PROJECT 5 PART 1 (4 POINTS, DUE 3/30)

- Answer the following questions WITHOUT the assistance of computer. Show your work.
- 1. Given the data as shown in the table, find the optimal attribute (A or B) to split, in terms of the GINI index.
- 2. Compute the misclassification error for the splitting of A and the splitting of B.
- 3. Construct a depth-2 decision tree based on the GINI index.

	A	В	Class Label
I	Τ	F	+
	T	${ m T}$	+
	${ m T}$	${ m T}$	+
	${ m T}$	\mathbf{F}	_
	${\rm T}$	${ m T}$	+
	\mathbf{F}	\mathbf{F}	_
	F	\mathbf{F}	_
	F	\mathbf{F}	_
	${ m T}$	${ m T}$	_
	Τ	F	_

PROJECT 5 PART 2 (10 POINTS, DUE 4/15)

- Understand the package rpart
 - https://www.rdocumentation.org/packages/rpart/versions/4.1-15
- Download the Car Evaluation Data and understand the meaning of each attribute.
 - http://archive.ics.uci.edu/ml/datasets/Car+Evaluation
- 1. Describe the trained decision tree model and plot the tree.
- 2. Predict the evaluation for the following two types of cars.
 - a) performance car: buying="vhigh", maint="vhigh", doors="2", persons="2", lug_boot="small", safety="low"
 - b) compact SUV: buying="med", maint="med", doors="4", persons="4", lug_boot="small", safety="med"
- 3. Based on the trained model, what is the criteria for being a very good car?
- 4. Split the data into training data (80%) and testing data (20%). On the same sample data set, compute the training and testing errors for the tree models with depth = 1, 2, 3, ..., 7,8. Construct a table to exhibit your result.
- 5. What's your interpretation for the results in Problem 4?
- 6. Find the top 3 important factors in the car evaluation. Explain the reasons.

A sample table for Problem 4

depth	train_error	test_error
1	0.05	0.1
2	0.10	0.2
3	0.15	0.3
4	0.20	0.4
5	0.25	0.5
6	0.30	0.6
7	0.35	0.7
8	0.40	0.8