Lecture 3

- -

The Cantor Set

[3]

[の対し[学月]

[の句[記句[記]]

:

From the board interval [0,1], first remove $(\frac{1}{3},\frac{2}{3})$, then $(\frac{1}{q},\frac{2}{q})$, & $(\frac{7}{q},8_q)$ etc removing at each stage. The open interval Containing the "middle thirds" of closed intervals left at the previous stage.

At the n'h stage we get the closed intervals $T_{n,1}$, $T_{n,2}$, \cdots , $T_{n,2}$ can of length $\frac{1}{3}$ n.

Let $P_n = \bigcup_{k=1}^{2^n} J_{n,k}$ $\forall n \geq 1.$

Then $P = \bigcap_{n=1}^{\infty} P_n$ is called the Contor set or the contor termoryset.

 $P_{3} = \begin{bmatrix} 0 \end{bmatrix}$ $P_{2} = \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} \frac{1}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{3} \end{bmatrix}$ $P_{3} = \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} \frac{1}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{3} \end{bmatrix} \begin{bmatrix} \frac{2}{3} \end{bmatrix} \begin{bmatrix} \frac{7}{3} \end{bmatrix} \begin{bmatrix} \frac{8}{3} \end{bmatrix}$

$$P_{n} = \frac{P_{n-1}}{3} \cup \left(\frac{2}{3} + \frac{P_{n-1}}{3}\right).$$
where
$$\frac{P_{n-1}}{3} = \left\{\frac{3}{3} + \frac{1}{5} \in P_{n-1}\right\}.$$

$$\frac{2}{3} + S = \left\{\frac{2}{3} + \frac{1}{5} \wedge ES\right\}$$

$$P = \frac{7}{3} \cup \left(\frac{2}{3} + \frac{7}{3}\right).$$
Proposition:— Let $a \in P$. Then $a_{1} has the termory expansion, $\mathcal{H} = \sum_{k=1}^{2} \frac{a_{k}}{3^{k}}, \text{ where } a_{1} \in \{0, 2\}$

$$\mathcal{L} \text{ Conversely.}$$

$$P^{n} = \frac{P_{n-1}}{3} \cup \left(\frac{2}{3} + \frac{1}{3}\right).$$

$$P = \frac{7}{3} \cup \left(\frac{2}{3} + \frac{1}{3}\right).$$

$$P = \frac{7}{3$$$

Since it is of the form $\frac{1}{2}y \text{ or } \frac{1}{2}y + \frac{2}{3}$ for some $y \in [0,1]$. Repeat this argumt, we seen that $x \in P_n \iff \text{its equals a ternory erg.}$ where $a_k = 0$ or 2for $1 \le k \le n$.

Propositioni- Cantor set is un countable.

Proof: By above proposition, P convote of there points a which can be given an expansion to the base 3 in the form

 $\chi = 0, \chi_1 \chi_2 \chi_3 \dots \qquad \text{with} \quad \chi_n = 0 \quad \text{or} \quad 2 \quad \text{if} \quad \lambda_n = 0 \quad \text{or} \quad 2 \quad \text{if} \quad \lambda_n = 0 \quad \text{or} \quad \lambda_n = 0$

Suppose P is Countable. & let $x^{(1)}, x^{(2)}, \dots$ be an enumeration of P.

Then let $\alpha=0$, $x_1x_2x_3$... be such that if $x_n=0$, then let $x_n=2$ $x_1+x_2=2$, then let $x_n=0$.

then $x \neq x^{(n)} + x^{(n)}$. $x \neq x^{(n)} + x^{(n)}$.

Let $I \subset R$ be an interval; $Say \quad I = [ab], \quad length(I) = b-a.$ length([a,b]) = b-a.

2.2220" = $2 \times 3^{0} + 2 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3} + 0$ P C[0,1] > 1 ...

0:1 = $0 \times 3^{0} + 1 \times \frac{1}{3} = \frac{1}{3}$.

teny emp?

0:1 = 0.022...

4 h

leigh = b-a leigh ([asb)) = b-a.

Dry Con we have a general notion for the legth of any subset of R?

For A S R , can we define a number

arrigh to A so that if A is an internal your this number Coincides with the largh of the internal

Def:- Let $A \subseteq \mathbb{R}$. Then the Lebesgue outer medice or simply outer measure of A is defined as $m^*(A) := \inf\left(\sum_{n=1}^{\infty} l(\mathbb{I}_n)\right)$ when \inf is taken over all finite or Countable Collections of intervals $\{\mathbb{I}_n\}$, $\mathbb{I}_n = [a_n, b_n)$, such that $A \subseteq \bigcup_{n=1}^{\infty} \mathbb{I}_n$.

 $m^*(A) = \inf \left\{ \begin{array}{l} \frac{1}{2^n} \left[\frac{1}{2^n} \left[\frac{1}{2^n} \right] \left[\frac{1}{2^n} \right] \right] \\ \frac{1}{2^n} \left[\frac{1}{2^n} \left[\frac{1}{2^n} \right] \left[\frac{1}{2^n} \left[\frac{1}{2^n} \right] \right] \\ \frac{1}{2^n} \left[\frac{1}{2^n} \left[\frac{1}{2^n} \left[\frac{1}{2^n} \right] \right] \right] \\ \frac{1}{2^n} \left[\frac{1}{2^n} \left[\frac{1}{2^n} \left[\frac{1}{2^n} \right] \right] \\ \frac{1}{2^n} \left[\frac{1}{2^n} \left[\frac{1}{2^n} \left[\frac{1}{2^n} \right] \right] \\ \frac{1}{2^n} \left[\frac{1}{2^n} \left[\frac{1}{2^n} \left[\frac{1}{2^n} \left[\frac{1}{2^n} \right] \right] \right] \\ \frac{1}{2^n} \left[\frac{1}{2^n} \left[\frac{1}{2^n} \left[\frac{1}{2^n} \left[\frac{1}{2^n} \left[\frac{1}{2^n} \left[\frac{1}{2^n} \right] \right] \right] \right] \\ \frac{1}{2^n} \left[\frac{1}{2^n}$

—— [(E \ \ X)) .

I $\subseteq \widetilde{U}_{J}$, $\int_{-\infty}^{\infty} L(F_{n}) = b^{-\alpha}$.

(2) $m^{*}(Q) = ??$ We see this later.