Exercices: fonction Ln

Exercice 1: Calculer les réels suivants : $a = \ln(e^2)$ $b = \ln(e^{-3})$ $c = e^{\ln 5}$ $d = e^{-\ln 3}$ $f = e^{2\ln 7}$ $g = e^{-3\ln 2}$

$$a = \ln(e^2)$$

$$b = \ln(e^{-3})$$

$$e = e^{\ln 5}$$
 $d = e^{-1}$

$$f = e^{2 \ln n}$$

$$g = e^{-3 \ln \theta}$$

Exercice 2: Résoudre dans IRles équations suivantes :

a.
$$\ln x = 3$$

b.
$$2 \ln x + 6 = 0$$

c.
$$1-4 \ln x = \ln x - 9$$
 d. $(\ln x)^2 = 1$

d.
$$(\ln x)^2 =$$

Exercice 3: Résoudre dans Rles équations suivantes.

a.
$$e^x = 4$$

a.
$$e^x = 4$$
 b. $5e^x + 2 = 8$ c. $e^{2x} - 2 = 0$

c.
$$e^{2x} - 2 = 0$$

Exercice 4: Résoudre dans Rles équations suivantes après avoir déterminé l'ensemble de définition :

a.
$$\ln(x+2) = \ln(2)$$
 b. $\ln(2x-5) = 1$

b.
$$\ln(2x-5)=1$$

c.
$$4 \ln(1-x) = 8$$

c.
$$4 \ln(1-x) = 8$$
 d. $\ln(3x+8) = \ln(x)$

Exercice 5: Exprimer chacun des nombres suivants en fonction de ln2 et/ou ln3.

$$a = \ln 12$$

$$b = \ln \sqrt{8}$$

$$c = \ln\left(\frac{3}{2}\right)$$

$$c = \ln\left(\frac{3}{2}\right)$$
 $d = \ln\left(2\sqrt{e}\right)$ $f = \ln\left(\frac{9}{e}\right)$

$$f = \ln\left(\frac{9}{e}\right)$$

Exercice 6: Exprimer chacun des nombres suivants en fonction de $\ln x$, où x est un réel positif.

$$a = \ln(x^4)$$

$$b = \ln\left(\frac{e}{x}\right)$$

$$b = \ln\left(\frac{e}{x}\right)$$
 $c = \ln\left(\frac{\sqrt{x}}{e}\right)$ $d = \ln\left(ex\right)$ $f = \ln\left(\frac{x}{\sqrt{e}}\right)$

$$d = \ln(ex)$$

$$f = \ln\left(\frac{x}{\sqrt{e}}\right)$$

Exercice 7: Exprimer chacun des nombres suivants sous la forme lnA, où A est un réel strictement positif.

$$c = \frac{1}{2} \ln 3 - \ln 5$$

b=ln6-ln7
$$c = \frac{1}{2} \ln 3 - \ln 5$$
 $d = 4 \ln 2 - \frac{1}{2}$ $e = \frac{1}{2} (\ln 5 + \ln 3)$

$$=\frac{1}{2}(\ln 5 + \ln 3)$$

Exercice 8: Résoudre dans IRles équations suivantes après avoir déterminé l'ensemble de définition :

a.
$$\ln(x+1) + \ln(x) = 0$$

a.
$$\ln(x+1) + \ln(x) = 0$$
 b. $\ln(x^2+1) = \ln(x)$

c.
$$\ln(3-x) \times \ln(x+1) = 0$$

c.
$$\ln(3-x) \times \ln(x+1) = 0$$
 d. $\ln(5x-6) - 2\ln(x) = 0$

Exercice 9: Résoudre dans Rles équations suivantes :

a.
$$\ln(e^x + 1) = \ln 2$$
 b. $\ln(2e^x + 1) = 1$ c. $e^{1 + \ln x} = 2x - 1$ d. $e^{2\ln x - 3} = x$

b.
$$\ln(2e^x+1)=1$$

c.
$$e^{1+\ln x} = 2x - 1$$

d.
$$e^{2\ln x - 3} = x$$

Exercice 10: Résoudre le système d'équations :

$$\begin{cases} 2 \ln x + \ln y = 2 \ln 2 + \ln 5 \\ xy = 5 \end{cases}$$

Exercice 11: Dans chaque cas, déterminer le plus petit entier naturel n vérifiant l'inéquation :

a.
$$0.7^n < 0.01$$

b.
$$1,05^n > 2$$

c.
$$\left(\frac{2}{3}\right)^n < 10^{-3}$$

b.
$$1,05^n > 2$$
 c. $\left(\frac{2}{3}\right)^n < 10^{-3}$ d. $1 - \left(\frac{5}{6}\right)^n \ge 0,99$

Exercice 12: La suite (u_n) est géométrique de raison 1,1 et de premier terme $u_0 = 50$.

- a. Exprimer u_n en fonction de n.
- b. Quels sont les entiers naturels n tels que $u_n > 9000$?
- c. Quels sont les entiers naturels n tels que $u_n < 10^{11}$?

Exercice 13: Déterminer le domaine de dérivabilité ainsi que la dérivée des fonctions suivantes.

a.
$$f(x) = 5x + 1 - \ln x$$

b.
$$f(x) = x^2 \ln x$$

c.
$$f(x) = \frac{\ln x}{2x}$$

e.
$$f(x) = \sqrt{\ln x}$$

f. $f(x) = \ln(5x - 3)$

d.
$$f(x) = \frac{x}{\ln x}$$

g.
$$f(x) = \ln(x^2 - 3x + 2)$$

Exercice 14: Calculer les limites en zéro et en l'infini des fonctions suivantes

a.
$$f(x) = \frac{1}{x} - \ln x$$
 b. $g(x) = x + (\ln x)^2$

b.
$$g(x) = x + (\ln x)^2$$

c.
$$h(x)=x^2 \ln x - x$$

c.
$$h(x) = x^2 \ln x - x$$
 d. $k(x) = \ln x + \frac{1}{x^2}$

Exercice 15: On considère la fonction f définie sur]0; $+\infty[$ par $f(x) = \frac{5 x \ln x}{1 + x^2}$.

Déterminer les limites de f en zéro et en l'infini.

Quelle asymptote peut-on en déduire ?

Exercice 16: Soit la fonction f définie sur l'intervalle]1; $+\infty$ [par : $f(x) = \ln\left(\frac{x-1}{x^2}\right)$.

- 1. Déterminer les limites de f en 1 et en l'infini.
- 2. Justifier que f est dérivable sur l'intervalle $]1; +\infty[$ et calculer sa dérivée.
- 3. Étudier le sens de variation de *f*.

Exercice 17: Soit la fonction g définie sur]- ∞ ; 0[par : $g(x) = \ln(1 - e^x)$.

- 1. Déterminer les limites de g en ∞ et en 0. Que peut-on en déduire ?
 - 2. Étudier le sens de variation de *g*. Dresser son tableau de variations.
 - 3. Résoudre l'équation g(x) = -10

Exercice 18:

- 1. Soit u la fonction définie sur]0; $+\infty[$ par $u(x) = \frac{1-\sqrt{x}}{x}$.
 - a. Déterminer les limites de u en 0 et en $+\infty$.
 - b. Étudier le sens de variation de *u*.
 - c. Étudier le signe de u(x)
 - d. Résoudre l'équation u(x)=1.
- 2. Soit la fonction f définie par $f(x) = \ln\left(\frac{1 \sqrt{x}}{x}\right)$.
 - a. Justifier que f est définie sur]0; 1[.
 - b. Déterminer les limites de f en 0 et en 1.
 - c. Quel est le sens de variation de *f* ?
 - d. Déterminer le signe de f(x) en fonction de x.

Exercice 20: Bac

Soit f une fonction définie et dérivable sur \mathbb{R} On considère les points A(1;3) et B(3;5).

On donne ci-dessous C_f la courbe représentative de la fonction f dans un repère orthogonal du plan, ainsi que la tangente (AB) à la courbe C_f au point A.

Les trois parties de l'exercice peuvent être traitées de manière indépendante.

Partie A:

- 1. Déterminer graphiquement les valeurs de f(1) et f'(1).
- 2. La fonction f est définie par l'expression $f(x) = \ln(ax^2 + 1) + b$, où a et b sont des nombres réels positifs. a. Déterminer l'expression de f'(x).
 - b. Déterminer les valeurs de a et b à l'aide des résultats précédents.

Partie B:

On admet que la fonction f est définie sur \mathbb{R} par $f(x) = \ln(x^2 + 1) + 3 - \ln(2)$.

- 1. Montrer que f est une fonction paire.
- 2. Déterminer les limites de f en $+\infty$ et en $-\infty$.
- 3. Dresser le tableau de variations de f.
- 4. En utilisant le tableau de variations, déterminer l'ensemble des valeurs du réel k pour lesquelles l'équation f(x)=k admet deux solutions.
- 5. Résoudre l'équation $f(x)=3+\ln 2$.

Partie C.

On rappelle que la fonction f est définie sur \mathbb{R} par $f(x) = \ln(x^2 + 1) + 3 - \ln(2)$.

- 1. Conjecturer, par lecture graphique, les abscisses des éventuels points d'inflexion de la courbe $\,{f C}_f$.
- 2. Montrer que, pour tout nombre réel x, on a $f''(x) = \frac{2(1-x^2)}{(x^2+1)^2}$.
- 3. En déduire le plus grand intervalle sur lequel la fonction est convexe.

Exercice 21: Bac

Partie A:

On considère la fonction f définie pour tout réel x de [0;1] par $f(x) = e^{-x} + \ln(x)$

- 1. Calculer la limite de f en 0.
- 2. On admet que f est dérivable sur [0;1]. On note f' sa fonction dérivée.

Démontrer que, pour tout réel x appartenant à [0;1], on a : $f'(x) = \frac{1-xe^{-x}}{x}$.

- 3. Justifier que, pour tout réel x appartenant à [0;1], on a $x e^{-x} < 1$ En déduire le tableau de variation de f sur [0;1].
- 4. Démontrer qu'il existe un unique réel $\,l\,$ appartenant à]0;1] tel que $\,f\,(l)\!=\!0$.

Partie B

1. On définit deux suites (a_n) et (b_n) par $a_0 = \frac{1}{10}$, $b_0 = 1$ et, pour tout entier naturel n, $a_{n+1} = e^{b_n}$ et $b_{n+1} = e^{-a_n}$.

a. calculer a_1 et b_1 . On donnera les valeurs approchées à 10^{-2} près.

2. b. On considère ci-dessous la fonction termes, écrite en langage Python.

```
Def termes(n):

a=1/10

b=1

for k in range(0,n):

c=....

b....

a=c

return (a,b)
```

Recopier et compléter sans justifier la fonction de telle sorte que la fonction termes renvoie le couple a_n , b_n .

- 2. On rappelle que la fonction $x \to e^{-x}$ est décroissante sur \mathbb{R}
 - a. Démontrer par récurrence que, pour tout entier naturel n, on a :

$$0 < a_n \le a_{n+1} \le b_{n+1} \le b_n \le 1$$

- b. En déduire que les suites (a_n) et (b_n) sont convergentes.
- 3. On note A la limite de (a_n) et B la limite de (b_n) .

On admet que A et B appartiennent à l'intervalle]0;1], et que $A\!=\!e^{-B}$ et $B\!=\!e^{-A}$.

- a. Démontrer que f(A)=0.
- b. Déterminer A-B.

Exercice 22: Bac

Soit f la fonction définie sur l'intervalle $]0;+\infty[$ par $f(x)=x\ln(x)-x-2$.

On admet que la fonction f est deux fois dérivables sur $]0;+\infty[$.

On note f' sa dérivée, f'' sa dérivée seconde et C_f sa courbe représentative dans un repère.

- 1. a. Démontrer que, pour tout x appartenant à $]0;+\infty[$, on $f'(x)=\ln(x)$.
 - b. Déterminer une équation de la tangente T à la courbe C_f au point d'abscisse x=e.
 - c. Justifier que la fonction f est convexe sur l'intervalle $]0;+\infty[$.
 - d. En déduire la position relative de la courbe C_f et de la tangente T.
- 2. a. Calculer la limite de la fonction f en 0.
 - b. Démontrer que la limite de la fonction f en $+\infty$ est égale à $+\infty$.
- 3. Dresser le tableau de variations de la fonction f sur l'intervalle $]0;+\infty[$.
- 4. a. Démontrer que l'équation f(x)=0 admet une unique solution dans l'intervalle $]0;+\infty[$. On note α cette solution.
 - b. Justifier que le réel α appartient à l'intervalle [4,3;4,4[.
 - c. en déduire le signe de la fonction f sur l'intervalle $]0;+\infty[$.
- 5. On considère la fonction seuil suivante écrite dans le langage Python.

On rappelle que la fonction log du module mtah (que l'on suppose importé) désigne la fonction logarithme népérien ln.

```
Def seuil(pas):

x=4,3

while x*log(x)-x-2<0:

x = x*pas

return x
```

Quelle est la valeur renvoyée à l'appel de la fonction seuil(0,01) ? Interpréter ce résultat dans le contexte de l'exercice .

Exercice 23: Bac

Soit la fonction f définie sur \mathbb{R} par $f(x) = \ln(1 + e^{-x}) + \frac{1}{4}x$

On note $\, {
m C}_f \,$ la courbe représentative de la fonction $\, f \,$ dans un repère orthonormé (O ; $\, \vec{i} \,$, $\, \vec{j} \,$) du plan. Partie A

- 1. Déterminer la limite de f en $+\infty$.
- 2. On admet que la fonction f est dérivable sur \mathbb{R} et on note f' sa fonction dérivée.
 - a. Montrer que, pour tout réel x, $f'(x) = \frac{e^x 3}{4(e^x + 1)}$.
 - b. En déduire les variations de la fonction f sur $\mathbb R$
 - c. Montrer que l'équation f(x)=1 admet une unique solution α dans l'intervalle [2,5].

Partie B

On admettra que la fonction f' est dérivable sur \mathbb{R} et pour tout réel x, $f''(x) = \frac{e^x}{(e^x + 1)^2}$.

On note Δ la tangente à la courbe C_f au point d'abscisse 0.

Dans le graphique ci-dessous, on a représenté la courbe C_f la tangente Δ et le quadrilatère MNPQ tel que M et N sont les deux points de la courbe C_f d'abscisses respectives a et -a, et Q et P sont les deux points de la droite Δ d'abscisses respectives a et -a.

- a. Justifier le signe de f "(x) pour x ∈ ℝ
 b. En déduire que la portion de la courbe C_f sur l'intervall e [-a; a] est inscrite dans le quadrilatère MNPQ.
- 2. a. Montrer que $f(-a) = \ln(e^{-a} + 1) + \frac{3}{4}a$
 - b. Démontrer que MNPQ est un parallélogramme.