定向覆盖模糊测试工具的设计与实现 _{毕业设计中期检查}

雷尚远

南京邮电大学计算机学院

2023年4月17日

- 1 Background
- 2 研究现状
- 3 研究内容
- 4 计划进度
- 5 参考文献

- 1 Background
 - Pre-Knowledge

- 6 参考文献

- 1 Background Pre-Knowledge

- 6 参考文献

What Fuzzing is?

Defination[1]

- Fuzzing Fuzzing is the execution of the PUT using input(s) sampled from an input space (the "fuzz input space") that protrudes the expected input space of the PUT.
 - PUT: Program Under Test
- Fuzz testing Fuzz testing is the use of fuzzing to test if a PUT violates a correctness policy.
- Fuzzer A fuzzer is a program that performs fuzz testing on a PUT.
- Bug Oracle A bug oracle is a program, perhaps as part of a fuzzer, that
 determines whether a given execution of the PUT violates a specific
 correctness policy.
- Fuzz Configuration A fuzz configuration of a fuzz algorithm comprises the parameter value(s) that control(s) the fuzz algorithm.
- **Seed** A seed is a (commonly well-structured) input to the PUT, used to generate test cases by modifying it.

Background 00000000

Fuzz Testing

```
Input: \mathbb{C}, t_{limit}
   Output: \mathbb{B} // a finite set of bugs
1 \mathbb{B} \leftarrow \emptyset
_{2} \mathbb{C} \leftarrow \text{Preprocess}(\mathbb{C})
3 while t_{\tt elapsed} < t_{\tt limit} \land {\tt Continue}(\mathbb{C}) do
          conf \leftarrow Schedule(\mathbb{C}, t_{elapsed}, t_{limit})
4
          tcs \leftarrow InputGen(conf)
5
          // O_{\text{bug}} is embedded in a fuzzer
          \mathbb{B}', execinfos \leftarrow InputEval(conf, tcs, O_{bu\sigma})
6
          \mathbb{C} \leftarrow \texttt{ConfUpdate}(\mathbb{C}, conf, execinfos)
          \mathbb{B} \leftarrow \mathbb{B} \cup \mathbb{B}'
8
```

9 return B

Background റെറ്റെറററ

```
1 Input: C, t<sub>limit</sub>
   Output: B // a finite set of bugs
   \mathbb{C} \leftarrow \mathtt{Preprocess}(\mathbb{C})
   while t_{\tt elapsed} < t_{\tt limit} \land {\tt Continue}(\mathbb{C}) do
             \texttt{conf} \leftarrow \texttt{Schedule}(\mathbb{C}, \, t_{\textit{elapsed}}, \, t_{\textit{limit}})
 7
             tcs \leftarrow InputGen(conf)
             // O_{\text{bug}} is embedded in a fuzzer
             \mathbb{B}', execinfos \leftarrow InputEval(conf, tcs, O_{bus})
 8
             \mathbb{C} \leftarrow \texttt{ConfUpdate}(\mathbb{C}, conf, execinfos)
 9
             \mathbb{B} \leftarrow \mathbb{B} \cup \mathbb{B}'
11 return B
```

- C:a set of fuzz configurations
- t_{limit}: timeout
- B: a set of discovered bugs

Background 00000000

```
Input: \mathbb{C}, t_{limit}
   Output: B // a finite set of bugs
   \mathbb{R} \leftarrow \varnothing
   \mathbb{C} \leftarrow \text{Preprocess}(\mathbb{C})
  while t_{\tt elapsed} < t_{\tt limit} \land {\tt Continue}(\mathbb{C}) do
           conf \leftarrow Schedule(\mathbb{C}, t_{elapsed}, t_{limit})
           tcs \leftarrow InputGen(conf)
5
           // Obug is embedded in a fuzzer
           \mathbb{B}', execinfos \leftarrow InputEval(conf, tcs, O_{bug})
6
           \mathbb{C} \leftarrow \texttt{ConfUpdate}(\mathbb{C}, conf, execinfos)
7
           \mathbb{B} \leftarrow \mathbb{B} \cup \mathbb{B}'
```

Preprocess $(\mathbb{C}) \to \mathbb{C}$

- Instrumentation
 - grey-box and white-box fuzzers
 - static/dynamic
- Seed Selection
 - weed out potentially redundant configurations
- Seed Trimming
 - reduce the size of seeds
- Preparing a Driver Application
 - library Fuzzing, kernal Fuzzing

9 return B

Background

```
Input: \mathbb{C}, t_{limit}
Output: \mathbb{B} // a finite set of bugs

1 \mathbb{B} \leftarrow \varnothing
2 \mathbb{C} \leftarrow \text{Preprocess}(\mathbb{C})
3 while t_{elapsed} < t_{limit} \land \text{Continue}(\mathbb{C}) do

4 conf \leftarrow \text{Schedule}(\mathbb{C}, t_{elapsed}, t_{limit})
5 tcs \leftarrow \text{InputGen}(conf)
// O_{\text{bug}} is embedded in a fuzzer
6 \mathbb{B}', execinfos \leftarrow \text{InputEval}(conf, tcs, O_{bug})
7 \mathbb{C} \leftarrow \text{ConfUpdate}(\mathbb{C}, conf, execinfos)
8 \mathbb{B} \leftarrow \mathbb{B} \cup \mathbb{B}'
9 return \mathbb{B}
```

Stop Condition

- t_{elapsed} < t_{limit}
- CONTINUE (ℂ) → {True, False}
 Determine whether a new fuzz iteration should occur

Background 00000000

```
Input: \mathbb{C}, t_{limit}
   Output: B // a finite set of bugs
  \mathbb{R} \leftarrow \emptyset
   \mathbb{C} \leftarrow \mathtt{Preprocess}(\mathbb{C})
  while \mathsf{t}_{\mathtt{elapsed}} < \mathsf{t}_{\mathtt{limit}} \wedge \mathtt{Continue}(\mathbb{C}) do
            conf \leftarrow Schedule(\mathbb{C}, t_{elapsed}, t_{limit})
            tcs \leftarrow InputGen(conf)
5
            // O_{\text{bug}} is embedded in a fuzzer
            \mathbb{B}', execinfos \leftarrow InputEval(conf, tcs, O_{bug})
6
            \mathbb{C} \leftarrow \texttt{ConfUpdate}(\mathbb{C}, conf, execinfos)
7
            \mathbb{B} \leftarrow \mathbb{B} \cup \mathbb{B}'
```

Schedule (\mathbb{C} , $t_{elapsed}$, t_{limit}) \rightarrow conf

- function
 - selecting a new fuzz configuration
- depend on fuzzer
 - finding the most number of unique bugs
 - maximizing the coverage
 - etc.
- problem
 - exploration vs. exploitation

9 return B

```
Input: \mathbb{C}, t_{limit}
Output: \mathbb{B} // a finite set of bugs

1 \mathbb{B} \leftarrow \emptyset
2 \mathbb{C} \leftarrow \text{Preprocess}(\mathbb{C})
3 while t_{elapsed} < t_{limit} \land \text{Continue}(\mathbb{C}) do

4 | conf \leftarrow \text{Schedule}(\mathbb{C}, t_{elapsed}, t_{limit})
5 | tcs \leftarrow \text{InputGen}(conf) // O_{bug} is embedded in a fuzzer

6 | \mathbb{B}', exectinfos \leftarrow \text{InputEval}(conf, tcs, O_{bug})
7 | \mathbb{C} \leftarrow \text{ConfUpdate}(\mathbb{C}, conf, execinfos)
8 | \mathbb{B} \leftarrow \mathbb{B} \cup \mathbb{B}'
9 return \mathbb{B}
```

INPUTGEN (conf) \rightarrow tcs

- function
 - Generate testcases
- classification
 - Generation-based(Model-based)
 - Mutation-based(Model-less)

Background റെറ്റെറററ

```
Input: \mathbb{C}, t_{limit}
    Output: \mathbb{B} // a finite set of bugs
  \mathbb{R} \leftarrow \emptyset
   \mathbb{C} \leftarrow \mathtt{Preprocess}(\mathbb{C})
3 while t_{\tt elapsed} < t_{\tt limit} \land {\tt Continue}(\mathbb{C}) do
            conf \leftarrow Schedule(\mathbb{C}, t_{elapsed}, t_{limit})
            tcs \leftarrow InputGen(conf)
5
            // O_{\text{bug}} is embedded in a fuzzer
            \mathbb{B}', execinfos \leftarrow InputEval(conf, tcs, O_{bug})
6
            \mathbb{C} \leftarrow \texttt{ConfUpdate}(\mathbb{C}, conf, execinfos)
7
            \mathbb{B} \leftarrow \mathbb{B} \cup \mathbb{B}'
9 return B
```

```
InputEval (conf, tcs, O_{bug})
      \rightarrow \mathbb{B}' execinfos
```

function

- Executes the PUT with the tcs and get execinfos.
- Triage:analyzing and reporting test cases
- deduplication, prioritization, and minimization.
- CONTINUE (C)
 - \rightarrow {True, False}
 - Determine whether a new fuzz iteration should occur

Background

```
\begin{array}{l} \mathtt{InputEval}\:(\mathtt{conf},\mathtt{tcs},O_{\mathtt{bug}}) \\ \to \mathbb{B}',\mathtt{execinfos} \end{array}
```

- $t_{elapsed} < t_{limit}$
 - CONTINUE (\mathbb{C}) \rightarrow {True, False}
 - Determine whether a new fuzz

Background 00000000

```
Input: \mathbb{C}, t_{limit}
    Output: B // a finite set of bugs
  \mathbb{R} \leftarrow \emptyset
_{2} \mathbb{C}\leftarrow \mathtt{Preprocess}(\mathbb{C})
3 while t_{\tt elapsed} < t_{\tt limit} \land {\tt Continue}(\mathbb{C}) do
            conf \leftarrow Schedule(\mathbb{C}, t_{elapsed}, t_{limit})
            tcs \leftarrow InputGen(conf)
5
            // O_{\text{bug}} is embedded in a fuzzer
            \mathbb{B}', execinfos \leftarrow InputEval(conf, tcs, O_{bug})
6
            \mathbb{C} \leftarrow \texttt{ConfUpdate}(\mathbb{C}, conf, execinfos)
7
            \mathbb{B} \leftarrow \mathbb{B} \cup \mathbb{B}'
```

stop condition

- $t_{\rm elapsed} < t_{\rm limit}$
- CONTINUE (C)
- \rightarrow {True, False}
 - Determine whether a new fuzz iteration should occur

9 return B

Input: \mathbb{C} , t_{limit}

stop condition

- $t_{elapsed} < t_{limit}$
- CONTINUE(ℂ)
 - $\rightarrow \{\texttt{True}, \texttt{False}\}$
 - Determine whether a new fuzz

9 return B

Background

Pre-Knowledge

Motivation

Research Status

- 2 研究现状
- 研究内容
- 4 计划进度
- 6 参考文献

Background 00000000

classification of fuzzing

- **Black-box Fuzzing**
 - no program analysis, no feedback
- White-box Fuzzing
 - mostly program analysis
- Grey-box Fuzzing
 - no program analysis, but feedback

Background 00000000

Black-box Fuzzing

Defination: techniques that do not see the internals of the PUT, and can observe only the input/output behavior of the PUT, treating it as a black-box[1].

-No program analysis, no feedback

Background

Black-box Fuzzing

Defination: techniques that do not see the internals of the PUT, and can observe only the input/output behavior of the PUT, treating it as a black-box[1].

- No program analysis, no feedback

- You have no view of the PUT.but have some view of the input/output domain
- Fuzzing process is not changed according to some feedback
- Random mutated (not effective)

Background

White-box Fuzzing

Defination: techniques that generates test cases by analyzing the internals of the PUT and the information gathered when executing the PUT[1].

- Requires heavy-weight program analysis and constraint solving.

Background

White-box Fuzzing

- **Defination:** techniques that generates test cases by analyzing the internals of the PUT and the information gathered when executing the PUT[1].
- Requires heavy-weight program analysis and constraint solving. Test cases

- You have the view of the PUT state(CFG,CG)
- Static analysis (effective but not efficient!)

Background

• Grey-box Fuzzing

Defination: techniques that can obtain *some* information internal to the PUT and/or its executions to generates test cases[1].

- Uses only lightweight instrumentation to glean some program structure
- And coverage feedback

- 1 Background
 Pre-Knowledge
 Motivation
 Research Status
- ② 研究现状
- 3 研究内容
- 4 计划进度
- 6 参考文献

Why Directed Grey-Box Fuzz?

• 大家都会 LATFX, 好多学校都有自己的 Beamer 主题

- 大家都会 IATEX, 好多学校都有自己的 Beamer 主题
- 中文支持请选择 XelATFX 编译选项

Background .000000**0**0

- 2 研究现状 Beamer 主题分类
- 4 计划进度
- 6 参考文献

- ② 研究现状 Beamer 主题分类
- 3 研究内容
- 4 计划进度
- 5 参考文献

- 有一些 LATEX 自带的
- 有一些 Tsinghua 的
- 本模板来源自 THU Beamer Theme
- 但是最初的 link [2] 已经失效了
- 这是原作者在 16-17 年做的一些 ppt: 戳我

- Background
- 3 研究内容 如何更好地做 Beamer
- 4 计划进度
- 5 参考文献

- Background
- 3 研究内容 美化主题 如何更好地做 Beamer
- 4 计划进度
- 5 参考文献

这一份主题与原始的 THU Beamer Theme 区别在于

- 顶栏的小点变成一行而不是多行
- 中文采用楷书
- 修改了主题色为南邮校徽颜色
- 参考文献格式按照毕设标准进行了修改
- 更多该模板的功能可以参考 https://www.latexstudio.net/archives/4051.html
- 下面列举出了一些 Beamer 的用法,部分节选自 https://tuna.moe/event/2018/latex/

Background

- Background
- 2 研究现状
- 研究内容 美化主题 如何更好地做 Beamer
- 4 计划进度
- 6 参考文献

Why Beamer

Background

IATeX 广泛用于学术界,期刊会议论文模板

Microsoft® Word 文字处理工具 容易上手,简单直观 所见即所得 高级功能不易堂握 处理长文档需要丰富经验 花费大量时间调格式 公式排版差强人意 二进制格式,兼容性差 付费商业许可

MEX 专业排版软件 容易上手 所见即所想, 所想即所得 进阶难,但一般用不到 和短文档处理基本无异 无需担心格式,专心作者内容 尤其擅长公式排版 文本文件, 易读、稳定 自由免费使用

Background

无编号公式

$$J(\theta) = \mathbb{E}_{\pi_{\theta}}[G_t] = \sum_{s \in \mathcal{S}} d^{\pi}(s) V^{\pi}(s) = \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(a|s) Q^{\pi}(s,a)$$

多行多列公式1

$$Q_{\text{target}} = \mathbf{r} + \gamma \mathbf{Q}^{\pi}(\mathbf{s}', \pi_{\theta}(\mathbf{s}') + \epsilon)$$

$$\epsilon \sim \mathsf{clip}(\mathcal{N}(0, \sigma), -\mathbf{c}, \mathbf{c})$$

$$(1)$$

¹如果公式中有文字出现,请用 \mathrm{} 或者 \text{} 包含,不然就会变成 clip,在 公式里看起来比 clip 丑非常多。

编号多行公式

Background

$$\begin{split} \textbf{A} &= \lim_{n \to \infty} \Delta x \left(\textbf{a}^2 + \left(\textbf{a}^2 + 2 \textbf{a} \Delta x + (\Delta \textbf{x})^2 \right) \right. \\ &\quad + \left(\textbf{a}^2 + 2 \cdot 2 \textbf{a} \Delta x + 2^2 \left(\Delta \textbf{x} \right)^2 \right) \\ &\quad + \left(\textbf{a}^2 + 2 \cdot 3 \textbf{a} \Delta x + 3^2 \left(\Delta \textbf{x} \right)^2 \right) \\ &\quad + \ldots \\ &\quad + \left(\textbf{a}^2 + 2 \cdot (\textbf{n} - 1) \textbf{a} \Delta x + (\textbf{n} - 1)^2 \left(\Delta \textbf{x} \right)^2 \right) \right) \\ &\quad = \frac{1}{3} \left(\textbf{b}^3 - \textbf{a}^3 \right) \quad (2) \end{split}$$

LATEX 常用命令

ackslashchapter	\section	\setminus subsection	\paragraph
章	节	小节	带题头段落
\centering	\emph	\verb	\url
居中对齐	强调	原样输出	超链接
\footnote	\item	\caption	\includegraphics
脚注	列表条目	标题	插入图片
\label	\cite	\ref	
标号	引用参考文献	引用图表公式等	

环境

table	figure	equation
表格	图片	公式
itemize	enumerate	description
无编号列表	编号列表	描述

```
begin{itemize}

item A \item B

item C

begin{itemize}

item C-1

end{itemize}

lend{itemize}
```

- A
- B
- C
- C-1

MFX 环境命令举例

```
\begin{itemize}
     \item A \item B
     \item C
     \begin{itemize}
5
       \titem C-1
6
     \end{itemize}
   \end{itemize}
```

```
\begin{enumerate}
 \item 巨佬 \item 大佬
 \item 萌新
 \begin{itemize}
   \item[n+e] 瑟瑟发抖
 \end{itemize}
\end{enumerate}
```

- A
- B
- C C-1

- 巨佬
- 2 大佬
- 3 萌新

n+e 瑟瑟发抖

```
= \frac{4}{3}\pi r^3
   \ [
       = \frac{4}{3}\pi r^3
   \]
   \begin{equation}
     \label{eq:vsphere}
       = \frac{4}{3}\pi r^3
10
   \end{equation}
```

$$V = \frac{4}{3}\pi r^3$$

$$V = \frac{4}{3}\pi r^3$$

$$V = \frac{4}{3}\pi r^3$$
 (3)

6

8

9

```
\begin{table}[htbp]
 \caption{编号与含义}
  \label{tab:number}
  \centering
  \begin{tabular}{cl}
   \toprule
   编号 & 含义 \\
   \midrule
   1 & 4.0 \\
   2 & 3.7 \\
   \bottomrule
 \end{tabular}
\end{table}
公式~(\ref{eq:vsphere})
编号与含义请参见
表~\ref{tab:number}。
```

Table 1: 编号与含义

编号	含义
1	4.0
2	3.7

公式(3)的编号与含义请参 见表 1。

10

13

15

16

- 矢量图 eps, ps, pdf
 - METAPOST, pstricks, pgf...
 - Xfig, Dia, Visio, Inkscape . . .
 - Matlab / Excel 等保存为 pdf
- 标量图 png, jpg, tiff . . .
 - 提高清晰度,避免发虚
 - 应尽量避免使用

Figure 1: 这个校徽就是矢量图,虽然看起来不像,但确实是矢量图格式

- Background
- 2 研究现状
- 3 研究内容
- 4 计划进度
- 5 参考文献

计划进度

- 一月: 完成文献调研
- 二月: 研究 THU Beamer Theme 的实现
- 三、四月:修改 NJUPT Beamer 主题
- 五月: 论文撰写

- Background

- 4 计划进度
- 6 参考文献

- [1] MANÈS V J, HAN H, HAN C, et al. The art, science, and engineering of fuzzing: A survey[J]. IEEE Transactions on Software Engineering, 2019, 47(11): 2312–2331.
- [2] UNKNOWN. THU Beamer Theme[C/OL] // None. 2015: 1-10. http://far.tooold.cn/post/latex/beamertsinghua.

Background

Thanks!