Przedmiot: Organizacja Systemów Zarządzania Baz Danych

Laboratorium: Przetwarzanie i analiza danych przestrzennych Oracle spatial

Autor: Bartłomiej Jamiołkowski, Adrianna Bodziony

Zadanie 1

Wizualizacja przykładowych danych:

a) US_STATES

Zapytanie:

select *

from us_states

Fragment wyniku:

4	ID		\$ STATE_ABRV		⊕ ТОТРОР				FEMALE	⊕ RURAL	ONFARMS		
1	29	Nevada	NV	32	1201833	13,2988	109786,625	10,9469	590309	140521	4831	975425	118805
2	30	New Hampshire	NH	33	1109252	17,3984	8967,8281	123,6922	565740	543573	5576	926739	90101
3	31	New Jersey	NJ	34	7730188	13,5996	7417,5585	1042,1464	3994544	819547	17283	6653832	640436
4	32	New Mexico	NM	35	1515069	15,6992	121343,625	12,4857	769093	410314	15090	1306991	124220
5	8	Delaware	DE	10	666168	15,3984	1954,2802	340,8762	343127	178830	6486	558167	57070
6	9	District of Columbia	DC	11	606900	12	61,4006	9884,25	324146	0	0	407915	102947
7	10	Florida	FL	12	12937920	12,3984	53988	239,6442	6682848	1967481	47436	10671192	1300064
8	11	Georgia	GA	13	6478216	14,3984	57908,7812	111,8692	3336454	2382138	80083	5527996	533234
9	12	Hawaii	HI	15	1108229	14,0996	6422,246	172,5607	543891	122410	6277	951091	67857
10	13	Idaho	ID	16	1006749	20	82736,75	12,168	505201	428373	44869	867180	80364

Wizualizacja:

b) US_INTERSTATES

Zapytanie:

select *

from us_interstates

Fragment wyniku:

	∯ ID		GEOM
1	32	1229	[MDSYS.SDO_GEOMETRY]
2	33	1235	[MDSYS.SDO_GEOMETRY]
3	34	1238	[MDSYS.SDO_GEOMETRY]
4	35	124	[MDSYS.SDO_GEOMETRY]
5	36	124N	[MDSYS.SDO_GEOMETRY]
6	23	I196	[MDSYS.SDO_GEOMETRY]
7	12	I15/I80	[MDSYS.SDO_GEOMETRY]
8	84	139	[MDSYS.SDO_GEOMETRY]
9	85	I390	[MDSYS.SDO_GEOMETRY]
10	86	I391	[MDSYS.SDO_GEOMETRY]

Wizualizacja:

c) US_CITIES

Zapytanie 1:

Fragment wyników 1:

	∯ID			⊕ POP90	⊕ RANK90	LOCATION
1	139	Scottsdale	AZ	130069	139	[MDSYS.SDO_GEOMETRY]
2	140	Plano	TX	128713	140	[MDSYS.SDO_GEOMETRY]
3	141	Oceanside	CA	128398	141	[MDSYS.SDO_GEOMETRY]
4	142	Lansing	MI	127321	142	[MDSYS.SDO_GEOMETRY]
5	143	Lakewood	CO	126481	143	[MDSYS.SDO_GEOMETRY]
6	144	Evansville	IN	126272	144	[MDSYS.SDO_GEOMETRY]
7	145	Boise City	ID	125738	145	[MDSYS.SDO_GEOMETRY]
8	146	Tallahassee	FL	124773	146	[MDSYS.SDO_GEOMETRY]
9	147	Laredo	TX	122899	147	[MDSYS.SDO_GEOMETRY]
10	148	Hollywood	FL	121697	148	[MDSYS.SDO_GEOMETRY]

Zapytanie 2 – miasta tylko z Texasu:

select *

from us_cities

where $state_abrv = 'TX'$

Wynik 2:

	∯ID	⊕ CITY		⊕ POP90	⊕ RANK90	LOCATION
1	140	Plano	TX	128713	140	[MDSYS.SDO_GEOMETRY]
2	147	Laredo	TX	122899	147	[MDSYS.SDO_GEOMETRY]
3	150	Pasadena	TX	119363	150	[MDSYS.SDO_GEOMETRY]
4	155	Beaumont	TX	114323	155	[MDSYS.SDO_GEOMETRY]
5	179	Abilene	TX	106654	179	[MDSYS.SDO_GEOMETRY]
6	187	Waco	TX	103590	187	[MDSYS.SDO_GEOMETRY]
7	190	Mesquite	TX	101484	190	[MDSYS.SDO_GEOMETRY]
8	4	Houston	TX	1630553	4	[MDSYS.SDO_GEOMETRY]
9	8	Dallas	TX	1006877	8	[MDSYS.SDO_GEOMETRY]
10	10	San Antonio	TX	935933	10	[MDSYS.SDO_GEOMETRY]

d) US_RIVERS

Zapytanie:

select *

from us_rivers

Fragment wyników:

	V	♦ NAME		GEOM
1	28	Platte	Mississippi	[MDSYS.SDO_GEOMETRY]
2	29	Potomac	(null)	[MDSYS.SDO_GEOMETRY]
3	30	Rainy	St. Lawrence	[MDSYS.SDO_GEOMETRY]
4	31	Red	Mississippi	[MDSYS.SDO_GEOMETRY]
5	18	Klamath	(null)	[MDSYS.SDO_GEOMETRY]
6	19	Mississippi	Mississippi	[MDSYS.SDO_GEOMETRY]
7	20	Missouri	Mississippi	[MDSYS.SDO_GEOMETRY]
8	5	Canadian	Mississippi	[MDSYS.SDO_GEOMETRY]
9	6	Chattahoochee	(null)	[MDSYS.SDO_GEOMETRY]
10	7	Clark Fork	Columbia	[MDSYS.SDO_GEOMETRY]

e) US_COUNTIES – tylko ze stanu Texas:

Zapytanie:

select *

from us_counties

where $state_abrv = 'TX'$

Fragment wyników:

	∯ ID			♦ STATE				⊕ ТОТРОР		GEOM
1	2694	Newton	48351	Texas	TX	48	932,5937	13569	14,5497	[MDSYS.SDO_GEOMETRY]
2	2695	Nolan	48353	Texas	TX	48	911,9077	16594	18,197	[MDSYS.SDO_GEOMETRY]
3	2696	Nueces	48355	Texas	TX	48	835,747	291145	348,3647	[MDSYS.SDO_GEOMETRY]
4	2697	Ochiltree	48357	Texas	TX	48	917,4692	9128	9,9491	[MDSYS.SDO_GEOMETRY]
5	2598	Franklin	48159	Texas	TX	48	285,6296	7802	27,315	[MDSYS.SDO_GEOMETRY]
6	2599	Freestone	48161	Texas	TX	48	885,0986	15818	17,8714	[MDSYS.SDO_GEOMETRY]
7	2600	Frio	48163	Texas	TX	48	1132,9296	13472	11,8912	[MDSYS.SDO_GEOMETRY]
8	2601	Gaines	48165	Texas	TX	48	1502,1582	14123	9,4018	[MDSYS.SDO_GEOMETRY]
9	2602	Galveston	48167	Texas	TX	48	398,6069	217399	545,3964	[MDSYS.SDO_GEOMETRY]
10	2603	Garza	48169	Texas	TX	48	895,4692	5143	5,7433	[MDSYS.SDO_GEOMETRY]

f) US_PARKS

Zapytanie parki o id mniejszym od 50:

select *

from us_parks

where id<50

Fragment wyników:

	∯ ID	NAME	FCC	GEOM
1	1	Lott Park	D85	[MDSYS.SDO_GEOMETRY]
2	2	Joe Patrick Park	D85	[MDSYS.SDO_GEOMETRY]
3	3	Bluff Park	D85	[MDSYS.SDO_GEOMETRY]
4	4	Municipal Park	D85	[MDSYS.SDO_GEOMETRY]
5	5	Knoll Park	D85	[MDSYS.SDO_GEOMETRY]
6	6	Pratt Memorial Park	D85	[MDSYS.SDO_GEOMETRY]
7	7	Bucks Pocket Tri-County Park	D85	[MDSYS.SDO_GEOMETRY]
8	8	Bucks Pocket Tri-County Park	D85	[MDSYS.SDO_GEOMETRY]
9	9	De Soto	D85	[MDSYS.SDO_GEOMETRY]
10	10	Mound State Monument	D85	[MDSYS.SDO_GEOMETRY]

Wybrano fragment, gdzie na powiększeniu widać część wyników.

Zadanie 2

Znajdź wszystkie stany (us_states) których obszary mają część wspólną ze wskazaną geometrią (prostokątem) Pokaż wynik na mapie.

a) Utworzenie geometrii – prostokąt.

SELECT sdo_geometry (2003, 8307, null, sdo_elem_info_array (1,1003,3), sdo_ordinate_array (-117.0, 40.0, -90., 44.0)) g FROM dual;

Wynikiem powyższego polecenia jest utworzony obiekt definiujący i przechowujący geometrię prostokąta. Oprócz tego na zrzucie ekranu widoczny jest zielony prostokąt.

b) Użycie funkcji SDO FILTER.

```
SELECT state, geom FROM us_states
WHERE sdo_filter (geom,
sdo_geometry (2003, 8307, null,
sdo_elem_info_array (1,1003,3),
sdo_ordinate_array (-117.0, 40.0, -90., 44.0))
) = 'TRUE';
```


Wynikiem powyższego polecenia jest mapa USA z prostokątnym wzorcem zaznaczonym na zielono oraz odfiltrowanymi stanami zaznaczonymi na czerwono. Stany oznaczone tym kolorem zostały wyselekcjonowane na podstawie podobieństwa ich kształtu do prostokąta. Łącznie uzyskano 16 stanów, choć wybór części z nich budzi kontrowersje. Przykładem może być California, która nie przypomina prostokąta. Dzieje się tak, ponieważ funkcja SDO_FILTER używa indeksu przestrzennego do identyfikacji zbioru obiektów przestrzennych, które prawdopodobnie będą oddziaływać przestrzennie z danym obiektem, jeśli nie są rozłączne. Ten operator wykonuje tylko podstawową operację filtrowania stąd wynikiem jest 16 stanów.

c) Użycie funkcji SDO ANYINTERACT

SELECT state, geom FROM us_states WHERE sdo_anyinteract (geom, sdo_geometry (2003, 8307, null,

```
sdo_elem_info_array (1,1003,3),
sdo_ordinate_array (-117.0, 40.0, -90., 44.0))
) = 'TRUE';
```


Wynikiem powyższego polecenia jest mapa USA z prostokątnym wzorcem zaznaczonym na zielono oraz odfiltrowanymi stanami zaznaczonymi na fioletowo. Stany oznaczone tym kolorem zostały wyselekcjonowane na podstawie podobieństwa ich kształtu do prostokąta. Łącznie uzyskano 14 stanów.

Powyższy wykres jest zestawieniem wyników SDO_FILTER i SDO_ ANYINTERACT. Można zauważyć, że wyniki obu funkcji różnią się o 2 stany, które nie przypominały prostokąta (oznaczenie kolorem czerwonym). Otrzymano takie wyniki, ponieważ funkcja SDO_ ANYINTERACT sprawdza, czy jakiekolwiek geometrie w tabeli mają relację topologiczną ANYINTERACT z określoną geometrią prostokąta. Ta funkcja jest skuteczniejsza od SDO_FILTER.

Zadanie 3

Znajdź wszystkie parki (us parks) których obszary znajdują się wewnątrz stanu Wyoming.

a) Użycie funkcji SDO_INSIDE

```
SELECT p.name, p.geom

FROM us_parks p, us_states s

WHERE s.state = 'Wyoming'

AND SDO_INSIDE (p.geom, s.geom ) = 'TRUE';
```

W przypadku wykorzystywania narzędzia SQL Developer, w celu wizualizacji na mapie użyj podzapytania

```
SELECT pp.name, pp.geom FROM us_parks pp
WHERE id IN
(
SELECT p.id
FROM us_parks p, us_states s
WHERE s.state = 'Wyoming'
and SDO_INSIDE (p.geom, s.geom ) = 'TRUE')
```

	t Output × Query Result ×	
	SQL All Rows Fetched: 32 in 0,	
	∯ NAME	GEOM
	Flume Creek Park	[MDSYS.SDO_GEOMETRY]
	Cinnabar Park	[MDSYS.SDO_GEOMETRY]
3	Sinclair Recreation Park	[MDSYS.SDO_GEOMETRY]
4	Kendrick Park	[MDSYS.SDO_GEOMETRY]
5	Beartrap Meadow County Park	[MDSYS.SDO_GEOMETRY]
6	Casper Mtn County Park	[MDSYS.SDO_GEOMETRY]
7	City Park	[MDSYS.SDO_GEOMETRY]
8	Prosinski Park	[MDSYS.SDO_GEOMETRY]
9	Optimist Park	[MDSYS.SDO_GEOMETRY]
10	Undine Park	[MDSYS.SDO_GEOMETRY]
11	Washington Park	[MDSYS.SDO_GEOMETRY]
12	Municipal Park	[MDSYS.SDO_GEOMETRY]
13	Ayres Natural Bridge Park	[MDSYS.SDO_GEOMETRY]
14	Lewis Park	[MDSYS.SDO_GEOMETRY]
15	Fort Laramie NHS	[MDSYS.SDO_GEOMETRY]
16	Robinson Park	[MDSYS.SDO_GEOMETRY]
17	Pioneer Park	[MDSYS.SDO_GEOMETRY]
18	Jirdon Park	[MDSYS.SDO_GEOMETRY]
19	Jirdon Park	[MDSYS.SDO_GEOMETRY]
20	Devils Tower NMON	[MDSYS.SDO_GEOMETRY]
21	City Park	[MDSYS.SDO_GEOMETRY]
22	Washington Memorial Park	[MDSYS.SDO_GEOMETRY]
23	Fossil Butte NMON	[MDSYS.SDO_GEOMETRY]
24	Mark Iii M.H. Park	[MDSYS.SDO_GEOMETRY]
25	Teton NF	[MDSYS.SDO_GEOMETRY]
26	Grand Teton NP	[MDSYS.SDO_GEOMETRY]
27	John D. Rockefeller, Jr. Memor	[MDSYS.SDO_GEOMETRY]
28	Island Park	[MDSYS.SDO_GEOMETRY]
29	Diversion Dam Park	[MDSYS.SDO_GEOMETRY]
30	Pete Miller Park	[MDSYS.SDO_GEOMETRY]
31	Popo Agie Park	[MDSYS.SDO_GEOMETRY]
32	North Side Park	[MDSYS.SDO_GEOMETRY]

Rezultatem powyższego zapytania są zwrócone 32 parki znajdujące się wewnątrz stanu Wyoming. Oprócz tego wynikiem podzapytania jest przybliżona mapa USA z widocznym stanem Wyoming. Na terenie tego stanu zaznaczone są na czerwono parki. Oznaczenie tych

parków jest możliwe, ponieważ wykorzystywana funkcja SDO_INSIDE, która sprawdza, czy jakiekolwiek geometrie w tabeli mają topologiczną relację wewnątrz z określoną geometrią.

select state, geom from us_states
where state = 'Wyoming'

b) Porównaj wynik z:

SELECT p.name, p.geom

FROM us_parks p, us_states s

WHERE s.state = 'Wyoming'

AND SDO_ANYINTERACT (p.geom, s.geom) = 'TRUE';

SQL All Rows Fetched: 47 in 0,1	
⊕ NAME (GEOM
1 Routt NF	[MDSYS.SDO_GEOMET
2 Flume Creek Park	[MDSYS.SDO_GEOMET
3 Cinnabar Park	[MDSYS.SDO_GEOMET
4 Custer NF	[MDSYS.SDO_GEOMET
5 Medicine Bow NF	[MDSYS.SDO_GEOMET
6 Bighorn Canyon NRA	[MDSYS.SDO_GEOMET
7 Bighorn NF	[MDSYS.SDO_GEOMET
8 Sinclair Recreation Park	[MDSYS.SDO_GEOMET
9 Kendrick Park	[MDSYS.SDO GEOMET
10 Beartrap Meadow County Park	[MDSYS.SDO GEOMET
	[MDSYS.SDO_GEOMET
	[MDSYS.SDO GEOMET
	[MDSYS.SDO_GEOMET
	[MDSYS.SDO_GEOMET
•	[MDSYS.SDO_GEOMET
	_
-	[MDSYS.SDO_GEOMET
	[MDSYS.SDO_GEOMET
23 Jirdon Park	[MDSYS.SDO_GEOMET
24 Jirdon Park	[MDSYS.SDO_GEOMET
25 Black Hills NF	[MDSYS.SDO_GEOMET
26 Devils Tower NMON	[MDSYS.SDO_GEOMET
27 City Park	[MDSYS.SDO_GEOMET
28 Washington Memorial Park	[MDSYS.SDO_GEOMET
29 Targhee NF	[MDSYS.SDO_GEOMET
30 Caribou NF	[MDSYS.SDO_GEOMET
	[MDSYS.SDO_GEOMET
	[MDSYS.SDO_GEOMET
20	
33 Mark Iii M.H. Park	[MDSYS.SDO_GEOME
34 Teton NF	[MDSYS.SDO_GEOME
35 Gallatin NF	[MDSYS.SDO_GEOME
36 Grand Teton NP	[MDSYS.SDO_GEOME
37 Yellowstone NP	[MDSYS.SDO_GEOME
38 Flaming Gorge Nat Rec Area	[MDSYS.SDO_GEOME
39 John D. Rockefeller, Jr. Memor	[MDSYS.SDO_GEOME
40 Island Park	[MDSYS.SDO GEOME
41 Shoshone NF	[MDSYS.SDO_GEOME
42 Diversion Dam Park	[MDSYS.SDO GEOME
43 Pete Miller Park	[MDSYS.SDO_GEOME
44 Popo Agie Park	
	[MDSYS.SDO_GEOME
45 North Side Park	[MDSYS.SDO_GEOME
46 Ashley NF	[MDSYS.SDO_GEOME

Wynikiem powyższego zapytania są 47 parki narodowe. Liczba tych parków jest większa od liczby parków z poprzedniego zapytania, ponieważ w tym wypadku została użyta inna funkcja SDO_ANYINTERACT, która sprawdza, czy jakiekolwiek geometrie w tabeli mają topologiczną relację z określoną geometrią. Innymi słowy zostały zwrócone wszystkie parki narodowe, które swoim terytorium zahaczają o stan Wyoming.

c) W celu wizualizacji użyj podzapytania

SELECT pp.name, pp.geom FROM us_parks pp

WHERE SDO_ANYINTERACT(pp.geom,

(SELECT ss.geom

FROM us_states ss

WHERE ss.state = 'Wyoming')) = 'TRUE';

Wynikiem powyższego podzapytania jest mapa stanu Wyoming zaznaczonego na zielono z naniesionymi parkami narodowymi. Parki wewnątrz stanu są oznaczone kolorem czerwonym, a te wychodzące poza granice stanu Wyoming są oznaczone kolorem fioletowym.

Zadanie 4

Znajdź wszystkie jednostki administracyjne (us_counties) wewnątrz stanu New Hampshire.

a) Zapytanie 1

SELECT c.county, c.state_abrv, c.geom

FROM us_counties c, us_states s

WHERE s.state = 'New Hampshire'

AND SDO_RELATE (c.geom, s.geom, 'mask=INSIDE+COVEREDBY') = 'TRUE';

Powyższe zapytanie zwróciło wszystkie 10 hrabstw w stanie New Hampshire. Jest to możliwe dzięki funkcji SDO_RELATE, która wykorzystuje indeks przestrzenny do identyfikacji zbioru obiektów przestrzennych oddziaływujących przestrzennie z danym obiektem. Pierwszym parametrem tej funkcji jest geografia hrabstw, drugim argumentem jest geografia stanów. Ostatnim argumentem omawianej funkcji jest maska INSIDE + COVEREDBY, dzięki której identyfikowane sa hrabstwa znajdujące się wewnątrz i objęte stanem New Hapmshire.

Podzapytanie 1

SELECT c.county, c.state_abrv, c.geom

FROM us_counties c

WHERE SDO_RELATE(c.geom,

(SELECT s.geom

FROM us states s

WHERE s.state = 'New Hampshire'),

'mask=INSIDE+COVEREDBY') = 'TRUE';

Wynikiem podzapytania jest obszar stanu New Hampshire na tle fragmentu mapy USA oznaczony kolorem czerwonym. Na tym obszarze zaznaczone liniami są granice poszczególnych hrabstw wewnątrz tego stanu.

b) Zapytanie 2

SELECT c.county, c.state_abrv, c.geom

FROM us_counties c, us_states s

WHERE s.state = 'New Hampshire'

AND SDO_RELATE (c.geom, s.geom, 'mask=INSIDE') = 'TRUE';

Powyższe zapytanie zwróciło wszystkie 2 hrabstwa w stanie New Hampshire. Jest to możliwe dzięki funkcji SDO_RELATE, która wykorzystuje indeks przestrzenny do identyfikacji zbioru obiektów przestrzennych oddziaływujących przestrzennie z danym obiektem. Pierwszym parametrem tej funkcji jest geografia hrabstw, drugim argumentem jest geografia stanów. Ostatnim argumentem omawianej funkcji jest maska INSIDE, dzięki której identyfikowane są hrabstwa znajdujące się wewnątrz stanu New Hapmshire bez kontaktu z jego granicami.

Podzapytanie 2

SELECT c.county, c.state_abrv, c.geom

FROM us_counties c

WHERE SDO_RELATE(c.geom,

(SELECT s.geom

FROM us_states s

WHERE s.state = 'New Hampshire'),

'mask=INSIDE') = 'TRUE';

Wynikiem podzapytania są 2 hrabstwa oznaczone kolorem czerwonym. Znajdują się one wewnątrz stanu New Hampshire i nie mają kontaktu z granicami stanu.

c) Zapytanie 3

SELECT c.county, c.state_abrv, c.geom

FROM us_counties c, us_states s

WHERE s.state = 'New Hampshire'

AND SDO_RELATE (c.geom, s.geom, 'mask=COVEREDBY') = 'TRUE';

Powyższe zapytanie zwróciło wszystkie 8 hrabstw w stanie New Hampshire. Jest to możliwe dzięki funkcji SDO_RELATE, która wykorzystuje indeks przestrzenny do identyfikacji zbioru obiektów przestrzennych oddziaływujących przestrzennie z danym obiektem. Pierwszym parametrem tej funkcji jest geografia hrabstw, drugim argumentem jest geografia stanów. Ostatnim argumentem omawianej funkcji jest maskaCOVEREDBY, dzięki której identyfikowane są hrabstwa znajdujące się wewnątrz stanu New Hapmshire styczne z jego granicami.

Podzapytanie 3

SELECT c.county, c.state_abrv, c.geom

FROM us_counties c

WHERE SDO_RELATE(c.geom,

(SELECT s.geom

FROM us_states s

WHERE s.state = 'New Hampshire'),

'mask=COVEREDBY') = 'TRUE';

Wynikiem podzapytania jest 8 hrabstw oznaczonych kolorem czerwonym. Znajdują się one wewnątrz stanu New Hampshire i są styczne z granicami stanu.

Zadanie 5

Znajdź wszystkie miasta w odległości 50 mili od drogi (us_interstates) I4. Zapytania wykorzystane do realizacji i wizualizacji:

```
SELECT * FROM us_interstates

WHERE interstate = 'I4';

SELECT * FROM us_states

WHERE state_abrv = 'FL';

SELECT c.city, c.state_abrv, c.location

FROM us_cities c

WHERE ROWID IN

(

SELECT c.rowid

FROM us_interstates i, us_cities c

WHERE i.interstate = 'I4'

AND sdo_within_distance (c.location, i.geom, 'distance=50 unit=mile')

= 'TRUE'

);

Wynik – miasta w odległości 50 mili od drogi I4:
```

		\$STATE_ABRV	LOCATION
1	St Petersburg	FL	[MDSYS.SDO_GEOMETRY]
2	Tampa	FL	[MDSYS.SDO_GEOMETRY]
3	Orlando	FL	[MDSYS.SDO_GEOMETRY]

Podgląd na mapie:

a) Znajdz wszystkie jednostki administracyjne przez które przechodzi droga I4

```
Zapytanie:
```

```
SELECT c.county, c.state_abrv, c.geom
```

FROM us_counties c

WHERE ROWID IN

(

SELECT c.ROWID

FROM us_interstates i, us_counties c

WHERE i.interstate = 'I4'

 $AND\ SDO_RELATE\ (c.geom,\ i.geom,\ 'mask=ANYINTERACT') = 'TRUE'$

);

			GEOM
1	Osceola	FL	[MDSYS.SDO_GEOMETRY]
2	Polk	FL	[MDSYS.SDO_GEOMETRY]
3	Hillsborough	FL	[MDSYS.SDO_GEOMETRY]
4	Orange	FL	[MDSYS.SDO_GEOMETRY]
5	Seminole	FL	[MDSYS.SDO_GEOMETRY]
6	Volusia	FL	[MDSYS.SDO_GEOMETRY]

b) Znajdz wszystkie jednostki administracyjne w pewnej odległości od I4

Wybrano odległość 10mil

Zapytanie:

SELECT c.county, c.state_abrv, c.geom

FROM us_counties c

WHERE ROWID IN

(

SELECT c.rowid

FROM us_interstates i, us_counties c

WHERE i.interstate = 'I4'

AND sdo_within_distance (c.geom, i.geom, 'distance=10 unit=mile')

= 'TRUE'

);

Wynik:

			GEOM
1	Pinellas	FL	[MDSYS.SDO_GEOMETRY]
2	Osceola	FL	[MDSYS.SDO_GEOMETRY]
3	Polk	FL	[MDSYS.SDO_GEOMETRY]
4	Hillsborough	FL	[MDSYS.SDO_GEOMETRY]
5	Pasco	FL	[MDSYS.SDO_GEOMETRY]
6	Lake	FL	[MDSYS.SDO_GEOMETRY]
7	Orange	FL	[MDSYS.SDO_GEOMETRY]
8	Seminole	FL	[MDSYS.SDO_GEOMETRY]
9	Volusia	FL	[MDSYS.SDO_GEOMETRY]
10	Flagler	FL	[MDSYS.SDO_GEOMETRY]

Wizualizacja:

c) Znajdz rzeki które przecina droga I4

Zapytanie:

SELECT r.name, r.geom

```
FROM us_rivers r

WHERE ROWID IN

(

SELECT r.ROWID

FROM us_interstates i, us_rivers r

WHERE i.interstate = 'I4'

AND SDO_RELATE (r.geom, i.geom, 'mask=ANYINTERACT') = 'TRUE'

);

Wynik:

$\int_{NAME} \quad \text{GEOM} \]
```

1 St. Johns [MDSYS.SDO_GEOMETRY]

Wizualizacja:

d) Znajdz wszystkie drogi które przecinają rzekę Mississippi Zapytanie:

SELECT geom FROM us_rivers WHERE name = 'Mississippi'

SELECT * FROM us_states ;

SELECT DISTINCT i.id, i.interstate, i.geom

FROM us_interstates i

WHERE SDO_RELATE(i.geom, (SELECT geom FROM us_rivers WHERE name = 'Mississippi'), 'mask=ANYINTERACT') = 'TRUE';

Wynik:

	∯ ID		GEOM
1	43	1270	[MDSYS.SDO_GEOMETRY]
2	185	174	[MDSYS.SDO_GEOMETRY]
3	135	157	[MDSYS.SDO_GEOMETRY]
4	1	I10	[MDSYS.SDO_GEOMETRY]
5	129	155	[MDSYS.SDO_GEOMETRY]
6	25	120	[MDSYS.SDO_GEOMETRY]
7	71	I35E	[MDSYS.SDO_GEOMETRY]
8	73	I35W	[MDSYS.SDO_GEOMETRY]
9	90	I40	[MDSYS.SDO_GEOMETRY]
10	39	1255	[MDSYS.SDO_GEOMETRY]
11	131	I55/I70	[MDSYS.SDO_GEOMETRY]
12	198	180	[MDSYS.SDO_GEOMETRY]
13	227	194	[MDSYS.SDO_GEOMETRY]
14	222	190	[MDSYS.SDO_GEOMETRY]
15	123	1494	[MDSYS.SDO_GEOMETRY]

Wizualizacja:

Zwiększono grubość linii wyznaczającej rzekę Missisipi (niebieska)

e) Znajdz wszystkie miasta w odlegości od 15 do 30 mil od drogi 'I275'

Zapytanie:

SELECT c.city, c.state_abrv, c.location

FROM us_cities c

WHERE ROWID IN

(

SELECT c.rowid

FROM us_interstates i, us_cities c

WHERE i.interstate = 'I275'

AND

SDO_GEOM.SDO_DISTANCE (c.location, i.geom, 0.0001, 'unit=mile') between 15 and 30);

Wynik:

	⊕ CITY		LOCATION
1	Sterling Heights	MI	[MDSYS.SDO_GEOMETRY]
2	Detroit	MI	[MDSYS.SDO_GEOMETRY]
3	Toledo	OH	[MDSYS.SDO_GEOMETRY]
4	Warren	MI	[MDSYS.SDO_GEOMETRY]

Wizualizacja:

f) Itp. (własne przykłady)

Wszystkie parki w odległości 5mil od Nowego Yorku

Zapytanie:

select c.name, c.geom

FROM us_parks c

WHERE ROWID IN

(

SELECT distinct c.rowid

FROM us_cities i, us_parks c

WHERE i.city = 'New York'

AND sdo_within_distance (c.geom, i.location, 'distance=5 unit=mile')

= 'TRUE');

Wynik:

	∯ID	♦ NAME	∯ FCC	GEOM
1	2002	Marine Park	D85	[MDSYS.SDO_GEOMETRY]
2	2001	Carnarsie Beach Park	D83	[MDSYS.SDO_GEOMETRY]
3	2030	Battery Park	D85	[MDSYS.SDO_GEOMETRY]
4	2071	Glen Ridge Park	D85	[MDSYS.SDO_GEOMETRY]
5	1996	Institute Park	D85	[MDSYS.SDO_GEOMETRY]
6	1995	Thompkins Park	D85	[MDSYS.SDO_GEOMETRY]
7	2029	Battery Park	D85	[MDSYS.SDO_GEOMETRY]
8	5412	Gateway NRA	D83	[MDSYS.SDO_GEOMETRY]
9	1999	Shore Road Park	D85	[MDSYS.SDO_GEOMETRY]
10	1998	Red Hook Recreational Area	D85	[MDSYS.SDO_GEOMETRY]
11	1997	Prospect Park	D85	[MDSYS.SDO_GEOMETRY]
12	2000	Owls Head Park	D85	[MDSYS.SDO_GEOMETRY]
13	2070	Juniper Valley Park	D85	[MDSYS.SDO_GEOMETRY]

Wizualizacja:

Wszystkie stany które przecina rzeka Missisipi

Zapytanie:

SELECT DISTINCT i.id, i.state $\,$, i.geom

FROM us_states i

WHERE SDO_RELATE(i.geom, (SELECT geom FROM us_rivers WHERE name = 'Mississippi'), 'mask=ANYINTERACT') = 'TRUE'

Wynik:

	∯ ID		GEOM
1	50	Wisconsin	[MDSYS.SDO_GEOMETRY]
2	14	Illinois	[MDSYS.SDO_GEOMETRY]
3	43	Tennessee	[MDSYS.SDO_GEOMETRY]
4	18	Kentucky	[MDSYS.SDO_GEOMETRY]
5	16	Iowa	[MDSYS.SDO_GEOMETRY]
6	24	Minnesota	[MDSYS.SDO_GEOMETRY]
7	26	Missouri	[MDSYS.SDO_GEOMETRY]
8	4	Arkansas	[MDSYS.SDO_GEOMETRY]
9	19	Louisiana	[MDSYS.SDO_GEOMETRY]
10	25	Mississippi	[MDSYS.SDO_GEOMETRY]

Wizualizacja:

Zadanie 6

Znajdz 5 miast najbliższych drogi I4

Zapytanie:

 $SELECT \ c.city, \ c.state_abrv, \ c.location \ FROM \ us_interstates \ i, \ us_cities \ c \ WHERE \\ i.interstate = 'I4' \ AND \ sdo_nn(c.location, i.geom, 'sdo_num_res=5') = 'TRUE';$

		\$ STATE_ABRV	LOCATION
1	Tampa	FL	[MDSYS.SDO_GEOMETRY]
2	Jacksonville	FL	[MDSYS.SDO_GEOMETRY]
3	St Petersburg	FL	[MDSYS.SDO_GEOMETRY]
4	Orlando	FL	[MDSYS.SDO_GEOMETRY]
5	Fort Lauderdale	FL	[MDSYS.SDO_GEOMETRY]

a) Znajdz 5 miast najbliższych rzece Mississippi

```
Zapytanie:
```

```
SELECT c.city, c.state_abrv, c.location
```

FROM us_cities c

WHERE ROWID IN (

SELECT c.ROWID

FROM us_rivers i, us_cities c

WHERE i.name = 'Mississippi' AND sdo_nn(c.location, i.geom, 'sdo_num_res=5') = 'TRUE'

);

	⊕ CITY		LOCATION
1	St Paul	MN	[MDSYS.SDO_GEOMETRY]
2	Memphis	TN	[MDSYS.SDO_GEOMETRY]
3	St Louis	MO	[MDSYS.SDO_GEOMETRY]
4	Minneapolis	MN	[MDSYS.SDO_GEOMETRY]
5	Baton Rouge	LA	[MDSYS.SDO_GEOMETRY]

b) Znajdz 3 miasta najbliżej Nowego Jorku Zapytanie:

SELECT c.city, c.state_abrv, c.location
FROM us_cities c
where c.city = 'New York'

SELECT c.city, c.state_abrv, c.location
FROM us_cities c
WHERE ROWID IN (
SELECT c.ROWID

```
FROM us_cities i, us_cities c

WHERE i.city = 'New York' and c.city <> 'New York' AND sdo_nn(c.location, i.location, 'sdo_num_res=4') = 'TRUE'
);
```

Wynik:

		\$STATE_ABRV	LOCATION
1	Elizabeth	NJ	[MDSYS.SDO_GEOMETRY]
2	Newark	NJ	[MDSYS.SDO_GEOMETRY]
3	Jersey City	NJ	[MDSYS.SDO_GEOMETRY]

Wizualizacja:

New York zaznaczony jest kolorem niebieskim, miasta najbliżej to czerwone punkty.

c) Znajdz kilka (5) jednostek administracyjnych (us_counties) z których jest najbliżej do Nowego Jorku

```
Zapytanie:
```

```
SELECT c.county, c.state_abrv, c.geom
```

FROM us_counties c

WHERE ROWID IN (

SELECT i.ROWID

FROM us_counties i, us_cities c

WHERE c.city = 'New York' AND sdo_nn(i.geom,c.location, 'sdo_num_res=5') = 'TRUE');

		\$STATE_ABRV	GEOM
1	Kings	NY	[MDSYS.SDO_GEOMETRY]
2	Hudson	NJ	[MDSYS.SDO_GEOMETRY]
3	New York	NY	[MDSYS.SDO_GEOMETRY]
4	Queens	NY	[MDSYS.SDO_GEOMETRY]
5	Richmond	NY	[MDSYS.SDO_GEOMETRY]

Niebieski punkt to Nowy York a na zielono zostały zaznaczone jednostki administracyjne.

d) Znajdz 5 najbliższych miast od drogi 'I170', podaj odległość do tych miast Zapytanie:

SELECT c.ROWID ,c.city, c.location ,SDO_GEOM.SDO_DISTANCE (c.location, i.geom, 0.5, 'unit=mile') as DISTANCE_MILES

FROM us_interstates i, us_cities c

WHERE i.interstate = 'I170' AND sdo_nn(c.location,i.geom, 'sdo_num_res=5') = 'TRUE' Wynik:

	∯ ROWID		LOCATION	♦ DISTANCE_MILES
1	AABH/ZAAHAADNODAAF	Evansville	[MDSYS.SDO_GEOMETRY]	158,224219737852
2	AABH/ZAAHAADNODAAS	Peoria	[MDSYS.SDO_GEOMETRY]	141,478021851223
3	AABH/ZAAHAADNODAAs	Springfield	[MDSYS.SDO_GEOMETRY]	78,7997463714433
4	AABH/ZAAHAADNOHAAh	St Louis	[MDSYS.SDO_GEOMETRY]	5,36297295124004
5	AABH/ZAAHAADNOHAB9	Springfield	[MDSYS.SDO_GEOMETRY]	188,508631077882

Wizualizacja:

Droga została zaznaczona na czarno, a miasta to czerwone punkty.

e) Znajdz 5 najbliższych dużych miast (o populacji powyżej 300 tys) od drogi 'I170' Zapytanie:

SELECT c.city, c.location

FROM us_cities c

WHERE c.id IN (

SELECT c.id

FROM us_interstates i, us_cities c

WHERE i.interstate = 'I170'

AND c.pop90 > 300000

ORDER BY SDO_GEOM.SDO_DISTANCE(c.location, i.geom, 0.5, 'unit=mile') FETCH FIRST 5 ROWS ONLY);

		LOCATION
1	Kansas City	[MDSYS.SDO_GEOMETRY]
2	St Louis	[MDSYS.SDO_GEOMETRY]
3	Indianapolis	[MDSYS.SDO_GEOMETRY]
4	Memphis	[MDSYS.SDO_GEOMETRY]
5	Chicago	[MDSYS.SDO_GEOMETRY]

Na środku widać drogę, pogrubiono linię dla lepszej widoczności.

f) Itp. (własne przykłady)

Zapytanie:

5 najbliższych miast do parku 'Yellowstone' wraz z odległościami

SELECT c.ROWID, c.city, c.location, SDO_GEOM.SDO_DISTANCE(c.location, p.geom,

0.5, 'unit=mile') AS DISTANCE_MILES

FROM us_cities c, us_parks p

WHERE p.name = 'Yellowstone NP'

AND SDO_NN(c.location, p.geom, 'sdo_num_res=5') = 'TRUE'

order by DISTANCE_MILES desc;

select *

from us_parks

where name = 'Yellowstone NP'

	⊕ ROWID		LOCATION	♦ DISTANCE_MILES
1	AABH/ZAAHAADNOHAAZ	Denver	[MDSYS.SDO_GEOMETRY]	400,301465153592
2	AABH/ZAAHAADNODAAE	Lakewood	[MDSYS.SDO_GEOMETRY]	396,250554456548
3	AABH/ZAAHAADNOHABd	Spokane	[MDSYS.SDO_GEOMETRY]	347,997155924646
4	AABH/ZAAHAADNODAAG	Boise City	[MDSYS.SDO_GEOMETRY]	257,976469020552
5	AABH/ZAAHAADNOHABr	Salt Lake City	[MDSYS.SDO_GEOMETRY]	235,69601066393

Trzy najbliższe rzeki do miasta Los Angeles

```
Zapytania:
select *
from us_cities
where city = 'Los Angeles' AND state_abrv = 'CA'
SELECT r.name, r.geom
FROM us_rivers r
WHERE r.ROWID IN (
SELECT r.ROWID
FROM us_rivers r, us_cities c
```

```
WHERE c.city = 'Los Angeles' AND c.state_abrv = 'CA'
AND SDO_NN(r.geom, c.location, 'sdo_num_res=3') = 'TRUE'
);
```

	NAME	GEOM
1	Colorado	[MDSYS.SDO_GEOMETRY]
2	Kings	[MDSYS.SDO_GEOMETRY]
3	San Joaquin	[MDSYS.SDO_GEOMETRY]

Zadanie 7

Oblicz długość drogi I4:

Zapytanie:

SELECT SDO_GEOM.SDO_LENGTH (geom, 0.5,'unit=kilometer') length FROM us_interstates WHERE interstate = 'I4';

Wynik:

a) Oblicz długość rzeki Mississippi

Zapytanie:

 $SELECT\ SDO_GEOM.SDO_LENGTH\ (geom,\ 0.5, 'unit=kilometer')\ length\\ FROM\ us_rivers$

WHERE name = 'Mississippi';

Wynik:

b) Która droga jest najdłuższa/najkrótsza

Zapytania:

• Najdłuższa:

SELECT interstate, SDO_GEOM.SDO_LENGTH(geom, 0.5,'unit=kilometer') AS length FROM us_interstates

ORDER BY length DESC

FETCH FIRST 1 ROWS ONLY;

• Najkrótsza:

SELECT interstate, SDO_GEOM.SDO_LENGTH(geom, 0.5, 'unit=kilometer') AS length FROM us interstates

ORDER BY length

FETCH FIRST 1 ROWS ONLY;

Wynik:

c) Która rzeka jest najdłuższa/najkrótsza

Zapytanie:

SELECT name, SDO_GEOM.SDO_LENGTH(geom, 0.5,'unit=kilometer') AS length FROM us_rivers

ORDER BY length DESC

FETCH FIRST 1 ROWS ONLY;

SELECT name, SDO_GEOM.SDO_LENGTH(geom, 0.5,'unit=kilometer') AS length FROM us_rivers

ORDER BY length

FETCH FIRST 1 ROWS ONLY;

Wynik:

Najdłuższa:

Najkrótsza:

NAME	LENGTH	
1 Richelieu	1,16169766454518	

d) Które stany mają najdłuższą granicę

Wybrano 5 stanów z najdłuższą granicą

Zapytanie:

SELECT state_abrv, SDO_GEOM.SDO_LENGTH(geom, 0.005) AS boundary_length

FROM us_states

ORDER BY boundary_length DESC

FETCH FIRST 5 ROWS ONLY;

Wynik:

		BOUNDARY_LENGTH
1	AK	26138374,5019651
2	TX	6779847,95094551
3	CA	4145766,47746918
4	MI	4140122,57047995
5	FL	3725078,58238253

e) Itp. (własne przykłady)

Wszystkie parki narodowe w stanie 'California':

Zapytanie:

SELECT *

FROM US_PARKS c

WHERE c.ROWID IN (

SELECT p.ROWID

FROM US_PARKS p, US_STATES s

WHERE s.state = 'California'

AND SDO_CONTAINS(s.geom, p.geom) = 'TRUE');

Zapytanie 2 - Wszystkie rzeki przecinające stany 'Texas' i 'Louisiana'

SELECT DISTINCT r.name

FROM US_RIVERS r, US_STATES s

WHERE (s.state = 'Texas' OR s.state = 'Louisiana')

AND SDO_RELATE(r.geom, s.geom, 'mask=ANYINTERACT') = 'TRUE';

Zapytanie:

SELECT DISTINCTsr.ROWID

FROM US_STATES s

WHERE (s.state = 'Texas' OR s.state = 'Louisiana')

SELECT c.ROWID, c.NAME, c.GEOM

FROM US_RIVERS c

WHERE c.ROWID IN (

SELECT DISTINCT r.ROWID

FROM US_RIVERS r, US_STATES s

WHERE (s.state = 'Texas' OR s.state = 'Louisiana')

AND SDO_RELATE(r.geom, s.geom, 'mask=ANYINTERACT') = 'TRUE');

	∯ ROWID	NAME	GEOM
1	AABH/3AAHAACAsRAAC	Rio Grande	[MDSYS.SDO_GEOMETRY]
2	AABH/3AAHAAB/xTAAF	Mississippi	[MDSYS.SDO_GEOMETRY]
3	AABH/3AAHAAB/xVAAD	Pecos	[MDSYS.SDO_GEOMETRY]
4	AABH/3AAHAAB/xUAAA	Canadian	[MDSYS.SDO_GEOMETRY]
5	AABH/3AAHAAB/xWAAD	Brazos	[MDSYS.SDO_GEOMETRY]
6	AABH/3AAHAAB/xTAAD	Red	[MDSYS.SDO_GEOMETRY]

Zadanie 8

Wykonaj kilka własnych przykładów/analiz.

a) Przykład 1 – Znalezienie państw śródlądowych

Interesującym przykładem może być znalezienie państw, które są śródlądowe (nie mają dostępu do morza).

```
\begin{split} m &= folium.Map() \\ q &= \text{"""SELECT sdo\_util.to\_wktgeometry(geometry)} \\ &\quad FROM \ world\_countries \\ &\quad WHERE \ landlocked = \text{'Y''""} \end{split}
```

```
r = loads(cursor.execute(q).fetchall())
st = {'fillColor': 'yellow', 'color': 'orange'}
l = []

for row in r:
    g = geojson.Feature(geometry=row[0], properties={})
    l.append(g)

feature_collection = geojson.FeatureCollection(l)
folium.GeoJson(feature_collection, style_function=lambda x:st).add_to(m)
m
```


Powyższa mapa pokazuje państwa, które nie mają dostępu do morza np.: Czechy, czy Austria. Ciekawym przypadkiem jest Kazachstan, który graniczy z akwenem Morze Kaspijskie, które w rzeczywistości jest największym jeziorem świata.

b) Przykład 2 – Stany, przez które przepływa rzeka Mississippi

```
\begin{split} m &= folium.Map() \\ q &= """SELECT sdo_util.to_wktgeometry(s.geom) \end{split}
```

```
FROM us_rivers r, us_states s
    WHERE r.name = 'Mississippi'
    and SDO_ANYINTERACT (s.geom, r.geom) = 'TRUE'"""
r = loads(cursor.execute(q).fetchall())
st = {'fillColor': 'pink', 'color': 'magenta'}
1 = \lceil \rceil
for row in r:
  g = geojson.Feature(geometry=row[0], properties={})
  1.append(g)
feature_collection = geojson.FeatureCollection(l)
folium.GeoJson(feature_collection, style_function=lambda x:st).add_to(m)
m
q = """SELECT sdo_util.to_wktgeometry(geom)
    FROM us_rivers where name = 'Mississippi''''''
r = loads(cursor.execute(q).fetchall())
st2 = {'color': 'blue'}
1 = []
for row in r:
  g = geojson.Feature(geometry=row[0], properties={})
  1.append(g)
feature_collection = geojson.FeatureCollection(l)
folium.GeoJson(feature_collection, style_function=lambda x:st2).add_to(m)
m
```


Powyższa mapa pokazuje stany, przez które przepływa rzeka Mississippi. Obserwując wizualizację można dojść do ciekawego wniosku, że rzeka jest na tyle duża, że dla większości stanów przez które przepływa, ustanowiono na niej ich granice.

c) Przykład 3 – Parki narodowe ulokowane wewnątrz stanu Arizona

```
m = folium.Map()
q = """SELECT sdo_util.to_wktgeometry(p.geom)
FROM us_parks p, us_states s
WHERE s.state = 'Arizona'
AND SDO_INSIDE (p.geom, s.geom ) = 'TRUE'"""
r = loads(cursor.execute(q).fetchall())
st = {'fillColor': 'blue', 'color': 'red'}

l = []
for row in r:
    g = geojson.Feature(geometry=row[0], properties={})
    l.append(g)

feature_collection = geojson.FeatureCollection(l)
```

folium.GeoJson(feature_collection, style_function=lambda x:st).add_to(m)

m

Powierzchnia parków narodowych znajdujących się całkowicie na terenie stanu Arizona jest znaczna , ponieważ wśród nich są takie parki jak popularny Wielki Kanion.