Задача: По регулярному выражению, букве x и числу k, выяснить, существуют ли в языке слова, содержащие префикс x^k .

Для этого я реализовал алгоритм проверки, что данное слово является префиксом хотя бы одного слова из языка. Он работает следующим образом:

- 1. Привести автомат к ПДКА
- 2. Прочитать слово автоматом (нет ситуации, когда нет нужного ребра, потому что у нас ПДКА). Вершина, на которой остановилось чтение, определяется единственным образом, так как у нас ДКА. Пусть это состояние Q_1
- 3. Смотрим на все состояния, достижимые из данного
- 4. Одно из достижимых состояний является конечным тогда и только тогда, когда данное слово является префиксом хотя бы одного слова из языка:
 - 1. Пусть из Q_1 достижимо конечное состояние Q_2 . Тогда в языке лежит слово, при прочтении которого в автомате мы сначала доходим до Q_1 , а затем из него доходим до Q_2 его префиксом является x по построению.
 - 2. Пусть x является префиксом некоторого слова ω . Прочтем ω в автомате. Рассмотрим момент, когда мы только закончили чтение x. В этот момент мы точно стоим в вершине Q_1 , потому что автомат детерминированный, и путь, по которому мы прочитали x, определяется однозначно. И так как мы дочитали ω , мы пришли в некоторое конечное состояние, при этом пройдя через Q_1 , то есть существует путь из Q_1 в некоторое конечное состояние.

Асимптотика:

В алгоритме происходит приведение к ДКА и DFS. Приведение к ДКА в цикле перебирает до $2^{|S|}$ подмножеств состояний, в каждом из которых происходит O(|S|) операций, тогда асимптотика приведения к ДКА - $O(2^{|S|} \cdot |S|)$. После приведения к ДКА новых состояний будет не более $O(2^{|S|})$, из каждой вершины идет не более $|\Sigma|$ ребер, поэтому общее число ребер в ДКА равно $O(2^{|S|} \cdot |\Sigma|)$. DFS работает за O(E+V), где E - число ребер, V - число вершин. Тогда в нашем случае DFS работает за $O(2^{|S|} \cdot |\Sigma|)$, тогда весь алгоритм работает за $O(2^{|S|} \cdot (|\Sigma| + |S|))$.