Introducción a la simulación

Fernando Oleo Blanco fernando.oleo@alu.comillas.edu

17 de agosto de 2019

github.com/Irvise/Documents

Información de la charla

Duración estimada: 2h ¡Haremos una simulación! Así que por favor, celeridad

Esta charla no tratará

- ANSYS ® o ningún software en específico
- Métodos numéricos ni principios de convergencia
- Funcionamiento de los simuladores ni sus principios
- Análisis de sensibilidad ni optimizaciones de ningún tipo
- Mallado (meshing) de manera formal
- Diseño 3D, esto ya lo deberíais traer
- Caso práctico de post-procesado

Índice

Qué es la simulación y qué se requiere

Software de simulación comercial

Software de pago

Software libre/gratuito

Simulación y los cinco pasos de toda simulación

Caso práctico

Presentación y análisis

Geometría y grupos

Mallado (meshing)

Simulación

Post-procesado

Qué es la simulación y qué se requiere

Requisitos mínimos para simular

Entender muy, muy bien la física/ingeniería del problema

Los ordenadores no son tan inteligentes. Es un requisito indispensable entender muy bien lo aprendido en las clases. Dadle valor a la ingeniería.

Otros:

- Ganas. Los errores son constantes
- Leer la documentación. Hacer cursos/ver vídeos
- Práctica

Escala de la simulación

Figura 1: Escala temporal y espacial de simulación. Fuente: LLNL

Escala de la simulación

Figura 2: Otro ejemplo, esta vez, con software específico. Fuente: presentación de MATIX_P, CEA

Software de simulación comercial

Selección de software para la simulación

Solo dos comentarios:

¡Cuidado con las licencias!

Las licencias de los programas a los que os da acceso la universidad son de carácter educacional. Esto significa que no podéis hacer nada comercial con ese software.

Selección de software para la simulación

Solo dos comentarios:

¡Cuidado con las licencias!

Las licencias de los programas a los que os da acceso la universidad son de carácter educacional. Esto significa que no podéis hacer nada comercial con ese software.

Selección de software

Por lo general no tendréis que elegir el programa para simular, ya os vendrá dictado por la empresa o institución. Sin embargo, si es para uso propio u os toca elegir, haced siempre un estudio del mercado. A continuación os dejo una pequeña ayuda.

Algunos criterios de selección

- ✓ Que pueda simular lo que se desea
- √ Eficiente
- √ Flexible (el software libre gana claramente)
- ✓ Escalable. ¿Y si mañana quiero optimizar?
- ✓ Integración con otro software que pueda ser necesario (el software de pago es muy bueno en esto)
- √ Costes

Software de simulación comercial

Software de pago

Una pequeñísima selección

Los más conocidos:

- ANSYS ®
- NASTRAN (MSC) ®
- COMSOL Multiphysics ®
- Solid Edge (R)
- SolidWorks (R)
- Autodesk (R)
- Matlab (R)
- 3

Otros interesantes...

- Simscale R. ¡Servicio
 on-line!. Sin "restricciones".
 Link para ver capacidades
- Europlexus R
 Ultrafast-transients, thermal,
 fluid and mechanical coupling.
 Aimed towards research
- Cast 3M ®
 Thermo-mechanical. Aimed towards research

Software de simulación comercial

Software libre/gratuito

Una pequeña selección

Si se desea ver un listado más grande, tengo un pequeño resumen hecho en *link*, bajo la sección de ingeniería y ciencias.

- FreeCAD. Que el nombre no os eche para atrás, trae de todo y para empezar vais más que sobrados. Tiene plug-ins para interactuar con OpenFOAM
- OpenFOAM. Uno de los CFDs más avanzados del mundo. Se usa especialmente en superordenadores e investigación
- Code_Aster. Simulador termo-mecánico, una bestia donde se hayan visto.
- Code_Saturne. CFD
- ElmerFEM. Multyphysics
- 3

Para terminar...

Una de las grandes ventajas del software libre, es que se puede ver y modificar el código. Para proyectos de gran complejidad o poco comunes, modificar el código es casi siempre esencial.

Documentación

Muchos de los programas, en especial los programas libres, tienen toneladas de literatura y ejemplos que pueden ser útiles tanto para su aprendizaje como para la resolución de casos de ingeniería. Como recomendación, mirad los informes de referencia de Code_Aster, ver secciones V2 o superior.

Simulación y los cinco pasos de toda simulación

¿Qué es la simulación?

Una simulación como su nombre indica, no es la realidad.

La simulación es una aproximación a la realidad

La calidad de la aproximación depende de la persona que la realice y de su trabajo; los conocimientos sobre la materia, el simulador y, sobretodo, la precisión que nosotros queramos darle.

Las cinco fases para simular

- Análisis del problema
- Creación de la geometría y grupos
- Mallado (meshing)
- Configuración de la simulación. Simulación
- Post-procesado

Las cinco fases para simular

- Análisis del problema
- Creación de la geometría y grupos
- Mallado (meshing)
- Configuración de la simulación. Simulación
- Post-procesado

Todas son importantes

No os saltéis ninguna jamás. Especialmente el análisis y el post-procesado, que son las más olvidadas e importantes.

Caso práctico

Dinámica de la parte práctica

A continuación haremos un caso práctico "real". Usaremos el software SALOME-Meca para la simulación, *link para Windows*.

El funcionamiento será el siguiente:

- 1. Se introduce la sección teórica
- 2. Se ven ejemplos y se comentan, si hay
- 3. Vamos al programa y aplicamos lo visto

Presentación y análisis

Caso práctico

Análisis

Comprobaciones que hacer:

- √ Objetivo de la simulación
- ✓ Elementos/fuerzas que intervienen
- √ Análisis
- √ Simplificación, equivalencias
- √ Simulación efectiva

Geometría y grupos

Caso práctico

Comentarios sobre la geometría

- Nombrad todo de forma comprensiva
- Es posible que queráis parametrizar algunos valores
- Sed lo más limpios posibles y concisos

Grupos geométricos

Son elementos sobre los que nos apoyaremos para hacer el mallado y la simulación. Son zonas de **condiciones de contorno, cargas** y referencias.

Caso práctico Mallado (meshing)

Información general

En resumidas cuentas, el mallado, *meshing* en inglés, es la discretización espacial del problema en nodos, aristas y/o volúmenes.

Es de los temas más complicados y extensos que hay en la simulación FEM, después de todo, es lo que le da el nombre.

Nociones generales básicas

- Tiene que asegurar convergencia
- Tiene que asegurar precisión
- Tendría que ser sencillo
- Tendría que ser eficiente

Unos sencillos pasos

Esta siguiente lista está hecha con SALOME en mente, pero otro software seguirá principios similares.

- 1. Importar geometría
- 2. Discretizar de manera "bruta" (3D, 2D...)
- 3. Seleccionar referencias
- 4. Controlar la discretización con las referencias
- 5. Recomputar
- 6. (Re)hacer los grupos geométricos
- Comprobar que todo esté correcto. Por ejemplo: en CFD que los cuerpos sumergidos estén sellados

Ejemplos

Caso práctico Simulación

Nociones generales

En general, hay mil tipos de simulación: FE, por partículas, eventos discretos, formas analíticas, por frecuencias, integradores...

Pero en FEM existe, de forma básica, estas categorías:

- Lineares y no lineares
- Transitorios o steady-state
- Estáticos y dinámicos
- Modales, fatiga, fractura, térmica conjugada...
- Con os sin acoplamiento: termo-mecánico, termo-fluido...

Secuencia para el diseño de una simulación

Esta lista está basada en el funcionamiento de SALOME-Meca, pero todo el software funciona igual:

- 1. Importar geometría
- 2. Selección del tipo de simulación
- 3. "Diseñar" materiales
- 4. Asignar materiales a la geometría
- 5. Asignar condiciones de contorno
- 6. Asignar cargas
- 7. Configurar la simulación
- 8. Configurar la salida de datos y el post-procesado

En cualquier momento puede ser necesario el uso de **funciones y listas de valores.**

Caso práctico Post-procesado