Let E be the vector space (over \mathbb{R}) consisting of all homogeneous polynomials of degree 2 in x, y, z of the form

$$ax^2 + ay^2 + bxz + cyz + dz^2$$

(plus the null polynomial). The projective space P(E) consists of all equivalence classes

$$[P]_{\sim} = \{ \lambda P \mid \lambda \neq 0 \},\$$

where P(x, y, z) is a nonnull homogeneous polynomial in E. We want to give a geometric interpretation of the points of the projective space $\mathbf{P}(E)$. In order to do so, pick some projective frame (a_1, a_2, a_3, a_4) for the projective plane \mathbb{RP}^2 , and associate to every $[P] \in \mathbf{P}(E)$ the subset of \mathbb{RP}^2 known as its its zero locus (or zero set, or variety) V([P]), and defined such that

$$V([P]) = \{ a \in \mathbb{RP}^2 \mid P(x, y, z) = 0 \},\$$

where (x, y, z) are homogeneous coordinates for a.

As explained earlier, we also use the simpler notation

$$V([P]) = \{(x, y, z) \in \mathbb{RP}^2 \mid P(x, y, z) = 0\}.$$

Actually, in order for V([P]) to make sense, we have to check that V([P]) does not depend on the representative chosen in the equivalence class $[P] = \{\lambda P \mid \lambda \neq 0\}$. This is because

$$P(x, y, z) = 0$$
 iff $\lambda P(x, y, z) = 0$ when $\lambda \neq 0$.

For simplicity of notation, we also denote V([P]) by V(P). We also have to check that if $(\lambda x, \lambda y, \lambda z)$ are other homogeneous coordinates for $a \in \mathbb{RP}^2$, where $\lambda \neq 0$, then

$$P(x, y, z) = 0$$
 iff $P(\lambda x, \lambda y, \lambda z) = 0$.

However, since P(x, y, z) is homogeneous of degree 2, we have

$$P(\lambda x, \lambda y, \lambda z) = \lambda^2 P(x, y, z),$$

and since $\lambda \neq 0$,

$$P(x, y, z) = 0$$
 iff $\lambda^{2} P(x, y, z) = 0$.

The above argument applies to any homogeneous polynomial $P(x_1, ..., x_n)$ in n variables of any degree m, since

$$P(\lambda x_1, \dots, \lambda x_n) = \lambda^m P(x_1, \dots, x_n).$$

Thus, we can associate to every $[P] \in \mathbf{P}(E)$ the curve V(P) in \mathbb{RP}^2 . One might wonder why we are considering only homogeneous polynomials of degree 2, and not arbitrary polynomials of degree 2? The first reason is that the polynomials in x, y, z of degree 2 do **not** form a vector space. For example, if $P = x^2 + x$ and $Q = -x^2 + y$, the polynomial P + Q = x + y is not of degree 2. We could consider the set of polynomials of degree ≤ 2 ,