in time dropping data one year at a time and then comparing the "peeled" estimate to the reference stock assessment model used in the assessment (Fig. 4.21). The resulting pattern from the current assessment model was less than desirable.

Peculiar to the yellowfin sole assessment, in comparison to the northern rock sole and Alaska plaice assessments (that have nice patterns), is the large amount of variability in the annual survey biomass

assessments for this stock due to the temperature-influenced availability to the survey. This large variability in the annual estimates can contribute to undesirable patterns since the earlier years are not fitting the same highly variable information as the current year. Exploratory model runs were made to examine the influence of fitting the survey biomass on the retrospective patterns. This was accomplished by making model runs that increased the survey biomass standard error by 10%, 20% and 30%, and also runs that attempted to decrease the influence of fitting the survey age composition by decreasing the effective n, and also a run with a fixed q (no bottom temp modeling). The models are listed below and are evaluated using Mohn's test statistic.

Model Description	Mohn's test statistic
Current stock assessment model (Model 2)	-0.193
Model 14_1 with survey standard error increased by 10%	-0.239
Model 14_1 with survey standard error increased by 20%	-0.211
Model 14_1 with survey standard error increased by 30%	-0.219
Down-weighted survey age comps, base st. dev values	-0.207
Up-weighted survey age comps (500) and down-weighted survey SE (increased st. dev value by 30%)	-0.238
survey q fixed at 1.05 for all runs	-0.186

A small gain was made by fixing q at 1.05 (M = 0.12) whereas all the other runs had similar results, increasing the test statistic over the base value (lower is better).

The Plan Team suggested examining the effect that q and M have on the retrospective patterns. Responding to this request, model runs were made varying M from 0.9 to 0.14 and q from 0.8 to 1.2 (fixed M and q, no temperature modeling). Decreasing values of q and M gave better retrospective patterns and lower Mohn's test statistic.

				Catchabilit	ty	
		0.8	0.9	1	1.1	1.2
	0.09	0.019	0.003	0.028	0.0511	0.076
	0.1	0.013	0.036	0.059	0.084	0.107
Natural mortality	0.11	0.043	0.066	0.087	0.11	0.131
	0.12	0.07	0.105	0.113	0.135	0.155
	0.13	0.051	0.114	0.135	0.156	0.177
	0.14	0.114	0.135	0.153	0.177	0.2

Hotter colors correspond to lower test statistic values.

Figure below is an example of retrospective pattern with low M and q.

Harvest Recommendations

The SSC has determined that yellowfin sole qualify as a Tier 1 stock and therefore the 2018 ABC is calculated using Tier 1 methodology. The Tier 1 harvest level is calculated as the product of the harmonic mean of F_{MSY} and the geometric mean of the 2018 biomass estimate, as follows:

$$B_{gm}=e^{\ln\hat{B}-\frac{cv^2}{2}}$$
, where B_{gm} is the geometric mean of the 2018 biomass estimate, \hat{B} is the point estimate of the 2018 biomass from the stock assessment model and cv^2 is the coefficient of variation of the point estimate (a proxy for sigma);

and

$$\overset{-}{F}_{har} = e^{\ln \hat{F}_{msy} - \frac{\ln sd^2}{2}}, \text{ where } \overset{-}{F}_{har} \text{ is the harmonic mean, } \hat{F}_{msy} \text{ is the peak mode of the } F_{MSY}$$
 distribution and sd² is the square of the standard deviation of the F_{MSY} distribution.

In 2006 the SSC selected the 1978-2001 data set for the Tier 1 harvest recommendation. Using this approach again for the 2018 harvest (now the 1978-2012 time-series) recommendation (Model 14_1 in Table 4.13), the $F_{ABC} = F_{harmonic\ mean} = 0.109$. The estimate of age 6+ total biomass for 2018 is 2,553,100 t. The calculations outlined above give a Tier 1 ABC harvest recommendation of **277,500 t** and an OFL of 306,700 t for 2018. This results in an 11% (29,250 t) buffer between ABC and OFL. The ABC value is 6% higher than last year, primarily due to changes to the spawner-recruit curve from the fishery weight-at-age modeling and a lower catchability estimate.

The stock assessment analysis must also consider harvest limits, usually described as overfishing fishing mortality levels with corresponding yield amounts. Amendment 56 to the BSAI FMP sets the Tier 1 harvest limit at the F_{MSY} fishing mortality value. The overfishing fishing mortality values, ABC fishing mortality values and their corresponding yields are given as follows:

Harvest level	F value	<u>2018 Yield</u>
Tier 1 $F_{OFL} = F_{MSY}$	0.12	306,700 t
Tier 1 F _{ABC} = F _{harmonic n}	nean 0.109	277,500 t

Status Determination

A standard set of projections is required for each stock managed under Tiers 1, 2, or 3 of Amendment 56. This set of projections encompasses seven harvest scenarios designed to satisfy the requirements of Amendment 56, the National Environmental Policy Act, and the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA).

For each scenario, the projections begin with the vector of 2017 numbers at age estimated in the assessment. This vector is then projected forward to the beginning of 2018 using the schedules of natural mortality and selectivity described in the assessment and the best available estimate of total (year-end) catch for 2017. In each subsequent year, the fishing mortality rate is prescribed on the basis of the spawning biomass in that year and the respective harvest scenario. In each year, recruitment is drawn from an inverse Gaussian distribution whose parameters consist of maximum likelihood estimates determined from recruitments estimated in the assessment. Spawning biomass is computed in each year based on the time of peak spawning and the maturity and weight schedules described in the assessment. Total catch is assumed to equal the catch associated with the respective harvest scenario in all years. This projection scheme is run 1000 times to obtain distributions of possible future stock sizes, fishing mortality rates, and catches.

Five of the seven standard scenarios will be used in an Environmental Assessment prepared in conjunction with the final SAFE. These five scenarios, which are designed to provide a range of harvest alternatives that are likely to bracket the final TAC for 2018, are as follows (" $max F_{ABC}$ " refers to the maximum permissible value of F_{ABC} under Amendment 56):

Scenario 1: In all future years, F is set equal to $max F_{ABC}$. (Rationale: Historically, TAC has been constrained by ABC, so this scenario provides a likely upper limit on future TACs.)

Scenario 2: In all future years, F is set equal to a constant fraction of $max F_{ABC}$, where this fraction is equal to the ratio of the F_{ABC} value for 2018 recommended in the assessment to the $max F_{ABC}$ for 2018. (Rationale: When F_{ABC} is set at a value below $max F_{ABC}$, it is often set at the value recommended in the stock assessment.)

Scenario 3: In all future years, F is set equal to the 2013-2017 average F. (Rationale: For some stocks, TAC can be well below ABC, and recent average F may provide a better indicator of F_{TAC} than F_{ABC} .)

Scenario 4: In all future years, the upper bound on F_{ABC} is set at $F_{60\%}$. (Rationale: This scenario provides a likely lower bound on F_{ABC} that still allows future harvest rates to be adjusted downward when stocks fall below reference levels.)

0Scenario 5: In all future years, F is set equal to zero. (Rationale: In extreme cases, TAC may be set at a level close to zero.)

Two other scenarios are needed to satisfy the MSFCMA's requirement to determine whether a stock is currently in an overfished condition or is approaching an overfished condition. These two scenarios are as follow (for Tier 3 stocks, the MSY level is defined as $B_{35\%}$):

Scenario 6: In all future years, F is set equal to F_{OFL} . (Rationale: This scenario determines whether a stock is overfished. If the stock is expected to be above its MSY level in 2016 and above its MSY level in 2029 under this scenario, then the stock is not overfished.)

Scenario 7: In 2018 and 2019, F is set equal to $max F_{ABC}$, and in all subsequent years, F is set equal to F_{OFL} . (Rationale: This scenario determines whether a stock is approaching an overfished condition. If the stock is expected to be above its MSY level in 2030 under this scenario, then the stock is not approaching an overfished condition.)

Simulation results shown in Table 4.22 indicate that yellowfin sole are not currently overfished and are not approaching an overfished condition. The projection of yellowfin sole female spawning biomass

through 2030 is shown in Figure 4.22 and a phase plane figure of the estimated time-series of yellowfin sole female spawning biomass relative to the harvest control rule is shown in Figure 4.23.

Scenario Projections and Two-Year Ahead Overfishing Level

In addition to the seven standard harvest scenarios, Amendments 48/48 to the BSAI and GOA Groundfish Fishery Management Plans require projections of the likely OFL two years into the future. The 2016 numbers at age from the stock assessment model are projected to 2017 given the 2016 catch and then a 2017 catch of 150,000 t is applied to the projected 2017 population biomass to obtain the 2018 OFL.

	Tier 1 Pr	ojection			
			Geometric mean 6+ total		
Year	Catch	SSB	biomass	ABC	OFL
2018	150,000	895,000	2,553,100	277,500	306,700
2019	150,000	890,000	2,460,700	267,400	295,600

Ecosystem Considerations

Ecosystem Effects on the stock

1) Prey availability/abundance trends

Yellowfin sole diet by life stage varies as follows: Larvae consume plankton and algae, early juveniles consume zooplankton, late juvenile stage and adults prey includes bivalves, polychaetes, amphipods, mollusks, euphausids, shrimps, brittle stars, sculpins and miscellaneous crustaceans. Information is not available to assess the abundance trends of the benthic infauna of the Bering Sea shelf. The original description of infaunal distribution and abundance by Haflinger (1981) resulted from sampling conducted in 1975 and 1976 and has not been re-sampled since. The large populations of flatfish which have occupied the middle shelf of the Bering Sea over the past twenty-five years for summertime feeding do not appear food-limited. These populations have fluctuated due to the variability in recruitment success which suggests that the primary infaunal food source has been at an adequate level to sustain the yellowfin sole resource.

2) Predator population trends

As juveniles, it is well-documented from studies in other parts of the world that flatfish are prey for shrimp species in near shore areas. This has not been reported for Bering Sea yellowfn sole due to a lack of juvenile sampling and collections in near shore areas, but is thought to occur. As late juveniles they have been found in stomachs of Pacific cod and Pacific halibut; mostly small yellowfin sole ranging from 7 to 25 cm standard length..

Past, present and projected future population trends of these predator species can be found in their respective SAFE chapters in this volume and also from Annual reports compiled by the International

Pacific Halibut Commission. Encounters between yellowfin sole and their predators may be limited since their distributions do not completely overlap in space and time.

3) Changes in habitat quality

Changes in the physical environment which may affect yellowfin sole distribution patterns, recruitment success and migration timing patterns are catalogued in the Ecosystem Considerations Report of this SAFE report. Habitat quality may be enhanced during years of favorable cross-shelf advection (juvenile survival) and warmer bottom water temperatures with reduced ice cover (higher metabolism with more active feeding).

Fishery Effects on the ecosystem

1) The yellowfin sole target fishery contribution to the total bycatch of other target species is shown for 1992-2016 in Table 4.23. The catch of non-target species from 2003-2016 is shown in Table 4.24. The yellowfin sole target fishery contribution to the total bycatch of prohibited species is shown for 2014 and 2015 in Table 13 of the Economic SAFE (Appendix C) and is summarized for 2015 as follows:

Prohibited species	Yellowfin sole fishery % of total bycatch
Halibut mortality	30
Herring	2
Red King crab	5
<u>C</u> . <u>bairdi</u>	25.5
Other Tanner crab	78.2
Salmon	<1

- 2) Relative to the predator needs in space and time, the yellowfin sole target fishery has a low selectivity for fish 7-25 cm and therefore has minimal overlap with removals from predation.
- 3) The target fishery is not perceived to have an effect on the amount of large size target fish in the population due to its history of light to moderate exploitation (6%) over the past 30 years. Population age composition data indicate a large 20+ age group.
- 4) Yellowfin sole fishery discards are presented in the Catch History section.
- 5) It is unknown what effect the fishery has had on yellowfin sole maturity-at-age and fecundity, but based on two maturity studies conducted 20 years apart, it is expected to be minimal.
- 6) Analysis of the benthic disturbance from the yellowfin sole fishery is available in the Preliminary draft of the Essential Fish Habitat Environmental Impact Statement.

Ecosystem effects on yellowfin	sole		
Indicator	Observation	Interpretation	Evaluation
Prey availability or abundance t	rends		
Benthic infauna	G. 1	0.11.1.2.2.2.	TT 1
	Stomach contents	Stable, data limited	Unknown
Predator population trends			
Fish (Pacific cod, halibut, skates)	Stable	Possible increases to yellowfin sole mortality	
Changes in habitat quality			
Temperature regime	Cold years yellowfin sole catchability and herding may decrease, timing of migration may be prolonged	Likely to affect surveyed stock	No concern (dealt with in model)
Winter-spring environmental conditions	Affects pre-recruit survival	Probably a number of factors	Causes natural variability
Yellowfin sole effects on ecosys	tem		
Indicator	Observation	Interpretation	Evaluation
Fishery contribution to bycatc	h		
Prohibited species Forage (including herring, Atka mackerel, cod, and	Stable, heavily monitored	Minor contribution to mortality Bycatch levels small relative to forage	No concern
pollock)	Stable, heavily monitored	biomass Bycatch levels small	No concern
HAPC biota Marine mammals and birds	3	relative to HAPC biota Safe	No concern No concern
Sensitive non-target species	Likely minor impact	Data limited, likely to be safe	No concern
Fishery concentration in space and time	Low exploitation rate	Little detrimental effect	No concern
Fishery effects on amount of large size target fish	Low exploitation rate	Natural fluctuation	No concern
Fishery contribution to discards and offal production	Stable trend	Improving, but data limited	Possible concern
Fishery effects on age-at- maturity and fecundity	Unknown	NA	Possible concern

Data Gaps and Research Priorities

Isolation by distance genetic study to define stock structure in the planning stage. NPRB proposal to collect maturity in the northern Bering Sea for comparison with recent SE Bering Sea shelf samples.

References

- Alaska Fisheries Science Center. 2016. Wholesale market profiles for Alaska groundfish and crab fisheries. 134 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv. 7600 Sand Point Way NE. Seattle, WA.
- Bakkala, R. G. and V. Wespestad. 1984. Yellowfin sole. <u>In</u> R. G. Bakkala and L. resources of the eastern Bering Sea and Aleutian Islands region in 1983, p. 37-60. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-53.
- Bakkala, R. G., V. Wespestad, and L. Low. 1982. The yellowfin sole (<u>Limanda aspera</u>) resource of the eastern Bering Sea--its current and future potential for commercial fisheries. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-33, 43p.
- Bakkala, R. G., and T. K. Wilderbuer. 1990. Yellowfin sole. <u>In</u> Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Bering Sea/Aleutian Islands Region as Projected for 1990, p. 60-78. North Pacific Fishery Management Council, P. O. Box 103136, Anchorage, Ak 99510.
- Clark, W. G., Hare, S. R., Parms, A. M., Sullivan, P, J., Trumble, R. J. 1999. Decadal changes in growth and recruitment of Pacific halibut (*Hipplglossus stenolepis*). Can. J. fish. Aquat. Sci. 56, 242-252
- Fournier, D. A., H.G. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M. N. Maunder, A. Nielsen, and J. Sibert. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27:233-239.
- Fournier, D. A. and C.P. Archibald. 1982. A general theory for analyzing catch-at-age data. Can. J. Fish Aquat. Sci. 39:1195-1207.
- Greiwank, A. and G. F. Corliss (eds) 1991. Automatic differentiation of algorithms: theory, implementation and application. Proceedings of the SIAM Workshop on the Automatic Differentiation of Algorithms, held Jan. 6-8, Breckenridge, CO. Soc. Indust. And Applied Mathematics, Philadelphia.
- Haflinger, K. 1981. A survey of benthic infaunal communities of the Southeastern Bering Sea shelf. *In* Hood and Calder (editors) The Eastern Bering Sea Shelf: Oceanography and Resources, Vol. 2. P. 1091-1104. Office Mar. Pol. Assess., NOAA. Univ. Wash. Press, Seattle, Wa 98105.
- Ianelli, J. N. and D. A. Fournier. 1998. Alternative age-structured analyses of the NRC simulated stock assessment data. In Restrepo, V. R. [ed.] Analyses of simulated data sets in support of the NRC study on stock assessment methods. NOAA Tech. Memo. NMFS-F/SPO-30. 96 p.
- Kastelle, C., T. Helser, S. Wischniowski, T. Loher, B. Geotz and L. Kautzi. 2016. Incorporation of bomb-produced ¹⁴C into fish otoliths: A novel approach for evaluating age validation and bias with an application to yellowfin sole and northern rockfish. Ecological modeling 320 (2016) 79-91.
- Low, L. and R.E. Narita. 1990. Condition of groundfish resources in the Bering Sea-Aleutian Islands region as assessed in 1988. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-F/NWC-178, 224 p.
- Matta, M. E., B. A. Black and T. K. Wilderbuer. 2010. Climate-driven synchrony in otolith growth-increment chronologies for three Bering Sea flatfish species. MEPS, Vol. 413:137-145, 2010.
- Nichol, D. R. 1995. Spawning and maturation of female yellowfin sole in the eastern Bering Sea. <u>In</u> Proceedings of the international flatfish symposium, October 1994, Anchorage, Alaska, p. 35-50. Univ. Alaska, Alaska Sea Grant Rep. 95-04.

- Nichol, D.R. 1998. Annual and between sex variability of yellowfin sole, *Pleuronectes asper*, spring-summer distributions in the eastern Bering Sea. Fish. Bull., U.S. 96: 547-561.
- Ricker, W. E. 1958. Handbook of computations for biological statistics of fish populations. Bull. Fish. Res. Bd. Can., (119) 300 p.
- Rose, C. S., J. R. Gauvin and C. F. Hammond. 2010. Effective herding of flatfish by cables with minimal seafloor contact. Fishery Bulletin 108(2):136-144.
- Somerton, D. A. and P. Munro. 2001. Bridle efficiency of a survey trawl for flatfish. Fish. Bull. 99:641-652 (2001).
- TenBrink, T. T. and T. K. Wilderbuer. 2015. Updated maturity estimates for flatfishes (Pleuronectidae) in the eastern Bering Sea, with notes on histology and implications to fisheries management. Coastal and Marine Fisheries: Dynamics, Management and Ecosystem Science. O:1-9. 2015. DOI: 10.1080/19425120.2015.1091411.
- Wakabayashi, K. 1989. Studies on the fishery biology of yellowfin sole in the eastern Bering Sea. [In Jpn., Engl. Summ.] Bull. Far Seas Fish. Res. Lab. 26:21-152.
- Wakabayashi, K., R. Bakkala, and L. Low. 1977. Status of the yellowfin sole resource in the eastern Bering Sea through 1976. Unpubl. manuscr., 45p. Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv., NOAA, 7600 Sand Point Way N.E., Bin C 15700, Seattle, Wa 98115.
- Walters, G. E. and T. K. Wilderbuer. 2000. Decreasing length at age in a rapidly expanding population of northern rock sole in the eastern Bering Sea and its effect on management advice. Journal of Sea Research 44(2000)17-26.
- Wilderbuer, T. K. 1992. Yellowfin sole. <u>In Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Bering Sea/Aleutian Islands</u> Region as Projected for 1993, chapter 3. North Pacific Fishery Management Council, P. O. Box 103136, Anchorage, Ak 99510.
- Wilderbuer, T. K. 1993. Yellowfin sole. <u>In</u> Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Bering Sea/Aleutian Islands Region as Projected for 1994, chapter 3. North Pacific Fishery Management Council, P. O. Box 103136, Anchorage, Ak 99510.
- Wilderbuer, T. K. and D. Nichol. 2001. Yellowfin sole. <u>In</u> Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Bering Sea/Aleutian Islands Region as Projected for 2004, chapter 4. North Pacific Fishery Management Council, P. O. Box 103136, Anchorage, Ak 99510.
- Wilderbuer, T. K. and D. Nichol. 2003. Yellowfin sole. <u>In</u> Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Bering Sea/Aleutian Islands Region as Projected for 2004, chapter 4. North Pacific Fishery Management Council, P. O. Box 103136, Anchorage, Ak 99510.
- Wilderbuer, T. K. D. G. Nichol, and J. Ianelli. 2010. Yellowfin sole. <u>In</u> Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Bering Sea/Aleutian Islands Region as Projected for 2011, chapter 4. North Pacific Fishery Management Council, P. O. Box 103136, Anchorage, Ak 99510.
- Wilderbuer, T.K., G.E. Walters, and R.G. Bakkala 1992. Yellowfin sole, *Pleuronectes asper*, of the eastern Bering Sea: biological characteristics, history of exploitation, and management. Mar Fish. Rev. 54(4):1-18.

Tables

Table 4.1--Catch (t) of yellowfin sole 1964-2017. Catch for 2017 is an estimate through the end of 2017.

		Domestic		
Year	Foreign	JVP	DAP	Total
1964	111,777			111,777
1965	53,810			53,810
1966	102,353			102,353
1967	162,228			162,228
1968	84,189			84,189
1969	167,134			167,134
1970	133,079			133,079
1971	160,399			160,399
1972	47,856			47,856
1973	78,240			78,240
1974	42,235			42,235
1975	64,690			64,690
1976	56,221			56,221
1977	58,373			58,373
1978	138,433			138,433
1979	99,019			99,019
1980	77,768	9,623		87,391
1981	81,255	16,046		97,301
1982	78,331	17,381		95,712
1983	85,874	22,511		108,385
1984	126,762	32,764		159,526
1985	100,706	126,401		227,107
1986	57,197	151,400		208,597
1987	1,811	179,613	4	181,428
1988	1,011	213,323	9,833	223,156
1989		151,501	1,664	153,165
1990		69,677	14,293	83,970
1991		0,,0,,	115,842	115,842
1992			149,569	149,569
1993			106,101	106,101
1994			144,544	144,544
1995			124,740	124,740
1996			129,659	129,659
1997			181,389	181,389
1998			101,201	101,201
1999			67,320	67,320
2000			83,850	83,850
2001			63,395	63,395
2002			73,000	73,000
2002			74,418	74,418
2004			69,046	69,046
2005			94,383	94,383
2005			99,068	99,068
2007			121,029	121,029
2007			148,894	148,894
2009			107,528	107,528
2010			118,624	118,624
2010			151,164	151,164
2011			151,164	
				147,183
2013			164,944	164,944
2014			156,778	156,778
2015			126,933	126,933
2016			135,353	135,353
2017			143,100	143,100

Table 4.2. Estimates of retained and discarded (t) yellowfin sole caught in Bering Sea fisheries.

	() 3	\mathcal{E}
Year	Retained	Discarded
1987	3	1
1988	7,559	2,274
1989	1,279	385
1990	10,093	4,200
1991	89,054	26,788
1992	103,989	45,580
1993	76,798	26,838
1994	107,629	36,948
1995	96,718	28,022
1996	101,324	28,334
1997	149,570	31,818
1998	80,365	20,836
1999	55,202	12,118
2000	69,788	14,062
2001	54,759	8,635
2002	62,050	10,950
2003	63,732	10,686
2004	57,378	11,668
2005	85,321	9,062
2006	90,570	8,498
2007	109,084	11,945
2008	141,253	7,659
2009	92,488	5,733
2010	113,244	5,380
2011	146,419	4,745
2012	143,737	3,446
2013	158,781	6,163
2014	152,164	4,614
2015	123,065	3,871
2016	131,205	4,148

Table 4.3. Discarded and retained catch of non-CDQ yellowfin sole, by fishery, in 2016. Source: AKFIN.

Trip Target Name	Discarded	Retained
Atka Mackerel	<1	<1
Pollock - bottom	4	297
Pacific Cod	1,636	315
Alaska Plaice - BSAI	6	260
Other Flatfish - BSAI	<1	
Halibut		
Rockfish	<1	<1
Flathead Sole	92	2,403
Kamchatka Flounder - BSAI	<1	<1
Pollock - midwater	172	415
Rock Sole - BSAI	598	21,646
Sablefish		
Greenland Turbot - BSAI	0	
Arrowtooth Flounder	<1	<1
Yellowfin Sole - BSAI	1,637	105,868

Table 4.4. Yellowfin sole fishery catch-at-age (proportions), 1975-2016.

	males			-		•					
	7	8	9	10	11	12	13	14	15	16	17+
975	0.09	0.24	0.12	0.02	0.01	0.01	0.02	0.00	0.00	0.00	0.00
976	0.05	0.04	0.14	0.11	0.04	0.02	0.02	0.00	0.01	0.00	0.00
977	0.03	0.08	0.07	0.12	0.09	0.04	0.01	0.00	0.00	0.00	0.00
978	0.05	0.09	0.07	0.07	0.07	0.03	0.02	0.01	0.00	0.00	0.00
79	0.03	0.06	0.11	0.07	0.06	0.04	0.02	0.00	0.00	0.00	0.00
80	0.04	0.02	0.03	0.05	0.05	0.05	0.03	0.01	0.01	0.01	0.01
1	0.04	0.04	0.03	0.05	0.07	0.06	0.04	0.02	0.01	0.00	0.00
2	0.04	0.06	0.05	0.05	0.07	0.07	0.04	0.02	0.01	0.00	0.00
3	0.06	0.03	0.06	0.05	0.04	0.06	0.05	0.03	0.02	0.01	0.01
ŀ	0.01	0.06	0.04	0.08	0.04	0.05	0.05	0.10	0.04	0.02	0.01
5	0.02	0.03	0.06	0.06	0.07	0.06	0.07	0.06	0.03	0.02	0.02
•	0.03	0.02	0.05	0.06	0.04	0.04	0.04	0.02	0.04	0.04	0.05
,	0.02	0.05	0.04	0.05	0.04	0.05	0.06	0.04	0.02	0.03	0.13
3	0.03	0.04	0.09	0.02	0.04	0.04	0.02	0.05	0.04	0.01	0.08
)	0.00	0.04	0.04	0.06	0.02	0.02	0.04	0.03	0.03	0.03	0.16
)	0.05	0.01	0.18	0.02	0.05	0.02	0.03	0.04	0.00	0.04	0.07
	0.01	0.09	0.01	0.19	0.03	0.06	0.01	0.01	0.02	0.02	0.07
2	0.01	0.03	0.10	0.03	0.14	0.02	0.02	0.02	0.01	0.01	0.04
3	0.02	0.01	0.01	0.08	0.01	0.10	0.02	0.02	0.01	0.02	0.09
ļ	0.02	0.04	0.03	0.02	0.11	0.01	0.09	0.01	0.03	0.01	0.05
	0.03	0.06	0.03	0.01	0.02	0.10	0.00	0.10	0.01	0.01	0.05
)	0.02	0.06	0.04	0.02	0.01	0.03	0.10	0.02	0.07	0.01	0.06
	0.02	0.02	0.05	0.04	0.03	0.04	0.02	0.10	0.02	0.05	0.09
	0.02	0.02	0.02	0.05	0.04	0.03	0.01	0.02	0.03	0.01	0.12
	0.00	0.02	0.01	0.02	0.04	0.05	0.03	0.02	0.03	0.04	0.11
)	0.00	0.02	0.05	0.01	0.02	0.05	0.03	0.03	0.02	0.05	0.13
	0.01	0.02	0.01	0.03	0.03	0.01	0.02	0.03	0.03	0.02	0.16
	0.00	0.02	0.03	0.04	0.09	0.03	0.02	0.05	0.01	0.01	0.14
	0.01	0.08	0.04	0.03	0.02	0.04	0.02	0.02	0.03	0.02	0.15
	0.01	0.02	0.09	0.02	0.02	0.02	0.03	0.01	0.01	0.02	0.19
	0.01	0.04	0.02	0.08	0.02	0.02	0.03	0.04	0.02	0.01	0.14
6	0.06	0.05	0.03	0.05	0.06	0.02	0.01	0.02	0.03	0.01	0.09
7	0.02	0.06	0.03	0.03	0.05	0.06	0.02	0.02	0.03	0.02	0.12
3	0.02	0.03	0.06	0.02	0.03	0.02	0.07	0.01	0.02	0.02	0.11
)	0.01	0.04	0.03	0.05	0.03	0.01	0.02	0.04	0.02	0.02	0.13
)	0.06	0.03	0.06	0.02	0.05	0.04	0.02	0.01	0.02	0.01	0.10
1	0.02	0.07	0.03	0.03	0.03	0.04	0.01	0.01	0.01	0.03	0.14
2	0.02	0.04	0.08	0.04	0.03	0.03	0.04	0.04	0.01	0.02	0.16
3	0.02	0.00	0.03	0.08	0.05	0.06	0.04	0.04	0.03	0.01	0.09
ļ	0.02	0.04	0.03	0.04	0.06	0.02	0.04	0.04	0.04	0.01	0.13
;	0.01	0.03	0.04	0.02	0.02	0.05	0.02	0.05	0.02	0.04	0.16
6	0.02	0.03	0.03	0.05	0.04	0.02	0.05	0.03	0.02	0.01	0.17

Table 4.4- continued.

	females										
	7	8	9	10	11	12	13	14	15	16	17+
1975	0.05	0.14	0.09	0.05	0.02	0.02	0.02	0.00	0.01	0.00	0.00
1976	0.04	0.07	0.17	0.10	0.07	0.01	0.01	0.00	0.01	0.00	0.00
1977	0.07	0.16	0.11	0.02	0.01	0.01	0.00	0.00	0.00	0.00	0.00
1978	0.05	0.13	0.12	0.09	0.09	0.03	0.01	0.01	0.00	0.00	0.00
1979	0.03	0.07	0.12	0.12	0.08	0.06	0.03	0.01	0.01	0.00	0.00
1980	0.06	0.04	0.06	0.11	0.10	0.07	0.07	0.04	0.02	0.01	0.03
1981	0.06	0.06	0.03	0.05	0.09	0.11	0.07	0.05	0.02	0.01	0.01
1982	0.03	0.07	0.06	0.05	0.09	0.09	0.05	0.03	0.02	0.01	0.00
1983	0.07	0.05	0.08	0.04	0.05	0.07	0.06	0.05	0.03	0.02	0.01
1984	0.03	0.04	0.05	0.09	0.04	0.06	0.05	0.06	0.03	0.01	0.02
1985	0.02	0.02	0.06	0.05	0.07	0.06	0.05	0.06	0.05	0.01	0.01
1986	0.03	0.03	0.04	0.09	0.07	0.06	0.04	0.03	0.04	0.03	0.06
1987	0.01	0.03	0.02	0.04	0.05	0.05	0.06	0.05	0.03	0.03	0.09
1988	0.02	0.03	0.07	0.02	0.04	0.05	0.04	0.06	0.05	0.02	0.12
1989	0.00	0.04	0.05	0.05	0.03	0.03	0.05	0.02	0.05	0.05	0.15
1990	0.02	0.01	0.13	0.03	0.06	0.03	0.02	0.01	0.01	0.08	0.09
1991	0.01	0.07	0.01	0.11	0.04	0.04	0.01	0.03	0.04	0.02	0.09
1992	0.01	0.02	0.09	0.02	0.14	0.04	0.04	0.01	0.03	0.02	0.12
1993	0.02	0.01	0.02	0.09	0.01	0.12	0.03	0.03	0.02	0.03	0.18
1994	0.02	0.03	0.03	0.03	0.16	0.00	0.10	0.01	0.04	0.02	0.13
1995	0.04	0.06	0.02	0.01	0.02	0.10	0.00	0.16	0.01	0.03	0.12
1996	0.01	0.04	0.06	0.02	0.03	0.03	0.07	0.01	0.11	0.01	0.11
1997	0.02	0.02	0.06	0.03	0.02	0.03	0.03	0.10	0.01	0.06	0.10
1998	0.02	0.03	0.08	0.04	0.02	0.04	0.04	0.12	0.01	0.07	0.13
1999	0.01	0.02	0.03	0.02	0.08	0.05	0.03	0.04	0.04	0.07	0.23
2000	0.00	0.01	0.05	0.03	0.03	0.07	0.08	0.05	0.02	0.04	0.22
2001	0.01	0.02	0.05	0.08	0.05	0.04	0.07	0.05	0.04	0.02	0.16
2002	0.01	0.02	0.03	0.04	0.06	0.04	0.03	0.04	0.05	0.02	0.21
2003	0.00	0.05	0.04	0.03	0.04	0.08	0.03	0.02	0.02	0.03	0.19
2004	0.01	0.01	0.10	0.05	0.03	0.02	0.05	0.02	0.01	0.05	0.19
2005	0.02	0.03	0.03	0.08	0.03	0.03	0.04	0.06	0.03	0.01	0.19
2006	0.07	0.05	0.03	0.04	0.14	0.02	0.00	0.01	0.03	0.01	0.10
2007	0.01	0.04	0.03	0.02	0.04	0.08	0.03	0.03	0.03	0.03	0.17
2008	0.02	0.04	0.04	0.05	0.03	0.03	0.07	0.04	0.02	0.03	0.17
2009	0.02	0.03	0.06	0.06	0.03	0.05	0.04	0.05	0.03	0.03	0.17
2010	0.04	0.03	0.04	0.04	0.04	0.03	0.04	0.04	0.06	0.03	0.17
2011	0.02	0.05	0.04	0.05	0.04	0.06	0.03	0.03	0.03	0.04	0.16
2012	0.02	0.03	0.05	0.04	0.05	0.02	0.05	0.02	0.01	0.02	0.16
2013	0.01	0.02	0.04	0.07	0.06	0.07	0.05	0.04	0.02	0.03	0.14
2014	0.01	0.02	0.04	0.05	0.05	0.06	0.04	0.03	0.04	0.03	0.18
2015	0.01	0.02	0.02	0.04	0.03	0.08	0.04	0.04	0.03	0.04	0.18
2016	0.02	0.04	0.04	0.03	0.04	0.03	0.06	0.03	0.02	0.01	0.21

Table 4.5 Yellowfin sole biomass estimates (t) from the annual Bering Sea shelf bottom trawl survey and upper and lower 95% confidence intervals.

Year	Total	Lower CI	Upper CI
1982	3,377,800	2,571,000	4,184,600
1983	3,535,300	2,958,100	4,112,400
1984	3,141,200	2,636,800	3,645,600
1985	2,443,700	1,563,400	3,324,000
1986	1,909,900	1,480,700	2,339,000
1987	2,613,100	2,051,800	3,174,400
1988	2,402,400	1,808,400	2,996,300
1989	2,316,300	1,836,700	2,795,800
1990	2,183,800	1,886,200	2,479,400
1991	2,393,300	2,116,000	2,670,700
1992	2,172,900	1,898,900	2,690,600
1993	2,465,400	2,151,500	2,779,300
1994	2,610,500	2,266,800	2,954,100
1995	2,009,700	1,724,800	2,294,600
1996	2,298,600	1,749,900	2,847,300
1997	2,163,400	1,907,900	2,418,900
1998	2,329,600	2,033,130	2,626,070
1999	1,306,470	1,118,800	1,494,150
2000	1,581,900	1,382,000	1,781,800
2001	1,863,700	1,605,000	2,122,300
2002	2,016,700	1,740,700	2,292,700
2003	2,239,600	1,822,700	2,656,600
2004	2,530,600	2,147,900	2,913,300
2005	2,823,500	2,035,800	3,499,800
2006	2,133,070	1,818,253	2,447,932
2007	2,152,738	1,775,191	2,530,285
2008	2,099,521	1,599,100	2,600,000
2009	1,739,238	1,435,188	2,043,288
2010	2,367,830	1,807,430	2,928,230
2011	2,403,021	1,926,371	2,879,671
2012	1,951,400	1,675,982	2,226,819
2013	2,279,004	1,934,134	2,623,874
2014	2,512,250	2,058,018	2,966,482
2015	1,932,347	1,644,043	2,220,651
2016	2,859,811	2,532,202	3,187,421
2017	2,787,688	2,310,198	3,265,178

Table 4.6. Yellowfin sole population numbers-at-age (millions) estimated from the annual bottom trawl surveys, 1982-2016.

females 17+ 163 1027

Table 4.6.(continued)

	`							males								
year/age	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17+
1979	21	115	143	390	381	303	583	847	604	406	349	247	54	76	29	36
1980	20	78	306	632	853	1221	457	558	616	568	444	370	147	18	8	8
1981	0	50	200	1047	640	1280	858	394	372	546	534	266	66	83	55	12
1982	89	193	428	1780	1781	1059	1673	644	774	463	471	482	302	8	24	8
1983	0	1	65	183	724	1729	808	1049	676	699	722	566	425	550	77	51
1984	0	68	246	323	497	734	830	612	788	718	358	379	201	316	122	106
1985	0	41	172	419	559	263	652	527	401	451	360	224	260	157	112	65
1986	0	13	47	108	373	652	262	327	284	335	211	205	115	210	82	252
1987	0	5	41	106	838	467	673	445	328	277	210	147	106	142	185	600
1988	0	2	10	435	49	1163	553	443	85	187	28	177	336	189	28	599
1989	0	2	23	181	788	177	1306	513	357	135	50	103	54	204	35	478
1990	0	11	47	121	316	888	195	1144	318	263	40	65	67	24	55	389
1991	0	0	103	354	139	275	1046	68	1137	328	244	74	64	60	53	420
1992	0	0	146	445	566	262	226	812	114	907	193	213	12	12	61	607
1993	0	20	52	233	646	393	279	247	1096	69	842	53	53	50	0	341
1994	4	22	71	166	427	953	656	308	191	822	26	622	46	132	11	303
1995	0	0	169	120	270	667	565	94	179	75	478	13	603	49	24	418
1996	0	76	95	837	244	227	425	344	331	141	139	399	61	449	125	495
1997	0	10	214	425	798	181	184	446	245	194	214	108	514	79	264	416
1998	0	48	70	351	569	832	159	226	204	272	346	140	157	191	113	814
1999	0	5	100	142	225	243	575	146	94	309	269	75	53	28	119	425
2000	0	0	36	219	259	143	509	583	78	215	133	77	92	78	66	547
2001	0	0	87	141	652	341	375	357	562	208	87	158	65	73	140	432
2002	0	58	72	158	309	758	318	333	262	442	194	120	220	161	133	507
2003	0	24	95	178	258	251	1074	238	363	53	284	173	10	71	57	682
2004	4	63	114	469	447	199	395	993	263	81	195	223	103	47	249	456
2005	0	49	166	187	474	476	204	288	972	123	142	121	133	69	93	726
2006	0	101	173	348	332	505	393	288	298	384	116	155	89	39	11	590
2007	0	58	481	352	405	284	545	209	166	252	338	101	133	72	59	620
2008	0	10	99	662	462	483	344	453	225	144	185	329	63	66	35	581
2009	0	65	144	289	946	462	555	248	249	217	78	31	195	30	29	363
2010	0	78	199	418	371	1032	462	510	171	189	159	53	117	151	78	678
2011	1	7	150	385	482	358	792	398	224	176	77	81	136	103	157	440
2012	0	69	274	352	344	273	238	425	297	179	98	67	91	34	100	2
2013	0	7	92	366	384	481	211	268	445	200	200	33	89	100	118	612
2014	0	0	0	9	366	396	286	338	310	251	400	206	193	20	192	841
2015	1	29	36	131	426	332	301	312	318	48	180	131	80	1	80	492
2016	0	43	85	20	142	704	544	402	367	125	117	227	180	88	35	859

Table 4.7 Occurrence of yellowfin sole in the Bering Sea trawl survey and collections of length and age structures and the number of otoliths aged from each survey.

	Total	Hauls	Number	Hauls	Hauls	Number of	Number
Year	Hauls	w/Len	lengths	w/otoliths	w/ages	otoliths	ages
1982	334	246	37023	35	35	744	744
1983	353	256	33924	37	37	709	709
1984	355	271	33894	56	56	821	796
1985	357	261	33824	44	43	810	802
1986	354	249	30470	34	34	739	739
1987	357	224	31241	16	16	798	798
1988	373	254	27138	14	14	543	543
1989	374	236	29672	24	24	740	740
1990	371	251	30257	28	28	792	792
1991	372	248	27986	26	26	742	742
1992	356	229	23628	16	16	606	606
1993	375	242	26651	20	20	549	549
1994	375	269	24448	14	14	526	522
1995	376	254	22116	20	20	654	647
1996	375	247	27505	16	16	729	721
1997	376	262	26034	11	11	470	466
1998	375	310	34509	15	15	575	570
1999	373	276	28431	31	31	777	770
2000	372	255	24880	20	20	517	511
2001	375	251	26558	25	25	604	593
2002	375	246	26309	32	32	738	723
2003	376	241	27135	37	37	699	695
2004	375	251	26103	26	26	725	712
2005	373	251	24658	34	34	644	635
2006	376	246	28470	39	39	428	426
2007	376	247	24790	66	66	779	772
2008	375	238	25848	65	65	858	830
2009	376	235	22018	70	70	784	752
2010	376	228	20619	77	77	841	827
2011	376	228	21665	65	64	784	753
2012	376	242	23519	72	72	993	973
2013	376	232	23261	70	70	821	803
2014	376	219	20229	52	52	799	790
2015	376	223	20830	73	73	878	875
2016	376	242	26674	69	69	884	876
2017	376	258	25767	78		896	

Table 4.8 Total tonnage of yellowfin sole caught in resource assessment surveys in the eastern Bering Sea from 1977-2017.

	Research
Year	catch (t)
1977	60
1978	71
1979	147
1980	92
1981	74
1982	158
1983	254
1984	218
1985	105
1986	68
1987	92
1988	138
1989	148
1990	129
1991	118
1992	60
1993	95
1994	91
1995	95
1996	72
1997	76
1998	79
1999	61
2000	72
2001	75
2002	76
2003	78
2004	114
2005	94
2006	74
2007	74
2008	69
2009	60
2010	79
2011	77
2012	64
2013	75
2014	81
2015	64
2016	98
2017	98

Mean length and weight at age for yellowfin sole (unsmoothed).

82 116

82 116

195 246 296 313 314

330 273

253 319 318 331 338 346 381

253 319 318 331 338 346 381

400 478 436 400

408 434 413 460

434 413 460

Table 4.9—(continued) Mean length and weight at age for yellowfin sole (unsmoothed).

ruore	1.,	(0011		femal	es	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	una	WOIG	iii at	<i>u</i> ge 1	or ye.	110 111	111 50	ic (ui	isiiio	otiica	.).			
_	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1954	4	15	34	60	91	125	160	195	230	263	294	322	348	372	393	412	429	444	481	590
	4	15	34	60	91	125	160	195	230	263	294	322	348	372	393	412	429	444	481	590
1974	4	15	34	60	91	125	160	195	230	263	294	322	348	372	393	412	429	444	481	590
1975	8	20	31	55	84	124	165	217	266	301	341	374	407	428	443	480	483	499	590	590
1976	8	20	31	55	84	124	165	217	266	301	341	374	407	428	443	480	483	499	590	590
1977	8	20	31	55	84	124	165	217	266	301	341	374	407	428	443	480	483	499	590	590
1978	8	20	31	55	84	124	165	217	266	301	341	374	407	428	443	480	483	499	590	590
1979	8	20	31	55	84	124	165	217	266	301	341	374	407	428	443	480	483	499	590	590
1980	8	20	31	55	84	124	165	217	266	301	341	374	407	428	443	480	483	499	590	590
1981	8	20	31	55	84	124	165	217	266	301	341	374	407	428	443	480	483	499	590	590
1982	8	20	42	75	98	139	176	214	233	235	289	300	339	336	406	490	417	386	568	590
1983	10	14	26	60	103	162	185	201	243	255	280	329	395	477	539	583	578	630	685	590
1984	14	26	33	57	110	156	177	222	246	294	338	332	325	422	436	458	497	665	654	590
1985	11	16	28	46	77	177	202	251	286	302	323	371	370	421	425	499	624	600	620	590
1986	14	27	23	41	71	103	173	239	284	338	342	350	402	351	391	422	440	455	611	590
1987	10	14	20	47	55	127	179	256	317	324	373	373	385	384	422	412	458	436	523	590
1988	9	12	16	34	66	85	159	237	286	307	378	396	404	388	415	437	429	485	578	590
1989	12	21	33	67	71	112	133	197	279	339	402	430	449	456	456	456	578	476	516	590
1990	11	17	24	38	65	99	126	197	243	321	449	450	416	446	464	455	471	523	569	590
1991	11	16	23	58	56	100	142	156	238	310	370	457	446	473	474	490	492	484	598	590
1992	12	21	29	55	85	121	177	176	283	305	284	352	435	516	459	484	519	459	547	590
1993	15	28	35	64	93	155	165	232	244	301	333	368	442	452	497	499	471	538	586	590
1994	20	46	53	86	87	125	155	235	276	284	337	396	351	461	464	480	476	514	553	590
1995	12	20	28	60	84	123	160	217	284	332	340	443	384	414	454	439	619	482	589	590
1996	11	16	36	51	108	137	167	202	222	311	318	334	405	399	432	534	462	523	558	590
1997	16	34	33	72	85	157	200	236	260	292	353	373	401	469	440	490	431	515	600	590
1998	10	14	36	51	90	104	177	237	278	279	318	370	416	405	403	448	407	532	581	590
1999	9	12	18	37	67	103	131	239	284	296	328	348	384	396	416	461	502	477	639	590
2000	11	16	33	33	91	81	158	175	237	306	310	373	401	440	422	494	506	483	636	590
2001	6	6	32	41	57	83	148	179	255	305	357	372	447	415	420	422	476	522	598	590
2002	11	18	27	48	65	87	120	224	243	261	337	346	374	408	434	452	505	489	585	590
2003	9	12	31	53	86	124	156	213	289	303	344	407	425	399	434	365	438	457	536	590
2004	9	18	43	63	101	168	172	245	299	346	380	407	483	543	450	461	464	500	604	590
2005	14	26	44	78	114	152	213	238	277	337	347	397	439	461	531	522	438	539	629	590
2006	9	13	40	82	125	153	204	245	319	314	375	370	533	460	476	865	480	537	691	590
2007	11	16	36	66	115	173	198	244	316	311	362	358	417	461	462	497	491	611	640	590
2008	13	24	28	54	98	129	199	226	286	320	355	384	442	434	471	530	530	552	630	590
2009	6	9	18	45	69	127	163	239	306	322	375	416	381	413	473	736	539	491	679	590
2010	8	20	31	55	84	124	165	217	266	301	341	374	407	428	443	480	483	499	590	590
2011	8	18	25	56	80	126	188	205	327	332	372	403	415	440	426	369	491	542	590	590
2012	8	12	26	49	81	144	169	256	313	341	349	445	459	471	476	444	527	525	590	590
2013	8	12	21	35	92	125	182	261	305	364	410	426	464	456	451	507	494	532	590	590
2014	6	8	11	18	34	74	145	203	260	305	376	367	405	410	488	519	483	581	548	590
2015	6	8	11 32	18 50	34 66	74 74	145	203	260	305	376	367	405	410	488	519	483	581	548 555	590 590
2016	6	8	-			74	112	186	338	372	412	408	455	456	485	508	515	532	555	
2017	6	8	32	50	66	74	112	186	338	372	412	408	455	456	485	508	515	532	555	590

Table 4.10. Female yellowfin sole proportion mature at age from Nichol (1995) and TenBrink and Wilderbuer (2015).

Age	1992, 1993	2012	
	samples	samples	Combined
1	0.00	0	0
2	0.00	0	0
3	0.001	0	0
4	0.004	0	0
5	0.008	0	0
6	0.020	0.01	0.01
7	0.046	0.03	0.04
8	0.104	0.09	0.10
9	0.217	0.21	0.21
10	0.397	0.43	0.41
11	0.612	0.68	0.65
12	0.790	0.86	0.83
13	0.899	0.94	0.92
14	0.955	0.98	0.97
15	0.981	0.99	0.99
16	0.992	1.0	1.0
17	0.997	1.0	1.0
18	1.0	1.0	1.0
19	1.0	1.0	1.0
20	1.0	1.0	1.0

Table 4.11. Key equations used in the population dynamics model.

$$N_{t,1} = R_t = R_0 e^{\tau_t}, \qquad \tau_t \sim N(0, \delta^2_R)$$

Recruitment 1956-75

$$N_{t,1} = R_t = R_{\gamma} e^{\tau_t}$$
, $\tau_t \sim N(0, \delta_R^2)$

Recruitment 1976-96

$$C_{t,a} = \frac{F_{t,a}}{Z_{t,a}} \left(1 - e^{-z_{t,a}} \right) N_{t,a}$$

Catch in year t for age a fish

$$N_{t+1,a+1} = N_{t,a} e^{-z_{t,a}}$$

Numbers of fish in year t+1 at age a

$$N_{t+1,A} = N_{t,A-1}e^{-z_{t,A-1}} + N_{t,A}e^{-z_{t,A}}$$

Numbers of fish in the "plus group"

$$S_t = \sum N_{t,a} W_{t,a} \phi_a$$

Spawning biomass

$$Z_{t,a} = F_{t,a} + M$$

Total mortality in year t at age a

$$F_{t,a} = s_a \mu^F \exp^{\varepsilon^F_t}, \quad \varepsilon^F_t \sim N(o, \sigma^{2_F})$$

Fishing mortality

$$s_a = \frac{1}{1 + \left(e^{-\alpha + \beta a}\right)}$$

Age-specific fishing selectivity

$$C_t = \sum C_{t,a}$$

Total catch in numbers

$$P_{t,a} = \frac{C_{t,a}}{C_t}$$

Proportion at age in catch

$$SurB_{t} = q \sum N_{t,a} W_{t,a} v_{a}$$

Survey biomass

Table 4.11—continued.

$$qprior = \lambda \frac{0.5(\ln q_{est,t} - \ln q_{prior})^2}{\sigma_q^2}$$

survey catchability prior (when estimated)

$$mprior = \lambda \frac{0.5(\ln m_{est} - \ln m_{prior})^2}{\sigma_m^2}$$

natural mortality prior (when estimated)

$$reclike = \lambda (\sum_{i=1965}^{endyear} \bar{R} - R_i)^2 + \sum_{a=1}^{20} (\bar{R}_{init} - R_{init,a})^2 + \frac{1}{2((\sum_{i=1965}^{endyear} \bar{R} - R_i) \frac{1}{n+1})}$$
recruitment likelihood

$$catchlike = \lambda \sum_{i=startyear}^{endyear} (\ln C_{obs,i} - \ln C_{est,i})^{2}$$

catch likelihood

$$surveylike = \lambda \frac{(\ln B - \ln \hat{B})^2}{2\sigma^2}$$

survey likelihood

$$SurvAgelike = \sum_{i,t} m_t P_{t,a} \ln \frac{\hat{P_{t,a}}}{P_{t,a}}$$

survey age composition likelihood

$$FishAgelike = \sum_{i,t} m_t P_{t,a} \ln \frac{P_{t,a}}{P_{t,a}}$$

fishery age composition likelihood

Table 4.12. Variables used in the population dynamics model.

Variables	Description
R_{t}	Age 1 recruitment in year t
$R^{}_0$ $R^{}_\gamma$	Geometric mean value of age 1 recruitment, 1956-75 Geometric mean value of age 1 recruitment, 1976-2014
$ au_{t}$	Recruitment deviation in year t
$N_{t,a}$	Number of fish in year t at age a
$C_{t,a}$	Catch numbers of fish in year t at age a
$P_{t,a}$ C_t	Proportion of the numbers of fish age <i>a</i> in year <i>t</i> Total catch numbers in year <i>t</i>
$W_{t,a}$	Mean body weight (kg) of fish age a in year t
$oldsymbol{\phi_a} F_{t,a}$	Proportion of mature females at age a Instantaneous annual fishing mortality of age a fish in year t
$M \ Z_{t,a}$	Instantaneous natural mortality, assumed constant over all ages and years Instantaneous total mortality for age a fish in year t
S_a	Age-specific fishing gear selectivity
$\boldsymbol{\mu}^{\scriptscriptstyle F}$	Median year-effect of fishing mortality
$\boldsymbol{\mathcal{E}}_t^F$	The residual year-effect of fishing mortality
V_a	Age-specific survey selectivity
α	Slope parameter in the logistic selectivity equation
eta	Age at 50% selectivity parameter in the logistic selectivity equation
$\sigma_{_t}$	Standard error of the survey biomass in year t

Table 4.13. Models evaluated for stock productivity in the 2017 stock assessment of yellowfin sole

	Model	Model
	14_2	14_1
Years included	1955-2012	1978-2012
Fmsy	0.19	0.12
Bmsy (t)	333,700	454,000
ABC (t)	471,300	277,500
OFL (t) Buffer between ABC	476,800	306,700
and OFL	1%	11%

Table 4-14. Model estimates of annual average fishing mortality for male and female yellowfin sole.

Females

						Females								
year/age	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1964	0.082	0.179	0.269	0.315	0.330	0.335	0.337	0.337	0.337	0.337	0.337	0.337	0.337	0.337
1965	0.012	0.044	0.114	0.189	0.225	0.237	0.240	0.240	0.241	0.241	0.241	0.241	0.241	0.241
1966	0.018	0.053	0.139	0.270	0.375	0.426	0.444	0.449	0.451	0.452	0.452	0.452	0.452	0.452
1967	0.027	0.078	0.194	0.362	0.497	0.562	0.586	0.594	0.597	0.597	0.598	0.598	0.598	0.598
1968	0.011	0.027	0.062	0.129	0.228	0.328	0.397	0.433	0.449	0.455	0.458	0.458	0.458	0.458
1969	0.057	0.205	0.442	0.578	0.617	0.625	0.627	0.627	0.628	0.628	0.628	0.628	0.628	0.628
1970	0.347	0.608	0.650	0.654	0.655	0.655	0.655	0.655	0.655	0.655	0.655	0.655	0.655	0.655
1971	0.383	0.583	0.605	0.607	0.607	0.607	0.607	0.607	0.607	0.607	0.607	0.607	0.607	0.607
1972	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.010	0.034	0.106	0.250	0.250	0.250	0.250
1973	0.018	0.064	0.178	0.318	0.394	0.419	0.426	0.427	0.428	0.428	0.428	0.428	0.428	0.428
1974	0.004	0.014	0.038	0.078	0.116	0.135	0.143	0.145	0.146	0.146	0.146	0.146	0.146	0.146
1975	0.018	0.056	0.101	0.123	0.129	0.130	0.131	0.131	0.131	0.131	0.131	0.131	0.131	0.131
1976	0.011	0.029	0.059	0.091	0.111	0.121	0.124	0.126	0.126	0.126	0.126	0.126	0.126	0.126
1977	0.026	0.036	0.046	0.052	0.055	0.057	0.058	0.059	0.059	0.059	0.059	0.059	0.059	0.059
1978	0.032	0.063	0.091	0.107	0.113	0.115	0.115	0.115	0.116	0.116	0.116	0.116	0.116	0.116
1979	0.019	0.037	0.053	0.062	0.065	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067
1980	0.014	0.024	0.038	0.051	0.062	0.069	0.073	0.075	0.076	0.076	0.076	0.076	0.076	0.076
1981	0.014	0.024	0.036	0.046	0.053	0.057	0.058	0.059	0.060	0.060	0.060	0.060	0.060	0.060
1982	0.015	0.026	0.035	0.041	0.043	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044
1983	0.022	0.034	0.042	0.044	0.045	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046
1984	0.017	0.034	0.052	0.063	0.068	0.070	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071
1985	0.020	0.041	0.067	0.088	0.099	0.103	0.105	0.106	0.106	0.106	0.106	0.106	0.106	0.106
1986	0.025	0.058	0.084	0.094	0.097	0.098	0.098	0.098	0.098	0.098	0.098	0.098	0.098	0.098
1987	0.009	0.021	0.042	0.066	0.082	0.091	0.094	0.096	0.096	0.096	0.096	0.096	0.096	0.096
1988	0.011	0.032	0.068	0.100	0.115	0.120	0.122	0.122	0.122	0.122	0.122	0.122	0.122	0.122
1989	0.004	0.013	0.035	0.064	0.082	0.089	0.091	0.091	0.092	0.092	0.092	0.092	0.092	0.092
1990	0.004	0.012	0.024	0.034	0.038	0.039	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040
1991	0.006	0.014	0.025	0.035	0.041	0.043	0.044	0.045	0.045	0.045	0.045	0.045	0.045	0.045
1992	0.011	0.025	0.044	0.059	0.068	0.071	0.073	0.073	0.073	0.073	0.074	0.074	0.074	0.074
1993	0.008	0.014	0.022	0.032	0.041	0.047	0.051	0.053	0.054	0.055	0.055	0.055	0.055	0.055
1994	0.014	0.031	0.049	0.060	0.064	0.065	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066
1995	0.016	0.033	0.047	0.054	0.056	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057
1996	0.017	0.029	0.042	0.051	0.057	0.060	0.061	0.062	0.062	0.062	0.062	0.062	0.062	0.062
1997	0.021	0.037	0.056	0.072	0.082	0.088	0.091	0.093	0.093	0.093	0.094	0.094	0.094	0.094
1998	0.016	0.029	0.041	0.048	0.051	0.053	0.053	0.053	0.053	0.054	0.054	0.054	0.054	0.054
1999	0.002	0.007	0.016	0.027	0.035	0.039	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041
2000	0.003	0.008	0.019	0.033	0.043	0.048	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050
2001	0.006	0.013	0.023	0.031	0.035	0.037	0.037	0.037	0.038	0.038	0.038	0.038	0.038	0.038
2002	0.003 0.005	0.008 0.012	0.018 0.023	0.030 0.032	0.037 0.037	0.040 0.039	0.041 0.040	0.042 0.040						
2003 2004	0.003		0.023	0.032	0.037	0.039	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040
2004	0.000	0.013 0.019	0.022	0.030	0.034	0.036	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037
2005	0.010	0.019	0.029	0.038	0.044	0.047	0.048	0.049	0.049	0.049	0.049	0.049	0.049	0.049
2007	0.032	0.042	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046
2007	0.015	0.020	0.042	0.055	0.039	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
2009	0.010	0.025	0.033	0.003	0.070	0.055	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072
2010	0.010	0.023	0.043	0.051	0.055	0.055	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058
2010	0.011	0.023	0.039	0.050	0.033	0.037	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038
2011	0.012	0.028	0.049	0.064	0.072	0.073	0.078	0.076	0.076	0.076	0.076	0.076	0.076	0.076
2012	0.012	0.027	0.045	0.060	0.086	0.072	0.073	0.074	0.074	0.074	0.074	0.074	0.074	0.074
2013	0.003	0.018	0.044	0.072	0.080	0.090	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092
2014	0.006	0.017	0.040	0.000	0.082	0.089	0.091	0.092	0.092	0.092	0.092	0.092	0.092	0.092
2015	0.004	0.009	0.020	0.038	0.039	0.075	0.083	0.087	0.089	0.090	0.090	0.090	0.090	0.090
2016	0.007	0.013	0.028	0.043	0.063	0.073	0.083	0.086	0.088	0.089	0.089	0.089	0.089	0.089
2017	0.007	0.022	0.043	0.001	0.070	0.074	0.073	0.073	0.073	0.070	0.070	0.070	0.070	0.070

Table 4.14 continued.

100#/005		0	0	10	11	Males	12	1.4	15	16	17	10	10	20
ear/age 1964	0.337	0.337	0.337	0.337	0.337	0.337	0.337	0.337	0.337	16 0.337	0.337	0.337	19 0.337	20 0.337
1964	0.337	0.337	0.337	0.337	0.337	0.337	0.337	0.337	0.337	0.337	0.337	0.337	0.337	0.337
1966	0.003	0.024	0.087	0.178	0.223	0.257	0.240	0.452	0.452	0.452	0.452	0.452	0.452	0.452
1967	0.021	0.397	0.556	0.591	0.597	0.598	0.598	0.432	0.598	0.598	0.598	0.598	0.598	0.598
1968	0.043	0.184	0.373	0.444	0.457	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460
1969	0.007	0.039	0.176	0.438	0.584	0.620	0.626	0.627	0.628	0.628	0.628	0.628	0.628	0.628
1970	0.000	0.001	0.006	0.027	0.115	0.335	0.548	0.630	0.650	0.654	0.655	0.655	0.655	0.655
1971	0.371	0.586	0.606	0.607	0.607	0.607	0.607	0.607	0.607	0.607	0.607	0.607	0.607	0.607
1972	0.114	0.337	0.474	0.504	0.508	0.509	0.509	0.509	0.509	0.509	0.509	0.509	0.509	0.509
1973	0.114	0.351	0.420	0.427	0.428	0.428	0.428	0.428	0.428	0.428	0.428	0.428	0.428	0.428
1974	0.083	0.125	0.141	0.145	0.146	0.146	0.146	0.146	0.146	0.146	0.146	0.146	0.146	0.14
1975	0.047	0.103	0.126	0.130	0.131	0.131	0.131	0.131	0.131	0.131	0.131	0.131	0.131	0.131
1976	0.010	0.028	0.061	0.096	0.115	0.123	0.125	0.126	0.126	0.126	0.126	0.126	0.126	0.126
1977	0.009	0.026	0.046	0.055	0.058	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059
1978	0.025	0.051	0.080	0.100	0.109	0.113	0.115	0.115	0.115	0.116	0.116	0.116	0.116	0.116
1979	0.018	0.036	0.052	0.061	0.065	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067
1980	0.007	0.011	0.018	0.028	0.038	0.049	0.059	0.065	0.070	0.073	0.074	0.074	0.074	0.074
1981	0.012	0.020	0.029	0.039	0.047	0.052	0.056	0.058	0.059	0.059	0.059	0.059	0.059	0.059
1982	0.022	0.032	0.039	0.042	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044
1983	0.024	0.036	0.042	0.045	0.045	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046
1984	0.023	0.046	0.062	0.069	0.070	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.07
1985	0.036	0.073	0.096	0.104	0.106	0.106	0.106	0.106	0.106	0.106	0.106	0.106	0.106	0.10
1986	0.034	0.072	0.091	0.097	0.098	0.098	0.098	0.098	0.098	0.098	0.098	0.098	0.098	0.098
1987	0.015	0.050	0.083	0.094	0.096	0.096	0.096	0.096	0.096	0.096	0.096	0.096	0.096	0.09
1988	0.015	0.055	0.100	0.118	0.122	0.122	0.122	0.122	0.122	0.122	0.122	0.122	0.122	0.12
1989	0.004	0.015	0.044	0.074	0.087	0.091	0.091	0.092	0.092	0.092	0.092	0.092	0.092	0.092
1990	0.008	0.022	0.034	0.038	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040
1991	0.008	0.024	0.039	0.044	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045
1992	0.017	0.039	0.059	0.069	0.072	0.073	0.073	0.073	0.074	0.074	0.074	0.074	0.074	0.074
1993	0.009	0.015	0.024	0.034	0.043	0.048	0.052	0.054	0.055	0.055	0.055	0.055	0.055	0.055
1994	0.018	0.039	0.056	0.063	0.065	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066
1995	0.019	0.038	0.051	0.056	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057
1996	0.026	0.040	0.052	0.058	0.060	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062
1997	0.026	0.048	0.069	0.083	0.089	0.092	0.093	0.093	0.094	0.094	0.094	0.094	0.094	0.094
1998	0.007	0.021	0.038	0.049	0.052	0.053	0.053	0.054	0.054	0.054	0.054	0.054	0.054	0.054
1999	0.002	0.004	0.010	0.019	0.029	0.036	0.039	0.040	0.041	0.041	0.041	0.041	0.041	0.04
2000	0.003	0.007	0.017	0.031	0.042	0.047	0.049	0.050	0.050	0.050	0.050	0.050	0.050	0.050
2001	0.001	0.004	0.008	0.015	0.024	0.031	0.035	0.036	0.037	0.037	0.038	0.038	0.038	0.038
2002	0.002	0.008	0.021	0.035	0.040	0.041	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042
2003	0.006	0.017	0.031	0.038	0.039	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040
2004	0.005	0.011	0.021	0.030	0.034	0.036	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037
2005	0.011	0.023	0.035	0.043	0.047	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049	0.049
2006	0.028	0.043	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046	0.046
2007	0.020	0.040	0.054	0.061	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063
2008	0.018	0.039	0.058	0.067	0.071	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072
2009	0.008	0.019	0.034	0.046	0.052	0.054	0.054	0.055	0.055	0.055	0.055	0.055	0.055	0.05
2010	0.016	0.036	0.050	0.056	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058
2011	0.017	0.036	0.057	0.069	0.074	0.075	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.070
2012	0.018	0.040	0.060	0.070	0.073	0.074	0.074	0.074	0.074	0.074	0.074	0.074	0.074	0.074
2013	0.007	0.021	0.049	0.074	0.087	0.091	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.09
2014	0.008	0.021	0.043	0.067	0.082	0.089	0.091	0.092	0.092	0.092	0.092	0.092	0.092	0.092
2015	0.005	0.010	0.019	0.033	0.051	0.067	0.078	0.084	0.087	0.089	0.089	0.089	0.089	0.089
2016	0.007	0.014	0.026	0.043	0.061	0.074	0.082	0.086	0.088	0.089	0.089	0.089	0.089	0.089
2017	0.015	0.037	0.059	0.071	0.074	0.075	0.075	0.076	0.076	0.076	0.076	0.076	0.076	0.07

Table 4.15. Model estimates of yellowfin sole full selection fishing mortality and exploitation rate (catch/total biomass).

Year	Full selection F	Exploitation Rate
1974	0.15	0.03
1975	0.13	0.04
1976	0.13	0.03
1977	0.06	0.02
1978	0.12	0.05
1979	0.07	0.03
1980	0.08	0.03
1981	0.06	0.03
1982	0.04	0.03
1983	0.05	0.03
1984	0.07	0.05
1985	0.11	0.06
1986	0.10	0.06
1987	0.10	0.06
1988	0.12	0.07
1989	0.09	0.05
1990	0.04	0.03
1991	0.04	0.03
1992	0.07	0.05
1993	0.06	0.03
1994	0.07	0.04
1995	0.06	0.04
1996	0.06	0.04
1997	0.09	0.06
1998	0.05	0.04
1999	0.04	0.03
2000	0.05	0.03
2001	0.04	0.02
2002	0.04	0.03
2003	0.04	0.03
2004	0.04	0.02
2005	0.05	0.03
2006	0.05	0.03
2007	0.06	0.04
2008	0.07	0.05
2009	0.05	0.04
2010	0.06	0.04
2011	0.08	0.05
2012	0.07	0.05
2013	0.09	0.06
2014	0.09	0.06
2015	0.09	0.05
2016	0.09	0.05
2017	0.08	0.05

Table 4.16 Model estimates of yellowfin sole age-specific selectivities for the survey and fishery (ages 4 to 20 from left to right).

-	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1982-2017	0.0	0.0	0.0	0.1	survey 0.2	females 0.3	0.6	0.8	0.9	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1702-2017	0.0	0.0	0.0	0.1	survey ma		0.0	0.0	0.7	0.7	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	0.0	0.0	0.0	0.1	0.2	0.4	0.5	0.7	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0
					fishery fe												
1964	0.0	0.0	0.1	0.2	0.5	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1965 1966	0.0	0.0	0.0	0.1	0.2 0.1	0.5 0.3	0.8	0.9 0.8	1.0 0.9	1.0 1.0							
1966	0.0	0.0	0.0	0.0	0.1	0.3	0.6	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1968	0.0	0.0	0.0	0.0	0.1	0.3	0.3	0.5	0.7	0.9	0.9	1.0	1.0	1.0	1.0	1.0	1.0
1969	0.0	0.0	0.0	0.0	0.3	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1970	0.0	0.0	0.1	0.5	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1971	0.0	0.0	0.1	0.6	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1972	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.5	0.5	0.5	0.5
1973	0.0	0.0	0.0	0.0	0.1	0.4	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1974	0.0	0.0	0.0	0.0	0.1	0.3	0.5	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1975	0.0	0.0	0.0	0.1	0.4	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1976	0.0	0.0	0.0	0.1	0.2	0.5	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1977	0.1	0.1	0.3	0.4	0.6	0.8	0.9	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1978 1979	0.0	0.0	0.1 0.1	0.3	0.5 0.5	0.8 0.8	0.9	1.0 1.0	1.0	1.0 1.0	1.0 1.0	1.0 1.0	1.0	1.0 1.0	1.0 1.0	1.0 1.0	1.0 1.0
1979	0.0	0.0	0.1	0.3	0.3	0.8	0.9	0.8	1.0 0.9	0.9	1.0	1.0	1.0 1.0	1.0	1.0	1.0	1.0
1980	0.0	0.0	0.1	0.2	0.3	0.5	0.7	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1982	0.0	0.1	0.1	0.2	0.4	0.8	0.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1983	0.0	0.1	0.2	0.5	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1984	0.0	0.0	0.1	0.2	0.5	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1985	0.0	0.0	0.1	0.2	0.4	0.6	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1986	0.0	0.0	0.1	0.3	0.6	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1987	0.0	0.0	0.0	0.1	0.2	0.4	0.7	0.9	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1988	0.0	0.0	0.0	0.1	0.3	0.6	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1989	0.0	0.0	0.0	0.0	0.1	0.4	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1990	0.0	0.0	0.0	0.1	0.3	0.6	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1991	0.0	0.0	0.1	0.1	0.3	0.6	0.8	0.9 0.9	1.0	1.0	1.0	1.0 1.0	1.0	1.0	1.0	1.0 1.0	1.0
1992 1993	0.0	0.0	0.1 0.1	0.2	0.3 0.2	0.6 0.4	0.8	0.9	1.0 0.9	1.0 0.9	1.0 1.0	1.0	1.0 1.0	1.0 1.0	1.0 1.0	1.0	1.0 1.0
1994	0.0	0.0	0.1	0.1	0.2	0.4	0.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1995	0.0	0.0	0.1	0.2	0.6	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1996	0.0	0.1	0.1	0.3	0.5	0.7	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1997	0.0	0.1	0.1	0.2	0.4	0.6	0.8	0.9	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1998	0.0	0.1	0.1	0.3	0.5	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1999	0.0	0.0	0.0	0.1	0.2	0.4	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2000	0.0	0.0	0.0	0.1	0.2	0.4	0.7	0.9	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2001	0.0	0.0	0.1	0.1	0.3	0.6	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2002	0.0	0.0	0.0	0.1	0.2	0.4	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2003	0.0	0.0	0.0	0.1	0.3	0.6	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2004 2005	0.0	0.0	0.1	0.1	0.3 0.4	0.6 0.6	0.8	0.9 0.9	1.0 1.0								
2005	0.0	0.0	0.1	0.2	0.4	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2007	0.0	0.0	0.1	0.7	0.4	0.7	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2008	0.0	0.0	0.1	0.2	0.5	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2009	0.0	0.0	0.0	0.2	0.5	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2010	0.0	0.0	0.1	0.2	0.4	0.7	0.9	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2011	0.0	0.0	0.1	0.2	0.4	0.6	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2012	0.0	0.0	0.1	0.2	0.4	0.6	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2013	0.0	0.0	0.0	0.1	0.2	0.5	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	0.0	0.0	0.0	0.1	0.2	0.4	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2014											4 -		4 -				
2014 2015 2016	0.0	0.0	0.0	0.0 0.1	0.1 0.2	0.2 0.3	0.4 0.5	0.7 0.7	0.8	0.9 0.9	1.0 1.0						

Table 4.16 (continued) Model estimates of yellowfin sole age-specific selectivities for the survey and fishery (ages 4 to 20 from left to right).

fishery males

				fishery m	ales												
	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1964	0.0	0.0	0.0	0.0	0.1	0.4	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1965	0.0	0.0	0.0	0.0	0.1	0.4	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1966	0.0	0.0	0.0	0.0	0.2	0.6	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1967	0.0	0.0	0.0	0.2	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1968	0.0	0.0	0.0	0.1	0.4	0.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1969	0.0	0.0	0.0	0.0	0.1	0.3	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1970	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.5	0.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1971	0.0	0.0	0.1	0.6	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1972	0.0	0.0	0.0	0.2	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1973	0.0	0.0	0.0	0.3	0.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1974	0.0	0.1	0.2	0.6	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1975	0.0	0.0	0.1	0.4	0.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1976	0.0	0.0	0.0	0.1	0.2	0.5	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1977	0.0	0.0	0.0	0.2	0.4	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1978	0.0	0.0	0.1	0.2	0.4	0.7	0.9	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1979	0.0	0.0	0.1	0.3	0.5	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1980	0.0	0.0	0.1	0.1	0.1	0.2	0.4	0.5	0.6	0.8	0.9	0.9	0.9	1.0	1.0	1.0	1.0
1981	0.0	0.1	0.1	0.2	0.3	0.5	0.6	0.8	0.9	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1982	0.0	0.1	0.3	0.5	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1983	0.0	0.1	0.2	0.5	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1984	0.0	0.0	0.1	0.3	0.6	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1985	0.0	0.0	0.1	0.3	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1986	0.0	0.0	0.1	0.3	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1987	0.0	0.0	0.0	0.2	0.5	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1988	0.0	0.0	0.0	0.1	0.4	0.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1989	0.0	0.0	0.0	0.0	0.2	0.5	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1990	0.0	0.0	0.1	0.2	0.5	0.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1991	0.0	0.0	0.0	0.2	0.5	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1992	0.0	0.0	0.1	0.2	0.5	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1993	0.0	0.0	0.1	0.2	0.3	0.4	0.6	0.8	0.9	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1994	0.0	0.0	0.1	0.3	0.6	0.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1995	0.0	0.0	0.1	0.3	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1996	0.0	0.1	0.2	0.4	0.6	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1997	0.0	0.1	0.1	0.3	0.5	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1998	0.0	0.0	0.0	0.1	0.4	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1999	0.0	0.0	0.0	0.0	0.1	0.2	0.5	0.7	0.9	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2000	0.0	0.0	0.0	0.1	0.1	0.3	0.6	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2001	0.0	0.0	0.0	0.0	0.1	0.2	0.4	0.6	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2002	0.0	0.0	0.0	0.0	0.2	0.5	0.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2003	0.0	0.0	0.0	0.1	0.4	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2004	0.0	0.0	0.0	0.1	0.3	0.6	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2005	0.0	0.0	0.1	0.2	0.5	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2006	0.0	0.0	0.2	0.6	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2007	0.0	0.0	0.1	0.3	0.6	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2008	0.0	0.0	0.1	0.3	0.5	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2009	0.0	0.0	0.1	0.1	0.3	0.6	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2010	0.0	0.0	0.1	0.3	0.6	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2011	0.0	0.0	0.1	0.2	0.5	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2012	0.0	0.0	0.1	0.2	0.5	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2013	0.0	0.0	0.0	0.1	0.2	0.5	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2014	0.0	0.0	0.0	0.1	0.2	0.5	0.7	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2015	0.0	0.0	0.0	0.1	0.1	0.2	0.4	0.6	0.7	0.9	0.9	1.0	1.0	1.0	1.0	1.0	1.0
2016	0.0	0.0	0.0	0.1	0.2	0.3	0.5	0.7	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2017	0.0	0.0	0.1	0.2	0.5	0.8	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Table 4.17. Model estimates of yellowfin sole age 2+ total biomass (t) and begin-year female spawning biomass (t) from the 2016 and 2017 stock assessments.

		2	2017Assessn	nent			2016 Assessm	nent
	Female spawning	Lower	Upper	Total	Lower	Upper	Female spawning	Total
Year	biomass	95%C.I.	95%C.I.	biomass	95%C.I.	95%C.I.	biomass	biomass
1964	142,369	125,963	158,775	926,625	884,358	968,892	17,615	839,742
1965	169,571	150,673	188,469	901,174	859,348	943,000	36,707	835,631
1966	207,104	181,164	233,044	936,828	894,264	979,392	61,107	879,970
1967	218,877	183,738	254,016	911,246	868,430	954,062	75,435	863,836
1968	213,928	172,597	255,259	823,838	782,109	865,567	74,113	782,492
1969	197,480	159,473	235,487	850,296	806,122	894,470	69,945	810,677
1970	135,238	107,904	162,572	813,647	767,283	860,011	65,929	786,026
1971	87,750	68,217	107,284	862,710	810,862	914,558	59,749	846,563
1972	71,363	52,436	90,290	936,838	876,587	997,089	41,419	909,321
1973	78,284	55,940	100,627	1,188,580	1,117,114	1,260,046	48,795	1,155,700
1974	84,991	62,369	107,612	1,433,880	1,350,985	1,516,775	64,968	1,397,720
1975	134,520	104,490	164,550	1,786,070	1,687,158	1,884,982	114,443	1,739,260
1976	194,457	159,757	229,157	2,091,310	1,979,840	2,202,780	175,884	2,035,950
1977	285,756	244,715	326,797	2,400,420	2,276,574	2,524,266	267,530	2,336,020
1978	400,220	353,682	446,758	2,694,380	2,558,675	2,830,085	381,170	2,620,880
1979	515,975	465,098	566,852	2,853,520	2,707,666	2,999,374	494,992	2,771,670
1980	644,788	589,440	700,136	3,034,890	2,879,623	3,190,157	620,393	2,944,900
1981	763,587	704,136	823,038	3,200,280	3,035,796	3,364,764	735,618	3,103,120
1982	830,159	769,672	890,646	3,312,110	3,142,696	3,481,524	799,728	3,208,630
1983	930,442	866,389	994,495	3,289,120	3,117,812	3,460,428	895,921	3,183,300
1984	1,009,100	942,343	1,075,857	3,509,840	3,324,897	3,694,783	971,246	3,393,380
1985	1,054,930	984,923	1,124,937	3,516,680	3,324,359	3,709,001	1,013,620	3,394,790
1986	1,040,470	969,028	1,111,912	3,228,140	3,041,303	3,414,977	996,871	3,108,320
1987	1,032,280	957,877	1,106,683	3,183,200	2,990,263	3,376,137	986,120	3,058,180
1988	973,826	899,973	1,047,679	3,082,600	2,889,542	3,275,658	927,181	2,955,620
1989	944,673	869,393	1,019,953	3,130,950	2,926,591	3,335,309	896,354	2,994,610
1990	953,446	877,432	1,029,460	2,993,920	2,791,865	3,195,975	903,497	2,858,500
1991	1,030,640	950,675	1,110,605	3,106,100	2,897,247	3,314,953	977,265	2,964,280
1992	1,108,300	1,022,799	1,193,801	3,303,480	3,081,401	3,525,559	1,051,080	3,150,890
1993	1,139,450	1,049,929	1,228,971	3,328,080	3,099,130	3,557,030	1,079,390	3,167,600
1994	1,139,730	1,049,752	1,229,708	3,362,290	3,130,320	3,594,260	1,078,550	3,194,550
1995	1,135,560	1,044,219	1,226,901	3,135,510	2,911,867	3,359,153	1,072,910	2,972,780
1996	1,068,660	980,760	1,156,560	3,047,450	2,827,286	3,267,614	1,007,480	2,881,690
1997	1,029,840	942,754	1,116,926	3,056,250	2,832,945	3,279,555	968,198	2,881,350
1998	964,342	879,785	1,048,899	2,782,490	2,569,490	2,995,490	903,440	2,612,680
1999	953,817	869,562	1,038,072	2,599,520	2,395,766	2,803,274	891,856	2,434,810
2000	939,002	855,138	1,022,866	2,645,900	2,441,086	2,850,714	876,306	2,472,620
2001	932,963	849,579	1,016,347	2,571,130	2,369,891	2,772,369	868,908	2,397,250
2002	929,799	846,867	1,012,731	2,612,290	2,410,173	2,814,407	864,250	2,430,820
2003	937,347	854,321	1,020,373	2,820,560	2,606,587	3,034,533	869,246	2,618,170
2004	966,374	881,636	1,051,112	3,028,200	2,801,621	3,254,779	893,962	2,805,970
2005	981,900	896,204	1,067,596	3,138,190	2,904,329	3,372,051	905,612	2,906,560
2006	1,001,710	914,164	1,089,256	3,121,280	2,886,123	3,356,437	920,437	2,887,410
2007	1,007,020	918,540	1,095,500	3,131,800	2,892,122	3,371,478	921,166	2,895,700
2008	984,018	895,586	1,072,450	3,002,470	2,766,978	3,237,962	894,603	2,771,050
2009	950,705	863,010	1,038,400	2,834,320	2,603,218	3,065,422	858,763	2,606,720
2010	928,940	841,575	1,016,305	2,903,440	2,665,625	3,141,255	835,187	2,670,900
2011	910,298	823,033	997,563	2,936,040	2,690,395	3,181,685	815,498	2,701,250
2012	897,681	809,011	986,351	2,927,810	2,676,751	3,178,869	802,230	2,693,730
2013	894,342	802,405	986,279	2,883,080	2,627,632	3,138,528	799,268	2,647,970
2014	858,579	764,911	952,247	2,680,370	2,430,474	2,930,266	764,979	2,449,450
2015	861,299	763,454	959,144	2,699,440	2,438,694	2,960,186	767,803	2,451,240
2016	876,687	775,173	978,201	2,852,570	2,552,951	3,152,189	775,148	2,457,260
2017	884,750	780,860	988,640	2,878,150	2,535,096	3,221,204		

Table 4.18—Model estimates of yellowfin sole population numbers at age (billions) for 1954-2017.

Female s 9 10 19 4 5 6 7 8 11 12 13 14 15 16 17 18 1954 0.70 0.30 0.22 0.22 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 1.04 0.20 0.20 0.20 1955 0.84 0.92 0.62 0.27 0.20 0.19 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.17 0.17 0.17 0.17 0.17 0.17 1956 0.73 0.15 0.75 0.81 0.55 0.24 0.18 0.17 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 1957 2.95 0.65 0.66 0.72 0.49 0.21 0.160.15 0.14 0.14 0.14 0.14 0.14 0.130.13 0.13 0.130.13 0.13 1958 2.33 2.62 0.58 0.59 0.64 0.43 0.19 0.14 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 1959 1.49 2.07 2.32 0.51 0.52 0.57 0.38 0.16 0.12 0.12 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 1960 1.00 1.32 1.83 2.06 0.45 0.46 0.50 0.33 0.14 0.10 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 1961 0.51 0.89 1.62 1.82 0.40 0.41 0.44 0.29 0.11 0.07 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 1.17 1962 0.95 1 04 1 44 0.36 0.39 0.24 0.09 0.04 0.02 0.01 0.01 0.01 0.01 0.46 0.79 1.62 0.36 0.01 0.01 1963 0.46 0.85 0.40 0.70 0.92 1.28 1.44 0.32 0.32 0.34 0.21 0.07 0.02 0.00 0.00 0.00 0.00 0.00 0.00 1964 0.42 0.41 0.75 0.36 0.62 0.81 0.23 0.22 0.22 0.13 0.04 0.02 0.00 0.00 0.00 0.00 0.00 1.09 1.16 1965 0.59 0.37 0.37 0.67 0.32 0.54 0.70 0.89 0.86 0.16 0.14 0.14 0.09 0.03 0.01 0.00 0.00 0.00 0.00 1966 0.61 0.52 0.33 0.32 0.59 0.28 0.48 0.61 0.76 0.68 0.12 0.10 0.10 0.06 0.02 0.01 0.00 0.00 0.00 1967 1.25 0.54 0.46 0.29 0.29 0.520.25 0.42 0.51 0.59 0.46 0.07 0.06 0.06 0.03 0.010.000.00 0.00 1968 1.91 0.41 0.25 0.21 0.34 0.38 0.04 0.03 0.02 0.01 0.00 1.11 0.48 0.26 0.46 0.36 0.25 0.03 0.00 1969 1.96 1.70 0.99 0.42 0.36 0.23 0.22 0.40 0.19 0.29 0.29 0.26 0.16 0.02 0.02 0.02 0.01 0.00 0.00 1970 2.58 1.74 1.50 0.88 0.38 0.32 0.19 0.29 0.14 0.14 0.12 0.01 0.01 0.01 0.00 0.20 0.11 0.08 0.00 1971 2.87 2.29 1.54 1.33 0.78 0.33 0.27 0.13 0.09 0.13 0.05 0.07 0.06 0.06 0.03 0.00 0.00 0.00 0.00 1972 2.25 2.54 2.03 0.06 0.04 0.07 0.02 0.03 0.03 0.03 0.02 0.00 0.00 0.00 1.37 1.18 0.68 0.28 0.16 1973 1.56 2.00 2.26 1.80 1.21 1.05 0.61 0.24 0.14 0.06 0.04 0.06 0.02 0.03 0.03 0.02 0.01 0.00 0.00 1974 2.10 1.38 1.77 2.00 1.60 1.07 0.93 0.53 0.20 0.11 0.04 0.02 0.03 0.01 0.02 0.02 0.01 0.01 0.00 1975 2.47 1.86 1.23 1.57 1.78 1.42 0.95 0.82 0.46 0.17 0.09 0.03 0.02 0.030.01 0.01 0.01 0.01 0.01 1976 1.62 2.19 1.65 1.09 1.39 1.57 1.25 0.83 0.69 0.37 0.14 0.07 0.02 0.01 0.02 0.01 0.01 0.01 0.01 1977 2.04 1.44 1.94 1.46 0.96 1.23 1.39 1.10 0.71 0.57 0.30 0.110.05 0.02 0.01 0.02 0.01 0.01 0.01 1978 1.34 1.81 1.28 1.72 1.29 0.85 1.08 1.20 0.94 0.60 0.48 0.25 0.09 0.04 0.01 0.01 0.01 0.00 0.01 1979 0.85 1.18 1.61 1.13 1.52 1.14 0.74 0.93 1.00 0.76 0.48 0.38 0.20 0.070.04 0.01 0.01 0.01 0.001980 0.01 0.01 1.64 0.76 1.05 1.42 1.00 1.34 1.00 0.65 0.79 0.84 0.63 0.40 0.32 0.17 0.06 0.03 0.01

Table 4.18—Model estimates of yellowfin sole population numbers at age (billions) for 1954-2017 (continued).

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1981	1.21	1.45	0.67	0.93	1.26	0.89	1.18	0.88	0.56	0.68	0.71	0.53	0.33	0.26	0.14	0.05	0.02	0.01	0.00	0.02
1982	3.51	1.08	1.29	0.59	0.82	1.11	0.78	1.04	0.76	0.48	0.57	0.60	0.44	0.28	0.22	0.11	0.04	0.02	0.01	0.02
1983	0.65	3.11	0.95	1.14	0.53	0.73	0.98	0.68	0.89	0.65	0.41	0.49	0.51	0.38	0.24	0.19	0.10	0.03	0.02	0.02
1984	2.89	0.58	2.76	0.85	1.01	0.46	0.64	0.85	0.58	0.76	0.55	0.35	0.41	0.43	0.32	0.20	0.16	0.08	0.03	0.04
1985	1.00	2.56	0.51	2.45	0.75	0.89	0.41	0.56	0.73	0.49	0.63	0.46	0.29	0.34	0.35	0.26	0.16	0.13	0.07	0.05
1986	0.76	0.88	2.27	0.45	2.17	0.66	0.79	0.36	0.48	0.61	0.40	0.51	0.37	0.23	0.27	0.28	0.21	0.13	0.10	0.10
1987	1.04	0.68	0.78	2.02	0.40	1.92	0.58	0.68	0.30	0.39	0.49	0.32	0.41	0.29	0.18	0.22	0.23	0.17	0.11	0.16
1988	1.42	0.92	0.60	0.70	1.79	0.36	1.70	0.51	0.59	0.25	0.32	0.40	0.26	0.33	0.24	0.15	0.18	0.18	0.14	0.21
1989	1.42	1.26	0.82	0.53	0.62	1.58	0.31	1.49	0.44	0.49	0.20	0.25	0.31	0.20	0.26	0.19	0.12	0.14	0.14	0.27
1990	0.71	1.26	1.12	0.73	0.47	0.55	1.40	0.28	1.30	0.38	0.41	0.17	0.21	0.25	0.17	0.21	0.15	0.09	0.11	0.34
1991	0.79	0.63	1.12	0.99	0.64	0.42	0.48	1.24	0.24	1.13	0.32	0.35	0.14	0.18	0.22	0.14	0.18	0.13	0.08	0.38
1992	1.76	0.70	0.56	0.99	0.88	0.57	0.37	0.43	1.08	0.21	0.96	0.28	0.30	0.12	0.15	0.18	0.12	0.15	0.11	0.39
1993	1.05	1.56	0.62	0.49	0.88	0.78	0.50	0.33	0.37	0.92	0.18	0.80	0.23	0.24	0.10	0.12	0.15	0.10	0.13	0.41
1994	0.89	0.93	1.38	0.55	0.44	0.78	0.69	0.44	0.28	0.32	0.79	0.15	0.68	0.19	0.20	0.08	0.10	0.13	0.08	0.45
1995	0.90	0.79	0.83	1.22	0.49	0.39	0.68	0.60	0.38	0.24	0.27	0.66	0.12	0.56	0.16	0.17	0.07	0.09	0.11	0.44
1996	2.24	0.80	0.70	0.73	1.09	0.43	0.34	0.60	0.52	0.32	0.20	0.22	0.55	0.10	0.47	0.13	0.14	0.06	0.07	0.46
1997	0.97	1.98	0.71	0.62	0.65	0.96	0.38	0.30	0.52	0.44	0.27	0.17	0.19	0.46	0.09	0.39	0.11	0.12	0.05	0.44
1998	0.80	0.86	1.76	0.63	0.55	0.57	0.84	0.33	0.25	0.43	0.36	0.22	0.14	0.15	0.37	0.07	0.32	0.09	0.10	0.40
1999	1.00	0.71	0.76	1.56	0.56	0.49	0.50	0.73	0.28	0.22	0.37	0.31	0.19	0.12	0.13	0.31	0.06	0.27	0.08	0.41
2000 2001	1.41	0.89	0.63	0.68	1.38	0.49	0.43	0.45	0.65	0.25	0.19	0.31	0.26	0.16	0.10	0.11	0.27	0.05	0.23	0.42
2001	0.90	1.25	0.79	0.56	0.60	1.22	0.44	0.38	0.39	0.56	0.21	0.16	0.26	0.22	0.13	0.08	0.09	0.22	0.04	0.54
2002	1.25	0.80	1.11 0.71	0.70 0.98	0.50	0.53	1.08	0.39	0.33	0.34	0.48	0.18 0.41	0.14	0.23	0.19 0.19	0.11	0.07	0.08	0.19	0.50
2003	1.21 1.98	1.11 1.08	0.71	0.98	0.62 0.87	0.44 0.55	0.47 0.39	0.96 0.42	0.34	0.29	0.29 0.25	0.41	0.16 0.35	0.12 0.13	0.19	0.16 0.16	0.10 0.14	0.08	0.07	0.59 0.56
2004	0.91	1.76	0.98	0.87	0.56	0.33	0.39	0.42	0.36	0.29	0.25	0.23	0.33	0.13	0.10	0.16	0.14	0.08	0.03	0.50
2006	1.12	0.80	1.56	0.85	0.30	0.77	0.49	0.34	0.30	0.73	0.23	0.21	0.21	0.30	0.11	0.08	0.14	0.12	0.07	0.52
2007	1.12	1.00	0.71	1.38	0.77	0.49	0.43	0.43	0.36	0.25	0.02	0.53	0.18	0.15	0.25	0.10	0.07	0.12	0.10	0.50
2008	1.33	1.28	0.71	0.63	1.22	0.66	0.43	0.38	0.50	0.23	0.21	0.33	0.18	0.15	0.13	0.22	0.08	0.00	0.10	0.50
2009	1.47	1.18	1.13	0.78	0.56	1.08	0.59	0.53	0.32	0.42	0.26	0.18	0.18	0.36	0.13	0.13	0.10	0.15	0.06	0.46
2010	1.73	1.30	1.05	1.00	0.70	0.50	0.96	0.51	0.45	0.12	0.36	0.22	0.15	0.15	0.30	0.11	0.09	0.09	0.12	0.43
2011	0.62	1.53	1.16	0.93	0.89	0.62	0.44	0.84	0.45	0.39	0.23	0.30	0.18	0.12	0.13	0.25	0.09	0.07	0.07	0.46
2012	0.47	0.55	1.36	1.03	0.82	0.79	0.54	0.38	0.72	0.38	0.32	0.19	0.25	0.15	0.10	0.11	0.21	0.07	0.06	0.44
2013	1.05	0.42	0.48	1.20	0.91	0.73	0.70	0.48	0.33	0.61	0.31	0.27	0.16	0.20	0.12	0.08	0.09	0.17	0.06	0.41
2014	1.31	0.93	0.37	0.43	1.07	0.81	0.64	0.61	0.42	0.28	0.51	0.26	0.22	0.13	0.16	0.10	0.07	0.07	0.14	0.38
2015	1.13	1.16	0.83	0.33	0.38	0.95	0.71	0.57	0.53	0.35	0.23	0.41	0.21	0.18	0.10	0.13	0.08	0.05	0.06	0.42
2016	1.20	1.00	1.03	0.73	0.29	0.34	0.84	0.63	0.50	0.46	0.30	0.20	0.34	0.17	0.14	0.08	0.11	0.06	0.04	0.39
2017	1.21	1.06	0.89	0.91	0.65	0.26	0.30	0.74	0.55	0.43	0.39	0.25	0.16	0.28	0.14	0.12	0.07	0.09	0.05	0.35

Table 4.18. Model estimates of yellowfin sole population numbers at age (billions) for 1954-2017 (continued).

_	1	2	3	4	5	0.20	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1954																				0.20
						0.19														
1956	0.73	0.75	0.81	0.29	0.20	0.17	0.17	0.16	0.16	0.16	0.16	0.16	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.46
						0.17														
1958	2.33	2.62	0.58	0.59	0.64	0.23	0.15	0.13	0.13	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.58
1959						0.57													0.10	0.60
1960	1.00	1.32	1.83	2.06	0.45	0.46	0.50	0.18	0.11	0.09	0.09	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.53
						0.40													0.04	0.30
						1.51													0.01	0.05
						0.02													0.00	0.00
						0.20													0.00	0.00
						0.28									0.00	0.00	0.00	0.00	0.00	0.00
1966	0.61	0.52	0.33	0.32	0.58	0.21	0.25	0.11	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1967	1.25	0.54	0.46	0.29	0.29	0.51	0.19	0.22	0.09	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1968	1.91	1.11	0.48	0.41	0.26	0.25	0.44	0.14	0.13	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1969	1.96	1.70	0.99	0.42	0.36	0.23	0.22	0.38	0.11	0.08	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						0.32											0.00		0.00	0.00
						0.33									0.00	0.00	0.00	0.00	0.00	0.00
1972	2.25	2.54	2.03	1.37	1.18	0.69	0.28	0.17	0.09	0.08	0.14	0.03	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1973	1.56	2.00	2.26	1.80	1.21	1.05	0.60	0.22	0.11	0.05	0.05	0.07	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00
1974	2.10	1.38	1.77	2.00	1.60	1.07	0.92	0.47	0.14	0.06	0.03	0.03	0.04	0.01	0.01	0.00	0.00	0.00	0.00	0.00
						1.40													0.00	0.00
						1.57													0.00	
						1.23													0.00	0.00
						0.86													0.00	0.00
						1.15													0.00	0.00
						1.35													0.01	0.00
						0.89													0.01	0.01
1982						1.12													0.01	0.01
1983						0.73														0.02
		0.58				0.46														
						0.89														
						0.66													0.09	
						1.92														
						0.36														
						1.59														
	0.71					0.55														
						0.42														
1992						0.57													0.11	,
						0.78													0.12	
1994	0.07					0.78														
		0.79		1.22		0.39													0.10	
1996						0.43														
1997	0.97	1.98	0.71	0.62	0.65	0.96	0.38	0.29	0.51	0.43	0.27	0.17	0.18	0.44	0.08	0.38	0.11	0.11	0.04	0.43

Table 4.18. Model estimates of yellowfin sole population numbers at age (billions) for 1954-2017 (continued).

10 11 12 13 14 15 16 17 18 19 20 6 7 0.80 0.86 1.76 0.63 0.55 0.57 0.84 0.33 0.25 0.42 0.35 0.22 0.13 0.15 0.36 0.07 0.31 0.09 0.09 0.38 1.00 0.71 0.76 1.56 0.56 0.49 0.51 0.74 0.28 0.21 0.35 0.30 0.18 0.11 0.12 0.30 0.06 0.26 0.07 0.40 1.41 0.89 0.63 0.68 1.38 0.49 0.43 0.45 0.65 0.25 0.19 0.31 0.25 0.16 0.10 0.11 0.26 0.05 0.22 0.40 0.90 1.25 0.79 0.56 0.60 1.23 0.44 0.38 0.40 0.57 0.21 0.16 0.26 0.21 0.13 0.08 0.09 0.22 0.04 0.52 1.25 0.80 1.11 0.70 0.50 0.53 1.09 0.39 0.34 0.35 0.50 0.19 0.14 0.22 0.18 0.11 0.07 0.08 0.19 0.48 1.21 1.11 0.71 0.98 0.62 0.44 0.47 0.96 0.34 0.29 0.30 0.42 0.16 0.12 0.19 0.16 0.10 0.06 0.06 0.57 1.98 1.08 0.98 0.63 0.87 0.55 0.39 0.42 0.84 0.29 0.25 0.25 0.36 0.13 0.10 0.16 0.13 0.08 0.05 0.54 0.91 1.76 0.96 0.87 0.56 0.77 0.49 0.34 0.36 0.73 0.25 0.21 0.22 0.31 0.12 0.08 0.14 0.11 0.07 0.50 1.12 0.80 1.56 0.85 0.77 0.49 0.68 0.43 0.30 0.31 0.62 0.21 0.18 0.18 0.26 0.10 0.07 0.12 0.10 0.48 1.44 1.00 0.71 1.38 0.75 0.68 0.43 0.59 0.36 0.25 0.26 0.52 0.18 0.15 0.16 0.22 0.08 0.06 0.10 0.49 1.33 1.28 0.88 0.63 1.22 0.67 0.60 0.38 0.50 0.30 0.21 0.22 0.44 0.15 0.13 0.13 0.18 0.07 0.05 0.49 1.47 1.18 1.13 0.78 0.56 1.08 0.59 0.52 0.32 0.42 0.25 0.17 0.18 0.36 0.12 0.11 0.11 0.15 0.06 0.45 1.73 1.30 1.05 1.00 0.70 0.50 0.96 0.52 0.46 0.28 0.35 0.21 0.15 0.15 0.30 0.10 0.09 0.09 0.13 0.42 0.62 1.53 1.16 0.93 0.89 0.62 0.44 0.84 0.44 0.39 0.23 0.30 0.18 0.12 0.13 0.25 0.09 0.07 0.07 0.46 0.47 0.55 1.36 1.03 0.82 0.79 0.54 0.38 0.72 0.37 0.32 0.19 0.24 0.15 0.10 0.10 0.21 0.07 0.06 0.44 1.05 0.42 0.48 1.20 0.91 0.73 0.69 0.47 0.33 0.60 0.31 0.26 0.16 0.20 0.12 0.08 0.09 0.17 0.06 0.41 1.31 0.93 0.37 0.43 1.07 0.81 0.64 0.61 0.41 0.28 0.49 0.25 0.21 0.13 0.16 0.10 0.07 0.07 0.14 0.38 1.13 1.16 0.83 0.33 0.38 0.95 0.71 0.57 0.53 0.35 0.23 0.40 0.20 0.17 0.10 0.13 0.08 0.05 0.06 0.42 1.20 1.00 1.03 0.73 0.29 0.34 0.84 0.63 0.50 0.46 0.30 0.19 0.33 0.17 0.14 0.08 0.11 0.06 0.04 0.39 1.21 1.06 0.89 0.91 0.65 0.26 0.30 0.74 0.55 0.43 0.39 0.25 0.16 0.27 0.13 0.11 0.07 0.09 0.05 0.35

Table 4.19. Model estimates of the number of female spawners (millions) 1964-2017.

_	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1964	8.9	41.8	112.8	49.8	89.4	141.7	110.9	41.0	14.9	2.5	0.1	0.0	0.0	0.0	0.0
1965	6.0	26.6	86.8	184.1	65.4	90.5	115.4	78.4	27.3	9.6	1.6	0.1	0.0	0.0	0.0
1966	3.1	18.3	59.2	162.1	282.3	75.0	81.8	90.0	57.6	19.4	6.8	1.1	0.0	0.0	0.0
1967	5.7	9.5	40.6	109.5	242.3	298.8	58.4	52.8	53.9	33.2	11.1	3.8	0.6	0.0	0.0
1968	2.8	17.5	20.8	73.3	155.0	233.8	206.0	32.9	27.4	26.9	16.4	5.4	1.9	0.3	0.0
1969	2.5	8.6	39.1	39.5	118.3	188.8	210.8	146.7	20.7	16.1	15.4	9.2	3.0	1.1	0.2
1970	3.5	7.7	18.2	62.1	43.6	92.0	115.4	111.5	73.1	10.0	7.7	7.3	4.4	1.4	0.6
1971	3.6	10.2	12.3	19.4	55.7	31.4	54.1	59.3	54.1	34.3	4.6	3.6	3.4	2.0	0.9
1972	7.5	10.5	15.7	13.4	18.2	42.1	19.4	29.2	30.2	26.6	16.8	2.2	1.7	1.6	1.4
1973	11.5	23.2	23.7	30.7	23.0	25.2	47.7	19.2	27.2	27.0	23.1	13.4	1.6	1.2	2.1
1974	11.8	35.4	51.3	43.4	44.1	23.2	19.2	31.0	11.7	16.0	15.8	13.4	7.8	0.9	1.9
1975	15.6	36.3	79.3	98.8	71.8	56.5	23.4	16.6	25.1	9.1	12.4	12.1	10.3	6.0	2.2
1976	17.3	47.8	80.3	146.4	153.4	88.0	56.2	20.3	13.6	19.9	7.2	9.7	9.4	8.0	6.3
1977	13.6	53.1	106.3	152.3	237.3	194.2	89.2	49.3	16.8	10.8	15.7	5.6	7.6	7.4	11.2
1978	9.3	41.2	116.5	200.1	250.0	312.2	208.1	83.2	43.4	14.3	9.2	13.2	4.7	6.3	15.5
1979	12.6	28.4	89.8	213.5	313.8	311.3	316.0	183.4	69.2	34.9	11.4	7.3	10.4	3.7	17.3
1980	14.8	38.4	62.7	168.9	347.9	408.9	330.4	292.3	160.1	58.5	29.3	9.5	6.0	8.6	17.4
1981	9.7	45.2	85.2	119.4	279.5	458.0	435.4	304.9	253.6	134.2	48.6	24.1	7.8	5.0	21.4
1982	12.3	29.8	100.4	162.2	197.9	369.7	492.1	406.7	268.4	216.0	113.4	40.7	20.2	6.5	22.0
1983	8.0	37.5	66.1	190.9	269.0	263.3	401.2	465.5	363.1	232.0	185.2	96.4	34.6	17.1	24.2
1984	5.1	24.5	82.6	124.6	314.6	356.6	285.0	378.9	415.0	313.4	198.6	157.3	81.8	29.3	35.0
1985	9.8	15.6	54.2	155.8	203.2	409.2	377.3	262.7	329.5	349.2	261.6	164.5	130.1	67.6	53.1
1986	7.3	30.1	34.5	101.5	250.3	257.9	420.0	336.3	220.7	267.8	281.5	209.2	131.4	103.8	96.3
1987	21.1	22.3	66.0	63.6	160.2	315.6	265.2	376.6	284.6	180.8	217.6	227.0	168.5	105.7	160.9
1988	3.9	64.8	49.8	126.1	104.7	208.0	329.3	239.4	319.8	233.7	147.2	175.7	183.1	135.7	214.7

Table 4.19—Model estimates of the number of female spawners (millions) 1964-2017 (CONTINUED)

year/age	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1989	17.4	12.0	144.2	94.1	202.5	131.3	210.0	288.6	197.8	255.7	185.3	115.8	138.1	143.7	275.0
1990	6.0	53.6	26.9	277.7	156.1	263.2	137.1	189.9	245.9	163.1	209.1	150.4	93.8	111.8	338.8
1991	4.6	18.5	120.3	51.9	465.6	209.1	287.0	130.3	170.4	213.5	140.4	178.7	128.3	80.0	384.0
1992	6.3	14.2	41.4	231.5	87.0	623.1	227.4	271.7	116.3	147.2	183.0	119.4	151.7	108.8	393.4
1993	8.6	19.3	31.6	78.9	380.8	113.6	659.7	209.3	235.8	97.6	122.6	151.2	98.5	125.0	413.8
1994	8.5	26.3	43.0	60.8	132.5	511.0	123.5	622.0	185.6	201.9	82.9	103.2	127.1	82.7	452.2
1995	4.3	26.2	58.4	81.4	99.4	172.9	543.0	114.4	543.5	156.9	169.5	69.0	85.8	105.5	444.1
1996	4.8	13.0	58.0	110.3	133.5	130.5	185.1	506.9	100.8	463.6	132.8	142.2	57.9	71.8	460.2
1997	10.5	14.5	28.9	110.0	181.8	175.7	139.6	172.4	444.9	85.6	390.5	111.0	118.7	48.2	443.4
1998	6.3	32.1	32.0	54.3	178.7	234.5	183.3	126.4	146.8	366.4	69.9	316.2	89.8	95.9	397.1
1999	5.3	19.3	71.2	60.7	89.6	236.1	252.4	171.9	111.8	125.8	311.3	58.9	266.3	75.5	414.4
2000	5.4	16.4	43.3	138.0	102.7	120.8	258.1	239.9	154.1	97.0	108.2	265.6	50.2	226.6	416.9
2001	13.5	16.7	36.9	83.7	232.6	137.7	131.1	243.3	213.0	132.4	82.6	91.5	224.4	42.3	542.7
2002	5.8	41.4	37.4	71.1	140.6	312.5	150.6	124.9	218.7	185.4	114.3	70.8	78.2	191.6	499.7
2003	4.8	18.0	93.0	72.5	120.0	189.1	341.0	143.0	111.9	189.5	159.4	97.5	60.3	66.6	588.1
2004	6.0	14.9	40.3	179.4	121.8	161.1	206.5	324.2	128.3	97.1	163.2	136.2	83.2	51.4	557.8
2005	8.5	18.6	33.4	77.6	301.4	163.7	176.3	196.8	291.6	111.7	83.9	139.9	116.5	71.1	520.7
2006	5.4	26.0	41.4	63.9	129.5	401.9	177.5	166.3	175.0	250.9	95.3	71.0	118.2	98.4	499.5
2007	7.5	16.4	56.7	77.4	104.9	171.3	434.7	167.5	148.1	150.9	214.7	80.9	60.2	100.1	506.2
2008	7.3	23.0	36.5	107.7	127.5	137.8	182.9	403.9	146.8	125.6	127.0	179.1	67.4	50.1	504.7
2009	11.9	22.4	50.9	68.8	175.4	165.7	145.6	168.4	350.9	123.4	104.8	105.1	148.1	55.6	457.9
2010	5.5	36.6	49.9	96.9	113.3	231.0	177.8	136.3	148.8	300.1	104.7	88.2	88.4	124.3	431.2
2011	6.8	16.7	81.5	95.1	160.2	149.4	247.6	166.0	120.1	126.8	253.8	87.8	73.9	73.9	464.8
2012	8.7	20.8	37.2	154.6	155.7	208.1	157.5	227.2	143.6	100.5	105.3	209.1	72.3	60.7	442.7
2013	8.0	26.6	46.2	70.8	253.9	203.1	220.2	144.9	197.0	120.5	83.7	86.9	172.4	59.5	414.6
2014	8.9	24.6	59.5	88.6	116.3	327.4	211.2	198.8	123.4	162.3	98.5	67.8	70.4	139.5	383.5
2015	10.4	27.3	55.1	114.1	146.3	150.9	341.6	190.9	169.4	101.6	132.7	79.9	54.9	57.0	423.0
2016	3.7	32.0	61.2	106.5	192.2	195.1	161.1	313.3	163.9	140.2	83.3	107.9	64.9	44.5	389.0
2017	2.9	11.4	71.5	117.6	177.9	254.5	207.6	147.7	269.2	135.8	115.0	67.8	87.6	52.6	351.6

Table 4.20. Model estimates of yellowfin sole age 5 recruitment (millions) from the 2016 and 2017 stock assessments.

Year	2017	2016	Year	2017	2016
class	assessment	assessment	class	assessment	assessment
1964	733	694	1988	1,646	1,673
1965	734	742	1989	817	831
1966	1,520	1,533	1990	908	925
1967	2,316	2,331	1991	2,004	2,045
1968	2,361	2,380	1992	1,191	1,217
1969	3,100	3,126	1993	1,002	1,027
1970	3,432	3,461	1994	1,010	1,037
1971	2,691	2,716	1995	2,489	2,560
1972	1,862	1,878	1996	1,076	1,104
1973	2,496	2,519	1997	910	926
1974	2,932	2,958	1998	1,103	1,131
1975	1,929	1,947	1999	1,553	1,603
1976	2,424	2,447	2000	1,013	1,040
1977	1,584	1,599	2001	1,419	1,457
1978	1,008	1,018	2002	1,401	1,410
1979	1,937	1,956	2003	2,431	2,373
1980	1,435	1,450	2004	1,201	1,124
1981	4,138	4,182	2005	1,352	1,374
1982	765	774	2006	1,726	1,732
1983	3,407	3,448	2007	1,414	1,478
1984	1,173	1,187	2008	1,529	1,510
1985	897	909	2009	1,662	1,767
1986	1,219	1,236	2010	618	802
1987	1,659	1,684			

Table 4.21. Selected parameter estimates and their standard deviation from the preferred stock assessment model.

	parameter	value	std dev		parameter	value	std dev
	alpha (q-temp model)	0.11	0.04	1976	total biomass	2,091,300	56,204
	beta (q-temp model)	0.10	0.01	1977	total biomass	2,400,400	63,225
	mean_log_rec	0.88	0.09	1978	total biomass	2,694,400	69,811
	mean sel_slope_fsh (females)	1.15	0.08	1979	total biomass	2,853,500	75,286
	mean sel50_fsh (females)	8.80	0.25	1980	total biomass	3,034,900	80,233
	mean sel_slope_fsh_males	1.35	0.10	1981	total biomass	3,200,300	84,440
	mean sel50_fsh_males	8.10	0.24	1982	total biomass	3,312,100	86,507
	sel_slope_srv (females)	1.63	0.09	1983	total biomass	3,289,100	87,202
	sel50_srv (females)	5.03	0.07	1984	total biomass	3,509,800	92,839
	sel_slope_srv_males	-0.07	0.08	1985	total biomass	3,516,700	95,769
	sel50_srv_males	0.02	0.02	1986	total biomass	3,228,100	92,811
	Ricker SR logalpha	-4.31	0.52	1987	total biomass	3,183,200	95,063
	Ricker SR logbeta	-6.30	0.32	1988	total biomass	3,082,600	94,948
	Fmsy	0.11	0.04	1989	total biomass	3,131,000	99,488
	log (Fmsy)	-1.44	0.50	1990	total biomass	2,993,900	97,766
	ABC_biomass 2017	2,557,000	144,000	1991	total biomass	3,106,100	100,820
	ABC_biomass 2018	2,465,000	160,000	1992	total biomass	3,303,500	106,140
	msy	404,500	146,700	1993	total biomass	3,328,100	108,860
	Bmsy	456,200	83,946	1994	total biomass	3,362,300	110,410
1954	total biomass	1,995,500	112,580	1995	total biomass	3,135,500	106,550
1955	total biomass	1,975,200	101,780	1996	total biomass	3,047,400	105,130
1956	total biomass	1,952,900	91,398	1997	total biomass	3,056,200	106,830
1957	total biomass	1,934,000	82,116	1998	total biomass	2,782,500	101,640
1958	total biomass	1,948,700	73,518	1999	total biomass	2,599,500	97,406
1959	total biomass	1,986,000	64,547	2000	total biomass	2,645,900	98,153
1960	total biomass	1,915,100	54,498	2001	total biomass	2,571,100	96,456
1961	total biomass	1,594,900	41,437	2002	total biomass	2,612,300	97,314
1962	total biomass	1,206,600	24,553	2003	total biomass	2,820,600	103,810
1963	total biomass	906,560	18,470	2004	total biomass	3,028,200	110,740
1964	total biomass	926,620	18,621	2005	total biomass	3,138,200	114,760
1965	total biomass	901,170	18,555	2006	total biomass	3,121,300	115,760
1966	total biomass	936,830	19,341	2007	total biomass	3,131,800	118,000
1967	total biomass	911,250	19,602	2008	total biomass	3,002,500	116,170
1968	total biomass	823,840	19,079	2009	total biomass	2,834,300	113,680
1969	total biomass	850,300	20,485	2010	total biomass	2,903,400	116,550
1970	total biomass	813,650	21,815	2011	total biomass	2,936,000	119,650
1971	total biomass	862,710	24,803	2012	total biomass	2,927,800	122,440
1972	total biomass	936,840	28,696	2013	total biomass	2,883,100	124,240
1973	total biomass	1,188,600	34,496	2014	total biomass	2,680,400	121,130
1974	total biomass	1,433,900	40,835	2015	total biomass	2,699,400	127,400
1975	total biomass	1,786,100	48,903	2016	total biomass	2,852,600	146,360
				2017	total biomass	2,878,200	162,720

Table 4.22. Projections of yellowfin sole female spawning biomass (1,000s t), catch (1,000s t) and full selection fishing mortality rate for seven future harvest scenarios.

	s 1 and 2			Scenari				
/laximur	n Tier 3 ABC harves	t permissi	ble	Maximu	ım Tier 3 ABC harves	t permiss	ible set at	F60
	Female				Female			
Year	spawning biomass	catch	F	Year	spawning biomass	catch	F	
2017	872.648	143.093	0.07	2017	872.648	143.093	0.07	
2018	872.377	228.409	0.12	2018	884.502	145.995	0.07	
2019	844.954	212.064	0.12	2019	890.139	149.873	0.08	
2020	793.190	229.442	0.14	2020	870.836	141.006	0.08	
2021	721.945	211.323	0.14	2021	835.775	135.962	0.08	
2022	664.625	195.463	0.13	2022	804.738	134.927	0.08	
2023	632.540	181.232	0.13	2023	790.202	134.842	0.08	
2024	615.882	174.126	0.12	2024	784.202	135.041	0.08	
2025	609.235	171.959	0.12	2025	784.782	135.805	0.08	
2026	607.575	173.433	0.12	2026	787.834	137.642	0.08	
2027	610.905	177.186	0.12	2027	794.830	139.832	0.08	
2028	618.306	181.607	0.12	2028	806.787	141.935	0.08	
2029	626.624	185.758	0.13	2029	820.842	144.020	0.08	
2030	632.742	188.606	0.13	2030	832.341	145.736	0.08	
Scenario	3			Scenari	0 5			
-larvest	at average F over th	e past 5 y	ears/	No fish	ing			
	Female				Female			
Year	spawning biomass	catch	F	Year	spawning biomass	catch	F	
2017	872.648	143.093	0.07	2017	775.899	130.497	0.08	
2018	883.837	150.570	0.08	2018	805.239	0	0	
2019	887.644	153.257	0.08	2019	869.301	0	0	
2020	866.878	143.954	0.08	2020	929.637	0	0	
2021	830.620	138.617	0.08	2021	970.871	0	0	
2022	798.650	137.418	0.08	2022	995.493	0	0	
2023	783.345	137.213	0.08	2023	1018.59	0	0	
2024	776.705	137.318	0.08	2024	1049.43	0	0	
2025	776.723	138.021	0.08	2025	1082.95	0	0	
2026	779.310	139.833	0.08	2026	1121.4	0	0	
2027	785.911	142.014	0.08	2027	1162.29	0	0	
2028	797.485	144.113	0.08	2028	1203.18	0	0	
2029	811.164	146.197	0.08	2029	1246.29	0	0	
2030	822.360	147.910	0.08	2030	1288.69	0	0	

Table 4.22—continued.

Scenario 6 Determination of whether yellowfin sole are currently overfished

Determination of whether the stock is approaching

Scenario 7

currently	y overfished		B35=601.8		an overfi	shed condition		B35=601.8
	Female					Female		
Year	spawning biomass		catch	F	Year	spawning biomass	catch	F
2017		872.648	143.093	0.072055	2017	872.648	143.093	0.072055
2018		865.966	271.152	0.139932	2018	872.377	228.409	0.116667
2019		821.097	246.624	0.139936	2019	844.954	212.064	0.116679
2020		760.904	220.596	0.139936	2020	793.19	229.442	0.139936
2021		694.424	204.082	0.139936	2021	721.945	211.323	0.139936
2022		642.696	183.566	0.130276	2022	664.625	195.463	0.134973
2023		616.917	173.173	0.124755	2023	632.54	181.232	0.128101
2024		605.026	168.701	0.122208	2024	615.882	174.126	0.124533
2025		601.876	168.354	0.121533	2025	609.235	171.959	0.12311
2026		602.741	171.081	0.121719	2026	607.575	173.433	0.122754
2027		607.842	175.708	0.122789	2027	610.905	177.186	0.123439
2028		616.436	180.737	0.124382	2028	618.306	181.607	0.124763
2029		625.533	185.267	0.125918	2029	626.624	185.758	0.126129
2030		632.152	188.352	0.126934	2030	632.742	188.606	0.127043

Table 4-23. Catch and bycatch (t) of other BSAI target species in the yellowfin sole directed fishery from 1992-2016 estimated from a combination of regional office reported catch and observer sampling of the catch.

Species	1992	1993	1994	1995	1996	1997	1998	1999	2000
Pollock	13,100	15,253	33,200	27,041	22,254	24,100	15,335	8,701	13,425
Arrowtooth Flounder	366	1,017	1,595	346	820	386	2,382	1,627	1,998
Pacific Cod	8,700	8,723	16,415	13,181	8,684	12,825	10,224	4,380	5,192
				2,904		4,755			
Groundfish, General	7,990	3,847	3,983	,	2,565	,	3,580	2,524	3,541
Rock Sole	14,646	7,301	8,097	7,486	12,903	16,693	9,825	10,773	7,345
Flathead Sole	0	1,198	2,491	3,929	3,166	3,896	5,328	2,303	2,644
Sablefish	0	0		0	0	0	0	4	0
Atka Mackerel	1	0			0	0	1	33	0
Pacific ocean Perch	0	5		0		0	1	12	1
Rex Sole			1	1		0	20	36	1
Flounder, General	16,826	6,615	7,080	11,092	10,372	10,743	6,362	8,812	7,913
Squid	0		5	0	11	0	2	1	0
Dover Sole			35						
Thornyhead					0		1		
Shortraker/Rougheye	0				1	0	1	15	
Butter Sole			0			3	3		2
Eulachon smelt								0	
Starry Flounder		227	106	16	37	124	35	48	71
Northern Rockfish						1	0	0	
Dusky Rockfish								0	
Yellowfin Sole	136,804	91,931	126,163	108,493	112,818	169,661	90,062	62,941	71,479
English Sole		1							
Unsp.demersal rockfish						12	0		
Greenland Turbot	1	5	5	67	8	4	103	70	24
Alaska Plaice		1,579	2,709	1,130	553	6,351	2,758	2,530	2,299
Sculpin, General		,	,	,			,	215	97
Skate, General								26	4
Sharpchin Rockfish								1	
Bocaccio	0							•	
Rockfish, General	0		0	3	23	0	1	3	4
Octopus	Ů		Ū	5	23	· ·		0	•
Smelt, general								0	0
Chilipepper		1						U	U
Eels		1						1	1
Lingcod								1	1
Jellyfish (unspecified)									127
Snails								12	
								12	4
Sea cucumber								0	56
Korean horsehair crab								0	0
Greenling, General									0

Table 4-23. (continued).

a :	2001	2002	2002	2004	2005	2006	2005	• • • • •	2000
Species	2001	2002	2003	2004	2005	2006	2007	2008	2009
Pollock	16,502	14,489	11,396	10,382	10,312	6,084	4,041	9,867	7,024
Arrowtooth Flounder	1,845	998	1,125	279	645	352	216	1,969	1,858
Pacific Cod	6,531	6,259	4,621	3,606	3,767	2,588	2,529	5,769	10,849
Groundfish, General	3,936	2,678	3,133	1,612	2,134	2,333	4003		
Rock Sole	5,810	10,665	8,419	10,068	10,086	8,113	8,218	10,487	9,109
Flathead Sole	3,231	2,190	2,899	1,102	1,246	2,039	1,744	5,581	3,525
Sablefish	0				1			<1	<1
Atka Mackerel	0	0	17		110	17		<1	<1
Pacific ocean Perch	1	1	11		15			<1	<1
Rex Sole	2	0						2	
Other flatfish									
Squid	0	0	1					<1	
Dover Sole									
Thornyhead									
Shortraker/Rougheye	1								
Butter Sole		7							
Starry Flounder	82	133							
Northern Rockfish		1			3				
Dusky Rockfish		0							
Yellowfin Sole	54,722	66,178	68,954	65,604	82,420	84,178	108,254	131,000	98,194
English Sole		1							
Unsp.demersal rockfish									
Greenland Turbot	32	2		1	7	8	1	<1	4
Alaska Plaice	1,905	10,396	365	5,891	8,707	14,043	16,389	13,519	10,748
Sculpin, General	12	1,226						2,891	1,438
Skate, General	21	1,042						1,301	1,481
Sharpchin Rockfish									
Bocaccio									
Rockfish, General	1		1	3	1	1		<1	
Octopus									
Smelt, general	0								
Chilipepper									
Eels	0	0							
Lingcod	2								
Jellyfish (unspecified)	173	161							
Snails	0	4							
Sea cucumber		0							
Korean horsehair crab	0								
Kamchatka flounder									

Table 4.23 (continued).

Species	2010	2011	2012	2013	2014	2015	2016
Pollock	3,749	8,685	11,226	20,246	24,712	21,282	22,324
Arrowtooth Flounder	868	2,338	995	2,012	2,216	1,686	3,252
Pacific Cod	8,649	16,300	19,230	24,382	15,217	12,169	11,988
Groundfish, General	3,048				Ź	,	,
Rock Sole	9,030	9,762	8,959	7,737	7,031	9,773	7,948
Flathead Sole	1,895	3,236	2,109	4,191	3,999	3,337	4,105
Sablefish	,	<1	,	,	<1	<1	<1
Atka Mackerel		<1	<1	<1	<1	<1	<1
Pacific ocean Perch		<1		17	<1	<1	3
Rex Sole							
Other flatfish			1,201	388	2,887	1,041	1,136
Squid		<1	,		,	,	,
Northern Rockfish			<1				
Dusky Rockfish							
Yellowfin Sole	90,008	136,905	133,719	147,777	139,480	107,955	107,505
English Sole	,		,-	.,	,	,	,
Unsp.demersal rockfish							
Bocaccio		1,808	1,924	1,922	1,261		
Rockfish, General		1,969	2,270	2,686	1,969		
Octopus		-,	_,	_,	-,		
Smelt, general							
Chilipepper				<1			
Eels			1.3	_			
Lingcod							
Jellyfish (unspecified)							
Snails							
Sea cucumber							
Korean horsehair crab							
Kamchatka flounder			110	147		427	285
Sharks			110	1.7		1	11

Table 4-24. Estimated non-target species catch (t) in the yellowfin sole fishery, 2003-2015 (PSC not included).

Row Labels	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Benthic urochordata	1671.6	1701.5	674.5	520.1	114.5	347.6	204.7	156.0	133.0	140.8	197.4	116.1	230.1
Birds													
Bivalves	1.5	1.1	1.3	0.3	0.5	1.5	1.3	1.8	1.7	0.7	1.2	0.9	1.4
Brittle star unidentified	34.3	32.3	28.7	20.0	7.6	19.0	5.2	4.2	14.0	13.1	5.9	11.6	2.9
Capelin	0.0	4.5	0.0	0.1	0.3	0.2	0.3	0.7	3.8	2.3	0.2	1.3	1.8
Corals Bryozoans	0.2	0.0	1.2	9.4	0.2	8.3	0.3	0.5	0.9	0.7	3.0	0.8	0.1
Eelpouts	19.1	12.3	7.7	4.5	2.3	5.6	5.2	5.1	29.3	14.3	51.6	69.8	21.1
Eulachon	0.0	0.3	0.0	0.1	5.1	0.0	0.1	0.1	0.5	0.1	0.0	0.7	0.2
Greenlings	0.6	0.7	0.3	0.7	0.5	0.2	0.0	0.1	0.0	0.1		0.0	0.2
Grenadier					0.3		0.4						
Gunnels					0.0						0.0		0.0
Hermit crab unidentified	87.9	52.0	83.6	26.9	35.8	36.6	15.4	17.0	15.9	9.9	6.3	8.6	4.1
Invertebrate unidentified	556.5	625.8	421.2	177.2	40.0	70.4	30.6	25.9	65.4	121.3	25.2	44.4	6.2
Misc crabs	14.4	21.6	11.9	10.6	28.0	14.1	11.0	11.7	20.2	18.2	39.7	19.8	18.8
Misc crustaceans	0.0	0.2	0.2	2.3	1.4	0.7	1.3	0.9	0.5	0.4	0.6	0.2	0.6
Misc fish	95.8	91.2	66.2	42.5	71.2	66.3	48.8	29.2	40.0	86.2	48.2	69.3	34.8
Misc inverts (worms etc)	0.0	0.1	0.0	0.0	0.0	0.2	0.2	0.1	0.2	0.1	0.2	0.1	0.0
Other osmerids	4.2	4.3	0.5	0.6	35.8	9.8	0.8	2.8	2.1	4.7	1.0	9.2	4.8
Pacific Sand lance	0.0	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.4	0.2	0.0	0.0	0.1
Pacific Sandfish								0.0	0.0	0.0	0.0	0.1	0.1
Pandalid shrimp	0.2	0.9	0.1	0.8	0.1	0.3	0.5	0.7	2.3	0.6	2.1	1.0	0.2
Polychaete unidentified	0.0	0.1	0.0	0.4	0.1	0.2	0.1	0.1	0.2	0.1	2.0	0.1	0.1
Scypho jellies	111.9	298.7	115.6	46.8	42.4	145.8	223.2	152.4	307.2	179.3	463.2	805.0	352.0
Sea anemone unidentified	6.3	6.2	2.6	4.9	8.8	24.8	25.5	20.5	14.7	6.2	23.4	5.7	4.2
Sea pens whips	0.0	0.0	0.2	0.0	0.0	0.3	0.2	0.6	0.0	0.1	0.1	0.0	0.0
Sea star	1941.3	1868.0	1611.8	1308.6	1462.0	1829.0	683.7	795.6	1674.0	1732.7	1372.4	2106.5	1816.7
Snails	118.3	191.1	69.7	141.5	95.3	139.6	57.7	57.7	74.7	33.7	46.4	33.7	30.0
Sponge unidentified	11.3	6.8	12.2	3.1	0.4	6.8	69.4	16.5	15.1	14.1	16.6	1.5	2.2
Stichaeidae	0.1	0.0		0.0	0.8	0.2	0.0	0.2	0.4	0.1	0.1	0.4	0.5
Surf smelt						0.0							
urchins dollars cucumbers	2.3	0.3	2.5	0.8	3.4	4.9	7.5	1.3	1.0	0.7	0.8	0.5	0.4
Grand Total	4678	4920	3112	2322	1957	2732	1393	1302	2417	2381	2308	3307	2534

Table 4.25--Yellowfin sole TAC and ABC levels, 1980-2017.

	TAC	ADC	Total
Year	TAC	ABC	catch
1980	117,000	169,000	87,391
1981	117,000	214,500	97,301
1982	117,000	214,500	95,712
1983	117,000	214,500	108,385
1984	230,000	310,000	159,526
1985	229,900	310,000	227,107
1986	209,500	230,000	208,597
1987	187,000	187,000	181,428
1988	254,000	254,000	223,156
1989	182,675	241,000	153,170
1990	207,650	278,900	80,584
1991	135,000	250,600	95,000
1992	235,000	372,000	159,038
1993	220,000	238,000	106,101
1994	150,325	230,000	144,544
1995	190,000	277,000	124,740
1996	200,000	278,000	129,659
1997	230,000	233,000	181,389
1998	220,000	220,000	101,201
1999	207,980	212,000	67,320
2000	123,262	191,000	83,850
2001	113,000	176,000	63,395
2002	86,000	115,000	72,999
2003	83,750	114,000	74,418
2004	86,075	114,000	69,046
2005	90,686	124,000	94,683
2006	95,701	121,000	99,068
2007	136,000	225,000	121,029
2008	225,000	248,000	148,894
2009	210,000	210,000	107,528
2010	219,000	219,000	118,624
2011	196,000	239,000	151,164
2012	202,000	203,000	147,183
2013	198,000	206,000	164,944
2014	184,000	239,800	156,778
2015	149,000	248,800	126,933
2016	144,000	211,700	130,500
2017	154,000	260,800	143,000

Figure 4.1—Yellowfin sole annual catch (1,000s t) in the Eastern Bering Sea from 1954-20167 (top panel) and catch by week (non CDQ) from 2010 – September 2017 (bottom panel).

Figure 4.2--Size composition of the yellowfin sole catch in 2017 (through mid-September), by subarea and total.

yellowfin sole catch by month in 2017 through September 20

yellowfin sole catch by area in 2017 (through September 20)

Figure 4.3 Yellowfin sole catch by month and area in the Eastern Bering Sea in 2017.

Figure 4.4 (Fishery locations by month).

Figure 4.5. Yellowfin sole CPUE (catch per unit effort in kg/ha) from the annual Bering Sea shelf trawl surveys, 1982-2017.

Figure 4.6. Annual bottom trawl survey biomass point-estimates and 95% confidence intervals for yellowfin sole, 1982-2017.

Figure 4.7. Difference between the 1985-2016 average trawl survey CPUE for yellowfin sole and the 2017 survey CPUE. Open circles indicate that the magnitude of the catch was greater in 2017 than the long-term average, closed circles indicate the catch was greater in the long-term average than in 2017.

Figure 4.8 Estimates of average yellowfin sole weight-at-age (g) from trawl survey observations.

Figure 4.9. Master chronology for yellowfin sole and time series of mean summer bottom temperature and May sea surface temperature for the southeastern Bering Sea (Panel A). All data re normalized to a mean of 0 and standard deviation of 1. Correlations of chronologies with bottom temperature and sea surface temperature are shown in panels B and C, respectively. From Matta et al. 2010.

Figure 4.10. Yellowfin sole length-at-age anomalies, for males and females, and bottom temperature anomalies. Correspondence in these residuals is apparent with a 2-3 year lag effect from the mid-1990s to 2009. Late 1980s and early 1990s pattern may be a density-dependent response in growth from the large 1981 and 1983 year-classes.

Figure 4.11. Results show the temperature anomalies (second row at top as bars) and observed values by age and year. Shadings within the matrix reflects relative weight-at-age (within a row) with darker red being heavier than average.

temperature-catchability model result

Figure 4.12. Average bottom water temperature from stations less than or equal to 100 m in the Bering Sea trawl survey (bars) and the stock assessment model estimate of q for each year 1982-2017.

Figure 4.13. Fit of the Ricker (1958) stock recruitment model to two distinct stock recruitment time-series data sets (top panel), and the fit to the assessment preferred model (model B, lower panel).

Figure 4.14. Posterior distributions of F_{msy} for the two models considered in the stock productivity analysis.

Figure 4.15a Estimated male fishery selectivity by age and year.

Figure 4.15b. Estimated female fishery selectivity by age and year.

Figure 4.16. Model fit to the survey biomass estimates (top left panel), model estimate of the full selection fishing mortality rate throughout the time-series (top right panel), model estimate of total biomass (middle left panel), the model estimate of survey selectivity (middle right panel) and the estimate of female spawning biomass (bottom left panel).

Figure 4.17. Stock assessment model fit to the time-series of fishery and survey age composition, by sex.

Figure 4.17 (continued).

Figure 4.17 (continued).

Figure 4.17 (continued).

Figure 4.18.--Comparison of the fit to the survey biomass using a fixed q and the q-bottom temperature relationship.

Figure 4.19--Year class strength of age 5 yellowfin sole estimated by the stock assessment model. The dotted line is the average of the estimates from 62 years of recruitment.

Figure 4.20.--Posterior distributions of some important parameters estimated by the preferred stock assessment model (from mcmc integration).

Figure 4.21—Retrospective plot of yellowfin sole female spawning biomass estimates (1,000s t), 2008-2016, from the recommended assessment model.

Figure 4.22. Projection of yellowfin sole female spawning biomass (1,000s t) at the average full-selection F from the past 5 years (0.104) through 2030 with $B_{40\%}$ and B_{msy} levels indicated.

Figure 4.23. Phase plane figure of the time-series of yellowfin sole female spawning biomass relative to the harvest control rule with 1975 and 2018 indicated.

Appendix

IPHC research catch of yellowfin sole

_	number	weight (kg)
2007	707	502
2008	0	0
2009	0	0
2010	898	741