

Centre de formations professionnelles aux métiers du numérique Projet fil rouge Data Analyst ANALYSE DES DONNEES CLIMATIQUES Sous l'encadrement de : M. DONTSA Cyprien Réalisé par l'apprenant : TAGNE FOSSI BRICE GAUTIER Année académique : 2023 – 2024

Table des matières

I.	Contexte et objectifs	
II.	Exigences	Erreur! Signet non défini
III.	Livrables	Erreur! Signet non défini
IV.	Calendrier	Erreur! Signet non défini

I. Contexte et objectifs

Contexte:

• Zone d'étude : Cameroun.

• **Période**: 1958-2023

 Données disponibles: données climatiques menstruelles provenant de nombreux stations métrologiques (température maximale, température minimale, précipitation, vitesse du vent, rayonnement descendant et le ruissellement

• Granularité: Analyse et prédiction par région

Objectifs:

- **Objectif principal** : Analyser les tendances climatiques historiques et prédire la variable température pour chaque région du Cameroun.
- Objectifs spécifiques :
 - ➤ Visualiser les tendances historiques et les variables saisonnières des variables climatiques à l'aide de power BI.
 - ➤ Identifier les changements significatifs dans les variables climatiques et quantifier leur ampleur.
 - Développer un modèle de machine Learning en python pour prédire les valeurs futures de la variable température.
 - ➤ Evaluer la performance du modèle de prédiction et identifier les variables les plus difficiles à prédire.

II. Exigences

• Données:

- Accès à des données climatiques historiques de qualité pour chaque région du Cameroun (température, précipitation, vitesse du vent, rayonnement descendant, ruissellement).
- Les données doivent être cohérente, complètes et couvrent une période de temps suffisamment longue pour identifier les tendances climatiques et entrainer un modèle de machine Learning.

• Outils et logiciel :

Power BI pour la visualisation des données.

- > Python et ses bibliothèques (Numpy, Pandas, scikit-learn, etc.) pour le développement du modèle de machine Learning.
- Connaissance des techniques de prétraitement des données, de sélection de caractéristiques, de modélisation et d'évaluation de modèles de machine Learning.

• Expertise:

- Expertise en climatologie, changement climatiques, et analyse de données et de machine Learning.
- Compréhension des algorithmes de machine Learning et des techniques de prédictions

III. Livrables

• Rapport final:

- ➤ Un rapport complet documentant la méthodologie, les résultats de l'analyse visuelle et les performances du modèle de machine Learning.
- Le rapport doit inclure des captures d'écran des visualisations power BI, des tableaux de résultats et des indicateurs d'évaluation du modèle.
- Un résumé en français.

• Code source :

Le code source du modèle de machine Learning en Python, documenté et organisé de manière claire.

• Présentation :

Une présentation PowerPoint résumant les résultats clés de l'analyse et les performances, les résultats du modèle de prédiction pour une communication orale.

IV. Calendrier

- Phase 1 : Collecte et préparation des données (2 jour)
 - Rassembler les données climatiques de toutes les sources pertinentes.
 - Nettoyer, prétraiter et homogénéiser les données.
- **Phase 2**: Analyse visuelle avec Power BI (4 jours):

CAHIER DE CHARGE DE L'ANALYSE DES PERFORMANCES DES ETUDIANTS

- Créer des visualisations interactives pour explorer les tendances climatiques et identifier les modèles.
- ➤ Analyser les variations saisonnières et les anomalies climatiques.
- Phase 3 : Développement du modèle de machine Learning (4 jours) :
 - Sélectionner un algorithme de machine Learning adapté à la tâche de prédiction.
 - Entraîner et optimiser le modèle de machine Learning en utilisant les données historiques.
 - Évaluer la performance du modèle sur un ensemble de données de test indépendant.
- Phase 4 : Rédaction du rapport et préparation des livrables (4 jours) :
 - ➤ Rédiger le rapport final documentant la méthodologie, les résultats de l'analyse visuelle et les performances du modèle de machine Learning.
 - Préparer le code source et la présentation PowerPoint.
- **Phase 5** : Validation et communication des résultats (2 jours) :
 - Soumettre le rapport final, le code source et la présentation pour validation.
 - Présenter les résultats aux parties prenantes et répondre aux questions.