Naïve Bayes Classifiers and K means Clustering Aditya Tiwari(2016csb1029)

Naïve Bayes Classifiers

The assignment was to classify a given mail as spam or not spam on the basis of words that constitute it using Naive Bayes Classifier Model. The model considered m-estimation in calculating posterior probabilities with m=|Vocab| and p= $\frac{1}{|Vocab|}$.

Results:

Accuracy on Training is 0.913

Accuracy on Test is 0.899

Top 5 words indicating Spam with their posterior probability:

 1. enron:
 0.0371195456851

 2. a:
 0.0245840841951

 3. the:
 0.0229999464732

 4. corp:
 0.021127783711

 5. to:
 0.0194442391169

Top 5 words indicating Non-Spam with their posterior probability:

The Trouble with Predicting the class was that multiplying the Posterior probabilities of words lead to the the product being very close to zero which was throwing a math domain error. The Solution was to take log of the product i.e Sum of log of posterior

The Result of Varying m and observing Accuracy:

With P constant as $p = \frac{1}{|V \, ocab|}$

Observe Accuracy decreases as we increase m

We make the assumption with large m that for a given word, if its frequency is high, then only it affects spam decision else it won't.

And for words which aren't present in training, large M would mean that this word's effect is very low as M is in denominator.

With MxP constant i.e P= $p = \frac{1}{|M|}$

The m-estimation considers the words that were in test but not in training with some probability so as their posterior product doesn't goes to zero. If indeed M==0 means the given word since wasn't in the training the product would lead to zero, as we increase M the Accuracy decreases. I believe this is because Since we don't know anything about the current word that is not in training, its posterior of being equal to M

With P varying as MxP=1, the accuracy remains constant

Beating The the Naive Basis Classifier:

The model doesn't considers the frequency of the words when calculating the probability, it just takes in presence, So just increasing the frequency of same word in a mail wouldn't change its spamicity probability. However if One increased the number of words with High non-spam Posterior, NBC would consider it as non-spam even though it may be spam

This shortcoming of the model is because it relies on the Bayesian probability to calculate if it is a spam or not.

K-Means Clustering

The assignment was to label given 20x20 images of handwritten digits to actual digits.

Dataset: MNIST handwritten digits' dataset

*Library used sklearn

For 5 Clusters, Accuracy is 0.4338

Label in Cluster Label Assigned

1.	0	9
2.	1	0
3.	2	2
4.	3	6
5.	4	5

Here Label in cluster is the random(Varies after each run) label assigned by k means and Label Assigned is the Actual Label that was most frequent in random Labels.

E.g if we considered all the instances that were classified as 0 by the k means, and take the most frequent actual label of those instances, 9 would come out.

For 10 Clusters, Accuracy is 0.5562

Label in Cluster Label Assigned

1.	0	2)
2.	1	()
3.	2	()
4.	3	3	3
5.	4	ç)
6.	5	6	5
7.	6	7	7
8.	7	1	l
9.	8	5	5
10.	9	ç)

We Can see that there was only one cluster that was assigned actual 0 in k=5 where has here there are two clusters assigned 0 in k=10

For 15 Clusters, Accuracy is 0.673

Label in Cluster Label Assigned

1.	0	0
2.	1	4
3.	2	2
4.	3	7
5.	4	9

6.	5	2
7.	6	0
8.	7	3
9.	8	6
10.	9	1
11.	10	9
12.	11	5
13.	12	3
14.	13	6
15.	14	5

We Can see that there was only one cluster that was assigned actual 2 in k=10 where has here there are two clusters assigned 2

Similarly for 6 which comes two times. Since the label is from 0, 6 is for 7(THE DIGIT) and we can see that there are two 6 in k=15 and one 6 in k=10

So as K increases, the instances become more and more sparse and actual labels come out to be more frequent .

See the Above Graph.

It clearly shows increase in accuracy with increase in clusters which does risk overfitting

I think labels given in label.txt were 1-10 because then 6 would correspond to 7 and 0 to 1.

We can see in k=5 there were one 0(ACTUAL 1) and one 6(ACTUAL 7) in assigned label

And in k=10, there are two 0(ACTUAL 1) and one 6 (ACTUAL 7), so decreasing the clusters could have merged one of the cluster of 0(ACTUAL 1) with other 0(ACTUAL 1) itself or 6(ACTUAL 7).