Flood Detection and Prediction Using Satellite Imagery and Machine Learning

DATA 270 – Project Presentation

Professor: Dr. Eduardo Chan San Jose State University

Saniya Lande, Shilpa Shivarudraiah, Iqra Bismi, Divya Nalam

(Project Group- 4)

Project Motivation & Needs

- Floods are the most frequently occurring natural disasters (46%) resulting in human suffering, human loss, property damage.
- People have suffered due to the lack of a proper flood management system which indicates the need for flood forecasting.
- To reduce vulnerabilities and loss of lives, flood forecasting is crucial, for which we are implementing machine learning algorithms to predict floods accurately.

Targeted Problem

- The flood prediction model is complex due to the consideration of various factors like geographical location, hydrology and human activities.
- Previous research paper review: Supervised Machine learning algorithms can face challenges in predictions due to complexity of the data, the amount of time required for computation.
- Goal To implement supervised as well as unsupervised machine learning models on satellite imagery, tidal, rainfall data to understand which method is more robust and gives better flood prediction accuracy.

Deliverables

- A machine learning model prototype being developed using SVM, Random Forest, Ensemble and K-means.
- Comparison of models for their accuracy to decide on which model performs better in predicting floods accurately in timely manner.

• Detailed report containing the project background, scope, literature survey, EDA visualizations, charts, figures describing the model and the technical aspects of

the project will be delivered.

Project Requirements

Functional Requirements

- The system should be able to predict a flood based on the available data immediately.
- It should generate alerts and forward them to the respective stakeholders.
- Regarding data, no legal or regulatory requirements needed as data is extracted from open sources.

Al Requirements

☐ <u>Support Vector Machine</u> Classifier

No assumptions about data, handles outliers.

- ☐ *Random Forest Classifier* Eliminates overfitting.
 - XGBoost Model Yorks well on large data

Works well on large datasets, eliminates overfitting.

☐ <u>K - Means Clustering</u>
Works with unlabelled data.

Data Requirements

- ☐ INSAT Images extracted with Python Script from IMD website.
 - https://mausam.imd.gov.in Contains data such as Visual, IR, time and water-vapor.
- ☐ Weather Data from OpenWeather API.
 - https://openweathermap.org
- ☐ Tidal Data such as height and state collected from MareaAPI https://api.marea.ooo/

Technology Survey - Comparison among different models

Models	Type of Data	Data pre-processing technique	Approach	Performance metrics
SVM	Historical Rainfall data (numeric)	SMOTE	Single SVM model	RSME 0.05 R ² 0.91
SVM-FA	Monthly river flow data (numeric)	Not Specified	SVM combined with Firefly algorithm	RSME 0.04 R ² 0.98
WSVM	Historical monthly, daily Rainfall data (numeric)	SMOTE	Hybrid Wavelet input to SVM model.	RSME 0.05 R ² 0.92
XGBoosting	hydrological data (numeric)	Normalization using Min Max Scaler	Single XGboosting model with learning rate 0.01	RMSE: 0.0089 R2: 0.9945
Random Forest	Sentinel-1 SAR data & Sentinel-2 optical data	Sentinel-1 preprocessing: DS1 & DS2 data, TOPSAR-split, S1 slice assembly,Radiometric Calibration, C2 matrix generation, Polarimetric Speckle Filter, Terrain Correction	Random Forest classifier with fused Sentinel -1 & Sentinel -2 data	Classification results obtained through images and further analyzed visually.
		Sentinel 2 preprocessing: DS3 & DS4 data, cloud masking		Fusing datasets yield most accurate results

Rand		Sample points collected through site visits, NDWI and sample points generated from Sentinel-2 satellite image	-	Random Forest algorithm implemented in Rstudio	97.57% overall accuracy and 95.14% Kappa coefficient
k-me	emental eans ering	Air Pollution dataset (dynamic in nature) of West Bengal, India for years 2009 and 2010	Removal of NaN values or other invalid data points	Incremental k-means clustering applied to means	Accuracy of approximately 83.3% achieved through the model
K Mi Clust	eans tering	Factors influencing low elevation like water inflow, etc. are considered and used.	Removal of NaN values or other invalid data points	K means used to categorize drought levels and fitting functions implemented to determine relationships between parameters (i.e. weights) and to find elevation though volume	Assumptions regarding the environment like flat lake surface and others are made initially. The model can be used for general estimations but not for technical or serious purposes

Literature Survey - Models summary

Previous papers Authors	Models	Type of Data	Data pre-processing technique	Performance metrics
Dai et al.	LSVM	Hydrological data captured from IoT devices	Flood intensity classification and K-fold cross validation	RSME = 0.3991 R ² = 0.9943
	QSVM			RSME = 0.3432 R ² = 0.9972
	RF			RSME = 0.1571 R ² = 0.9559
Prasad et al.	Random Forest Regressor	Rainfall level(numeric)	Used statistical methods to clean data	R2 = 1.00
Ghorpade et al.	Decision Tree	hydro data (numeric)	-	RMSE= 0.216; R2= 0.9945
Jain et al.	Deep Convolutional Neural Networks	MediaEval 2019 flood dataset-Sentinel-2 data (image)	-	F1 - 0.96 Kappa - 0.92
Moumtzidou et al.	Deep Neural Networks	Sentinel-2 data (image)	-	F-Score 62%

Tanim et al.	RF SVM	Data From road closure reports along with SAR images for flood detection	Image pre-processing done using SNAP tool for noise removal and filtering.	Precision ~ 0.5 Accuracy ~ 0.65 Precision ~ 0.85 Accuracy ~0.85
	MLC			Precision ~0.75 Accuracy ~0.82
	Unsupervised (CD, iso-clustering, fuzzy rules)			Precision ~ 0.8 Accuracy ~ 0.84
Razafipahatelo D. et al.	Digital Elevation Model (DEM), kernel k-means, non - linear clustering	SAR Images of flooded regions	-	Manual result = 807.63 ha Log Ratio in fs = 844.74 ha Ratio in fs = 1429.27 ha Ratio = 682 ha
Xu H. et al.	Urban flood inundation model, k-means clustering and improved entropy weight method	Information about river, rains and drainage, previous storm records and physical parameters like slope, distance from river etc,	Removal of invalid data	High risk zones overlap when compared with the references therefore making it a feasible approach (but limited by data provided).

Project Plan – Work Breakdown Structure

- The WBS has been made using Click up- Mind map and adheres to CRISP-DM methodology which involves six phases in successfully completing an ML project.
- Business Understanding: Motivation, Goals, Needs, Targeted Problem
- Data Understanding: Data requirement, Data collection approaches
- Data Preparation: Data cleaning, Data Transformation using Python
- Modeling: Build Machine learning models i.e., SVM, Random Forest, Ensemble, K-Means
- Evaluation: Assess the models using evaluation metrics like accuracy, recall, precision and F1 score
- Deployment: Deploy the machine learning model to end users

Pert Chart

Project Schedule – Task breakdown

Required Resources, Technology and Platform

Utility	Type of Resources	Tools used	Time Taken	Estimating the Cost
Data Source	DataSet	API (OpenWeather API, MareaAPI) IMD Website	1 month	Free
Local machine	Hardware	64 bit	4 months	500 USD
Data Pre-processing	Software	Pandas, Jupyter Notebook	2 months	Free
Machine Learning Framework	Software	Sklearn	2 months	Free
Visualization tool	SaaS	Tableau	2 months	Student License

Data Collection Process

Data Collected after regular interval of 15 minutes

Data Sources	Data collected	Duration	Data Format	Quantity of data
Open Weather API	Weather data	One month	JSON	1273 X 15
Marea API	Tidal data	One month	JSON	1273 X 15
Satellite images	IMD Website	One month	JPG	1270

Raw Datasets

Tidal data

```
API Server https://api.marea.ooo/v2
Authentication API Key (x-marea-api-token) in header
Response Status: 200
Took 209 milliseconds
RESPONSE RESPONSE HEADERS CURL
         state : HIGH IIDE ,
        "datetime": "2022-09-16T22:46:52+00:00"
        "timestamp": 1663387356,
       "height": -0.0419750423,
        "state": "LOW TIDE",
        "datetime": "2022-09-17T04:02:36+00:00"
        "timestamp": 1663406455,
       "height": 0.2059674117,
        "state": "HIGH TIDE",
        "datetime": "2022-09-17T09:20:55+00:00"
        "timestamp": 1663431293,
       "height": -0.4890664111,
```

disclaimer	status	latitude	longitude	origin	datums	timestamp	datetime	unit	timezone	datum	extremes	heights	source	copyrig
NOT SUITABLE FOR NAVIGATIONAL PURPOSES. Marea	200	76.26	9.94	{'latitude': 76.25, 'longitude': 9.9375, 'dist	{'LAT': -0.84, 'HAT': 0.752, 'MLLW': -0.475000	2022-10-26 08:00:18	2022-10-26 08:00:18+00:00	m	UTC	MSL	[{'timestamp': 1666787226, 'height': 0.5704027	[{'timestamp': 1666771218, 'height': -0.459390	FES2014	©202 Marea Generate usir AVISC Products.
NOT SUITABLE FOR NAVIGATIONAL PURPOSES. Marea	200	76.26	9.94	{'latitude': 76.25, 'longitude': 9.9375, 'dist	{'LAT': -0.84, 'HAT': 0.752, 'MLLW': -0.475000	2022-10-26 08:16:51	2022-10-26 08:16:51+00:00	m	UTC	MSL	[{'timestamp': 1666787226, 'height': 0.5704027	[{'timestamp': 1666772211, 'height': -0.388316	FES2014	©202 Marea Generate usir AVISC Products.
NOT SUITABLE FOR NAVIGATIONAL PURPOSES. Marea	200	76.26	9.94	{'latitude': 76.25, 'longitude': 9.9375, 'dist	{'LAT': -0.84, 'HAT': 0.752, 'MLLW': -0.475000	2022-10-26 08:31:51	2022-10-26 08:31:51+00:00	m	UTC	MSL	[{'timestamp': 1666787226, 'height': 0.5704027	[{'timestamp': 1666773111, 'height': -0.318326	FES2014	©202 Marea Generate usir AVISC Products.
NOT SUITABLE FOR NAVIGATIONAL PURPOSES. Marea	200	76.26	9.94	{'latitude': 76.25, 'longitude': 9.9375, 'dist	{'LAT': -0.84, 'HAT': 0.752, 'MLLW': -0.475000	2022-10-26 08:46:51	2022-10-26 08:46:51+00:00	m	UTC	MSL	[{'timestamp': 1666787226, 'height': 0.5704027	[{'timestamp': 1666774011, 'height': -0.244201	FES2014	©202 Marea Generate usir AVISC Products.
NOT SUITABLE FOR NAVIGATIONAL PURPOSES. Marea	200	76.26	9.94	{'latitude': 76.25, 'longitude': 9.9375, 'dist	{'LAT': -0.84, 'HAT': 0.752, 'MLLW': -0.475000	2022-10-26 09:01:51	2022-10-26 09:01:51+00:00	m	UTC	MSL	[{'timestamp': 1666787226, 'height': 0.5704027	[{'timestamp': 1666774911, 'height': -0.167119	FES2014	©202 Marea Generate usir AVISC Products.

1273 rows × 15 columns

13

Raw Datasets

Satellite images

Weather Data

	coord	weather	base	main	visibility	wind	clouds	dt	sys	timezone	id	name	cod	snow	rain
0	{'lon': 9.94, 'lat': 76.26}	[{'id': 804, 'main': 'Clouds', 'description':		{'temp': 271.89,	7077	{'speed': 4.85, 'deg': 87, 'gust': 4.71}	{'all': 100}	1666771218	{'sunrise': 1666774297, 'sunset': 1666790195}	3600	0		200	NaN	NaN
1	{'lon': 9.94, 'lat': 76.26}	[{'id': 804, 'main': 'Clouds', 'description':	stations	{'temp': 271.89,	7077	{'speed': 4.85, 'deg': 87, 'gust': 4.71}	{'all': 100}	1666772211	{'sunrise': 1666774297, 'sunset': 1666790195}	3600	0		200	NaN	NaN
2	{'lon': 9.94, 'lat': 76.26}	[{'id': 804, 'main': 'Clouds', 'description':		{'temp': 272.08,	10000	{'speed': 5.04, 'deg': 84, 'gust': 4.55}	{'all': 100}	1666773111	{'sunrise': 1666774297, 'sunset': 1666790195}	3600	0		200	NaN	NaN
3	{'lon': 9.94, 'lat': 76.26}	[{'id': 804, 'main': 'Clouds', 'description':	stations	{'temp': 272.08,	10000	{'speed': 5.04, 'deg': 84, 'gust': 4.55}	{'all': 100}	1666774011	{'sunrise': 1666774297, 'sunset': 1666790195}	3600	0		200	NaN	NaN
4	{'lon': 9.94, 'lat': 76.26}	[{'id': 804, 'main': 'Clouds', 'description':	stations	{'temp': 272.08,	10000	{'speed': 5.04, 'deg': 84, 'gust': 4.55}	{'all': 100}	1666774911	{'sunrise': 1666774297, 'sunset': 1666790195}	3600	0		200	NaN	NaN
1268	{'lon': 9.94, 'lat': 76.26}	[{'id': 804, 'main': 'Clouds', 'description':	stations	{'temp': 273.05, 'feels_like': 271.53, 'temp_m	10000	{'speed': 1.35, 'deg': 41, 'gust': 1.05}	{'all': 100}	1667924955	{'sunrise': 0, 'sunset': 0}	3600	0		200	NaN	NaN

1273 rows × 15 columns

Data Exploration

Distribution of humidity %

Distribution of tidal height

Data Pre-Processing

DATA270 Project Presentation

Data Integration and transformation

Data Integration

Thresholding to create target feature

Hot encoding

Data Normalization

Threshold condition: Probability of floods if Humidity > 90, tidal height > 0.6, Weather Description = moderate/light rain

		rain	humidity	cloudiness	tidal_height	pixel_count	tidal_state_RISING	broken_clouds	light_rain	moderate_rain	overcast_clouds	target
	0	0.0	0.173077	1.0	0.158979	0.071429	1.0	0	0.0	0.0	1.0	0
	1	0.0	0.173077	1.0	0.213084	0.035714	1.0	0	0.0	0.0	1.0	0
	2	0.0	0.096154	1.0	0.266363	0.035714	1.0	0	0.0	0.0	1.0	0
	3	0.0	0.096154	1.0	0.322790	0.035714	1.0	0	0.0	0.0	1.0	0
	4	0.0	0.096154	1.0	0.381467	0.017857	1.0	0	0.0	0.0	1.0	0
11	40	0.0	0.230769	1.0	0.468670	0.500000	0.0	0	0.0	0.0	1.0	0
114	41	0.0	0.230769	1.0	0.313749	0.500000	0.0	0	0.0	0.0	1.0	0
11	42	0.0	0.230769	1.0	0.267441	0.500000	0.0	0	0.0	0.0	1.0	0
11	43	0.0	0.230769	1.0	0.127954	0.500000	0.0	0	0.0	0.0	1.0	0
11	44	0.0	0.230769	1.0	0.093132	0.500000	0.0	0	0.0	0.0	1.0	0

1145 rows × 11 columns

Data Preparation

Time Series Splitting

80% - 20% Split

Imbalanced Dataset.
Hence SMOTE performed

3-fold time series Cross Validation

Testing Dataset – 20%

	rain	humidity	cloudiness	tidal_height	pixel_count	tidal_state_RISING	broken_clouds	light_rain	moderate_rain	overcast_clouds
916	0.0	0.903846	0.975	0.249399	0.303571	0.0	0	0.0	0.0	0.0
917	0.0	0.961538	0.975	0.223616	0.321429	0.0	0	0.0	0.0	0.0
918	0.0	0.961538	0.975	0.202388	0.321429	0.0	0	0.0	0.0	0.0
919	0.0	0.961538	0.975	0.175149	0.178571	0.0	0	0.0	0.0	0.0
920	0.0	0.865385	1.000	0.169679	0.107143	0.0	0	0.0	0.0	0.0

1140	0.0	0.230769	1.000	0.468670	0.500000	0.0	0	0.0	0.0	1.0
1141	0.0	0.230769	1.000	0.313749	0.500000	0.0	0	0.0	0.0	1.0
1142	0.0	0.230769	1.000	0.267441	0.500000	0.0	0	0.0	0.0	1.0
1143	0.0	0.230769	1.000	0.127954	0.500000	0.0	0	0.0	0.0	1.0
1144	0.0	0.230769	1.000	0.093132	0.500000	0.0	0	0.0	0.0	1.0
229 ro	ws ×	10 column	ıs							

Machine Learning Models

Support Vector Classifier

Random Forest Classifier

XGBoost Model K-Means Clustering

19

Model Implementation

Support Vector Classifier

Advantages

- SVC works well when the data is linearly separable
- It is effective in high dimensional spaces

Disadvantages

- SVC doesn't work well when the classes overlap i.e. when there is noise
- It is not efficient for large datasets

Justification

- Output is categorical which consist of two classes
- It is most widely used model in flood prediction as per previous research papers
- It is fast and efficient

Random Forest Classifier

Advantages

- It reduces overfitting in decision trees and helps to improve the accuracy
- It doesn't suffer from curse of dimensionality
- Normalizing of data is not required

Disadvantages

- Its computational power is high
- Due to ensemble of trees, It also suffers from interpretability
- It takes time in training the data

Justification

 As there is noise in the hydrology data, random forest model reduces the model complexity thus prevent overfitting

XGBoost Classifier

Advantages

- It prevents overfitting easily
- XGBoost performs very well on large dataset with not too many features

Disadvantages

- XGBoost does not perform well on unstructured and sparse data
- As gradient Boosting is very sensitive to outliers since each classifier is forced to fix the errors produced by the previous model

Justification

As target variable in hydrology data is mostly imbalanced,
 XGBoost model is efficient in such cases

K-Means Clustering

Advantages

- Scales to large data sets
- It is simple to implement and easily adapts to new examples

Disadvantages

- It is sensitive to outliers
- It suffers from curse of dimensionality
- Efficiency of the model depends on initial value of K i.e., number of clusters defined

Justification

As K-means clustering works well with unlabeled data, it can be used in flood prediction when target class is not defined

Model Evaluation and Conclusion

Random Forest Classifier									
	precision	recall	fl-score	support					
0	0.91	1.00	0.95	264					
1	1.00	0.79	0.88	126					
accuracy			0.93	390					
macro avg	0.95	0.89	0.92	390					
weighted avg	0.94	0.93	0.93	390					
,									

XGBoo	st Classifie precision	_	fl-score
0 1	0.92 1.00	1.00 0.82	0.96 0.90
accuracy macro avg weighted avg	0.96 0.95	0.91 0.94	0.94 0.93 0.94

SVC	precision	recall	fl-score	support
0 1	0.76 1.00	1.00 0.33	0.86 0.50	264 126
accuracy macro avg	0.88	0.67	0.78 0.68	390 390
weighted avg	0.84	0.78	0.75	390

K-Means Clustering						
	precision	recall	f1-score	support		
0	0.62	0.48	0.54	264		
1	0.26	0.39	0.34	126		
accuracy			0.45	390		
macro avg	0.44	0.43	0.43	390		
weighted avg	0.50	0.45	0.47	390		

References

- https://arxiv.org/pdf/1406.4756.pdf
- https://doi.org/10.1007/s44196-021-00023-y
- <u>https://doi.org/10.1016/j.ijdrr.2021.102154</u>
- https://doi.org/10.1109/iccike47802.2019.9004419
- <u>https://doi.org/10.1109/icscc51209.2021.9528099</u>
- https://doi.org/10.5194/isprs-annals-v-3-2020-609-2020
- https://doi.org/10.1145/3341105.3374023
- https://doi.org/10.5194/isprs-archives-xliii-b3-2020-641-2020
- https://doi.org/10.1016/j.eswa.2009.09.037
- https://doi.org/10.5281/zenodo.3702303
- https://doi.org/10.1016/j.autcon.2021.103916
- https://doi.org/10.1109/acit53391.2021.9677084
- https://doi.org/10.1007/s12665-011-1504-z
- https://doi.org/10.1109/smartgencon51891.2021.9645804
- https://doi.org/10.11591/ijai.v9.i1.pp73-80
- https://doi.org/10.22115/scce.2022.317761.1383
- https://doi.org/10.1145/3486626.3493432
- https://doi.org/10.1145/3531028.3531037
- https://doi.org/10.1109/CEC.2016.7743944
- <u>https://doi.org/10.3390/w14071140</u>
- https://doi.org/10.1109/JIOT.2020.3044966
- https://doi.org/10.1016/j.jhydrol.2018.06.06

Image Reference

- https://www.pgi.com/blog/2017/08/neuroscience-motivationincrease-motivation/
- https://daubejb.medium.com/are-you-anxious-at-the-start-of-the-project-discover-the-secret-simplicity-of-a-problem-statement-fee9cc268863
- https://www.istockphoto.com/photo/project-deliverables-are-shownon-the-business-photo-using-the-text-gm1343888857-422433567?phrase=deliverables
- https://thenounproject.com/

