UNIWERSYTET GDAŃSKI Wydział Matematyki, Fizyki i Informatyki

Daniel Sienkiewicz

nr albumu: 206358

Projekt komputera samochodowego bazujący na systemie mikrokomputera Intel Galileo

Praca magisterska na kierunku:

INFORMATYKA

Promotor:

dr Janusz Młodzianowski

Gdańsk 2015

Streszczenie

Słowa kluczowe

Intel Galileo, I^2C , SPI, C, Arduino

Spis treści

1.	Wpi	rowadzenie	4		
	1.1.	Cele	4		
	1.2.	Założenia	4		
	1.3.	Plan pracy	4		
2.	Arc	hitektura	5		
	2.1.	Opis wersji, etapy pracy nad sprzętem	5		
		2.1.1. Porównanie dostępnych na rynku mikrokomputerów	5		
	2.2.	Obsługa urządzeń wejścia/wyjścia w różnych systemach	5		
		2.2.1. Podstawowe interfejsy, które będą stosowane	5		
		2.2.2. Symulator samochodu	6		
3.	Imp	olementacja	7		
	3.1.	Wizja programu	7		
	3.2.	Schemat blokowy programu	7		
		3.2.1. Opis funkcji	7		
	3.3.	Użyte algorytmy	7		
		3.3.1. Próbkowanie sygnału	7		
	3.4.	Schematy sprzętu	7		
Zakończenie					
A. Programy					
Spis tabel 10					
Spis rysunków					
Oświadczonia 12					

ROZDZIAŁ 1

Wprowadzenie

TO DO

1.1. Cele

TO DO

1.2. Założenia

TO DO

1.3. Plan pracy

ROZDZIAŁ 2

Architektura

- 2.1. Opis wersji, etapy pracy nad sprzętem
- 2.1.1. Porównanie dostępnych na rynku mikrokomputerów

TO DO

2.2. Obsługa urządzeń wejścia/wyjścia w różnych systemach

TO DO

2.2.1. Podstawowe interfejsy, które będą stosowane

TO DO

SPI

TO DO

 I^2C

TO DO

USB OTG

GPS

TO DO

Wyjścia analogowe i cyfrowe

TO DO

2.2.2. Symulator samochodu

ROZDZIAŁ 3

Implementacja

3.1. Wizja programu

TO DO

3.2. Schemat blokowy programu

3.2.1. Opis funkcji

TO DO

3.3. Użyte algorytmy

3.3.1. Próbkowanie sygnału

TO DO

3.4. Schematy sprzętu

Zakończenie

DODATEK A

Programy

Spis tabel

Spis rysunków

Oświadczenie

Ja, niżej podpisany(a) oświadczam, iż j	przedłożona praca dyplomowa została
wykonana przeze mnie samodzielnie, n	ie narusza praw autorskich, interesów
prawnych i materialnych innych osób.	
data	podpis