Code: 15A05404

B.Tech III Year I Semester (R15) Regular Examinations November/December 2017

FORMAL LANGUAGES & AUTOMATA THEORY

(Information Technology)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$

- (a) Define alphabet, string and language.
- (b) Formally define an automaton.
- (c) State Arden's lemma.
- (d) Give the operator precedence in regular expressions.
- (e) Define an ambiguous grammar.
- (f) When do we say that a grammar is in Chomsky's normal form?
- (g) Describe the transition function in push down automaton.
- (h) Formally define a PDA.
- (i) Define the transition of a Turing machine.
- (j) Explain the types of universal Turing machine.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

[UNIT - I]

- 2 (a) Construct a finite automaton which accepts all strings, over an alphabet {0, 1}, where each block of five consecutive symbols contain at least two zeroes.
 - (b) Construct an NFA for the regular expression (0+1)* (00+11)(10+001)*.

OR

3 (a) Construct a Moore machine that is equivalent to the Mealy machine given below.

	Next state			
Present state	a = 0		a = 1	
	State	Output	State	Output
→ q0	q3	0	q11	1
q10	q0	1	q3	0
q11	q0	1	q3	0
q20	q21	1	q20	0
q21	q21	1	q20	0
q3	q10	0	q0	1

(b) Discuss Chomsky's hierarchy of formal languages.

[UNIT – II]

- 4 (a) Prove that the language $L = \{w/w \subseteq \{0, 1\} \text{ and length of w is a prime number}\}$.
 - (b) Under which operations, regular languages are closed.

OR

- 5 (a) List and explain the algebraic properties of regular expressions.
 - (b) Design right linear regular grammar which derives strings that contain a substring of 110. Convert the same into its equivalent left linear regular grammar.

Contd. in page 2

Code: 15A05404

UNIT – III

- 6 (a) Convert the following grammar into Greibach normal form.
 - $A \rightarrow BC$
 - $B \rightarrow CA \mid b$
 - $C \rightarrow AB \mid a$.
 - (b) Verify whether the following grammar is ambiguous or not.

$$S \rightarrow SaSaSb$$
.

OR

7 (a) Simplify the following context free grammar. (Here, ^Λ stands for epsilon).

$$S \to TU \mid V$$

 $T \rightarrow aTb \mid \Lambda$

 $U \rightarrow cU \mid \Lambda$

 $V \rightarrow aVc \mid W$

 $W \rightarrow bW \mid \Lambda$

(b) Explain the closure properties of context free languages.

UNIT - IV

- 8 (a) Construct a PDA which recognizes all strings that contain equal number of 0_s and 1_s.
 - (b) A PDA is more powerful than a finite automaton. Justify this statement.

OR

- 9 (a) Construct a CFG equivalent to the following PDA. PDA = {(p, q), (0, 1), δ , p, q, (Z, X)}, where p is initial state, q is final state. δ is defined as δ (p,0,z)=(p,XZ), δ (p,0,X)=(p,XX), δ (p,1,X)=(q, ϵ), δ (p,1,X)=(p, ϵ), δ (p, ϵ ,z)=(p, ϵ).
 - (b) Explain the functioning of two stack PDA.

[UNIT - V]

- 10 (a) Construct a Turing machine that carries out multiplication of two unary numbers.
 - (b) Describe linear bounded automaton.

OR

- 11 (a) Construct a Turing machine that recognizes the language aⁿbⁿcⁿ.
 - (b) Define PCP. Verify whether the following lists have a PCP solution.

$$\binom{abab}{ababaaa}, \binom{aaabbb}{bb}, \binom{aab}{baab}, \binom{ba}{baa}, \binom{ab}{ba}, \binom{aa}{a}.$$
