Distributional Semantic Models

Part 2: The parameters of a DSM

Stefan Evert¹

with Alessandro Lenci², Marco Baroni³ and Gabriella Lapesa⁴

¹Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany ²University of Pisa, Italy ³University of Trento, Italy ⁴University of Stuttgart, Germany

http://wordspace.collocations.de/doku.php/course:start

Copyright © 2009-2016 Evert, Lenci, Baroni & Lapesa | Licensed under CC-by-sa version 3.0

Outline

DSM parameters

A taxonomy of DSM parameters

Examples

Scaling up

Outline

DSM parameters

A taxonomy of DSM parameters

Overview of DSM parameters

Term-context vs. term-term matrix

Definition of terms & linguistic pre-processing

Size & type of context

Geometric vs. probabilistic interpretation

Feature scaling

Normalisation of rows and/or columns

Similarity / distance measure

Dimensionality reduction

Term-context matrix

Term-context matrix records frequency of term in each individual context (e.g. sentence, document, Web page, encyclopaedia article)

$$\mathbf{F} = egin{bmatrix} \cdots & \mathbf{f_1} & \cdots \\ \cdots & \mathbf{f_2} & \cdots \\ & dots \\ & dots \\ \cdots & \mathbf{f_k} & \cdots \end{bmatrix}$$

	F. (4)	ب ع ^ق	/e,5/	8/04	Philos	Konx SOAL	Bock
cat	10	10	7	_	_		_
dog	_	10	4	11	_	_	_
animal	2	15	10	2	_	_	_
time	1	_	_	_	2	1	_
reason	_	1	_	_	1	4	1
cause	_	_	_	2	1	2	6
effect	_	_	_	1	ı	1	_

Term-context matrix

Some footnotes:

- Features are usually context tokens, i.e. individual instances
- Can also be generalised to context types, e.g.
 - bag of content words
 - specific pattern of POS tags
 - n-gram of words (or POS tags) around target
 - subcategorisation pattern of target verb
- ► Term-context matrix is often very **sparse**

Term-term matrix

Term-term matrix records co-occurrence frequencies with feature terms for each target term

	6reed	, //e ₇	, ₀ 0,	kill	in	tuezont esport	likely
cat	83	17	7	37	-	1	_
dog	561	13	30	60	1	2	4
nimal	42	10	109	134	13	5	5
time	19	9	29	117	81	34	109
eason	1	_	2	14	68	140	47
cause	_	1	_	4	55	34	55
effect	_	-	1	6	60	35	17

we will usually assume a term-term matrix in this tutorial

Term-term matrix

Some footnotes:

- ▶ Often target terms \neq feature terms
 - e.g. nouns described by co-occurrences with verbs as features
 - ▶ identical sets of target & feature terms → symmetric matrix
- Different types of contexts (Evert 2008)
 - surface context (word or character window)
 - textual context (non-overlapping segments)
 - syntactic contxt (specific syntagmatic relation)
- Can be seen as smoothing of term-context matrix
 - average over similar contexts (with same context terms)
 - data sparseness reduced, except for small windows
 - we will take a closer look at the relation between term-context and term-term models later in this tutorial

Overview of DSM parameters

Term-context vs. term-term matrix

Definition of terms & linguistic pre-processing

Size & type of context

Geometric vs. probabilistic interpretation

Feature scaling

Normalisation of rows and/or columns

Similarity / distance measure

Dimensionality reduction

Corpus pre-processing

- ▶ Minimally, corpus must be tokenised → identify terms
- Linguistic annotation
 - part-of-speech tagging
 - lemmatisation / stemming
 - word sense disambiguation (rare)
 - shallow syntactic patterns
 - dependency parsing

Corpus pre-processing

- ▶ Minimally, corpus must be tokenised → identify terms
- Linguistic annotation
 - part-of-speech tagging
 - lemmatisation / stemming
 - word sense disambiguation (rare)
 - shallow syntactic patterns
 - dependency parsing
- Generalisation of terms
 - ▶ often lemmatised to reduce data sparseness: go, goes, went, gone, going → go
 - ▶ POS disambiguation (light/N vs. light/A vs. light/V)
 - word sense disambiguation (bank_{river} vs. bank_{finance})

Corpus pre-processing

- ▶ Minimally, corpus must be tokenised → identify terms
- Linguistic annotation
 - part-of-speech tagging
 - lemmatisation / stemming
 - word sense disambiguation (rare)
 - shallow syntactic patterns
 - dependency parsing
- Generalisation of terms
 - ▶ often lemmatised to reduce data sparseness: go, goes, went, gone, going → go
 - ► POS disambiguation (light/N vs. light/A vs. light/V)
 - word sense disambiguation (bank_{river} vs. bank_{finance})
- Trade-off between deeper linguistic analysis and
 - need for language-specific resources
 - possible errors introduced at each stage of the analysis

Effects of pre-processing

Nearest neighbours of walk (BNC)

word forms

- stroll
- walking
- walked
- ▶ go
- path
- drive
- ▶ ride
- wander
- sprinted
- sauntered

lemmatised corpus

- hurry
 - stroll
- stride
- ► trudge
- amble
 - wander
- walk-nn
- walking
- retrace
- scuttle

Effects of pre-processing

Nearest neighbours of arrivare (Repubblica)

word forms

- giungere
- raggiungere
- arrivi
- raggiungimento
- raggiunto
- trovare
- raggiunge
- arrivasse
- arriverà
- concludere

lemmatised corpus

- giungere
- aspettare
- attendere
- arrivo-nn
- ricevere
- accontentare
- approdare
- pervenire
- venire
- piombare

Overview of DSM parameters

Term-context vs. term-term matrix

Definition of terms & linguistic pre-processing

Size & type of context

Geometric vs. probabilistic interpretation

Feature scaling

Normalisation of rows and/or columns

Similarity / distance measure

Dimensionality reduction

Surface context

Context term occurs within a window of *k* words around target.

The silhouette of the sun beyond a wide-open bay on the lake; the sun still glitters although evening has arrived in Kuhmo. It's midsummer; the living room has its instruments and other objects in each of its corners.

Parameters:

- window size (in words or characters)
- symmetric vs. one-sided window
- uniform or "triangular" (distance-based) weighting
- window clamped to sentences or other textual units?

Effect of different window sizes

Nearest neighbours of dog (BNC)

2-word window

- cat
- horse
- ► fox
- pet
- rabbit
- pig
- animal
- mongrel
- sheep
- pigeon

30-word window

- kennel
 - puppy
- pet
- ▶ bitch
- terrier
 - rottweiler
- canine
- cat
 - to bark
- Alsatian

Textual context

Context term is in the same linguistic unit as target.

The silhouette of the sun beyond a wide-open bay on the lake; the sun still glitters although evening has arrived in Kuhmo. It's midsummer; the living room has its instruments and other objects in each of its corners.

Parameters:

- type of linguistic unit
 - sentence
 - paragraph
 - turn in a conversation
 - ▶ Web page

Syntactic context

Context term is linked to target by a syntactic dependency (e.g. subject, modifier, . . .).

The silhouette of the sun beyond a wide-open bay on the lake; the sun still glitters although evening has arrived in Kuhmo. It's midsummer; the living room has its instruments and other objects in each of its corners.

Parameters:

- types of syntactic dependency (Padó and Lapata 2007)
- direct vs. indirect dependency paths
 - direct dependencies
 - direct + indirect dependencies
- homogeneous data (e.g. only verb-object) vs.
 heterogeneous data (e.g. all children and parents of the verb)
- maximal length of dependency path

17 / 62

"Knowledge pattern" context

Context term is linked to target by a lexico-syntactic pattern (text mining, cf. Hearst 1992, Pantel & Pennacchiotti 2008, etc.).

In Provence, Van Gogh painted with bright colors such as red and yellow. These colors produce incredible effects on anybody looking at his paintings.

Parameters:

- inventory of lexical patterns
 - ▶ lots of research to identify semantically interesting patterns (cf. Almuhareb & Poesio 2004, Veale & Hao 2008, etc.)
- fixed vs. flexible patterns
 - ▶ patterns are mined from large corpora and automatically generalised (optional elements, POS tags or semantic classes)

Structured vs. unstructured context

- In unstructered models, context specification acts as a filter
 - determines whether context token counts as co-occurrence
 - e.g. linked by specific syntactic relation such as verb-object

Structured vs. unstructured context

- In unstructered models, context specification acts as a filter
 - determines whether context token counts as co-occurrence
 - e.g. linked by specific syntactic relation such as verb-object
- In structured models, context words are subtyped
 - depending on their position in the context
 - e.g. left vs. right context, type of syntactic relation, etc.

Structured vs. unstructured surface context

unstructured	bite
dog	4
man	3

Structured vs. unstructured surface context

A dog bites a man. The man's dog bites a dog. A dog bites a man.

structured	bite-l	bite-r
dog	3	1
man	1	2

Structured vs. unstructured dependency context

unstructured	bite
dog	4
man	2

Structured vs. unstructured dependency context

A dog bites a man. The man's dog bites a dog. A dog bites a man.

structured	bite-subj	bite-obj
dog	3	1
man	0	2

Comparison

- Unstructured context
 - ▶ data less sparse (e.g. man kills and kills man both map to the *kill* dimension of the vector \mathbf{x}_{man})
- Structured context
 - more sensitive to semantic distinctions (kill-subj and kill-obj are rather different things!)
 - dependency relations provide a form of syntactic "typing" of the DSM dimensions (the "subject" dimensions, the "recipient" dimensions, etc.)
 - important to account for word-order and compositionality

Overview of DSM parameters

Term-context vs. term-term matrix

$$\Downarrow$$

Definition of terms & linguistic pre-processing

Size & type of context

Geometric vs. probabilistic interpretation

Feature scaling

Normalisation of rows and/or columns

Similarity / distance measure

Dimensionality reduction

Geometric vs. probabilistic interpretation

- Geometric interpretation
 - row vectors as points or arrows in *n*-dim. space
 - very intuitive, good for visualisation
 - use techniques from geometry and linear algebra

Geometric vs. probabilistic interpretation

- Geometric interpretation
 - row vectors as points or arrows in n-dim. space
 - very intuitive, good for visualisation
 - use techniques from geometry and linear algebra
- Probabilistic interpretation
 - co-occurrence matrix as observed sample statistic
 - "explained" by generative probabilistic model
 - recent work focuses on hierarchical Bayesian models
 - probabilistic LSA (Hoffmann 1999), Latent Semantic Clustering (Rooth et al. 1999), Latent Dirichlet Allocation (Blei et al. 2003), etc.
 - explicitly accounts for random variation of frequency counts
 - intuitive and plausible as topic model

Geometric vs. probabilistic interpretation

- Geometric interpretation
 - row vectors as points or arrows in n-dim. space
 - very intuitive, good for visualisation
 - use techniques from geometry and linear algebra
- Probabilistic interpretation
 - co-occurrence matrix as observed sample statistic
 - "explained" by generative probabilistic model
 - recent work focuses on hierarchical Bayesian models
 - probabilistic LSA (Hoffmann 1999), Latent Semantic Clustering (Rooth et al. 1999), Latent Dirichlet Allocation (Blei et al. 2003), etc.
 - explicitly accounts for random variation of frequency counts
 - intuitive and plausible as topic model
- focus on geometric interpretation in this tutorial

Overview of DSM parameters

Term-context vs. term-term matrix

$$\Downarrow$$

Definition of terms & linguistic pre-processing

Size & type of context

Geometric vs. probabilistic interpretation

Feature scaling

Normalisation of rows and/or columns

Similarity / distance measure

Dimensionality reduction

Feature scaling

Feature scaling is used to "discount" less important features:

► Logarithmic scaling: $x' = \log(x + 1)$ (cf. Weber-Fechner law for human perception)

Feature scaling

Feature scaling is used to "discount" less important features:

- ► Logarithmic scaling: $x' = \log(x + 1)$ (cf. Weber-Fechner law for human perception)
- ► Relevance weighting, e.g. tf.idf (information retrieval)

Feature scaling

Feature scaling is used to "discount" less important features:

- ▶ Logarithmic scaling: $x' = \log(x + 1)$ (cf. Weber-Fechner law for human perception)
- Relevance weighting, e.g. tf.idf (information retrieval)
- Statistical association measures (Evert 2004, 2008) take frequency of target word and context feature into account
 - the less frequent the target word and (more importantly) the context feature are, the higher the weight given to their observed co-occurrence count should be (because their expected chance co-occurrence frequency is low)
 - ▶ different measures e.g., mutual information, log-likelihood ratio – differ in how they balance observed and expected co-occurrence frequencies

Association measures: Mutual Information (MI)

	$word_1$	$word_2$	$f_{\sf obs}$	f_1	f_2
_	dog	small	855	33,338	490,580
	dog	domesticated	29	33,338	918

Association measures: Mutual Information (MI)

	$word_1$	$word_2$	$f_{\sf obs}$	f_1	f_2
_	dog	small	855	33,338	490,580
	dog	domesticated	29	33,338	918

Expected co-occurrence frequency:

$$f_{\text{exp}} = \frac{f_1 \cdot f_2}{N}$$

Association measures: Mutual Information (MI)

word	$_1$ word $_2$	$f_{\sf obs}$	f_1	f_2
dog	small	855	33,338	490,580
dog	domesticat	ed 29	33,338	918

Expected co-occurrence frequency:

$$f_{\text{exp}} = \frac{f_1 \cdot f_2}{N}$$

Mutual Information compares observed vs. expected frequency:

$$\mathsf{MI}(w_1, w_2) = \log_2 \frac{f_{\mathsf{obs}}}{f_{\mathsf{exp}}} = \log_2 \frac{N \cdot f_{\mathsf{obs}}}{f_1 \cdot f_2}$$

Association measures: Mutual Information (MI)

	$word_1$	$word_2$	$f_{\sf obs}$	f_1	f_2
_	dog	small	855	33,338	490,580
	dog	domesticated	29	33,338	918

Expected co-occurrence frequency:

$$f_{\text{exp}} = \frac{f_1 \cdot f_2}{N}$$

Mutual Information compares observed vs. expected frequency:

$$\mathsf{MI}(w_1, w_2) = \log_2 \frac{f_\mathsf{obs}}{f_\mathsf{exp}} = \log_2 \frac{N \cdot f_\mathsf{obs}}{f_1 \cdot f_2}$$

Disadvantage: MI overrates combinations of rare terms.

Other association measures

$word_1$	$word_2$	$f_{\sf obs}$	$f_{\sf exp}$	MI
dog	small	855	134.34	2.67
dog	domesticated	29	0.25	6.85
dog	sgjkj	1	0.00027	11.85

Other association measures

$word_1$	$word_2$	$f_{\sf obs}$	$f_{\sf exp}$	MI	local-MI	
dog	small	855	134.34	2.67	2282.88	
dog	domesticated	29	0.25	6.85	198.76	
dog	sgjkj	1	0.00027	11.85	11.85	

The log-likelihood ratio (Dunning 1993) has more complex form, but its "core" is known as local MI (Evert 2004).

local-MI(
$$w_1, w_2$$
) = $f_{\text{obs}} \cdot \text{MI}(w_1, w_2)$

Other association measures

$word_1$	$word_2$	$f_{\sf obs}$	$f_{\sf exp}$	MI	local-MI	t-score
dog	small	855	134.34	2.67	2282.88	24.64
dog	domesticated	29	0.25	6.85	198.76	5.34
dog	sgjkj	1	0.00027	11.85	11.85	1.00

The log-likelihood ratio (Dunning 1993) has more complex form, but its "core" is known as local MI (Evert 2004).

local-MI(
$$w_1, w_2$$
) = $f_{\text{obs}} \cdot \text{MI}(w_1, w_2)$

The t-score measure (Church and Hanks 1990) is popular in lexicography:

$$t\text{-score}(w_1, w_2) = \frac{f_{\text{obs}} - f_{\text{exp}}}{\sqrt{f_{\text{obs}}}}$$

Details & many more measures: http://www.collocations.de/

Overview of DSM parameters

Term-context vs. term-term matrix

$$\downarrow$$

Definition of terms & linguistic pre-processing

Size & type of context

Geometric vs. probabilistic interpretation

Feature scaling

Normalisation of rows and/or columns

Similarity / distance measure

Dimensionality reduction

Normalisation of row vectors

- geometric distances only make sense if vectors are normalised to unit length
- divide vector by its length:

$$\mathbf{x}/\|\mathbf{x}\|$$

- normalisation depends on distance measure!
- special case: scale to relative frequencies with

$$\|\mathbf{x}\|_1 = |x_1| + \cdots + |x_n|$$

→ probabilistic interpretation

Scaling of column vectors

 In statistical analysis and machine learning, features are usually centred and scaled so that

mean
$$\mu=0$$
 variance $\sigma^2=1$

- ▶ In DSM research, this step is less common for columns of M
 - centring is a prerequisite for certain dimensionality reduction and data analysis techniques (esp. PCA)
 - scaling may give too much weight to rare features
 - co-occurrence matrix no longer sparse after centring!

Scaling of column vectors

 In statistical analysis and machine learning, features are usually centred and scaled so that

mean
$$\mu=0$$
 variance $\sigma^2=1$

- ▶ In DSM research, this step is less common for columns of M
 - centring is a prerequisite for certain dimensionality reduction and data analysis techniques (esp. PCA)
 - scaling may give too much weight to rare features
 - co-occurrence matrix no longer sparse after centring!
- M cannot be row-normalised and column-scaled at the same time (result depends on ordering of the two steps)

Overview of DSM parameters

Term-context vs. term-term matrix

$$\Downarrow$$

Definition of terms & linguistic pre-processing

Size & type of context

Geometric vs. probabilistic interpretation

Feature scaling

Normalisation of rows and/or columns

Similarity / distance measure

Dimensionality reduction

- ▶ Distance between vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n \rightarrow (\text{dis})$ similarity
 - $\mathbf{u} = (u_1, \dots, u_n)$
 - $\mathbf{v} = (v_1, \ldots, v_n)$

- **Distance** between vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ → (dis)similarity
 - $ightharpoonup \mathbf{u} = (u_1, \ldots, u_n)$
 - $\mathbf{v} = (v_1, \ldots, v_n)$
- **Euclidean** distance $d_2(\mathbf{u}, \mathbf{v})$

$$d_2(\mathbf{u},\mathbf{v}) := \sqrt{(u_1 - v_1)^2 + \dots + (u_n - v_n)^2}$$

- ▶ Distance between vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n \rightarrow (\text{dis})$ similarity
 - $\mathbf{u} = (u_1, \ldots, u_n)$
 - $\mathbf{v} = (v_1, \dots, v_n)$
- **Euclidean** distance $d_2(\mathbf{u}, \mathbf{v})$
- "City block" Manhattan distance d₁ (u, v)

$$d_1(\mathbf{u},\mathbf{v}) := |u_1 - v_1| + \cdots + |u_n - v_n|$$

- **Distance** between vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ → (dis)similarity
 - $\mathbf{u} = (u_1, \ldots, u_n)$
 - $\mathbf{v} = (v_1, \dots, v_n)$
- **Euclidean** distance $d_2(\mathbf{u}, \mathbf{v})$
- "City block" Manhattan distance d₁ (u, v)
- ▶ Both are special cases of the Minkowski p-distance $d_p(\mathbf{u}, \mathbf{v})$ (for $p \in [1, \infty]$)

$$d_p(\mathbf{u}, \mathbf{v}) := (|u_1 - v_1|^p + \dots + |u_n - v_n|^p)^{1/p}$$

- ▶ Distance between vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n \rightarrow (\text{dis})$ similarity
 - $\mathbf{u} = (u_1, \ldots, u_n)$
 - $\mathbf{v} = (v_1, \dots, v_n)$
- **Euclidean** distance $d_2(\mathbf{u}, \mathbf{v})$
- "City block" Manhattan distance d₁ (u, v)
- ▶ Both are special cases of the Minkowski p-distance $d_p(\mathbf{u}, \mathbf{v})$ (for $p \in [1, \infty]$)

$$d_p(\mathbf{u}, \mathbf{v}) := (|u_1 - v_1|^p + \dots + |u_n - v_n|^p)^{1/p}$$

$$d_{\infty}(\mathbf{u}, \mathbf{v}) = \max\{|u_1 - v_1|, \dots, |u_n - v_n|\}$$

- ▶ Distance between vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n \rightarrow (\text{dis})$ similarity
 - $\mathbf{u} = (u_1, \ldots, u_n)$
 - $\mathbf{v} = (v_1, \dots, v_n)$
- **Euclidean** distance $d_2(\mathbf{u}, \mathbf{v})$
- "City block" Manhattan distance d₁ (u, v)
- Extension of p-distance $d_p(\mathbf{u}, \mathbf{v})$ (for $0 \le p \le 1$)

$$d_p(\mathbf{u}, \mathbf{v}) := |u_1 - v_1|^p + \dots + |u_n - v_n|^p$$
$$d_0(\mathbf{u}, \mathbf{v}) = \#\{i \mid u_i \neq v_i\}$$

- A metric is a general measure of the distance $d(\mathbf{u}, \mathbf{v})$ between points \mathbf{u} and \mathbf{v} , which satisfies the following axioms:
 - $d(\mathbf{u},\mathbf{v}) = d(\mathbf{v},\mathbf{u})$
 - $d(\mathbf{u},\mathbf{v}) > 0 \text{ for } \mathbf{u} \neq \mathbf{v}$
 - $d(\mathbf{u},\mathbf{u}) = 0$
 - ► $d(\mathbf{u}, \mathbf{w}) \le d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w})$ (triangle inequality)

- A metric is a general measure of the distance d (u, v) between points u and v, which satisfies the following axioms:
 - $d(\mathbf{u},\mathbf{v}) = d(\mathbf{v},\mathbf{u})$
 - $d(\mathbf{u}, \mathbf{v}) > 0$ for $\mathbf{u} \neq \mathbf{v}$
 - $d(\mathbf{u},\mathbf{u}) = 0$
 - ▶ $d(\mathbf{u}, \mathbf{w}) \le d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w})$ (triangle inequality)
- Metrics form a very broad class of distance measures, some of which do not fit in well with our geometric intuitions

- A metric is a general measure of the distance $d(\mathbf{u}, \mathbf{v})$ between points \mathbf{u} and \mathbf{v} , which satisfies the following axioms:
 - $d(\mathbf{u},\mathbf{v}) = d(\mathbf{v},\mathbf{u})$
 - $d(\mathbf{u}, \mathbf{v}) > 0$ for $\mathbf{u} \neq \mathbf{v}$
 - $d(\mathbf{u},\mathbf{u}) = 0$
 - ► $d(\mathbf{u}, \mathbf{w}) \le d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w})$ (triangle inequality)
- Metrics form a very broad class of distance measures, some of which do not fit in well with our geometric intuitions
- ► E.g., metric need not be translation-invariant

$$d(\mathbf{u} + \mathbf{x}, \mathbf{v} + \mathbf{x}) \neq d(\mathbf{u}, \mathbf{v})$$

- A metric is a general measure of the distance $d(\mathbf{u}, \mathbf{v})$ between points \mathbf{u} and \mathbf{v} , which satisfies the following axioms:
 - $d(\mathbf{u},\mathbf{v}) = d(\mathbf{v},\mathbf{u})$
 - $d(\mathbf{u},\mathbf{v}) > 0$ for $\mathbf{u} \neq \mathbf{v}$
 - $d(\mathbf{u},\mathbf{u}) = 0$
 - ► $d(\mathbf{u}, \mathbf{w}) \le d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w})$ (triangle inequality)
- Metrics form a very broad class of distance measures, some of which do not fit in well with our geometric intuitions
- ► E.g., metric need not be translation-invariant

$$d(\mathbf{u} + \mathbf{x}, \mathbf{v} + \mathbf{x}) \neq d(\mathbf{u}, \mathbf{v})$$

► Another unintuitive example is the discrete metric

$$d(\mathbf{u}, \mathbf{v}) = \begin{cases} 0 & \mathbf{u} = \mathbf{v} \\ 1 & \mathbf{u} \neq \mathbf{v} \end{cases}$$

Distance vs. norm

- ► Intuitively, distance $d(\mathbf{u}, \mathbf{v})$ should correspond to **length** $\|\mathbf{u} - \mathbf{v}\|$ of displacement vector $\mathbf{u} - \mathbf{v}$
 - \rightarrow $d(\mathbf{u}, \mathbf{v})$ is a metric
 - $\|\mathbf{u} \mathbf{v}\|$ is a **norm**
 - $\| \mathbf{u} \| = d(\mathbf{u}, \mathbf{0})$

Distance vs. norm

- Intuitively, distance d(u, v) should correspond to length ||u − v|| of displacement vector u − v
 - $\rightarrow d(\mathbf{u}, \mathbf{v})$ is a metric
 - $\|\mathbf{u} \mathbf{v}\|$ is a norm
 - $\|\mathbf{u}\| = d(\mathbf{u}, \mathbf{0})$
- Such a metric is always translation-invariant

Distance vs. norm

- Intuitively, distance $d(\mathbf{u}, \mathbf{v})$ should correspond to **length** $\|\mathbf{u} - \mathbf{v}\|$ of displacement vector $\mathbf{u} - \mathbf{v}$
 - \rightarrow $d(\mathbf{u}, \mathbf{v})$ is a metric
 - $\|\mathbf{u} \mathbf{v}\|$ is a norm
 - ▶ $\|\mathbf{u}\| = d(\mathbf{u}, \mathbf{0})$
- Such a metric is always translation-invariant

$$\|\mathbf{u}\|_{p} := (|u_{1}|^{p} + \cdots + |u_{n}|^{p})^{1/p}$$

Norm: a measure of length

- ► A general **norm** ||**u**|| for the length of a vector **u** must satisfy the following **axioms**:
 - ▶ $\|\mathbf{u}\| > 0$ for $\mathbf{u} \neq \mathbf{0}$
 - ▶ $\|\lambda \mathbf{u}\| = |\lambda| \cdot \|\mathbf{u}\|$ (homogeneity, not req'd for metric)
 - ▶ $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ (triangle inequality)

Norm: a measure of length

- ► A general **norm** ||**u**|| for the length of a vector **u** must satisfy the following **axioms**:
 - ▶ $\|u\| > 0$ for $u \neq 0$
 - ▶ $\|\lambda \mathbf{u}\| = |\lambda| \cdot \|\mathbf{u}\|$ (homogeneity, not req'd for metric)
 - ▶ $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ (triangle inequality)
- every norm defines a translation-invariant metric

$$d(\mathbf{u},\mathbf{v}) := \|\mathbf{u} - \mathbf{v}\|$$

Other distance measures

Information theory: Kullback-Leibler (KL) divergence for probability vectors (non-negative, ||x||₁ = 1)

$$D(\mathbf{u}\|\mathbf{v}) = \sum_{i=1}^n u_i \cdot \log_2 \frac{u_i}{v_i}$$

Other distance measures

Information theory: Kullback-Leibler (KL) divergence for probability vectors (non-negative, ||x||₁ = 1)

$$D(\mathbf{u}\|\mathbf{v}) = \sum_{i=1}^n u_i \cdot \log_2 \frac{u_i}{v_i}$$

- Properties of KL divergence
 - most appropriate in a probabilistic interpretation of M
 - ightharpoonup zeroes in $m {f v}$ without corresponding zeroes in $m {f u}$ are problematic
 - not symmetric, unlike geometric distance measures
 - ▶ alternatives: skew divergence, Jensen-Shannon divergence

Other distance measures

Information theory: Kullback-Leibler (KL) divergence for probability vectors (non-negative, ||x||₁ = 1)

$$D(\mathbf{u}\|\mathbf{v}) = \sum_{i=1}^n u_i \cdot \log_2 \frac{u_i}{v_i}$$

- Properties of KL divergence
 - most appropriate in a probabilistic interpretation of M
 - ightharpoonup zeroes in $m {f v}$ without corresponding zeroes in $m {f u}$ are problematic
 - not symmetric, unlike geometric distance measures
 - alternatives: skew divergence, Jensen-Shannon divergence
- ▶ A symmetric distance measure (Endres and Schindelin 2003)

$$D_{\mathbf{u}\mathbf{v}} = D(\mathbf{u}\|\mathbf{z}) + D(\mathbf{v}\|\mathbf{z})$$
 with $\mathbf{z} = \frac{\mathbf{u} + \mathbf{v}}{2}$

Similarity measures

▶ angle α between two vectors \mathbf{u} , \mathbf{v} is given by

$$\cos \alpha = \frac{\sum_{i=1}^{n} u_i \cdot v_i}{\sqrt{\sum_i u_i^2} \cdot \sqrt{\sum_i v_i^2}}$$
$$= \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\|_2 \cdot \|\mathbf{v}\|_2}$$

Similarity measures

▶ angle α between two vectors \mathbf{u} , \mathbf{v} is given by

$$\cos \alpha = \frac{\sum_{i=1}^{n} u_i \cdot v_i}{\sqrt{\sum_i u_i^2} \cdot \sqrt{\sum_i v_i^2}}$$
$$= \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\|_2 \cdot \|\mathbf{v}\|_2}$$

- cosine measure of similarity: cos α
 - ▶ $\cos \alpha = 1$ → collinear
 - ▶ $\cos \alpha = 0$ → orthogonal

Similarity measures

▶ angle α between two vectors \mathbf{u} , \mathbf{v} is given by

$$\cos \alpha = \frac{\sum_{i=1}^{n} u_i \cdot v_i}{\sqrt{\sum_i u_i^2} \cdot \sqrt{\sum_i v_i^2}}$$
$$= \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\|_2 \cdot \|\mathbf{v}\|_2}$$

- cosine measure of similarity: cos α
 - ▶ $\cos \alpha = 1$ → collinear
 - ▶ $\cos \alpha = 0$ → orthogonal
- ightharpoonup distance metric: α

Euclidean distance or cosine similarity?

Which is better, Euclidean distance or cosine similarity?

Euclidean distance or cosine similarity?

- Which is better, Euclidean distance or cosine similarity?
- ▶ They are equivalent: if vectors are normalised ($\|\mathbf{u}\|_2 = 1$), both lead to the same neighbour ranking

Euclidean distance or cosine similarity?

- Which is better, Euclidean distance or cosine similarity?
- ▶ They are equivalent: if vectors are normalised ($\|\mathbf{u}\|_2 = 1$), both lead to the same neighbour ranking

$$\begin{aligned} d_2\left(\mathbf{u}, \mathbf{v}\right) &= \sqrt{\|\mathbf{u} - \mathbf{v}\|_2} = \sqrt{\langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle} \\ &= \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle - 2\langle \mathbf{u}, \mathbf{v} \rangle} \\ &= \sqrt{\|\mathbf{u}\|_2 + \|\mathbf{v}\|_2 - 2\langle \mathbf{u}, \mathbf{v} \rangle} \\ &= \sqrt{2 - 2\cos\phi} \end{aligned}$$

Overview of DSM parameters

Term-context vs. term-term matrix

$$\Downarrow$$

Definition of terms & linguistic pre-processing

Size & type of context

Geometric vs. probabilistic interpretation

Feature scaling

Normalisation of rows and/or columns

Similarity / distance measure

Dimensionality reduction

Dimensionality reduction = model compression

- ➤ Co-occurrence matrix M is often unmanageably large and can be extremely sparse
 - ▶ Google Web1T5: 1M × 1M matrix with one trillion cells, of which less than 0.05% contain nonzero counts (Evert 2010)
- Compress matrix by reducing dimensionality (= rows)

Dimensionality reduction = model compression

- ➤ Co-occurrence matrix M is often unmanageably large and can be extremely sparse
 - ► Google Web1T5: 1M × 1M matrix with one trillion cells, of which less than 0.05% contain nonzero counts (Evert 2010)
- Compress matrix by reducing dimensionality (= rows)
 - ► Feature selection: columns with high frequency & variance
 - measured by entropy, chi-squared test, . . .
 - ▶ may select correlated (→ uninformative) dimensions
 - joint selection of multiple features is useful but expensive

Dimensionality reduction = model compression

- ➤ Co-occurrence matrix M is often unmanageably large and can be extremely sparse
 - ► Google Web1T5: 1M × 1M matrix with one trillion cells, of which less than 0.05% contain nonzero counts (Evert 2010)
- Compress matrix by reducing dimensionality (= rows)
 - ► Feature selection: columns with high frequency & variance
 - measured by entropy, chi-squared test, . . .
 - ▶ may select correlated (→ uninformative) dimensions
 - joint selection of multiple features is useful but expensive
 - Projection into (linear) subspace
 - principal component analysis (PCA)
 - independent component analysis (ICA)
 - random indexing (RI)
 - intuition: preserve distances between data points

Dimensionality reduction & latent dimensions

Landauer and Dumais (1997) claim that LSA dimensionality reduction (and related PCA technique) uncovers **latent** dimensions by exploiting correlations between features.

- Example: term-term matrix
- V-Obj cooc's extracted from BNC
 - ► targets = noun lemmas
 - features = verb lemmas
- feature scaling: association scores (modified log Dice coefficient)
- ▶ k = 111 nouns with f ≥ 20 (must have non-zero row vectors)
- ightharpoonup n = 2 dimensions: buy and sell

noun	buy	sell
bond	0.28	0.77
cigarette	-0.52	0.44
dress	0.51	-1.30
freehold	-0.01	-0.08
land	1.13	1.54
number	-1.05	-1.02
per	-0.35	-0.16
pub	-0.08	-1.30
share	1.92	1.99
system	-1.63	-0.70

Dimensionality reduction & latent dimensions

Motivating latent dimensions & subspace projection

- ► The **latent property** of being a commodity is "expressed" through associations with several verbs: *sell*, *buy*, *acquire*, . . .
- Consequence: these DSM dimensions will be correlated

Motivating latent dimensions & subspace projection

- ► The **latent property** of being a commodity is "expressed" through associations with several verbs: *sell*, *buy*, *acquire*, . . .
- Consequence: these DSM dimensions will be correlated
- Identify latent dimension by looking for strong correlations (or weaker correlations between large sets of features)
- Projection into subspace V of k < n latent dimensions as a "noise reduction" technique → LSA
- Assumptions of this approach:
 - "latent" distances in V are semantically meaningful
 - other "residual" dimensions represent chance co-occurrence patterns, often particular to the corpus underlying the DSM

Centering the data set

- Uncentered data set
- Centered data set
- Variance of centered data

Centering the data set

- Uncentered data set
- Centered data set
- Variance of centered data

Centering the data set

- Uncentered data set
- Centered data set
- Variance of centered data

$$\sigma^2 = \frac{1}{k-1} \sum_{i=1}^k ||\mathbf{x}^{(i)}||^2$$

The mathematics of projections

- Line through origin given by unit vector $\|\mathbf{v}\| = 1$
- For a point x and the corresponding unit vector x' = x/||x||, we have cos φ = ⟨x', v⟩

The mathematics of projections

- Line through origin given by unit vector $\|\mathbf{v}\| = 1$
- For a point \mathbf{x} and the corresponding unit vector $\mathbf{x}' = \mathbf{x}/\|\mathbf{x}\|$, we have $\cos \varphi = \langle \mathbf{x}', \mathbf{v} \rangle$

- ► Trigonometry: position of projected point on the line is $\|\mathbf{x}\| \cdot \cos \varphi = \|\mathbf{x}\| \cdot \langle \mathbf{x}', \mathbf{v} \rangle = \langle \mathbf{x}, \mathbf{v} \rangle$
- Preserved variance = one-dimensional variance on the line (note that data set is still centered after projection)

$$\sigma_{\mathbf{v}}^2 = \frac{1}{k-1} \sum_{i=1}^k \langle \mathbf{x}_i, \mathbf{v} \rangle^2$$

-2

PCA example

Outline

DSM parameters

A taxonomy of DSM parameters

Examples

Scaling up

Some well-known DSM examples

Latent Semantic Analysis (Landauer and Dumais 1997)

- term-context matrix with document context
- weighting: log term frequency and term entropy
- distance measure: cosine
- dimensionality reduction: SVD

Hyperspace Analogue to Language (Lund and Burgess 1996)

- term-term matrix with surface context
- structured (left/right) and distance-weighted frequency counts
- ▶ distance measure: Minkowski metric $(1 \le p \le 2)$
- dimensionality reduction: feature selection (high variance)

Some well-known DSM examples

Infomap NLP (Widdows 2004)

- term-term matrix with unstructured surface context
- ▶ weighting: none
- distance measure: cosine
- dimensionality reduction: SVD

Random Indexing (Karlgren and Sahlgren 2001)

- term-term matrix with unstructured surface context
- weighting: various methods
- distance measure: various methods
- ▶ dimensionality reduction: random indexing (RI)

Some well-known DSM examples

Dependency Vectors (Padó and Lapata 2007)

- term-term matrix with unstructured dependency context
- weighting: log-likelihood ratio
- distance measure: information-theoretic (Lin 1998)
- dimensionality reduction: none

Distributional Memory (Baroni and Lenci 2010)

- term-term matrix with structured and unstructered dependencies + knowledge patterns
- weighting: local-MI on type frequencies of link patterns
- distance measure: cosine
- ▶ dimensionality reduction: none

Outline

DSM parameters

A taxonomy of DSM parameters Examples

Scaling up

- So far, we have worked on small toy models
 - ▶ DSM matrix restricted to 2,000 5,000 rows and columns
 - ▶ small corpora (or dependency sets) can be processed within **R**

- So far, we have worked on small toy models
 - ▶ DSM matrix restricted to 2,000 5,000 rows and columns
 - small corpora (or dependency sets) can be processed within R
- Now we need to scale up to real world data sets
 - for most statistical models, more data are better data!
 - cf. success of Google-based NLP techniques (even if simplistic)

- So far, we have worked on small toy models
 - DSM matrix restricted to 2,000 5,000 rows and columns
 - small corpora (or dependency sets) can be processed within R
- Now we need to scale up to real world data sets
 - for most statistical models, more data are better data!
 - cf. success of Google-based NLP techniques (even if simplistic)
- Example 1: window-based DSM on BNC content words
 - ▶ 83,926 lemma types with $f \ge 10$
 - ▶ term-term matrix with $83,926 \cdot 83,926 = 7$ billion entries
 - standard representation requires 56 GB of RAM (8-byte floats)

- So far, we have worked on small toy models
 - DSM matrix restricted to 2,000 5,000 rows and columns
 - small corpora (or dependency sets) can be processed within R
- Now we need to scale up to real world data sets
 - for most statistical models, more data are better data!
 - cf. success of Google-based NLP techniques (even if simplistic)
- Example 1: window-based DSM on BNC content words
 - ▶ 83,926 lemma types with $f \ge 10$
 - ▶ term-term matrix with $83,926 \cdot 83,926 = 7$ billion entries
 - standard representation requires 56 GB of RAM (8-byte floats)
 - only 22.1 million non-zero entries (= 0.32%)

- So far, we have worked on small toy models
 - DSM matrix restricted to 2,000 5,000 rows and columns
 - small corpora (or dependency sets) can be processed within R
- Now we need to scale up to real world data sets
 - for most statistical models, more data are better data!
 - cf. success of Google-based NLP techniques (even if simplistic)
- Example 1: window-based DSM on BNC content words
 - ▶ 83,926 lemma types with $f \ge 10$
 - ▶ term-term matrix with $83,926 \cdot 83,926 = 7$ billion entries
 - standard representation requires 56 GB of RAM (8-byte floats)
 - ▶ only 22.1 million non-zero entries (= 0.32%)
- Example 2: Google Web 1T 5-grams (1 trillion words)
 - ▶ more than 1 million word types with $f \ge 2500$
 - term-term matrix with 1 trillion entries requires 8 TB RAM
 - ▶ only 400 million non-zero entries (= 0.04%)

Handling large data sets: three approaches

- 1. Sparse matrix representation
 - full DSM matrix does not fit into memory
 - but much smaller number of non-zero entries can be handled

Handling large data sets: three approaches

- 1. Sparse matrix representation
 - full DSM matrix does not fit into memory
 - but much smaller number of non-zero entries can be handled
- Feature selection
 - ▶ reduce DSM matrix to subset of columns (usu. 2,000 10,000)
 - select most frequent, salient, discriminative, ... features

Handling large data sets: three approaches

- 1. Sparse matrix representation
 - full DSM matrix does not fit into memory
 - but much smaller number of non-zero entries can be handled
- 2. Feature selection
 - ▶ reduce DSM matrix to subset of columns (usu. 2,000 10,000)
 - select most frequent, salient, discriminative, ... features
- 3. Dimensionality reduction
 - ▶ also reduces number of columns, but maps vectors to subspace
 - singular value decomposition (usu. ca. 300 dimensions)
 - ► random indexing (2,000 or more dimensions)
 - ▶ performed with external tools → R can handle reduced matrix

Sparse matrix representation

► Invented example of a **sparsely populated** DSM matrix

	eat	get	hear	kill	see	use
boat		59		•	39	23
cat				26	58	
cup		98	•			
dog	33		42		83	
knife			•			84
pig	9		•	27		

Sparse matrix representation

► Invented example of a **sparsely populated** DSM matrix

	eat	get	hear	kill	see	use
boat		59			39	23
cat				26	58	
cup		98	•			
dog	33		42		83	
knife			•			84
pig	9	•	•	27		

► Store only non-zero entries in compact sparse matrix format

row	col	value	row	col	value
1	2	59	4	1	33
1	5	39	4	3	42
1	6	23	4	5	83
2	4	26	5	6	84
2	5	58	6	1	9
3	2	98	6	4	27

- Compressed format: each row index (or column index) stored only once, followed by non-zero entries in this row (or column)
 - convention: column-major matrix (data stored by columns)

- Compressed format: each row index (or column index) stored only once, followed by non-zero entries in this row (or column)
 - convention: column-major matrix (data stored by columns)
- Specialised algorithms for sparse matrix algebra
 - especially matrix multiplication, solving linear systems, etc.
 - take care to avoid operations that create a dense matrix!

- Compressed format: each row index (or column index) stored only once, followed by non-zero entries in this row (or column)
 - convention: column-major matrix (data stored by columns)
- Specialised algorithms for sparse matrix algebra
 - especially matrix multiplication, solving linear systems, etc.
 - take care to avoid operations that create a dense matrix!
- ► R implementation: Matrix package (from CRAN)
 - can build sparse matrix from (row, column, value) table
 - unfortunately, no implementation of sparse SVD so far

- Compressed format: each row index (or column index) stored only once, followed by non-zero entries in this row (or column)
 - convention: column-major matrix (data stored by columns)
- Specialised algorithms for sparse matrix algebra
 - especially matrix multiplication, solving linear systems, etc.
 - take care to avoid operations that create a dense matrix!
- ► R implementation: Matrix package (from CRAN)
 - can build sparse matrix from (row, column, value) table
 - unfortunately, no implementation of sparse SVD so far
- Other software packages: Matlab, Octave (recent versions)

References I

- Baroni, Marco and Lenci, Alessandro (2010). Distributional Memory: A general framework for corpus-based semantics. Computational Linguistics, 36(4), 673-712.
- Blei, David M.; Ng, Andrew Y.; Jordan, Michael, I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993-1022.
- Church, Kenneth W. and Hanks, Patrick (1990). Word association norms, mutual information, and lexicography. Computational Linguistics, 16(1), 22–29.
- Dunning, Ted E. (1993). Accurate methods for the statistics of surprise and coincidence. Computational Linguistics, 19(1), 61–74.
- Endres, Dominik M. and Schindelin, Johannes E. (2003). A new metric for probability distributions. IEEE Transactions on Information Theory, 49(7), 1858–1860.
- Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations. Dissertation, Institut für maschinelle Sprachverarbeitung, University of Stuttgart.
- Evert, Stefan (2008). Corpora and collocations. In A. Lüdeling and M. Kytö (eds.), Corpus Linguistics. An International Handbook, chapter 58, pages 1212-1248. Mouton de Gruyter, Berlin, New York.

References II

- Evert, Stefan (2010). Google Web 1T5 n-grams made easy (but not for the computer). In *Proceedings of the 6th Web as Corpus Workshop (WAC-6)*, pages 32–40, Los Angeles, CA.
- Hoffmann, Thomas (1999). Probabilistic latent semantic analysis. In *Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI'99)*.
- Karlgren, Jussi and Sahlgren, Magnus (2001). From words to understanding. In Y. Uesaka, P. Kanerva, and H. Asoh (eds.), Foundations of Real-World Intelligence, chapter 294–308. CSLI Publications, Stanford.
- Landauer, Thomas K. and Dumais, Susan T. (1997). A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction and representation of knowledge. *Psychological Review*, 104(2), 211–240.
- Lin, Dekang (1998). An information-theoretic definition of similarity. In Proceedings of the 15th International Conference on Machine Learning (ICML-98), pages 296–304, Madison, WI.
- Lund, Kevin and Burgess, Curt (1996). Producing high-dimensional semantic spaces from lexical co-occurrence. *Behavior Research Methods, Instruments, & Computers*, **28**(2), 203–208.
- Padó, Sebastian and Lapata, Mirella (2007). Dependency-based construction of semantic space models. *Computational Linguistics*, **33**(2), 161–199.

References III

Rooth, Mats; Riezler, Stefan; Prescher, Detlef; Carroll, Glenn; Beil, Franz (1999). Inducing a semantically annotated lexicon via EM-based clustering. In *Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics*, pages 104–111.

Widdows, Dominic (2004). Geometry and Meaning. Number 172 in CSLI Lecture Notes. CSLI Publications, Stanford.