Parsa Yadollahi - 260869949 Assignment 3 - April 2 COMP 424

Questions 1:

a) Boolean variables: H, C, E, F, S

- b) This Bayesian Network that displays the situation is not a polytree since it contains an undirected cycle. This is due to the fact that H effects C in two ways {H,F,E,C} and {G,C}.
- c) P(F|H)

	F = 1	F = 0
H = 1	х	1-x
H = 0	у	1-y

d) P(E|F,S)

		E = 1	E = 0
S = 0	F = 0	0	1
	F = 1	1	0
S = 1	F = 0	0.5	0.5
	F = 1	1	0

e)
$$P(C|H) = P(C=1,H=1) / P(C=1) = \sum_{F.E.S.C} P(C=c, F=f, S=s, H=1) / \sum_{F.E.S.C} P(C=c, F=f, S=s, H=1, C=c)$$

Question 2:

a)
$$P(a|\neg r) = \sum_{B,T,S} P(R = 0, B = b, A = 1, S = s)$$

 $= \sum_{B,T,S} P(\neg r) * P(B=b) * P(T=t|\neg r, B=b, A=1) * P(A=1|B=b) * P(S=s|A=1)$
 $= P(\neg r) \sum_{B} P(B=b) * P(A=1|B=b) * \sum_{S} P(S=s|A=1) * \sum_{T} P(T=t|\neg r, B=b, A=a)$
 $= 0.8 * (P(a|b)*P(b) + p(a|\neg b)*p(\neg b))$
 $= 0.8 (0.7 * 0.4 + 0.2 * 0.6)$
 $= 0.32$

b)
$$P(b,a) = \sum_{R,T,S} P(T=t|R=r,B=1,A=1) * P(S=s|A=1) * P(A=1|B=1) * P(R=r) * P(B=1)$$

 $= P(B=b) * P(A=1|B=1) \sum_{R} P(R=r) * \sum_{T} P(T=t|R=r,B=1,A=1) * \sum_{S} P(S=s|A=1)$
 $= P(b) * P(a|b)$
 $= 0.4 * 0.7$
 $= 0.28$

c) To prune parents there must be a path from a specific node to B using node A. I.e $B \perp X \mid A$ where X is any node in the graph. Say $X = R \Rightarrow B \perp R \mid A$. This means that node **R** and **T** can both be pruned. Now say $X = S \Rightarrow B \perp S \mid A$. Thus there is a path from S to B using A as an observed node which means that **S** can be pruned as well. We notice that S is not independent from B.

We can conclude that every node except A and B can be pruned

d)
$$P(b|a) = P(a|b)*P(b) / P(a)$$

** $P(a) = P(a|b)*P(b) + P(a|\neg b)*P(\neg b)$
 $\Rightarrow P(b|a) = P(a|b)*P(b) / P(a|b)*P(b) + P(a|\neg b)*P(\neg b)$
= 0.7 * 0.4 / (0.7 * 0.4 + 0.2 * 0.6)
= **0.7**

Question3:

P(T|b=1) while ordering = S,A,R,T

Active factor list: P(R), P(T|R,b,A), P(S|A), P(A|B), δ(B,1)

- 1) Eliminate S: $m_s(A) = \sum_s P(S|A) = 1$
- 2) Eliminate A: $m_a(b,r,T) = \sum_a P(A=a|b)P(T|R,b,A=a) * m_s(A=a) = \sum_a P(a|b)P(T|R,b,a)$
- 3) Eliminate R: $m_r(T,b) = \sum_r P(r) m_a(b,r=r,T)$
- 4) Eliminate T: $m_r(B) = \sum_{l} m_r(T,b)$

Active factor list: $\delta(B, 1)$, $m_t(B)$

Using above steps:

$$m_s(A) = \sum_s P(S|A) = 1$$

$$m_a(b,r,T) = \sum_a P(A|b)P(T|R,b,A)m_s(A) = \sum_a P(A|b)P(T|R,b,A)$$

= $P(a|b)P(T|R,b,A) + P(\neg a|b)P(T|R,b,\neg a)$

Compute m_a(b,r,T)

$$\begin{split} m_{a}(b,r,T) &= P(a|b)P(T|R,b,a) + P(\neg a|b)P(T|R,b,\neg a) \\ &= 0.7 * \begin{bmatrix} 0.98 & 0.5 \\ 0.02 & 0.5 \end{bmatrix} + 0.3 * \begin{bmatrix} 0.88 & 0.4 \\ 0.12 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.95 & 0.47 \\ 0.0.5 & 0.53 \end{bmatrix} \end{split}$$

Compute m_r(b,T)

$$\mathbf{m_r(b,T)} = \mathbf{P(r)m_a(b,r,T)} = 0.2^* \begin{bmatrix} 0.95 \\ 0.05 \end{bmatrix} + 0.8^* \begin{bmatrix} 0.47 \\ 0.53 \end{bmatrix} = \begin{bmatrix} 0.566 \\ 0.434 \end{bmatrix}$$

Compute MAP

 $m_t(b) = m_r(b,T)$

 $P(T=1|b=1) = m_r(T=1) = 0.566 \Rightarrow MAX$

 $P(T=0|b=1) = m_r(T=0) = 0.434$

Given that the max is P(T=1|b=1) > P(T=0|b=1). We conclude that T=1 is MAP

Question 4:

a)

	MLE	Laplace	MAP
θ_{a}	60/144	61/146	0
$\theta_{b a}$	33/60	34/62	1
$\theta_{\text{b}\mid \neg \text{a}}$	57/84	58/86	1
$\theta_{c a}$	50/60	51/62	1
$\theta_{\text{c}\mid \neg \text{a}}$	62/84	63/86	1
$\theta_{\sf dlb,c}$	20/65	21/67	0
$\theta_{\text{d} \neg \text{b},\neg \text{c}}$	4/7	5/9	1
$\theta_{\text{d} \neg \text{b,c}}$	26/47	27/49	1
$\theta_{\text{d b,\neg c}}$	11/25	12/27	0

b)

i) E-step

$$\begin{aligned} W_{b=0, \ d=0} &= P(B=0, \ D=0| \ a,c) \\ &= P(a, \neg b, \ c, \ \neg d) \ / \ P(a,c) \\ &= \theta_a \ \theta_{\neg b|a} \ \theta_{c|a} \ \theta_{\neg d|\neg b,c} \ / \ \theta_a \ \theta_{c|a} \\ &= \theta_{\neg b|a} \ \theta_{\neg d|\neg b,c} \\ &= 27/60 \ ^* \ 21/ \ 47 \\ &= \textbf{0.201} \end{aligned} \qquad \begin{aligned} w_{b=0, \ d=1} &= \theta_{\neg b|a} \ \theta_{d|\neg b,c} \\ &= 0.45 \ ^* \ 26/47 \\ &= 0.2489 \end{aligned}$$

$$\begin{aligned} w_{b=1, \ d=0} &= P(B=1, D=0 | a, c) \\ &= P(a, b, \ c, \ \neg d) \ / \ P(a, c) \\ &= \theta_a \ \theta_{b|a} \ \theta_{c|a} \ \theta_{\neg d|b,c} \ / \ \theta_a \ \theta_{c|a} \\ &= \theta_{b|a} \ \theta_{\neg d|b,c} \\ &= 33/60 \ ^* \ 0.69 \\ &= \mathbf{0.3808} \end{aligned} \qquad \begin{aligned} w_{b=1, \ d=1} &= \theta_{b|a} \ \theta_{d|b,c} \\ &= 33/60 \ ^* \ 20/65 \\ &= \mathbf{0.169} \end{aligned}$$

ii)

$$\Theta_{a} = 60+2 / 144 + 2 = 62/146$$

$$\Theta_{b|a}$$
 = 34 + $W_{b=1, d=0}$ + $W_{b=1, d=1}/62$
= 34.55 / 62

$$\Theta_{b|\neg a} = 57/84$$

$$\Theta_{c|a} = 51/62$$

$$\Theta_{d|b,c}$$
 = 20+ $W_{b=1, d=1}$ + $W_{b=0, d=1}$ /65+ $W_{b=1, d=0}$ + $W_{b=1, d=1}$
= 20.418 / 65.55

$$\Theta_{d|\neg b,\neg c} = 4/7$$

$$\Theta_{d|\neg b,c}$$
 = 26+ $W_{b=0, d=1}$ + $W_{b=1, d=1}$ /47+ $W_{b=0, d=0}$ + $W_{b=0, d=1}$
= 26.4179 / 47.4499

$$\Theta_{d|b,\neg c}$$
 = 11/25

iii) Second E-Step

$$\begin{aligned} W_{b=0, \ d=0} &= \theta_a \ \theta_{\neg b|a} \ \theta_{c|a} \ \theta_{\neg d|\neg b,c} \ / \ \theta_a \ \theta_{c|a} \\ &= \theta_{\neg b|a} \ \theta_{\neg d|\neg b,c} \\ &= (1-34.55 \ / \ 62) \ ^* \ (1-26.449 \ / \ 47.4499) \\ &= \mathbf{0.196} \end{aligned} \qquad \begin{aligned} &= \mathbf{0.2467} \\ &= \mathbf{0.196} \end{aligned} \qquad \qquad \begin{aligned} &= \mathbf{0.2467} \\ &= \mathbf{0.455} \ / \ 62 \ ^* \ (1-20.418 \ / \ 65.55) \\ &= \mathbf{0.3837} \end{aligned} \qquad \qquad \begin{aligned} &= \mathbf{0.1735} \end{aligned}$$