Motivation Logic Gates **Gate Parameters** Conclusion Logic and Reasoning

> EN1012 Electronic Devices and Circuits Topic 6 - The Bridge to Digital Electronics

> > Upeka Premaratne

Department of Electronic and Telecommunication Engineering

October 30, 2017

Upeka Premaratne EN1012 Electronic Devices and Circuits Motivation Logic and Reasoning Logic Gates **Gate Parameters** Conclusion

Motivation

Conclusion Motivation Logic Gates **Gate Parameters** Logic and Reasoning Outline

- Motivation
- 2 Logic and Reasoning
 - Boolean Algebra
- 3 Logic Gates
- 4 Gate Parameters
- Conclusion

- Why was the abacus invented?
 - ▶ To make trade and commerce easier
- Deals with discrete numbers

Motivation Logic and Reasoning Logic Gates Gate Parameters Conclusion

Analog to Digital

- Computing is all about discrete mathematical operations
 - Decimal in the abacus
 - ightharpoonup The simplest discrete numbers are 0 and 1
- Computing devices need hardware to realize this discrete representation
 - ► Transistors in cutoff and saturation
 - Digital electronics requires analog hardware operating like switches
- Continuous values cannot be realized in a computer
 - ► Have to be approximated

- In addition it is possible to have
 - Error detection and correction (e.g. parity checks)
 - Data compression
 - Encryption

Signal Transmission (Analog)

Logic and Reasoning

4□ > 4回 > 4 = > 4 = > = 900

Motivation Logic and Reasoning Logic Gates Gate Parameters Conclusion

Prepositional Logic

- In prepositional logic a statement (premise) can be true or false
 - 1 Planet earth is flat
 - 2 Money does not grow on trees
 - 3 Capital punishment prevents crime
 - 4 A leopard killing a deer is bad
- Statements 1 (false) and 2 (true) fall under prepositional logic
- Statement 3 is both true and false
- Statements 4 is neither true nor false (Belnap logic)

Logical Reasoning and Computing (Contd..)

A logic system can always have *conundrums* i.e., statements that "do not compute"

- Example 1:
 - Statement 1: X (a barber) says "I shave anyone who cannot shave themselves and no one else"
 - ▶ Statement 2: X is clean shaven
- Example 2:
 - ► Statement 1: Y says "All politicians are liars"
 - ▶ Statement 2: Y is a politician
- Nothing can be *reasoned* from the above examples.

Motivation Logic and Reasoning

ning Logic Gates Gate Parameters

Conclusion

Logical Reasoning and Computing

- Based upon the "truth" of the type of mathematical logic used
- The truth can never be absolute, depends on the axioms on which the mathematical logic is based upon (Shönfinkel 1924)
 - A system of logic cannot be both *complete* and *consistent* (Gödel's First Incompleteness Theorem)
 - ▶ A theory is *complete* if a formula Φ can either be Φ or $\overline{\Phi}$ can be reasoned from it (cannot have any *conundrums*)
 - ▶ A theory is *consistent* if an evaluated truth is always true (or vice versa) regardless of how it is evaluated. i.e., a result cannot be true when evaluated using one method and false if evaluated by some other method.

Logic and common sense in conflict

- Example 1 (Karl Popper's Paradox):
 - ▶ In a tolerant society should you tolerate intolerance?
- Example 2:
 - ▶ Do not use the lift in case of fire.

For the two examples, the results of logical and common sense based reasoning are in conflict.

Motivation Logic and Reasoning Logic Gates Gate Parameters

●○○○○○

Boolean Algebra

Boolean Algebra

- Boolean algebra is a mathematical representation of prepositional logic
 - lacktriangle A boolean variable X represents a logical premise
 - $X \in \mathcal{B} = \{T, F\} = \{1, 0\}$ (\mathcal{B} is the Boolean space)
- Basic operators
 - ▶ NOT operator (negation) $\neg A$ is False if A is True
 - ▶ OR operator (addition) True of either A or B or both are True
 - ightharpoonup AND operator (multiplication) True iff both A and B are True

Motivation	Logic and Reasoning ○●○○○○	Logic Gates	Gate Parameters	Conclusion
Boolean Algebra				
Boolean A	Algebra (Contd	.)		

- Tautology: an expression that is always True
- Contradiction: an expression that is always False
- Implication $A \Rightarrow B$
 - ▶ *A* is the *antecedent* and *B* is the *consequent*
 - ightharpoonup An implication is False only if A is True and B is False
- **Equivalence** $A \Leftrightarrow B$
 - lacktriangleright An equivalence is True iff A and B are both True or both False

$\begin{array}{cccc} \text{No. Name} & \text{Properties} \\ 1 & \text{Closure} & 0, 1 \in \mathcal{B} \\ 2 & \text{Identity Elements} & X+0=X \\ & & X \cdot 1 = X \\ 3 & \text{Commutativity} & X+Y=Y+X \\ & & X \cdot Y=Y \cdot X \end{array}$

■ Commutativity: elements are independent of order

$\begin{array}{cccc} \text{No. Name} & \text{Properties} \\ \text{4 Distributivity} & X \cdot (Y+Z) = X \cdot Y + X \cdot Z \\ & X+Y \cdot Z = (X+Y) \cdot (X+Z) \\ \text{5 Complement} & X+\overline{X}=1 \\ & X \cdot \overline{X}=0 \\ \text{6 Distinct Elements} & 0 \neq 1 \end{array}$

■ Duality: every algebraic expression obtained using Hundingdon's Postulates are true when the operators $(+\leftrightarrow\cdot)$ and identity elements $(0\leftrightarrow1)$ are interchanged.

Conclusion

Motivation Logic and Reasoning Conclusion

OOOO●

Boolean Algebra

Conclusion

Theorems of Boolean Algebra

Basic Theore	ms	
No.	Name	Result
1		X + X = X
		$X \cdot X = X$
2		X + 1 = 1
		$X \cdot 0 = 0$
3	Involution (Double Negation)	$\overline{X} = X$

1 1 1	1 LP /	1 =	7 7 = 7	=	*) 4 (*
4 0 6	- A - A - A - A - A - A - A - A - A - A	2 E	▶ < ∃ >	-	000

Upeka Premaratno	e EN1012 Electronic	c Devices and Circuits	
ogic and Reasoning	Logic Gates	Gate Parameters	Conclusion

Logic Gates

Motivation Logic and Reasoning Logic Gates Gate Parameters Conclusion

Boolean Algebra

Theorems of Boolean Algebra (Contd..)

orems or Boolean ringebra (contain

Logic gates realize Boolean operators in electronic circuits

- Basic Gates (Basic Operators)
 - ► NOT, OR, AND
- Derived Gates
 - ► NOR, NAND, XOR, XNOR
- Special Gates
 - ► Tri-State buffers and inverters

Each gate consists of a *symbol* and *truth table* that describes its operation. Later on it will be shown how logic gates are implemented using electronic components.

Motivation

Logic and Reasoning

Logic Gates

Gate Parameters

Conclusion

Motivation

OR Gate

Logic and Reasoning

Logic Gates

Gate Parameters

Conclusion

NOT Gate

Symbol

Truth Table

Α	Z
0	1
1	0

$$Z = \overline{A}$$

Symbol

Truth Table

Α	В	Z
0	0	0
0	1	1
1	0	1
1	1	1

$$Z = A + B$$

4□ > 4□ > 4 = > 4 = > = 90

	Upeka Pre	maratne	EN1012 Ele	ectronic Devices and Circuits	
Motivation	Logic and Reasoning	Logi	c Gates	Gate Parameters	Conclusion
AND Gate					

Symbol

Truth Table

Α	В	Z
0	0	0
0	1	0
1	0	0
1	1	1

$$Z = A \cdot B$$

◆□▶◆□▶◆■▶◆■▶ ■ り9℃

	Upeka Pre	maratne EN1012	! Electronic Devices and Circuits	
Motivation	Logic and Reasoning	Logic Gates	Gate Parameters	Conclusion
NOR Ga	nte			

Symbol

Truth Table

Α	В	Z
0	0	1
0	1	0
1	0	0
1	1	0

$$Z = \overline{A + B}$$

Motivation

Logic and Reasoning

Logic Gates

Gate Parameters

Conclusion

XOR Gate

NAND Gate

Symbol

Truth Table

В	Z
0	1
1	1
0	1
1	0
	0

$$Z = \overline{A \cdot B}$$

Symbol

Truth Table

Α	В	Z
0	0	0
0	1	1
1	0	1
1	1	0

$$Z = A \oplus B = \overline{A} \cdot B + A \cdot \overline{B}$$

EN1012 Electronic Devices and Circuits Upeka Premaratne Motivation Logic and Reasoning Logic Gates **Gate Parameters** Conclusion **XNOR Gate**

Truth Table

	Α	В	Z	
	0	0	1	
Г	0	1	0	
	1	0	0	
	1	1	1	

$$Z = \overline{A \oplus B} = \overline{A} \cdot \overline{B} + A \cdot B$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

	Upeka Pre	maratne EN:	012 Electronic Devices and Circuits	
Motivation	Logic and Reasoning	Logic Gate	s Gate Parameters	Conclusion
Tri-Stat	e Buffer			

Symbol

- When C = 0
 - ► Open Circuit (hi-Z)
- When C = 1
 - ightharpoonup Z = A

Motivation

Logic and Reasoning

Logic Gates

Gate Parameters

Conclusion Motivation

Logic and Reasoning

Logic Gates

Gate Parameters

Conclusion

Tri-State Inverter

- When C=1
 - ► Open Circuit (hi-Z)
- When C = 0
 - $ightharpoonup Z = \overline{A}$

Gate Parameters

Motivation Logic and Reasoning

EN1012 Electronic Devices and Circuit

Gate Parameters

Conclusion

Gate Parameters

- Main two families
 - ► Transistor Transistor Logic (TTL)

Upeka Premaratne

► Complementary Metal Oxide Semiconductor (CMOS) Logic

Logic Gates

- CMOS is sensitive to static electricity, requires less energy than TTL but also slower
- Main parameters
 - Propagation delay
 - ► Transition time
 - Detection thresholds
 - ► Fan out

■ Propagation delay can result in *glitches* and *race-hazards*

Motivation Conclusion Logic Gates **Gate Parameters** Logic and Reasoning

Detection Thresholds

■ Logic '0' and '1' are detected differently

Motivation Logic and Reasoning Logic Gates **Gate Parameters** Conclusion

Conclusion

Conclusion Motivation Logic Gates **Gate Parameters** Logic and Reasoning Fan Out

■ Loading due to fan out can result in incorrect detection

- Digital electronics (discrete) is more versatile than analog electronics
 - ▶ However, digital electronic devices are fabricated using analog components
- Has a mathematical foundation
 - ▶ Prepositional logic
 - ► Boolean algebra
 - ► Analog components have a quantum mechanic foundation
- The fundamental elements of a digital circuits are logic gates
 - Realized using TTL or CMOS technology

Motivation Logic and Reasoning Logic Gates Gate Parameters Conclusion

Next Lecture...

Basic Digital Circuits

Upeka Premaratne

EN1012 Electronic Devices and Circuits