

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10165180 A

(43) Date of publication of application: 23 . 06 . 98

(51) Int. CI

C12N 15/09 C07H 21/04 C12N 1/21 C12P 13/08

//(C12N 15/09 , C12R 1:15), (C12N 1/21 , C12R 1:15), (C12P 13/08

C12R 1:15)

(21) Application number: 08325658

(71) Applicant:

AJINOMOTO CO INC

(22) Date of filing: 05 . 12 . 96

(72) Inventor:

HAYAKAWA ATSUSHI SUGIMOTO MASAKAZU YOSHIHARA YASUHIKO **NAKAMATSU WATARU**

(54) PRODUCTION OF L-LYSINE

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a new DNA comprising aspartokinase gene free from feed back inhibition containing by L-lysine, etc., and diaminopimelic acid decarboxylase gene and improved in L-lysine-producing ability of a coryneform bacterium.

SOLUTION: This new recombinant DNA contains a DNA sequence coding aspartokinase, in which feed back inhibition is substantially released by L-lysine and

L-threonine and a DNA sequence coding diaminopimelic acid decarboxylase and can autonomously replicate in a coryneform bacterium cell. L-Lysine producing ability and growth rate can be improved by transducing the DNA into coryneform bacterium and L-lysine can efficiently be obtained by culturing the bacterium in a suitable culture medium. The recombinant DNA is obtained by connecting a DNA sequence coding a variant aspartokinase and a DNA sequence coding diaminopimelic acid decarboxylase to a vector DNA.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-165180

(43)公開日 平成10年(1998) 6月23日

(51) Int.Cl. ⁵	識別記号		F I			
C 1 2 N 15/09	ZNA		C12N 1	5/00	ZNAA	
C07H 21/04			C07H 2	21/04	В	
C 1 2 N 1/21			C 1 2 N	1/21		•
C 1 2 P 13/08			C12P 1	3/08	Α	
// (C12N 15/09	ZNA					
,, (2 2 2 2 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7		審査請求	未請求 請求項	質の数 9 OL	(全 38 頁)	最終頁に続く
(21)出願番号	特顏平8-325658		(71)出顧人	000000066 味の素株式会	社	
(22) 出願日	平成8年(1996)12月5日			東京都中央区	(京橋1丁目15	番1号
(22) 1-12(1-1			(72)発明者	早川 教		
				神奈川県川岬	6市川崎区鈴木	町1-1味の素
•				株式会社生産	能技術研究所内	
			(72)発明者	杉本 雅一		
				神奈川県川岬	商市川崎区鈴木	町1-1味の素
				株式会社生産	E技術研究所内	
			(72)発明者	吉原 康彦		
				神奈川県川崎	商市川崎区鈴木	町1-1味の素
				株式会社生産	在技術研究所内	
			(74)代理人	弁理士 - 遠山	山 勉 (外2)	名)
						最終頁に続く
			<u> </u>			

(54) 【発明の名称】 L-リジンの製造法

(57)【要約】

【課題】 コリネ型細菌のLーリジン生産能及び生育速度を改善する。

【解決手段】 ジアミノピメリン酸デカルボキシラーゼをコードするDNA配列、及びジアミノピメリン酸デヒドロゲナーゼをコードするDNA配列が増強されたコリネ型細菌を、好適な培地で培養し、該培養物中にLーリジンを生産蓄積せしめ、該培養物からLーリジンを採取する。

1

【特許請求の範囲】

【請求項1】 Lーリジン及びLースレオニンによるフィードバック阻害が実質的に解除されたアスパルトキナーゼをコードするDNA配列と、ジアミノピメリン酸デカルボキシラーゼをコードするDNA配列とを含み、コリネ型細菌細胞中で自律増殖可能な組換えDNA。

【請求項2】 前記Lーリジン及びLースレオニンによるフィードバック阻害が実質的に解除されたアスパルトキナーゼが、コリネ型細菌由来のアスパルトキナーゼであり、 α サブユニットではN末端から279番目のアラニン残基がアラニン以外かつ酸性アミノ酸以外のアミノ酸残基に、 β サブユニットでは30番目のアラニン残基がアラニン以外かつ酸性アミノ酸以外のアミノ酸残基に変化した変異型アスパルトキナーゼである請求項1記載の組換えDNA。

【請求項3】 ジアミノピメリン酸デカルボキシラーゼをコードするDNA配列が、配列表配列番号12に示すアミノ酸配列又はこれと実質的に同一のアミノ酸配列をコードする請求項1記載の組換えDNA。

【請求項4】 ホスホエノールピルビン酸カルボキシラーゼをコードするDNA配列をさらに含む請求項1記載の組換えDNA。

【請求項5】 Lーリジン及びLースレオニンによるフィードバック阻害が実質的に解除されたアスパルトキナーゼを保持し、ジアミノピメリン酸デカルボキシラーゼをコードするDNA配列が増強されたコリネ型細菌。

【請求項6】 請求項1記載の組換えDNAが導入されたことにより形質転換された請求項5記載のコリネ型細菌。

【請求項7】 さらに、ホスホエノールビルビン酸カルボキシラーゼをコードするDNA配列が増強された請求項5記載のコリネ型細菌。

【請求項8】 請求項4記載の組換えDNAが導入されたことにより形質転換された請求項7記載のコリネ型細菌。

【 間求項9 】 間求項6~8のいずれか一項に記載のコリネ型細菌を好適な培地で培養し、該培養物中にL-リジンを生成蓄積せしめ、該培養物からL-リジンを採取することを特徴とするL-リジンの製造法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、アミノ酸などの発酵生産に用いられているコリネ型細菌に遺伝子操作の手法を用いて改変を加え、該微生物を培養することによる L-リジンの製法に関する。

[0002]

【従来の技術】飼料添加物として用いられているL-リジンは通常、コリネ型細菌のL-リジン生産変異株を使って発酵法により生産されている。現在知られている種々のL-リジン生産菌はコリネ型細菌の野生株の人工変 50

異により作られている。一方、コリネ型細菌において、 菌体内で自律増殖可能でかつ、薬剤耐性マーカー遺伝子 を有するベクタープラスミド(米国特許第4514502号参 照)、遺伝子の菌体への導入方法(特開平2-207791号 等)が開示されており、これらの技術を用いたLースレ オニンまたはLーイソロイシン生産菌育成の可能性が開 示されている(米国特許第4452890号、及び米国特許第4 442208号参照)。また、Lーリジン生産菌育成に関して も、ベクタープラスミドにLーリジン生合成に関与する 遺伝子を組み込み、菌体内で増幅させる技術(特開昭56 -160997号などがある)が知られている。

【0003】Lーリジン生合成遺伝子としては、例えば、ジヒドロジピコリン酸レダクターゼ遺伝子 (特開平7-75578) やジアミノピメリン酸デヒドロゲナーゼ遺伝子 (Ishino, S. et al., Nucleic Acids Res., 15, 3917 (1987)) のように、Lーリジン生合成に関与する遺伝子をクローニングした例や、ホスホエノールピルビン酸カルボキシラーゼ遺伝子 (特開昭60-87788)、ジヒドロジピコリン酸シンターゼ遺伝子 (特公平6-55149)、ジアミノピメリン酸デカルボキシラーゼ遺伝子 (特開昭60-62994) のように、遺伝子の増幅がLーリジン生産性に影響を与える例が知られている。

【0004】また、Lーリジン生合成に関与する酵素のうち、野生型ではフィードバック阻害を受ける酵素について、フィードバック阻害が解除された変異を有する酵素遺伝子を導入してLーリジン生産性を向上させた例も知られている。このような遺伝子として具体的には、アスパルトキナーゼ遺伝子(W094/25605国際公開パンフレット)等が知られている。

30 【0005】上記のように、Lーリジン生合成遺伝子の増幅、あるいは変異遺伝子の導入によって、一定の成果が得られている。例えば、リジン及びスレオニンによる協奏阻害が解除された変異型アスパルトキナーゼ遺伝子を保持するコリネ型細菌は、Lーリジンを著量(約25g/L)生産する。但し、該細菌は、変異型アスパルトキナーゼ遺伝子を保持しない細菌と比較して生育速度が低下する。また、変異型アスパルトキナーゼ遺伝子に加え、さらにジヒドロジピコリン酸シンターゼ遺伝子を導入することによってLーリジン生産性が向上するとの報40 告(Applied and Environmental Microbiology 57(6), 1746-1752 (1991)) もある。但し、概細菌は、生育速度が一層低下する。

【0006】一方、L-リジン生合成遺伝子の増強により生育の改善が図られた例は報告されていない。また、コリネ型細菌においては、L-リジン生合成遺伝子を複数個組み合わせ、生育を抑制せずにL-リジン収率の大幅な改善に成功した例は知られていないのが現状である。

[0007]

【発明が解決しようとする課題】本発明は、上記観点か

らなされたものであり、コリネ型細菌においてL-リジン生合成遺伝子を複数個組み合わせて増強し、生育を抑制せずにL-リジン収率を改善することを課題とする。 微生物を用いた物質の発酵生産を行なう場合、投入した原料に対する目的物質の収率と並んで、生産速度は極めて重要な因子であり、設備当りの生産速度を上げることにより目的物質を大幅に安価に製造することが出来る。 そのため、発酵収率と生産速度を両立させることは工業的に極めて重要である。本発明は、コリネ型細菌を用いたL-リジンの発酵生産を行なうに当たり、以上の様な課題の解決方法を提示するものである。

[0008]

【課題を解決するための手段】本発明の要旨は、コリネ型細菌において、Lーリジン及びLースレオニンによる協奏阻害が実質的に解除されたアスパルトキナーゼをコードするDNA配列と、ジアミノピメリン酸デカルボキシラーゼをコードするDNA配列とを併せて増強することにより、これらを単独で増強した場合と比べ、生育が改善され、Lーリジン生産速度を向上させることができ、更にホスホエノールピルピン酸カルボキシラーゼをコードするDNA配列を増強することにより、Lーリジン生産速度を一層向上できることにある。

【0009】すなわち本発明は、Lーリジン及びLースレオニンによるフィードバック阻害が実質的に解除されたアスパルトキナーゼをコードするDNA配列、及びジアミノピメリン酸デカルボキシラーゼをコードするDNA配列を含み、コリネ型細菌細胞中で自律増殖可能な組換えDNAである。また、上記各DNA配列に加えてホスホエノールビルビン酸カルボキシラーゼをコードするDNA配列をさらに含む組換えDNAを提供する。

【0010】また、本発明は、L-リジン及びL-スレオニンによるフィードバック阻害が実質的に解除されたアスパルトキナーゼを保持し、さらにジアミノピメリン酸デカルボキシラーゼをコードするDNAが増強されたコリネ型細菌を提供する。さらに、このコリネ型細菌において、さらにホスホエノールピルビン酸カルボキシラーゼをコードするDNAが増強されたコリネ型細菌を提供する。

【0011】さらに本発明は、上記のいずれかのコリネ型細菌を好適な培地で培養し、該培養物中にLーリジンを生産蓄積せしめ、該培養物からLーリジンを採取することを特徴とするLーリジンの製造法を提供する。以下、アスパルトキナーゼを「AK」、AKをコードする遺伝子を「lysC」、Lーリジン及びLースレオニンによる協奏阻害が実質的に解除されたアスパルトキナーゼを「変異型AK」、変異型AKをコードする遺伝子を「変異型IysC」ともいう。また、ジアミノピメリン酸デカルボキシラーゼを「DDC」、DDCをコードする遺伝子を「ysa、ホスホエノールピルピン酸カルボキシラーゼを「PEPC」、PEPCをコードする遺伝子を「ppc」

ともいう。

【0012】尚、本発明においてコリネ型細菌とは、バージーズ・マニュアル・オブ・デターミネイティブ・バクテリオロジー(Bergey's Manual of Determinative B acteriology)第8版599頁(1974)に定義されている一群の微生物であり、好気性、グラム陽性、非抗酸性、胞子形成能を有しない桿菌であり、コリネバクテリウム属細菌、及び従来プレビバクテリウム属に分類されていたが現在コリネバクテリウム属菌として統合されたプレビバクテリウム属細菌、さらにコリネバクテリウム属細菌と非常に近縁なプレビバクテリウム属細菌を含む。

4

[0013]

【発明の実施の形態】以下、本発明を詳細に説明する。 <1>本発明に用いられるL-リジン生合成遺伝子の取 得

本発明に用いるLーリジン生合成遺伝子は、DNA供与体である細菌から染色体DNAを調製し、プラスミドベクター等を用いて染色体DNAライブラリーを作製し、このライブラリーから所望の遺伝子を保持する株を選択し、選択された株からその遺伝子が挿入された組換えDNAを回収することによって得られる。本発明に用いるLーリジン生合成遺伝子のDNA供与体としては、所望のLーリジン生合成遺伝子がコリネ型細菌細胞中で機能する酵素タンパク質を発現するものであれば、特に制限されないが、コリネ型細菌が好ましい。

【0014】コリネ型細菌由来のlysC、lysA及びppc遺伝子は、いずれも配列が知られているので、ポリメラーゼチェインリアクション法(PCR: polymerase chain reaction; White, T. J. et al: Trends Genet. 5, 185 (1989)参照)によって増幅することにより取得することができる。以下に、本発明に用いる各Lーリジン生合成遺伝子を取得する方法を例示する。

【0015】 (1) 変異型lysCの取得

変異型lysCを含むDNA断片は、AK活性に対するL-リジン及びレースレオニンによる相乗的なフィードバッ ク阻害が実質的に解除された変異株から調製することが できる(W094/25605国際公開パンフレット)。このよう な変異株は、例えば、コリネ型細菌野生株に、通常の変 異処理法、紫外線照射またはN-メチル-N'-ニトロ -N-ニトロソグアニジン (NTG) 等の変異剤処理を 施し、変異処理した細胞群の中から取得することができ る。AK活性の測定は、Miyajima,R et al;The Journal of Biochemistry(1968),63(2),139-148に記載される方 法を用いることができる。このような変異株として、ブ レビバクテリウム・ラクトファーメンタム (Brevibacte rium lactofermentum) 野生株ATCC13869株(現在の名称 は、コリネバクテリウム・グルタミカム(Corynebacteri um glutamicum)に変更されている) より変異処理により 誘導されたL-リジン生産菌AJ3445 (FERM P-1944) が 最も好ましいものとして挙げられる。

【0016】また、変異型lysCは、野生型lysCを含むプラスミドDNAをインビトロ変異処理することによっても得られる。さらに、AKのLーリジン及びLースレオニンによる相乗的なフィードバック阻害を解除する変異が具体的に知られている(W094/25605国際公開パンフレット)ので、この情報に基づいて部位特異的変異法等により、野生型lysCから調製することもできる。

【0017】コリネ型細菌からlysCを単離するには、例えば、斎藤、三浦の方法 (H. Saitoand K. Miura Bioche m. Biophys. Acta, 72,619,(1963)) 等により染色体DN Aを調製し、ポリメラーゼチェインリアクション法 (PCR: polymerase chain reaction; White, T. J. et al; Trends Genet. 5,185(1989)参照) により、lysCを増幅することによって行うことができる。

【0018】DNAプライマーとしては、例えば、コリネバクテリウム・グルタミカムにおいて既知となっている配列(Molecular Microbiology(1991),5(5),1197-1204, Mol. Gen. Genet. (1990)224,317-324参照)を基にして、lysCをコードする約1643bpの領域を増幅すべく、配列表配列番号1及び配列番号2に示す塩基配列を有する23mer及び21merの一本鎖DNAが挙げられる。DNAの合成はApplied Biosystems社製DNA合成機 model 380Bを使用し、ホスホアミダイト法を用いて(Tetrahedron Letters(1981),22,1859参照)常法に従って合成できる。PCR反応は、宝酒造(株)製DNAサーマルサイクラーPJ2000型を用い、TaqDNAポリメラーゼを用い、供給者により指定された方法に従って行うことができる。

【0019】PCR法により増幅された1ysCは、E. coli及び/又はコリネ型細菌の細胞内において自律複製可能なベクターDNAに接続して組換えDNAを開製し、これをE. coli細胞に導入しておくと、後の操作がしやすくなる。E. coli細胞内において自律複製可能なベクターとしては、プラスミドベクターが好ましく、宿主の細胞内で自立複製可能なものが好ましく、例えば pUC19、pUC18、pBR322、pHSG299、pHSG399、pHSG398、RSF1010等が挙げられる。

【0020】また、これらのベクターにコリネ型細菌中でプラスミドを自律複製可能にする能力をもつDNA断片を挿入すると、E. coli及びコリネ型細菌の両方で自律複製可能ないわゆるシャトルベクターとして使用することができる。このようなシャトルベクターとしては、以下のものが挙げられる。尚、それぞれのベクターを保持する微生物及び国際寄託機関の寄託番号をかっこ内に示した。

[0021]

pHC4 エジェリヒア・コリAJ12617 (FERM BP-3532)
pAJ655 エジェリヒア・コリAJ11882 (FERM BP-136)
コリネハ・クテリウム・ク・ルクミカムSR8201 (ATCC39135)
pAJ1844 エジェリヒア・コリAJ11883 (FERM BP-137)
コリネハ・クテリウム・ク・ルクミカムSR8202 (ATCC39136)

pAJ3148 コリネハ・クテリウム・ク・ルタミカムSR8203 (ATCC39137)

6

pAJ440 ^ fnx · x ' J ' ffxAJ11901 (FERM BP-140)

【0022】これらのベクターは、寄託機生物から次のようにして得られる。対数増殖期に集められた細胞をリゾチーム及びSDSを用いて容菌し、30000×gで遠心分離して容解物から得た上澄液にポリエチレングリコールを添加し、セシウムクロライドーエチジウムプロマイド平衡密度勾配遠心分離により分別精製する。

10 【0023】E. coliにプラスミドを導入して形質転換するには D. M. Morrisonの方法 (Methods in Enzymolog y, 68, 326, 1979) あるいは受容菌細胞を塩化カルシウムで処理してDNAの透過性を増す方法 (Mandel, M. and Higa, A., J. Mol., Biol., 53, 159(1970)) 等により行うことができる。上記のようにしてAK野生株からlysCを単離すれば野生型lysCが得られ、AK変異株からlysCを単離すれば変異型lysCが得られる。

【0024】野生型lysCを含むDNA断片の塩基配列の一例を、配列表配列番号3に示す。この塩基配列より推定される野生型AKタンパク質の α サプユニットのアミノ酸配列をDNA配列と同時に配列表の配列番号4に、アミノ酸配列のみを配列番号5に示す。また、DNA塩基配列より推定される野生型AKタンパク質の β サプユニットのアミノ酸配列をDNAと同時に配列表の配列番号6に、アミノ酸配列のみを配列番号7に示す。尚、各サプユニットとも、開始コドンにGTGが用いられており、対応するアミノ酸をメチオニンと表記しているが、これは、メチオニン、バリン、またはフォルミルメチオニンを表すものである。

30 【0025】本発明に用いる変異型lysCとしては、L-リジン及びL-スレオニンによる相乗的なフィードバック阻害が解除されたAKをコードするものであれば特に制限されないが、野生型AKのアミノ酸配列において、αサプユニットではN末端から279番目のアラニン残基に、βサプユニットでは30番目のアラニン残基に、βサプユニットでは30番目のアラニン残基に、βサプユニットでは30番目のアラニン残基に変化する変異が挙げられる。ここで、野生型AKのアミノ酸配列としては、具体的にはαサプユニットでは配列表配列表配列番号5に示すアミノ酸配列が、βサプユニットでは配列表配列表配列番号7に示すアミノ酸配列が挙げられる。

【0026】また、上記のアラニン以外かつ酸性アミノ酸以外のアミノ酸残基として好ましいものは、スレオニン残基、アルギニン残基、システイン残基、フェニルアラニン残基、プロリン残基、セリン残基、チロシン残基及びバリン残基が挙げられる。尚、置換されるアミノ酸残基に対応するコドンは、そのアミノ酸残基をコードするものであれば種類は特に問わない。また、菌種や菌株の違いにより保持する野生型AKのアミノ酸配列がわずかに相異するものがあると予想される。このような酵素

50

の活性に関与しない1又は2以上の位置での1又は2以 上のアミノ酸残基の置換、欠失あるいは挿入等による変 異を有するAKも本発明に使用することができる。この ような自然変異を有するAKをコードするDNAは、A Kを保持する微生物細胞から、例えば配列表の配列番号 3に記載の塩基配列の少なくとも一部を有するDNAと ストリンジェントな条件下でハイブリダイズするDNA を単離することによって、取得され得る。ここでいう 「ストリンジェントな条件」とは、いわゆる特異的なハ イブリッドが形成され、非特異的なハイブリッドが形成 されない条件をいう。この条件を明確に数値化すること は困難であるが、一例を示せば、相同性が高いDNA同 士、例えば90%以上の相同性を有するDNA同士がハ イブリダイズし、それより相同性が低いDNA同士がハ イブリダイズしない条件、あるいは温度が完全にマッチ したハイブリッドのTm~ (Tm-30) ℃、好ましく はTm~ (Tm-20) ℃の範囲で、かつ1×SSC、 好ましくは0.1×SSCに相当する塩濃度でハイブリ ダイズする条件が挙げられる。

【0027】さらに、AK活性、及びL-リジン及びL - スレオニンによる相乗的なフィードバック阻害の解除 に実質的に影響のない限り、他の1又は2以上のアミノ 酸の置換、欠失あるいは挿入等による人工変異を有する AKも使用できる。このような人工変異を有するAKを コードするlysCは、例えば部位特異的変異法によって、 特定の部位のアミノ酸が置換、欠失、あるいは挿入され るように塩基配列を改変することによって得られる。ま た、このような変異を有するlysCは、従来知られている 突然変異処理によっても取得され得る。突然変異処理と しては、lysCを含むDNAをヒドロキシルアミン等でイ ンビトロ処理する方法、及びlysCを含むDNAを保持す る微生物を、紫外線照射またはN-メチル-N'-ニトロ -N-ニトロソグアニジン (NTG) もしくは亜硝酸等の通 常人工突然変異に用いられている変異剤によって処理す る方法が挙げられる。変異処理した後、変異処理された DNA又は変異処理された微生物から、これらがコード し又は産生するAKがAK活性を保持し、かつ、AKの アミノ酸配列が変異したものを選択することによって、 変異を導入することができる位置、又は変異が生じた位 置を決定することができる。導入される変異の位置は、 AK活性及びフィードバック阻害の解除に実質的に影響 のない限り、特に制限されない。また、導入される変異 の数は、タンパク質の立体構造における変異されるアミ ノ酸の位置や種類によっても異なり、AK活性及びフィ ードバック阻害の解除に実質的に影響のない限り、特に 制限されないが、通常、 $1\sim20個$ 、好ましくは $1\sim1$ 0個である。

【0028】プレビバクテリウム・ラクトファーメンタム野生型株であるAJ12036株 (FERMBP-734) に変異型lys Cプラスミドp399AK9Bを導入した株AJ12691は、1992 年4月10日に通商産業省工業技術院生命工学工業技術研究所(郵便番号305日本国茨城県つくば市東一丁目1番3号)に受託番号FERM P-12918として寄託され、1995年2月10日にブダペスト条約に基づく国際寄託に移管され、FERMBP-4999の受託番号で寄託されている。

8

【0029】 (2) lysAの取得

lysAを含むDNA断片は、コリネ型細菌染色体からPCR により調製することができる。DNA供与菌としては特 に制限されないが、プレビバクテリウム・ラクトファー メンタムATCC13869株が挙げられる。コリネ型細菌にお いては、lysAはargS(アルギニルーtRNAシンターゼ遺伝 子)とともにオペロンを形成しており、argSの下流にly sAが存在している。lysAの発現は、argSの上流にあるプ ロモーターによって調節を受ける (Journal of Bacteri ology Nov., 7356-7362 (1993)参照)。これらの遺伝子 の塩基配列は、コリネバクテリウム・グルタミカムにお いて既知であり (Molecular Microbiology 4(11), 1819 -1830 (1990), Molecular and General Genetics 212, 112-119 (1988)参照)、これを基にしてPCR用DNAプライ マーを調製することができる。このようなDNAプライマ ーとして具体的には、配列表の配列番号8(Molecular Microbiology 4(11), 1819-1830 (1990)に記載されてい る塩基配列において塩基番号11~33に相当する)及 び配列番号9 (Molecular and General Genetics 212, 112-119 (1988)に記載の塩基配列において塩基番号13 70~1392に相当する) に示す塩基配列を有する各 々23merのDNAが挙げられる。DNAの合成、PCR反 応、得られたlysAを含むプラスミドの調製等は、前記の lysCの場合と同様にして行うことができる。

【0030】後記実施例では、lysAを増強するために、 プロモーター、argS及びlysAを含むDNA断片を用いた が、argSは本発明に必須ではなく、lysAがプロモーター の直下に連結されたDNA断片を用いてもよい。argS及 びlysAを含むDNA断片の塩基配列及びこの配列がコー ドすると予想されるアミノ酸配列の一例を配列番号10 に示す。また、argSがコードするアミノ酸配列の一例を 配列番号11に、lysAがコードするアミノ酸配列の一例 を配列番号12に示す。本発明には、このアミノ酸配列 をコードするDNA断片の他、配列番号12に示すアミ ノ酸配列と実質的に同一のアミノ酸配列、すなわちDD C活性に実質的に影響がない限り、1又は2以上の位置 での1又は2以上のアミノ酸の置換、欠失あるいは挿入 等による変異を有するアミノ酸配列をコードするDNA 断片も同様に使用できる。このような自然変異又は人工 変異を有するlysAは、前配のAK活性、及びL-リジン 及びL-スレオニンによる相乗的なフィードバック阻害 の解除に実質的に影響のない変異を有するAKをコード するDNAと同様にして取得することができる。

【0031】 (3) ppcの取得

10 *に、PEPCのコード領域の上流に適当なプロモーター を連結したものを使用することもできる。このようなプ ロモーターとしては、lysCのプロモーター、E. coli由 来のtacプロモーター、trcプロモーター等が挙げられ 細菌

ppcを含むDNA断片は、コリネ型細菌染色体からPCRに より調製することができる。DNA供与菌としては特に 制限されないが、プレビバクテリウム・ラクトファーメ ンタムATCC13869株が挙げられる。ppc遺伝子は、コリネ バクテリウム グルタミカムにおいて既知であり (O'Re gan, M., et al., Gene, 77, 237-251 (1989)) 、これ を基にしてPCR用プライマーを調製することができる。 このようなDNAプライマーとして具体的には、配列表の 配列番号13及び14に記載の塩基配列を有する各々23. merのDNAが挙げられる。DNAの合成、PCR反応、得 10 られたppcを含むプラスミドの調製等は、前記のlysCの 場合と同様にして行うことができる。

【0034】<2>本発明の組換えDNA及びコリネ型

【0032】ppcを含むDNA断片の塩基配列及びこの 配列から予想されるアミノ酸配列を配列番号15に示 す。また、アミノ酸配列のみを配列番号16に示す。本 発明には、このアミノ酸配列をコードするDNA断片の 他、配列番号16に示すアミノ酸配列と実質的に同一の アミノ酸配列、すなわちPEPC活性に実質的に影響が ない限り、1又は2以上の位置での1又は2以上のアミ ノ酸の置換、欠失あるいは挿入等による変異を有するア ミノ酸配列をコードするDNA断片も同様に使用でき る。このような自然変異又は人工変異を有するppcは、 前記のAK活性、及びL-リジン及びL-スレオニンに よる相乗的なフィードバック阻害の解除に実質的に影響 のない変異を有するAKをコードするDNAと同様にし て取得することができる。

本発明の組換えDNAは、Lーリジン及びLースレオニ ンによるフィードバック阻害が実質的に解除されたアス パルトキナーゼをコードするDNA配列、及びジアミノ ピメリン酸デカルボキシラーゼをコードするDNA配列 を含み、コリネ型細菌細胞中で自律増殖可能な組換えD NAである。本発明のDNAの好ましい態様は、上記各 DNA配列に加えてホスホエノールピルビン酸カルボキ シラーゼをコードするDNA配列をさらに含む組換えD NAである。

【0033】コリネ型細菌由来のppcは、gap (グリセル アルデヒドー3-リン酸デヒドロゲナーゼ遺伝子)、pg k(ホスホグリセリン酸キナーゼ遺伝子)、及びtpi(ト リオースリン酸イソメラーゼ遺伝子)とともにオペロン 30 を形成しており、tpiの下流にppcが存在している。ppc の発現は、pgkの上流にあるプロモーターによって調節 を受ける (Schwinde, J.W. et al., J. Bacteriol., 17 5(12), 3905-3908 (1993)参照)。したがって、前記lys Aと同様に、ppcをpgk、tpiとともにPCRにより増幅 し、プロモーター、pgk、tpi及びppcを含むDNA断片 を用いることができる。また、後記実施例に示すよう *

【0035】また、本発明のコリネ型細菌は、Lーリジ ン及びL-スレオニンによるフィードバック阻害が実質 的に解除されたアスパルトキナーゼ(変異型AK)を保 持し、ジアミノピメリン酸デカルボキシラーゼをコード するDNA配列(lysA)が増強されたものである。本発 明のコリネ型細菌として好ましい態様は、さらに、ホス ホエノールピルビン酸カルボキシラーゼをコードするD NA配列 (ppc) が増強されたコリネ型細菌である。こ こでDNAの「増強」とは、遺伝子のコピー数を高くす る、プロモーターを強力なものを使用する、比活性の高 い酵素をコードする遺伝子を使用する、あるいはこれら を組み合わせるなどして、そのDNAによりコードされ る酵素の細胞中の活性を髙くすることをいう。

【0036】変異型AKを保持するコリネ型細菌として は、突然変異によって変異型アスパルトキナーゼを産生 するようになったものでもよく、また、変異型lysCを導 入することによって形質転換されたものでもよい。 上記 DNAを導入するコリネ型細菌の例としては、例えば次 のようなLーリジン生産性野生株が挙げられる。

[0037]

コリネバクテリウム・アセトアシドフィルム ATCC13870 コリネバクテリウム・アセトグルタミクム ATCC15806 コリネバクテリウム・カルナエ ATCC15991 コリネバクテリウム・グルタミクム ATCC13032 (プレビバクテリウム・ディバリカタム) ATCC14020 (プレビバクテリウム・ラクトファーメンタム) ATCC13869 (コリネバクテリウム・リリウム) ATCC15990 (プレビバクテリウム・フラバム) ATCC14067 コリネバクテリウム・メラセコーラ ATCC17965 プレビバクテリウム・サッカロリティクム ATCC14066 プレビバクテリウム・インマリオフィルム ATCC14068 プレビバクテリウム・ロゼウム ATCC13825 プレビバクテリウム・チオゲニタ リ50 ATCC19240

30

ミクロバクテリウム・アンモニアフィラム コリネバクテリウム・サーモアミノゲネス

ATCC15354

AJ12340 (FERM BP-1539)

【0038】また、上記菌株以外にも、これらの菌株か ら誘導されたL-リジン生産能を有する変異株等も、宿 主として利用できる。この様な人工変異株としては次の 様なものがある。S-(2-アミノエチル)-システイ ン(以下、「AEC」と略記する)耐性変異株(例えば、 プレビバクテリウム・ラクトファーメンタムAJ11082 (N RRL B-11470)、特公昭56-1914号、特公昭56-1915号、 特公昭57-14157号、特公昭57-14158号、特公昭57-30474 号、特公昭58-10075号、特公昭59-4993号、特公昭61-35 840号、特公昭62-24074号、特公昭62-36673号、特公平5 -11958号、特公平7-112437号、特公平7-112438号参 照)、その成長にLーホモセリン等のアミノ酸を必要と する変異株(特公昭48-28078号、特公昭56-6499号)、A ECに耐性を示し、更にL-ロイシン、L-ホモセリン、 Lープロリン、Lーセリン、Lーアルギニン、Lーアラ ニン、Lーバリン等のアミノ酸を要求する変異株(米国 特許第3708395号及び第3825472号)、DLーαーアミノ - ε-カプロラクタム、α-アミノーラウリルラクタ ム、アスパラギン酸ーアナログ、スルファ剤、キノイ ド、N-ラウロイルロイシンに耐性を示すL-リジン生 産変異株、オキザロ酢酸脱炭酸酵素(デカルボキシラー ゼ) または呼吸系酵素阻害剤の耐性を示すL-リジン生 産変異株(特開昭50-53588号、特開昭50-31093号、特開 昭52-102498号、特開昭53-9394号、特開昭53-86089号、 特開昭55-9783号、特開昭55-9759号、特開昭56-32995 号、特開昭56-39778号、特公昭53-43591号、特公昭53-1 833号)、イノシトールまたは酢酸を要求するL-リジ ン生産変異株(特開昭55-9784号、特開昭56-8692号)、 フルオロピルビン酸または34℃以上の温度に対して感受 性を示すL-リジン生産変異株(特開昭55-9783号、特 開昭53-86090号)、エチレングリコールに耐性を示し、 L-リジンを生産するプレビバクテリウム属またはコリ ネバクテリウム属の生産変異株(米国特許第4411997 号)。

【0039】上記のような宿主においてLーリジン生合成遺伝子を増強するには、具体的な例としては、これらの遺伝子をプラスミドベクター、トランスポソン、ファージベクター等を用いて宿主に導入する。その際、低コピー型のベクターを用いてもある程度の増強は期待できるが、マルチコピー型のベクターを用いることが好ましい。そのようなベクターとして、上記pAJ655、pAJ1844、pAJ611、pAJ3148及びpAJ440等のプラスミドベクターが挙げられる。また、コリネ型細菌由来のトランスポソンは、W002/02627国際公開パンフレット、W093/18151国際公開パンフレット、欧州特許公開0445385号、特開平6-46867号、Vertes, A. A. et al., Mol. Microbiol., 11, 739-746 (1994)、Bonamy, C., et al., Mol. Microbiol., 14,571-581 (1994)、Vertes, A. A. et al., Mo

1. Gen. Genet., 245, 397-405 (1994)、Jagar, ₩. et al., FEMS Microbiology Letters, 126, 1-6 (1995)、特開平7-107976号、特開平7-327680号等に記載されている。

12

【0040】尚、本発明において、変異型lysCは必ずしも増強されている必要はなく、前記したように染色体DNA上のlysCに変異を有するもの、あるいは変異型lysCが染色体DNAに組み込まれたものでもよいが、プラスミドベクターを用いて導入されても差し支えない。一方、lysA及びppcは、効率よくLーリジンを生産させるためには増強されていることが好ましい。

【0041】lysC、lysA及びppcの各遺伝子の導入は、それぞれ別個のベクターを用いて宿主に順次導入してもよく、単一のベクターを用いて2種類又は3種類の遺伝子を共に導入してもよい。別個のベクターを用いる場合には、遺伝子の導入の順序は問わないが、宿主での安定な分配保持機構を有し、互いに共存可能なベクターを用いることが好ましい。

【0042】変異型AKを保持し、さらにlysAが増強されたコリネ型細菌は、例えば、変異型lysC、及びlysAを含み、コリネ型細菌細胞中で自律増殖可能な組換えDNAを宿主コリネ型細菌に導入することによって、得られる。また、変異型lysC及びlysAに加え、さらに、ppcが増強されたコリネ型細菌は、例えば、変異型lysC、lysA及びppcを含み、コリネ型細菌細胞中で自律増殖可能な組換えDNAを宿主コリネ型細菌に導入することによって、得られる。また、変異型lysC、lysA及びppcが増強されたコリネ型細菌は、変異型lysC及びlysAが増強されたコリネ型細菌に、ppcを含みコリネ型細菌細胞中で自律増殖可能な組換えDNAを導入することによっても得られる。

【0043】上記のような組換えDNAは、例えば、プラスミドベクター、トランスポゾン、ファージベクター 等のベクターに、Lーリジン生合成遺伝子の各々を挿入することによって得られる。

【0044】宿主への組換えDNAの導入の方法は、プラスミドの場合、電気パルス法(杉本ら、特開平2-207791号公報)によって行うことができる。トランスポソンを用いた遺伝子の増幅は、プラスミドにトランスポソンを搭載させて細胞内に導入し、トランスポソンの転位を誘導することにより行なうことができる。

【0045】<3>L-リジンの製造法

上記のようにしてLーリジン生合成遺伝子が増強されたコリネ型細菌を好適な培地で培養し、該培養物中にLーリジンを生産蓄積せしめ、該培養物からLーリジンを採取することにより、Lーリジンを効率よく製造することができる。使用する培地としては、炭素源、窒素源、無機イオン及び必要に応じその他の有機成分を含有する通

常の培地が挙げられる。

【0046】炭素源としては、グルコース、フラクトー ス、シュクロース、糖蜜やでんぷんの加水分解物などの 糖類、フマール酸、クエン酸、コハク酸等の有機酸類を 用いることができる。窒素源としては、硫酸アンモニウ ム、塩化アンモニウム、リン酸アンモニウム等の無機ア ンモニウム塩、大豆加水分解物などの有機窒素、アンモ ニアガス、アンモニア水等を用いることができる。

【0047】有機微量栄養源としては、ビタミンB1、 Lーホモセリンなどの要求物質または酵母エキス等を適 **量含有させることが望ましい。これらの他に、必要に応** じてリン酸カリウム、硫酸マグネシウム、鉄イオン、マ ンガンイオン等が少量添加される。培養は好気的条件下 で30~90時間実施するのがよく、培養温度は25℃~3 7℃に、培養中pHは5~8に制御することが好まし い。尚、pH調整には無機あるいは有機の酸性あるいは アルカリ性物質、更にアンモニアガス等を使用すること ができる。培養物からのL-リジンの採取は通常のイオ ン交換樹脂法、沈澱法その他の公知の方法を組み合わせ ることにより実施できる。

[0048]

【実施例】以下に、本発明を実施例によりさらに具体的 に説明する。

【実施例1】 プレビバクテリウム・ラクトファーメン タム野生型lysC遺伝子の取得

【0049】<1>野生型及び変異型lysCの取得、及び それらを含有するプラスミドの作製

プレピバクテリウム・ラクトファーメンタムATCC13869 株、及びATCC13869株より変異処理により得られたL-リジン生産性変異株AJ3445(FERM P-1944)を染色体D NAの供与体として用いた。AJ3445株は、変異によりly sCがリジン及びスレオニンによる協奏阻害が実質的に解 除されている (Journal of Biochemistry68, 701-710 (1970)) 。

【0050】染色体DNAよりPCR法(polymerase chain r eaction; White, T. J. et al; Trends Genet. 5, 185(198 9)参照)により1ysCを含むDNA断片を増幅した。増幅 に用いたDNAプライマーはコリネバクテリウム・グルタ ミカムにおいて既知となっている配列(Molecular Micr obiology(1991)5(5),1197-1204, Mol. Gen. Genet. (1990) 224, 317-324参照)を基にしてlysCをコードする約1643b pの領域を増幅すべく、配列番号1及び配列番号2に示 す塩基配列を有する23mer及び21merの一本鎖DNAを合 成した。DNAの合成はApplied Biosystems社製DNA 合成機 model 380Bを使用し、ホスホアミダイト法を用 いて (Tetrahedron Letters(1981), 22, 1859参照) 常法 に従って合成した。

【0051】PCR反応は、宝酒造(株)製DNAサーマ ルサイクラー PJ2000型を用い、TaqDNAポリメラーゼを 用い、供給者により指定された方法に従って遺伝子増幅 50

を行なった。増幅された1643kbの遺伝子断片をアガロー スゲル電気泳動により確認した後、ゲルより切り出した 該断片を常法により精製し、制限酵素NruI(宝酒造 (株) 製)及びEcoRI (宝酒造(株)製)にて切断し た。

14

【0052】遺伝子断片のクローン化用ベクターにはpH SG399 (Takeshita, S et al:Gene(1987),61,63-74参 照)を用いた。pHSG399を制限酵素SmaI(宝酒造(株) 製)及び制限酵素EcoRIにて切断し、増幅されたlysC断 片と接続した。DNAの接続はDNAライゲーションキ ット(宝酒造(株)製)を用い、指定された方法にて行 なった。この様にしてpHSG399にプレビバクテリウム・ ラクトファーメンタム染色体より増幅されたlysC断片が 接続されたプラスミドを作製した。野生株であるATCC13 869株由来の1ysCを有するプラスミドをp399AKY、L-リ ジン生産菌であるAJ3463由来のlysCを有するプラスミド をp399AK9と命名した。

【0053】p399AKYおよびp399AK9に、それぞれコリネ バクテリウム属細菌中でプラスミドを自律複製可能にす る能力をもつDNA断片(以下「Brevi.-ori」と記す) を導入し、コリネバクテリウム属細菌中で自律複製可能 なlysCを搭載したプラスミドを作製した。Brevi.-ori は、これを含み、エシェリヒア・コリと、コリネバクテ リウム属細菌の双方の菌体中で自律複製可能なプラスミ ドベクターpHK4から調製した。pHK4は、pHC4をKpnI(宝 . 酒造(株)製)及びBamHI(宝酒造(株)製)で切断 し、Brevi.-ori断片を抽出し、同じくKpnI及びBamHIに て切断したpHSG298に接続することによって構築される (特開平5-7491号公報参照)。pHK4は、宿主にカナマイ 30 シン耐性を付与する。尚、pHK4を保持するエシェリヒア ・コリHB101は、エシェリヒア・コリ AJ13136と命名さ れ、1995年8月1日に、通商産業省工業技術院生命 工学工業技術研究所(郵便番号305 日本国茨城県つ くば市東一丁目1番3号)に受託番号FERM BP-5186とし て寄託されている。

【0054】pHK4を、制限酵素KpnI及びBamHIにて切断 し、切断面を平滑末端化した。平滑末端化はDNA Blunti ng kit(宝酒造(株)製)を用い、指定された方法にて 行なった。平滑末端化後、リン酸化済みBamHIリンカー (宝酒造(株)製)を接続し、pHK4よりBrevi.-ori部分 のDNA断片をBamHIのみによる切断によって切り出される 様改変した。このプラスミドをBamHIにより切断し、生 じたBrevi.-ori DNA断片を同じくBamHIにて切断した p399AKY、p399AK9に接続し、コリネバクテリウム属細菌 中で自律複製可能でかつlysC遺伝子を含むプラスミドを 作製した。

【0055】p399AKY由来の野生型lysC遺伝子を含むブ ラスミドをp399AKYBと命名し、p399AK9由来の変異型1ys C遺伝子を含むプラスミドをp399AK9Bと命名した。p399A K9B、p399AKYB構築の過程を図1に示す。プレビバクテ

30

40

リウム・ラクトファーメンタム野生株であるAJ12036株 (FERM BP-734) に変異型lysCプラスミドp399AK9Bを導入した株AJ12691は、1992年4月10日に通商産業省工業技術院生命工学工業技術研究所 (郵便番号305日本国茨城県つくば市東一丁目1番3号) に受託番号F (ERM P-12918として寄託され、1995年2月10日にプダペスト条約に基づく国際寄託に移管され、FERM BP-4999の受託番号で寄託されている。

【0056】<22>プレビバクテリウム・ラクトファーメンタムの野生型1ysC及び変異型1ysCの塩基配列の決定 10 野生型1ysCを含むプラスミドp399AKY及び変異型1ysCを含むプラ スミドp399AK9を各々の形質転換体から調製し、野生型及び変異型1ysCの塩基配列の決定を行なった。塩基配列の決定はサンガーらの方法 (F. Sanger et al: Proc. Natl. Acad. Sci. 74, 5463 (1977) などがある) によった。

【0057】p399AKYにコードされている野生型1ysCの塩基配列を配列表の配列番号3に示す。一方、p399AK9にコードされている変異型1ysCの塩基配列は野生型1ysCと比べ、配列番号3において1051番目のGがAに変化しているという1塩基の変異のみを有していた。コリネバクテリウム・グルタミカムの1ysCは、同一のDNA鎖に α 、 β の2本のサブユニットが同一のリーディングフレームでコードされていることが知られているが(Kalinowski, Jet al:Molecular Microbiology (1991) 5(5), 1197-1204参照)、相同性から判断して本遺伝子も同一のDNA鎖に α 、 β の2本のサブユニットが同一のリーディングフレームでコードされていると考えられる。

【0058】DNA塩基配列より推定される野生型AKタンパク質のαサブユニットのアミノ酸配列をDNA配列と同時に配列表の配列番号4に、アミノ酸配列のみを配列番号5に示す。また、DNA塩基配列より推定される野生型AKタンパク質のβサブユニットのアミノ酸配列をDNAと同時に配列表の配列番号6に、アミノ酸配列のみを配列番号7に示す。尚、各サブユニットとも、開始コドンにGTGが用いられており、対応するアミノ酸をメチオニンと表記しているが、これは、メチオニン、バリン、またはフォルミルメチオニンを表すものである。

【0059】一方、変異型lysC配列上の変異は、野生型 AKタンパク質のアミノ酸配列(配列番号5、7)において、αサブユニットでは279番目のアラニン残基がスレオニン残基に、βサブユニットでは30番目のアラニン残基がスレオニン残基にというアミノ酸残基置換を起こしていることを意味する。

[0060]

【実施例2】 プレビバクテリウム・ラクトファーメンタムlysAの取得

<1>lysAの取得及びそれを含有するプラスミドの作製 プレビバクテリウム・ラクトファーメンタム野生株ATCC 50

13869株を染色体DNAの供与体として用いた。ATCC138 69株より常法に従い、染色体DNAを調製した。染色体DNA よりPCRにより、argS、lysA及びこれらを含むオペロン のプロモーターを含むDNA断片を増幅した。 増幅に用 いたDNAプライマーとしては、コリネバクテリウム・グ ルタミカムにおいて既知となっている配列(Molecular Microbiology 4(11), 1819-1830 (1990), Molecular an d General Genetics 212, 112-119 (1988)参照) を基に してアルギニルーtRNAシンターゼ及びDDCをコードす る約3.6kbの領域を増幅すべく、配列表の配列番号8及 び9に記載の塩基配列を有する各々23merの合成DNA を用いた。DNAの合成及びPCR反応は、実施例1と同 様にして行った。増幅された3579bpの遺伝子断片 のクローン化用のベクターにはpHSG399を用いた。pHSG3 99を制限酵素SmaI(宝酒造(株)製)にて切断し、増幅さ れたlysAを含むDNA断片と接続した。この様にして取 得したATCC13869由来のlysAを有するプラスミドをp399L YSAと命名した。

16

【0061】更に、p399LYSAをKpnI (宝酒造(株)製) と BamHI (宝酒造(株)製) で切断することにより、lysAを 含むDNA断片を抽出した。このDNA断片を、pHSG29 9をKpnIとBamHIで切断したものと連結した。得られたプ ラスミドをp299LYSAと命名した。p299LYSA構築の過程を 図2示す。得られたp299LYSAにBrevi.-oriを導入し、コ リネ型細菌中で自律複製可能なlysAを搭載したプラスミ ドを作製した。pHK4を制限酵素KpnI及びBamHIで切断 し、切断面を平滑末端化した。平滑末端化はDNA Blunti ng kit(宝酒造(株)製)を用い、指定された方法にて 行なった。平滑末端化後、リン酸化済みKpnIリンカー (宝酒造(株) 製)を接続し、pHK4よりBrevi.-ori部分 のDNA断片をKpnIのみによる切断によって切り出される 様改変した。このプラスミドをKpnIにより切断し、生じ たBrevi.-oriDNA断片を同じくKpnIにて切断したp299LYS Aに接続し、コリネ型細菌中で自律複製可能でかつlysA を含むプラスミドを作製した。作製したプラスミドをpL YSABと命名した。pLYSAB構築の過程を図3に示す。

【0062】<2>プレビバクテリウム・ラクトファー メンタムlysAの塩基配列の決定

p299LYSAのプラスミドDNAを調製し、実施例1と同様にして塩基配列の決定を行なった。決定した塩基配列及びこの配列がコードすると予想されるアミノ酸配列を配列番号10に示す。また、この塩基配列のうち、argSがコードするアミノ酸配列及びlysAがコードするアミノ酸配列を、各々配列番号11及び12に示す。

[0063]

【実施例3】 プレビバクテリウム・ラクトファーメン タムppcの取得

<1>ppcの取得

プレビバクテリウム・ラクトファーメンタム野生株ATCC 13869株を染色体DNAの供与体として用いた。ATCC138 69株より常法に従い、染色体DNAを調製した。染色体DNA よりPCRにより、ppcをDNA断片を増幅した。増幅に用 いたDNAプライマーとしては、コリネバクテリウム・グ ルタミカムにおいて既知となっている配列 (O'Regan, M., et al., Gene, 77, 237-251 (1989)) を基にしてP EPCをコードする約3.3kbの領域を増幅すべく、配列

10

【0064】増幅された約3300bpの遺伝子断片をアガロースゲル電気泳動により確認した後、ゲルより切り出した該断片を常法により精製し、制限酵素SalI(宝酒造(株)製)にて切断した。ppc遺伝子のクローン化用ベクターにはpHSG399を用いた。pHSG399を制限酵素SalI(宝酒造(株)製)にて切断し、増幅されたppcを含むDNA断片と接続した。この様にして取得したATCC13869由来のppcを有するプラスミドpPCFを得た。

表の配列番号13及び14に記載の塩基配列を有する各々23merの合成DNAを用いた。DNAの合成及びPCR反

応は、実施例1と同様にして行った。

【0065】<2>ppc遺伝子とlysCプロモーターとの 連結

上記のようにして得られたpPCFを制限酵素DraI (宝酒造 (株)製) で切断し、PEPC構造遺伝子の上流約150 b pのDNA断片を削除した後、自己連結して、プラスミドpPCFdsを得た。さらに、pPCFdsを制限酵素SalI (宝酒造(株)製) で切断し、切断面を平滑末端化した。平滑末端化はDNA Blunting kit (宝酒造(株)製) を用い、指定された方法にて行なった。

【0066】一方、実施例1で得た野生型lysC遺伝子を含むプラスミドp399AKYBを制限酵素ApaLI及びPstI(いずれも宝酒造(株)製)で切断し、前記と同様にして切断面を平滑末端化した。得られる2つのDNA断片のうち短い方の断片は、Brevi.-oriとlysCのプロモーター部分を含んでいる。このDNA断片と上記のpPCFdsをSalIで切断後平滑末端化した断片とを、DNAライゲーションキット(宝酒造(株)製)を用いて連結した。

【0067】ライゲーション反応液中のDNAを、ブレビバクテリウム・ラクトファーメンタムATCC13869に電気パルス法(杉本ら、特開平2-207791号公報)にて導入した。形質転換体の選択は、クロラムフェニコール5μg/m1を含む完全培地にて行なった。形質転換体よりプラスミドDNAを回収し、EcoRIで切断し、1ysCプロモーターとppc構造遺伝子が順方向に連結したプラスミドを取得した。このプラスミドをpAKPFdsと命名した。pAKPFds構築の過程を図4に示す。以下、この1ysCプロモーターが連結したppcを、「野生型高発現型ppc」という。

【 0 0 6 8 】 < 3 > 野生型高発現型ppcのベクターへの 挿入

上記で得られた野生型高発現型ppcを、Brevi.-ori以外のコリネ型細菌細胞中で自律増殖可能な複製開始点を有するベクターに挿入するために、PCR法によって増幅し

18

た。プライマーには、コリネバクテリウム・グルタミカムにおいて既知となっているlysCの塩基配列 (Molecula r Microbiology (1991) 5(5), 1197-1204, Mol. Gen. Genet. (1990) 224, 317-324参照) を基にして合成したlysCプロモーター部分に対応するオリゴヌクレオチド (配列番号17)、及びコリネバクテリウム・グルタミカムにおいて既知となっているppcの配列 (O'Regan, M., et al., Gene, 77, 237-251 (1989)) を基にして合成したppc部分に対応するオリゴヌクレオチド (配列番号18) を用いた。これらのプライマーは、野生型高発現型ppcを含む約3150bpの断片を増幅することができ、増幅されたDNA断片の末端を制限酵素KpnIによって切断できるように設計されている。DNAの合成及びPCR反応は、実施例1と同様にして行った。

【0069】野生型高発現型ppcをコリネ型細菌型細菌 に導入するためのベクターには、新規に構築したコリネ 型細菌用クローニングベクターpVK7を用いた。pVK7は、 以下のようにして、E. coli用ベクターであるpHSG299 (Km^r; Takeshita, S. et al., Gene, 61, 63-74, (198 7)参照) にプレビバクテリウム・ラクトファーメンタム のクリプティックプラスミドであるpAM330を結合するこ とによて構築した。pHSG299を一箇所切断酵素であるAva II (宝酒造(株)製)にて切断し、T4DNAポリメラ ーゼにて平滑末端化したのち、HindIII(宝酒造(株) 製) にて切断し、T4DNAポリメラーゼにて平滑末端 化したpAM330と接続した。pHSG299に対するpAM330の挿 入方向により、生成した2種類のプラスミドをpVK6、pV K7と命名し、pVK7を以下の実験に用いた。pVK7は、E. c oli及びプレビバクテリウム・ラクトファーメンタムの 細胞中で自律複製可能であり、かつ、pHSG299由来のマ ルチプルクローニングサイトとlacZ'を保持している。 pVK6及びpVK7の構築の過程を図5に示す。

【0070】前記のPCRによって増幅された野生型高発現型ppcを含む約3150bpの断片を、アガロースゲル電気泳動により確認した後、ゲルより切り出した該断片を常法により精製し、制限酵素KpnI(宝酒造(株)製)にて切断した。このDNA断片を、制限酵素KpnIにて切断したpVK7と接続した。このプラスミドをpPwmと命名した。pPwm構築の過程を図6に示す。

40 [0071]

50

【実施例4】 変異型1ysC及び1ysAを併せ持つプラスミドの作製変異型1ysC及びBrevi. -oriを有するプラスミドp399AK9Bと、1ysAを有するプラスミドp299LYSAより、変異型1ysC、1ysAおよびコリネ型細菌の複製起点を有するプラスミドを作製した。p299LYSAを制限酵素BamHI(宝酒造(株)製)とKpnI(宝酒造(株)製)で切断した後、平滑末端化した。平滑末端化はDNA Blunting kit(宝酒造(株)製)を用い、指定された方法にて行なった。このDNA断片を、p399AK9BをSalIで切断した後平滑末端化したものと接続した。こうして、変異型1ysC及び1ysAを

30

20

有し、コリネ型細菌中で自律増殖可能なプラスミドを作製し、pCLと命名した。pCLの作製過程を図7に示す。 【0072】

【比較例1】 ブレビバクテリウム・ラクトファーメン タムdapA、dapB、ddhの取得

lysC、lysA及びppc以外のL-リジン生合成遺伝子として、dapA (ジヒドロジピコリン酸シンターゼ遺伝子)、dapB (ジヒドロジピコリン酸レダクターゼ遺伝子)、ddh (ジアミノピメリン酸デヒドロゲナーゼ遺伝子)を、以下のようにして取得した。

【0073】<1>プレビバクテリウム・ラクトファー メンタムdapAの取得及びそれを含有するプラスミドの作 製

プレビバクテリウム・ラクトファーメンタム野生株ATCC 13869株を染色体DNAの供与体として用いた。ATCC138 69株より常法に従い、染色体DNAを調製した。染色体DNA よりPCRによりdapAを含むDNA断片を増幅した。増幅 に用いたDNAプライマーはコリネバクテリウム・グルタ ミカムにおいて既知となっている配列 (Nucleic Acids Research 18(21), 6421 (1990), EMBL accession No. X5 3993参照) を基にしてDDPSをコードする約1.5kbの 領域を増幅すべく、配列表の配列番号19及び20に記 載の塩基配列を有する各々23merのDNAを合成した。 DNAの合成及びPCR反応は、実施例1と同様にして行 った。増幅された1411bpの遺伝子断片のクローン 化用のベクターにはpCR1000 (Invitrogen社製; Bio/Tec hnology 9, 657-663 (1991)参照) を用い、増幅したdap A断片と接続した。DNAの接続はDNAライゲーションキッ ト(宝酒造(株)製)を用い、指定された方法にて行な った。この様にしてpCR1000にプレビバクテリウム・ラ クトファーメンタム染色体より増幅されたdapA断片14 11 b p の接続されたプラスミドを作製した。この様に して取得したATCC13869由来のdapAを有するプラスミド をpCRDAPAと命名した。

【0074】E. coliJM109株にpCRDAPAを導入して得ら れた形質転換株AJ13106株は、1995年5月26日よ り通商産業省工業技術院生命工学工業技術研究所(郵便 番号305 日本国茨城県つくば市東一丁目1番3号) に受託番号FERM BP-5113の受託番号で、ブダペスト条約 に基づき国際寄託されている。作製したpCRDAPAにBrev i.-oriを導入し、コリネ型細菌中で自律複製可能なdapA を搭載したプラスミドを作製した。pHK4を制限酵素KpnI 及びBamHI(宝酒造(株)製)にて切断し、切断面を平 滑末端化した。平滑末端化はDNA Blunting kit (宝酒造 (株) 製)を用い、指定された方法にて行なった。平滑 末端化後、リン酸化済みSmaIリンカー(宝酒造(株) 製)を接続し、pHK4よりBrevi.-ori部分のDNA断片をSma Iのみによる切断によって切り出される様改変した。こ のプラスミドをSmaIにより切断し、生じたBrevi.-oriDN A断片を同じくSmaIにて切断したpCRDAPAに接続し、コリ 50 ネ型細菌中で自律増殖可能でかつdapAを含むプラスミドを作製した。このプラスミドをpDPSBと命名した。pDPSB (Km') の構築過程を図8に示す。

【0075】<2>ブレビバクテリウム・ラクトファーメンタムdapBの取得及びそれを含有するプラスミドの作製

プレビバクテリウム・ラクトファーメンタム野生株ATCC 13869株を染色体DNAの供与体として用いた。ATCC138 69株より常法に従い、染色体DNAを調製した。染色体DNA よりPCRによりdapBを含むDNA断片を増幅した。増幅 に用いたDNAプライマーはブレビバクテリウム・ラクト ファーメンタムにおいて既知となっている配列(Journa 1 of Bacteriology 175(9), 2743-2749 (1993)参照)を 基にしてDDPRをコードする約2.0kbの領域を増幅す べく、配列表の配列番号21及び22に記載の塩基配列 を有する各々23merのDNA断片を合成した。DNAの 合成及びPCR反応は、実施例1と同様にして行った。増 幅された2001bpの遺伝子断片のクローン化用ベク ターにはpCR-Script (Invitrogen社製)を用い、増幅し たdapB断片と接続した。この様にしてpCR-Scriptにプレ ビバクテリウム・ラクトファーメンタム染色体より増幅 されたdapB断片2001bpの接続されたプラスミドを 作製した。この様にして取得したATCC13869由来のdapB を有するプラスミドをpCRDAPBと命名した。E. coliJM10 9株にpCRDAPBを導入して得られた形質転換株AJ13107株 は、1995年5月26日より通商産業省工業技術院生 命工学工業技術研究所(郵便番号305 日本国茨城県 つくば市東一丁目1番3号) に受託番号FERM BP-5114の 受託番号で、ブダペスト条約に基づき国際審託されてい る。

【0076】更に、pCRDAPBをEcoRVとSphIで切断する事により、DDPRの構造遺伝子を含む1101bpの断片を抽出した。この断片を、pHSG399をHincIIおよびSphIにて切断したものと連結したプラスミドを作成した。この作成したプラスミドをp399DPRと命名した。

【0077】作製したp399DPRにBrevi.-oriを導入し、コリネ型細菌中で自律複製可能なdapBを搭載したプラスミドを作製した。pHK4を制限酵素KpnI(宝酒造(株)製)にて切断し、切断面を平滑末端化した。平滑末端化はDNA Blunting kit(宝酒造(株)製)を用い、指定された方法にて行なった。平滑末端化後、リン酸化済みBamHIリンカー(宝酒造(株)製)を接続し、pHK4よりBrevi.-ori部分のDNA断片をBamHIのみによる切断によって切り出される様改変した。このプラスミドをBamHIにより切断し、生じたBrevi.-oriDNA断片を同じくBamHIにて切断したp399DPRに接続し、コリネ型細菌中で自律増殖可能でかつdapBを含むプラスミドを作製した。作製したプラスミドをpDPRBと命名した。pDPRB構築の過程を図9に示す。

【0078】<3>プレビバクテリウム・ラクトファー

20

30

メンタムddhの取得及びそれを含有するプラスミドの作 製

ddh遺伝子は、コリネバクテリウム グルタミカム (Corynebacterium glutamicum) のddh遺伝子の既知のヌクレオチド配列 (Ishino, S. et al., Nucleic Acids Res., 15, 3917 (1987)) をもとに作成した2種のオリゴヌクレオチドプライマー (配列番号23、24) を用いたPCR法により、プレビバクテリウム ラクトファーメンタム ATCC13869 の染色体DNAからddh遺伝子を増幅することによって得た。得られた増幅DNA断片をEcoT22 IとAvaIで切断し、末端を平滑化した後、pMW119のSmaI 部位に挿入し、プラスミドpDDHを得た。

【0079】次に、pDDHをSallとEcoRIにて切断し、平 滑末端化した後、得られた断片をSmaIで切断したpUC18 と連結した。こうして得られたプラスミドをpUC18DDHと 命名した。pUC18DDHにBrevi.-oriを導入し、コリネ型細 菌中で自律複製可能なddhを搭載したプラスミドを作製 した。pHK4を制限酵素KpnI及びBamHIで切断し、切断面 を平滑末端化した。平滑末端化はDNA Blunting kit (宝 酒造(株)製)を用い、指定された方法にて行なった。 平滑末端化後、リン酸化済みPstIリンカー(宝酒造 (株) 製)を接続し、pHSG299のPstI部位に挿入した。 このようにして作製したプラスミドをpPK4と命名した。 次に、pUC18DDHをXbaIとKpnIで切断し、生じたddh断片 をKpnIとXbaIで切断したpPK4に接続した。このようにし て、コリネ型細菌中で自律複製可能で、かつ、ddhを含 むプラスミドを作製し、このプラスミドをpPK4Dと命名 した。pPK4D構築の過程を図10に示す。

[0080]

【比較例2】 変異型lysCと、dapA、dapB又はddhとを併せ持つプラスミドの作製

< 1 >変異型lysC及びdapAを併せ持つプラスミドの作製 dapAを有するプラスミドpCRDAPAと変異型lysC及びBrev i.-oriを有するプラスミドp399AK9Bより、変異型lysC、 dapAおよびコリネ型細菌の複製起点を有するプラスミド を作製した。p399AK9BをSallにて完全分解した後、平滑 末端化し、EcoRIリンカーを接続する事によりSalI部位 をEcoRI部位に改変したプラスミドを作製した。得られ たプラスミドをp399AK9BSEと命名した。p399AK9BSEをEc oRIにて部分分解することよって変異型lysCとBrevi. - o riを一つのフラグメントとして切り出した。このフラグ メントをpCRDAPAをEcoRIにて切断したものと連結した。 得られたプラスミドをpCRCABと命名した。このプラスミ ドはE. coliとコリネ型細菌中で自律増殖可能で、かつ 宿主にカナマイシン耐性を付与し、変異型lysCとdapAを 併せ保持しているプラスミドである。pCRCABの作製過程 を図11に示す。

【0081】<2>変異型lysC及びdapBを併せ持つプラスミドの作製

変異型1ysCを有するプラスミドp399AK9とdapBを有する

プラスミドp399DPRより、変異型lysC、dapBを含むプラスミドを作製した。p399DPRをEcoRVとSphIで切断することにより、DDPRの構造遺伝子を含む1101bpの断片を抽出した。この断片を、p399AK9をSalIで切断した後平滑末端化し、更にSphIにて切断したものと結合し、変

22

異型lysCとdapBを併せ持つプラスミドを作製した。この プラスミドをp399AKDDPRと命名した。

【0082】次に、得られたp399AKDPRにBrevi.-oriを導入した。Brevi.-oriを含むプラスミドpHK4を制限酵素 KpnI (宝酒造 (株) 製) にて切断し、切断面を平滑末端 化した。平滑末端化はDNA Blunting kit (宝酒造 (株) 製)を用い、指定された方法にて行なった。平滑末端化後、リン酸化済みBamHIリンカー(宝酒造 (株) 製)を接続し、pHK4よりBrevi.-ori部分のDNA断片をBamHIのみによる切断によって切り出される様改変した。このプラスミドをBamHIにより切断し、生じたBrevi.-oriDNA断片を同じくBamHIにて切断したp399AKDDPRに接続し、コリネ型細菌中で自律増殖可能でかつ変異型lysCおよびdapBを含むプラスミドを作製し、pCBと命名した。pCBの構築の過程を図12に示す。

【 0 0 8 3 】 < 3 > 変異型lysC及びddhを併せ持つプラ スミドの作製

ddhを含むプラスミドpUC18DDHと変異型lysC及びBrevi.oriを有するプラスミドp399AK9Bより、変異型lysC、ddh およびコリネ型細菌の複製起点を有するプラスミドを作 製した。pUC18DDHを制限酵素EcoRI(宝酒造(株)製) にて切断し、平滑末端化し、この末端にSallポリリンカ ーを接続し、EcoRI部位をSalI部位に改変した。このプラスミドをSalIで切断し、ddhを含むDNA断片を取得 した。

【0084】次に、p399AK9Bを制限酵素SalIで切断し、 上記ddhを含むDNA断片と接続した。こうして、変異型lysC、ddh及びBrevi.-oriを有し、コリネ型細菌中で 自律増殖可能なプラスミドを作製し、pCDと命名した。p CDの構築の過程を図13に示す。

[0085]

【実施例5】 L-リジン生合成遺伝子を含むプラスミドのプレビバクテリウム・ラクトファーメンタムL-リジン生産菌への導入

40 上記のようにして作製されたLーリジン生合成遺伝子を有するプラスミドp399AK9B (Cm²)、pLYSAB (Cm²)、pP wm (Km²)、pCRCAB (Km²)、pCB (Cm²)、pCD (Cm²)、pCL (Cm²)をプレビバクテリウム・ラクトファーメンタムLーリジン生産菌であるAJ11082 (NRRL B-11470) に導入した。AJ11082株は、AEC耐性の性質を有する。プラスミドの導入の方法は、電気パルス法 (杉本ら、特開平2-207791号公報)によった。形質転換体の選択は各々のプラスミドが持つ薬剤耐性マーカーによった。クロラムフェニコール耐性遺伝子を有するプラスミドを導入した場合は5μg/mlのクロラ

ムフェニコールを含む完全培地にて、また、カナマイシ ン耐性遺伝子を有するプラスミドを導入した場合には2 5 μg/mlのカナマイシンを含む完全培地にて形質転換体 の選択を行なった。

【0086】得られた形質転換体のうち、変異型lysC及 びlysAが増強された株 (AJ11082/pCL) にpPwm (Km') を 導入して、変異型lysC、lysA及びppcの3者が増強され た株 (AJ11082/pCL/pPwm) を得た。形質転換体の選択 は、 $5 \mu g/ml$ のクロラムフェニコールと $25 \mu g/ml$ のカ ナマイシンを含む完全培地にて行なった。

[0087]

【実施例6】 レーリジンの製造

実施例5で取得した各形質転換体を L-リジン生産培地 にて培養し、そのLーリジン生産能を評価した。Lーリ ジン生産培地の組成は以下に示す通りである。

【0088】 [L-リジン生産培地] 炭酸カルシウム以 外の下記成分(1 L中)を溶解し、KOHでpH8.0 に調製し、115℃で15分殺菌した後、別に乾熱殺菌 した炭酸カルシウムを50g加える。

* [0089]

グルコース 100 g (NH₄) 2SO₄ 55 g KH₂PO₄ 1 g MgSO4.7H2O 1 g ピオチン $500 \mu g$ チアミン 2000 μg FeSO. 7H2O 0.01 g MnSO. 7H2O 0.01 g 10 ニコチンアミド 5 mg

蛋白質加水分解物(豆濃) 30 ml 炭酸カルシウム

【0090】上記組成の培地に各種形質転換体及び親株 を植菌し、31.5℃にて往復振盪培養を行った。培養40 時間、72時間後のL-リジン生成量を表に示す。表 中、lysCは変異型lysCを表す。

24

[0091]

【表1】

表1 培養時間40、72時間後のレーリジン蓄積

		L-リジン生産:	量(g/L)
菌株/プラスミド	導入遺伝子	40時間後	72時間後
AJ11082		22. 0	29. 8
AJ11082/p399AK9B	lys C *	16.8	34. 5
AJ11082/pLYSAB	lysA	19.8	32. 5
AJ11082/pPwm	ррс	20. 7	28. 9
AJ11082/pCRCAB	lysC*, dapA	19. 7	36. 5
AJ11082/pCB	lysC, dapB	23. 3	35. 0
AJ11082/pCD	lysC*, ddh	15. 0	27. 0
AJ11082/pCL	lysC, lysA	24. 0	44. 0
AJ11082/pCL/pPwm	lysC, lysA, ppc	25. 0	45. 2

【0092】以上に示すように、変異型lysC、lysA又は ppcを単独で増強した場合、及び変異型1ysCと、dapA又 はddhのいずれかとを組み合わせて増強した場合には、 培養72時間後にはL-リジン生産量は親株よりも多い か同程度であるが、40時間後では親株よりも生産量が 少なく、すなわち短期間培養におけるL-リジン生産速 40 度は低下した。特に、変異型lysCとddhとを組み合わせ て増強した場合には、培養40時間後、72時間後とも に親株よりもレーリジン生産量が低下した。これに対 し、変異型lysCとともにdapBを増強した株では、生育が 改善され、短期間培養におけるL-リジン生産速度を回 復させることができ、長期間培養でのL-リジン蓄積量 も増加した。

【0093】一方、lysCとlysAを組み合わせて増強し た場合には、短期間培養におけるL-リジン生産速度が 親株に比べて向上した上、長期間培養でのL-リジン蓄 50 アンチセンス:NO

積量も飛躍的に向上した。さらに、変異型lysC、lysA及 Uppcの3者が増強された株では、L-リジン生産性が 一層向上された。

[0094]

【発明の効果】本発明により、コリネ型細菌のL-リジ ン生産量及びレーリジン生産速度を向上させることがで きる。

[0095]

【配列表】

配列番号:1 配列の長さ:23 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

*

23

21

25

TCGCGAAGTA GCACCTGTCA CTT

*トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

アンチセンス:YES

配列の型:核酸

鎖の数:一本鎖

配列の長さ:1643

配列の型:核酸

配列の長さ:21

【0096】配列番号:2

【0097】配列番号:3

ACGGAATTCA ATCTTACGGC C

※配列の種類: Genomic DNA

起源

生物名: プレピパクテリウム・ラクトファーメンタム(Brevibacterium la

26

10 ctofermentum) Ж 株名: ATCC 13869

鎖の数:二本鎖 トポロジー:直鎖状

配列

TCGCGAAGTA GCACCTGTCA CTTTTGTCTC AAATATTAAA TCGAATATCA ATATACGGTC 60 TGTTTATTGG AACGCATCCC AGTGGCTGAG ACGCATCCGC TAAAGCCCCA GGAACCCTGT 120 GCAGAAAGAA AACACTCCTC TGGCTAGGTA GACACAGTTT ATAAAGGTAG AGTTGAGCGG 180 GTAACTGTCA GCACGTAGAT CGAAAGGTGC ACAAAGGTGG CCCTGGTCGT ACAGAAATAT 240 GGCGGTTCCT CGCTTGAGAG TGCGGAACGC ATTAGAAACG TCGCTGAACG GATCGTTGCC 300 ACCAAGAAGG CTGGAAATGA TGTCGTGGTT GTCTGCTCCG CAATGGGAGA CACCACGGAT 360 GAACTTCTAG AACTTGCAGC GGCAGTGAAT CCCGTTCCGC CAGCTCGTGA AATGGATATG 420 CTCCTGACTG CTGGTGAGCG TATTTCTAAC GCTCTCGTCG CCATGGCTAT TGAGTCCCTT 480 GGCGCAGAAG CTCAATCTTT CACTGGCTCT CAGGCTGGTG TGCTCACCAC CGAGCGCCAC 540 GGAAACGCAC GCATTGTTGA CGTCACACCG GGTCGTGTGC GTGAAGCACT CGATGAGGGC 600 AAGATCTGCA TTGTTGCTGG TTTTCAGGGT GTTAATAAAG AAACCCGCGA TGTCACCACG 660 TTGGGTCGTG GTGGTTCTGA CACCACTGCA GTTGCGTTGG CAGCTGCTTT GAACGCTGAT 720 GTGTGTGAGA TTTACTCGGA CGTTGACGGT GTGTATACCG CTGACCCGCG CATCGTTCCT 780 AATGCACAGA AGCTGGAAAA GCTCAGCTTC GAAGAAATGC TGGAACTTGC TGCTGTTGGC 840 TCCAAGATTT TGGTGCTGCG CAGTGTTGAA TACGCTCGTG CATTCAATGT GCCACTTCGC 900 GTACGCTCGT CTTATAGTAA TGATCCCGGC ACTTTGATTG CCGGCTCTAT GGAGGATATT 960 CCTGTGGAAG AAGCAGTCCT TACCGGTGTC GCAACCGACA AGTCCGAAGC CAAAGTAACC 1020 GTTCTGGGTA TTTCCGATAA GCCAGGCGAG GCTGCCAAGG TTTTCCGTGC GTTGGCTGAT 1080 GCAGAAATCA ACATTGACAT GGTTCTGCAG AACGTCTCCT CTGTGGAAGA CGGCACCACC 1140 GACATCACGT TCACCTGCCC TCGCGCTGAC GGACGCCGTG CGATGGAGAT CTTGAAGAAG 1200 CTTCAGGTTC AGGGCAACTG GACCAATGTG CTTTACGACG ACCAGGTCGG CAAAGTCTCC 1260 CTCGTGGGTG CTGGCATGAA GTCTCACCCA GGTGTTACCG CAGAGTTCAT GGAAGCTCTG 1320 CGCGATGTCA ACGTGAACAT CGAATTGATT TCCACCTCTG AGATCCGCAT TTCCGTGCTG 1380 ATCCGTGAAG ATGATCTGGA TGCTGCTGCA CGTGCATTGC ATGAGCAGTT CCAGCTGGGC 1440 GGCGAAGACG AAGCCGTCGT TTATGCAGGC ACCGGACGCT AAAGTTTTAA AGGAGTAGTT 1500 TTACAATGAC CACCATCGCA GTTGTTGGTG CAACCGGCCA GGTCGGCCAG GTTATGCGCA 1560 CCCTTTTGGA AGAGCGCAAT TTCCCAGCTG ACACTGTTCG TTTCTTTGCT TCCCCGCGTT 1620 CCGCAGGCCG TAAGATTGAA TTC 1643

【0098】配列番号:4

配列の長さ:1643 配列の型:核酸 鎖の数:二本鎖

トポロジー:直鎖状 配列の種類:GenomicDNA

起源

★生物名: プレピパクテリウム・ラクトファーメンタム(Brevibacterium la

ctofermentum)

株名: ATCC 13869

配列の特徴

特徴を表わす記号: CDS 存在位置:217..1482

配列

TCGCGAAGTA GCACCTGTCA CTTTTGTCTC AAATATTAAA TCGAATATCA ATATACGGTC 60 TGTTTATTGG AACGCATCCC AGTGGCTGAG ADGCATCCGC TAAAGCCCCCA GGAACCCTGT 120

								``	,							130.3 (-
CCA	C A A A	27	A A C A	ር ፕርር	ጥሮ ጥ	СССТ	· & C C T	A CA	CACA	ሶ ጥጥጥ	4 T A	AACC	TAC	A CTT	28	100
												AAGG CTG			GAGCG(; 180 234
GIA	ACIG	ICA	GUAL	GIAG	AI C	UAAA	UUU	C AC	MAAG			_	-	-		234
										met 1		Leu	191	va1 5		
ΔΔΔ	ТАТ	ccc	ССТ	ተ ተ	TCC	ር ተተ	CAG	ACT	ccc			ATT	ACA			282
									_			Ile			_	202
2,5	.,.	01)	10		501	Dou	014	15		010		. 110	20		101	
GCT	GAA	CGG			GCC	ACC	AAG			GGA	AAT	GAT			GTT	330
									_			Asp		•		
		25					30			-		35				
GTC	TGC	TCC	GCA	ATG	GGA	GAC	ACC	ACG	GAT	GAA	CTT	CTA	GAA	CTT	GCA	378
Val	Cys	Ser	Ala	Met	Gly	Asp	Thr	Thr	Asp	Glu	Leu	Leu	Glu	Leu	Ala	
	40					45					50					
GCG	GCA	GTG	AAT	CCC	GTT	CCG	CCA	GCT	CGT	GAA	ATG	GAT	ATG	CTC	CTG	426
Ala	Ala	Val	Asn	Pro	Val	Pro	Pro	Ala	Arg	Glu	Met	Asp	Met	Leu	Leu	
55					60					65					70	
ACT	GCT	GGT	GAG	CGT	ATT	TCT	AAC	GCT	CTC	GTC	GCC	ATG	GCT	ATT	GAG	474
Thr	Ala	Gly	Glu	Arg	Ile	Ser	Asn	Ala	Leu	Val	Ala	Met	Ala	Ile	Glu	
				75					80					85		
												CAG				522
Ser	Leu	Gly			Ala	Gln	Ser		Thr	Gly	Ser	Gln		-	Val	
	4.00	400	90					95	222		Amm		100		000	
												GAC				570
Leu	ınr		Glu	Arg	HIS	Gly		Ala	Arg	116	vaı	Asp	vaı	inr	Pro	
_ር ርተ	ርረጥ	105	CCT	C 4 4	CCA	CTC	110	CAC	ccc	AAC	ATC	115 TGC	ልጥጥ	ሶ ፕፕ	CCT	618
												Cys				010
GIY	120	101	vr R	Ulu	ита	125	лор	OIU	Oly	Lys	130		116	141	N10	
GGT		CAG	GGT	GTT	ААТ		GAA	ACC	CGC	GAT		ACC	ACG	TTG	GGT	666
												Thr				
135			•		140	•			Ū	145					150	
CGT	GGT	GGT	TCT	GAC	ACC	ACT	GCA	GTT	GCG	TTG	GCA	GCT	GCT	TTG	AAC	714
Arg	Gly	Gly	Ser	Asp	Thr	Thr	Ala	Val	Ala	Leu	Ala	Ala	Ala	Leu	Asn	
				155					160					165		
GCT	GAT	GTG	TGT	GAG	ATT	TAC	TCG	GAC	GTT	GAC	GGT	GTG	TAT	ACC	GCT	762
Ala	Asp	Val	Cys	Glu	Ile	Tyr	Ser	Asp	Val	Asp	Gly	Val	Tyr	Thr	Ala	
			170					175					180			
GAC	CCG	CGC	ATC	GTT	CCT	AAT	GCA	CAG	AAG	CTG	GAA	AAG	CTC	AGC	TTC	810
Asp	Pro	Arg	Ile	Val	Pro	Asn		Gln	Lys	Leu	Glu	Lys	Leu	Ser	Phe	
		185					190					195				
												ATT				858
Glu		Met	Leu	Glu	Leu		Ala	Val	Gly	Ser		Ile	Leu	Val	Leu	
000	200	O.T.		T40	o o m	205	001	mr.c		070	210	Certr	000	OT. 4	~~	000
												CTT		_		906
	ser	181	GIU	ıyr		Arg	¥19	rne	ASN	225	rro	Leu	Arg	val	Arg 230	
215 TCC	ፓ/ ጥ	ፐልጥ	ΔСΤ	ΔΑΤ	220 CAT	œ٠	ርርር	۸СТ	ጉ ሞር		ርረጉ	GGC	ፐርፕ	'ATC		954
												Gly				704
201	JUI	. , 1	561	235	цор		U1,		240	116	*****	913	501	245	JIU	
^ A T	4 TT	CCT	CTC			CCA	OTC.	(MEII)		CCT	CTC	CCA	ACC		AAC	1002

```
Asp Ile Pro Val Glu Glu Ala Val Leu Thr Gly Val Ala Thr Asp Lys
                                                 255
                  TCC GAA GCC AAA GTA ACC GTT CTG GGT ATT TCC GAT AAG CCA GGC GAG
                                                                                     1050
                  Ser Glu Ala Lys Val Thr Val Leu Gly Ile Ser Asp Lys Pro Gly Glu
                                              270
                          265
                  GCT GCC AAG GTT TTC CGT GCG TTG GCT GAT GCA GAA ATC AAC ATT GAC
                                                                                     1098
                  Ala Ala Lys Val Phe Arg Ala Leu Ala Asp Ala Glu Ile Asn Ile Asp
                      280
                                          285
                  ATG GTT CTG CAG AAC GTC TCC TCT GTG GAA GAC GGC ACC ACC GAC ATC
                                                                                     1146
                  Met Val Leu Gln Asn Val Ser Ser Val Glu Asp Gly Thr Thr Asp Ile
                                                         305
                                      300
                  295
                  ACG TTC ACC TGC CCT CGC GCT GAC GGA CGC CGT GCG ATG GAG ATC TTG
                                                                                     1194
                  Thr Phe Thr Cys Pro Arg Ala Asp Gly Arg Arg Ala Met Glu Ile Leu
                                                     320
                                  315
                  AAG AAG CTT CAG GTT CAG GGC AAC TGG ACC AAT GTG CTT TAC GAC GAC
                                                                                     1242
                  Lys Lys Leu Gln Val Gln Gly Asn Trp Thr Asn Val Leu Tyr Asp Asp
                                                 335
                  CAG GTC GGC AAA GTC TCC CTC GTG GGT GCT GGC ATG AAG TCT CAC CCA
                                                                                     1290
                  Gln Val Gly Lys Val Ser Leu Val Gly Ala Gly Met Lys Ser His Pro
                                             350
                  GGT GTT ACC GCA GAG TTC ATG GAA GCT CTG CGC GAT GTC AAC GTG AAC
                                                                                     1338
                  Gly Val Thr Ala Glu Phe Met Glu Ala Leu Arg Asp Val Asn Val Asn
                                          365
                  ATC GAA TTG ATT TCC ACC TCT GAG ATC CGC ATT TCC GTG CTG ATC CGT
                                                                                     1386
                  Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg Ile Ser Val Leu Ile Arg
                                      380
                                                         385
                  GAA GAT GAT CTG GAT GCT GCA CGT GCA TTG CAT GAG CAG TTC CAG
                                                                                     1434
                  Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala Leu His Glu Gln Phe Gln
                                                     400
                  CTG GGC GGC GAA GAC GAA GCC GTC GTT TAT GCA GGC ACC GGA CGC TAA
                                                                                     1482
                  Leu Gly Gly Glu Asp Glu Ala Val Val Tyr Ala Gly Thr Gly Arg
                  AGTTTTAAAG GAGTAGTTTT ACAATGACCA CCATCGCAGT TGTTGGTGCA ACCGGCCAGG
                                                                                     1542
                  TCGGCCAGGT TATGCGCACC CTTTTGGAAG AGCGCAATTT CCCAGCTGAC ACTGTTCGTT
                                                                                     1602
                  TCTTTGCTTC CCCGCGTTCC GCAGGCCGTA AGATTGAATT C
                                                                                     1643
【0099】配列番号:5
                                                     *トポロジー:直鎖状
                                                       配列の種類:タンパク質
配列の長さ:421
配列の型:アミノ酸
                  配列
                  Met Ala Leu Val Val Gln Lys Tyr Gly Gly Ser Ser Leu Glu Ser Ala
                                                     10
                   1
                  Glu Arg Ile Arg Asn Val Ala Glu Arg Ile Val Ala Thr Lys Lys Ala
                                                  25
                  Gly Asn Asp Val Val Val Cys Ser Ala Met Gly Asp Thr Thr Asp
                                              40
                  Glu Leu Leu Glu Leu Ala Ala Ala Val Asn Pro Val Pro Pro Ala Arg
                                          55
                  Glu Met Asp Met Leu Leu Thr Ala Gly Glu Arg Ile Ser Asn Ala Leu
                                      70
                  Val Ala Met Ala Ile Glu Ser Leu GEO Ala Glu Ala Gln Ser Phe Thr
```

32 85 90 Gly Ser Gln Ala Gly Val Leu Thr Thr Glu Arg His Gly Asn Ala Arg 100 105 Ile Val Asp Val Thr Pro Gly Arg Val Arg Glu Ala Leu Asp Glu Gly 120 125 Lys Ile Cys Ile Val Ala Gly Phe Gln Gly Val Asn Lys Glu Thr Arg 135 Asp Val Thr Thr Leu Gly Arg Gly Gly Ser Asp Thr Thr Ala Val Ala 150 Leu Ala Ala Leu Asn Ala Asp Val Cys Glu Ile Tyr Ser Asp Val 170 Asp Gly Val Tyr Thr Ala Asp Pro Arg Ile Val Pro Asn Ala Gln Lys 185 Leu Glu Lys Leu Ser Phe Glu Glu Met Leu Glu Leu Ala Ala Val Gly 200 Ser Lys Ile Leu Val Leu Arg Ser Val Glu Tyr Ala Arg Ala Phe Asn 215 Val Pro Leu Arg Val Arg Ser Ser Tyr Ser Asn Asp Pro Gly Thr Leu 225 230 Ile Ala Gly Ser Met Glu Asp Ile Pro Val Glu Glu Ala Val Leu Thr 245 250 Gly Val Ala Thr Asp Lys Ser Glu Ala Lys Val Thr Val Leu Gly Ile 265 Ser Asp Lys Pro Gly Glu Ala Ala Lys Val Phe Arg Ala Leu Ala Asp 280 Ala Glu Ile Asn Ile Asp Met Val Leu Gln Asn Val Ser Ser Val Glu 295 Asp Gly Thr Thr Asp Ile Thr Phe Thr Cys Pro Arg Ala Asp Gly Arg 310 315 Arg Ala Met Glu Ile Leu Lys Lys Leu Gln Val Gln Gly Asn Trp Thr Asn Val Leu Tyr Asp Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala 345 Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg 375 Ile Ser Val Leu Ile Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala 395 Leu His Glu Gln Phe Gln Leu Gly Gly Glu Asp Glu Ala Val Val Tyr

Ala Gly Thr Gly Arg 420

405

【0100】配列番号:6

配列の長さ:1643 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:GenomicDNA

起源

*生物名: プレピパクテリウム・ラクトファーメンタム(Brevibacterium la

415

ctofermentum) 株名: ATCC 13869

配列の特徴

特徴を表わす記号:CDS 存在位置:964..1482

410

配列

HEDY	
TCGCGAAGTA GCACCTGTCA CTTTTGTCTC AAATATTAAA TCGAATATCA ATATACGGTC	60
TGTTTATTGG AACGCATCCC AGTGGCTGAG ACGCATCCGC TAAAGCCCCCA GGAACCCTGT	120
GCAGAAAGAA AACACTCCTC TGGCTAGGTA GACACAGTTT ATAAAGGTAG AGTTGAGCGG	180
GTAACTGTCA GCACGTAGAT CGAAAGGTGC ACAAAGGTGG CCCTGGTCGT ACAGAAATAT	240
GGCGGTTCCT CGCTTGAGAG TGCGGAACGC ATTAGAAACG TCGCTGAACG GATCGTTGCC	300
ACCAAGAAGG CTGGAAATGA TGTCGTGGTT GTCTGCTCCG CAATGGGAGA CACCACGGAT	360
GAACTTCTAG AACTTGCAGC GGCAGTGAAT CCCGTTCCGC CAGCTCGTGA AATGGATATG	420
CTCCTGACTG CTGGTGAGCG TATTTCTAAC GCTCTCGTCG CCATGGCTAT TGAGTCCCTT	480
GGCGCAGAAG CTCAATCTTT CACTGGCTCT CAGGCTGGTG TGCTCACCAC CGAGCGCCAC	540
GGAAACGCAC GCATTGTTGA CGTCACACCG GGTCGTGTGC GTGAAGCACT CGATGAGGGC	600
AAGATCTGCA TTGTTGCTGG TTTTCAGGGT GTTAATAAAG AAACCCGCGA TGTCACCACG	660
TTGGGTCGTG GTGGTTCTGA CACCACTGCA GTTGCGTTGG CAGCTGCTTT GAACGCTGAT	720
GTGTGTGAGA TTTACTCGGA CGTTGACGGT GTGTATACCG CTGACCCGCG CATCGTTCCT	780
AATGCACAGA AGCTGGAAAA GCTCAGCTTC GAAGAAATGC TGGAACTTGC TGCTGTTGGC	840
TCCAAGATTT TGGTGCTGCG CAGTGTTGAA TACGCTCGTG CATTCAATGT GCCACTTCGC	900
GTACGCTCGT CTTATAGTAA TGATCCCGGC ACTTTGATTG CCGGCTCTAT GGAGGATATT	960
CCT GTG GAA GAA GCA GTC CTT ACC GGT GTC GCA ACC GAC AAG TCC GAA	1008
Met Glu Glu Ala Val Leu Thr Gly Val Ala Thr Asp Lys Ser Glu	
1 5 10 15	
GCC AAA GTA ACC GTT CTG GGT ATT TCC GAT AAG CCA GGC GAG GCT GCC	1056
Ala Lys Val Thr Val Leu Gly Ile Ser Asp Lys Pro Gly Glu Ala Ala	
20 25 30	
AAG GTT TTC CGT GCG TTG GCT GAT GCA GAA ATC AAC ATT GAC ATG GTT	1104
Lys Val Phe Arg Ala Leu Ala Asp Ala Glu Ile Asn Ile Asp Met Val	
35 40 45	
CTG CAG AAC GTC TCC TCT GTG GAA GAC GGC ACC ACC GAC ATC ACG TTC	1152
Leu Gln Asn Val Ser Ser Val Glu Asp Gly Thr Thr Asp Ile Thr Phe	
50 55 60	1000
ACC TGC CCT CGC GCT GAC GGA CGC CGT GCG ATG GAG ATC TTG AAG AAG	1200
Thr Cys Pro Arg Ala Asp Gly Arg Arg Ala Met Glu Ile Leu Lys Lys 65. 70 75	
CTT CAG GTT CAG GGC AAC TGG ACC AAT GTG CTT TAC GAC GAC CAG GTC	1040
Leu Gln Val Gln Gly Asn Trp Thr Asn Val Leu Tyr Asp Asp Gln Val	1248
90 05 00	
GGC AAA GTC TCC CTC GTG GGT GCT GGC ATG AAG TCT CAC CCA GGT GTT	1296
Gly Lys Val Ser Leu Val Gly Ala Gly Met Lys Ser His Pro Gly Val	1290
100 105 110	
ACC GCA GAG TTC ATG GAA GCT CTG CGC GAT GTC AAC GTG AAC ATC GAA	1344
Thr Ala Glu Phe Met Glu Ala Leu Arg Asp Val Asn Val Asn Ile Glu	1011
115 120 125	
TTG ATT TCC ACC TCT GAG ATC CGC ATT TCC GTG CTG ATC CGT GAA GAT	1392
Leu Ile Ser Thr Ser Glu Ile Arg Ile Ser Val Leu Ile Arg Glu Asp	1002
130 135 140	
GAT CTG GAT GCT GCA CGT GCA TTG CAT GAG CAG TTC CAG CTG GGC	1440
Asp Leu Asp Ala Ala Ala Arg Ala Leu His Glu Gln Phe Gln Leu Gly	
145 150 155	
GGC GAA GAC GAA GCC GTC GTT TAT GCA GGC ACC GGA CGC TAAAGTTTTAA	1490
Gly Glu Asp Glu Ala Val Val Tyr Ala Gly Thr Gly Arg	
160 165 50 170	

AGGAGTAGTT TTACAATGAC CACCATCGCA GTTGTTGGTG CAACCGGCCA GGTCGGCCAG 1550 GTTATGCGCA CCCTTTTGGA AGAGCGCAAT TTCCCAGCTG ACACTGTTCG TTTCTTTGCT 1610

1643

TCCCCGCGTT CCGCAGGCCG TAAGATTGAA TTC * トポロジー:直鎖状 【0101】配列番号:7 配列の種類:タンパク質 配列の長さ:172

配列の型:アミノ酸

配列

Met Glu Glu Ala Val Leu Thr Gly Val Ala Thr Asp Lys Ser Glu Ala 5 10

Lys Val Thr Val Leu Gly Ile Ser Asp Lys Pro Gly Glu Ala Ala Lys 25

Val Phe Arg Ala Leu Ala Asp Ala Glu Ile Asn Ile Asp Met Val Leu 40

Gln Asn Val Ser Ser Val Glu Asp Gly Thr Thr Asp Ile Thr Phe Thr

Cys Pro Arg Ala Asp Gly Arg Arg Ala Met Glu Ile Leu Lys Lys Leu 70 75

Gln Val Gln Gly Asn Trp Thr Asn Val Leu Tyr Asp Asp Gln Val Gly

Lys Val Ser Leu Val Gly Ala Gly Met Lys Ser His Pro Gly Val Thr 105

Ala Glu Phe Met Glu Ala Leu Arg Asp Val Asn Val Asn Ile Glu Leu 120

Ile Ser Thr Ser Glu Ile Arg Ile Ser Val Leu Ile Arg Glu Asp Asp 135 140

Leu Asp Ala Ala Ala Arg Ala Leu His Glu Gln Phe Gln Leu Gly Gly 160 150 155 145

Glu Asp Glu Ala Val Val Tyr Ala Gly Thr Gly Arg

165

【0102】配列番号:8

※トポロジー:直鎖状

アンチセンス:YES

☆ctofermentum)

配列の特徴

配列の種類:他の核酸 合成DNA 配列の長さ:23 アンチセンス:NO

配列の型:核酸 鎖の数:一本鎖

鎖の数:一本鎖

Ж

配列

GTGGAGCCGA CCATTCCGCG AGG

23

配列の種類:他の核酸 合成DNA

★トポロジー:直鎖状 【0103】配列番号:9

配列の長さ:23 配列の型:核酸

配列

CCAAAACCGC CCTCCACGGC GAA

23

【0104】配列番号:10

配列の長さ:3579 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状

配列の種類: Genomic DNA 起源

生物名: プレピパクテリウム・ラクトファーメンタム(Brevibacterium la☆

特徴を表わす記号:CDS 存在位置:533..2182

株名: ATCC 13869

特徴を表わす記号:CDS 存在位置:2188..3522

50

配列

GTGGAGCCGA CCATTCCGCG AGGCTGCACT GCAACGAGGT CGTAGTTTTG GTACATGGCT 60 TCTGGCCAGT TCATGGATTG GCTGCCGAAG AAGCTATAGG CATCGCACCA GGGCCACCGA 120 GTTACCGAAG ATGGTGCCGT GCTTTTCGCC TTGGGCAGGG ACCTTGACAA AGCCCACGCT 180 GATATCGCCA AGTGAGGGAT CAGAATAGTG CATGGGCACG TCGATGCTGC CACATTGAGC 240 GGAGGCAATA TCTACCTGAG GTGGGCATTC TTCCCAGCGG ATGTTTTCTT GCGCTGCTGC 300 AGTGGGCATT GATACCAAAA AGGGGCTAAG CGCAGTCGAG GCGGCAAGAA CTGCTACTAC 360 CCTTTTTATT GTCGAACGGG GCATTACGGC TCCAAGGACG TTTGTTTTCT GGGTCAGTTA 420 CCCCAAAAAG CATATACAGA GACCAATGAT TTTTCATTAA AAAGGCAGGG ATTTGTTATA 480 AGTATGGGTC GTATTCTGTG CGACGGGTGT ACCTCGGCTA GAATTTCTCC CC ATG 535 ACA CCA GCT GAT CTC GCA ACA TTG ATT AAA GAG ACC GCG GTA GAG GTT 583 Thr Pro Ala Asp Leu Ala Thr Leu Ile Lys Glu Thr Ala Val Glu Val TTG ACC TCC CGC GAG CTC GAT ACT TCT GTT CTT CCG GAG CAG GTA GTT 631 Leu Thr Ser Arg Glu Leu Asp Thr Ser Val Leu Pro Glu Gln Val Val 25 GTG GAG CGT CCG CGT AAC CCA GAG CAC GGC GAT TAC GCC ACC AAC ATT 679 Val Glu Arg Pro Arg Asn Pro Glu His Gly Asp Tyr Ala Thr Asn Ile GCA TTG CAG GTG GCT AAA AAG GTC GGT CAG AAC CCT CGG GAT TTG GCT 727 Ala Leu Gln Val Ala Lys Lys Val Gly Gln Asn Pro Arg Asp Leu Ala 60 55 775 ACC TGG CTG GCA GAG GCA TTG GCT GCA GAT GAC GCC ATT GAT TCT GCT Thr Trp Leu Ala Glu Ala Leu Ala Ala Asp Asp Ala Ile Asp Ser Ala 70 75 GAA ATT GCT GGC CCA GGC TTT TTG AAC ATT CGC CTT GCT GCA GCA GCA 823 Glu Ile Ala Gly Pro Gly Phe Leu Asn Ile Arg Leu Ala Ala Ala Ala 90 CAG GGT GAA ATT GTG GCC AAG ATT CTG GCA CAG GGC GAG ACT TTC GGA 871 Gln Gly Glu Ile Val Ala Lys Ile Leu Ala Gln Gly Glu Thr Phe Gly 100 105 AAC TCC GAT CAC CTT TCC CAC TTG GAC GTG AAC CTC GAG TTC GTT TCT 919 Asn Ser Asp His Leu Ser His Leu Asp Val Asn Leu Glu Phe Val Ser 115 120 GCA AAC CCA ACC GGA CCT ATT CAC CTT GGC GGA ACC CGC TGG GCT GCC 967 Ala Asn Pro Thr Gly Pro Ile His Leu Gly Gly Thr Arg Trp Ala Ala 135 140 145 GTG GGT GAC TCT TTG GGT CGT GTG CTG GAG GCT TCC GGC GCG AAA GTG 1015 Val Gly Asp Ser Leu Gly Arg Val Leu Glu Ala Ser Gly Ala Lys Val 150 155 ACC CGC GAA TAC TAC TTC AAC GAT CAC GGT CGC CAG ATC GAT CGT TTC 1063 Thr Arg Glu Tyr Tyr Phe Asn Asp His Gly Arg Gln Ile Asp Arg Phe 1111 Ala Leu Ser Leu Leu Ala Ala Ala Lys Gly Glu Pro Thr Pro Glu Asp GGT TAT GGC GGC GAA TAC ATT AAG GAA ATT GCG GAG GCA ATC GTC GAA 1159 Gly Tyr Gly Gly Glu Tyr Ile Lys Glu Ile Ala Glu Ala Ile Val Glu 195 200 50 205

			:					(21)							特開平1	0 - 16
		39													40		
AA(G CAT	r cc	r ga	A GCC	TT(G GC1	TT(GAC	CC1	CCC	GCA	A ACC	CAG	GAG	CTT	1207	
Lys	s His	s Pro	o Gli	ı Ala	a Lei	ı Ala	Let	ı Glu	ı Pro	Ala	a Ala	a Tha	r Glr	Glu	Leu		
210)				215	5				220)				225		
TTO	CGC	GC1	Γ GA/	A GGC	GTO	GAC	AT(ATG	TTC	GA(G CAC	C ATO	CAAA	TCT	TCC	1255	
Phe	Arg	g Ala	a Glu	ı Gly	v Val	Glu	ı Met	Met	Phe	Glı	ı His	s Ile	e Lys	Ser	Ser		
				230)				235	5				240)		
CTO	CA1	GAC	TT(GGC	: ACC	GA1	TTC	GAT	GTC	TAC	TAC	CAC	GAG	AAC	TCC	1303	
Leu	ı His	s Glu	ı Phe	e Gly	Thr	Asp	Phe	Asp	Val	Туз	Tyı	His	s Glu	Asn	Ser		
			245					250					255				
CTC	TTC	GAG	; TCC	GGT	. GCC	GTG	GAC	AAG	GCC	GTG	CAG	GTO	CTG	AAG	GAC	1351	
Leu	Phe	e Glu	ı Sei	Gly	Ala	Val	Asp	Lys	Ala	Val	Glr	val	Leu	Lys	Asp		
		260)				265	,				270)				
AAC	GGC	AAC	CTC	TAC	GAA	AAC	GAG	GGC	GCT	TGG	TGG	CTO	CGT	TCC	ACC	1399	
Asn			ı Let	ı Tyr	Glu			Gly	Ala	Trp	Trp	Leu	ı Arg	Ser	Thr		
	275					280					285						
													GAC			1447	
		Gly	Asp	Asp			Arg	Val	Val			Ser	Asp	Gly			
290					295					300					305		
													AAG			1495	
Ala	Ala	Tyr	, 116		_	Asp	11e	Ala			Ala	Asp	Lys		Ser		
ccc	CCA	CAC		310		4 T/O	T40	1.00	315		000			320	000	1540	
													CAC			1543	
Arg	GIY	nıs	325		ASN	116	ıyr	мет 330	Leu	GTÀ	ита	Asp	His	HIS	Gly		
TAC	ATC	ccc			AAC	CCA	ccc		ccc	CCA	(VTT	ccc	335 TAC	AAC	CCA	1501	
_													Tyr			1591	
1,11	110	340		Deu	Lys	VIG	345	ита	VIG	VIG	Leu	350		Lys	110		
GAA	GGC			GTC	CTG	ATT		CAG	ATC	GTG	AAC		CTT	CCC	GAC	1639	
													Leu			1003	
	355					360	0-7	02		,,,,	365	200	204		шр		
GGC		GCA	GTG	CGT	ATG		AAG	CGT	GCA	GGC		GTG	GTC	ACC	CTA	1687	
													Val				
370					375					380					385		
GAT	GAC	CTC	GTT	GAA	GCA	ATC	GGC	ATC	GAT	GCG	GCG	CGT	TAC	TCC	CTG	1735	
Asp	Asp	Leu	Val	Glu	Ala	Ile	Gly	Ile	Asp	Ala	Ala	Arg	Tyr	Ser	Leu		
				390					395					400			
ATC	CGT	TCC	TCC	GTG	GAT	TCT	TCC	CTG	GAT	ATC	GAT	CTC	GGC	CTG	TGG	1783	
Ile	Arg	Ser	Ser	Val	Asp	Ser	Ser	Leu	Asp	Ile	Asp	Leu	Gly	Leu	Trp		
			405					410				•	415				
GAA	TCC	CAG	TCC	TCC	GAC	AAC	CCT	GTG	TAC	TAC	GTG	CAG	TAC	GGA	CAC	1831	
Glu	Ser	Gln	Ser	Ser	Asp	Asn	Pro	Val	Tyr	Tyr	Val	Gln	Tyr	Gly	His		
		420					425					430					
GCT	CGT	CTG	TGC	TCC	ATC	GCG	CGC	AAG	GCA	GAG	ACC	TTG	GGT	GTC	ACC	1879	
Ala	Arg	Leu	Cys	Ser	Ile	Ala	Arg	Lys	Ala	Glu	Thr	Leu	Gly	Val	Thr		
	435					440					445						
													GAA			1927	
	Glu	Gly	Ala	Asp		Ser	Leu	Leu	Thr		Asp	Arg	Glu				
450	·-·				455					460					465		
													GCT			1975	
Leu	lle	Arg	Thr	Leu	Gly	Glu	Phe	P ±50	Ala	Val	Val	Lys	Ala	Ala	Ala		

41 42 480 475 GAC CTA CGT GAA CCA CAC CGC ATT GCC CGC TAT GCT GAG GAA TTA GCT 2023 Asp Leu Arg Glu Pro His Arg Ile Ala Arg Tyr Ala Glu Glu Leu Ala 490 GGA ACT TTC CAC CGC TTC TAC GAT TCC TGC CAC ATC CTT CCA AAG GTT 2071 Gly Thr Phe His Arg Phe Tyr Asp Ser Cys His Ile Leu Pro Lys Val 500 505 GAT GAG GAT ACG GCA CCA ATC CAC ACA GCA CGT CTG GCA CTT GCA GCA 2119 Asp Glu Asp Thr Ala Pro Ile His Thr Ala Arg Leu Ala Leu Ala Ala 520 GCA ACC CGC CAG ACC CTC GCT AAC GCC CTG CAC CTG GTT GGC GTT TCC 2167 Ala Thr Arg Gln Thr Leu Ala Asn Ala Leu His Leu Val Gly Val Ser 535 GCA CCG GAG AAG ATG TAACA ATG GCT ACA GTT GAA AAT TTC AAT GAA 2214 Ala Pro Glu Lys Met Met Ala Thr Val Glu Asn Phe Asn Glu 550 1 CTT CCC GCA CAC GTA TGG CCA CGC AAT GCC GTG CGC CAA GAA GAC GGC 2262 Leu Pro Ala His Val Trp Pro Arg Asn Ala Val Arg Gln Glu Asp Gly 10 15 GTT GTC ACC GTC GCT GGT GTG CCT CTG CCT GAC CTC GCT GAA GAA TAC 2310 Val Val Thr Val Ala Gly Val Pro Leu Pro Asp Leu Ala Glu Glu Tyr 30 35 GGA ACC CCA CTG TTC GTA GTC GAC GAG GAC GAT TTC CGT TCC CGC TGT 2358 Gly Thr Pro Leu Phe Val Val Asp Glu Asp Asp Phe Arg Ser Arg Cys 50 CGC GAC ATG GCT ACC GCA TTC GGT GGA CCA GGC AAT GTG CAC TAC GCA 2406 Arg Asp Met Ala Thr Ala Phe Gly Gly Pro Gly Asn Val His Tyr Ala TCT AAA GCG TTC CTG ACC AAG ACC ATT GCA CGT TGG GTT GAT GAA GAG 2454 Ser Lys Ala Phe Leu Thr Lys Thr Ile Ala Arg Trp Val Asp Glu Glu GGG CTG GCA CTG GAC ATT GCA TCC ATC AAC GAA CTG GGC ATT GCC CTG 2502 Gly Leu Ala Leu Asp Ile Ala Ser Ile Asn Glu Leu Gly Ile Ala Leu 95 GCC GCT GGT TTC CCC GCC AGC CGT ATC ACC GCG CAC GGC AAC AAA 2550 Ala Ala Gly Phe Pro Ala Ser Arg Ile Thr Ala His Gly Asn Asn Lys 110 115 GGC GTA GAG TTC CTG CGC GCG TTG GTT CAA AAC GGT GTG GGA CAC GTG 2598 Gly Val Glu Phe Leu Arg Ala Leu Val Gln Asn Gly Val Gly His Val 130 GTG CTG GAC TCC GCA CAG GAA CTA GAA CTG TTG GAT TAC GTT GCC GCT 2646 Val Leu Asp Ser Ala Gln Glu Leu Glu Leu Leu Asp Tyr Val Ala Ala 140 145 150 GGT GAA GGC AAG ATT CAG GAC GTG TTG ATC CGC GTA AAG CCA GGC ATC 2694 Gly Glu Gly Lys Ile Gln Asp Val Leu Ile Arg Val Lys Pro Gly Ile 155 160 GAA GCA CAC ACC CAC GAG TTC ATC GCC ACT AGC CAC GAA GAC CAG AAG 2742 Glu Ala His Thr His Glu Phe Ile Ala Thr Ser His Glu Asp Gln Lys 170

TTC GGA TTC TCC CTG GCA TCC GGT TCD GCA TTC GAA GCA GCA AAA GCC

		43													44	
Phe	Gly	Phe	Ser	Let 190		Ser	Gly	Ser	Ala 195		e Glu	Ala	Ala	Lys 200	Ala	
GCC	AAC	: AAC	GCA	GAA	AAC	сто	AAC	стс	GTT	. GGC	СТС	CAC	TGC	CAC	GTT	2838
				Glu	Asn				Val					His		
ССТ	ጥርር	· CAC			GAC	ccc	CAA				· (~T(CCA			ccc	2006
																288€
GIY	Sei	220		. rne	Asp	, WIS	225		rne	Lys	s Leu	230		GIU	Arg	
GTG	TTG	GGC	CTG	TAC	TCA	CAG	ATC	CAC	AGC	GAA	CTG	GGC	GTT	GCC	CTT	2934
Val	Leu 235		Leu	Tyr	Ser	Gln 240		His	Ser	Glu	Leu 245		Val	Ala	Leu	
CCT	GAA	CTG	GAT	CTC	GGT	GGC	GGA	TAC	GGC	ATT	GCC	TAT	ACC	GCA	GCT	2982
Pro	Glu	Leu	Asp	Leu	Gly	Gly	Gly	Tyr	Gly	Ile	Ala	Tyr	Thr	Ala	Ala	
250					255					260)	•			265	
GAA	GAA	CCA	CTC	AAC	GTC	GCA	GAA	GTT	GCC	TCC	GAC	CTG	СТС	ACC	GCA	3030
Glu	Glu	Pro	Leu	Asn	Val	Ala	Glu	Val	Ala	Ser	Asp	Leu	Leu	Thr	Ala	
				270	1				275					280		
GTC	GGA	AAA	ATG	GCA	GCG	GAA	СТА	GGC	ATC	GAC	GCA	CCA	ACC	GTG	CTT	3078
Val	Gly	Lys	Met	Ala	Ala	Glu	Leu	Gly	Ile	Asp	Ala	Pro	Thr	Val	Leu	
			285					290					295			
GTT	GAG	CCC	GGC	CGC	GCT	ATC	GCA	GGC	CCC	TCC	ACC	GTG	ACC	ATC	TAC	3126
Val	Glu	Pro	Gly	Arg	Ala	Ile	Ala	Gly	Pro	Ser	Thr	Val	Thr	Ile	Tyr	
		300				•	305					310				
GAA	GTC	GGC	ACC	ACC	AAA	GAC	GTC	CAC	GTA	GAC	GAC	GAC	AAA	ACC	CGC	3174
Glu	Val	Gly	Thr	Thr	Lys	Asp	Val	His	Val	Asp	Asp	Asp	Lys	Thr	Arg	
	315					320					325					
CGT	TAC	ATC	GCC	GTG	GAC	GGA	GGC	ATG	TCC	GAC	AAC	ATC	CGC	CCA	GCA	3222
Arg	Tyr	Ile	Ala	Val	Asp	Gly	Gly	Met	Ser	Asp	Asn	Ile	Arg	Pro	Ala	
330					335					340					345	
CTC	TAC	GGC	TCC	GAA	TAC	GAC	GCC	CGC	GTA	GTA	TCC	CGC	TTC	GCC	GAA	3270
Leu	Tyr	Gly	Ser	Glu 350	Tyr	Asp	Ala	Arg	Val 355	Val	Ser	Arg	Phe	Ala 360	Glu	
GGA	GAC	CCA	GTA	AGC	ACC	CGC	ATC	GTG	GGC	TCC	CAC	TGC	GAA	TCC	GGC	3318
Gly	Asp	Pro	Val	Ser	Thr	Arg	Ile	Val	Gly	Ser	His	Cys	Glu	Ser	Gly	
			365					370					375			
GAT	ATC	CTG	ATC	AAC	GAT	GAA	ATC	TAC	CCA	TCT	GAC	ATC	ACC	AGC	GGC	3366
Asp	Ile	Leu	Ile	Asn	Asp	Glu	Ile	Tyr	Pro	Ser	Asp	Ile	Thr	Ser	Gly	
		380					385					390				
GAC	TTC	CTT	GCA	CTC	GCA	GCC	ACC	GGC	GCA	TAC	TGC	TAC	GCC	ATG	AGC	3414
Asp	Phe	Leu	Ala	Leu	Ala	Ala	Thr	Gly	Ala	Tyr	Cys	Tyr	Ala	Met	Ser	
	395					400					405					
TCC	CGC	TAC	AAC	GCC	TTC	ACA	CGG	CCC	GCC	GTC	GTG	TCC	GTC	CGC	GCT	3462
Ser	Arg	Tyr	Asn	Ala	Phe	Thr	Arg	Pro	Ala	Val	Val	Ser	Val	Arg	Ala	
410					415					420					425	
GGC	AGC	TCC	CGC	CTC	ATG	CTG	CGC	CGC	GAA	ACG	CTC	GAC	GAC	ATC	CTC	3510
Gly	Ser	Ser	Arg	Leu	Met	Leu	Arg	Arg	Glu	Thr	Leu	Asp	Asp	Ile	Leu	
				430					435					440		
TCA	CTA	GAG	GCA	TAAC	GCT1	TT (GACC	ССТО	A CC	XXXX	CCTI	CAC	CTTC	CCC		3562
Sar	Lou	Glu	Ala													

445

46

GTGGAGGGCG GTTTTGG

【0105】配列番号:11 配列の長さ:550

配列の型:アミノ酸

*トポロジー:直鎖状

配列の種類:タンパク質

配列

Met Thr Pro Ala Asp Leu Ala Thr Leu Ile Lys Glu Thr Ala Val Glu 10

Val Leu Thr Ser Arg Glu Leu Asp Thr Ser Val Leu Pro Glu Gln Val 25

Val Val Glu Arg Pro Arg Asn Pro Glu His Gly Asp Tyr Ala Thr Asn

Ile Ala Leu Gln Val Ala Lys Lys Val Gly Gln Asn Pro Arg Asp Leu 55

Ala Thr Trp Leu Ala Glu Ala Leu Ala Ala Asp Asp Ala Ile Asp Ser 75

Ala Glu Ile Ala Gly Pro Gly Phe Leu Asn Ile Arg Leu Ala Ala Ala 90

Ala Gln Gly Glu Ile Val Ala Lys Ile Leu Ala Gln Gly Glu Thr Phe 105

Gly Asn Ser Asp His Leu Ser His Leu Asp Val Asn Leu Glu Phe Val 120

Ser Ala Asn Pro Thr Gly Pro Ile His Leu Gly Gly Thr Arg Trp Ala 135

Ala Val Gly Asp Ser Leu Gly Arg Val Leu Glu Ala Ser Gly Ala Lys 150 155

Val Thr Arg Glu Tyr Tyr Phe Asn Asp His Gly Arg Gln Ile Asp Arg

Phe Ala Leu Ser Leu Leu Ala Ala Ala Lys Gly Glu Pro Thr Pro Glu 185

Asp Gly Tyr Gly Gly Glu Tyr Ile Lys Glu Ile Ala Glu Ala Ile Val 200

Glu Lys His Pro Glu Ala Leu Ala Leu Glu Pro Ala Ala Thr Gln Glu 215

Leu Phe Arg Ala Glu Gly Val Glu Met Met Phe Glu His Ile Lys Ser 225 230 235

Ser Leu His Glu Phe Gly Thr Asp Phe Asp Val Tyr Tyr His Glu Asn 245 250

Ser Leu Phe Glu Ser Gly Ala Val Asp Lys Ala Val Gln Val Leu Lys

Asp Asn Gly Asn Leu Tyr Glu Asn Glu Gly Ala Trp Trp Leu Arg Ser 280

Thr Glu Phe Gly Asp Asp Lys Asp Arg Val Val Ile Lys Ser Asp Gly

Asp Ala Ala Tyr Ile Ala Gly Asp Ile Ala Tyr Val Ala Asp Lys Phe 310 315

Ser Arg Gly His Asn Leu Asn Ile Tyr Met Leu Gly Ala Asp His His

Gly Tyr Ile Ala Arg Leu Lys Ala Ala Ala Ala Ala Leu Gly Tyr Lys 345

Pro Glu Gly Val Glu Val Leu Ile GEO Gln Met Val Asn Leu Leu Arg

```
47
                                                                               48
                                              360
                          355
                  Asp Gly Lys Ala Val Arg Met Ser Lys Arg Ala Gly Thr Val Val Thr
                                          375
                  Leu Asp Asp Leu Val Glu Ala Ile Gly Ile Asp Ala Ala Arg Tyr Ser
                  385
                                      390
                                                          395
                                                                             400
                  Leu Ile Arg Ser Ser Val Asp Ser Ser Leu Asp Ile Asp Leu Gly Leu
                                  405
                                                      410
                  Trp Glu Ser Gln Ser Ser Asp Asn Pro Val Tyr Tyr Val Gln Tyr Gly
                                                  425
                  His Ala Arg Leu Cys Ser Ile Ala Arg Lys Ala Glu Thr Leu Gly Val
                                              440
                  Thr Glu Glu Gly Ala Asp Leu Ser Leu Leu Thr His Asp Arg Glu Gly
                                          455
                  Asp Leu Ile Arg Thr Leu Gly Glu Phe Pro Ala Val Val Lys Ala Ala
                  Ala Asp Leu Arg Glu Pro His Arg Ile Ala Arg Tyr Ala Glu Glu Leu
                                                     490
                  Ala Gly Thr Phe His Arg Phe Tyr Asp Ser Cys His Ile Leu Pro Lys
                                                 505
                  Val Asp Glu Asp Thr Ala Pro Ile His Thr Ala Arg Leu Ala Leu Ala
                                             520
                  Ala Ala Thr Arg Gln Thr Leu Ala Asn Ala Leu His Leu Val Gly Val
                                         535
                                                             540
                  Ser Ala Pro Glu Lys Met
                  545
                                      550
【0106】配列番号:12
                                                     *トポロジー:直鎖状
                                                       配列の種類:タンパク質
配列の型:アミノ酸
                  配列
                  Met Ala Thr Val Glu Asn Phe Asn Glu Leu Pro Ala His Val Trp Pro
                  Arg Asn Ala Val Arg Gln Glu Asp Gly Val Val Thr Val Ala Gly Val
                 Pro Leu Pro Asp Leu Ala Glu Glu Tyr Gly Thr Pro Leu Phe Val Val
                  Asp Glu Asp Asp Phe Arg Ser Arg Cys Arg Asp Met Ala Thr Ala Phe
                                          55
                 Gly Gly Pro Gly Asn Val His Tyr Ala Ser Lys Ala Phe Leu Thr Lys
                 Thr Ile Ala Arg Trp Val Asp Glu Glu Gly Leu Ala Leu Asp Ile Ala
                 Ser Ile Asn Glu Leu Gly Ile Ala Leu Ala Ala Gly Phe Pro Ala Ser
                 Arg Ile Thr Ala His Gly Asn Asn Lys Gly Val Glu Phe Leu Arg Ala
                                             120
                 Leu Val Gln Asn Gly Val Gly His Val Val Leu Asp Ser Ala Gln Glu
                                         135
                 Leu Glu Leu Leu Asp Tyr Val Ala Ala Gly Glu Gly Lys Ile Gln Asp
                 145
                                     150
                                                         155
```

Val Leu Ile Arg Val Lys Pro Gly IEO Glu Ala His Thr His Glu Phe

配列の長さ:445

50 49 170 175 165 Ile Ala Thr Ser His Glu Asp Gln Lys Phe Gly Phe Ser Leu Ala Ser 185 Gly Ser Ala Phe Glu Ala Ala Lys Ala Ala Asn Asn Ala Glu Asn Leu 200 Asn Leu Val Gly Leu His Cys His Val Gly Ser Gln Val Phe Asp Ala 215 220 Glu Gly Phe Lys Leu Ala Ala Glu Arg Val Leu Gly Leu Tyr Ser Gln 235 Ile His Ser Glu Leu Gly Val Ala Leu Pro Glu Leu Asp Leu Gly Gly 250 Gly Tyr Gly Ile Ala Tyr Thr Ala Ala Glu Glu Pro Leu Asn Val Ala 265 Glu Val Ala Ser Asp Leu Leu Thr Ala Val Gly Lys Met Ala Ala Glu 280 Leu Gly Ile Asp Ala Pro Thr Val Leu Val Glu Pro Gly Arg Ala Ile 295 Ala Gly Pro Ser Thr Val Thr Ile Tyr Glu Val Gly Thr Thr Lys Asp 310 Val His Val Asp Asp Asp Lys Thr Arg Arg Tyr Ile Ala Val Asp Gly 330 325 Gly Met Ser Asp Asn Ile Arg Pro Ala Leu Tyr Gly Ser Glu Tyr Asp 345 Ala Arg Val Val Ser Arg Phe Ala Glu Gly Asp Pro Val Ser Thr Arg 360 Ile Val Gly Ser His Cys Glu Ser Gly Asp Ile Leu Ile Asn Asp Glu Ile Tyr Pro Ser Asp Ile Thr Ser Gly Asp Phe Leu Ala Leu Ala Ala 390 Thr Gly Ala Tyr Cys Tyr Ala Met Ser Ser Arg Tyr Asn Ala Phe Thr 410 405 Arg Pro Ala Val Val Ser Val Arg Ala Gly Ser Ser Arg Leu Met Leu 425 Arg Arg Glu Thr Leu Asp Asp Ile Leu Ser Leu Glu Ala 435 *トポロジー:直鎖状 【0107】配列番号:13 配列の種類:他の核酸 合成DNA 配列の長さ:23 アンチセンス:NO 配列の型:核酸 鎖の数:一本鎖 配列 23 TCGTCGGTCA GCCTGACGTC GAC ※トポロジー:直鎖状 【0108】配列番号:14 配列の種類:他の核酸 合成DNA 配列の長さ:23 アンチセンス:YES 配列の型:核酸 Ж 鎖の数:一本鎖 配列 23 TCTTGGTGTCGAAAGTGCACACC 鎖の数:二本鎖 【0109】配列番号:15 トポロジー:直鎖状 配列の長さ:3533

配列の型:核酸

配列の種類: Genomic DNA

		E1						ν=-,								50	14041 -
±⊒%≊										ъж.	T Kil A	\ #d=34	6				
起源	. 11 - 2 - 2	= > 1 -		b : /D	:	L		1)特徴		3.H. ·	CDC		
生物名:プルピパクラ	'yya'	7クトノ	アーメン	7 A (B	revı	Dact	erıu	шта						B号:			
ctofermentum)										17	产仕工	LILL	321.	30	"		
株名: ATCC 13869	***	••							*								
	配列		000		0004			***	T. O.L.	0 t TO	OTOO	OTO	1000	TCA.	COTO	01000	GC 60
																GACG(
																AACG(
																AAAG(
	•							-								CGCCC	
																AATG1	
	AAA	GAGI	GII	IAAA	JIAG		TG A										350
						M	et T	nr A	sp P	ne L		rg A	SP A	sp 1		rg 10	
	ምጥ ር	CTC	_ር ርተ	CAA	ልጥር	ረ ተረ	1 GGT	CAC	СТА	ATT	5	CAA	CAA	CAA			398
																	330
	rne	Leu	GIY	GIH		Leu	Gly	GIU	AST	20	ита	GIU	Q111	GIU	25	GIII	
	CAC	ር ተ	тат	CAA	15 CTC	ሮሞር	GAA	CAA	CCC		CTC	АСТ	ፐርፕ	ттт		ATC	446
							Glu										440
	GIU	Val	IYI	30	Leu	191	Olu	0111	35		Leu	1111	PEI	40	пор	116	
	ccc	AAC	ccc		ccc	GAA	ATG	CAT	•		CTT	CAG	СТТ		GAC	GGC	494
							Met										151
	міа	Lys	45	ASII	лта	Olu	MCt	50	Det	Leu	ACT	OIII	55	1 110	пор	019	
	ልፐፕ	۸CT		ccc	AAG	CCA	ACA		ልፐፐ	ርርፕ	ሌርር	CCA		TCC	CAC	TTC	542
							Thr						_			_	042
	116	60	110	AIG	Lys	AIG	65	110	110	711.0	иць	70	The	501	1113	1 110	
	CCT		CTC	CCT	AAC	CTG	GCG	GAA	GAC	CTC	TAC		GAA	GAG	СТТ	CCT	590
							Ala								_		000
	75		Dou	,,,,,		80		Olu	ш	204	85	шр	0	024		90	
			GCT	СТС	GAT		GGC	GAC	ACC	ССТ		GAC	AGC	ACT	CTT		638
							Gly										
					95		•	-		100		_			105	_	
•	GCC	ACC	TGG	CTG	AAA	СТС	AAT	GAG	GGC	AAT	GTT	GGC	GCA	GAA	GCT	GTG	686
							Asn										
			•	110	•				115					120			
	GCC	GAT	GTG	CTG	CGC	AAT	GCT	GAG	GTG	GCG	CCG	GTT	CTG	ACT	GCG	CAC	734
							Ala										
		_	125					130					135				
	CCA	ACT	GAG	ACT	CGC	CGC	CGC	ACT	GTT	TTT	GAT	GCG	CAA	AAG	TGG	ATC	782
	Pro	Thr	Glu	Thr	Arg	Arg	Arg	Thr	Val	Phe	Asp	Ala	Gln	Lys	Trp	Ile	
		140					145					150					
	ACC	ACC	CAC	ATG	CGT	GAA	CGC	CAC	GCT	TTG	CAG	TCT	GCG	GAG	CCT	ACC	830
	Thr	Thr	His	Met	Arg	Glu	Arg	His	Ala	Leu	Gln	Ser	Ala	Glu	Pro	Thr	
	155				_	160	_				165					170	
		CGT	ACG	CAA	AGC	AAG	TTG	GAT	GAG	ATC	GAG	AAG	AAC	ATC	CGC	CGT	878
							Leu										
	-	-				-		-				-				_	

CGC ATC ACC ATT TTG TGG CAG ACC GCG TTG ATT CGT GTG GCC CGC CCA

Arg Ile Thr Ile Leu Trp Gln Thr Ala Leu Ile Arg Val Ala Arg Pro

CGT ATC GAG GAC GAG ATC GAA GTA GGGO CTG CGC TAC TAC AAG CTG AGC

									((28)							特開平1
		53	3													54	
Ar	g Il	e G	lu A	sp (Hu	Πŧ	e Glu	ı Va	1 G1	y Le	u Ar	g Ty:	r Ty:	r Ly	s Le	u Ser	
		20)5					21	0				21	5			
																G CTT	1022
Le	u Le	u Gl	lu G	lu 1	lle	Pro	Arg	g Il	e As	n Ar	g As	p Va	l Ala	a Va	l Gl	ı Leu	
	22						225					230					
																G CCA	1070
		u Ar	g P	he G	lly			Va.	l Pro) Lei	ı Lys	s Pro	Val	l Va	Ly	s Pro	
23						240					249					250	
																GCG	1118
GI	y Se	r Ti	p I.			Gly	Asp	His	s Ası			1 Pro	Tyı	· Val		Ala	
			vm 0		55	maa				260					268		
																AAG	1166
GI	ı in	r va			yr	Ser	ınr	' H18			A ALE	GI	Thr			Lys	
та	~ TA	r ~~	27		40	CTC	CAT	TCC	275				· cerc	280		T T C C	1014
																TCG Ser	1214
1 y.	L I y.	28		gu	111	Leu	1115	290		ı Gıt	ı nıs	GIU	295		Let	oer .	
GAG	: CG			T A	AG	GTC	ACC			· CTO	. СТ Т	· ccc			CAT	GCC	1262
																Ala	1202
1101	300		711		, 0	141	305		, G11	LCC	Leu	310		AIO	, nsp	nia	
GGO			C GA	C G	TG	CCA			GTG	GAT	GAG			CGA	CGC	GCC	1310
																Ala	1010
318				•		320					325		-,-	0		330	
GTO	CAT	GG	C GT	ТО	GC	GGA	CGT	ATC	СТС	GCG	ACG	ACG	GCC	GAG	CTG	ATC	1358
											Thr						
				3	35					340					345		
GGC	GAC	GA	C GC	C G	ľΤ	GAG	GGC	GTG	TGG	TTC	AAG	GTC	TTT	ACT	CCA	TAC	1406
Gly	Glı	(As	p Al	a Va	al	Glu	Gly	Val	Trp	Phe	Lys	Val	Phe	Thr	Pro	Tyr	
			35	0					355					360			
											TTG						1454
Ala	Ser			u G	lu	Phe	Leu	Asn	Asp	Ala	Leu	Thr	Ile	Asp	His	Ser	
		36						370					375				
											GAT						1502
Leu			ı Se	r As	sn .	Asp		Leu	He	Ala	Asp		Arg	Leu	Ser	Val	
CTC	380			~ A7			385		004	mma.		390			ama.	~	4==4
											AAC						1550
395		261	, Al	3 11		400	Ser	rne	GIY	rne	Asn 405	Leu	lyr	AIS	Leu	_	
		CAA	ΔΔι	ጉ ፐር			ACC	ТАС	CAC	CAC	GTC	ርፕሮ	ACC	CAC	СТТ	410	1598
											Val						1990
204	,6	V11.	. 1101	41		JIU	501	1,1	OIU	420	141	Den	1111	oru	425	1 116	
GAA	CGC	GCC	CA/		_	ACC	GCA	AAC	TAC		GAG	CTG	тст	GAA	_	GAG	1646
											Glu						1040
	Ū		430						435	6				440		010	
AAG	CTT	GAG	GTO	СТ	G (TG	AAG	GAA		CGC	AGC	CCT	CGT		CTG	ATC	1694
											Ser						
		445						450		-			455	-			
CCG	CAC	GGT	TCA	GA	T C	GAA	TAC	AGC	GAG	GTC	ACC	GAC	CGC	GAG	стс	GGC	1742
Pro	His	Gly	Ser	As	рG	lu	Tyr	Ser	Glu	Val	Thr	Asp	Arg	Glu	Leu	Gly	
	460						465		50			470					

		c	_							(20)								初册平1	0-1
ΑT	ሮ ፐ	5 C C		ACC	GCG	тсс	CAC	: ac	ፕ ሮፕ	ግጉ A A	G M	\ A Т	ጥር -	ccc	CCA		56 ATG		
																	, AlG Met		
47						480				•	48			o . ,		, ,,,,	490		
GT	G CC	T C	AC 1	rgc	ATC	ATC	TC	C AT	G GC	A TO	A TO	G G	TC .	ACC	GAT	GT(CTC		
Va	1 P1	ю Н	is (Cys	Ile	Ile	Sei	Me	t Al	a Se	r Se	r V	al '	Thr	Asp	Va]	Leu		
					495					50	-					505			
																	GGC	1886	
GI	u Pr	O Me			Leu	Leu	Lys	Glu			y Le	u I	le A	Ala			Gly		
GAI	C AA	c cc		510 YCC 1	ርርር	ACC	CTC	CAT	51 C. C.T.		c	. ~	T/ 1	PTC	520		ATC	1004	
																	Ile	1934	
		52		-6	J.,	1111	, ar	530	_	1 11	6 11	O L		35	GIU	Inr	116		
GA.	A GA			AG (GCC	GGC	GCC			C CT	C GA	C G/			TGG	AAA	ATT	1982	
										e Lei								1302	
	54						545					55	_		-	•			
										G CG(2030	
		и Ту	r A	rg /			Leu	Leu	Glı	n Arg	g As	As	sn V	'al	Gln	Glu	Val		
555						560					56						570		
										GA1								2078	
me t	Lei	1 01	уп	_	75	ASD	ser	ASN	Lys	Asp		/ G1	y T	yr	Phe		Ala		
AAC	TGO	GO	G Ci			GAC	GCG	GAA	СТС	580 CAG		· ct	ന ദ	A A .	СТА	585	CCA	2126	
										Gln								2126	
			59			-			595						600	0,0			
TCA	GCC	GGG	G G1	C A	AG (CTT	CGC	CTG	TTC	CAC	GGC	CG	T G	GT (GGC	ACC	GTC	2174	
Ser	Ala	Gl	y Va	al L	ys l	Leu	Arg	Leu	Phe	His	G1y	Ar	g G	ly (Gly	Thr	Val		
000		608						610						15					
										GCG								2222	
GIY	620		/ G1	y G	ту		ser 525	ıyr	Asp	Ala	He			la (3ln	Pro	Arg		
GGG			CA	A G	GT 1			CGC	ATC	ACC	GAG	630		י יצי	2AC	ልፐር	ATC	2270	
										Thr								2270	
635						40		Ŭ	_		645		- 0-	-, .			650		
TCC	GCT	AAG	TA	C G(GC A	AC C	cc	GAA	ACC	GCG	CGC	CGA	A A A	C C	тс (GAA (GCT	2318	
Ser	Ala	Lys	Ty.	r G	ly A	sn P	ro	Glu	Thr	Ala	Arg	Arg	, As	n L	.eu (Glu .	Ala		
000				65						660						665			
										CTT								2366	
Leu	vai	Ser	670		ır L	eu G	lu A			Leu	Leu	Asp	Va			ilu I	eu		
ACC	GAT	CAC			C G	ርር ፐ	AC. (675 atc	ATG	ACT	GAC	AT		80 CT 0	AC (ንጥ⁄	0.41.4	
										Met								2414	
	-	685			•			590			202	014	69		CI U	iu i	æu		
AGC	TTG	AAG	AAG	TA	C G	OC TO	CC 1	TG (GTG	CAC	GAG	GAT			GC T	TC A	TC	2462	
										His									
	700						05					710							
										CAG								2510	
	ľyr	Phe	Thr	Gl			ır P	ro I	Leu	Gln (Ile	Gly	y Se	er L	eu A	sn		
'15 TC (X. I	TCC	ልቦሶ	. ~~	72 r re		`A ^	~~ .			725	T-C-C-	m ^-		no -		30	0	
_										CAG							AT'	2558	

735 740 745 TTG CGA GCA ATC CCG TGG GTG CTC AGT TGG TCC CAG TCT CGT GTC ATG 2606 Leu Arg Ala Ile Pro Trp Val Leu Ser Trp Ser Gln Ser Arg Val Met 755 CTG CCG GGC TGG TTT GGT GTC GGC ACC GCA CTT GAG CAA TGG ATT GGC 2654 Leu Pro Gly Trp Phe Gly Val Gly Thr Ala Leu Glu Gln Trp Ile Gly 770 GAA GGG GAG CAG GCC ACC CAG CGC ATT GCC GAG CTA CAA ACA CTC AAC 2702 Glu Gly Glu Gln Ala Thr Gln Arg Ile Ala Glu Leu Gln Thr Leu Asn 780 785 GAG TCC TGG CCA TTT TTC ACC TCA GTG TTG GAT AAC ATG GCT CAG GTG 2750 Glu Ser Trp Pro Phe Phe Thr Ser Val Leu Asp Asn Met Ala Gln Val 795 800 805 ATG TCC AAG GCA GAG CTG CGT TTG GCA AAG CTC TAC GCA GAC CTG ATC 2798 Met Ser Lys Ala Glu Leu Arg Leu Ala Lys Leu Tyr Ala Asp Leu Ile 815 820 CCA GAT AGG GAA GTA GCT GAG CGC GTT TAT GCC GTC ATC CGC GAG GAA 2846 Pro Asp Arg Glu Val Ala Glu Arg Val Tyr Ala Val Ile Arg Glu Glu 830 835 TAC TTC CTG ACC AAG AAG ATG TTC TGC GTA ATC ACC GGT TCT GAT GAT 2894 Tyr Phe Leu Thr Lys Lys Met Phe Cys Val Ile Thr Gly Ser Asp Asp 850 CTG CTT GAT GAC AAC CCG CTT CTC GCA CGA TCC GTC CAG CGC CGA TAC 2942 Leu Leu Asp Asp Asn Pro Leu Leu Ala Arg Ser Val Gln Arg Arg Tyr 865 CCC TAC CTG CTT CCA CTC AAC GTG ATC CAG GTA GAG ATG ATG CGA CGC 2990 Pro Tyr Leu Leu Pro Leu Asn Val Ile Gln Val Glu Met Met Arg Arg TAC CGA AAA GGC GAC CAA AGC GAG CAA GTA TCC CGC AAC ATC CAG CTG 3038 Tyr Arg Lys Gly Asp Gln Ser Glu Gln Val Ser Arg Asn Ile Gln Leu 900 ACC ATG AAC GGT CTT TCC ACT GCA CTG CGC AAC TCT GGC TAGTCCTGCT 3087 Thr Met Asn Gly Leu Ser Thr Ala Leu Arg Asn Ser Gly 910 915 GGGTAGGTAG TACTCGTGTA TACTGTCTAA AGTTATTCGA AATCAGGTGG GAATAAGGTT 3147 CACCTGGGTT CTCAAACGGC AAAGGAACAT TTTCCACATG GCATTGACGC TTCAAATCAT 3207 CCTCGTCGTC GCCAGCCTGC TCATGACGGT TTTCGTCTTG CTGCACAAGG GCAAAGGCGG 3267 CGGACTCTCC AGCCTCTTCG GTGGCGGTGT GCAGTCCAAT CTTTCGGGCT CCACTGTTGT 3327 TGAAAAGAAC CTGGATCGCG TCACCATTTT GGTTGCCGTT ATCTGGATTG TGTGCATTGT 3387 CGCACTCAAC CTCATCCAGA CTTATTCATA AGACACGAGC TTAAAAAGAG CGGTTCCCTT 3447 TTCATAGGGG AGCCGCTTTT TTGGGTTTTG TCGACCTGTT GTCTCCCCAC TGTTCCTCGG 3507

【0110】配列番号:16

配列

*トポロジー:直鎖状

3533

配列の長さ:919 配列の種類:タンパク質

TGTGCACTTT CGACACCAAG ATTTCG

配列の型:アミノ酸

*

Met Thr Asp Phe Leu Arg Asp Asp Ile Arg Phe Leu Gly Gln Ile Leu
1 5 10 15

Gly Glu Val Ile Ala Glu Gln Glu Gln Glu Val Tyr Glu Leu Val

20 250 30

		59	a						,	(31)						£0
G1	u G1			rg	Leı	ı Thi	r Se	r Ph	e As	n II	e Ala	a I.vs	s G1	v Ası	n Al	60 a Glu
			35	Ŭ				4		, - -		,.	4			o ora
Me	t As	p Se	er L	eu	Val	l Glı	n Va	l Ph	e As	p Gl	y Ile	e Thi			a Ly	s Ala
		0					5					60				
Th	r Pr	o II	le A	la	Arg	g Ala	a Ph	e Se	r Hi	s Ph	e Ala	a Leu	ı Leı	ı Ala	a As:	n Leu
6	5					70)				75	5				80
A1	a Gl	u As	sp L	eu	Тут	: Ası	Gl	u Gli	u Lei	ı Ar	g Glu	ı Glr	ı Ala	a Lei	ı As	p Ala
					85					9					9	
Gl	y As	p Th			Pro	Ası	Sea	r Th	r Lei	ı Ası	p Ala	a Thi	Tr) Let	ı Ly:	s Leu
				00					108					110		
ASI	n GI			sn	Val	Gly	r Ala			a Va.	l Ala	Asp			ı Arş	g Asn
A 1.	. (1.	11		١.	D	17 - 1	τ.	120			_	mı	125			
AT	13		IT A	Ia	Pro	val	. Let 138		r Ala	3 H1:	s Pro			Thr	· Ar	g Arg
Arc			1 P	ha	Aen	. A1a			Trr	, T1,	. The	140		. Wat		g Glu
145		. ,,		10	пор	150		ı Lya	. 111	, 114	155		1115	mei	. All	160
		s Al	a Le	eu	Gln			Glu	ı Pro	Thi			Thr	Gln	Set	Lys
					165					170				0	175	
Leu	ı Ası	Gl	u I	le	Glu	Lys	Asn	Ile	Arg	Arg	g Arg	Ile	Thr	Ile		Trp
				30					185					190		-
Gln	1 Thi	r Al	a Le	eu	Ile	Arg	Val	Ala	Arg	Pro	Arg	Ile	Glu	Asp	Glu	Ile
		19	5					200)				20 5			
Glu			y Le	eu.	Arg	Tyr	Tyr	Lys	Leu	Ser	Leu	Leu	Glu	Glu	Ile	Pro
	210						215					220				
		As:	n Az	g	Asp			Val	Glu	Leu	Arg		Arg	Phe	Gly	
225		D	. T.	1	T	230		17-1	t	D	235		т.	71	01	240
wsh	191	. F13	o Le		Lys 245	rro	vai	vaı	Lys	250	Gly	Ser	ırp	шe		
Asn	His	Ası	n G1			Pro	Tvr	Val	Thr		Glu	Thr	Va1	Glu	255	
			26	_			-,-	741	265		OLU	1111	141	270	1 9 1	561
Thr	His	Ar			Ala	Glu	Thr	Val			Tyr	Tyr	Ala		Gln	Leu
		279				•		280		•	-	•	285			
His	Ser	Leu	ı Gl	u f	His	Glu	Leu	Ser	Leu	Ser	Asp	Arg	Met	Asn	Lys	Val
	290						295					300				
Thr	Pro	Glr	ı Le	u I	Leu	Ala	Leu	Ala	Asp	Ala	Gly	His	Asn	Asp	Val	Pro
305						310					315					320
Ser	Arg	Val	. As			Pro	Tyr	Arg	Arg		Val	His	Gly	Val	Arg	Gly
	-1				325	ė.				330					335	
Arg	He	Leu			hr	Thr	Ala	Glu		He	Gly	Glu	Asp		Val	Glu
Gl _w	Va1	Two	34			Vol.	Dho	Th.	345	Т	A1.	C	D	350	C1	DL -
Uly	141	355		e r	.yS	vaı	rne	360	L10	lyr	Ala		365	GIU	GIU	rne
Leu	Asn			a I	.eu	Thr	Τlα		Hie	Sor	Leu			Sor	Aen	Acn
204	370				,cu		375	nsp	1113	Dei	Leu	380	oru	961	USII	лър
Val		Ile	Ala	aА	sp.			Leu	Ser	Val	Leu		Ser	Ala	Ile	Glu
385						390	-	- =-			395				•	400
Ser	Phe	Gly	Phe	e A	sn	Leu	Tyr	Ala	Leu	Asp	Leu	Arg	Gln	Asn	Ser	
					05 [.]					410					415	
Ser	Tyr	Glu	Ası	V	al i	Leu	Thr	Glu	Leu	Phe	Glu	Arg .	Ala	Gln	Val	Thr
			420)	•				4260					430		

(32)	

Ala Asn Tyr Arg Glu Leu Ser Glu Ala Glu Lys Leu Glu Val Leu Leu 440 Lys Glu Leu Arg Ser Pro Arg Pro Leu Ile Pro His Gly Ser Asp Glu Tyr Ser Glu Val Thr Asp Arg Glu Leu Gly Ile Phe Arg Thr Ala Ser 470 475 Glu Ala Val Lys Lys Phe Gly Pro Arg Met Val Pro His Cys Ile Ile 485 490 Ser Met Ala Ser Ser Val Thr Asp Val Leu Glu Pro Met Val Leu Leu 500 505 Lys Glu Phe Gly Leu Ile Ala Ala Asn Gly Asp Asn Pro Arg Gly Thr 520 Val Asp Val Ile Pro Leu Phe Glu Thr Ile Glu Asp Leu Gln Ala Gly 535 Ala Gly Ile Leu Asp Glu Leu Trp Lys Ile Asp Leu Tyr Arg Asn Tyr 550 555 Leu Leu Gln Arg Asp Asn Val Gln Glu Val Met Leu Gly Tyr Ser Asp 565 Ser Asn Lys Asp Gly Gly Tyr Phe Ser Ala Asn Trp Ala Leu Tyr Asp 585 Ala Glu Leu Gln Leu Val Glu Leu Cys Arg Ser Ala Gly Val Lys Leu Arg Leu Phe His Gly Arg Gly Gly Thr Val Gly Arg Gly Gly Pro 615 Ser Tyr Asp Ala Ile Leu Ala Gln Pro Arg Gly Ala Val Gln Gly Ser 630 Val Arg Ile Thr Glu Gln Gly Glu Ile Ile Ser Ala Lys Tyr Gly Asn Pro Glu Thr Ala Arg Arg Asn Leu Glu Ala Leu Val Ser Ala Thr Leu 665 Glu Ala Ser Leu Leu Asp Val Ser Glu Leu Thr Asp His Gln Arg Ala 680 Tyr Asp Ile Met Ser Glu Ile Ser Glu Leu Ser Leu Lys Lys Tyr Ala 695 Ser Leu Val His Glu Asp Gln Gly Phe Ile Asp Tyr Phe Thr Gln Ser 710 Thr Pro Leu Gln Glu Ile Gly Ser Leu Asn Ile Gly Ser Arg Pro Ser 725 730 Ser Arg Lys Gln Thr Ser Ser Val Glu Asp Leu Arg Ala Ile Pro Trp 745 Val Leu Ser Trp Ser Gln Ser Arg Val Met Leu Pro Gly Trp Phe Gly Val Gly Thr Ala Leu Glu Gln Trp Ile Gly Glu Gly Glu Gin Ala Thr 775 780 Gln Arg Ile Ala Glu Leu Gln Thr Leu Asn Glu Ser Trp Pro Phe Phe 790 795 Thr Ser Val Leu Asp Asn Met Ala Gln Val Met Ser Lys Ala Glu Leu 805 810 Arg Leu Ala Lys Leu Tyr Ala Asp Leu Ile Pro Asp Arg Glu Val Ala 820

8250

830

(33)63 64 Glu Arg Val Tyr Ala Val Ile Arg Glu Glu Tyr Phe Leu Thr Lys Lys 840 Met Phe Cys Val Ile Thr Gly Ser Asp Asp Leu Leu Asp Asp Asn Pro 855 Leu Leu Ala Arg Ser Val Gln Arg Arg Tyr Pro Tyr Leu Leu Pro Leu 870 875 Asn Val Ile Gln Val Glu Met Met Arg Arg Tyr Arg Lys Gly Asp Gln 885 890 Ser Glu Gln Val Ser Arg Asn Ile Gln Leu Thr Met Asn Gly Leu Ser 900 905 Thr Ala Leu Arg Asn Ser Gly 915 【0111】配列番号:17 *トポロジー:直鎖状 配列の長さ:20 配列の種類:他の核酸 合成DNA 配列の型:核酸 アンチセンス:NO 鎖の数:一本鎖 配列 CGCGAGGTAC CACCTGTCAC 20 【0112】配列番号:18 ※トポロジー:直鎖状 配列の長さ:20 20 配列の種類:他の核酸 合成DNA 配列の型:核酸 アンチセンス:YES 鎖の数:一本鎖 Ж CAATCCAGGT ACCGGCAACC 20 【0113】配列番号:19 ★トポロジー:直鎖状 配列の長さ:23 配列の種類:他の核酸 合成DNA 配列の型:核酸 アンチセンス:NO 鎖の数:一本鎖 配列 GGATCCCCAA TCGATACCTG GAA 23 【0114】配列番号:20 ☆トポロジー:直鎖状 配列の長さ:23 配列の種類:他の核酸 合成DNA 配列の型:核酸 アンチセンス:YES 鎖の数:一本鎖 ☆ 配列 CGGTTCATCG CCAAGTTTTT CTT 23 【0115】配列番号:21 ◆トポロジー:直鎖状 配列の長さ:23 配列の種類:他の核酸 .合成DNA 配列の型:核酸 アンチセンス:NO 鎖の数:一本鎖 配列 GTCGACGGAT CGCAAATGGC AAC 23 【0116】配列番号:22 トポロジー:直鎖状 配列の長さ:23 配列の種類:他の核酸 合成DNA 配列の型:核酸 アンチセンス:YES 鎖の数:一本鎖

 【0117】配列番号:23
 鎖の数:一本鎖

 配列の長さ:20
 トポロジー:直鎖状

 配列の型:核酸
 50

 配列の種類:他の核酸 合成DNA

GGATCCTTGA GCACCTTGCG CAG

アンチセンス:NO

CATCTAAGTA TGCATCTCGG

【0118】配列番号:24

配列の長さ:20 配列の型:核酸 鎖の数:一本鎖

配列

TGCCCCTCGA GCTAAATTAG

【図面の簡単な説明】

【図1】 変異型lysCを有するプラスミドp399AK9B及び 10 p399AKYB構築の過程を示す図。

【図2】 lysAを有するプラスミドp299LYSAの構築の過程を示す図。

【図3】 lysA及びBrevi.-oriを有するプラスミドpLYS ABの構築の過程を示す図。

【図4】 PEPC構造遺伝子を含むプラスミドpAKPFdsの構築の過程を示す図。

【図5】 新規なコリネ型細菌用クローニングベクター pVK6及びpVK7の構築の過程を示す図。

【図6】 野生型高発現型ppcを含むプラスミドpPwmの 構築の過程を示す図。

【図7】 変異型lysC、lysA及びBrevi.-oriを有するプ※

20

*トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

アンチセンス:YES

20

※ラスミドpCLの構築の過程を示す図。

【図8】 dapA及びBrevi.-oriを有するプラスミドpDPS Bの構築の過程を示す図。

【図9】 dapB及びBrevi.-oriを有するプラスミドpDPR Bの構築の過程を示す図。

【図10】 ddh及びBrevi.ori-を有するプラスミドpPK 4Dの構築の過程を示す図。

【図11】 lysC、dapB及びBrevi.-oriを有するプラスミドpCRCABの構築の過程を示す図。

【図12】 変異型lysC、dapB及びBrevi.-oriを有する プラスミドpCBの構築の過程を示す図。

【図13】 変異型lysC及びddhを有するプラスミドpCD の構築の過程を示す図。

【図1】

EcoRI NruI PCR EcoRI HSG399 BamHI Kon I el, EcoR/分解 munni ライゲーション pHK4 Smal/Nrul EcoRI BamHI-Bardil, Kon 分類 D399AKY (p399AK9) 平滑束蟠化 Besill リンカーライゲーション (Racilly) BeatHI分祭 ライゲーション BamHI Smal/Nrul EcoRI Brevi.-orl BamHī lysC p399AKYB (p389AKSB)

【図2】

【図3】

[図4]

ή.

【図13】

フロントページの続き

(51) Int. Cl. ⁶		識別記号	FI
C 1 2 R	1:15)		

(C 1 2 N 1/21

C 1 2 R 1:15)

(C 1 2 P 13/08

C 1 2 R 1:15)

(72)発明者 中松 亘

神奈川県川崎市川崎区鈴木町1-1味の素 株式会社生産技術研究所内