Задание 1

После создания бита из аналогового сигнала хосту A нужно накопить 56 байт (448 бит) Т.к. скорость потока 126 мбит/с, то весь пакет накопится за $\frac{448}{128*1024}$. Задержка распространения 0.005 с. Время передачи $\frac{448}{1024^2}$. Итого:

$$T = \frac{448}{128 * 1024} + 0.005 + \frac{448}{1024^2} = 0.0088 \text{ c.} = 8.8 \text{ mc.}$$

Задание 2

 $N=\,$ среднее число пакетов в буффере $+\,1=11.$ Задержка $d=d_{
m отправки}+d_{
m передачи}.$

За 1 секунду передается 100 пакетов, значит один пакет передается за 10мс, т.е. средняя задержка передачи равна 10с. Средняя задержка ожидания тоже равна 10мс. Тогда по формуле Литтла $a=\frac{N}{d}=\frac{11}{20}=0.55$ пакетов/мс =550пакетов/с

Задание 3

1 пакет окажется на центральном узле через $\frac{L}{R_S}+d_{\mathsf{pacnp}}$ секунд, соответственно уйдет целиком с центрального узла через $t_1=\frac{L}{R_S}+d_{\mathsf{pacnp}}+\frac{L}{R_C}$.

2 пакет начнет передаваться через $\frac{L}{R_S}$ секунд с запуска системы (когда первый пакет с хоста уйдет). Окажется на центральном узле через $t_2=\frac{2L}{R_S}+d_{\mathsf{pacnp}}.$

Т.о. необходимо сравнивать t_1 и t_2 . Если $t_1 \leq t_2$, то задержки ожидания не будет и первый пакет уйдет с центрального узла раньше, чем на узел попадет второй. Иначе появится задержка для второго пакета t_1-t_2

- 1. В пункте а. $R_S < R_C$, поэтому $t_1-t_2=\frac{L}{R_C}-\frac{L}{R_S}<0$ и задержек не появится. Поэтому разница постоянная и равна $\frac{L}{R_S}$
- 2. В пункте б. $R_S>R_C$. Тогда $t_1-t_2=\frac{L}{R_C}-\frac{L}{R_S}>0$, т.е. второй пакет будет находиться во входном буфере, пока не отправится первый пакет. Если добавить задержку T к t_2 , то минимум T будет достигаться при $t_1=t_2$ и равен исходной разности $t_1-t_2=\frac{L}{R_C}-\frac{L}{R_S}$

Задание 4

Отправляемый объект в среднем появляется каждые $\frac{1000}{16}=62.5$ мс, а отправляется за $\frac{8500006$ мт $t}{1000$ мбмт/ $t}=8.5$ мс, так что нет задержки ожидания.

Задержка передачи Δ равна как раз 8.5мс. Тогда средняя задержка доступа равна $\frac{8.5}{1-8.5\cdot\frac{16}{1000}}\approx 10$ мс, а средняя задержка ответа ≈ 3010 мс.

При добавлении кэширующего сервера среднее общее время ответа равно $0.4\cdot 3010 + 0.6\cdot 10 = 2010$ мс