FOSYMA

Projet Multi Agent

Victor Fleiser - Thomas Marchand

Index

<u>Stratégie</u> <u>Terminaison</u>

<u>Agents</u> <u>Code changes</u>

<u>Communication</u> <u>Extra</u>

Position optimale du Silo

SILO

<u>Interblocage</u>

Stratégie

Stratégie - phase EXPLORATION

Tous les agents découvrent les noeuds ouverts, se partagent les cartes

Exploration décentralisée

Avantages

- Rapide : Couvrage plus rapide
- Robuste : Un agent en panne n'empêche pas les autres agents
- Simple: "Trouver le noeud ouvert proche", déjà implémenté

Inconvénients

Inconvénients très mineurs

Stratégie - phase EXPLOITATION

SILO

AGENTS

Trouve le noeud optimal

Calcule des missions adaptées aux agents

Obtient tous les trésors

Trouvent le Silo

Suivent des mission adaptées à leur capacités

Exploitation centralisée (avec Silo)

Avantages

- Vue globale: Permet d'attribuer les missions avec une bonne efficacité
- Coordination : Peut former des équipes

Inconvénients

- Point de défaillance unique : Silo en panne -> 💀
- Goulot d'étranglement : plus il y a d'agents, plus trafic élevé autour du Silo

Approche hybride

Transition naturelle

Best of both worlds

Vitesse de l'exploration décentralisée

Efficacité de l'exploitation centralisée

Agents

Agents - types

- Collecteur : Peut explorer, déverrouiller et récupérer les trésors selon ses capacités

- Explorateur : Peut explorer et déverrouiller les trésors selon ses capacités.

Silo (non central) : Comme explorateur.

- Silo (Central, nommé "Silo") : Agit comme agent central pendent l'exploitation

Communication

Agent1 Agent2 Je veux partager X information à Setup Agent2 ReceiveXBehaviour

Agent2

ReceiveXBehaviour

Agent1

Je veux partager X information à Agent2

ShareXBehaviour

WaitForAckBehaviour

Agent1 Je veux partager X information à Agent2 ShareXBehaviour ACK Contenu additionel WaitForAckBehaviour

Agent2

ReceiveXBehaviour

Communication - Behaviours et Protocoles

[SHARE-TOPO]

ShareMapBehaviour -> ReceiveMapBehaviour

[SHARE-SILO-KNOWLEDGE]

ShareSiloKnowledgeBehaviour -> ReceiveSiloKnowledgeBehaviour

[STRATEGY]

CommunicateWithSiloBehaviour -> ReceiveCommunicationWithSiloBehaviour

WaitForAckBehaviour

SendAck

Communication - Behaviours et Protocoles

Autres communications qui n'utilisent pas de ACK pour prioriser la vitesse

[MOVE-REQUEST]

SendMoveRequestBehaviour -> ReceiveMoveRequestBehaviour

[MISSION]

Silo -> ReceiveMissonsBehaviour (Agent)

[STRATEGY]

Agent -> ReceiveCommunicationWithSiloBehaviour (Silo)

Position optimale du Silo

Quelle est la position optimale pour le Silo ?

-> on cherche à minimiser un score attribué à chaque noeud

On veut être proche des trésors Distance = ∑distances

DISTANCE AUX TRESORS

On utilise un multiplicateur pour prendre en compte différents critères

SCORE = DISTANCE x MULTIPLICATEUR

SILO

Silo - General Ticker

onTick:

- 1. updateOpenNodeStatus
- 2. updateTreasureStatus
- 3. updateAssignment
- 4. calculateTasks
- 5. tryAssigningTasks

Silo - 1. updateOpenNodeStatus

Mets à jour les noeuds ouverts du Silo.

CLOSED -> enlevés

OPEN -> ajout dans openNodeStatus

Silo - 2. updateTreasureStatus

Mets à jour les trésors du Silo.

Regarde ses trésors de exploCoopBehaviour

Silo - 3. updateAssignment

Mets à jour le statut des trésors/noeuds/agents

Pos	Тур	Amt	Str	Lck	Lock	Assignment	End T	Try	L.Att	L.Upo
44	GOL	15	2	0	0pen	available		0		53197
58	DIA	80	2	4	Lock	available		0		5290
5	GOL	25	0	0	Open	available			52899	
h40	DIA	11	0	0	Open	available		0		53539
90	GOL	25	3	2	Lock	available	T T			52699
70	GOL	25	2	3	Lock	available		0		5289
h1	GOL	102	2	3	0pen	available	0			53434
95	GOL	20	1	1	Open	available	0 0			5329
M10	GOL	15	3	2	0pen	available				53659
M35	GOL	40	3	2	Lock	available				5325
10	GOL	10	1	2	Open	available		0		5293

Silo - 4. calculateTasks (Missions)

Importance = Amount / (nbEssai + 1)

unlockAndCollect : déverrouillage et collecte d'un trésor	x 2.5
collect : collecte d'un trésor	x 1.5
collectWithLosses : collecte avec pertes d'un trésor	x 1.25
unlock : déverrouillage d'un trésor	x 1

Silo - 4. calculateTasks (Missions)

```
discoverOpenNode : explorer un noeud ouvert

Importance = 20 / (nbEssai + 1)
```

```
explore : exploration de la carte aléatoire
Importance = 1.1
```

Silo - 4. calculateTasks (Missions)

+ Task Type	Imp.	Pos	Res	Amt	Str	+ Lck
unlockAndCollect	200,0	+ 58	DIA	+ 80	 2	4
collect	153,0	h1	GOL	102	_	
collectWithLosse	127.5	h1	GOL	102		
unlockAndCollect	100,0	M35	GOL	40	3	2
unlock	80.0	58			2	4
unlockAndCollect	62,5	90	GOL	25	3	2
unlockAndCollect	62,5	70	GOL	25	2	3
unzock	40.0	M35			3	2
collect	37,5	5	GOL	25		
collectWithLosse	31,3	5	GOL	25		
collect	30,0	95	GOL	20		
unlock	25,0	90			3	2
unlock	25,0	70			2	3
collectWithLosse	25,0	95	GOL	20		
collect	22,5	44	GOL	15	į	i i
collect	22,5	M10	GOL	15	i	i i
discoverOpenNode	20,0	11				i i
collectWithLosse	18,8	44	GOL	15		
collectWithLosse	18,8	M10	GOL	15		
collect	16,5	h40	DIA	11		
collect	15,0	10	GOL	10		į į
collectWithLosse	13,8	h40	DIA	11		i
collectWithLosse	12,5	10	GOL	10		i i
explore	1,0					ĺ
+		+	·	+		++

Silo - 5. tryAssigningTasks

Attribue les tâches

SOLO

Pour chaque mission:

Pour chaque agent:

S'il peut faire la mission toute seule:

Mission donnée

Silo - 5. tryAssigningTasks

COLLAB

Pour chaque groupe d'agent (taille 2 à 4):

Pour chaque mission:

Pour chaque combinaison d'agents:

S'ils peuvent faire la mission ensemble:

Mission donnée

Silo - 5. tryAssigningTasks

Un agent aura toujours au moins une tâche compatible: "explore".

Il peut aussi attendre au Silo dans ce cas.

Mission

Silo neighbor nodes

Closest node in

Path to closest node

destinations

400

false

15s

missionDestination

goalDestination

pathToDestination

goalPriority

isStationary

missionTimeout

Dana Funda Os an Dala antique a structura inciana

null?

null

false

10s

Random node

 $1 + rand(0 \sim 100)$

missionType	goToSilo	findSilo	explore	waitForSiloMessag
Dans ExploCoopBenaviour: setup mission				

null

null

0

false

10s

Random node

exploreOpenNodes

openNode

null

300

distance*500ms + 5s

е

Silo neighbor nodes

Closest node in

Path to closest node

If at closest node

1s + timeBetweenTaskReset -

((5 - tasksToConsiderPortion) * timeBetweenTasksReset /

destinations

100

unlockTreasure

closestnodes(pos,

Random node from

|agents|)

destinations

null

650

distance*1s + 5s

pickUpTreasure

closestnodes(pos,

Random node from

destinations

null

625

false

distance*1s + 5s

|agents|)

unlockAndPickUpT

closestnodes(pos,

Random node from

reasure

|agents|)

destinations

null

675

false

distance*1s + 5s

Interblocage

L'agent repart tout de suite sans envoyer de ACK. Fonctionne bien quand la vitesse d'exec est similaire entre les deux agents. (Le cas içi, sinon on aura d'autres MoveRequest)

Interblocage 3 (impasse)

Interblocage 3 (impasse)

Interblocage 3 (impasse)

Calcule l'intersection la plus proche du côté de l'envoyeur ainsi que l'intersection la plus proche sans passer vers l'envoyeur

Priorités:

0 : pas de but

100 : en communication, ne bouge pas pour rester dans le champ

350 : aller vers un noeud ouvert pendant l'exploitation

400 : aller vers le SILO

600 : aller vers un trésor pour confirmer sa location/contenu

625 : aller vers un trésor pour le collecter

650 : aller vers un trésor pour l'ouvrir

675 : aller vers un trésor pour l'ouvrir et le collecter

800 : pousse toi je suis le SILO et je vais vers ma nouvelle location

900 : pousse toi c'est sans issue (SILO bloque)

925 : pousse toi c'est sans issue (golem bloque)

950 : pousse toi c'est sans issue (autre)

Terminaison

Fin de l'exploration (transition)

Quand

La carte d'un agent n'a plus de noeuds ouverts.

Ou

 Plus de noeuds ouverts accessibles (l'agent ne voit pas de chemin sans obstacles jusqu'au restant des noeuds ouverts).

Fin de l'exploitation 💰

Quand le Silo calcule qu'il ne reste plus assez de tâches suffisamment importantes (et que les tâches ne sont pas assignées, ou tous les trésors sont vides, ou les agents (Silo exclus) n'ont pas les capacités requises)

-> affichage dans le terminal (on a laissé le code continuer à s'exécuter mais c'est ici qu'on considère l'exécution terminée)

Terminaison - les limites

Si les agents ne connaissent pas la positions du Silo, ils peuvent prendre du temps

Peut finir prématurément:

- S'il reste des trésors qui n'ont pas été détectés par les agents (par exemple trésors transportés par des golems)
- Pour les trésors avec une petite valeur (ex: 1) après peu d'essais

Peut ne pas finir:

 Si la position des trésors changent constamment (les attempts sont reset) où qu'un coffre est impossible à ouvrir

Ralenti

- Peut être lent pour la collaboration: il faut que les agents corrects soient à côté du Silo (finis par se produire mais peut prendre du temps si on n'a pas de chance et qu'un agent est envoyé explorer)

Améliorations potentielles

Silo : Lorsque plusieurs agents peuvent faire une tâche -> prendre le plus efficace

Silo : utiliser le fait que le champ de communication peut être >1 pour avoir des agents qui attendent/communiquent sans être collés au Silo

Rendre le code plus robuste au temps d'exécutions en utilisant moins/pas des timers pour les différentes parties du code.

Meilleur algorithme de noeud optimal pour le Silo prenant en compte les potentiels routes avec un trafic élevé.

Code changes

Code changes

Agents "explorer" peuvent maintenant participer aux ouvertures de coffres

Le noeud optimal du Silo évite maintenant les noeud trésors

Silo prend en compte les missions assignées et les capacités des agents avant de dire "Finished"

Changement de timings (Reset task time 5->15, considerSiloLostAfter : 20000->40000)

maxGroupSize: 3->4 pour ouvrir les coffres à 4

Code changes

Importance des noeuds ouverts réduit plus rapidement (20/attemps+1 -> 20/attemps²+1)

Ajout compteur stopExploringFactor pour mission "explore". factor/100, factor ∈ [1,90] qui augmente -> réduit nombre d'explore pour favoriser les agents autour du Silo pour mission collectives au fur et à mesure que l'exécution progresse

Le silo compare sa position optimale à la position courante ET son ancienne position optimale pour regarder si elle est correcte.

Prints plus lisibles

Extra

Partage complet des cartes

ShareMapBehaviour envoie myMap complet.

Avantages

- Simple : pas besoin de calculer la différence
- **Robuste**: Si on partage tout, dans le cas ou un partage échoue, une autre partage arrange le problème.
- **Correction**: Si un agent avait une erreur (ne devrait pas arriver içi), le partage peut le corriger

Inconvénients

- Coût message: Le message est plus gros
- Lourd : La fusion d'une grande carte est plus coûteuse

Dans notre cas, on a trouvé la robustesse plus importante.