Projet 5 : Segmentez des clients d'un site e-commerce

Sommaire

- Problématique
- Jeu de données
- Analyse exploratoire
- Clustering
- Maintenance
- Conclusions et perspectives

Problématique

■ Mission:

Fournir aux équipes Marketing de l'entreprise Olist(site de e-commerce) une segmentation des clients utilisables dans leurs campagnes de communication

Objectifs:

- Comprendre les différents types d'utilisateurs (comportements, données personnelles)
- Fournir une description actionnable de la segmentation avec une logique sous-jacente pour une optimisation optimale.
- > Proposer un contrat de maintenance basé sur une analyse de la stabilité des segments au cours du temps.

Feuille de route

Jeu de données

119143 lignes

base de données anonymisée comportant des informations sur l'historique de commandes, les produits achetés, les commentaires de satisfaction et la localisation des clients

40 colonnes

Différents notes des avis du client sur les commandes

Feature engineering

Variables	Transformations
product_category_name_english (71 valeurs)	product_category_name (5 valeurs)
customer_state (27 valeurs)	customer_state (5 valeurs)
customer_unique_id, order_id	nbre_commande
customer_unique_id, order_id	nbre_produit
customer_unique_id, review_score	score_moyen
order_purchase_timestamp, order_delivered_customer_date	delai_livraison
order_purchase_timestamp	recence
order_id	frequence
payment_value	montant
Variables catégorielles	One hot encoding
Variables continues	Normalisation, transformation log

Feature engineering

Transformation dichotomique de la variable 'frequence'

Transformation logarithmique de la variable 'montant'

Segmentation RFM

- **R** : nombre de jour écoulé depuis le dernier achat
- **F** : nombre d'achat effectué
- **M** : somme totale dépensée

Segmentation RFM

Kmeans

Kmeans

	recence frequence				montant						score_moyen				delai_livraison					
	min	mean	median	max	min	mean	median	max	min	mean	median	max	min	mean	median	max	min	mean	median	max
Cluster																				
0	46	280.5	267.0	694	1	1.1	1.0	6	6.9	108.3	87.7	383.0	1.0	4.2	5.0	5.0	1	13.3	12.0	189
1	0	36.1	32.0	109	1	1.3	1.0	14	0.7	162.9	117.9	1917.6	1.0	4.3	5.0	5.0	0	7.3	6.0	88
2	39	270.1	248.0	694	1	1.1	1.0	4	4.5	129.1	118.6	771.6	1.0	3.8	4.0	5.0	3	19.7	17.0	195
3	30	279.1	266.0	694	1	1.1	1.0	5	0.0	76.6	67.8	215.0	1.0	4.4	5.0	5.0	0	7.7	7.0	50
4	20	256.2	231.0	694	1	2.2	2.0	13	150.1	508.5	393.1	5076.0	1.0	3.9	5.0	5.0	0	11.1	9.0	124

Clustering Hiérarchique

n_clusters	coef_silh	davies_bouldin	calinski_harabasz
2	0.208068	1.766434	4417.544227
3	0.113245	2.149770	4047.284454
4	0.102126	2.219944	3531.949834
5	0.100065	2.191752	3198.953492
6	0.078324	2.121315	2861.875329
7	0.078308	2.093554	2645.394516
8	0.074269	2.065837	2481.429038
9	0.081165	1.937038	2334.957952

Clustering Hiérarchique

	recence			frequence				montant				score_moyen				delai_livraison				
	min	mean	median	max	min	mean	median	max	min	mean	median	max	min	mean	median	max	min	mean	median	max
Cluster																				
0	8	263.7	249.0	694	1	1.1	1.0	5	0.0	110.2	84.6	1582.7	1.0	4.2	5.0	5.0	1	11.0	9.0	136
1	11	281.7	268.0	694	1	1.1	1.0	9	5.4	129.5	104.1	1483.1	1.0	4.1	5.0	5.0	1	17.3	15.0	195
2	13	251.8	225.0	694	1	2.0	2.0	13	29.6	443.2	336.3	5076.0	1.0	3.9	5.0	5.0	0	11.1	9.0	124
3	21	279.8	266.0	694	1	1.2	1.0	6	3.8	111.0	80.8	1070.3	1.0	4.2	5.0	5.0	1	12.7	11.0	108
4	0	39.3	29.0	275	1	1.3	1.0	14	6.6	185.7	117.8	2459.5	1.0	4.3	5.0	5.0	1	8.1	7.0	88

DBSCAN

ebsilon	coef_silh	davies_bouldin	calinski_harabasz
0.5	-0.013076	2.167666	924.299413
1.0	0.193035	2.228448	1712.878807
1.5	0.683651	1.690495	1074.798028
2.0	0.792322	1.088670	1597.380114
2.5	0.820351	1.135760	1200.798307
3.0	0.839821	1.172890	913.908348
4.0	0.860818	0.791321	522.340018

DBSCAN

	rece	nce			frequ	ience			mont	ant			score	e_moye	n		delai	_livrais	on	
	min	mean	median	max	min	mean	median	max	min	mean	median	max	min	mean	median	max	min	mean	median	max
Cluster																				
-1	0	218.9	200.0	694	1	1.5	1.0	14	0.0	257.8	129.0	5076.0	1.0	4.0	5.0	5.0	1	14.8	13.0	195
0	4	235.2	218.0	693	1	1.5	1.0	9	4.8	225.1	129.6	2130.0	1.0	4.0	5.0	5.0	1	10.7	9.0	136
1	10	250.0	226.0	693	1	1.3	1.0	5	11.2	197.4	130.2	1206.5	1.0	4.2	5.0	5.0	1	12.8	11.0	74
2	1	228.3	210.0	693	1	1.3	1.0	8	2.8	174.8	115.4	1917.0	1.0	4.2	5.0	5.0	0	9.1	7.0	145
3	21	251.4	253.0	694	1	1.2	1.0	4	11.8	165.6	116.9	793.8	1.0	4.2	5.0	5.0	1	13.6	12.0	55
4	11	242.0	223.0	693	1	1.3	1.0	5	14.4	175.6	99.9	1566.6	1.0	4.0	5.0	5.0	1	11.4	10.0	68
5	5	254.8	234.0	694	1	1.5	1.0	9	3.4	207.5	120.4	2409.3	1.0	4.2	5.0	5.0	1	9.8	8.0	69
6	2	219.5	199.0	693	1	1.3	1.0	9	1.8	176.2	110.4	2372.8	1.0	4.1	5.0	5.0	0	10.3	8.0	87
7	21	266.0	252.0	693	1	1.4	1.0	6	13.4	163.8	98.7	1174.4	1.0	4.2	5.0	5.0	1	10.9	9.0	75
8	29	266.8	259.0	574	1	1.4	1.0	6	22.7	163.7	111.0	724.7	1.0	4.0	5.0	5.0	1	12.2	10.0	66
9	8	237.5	223.0	694	1	1.3	1.0	5	13.4	162.1	98.2	1336.6	1.0	4.2	5.0	5.0	1	10.1	8.0	73
10	19	265.7	258.5	691	1	1.4	1.0	5	13.1	213.5	134.4	1306.4	1.0	4.2	5.0	5.0	1	12.9	11.0	50
11	15	231.6	207.0	589	1	1.2	1.0	4	5.9	163.7	104.7	1473.1	1.0	4.1	5.0	5.0	1	13.5	11.0	77
12	19	241.7	222.0	691	1	1.2	1.0	4	8.8	161.7	120.1	1083.9	1.0	3.9	5.0	5.0	3	19.0	16.0	86
13	6	215.2	186.0	694	1	1.4	1.0	7	5.2	219.2	137.2	1905.6	1.0	4.1	5.0	5.0	1	9.7	8.0	61
14	30	257.5	236.5	575	1	1.3	1.0	5	15.6	159.0	123.2	734.0	1.0	4.0	5.0	5.0	2	14.3	12.0	54
15	19	243.9	225.5	691	1	1.2	1.0	4	14.8	185.8	140.2	1368.4	1.0	4.1	5.0	5.0	2	18.1	16.0	76
16	35	257.2	226.0	585	1	1.3	1.0	3	17.0	144.4	111.4	665.2	1.0	4.3	5.0	5.0	2	11.4	10.0	37
17	40	302.4	295.0	694	1	1.3	1.0	6	18.6	189.0	136.4	936.7	1.0	3.9	5.0	5.0	6	20.0	17.0	65
18	46	243.2	229.5	571	1	1.1	1.0	3	23.2	119.8	99.9	420.8	1.0	4.2	5.0	5.0	3	14.8	14.0	47

Choix du meilleur algorithme

Algorithme	Nbre clusters	Silouette	Davies bouldin	Calinski harabasz	Complexité	Interprétation des clusters
<u>KMEANS</u>	<u>5</u>	<u>0,13</u>	<u>1,98</u>	<u>1446</u>	<u>faible</u>	<u>facile</u>
САН	5	0,10	2,19	1067	forte	facile
DBSCAN	19	0,08	2,07	146	forte	difficile

Chaque métrique est une moyenne de 10 répétitions avec un échantillon de 10000 observations

Maintenance

- Choisir une période d'étude [T0 TN]
- CO=M0.fit(F0) (T0)
- T1 = T0+n jours
- C1_fit=M1.fit(F1) (T1)
- C1_predict=M0.predict(F1) (T1)
- Calculer ARI(C1_fit, C1_predict)
- Répéter jusqu'à TN
- Choisir T_maintenance (ARI<seuil)

Maintenance

■ Période : 2018-03-18......2018-08-29

■ Fréquence : chaque semaine

Maintenance

■ Période : 2017-06-30......2018-08-29

■ Fréquence : chaque mois

Conclusion

- Segmentation RFM
- Simple à mettre en œuvre, rapide, marketing traditionnel.
- 3 variables seulement prise en compte, tout refaire pour l'ajout de nouveaux clients.
- Algorithmes de clustering : Kmeans, Agglomérative, Dbscan
- > Différentes métriques pour étudier la qualité du clustering
- Modèle retenu : Kmeans avec 5 clusters interprétables

Conclusion

Туре	%	Caractéristiques	Stratégie
Perdus	15	>>R, < <f, <="">M, >N, >L</f,>	Faire une étude Offrez des remises Recommandation de produits populaires
Nouveaux	16	< <r, <="">F, <>M, >N, <<l< td=""><td>Envoi d'offres Proposez des produits pertinents et de bonnes affaires</td></l<></r,>	Envoi d'offres Proposez des produits pertinents et de bonnes affaires
Infidèles	21	<>R, < <f, <="">M, <<n,>>L</n,></f,>	Recommandations de produits en fonction de leur comportement Montrez l'importance d'acheter avec l'entreprise
A risque	27	>>R, < <f, <<m,="">>N, <l< td=""><td>Proposer des produits susceptibles de les intéresser Proposer des réductions pour ces clients afin qu'ils se sentent valorisés</td></l<></f,>	Proposer des produits susceptibles de les intéresser Proposer des réductions pour ces clients afin qu'ils se sentent valorisés
Fidèles	21	>R, >>F, >>M, <>N, <>L	Offrez des récompenses Offrez des remises

R:récence <<: plus petit F: fréquence >>: plus grand M: montant <>: intermédiaire N: note

< : faible

L : délai de livraison >: grande

Perspectives

- Jeu de données
- Nécessite plus de données :
- démographiques (âge, profession, sexe, nombre d'enfants..)
- psychographiques (avis sur le produit, centre d'intérêt...)
- Biaisés :
- > 96% des clients avec une seule commande
- Notes toutes très positives.

■ Appliquer la segmentation des quantiles utilisée dans l'outil d'analyse RFM de PUTLER

Merci de votre attention

Contact: bouzaieni@gmail.com