2

10/649,423

IN THE CLAIMS

Fax:7132668510

1	1.	(currently amended) A method of identifying a presence of a first fluid having a				
2		first transverse nuclear magnetic spin relaxation time T_2 in a mixture of earth				
3		formation fluids with a second fluid having a second transverse nuclear magnetic				
4		spin relaxation time T_2 greater than said first transverse relaxation time, the				
5		method comprising:				
6		(a) producing a static magnetic field in said mixture in of said earth formation				
7		fluids;				
8		(b) applying a pulse sequence having pulses				
9		A1 - 7- B1 - 7 - A2 - TW - A3				
10		to said mixture where A1 is a first excitation pulse, τ is a Carr-Purcell				
1		time, B1 is a first refocusing pulse, A2 is forced inversion pulse, A3 is a				
12		second excitation pulse, and TW is a wait time wherein a resulting signal				
13		from said second fluid in said earth formation is substantially zero and				
4		(c) determining said presence by analyzing signals after said second				
5		excitation pulse.				
6						
7		•				
1	2.	(original) The method of claim 1 wherein said first excitation pulse comprises a				
2		pulse having a tip angle substantially equal to 90°.				
3						
1	3.	(original) The method of claim 1 wherein said second excitation pulse comprises				

a pulse having a tip angle substantially equal to 90°.

3		
1	4.	(original) The method of claim 1 wherein said first refocusing pulse comprises a
2		pulse having a tip angle substantially equal to 180°.
3		
1	5.	(previously presented) The method of claim 1 further comprising determining said
2		value of TW by applying a sequence of refocusing pulses B21 after said second
3		excitation pulse and determining a value of TW for which substantially no spin
4		echo signals are produced by said sequence of refocusing pulses.
5		
1	6.	(original) The method of claim 5 wherein at least one of said sequence of
2		refocusing pulses comprises a pulse with a tip angle substantially equal to 180°.
3		
1	7.	(original) The method of claim 1 further selecting τ to satisfy the condition
2		$T_2' \gg \tau \gg T_2$.
3		
1	8.	(original) The method of claim 5 further comprising:
2		(i) repeating (b) with different values of TW until no free induction decay
3		signal after the second excitation pulse A3 is produced;
4		(ii) repeating (b) with a value of TW altered from the value determined in (i);
5		and
6		(iii) analyzing a resulting free induction decay signal.
7		
1	9. 10/649	canceled

MADANMOSSMANSRIRAM

2			
1	10.	original) The method o	f claim 9 further comprising conveying said magnet on a
2		ogging tool into a boreh	nole into said earth formation.
3			
1	11.	original) The method or	f claim 10 wherein said logging tool is conveyed on a
2		vireline.	
3			
1	12.	original) The method of	f claim 10 wherein said logging tool is conveyed on a
2		lrilling tubular.	
3		١	
1	13.	previously presented) A	system for identifying a presence of first fluid having a
2	•	irst transverse nuclear s	pin relaxation time T_2 in a mixture of fluids in an earth
3	. •	ormation with a second	fluid having a second transverse spin relaxation time T_2
4		reater than said first tra	nsverse relaxation time, the system comprising:
5		a) a logging tool co	nveyed into a borehole into said earth formation,
6		b) a magnet on said	logging tool which produces a static field in a region of
7		said earth format	ion including said mixture;
8		c) a transmitter on s	aid logging tool which applies a radio frequency pulse
9		sequence	
10		A1 - τ- B1 -τ - A	2 - TW - A3
11		to said mixture in	said region, where A1 is a first excitation pulse, τ is a
12		Carr-Purcell time	e, B1 is a first refocusing pulse, A2 is forced inversion
13	10/649	•	a second excitation pulse,

14:51

Jan 25 '05

14		(a)	a rece	ever on said logging tool which receives signals resulting from said
15			nuclea	ar spins resulting from application of said pulse sequence;
16		(e)	a proc	essor which:
17			(A)	determines a value of TW for which a resulting signal from said
18				second fluid is substantially zero, and
19			(B)	identifies said presence of said first fluid by analyzing signals after
20				said second excitation pulse.
21				•
1	14.	(origin	al) The	system of claim 13 wherein said first excitation pulse comprises a
2		pulse b	aving	a tip angle substantially equal to 90°.
3				
1	15.	(origin	al) The	e system of claim 13 wherein said second excitation pulse comprises
2		a pulse	having	g a tip angle substantially equal to 90°
3	,			
1	16.	(previo	ously p	resented) The system of claim 13 wherein said processor determines
2		said ya	lue of	TW by further applying a sequence of refocusing pulses B2 i after
3		said se	cond e	xcitation pulse and determining a value of TW for which
4		substar	atially i	no spin echo signals are produced by said sequence of refocusing
5		pulse.		
6				
· 1	17.	(previo	usly p	resented) The system of claim 13 wherein said first refocusing pulse
2		compri	ises a p	oulse having a tip angle substantially equal to 180°.
3	10/649	423		

3

ı

2

22. (original) The system of claim 13 further comprising a drilling tubular for conveying said logging tool into said borehole.

3

1

23. (original) The system of claim 13 wherein said processor is on said logging tool.