CS5226 Lecture 5
Materialized Views Tuning

Materialized View Tuning

```
Q: select R.b from R, S where R.a = S.x and S.y > 100
```

V: **select** R.a, R.b, S.x, S.y **from** R, S **where** R.a = S.x

Q: **select** b **from** V **where** y > 100

Query answering using views

- Given a view V and a query Q, V subsumes Q if
 - V contains at least all the tuples required in Q, and
 - it is possible to filter out the irrevalent tuples from V
- If a view V subsumes a query Q, then V can be used to answer Q

\mathcal{L}_{MV} : MV definition language

```
selectS_1, S_2, \cdots- projection columnsfromT_1, T_2, \cdots- tableswhereJ_1 and J_2 and \cdots- equi-join predicatesR_1 and R_2 and \cdots- range predicatesZ_1 and Z_2 and \cdots- residual predicatesgroup byG_1, G_2, \cdots- grouping columns
```

- Each range predicate is a disjunction of open/closed intervals over same column
- Example:

$$R_1 = (a \in [10, 30]) \lor (a \in [50, 70]) \lor (a \ge 100)$$

\mathcal{L}_{MV} : MV definition language (cont.)

Materialized view denoted by V = (S, T, J, R, Z, G)

- S = set of colums in the select clause
- ▶ T = set of tables
- ▶ J = set of join predicates
- ► R = set of range predicates
- Z = set of residual predicates
- ► G = set of grouping columns

Example

```
select R.f, S.w, sum(R.g)
```

from R, S

where R.a = S.xand R.b = S.y

and $(R.c \in [10, 50] \text{ or } R.c \in [100, 200])$

and $(S.w \in [40, 80] \text{ or } S.w \ge 200)$

 $\begin{array}{ll} \text{and} & \text{R.d} + \text{S.v} < 100 \\ \text{and} & \text{R.e} * \text{S.u} > 200 \\ \end{array}$

group by R.f, S.w

Predicate containment

- Let p₁ & p₂ be two predicates on table T
- ▶ p_1 is contained in p_2 ($p_1 \sqsubseteq p_2$) if p_2 is more general than p_1
- ▶ If $p_1 \sqsubseteq p_2$, then $\sigma_{p_1}(T) \subseteq \sigma_{p_2}(T)$

Example:

- ▶ p_1 : $(a \in [10, 40]) \lor (a \in [100, 130])$
- ▶ p_2 : $(a \in [20, 30]) \lor (a \in [120, 125])$
- p_3 : $a \in [10, 130]$
- $ho_2 \sqsubseteq p_1 \sqsubseteq p_3$

View matching algorithm

- Let Q be a query & V be a view
- ▶ If V & Q are in \mathcal{L}_{MV} , there exists simple & sufficient conditions to check if a V subsumes Q
- V matches Q if these sufficient conditions are satisfied
- ▶ V matches Q ⇒ V subsumes Q
- ▶ To check if V's predicates match Q's predicates:
 - 1. join predicates in $Q \supseteq join predicates in V$
 - residual predicates in Q ⊇ residual predicate in V
 - for each range predicate column C:
 Q's predicate on C
 ☐ V's predicate on C

Materialized view transformations

- Merging: merges two views into a single view
- Reduction: reduces a view into another view involving fewer tables

View merging: $V_1 \oplus V_2$

- $V_1 = (S_1, T, J_1, R_1, Z_1, G_1)$
- $V_2 = (S_2, T, J_2, R_2, Z_2, G_2)$
- ▶ $V_M = V_1 \oplus V_2$ denote the merging of views $V_1 \& V_2$ when the following properties hold:
 - 1. V_M belongs to \mathcal{L}_{MV}
 - 2. Both $V_1 \& V_2$ can be derived from V_M
 - 3. If the view matching algorithm matches V_1 or V_2 for a query Q, it also matches V_M for Q
 - 4. V_M cannot be further restricted with additional predicates such that it satisfies the above properties

Case 1: No grouping columns

```
► V_1 = (S_1, T, J_1, R_1, Z_1, \emptyset)

► V_2 = (S_2, T, J_2, R_2, Z_2, \emptyset)

V_1 \oplus V_2: select S_1 \cup S_2
```

 $V_1 \oplus V_2$: select $S_1 \cup S_2$ from T where $(J_1 \text{ and } R_1 \text{ and } Z_1)$ or $(J_2 \text{ and } R_2 \text{ and } Z_2)$

$$(J_1 \wedge R_1 \wedge Z_1) \vee (J_2 \wedge R_2 \wedge Z_2)$$

$$= (J_1 \vee J_1) \wedge (R_1 \vee R_2) \wedge (Z_1 \vee Z_2) \wedge C$$

$$\sqsubseteq (J_1 \vee J_1) \wedge (R_1 \vee R_2) \wedge (Z_1 \vee Z_2)$$
where $C = (J_1 \vee R_2) \wedge (R_1 \vee Z_2) \wedge \cdots$

$$J_1 = J_1^1 \wedge J_1^2 \wedge J_1^3 \wedge \cdots$$
 $J_2 = J_2^1 \wedge J_2^2 \wedge J_2^3 \wedge \cdots$
 $J_1 \vee J_2 = (J_1^1 \wedge J_1^2 \wedge J_1^3 \wedge \cdots) \vee (J_2^1 \wedge J_2^2 \wedge J_2^3 \wedge \cdots)$
 $= \bigwedge_{i,j} (J_1^i \vee J_2^j) \sqsubseteq \bigwedge_{J^k \in J_i \cap J_i} J^k$

Define
$$J_1 \cap J_2 = \bigwedge_{J^k \in J_i \cap J_i} J^k$$

Example:
$$J_1 = (R.x = S.x) \land (R.y = S.y)$$

 $J_2 = (R.x = S.x) \land (R.y = S.y) \land (R.z = S.z)$
 $J_1 \cap J_2 = (R.x = S.x) \land (R.y = S.y)$

13

$$Z_1 = Z_1^1 \wedge Z_1^2 \wedge Z_1^3 \wedge \cdots$$

$$Z_2 = Z_2^1 \wedge Z_2^2 \wedge Z_2^3 \wedge \cdots$$

$$Z_1 \vee Z_2 \sqsubseteq \bigwedge_{Z^k \in Z_i \cap Z_j} Z^k$$

Define
$$Z_1 \cap Z_2 = \bigwedge_{Z^k \in Z_i \cap Z_i} Z^k$$

Example:
$$Z_1 = (R.x + S.x < 10) \land (R.y * S.y \ge 100)$$

 $Z_2 = (R.x + S.x < 10) \land (R.y - S.y \le 20)$
 $Z_1 \cap Z_2 = (R.x + S.x < 10)$

$$egin{array}{lll} R_1 &=& R_1^1 \wedge R_1^2 \wedge \cdots \ R_2 &=& R_2^1 \wedge R_2^2 \wedge \cdots \ R_1 ee R_2 &=& (R_1^1 \wedge R_1^2 \wedge \cdots) ee (R_2^1 \wedge R_2^2 \wedge \cdots) \ &=& \displaystyle \bigwedge_{i,j} (R_1^i ee R_2^j) \end{array}$$

- ▶ Define $R_1 \sqcup R_2 = \bigwedge_{i,j} (R_1^i \vee R_2^j)$ where $R_1^i \& R_2^j$ defined over the same columns
- $ightharpoonup R_1 \lor R_2 \sqsubseteq R_1 \sqcup R_2$

Example 1:

$$R_1 = (a \in [10, 20] \lor a \in [30, 40]) \land b \in [20, 30]$$

 $R_2 = a \in [15, 35] \land b \in [10, 25]$
 $R_1 \sqcup R_2 = a \in [10, 40] \land b \in [10, 30]$

Example 2:

$$R_1 = c \le 40 \land d \in [10, 30]$$

 $R_2 = c \ge 30 \land d \in [40, 80] \land e \le 50$
 $R_1 \sqcup R_2 = (d \in [10, 30]) \lor (d \in [40, 80])$

CS5226: Sem 2, 2012/13 View Merging 16

$$V_1$$
: select a V_2 : select b from R where $10 < c < 20$ where $15 < c < 30$


```
V_1: select a V_2: select b from R where 10 < c < 20 where 15 < c < 30
```

$$V_M'$$
: select a, b, c $-S_1 \cup S_2 \cup S'$ from R where $10 < c < 30$

S' = additional required columns

- ▶ Columns in join/residual predicates in V_1/V_2 that are missing from $V_1 \oplus V_2$
- Columns in range predicates in V₁/V₂ that are missing from or modified in V₁ ⊕ V₂

- $V_1 = (S_1, T, J_1, R_1, Z_1, \emptyset)$
- $V_2 = (S_2, T, J_2, R_2, Z_2, \emptyset)$
- ► $V_1 \oplus V_2 = (S_1 \cup S_2 \cup S', T, J_1 \cap J_2, R_1 \cup R_2, Z_1 \cap Z_2, \emptyset)$
 - ► S' = additional required columns
 - $J_1 \cap J_2 = \bigwedge_{J^k \in J_i \cap J_i} J^k$
 - $\blacktriangleright Z_1 \cap Z_2 = \bigwedge_{Z^k \in Z_i \cap Z_i} Z^k$
 - ► $R_1 \sqcup R_2 = \bigwedge_{i,j} (R_1^i \vee R_2^j)$ where $R_1^i \& R_2^j$ defined over the same columns

Example

```
V₁:
    select
                                V_2:
                                    select
             X, y
                                            y, z
    from
             R, S
                                             R, S
                                    from
    where
             R.x = S.v
                                    where
                                            R.x = S.v
             10 < R.a < 20
                                             15 < R.a < 50
    and
                                    and
    and
             R.b < 10
                                    and
                                             R.b > 5
    and
             R.x + S.d < 8
                                    and
                                             R.c > 5
                                    and
                                             R.x + S.d < 8
                                     and
                                             R e * R e = 2
             V_1 \oplus V_2: select x, y, z, a, b, c, e
```

 $V_1 \oplus V_2$: select x, y, z, a, b, c, e from R, S where R.x = S.y and 10 < R.a < 50and R.x + S.d < 8

Case 2: Grouping columns

- $V_1 = (S_1, T, J_1, R_1, Z_1, G_1)$
- $V_2 = (S_2, T, J_2, R_2, Z_2, G_2)$
- ► $V_1 \oplus V_2 = (S_M, T, J_1 \cap J_2, R_1 \sqcup R_2, Z_1 \cap Z_2, G_M)$
- ► S_M consists of
 - set of columns obtained in case 1
 - the group-by columns in G_M that are not in V_1/V_2
 - ▶ If $G_M = \emptyset$, all the aggregates are unfolded into base-table columns
- If $(G_1 = \emptyset)$ or $(G_2 = \emptyset)$
 - $G_M = \emptyset$
- If $(G_1 \neq \emptyset)$ and $(G_2 \neq \emptyset)$
 - $G_M = G_1 \cup G_2 \cup$ (columns added to S_M)

Example 1

```
V₁:
     select
                R.x, sum(S.y)
                                   V_2:
                                        select
                                                R.x, R.z
     from
                R, S
                                        from
                                                R, S
     where
                R.x = S.y
                                        where R.x = S.y
                                                 15 < R.a < 50
     and
                10 < R.a < 20
                                        and
     group by
                R.x
```

base-table column from unfolded aggregate
$$V_1 \oplus V_2 \colon \begin{array}{c} \text{columns obtained from case 1} \\ \hline \\ R.x, R.z, R.a, \\ \hline \\ \text{from} \\ R, S \\ \text{where} \\ R.x = S.y \\ \text{and} \\ \hline \\ 10 < R.a < 50 \\ \end{array}$$

Example 2

```
V₁:
               R.x, sum(S.y)
                                    select
                                              S.y, sum(S.z)
    select
                               V_3:
    from
               R, S
                                    from
                                              R, S
    where
              R.x = S.y
                                    where
                                              R.x = S.y
              10 < R.a < 20
                                              10 < R.a < 25
    and
                                    and
                                              S.y
    group by
               R.x
                                    group by
```

```
V_1 \oplus V_3: select R.x, S.y, R.a, sum(S.y), sum(S.z) from R, S where R.x = S.y and 10 < R.a < 25 group by R.x, S.y, R.a
```

View reduction

```
Q: select R.a, R.b, S.c

from R, S

where R.x = S.y

and R.a = 15
```

V: **select** R.a, R.b, S.c **from** R, S **where** R.x = S.y

Q: **select** a, b, c **from** V **where** a = 15

View reduction (cont.)

Q: **select** R.a, R.b, S.c **from** R, S **where** R.x = S.y **and** R.a = 15

V': **select** R.a, R.b, R.x **from** R **where** R.a = 15

Q: **select** V'.a, V'.b, S.c **from** V', S **where** V'.x = S.y

View reduction: $\rho(V)$

- V = (S, T, J, R, Z, G)
- ▶ Given a view V and $T' \subseteq T$, $V_R = \rho(V, T')$ denote a reduction of V when the following properties hold:
 - 1. V_R belongs to \mathcal{L}_{MV}
 - 2. The set of tables in $V_R = T'$
 - 3. V can be derived from V_R
 - 4. If the view matching algorithm matches V for a query Q, it also matches V_R for a subquery of Q

View reduction: $\rho(V)$ (cont.)

- V = (S, T, J, R, Z, G)
- $\rho(V, T') = (S', T', J', R', Z', G')$
- ▶ $J' \subseteq J$, $R' \subseteq R$, $Z' \subseteq Z$, where each base table column referenced in J', R', and Z' refers exclusively to tables in T'
- S' consists of
 - all the columns in S that belong to tables in T', and
 - ▶ all columns in T' referenced in J J', R R', and Z Z'
- $\mathbf{G}' = \emptyset$

Invalid view reductions

A view reduction $\rho(V, T')$ is invalid if it contains some cartesian product and V does not contain any cartesian product

Example

V: select R.c, S.c from R, S

where R.x = S.y

 $\begin{array}{ll} \text{and} & \text{R.a} \in [10, 50] \\ \text{and} & \text{S.a} \in [20, 30] \\ \text{and} & \text{R.b} + \text{S.b} < 10 \\ \end{array}$

group by R.c, S.c

 $\rho(V, \{R\})$: select R.c, R.b, R.x

from R

where $R.a \in [10, 50]$

Indexes over materialized views

Let V denote a view Let V(C) denote an index with columns C defined over V

Unified merging operator

- ► Consider two indexes $I_1 = V_1(C_1)$ and $I_2 = V_2(C_2)$
- ▶ If the two views V_1 & V_2 are merged to $V_M = V_1 \oplus V_2$, we also merge their indexes to $I_M = I_1 \oplus I_2$

Unified merging operator

- ▶ Promoting an index $I_1 = V_1(C_1)$ to V_M (denoted by $I_1 \uparrow V_M$) creates an index I' over V_M that can be used whenever I_1 is used
- ▶ $I_1 \uparrow V_M = V_M(C_1, X)$, where X consists of
 - Columns in V₁'s join/residual predicates that are missing from V_M
 - Columns in V₁'s range predicates that are missing from or modified in V_M
- Merging indexes over views

$$I_1 \oplus I_2 = (I_1 \uparrow V_M) \oplus (I_2 \uparrow V_M)$$

Unified merging operator (cont.)

 V_1 : select x, y from R

from R where $a \in [10, 20]$ $I_1 = V_1(x)$

 V_2 : select y, z from R

where $a \in [15, 30]$ $l_2 = V_2(z)$

$$V_M = V_1 \oplus V_2$$
: select a, x, y, z
from R
where a \in [10, 30]

- \vdash $(I_1 \uparrow V_M) = V_M(x, a)$
- $(I_2 \uparrow V_M) = V_M(z,a)$
- $I_1 \oplus I_2 = V_M(x, a) \oplus V_M(z, a) = V_M(x, a, z)$

References

Required Readings

▶ N. Bruno, s. Chaudhuri, Physical design refinment: the merge-reduce approach, TODS 32(4), 2007.

Additional Readings

- Chapter 8 of Bruno's book
- ▶ N. Bruno and S. Chaudhuri, Automatic Physical Database Tuning: A Relaxation-based Approach, SIGMOD 2005.