МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа природных ресурсов Направление подготовки 18.04.01 «Химическая технология» Образовательная программа «Химическая технология подготовки нефти и газа»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 5

По дисциплине	
РҮТНО N ДЛЯ ЗАДАЧ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ	

Студент

Группа		ппа ФИО		Дата
	2ДМ22	Лукьянов Д.М.	My	26.12.2023

Руководитель

	Должность	ФИО	Ученая степень, звание	Подпись	Дата
доц	ент ОХИ ИШПР	Чузлов В.А.	к.т.н.		27.12.2023

ЗАДАНИЕ 1

Дана база данных по индивидуальным компонентам и их физикохимическим параметрам в виде электронной таблицы с расширеним файла .xlsx.

В столбце class содержится информация о классе углеводорода, к которому принадлежит данный компонент: 'P' – парафиновые, 'N' – нафтеновые, 'A' – ароматические углеводороды.

Описание других важных полей базы данных приведено в таблице:

Наименование поля	Описание		
'MolecularWeight'	Молярная масса компонента, г/моль		
'NormalBoilingPoint'	Температура кипения при		
	атмосферном давлении, °С		
'StdLiquidDensity'	Плотность компонента по жидкости		
	при стандартных условиях, кг/м ³		
'С'	Число атомов углерода в молекуре		
	углеводорода		

- 1. Считайте данную базу в объект pandas. DataFrame.
- 2. Из полученного объекта pandas. DataFrame получите данные для компонентов, принадлежащих классам парафиновых, нафтеновых и ароматических углеводородов и сохраните эти данные в отдельный объект pandas. DataFrame.
- 3. Для углеводородов указанных выше классов усредните значения молярной массы, плотности и температуры кипения в соответствии с числом атомов углерода и классом углеводорода.
- 4. Постройт точечную диаграмму (scatter) зависимости плотности жидкости от температуры кипения для каждого класса углеводородов (на одном графике).

Программмная реализация:

Cell 1

import pandas as pd

import matplotlib.pyplot as plt

import random as rnd

import numpy as np

```
Cell 2
df = pd.read_excel('compounds_data.xlsx')
df
Cell 3
new_df = df[df['class'].isin(['P', 'N', 'A'])]
new_df[['C', 'class', 'MolecularWeight', 'StdLiquidDensity',
        'NormalBoilingPoint']].groupby(['C', 'class']).mean().head(20)
Cell 4
fig, ax = plt.subplots(figsize=(10,8))
classes = list(new_df['class'].unique())
n_colors = len(classes)
colours = cm.rainbow(np.linspace(0, 1, n_colors))
for n, cl in enumerate(classes):
    c=colours[n].reshape(1,-1)
    new_df[new_df['class'] == cl].plot(x='NormalBoilingPoint',
           y='StdLiquidDensity', kind='scatter',
           ax=ax, label=cl, color=c, fontsize=14)
plt.legend(fontsize=14)
ax.set_ylabel('Плотность в жидком состоянии, кг/м$^3$', fontsize=14)
ax.set_xlabel('Температура кипения, °C', fontsize=14);
```

Ответ:

Out [3]:

		MolecularWeight	${\bf StdLiquidDensity}$	Normal Boiling Point
С	class			
1.0	Р	16.042900	299.394012	-161.525000
2.0	Р	30.069901	355.683014	-88.599997
3.0	N	42.080300	507.402801	-32.778388
	Р	44.097000	506.678009	-42.101996
4.0	N	56.109233	662.207461	8.583300
	Р	58.124001	572.594513	-6.115988
5.0	N	69.795834	661.754191	37.627448
	Р	72.151001	616.254679	24.478347
6.0	Α	78.110001	882.190002	80.089014
	N	82.592868	791.611093	77.639489
	Р	86.177902	660.917615	59.993811
7.0	Α	92.140800	870.044006	110.649011
	N	97.833572	768.834447	97.680627
	Р	100.205002	688.922791	87.799341
8.0	Α	105.157000	887.817017	141.417678
	N	111.942500	781.669107	95.910870
	Р	114.232002	713.615736	113.716896
9.0	Α	118.884301	898.054263	169.092960
	N	125.822647	801.822050	140.673082
	Р	128.259003	731.970183	137.312953

