Ludwig-Maximilians-Universität München Institut für Informatik

München, 20.10.2017

Prof. Dr. Christian Böhm Dominik Mautz

Datenbanksysteme I

WS 2017/18

Übungsblatt 1: Einführung

Abgabe bis Freitag, den 27.10.2017 um 12:00 Uhr

Besprechung: 30.10. bis 02.11.2017 (**Keine Tutorien am 31.10**)

Dieses Übungsblatt wird zwar korrigiert, aber nicht bewertet. Wir empfehlen Ihnen, dieses Übungsblatt abzugeben, damit Sie sich mit dem Abgabesystem vertraut machen.

Aufgabe 1-1 Grundlegendes über Datenbanksysteme **Hausaufgabe**

(0 Punkte)

- (a) Welche 9 zentralen Anforderungen an ein Datenbanksystem definierte Edgar Codd?
- (b) Was versteht man unter
 - logischer Datenunabhängigkeit und
 - physischer Datenunabhängigkeit?

Wiederholung zu Relationen

Die folgenden Aufgaben dienen zur kurzen Wiederholung von Relationen. Diese sollten Sie bereits u.a. aus Diskrete Strukturen kennen.

Aufgabe 1-2 Mengen, Relationen, Funktionen – Veranschaulichung

Betrachten wir die Mengen $A=\{a,b,c\}$ und $Z=\{1,2,3,4\}$ und eine zweistellige Relation R dazwischen. Wenn zum Beispiel die Elemente $a\in A$ und $2\in Z$ in der Relation R stehen, drückt man das mathematisch so aus: aR2 oder $(a,2)\in R$. Graphisch kann man es so veranschaulichen, dass man die Elemente der beiden Mengen hinzeichnet und zwischen a und 2 eine Linie zieht:

Mit dieser Veranschaulichung sind die mathematischen Definitionen praktisch nur Bedingungen, wieviele Linien mit den Elementen verbunden sein müssen oder dürfen.

Geben Sie solche graphischen Veranschaulichungen an für:

- (a) Das kartesische Produkt $A \times Z$.
- (b) Eine totale Funktion von A nach Z
- (c) Eine zweistellige Relation zwischen A und Z, die keine Funktion ist.

Aufgabe 1-3 *Mengen, Relationen, Funktionen – Formal*

Es gelten folgende wichtige Eigenschaften von Mengen und Beziehungen zwischen Mengen:

Bezeichnung	Notation	Bedeutung
M ist Teilmenge von N	$M \subseteq N$	$\text{aus } a \in M \text{ folgt } a \in N$
${\cal M}$ ist echte Teilmenge von ${\cal N}$	$M \subset N$	es gilt $M\subseteq N$ und $M\neq N$
Vereinigung von M und N	$M \cup N$	$\{x x\in M \text{ oder } x\in N\}$
Schnittmenge von N und M	$M \cap N$	$\{x x\in M \text{ und } x\in N\}$
${\rm Differenz}\; M\;{\rm ohne}\; N$	$M \setminus N$	$\{x x\in M \text{ und } x\notin N\}$
${\cal M}$ und ${\cal N}$ sind disjunkt	$M \cap N = \emptyset$	M und N haben keine gemeinsamen Elemente
Kardinalität einer Menge M	M	Anzahl der Elemente von M

Die Eigenschaften und Beziehungen von Mengen lassen sich als Relationen auffassen. Definieren Sie diese Relationen. Welche dieser Relationen sind:

- (a) reflexiv?
- (b) symmetrisch?
- (c) antisymmetrisch?
- (d) transitiv?
- (e) alternativ?