

Model Performance and Validation

Two-day workshop
Duke University
Adam Chekroud

Objectives

Condition (as determined by "Gold standard") Condition Negative Condition Positive Positive predictive value = Test **False Positive** Outcome **True Positive** Σ True Positive (Type I error) Positive Σ Test Outcome Positive Test Outcome Negative predictive value = Test **False Negative** Σ True Negative **True Negative** Outcome (Type II error) Negative Σ Test Outcome Negative Sensitivity = Specificity = Low Variance High Variance Σ True Negative Σ True Positive Σ Condition Positive Σ Condition Negative Low Bias Optimum Model Complexity **Total Error** Error Variance High Bias Bias²

Model Complexity

Outline

How good is my model?

- How do we measure performance?
- Bias-variance tradeoff

- Validation procedures
- Prospective validation!

- 1 Get the predictions from our model
- 2 Compare them to the truth ——>

$$accuracy = \frac{\text{\# correct predictions}}{\text{\# total data points}}$$

What if outcomes are not equally likely?

• If only 1% of people suicide, guessing "no suicide" for <u>everyone</u> will give 99% accuracy!

C	onfusion	matrix				
				dition y "Gold standard")		
			Condition Positive	Condition Negative		
	Test Outcome	Test Outcome Positive	True Positive	False Positive (Type I error)	Positive predictive value = Σ True Positive Σ Test Outcome Positive	
		Test Outcome Negative	False Negative (Type II error)	True Negative	$\frac{\text{Negative predictive value} = }{\Sigma \text{ True Negative}}$ $\Sigma \text{ Test Outcome Negative}$	
			Sensitivity =	Specificity =		
			Σ True Positive	Σ True Negative		
			Σ Condition Positive	Σ Condition Negative		

			True condition			
		Total population	Condition positive	Condition negative	$= \frac{\frac{\text{Prevalence}}{\Sigma \text{ Condition positive}}}{\Sigma \text{ Total population}}$	
P	Predicted condition	Predicted condition positive	True positive	False positive (Type I error)	Positive predictive value (PPV), Precision $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$	False discovery rate (FDR) $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Test outcome positive}}$
(Predicted condition negative	False negative (Type II error)	True negative	$= \frac{\Sigma \text{ False omission rate (FOR)}}{\Sigma \text{ Test outcome negative}}$	$\begin{aligned} & \underset{\text{NPV}}{\text{Negative predictive value}} \\ &= \frac{(\text{NPV})}{\Sigma \text{ True negative}} \\ &= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Test outcome negative}} \end{aligned}$
	Accuracy (ACC) =		True positive rate (TPR), Sensitivity, Recall $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), $Fall-out$ $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$
	$\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	True negative rate (TNR), $\frac{\text{Specificity (SPC)}}{\Sigma \text{ True negative}}$ $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio $(LR-) = \frac{FNR}{TNR}$		

DOR = (TP/FP)/(FN/TN)

— is yours greater than 1?

Multi-class extensions

- Confusion matrix is most helpful here
- Can calculate within-category performance measures.

How robust is my model?

- Are the output probabilities well calibrated?
- What happens if we change the cutpoint for classification?

What about numeric outcomes?

RMSE

$$RMSE = \sqrt{\frac{\sum_{i}(y_i - \hat{y}_i)^2}{n}}.$$

• R², aka coefficient of determination

- R2 of 1 model is a perfect fit for data
- also indicates the proportion of variance in the data that is explained by the model

Bias-Variance Tradeoff

Model's error is not just a function of accuracy

Also error due to variance!

Bias-Variance Tradeoff

A tiny bit of math

- We are estimating a model of a function/mapping f(x)
- Assuming error is normally distributed about zero, then our expected error is:

$$Err(x) = E\left[(Y - \hat{f}(x))^2 \right]$$

Which becomes a function of **both** bias (accuracy) and variance:

$$Err(x) = \left(E[\hat{f}(x)] - f(x)\right)^2 + E[\hat{f}(x) - E[\hat{f}(x)]]^2 + \sigma_e^2$$

$$Err(x) = Bias^2 + Variance + Irreducible Error$$

—-> Fundamental balance between accuracy and variability of our model

Bias-Variance Tradeoff

As any given model becomes more complex, its accuracy improves but generalizabilty is **necessarily** reduced

Model Validation

<u>Model validation is crucial for measuring the second component</u> <u>of model error — its variance.</u>

- 1. Take different training samples
- 2. Build models
- 3. See how variable their performance is!

But data is expensive! And finite!

Internal Validation

- Two motivations for internal validation:
 - 1. Estimate variance of modeling approach
 - 2. No point testing model on things it has seen before!

Easiest solution: split data into training and testing

Run 1 Run 2 Run 3

Leave-one-out CV

Training

Testing

Better CV

5-fold CV

10-fold CV

Is my model <u>real</u>?

- Internal validation allows us to train models and get the best balance between bias and variance
 - But how well will our model perform in general?
- Examine performance on totally new data
 - If good, gives us confidence that the model is picking up on "real" signal
 - Better candidate for the truth!

Best practice: prospective validation

Is my model *real*?

Cross-trial prediction of treatment outcome in depression: a machine learning approach

Adam Mourad Chekroud, Ryan Joseph Zotti, Zarrar Shehzad, Ralitza Gueorguieva, Marcia K Johnson, Madhukar H Trivedi, Tyrone D Cannon, John Harrison Krystal, Philip Robert Corlett

- Trained in one trial, tested prospectively in another trial
- Model performance was weak (60%)
- Some (significant) models did not generalize!

Is my model <u>real</u>?

www.nature.com/mp

ORIGINAL ARTICLE

Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports

RC Kessler¹, HM van Loo², KJ Wardenaar², RM Bossarte³, LA Brenner⁴, T Cai⁵, DD Ebert^{1,6}, I Hwang¹, J Li⁵, P de Jonge², AA Nierenberg⁷, MV Petukhova¹, AJ Rosellini¹, NA Sampson¹, RA Schoevers², MA Wilcox⁸ and AM Zaslavsky¹

- Predict persistence/ severity of MDD
- Model performance was weak (AUC=0.6-0.7)
- But reiterates possibility of using historic/archival data to make predictions that might guide patient care

Table 2. AUC of Survey 1 risk scores based on ML models and logistic regression models predicting Survey 2 outcomes (N = 1056)

	AUC of risk scores based on		
	ML models	Logistic models	
High persistence	0.71	0.68	
High chronicity	0.63	0.62	
Hospitalization	0.73	0.65	
Disability	0.74	0.69	
Suicide attempt	0.76	0.70	

Abbreviations: AUC, area under the receiver operating characteristic curve; ML, machine learning.

Summary

- Choose most appropriate performance metric
- Always consider biasvariance tradeoff
- Always keep training and testing data separate at all times
 - Internal (k-fold) CV is a minimum
- Do you think your model is real? Why?

