Алгоритмы и структуры данных. Семинар 25. Графы, задачи интересные и не очень.

Григорьев Дмитрий БПМИ-163

Задача 1.

Рассмотрим самый длинный простой путь, то есть такой путь, в котором вершины не повторяются, т. к. $k \geqslant 2$, то длина этого пути $\geqslant 3$:

$$v_1 - v_2 - \cdots - v_r$$

Вершина v_1 имеет степень не менее 2, поэтому она соединена с еще 2 вершинами. Если какая то из этих вершин отлична от вершин с самого длиного простого пути ($v_1 - v_2 - \cdots - v_r$), то мы бы могли удлиннить этот путь, следовательно вершины, с которыми соединена v_1 находятся на этом пути.

Пусть j > 1 – максимальный из таких номеров, для которого v_1 соединена с v_j . При этом возникает простой цикл длиной j.

Соединений у вершины v_1 может быть не более j-1: только с вершинами v_2, \ldots, v_j . Следовательно, $d \leq j-1$, то есть длина цикла $j \geq d+1$.

ч.т.д.

Задача 2.

Невозможно построить такой граф, если a < b < a/2.

А построить этот граф несложно(если $b \ge a/2$):

 \bullet Если a — четно, то сначала построим бамбук длины a. И к средней вершине на бамбуке присоединим новый бамбук длины b-a/2-1

 \bullet Если a – нечетно, то сначала построим бамбук длины a. И к средним вершинам на бамбуке присоединим новый бамбук длины b-a/2-1

Задача 4.

Рассмотрим данный граф. Если мы начнем с вершины 1, то к концу алгоритма получим, что конец диаметра – это вершины 1 и 2, а если внимательно посмотреть, то концами диаметра этого графа вершины 3 и 4.

Задача 5.

Выделим компоненты сильной связности. Решаем для каждой компоненты отдельно. Просто в два цвета красим вершины в каждой компоненте и если для какой—то вершины нашли соединенную с ней такого же цвета, то получили, что имеем цикл нечетно длины.

Задача 6.

Найдем вершину с наибольшей степенью исходящих ребер -v. Тогда эта вершина и будет ответом, так как если есть вершина, до которой мы не можем дойти сразу из v, то мы сможем найти вершину, до которой расстояние из v-1, из которой мы можем дойти до остальных, так как при несоблюдении этого v бы не была вершиной с наибольшей степенью исходящих ребер.

Задача 9.

Для начала удалим все мосты и получим компонеты связности. Сжимаем их. Далее возвращаем назад удаленные мосты. Теперь в полученном дереве найдем диаметр и искомым ребром будет ребро между концами найденого диаметра, так как тогда мы получим минимальное количество мостов.