Universidade Federal de Santa Catarina MTM 5161 – Cálculo A Professor Adriano Né

7ª Lista de Exercícios

1) Neste exercício **não** utilize nenhuma das técnicas para integração (substituição ou por partes), procure exercitar o cálculo mental para achar a primitiva da função, e reorganize a função para utilizar os resultados da tabela de integrais quando possível.

(a)
$$\int \left(\frac{3}{x^3} + 2x^{3/2} - 1 \right) dx$$

(f)
$$\int \frac{2x^4 - 3x^3 + 5}{7x^2} dx$$

(b)
$$\int \left(\sqrt[3]{x^2} + \frac{4}{\sqrt[4]{x^5}} \right) dx$$

$$(g) \int \frac{7}{(x+77)^2} dx$$

(c)
$$\int (x+1)^4 dx$$

(h)
$$\int (5\cos 10x - 10 sen 5x) dx$$

(d)
$$\int \frac{1}{(x-10)^7} dx$$

(i)
$$\int (3\cos \pi t + \cos 3\pi t) dt$$

(e)
$$\int \sqrt{x} (1-x)^2 dx$$

2) Calcule o valor das integrais a seguir: (Procure utilizar o cálculo mental nestas também.)

(a)
$$\int_{1}^{3} (x-1)^{5} dx$$

(e)
$$\int_{0}^{\pi/4} sen x \cos x dx$$

(b)
$$\int_{-1}^{0} (2x+1)^3 dx$$

(f)
$$\int_{0}^{\pi} sen \, 5x \, dx$$

(c)
$$\int_{1}^{9} \left(\sqrt{x} - \frac{2}{\sqrt{x}} \right) dx$$

(g)
$$\int_{0}^{\pi/2} \cos 3x \, dx$$

(d)
$$\int_{1}^{4} \frac{x^2 - 1}{\sqrt{x}} dx$$

(h)
$$\int_{0}^{2} \cos \frac{\pi x}{4} dx$$

3) Calcule as integrais a seguir utilizando algumas das técnicas de integração estudada em aula:

(a)
$$\int \sec 2\theta \, tg \, 2\theta \, d\theta$$

(k) $\int tg^3 \theta \sec^2 \theta d\theta$

(b)
$$\int \frac{dx}{2x-1}$$

(I) $\int arctg \ x \ dx$

(c)
$$\int x \sqrt{x^2 - 1} dx$$

(m) $\int \frac{\cos \sqrt{x}}{\sqrt{x}} dx$

(d)
$$\int \frac{x}{1+3x^2} dx$$

(n) $\int \frac{2x+1}{x^2+x+1} dx$

(e)
$$\int x^3 \sqrt{x^4 + 1} \, dx$$

(o) $\int_{0}^{\pi/6} sen 2x \cos^{3} 2x \, dx$

(f)
$$\int \frac{1}{x+1} dx$$

(p)
$$\int_{0}^{2} x e^{2x} dx$$

(g)
$$\int x^2 \cos(2x^3) dx$$

(q)
$$\int_{0}^{\pi/2} (1+3 \sin \theta)^{3/2} \cos \theta \, d\theta$$

(h)
$$\int_{0}^{\pi} x \cos x \, dx$$

(r)
$$\int (sen2x)e^{1-\cos 2x}dx$$

(i)
$$\int \cos^3 x \, sen \, x \, dx$$

$$(s) \int_0^4 x \sqrt{4-x} \, dx$$

$$(j) \int_{1}^{2} \ln x^{2} dx$$

$$(t) \int t e^{-t^2/2} dt$$

4) A seguir são feitas algumas sugestões para que você substitua a função e encontre sua integral.

(a)
$$\int_{-7}^{1} \frac{2x \, dx}{(1-x)^{2/3}}$$

Sugestão: Faça $1-x=u^3$, ou seja, $u=\sqrt[3]{1-x}$.

(b)
$$\int tg x dx$$

Sugestão: Escreva $tg x = \frac{sen x}{cos x}$.

(c)
$$\int \cot g x \, dx$$

Sugestão: Utilize a mesma idéia do item (b)

(d)
$$\int \sec x \, dx$$

Sugestão: Escreva $\sec x = \frac{\sec x (\sec x + tg x)}{tg x + \sec x}$ e faça $u = tg x + \sec x$.

(e)
$$\int cossec x dx$$

Sugestão: Escreva $cossec x = \frac{cossec x (cossec x + cotg x)}{cotg x + cossec x}$

(f)
$$\int sen^2 x dx$$

(f) $\int sen^2 x dx$ Sugestão: Escreva $sen^2 x = \frac{1-\cos 2x}{2}$

(g)
$$\int tg^2 x dx$$

Sugestão: Escreva $tg^2x = sec^2x - 1$

- 5) Encontre o valor da área da região R indicada nos itens a seguir:
- (a) A região R delimitada abaixo do gráfico de $y=x^3$ e acima, pelo gráfico de y=x, sobre o intervalo [0, 1].
- (b) A região R delimitada acima pelo gráfico de $y=x^3$ e abaixo pelo gráfico de $y=x^4$ sobre o intervalo [0, 1].
- (c) A região R delimitada acima pelo gráfico de $y = \frac{1}{(x+1)^3}$ e abaixo pelo eixo x, sobre o intervalo [0, 2].
- (d) A região R delimitada à esquerda pelo gráfico de $x=y^2$ e à direita pela reta x=4 .
- (e) A região R entre os gráficos de $x=8-y^2$ e $x=y^2-8$.
- 6) Esboce a região delimitada pelas curvas a seguir e ache sua área.

(a)
$$\begin{cases} y = x^2 + x - 2 \\ y = 0 \\ x = 0 \\ x = 3 \end{cases}$$

(d) $\begin{cases} y = x^3 - 3x \\ v = x \end{cases}$

Neste item (a) não teremos uma região limitada pelas 4 curvas ao mesmo tempo, mas duas regiões delimitadas por estas curvas. Ache a soma das duas.

(b)
$$\begin{cases} y = x^3 \\ y = 0 \\ x = -2 \\ x = 2 \end{cases}$$

(e)
$$\begin{cases} y^2 = 2x - 2 \\ y = x - 5 \end{cases}$$

(c)
$$\begin{cases} y = x^2 \\ y = -x^2 + 4x \end{cases}$$

(f)
$$\begin{cases} y = 3x \\ y = -2x + 10 \\ y = \frac{x}{2} - 5 \end{cases}$$

7) Encontre as áreas da região sombreada.

(c) (d)

Respostas: 1) (a) $-\frac{3}{2x^2} + \frac{4x^{5/2}}{5} - x + C$; (b) $\frac{3x^{5/3}}{5} - \frac{16}{\sqrt[4]{x}} + C$; (c) $\frac{(x+1)^5}{5} + C$; (d) $\frac{-1}{6(x-10)^6} + C$; (e) $\frac{2x^{3/2}}{3} - \frac{4x^{5/2}}{5} + \frac{2x^{7/2}}{7} + C$; (f) $\frac{2x^3}{21} - \frac{3x^2}{14} - \frac{5}{7x} + C$; (g) $\frac{-7}{(x+77)} + C$; (h) $\frac{sen10x}{2} + \cos5x + C$; (i) $\frac{3sen\pi t}{\pi} + \frac{sen3\pi t}{3\pi} + C$. 2) (a) $\frac{32}{3}$; (b) 0; (c) $\frac{28}{3}$; (d) $\frac{52}{5}$; (e) $\frac{1}{4}$; (f) $\frac{2}{5}$; (g) $-\frac{1}{3}$; (h) $\frac{4}{\pi}$. 3) (a) $\frac{sec2\theta}{2} + C$; (b) $\frac{\ln|2x-1|}{2} + C$; (c) $\frac{(x^2-1)^{3/2}}{3} + C$; (d) $\frac{\ln(1+3x^2)}{6} + C$; (e) $\frac{(x^4+1)^{3/2}}{6} + C$; (f) $\ln|x+1| + C$; (g) $\frac{sen2x^3}{6} + C$; (h) -2; (i) $\frac{-\cos^4x}{4} + C$; (j) $2\ln2-\frac{3}{4}$; (k) $\frac{tg^4\theta}{4} + C$; (l) $x \operatorname{arctg} x - \frac{\ln(x^2+1)}{2} + C$; (m) $2 \operatorname{sen} \sqrt{x} + C$; (n) $\ln(x^2 + x + 1) + C$; (o) $\frac{15}{128}$; (p) $\frac{1+3e^4}{4}$; (q) $\frac{62}{15}$; (r) $\frac{e^{1-\cos2x}}{2} + C$; (s) $\frac{128}{15}$; (t) $-e^{-t^2/2} + C$. 4) (a) -12; (b) $-\ln|\cos x| + C$; (c) $\ln|\sin x| + C$; (d) $\ln|tg x + \sec x| + C$; (e) $-\ln|\cos x + \cot y| + C$; (f) $\frac{x}{2} - \frac{sen2x}{2} + C$; (g) tg x - x + C. 5) (a) $\frac{1}{4}$ u.a.; (b) $\frac{1}{20}$ u.a.; (c) $\frac{4}{9}$ u.a.; (d) $\frac{32}{3}$ u.a.; (e) $\frac{128\sqrt{2}}{3}$ u.a.; (b) $\frac{16}{3} - \frac{4\sqrt{2}}{3} - \ln3$ u.a.; (c) $\frac{8}{3}$ u.a.; (d) 8 u.a.; (e) 18 u.a.; (f) 40 u.a. 7) (a) $\frac{32}{3}$ u.a.; (b) $\frac{16}{3} - \frac{4\sqrt{2}}{3} - \ln3$ u.a.; (c) $e - \frac{1}{e} + \frac{10}{3}$ u.a.; (d) 9 u.a.