Geog5330: Applied Spatiotemporal Data Analysis Point Pattern Analysis

Guofeng Cao www.spatial.ttu.edu

Department of Geosciences Texas Tech University guofeng.cao@ttu.edu

Fall 2017

Spatial Point Patterns

Characteristics:

- set of *n* point locations with recorded "events", e.g., locations of trees, disease or crime incidents $S = \{s_1, \dots, s_i, \dots, s_n\}$
- point locations correspond to all possible events or to subsets of them
- attribute values also possible at same locations, e.g., tree diameter, magnitude of earthquakes (marked point pattern) $W = \{w_1, \dots, w_i, \dots, w_n\}$

Analysis objectives:

- detect spatial clustering or repulsion, as opposed to complete randomness, of event locations (in space and time)
- if clustering detected, investigate possible relations with nearby "sources"

Spatial Point Patterns

Further issues:

- analysis of point patterns over large areas should take into account distance distortions due to map projections
- boundaries of study area should not be arbitrary
- analysis of sampled point patterns can be misleading
- one-to-one correspondence between objects in study area and events in pattern

Simple Descriptive Statistics

Mean center of a point pattern:

• point with coordinates $\bar{s} = (\bar{x}, \bar{y})$:

$$\bar{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$
 and $\bar{y} = \frac{\sum_{i=1}^{n} w_i y_i}{\sum_{i=1}^{n} w_i}$

• center of point pattern, or point with average x and y-coordinates

Median center of a point pattern:

- <u>both</u> of the following two centers are called <u>median centers</u>, although they are essentially different (confusing!)
 - the intersection between the median of the x and the y coordinates
 - center for minimum distance: $s_c \in \{s_1, \dots, s_n\}$ s.t.min $\sum_{i=1}^n |s_i s_c|$
- the first type of *median center* is not unique, and there is <u>no</u> closed form for the second type
- p-median problem (a typical problem in spatial optimization): the problem of locating p "facilities" relative to a set of "customers" such that the sum of the shortest demand weighted distance between "customers" and "facilities" is minimized 4/45

Simple Descriptive Statistics

Changes of population center (year 1790-2000):

Standard distance of a point pattern:

 average squared deviations of x and y coordinates from their respective mean:

$$d_{std} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 + \sum_{i=1}^{n} (y_i - \bar{y})^2}{n - 2}}$$

 related to standard deviation of coordinates, a summary circle (centered at \$\overline{5}\$ with radius \$d_{std}\$) of a point pattern

Standard deviational ellipse:

- Taking directional effects into account for anisotropy cases
- Please refer to Levine and Associates, 2004 for calculations

Descriptive Statistics

Remarks:

- indicates overall shape and center of point pattern
- do not suffice to fully specify a spatial point pattern

F

Point Pattern Analysis Methods

1st order (i.e., intensity): absolute location of events on map:

- Quadrat methods
- Density Estimation (KDE)
- Moran's I and Geary's C

2nd order (i.e., interactions): interaction of events:

- Nearest neighbor distance
- Distance functions G, K, F, L
- Getis-Ord Gi* and Anselin local Moran's I

Quadrat methods

Consider a point pattern with n events within a study region A of area |A|

Global intensity:

$$\hat{\lambda} = \frac{n}{|A|} = \frac{\text{\#of events within}A}{|A|}$$

Local intensity via quadrats

- 1. partition A into L sub-regions A_l , l = 1, ..., L of equal area $|A_l|$ (also called quadrats)
- 2. count number of events $n(A_l)$ in each sub-region A_l
- 3. convert sample counts into estimated intensity rates as:

$$\hat{\lambda}(A_I) = \frac{n(A_I)}{|A_I|}$$

- estimated rates $\hat{\lambda}(A_l)$ over set of quadrats
- reveal large-scale patterns in intensity variation over A
- larger quadrats yield smoother intensity maps; smaller quadrats yield 'spiky' intensity maps
- size, origin, and shape of quadrats is critical (recall: MAUP)
- only first-order effects are captured

Dependence of intensity on a covariate (Inhomogeneous

Kernel Density Estimation

Procedure of Kernel Density Estimation (KDE)

- 1. define a kernel K(s; r) of radius (or bandwidth) r centered at any arbitrary location s
- 2. estimate local intensity at s as:

$$\hat{\lambda}(\mathbf{s}) = \frac{1}{n} \sum_{i=1}^{n} K(\mathbf{s}_{i} - \mathbf{s}; r)$$

repeat estimation for all points s in the study region to create a density map

Example for the previous dataset:

den

Kernel Density Estimation

Example with 2km bandwidth

Kernel Density Estimation Example with 10km bandwidth

Kernel Density Estimation

Example with 40km bandwidth

Kernel Density Estimation

Comments

- Choice of kernel function is not critical (Diggle, 1985)
- Choice of bandwidth, or degree of smoothing critical:
 - Small bandwidth → spiky results
 - Large bandwidth → loss of detail
- Multi-scale analyses can use these bandwidth characteristics to investigate both broad trends and localized variation
- How to choose bandwidth: choose the degree of smoothing subjectively, by eye, or by formula (Diggle)
- could define local bandwidth based on function of presence of events in neighborhood of s (i.e., adaptive kernel estimation)

What does the output of KDE means?

Distance-based Descriptors of Point Patterns

- Distances: accessing second order effects
 - Event-to-event distance: distance d_{ij} between event at arbitrary location s_i and another event at another arbitrary location s_j:

$$d_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

• Point-to-event distance: distance \tilde{d}_{pj} between a randomly chosen point at location \tilde{s}_p and an event at location s_i :

$$\tilde{d}_{pj} = \sqrt{(\tilde{x}_p - x_j)^2 + (\tilde{y}_i - y_j)^2}$$

Event-to-nearest-neighbour distance: distance d_{min}(s_i) between an event at location s_i and its nearest neighbor event:

$$d_{min}(s_i) = min\{d_{ij}, j \neq i, j = 1, \dots, n\}$$

 Point-to-nearest-neighbour distance (i.e., empty space distance): distance d_{min}(s̄_p) between a randomly chosen point at location s̄_p and its nearest neighbor event:

$$\tilde{d}_{min}(\tilde{s}_{p}) = min\{\tilde{d}_{pi}, j = 1, \dots, n\}$$

Event-to-Nearest-Neighbor Distances

	1	2	3	4	5
1	0.00	11947.70	16042.65	3481.22	10742.98
2	11947.70	0.00	5126.79	15219.58	1599.07
3	16042.65	5126.79	0.00	19481.59	6720.59
4	3481.22	15219.58	19481.59	0.00	13913.70
5	10742.98	1599.07	6720.59	13913.70	0.00

Table: Euclidean distance matrix

Event-to-Nearest-Neighbor Distances

Nearest neighour distances

• Mean nearest neighbour distance: Average of all $d_{min}(s_i)$ values

$$\bar{d}_{min} = \frac{1}{n} \sum_{i=1}^{n} d_{min}(s_i)$$

*

The G function

• Definition: nearest neighbour distance function, i.e., proportion of event-to-nearest-neighbor distances $d_{min}(s_i)$ no greater than given distance cutoff d, estimated as:

$$\hat{G}(d) = \frac{\#\{d_{min}(s_i) < d, i = 1, ..., n\}}{n}$$

- alternative definition: cumulative distribution function (CDF) of all n event-to-nearest-neighbor distances; instead of computing average \bar{d}_{min} of d_{min} values, compute their CDF
- the G function provides information on event proximity
- example for previous clustering point pattern:

Examples of G function

Expected plot:

- for clustered events, $\hat{G}(d)$ rises sharply at short distances, and then levels off at larger d-values
- for randomly-spaced events, $\hat{G}(d)$ rises gradually up to the distance at which most events are spaced, and then increases sharply

The F function Definition

• proportion of point-to-nearest-neighbor distances (i.e., empty space distances) $\tilde{d}_{min}(s_p)$ no greater than given distance cutoff d, estimated as:

$$\hat{F}(d) = \frac{\#\{\tilde{d}_{min}(\tilde{s}_p) < d, p = 1, \dots, m\}}{m}$$

- alternative definition: cumulative distribution function (CDF) of all
 m point-to-nearest-neighbor distances
- the F function provides information on event proximity to voids
- Examples for previous clustering point pattern:

Expected plot:

- for clustered events, $\hat{F}(d)$ rises sharply at short distances, and then levels off at larger d-values
- for randomly-spaced events, $\hat{F}(d)$ rises rapidly up to the distance at which most events are spaced, and then levels off (there are more nearest neighbors at small distances from randomly placed points)

Comparing G and F functions

Expected plot:

- for clustered events, $\hat{G}(d)$ rises faster
- for randomly-spaced events, $\hat{F}(d)$ tends to be close to $\hat{G}(d)$

The K function

Working with pair-wise distances&looking beyond nearest neighours

Concept

- construct set of concentric circles (of increasing radius d) around each event
- 2. count number of events in each distance "band"
- 3. cumulative number of events up to radius d around all events becomes the sample K function $\hat{K}(d)$

Working with pair-wise distances&looking beyond nearest neighours

Formal definition:

$$K(d) = \frac{1}{\lambda} \frac{\#\{d_{ij} \leq d, i, j = 1, \dots, n\}}{n}$$

$$= \frac{|A|}{n} \frac{\#\{d_{ij} \leq d, i, j = 1, \dots, n\}}{n}$$

$$= |A| \text{(proportion of event-to-event distance } \leq d\text{)}$$

• In other words, the $\hat{K}(d)$ is the sample cumulative distribution function (CDF) of all n^2 event-to-event distances, scaled by |A|

Examples of Event-to-Event Distance Histogram and CD

• the sample K function $\hat{K}(d)$ is monotonically increasing and is a scaled (by area |A|) version of the CDF of E2E distances

Recap

Spatial point patterns

set of n point locations with recorded "events"

Describing the first-order effect

- overal intensity
- local intensity (quadrat count and kernel density estimation)

Describing the second-order effect

- nearest neighbour distances
 - the G function
- empty space distances
 - the F function
- pair-wise distances
 - the K function

Caveats

Caveats:

- theoretical G, F, K functions are defined and estimated under the assumption that the point process is stationary (homogeneous)
- these summary functions do not completely characterise the process
- if the process is not stationary, deviations between the empirical and theoretical functions (e.g. \hat{K} and K) are not necessarily evidence of interpoint interaction, since they may also be attributable to variations in intensity

Descriptive vs Statistical Point Pattern Analysis

Descriptive analysis:

- set of quantitative (and graphical) tools for characterizing spatial point patterns
- different tools are appropriate for investigating first- or second-order effects (e.g., kernel density estimation versus sample G function)
- can shed light onto whether points are clustered or evenly distributed in space

Limitation:

- no assessment of <u>how</u> clustered or <u>how</u> evenly-spaced is an observed point pattern
- no yardstick against which to compare observed values (or graph) of results

Descriptive vs Statistical Point Pattern Analysis

Statistical analysis:

- assessment of whether an observed point pattern can be regarded as one (out of many) realizations from a particular spatial process
- measures of confidence with which the above assessment can be made (how likely is that the observed pattern is a realization of a particular spatial process)

Are daisies randomly distributed in your garden?

Complete Spatial Randomness (CSR)

Complete Spatial Randomness (CSR)

- yardstick, reference model that observed point patterns could be compared with, i.e., null hypothesis
- homogeneous (uniform) Poisson point process
- basic properties:
 - the number of points falling in any region A has a Poisson distribution with mean $\lambda |A|$
 - given that there are n points inside region A, the locations of these points are i.i.d. and uniformly distributed inside A
 - the contents of two disjoint regions A and B are independent

Quadrat counting test for CSR

Quadrat counting test

- partition study area A into L sub-regions (quadrats), A_1, \ldots, A_L
- count number of events $n(A_I)$ in each sub-region A_I
- Under the null hypothesis of CSR, the $n(A_I)$ are i.i.d. Poisson random variables with the same expected value
- The Pearson χ^2 goodness-of-fit test can be used
 - test statistics: Pearson residual $\sum_{l} \epsilon(A_{l})^{2}$

$$\epsilon(A_I) = \frac{n(A_I) - \mu(A_I)}{\sqrt{\mu(A_I)}},$$

where $\mu(A_I)$ indicates the expected number of events in A_I

• $\sum_{l=1}^{\infty} \epsilon(A_l)^2$ is assumed to follow χ^2 distribution

- three values indicate the number of observations, CSR-expected number of observations, and the Pearson residuals
- p-value = 0.617

Nearest Neighbour Index (NNI) test under CSR

Nearest neighbour index

• Compares the mean of the distance observed between each point and its nearest neighbor (\bar{d}_{min}) and the expected mean distance under CSR $E(d_{min})$

$$NNI = \frac{\bar{d}_{min}}{E(d_{min})}$$

• Under CSR, we have:

$$E(d_{min}) = \frac{1}{2\sqrt{\lambda}}$$

$$\sigma(d_{min}) = \frac{0.26136}{\sqrt{n^2/A}}$$

Nearest neighbour index test

Test statistics:

$$z = \frac{\bar{d}_{min} - E(d_{min})}{\sigma(d_{min})},$$

• z is assumed to follow Gaussian distribution, thus, if z<-1,96 or z>1.96, we are 95% confident that the distribution is not randomly distributed

- The G function is a function of nearest-neighbour distances
- For a homogeneous Poisson point process of intensity λ , the nearest-neighour distance distribution (the G function) is known to be:

$$G(d) = 1 - \exp\{-\lambda \pi d^2\}$$

The F Function under CSR

- The F function is a function of empty space distances
- For a homogeneous Poisson point process of intensity λ , the empty space distance distribution (the F function)is known to be:

$$F(d) = 1 - \exp\{-\lambda \pi d^2\}$$

- Equivalent to the G function
- Intuitively, because points (events) of the Poisson process are independent of each other, the knowledge that a random point is a event of a point pattern does not affect any other event of the process

The K Function under CSR

- The K function is a function of pair-wise distances
- For a homogeneous Poisson point process of intensity λ , the pair-wise distance distribution (the K function) is known to be:

$$K(d) = \pi d^2$$

• A commonly-used transformation of K is the L-function:

$$L(d) = \sqrt{\frac{K(d)}{\pi}} = d$$

 because of random variability, we will never obtain perfect agreement between sample functions (say the K function) with theoretical functions (the theoretical K functions), even with a completely random pattern

Monte Carlo test

- A Monte Carlo test is a test based on simulations from the null hypothesis
- Basic procedures:
 - generate M independent simulations of CSR inside the study region A
 - compute the estimated K functions for each of these realisations, say $\hat{K}^{(j)}(r)$ for $j=1,\ldots,M$
 - obtain the pointwise upper and lower envelopes of these simulated curves
 - not a confidence interval

Recap

Statitsical analysis of spatial point patterns:

- allows to quantify departure of results obtained via exploratory tools, e.g., $\hat{G}(d)$, from expected such results derived under specific null hypotheses, here CSR hypothesis
- can be used to assess to what extent observed point patterns can be regarded as realizations from a particular spatial process (here CSR)
- Same concepts can be applied for hypothesis of other types of point processes (e.g., Poisson cluster process, Cox process)

Sampling distribution of a test statistics

- lies at the heart of any statistical hypothesis testing procedure, and is tied to a particular null hypothesis
- simulation and analytical derivations are two alternative ways of computing such sampling distributions (the latter being increasingly replaced by the former)

Edge Effects

Wolf pack example

• Nearest neighour distance (NN distance, G,F functions) vs K function

Edge effects

