Задача 04.

Да се докаже, че $\forall A, B, C$ е изпълнено, че $A \subseteq B \cup C \Leftrightarrow A \setminus B \subseteq C$.

Док-во:

Нека A, B и C са произволни множества.

- (\Rightarrow) Нека $A\subseteq B\cup C$. Ще докажем, че $A\backslash B\subseteq C$. За целта нека x е произволен елемент и нека $x\in A\backslash B\Rightarrow x\in A$ и $x\not\in B$, но $A\subseteq B\cup C\Rightarrow x\in B\cup C$. Но $x\not\in B\Rightarrow x\in C$, т.е. тъй като x беше произволно избран елемент, то доказахме, че ако $x\in A\backslash B$, то $x\in C$ (в случая когато $A\subseteq B\cup C$) $\Rightarrow A\backslash B\subseteq C$.
- (\Rightarrow) Нека $A \setminus B \subseteq C$. Ще докаже, че $A \subseteq B \cup C$.

 Тривиално $x \in B \cup C$, но ако $x \notin B$, то тъй като $x \in A$ ще имаме, че $x \in A \setminus B$.

 Обаче $A \setminus B \subseteq C$. Следователно $x \in C \subseteq B \cup C$.

github.com/andy489