大学物理实验报告

专业班级	_学号			评分
		实验一	材料杨氏模量的测量	
[目的]				
[原理]				

[数据记录和计算分析]

1. 1#样品的测量(厚金属)

悬臂梁厚度 d

(螺旋测微计零点读数:

mm)

直接读数(mm)			
修正后读数			

$$\overline{d} = ; \quad \sigma_{\overline{d}} =$$

截面宽度 b (mm)	砝码宽度 a (mm)	
悬臂长度 L (mm)	砝码质量 m (g)	

 $\sigma_L = \text{mm}; \qquad \sigma_b = \text{mm}; \qquad \sigma_m = \text{g}$

加载时各光斑位置

74H-1741.3 E	, , , , , , , , , , , , , , , ,									
砝码个数 n	0	1	2	3	4	5	6	7	8	9
竖直标尺读										
数 h _n (mm)										
水平标尺读										
数 x _n (mm)										
$\tan(\alpha-2n\theta)$										
$2n\theta$	0									

$$\tan(\alpha - 2n\theta) = x_n / h_n$$
, $2n\theta \approx \frac{\tan\alpha - \tan(\alpha - 2n\theta)}{1 + \tan\alpha \tan(\alpha - 2n\theta)}$

——对角度测量数据 $(2n\theta \sim n)$ 作线性拟合并作图(需附上直线拟合图),其斜率为单个砝 码对应的角度变化 2θ 。

$$2\theta =$$

$$2\theta = \qquad ; \quad \sigma_{2\theta} =$$

结果计算及误差估算:

$$E = \frac{12mg\left(L - a/2\right)^2}{bd^3(2\theta)} =$$
 (N/m²)

相对不确定度:
$$\frac{\sigma_E}{E} = \sqrt{\left(\frac{\sigma_m}{m}\right)^2 + \left(\frac{\sigma_b}{b}\right)^2 + \left(3\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_{2\theta}}{2\theta}\right)^2 + \left(2\frac{\sigma_L}{L - a/2}\right)^2} =$$

不确定度:
$$\sigma_E = \frac{\sigma_E}{E} \cdot E =$$

测量结果:
$$\begin{cases} E = & \pm & (N/m^2) \\ E_E = & \% \end{cases}$$

2. 2#样品的测量(薄金属)

样品成分:

悬臂梁厚度 d

(螺旋测微计零点读数:

mm)

直接读数(mm)			
修正后读数			

$$\overline{d}=$$
 ; $\sigma_{\overline{d}}=$

截面宽度 b (mm)	砝码宽度 a (mm)	
悬臂长度 L (mm)	砝码质量 m (g)	

 $\sigma_L =$ mm; $\sigma_b =$ mm; $\sigma_m =$ g

加载时各光斑位置

砝码个数 n	0	1	2	3	4	5	6	7	8	9
	U	1		3	4	3	U	/	O	7
竖直标尺读										
数 hn (mm)										
水平标尺读 数 <i>x_n</i> (mm)										
数 x _n (mm)										
$\tan(\alpha-2n\theta)$										
$2n\theta$	0									

$$\tan(\alpha - 2n\theta) = x_n / h_n$$
, $2n\theta \approx \frac{\tan\alpha - \tan(\alpha - 2n\theta)}{1 + \tan\alpha \tan(\alpha - 2n\theta)}$

——对角度测量数据 $(2n\theta \sim n)$ 作线性拟合并作图(需附上直线拟合图),其斜率为单个砝 码对应的角度变化 2θ :

$$2\theta = \qquad ; \quad \sigma_{2\theta} =$$

结果计算及误差估算:

$$E = \frac{12mg\left(L - a/2\right)^2}{bd^3(2\theta)} =$$
 (N/m²)

相对不确定度:
$$\frac{\sigma_E}{E} = \sqrt{\left(\frac{\sigma_m}{m}\right)^2 + \left(\frac{\sigma_b}{b}\right)^2 + \left(3\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_{2\theta}}{2\theta}\right)^2 + \left(2\frac{\sigma_L}{L - a/2}\right)^2} =$$

不确定度:
$$\sigma_E = \frac{\sigma_E}{E} \cdot E =$$

测量结果:
$$\begin{cases} E = & \pm & (N/m^2) \\ E_E = & \% \end{cases}$$

3. 3#样品的测量(非金属)

样品成分:

环境温度: ℃

下表中长度单位: mm

截面宽度 b	截面厚度 d		悬臂长度 L	
砝码宽度a	5个砝码。	质量 <i>m</i> (g)		

加载 5 个砝码后, 光斑位置读数随时间的变化:

时间 t (s)	0-	0+	20	40	80	160	320	640
竖直标尺读								
数 h _t (mm)								
水平标尺读								
数 x _t (mm)								
$\tan(\alpha_{0-}-2\theta)$								
2θ	0							
E								

$$\tan(\alpha_{0-} - 2\theta) = x_t / h_t, \quad 2\theta \approx \frac{\tan \alpha_{0-} - \tan(\alpha_{0-} - 2\theta)}{1 + \tan \alpha_{0-} \tan(\alpha_{0-} - 2\theta)}, \quad E = \frac{12mg(L - a/2)^2}{bd^3(2\theta)}$$

画出曲线 $E \sim t$ (需附图), 讨论其特征。

[思考题]

- 1. 在本实验中,如果两个样品的 E 值相差 10 倍,要求测量时标尺读数范围基本相同,应 如何选取两个样品的几何尺寸?
- 2. 试分析本实验中光杠杆的作用,并简单估算其放大倍数。