1. Regularizing Seperate Terms in 2D logistic regression a) The data is are linearly reparable so we can Find a line that fits the data perfectly => O chassification errors (1) vo =0 => p(y=1/2,w)= o(w,x,+ If we take point (0,0) we will see that o (w, 0+w, 0)= o (0) = 0,5 which the state of So the line that passes through (0,0) will be our best decision boundary because any points on one side will have signoid value (0,5 (class 1) and on the other side will have sigmost value > 0,5 (class 2) => 1 classification errors in this case nued meen nam unito bewo euto nomo * P P B etsü

sidi .
Multiplications and additions of a bernel is also a hernel
=> K-is a formel
the later was a first
3. Kernel and corresponding Features:
a) $\phi^{(x)} = \sqrt{c} \cdot \phi_{1}(x)$
$=$ $\times (x, z) = \varphi(x)' \cdot \varphi(z)$
$= \sqrt{c} \cdot \phi_1(x)^{T} \cdot \sqrt{c} \cdot \phi_1(z)$
$= c \cdot \phi_{\ell}(x)^{T} \cdot \phi_{\ell}(z)$
= c. K ₁ (x, z)
The start of the second is the
$\left(\begin{array}{c} \left(\begin{array}{c} \left(x\right) \\ \end{array}\right) \\ \left(\begin{array}{c} \left(x\right) \\ \end{array}\right) \end{array}\right)$
$\phi_{2}(z)$
- S / S S S S S S S S S S S S S S S S S
$=$ $\times (2,2) = \phi(x)^{T}.\phi(2)$
C1 (2) T7 (01(2))
$= \left[\phi_{1}(n) \right] \phi_{3}(n) $ $= \left[\phi_{1}(n) \right] \left[\phi_{3}(n) \right] $ $= \left[\phi_{3}(n) \right] \left[\phi_{3}(n) \right] $
$= \phi_{1}(x)^{T}. \phi_{1}(z)_{+} \phi_{3}(x)^{T}. \phi_{3}(z)$ $= K_{1}(x, z) + K_{3}(x, z)$
$- \left(\left(\frac{1}{2} \right) + \left(\frac{1}{2} \right) \right)$
c)
$\phi(n) = \phi_1(n).\phi_2(n)$
φ
> 10 (2) de 1 [†] de 12 >
=) $K(x, z) = \phi(x)^{T}. \phi(z)$ = $\phi_{2}(x)^{T}. \phi_{1}(x)^{T}. \phi_{1}(z). \phi_{2}(z)$
= (x). Q1(x). Q1(z). Q2(Z)
$= \phi_2(x)^{T} \cdot \phi_2(\mathbf{z}) \cdot \phi_1(x)^{T} \cdot \phi_1(\mathbf{z})$ $= K_2(x, \mathbf{z}) \cdot K_1(\mathbf{z}, \mathbf{z})$
$= K_2(x, z) K_1(z, z)$

1) learning late d = 2 old - L. d. C = 2 - 1.8 = -6 bold - d. d. = 3 - 1.1 = 2 2.SVM Q(xy) = [1, 52.0,02] = [1,0,0] (21) = [1, 52.52, 52²] = [1, 2, 2]^T Other and Other) O(x,) I hyperplane (21,)- P(22) = [0,2,2] =) w 1/(0,2,2)T LY traigness the distance between Play (2) Hargin = 8(1-124(2-0) + (2-0) = 8 = 2-82 of b) 2 times margin is the distance between O(24) and O(22) S(1-1)2+(2-0)2+(2-0)2 () We have [(w, l, d) = 1 || w|2 + E Li. [1-y; (w) + b)) $\frac{\partial \mathcal{L}}{\partial w} = 0 \implies w = \mathcal{E} \quad di. yi. \, \phi(x_i)$

Được quét bằng CamScanner

