Fourier uncertainty and exact signal recovery

Alex Josevich

January 2025: Colloquium talk at SUNY Geneseo

Finite Signals and Discrete Fourier transform

• Let f be a signal of finite length, i.e $f: \mathbb{Z}_N^d \to \mathbb{C}$.

Finite Signals and Discrete Fourier transform

- Let f be a signal of finite length, i.e $f: \mathbb{Z}_N^d \to \mathbb{C}$.
- Suppose that the Fourier transform of f is transmitted, where

$$\widehat{f}(m) = N^{-\frac{d}{2}} \sum_{x \in \mathbb{Z}_N^d} \chi(-x \cdot m) f(x); \ \chi(t) = e^{\frac{2\pi i t}{N}}.$$

Finite Signals and Discrete Fourier transform

- Let f be a signal of finite length, i.e $f: \mathbb{Z}_N^d \to \mathbb{C}$.
- Suppose that the Fourier transform of f is transmitted, where

$$\widehat{f}(m) = N^{-\frac{d}{2}} \sum_{x \in \mathbb{Z}_N^d} \chi(-x \cdot m) f(x); \ \chi(t) = e^{\frac{2\pi i t}{N}}.$$

 Fourier Inversion says that we can recover the signal by using the Fourier inversion:

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) \widehat{f}(m).$$

Exact recovery problem

• The basic question is, can we recover f exactly from its discrete Fourier transforms if

$$\left\{\widehat{f}(m): m \in S\right\}$$

are unobserved (or missing due to noise, other interference, or security), for some $S \subset \mathbb{Z}_N^d$?

Exact recovery problem

 The basic question is, can we recover f exactly from its discrete Fourier transforms if

$$\left\{\widehat{f}(m): m \in S\right\}$$

are unobserved (or missing due to noise, other interference, or security), for some $S \subset \mathbb{Z}_N^d$?

ullet The answer turns out to be YES if f is supported in $E\subset \mathbb{Z}_N^d$, and

$$|E|\cdot |S|<\frac{N^d}{2},$$

with the main tool being the Fourier Uncertainty Principle.

Fourier Inversion and Plancherel

• Given $f: \mathbb{Z}_N^d \to \mathbb{C}$, we shall use the following two formulas repeatedly:

Fourier Inversion and Plancherel

- Given $f: \mathbb{Z}_N^d \to \mathbb{C}$, we shall use the following two formulas repeatedly:
- (Fourier Inversion)

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) \widehat{f}(m),$$

and

Fourier Inversion and Plancherel

- Given $f: \mathbb{Z}_N^d \to \mathbb{C}$, we shall use the following two formulas repeatedly:
- (Fourier Inversion)

$$f(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) \widehat{f}(m),$$

and

(Plancherel)

$$\sum_{m\in\mathbb{Z}_N^d} |\widehat{f}(m)|^2 = \sum_{x\in\mathbb{Z}_N^d} |f(x)|^2.$$

• Suppose that $E \subset \mathbb{Z}_N^d$ and $f(x) = 1_E(x)$, the indicator function of E.

- Suppose that $E \subset \mathbb{Z}_N^d$ and $f(x) = 1_E(x)$, the indicator function of E.
- Suppose that the Fourier transform E is transmitted, and the frequencies in $S \subset \mathbb{Z}_N^d$ are unobserved.

- Suppose that $E \subset \mathbb{Z}_N^d$ and $f(x) = 1_E(x)$, the indicator function of E.
- Suppose that the Fourier transform E is transmitted, and the frequencies in $S \subset \mathbb{Z}_N^d$ are unobserved.
- By Fourier Inversion,

$$1_{E}(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_{N}^{d}} \chi(x \cdot m) \widehat{1}_{E}(m)$$

- Suppose that $E \subset \mathbb{Z}_N^d$ and $f(x) = 1_E(x)$, the indicator function of E.
- Suppose that the Fourier transform E is transmitted, and the frequencies in $S \subset \mathbb{Z}_N^d$ are unobserved.
- By Fourier Inversion,

$$1_{E}(x) = N^{-\frac{d}{2}} \sum_{m \in \mathbb{Z}_{N}^{d}} \chi(x \cdot m) \widehat{1}_{E}(m)$$

$$= N^{-\frac{d}{2}} \sum_{m \notin S} \chi(x \cdot m) \widehat{1}_{E}(m) + N^{-\frac{d}{2}} \sum_{m \in S} \chi(x \cdot m) \widehat{1}_{E}(m)$$

An elementary point of view: direct estimation

$$=I(x)+II(x).$$

An elementary point of view: direct estimation

$$=I(x)+II(x).$$

By the triangle inequality,

$$|II(x)| \le N^{-\frac{d}{2}} \cdot |S| \cdot N^{-\frac{d}{2}} \cdot |E| = N^{-d} \cdot |E| \cdot |S|.$$

An elementary point of view: direct estimation

$$=I(x)+II(x).$$

By the triangle inequality,

$$|II(x)| \le N^{-\frac{d}{2}} \cdot |S| \cdot N^{-\frac{d}{2}} \cdot |E| = N^{-d} \cdot |E| \cdot |S|.$$

• Since we know nothing about S, the best we can do is assume that the quantity above is small.

An elementary point of view: rounding

If

$$N^{-d}|E||S|<\frac{1}{2},$$

we can take the modulus of I(x) and round it up to 1 if it is $\geq \frac{1}{2}$, and round it down to 0 otherwise.

An elementary point of view: rounding

If

$$N^{-d}|E||S|<\frac{1}{2},$$

we can take the modulus of I(x) and round it up to 1 if it is $\geq \frac{1}{2}$, and round it down to 0 otherwise.

 This gives us exact recovery using a simple and direct algorithm (to be henceforth referred to as the Direct Rounding Algorithm (DRA)) if

$$|E|\cdot |S|<\frac{N^d}{2}.$$

An elementary point of view: rounding

If

$$N^{-d}|E||S|<\frac{1}{2},$$

we can take the modulus of I(x) and round it up to 1 if it is $\geq \frac{1}{2}$, and round it down to 0 otherwise.

 This gives us exact recovery using a simple and direct algorithm (to be henceforth referred to as the Direct Rounding Algorithm (DRA)) if

$$|E|\cdot |S|<\frac{N^d}{2}.$$

• But what happens if we consider general signals?

Matolcsi-Szucks/ Donoho-Stark point of view

• Let $h: \mathbb{Z}_N^d \to \mathbb{C}$. Then the classical Uncertainty Principle says that

$$|\operatorname{spt}(h)| \cdot |\operatorname{spt}(\hat{h})| \geq N^d$$
.

Matolcsi-Szucks/ Donoho-Stark point of view

• Let $h: \mathbb{Z}_N^d \to \mathbb{C}$. Then the classical Uncertainty Principle says that

$$|\operatorname{spt}(h)| \cdot |\operatorname{spt}(\hat{h})| \geq N^d$$
.

• Suppose that $f: \mathbb{Z}_N^d \to \mathbb{C}$ is supported in $E \subset \mathbb{Z}_N^d$, with the frequencies in $S \subset \mathbb{Z}_N^d$ unobserved.

Matolcsi-Szucks/ Donoho-Stark point of view

ullet Let $h:\mathbb{Z}_N^d o\mathbb{C}.$ Then the classical Uncertainty Principle says that

$$|\operatorname{spt}(h)| \cdot |\operatorname{spt}(\hat{h})| \geq N^d$$
.

- Suppose that $f: \mathbb{Z}_N^d \to \mathbb{C}$ is supported in $E \subset \mathbb{Z}_N^d$, with the frequencies in $S \subset \mathbb{Z}_N^d$ unobserved.
- If f cannot be recovered uniquely, then there exists a signal $g: \mathbb{Z}_N^d \to \mathbb{C}$ such that g also has |E| non-zero entries,

$$\widehat{f}(m) = \widehat{g}(m) \text{ for } m \notin S,$$

and f is not identically equal to g.

Uncertainty Principle \rightarrow Unique Recovery

• Let h = f - g. It is clear that \hat{h} has at most |S| non-zero entries, and h has at most 2|E| non-zero entries.

Uncertainty Principle \rightarrow Unique Recovery

- Let h = f g. It is clear that \hat{h} has at most |S| non-zero entries, and h has at most 2|E| non-zero entries.
- By the Uncertainty Principle, we must have

$$|E|\cdot |S|\geq \frac{N^d}{2}.$$

Uncertainty Principle → Unique Recovery

- Let h = f g. It is clear that \widehat{h} has at most |S| non-zero entries, and h has at most 2|E| non-zero entries.
- By the Uncertainty Principle, we must have

$$|E|\cdot |S|\geq \frac{N^d}{2}.$$

Therefore, if we assume that

$$|E|\cdot |S|<\frac{N^d}{2},$$

we must have h = 0, and hence the recovery is *unique*.

A general recovery method

 We have seen that when the signal is binary, recovery can be achieved using the Direct Recovery Algorithm. But what do we do in general?

A general recovery method

- We have seen that when the signal is binary, recovery can be achieved using the Direct Recovery Algorithm. But what do we do in general?
- Donoho and Stark showed, using a beautiful idea due to Benjamin Logan, that if $f: \mathbb{Z}_N^d \to \mathbb{C}$ is supported in E, and the frequencies $\{\widehat{f}(m)\}_{m\in S}$ are unobserved, then if

$$|E|\cdot |S|<\frac{N^d}{2},$$

A general recovery method

- We have seen that when the signal is binary, recovery can be achieved using the Direct Recovery Algorithm. But what do we do in general?
- Donoho and Stark showed, using a beautiful idea due to Benjamin Logan, that if $f: \mathbb{Z}_N^d \to \mathbb{C}$ is supported in E, and the frequencies $\{\widehat{f}(m)\}_{m\in S}$ are unobserved, then if

$$|E|\cdot |S|<\frac{N^d}{2},$$

• then f can be recovered as

arg $min_u ||u||_{L^1(\mathbb{Z}^d_+)}$ subject to $\widehat{f}(m) = \widehat{u}(m)$ for $m \notin S$.

Benjamin Franklin Logan

• Logan was an accomplished bluegrass musician in addition to his groundbreaking work in signal processing.

Proof of the L^1 recovery method

• Let f = g + h, where g is the solution to the L^1 minimization problem above, and note that h is supported in S. We have

$$||g||_{L^{1}(\mathbb{Z}_{N}^{d})} = ||f - h||_{L^{1}(\mathbb{Z}_{N}^{d})}$$

$$= ||f - h||_{L^{1}(E)} + ||h||_{L^{1}(E^{c})} \ge ||f||_{L^{1}(\mathbb{Z}_{N}^{d})} + \left[||h||_{L^{1}(E^{c})} - ||h||_{L^{1}(E)} \right].$$

Proof of the L^1 recovery method

• Let f = g + h, where g is the solution to the L^1 minimization problem above, and note that h is supported in S. We have

$$\begin{split} ||g||_{L^{1}(\mathbb{Z}_{N}^{d})} &= ||f - h||_{L^{1}(\mathbb{Z}_{N}^{d})} \\ &= ||f - h||_{L^{1}(E)} + ||h||_{L^{1}(E^{c})} \ge ||f||_{L^{1}(\mathbb{Z}_{N}^{d})} + \left[||h||_{L^{1}(E^{c})} - ||h||_{L^{1}(E)} \right]. \end{split}$$

• If we can show that $||h||_{L^1(E^c)} > ||h||_{L^1(E)}$, then

$$||f||_{L^1(\mathbb{Z}_N^d)} < ||g||_{L^1(\mathbb{Z}_N^d)},$$

which is impossible since g is the L^1 minimizer.

Proof of the L^1 recovery method

• Let f = g + h, where g is the solution to the L^1 minimization problem above, and note that h is supported in S. We have

$$\begin{split} ||g||_{L^{1}(\mathbb{Z}_{N}^{d})} &= ||f - h||_{L^{1}(\mathbb{Z}_{N}^{d})} \\ &= ||f - h||_{L^{1}(E)} + ||h||_{L^{1}(E^{c})} \ge ||f||_{L^{1}(\mathbb{Z}_{N}^{d})} + \left[||h||_{L^{1}(E^{c})} - ||h||_{L^{1}(E)} \right]. \end{split}$$

• If we can show that $||h||_{L^{1}(E^{c})} > ||h||_{L^{1}(E)}$, then

$$||f||_{L^1(\mathbb{Z}_N^d)} < ||g||_{L^1(\mathbb{Z}_N^d)},$$

which is impossible since g is the L^1 minimizer.

• The resulting contradiction will prove that $h \equiv 0$.

The uncertainty principle strikes again

We have

$$|h(x)| = N^{-\frac{d}{2}} \cdot \left| \sum_{m \in S} \chi(x \cdot m) \widehat{h}(m) \right| \leq N^{-d} \cdot |S| \cdot ||h||_{L^1(\mathbb{Z}_N^d)}.$$

The uncertainty principle strikes again

We have

$$|h(x)| = N^{-\frac{d}{2}} \cdot \left| \sum_{m \in S} \chi(x \cdot m) \widehat{h}(m) \right| \leq N^{-d} \cdot |S| \cdot ||h||_{L^1(\mathbb{Z}_N^d)}.$$

It follows that

$$||h||_{L^1(E)} \leq N^{-d} \cdot |E| \cdot |S| \cdot ||h||_{L^1(\mathbb{Z}_N^d)} < \frac{1}{2} \cdot ||h||_{L^1(\mathbb{Z}_N^d)}.$$

We conclude that

$$||h||_{L^1(E)} < ||h||_{L^1(E^c)},$$

as desired.

The L^2 -minimization algorithm

• The L^2 algorithm works in a very different way. If we try to run the same algorithm with L^1 -minimization replaced by L^2 -minimization, we run into an annoying complication, which is that

$$||f-h||_{L^2(\mathbb{Z}_N^d)} \ge ||f-h||_{L^2(E)} + ||f-h||_{L^2(E^c)},$$

and the argument collapses.

The L^2 -minimization algorithm

• The L^2 algorithm works in a very different way. If we try to run the same algorithm with L^1 -minimization replaced by L^2 -minimization, we run into an annoying complication, which is that

$$||f-h||_{L^2(\mathbb{Z}_N^d)} \ge ||f-h||_{L^2(E)} + ||f-h||_{L^2(E^c)},$$

and the argument collapses.

• There is a workaround, but it is computationally costly.

The L^2 -minimization algorithm

• The L^2 algorithm works in a very different way. If we try to run the same algorithm with L^1 -minimization replaced by L^2 -minimization, we run into an annoying complication, which is that

$$||f-h||_{L^2(\mathbb{Z}_N^d)} \ge ||f-h||_{L^2(E)} + ||f-h||_{L^2(E^c)},$$

and the argument collapses.

- There is a workaround, but it is computationally costly.
- We must consider

$$|\operatorname{arg}| \min_u ||\widehat{u} - \widehat{f}||_{L^2(S^c)}$$
 subject to the constraint $|\operatorname{spt}(f)| = |\operatorname{spt}(u)|$.

Proof of the L^2 -minimization algorithm

• As before, we have f = g + h where \hat{h} is supported on S, the set of missing frequencies. Also, g is supported on a set of size |E|, hence if h is supported on $T \subset \mathbb{Z}_N^d$, then $|T| \leq 2|E|$.

Proof of the L^2 -minimization algorithm

• As before, we have f = g + h where \hat{h} is supported on S, the set of missing frequencies. Also, g is supported on a set of size |E|, hence if h is supported on $T \subset \mathbb{Z}_N^d$, then $|T| \leq 2|E|$.

We have

$$|h(x)| = N^{-\frac{d}{2}} \cdot \left| \sum_{m \in S} \chi(x \cdot m) \widehat{h}(m) \right| \leq N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \cdot ||h||_{L^{2}(T)}.$$

Proof of the L^2 -minimization algorithm

• As before, we have f = g + h where \hat{h} is supported on S, the set of missing frequencies. Also, g is supported on a set of size |E|, hence if h is supported on $T \subset \mathbb{Z}_N^d$, then $|T| \leq 2|E|$.

We have

$$|h(x)| = N^{-\frac{d}{2}} \cdot \left| \sum_{m \in S} \chi(x \cdot m) \widehat{h}(m) \right| \leq N^{-\frac{d}{2}} \cdot |S|^{\frac{1}{2}} \cdot ||h||_{L^{2}(T)}.$$

It follows that

$$||h||_{L^2(T)} \le \sqrt{|T||S|N^{-d}} \cdot ||h||_{L^2(T)}.$$

Proof of the L^2 -minimization algorithm (conclusion)

This leads to an immediate contradiction if

$$|T|\cdot |S|< N^d,$$

which amounts to

$$|E|\cdot |S|<\frac{N^d}{2}.$$

Proof of the L^2 -minimization algorithm (conclusion)

This leads to an immediate contradiction if

$$|T|\cdot |S| < N^d,$$

which amounts to

$$|E|\cdot |S|<\frac{N^d}{2}.$$

• We conclude that the L^2 -minimization works under this assumption, though the necessity to consider candidate signals supported in a set of size |E| makes the practical value of this algorithm quite limited.

• In general, the answer is no. Suppose that d = 1, N is not prime, and E is a subgroup of \mathbb{Z}_N .

- In general, the answer is no. Suppose that d=1, N is not prime, and E is a subgroup of \mathbb{Z}_N .
- Then if f is supported on E, \hat{f} is supported on

$$S = \{ m \in \mathbb{Z}_N : xm = 0 \ \forall \ x \in E \}.$$

- In general, the answer is no. Suppose that d = 1, N is not prime, and E is a subgroup of \mathbb{Z}_N .
- Then if f is supported on E, \hat{f} is supported on

$$S = \{ m \in \mathbb{Z}_N : xm = 0 \ \forall \ x \in E \}.$$

• Since $|E| \cdot |S| = N$, we see that the Donoho-Stark recovery condition cannot be improved, up to a constant, since S can be a set of missing frequencies.

- In general, the answer is no. Suppose that d=1, N is not prime, and E is a subgroup of \mathbb{Z}_N .
- Then if f is supported on E, \hat{f} is supported on

$$S = \{ m \in \mathbb{Z}_N : xm = 0 \ \forall \ x \in E \}.$$

- Since $|E| \cdot |S| = N$, we see that the Donoho-Stark recovery condition cannot be improved, up to a constant, since S can be a set of missing frequencies.
- However, we shall that for a generic set S of missing frequencies, the situation is much better.

The prime case

• If N is prime and d > 2, it is not difficult to check that if f is supported on a k-dimension plane H, \hat{f} is supported on the orthogonal subspace H^{\perp} .

The prime case

- If N is prime and $d \ge 2$, it is not difficult to check that if f is supported on a k-dimension plane H, \widehat{f} is supported on the orthogonal subspace H^{\perp} .
- It follows that the classical uncertainty principle is sharp in this case, and the Donoho-Stark recovery condition cannot be improved, up to a constant.

The prime case

- If N is prime and $d \ge 2$, it is not difficult to check that if f is supported on a k-dimension plane H, \widehat{f} is supported on the orthogonal subspace H^{\perp} .
- It follows that the classical uncertainty principle is sharp in this case, and the Donoho-Stark recovery condition cannot be improved, up to a constant.
- If N is prime and d=1, a beautiful result due to Terry Tao says that if f is supported on E and \widehat{f} is supported on S, then $|E|+|S|\geq N+1$, with the corresponding improvement for the exact signal recovery condition.

Bourgain's Λ_a theorem - general formulation

• Jean Bourgain proved that if G is a locally compact abelian group, $|\phi_1,\ldots,\phi_n|$ are orthogonal functions with $||\phi_j||_{\infty} \leq 1$, the for a generic set $S \subset \{1, 2, \dots, n\}$ of size $\approx n^{\frac{2}{q}}, q > 2$.

$$\left|\left|\sum_{i\in S} a_i \phi_i\right|\right|_{L^q(G)} \leq C(q) \cdot \left(\sum_{i\in S} |a_i|^2\right)^{\frac{1}{2}},$$

where C(q) depends only on q.

Bourgain's Λ_a theorem - general formulation

• Jean Bourgain proved that if G is a locally compact abelian group, $|\phi_1,\ldots,\phi_n|$ are orthogonal functions with $||\phi_j||_{\infty} \leq 1$, the for a generic set $S \subset \{1, 2, ..., n\}$ of size $\approx n^{\frac{2}{q}}, q > 2$,

$$\left|\left|\sum_{i\in S}a_i\phi_i\right|\right|_{L^q(G)}\leq C(q)\cdot \left(\sum_{i\in S}|a_i|^2\right)^{\frac{1}{2}},$$

where C(q) depends only on q.

 As we shall see, this result has a simple and effective built-in uncertainty principle.

Jean Bourgain

• My first conversation with Bourgain was during my first year out of grad school. In less than 20 minutes, Jean worked out on a napkin three out of the four results I had up to that point :).

The meaning of generic

• The notion of **generic** above means the following. Let $0 < \delta < 1$ and let $\{\xi_j\}_{1 \le j \le n}$ denote independent 0,1 random variables of mean $\int \xi_i(\omega) d\omega = \delta, \ 1 \leq i \leq n.$

The meaning of generic

- The notion of **generic** above means the following. Let $0 < \delta < 1$ and let $\{\xi_i\}_{1 < i < n}$ denote independent 0,1 random variables of mean $\int \xi_i(\omega) d\omega = \delta, \ 1 \leq i \leq n.$
- ullet Choosing $\delta = n^{rac{2}{q}-1}$ generates a random subset

$$S_{\omega} = \{1 \le j \le n : \xi_j(\omega) = 1\} \text{ of } \{1, 2, \dots n\}$$

of expected size $\lceil n^{\frac{2}{q}} \rceil$. Bourgain's theorem holding for a **generic** set S means that the result holds for the set S_{ω} with probability $1 - o_N(1)$.

The meaning of generic

- The notion of **generic** above means the following. Let $0 < \delta < 1$ and let $\{\xi_j\}_{1 \le j \le n}$ denote independent 0,1 random variables of mean $\int \xi_j(\omega) d\omega = \delta, \ 1 \le j \le n.$
- Choosing $\delta = n^{\frac{2}{q}-1}$ generates a random subset

$$S_{\omega} = \{1 \leq j \leq n : \xi_j(\omega) = 1\} \text{ of } \{1, 2, \dots n\}$$

of expected size $\lceil n^{\frac{2}{q}} \rceil$. Bourgain's theorem holding for a **generic** set S means that the result holds for the set S_{ω} with probability $1 - o_N(1)$.

• In a simpler language, if we randomly choose a subset of $\{1,2,\ldots,n\}$ by choosing each element with probability $p=n^{\frac{2}{q}-1}$, then Bourgain's theorem holds for such a set with probability close to 1.

Bourgain's Λ_q theorem

• It is a consequence of Bourgain's celebrated Λ_p theorem in locally compact abelian groups that if $f: \mathbb{Z}_N^d \to \mathbb{C}$ and \widehat{f} is supported in S, then for a "generic" set of size $\lceil N^{\frac{2d}{q}} \rceil$, $2 < q < \infty$,

$$\left(\frac{1}{N^d}\sum_{x\in\mathbb{Z}_N^d}|f(x)|^q\right)^{\frac{1}{q}}\leq C(q)\left(\frac{1}{N^d}\sum_{x\in\mathbb{Z}_N^d}|f(x)|^2\right)^{\frac{1}{2}},$$

with C(q) independent of N.

Bourgain's Λ_q theorem

• It is a consequence of Bourgain's celebrated Λ_p theorem in locally compact abelian groups that if $f: \mathbb{Z}_N^d \to \mathbb{C}$ and \widehat{f} is supported in S, then for a "generic" set of size $\lceil N^{\frac{2d}{q}} \rceil$, $2 < q < \infty$,

$$\left(\frac{1}{N^d}\sum_{x\in\mathbb{Z}_N^d}|f(x)|^q\right)^{\frac{1}{q}}\leq C(q)\left(\frac{1}{N^d}\sum_{x\in\mathbb{Z}_N^d}|f(x)|^2\right)^{\frac{1}{2}},$$

with C(q) independent of N.

• It is not difficult to see that this inequality implies that the support of f must be a positive proportion of \mathbb{Z}_N^d .

Signal recovery in the presence of the Λ_q inequality

Theorem

(A. losevich and A. Mayeli (2024)) Let $f: \mathbb{Z}_N^d \to \mathbb{C}$ be a signal supported in $E \subset \mathbb{Z}_N^d$. Suppose that the frequencies $\{\widehat{f}(m)\}_{m \in S}$ are unobserved, where S satisfies the Λ_q inequality with constant C(q), i.e whenever \widehat{g} is supported in S, $|S| = \lceil N^{\frac{2d}{q}} \rceil$,

$$\left(\frac{1}{N^d}\sum_{x\in\mathbb{Z}_N^d}|g(x)|^q\right)^{\frac{1}{q}}\leq C(q)\left(\frac{1}{N^d}\sum_{x\in\mathbb{Z}_N^d}|g(x)|^2\right)^{\frac{1}{2}},$$

with K_q independent of N. Then f can be recovered exactly provided that

$$|E| < \frac{N^d}{2(C(q))^{\frac{1}{2} - \frac{1}{q}}},$$

A direct consequence of Bourgain's Λ_q theorem

• Suppose that *S* is generic, as in Bourgain's theorem.

A direct consequence of Bourgain's Λ_a theorem

- Suppose that S is generic, as in Bourgain's theorem.
- Suppose that f is supported in $E \subset \mathbb{Z}_N^d$ and \widehat{f} is supported in S. Bourgain's theorem implies that

A direct consequence of Bourgain's Λ_a theorem

- Suppose that S is generic, as in Bourgain's theorem.
- Suppose that f is supported in $E \subset \mathbb{Z}_N^d$ and \widehat{f} is supported in S. Bourgain's theorem implies that

$$N^{-\frac{d}{q}} \cdot |E|^{\frac{1}{q}} \left(\frac{1}{|E|} \sum_{x \in E} |f(x)|^q \right)^{\frac{1}{q}}$$

$$\leq K_q N^{-\frac{d}{2}} \cdot |E|^{\frac{1}{2}} \left(\frac{1}{|E|} \sum_{x \in F} |f(x)|^2 \right)^{\frac{1}{2}}.$$

A direct consequence of Bourgain's Λ_q theorem

It follows that

$$|E| \geq \frac{N^a}{\left(C(q)\right)^{\frac{1}{2}-\frac{1}{q}}}.$$

A direct consequence of Bourgain's Λ_a theorem

It follows that

$$|E| \geq \frac{N^a}{\left(C(q)\right)^{\frac{1}{2}-\frac{1}{q}}}.$$

• We conclude that if we send the Fourier transform of a signal f supported on a set of size

$$< \frac{N^d}{2(C(q))^{\frac{1}{2}-\frac{1}{q}}},$$

and the frequencies in $S\subset \mathbb{Z}_N^d, \ |S|=\lceil N^{\frac{2d}{q}} \rceil$, satisfying the $\Lambda_q, \ q>2$, inequality with constant C(q) are missing, we can recover f exactly with very high probability using L^2 -minimization.

A very large set of missing frequencies

• The following result due Guedon, Mendelson, Pajor and Tomczak-Jaegermann (2008).

A very large set of missing frequencies

 The following result due Guedon, Mendelson, Pajor and Tomczak-Jaegermann (2008).

Theorem

There exist two positive constants c and C such that for any even integer n and any orthonormal system $\{\phi_j\}_{j=1}^n$ in L^2 with $||\phi_j||_{L^\infty} \leq L$, $1 \leq j \leq n$, we can find a subset $I \subset \{1, ..., n\}$ with $\frac{n}{2} - c\sqrt{n} \le |I| \le \frac{n}{2} + c\sqrt{n}$ such that for every $a = (a_i) \in \mathbb{C}^n$,

$$\left\| \sum_{i \in I} a_i \phi_i \right\|_{L^2} \leq CL \log n (\log \log n)^{\frac{5}{2}} \left\| \sum_{i \in I} a_i \phi_i \right\|_{L^1}.$$

A very large set of missing frequencies (continued)

Moreover, the proof of this result shows that the result holds for a generic set / with

$$\frac{n}{2}-c\sqrt{n}\leq |I|\leq \frac{n}{2}+c\sqrt{n}.$$

A very large set of missing frequencies (continued)

 Moreover, the proof of this result shows that the result holds for a generic set I with

$$\frac{n}{2}-c\sqrt{n}\leq |I|\leq \frac{n}{2}+c\sqrt{n}.$$

• We can apply this result to the setting of \mathbb{Z}_N^d , where $\{e_1,\ldots,e_n\}$, $n=N^d$ denotes the set of all characters $\{\chi(x\cdot m)\}_{m\in\mathbb{Z}_N^d}$.

A very large set of missing frequencies (continued)

 Moreover, the proof of this result shows that the result holds for a generic set I with

$$\frac{n}{2}-c\sqrt{n}\leq |I|\leq \frac{n}{2}+c\sqrt{n}.$$

- We can apply this result to the setting of \mathbb{Z}_N^d , where $\{e_1, \dots, e_n\}$, $n = N^d$ denotes the set of all characters $\{\chi(x \cdot m)\}_{m \in \mathbb{Z}_N^d}$.
- We can show that there exists C, c > 0 such that for a generic set $S \subset \mathbb{Z}_N^d$, with

$$|S| \sim \frac{N^d}{\log(N)(\log(\log(N)))^{\frac{5}{2}}},$$

and $f(x) = N^{-\frac{d}{2}} \sum_{m} \chi(x \cdot m) \hat{f}(m)$, we have

Another uncertainty principle

$$\left(\frac{1}{N^d}\sum_{x\in\mathbb{Z}_N^d}|f(x)|^2\right)^{\frac{1}{2}}\leq C(d)\left(\frac{1}{N^d}\sum_{x\in\mathbb{Z}_N^d}|f(x)|\right).$$

Another uncertainty principle

$$\left(\frac{1}{N^d}\sum_{x\in\mathbb{Z}_N^d}|f(x)|^2\right)^{\frac{1}{2}}\leq C(d)\left(\frac{1}{N^d}\sum_{x\in\mathbb{Z}_N^d}|f(x)|\right).$$

• Using the same ideas as before, we can check that if f is supported in E, then

$$|E| \geq \frac{N^d}{C^2(d)}.$$

Exact recovery with a large set of missing frequencies

• The argument we just went through leads to the following exact recovery result.

Exact recovery with a large set of missing frequencies

 The argument we just went through leads to the following exact recovery result.

Theorem

(A. losevich, B. Kashin, I. Limonova, and A. Mayeli (2024)) Let $f: \mathbb{Z}_N^d \to \mathbb{C}$ be a signal supported in $E \subset \mathbb{Z}_N^d$, and suppose that the frequencies $\{\widehat{f}(m)\}_{m \in S}$ are unobserved. There exists constants C, c > 0 such that if S is generic set of size

$$\sim_{C,c} \frac{N^d}{\log(N)(\log(\log(N)))^{\frac{5}{2}}},$$

and

$$|E|<\frac{N^d}{2C^2(d)},$$

then f can be recovered exactly using L^1 -minimization.

We have

$$||h||_{L^1(E)} \le |E|^{\frac{1}{2}} \cdot ||h||_{L^2(\mathbb{Z}_N^d)}$$

We have

$$||h||_{L^1(E)} \leq |E|^{\frac{1}{2}} \cdot ||h||_{L^2(\mathbb{Z}_N^d)}$$

$$\leq |E|^{\frac{1}{2}} \cdot N^{\frac{d}{2}} \cdot \left(\frac{1}{N^d} \sum_{x} |h(x)|^2\right)^{\frac{1}{2}}$$

We have

$$||h||_{L^1(E)} \le |E|^{\frac{1}{2}} \cdot ||h||_{L^2(\mathbb{Z}_N^d)}$$

•

$$\leq |E|^{\frac{1}{2}} \cdot N^{\frac{d}{2}} \cdot \left(\frac{1}{N^d} \sum_{x} |h(x)|^2\right)^{\frac{1}{2}}$$

•

$$\leq |E|^{\frac{1}{2}} \cdot N^{\frac{d}{2}} \cdot C(d) \cdot \frac{1}{N^d} \sum_{x} |h(x)|.$$

We have

$$||h||_{L^1(E)} \le |E|^{\frac{1}{2}} \cdot ||h||_{L^2(\mathbb{Z}_N^d)}$$

•

$$\leq |E|^{\frac{1}{2}} \cdot N^{\frac{d}{2}} \cdot \left(\frac{1}{N^d} \sum_{x} |h(x)|^2\right)^{\frac{1}{2}}$$

•

$$\leq |E|^{\frac{1}{2}} \cdot N^{\frac{d}{2}} \cdot C(d) \cdot \frac{1}{N^d} \sum_{x} |h(x)|.$$

It follows that if

$$|E| < \frac{N^d}{2C^2(d)}, \text{ then } ||h||_{L^1(E)} < \frac{1}{2}||h||_{L^1(\mathbb{Z}_N^d)},$$

• We have

$$||h||_{L^1(E)} \leq |E|^{\frac{1}{2}} \cdot ||h||_{L^2(\mathbb{Z}_N^d)}$$

•

$$\leq |E|^{\frac{1}{2}} \cdot N^{\frac{d}{2}} \cdot \left(\frac{1}{N^d} \sum_{x} |h(x)|^2\right)^{\frac{1}{2}}$$

•

$$\leq |E|^{\frac{1}{2}} \cdot N^{\frac{d}{2}} \cdot C(d) \cdot \frac{1}{N^d} \sum_{x} |h(x)|.$$

It follows that if

$$|E| < \frac{\mathit{N}^d}{2\mathit{C}^2(d)}, \text{ then } ||\mathit{h}||_{\mathit{L}^1(E)} < \frac{1}{2}||\mathit{h}||_{\mathit{L}^1(\mathbb{Z}^d_\mathit{N})},$$

hence

$$||h||_{L^1(E)} < ||h||_{L^1(E^c)}.$$

A real-life application

• The following data set describes the number of daily hits on Peyton Manning's website.

Filling in missing values

• The time series you just saw has length 450. We are going to take out the values from 200 to 250 and fill them in using the L^1 -minimization algorithm.

Filling in missing values

- The time series you just saw has length 450. We are going to take out the values from 200 to 250 and fill them in using the L^1 -minimization algorithm.
- More precisely, we are going to encode the time series above by a function $f: \mathbb{Z}_{450} \to \mathbb{Z}^+$, and consider all possible functions $g: \mathbb{Z}_{450} \to \mathbb{Z}^+$ such that f(x) = g(x) away from the set of missing values. We are then going to find such a g with the smallest possible $||\widehat{g}||_{L^1(\mathbb{Z}_N)}$ norm, thus approximating f.

Filling in missing values - diagram

• The original time series is in **red**. The imputed values are in **blue**.

Filling in missing values - diagram

• The original time series is in **red**. The imputed values are in **blue**.

A more advanced imputation

 We are now going to encode the time series above by a function $f: \mathbb{Z}_{450} \to \mathbb{Z}^+$, and consider all possible functions $g: \mathbb{Z}_{450} \to \mathbb{Z}^+$ such that

$$||f-g||_{L^2(M^c)}<\epsilon,$$

with suitably chosen ϵ . We are then going to find such a g with the smallest possible L^1 norm, thus approximating f.

A more advanced imputation

• We are now going to encode the time series above by a function $f: \mathbb{Z}_{450} \to \mathbb{Z}^+$, and consider all possible functions $g: \mathbb{Z}_{450} \to \mathbb{Z}^+$ such that

$$||f-g||_{L^2(M^c)}<\epsilon,$$

with suitably chosen ϵ . We are then going to find such a g with the smallest possible L^1 norm, thus approximating f.

• This approach accounts for the noise in the data set.

A more advanced imputation - diagram

• The original time series is in **red**. The imputed time series is in **green**.

A more advanced imputation - diagram

• The original time series is in **red**. The imputed time series is in **green**.

