

Information Technologies and Programming Faculty

Financial Fraud Detection

Supervised: Prof. Andrey Filchenkov

Presented: M Saber – M41332

Objective

The finance and banking is very important sector in our present day generation, where almost every human has to deal with bank either physically or online. The productivity and profitability of both public and private sector has tremendously increased because of banking information system. Nowadays most of E-commerce application system transactions are done through credit card and online net banking. These systems are vulnerable with new attacks and techniques at alarming rate.

Fraud detection in banking is one of the vital aspects nowadays as finance is major sector in our life

Online Bank Fraud Detection

Steps Processing FFD

1- Exploration Data Analysis (EDA)

2- Data Preprocessing Features Scaling | Standardization

3- Handling Imbalanced data Manual Undersample - Auto processing

4- Visualization Correlation - Boxplot

5- Handing Outlier IQR

6- Dim. Reduction t-SNE

7- Classification Algorithms

1- Exploration Data Analysis (EDA)

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	Amount	Class
)	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	0.090794	-0.551600	-0.617801	-0.991390	-0.311169	149.62	0
I	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	-0.166974	1.612727	1.065235	0.489095	-0.143772	2.69	0
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	0.207643	0.624501	0.066084	0.717293	-0.165946	378.66	0
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	-0.054952	-0.226487	0.178228	0.507757	-0.287924	123.50	0
ı	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	0.753074	-0.822843	0.538196	1.345852	-1.119670	69.99	0
		<u>-</u>	172792.0 ,	0.0			ures Scalin				25691.16	5 , 0.0				Distributions Fraud 1: Frau	id)
		ck is r ("Cou		Null = '	" , df.:	snull()	.sum().	max())	# >> C	ount of	Null =	0		250000 - 200000 -			
pr	int('N	No Frauds	= ', rou	nd(df['Cl		ue_counts()[0]/len(df) * 100 * 100,2)						100000 -	0		
																Class	-

Need Handing Imbalance data

No Frauds = 99.83 % (284315, 492) — Frauds = 0.17 %

2- Handling Imbalanced data

Manual Processing

Create Sub-sampling

subsample will be a data frame with a 50/50 ratio of fraud and non-fraud transactions.

Meaning our sub-sample will have the same amount of fraud and non fraud transactions

Handling Imbalance data

Handling Outlier in:

- Correlation (0,1)
- + Correlation (0,1)

Resample Processing

OVER-sampling

Which is adding copies of the under-represented class Better when you have little data

П

UNDER-sampling

Which deletes instances from the over-represented class Better when he has lots of data

П

SMOTE

Synthetic Minority Over-Sampling Technique
It is combination of oversampling and undersampling

2- Features Scaling / Standardization

	scaled_amount	scaled_time	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V28	Class
0	1.783274	-0.994983	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	0.090794	-0.551600	-0.617801	-0.991390	-0.021053	0
1	-0.269825	-0.994983	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	-0.166974	1.612727	1.065235	0.489095	0.014724	0
2	4.983721	-0.994972	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	0.207643	0.624501	0.066084	0.717293	-0.059752	0
3	1.418291	-0.994972	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	-0.054952	-0.226487	0.178228	0.507757	0.061458	0
4	0.670579	-0.994960	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	0.753074	-0.822843	0.538196	1.345852	0.215153	0

3- Handling Imbalanced data > Create Sub-sample

```
# amount of fraud classes 492 rows.
fraud_df = df.loc[df['Class'] == 1] # aready count = 492
non_fraud_df = df.loc[df['Class'] == 0][:492] # select only 492 rows
```

Equally Distributed Classes

4- Visualization > Correlation

Imbalanced Correlation Matrix

Sub-sample Correlation Matrix

4- Visualization > Boxplot

5- Handling Outliers

Math Expression

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \mathrm{d}x$$

Code to Integrate

Interquartile Range (IQR)

5- Handling Outliers > Boxplot

Negative Correlation

Positive Correlation

6- Dim. Reduction and Clustering (t-SNE)

t-SNE: non-linear technique for dimensionality reduction that is particularly well suited for the visualization of high-dimensional datasets

6- Classification Algorithms

Don't use **accuracy score** as a metric with imbalanced datasets (will be usually high and misleading), instead use **f1-score**, **precision/recall score** or **confusion matrix**

ALGORITHMS	BEFOTR GRIDSEARCHCV	AFTER GRIDSEARCHCV	
Logistic Regression	92.0 %	93.01%	1
K-neighbors Classifier	93.0 %	92.72%	•
Support Vector Classifier	93.0%	93.3%	1
Decision Tree Classifier	86.0 %	90.1%	•

after to found the best parameters

7- SMOTE with Imbalance Data

Sample Data:

7- SMOTE with Imbalance Data

SMOTE It is oversampling SMOTEEN It is combination of oversampling and undersampling

- Build Model STME: to handling imbalance data between fraud and non-fraud
- Implement GridSearchCV
- Applied best parameter in SMOTE

ALGORITHMS	BEFOTR GRIDSEARCHCV	AFTER GRIDSEARCHCV	AG-SMOTE
Logistic Regression	92.0 %	93.01%	
K-neighbors Classifier	93.0 %	92.72%	
Support Vector Classifier	93.0%	93.3%	98.38 %
Decision Tree Classifier	86.0 %	90.1%	

New: This example was implemented based on combination of traditional method of data processing so that selected best algorithm and pass it to SMOTE to reach high accuracy

Thank you