UNIC-CASS Project

Quadrature Delay Locked Loop Project Details

Martín Doric - Argentina section

Leonardo Vazquez - Argentina section

Project Design

- Design Title:
 - Quadrature Delay Locked Loop for 500 MHz
 Clock-Data-Recovery
- Design Acronym:
 - \circ QDLL

Team Composition

	First Name /li	iddle Nam	Last Name	Email	IEEE Membership Number	University Name	Expected Graduation Date (*1)
Member 1	Leonardo	David	Vazquez	vazquezleonardodavid@outlook.com	98930480	Universidad Nacional del Sur - Argentina	2026/12 - Master degree - Microelectronics
Member 2	Martín	Ivan	Doric	martin.doric97@gmail.com	101333183	Universidad Nacional del Sur - Argentina	2026/12 - Master degree - Microelectronics
Member 3	Mateo	José	Buteler	mateojosebuteler@gmail.com	101320612	Universidad Nacional de Córdoba - Argentina	2030/12 - Bachelor degree - electronic engineering
Member 4	Santiago		Basignana	basignana.santiago@gmail.com	101322282	versidad Tecnológica Nacional - Córdoba Argent	2027/12 - Bachelor degree - electronic engineering
Member 5	Clemente		Molinari		101322327	versidad Tecnológica Nacional - Córdoba Argent	2027/12 - Bachelor degree - electronic engineering
Mentor 1	Agustín	Carlos	Galetto	agaletto@fundacionfulgor.org.ar	95581281	Universidad Nacional del Sur - Argentina	2025 - Doctor of Philosophy

Design Details

Description of the idea:

This project presents the design of a **Quadrature-Delay-Locked Loop (QDLL)** in CMOS technology, targeting the generation of a clock signal with a **fixed 90° phase shift** relative to a 500 MHz input reference. Such quadrature clock generation is essential in systems such as IQ modulators/demodulators, frequency synthesizers, and time-interleaved ADCs.

The architecture includes three key blocks:

- Voltage-Controlled Delay Line (VCDL, Mixed-Signal): already designed and implemented. It dynamically adjusts the propagation
 delay so that the output clock achieves a stable quarter-period (90°) displacement. The design was verified at the schematic level.
- Phase Detector (Digital): currently under development. Its role is to compare the reference and the delayed clock, generating Up Down signals that indicate whether the output leads the desired 90° shift. and lags phase or
- Charge Pump (Analog): also in progress. It will convert the digital Up/Down signals into a continuous control voltage that tunes the VCDL. Special care is being taken to minimize mismatch and noise contributions.

Unlike PLL-based solutions, the QDLL locks directly to the reference clock, avoiding frequency drift and ensuring that the 90° phase relation remains stable. With the VCDL completed and the other blocks in development, this design forms a compact and scalable solution for quadrature clock generation in mixed-signal integrated systems.

Block Diagram

Design Details

Expected Outcome

The expected outcome of this project is a CMOS Delay-Locked Loop (DLL) capable of generating a stable **90° phase-shifted clock signal** with respect to the reference input. The design is expected to:

- Demonstrate **robust locking behavior** across process, voltage, and temperature (PVT) variations.
- Achieve low jitter and stable quadrature phase relation suitable for high-speed communication and signal processing
- Provide a validated VCDL block, with the Phase Detector and Charge Pump under development, leading to a complete integrated DLL solution.

Design Details

- Number of Pins
 - VDD+VSS: Bi-direcctional
 - PD: 2 inputs
 - Charge pump: 1 output
 - VCDL: Vout 1 output + Vcontrol: 1 input
 - Design type: Analog

Estimate	ed Number	of Pins:*
nput: *		
3		-
Output: *		
2		
		570
Bidirectional	*	
2		
<u> </u>		υ-

UNIC-CASS Project

Quadrature Delay Locked Loop Technical Details

Martín Doric - Argentina section Leonardo Vazquez - argentina section

WorkFlow

- Analog Design (This work)
 - State of the art
 - Schematics levels design (XSCHEM)
 - Simulation & W/L iteration (NGSPICE) in progress
- Layout Design (Future Work)
 - Layout implementation (KLayout)
 - DRC + LVS Verification

State of the Art

Multiphase Clock Generator: CDR for 7 GHz

Proposed DLL

Block Diagram

Proposed DLL

Main Expected Characteristics

	Value	Unit
Tech.	130	nm
Supply Voltage	1.2 ± 10 %	V
Temperature	[0, 65, 125]	°C
Vcont	[0 , 1.2]	V
Vinput/ Voutput	[0 - 1.2] (rail-to-rail)	V
t_rise/t_fall	< 0.25	ps
Phase shift	90 ± 5	degrees
Frequency	500±10	MHz
Period	2	ns
Charge	80-150	fF

Proposed DLL: Top Level

Schematics: Variable Delay Line

Schematic: Variable Delay

Schematic: Large Delay

Schematic: Phase Detector

Schematic: Charge - pump

Simulations: open loop VCDL

- VControl = 0 V
- Phase Shift = 94°

Simulations: open loop VCDL

- VControl = 1.2 V
- Phase Shift = 86°

Simulations: closed-loop

You can view the progress in the Repo project

Fundacion-Fulgor/UNIC-CASS-Aug25 at e9d1b61a308cbfd85f680fc90a6ecec01b0072fd

The project is open-sourced and publicly available through GitHub for non-profit organizations, realeased under a GNU GPL 3.0 license