1

CÁC CÔNG THỨC VÀ BẢNG TRA CỦA PHƯƠNG PHÁP PHAY

(Trích từ "Applied machinning technology" của tác giả Heinz Tschätsch)

1 Tính toán lực cắt

1.1 Phay mặt phẳng bằng dao phay trụ

❖ Góc tiếp cận

 Ψ là góc ở tâm của dao chắn cung tiếp xúc l giữa dao và chi tiết. Khi phay mặt phẳng bằng dao phay trụ, góc tiếp xúc được tính theo công thức:

Hình 1.1 Góc tiếp cận

Trong đó:

- ψ° là góc tiếp cận
- t chiều sâu cắt (mm)
- D đường kính dao phay (mm)
- Chiều dày phoi trung bình

$$h_m = \frac{360.t}{\pi.\psi.D}.s_z.\sin(90 - \lambda)$$

Trong đó:

- h_m là chiều dày phoi trung bình (mm)
- s_z lượng chạy dao răng (mm)
- λ° là góc xoắn răng, $\lambda = 0^{\circ}$ cho răng thẳng

2

1.2 Phay mặt phẳng bằng dao phay mặt đầu

❖ Góc tiếp cận

$$cos\psi_A = 1 - \frac{2A_1}{D}$$

$$cos\psi_E = 1 - \frac{2A_2}{D}$$

$$\psi = \psi_E - \psi_A$$

Hình 1.2 Góc tiếp cận

Trong đó:

- $-~\psi^{\circ}{}_{A}$ là góc chuyển động ăn dao đầu vết cắt
- ψ°_{E} là góc chuyển động ăn dao cuối vết cắt
- A₁ là khoảng cách từ đường kính dao đến điểm bắt đầu của phôi, quan sát theo hướng quay của máy phay (mm)
- A₂ là khoảng cách từ đường kính dao đến điểm kết thúc của phôi (mm)
- D đường kính dao (mm)
- Chiều dày phoi trung bình

$$h_m = \frac{114,6^{\circ}.B.s_z.t}{\psi^{\circ}.D.b}$$

Trong đó:

- B bề rộng phôi (mm)
- s_z lượng chạy dao răng (mm)
- t chiều sâu cắt (mm)
- b chiều rộng lớp cắt (mm)

1.3 Lực cắt đơn vị

$$k_c = \frac{1}{h^z}.k_{c1,1}.K_{\gamma}.K_{\nu}.K_{st}.K_{ver}$$

Trong đó:

- k_c lực cắt đơn vị (N/mm²)
- z là hằng số vật liệu
- $k_{c1,1}$ lực cắt đơn vị với h = 1mm, b = 1mm, $v_c = 100$ m/ph (N/mm²)
- K_γ hệ số hiệu chỉnh góc trước

$$K_{\gamma} = 1 - \frac{\gamma_{tat} - \gamma_0}{100}$$

- γ° tat góc trước thực tế
- γ°_{0} góc trước cơ bản, $\gamma^{\circ}_{0} = 6^{\circ}$ khi phay thép, $\gamma^{\circ}_{0} = 2^{\circ}$ khi phay gang
- K_v hệ số ảnh hưởng vật liệu dao, $K_v = 1,2$ khi vật liệu dao là thép gió, $K_v = 1,0$ khi vật liệu dao là cemented carbide
- K_{ver} hệ số hao mòn ($K_{ver} = 1,3$)
- K_{st} hệ số nén phoi, $K_{st} = 1,2$.

1.4 Lực cắt chính trung bình

$$F_{cm} = b.h_m.k_c$$

Trong đó:

- F_{cm} lực cắt chính trung bình (N)

2 Công suất yêu cầu

2.1 Số lưỡi cắt thực tế

$$z_e = \frac{z.\psi}{360^\circ}$$

Trong đó:

- $-\ z_e$ số lưỡi cắt thực tế
- z số lưỡi cắt của dao

2.2 Công suất yêu cầu

$$P = \frac{F_{cm}. v. z_e}{60.10^3. \eta}$$

Trong đó:

- P công suất yêu cầu (kW)
- v tốc độ cắt (m/ph)
- η hiệu suất làm việc của máy

Date: 11-03-2022

3 Thời gian gia công

Đối với tất cả các hình thức gia công phay, thời gian gia công được tính theo công thức sau:

$$t_h = \frac{L.i}{s.n}$$

Trong đó:

- t_h thời gian gia công (ph)
- L tổng chiều dài chạy dao (mm)
- i số lần chạy dao
- s lượng chạy dao (mm/v)
- n số vòng quay (v/ph)

So sánh với các phương pháp gia công phay khác nhau, chúng chỉ khác nhau tổng chiều dài chạy dao L, dưới đây là công thức tính L của mỗi phương pháp.

3.1 Phay mặt phẳng bằng dao phay trụ

Hình 3.1 Phay mặt phẳng bằng dao phay trụ

Phay thô: $L = l + 3 + \sqrt{D.t - t^2}$

Phay tinh: $L = l + 3 + 2\sqrt{D \cdot t - t^2}$

Trong đó:

- 1 chiều dài phôi (mm)
- D đường kính dao (mm)
- t chiều sâu cắt (mm)
- l_a , l_u khoảng cách an toàn trước và sau khi gia công (mm), $l_a + l_u = 3$

Phay mặt phẳng bằng dao phay mặt đầu

Phay đúng tâm

Hình 3.2 Phay đúng tâm

Phay thô:
$$L = l + 3 + \frac{1}{2}\sqrt{D^2 - B^2}$$

Phay tinh:
$$L = l + 3 + \sqrt{D^2 - B^2}$$

Phay lệch tâm

Hình 3.3 Phay lệch tâm

Phay thô:
$$L = l + 3 + \frac{D}{2} - \sqrt{\left(\frac{D}{2}\right)^2 - \left(\frac{B}{2} + e\right)^2}$$

Phay tinh:
$$L = l + 3 + D$$

Trong đó:

B chiều rộng phôi (mm)

- D đường kính dao (mm)

l chiều dài phôi (mm)

e độ lệch tâm (mm)

Date: 11-03-2022

3.3 Phay rãnh

$$t_h = \frac{(t_a + 2)i}{s_1 \cdot n} + \frac{(l - D)i}{s_2 \cdot n}$$

Hình 3.4 Phay rãnh

Trong đó:

- S₁ lượng chạy dao dọc (mm/v)
- S₂ lượng chạy dao ngang (mm/v)
- t_a chiều sâu rãnh (mm)

4 Một số bảng tra tham khảo

Bảng 1. Góc trước, góc sau và góc xoắn của một số dao phay thép gió (°) (góc trước α, góc sau γ, góc xoắn λ)

Phôi		ao phay t phay đĩ	-	Dao pl	hay rãnh	2 mặt	Da	o phay nạ	gón
	α	γ	λ	α	γ	λ	α	γ	λ
Thép (độ bền > 850 N/mm ²)	6	12	40	6	12	15	7	10	20
Thép đúc	5	12	40	5	10	20	6	10	30
Gang xám	6	12	40	6	12	15	7	12	30
Đồng thau	6	15	45	6	15	20	6	12	35
Hợp kim nhôm	8	25	50	8	25	30	10	25	40

Date: 11-03-2022 Design by Linh Vo Duy

Bảng 2. Đường kính và số răng dao của dao phay mặt phẳng làm từ thép gió

Т	Tarida.				Ð	ường	g kín	h dac) (mm)		
Type	Loại dao	10	20	30	40	50	63	80	100	125	160	200
	Dao phay trụ	-	-	-	4	4	5	7	8	10	12	-
	Dao phay đĩa 3 mặt	-	-	-	6	6	7	8	10	12	14	-
N	Dao phay rãnh 2 mặt	-	-	-	-	12	14	14	14	16	18	20
	Dao phay ngón	4	4	6	6	8	10	-	ı	1	-	-
	Dao phay rãnh dạng đĩa	2	2	2	2	ı	-	-	ı	ı	-	-
	Dao phay trụ	-	-	-	10	10	10	12	14	16	20	-
	Dao phay đĩa 3 mặt	-	-	-	12	12	12	14	16	18	20	-
Н	Dao phay rãnh 2 mặt	-	-	-	-	16	18	20	24	28	28	36
	Dao phay ngón	6	8	10	12	12	14	-	1	1	-	-
	Dao phay rãnh dạng đĩa	2	2	2	2	ı	-	-	ı	ı	-	-
	Dao phay trụ	-	-	-	3	4	4	4	5	6	8	-
	Dao phay đĩa 3 mặt	-	-	-	3	4	5	6	6	6	8	-
W	Dao phay rãnh 2 mặt	-	-	-	ı	6	6	6	8	8	10	12
	Dao phay ngón	3	3	4	4	ı	_	_	ı	ı	-	-
	Dao phay rãnh dạng đĩa	2	2	2	2	-	-	-	-	-	-	-

Design by Linh Vo Duy Date: 111-03-2022

Bảng 3. Tốc độ cắt, lượng chạy dao răng và thông số hình học dao làm từ cemented carbide. Giá trị khi tiện thô tương ứng với chiều sâu cắt t = 10mm

;	Kiểu gia			Thô	ng số hì	Thông số hình học dao	dao
	công	$\mathbf{S}^{\mathbf{Z}}$	>	α	γ°	$\gamma_{\rm z}^{\rm o}$	% ۲
E 295–E 335	Thô	0,2-0,5	100–180	5	ų,	-	c
	Tinh	0,1–0,2	120–200	8-17	2–10	7	-8
allo	360 and slightly alloyed Thô	0,2-0,5	70–140	5	4	10	o
	Tinh	0,1–0,2	90–180	8-12	2–10	-10	<u>8</u>
Highly alloyed steels die	die Thô	0,2–0,4	50–100	0	v	01	٥
	Tinh	0,1–0,2	70–120	8-10	n	01–	©
0,010	Thô	0,2-0,4	60–100	0	4	10	C
	Tinh	0,1–0,2	70–120	8-10	01-6	-10	o I
OH 250 CH 200	Thô	0,2–0,5	60–120	0 5	0 0		•
_	Tinh	0,2–0,3	80–140	0-17		†	0
CuZn42-CuZn37	Thô	0,2-0,4	80–140	01.0	10-	Û	0
	Tinh	0,1-0,3	90–150	0-10	12	0	0
Al alloy (9–13 % Si) G–	3- Thô	0,1–0,6	300-600	6 7	12-	71 0	-
	Tinh	0,05-0,2	400–900	71-0	20	0-15	†

Design by Linh Vo Duy Date: 111-03-2022

Bảng 4.(Bảng dưới) Lượng chạy dao răng sz và tốc độ cắt v cho phép khi phay với vật liệu dao thép gió và cemented carbide với chiều sâu cắt t = 8mm (phay thô) và t = 1mm (phay tinh) hoặc với bề rộng dao phay b (mm) (dao phay dạng đĩa) hoặc với đường kính dao phay Ø (dao phay ngón)

SS kí hiệu thép gió, HM kí hiệu cemented carbide. Giá trị lượng chạy dao răng sz tương ứng với gia công thô. Với gia công tinh, giá trị này phải giảm 40 - 50%. Đối với dao phay ngón và dao phay đĩa, giá trị tốc độ cắt tương ứng với gia công thô. Khi gia công tinh, giá trị này tăng lên 20%

Design by Linh Vo Duy Date: 11-03-2022

Phôi	Vật liêu	Độ cứng và	Dao	Dao phay trụ	trų	Dao	Dao phay đĩa 3 mặt	ĩa 3	Dae rãn	Dao phay rãnh 2 mặt	Da	Dao phay ngón	gón
	dao	độ bền	ō	1		ō	t		ū	Bề rộng	ū	Đường kính $ extcolor{O}$	kính Ø
			ΣC	8	1	Σς	8	1	ZC	b ≤ 20	Zc	≤ 20	> 20
S185–S275 JR,	SS	200	0.00	24	33	0.00	20	30	0 13	16	1	28	24
C15-C22	HIM	2000 =	77.0	120	200	0.77	120	200	0.12	180	7.7	200	180
E295–E335, C35–	SS	008 005	010	20	33	0.10	18	30	17	14	800	24	20
C45	HIM	200 - 800	0.10	80	200	0.10	70	180	0.12	120	0.00	160	150
E360 C60	SS	000 032	0.10	15	28	0.17	14	25	000	12	700	22	18
E300, C00	HIM	006 - 067	0.12	70	150	0.12	65	140	0.09	100	0.00	140	120
16M26 20M25	SS	050 1000	0.10	10	25	17	6	18	00 0	16	000	20	16
1 OMINCES, SOMINS	HIM	0001-000	0.12	50	100	0.17	45	90	0.0	100	0.0	80	70
42CrMo4,	SS	1000 1400	000	8	13	000	7	12	20.0	10	70.0	24	20
50CrMo4	HIM	1000-1400	0.03	20	60	0.03	20	60	0.07	80	000	09	50
09030000	SS	062 031	010	12	16	0.17	10	14	000	12	700	18	14
OE240-GE200	HIM	450-320	0.10	40	85	0.12	35	80	0.09	100	0.07	80	09
GH 100 GH 200	SS	1400-1800	22.0	15	25	000	13	22	12	14	800	20	18
GJE100-GJE200	HIM	HB	0.22	09	100	0.22	55	90	0.12	120	0.00	06	70
CH 250 CH 300	SS	1800-2200	22	10	18	010	9	16	9	12	700	18	14
01L230-01L300	HIM	HB	0.22	40	80	0.10	35	75	0.09	100	0.07	80	09
CuZn37-CuZn42	SS	800-120	77	35	75	0 10	32	70	000	40	000	09	50
(Ms63)	HIM	HB	0.22	80	200	0.10	75	180	000	150	0.00	110	100
A1 allow 0 120% C;	SS	600-1000	12	80	200	12	70	180	000	180	900	240	200
At all 0y 7-1370 St	HIM	HB	0.12	100	300	0.12	90	280	0.03	250	000	300	250