Introdução à disciplina

Prof. Allan Rodrigo Leite ESTD – Estruturas de dados

- Definem modelos para organizar e armazenar dados em sistemas computacionais
 - □ Também estabelecem políticas para acesso aos dados armazenados

- Cada estrutura de dados possui características distintas, aplicáveis em diferentes propósitos
 - □ Buscam a eficiência no armazenamento e na recuperação de dados

- Existem diferentes tipos de estruturas de dados, sendo as principais:
 - □ Lineares
 - Pilhas, Filas, Listas
 - □Hierárquicas
 - Árvores
 - □ Complexas
 - Grafos, Mapas, Tabelas

 Exemplo 1: armazenar e localizar contatos telefônicos em uma agenda

 Exemplo 2: encontrar o brasileiro mais velho na base de dados do IBGE

 Exemplo 3: encontrar a melhor rota de viagem para um operador logístico

Metodologia da disciplina

- Aulas teóricas
 - □ Conceitos e definições de estruturas de dados e algoritmos

- Aulas práticas
 - □ Desenvolvimento de estruturas em Java
 - □ Utilização da orientação a objetos

Ementa da disciplina

- Estruturas de dados lineares
 - □ Pilhas estáticas e dinâmicas
 - ☐ Filas estáticas e dinâmicas
 - Listas
- Estruturas de dados hierárquicas
 - □ Conceitos de árvores
 - □ Árvores binárias, AVL e B
 - □ Técnicas de busca

Ementa da disciplina

- Métodos de ordenação
 - Complexidade algorítmica
 - □ Análise assintótica
 - □ Algoritmos de ordenação
- Estruturas de dados avançadas
 - Mapas e tabelas
 - □ Grafos
 - □ Técnicas de busca

Referências bibliográficas

- GOODRICH, Michael T.; TAMASSIA, Roberto.
 Estruturas de dados e algoritmos em Java. 4. ed. Porto Alegre: Bookman, 2007.
- LAFORE, Robert. Estruturas de dados e algoritmos em Java. São Paulo: Ciência Moderna, 2005.
- SZWARCFITER, Jayme; MARKENSON, Lilian.
 Estruturas de dados e seus algoritmos. 3. ed. São Paulo: LTC, 2010.

Referência complementar

 CORMEN, Thomas H.; et al. Algoritmos: Teoria e Prática. São Paulo: Editora Campus, 2012.

Estruturas básicas

- É comum a necessidade de armazenar um conjunto de informações relacionadas
 - □ Últimos vinte resultados das partidas de um time de futebol
 - □ Últimas dez melhores pontuações em um jogo de videogame
- Para não utilizar uma variável para cada valor do conjunto, pode-se utilizar vetores que são coleções numeradas de variáveis do mesmo tipo de dados
 - Cada variável em um vetor tem um índice, que identifica a posição onde o valor esta armazenado
 - □ A numeração do índice se inicia do 0 até um limite predefinido
 - □ Arranjos podem ser definidos em Java utilizando o objeto Array

Vetores

- Definição
 - Um vetor é uma coleção homogênea de dados lineares e, isto é, pode armazenar um determinado tipo de dados
 - □ Um vetor possui um tamanho finito e predefinido
 - □ A velocidade de acesso aos dados de um vetor é praticamente instantânea e considerado constante

Vetores

Declaração de um vetor em Java

```
int[] valores = new int[10];
```


Vetores

■ É possível recuperar o tamanho máximo de um vetor pelo atributo length

```
if (valores.length < 10) { ... };
```

 Vetores também podem ser iniciados no momento da sua declaração

```
int[] primos = { 2,3,5,7,11,13,17,19,23,29 };
```


Exercício

- Crie uma classe para armazenar o score de um jogador, de acordo com a definição abaixo
- Em seguida, crie uma estrutura (vetor) para armazenar 10 scores,
 não é necessário que os scores estejam ordenados
- Por fim, crie um método para listar todos os scores

GameEntry

name: String

score : int

GameEntry(n : String,s : int)

getName(): String

getScore(): int

toString(): String

