Statistical Foundations of Learning

Debarghya Ghoshdastidar

School of Computation, Information and Technology Technical University of Munich ERM over finite hypothesis classes

Outline

- \bullet Empirical risk minimisation: Overfitting if we optimise over all h
- Hypothesis class \mathcal{H} : Examples and ERM over \mathcal{H}
- Assume \mathcal{H} is a finite set
 - \bullet We will derive a generalisation error bound for ERM solution \widehat{h}

$$L_{\mathcal{D}}^* \leq \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) \leq L_{\mathcal{D}}(\widehat{h}) \leq \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \sqrt{\frac{2\ln(|\mathcal{H}|) + c}{m}}$$

 $\ln(\cdot)$ = natural logarithm, c = some additional term

Empirical risk minimisation

• Empirical risk (training error) of predictor h:

$$L_S(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h(x), y)$$

• $L_S(h)$ is estimate of the generalisation error $L_D(h)$

 $\mathbb{E}_S[L_S(h)] = L_{\mathcal{D}}(h)$

- Empirical risk minimisation (ERM): minimise $L_S(h)$
 - Proxy for minimising $L_{\mathcal{D}}(h)$
 - ERM solution \widehat{h} has small $L_S(\widehat{h})$, but may have high $L_{\mathcal{D}}(\widehat{h})$

Understanding the failure of ERM

• Example of ERM solution (learning by memorisation):

$$h_{mem}(x) = \begin{cases} 1 & \text{if } (x,1) \in S \\ 0 & \text{otherwise} \end{cases}$$

• Recall h_{mem} can be poor solution if $|\mathcal{X}| \gg m$

$$L_S(h_{mem}) = 0$$
 but $L_D(h_{mem})$ can be large

- Question: Recall that we stated $\mathbb{E}_S[L_S(h)] = L_{\mathcal{D}}(h)$
 - Why is the same not true for h_{mem} ?

Understanding the failure of ERM

- Why is the *memorised* solution poor?
 - h_{mem} overfits the training sample S
 - Search space $\mathcal{Y}^{\mathcal{X}}$ has all functions (including complex ones that overfit)
- Solution: Reduce the search space to some $\mathcal{H} \subset \mathcal{Y}^{\mathcal{X}}$
 - \bullet \mathcal{H} is called hypothesis class / concept class
 - Example: Linear classifiers, decision stumps
 - Decision stumps over $\mathcal{X} = \mathbb{R}$

How good can ERM solution be?

- ERM over \mathcal{H} : minimise $L_S(h)$
- Recall: Our goal is to find h with small $L_{\mathcal{D}}(h)$
- Smallest generalisation error we can have from ERM: $L_{\mathcal{D}}(\mathcal{H}) := \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$
- Smallest possible generalisation error (Bayes risk): $L^*_{\mathcal{D}} := \min_{h \in \mathcal{Y}^{\mathcal{X}}} L_{\mathcal{D}}(h)$
- Let \widehat{h} be the solution of ERM over \mathcal{H}

$$L_{\mathcal{D}}(\widehat{h}) \geq L_{\mathcal{D}}(\mathcal{H}) \geq L_{\mathcal{D}}^*$$

How good can ERM solution be?

• How much worse is $L_{\mathcal{D}}(\widehat{h})$ compared to $L_{\mathcal{D}}^*$?

$$L_{\mathcal{D}}(\widehat{h}) - L_{\mathcal{D}}^* = \underbrace{L_{\mathcal{D}}(\mathcal{H}) - L_{\mathcal{D}}^*}_{\text{approximation error}} + \underbrace{L_{\mathcal{D}}(\widehat{h}) - L_{\mathcal{D}}(\mathcal{H})}_{\text{estimation error}}$$
or, inductive bias

• This decomposition is true for any learning paradigm

$$\widehat{h} = \underset{h \in \mathcal{U}}{\operatorname{arg \, min}} J(h)$$
 $J(h) = L_S(h) \text{ for ERM}$

Approximation error / Inductive bias

$$L_{\mathcal{D}}(\widehat{h}) - L_{\mathcal{D}}^* = \underbrace{L_{\mathcal{D}}(\mathcal{H}) - L_{\mathcal{D}}^*}_{\text{approximation error}} + \underbrace{L_{\mathcal{D}}(\widehat{h}) - L_{\mathcal{D}}(\mathcal{H})}_{\text{estimation error}}$$
or, inductive bias

- Minimum error that occurs because we restrict our search to \mathcal{H}
- Inductive bias = Bias induced by making model assumptions (\mathcal{H} is linear classifier)
- Cannot be controlled by learning algorithm
- Bias decreases if \mathcal{H} is increased

$$\mathcal{H} \subset \mathcal{H}' \implies L_{\mathcal{D}}(\mathcal{H}) - L_{\mathcal{D}}^* \geq L_{\mathcal{D}}(\mathcal{H}') - L_{\mathcal{D}}^*$$

Estimation error

$$L_{\mathcal{D}}(\widehat{h}) - L_{\mathcal{D}}^* = \underbrace{L_{\mathcal{D}}(\mathcal{H}) - L_{\mathcal{D}}^*}_{\text{approximation error}} + \underbrace{L_{\mathcal{D}}(\widehat{h}) - L_{\mathcal{D}}(\mathcal{H})}_{\text{estimation error}}$$
or, inductive bias

- Error of \hat{h} with respect to best possible $h \in \mathcal{H}$
- Could be controlled by learning algorithm
- ullet Estimation error for ERM typically increases if ${\mathcal H}$ is larger

Overfitting and underfitting / Bias-variance trade-off

- What happens if we increase \mathcal{H} ?
 - Allow \mathcal{H} to have more complex predictors
 - \bullet Linear classifier \to Quadratic decision boundary $\to \dots$
- Bias reduces \implies training error reduces (overfitting) Estimation error increases
- Test error / generalisation error:
 - Large for small \mathcal{H} due to large bias (underfitting)
 - Large for large \mathcal{H} as estimation error high (overfitting)

Generalisation error bound

- \widehat{h} or $\widehat{h}_{ERM} = \underset{h \in \mathcal{H}}{\operatorname{arg \, min}} L_S(h)$
- How good (or bad) is the generalisation error of \hat{h} ?

$$L_{\mathcal{D}}^* \leq L_{\mathcal{D}}(\mathcal{H}) \leq L_{\mathcal{D}}(\widehat{h}) \leq ??$$

- ullet To derive an upper bound, assume ${\mathcal H}$ is finite
- Two settings:
 - Simple: No randomness in label, $y = h_0(x)$ for some $h_0 \in \mathcal{H}$
 - General: Random label, $(x,y) \sim \mathcal{D}$... also includes $y = h_0(x)$ where $h_0 \notin \mathcal{H}$

Bound on generalisation error: Simple case

$$y = h_0(x)$$
 with $h_0 \in \mathcal{H}$ \implies $L_{\mathcal{D}}(\mathcal{H}) = \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) = 0$ and $L_S(\widehat{h}) = \min_{h \in \mathcal{H}} L_S(h) = 0$

Theorem ERMH.1 (Generalisation error bound in simple case)

Assume \mathcal{H} is finite, $\ell = 0$ -1 loss and $\widehat{h} = ERM$ solution

For
$$\epsilon \in (0,1)$$
,

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left(L_{\mathcal{D}}(\widehat{h}) > \epsilon \right) \le |\mathcal{H}| e^{-m\epsilon}$$

Equivalent statement:

For
$$\delta \in (0,1)$$
,

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left(L_{\mathcal{D}}(\widehat{h}) > \frac{\ln(|\mathcal{H}|) + \ln(\frac{1}{\delta})}{m} \right) \le \delta$$

Equivalent statement:

For
$$\delta \in (0,1)$$
,

$$L_{\mathcal{D}}(\widehat{h}) \le \frac{\ln(|\mathcal{H}|) + \ln(\frac{1}{\delta})}{m}$$

with probability $\geq 1 - \delta$

The above result in simple words

• Set
$$\delta = 0.01$$
 \Longrightarrow $\ln(\frac{1}{\delta}) = 4.6 < 5$

- \bullet Consider T independent runs of following thought experiment (T is large)
 - Sample $S \sim \mathcal{D}^m$, and solve ERM to get \widehat{h}
 - Compute $L_{\mathcal{D}}(\widehat{h})$ (equivalently, compute test error on infinitely many samples)
- Out of T runs: $L_{\mathcal{D}}(\widehat{h}) \leq \frac{\ln(|\mathcal{H}|) + 5}{m}$ holds in 0.99T runs
- If we have only one run (typical happens in practice):
 - The bound will typically be true

Equivalence of the three statements

- Verify 3^{rd} statement is rephrasing of 2^{nd}
- Try getting 2^{nd} statement from 1^{st}
- Solution: Set $\delta = |\mathcal{H}|e^{-m\epsilon}$, and write ϵ in terms of δ
- Due to equivalence, we prove only the first statement

Proof of generalisation error bound

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left(L_{\mathcal{D}}(\widehat{h}) > \epsilon \right) \le |\mathcal{H}| e^{-m\epsilon}$$

Let
$$\mathcal{H}_{bad} = \{ h \in \mathcal{H} : L_{\mathcal{D}}(h) > \epsilon \}$$

 $L_{\mathcal{D}}(\hat{h}) > \epsilon \implies \hat{h} \in \mathcal{H}_{bad} \implies \text{there is } h \in \mathcal{H}_{bad} \text{ such that } L_{S}(h) = 0$

Try to write above in terms of events and their probabilities

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left(L_{\mathcal{D}}(\widehat{h}) > \epsilon \right) \leq \mathbb{P}_{S \sim \mathcal{D}^m} \left(\text{there is } h \in \mathcal{H}_{bad} \text{ such that } L_S(h) = 0 \right)$$

$$\leq \mathbb{P}_{S \sim \mathcal{D}^m} \left(\bigcup_{h \in \mathcal{H}_{bad}} \{ L_S(h) = 0 \} \right)$$

Proof: Union bound

Recall for events
$$A, B$$
: $\mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$

Using above,
$$\mathbb{P}_{S \sim \mathcal{D}^m} \left(\bigcup_{h \in \mathcal{H}_{bad}} \{ L_S(h) = 0 \} \right) \leq \sum_{h \in \mathcal{H}_{bad}} \mathbb{P}_{S \sim \mathcal{D}^m} \left(L_S(h) = 0 \right)$$

Proof: Independence of training samples

Recall for independent events A,B: $\mathbb{P}(A \cap B) \leq \mathbb{P}(A) \cdot \mathbb{P}(B)$

Bounding
$$\mathbb{P}_{S \sim \mathcal{D}^m} (L_S(h) = 0)$$
 for $h \in \mathcal{H}_{bad}$

$$L_S(h) = 0 \implies \ell(h(x_i), y_i) = 0 \text{ for every } (x_i, y_i) \in S$$

Hence

$$\mathbb{P}_{S \sim \mathcal{D}^m} (L_S(h) = 0) = \mathbb{P}_{S \sim \mathcal{D}^m} \left(\bigcap_{i=1}^m \{ \ell(h(x_i), y_i) = 0 \} \right)$$
$$= \prod_{i=1}^m \mathbb{P}_{(x_i, y_i) \sim \mathcal{D}} (\ell(h(x_i), y_i) = 0)$$

Proof: ℓ is 0-1 loss

 $\ell(h(x_i), y_i)$ is Bernoulli with

$$\mathbb{P}_{(x_i,y_i)\sim\mathcal{D}}(\ell(h(x_i),y_i)=1) = \mathbb{P}_{(x,y)\sim\mathcal{D}}(h(x) \neq y)$$

$$= L_{\mathcal{D}}(h)$$

$$> \epsilon$$

... for $h \in \mathcal{H}_{bad}$

Thus,
$$\mathbb{P}_{(x_i,y_i)\sim\mathcal{D}}(\ell(h(x_i),y_i)=0) \leq 1-\epsilon$$

Proof: Final steps

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left(L_{\mathcal{D}}(\widehat{h}) > \epsilon \right) \leq \sum_{h \in \mathcal{H}_{bad}} \mathbb{P}_{S \sim \mathcal{D}^m} \left(L_S(h) = 0 \right) \qquad \dots \text{ union bound}$$

$$\leq \sum_{h \in \mathcal{H}_{bad}} \prod_{i=1}^m \mathbb{P}_{(x_i, y_i) \sim \mathcal{D}} \left(\ell(h(x_i), y_i) = 0 \right) \qquad \dots \text{ independent samples}$$

$$\leq \sum_{h \in \mathcal{H}_{bad}} (1 - \epsilon)^m$$

$$= |\mathcal{H}_{bad}| (1 - \epsilon)^m$$

$$\leq |\mathcal{H}| (1 - \epsilon)^m \qquad \qquad \dots \text{ since } \mathcal{H}_{bad} \subset \mathcal{H}$$

$$\leq |\mathcal{H}| e^{-m\epsilon} \qquad \dots 1 - \epsilon \leq e^{-\epsilon} \text{ for all } \epsilon$$

General case: True labels can be random

We use the following result to derive a generalisation error bound

Theorem ERMH.2 (Uniform convergence of $L_S(\cdot)$ for finite \mathcal{H})

Let $\epsilon \in (0,1)$, $\mathcal{H} \subset \{-1,+1\}^{\mathcal{X}}$ and we measure risk with respect to 0-1 loss.

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left(\max_{h \in \mathcal{H}} |L_S(h) - L_{\mathcal{D}}(h)| > \epsilon \right) \le 2|\mathcal{H}|e^{-2m\epsilon^2}$$

Equivalent statement: Let $\delta \in (0,1)$. With probability $\geq 1-\delta$,

$$\max_{h \in \mathcal{H}} |L_S(h) - L_{\mathcal{D}}(h)| \le \sqrt{\frac{\ln(|\mathcal{H}|) + \ln(\frac{2}{\delta})}{2m}}$$

Generalisation error from uniform convergence $\hat{h} = \text{solution of ERM}$

With probability at least $1 - \delta$, the following hold simultaneously:

$$L_{\mathcal{D}}(\widehat{h}) - L_{S}(\widehat{h}) \leq \sqrt{\frac{\ln(|\mathcal{H}|) + \ln(\frac{2}{\delta})}{2m}}$$

$$L_{S}(h) - L_{\mathcal{D}}(h) \leq \sqrt{\frac{\ln(|\mathcal{H}|) + \ln(\frac{2}{\delta})}{2m}} \quad \text{for every } h \in \mathcal{H}$$

Using above, we can show following generalisation error bound

$$L_{\mathcal{D}}(\widehat{h}) \le L_{\mathcal{D}}(\mathcal{H}) + \sqrt{\frac{2\ln(|\mathcal{H}|) + 2\ln(\frac{2}{\delta})}{m}}$$

with probability $1 - \delta$

Generalisation error from uniform convergence

With probability $1 - \delta$,

$$L_{\mathcal{D}}(\widehat{h}) \leq L_{S}(\widehat{h}) + \sqrt{\frac{\ln(|\mathcal{H}|) + \ln(\frac{2}{\delta})}{2m}}$$

$$= \min_{h \in \mathcal{H}} L_{S}(h) + \sqrt{\frac{\ln(|\mathcal{H}|) + \ln(\frac{2}{\delta})}{2m}} \qquad \dots \widehat{h} \text{ minimises } L_{S}(h)$$

$$\leq \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + 2\sqrt{\frac{\ln(|\mathcal{H}|) + \ln(\frac{2}{\delta})}{2m}} \qquad \dots 2^{nd} \text{ statement of previous slide}$$

$$= L_{\mathcal{D}}(\mathcal{H}) + \sqrt{\frac{2\ln(|\mathcal{H}|) + 2\ln(\frac{2}{\delta})}{m}}$$

Uniform convergence of empirical risk

Theorem ERMH.3 (Uniform convergence of $\overline{L_S}(\cdot)$ for finite \mathcal{H})

Let $\epsilon \in (0,1)$, $\mathcal{H} \subset \{-1,+1\}^{\mathcal{X}}$ and we measure risk with respect to 0-1 loss.

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left(\max_{h \in \mathcal{H}} |L_S(h) - L_{\mathcal{D}}(h)| > \epsilon \right) \le 2|\mathcal{H}|e^{-2m\epsilon^2}$$

- We prove above statement
- Earlier slide mentioned an equivalent statement
 - Verify that they are equivalent

Two useful probability inequalities

Theorem ERMH.4 (Tail bound for maximum (consequence of union bound))

Let Z_1, \ldots, Z_n be n random variables.

$$\mathbb{P}\left(\max_{1\leq i\leq n} Z_i > \epsilon\right) \leq \sum_{i=1}^n \mathbb{P}(Z_i > \epsilon)$$

Theorem ERMH.5 (Hoeffding's inequality)

Let Z_1, \ldots, Z_n be n independent random variables such that $\mathbb{P}(Z_i \in [a_i, b_i]) = 1$ for all i.

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} \left(Z_{i} - \mathbb{E}[Z_{i}]\right)\right| > \epsilon\right) \leq 2 \exp\left(-\frac{2\epsilon^{2}}{\sum_{i=1}^{n} (b_{i} - a_{i})^{2}}\right)$$

Try to prove uniform convergence using above

Proof of uniform convergence

$$\mathbb{P}_{S \sim \mathcal{D}^{m}} \left(\max_{h \in \mathcal{H}} |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon \right) \\
\leq \sum_{h \in \mathcal{H}} \mathbb{P}_{S \sim \mathcal{D}^{m}} \left(|L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon \right) \qquad \dots \text{ union bound} \\
\leq \sum_{h \in \mathcal{H}} \mathbb{P}_{S \sim \mathcal{D}^{m}} \left(\frac{1}{m} \left| \sum_{i=1}^{m} \left(\ell(h(x_{i}), y_{i}) - L_{\mathcal{D}}(h) \right) \right| > \epsilon \right) \qquad \dots \text{ definition of } L_{S}(h) \\
\leq \sum_{h \in \mathcal{H}} \mathbb{P}_{S \sim \mathcal{D}^{m}} \left(\frac{1}{m} \left| \sum_{i=1}^{m} \left(\ell(h(x_{i}), y_{i}) - \mathbb{E}[\ell(h(x_{i}), y_{i})] \right) \right| > \epsilon \right) \qquad \dots \text{ definition of } L_{\mathcal{D}}(h) \\
= \sum_{h \in \mathcal{H}} \mathbb{P}_{S \sim \mathcal{D}^{m}} \left(\left| \sum_{i=1}^{m} \left(Z_{i} - \mathbb{E}[Z_{i}] \right) \right| > m\epsilon \right) \qquad \dots \text{ define } Z_{i} = \ell(h(x_{i}), y_{i}) \\
= \sum_{h \in \mathcal{H}} \mathbb{P}_{S \sim \mathcal{D}^{m}} \left(\left| \sum_{i=1}^{m} \left(Z_{i} - \mathbb{E}[Z_{i}] \right) \right| > m\epsilon \right) \qquad \dots \text{ define } Z_{i} = \ell(h(x_{i}), y_{i}) \\
= \sum_{h \in \mathcal{H}} \mathbb{P}_{S \sim \mathcal{D}^{m}} \left(\left| \sum_{i=1}^{m} \left(Z_{i} - \mathbb{E}[Z_{i}] \right) \right| > m\epsilon \right) \qquad \dots \text{ define } Z_{i} = \ell(h(x_{i}), y_{i}) \\
= \sum_{h \in \mathcal{H}} \mathbb{P}_{S \sim \mathcal{D}^{m}} \left(\left| \sum_{i=1}^{m} \left(Z_{i} - \mathbb{E}[Z_{i}] \right) \right| > m\epsilon \right) \qquad \dots \text{ define } Z_{i} = \ell(h(x_{i}), y_{i}) \\
= \sum_{h \in \mathcal{H}} \mathbb{P}_{S \sim \mathcal{D}^{m}} \left(\left| \sum_{i=1}^{m} \left(Z_{i} - \mathbb{E}[Z_{i}] \right) \right| > m\epsilon \right) \qquad \dots \text{ define } Z_{i} = \ell(h(x_{i}), y_{i}) \\
= \sum_{h \in \mathcal{H}} \mathbb{P}_{S \sim \mathcal{D}^{m}} \left(\left| \sum_{i=1}^{m} \left(Z_{i} - \mathbb{E}[Z_{i}] \right) \right| > m\epsilon \right) \qquad \dots \text{ define } Z_{i} = \ell(h(x_{i}), y_{i}) \\
= \sum_{h \in \mathcal{H}} \mathbb{P}_{S \sim \mathcal{D}^{m}} \left(\left| \sum_{i=1}^{m} \left(Z_{i} - \mathbb{E}[Z_{i}] \right) \right| > m\epsilon \right) \qquad \dots \text{ define } Z_{i} = \ell(h(x_{i}), y_{i}) \\
= \sum_{h \in \mathcal{H}} \mathbb{P}_{S \sim \mathcal{D}^{m}} \left(\left| \sum_{i=1}^{m} \left(Z_{i} - \mathbb{E}[Z_{i}] \right) \right| > m\epsilon \right) \qquad \dots \text{ define } Z_{i} = \ell(h(x_{i}), y_{i})$$

Use Hoeffding's inequality noting that Z_1, \ldots, Z_m independent with $Z_i \in [0, 1]$