import pandas as pd
store=pd.read_csv(r'/content/train.csv')
store

$\overline{\Rightarrow}$		User_ID	Product_ID	Gender	Age	Occupation
	0	1000001	P00069042	F	0- 17	10
	1	1000001	P00248942	F	0- 17	10
	2	1000001	P00087842	F	0- 17	10
	3	1000001	P00085442	F	0- 17	10
	4	1000002	P00285442	М	55+	16
	550063	1006033	P00372445	M	51- 55	13
	550064	1006035	P00375436	F	26- 35	1
	550065	1006036	P00375436	F	26- 35	15
	550066	1006038	P00375436	F	55+	1
	550067	1006039	P00371644	F	46- 50	0
	FF0000	4.0				

pd.__version__

550068 rows × 12 columns

len(store)

→ 550068

store.shape

→ (550068, 12)

store.columns

Gemini X

vis3

vis3=sns.lmplot(data=store,x='Age',y=

Okay, let's break this down:

This line of code is creating a scatter plot with a fitted regression line using the seaborn library.

Here's a step-by-step explanation:

- 1. vis3 = ...: This part
 assigns the resulting plot to a
 variable named vis3, allowing
 you to further customize or
 display it later.
- sns.lmplot(...): This calls the lmplot function from the seaborn library, which is designed for creating these types of plots.
- 3. **data=store**: This specifies that the data for the plot should come from your Pandas DataFrame called store.
- 4. x='Age', y='Occupation':
 This determines which
 columns from your DataFrame
 will be used for the x and y
 axes of the scatter plot. In this
 case, 'Age' values will be
 plotted on the horizontal axis,
 and 'Occupation' values on the
 vertical axis.
- 5. fit_reg=True: This argument is crucial for including the regression line. By setting it to True, seaborn will calculate and draw a line of best fit through your data points. This line helps visualize the general trend or relationship between 'Age' and 'Occupation'.

To see the plot, run the code.

Rate this answer 🖒 🗇

```
Index(['User_ID', 'Product_ID', 'Gender', 'Age',
'Occupation', 'City_Category',
        'Stay In Current City Years',
'Marital_Status', 'Product_Category_1',
        'Product_Category_2', 'Product_Category_3',
'Purchase'],
      dtype='object')
```

type(store)

 $\overline{\rightarrow}$

pandas.core.frame.DataFrame

def init (data=None, index: Axes | None=None, columns: Axes | None=None, dtype: Dtype | None=None, copy: bool | None=None) -> None

/usr/local/lib/python3.11/dist-packages/pandas/co/ Two-dimensional, size-mutable, potentially hetero

Data structure also contains labeled axes (rows a Arithmetic operations align on both row and colum

store

$\overline{\Rightarrow}$		User_ID	Product_ID	Gender	Age	Occupation
	0	1000001	P00069042	F	0- 17	10
	1	1000001	P00248942	F	0- 17	10
	2	1000001	P00087842	F	0- 17	10
	3	1000001	P00085442	F	0- 17	10
	4	1000002	P00285442	М	55+	16
	550063	1006033	P00372445	M	51- 55	13
	550064	1006035	P00375436	F	26- 35	1
	550065	1006036	P00375436	F	26- 35	15
	550066	1006038	P00375436	F	55+	1
	550067	1006039	P00371644	F	46- 50	0

550068 rows × 12 columns

len(store.columns)

Okay, let's figure out the error.

The error you're encountering with the code

vis3=sns.lmplot(data=store,x=' is likely because the 'Age' column in your DataFrame might not be numerical. The 1mplot function in seaborn primarily works with numerical data for regression analysis.

Here's a breakdown of the error and the solution:

Error:

• Implot expects numerical data for 'x' and 'y' to perform regression and plot the line of best fit. If 'Age' contains nonnumeric values (e.g., strings, categories), the function will raise an error.

Solution:

1. Check the data type of 'Age': print(store['Age'].dtype)

Use code with caution

- If it's not a numerical type (like int64 or float64), you'll need to convert it.
- 2. Convert 'Age' to numerical if needed:
 - If 'Age' has categories represented as strings (e.g., '0-17', '18-25', etc.), you can use methods like pd.factorize() or pd.Categorical() to convert them to numerical representations. Here's an example using pd.factorize()

store.info()

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 550068 entries, 0 to 550067
 Data columns (total 12 columns):

#	Column	Non-Nu	ll Count	Dty
0	User_ID	550068	non-null	int
1	Product_ID	550068	non-null	obj
2	Gender	550068	non-null	obj
3	Age	550068	non-null	obj
4	Occupation	550068	non-null	int
5	City_Category	550068	non-null	obj
6	Stay_In_Current_City_Years	550068	non-null	obj
7	Marital_Status	550068	non-null	int
8	Product_Category_1	550068	non-null	int
9	Product_Category_2	376430	non-null	flo
10	Product_Category_3	166821	non-null	flo
11	Purchase	550068	non-null	int
dtyp	es: float64(2), int64(5), ob	ject(5)		
memo	ry usage: 50.4+ MB			

store.head()

\rightarrow		Uson TD	Dradust ID	Condon	100	Ossumation	City
		oser_in	Product_ID	Gender.	Age	occupation	CITY
	0	1000001	P00069042	F	0- 17	10	
	1	1000001	P00248942	F	0- 17	10	
	2	1000001	P00087842	F	0- 17	10	
	3	1000001	P00085442	F	0- 17	10	
	4	1000002	P00285442	M	55+	16	

store.tail()

l.factorize(store['Age'])[0] # |
|=store, x='Age_Encoded', y='Oc

Explanation:

- We first encoded the 'Age'
 column into numerical values
 using pd.factorize(). This
 creates a new column (e.g.,
 'Age_Encoded') with numerical
 representations of the age
 categories.
- Then, in the lmplot function, we used this new
 'Age_Encoded' column for the x-axis, ensuring the regression analysis is performed on numerical data.

By converting 'Age' to a numerical format, you should be able to resolve the error and generate the scatter plot with the regression line successfully.

Rate this answer 🖒 🗇

	User_ID	Product_ID	Gender	Age	Occupation
550063	1006033	P00372445	M	51- 55	13
550064	1006035	P00375436	F	26- 35	1
550065	1006036	P00375436	F	26- 35	15
550066	1006038	P00375436	F	55+	1
550067	1006039	P00371644	F	46- 50	0

store.tail(2)

e		_
Ĺ	4	÷
į,	_	Ĵ.

	User_ID	Product_ID	Gender	Age	Occupation
550066	1006038	P00375436	F	55+	1
550067	1006039	P00371644	F	46- 50	0

store.head(3)

	_
6.	_
⇒	7

	User_ID	Product_ID	Gender	Age	Occupation 0	City
0	1000001	P00069042	F	0- 17	10	
1	1000001	P00248942	F	0- 17	10	
2	1000001	P00087842	F	0- 17	10	

store.head(7)

e	_	_
-	\rightarrow	$\overline{}$
	~	

	User_ID	Product_ID	Gender	Age	Occupation	City
0	1000001	P00069042	F	0- 17	10	
1	1000001	P00248942	F	0- 17	10	
2	1000001	P00087842	F	0- 17	10	
3	1000001	P00085442	F	0- 17	10	
4	1000002	P00285442	M	55+	16	
5	1000003	P00193542	M	26- 35	15	
6	1000004	P00184942	M	46- 50	7	

store[::-1]

0		_
Ė	4	-
	7	
- %		_

	User_ID	Product_ID	Gender	Age	Occupation
550067	1006039	P00371644	F	46- 50	0
550066	1006038	P00375436	F	55+	1
550065	1006036	P00375436	F	26- 35	15
550064	1006035	P00375436	F	26- 35	1
550063	1006033	P00372445	M	51- 55	13
4	1000002	P00285442	M	55+	16
3	1000001	P00085442	F	0- 17	10
2	1000001	P00087842	F	0- 17	10
1	1000001	P00248942	F	0- 17	10
0	1000001	P00069042	F	0- 17	10

550068 rows × 12 columns

store[:5]

>		User_ID	Product_ID	Gender	Age	Occupation	City
	0	1000001	P00069042	F	0- 17	10	
	1	1000001	P00248942	F	0- 17	10	
	2	1000001	P00087842	F	0- 17	10	
	3	1000001	P00085442	F	0- 17	10	
	4	1000002	P00285442	M	55+	16	

store[3:]

_		_
		_
	\rightarrow	$\overline{}$
		-6

	User_ID	Product_ID	Gender	Age	Occupation
3	1000001	P00085442	F	0- 17	10
4	1000002	P00285442	M	55+	16
5	1000003	P00193542	M	26- 35	15
6	1000004	P00184942	M	46- 50	7
7	1000004	P00346142	M	46- 50	7
550063	1006033	P00372445	M	51- 55	13
550064	1006035	P00375436	F	26- 35	1
550065	1006036	P00375436	F	26- 35	15
550066	1006038	P00375436	F	55+	1
550067	1006039	P00371644	F	46- 50	0

550065 rows × 12 columns

store[0:200:10]

	-	-
	÷	\forall
L	_	_

<u> </u>		User_ID	Product_ID	Gender	Age	Occupation	Ci
	0	1000001	P00069042	F	0- 17	10	
	10	1000005	P00251242	M	26- 35	20	
	20	1000008	P00220442	M	26- 35	12	
	30	1000010	P00118742	F	36- 45	1	
	40	1000010	P00087242	F	36- 45	1	
	50	1000012	P00304242	M	26- 35	12	
	60	1000015	P00333042	M	26- 35	7	
	70	1000018	P00366542	F	18- 25	3	
	80	1000018	P0094142	F	18- 25	3	
	90	1000019	P00249642	M	0- 17	10	
	100	1000022	P00195942	M	18- 25	15	
	110	1000022	P00280542	M	18- 25	15	
	120	1000023	P00032042	M	36- 45	0	
	130	1000026	P00043242	M	26- 35	7	
	140	1000026	P00101342	M	26- 35	7	
	150	1000028	P00178942	F	26- 35	1	
	160	1000031	P00322042	M	55+	7	
	170	1000033	P00351842	M	46- 50	3	
	180	1000034	P00247042	F	18- 25	0	
	190	1000035	P00285442	M	46- 50	1	

store.describe()

-	4	_
	7	$\overline{}$

	User_ID	Occupation	Marital_Status	Р
count	5.500680e+05	550068.000000	550068.000000	
mean	1.003029e+06	8.076707	0.409653	
std	1.727592e+03	6.522660	0.491770	
min	1.000001e+06	0.000000	0.000000	
25%	1.001516e+06	2.000000	0.000000	
50%	1.003077e+06	7.000000	0.000000	
75%	1.004478e+06	14.000000	1.000000	
max	1.006040e+06	20.000000	1.000000	

store.describe().transpose()

	count	mean	st
User_ID	550068.0	1.003029e+06	1727.59158
Occupation	550068.0	8.076707e+00	6.52266
Marital_Status	550068.0	4.096530e-01	0.49177
Product_Category_1	550068.0	5.404270e+00	3.93621
Product_Category_2	376430.0	9.842329e+00	5.08659
Product_Category_3	166821.0	1.266824e+01	4.12533
Purchase	550068.0	9.263969e+03	5023.06539

store.head()

	User_ID	Product_ID	Gender	Age	Occupation	City
0	1000001	P00069042	F	0- 17	10	
1	1000001	P00248942	F	0- 17	10	
2	1000001	P00087842	F	0- 17	10	
3	1000001	P00085442	F	0- 17	10	
4	1000002	P00285442	M	55+	16	
	1 2 3	1 10000011 10000012 10000013 1000001	 1 1000001 P00069042 1 1000001 P00248942 2 1000001 P00087842 3 1000001 P00085442 	 1 1000001 P00069042 F 1 1000001 P00248942 F 2 1000001 P00087842 F 3 1000001 P00085442 F 	0 10000001 P00069042 F 0-17 1 10000001 P000248942 F 0-17 2 10000001 P00087842 F 0-17 3 10000001 P00085442 F 0-17	1 1000001 P00248942 F 0-17 10 2 1000001 P00087842 F 0-17 10 3 1000001 P00085442 F 0-17 10

len(store.columns)


```
#store.columns=['a','b','c','d','e','f','g','h','i','j','
```

store.head()

$\overline{\Rightarrow}$		User_ID	Product_ID	Gender	Age	Occupation	City
	0	1000001	P00069042	F	0- 17	10	
	1	1000001	P00248942	F	0- 17	10	
	2	1000001	P00087842	F	0- 17	10	
	3	1000001	P00085442	F	0- 17	10	
	4	1000002	P00285442	M	55+	16	

store.columns

store.head()

\Rightarrow		User_ID	Product_ID	Gender	Age	Occupation	City
	0	1000001	P00069042	F	0- 17	10	
	1	1000001	P00248942	F	0- 17	10	
	2	1000001	P00087842	F	0- 17	10	
	3	1000001	P00085442	F	0- 17	10	
	4	1000002	P00285442	M	55+	16	

store.columns

```
'Product_Category_2', 'Product_Category_3',
'Purchase'],
    dtype='object')
```

store[:]

5/9/25, 10:34 PM

→		User_ID	Product_ID	Gender	Age	Occupation
	0	1000001	P00069042	F	0- 17	10
	1	1000001	P00248942	F	0- 17	10
	2	1000001	P00087842	F	0- 17	10
	3	1000001	P00085442	F	0- 17	10
	4	1000002	P00285442	М	55+	16
	550063	1006033	P00372445	M	51- 55	13
	550064	1006035	P00375436	F	26- 35	1
	550065	1006036	P00375436	F	26- 35	15
	550066	1006038	P00375436	F	55+	1
	550067	1006039	P00371644	F	46- 50	0

550068 rows × 12 columns

store.isnull().sum

pandas.core.frame.DataFrame.sum
def sum(axis: Axis | None=0, skipna: bool=True,
numeric_only: bool=False, min_count: int=0,
**kwargs)

/usr/local/lib/python3.11/dist-packages/pandas/co Return the sum of the values over the requested a

This is equivalent to the method ``numpy.sum``.

store.isnull()

		_	
_	9.	÷	
	7	\neg	

	User_ID	Product_ID	Gender	Age	Occupatio
0	False	False	False	False	Fals
1	False	False	False	False	False
2	False	False	False	False	Fals
3	False	False	False	False	Fals
4	False	False	False	False	Fals
550063	False	False	False	False	Fals
550064	False	False	False	False	Fals
550065	False	False	False	False	Fals
550066	False	False	False	False	False
550067	False	False	False	False	False

550068 rows × 12 columns

store.isna()

4	
夠	} `

	User_ID	Product_ID	Gender	Age	Occupatio
0	False	False	False	False	Fals
1	False	False	False	False	Fals
2	False	False	False	False	Fals
3	False	False	False	False	False
4	False	False	False	False	Fals
550063	False	False	False	False	False
550064	False	False	False	False	False
550065	False	False	False	False	False
550066	False	False	False	False	Fals
550067	False	False	False	False	False

550068 rows × 12 columns

store.isnull().sum()

- 0		٦.
		_
	7	\neg

	0
User_ID	0
Product_ID	0
Gender	0
Age	0
Occupation	0
City_Category	0
Stay_In_Current_City_Years	0
Marital_Status	0
Product_Category_1	0
Product_Category_2	173638
Product_Category_3	383247
Purchase	0

dtype: int64

store.dtypes

 \rightarrow

· 	0
User_ID	int64
Product_ID	object
Gender	object
Age	object
Occupation	int64
City_Category	object
Stay_In_Current_City_Years	object
Marital_Status	int64
Product_Category_1	int64
Product_Category_2	float64
Product_Category_3	float64
Purchase	int64

dtype: object

store.columns

store.head()

\Rightarrow		User_ID	Product_ID	Gender	Age	Occupation	City
	0	1000001	P00069042	F	0- 17	10	
	1	1000001	P00248942	F	0- 17	10	
	2	1000001	P00087842	F	0- 17	10	
	3	1000001	P00085442	F	0- 17	10	
	4	1000002	P00285442	M	55+	16	

store

\Rightarrow		User_ID	Product_ID	Gender	Age	Occupation
	0	1000001	P00069042	F	0- 17	10
	1	1000001	P00248942	F	0- 17	10
	2	1000001	P00087842	F	0- 17	10
	3	1000001	P00085442	F	0- 17	10
	4	1000002	P00285442	M	55+	16
	550063	1006033	P00372445	M	51- 55	13
	550064	1006035	P00375436	F	26- 35	1
	550065	1006036	P00375436	F	26- 35	15
	550066	1006038	P00375436	F	55+	1
	550067	1006039	P00371644	F	46- 50	0
	550068 rd	we x 12 co	lumne			

550068 rows × 12 columns

store.head()

e	_	٦.
	\rightarrow	$\overline{}$
ŧ.	_	_

7		User_ID	Product_ID	Gender	Age	Occupation	City
	0	1000001	P00069042	F	0- 17	10	
	1	1000001	P00248942	F	0- 17	10	
	2	1000001	P00087842	F	0- 17	10	
	3	1000001	P00085442	F	0- 17	10	
	4	1000002	P00285442	M	55+	16	

store

7		User_ID	Product_ID	Gender	Age	Occupation
	0	1000001	P00069042	F	0- 17	10
	1	1000001	P00248942	F	0- 17	10
	2	1000001	P00087842	F	0- 17	10
	3	1000001	P00085442	F	0- 17	10
	4	1000002	P00285442	М	55+	16
	550063	1006033	P00372445	M	51- 55	13
	550064	1006035	P00375436	F	26- 35	1
	550065	1006036	P00375436	F	26- 35	15
	550066	1006038	P00375436	F	55+	1
	550067	1006039	P00371644	F	46- 50	0

550068 rows × 12 columns

store_categoical=store[['Age','Occupation','User_ID','Pro
store_categoical.head()

store.describe()

$\overline{\Rightarrow}$	User_ID		Occupation	Marital_Status	
	count	5.500680e+05	550068.000000	550068.000000	
	mean	1.003029e+06	8.076707	0.409653	
	std	1.727592e+03	6.522660	0.491770	
	min	1.000001e+06	0.000000	0.000000	
	25%	1.001516e+06	2.000000	0.000000	
	50%	1.003077e+06	7.000000	0.000000	
	75%	1.004478e+06	14.000000	1.000000	
	max	1.006040e+06	20.000000	1.000000	

store.num=store[['User_ID','Occupation']]
store.num.head()

→		User_ID	Occupation	
	0	1000001	10	
	1	1000001	10	
	2	1000001	10	
	3	1000001	10	
	4	1000002	16	

store.num.describe()

→		User_ID	Occupation	-
	count	5.500680e+05	550068.000000	
	mean	1.003029e+06	8.076707	
	std	1.727592e+03	6.522660	
	min	1.000001e+06	0.000000	
	25%	1.001516e+06	2.000000	
	50%	1.003077e+06	7.000000	
	75%	1.004478e+06	14.000000	
	max	1.006040e+06	20.000000	

store

 $\overline{\Rightarrow}$

	_	_		0	•
0	1000001	P00069042	F	0- 17	10
1	1000001	P00248942	F	0- 17	10
2	1000001	P00087842	F	0- 17	10
3	1000001	P00085442	F	0- 17	10
4	1000002	P00285442	M	55+	16
550063	1006033	P00372445	M	51- 55	13
550064	1006035	P00375436	F	26- 35	1
550065	1006036	P00375436	F	26- 35	15

User_ID Product_ID Gender Age Occupation

550068 rows × 12 columns

550066 1006038 P00375436

550067 1006039 P00371644

store.Gender.value_counts()

F 55+

46-

50

$\overline{}$	_	_
~	7	
7	~	

count

Gender	
M	414259
F	135809

dtype: int64

store.Age.value_counts()

count

Age	
26-35	219587
36-45	110013
18-25	99660
46-50	45701
51-55	38501
55+	21504
0-17	15102

dtype: int64

store.Occupation<10

0		-
	4	÷
_	7	$\overline{}$

	Occupation
0	False
1	False
2	False
3	False
4	False
550063	False
550064	True
550065	False
550066	True
550067	True
550068 ro	ws × 1 columns

dtype: bool

males = store[store['Gender'] == 'M']
males

P		٦
ī	\rightarrow	7
		_

	User_ID	Product_ID	Gender	Age	Occupation
4	1000002	P00285442	M	55+	16
5	1000003	P00193542	M	26- 35	15
6	1000004	P00184942	M	46- 50	7
7	1000004	P00346142	M	46- 50	7
8	1000004	P0097242	M	46- 50	7
550057	1006023	P00370853	M	26- 35	0
550058	1006024	P00372445	M	26- 35	12
550060	1006026	P00371644	M	36- 45	6
550062	1006032	P00372445	M	46- 50	7
550063	1006033	P00372445	M	51- 55	13

414259 rows × 12 columns

females=store[store['Gender'] == 'F']
females

	User_ID	Product_ID	Gender	Age	Occupation
0	1000001	P00069042	F	0- 17	10
1	1000001	P00248942	F	0- 17	10
2	1000001	P00087842	F	0- 17	10
3	1000001	P00085442	F	0- 17	10
14	1000006	P00231342	F	51- 55	9
550061	1006029	P00372445	F	26- 35	1
550064	1006035	P00375436	F	26- 35	1
550065	1006036	P00375436	F	26- 35	15
550066	1006038	P00375436	F	55+	1
550067	1006039	P00371644	F	46- 50	0

135809 rows × 12 columns

import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
plt.rcParams['figure.figsize']=10,5
import warnings
warnings.filterwarnings('ignore')

store.head()

	User_ID	Product_ID	Gender	Age	Occupation	City
0	1000001	P00069042	F	0- 17	10	
1	1000001	P00248942	F	0- 17	10	
2	1000001	P00087842	F	0- 17	10	
3	1000001	P00085442	F	0- 17	10	
4	1000002	P00285442	M	55+	16	

store['Age']

\Rightarrow		Age
	0	0-17
	1	0-17
	2	0-17
	3	0-17
	4	55+
	550063	51-55
	550064	26-35
	550065	26-35
	550066	55+
	550067	46-50

550068 rows × 1 columns

dtype: object

store['Occupation']
vis1=sns.distplot(store['Occupation'])

vis1=sns.distplot(store['Occupation'],bins=10)

vis2=sns.boxplot(data=store,x='Age',y='Occupation')

store['Age_Encoded'] = pd.factorize(store['Age'])[0]
vis3 = sns.lmplot(data=store, x='Age_Encoded', y='Occupat

store['Age_Encoded'] = pd.factorize(store['Age'])[0]
vis4 = sns.lmplot(data=store, x='Age_Encoded', y='Occupat

Enter a prompt here

0/2000

Gemini can make mistakes so double-check responses and use code with caution. <u>Learn more</u>