Graduate Preliminary Exam, Spring 2006

(9 problems counted equally, 3 hours)

1. i) State what it means for a sequence $\{a_n\}$ of real numbers to be Cauchy.

ii) Prove that every convergent sequence is Cauchy.

2. Prove that for every positive integer n, $n^3 + 2n$ is divisible by 3.

3. Find all complex numbers z = x + iy, $(x, y \in \mathbb{R})$, such that $e^z = 2i$.

4. Let $L \subset \mathbb{R}^2$ be the line spanned by the vector $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Let $P \subset \mathbb{R}^2$ be the line defined by the equation x + 2y = 0. Find the standard matrix for the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that T(v) = 0 for $v \in L$ and T(v) = v for $v \in P$.

5. Find an invertible matrix Q so that $Q^{-1}\begin{pmatrix} -1 & 1 \\ 0 & 2 \end{pmatrix}Q$ is diagonal.

6. Let f be a Riemann integrable function on a closed interval [a,b]. For $x \in [a,b]$, let $g(x) = \int_a^x f(t)dt$. Prove that g is continuous.

7. Let τ be the arc of the unit circle in the first quadrant, from (1,0) to (3/5,4/5). Compute

$$\int_{\tau} x dy + y dx .$$

8. Let $f(x,y) = \frac{x^2y}{x^2+y^2}$ for $(x,y) \neq (0,0)$ and let f(0,0) = 0.

i) Prove that f is continuous at (0,0).

ii) Prove that f is not differentiable at (0,0).

9. For each positive integer n, let $f_n(x) = \frac{x}{x+n}$ for $x \in [0, \infty)$. Show that the sequence of functions $\{f_n\}$ converges pointwise on $[0, \infty)$ to the 0-function but does not converge uniformly.