"Año de la recuperación y consolidación de la economía peruana"

UNIVERSIDAD PERUANA CAYETANO HEREDIA FACULTAD DE CIENCIAS E INGENIERÍA

TÍTULO:

"Informe: Resultados de regresión en valores de CO y AQI en 2023 y 2024 en California"

TEMA:

"Machine Learning - Regresión"

AUTOR:

Victor Daniel Rivera Torres

CURSO:

Proyectos de Ingeniería 1

GRUPO:

AG2 - Subgrupo 3

1. Origen y trazabilidad de los datos

Fuente principal:

EPA (US Environmental Protention Agency) AirData → Download Daily Data

Contaminante: COAños: 2023 y 2024

Área geográfica: California

Archivos brutos:

- Dataset de 2023 y 2024
- Dataset de 2025 para validación

Date	Source	Site ID	POC	Daily Max 8-	Units	Daily AQI Va	Local Site Na	Daily Obs Co	Percent Com	AQS Paramet	AQS Paramet
01/01/2023	AQS	60010009	1	0.6	ppm	7	Oakland	18	75	42101	Carbon mone
01/02/2023	AQS	60010009	1	0.5	ppm	6	Oakland	24	100	42101	Carbon mone
01/03/2023	AQS	60010009	1	0.4	ppm	5	Oakland	24	100	42101	Carbon mone
01/04/2023	AQS	60010009	1	0.4	ppm	5	Oakland	24	100	42101	Carbon mone
01/05/2023	AQS	60010009	1	0.4	ppm	5	Oakland	24	100	42101	Carbon mone
01/06/2023	AQS	60010009	1	0.4	ppm	5	Oakland	24	100	42101	Carbon mone
01/07/2023	AQS	60010009	1	0.3	ppm	3	Oakland	24	100	42101	Carbon mone
01/08/2023	AQS	60010009	1	0.3	ppm	3	Oakland	24	100	42101	Carbon mone
01/09/2023	AQS	60010009	1	0.4	ppm	5	Oakland	24	100	42101	Carbon mone
01/10/2023	AQS	60010009	1	0.4	ppm	5	Oakland	24	100	42101	Carbon mone

Campos clave:

 Date (o Fecha), Daily AQI Value, Daily Max 8-hour CO Concentration, Daily Obs Count, identificadores de sitio/ciudad.

Licencia/nota EPA: datos preliminares de AirNow pueden diferir de AQS; validados posteriormente. No se usan para normativas.

2. Preparación y limpieza

2.1 Normalización

- Se estandarizan nombres, se parsea Date o se crea desde Year/Month/Day.
- Se convierten en numéricos: Daily AQI Value y Daily Max 8-hour CO Concentration (tolerando NaN).

2.2 Agregación diaria entre estaciones

Para cada fecha:

- AQI_mean = media de Daily AQI Value
- CO mean = media de Daily Max 8-hour CO Concentration
- ObsCount_total (si existe) = suma de Daily Obs Count

Se extrae Year/Month/Day y se conservan las columnas: Year, Month, Day, AQI_mean, CO_mean, (opcional) ObsCount_total

Nota: probamos promedio ponderado por ObsCount_total; la mejora fue marginal, por eso mantuvimos la media simple + ObsCount_total como señal adicional.

3. Unificación de años y control de tipos

- promedio_diario_2023.csv + promedio_diario_2024.csv → promedio_diario_2023_2024.csv
- Orden cronológico, eliminación de duplicados por (Year, Month, Day).
- Normalización del nombre ObsCount_total (a veces venía como ObsCount).

Entregables de esta etapa (DataFrames obtenidos):

- promedio_diario_2023.csv
- promedio diario 2024.csv
- promedio_diario_2023_2024.csv
- promedio_diario_2025.csv

4. Análisis exploratorio (EDA) resumido

4.1 Señal y estacionalidad

- Comportamiento semanal muy marcado; presencia de picos (spikes).
- Tendencia de 2023 a 2024 relativamente estable con oscilaciones.

5. Baseline ingenuo

Naive t-7 (día de la semana anterior):

RMSE ≈ 1.783 (valor guía).

6. Modelos y experimentos

6.1 SARIMAX (intento)

- Estacionalidad semanal (s=7); órdenes p,d,q,P,D,Q probados en rejillas pequeñas.
- Resultados insuficientes: pronósticos sesgados y con poca amplitud; residuales con patrón; sensibilidad a la especificación.

¿Por qué no funcionó bien?

- Fuerte estacionalidad con cambios de amplitud y picos irregulares.
- Órdenes subóptimos; tuning profundo costoso; sin exógenas potentes pierde información.

6.2 ML con features (HistGradientBoostingRegressor)

6.2.1 Feature engineering

- Lags de AQI_mean: 1, 2, 3, 7, 14, 28
- Medias móviles: MA7, MA14 de AQI_mean
- Exógenas (CO_mean, ObsCount_total): lags 1 y 7 + MA7
- Calendario: dummies de día de semana y mes
- Fourier semanal: sin/cos (periodo 7)
- Tendencia: índice temporal t

6.2.2 Validación

- TimeSeriesSplit(n_splits=5) (sin shuffle).
- Evitar leakage: todos los lags/MA se calculan únicamente con historia.

6.2.3 Entrenamiento

- HistGradientBoostingRegressor: learning_rate≈0.06, max_iter≈800, I2≈1.0.
- Métricas CV (típicas): RMSE ≈ 0.38 ± 0.38, MAE ≈ 0.26.

6.2.4 Pronóstico 2025 (recursivo)

 Se agrega día a día a la historia; las predicciones de AQI se retroalimentan para construir lags futuros.

6.2.5 Problema clave: exógenas 2025 faltantes

Versión 1 (media 7 días) → aplanó la predicción (casi constante).

 Versión 2 (repetir patrón semanal fijo) → serrucho perfecto (amplitud idéntica).

- Versión final (ganadora): Backfill tendencia + estacionalidad centrada + clipping
 - Tendencia: ajuste lineal en los últimos ~60 días de 2024.

- Estacionalidad: media por día de semana en las últimas 8 semanas, centrada (resto la media para no duplicar nivel) y con amplitud controlable.
- Clipping: p1–p99 históricos de la propia exógena para evitar outliers inventados.
- (Opcional) suavizado leve: 85% yhat + 15% media de las últimas 6 predicciones.

6.2.6 Resultados típicos

- CV (5 folds): RMSE ≈ 0.383 ± 0.385; MAE ≈ 0.262.
- Test 2025: RMSE ≈ 0.248; MAE ≈ 0.172.
- vs Baseline t-7: mejora clara (1.783 \rightarrow ~0.25–0.30).

6.3 XGBoost + backtesting expanding-window + intervalos

6.3.1 ¿Por qué XGBoost?

• Otro *learner* de árboles con gran capacidad; expresivo con features tabulares.

6.3.2 Backtesting (expanding window)

- Particiones crecientes: entreno hasta t1 → valido en (t1,t2], etc.
- Evita optimismo; simula despliegue real.

6.3.3 Hiperparámetros (grid corto)

- n_estimators ∈ {500, 800, 1200}
- learning rate $\in \{0.04, 0.06, 0.08\}$
- $max_depth \in \{4, 5, 6\}$
- subsample ∈ {0.8, 1.0}
- colsample_bytree $\in \{0.8, 1.0\}$
- reg_lambda $\in \{0.5, 1.0, 1.5\}$

6.3.4 Intervalos conformales (IC 90%)

- Calibración con residuales walk-forward en fines de 2024; q = 0.90 sobre |error|.
- Pronóstico 2025: IC = ŷ ± q.

6.3.5 Comentario

 Métricas similares a HistGB; la validación con expanding-window e IC elevan la calidad del informe.

7. Diario de errores y soluciones

Error (pantalla)	Por qué ocurrió	Qué hicimos
TypeError: got an unexpected keyword argument 'squared'	Diferencias de versión/import al calcular RMSE	Pasamos a rmse = sqrt(mse) y control de imports (sklearn.metrics)
KeyError: 'AQI_mean' o 'AQI_pred_A'	Mezcla de CSV con columnas distintas	Estandarizamos nombres y reindexamos columnas
Input contains NaN (sklearn)	NaN/inf en arrays al evaluar	Máscaras de validación + dropna + np.isfinite
Predicción plana 2025	Faltan exógenas 2025; relleno con media 7d	Backfill tendencia + estacionalidad
Predicción serrucho 2025	Repetimos patrón semanal fijo	Estacionalidad centrada + amplitud + clipping

Mismatch de features en forecast	feat_cols del train no coinciden con forecast	tmp.reindex(columns=feat_cols, fill_value=0) en inferencia
-------------------------------------	---	--

Versiones de entorno:

- scikit-learn 1.6.1
- statsmodels 0.14.5
- Python 3.12 (Colab)

8. Resultados finales (para la memoria)

Modelo	Validación	RMSE	MAE
Baseline t-7	2025	1.783	-
SARIMAX	2025	0.226	0.192
HistGB (features)	CV 5 folds	0.383 ± 0.385	0.262
HistGB (features)	2025	0.248	0.172
XGBoost (features)	Backtesting	0.169	0.138

9. Conclusiones

- El ML con features (árboles + lags/MA/calendario/exógenas) superó al baseline t-7 y al SARIMAX básico.
- El manejo correcto de exógenas faltantes en 2025 fue crítico: el backfill tendencia + estacionalidad evitó tanto la planicie como el serrucho repetitivo.
- La validación temporal correcta (TimeSeriesSplit o expanding-window) es clave para evitar optimismo.
- Los intervalos conformales son útiles para comunicar incertidumbre operativa.