

Programming Specifications for PIC18F8410/8490/8493 Family Flash MCUs

1.0 DEVICE OVERVIEW

This document includes the programming specifications for the following devices:

PIC18F6310
 PIC18F6390
 PIC18F6393

PIC18F6410
 PIC18F6490
 PIC18F6493

PIC18F8310
 PIC18F8390
 PIC18F8393

PIC18F8410
 PIC18F8490
 PIC18F8493

2.0 PROGRAMMING OVERVIEW OF THE PIC18F8410/8490/8493 FAMILY

PIC18F8410/8490/8493 family devices can be programmed using the high-voltage In-Circuit Serial Programming $^{\text{TM}}$ (ICSP $^{\text{TM}}$) method.

This can be done with the device in the user's system. This programming specification applies to PIC18F8410/8490/8493 family devices in all package types.

2.1 Hardware Requirements

In High-Voltage ICSP mode, the PIC18F8410/8490/8493 family devices require two programmable power supplies: one for VDD and one for MCLR/VPP. Both supplies should have a minimum resolution of 0.25V. Refer to Section 6.0 "AC/DC Characteristics Timing Requirements for Program/Verify Test Mode" for additional hardware parameters.

2.2 Pin Diagrams

The pin diagrams for the PIC18F8410/8490/8493 family are shown in Figure 2-1 through Figure 2-4.

TABLE 2-1 PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18F8410/8490/8493 FAMILY

Pin Name	During Programming		
Pili Name	Pin Name	ne Pin Type Pin Description	
RG5/MCLR/VPP	Vpp	Р	Programming Enable
V _{DD} (1)	Vdd	Р	Power Supply
Vss ⁽¹⁾	Vss	Р	Ground
RB6/PGC	PGC	I	Serial Clock
RB7/PGD	PGD	I/O	Serial Data

Legend: I = Input, O = Output, P = Power

Note 1: All power supply (VDD) and ground (VSS) must be connected.

2.3 Memory Map

The code memory space extends from 000000h to 001FFFh (8 Kbytes) in a single block for PIC18FX310/X390/X393 devices and from 000000h to 003FFFh (16 Kbytes) in a single block for PIC18FX410/X490/X493 devices.

TABLE 2-2 IMPLEMENTATION OF CODE MEMORY

Device	Code Memory Size (Bytes)	
PIC18F6310		
PIC18F8310		
PIC18F6390	000000h-001FFFh (8K)	
PIC18F6393	00000011-001FFF11 (8K)	
PIC18F8390		
PIC18F8393		
PIC18F6410		
PIC18F8410		
PIC18F6490	0000000 0000000 (46K)	
PIC18F6493	000000h-003FFFh (16K)	
PIC18F8490		
PIC18F8493		

In addition to the code memory space, there are three blocks in the configuration and ID space that are accessible to the user through table reads and table writes (in ICSP mode). Their locations in the memory map are shown in Figure 2-5.

Users may store identification information (user ID) in eight ID registers. These ID registers are mapped in addresses 200000h through 200007h. The ID locations read out normally, even after code protection is applied.

Locations 300000h through 30000Dh are reserved for the configuration bits. These bits select various device options and are described in **Section 5.0 "Configuration Word"**. These configuration bits read out normally, even after code protection.

Locations 3FFFFEh and 3FFFFFh are reserved for the device ID bits. These bits are read-only bits. These bits may be used by the programmer to identify what device type is being programmed and are described in **Section 5.0 "Configuration Word"**. These device ID bits read out normally, even after code protection.

2.3.1 MEMORY ADDRESS POINTER

Memory in the address space 0000000h to 3FFFFh is addressed via the Table Pointer, which is comprised of three pointer registers:

- · TBLPTRU, at RAM address 0FF8h
- TBLPTRH, at RAM address 0FF7h
- · TBLPTRL, at RAM address 0FF6h

TBLPTRU	TBLPTRH	TBLPTRL
Addr[21:16]	Addr[15:8]	Addr[7:0]

The 4-bit command, '0000' (core instruction), is used to load the Table Pointer prior to using many read or write operations.

FIGURE 2-5: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX310/X390/X393 DEVICES

FIGURE 2-6: MEMORY MAP AND THE CODE MEMORY SPACE FOR PIC18FX410/X490/X493 DEVICES

2.4 High-Level Overview of the Programming Process

Figure 2-8 shows the high-level overview of the programming process. The device is first checked to see if it is blank; if it is not, a Chip Erase is performed. Next, the code memory and ID locations are programmed. These memories are then verified to ensure that programming was successful. If no errors are detected, the configuration bits are then programmed and verified.

2.5 Entering High-Voltage ICSP Program/Verify Mode

The High-Voltage ICSP Program/Verify mode is entered by holding PGC and PGD low and then raising MCLR/VPP to VIHH (high voltage). Once in this mode, the code memory, ID locations and configuration bits can be accessed and programmed in serial fashion.

The sequence that enters the device into the Program/Verify mode places all unused I/Os in the high-impedance state.

FIGURE 2-7: ENTERING
HIGH-VOLTAGE
PROGRAM/VERIFY MODE

FIGURE 2-8: HIGH-LEVEL PROGRAMMING FLOW

2.6 Serial Program/Verify Operation

The PGC pin is used as a clock input pin and the PGD pin is used for entering command bits and data input/output during serial operation. Commands and data are transmitted on the rising edge of PGC, latched on the falling edge of PGC and are Least Significant bit (LSb) first.

2.6.1 4-BIT COMMANDS

All instructions are 20 bits, consisting of a leading 4-bit command, followed by a 16-bit operand, which depends on the type of command being executed. To input a command, PGC is cycled four times. The commands needed for programming and verification are shown in Table 2-3.

Depending on the 4-bit command, the 16-bit operand represents 16 bits of input data or 8 bits of input data and 8 bits of output data.

Throughout this specification, commands and data are presented as illustrated in Table 2-4. The 4-bit command is shown MSb first. The command operand, or "Data Payload", is shown <MSB><LSB>. Figure 2-9 demonstrates how to serially present a 20-bit command/operand to the device.

2.6.2 CORE INSTRUCTION

The core instruction passes a 16-bit instruction to the CPU core for execution. This is needed to set up registers as appropriate for use with other commands.

TABLE 2-3 COMMANDS FOR PROGRAMMING

Description	4-Bit Command
Core Instruction (Shift in16-bit instruction)	0000
Shift out TABLAT register	0010
Table Read	1000
Table Read, post-increment	1001
Table Read, post-decrement	1010
Table Read, pre-increment	1011
Table Write	1100
Table Write, post-increment by 2	1101
Table Write, post-decrement by 2	1110
Table Write, start programming	1111

TABLE 2-4 SAMPLE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction
1101	3C 40	Table Write, post-increment by 2

3.0 DEVICE PROGRAMMING

3.1 Blank Check

The term "Blank Check" means to verify that the device has no programmed memory cells. All memories must be verified: code memory, ID locations and configuration bits. The Device ID registers (3FFFFEh:3FFFFFh) should be ignored. The blank checking step involves reading the code memory space and comparing it against FFFFh. Memory reads occur a single byte at a time, so two bytes must be read to compare against FFFFh. Refer to Section 4.1 "Read Code Memory, ID Locations Configuration Bits".

A "Blank" or "Erased" memory cell will read as a '1'. So, "Blank Checking" a device merely means to verify that all bytes read as FFh, except the configuration bits. Unused (reserved) configuration bits will read as '0'. Refer to Table 5-3 for blank configuration except data for the various PIC18F8410/8490/8493 family devices.

If it is determined that the device is not blank, then the device should be Erased (see **Section 3.2** "**High-Voltage ICSP Chip Erase**") before any attempt to program is made.

FIGURE 3-1: BLANK CHECK FLOW

3.2 High-Voltage ICSP Chip Erase

Erasing code is accomplished by writing an "erase option" to address 3C0004h. Code memory is erased by erasing the entire device in one action. "Chip Erase" operations will also clear any code-protect settings. Chip Erase is detailed in Table 3-1.

TABLE 3-1 CHIP ERASE OPTION

Description	Data
Chip Erase	018Ah

The actual Chip Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th PGC after the NOP instruction), serial execution will cease until the erase completes (parameter P11). During this time, PGC may continue to toggle, but PGD must be held low. Refer to Figure 3-3.

The code sequence to erase the entire device is shown in Table 3-2 and the flowchart is shown in Figure 3-2.

Note: A Chip Erase is the only way to reprogram code-protect bits from an ON state to an OFF state.

TABLE 3-2 CHIP ERASE COMMAND SEQUENCE

4-Bit Command	Data Payload	Core Instruction	
0000	0E 3C	MOVLW 3Ch	
0000	6E F8	MOVWF TBLPTRU	
0000	0E 00	MOVLW 00h	
0000	6E F7	MOVWF TBLPTRH	
0000	0E 05	MOVLW 05h	
0000	6E F6	MOVWF TBLPTRL	
1100	01 0A	Write 01 to 3C0005h	
0000	0E 04	MOVLW 04h	
0000	6E F6	MOVWF TBLPTRL	
1100	01 8A	Write 8Ah TO 3C0004h	
		to erase device.	
0000	00 00	NOP	
0000		Hold PGD low until	
		erase completes.	

FIGURE 3-2: CHIP ERASE FLOW

FIGURE 3-3: CHIP ERASE TIMING

3.3 Code Memory Programming

Programming code memory is accomplished by first loading data into the appropriate write buffers and then initiating a programming sequence. The write buffer is 16 bytes in size and can be mapped to any 16-byte area in code memory (see Figure 3-4). The actual memory write sequence takes the contents of these buffers and programs the 16-byte code memory region pointed to by the Table Pointer once the programming sequence is initiated.

The programming duration is externally timed and is controlled by PGC. After a "Start Programming" command is issued (4-bit command, '1111'), a NOP is issued, where the 4th PGC is held high for the duration of the programming time, P9 (see Figure 3-7).

After PGC is brought low, the programming sequence is terminated. PGC must be held low for the time specified by parameter P10 to allow high-voltage discharge of the memory array.

The code sequence to program a PIC18F8410/8490/8493 family device is shown in Table 3-3. The flowchart shown in Figure 3-6 depicts the logic necessary to completely write a PIC18F8410/8490/8493 family device. The timing diagram that details the "Start Programming" command and parameter P10, is shown in Figure 3-7.

Note: The TBLPTR register must contain the same offset value when initiating the programming sequence as it did when the write buffers were loaded.

FIGURE 3-4: WRITE BOUNDARIES FOR PIC18FX310/X390/X393 DEVICES

FIGURE 3-5: WRITE BOUNDARIES FOR PIC18FX410/X490/X493 DEVICES

TABLE 3-3 WRITE CODE MEMORY CODE SEQUENCE

4-Bit Command	Data Payload	Core Instruction
Step 1: Direct acc	ess to code memory an	d enable writes.
0000	9C A6	BCF EECON1, CFGS
0000	84 A6	BSF EECON1, WREN
Step 2: Load write	buffer.	
0000	0E <addr[21:16]></addr[21:16]>	MOVLW <addr[21:16]></addr[21:16]>
0000	6E F8	MOVWF TBLPTRU
0000	OE <addr[15:8]></addr[15:8]>	MOVLW <addr[15:8]></addr[15:8]>
0000	6E F7	MOVWF TBLPTRH
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>
0000	6E F6	MOVWF TBLPTRL
1101	<lsb><msb></msb></lsb>	Write 2 bytes (First Word) and post-increment address by 2
•	•	
•	•	
1101	<lsb><msb></msb></lsb>	Write 2 bytes (Seventh Word) and post-increment address by 2
1111	<lsb><msb></msb></lsb>	Write 2 bytes (Eighth Word) and start programming
0000	00 00	NOP
To continue writing data, repeat step 2, where the address pointer is incremented by 16 at each iteration of the loop.		

FIGURE 3-6: PROGRAM CODE MEMORY FLOW

FIGURE 3-7: TABLE WRITE AND START PROGRAMMING INSTRUCTION TIMING (1111)

3.4 ID Location Programming

The ID locations are programmed much like the code memory. The ID registers are mapped in addresses 200000h through 200007h. These locations read out normally, even after code protection.

Note: The user only needs to fill the 8-byte data buffer to program the ID locations.

Table 3-4 demonstrates the code sequence required to write the ID locations.

The Table Pointer must be manually set to 200000h (base address of the ID locations). The post-increment feature of the table read 4-bit command should not be used to increment the Table Pointer to 200000h. After setting the Table Pointer to 200000h, the post-increment feature may be used to increment to 200001h, 200002h and so on.

TABLE 3-4 WRITE ID SEQUENCE

4-Bit Command	Data Payload	Core Instruction
Step 1: Direct acc	ess to code memory.	
0000	9C A6	BCF EECON1, CFGS
0000	84 A6	BSF EECON1, WREN
Step 2: Load write	buffer. Panel will be automa	atically determined by address.
0000	0E 20	MOVLW 20h
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPTRH
0000	0E 00	MOVLW 00h
0000	6E F6	MOVWF TBLPTRL
1101	<lsb><msb></msb></lsb>	Write 2 bytes and post-increment address by 2
1101	<lsb><msb></msb></lsb>	Write 2 bytes and post-increment address by 2
1101	<lsb><msb></msb></lsb>	Write 2 bytes and post-increment address by 2
1111	<lsb><msb></msb></lsb>	Write 2 bytes and start programming
0000	00 00	NOP

3.5 Boot Block Programming

The PIC18F8410/8490/8493 family devices do not have any Boot Block segment. When the PIC18F8310/8410 devices are configured in Microprocessor with Boot Block mode, the locations from 0000h to 07FFh will be internal memory. This memory region is programmed in exactly the same manner as the code memory (see Section 3.3 "Code Memory Programming").

The code sequence detailed in Table 3-3 should be used, except that the address data used in "Step 2" will be in the range 000000h to 0007FFh.

3.6 Configuration Bits Programming

Unlike code memory, the configuration bits are programmed a byte at a time. The write operation programs only 8 bits of the 16-bit payload written. The LSB of the payload will be written to even addresses and the MSB will be written to odd addresses. The code sequence to program two consecutive configuration locations is shown in Table 3-5.

TABLE 3-5 SET ADDRESS POINTER TO CONFIGURATION LOCATION

4-Bit Command	Data Payload	Core Instruction
Step 1: Direct acc	ess to config memory.	
0000	84 A6	BSF EECON1, WREN
0000	8C A6	BSF EECON1, CFGS
Step 2: Set Table	Pointer for config byte to be	written. Write even addresses.
0000	0E 30	MOVLW 30h
0000	6E F8	MOVWF TBLPTRU
0000	0E 00	MOVLW 00h
0000	6E F7	MOVWF TBLPRTH
0000	0E 00	MOVLW 00h
0000	6E F6	MOVWF TBLPTRL
1111	<lsb><msb ignored=""></msb></lsb>	Load 2 bytes and start programming
0000	00 00	NOP - hold PGC high for time P9
0000	2A F6	INCF TBLPTRL
1111	<lsb ignored=""><msb></msb></lsb>	Load 2 bytes and start programming
0000	00 00	NOP - hold PGC high for time P9

FIGURE 3-8: CONFIGURATION PROGRAMMING FLOW

4.0 READING THE DEVICE

4.1 Read Code Memory, ID Locations and Configuration Bits

Code memory is accessed one byte at a time via the 4-bit command, '1001' (table read, post-increment). The contents of memory pointed to by the Table Pointer (TBLPTRU:TBLPTRH:TBLPTRL) is serially output on PGD.

The 4-bit command is shifted in LSb first. The read is executed during the next 8 clocks, then shifted out on PGD during the last 8 clocks, LSb to MSb. A delay of P6 must be introduced after the falling edge of the 8th PGC of the operand to allow PGD to transition from an input to an output. During this time, PGC must be held low (see Figure 4-1). This operation also increments the Table Pointer by one, pointing to the next byte in code memory for the next read.

This technique will work to read any memory in the 000000h to 3FFFFFh address space, so it also applies to the reading of the ID and Configuration registers.

TABLE 4-1 READ CODE MEMORY SEQUENCE

4-Bit Command	Data Payload	Core Instruction	
Step 1: Direct acc	ess to code memory.		
0000	8C A6	BCF EECON1, CFGS	
Step 1: Set Table	Pointer.		
0000	0E <addr[21:16]></addr[21:16]>	MOVLW Addr[21:16]	
0000	6E F8	MOVWF TBLPTRU	
0000	0E <addr[15:8]></addr[15:8]>	MOVLW <addr[15:8]></addr[15:8]>	
0000	6E F7	MOVWF TBLPTRH	
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>	
0000	6E F6	MOVWF TBLPTRL	
Step 2: Read memory into Table Latch and then shift out on PGD, LSb to MSb.			
1001	00 00	TBLRD *+	

4.2 Verify Code Memory and ID Locations

The verify step involves reading back the code memory space and comparing it against the copy held in the programmer's buffer. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer's buffer. Refer to Section 4.1 "Read Code Memory, ID Locations and Configuration Bits" for implementation details of reading code memory.

The Table Pointer must be manually set to 200000h (base address of the ID locations) once the code memory has been verified. The post-increment feature of the table read 4-bit command may not be used to increment the Table Pointer to 200000h. After setting the Table Pointer to 200000h, the post-increment feature may be used to increment to 200001h, 200002h and so on.

4.3 Verify Configuration Bits

A configuration address may be read and output on PGD via the 4-bit command, 1001. Configuration data is read and written in a byte-wise fashion, so it is not necessary to merge two bytes into a word prior to a compare. The result may then be immediately compared to the appropriate configuration data in the programmer's memory for verification. Refer to Section 4.1 "Read Code Memory, ID Locations and Configuration Bits" for implementation details of reading configuration data.

FIGURE 4-2: VERIFY CODE MEMORY AND ID LOCATIONS FLOW

5.0 CONFIGURATION WORD

The PIC18F8410/8490/8493 family devices have several Configuration Words. These bits can be set or cleared to select various device configurations. All other memory areas should be programmed and verified prior to setting Configuration Words. These bits may be read out normally, even after read or code-protected. Table 5-2 and Table 5-3 provide information on various configuration bits.

5.1 ID Locations

A user may store identification information (ID) in eight ID locations mapped in 200000h:200007h. It is recommended that the Most Significant nibble of each

ID be 0Fh. In doing so, if the user code inadvertently tries to execute from the ID space, the ID data will execute as a ${\tt NOP}.$

5.2 Device ID Word

The device ID word for the PIC18F8410/8490/8493 family is located at 3FFFFEh:3FFFFh. These bits may be used by the programmer to identify what device type is being programmed and read out normally, even after code or read-protected.

TABLE 5-1 DEVICE ID VALUES

Davies	Device ID Value		
Device	DEVID2	DEVID1	
PIC18F6310	0Bh	111x xxxx	
PIC18F6390	0Bh	101x xxxx	
PIC18F6393	1Ah	000x xxxx	
PIC18F8310	0Bh	110x xxxx	
PIC18F8390	0Bh	100x xxxx	
PIC18F8393	1Ah	001x xxxx	
PIC18F6410	06h	111x xxxx	
PIC18F6490	06h	101x xxxx	
PIC18F6493	0Eh	000x xxxx	
PIC18F8410	06h	110x xxxx	
PIC18F8490	06h	100x xxxx	
PIC18F8493	0Eh	001x xxxx	

Note: The 'x's in DEVID1 contain the device revision code.

TABLE 5-2 PIC18F8410/8490/8493 FAMILY CONFIGURATION BITS AND DEVICE IDS

File Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value	
300000h	CONFIG1L	-	1	_	_	-	_	-	_		
300001h	CONFIG1H	IESO	FCMEN	_	_	FOSC3	FOSC2	FOSC1	FOSC0	00 0111	
300002h	CONFIG2L	_		_	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111	
300003h	CONFIG2H	_	_	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111	
300004h ⁽¹⁾	CONFIG3L	WAIT	BW	_	_	_	_	PM1	PM0	1111	
300005h	CONFIG3H	MCLRE	_	_	_	_	LPT10SC	_	CCP2MX	10-1	
300006h	CONFIG4L	DEBUG	XINST	_	_	_	_	_	STVREN	101	
300008h	CONFIG5L	_	_	_	_	_	_	_	CP	1	
300009h	CONFIG5H	_	_	_	_	_	_	_	_		
30000Ah	CONFIG6L	_	_	-	_	-	_	-	_		
30000Bh	CONFIG6H	-	_	-	_	_	_	-	_		
30000Ch	CONFIG7L	_	_	-	_	-	_	-	EBTR	1	
30000Dh	CONFIG7H		_	_	_	_	_	_	_		
3FFFFEh	DEVID1 ⁽²⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	1xxx xxxx	
3FFFFFh	DEVID2 ⁽²⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0000 xxxx	

 $\begin{tabular}{ll} \textbf{Legend:} & x = unknown, u = unchanged, $-$ = unimplemented, q = value depends on condition. \\ \end{tabular}$

Shaded cells are unimplemented, read as '0'.

Note 1: Unimplemented in PIC18F8410/8490/8493 family devices; maintain the default unprogrammed value.

2: DEVIDx registers are read-only and cannot be programmed by the user.

TABLE 5-3 PIC18F8410/8490/8493 FAMILYCONFIGURATION BIT DESCRIPTIONS

Bit Name	Configuration Words	Description		
FOSC3:FOSC0	CONFIG1H	Oscillator Selection bits 1111 = External RC oscillator w/ OSC2 configured as 'divide by 4 clock output' 1110 = External RC oscillator w/ OSC2 configured as 'divide by 4 clock output' 1101 = External RC oscillator w/ OSC2 configured as 'divide by 4 clock output' 1100 = External RC oscillator w/ OSC2 configured as 'divide by 4 clock output' 1011 = External RC oscillator w/ OSC2 configured as 'divide by 4 clock output' 1010 = External RC oscillator w/ OSC2 configured as 'divide by 4 clock output' 1010 = Internal RC oscillator w/ OSC2 configured as 'divide by 4 clock output' and OSC1 configured as RA7 1001 = Internal RC oscillator w/ OSC2 and OSC1 configured as RA6 and RA7 0111 = External RC oscillator w/ OSC2 configured as RA6 0110 = HS oscillator w/ PLL enabled 0101 = EC w/ OSC2 configured as RA6 0100 = EC w/ OSC2 configured as 'divide by 4 clock output' 0011 = External RC oscillator w/ OSC2 configured as 'divide by 4 clock output' 0101 = External RC oscillator w/ OSC2 configured as 'divide by 4 clock output' 0110 = HS oscillator 0110 = HS oscillator 0111 = External RC oscillator w/ OSC2 configured as 'divide by 4 clock output' 0112 = External RC oscillator w/ OSC2 configured as 'divide by 4 clock output' 0113 = External RC oscillator w/ OSC2 configured as 'divide by 4 clock output' 0114 = External RC oscillator w/ OSC2 configured as 'divide by 4 clock output' 0115 = External RC oscillator w/ OSC2 configured as 'divide by 4 clock output' 0116 = HS oscillator 0117 = External RC oscillator		
FCMEN	CONFIG1H	Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor disabled		
IESO	CONFIG1H	Internal External Switchover Mode Enable bit 1 = Internal External Switchover Mode enabled 0 = Internal External Switchover Mode disabled		
PWRTEN	CONFIG2L	Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled		
BOREN1:BOREN0	CONFIG2L	Brown-out Reset Enable bit 11 = Brown-out Reset enabled in hardware; RCON <sboren> bit disabled 10 = Brown-out Reset enabled only when device is active and disabled in Sleep; RCON<sboren> bit disabled 01 = Brown-out Reset is controlled with the RCON<sboren> bit setting 00 = Brown-out Reset disabled in hardware; RCON<sboren> bit disabled</sboren></sboren></sboren></sboren>		
BORV1:BORV0	CONFIG2L	Brown-out Reset Voltage bits 11 = VBOR set to 2.0V 10 = VBOR set to 2.7V 01 = VBOR set to 4.2V 00 = VBOR set to 4.5V		
WDTEN	CONFIG2H	Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled (control is placed on SWDTEN bit)		

Note 1: Unimplemented in PIC18F8410/8490/8493 family devices; maintain the default unprogrammed value.

TABLE 5-3 PIC18F8410/8490/8493 FAMILYCONFIGURATION BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description			
WDTPS3:WDTPS0	CONFIG2H	Watchdog Timer Postscaler Select bits 1111 = 1:32768 1110 = 1:16384 1101 = 1:8192 1100 = 1:4096 1011 = 1:2048 1010 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1			
PM1:PM0 ⁽¹⁾	CONFIG3L	Processor Mode Select bits 11 = Microcontroller mode 10 = Microprocessor mode 01 = Microprocessor with Boot Block mode 00 = Extended Microcontroller mode			
BW ⁽¹⁾	CONFIG3L	Data Bus Width bit 1 = 16-bit External Bus Width mode 0 = 8-bit External Bus Width mode			
WAIT ⁽¹⁾	CONFIG3L	External Bus Data Wait Enable bit 1 = Wait selections unavailable 0 = Wait selections determined by WAIT1:WAIT0 bits of MEMCON register			
CCP2MX	CONFIG3H	CCP2 MUX bit 1 = CCP2 input/output is multiplexed with RC1 0 = CCP2 input/output is multiplexed with RE7 in Microcontroller mode;			
LPT1OSC	CONFIG3H	Low-Power Timer1 Oscillator Enable bit 1 = Timer1 oscillator configured for low-power consumption (lower noise immunity) 0 = Timer1 oscillator configured for higher power consumption (high noise immunity)			
MCLRE	CONFIG3H	MCLRE Enable bit 1 = MCLR pin enabled, RG5 disabled 0 = RG5 input pin enabled, MCLR disabled			
STVREN	CONFIG4L	Stack Overflow/Underflow Reset Enable bit 1 = Stack Overflow/Underflow will cause Reset 0 = Stack Overflow/Underflow will not cause Reset			
XINST	CONFIG4L	Enhanced CPU Enable bit 1 = Enhanced CPU enabled 0 = Enhanced CPU disabled			

Note 1: Unimplemented in PIC18F8410/8490/8493 family devices; maintain the default unprogrammed value.

TABLE 5-3 PIC18F8410/8490/8493 FAMILYCONFIGURATION BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description			
DEBUG	CONFIG4L	Background Debugger Enable bit			
		1 = Background debugger disabled0 = Background debugger enabled			
СР	CONFIG5L	Code Protection bit (code memory area 0000h-3FFFh for PIC18FX410/X490/X493 devices and 0000h-1FFFh for PIC18FX310/X390/X393 devices)			
		1 = Code memory not code-protected 0 = Code memory code-protected			
PI		Table Read Protection bit (code memory area 0000h-3FFFh for PIC18FX410/X490/X493 devices and 0000h-1FFFh for PIC18FX310/X390/X393 devices)			
		Code memory not protected from table reads executed in external memory Code memory protected from table reads executed in external memory			
DEV10:DEV3	DEVID2	Device ID bits			
		These bits are used with the DEV2:DEV0 bits in the DEVID1 register to identify part number.			
DEV2:DEV0	DEVID1	Device ID bits			
		These bits are used with the DEV10:DEV3 bits in the DEVID2 register to identify part number.			
REV4:REV0	DEVID1	These bits are used to indicate the revision of the device.			

Note 1: Unimplemented in PIC18F8410/8490/8493 family devices; maintain the default unprogrammed value.

5.3 Embedding Configuration Word Information in the Hex File

To allow portability of code, a PIC18F8410/8490/8493 family device programmer is required to read the Configuration Word locations from the Hex file. If Configuration Word information is not present in the Hex file, then a simple warning message should be issued. Similarly, while saving a Hex file, all Configuration Word information must be included. An option to not include the Configuration Word information may be provided. When embedding Configuration Word information in the Hex file, it should start at address 300000h.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

5.4 Checksum Computation

The checksum is calculated by summing the following:

- · The contents of all code memory locations
- · The Configuration Word, appropriately masked
- · ID locations

The Least Significant 16 bits of this sum are the checksum.

Table 5-4 describes how to calculate the checksum for each device.

Note:

The checksum calculation differs depending on the code-protect setting. Since the code memory locations read out differently, depending on the code-protect setting, the table describes how to manipulate the actual code memory values to simulate the values that would be read from a protected device. When calculating a checksum by reading a device, the entire code memory can simply be read and summed. The Configuration Word and ID locations can always be read.

TABLE 5-4 CHECKSUM COMPUTATION

Device	Code Protect	Checksum		AAh at 0 and Max Address
PIC18F6310 PIC18F8310 PIC18F6390 PIC18F6393 PIC18F8390 PIC18F8393	None	SUM(0000:1FFF)+(CONFIG1L & 0000)+(CONFIG1H & 00CF)+ (CONFIG2L & 001F)+(CONFIG2H & 001F)+(CONFIG3L & 00C3)+ (CONFIG3H & 0085)+(CONFIG4L & 00C1)+(CONFIG4H & 0000)+ (CONFIG5L & 0001)+(CONFIG5H & 0000)+(CONFIG6L & 0000)+ (CONFIG6H & 0000)+(CONFIG7L & 0001)+(CONFIG7H & 0000)	E20C	E162
	All	(CONFIG1L & 0000)+(CONFIG1H & 00CF)+(CONFIG2L & 001F)+ (CONFIG2H & 001F)+(CONFIG3L & 00C3)+(CONFIG3H & 0085)+ (CONFIG4L & 00C1)+(CONFIG4H & 0000)+(CONFIG5L & 0001)+ (CONFIG5H & 0000)+(CONFIG6L & 0000)+(CONFIG6H & 0000)+ (CONFIG7L & 0001)+(CONFIG7H & 0000)+SUM(IDs)	0227	0222
PIC18F6410 PIC18F8410 PIC18F6490	None	SUM(0000:3FFF)+(CONFIG1L & 0000)+(CONFIG1H & 00CF)+ (CONFIG2L & 001F)+(CONFIG2H & 001F)+(CONFIG3L & 00C3)+ (CONFIG3H & 0085)+(CONFIG4L & 00C1)+(CONFIG4H & 0000)+ (CONFIG5L & 0001)+(CONFIG5H & 0000)+(CONFIG6H & 0000)+ (CONFIG6H & 0000)+(CONFIG7L & 0001)+(CONFIG7H & 0000)	C20C	C162
PIC18F6493 PIC18F8490 PIC18F8493	All	(CONFIG1L & 0000)+(CONFIG1H & 00CF)+ (CONFIG2L & 001F)+(CONFIG2H & 001F)+(CONFIG3L & 00C3)+ (CONFIG3H & 0085)+(CONFIG4L & 00C1)+(CONFIG4H & 0000)+ (CONFIG5L & 0001)+(CONFIG5H & 0000)+(CONFIG6L & 0000)+ (CONFIG6H & 0000)+(CONFIG7L & 0001)+(CONFIG7H & 0000)+ SUM(IDs)	0225	0220

Legend: <u>Item</u> <u>Description</u>

CFGW = Configuration Word

SUM[a:b] = Sum of locations, a to b inclusive

SUM ID = Byte-wise sum of lower four bits of all customer ID locations

+ = Addition & = Bit-wise AND

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions Operating Temperature: 25°C is recommended **Param** Symbol Characteristic Min Max Units **Conditions** No D110 High-Voltage Programming Voltage on VIHH 10 12 MCLR/VPP D111 VDD Supply Voltage During Programming 2.00 5.50 ٧ Normal Programming 5.50 ٧ Chip Erase 2.9 D112 Programming Current on MCLR/VPP IPP 250 μΑ D113 IDDF Supply Current During Programming 1 mΑ D031 0.2 VDD VIL Input Low Voltage Vss V D041 Vін Input High Voltage 0.8 VDD VDD V D080 Output Low Voltage ٧ IOL = 8.5 mA @ 4.5V Vol 0.6 D090 ٧ Vон Output High Voltage VDD - 0.7 IOH = -3.0 mA @ 4.5V pF D012 CIO Capacitive Loading on I/O pin (PGD) 50 To meet AC specifications P1 TR MCLR/VPP Rise Time to enter 1.0 (See Note 1) μS Program/Verify mode P2 Serial Clock (PGC) Period VDD = 5.0V**TPGC** 100 ns VDD = 2.0V1 μS P2A **TPGCL** Serial Clock (PGC) Low Time 40 VDD = 5.0Vns 400 VDD = 2.0Vns P2B Serial Clock (PGC) High Time 40 VDD = 5.0V**TPGCH** ns 400 VDD = 2.0Vns P3 TSET1 Input Data Setup Time to Serial Clock ↓ 15 ns P4 THLD1 Input Data Hold Time from PGC ↓ 15 ns P5 Delay between 4-bit Command and TDLY1 40 ns Command Operand P5A TDLY1A Delay between 4-bit Command 40 ns Operand and next 4-bit Command P6 TDLY2 Delay between Last PGC ↓ of 200 ns Command Byte to First PGC ↑ of Read of Data Word Р9 **PGC High Time** TDLY5 2 ms (minimum programming time) P10 TDLY6 PGC Low Time after Programming 120 μS (high-voltage discharge time) P11 TDLY7 Delay to allow Self-Timed Data Write or 30 ms Chip Erase to occur P12 THLD2 Input Data Hold Time from MCLR/VPP ↑ 2 μS VDD ↑ Setup Time to MCLR/VPP ↑ P13 100 TSET2 ns Data Out Valid from PGC ↑ P14 10 **TVALID** ns

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH; this can cause spurious program executions to occur. The maximum transition time is:

¹ TCY + TPWRT (if enabled) + 1024 Tosc (for LP, HS, HS/PLL and XT modes only)

⁺² ms (for HS/PLL mode only) + 1.5 μs (for EC mode only)

where TCY is the Instruction Cycle Time, TPWRT is the Power-up Timer Period and Tosc is the Oscillator Period.

For specific values, refer to the Electrical Characteristics section of the Device Data Sheet for the particular device.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca. IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario, Canada

Tel: 905-673-0699 Fax: 905-673-6509 ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor

Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2401-1200

Fax: 852-2401-3431 **Australia - Sydney**

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511

Fax: 86-28-8665-7889

China - Fuzhou

Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde

Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 ASIA/PACIFIC

India - Bangalore Tel: 91-80-4182-8400

Fax: 91-80-4182-8422

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166

Fax: 81-45-471-6122

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang

Tel: 60-4-646-8870 Fax: 60-4-646-5086

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870

Fax: 65-6334-8850 **Taiwan - Hsin Chu**

Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung

Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Thailand - Bangkok

Tel: 66-2-694-1351

Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399

Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90

Fax: 34-91-708-08-91
UK - Wokingham

Tel: 44-118-921-5869 Fax: 44-118-921-5820

06/25/07