

WAGP Projektteam 7 – Konzept-Präsentation

KI-Lernspiel - Einführung in die Mechanik 1

Gliederung – Double Diamond

- #Research Literaturrecherche
- #Emphatize Interviews
- #Define Anforderungen an das Lernspiel
- #Ideate Ideengenerierung & Konzept

[•] British Design Council (2025). The Double Diamond. https://www.designcouncil.org.uk/our-resources/the-double-diamond/

Literaturrecherche: Probleme in den ersten Studiensemestern

Leistungsprobleme

- Nichtverstehen der Vorlesungen
- Unzureichende Bewältigung von Übungsaufgaben
- · Mangelhafte Vorkenntnisse

Motivationsprobleme

- Praxisbezug zu gering
- · Leistungsdruck zu hoch

Angenehmpositiv (Flow, Freude, Spaß)

Schädigung (Trauer, Resignation, Wut)

Kategorien stressrelevanter Kognitionen (Jerusalem, 1990)

Ausschlaggebende Studienabbruchmotive nach Abschlussart Angaben in Prozent

Studienorganisation

- Schlechte Studienorganisation erh
 öht Leistungsdruck
- Schlechte Studienorganisation mindert Motivation

N = 6029 (Heublein et al., 2017, S. 23)

DZHW-Studienabbruchstudie 2016

Quellen:

- Heublein, U., Ebert, J., Hutzsch, C., Isleib, S., König, R., Richter, J., & Woisch, A. (2017). Zwischen Studienerwartungen und Studienwirklichkeit.
- · Jerusalem, M. (1990). Persönliche Ressourcen, Vulnerabilität und Stresserleben. Verlag für Psychologie, Hogrefe.
- Schwedler, S. (2017). Was überfordert Chemiestudierende zu Studienbeginn? Zeitschrift für Didaktik der Naturwissenschaften, 23(1), 165–179. https://doi.org/10.1007/s40573-017-0064-5
- Gerdes, A., Halverscheid, S., & Schneider, S. (2022). Teilnahme an mathematischen Vorkursen und langfristiger Studienerfolg. Eine empirische Untersuchung. Journal für Mathematik-Didaktik, 43(2), 377-403. https://doi.org/10.1007/s13138-021-00194-3
- Bargel, T. (2015). Studieneingangsphase und heterogene Studentenschaft neue Angebote und ihr Nutzen: Befunde des 12. Studierendensurveys an Universitäten und Fachhochschulen. https://kops.uni-konstanz.de/handle/123456789/32431

Literaturrecherche: Lösungsmöglichkeiten

Quellen:

- Jacobs, E., Garbrecht, Oliver, Kneer, Reinhold, & and Rohlfs, W. (2023). Game-based learning apps in engineering education: Requirements, design and reception among students. European Journal of Engineering Education, 48(3), 448–481. https://doi.org/10.1080/03043797.2023.2169106
- Brandstätter, V., Schüler, J., Puca, R. M., & Lozo, L. (2013). Motivation und Emotion. Springer. https://doi.org/10.1007/978-3-642-30150-6
- Becker, W., & Metz, M. (Hrsg.). (2022). Digitale Lernwelten Serious Games und Gamification: Didaktik, Anwendungen und Erfahrungen in der Beruflichen Bildung. Springer Fachmedien. https://doi.org/10.1007/978-3-658-35059-8

Interviewleitfaden (Fragenkatalog)

Vorstellung

Ziel der Forschung

Hinweis auf Freiwilligkeit und Anonymität

Erlaubnis zur Aufzeichnung

Inhaltliche Fragen

- Wie haben Sie sich auf "Einführung in die Mechanik 1" vorbereitet? Welche Lernmethoden haben Sie warum gewählt?
- Welche (Motivations-)Schwierigkeiten traten beim Lernen in diesem Fach auf?
- Gab es besonders herausfordernde Themen oder Zeiten? Warum waren diese schwierig?
- Was waren Ihre größten Hürden bei der Prüfungsvorbereitung?
- Welche Ressourcen (z. B. Bücher, Online-Tools, Vorlesungen) waren am hilfreichsten?
- Welches zusätzliche Lernmaterial hätten Sie sich gewünscht? Was oder wer hätte Sie unterstützt?
- Was würde Sie an einem KI-Tool stören oder misstrauisch machen?
- Welche Tipps würden Sie anderen für das Fach geben, besonders zur Lernmotivation?
- Welche KI-Lernspiele oder Simulationen haben Sie genutzt? Warum (nicht)? Welche Hürden gab es?
- Wie könnten KI-Lernspiele oder Simulationen Ihre genannten Probleme lösen?
- Wenn Sie ein KI-Lernspiel entwickeln könnten welche Funktionen würden Sie integrieren

Verabschiedung

Vorbereitung der Interviews und Durchführung der Interviews

Stichprobe

- N = 6 Probanden
- Demografische Merkmale
 - Männlich
 - ± 23 Jahre alt
 - Unterschiedliche Studiengänge
 - Grundstudium abgeschlossen (3 von 6)

Räumlichkeit der Interviews

- 2 Interviews (3 & 4) online über Zoom durchgeführt
- 4 interviews in Präsenz (Übungsräume der Hochschule)

Transkription

- Über MS Word integriertes Feature transkribiert
- Händisch und manuell nachgearbeitet
- Einheitliche Transkriptionsart verwendet (MS Word)

Auswertung der Interviews nach Kuckartz

Vorgehensweise

1 Transkription der Interviews

2 Genaue Analyse jedes Interviews

 Zentrale Aussagen und wiederkehrende Bedenken wurden codiert und thematischen Kategorien zugeordnet

3 Vergleich zwischen allen Interviews

Unterschiede, Gemeinsamkeiten...

4 Kontrollphase

Abgleich der Ergebnisse im Projektteam

Darstellung der Probleme, Bedürfnisse und Wünsche der Probanden

Hauptprobleme der Probanden in Einführung in die Mechanik 1

- Fehlender Praxisbezug
 - Keine Motivation
- Schlechter Überblick über klausurrelevante Themen
- Schwierigkeiten bei der Wahl des richtigen Lösungsansatzes
 - Unsicherheit
- Verwirrende Erfahrung mit KI
 - Unpräzise, unklar, keine einheitlichen Lösungen
- Fehlende Musterlösung

Bedürfnisse und Wünsche der Probanden

- Praxisbezogene Aufgaben
 - o realistische Szenarien;...
- Zielgerichtete klare Klausurvorbereitung
- Einheitliche Lösungswege
- KI sollte strukturierte und einheitliche Antworten geben
 - Richtige Antworten und Rechenwege!
- Genug Lernmaterial
 - Viele Aufgaben, sinnvolle Lernvideos, Altklausuren

Darstellung der Anforderungen

Auftauchende Probleme:

- Leistungsprobleme
 - Studierende verstehen Vorlesungsinhalte nicht
 - Übungsaufgaben werden als zu schwierig empfunden
- Schlechte Studienorganisation
 - Erhöht Leistungsdruck
 - **Verringert Motivation**
- Fehlender Praxisbezug erschwert das Verständnis

Ohne Praxis wenig Verständnis

Führt zu:

- Leistungsproblemen
- Motivationsverlust

	Abgeleitete Anforderung
Verständnis	Reale Anwendungsbeispiele statt abstrakter Theorie
Motivation	Levelsystem, Belohnungen, sichtbarer Fortschritt
Organisation	Klare Strukturierung, Lernziele je Level, Zeitempfehlung
Einsteigerfeundlich	Darstellungen, einfache Sprache, kein Vorwissen nötig

Ideengenerierung für das Konzept

Ohne Praxis wenig Verständnis

4 von 6 Erwähnungen in den Interviews

Lösungsideen

- Adaptives Lernsystem
- Levelbasiertes Lernspiel

Ausgewählte Lösungsidee

Levelbasiertes Lernspiel mit realen Anwendungsaufgaben

- Zeitlich machbar
- Realisierbar in Python
- Verknüpft Theorie und Anwendung
- Fortschritt & Belohnung steigern Motivation

Das Konzept

Goalplay

• Spieler lernen komplexe Inhalte (z. B. Mechanik 1) durch das Erfüllen von Lernzielen

Benötigte Daten/Informationen

- Passender Aufgabenpool für die jeweiligen Level
- Der KI-Chatbot muss mit den korrekten Lösungswegen und Erklärungen zu den Aufgaben gefüttert werden

Quelle:

• Mollick, E., Mollick, L., Bach, N., Ciccarelli, L. J., Przystanski, B., & Ravipinto, D. (2024). AI agents and education: Simulated practice at scale. arXiv Preprint arXiv:2407.12796.

Das Konzept - Hauptfunktionen

Lernzielbasierte Level

• "Drehmoment Lvl. 1", "Zentrales Kräftesystem Lvl. 2"

Fortschrittsanzeige durch XP und Level

- "Lvl. 3: Ersti" mit XP-Balken
- •durch ein XP-System motiviert weiter zu lernen
- Fortschritt ist sichtbar und messbar
- Vorteil: Motivation durch Gamification

Strukturierte Freischaltung

- Levels mit "?" blockiert
- · Fokussierung auf das nächste Ziel, Progression wird spürbar

Zielorientierte Titel und Symbole

- · Icons mit Winkelangaben und Kräften bei "Drehmoment"
- Klare Visualisierung des Ziels
- Übersicht der Lernziele auf einen Blick

Live KI-Chat Funktion

- •Integration eines kontextsensitiven Chat-Fensters
- Erklärungen zum aktuellen Thema
- Lösungshinweise
- •Beantwortet Rückfragen bei Unklarheiten

Literaturverzeichnis

- Bargel, T. (2015). Studieneingangsphase und heterogene Studentenschaft neue Angebote und ihr Nutzen: Befunde des 12. Studierendensurveys an Universitäten und Fachhochschulen. https://kops.uni-konstanz.de/handle/123456789/32431
- Becker, W., & Metz, M. (Hrsg.). (2022). Digitale Lernwelten Serious Games und Gamification: Didaktik, Anwendungen und Erfahrungen in der Beruflichen Bildung. Springer Fachmedien. https://doi.org/10.1007/978-3-658-35059-8
- Brandstätter, V., Schüler, J., Puca, R. M., & Lozo, L. (2013). Motivation und Emotion. Springer. https://doi.org/10.1007/978-3-642-30150-6
- British Design Council (2025). The Double Diamond. https://www.designcouncil.org.uk/our-resources/the-double-diamond/
- Gerdes, A., Halverscheid, S., & Schneider, S. (2022). Teilnahme an mathematischen Vorkursen und langfristiger Studienerfolg. Eine empirische Untersuchung. Journal für Mathematik-Didaktik, 43(2), 377–403. https://doi.org/10.1007/s13138-021-00194-3
- Heublein, U., Ebert, J., Hutzsch, C., Isleib, S., König, R., Richter, J., & Woisch, A. (2017). Zwischen Studienerwartungen und Studienwirklichkeit.
- Jacobs, E., Garbrecht, Oliver, Kneer, Reinhold, & and Rohlfs, W. (2023). Game-based learning apps in engineering education: Requirements, design and reception among students. European Journal of Engineering Education, 48(3), 448–481.
 - https://doi.org/10.1080/03043797.2023.2169106
- Jerusalem, M. (1990). Persönliche Ressourcen, Vulnerabilität und Stresserleben. Verlag für Psychologie, Hogrefe.
- Schwedler, S. (2017). Was überfordert Chemiestudierende zu Studienbeginn? Zeitschrift für Didaktik der Naturwissenschaften, 23(1), 165–179. https://doi.org/10.1007/s40573-017-0064-5

Vielen Dank für Ihre Aufmerksamkeit