Limiti notevoli

funzioni goniometriche		
$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$	$\lim_{x \to 0} \frac{\tan(x)}{x} = 1$	
$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0$	$\lim_{x \to 0} \frac{\arcsin(x)}{x} = 1$	
$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$	$\lim_{x \to 0} \frac{\arctan(x)}{x} = 1$	

funzioni esponenziali e logaritmiche			
$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$	$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \log_a e$		
$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$	$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$		
$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln(a)$	$\lim_{x \to 0^+} x^{\alpha} \ln(x) = 0 ; \lim_{x \to +\infty} \frac{\ln(x)}{x^{\alpha}} = 0 \alpha > 0$		
$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$	$\lim_{x \to +\infty} \frac{x^{\alpha}}{a^{x}} = 0 ; \qquad \lim_{x \to +\infty} \frac{\ln(x)}{a^{x}} = 0 a > 1$		
$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha$	$[f(x)]^{g(x)} = e^{g(x) \cdot ln[f(x)]}$ l'uguaglianza a sinistra può essere utile per risolvere alcuni limiti che si presentano nelle forme indeterminate 0^0 $1^{\pm\infty}$ $+\infty^0$		

ad ogni limite notevole si possono applicare le seguenti proprietà					
limite iniziale	se il testo del limite è invertito anche il risultato sarà invertito	se nel limite al posto di x c'è nx il risultato del limite resta lo stesso	se il testo del limite è invertito anche il risultato sarà invertito		
$\lim_{x\to 0}\frac{\sin(x)}{x}=1$	$\lim_{x \to 0} \frac{x}{\sin(x)} = 1$	$\lim_{x \to 0} \frac{\sin(nx)}{nx} = 1$	$\lim_{x\to 0} \frac{nx}{\sin\left(nx\right)} = 1$		

frazioni equivalenti					
per il calcolo dei limiti notevoli può essere utile ricordare alcune delle possibili operazioni con le frazioni:					
scomporre la frazione iniziale in due frazioni	dividere ogni monomio del nu- meratore e del denominatore per la stessa quantità n	moltiplicare e dividere la fra- zione per la stessa quantità n	moltiplicare e dividere il numeratore per $oldsymbol{n}$ e/o moltiplicare e dividere il denominatore per $oldsymbol{m}$		
$\frac{a}{b} = a \cdot \frac{1}{b}$	$\frac{a}{b} = \frac{\frac{a}{n}}{\frac{b}{n}}$	$\frac{a}{b} = \frac{a}{b} \cdot \frac{n}{n}$	$\frac{a}{b} = \frac{\frac{a}{n} \cdot n}{\frac{b}{m} \cdot m}$		
$\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\boldsymbol{c} \cdot \boldsymbol{d}} = \frac{a}{c} \cdot \frac{b}{d}$	$\frac{a \cdot b}{c \cdot d} = \frac{\frac{a \cdot b}{n}}{\frac{d \cdot c}{n}}$	$\frac{a \cdot b}{c \cdot d} = \frac{a \cdot b}{c \cdot d} \cdot \frac{n}{n}$	$\frac{a \cdot b}{c \cdot d} = \frac{\frac{a \cdot b}{n}}{\frac{d \cdot c}{n}}$		
$\frac{a+b}{c+d} = \frac{a}{c+d} + \frac{b}{c+d}$	$\frac{a+b}{c+d} = \frac{\frac{a}{n} + \frac{b}{n}}{\frac{c}{n} + \frac{d}{n}}$	$\frac{a+b}{c+d} = \frac{(a+b)}{(c+d)} \cdot \frac{n}{n}$	$\frac{a+b}{c+d} = \frac{\frac{a}{n} + \frac{b}{n}}{\frac{c}{n} + \frac{d}{n}}$		
$\frac{a \cdot b}{c + d} = a \cdot \frac{b}{c + d}$	$\frac{a \cdot b}{c + d} = \frac{\frac{a \cdot b}{n}}{\frac{c}{n} + \frac{d}{n}}$	$\frac{a \cdot b}{c + d} = \frac{a \cdot b}{(c + d)} \cdot \frac{n}{n}$	$\frac{a \cdot b}{c + d} = \frac{\frac{a \cdot b}{n}}{\frac{c}{n} + \frac{d}{n}}$		