EE6367: Topics in Data Storage and Communications

2023

Lecture 20: 09 November 2023

Instructor: Shashank Vatedka Scribe: Gautam Singh

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

20.1 Mean Squared Error for Location Families

From the previous lecture, we know that

$$\hat{p}_m \triangleq \frac{1}{m} \sum_{i=1}^m Y_i \xrightarrow{\text{as}} F_X \left(\theta_0 - \mu \right) \tag{20.1}$$

and

$$\mathbb{E}\left[Y_i\right] = F_X\left(\theta_0 - \mu\right). \tag{20.2}$$

Since Y_i is a bernoulli random variable,

$$Var(Y_i) = F_X(\theta_0 - \mu) (1 - F_X(\theta_0 - \mu)).$$
(20.3)

However, from the Central Limit Theorem,

$$\sqrt{m}\left(\hat{p}_m - F_X\left(\theta_0 - \mu\right)\right) \stackrel{\mathrm{d}}{\to} \mathcal{N}\left(0, \sigma^2\right). \tag{20.4}$$

Considering

$$\phi(z) \triangleq \theta_0 - F_X^{-1}(z) \tag{20.5}$$

we use the delta method and (20.4) to obtain

$$\sqrt{m} \left(\hat{\mu} - \mu \right) \stackrel{\mathrm{d}}{\longrightarrow} \phi' \left(\theta \right) Z.$$
 (20.6)

However,

$$\frac{d\phi}{dt} = -\frac{d}{dt} \left(F_X^{-1}(t) \right) \tag{20.7}$$

$$= -\frac{1}{F_X'\left(F_X^{-1}(\theta)\right)}$$
 (20.8)

$$=-\frac{1}{f_X\left(\theta_0-\mu\right)}. (20.9)$$

Therefore,

$$\sqrt{m} \left(\hat{\mu} - \mu \right) \xrightarrow{\mathrm{d}} -\frac{1}{f_X \left(\theta_0 - \mu \right)} \mathcal{N} \left(0, \mathrm{Var} Y_i \right)$$
(20.10)

and the mean squared error asymptotically is (as $m \to \infty$),

$$\alpha^2 \triangleq m\text{MSE} \to \frac{F_X (\theta_0 - \mu) (1 - F_X (\theta_0 - \mu))}{f_X^2 (\theta_0 - \mu)}.$$
 (20.11)

From (20.11), observe that if θ_0 is close to μ , then the MSE is small (assuming f_X has single peak at x = 0 and is symmetric).

20.2 Controlling the MSE

In (20.11), the numerator can be arbitrarily large. Thus, we introduce the following protocol to recitfy that.

- 1. Select first $m^{0.9}$ users, and send $\mathbb{1}_{\{X_i \leq \theta_0\}} = Y_i$.
- 2. Set

$$\theta_n := \theta_0 - F_X^{-1} \left(\frac{1}{m^{0.9}} \right) \tag{20.12}$$

3. Remaining users send $Y_i = \mathbbm{1}_{\{X_i \leqslant \theta_n\}}$. Server updates

$$\hat{\mu} = \theta_n - F_X^{-1} \left(\frac{1}{m_1} \sum_{i=1}^{m_1} Y_i \right), \tag{20.13}$$

where $m_1 = m - m^{0.9}$ represents the unselected users.

Using the previous approach, for symmetric distributions and conditioned on $\theta_n \xrightarrow{\text{as}} \mu$,

$$\alpha^2 \to \frac{1}{4f_X^2(0)}$$
 (20.14)

We can obtain the lower bound for the case where f_X is symmetric and $\log f_X$ is concave, then for any single-bit estimator, we have

$$MSE \geqslant \frac{1}{4mf_X^2(0) + I_0}.$$
 (20.15)