Number Theory

Homework 1: 2.2) 8 2.3) 2c, 2d, 4a

Kenny Roffo

Due February 1, 2016

8) Prove that no integer in the following sequence is a perfect square: 11, 111, 1111, 11111, ...

This sequence can be defined by a_i where $a_1 = 11$ and $a_{i+1} = a_i \times 10 + 1$. Let P(n) be the statement a_n is of the form 4k + 3. P(1) is true, since 11, is of the form 4k + 3 (k = 2). Now let $j \ge 1$ and assume P(j) to be true. Then $a_j = 4k + 3$ for some integer k. Thus we see

$$a_{j+1} = (4k+1) \cdot 10 + 1$$
$$= 40k + 8 + 3$$
$$= 4(10k+2) + 3$$

so a_{j+1} is of the form 4k+3, thus by mathematical induction every term of the sequence is of the form 4k+3. It was shown in class that all perfect squares are of the form either 4k or 4k+1, thus no number in the sequence is a perfect square. (This was shown by squaring the general forms 4k, 4k+1, 4k+2 and 4k+3, one of which any given number can be written as, and showing that the squares of these can only be of the form either 4k or 4k+1).

2c) Given integers a, b, c show a|b if and only if ac|bc, where $c \neq 0$.

Assume a|b. Then $a \neq 0$ and ax = b for some $x \in \mathbb{Z}$. Clearly (ax)c = (b)c, thus (ac)x = bc. Since neither a nor c are zero, ac is not zero, therefore ac|bc. Now assume ac|bc. Then (ac)y = bc for some $y \in \mathbb{Z}$. Dividing by c, we see ay = b. Since ac|bc, ac|bc, ac|bc, ac|bc, ac|bc, where ac|bc if and only if ac|bc, where ac|bc if and only if ac|bc, where ac|bc if ac|bc if and only if ac|bc, where ac|bc if ac|bc if and only if ac|bc if ac|bc

2d) Given integers a, b, c, d, show if a|b and c|d then ac|bd.

Assume a|b and c|d. Then ax = b and cy = d for integers x and y, and a and c are non-zero. We see

$$bd = (ax)(cy)$$
$$= (ac)(xy)$$

Thus ac|bd.

4a) For $n \ge 1$, use mathematical induction to establish that $8|5^{2n} + 7$.

Let P(n) be the statement $8|5^{2n}+7$. We see $5^{2(1)}+7=32$, which is divisible by 8 since 8(4)=32, so P(1) is true. Now let $k \geq 1$ and assume P(k) to be true. Then $8|5^{2k}+7$, so $8t=5^{2k}+7$ for some integer t. We see

$$(5^{2})8t = 5^{2} (5^{2k} + 7)$$

$$\implies 200t - 168 = 5^{2(k+1)} + 7$$

$$\implies 8 (25t - 21) = 5^{2(k+1)} + 7$$

Thus $8|5^{2(k+1)} + 7$, so P(k+1) is true! Therefore, by the principle of mathematical induction P(n) is true for all positive n, so for $n \ge 1$, $8|5^{2n} + 1$.