Chapter

2

# DIFFERENTIATION

# OBJECTIVE

(1) The function  $f(x) = ax^2 + bx + c$  has maximum value if

(a) 
$$a > 0$$

(b) 
$$a < 0$$

(c) 
$$a > 1$$

(d) 
$$a > 2$$

(2) If 
$$y = e^{2x}$$
 then  $y_2 = ____$ 

(a) 
$$e^{2x}$$

(b) 
$$2e^{2x}$$

(c) 
$$4e^{2x}$$

(d) 
$$16e^{2x}$$

$$(3) \qquad \frac{\mathrm{d}}{\mathrm{dx}} \quad 100^{\mathrm{x}} =$$

(a) 
$$x 100^{x-1}$$

(d) 
$$100^x \ln 100$$

$$(4) x^3 \frac{d}{dx} \ell n2x = \underline{\hspace{1cm}}$$

(a) 
$$x^2$$

(b) 
$$\frac{x^2}{2}$$

$$(5) \qquad \frac{\mathrm{d}}{\mathrm{d}x} \ (\mathrm{ax} + \mathrm{b})^{\mathrm{n}} = \underline{\hspace{1cm}}$$

(a) 
$$na^{n-1}x + b$$

(b) 
$$n (ax + b)^{n-1}$$

(c) 
$$n a^{n-1}x$$

(d) na 
$$(ax + b)^{n-1}$$

(6) 
$$\frac{d}{dx} \sin h^{-1} x = \underline{\hspace{1cm}}$$

(Lahore Board 2007)

(a) 
$$\frac{1}{\sqrt{1-x^2}}$$

$$(b) \qquad \frac{1}{\sqrt{1+x^2}}$$

(d)

22

 $\frac{d}{dx} \sqrt{a^2 - x^2} =$ 

(a)  $\frac{-1}{\sqrt{a^2-x^2}}$ 

(b)

(c)  $\frac{-2}{\sqrt{a^2-x^2}}$ 

(d)

 $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} =$ (8)

> f(a) (a)

- f'(a)(b)
- integral of f(x)
- (d)

 $\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} (\cot^{-1} \mathbf{x}) = \underline{\hspace{1cm}}$ 

(a)  $\frac{1}{x\sqrt{x^2+1}}$ 

(c)

The increment of x is denoted by (10)

> δx (a)

(b) f'(x)

f(x) (c)

(d) None of these

For extreme values of f(x) at x = a, f'(x) must be (11)

> 0 (a)

3.124 (b)

2.718 (c)

(d) None of these

 $(12) \quad \frac{\mathrm{d}}{\mathrm{d}x} \, \tan h^{-1} \, x = \underline{\hspace{1cm}}$ 

(Lahore Board 2011)

(a)  $\frac{1}{1+x^2}$ 

(b)  $\frac{1}{1-x^2}$ 

 $(c) \qquad \frac{1}{\sqrt{1-x^2}}$ 

None of these (d)

(13)  $\frac{d}{dx} (g(x))^n = _____$ 

 $(a) \qquad n(g(x))^{n-1}$ 

(b)  $(g(x))^{n-1}$ 

(c)  $n(g(x))^{n-1}g^{1}(x)$ 

(d) None

 $(14) \quad \frac{d}{dx} (\cot^2 x) = \underline{\hspace{1cm}}$ 

(a)  $-\csc^2 x$ 

- (b) 2 cot x
- (c)  $-2 \cot x \csc^2 x$
- (d) None

(15) The process of finding derivatives of functions is called \_\_\_\_\_.

- (a) Differentiation
- (b) Increment

(c) Differential

(d) None

 $(16) \quad \frac{\mathrm{d}}{\mathrm{d}x} \cot x = \underline{\qquad}$ 

(Lahore Board 2014)

(a)  $sec^2x$ 

(b)  $\csc^2 x$ 

(c)  $-\csc^2 x$ 

(d) None of these

(17) The function  $f(x) = -3x^2$  is maximum at

(Lahore Board 2006)

(a) 3

(b) 2

(c)

(d) 0

(18)  $f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots$ 

(Lahore Board 2008)

(a) Taylor Series

- (b) Maclaurin Series
- (c) Relative Extrema
- (d) None

(19) [f(x), g(x)]' =

(Lahore Board 2006)

(a)  $f(x). g^{1}(x)$ 

- (b)  $f(x) g^{1}(x) f'(x) g(x)$
- (c) f'(x) g(x) + f(x) g'(x)
- (d)  $f'(x) + g^{1}(x)$

(20) If f'(c) = 0 then f has relative maximum at x = c is if (Lahore Board 2006)

(a) f''(c) > 0

(b) f''(c) < 0

(c) f''(c) = 0

(d)  $f''(c) \ge 0$ 

(21) Tenth order derivative of  $x^9 - 78x^7 + 1150x^3 - 789x$  is \_\_\_\_\_\_

(a)  $9x^{8}$ 

(b) 9

(c) 0

(d) None

(22)  $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$ 

(Gujranwala Board 2008)

(a) sin x

(b) cos x

(c)  $\ell n (1 + x)$ 

- (d)  $e^x$
- (23) The minimum value of the function  $f(x) = x^2 x 2$  is \_\_\_\_\_(Gujranwala Board 2008)
  - (a)  $\frac{-9}{2}$

(b)  $\frac{-9}{4}$ 

(c) -1

(d) 0

 $(24) \quad \frac{d}{dx} \log_a^x = \underline{\hspace{1cm}}$ 

(Gujranwala Board 2007)

(a)  $\frac{\ell na}{x}$ 

(b)  $\frac{1}{x \ell na}$ 

(c)  $\frac{1}{x}$ 

(d) x ℓna

- $(25) \quad \frac{\mathrm{d}}{\mathrm{d}x} \ \mathrm{a}^{\sqrt{x}} = \underline{\hspace{1cm}}$ 
  - (a)  $\sqrt{x} a^{\sqrt{x}-1}$

(b) 0

(c)  $\frac{\ell na}{2} a^{\sqrt{x}} \frac{1}{\sqrt{x}}$ 

- (d)  $a^{\sqrt{x}} \ell na$
- (26) For a function f, if  $f(x_2) > f(x_1)$ , whenever  $x_2 > x_1$ , f(x) is \_\_\_\_\_
  - (a) constant

(b) increasing

(c) decreasing

(d) None

(27)  $\frac{d}{dx} x^n = nx^{n-1} \text{ where }$ 

(Lahore Board 2006)

(a)  $n \in C$ 

(b)  $n \in \Re$ 

(c)  $n \in Q$ 

- (d)  $n \in Q'$
- (28) For a function f(x), if f'(c) = 0 & f''(c) > 0 then f(x) has, at x = c
  - (a) relative maxima
- (b) relative minima
- (c) point of inflection
- (d) stationary point
- (29) Any point where f(x) is neither increasing nor decreasing is called \_\_\_\_\_, provided f'(x) = 0 at that point.
  - (a) stationary point
- (b) critical point
- (c) point of inflection
- (d) None

- (30)  $\frac{d}{dx} \sin(\sin x) = \underline{\hspace{1cm}}$ 
  - (a)  $\cos(\sin x)$

- (b)  $\cos(\sin x)\cos x$
- (c)  $-\cos(\sin x)\cos x$
- (d) x

25

- $(31) \quad \frac{d}{dx} \log_2^x = \underline{\hspace{1cm}}$ 
  - (a)  $\frac{1}{\ell n^2}$

(b)  $\frac{2}{x}$ 

(c)  $\frac{1}{x \ell n^2}$ 

- (d) None of these
- (32) If  $y = e^x + x^e$  then  $y_2 =$ \_\_\_\_\_
  - (a)  $e^x$

(b)  $e^{x} + 1$ 

(c) 0

- (d) None
- (33)  $\delta x \to 0 \quad \frac{f(x + \delta x) f(x)}{\delta x} = \underline{\hspace{1cm}}$

# (Lahore Board 2007) (Lahore Board 2013)

(a) 0

(b) f'(x)

(c) f'(x) at x = a

- (d) not defined
- (34)  $\frac{d}{dx} \left[ \tan^{-1} x + \cot^{-1} x \right] =$ 
  - (a) 0

(b)

(c)  $\sin^{-1}x$ 

- (d)  $\cos^{-1}x$
- (35)  $\frac{d}{dx}(ax^m + bx^n) = _____$

(Lahore Board 2009)

(a)  $ax^{m-1} + bx^{n-1}$ 

(b)  $\max^{m-1} + nbx^{n-1}$ 

(c) a+b

- (d)  $x^m + x^n$
- (36) If  $f(x) = x^{\frac{2}{3}}$  then f'(8) =

(Lahore Board 2008, Lahore Board 2014)

(a)  $\frac{1}{2}$ 

(b)  $\frac{2}{3}$ 

(c)  $\frac{1}{3}$ 

(d) 3

(a)  $\cos 2\pi$ 

(b)  $2\cos 2\pi$ 

26

(c) 0

(d)  $-\cos 2\pi$ 

(38)  $\frac{d}{dx} 2^{5x} =$ \_\_\_\_\_

(a)  $5.2^{5x}$ 

(b)  $5.2^{5x} \ln 2$ 

(c)  $2^{5x} \ln 2$ 

(d)  $\frac{2^{5x}}{\ell n2}$ 

(39) If  $y = \cos x$  then  $y_4 =$ \_\_\_\_\_

(Lahore Board 2011)

(a) y

(b) y<sub>2</sub>

(c)  $y_3$ 

(d) y<sub>4</sub>

(40) Function  $f(x) = \sin x$  for domain  $(-\pi, \pi)$  is increasing in interval \_\_\_(Lahore Board 2011)

(a)  $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ 

(b)  $\left\lceil \frac{-\pi}{2}, \pi \right\rceil$ 

(c)  $\left[\frac{\pi}{2},\pi\right]$ 

(d)  $\left[-\pi, \frac{\pi}{2}\right]$ 

 $(41) \quad \frac{\mathrm{d}}{\mathrm{dx}} \left( \sqrt{\tan x} \right) = \underline{\hspace{1cm}}$ 

(Lahore Board 2011)

- (a)  $\frac{1}{2\sqrt{\tan x}} \sec^2 x$
- (b)  $\frac{\sec^2 x}{\sqrt{\tan x}}$

(c)  $\frac{\sec x}{\sqrt{\tan x}}$ 

(d)  $\frac{\sqrt{\sec x}}{\tan x}$ 

(42)  $(1 + x^2) \frac{d}{dx} (\tan^{-1} x + \cot^{-1} x) = \underline{\hspace{1cm}}$ 

(Lahore Board 2009)

(a) -1

(b) 0

(c) 1

(d) 2

(43) If  $y = \sin x$  then

(Lahore Board 2009)

(a)  $y_4 \neq y$ 

(b)  $y_4 = y_1$ 

(c)  $y_4 = y$ 

(d)  $y_4 = y_2$ 

(44) 
$$\sin x =$$
\_\_\_\_

(Lahore Board 2009)

(a) 
$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$
 (b)  $1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$ 

(b) 
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

(c) 
$$-x - \frac{x_3}{3} + \frac{x_5}{5} - \frac{x^7}{7} + \dots$$
 (d)  $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ 

(d) 
$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

If  $f(x) = \sin x$ , then slope of normal at x = 0 is (45)

(a) 
$$-1$$

27

(d) 
$$\frac{\sqrt{3}}{2}$$

If  $x = a \cos \theta$ ,  $y = a \sin \theta$ , then  $\frac{dy}{dx} =$ (46)

(a) 
$$-\cot\theta$$

 $\cot \theta$ (b)

(c) 
$$\sec \theta$$

(d) None of these

If  $y = \sqrt{a^2 + x^2}$ ,  $y_1 =$ (47)

(a) 
$$\frac{-x}{\sqrt{a^2+x^2}}$$

$$\frac{x}{\sqrt{a^2 + x^2}}$$

(c) 
$$\frac{x}{\sqrt{a^2 + x^2}}$$

$$(d) \qquad \frac{1}{\sqrt{a^2 + x^2}}$$

If f(x) = 3 + x then (48)

(a) 
$$f'(0) = f'(1)$$

(b) 
$$f(0) < f(1)$$

(c) 
$$f'(0 = f(0))$$

(d) 
$$f'(0) > f(0)$$

(49)

(c) 
$$-1$$

(d) does not exist

 $\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{2\ell\mathrm{n}x^{3}}\right) =$ (50)

(a) 
$$6x^5$$

(b) 
$$5x^5$$

(c) 
$$6x^6$$

(d) 
$$7x^6$$

If  $y = e^{-2x}$  then  $y'' - 2y' + y = _____$ (51)

(b) Зу (d) 9y

28

(52)  $\delta x \to 0 \frac{\tan (x + \delta x) - \tan x}{\delta x} = \underline{\hspace{1cm}}$ 

(a) tan x

(b) 0

(c) ∞

(d)  $\sec^2 x$ 

 $(53) \quad \frac{\mathrm{d}}{\mathrm{dx}} \, \mathrm{e}^{\,\ell \mathrm{nx}} = \underline{\hspace{1cm}}$ 

(a) 2x

(b) x

(c) e (nx

(d) 1

(54) Maclaurin's series is valid if \_\_\_\_\_

(a) Divergent

(b) Convergent

(c) Harmoni

(d) None

(55) If f'(x) does not change its sign before and after x = c, then at x = c, f is called \_\_\_\_

(a) Maxima

- (b) Minima
- (c) Point of inflection
- (d) None

(56) If f'(x) > 0 for each  $x \in (a, b)$  f is

- (a) constant function
- (b) increasing function
- (c) decreasing function
- (d) none

(57) Geometrically derivatives at any point of the curve represents \_\_\_(Lahore Board 2010)

(a) slope of chord

- (b) slope of tangent
- (c) slope of any line
- (d) none

(58)  $\frac{d}{dx} |x| = ____ at x = 0$ 

(a) 1

(b) -1

(c) 0

(d) does not exist

(59)  $\frac{d}{dx} [\cos h^{-1} (\sec (x)) = _____$ 

(a)  $\frac{1}{\sqrt{\sec^2 x - 1}}$ 

(b) cos x

(c) sin x

(d) sec x

If  $y = log_{10} (ax^2 + bx) =$ (60)

(a) 
$$\frac{1}{ax^2 + bx}$$

(b) 
$$\frac{1}{(ax^2 + bx) \ln 10}$$

(c) 
$$\frac{2ax + b}{(ax^2 + bx) \ln 10}$$

(d) None

29

(61)  $\frac{d}{dx} (x^3 - 5)^4 = \underline{\hspace{1cm}}$ 

(b) 
$$(3x^2)^6$$

(a) 
$$0$$
  
(c)  $4(x^3-5)^3$ 

(b) 
$$(3x^2)^4$$
  
(d)  $12(x^3-5)^3x^2$ 

(62)  $\frac{d}{dx} (2x^m - 7x^n) = ____$ 

(a) 
$$2mx^{m-1} - 7nx^{n-1}$$

(b) 
$$2x^{m-1} - 7x^{n-1}$$

(c) 
$$2-7$$

(d)

 $\frac{d}{dx}[f(x)\cos x] =$ 

(a) 
$$f'(x) \sin x + f(x) \cos x$$

(b)  $-f'(x) \sin x$ 

(c) 
$$f'(x) \cos x - f(x) \sin x$$

None of these (d)

If 3x - 4y + 9 = 0  $\frac{dy}{dx} =$ (64)

(b)

(c) 
$$\frac{-3}{4}$$

(d)

 $x3^{x-1}-x2^{x-1}$ (b)

(c) 
$$3^x \ln 3 - 2^x \ln 2$$

None of these (d)

(66)  $\frac{\mathrm{d}}{\mathrm{dx}} (\mathrm{e}^{\,\mathrm{tanx}}) = \underline{\hspace{1cm}}$ 

(a) 
$$e^{\tan x}$$

 $tan\;x\;e^{tan\;x\,-\,1}$ (b)

(c) 
$$e^{\tan x} \sec^2 x$$

 $e^{tanx}\;\ell n\;tanx$ (d)

(67) If 
$$f(x) = \begin{vmatrix} x^2 & \tan x \\ 7 & 2 \end{vmatrix}$$
 then  $f'(x) =$ \_\_\_\_\_\_

(a) 0

(b)  $\begin{vmatrix} 2x & \sec^2 x \\ 0 & 0 \end{vmatrix}$ 

(c)  $\begin{vmatrix} 2x & \sec^2 x \\ 7 & 2 \end{vmatrix}$ 

- (d)  $\begin{vmatrix} x^2 & \tan x \\ 7 & 2 \end{vmatrix}$
- (68) The function  $f(x) = ax^2 + bx + c$  has minimum value if
  - (a) a > 0

(b) a < 0

(c) a < -1

- (d) a < -2
- (69) The function  $f(x) = x^3$  is
  - (a) increasing for x > 0
- (b) increasing for x < 0
- (c) decreasing for x > 0
- (d) both a, b
- (70) If  $f(x) = -\sin x$  then  $f'''(\cos^{-1}x) =$ 
  - (a) x

(b) cos x

(c) -x

- (d)  $-\sin x$
- (71)  $\frac{d}{dx}\sin x \frac{d^2}{dx^2}(\cos x) = \underline{\hspace{1cm}}$ 
  - (a) 2 sin x

(b) 2 cos x

(c) 0

(d)  $-2 \sin x$ 

(72) 
$$\frac{d}{dx} \cos \theta^{\circ} = \underline{\hspace{1cm}}$$

(Lahore Board 2013)

(a)  $-\sin\theta$ 

(b) (

(c)  $-\sin\theta \frac{\pi}{180}$ 

- (d)  $-\frac{180}{\pi} \sin \theta$
- (73) Slope of constant function is \_\_\_\_\_
  - (a) 1

(b) 0

(c) -1

- (d) constant
- (74) If  $\frac{d}{dx} (3x^3 + x) = \frac{d}{dx} (-3x^2 5)$  then x =\_\_\_\_\_
  - (a) 1 or 2

(b) 1 or 0

(c)  $1 \text{ or } \frac{-1}{3}$ 

(d)  $-\frac{1}{3}$ 

(75) The point at which curve  $y = x^2 - 4x + 3$  has gradient -2 is \_\_\_\_\_

(a) (0, 1)

(b) (2, 1)

(c) (1, 0)

(d) (-3, 2)

 $(76) \quad \frac{\mathrm{d}}{\mathrm{dx}} \ \ell \mathrm{ne}^{\mathrm{x}^3} = \underline{\hspace{1cm}}$ 

(a)  $3x^2$ 

 $(b) \qquad \frac{1}{e^{x^3}} 3x^2$ 

(c)  $e^{x^3} 3x^2$ 

(d) None

Given  $S = 980t - 490t^2$ , the velocity at the instant  $t = \frac{1}{2}$  is \_\_(Lahore Board 2013)

-490 cm/sec (a)

49 cm/ sec (b)

490 cm/ sec (c)

(d) 490 cm

32

 $\frac{d}{dx} \cos(\cos(\cos x)) = \underline{\hspace{1cm}}$ 

- $-\sin \left[\cos \left(\cos x\right)\right]\sin \left(\cos x\right)$ (a)
- $-\cos [\sin (\sin x)]\sin (\sin x)$
- $-\sin [\cos (\cos x)] \sin (\cos x) \sin$
- (d)  $\sin [\cos (\cos x)] \cos (\cos x)$

(79) If  $\frac{y}{x} = \tan^{-1} \frac{x}{y} \frac{dy}{dx} =$ \_\_\_

(a)

(b)

(c)

 $\frac{\mathrm{d}}{\mathrm{d}x} 8^{2x-3} =$ (80)

(a)

 $(2x-3)8^{2x-3-1}$ (b)

(c)  $8^{2x-3} \ln 8 \times 2$ 

(d) None

 $1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}$  ..... is Maclaunn's series expansion of \_\_ (Lahore Board 2012)

(a) cos x

sin x (b)

 $\ell n (1-x)$ (c)

(d)  $\ell$ n (1 + x)

Notation Df(x) for derivative used by

(Lahore Board 2012)

cauchy (a)

(b) newton

 $\ell$ eibnitz (c)

(d) Lagrange

 $\frac{d}{dx} \left( \frac{a}{x} \right)$  where a is constant is

(Lahore Board 2012)

(a)

(b)

(c) 
$$\frac{a}{x^2}$$

(d) 
$$\frac{-a}{x^2}$$

(84) If 
$$y = x^2 - 1$$

$$dy =$$

#### (Lahore Board 2012)

(b) 
$$(x-1) dx$$

(d) 
$$2(x-1)dx$$

(85) If 
$$y = e^{-ax}$$
 then  $\frac{d^2y}{dx^2} =$ \_\_\_\_\_

(a) 
$$-a^2 e^{-ax}$$

(c) 
$$-ae^{-ax}$$

(d) 
$$a^2 e^{-ax}$$

(86) 
$$\frac{d}{dx}(\sin h \, 2x) = \underline{\hspace{1cm}}$$

### (Lahore Board 2012)

(a)  $2 \cos h 2x$ 

(b)  $2 \sin h 2x$ 

(c)  $-2 \cos h 2x$ 

(d)  $-2 \sin h 2x$ 

(87) If 
$$\frac{d}{dx} f(x) = \frac{x}{\sqrt{1-x^2}}$$
 then  $f'(\sin x) = \frac{1}{\sqrt{1-x^2}}$ 

## (Lahore Board 2012)

(a)  $sec^{-1}x$ 

(b)  $\frac{1}{\cot x}$ 

(c)  $\frac{1}{\tan x}$ 

(d)  $tan^{-1}x$ 

# (88) If $y = \cos x$ then

#### (Lahore Board 2012)

(a)  $y_4 + y = 0$ 

(b)  $y_4 - y = 0$ 

(c)  $y_2 - y = 0$ 

(d)  $y_3 - y = 0$ 

# (89) $\frac{d}{dx}(3)^{3x} =$ \_\_\_\_\_

#### (Lahore Board 2012)

(a)  $3^{3x} \ell n 3$ 

(b)  $3^{3x} \ln 9$ 

(c)  $3^{3x} \ln 27$ 

(d)  $3^{3x} \ln 18$ 

(90) 
$$\frac{d}{dx} (\tan^{-1} x) = \underline{\hspace{1cm}}$$

## (Lahore Board 2012)

(a) 
$$\frac{-x}{1+x^2}$$

(b) 
$$\frac{1}{1+x^2}$$

(c) 
$$\frac{1}{1-x^2}$$

$$(d) \qquad \frac{1}{x\sqrt{x^2 - 1}}$$

(91) 
$$\frac{d}{dx}[C \ f(x)] = _____$$

(Lahore Board 2012)

(a) 
$$Cf'(x)$$

(b) 
$$C'f'(x)$$

(c) 
$$[Cf(x)]'$$

(92) Notation for derivative was used by Newton

(Lahore Board 2013)

(a) 
$$\frac{dy}{dx}$$

(c) 
$$f'(x)$$

(d) 
$$f'(x)$$

(93) 
$$\frac{d}{dx} (\csc^2 x - \cot^2 x)$$
 is

(Lahore Board 2013)

(a) 
$$\cot^2 x + \csc^2 x$$

(b) 
$$-2 \csc x \cot x + 2 \cot x \csc^2 x$$

(d) 
$$\sec^2 x + \tan^2 x$$

(94) 
$$\frac{d}{dx} \cos^2 x$$
 is

(Lahore Board 2013)

(a) 
$$-\sin^2 x$$

(b) 
$$\sin^2 x$$

(c) 
$$-\sin 2x$$

(d) 
$$\sec^2 x = 0$$

(95) The function  $f(x) = 2 + 3x^2$  has minimum value at

(a) 
$$x = 3$$

(b) 
$$x = 2$$

(c) 
$$x = 1$$

(d) 
$$x = 0$$

(96) If y = f(x) is a differentiable function, then differential of x is defined by the relation. (Lahore Board 2013)

(a) 
$$dx = \delta y$$

(b) 
$$dx = dy$$

(c) 
$$\delta x = dy$$

(d) 
$$dx = \delta x$$

(97) If 
$$y = a^{f(x)}$$
 then  $\frac{dy}{dx} =$ \_\_\_\_\_

(Lahore Board 2013)

(a) 
$$\frac{f'(x) a^{f(x)}}{\ell na}$$

(b)  $f'(x) a^{f(x)}$ 

(c) 
$$f'(x) a^{f(x)} \ell na$$

 $(d) \qquad a^{f(x)} \ \ell n a$ 

(98) If 
$$f(x + h) = 2^{x+h}$$
 then  $f'(x) =$ \_\_\_\_\_

(b) 
$$\frac{2^x}{ln^2}$$

(c) 
$$2^x ln^2$$

$$(99) \quad \frac{\mathrm{d}}{\mathrm{dx}} \left( \frac{\mathrm{x}^2 - 4}{\mathrm{x} - 2} \right) = \underline{\hspace{1cm}}$$

(c) 
$$x + 2$$

(d) 
$$x-2$$

$$(100) \quad \frac{\mathrm{d}}{\mathrm{dx}} \, \mathrm{e}^{\mathrm{sinx}} \, = \underline{\hspace{1cm}}$$

(a) 
$$e^{\sin x} \cos x$$

(b) 
$$e^{\sin x} \sin x$$

(c) 
$$\sin x e^{\sin x-1}$$

(d) 
$$\sin x e^{\sin x+1}$$

(101) If 
$$y = ln (\sin x)$$
 then  $\frac{dy}{dx} =$ 

(b) cot x

(d) -cot x

$$(102) \quad \frac{d}{dx} \tan r =$$

(a) 
$$ln \cos x$$

(b)  $-ln \cos x$ 

(c) 
$$-\sec^2 x$$

(d)  $sec^2x$ 



| 1.  | b | 2.  | c | 3.          | d | 4.   | а | 5.   | d | 6.   | b |
|-----|---|-----|---|-------------|---|------|---|------|---|------|---|
| 7.  | d | 8.  | b | 9.          | c | 10.  | а | 11.  | а | 12.  | b |
| 13. | c | 14. | c | 15.         | а | 16.  | c | 17.  | d | 18.  | b |
| 19. | c | 20. | b | 21.         | c | 22.  | d | 23.  | b | 24.  | b |
| 25. | c | 26. | b | 27.         | c | 28.  | b | 29.  | а | 30.  | b |
| 31. | c | 32. | d | 33.         | b | 34.  | а | 35.  | b | 36.  | c |
| 37. | с | 38. | b | 39.         | а | 40.  | а | 41.  | а | 42.  | b |
| 43. | c | 44. | а | 45.         | а | 46.  | а | 47.  | b | 48.  | а |
| 49. | d | 50. | а | <i>51</i> . | d | 52.  | d | 53.  | d | 54.  | b |
| 55. | с | 56. | b | 57.         | b | 58.  | d | 59.  | d | 60.  | c |
| 61. | d | 62. | а | 63.         | c | 64.  | d | 65.  | c | 66.  | c |
| 67. | c | 68. | а | 69.         | d | 70.  | а | 71.  | b | 72.  | c |
| 73. | b | 74. | d | 75.         | c | 76.  | а | 77.  | с | 78.  | c |
| 79. | b | 80. | c | <i>81</i> . | а | 82.  | а | 83.  | d | 84.  | c |
| 85. | d | 86. | а | 87.         | b | 88.  | b | 89.  | c | 90.  | b |
| 91. | а | 92. | c | 93.         | c | 94.  | c | 95.  | d | 96.  | d |
| 97. | c | 98. | c | 99.         | b | 100. | а | 101. | b | 102. | d |