

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NASIONALE SENIOR SERTIFIKAAT

GRAAD 12

WISKUNDE V2

FEBRUARIE/MAART 2013

MEMORANDUM

PUNTE: 150

Hierdie memorandum bestaan uit 21 bladsye.

NOTA:

- Indien `n kandidaat `n vraag TWEE keer beantwoord het, merk slegs die EERSTE poging.
- Indien `n kandidaat `n poging om `n vraag te beantwoord gekanselleer het en die vraag nie weer gedoen het nie, merk die gekanselleerde poging.
- Konstante akkuraatheid is van toepassing in **ALLE** aspekte van die merk memorandum.

VRAAG 1

1.1			Sp	reidiag	gram v	van w	visselk	coers	versu	ıs olie	prys			
	82													
	81	-	•											
	80													
	79													✓enige 4
	78													punte korrek
														geplot
	77													✓ enige 9
	76		j											punte korrek
	9 75 □													geplot
	5 74													✓ alle
	id 73					-	<u> </u>							punte korrek
	Oliebrys (in \$) 74													geplot
	71													
	70								•					
	69													
	68							•						
	67													
	66											·		
	65 6.	.7 6	.8 6	5.9 7	7 7.	.1 7	.2 7	'.3 T	 7.4	7.5	7.6	7.7	≕ 7.8	
		0					koers			7.0	7.0			(3)
1.2	Soos die	wisse	lkoers	s (R/\$)						lieprv	s (\$).			✓✓ rede
						()F							
1.2	Daar is `	n nega			lasie tu	issen	die w	isselk	oers e	en die	oliep	rys.		(2)
1.3	Gemidde	elde =	$\frac{852,6}{12}$	-										√ 852,6
		_	71,05											✓ 71,05
														(2)
1.4	Standaard afwyking is:					√ √ √ 4 ,09								
1.5	$\sigma = 4.09$ 2 standaa		wykin	os van	die ge	midd	elde o	emida	delde	= 71	05+ 2	(4 (19) -	_	(2) ✓ 79,23
1.5	79,23	nu ai	vv y KIII	55 van	are ge	iiiiuu	ciuc g	CIIIIU	aciuc	- / 1,·	0512	(+,02) -	_	✓ Des 2010
	Die publ	iek sa	l beso	rg wee	s in D	eseml	ber 20	10						(2)
														[11]

2.1	Variasiewydte van Peter se punte is $94 - 68 = 26$	✓ 94 – 68 ✓ 26	
		√ 26	
			(2)
2.2	Vuyani se minimum punte is 76	√ 76	
			(1)
2.3	Vuyani was meer konstant gedurende die jaar want die variasiewydte	✓ Vuyani	
	van sy punte is nader om die mediaan waarde gerangskik	✓ rede	
	OF die variasiewydte en die interkwartiel-wydte is kleiner as Peters.		(2)
			[5]

VRAAG 3

4.1	$y_2 - y_1$	
	$m_{AD} = \frac{y_2 - y_1}{x_2 - x_1}$	
		✓ substitusie
	$=\frac{7-(-3)}{1-(-4)}$	
	= 2	✓ 2
4.2	AD//BC	(2)
4.2		$\checkmark m_{AD} = 2$
	$m_{AD} = m_{BC} = 2$	✓ stel in
	$y - y_1 = m(x - x_1)$	formule
	y - (-8) = 2(x - (-2))	
	$\therefore y = 2x - 4$	$\checkmark y = 2x - 4$
4.3	By F: $y = 0$	(3)
	0 = 2x - 4	$\checkmark y = 0$
	x = 2	$\checkmark x = 2$
4.4	F(2;0) D is getransleer C volgens die reël:	(2)
7.7	$D(x; y) \to C(x+2; y-5)$	
	A moet ook getransleer word volgens die reël na B [/] .	$\checkmark x = 3$
	$\therefore A(1;7) \to B^{\prime}(3;2)$	$\checkmark y = 2$
	OF	(2)
	Or	
	$x_{B'} = -2 + (1+4) = 3$	$\checkmark x = 3$
	$y_{R'} = -8 + (7+3) = 5$	$\checkmark y = 2 \tag{2}$
1.5	<u> </u>	(2)
4.5	$m_{BC} = 2$	
	$\tan \theta = 2$	✓ 63,43°
	$\theta = 63,43^{\circ}$ F(2;0)	_
	$m_{DC} = \frac{-8 - (-3)}{-2 - (-4)} = -\frac{5}{2}$ $D(-4; -3)$ $C(-2: -8)$	$\checkmark \tan \beta = -\frac{5}{2}$
	C(-2; -8)	✓ 111,8°
	$\tan \beta = -\frac{5}{2}$, 111,0
	$\beta = 180^{\circ} - 68,20^{\circ} = 111,80^{\circ}$	
	$\alpha = 111,80^{\circ} - 63.43^{\circ} = 48,37^{\circ}$	✓ 48,37°
		(4)
	OF	

		T 1
	DC = $\sqrt{(-4+2)^2 + (-3+8)^2}$ = $\sqrt{29}$ CF = $\sqrt{(-2-2)^2 + (-8-0)^2}$ = $\sqrt{80}$ DF = $\sqrt{(2+4)^2 + (0+3)^2}$ = $\sqrt{45}$ $\cos \alpha = \frac{29 + 80 - 45}{2(\sqrt{29})(\sqrt{80})}$ = 0,6643 $\alpha = 48,37^\circ$	✓ Subst in cosformule ✓ cos α onderwerp ✓ 0,6643 ✓ 48,37° (4)
	OF	
	$DC = \sqrt{(-4+2)^2 + (-3+8)^2}$	
	$=\sqrt{29}$	
	$DB = \sqrt{(3+4)^2 + (2+3)^2}$	
	$=\sqrt{74}$	
	$BC = \sqrt{(3+2)^2 + (2+8)^2}$	✓Subst in cos-
	$=\sqrt{125}$	formule
	$\cos \alpha = \frac{29 + 125 - 74}{2(\sqrt{29})(\sqrt{125})}$	√cos α onderwerp
	2(\(\sigma 29\)(\(\sigma 123\)	✓0,6643
	$= 0.6643$ $\alpha = 48.37^{\circ}$	✓48,37°
4.6		(4) ✓ substitusie
	$DC = \sqrt{(-4+2)^2 + (-3+8)^2}$	in formule
	$=\sqrt{29}$ $CF = \sqrt{(2-2)^2 + (2-2)^2}$	$\sqrt{29}$
	$CF = \sqrt{(-2-2)^2 + (-8-0)^2}$	✓ substitusie in formule
	$=\sqrt{80}$	$\checkmark \sqrt{80}$
	Area $\triangle DCF = \frac{1}{2}.DC.CF.\sin \alpha$	
	2	✓ substitusie
	$=\frac{1}{2}(\sqrt{29})(\sqrt{80})\sin 48,37^{\circ}$	In die area
	=18 eenhede ²	reël ✓ 18
		(6)

Area $\triangle DCF$ = Area van reghoek – (1) – (2) – (3) = 48 - 9 - 5 - 16

= 18 vierkante eenheid

✓ reghoek en area

✓ verband tussen areas

$$\checkmark$$
 (1) = 9

$$\checkmark$$
(2) = 16

$$\checkmark$$
(3) = 5

✓18 eenhede² (6)

OF

Area CDF = Area CHF + Area CDGH - Area DGF

$$=\frac{1}{2} \times 4 \times 8 + 2 \times \frac{1}{2} (3 \times 8) - \frac{1}{2} \times 6 \times 3$$

$$=16+11-9$$

= 18 vierkante eenheid

✓ teken loodregte lyne

✓ verband tussen areas

√ 16

√ 11

√ 9

✓18vierkante eenheid

[19]

(6)

Wiskunde/V2 DBE/Feb.-Mar. 2013

VRAAG 5

5.1.1	$x^2 + y^2 + 2x + 6y + 2 = 0$		
	$x^2 + 2x + 1 + y^2 + 6y + 9 = -2 + 10$	$(x+1)^2 + (y+3)^2 = 8$	
	$(x+1)^2 + (y+3)^2 = 8$	$ (x+1) + (y+3) = 0$ $ \checkmark -1 $,
	M(-1; -3)	√ -3	
5.1.2			(3)
3.1.2	radius van sirkel $C_1 = \sqrt{8}$	$\sqrt{8}$	1)
5.2	$x^{2} + (x-2)^{2} + 2x + 6(x-2) + 2 = 0$	✓ substitusie	(1)
	$x^2 + x^2 - 4x + 4 + 2x + 6x - 12 + 2 = 0$		
	$2x^2 + 4x - 6 = 0$	✓ standaard vorm	
	$x^2 + 2x - 3 = 0$	Z 6.1.	
	(x+3)(x-1)=0	✓ faktore	
	$x = -3 \text{ or } x \neq 1$	✓ waarde van x	
	y = -3 - 2 = -5	✓ waarde van y	(5)
	$\therefore D(-3;-5)$	((5)
	OF		
	$(x+1)^2 + (y+3)^2 = 8$		
	subst. $y = x - 2$	✓ substitusie	
	$(x+1)^2 + (x-2+3)^2 = 8$	sassifiasie	
	$(x+1)^2 + (x+1)^2 = 8$		
	$x^2 + 2x - 3 = 0$	✓ standaard vorm	
	(x+3)(x-1)=0	✓ faktore	
	$x = -3 \text{ or } x \neq 1$	✓ waarde van <i>x</i>	
	y = -3 - 2 = -5	✓ waarde van y	
	OF		· ~ \
	$(x+1)^2 + (y+3)^2 = 8$	(.	(5)
	subst. $y = x - 2$	✓ substitusie	
	$(x+1)^2 + (x-2+3)^2 = 8$		
	$(x+1)^2 + (x+1)^2 = 8$		
	$(x+1)^2 = 4$	✓ vereenvoudiging	
	$x+1=\pm 2$	✓ vierkantswortetl van albei kante	
	$x = -3 \text{ or } x \neq 1$		
	y = -3 - 2 = -5	✓ waarde van x	
		✓ waarde van y	
	OF	(.	(5)

	PM maak `n 45° hoek met die x-as. $\sqrt{8} = \sqrt{2^2 + 2^2}$	$\checkmark \checkmark \sqrt{8} = \sqrt{2^2 + 2^2}$
	Dus:	✓ waarde van <i>x</i>
	$x_D = x_M - 2 = -1 - 2 = -3$	✓ waarde van y
	$y_D = -3 - 2 = -5$	(5)
	$y_D = -3 - 2 = -3$	
5.3	$MD \perp DB$ (raaklyn \perp radius)	✓ raaklyn ⊥
	$MB^2 = MD^2 + DB^2$ (Pythagoras)	radius
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	✓ substitusie
	$= (\sqrt{8})^2 + (4\sqrt{2})^2$	in Pythagoras
	= 40	
	MB is die radius van C ₂	
	$MB = \sqrt{40}$	$\sqrt{40}$
		(3)
5.4	$(x+1)^2 + (y+3)^2 = 40$	✓ LK
	(x+1) + (y+3) = 40	✓ RK
		(2)
5.5	Afstand van $(2\sqrt{5}; 0)$ na middelpunt	
		✓ substitusie in afstand
	$= \sqrt{(2\sqrt{5}+1)^2 + (0+3)^2}$	formule
	= 6,24	✓ 6,24
	$6,24 < 6,32 \left(\sqrt{40}\right)$	(6.24 + 6.22
	Afstand van $(2\sqrt{5}; 0)$ na middelpunt < radius van sirkel.	✓ 6,24 < 6,32
	$(2\sqrt{5};0)$ lê binne die sirkel.	✓ afleiding
	(2\sigma); (1) le diffine die sirkei.	(4)
		(+)
		[18]

Wiskunde/V2

6.1.1	A(-5;3)	√ – 1
0.1.1	A'(-5+4;3-3)=(-1;0)	✓ 0
	11 (3 7, 3 3) = (1, 0)	(2)
6.1.2	A'(-5;-3)	√ -5
		√ -3
		(2)
6.2.1	K'M' 15 3	$\checkmark \frac{K'M'}{KM}$ $\checkmark \frac{3}{2}$
	Skaal faktor van vergroting is $\frac{K'M'}{KM} = \frac{15}{10} = \frac{3}{2}$	KM
		, 3
		$\frac{\sqrt{2}}{2}$
	OF	
	$K(-4;2) \to K'(-6;3) = K'\left(\frac{3}{2} \times -4; \frac{3}{2} \times 2\right)$	
	$(-4,2) \rightarrow K (-0,3) = K \left(\frac{-x-4}{2}, \frac{-x+2}{2}\right)$	✓
	3	$\left(\frac{3}{4} \times 4 \cdot \frac{3}{4} \times 2\right)$
	Skaalfaktor is $\frac{3}{2}$	$\left(2^{^{\prime}},2^{^{\prime}}\right)$
	2	$\begin{pmatrix} \sqrt{3} \times -4; \frac{3}{2} \times 2 \end{pmatrix}$ $\sqrt{\frac{3}{2}}$
		$\frac{\sqrt{2}}{2}$
		(2)
6.2.2	(x,y) $(3,3)$	$\frac{\sqrt{3}}{2}x$ $\sqrt{\frac{3}{2}}y$
	$(x;y) \to \left(\frac{3}{2}x; \frac{3}{2}y\right)$	$\frac{\sqrt{2}x}{2}$
		3
		$\int \frac{\mathbf{v}}{2} \mathbf{y}$
		(2)
6.2.3	p/(3,2,2,3)	, 9
	$P'\left(\frac{3}{2}\times 3; 2\times \frac{3}{2}\right)$	$\sqrt{\frac{9}{2}}$ $\sqrt{3}$
	· · · · · · · · · · · · · · · · · · ·	✓ 3
	$=P'\left(\frac{9}{2};3\right)$	(2)
6.2.4		✓ ✓ <i>a</i> = 1
0.2.4	a=1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
6.2.5	K''(4;-2)	✓ 4 ✓ -2
	K (4, 2)	(2)
6.2.6	K'''K' = 5	$\checkmark K'''K' = 5$
	$\mathbf{K}^{\prime}\mathbf{M}^{\prime\prime\prime\prime}=15$	$✓ K^{/}M^{///} = 15$
	K W -13	
	$\frac{K'K'''}{K'M'''} = \frac{5}{15} = \frac{1}{3}$	$\checkmark \frac{1}{3}$
	K M 15 3	3
		(3)
		[17]

Wiskunde/V2 10 DBE/Feb.-Mar. 2013

VRAAG 7

7.1	$K^{\prime}(b;-a)$	✓ b
		✓ - a
7.0		(2)
7.2	$\mathbf{K}''(b\cos\theta - a\sin\theta; -a\cos\theta - b\sin\theta)$	$b\cos\theta - a\sin\theta$
	OF	✓
	$K''(a\cos(90+\theta)+b\sin(90^{\circ}+\theta);b\cos(90^{\circ}+\theta)-a\sin(90^{\circ}+\theta)$	$-a\cos\theta-b\sin\theta$
	$= K''(-a\sin\theta + b\cos\theta; -b\sin\theta - a\cos\theta)$	(2)
7.3	$T''(-(-4)\sin\theta + (-2)\cos\theta; -(-2)\sin\theta - (-4)\cos\theta)$	$\checkmark 4\sin\theta - 2\cos\theta$
	$= T'' (4\sin\theta - 2\cos\theta; 2\sin\theta + 4\cos\theta)$	$\checkmark 2\sin\theta + 4\cos\theta$
	OF	(2)
	OF.	$\checkmark 4\sin\theta - 2\cos\theta$
	$T''(-2\cos\theta - (-4)\sin\theta; -(-4)\cos\theta - (-2)\sin\theta)$	$\checkmark 2\sin\theta + 4\cos\theta$
	$= T''(-2\cos\theta + 4\sin\theta ; 4\cos\theta + 2\sin\theta)$	(2)
7.4	$2\sqrt{3} + 1 = 4\sin\theta - 2\cos\theta (1)$	✓ substitusie om
	$\sqrt{3} - 2 = 2\sin\theta + 4\cos\theta (2)$	vergelyking te
		vorm ✓ substitusie om
	$(2) \times 2: 2\sqrt{3} - 4 = 4\sin\theta + 8\cos\theta \dots (3)$	vergelyking te
	$(1) - (3): 5 = -10\cos\theta$	vorm
	$-\frac{1}{2} = \cos\theta$	√ 5 − 10 apg 0
	$\theta = 180^{\circ} - 60^{\circ} = 120^{\circ}$	$\checkmark 5 = -10\cos\theta$
	OF	$\sqrt{-\frac{1}{2}} = \cos\theta$
		✓ 120°
	$2\sqrt{3} + 1 = 4\sin\theta - 2\cos\theta \dots (1)$	(5)
	$\sqrt{3} - 2 = 2\sin\theta + 4\cos\theta \dots (2)$	
	(1) \times 2: $4\sqrt{3} + 2 = 8\sin\theta - 4\cos\theta$ (3)	✓ substitusie om
	$(2) + (3): 5\sqrt{3} = 10\sin\theta$	vergelyking te
		vorm ✓ substitusie om
	$\frac{\sqrt{3}}{2} = \sin \theta$	vergelyking te
	$\therefore \ \theta = 180^{\circ} - 60^{\circ} = 120^{\circ}$	vorm
		$\checkmark 5\sqrt{3} = 10\sin\theta$
		$\sqrt{3} = 10 \sin \theta$
		$\checkmark \frac{\sqrt{3}}{2} = \sin \theta$
	OF	✓ 120°
		(5)

$m_{OT} = \frac{1}{2} \Rightarrow \tan X \hat{O} T = \frac{1}{2}$ $X \hat{O} T = 206,565^{\circ}$ $m_{OT'} = \frac{\sqrt{3} - 2}{2\sqrt{3} + 1} \Rightarrow \tan X \hat{O} T'' = \frac{\sqrt{3} - 2}{2\sqrt{3} + 1} = -0,06$ $X \hat{O} T = -3,434^{\circ}$ $90^{\circ} + \theta = 209,99^{\circ} \approx 210^{\circ}$ $\theta = 120^{\circ}$	✓ $\tan X \hat{O} T = \frac{1}{2}$ ✓ 206.565° ✓ -0.06 ✓ -3.434° ✓ 120°
	V 120
OF	(5)
$(TT')^{2} = OT^{2} + (OT')^{2} - 2(OT)(OT') \cdot \cos(90^{\circ} + \theta)$ $40 + 20\sqrt{3} = 40 - 40 \cdot \cos(90^{\circ} + \theta)$ $\cos(90^{\circ} + \theta) = -\frac{\sqrt{3}}{2}$ $90^{\circ} + \theta = 150^{\circ}$ $\theta = 60^{\circ}$	$✓(TT')^{2}$ = $40 + 20\sqrt{3}$ ✓ substitusie in cos-reël ✓ vereenvoudiging ✓ 150° ✓ 60° (5) [11]

8.1	$1-\sin^2\theta+3-\cos^2\theta$	✓ vereenvoudiging
	$=4-(\sin^2\theta+\cos^2\theta)$	√ 3
	= 3	(2)
	OF	
	\mathbf{OF} $\cos^2\theta + 3 - \cos^2\theta$	✓ substitusie
	= 3	met identiteit
		✓ 3
8.2		(2) ✓ herskryf met
6.2	$\sqrt{4^{\sin 150^{\circ}}.2^{3\tan 225^{\circ}}}$	reduksie formules
	$= \sqrt{4^{\sin 30^{\circ}} \cdot 2^{3\tan 45^{\circ}}}$	✓ stel spesiale hoeke
	$=\sqrt{(2^2)^{\frac{1}{2}}.2^3}$	in ✓ vereenvoudiging
	$=\sqrt{(2^{-})^2 \cdot 2^{-}}$	vereenvoudiging
	$=\sqrt{16}$	√ 4
	=4	(4)
	OF	√ sin 150° − 1
	$\sin 150^\circ = \frac{1}{2}$	$\checkmark \sin 150^\circ = \frac{1}{2}$
	$ \tan 225^\circ = 1 $	$\checkmark \tan 225^\circ = 1$
	$\sqrt{4^{\sin 150^{\circ}} 2^{3 \tan 225^{\circ}}}$	
	$=\sqrt{4^{\frac{1}{2}}2^3}$	$\checkmark 4^{\frac{1}{2}} = 2$ $\checkmark 4$
	$=\sqrt{2.2^3}$	√ 4
	$=\sqrt{16}$	(4)
	= 4	
8.3	$LK = \frac{\cos^2 x(\sin^2 x + \cos^2 x)}{\cos^2 x + \cos^2 x}$	✓ faktorisering
	$1-\sin x$	√ 1
	$=\frac{\cos^2 x.(1)}{1}$	
	$1 - \sin x$	
	$=\frac{(1-\sin^2 x)}{1-\sin x}$	$\sqrt{1-\sin^2 x}$
	$=\frac{(x+\sin x)(x-\sin x)}{1-\sin x}$	✓ faktore
	$=1+\sin x$	
	=RK	(4)

8.4	$\cos 3\theta$		
	$=\cos(2\theta+\theta)$		
	$=\cos 2\theta . \cos \theta - \sin 2\theta . \sin \theta$	✓ uitbreiding	
	$= (2\cos^2\theta - 1).\cos\theta - 2\sin\theta.\cos\theta.\sin\theta$	$\checkmark 2\cos^2\theta - 1$	
	$=2\cos^3\theta-\cos\theta-2\sin^2\theta.\cos\theta$	$\checkmark 2\sin\theta.\cos\theta$	
	$= 2\cos^3\theta - \cos\theta - 2(1-\cos^2\theta).\cos\theta$	$\sqrt{1-\cos^2\theta}$	
	$=2\cos^3\theta-\cos\theta-2\cos\theta+2\cos^3\theta$	1-608 0	
	$=4\cos^3\theta-3\cos\theta$		
0.7			(4)
8.5	$\cos 3\theta = 4\cos^3\theta - 3\cos\theta$	(0.200	
	$\cos 3(20^\circ) = 4\cos^3(20^\circ) - 3\cos(20^\circ)$	$\checkmark \theta = 20^{\circ}$	
	1	$\checkmark \theta = 20^{\circ}$ $\checkmark \cos 60^{\circ} = \frac{1}{2}$	
	$\frac{1}{2} = 4x^3 - 3x$	2	
	$8x^3 - 6x - 1 = 0$		(2)
			[16]

Wiskunde/V2 14 DBE/Feb.–Mar. 2013

VRAAG9

9.1	cos 160°. tan 200°	
7.1		
	$2\sin(-10^\circ)$	✓ -cos 20°
	$=\frac{(-\cos 20^{\circ})(\tan 20^{\circ})}{2(-\sin 10^{\circ})}$	✓ tan 20°
		✓ - sin 10°
	$(-\cos 20^\circ) \left(\frac{\sin 20^\circ}{\cos 20^\circ} \right)$	
	· = 	$\sqrt{\frac{\sin 20^{\circ}}{\cos 20^{\circ}}}$
	$-2\sin 10^{\circ}$	cos 20°
	$=\frac{2\sin 10^{\circ}\cos 10^{\circ}}{\cos 10^{\circ}}$	2 sin 10° cos 10°
	2 sin 10°	251110 05510
	$=\cos 10^{\circ}$	✓ cos10°
0.2.1	IV 222(11 459) 222(11 459)	(6)
9.2.1	$LK = \cos(x + 45^{\circ}) \cdot \cos(x - 45^{\circ})$	✓ brei uit
	$= (\cos x \cdot \cos 45^\circ - \sin x \sin 45^\circ)(\cos x \cos 45^\circ + \sin x \sin 45^\circ)$	$cos(x+45^\circ)$
	$= \cos^2 x \cdot \cos^2 45^\circ - \sin^2 x \cdot \sin^2 45^\circ$	
	$=\cos^2 x \left(\frac{\sqrt{2}}{2}\right)^2 - \sin^2 \left(\frac{\sqrt{2}}{2}\right)^2 \text{or} \left[\cos^2 x \left(\frac{1}{\sqrt{2}}\right)^2 - \sin^2 x \left(\frac{1}{\sqrt{2}}\right)^2\right]$	✓ brei uit
	$=\cos x\left(\frac{1}{2}\right) - \sin \left(\frac{1}{2}\right) \text{or} \cos x\left(\frac{1}{\sqrt{2}}\right) - \sin x\left(\frac{1}{\sqrt{2}}\right)$	$\cos(x-45^\circ)$
		✓ stel in
	$= \frac{1}{2}\cos^2 x - \frac{1}{2}\sin^2 x$	spesiale hoeke
	$=\frac{1}{2}(\cos^2 x - \sin^2 x)$	
	$=\frac{1}{2}\cos 2x$	vereenvoudiging
	$-\frac{1}{2}\cos 2x$, ereen , suranging
	OF	(4)
	Or	(4)
	$2\cos\alpha\cos\beta = \cos(\alpha+\beta) + \cos(\alpha-\beta)$	
	$\frac{1}{2}\left(\cos(\alpha+\beta)+\cos(\alpha-\beta)\right)$	✓✓ lei identiteit
	$\cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha + \beta) + \cos(\alpha - \beta))$	af
	Let $\alpha = x + 45^{\circ}$ and $\beta = x - 45^{\circ}$	
	$\therefore \cos(x+45^\circ)\cos(x-45^\circ)$	
	$= \frac{1}{2} \left(\cos((x+45^{\circ} + x - 45^{\circ}) + \cos(x+45^{\circ} - x + 45^{\circ}) \right)$	
	$\frac{(\cos((x+43^{2}+x-43^{2})+\cos(x+43^{2}-x+43^{2}))}{2}$	✓ substitusie
	$=\frac{1}{2}(\cos 2x + \cos 90^\circ)$	√
	2 (332)	vereenvoudiging
	$=\frac{1}{2}\cos 2x$	
	$\frac{1}{2}$	(4)
		(4)
1		

9.2.2	$\cos(x+45^\circ)\cos(x-45^\circ)$ het `n minimum waar $\frac{1}{2}\cos 2x$ `n minimum	
	het.	
	Die minimum waarde van $\cos 2x$ is -1	✓ minimum waarde van −1
	$\cos 2x = -1$	
	$2x = 180^{\circ}$	$\checkmark 2x = 180^{\circ}$
	$x = 90^{\circ}$	$\checkmark 2x = 180^{\circ}$ $\checkmark x = 90^{\circ}$
		(3)
		[13]

10.1	Waardeversameling = $[-1; 1]$	✓ [-1 ; 1]	
			(2)
10.2	$f\left(\frac{3}{2}x\right) = \sin 2\left(\frac{3}{2}x\right)$	$\checkmark \sin 3x$	
	$=\sin 3x$		
	$\therefore \text{ Periode} = \frac{360^{\circ}}{3} = 120^{\circ}$	✓120°	
	OF		(2)
	$f\left(\frac{3}{2}x\right) = \sin 2\left(\frac{3}{2}x\right)$ $= \sin 3x$ $= \sin(3x + 360^{\circ})$	$\checkmark \sin 3x$	
	$= \sin 3(x + 120^{\circ})$ $\therefore \text{ Periode} = 120^{\circ}$	✓120°	(2)

Wiskunde/V2 16 DBE/Feb.–Mar. 2013

10.2		
10.3		
	1.5	
	f (30°; 1)	
	0,87	
	0.5 (90°; 0,5)	(
	-180 -120 -60 60	✓ x afsnitte ✓ ✓ draaipunte
	-180	✓ vorm
	-180°; -0.87)	VOIII
]		
	(-150°; -1) g	
	-1.5	(4)
10.4	$(-180^{\circ}; -90^{\circ}) \ of \ (-60^{\circ}; 0^{\circ})$	✓>-180°
	OF	✓ < -90°
		✓ >-60°
	$-180^{\circ} < x < -90^{\circ} \ of \ -60^{\circ} < x < 0^{\circ}$	✓ <0°
10.5	sin 2(+ 20%)	(4)
10.5	$y = \sin 2(x + 30^\circ)$ ∴ translasie van 30° na links	✓ translasie 30° ✓ na links
	transfasie van 50 na miks	(2)
10.6	$\sin 2x = \cos(x - 30^\circ)$	✓ gebruik ko-
	$\sin 2x = \sin[90^{\circ} - (x - 30^{\circ})]$	funksie
	$=\sin(120^{\circ}-x)$	✓ 2 1200 2 000 I
	$-\sin(120^{\circ} - x)$ $2x = 120^{\circ} - x + 360^{\circ}k; k \in \mathbb{Z}$ $2x = 180^{\circ} - (120^{\circ} - x) + 360^{\circ}k$	$2x = 120^{\circ} - x + 360^{\circ}k$
	$3x = 120^{\circ} + 360^{\circ}k$ of $2x - x = 60^{\circ} + 360^{\circ}k$	$\checkmark x = 40^{\circ} + 120^{\circ}k$
		$2x = 180^{\circ} - (120^{\circ} - x)$
	$x = 40^{\circ} + 120^{\circ}k; k \in \mathbb{Z}$ $x = 60^{\circ} + 360^{\circ}k; k \in \mathbb{Z}$	+360°k
		$\checkmark x = 60^{\circ} + 360^{\circ}k$
		$\checkmark k \in Z$
	OF	(6)
	$\sin 2x = \cos(x - 30^\circ)$	cos(90° - r) -
	$\cos(90^\circ - 2x) = \cos(x - 30^\circ)$	$ \cos(90^\circ - x) = \cos(x - 30^\circ) $
	$90^{\circ} - 2x = x - 30^{\circ} + 360^{\circ}k$ or $90^{\circ} - 2x = 360^{\circ} - (x - 30^{\circ}) + 360^{\circ}k$	
	$-3x = -120^{\circ} + 360^{\circ}k \qquad -x = 300^{\circ} + 360^{\circ}k$	$\sqrt{90^{\circ} - 2x} = x - 30^{\circ}$
	$x = 40^{\circ} - 120^{\circ}k; k \in \mathbb{Z}$ $x = -300^{\circ} - 360^{\circ}k; k \in \mathbb{Z}$	+360°k
		$\checkmark x = 40^{\circ} - 120^{\circ}k$
	$\therefore x = 40^{\circ} + 120^{\circ}k \text{ of } x = 60^{\circ} + 360^{\circ}k \text{ ; } k \in \mathbb{Z}$	$90^{\circ} - 2x = 360^{\circ}$
		$-(x-30^{\circ})+360^{\circ}k$
		-(x-30)+300 k
		$x = -300^{\circ} - 360^{\circ}k$
		$\checkmark k \in Z$
		(6)
		[20]

Wiskunde/V2 17 DBE/Feb.–Mar. 2013

VRAAG 11

11.1	A D	A D
11.1	$\frac{AB}{r} = \sin 2x$	$\checkmark \frac{AB}{r} = \sin 2x$
	$AB = r \sin 2x$	$\checkmark AB = r \sin 2x$
11.2	$A\hat{K}C = 90^{\circ} + x$	$\checkmark A\hat{K}C = 90^{\circ} + x $ (2)
		(1)
11.3		
	C	✓ sin reël
		✓ substitusie
		• substitusie
		/ 1 ATZ 1
		✓ maak AK onderwerp van die formule
	$B = 90^{\circ} - x \times 90^{\circ} + x$	$\checkmark \cos x$
	IX.	
	In ΔAKC:	
	$\frac{\sin A\hat{K}C}{AC} = \frac{\sin A\hat{C}K}{AK}$	
	$\frac{\sin(90^\circ + x)}{r} = \frac{\sin x}{AK}$	
	$AK = \frac{r \sin x}{\sin(90^\circ + x)} = \frac{r \sin x}{\cos x}$	
	$\sin(90^\circ + x) \cos x$	
	AK 2	
	$\frac{AK}{AB} = \frac{2}{3}$	
	$\left(\frac{r\sin x}{x}\right)$	
	$\frac{(\cos x)}{\sin 2} = \frac{2}{3}$	
	$r \sin 2x = 3$ $\sin x$	
		✓ 2sinx.cosx
	$2\sin x \cos x = 3$	V ZSIIIX.COSX
	$\frac{\sin x}{\cos x} \times \frac{1}{2\sin x \cos x} = \frac{2}{3}$	
		$\sqrt{\frac{1}{2\cos^2 \pi}}$
	$\frac{1}{2\cos^2 x} = \frac{2}{3}$	2 COS X
	$4\cos^2 x = 3$	$\checkmark \frac{1}{2\cos^2 x}$ $\checkmark \cos x = \frac{\sqrt{3}}{2}$
	$\cos x = \frac{\sqrt{3}}{2}$	2
	$\frac{\cos x - \frac{1}{2}}{2}$	✓ <i>x</i> = 30°
	$x = 30^{\circ}$	(8)
	Ur Ur	

Gebruik die sin-formule in ΔCBK en ΔCKA :

Secondary discrete Sin-Torrindre in
$$\triangle CBK$$
 of $\triangle CKA$.

$$\frac{\sin x}{BK} = \frac{\sin(90^{\circ} - x)}{BC} \quad \text{en} \quad \frac{\sin x}{KA} = \frac{\sin(90^{\circ} + x)}{AC}$$

$$\therefore \frac{BK}{BC} = \frac{KA}{AC}$$

$$\therefore \frac{1}{BC} = \frac{2}{r}$$

$$\therefore BC = \frac{1}{2}r$$

$$\therefore \cos 2x = \frac{BC}{AC} = \frac{\frac{1}{2}r}{r} = \frac{1}{2}$$

$$\therefore 2x = 60^{\circ}$$

$$\therefore x = 30^{\circ}$$

$$\triangle CBK$$
: $KC = \frac{c}{\sin x}$

$$\Delta CKA: \quad \frac{\sin x}{2c} = \frac{\sin(90^\circ - 2x)}{KC} = \frac{\sin(90^\circ - 2x) \cdot \sin x}{c}$$

$$\therefore \sin(90^\circ - 2x) = \frac{1}{2} = \sin 30^\circ$$

$$\therefore 90^{\circ} - 2x = 30^{\circ}$$
$$x = 30^{\circ}$$

$$\checkmark \frac{\sin x}{BK} = \frac{\sin(90^\circ - x)}{BC}$$

$$\checkmark \frac{\sin x}{KA} = \frac{\sin(90^\circ + x)}{AC}$$

$$\checkmark \frac{BK}{BC} = \frac{KA}{AC}$$

$$\checkmark \frac{1}{BC} = \frac{2}{r}$$

$$\checkmark BC = \frac{1}{2}r$$

$$\checkmark \cos 2x = \frac{1}{2}$$

$$\checkmark 2x = 60^{\circ}$$

(8)

$$\checkmark x = 30^{\circ}$$

 \checkmark KC = $\frac{c}{\sin x}$

$$\checkmark \frac{\sin x}{2c} = \frac{\sin(90^\circ - 2x)}{KC}$$

✓✓ substitusie

✓✓
$$\sin (90^{\circ} - 2x) = \frac{1}{2}$$

$$\checkmark$$
90° - 2 $x = 30°$

$$\checkmark x = 30^{\circ}$$

Kopiereg voorbehou

Blaai om asseblief

19

(8)

ΔCBK:

$$\sin 2x = \frac{3c}{r} = 2\sin x \cdot \cos x$$

$$\therefore r \sin x = \frac{3c}{2\cos x} \dots (1)$$

 $\checkmark \sin 2x = \frac{3c}{r}$

$$\checkmark 2 \sin x . \cos x$$

$$\checkmark r \sin x = \frac{3c}{2\cos x}$$

ΔCKA:

$$\frac{2c}{\sin x} = \frac{r}{\cos x}$$

$$\therefore r \sin x = 2c \cos x...(2)$$

 $\checkmark \frac{2c}{\sin x} = \frac{r}{\cos x}$

$$\checkmark r \sin x = 2c \cos x$$

Stel (1) en (2) gelyk:

$$2c.\cos x = \frac{3c}{2\cos x}$$

$$\therefore \cos^2 x = \frac{3}{4}$$

$$\therefore \cos x = \frac{\sqrt{3}}{2}$$

$$\therefore x = 30^{\circ}$$

✓stel gelyk

$$\checkmark \cos x = \frac{\sqrt{3}}{2}$$

(8)

OF

$$\frac{AK}{KB} = \frac{2}{1} = 2$$

$$2 = \frac{\frac{1}{2}AK.BC}{\frac{1}{2}BK.BC}$$
$$= \frac{\text{area AKC}}{\text{area ABC}}$$
$$= \frac{\frac{1}{2}rCK\sin x}{\frac{1}{2}BC.CK\sin x}$$

$$= \frac{BC}{BC}$$
$$\therefore \frac{BC}{r} = \frac{1}{2}$$

$$\therefore \cos 2x = \frac{1}{2}$$

$$\therefore 2x = 60^{\circ}$$

$$\therefore x = 30^{\circ}$$

✓ vermenigvuldig met $\frac{1}{2}BC$

area van driehoeke

area formule in driehoeke

$$\checkmark \frac{r}{BC} = 2$$

$$\checkmark \frac{BC}{r} = \frac{1}{2}$$

$$\checkmark \cos 2x = \frac{1}{2}$$

$$\checkmark 2x = 60^{\circ}$$

$$\checkmark x = 30^{\circ}$$

(8)

OF

Deur gebruik te maak van die Interne Halveerder Stelling:

$$\frac{CB}{CA} = \frac{BK}{KA} = \frac{1}{2}$$

$$\cos 2x = \frac{1}{2}$$

$$2x = 60^{\circ}$$

$$x = 30^{\circ}$$

√√

Deur die spesifieke stelling te noem

$$\checkmark\checkmark\checkmark\frac{CB}{CA} = \frac{BK}{KA} = \frac{1}{2}$$

$$\checkmark \cos 2x = \frac{1}{2}$$

$$\checkmark 2x = 60^{\circ}$$

$$\checkmark 2x = 60^{\circ}$$

$$\checkmark x = 30^{\circ}$$

(8)

Verleng BC na D en teken CK parallel aan DA.

$$\hat{CAD} = \hat{KCA}$$
 and $\hat{BCK} = \hat{D}$

$$\therefore DC = CA = r$$

$$\therefore \Delta BKC \parallel \Delta BAD$$

$$\therefore \frac{BK}{BA} = \frac{BC}{BD} = 3$$

$$\therefore BD = 3BC = BC + r$$

$$\therefore BC = \frac{1}{2}r$$

$$\therefore \cos 2x = \frac{\frac{1}{2}r}{r} = \frac{1}{2}$$

$$\therefore 2x = 60^{\circ}$$

$$\therefore x = 30^{\circ}$$

$$\checkmark DC = CA = r$$

$$\checkmark \Delta BKC \parallel \Delta BAD$$

$$\checkmark \frac{BK}{BA} = \frac{BC}{BD} = 3$$

✓BD = BC +
$$r$$

$$\checkmark BC = \frac{1}{2}r$$

$$\checkmark \cos 2x = \frac{1}{2}$$

$$✓ 2x = 60^{\circ}$$

√30°

(8) [11]

TOTAAL: 150