Cluster analysis

WASHA, Takwimu, UKZN, 25 August 2023

Till Bärnighausen, Heidelberg Institute of Global Health, University Hospital and Medical Faculty, Heidelberg University

PCA is easy to program and easy to implement and artful to interpret

2 TACTICS OF PCA

- <u>Dimension reduction</u>: How many principal components should we use?
- <u>Discovery</u>: What do the principal components mean?

Principal component analysis uses two foundations of statistics, which come with assumptions

ASSUMPTIONS OF CANONICAL PCA

- 1. Linearity
- 2. Mean and variance sufficient statistics
- 3. Large variance mean important dynamics (high SNR)
- 4. Principal components are orthogonal

Quantitative analysis serve many important functions in health systems research

4 FUNCTIONS

- 1. Description
- 2. Discovery unsupervised machine learning
 - Dimension reduction: low-dimensional representation of the observations that explain a large fraction of the total variance
 - Cluster analysis: homogeneous subgroups among the observations
- 3. Prediction
- 4. Causation

Springer Series in Statistics

Trevor Hastie Robert Tibshirani Jerome Friedman

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Second Edition

Gareth James · Daniela Witten · Trevor Hastie · Robert Tibshirani · Jonathan Taylor

An Introduction to Statistical Learning

with Applications in Python

K means rests on simple mathematical foundations

MATHEMATICAL INTUITION (I)

Minimize the total within-cluster variation, summed over all K clusters

$$\min_{C_1, C_2, \dots C_K} \sum_{k=1}^K W(C_k)$$

K means rests on simple mathematical foundations

MATHEMATICAL INTUITION (II)

 Minimize the sum of all the pairwise squared Euclidian distances between the observations in the kth cluster, divided by the total number of observations in the kth cluster – the summed over all K clusters

$$min_{C_1, C_2, \dots C_K} \sum_{k=1}^{K} \frac{1}{C_k} W \sum_{i, i' \in C_k} \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2$$

What PCA is for dimension reduction, k means is for cluster analysis

PROCEDURAL INTUITION

Two properties:

- Each observation belongs to at least one of the k clusters
- No observation belongs to more than one cluster

• Steps:

- 1. Choose *K*
- 2. Randomly assign a number from 1 to K to each observation
- 3. Iterate until the assignments stop changing:
 - a. For each of the *K* clusters, compute the cluster centroid (vector of the *p* feature means)
 - b. Assign each observation to the cluster whose centroid is closest (using Euclidian distance)

How to choose the hyperparameter *K*?

INTUITION AND METRICS EXAMPLES (I)

- We have to quantify the goodness of a clustering
- All metrics capture some version of one or both of two high-level 'goodness' characteristics
 - Within: cohesion or compactness of clusters
 - Across: separation of clusters

$$\frac{(\alpha * separation)}{(\beta * compactness)}$$

How to choose the hyperparameter *K*?

INTUITION AND METRICS EXAMPLES (II)

 Silhouette coefficient (SC) – uses the mean intracluster distance (a) and the mean nearestcluster distance (b)

$$\frac{(b-a)}{\max(a,b)}$$

Dunn index (DI)

 $(\min separation = \min pairwise intercluster distance)$ $(\max diameter = \max intracluster distance = compactness)$

What clusters of chronic disease dominate in India?

METHODS – FINGER EXERCISE (I)

- 1. <u>Data source</u>: National Family Health Survey 639,661 women
- 2. <u>Variables</u>: biomarkers and anthropometric measures that indicate major chronic conditions continuous variables
 - Height and weight
 - Waist and hip circumference
 - Hemoglobin
 - Random blood glucose
 - Systolic and diastolic blood pressure

What clusters of chronic disease dominate in India?

METHODS – FINGER EXERCISE (II)

3. <u>Data preprocessing</u>:

- Observations removed because of implausible values (14 weight or height, 5 blood sugar, 11 systolic or diastolic blood pressure)
- PCA: first five principal components using Kaiser's criterion from 8 to 5 dimensions

4. Cluster analysis:

- K means
- NbClust R package for k hyperparameter optimization, using 26 cluster performance indices majority vote

5 clusters of chronic conditions emerge among women in India

METHODS - FINGER EXERCISE (III)

Index name	# clusters
KL	5
CH	5
Hartigan	4
CCC	5
Scott	5
Marriot	5
TrCovW	5
TraceW	5
Friedman	5
Rubin	5
Cindex	4
DB	5
Silhouette	2
Duda	2
PseudoT2	2
Beale	2
Ratkowsky	5
Ball	3
PtBiserial	5
Frey	1
McClain	2
Dunn	9
Hubert	0
Sdindex	5
Dindex	0
SDbw	10

What factors determine cluster membership?

METHODS – FINGER EXERCISE (IV)

5. Regression:

- Multinomial logistic regression, using the nnet R package
- Dependent variable: cluster membership
- Independent variables: socio-demographic
 - Age
 - Education
 - Rural vs urban
 - Wealth
 - Religion (Hindu, Buddhist, Muslim, Sikh, Christian, Jain, Jewish, Zoroastrian, other, none)
- Causal intention

-	Cluster membership (reference: cluster 1)			
	Cluster 2	Cluster 3	Cluster 4	Cluster 5
Age (years)	1.055***	1.038***	1.165***	1.084***
	(0.0004)	(0.005)	(0.001)	(0.0004)
Education (years)	0.986***	1.063***	1.007***	1.031***
	(0.001)	(0.010)	(0.001)	(0.001)
Wealth index (standard deviation)	0.910***	1.412***	1.443***	1.628***
	(0.004)	(0.051)	(0.006)	(0.005)
Rural Residence (reference: urban)	1.000***	0.951***	0.990***	1.116***
	(0.009)	(0.091)	(0.012)	(0.009)
Religion (reference: Hindu) Muslim	1.124***	1.373***	1.558***	1.522***
	(0.011)	(0.116)	(0.015)	(0.011)
Christian	1.289***	0.986***	1.570***	1.290***
	(0.013)	(0.165)	(0.018)	(0.014)
Sikh	0.919***	1.170***	2.189***	1.768***
	(0.030)	(0.252)	(0.030)	(0.025)
Buddhist	1.260***	0.915**	1.810***	1.228***
	(0.033)	(0.410)	(0.040)	(0.035)
Jain	1.290***	0.018***	1.199***	1.013***
	(0.112)	(0.00005)	(0.128)	(0.105)
Jewish	0.003***	0.526***	0.029***	1.334***
	(0.00000)	(0.00001)	(0.00000)	(0.00001)
Zoroastrian	4.175***	0.580***	3.354***	3.313***
	(0.257)	(0.0002)	(0.278)	(0.282)
No religion	2.492***	0.112***	5.235***	2.173***
	(0.168)	(0.0002)	(0.193)	(0.186)
Other religions	1.860***	0.190***	2.425***	1.505***
	(0.031)	(0.001)	(0.041)	(0.036)
Constant	0.244***	0.001	0.003	0.056***
	(0.018)	(0.196)	(0.027)	(0.019)

Different families of cluster analysis are useful for particular applications

TYPES

- Centroid-based (k means, medians, medoids ...)
- **Distribution-based** (Gaussian, Bernoulli ... mixture models)
- Density-based (HDBSCAN, DBSCAN, ...)
- Hierarchical (trees)
- •

How do health behavioral risks cluster?

BERNOULLI MIXTURE MODEL IN NAMIBIA

