An Algorithm for the Generalized Symmetric Tridiagonal Eigenvalue Problem

Kuiyuam Li, Tien-Yien Li, Zhonggang Zeng

Giulio Masetti

Università di Pisa Corso Metodi di Approssimazione 2012-2013

August 20, 2013

Generalized Eigenvalue Problem

Def

 $T, S \in \mathbb{R}^{n \times n}$. We call (T, S) pencil.

We consider *only*

symmetric and

tridiagonal

pencil.

Generalized Eigenvalue Problem

```
Def
```

```
T,S \in \mathbb{R}^{n \times n}. We call (T,S) pencil.
```

We consider *only* symmetric and pencil.

S is *positive definite*.

Generalized Eigenvalue Problem

Def

```
T, S \in \mathbb{R}^{n \times n}. We call (T, S) pencil.
```

We consider *only* symmetric and pencil.

S is positive definite.

Def (Problem)

Find $\lambda \in \mathbb{R}$ such that $Tv = \lambda Sv$, with $v \in \mathbb{C}^n$. T, S symmetric implies $\lambda \in \mathbb{R}$.

Algorithm philosophy

We find zeros of the polynomial equation

$$\mathcal{F}_{(T,S)}(\lambda) = \det(T - \lambda S) = 0$$

using an iterative method, living on real line.

Brainstorming

We want:

Fast and secure iterative method.

Starting points for our method.

Scalability.

We have: Lague

Laguerre's method.

Cuppen's divide and conquer method.

Symmetric tridiagonal matrices.

We add:

Unreducible condition.

Dynamic programming (Bottom-up).

Efficient matrix storing.

Rapid tour

We want:

Fast and secure iterative method.

Starting points for our method.

Scalability.

We have: | Laguerre's method.

Cuppen's divide and conquer method.

Symmetric tridiagonal matrices.

We add: Unreducible condition.

Dynamic programming (Bottom-up).

Efficient matrix storing.

Unreducible pencil

Def (as in [?]) $(T,S) \text{ is an } \textit{unreducible pencil if } t_{i,i+1}^2 + s_{i,i+1}^2 \neq 0$ for $i=1,2,\ldots,n-1.$

Unreducible pencil

Def (as in [?])

$$(T,S)$$
 is an unreducible pencil if $t_{i,i+1}^2 + s_{i,i+1}^2 \neq 0$ for $i=1,2,\ldots,n-1$.

exemplum gratie:

Bad
$$T = I, S = 0$$

 $T = I, S = I$

Good
$$T = I, S = trid(-1, 2, -1)$$

 $T = trid(-1, 2, -1), S = trid(-1, 2, -1)$
 $T = trid(rnd_{sub}, rnd_{diag}, rnd_{sub}), S = I,$
with rnd_{sub} random number $\neq 0$.

Matrix storin

$$T = trid(sub, diag, super)$$

But T is symmetric, so sub = super. We define and use

```
integer, parameter :: dp = kind(1.d0)
real(dp), dimension(1:n,0:1) :: T, S
```

Listing 1: T, S as couple of array

```
with T(:,0) = diag and T(:,1) = super.
```

Remark

We don't use T(1,1) and S(1,1).

We want: Fast and secure iterative method.

Starting points for our method.

Scalability.

We have: Laguerre's method.

Cuppen's divide and conquer method.

Symmetric tridiagonal matrices.

We add: Unreducible condition.

Dynamic programming (Bottom-up).

Efficient matrix storing.

 $\mathcal{F}_{\mathcal{T},S}(\lambda)$ is a polynomial with only real zeros; we call them

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$

where we count with multiplicity.

 $\mathcal{F}_{T,S}(\lambda)$ is a polynomial with only real zeros; we call them

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$

where we count with multiplicity.

If λ_m and λ_{m+1} are simple zeros (mlt=1), then we consider x between them and the quadric

 $\mathcal{F}_{T,S}(\lambda)$ is a polynomial with only real zeros; we call them

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$

where we count with multiplicity.

If λ_m and λ_{m+1} are simple zeros (mlt=1), then we consider x between them and the quadric

$$g_u(X) = (x - X)^2 \sum_{i=1}^n \frac{(u - \lambda_i)^2}{(x - \lambda_i)^2} - (u - X)^2$$

 $\mathcal{F}_{T,S}(\lambda)$ is a polynomial with only real zeros; we call them

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$

where we count with multiplicity.

If λ_m and λ_{m+1} are simple zeros (mlt=1), then we consider x between them and the quadric

$$g_u(X) = (x - X)^2 \sum_{i=1}^n \frac{(u - \lambda_i)^2}{(x - \lambda_i)^2} - (u - X)^2$$

if $u \neq x$ then $g_u(x) < 0$ and $g_u(\lambda_m), g_u(\lambda_{m+1}) > 0$. So we have two sign change.

 $\mathcal{F}_{T,S}(\lambda)$ is a polynomial with only real zeros; we call them

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$

where we count with multiplicity.

If λ_m and λ_{m+1} are simple zeros (mlt=1), then we consider x between them and the quadric

$$g_u(X) = (x - X)^2 \sum_{i=1}^n \frac{(u - \lambda_i)^2}{(x - \lambda_i)^2} - (u - X)^2$$

if $\lfloor u \neq x \rfloor$ then $g_u(x) < 0$ and $g_u(\lambda_m), g_u(\lambda_{m+1}) > 0$. So we have two sign change.

Bolzano's Theorem tell us that there are two zeros of g_u between λ_m and λ_{m+1} . We call them X_-, X_+ .

$$\lambda_m < X_- < x < X_+ < \lambda_{m+1}$$

We have one freedom: the u parameter.

Calling $\hat{X}_- = min_u X_-$ and $\hat{X}_+ = max_u X_+$ we can obtain

$$\lambda_m \approx \hat{X}_- < x < \hat{X}_+ \approx \lambda_{m+1}$$

and with algebraic manipulations:

$$\hat{X}_{-}, \hat{X}_{+} = L_{\pm}(x) = x + \frac{n}{-\frac{f'}{f} \pm \sqrt{(n-1)[(n-1)(-\frac{f'}{f}) - n\frac{f''}{f}]}}$$

with
$$\frac{f'}{f} = \frac{(\mathcal{F}_{\mathcal{T},S}(\lambda))'}{\mathcal{F}_{\mathcal{T},S}(\lambda)}$$
.

So we need $\frac{f'}{f}$ and $\frac{f''}{f}$.

So we need $\frac{f'}{f}$ and $\frac{f''}{f}$.

This is one of the most important aspect of our calculation.

So we need $\frac{f'}{f}$ and $\frac{f''}{f}$. This is one of the most important aspect of our calculation. We will see that "only" with the symmetric tridiagonal condition we can have derivatives of determinats.

It's clear how we use
$$\lambda_m \approx \hat{X}_- < x < \hat{X}_+ \approx \lambda_{m+1}$$
 :

It's clear how we use
$$\lambda_m \approx \hat{X}_- < x < \hat{X}_+ \approx \lambda_{m+1}$$
 :
$$x_-^{(1)} \qquad x_0 \qquad x_+^{(1)} \qquad \cdots$$

It's clear how we use $\lambda_m \approx \hat{X}_- < x < \hat{X}_+ \approx \lambda_{m+1}$:

$$\begin{array}{cccc}
\lambda_m & \chi_0 & \lambda_{m+1} \\
\hline
 & \bigcirc & \bigcirc
\end{array}$$

Def (Laguerre's iteration)
 If
$$mlt(\lambda_m)=mlt(\lambda_{m+1})=1$$
 then
$$x_+^{(k)}=L_+^k(x)=L_+(L_+(\dots(x_0)))$$

$$x_-^{(k)}=L_-^k(x)=L_-(L_-(\dots(x_0)))$$

else we have a similar expression.

Def (Laguerre's iteration)

If
$$mlt(\lambda_m) = mlt(\lambda_{m+1}) = 1$$
 then

$$x_{+}^{(k)} = L_{+}^{k}(x) = L_{+}(L_{+}(\dots(x_{0})))$$

 $x_{-}^{(k)} = L_{-}^{k}(x) = L_{-}(L_{-}(\dots(x_{0})))$

else we have a similar expression.

Proof We can prove that

$$\lambda_m \leftarrow \dots x_-^{(2)} < x_-^{(1)} < x_0 < x_+^{(1)} < x_+^{(2)} \cdots \rightarrow \lambda_{m+1}$$

Def (Laguerre's iteration)

If $mlt(\lambda_m) = mlt(\lambda_{m+1}) = 1$ then

$$x_{+}^{(k)} = L_{+}^{k}(x) = L_{+}(L_{+}(\dots(x_{0})))$$

 $x_{-}^{(k)} = L_{-}^{k}(x) = L_{-}(L_{-}(\dots(x_{0})))$

else we have a similar expression.

Proof We can prove that

$$\lambda_m \leftarrow \dots x_-^{(2)} < x_-^{(1)} < x_0 < x_+^{(1)} < x_+^{(2)} \cdots \rightarrow \lambda_{m+1}$$

So Laguerre's method is secure.

We also have un important property:

Teo

If we choose* $\lambda_m < x_0$ s.t. $sign\Big(\frac{f'(x_0)}{f(x_0)}\Big) = sign(\lambda_m - x_0)$ then $\{x_-^{(k)}\}_{k=1,\dots}$ converge monotonically in asymptotically cubic rate to λ_m .

mon. cubic to λ_{m+1}

^{*}for $x_0 < \lambda_{m+1}$ s.t. $sign\Big(\frac{f^{'}(x_0)}{f(x_0)}\Big) = sign(\lambda_m - x_0)$ we have $\{x_+^{(k)}\}_{k=1,...}$ conv.

We also have un important property:

Teo

If we choose* $\lambda_m < x_0$ s.t. $sign\Big(\frac{f'(x_0)}{f(x_0)}\Big) = sign(\lambda_m - x_0)$ then $\{x_-^{(k)}\}_{k=1,\dots}$ converge monotonically in asymptotically cubic rate to λ_m .

So we can exactly define a neighborhood "near" λ and in it we have cubic rate convergence (much, much faster then simple bisection)

mon. cubic to λ_{m+1}

^{*}for $x_0 < \lambda_{m+1}$ s.t. $sign\left(\frac{f^{'}(x_0)}{f(x_0)}\right) = sign(\lambda_m - x_0)$ we have $\{x_+^{(k)}\}_{k=1,\dots}$ conv.

We also have un important property:

Teo

If we choose* $\lambda_m < x_0$ s.t. $sign\Big(\frac{f'(x_0)}{f(x_0)}\Big) = sign(\lambda_m - x_0)$ then $\{x_-^{(k)}\}_{k=1,\dots}$ converge monotonically in asymptotically cubic rate to λ_m .

So we can exactly define a neighborhood "near" λ and in it we have cubic rate convergence (much, much faster then simple bisection)

^{*}for $x_0 < \lambda_{m+1}$ s.t. $sign\left(\frac{f'(x_0)}{f(x_0)}\right) = sign(\lambda_m - x_0)$ we have $\{x_+^{(k)}\}_{k=1,\dots}$ conv. mon. cubic to λ_{m+1}

We also have un important property:

Teo

If we choose* $\lambda_m < x_0$ s.t. $sign\Big(\frac{f'(x_0)}{f(x_0)}\Big) = sign(\lambda_m - x_0)$ then $\{x_-^{(k)}\}_{k=1,\dots}$ converge monotonically in asymptotically cubic rate to λ_m .

So we can exactly define a neighborhood "near" λ and in it we have cubic rate convergence (much, much faster then simple bisection)

The Laguerre's method is fast.

^{*}for $x_0 < \lambda_{m+1}$ s.t. $sign\left(\frac{f'(x_0)}{f(x_0)}\right) = sign(\lambda_m - x_0)$ we have $\{x_+^{(k)}\}_{k=1,\dots}$ conv. mon. cubic to λ_{m+1}

It's clear that we need a powerfull method to obtain x_0 and an algorithm to estimate $mlt(\lambda_m)$.

Overstimate $mlt(\lambda_m)$ (as we can read in [?]) causes no trouble, so the most importan aspects of our calculation are:

Good x_0 .

Good evaluation of $L_{\pm}(x)$.

Complex case (little digression)

According to [?], we observe that searching $z \in \mathbb{C}$ such that $z^n-1=0$ for n>4 with Laguerre's method it's difficult because near the origin there is a Julia fractal set for starting point z_0 . (figure: n=6)

Complex case (little digression)

According to [?], we observe that searching $z \in \mathbb{C}$ such that $z^n-1=0$ for n>4 with Laguerre's method it's difficult because near the origin there is a Julia fractal set for starting point z_0 . (figure: n=6)

So if we want to solve the Generalized Eigenvalues Problem with $T, S \in \mathbb{C}$ we have great problems to place the starting point if n > 4.

Three term recurrence

For a generic $x \in \mathbb{R}$ we call $\rho_n(x) = \det(T_n - xS_n)$, and $\rho_{n-1}(x) = \det(T_{n-1} - xS_{n-1})$, with T_{n-1} leading principal submatrix.

We have

$$\begin{split} \rho_0 &:= 1 \text{ , } \rho_1 := t_{1,1} - x s_{1,1} \\ \rho_i &:= (t_{i,i} - x s_{i,i}) \rho_{i-1} - (t_{i-1,i} - x s_{i-1,i})^2 \rho_{i-2} \text{ , } i = 2, 3, \dots, n \end{split}$$

Three term recurrence

We can proove it with the Laplace expansion (e.g. n = 4)

$$T_{4} - xS_{4} = \begin{pmatrix} a & b & 0 & 0 \\ b & c & d & 0 \\ 0 & d & e & f \\ 0 & 0 & f & g \end{pmatrix}$$

$$det (T_{4} - \lambda S_{4}) = g \begin{bmatrix} a & b & 0 \\ b & c & d \\ 0 & d & e \end{bmatrix} - f \begin{bmatrix} a & b & 0 \\ b & c & d \\ 0 & 0 & f \end{bmatrix}$$

$$= g \begin{bmatrix} a & b & 0 \\ b & c & d \\ 0 & d & e \end{bmatrix} - f^{2} \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

We can proove it with the Laplace expansion (e.g. n = 4)

$$T_{4} - xS_{4} = \begin{pmatrix} a & b & 0 & 0 \\ b & c & d & 0 \\ 0 & d & e & f \\ 0 & 0 & f & g \end{pmatrix}$$

$$det(T_{4} - \lambda S_{4}) = g \begin{bmatrix} a & b & 0 \\ b & c & d \\ 0 & d & e \end{bmatrix} - f \begin{bmatrix} a & b & 0 \\ b & c & d \\ 0 & 0 & f \end{bmatrix}$$

$$= g \begin{bmatrix} a & b & 0 \\ b & c & d \\ 0 & d & e \end{bmatrix} - f^{2} \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

Remark

have

If
$$x = \lambda$$
 then $\rho_n(\lambda) = \mathcal{F}_{(T_n,S_n)}(\lambda) = f(\lambda)$

Remark (important results with proof in Appendice) $\rho_0, \rho_1, \ldots, \rho_n$ is a *Sturm sequence* of polynomials so, $\forall x \in \mathbb{R}$, we

$$\kappa(x) := \#$$
 eigenvalues less then x
 $\kappa(x) = \#$ consecutive sign changes in $\{\rho_i\}_{i=0,\dots,n}$

Obviusly
$$f' = \rho'_n, f'' = \rho''_n$$
.

Obviusly
$$f^{'}=\rho_{n}^{'}, f^{''}=\rho_{n}^{''}.$$
 So*

$$\mathsf{IF}\,\left(\kappa(\mathsf{x}_0) \geq m \;\mathsf{AND}\; -\frac{f'}{f} < 0\right) \;\mathsf{OR}\,\left(\kappa(\mathsf{x}_0) < m \;\mathsf{AND}\; -\frac{f'}{f} \geq 0\right) \;\mathsf{THEN}$$

Obviusly
$$f' = \rho'_n$$
, $f'' = \rho''_n$. So*

$$\mathsf{IF}\,\left(\kappa(\mathsf{x}_0) \geq m\;\mathsf{AND}\; -\frac{f'}{f} < 0\right)\;\mathsf{OR}\;\left(\kappa(\mathsf{x}_0) < m\;\mathsf{AND}\; -\frac{f'}{f} \geq 0\right)\;\mathsf{THEN}$$

We have cubic convergence in Laguerre's method with x_0 as starting point.

with bisection we can find the neighbourhood of λ_m

we can now use the Laguerre's iteration

We define
$$\xi_i = \frac{\rho_i}{\rho_{i-1}}$$
 for $i = 2, \dots, n$ and we have $\rho_i = \prod_{k=1}^n \xi_k$.

We define $\xi_i = \frac{\rho_i}{\rho_{i-1}}$ for $i=2,\ldots,n$ and we have $\rho_i = \prod_{k=1}^n \xi_k$. We also define $\eta_i = \frac{\rho_i'}{\rho_i}, \zeta_i = \frac{\rho_i''}{\rho_i}$ for $i=0,1,\ldots,n$ and we finally we have

$$\kappa(x) = \text{ number of negative terms in } \{\xi_i\}_{i=1}^n$$

$$-\frac{f'(x)}{f(x)} = \eta_n$$

$$\frac{f''(x)}{f(x)} = \zeta_n$$

So we have to calculate three three-term-recurrences.

So we have to calculate three three-term-recurrences. Total = 2 + 38n multiplications.

So we have to calculate three three-term-recurrences.

Total = 2 + 38n multiplications.

For every step in Laguerre's iteration we have to do 2+7+38n multiplications and 1 square root extraction. Because the convergence is cubic we hope in a small number of iteration.

It's a common knowledge that three-term-recurrences suffer from severe overflow and underflow problems, and because of the we use ξ_i instead of ρ_i :

It's a common knowledge that three-term-recurrences suffer from severe overflow and underflow problems, and because of the we use ξ_i instead of ρ_i :

$$\xi_i = \frac{\rho_i}{\rho_{i-1}}$$
, it's self-scaled.

It's a common knowledge that three-term-recurrences suffer from severe overflow and underflow problems, and because of the we use ξ_i instead of ρ_i :

$$\xi_i = \frac{\rho_i}{\rho_{i-1}}$$
, it's self-scaled.

Teo

$$f[f(x)] = f[det[T - xS]] = (1 + \gamma)det[(T + \delta T) - x(S + \delta S)]$$

where $|\gamma| \leq n\epsilon$, with ϵ machine precision, and both δT and δS are symmetric tridiagonal matrices satisfying entrywise inequalities $|\delta T|_{\infty} \leq 2.51\epsilon |T|_{\infty} + \sqrt{\epsilon_u}, |\delta S|_{\infty} \leq 3.51\epsilon |S|_{\infty}$, where ϵ_u is the underflow threshold (in double precision is 10^{-308}).

We are interested not only in $\mathrm{fl}[f(x)]=\mathrm{fl}\Big[\prod_{i=1}^n\mathrm{fl}[\xi_i]\Big]$, but also in $\mathrm{fl}[\eta_n]$ and $\mathrm{fl}[\zeta_n]$, because we use these three value to colculate the Laguerre's iteration.

We are interested not only in $\mathrm{fl}[f(x)]=\mathrm{fl}\Big[\prod_{i=1}^n\mathrm{fl}[\xi_i]\Big]$, but also in $\mathrm{fl}[\eta_n]$ and $\mathrm{fl}[\zeta_n]$, because we use these three value to colculate the Laguerre's iteration.

The authors doesn't report this important aspect of analysis.

We are interested not only in $\mathrm{fl}[f(x)]=\mathrm{fl}\Big[\prod_{i=1}^n\mathrm{fl}[\xi_i]\Big]$, but also in $\mathrm{fl}[\eta_n]$ and $\mathrm{fl}[\zeta_n]$, because we use these three value to colculate the Laguerre's iteration.

The authors doesn't report this important aspect of analysis.

Searching initial points

We want: Fast and secure iterative method.

Starting points for our method.

Scalability.

We have: Laguerre's method.

Cuppen's divide and conquer method.

Symmetric tridiagonal matrices.

We add: Unreducible condition.

Dynamic programming (Bottom-up).

Efficient matrix storing.

If n=1 we have $t\cdot v=\lambda\cdot s\cdot v.$ $s\neq 0$, so $\lambda=\frac{t}{s}$.

If
$$n=1$$
 we have $t\cdot v=\lambda\cdot s\cdot v$. $s\neq 0$, so $\lambda=\frac{t}{s}$. If $n=2$ we have $\begin{bmatrix} t_{1,1} & t_{1,2} \\ t_{2,1} & t_{2,2} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \lambda \begin{bmatrix} s_{1,1} & s_{1,2} \\ s_{2,1} & s_{2,2} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$

If n=1 we have $t\cdot v=\lambda\cdot s\cdot v$. $s\neq 0$, so $\lambda=\frac{t}{s}$. If n=2 we have $\begin{bmatrix} t_{1,1} & t_{1,2} \\ t_{2,1} & t_{2,2} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \lambda \begin{bmatrix} s_{1,1} & s_{1,2} \\ s_{2,1} & s_{2,2} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ calling*

$$S^{-1}T = \delta^{-1} \cdot \begin{pmatrix} \alpha & \gamma \\ \gamma & \beta \end{pmatrix}$$

we resolve $det[S^{-1}T - \lambda I] = 0$ with

$$\lambda_{1,2} = \frac{1}{2\delta} \left(\alpha + \beta \pm \sqrt{\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta} \right)$$

$$\frac{}{}^*\alpha = s_{2,2}t_{1,1} - s_{1,2}t_{1,2}, \beta = -s_{1,2}t_{1,2} + s_{1,1}t_{2,2}
\gamma = -s_{1,2}t_{1,2} + s_{1,1}t_{1,2}, \delta = s_{1,1}s_{2,2} - s_{1,2}^2.$$

And if n = 4?

$$\begin{pmatrix} t_{1,1} & t_{1,2} & 0 & 0 \\ t_{2,1} & t_{2,2} & t_{2,3} & 0 \\ 0 & t_{3,2} & t_{3,3} & t_{3,4} \\ 0 & 0 & t_{4,3} & t_{4,4} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} = \lambda \begin{pmatrix} s_{1,1} & s_{1,2} & 0 & 0 \\ s_{2,1} & s_{2,2} & s_{2,3} & 0 \\ 0 & s_{3,2} & s_{3,3} & s_{3,4} \\ 0 & 0 & s_{4,3} & s_{4,4} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix}$$

And if n = 4?

$$\begin{pmatrix} t_{1,1} & t_{1,2} & 0 & 0 \\ t_{2,1} & t_{2,2} & t_{2,3} & 0 \\ 0 & t_{3,2} & t_{3,3} & t_{3,4} \\ 0 & 0 & t_{4,3} & t_{4,4} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} = \lambda \begin{pmatrix} s_{1,1} & s_{1,2} & 0 & 0 \\ s_{2,1} & s_{2,2} & s_{2,3} & 0 \\ 0 & s_{3,2} & s_{3,3} & s_{3,4} \\ 0 & 0 & s_{4,3} & s_{4,4} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix}$$

And if n = 4?

$$\begin{pmatrix} t_{1,1} & t_{1,2} & 0 & 0 \\ t_{2,1} & t_{2,2} & 0 & 0 \\ 0 & 0 & t_{3,3} & t_{3,4} \\ 0 & 0 & t_{4,3} & t_{4,4} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} = \lambda \begin{pmatrix} s_{1,1} & s_{1,2} & 0 & 0 \\ s_{2,1} & s_{2,2} & 0 & 0 \\ 0 & 0 & s_{3,3} & s_{3,4} \\ 0 & 0 & s_{4,3} & s_{4,4} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix}$$

And if n = 4?

$$\begin{pmatrix} t_{1,1} & t_{1,2} & 0 & 0 \\ t_{2,1} & t_{2,2} & \mathbf{0} & 0 \\ 0 & \mathbf{0} & t_{3,3} & t_{3,4} \\ 0 & 0 & t_{4,3} & t_{4,4} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} = \lambda \begin{pmatrix} s_{1,1} & s_{1,2} & 0 & 0 \\ s_{2,1} & s_{2,2} & \mathbf{0} & 0 \\ 0 & \mathbf{0} & s_{3,3} & s_{3,4} \\ 0 & 0 & s_{4,3} & s_{4,4} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix}$$

We can solve the blue part and obtain μ_1, μ_2 , the cyan part and obtain μ_3, μ_4 .

From μ_j we can enter in our "neighbourhood" of λ_j using simple bisection:

^{*}This is the most important part of our method.

From μ_j we can enter in our "neighbourhood" of λ_j using simple bisection:

Speudocode:

```
set a_j = 0 and b_j = \mu_j

set x = \mu_j

# IF \kappa(x) < j

THEN set a_j = x

ELSE set b_j = x

*IF -\frac{f'(x)}{f(x)} = sign(\lambda_j - x)

THEN stop

ELSE set x = \frac{b_j - a_j}{2} and go to #
```

Authors of [?, ?] doesn't explain this point.

^{*}This is the most important part of our method.

$$x_0^1, L(x_0^1), L(L(x_0^1)), \cdots \rightsquigarrow \lambda_1$$

$$x_0^2, L(x_0^2), L(L(x_0^2)), \cdots \rightsquigarrow \lambda_2$$
Hopefully we have
$$x_0^3, L(x_0^3), L(L(x_0^3)), \cdots \rightsquigarrow \lambda_3$$

$$x_0^4, L(x_0^4), L(L(x_0^4)), \cdots \rightsquigarrow \lambda_4$$

Consider (\hat{T}, \hat{S}) with

$$\hat{T} = \begin{pmatrix} T_0 & 0 \\ 0 & T_1 \end{pmatrix}$$

$$\hat{S} = \begin{pmatrix} S_0 & 0 \\ 0 & S_1 \end{pmatrix}$$

with T_0, T_1, S_0, S_1 symmetric tridiagonal, and let be

$$\hat{\lambda}_1 \leq \hat{\lambda}_2 \leq \dots \leq \hat{\lambda}_n$$

eigenvalues of (\hat{T}, \hat{S}) , they are what we call μ_1, \ldots, μ_n .

Teo (A sort of "interlacing" with ▶ proof)

$$-\infty < \lambda_1 \le \hat{\lambda}_1$$
$$\hat{\lambda}_{i-1} \le \lambda_i \le \hat{\lambda}_{i+1}$$
$$\hat{\lambda}_n \le \lambda_n < \infty$$

with i = 2, 3, ..., n - 1.

Remark

It's possible that

Teo (A sort of "interlacing" with ▶ proof)

$$-\infty < \lambda_1 \le \hat{\lambda}_1$$
$$\hat{\lambda}_{i-1} \le \lambda_i \le \hat{\lambda}_{i+1}$$
$$\hat{\lambda}_n \le \lambda_n < \infty$$

with i = 2, 3, ..., n - 1.

Remark

It's possible that

Teo (A sort of "interlacing" with ▶ proof)

$$-\infty < \lambda_1 \le \hat{\lambda}_1$$
$$\hat{\lambda}_{i-1} \le \lambda_i \le \hat{\lambda}_{i+1}$$
$$\hat{\lambda}_n \le \lambda_n < \infty$$

with i = 2, 3, ..., n - 1.

Remark

It's possible that

Remark

Our method is monotonic

Remark

Our method is monotonic

We can reach λ_2 only from $\hat{\lambda}_2$, moving from left to right (and similar λ_3 only from $\hat{\lambda}_3$, moving from right to left).

Remark

Our method is monotonic

We can reach λ_2 only from $\hat{\lambda}_2$, moving from left to right (and similar λ_3 only from $\hat{\lambda}_3$, moving from right to left). If $|\lambda_2 - \lambda_3| < 10^{-14}$ we can have trobles.

Remark

Our method is monotonic

We can reach λ_2 only from $\hat{\lambda}_2$, moving from left to right (and similar λ_3 only from $\hat{\lambda}_3$, moving from right to left).

If $|\lambda_2 - \lambda_3| \le 10^{-14}$ we can have trobles.

Luckily we also have a multiplicity estimator (called EstMlt) that works only with $\hat{\lambda}_1, \ldots, \hat{\lambda}_n$

Remark

Our method is monotonic

We can reach λ_2 only from $\hat{\lambda}_2$, moving from left to right (and similar λ_3 only from $\hat{\lambda}_3$, moving from right to left).

If $|\lambda_2 - \lambda_3| \le 10^{-14}$ we can have trobles.

Luckily we also have a *multiplicity estimator* (called EstMlt) that works only with $\hat{\lambda}_1, \dots, \hat{\lambda}_n$.

If mlt=2 then we consider $\lambda_2=\lambda_3$, i.e. we said that λ_2 has multiplicity 2.

EstMIt

We have j, x, $\operatorname{sgn}\left(-\frac{f'(x)}{f(x)}\right)$ and $\hat{\lambda}_1, \dots, \hat{\lambda}_n$ as *INPUT*.

Speudocode:

```
mlt = 1
do k = 1,...

m = j + k \operatorname{sgn}\left(-\frac{f'(x)}{f(x)}\right)
 if m \leq 0 then
 something goes wrong
  go to #
 end if
 if |\hat{\lambda}_j - \hat{\lambda}_m| \leq 0.01 |\hat{\lambda}_j - x| then
 mlt = mlt + 1
 else go to #
  end if
```

Appendice A: proof of Laguerre's convergence

According to [?, p.444] we can write

$$x_{\pm}^{(k+1)} = x_{\pm}^{(k)} - \frac{nf}{f' \pm H^{\frac{1}{2}}}$$

$$H = (n-1)^2 (f')^2 - n(n-1)ff''$$

If we choose the sign so that the $|f'\pm H^{\frac{1}{2}}|$ has the larger absolute value then we can approx $x_+^{(k+1)}-\lambda_m$ as

$$x_{\pm}^{(k+1)} - \lambda_m \approx \frac{1}{2} (x_{\pm}^{(k)} - \lambda_m)^3 \frac{(n-1)\Sigma_2' - (\Sigma_1')^2}{n-1}$$

$$\Sigma_2' = \sum_{i \neq n} \frac{1}{(\lambda_m - \lambda_i)^2}$$

$$\Sigma_1' = \sum_{i \neq n} \frac{1}{\lambda_m - \lambda_i}$$

Appendice A: proof of Laguerre's convergence

So we have convergence and $x_{\pm}^{(k+1)} - \lambda_m \approx \text{number } (x_{\pm}^{(k)} - \lambda_m)^3$ tell us that the convergence is cubic.

Appendice B: proof of property about Sturm sequence

Def

For $\alpha \in [0,1]$ we define the pencil $(T(\alpha), S(\alpha)) := ((1-\alpha)\hat{T} + \alpha T, (1-\alpha)\hat{S} + \alpha S).$

Lemm

 $(T(\alpha), S(\alpha))$ is a symmetric definite pencil for each $\alpha \in [0, 1]$. Calling $\lambda_1(\alpha) \le \lambda_2(\alpha) \le \cdots \le \lambda_n(\alpha)$ the n real eigenvalues of the pencil $(T(\alpha), S(\alpha))$ we have

Lemm

Each $\lambda_i(\alpha)$ is a continuous function of $\alpha \in [0,1]$.

Teo (A sort of "interlacing")

$$-\infty < \lambda_1 \le \hat{\lambda}_1$$
$$\hat{\lambda}_{i-1} \le \lambda_i \le \hat{\lambda}_{i+1}$$
$$\hat{\lambda}_n \le \lambda_n < \infty$$

with
$$i = 2, 3, ..., n - 1$$
.

Teo (A sort of "interlacing")

$$-\infty < \lambda_1 \le \hat{\lambda}_1$$
$$\hat{\lambda}_{i-1} \le \lambda_i \le \hat{\lambda}_{i+1}$$
$$\hat{\lambda}_n \le \lambda_n < \infty$$

with i = 2, 3, ..., n - 1.

Classic interlacing still works for $-\infty < \lambda_1 \le \hat{\lambda}_1$ and for $\hat{\lambda}_n \le \lambda_n < \infty$.

Teo (A sort of "interlacing")

$$-\infty < \lambda_1 \le \hat{\lambda}_1$$
$$\hat{\lambda}_{i-1} \le \lambda_i \le \hat{\lambda}_{i+1}$$
$$\hat{\lambda}_n \le \lambda_n < \infty$$

with i = 2, 3, ..., n - 1.

Classic interlacing still works for $-\infty < \lambda_1 \le \hat{\lambda}_1$ and for $\hat{\lambda}_n \le \lambda_n < \infty$.

We have to proove that $\lambda_i \geq \hat{\lambda}_{i-1}$ (and similar $\lambda_i \leq \hat{\lambda}_{i+1}$).

```
(Proof by contradiction) if we consider \lambda_i < \hat{\lambda}_{i-1} for some i \in \{2, 3, ..., n-1\} (that, in our new writing, is \lambda_i(1) < \lambda_{i-1}(0) because all \lambda_j(1) are eigenvalues of (T, S) and all \lambda_j(0) are eigenvalues of (\hat{T}, \hat{S})) then
```

(Proof by contradiction) if we consider $\lambda_i < \hat{\lambda}_{i-1}$ for some $i \in \{2,3,\ldots,n-1\}$ (that, in our new writing, is $\lambda_i(1) < \lambda_{i-1}(0)$ because all $\lambda_j(1)$ are eigenvalues of (T,S) and all $\lambda_j(0)$ are eigenvalues of (\hat{T},\hat{S})) then

(Proof by contradiction) if we consider $\lambda_i < \hat{\lambda}_{i-1}$ for some $i \in \{2,3,\ldots,n-1\}$ (that, in our new writing, is $\lambda_i(1) < \lambda_{i-1}(0)$ because all $\lambda_j(1)$ are eigenvalues of (T,S) and all $\lambda_j(0)$ are eigenvalues of (\hat{T},\hat{S})) then

$$\lambda_{i}(1)$$
 $\lambda_{i}(0)$ $\lambda_{i-1}(1)$ $\lambda_{i-1}(0)$

in symbols: $\lambda_{i-1}(1) \leq \lambda_i(1) < \lambda_{i-1}(0) \leq \lambda_i(0)$.

(Proof by contradiction) if we consider $\lambda_i < \hat{\lambda}_{i-1}$ for some $i \in \{2, 3, \dots, n-1\}$ (that, in our new writing, is $\lambda_i(1) < \lambda_{i-1}(0)$ because all $\lambda_j(1)$ are eigenvalues of (T, S) and all $\lambda_j(0)$ are eigenvalues of (\hat{T}, \hat{S})) then

in symbols: $\lambda_{i-1}(1) \leq \lambda_i(1) < \lambda_{i-1}(0) \leq \lambda_i(0)$. For all $\tilde{\lambda} \in [\lambda_i(1), \lambda_{i-1}(0)]$ we can find α_i, α_{i-1} such as $\tilde{\lambda} = \lambda_i(\alpha_i) = \lambda_{i-1}(\alpha_{i-1})$.

$$H(\alpha, \lambda) := det[T(\alpha) - \lambda S(\alpha)] =$$

$$\begin{bmatrix} \vdots & \vdots & \vdots \\ \alpha(t_{k,k+1} - s_{k,k+1}) & t_{k,k} - \lambda s_{k,k} \\ \alpha(t_{k,k+1} - s_{k,k+1}) & t_{k+1,k+1} - \lambda s_{k+1,k+1} \end{bmatrix}$$

▶ back

Appendice D: code

Grazie per l'attenzione.