

Projet de recherche de 3^{ème} année de l'École Supérieur de Physique et de Chimie Industrielles de la ville de Paris

Super-résolution spatiale pour caméra infrarouge

Vincent VERCAMER

Responsables : Christine BOUÉ et Stéphane HOLÉ

Introduction

Lorsque l'on observe des populations d'oscillateurs non linéaires couplés entre eux et ayant chacune leur propre fréquence, il arrive que celles-ci se synchronisent spontanément à une fréquence commune. C'est ce que l'on appelle la synchronisation collective d'oscillateurs. La synchronisation d'oscillations est un phénomène que l'on retrouve fréquemment dans la vie courante. Par exemple en biologie, on retrouve ce phénomène chez les cellules cardiaques : celles-ci synchronisent leurs battements pour faire fonctionner le cœur; dans les réseaux de neurones, permettant ainsi la transmission des messages nerveux; ou bien encore chez les grillons et les lucioles chez qui on observe une synchronisation collective des crissements et respectivement des émissions lumineuses. En physique, on peut citer les réseaux de jonctions Josephson. Enfin, citons quelques exemples de la vie courante, comme la marche au pas, la synchronisation des applaudissements d'une foule ou encore la synchronisation de métronomes.

Le phénomène de synchronisation collective est étudiée depuis les années 1960. Le pionnier dans le domaine est A.T. Winfree. Celui-ci qui fit une étude mathématique des populations d'oscillateurs et montra qu'il existait une analogie avec les modèles de transition de phase thermodynamique. Y. Kuramoto développa par la suite un modèle basé sur la théorie du champ moyen et trouva une solution exacte du problème des oscillateurs couplés. Enfin, Crawford ...??? ben je sais pas ce qu'il a fichu celui-là.

Nous avons ici souhaité reprendre la théorie de Kuramoto afin de comprendre les analogies existantes avec le modèle d'Ising. Nous avons ainsi cherché à faire des simulations afin de retrouver les résultats de Kuramoto.

Table des matières

1	Le	Le modèle de Kuramoto		
	1.1	Appro	oche théorique	4
	1.2	Analo	gies avec le modèle d'Ising	5
2	Sim	Simulation avec l'approximation champ moyen		
	2.1	Simul	ation	6
	2.2	Evolu	tion de la cohérence avec le temps	6
	2.3	2.3 Influence du coefficient de couplage K		6
		2.3.1	Evolution de la cohérence en régime stationnaire avec le coefficient de couplage K	6
		2.3.2	Détermination du coefficient alpha du modèle d'Ising	6
		2.3.3	Influence de la forme de la distribution des fréquences propre des oscillateurs	6
3	Influence du nombre d'oscillateurs		7	
4	Simulation d'un couplage avec les plus proches voisins			
$\mathbf{B}_{\mathbf{i}}$	Bibliographie			9

Le modèle de Kuramoto

1.1 Approche théorique

Considérons une importante population d'oscillateurs couplés et mettons-nous dans le cas où le couplage est faible et où les oscillateurs sont semblables. On va faire une approximation analogue à l'approximation champ moyen : on suppose que chaque oscillateur est couplé au rythme collectif, généré par l'ensemble des oscillateurs. La phase de l'oscillateur i peut alors s'écrire :

$$\dot{\theta}_i = \omega_i + \sum_{j=1}^N \Gamma_{ij} (\theta_j - \theta_i)$$
(1.1)

Dans le cas où le couplage ne dépend que de la différence de phase entre les oscillateurs, et en supposant que cette dépendance est sinusoïdale, on a alors :

$$\dot{\theta}_i = \omega_i + \frac{K}{N} \sum_{j=1}^{N} \sin(\theta_j - \theta_i)$$
(1.2)

On intuite que lorsque la distribution des fréquences propres des oscillateurs est large, les oscillateurs vont se comporter de façon incohérente et garderont chacun leur propre fréquence. En revanche, lorsque cette distribution sera suffisamment faible pour que le couplage ait de l'influence, une partie des oscillateurs va se synchroniser.

Notons $g(\omega)$ la distribution des pulsations propres des oscillateurs. Supposons que g est unimodale et symétrique par rapport à la pulsation moyenne Ω des oscillateurs. On a alors $g(\Omega + \omega) = g(\Omega - \omega)$. On effectue le changement de variable $\theta'_i = \theta_i + \Omega t$, de sorte à centrer la distribution g en 0.

Nous allons à présent utiliser une représentation géométrique pour visualiser l'évolution des phases des oscillateurs. Chaque oscillateur est caractérisé par sa phase θ_i . On représentera chaque oscillateur par un point se déplaçant sur le cercle trigonométrique avec sa propre phase θ_i .

(cf figure)

On peut alors définir r et ψ tels que :

$$rsin(\psi - \theta_i) = \frac{1}{N} \sum_{i=1}^{N}$$
(1.3)

Plus les oscillateurs oscilleront de façon cohérente, plus la population se comportera comme un unique oscillateur, et plus r sera proche de 1; en revanche, plus les oscillateurs oscilleront de façon incohérente, plus ils seront dispersés aléatoirement sur le cercle trigonométrique, et plus r tendra vers 0. Ainsi, r représente la cohérence de phase de la population d'oscillateurs. ψ représente quant à lui la phase moyenne des oscillateurs. $re^{i\psi}$ est le paramètre d'ordre du système

En multipliant le paramètre d'ordre par $e^{-i\theta_i}$, puis en ne gardant que la partie imaginaire de l'expression ainsi obtenue, on trouve que :

$$re^{i\psi} = \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j} \sin(\theta_j - \theta_i)$$
(1.4)

En réinjectant ce résultat dans l'équation (1.2), on obtient alors :

$$\dot{\theta}_i = \omega_i + Kr\sin(\psi - \theta_i) \tag{1.5}$$

On fait apparaître ici l'approximation champ moyen. En effet, la phase θ_i de l'oscillateur i ne dépend plus de la phase des autres oscillateurs θ_j , mais de la cohérence de phase r et de la phase moyenne ψ . Ainsi, un oscillateur ne ressent pas les autres oscillateurs indépendamment les uns des autres, mais ressentira le champ moyen créé par tous les oscillateurs du groupe.

1.2 Analogies avec le modèle d'Ising

Simulation avec l'approximation champ moyen

2.1 Simulation

Nous avons effectué une simulation du modèle de Kuramoto en language C++. Dans cette simulation, l'approximation champ moyen a été utilisée. Ainsi, la distribution des pulsations propres des oscillateurs a été générée aléatoirement. Dans un premier temps, la fonction de distribution g a été prise gaussienne ; dans un second temps, elle a été assimilée à une fonction de Cauchy. La phase initiale des oscillateurs a elle aussi été choisie aléatoirement. Pour différentes valeurs du coefficient de couplage K, r et ψ ont été calculés à partir des phases des oscillateurs par la relation (1.3), puis la valeur des phases des oscillateurs au pas de temps suivant a été déterminé par la méthode Runge-Kutta d'ordre 4. Ce processus a été réitéré jusqu'à atteindre le nombre de points souhaité.

2.2 Evolution de la cohérence avec le temps

La simulation permet de visualiser l'évolution temporelle de r pour différentes valeurs de K. On observe sur la figure??? l'existence d'une valeur seuil pour K. En effet, pour des K inférieurs à K_c , le couplage est trop faible et les oscillateurs se comportent comme s'ils n'étaient pas couplés. Les phases sont distribuées de façon uniforme sur le cercle trigonométrique, et ce quelle que soit la condition initiale. On obtient alors une cohérence de phase faible, mais présentant des variations assez importantes. En revanche, pour des K supérieurs à K_c , l'état incohérent devient instable et on observe une augmentation brutale de r jusqu'à atteindre une valeur de saturation rinfini, inférieure à 1. Cela montre bien qu'une partie du groupe d'oscillateurs s'est synchronisé tandis que le reste du groupe est resté incohérent. La population d'oscillateurs s'est scindée en deux groupes : d'un côté, les oscillateurs ayant une pulsation proche de la pulsation moyenne vont voir leur pulsation se bloquer à Ω , et vont tourner avec une même phase ψ ; de l'autre côté, les oscillateurs dont la pulsation se retrouve dans la queue de la distribution vont garder une pulsation proche de leur pulsation propre. Lorsque ces deux groupes sont identifiables, on se situe dans un état partiellement synchronisé.

2.3 Influence du coefficient de couplage K

- 2.3.1 Evolution de la cohérence en régime stationnaire avec le coefficient de couplage K
- 2.3.2 Détermination du coefficient alpha du modèle d'Ising
- 2.3.3 Influence de la forme de la distribution des fréquences propre des oscillateurs

[1]

Influence du nombre d'oscillateurs

Simulation d'un couplage avec les plus proches voisins

Bibliographie

[1] J. D. Crawford, « Scaling and singularities in the entrainment of globally coupled oscillators », *Phys. Rev. Lett.*, vol. 74, p. 4341–4344, May 1995.

Table des figures