Problem 1. [20 points] Consider the AdaBoost algorithm we discussed in the class. AdaBoost is an example of ensemble classifiers where the weights in next round are decided based on the training error of the weak classifier learned on the current weighted training set. We wish to run the AdaBoost on the dataset provided in Table 1.

1. Assume we choose the following decision stump f_1 (a shallow tree with a single decision node), as the first predictor (i.e., when training instances are weighted uniformly):

if(Color is Yellow): predict Edible = Yes predict Edible = No

What would be the weight of f_1 in final ensemble classifier (i.e., α_1 in $f(x) = \sum_{i=1}^{K} \alpha_i f_i(x)$)?

- 2. After computing f_1 , we proceed to next round of AdaBoost. We begin by recomputing data weights
- depending on the error of f_1 and whether a point was (mis)classified by f_1 . What is the weight of each instance in second boosting iteration, i.e., after the points have been re-weighted? Please note that the weights across the training set are to be uniformly initialized.
- 3. In AdaBoost, would you stop the iteration if the error rate of the current weak classifier on the

nstance	Color	Size	Shape	Edible
1	Yellow	Small	Round	Yes
02	Yellow	Small	Round	No
D3	Green	Small	Irregular	Yes
04	Green	Large	Irregular	No
D5	Yellow	Large	Round	Yes
D6	Yellow	Small	Round	Yes
D7	Yellow	Small	Round	Yes
D8	Yellow	Small	Round	Yes
D9	Green	Small	Round	No
D10	Yellow	Large	Round	No
D11	Yellow	Large	Round	Yes
012	Yellow	Large	Round	No
D13	Yellow	Large	Round	No
D14	Yellow	Large	Round	No
D15	Yellow	Small	Irregular	Yes
D16	Yellow	Large	Irregular	Yes

Table 1: Mushroom data with 16 instances, three categorical features, and binary labels.

$$= \begin{bmatrix} \frac{1}{16}, \dots, \frac{1}{16} \end{bmatrix} \qquad \mathcal{E}_{1} = \underbrace{g_{i=1}^{16}} \quad w_{i} \cdot \mathbf{I} \left[w_{i} \neq f_{k}(x_{i}) \right] \\ = \underbrace{\left(\frac{1}{16} \right)}_{16} \left(a \right) + \underbrace{\left(\frac{1}{16} \right)}_{16} \left(a \right) + \dots + \underbrace{\left(\frac{1}{16} \right)}_{16} \left(a \right)$$

$$\mathcal{K}_{2} = \frac{1}{2} \log \left(\frac{1 - \frac{6}{16}}{\frac{5}{16}} \right) = \frac{1}{2} \log \left(\frac{10/16}{6/16} \right) = \frac{1}{2} \log \left(\frac{5}{3} \right)$$

$$w_{i}^{(\kappa)} = \frac{1}{2} w_{i}^{(\kappa-i)} e^{-\alpha_{\kappa} w_{i}^{*} f_{\kappa}(\alpha_{i})}$$

R:9h+ =>
$$W_{1}^{(2)} = \frac{1}{Z} W_{2}^{(0)} = -(\frac{1}{2} \log (\frac{5}{3})) (1)(1)$$

= $\frac{1}{Z} (\frac{1}{16}) e^{-\frac{1}{2} \log (\frac{5}{3})}$

Wrong =>
$$W^{(2)} = \frac{1}{2} \left(\frac{1}{16} \right) e^{-\left(\frac{1}{2} + \frac{1}{16}\right) \left(\frac{1}{2} + \frac{1}{16}$$

WEIGHT

NEW WEIGHT D2, D3, D10, D12, D13, D14 15 0.08065

15 0.04843

1 Continued... 3) You would stop the stevetion since computing the Strength $\alpha_{\kappa} = \frac{1}{2} \log \left(\frac{1 - 6\kappa}{6\kappa} \right)$ would be undefined. It also implies over fitting.