

# МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ



имени М.В. Ломоносова

Факультет вычислительной математики и кибернетики

# Компьютерный практикум по курсу «Непрерывные математические модели»

# «Аналитическое и численное исследование нелинейной динамической системы Лотки-Вольтерры»

## ОТЧЁТ

#### о выполненном задании

студента ВМ-124 учебной группы факультета ВМК МГУ кафедры математики филиала города Саров

Яблонского Дмитрия Дмитриевича

Вариант: 4

Дата подачи: 28.04.2025

# Содержание

| 1 | Вве                               | едение                                                        | 2  |
|---|-----------------------------------|---------------------------------------------------------------|----|
| 2 | Пос                               | становка задачи                                               | 3  |
| 3 | Исследование устойчивости системы |                                                               | 4  |
|   | 3.1                               | Аналитическое решение                                         | 4  |
|   |                                   | 3.1.1 Стационарные точки                                      | 4  |
|   |                                   | 3.1.2 Линеаризация и матрица Якоби                            | 4  |
| 4 | Математические методы             |                                                               |    |
|   | 4.1                               | Аналитическое решение                                         | 5  |
|   | 4.2                               | Численные методы                                              | 5  |
|   |                                   | 4.2.1 Метод Эйлера (явный, первого порядка)                   | 5  |
|   |                                   | 4.2.2 Метод Рунге-Кутты 2-го порядка (модифицированный Эйлер) | 5  |
|   |                                   | 4.2.3 Метод Рунге-Кутты 4-го порядка                          | 6  |
|   |                                   | 4.2.4 Особенности реализации                                  | 6  |
| 5 | Результаты работы методов         |                                                               |    |
|   | 5.1                               | Фазовые портреты                                              | 7  |
|   | 5.2                               | Динамика популяций со временем                                | 9  |
|   | 5.3                               | Устойчивость методов Рунге-Кутты второго и четвёртого порядка | 11 |
| 6 | Усл                               | ожнённая модель Лотки-Вольтерры с внутривидовой конкуренцией  | 13 |
|   | 6.1                               | Стационарные точки и их устойчивость                          | 13 |
|   |                                   | 6.1.1 Нахождение стационарных точек                           | 13 |
|   |                                   | 6.1.2 Линеаризация и анализ устойчивости                      | 13 |
|   | 6.2                               | Классификация стационарных точек                              | 14 |
|   | 6.3                               | Динамика системы                                              | 14 |
| 7 | Зак                               | лючение                                                       | 15 |

#### Введение 1

Модель Лотки-Вольтерры, предложенная Альфредом Лоткой в 1925 году и независимо развитая Вито Вольтеррой в 1926 году, является классической математической моделью для описания динамики взаимодействия двух биологических видов: хищников и жертв. Эта система нелинейных дифференциальных уравнений демонстрирует циклические колебания популяций, что соответствует наблюдаемым в природе явлениям, таким как периодические изменения численности рыси и зайца в экосистемах Канады. Модель имеет фундаментальное значение в экологии и теории динамических систем, так как позволяет исследовать механизмы устойчивости биоценозов и влияние внешних факторов на их равновесие.

Основная система уравнений модели имеет вид:

$$\frac{dx}{dt} = \alpha x - \beta xy \tag{1.0.1}$$

$$\frac{dx}{dt} = \alpha x - \beta xy \tag{1.0.1}$$

$$\frac{dy}{dt} = -\gamma y + \delta xy \tag{1.0.2}$$

где:

- x(t) популяция жертв,
- y(t) популяция хищников,
- $\alpha > 0$  коэффициент размножения жертв,
- $\beta > 0$  коэффициент смертности жертв от хищника,
- $\gamma > 0$  коэффициент смертности хищника от голода,
- $\delta > 0$  коэффициент того, что хищнику хватит пропитания.

Целью данной работы является исследование модели методами аналитической и вычислительной математики. Задачи включают:

- Поиск аналитического решения системы с использованием символьных вычислений (библиотека SymPy),
- Реализацию численных методов: явного метода Эйлера, методов Рунге-Кутты 2-го и 4-го порядков,
- Сравнение точности и устойчивости численных решений с аналитическим решением
- Визуализацию фазовых портретов и временных зависимостей для анализа динамики системы.

# 2 Постановка задачи

В рамках исследования модели Лотки-Вольтерры были поставлены следующие задачи:

#### 1. Аналитическое решение системы дифференциальных уравнений:

• Использовать библиотеку SymPy для символьного вывода общего решения системы:

$$\frac{dx}{dt} = \alpha x - \beta xy$$
$$\frac{dy}{dt} = -\gamma y + \delta xy$$

- Получить выражение для первого интеграла системы методом разделения переменных.
- Реализовать возможность варьирования параметров модели  $(\alpha, \beta, \gamma, \delta)$  и начальных условий  $(x_0, y_0)$ .

#### 2. Численное моделирование:

- Реализовать три метода решения систем ОДУ:
  - Метод Эйлера (первого порядка точности)
  - **Метод Рунге-Кутты 2-го порядка** (модифицированный метод Эйлера)
  - Метод Рунге-Кутты 4-го порядка
- Исследовать влияние времени и шага интегрирования h на точность и устойчивость методов.

#### 3. Сравнение решений:

- Провести сравнение численных решений с аналитическим.
- Исследовать устойчивость для методов Эйлера, РК2 и РК4 относительно аналитического решения с изменением времени и шага интегрирования.
- Сравнить фазовые траектории и амплитудно-частотные характеристики числленных решений и аналитического.

#### 4. Визуализация результатов:

- Построить временные зависимости популяций x(t) и y(t) для всех методов.
- Создать фазовые портреты (y(x)).

#### Начальные условия:

- Параметры модели:  $\alpha = 1.0, \beta = 1.0, \gamma = 0.5, \delta = 0.5.$
- Начальные условия:  $x_0 = 1.0, y_0 = 0.25$ .
- Временной интервал:  $t \in [0, 50]$  с шагом h = 0.05.
- Анализ устойчивости: проверить сохранение цикличности решений при длительном моделировании.

# 3 Исследование устойчивости системы

#### 3.1 Аналитическое решение

Для модели Лотки-Вольтерры:

$$\frac{dx}{dt} = \alpha x - \beta xy \tag{3.1.1}$$

$$\frac{dy}{dt} = -\gamma y + \delta xy \tag{3.1.2}$$

устойчивость исследуется через анализ стационарных точек, которые находятся при приравнивании к нулю обоих равенств.

$$0 = \alpha x - \beta xy \tag{3.1.3}$$

$$0 = -\gamma y + \delta xy \tag{3.1.4}$$

#### 3.1.1 Стационарные точки

- **Тривиальная точка** (0,0): Исчезновение обоих видов.
- ullet Нетривиальная точка  $\left(rac{\gamma}{\delta},rac{lpha}{eta}
  ight)$ : Равновесие популяций.

#### 3.1.2 Линеаризация и матрица Якоби

Матрица Якоби системы:

$$J(x,y) = \begin{pmatrix} \alpha - \beta y & -\beta x \\ \delta y & \delta x - \gamma \end{pmatrix}.$$

Для тривиальной точки (0,0):

$$J(0,0) = \begin{pmatrix} \alpha & 0 \\ 0 & \gamma \end{pmatrix}.$$

Собственные значения:  $\lambda_1 = -\alpha$ ,  $\lambda_2 = \gamma$ . Значит точка (0,0) — седло.

Для нетривиальной точки  $\left(\frac{\gamma}{\delta}, \frac{\alpha}{\beta}\right)$ :

$$J\left(\frac{\gamma}{\delta},\frac{\alpha}{\beta}\right) = \begin{pmatrix} 0 & \frac{\beta\gamma}{\delta} \\ -\frac{\delta\alpha}{\beta} & 0 \end{pmatrix}.$$

Собственные значения:  $\lambda = \pm i \sqrt{\alpha \gamma}$ . Значит данная стационарная точка - центр — система сохраняет циклы.

# 4 Математические методы

## 4.1 Аналитическое решение

Для системы уравнений Лотки-Вольтерры:

$$\frac{dx}{dt} = \alpha x - \beta xy \tag{4.1.1}$$

$$\frac{dy}{dt} = -\gamma y + \delta xy \tag{4.1.2}$$

применено разделение переменных. Для этого уравнения преобразуются в отношение производных:

$$\frac{dy}{dx} = \frac{\delta xy - \gamma y}{\alpha x - \beta xy} = \frac{y(\delta x - \gamma)}{x(\alpha - \beta y)}.$$

После разделения переменных:

$$\int \frac{\alpha - \beta y}{y} \, dy = \int \frac{\delta x - \gamma}{x} \, dx,$$

интегрирование приводит к первому интегралу:

$$-\alpha \ln|y| + \beta y + \delta x - \gamma \ln|x| = C,$$

где C — константа, определяемая начальными условиями. Для параметров  $\alpha=1.0,\ \beta=1.0,\ \gamma=0.5,\ \delta=0.5$ :

$$-1\ln|y| + 1y + 0.5x - 0.5\ln|x| = C,$$

Это уравнение описывает замкнутые фазовые траектории, соответствующие периодическим колебаниям популяций.

## 4.2 Численные методы

#### 4.2.1 Метод Эйлера (явный, первого порядка)

Простейший метод для решения ОДУ:

$$y_{n+1} = y_n + h \cdot f(t_n, y_n),$$

где h — шаг интегрирования, f — правая часть системы. Метод имеет локальную погрешность  $O(h^2)$ , но глобальную O(h). Из недостатков: накопление ошибки при больших t и неустойчивость для жестких систем.

#### 4.2.2 Метод Рунге-Кутты 2-го порядка (модифицированный Эйлер)

Улучшает точность за счёт промежуточного шага:

$$k_1 = h \cdot f(t_n, y_n),$$
  
 $k_2 = h \cdot f\left(t_n + \frac{h}{2}, y_n + \frac{k_1}{2}\right),$   
 $y_{n+1} = y_n + k_2.$ 

Локальная погрешность  $O(h^3)$ , глобальная  $O(h^2)$ . Подходит для систем с умеренной нелинейностью.

#### 4.2.3 Метод Рунге-Кутты 4-го порядка

Наиболее распространённый метод для задач высокой точности:

$$k_1 = h \cdot f(t_n, y_n),$$

$$k_2 = h \cdot f\left(t_n + \frac{h}{2}, y_n + \frac{k_1}{2}\right),$$

$$k_3 = h \cdot f\left(t_n + \frac{h}{2}, y_n + \frac{k_2}{2}\right),$$

$$k_4 = h \cdot f(t_n + h, y_n + k_3),$$

$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4).$$

Локальная погрешность  $O(h^5)$ , глобальная  $O(h^4)$ . Обеспечивает высокую точность даже при больших интервалах моделирования.

#### 4.2.4 Особенности реализации

- Для векторных систем как модель Лотки-Вольтерры методы применяются к каждому уравнению одновременно.
- Устойчивость методов исследовалось на различных временных отрезках с различным шагом интегрирования.
- Библиотека SymPy позволяет получить аналитическое решение нелинейной динамической системы в неявном виде из которого можно построить фазовый портрет y(x), также с ней можно найти стационарные точки системы и определить их тип, решив характеристическое уравнение, но не позволяет найти и выявить зависимость изменения переменных x и y от времени t. Поэтому для интегрирования по времени необходимо воспользоваться методом odeint из библиотекуи scipy.

# 5 Результаты работы методов

# 5.1 Фазовые портреты

Были построены фазовые портреты системы. Вокруг стационарной точки образуются предельные циклы. По графикам можно сразу заметить, что явный метод Эйлера очень быстро накапливает погрешность, теряет свою устойчивость и решение становится неточным.



Рис. 1: Фазовый портрет аналитического решения.



Рис. 2: Фазовый портрет численного решения методом Эйлера.



Рис. 3: Фазовый портрет численного решения методом Рунге-Кутты второго порядка.



Рис. 4: Фазовый портрет численного решения методом Рунге-Кутты четвёртого порядка.

# 5.2 Динамика популяций со временем

Динамика популяций представляет из себя консервативные гармонические осцилляторы. Экспоненциальный рост у жертв происходит при полном отсутствии хищников, а экспоненциальная смертность происходит у хищников при отсутствии жертв.



Рис. 5: Динамика популяций: аналитическое решение с помощью функции odeint.



Рис. 6: Динамика популяций: численное решение методом Эйлера.



Рис. 7: Динамика популяций: численное решение методом Рунге-Кутты второго порядка.



Рис. 8: Динамика популяций: численное решение методом Рунге-Кутты четвёртого порядка.



Рис. 9: Динамика популяций: смертность хищников при отсутствии жертв.



Рис. 10: Динамика популяций: рост популяции жертв при отсутствии хищников.

# 5.3 Устойчивость методов Рунге-Кутты второго и четвёртого порядка

Для исследования рассхождения методов Рунге-Кутты второго и четвёртого порядка были построены следующие графики фазовых портретов и осцилляторов с увеличенным временем интегрирования. Как можно заметить, метод Рунге-Кутты 4-го порядка устойчивее чем Рунге-Кутты второго порядка



Рис. 11: Динамика популяций хищников методом Рунге-Кутты второго и четвёртого порядка.



Рис. 12: Динамика популяций жертв методом Рунге-Кутты второго и четвёртого порядка.



Рис. 13: Фазовый портрет построенный методом Рунге-Кутты второго порядка.



Рис. 14: Фазовый портрет построенный методом Рунге-Кутты четвёртого порядка.

- $\bullet$  Метод Эйлера демонстрирует накопление ошибки при больших t.
- Методы Рунге-Кутты сохраняют периодичность, близки к аналитическому решению.
- Фазовые траектории образуют замкнутые кривые, соответствующие предельным циклам вокруг стационарной точки центр, что соответствует цикличности модели.
- При большем времени интегрирования метод Рунге-Кутты четвёртого порядка более устойчив чем метод Рунге-Кутты второго порядка.

# 6 Усложнённая модель Лотки-Вольтерры с внутривидовой конкуренцией

Рассмотрим модифицированную систему:

$$\frac{dx}{dt} = \alpha x - \beta xy - \epsilon x^2,\tag{6.0.1}$$

$$\frac{dy}{dt} = -\gamma y + \delta xy - \zeta y^2,\tag{6.0.2}$$

где:

- $\epsilon x^2$  и  $\zeta y^2$  члены, описывающие внутривидовую конкуренцию (ограничение ресурсов),
- остальные параметры аналогичны классической модели.

## 6.1 Стационарные точки и их устойчивость

#### 6.1.1 Нахождение стационарных точек

Приравнивая производные к нулю:

$$\alpha x - \beta xy - \epsilon x^2 = 0,$$
  
$$-\gamma y + \delta xy - \zeta y^2 = 0.$$

Решения:

- **Тривиальная точка** (0,0): Оба вида вымирают.
- Точка выживания жертв  $\left(\frac{\alpha}{\epsilon},0\right)$ : Хищники вымирают, жертвы достигают ёмкости среды.
- Точка выживания хищников  $(0, -\frac{\gamma}{\zeta})$ : Физически нереализуема при  $\gamma, \zeta > 0$ .
- **Нетривиальная точка**  $(x^*, y^*)$ : Решение системы:

$$x^* = \frac{\alpha \zeta + \beta \gamma}{\delta \beta + \epsilon \zeta},$$

$$y^* = \frac{\alpha \delta - \gamma \epsilon}{\delta \beta + \epsilon \zeta}.$$

#### 6.1.2 Линеаризация и анализ устойчивости

Матрица Якоби:

$$J(x,y) = \begin{pmatrix} \alpha - \beta y - 2\epsilon x & -\beta x \\ \delta y & -\gamma + \delta x - 2\zeta y \end{pmatrix}.$$

- Точка (0,0): Собственные значения:  $\lambda_1=\alpha,\,\lambda_2=-\gamma.$   $Ce\partial no$  (неустойчиво).
- Точка  $\left(\frac{\alpha}{\epsilon},0\right)$ : Собственные значения:  $\lambda_1=-\alpha,\,\lambda_2=-\gamma+\delta\frac{\alpha}{\epsilon}$ . Устойчива при  $\delta<\frac{\gamma\epsilon}{\alpha}$ .
- **Нетривиальная точка**  $(x^*, y^*)$ . Чтобы определить ещё тип необходимо найти корни характеристического уравнения

## 6.2 Классификация стационарных точек

Для определения типа стационарной точки  $(x^*, y^*)$  анализируются собственные значения матрицы Якоби  $J(x^*, y^*)$ . Алгоритм классификации:

- 1. Вычисляются собственные значения  $\lambda_1, \lambda_2$  из уравнения  $\det(J \lambda I) = 0$ .
- 2. Анализируются действительная  $(\Re(\lambda))$  и мнимая  $(\Im(\lambda))$  части:
  - Если  $\Im(\lambda_1) \neq 0$  или  $\Im(\lambda_2) \neq 0$ :
    - \*  $\Re(\lambda_1), \Re(\lambda_2) < 0$ : Устойчивый фокус.
    - \*  $\Re(\lambda_1), \Re(\lambda_2) > 0$ : Неустойчивый фокус.
    - \*  $\Re(\lambda_1) = \Re(\lambda_2) = 0$ : Центр (нейтральная устойчивость).
  - Если  $\Im(\lambda_1) = \Im(\lambda_2) = 0$ :
    - \*  $\lambda_1 \cdot \lambda_2 < 0$ : Седло.
    - $*~\lambda_1,\lambda_2>0$ : Неустойчивый узел.
    - $* \lambda_1, \lambda_2 < 0$ : Устойчивый узел.

### 6.3 Динамика системы

- Фазовые траектории: При добавлении дополнительного фактора, система переходит от предельного цикла к устойчивому фокусу. Осцилляторы в свою очередь постепенно затухают и приходят к состоянию равновесия. Пример: При  $\epsilon=0.03$ ,  $\zeta=0.03$ ,  $\alpha=1.0$ ,  $\beta=1.0$ ,  $\gamma=0.5$ ,  $\delta=0.5$ .
- Влияние внутривидовой конкуренции: Члены  $\epsilon x^2$  и  $\zeta y^2$  оказывают существенное влияние на систему, из-за которой теряется цикличность системы и оба вида постепенно вымирают.



Рис. 15: Динамика усложнённой модели, когда система уходит в устойчивое состояние с постепенным вымиранием и хищников и жертв.

### 7 Заключение

В ходе выполнения работы проведено исследование классической и усложнённой моделей Лотки-Вольтерры методами аналитической и вычислительной математики.

#### 1. Аналитическое решение:

• Для классической модели получен первый интеграл системы методом разделения переменных:

$$-\alpha \ln|y| + \beta y + \delta x - \gamma \ln|x| = C.$$

• Установлено, что фазовые траектории образуют замкнутые кривые, что подтверждает циклический характер взаимодействия хищников и жертв.

#### 2. Численное моделирование:

- Реализованы методы Эйлера, Рунге-Кутты 2-го и 4-го порядков. Показано, что:
  - Метод Эйлера демонстрирует большое накопление ошибки,
  - Метод РК4 сохраняет периодичность решений даже при большом времени интегрирования t.
- Глобальная погрешность методов уменьшается с ростом порядка: O(h) для Эйлера,  $O(h^4)$  для РК4.

#### 3. Устойчивость системы:

- Для классической модели нетривиальная точка  $(\gamma/\delta, \alpha/\beta)$  является центром.
- В усложнённой модели с внутривидовой конкуренцией выявлены новые типы стационарных точек:
  - Устойчивый фокус при  $\epsilon = 0.03$ ,  $\zeta = 0.03$  (Рис. 15a),
  - Седло в тривиальной точке (0,0).

#### 4. Влияние параметров:

• Члены внутривидовой конкуренции ( $\epsilon x^2$ ,  $\zeta y^2$ ) оказывают сильное влияние на систему, устраняя цикличность роста популяций.