Tracer: 반복되는 오류 탐지를 위한 시그니처 기반 정적 분석 시스템

강우석¹, 손병호², 김수빈¹, 허기홍¹

KAIST¹, 서강대학교²

배경 및 목표

• "소프트웨어 면역 시스템"을 구현

gimp-2.6.7 (CVE-2009-1570)

2020년에 발견한 취약점 중 - Google Project Zero 25%가 과거의 버그와 유사

sam2p-0.49.4 (CVE-2017-16663)

libXcursor-1.1.14 (CVE-2017-16612)

Tracer 시스템 개요

• 정적 분석

		Taint	Overflow
0	size1	T	
((1))	size2	Т	Т

<요약 도메인> $Taint \times Overflow$ $Taint = \{T, \bot\}$ $Overflow = \{T, \bot\}$

벡터 인코딩

연산

fread

<<

malloc

malloc

빈도

• 트레이스 추출

연산 fread 니 << * +

• 벡터 간의 유사도 계산

cosine similarity =
$$\frac{A \cdot B}{\|A\| \|B\|}$$
 = $\frac{\langle 1, 3, 3, 2, 1, 1, 1 \rangle \cdot \langle 1, 3, 3, 2, 1, 0, 1 \rangle}{\|\langle 1, 3, 3, 2, 1, 1, 1 \rangle\| \|\langle 1, 3, 3, 2, 1, 0, 1 \rangle\|}$ = **0.98**

gimp-2.6.7

실험 결과

- 273개 데비안 패키지 중 281개 버그 발견, 6개 CVE 취득
- 역치값을 조정하여 허위경보 제거
- 시그니처: juiet(4,437개), 튜토리얼(5개), CVE 프로그램(16개)
- 간단한 예제로도 현실의 취약점 탐지 가능

```
void juliet_int_overflow() {
   int64_t data;
   data = 0LL;
   fscanf (stdin, "%" SCNd64, &data);
   int64_t result = data * data;
   char *p = malloc(result);
}
```


juliet testcase

dia-0.97.3

결론

- 정확도, 강인함, 일반성, 확장성, 편의성을 갖춘 소프트웨어 면역 시스템 달성
- 구문을 초월하는 의미적 유사성을 효과적으로 탐지

