基本IPv6配置

默认固件为DHCPv6客户端(odhcp6c),RA和DHCPv6服务器(odhcpd)和IPv6防火墙(ip6tables)提供完整的IPv6支持。

此外,Web界面的默认安装包括 luci-proto-ipv6 从 luci Web界面配置IPv6所需的软件包。

① 如果您正在进行自定义构建,请不要安装上述包装以提供相应的IPv6功能。

合规

我们的目标是尽可能遵循RFC 7084 (http://tools.ietf.org/html/rfc7084)。如果发现任何标准违规行为,请通知我们。

目前知道RFC 7084的 (http://tools.ietf.org/html/rfc7084)以下要求不被满足:

• RFC 7084 (http://tools.ietf.org/html/rfc7084) WAA-5(SHOULD-requirements): 请求和接收NTP服务器,但当前未被处理或使用。

一般特征

- 前缀处理
 - · 从上游连接和本地ULA前缀管理前缀,地址和路由
 - 前缀不可达路由的管理,前缀弃用(RFC 7084 (http://tools.ietf.org/html/rfc7084))和
 前缀类
 - · 前缀到下游接口的分发(包括大小,ID和类提示)
 - 基于源的策略路由正确处理多个上行接口,进入策略过滤(RFC 7084 (http://tools.ietf.org/html/rfc7084))

WAN接口的上行配置

以下各节介绍与ISP或上游路由器的IPv6连接配置。请注意,大多数隧道机制,如6in4,6rd和6to4,可能无法在NAT路由器之后工作。

本地IPv6连接

- SLAAC自动引导,无状态DHCPv6,有状态DHCPv6,DHCPv6-PD和任意组合
- 处理首选和有效的地址和前缀生命周期
- 重复地址和Link-MTU检测
- DHCPv6扩展: 重新配置, 信息刷新, SOL MAX RT = 3600
- DHCPv6扩展: RDNSS, DNS (Domain Name System)搜索域, NTP, SIP, ds-lite, 前缀排除(实验)

对于具有本机IPv6连接的上行链路,您可以使用以下示例配置。它将适用于支持使用前缀委派的 DHCPv6的上行链路以及不支持DHCPv6-PD或DHCPv6的上行链路(仅限SLAAC)。

root @ lede: /# cat / etc / config / network

配置界面wan

选项ipv6 1#仅适用于基于PPP的协议

. . .

配置界面wan6

选项ifname eth1#在wan-section中使用相同的ifname或"@wan" option proto dhcpv6

配置界面lan

选项原型静态 选项ip6assign 60

. . .

请参阅下面的协议dhcpv6的高级配置选项。

协议"dhcpv6"

这些是uci配置客户机ipv6接口(使用"dhcpv6"协议)的可用选项。

名称	类型	需要	默认	描述
reqaddress	[尝试, 力,无]	没有	尝试	请求地址的行为
reqprefix	[汽车, 没有, 0-64]	没有	汽车	请求前缀的行为(数字表示暗示的前缀长度)。如果您只想为AP本身提供单个IPv6地址而不使用子网进行路由,请使用"否"
clientid	十六进 制串	没有	系统 默认	覆盖DHCP请求中的客户端标识
ifaceid	ipv6 addr	没有	链接 本地 标识	覆盖通过RA接收的地址的接口标识符
dns	IP地址 列表	没有	(没 有)	补充DHCP分配的DNS (Domain Name System)服务器,或者如果peerdns为0,则仅使用这些服务器
peerdns	布尔	没有	1	使用DHCP提供的DNS (Domain Name System)服务器
defaultroute	布尔	没有	1	是否通过接收到的网关创建IPv6默认路由
reqopts	数字列 表	没有	(没 有)	指定要请求的其他DHCP选项列表
noslaaconly	布尔	没有	0	不允许通过SLAAC(RA)进行配置(由reqprefix!=否)

norelease	布尔	没 有	0	当接口关闭时,不要发送RELEASE
ip6prefix	ipv6前 缀	没 有	(没 有)	使用(附加)用户提供的IPv6前缀分发给客户端
iface_dslite	逻辑接口	没有	(没 有)	用于DS-Lite自动配置的逻辑界面模板

注意:要从dhcpv6自动配置ds-lite,您需要创建一个接口 option auto 0 并将其名称设置为"iface_dslite"参数。另外您还需要将其名称添加到/ etc / config / firewall中的一个合适的防火墙区域。

静态IPv6连接

也支持IPv6上行链路的静态配置。以下示例演示了这一点。

root @ lede: /#cat / etc / config / network

配置界面wan

选项ifname eth1 选项原型静态

选项ip6addr 2001: db80 :: 2/64#自己的地址

选项ip6gw 2001: db80 :: 1#网关地址

选项ip6prefix 2001: db80: 1 :: / 48#前缀到下游接口的地址

选项dns 2001: db80 :: 1#DNS服务器

配置界面lan

选项原型静态 选项ip6assign 60

. . .

有关高级配置选项,请参阅下面的IPv6"静态"协议中的可用选项:

协议"静态"与IPv6

名称	类型	需要	默认	描述
ip6addr	ipv6 地址	是的,如果 没有 ipaddr 设置	(没 有)	将给定的IPv6地址分配给此接口(CIDR表示法)
ip6ifaceid	ipv6 后缀	没有	:: 1	允许的值: 'eui64', 'random', 固定值如':: 1: 2'。 当从委托服务器收到IPv6前缀(如"a: b: c: d::")时, Network)中的多个路由器。该选项由2015年1月的netifd p p=project/netifd.git;a=commitdiff;h=0b0e5e2fc5b065092 入。
ip6gw	ipv6 地址	没有	(没 有)	将给定的IPv6默认网关分配给此接口
ip6assign	前缀 长度	没有	(没 有)	将给定长度的前缀委派给此接口(请参阅下面的下游配置

ip6hint	前缀是十十进	没有	(没有)	提示应该委派为十六进制数的子反射ID(请参阅下面的下
ip6prefix	ipv6 前缀	没有	(没 有)	IPv6前缀路由在此用于其他接口(阻隔断路器及更高版本
ip6class	字符 串列 表	没有	(没 有)	定义此接口将接受的IPv6前缀类
dns	IP地 址列 表	没有	(没 有)	DNS (Domain Name System)服务器
dns_search	域名列表	没有	(没 有)	用于主机名查找的搜索列表
metric	整数	没有	0	指定要使用的默认路由度量

LAN接口的下行配置

- 服务器支持Router Advertisement, DHCPv6 (无状态和有状态)和DHCPv6-PD
- 自动检测公告前缀,委派前缀,默认路由和MTU
- 更改检测前缀和路由触发重新发送RA和DHCPv6重新配置
- 检测客户端主机名并导出为扩充主机文件
- 支持RA和DHCPv6中继和NDP代理,例如支持上行链路,无需前缀委派

LEDE提供灵活的本地前缀委托机制。

每个下游接口可以单独调整3个参数,这些参数都是可选的:

- ip6assign: 用于分配给接口前缀的前缀大小(例如,64将分配/64个前缀)
- ip6hint:如果可用,则使用Subprefix ID(例如,ip6assign为64的1234将分配形式为...: 1234::/64的前缀)
- ip6class: 过滤前缀类以便在此接口上接受(例如,wan6将只为前缀分配类"wan6"而不是例如"local")

如果不能分配所需的子修改,ip6assign和/或ip6hint-settings可能会被忽略。在这种情况下,系统将首先尝试分配一个长度相同但不同的subprefix-ID的前缀。如果这也失败,则前缀长度减少,直到可以满足分配。如果ip6hint未设置,将选择任意的ID。将ip6assign-parameter设置为值<64将允许DHCPv6服务器通过DHCPv6-Prefix委派向接口下游路由器发出除第一个/64之外的所有内容。如果ip6hint不适合给定的ip6assign,它将被舍入到最接近的可能值。

如果未设置ip6class,则在此接口上接受所有前缀类。前缀的默认类是ULA前缀的接口名称(例如"wan6")或"local"。这可以用于选择分配子分支的上游接口。对于从动态配置方法(如DHCPv6)接收的前缀,前缀类不等于源接口,但是可以使用ISP提供的数字前缀类值进行扩充。

root @ lede: /# cat / etc / config / network

配置全局变量全局变量

选项ula_prefix fd00: db80 :: / 48

配置界面wan6

选项原型静态

option ip6prefix 2001: db80 :: / 56

. . .

配置界面lan

选项原型静态

选项ip6assign 60

选项ip6hint 10

• • •

配置接口guest

选项原型静态

选项ip6assign 64

选项ip6hint abcd

列表ip6class wan6

• • •

该配置的结果将是:

- 该 lan 接口将分配2001: db80: 0: 10::/60和fd00: db80: 0: 10::/60的前缀。
- DHCPv6服务器可以 lan 通过DHCPv6-PD 向下游路由器提供2001年以外的前缀: db80: 0: 10::/64和fd00: db80: 0: 10::/64 。
- guest 由于类过滤器,该接口将只能识别前缀2001: db80: 0: abcd::/64。

①如果路由器可以 ping6 上网,但是lan机器得到"目的地不可达到:未知代码5"或"源地址失败的入口/出口策略",那么您的lan接口上缺少ip6assign选项。

路由器广告和DHCPv6

LEDE具有通用的RA&DHCPv6服务器和继电器。根据默认SLAAC,无状态和状态DHCPv6在接口上启用。如果有大小/64或更大的前缀,那么地址将从每个前缀发出。如果接口上的所有前缀的大小都大于64,则为下游路由器启用DHCPv6-Prefix委派。如果出现默认路由,则路由器会在接口上通告自己为默认路由器。

该系统还能够检测上游接口何时没有可用的前缀,并可以自动切换到中继模式,将上游接口配置扩展到其下游接口。这对于将目标路由器放置在不通过DHCPv6-PD提供前缀的另一个IPv6路由器是有用的。

SLAAC + DHCPv6服务器模式的配置示例。这也适用于典型的6in4隧道配置,您可以在隧道接口配置中指定固定的LAN (Local Area Network)前缀。

root @ lede: /#cat / etc / config / dhcp config dhcp lan 选项dhcpv6服务器 选项ra服务器

单独SLAAC的配置部分示例

root @ lede: /#cat / etc / config / dhcp config dhcp lan 选项dhcpv6禁用 选项ra服务器

中继示例配置部分

root @ lede: /#cat / etc / config / dhcp config dhcp wan6 选项dhcpv6中继 选项继电器 选项ndp继电器 选项主控1

config dhcp lan 选项dhcpv6中继 选项继电器 选项ndp继电器

路由管理

LEDE使用基于源地址和源接口的策略路由系统。这是正确处理不同上行链路接口所必需的。每个委派的前缀都添加了不可达到的路由,以避免IPv6路由循环。

要确定路线的当前状态,您可以查阅所提供的信息 ifstatus。

示例 (ifstatus wan6):

```
"ipv6-address": [
        {
                "address": "2001: db80 :: a00: 27ff: fe67: cd9c",
                "面具": 64,
                "首选": 1681,
                "有效": 7081
        }
"ipv6-prefix": [
        {
                "address": "2001: db80: 0: 100 ::",
                "面具": 56,
                "首选": 86282,
                "有效": 86282,
                "班": "万"
                "assign": {
                        "lan": {
                                "address": "2001: db80: 0: 110 ::",
                                "面具": 60
                        }
                }
        }
"路线":[
        {
                "target": "2001: db80 ::",
                "面具": 48,
                "nexthop": "fe80 :: 800: 27ff: fe00: 0"
                "metric": 1024,
                "有效": 7081
        },
        {
                "target": "::",
                "mask": 0,
                "nexthop": "fe80 :: 800: 27ff: fe00: 0"
                "metric": 1024,
                "有效": 7081
        }
]
```

解释:

- 在接口上提供了2条路由: 2001: db80::/48和路由器fe80::800: 27ff: fe00: 0的默认路由。
- 这些路由只能由本地生成的流量和流量使用适当的源地址,这是本地地址之一或委派前缀中的地址之一。

①LEDE将IPv6路由(如默认路由)添加到特定路由表,而不是主表,因此默认情况下可能不会看到。您可以使用该命令 ip -6 rule 列出所有当前路由策略。

多个IP地址

分配多个IP地址到同一个接口:

配置界面foo

选项ifname eth1

list ipaddr 10.8.0.1/24 list ipaddr 10.9.0.1/24

列表ip6addr fdca: abcd :: 1/64 列表ip6addr fdca: cdef :: 1/64

指定共享同一设备的多个接口:

配置界面foo

选项ifname eth1

选项ipaddr 10.8.0.1

选项网络掩码255.255.255.0

选项ip6addr fdca: abcd :: 1/64

配置界面foo2

选项ifname eth1

选项ipaddr 10.9.0.1

选项网络掩码255.255.255.0

选项ip6addr fdca: cdef :: 1/64

最初发布在https://dev.openwrt.org/ticket/2829#comment:7

(https://dev.openwrt.org/ticket/2829#comment:7).

除非另有说明,本维基的内容将根据以下许可证获得许可: CC Attribution-Share Alike 4.0 International (http://creativecommons.org/licenses/by-sa/4.0/)