IC Layout Tools Laker & Calibre

Presenter: 許哲維、邱薪育

Full-Custom Design Flow

How to Start Laker?

You need these files:

laker.tf	Laker technology file
rule.drc	DRC (<i>Design Rule Check</i>) to verify that the layout satisfies design rules.
rule.lvs	LVS (Layout Versus Schematic) to check that circuit in a layout are connected in the same way as in the schematic.
rule.rce rule_08KA.rc rule_20KA.rc	PEX (<i>Parasitic Extraction</i>) to extract the parasitic effects resulted from the interconnection of layout design.

Laker – Create New Library

- Terminal enter "laker&"

Laker – Create New Cell

Laker – Tool Interface

Laker – Hot Keys

Hot Key	Function	Hot Key	Function
k	Tag ruler	Ctrl + z	Zoom in
Shift + k	Clear ruler	Shift + z	Zoom out
r	Create rectangle	Ctrl + a	Select all objects
d	Measure distance	Shift + r	Reshape selected object(s)
q	Show object attribute	F8	Clear Highlight
S	Stretch selected object(s)	i	Create Instance
С	Copy selected object(s)	u	Undo last action
m	Move selected object(s)	Shift + u	Redo last action
delete	Delete selected object(s)		
a	Align selected objects(s)		
f	Zoom all		

Laker – Basic Setting: Change Grid

Laker – Basic Setting : Layer Table

Laker – Basic Setting: Layer Table Editor

Laker – Layer Level

Laker – Example : PMOS

Symbol

SSCAS

Process Section

Layout View

Laker – Example : NMOS

Symbol

SSCAS

Process Section

Laker – Example: Inverter

Term	Explanation	
W	Width	
L	Length	
DIFF	Diffusion (Drain/Source)	
PO1	Poly silicon (Gate)	
PIMP	P implantation	
NIMP	N implantation	
NW	N WELL	

$$(\frac{W}{L})_P = (\frac{1um}{0.18um}), (\frac{W}{L})_N = (\frac{0.5um}{0.18um})$$

Laker – Example : Inverter

and body

Laker – Example : Add Pin Name

O ABC Create text Hot key: \(\ext{!} \)

Laker – Example : Inverter

Design Rule (1/4)

Design Rule (2/4)

		(unit : um)
CONT.A1	Maximum and Minimum Contact size	0.23 *0.23um ²
CONT.S1	Minimum Contact to Contact spacing	0.25
CONT.S2.18	Minimum Diffusion Contact to Poly spacing (1.8V device)	0.14
CONT.S2.33	Minimum Diffusion Contact to Poly spacing (3.3V device)	0.28
CONT.S3	Minimum Poly Contact to Diffusion edge spacing	0.18
CONT.O1	Minimum Poly overlap Contact	0.12

Design Rule (3/4)

Design Rule (4/4): PMOS & NWELL

DRC Check – Open DRC

- Check layout layer rule

DRC Check – Define DRC Rule

DRC Check – Define DRC Rule

DRC Check – No Error

DRC Check – Highlight Error

LVS Check – Open LVS

LVS Check – Define LVS Rule

LVS Check – Define LVS Rule

LVS Check – No Error

LVS Check – Error

LVS Check – Be Careful!!

- Layout 中的pin name要和sub-circuit中的pin name相同 (ex: vin, vout, vdd!, gnd!)
- Layout中一定要記得打上 "vdd!"和 "gnd!"

PEX – Open PEX

PEX – Define PEX Rule

PEX – Define Netlist File (1/2)

PEX – Define Netlist File (2/2)

PEX – PEX Result


```
_ | | ×
                               PEX Netlist File - test.pex.netlist
File Edit Options Windows
* File: test.pex.netlist
* Created: Tue Feb 26 21:26:01 2008
* Program "Calibre xRC"
* Version "v2005.3 6.10"
 include "test.pex.netlist.pex"
 .subckt text VIN VOUT
* VOUT VOUT
* VDD! VDD!
* GND! GND!
* VIN VIN
mMM1 N VOUT MM1 d N VIN MM1 g N GND! MM1 s N GND! MM1 b N 18 L=1.8e-07 W=1e-06 + AD=4.9e-13 AS=4.9e-13 PD=1.98e-06 PS=1.98e-06
mMMO N YOUT MMO d N YIN MMO g N YDD MMO S N YDD! MMO b P 18 L=1.8e-07 W=1e-06 + AD=4.9e-13 AS=4.9e-13 PD=1.98e-06 PS=1.98e-06
 . include "test.pex.netlist.TEST.pxi"
 . ends
                                                                       Edit Row 1 Col 1
```


PEX – Netlist File

- Three output files:
 - xxx.pex.netlist
 - xxx.pex.netlist.pex
 - xxx.pex.netlist.xxx.pxi

Top circuit (ex: test.pex.netlist)

sub-circuit (ex: test.pex.netlist.pex)

connection (ex: test.pex.netlist.TEST.pxi)

