

VE 320 – Summer 2012 Introduction to Semiconductor Device

Introduction to Bipolar Transistors

Instructor: Professor Hua Bao

NANO ENERGY LAB

Bao Ve320 S12

1

Transistor

tran·sis·tor (trán-zìs'ter)

A solid-state electronic device that is used to control the flow of electricity in electronic equipment and consists of a small block of a semiconductor with at least three electrodes

Trans(fer) + (res)istor

Idea: control large output with small input

This device should exhibit gain

Bao Ve320 S12

Circuit Configuration (pnp)

- · Common emitter: most widely used
- · Common collector: almost never used

Bao Ve320 S12

7

Biasing Mode (pnp)

- Two face to face p-n junctions
- · Base voltage/current control hole current

Four regions of operation corresponding to forward/reverse bias of base-emitter and base-collector p-n junctions

Active: most widely encountered. Large signal gain and small signal distortion

Bao Ve320 S12

Band Diagram with Bias (Active)

Depletion width of EB diode is reduced, CB diode is widen. Equations are similar to the previous slides except that

 V_{bi} -> V_{bi} - V_{BE} at the E-B side

Vbi -> Vbi -VBC at C-B side

Bao Ve320 S12

13

Narrow Base

- Base is narrow comparing to minority carrier diffusion length
- Holes injected to the base almost completely diffused to the collector
- This is a BJT, not two back-to-back pn junctions

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

Emitter Injection Efficiency

What fraction of the emitter current is due to the intended carrier injection?

$$\gamma = \frac{I_{Ep}}{I_E} = \frac{I_{Ep}}{I_{Ep} + I_{En}}$$

Determined by doping levels and diffusion process.

Bao Ve320 S12

17

Base Transport Factor

What fraction of the injected electron shows up as collector current?

$$\alpha_T = \frac{I_{Cp}}{I_{Ep}}$$

Determined by base width and carrier diffusion length in base

Bao Ve320 S12

Common Base d.c. Current Gain

How much of the emitter current shows up at the collector?

$$\alpha_{dc} = \gamma \alpha_T = \frac{I_{Cp}}{I_E} \approx \frac{I_C}{I_E}$$

Depends on emitter injection efficiency and base transport factor

Bao Ve320 S12

19

Common Emitter d.c. Current Gain

What is the output current (collector) relative to the input (base) current?

$$\beta = \frac{I_C}{I_B} = \frac{\alpha_{dc}}{1 - \alpha_{dc}}$$

Depends on emitter injection efficiency and base transport factor.

Bao Ve320 S12