Resultados Básicos Sobre Matrizes

Alessandro Martim Marques

Finanças Quantitativas - MPFE - EESP - FGV

22 de novembro de 2012

Matrizes (Conceitos Básicos) I

Notação:

- ► **A** = $[a_{ij}]$: matriz de ordem $m \times n$
- ► A^{T} : matriz transposta $n \times m$
- ightharpoonup A matriz identidade de ordem n será indicada por \mathbb{I}_n

Dadas: $\mathbf{A}_{(m \times n)}$ e $\mathbf{B}_{(n \times r)}$, o produto \mathbf{AB} é a matriz $\mathbf{C} = [c_{ij}]$ de ordem $m \times r$, cujos elementos c_{ij} são dados por:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Em geral:

$$AB \neq BA$$
 mas $A(BC) = (AB)C = ABC$

Uma matriz $\mathbf{A}_{m \times n}$ é:

► **ortogonal** se $m = n e \mathbf{A}^T \mathbf{A} = \mathbb{I}_n$

Matrizes (Conceitos Básicos) II

- ► simétrica se $m = n e A^T = A$
- ▶ não negativa definida ($A \ge 0$) se for simétrica e se, para todo vetor **x** de ordem $m \times 1$:

$$\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \sum_{i,j=1}^{m} a_{ij} x_i x_j \ge 0$$

► positiva definida (A > 0) se $x^T A x > 0$ para todo $x \ne 0$

Observação: a expressão $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$ é dita uma **forma quadrática** nas variáveis x_1, \ldots, x_m e à elas aplicam-se as nomenclaturas definidas acima.

Matrizes (Traço) I

Se **A** é uma matriz quadrada de ordem m, seu **traço** é definido por:

$$Tr(\mathbf{A}) = \sum_{i=1}^{m} a_{ii}$$

Se $\mathbf{A}_{(m \times n)}$ e $\mathbf{B}_{(n \times m)}$:

- $Tr(\mathbf{A}^{\mathrm{T}}) = Tr(\mathbf{A})$
- $Tr(\mathbf{A} + \mathbf{B}) = Tr(\mathbf{A}) + Tr(\mathbf{B})$
- $Tr(\mathbf{AB}) = Tr(\mathbf{BA})$

Matrizes (Determinante) I

Se A é uma matriz quadrada de ordem m, real, seu determinante, denotado por por |A| é a única função real dos elementos de A tal que

$$|\mathbf{A}\mathbf{B}| = |\mathbf{A}| \, |\mathbf{B}|$$

para toda matriz **B** de ordem m. $|\Gamma| = \gamma$, $\forall \gamma$, se

$$\mathbf{\Gamma} = \begin{bmatrix} \gamma & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Matrizes (Posto) I

O **posto** de uma matriz **A**, denotado por $\rho(\mathbf{A})$ é o número de linhas (ou colunas) linearmente independentes de **A**; ou é a ordem da maior submatriz de **A** com determinante não nulo.

Uma matriz quadrada **A**, de ordem m, é dita **não singular** se

$$\rho(\mathbf{A}) = m$$
 i.e., se $|\mathbf{A}| \neq 0$

Neste caso,

$$\exists ! \mathbf{A}^{-1}$$
, tal que $\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbb{I}_{m}$

 A^{-1} é chamada de **inversa** de A.

Propriedades I

- 1. Se **A** for ortogonal então $\mathbf{A}^{-1} = \mathbf{A}^{\mathrm{T}}$
- $2. (\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + \mathbf{B}^{\mathrm{T}}$
- 3. $(\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$
- 4. $|\alpha \mathbf{A}| = \alpha^m |\mathbf{A}|$
- 5. $|\mathbf{A}^{-1}| = (|\mathbf{A}|)^{-1}$, se **A** for não singular
- 6. $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$
- 7. $\rho(\mathbf{AB}) = \rho(\mathbf{A})$, se **B** for não singular
- 8. $\rho(\mathbf{A}) = \rho(\mathbf{A}^{\mathrm{T}}\mathbf{A})$
- 9. $\rho(\mathbf{AB}) \le \min(\rho(\mathbf{A}), \rho(\mathbf{B}))$

Produto de Kronecker I

Sejam A uma matriz $m \times n$ e B uma matriz $r \times s$. O **produto de Kronecker** (ou produto tensorial) é definido como:

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11} \mathbf{B} & a_{11} \mathbf{B} & \cdots & a_{1n} \mathbf{B} \\ a_{21} \mathbf{B} & a_{22} \mathbf{B} & \cdots & a_{2n} \mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} \mathbf{B} & a_{m2} \mathbf{B} & \cdots & a_{mn} \mathbf{B} \end{bmatrix}$$

Exemplo:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \otimes \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} = \begin{bmatrix} a\alpha & a\beta & b\alpha & b\beta \\ a\gamma & a\delta & b\gamma & b\delta \\ c\alpha & c\beta & d\alpha & d\beta \\ c\gamma & c\delta & d\gamma & d\delta \end{bmatrix}$$

Propriedades do Produto de Kronecker I

- 1. $(\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C} = \mathbf{A} \otimes (\mathbf{B} \otimes \mathbf{C})$
- 2. $\mathbf{A} \otimes (\mathbf{B} + \mathbf{C}) = \mathbf{A} \otimes \mathbf{B} + \mathbf{A} \otimes \mathbf{C}$
- 3. $(\mathbf{A} \otimes \mathbf{B})^{\mathrm{T}} = A^{\mathrm{T}} \otimes B^{\mathrm{T}}$
- 4. Se A e B são matrizes quadradas:

$$Tr(\mathbf{A} \otimes \mathbf{B}) = Tr(\mathbf{A}) Tr(\mathbf{B})$$

- 5. $\rho(\mathbf{A} \otimes \mathbf{B}) = \rho(\mathbf{A}) \rho(\mathbf{B})$
- 6. Se A e B são matrizes inversíveis:

$$(\mathbf{A} \otimes \mathbf{B})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{B}^{-1}$$

7. Se **A** e **B** são matrizes quadradas de ordem *m* e *n*, respectivamente:

$$|\mathbf{A} \otimes \mathbf{B}| = |\mathbf{A}|^n \mathbf{B}|^m$$

Propriedades do Produto de Kronecker II

8. Se \mathbf{A} e \mathbf{B} são matrizes quadradas, com autovalores λ_A e λ_B , respectivamente, e correspondentes autovetores \mathbf{x}_A e \mathbf{x}_B , então $\lambda_A \lambda_B$ é um autovalor de $\mathbf{A} \otimes \mathbf{B}$ com autovetor $\mathbf{x}_A \otimes \mathbf{x}_B$.

Vetorização I

Seja A uma matriz $m \times n$. A operação de **vetorização**, vec (*A*) denota o seguinte vetor de ordem $(nm) \times 1$:

$$\operatorname{vec}(A) = \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_j \\ \vdots \\ \mathbf{a}_n \end{bmatrix}, \quad \mathbf{a}_j := \mathbf{j}\text{-}\operatorname{\acute{e}sima} \operatorname{coluna} \operatorname{de} \mathbf{A}$$

Exemplo:

$$\operatorname{vec}\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

Propriedades da Vetorização I

- 1. $\operatorname{vec}(\mathbf{A} + \mathbf{B}) = \operatorname{vec}(\mathbf{A}) + \operatorname{vec}(\mathbf{B})$
- 2. $\operatorname{vec}(\mathbf{A}\mathbf{B}) = (\mathbb{1} \otimes \mathbf{A}) \operatorname{vec}(\mathbf{B}) = (\mathbf{B}^{\mathsf{T}} \otimes \mathbb{1}) \operatorname{vec}(\mathbf{A})$
- 3. $\operatorname{vec}(\mathbf{A}\mathbf{X}\mathbf{B}^{\mathrm{T}}) = (\mathbf{B} \otimes \mathbf{A}) \operatorname{vec}(\mathbf{X})$
- 4. $\operatorname{Tr}(\mathbf{ABC}) = \operatorname{vec}(\mathbf{A}^{\mathsf{T}})^{\mathsf{T}}(\mathbf{C}^{\mathsf{T}} \otimes \mathbb{1}) \operatorname{vec}(\mathbf{B})$

Decomposição de Matrizes I

Seja A uma matriz quadrada de ordem m. As **raízes características** ou **autovalores** de **A** são as raízes complexas

$$\lambda_1, \ldots, \lambda_m$$

do polinômio de ordem m em λ

$$|\mathbf{A} - \lambda \mathbb{1}|$$

Como $\mathbf{A} - \lambda_j$ \mathbb{I} é singular, j = 1, ..., m, existe um vetor \mathbf{a}_j , cujas componentes não são todas nulas, tal que

$$(\mathbf{A} - \lambda_j \mathbb{1}) \mathbf{a}_j = \mathbf{0} \implies \mathbf{A} \mathbf{a}_j = \lambda_j \mathbf{a}_j, \ j = 1, \dots, m$$

Os vetores $\mathbf{a}_1, \dots, \mathbf{a}_m$ são chamados **vetores característicos** ou **autovetores** de **A**.

Decomposição de Matrizes II

Temos:

- 1. $\rho(\mathbf{A})$ dá o número de autovalores não nulos de \mathbf{A}
- 2. $\operatorname{Tr}(\mathbf{A}) = \sum_{j=1}^{m} \lambda_j$
- 3. $|\mathbf{A}| = \prod_{j=1}^{m} \lambda_j$
- 4. Se **A** é uma matriz simétrica, real, todos os seus autovalores são reais e para cada um deles existe um autovetor real.
- 5. Se **A** é uma matriz simétrica, real, os autovetores correspondentes a autovalores distintos são ortogonais.
- 6. Se **A** é não negativa definida, então $\lambda_j \ge 0$, j = 1, ..., m

Decomposição de Matrizes III

7. Se **A** é simétrica, de ordem $m \times m$, existe uma matriz ortogonal **X**, tal que

$$\mathbf{X}^{\mathrm{T}}\mathbf{A}\mathbf{X} = \mathbf{\Lambda} = \mathrm{diag}\{\lambda_1, \dots, \lambda_m\}$$

ou

$$\mathbf{A} = \mathbf{X} \mathbf{A} \mathbf{X}^{\mathrm{T}}$$

onde os λ_j são os autovalores de **A** e as colunas de **X** são os correspondentes autovetores.

Este último resultado é o chamado **teorema espectral** para matrizes simétricas.

Segue-se que a decomposição espectral de A é dada por

$$\mathbf{A} = \sum_{i=1}^{m} \lambda_j \mathbf{x}_j \mathbf{x}^{\mathrm{T}}_j$$

onde \mathbf{x}_j é o autovetor correspondente ao autovalor λ_j .

Decomposição de Matrizes IV

Se $\bf A$ é uma matriz quadrada de ordem m, positiva definida, existe uma matriz triangular inferior $\bf T$, com elementos da diagonal principal positivos, tal que

$$\mathbf{T}^{-1}\mathbf{A}(T^{\mathrm{T}})^{-1} = \mathbb{1}_{\mathrm{m}}, \implies \mathbf{A} = \mathbf{T}\mathbf{T}^{\mathrm{T}}$$

Esta é a chamada **decomposição de Cholesky** da matriz **A**.