A generic continuous time, infinite horizon, deterministic sequential problem (SP) can be written:

$$\begin{split} V(s_{\tau}) &= \max_{c(t)} \left\{ \int_{t=\tau}^{t=+\infty} e^{-\rho(t-\tau)} r\big(s(t),c(t)\big) dt \right\} \\ \dot{s}(t) &= \mu\big(s(t),c(t)\big) \\ s(\tau) &= s_{\tau} \text{ given} \end{split}$$

where s(t) is the state vector, c(t) the control vector, r(s,c) the return function, $\rho \ge 0$ the discount rate, V(s) the optimal value, $\mu(s,c)$ the transition function, and s_{τ} the initial condition.

The corresponding functional equation (HJB) can be written:

$$\rho V(s) = \max_{c} \{J(c, s, V)\} = \max_{c} \{r(s, c) + V_s \times \mu(s, c)\}$$

The FOC: $J_c(c, s, V) = 0 \Rightarrow c(s, V)$ gives the policy function in terms of the unknown value function.

The user should make sure the appropriate SOCs hold.

Combining the HJB with the FOC we get a $\underline{\mathbf{DE}}$: $V(s) = J(c(s,V),s,V) = r(s,c(s,V)) + V_s \times \mu(s,c(s,V))$

In general, DE has multiple solutions V(s), and only one of them is the optimal value function in SP. The goal of this note is to try to understand how to restrict DE to ensure the solution is the optimal value function.

The examples in this note can also be solved by solving the Euler-Lagrange (<u>EL</u>) equation (the continuous time analog to the Euler Equation), which in generic differentiable problems with 1 state & 1 control variable can be written:

$$r_{s} = -\frac{r_{c}}{\mu_{c}}(\rho - \mu_{s}) + (\mu_{c})^{-2} ((r_{cc}\dot{c} + r_{cs}\dot{s})\mu_{c} - r_{c}(\mu_{cc}\dot{c} + \mu_{cs}\dot{s}))$$

Note that the corresponding recursive costate variable is $\lambda(s) = V_s(s)$ and TS $\lambda(t) = -r_c (c(t), s(t)) / \mu_c (c(t), s(t))$. Following Sethi 2022, the standard terminal condition (TC) for this subset of control problems is $TC(t) \equiv e^{-\rho t} \lambda(t) s(t) \to 0$.

Proposition 1: **DE** has a unique viscosity solution V(s), which is also the solution to **SP**.

This allows for weak solutions (value functions with non-differentiable kinks).

Reference: Crandall & Lions 1983 etc.

<u>Proposition 2</u>: DE can be solved with an FD scheme that converges to the unique viscosity solution under 3 conditions monotonicity/consistency/stability.

Reference: Barles & Souganidis 1991, Tourin 2013 etc.

Q: what theorem tells us that if a candidate solution to DE satisfies an appropriate state boundary inequality, then it must be the unique viscosity solution?

This note is motivated from experience using neural network-based solvers of HJBs which often given non-optimal solutions of DE.

For each solution V(s) of DE, we obtain the policy function from the FOC c(s) = c(s, V(s)) and then we combine the policy function with the law of motion for the state variable together with the initial condition:

$$\dot{s} = \mu(s, c(s)), s(0) = s_0$$
 the solution to this initial value ODE is a TS $s(t)$.

Next, we obtain the TS for the control variable c(t) = c(s(t)) and the multiplier $\lambda(t) = -r_c(c,s)/\mu_c(c,s)$. There are several methods that use the TS corresponding to solution V(s) of DE to verify it is also the solution to SP.

This note will study several problems where DE has multiple solutions. For each example there will be at least 5 ways to rule out the non-viscosity solution to DE.

0	For LQR problems (examples 1 & 2) the solution to SP is the Stabilizing solution of the continuous time Algebraic
	Riccati Equation (ARE).
1	$TC(t) \equiv e^{-\rho t} \lambda(t) s(t) = e^{-\rho t} V_s(s(t)) s(t) \to 0$
	This only holds for the TS corresponding to the solution to SP.
2	$\int_0^\infty e^{-\rho t} r(s,c) dt = V(s_0)$
	This only holds for the TS corresponding to the solution to SP.
3	$\lim e^{-\rho t}V\big(s(t)\big)=0$
	This only holds for the TS corresponding to the solution to SP.
4	V(s) is the unique viscosity solution of DE.
	Any other solution to DE is either not a viscosity supersolution, or subsolution.
5	Boundary Inequality: $\dot{s} = \dot{s}(s_{min}, c(s_{min}, V_s(s_{min}))) \ge 0$
	Only the solution to SP satisfies BI.
	$\underline{\mathbf{Q}}$: in general, how do you set s_{min} ? It makes perfect sense for problems where we know that $s(t) \to s_{ss}$, then if $s < s_{ss} \Rightarrow \dot{s}(s) > 0$. What about for problems (such as consumption saving) where for some parameters $s(t) \to \pm \infty$?

TOC of examples:

•	
1: LQ from	$r(s,c) = -3s^25c^2, \rho = 1, \mu(s,c) = c$
Viscosity solutions for Dummies	DE has two quadratic solutions.
$s_{ss} = c_{ss} = 0$	The viscosity sol: Satisfies TC, $V(s_0) = \int_0^\infty e^{-\rho t} r(s,c) dt$, satisfies BI
2: LQ, Non-Hayashi investment	$r(s,c) = zs - c5c^2, \mu(s,c) = c - \delta s$
$c_{ss} = \frac{z}{a+\delta} - 1, s_{ss} = \frac{c_{ss}}{\delta}$	DE has two quadratic solutions. {One is affine.}
ρ+δ 22 δ	The viscosity sol: Satisfies TC, $V(s_0) = \int_0^\infty e^{-\rho t} r(s,c) dt$, satisfies BI
3: Hayashi investment	$r(s,c) = zs - c5c^2/s, \mu(s,c) = c - \delta s.$
No SS. $s(t) \rightarrow \{0, s_0, \infty\}$	DE has two linear solutions.
	The viscosity sol: Satisfies TC, $V(s_0) = \int_0^\infty e^{-\rho t} r(s,c) dt$, satisfies BI
4: Consumption saving	$r(s,c) = \frac{c^{1-\gamma}}{1-\gamma}, \mu(s,c) = rs - c$
$c_{SS}=0, s_{SS}=\frac{c_{SS}}{r}=0$	DE has a concave & an affine solution. {Possibly others too.}
	The viscosity sol: Satisfies TC, $V(s_0) = \int_0^\infty e^{-\rho t} r(s,c) dt$, satisfies BI
5: NGM	$r(s,c) = \frac{c^{1-\gamma}}{1-\gamma}, \mu(s,c) = s^{\alpha} - \delta s - c$
	DE has a concave solution. {Possibly others too.}
	The viscosity sol: Satisfies TC, $V(s_0) = \int_0^\infty e^{-\rho t} r(s,c) dt$, satisfies BI

Example 1 (LQ example from "Viscosity solutions for Dummies"):

	(^ 1	\ \ \
SP	$V(s_{\tau}) = \max_{c(t)} \left\{ \int_{\tau}^{\infty} e^{-1(t-\tau)} \left(-3s(t)^2 - \frac{1}{2}c(t)^2 \right) \right\}$	dt
	$\dot{s}(t) = c(t), s(\tau) = s_{\tau} \text{given. Here} \rho = 1.$	
	Note: the return function is bounded in c : $r(s,$	$c) \le r(s,0) = -3s^2.$
	Note: the return function is bounded in s : $r(s,$	$c) \le r(0, c) =5c^2.$
HJB, FOC	$1V(s) = \max\{J(s, c, V)\} = \max\{-3s^25c^2\}$	$+ V_S \times c$ $\Rightarrow c(s, V) = V_S(s)$
DE	DE $\Rightarrow V(s) = -3s^2 + 0.5(V_s(s))^2$	
LQR	LQR: Exactly 2 quadratic solutions to DE: $\{V(s)\}$	$=-s^2, V(s)=1.5s^2$
BI	$s(t) \ge s_{min}, \forall t > 0$ Q: how do you know to se	$et s_{min} < s_{ss} = 0?$
	BI: $\dot{s} = \dot{s}(s_{min}, V_s(s_{min})) = c(s_{min}, V_s(s_{min}))$	$=V_s(s_{min})\geq 0$
EL	$\dot{c}(t) = c(t) + 6s(t) \& \dot{s}(t) = c(t) \& s(0) = s$	₀ {EL & LOM & IC}
	$c_{ss} = s_{ss} = 0$	{unique steady state}
	$\ddot{s}(t) = \dot{s}(t) + 6s(t), s(0) = s_0$	{Combine EL & LOM}
	$\Rightarrow s(t) = (s_0 - s_\infty)e^{-2t} + (s_\infty)e^{3t}$	
	$\Rightarrow c(t) = \dot{s}(t) = -2(s_0 - s_\infty)e^{-2t} + 3(s_\infty)e^{-2t}$	3t
	Note: $\lambda(t) = V_s(s(t)) = c(t)$	{TS costate variable}
	$TC(t) \equiv e^{-1t}\lambda(t)s(t) \rightarrow (s_0 - s_\infty)(s_\infty) + 3(s_\infty)$	$(s_{\infty})^2 = 0 \Leftrightarrow s_{\infty} = 0$
	adade a de Cara da BE	

Compare the 2 quadratic solutions to DE:

compare the 2 quadratic	SOIUTIONS TO DE.		
Solution 1 (quadratic concave): $V(s) = -s^2$		Solution 2 (quadratic convex): $V(s) = 1.5s^2$	
Recursive Solution:		Recursive Solution:	
$V(s) = -s^2$	{value}	$V(s) = 1.5s^2$	{value}
c(s) = -2s	{policy}	c(s) = 3s	{policy}
$\dot{s}(s) = -2s$	{transition}	$\dot{s}(s) = 3s$	{transition}
$\dot{s}'(s) = -2 < 0 \Rightarrow s \rightarrow$	s_{ss} {always}	$\dot{s}'(s) = 3 < 0 \Rightarrow s \rightarrow s$	s_{ss} {never}
$\lambda(s) = V_s(s) = -2s$		$\lambda(s) = V_s(s) = 3s$	
$V_{ss}(s) = -2 < 0$	{concave}	$V_{ss}(s) = 3 > 0$	{convex}
TS Solution implied by t	he recursive solution:	TS Solution implied by	the recursive solution:
$\dot{s} = \mu(s, c(s)) = -2s, s$	$s(0) = s_0 \{ \text{IVP-ODE} \}$	$\dot{s} = \mu(s, c(s)) = 3s, s$	$(0) = s_0 \{ \text{IVP-ODE} \}$
$s(t) = s_0 e^{-2t} \rightarrow s_{ss} =$	0	$s(t) = s_0 e^{3t} \to s_{ss} \Leftrightarrow$	$s_0 = s_{ss} = 0$
$c(t) = -2s_0 e^{-2t}$		$c(t) = 3s_0 e^{3t}$	
$\lambda(t) = -2s_0 e^{-2t}$		$\lambda(t) = 3s_0 e^{3t}$	
$r(s,c) = -5(s_0)^2 e^{-4t}$		$r(s,c) = -7.5(s_0)^2 e^{6t}$	t
Same as the solution to EL when $s_{\infty}=0$.		Same as the solution to	EL when $s_{\infty} = s_0$.
0: Stabilizing solution of the continuous time ARE.		0: Anti-Stabilizing solut	ion of the continuous time ARE.
1: $TC(t) \equiv e^{-1t}\lambda(t)s(t) = -2(s_0)^2 e^{-(4+1)t} \to 0$		$1:TC(t) \equiv e^{-1t}\lambda(t)s(t)$	$f(t) = 3(s_0)^2 e^{(6-1)t} \to \infty, \forall s_0 \neq 0$
$2: \int_0^\infty e^{-1t} r(s,c) dt = -1$	$-(s_0)^2 = V(s_0)$	$2: \int_0^\infty e^{-1t} r(s,c) dt =$	$-(s_0)^2 \infty \neq V(s_0)$
TS implied $V(s)$ is the same as the solution to DE!		TS implied $V(s)$ is not t	the same as the solution to DE!
	$m - e^{-\rho t} (s_0)^2 e^{-4t} = 0$	(1 1)	$im 1.5e^{-\rho t}(s_0)^2 e^{6t} = \infty \neq 0$
$4: V(s) = -s^2 \text{ is a visco}$	osity solution of DE.	4: $V(s) = 1.5s^2$ is not a viscosity supersolution.	
		Let $\phi(s) = as^2$ for $a \in$	
5: BI: $V_s(s_{min}) = -2s_{min} \ge 0 \Leftrightarrow s_{min} \le 0$		5: BI: $V_s(s_{min}) = 3s_{min}$	
How do you know to set $s_{min} < s_{ss} = 0$???		Not satisfy BI for s_{min}	< 0.

Example 2 (LQ, Non-Hayashi Firm Investment) Summary:

SP	$V(s_{\tau}) = \max_{c(t)} \left\{ \int_{\tau}^{\infty} e^{-\rho(t-\tau)} \left(zs(t) - c(t) - \frac{1}{2}c(t)^2 \right) dt \right\}$
	$\dot{s}(t) = c - \delta s$, $s(\tau) = s_{\tau}$ given.
	Parameters: $\rho, \delta > 0, z > \rho + \delta$. Let $\rho = \delta = 1, z = 3$.
	Note: the return function is bounded in c : $r(s,c) \le r(s,-1) = zs + 0.5$.
	Note: the return function is unbounded in $s: r(s,c) \le r(\infty,c) = \infty$
HJB, FOC	$\rho V(s) = \max_{s} \{zs(t) - c(t)5c(t)^2 + V_s \times (c - \delta s)\} \Rightarrow c(s, V) = V_s(s) - 1$
DE	$DE \Rightarrow \rho V(s) = zs + .5(V_s(s) - 1)^2 - \delta s V_s(s)$
LQR	LQR: 2 quadratic solutions to DE: $\{V(s) = .125 + 1.5s, V(s) = .5 + 1.5s^2\}$
BI	$s(t) \ge s_{min}$, $\forall t > 0$ Q: how do you know to set $s_{min} < s_{ss}$?
	BI: $\dot{s} = \dot{s}(s_{min}, V_s(s_{min})) = V_s(s_{min}) - 1 - \delta s_{min} \ge 0$
EL	$\dot{c} = (\rho + \delta - z) + (\rho + \delta)c \& \dot{s} = c - \delta s \& s(0) = s_0 \text{ {EL \& LOM \& IC}}$
	$c_{SS} = \frac{z}{\rho + \delta} - 1$, $s_{SS} = \frac{c_{SS}}{\delta}$ {unique steady state}
	$\ddot{s}(t) = (\rho + \delta - z) + (\rho + \delta)\delta s(t) + \rho \dot{s}(t), s(0) = s_0 \{\text{Combine EL \& LOM}\}\$
	$\Rightarrow s(t) = s_{ss} + e^{-\delta t}(s_0 - s_\infty - s_{ss}) + e^{(\rho + \delta)t}s_\infty$
	$\Rightarrow c(t) = c_{ss} + e^{(\rho + \delta)t}(\rho + 2\delta)s_{\infty}$
	Note: $\lambda(t) = V_s(s(t)) = c(t) + 1$ {TS costate variable}
	$TC(t) \equiv e^{-\rho t} \lambda(t) s(t) \to 0 \Leftrightarrow s_{\infty} = 0$

Compare the 2 quadratic solutions to DE:

Solution 1 (quadratic concave): $V(s) = .125 + 1.5s$		Solution 2 (quadratic conve	$x): V(s) = .5 + 1.5s^2$	
Recursive Solution:		Recursive Solution:		
V(s) = .125 + 1.5s	{value}	$V(s) = .5 + 1.5s^2$	{value}	
c(s) = 0.5	{policy}	c(s) = 3s - 1	{policy}	
$\dot{s}(s) = .5 - s$	{transition}	$\dot{s}(s) = 2s - 1$	{transition}	
$\dot{s}'(s) = -1 < 0 \Rightarrow s -$	→ s _{ss} {always}	$\dot{s}'(s) = 2 < 0 \Rightarrow s \rightarrow s_{ss}$	{never}	
$\lambda(s) = V_s(s) = 1.5$		$\lambda(s) = V_s(s) = 3s$		
$V_{ss}(s) = 0 \le 0$	{weakly concave}	$V_{ss}(s) = 3 > 0$	{convex}	
TS Solution implied by	the recursive solution:	TS Solution implied by the r	recursive solution:	
$\dot{s} = \mu(s, c(s)) = .55$	$s, s(0) = s_0 $ {IVP-ODE}	$\dot{s} = \mu(s, c(s)) = 3s, s(0) =$	$=s_0$ {IVP-ODE}	
$s(t) = s_{ss} + e^{-\delta t}(s_0 - t)$	$-S_{SS} \rightarrow S_{SS}$	$s(t) = s_{ss} + e^{(\delta + \rho)t}(s_0 - s)$	$s(t) = s_{ss} + e^{(\delta + \rho)t}(s_0 - s_{ss}) \rightarrow \infty \Leftrightarrow s_0 \neq s_{ss}$	
$c(t) = c_{ss}$		$c(t) = c_{ss} + e^{(\rho + \delta)t}(\rho + 2\delta)(s_0 - s_{ss})$		
$\lambda(t) = c_{ss} + 1$		$\lambda(t) = c_{ss} + 1 + e^{(\rho + \delta)t}(\rho + 2\delta)(s_0 - s_{ss})$		
$r(s,c) = .875 + e^{-\delta t}(3s_0 - 1.5)$		$r(s,c) = 1 - 0.5c^2$		
Same as the solution to EL when $s_{\infty}=0$.		Same as the solution to EL v	when $s_{\infty} = s_0 - s_{ss}$.	
0: Stabilizing solution of the continuous time ARE.		0: Not Anti-Stabilizing solut	ion of the continuous time ARE.	
		Does not satisfy LQ sufficient conditions		
$1: TC(t) \equiv e^{-\rho t} \lambda(t) s(t) \to 0$		$1:TC(t) \equiv e^{-\rho t} \lambda(t) s(t) \to$	$sign(s_0 - s_{ss}) \infty + \infty$	
$2: \int_0^\infty e^{-\rho t} r(s,c) dt = .125 + 1.5s_0 = V(s_0)$		$2: \int_0^\infty e^{-\rho t} r(s,c) dt = -\infty$	$\neq V(s_0)$	
TS implied $V(s)$ is the same as the solution to DE!		TS implied $V(s)$ is not the same as the solution to DE!		
$3: \lim e^{-\rho t} V(s(t)) = 0$		3: $\lim e^{-\rho t}V(s(t)) = \infty \neq$	0	
4: $V(s) = .125 + 1.5s$ is a viscosity solution of DE.		4: $V(s) = .5 + 1.5s^2$ is not	a viscosity solution.	
5: BI: $V_s(s_{min}) = 1.5 \ge 1 + s_{min} \Leftrightarrow s_{min} \le s_{ss}$		5: BI: $V_s(s_{min}) = 3s_{min} \ge 3$		
How do you know to set $s_{min} < s_{ss} = 0$???		BI not satisfied for $s_{min} < s$	S_{SS} .	

Example 3 (Firm Investment Hayashi) Summary:

SP	$V(s_{\tau}) = \max_{c(t)} \left\{ \int_{\tau}^{\infty} e^{-\rho(t-\tau)} \left(zs(t) - c(t) - \frac{1}{2} \frac{c(t)^{2}}{s(t)} \right) dt \right\}$	
	$\dot{s}(t) = c - \delta s$, $s(\tau) = s_{\tau}$ given.	
	Parameters: $\rho, \delta, z > 0, z \in \left[0, \rho + \delta + \rho \delta + \frac{1}{2}(\delta^2 + r^2)\right]$	
	Let $\bar{z} \equiv \rho + \delta + \rho \delta + \frac{1}{2} \delta^2$	
	Note: the return is bounded in c : $r(s,c) \le r(s,-s) = (z+.5)s$	
	Note: the return is unbounded in $s: r(s,c) \le r(\infty,c) = \infty$	
HJB, FOC	$\rho V(s) = \max_{s} \{ zs - c5c^2 s^{-1} + V_s \times (c - \delta s) \} \Rightarrow c(s, V) = (V_s(s) - 1)s$	
DE	$DE \Rightarrow \rho V(s) = (z + .5(V_s - 1)^2 - \delta V_s)s$	
	$V(s) = \left((1 + \delta + \rho) - \sqrt{(\delta + \rho)^2 + 2(\delta + \rho - z)} \right) s = Q_{-}s$	
	$V(s) = \left((1 + \delta + \rho) + \sqrt{(\delta + \rho)^2 + 2(\delta + \rho - z)} \right) s = Q_+ s$	
BI	$s(t) \ge s_{min}, \forall t > 0$	
	$BI: \dot{s} = (V_s(s_{min}) - 1 - \delta)s_{min} \ge 0$	
EL	EL: Nasty quadratic ODE, no SS.	
	Note: $\lambda(t) = V_s = c(t)/s(t) + 1$ {TS costate variable}	
	$TC(t) \equiv e^{-\rho t} \lambda(t) s(t) \rightarrow ?$	

Compare the 2 linear solutions to DE:

Solution 1: $V(s) = Q_{-}s$	Solution 2: $V(s) = Q_+ s$	
Recursive Solution:	Recursive Solution:	
$V(s) = Q_{-}s $ {value}	$V(s) = Q_+ s {value}$	
$c(s) = (Q_{-} - 1)s $ {policy}	$c(s) = (Q_+ - 1)s $ {policy}	
$\dot{s}(s) = (Q_{-} - 1 - \delta)s \qquad \{\text{transition}\}\$	$\dot{s}(s) = (Q_+ - 1 - \delta)s \qquad \{\text{transition}\}\$	
$\dot{s}'(s) = (Q_{-} - 1 - \delta) < 0 $ {}	$\dot{s}'(s) = (Q_+ - 1 - \delta) > 0$ {Never}	
$\lambda(s) = V_s(s) = Q$	$\lambda(s) = V_s(s) = Q_+$	
$V_{ss}(s) = 0 \le 0$ {weakly concave}	$V_{ss}(s) = 0 \le 0$ {weakly concave}	
TS Solution implied by the recursive solution:	TS Solution implied by the recursive solution:	
$\dot{s} = \mu(s, c(s)) = (Q_{-} - 1 - \delta)s, s(0) = s_0 \{\text{IVP-ODE}\}$	$\dot{s} = \mu(s, c(s)) = (Q_+ - 1 - \delta)s, s(0) = s_0$	
$s(t) = s_0 e^{(Q 1 - \delta)t} \to 01_{z < \bar{z}} + s_0 1_{z = \bar{z}} + \infty 1_{z > \bar{z}}$	$s(t) = s_0 e^{(Q_+ - 1 - \delta)t} \to \{\infty\}$	
$c(t) = (Q_{-} - 1)s_0 e^{(Q_{-} - 1 - \delta)t}$	$c(t) = (Q_{+} - 1)s_{0}e^{(Q_{-} - 1 - \delta)t}$	
$\lambda(t) = Q_{-}$	$\lambda(t) = Q_+$	
$r(s,c) = (z - Q_{-} + 15(Q_{-} - 1)^{2})s = \omega s(t)$	$r(s,c) = (z - Q_+ + 15(Q_+ - 1)^2)s = \omega s(t)$	
$1: TC(t) \equiv e^{-\rho t} \lambda(t) s(t) \to 0$	$1:TC(t) \equiv e^{-\rho t}\lambda(t)s(t) \to \infty \text{ {always}}$	
$\Leftrightarrow Q_{-} - 1 - \delta - \rho < 0 \text{ (always)}$		
$2: \int_0^\infty e^{-\rho t} r(s, c) dt = Q s_0 = V(s_0)$	$2: \int_0^\infty e^{-\rho t} r(s,c) dt = \omega s_0 \infty \neq V(s_0)$	
$3: \lim e^{-\rho t} V(s(t)) = 0$	$3: \lim e^{-\rho t} V(s(t)) \neq 0$	
4: $V(s)$ is a viscosity solution of DE.	4: $V(s) = .5 + 1.5s^2$ is not a viscosity solution.	
5: BI:	5: BI	

Example 4 (Consumption Savings) Summary:

$\begin{aligned} &\text{SP} & V(s_\tau) = \max_{c(t)} \left\{ \int_\tau^\infty e^{-\rho(t-\tau)} \left(\frac{c(t)^{1-\gamma}}{1-\gamma} \right) dt \right\} \\ &\dot{s}(t) = rs(t) - c(t), s(\tau) = s_\tau \text{given}, s(t) \geq 0 \text{or} \lim e^{-rt} s(t) = 0 \\ &\text{Let:} r, \rho, \gamma > 0 \text{let} \omega \equiv \frac{r-\rho}{\gamma} \text{and note} r - \omega = \rho - (1-\gamma)\omega = \frac{r(\gamma-1)+\rho}{\gamma} \\ &\text{Note:} \text{the return function is unbounded} r(s,c) \leq r(s,\infty) = \infty. \text{Need} s \geq s_{min}. \end{aligned}$			
Let: $r, \rho, \gamma > 0$ let $\omega \equiv \frac{r-\rho}{\gamma}$ and note $r-\omega = \rho - (1-\gamma)\omega = \frac{r(\gamma-1)+\rho}{\gamma}$ Note: the return function is unbounded $r(s,c) \leq r(s,\infty) = \infty$. Need $s \geq s_{min}$. HJB, FOC DE $\rho V(s) = \max_{c} \left\{ \frac{c^{1-\gamma}}{1-\gamma} + V_s \times (rs-c) \right\} \Rightarrow c(s,V) = \left(V_s(s) \right)^{-1/\gamma}$ $DE \Rightarrow \rho V(s) = \frac{\gamma}{1-\gamma} \left(V_s(s) \right)^{\frac{\gamma-1}{\gamma}} + V_s(s) rs$ $Sol \ 0: V(s) = 0 \text{ solves DE but implies } c = \infty \text{ {rule this out} }$ $Sol \ 1: V(s) = (r-\omega)^{-\gamma} \frac{(s)^{1-\gamma}}{1-\gamma}$ $Sol \ 2: V(s) = B_0 + B_1 s \text{ if } r = \rho \text{ and } \rho B_0 = \frac{\gamma}{1-\gamma} \left(B_1 \right)^{1-\frac{1}{\gamma}} \text{ and } B_1 > 0$ $BI \qquad s(t) \geq s_{min}, \forall t > 0 \text{ Q: how do you know to set } s_{min} < s_{ss}?$ $BI: \dot{s} = \dot{s} \left(s_{min}, V_s(s_{min}) \right) = r s_{min} - \left(V_s(s_{min}) \right)^{-1/\gamma} \geq 0$ $BI: \dot{s}(0) = r0 - c(0) \geq 0 \Rightarrow c(0) \leq 0 \Rightarrow c(0) = V_s(0) = 0$ $EL \qquad \dot{c} = \omega c \& \dot{s} = rs - c \& s(0) = s_0 \qquad \text{{EL \& LOM \& IC}}$ $c_{ss} = 0, s_{ss} = \frac{c_{ss}}{r} = 0 \qquad \text{{unique steady state}}$ $\ddot{s}(t) = (r + \omega) \dot{s}(t) - \omega rs(t), s(0) = s_0 \qquad \text{{Combine EL \& LOM}}$ $\Rightarrow s(t) = e^{\omega t} (s_0 - s_{\infty}) + e^{rt} (s_{\infty})$ $\Rightarrow c(t) = e^{(\omega)t} (r - \omega) (s_0 - s_{\infty})$ $\text{Note: } \lambda(t) = V_s(s(t)) = e^{(\rho-r)t} \left((r - \omega) (s_0 - s_{\infty}) \right)^{-\gamma} \text{{TS costate variable}}$	SP	$V(s_{\tau}) = \max_{c(t)} \left\{ \int_{\tau}^{\infty} e^{-\rho(t-\tau)} \left(\frac{c(t)^{1-\gamma}}{1-\gamma} \right) dt \right\}$	
Note: the return function is unbounded $r(s,c) \leq r(s,\infty) = \infty$. Need $s \geq s_{min}$. HJB, FOC DE $\rho V(s) = \max_{c} \left\{\frac{c^{1-\gamma}}{1-\gamma} + V_s \times (rs-c)\right\} \Rightarrow c(s,V) = \left(V_s(s)\right)^{-1/\gamma}$ $DE \Rightarrow \rho V(s) = \frac{\gamma}{1-\gamma} \left(V_s(s)\right)^{\frac{\gamma-1}{\gamma}} + V_s(s) rs$ $Sol \ 0: V(s) = 0 \ \text{solves DE but implies } c = \infty \text{ {rule this out} }$ $Sol \ 1: V(s) = (r-\omega)^{-\gamma} \frac{(s)^{1-\gamma}}{1-\gamma}$ $Sol \ 2: V(s) = B_0 + B_1 s \ \text{if } r = \rho \ \text{and } \rho B_0 = \frac{\gamma}{1-\gamma} \left(B_1\right)^{1-\frac{1}{\gamma}} \text{ and } B_1 > 0$ $BI \qquad s(t) \geq s_{min}, \forall t > 0 \ \text{Q: how do you know to set } s_{min} < s_{ss}?$ $BI: \dot{s} = \dot{s} \left(s_{min}, V_s(s_{min})\right) = r s_{min} - \left(V_s(s_{min})\right)^{-1/\gamma} \geq 0$ $BI: \dot{s}(0) = r0 - c(0) \geq 0 \Rightarrow c(0) \leq 0 \Rightarrow c(0) = V_s(0) = 0$ $EL \qquad \dot{c} = \omega c \ \& \dot{s} = rs - c \ \& s(0) = s_0 \qquad \text{{EL \& LOM \& IC}}$ $c_{ss} = 0, s_{ss} = \frac{c_{ss}}{r} = 0 \qquad \text{{unique steady state}}$ $\ddot{s}(t) = (r + \omega)\dot{s}(t) - \omega rs(t), s(0) = s_0 \qquad \text{{Combine EL \& LOM}}$ $\Rightarrow s(t) = e^{\omega t}(s_0 - s_{\infty}) + e^{rt}(s_{\infty})$ $\Rightarrow c(t) = e^{(\omega)t}(r - \omega)(s_0 - s_{\infty})$ $\text{Note: } \lambda(t) = V_s(s(t)) = e^{(\rho-r)t}((r - \omega)(s_0 - s_{\infty}))^{-\gamma} \text{{TS costate variable}}$		$\dot{s}(t) = rs(t) - c(t), s(\tau) = s_{\tau} \text{ given, } s(t) \ge 0 \text{ or } l$	$\lim e^{-rt}s(t)=0$
HJB, FOC DE $\rho V(s) = \max_{c} \left\{ \frac{c^{1-\gamma}}{1-\gamma} + V_s \times (rs-c) \right\} \Rightarrow c(s,V) = \left(V_s(s)\right)^{-1/\gamma}$ $DE \Rightarrow \rho V(s) = \frac{\gamma}{1-\gamma} \left(V_s(s)\right)^{\frac{\gamma-1}{\gamma}} + V_s(s)rs$ $Sol \ 0: V(s) = 0 \ solves \ DE \ but \ implies \ c = \infty \ \{rule \ this \ out\}$ $Sol \ 1: V(s) = (r-\omega)^{-\gamma} \frac{(s)^{1-\gamma}}{1-\gamma}$ $Sol \ 2: V(s) = B_0 + B_1 s \ if \ r = \rho \ and \ \rho B_0 = \frac{\gamma}{1-\gamma} (B_1)^{1-\frac{1}{\gamma}} \ and \ B_1 > 0$ $BI \qquad s(t) \ge s_{min}, \forall t > 0 \ Q: \ how \ do \ you \ know \ to \ set \ s_{min} < s_{ss}?$ $BI: \dot{s} = \dot{s} \left(s_{min}, V_s(s_{min})\right) = rs_{min} - \left(V_s(s_{min})\right)^{-1/\gamma} \ge 0$ $BI: \dot{s}(0) = r0 - c(0) \ge 0 \Rightarrow c(0) \le 0 \Rightarrow c(0) = V_s(0) = 0$ $EL \qquad \dot{c} = \omega c \& \dot{s} = rs - c \& s(0) = s_0 \qquad \{EL \& LOM \& IC\}$ $c_{ss} = 0, s_{ss} = \frac{c_{ss}}{r} = 0 \qquad \{unique \ steady \ state\}$ $\dot{s}(t) = (r + \omega)\dot{s}(t) - \omega rs(t), s(0) = s_0 \qquad \{Combine \ EL \& LOM\}$ $\Rightarrow s(t) = e^{\omega t}(s_0 - s_{\infty}) + e^{rt}(s_{\infty})$ $\Rightarrow c(t) = e^{(\omega)t}(r - \omega)(s_0 - s_{\infty})$ $Note: \lambda(t) = V_s(s(t)) = e^{(\rho-r)t} \left((r - \omega)(s_0 - s_{\infty})\right)^{-\gamma} \{TS \ costate \ variable\}$		Let: $r, \rho, \gamma > 0$ let $\omega \equiv \frac{r-\rho}{\gamma}$ and note $r-\omega = \rho$	$(1 - \gamma)\omega = \frac{r(\gamma - 1) + \rho}{\gamma}$
DE $\Rightarrow \rho V(s) = \frac{\gamma}{1-\gamma} \left(V_s(s)\right)^{\frac{\gamma-1}{\gamma}} + V_s(s) rs$ Sol 0: $V(s) = 0$ solves DE but implies $c = \infty$ {rule this out} Sol 1: $V(s) = (r - \omega)^{-\gamma} \frac{(s)^{1-\gamma}}{1-\gamma}$ Sol 2: $V(s) = B_0 + B_1 s$ if $r = \rho$ and $\rho B_0 = \frac{\gamma}{1-\gamma} (B_1)^{1-\frac{1}{\gamma}}$ and $B_1 > 0$ BI $s(t) \geq s_{min}, \forall t > 0$ Q: how do you know to set $s_{min} < s_{ss}$? BI: $\dot{s} = \dot{s} \left(s_{min}, V_s(s_{min})\right) = rs_{min} - \left(V_s(s_{min})\right)^{-1/\gamma} \geq 0$ BI: $\dot{s}(0) = r0 - c(0) \geq 0 \Rightarrow c(0) \leq 0 \Rightarrow c(0) = V_s(0) = 0$ EL $\dot{c} = \omega c \& \dot{s} = rs - c \& s(0) = s_0$ {EL & LOM & IC} $c_{ss} = 0, s_{ss} = \frac{c_{ss}}{r} = 0$ {unique steady state} $\ddot{s}(t) = (r + \omega)\dot{s}(t) - \omega rs(t), s(0) = s_0$ {Combine EL & LOM} $\Rightarrow s(t) = e^{\omega t}(s_0 - s_{\infty}) + e^{rt}(s_{\infty})$ $\Rightarrow c(t) = e^{(\omega)t}(r - \omega)(s_0 - s_{\infty})$ Note: $\lambda(t) = V_s(s(t)) = e^{(\rho - r)t}((r - \omega)(s_0 - s_{\infty}))^{-\gamma}$ {TS costate variable}			
Sol 0: $V(s)=0$ solves DE but implies $c=\infty$ {rule this out} $ Sol 1: V(s) = (r-\omega)^{-\gamma} \frac{(s)^{1-\gamma}}{1-\gamma} $ $ Sol 2: V(s) = B_0 + B_1 s \text{ if } r = \rho \text{ and } \rho B_0 = \frac{\gamma}{1-\gamma} (B_1)^{1-\frac{1}{\gamma}} \text{ and } B_1 > 0 $ BI $ s(t) \geq s_{min}, \forall t > 0 \text{ Q: how do you know to set } s_{min} < s_{ss}? $ BI: $\dot{s} = \dot{s} \left(s_{min}, V_s(s_{min}) \right) = r s_{min} - \left(V_s(s_{min}) \right)^{-1/\gamma} \geq 0 $ BI: $\dot{s}(0) = r0 - c(0) \geq 0 \Rightarrow c(0) \leq 0 \Rightarrow c(0) = V_s(0) = 0 $ EL $ \dot{c} = \omega c \& \dot{s} = rs - c \& s(0) = s_0 $ {EL & LOM & IC} $ c_{ss} = 0, s_{ss} = \frac{c_{ss}}{r} = 0 $ {unique steady state} $ \ddot{s}(t) = (r + \omega)\dot{s}(t) - \omega rs(t), s(0) = s_0 $ {Combine EL & LOM} $ \Rightarrow s(t) = e^{\omega t} (s_0 - s_\infty) + e^{rt} (s_\infty) $ $ \Rightarrow c(t) = e^{(\omega)t} (r - \omega)(s_0 - s_\infty) $ Note: $\lambda(t) = V_s(s(t)) = e^{(\rho - r)t} \left((r - \omega)(s_0 - s_\infty) \right)^{-\gamma} $ {TS costate variable}			$(V_s(s))^{-1/\gamma}$
		$DE \Rightarrow \rho V(s) = \frac{\gamma}{1-\gamma} \left(V_s(s) \right)^{\frac{\gamma-1}{\gamma}} + V_s(s) rs$	
$\operatorname{Sol} 2: V(s) = B_0 + B_1 s \text{ if } r = \rho \text{ and } \rho B_0 = \frac{\gamma}{1-\gamma} (B_1)^{1-\frac{1}{\gamma}} \text{ and } B_1 > 0$ $\operatorname{BI} \qquad s(t) \geq s_{min}, \forall t > 0 \text{ Q: how do you know to set } s_{min} < s_{ss}?$ $\operatorname{BI:} \dot{s} = \dot{s} \left(s_{min}, V_s(s_{min}) \right) = r s_{min} - \left(V_s(s_{min}) \right)^{-1/\gamma} \geq 0$ $\operatorname{BI:} \dot{s}(0) = r 0 - c(0) \geq 0 \Rightarrow c(0) \leq 0 \Rightarrow c(0) = V_s(0) = 0$ $\operatorname{EL} \qquad \dot{c} = \omega c \& \dot{s} = r s - c \& s(0) = s_0 \qquad \text{{EL \& LOM \& IC}}$ $c_{ss} = 0, s_{ss} = \frac{c_{ss}}{r} = 0 \qquad \text{{unique steady state}}$ $\ddot{s}(t) = (r + \omega) \dot{s}(t) - \omega r s(t), s(0) = s_0 \qquad \text{{Combine EL \& LOM}}$ $\Rightarrow s(t) = e^{\omega t} (s_0 - s_{\infty}) + e^{rt} (s_{\infty})$ $\Rightarrow c(t) = e^{(\omega)t} (r - \omega) (s_0 - s_{\infty})$ $\operatorname{Note:} \lambda(t) = V_s(s(t)) = e^{(\rho - r)t} \left((r - \omega) (s_0 - s_{\infty}) \right)^{-\gamma} \text{{TS costate variable}}$		Sol 0: $V(s) = 0$ solves DE but implies $c = \infty$ {rule t	:his out}
BI $s(t) \geq s_{min}, \forall t > 0 \text{ Q: how do you know to set } s_{min} < s_{ss}?$ $\text{BI: } \dot{s} = \dot{s} \left(s_{min}, V_s(s_{min}) \right) = r s_{min} - \left(V_s(s_{min}) \right)^{-1/\gamma} \geq 0$ $\text{BI: } \dot{s}(0) = r 0 - c(0) \geq 0 \Rightarrow c(0) \leq 0 \Rightarrow c(0) = V_s(0) = 0$ $\text{EL} \qquad \dot{c} = \omega c \& \dot{s} = r s - c \& s(0) = s_0 \qquad \text{{EL \& LOM \& IC}}$ $c_{ss} = 0, s_{ss} = \frac{c_{ss}}{r} = 0 \qquad \text{{unique steady state}}$ $\ddot{s}(t) = (r + \omega)\dot{s}(t) - \omega r s(t), s(0) = s_0 \qquad \text{{Combine EL \& LOM}}$ $\Rightarrow s(t) = e^{\omega t}(s_0 - s_{\infty}) + e^{rt}(s_{\infty})$ $\Rightarrow c(t) = e^{(\omega)t}(r - \omega)(s_0 - s_{\infty})$ $\text{Note: } \lambda(t) = V_s(s(t)) = e^{(\rho - r)t} \left((r - \omega)(s_0 - s_{\infty}) \right)^{-\gamma} \text{{TS costate variable}}$		Sol 1: $V(s) = (r - \omega)^{-\gamma} \frac{(s)^{1-\gamma}}{1-\gamma}$	
$BI \colon \dot{s} = \dot{s} \big(s_{min}, V_s(s_{min}) \big) = r s_{min} - \big(V_s(s_{min}) \big)^{-1/\gamma} \geq 0$ $BI \colon \dot{s}(0) = r 0 - c(0) \geq 0 \Rightarrow c(0) \leq 0 \Rightarrow c(0) = V_s(0) = 0$ $EL \qquad \dot{c} = \omega c \& \dot{s} = r s - c \& s(0) = s_0 \qquad \qquad \{EL \& LOM \& IC\}$ $c_{ss} = 0, s_{ss} = \frac{c_{ss}}{r} = 0 \qquad \qquad \{unique steady state\}$ $\ddot{s}(t) = (r + \omega) \dot{s}(t) - \omega r s(t), s(0) = s_0 \qquad \{Combine EL \& LOM\}$ $\Rightarrow s(t) = e^{\omega t} (s_0 - s_{\infty}) + e^{rt} (s_{\infty})$ $\Rightarrow c(t) = e^{(\omega)t} (r - \omega) (s_0 - s_{\infty})$ $Note \colon \lambda(t) = V_s \big(s(t) \big) = e^{(\rho - r)t} \big((r - \omega) (s_0 - s_{\infty}) \big)^{-\gamma} \{TS costate variable\}$		Sol 2: $V(s) = B_0 + B_1 s$ if $r = \rho$ and $\rho B_0 = \frac{\gamma}{1 - \gamma} (B_1 + B_2)$	$_{1})^{1-\frac{1}{\gamma}}$ and $B_{1}>0$
BI: $\dot{s}(0) = r0 - c(0) \ge 0 \Rightarrow c(0) \le 0 \Rightarrow c(0) = V_s(0) = 0$ EL $\dot{c} = \omega c \& \dot{s} = rs - c \& s(0) = s_0$ {EL & LOM & IC} $c_{ss} = 0, s_{ss} = \frac{c_{ss}}{r} = 0$ {unique steady state} $\ddot{s}(t) = (r + \omega)\dot{s}(t) - \omega rs(t), s(0) = s_0$ {Combine EL & LOM} $\Rightarrow s(t) = e^{\omega t}(s_0 - s_\infty) + e^{rt}(s_\infty)$ $\Rightarrow c(t) = e^{(\omega)t}(r - \omega)(s_0 - s_\infty)$ Note: $\lambda(t) = V_s(s(t)) = e^{(\rho - r)t}((r - \omega)(s_0 - s_\infty))^{-\gamma}$ {TS costate variable}	ВІ	$s(t) \ge s_{min}, \forall t > 0$ Q: how do you know to set s_m	$nin < s_{ss}$?
EL $\dot{c} = \omega c \& \dot{s} = rs - c \& s(0) = s_0 \qquad \text{{EL \& LOM \& IC}}$ $c_{ss} = 0, s_{ss} = \frac{c_{ss}}{r} = 0 \qquad \text{{unique steady state}}$ $\ddot{s}(t) = (r + \omega)\dot{s}(t) - \omega rs(t), s(0) = s_0 \qquad \text{{Combine EL \& LOM}}$ $\Rightarrow s(t) = e^{\omega t}(s_0 - s_\infty) + e^{rt}(s_\infty)$ $\Rightarrow c(t) = e^{(\omega)t}(r - \omega)(s_0 - s_\infty)$ $\text{Note: } \lambda(t) = V_s(s(t)) = e^{(\rho - r)t}((r - \omega)(s_0 - s_\infty))^{-\gamma} \text{{TS costate variable}}$		BI: $\dot{s} = \dot{s}(s_{min}, V_s(s_{min})) = rs_{min} - (V_s(s_{min}))^{-1}$	$^{/\gamma} \geq 0$
$c_{ss} = 0, s_{ss} = \frac{c_{ss}}{r} = 0 \qquad \text{ {unique steady state}}$ $\ddot{s}(t) = (r + \omega)\dot{s}(t) - \omega r s(t), s(0) = s_0 \qquad \text{{Combine EL \& LOM}}$ $\Rightarrow s(t) = e^{\omega t}(s_0 - s_\infty) + e^{rt}(s_\infty)$ $\Rightarrow c(t) = e^{(\omega)t}(r - \omega)(s_0 - s_\infty)$ $\text{Note: } \lambda(t) = V_s(s(t)) = e^{(\rho - r)t}((r - \omega)(s_0 - s_\infty))^{-\gamma} \text{{TS costate variable}}$		BI: $\dot{s}(0) = r0 - c(0) \ge 0 \Rightarrow c(0) \le 0 \Rightarrow c(0) = V$	$V_s(0) = 0$
$\ddot{s}(t) = (r + \omega)\dot{s}(t) - \omega r s(t), s(0) = s_0 \qquad \{\text{Combine EL \& LOM}\}\$ $\Rightarrow s(t) = e^{\omega t}(s_0 - s_\infty) + e^{rt}(s_\infty)$ $\Rightarrow c(t) = e^{(\omega)t}(r - \omega)(s_0 - s_\infty)$ $\text{Note: } \lambda(t) = V_s(s(t)) = e^{(\rho - r)t} ((r - \omega)(s_0 - s_\infty))^{-\gamma} \{\text{TS costate variable}\}$	EL	$\dot{c} = \omega c \& \dot{s} = rs - c \& s(0) = s_0$	{EL & LOM & IC}
$\Rightarrow s(t) = e^{\omega t}(s_0 - s_\infty) + e^{rt}(s_\infty)$ $\Rightarrow c(t) = e^{(\omega)t}(r - \omega)(s_0 - s_\infty)$ $\text{Note: } \lambda(t) = V_s(s(t)) = e^{(\rho - r)t}((r - \omega)(s_0 - s_\infty))^{-\gamma} \text{ {TS costate variable}}$		$c_{SS} = 0, s_{SS} = \frac{c_{SS}}{r} = 0$	{unique steady state}
$\Rightarrow c(t) = e^{(\omega)t}(r - \omega)(s_0 - s_\infty)$ $\text{Note: } \lambda(t) = V_s(s(t)) = e^{(\rho - r)t} ((r - \omega)(s_0 - s_\infty))^{-\gamma} \text{ {TS costate variable}}$		$\ddot{s}(t) = (r+\omega)\dot{s}(t) - \omega r s(t), s(0) = s_0$	{Combine EL & LOM}
Note: $\lambda(t) = V_s(s(t)) = e^{(\rho-r)t} ((r-\omega)(s_0-s_\infty))^{-\gamma}$ {TS costate variable}			
		1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	
$TC(t) \equiv e^{-\rho t} \lambda(t) s(t) \to 0 \Leftrightarrow s_{\infty} = 0$)) $^{-\gamma}$ {TS costate variable}
		$TC(t) \equiv e^{-\rho t} \lambda(t) s(t) \to 0 \Leftrightarrow s_{\infty} = 0$	

Compare the 2 solutions to DE:

Recursive Solution: $V(s) = (r - \omega)^{-\gamma} \frac{(s)^{1-\gamma}}{1-\gamma} \qquad \text{ {value} } \\ c(s) = (r - \omega)s \qquad \text{ {policy} } \\ \dot{s}(s) = \omega s \qquad \text{ {transition} } \\ \dot{s}'(s) = \omega < 0 \Rightarrow s \rightarrow s_{ss} \qquad \text{ {if }} r < \rho \} \\ \lambda(s) = V_s(s) = (r - \omega)^{-\gamma}(s)^{-\gamma} = 0 \text{ {weakly concave} } \\ \text{TS Solution implied by the recursive solution:} \\ \dot{s} = \mu(s, c(s)) = \omega s, s(0) = s_0 \text{ {IVP-ODE} } \\ s(t) = s_0 e^{\omega t} \rightarrow \{s_{ss} = 0, +\infty\} \\ c(t) = (r - \omega)s_0 e^{\omega t} \\ \lambda(t) = ((r - \omega)s_0)^{-\gamma} e^{-\gamma \omega t} \\ 1 = r(s, c) = \frac{((r - \omega)s_0)^{1-\gamma}}{1-\gamma} e^{\omega(1-\gamma)t} \\ \text{Same as the solution to EL when } s_{\infty} = 0.$ 1: $TC(t) \equiv e^{-\rho t} \lambda(t) s(t) \rightarrow 0$ 2: $\int_0^{\infty} e^{-\rho t} r(s, c) dt = (r - \omega)^{-\gamma} \frac{(s_0)^{1-\gamma}}{1-\gamma} = V(s_0)$ 3: $\lim e^{-\rho t} V(s(t)) = 0$ 4: $V(s)$ is a viscosity solution of DE.	Solution 1 (concave): $V(s) = (r - \omega)^{-\gamma} \frac{(s)^{1-\gamma}}{1-\gamma}$	Solution 2 (weakly concave): $V(s) = B_0 + B_1 s, B_1 > 0$
	Recursive Solution: $V(s) = (r - \omega)^{-\gamma} \frac{(s)^{1-\gamma}}{1-\gamma} \qquad \text{ {value}} $ $c(s) = (r - \omega)s \qquad \text{ {policy}} $ $\dot{s}(s) = \omega s \qquad \text{ {transition}} $ $\dot{s}'(s) = \omega < 0 \Rightarrow s \rightarrow s_{ss} \qquad \text{ {if } } r < \rho $ $\lambda(s) = V_s(s) = (r - \omega)^{-\gamma}(s)^{-\gamma} $ $V_{ss}(s) = -\gamma(r - \omega)^{-\gamma}(s)^{-\gamma-1} \leq 0 \text{ {weakly concave}} $ TS Solution implied by the recursive solution: $\dot{s} = \mu(s, c(s)) = \omega s, s(0) = s_0 \text{ {IVP-ODE}} $ $s(t) = s_0 e^{\omega t} \rightarrow \{s_{ss} = 0, +\infty\} $ $c(t) = (r - \omega)s_0 e^{\omega t} $ $\lambda(t) = ((r - \omega)s_0)^{-\gamma} e^{-\gamma \omega t} $ $r(s, c) = \frac{((r - \omega)s_0)^{1-\gamma}}{1-\gamma} e^{\omega(1-\gamma)t} $ Same as the solution to EL when $s_\infty = 0$. $1: TC(t) \equiv e^{-\rho t} \lambda(t) s(t) \rightarrow 0 $ $2: \int_0^\infty e^{-\rho t} r(s, c) dt = (r - \omega)^{-\gamma} \frac{(s_0)^{1-\gamma}}{1-\gamma} = V(s_0) $ $3: \lim e^{-\rho t} V(s(t)) = 0 $	Recursive Solution: $V(s) = B_0 + B_1 s \qquad \text{ {value}} $ $c(s) = (B_1)^{-1/\gamma} \qquad \text{ {policy}} $ $\dot{s}(s) = rs - (B_1)^{-1/\gamma} \qquad \text{ {transition}} $ $\dot{s}'(s) = r < 0 \Rightarrow s \rightarrow s_{ss} \qquad \text{{never}} $ $\lambda(s) = V_s(s) = B_1 \qquad \text{{weakly concave}} $ TS Solution implied by the recursive solution: $\dot{s} = \mu(s, c(s)) = rs - (B_1)^{-1/\gamma}, s(0) = s_0 \text{ {IVP-ODE}} $ $s(t) = \frac{(B_1)^{-1/\gamma}}{r} + e^{rt} \left(s_0 - \frac{(B_1)^{-1/\gamma}}{r} \right) \rightarrow \left\{ \frac{(B_1)^{-1/\gamma}}{r}, \infty \right\} $ $c(t) = (B_1)^{-1/\gamma} $ $\lambda(t) = B_1 \qquad r(s, c) = \frac{(B_1)^{1-1/\gamma}}{(1-\gamma)} $ $1:TC(t) \equiv e^{-\rho t} \lambda(t) s(t) \rightarrow \infty $ $2: \int_0^\infty e^{-\rho t} r(s, c) dt = \frac{(B_1)^{1-1/\gamma}}{\rho(1-\gamma)} \neq V(s_0) $ $3: \lim e^{-\rho t} V(s(t)) \neq 0 $
5: BI: $c(0) = (r - \omega)0 = 0$ 5: BI: $c(0) = (B_1)^{-1/r} = 0$ contradicts $B_1 > 0$	4: $V(s)$ is a viscosity solution of DE. 5: BI: $c(0) = (r - \omega)0 = 0$	4: $V(s)$ is not a viscosity solution. 5: BI: $c(0) = (B_1)^{-1/\gamma} = 0$ contradicts $B_1 > 0$

Example 5 (NGM) Summary:

SP	$V(s_{\tau}) = \max_{c(t)} \left\{ \int_{\tau}^{\infty} e^{-\rho(t-\tau)} \left(\frac{c(t)^{1-\gamma}}{1-\gamma} \right) dt \right\}$
	$\dot{s}(t) = s(t)^{\alpha} - \delta s(t) - c(t), s(\tau) = s_{\tau} \text{ given, } s(t) \ge 0$
	Let: α , δ , ρ , $\gamma > 0$.
	Note: the return function is unbounded $r(s,c) \le r(s,\infty) = \infty$. Need $s \ge s_{min}$.
HJB, FOC DE	$\rho V(s) = \max_{c} \left\{ \frac{c^{1-\gamma}}{1-\gamma} + V_s \times (s^{\alpha} - \delta s - c) \right\} \Rightarrow c(s, V) = \left(V_s(s) \right)^{-1/\gamma}$
	$DE \Rightarrow \rho V(s) = \frac{\gamma}{1-\gamma} \left(V_S(s) \right)^{\frac{\gamma-1}{\gamma}} + V_S(s) s^{\alpha} - \delta V_S(s) s$
	Sol 1: $V(s) = \frac{1}{\rho}(\phi)^{-\gamma} + (\phi)^{-\gamma} \frac{(s)^{1-\gamma}}{1-\gamma}, \phi \equiv \frac{\rho + \delta(1-\gamma)}{\gamma}$ for $\gamma = \alpha \in (0,1)$
	Sol 2: $V(s) = (\phi)^{-\gamma} \frac{(s)^{1-\alpha\gamma}}{(1-\alpha\gamma)}, \phi \equiv 1 - \frac{1}{\gamma} \text{ for } \gamma > 1/\alpha > 1$
	Are there other non-zero non-viscosity closed form solutions?
ВІ	$s(t) \ge s_{min}, \forall t > 0$ Q: how do you know to set $s_{min} < s_{ss}$?
	BI: $\dot{s} = \dot{s}(s_{min}, V_s(s_{min})) = (s_{min})^{\alpha} - \delta s_{min} - (V_s(s_{min}))^{-1/\gamma} \ge 0$
EL	$\dot{c} = \frac{\alpha s^{\alpha - 1} - \delta - \rho}{\gamma} c \& \dot{s} = s^{\alpha} - \delta s - c \& s(0) = s_0$ {EL & LOM & IC}
	$s_{SS} = \left(\frac{\alpha}{\delta + \rho}\right)^{\frac{1}{1-\alpha}}, c_{SS} = (s_{SS})^{\alpha} - \delta s_{SS}$ {unique steady state}
	$\ddot{s}(t) = \alpha s^{\alpha - 1} \dot{s} - \delta \dot{s} - \left(\frac{\alpha s^{\alpha - 1} - \delta - \rho}{\gamma}\right) (s^{\alpha} - \delta s - \dot{s}), s(0) = s_0$
	Note: $\lambda(t) = V_s = (c(t))^{-\gamma}$ {TS costate variable}
	$TC(t) \equiv e^{-\rho t} \lambda(t) s(t) \to 0 \Leftrightarrow s_{\infty} = 0$

Compare the 2 solutions to DE:

Solution 1: $V(s) = \frac{1}{\rho} (\phi)^{-\gamma} + (\phi)^{-\gamma} \frac{(s)^{1-\gamma}}{1-\gamma}$	Solution 2: $V(s) = (\phi)^{-\gamma} \frac{(s)^{1-\alpha\gamma}}{(1-\alpha\gamma)}$
Let: $\phi \equiv \frac{\rho + \delta(1 - \gamma)}{\gamma}$, $\gamma = \alpha \in (0, 1)$	Let $\phi \equiv 1 - \frac{1}{\gamma} = 1 - \frac{\alpha \delta}{\delta + \rho} \& \gamma = \frac{\delta + \rho}{\alpha \delta} > 1$
Recursive Solution:	Recursive Solution:
$V(s) = \frac{1}{\rho}(\phi)^{-\gamma} + (\phi)^{-\gamma} \frac{(s)^{1-\gamma}}{1-\gamma}$ {value}	$V(s) = (\phi)^{-\gamma} \frac{(s)^{1-\alpha\gamma}}{(1-\alpha\gamma)}$ {value}
$c(s) = \phi s$ {policy}	$c(s) = \phi s^{\alpha} $ {policy}
$\dot{s}(s) = s^{\alpha} - (\delta + \phi)s $ {transition}	$\dot{s}(s) = (1 - \phi)s^{\alpha} - \delta s$ {transition}
$\dot{s}'(s) = \alpha s^{\alpha - 1} - (\delta + \phi) < 0$	$\dot{s}'(s) = \alpha(1 - \phi)s^{\alpha - 1} - \delta < 0$
$\lambda(s) = V_s(s) = (\phi)^{-\gamma}(s)^{-\gamma}$	$\lambda(s) = V_s(s) = (\phi)^{-\gamma}(s)^{-\alpha\gamma}$
$V_{ss}(s) = -\gamma(\phi)^{-\gamma}(s)^{-\gamma-1} \le 0$ {weakly concave}	$V_{ss}(s) = -\alpha \gamma(\phi)^{-\gamma}(s)^{-\alpha \gamma - 1} \le 0$ {weakly concave}
TS Solution implied by the recursive solution:	TS Solution implied by the recursive solution:
$\dot{s} = s^{\alpha} - (\delta + \phi)s, s(0) = s_0 \{ \text{IVP-ODE} \}$	$\dot{s} = (1 - \phi)s^{\alpha} - \delta s, s(0) = s_0 \text{ {IVP-ODE}}$
$s(t) = \left(s_{ss}^{1-\alpha} + (s_0^{1-\alpha} - s_{ss}^{1-\alpha})e^{-t(1-\alpha)(\delta+\phi)}\right)^{\frac{1}{1-\alpha}} \to s_{ss}$	$s(t) = \left(s_{ss}^{1-\alpha} + (s_0^{1-\alpha} - s_{ss}^{1-\alpha})e^{-t(1-\alpha)\delta}\right)^{\frac{1}{1-\alpha}} \to s_{ss}$
$c(t) = \phi s(t)$	$c(t) = \phi s(t)^{\alpha}$
$\lambda(t) = (\phi)^{-\gamma} (s(t))^{-\gamma} \to \lambda_{ss}$	$\lambda(t) = (\phi)^{-\gamma} (s(t))^{-\alpha\gamma} \to \lambda_{ss}$
$r(s,c) = \frac{\phi^{1-\gamma}}{1-\gamma} \left(s_{ss}^{1-\alpha} + (s_0^{1-\alpha} - s_{ss}^{1-\alpha}) e^{-t(1-\alpha)(\delta+\phi)} \right)$	$r(s,c) = \frac{\phi^{1-\gamma}}{1-\gamma} \left(s_{ss}^{1-\alpha} + (s_0^{1-\alpha} - s_{ss}^{1-\alpha}) e^{-t(1-\alpha)\delta} \right)^{\frac{\alpha-\alpha\gamma}{1-\alpha}}$
$1: TC(t) \equiv e^{-\rho t} \lambda(t) s(t) \to 0$	$1: TC(t) \equiv e^{-\rho t} \lambda(t) s(t) \to 0$
$2: \int_0^\infty e^{-\rho t} r(s,c) dt = \frac{1}{\rho} (\phi)^{-\gamma} + (\phi)^{-\gamma} \frac{(s_0)^{1-\gamma}}{1-\gamma} = V(s_0)$	$2: \int_0^\infty e^{-\rho t} r(s, c) dt = (\phi)^{-\gamma} \frac{(s)^{1-\alpha\gamma}}{(1-\alpha\gamma)} = V(s_0)$
$3: \lim e^{-\rho t} V(s(t)) = 0$	$3: \lim e^{-\rho t} V(s(t)) = 0$
4: $V(s)$ is a viscosity solution of DE.	4: $V(s)$ is a viscosity solution of DE.
5: BI:	5: BI:

In general:
$$\dot{s} = s^{\alpha} - \delta s - c(s)$$

If you can write: $\dot{s} = As^{\alpha} - Bs$

Define the capital-output ratio $z \equiv s/s^{\alpha} = s^{1-\alpha}$

then
$$\dot{z} = (1 - \alpha)(s^{-\alpha})\dot{s} = (1 - \alpha)(s^{-\alpha})As^{\alpha} - (1 - \alpha)(s^{-\alpha})Bs$$

then
$$\dot{z} = (1 - \alpha)A - (1 - \alpha)(s^{1 - \alpha})B$$

then
$$\dot{z} = (1 - \alpha)A - (1 - \alpha)Bz$$
, $z(0) = z_0$

$$\Rightarrow z(t) = \frac{A}{B} + e^{-(1-\alpha)Bt} \left(z_0 - \frac{A}{B} \right) \rightarrow \frac{A}{B}$$

$$\Rightarrow s(t) = \left(\frac{A}{B} + e^{-(1-\alpha)Bt} \left((s_0)^{1-\alpha} - \frac{A}{B} \right) \right)^{\frac{1}{1-\alpha}} \to \left(\frac{A}{B}\right)^{\frac{1}{1-\alpha}} = s_{ss} = \left(\frac{\alpha}{\delta + \rho}\right)^{\frac{1}{1-\alpha}}$$

Two sub-cases for c(s):

(a) linear in output
$$c(s) = \phi s^{\alpha} \Rightarrow \dot{s} = (1 - \phi)s^{\alpha} - \delta s$$

$$\Rightarrow s_{\infty} = \frac{1-\phi}{\delta} = \frac{\alpha}{\delta+\rho} \Rightarrow \phi = 1 - \frac{\alpha\delta}{\delta+\rho}$$

$$\Rightarrow \frac{\dot{c}}{c} = \frac{\phi \alpha s^{\alpha - 1}}{\phi s^{\alpha}} \dot{s} = \alpha \frac{\dot{s}}{s} = \frac{\alpha s^{\alpha - 1} - \delta - \rho}{\gamma} \Rightarrow \dot{s} = \frac{\alpha s^{\alpha} - (\delta + \rho)s}{\alpha \gamma} = \frac{1}{\gamma} s^{\alpha} - \frac{(\delta + \rho)}{\alpha \gamma} s = = (1 - \phi)s^{\alpha} - \delta s$$

$$\Rightarrow \phi = 1 - \frac{1}{\gamma}, \gamma = \frac{(\delta + \rho)}{\alpha \delta}$$

Together:
$$\phi = 1 - \frac{1}{\gamma} = 1 - \frac{\alpha \delta}{\delta + \rho} \& \gamma = \frac{\delta + \rho}{\alpha \delta} > 1$$

$$\frac{\dot{c}}{c} = \frac{\alpha s^{\alpha - 1} - \delta - \rho}{\gamma} \Rightarrow \frac{\phi \alpha s^{\alpha - 1}}{\phi s^{\alpha}} \dot{s} = \frac{\alpha}{s} \dot{s} = \frac{\alpha s^{\alpha - 1} - \delta - \rho}{\gamma} \Rightarrow \dot{s} = \frac{1}{\gamma} s^{\alpha} - \frac{(\rho + \delta)}{\alpha \gamma} s^{\alpha}$$

(b) linear in capital
$$c(s) = \phi s \Rightarrow \dot{s} = s^{\alpha} - (\delta + \phi)s$$

(a)
$$\frac{c(s)}{s^{\alpha}} = \phi$$
, $\frac{c(s)}{s} = \phi s^{\alpha - 1}$

(b)
$$\frac{c(s)}{s^{\alpha}} = \phi s^{1-\alpha}$$
, $\frac{c(s)}{s} = \phi$

{Q: what is the analog to this (EL/TC) for stochastic problems? Stochastic maximum principle?} Q: where is it proven that this only holds for the viscosity solution? $V(s_0) = \int_0^\infty e^{-\rho t} r(s,c) dt$ -Suppose V(s) is a non-viscosity solution to DE, is it still possible that $V(s_0) = \int_0^\infty e^{-\rho t} r(s,c) dt$?