Занятие № 13

Пожарная безопасность

Цель работы

производственном корпусе имеется несколько помещений, ведутся работы, В которых имеющие Необходимо безопасность. пожарную различную паров ЛВЖ определить процентную концентрацию С (легковоспламеняющиеся жидкости) в воздухе, рассчитать избыточное давление взрыва паровоздушной смеси ΔV ЛВЖ, **W** - интенсивность испарения ЛВЖ, $\kappa \Gamma / M^2 \cdot c$.

Теоретическая часть

Пожар - это неконтролируемый процесс горения.

Взрыв - это освобождение большого количества энергии в ограниченном объёме и с ограниченным временем.

Вспышка - быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов.

Возгорание - возникновение горения под воздействием источника

зажигания.

Воспламенение - возгорание, сопровождающееся появлением пламени.

Самовозгорание - явление резкого увеличения скорости экзотермических реакций, приводящее к

возникновению горения вещества при отсутствии источника зажигания.

Рисунок 13.1. Схема деления, системы, виды пожарной безопасности

По степени горючести вещества делятся на: горючие (сгораемые), трудногорючие (трудносгораемые) и негорючие (несгораемые).

Поражающие факторы:

- 1. в случае пожара:
- воздействия огня;
- отравление дымом
- воздействие температуры;

- обугливание предметов и конструкций (ожог) особенно характерно для металлических конструкций;
- уничтожение всего сгораемого, в том числе смерть или трупов;
 - взрыв;
- утечка СДЯВ (сильнодействующие ядовитые вещества);
 - затопление помещений водой;
 - материальный ущерб.
 - 2. в случае взрыва:
 - световое излучение (ожог сетчатки глаза);
 - звук (лопнут барабанные перепонки);
 - ДР (разрыв внутренних органов);
 - осколочные поля (вторичные факторы);
- завалы и погребения (человек способен выжить 1 2 суток);
 - повышение температуры тела.

После воздействия поражающих факторов у человека возможны:

- ожоги дыхательных путей, приводящие к отёку лёгких;
 - отравление дымом;
 - ожоги;
 - переломы, ушибы, разрыв внутренних органов;
 - комбинированное воздействие.

Для возникновения взрывов и пожаров, необходимо и достаточно выполнить 3 условия:

- горючее вещество (дерево, Н₂, пропан и др.);
- окислитель;
- источник воспламенения (искра, реакция экзотермии).

Для предотвращения взрывов и пожаров выполняются следующие мероприятия:

Рисунок 13.2. Система профилактики пожаробезопасности

Задание предполагает выполнить следующие пункты:

Определить возможность воспламенения распространения паровоздушной смеси ЛВЖ в помещении объемом V свободным OT co внешнего источника ЛВЖ зажигания. Количество испарившегося принять равным: этанола - 3,2 бензола - 4,3 ацетона - 2,1 кг/м³.

- **2.** Определить, относится ли помещение со свободным объемом V к категории A, если в результате расчетной аварии произошел пролив ЛВЖ в количестве $M_{\rm ЛВЖ}$ на пол и его испарение в течении t часов.
- 3. Определить категорию пожарной опасности деревообрабатывающего участка площадью S, на котором одновременно находятся в обработке сосновая древесина массы Q и древесноволокнистые плиты массой P.
- **4.** Определить категорию пожарной опасности здания площадью $S_{3д}$ =2000 м², если в нем имеется одно помещение площадью S_A категории A, а остальные с площадями в пропорции х/у относятся к категориям Б и Д.

Исходные данные

Таблица 13.1.

Последняя цифра номера студенческого билета	0	1	2	3	4	5	6	7	8	9
ЛВЖ	Бензо	Этано	Ацето н	Этано	Ацето	Бензо	Бензо	Ацето	Этано	ьензо
η	1	1, 5	2	2,	3	3,	4	4, v	5	ک,
S , м ²	10	15	25 0	20 0	50	20 0	25 0	30 0	C7	30 0
t	Ο,	\vdash	1, 5	2	2,	3	y, v	4	2	—
$\mathbf{G_i}$ кг	10	20	30	40	50	09	70	15	25	35
S_A , M^2	50	09	70	80	06	01	11	77) ()	14 0
X		2	8	4	9	5	3	7	8	6

Таблица 13.2.

Предпоследняя цифра номера студенческого билета	0	1	2	3	4	5	9	7	8	6
V	20	09	70	80	06	0 0	11 0	12 0	13	14 0
G	1	2	1	4	2	3	1	4	5	12
V_{c_B}	111	12 0	13 0	14 0	15 0	16 0	17 0	18	19 0	20 0
K _H	5	1	2	3	4	5	4	3	2	1
$\mathbf{M}_{ extit{ЛВЖ}}$, кг	2	4	9	8	10	12	14	16	18	20
y		2	3	4	5	9	7	∞	6	10

Таблица 13.3.

ЛВЖ	Химичес кая формула и общая молярна я масса()	<i>р</i> лвж или <i>р</i> п, кг/м ³	Т всп, ОС	Максим альное давлени е взрыва, Ртах, кПа	Нижний концентрац ионный предел распростран ения, %	Р _H , кПа*
Ацето	(CH ₃) ₂ CO (58)	2,44	-19	875	2,2	24,54
Бензо	C ₆ H ₆ (78)	4,3	-11	006	1,2	16,03
Этано	CH ₃ C H ₂ OH (46)	1,94	12	865	3,1	7,97

$$S_{3J} = 2000 \text{ m}^2$$

Методика решения

1. Определить возможность воспламенения и распространения пламени паровоздушной смеси ЛВЖ в помещении со свободным объемом V от внешнего источника зажигания. Количество испарившегося ЛВЖ - G.

При решении задачи по п.1 необходимо определить процентную концентрацию паров ЛВЖ в воздухе С, %:

$$C = \frac{V_{II}}{V} \cdot 100\% \ (13.1.)$$

где V - свободный объем помещения

 V_{Π} - объем паров ЛВЖ:

$$V_{\Pi} = \frac{G}{\rho_{\Pi}} \qquad (13.2.)$$

где G - количество паров ЛВЖ, кг/м³,

 $\rho_{\rm II}$ - плотность паров ЛВЖ, кг/м³, берем из таблицы 13.3.

Сравните полученное значение С с нижним концентрационным пределом распространения пламени ЛВЖ (таблица 13.3.). Сделайте вывод о возможности воспламенения и распространения пламени паров ЛВЖ в данном помещении.

2. Определить, **относится ли помещение со свободным объемом** V **к категории A**, если в результате

расчетной аварии произошел пролив ацетона в количестве M на пол и его полное испарение в течении 1 часа.

Для решения п.2 задачи необходимо определить табличное значение температуры вспышки ЛВЖ (Твсп) (таблица 3) и рассчитать избыточное давление взрыва паровоздушной смеси ЛВЖ.

Избыточное давление взрыва кПа определяется по формуле:

$$\Delta P = (P_{\text{max}} - P_{\text{o}}) \frac{m \cdot Z \cdot 100}{V_{\text{cB}} \cdot \rho_{\text{JBW}} \cdot K_{\text{H}} \cdot C_{\text{cT}}}$$
 (13.3.)

где \mathbf{P}_{max} , - максимальное и начальное давление взрыва, кПа (таблица 13.3.). $\mathbf{P}_{\mathbf{0}}$ для всех вариантов принимается равным 101 кПа;

 $\mathbf{V}_{\mathbf{c}\mathbf{B}}$ - свободный объем помещения, м³;

m - масса паров ЛВЖ см. формулу 4);

рлвж - плотность паров ЛВЖ (таблица 13.3.);

 ${\bf K_H}$ - коэффициент, учитывающий не герметичность помещения;

 ${f Z}$ - коэффициент участия горючего во взрыве (Z=0,3 для ЛВЖ);

Масса паров ЛВЖ:

$$m = W \cdot F \cdot t$$
 (13.4.)

где ${\bf F}$ - площадь испарения ЛВЖ, м 2 (принимается равной

$$S_A$$
);

t - Время испарения, c;

W - интенсивность испарения ЛВЖ, кг/м² · c;

$$W = 10^{-6} \cdot \eta \cdot P_H \cdot \sqrt{M} \quad (13.5.)$$

где η - коэффицтент, учитывающий влияние скорости и температуры воздушного потока над поверхностью испарения.

Рн - давление насыщенных паров, кПа (таблица 13.3.);

М - молярная масса ЛВЖ (таблица 3);

Реальная концентрация паров ЛВЖ:

$$C_{CT} = \frac{100}{1 + 4,48 \cdot (n_c + \frac{n_H}{4} + \frac{n_0}{2})}$$
 (13.6.)

где \mathbf{n}_{C} , \mathbf{n}_{H} , \mathbf{n}_{O} - соответственно, число атомов углерода, водорода и кислорода в формуле ЛВЖ (таблица 3).

3. Величина удельной пожарной нагрузки определяется по формуле:

$$q = \frac{\sum_{i=1}^{n} G_i \cdot Q_i}{S}$$
 (13.7.)

где G_i - количество і-го материала = 2;

 ${f Q_i}$ - наименьшая теплота сгорания і-го материала (${f Q_{cocны}}$ - 13,86 Мдж/кг , ${f Q_{древ,плит}}$ - 17,2 Мдж/кг);

n- количество видов материала = 2.

S - площадь помещения пожарной нагрузки;

4. Определить процентное соотношение площади S_A категории A к общей площади здания по выражению:

$$\Delta S_s = \frac{S_A}{S} \cdot 100\% \quad (13.8.)$$

Определить площадь помещений, **не относящихся к** категории **A**:

$$S_{\Sigma} = S - S_A \quad (13.9.)$$

Площадь помещений, **относящихся к категории Б** можно определить из пропорции:

$$S_{\scriptscriptstyle B} = \frac{S_{\scriptscriptstyle \Sigma} \cdot x}{(x+y)} \quad (13.10.)$$

Наконец необходимо определить процентное соотношение помещений с категориями A и Б к общей площади здания:

$$\Delta S_{AB} = \frac{S_A + S_B}{S_{EJI}} \quad (13.11.)$$

Далее определить категорию пожарной опасности здания.

Рисунок 13.3. Автоматическая установка пожаротушения

Категории зданий по взрывопожарной и пожарной опасности

С целью профилактики все здания и сооружения делятся на несколько категорий: А, Б, В, Г, Д, Е.

4.1. Здание относится к категории A, если в нем суммарная площадь помещений категории A превышает 5 % площади всех помещений или 200 м2.

Допускается не относить здание к категории A, если суммарная площадь помещений категории A в здании не превышает 25 % суммарной площади всех размещенных в нем помещений (но не более 1000 м2), и эти помещения оборудуются установками автоматического пожаротушения.

4.2. Здание относится к категории Б, если одновременно выполнены два условия:

здание не относится к категории А;

суммарная площадь помещений категорий A и Б превышает 5 % суммарной площади всех помещений или 200 м2.

Допускается не относить здание к категории Б, если суммарная площадь помещений категорий А и Б в здании не превышает 25 % суммарной площади всех размещенных в нем помещений (но не более 1000 м2) и эти помещения оборудуются установками автоматического пожаротушения.

4.3. Здание относится к категории В, если одновременно выполнены два условия:

здание не относится к категориям А или Б;

суммарная площадь помещений категорий A, Б и В превышает 5 % (10%, если в здании отсутствуют помещения категорий A и Б) суммарной площади всех помещений.

Допускается не относить здание к категории В, если суммарная площадь помещений категорий А, Б и В в здании не превышает 25 % суммарной площади всех размещенных в нем помещений (но не более 3500 м2) и эти помещения оборудуются установками автоматического пожаротушения.

4.4. Здание относится к категории Г, если одновременно выполнены два условия:

здание не относится к категориям А, Б или В;

суммарная площадь помещений категорий A, Б, В и Г превышает 5 % суммарной площади всех помещений.

Допускается не относить знание к категории Г, если суммарная площадь помещений категорий А, Б, В и Г в здании не превышает 25 % суммарной площади всех размещенных в нем помещений (но не более 5000 м2) и помещения категорий А, Б, В оборудуются установками пожаротушения.

здание относится к категории Д, если оно не относится к категориям A, Б, В или Γ .

Рисунок 13.4. Автоматизированные системы

пожаротушения и дымоудаления

Категории помещений по взрывопожарной и пожарной опасности

Категория	Характеристика веществ и материалов,
помещения	находящихся (обращающихся) в помещении
A	Горючие газы, легковоспламеняющиеся
(взрывопожаро	жидкости с температурой вспышки не более 28°
опасная)	С в таком количестве, что могут образовывать
	взрывоопасные парогазовоздушные смеси, при
	воспламенении которых развивается расчетное
	избыточное давление взрыва в помещении,
	превышающее 5 кПа.
	Вещества и материалы, способные взрываться и
	гореть при взаимодействии с водой, кислородом
	воздуха или друг с другом в таком количестве,
	что расчетное избыточное давление взрыва в
	помещении превышает 5 кПа
Б	Горючие пыли или волокна,

(pagi ipagawaga	
(взрывопожаро	легковоспламеняющиеся жидкости с
опасная)	температурой вспышки более 28° С, горючие
	жидкости в таком количестве, что могут
	образовывать взрывоопасные пылевоздушные
	или паровоздушные смеси, при воспламенении
	которых развивается расчетное избыточное
	давление взрыва в помещении, превышающее 5 кПа
B1 - B4	Горючие и трудно горючие жидкости, твердые
(пожароопасны	горючие и трудно горючие вещества и
e)	материалы (в том числе пыли и волокна),
	вещества и материалы, способные при
	взаимодействии с водой, кислородом воздуха
	или друг с другом только гореть при условии,
	что помещения, в которых они имеются в
	наличии или обращаются, не относятся к
	категориям А или Б
Γ	Негорючие вещества и материалы в горячем,
	раскаленном или расплавленном состоянии,
	процесс обработки которых сопровождается
	выделением лучистой теплоты, искр и пламени;
	горючие газы, жидкости и твердые вещества,
	которые сжигаются или утилизируются в
	качестве топлива
Д	Негорючие вещества и материалы в холодном
	состоянии

Контрольные вопросы

- 1. Какие компоненты необходимы для возникновения и развития процесса горения?
 - 2. Что принято называть процессом горения?
 - 3. Что называют взрывом?
 - 4. Дайте определение "пожар"?

- 5. Чем температура вспышки горючей смеси отличается от температуры ее воспламенения?
- 6. На основании каких данных устанавливается категория помещения по взрывной и пожарной опасности?
- 7. Сколько существует классов взрывоопасных зон и на основании чего они устанавливаются?
 - 8. Какие существуют способы тушения пожаров?
 - 9. Перечислите типы средств тушения пожаров.
- 10. Какие средства тушения пожара могут быть использованы при возгорании электрооборудования, находящегося под напряжением?