Devoir surveillé n°10

- ▶ La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ▶ Les calculatrices sont interdites.

Problème 1 —

Soient $n \in \mathbb{N}$ et $\sum_{n \ge n_0} a_n$ une série à termes réels. Dans le cas où cette série converge, on note R_n le reste de rang

n de cette série, c'est-à-dire $R_n = \sum_{k=n+1}^{+\infty} a_k$ pour tout entier $n \ge n_0$.

On souhaite étudier la convergence de la série $\sum_{n \in \mathbb{N}} R_n$ dans plusieurs cas.

Partie I - Cas d'une série géométrique

On se donne $q \in \mathbb{R}$ et on pose $a_n = q^n$ pour $n \in \mathbb{N}$ (on a donc $n_0 = 0$).

- 1. Pour quelles valeurs de q la série $\sum_{n\in\mathbb{N}} a_n$ convergent-elle? On suppose cette condition vérifiée dans la suite de cette partie.
- **2.** Exprimer R_n en fonction de q et n.
- 3. En déduire que la série $\sum_{n\in\mathbb{N}} \mathbf{R}_n$ converge et calculer sa somme.

Partie II - Cas d'une série de Riemann

On se donne dans cette partie $\alpha \in \mathbb{R}$ et on pose $a_n = \frac{1}{n^{\alpha}}$ pour $n \in \mathbb{N}^*$ (on a donc $n_0 = 1$).

- **4.** Pour quelles valeurs de α la série $\sum_{n \in \mathbb{N}^*} a_n$ converge-t-elle? On suppose cette condition vérifiée dans la suite de cette partie.
- **5.** A l'aide d'une comparaison série/intégrale, montrer que $R_n \sim \frac{1}{(\alpha 1)n^{\alpha 1}}$.
- **6.** En déduire une condition nécessaire et suffisante sur α pour que la série $\sum_{n\in\mathbb{N}^*} R_n$ converge.

Partie III - Cas de la série harmonique alternée

Dans cette partie, on pose $a_n = \frac{(-1)^n}{n}$ pour $n \in \mathbb{N}^*$ (on a donc $n_0 = 1$). On note également S_n la somme partielle de rang n de la série $\sum_{n \in \mathbb{N}^*} a_n$, c'est-à-dire $S_n = \sum_{k=1}^n \frac{(-1)^k}{k}$.

- 7. Calculer $\int_0^1 x^n dx$ pour $n \in \mathbb{N}$.
- **8.** En déduire que $S_n = -\ln(2) + (-1)^n \int_0^1 \frac{x^n}{1+x} dx$.
- **9.** En déduire la convergence et la somme de la série $\sum_{n\in\mathbb{N}^*}a_n$.
- 10. Exprimer R_n à l'aide d'une intégrale puis, à l'aide d'une intégration par parties, déterminer deux constantes réelles α et β telles que $\alpha > 1$ et $R_n = \frac{(-1)^{n+1}\beta}{n+1} + \mathcal{O}\left(\frac{1}{n^{\alpha}}\right)$.
- 11. En déduire la nature de la série $\sum_{n \in \mathbb{N}^*} \mathbf{R}_n$.

Problème 2 —

Soit $n \in \mathbb{N} \{0, 1\}$. On pose $E = \mathcal{M}_n(\mathbb{R})$.

Pour tout $U \in E$, on définit :

- $\blacktriangleright \ \text{l'application} \ T_U \colon \left\{ \begin{array}{ccc} E & \longrightarrow & \mathbb{R} \\ M & \longmapsto & tr(UM) \end{array} \right. ;$
- ▶ l'ensemble $H_U = \{M \in E, tr(UM) = 0\}.$

Partie I – Généralités et exemple

- **1.** Soit $U \in E$. Montrer que $T_U \in E^*$ et que H_U est un sous-espace vectoriel de E.
- **2.** Dans cette question seulement, on suppose n = 2 et on pose $U = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.
 - **a.** Déterminer $\operatorname{rg} T_U$ et $\dim H_U$.
 - **b.** Montrer que $H_U \cap GL_2(\mathbb{R}) \neq \emptyset$.

Partie II – Quelques résultats utiles

- **3.** Montrer que pour A, B \in E, tr(AB) = tr(BA).
- **4.** Que vaut H_0 ?
- 5. Soit $U \in E$ non nulle. Montrer que H_U est un hyperplan de E.
- **6.** Montrer que l'application $\Phi: \left\{ \begin{array}{ccc} E & \longrightarrow & E^* \\ U & \longmapsto & T_U \end{array} \right.$ est un isomorphisme linéaire.
- 7. Soit H un hyperplan de E. Montrer qu'il existe $U \in E$ non nulle telle que $H = H_U$.

Partie III - Le résultat général

On note $(E_{i,j})_{1 \le i,j \le n}$ la base canonique de E.

Pour
$$r \in [1, n]$$
, on pose $J_r = \sum_{k=1}^r E_{kk}$.

8. Soit
$$P = \begin{pmatrix} 0 \cdots 0 & 1 \\ \hline I_{n-1} & \vdots \\ 0 \end{pmatrix}$$
. Montrer que $P \in H_{J_r} \cap GL_n(\mathbb{R})$.

9. Soit H un hyperplan de E. Montrer que $H \cap GL_n(\mathbb{R}) \neq \emptyset$.