

Jp=OP TP=Pp

مع تمنياتي للجميع بالتوفيقد/ محمد الته اتم

1 . 7		
Uni EE31	Test#2 (1	9.77
Q1) For	الجماهيرية العربية الليبية الشعبية الاشتراكية العظمى كلية الهندسة - سجامعة الفاتح قسم الهندسة الكهربية والإلكترونية الامتحان النصفى الثاني لمادة الكهرومغناطيسية (EE 313) لفصل الربيع 2008	141
01	الامتحان النصفي التاني لماده الحهرو معافوسية (313 عام) ـــــن الربن: ساعتان ــــــــــــــــــــــــــــــــــــ	الدياعل د
Q1.		
(i). Br	riefly describe the phenomenon of magnetization in a magnetic material. What nds of magnetic materials?	t are the different
(ii). W ₩ pol	What is an electric dipole? How is its strength defined? What are the different larization?	kinds of <u>electric</u>
u.	in electric field $\vec{E} = 100 \rho \sin \omega t \ \vec{a}_{\rho} \ \text{V/m}$ is given to exist in a certain region, with lielectric constant $\text{Er} = 5 \ \text{Find}$ the following fields:	h a relative
(i) –	The electric polarization field $ar{P}$. (ii). The polarization bound charge densi	ty ρ_{-} .
(iii)- Q2. a.	The displacement flux density \vec{D} . (iv). The volume bound charge density \vec{D}	
	Discuss the concept of the conservation of the electric charge.	
σ	Determine the relaxation expression for the time decay of a charge distribution of the initial distribution at $t = 0$ is $\rho_{\nu 0} = 6.C/m^3$. If the conductivity of the conductivity of the conductivity $\epsilon = 18x10^{-12}$ F/m, find the time constant of ensity decay. Sketch ρ_{ν} versus time, t	nductor
ares	yo semi-infinite region, air (region1) for $z > 0$, and dielectric (region2, in which separated by the interface at $z = 0$. In the air region, the constant electric field $z = -1\vec{a}_x + 1\vec{a}_y + 5\vec{a}_z$ V/m is given.	$\varepsilon = 8\varepsilon_0$) for $z < 0$,
(i)- I	Find \vec{D} and \vec{E} for both regions.	
(iii)	Sketch the \vec{E}_2 at the origin. Find the refraction angles θ_1 and θ_2 from the normal in both regions if the n directed from region2 to region1.	ormal unit vector
Let u x = d one d the d	is consider two infinite parallel, perfectly conducting planes occupying the planel and kept the potential $\phi(x) = 40V$ at $x = 0$, and $\phi(x) = 0$ at $x = 0$. Solve Laplace limension for the potential function and then find the electric field in the region dielectric between the two parallel plane, $\varepsilon = 3\varepsilon_0$.	nes x = 0 and ce's equation in n of interest if
Q4.		
mea	Explain what is the skin depth (or penetration depth) for a plane wave propaga lium.	ting in lossy
(take	Compute the skin depth for sea water with $\sigma = 6$. S/m, $\varepsilon_r = 80$ and $\mu_r = 1$ e $\mu_0 = 4J$ x 10^{-7} H/m, $\varepsilon_0 = 8.854$ x 10^{-12} F/m) at $f = 12$ GHz.	
_ b. For a	a plane wave propagating in sea water with \vec{E} field given by,	
₩ (i)- w	what will be the direction of travel? $(-\frac{z}{2})$	
(ii)-	Compute α , β , γ and η for the medium.	
(iv)-	What will be the expression for \bar{H} field associated with \bar{E} field? What will be the magnitude of the \bar{E} field after traveling 7 skin-depth in the water?	sea

- Q1) For the uniform plane wave in empty space $\vec{E}(x) = 1000e^{-j\beta_0 x} \vec{a}_y \text{ v/m} + a_y$
 - a) Determine direction of propagation and type of polarization. [2M]

 b) Find the associated \vec{B} field. [3M] $\vec{B} = \vec{E} \times \vec{A} \times \vec{B} = \vec{A} \times \vec{A} \times \vec{B} = \vec{A} \times \vec{B} = \vec{A} \times \vec{A} \times \vec{B} = \vec{A} \times \vec{A} \times \vec{B} = \vec{A} \times \vec{A} \times \vec{A} \times \vec{A} \times \vec{A} = \vec{A} \times \vec{A} \times \vec{A} \times \vec{A} \times \vec{A} \times \vec{A} \times \vec{A} = \vec{A} \times \vec{A} \times$

- c) Find the phase constant β_o at frequency f = 40MHz. [1M]

Q2) Explain the following

- a) Wave polarization [1M]
- b) Dielectric polarization [1M]
- c) Boundary condition for an electromagnetic wave when passing from one region to another. [2M]
- Q3) The half space (region 1) 0 < x has $(3\varepsilon_o, 6\mu_o, 0)$, $\vec{E}_1 = 4\vec{a}_x + 3\vec{a}_y 5\vec{a}_z$, $\vec{H}_1 = 2\vec{a}_x + 8\vec{a}_y + 10\vec{a}_z$ the other half space for (region 2) 0 > x has $(4\varepsilon_o, \mu_o, 0)$, Find \vec{E}_2 and \vec{H}_2 If:
 - At the interface x=0 the surface current density is zero $\vec{J}_s=0$ [2.5M]
 - at the interface x=0 the surface current density is $\vec{J}_s = 4\vec{a}_y 8\vec{a}_z$ A/m [2.5M]
- Q4) A vector field $\vec{F}(\rho, \phi, z)$ is given by $\vec{F}(\rho, \phi, z) = \rho^2 \cos^2 \phi \vec{a}_{\rho} + z \sin \phi \vec{a}_{\phi}$ exists in the region shown in Fig.
 - Find the divergence of the vector $\vec{F}(\vec{r}, \theta, \phi)$ [1M] i.
 - Illustrate the validity of the divergence theorem[4M] ii.

20-8989492

Du= & 12 04 95

DI & S. 5 10 3 1

eq ion
$$\bigcirc$$

$$Et2$$

$$Et2$$

$$E2$$

$$E2$$

$$E3$$

region 2

$$\frac{D+1}{E_1} = \frac{D+2}{E_2}$$
 Tangintial

$$D_{n1} - D_{n2} = P_s$$

$$E_1 E_{11} - E_2 E_{12} = P_S$$
 7 Normal

$$\tan \theta_1 = \frac{\epsilon_1}{\epsilon_2} \tan \theta_2$$

2. Magnetic Material.

$$\frac{Bt_1}{\mu_1} - \frac{Bt_2}{\mu_2} = J_s$$

$$\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = J_s$$
Tongintial

·in region (1):-

region (1)
$$E = E_0$$

(air) $E = E_0$
Region (2) $E = E_0$

(i) D and E ?

$$\Rightarrow \boxed{E_{n_2} = \frac{15}{5} \vec{a_2} = 3\vec{a_2}}$$

$$\overline{D}_1 = C_0 \overline{E}_1$$
, $\overline{D}_2 = 5C_0 \overline{E}_2$

(iii)
$$tan\theta_1 = \frac{\epsilon_1}{\epsilon_2} tan\theta_2$$
.

$$\tan \theta_2 = \frac{\epsilon_2}{\epsilon_1} \tan \theta_1$$

$$\Rightarrow \cos \theta_1 = \frac{15}{|E_1|} = \frac{15}{|5^2 + 10^2 + 15^2}$$

$$\Rightarrow$$
 $\tan \theta_2 = \frac{5e}{80} \tan \theta_1 = 3.7267$

$$\Rightarrow \boxed{\theta_2 = 74.97^{\circ}} \qquad \text{or :- } \text{Cus}\theta_2 = \boxed{Ez_2}$$

$$\uparrow \text{Eni}$$

$$(ii) \xrightarrow{Et2} f$$

$$Et2 \qquad En2$$

Q3-27] Problem's book.

$$\frac{\beta}{\mu_1} - \frac{\beta t^2}{\mu_2} = J_S = 0$$

$$\frac{\exists}{|u_1|} = \frac{\beta t_2}{|u_2|} = \frac{\beta t_2}{|u_1|} = \frac{\mu_2}{|u_1|} \beta t_1$$

$$\Rightarrow H_2 = \frac{\overline{B_2}}{\mu_2} = \frac{0.3}{\mu_0} \overline{a_2} + \frac{0.0}{\mu_0} \overline{a_y} + \frac{0.125}{\mu_0} \overline{a_z}$$

$$\overline{H_1} = \frac{\overline{B_1}}{\mu_1} = \frac{0.3}{\mu_0} \overline{ax} + \frac{0.4}{\mu_0} \overline{ay} + \frac{0.5}{\mu_0} \overline{az}$$

$$= \frac{1}{|H_1|} = \frac{0.5}{|(0.3)^2 + (0.4)^2 + (0.5)^2}$$

$$\Rightarrow \tan\theta z = \frac{\mu z}{\mu i} \tan\theta 1 = \frac{4\mu o}{\mu o} \tan\theta i = \boxed{4}$$

