Matlab for Finance Course: Session 3

Dr. Peter A. Bebbington

Brainpool Al

November 29, 2024

REVIEW OF SESSION 2

- MATLAB Basics
 - Scripts and Editor
 - Executing Scripts
 - Debugging Tools
- Data Manipulation
 - Array Operations
 - Matrix Operations
 - Array Indexing
- Programming Concepts
 - Boolean Logic
 - Control Flow (if-else, while, for, switch)
 - Error Handling
- Best Practices
 - Common Mistakes
 - Performance Tips

SESSION OBJECTIVES

- MATLAB Fundamentals
 - Function creation and usage
 - File I/O operations
 - Data formatting and display
- Data Handling
 - Stock data import (getMarketDataViaTiingo)
 - Time series manipulation
 - Matrix operations
- Financial Analysis
 - Returns calculation
 - Statistical analysis
 - Volatility estimation
- Risk Measures
 - VaR and CVaR implementation
 - Backtesting framework

The presentation includes MATLAB implementation for all topics.

FUNCTIONS - Basic Structure

- Functions in MATLAB are defined in separate files with the .m extension
- Basic function structure:

```
function [output1, output2] = myFunction(input1, input2)
    % Function description/help comment
    % input1: description of first input
    % output2: description of second input
    % output1: description of first output
    % output2: description of second output

    % Function body
    output1 = someCalculation(input1);
    output2 = anotherCalculation(input2);
end
```

- Function name must match the filename (e.g., myFunction.m)
- Help comments are displayed when using help myFunction

FUNCTIONS - Example

• Example of a plotting function:

Call the function:

```
[y, h] = mysin_func(0:pi/50:2*pi);
```

FILE TYPES

Most financial data that will be imported into MATLAB will come in three main forms:

.csv: Comma Separated Values

```
Date, Open, High, Low, Close 2024-01-01, 100.5, 101.2, 99.8, 100.9
```

.tsv: Tab Separated Values

```
Date Open High Low Close 2024-01-01 100.5 101.2 99.8 100.9
```

.txt: Text data in some format

```
# Financial Data
100.5 101.2 99.8 100.9
```

Other types of data that will be imported include:

- x1s: Excel files
- .xml: Extensible Markup Language
- .mat: MATLAB binary files (loaded using load data.mat)

It is important to understand the organisation of different data types in order to understand the memory requirements for data.

FILE FUNCTIONS

Command	Meaning	
fopen(filename)	Open a file	
fclose(fid)	Close a file	
fread(fid)	Read binary data	
<pre>fwrite(fid,A,precision)</pre>	Write binary data	
<pre>fprintf(fid, A, precision)</pre>	Write formatted data	
fscanf(fid,format)	Read formatted data	
sprintf(format,A)	Write to a string	
sscanf(s,format)	Read string	
ferror(fid)	Query about errors	
feof(fid)	Test for end of file	
<pre>fseek(fid,offset,origin)</pre>	Set the file position indicator	

I/O EXAMPLES

• Writing and reading numeric data:

```
A = [1 2 3 4 5];
fid = fopen('some_data.txt', 'w');
fwrite(fid, A);
fclose(fid);

fid = fopen('some_data.txt', 'r');
fread(fid)
fclose(fid);
```

Writing and reading text:

```
str = 'this is a test';
fid = fopen('test.txt', 'w');
fwrite(fid, str, 'char');
fclose(fid);
```

TIMES TABLE EXAMPLE

```
display('Times Table:')
2 fprintf(1,' X'); % Write to command window
_{3} for i = 0:9
      fprintf(1,'%2d ',i);
  end
6 fprintf(1,'\n');
7 | for i = 0:9
      fprintf(1,'%2d ',i);
      for j = 0:9
9
         fprintf(1,'%2d ',i*j);
10
      end
11
      fprintf(1,'\n');
12
13
  end
```

Output shows formatted multiplication table 0-9

IMPORT TOOL

 Simply drag and drop a ".csv" file to the command window of Matlab to import data

 You can edit; data type (pink arrow), data field name (yellow arrow) and import data (green arrow)

WORKSPACE

 Now that we have the data in Matlab we can create a workspace

```
1 >> whos
   Name
             Size
                     Bytes Class
                                   Attributes
   Date
           252x1
                    2016
                          double
   High
           252x1
                    2016
                          double
   Low
           252x1
                    2016 double
   Open
           252x1
                    2016 double
   Volume
           252x1
                    2016
                          double
   Close
           252x1
                    2016 double
```

>> clear

TIINGO DATA API

- We'll use Tiingo API to download historical stock data
- Steps to get started:
 - Sign up for free account at Tiingo
 - Generate API key from your account dashboard
 - Set up API key in MATLAB:

```
setenv('TIINGO_API_KEY', 'your_api_key_here');
```

- Advantages of Tiingo:
 - Reliable and maintained API
 - High-quality financial data
 - Free tier available for academic use

TIINGO API EXAMPLE

```
% Download one year of daily data for AAPL and MSFT
>> startdt = '2023-01-01';
>> enddt = '2023-12-31';
% Get AAPL data
>> aapl = tiingo_prices('AAPL', startdt, enddt, 'daily');
% Get MSFT data
>> msft = tiingo_prices('MSFT', startdt, enddt, 'daily');
% Data structure example:
>> aapl
      date: [252x1 datetime]
      open: [252x1 double]
      high: [252x1 double]
       low: [252x1 double]
     close: [252x1 double]
    volume: [252x1 double]
```

ECONOMETRICS TOOLBOXES

- Matlab has its own Econometrics toolbox with rich functionality
- There are also third-party toolboxes that can be installed which can help with time series analysis for summer projects
- Two recommended toolboxes:
 - MFEToolbox: www.kevinsheppard.com
 - JPLV7: www.spatial-econometrics.com

INSTALLING TOOLBOXES

• Click "Add with Subfolders..." (red arrow) and Locate the two toolboxes and save.

FINANCIAL SERIES

 A good starting point when analyzing financial time series is to plot basic quantities against time, such as price, log-returns, volume, etc...

SAMPLE STATISTICS: Basic Moments

 Basic statistics measure the shape and central tendencies of returns

```
% Basic Statistics
mean_lr = mean(lreturns); % First moment
std_lr = std(lreturns); % Second moment (volatility)
ske_lr = skewness(lreturns); % Third moment (asymmetry)
kurt_lr = kurtosis(lreturns); % Fourth moment (tail thickness)
```

- For financial returns, we typically expect:
 - Mean close to zero
 - Significant volatility
 - Negative skewness (more extreme losses than gains)
 - High kurtosis (fat tails)

SAMPLE STATISTICS: Tests

Statistical tests help verify stylized facts of returns

```
% Serial Correlation Tests
sacf_lr = sacf(lreturns, 1, 1, 0); % Return predictability
sacf_lr2 = sacf(lreturns.^2, 1, 1, 0); % Volatility
clustering

% Normality Tests
[jb_lr, pval] = jarquebera(lreturns); % Jarque-Bera test
kst_lr = kstest(lreturns); % Kolmogorov-Smirnov
```

- Test Interpretations:
 - Serial correlation tests check for time dependencies
 - Normality tests verify distribution assumptions

NORMALIZING

• Any Gaussian distributed random variable can be normalized:

$$X \sim \mathcal{N} \big(\mu, \sigma^2 \big)$$

$$Z = \frac{X - \mu}{\sigma} \quad \text{(standardization)}$$

$$X = \sigma Z + \mu \quad \text{(reconstruction)}$$

 Analysis of return time series is better in this form for comparison between different time series such as a portfolio

COMPARISON WITH A GAUSSIAN

 Here we make a comparison of the empirical histogram against a parametrized normal distribution

COMPLEMENTARY CUMULATIVE DISTRIBUTION

 We see in this log-log plot the empirical time series differs from the tails of a normal distribution, indicating heavier tails in the data

AUTOCORRELOGRAM

- Shows correlation between returns at different time lags
- Helps identify patterns and dependencies in the time series

VOLATILITY CALCULATION: The Cumsum Trick

Efficient method to calculate rolling window volatility using cumulative sums

```
% Step 1: Calculate cumulative sums
window = 252; % Trading days in a year
y1 = cumsum(lreturns(:,1), 1); % Cumsum of returns
y2 = cumsum(lreturns(:,1).^2, 1); % Cumsum of squared returns
% Step 2: Calculate rolling window volatility
volatility = sqrt(
    (Y2((window+1):end) - Y2(1:(end-window))) / window %
    Variance
- ((Y1((window+1):end) - Y1(1:(end-window))) / window).^2
    % Mean²);
```

- Key advantages:
 - Vectorized operations (faster than loops)
 - Memory efficient (only stores cumsum)
 - Based on variance formula: $\sigma^2 = E[X^2] (E[X])^2$
- Window calculations:
 - Y2(t+w) Y2(t): Sum of squared returns in window
 - Y1(t+w) Y1(t): Sum of returns in window
 - Division by window gives rolling means

VOLATILITY

- Volatility measures the dispersion of returns over time
- Calculated using a rolling window of 252 trading days

VOLATILITY Vs. VOLUME

- Higher trading volume often associated with higher volatility
- Correlation coefficient indicates strength of relationship

• Important for trading strategy and risk management

QQPLOT (QUANTILE-QUANTILE PLOT)

- Compares empirical distribution against theoretical normal
- Straight line indicates normality; deviations show fat tails

Financial returns typically show deviations at the tails

VALUE AT RISK (VaR) - Mathematical Definition

VaR is formally defined as:

$$VaR_{\alpha} \triangleq \inf\{l \in \mathbb{R} : F_L(l) \geq \alpha\}$$

- Breaking down the equation:
 - VaR_{α} : Value at Risk at confidence level α
 - inf: Infimum (minimum value)
 - $l \in \mathbb{R}$: Loss value in real numbers
 - $F_L(l)$: Cumulative distribution function of losses
 - $\geq \alpha$: Probability threshold (e.g., 0.95)
- In simpler terms:
 - VaR is the smallest loss value
 - Where the probability of exceeding this loss
 - Is less than or equal to $1-\alpha$ (e.g., 5%)

VALUE AT RISK (VaR) - Visualization

 \bullet VaR represents a threshold where probability of larger losses is $1-\alpha$

- Example interpretation:
 - $\bullet~VaR_{95\%}=\$100$ means there's a 5% chance of losing more than \$100
 - Red area shows probability of extreme losses

VAR ESTIMATION IN MATLAB

• Parametric estimation (assuming normal distribution):

- Function parameters:
 - PortReturn: Expected portfolio return
 - PortRisk: Portfolio standard deviation
 - RiskThreshold: Confidence level (e.g., 0.95)
 - PortValue: Current portfolio value
- Limitations:
 - Assumes normal distribution
 - May underestimate tail risk
 - Compare with empirical estimation

CONDITIONAL VALUE AT RISK (CVaR) - Mathematical Definition

CVaR is formally defined as:

$$\mathsf{CVaR}_\alpha = \mathbb{E}[L|L \geq \mathsf{VaR}_\alpha] = \frac{1}{1-\alpha} \int_\alpha^1 \mathsf{VaR}_\gamma(L) \, d\gamma$$

- Breaking down the equation:
 - $CVaR_{\alpha}$: Expected loss exceeding VaR
 - $\mathbb{E}[L|L \geq \mathsf{VaR}_{\alpha}]$: Conditional expectation
 - $\frac{1}{1-\alpha}$: Normalization factor
 - $VaR_{\gamma}(L)$: VaR at confidence level γ
- In simpler terms:
 - CVaR is the average loss in the worst $(1 \alpha)\%$ of cases
 - More conservative than VaR
 - Accounts for the shape of the tail distribution

CONDITIONAL VALUE AT RISK (CVaR) - Visualization

CVaR measures the average loss beyond VaR

- Example interpretation:
 - If $VaR_{95\%} = \$100$, $CVaR_{95\%} = \$130$ for normally distributed returns
 - CVaR represents average loss in worst 5% of cases
 - Darker red area shows the region CVaR measures

PARAMETRIC CVaR

Conditional Value at Risk (CVaR) calculations:

```
% Parametric CVaR
m = mean(lreturns(:,1));
s = std(lreturns(:,1));
CVaR_95 = -m + s*(normpdf(norminv(0.05,0,1),0,1))/(1-0.95);
CVaR_99 = -m + s*(normpdf(norminv(0.01,0,1),0,1))/(1-0.99);

% Empirical CVaR
CVaR_95_emp = -mean(slr(1:ceil(N*0.05))); % 5% loss
CVaR_99_emp = -mean(slr(1:ceil(N*0.01))); % 1% loss
```

- CVaR represents the expected loss exceeding VaR
- Also known as Expected Shortfall (ES)
- More coherent risk measure than VaR

INTERPRETING VAR RESULTS

Sample VaR Results:

Method	95% VaR	99% VaR
Parametric	1.75%	2.49%
Empirical	1.56%	3.10%

- Key Insights:
 - Parametric assumes normal distribution
 - Empirical uses actual historical data
 - Difference suggests non-normal distribution
 - Higher empirical 99% VaR indicates fat tails
- Practical Example (for \$1,000,000 portfolio):
 - 95% Parametric: Max loss of \$17,520
 - 95% Empirical: Max loss of \$15,612
 - 99% Parametric: Max loss of \$24,894
 - 99% Empirical: Max loss of \$30,968
- Recommendation:
 - Rely more on empirical values
 - Better captures actual risk characteristics
 - More conservative at higher confidence levels

COMPARISON OF RISK MEASURES

- Key differences between VaR and CVaR:
 - VaR: Maximum loss at confidence level
 - CVaR: Average loss beyond VaR

Property	VaR	CVaR
Coherence	No	Yes
Tail Sensitivity	Limited	High
Ease of Calculation	Higher	Lower
Regulatory Use	Basel II	Basel III

BACKTESTING - OVERVIEW

- Purpose of Backtesting:
 - Validate risk model accuracy
 - Meet regulatory requirements
 - Improve risk estimation
- Key Concepts:
 - VaR violation: When actual loss exceeds VaR estimate
 - Expected violation frequency: (1α) for VaR_{α}
 - Example: For 95% VaR, expect violations in 5% of cases
- Backtesting Period:
 - Typically 250-500 trading days
 - Basel requirement: Minimum 250 days
 - Need sufficient data for statistical significance

BACKTESTING RISK MEASURES

Verify accuracy of risk measures:

```
% Count VaR violations
violations = sum(returns < -VaR_95);
violation_rate = violations/length(returns);
% Kupiec test
[h,p] = kupiectest(violations, length(returns), 0.05);</pre>
```

Testing approaches:

- Violation ratio analysis
 - Compares actual violations to expected frequency
 - For 95% VaR, expect violations 5% of the time
 - ullet Ratio >1 indicates model underestimates risk
- Independence tests
 - Examines clustering of violations
 - Uses Christoffersen's test for independence
 - Clustering suggests model weakness in stress periods
- Dynamic backtesting
 - Uses rolling windows (typically 250 days)
 - Updates risk estimates with new data
 - Better captures changing market conditions

BACKTESTING - IMPLEMENTATION

Basic VaR Violation Test:

```
% Count VaR violations
violations = sum(returns < -VaR_95);
violation_rate = violations/length(returns);

% Expected rate for 95% VaR is 0.05
excess = (violation_rate - 0.05)/0.05;
fprintf('Violation excess: %.2f%%\n', excess*100);</pre>
```

Rolling Window Analysis:

```
window = 252; % One trading year
for t = window:length(returns)
    % Estimate VaR using rolling window
    rolling_var = std(returns(t-window+1:t));
    rolling_VaR = norminv(0.05)*rolling_var;

% Check for violation
    violations(t) = returns(t) < -rolling_VaR;
end</pre>
```

STATISTICAL TESTS FOR BACKTESTING

- Kupiec Test (Unconditional Coverage):
 - Tests if violation frequency matches expected rate
 - Null hypothesis: Observed rate = Expected rate
 - Uses likelihood ratio test
- Christoffersen Test (Conditional Coverage):
 - Tests independence of violations
 - Checks for violation clustering
 - Combines tests for frequency and independence
- Dynamic Quantile Test:
 - Tests if violations are predictable
 - Uses regression-based approach
 - More powerful than basic tests

ADVANCED BACKTESTING TECHNIQUES

- Purpose of Multipliers:
 - Determines capital requirements for market risk
 - Penalizes banks for inaccurate VaR models
 - Formula: Capital = $VaR \times Multiplier$
- Traffic Light Approach (Basel):

Zone	Violations	Multiplier
Green	0-4	3.00
Yellow	5-9	3.40-3.85
Red	10+	4.00

Duration-Based Tests:

```
% Time between violations
durations = diff(find(violations));
[h,p] = duration_test(durations, alpha);
```

- Multiple VaR Levels:
 - Test at different confidence levels
 - Compare 95%, 99%, 99.9% VaR
 - Check consistency across levels

KUPIEC TEST (UNCONDITIONAL COVERAGE)

- Purpose:
 - Tests if the observed violation frequency equals expected rate
 - Known as Proportion of Failures (POF) test
 - Fundamental VaR validation tool
- Test Statistics:
 - Let N = number of violations
 - Let T = total number of observations
 - Let p =expected violation rate (e.g., 0.05 for 95% VaR)
 - Let $\hat{p} = N/T = \text{observed violation rate}$
- Likelihood Ratio Test:

$$LR_{POF} = -2 \ln \left[\frac{(1-p)^{T-N} p^{N}}{(1-\hat{p})^{T-N} \hat{p}^{N}} \right]$$
$$\sim \chi^{2}(1)$$

INTERPRETING KUPIEC TEST RESULTS

- Null Hypothesis:
 - H_0 : The model's violation rate equals the expected rate
 - H₁: The model's violation rate differs from expected
- Decision Rules:
 - Reject H_0 if $LR_{POF} > \chi^2_{1,\alpha}$
 - Typical significance level $\alpha=0.05$
 - Critical value $\chi^2_{1.0.05} = 3.841$
- Limitations:
 - Only tests violation frequency
 - Ignores clustering of violations
 - Low power for small samples
 - Should be combined with other tests

BACKTESTING RESULTS

Detailed analysis of VaR model performance:

Metric	95% VaR	99% VaR
Actual Violations	142	69
Expected Violations	187	37
Violation Rate	3.79%	1.84%
Kupiec Test p-value	0.0004	0.0000
Model Rejected	Yes	Yes

Distribution characteristics:

• Mean Return: 0.033%

Standard Deviation: 1.078%

Skewness: -0.783Kurtosis: 12.630

Key findings:

- 95% VaR overestimates risk (conservative)
- 99% VaR underestimates risk (inadequate)
- Heavy-tailed return distribution
- Both models rejected by Kupiec test