DIT181: Data Structures and Algorithms AVL Trees

Gül Calikli

Email: calikli@chalmers.se

 Definition: An AVL tree is a binary search tree with additional balance property that for any node in the tree, the height of the left and right subtrees can differ by 1.

Question: Is this an AVL tree?

 Definition: An AVL tree is a binary search tree with additional balance property that for any node in the tree, the height of the left and right subtrees can differ by 1.

 Definition: An AVL tree is a binary search tree with additional balance property that for any node in the tree, the height of the left and right subtrees can differ by 1.

Answer: Acc. To definition, this is an AVL tree!

 Definition: An AVL tree is a binary search tree with additional balance property that for any node in the tree, the height of the left and right subtrees can differ by 1.

Question: Is this an AVL tree?

 Definition: An AVL tree is a binary search tree with additional balance property that for any node in the tree, the height of the left and right subtrees can differ by 1.

CHALMERS

 Definition: An AVL tree is a binary search tree with additional balance property that for any node in the tree, the height of the left and right subtrees can differ by 1.

Answer: Height of the subtrees for both nodes "12" and "8" differ by 2. Hence, this is not an AVL tree.

Question: What is the height of an empty AVL tree?

CHALMERS

- Answer: The height of an empty AVL tree is -1.
- Also, height of an AVL tree is always logarithmic. → In order to prove this, let's prove the following theorem.

Theorem: An AVL tree of height H has at least $F_{H+3} - 1$, where F_i is the i^{th} Fibonacci number.

Theorem: An AVL tree of height H has at least $F_{H+3} - 1$, where F_i is the i^{th} Fibonacci number.

- Let S_H be the minimum number of nodes in an AVL tree of height H can have.
- Then a minimum tree of height H will look like the following:

Question:

$$S_0 = ?$$

 $S_1 = ?$

Theorem: An AVL tree of height H has at least $F_{H+3} - 1$, where F_i is the i^{th} Fibonacci number.

- Let S_H be the minimum number of nodes in an AVL tree of height H can have.
- Then a minimum tree of height H will look like the following:

$$S_0 = 1$$

$$S_1 = 2$$

$$S_H = S_{H-1} + S_{H-2} + 1$$

Theorem: An AVL tree of height H has at least $F_{H+3} - 1$, where F_i is the i^{th} Fibonacci number.

$$S_2 = S_1 + S_0 + 1 = 4 = F_5 - 1$$

 $S_3 = S_2 + S_1 + 1 = 7 = F_6 - 1$
......
 $S_H = S_{H-2} + S_{H-1} + 1 = F_{H+3} - 1$

$$F_1 = 1$$
 $F_5 = F_3 + F_4 = 5$
 $F_2 = 1$ $F_6 = F_4 + F_5 = 8$
 $F_3 = F_1 + F_2 = 2$
 $F_4 = F_2 + F_3 = 3$ $F_i = F_{i-2} + F_{i-1}$

According to "Binet's formula" $F_i \approx \frac{\varphi^{\iota}}{\sqrt{5}}$, where φ is known as "Golden Ratio".

$$\varphi = (1 + \sqrt{5})/2 \approx 1.618$$

$$S_H = N \approx \varphi^{H+3}/\sqrt{5} = \frac{\varphi^3}{\sqrt{5}} * \varphi^H$$

$$\log(N+2) > \log\frac{\varphi^3}{\sqrt{5}} + H * \log\varphi$$

$$\log(N+2) \qquad \varphi^3 \qquad 1$$

$$\frac{\log(N+2)}{\log\varphi} > \log\frac{\varphi^3}{\sqrt{5}} * \frac{1}{\log\varphi} + H \quad \text{Multiply both sides of the equation by } \frac{1}{\log\varphi}$$

 $H < \frac{1}{\log \omega} * \log(N+2) + \log \frac{\varphi^3}{\sqrt{5}} * \frac{1}{\log \omega}$

$$H < 1.44 * log(N + 2) - 1.328$$

The worst case height of an AVL tree is at most roughly 44% more than the minimum possible for binary trees.

$$H < 1.44 * log(N + 2) - 1.328$$

CHALMERS

AVL Trees: Insertion

- If a node is inserted to an AVL, then it may need to be rebalanced.
- Let the node to be rebalanced be X.
- Because any node has at most two children that the heights of X's two subtrees differ by 2, a violation might occur in any of the following cases:
- Case 1: An insertion in the left subtree of the left child of X
- Case 2: An insertion in the right subtree of the left child of X
- Case 3: An insertion in the left subtree of the right child of X
- Case 4: An insertion in the right subtree of the right child of X

15

AVL Trees: Insertion

- If a node is inserted to an AVL, then it may need to be rebalanced.
- Let the node to be rebalanced be X.
- Because any node has at most two children that the heights of X's two subtrees differ by 2, a violation might occur in any of the following cases:
- Case 1: An insertion in the left subtree of the left child of X
- Case 2: An insertion in the right subtree of the left child of X
- Case 3: An insertion in the left subtree of the right child of X
- Case 4: An insertion in the right subtree of the right child of X

Case 1 and Case 4 are mirror image symmetries and both require **single rotation**.

AVL Trees: Insertion

- If a node is inserted to an AVL, then it may need to be rebalanced.
- Let the node to be rebalanced be X.
- Because any node has at most two children that the heights of X's two subtrees differ by 2, a violation might occur in any of the following cases:
- Case 1: An insertion in the left subtree of the left child of X
- Case 2: An insertion in the right subtree of the left child of X
- Case 3: An insertion in the left subtree of the right child of X
- Case 4: An insertion in the right subtree of the right child of X

Case 2 and Case 3 are mirror image symmetries and both require **double rotation**.

Before rotation

After rotation

Case 1: An insertion in the left subtree of the left child of X

 In-Class Exercise: Complete the following pseudocode for single rotation (Case 1)

```
/* Rotate binary tree node with left child

* For all AVL trees this is single rotation for case 1 */
Static BinaryNode rotateWithLeftChild(BinaryNode k2) {
... ... ...
}
```


After rotation

Before rotation

Case 4: An insertion in the right subtree of the right child of X

 In-Class Exercise: Complete the following pseudocode for single rotation (Case 4)

```
/* Rotate binary tree node with right child

* For all AVL trees this is single rotation for case 1 */
Static BinaryNode rotateWithRightChild(BinaryNode k2) {
... ... ...
}
```

Case 2: An insertion in the right subtree of the left child of X

Q

Before rotation

Q

R

P

R

CHALMERS

Case 2: An insertion in the right subtree of the left child of X

After rotation

Case 2: An insertion in the right subtree of the left child of X

Subtree Q has had an item inserted to it guarantees that it is not empty.

Assume that Q has a root with two (possibly empty) subtrees

After rotation

Case 2: An insertion in the right subtree of the left child of X

Before rotation

After rotation

- Left-Right double rotation consists of:
- Single rotation between child of k₃ (i.e., k₁) and grandchild of k₃ (i.e., k₂)
- Single rotation between k₃ and its new child k₂

After rotation

Before rotation

 In-Class Exercise: Complete the following pseudocode for left-right double rotation (Case 2)

```
/* Double Rotate binary tree node: first left child with its right child; then node k3 with its new left child. For all AVL trees this is left-right double rotation for case 2 */ Static BinaryNode doubleRotateWithLeftChild(BinaryNode k3) { ... ... ... ... ... ... }
```


 In-Class Exercise: Complete the following pseudocode for right-left double rotation (Case 3)

```
/* Double Rotate binary tree node: first right child with its left child; then node k1 with its new right child. For all AVL trees this is right-left double rotation for case 3 */
Static BinaryNode doubleRotateWithRightChild(BinaryNode k1) {
... ... ...
}
```