1) Training with minimum number of samples for each class: approx. 26%

- The validation set of 385 samples (5 samples each for all 77 classes) are drawn...
- Due to class imbalances, I first trained the models on the minimum number of samples
 (n_samples = 34) for each class from the training dataset.
 - The size of the training set = 2618
- The test sample set of 1/3rd of the testing set is also drawn from the testing set.
- The training and testing sets are both balanced.
- Then I trained a neural network model with an input layer of 64 neurons, a dropout layer of 0.3, and an output layer with softmax as an activation function for a multiclass classification task for num_class = 77 classes.
- The model's performance is shown below:

Metric	Value
Training Accuracy	0.8993
Training Loss	0.3865
Validation Accuracy	0.7558
Validation Loss	0.9183
Test Accuracy	0.7241
Test Loss	0.9958

- Then I use hierarchical clustering (ward method) to form 4 clusters of the datasets. The clusters can be visualized as below along their first two principal components.

- Then I trained a neural network model with an input layer of 16 neurons and an output layer with softmax as an activation function for a multiclass classification task for num_class = 4 classes, for classifying the data into 4 distinct clusters.
- The model's performance is shown below:

Metric	Value
Training Accuracy	0.9615
Training Loss	0.1242
Validation Accuracy	0.9247
Validation Loss	0.2713
Test Accuracy	0.9160
Test Loss	0.2137

- Then I attempted classification of the labels within each individual cluster using
 MultiNomialNB and Random Forest Classifier:
- The initial performance of the models are shown below:

MultinomialNB

Cluster	Accuracy
0	0.57047
1	0.52716
2	0.34736
3	0.37586

Random Forest Classifier

Cluster	Accuracy
0	0.50336
1	0.51757
2	0.27368
3	0.37241

The model accuracy in the classification of the 77 labels within each of the 4 clusters is not well. I hypothesize that this is due to the homogeneity of the data within each cluster and lack of enough training samples.

2) Increasing the training samples from 2618 to 5540: approx. 60%

- I increased the number of training samples to 4089, and the performance of different models on the earlier classification tasks are shown below:
- Model's performance on the classification of 77 classes increased for training,
 validation, and testing sets, as shown below:

Metric	Value
Training Accuracy	0.914
Training Loss	0.2708
Validation Accuracy	0.8039
Validation Loss	0.7379
Test Accuracy	0.7983
Test Loss	0.7350

- Then I use hierarchical clustering (ward method) to form 4 clusters of the datasets. The clusters can be visualized as below along their first two principal components.

Metric	Value
Training Accuracy	1.0000
Training Loss	0.0044
Validation Accuracy	0.9299
Validation Loss	0.4422
Test Accuracy	0.9097
Test Loss	0.3810

- The performance of classification of the labels within the clusters didn't increase significantly. I alternatively also used SVM that resulted in slightly better performance.

SVM Model Accuracy

Cluster	Accuracy
0	0.6449
1	0.6214
2	0.4845
3	0.5221

Random Forest Classifier Model Accuracy

Cluster	Accuracy
0	0.5910
1	0.5874
2	0.4124
3	0.4739

Multinomial Naive Bayes Model Accuracy

Cluster	Accuracy
0	0.5795
1	0.5583
2	0.4175
3	0.4538

3) Increasing the training samples from 5540 to 7385: approx. 80%

- I increased the number of training samples to 7385, and the performance of different models on the earlier classification tasks are shown below:
- Model's performance on the classification of 77 classes increased for training,
 validation, and testing sets, as shown below:

Metric	Value
Training Accuracy	0.8920
Training Loss	0.3728
Validation Accuracy	0.8208
Validation Loss	0.6108
Test Accuracy	0.8220
Test Loss	0.6397

- The clusters can be visualized as below along their first two principal components.

The performance of classification of the labels within the clusters is also shown below:

Multinomial Naive Bayes

Cluster	Accuracy
0	0.41935
1	0.41036
2	0.53580
3	0.58823

Random Forest Classifier

Cluster	Accuracy
0	0.37097
1	0.42231
2	0.59753
3	0.65158

Support Vector Machine (SVM) using RBF kernel

Cluster	Accuracy
0	0.53225
1	0.54980
2	0.67160
3	0.68778