

Data Science
Machine Learning

Intro to Machine Learning

Traditional Programming

Machine Learning

Beware — Google's AI is so smart it just taught itself to walk without any human help

How does it work?

Forward propagation: Vectorized implementation

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad \frac{z^{(2)}}{\uparrow \uparrow} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \\ z_3^{(2)} \end{bmatrix}$$

$$z^{(2)} = \Theta^{(1)} z a^{(1)}$$

$$a^{(2)} = g(z^{(2)})$$

$$Add a_0^{(2)} = 1.$$

$$z^{(3)} = \Theta^{(2)}a^{(2)}$$

$$h_{\Theta}(x) = a^{(3)} = g(z^{(3)})$$

PYTÖRCH

Figure 3: Bayesian RNN: (left) graphical model; (right) probabilistic program. The program has an unspecified number of time steps; it uses a symbolic for loop (tf.scan).

3.3 STOCHASTIC CONTROL FLOW AND MODEL PARALLELISM

Figure 4: Computational graph for a probabilistic program with stochastic control flow.

ML Tasks Broad Categories	Supervised	Unsupervised
Discrete	Classification Computer vision Image Classification Speech, handwriting recognition Drug discovery	Clustering K-means, mean-shift Large-scale clustering problem Hierarchical clustering, GMM
Continuous	Regression Computer vision Object Detection Linear, logistic regression	Reduction of Dimensionality PCA, LDA (Kernel) Density Estimation

Classification Regression

ML as a Data Science Tool

- Best to start with a large dataset
- Can be used as an exploratory tool (see unsupervised learning)
- Data Scientists often create and train models that are then used in production services
 - i.e. Google's Inception image classifier

conda install scikit-learn