Data cleansing

Data handling

Director of TEAMLAB Sungchul Choi

Data problems

결국 우리는 데이터 부터...

Data quality problems

- 데이터의 최대/최소가 다름 → Scale에 따른 y값에 영향
- Ordinary 또는 Nominal 한 값 들의 표현은 어떻게?
- 잘 못 기입된 값들에 대한 처리
- 값이 없을 경우는 어떻게?
- 극단적으로 큰 값 또는 작은 값들은 그대로 놔둬야 하는가?

어떤 것을 해결할 것인가?

Data preprocessing issues

- 데이터가 빠진 경우 (결측치의 처리)
- 라벨링된 데이터(category) 데이터의 처리
- 데이터의 scale의 차이가 매우 크게 날 경우

Missing Values

데이터가 없을 때 할 수 있는 전략

- 데이터가 없으면 sample을 drop
- 데이터가 없는 최소 개수를 정해서 sample을 drop
- 데이터가 거의 없는 feature는 feature 자체를 drop
- 최빈값, 평균값으로 비어있는 데이터를 채우기

Data

	first_name	last_name	age	sex	preTestScore	postTestScore
0	Jason	Miller	42.0	m	4.0	25.0
1	NaN	NaN	NaN	NaN	NaN	NaN
2	Tina	Ali	36.0	f	NaN	NaN
3	Jake	Milner	24.0	m	2.0	62.0
4	Amy	Cooze	73.0	f	3.0	70.0

	first_name	last_name	age	sex	preTestScore	postTestScore
0	Jason	Miller	42.0	m	4.0	25.0
3	Jake	Milner	24.0	m	2.0	62.0
4	Amy	Gooze	73.0	f	3.0	70.0

```
df_cleaned = df.dropna(how='all')
df_cleaned 모든 데이터가 비어 있으면 drop
```

	first_name	last_name	age	sex	preTestScore	postTestScore
0	Jason	Miller	42.0	m	4.0	25.0
2	Tina	Ali	36.0	f	NaN	NaN
3	Jake	Milner	24.0	m	2.0	62.0
4	Amy	Gooze	73.0	f	3.0	70.0

데이터가 최소 4개 이상

df['location'] = np.nan NAN을 생성 column df

	first_name	last_name	age	sex	preTestScore	postTestScore	location
0	Jason	Miller	42.0	m	4.0	25.0	NaN
1	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	Tina	Ali	36.0	f	NaN	NaN	NaN
3	Jake	Milner	24.0	m	2.0	62.0	NaN
4	Amy	Cooze	73.0	f	3.0	70.0	NaN

df.dropna(axis=1, thresh=3)

없을 때 drop first_name_last_name_age_sex_preTestScore_postTestScore

	mst_mame	iast_name	age	367	pre restacore	post lestacore
0	Jason	Miller	42.0	m	4.0	25.0
1	NaN	NaN	NaN	NaN	3.0	NaN
2	Tina	Ali	36.0	f	3.0	70.0
3	Jake	Milner	24.0	m	2.0	62.0
4	Amy	Cooze	73.0	f	3.0	70.0

df.dropna(axis=1, how='all')

column 기준으로 삭제

	first_name	last_name	age	sex	preTestScore	postTestScore
0	Jason	Miller	42.0	m	4.0	25.0
1	NaN	NaN	NaN	NaN	3.0	NaN
2	Tina	Ali	36.0	f	3.0	70.0
3	Jake	Milner	24.0	m	2.0	62.0
4	Amy	Cooze	73.0	f	3.0	70.0

df.dropna(thresh=5) 5개 이상 데이터가 있지 않으면 Drop

	first_name	last_name	age	sex	preTestScore	postTestScore	location
0	Jason	Miller	42.0	m	4.0	25.0	NaN
3	Jake	Milner	24.0	m	2.0	62.0	NaN
4	Amy	Cooze	73.0	f	3.0	70.0	NaN

데이터 값 채우기

- 평균값, 중위값, 최빈값을 활용

https://goo.gl/i8iuL9

(a) Negatively skewed (b) Normal (no skew) (c) Positively skewed Mean Median Mode Mode Mode Median Median Frequency Mean Mean Perfectly Symmetrical **Negative Direction** Positive Direction Distribution

데이터가 채우기

- 평균값 – 해당 column의 값의 평균을 내서 채우기

$$\overline{X} = \frac{\sum_{i=1}^{n} x_i}{n} \quad \frac{\text{df["preTestScore"].mean()}|}{3.0}$$

- 중위값 – 값을 일렬로 나열했을 때 중간에 위치한 값

1, 3, 3, 6, 7, 8, 9
$$x_{\frac{(n-1)}{2}}$$
 df["postTestScore"].median()

- 최빈값 – 가장 많이 나오는 값

```
1, 2, 2, 3, 3, 4, 4, 3
```

```
df["postTestScore"].mode()|
0    70.0
dtype: float64
```

Data Fill

데이터가 없는 곳은 0으로 집어넣어라 df.fillna(0)

	first_name	last_name	age	sex	preTestScore	postTestScore	location
0	Jason	Miller	42.0	m	4.0	25.0	0.0
1	0	0	0.0	0	0.0	0.0	0.0
2	Tina	Ali	36.0	f	0.0	0.0	0.0
3	Jake	Milner	24.0	m	2.0	62.0	0.0
4	Amy	Cooze	73.0	f	3.0	70.0	0.0

df["preTestScore"].fillna(df["preTestScore"].mean(), inplace=True)

preTestScore의 평균값을 집어넣어라

	first_name	last_name	age	sex	preTestScore	postTestScore	location
0	Jason	Miller	42.0	m	4.0	25.0	NaN
1	NaN	NaN	NaN	NaN	3.0	NaN	NaN
2	Tina	Ali	36.0	f	3.0	NaN	NaN
3	Jake	Milner	24.0	m	2.0	62.0	NaN
4	Amy	Cooze	73.0	f	3.0	70.0	NaN

Data Fill

df["postTestScore"].fillna(df.groupby("sex")["postTestScore"].transform("mean"), inplace=True)

df 성별로 나눠서 평균 값을 집어 넣어라

	first_name	last_name	age	sex	preTestScore	postTestScore	location
0	Jason	Miller	42.0	m	4.0	25.0	NaN
1	NaN	NaN	NaN	NaN	3.0	NaN	NaN
2	Tina	Ali	36.0	f	3.0	70.0	NaN
3	Jake	Milner	24.0	m	2.0	62.0	NaN
4	Amy	Cooze	73.0	f	3.0	70.0	NaN

df[df['age'].notnull() & df['sex'].notnull()] Age와 sex가 모두 notnull인 경우에만 표시해라

	first_name	last_name	age	sex	preTestScore	postTestScore	location
0	Jason	Miller	42.0	m	4.0	25.0	NaN
2	Tina	Ali	36.0	f	3.0	70.0	NaN
3	Jake	Milner	24.0	m	2.0	62.0	NaN
4	Amy	Cooze	73.0	f	3.0	70.0	NaN

Category data

이산형 데이터를 어떻게 처리할까?

{Green, Blue, Yellow}

이산형 데이터를 어떻게 처리할까?

One-Hot Encoding

{Green, Blue, Yellow} 데이터 집합

{Green} \rightarrow [1, 0, 0]

{Green} \rightarrow [1, 0, 0]

 $\{blue\} \rightarrow [0, 1, 0]$

실제 데이터 set의 크기만큼 Binary Feature를 생성

Data type

```
import pandas as pd
import numpy as np
edges = pd.DataFrame({'source': [0, 1, 2],
                  'target': [2, 2, 3],
                      'weight': [3, 4, 5],
                      'color': ['red', 'blue', 'blue']})
edges["source"]
                 Data의 type = int64
Name: source, dtype: int64
edges["color"]
   red
    blue
                 Data의 type = object
    blue
Name: color, dtype: object
```

One Hot Encoding

pd.get_dummies(edges)

	source	target	weight	color_blue	color_red
0	0	2	3	0	1
1	1	2	4	1	0
2	2	3	5	1	0

pd.get_dummies(edges["color"])

	blue	red
0	0	1
1	1	0
2	1	0

pd.get_dummies(edges[["color"]])

	color_blue	color_red
0	0	1
1	1	0
2	1	0

One Hot Encoding

```
weight_dict = {3:"M", 4:"L", 5:"XL"}
edges["weight_sign"] = |edges["weight"].map(weight_dict)
edges
Ordinary data → One Hot Encoding
```

	color	source	target	weight	weight_sign
0	red	0	2	3	М
1	blue	1	2	4	L
2	blue	2	3	5	XL

```
edges = pd.get_dummies(edges)
edges.as_matrix()
```

```
array([[0, 2, 3, 0, 1, 0, 1, 0],
[1, 2, 4, 1, 0, 1, 0, 0],
[2, 3, 5, 1, 0, 0, 0, 1]], dtype=int64)
```

데이터의 구간을 나눠보자

Data Binning!

Data: 0, 4, 12, 16, 16, 18, 24, 26, 28

Equal width

```
- Bin 1: 0, 4 [-,10)

- Bin 2: 12, 16, 16, 18 [10,20)

- Bin 3: 24, 26, 28 [20,+)
```

Equal frequency

```
- Bin 1: 0, 4, 12 [-, 14]
- Bin 2: 16, 16, 18 [14, 21]
- Bin 3: 24, 26, 28 [21,+)
```

Data binning

	regiment	company	name	pre TestScore	postTestScore
0	Nighthawks	1st	Miller	4	25
1	Nighthawks	1st	Jacobson	24	94
2	Nighthawks	2nd	Ali	31	57
3	Nighthawks	2nd	Milner	2	62
4	Dragoons	1st	Cooze	3	70
5	Dragoons	1st	Jacon	4	25
6	Dragoons	2nd	Ryaner	24	94
7	Dragoons	2nd	Sone	31	57
8	Scouts	1st	Sloan	2	62
9	Scouts	1st	Piger	3	70
10	Scouts	2nd	Riani	2	62
11	Scouts	2nd	Ali	3	70

데이터의 구간을 나눌 수 있음

구간 기준

Data binning

```
bins = [0, 25, 50, 75, 100] # Define bins as 0 to 25, 25 to 50, 60 to 75, 75 to 100
group_names = ['Low', 'Okay', 'Good', 'Great'] 구간명
categories = pd.cut(df['postTestScore'], bins, labels=group_names)
categories
                             Cut 후 categories에 할당
       Low
     Great
      Good
      Good
      Good
       Low
6
     Great
      Good
      Good
      Good
      Good
      Good
Name: postTestScore, dtype: category
```

Categories (4, object): [Low < Okay < Good < Great]

Data binning

```
df['categories'] = pd.cut(df['postTestScore'], bins, labels=group_names)
pd.value_counts(df['categories'])
                             기존 dataframe에 할당
```

Good

Great 2 Low

0kay

Name: categories, dtype: int64

	regiment	company	name	pre TestScore	postTestScore	categories
0	Nighthawks	1st	Miller	4	25	Low
1	Nighthawks	1st	Jacobson	24	94	Great
2	Nighthawks	2nd	Ali	31	57	Good
3	Nighthawks	2nd	Milner	2	62	Good
4	Dragoons	1st	Cooze	3	70	Good
5	Dragoons	1st	Jacon	4	25	Low
6	Dragoons	2nd	Ryaner	24	94	Great
7	Dragoons	2nd	Sone	31	57	Good
8	Scouts	1st	Sloan	2	62	Good
9	Scouts	1st	Piger	3	70	Good
10	Scouts	2nd	Riani	2	62	Good
11	Scouts	2nd	Ali	3	70	Good

Label encoding by sklearn

- Scikit-learn의 preprocessing 패키지도 label, one-hot 지원

Label encoding by sklearn

- Scikit-learn의 preprocessing 패키지도 label, one-hot 지원

```
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(raw_example[:,0]) → Data에 맞게 encoding fitting
le.transform(raw_example[:,0]) 실제 데이터 → labelling data
array([1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2])
```

```
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(raw_example[:,0])
le.transform(raw_example[:,0])
```

- array([1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2])
 - Label encoder의 fit과 transform의 과정이 나눠진 이유는
 - 새로운 데이터 입력시, 기존 labelling 규칙을 그대로 적용할 필요가 있음
 - Fit 은 규칙을 생성하는 과정
 - Transform은 규칙을 적용하는 과정
 - Fit을 통해 규칙이 생성된 labelencoder는 따로 저장하여
- 새로운 데이터를 입력할 경우 사용할 수 있음
- Encoder들을 실제 시스템에 사용할 경우 pickle화 필요

```
label column = [0,1,2,5]
label enconder list = []
for column index in label column:
    le = preprocessing.LabelEncoder()
    le.fit(raw example[:,column_index])
    data[:,column index] = le.transform(raw example[:,column index])
    label_enconder_list.append(le)
                                   기존 label encoder를 따로 저장
    del le
data[:3]
array([[1, 0, 4, 4, 25, 2],
      [1, 0, 2, 24, 94, 1],
       [1, 1, 0, 31, 57, 0]], dtype=object)
label enconder list[0].transform(raw example[:10,0])
array([1, 1, 1, 1, 0, 0, 0, 0, 2, 2])저장된 le로 새로운 데이터에 적용
```

One-hot encoding by sklearn

[0., 1., 0.],

[0., 1., 0.],

[1., 0., 0.],

- Numeric labelling이 완료된 데이터에 one-hot 적용
- 데이터는 1-dim 으로 변환하여 넣어 줄 것을 권장

Feature scaling

두 변수중 하나의 값의 크기가 너무 크다!

몸무게와 키가 변수일때, 키가 영향을 많이 줌

Feature scaling

Feature간의 최대-최소값의 차이를 맞춘다!

$$y = \beta_1 x_1 + \beta_2 x_2 + x_0$$

max

$$x_1$$
 min max x_2 min max

Feature scaling 전략

- Min-Max Normalization
기존 변수에 범위를 새로운 최대-최소로 변경 일반적으로 0과 1 사이 값으로 변경함

$$x_{norm}^{(i)} = \frac{x^{(i)} - x_{min}}{x_{max} - x_{min}} (new_max - new_low) + new_low$$

최소 12,000 / 최대 98,000 → 기존 값 73,600

Feature scaling 전략

- Standardization (Z-score Normalization) 기존 변수에 범위를 정규 분포로 변환 실제 Mix-Max의 값을 모를 때 활용가능

$$x_{std_norm}^{(i)} = \frac{x^{(i)} - \mu}{s_i}$$

평균 54,000 / 표준편자 16,000 → 73,600

주의 사항

실제 사용할 때는 반드시

정규화 Parameter(최대/최소, 평균/표준편차) 등을

기억하여 새로운 값에 적용해야함

Min-Max Normalization

$$x_{norm}^{(i)} = \frac{x^{(i)} - x_{min}}{x_{max} - x_{min}} (new_max - new_low) + new_low$$

```
( df["A"] - df["A"].min() )
/ (df["A"].max() - df["A"].min()) * (5 - 1) + 1
```

```
      A
      B
      C

      0
      14.00
      103.02
      big

      1
      90.20
      107.26
      small

      2
      90.95
      110.35
      big

      3
      96.27
      114.23
      small

      4
      91.21
      114.68
      small
```

Z-Score Normalization

$$x_{std_norm}^{(i)} = \frac{x^{(i)} - \mu}{s_i}$$

```
df["B"] = ( df["B"] - df["B"].mean() ) \
/ (df["B"].std() )
```

```
ABC014.00103.02big190.20107.26small290.95110.35big396.27114.23small491.21114.68small
```

Feature Scaling Function

```
def feture scaling(df, scaling strategy="min-max", column=None):
    if column == None:
        column = [column_name for column_name in df.columns]
    for column name in column:
        if scaling strategy == "min-max":
            df[column_name] = ( df[column_name] - df[column_name].min() ) /
                            (df[column name].max() - df[column name].min())
        elif scaling strategy == "z-score":
            df[column_name] = ( df[column_name] - \
                               df[column name].mean() ) //
                            (df[column_name].std() )
    return df
```

Feature scaling with sklearn

- Label encoder와 마찬가지로, sklearn도 feature scale 지원
- MinMaxScaler와 StandardScaler 사용

```
from sklearn import preprocessing
std scale = preprocessing.StandardScaler().fit(
    df[['Alcohol', 'Malic acid']])
df std = std scale.transform(df[['Alcohol', 'Malic acid']])
df std[:5]
array([[ 1.51861254, -0.5622498 ],
       [ 0.24628963, -0.49941338],
       [ 0.19687903, 0.02123125],
```

Feature scaling with sklearn

- Preprocessing은 모두 fit → transform의 과정을 거침
- 이유는 label encoder와 동일

[0.56052632, 0.3201581]])

- 단, scaler는 한번에 여러 column을 처리 가능

Human knowledge belongs to the world.