Contents

- First, input the matrix A
- The function named 'fun', which was used in this project to flip the matrix according to the requirement
- The above function can written in another way and they will provide the same result
- The function that will provide the matrix B
- Creating a 15 times 15 matrix A
- Ploting matrix A with surf function
- Applying the function to matrix A which provides another 15 times 15 matrix B
- Ploting the matrix B using surf function

First, input the matrix A

```
A = [1:5; 6:10; 11:15; 16:20; 21:25];
```

The function named 'fun', which was used in this project to flip the matrix according to the requirement

```
% function B = fun(A)
% B = fliplr(fliplr(A).');
% end
```

The above function can written in another way and they will provide the same result

```
% Way 01
% function B = fun(A)
% B1 = A.'
% B2 = flip(B1)
% B = flip(B2,2)
% end

% Way 02
% function B = fun(A)
% B = rot90(A,2)'
% end
```

The function that will provide the matrix B

which is produced out of A after flipping the matrix along the line connecting the bottom left corner with the top right corner

```
fun(A)
```

```
ans =
          15 10
  25
      20
                   5
  24
      19
          14 9
                   4
  23
      18
          13 8
                   3
                   2
  22
      17
          12 7
```

Creating a 15 times 15 matrix A

A = rand(15,15)

A =

Columns	1	through	7
---------	---	---------	---

0.2376	0.0690	0.0023	0.2392	0.7627	0.8406	0.4785
0.8176	0.1668	0.6402	0.0293	0.8070	0.4688	0.3205
0.4058	0.9474	0.8032	0.7023	0.6330	0.5452	0.6016
0.4663	0.8111	0.2451	0.0076	0.7104	0.1791	0.9132
0.9515	0.7105	0.0641	0.6109	0.6887	0.6345	0.6825
0.9650	0.9702	0.2631	0.4081	0.3209	0.9630	0.9467
0.7653	0.9984	0.1027	0.2489	0.5316	0.5340	0.0991
0.5745	0.9875	0.4837	0.6525	0.8732	0.4796	0.5110
0.9159	0.1501	0.4189	0.3203	0.0545	0.7937	0.1101
0.4954	0.9585	0.3813	0.1037	0.5004	0.0927	0.5453
0.1660	0.5305	0.8868	0.5356	0.4328	0.8808	0.6888
0.3260	0.0741	0.4206	0.1649	0.9043	0.0039	0.1474
0.2964	0.3118	0.2838	0.8834	0.6302	0.5115	0.7776
0.5583	0.8952	0.0482	0.6665	0.9830	0.6785	0.3991
0.0675	0.8348	0.2192	0.8477	0.5852	0.5657	0.8983

Columns 8 through 14

0.3070	0.3684	0.1230	0.4305	0.2158	0.9300	0.8968
0.0611	0.0078	0.5800	0.4162	0.0787	0.5293	0.6761
0.2195	0.6027	0.3285	0.7288	0.9331	0.6265	0.8284
0.0828	0.4789	0.2682	0.4065	0.6029	0.6808	0.1101
0.9504	0.3081	0.5502	0.9518	0.3775	0.9232	0.2792
0.0164	0.7444	0.1805	0.9120	0.6649	0.1528	0.7676
0.1147	0.8393	0.6785	0.9514	0.7922	0.4057	0.2161
0.0124	0.2624	0.0557	0.3460	0.3335	0.3125	0.0341
0.2162	0.5142	0.0341	0.2902	0.6927	0.6939	0.4366
0.0114	0.4468	0.2865	0.8867	0.2038	0.8907	0.9369
0.6424	0.3412	0.0774	0.2100	0.9587	0.4907	0.2621
0.5170	0.8391	0.9006	0.1309	0.7118	0.8058	0.5697
0.2455	0.9825	0.8466	0.5205	0.1669	0.3264	0.3596
0.1937	0.6265	0.3957	0.9055	0.4428	0.5499	0.0268
0.0909	0.1813	0.1692	0.4025	0.6330	0.3888	0.5004

Column 15

0.8270

0.2590

0.0459

0.0455

0.2465

0.6607 0.3294

0.6595

0.0130

0.7181

0.3911

0.0335

0.4060

0.7163

0.92130.9840

Ploting matrix A with surf function

surf(A);

Applying the function to matrix A which provides another 15 times 15 matrix B

B = fun(A)

B =

Columns 1 through 7

0.9840	0.9213	0.7163	0.4060	0.0335	0.3911	0.7181
0.5004	0.0268	0.3596	0.5697	0.2621	0.9369	0.4366
0.3888	0.5499	0.3264	0.8058	0.4907	0.8907	0.6939
0.6330	0.4428	0.1669	0.7118	0.9587	0.2038	0.6927
0.4025	0.9055	0.5205	0.1309	0.2100	0.8867	0.2902
0.1692	0.3957	0.8466	0.9006	0.0774	0.2865	0.0341
0.1813	0.6265	0.9825	0.8391	0.3412	0.4468	0.5142

0.0909	0.1937	0.2455	0.5170	0.6424	0.0114	0.2162
0.8983	0.3991	0.7776	0.1474	0.6888	0.5453	0.1101
0.5657	0.6785	0.5115	0.0039	0.8808	0.0927	0.7937
0.5852	0.9830	0.6302	0.9043	0.4328	0.5004	0.0545
0.8477	0.6665	0.8834	0.1649	0.5356	0.1037	0.3203
0.2192	0.0482	0.2838	0.4206	0.8868	0.3813	0.4189
0.8348	0.8952	0.3118	0.0741	0.5305	0.9585	0.1501
0.0675	0.5583	0.2964	0.3260	0.1660	0.4954	0.9159
Columns 8 t	hrough 14					
0.0130	0.6595	0.3294	0.6607	0.2465	0.0459	0.2590
0.0341	0.2161	0.7676	0.2792	0.1101	0.8284	0.6761
0.3125	0.4057	0.1528	0.9232	0.6808	0.6265	0.5293
0.3335	0.7922	0.6649	0.3775	0.6029	0.9331	0.0787
0.3460	0.9514	0.9120	0.9518	0.4065	0.7288	0.4162
0.0557	0.6785	0.1805	0.5502	0.2682	0.3285	0.5800
0.2624	0.8393	0.7444	0.3081	0.4789	0.6027	0.0078
0.0124	0.1147	0.0164	0.9504	0.0828	0.2195	0.0611
0.5110	0.0991	0.9467	0.6825	0.9132	0.6016	0.3205
0.4796	0.5340	0.9630	0.6345	0.1791	0.5452	0.4688
0.8732	0.5316	0.3209	0.6887	0.7104	0.6330	0.8070
0.6525	0.2489	0.4081	0.6109	0.0076	0.7023	0.0293
0.4837	0.1027	0.2631	0.0641	0.2451	0.8032	0.6402
0.9875	0.9984	0.9702	0.7105	0.8111	0.9474	0.1668
0.5745	0.7653	0.9650	0.9515	0.4663	0.4058	0.8176

Column 15

0.8270

0.8968

0.9300

0.2158

0.4305

0.1230

0.3684

0.3070

0.4785

0.8406

0.76270.2392

0.0023

0.0690

0.2376

Ploting the matrix B using surf function

surf(B);

Published with MATLAB® R2022b