Maximum Planar Subset of Chords

Supowit's Algorithm for Finding MPSC

- □ Supowit, "Finding a maximum planar subset of a set of nets in a channel," *IEEE TCAD*, 1987.
- □ Problem: Given a set of n chords C and assume no two chords of C share an endpoint, find a maximum planar subset of chords.
 - Label the vertices on the circle 0 to 2n-1.
 - Compute MIS(i, j): size of maximum independent set between vertices i and j, $i \le j$.
 - Answer = MIS(0,2n-1)

Supowit's Algorithm for Finding MPSC

- Supowit, "Finding a maximum planar subset of a set of nets in a channel," IEEE TCAD, 1987.
- $lue{}$ Problem: Given a set of n chords C and assume no two chords of C share an endpoint, find a maximum planar subset of chords.
 - Label the vertices on the circle 0 to 2n-1.
 - Compute MIS(i, j): size of maximum independent set between vertices i and j, $i \le j$.
 - Answer = MIS(0,2n-1)

Dynamic Programming in Supowit's Algorithm

- \square Apply dynamic programming to compute MIS(i,j).
 - Case 1: kj ∈ C, k ∉ [i,j] ⇒ MIS(i,j) = MIS(i,j-1)
 - Case 2: kj ∈ C, k ∈ [i, j]
 - $\Rightarrow MIS(i,j) = \max(MIS(i,j-1), MIS(i,k-1) + 1 + MIS(k+1,j-1))$
 - _ Case 3: $ij \in C \Rightarrow MIS(i,j) = MIS(i+1,j-1) + 1$

Case 1

Dynamic Programming in Supowit's Algorithm

- \square Apply dynamic programming to compute MIS(i,j).
 - _ Case 1: $kj \in C$, $k \notin [i,j] \Rightarrow MIS(i,j) = MIS(i,j-1)$
 - Case 2: kj ∈ C, k ∈ [i, j]
 - $\Rightarrow MIS(i,j) = \max(MIS(i,j-1), MIS(i,k-1) + 1 + MIS(k+1,j-1))$
 - _ Case 3: $ij \in C \Rightarrow MIS(i,j) = MIS(i+1,j-1) + 1$

Case 2 $i \longrightarrow MIS(i, k-1)$ $j-1 \longrightarrow k+1$ MIS(k+1, j-1)

$$MIS(i, j - 1) = 2$$

 $MIS(i, k - 1) + 1 + MIS(k + 1, j - 1) = 1$

$$MIS(i, j - 1) = 1$$

 $MIS(i, k - 1) + 1 + MIS(k + 1, j - 1) = 2$

Dynamic Programming in Supowit's Algorithm

- \square Apply dynamic programming to compute MIS(i,j).
 - Case 1: kj ∈ C, k ∉ [i,j] ⇒ MIS(i,j) = MIS(i,j-1)
 - Case 2: kj ∈ C, k ∈ [i, j]
 - $\Rightarrow MIS(i,j) = \max(MIS(i,j-1), MIS(i,k-1) + 1 + MIS(k+1,j-1))$
 - _ Case 3: $ij \in C \Rightarrow MIS(i,j) = MIS(i+1,j-1) + 1$

Case 3

MIS(i,j) = MIS(i+1,j-1) + 1 = 2 + 1 = 3