МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИЕТ ИМЕНИ П. О. СУХОГО

Кафедра «Электроснабжение»

Отчет по лабораторной работе №5

по дисциплине: «Электроника и информационно-измерительная техника»

по теме: «Виртуальные измерительные приборы»

Выполнил: студент гр. ЭН-21

Лопухов И. Р.

Принял: доцент

Зализный Д.И.

Цель работы: изучить принципы функционирования, основные характеристики и особенности применения виртуальных измерительных приборов.

Схема лабораторной установки

Краткое описание лабораторной установки

Лабораторный стенд подключается к трёхфазной сети с линейным напряжением 380 В через автоматический выключатель. При включении выключателя начинает светиться сигнальная лампа, подключенная через ограничительный конденсатор. В специальной установке, вынесенной за пределы стенда, находятся 2 лампы накаливания, а также дуговая ртутная люминесцентная лампа (ДРЛ). Лампы включаются на фазные напряжения посредством 3 тумблеров, расположенных на лицевой панели стенда. Параллельно лампам посредством еще тумблеров могут подключаться 3 конденсатора. При отключении всех тумблеров ток в цепи отсутствует.

Последовательно в каждую фазу нагрузки подключены измерительные преобразователи тока, входящие в состав четырёхканального измерительного преобразователя тока типа ЭП8527/15, расположенного на лицевой панели стенда. Параллельно каждому фазному напряжению подключены измерительные преобразователи напряжения, входящие состав измерительного преобразователя четырёхканального напряжения типа ЭП8527/13, расположенного также на лицевой панели стенда.

На лицевой панели стенда находятся также 2 термометра сопротивления. Термометр сопротивления предназначен для измерения температуры воздуха, а второй — для измерения температуры трансформаторного масла, залитого в стеклянный сосуд, который закреплен на лицевой панели стенда. В сосуд помещен также нагревательный резистор, подключаемый к фазному напряжению тумблером.

Практическая часть

Значение частоты дискретизации на один канал с учётом выбранного коэффициента деления по формулам (5.1) и (5.3) и максимальное время регистрации по формуле (5.4)

(5.1)
$$T_d = T * n = 415 * 10^{-6}$$

T – общий период дискретизации $59,33*10^{-6}$ n

- количество регистрируемых каналов

$$(5.3) f_d = \frac{1}{a \cdot T_d} = 2409,6$$

(5.4)
$$t_{reg} = \frac{V}{k \cdot n \cdot f_d} = 4.53 \text{ c.}$$

Показания виртуальных вольтметров при различных количествах периодов сетевой частоты при отключенной нагрузке

Количество периодов сетевой частоты для расчётов показания приборов		1			2			3	
Фазы	A	В	C	A	В	C	A	В	C
Вольтметры действующего значения фазовых напряжений, В	227,79	225,11	222,79	223,21	226,27	222,83	225,37	220,56	224,24
Вольтметры среднего значения фазовых напряжений, В	-0,58	-1,61	1,6	-1,53	-0,73	1,69	-0,32	-1,17	1,25

Вольтамперметры пикового значения положительных фазовых напряжений, В	310,91	309,02	310,34	308,02	306,91	311,42	308,02	303,75	312,50
Вольтамперметры пикового значения отрицательных фазовых напряжений, В	-312,93	-313,3	-308,21	-310,85	-308,02	-309,29	-311,09	-304,86	-310,37

Показания виртуальных амперметров при различных количествах периодов сетевой частоты при отключенной нагрузке

		1.		1 7					
Количество периодов сетевой частоты для расчётов		1			2			3	
показания приборов Фазы	A	В	С	A	В	С	A	В	С
Амперметры действующего значения линейных токов, А	2,03	3	1,01	2	3,02	1,76	2,03	2,82	1,02
Амперметры среднего значения линейных токов, А	-0,01	-0,05	-0,09	-0,01	-0,05	-0,09	-0,02	-0,04	-0,08
Амперметры пикового значения поло- жительных линейных токов, А	2,72	4,11	2,49	2,76	4,11	2,36	2,72	3,97	2,49
Вольтамперметры пикового значения отрицательных линейных токов, А	-2,77	-4,23	-2,67	-2,01	-4,20	-2,49	-2,77	-4,10	-2,67

Показания виртуальных измерителей мощности при различных количествах периодов сетевой частоты

Количество периодов сетевой частоты для расчётов показания приборов		1			2			3	
Фазы	A	В	C	A	В	C	A	В	C
Ваттметры, Вт	415,64	629,47	359,43	411,9	641	341,94	420,51	646,12	350,22
Варметры, ВА	177,65	177,58	177,78	172,9	185,17	177,89	178,39	202,79	178,37

Вольтамперметры, ВА	452,01	654,04	400,99	446,71	667,21	385,45	456,78	677,2	400,17
------------------------	--------	--------	--------	--------	--------	--------	--------	-------	--------

Показания виртуальных частотомеров

Фазы	A	В	С
Частотомеры фазных напряжений, Гц	48,73	48,73	48,73
Частотомеры линейных токов, Гц	48,73	48,73	48,73

Показания виртуальных фазометров

Фазы	A	В	С
Косинус угла между фазными напряжениями и линейными токами	0,83	0,83	0,83

Осциллограммы «реального времени» напряжений каждой по всем фазам

Осциллограммы «реального времени» токов по всем фазам

Осциллограмма $I_{\rm b}$

* Токи на осциллограммах указаны в масштабе 100:1, напряжения 1:1, по д

Фазы	A	В	С
$I_{ m пуск}$, А	2,1	2,2	1,4
Іустановшееся, А	0,3	0,5	0,25
<i>t</i> перехода, с	0,1	0,12	0,1

ФЧХ U_a

Графики температуры масла и температуры воздуха

При нагревании

При остывании

Вывод: был получен опыт работы с виртуальными измерительными приборами; с помощью виртуальных измерительных приборов смог снять характеристику тока, а также были получены осциллограммы напряжений ФЧХ и АЧХ. Не были получены ФЧХ и АЧХ I_a , по причине возникновения ошибок в соответствующих вкладках программы.