

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

<u>Computer Engineering Department &</u> <u>Information Technology Engineering Department</u>

Academic Year: 2021-2022

Class: S.Y.B.Tech Sem.: 4 Course: Linear Algebra

Name	Pratik Pujari		
UID no.	2020300054	Class:	Comps C Batch
Experiment No.	5		

1							
AIM:	To implement the Gauss Jacobi's method in Scilab						
PROBLEMS							
CODE:	printf("\n")						
	A=input("Enter the coefficents: ")						
	b=input("Enter the right-hand side C: ") C=[A b]						
	function <u>display(x, y, z, tempx, tempy, tempz)</u>						
	<pre>printf(" Var\t Initial\t After\t ") printf("\n") printf("\n X\t %f\t %f\t ",x,tempx) printf("\n Y\t %f\t %f\t ",y,tempy) printf("\n Z\t %f\t %f\t ",z,tempz) endfunction</pre>						
	<pre>function [x, y, z]=solve(matrix) x=0 y=0 z=0 limit=0.000001 steps=100 for i=1:steps</pre>						
	tempx= $(C(1,4)-C(1,2)*y-C(1,3)*z)/C(1,1)$ tempy= $(C(2,4)-C(2,1)*x-C(2,3)*z)/C(2,2)$						

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

<u>Computer Engineering Department &</u> <u>Information Technology Engineering Department</u>

Academic Year: 2021-2022

Class: S.Y.B.Tech Sem.: 4 Course: Linear Algebra

```
tempz=(C(3,4)-C(3,1)*x-C(3,2)*y)/C(3,3)
                        diffX=tempx-x;
                        diffY=tempy-y;
                        diffZ=tempz-z;
                        if (abs(diffX)<=limit && abs(diffY)<=limit &&
                  abs(diffZ)<=limit)
                           break
                        end
                        printf("\n\n-->Step %d\n",i)
                        display(x,y,z,tempx,tempy,tempz)
                        x=tempx;
                        y=tempy;
                        z=tempz;
                     end
                  endfunction
                  [x,y,z]=solve(C)
                  printf("\n\nFinal result:\n\n X=> \%f Y=> \%f Z=>
                  %f\n",x,y,z)
OUTPUT
                            Enter the coefficents: [20,1,-2; 3,20,-1; 2,-3,20]
TABLE:
                            Enter the right-hand side C: [17;-18;25]
                             ->Step 1
                             Var | Initial
                                             | After
                              X | 0.000000 | 0.850000
                              Y | 0.000000 | -0.900000
                              Z | 0.000000 | 1.250000
                             ->Step 2
                                             | After
                                 | Initial
                              Var
                              X | 0.850000
                                             1 1.020000
                              Y | -0.900000 | -0.965000
                              Z | 1.250000
                                             1 1.030000
```


Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

<u>Computer Engineering Department &</u> <u>Information Technology Engineering Department</u>

Academic Year: 2021-2022

Class: S.Y.B.Tech Sem.: 4 Course: Linear Algebra

>Step Var		Initial	1	After	1
x	1	1.020000	1	1.001250	1
Y	I	-0.965000	1	-1.001500	- 1
z	1	1.030000	1	1.003250	
>Step	4				
	1.7	Initial			
x	Ī	1.001250	Î	1.000400	
Y	1	-1.001500	1	-1.000025	
Z	1	1.003250	1	0.999650	
>Step	5				
Var	I	Initial	1	After	
x	1	1.000400	1	0.999966	an 700
Y	1	-1.000025	1	-1.000078	
Z	1	0.999650	1	0.999956	
>Step	6				
Var	1	Initial	1	After	
X	1	0.999966	1	1.000000	
Y	1	-1.000078	1	-0.999997	
Z	1	0.999956	1	0.999992	
>Step	7				
Var	1	Initial	1	After	
X	Ī	1.000000	1	0.999999	-
Y	1	-0.999997	1	-1.000000	
Z	ì	0.999992	1	1.000000	

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

<u>Computer Engineering Department &</u> <u>Information Technology Engineering Department</u>

Academic Year: 2021-2022

Class: S.Y.B.Tech Sem.: 4 Course: Linear Algebra

RESULT: Learnt about the Gauss Jacobi's method and implemented in Scilab code. Also implement the limit variable which decides the precision/accuracy of the result. Also learnt how to use the abs method and void functions to print variables.