Algoritmusok és adatszerkezetek II. Kupacok

Szegedi Tudományegyetem

Fapacok (Treaps)

Emlékeztető

n kulcsból álló **véletlen** építésű bináris keresőfa h magasságának **várható értéke** $\log n$

• Adverzaliális műveleti sorrend mellett azonban n magas is lehet

Ötlet

A keresőfa,-és kupactulajdonságot egyidejűleg követeljük meg

- $oldsymbol{0}$ Keresőfa tulajdonság biztosítja a kulcsok O(h) kereshetőségét
- Kupactulajdonság miatt h várható értékben log n

Fapacok (Treaps)

Emlékeztető

n kulcsból álló **véletlen** építésű bináris keresőfa h magasságának **várható értéke** $\log n$

• Adverzaliális műveleti sorrend mellett azonban n magas is lehet

Ötlet

A keresőfa,-és kupactulajdonságot egyidejűleg követeljük meg

- $oldsymbol{0}$ Keresőfa tulajdonság biztosítja a kulcsok O(h) kereshetőségét
- Kupactulajdonság miatt h várható értékben log n
 - A kupactulajdonság ne az eltárolt kulcsokra, hanem egy véletlenszerűen generált kiegészítőinformációra teljesüljön!

Kupacok

Felhasználásuk

- Prioritási sor megvalósításánál fontos, hogy a minimális/maximális kulcsot hatékonyan tudjuk visszaadni
- 2 Szintén fontos művelet egy adott kulcs értékének módosítása

Kupacok

Felhasználásuk

- Prioritási sor megvalósításánál fontos, hogy a minimális/maximális kulcsot hatékonyan tudjuk visszaadni
- 2 Szintén fontos művelet egy adott kulcs értékének módosítása

Kupactulajdonság

Azt mondjuk, hogy egy fa rendelkezik a minimum (maximum) kupactulajdonsággal, ha minden p csúcsának minden q fiára

- q = Nil vagy
- p.kulcs < q.kulcs (p.kulcs > q.kulcs)

Példa maximum bináris kupacra

Bináris kupac

Teljes bináris fa, melyre teljesül a kupactulajdonság.

 \Rightarrow mivel legfeljebb egy belső pontnak lehet 2-nél kevesebb fia, így egyszerűen egy tömbbel implementálhatjuk

Példa maximum bináris kupacra

Bináris kupac

Teljes bináris fa, melyre teljesül a kupactulajdonság.

 \Rightarrow mivel legfeljebb egy belső pontnak lehet 2-nél kevesebb fia, így egyszerűen egy tömbbel implementálhatjuk

Fapac példa

- A kulcsok keresőfa tulajdonság szerint helyezkednek el
- A véletlen felépítést az extra adattag eredményezi
- A kiegyensúlyozott fáknál megszokott módon állítjuk helyre a megkövetelt tulajdonságokat (pl. (Beszúr(27, 100)))

Vissza a kupacokhoz

n elemű kupacban hogy keresnénk meg a maximális elemet? És egy adott kulcs rákövetkezőjét? Egy n és egy m kulcsból álló kupacot miként egyesítenénk?

Vissza a kupacokhoz

n elemű kupacban hogy keresnénk meg a maximális elemet? O(1) És egy adott kulcs rákövetkezőjét? O(m+n) Egy n és egy m kulcsból álló kupacot miként egyesítenénk? O(m+n)

Kérdés

Lehetne hatékonyabban is?

