Midterm Exam 2

CSCI 561 Spring 2016: Artificial Intelligence

Student ID:								
Last Name: _								
First Name: _								
USC email·					@	USC	edu	

Instructions:

- 1. Date: 3/29/2015 from 5:00pm 6:20 pm
- 2. Maximum credits/points/percentage for this midterm: 100
- 3. The percentages for each question are indicated in square brackets [] near the question.
- 4. **No books** (or any other material) are allowed.
- 5. Write down your name, student ID and USC email address.
- 6. Your exam will be scanned and uploaded online.
- 7. **Answers must be written in the provided boxed only.** Please make sure NOT to write the answer to one question in the box for another one.
- 8. Do NOT write on the 2D barcode.
- 9. **The back of the pages will NOT be graded.** You should use the back of the pages only for SCRATCH PAPER, not the actual answers.
- 10. No guestions during the exam. If something is unclear to you, write that in your exam.
- 11. Be brief: a few words are often enough if they are precise and use the correct vocabulary studied in class.
- 12. When finished, raise completed exam sheets until approached by proctor.
- 13. Adhere to the Academic Integrity code.

Problems	100 Percent total
1- General Al Knowledge	10
2- Propositional Logic	30
3- First-Order Logic	10
4- Inference	20
5- Classical Planning	20
6- Al applications	10

1. [10%] General Al Knowledge

For each of the statements below, fill in the bubble T if the statement is always and unconditionally true, or fill in the bubble F if it is always false, sometimes false, or just does not make sense.

- а) т г
- b) т **г**
- С) т г
- е) т г
- f) T F
- g) т г
- h) T F
- j) T F
- ј) т ғ

- a) Entailment can be used to derive true conclusions.
- b) Sound inference algorithms are always complete.
- c) Every sentence of propositional logic is logically equivalent to a conjunction of clauses.
- d) 'AVBVC' is a Horn clause.
- e) Forward chaining is an example of data-driven reasoning.
- f) If Married is a predicate and Mother/Father are functions, 'Married(Father(John), Mother (John))' is an atomic sentence.
- g) In first-order logic, the order in which we use the quantifiers does not change the meaning of a logical sentence.
- h) We can unify P(x, y, F(z)) and Q(m, n, F(Frank)).
- i) Generalized Modus Ponens is complete for first order logic.
- j) Contingent plans allow the agent to use sensor information

during execution to decide what branch of the plan to follow.

2. [30%] Propositional Logic

1.

You want to settle an argument between	Alice (A), Bo	ob (B) and (Charlie (C).	They only
tell you the following:				

- 1. Alice says: 'Bob is lying!'
- 2. Bob says: 'Charlie is lying'
- 3. Charlie says: 'Both Alice and Bob are lying!'

You believe you can use propositional logic to figure out who is telling the truth and who is not. Let **A** represent {Alice is telling the truth} and **A** represent {Alice is lying}. Similarly, we will use **B**/**B** for Bob and **C**/**C** for Charlie.

2A. [6%] Represent the three given sentences using propositional logic using **A**, **B**, **C** as propositional symbols.

2.	
3.	
	<u>. [12%]</u> Convert the three derived sentences to CNF form. Show each step used for aplification.
1.	
2.	
3.	

vrite down for A		s lying. Show tell the truth or i

). [1%] Daisy (D) to					
sing the previous n	otations with th	e symbols D	יי, represe	nt this sentence	ın
opositional logic.					
[2%] Use a truth	table to prove	that Daisy's	sentence is a	paradox.	

3. [10%] First-Order Logic: logic sentences

Consider a vocabul	ary of the following symbols:	
Waits(x, y)Complains(x, y)Happy(x)	x waits for y x complains about y	(predicate) (predicate) (predicate) (predicate) (predicate) (function)
English to logic expres		onvert the following sentences from e.
3 B. [2%] People do no	ot complain about anyone who	en they wait for their lover.
BC. [2%] Everyone is I	happy to be their lover's lover	
BD. [2%] Everyone co ate.	mplains about the person the	y are waiting for if that person is
BE. [2%] Someone co	mplains about everyone that	is late or unhappy.

4. [20%] Inference

Consider the following knowledge base that describes how the Mars rover works:

ReceivedWorkInstruction ⇒ Work	(1)
((BatteryIsGood ∧ FlatGround) ∧ (¬Cold)) ⇒ Work	(2)
¬Obstacle ⇒ FlatGround	(3)
Night ⇒ Cold	(4)
Cold ⇒ ¬Hot	(5)
ReceivedRestInstruction ⇒ ¬Work	(6)
Dark ⇒ Night	(7)

Given the following observations:

BatterylsGood ∧ ¬Night ∧ Hot ∧ ¬Obstacle ∧ ¬ReceivedWorkInstruction (8)

Using the various propositional logic inference rules studied in class, show how each of the following conclusions can be inferred: In each case, mention which <u>inference rule</u> is used [1%], and to which sentence(s) above it was applied [1%]. <u>Every sentence can be proven using only sentences with smaller indices.</u> (Hint: sentence #13 requires two steps, while all others require only one.):

[2%] ¬Obstacle	(9)
[2%] FlatGround	(10)
[2%] Hot	(11)
[2%] ¬Cold	(12)
[2%] BatterylsGood ∧ FlatGround ∧ ¬Cold	(13)
[2%] Work	(14)
[2%] ¬Night	(15)
[2%] ¬Dark	(16)
[2%] ¬ReceivedWorkInstruction	(17)
[2%] ¬ReceivedRestInstruction	(18)

5. [20%] Classical Planning

Consider the problem of a planning system for picking up astronaut A from Mars. Due to fuel limitations, there are two spacecraft: Spacecraft B can travel between the Earth's surface (ES) and Earth orbit (EO), Earth orbit and Mars orbit (MO), but not Mars orbit and Mars' surface (MS); Spacecraft C can travel only between Mars' surface and Mars orbit, but not further. Initially, Spacecraft B is on Earth's surface, while Spacecraft C and astronaut A are on Mars' surface.

Please use the following <u>literal definitions</u> to answer questions <u>5A and 5B</u>:

- at(O, P) means object O is at place P (O \in {A, B, C}, P \in {ES, EO, MS, MO})
- travelable(S, X, Y) means Spacecraft S can travel from place X to place Y (S ∈ {B, C}, X,Y ∈ {ES, EO, MS, MO})

5A. [8%] Complete the descriptions of the STRIPS actions for the system.

Action: Spacecraft S travels from X to Y with NO astronaut:					
noAstronaut(S, X, Y)					
Precondition:					
Delete literal(s):					
Action: Spacecraft S travels from X to Y with astronaut A:					
withAstronaut(S, A, X, Y)					
Precondition: Effects: Add literal(s):					
Delete literal(s):					

Earth surface. Write down the initial condition and the goal of this plan using the given
<u>definitions in the previous page</u> . The <u>closed world assumption</u> is used, so <u>whatever is</u>
not explicitly stated is assumed to be false.
Initial condition:
Goal:

5B. [7%] NASA plans to launch the spacecraft, pick up the astronaut and return to the

W	5C. [5%] Write down the solution plan for 5B using the <u>actions</u> in 5A. (Assume that when spacecraft B and spacecraft C are at the same place, the astronaut could go from one spacecraft to another without any action.)						
_							

6. [10%] Al Applications. 1. [2%] In the debate between Neats vs Scruffies: a. Doug Lenat's Cyc is an example of a Neat project b. CMU's Herb Simon is an example of a Scruffy MIT's Marvin Minsky is an example of a Scruffy d. All of the above e. None of the above 2. [2%] In Planning the problem of representing all things that stay the same from one situation to the next is called the: a. Ramification problem b. Frame problem c. Qualification problem d. All of the above e. None of the above [2%] Prolog has traded soundness for efficiency by: a. Being incomplete due to infinite loops b. Having to recompute repeated subgoals c. Having no Occurs-Check d. All of the above e. None of the above [2%] An impediment to knowledge sharing is: Lack of communication conventions between KBs b. Model mismatches at the knowledge level Knowledge encoded in different KR languages d. All of the above e. None of the above **5.** [2%] When an object inherits from multiple classes a problem can occur: a. When the object inherits from only one subclass yielding conflicting answers When the object inherits from multiple superclasses yielding conflicting answers c. When the object inherits from both a superclass and a subclass yielding

d. All of the abovee. None of the above

conflicting answers