

(1) Publication number:

0 419 355 A1

(12)

EUROPEAN PATENT APPLICATION

21 Application number: 90402590.5

② Date of filing: 19.09.90

(5) Int. Cl.⁵: **C07K 13/00**, A61K 39/04, C12N 15/31, G01N 33/569, C12Q 1/68

(30) Priority: 19.09.89 EP 89402571

② Date of publication of application: 27.03.91 Bulletin 91/13

Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI LU NL SE

Applicant: N.V. INNOGENETICS S.A. Industriepark Zwijnaarde 7, Box 4 B-9710 Gent(BE)

7 Inventor: Content, Jean
5 Avenue Simone
B-1640 Rhode St-Genèse (BE)
Inventor: De Wit, Lucas
Victor Vergauwenstraat 46

B-2670 Puurs(BE)

Inventor: De Bruyn, Jacqueline

Hongarijestraat 192 B-1640 Beersel(BE)

Inventor: Van Vooren, Jean Paul

Brusselbaan 40

B-1600 St-Pieters Leeuw(BE)

Pepresentative: Grosset-Fournier, Chantal
Catherine et al
ERNEST GUTMANN-YVES PLASSERAUD S.A.,
67 boulevard Haussmann
F-75008 Paris(FR)

- Recombinant polypeptides and peptides, nucleic acids coding for the same and use of these polypeptides and peptides in the diagnostic of tuberculosis.
- The invention relates to recombinant polypeptides and peptides and particularly to the polypeptide containing in its polypeptidic chain the following amino acid sequence:
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (194) represented in fig. 4a and fig. 4b.

The polypeptides and peptides of the invention can be used for the diagnostic of tuberculosis, and can also be part of the active principle in the preparation of vaccine against tuberculosis.

RECOMBINANT POLYPEPTIDES AND PEPTIDES, NUCLEIC ACIDS CODING FOR THE SAME AND USE OF THESE POLYPEPTIDES AND PEPTIDES IN THE DIAGNOSTIC OF TUBERCULOSIS

The invention relates to recombinant polypeptides and peptides, which can be used for the diagnosis of tuberculosis. The invention also relates to a process for preparing the above-said polypeptides and peptides, which are in a state of biological purity such that they can be used as part of the active principle in the preparation of vaccines against tuberculosis.

It also relates to nucleic acids coding for said polypeptides and peptides.

5

45

Furthermore, the invention relates to the in vitro diagnostic methods and kits using the above-said polypeptides and peptides and to the vaccines containing the above-said polypeptides and peptides as active principle against tuberculosis.

By "recombinant polypeptides or peptides" it is to be understood that it relates to any molecule having a polypeptidic chain liable to be produced by genetic engineering, through transcription and translation, of a corresponding DNA sequence under the control of appropriate regulation elements within an efficient cellular host. Consequently, the expression "recombinant polypeptides" such as is used herein does not exclude the possibility for the polypeptides to comprise other groups, such as glycosylated groups.

The term "recombinant" indeed involves the fact that the polypeptide has been produced by genetic engineering, particularly because it results from the expression in a cellular host of the corresponding nucleic acid sequences which have previously been introduced into the expression vector used in said host.

Nevertheless, it must be understood that this expression does not exclude the possibility for the polypeptide to be produced by a different process, for instance by classical chemical synthesis according to methods used in the protein synthesis or by proteolytic cleavage of larger molecules.

The expression "biologically pure" or "biological purity" means on the one hand a grade of purity such that the recombinant polypeptide can be used for the production of vaccinating compositions and on the other hand the absence of contaminants, more particularly of natural contaminants.

Tuberculosis remains a major disease in developing countries. The situation is dramatic in some countries, particularly where high incidence of tuberculosis among AIDS patients represents a new source of dissemination of the disease.

Tuberculosis is a chronic infectious disease in which cell-mediated immune mechanisms play an essential role both for protection against and control of the disease.

Despite BCG vaccination, and some effective drugs, tuberculosis remains a major global problem. Skin testing with tuberculin PPD (protein-purified derivative) largely used for screening of the disease is poorly specific, due to cross reactivity with other pathogenic or environmental saprophytic mycobacteria.

Moreover, tuberculin PPD when used in serological tests (ELISA) does not allow to discriminate between patients who have been vaccinated by BCG, or those who have been primo-infected, from those who are developing evolutive tuberculosis and for whom an early and rapid diagnosis would be necessary.

A protein with a molecular weight of 32-kDa has been purified (9) from zinc deficient Mycobacterium bovis BCG culture filtrate (8). This 32-kDa protein of M. bovis BCG has been purified from Sauton zinc deficient culture filtrate of M. bovis BCG using successively hydrophobic chromatography on Phenyl-Sepharose, ion exchange on DEAE-Sephacel and molecular sieving on Sephadex G-100. The final preparation has been found to be homogeneous as based on several analyses. This P₃₂ protein is a constituent of BCG cells grown in normal conditions. It represents about 3% of the soluble fraction of a cellular extract, and appears as the major protein released in normal Sauton culture filtrate. This protein has been found to have a molecular weight of 32 000 by SDS-polyacrylamide gel electrophoresis and by molecular sieving.

The NH₂-terminal amino acid sequence of the 32-kDa protein of M. bovis BCG (Phe-Ser-Arg-Pro-Gly-Leu) is identical to that reported for the MPB 59 protein purified from M. bovis BCG substrain Tokyo (34).

Purified P_{32} of M. bovis BCG has been tested by various cross immunoelectrophoresis techniques, and has been shown to belong to the antigen 85 complex in the reference system for BCG antigens. It has been more precisely identified as antigen 85A in the closs reference system for BCG antigens (7).

Increased levels of immunoglobulin G antibodies towards the 32-kDa protein of M. bovis BCG could be detected in 70% of tuberculous patients (30).

Furthermore, the 32-kDa protein of M. bovis BCG induces specific lymphoproliferation and interferon-(IFN- γ) production in peripheral blood leucocytes from patients with active tuberculosis (12) and PPD-positive healthy subjects. Recent findings indicate that the amount of 32-kDa protein of M. bovis BCG-induced IFN- γ in BCG-sensitized mouse spleen cells is under probable H-2 control (13). Finally, the high affinity of mycobacteria for fibronectin is related to proteins of the BCG 85 antigen complex (1).

Matsuo et al. (17) recently cloned the gene encoding the antigen α , a major protein secreted by BCG (substrain Tokyo) and highly homologous to MPB 59 antigen in its NH₂-terminal amino acid sequence, and even identical for its first 6 amino acids: Phe-Ser-Arg-Pro-Gly-Leu.

This gene was cloned by using a nucleotide probe homologous to the N-terminal amino acid sequence of antigen α , purified from M. tuberculosis as described in Tasaka, H. et al., 1983. "Purification and antigenic specificity of alpha protein (Yoneda and Fukui) from Mycobacterium tuberculosis and Mycobacterium intracellulare. Hiroshima J. Med. Sci. 32, 1-8.

The presence of antigens of around 30-32-kDa, named antigen 85 complex, has been revealed from electrophoretic patterns of proteins originating from culture media of mycobacteria, such as Mycobacterium tuberculosis. By immunoblotting techniques, it has been shown that these antigens cross-react with rabbit sera raised against the 32-kDa protein of BCG (8).

A recent study reported on the preferential humoral response to a 30-kDa and 31-kDa antigen in lepromatous leprosy patients, and to a 32-kDa antigen in tuberculoid leprosy patients (24).

It has also been found that fibronectin (FN)-binding antigens are prominent components of short-term culture supernatants of Mycobacterium tuberculosis. In 3-day-old supernatants, a 30-kilodalton (kDa) protein was identified as the major (FN)-binding molecule. In 21-day-old supernatants, FN was bound to a double protein band of around 30 to 32-kDa, as well as to a group of antigens of larger molecular mass (57 to 60 kDa)(1).

In other experiments, recombinant plasmids containing DNA from Mycobacterium tuberculosis were transformed into Escherichia coli, and three colonies were selected by their reactivity with polyclonal antisera to M. tuberculosis. Each recombinant produced 35- and 53-kilodalton proteins (35K and 53K proteins, respectively) ("Expression of Proteins of Mycobacterium tuberculosis in Escherichia coli and Potential of Recombinant Genes and Proteins for Development of Diagnostic Reagents", Mitchell L Cohen et al., Journal of Clinical Microbiology, July 1987, p.1176-1180).

Concerning the various results known to date, the physico-chemical characteristics of the antigen P_{32} of Mycobacterium tuberculosis are not precise and, furthermore, insufficient to enable its unambiguous identifiability, as well as the characterization of its structural and functional elements.

Moreover, the pathogenicity and the potentially infectious property of M. tuberculosis has hampered research enabling to identify, purify and characterize the constituents as well as the secretion products of this bacteria.

An aspect of the invention is to provide recombinant polypeptides which can be used as purified antigens for the detection and control of tuberculosis.

Another aspect of the invention is to provide nucleic acids coding for the peptidic chains of biologically pure recombinant polypeptides which enable their preparation on a large scale.

Another aspect of the invention is to provide antigens which can be used in serological tests as an in vitro rapid diagnostic of tuberculosis.

35

Another aspect of the invention is to provide a rapid in vitro diagnostic means for tuberculosis, enabling it to discriminate between patients suffering from an evolutive tuberculosis from those who have been vaccinated against BCG or who have been primo-infected.

Another aspect of the invention is to provide nucleic probes which can be used as in vitro diagnostic reagent for tuberculosis, as well as in vitro diagnostic reagent for identifying M. tuberculosis from other strains of mycobacteria.

The recombinant polypeptides of the invention contain in their polypeptidic chain one at least of the following amino acid sequences:

- the one extending from the extremity constituted by amino acid at position (-29) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b, or
- the one extending from the extremity constituted by amino acid at position (12) to the extremity constituted by amino acid at position (31) represented on fig. 3a and fig. 3b, or
- the one extending from the extremity constituted by amino acid at position (36) to the extremity constituted by amino acid at position (55) represented on fig. 3a and fig. 3b, or
- the one extending from the extremity constituted by amino acid at position (77) to the extremity constituted by amino acid at position (96) represented on fig. 3a and fig. 3b, or
- the one extending from the extremity constituted by amino acid at position (101) to the extremity constituted by amino acid at position (120) represented on fig. 3a and fig. 3b, or
- the one extending from the extremity constituted by amino acid at position (175) to the extremity constituted by amino acid at position (194) represented on fig. 3a and fig. 3b, or
- the one extending from the extremity constituted by amino acid at position (211) to the extremity constituted by amino acid at position (230) represented on fig. 3a and fig. 3b, or

- the one extending from the extremity constituted by amino acid at position (275) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
- and the peptidic sequences resulting from the modification by substitution and/or by addition and/or by deletion of one or several amino acids in so far as this modification does not alter the following properties:
- the polypeptides react with rabbit polyclonal antiserum raised against the protein of 32-kDa of M. bovis BCG culture filtrate, and/or
 - react selectively with human sera from tuberculosis patients and particularly patients developing an evolutive tuberculosis at an early stage,
- and/or react with the amino acid sequence extending from the extremity constituted by amino acid at position (1), to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b.

On figures 3a and 3b:

- X represents G or GG,
- Y represents C or CC,
- Z represents C or G,
- W represents C or G and is different from Z,
 - X represents C or CG,
 - L represents G or CG,
 - a₁-b₁ represents ALA-ARG or GLY-ALA-ALA,
 - a2 represents arg or gly,
- a₃-b₃-c₃-d₃-e₃-f₃- represents his-trp-val-pro-arg-pro or ala-leu-gly-ala,
 - a4 represents pro or pro-asn-thr,
 - as represents pro or ala-pro.

The recombinant polypeptides of the invention contain in their polypeptidic chain one at least of the following amino acid sequences:

- the one extending from the extremity constituted by amino acid at position (-29) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b, or
 - the one extending from the extremity constituted by amino acid at position (12) to the extremity constituted by amino acid at position (31) represented on fig. 4a and fig. 4b, or
 - the one extending from the extremity constituted by amino acid at position (36) to the extremity constituted by amino acid at position (55) represented on fig. 4a and fig. 4b, or
 - the one extending from the extremity constituted by amino acid at position (77) to the extremity constituted by amino acid at position (96) represented on fig. 4a and fig. 4b, or
 - the one extending from the extremity constituted by amino acid at position (101) to the extremity constituted by amino acid at position (120) represented on fig. 4a and fig. 4b, or
- the one extending from the extremity constituted by amino acid at position (175) to the extremity constituted by amino acid at position (194) represented on fig. 4a and fig. 4b, or
 - the one extending from the extremity constituted by amino acid at position (211) to the extremity constituted by amino acid at position (230) represented on fig. 4a and fig. 4b, or
- the one extending from the extremity constituted by amino acid at position (275) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
- and the peptidic sequences resulting from the modification by substitution and/or by addition and/or by deletion of one or several amino acids in so far as this modification does not alter the following properties: the polypeptides react with rabbit polyclonal antiserum raised against the protein of 32-kDa of M. bovis BCG culture filtrate, and/or
- react selectively with human sera from tuberculosis patients and particularly patients developing an evolutive tuberculosis at an early stage,
 - and/or react with the amino acid sequence extending from the extremity constituted by amino acid at position (1), to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b.

The recombinant polypeptides of the invention contain in their polypeptidic chain one at least of the following amino acid sequences:

- the one extending from the extremity constituted by amino acid at position (-30) to the extremity constituted by amino acid at position (-1) represented on fig. 5, or
- the one extending from the extremity constituted by amino acid at position (12) to the extremity constituted by amino acid at position (31) represented on fig. 5, or
- the one extending from the extremity constituted by amino acid at position (36) to the extremity constituted by amino acid at position (55) represented on fig. 5, or
 - the one extending from the extremity constituted by amino acid at position (77) to the extremity constituted by amino acid at position (96) represented on fig. 5, or

20

30

55

- the one extending from the extremity constituted by amino acid at position (101) to the extremity constituted by amino acid at position (120) represented on fig. 5, or
- the one extending from the extremity constituted by amino acid at position (175) to the extremity constituted by amino acid at position (194) represented on fig. 5, or
- the one extending from the extremity constituted by amino acid at position (211) to the extremity constituted by amino acid at position (230) represented on fig. 5, or
- the one extending from the extremity constituted by amino acid at position (275) to the extremity constituted by amino acid at position (295) represented on fig. 5,
- and the peptidic sequences resulting from the modification by substitution and/or by addition and/or by deletion of one or several amino acids in so far as this modification does not alter the following properties: the polypeptides react with rabbit polyclonal antiserum raised against the protein of 32-kDa of M. bovis BCG culture filtrate, and/or
- react selectively with human sera from tuberculosis patients and particularly patients developing an evolutive tuberculosis at an early stage,
- and/or react with the amino acid sequence extending from the extremity constituted by amino acid at position (1), to the extremity constituted by amino acid at position (295) represented on fig. 5.

Advantageous polypeptides of the invention are characterized by the fact that they react with rabbit polyclonal antiserum raised against the protein of 32-kDa of M. bovis BCG culture filtrate, hereafter designated by "P₃₂ protein of BCG".

Advantageous polypeptides of the invention are characterized by the fact that they selectively react with human sera from tuberculous patients and particularly patients developing an evolutive tuberculosis at an early stage.

Hereafter is given, in a non limitative way a process for preparing rabbit polyclonal antiserum raised against the P_{32} protein of BCG and a test for giving evidence of the reaction between the polypeptides of the invention and said rabbit polyclonal antiserum raised against the P_{32} protein of BCG.

- 1) process for preparing rabbit polyclonal antiserum raised against the P₃₂ protein of BCG:
- Purified P₃₂ protein of BCG from culture filtrate is used.
 - a) Purification of protein P32 of BCG

P₃₂ protein can be purified as follows:

The bacterial strains used are M. bovis BCG substrains 1173P2 (Pasteur Institute, Paris) and GL2 (Pasteur Institute, Brussels).

The culture of bacteria is obtained as follows:

Mycobacterium bovis BCG is grown as a pellicle on Sauton medium, at 37.5 °C for 14 days. As the medium is prepared with distilled water, zinc sulfate is added to the final concentration of 5 µM (normal Sauton medium) (De Bruyn J., Weckx M., Beumer-Jochmans M.-P. Effect of zinc deficiency on Mycobacterium tuberculosis var. bovis (BCG). J. Gen. Microbiol. 1981; 124:353-7). When zinc deficient medium was needed, zinc sulfate is omitted.

The filtrates from zinc deficient cultures are obtained as follows:

The culture medium is clarified by decantation. The remaining bacteria are removed by filtration through Millipak 100 filter unit (Millipore Corp., Bedford, Mass.). When used for purification, the filtrate is adjusted to 20 mM in phosphate, 450 mM in NaCl, 1 mM in EDTA, and the pH is brought to 7.3 with 5 M HCl before sterile filtration.

The protein analysis is carried out by polyacrylamide gel electrophoresis. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was done on 13% (w/v) acrylamide-containing gels as described by Laemmli UK. (Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680-5). The gels are stained with Coomassie Brilliant Blue R-250 and for quantitative analysis, scanned at 595 nm with a DU8 Beckman spectrophotometer. For control of purity the gel is revealed with silver stain (Biorad Laboratories, Richmond, Calif.).

The purification step of P_{32} is carried out as follows: Except for hydrophobic chromatography on Phenyl-Sepharose, all buffers contain Tween 80 (0.005% final concentration). The pH is adjusted to 7.3 before sterilization. All purification steps are carried out at $+4^{\circ}$ C. Elutions are followed by recording the absorbance at 280 nm. The fractions containing proteins are analysed by SDS-PAGE.

(i) The treated filtrate from a 4 liters zinc-deficient culture, usually containing 125 to 150 mg protein per liter, is applied to a column (5.0 by 5.0 cm) of Phenyl-Sepharose CL-4B (Pharmacia Fine Chemicals, Uppsala, Sweden), which is previously equilibrated with 20 mM phosphate buffer (PB) containing 0.45 M NaCl and 1 mM EDTA, at a flow rate of 800 ml per hour. The gel is then washed with one column volume of the same buffer to remove unfixed material and successively with 300 ml of 20 mM and 4 mM PB and 10% ethanol (v/v). The P₃₂ appears in the fraction eluted with 10% ethanol.

(ii) After the phosphate concentration of this fraction has been brought to 4 mM, it is applied to a column (2.6 by 10 cm) of DEAE-Sephacel (Pharmacia Fine Chemicals), which is equilibrated with 4 mM PB. After washing with the equilibrating buffer the sample is eluted with 25 mM phosphate at a flow rate of 50 ml per hour. The eluate is concentrated in a 202 Amicon stirred cell equipped with a PM 10 membrane (Amicon Corp., Lexington, Mass.).

(iii) The concentrated material is submitted to 4 mg of P₃₂ protein of BCG (soluble extract) or molecular sieving on a Sephadex G-100 (Pharmacia) column (2.6 by 45 cm) equilibrated with 50 mM PB, at a flow rate of 12 ml per hour. The fractions of the peak giving one band in SDS-PAGE are pooled. The purity of the final preparation obtained is controlled by SDS-PAGE followed by silverstaining and by molecular sieving on a Superose 12 (Pharmacia) column (12.0 by 30 cm) equilibrated with 50 mM PB containing 0.005% Tween 80 at a flow rate of 0.2 ml/min. in the Fast Protein Liquid Chromatography system (Pharmacia). Elution is followed by recording the absorbance at 280 nm and 214 nm.

20

5

10

15

b) Preparation of rabbit polyclonal antiserum raised against the P₃₂ protein of BCG:

400 μg of purified P₃₂ protein of BCG per ml physiological saline are mixed with one volume of incomplete Freund's adjuvant. The material is homogenized and injected intradermally in 50 μl doses delivered at 10 sites in the back of the rabbits, at 0, 4, 7 and 8 weeks (adjuvant is replaced by the diluent for the last injection). One week later, the rabbits are bled and the sera tested for antibody level before being distributed in aliquots and stored at -80° C;

30

2) test for giving evidence of the reaction between the polypeptides of the invention and said rabbit polyclonal antiserum raised against the P₃₂ protein of BCG:

the test used was an ELISA test; the ELISA for antibody determination is based on the method of Engvall and Perlmann (Engvall, E., and P. Perlmann. 1971. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin C. Immunochemistry 8:871-874)

Immulon Microelisa plates (Dynatech, Kloten, Switzerland) are coated by adding to each well 1 µg of one of the polypeptides of the invention in 100 µl Tris hydrochloride buffer 50 mM (pH 8.2). After incubation for 2 h at 27°C in a moist chamber, the plates are kept overnight at 4°C. They are washed four times with 0.01 M phosphate-buffered saline (pH 7.2) containing 0.05% Tween 20 by using a Titertek microplate washer (Flow Laboratories. Brussels. Belgium). Blocking is done with 0.5% gelatin in 0.06 M carbonate buffer (pH 9.6) for 1 h. Wells are then washed as before, and 100 µl of above mentioned serum diluted in phosphate-buffered saline containing 0.05% Tween 20 and 0.5% gelatin is added. According to the results obtained in preliminary experiments, the working dilutions are set at 1:200 for IgG, 1:20 for IgA and 1:80 for IgM determinations. Each dilution is run in duplicate. After 2 h of incubation and after the wells are washed, they are filled with 100 µl of peroxidase-conjugated rabbit immunoglobulins directed against human lgG, IgA or IgM (Dakopatts, Copenhagen, Denmark), diluted 1:400, 1:400 and 1:1.200, respectively in phosphatebuffered saline containing 0.05% Tween 20 and 0.5% gelatin and incubated for 90 min. After the wash, the amount of peroxidase bound to the wells is quantified by using a freshly prepared solution of ophenylenediamine (10 mg/100 ml) and hydrogen peroxide (8µl of 30% H₂O₂ per 100 ml) in 0.15 M citrate buffer (pH 5.0) as a substrate. The enzymatic reaction is stopped with 8 N H2SO4 after 15 min. of incubation. The optical density is read at 492 nm with a Titertek Multiskan photometer (Flow Laboratories).

Wells without sera are used as controls for the conjugates. Each experiment is done by including on each plate one negative and two positive reference sera with medium and low antibody levels to correct for plate-to-plate and day-to-day variations. The antibody concentrations are expressed as the optical density values obtained after correction of the readings according to the mean variations of the reference sera.

Hereafter is also given in a non limitative way, a test for giving evidence of the fact that polypeptides of the invention are recognized selectively by human sera from tuberculous patients.

25

This test is an immunoblotting (Western blotting) analysis, in the case where the polypeptides of the invention are obtained by recombinant techniques. This test can also be used for polypeptides of the invention obtained by a different preparation process. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis, polypeptides of the invention are blotted onto nitrocellulose membranes (Hybond C. (Amersham)) as described by Towbin et al. (29). The expression of polypeptides of the invention fused to β -galactosidase in E. coli Y1089, is visualized by the binding of a polyclonal rabbit anti-32-kDa BCG protein serum (1:1,000) or by using a monoclonal anti- β -galactosidase antibody (Promega). The secondary antibody (alkaline phosphatase anti-rabbit immunoglobulin G and anti-mouse alkaline phosphatase immunoglobulin G conjugates, respectively) is diluted as recommended by the supplier (Promega).

In order to identify selective recognition of polypeptides of the invention and of fusion proteins of the invention by human tuberculous sera, nitrocellulose sheets are incubated overnight with these sera (1:50) (after blocking aspecific protein-binding sites). The human tuberculous sera are selected for their reactivity (high or low) against the purified 32-kDa antigen of BCG tested in a dot blot assay as described in document (31) of the bibliography hereafter. Reactive areas on the nitrocellulose sheets are revealed by incubation with peroxidase conjugated goat anti-human immunoglobulin G antibody (Dakopatts, Copenhagen, Denmark) (1:200) for 4h, and after repeated washings, color reaction is developed by adding peroxidase substrate (α-chloronaphtol) (Bio-Rad Laboratories, Richmond, Calif.) in the presence of peroxidase and hydrogen peroxide.

It goes without saying that the free reactive functions which are present in some of the amino acids, which are part of the constitution of the polypeptides of the invention, particularly the free carboxyl groups which are carried by the groups Glu or by the C-terminal amino acid on the one hand and/or the free NH₂ groups carried by the N-terminal amino acid or by amino acid inside the peptidic chain, for instance Lys, on the other hand, can be modified in so far as this modification does not alter the above mentioned properties of the polypeptide.

The molecules which are thus modified are naturally part of the invention. The above mentioned carboxyl groups can be acylated or esterified.

Other modifications are also part of the invention. Particularly, the amine or ester functions or both of terminal amino acids can be themselves involved in the bond with other amino acids. For instance, the N-terminal amino acid can be linked to a sequence comprising from 1 to several amino acids corresponding to a part of the C-terminal region of another peptide.

Furthermore, any peptidic sequences resulting from the modification by substitution and/or by addition and/or by deletion of one or several amino acids of the polypeptides according to the invention are part of the invention in so far as this modification does not alter the above mentioned properties of said polypeptides.

The polypeptides according to the invention can be glycosylated or not, particularly in some of their glycosylation sites of the type Asn-X-Ser or Asn-X-Thr, X representing any amino acid.

Advantageous recombinant polypeptides of the invention contain in their polypeptidic chain, one at least of the following amino acid sequences:

- the one extending from the extremity constituted by amino acid at position (-42) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b,
- the one extending from the extremity constituted by amino acid at position (-47) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b,
- the one extending from the extremity constituted by amino acid at position (-49) to to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b,
- 45 the one extending from the extremity constituted by amino acid at position (-55) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-59) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b.

Advantageous recombinant polypeptides of the invention contain in their polypeptidic chain, one at least of the following amino acid sequences:

- the one extending from the extremity constituted by amino acid at position (-42) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b,
- the one extending from the extremity constituted by amino acid at position (-47) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b.
- the one extending from the extremity constituted by amino acid at position (-49) to to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (-55) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b.

- the one extending from the extremity constituted by amino acid at position (-59) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b.

Advantageous recombinant polypeptides of the invention contain in their polypeptidic chain, one at least of the following amino acid sequences:

- the one extending from the extremity constituted by amino acid at position (-43) to the extremity constituted by amino acid at position (-1) represented on fig. 5.

Advantageous recombinant polypeptides of the invention contain in their polypeptidic chain, one at least of the following amino acid sequences:

- the one extending from the extremity constituted by amino acid at position (1) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
- the one extending from the extremity constituted by amino acid at position (-29) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
- the one extending from the extremity constituted by amino acid at position (-42) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
- the one extending from the extremity constituted by amino acid at position (-47) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-49) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-55) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-59) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b.

Advantageous recombinant polypeptides of the invention contain in their polypeptidic chain, one at least of the following amino acid sequences:

- the one extending from the extremity constituted by amino acid at position (1) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (-29) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
- the one extending from the extremity constituted by amino acid at position (-42) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
- the one extending from the extremity constituted by amino acid at position (-47) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
- the one extending from the extremity constituted by amino acid at position (-49) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
- the one extending from the extremity constituted by amino acid at position (-55) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
- the one extending from the extremity constituted by amino acid at position (-59) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b.

Advantageous recombinant polypeptides of the invention contain in their polypeptidic chain, one at least of the following amino acid sequences:

- the one extending from the extremity constituted by amino acid at position (1) to the extremity constituted by amino acid at position (295) represented on fig. 5,
- the one extending from the extremity constituted by amino acid at position (-30) to the extremity constituted by amino acid at position (295) represented on fig. 5,
- the one extending from the extremity constituted by amino acid at position (-43) to the extremity constituted by amino acid at position (295) represented on fig. 5.

Other advantageous recombinant polypeptides of the invention consist in one of the following amino acid sequences:

- the one extending from the extremity constituted by amino acid at position (-59) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-55) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-49) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
- the one extending from the extremity constituted by amino acid at position (-47) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-42) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,

- the one extending from the extremity constituted by amino acid at position (-29) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
- the one extending from the extremity constituted by amino acid at position (1) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b.

Other advantageous recombinant polypeptides of the invention consist in one of the following amino acid sequences:

- the one extending from the extremity constituted by amino acid at position (-59) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
- the one extending from the extremity constituted by amino acid at position (-55) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (-49) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (-47) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b.
- the one extending from the extremity constituted by amino acid at position (-42) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (-29) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (1) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b.

Other advantageous recombinant polypeptides of the invention consist in one of the following amino acid sequences:

- the one extending from the extremity constituted by amino acid at position (1) to the extremity constituted by amino acid at position (295) represented on fig. 5,
- the one extending from the extremity constituted by amino acid at position (-30) to the extremity constituted by amino acid at position (295) represented on fig. 5,
- the one extending from the extremity constituted by amino acid at position (-43) to the extremity constituted by amino acid at position (295) represented on fig. 5.

Other advantageous recombinant polypeptides of the invention consist in one of the following amino acid sequences:

- the one extending from the extremity constituted by amino acid at position (-59) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b,
- the one extending from the extremity constituted by amino acid at position (-55) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b,
- the one extending from the extremity constituted by amino acid at position (-49) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-47) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b.
- the one extending from the extremity constituted by amino acid at position (-42) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-29) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b.

Other advantageous recombinant polypeptides of the invention consist in one of the following amino acid sequences:

- the one extending from the extremity constituted by amino acid at position (-59) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (-55) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b,
- the one extending from the extremity constituted by amino acid at position (-49) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (-47) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (-42) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b,
- the one extending from the extremity constituted by amino acid at position (-29) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b.

Other advantageous recombinant polypeptides of the invention consist in one of the following amino acid sequences:

- the one extending from the extremity constituted by amino acid at position (-43) to the extremity constituted by amino acid at position (-1) represented on fig. 5,
- the one extending from the extremity constituted by amino acid at position (-30) to the extremity constituted by amino acid at position (-1) represented on fig. 5.

In eukaryotic cells, these polypeptides can be used as signal peptides, the role of which is to initiate the translocation of a protein from its site of synthesis, but which is excised during translocation.

5

Other advantageous peptides of the invention consist in one of the following amino acid sequence:

- the one extending from the extremity constituted by amino acid at position (12) to the extremity constituted by amino acid at position (31) represented on fig. 3a and fig. 3b, or
- the one extending from the extremity constituted by amino acid at position (36) to the extremity constituted by amino acid at position (55) represented on fig. 3b, or
 - the one extending from the extremity constituted by amino acid at position (77) to the extremity constituted by amino acid at position (96) represented on fig. 3a and fig. 3b, or
- the one extending from the extremity constituted by amino acid at position (101) to the extremity constituted by amino acid at position (120) represented on fig. 3a and fig. 3b, or
- the one extending from the extremity constituted by amino acid at position (175) to the extremity constituted by amino acid at position (194) represented on fig. 3a and fig. 3b, or
- the one extending from the extremity constituted by amino acid at position (211) to the extremity constituted by amino acid at position (230) represented on fig. 3a and fig. 3b, or
- the one extending from the extremity constituted by amino acid at position (275) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b.

Other advantageous peptides of the invention consist in one of the following amino acid sequence:

- the one extending from the extremity constituted by amino acid at position (12) to the extremity constituted by amino acid at position (31) represented on fig. 4a and fig. 4b, or
- the one extending from the extremity constituted by amino acid at position (36) to the extremity constituted by amino acid at position (55) represented on fig. 4a and fig. 4b, or
- the one extending from the extremity constituted by amino acid at position (77) to the extremity constituted by amino acid at position (96) represented on fig. 4a and fig. 4b, or
- the one extending from the extremity constituted by amino acid at position (101) to the extremity constituted by amino acid at position (120) represented on fig. 4a and fig. 4b, or
- the one extending from the extremity constituted by amino acid at position (175) to the extremity constituted by amino acid at position (194) represented on fig. 4a and fig. 4b, or
- the one extending from the extremity constituted by amino acid at position (211) to the extremity constituted by amino acid at position (230) represented on fig. 4a and fig. 4b, or
- the one extending from the extremity constituted by amino acid at position (275) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b.

Other advantageous peptides of the invention consist in one of the following amino acid sequence:

- the one extending from the extremity constituted by amino acid at position (12) to the extremity constituted by amino acid at position (31) represented on fig. 5, or
- the one extending from the extremity constituted by amino acid at position (36) to the extremity constituted by amino acid at position (55) represented on fig. 5, or
- the one extending from the extremity constituted by amino acid at position (77) to the extremity constituted by amino acid at position (96) represented on fig. 5, or
- the one extending from the extremity constituted by amino acid at position (101) to the extremity constituted by amino acid at position (120) represented on fig. 5, or
 - the one extending from the extremity constituted by amino acid at position (175) to the extremity constituted by amino acid at position (194) represented on fig. 5, or
 - the one extending from the extremity constituted by amino acid at position (211) to the extremity constituted by amino acid at position (230) represented on fig. 5, or
 - the one extending from the extremity constituted by amino acid at position (275) to the extremity constituted by amino acid at position (295) represented on fig. 5.

It is to be noted that the above mentioned polypeptides are derived from the expression products of a DNA derived from the nucleotide sequence coding for a protein of 32-kDa secreted by Mycobacterium tuberculosis as explained hereafter in the examples.

The invention also relates to the amino acid sequences constituted by the above mentioned polypeptides and a protein or an heterologous sequence with respect to said polypeptide, said protein or heterologous sequence comprising for instance from about 1 to about 1000 amino acids. These amino acid sequences will be called fusion proteins.

In an advantageous fusion protein of the invention, the heterologous protein is β -galactosidase. Other advantageous fusion proteins of the invention are the ones containing an heterologous protein

resulting from the expression of one of the following plasmids:

5	pEX1	
	pEX2	
	pEX3	
*	pUEX1	pmTNF MPH
	pUEX2	
10	pUEX3	

The invention also relates to any nucleotide sequence coding for a polypeptide of the invention.

The invention also relates to nucleic acids comprising nucleotide sequences which hybridize with the nucleotide sequences coding for any of the above mentioned polypeptides under the following hybridization conditions:

- hybridization and wash medium: 3 X SSC, 20% formamide (1 X SSC is 0,15 M NaCl, 0.015 M sodium citrate, pH 7.0),
- hybridization temperature (HT) and wash temperature (WT) for the nucleic acids of the invention defined by x-y: i.e. by the sequence extending from the extremity constituted by the nucleotide at position (x) to the extremity constituted by the nucleotide at position (y) represented on fig. 3a and fig. 3b.

	1 - 182	HT = WT 69 C
25	1 - 194	HT = WT 69 C
	1 - 212	HT = WT 69 C
	1 - 218	HT = WT 69°C
	1 - 272	HT = WT 69°C
	1 - 359	HT = WT = 71 °C
	1 - 1241	HT = WT = 73°C
30	1 - 1358	HT = WT = 73°C
	183 - 359	HT = WT = 70°C
	183 - 1241	HT = WT = 73 °C
	183 - 1358	HT = WT = 73°C
ac'	195 - 359	HT = WT = 70°C
35	195 - 1241	HT = WT = 73°C
	195 - 1358	HT = WT = 73°C
	213 - 359	HT = WT = 70°C
	213 - 1241	HT = WT = 73 C
40	213 - 1358	HT = WT = 73 C
40	219 - 359	HT = WT = 71 C
	219 - 1241	HT = WT = 73 C
	219 - 1358	HT = WT = 73 C
	234 - 359	HT = WT = 71 C
ar.	234 - 1241	HT = WT = 74 C
45	234 - 1358	HT = WT = 73 C
	273 - 359	HT = WT = 71 C
	273 - 1241	HT = WT = 74 C
	273 - 1358	HT = WT = 73°C
50	360 - 1241	HT = WT = 73 C
30	360 - 1358	HT = WT = 73 C
	1242 - 1358	HT = WT = 62 °C

The above mentioned temperatures are to be considered as approximately ± 5 °C.

The invention also relates to nucleic acids comprising nucleotide sequences which are complementary to the nucleotide sequences coding for any of the above mentioned polypeptides.

It is to be noted that in the above defined nucleic acids, as well as in the hereafter defined nucleic

acids, the nucleotide sequences which are brought into play are such that T can be replaced by U.

A group of preferred nucleic acids of the invention comprises one at least of the following nucleotide sequences:

- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (182) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (360) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (1242) to the extremity constituted by nucleotide at position (1358), wherein N represents one of the five A, T, C, G or I nucleotides, represented in fig. 3a and fig. 3b.
 - or above said nucleotide sequences wherein T is replaced by U,
 - or nucleic acids which hybridize with said above mentioned nucleotide sequences or the complementary sequences thereof.

A group of preferred nucleic acids of the invention comprises one at least of the following nucleotide sequences:

- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (182) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (360) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (1242) to the extremity constituted by nucleotide at position (1358), wherein N represents one of the five A, T, C, G or I nucleotides, represented in fig. 4a and fig. 4b,
 - or above said nucleotide sequences wherein T is replaced by U,
 - or nucleic acids which hybridize with said above mentioned nucleotide sequences or the complementary sequences thereof.

A group of preferred nucleic acids of the invention comprises one at least of the following nucleotide sequences:

- the one extending from the extremity constituted by nucleotide at position (130) to the extremity constituted by nucleotide at position (219) represented in fig. 5,
- the one extending from the extremity constituted by nucleotide at position (220) to the extremity constituted by nucleotide at position (1104) represented in fig. 5,
- the one extending from the extremity constituted by nucleotide at position (1104) to the extremity constituted by nucleotide at position (1299), wherein N represents one of the five A, T, C, G or I nucleotides, represented in fig. 5,
- or above said nucleotide sequences wherein T is replaced by U,
- or nucleic acids which hybridize with said above mentioned nucleotide sequences or the complementary sequences thereof.

Other preferred nucleic acids of the invention comprise one at least of the following nucleotide sequences:

- the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b.

Other preferred nucleic acids of the invention comprise one at least of the following nucleotide sequences:

- the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (219) to the extremity

constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,

10

- the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b.

Another preferred group of nucleic acids of the invention comprises the following nucleotide sequences:

- the one extending from the extremity constituted by nucleotide at position (360) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b.

Another preferred group of nucleic acids of the invention comprises the following nucleotide sequences:

- the one extending from the extremity constituted by nucleotide at position (360) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b.

According to another advantageous embodiment, nucleic acids of the invention comprises one of the following sequences:

- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (194) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (212) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (218) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (272) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b.
 - the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b.
 - the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b.
 - the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b.

According to another advantageous embodiment, nucleic acids of the invention comprises one of the following sequences:

- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (194) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (212) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (218) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted

by nucleotide at position (272) represented in fig. 4a and fig. 4b,

- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b.

Preferred nucleic acids of the invention consist in one of the following nucleotide sequences:

- the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b.

Preferred nucleic acids of the invention consist in one of the following nucleotide sequences:

- the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b.

These nucleotide sequence can be used as nucleotide signal sequences, coding for the corresponding

signal peptide.

Preferred nucleic acids of the invention consist in one of the following nucleotide sequences:

- the one extending from the extremity constituted by nucleotide at position (360) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (360) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b.

Preferred nucleic acids of the invention consist in one of the following nucleotide sequences:

- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (182) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (194) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (212) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (218) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (272) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b.
 - the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b.
 - the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (1242) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b.

Preferred nucleic acids of the invention consist in one of the following nucleotide sequences:

- the one extending from the extremity constituted by nucleotide at position (360) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (360) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b.

Preferred nucleic acids of the invention consist in one of the following nucleotide sequences:

- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (182) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted

by nucleotide at position (194) represented in fig. 4a and fig. 4b,

- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (212) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (218) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (272) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (1242) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b.

Preferred nucleic acids of the invention consist in one of the following nucleotide sequences:

- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (129) represented in fig. 5,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (219) represented in fig. 5,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1104) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1299) represented in fig. 5,
- the one extending from the extremity constituted by nucleotide at position (90) to the extremity constituted by nucleotide at position (219) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (90) to the extremity constituted by nucleotide at position (1299) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (90) to the extremity constituted by nucleotide at position (1104) represented in fig. 5,
- the one extending from the extremity constituted by nucleotide at position (130) to the extremity constituted by nucleotide at position (1104) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (130) to the extremity constituted by nucleotide at position (1299) represented in fig. 5,

- the one extending from the extremity constituted by nucleotide at position (220) to the extremity constituted by nucleotide at position (1299) represented in fig. 5.

Preferred nucleic acids of the invention consist in one of the following nucleotide sequences:

- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (129) represented in fig. 5,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (219) represented in fig. 5.
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1104) represented in fig. 5.
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1299) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (90) to the extremity constituted by nucleotide at position (219) represented in fig. 5.
 - the one extending from the extremity constituted by nucleotide at position (90) to the extremity constituted by nucleotide at position (1104) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (90) to the extremity constituted by nucleotide at position (1299) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (130) to the extremity constituted by nucleotide at position (219) represented in fig. 5,
- the one extending from the extremity constituted by nucleotide at position (130) to the extremity constituted by nucleotide at position (1104) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (130) to the extremity constituted by nucleotide at position (1299) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (220) to the extremity constituted by nucleotide at position (1104) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (220) to the extremity constituted by nucleotide at position (1299) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (1104) to the extremity constituted by nucleotide at position (1299) represented in fig. 5.

The invention also relates to any recombinant nucleic acids containing at least a nucleic acid of the invention inserted in an heterologous nucleic acid.

The invention relates more particularly to recombinant nucleic acid such as defined, in which the nucleotide sequence of the invention is preceded by a promoter (particularly an inducible promoter) under the control of which the transcription of said sequence is liable to be processed and possibly followed by a sequence coding for transcription termination signals.

The invention also relates to the recombinant nucleic acids in which the nucleic acid sequences coding for the polypeptide of the invention and possibly the signal peptide, are recombined with control elements which are heterologous with respect to the ones to which they are normally associated within the bacteria gene and, more particularly, the regulation elements adapted to control their expression in the cellular host which has been chosen for their production.

The invention also relates to recombinant vectors, particularly for cloning and/or expression, comprising a vector sequence, notably of the type plasmid, cosmid or phage, and a recombinant nucleic acid of the invention, in one of the non essential sites for its replication.

Appropriate vectors for expression of the recombinant antigen are the following one:

pEX1 pmTNF MPH
pEX2 pIGRI
pEX3
pUEX1
pUEX2
50 pUEX3

The pEX1, pEX2 and pEX3 vectors are commercially available and can be obtained from Boehringer Mannheim.

The pUEX1, pUEX2 and pUEX3 vectors are also commercially available and can be obtained from

According to an advantageous embodiment of the invention, the recombinant vector contains, in one of its non essential sites for its replication, necessary elements to promote the expression of polypeptides according to the invention in a cellular host and possibly a promoter recognized by the polymerase of the cellular host, particularly an inducible promoter and possibly a signal sequence and/or an anchor sequence.

EP 0 419 355 A1

According to another additional embodiment of the invention, the recombinant vector contains the elements enabling the expression by \underline{E} . coli of a nucleic acid according to the invention inserted in the vector, and particularly the elements enabling the expression of the gene or part thereof of β -galactosidase.

The invention also relates to a cellular host which is transformed by a recombinant vector according to the invention, and comprising the regulation elements enabling the expression of the nucleotide sequence coding for the polypeptide according to the invention in this host.

The invention also relates to a cellular host chosen from among bacteria such as <u>E. coli</u>, transformed by a vector as above defined, and defined hereafter in the examples, or chosen from among eukaryotic organism, such as CHO cells, insect cells, Sf9 cells [Spodoptera frugiperda] infected by the virus Ac NPV (Autographa californica nuclear polyhydrosis virus) containing suitable vectors such as pAc 373 pYM1 or pVC3, BmN [Bombyx mori] infected by the virus BmNPV containing suitable vectors such as pBE520 or p89B310.

The invention relates to an expression product of a nucleic acid expressed by a transformed cellular host according to the invention.

The invention also relates to nucleotidic probes, hybridizing with anyone of the nucleic acids or with their complementary sequences,

and particularly the probes chosen among the following nucleotidic sequences gathered in Table 1, and represented in fig. 9.

20

35

40

15

TABLE 1

Probes A(i), A(ii), A(iii), A(iv) and A(v)

A(i) CAGCTTGTTGACAGGGTTCGTGGC

A(ii) GGTTCGTGGCGCCGTCACG

A(iii) CGTCGCGCGCCTAGTGTCGG

A(iv) CGGCGCCGTCGGTGGCACGGCGA

A (v) CGTCGGCGCGGCCCTAGTGTCGG

Probe B

TCGCCCGCCCTGTACCTG

Probe C
GCGCTGACGCTGGCGATCTATC

Probe D
CCGCTGTTGAACGTCGGGAAG

Probe E
AAGCCGTCGGATCTGGGTGGCAAC

Probes F(i), F(ii), F(iii) and F(iv)

F (i) ACGGCACTGGGTGCCACGCCCAAC

F(ii) ACGCCCAACACCGGGCCCGCCA

F (iii) ACGGGCACTGGGTGCCACGCCCAAC

F(iv) ACGCCCCAACACCGGGCCCGCGCCCCA

or their complementary nucleotidic sequences.

The hybridization conditions can be the following ones:

- hybridization and wash medium: 3 X SSC, 20% formamide (1 X SSC is 0,15 M NaCl, 0.015 M sodium citrate, pH 7.0),
 - hybridization temperature (HT) and wash temperature (WT):

(WT) C:	HT and WT (*C)
A(i)	50
A(ii)	50
A(iii)	52
A(iv)	60
A(v)	52
В	48
C	50
ם	45
E	52
F(i)	55
F(ii)	59
F(iii)	55
F(iv)	59

5

10

15

These probes might enable to differentiate M. tuberculosis from other bacterial strains and in particular from the following mycobacteria species:

- Mycobacterium marinum, Mycobacterium scrofulaceum, Mycobacterium gordonae, Mycobacterium szulgai, Mycobacterium intracellulare, Mycobacterium xenopi, Mycobacterium gastri, Mycobacterium nonchromogenicum, Mycobacterium terrae and Mycobacterium triviale, and more particularly from M. bovis, Mycobacterium kansasii, Mycobacterium avium, Mycobacterium phlei and Mycobacterium fortuitum.

The invention also relates to DNA or RNA primers which can be used for the synthesis of nucleotidic sequences according to the invention by PCR (polymerase chain reaction technique), such as described in US Patents n° 4,683,202 and n° 4,683,195 and European Patent n° 200362.

The invention also relates to any DNA or RNA primer constituted by about 15 to about 25 nucleotides of a nucleotide sequence coding for a polypeptide according to the invention.

The invention also relates to any DNA or RNA primer constituted by about 15 to about 25 nucleotides liable to hybridize with a nucleotide sequence coding for a polypeptide according to the invention.

The invention also relates to any DNA or RNA primer constituted by about 15 to about 25 nucleotides complementary to a nucleotide sequence coding for a polypeptide according to the invention.

The sequences which can be used as primers are given in Table 2 hereafter (sequences P1 to P6 or their complement) and illustrated in fig. 9:

TABLE 2

40	P1 GAGTACCTGCAGGTGCCGTCGCCGTCGATGGGCCG
	P2 ATCAACACCCCGGCGTTCGAGTGGTAC
	P2 compl. GTACCACTCGAACGCCGGGGTGTTGAT
45	P3 TGCCAGACTTACAAGTGGGA
	P3 compl. TCCCACTTGTAAGTCTGGCA
	P4 TCCTGACCAGCGAGCTGCCG
50	P4 compl. CGGCAGCTCGCTGGTCAGGA
30	P5 CCTGATCGGCCTGGCGATGGGTGACGC
	P5 compl. GCGTCACCCATCGCCAGGCCGATCAGG
•	P6 compl. GCGCCCAGTACTCCCAGCTGTGCGT
55	compl. = complement

EP 0 419 355 A1

The sequences can be combined in twelve different primer-sets (given in Table 3) which allow enzymatical amplification by the polymerase chain reaction (PCR) technique of any of the nucleotide sequences of the invention, and more particularly the one extending from the extremity constituted by nucleotide at position 1 to the extremity constituted by nucleotide at position 1358, as well as the nucleotide sequence of antigen α of BCG (17).

The detection of the PCR amplified product can be achieved by a hybridization reaction with an oligonucleotide sequence of at least 10 nucleotides which is located between PCR primers which have been used to amplify the DNA.

The PCR products of the nucleotide sequences of the invention can be distinguished from the α -antigen gene of BCG or part thereof by hybridization techniques (dot-spot, Southern blotting, etc.) with the probes indicated in Table 3. The sequences of these probes can be found in Table 1 hereabove.

TABLE 3

7	5

20

25

30

Primer set	Detection with
	probe
1. P1 and the complement of P2	В
2. P1 and the complement of P3	В -
3. P1 and the complement of P4	В
4. P1 and the complement of P5	B or C
5. P1 and the complement of P6	B, C, D or E
6. P2 and the complement of P5	C
7. P2 and the complement of P6	C, D or E
8. P3 and the complement of P5	C
9. P3 and the complement of P6	C, D or E
10. P4 and the complement of P5	С
11. P4 and the complement of P6	C, D or E
12. P5 and the complement of P6	D or E
	I

It is to be noted that enzymatic amplification can also be achieved with all oligonucleotides with sequences of about 15 consecutive bases of the primers given in Table 2. Primers with elongation at the 5'-end or with a small degree of mismatch may not considerably affect the outcome of the enzymatic amplification if the mismatches do not interfere with the base-pairing at the 3'-end of the primers.

Specific enzymatic amplification of the nucleotide sequences of the invention and not of the BCG gene can be achieved when the probes (given in Table 1) or their complements are used as amplification primers.

When the above mentioned probes of Table 1 are used as primers, the primer sets are constituted by any of the nucleotide sequences (A, B, C, D, E, F) of Table 1 in association with the complement of any other nucleotide sequence, chosen from A, B, C, D, E or F, it being understood that sequence A means any of the sequences A(i), A(ii), A(iii), A(iv), A(v) and sequence F, any of the sequences F(i), F(ii), F(iii) and F(iv).

Advantageous primer sets for enzymatic amplification of the nucleotide sequence of the invention can be one of the following primer sets given in Table 3bis hereafter:

EP 0 419 355 A1

TABLE 3BIS

	A(i)	
5	or A(ii)	
	or A(iii)	and the complement of B
	or A(iv)	
10	or A(v)	
	A(i)	
	or A(ii)	•
	or A(iii)	and the complement of C
15	or A(iv)	
	or A(v)	
	В	and the complement of C
20	A(i)	
	or A(ii)	
	or A(iii)	and the complement of F
25	or A(iv)	
	or A(v)	

	A(i)	
	or A(ii)	
5	or A(iii) and t	the complement of D
	or A(iv)	
	or A(v)	
10	A(i)	
	or A(ii)	
	or A(iii) and t	the complement of E
	or A(iv)	
15	or A(v)	
	B and	the complement of D
	B and	the complement of E
20	B and	the complement of P
	C and	the complement of D
	C and	the complement of E
25	C and	the complement of P
	D and	the complement of E
	D and	the complement of P
30		the complement of P
•		A(iv), $A(v)$, B , C , D , E and F
	having the nucleotide	sequence indicated in Table 1.

In the case of amplification of a nucleotide sequence of the invention with any of the above mentioned primer sets defined in Table 3bis hereabove, the detection of the amplified nucleotide sequence can be achieved by a hybridization reaction with an oligonucleotide sequence of at least 10 nucleotides, said sequence being located between the PCR primers which have been used to amplify the nucleotide sequence. An oligonucleotide sequence located between said two primers can be determined from figure 9 where the primers A, B, C, D, E and F are represented by the boxed sequences respectively named probe region A, probe region B, probe region C, probe region D, probe region E and probe region F.

35

The invention also relates to a kit for enzymatic amplification of a nucleotide seguence by PCR technique and detection of the amplified nucleotide sequence containing

- one of the PCR primer sets defined in Table 3 and one of the detection probes of the invention, advantageously the probes defined in Table 1,

or one of the PCR primer sets defined in Table 3bis, and a detection sequence consisting for instance in an oligonucleotide sequence of at least 10 nucleotides, said sequence being located (fig. 9) between the two PCR primers constituting the primer set which has been used for amplifying said nucleotide sequence.

The invention also relates to a process for preparing a polypeptide according to the invention comprising the following steps:

- the culture in an appropriate medium of a cellular host which has previously been transformed by an appropriate vector containing a nucleic acid according to the invention,
- the recovery of the polypeptide produced by the above said transformed cellular host from the above said culture medium, and
- the purification of the polypeptide produced, eventually by means of immobilized metal ion affinity chromatography (IMAC).

The polypeptides of the invention can be prepared according to the classical techniques in the field of peptide synthesis.

The synthesis can be carried out in homogeneous solution or in solid phase.

For instance, the synthesis technique in homogeneous solution which can be used is the one described by Houbenweyl in the book titled "Methode der organischen chemie" (Method of organic chemistry) edited by E. Wunsh, vol. 15-I et II. THIEME, Stuttgart 1974.

The polypeptides of the invention can also be prepared according to the method described by R.D. MERRIFIELD in the article titled "Solid phase peptide synthesis" (J.P. Ham.Socks., 45, 2149-2154).

The invention also relates to a process for preparing the nucleic acids according to the invention.

A suitable method for chemically preparing the single-stranded nucleic acids (containing at most 100 nucleotides of the invention) comprises the following steps:

- DNA synthesis using the automatic β -cyanoethyl phosphoramidite method described in Bioorganic Chemistry 4; 274-325, 1986.

In the case of single-stranded DNA, the material which is obtained at the end of the DNA synthesis can be used as such.

A suitable method for chemically preparing the double-stranded nucleic acids (containing at most 100 bp of the invention) comprises the following steps:

- DNA synthesis of one sense oligonucleotide using the automatic β -cyanoethyl phosphoramidite method described in Bioorganic Chemistry 4; 274-325, 1986, and DNA synthesis of one anti-sense oligonucleotide using said above-mentioned automatic β -cyanoethyl phosphoramidite method,
- combining the sense and anti-sense oligonucleotides by hybridization in order to form a DNA duplex,
- cloning the DNA duplex obtained into a suitable plasmid vector and recovery of the DNA according to classical methods, such as restriction enzyme digestion and agarose gel electrophoresis.

A method for the chemical preparation of nucleic acids of length greater than 100 nucleotides - or bp, in the case of double-stranded nucleic acids -comprises the following steps :

- assembling of chemically synthesized oligonucleotides, provided at their ends with different restriction sites, the sequences of which are compatible with the succession of amino acids in the natural peptide, according to the principle described in Proc. Nat. Acad. Sci. USA 80; ,7461-7465, 1983,
- cloning the DNA thereby obtained into a suitable plasmid vector and recovery of the desired nucleic acid according to classical methods, such as restriction enzyme digestion and agarose gel electrophoresis.

The invention also relates to antibodies themselves formed against the polypeptides according to the invention.

It goes without saying that this production is not limited to polyclonal antibodies.

It also relates to any monoclonal antibody produced by any hybridoma liable to be formed according to classical methods from splenic cells of an animal, particularly of a mouse or rat, immunized against the purified polypeptide of the invention on the one hand, and of cells of a myeloma cell line on the other hand, and to be selected by its ability to produce the monoclonal antibodies recognizing the polypeptide which has been initially used for the immunization of the animals.

The invention also relates to any antibody of the invention labeled by an appropriate label of the enzymatic, fluorescent or radioactive type.

The peptides which are advantageously used to produce antibodies, particularly monoclonal antibodies, are the following ones gathered in Table 4:

45

EP 0 419 355 A1

TABLE 4a (see fig. 4a and 4b)

5	Amino acid position (NH ₂ -terminal)		Amino acid position (COOH-terminal)
	12	QVPSPSMGRDIKVQFQSGGA	31
10	36	LYLLDGLRAQDDFSGWDINT	55
	77	SFYSDWYQPACRKAGCQTYK	96
	101	LTSELPGWLQANRHVKPTGS	120
15	175	KASDMWGPKEDPAWQRNDPL	194
	211	CGNGKPSDLGGNNLPAKFLE	230
	275	KPDLQRHWVPRPTPGPPQGA	294
20			
		TABLE 4b (see fig.	5)
25	Amino acid		Amino acid
20	position		position
	(NH ₂ -terminal)	(COOH-terminal)
30	77	SFYSDWYQPACGKAGCQTYK	. 96
	276	PDLQRALGATPNTGPAPQGA	295

The amino acid sequences are given in the 1-letter code.

35

Variations of the peptides listed in Table 4 are also possible depending on their intended use. For example, if the peptides are to be used to raise antisera, the peptides may be synthesized with an extra cysteine residue added. This extra cysteine residue is preferably added to the amino terminus and facilitates the coupling of the peptide to a carrier protein which is necessary to render the small peptide immunogenic. If the peptide is to be labeled for use in radioimmune assays, it may be advantageous to synthesize the protein with a tyrosine attached to either the amino or carboxyl terminus to facilitate iodination. These peptides possess therefore the primary sequence of the peptides listed in Table 4 but with additional amino acids which do not appear in the primary sequence of the protein and whose sole function is to confer the desired chemical properties to the peptides.

The invention also relates to a process for detecting in vitro antibodies related to tuberculosis in a human biological sample liable to contain them, this process comprising

- contacting the biological sample with a polypeptide or a peptide according to the invention under conditions enabling an in vitro immunological reaction between said polypeptide and the antibodies which are possibly present in the biological sample and
- the in vitro detection of the antigen/antibody complex which may be formed.

Preferably, the biological medium is constituted by a human serum.

The detection can be carried out according to any classical process.

By way of example a preferred method brings into play an immunoenzymatic process according to ELISA technique or immunofluorescent or radioimmunological (RIA) or the equivalent ones.

Thus the invention also relates to any polypeptide according to the invention labeled by an appropriate label of the enzymatic, fluorescent, radioactive... type.

Such a method for detecting in vitro antibodies related to tuberculosis comprises for instance the following steps:

- deposit of determined amounts of a polypeptidic composition according to the invention in the wells of a titration microplate,
- introduction into said wells of increasing dilutions of the serum to be diagnosed,
- incubation of the microplate,
- repeated rinsing of the microplate,
 - introduction into the wells of the microplate of labeled antibodies against the blood immunoglobulins,
 - the labeling of these antibodies being carried out by means of an enzyme which is selected from among the ones which are able to hydrolyze a substrate by modifying the absorption of the radiation of this latter at least at a given wave length,
- detection by comparing with a control standard of the amount of hydrolyzed substrate.

The invention also relates to a process for detecting and identifying in vitro antigens of M. tuberculosis in a human biological sample liable to contain them, this process comprising:

- contacting the biological sample with an appropriate antibody of the invention under conditions enabling an in vitro immunological reaction between said antibody and the antigens of M. tuberculosis which are possibly present in the biological sample and the in vitro detection of the antigen/antibody complex which may be formed.

Preferably, the biological medium is constituted by sputum, pleural effusion liquid, broncho-alveolar washing liquid, urine, biopsy or autopsy material.

Appropriate antibodies are advantageously monoclonal antibodies directed against the peptides which have been mentioned in Table 4.

The invention also relates to an additional method for the in vitro diagnostic of tuberculosis in a patient liable to be infected by Mycobacterium tuberculosis comprising the following steps:

- the possible previous amplification of the amount of the nucleotide sequences according to the invention, liable to be contained in a biological sample taken from said patient by means of a DNA primer set as above defined,
- contacting the above mentioned biological sample with a nucleotide probe of the invention, under conditions enabling the production of an hybridization complex formed between said probe and said nucleotide sequence,
- detecting the above said hybridization complex which has possibly been formed.

To carry out the in vitro diagnostic method for tuberculosis in a patient liable to be infected by Mycobacterium tuberculosis as above defined, the following necessary or kit can be used, said necessary or kit comprising:

- a determined amount of a nucleotide probe of the invention,
- advantageously the appropriate medium for creating an hybridization reaction between the sequence to be
 detected and the above mentioned probe,
 - advantageously, reagents enabling the detection of the hybridization complex which has been formed between the nucleotide sequence and the probe during the hybridization reaction.

The invention also relates to an additional method for the in vitro diagnostic of tuberculosis in a patient liable to be infected by Mycobacterium tuberculosis comprising:

- contacting a biological sample taken from a patient with a polypeptide or a peptide of the invention, under conditions enabling an in vitro immunological reaction between said polypeptide or peptide and the antibodies which are possibly present in the biological sample and
- the in vitro detection of the antigen/antibody complex which has possibly been formed.

To carry out the in vitro diagnostic method for tuberculosis in a patient liable to be infected by Mycobacterium tuberculosis, the following necessary or kit can be used, said necessary or kit comprising:

- a polypeptide or a peptide according to the invention,
- reagents for making a medium appropriate for the immunological reaction to occur,
- reagents enabling to detect the antigen/antibody complex which has been produced by the immunological reaction, said reagents possibly having a label, or being liable to be recognized by a labeled reagent, more particularly in the case where the above mentioned polypeptide or peptide is not labeled.

The invention also relates to an additional method for the in vitro diagnostic of tuberculosis in a patient liable to be infected by M. tuberculosis, comprising the following steps:

contacting the biological sample with an appropriate antibody of the invention under conditions enabling an in vitro immunological reaction between said antibody and the antigens of M. tuberculosis which are possibly present in the biological sample and - the in vitro detection of the antigen/antibody complex which may be formed.

Appropriate antibodies are advantageously monoclonal antibodies directed against the peptides which have been mentioned in Table 4.

To carry out the in vitro diagnostic method for tuberculosis in a patient liable to be infected by Mycobacterium tuberculosis, the following necessary or kit can be used, said necessary or kit comprising:

- an antibody of the invention,
- reagents for making a medium appropriate for the immunological reaction to occur,
- reagents enabling to detect the antigen/antibody complexes which have been produced by the immunological reaction, said reagent possibly having a label or being liable to be recognized by a label reagent, more particularly in the case where the above mentioned antibody is not labeled.

An advantageous kit for the diagnostic in vitro of tuberculosis comprises:

- at least a suitable solid phase system, e.g. a microtiter-plate for deposition thereon of the biological sample to be diagnosed in vitro ,
 - a preparation containing one of the monoclonal antibodies of the invention,
 - a specific detection system for said monoclonal antibody,
 - appropriate buffer solutions for carrying out the immunological reaction between a test sample and said monoclonal antibody on the one hand, and the bonded monoclonal antibodies and the detection system on the other hand.

The invention also relates to a kit, as described above, also containing a preparation of one of the polypeptides or peptides of the invention, said antigen of the invention being either a standard (for quantitative determination of the antigen of M. tuberculosis which is sought) or a competitor, with respect to the antigen which is sought, for the kit to be used in a competition dosage process.

The invention also relates to an immunogenic composition comprising a polypeptide or a peptide according to the invention, in association with a pharmaceutically acceptable vehicle.

The invention also relates to a vaccine composition comprising among other immunogenic principles anyone of the polypeptides or peptides of the invention or the expression product of the invention, possibly coupled to a natural protein or to a synthetic polypeptide having a sufficient molecular weight so that the conjugate is able to induce in vivo the production of antibodies neutralizing Mycobacterium tuberculosis, or induce in vivo a cellular immune response by activating M. tuberculosis antigen-responsive T cells.

The peptides of the invention which are advantageously used as immunogenic principle have one of the following sequences:

TABLE 4a (see fig. 4a and 4b)

	Amino acid position						
35	(NH ₂ -terminal)	(COOH-terminal)				
	12	QVPSPSMGRDIKVQFQSGGA	31				
40	36 .	LYLLDGLRAQDDFSGWDINT	55				
	77	SFYSDWYQPACRKAGCQTYK	96				
	101	LTSELPGWLQANRHVKPTGS	120				
45	175	KASDMWGPKEDPAWQRNDPL	194				
	211	CGNGKPSDLGGNNLPAKFLE	230				
	275	KPDLQRHWVPRPTPGPPQGA	294				

50

20

TABLE 4b (see fig. 5)

Amino acid

position
(NH2-terminal)

77 SFYSDWYQPACGKAGCQTYK
96
276 PDLQRALGATPNTGPAPQGA
299

The amino acid sequences are given in the 1-letter code.

Other characteristics and advantages of the invention will appear in the following examples and the figures illustrating the invention.

Figures 1(A) and 1(B) correspond to the identification of six purified λgt11 M. tuberculosis recombinant clones. Figure 1(A) corresponds to the EcoRI restriction analysis of clone 15, clone 16, clone 17, clone 19, clone 24 and EcoRI-HindIII digested lambda DNA-molecular weight marker lane (in kilobase pairs) (M) (Boehringer).

Figure 1(B) corresponds to the immunoblotting analysis of crude lysates of E. coli lysogenized with clone 15, clone 16, clone 17, clone 19, clone 23 and clone 24.

Arrow (<—) indicates fusion protein produced by recombinant λgt11-M-tuberculosis clones. Expression and immunoblotting were as described above. Molecular weight (indicated in kDa) were estimated by comparison with molecular weight marker (High molecular weight-SDS calibration kit, Pharmacia).

Figure 2 corresponds to the restriction map of the DNA inserts in the λgt11 M. tuberculosis recombinant clones 17 and 24 identified with polyclonal anti-32-kDa (BCG) antiserum as above defined and of clones By1, By2 and By5 selected by hybridization with a 120 bp EcoRI-Kpn I restriction fragment of clone 17.

DNA was isolated from $\lambda gt11$ phage stocks by using the Lambda Sorb Phage Immunoadsorbent, as described by the manufacturer (Promega). Restriction sites were located as described above. Some restriction sites were deduced from a computer analysis of the nucleotide sequence.

The short vertical bars

(|---|)

35

45

represent linker derived EcoRI sites surrounding the DNA inserts of recombinant clones. The lower part represents a magnification of the DNA region containing the antigen of molecular weight of 32-kDa, that has been sequenced. Arrows indicate strategies and direction of dideoxy-sequencing. (—>) fragment subcloned in Bluescribe M13; (<—>) fragment subcloned in mp10 and mp11 M13 vectors; (■—>) sequence determined with the use of a synthetic oligonucleotide.

Figures 3a and 3b correspond to the nucleotide and amino acid sequences of the general formula of the antigens of the invention.

Figures 4a and 4b correspond to the nucleotide and amino acid sequences of one of the antigens of the invention.

Two groups of sequences resembling the E. coli consensus promoter sequences are boxed and the homology to the consensus is indicated by italic bold letters. Roman bold letters represent a putative Shine-Dalgarno motif.

The NH₂-terminal amino acid sequence of the mature protein which is underlined with a double line happens to be very homologous - 29/32 amino acids - with the one of MPB 59 antigen (34). Five additional ATG codons, upstream of the ATG at position 273 are shown (dotted underlined). Vertical arrows (1) indicate the presumed NH₂ end of clone 17 and clone 24. The option taken here arbitrarily represents the 59 amino acid signal peptide corresponding to ATG₁₈₃.

Figure 5 corresponds to the nucleotide and amino acid sequences of the antigen of 32-kDa of the invention.

The NH₂-terminal amino acid sequence of the mature protein which is underlined with a double line happens to be very homologous - 29:32 amino acids - with the one of MPB 59 antigen (34). Vertical arrows (1) indicate the presumed NH₂ end of clone 1,7 and clone 24.

EP 0 419 355 A1

Figure 6 is the hydropathy pattern of the antigen of the invention of a molecular weight of 32-kDa and of the antigen α of BCG (17).

Figure 7 represents the homology between the amino acid sequences of the antigen of 32-kDa of the invention and of antigen α of BCG (revised version).

Identical amino acids; (:) evolutionarily conserved replacement of an amino acid (.), and absence of homology () are indicated. Underlined sequence (=) represents the signal peptide, the option taken here arbitrarily representing the 43-amino acid signal peptide corresponding to ATG_{9.1}. Dashes in the sequences indicate breaks necessary for obtaining the optimal alignment.

Figure 8 illustrates the fact that the protein of 32-kDa of the invention is selectively recognized by human tuberculous sera.

Figure 8 represents the immunoblotting with human tuberculous sera, and anti-β-galactosidase monoclonal antibody. Lanes 1 to 6: E. coli lysate expressing fusion protein (140 kDa); lanes 7 to 12:unfused β-galactosidase (114 kDa). The DNA insert of clone 17 (2.7 kb) was subcloned into pUEX₂ and expression of fusion protein was induced as described by Bresson and Stanley (4). Lanes 1 and 7 were probed vith the anti-β-galactosidase monoclonal antibody: lanes 4, 5, 6 and 10, 11, 12 with 3 different human tuberculous sera highly responding towards purified protein of the invention of 32-kDa; lanes 2 and 3 and 8 and 9 were probed with 2 different low responding sera.

Figure 9 represents the nucleic acid sequence alignment of the 32-kDa protein gene of M. tuberculosis of the invention (upper line), corresponding to the sequence in fig. 5, of the gene of fig. 4a and 4b of the invention (middle line), and of the gene for antigen α of BCG (lower line).

Dashes in the sequence indicate breaks necessary for obtaining optimal alignment of the nucleic acid sequence.

The primer regions for enzymatical amplification are boxed (P1 to P6).

The specific probe regions are boxed and respectively defined by probe region A, probe region B, probe region D, probe region E and probe region F

It is to be noted that the numbering of nucleotides is different from the numbering of figures 3a and figure 3b, and of figure 5, because nucleotide at position 1 (on figure 9) corresponds to nucleotide 234 on Figure 3a, and corresponds to nucleotide 91 on figure 5.

Figure 10a corresponds to the restriction and genetic map of the PIGRI plasmid used in Example IV for the expression of the P_{32} antigen of the invention in E. coli .

On this figure, underlined restriction sites are unique.

Figure 10b corresponds to the pIGRI nucleic acid sequence.

On this figure, the origin of nucleotide stretches used to construct plasmid pIGRI are specified hereafter.

35

5

20

25

40

45

EP 0 419 355 A1

Position

	3422-206:	lambda PL containing EcoRI blunt-MboII
5		blunt fragment of pPL(\(\lambda\) (Pharmacia)
	207-384 :	synthetic DNA sequence
	228-230 :	initiation codon ATG of first
10		cistron
	234-305 :	DNA encoding amino acids 2 to 25 of
		mature mouse TNF
15	306-308:	stop codon (TAA) first cistron
	311-312 :	initiation codon (ATG) second
		cistron
20	385-890:	rrnBT ₁ T ₂ containing HindIII-SspI
20		fragment from pKK223 (Pharmacia)
	891-3421 :	DraI-EcoRI blunt fragment of pAT ₁₅₃
		(Bioexcellence) containing the
25		
		tetracycline resistance gene and the
		origin of replication.
30		-

Table 5 hereafter corresponds to the complete restriction site analysis of pIGRI.

* RESTRICTION-SITE ANALYSIS *

Table 5

Mame of the plasmid. pJGRI

10

Total number of bases is: 3423. Analysis done on the complete sequence.

15 List of cuts by enzyme. ------370 2765 Acy I Afl III 735 2211 2868 2982 3003 1645 Aha III 222 Alu I 386 1088 1345 1481 1707 2329 2732 3388 3403 : 1236 : 1331 Alw NI Apa LI Asp 7181 : 208 Asu I : 329 494 623 713 1935 1977 2156 2280 2529 2617 289 3244 25 λva I : 1990 Ava II 329 494 1935 1977 2280 2529 2617 : : 1973 Bal I Bam HI : 3040 : 2214 2871 2985 3006 Bbe I 1735 1753 1866 1869 2813 3202 1226 1973 1997 2630 Bbv I : 389 1316 Bbv I* : 1017 1223 30 : 1822 : 2253 Bbv II 2685 2487 Bgl I Bin I 1001 1087 15 903 3048 : 902 Bin I* : 999 2313 3035 Bsp HI Bsp MI 855 925 2926 : 382 2361 Bst NI : 213 475 585 753 1486 1499 1620 1975 2358 3287 683 716 2486 2646 Cau II 1268 1933 2159 2883 3247 : 2132 : 1971 Cfr 10I 3005 3014 3255 2476 2884 3016 3120 Cfr I

40

Cla I

: 3393

45

						To	ible 5	i (con	(t)				
5	Cvi JI	:	190	263	270	380	386	391	421	607	625	714	77
			791	1088	1117	1160	1171	1236	1315	1340	1345	1481	157
			1605	1623	1634	1707	1726	1926	1931	1973	2010	2092	213
10			2157	2162	2300	2310	2329	2370	2427	2435	2465	2478	249
	•		2544	2588	2732	2748	2804	282 2	2886	2894	2932	2946	301
	Cvi QI	:	3087 209	3122 3253	3245	3269	3388	3403					
15	Dde I	:	133	336	343	518	608	664	962	1371	1835		
	Dpn I	:	9	236	897	909	987	995	1006	1081	1957	2274	228
			2320	2592	2951	3042	306 9						
	Dra II	:	1935	1977	2892								
	Dra III	:	293 309	1968	2887								
20	Dsa I Eco 31I	:	562	1300	2007								
	Eco 47III	:	341	1773	2642	2923	3185						
	Eco 57I	:	214										
	Eco 571*	:	1103									_	
	Eco 78I	:	2212	2869	2983	3004							
	Eco NI	:	196	2792									
25	Eco RII	:	211	473	583	751	1484	1497	1618	1973	2356	3285	
	Eco RV Fnu 481	:	3232 378	479	1031	1237	1240	1305	1448	1603	1721	1724	174
			1855	1858	1987	2001	2008	2011	2130	2209	2254	2311	239
			2479	2644	2695	2802	2836	2839	3117	3120	3191		
30	Fnu DII	:	489	1021	1602	1784	1881	2003	2029	2174	2184	2313	237
			2440	2445	2472	2601	2716	3072					
	Fok I	:	415	799	3317								
	Pok I*	:	763	2370	2415	3269							
	Gsu I	:	339	2035									
35	Gsu I*	:	2589	701	1171	1622	1624	1077	2270	2422	2499		
	Bae I Bae II	:	775 343	791 541	1171 1405	1623 1775	1634 2214	1973 2644	2370 2871	2427 2925	2985	3006	318
	nge 11	•	343	341	1405	1,,5	2447	2011	20,1	2,23	2,00	3000	310
	Hae III	:	625	714	775	791	1171	1605	1623	1634	1973	2157	237
40	-		2427	2478	2499	2588	282 2	2886	2894	3018	3122	3245	
40	Hga I	:	158	181	743	2035	2185	2776					
	Hga I*	:	955	1533	2429	2461	3015						
	Hgi AI	:	139	1335	1954	2245	2832	3143	2002	2206	2220		
	Hgi CI Hgi JII	:	208 2934	2126 2948	2210	2649	2867	2981	3002	3296	3339		
	Bha I	:	342	489	540	1021	1130	1304	1404	1471	1741	1774	196
45	mid T	٠	372	407	240	1021	.130	1304	1404	7417	4,41	2117	170
43			2000	2062	2213	2472	2603	2643	2718	2870	2924	2984	300
			3158	3186	3318								

Second S		. Table s (conit)												
	5	Hin PlI	:	340	487	538					1469	1739	1772	196
				1998	2060	2211	2470	2601	2641	2716	2868	2922	2982	300
		Rind II												
Rinf I 1 367 1275 1671 1746 1891 2112 2410 2564 2784 2139 239 239 239 2487 2647 2723 2883 3006 3015 3030 3247 3256 3302	10					2,00								
Hph I						1671	1746	1891	2112	2410	2564	2784		
Hph I		Bpa II	:	3	682	716	1077	1267	1293	1440	1932	2133	2159	239
		Hoh T	•										3303	
Kpn I	15	•			130	101	000	714	1500	~1~4	2313	3020	3302	
Mae II	13													
Mae III														
Mbo I											0065	0504	2000	222
Mbo II														
Mbo II	20	Mbo I	:						993	1004	1079	1955	2272	228
Nbo II* 1988 2944 1948 2446 2630 2116 2143 2181 2242 254														
Hene I* 1 1252 1436 3112 3199 2446 2630 289 337 711 1467 1750 2116 2143 2181 2242 254 Note of the content o						917	1779	1827	2419	2690				
Mail I						3112	3199						-	
25								2630					,	
Msc I	25	Mnl I*	:					1467	1750	2116	2143	2181	2242	254
Mst I : 1963 2061 3157 Nae I : 2134 2488 2648 3016 Nar I : 2211 2868 2982 3003 NCO I : 309 Nhe I : 3186 Nla III : 166 230 3-13 512 567 859 929 1649 1828 1962 216 Nla IV : 210 330 496 1578 1617 1936 1979 2093 2128 2163 221 Solution				2811	3030	3234	3294							
Nae I : 2134 2488 2648 3016 Nar I : 2211 2868 2982 3003 NCO I : 309 Hhe I : 3186 Nla III : 166 230 3-13 512 567 859 929 1649 1828 1962 216 Nla IV : 210 330 496 1578 1617 1936 1979 2093 2128 2163 221 Standard I : 2445 Nsp BII : 1062 1307 2278 Nsp BII : 1062 1307 2278 Nsp BII : 1064 2857 Pfl MI : 293 2052 2101 Ple I : 375 1754 Ple I* : 1269 2778 Ps I : 1938 1980 2895 Pst I : 1938 1980 2895 Sal I : 210 3254 Sal I : 369 2764 Scr PI : 4 213 475 585 683 716 753 1268 1486 1499 162 Sdu I : 139 1335 1954 2245 2832 2934 2948 3143 Sec I : 13 309 1485 1968 2046 2248 2881 2887 3286 3300 Sfa NI : 597 765 2392 2767 3178 3291			:				433	764	941	3361	3383	3420		
Nar I							2215							
Neo I : 309 Nhe I : 3186 Nla III : 166														
Nhe I	30				2000	2302	3003							
Nla III : 166 230 343 512 567 859 929 1649 1828 1962 216 Nla IV : 2226 2241 2369 2486 2672 2711 2857 2930 3068 3415 Nla IV : 210 330 496 1578 1617 1936 1979 2093 2128 2163 221 35														
Nla IV : 210 330 496 1578 1617 1936 1979 2093 2128 2163 221 Sec I		Nla III.	:		230	3-13	512	567	859	929	1649	1828	1962	216
35					2241	2369	2486	2672	2711		2930	3068	3415	
Nru I : 2445 Nsp BII : 1062 1307 2278 Nsp BII : 1649 2857 Pfl MI : 293 2052 2101 Ple I : 375 1754 40 Ple I* : 1269 2778 Ppu MI : 1935 1977 Pss I : 1938 1980 2895 Pst I : 379 Rsa I : 210 3254 Sal I : 369 2764 Scr PI : 4 213 475 585 683 716 753 1268 1486 1499 162 1933 1975 2159 2358 2883 3247 3287 Sdu I : 139 1335 1954 2245 2832 2934 2948 3143 Sec I : 3 309 1485 1968 2046 2248 2881 2887 3286 3300 Sfa NI : 597 765 2392 2767 3178 3291		Nla IV	:	210	330	496	1578	1617	1936	1979	2093	2128	2163	221
Nsp BII : 1062 1307 2278 Nsp BI : 1649 2857 Pfl MI : 293 2052 2101 Ple I : 375 1754 40 Ple I* : 1269 2778 Ppu MI : 1935 1977 Pss I : 1938 1980 2895 Pst I : 379 Rsa I : 210 3254 Sal I : 369 2764 Scr PI : 4 213 475 585 683 716 753 1268 1486 1499 162 1933 1975 2159 2358 2883 3247 3287 Sdu I : 139 1335 1954 2245 2832 2934 2948 3143 Sec I : 3 309 1485 1968 2046 2248 2881 2887 3286 3300 Sfa NI : 597 765 2392 2767 3178 3291	35	Nru I	•		2651	2869	2893	2983	3004	3042	3088	3298	3341	
Nsp HI : 1649 2857 Pfl MI : 293 2052 2101 Ple I : 375 1754 40 Ple I* : 1269 2778 Ppu MI : 1935 1977 Pss I : 1938 1980 2895 Pst I : 379 Rsa I : 210 3254 Sal I : 369 2764 Scr PI : 4 213 475 585 683 716 753 1268 1486 1499 162 1933 1975 2159 2358 2883 3247 3287 Sdu I : 139 1335 1954 2245 2832 2934 2948 3143 Sec I : 3 309 1485 1968 2046 2248 2881 2887 3286 3300 Sfa NI : 597 765 2392 2767 3178 3291					1307	2278								
Ple I : 375 1754 40 Ple I* : 1269 2778		Nap HI	:	1649	2857									
## Ple I* : 1269 2778 Ppu MI						2101								
Ppu MI : 1935 1977 Pss I : 1938 1980 2895 Pst I : 379 Rsa I : 210 3254 Sal I : 369 2764 Scr PI : 4 213 475 585 683 716 753 1268 1486 1499 162 1933 1975 2159 2358 2883 3247 3287 Sdu I : 139 1335 1954 2245 2832 2934 2948 3143 Sec I : 3 309 1485 1968 2046 2248 2881 2887 3286 3300 Sfa NI : 597 765 2392 2767 3178 3291														
Pss I : 1938 1980 2895 Pst I : 379 Rsa I : 210 3254 Sal I : 369 2764 Scr PI : 4 213 475 585 683 716 753 1268 1486 1499 162 1933 1975 2159 2358 2883 3247 3287 Sdu I : 139 1335 1954 2245 2832 2934 2948 3143 Sec I : 3 309 1485 1968 2046 2248 2881 2887 3286 3300 Sfa NI : 597 765 2392 2767 3178 3291	40													
Pst I : 379 Rsa I : 210 3254 Sal I : 369 2764 Scr PI : 4 213 475 585 683 716 753 1268 1486 1499 162 1933 1975 2159 2358 2883 3247 3287 Sdu I : 139 1335 1954 2245 2832 2934 2948 3143 Sec I : 3 309 1485 1968 2046 2248 2881 2887 3286 3300 Sfa NI : 597 765 2392 2767 3178 3291		Pss I				2895								
Rsa I : 210 3254 Sal I : 369 2764 Scr PI : 4 213 475 585 683 716 753 1268 1486 1499 162 1933 1975 2159 2358 2883 3247 3287 Sdu I : 139 1335 1954 2245 2832 2934 2948 3143 Sec I : 3 309 1485 1968 2046 2248 2881 2887 3286 3300 Sfa NI : 597 765 2392 2767 3178 3291						~~,								
Scr PI : 4 213 475 585 683 716 753 1268 1486 1499 162 1933 1975 2159 2358 2883 3247 3287 Sdu I : 139 1335 1954 2245 2832 2934 2948 3143 Sec I : 3 309 1485 1968 2046 2248 2881 2887 3286 3300 Sfa NI : 597 765 2392 2767 3178 3291			:	210										
1933 1975 2159 2358 2883 3247 3287 Sdu I : 139 1335 1954 2245 2832 2934 2948 3143 Sec I : 3 309 1485 1968 2046 2248 2881 2887 3286 3300 Sfa NI : 597 765 2392 2767 3178 3291														
Sdu I : 139 1335 1954 2245 2832 2934 2948 3143 Sec I : 3 309 1485 1968 2046 2248 2881 2887 3286 3300 Sfa NI : 597 765 2392 2767 3178 3291	45	oci il	:								1268	1486	1499	162
Sec I : 3 309 1485 1968 2046 2248 2881 2887 3286 3300 Sfa NI : 597 765 2392 2767 3178 3291		Cdu T	_											
Sfa NI : 597 765 2392 2767 3178 3291												2226	2266	
										7881	288/	3286	3300	

Table 5 (in t)

```
5
             2857
     Sph I
                                                         751 1266 1484 1497 161
                                                   714
                                            681
                                473
                                      583
                          211
     Sso II
                                     2356 2881
                                                       3285
                                                 3245
                  1931
                        1973
                              2157
                  309
                        2046
     Sty I
                                613 1547 2149 2290 2765 3078 3393
                         370
                   252
     Taq I
               :
10
                  1749
     Taq IIB
               :
               :
                  2751
     Taq IIB*
                        1054
                    38
     TthlllII
               :
                         1022 1061
                    633
     TthlllIII :
     Xba I
                    363
                                      993 1004 3040
                          895
                                907
     Xho II
                     7
               :
                   2476
     Xma III
                :
15
     Xmn I
                   414
                         3422
     Total number of cuts is: 705.
                         Sorted list of enzymes by n° of cuts.
20
      Ava I
                                          TthlllIII*:
Nsp BII :
Fok I :
                      Sdu I
Cau II
Bbv I
                                  :
                                       8
                   61
      Cvi JI
                :
                                                               Taq IIB
                                                                              1
               : 31
: 25
: 25
                                  • .
                                       8
      Fnu 4HI
                                                              Alw NI
                                                                              1
                                                       :
                                                           3
                                        8
                                          Fok I
Pfl MI
Hind II
Dsa I
Bsp BI
Pss I
Mst I
Hgi JII
Ple I
                                   :
      Bha I
                      Mbo II
                                                              Dra III
Afl III
                                                           3
                                        7
                                                       :
                                   :
      Bin PlI
                                                                              1
25
                                                       :
                                                           3
                : 21
                       Ava II
                                   :
                                        7
      Rae III
                                                              Cla I
Eco 57I*
Nhe I
Gsu I*
Bal I
                                                           3
                       Mae II
                                        7
                                                       :
                                   :
                : 21
      Nla IV
                                                                              1
               : 21
: 20
                                                       :
                                        6
                         Sfa NI
                                   :
      Nla III
                                                           3
                                                       :
                         Xho II
                                   :
                                        6
      Bpa II
                                                           3
                                        6
                                                       :
                : 18
                        Hgi AI
      Scr FI
                                                           2
                                        6
                         Sfa NI*
                                   :
                : 18
      Sso II
                                                                               1
                                                               Eco RV
                                                           2
                : 17
                         Bbv I*
                                        6
                                                       :
                                   :
                                                               Sph I
Xma III
Hph I*
Tag IIB*
Eco 571
Kpn I
Xba I
30
      Fnu DII
                       Cfr 10I :
                                                           2
                                           Mbo II*
                                                       :
                                        6
                   16
      Mbo I
                :
                                          Cvi QI
Acc I
Bgl I
                                                                               1
                                                           2
                                        6
                                                       :
                : 16
      Dpn I
                                                           2
                                        5
                                                       :
      Mnl I*
                : 15
                         Acy I
                                    :
                                                           2
                                        5
                : 12
                                                       :
                         Bin I
                                    :
      Asu I
                                            Ple I*
                                                           2
                                        5
                   11
                         Cfr I
                                    :
      Hae II
                :
                                          Gsu I :
Ppu MI :
TthlllII :
Hind III :
Nsp BI :
                                                           2
                                                                               1
                         Hga I*
                                        5
                : 11
      Mae III
                                                           2
35
                         Mae I
                                        5
      Rph I
                : 10
                                   •
                                                               Aha III
                                                           2
                         Eco 47III :
Mnl I :
                : 10
                                        5
      Bst NI
                                                               Nru I
                                                           2
                                                                           :
                                        5
      Eco RII
                :
                   10
                                                               Bam HI
Apa LI
                                                           2
                                                                               1
                                                       1
                : 10
                         Mme I*
                                        4
      Sec I
                                                           2
                         Eco 78I :
                                        4 Rsa I
                                                       :
      Dde I
                :
                                                               Asp 718I : Eco 31I :
                                                           2
                                             Sal I
                   9
                          Nae I
                                        4
                                                       :
      Binf I
                 :
                                            Bbv II
                                                                          :
                                        4
                    9
                          Bbe I
                                   :
      Bae I
                 :
40
                                                            2
                                                                Nco I
                                                                           :
                                                                               1
                                           Bsp MI
                     9
                         Bin I*
                                        4
      Alu I
                 :
                                                                Pst I
                                        4
                                             Sty I
                                                       :
                                                            2
                                                                           :
                         Nar I
                   9
                                   :
      Bqi CI
                 :
                                                            2
                                             Eco NI
                     9
                         Fok I*
                                    :
                                        4
                                                       :
      Mse I
                 :
                        Dra II
                                           Xmn I
                                        3
      Taq I
                 :
                                    :
                          45
      List of non cutting selected enzymes.
      *************************
              , Afl II , Apa I , Asu II , Avr II , Bbv II* , Bcl I , Bsp MI* , Bsp MII , Bss HII , Bst EII , Bst XI , Eco 311* ,
```

55

50

Bql II

Table 5 (con't)

_	Eco RI	, Esp I	, Hpa I	, Mlu	I,	Mme I	, Nde	ì,	Not I	,
5	Nsi I	, Pma CI	, Pvu I	, Pvu	II ,	Rsr II	, Sac	: I ,	Sac II	,
	Sau I	, Sca I	, Sci I	, Sfi	I,	Sma I	, Sna	BI,	Spe I	,
	Spl I	, Ssp I	, Stu I	, Taq	IIA ,	Taq II.	A* , Ttl	1111 ,	Vsp I	,
	Xca I	. Xho T	. Xma I	_		-			-	

Total number of selected enzymes which do not cut: 45

10

15

Figure 11a corresponds to the restriction and genetic map of the pmTNF MPH plasmid used in Example V for the expression of the P_{32} antigen of the invention in E. coli .

Figure 11b corresponds to the pmTNF-MPH nucleic acid sequence.

On this figure, the origin of nucleotide stretches used to construct plasmid pmTNF-MPH is specified hereafter.

20	100101011	
	1-208 :	lambda PL containing EcoRI blunt-MboII
		blunt fragment of $pPL(\lambda)$ (Pharmacia)
25	209-436:	synthetic DNA fragment
	230-232	initiation codon (ATG) of mTNF

		fusion protein									
236-307	:	sequence	encoding	AA	2	to	25	of			

	macui	e mo	19E 1	147.			
308-384 :	multi	ple	clor	ning	site	C	ontaining
	His,	enco	ling	sequ	ence	at	position

315-332

Position

385-436: HindIII fragment containing E. coli trp terminator

437-943: rrnBT₁T₂ containing HindIII-SspI

fragment from pKK223 (Pharmacia)

944-3474: DraI-EcoRI blunt fragment of pAT₁₅₃

(Bioexcellence) containing the tetracycline resistance gene and the

origin of replication.

45

50

Table 6 hereafter corresponds to the complete restriction site analysis of pmTNF-MPH.

Table 6 * RESTRICTION-SITE ANALYSIS * ************ Done on DNA sequence pmTNF, MPH Total number of bases is: 3474. Analysis done on the complete sequence. List of cuts by enzyme. 371 2818 λcc I 788 2264 2921 3035 3056 Acy I Afl II : : Afl III Aha III

439 1141 1398 1534 1760 2382 2785 3441 3456 : Alu I Alw NI Apa I : : Apa LI : 1384 Asp 718I Asu I : 766 1988 2030 2209 2333 2582 267 : Ava I 2030 2333 2582 2670 Ava II Bal I : Bam HI : Bbe I : Bbv I Bbv I* Bbv II 2738 2026 2050 : : Bgl I : Bin I : Bin I* Bsp HI : Bsp MI Bsp MII Bst NI : 806 1539 1552 1673 2028 2411 2212 2936 Cau II Cfr 10I : Cfr I Cla I : Cvi JI ' 2215 2353

		table 6 (con:t)											
5			2488	2518	2531	2552	2597	2641	2785	2801	2857	2875	293
			2947	2985	2999	3071	3140	3175	3298	3322	3441	3456	
		:	211 135	3306 571	661	717	1015	1424	1888				
10	Dpn I	:	11	238	336	950	962	1040	1048	1059	1134	2010	232
	Dra II	:	2342 1988	2373 2030	2645 2945	3004	3095	3122					
	Dra III	:	295 345	331 2021	2940								
	Dsa I Eco 31I	:	615	2021	2710								
15	Eco 47III Eco 57I	:	1826 216	2695	2976	3238							
	Eco 571*	:	1156										
	Eco 781	:	2265	2922 2845	3036	3057							
	Eco NI Eco RI	:	198 309	2043									
20	Eco RII	:	213 3285	526	636	804	1537	1550	1671	2026	2409	3338	
	Eco RV Pnu 481	:	401	417	532	1084	1290	1293	1358	1501	1656	1774	177
			1795	1908	1911	2040	2054	2061	2064	2183	2262	2307	236
			2447	2532	2697	2748	2855	2889 2056	2892 2082	3170 2227	3173 2237	3244 2366	243
25	Fnu DII	:	542	1074	1655	1837	1934	2036	2002	2221	2231	2500	243
	Fok I		2493 468	2498 852	2525 3370	2654	2769	3125					
	Pok I*	:	816	2423	2468.	3322							
	Gsu I	:	2088										
30	Gsu I* Bae I	:	2642 361	828	844	1224	1676	1687	2026	2423	2480	2552	
	Rae II	:	594	1458	1828	2267	2697	2924	2978	3038	3059	3240	222
	Hae III	:	343	361	678	767	828	844	1224	1658	1676	1687	202
			2210	2423	2480	2531	2552	2641	2875	2939	2947	3071	317
35			3298	100	706	2000	2238	2829					
	Hga I Hga I*	:	160 1008	183 1586	796 2482	2088 2514	3068	2023					
	Hgi AI	:	141	1388	2007	2298	2885	3196					
	Bgi CI	:	210	2179	2263	2702	2920	3034	3055	3349	3392		
	Bgi JII Bha I	:	345 542	2987 593	3001 1074	1183	1357	1457	1524	1794	1827	2017	205
40		·	2115	2266				2771			3037	3058	321
			3239	3371									
	Hin PlI	:				1181	1355	1455	1522	1792	1825	2015	205
45			2113	2264	2523	2654	2694	2769	2921	2975	3035	3056	320
70	Rind II Bind III Binf I	:	384	437	2819 3439	1799	1944	2165	2463	2617	2837		

Table	6	(4	mit)
-------	---	----	------

						ice	ice o	(40	٠,٠				
5	Hpa II	:	5	339	355	375	7,35	769	1130	1320	1346	1493	198
			2186	2212	2450	2540	2700	2776	2936	3059	3068	3083	330
			3309				067	1052	2174	3028	3073	3355	
	Hph I	:	96	140	183	716	967	1953	2174	3020	3013	3333	
10	Hph I*	:	8	305	311	317							
	Kpn I	:	214		1205	1001	3240						
	Mae I··	:	365	952	1205	1981	1900	1924	2513	2569			
	Mae II	:	276	330	751	997 1278	1341	2320	2587	3255	3343		
	Mae III	:	171	257	1162 334	948	960	1038	1046	1057	1132	2008	232
	Mbo I	:	9	236	334	340	,,,,	2000	20.0				
15			2240	2371	2643	3002	3093	3120					
		_	2340 209	475	970	1832	1880	2472	2743				
	Mbo II	:	1041	2997	3.0	2002							
	Mbo II* Mme I*	:	1305	1489	3165	3252							
	Mnl I	:	372	1271	1595	2001	2499	2683					
	this z	•				•				,		2205	250
20	Mnl I*	:	210	291	350	764	1520	1803	2169	2196	2234	2295	259
			2864	3083	3287	3347							
	Mse I	:	181	188	223	388	486	817	994	3414	3436	_	
	Mst I	:	2016	2114	3210								
	Nae I	:	2187	2541	2701	3069							
	Nar I	:	2264	2921	3035	3056							
25	Nco I	:	345					;					
	Nhe I	:	3239									1001	201
	Nla III	:	168	232	349	382	565	620	912	982	1702	1881	201
			2222	2279	2294.	2422	2539	2725	2764	2910	2983	3121	346
30	Nla IV	:	212	336	343	549	1631	1670	1989	2032	2146	2181	221
			2265	2583	2704	2922	2946	3036	3057	3095	3141	3351	339
	N T		2498										
	Nru I Nsp BII	:	412	1115	1360	2331							
	Nsp BI	:		1702	2910								
	Pfl MI	:	295	2105	2154								
35	Ple I	:		1807									
	Ple I*	:		2831									
	Pma CI	:	331										
	Ppu MI	:	1988	2030									
	Pss I	:	1991	2033	2948								
	Rsa I	:		3307									
40	Sal I	:		2817		214	520	630		769	806	1321	153
	Scr FI	:	: 6	215	339	340	528	638	736	, , , ,		1321	133
			1552	1673	1986								
	Sdu I	:	141		1388	2007	2298						225
	Sec I	:		338	345	1538	2021	2099	2301	2934	2940	3339	335
45	Sfa NI	:	650	818									
	Sfa NI*	:			2038	2433	3054	3066	3255				
	Sma I	:											
	Sph I	:	382						. 77	76	7 804	1319	153
	Sso II		: 4	213	337	338	526	630	0 /34	. 10	, 500	. 1313	1,13

Table 6 (con't)

```
5
                                      2026 2210 2409 2934
                   1550
                         1671 1984
                                                               3298
                    361
     Stu I
                    345
                         2099
     Sty I
                :
                    254
                          371
                                      1600
                                            2202 2343
     Taq I
                                 666
                                                         2818
                                                               3131 3446
     Taq IIB
                   1802
                :
     Taq IIB*
                   2804
10
     Tth11111
                     40
                          1107
     Tth11:111*
                    686
                          1075
                                1114
     Xba I
                    364
     Xho II
                      9
                          334
                                 948
                                       960
                                            1046
                                                  1057
                                                         3093
                    338
     Xma I
     Xma III
                   2529
     Xmn I
15
     Total number of cuts is: 743.
```

20

List of non cutting selected enzymes.

```
, Asu II
     Aat II
                          , Avr II .
                                     , Bbv II*
                                                 , Bcl I
                                                            , Bgl II
                                                                        , Bsp MI*
                                     , Eco 311*
     Bss HII
              , Bst BII
                          , Bst XI
                                                , Esp I
                                                            , Hpa I
                                                                        , Mlu I
     Mme I
                          , Not I
                Nde I
                                     , Nsi I
                                                , Pst I
                                                            , Pvu I
                                                                        , Pvu II
     Rsr II
                                     , Sau I
                                                 , Sca I
                Sac I
                            Sac II
                                                              Sci I
                                                                         Sfi I
30
     Sna BI
                Spe I
                            Spl I'
                                     , Ssp I
                                                 , Taq IIA
                                                           , Tag IIA* , Tth 1111 ,
     Vsp I
              , Xca I
                            Xho I
```

Total number of selected enzymes which do not cut: 38

35

40

Figure 12a corresponds to the restriction and genetic map of the plasmid pIG2 used to make the intermediary construct PIGS Mt32 as described in Example IV for the subcloning of the P₃₂ antigen in plasmid pIGRI.

Figure 12b corresponds to the pIG2 nucleic acid sequence.

On this figure, the origin of nucleotide stretches used to construct plasmid plG2 is specified hereafter.

45

EP 0 419 355 A1

Position

	3300-206	:	lambda PL containing EcoRI-MboII blunt
5			fragment of $pPL(\lambda)$ (Pharmacia)
	207-266	:	synthetic sequence containing multiple
		•	cloning site and ribosome binding site
10			of which the ATG initiation codon is
			located at position 232-234
	267-772	:	rrnBT ₁ T ₂ containing HindIII-SspI
15			fragment from pKK223 (Pharmacia)
-	773-3300	:	tetracycline resistance gene and origin
			of replication containing EcoRI-DraI
			fragment of pAT 153 (Bioexcellence)
20			

Table 7 corresponds to the complete restriction site analysis of pIG2.

Taller

* RESTRICTION-SITE ANALYSIS *

Done on DNA sequence pIG2

Total number of bases is: 3301.

Analysis done on the complete sequence.

List of cuts by enzyme. : Acc I 2093 2750 Acy I : Afl III : Aha III 2211 2614 3270 3285 Alu I : · 268 Alw NI : Apa LI : Asp 718I 2162 2411 2499 2774 312 Asu I : Ava I : ٠: Ava II Bal I Bam BI : Bbe I 1617 1635 2695 3084 Bbv I : 1108 1855 Bbv I* Bbv II : Bgl I Bin I : Bin I* : Bsp BI : Bsp MI Bst NI : 1502 1857 2240 3169 : 2765 3129 Cau II : Cfr 101 : Cfr I : Cla I : Cvi JI Cvi QI : Dde I : 963 1839 2156 217 Dpn I Dra II : Dsa I Eco 31I : 2524 2805 3067 Eco 47III : Eco 57I : Eco 571* :

Table F(conit)

5													
	Bco 781	:	2094	2751	2865	288 6							
	BCO NI	:	196	2674									
	Eco RII	:	211	355	465	633	1366	1379	1500	1855	2238	3167	
	Eco RV	:	3114										
10	Pnu 48I	:	260	361	913	1119	1122	1187	1330	1485	1603	1606	162
			1737	1740	1869	1883	1890	1893	2012	2091	2136	2193	227
			2361	2526	2577	2684	2718	2721	2999	3002	3073		
	Fnu DII	:	371	903	1484	1666	1763	1885	1911	2056	206 6	2195	226
			2322	2327	2354	2483	2598	2954					
	Fok I	:	297	681	3199								
	Fok I*	:	645	2252	2297	3151							
15	Gsu I	:	1917										
	Gsu I*	:	2471										
	Rae I	:	657	673	1053	1505	1516	1855	2252	2309	2381		
	Hae II	:	423	1287	1657	2096	2526	2753	2807	2867	288 8	3069	
	Hae III	:	507	596	657	673	1053	1487	1505	1516	1855	2039	225
			2309	2360	2381	2470	2704	2768	2776	2900	3004	3127	
	Hga I	:	158	181	625	1917	2067	2658					
20	Hga I*	:	837	1415	2311	2343	2897						
	Bgi AI	:	139	1217	1836	2127	2714	3025					
	Hgi CI	:	208	2008	2092	2531	2749	2863	2884	3178	3221		
	Hgi JII	:	2816	2830·									
	Bha I	:	371	422	903	1012	1186	1286	1353	1623	1656	1846	188
			1944	2095	2354	2485	2525	2600	2752	2806	2866	2887	304
25			3068	3200									
20	Bin PlI	:	369	420	901	1010	1184	1284	1351	1621	1654	1844	188
			1942	2093	2352	2483	2523	2598	2750	2804	2864	2885	303
	m!		3066	3198	2640								
	Bind II	:	107	253	2648								
	Bind III	:	266	3268	1553	1620		1004	2222	2445	2000		
	Binf I	:	249	1157	1553	1628	1773	1994	2292	2446	2666	2041	227
30	Bpa II	:	3	564	598	959	1149	1175	1322	1814	2015	2041	227
	Onh T	-	2369	2529 138	2605 181	2765 545	2888 796	2897 1782	2912 2003	3129 2857	3138 2902	2104	
	Hph I Hph I*	:	9 4 6	130	101	343	130	1/02	2003	2037	2902	3184	
	Kpn I	:	212		-								
	Mae I		246	781	1034	1810	3069						
	Mae II	:	580	826	1729	1753	2342	2398					
00	Mae III	:	169	991	1107	1170	2149	2416	3084	3172			
35	Mbo I	:	7	239	777	789	867	875	886	961	1837	2154	216
	120 1	•	2200	2472	2831	2922	2949	0/3	000	,,,	1037	2134	210
	Mbo II	:	207	304	799	1661	1709	2301	2572				
	Mbo II*	:	870	2826									
	Mme I *	:	1134	1318	2994	3081							
	Mnl I	:	253	1100	1424	1830	2328	2512					
40	Mnl I*	:	208	593	1349	1632	1998	2025	2063	2124	2426	2693	291
			3116	3176									
	Mse I	:	179	186	221	315	646	823	3243	3265			
	Mst I	:	1845	1943	3039								
	Nae I	:	2016	2370	2530	2898							
	Nar I	:	2093	2750	2864	2885							
45	Nco I	:	230										
45	Nhe I	:	3068										
	Nla III	:	166	234	394	449	741	811	1531	1710	1844	2051	210
	_		2123	2251	2368	2554	2593	2739	2812	2950	3297		
	Nla IV	:	210	241	378	1460	1499	1818	1861	1975	2010	2045	209
	•		2412	2533	2751	2775	2865	2886	2924	2970	3180	3223	
	Nru I	:	2327										

Table 7 (con't)

```
5
                       1189 2160 2739 5
                  944
     Nsp BII
               :
                  1531
     Nsp HI
               :
                  1934
                       1983
     Pfl MI
               :
                   257
                        1636
               :
     Ple I
     Ple I*
               :
                  1151
                       2660
     Ppu MI
                  1817
                       1859
               :
                  1820
                       1862 2777
10
     Pss I
               :
                       3136
2646
     Pst I
                   261
               :
                   210
     Rsa I.
               :
     Sal I
               :
                   251
                             357 2 467 565
2041 2240 2765
                                                598
                                                      635
                                                           1150 1368 1381 150
                         213
     Scr PI
               :
                                               3129
                                                     3169
                  1815
                        1857
                             1836 £2127
1367 1850
                                               2816
                                                     2830
                                                           3025
                   139
                        1217
                                         2714
     Sdu I
15
                                               2130
                                                     2763
                                                           2769
                                                                 3168 3182
                         230
                                         1928
                     3
     Sec I
               :
                             2274 2649
                                         3060
                                               3173
     Sfa NI
                   479
                         647
               :
                             2262 2883
                                               3084
     Sfa NI*
                  1430
                        1867
                                         2895
               :
     Sph I
               :
                  2739
                                                                1366 1379 150
                         211 : 355
                                           563
                                                 596
                                                       633
                                                           1148
     Sso II
                                     465
                        1855 2039 2238
                                               3127
                  1813
                                         2763
                                                     3167 -
                                  η'n:
                   226
     Ssp I
20
                        1928
     Sty I
               :
                   230
                             1429 .2031 2172 2647 2960 3275
     Tag I
               :
                   252
                         495
     Taq IIB
                  1631
               :
     Taq IIB*
                  2633
     Tth11111
                         936
                    38
                              943
     TthlllII:
                   515
                         904
     Xba I
                   245
25
                                          875
                                                886
                                                    2922
     Xho II
                         239
                               777 789
               :
     Xma III
               :
                  2358
                             . .
                   296
     Xmn I
               :
                  3300
     EcoRI
     Total number of cuts is :
                              689.
30
     List of non cutting selected enzymes.
     , Bbv II*
                                                                    , Bcl I
                                              , Avr II
     Aat II
              , Afl II
                         , Apa I
                                    , Asu II
                                                                    , Dra III
                                              , Bst EII
                                                         , Bst XI
                         , Bsp MII , Bss HII
     Bql II
              , Bsp MI*
                                                         , Mme I
                                  , Epa I
                                                                    , Nde I
35
     Eco 311*
                         , Esp I
                                                Mlu I
                                              , Pvu II
                                                         , Rsr II
     Not I
              , Nsi I
                         , Pma CI
                                                                    , Sac I
                                                         , Sma I
              , Sau I
                         , Sca I
                                  ... Sci I
                                                Sfi I
     Sac II
                                                                     Sna BI
                                     Taq IIA
                                              , Tag IIA* , Tth 1111 , Vsp I
     Spe I
              , Spl I
                           Stu I
                         ·, Xma I
     Xca I
               , Xho I
     Total number of selected enzymes which do not cut: 44
40
```

Figure 13 corresponds to the amino acid sequence of the total fusion protein mTNF-His₆-P₃₂. On this figure :

- the continuous underlined sequence

(____

represents the mTNF sequence (first 25 amino acids),

- the dotted underlined sequence

(----)

55

50

represents the polylinker sequence,

- the double underlined sequence

(----)

represents the extra amino acids created at cloning site, and

- the amino acid marked with nothing is the antigen sequence starting from the amino acid at position 4 of figure 5.

Figure 14a and 14b correspond to the expression of the mTNF-His₆-P₃₂ fusion protein in K12ΔH, given in Example VI, with Fig. 14a representing the Coomassie Brilliant Blue stained SDS-PAGE and 14b representing immunoblots of the gel with anti-32-kba and anti-mTNF-antibody.

On fig. 14a, the lanes correspond to the following:

Lanes	
1. 2. 3. 4. 5. 6. 7. 8. 9.	protein molecular weight markers pmTNF-MPH-Mt32 28 °C 1 h induction pmTNF-MPH-Mt32 42 °C 1 h induction pmTNF-MPH-Mt32 42 °C 2 h induction pmTNF-MPH-Mt32 42 °C 3 h induction pmTNF-MPH-Mt32 28 °C 4 h induction pmTNF-MPH-Mt32 42 °C 4 h induction pmTNF-MPH-Mt32 28 °C 5 h induction pmTNF-MPH-Mt32 42 °C 5 h induction

On fig. 14b, the lanes correspond to the following:

Lanes	
1.	pmTNF-MPH-Mt32 28 °C 1 h induction
2.	pmTNF-MPH-Mt32 42 °C 1 h induction
3.	pmTNF-MPH-Mt32 28 °C 4 h induction
4.	pmTNF-MPH-Mt32 42 °C 4 h induction

35

40

45

10

15

20

25

30

Figure 15 corresponds to the IMAC elution profile of the recombinant antigen with decreasing pH as presented in Example VII.

Figure 16 corresponds to the IMAC elution profile of the recombinant antigen with increasing imidazole concentrations as presented in Example VII.

Figure 17 corresponds to the IMAC elution profile of the recombinant antigen with a step gradient of increasing imidazole concentrations as presented in Example VII.

EXAMPLE I:

MATERIAL AND METHODS

Screening of the λgt11 M. tuberculosis recombinant DNA library with anti-32-kDa antiserum

A λ gt11 recombinant library constructed from genomic DNA of M. tuberculosis (Erdman strain), was obtained from R. Young (35). Screening was performed as described (14,35) with some modifications hereafter mentioned. λ gt11 infected E. coli Y1090 (10⁵ pfu per 150 mm plate) were seeded on NZYM plates (Gibco)(16) and incubated at 42° C for 24 hrs. To induce expression of the β -galactosidase-fusion proteins the plates were overlaid with isopropyl β -D-thiogalactoside (IPTG)-saturated filters (Hybond C extra. Amersham), and incubated for 2 hrs at 37° C. Screening was done with a polyclonal rabbit anti-32-kDa antiserum. Said polyclonal antiserum rabbit anti-32-kDa antiserum was obtained by raising antiserum

against the P_{32} M. bovis BCG (strain 1173P2 - Institut Pasteur Paris) as follows: 400 μ g (purified P_{32} protein of M. bovis BCG) per ml physiological saline were mixed with one volume of incomplete Freund's adjuvant. The material was homogenized and injected intradermally in 50 μ l doses, delivered at 10 sites in the back of the rabbits, at 0, 4, 7 and 8 weeks (adjuvant was replaced by the diluent for the last injection). One week later, the rabbits were bled and the sera tested for antibody level before being distributed in aliquots and stored at -80° C.

The polyclonal rabbit anti-32-kDa antiserum was pre-absorbed on E. coli lysate (14) and used at a final dilution of 1:300. A secondary alkaline-phosphatase anti-rabbit lgG conjugate (Promega), diluted at 1:5000 was used to detect the β-galactosidase fusion proteins. For color development nitro blue tetrazolium (NBT) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP) were used. Reactive areas on the filter turned deep purple within 30 min. Usually three consecutive purification steps were performed to obtain pure clones. IPTG, BCIP and NBT were from Promega corp. (Madison WI.).

Plaque screening by hybridization for obtaining the secondary clones BY1, By2 and By5 hereafter defined

The procedure used was as described by Maniatis et al. (14).

20 Preparation of crude lysates from \(\lambda gt11 \) recombinant lysogens

Colonies of E. coli Y1089 were lysogenized with appropriate $\lambda gt11$ recombinants as described by Hyunh et al. (14). Single colonies of lysogenized E. coli Y1089 were inoculated into LB medium and grown to an optical density of 0.5 at 600nm at 30 °C. After a heat shock at 45 °C for 20 min., the production of β -galactosidase-fusion protein was induced by the addition of IPTG to a final concentration of 10 mM. Incubation was continued for 60 min. at 37 °C and cells were quickly harvested by centrifugation. Cells were concentrated 50 times in buffer (10 mM Tris pH 8.0, 2 mM EDTA) and rapidly frozen into liquid nitrogen. The samples were lysed by thawing and treated with 100 μ g/ml DNase I in EcoRI restriction buffer, for 5-10 minutes at 37 °C.

Immunoblotting (Western blotting) analysis:

After SDS-PAGE electrophoresis, recombinant lysogen proteins were blotted onto nitrocellulose membranes (Hybond C, Amersham) as described by Towbin et al. (29). The expression of mycobacterial antigens, fused to β -galactosidase in E. coli Y1089 was visualized by the binding of a polyclonal rabbit anti-32-kDa antiserum (1:1000) obtained as described in the above paragraph "Screening of the λ gt11 M. tuberculosis recombinant DNA library with anti-32-kDa antiserum" and using a monoclonal anti- β -galactosidase antibody (Promega). A secondary alkaline-phosphatase anti-rabbit lgG conjugate (Promega) diluted at 1:5000, was used to detect the fusion proteins.

The use of these various antibodies enables to detect the β -galactosidase fusion protein. This reaction is due to the M. tuberculosis protein because of the fact that non fused- β -galactosidase is also present on the same gel and is not recognized by the serum from tuberculous patients.

In order to identify selective recognition of recombinant fusion proteins by human tuberculous sera. nitrocellulose sheets were incubated overnight with these sera (1:50) (after blocking aspecific protein binding sites). The human tuberculous sera were selected for their reactivity (high or low) against the purified 32-kDa antigen of M. bovis BCG tested in a Dot blot assay as previously described (31). Reactive areas on the nitrocellulose sheets were revealed by incubation with peroxidase conjugated goat anti-human IgG antibody (Dakopatts, Copenhagen, Denmark) (1:200) for 4 hrs and after repeated washings color reaction was developed by adding peroxidase substrate (α- chloronaphtol) (Bio-Rad) in the presence of peroxidase and hydrogen peroxide.

Recombinant DNA analysis

55

30

Initial identification of M. tuberculosis DNA inserts in purified λ gt11 clones was performed by EcoRI restriction. After digestion, the excised inserts were run on agarose gels and submitted to Southern hybridization. Probes were labeled with α^{32} P-dCTP by random priming (10). Other restriction sites were

located by single and double digestions of recombinant $\lambda gt11$ phage DNA or their subcloned EcoRI fragments by HindIII, pstl, KpnI, AccI and SphI.

5 Sequencing

Sequence analysis was done by the primer extension dideoxy termination method of Sanger et al. (25) after subcloning of specific fragments in Bluescribe-M13 (6) or in mp10 and mp11 M13 vectors (Methods in Enzymology, vol. 101, 1983, p.20-89, Joachim Messing, New M13 vectors for cloning, Academic Press). Sequence analysis was greatly hampered by the high GC content of the M. tuberculosis DNA (65%). Sequencing reactions were therefore performed with several DNA polymerases: T7 DNA polymerase ("Sequenase" USB), Klenow fragment of DNA polymerase I (Amersham) and in some cases with AMV reverse transcriptase (Super RT, Anglian Biotechnology Ltd.) and sometimes with dITP instead of dGTP. Several oligodeoxynucleotides were synthesized and used to focus ambiguous regions of the sequence. The sequencing strategy is summarized in Fig. 2 In order to trace possible artefactual frameshifts in some ambiguous regions, a special program was used to define the most probable open reading frame in sequences containing a high proportion of GC (3). Several regions particularly prone to sequencing artefacts were confirmed or corrected by chemical sequencing (18). For this purpose, fragments were subcloned in the chemical sequencing vector pGV462 (21) and analysed as described previously. Selected restriction fragments of about 250-350bp were isolated, made blunt-ended by treatment with either Klenow polymerase or Mung bean nuclease, and subcloned in the Smal or Hincll site of pGV462. Both strands of the inserted DNA were sequenced by single-end labeling at Tth 111I or BstEII (32) and a modified chemical degradation strategy (33).

Routine computer aided analysis of the nucleic acid and deduced amino acid sequences were performed with the LGBC program from Bellon (2). Homology searches used the FASTA programs from Pearson and Lipman (23) and the Protein Identification Resource (PIR) from the National Biomedical Research Fundation -Washington (NBRF) (NBRF/PIR data bank), release 16 (march 1988).

RESULTS

40

- Screening of the \(\lambda\)gt11M. M. tuberculosis recombinant DNA library with polyclonal anti-32-kDa antiserum:

Ten filters representing 1.5x10⁶ plaques were probed with a polyclonal rabbit anti-32-kDa antiserum (8). Following purification, six independent positive clones were obtained.

Analysis of recombinant clones

EcoRI restriction analysis of these 6 purified λgt11 recombinant clones DNA, (Fig. 1A) revealed 4 different types of insert. Clone 15 had an insert with a total length of 3.8 kb with two additional internal EcoRI sites resulting in three DNA fragments of 1.8 kb, 1.5 kb and 0.5 kb. The DNA Insert of clone 16 was 1.7 kb long. Clones 17 and 19 had a DNA insert of almost identical length being 2.7 kb and 2.8 kb

respectively.

Finally, clone 23 (not shown) and clone 24 both contained an insert of 4 kb with one additional EcoRI restriction site giving two fragments of 2.3 kb and 1.7 kb. Southern analysis (data not shown) showed that the DNA inserts of clones 15, 16, 19 and the small fragment (1.7 kb) of clone 24 only hybridized with themselves whereas clone 17 (2.7 kb) hybridized with itself but also equally well with the 2.3 kb DNA fragment of clone 24. Clones 15, 16 and 19 are thus distinct and unrelated to the 17, 23, 24 group. This interpretation was further confirmed by analysis of crude lysates of E. coli Y1089 lysogenized with the appropriate λgt11 recombinants and induced with IPTG. Western blot analysis (Fig. 1B), showed no fusion protein, either mature or incomplete, reactive with the polyclonal anti-32-kDa antiserum in cells expressing clones 15, 16 and 19. Clones 15, 16 and 19, were thus considered as false positives and were not further studied. On the contrary, cells lysogenized with clone 23 and 24 produced an immunoreactive fusion protein containing about 10 kDa of the 32-kDa protein. Clone 17 finally expressed a fusion protein of which the foreign polypeptide part is about 25 kDa long. The restriction endonuclease maps of the 2.3 kb insert of clone 24 and of the 2.7 kb fragment of clone 17 (Fig. 2) allowed us to align and orient the two inserts

suggesting that the latter corresponds to a ±0.5 kb 5 extension of the first.

As clone 17 was incomplete, the same \(\lambda\)gt11 recombinant M. tuberculosis DNA library was screened by hybridization with a 120 bp EcoRl-Kpn1 restriction fragment corresponding to the very 5 end of the DNA insert of clone 17 (previously subcloned in a Blue Scribe vector commercialized by Vector cloning Systems (Stratagene Cloning System) (Fig. 2). Three 5 extended clones By1, By2 and By5 were isolated, analyzed by restriction and aligned. The largest insert, By5 contained the information for the entire coding region (see below) flanked by 3.1 kb upstream and 1.1 kb downstream (Fig. 2).

10 DNA sequencing

The 1358 base pairs nucleotide sequence derived from the various λgt11 overlapping clones is represented in Fig. 3a and Fig. 3b. The DNA sequence contains a 1059 base pair open reading frame starting at position 183 and ending with a TAG codon at position 1242. It occurs that the NH₂-terminal amino-acid sequence, (phe-ser-arg-pro-gly-leu-pro-val-glu-tyr-leu-gln-val-pro-ser-pro-ser-met-gly-arg-asp-ile-lys-val-gln-phe-gln-ser-gly-gly-ala-asn) which can be located within this open reading frame from the nucleotide sequence beginning with a TTT codon at position 360 corresponds to the same NH₂-terminal amino acid sequence of the MPB 59 antigen except for the amino acids at position 20, 21, 31, which are respectively gly, cys and asn in the MPB 59 (34). Therefore, the DNA region upstream of this sequence is expected to encode a signal peptide required for the secretion of a protein of 32-kDa. The mature protein thus presumably consists of 295 amino acid residues from the N-terminal Phe (TTT codon) to the C-terminal Ala (GCC codon) (Fig. 5).

Six ATG codons were found to precede the TTT at position 360 in the same reading frame. Usage of any of these ATGs in the same reading frame would lead to the synthesis of signal peptides of 29,42,47,49,55 and 59 residues.

Hydropathy pattern

The hydropathy pattern coding sequence of the protein of 32-kDa of the invention and that of the antigen α of BCG (17) were determined by the method of Kyte and Doolittle (15). The nonapeptide profiles are shown in Fig. 6. Besides the initial hydrophobic signal peptide region, several hydrophilic domains could be identified. It is interesting to note that the overall hydrophilicity pattern of the protein of 32-kDa of the invention is comparable to that of the antigen α . For both proteins, a domain of highest hydrophilicity could be identified between amino acid residues 200 and 250.

Homology

40

Matsuo et al. (17) recently published the sequence of a 1095 nucleotide cloned DNA corresponding to the gene coding for the antigen α of BCG. The 978 bp coding region of M. bovis antigen α as revised in Infection and Immunity, vol. 58, p. 550-556, 1990, and 1017 bp coding regions of the protein of 32-kDa of the invention show a 77.5% homology, in an aligned region of 942 bp. At the amino acid level both precursor protein sequences share 75.6% identical residues. In addition, 17.6% of the amino acids correspond to evolutionary conserved replacements as defined in the algorithm used for the comparison (PAM250 matrix, ref 23). Figure 7 shows sequence divergences in the N-terminal of the signal peptide. The amino terminal sequence - 32 amino acids - of both mature proteins is identical except for position 31.

50 Human sera recognize the recombinant 32-kDa protein

Fig. 8 shows that serum samples from tuberculous patients when immunoblotted with a crude \underline{E} . coli extract expressing clone 17 distinctly react with the 140 kDa fusion protein (lanes 4 to 6) contain the protein of 32-kDa of the invention, but not with unfused β -galactosidase expressed in a parallel extract (lanes 10 to 12). Serum samples from two negative controls selected as responding very little to the purified protein of 32-kDa of the invention does neither recognize the 140 kDa fused protein containing the protein of 32-kDa of the invention, nor the unfused β -galactosidase (lanes 2, 3 and 8 and 9). The 140 k-Da fused protein and the unfused β -galactosidase were easily localized reacting with the anti- β -galactosidase monoclonal

antibody (lanes 1 to 7).

The invention has enabled to prepare a DNA region coding particularly for a protein of 32-kDa (cf. fig.5); said DNA region containing an open reading frame of 338 codons (stop codon non included). At position 220 a TTT encoding the first amino acid of the mature protein is followed by the 295 triplets coding for the mature protein of 32-kDa. The size of this open reading frame, the immunoreactivity of the derived fusion proteins, the presence of a signal peptide and, especially, the identification within this gene of a NH2-terminal region highly homologous to that found in the MPB 59 antigen (31/32 amino acids homology) and in the BCG antigen α (31/32 amino acids homology) (see Fig. 7), strongly suggest that the DNA fragment described contains the complete cistron encoding the protein of 32-kDa secreted by M. tuberculosis , which had never been so far identified in a non-ambiguous way.

Six ATG codons were found to precede this TTT at position 220 in the same reading frame. Usage of any of these ATGs in the same reading frame would lead to the synthesis of signal peptides of 43, 48, 50, 56 or 60 residues. Among these various possibilities, initiation is more likely to take place either at ATG₉₁ or ATG₅₂ because both are preceded by a plausible E. coli -like promoter and a Shine-Dalgarno motif.

If initiation takes place at ATG₉₁, the corresponding signal peptide would code for a rather long peptide signal of 43 residues. This length however is not uncommon among secreted proteins from Gram positive bacteria (5). It would be preceded by a typical E. coli Shine-Dalgarno motif (4/6 residues homologous to AGGAGG) at a suitable distance.

If initiation takes place at ATG_{52} , the corresponding signal peptide would code for a peptide signal of 56 residues but would have a less stringent Shine-Dalgarno ribosome binding site sequence.

The region encompassing the translation termination triplet was particularly sensitive to secondary structure effects which lead to so-called compressions on the sequencing gels. In front of the TAG termination codon at position 1105, 22 out of 23 residues are G-C base pairs, of which 9 are G's.

Upstream ATG₁₃₀, a sequence resembling an E. coli promoter (11) comprising an hexanucleotide (TTGAGA) (homology 5/6 to TTGACA) and a AAGAAT box (homology 4/6 to TATAAT) separated by 16 nucleotides was observed. Upstream the potential initiating codon ATG₃₊, one could detect several sequences homologous to the E. coli "-35 hexanucleotide box", followed by a sequence resembling a TATAAT box. Among these, the most suggestive is illustrated on Fig. 3a and 3b. It comprises a TTGGCC at position 59 (fig. 3a and 3b) (homology 4/6 to TTGACA) separated by 14 nucleotides from a GATAAG (homology 4/6 to TATAAT). Interestingly this putative promoter region shares no extensive sequence homology with the promoter region described for the BCG protein α-gene (17) nor with that described for the 65 kDa protein gene (26, 28).

Searching the NBRF data bank (issue 16.0) any significant homology between the protein of 32-kDa of the invention and any other completely known protein sequence could not be detected. In particular no significant homology was observed between the 32-kDa protein and α and β subunits of the human fibronectin receptor (1). The NH₂-terminal sequence of the 32-kDa protein of the invention is highly homologous - 29/32 amino acids - to that previously published for BCG MPB 59 antigen (34) and to that of BCG α -antigen - 31/32 amino acids - (Matsuo, 17) and is identical in its first 6 amino acids with the 32-kDa protein of M. bovis BCG (9). However, the presumed initiating methionine precedes an additional 29 or 42 amino acid hydrophobic sequence which differs from the one of α -antigen (of. Fig. 7), but displaying all the characteristics attributed to signal sequences of secreted polypeptides in prokaryotes (22).

Interestingly, no significant homology between the nucleic acid (1-1358) of the invention (cf. fig. 3a and 3b) and the DNA of the antigen α of Matsuo exists within their putative promoter regions.

EXAMPLE II : CONSTRUCTION OF A BACTERIAL PLASMID CONTAINING THE ENTIRE CODING SEQUENCE OF THE 32-kDa PROTEIN OF M. TUBERCULOSIS

In the previous example, in figure 2, the various overlapping λ gt11 isolates covering the 32-kDa protein gene region from M. tuberculosis were described. Several DNA fragments were subcloned from these λ gt11 phages in the Blue Scribe M13+ plasmid (Stratagene). Since none of these plasmids contained the entire coding sequence of the 32-kDa protein gene, a plasmid containing this sequence was reconstructed.

Step 1 : Preparation of the DNA fragments :

45

1) The plasmid BS-By5-800 obtained by subcloning HindIII fragments of By5 (cf. fig. 2) into the Blue Scribe M13⁺ plasmid (Stratagene), was digested with HindIII and a fragment of 800 bp was obtained and

isolated from a 1% agarose gel by electroelution.

- 2) The plasmid BS-4.1 obtained by subcloning the 2,7 kb EcoRI insert from \(\lambda \text{t11-17} \) into the Blue Scribe M13 plasmid (Stratagene) (see fig .2 of patent application) was digested with HindIII and SphI and a fragment of 1500 bp was obtained and isolated from a 1% agarose gel by electroelution.
- 3) Blue Scribe M13 was digested with Hindlll and Sphl, and treated with calf intestine alkaline phosphatase (special quality for molecular biology, Boehringer Mannheim) as indicated by the manufacturer.

Step 2: ligation:

10

5

The ligation reaction contained: 125 ng of the 800 bp HindIII fragment (1) 125 ng of the 1500 bp Sphl-HindIII insert (2) 50 ng of the HindIII-SphI digested BSM13 vector (3) 15 2 µl of 10 ligation buffer (Maniatis et al., 1982) 1 μl of (= 2,5 U) of T4 DNA ligase (Amersham) 4 μl PEG 6000, 25% (w/v) 8 µl H₂O

The incubation was for 4 hours at 16°C.

20

Step 3: Transformation:

100 μ l of DH5 α E. coli (Gibco BRL) were transformed with 10 μ l of the ligation reaction (step 2) and plated on IPTG, X-Gal ampicillin plates, as indicated by the manufacturer. About 70 white colonies were obtained.

step 4:

30

40

45

As the 800 bp fragment could have been inserted in both orientations, plasmidic DNA from several clones were analyzed by digestion with Pstl in order to select one clone (different from clone 11), characterized by the presence of 2 small fragments of 229 and 294 bp. This construction contains the HindIII-HindIII-SphI complex in the correct orientation. The plasmid containing this new construction was called: "BS.BK.P₃₂.complet".

EXAMPLE III: EXPRESSION OF A POLYPEPTIDE OF THE INVENTION IN E. COLI:

The DNA sequence coding for a polypeptide, or part of it, can be linked to a ribosome binding site which is part of the expression vector, or can be fused to the information of another protein or peptide already present on the expression vector.

In the former case the information is expressed as such and hence devoid of any foreign sequences (except maybe for the aminoterminal methionine which is not always removed by E. coli).

In the latter case the expressed protein is a hybrid or a fusion protein.

The gene, coding for the polypeptide, and the expression vector are treated with the appropriate restriction enzyme(s) or manipulated otherwise as to create termini allowing ligation. The resulting recombinant vector is used to transform a host. The transformants are analyzed for the presence and proper orientation of the inserted gene. In addition, the cloning vector may be used to transform other strains of a chosen host. Various methods and materials for preparing recombinant vectors, transforming them to host cells and expressing polypeptides and proteins are described by Panayatatos, N., in "Plasmids, a practical approach (ed. K.G. Hardy, IRL Press) pp.163-176, by Old and Primrose, principals of gene manipulation (2d Ed, 1981) and are well known by those skilled in the art.

Various cloning vectors may be utilized for expression. Although a plasmid is preferable, the vector may be a bacteriophage or cosmid. The vector chosen should be compatible with the host cell chosen.

Moreover, the plasmid should have a phenotypic property that will enable the transformed host cells to be readily identified and separated from those which are not transformed. Such selection genes can be a gene providing resistance to an antibiotic like for instance, tetracyclin, carbenicillin, kanamycin, chloramphenical, streptomycin, etc.

10

55

In order to express the coding sequence of a gene in $\underline{\mathsf{E}}$. $\underline{\mathsf{coli}}$ the expression vector should also contain the necessary signals for transcription and translation.

Hence it should contain a promoter, synthetic or derived from a natural source, which is functional in E. coli . Preferably, although usually not absolutely necessary, the promoter should be controllable by the manipulator. Examples of widely used controllable promoters for expression in E. coli are the lac, the trp, the tac and the lambda PL and PR promoter.

Preferably, the expression vector should also contain a terminator of transcription functional in <u>E. coli</u>. Examples of used terminators of transcription are the trp and the rrnB terminators.

Furthermore, the expression vector should contain a ribosome binding site, synthetic or from a natural source, allowing translation and hence expression of a downstream coding sequence. Moreover, when expression devoid of foreign sequences is desired, a unique restriction site, positioned in such a way that it allows ligation of the sequence directly to the initiation codon of the ribosome binding site, should be present.

A suitable plasmid for performing this type of expression is pKK233-2 (Pharmacia). This plasmid contains the trc promoter, the lac Z ribosome binding site and the rrnB transcription terminator.

Also suitable is plasmid pIGRI (Innogenetics, Ghent, Belgium). This plasmid contains the tetracycline resistance gene and the origin of replication of pAT₁₅₃ (available from Bioexcellence, Biores B.V., Woerden, The Netherlands), the lambda PL promoter up to the Mbo II site in the 5 untranslated region of the lambda N gene (originating from pPL(λ)); Pharmacia).

Downstream from the PL promoter, a synthetic sequence was introduced which encodes a "two cistron" translation casette whereby the stop codon of the first cistron (being the first 25 amino acids of TNF, except for Leu at position 1 which is converted to Val) is situated between the Shine-Dalgarno sequence and the initiation codon of the second ribosome binding site. The restriction and genetic map of pIGRI iS represented in Fig. 10a.

Fig. 10b and Table 5 represenx respectively the nucleic acid sequence and complete restriction site analysis of pIGRI.

However, when expression as a hybrid protein is desired, then the expression vector should also contain the coding sequence of a peptide or polypeptide which is (preferably highly) expressed by this vector in the appropriate host.

In this case the expression vector should contain a unique cleavage site for one or more restriction endonucleases downstream of the coding sequence.

Plasmids pEX1, 2 and 3 (Boehringer, Mannheim) and pUEX1, 2 and 2 (Amersham) are useful for this purpose.

They contain an ampicillin resistance gene and the origin of replication of pBR322 (Bolivar at al. (1977) Gene 2, 95-113), the lac Z gene fused at its 5 end to the lambda PR promoter together with the coding seguence for the 9 first amino acids of its natural gene cro, and a multiple cloning site at the 3 end of the lac Z coding sequence allowing production of a beta galactosidase fused polypeptide.

The pUEX vectors also contain the Cl857 allele of the bacteriophage lambda Cl repressor gene.

Also useful is plasmid pmTNF MPH (Innogenetics). It contains the tetracycline resistance gene and the origin of replication of pAT₁₅₃ (obtainable from Bioexcellence, Biores B.V., Woerden. The Netherlands), the lambda PL promoter up to the Mbo II site in the N gene 5 untranslated region (originating from pPL(λ): Pharmacia), followed by a synthetic ribosome binding site (see sequence data), and the information encoding the first 25 AA of mTNF (except for the initial Leu which is converted to Val). This sequence is, in turn, followed by a synthetic polylinker sequence which encodes six consecutive histidines followed by several proteolytic sites (a formic acid, CNBr, kallikrein, and E. coli protease VII sensitive site, respectively), each accessible via a different restriction enzyme which is unique for the plasmid (Sma I, Nco I, Bsp MII and Stu I, respectively; see restriction and genetic map, Fig. 11a). Downstream from the polylinker, several transcription terminators are present including the E. coli trp terminator (synthetic) and the rrnBT·T₂ - (originating from pKK223-3; Pharmacia). The total nucleic acid sequence of this plasmid is represented in Fig. 11b.

Table 6 gives a complete restriction site analysis of pmTNF MPH.

The presence of 6 successive histidines allows purification of the fusion protein by Immobilized Metal Ion Affinity Chromatography (IMAC).

After purification, the foreign part of the hybrid protein can be removed by a suitable protein cleavage method and the cleaved product can then be separated from the uncleaved molecules using the same IMAC based purification procedure.

In all the above-mentioned plasmids where the lambda PL or PR promoter is used, the promoter is

temperature-control led by means of the expression of the lambda cl ts 857 allele which is either present on a defective prophage incorporated in the chromosome of the host (K12 Δ H, ATCC n° 33767) or on a second compatible plasmid (pACYC derivative). Only in the pUEX vectors is this cl allele present on the vector itself.

It is to be understood that the plasmids presented above are exemplary and other plasmids or types of expression vectors maybe employed without departing from the spirit or scope of the present invention.

If a bacteriophage or phagemid is used, instead of plasmid, it should have substantially the same characteristics used to select a plasmid as described above.

EXAMPLE IV : SUBCLONING OF THE P32 ANTIGEN IN PLASMID pIGRI :

5

10

Fifteen μg of plasmid "BS-BK-P₃₂ complet" (see Example II) was digested with Ecl XI and Bst Ell (Boehringer, Mannheim) according to the conditions recommended by the supplier except that at least 3 units of enzyme were used per μg of DNA. Ecl XI cuts at position 226 (Fig. 5) and Bst Ell at position 1136, thus approaching very closely the start and stop codon of the mature P₃₂ antigen. This DNA is hereafter called DNA coding for the "P₃₂ antigen fragment".

The DNA coding for the "P₃₂ antigen fragment" (as defined above) is subcloned in pIGRI (see fig. 10a) for expression of a polypeptide devoid of any foreign sequences. To bring the ATG codon of the expression vector in frame with the P₃₂ reading frame, an intermediary construct is made in pIG2 (for restriction and genetic map, see fig. 12a; DNA sequences, see fig. 12b; complete restriction site analysis, see Table 7).

Five μg of plasmid plG2 is digested with \underline{Nco} I. Its 5' sticky ends are filled in prior to dephosphorylation.

Therefore, the DNA was incubated in 40 μ l NB buffer (0.05 M Tris-Cl pH 7.4; 10 mM MgCl₂; 0.05% β -mercaptoethanol) containing 0.5 mM of all four dXTP (X = A,T,C,G) and 2 μ l of Klenow fragment of E. coli DNA polymerase I (5 U/ μ l, Boehringer, Mannheim) for at least 3 h at 15 °C.

After blunting, the DNA was once extracted with one volume of phenol equilibrated against 200 MM Tris- Cl pH 8, twice with at least two volumes of diethylether and finally collected using the "gene clean kit^{T.M.}" (Bio101) as recommended by the supplier. The DNA was then dephosphorylated at the 5 ends in 30 μl of ClP buffer (50 mM TrisCl pH 8, 1 mM ZnCl₂) and 20 to 25 units of calf intestine phosphatase (high concentration, Boehringer, Mannheim). The mixture was incubated at 37 °C for 30 min, then EGTA (ethyleneglycol bis (β-aminoethylether)-N,N,N,N,N tetraacetic acid) pH 8 is added to a final concentration of 10 mM. The mixture was then extracted with phenol followed by diethylether as described above, and the DNA was precipitated by addition of 1/10 volume of 3 M KAc (Ac = CH₃COO) pH 4.8 and 2 volumes of ethanol followed by storage at -20 °C for at least one hour.

After centrifugation at 13000 rpm in a Biofuge A (Hereaus) for 5 min the pelleted DNA was dissolved in H_2O to a final concentration of 0.2 $\mu g/\mu l$.

The Ecl XI-Bst EII fragment, coding for the "P₃₂ antigen fragment" (see above) was electrophoresed on a 1% agarose gel (BRL) to separate it from the rest of the plasmid and was isolated from the gel by centrifugation over a Millipore HVLP filter (Ø 2cm) (2 min,, 13000 rpm, Biofuge at room temperature) and extracted with Tris equilibrated phenol followed by diethylether as described above.

The DNA was subsequently collected using the "Gene clean kit^{T.M.}" (Bio101) as recommended by the supplier.

After that, the 5 sticky ends were blunted by treatment with the Klenow fragment of E. coli DNA polymerase I as described above and the DNA was then again collected using the "Gene clean kit". M. " in order to dissolve it in 7 µl of H₂O.

One μI of vector DNA is added together with one μI of 10 x ligase buffer (0.5 M TrisCl pH 7.4, 100 mM MgCl₂, 5 mM ATP, 50 mM DTT (dithiothreitol)) and 1 μI of T4 DNA ligase (1 unit/ μI , Boehringer, Mannheim). Ligation was performed for 6 h at 13 °C and 5 μI of the mixture is then used to transform strain DH1 (lambda) [strain DH1 - ATCC N° 33849 - Iysogenized with wild type bacteriophage λ] using standard transformation techniques as described for instance by Maniatis et al. in "Molecular cloning, a laboratory manual", Cold Spring Harbor Laboratory (1982).

Individual transformants are grown and lysed for plasmid DNA preparation using standard procedures (Experiments with gene fusions, Cold Spring Harbor Laboratory (1984) (T.J. Silhavy, H.L. Berman and L.W. Enquist, eds) and the DNA preparations are checked for the correct orientation of the gene within the plasmid by restriction enzyme analysis.

A check for correct blunting is done by verifying the restoration of the $\frac{N}{1}$ Nco I site at the 5 and 3 end of the antigen coding sequence. One of the clones containing the $\frac{N}{1}$ antigen fragment in the correct

orientation is kept for further work and designated pIG₂-Mt32. In this intermediary construct, the DNA encoding the antigen is not in frame with the ATG codon. However, it can now be moved as a Ncol fragment to another expression vector.

15 μg of pIG₂-Mt32 is digested with Nco I. The Nco I fragment encoding the P₃₂ antigen is gel purified and blunted as described above. After purification, using "gene clear kit TM" it is dissolved in 7 μI of H₂O.

 $5~\mu g$ of plasmid pIGRI is digested with Ncol, blunted and dephosphorylated as described above. After phenol extraction, followed by diethylether and ethanolprecipitation, the pellet is dissolved in H₂O to a final concentration of $0.2~\mu g/\mu I$.

Ligation of vector and "antigen fragment" DNA is carried out as described above. The ligation mixture is then transformed into strain DH1 (lambda) and individual transformants are analysed for the correct orientation of the gene within the plasmid by restriction enzyme analysis. A check for correct blunting is done by verifying the creation of a new Nsi I site at the 5 and 3 ends of the antigen coding sequence. One of the clones containing the P₃₂ antigen fragment in the correct orientation is kept for further work and designated pIGRI.Mt32.

15

EXAMPLE V: SUBCLONING OF THE P32 ANTIGEN IN pmTNF MPH:

Fifteen µg of the plasmid plG2 Mt32 (see example IV) was digested with the restriction enzyme Nco I (Boehringer, Mannheim), according to the conditions recommended by the supplier except that at least 3 units of enzyme were used per µg of DNA.

After digestion, the reaction mixture is extracted with phenol equilibrated against 200mM TrisCl pH 8, (one volume), twice with diethylether (2 volumes) and precipitated by addition of 1/10 volume of 3 M KAc (Ac = CH₃COO) pH 4.8 and 2 volumes of ethanol followed by storage at -20° C for at least one hour.

After centrifugation for 5 minutes at 13000 rpm in a Biofuge A (Hereaus) the DNA is electrophoresed on a 1% agarose gel (BRL).

The DNA coding for the " P_{32} antigen fragment" as described above, is isolated by centrifugation over a Millipore HVLP filter (\emptyset 2cm) (2 minutes, 1300 rpm, Biofuge at room temperature) and extracted one with trisCl equilibrated phenol and twice with diethylether. The DNA is subsequently collected using "Gene clean kit ^{T.M.}" (Bio 101) and dissolved in 7μ I of H_2O .

The 5 overhanging ends of the DNA fragment generated by digestion with Nco I were filled in by incubating the DNA in 40 μ I NB buffer (0.05 M Tris-HCl, pH 7.4; 10 mM MgCl₂; 0.05% β -mercapteothanol) containing 0.5 mM of all four dXTPS (X = A, T, C, G) and 2μ I of Klenow fragment of E. coli DNA polymerase I (5 units/ μ I Boehringer Mannheim) for at least 3 h at 15° C. After blunting, the DNA was extracted with phenol, followed by diethylether, and collected using a "gene clean kit T.M." as described above.

Five µg of plasmid pmTNF MPH is digested with Stu I, subsequently extracted with phenol, followed by diethylether, and precipitated as described above. The restriction digest is verified by electrophoresis of a 0.5 µg sample on an analytical 1,2% agarose gel.

The plasmid DNA is then desphosphorylated at the $5^{'}$ ends to prevent self-ligation in 30µl of CIP buffer (50 mM TrisCl pH 8, 1mM ZnC12) and 20 to 25 units of calf intestine phosphatase (high concentration, Boehringer Mannheim). The mixture is incubated at 37° C for 30 minutes, then EGTA (ethyleneglycol bis (β -aminoethylether)-N,N,N',N' tetraacetic acid) pH8 is added to a final concentration of 10mM. The mixture is extracted with phenol followed by diethylether and the DNA is precipitated as described above. The precipitate is pelleted by centrifugation in a Biofuge A (Hereaus) at 13000 rpm for 10 min at 4° C and the pellet is dissolved in H_2O to a final DNA concentration of 0.2 μ g/ μ l.

One μI of this vector DNA is mixed with the 7 μI solution containing the DNA fragment coding for the "P32antigen fragment" (as defined above) and 1 μI 10 x ligase buffer (0.5 M TrisCl pH7.4, 100 mM MgC12, 5 mM ATP, 50 mM DTT (dithiothreitol)) plus 1 μI T₄ DNA ligase (1 unit μI , Boehringer Mannheim) is added. The mixture is incubated at 13 °C for 6 hours and 5 μI of the mixture is then used for transformation into strain DH1(lambda, using standard transformation techniques are described by for instance Maniatis et al. in "Molecular cloning, a laboratory manual", Cold Spring Harbor Laboratory (1982).

Individual transformants are grown and then lysed for plasmid DNA preparation using standard procedures (Experiments with gene fusions, Cold Spring Harbor Laboratory 1984 (T.J. Silhavy, M.L. Berman and L.W. Enquist eds.)) and are checked for the correct orientation of the gene within the plasmid by restriction enzyme analysis.

One of the clones containing the DNA sequence encoding the antigen fragment in the correct orientation was retained for further work and designated pmTNF-MPH-Mt32. It encodes all information of the

P₃₂ antigen starting from position +4 in the amino acid sequence (see fig. 5). The amino acid sequence of the total fusion protein is represented in fig. 13.

EXAMPLE VI: INDUCTION OF ANTIGEN EXPRESSION FROM pmTNF MPH Mt32 :

A- MATERIAL AND METHODS

10

DNA of pmTNF-MPH-Mt32 is transformed into E. coli strain K12ΔH (ATCC 33767) using standard transformation procedures except that the growth temperature of the cultures is reduced to 28 °C and the heat shock temperature to 34 °C.

A culture of K12ΔH harboring pmTNF-MPH-Mt32, grown overnight in Luria broth at 28 °C with vigorous shaking in the presence of 10 μg/ml tetracycline, is inoculated into fresh Luria broth containing tetracyclin (10 μg/ml) and grown to an optical density at 600 nanometers of 0.2 in the same conditions as for the overnight culture.

When the optical density at 600 nanometers has reached 0.2 half of the culture is shifted to 42° C to induce expression while the other half remains at 28° C as a control. At several time intervals aliquots are taken which are extracted with one volume of phenol equilibrated against M9 salts (0.1% ammonium chloride, 0.3% potassium dihydrogenium phosphate, 1.5% disodium hydrogenium phosphate, 12 molecules of water) and 1% SDS. At the same time, the optical density (600 nm) of the culture is checked. The proteins are precipitated from the phenol phase by addition of two volumes of acetone and storage overnight at -20 $^{\circ}$ C. The precipitate is pelleted (Biofuge A, 5 min., 13000 rpm, room temperature) dried at the air, dissolved in a volume of Laemmli (Nature (1970) 227:680) sample buffer (+ β mercapto ethanol) according to the optical density and boiled for 3 min.

Samples are then run on a SDS polyacrylamide gel (15%) according to Laemmli (1970). Temperature induction of mTNF-His₆-P₃₂ is monitored by both Coomassie Brilliant Blue (CBB) staining and immunoblotting. CBB staining is performed by immersing the gel in a 1/10 diluted CBB staining solution (0.5 g CBB-R250 (Serva) in 90 ml methanol: H₂O (1:1 v/v) and 10 ml glacial acetic acid) and left for about one hour on a gently rotating platform. After destaining for a few hours in destaining solution (30% methanol, 7% glacial acetic acid) protein bands are visualised and can be scanned with a densitometer (Ultroscan XL Enhanced Laser Densitometer, LKB).

For immunoblotting the proteins are blotted onto Hybond C membranes (Amersham) as described by Townbin et al (1979). After blotting, proteins on the membrane are temporarily visualised with Ponceau S (Serva) and the position of the molecular weight markers is indicated. The stain is then removed by washing in H₂O. Aspecific protein binding sites are blocked by incubating the blots in 10% non-fat dried milk for about 1 hour on a gently rotating platform. After washing twice with NT buffer (25 mM Tris-HCl, pH 8.0; 150 mM NaCl) blots are incubated with polyclonal rabbit anti-32-kDa antiserum (1:1000), obtained as described in example I ("screening of the λgt11 M. tuberculosis recombinant DNA library with anti-32-kDa antiserum") in the presence of E. coli lysate or with monoclonal anti-hTNF-antibody which crossreacts with mTNF (Innogenetics, n° 17F5D10) for at least 2 hours on a rotating platform. After washing twice with NT buffer + 0.02% Triton.X.100, blots are incubated for at least 1 hour with the secondary antiserum: alkaline phosphatase-conjugated swine anti-rabbit immunoglobulins (1/500; Prosan) in the first case, and alkaline phosphatase conjugated rabbit anti-mouse immunoglobulins (1/500; Sigma) in the second case.

Blots are washed again twice with NT buffer + 0.02% Triton X100 and visualisation is then performed with nitro blue tetrazolium (NBT) and 5-bromo-4-chloro-3-indolyl-phosphate (BCIP) from Promega using conditions recommended by the supplier.

50 B. RESULTS

Upon induction of K12ΔH cells containing pmTNF-MPH-Mt32, a clearly visible band of about 35-kDa appears on CBB stained gels, already one hour after start of induction (Fig. 14a). This band, corresponding to roughly 25% of total protein contents of the cell, reacts strongly with anti-32-kDa and anti-mTNF antisera on immunoblots (Fig. 14b). However, this band represents a cleavage product of the original fusion protein, since a minor band, around 37 kDa, is also visible on immunoblots, reacting specifically with both antisera as well. This suggests that extensive cleavage of the recombinant mTNF-His₆-P₃₂ takes place about 2-3 kDa from its carboxyterminal end.

EXAMPLE VII : PURIFICATION OF RECOMBINANT ANTIGEN ON IMMOBILIZED METAL ION AFFINITY CHROMATOGRAPHY (IMAC) :

The hybrid protein mTNF-His₆-P₃₂ (amino acid sequence, see fig. 13) expressed by K12ΔH cells containing pmTNF.MPH.Mt32, is especially designed to facilitate purification by IMAC, since the 6 successive histidines in the polylinker sequence bring about a strong affinity for metal ions (HOCHULI et al, 1988).

a. Preparation of the crude cell extract:

12 I of E. coli cells K12ΔH containing plasmid pmTNF-MPH-Mt32 were grown in Luria Broth containing tetracycline (10 μg/ml) at 28°C to an optical density (600 nm) of 0.2 and then induced by shifting the temperature to 42°C. After 3 hours of induction, cells were harvested by centrifugation (Beckman, JA 10 rotor, 7.500 rpm, 10 min). The cell paste was resuspended in lysis buffer (10 mM KCl, 10 mM Tris-HCl pH 6.8, 5 mM EDTA) to a final concentration of 50% (w/v) cells.

 ϵ -NH₂-capronic acid and dithiotreitol (DTT) were added to a final concentration of resp. 20 mM and 1 mM, to prevent proteolytic degradation. This concentrated cell suspension was stored overnight at -70 $^{\circ}$ C.

Cells were lysed by passing them three times through a French press (SLM-Aminco) at a working pressure of 800-1000 psi. During and after lysis, cells were kept systematically on ice.

The cell lysate was cleared by centrifugation (Beckman, JA 20, 18.000 rpm, 20 min, 4°C). The supernatant (SN) was carefully taken off and the pellet, containing membranes and inclusion bodies, was kept for further work since preliminary experiments had shown that the protein was mainly localised in the membrane fraction.

7 M guanidinium hydrochloride (GuHCl, marketed by ICN) in 100 mM phosphate buffer pH 7.2 was added to the pellet volume to a final concentration of 6 M GuHCl. The pellet was resuspended and extracted in a bounce tissue homogenizer (10 cycles).

After clearing (Beckman, JA 20, 18.000 rpm, 20 min, 4°C), about 100 ml of supernatant was collected (= extract 1) and the removing pellet was extracted again as described above (= extract 2, 40 ml).

The different fractions (SN,EX1,EX2) were analysed on SDS-PAGE (Laemmli, Nature 1970; 227:680) together with control samples of the induced culture. Scanning of the gel revealed that the recombinant protein makes up roughly 25% of the total protein content of the induced cell culture. After fractionation most of the protein was found back in the extracts. No difference was noticed between reducing and non-reducing conditions (plus and minus β -mercaptoethanol).

b. Preparation of the Ni IDA (Imino diacetic acid) column :

5 ml of the chelating gel, Chelating Sepharose 6B (Pharmacia) is washed extensively with water to remove the ethanol in which it is stored and then packed in a "Econo-column" (1 x 10 cm. Biorad). The top of the column is connected with the incoming fluid (sample, buffer, etc) while the end goes to the UV_{28c} detector via a peristaltic jump. Fractions are collected using a fraction collector and, when appropriate, pH of the fractions is measured manually.

The column is loaded with Ni^{**} (6 ml NiCl₂.6H₂O; 5 μg/μl) and equilibrated with starting buffer (6 M guanidinium hydrochloride, 100 mM phosphate buffer, pH 7.2).

. After having applied the sample, the column is washed extensively with starting buffer to remove unbound material.

To elute the bound material, 2 different elution procedures are feasible :

- 1) elution by decreasing pH,
- 2) elution by increasing imidazol concentration.

Both will be discussed here.

To regenerate the column, which has to be done after every 2-3 runs, 20 ml (about 5 column volumes) of the following solutions are pumped successively through the column:

- 0.05 M EDTA 0.5 M NaCl
- 55 0.1 M NaOH
 - H₂O

35

50

- 6 ml NiCl₂.6H₂O (5 mg/ml).

After equilibrating with starting buffer the column is ready to use again.

c. Chromatography:

All buffers contained 6 M guanidinium hydrochloride throughout the chromatography. The column was developed at a flow rate of 0.5 ml/min at ambient temperature. Fractions of 2 ml were collected and, when appropriate, further analysed by SDS-PAGE and immunoblotting. Gels were stained with Coomassie Brilliant Blue R250 and silver stain, as described by ANSORGE (1985). Immunoblotting was carried out as described in example I. The primary antiserum used was either polyclonal anti-32kDa-antiserum (1/1000) obtained as described in example 1 ("screening of the \(\alpha \text{gt11} \) M. tuberculosis recombinant DNA library with anti-32kDa-antiserum") or anti-E. coli -immunoglobulins (1/500; PROSAN), or monoclonal anti-hTNF-antibody which cross-reacts with mTNF (Innogenetics, N° 17F5D10). The secondary antiserum was alkaline phosphatase conjugated swine anti-rabbit immunoglobulins (1/500, PROSAN), or alkaline phosphatase conjugated rabbit-anti-mouse immunoglobulins (1/500, Sigma).

C1. Elution with decreasing pH:

Solutions used:

20

35

40

A: 6 M GuHCl 100 mM phosphate pH 7.2 B: 6 M GuHCl 25 mM phosphate pH 7.2

C: 6 M GuHCl 50 mM phosphate pH 4.2

After applying 3 ml of extract 1 (OD280 = 32.0) and extensively washing with solution A, the column is equilibrated with solution B and then developed with a linear pH gradient from 7.2 to 4.2 (25 ml of solution B and 25 ml of solution C were mixed in a gradient former). The elution profile is shown in figure 15.

From SDS-PAGE analysis (Coomassie and silverstain) it was clear that most of the originally bound recombinant protein was eluted in the fractions between pH 5.3 and 4.7.

Screening of these fractions on immunoblot with anti-32-kDa and the 17F5D10 monoclonal antibody showed that, together with the intact recombinant protein, also some degradation products and higher aggregation forms of the protein were present, although in much lower amount. Blotting with anti-E. coli antibody revealed that these fractions (pH 5.3-4.7) still contained immunodetectable contaminating E. coli proteins (75, 65, 43, 35 and 31 kDa bands) and lipopolysaccharides...

C2. Elution vith increasing imidazol concentration:

Solutions used:

A: 6 M GuHCl 100 mM phosphate pH 7.2 B: 6 M GuHCl 50 mM imidazol pH 7.2

C: 6 M GuHCl 100 mM imidazol pH 7.2

D: 6 M GuHCl 15 mM imidazol pH 7.2

E: 6 M GuHCl 25 mM imidazol pH 7.2

F: 6 M GuHCl 35 mM imidazol pH 7.2

Sample application and washing was carried out as in CI, except that after washing, no equilibration was necessary with 6 M GuHCl 25 mM phosphate. The column was first developed with a linear gradient of imidazol going from 0 to 50 mM (25 ml of solution A and 25 ml of solution B were mixed in a gradient former) followed by a step elution to 100 mM imidazol (solution C). During the linear gradient, proteins were gradually eluted in a broad smear, while the step to 100 mM gave rise to a clear peak (fig. 16).

SDS-PAGE analysis of the fractions revealed that in the first part of the linear gradient (fr 1-24) most contaminating E. coli proteins were washed out, while the latter part of the gradient (fr 25-50) and the 100 mM peak contained more than 90% of the recombinant protein.

As in CI, these fractions showed, besides a major band of intact recombinant protein, some minor bands of degradation and aggregation products. However, in this case, the region below 24-kDa seemed nearly devoid of protein bands, which suggests that less degradation products co-elute with the intact protein. Also, the same contaminating E. coli proteins were detected by immunoblotting, as in C1, although the 31-kDa band seems less intense and even absent in some fractions.

In a second stage, we developed the column with a step gradient of increasing imidazol concentrations. After having applied the sample and washed the column, 2 column volumes (about 8 ml) of the following solutions were brought successively onto the column : solution D, E, F and finally 4 column volumes of solution C. The stepgradient resulted in a more concentrated elution profile (fig. 17) which makes it more

EP 0 419 355 A1

suitable for scaling up purposes.

In conclusion, the mTNF-His $_6$ -P $_{32}$ protein has been purified to at least 90% by IMAC. Further purification can be achieved through a combination of the following purification steps:

- IMAC on chelating superose (Pharmacia)
- ion exchange chromatography (anion or cation)
- reversed phase chromatography
- gel filtration chromatography
- immunoaffinity chromatography
- elution from polyacrylamide gel.

These chromatographic methods are commonly used for protein purification.

The plasmids of figures 10b, 11b and 12b are new.

BIBLIOGRAPHY

15

25

30

35

45

- 1. Abou-Zeid, C., T.L. Ratliff, H.G. Wiker, M. Harboe, J.Bennedsen and G.A.W. Rook, 1988. Characterization of fibronectin-biding antigens released by Mycobacterium tuberculosis and Mycobacterium bovis BCG. Infect. Imm. 56, 3046-3051.
- 2. Bellon, B. 1988. Apple Macintosh programs for nucleic and protein sequence analysis. Nucleic Acid Res. 16:1837-1846.
 - 3. Bibb, M.J., P.R. Findlay and M.W. Jonhson. 1984. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene. 30: 157-166.
 - 4. Bresson, G.M. and K.K. Stanley. 1987. pUEX, a bacterial expression vector related to pEX with universal host specificity. Nucl. Aci. Res. 15:10056.
 - 5. Chang, S. Engineering for protein secretion in Gram positive bacteria. Methods Enzymol., 153:507-516.
 - 6. Chen, E.J. and P.H. Seeburg. 1985. Supercoil sequencing: a fast simple method for sequencing plasmid DNA.DNA 4:165-170.
 - 7. Closs, O., M. Harboe, N.H. Axelsen-Christensen and M. Magnussen. 1980. The antigens of Mycobacterium bovis, strain BCG, studied by cross-immunoelectrophoresis: a reference system. Scand. J. Immunol. S12N:249-263.
 - 8. De Bruyn, J.R. Bosmans, J. Nyabenda and J.P. Van Vooren. 1989. Effect of zinc deficiency of the appearance of two immunodominant protein antigens (32-kDa and 65-kDa) in culture filtrates of Mycobacteria. J. Gen. Micriob. 135: 79-84.
 - 9. De Bruyn, J., K. Huygen, R. Bosmans, M. Fauville, R. Lippens, J.P. Van Vooren, P. Falmagne, M. Weckx, H.G. Wiker, M. Harboe and M. Turneer. 1987. Purification, partial characterization and identification of a 32-kDa protein antigen of Mycobacterium bovis BCG. Microb. Pathogen. 2:351-366.
- 10. Felnberg, A.P. and R. Vogelstein. 1983. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6-13.
 - 11. Hawley, D.K. and W.R. Mc Clure. 1983. Compilation and analysis of E. coli promoter DNA sequences. Nucleic Acids Res. 11:2237-2255.
 - 12. Huygen, K., J.P. Van Vooren, M. Turneer, R. Bosmans, P. Dierckx and J. De Bruyn. 1988. Specific lymphoproliferation -interferon production and serum immunoglobulin G directed against a purified 32-kDa Mycobacterial antigen (P32) in patient with active tuberculosis. Scand. J. Immunol. 27:187-194.
 - 13. Huygen, K., K. Palfliet, F. Jurton, J. Hilgers, R. ten Berg, J.P. Van Vooren and J. De Bruyn. 1989. H-2-linked control of in vitro interferon production in response to 32-kilodalton (P32) of Mycobacterium bovis bacillus Calmette-Guerin. Infect. Imm. 56:3196-3200.
- 14. Huynh, T.V., R.A. Young and R.W. Davis. 1985. Constructing and screening libraries in gt10 and gt11 p.49-78. in: DNA cloning. Vol.I, A practical approach. Ed. D.M. Glover. IRL Press, Oxford-Washington, D.C.
 - **15.** Kyte, J. and R.F. Doolittle. 1982. Simple method for displaying the hydropathy character of a protein. J. Mol. Biol. 157:105-132.
- 16. Maniatis, T., E.F. Fritsch and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
 - 17. Matsuo, K., R. Yamaguchi, A. Yamazaki, H. Tasaka and T. Yamada. 1988. Cloning and expression of the Mycobacterium bovis BCG gene for extracellular α-antigen. J. Bacteriol. 170 :3847-3854.

EP 0 419 355 A1

- 18. Mavam, A.M. and W. Gilbert. 1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA. 74:560-564.
- 19. Mehra, V., D. sweetser and R.A. Young. 1986. Efficient mapping of protein antigenic determinants. Proc. Natl. Acad. Sci. USA. 83:7013-7017.
- 20. Mustafa, A.B., H.K. Gill, A. Nerland, W.J. Britton, V. Mehra, B.R. Bloom, R.A. Young and T. Godal. 1986. Human T-cell clones recognize a major M.Leprae protein antigen expressed in E. coli. Nature (London). 319:63-38.
 - 21. Neesen, K. and G. Volckaert. 1989. Construction and shuttling of novel bifunctional vectors for Streptomyces spp. and Escherichia coli. J. Bacteriol. 171:1569-1573.
- 22. Oliver, D. 1985. Protein secretion in Escherichia coli. Ann. Rev. Microbiol. 39 :615-648.
 - 23. Pearson, W.R. and D.J. Lipman. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA. 85:2444-2448.
 - 24. Rumschlag, H.S., T.S. Shinnick and M.L. Cohen. 1988. Serological response of patients with lepromatous and tuberculous leprosy to 30-, 31- and 32-kilodalton antigens of Mycobacterium tuberculosis. J. Clin. Microbiol. 26:2200-2202.
 - 25. Sanger, F., S. Niklon and A.R. Coulson. 1977. DNA sequencing with chain termination inhibitors. Proc. Natl. Acad. Sci. USA. 74:5463-5487.
 - 26. Shinnick, T.M. 1987. The 65-kilodalton antigen of Mycobacterium tuberculosis. J. Bacteriol. 169:1080-1088.
- 27. Thole, J.E.R., W.C.A. Van Shooten, W.J. Keulen, P.W.M. Hermans, A.A., M. Janson, R.A.P. De Vries, A.H.J. Kolk and J.D.A. Van Embden. 1988. Use of recombinant antigens expressed in Escherichia coli K-12 to map B-cell and T-cell epitopes on the immunodominant 65-kilodalton protein of Mycobacterium bovis BCG. Infect. Immun 56:1633-1640.
- 28. Thole. J.E.R., W.J. Keulen, J. De Bruyn, A.H.J. Kolk, D.G. Groothuis, L.G. Berwald, R.H. Tiesjema and J.D.A. Van Embden. 1987. Characterization, sequence determination and immunogenicity of a 64-kilodalton protein of Mycobacterium bovis BCG expressed in Escherichia coli R-12. Infect. Imm. 55:1466-1475.
 - 29. Towbin, H., T. Staehelin and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350-4354.
 - **30.** Turneer, M., J.P. Van Vooren, J. De Bruyn, E. Serruys, P. Dierckx and J.C. Yernault. 1988. Humoral immune response in human tuberculosis: immunoglobulins G, A and M directed against the purified P32 protein antigen of Mycobacterium bovis bacillus Calmette-Guérin. J. Clin. Microbiol. 26:1714-1719.
 - 31. Van Vooren, J.P., C.M. Farber, E. Noël, N. Mavroudakis, M. Turneer, J. De Bruyn, F. Legros and J.C. Yernault. 1989 Local anti-P32 humoral response in tuberculous meningitis. Tubercle. 70:123-126.
 - 32. Volckaert, G. 1987. A systematic approach to chemical sequencing by subcloning in pGV451 and derived vectors. Methods Enzymol. 155:231-250.
 - 33. Volckaert, G., El. De Vieeschouwer, R. Frank and H. Bloecker. 1984. A novel type of cloning vectors for ultrarapid chemical degradation sequencing of DNA. Gene Anal. Techn. 1:52-59.
- 34. Wiker, H.G., M. Harboe, S. Nagal, M.E. Patarroyo, C. Ramirez and N. Cruz. 1986. MPB59, a widely cross-reacting protein of Mycobacterium bovis BCG. Int. Arch. Alllergy Appl. Immunol. 81:307-314.
 - 35. Young, R.A., B.R. Bloom, C.M. Grosskinsky, J. Ivanji, D. Thomas and R.W. Davis. 1985. Dissection of Mycobacterium tuberculosis antigens using recombinant DNA. Proc. Natl. Acad; Sci. USA, 82:2583-2587.
- 36. HOCHULI, E., BANNWARTH, W., DÖBELI, H., GENTZ, R. and STÜBER, D. (1988). Genetic Approach to facilitate purification of recombinant proteins vith a novel metal chelate adsorbent. Biotechnology, nov. 1988, p. 1321-1325.
 - 37. ANSORGE, W. (1985), Fast and sensitive detection of protein and DNA bands by treatment with potassium permanganate. J. Biochem. Biophys. Meth., 11:13-20.

Claims

50

15

30

- 1. Recombinant polypeptide containing in its polypeptidic chain, one at least of the following amino acid sequences:
 - the one extending from the extremity constituted by amino acid at position (-29) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b, or
 - the one extending from the extremity constituted by amino acid at position (12) to the extremity

constituted by amino acid at position (31) represented on fig. 3a and fig. 3b, or

- the one extending from the extremity constituted by amino acid at position (36) to the extremity constituted by amino acid at position (55) represented on fig. 3a and fig. 3b, or
- the one extending from the extremity constituted by amino acid at position (77) to the extremity constituted by amino acid at position (96) represented on fig. 3a and fig. 3b, or
 - the one extending from the extremity constituted by amino acid at position (101) to the extremity constituted by amino acid at position (120) represented on fig. 3a and fig. 3b, or
 - the one extending from the extremity constituted by amino acid at position (175) to the extremity constituted by amino acid at position (194) represented on fig. 3a and fig. 3b, or
- 10 the one extending from the extremity constituted by amino acid at position (211) to the extremity constituted by amino acid at position (230) represented on fig. 3a and fig. 3b, or
 - the one extending from the extremity constituted by amino acid at position (275) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
 - and the peptidic sequences resulting from the modification by substitution and/or by addition and/or by deletion of one or several amino acids in so far as this modification does not alter the following properties: the polypeptides react with rabbit polyclonal antiserum raised against the protein of 32-kDa of M. bovis BCG culture filtrate, and/or
 - react selectively with human sera from tuberculosis patients and particularly patients developing an evolutive tuberculosis at an early stage,
- and/or react with the amino acid sequence extending from the extremity constituted by amino acid at position (1), to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b.
 - 2. Recombinant polypeptide according to claim 1, containing in its polypeptidic chain, one at least of the following amino acid sequences:
- the one extending from the extremity constituted by amino acid at position (-29) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b, or
 - the one extending from the extremity constituted by amino acid at position (12) to the extremity constituted by amino acid at position (31) represented on fig. 4a and fig. 4b, or
 - the one extending from the extremity constituted by amino acid at position (36) to the extremity constituted by amino acid at position (55) represented on fig. 4a and fig. 4b, or
- 30 the one extending from the extremity constituted by amino acid at position (77) to the extremity constituted by amino acid at position (96) represented on fig. 4a and fig. 4b, or
 - the one extending from the extremity constituted by amino acid at position (101) to the extremity constituted by amino acid at position (120) represented on fig. 4a and fig. 4b, or
- the one extending from the extremity constituted by amino acid at position (175) to the extremity constituted by amino acid at position (194) represented on fig. 4a and fig. 4b, or
 - the one extending from the extremity constituted by amino acid at position (211) to the extremity constituted by amino acid at position (230) represented on fig. 4a and fig. 4b, or
 - the one extending from the extremity constituted by amino acid at position (275) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
 - and the peptidic sequences resulting from the modification by substitution and/or by addition and/or by deletion of one or several amino acids in so far as this modification does not alter the following properties: the polypeptides react with rabbit polyclonal antiserum raised against the protein of 32-kDa of M. bovis BCG culture filtrate, and/or
 - react selectively with human sera from tuberculosis patients and particularly patients developing an evolutive tuberculosis at an early stage,
 - and/or react with the amino acid sequence extending from the extremity constituted by amino acid at position (1), to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b.
 - 3. Recombinant polypeptide according to claim 1, containing in its polypeptidic chain, one at least of the following amino acid sequences:
- the one extending from the extremity constituted by amino acid at position (-30) to the extremity constituted by amino acid at position (-1) represented on fig. 5, or
 - the one extending from the extremity constituted by amino acid at position (12) to the extremity constituted by amino acid at position (31) represented on fig. 5, or
- the one extending from the extremity constituted by amino acid at position (36) to the extremity constituted by amino acid at position (55) represented on fig. 5, or
 - the one extending from the extremity constituted by amino acid at position (77) to the extremity constituted by amino acid at position (96) represented on fig. 5, or
 - the one extending from the extremity constituted by amino acid at position (101) to the extremity

constituted by amino acid at position (120) represented on fig. 5, or

- the one extending from the extremity constituted by amino acid at position (175) to the extremity constituted by amino acid at position (194) represented on fig. 5, or
- the one extending from the extremity constituted by amino acid at position (211) to the extremity constituted by amino acid at position (230) represented on fig. 5, or
- the one extending from the extremity constituted by amino acid at position (275) to the extremity constituted by amino acid at position (295) represented on fig. 5,
- and the peptidic sequences resulting from the modification by substitution and/or by addition and/or by deletion of one or several amino acids in so far as this modification does not alter the following properties:
- the polypeptides react with rabbit polyclonal antiserum raised against the protein of 32-kDa of M. bovis BCG culture filtrate, and/or
 - react selectively with human sera from tuberculosis patients and particularly patients developing an evolutive tuberculosis at an early stage,
- and/or react with the amino acid sequence extending from the extremity constituted by amino acid at position (1), to the extremity constituted by amino acid at position (295) represented on fig. 5.
 - 4. Recombinant polypeptide according to claim 1, containing in its polypeptidic chain, one at least of the following amino acid sequences:
 - the one extending from the extremity constituted by amino acid at position (1) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
- the one extending from the extremity constituted by amino acid at position (-42) to the extremity
 constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-47) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-49) to to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-55) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-59) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b,
- the one extending from the extremity constituted by amino acid at position (-29) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-42) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-47) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-49) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-55) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
- the one extending from the extremity constituted by amino acid at position (-59) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b.
 - 5. Recombinant polypeptide according to claim 2, containing in its polypeptidic chain, one at least of the following amino acid sequences:
- the one extending from the extremity constituted by amino acid at position (1) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (-42) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig 4b,
 - the one extending from the extremity constituted by amino acid at position (-47) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b,
- the one extending from the extremity constituted by amino acid at position (-49) to to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (-55) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b,
- the one extending from the extremity constituted by amino acid at position (-59) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (-29) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (-42) to the extremity

constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,

- the one extending from the extremity constituted by amino acid at position (-47) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
- the one extending from the extremity constituted by amino acid at position (-49) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (-55) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (-59) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b.
- 10 6. Recombinant polypeptide according to claim 3, containing in its polypeptidic chain, one at least of the following amino acid sequences:
 - the one extending from the extremity constituted by amino acid at position (1) to the extremity constituted by amino acid at position (295) represented on fig. 5,
- the one extending from the extremity constituted by amino acid at position (-43) to the extremity constituted by amino acid at position (-1) represented on fig. 5,
 - the one extending from the extremity constituted by amino acid at position (-30) to the extremity constituted by amino acid at position (295) represented on fig. 5.
 - the one extending from the extremity constituted by amino acid at position (-43) to the extremity constituted by amino acid at position (295) represented on fig. 5.
- 20 7. Recombinant polypeptide according to claim 1, consisting in one of the following amino acid sequences:
 - the one extending from the extremity constituted by amino acid at position (-59) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b.
 - the one extending from the extremity constituted by amino acid at position (-59) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b,
- the one extending from the extremity constituted by amino acid at position (-55) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-55) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-49) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-49) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-47) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
- the one extending from the extremity constituted by amino acid at position (-47) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-42) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-42) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-29) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (-29) to the extremity constituted by amino acid at position (-1) represented on fig. 3a and fig. 3b,
- the one extending from the extremity constituted by amino acid at position (1) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (12) to the extremity constituted by amino acid at position (31) represented on fig. 3a and fig. 3b,
- the one extending from the extremity constituted by amino acid at position (36) to the extremity constituted by amino acid at position (55) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (77) to the extremity constituted by amino acid at position (96) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (101) to the extremity constituted by amino acid at position (120) represented on fig. 3a and fig. 3b,
- the one extending from the extremity constituted by amino acid at position (175) to the extremity constituted by amino acid at position (194) represented on fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by amino acid at position (211) to the extremity constituted by amino acid at position (230) represented on fig. 3a and fig. 3b,

- the one extending from the extremity constituted by amino acid at position (275) to the extremity constituted by amino acid at position (294) represented on fig. 3a and fig. 3b.
- 8. Recombinant polypeptide according to claim 2, consisting in one of the following amino acid sequences:
- the one extending from the extremity constituted by amino acid at position (-59) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
- the one extending from the extremity constituted by amino acid at position (-59) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b,
- the one extending from the extremity constituted by amino acid at position (-55) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
- the one extending from the extremity constituted by amino acid at position (-55) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (-49) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
- the one extending from the extremity constituted by amino acid at position (-49) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (-47) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (-47) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b,
- the one extending from the extremity constituted by amino acid at position (-42) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (-42) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (-29) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (-29) to the extremity constituted by amino acid at position (-1) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (1) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b,
- the one extending from the extremity constituted by amino acid at position (12) to the extremity constituted by amino acid at position (31) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (36) to the extremity constituted by amino acid at position (55) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (77) to the extremity constituted by amino acid at position (96) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (101) to the extremity constituted by amino acid at position (120) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (175) to the extremity constituted by amino acid at position (194) represented on fig. 4a and fig. 4b,
- the one extending from the extremity constituted by amino acid at position (211) to the extremity constituted by amino acid at position (230) represented on fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by amino acid at position (275) to the extremity constituted by amino acid at position (294) represented on fig. 4a and fig. 4b.
 - 9. Recombinant polypeptide according to claim 3, consisting in one of the following amino acid sequences:
- 5 the one extending from the extremity constituted by amino acid at position (-43) to the extremity constituted by amino acid at position (295) represented on fig. 5,
 - the one extending from the extremity constituted by amino acid at position (-43) to the extremity constituted by amino acid at position (-1) represented on fig. 5,
 - the one extending from the extremity constituted by amino acid at position (-30) to the extremity constituted by amino acid at position (295) represented on fig. 5,
 - the one extending from the extremity constituted by amino acid at position (-30) to the extremity constituted by amino acid at position (-1) represented on fig. 5,
 - the one extending from the extremity constituted by amino acid at position (1) to the extremity constituted by amino acid at position (295) represented on fig. 5,
- the one extending from the extremity constituted by amino acid at position (12) to the extremity constituted by amino acid at position (31) represented on fig. 5,
 - the one extending from the extremity constituted by amino acid at position (36) to the extremity constituted by amino acid at position (55) represented on fig. 5,

- the one extending from the extremity constituted by amino acid at position (77) to the extremity constituted by amino acid at position (96) represented on fig. 5,
- the one extending from the extremity constituted by amino acid at position (101) to the extremity constituted by amino acid at position (120) represented on fig. 5,
- the one extending from the extremity constituted by amino acid at position (175) to the extremity constituted by amino acid at position (194) represented on fig. 5,
 - the one extending from the extremity constituted by amino acid at position (211) to the extremity constituted by amino acid at position (230) represented on fig. 5,
- the one extending from the extremity constituted by amino acid at position (275) to the extremity constituted by amino acid at position (295) represented on fig. 5.
 - 10. Amino acid sequences constituted by a polypeptide according to claims 1 to 9, and a protein or an heterologous sequence with respect to said polypeptide, said protein or heterologous sequence comprising from about 1 to about 1000 amino acids.
 - 11. Amino acid sequence according to claim 10, wherein the heterologous protein is \$\beta\$-galactosidase.
- 15 12. Nucleic acid comprising
 - a nucleotide sequence coding for anyone of the polypeptides according to claims 1 to 11,
 - or nucleotide sequences which hybridize with the nucleotide sequences coding for anyone of the polypeptides according to claims 1 to 11,
- or nucleotide sequences which are complementary to the nucleotide sequences coding for any of the polypeptides according to claims 1 to 11,
 - the above mentioned nucleotide sequences wherein T can be replaced by U.
 - 13. Nucleic acid according to claim 12, comprising one at least of the following nucleotide sequences:
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (182) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (360) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (1242) to the extremity constituted by nucleotide at position (1358), wherein N represents one of the five A, T, C, G or I nucleotides, represented in fig. 3a and fig. 3b,
 - or above said nucleotide sequences wherein T is replaced by U,
 - or nucleic acids which hybridize with said above mentioned nucleotide sequences or the complementary sequences thereof.
- 14. Nucleic acid according to claim 13, comprising one at least of the following nucleotide sequences:
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (182) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (360) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b.
 - the one extending from the extremity constituted by nucleotide at position (1242) to the extremity constituted by nucleotide at position (1358), wherein N represents one of the five A, T, C, G or I nucleotides, represented in fig. 4a and fig. 4b,
- or above said nucleotide sequences wherein T is replaced by U,
 - or nucleic acids which hybridize with said above mentioned nucleotide sequences or the complementary sequences thereof.
 - 15. Nucleic acid according to claim 13, comprising one at least of the following nucleotide sequences:
- the one extending from the extremity constituted by nucleotide at position (130) to the extremity constituted by nucleotide at position (219) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (220) to the extremity constituted by nucleotide at position (1104) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (1104) to the extremity constituted by nucleotide at position (1299),
 - or above said nucleotide sequences wherein T is replaced by U,
 - or nucleic acids which hybridize with said above mentioned nucleotide sequences or the complementary sequences thereof.
 - 16. Nucleic acid according to claim 13, comprising one of the following sequences:

- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (194) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (212) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (218) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (272) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (359) represented in fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (360) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b.
 - 17. Nucleic acid according to claim 14, comprising one of the following sequences:
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (194) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (212) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (213) to the extremity

constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,

- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (218) represented in fig. 4a and fig. 4b.
- the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (272) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b.
- 30 the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b.
 - the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (360) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b.
 - 18. Nucleic acid according to claim 15, comprising one of the following sequences:
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (129) represented in fig. 5.
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (219) represented in fig. 5,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1104) represented in fig. 5.
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1299) represented in fig. 5.
 - the one extending from the extremity constituted by nucleotide at position (90) to the extremity constituted by nucleotide at position (219) represented in fig. 5,
- the one extending from the extremity constituted by nucleotide at position (90) to the extremity constituted by nucleotide at position (1299) represented in fig. 5.
 - the one extending from the extremity constituted by nucleotide at position (90) to the extremity constituted by nucleotide at position (1104) represented in fig. 5,

- the one extending from the extremity constituted by nucleotide at position (130) to the extremity constituted by nucleotide at position (1104) represented in fig. 5,
- the one extending from the extremity constituted by nucleotide at position (130) to the extremity constituted by nucleotide at position (1299) represented in fig. 5,
- the one extending from the extremity constituted by nucleotide at position (220) to the extremity constituted by nucleotide at position (1299) represented in fig. 5.
 - 19. Nucleic acid according to claim 13, consisting in one of the following nucleotide sequences:
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (182) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (194) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (212) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (218) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (272) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b.
 - the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (359) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
 - the one extending from the extremity constituted by nucleotide at position (273) to the extremity

constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,

- the one extending from the extremity constituted by nucleotide at position (360) to the extremity constituted by nucleotide at position (1241) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (360) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b,
- the one extending from the extremity constituted by nucleotide at position (1242) to the extremity constituted by nucleotide at position (1358) represented in fig. 3a and fig. 3b.
- 20. Nucleic acid according to claim 14, consisting in one of the following nucleotide sequences:
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (182) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (194) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (212) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (218) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (272) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (183) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b.
- the one extending from the extremity constituted by nucleotide at position (195) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b.
 - the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (213) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (219) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (234) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b.
- the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (359) represented in fig. 4a and fig. 4b.
 - the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,

- the one extending from the extremity constituted by nucleotide at position (273) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (360) to the extremity constituted by nucleotide at position (1241) represented in fig. 4a and fig. 4b,
- the one extending from the extremity constituted by nucleotide at position (360) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b,
 - the one extending from the extremity constituted by nucleotide at position (1242) to the extremity constituted by nucleotide at position (1358) represented in fig. 4a and fig. 4b.
 - 21. Nucleic acid according to claim 15, consisting in one of the following nucleotide sequences:
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (129) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (219) represented in fig. 5,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1104) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (1299) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (90) to the extremity constituted by nucleotide at position (219) represented in fig. 5,
- the one extending from the extremity constituted by nucleotide at position (90) to the extremity constituted by nucleotide at position (1104) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (90) to the extremity constituted by nucleotide at position (1299) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (130) to the extremity constituted by nucleotide at position (219) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (130) to the extremity constituted by nucleotide at position (1104) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (130) to the extremity constituted by nucleotide at position (1299) represented in fig. 5,
- the one extending from the extremity constituted by nucleotide at position (220) to the extremity constituted by nucleotide at position (1104) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (220) to the extremity constituted by nucleotide at position (1299) represented in fig. 5,
 - the one extending from the extremity constituted by nucleotide at position (1104) to the extremity constituted by nucleotide at position (1299) represented in fig. 5.
 - 22. Recombinant nucleic acid containing at least one of the nucleotide sequences according to claims 13 to 21, inserted in a heterologous nucleic acid.
 - 23. DNA or RHA primer constituted by one of the following sequences:
 - A (i) CAGCTTGTTGACAGGGTTCGTGGC
- 40 A (ii) GGTTCGTGGCGCCGTCACG
 - A (iii) CGTCGCGCGCCTAGTGTCGG
 - A (iv) CGGCGCCGGTCGGTGGCACGGCGA
 - A (v) CGTCGGCGCGCCCTAGTGTCGG
 - B TCGCCCGCCCTGTACCTG
- 45 C GCGCTGACGCTGGCGATCTATC
 - D CCGCTGTTGAACGTCGGGAAG
 - E AAGCCGTCGGATCTGGGTGGCAAC
 - F (i) ACGGCACTGGGTGCCACGCCCAAC
 - F(ii) ACGCCCAACACCGGGCCCGCCA
- 50 F (iii) ACGGGCACTGGGTGCCACGCCCAAC
 - F (iv) ACGCCCCAACACCGGGCCCGCGCCCCA
 - 24. DNA or RNA primer set constituted by any of the nucleotide sequences A(i), A(ii), A(iii), A(iii), A(iv), A(v). B, C, D, E, F(i), F(iii) or F(iv) in association with the complement of any other nucleotide sequences chosen from A, B, C, D, E, or F, A meaning any of the sequences A(i), A(ii), A(iii), A(iv), A(v) and F any of the sequences F(i), F(ii), F(iii) and F(iv),
 - A(i), A(ii), A(iii), A(iv), A(v), B, C, D, E, F(i), F(ii), F(iii) and F(iv) having the meaning of claim 11, and advantageously constituted by the following elements:

EP 0 419 355 A1

		A(i)					
	01	c A(ii)					
•		r A(iii)	and	the	complement	of	В
5		r A(iv)					
		r A(v)					
10							
15					•		
•							
	÷					•	
		•			-		
20							
•							
25							
30							
30							
•							
35							
		•					
40							
15							
45							

	A(i)	
	or A(ii)	
5	or A(iii)	and the complement of C
	or A(iv)	
	or A(V)	
10	• •	
,,	В	and the complement of C
	A(i)	
15	or A(ii)	and the complement of F
	or A(iii)	and the complement of r
	or A(iv)	•
20	or A(v)	
·	A(i)	
	or A(ii)	
25	or A(iii)	and the complement of D
	or A(iv)	
	or A(v)	
30		
	A(i)	
	or A(ii)	
	or A(iii)	and the complement of E
35	or A(iv)	
	or A(v)	
	В '	and the complement of D
40	В	and the complement of E
	В	and the complement of P
	С	and the complement of D
45	С	and the complement of E
	С	and the complement of F
	D	and the complement of ${f E}$
50	D	and the complement of F
	E	and the complement of F.

^{25.} Recombinant vector, particularly for cloning and/or expression, comprising a vector sequence, notably of the type plasmid, cosmid or phage, and a recombinant nucleic acid according to anyone of claims 13 to 21. in one of the non essential sites for its replication.

^{26.} Recombinant vector according to claim 25, containing in one of its non essential sites for its replication necessary elements to promote the expression of polypeptides according to anyone of claims 1 to 12 in a

EP 0 419 355 A1

cellular host and possibly a promoter recognized by the polymerase of the cellular host, particularly an inductible promoter and possibly a signal sequence and/or an anchoring sequence.

- 27. Recombinant vector according to claim 26, containing the elements enabling the expression by $\underline{\mathsf{E}}$. coli of a nucleic acid according to anyone of claims 6 to 9 inserted in the vector, and particularly the elements enabling the expression of the gene or part thereof of β -galactosidase.
- 28. Cellular host which is transformed by a recombinant vector according to anyone of claims 25 to 27, and comprising the regulation elements enabling the expression of the nucleotide sequence coding for the polypeptide according to anyone of claims 1 to 12 in this host.
- 29. Cellular host according to claim 28, chosen from among bacteria such as E. coli , transformed by the vector according to claim 25, or chosen from among eukaryotic organism, transformed by the vector according to claim 25.
 - 30. Expression product of a nucleic acid expressed by a transformed cellular host according to anyone of claims 28 or 29.
 - 31. Antibody characterized by the fact that it is directed against a recombinant polypeptide according to anyone of claims 1 to 12.
 - 32. Nucleotidic probes, hybridizing vith anyone of the nucleic acids according to claims 13 to 21 or with their complementary sequences, and particularly the probes chosen among the following nucleotidic sequences

Probes A(i) A(ii), A(iii) and A(iv)

- 20 A (i) CAGCTTGTTGACAGGGTTCGTGGC
 - A(ii) GGTTCGTGGCGCCGTCACG
 - A (iii) CGTCGCGCGCCTAGTGTCGG
 - A (iv) CGGCGCCGTCGGTGGCACGGCGA
 - A (v) CGTCGGCGCGCCCTAGTGTCGG
- 25 Probe B

TCGCCCCCCCTGTACCTG

Probe C

GCGCTGACGCTGGCGATCTATC

Probe D

30 CCGCTGTTGAACGTCGGGAAG

Probe E

AAGCCGTCGGATCTGGGTGGCAAC

Probes F(i) and F(ii)

- F (i) ACGGCACTGGGTGCCACGCCCAAC
- 35 F (ii) ACGCCCAACACCGGGCCCGCCA
 - F (iii) ACGGGCACTGGGTGCCACGCCCAAC
 - F (iv) ACGCCCCAACACCGGGCCCGCGCCCCA
 - or their complementary nucleotidic sequences.
 - 33. Process for preparing a recombinant polypeptide according to anyone of claims 1 to 12 comprising the following steps:
 - the culture in an appropriate medium of a cellular host which has previously been transformed by an appropriate vector containing a nucleic acid according to anyone of claims 12 to 22, and
 - the recovery of the polypeptide produced by the above said transformed cellular host from the above said culture medium.
- 34. Method for the in vitro diagnostic of tuberculosis in a patient liable to be infected by Mycobacterium tuberculosis comprising the following steps:
 - the possible previous amplification of the amount of the nucleotide sequences according to anyone of claims 12 to 22, liable to be contained in a biological sample taken from said patient by means of a DNA primer set according to claim 24,
- contacting the above mentioned biological sample with a nucleotide probe according to claim 32, under conditions enabling the production of an hybridization complex formed between said probe and said nucleotide sequence,
 - detecting the above said hybridization complex which has been possibly formed.
- 35. Method for the in vitro diagnostic of tuberculosis in a patient liable to be infected by Mycobacterium tuberculosis comprising
 - contacting a biological sample taken from a patient with a polypeptide according to anyone of claims 1 to 11, under conditions enabling an in vitro immunological reaction between said polypeptide and the antibodies which are possibly present in the biological sample and

- the in vitro detection of the antigen/antibody complex which has been possibly formed.
- 36. Method for the in vitro diagnostic of tuberculosis in a patient liable to be infected by M. tuberculosis , comprising the following steps :
- contacting the biological sample with an appropriate antibody according to claim 31, under conditions enabling an in vitro immunological reaction between said antibody and the antigens of M. tuberculosis which are possibly present in the biological sample and
 - the in vitro detection of the antigen/antibody complex which may be formed.
 - 37. Necessary or kit for an in vitro diagnostic method of tuberculosis in a patient liable to be infected by Mycobacterium tuberculosis according to claim 34, comprising
- a determined amount of a nucleotide probe according to claim 32,
 - advantageously the appropriate medium for creating an hybridization reaction between the sequence to be detected and the above mentioned probe,
 - advantageously, reagents enabling the detection of the hybridization complex which has been formed between the nucleotide sequence and the probe during the hybridization reaction.
- 38. Necessary or kit for an in vitro diagnostic method of tuberculosis in a patient liable to be infected by Mycobacterium tuberculosis according to claim 35, comprising
 - a polypeptide according to anyone of claims 1 to 11,
 - reagents for making a medium appropriate for the immunological reaction to occur,
- reagents enabling to detect the antigen/antibody complex which has been produced by the immunological reaction, said reagents possibly having a label, or being liable to be recognized by a labeled reagent, more particularly in the case where the above mentioned polypeptide is not labeled.
 - 39. Necessary or kit for an in vitro diagnostic method of tuberculosis in a patient liable to be infected by Mycobacterium tuberculosis according to claim 36, comprising
 - an antibody according to claim 31,
- reagents for making a medium appropriate for the immunological reaction to occur,
 - reagents enabling to detect the antigen/antibody complexes which have been produced by the immunological reaction, said reagents possibly having a label or being liable to be recognized by a label reagent, more particularly in the case where the above mentioned antibody is not labeled.
 - 40. Immunogenic composition comprising a polypeptide according to anyone of claims 1 to 11, in association with a pharmaceutically acceptable vehicle.
 - 41. Vaccine composition comprising among other immunogenic principles anyone of the polypeptides according to claims 1 to 11 or the expression product of claim 30, possibly coupled to a natural protein or to a synthetic polypeptide having a sufficient molecular weight so that the conjugate is able to induce in vivo the production of antibodies neutralizing Mycobacterium tuberculosis, or induce in vivo a cellular immune response by activating M. tuberculosis antigen-responsive T cells.
 - 42. Process for the enzymatical amplification of a nucleotide seance according to claims 12 to 22, and detection of the amplified nucleotide sequence, wherein
 - the amplification is achieved by PCR technique by means of a primer set and the detection of the PCR amplified product is achieved by a hybridization reaction with a detection probe constituted by an oligonucleotide sequence of at least 10 nucleotides, said sequence being located between the two PCR primers which have been used for amplifying said nucleotide sequence,
 - the primer set and detection probe used being preferably chosen among the following elements: Primer set

P1 GAGTACCTGCAGGTGCCGTCGCCGTCGATGGGCCG

45 P2 compl. GTACCACTCGAACGCCGGGGTGTTGAT

Probe B

TCGCCCCCCCTGTACCTG

Primer set

P1 GAGTACCTGCAGGTGCCGTCGCCGTCGATGGGCCG

50 P3 compl. TCCCACTTGTAAGTCTGGCA

Probe B

TCGCCCGCCCTGTACCTG

Primer set

P1 GAGTACCTGCAGGTGCCGTCGCCGTCGATGGGCCG

55 P4 compl. CGGCAGCTCGCTGGTCAGGA

Probe B

TCGCCCGCCCTGTACCTG

Primer set

P1 GAGTACCTGCAGGTGCCGTCGCCGTCGATGGGCCG

P5 compl. GCGTCACCCATCGCCAGGCCGATCAGG

Probe B

TCGCCCGCCCTGTACCTG or

5 Probe C

GCGCTGACGCTGGCGATCTATC

Primer set

P1 GAGTACCTGCAGGTGCCGTCGCCGTCGATGGGCCG

P6 compl. GCGCCCCAGTACTCCCAGCTGTGCGT

10 Probe B

TCGCCCGCCCTGTACCTG or

Probe C

GCGCTGACGCTGGCGATCTATC or

Probe D

15 CCGCTGTTGAACGTCGGGAAG or

Probe E

AAGCCGTCGGATCTGGGTGGCAAC

Primer set

P2 ATCAACACCCCGGCGTTCGAGTGGTAC

20 P5 compl. GCGTCACCCATCGCCAGGCCGATCAGG

Probe (

GCGCTGACGCTGGCGATCTATC

Primer set

P2 ATCAACACCCCGGCGTTCGAGTGGTAC

25 P6 compi. GCGCCCCAGTACTCCCAGCTGTGCGT

Probe C

GCGCTGACGCTGGCGATCTATC or

Probe D

CCGCTGTTGAACGTCGGGAAG or

30 Probe E

AAGCCGTCGGATCTGGGTGGCAAC

Primer set

P3 TGCCAGACTTACAAGTGGGA

P5 compl. GCGTCACCCATCGCCAGGCCGATCAGG

35 Probe C

GCGCTGACGCTGGCGATCTATC

Primer set

P3 TGCCAGACTTACAAGTGGGA

P6 compl. GCGCCCCAGTACTCCCAGCTGTGCGT

40 Probe C

GCGCTGACGCTGGCGATCTATC or

Probe D

CCGCTGTTGAACGTCGGGAAG or

Probe E

45 AAGCCGTCGGATCTGGGTGGCAAC

Primer set

P4 TCCTGACCAGCGAGCTGCCG

P5 compl. GCGTCACCCATCGCCAGGCCGATCAGG

Probe C

50 GCGCTGACGCTGGCGATCTATC

Primer set

P4 TCCTGACCAGCGAGCTGCCG

P6 compl. GCGCCCCAGTACTCCCAGCTGTGCGT

Probe C

55 GCGCTGACGCTGGCGATCTATC or

Probe D

CCGCTGTTGAACGTCGGGAAG or

Probe E

AAGCCGTCGGATCTGGGTGGCAAC

Primer set

P5 CCTGATCGGCCTGGCGATGGGTGACGC

P6 compl. GCGCCCCAGTACTCCCAGCTGTGCGT

Probe D

20

CCGCTGTTGAACGTCGGGAAG or

Probe E

AAGCCGTCGGATCTGGGTGGCAAC

or the primer set being preferably chosen among the primer sets according to claim 24, and the detection probe being constituted by any oligonucleotide sequence of at least 10 nucleotides, said sequence being located between the two PCR primers constituting the primer set which has been used for amplifying said nucleotide sequence.

- 43. A vector sequence forming part of a recombinant vector according to claim 25, said vector sequence having either the nucleic acid sequence represented in fig. 10b, or the nucleic acid sequence represented in fig. 11b, or the nucleic acid sequence represented in fig. 12b.
- 44. Plasmids comprising either the nucleic acid sequence of fig. 10b, or the nucleic acid sequence of fig. 11b, or the nucleic acid sequence of fig. 12b.
- 45. Peptides of claim 1, advantageously used to produce antibodies, particularly monoclonal antibodies and which have the following amino acid sequences:

	Amino acid		Amino acid
25	(NH ₂ -termina	1)	(COOH-terminal)
	12	QVPSPSMGRDIKVQFQSGGA	31
	36	LYLLDGLRAQDDFSGWDINT	55
30	77	SFYSDWYQPACRKAGCQTYK	96
	101	LTSELPGWLQANRHVKPTGS	120
	175	KASDMWGPKEDPAWQRNDPL	194
35	211	CGNGKPSDLGGNNLPAKFLE	230
	275	KPDLQRHWVPRPTPGPPQGA	294
	77	SFYSDWYQPACGKAGCQTYK	96
	276	PDLQRALGATPNTGPAPQGA	299
40			

45

Figure 1

CGACACATGCCCAGACACTGCGGAAATGCCACCTTCAGGCCGTCGCGTCGGT CCCGAA TTGGC CGTGAACGACCGCCGG ATAA GGGTTTCGGCGGTGCGCTTGATGCGGGT

GGACGCCCABAGTTGTGGTTGACTACACGAGCACTGCCGGGCCCAGCGCCTGCAGTCTGACCT MET-ARG-PRO-ASN-MET-HIS- GLY-CYS-VAL- GLU- MET- ARG-MET-ARG-GLU-ALA-ARG

A TIG-CAG-CTT-GAC-AGG-GTT-CGT-GGC-GCC-GTC-ACG-GGT-AIG-TCG-CGT-CGA-CTC-GTG-GTC-- 55

MET-GLN-LEU-VAL-ASP-ARG-VAL-ARG-GLY-ALA-VAL-THR-GLY-MET-SER-ARG-ARG-LEU-VAL-VAL-

GLY-ALA-VAL- a₁ - b₁-LEU-VAL-SER-GLY-LEU-VAL-GLY-ALA-VAL-GLY-GLY-THR-ALA-THR-ALA-GGG-GCC-GTC-XCG-CXC -.YIA-GTG-TCG-GGT-CTG-GTC-GGC-GCC-GTC-GGT-GGC-ACG-GCG-ACC-GCG--22 294

GGG-GCA-TTT-TCC-CGG-CCG-GGC-TTG-CCG-GTG-GAG-TAC-CTG-CAG-GTG-CCG-TCG-CCG-TCG-ATG-354

GLY-ALA-phe-ser-arg-pro-qly-leu-pro-val-qlu-tyr-leu-qln-val-pro-ser-pro-ser-met-

GGC-CGT-GAC-ATC-AAG}-GTC-CAA-TTC-CAA-AGT-GGT-GGT-GCC-AAC-TCG-CCC-GCC-CTG-TAC-CTG-<u>qly-arq-asp-ile-lys -val-qln-phe-qln-ser-qly-qly-ala-asn-ser-pro-ala-leu-tyr-leu-</u> 414

leu-asp-gly-leu-arg-ala-gln-asp-asp-phe-ser-gly-trp-asp-ile-asn-thr-pro-ala-phe-CTC-GAC-GGC-CTG-CGC-GCG-CAG-GAC-TTC-AGC-GGC-TGG-GAC-ATC-AAC-ACC-CCG-GCG-TTC-

glu-trp-tyr-asp-gln-ser-gly-leu-ser-val-val-met-pro-val-gly-gly-gln-ser-ser-phe-GAG-TGG-TAC-GAC-CAG-TCG-GGC-CTG-TCG-GTG-GTC-ATG-CCG-GTG-GGT-GGC-CAG-TCA-AGC-TTC-534

TAC-TCC-GAC-TGG-TAC-CAG-CCC-GCC-TGC-7 GC-AAG-GCC-GGT-TGC-CAG- (ACT-TAC-AAG-TGG-GAG-594

tyr-ser-asp-trp-tyr-gln-pro-ala-cys- a2 -lys-ala-gly-cys-gln- thr-tyr-lys-trp-glu-

thr-phe-leu-thr-ser-glu-leu-pro-gly-trp-leu-gln-ala-asn-arg-his-val-lys-pro-thr-ACC-TTC-CTG-ACC-AGC-GAG-CTG-CCG-GGG-TGG-CTG-CAG-GCC-AAC-AGG-CAC-GTC-AAG-CCC-ACC-654

٩,

- gly-ser-ala-val-val-gly-leu-ser-met-ala-ala-ser-ser-ala-leu-thr-leu-ala-ile-tyr-GGA-AGC-GCC-GTC-GTC-GGT-CTT-TCG-ATG-GCT-GCT-TCT-TCG-GCG-CTG-ACG-CTG-GCG-ATC-TAT-714
 - 119
- CAC-CCC-CAG-CAG-TTC-GTC-TAC-GCG-GGA-GCG-ATG-TCG-GGC-CTG-TTG-GAC-CCC-TCC-CAG-GCGhis-pro-gln-gln-phe-val-tyr-ala-gly-ala-met-ser-gly-leu-leu-asp-pro-ser-gln-ala-139
- ATG-GGT-CCC-ACC-CTG-ATC-GGC-CTG-GCG-ATG-GGT-GAC-GCT-GGC-GGC-TAC-AAG-GCC-TCC-GAC-834
- met-gly-pro-thr-leu-ile-gly-leu-ala-met-gly-asp-ala-gly-gly-tyr-lys-ala-ser-asp-159
- atg-tgg-ggc-ccg-aag-gag-gac-ccg-gcg-tgg-cag-cgc-aac-gac-ccg-ctg-ttg-aac-gtc-ggg-894
- met-trp-gly-pro-lys-glu-asp-pro-ala-trp-gln-arg-asn-asp-pro-leu-leu-asn-val-gly-179
- AAG-CTG-ATC-GCC-AAC-AAC-ACC-CGC-GTC-TGG-GTG-TAC-TGC-GGC-AAC-GGC-AAG-CCG-TCG-GATlys-leu-ile-ala-asn-asn-thr-arg-val-trp-val-tyr-cys-gly-asn-gly-lys-pro-ser-asp-954 199
- % **↑**
- CTG-GGT-GGC-AAC-AAC-CTG-CCG-GCC-AAG-TTC-CTC-GAG-GGC-TTC-GTG-CGG-ACC-AGC-AAC-ATCleu-gly-gly-asn-asn-leu-pro-ala-lys-phe-leu-glu-gly-phe-val-arg-thr-ser-asn-ile-1014
- AAG-TIC-CAA-GAC-GCC-TAC-AAC-GCC-GGI- 664-260 -CAC-AAC-GGC-GIG-IIC-GAC-IIC-CCG-GAC-1074
- lys-phe-gln-asp-ala-tyr-asn-ala-gly-gly- a2-his-asn-gly-val-phe-asp-phe-pro-asp-
- AGC-GGT-ACG-CAC-AGC-TGG-GAG-TAC-TGG-GGC-GCG-CAG-CTC-AAC-GCT-ATG-AAG-CCC-GAC-CTGser-gly-thr-his-ser-trp-glu-tyr-trp-gly-ala-gln-leu-asn-ala-met-lys-pro-asp-leu-1134
- CAA-CG -CAC-TGG-GTG-CCA-CGC-CCA-ACA-CCG-GGC-CCG-KCL-CAG-GGC-GCC-TAGCTCCGAACAGACA
 - $g_{1n-arg-a_3} b_3 c_3 d_3 e_3 f_3 thr a_4 gly pro a_5 gln gly ala TER$
- CAACATCTAGCNNCGGTGACCCTTGTGGNNCANATGTTTCCTAAATCCCGTCCCTAGCTCCCGCNGCNNCCGTGTGGTTA 1258
 - GCTACCTGACNNCATGGGTTT 1358 1338

CCCGAA TTGGC CGTGAACGACCGCCGG ATAA GGGTTTCGGCGGTGCGCTTGATGCGGGT CGACACATGCCCAGACACTGCGGAAATGCCACCTTCAGGCCGTCGCGTCGGT

GGACGCCC AAGTTGTGGTTGACTACACGAGCACTGCCGGGCCCAGCGCCTGCAGTCTGACCT

MET-ARG-PRO-ASN-MET-HIS- GLY-CYS-VAL- GLU- MET- ARG-MET-ARG-GLU-ALA-ARG -47 - 49 ATG-CAG-CTT-GTT-GAC-AGG-GTT-CGT-GGC-GCC-GTC-ACG-GGT-AIG-TCG-CGT-CGA-CTC-GTG-GTC-MET-GLN-LEU-VAL-ASP-ARG-VAL-ARG-GLY-ALA-VAL-THR-GLY-MET-SER-ARG-ARG-LEU-VAL-VAL--42

GGG-GCC-GTC-600 - 060-014-GTG-TCG-GGT-CTG-GTC-GGC-GCC-GTC-GGT-GGC-ACG-GCG-ACC-GCG-GLY-ALA-VAL-ALA - ARG-LEU-VAL-SER-GLY-LEU-VAL-GLY-ALA-VAL-GLY-GLY-THR-ALA-THR-ALA-294

GGG-GCA-TIT-ICC-CGG-CCG-GGC-IIG-CCG-GIG-GAG-IAC-CIG-CAG-GIG-CCG-ICG-CCG-ICG-TCG-AIG-354

GLY-ALA-phe-ser-arg-pro-gly-leu-pro-val-glu-tyr-leu-gln-val-pro-ser-pro-ser-met-

GGC-CGT-GAC-ATC-AAG}-GTC-CAA-TTC-CAA-AGT-GGT-GGT-GCC-AAC-TCG-CCC-GCC-CTG-TAC-CTG--val-qln-phe-qln-ser-qly-qly-ala-asn-ser-pro-ala-leu-tyr-leuqly-arq-asp-ile-lys 414

↓ 17

CTC-GAC-GGC-CTG-CGC-GCG-CAG-GAC-TTC-AGC-GGC-TGG-GAC-ATC-AAC-ACC-CCG-GCG-TTCleu-asp-gly-leu-arg-ala-gln-asp-asp-phe-ser-gly-trp-asp-ile-asn-thr-pro-ala-phe-

glu-trp-tyr-asp-gln-ser-gly-leu-ser-val-val-met-pro-val-gly-gly-gln-ser-ser-phe-GAG-TGG-TAC-GAC-CAG-TCG-GGC-CTG-TCG-GTG-GTC-ATG-CCG-GTG-GGT-GGC-CAG-TCA-AGC-TTC-534

TAC-TCC-GAC-TGG-TAC-CAG-CCC-GCC-TGC-CGC-AAG-GCC-GGT-TGC-CAG-(ACT-TAC-AAG-TGG-GAG-594

tyr-ser-asp-trp-tyr-gln-pro-ala-cys-arg-lys-ala-gly-cys-gln- thr-tyr-lys-trp-glu-

- thr-phe-leu-thr-ser-glu-leu-pro-gly-trp-leu-gln-ala-asn-arg-his-val-lys-pro-thracc-tic-cig-acc-agc-gag-cig-ccg-ggg-igg-cig-cag-gcc-aac-agg-cac-gic-aag-ccc-acc 654
- GGA-AGC-GCC-GTC-GTC-GGT-CTT-TCG-ATG-GCT-GCT-TCT-TCG-GCG-CTG-ACG-CTG-GCG-ATC-TAT-
- gly-ser-ala-val-val-gly-leu-ser-met-ala-ala-ser-ser-ala-leu-thr-leu-ala-ile-tyr-119
- his-pro-gln-gln-phe-val-tyr-ala-gly-ala-met-ser-gly-leu-leu-asp-pro-ser-gln-ala-CAC-CCC-CAG-CAG-TIC-GIC-TAC-GCG-GGA-GCG-AIG-ICG-GGC-CIG-IIG-GAC-CCC-ICC-CAG-GCG-774 139
- ATG-GGT-CCC-ACC-CTG-ATC-GGC-CTG-GCG-ATG-GGT-GAC-GCT-GGC-GGC-TAC-AAG-GCC-TCC-GACmet-gly-pro-thr-leu-ile-gly-leu-ala-met-gly-asp-ala-gly-gly-tyr-lys-ala-ser-asp-834
- met-trp-gly-pro-lys-glu-asp-pro-ala-trp-gln-arg-asn-asp-pro-leu-leu-asn-val-glyatg-tgg-ggc-ccg-aag-gag-gac-ccg-gcg-tgg-cag-cgc-aac-gac-ccg-ctg-ttg-aac-gtc-ggg-894
- aag-ctg-atc-gcc-aac-aac-acc-cgc-gtc-tgg-gtg-tac-tgc-ggc-aac-ggc-aag-ccg-tcg-gatlys-leu-ile-ala-asn-asn-thr-arg-val-trp-val-tyr-cys-gly-asn-gly-lys-pro-ser-asp-
- CTG-GGT-GGC-AAC-AAC-CTG-CCG-GCC-AAG-TTC-CTC-GAG-GGC-TTC-GTG-CGG-ACC-AGC-AAC-ATC-**₹** 1014
- leu-gly-gly-asn-asn-leu-pro-ala-lys-phe-leu-glu-gly-phe-val-arg-thr-ser-asn-ile-
- AAG-TTC-CAA-GAC-GCC-TAC-AAC-GCC-GGT-666 C6C-CAC-AAC-GGC-GTG-TTC-GAC-TTC-CCG-GAClys-phe-gln-asp-ala-tyr-asn-ala-gly-gly- arg-his-asn-gly-val-phe-asp-phe-pro-asp-1074
- AGC-GGT-ACG-CAC-AGC-TGG-GAG-TAC-TGG-GGC-GCG-CAG-CTC-AAC-GCT-ATG-AAG-CCC-GAC-CTG-1134
 - ser-gly-thr-his-ser-trp-glu-tyr-trp-gly-ala-gln-leu-asn-ala-met-lys-pro-asp-leu-
- CAA-CG -CAC-IGG-GIG-CCA-CGC-CCA-ACA-CCG-GGC-CCG- CCG-CAG-GGC-GCC-IAGCICCGAACAGACA gln-arg- his-trp- val-pro-arg - pro-thr- pro-gly-pro-pro-gln-gly-ala-TER 1194
- CAACATCTAGCNNCGGTGACCCTTGTGGNNCANATGTTTCCTAAATCCCGTCCCTAGCTCCCGCNGCNNCCGTGTGGTTA
 - GCTACCTGACNNCATGGGTTT 1358

- MET-GLN-LEU-VAL-ASP-ARG-VAL-ARG-GLY-ALA-ACT-GCC-GGG-CCC-AGC-GCC-TGC-AGT-CTG-ACC-TAA-TTC-AGG-ATG-CGC-CCA-AAC-ATG-CAT-GGA-TGC-GTT-GAG-ATG-AGG-ATG-AGG-GAA-GCA-AGA-ATG-CAG-CTT-GTT-GAC-AGG-GTT-CGT-GGC-GCC-(-43)2
- GTC-ACG-GGT-ATG-TCG-CGT-CGA-CTC-GTG-GTC-GGG-GCC-GTC-GGC-GCG-GCC-CCA-GTG-TCG-GGT-
 - VAL-THR-GLY-MET-SER-ARG-ARG-LEU-VAL-VAL-GLY-ALA-VAL-GLY-ALA-LLA-ALA-LEU-VAL-SER-GLY-CTG-GTC-GGC-GCC-GTC-GGT-GGC-ACG-GCG-ACC-GCG-GGG-GCA-TTT-TCC-CGG-CCG-GGC-TTG-CCG--33 181
 - LEU-VAL-GLY-ALA-VAL-GLY-GLY-THR-ALA-THR-ALA-GLY-ALA-phe-ser-arg-pro-gly-leu-pro--13
- GTG-GAG-TAC-CTG-CAG-GTG-CCG-TCG-CCG-TCG-ATG-GGC-CGT-GAC-ATC-AAG-GTC-CAA-TTC-CAAval-glu-tyr-leu-gln-val-pro-ser-pro-ser-met-gly-arg-asp-ile-lys-val-gln-phe-gln-241
- ser-gly-gly-ala-asn-ser-pro-ala-leu-tyr-leu-leu-asp-gly-leu-arg-ala-gln-asp-asp-AGT-GGT-GGT-GCC-AAC-TCG-CCC-GCC-CTG-TAC-CTG-CTC-GAC-GGC-CTG-CGC-ĞCG-CAG-GAC-GAC-301
- phe-ser-gly-trp-asp-ile-asn-thr-pro-ala-phe-glu-trp-tyr-asp-gln-ser-gly-leu-ser-TTC-AGC-GGC-TGG-GAC-ATC-AAC-ACC-CCG-GCG-TTC-GAG-TGG-TAC-GAC-CAG-TCG-GGC-CTG-TCG-361
- GTG-GTC-ATG-CCG-GTG-GGT-GGC-CAG-TCA-AGC-TTC-TAC-TCC-GAC-TGG-TAC-CAG-CCC-GCC-TGC-421
 - val-val-met-pro-val-gly-gly-gln-ser-ser-phe-tyr-ser-asp-trp-tyr-gln-pro-ala-cys-68
- GGC-AAG-GCC-GGT-TGC-CAG-ACT-TAC-AAG-TGG-GAG-ACC-TTC-CTG-ACC-AGC-GAG-CTG-CCG-GGGgly-lys-ala-gly-cys-gln-thr-tyr-lys-trp-glu-thr-phe-leu-thr-ser-glu-leu-pro-gly-481

- trp-leu-gln-ala-asn-arg-his-val-lys-pro-thr-gly-ser-ala-val-val-gly-leu-ser-met-TGG-CTG-CAG-GCC-AAC-AGG-CAC-GTC-AAG-CCC-ACC-GGA-AGC-GCC-GTC-GTC-GGT-CTT-TCG-ATG-
- GCT-GCT-TCT-TCG-GCG-CTG-ACG-CTG-GCG-ATC-TAT-CAC-CCC-CAG-CAG-TTC-GTC-TAC-GCG-GGAala-ala-ser-ser-ala-leu-thr-leu-ala-ile-tyr-his-pro-gln-gln-phe-val-tyr-ala-gly-601 128
- GCG-ATG-TCG-GGC-CTG-TTG-GAC-CCC-TCC-CAG-GCG-ATG-GGT-CCC-ACC-CTG-ATC-GGC-CTG-GCG 661
 - ala-met-ser-gly-leu-leu-asp-pro-ser-gln-ala-met-gly-pro-thr-leu-ile-gly-leu-ala-148
- ATG-GGT-GAC-GCT-GGC-GGC-TAC-AAG-GCC-TCC-GAC-ATG-TGG-GGC-CCG-AAG-GAG-GAC-CCG-GCGmet-gly-asp-ala-gly-gly-tyr-lys-ala-ser-asp-met-trp-gly-pro-lys-glu-asp-pro-ala-168 727
- trp-gln-arg-asn-asp-pro-leu-leu-asn-val-gly-lys-leu-ile-ala-asn-asn-thr-arg-val-TGG-CAG-CGC-AAC-GAC-CCG-CTG-TTG-AAC-GTC-GGG-AAG-CTG-ATC-GCC-AAC-AAC-ACC-CGC-GTC-781 188
- TGG-GTG-TAC-TGC-GGC-AAC-GGC-AAG-CCG-TCG-GAT-CTG-GGT-GGC-ÅAC-AAC-CTG-CCG-GCC-AAGtrp-val-tyr-cys-gly-asn-gly-lys-pro-ser-asp-leu-gly-gly-asn-asn-leu-pro-ala-lys-841 208
- TTC-CTC-GAG-GGC-TTC-GTG-CGG-ACC-AGC-AAC-ATC-AAG-TTC-CAA-GAC-GCC-TAC-AAC-GCC-GGTphe-leu-glu-gly-phe-val-arg-thr-ser-asn-ile-lys-phe-gln-asp-ala-tyr-asn-ala-gly-901
- GGC-GGC-CAC-AAC-GGC-GTG-TTC-GAC-TTC-CCG-GAC-AGC-GGT-ACG-CAC-AGC-TGG-GAG-TAC-TGG-961
 - gly-gly-his-asn-gly-val-phe-asp-phe-pro-asp-ser-gly-thr-his-ser-trp-glu-tyr-trp-

Figure 5 (con't)

GG|C|-GCG-CAG-CTC-AAC-GCT-ATG-AAG-CCC-GAC-CTG-CAA-CGG-GCA-CTG-GGT-GCC-ACG-CCC-AACgly-ala-gln-leu-asn-ala-met-lys-pro-asp-leu-gln-arg-ala-leu-gly-ala-thr-pro-asn-ACC-GGG-CCC-GCG-CCC-CAG-GGC-GCC-TAG-CTC-CGA-ACA-GAC-ACA-ACA-TCT-AGC-GGC-GGT-GAC-(1107) thr-gly-pro-ala-pro-gln-gly-ala-TER 268 288 1081

TGT-GGT-TAG-CTA-CCT-GAC-GGG-CTA-GGG-GTT-GGC-CGG-GGC-GGT-TGA-CGC-CGG-GTG-CAC-ACA-CCT-TGT-GGT-CGC-CGC-CGT-AGA-TGT-TTC-CTA-AAT-CCC-GTC-CCT-AGC-TCC-CGC-CGC-GGG-CCG-

GCC-TAC-ACG-AAC-GGA-AGG-TGG-ACA-CAT-GAA-GGG-TCG-GTÇ

Figure 5 (con't)

Hydropathy

M. tuberculosis 32 kD protein

Hydropathy

BCG α -antigen

60 QVPSPSMGR :::::::::	120 •VGGQSSEYS ::::::::::::::::::::::::::::::::::::	180 ASSALTLAIY .::::::: SSSAMILAAY 180	240 WQRNDPLLNVG : . : : : WERNDPTQQIP 230
20	80 110 120 PALYLLDGLRAQDDFSGWDINTPAFEWYDQSGLSVVMPVGGQSSFYS ::::::::::::::::::::::::::::::::::	130 140 150 160 170 180 DWYQPACGKAGCQTYKWETFLTSELPGWLQANRHVKPTGSAVVGLSMAASSALTLAIY ::::::::::::::::::::::::::::::::::::	190 200 210 220 230 240 HPQQFVYAGAMSGLLDPSQAMGPTLIGLAMGDAGGYKASDMWGPKEDPAWQRNDPLLNVG ::::::::::::::::::::::::::::::::::::
40 .VGGTATAGAE .::::::::	100 IDINTPAFEWY :::::::::: IDINTPAFEWY	160 NNRHVKPTG ::::::	220 MGDAGGYKASDN::::::::::::::::::::::::::::::::::::
30 SAALVSGLVGA :::: \AVVLPGLVGI	90 SLRAQDDFSGW :::::::::::: SLRAQDDYNGW	150 LTSELPGWLQ? ::::::::::::::::::::::::::::::::::::	210 MGPTLIGLAMC::::::::::::::::::::::::::::::::::::
20 4SRRLVVGAVC •::: VGRRLMIGTAA	80 ANSPALYLLDC .:::::::: NNSPAVYLLDC 80	140 GCQTYKWETF] ::::::::: GCQTYKWETL] 140	200 MSGLLDP SQAMG .:.::::::: LSALLDP SQGMG
102030405060VDRVRGAVTGMSRRLVVGAVGAALVSGLVGAVGGTATAGAFSRPGLPVEYLQVPSPSMGRMTDVSRKIRAWGRRLMIGTAAAVVLPGLVGLAGGAATAGAFSRPGLPVEYLQVPSPSMGR102030405060	70 DIKVQFQSGGANS :::::::::: DIKVQFQSGGNNS	130 DWYQPACGKAGC :::::::: DWYSPACGKAGC 130	190 HPQQFVYAGAMS ::::::::: HPQQFIYAGSLS
M. tub. BCG			

ig. 7

280 290 300	KLIANNTRVWVYCGNGKP SDLGGNNLPAKFLEGFVRTSNIKFQDAYNAGGGHNGVFDFPD	::.:::::::::::::::::::::::::::::::::::	280 290					
270	LPAKFLEG	IPAEFLEN	270		Ą	×	A.	
260	NGKPSDLGGNN	::::::::::::::::::::::::::::::::::::::	260	320	SGTHSWEYWGAQLNAMKPDLQRALGA	×:::::::::::::::::::::::::::::::::::::	NGTHSWEYWGAQLNAMKGDLQSSLGA	320
250	INTRVWVYCG	KIVANNTRIWVYCG	250	310	WEYWGAQLN	•••	WEYWGAQLN	310
	KLIAN	KLVAN	240		SGTHS	•••	NGTHS	300

'ig. 7 (con't)

Figure 9a

	PROBE REGION A
1	ATG CAGCTTGTTGACAGGGTTCGTGGCGCCGTCACGGGTATGTCGCGTCGACTC
4	ATO CAROTTOTTO ACADOCTTO TO COCCOTO ACCOCTATO TO COCCOTO COCCOTO ACCOCTO COCCOTO ACCOCTO COCCOTO ACCOCTO ACCOCTO COCCOTO ACCOCTO ACCOC
1	ATG CAGCTTGTTGACAGGGTTCGTGGCGCCGTCACGGGTATGTCGCGTCGACTC
1	ATG ACAGACGTGAGCCGAAAGATTCGAG CTT GGGGACGCCG ATTGA TG
·	
55	GTGGTCGGGGCCGTCGGCGCCCTAGTGTCGGGTCTGGTCGGCGCCGTCGGTG
55	GTGGTCGGGGCCGTC GCGCG CCTAGTGTCGGGTCTGGTCGGCGCCGTCGGTG
49	ATCGGCACGGCAGCG GCTGT AGTCCTTCCGGGCCTGGTGGGGCTTGCCGGCG
	P1
110	GCA CGGCGACCGCGGGGCATTTTCCCGGCCGGGCTTGCCGGTG GAGTACCTG
107	GCA CGGCGACCGCGGGCCATTTTCCCGGCCGGGCTTGCCGGTG GAGTACCTG
101	GAG CGGCAACCGCGGCCGTTCTCCCGGCCGGGGCTGCCGGTC GAGTACCTG
163	CAGGTGCCGTCGCCGTCGATGGGCCG TGACATCAAGGTCCAATTCCAAAGTGGT
160	CAGGTGCCGTCGCCGTCGATGGGCCG TGACATCAAGGTCCAAATTCCAAAGTGGT
154	<u>CAGGTGCCGTCGCCGTCGATGGGCCG</u> CGACATCAAGGTTCAGTTCCAGAGCGGT
	PROBE REGION B
217	GGTGCCAAC TCGCCCGCCTGTACCTG CTCGACGGCCTGCGCGCGCAGGACGA
214	GGTGCCAAC TCGCCCGCCTGTACCTG CTCGACGGCCTGCGCGCAGGACGA
225	
208	GGGAACAAC TCACCTGCGGTTTATCTG CTCGACGGCCTGCGCGCCCAAGACGA

Figure 9b

	P2
270	CTTCAGCGGCTGGGAC ATCAACACCCCGGCGTTCGAGTGGTAC GACCAGTCGG
267	CTTCAGCGGCTGGGAC ATCAACACCCCGGCGTTCGAGTGGTAC GACCAGTCGG
261	CTACAACGCTGGGAT ATCAACACCCCGGCGTTCGAGTGGTAC TACCAGTCGG
323	GCCTGTCGGTGGTCATGCCGGTGGGTGGCCAGTCAAGCTTCTACTCCGACTGGTA
320	GCCTGTCGGTGGTCATGCCGGTGGGTGGCCAGTCAAGCTTCTACTCCGACTGGTA
314	GACTGTCGATAGTCATGCCGGTCGGCGGCAGTCCAGCTTCTACAGCGACTGGTA
	P3 P4
378	CCAGCCGCCTGCGGCAAGGCCGGT TGCCAGACTTACAAGTGGGA GACCT TC
375	CCAGCCGCCTGCCGCAAGGCCGGT TGCCAGACTTACAAGTGGGA GACCT TC
369	CAGCCCGGCCTGCGGTAAGGCTGGC TGCCAGACTTACAAGTGGGA AACCC TC
	2042222424222422242224222422242224222242222
430	CTGACCAGCGAGCTGCCG GGGTGGCTGCAGGCCAACAGGCACGTCAAGCCCACC
427	CTGACCAGCGAGCTGCCG GGGTGGCTGCAGGCCAACAGGCACGTCAAGCCCACC
421	CTGACCAGCGAGCTGCCG CAATGGTTGTCCGCCAACAGGGCCGTGAAGCCCACC
	PROBE REGION C
484	GGAAGCGCCGTCGTCGGTCTTTCGATGGCTGCTTCTTCG GCGCTGACGCTGGCG
481	GGAAGCGCCGTCGTCGGTCTTTCGATGGCTGCTTCTTCG GCGCTGACGCTGGCG
475	GGCAGCGCTGCAATCGGCTTGTCGATGGCCGGCTCGTCG GCAATGATCTTGGCC

Figure 9c

538	ATCTATC ACCCCAGCAGTTCGTCTACGCGGGAGCGATGTCGGGCCTGTTGGAC
535	ATCTATC ACCCCAGCAGTTCGTCTACGCGGGAGCGATGTCGGGCCTGTTGGAC
529	GCCTACC ACCCCAGCAGTTCATCTACGCCGGCTCGCTGTCGGCCCTGCTGGAC
	P5
592	CCCTCCCAGGCGATGGGTCCCAC CCTGATCGGCCTGGCGATGGGTGACGC TGG
589	CCCTCCCAGGCGATGGGTCCCAC CCTGATCGGCCTGGCGATGGGTGACGC TGG
583	CCCTCTCAGGGGATGGG CCTGATCGGCCTCGCGATGGGTGACGC CGG
645	CGGCTACAAGGCCTCCGACATGTGGGGCCCGAAGGAGGACCCGGCGTGGCAGCGC
642	CGGCTACAAGGCCTCCGACATGTGGGGCCCGAAGGAGGACCCGGCGTGGCAGCGC
631	CGGTTACAAGGCCGCAGACATGTGGGGTCCCTCGAGTGACCCGGCATGGGAGCGC
	PROBE REGION D
700	AACGAC CCGCTGTTGAACGTCGGGAAG CTGATCGCCAACAACACCCGCGTCTG
697	AACGAC CCGCTGTTGAACGTCGGGAAG CTGATCGCCAACAACACCCGCGTCTG
686	AACGAC CCTACGCAGCAGATCCCCAAG CTGGTCGCAAACAACACCCCGGCTATG
	PROBE REGION E
753	GGTGTACTGCGGCAACGGC AAGCCGTCGGATCTGGGTGGCAAC AACCTGCCGG
750	GGTGTACTGCGGCAACGGC AAGCCGTCGGATCTGGGTGGCAAC AACCTGCCGG
739	GGTTTATTGCGGGAACGGC ACCCCGAACGAGTTGGGCGGTGCC AACATACCCG

Figure 9d Figure 9e

806	CCAAGTTCCTCGAGGGCTTCGTGCGGACCAGCAACATCAAGTTCCAAGACGCCTA
803	CCAAGTTCCTCGAGGGCTTCGTGCGGACCAGCAACATCAAGTTCCAAGACGCCTA
792	CCGAGTTCTTGGAGAACTTCGTTCGTAGCAGCAACCTGAAGTTCCAGGATGCGTA
	P6 CAACGCCGGACAGCGGTGTTCGACTTCCCGGACAGCGGT ACGCA
861	CAACGCCGGTGGCGCCACAACGGCGTGTTCGACTTCCCGGACAGCGGT ACGCA
858	CAACGCCGGTGGGCGCCACAACGGCGTGTTCGACTTCCCGGACAGCGGT ACGCA
847	CAAGCCCGCGGGCACAACGCCGTGTTCAACTTCCCGCCCAACGGC ACGCA
	· .
915	CAGCTGGGAGTACTGGGGCGC GCAGCTCAACGCTATGAAGCCCGACCTGCA AC
912	CAGCTGGGAGTACTGGGGCGC GCAGCTCAACGCTATGAAGCCCGACCTGCA AC
901	CAGCTGGGAGTACTGGGGCGC TCAGCTCAACGCCATGAAGGGTGACCTGCAGAG
	PROBE REGION F
968	GGGCACTGGGTGCCACGCCCAACACCGGGCCCGCGCCCCAGGG CGCCTAG
965	GGCACTGGGTGCCACGCCCAACACCGGGCC CGCCGCAGGG CGCCTAG
955	TTCGTTAGGCGCC GGCTGA
	rigorinococo coción

र ४ <u>म</u>	4 H	ភ្ជ ល	T. A	4 F	ບູບ	H	Y. I.
45 AAA TTT	AAA T'I'T	CTG	CTT GAA	AAA TTT	TAG	GGT	CCA
AAA TTT	GAT	ATA TAT	GCT	TTT AAA	CTG	CAT GTA	TGC
39 TGC ACG	GGT	GTG	GAC	AGG	AGC	AAC TTG	ATC TAG
<u>ອ</u> ອອ	TGC ACG	ວຍວ ອນອ	GGT	AGG	ACA TGT	AGT TCA	TCA
33 222 - -	ATC T'AG	CTG	GAA	ACC	GTG	AGC	AGG
ATG	ACC	CCA	CAT	GGT	CGA	AGG	CTG
27 ACA TGT	ATA TAT	ATA TAT	CAC	AGG TCC	ATT TAA	TGG	ວອວ ອວອ
CAA GTT	CAG	TAA ATT	GAC	522 299	AAA TTT	AAG TTC	TCA
21 	ATA TAT	ACA TGT	ACT TGA	$\Lambda\Lambda G$	GTC	ACC	AAC TTG
ACC	AAC TTG	TTG	9 29	AAG TTC	GTA	ACC TGG	ACC TGG
15 CTC GAG	AAA TTT	GTG	GGA	CTG	CAA GTT	CAA	ეეე ეეე
TCT	ATA TAT	090 909	GCA	992 229	GAT	TAG	AGG TCC
9 GGA CCT	CAT	CTG	TCA	TAA ATT	TAA ATT	TCG AGC	AGA TCT
ວວອ ອອວ	ATT TAA	TCT AGA	ACA TGT	AAT TTA	TGG	ACG	TGG
3 - TTC AAG	TAA	TTA	AGC	AAA TTT	TCA	999 ၁၁၁	TAC
	46	91	136	181	226	271	316

Fig. 10b

From: PIGRI

361	AGT	CTA	GAG	TCG	ACC	TGC	Fig. 10b TGC AGC	CCA CCA	AGC	TTG	GCT	GTT	TTG	929	GAT
406	GAG	AGA	AGA	TTT	TCA	220	TGA	TAC	AGA		AAT	CAG	AAC	GCA	GAA
451		GTC	TGA	AAA TAA ATT	AGT. AAC.	AGA	ACT ATT TAA	ATG TGC ACG	CTG		GCA	GTA	929 929	550 550 600	TGG
496			CTG	ACC	CCA	TGC	CGA	ACT	CAG	AAG	TGA	AAC	550 005	GTA	ນ ອນອ
541			GTA	GTG	TGG	GGT	CTC	222	ATG	CGA	GAG	TAG	GGA	ACT TGA	550 000
586			CAA	ATA	AAA TTT	CGA	AAG TTC	GCT	CAG	TCG	AAA TTT	GAC	TGG ACC	990 229	TTT AAA
631	CGT	TTT AAA	ATC	TGT	TGT	TTG	TCG	GTG	AAC TTG	GCT	CTC	CTG	AGT	AGG	ACA
919		555	ე <u>ე</u> ნე	GGA	505	GAT	TTG	AAC TTG	GTT	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	AAG TTC	CAA GTT	000 000		GGA
721	222 222	TGG	555 555	GCA	GGA		ວ ອ ອ ອວວ			ACT		AGG	CAT		

	CAA	GTT	CCT	CGA	\mathtt{TCT}	AGA	AAC	TTG	TCA	AGT	GCT	CGA	550	၁၁၅
	CTA		TCC		GGA	CCT	CTT		AGA	TCT	GCT	CGA	$^{\mathrm{TGC}}$	
	LTT	AAA	GTA		AAA		TCC	AGG		TTT	TCT	AGA	GTT	CAA
	GCG TTT	CGC		ATA	ATA .		AAA	LTI		ATC			TTT	
	TTT	AAA (AAA '		ATA	TAT	CCA	GGT		် ၁ <u>၅</u> 99	, 505	ິນອວ	rgg	ACC.
	CTT	GAA		AAG '	TCA ATA	AGT		ACT		TGG	TGC	AAA AAG ACG CGC ATT	CAG CGG TGG	GCC
	255	ຽວວ			CCL	CGA		AGT		GTC	TTC	AAG	CAG	GTC
on't)			AAT	TTA TGT	AAT	TTA	ATC '	TAG		GCA	TTT	AAA	TAC	
Fig. 10b (Con't)	ACG	TGC	CTA	GAT	ATA			TAT	GAG		CTT	GAA	CGC	929
Fig.	CTG ACG GAT	GAC	TTT		CTG			AAC		TGA		C TAG	CAC	
	ATC		ATT	TAA	ACC		TTT	AAA	ပ	Ŋ	GAG	CIC	บ	TTG
		555	TTT	AAA		TAT		AGG	CGT	GCA AG	CTT	GAA		TLL
		TTC		AAC		TGT	AGA	TCT		AAA	CTT	GAA	CAA	GTT
		GTC	CTT	GAA		CIC	TGA	ACT	AGT	TCA	GAT	CTA		TTT
	AAG	$ ext{TTC}$	ACT	TGA		GTA	AGG	TCC	GTG	CAC	AAG	$ ext{TTC}$	\mathbf{TGC}	ACG
	991		811		856		901		946		991		1036	

		_	
	GCA	CGT	
	TCA	AGT	
	GCT	CGA	
	CTG	GAC	
	TAA	ATT GAC CGA AGT CGT	
	AGG	TCC	
	CGA	GCT TCC	
1.t)	TTC	AAG	
op) q(TTT,	AAA .	
Fig. 10b (Con't)	CTC	GAG	
	CAA (GTT GAG AAA	
	TAC		
		TCG	
	AAG		
	ATC	TAG	
	1081		
	•		

TAG

AGT TCA

CGT

AGC TCG

TGT

TAG

TTC

TCC

CTG

ATA TAT

CAA

TAC

AGA TCT

CGC

GAG

1126

CTC 222 CGT TCG AGC AGT AGG ATA ACC TGG ATA TAT 000 000 CAT 353 353 CTA GTG TAC AGT 929 292 CCA GAT CTG CAC TAG CTG GAC CTG TGG ACC CAA GTT ACT TGA ACT CAG AGA TGG TAC TCA GGT TGT TCC 255 522 ACT TTA ACC TAA 950 000 TGC GTC 1216 1171 1261

TGG GCT CCA AGC TCG CAC GCA CGT GTT 222 000 000 GAA GCT 225 252 GGT AGC TCG 1306

ATT AGC TCG GTG AGC TCG TAC ACC TGG GAT TGA AAC 000 000 ACA CCT CGA GAA AGC 1351

1	ATC	TAG	TTC	AAG	229	ອອວ	CCC	ອນນ	\mathbf{TCC}	AGG
	GGT	CCA	AGC	TCG	TTC	AAG	GGG	၁၁၁	GGT	CCA
	ACA	TGT	GGG	ນນນ	GGT	CCA		GTC	TAC	ATG
	CCC	CCC TGT	CGA	GCT	TCG	AGC CCA AAG	CGT	GCA	TTT	GGA AAA ATG CCA
	AGG	CTT TCC G	GCA	CGT	CTG	GAC			CCT	GGA
	GAA	CTT	AGC	GTC CTC TCG CGT	GTC	CAG	GAT	CTA	SSS	CCC
	GGA	CCL	GAG	CIC	ATA	TAT	\mathtt{TGT}	ACA	ACG	CGT TGC (
(1)	AAG	S AAG GGC TTC	CAG	GTC	TTT	AAA	TTT	AAA	GCA	CGT
noc) qo	SSS	299	GAA	AGC CTT (ATC	TAG	GAT	CTA	CCA	GGT
F.18.	TTC	AAG	TCG	AGC	GGT	CCA	GTC	CAG	ACG	\mathtt{TGC}
	CGC)))	999	ညည	CCT	GGA	AGC	TCG	AAA	TLL
	CCA	GGT	GCA	CGT	ACG	TGC	TTG	AAC	GGA	CCT
	BOB	ວອວ	929	၁၅၁	GAA	CTT	GAC	CTG	TAT	ATA
	AAA	TTT	TAA	ATT	GGG	၁၁၁	TCT	AGA	CCC	CGG
	GAG	CIC	SSS	ეეე	CAG	GTC	ACC	TGG	GGA	CCT
	1396	CTC TTT	1441	GCC ATT	1486	GTC CCC CTT TGC GGA CCA TAG AAA TAT CAG GAC	1531	TGG AGA CTG AAC TCG CAG CTA AAA ACA CTA CGA	1576	CCT CGG ATA CCT TTT TGC

TAT ATA	CTG	TGA	TAC ATG	GCA	GGT	ວວ ອອວ
CGT GCA	GAG	CAG	CTT GAA	GTC	ATC TAG	AGC
CTG	AGT TCA	AGT TCA	AGA TCT	CAG	CGT ATC GCA TAG	CAG CCT
TTC AAG	TTG	292 929	GTT TCC Z	GCT	TCG	CAG
TCT AGA	CCG CCT GGC GGA	GCA	GTT CAA	GTT CAA	ອນອ ນອນ	929
TGT ACA	099 900	AGC	525 252	GTT CAA	GTT	999 ၁၁၁
ACA TGT	TTA	ე <u>ე</u> ნე	GAC TTC CTG AAG	CAT	CAC	GTA AGG CAA CCC CAT TCC GTT GGG
on't) .CT'C GAG	GTA	CGA	GAC	ATT TAA	CTT GAA	AGG
10b (Con't) TTG CTC AAC GAG	ACC TGG	GAA	GCT	ACC TGG	CAG TCG GTC AGC	GTA
Fig. CTT GAA	TGG ATA ACC TAT	552 225	AGC	AAG TTC	CAG	CCA
922 299	TGG	GCA	AAG TTC	099 900	CAG	TAA
GCT	CTG	550 000	000 000	AAA TTT	CAG	TGC
TTT AAA	ATT TAA	CTC	AGG AAG TCC TTC	000 000	TTG	TTC
CCT	CTG	ე <u>ე</u> ნე	AGG TCC	ACA TGT	GTT	TCA AGT
TGG	999 ၁၁၁	ATA TAT	ລອລ ອລອ	GAA	GAC	GAT
1621	1666	1711	1756	1801	1846	1891

GAC	252 525	ACA	AAT TTA	999 ၁၁၁	ATA TAT	ე <u>ე</u> ნე
CAG G	ATG C	TTC A	GTG		GGT	
)))))	GAG A	GCA	STG CAC	AGG	CAA GTT	TGC TCG ACG AGC
CGT (GCA)	CTG (GAC (TGC	GGA	AGG TCG AGG TGG TCC AGC TCC ACC	GGC AGA CCG TCT	ATG
ACC (TGG	CTG	GTT CAA	CTT GAA	AGG	522 255	TCC
່ອນອ))))	TTG	ATT TAA	TTC	GGA	CGT
ATG TAC	GTG	ეეე ეეე	CCA	CCA	000 000	ACC TGG
Fig. 10b (con't) AGC ACG ATC TCG TCG TCG TAG	505 050	CAA	GCT	CTT GAA	ACG TGC	CCA
7. 10b (ACG) TGC	909 090	TGC	TTG))))	GCA	ATG
Fig AGC TCG	ATG TAC	TTC AAG	TGA	525 252	GAC	CAA TCC GTT AGG
AGG	GAG	ATG TAC	AAT TO	TGC	505 050	
GAC	222 222	GAT	AAG TTC	AGG	CAC	CTA GAT
AAC TTG	CTG	ATG	929 292)))	ATG TAC	929 292
CTC	ACG TGC	000 000	CTC	TTA	TCC	ეეე ეეე
GTC	CCA GGT	GAC	GTT CAA	099 900	922 299	ວວວ ອອອ
1936	1981	2026	2071	2116	2161	2206

AAG TTC	GAT CTA	GCA	CCA	CGT
TCG AAG AGC TTC	CCT) 550	222	393 525
TGA	GTC	TGG CCT GCA ACG ACC GGA CGT TGC	TGG GGA A	CCA
CAG	GCT	GCA	TGG	AGC (TCG)
TC	GAA	CCT	TCA TAA AGT AGT ATT	TCG CGA ACG CCA GCA AGA CGT AGC GCT TGC GGT CGT TCT GCA
ე <u>ნე</u>	CTT GAA	TGG	TCA	AGA TCT
TCA GCG GAGT CGC C	CGA GCG ATC GCT CGC TAG	GCA	GNA GNA CTT CTT	GCA
Fig. 10b (Con't) CCG TGA CGA T GGC ACT GCT F	ລອລ ອລອ	TGG ACA ACC TGT	GAA	CCA
ob (con TGA ACT	CGA	TGG	CGA GCT	ACG
Fig. 1 CCG GGC	<u> </u>	990 ၁၁9	CGG AAG GCC TTC	CGA
	GAG	CCT	ວວອ ອອວ	
CGG CAT AAA TCG GCC GTA TTT AGC	TAA ATT	CTA	ອນອ ນອນ	292 525
CAT	GGC TGG CCG ACC	CGT CAT GCA GTA	TGC	CTC
ეე <u>ნ</u> ეეე	500 088	CGT	CGA	TCC AGC AGG TCG
AGG	TTA	GGT	TCC	TCC
2251	2296 TTA (2341 GGT CCA	2386	2431 TCC AGC CTC AGG TCG GAG

AGA TCT	AGC TCG	CCT		TGA ACT	CCT
	TCC	GCA	ວວ ອອວ	GGT	ACT TGA
	ອນອ	ე <u>ე</u> ნე	GTG	CTG	GCG ACT CGC TGA
	TCG AGC		TAA ATT	TGA	CCT TAT GGA ATA
		ລອລ	TCA	AGC TCG	CCT
	rca agt	AGA TCT	CAG	AGG	CTC
	CGA	555 ၁၁၁	AGA TCT	GGA	GCT CTC (
	522 255	TGA	AGA TCT	ACC TGG	GAC
CGA GCT	ACA TGT	AAA TTT	TAA	999 ၁၁၁	GTC
TGA	ນອນ ອວອ	CGA	TGA	090 909	GCA TCG CGT AGC
	CAA GTT	ອນອ ນອນ	GCA	999 ၁၁၁	
	ວອອ ອວວ	CCT	GTT CAA	TGC	AGG
225 222	ATA TAT	GGT	CGA		TCA
TGG	CGA	AGC TCG	CTA	TAG	CTC
TGG	TTC	GAA	GTC	CGA	AGG
2521	2566	2611	2656	2701	2746
	TGG TGG CGG GAC CAG ACC ACC GCC CTG GTC	TGG TGG CGG GAC CAG TGA CGA AGG CTT GAG CGA GGG CGT GCA ACC ACC GCC GTG GCT TCC GAA CTC GCT CCC GCA CGT TCC TTC CGA ATA CCG CAA GCG ACA GGC CGA TCA TCG TCG CGC TCC AGG ACG GCT TAT GGC GTT CGC TGT CCG GCT AGT AGC AGC GCG AGG	TGG TGG CGG GAC CAG TGA CGA AGG CTT GAG CGA GGG CGT GCA ACC GCC CTG GTC ACT GCT TCC GAA CTC GCT CCC GCA CGT TTC CGA ATA CCG CAA GCG ACA GGC CGA TCA TCG TCG CGC TCC AAG GCT TAT GGC GTT CGC TGT CCG GCT AGT AGC AGC GCG AGG CTT TCG CCA GGA GCG CCT TTT ACT GGG TCT CGC CAG GGC CGT	TGG TGG CGG GAC CTG TGT CGA AGG CTT GAG CGA GGG CGT GCA ACC CCG ACC GCA CGT CCC GCT TAT GGC GTT CGC TGT CCG GCT AGT AGT AGC GCG CTG CGC ACC GCA CGT CTT TTT ACT GGG TCT CGC GAC GGC CGT CGC GCT CGC CGT CCT CGC CGT TTT ACT GGG TCT CGC GAC GGC CGT CGC CGC CGC CGC CGC CGC CGC CG	TGG TGG GGG GTT GAG CTT GAG CTT GAG CTT GAG CTT GAG CTT GAG GGT GCG GCG GCA GCG GCA GCG GCA GCG GCA GCG GCA GCG GCA GCG GCG

CGA

 $\Lambda\Lambda G$

252 525

GTA

CAA

CTC

TGG

TAG

CGA

AGT

CGT

TCG

TGA

CCA

TCG

3061

Fig. 10b (Con't)

	000 000	GTC CAG	525 252	TGT	TGC	TGG
	GCA	ACA TGT	AAG TTC	TGA ACT	TGA	GTG
	rga act	CCA	AAC	225 552	229 992	၁၁၅ ၁၅၁
	CGT	9 292	CGA AAC AAG CGC GCT TTG TTC GCG	CAT	ອນອ ນອນ	GGA
	GGC CGT TGA CCG GCA ACT	CAT GCA AGG AGA TGG CGC CCA ACA GTC GTA CGT TCC TCT ACC GCG GGT TGT CAG	525 252	GAT CTT CCC CAT CGG TGA CTA GAA GGG GTA GCC ACT	CAA CCG CAC CTG TGG CGC CGG TGA GTT GGC GTG GAC ACC GCG GCC ACT	TCC ACA GGA CGG GTG AGG TGT CCT GCC CAC
	GGT TGA C	AGA	CCA	CTT	CTG	TCC AGG
	GGT	AGG	TAC CCA ATG GGT	GAT	CAC	AGA GGA T
().	GTA GTA CAT CAT	GCA	CCA GGT	<u> </u>	၁ 99	AGA TCT
TOP (COULT)	GTA	CAT GTA	CCA	GGC GAG CCC CCG CTC GGG	$C\Lambda\Lambda$	CGT
18.	CCA (GGT (GTG	CTG		SC CAG	GTC CGG CGT CAG GCC GCA
		ATG	500 000	AGT	55	
	AGC AGC TCG TCG	GGA	000 000	CGA	AGG	TGC
	GGA	CAA GIT	CCA GGT	993 339	TAT ATA	CGA
	TTA	299 522	CGG CCA GCC GGT	TGA	CGA	CCA
	GCA	ວອອ ອວວ	555 ၁၁၁	TCA	000 000	000 000
	2791	2836	2881	2926	2971	3016 CGG GCC

Fig. 10b (Con't)

	GAA CTT	GCA	GCA	CAT	ATT TAA
	CGA	GCA	999 ၁၁၁	CAG	TGT TAG ATT ACA ATC TAA
	CTC	CTA GAT	TAT ATA	CTA GAT	
	GTG	GCG CTA	CGA TAT GCT ATA	TGC ACG	TGA GCG CAT ACT CGC GTA
	ACA TGT	ATA TAT	GGA	CTA GAT	292 222
	229	CAT	AAT TTA	AGC TCG	TGA
	GGT CGG CCA GCC	ACG CAT ATA TGC GTA TAT	CGG AAT GCC TTA	CCA AGC GGT TCG	CGA
	AGC	TCA	TGT ACA	TAA ATT	TGA
0	CAA GTT	GCA	TGC	GCA	GGA
	922 299	ATT TAA	CGA	255 522	CGA
	73.75	GAA		STA	TGC
	5 22	CGC ATA GCG TAT	GAC	CCG GCA CGC CGC	ეე <u>ე</u> ეეე
	CTG	9 09	AGT TCA	ວອອ ອວວ	TGA
	GGA	GTG	CAT GTA	900 000) 555
	GCA	225 552	929 292	AGA TCT	CCA
	3106 GCA GGA CTG GGC GG(CGT CCT GAC CCG CC	3151	3196 CGC CAT AGT GAC TGG GCG GTA TCA CTG ACC	3241 AGA TCT	3286 CCA GGG TGA CGG TGC GGT CCC ACT GCC ACG

	-
AAC TTG	AAT TTA
GTG ATA F	GAG CTC
GTG	CAT GAG GTA CTC
AAT TTA ACT TTA AAT TGA	AAA TTT
TTA AAT	GTC CAG
AAT TTA	GCT
	CGA TGA TAA GCT ACT ATT
Fig. 10b (con't) TGC GTT AGC ACG CAA TCG	TGA
rig. 10 TGC ACG	CGA
GAC	TAT (AATA)
CCT	GCT
GTG	AAA TTT
ACG TGC	ATT TAA
TAC	5 2 5 2 5 2 5
TCA	TAC
3331	3376

3421 TAA ATT

702 T; 3; 196 915 C; 3423. 839 A; Total number of bases is: DNA sequence composition:

Sequence name: NIPS0060.

fig.11a

			a e .	# 1 PM	rith	∠ ⊑	E4 <	∠ H	<u> </u>
	45	AAA T'T'T	ATA TAT	TAC ATG	CTC	TTA AAT	TGT ACA	TCA	GAG
		GCA	GTG	TGA	ACG TGC	GGT	552 225	AAT TTA	ນ ອນນ
	39	CCT CGR GGA	ນ ອນອ	325 552	GTG	GGA	CNA	000 000	TTT AAA
		555 222	TCT	TGG	AAG TTC	CCA	TGA	GCA	ອນນ ນອອ
	33	TGC	CCA	CAC	ATG	GTA	GAG	GGA	CAT
		CAA GTT	TAA	TAC	ACC	222 222	TTC	GGA	990 009
	27	aaa ttt	NGN TCT	ANA TTT	ACC TGG	GCA	AAA TTT	AGT TCA	ეე <u>ნ</u>
Fig. 11b		ACC	TAC	CAT	CTG	AGG	TCA	CCA	TCC
7.	21	CCT	ACA	TGA	GCA	AGA TCT	TAG	CCA	GGA
		TCA	AAA TTT	TGT ACA	GAC	TGA	AAG	AAA TTT	CGT
	15	CTC	TAA	000 000	CAG	000 000	ATC TAG	AGC	CCA
T		GAT	ATA TAT	TGG ACC	CAG	AAG	AAG TTC	CGT	TCA
pmTNF JPH	σ.	ນນນ ອອອ	TTC	CTC	CAT	NTT TAA	GGT	CGT	CCA
pmTN	I	TCC	AAA TTT	TAT ATA	GCA	AAA TTT	CAT	CCA	TCA
From:	n	AAT TTA	AAT TTA	AAT TTA	TGA	TTA AAT	AAT TTA	AGC	CCA
Fr		Н,	46	91	136	181	226	271	316

ည ဖွဲ့	F. A	AGA TCT	TAG	ນ ນ	AGG	ACT TGA	TGA	AAC TTG
550	TTT AAA			ACG				
ອອວ ວວອ	CTG	ATC TAG	CAG	GAA	AGT TCA	AAG TTC	TCC	AGC
TAA ATT	TGG	TAA ATT	000 000	AGT TCA	GAG	CGA	CTC	CGA
AAG TTC	GCT	GAT	TGG	AGA TCT	TGC	AGT	ACG	TTG
AGT TCA	CAA	ACA TGT	550 000	CTC	CCA	CTC	TGA	ACG
TTA	552 225	GAT	TTT AAA	GAA	TCC	AGG	ນນອ	TGA
11b (con't) GCA AGC CGT TCG	GAT	CCT	GAA	992 229	GTC	GAA	TGT	ATT TAA
11b (con't) GCA AG(CGT TC(NTT NAA	CAG	ACA TGT	CAT	ວວວ ອອອ	AAC TTG	GTT	ນນອ
FIR. CAT GTA	TTN	TTT AAA	AAA TTT	555 222	TGT	TAA	GTT CAA	GAG
ວວອ ອອວ	ATT TAA	GAT	GAT	TGA	TAG	AAA TTT	TCT	000 000
GAC	ອນນ ນອອ	GAA	TCT	ACC	TGG	ATC TAG	TTA	ອນອ
GTC	ນນນ	AGA TCT	ეეე ეეე	555 222	CGA	500 055	GTT CAA	ATC TAG
AGA TCT	GCT	ATG TAC	AAG TTC	GGT	525 252	CCA	TTC	CAA GTT
TCT	TCC	225 252	CAG	GGT	TAG	CTG	CCT	GGA
550 000	AGT TCA	TGG	ACG	505 050	ລອອ ອວວ	GAA	222	GTA
361	406	451	496	541	586	631	919	721

AAT

CGT

292 202

TCT

TTT

TTT AAA

TCC

TTG NGA AAC TCT A

TTC

GAT CAA AGG ATC CTA GTT TCC TAG

1036 AAA (TTT (

9 22	CGT	ATG TAC	TAA ATT	AAT TTA	AGA TCT
CCA		AAT TTA	TAA	CAA GTT	CGT
CTG	TTT AAA	CAT TCA AAT ATG GTA AGT TTA TAC	CTT CAA TAA GAA GTT ATT	GAC	999 222
CAT AAA GTA TTT	TCC TGA CGG NTG GCC TTT TTG AGG AC'I GCC TAC CGG AAA AAC	CAT	C'F'F GAA	CAT	CTG AGC GTC AGA CCC CGT GAC TCG CAG TCT GGG GCA
CAT GTA	NTG TAC	TTT TTC TAA ATA AAA AAG ATT TAT	TAA CCC TGA TAA ATG (ATT GGG ACT ATT TAC	TCT AGA	GTC
505 050	000 000	TAA ATT	T'AA AT'T	TAA	AGC TCG
	TGA AC'I	TTC	TGA	TGA	CTG
Fig. 11b (Con't) CAG GAC GCC GTC CTG CGG	TCC	TTT AAA	555 222	TTT AAA	CCA
CAG GTC	CCA	\mathtt{TTA}	TAA	CCT	GTT
GGG CAG GAC GCC CCC GTC CTG CGG	AGG TCC	TGT	CAA	CTN GGT GAA GAT CCT TTT TGA TAA TCT CAT GAC CAA GAT CCA CTT CTA GGA AAA ACT ATT AGA GTA CTG GTT	TTA ACG TGA GTT TTC GTT AAT TGC ACT CAA AAG CAA
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	AGC AGA TCG TCT	TTT AAA	AGA TCT	GAA	GTT
GGT	NGC	CTC	CTC ATG AGA GAG TAC TCT	GGT	TGA
GAG	T'I'A AAT'	TAC AAA ATG T'IT	CTC		ACG
ეეე ეეე	AAA TTT	TAC	299 922	GAT	TTA AAT
766 GGC CCG GAG GGT	ATC TAG	TTC	TAT ATA	AAG TTC	<u>ეეე</u>
166	811	856	901	946	991

TGG ACC	550 000	ATA TAT	CGA	GGA	350 350	
AAC TTG	GTA CAT	TAC ATG	TGG	ACC TGG	ACA TGT	
				GTT CAA	CAC GTG	
					GTG	
)))))))	
					GTC	
	AGC. (TCG. (CCA				
				GTG	GCA	
				GTC	500 086	
		GTA	CCT	TAA ATT	TAA ATT	
1126	1171	1216	1261	1306	1351	
	TIT GCC GGA TCA AGA GCT ACC AAC TCT TTT TCC GAA GGT AAC TG AAA CGG CCT AGT TCT CGA TGG TTG AGA AAA AGG CTT CCA TTG AC	TTT GCC GGA TCA AGA GCT ACC AAC TCT TTT TCC GAA GGT AAC AAA CGG CCT ACT TCT CGA TGG TTG AGA AAA AGG CTT CCA TTG CTT CAG CTT CCA TTG AGA TAC TGT CCT TCT AGT GTA GAA TAC TGT CCT TCT AGT GTA CAT ACC AAA TAC TGT CCT TCT AGT CTA TGG TTT ATG ACA GGA AGA TCA CAT	AAA CGG CCT AGT TCT CGA TGG TTG AGA AAA AGG CTT CCA TTG CTT CAG CAG AGC. GCA GAT ACC AAA TAC TGT CCT TCT AGT GTA GAA GTC GTC TCG. CGT CTA TGG TTT ATG ACA GGA AGA TCA CAT GTA GTT AGG CCA, CCA CTT CAA GAA CTC TGT AGC GCC TAC CAT CAA TCC GGT GAT GAT CTT GAG ACA TCG TGG CGG ATG	TTT GCC GGA TCA AGA GCT ACC AAC TCT TTT TCC GAA GGT AAC AAA CGG CCT AGT TCT CGA TGG TTG AGA AAA AGG CTT CCA TTG CTT CAG CGC CCT CTA TGG TTT ATG ACA GGA AGA TCA CAT CAT CAG CGT CTA TGG TTT ATG ACA GGA AGA TCA CAT CAT CAT CAG CGT GAT CAT CAT GAA CTC TGT CGC TGC CGC TAC CAT CAT CAA TCC GGT GGT GAA GTT CTT GAG ACA TCG TGG CGG ATG CGA GGA TTA GGA CAA TGG TCA CGG ACG CAG CGG AGG CCA CCT GTT ACC AGT GGC TGC CAG TGG CCA CCC CAG TGG ACG CCA CCG ACG ACG CCA CCC CAG TCA CCC AGA TTA GGA CAA TGG TCA CCG ACG ACG CCC ACC CAG ACC ACC CAG ACC ACC	TTT GCC GGA TCA AGA GCT ACC AAC TCT TTT TCC GAA GGT AAC AAA CGG CCT AGT TCT CGA TGG TTG AGA AAA AGG CTT CCA TTG GAA GTC CTT TCT AGT GTA GAA GTC GTC TCG CGT CTA TGG TTT ATG ACA GGA AGA TCA CAT CAT CAT CAT CTT CAA GTC GTC GTC GTT CAA GTT CTT GAG ACA TCG TGG TGG TGG TGG TGG TGG TGG TGG TGG	TTT GCC GGA TCA AGA GCT ACC AAC TCT TTT TCC GAA GGT TAG AAA CGG CCT AGT TCT CGA TGG TTG AGA AAA AGG CTT CCA TTG GAA GTC GTC TCG CGT CTA TGG TTT ATG ACA GGA AGA TCA CAT GTA GTC GTC TCG CGT CTA TGG TTT ATG ACA GGA AGA TCA CAT GTA GTC GTC TCG CGT GTT CTA GAA CTC TGT AGC ACC GCC TAG CCT CGC TCT GCT AAT CCT GTT ACC AGT GGC TGC TGG CGG ATG GGA GCG AGA TTA GGA CAA TGG TCA CCG ACG ACG GTC AGG TAA GTC GTG TTA GGA CAA TGG TCA TGC TGC TGC TGC TGG ATT CAG CAC AGA ATG GCC CAA CCT GAG TTC TGC TAT CAG ACG ATT CAG CAC AGA ATG GCC CAA CCT GAG TTC TGC TAT CAA TGG TAA GGC GCA GCG GTC GGG CTG AAG GCG TTC TGC TAT CAA TGG ATT CAG CAC GCG CTG GAC TTG CCC CAG CCC AAG CAC ACG ATT CAG CAC CCC CAA CTT GCG TTG CAC TAT CAC ACA ATT CAG CGC CCC CAA CCT GAG TTC GTG CAC ACG ATT CCG CGT CGC CAG CTG CAC CCC AAG CAC GTG TGT

Fig. 11b (Con't)

292 929	GGA	GAG	000 000	GTC
ACA TGT	9 22	CAC	TGT	CTC
CCT	AAA TTT	ວອວ ອວອ	TCC	ATG TAC
GAĠ ATA CTC TAT	CGA AGG GAG GCT TCC CTC	AGA TCT	CTG GTA TCT, TTA TAG TCC GAC CAT AGA AAT ATC AGG	GTG ATG CAC CAC TAC
GAĠ CTC	AGG	AGG TCC	TTA	TTT
ACT TGA	CGA	AAC TTG	TCT	ATT TAA
CGA ACT (GCT TGA (GCT TCC CGA AGG	000 000	GTA	TCG
CAC	GCT	GGT	CTG	ე <u>ე</u> ეეე
CTA	CAC GTG	CAG	525 252	TGA
GAC	TTG AGA AAG CGC CAC AAC TCT TTC GCG GTG	TCC GGT AAG CGG CAG GGT CGG AAC AGG AGG CCA TTC GCC GTC CCA GCC TTG TCC	AAA (TTT (TCG CCA CCT CTG ACT TGA GCG TCG ATT TTT AGC GGT GGA GAC TGA ACT CGC AGC TAA AAA
GGA GCG AAC CCT CGC TTG	AAG T'TC	AAG TTC	TCC AGG GGG AGG TCC CCC	CTG
090 000	AGA TCT	GGT	AGG TCC	CCT
			TCC AGG	CCA
CTT GAA	GCA	GTA	GCT	TCG
CAG	TGA	CAG	GGA	GTT CAA
1396 CAG CTT GTC GAA	1441	1486 CAG GTA GTC CAT	1531 GGA GCT CCT CGA	1576 GTT CAA

525 252

GCT

TTC

ACG

TTC

525 252

AGT

AGC TCG

AGC

TGC

TTT

ACG

CAG

TCG

AGG

1891

Fig. 11b (Con't)

	TTT	TCC	TGA	CGA	CCA	CTC
	CTT	CTT	CTT	CAG	TTT AAA	TTG
	ອນນ ນອອ	GTT	929 292	252	ລອລ ອລອ	TTG TTG AAC AAC
	525 252	CAT		CGA	CTG ACT TCC GAC TGA AGG	ATG
	CAA GTT	TCA	TAT ATA	GAC	ACT	TTC
	CAG	TGC TCA ACG AGT	ე <u>ე</u> ნე	AAC TTG	CTG	CCA
	ອວອ ວອວ	TTT	TAA CCG TAT TAC ATT GGC ATA ATG	CCG AAC GAC GGC TTG CTG	ນ ອນອ	AAC CGA AGA CCA TTC ATG TTG GCT TCT GGT AAG TAC
(3 100)	AAA TTT	550 225		CAG	AGA TCT	CGA
73 1100) 011 191 1	GAA	CTG	TTC TGT GGA AAG ACA CCT	299 922	GGA	AAC TTG
-	ATG TAC	TTG	TTC	TCG	AGC	GGA
	CCT	CTT	TGA	525 252	GGA	CAC
	GAG	522 255	555 222	TAC	CGA	AAA TTT
	ລອລ ອລອ	CCT GGA	ATC TAG	TGA	GAG	ACG
	ວນນ ອອອ	GTT CAA	GTT CAA	AGC TCG	AGT TCA	TTT AAA
	AGG	ACG	TGC	GTG AGC CAC TCG	GTC	GAC
	1621	1666	1711	1756	1801	1846

252

TTT

TGG

GGT

AAG TTC

992 329

TCT

TGT

ATA

TGG

CGA

ACG

225 235 266

TGG

AGA

2071

TGG

TGC

522 295

TGC

000 000

992 229

TGC

AGA TCT

ე<u>ე</u>ნე

TGC

525 252

CAA

ACC TGG

AGG

990 866

2026

GAG

TTG

TTC

CAA

CTC

TGG

GAT

ATT

AGA TCT

GCA

TCC

TTC

CAG

TCA

CAT

2116

GAC

GCA

GAG

222

525 252

CAA

ACG TGC

292 808

ACC TGG

TGC

CCA

GCT

255 522

500 000

GGT

2206

CGA

GGT

TCA

CAT

TTC

355 555 555

552 225

990 000

GGT

CGA

TAG

CGT

ATC

TGA

TGG

2161

Fig. 11b (Con't)

AGC TCG	GTG
GCC AGC CGG TCG	0 555 0 222
0 0 0 0 0 0	GCA C
AAC CCC) 52Y
000	GCA CGA TCA TGC CGT GCT AGT ACG
r gct aac cag taa g a cga ttg gtc att c	CGA :
CAG	GCA
AAC TTG	ACA GGA G TGT CCT C
GCT	ACA TGT
rc. AG2	ACG TGC
CAT	TCA
ATT TAA	TCC
GTG	000 000
TCG	550 500
GTA	CTA GAT
1936	1981

Fig. 11b (Con't)

HK	HA	ບ ບ	A H	υ U
TGT ACA	AGT TCA	CTG	CAA GTT))))
CCA	rcc agg	AAG TTC	CTG	AAT TTA
GTT CAA	ລລອ	TTG	ອນນ ນອອ	CAT
595 ၁၁၁	CAG CGG 1 GTC GCC 1	TCC	CAT	AAT TTA
CAA GT'T	GAT	CGA	GGA CAG (CCT, GTC (GGA AGC GAG AAG AAT CAT AAT CCT TCG CTC TTC TTA GTA TTA
TGC	GAC CTG	GAG	GGA	GAG
CCA	CGT GCA	525	CCT	AGC TCG
AAT TTA	525 252	ANG AGC TTC TCG	CTG	
TAC	AAT	AAG TTC	TAC	990 009
GCC TAC CGG ATG	ATA TAT	GGT	ATC	552 225
	<u></u> ວອອ	GCT	GTC	GAT
ອນນ ວອອ	CGC CGA GGC GCG GCT CCG	CGA AGT TAG GCT GCT TCA ATC CGA	GTC	ອອອ ວວວ
TAG	CGA	AGT TCA	ATG	CAT
GTA	505	CGA	CTG))))
AAG TTC	GCT C	GAT	TCC	505 050
2251 AAG GTA TAG GGC GGC TTC CAT ATC CCG CCG	2296	2341	2386 TCC CTG ATG GTC GTC AGG GAC TAC CAG CAG	2431 CGC GGG CAT CCC GAT GCG CTA

_
ند
_
(Con
$\overline{}$
11b
•
ø
Ξ.
Ŀ

992 229	992 229	522 255	525 252	TGC	AAG TTC	GAC
GTA	CTC		CG'F	<u></u> ນອນ	CAT	GCT
GAC	CTT	GAA GGC TTG AGC GAG CIT CCG AAC TCG CTC	CAT	GAG CTC	AGT TCA	GGA
CAA GTT	CTG	TTG	GAT	CCA	GAC	GAA
CAG	555 555	522 255	990 229	GAC	GAA	ე <u>ე</u> ნე
909 090	ANT GGC (TITA CCG (GAA	CAG	AAT GAC TTA CTG	AAA GAA C TTT CTT	CCA CCG GGT GGC
GAA	GNT CTA	GAC	CGA	GNA CTT	GAT	5 25
CGT CGC	5 22	AGT TCA	$\Lambda\Lambda G$	ອອວ	CAT	ე <u>ე</u> ნე
CGT	ອອວ ວວອ	ACC TGG	929 292	CTC	TTG	990 ၁၁9
TCG	CAT	ນນນ ນອອ	TAC	GTC	GAG	AGT CAT TCA GTA
552 225	ອນອ ນອນ	922 299	GAA	292 929	TAC	
CCA	ອນນ ນອອ	GGT	TCC	AAA TTT	TCC	GAT
CAT	GTC	TTT AAA	GAT	ນ ອນອ	CTG	GAC
9 2 9 9	5 2 2 2 2 2 2	ACG	CAA	CCA	CAC GTG	522 255
GAA	CAG	GAA	GTG	GCT	ວວອ ອອວ	TGC
2476	2521	2566	2611	2656	2701	2746

t)
Con
11b (
Fig.

	NTG	GTT CAA	992 229	GAA	ATC	550 225	GAC
	CTT GAA	990 209	900 099	550 005	222	5 22	CAG
	TCC (GAG (CTC (GAT (CTA (CAC (GTG	TTC (TGT A	CCA
	CTC 1 GAG 1	GTT (ACC (TGG	ATC TAG	ACC T	SAT (
	ACG O	PAG C	CAA C	CAT A	3.00 Z	CGC ACC GCG TGG TGG	SAG (
	TCG A	TAG TAG ATC ATC	ATG CAA GGA TAC GTT CCT	CAC (GTG	AGC CCG TCG GGC	AAC (TTG	GTA GAG GAT CAT CTC CTA
	225 252	CAG :	TGC 1	TGC (252	AGC T	522
(1)	SAT C) <u>5</u> 50	TGG 2	2000	GTG (2000	TCC (A
11b (Con.t)	GGG CNT CCC GTA	GCA (GAA C) 999	GAA (CTT ())))))	252
F18. 1	CAA C	GAA (CTT (AAG (TTC (CAC (GTG () 555 222	ATA (TAT (GAT (
	TCT (AB)	TAG (ATC (2000) 555 555	GAG (GAT	CAC
•	2000	CAT	925 252	999 222	CAT GTA	922 299	500 055
	GNA	CTG	ອນອ	TCC	GCT	GTC	990 229
	GTT CAA	CTC	CAC	CAG	AGC	GAT	GAT
	TGG	CGA	GAG	CAA GTT	ACA	GGT	GGT
	2791	2836	2881	2926	2971	3016	3061

Fig. 11b (Con't)

	TAG	TGC	505 050	GAT	550 000
	AAG TTC	CAG	TAG	GAC	TAT ATA
	TCC AAG 7 AGG TTC A	GGA		ATG TAC	GCC TAT C
	555	GTC	909	GGA	CAA
	AGT	ວຍວ	CAA	GTC	AAC TTG
	GAT	AAA TTT	CAT GTA	GCT	CAT
	CGC GTA GTC GAT AGT GCG CAT CAG CTA TCA	GCG GCG GCC AAA GCG GTC GGA CGC CGC CGG TTT CGC CAG CCT	C GCA TAG AAA TTG CAT CAA CGC ATA G CGT ATC TTT AAC GTA GTT GCG TAT	GCC ATA GTG ACT GGC GAT GCT GTC GGA ATG CGG TAT CAC TGA CCG CTA CGA CAG CCT TAC	CGG CAT AAC GCC GTA TTG
` =	GTA	292 525	AAA TTT	922 299	TAC
r 18. 110 (5011 c)	525 252	292 929	TAG ATC	ACT TGA	CGG CAG TAC GCC GTC ATG
r 18.	GAT CTA	TGG	GCA	GTG	ეეე ეეე
	CGC CAT GCG GTA	GAC	TG	ATA TAT	550 225
	525 252	CAG	222 225	550 225	GAG
	GGT		AAC TTG	CAC GTG	
	TGT ACA	AGC GAG TCG CTC	GAG	CAG CAC GTC GTG	CCG CAA GGC GTT
	ວວວ ອອອ	CGA	TCC		ATC
	3106 GGG CCC	3151	3196 TCC GAG AAC GGG AGG CTC TTG CCC	3241 TAG ATC	3286

بسر د <u>ج</u>	<i>የ</i> ኮ ድነ	r v th	
AT" TAI	CTG	AAC	
CGC ATT GCG TAA	TAA ATT	CTG TCA AAC GAC AGT TTG	
SAG	ATT TAA	CTG	
GAT	GCA CGT	AAG TTC	
GAG GAT GAC GAT (CTC CTA CTG CTA	CGG TGC CTG ACT GCG TTA GCA ATT TAA GCC ACG GAC TGA CGC AAT CGT TAA ATT	TTA AAG CTT ATC GAT GAT AAG AAT TTC GAA TAG CTA CTA TTC	
GAT	ე <u>ნე</u>	GAT	
GAG	ACT TGA	ATC	
.t) GCC CGG	CTG	CTT	
GGT CCA	TGC	AAG TTC	
Fig. 11b (Con't) GAC GGT GCC (CTG CCA CGG (ວລອ ອອວ	TTA	
GGT	ACA TGT	GCA	
CAG	CAT	ACC	
ATC TAG	TTT AAA	ACT	
AGC	AGN T	A.A. T.T	
TAC	GTT	1 TGA T. ACT A	
3331	3376	3421	•

. U 816 933 C; N; 3474. Total number of bases is: composition: DNA sequence

ATG AGA ATT TAC TCT TAA

3466

716 T;

2 OTHER; Sequence name: NPMTNFMPH

fig.12a

	33 39 45 1	ATC TGC GGT GAT AAA TAG ACG CCA CTA TTT	CTG GCG GTG ATA CTG GAC CGC CAC TAT GAC	GAA GGT GAC GCT CTT CTT CCA CTG CGA GAA	ACC AGG AGG TTT AAA TGG TCC TCC AAA TTT	CCT GCA GCC CAA GCT GGA CGT CGG GTT CGA	CAG CCT GAT ACA GAT GTC GGA CTA TGT CTA	ACA GAA TTT GCC TGG TGT CTT AAA CGG ACC
	ATG	ACC	CCA	CAT GTA	GGT	CGA GCT	TTT AAA	AAA TTT
	27 ACA TGT	ATA TAT	ATA TAT	CAC	AGG	AGT TCA	GAT	GAT
12b	CAA GTT	CAG	TAA ATT	GAC	500 099	TAG	GAA	TCT
Fig.	21 	ATA TAT	ACA TGT	ACT TGA	AAG TTC	CTC	AGA TCT	ວວອ ອອວ
	ACC	AAC TTG	TTG	525 252	AAG TTC	ATC TAG	ATG TAC	AAG TTC
	15 	AAA TTT	GTG	GGA	CTG	000 000	000 000	CAG
	TCT AGA	ATA TAT	292 929	GCA	992 229	000 000	TGG	ACG TGC
	9 GGA CCT	CAT	CTG	TCA AGT	TAA ATT	ATG	TTT AAA	AGA TCT
pIG2	ວວອ ອອວ	ATT TAA	TCT AGA	ACA	AAT TTA	TCC	CTG	ATC TAG
ı: pI	3 LTC AAG	TAA ATT	TTA	AGC TCG	AAA TTT	TAT ATA	TGG	TAA
From:	∺	46	91	136	181	226	271	316

361 406 451 496 541 586 631	CGG GCC AGT TCA GAG CTC GAG GAG GCT CTG GAG					GGT CCA CGC GCG GCG CCA GGT GAG CTC TTA AAA	THE REPRODUCE F	ACC TGA TGG ACT TGG ACT TGG TAG ACC ATC ATC AAA TAG TTT TTA TCT AAT AGA CGC CGG GCG GCC GCG GCC TTT TTT TCT TCT TTT TTT TCT	$\hat{}$	CAT GTA GGG CCC TTG TTG GAC GGC GCC CTG		GAA CTT TCC AGG AGG TCC GCC GCC GCC GCC	CTC GAG CCA GGT TGA ACT ACG TGC TGC TGC	AGA TCT TGC ACG ACG TCA TCA TCA TCA TCA CCC CCC
721	AAA TCA		GCA	AAG TAT	ATG		aaa aga	ACA	AAT	AAA	aag Tga	ATT	TAT	GTA
	AGT	TTA	TAC	ATA	TTA TAC ATA GGC	GAG	TCT	GTT	ATT	GGG	ACT		TAC	GAA

CAT	AGA TCT	TCT AGA	AGC	GAA	TCT	ACC
		E A				U U
TCT AGA	GTC	TTT AAA	ACC TGG	TC(AG(CCT	AG
TAA ATT	AGC TCG	TTT AAA	GCT	TTT TCC AAA AGG	TGT	TGT AGC ACA TCG
TGA	CTG	TCC	ACC	TCT	TAC	CTC
TTT AAA	CCA	TTG AGA AAC TCT	ACC TGG	ACC AAC TGG TTG	AAA TTT	CAA GAA GTT CTT
CCT	GTT CAA	TTG	aaa Ttt	ACC TGG	ACC	CAA
	rtc aag	TTC AAG	AAA TTT	AGA GCT TCT CGA	GAT	CCA CTT GGT GAA
Fig. 12b (Con't) GGT GAA GAT CCA CTT CTA	GTT CAA	ATC	AAC TTG	AGA TCT	GCA	CCA
Fig. 1 GGT CCA	TGA	AGG ATC TCC TAG	GCA	TCA	AGC	CCA
CTA GAT	ACG	CAA	CTT GAA	GGA	CAG	AGG
GAT	TTA AAT	GAT	CTG	990 ၁၁9	CAG	GTT
AAG TTC	999 ၁၁၁	AAA TTT	CTG	TTT	CTT	GTA
TAA ATT	AAT TTA	AGA TCT	AAT TTA	TTG	TGG	000 000
TAA	CAA GTT	CGT	CGT	GGT	AAC	GTA
766 CAA GTT	GAC	555 222	ນ ອນອ	GGT	GGT	AGT
166	811	856	901	946	991	1036

ATA

Fig. 12b (Con't)

CGC TCT GCT AAT CCT GTT ACC AGT GGC TGC TGC TGC GGG ACG ACG	ATA
T'GC ACG	ACG
ອນວ	AND WALL THE GAM GAY CTC ANG ACG ATA
AGT TCA	CTC
ACC TGG	GGA
GTT CAA	رجليل
CCT	ין טיטיטיט
AAT TTA	
GCT	th Cut
TCT AGA	ر E
ອນອ ນອນ	ָר נ
CCT	F F
ATA TAT	
\mathtt{TAC}	1
990 900	
1081	

ATA	TAT
ACG ATA	TGC
AAG	CCT GAG TTC
CIC	GAG
GGA	CCT
GTT	CAA
SSO	၁၁၅
TAC	ATG GCC
TCT	AGA
GTG	CAG CAC AGA
CHC.	CAG
	ATT
ל ני	GCT
	ACC
į K	GTC
7 7 7	1770

GAG
CGA AGG GAG GCT TCC CTC
CGA
TCC
GCT
CAC
929 292
AGA AAG TCT TTC
AGA TCT
GCA TTG
GCA
TGA
ນ ອນອ
ACA TGT
CCT
1261

AGA	TCT
AGG AGA	TCC
AAC	TTG
CGG	CCC CCC
GGT	CCA
CAG	GTC
SSO	SCC
AAG	TTC
GGT	CCA
TCC	NGG
	CAT
	GIC
GGA	CCT
299	SSS
AAA	TTT
1306)) }

TAG	ATC
T'I'A T'AG	AAT
TCT	AGA
GTA	CAT
CTG	GAC
CCC CLC	909
G AAA (TTT
CCC	၁၁၁
AGG	TCC
TCC	AGG
GCT	CGA AGG
	CCT
GAG	CIC
CAC	GTG
けつじ	292
1351	1001

Fig. 12b (Con't)

1396 TCC TGT CGG GTT TCG CCA CCT CTG ACT TGA GCG TCG ATT TTT GTG AGG ACA GCC CAA AGC GGT GGA GAC TGA ACT CGC AGC TAA AAA CAC 1441 ATG CTC GTC AGG GGG GCG GAG CCT ATG GAA AAA CGC CAG CAA CGC TAC GAG TCC CCC CGC CTC GGA TAC CTT TTT GCG GTC GTT GCG 1486 GGC CTT TTT ACG GTT CCT GGC CTT TTG CTG GCC TTT TGC TCA CAT CCG GAA AAA TGC CAA GGA CCG GAA AAC GAC CGG AAA ACG AGT GTA 1531 GTT CTT TCC TGC GTT ATC CCC TGA TTC TGT GGA TAA CCG TAT TAC CAA GAA AGG ACG CAA TAG GGG ACT AAG ACA CGG AAA ATG CAA GAA AGG ACG TAA TAG GGG ACT CGG CTG TTG CTG CGA 1576 CGC CTT TGA GTG ACT TAG GCG AGC GGC CTG CTG CTG CTG CTG CTG CTG CTG C					
TGT CGG GTT TCG CCA CCT CTG ACT TGA GCG ACA GCC CAA AGC GGT GGA GAC TGA ACT CGC CTC GTC AGG GGG GCG GAG CCT ATG GAA AAA GAG TCC CCC CGC CTC GGA TAC CTT TTT CTT TTT ACG GTT CCT GGC CTT TTG CTG GCG GAA AAA TGC CAA GGA CCG GAA AAC GAC CGG CTT TCC TGC GTT ATC CCC TGA TTC TGT GGA CTT TCC TGC GTT ATC CCC TGA TTC TGT GGA CTT TCC TGC GTT ATC CCC TGA TTC TGT GGA CTT TGA GTG ACT ATG GGG ACT AAG ACA CCT CTT TGA GTG ACT ATG GGG GCG GTC CTT TGA GTG ACT ATG GCG GGC GTC	GTG	525 252	CAT	TAC	CGA
TGT CGG GTT TCG CCA CCT CTG ACT TGA GCG ACA GCC CAA AGC GGT GGA GAC TGA ACT CGC CTC GTC AGG GGG GCG GAG CCT ATG GAA AAA GAG TCC CCC CGC CTC GGA TAC CTT TTT CTT TTT ACG GTT CCT GGC CTT TTG CTG GCG GAA AAA TGC CAA GGA CCG GAA AAC GAC CGG CTT TCC TGC GTT ATC CCC TGA TTC TGT GGA CTT TCC TGC GTT ATC CCC TGA TTC TGT GGA CTT TCC TGC GTT ATC CCC TGA TTC TGT GGA CTT TGA GTG ACT ATG GGG ACT AAG ACA CCT CTT TGA GTG ACT ATG GGG GCG GTC CTT TGA GTG ACT ATG GCG GGC GTC		CAA GTT	TCA	TAT ATA	GAC
TGT CGG GTT TCG CCA CCT CTG ACT TGA GCG ACA GCC CAA AGC GGT GGA GAC TGA ACT CGC CTC GTC AGG GGG GCG GAG CCT ATG GAA AAA GAG TCC CCC CGC CTC GGA TAC CTT TTT CTT TTT ACG GTT CCT GGC CTT TTG CTG GCG GAA AAA TGC CAA GGA CCG GAA AAC GAC CGG CTT TCC TGC GTT ATC CCC TGA TTC TGT GGA CTT TCC TGC GTT ATC CCC TGA TTC TGT GGA CTT TCC TGC GTT ATC CCC TGA TTC TGT GGA CTT TGA GTG ACT ATG GGG ACT AAG ACA CCT CTT TGA GTG ACT ATG GGG GCG GTC CTT TGA GTG ACT ATG GCG GGC GTC	ATT TAA	CAG	TGC	255 522	AAC TTG
ACA CTC GAA CTT GAA CTT	TCG	525 252	TTT AAA	TAA ATT	ეენ ეეე
ACA CTC GAA CTT GAA CTT	909 000	aaa ttt	550 225	GGA	CAG
ACA CTC GAA CTT GAA CTT	TGA ACT	GAA	CTG	TGT	355 533
ACA CTC GAA CTT GAA CTT	ACT	ATG TAC	TTG	TTC	TCG
ACA CTC GAA CTT GAA CTT	CTG	CCT	CTT GAA	TGA	525 252
ACA CTC GAA CTT GAA CTT	CCT	GAG	ອນນ ນອອ	999 ၁၁၁	TAC
ACA CTC GAA CTT GAA CTT	CCA	ე <u>ნე</u>	CCI	ATC TAG	TGA
ACA CTC GAA CTT GAA CTT	TCG	ეეე ეეე	GTT	GTT CAA	AGC
ACA CTC GAA CTT GAA CTT	GTT	AGG	ACG TGC	TGC	GTG
1396 TCC TGT AGG ACA 1441 ATG CTC TAC GAG CCG GAA 1531 GTT CTT CAA GAA CAA GAA	005 000	GTC	TTT AAA	TCC	TGA
1396 TCC AGG 1441 ATG TAC 1486 GGC CCG 1531 GTT CAA	TGT	CTC	CTT GAA	CTT	CTT
1396 1441 1486 1531 1576	TCC	ATG TAC	522 255	GTT CAA	505
	1396	1441	1486	1531	1576

TCC	ATG TAC	ACG	AAC TTG	TGC ACG	TGC	GGT
ACT TGA	TTC	TTC	922 299	TCA	ე <u>ნე</u> ეეე	AAG TTC
CTG	CCA	ອນອ ນອນ	TAA ATT	CGA	992 229	GCC AAG CGG TTC
292 929	AGA TCT	AGT	CAG TAA GTC ATT	GCA CGA TCA CGT GCT AGT	TGC ACG	TCT AGA
AGA TCT	CGA	AGC TCG	AAC TTG	GGA	AGA T	TGT
GGA	AAC TTG	AGC	GCT	ACA) 5 5 5 5	TGG ATA ACC TAT
AGC TCG	GGA	TGC	ICT AGA	ACG TGC	TGC ACG	TGG
zb (cor GGA CCT	CAC	TTT	GTA	TCA	9 29	CGA
Fig. 12b (Con't) CGA GGA AGC GCT CCT TCG	AAA TTT	ACG	ATT TAA	GGG TCC CCC AGG	CAA GTT	ACG TGC
GAG CTC	ACG TGC	CAG	GTG	000 000	AGG ACC (ວວອ ອອວ
AGT TCA	TTT AAA	TCG	TCG	552 225	AGG	AGA TGG TCT ACC
GTC	GAC	AGG	GTA	CTA	993	AGA TCT
CGA	CCA	CTC	5 05	AGC TCG	GTG	TGG
CAG	TTT AAA	TTG	GCT	99 2	999 ၁၁၁	TGC
ე <u>ე</u> ეეე	ე <u>ე</u> ეე	TTG	TTC	999 ၁၁၁	GCA	9 22
1621	1666	1711	1756	1801	1846	1891

CAA GTT	CAT	000 000	999 222	CAG	TCC	CAT
CTC	TTC AAG	525 252	CAA GTT	GAT	CGA	CAG
TGG	922 299	CAA	TGC	GAC	GAG	GGA
GAT	9 90	ACG TGC	CCA	CGT	929 292	CCT
ATT TAA	550 225	ລອລ ອລອ	AAT TTA	505 050	AGC	CTG
	GGT	ACC TGG	TAC	AAT TTA	AAG TTC	TAC
Fig. 12b (Con't.) TCC GCA AGA AGG CGT TCT	CGA	TGC	550 000	ATA TAT	GGT	ATC TAG
Fig. 12 TCC AGG	TAG	CCA	ອນນ ນອອ	5 22	GCT	GTC
TTC	CGT	GCT	522 255	5 22	TAG	GTC
CAG	ATC TAG	299 922	TAG	CGA	CGA AGT GCT TCA	ATG
TCA	TGA	922 299	GTA	ອນອ ນອນ	CGA	CTG
CAT GTA	TGG	GGT	AAG TTC	GCT	GAT	TCC
ე <u>ნე</u>	GAG	CGA	GAC	TGT ACA	AGT	CTG
TTT AAA	TTG	GGT	GCA	CCA	TCC	AAG
TGG	TTC	TCA	GAG	GTT CAA	000 000	TTG
1936	1981	2026	2071	2116	2161	2206

	AAT TTA	CAA GTT	CTG GAC	TTG	GAT
	AAG TTC	CAG	500 080	ອນນ ນອອ	ອອວ ວວອ
	GAG	929 292	AAT TTA	GAA	CAG GCC GTC CGG
	AGC	GAA CTT	GAT	GAC	CGA
	GCC GGA AGC GAG AAG CGG CCT TCG CTC TTC	ອນອ	ອນນ	AGT TCA	AAG
	990 229	CGT	992 229	ACC TGG	525 252
Con't)	992 229	GCC TCG CGT CGC GAA CGG AGC GCA GCG CTT	GGC CGC CAT GCC GGC GAT	GGC GGG ACC AGT GAC GAA	TAC
Fig. 12b (Con't)	GAT	992 229	525 252	522 255	GAA
Fig	CCC GAT GCC GGG CTA CGG	CCA	522 255	GGT	TCC
		GGC CAT			GAT
	CGC GGG CAT GCG CCC GTA	500 055	909 090	GCC GAA ACG TTT CGG CTT TGC AAA	CAA
	525 252	GGG GAA	CAG	GAA	GTG
	CAA) 555	550 000	99 2 229	5 22
	CTG	AAT TTA	GTA	CTC	GAG
	922 299	CAT	GAC	CTT GAA	AGC TCG
	2251	2296 CAT AAT GTA TTA	2341 GAC GTA GCC CAG CGC GTC CTG CAT CGG GTC GCG CAG	2386 CTT (GAA (2431 AGC GAG GGC GTG CAA GAT TCC GAA TAC CGC AAG CGA TCG CTC CCG CAC GTT CTA AGG CTT ATG GCG TTC GCT

CCA	GAC	GAA CTT	CTC	GTT CAA	GGA	ACC TGG
GAC C	GAA G) 299 922	ACG C	TAG (AATC (CAA (GTT (CAT
AAT G TTA C	AAA G TTT C	CCA C	TCG A	TAG 7	ATG (TAC	CAC
GAA F	GAT A) 525 252	225	CAG	TGC	TGC
) 990) 229	CAT C) 555	CAT (GIA (552 225	TGG TGC ACC ACG	99 2
	TTG (990 000) 555	GCA	GAA	ລວລ
Fig. 12b (Con't) GCG GTC CTC CGC CAG GAG	GAG TTG CTC AAC	CAT	CAA GTT	GAA	AAG TTC	CAC
Fig. 12 GCG (CGC (TAC	AGT TCA	TCT AGA	TAG	525 252	533 355
ANA TTT	TCC	GAT	522 295	CAT	525	555 ၁၁၁
ລອລ ອລອ	CTG	GAC	GAA	CTG	929 292	TCC
CCA	CAC	ອນນ ນອອ	GTT CAA	CTC	CAC	CAG
GCT)))	TGC	TGG	CGA	GAG	CAA GTT
ອວອ ວອວ	TGC	AAG TTC	GAC	ATG	GTT CAA	300 000 000
CGT	909 090	CAT	GCT	CTT GAA	990 009	5 22
CAT	GAG	AGT	GGA	TCC	GAG	GAT
2476	2521	2566	2611	2656	2701	2746

Fig. 12b (Con't)

ATC TAG	ACC	GAT	<u>ອ</u> ວວ ວອອ	GTC	929 292	GGA
36C 1	600 T	GAG C	AGT (TCA (252 525	CAA	GTC
GCG AGC CCG		GTA C	GAT	AAA TTT	CAT	GCT
2000	GCC AGC AAC CGG TCG TTG	ອນນ	GTC	992 229	TTG	GAT
GTG (, 990 225	GAT GCG TCC GGC CTA CGC AGG CCG	GAT CGC GTA CTA GCG CAT		AAA TTT	ACT GGC (TGA CCG (
GAA	922 299	၁ <u>၅</u> ၁၅	505 050	CAG GAC TGG GCG GCG GTC CTG ACC CGC CGC	GCA TAG CGT ATC	ACT
999 ၁၁၁	ATA TAT	GAT		TGG	GCA	GTG
GAG	GAT	CAC	CAT	GAC	TGC	GCC ATA CGG TAT
	522 255	522 255	525 252	CAG	၁၁၁ ၅၅၅	99 2
GCT CAT	GTC	99 ၁ ၁၁9	GGT	GAG	AAC TTG	CAC
NGC	GAT	GAT	TGT ACA	AGC	GAG	CAG
ACA	GGT	GGT	ວວວ ອອອ	CGA	TCC	TAG
GNA	ATC	550 000	GAC	TAG	TGC	505 050
990 229	999 ၁၁၁	5 2 2 2 2 2 2	CAG	AAG TTC	CAG	TAG
CAC	TTC	TGT	CCA GGT	TCC	GGA	ATA TAT
2791	2836	2881	2926	2971	3016	3061

Fig. 12b (Con't)

CNA	GTT	
AAC	TTG	
	GTA	
CGG	၁၁၅	
	ATG	
CAG	GIC	
SSS	၁၁၅	
CCC	990	
GNG	CTC	
CAA	GTT	
SSS	299	
ATC	TAG	
GAT	CTA	
GAC	CIG	
ATG	TAC	
3106		

GAT GAC GAT GAG 550 000 GGT GAC GGT CAG ATC AGC TCG TAC 550 225 TAT 990 000 3151

GCA TTA 355 366 366 ACT TGA CTG TGC 225 252 ACA TGT CAT TTT AGA GTT CAA ATT 505 300 GAG 3196

AAG TTC GAT GAT ATC CTT AAG TTC TTA GCA ACC TAA ACT AATT TGA TGA CTG TAA ATT ATT 3241

3286 CTG TCA AAC ATG AGA A GAC AGT TTG TAC TCT T

681 3 936 : : 887 A; 797 3301 of bases is: composition: Total number sednence

Sequence name: NIPS0039.

ماها ولاية والتراوية

fig. 14a

fig.14b

EUROPEAN SEARCH REPORT

EP 90 40 2590

tegory	Citation of document with	DERED TO BE RELEVA indication, where appropriate, ant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)
D,X	CHEMICAL ABSTRACTS, vol. 99, no. 11, 12th September 1983, page 413, abstract no. 86251m, Columbus, Ohio, US; H. TASAKA et al.: "Purification and antigenic specificity of alpha protein (Yoneda and Fukui) from Mycobacterium tuberculosis and Mycobacterium intracellulare", & HIROSHIMA J. MED. SCI. 1983, 32(1), 1-8 * Abstract *		1-9,40,41	C 07 K 13/00 A 61 K 39/04 C 12 N 15/31 G 01 N 33/569 C 12 Q 1/68
D,X	JOURNAL OF CLINICAL MICROBIOLOGY, vol. 25, no. 7, July 1987, pages 1176-1180, American Society for Microbiology; M.L. COHEN et al.: "Expression of proteins of Mycobacterium tuberculosis in Eschericha coli and potential of recombinant genes and proteins for development of diagnostic reagents" * Whole document *		10-22, 25-33, 35-39,43, 44	
X	BE-A-9 055 82 (INSTITUT PASTEUR DE BRABANT) *Pages 10.11; claims *		35-39,45	
X	JOURNAL OF BACTERIOLOGY, vol. 170, no. 9. September 1988, pages 3847-3854, American Society for Microbiology; K. MATSUO et al.: "Cloning and expression of the Mycobacterium bovis BCG gene for extracellular alpha antigen" "Whole document"		10-22,40, 41,43	TECHNICAL FIELDS SEARCHED (Int. CI.5)
				C 07 K C 12 N
Y	IDEM		23,24,32, 34,42	A 61 K G 01 N C 12 Q
Y	EP-A-0 288 306 (McFADDEN) Page 7, column 12, lines 2-18		23,24,32, 34,42	
Α	INT. ARCHS ALLERGY APPL. IMMUN., vol. 81, 1986, pages 307-314, S. Karger AG, Basel, CH; H.G. WIKER et al.: "MPB59, a widely cross-reacting protein of Mycobacterium bovis BCG"			
				
		and draws up for all claims		
	The present search report has b	Date of completion of search	<u>!</u>	Examiner
	riace of semen	: 		

- O: non-written disclosure
 P: intermediate document
 T: theory or principle underlying the invention

&: member of the same patent family, corresponding document

EUROPEAN SEARCH REPORT

Application Number

EP 90 40 2590

ategory		ndication, where appropriate, nt passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)
Α	Academic Press Inc., London,	and identification of a 32 kDa		
P,X	pages 3123-3130, American S	, sequence determination, and	1-45	
			-	
				TECHNICAL FIELDS SEARCHED (Int. Cl.5)
				GEAROLES (III. C.S.)
		r - 1		
	The present search report has be	en drawn up for all claims	-	
· · · · · · · · · · · · · · · · · · ·	Place of search	Date of completion of search		Examiner
	The Hague	20 December 90		SKELLY J.M.

- X: particularly relevant if taken alone
 Y: particularly relevant if combined with another document of the same catagory
 A: technological background
 O: non-written disclosure
 P: intermediate document
 T: theory or principle underlying the invention

- D: document cited in the application
- L: document cited for other reasons
- &: member of the same patent family, corresponding document

Abstract

The invention concerns a method for producing a species specific tuberculosis diagnostic from an extract or a centrifuged precipitate of a killed culture of *Mycobacterium* strains, advantageously *Mycobacterium bovis* or *Mycobacterium avium*, being purified from lipoids by lipid solvents, characterized by separating the individual protein-polysaccharide complexes, obtained from the concentrated filtrate of the culture or from an extract obtained by acidic hydrolysis of the bacterium precipitate, by electrophoresis or by adjusting the pH to correspond to the isoelectric point of the individual fractions, and eliminating the protein from the fraction comprising the polysaccharide portion providing the desired species specific tuberculin or serological reaction by cleaving the protein-polysaccharide bond, then separating the pure species specific polysaccharide by precipitation or gel filtration and converting it into a diagnostic reagent.