EXPRESS MAIL NO. EV934845916US

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C12N 15/86, C07K 14/78

A1

(11) 国際公開番号

WO00/01836

(43) 国際公開日

2000年1月13日(13.01.00)

(21) 国際出顧番号

PCT/JP99/03403

(22) 国際出願日

1999年6月25日(25.06.99)

(30) 優先権データ

特顯平10/186240

1998年7月1日(01.07.98)

特願平11/56915

1999年3月4日(04.03.99)

(71) 出願人 (米国を除くすべての指定国について)

寶酒造株式会社(TAKARA SHUZO CO., LTD.)[JP/JP] 〒612-8061 京都府京都市伏見区竹中町609番地 Kyoto, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

上野充博(UENO, Mitsuhiro)[JP/JP]

〒525-0025 滋賀県草津市西渋川2丁目6-28 Shiga, (JP)

吉岡広文(YOSHIOKA, Hirofumi)[JP/JP]

〒525-0025 滋賀県草津市西渋川2丁目12-1 ハーモバレス草津311号 Shiga, (JP)

小西治子(KONISHI, Haruko)[JP/JP]

〒600-8853 京都府京都市下京区梅小路高畑町5-1

グラン・コート洛陽407号 Kyoto, (JP)

橋野仁一(HASHINO, Kimikazu)[JP/JP]

〒569-0082 大阪府高槻市明野町27-3 Osaka, (JP)

森下みお(MORISHITA, Mio)[JP/JP]

〒520-0043 滋賀県大津市中央4丁目7番23号 桐野ハイツB-2 Shiga, (JP)

蝶野英人(CHONO, Hideto)[JP/JP]

〒524-0032 滋賀県守山市岡町152-1 アゼリア岡102号 Shiga, (JP)

官村 毅(MIYAMURA, Tsuyoshi)[JP/JP]

〒525-0025 滋賀県草津市西渋川2丁目12-1 ハーモバレス草津103号 Shiga

(JP)

佐野 睦(SANO, Mutsumi)[JP/JP]

〒520-0014 滋賀県大津市柳川2丁目4-7 ルモン西大津615号 Shiga, (JP)

浅田起代蔵(ASADA, Kiyozo)[JP/JP]

〒520-3333 滋賀県甲賀郡甲南町希望ケ丘3-20-9 Shiga, (JP)

藤永 蕙(FUJINAGA, Kei)[JP/JP]

〒520-2134 滋賀県大津市瀬田5丁目1-10 リヴェール瀬田202号 Shiga, (JP)

加藤郁之進(KATO, Ikunoshin)[JP/JP]

〒611-0028 京都府宇治市南陵町1-1-150 Kyoto, (JP)

(74) 代理人

青山 葆, 外(AOYAMA, Tamotsu et al.)

〒540-0001 大阪府大阪市中央区城見1丁目3番7号

IMPビル 青山特許事務所 Osaka, (JP)

(81) 指定国 AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許 (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)

添付公開書類

国際調査報告書

(54) Title: GENE TRANSFER METHODS

(54)発明の名称 遺伝子導入方法

(57) Abstract

Improved methods for transferring a gene into target cells by using a retrovirus, wherein the gene transfer efficiency is improved and the target cells are efficiently transformed by binding the retrovirus to a functional substance which is immobilized on a carrier and having an activity of binding to retroviruses followed by washing; using an antibody capable of specifically recognizing cells, laminin or a mannoserich type sugar chain as a substance having an activity of binding to the target cells; pre-treating the target cells so as to activate transfferin receptor; or introducing a new functional group into the functional substance.

レトロウイルスによる標的細胞への遺伝子導入において、使用するレトロウイルスを、担体に固定化されたレトロウイルス結合活性を有する機能性物質に結合させ、ついで洗浄操作を施すか、標的細胞結合活性を有する物質として、細胞を特異的に認識する抗体や、ラミニンまたは高マンノース型糖鎖を使用するか、標的細胞に前処理を施してトランスレフェリンレセプターを活性化するか、機能性物質に新たな官能基を導入することにより、遺伝子導入効率を向上させ、標的細胞の形質転換を効率よく行う改良方法を提供する。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AE アラブ首長国連邦 AL アルバニア AM アルメニア AT オーストリア AC オーストラリア AZ アゼルバイジャン BA ポズニア・ヘルツェゴビナ BB バルバドス BF ベルギー ドミニカ エストニア スペイン フィンランド フランス ガポン MESIRABDE FFGGGC セントルシア リヒテンシュタイン スリ・ランカ スーダン スウェーデン シンガポール スロヴェニア BB BE BF ブルギナ・ファソ ブルガリア BG B J B R B Y ベナン ブラジル ベラルーシ マルトワナ マダガスカル マケドニア田ユーゴスラヴィア 共和国 マリ タンザニア トルクメニスタン CA CF CG CH カナダ 中央アフリカ コンゴー スイス TR ML MR MR MW MX トリニダッド・トバゴ ウクライナ ウガンダ モンコル モーリタニア マラウイ メキシコ COM CCC CCC コートジボカメルーン ートジボアール リメラット 米 スタン ヴィマキナナタム コープリカ共和 ジンパブエ 中国コスタ・リカ ノイタリ イタリン イタン アニア キルギスタン 北朝鮮 健国 キューバ キブロス ノールウェー ニュー・ジーランド ボーランド ボルトガル

明 細 書

遺伝子導入方法

5 技術分野

本発明は、医学、細胞工学、遺伝子工学、発生工学などの分野において標的細胞への遺伝子導入効率を向上させ、標的細胞の形質転換を効率良く行うことを可能にする方法およびそれに関連する一連の技術に関する。

10 背景技術

15

20

25

多数のヒト疾病についてその機構が解明され、また、組換えDNA技術、および細胞への遺伝子導入技術が急速に進歩したことより、近年、重篤な遺伝病を治療するための体細胞遺伝子治療法のプロトコールの開発が進められている。また、最近では遺伝病のみならずAIDSのようなウイルス感染症やガンの治療にも遺伝子治療を適用しようという試みがなされている。

これまでにヒトでの臨床への応用が研究されてきた遺伝子治療の多くは組換え レトロウイルスベクターを用いて細胞への遺伝子導入を行うものである。レトロ ウイルスベクターは目的の外来遺伝子を細胞内に効率的に導入し、その染色体D NA中に安定に組み込むので、特に長期にわたる遺伝子発現が望まれる遺伝子治療にとって好ましい遺伝子導入手段である。該ベクターは遺伝子導入された生物に悪影響を与えないように様々な工夫が施されている。例えば、遺伝子導入に用いられたベクター自体が細胞内で複製を行い、無制限な感染(遺伝子導入)を繰り返さないよう、ベクター中の複製機能は欠損させてある。

これらのベクター(複製能欠損レトロウイルスベクター)は自己複製できないため、一般的にはレトロウイルス産生細胞(パッケージング細胞)を使用してウイルス粒子に包まれたレトロウイルスベクターを調製する。標的細胞に高効率で遺伝子導入を行うための最も単純な方法は、このレトロウイルス産生細胞と標的細胞とを共培養するというものである。しかしながら、この方法では生体に移植される、遺伝子導入された標的細胞にレトロウイルス産生細胞が混入するおそれ

10

15

20

25

がある。

最近、細胞外マトリックスの成分であるフィブロネクチンやそのフラグメントをレトロウイルスによる遺伝子導入時に共存させることにより、細胞への遺伝子導入効率が上昇することが報告されている[ジャーナル・オブ・クリニカル・インベスティゲーション(J. Clin. Invest.)、第93巻、第1451~1457頁(1994年)、ブラッド(Blood)、第88巻、第855~862頁(1996年)]。また、遺伝子工学的に生産されたフィブロネクチンフラグメントも同様の性質を有しており、これを利用して造血幹細胞に効率よく外来遺伝子を導入させることが可能であることも示された(WO95/26200号)。こうしたフィブロネクチンによる遺伝子導入効率の向上には、フィブロネクチン中のヘパリン結合領域と、レトロウイルスとの結合が関与していることが示唆されている。

また、WO97/18318号公報には線維芽細胞増殖因子のようなフィブロネクチン以外の機能性物質が遺伝子導入効率を向上させることが示されている。さらに、同公報にはレトロウイルス結合活性を有する機能性物質と、細胞結合活性を有する他の機能性物質とを混合して使用した場合にも同様な遺伝子導入効率の向上が見られることが示されている。

こうした機能性物質による遺伝子導入方法は、レトロウイルス産生細胞と標的 細胞との共培養を行わずに高効率で遺伝子導入を行うことを可能にする。該方法 による遺伝子導入効率の向上は、機能性物質がレトロウイルスと標的細胞とを近接した状態に共配置し、両者の相互作用の機会が増加することに起因すると考えられている。

このようにレトロウイルスを用いた遺伝子導入においては、レトロウイルスの 標的細胞への感染の結果として遺伝子の導入が起こる。しかしながら、レトロウ イルスによる遺伝子導入効率は、実際の臨床への応用を考えた場合には今なお満 足できるものではなく、感染効率のさらなる向上が強く望まれている。

感染効率、すなわち遺伝子導入効率を向上させる手段としては、用いるウイルス液 (ウイルス上清) 中のレトロウイルスの濃度 (タイター) を高くすることが考えられるが、通常、高タイターのウイルス産生能力を有するウイルス産生細胞

10

15

の構築および樹立には多大な労力を要する。VSVウイルスのエンベロープタンパクを利用したシュードタイプウイルスベクター [プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシーズ・オブ・ザ・USA (Proc. Natl. Acad. Sci. USA)、第90巻、第8033~8037頁(1993年)] は遠心分離によって濃縮することが可能であるが、これはこのベクターに限って使用可能な方法であり、汎用性にかける。

また、遺伝子導入の際に、レトロウイルスの感染を標的細胞に特異的に起こるようにできれば、標的細胞の純度が低い場合でも高い遺伝子導入効率が得られると考えられるが、現在の技術水準では簡便でかつ効率のよい方法は知られていない。

発明の目的「

このような事情に鑑み、本発明の主な目的はレトロウイルスによる標的細胞への遺伝子導入における、遺伝子導入効率を向上させ、標的細胞の形質転換を効率よく行う改良方法を提供することである。

本発明の他の目的および本発明の利点を、添付の図面を参照して、以下に明らかにする。

図面の簡単な説明

- 20 図1 分子内に9個のマンノース残基を含む高マンノース型糖鎖の構造を示す。 図2 実施例3における化学修飾されたCH-296と、それによって得られ る遺伝子導入効率 (%) を示すグラフである。
 - 図3 実施例13におけるウイルス感染阻害物質の除去効果の試験における相対遺伝子導入効率(%)と、接触・結合時間の関係を示すグラフである。
- 25 図4 実施例15における遠心法を利用したレトロウイルスと機能性物質との 結合効果の試験における相対遺伝子導入効率(%)と、各ウイルス結合操作の関 係を示すグラフである。
 - 図5 実施例15における遠心法と遠心感染法のそれぞれで得られる遺伝子導入効率(%)を示すグラフである。

15

25

発明の概要

本発明者らは、標的細胞への感染を行う前に、担体上に固定化されたウイルス 結合活性を有する機能性物質とレトロウイルスとを接触させ、ついで該担体に洗 浄操作を施すことにより、遺伝子導入効率が向上することを見い出した。

また、レトロウイルスの標的細胞への感染時に標的細胞特異的な抗体、ラミニン、ラミニン由来の糖鎖、高マンノース型糖鎖等の機能性物質を共存させることにより、目的とする標的細胞に特異的な、および/または高効率での遺伝子導入が可能なことを見い出した。

10 さらに、遺伝子導入に供する前の標的細胞に、適当な前処理を施すことにより、 遺伝子導入効率を向上させることが可能であることを見い出した。

> さらにまた、ウイルス結合活性を有する機能性物質を化学修飾してその塩基性 を上げることにより、その遺伝子導入への効果を改善できることを見い出した。

本発明は、これら本発明者らの新たな知見に基づいて完成されたものである。

すなわち、本発明の第一の態様は、レトロウイルスによる標的細胞への遺伝子 導入方法において下記工程を包含することを特徴とする。

- (1)担体上に固定化されたレトロウイルス結合活性を有する機能性物質にレ トロウイルスを含有する溶液を接触させる工程、
 - (2) レトロウイルスの結合した担体を洗浄する工程、および
- 20 (3) レトロウイルスの結合した担体を標的細胞と接触させてインキュベート する工程。

上記の(1)の工程は、特に限定するものではないが、例えば、1時間以上実施され、好ましくは、3時間以上実施される。また、レトロウイルスとレトロウイルス結合物質との接触の頻度を物理的に高めることによって実施される。

本発明に使用されるレトロウイルス結合活性を有する機能性物質には特に限定はなく、例えば、フィブロネクチン、線維芽細胞増殖因子、V型コラーゲン、ポリリジン、DEAEーデキストラン、これらのフラグメント、あるいはこれらと同等のレトロウイルス結合活性を有する物質が使用できる。また、上記の機能性物質として標的細胞結合活性を有するものを使用するか、あるいは上記の機能性

15

25

物質を標的細胞結合活性を有する他の機能性物質と組み合わせて使用してもよい。 標的細胞結合活性を有する機能性物質にも特に限定はなく、例えば、細胞接着性 のタンパク質、ホルモン、サイトカイン、抗体、糖鎖、炭水化物または代謝物等 を使用することができる。

5 本発明において遺伝子導入に使用されるレトロウイルスには、例えば、レトロウイルス産生細胞の培養上清を使用することができる。この培養上清はレトロウイルス産生を促進する物質、例えば、酪酸ナトリウムの共存下に得られたものでもよい。

本発明の第二の態様は、レトロウイルスによる標的細胞への遺伝子導入方法に おいて下記の2種の機能性物質の存在下でレトロウイルスを標的細胞に感染させ ることを特徴とする。

- (1) レトロウイルス結合活性を有する機能性物質、および
- (2) 標的細胞特異的な抗体。

本発明に使用される標的細胞特異的な抗体には特に限定はなく、例えば、標的細胞表面に存在する生体物質を認識するものがあげられる。

本発明の第三の態様は、レトロウイルスによる標的細胞への遺伝子導入方法に おいて下記の2種の機能性物質の存在下でレトロウイルスを標的細胞に感染させ ることを特徴とする。

- (1) レトロウイルス結合活性を有する機能性物質、および
- 20 (2) ラミニン、ラミニンフラグメント、ラミニン由来糖鎖あるいは高マン ノース型糖鎖。

本発明の第二の態様および第三の態様に使用されるレトロウイルス結合活性を有する機能性物質には特に限定はなく、例えば、フィブロネクチン、線維芽細胞増殖因子、V型コラーゲン、ポリリジン、DEAEーデキストラン、これらのフラグメント、あるいはこれらと同等のレトロウイルス結合活性を有する物質を使用することができる。該機能性物質は標的細胞結合活性を有するものであってもよい。また、使用される機能性物質は適当な担体上に固定化された状態で使用されてもよい。

本発明の第四の態様は、レトロウイルスによる標的細胞への遺伝子導入方法に

10

20

25

おいて、レトロウイルスとの接触に先立って標的細胞をFe濃度を低下させた培地中で培養することを特徴とする。本発明に使用される培地には特に限定はなく、例えば、デフェロキサミンを含有する培地等を使用することができ、好ましくは、機能性物質の存在下に行う。

本発明の第五の態様は、ペプチドまたはタンパクのレトロウイルス結合活性を向上させる方法に関し、ペプチドまたはタンパクを化学的に修飾することを特徴とする。上記の化学的修飾に特に限定はないが、例えば、ペプチドまたはタンパクのアミノ酸残基の活性化や塩基性の残基の導入を挙げることができる。アミノ酸残基の活性化に用いられる方法には特に限定はなく、例えば、水溶性カルボジイミドによる処理、ならびに水溶性カルボジイミドとジアミノ化合物とによる処理が好適である。該方法により得られた、化学的に修飾されたペプチドまたはタンパクはレトロウイルスによる標的細胞への遺伝子導入に好適に使用することができる。

15 発明の詳細な説明

本発明の遺伝子導入方法には、通常、組換えレトロウイルスベクターが使用され、特に、複製能欠損組換えレトロウイルスベクターが好適である。該ベクターは、感染した細胞中で自己複製できないように複製能を欠損させてあり、非病原性である。これらのベクターは脊椎動物細胞、特に、哺乳動物細胞のような宿主細胞に侵入し、その染色体DNA中にベクターに挿入された外来遺伝子を安定に組み込むことができる。

本発明では、細胞に導入しようとする外来遺伝子は、適当なプロモーター、例えば、レトロウイルスベクター中に存在するLTRのプロモーターや外来プロモーターの制御下に、組換えレトロウイルスベクター内に挿入して使用することができる。また、効率よい外来遺伝子の転写を達成するために、プロモーターや転写開始部位と共同する他の調節要素、例えば、エンハンサー配列やターミネーター配列がベクター内に存在していてもよい。導入される外来遺伝子は天然のものでも、または人工的に作製されたものでもよく、あるいは起源を異にするDNA分子が、ライゲーション等の公知の手段によって結合されたものであってもよい。

10

15

· 20

レトロウイルスベクターに挿入される外来遺伝子は、細胞中に導入することが望まれる任意の遺伝子を選ぶことができる。例えば、外来遺伝子は、治療の対象となる疾患に関連している酵素やタンパク質をコードするものの他、細胞内抗体(例えば、WO94/02610号参照)、増殖因子、アンチセンス核酸、リボザイム、フォルスプライマー(例えば、WO90/13641号参照)等をコードするものを使用することができる。

本発明で用いるレトロウイルスベクターは、遺伝子導入された細胞の選択を可能にする適当なマーカー遺伝子を含有していてもよい。マーカー遺伝子としては、例えば、細胞に抗生物質に対する耐性を付与する薬剤耐性遺伝子や、酵素活性によって遺伝子導入された細胞を見分けることができるレポーター遺伝子等が利用できる。

本発明に使用できるベクターとしては、例えば、MFGベクター(ATCC No. 68754)、 α — SGCベクター(ATCC No. 68755),L XSNベクター [バイオテクニクス(BioTechniques)、第7巻、第980~990頁(1989年)]等のレトロウイルスベクターがある。PM5neoベクター [エクスペリメンタル・ヘマトロジー(Exp. Hematol.)、第23巻、第630~638頁(1995年)]をはじめとして、本願明細書の実施例において使用されたレトロウイルスベクターは、マーカー遺伝子としてネオマイシンホスホトランスフェラーゼ遺伝子を含有している。したがって、該ベクターによって遺伝子導入された細胞は、そのG418に対する耐性を指標として確認することができる。

また、これらのベクターは公知のパッケージング細胞株、例えば、PG13 (ATCC CRL-10686)、PG13/LNc8 (ATCC CRL-10685)、PA317 (ATCC CRL-9078)、GP+E-86 (ATCC CRL-9642)やGP+envAm12 (ATCC CRL-9641)、プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシーズ・オブ・ザ・USA、第85巻、第6460~6464頁(1988年)に記載のφCRIP等の細胞株を使用することにより、該ベクターがパッケージングされたウイルス粒子として調製することができる。

10

15

20

25

パッケージング細胞にレトロウイルスベクターを導入して作製されたウイルス産生細胞および標的細胞の培養には、公知の培地、例えば、ダルベッコ改変イーグル培地、イスコブ改変ダルベッコ培地等が使用でき、これらは、例えば、ギブコ(Gibco)社から市販品として入手することができる。これらの培地には、遺伝子導入の標的となる細胞の種類やその他の目的に応じて種々の成分を添加して用いることができる。例えば、標的細胞の生育や分化を促進、あるいは抑制する目的で血清や各種のサイトカイン類を添加して使用することができる。血清としては、例えば、仔牛血清(CS)や牛胎児血清(FCS)等を使用することができる。また、サイトカインとしては、インターロイキン類(IL-3、IL-6等)、コロニー刺激因子類(G-CSF、GM-CSF等)、幹細胞因子(SCF)、エリスロポエチンや種々の細胞増殖因子等があり、その多くのものについてヒト由来のものが市販されている。これらのサイトカイン類を使用するにあたっては、目的に応じた作用を有するものを選択し、また必要に応じてこれらを組み合わせて使用すればよい。

本発明の遺伝子導入方法には、レトロウイルスを含有する試料、例えば、ウイルス産生細胞の培養液上清が使用され、その調製方法には特に限定はない。例えば、酪酸ナトリウムをウイルス産生細胞の培養時に添加することにより、上清中に産生されるウイルス粒子が増加することが知られているが[ヒューマン・ジーン・セラピー(Human Gene Therapy)、第6巻、第1195~1202頁(1995年)]、本発明の遺伝子導入方法を使用することにより、こうして調製された高いタイターのウイルス上清も問題なく使用することができる。

本発明はレトロウイルス結合部位を有する機能性物質の共存下にレトロウイルスを標的細胞に感染させることを特徴とする。これらの機能性物質の有効量の存在下にレトロウイルスを細胞に感染させることにより、高い効率で遺伝子導入細胞を得ることができる。また、該機能性物質を使用してウイルス上清中に存在するウイルス感染阻害物質を簡単に除去することも可能である。さらに、標的細胞結合活性を有する機能性物質を共存させておくことにより、より高い特異性および/または効率で遺伝子導入を行うことができる。

本明細書において、有効量とはレトロウイルスによる標的細胞への遺伝子導入

10

15

20

25

により標的細胞の形質転換が生じるのに有効な量であり、用いる機能性物質および標的細胞の種類により適切な量を選択する。この量は、例えば、本明細書記載の方法により遺伝子導入効率を測定し、決定することができる。また、本明細書における標的細胞結合活性とは、実質的に細胞に結合する活性のみならず、溶液中において標的細胞に接触した状態を維持できる活性を有するものを包含する。この活性も、上記のようにその遺伝子導入効率への寄与から測定することができる。さらに、遺伝子導入効率とは、形質転換効率を意味する。

上記の機能性物質は溶液中に溶解した状態で、あるいは適当な担体上に固定化された状態で使用することができる。機能性物質を固定化する担体には特に限定はないが、通常、細胞培養用の容器やビーズ状の担体が用いられる。

なお、担体上に固定されたウイルス結合活性を有する機能性物質を用いた場合、 下記に例示するような工程によってさらに遺伝子導入の効率を向上させることが できる。

まず、レトロウイルスを含有する液体試料、例えば、ウイルス上清をレトロウイルス結合活性を有する機能性物質が固定化された担体と接触させる。この担体を洗浄した後、該担体をそのまま標的細胞と接触させることによって、あるいは適当な方法で担体から溶離させたウイルス粒子を標的細胞に添加することによって、高い効率で遺伝子導入を行うことができる。ここで使用されるレトロウイルス結合活性を有する機能性物質は標的細胞結合活性を有するものであってもよく、また、レトロウイルス結合活性を有する機能性物質と標的細胞結合活性を有する機能性物質とを組み合わせて使用してもよい。

レトロウイルスを含有する液体試料とレトロウイルス結合活性を有する機能性物質が固定化された担体とを接触させる工程は、特に限定するものではないが、例えば、1時間以上、好ましくは3時間以上にわたり実施される。温度等の条件にも特に限定はなく、例えば、室温、あるいは37℃で行うことができる。ウイルスの安定性等によっては4℃前後の低温でもよい。機能性物質を固定化する担体もその目的に応じて適宜選択すればよいが、細胞培養用の容器を用いれば標的細胞を添加するだけで遺伝子導入工程を開始できる。また、担体の洗浄には、例えば、リン酸緩衝生理食塩水やハンクスの生理食塩水の他、標的細胞の培養に使

10

15

20

25

用する液体培地等も使用することができる。

さらに、レトロウイルスとレトロウイルス結合活性を有する機能性物質との接触の頻度を物理的に高めることにより、レトロウイルスを当該機能性物質により効率よく結合させることができる。このような物理的手段としては、特に限定するものはないが、例えば、振盪、ろ過または遠心力を利用することができる。遠心力を利用する方法は、具体的には、その底部にレトロウイルス結合活性を有する機能性物質を固定化した遠心管にレトロウイルスを含有する液体試料を添加したうえ、当該遠心管を遠心分離操作に供する方法が挙げられる。この遠心の際、レトロウイルスは遠心力によって遠心管の底部に沈降するため、レトロウイルスとレトロウイルス結合活性を有する機能性物質との接触の頻度が増加し、その結合の効率が向上する。上記方法は、遠心力によりウイルスを細胞上に沈降させて感染させる方法(WO95/10619号公報)のように細胞に物理的なストレスを与えることがなく、より高い遺伝子導入効率を得られる方法である。

上記の操作により、レトロウイルスを含有する試料中に含まれる、その存在が遺伝子導入に好ましくない物質を除去したうえで遺伝子導入を実施することができる。本発明の方法により除去される物質としては、例えば、ウイルス上清に含まれているパッケージング細胞由来のレトロウイルス感染阻害物質 [ヒューマン・ジーン・セラピー、第8巻、第1459~1467頁(1997年)、ジャーナル・オブ・ウイロロジー(J. Virol.)第70巻、第6468~6473頁(1996年)] や、レトロウイルス産生細胞の培養時にレトロウイルスの産生の促進を目的として添加される物質、例えば、ホルボール 12ーミリステート13ーアセテート(TPA)やデキサメサゾン [ジーン・セラピー(Gene Therapy)、第2巻、第547~551頁(1995年)] の他、上記の酪酸ナトリウム等が挙げられる。

本発明に使用されるレトロウイルス結合活性を有する機能性物質としては、特に限定はなく、例えば、フィブロネクチンのヘパリンーII結合領域、線維芽細胞増殖因子、V型コラーゲン、ポリリジン、DEAEーデキストラン等があり、またこれらの機能性物質と機能的に同等な物質、例えば、ヘパリン結合性部位を有する機能性物質も使用することができる。また、該機能性物質の混合物、該機能

10

15

20

25

性物質を含有するポリペプチド、該機能性物質の重合体、該機能性物質の誘導体 等を使用することができる。

これらの機能性物質を化学的に修飾することにより、そのウイルス結合活性を 増強することが可能である。化学的修飾の方法としては、使用する機能性物質上 のアミノ酸残基を活性化する方法や、該物質に塩基性の残基を導入する方法が挙 げられる。例えば、ペプチド、あるいはタンパクからなる機能性物質中の遊離の カルボキシル基を水溶性カルボジイミド (例えば、1-エチル-3-ジメチルア ミノプロピルカルボジイミド塩酸塩)で修飾することにより、該カルボキシル基 を活性化し、レトロウイルス結合活性を高めることができる。さらに、こうして 活性化されたカルボキシル基を利用して、機能性物質上に塩基性の残基、例えば、 アミノ基を導入することにより、レトロウイルス結合活性を高めることもできる。 また、本発明に使用される標的細胞結合活性を有する機能性物質も、特に限定 はないが、例えば、標的細胞に結合するリガンドを有する物質であり、該リガン ドとしては細胞接着性のタンパク質、ホルモンやサイトカイン、細胞表面の抗原 に対する抗体、多糖類、糖タンパク質、糖脂質、糖タンパク質や糖脂質由来の糖 鎖、あるいは標的細胞の代謝物などが挙げられる。また、該機能性物質を含有す るポリペプチド、該機能性物質の重合体、該機能性物質の誘導体、該機能性物質 の機能的同等物等を使用することもできる。

標的細胞に特異的に結合する抗体は、特定の細胞に特異的に、かつ高い効率で遺伝子を導入するうえで特に有用である。本発明に使用できる抗体としては特に限定はなく、遺伝子を導入しようとする標的細胞で発現されている抗原に対する抗体を適宜選択し、使用することができる。該抗体は公知の方法によって作製することができるが、現在では多くの抗体が市販されており、これらを使用することもできる。これらの抗体は細胞特異性等所望の性質を有しているものであればポリクローナル抗体、モノクローナル抗体のどちらでもよい。さらに、公知技術により修飾された抗体や抗体の誘導体、例えば、ヒト化抗体、Fabフラグメント、一本鎖抗体等を使用することもできる。

CD抗原として知られている白血球抗原は、各抗原について種々の細胞における発現が詳細に調べられている。したがって、目的の標的細胞に発現しているC

10

15

20

25

D抗原を認識する抗体を選び、これを本発明の遺伝子導入方法に用いることにより、標的細胞に高い特異性で遺伝子を導入することができる。例えば、抗CD4 抗体を使用した場合にはヘルパーT細胞に、また抗CD34抗体を使用した場合 には造血幹細胞に、それぞれ遺伝子導入を方向づけることができる。

また、標的細胞結合活性を有する機能性物質として糖タンパク質であるラミニンを使用することにより、種々の標的細胞、例えば、血液系の細胞に効率よく遺伝子を導入することができる。本発明に使用できるラミニンは、標的細胞に対する結合活性を有していればマウス由来でもヒト由来でもよく、また、そのフラグメントであってもよい。下記実施例に示すように、ラミニンを使用した遺伝子導入ではその糖鎖が重要な役割を果たしている。したがって、ラミニンより公知の方法で切り出した糖鎖も本発明の方法に使用することができる。また、ラミニンと同様の高マンノース型のNー結合型糖鎖を有する糖タンパク質や、これより切り出した糖鎖、さらに化学的に合成した該糖鎖を本発明に使用することもできる。さらに、上記の糖鎖をタンパク等の物質に結合させたものを使用することもできるがは、レトロウイルス結合活性を有する機能性物質に結合させたものは遺伝子導入に好適に使用できる。

上記した高マンノース型糖鎖としては、分子内に1~20残基のマンノースを有するものであれば特に限定はないが、その非還元末端にマンノース残基を有するものが本発明の方法には好ましい。当該糖鎖は、これ以外の適当な分子、例えば単糖、オリゴ糖、多糖、アミノ酸、ペプチド、タンパク質、脂質のような生体分子の他、合成高分子のような人工の物質と結合させて使用することもできる。

生体由来の高マンノース型糖鎖としては、その代表的なものに(Mannose) $_n$ (GlucNAc) $_2$ の構造を有するものがある [タンパク質・核酸・酵素、第43巻、第2631~2639頁(1998年)]。特に限定するものではないが、例えば上記構造を有し、その分子内に9個のマンノース残基を含む糖鎖である

(Mannose)₉ - (GlucNAc)₂ (図1に当該糖鎖の構造を示す) は本発明の遺伝子 導入方法に好適に使用することができる。

上記のような機能性物質は天然起源の物質から得ることができ、また、人為的 に作製する(例えば、組換えDNA技術や化学合成技術によって作製する)こと

10

15

20

25

ができ、さらに、天然起源の物質と人為的に作製された物質との組合せにより作製することもできる。また、WO97/18318号公報に記載のように、これらの機能性物質を使用して遺伝子導入を実施する場合にはレトロウイルス結合部位を有する機能性物質と標的細胞結合部位を有する他の機能性物質とを混合して使用するか、あるいはレトロウイルス結合部位と標的細胞結合部位とを同一分子上に有する機能性物質を使用することができる。なお、これらの機能性物質としては、これらが天然において共存している他のタンパク質を実質的に含有していないものが使用される。さらに、これらの機能性物質あるいは機能性物質の組み合わせは、標的細胞の培養に使用する培地、細胞増殖因子等と組み合わせて遺伝子導入のためのキットとすることもできる。

本発明の方法に使用されるフィブロネクチンやそのフラグメントは、例えば、 ジャーナル・オブ・バイオケミストリー (J. Biol. Chem.) 第256巻、第72 77頁(1981年)、ジャーナル・オブ・セル・バイオロジー (J. Cell. Biol.)、第102巻、第449頁(1986年)、ジャーナル・オブ・セル・ バイオロジー、第105巻、第489頁(1987年)に記載の方法によって、 天然起源の材料から実質的に純粋な形態で製造することができる。また、米国特 許第5,198,423号に記載の方法により、組換えDNA技術を利用製造する こともできる。特に、レトロウイルス結合部位であるへパリンーII領域を含むフ ィブロネクチンフラグメント、例えば、下記実施例で使用されるCH-296、 およびH-271、H-296、CH-271等の組換えポリペプチド、ならび にこれらを取得する方法はこの特許に詳細に記載されている。これらのフラグメ ントは上記公報に記載されているように、茨城県つくば市東1丁目1番3号の通 産省工業技術院生命工学工業技術研究所にFERM P-10721 (H-29 6)(原寄託日:平成1年5月12日)、FERM BP-2799 (CH-27 1) (原寄託日:平成1年5月12日)、FERM BP-2800 (CH-2 96) (原寄託日:平成1年5月12日) およびFERM BP-2264 (H -271) (原寄託日:平成1年1月30日) の受託番号のもとで寄託された大 腸菌を培養することによって入手することができる。また、これらのフラグメン

トから定型的に誘導できるフラグメントは上記の大腸菌に保持されているプラス

10

15

20

25

ミドを公知の遺伝子組換え手法で改変することにより、作製することができる。なお、上記のフィブロネクチンフラグメントのうち、H-296はVLA-4への結合領域ポリペプチドを、CH-271はVLA-5への結合領域ペプチドを、また、CH-296はその両方を有している [ネイチャー・メディシン (Nature Medicine)、第2巻、第876~882頁(1996年)]。

上記の機能性物質の存在下で標的細胞にレトロウイルスを感染させることにより、遺伝子が導入された細胞を効率よく得ることができる。レトロウイルスの感染は通常の方法、例えば、37℃、炭酸ガス濃度5%の条件でのインキュベーションによって行うことができる。この条件やインキュベーションの時間は標的細胞や目的に応じて適宜変更してよい。

標的細胞がG₀期の細胞である場合にはレトロウイルスが感染しないため、予備刺激によって細胞周期に誘導することが好ましく、この目的で、レトロウイルスの感染に先立って、標的細胞を適当な標的細胞増殖因子の存在下で培養する。例えば、骨髄細胞や造血幹細胞に遺伝子導入を行う場合の予備刺激には各種のサイトカイン、例えばインターロイキンー3、インターロイキンー6や幹細胞因子等が使用される。

細胞へのレトロウイルスの感染には、細胞表面に存在するレセプターが関与していることが知られている。塩基性アミノ酸トランスポーター、リン酸トランスポーターは、それぞれエコトロピックウイルス、アンフォトロピックウイルスのレセプターとして機能することが知られており[プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシーズ・オブ・ザ・USA、第93巻、第11407~11413頁(1996年)]、これらのトランスポーターの発現、代謝回転を活発にさせるために、塩基性アミノ酸あるいはリン酸やこれらの塩、前駆体を低減させた培地中で標的細胞を前処理することによって、当該細胞をウイルスに感染し易い状態とすることができる。

驚くべきことに、ウイルス感染との関連は知られていなかったトランスフェリンレセプターを活性化させた場合にもレトロウイルスの感染効率、すなわち、遺伝子導入効率が上昇することを本発明者らは見い出した。トランスフェリンレセプターの活性化は、特に限定するものではないが、Fe濃度を制限した培地中で

10

15

25

標的細胞を処理することによって行うことができ、例えば、デフェロキサミンを 添加して培地中のFeをキレートさせた培地を使用することができる。

好ましくは、トランスフェリン活性化による遺伝子導入も、上記の機能性物質 の存在下で行う。

本発明の方法による遺伝子導入の標的となる細胞も特に制限はなく、例えば、幹細胞(sten cells)、造血細胞、非接着性低密度単核細胞、接着性細胞、骨髄細胞、造血幹細胞、末梢血幹細胞、臍帯血液細胞、胎児性造血幹細胞、胚形成幹細胞、胚細胞、プライモディアル・ジャーム・セル(primordial germ cell)、卵母細胞、卵原細胞、卵子、精母細胞、精子、CD34+細胞、C-kit+細胞、多能性造血前駆細胞、単能性造血前駆細胞、赤血球系前駆細胞、リンパ球母細胞、成熟血球、リンパ球、B細胞、T細胞、線維芽細胞、神経芽細胞、神経細胞、内皮細胞、血管内皮細胞、肝細胞、筋芽細胞、骨格筋細胞、平滑筋細胞、ガン細胞、骨髄腫細胞及び白血病細胞等を使用することができる。血液や骨髄より得られる造血系の細胞は入手が比較的容易であり、またその培養や維持の手法が確立されていることから、本発明の方法を利用するのに好適である。特に導入された遺伝子の長期にわたる発現が目的の場合には造血幹細胞、CD34陽性細胞、C-kit陽性細胞、多能性造血前駆細胞等の血液系の前駆細胞が標的細胞に適している。

例えば、造血幹細胞を標的細胞とした遺伝子治療は以下のような操作によって 20 実施することができる。

まず、ドナーより造血幹細胞を含有する材料、例えば、骨髄組織、末梢血液、臍帯血液等を採取する。これらの材料はそのまま遺伝子導入操作に用いることも可能であるが、通常は、密度勾配遠心分離等の方法により造血幹細胞が含まれる単核細胞画分を調製するか、さらに、CD34および/またはC-kitといった細胞表面のマーカー分子を利用した造血幹細胞の精製を行う。これらの造血幹細胞を含有する材料について、必要に応じて適当な細胞増殖因子等を用いた予備刺激を行った後、本発明の方法により目的とする遺伝子を挿入された組換えレトロウイルスベクターを感染させる。こうして得られた遺伝子導入された細胞は、例えば、静脈内投与によってレシピエントに移植することができる。レシピエン

10

15

20

トは、好ましくはドナー自身であるが、同種異系移植を行うことも可能であり、 例えば、臍帯血液を材料とした場合には同種異系移植が行われる。

造血幹細胞を標的とした遺伝子治療としては、患者において欠損しているか、 異常が見られる遺伝子を補完するものがあり、例えば、ADA欠損症やゴーシェ 病の遺伝子治療がこれにあたる。この他、例えば、ガンや白血病の治療に使用さ れる化学療法剤による造血細胞の障害を緩和するために、造血幹細胞への薬剤耐 性遺伝子の導入が行われることがある。

また、癌の遺伝子治療法としては、癌細胞にサイトカイン類の遺伝子を導入した後にその増殖能力を奪って患者の体内に戻し、腫瘍免疫を増強させる腫瘍ワクチン療法が研究されている [ヒューマン・ジーン・セラピー、第5巻、第153~164頁(1994年)]。さらに、AIDSを遺伝子治療法によって治療しようという試みも行われている。この場合には、AIDSの原因であるHIV(ヒト免疫不全ウイルス)の感染するT細胞に、HIVの複製や遺伝子発現を妨げるような核酸分子(アンチセンス核酸やリボザイム等)をコードする遺伝子を導入することが考えられている [例えば、ジャーナル・オブ・ウイロロジー、第69巻、第4045~4052頁(1995年)]。

以上に詳細に説明したように、本発明を使用することにより、高い効率で、かつ標的細胞に対して高い特異性で遺伝子導入を実施することが可能となる。また、本発明の方法は特別な設備、装置を必要とせず、また多種のレトロウイルスベクター、標的細胞について有効である。

実施例

以下に実施例を挙げて、さらに詳しく本発明を説明するが、本発明は下記実施 例の範囲のみに限定されるものではない。

25 実施例1

フィブロネクチン由来ポリペプチドの調製

ヒトフィブロネクチン由来のポリペプチド、H-271 は該ポリペプチドをコードするDNAを含む組換えプラスミド、pHD101を含有する大腸菌、Escherichia coli HB101/pHD101 (FERM BP-2264) よ

20

り、米国特許第5,198,423号公報に記載の方法により調製した。

ヒトフィブロネクチン由来のポリペプチド、H-296は該ポリペプチドをコードするDNAを含む組換えプラスミド、pHD102を含有する大腸菌、

Escherichia coli HB102/pHD102 (FERM P-10721) より、上記の公報に記載の方法にしたがって調製した。

ポリペプチドCH-271は以下に示す方法により調製した。

すなわち、大腸菌、Escherichia coli HB101/pCH101 (FERM BP-2799) を用い、これを上記の公報に記載の方法で培養し、該培養物よりCH-271を得た。

10 ポリペプチドCH-296は以下に示す方法により調製した。

すなわち、大腸菌、Escherichia coli HB101/pCH102 (FERM BP-2800) を用い、これを上記の公報に記載の方法で培養し、該培養物よりCH-296を得た。

ポリペプチドC-274は以下に示す方法により調製した。

すなわち、大腸菌、Escherichia coli JM109/pTF7221 (FER M BP-1915) を用い、これを米国特許第5,102,988号公報に記載の方法で培養し、該培養物よりC-274を得た。

V型コラーゲン由来のレトロウイルス結合活性を有するポリペプチドであるC o l Vは、国際公開公報 WO97/18318号に記載の方法にしたがって調製した。

実施例2

レトロウイルスベクターの構築およびレトロウイルス上清液の調製ネオマイシンホスホトランスフェラーゼ遺伝子を含有するレトロウイルスプラスミド、PM5 n e o ベクター [エクスペリメンタル・ヘマトロジー、第23巻、第630~638頁、1995年] を導入されたGP+E-86細胞 (ATCC CRL-9642) は10%ウシ胎児血清 (FCS、ギブコ社製) ならびに50単位/mlのペニシリンおよび50μg/mlのストレプトマイシン (共にギブコ社

製)を含有するダルベッコ改変イーグル培地(DMEM、バイオウイッタカー社

10

15

20

25

製)中で培養した。なお、以降の操作に使用したDMEMは全て上記抗生物質を含有したものである。PM5 n e o ウイルス含有上清液は上記産生細胞をセミコンフルエントに生育させたプレート(10cm径のゼラチンコート細胞培養用ディシュ、岩城硝子社製)に10%FCSを含有する4mlのDMEMを添加し、一晩培養した後に採取して調製した。採集した培地上清を0.45ミクロンのフィルター(ミリポア社製)でろ過してウイルス上清液ストックとし、使用時まで-80℃で保存した。

また、ネオマイシンホスホトランスフェラーゼ遺伝子と増感緑色蛍光タンパク質 (Enhanced Green Fluorescent Protein、EGFP) 遺伝子とを含有するレトロウイルスプラスミド、pLEIN (クロンテック社製) を導入されたエコトロピックパッケージング細胞BOSC23 [プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシーズ・オブ・ザ・USA、第90巻、第8392~8396頁(1993年)]、ならびにアンフォトロピックパッケージング細胞のCRIP [プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシーズ・オブ・ザ・USA、第85巻、第6460~6464頁(1988年)]のそれぞれより、上記同用の操作でウイルス上清液を調製した。以下、BOSC23細胞より調製されたウイルスをEcoーEGFP、ゆCRIP細胞より調製されたウイルスをAmphoーEGFPと記載する。

さらに、ネオマイシンホスホトランスフェラーゼ遺伝子を含有するレトロウイルスプラスミド、TKNeoベクター [ジャーナル・オブ・エクスペリメンタル・メディシン(J. Exp. Med.)、第178巻、第529~536頁、(1993年)]を含有するGP+EnvAm12細胞(ATCC CRL-9641)より、上記同様の方法でウイルス上清液を調製した。なお、DMEMはFCSのかわりに10%仔ウシ血清(CS、ギブコ社製)を含有するものを用いた。

上記のウイルス上清液の力価は、NIH/3T3細胞(ATCC CRL-1 658)へのネオマイシンホスホトランスフェラーゼ遺伝子の導入を指標とする標準的な方法 [ジャーナル・オブ・ウィロロジー、第62巻、第1120~1124頁、 (1988年)] に従って測定した。上清1ml当たりに含まれる感染性粒子数 (cfu/ml) を算出し、これを上清液の力価として以降の実験におけるウ

10

15

イルス上清液の添加量を決定した。

実施例3

レトロウイルス結合性機能性物質の作製およびその活性測定

表面未処理細胞培養用96穴マイクロプレート(ファルコン社製)に、各々80μg/mlのH-271、H-296、C-274、CH-271、CH-296、ColV、ヒト塩基性線維芽細胞増殖因子(bFGF、プロゲン社製)、テネイシン(Tenascin、ギブコ社製)、表皮細胞増殖因子(EGF、宝酒造社製)または2%ウシ血清アルブミン(BSA、シグマ社製)を1ウエルにつき50μl添加し、4℃で一晩静置した後、プレートをリン酸緩衝生理食塩水(PBS、ローマン工業社製)にて2回洗浄操作した。また、上記同様の処理の後に、滅菌純水で4mg/mlに調整した1-エチル-3-ジメチルアミノプロピルカルボジイミド塩酸塩(シグマ社製)溶液を1ウエルにつき0.1ml分注して37℃で2時間反応させた後、プレートを純水で充分洗浄してカルボジイミド処理プレートを作製した。これらのプレートはウイルス感染実験を行なうまでは4℃で保存しておいた。

10% FCS、50単位/mloのペニシリンおよび50 μ g/mloのストレプトマイシンを添加したRPMI1640培地 (バイオウィタカー社製) 中で生育させたマウス白血病細胞L1210 (ATCC CCL-219)10'個と、PM5neoウイルス上清液(10^4 cfu/ml) 50μ lとを上記マイクロプレート1ウェルに添加した。これを24時間培養したのち、培地を最終濃度0.75mg/mloG418 (ギブコ社製)を含有するものと交換して、さらに48時間培養を行なった。G418耐性細胞の検定は、S. Kim らの方法 [ジーン・セラピー、第3巻、第1018~1020頁(1996)]を一部改変し、Premix WST-1試薬(宝酒造社製)の発色を450mloCで4時間培養して測定することにより行なった。培養後、 100μ lの培養液あたり 10μ lのWST-1試薬を添加してさらに37loCで4時間培養した後、マイクロプレートリーダーにて450mloCのの吸光度を測定しその差(450mloCのm)を算出した。また、2% BSAコート、カルボジイミド未処理群で得られた値をバックグランドとした。3回

20

25

の試験の結果をまとめ、その結果を表1に示す。

表1

5

	機能性物質	未処理群	カルボジイミド処理群
実験1	BSA	0.000 ± 0.011	実施せず
	CH-271	2.099 ± 0.010	2.814 ± 0.079
実験 2	BSA	0.000 ± 0.007	0.224 ± 0.031
	H-271	0.777 ± 0.016	0.994 ± 0.029
	H-296	0.474 ± 0.014	0.666 ± 0.021
	C-274	-0.068 ± 0.017	0.100 ± 0.033
	CH-271	0.382 ± 0.017	0.425 ± 0.019
	CH-296	0.363 ± 0.023	0.460 ± 0.007
	Col V	0.644 ± 0.006	0.847 ± 0.033
	bFGF	0.425 ± 0.014	0.580 ± 0.046
	Tenascin	0.060 ± 0.021	0.323 ± 0.037
	EGF	0.030 ± 0.021	0.077 ± 0.038

(平均值 ± 標準偏差値)

表 1 に示されるように、公知のウイルス結合活性を有する機能性物質であるH-271、H-296、CH-271、CH-296、ColV、bFGFでの遺伝子導入効率の上昇が見られた。さらに、ウイルス結合活性を有していないC-274、テネイシン、EGF、BSAにおいてもカルボジイミド処理を施した場合にはG418耐性細胞の出現率が増加した。

次に、機能性物質としてCH-296を使用し、以下の実験を行った。

表面未処理細胞培養用24穴マイクロプレート(ファルコン社製)に、40 μg/mlのCH-296を1ウェルあたり0.5mlずつ添加し、4℃で一晩 インキュベートした。このプレートをPBS(pH5.8)にて洗浄した後、エ チレンジアミン[NH₂(CH₂)₂NH₂、ナカライ社製]、またはトリメチレン

10

15

20

ジアミン $[NH_2(CH_2)_3NH_2$ 、ナカライ社製] またはプトレスシン $[NH_2(CH_2)_4NH_2$ 、ナカライ社製] を種々の濃度で含む10mg/mlo1-エチルー3-ジメチルアミノプロピルカルボジイミド塩酸塩(シグマ社製)のPBS(pH5.8)溶液を 625μ 1ずつ添加し、37℃、2時間インキュベートした。この操作により、CH-296の分子上のカルボキシル基にカルボジイミドを介してアミノ基の導入を行った。このプレートをPBSで3回洗浄した後、2%グリシン/PBS、2% BSA/PBSで順次ブロッキングした。

レトロウイルスベクタープラスミドpLEINを導入したGP+E86細胞を10%CSを含むDMEM中で培養し、上清を採取した。この上清を1×10⁵ cfu/mlとなるように希釈したウイルス液を上記のプレートの1ウェルあたり0.5mlずつ添加して4時間インキュベートし、さらに1×10⁴個のNIH/3T3細胞を入れて2日間培養を行った。培養終了後、細胞を細胞剥離用緩衝液(バイオウィタカー社製)にて回収し洗浄した後、FACSvantage(ベクトンディキンソン社製)を使用したフローサイトメトリー(励起波長488nm、蛍光波長515~545nm)によりEGFP発現細胞の解析を行い、プレートへのウイルス結合能を細胞への遺伝子導入効率によって表した。この結果を図2に示す。

図2に示されるように、アミノ基導入反応に用いるジアミノ化合物の濃度が高くなるにつれてウイルス結合能が上昇した。プトレシン、トリメチレンジアミン、エチレンジアミンをともに2mMで反応に用いると、未処理のCH-296に比べて2倍程度のウイルス結合能を示した。

実施例4

ラミニンの遺伝子導入効率増強効果

25 マウスラミニン(ギブコ社製)またはヒトラミニン(宝酒造社製)とウイルス 結合活性を有する機能性物質とを組み合わせて遺伝子導入を実施した。実験に使用した表面未処理細胞培養用24穴マイクロプレート(ファルコン社製)は次の 2つの方法によりこれらの機能性物質でコートした。

カクテル法: 2種の機能性物質の混合液をプレートに添加して4℃で一晩静置

10

15

した後、2% BSAによるブロッキング (37℃、20分間) を行い、次いで プレートをPBSで洗浄する。

プレコート法:ウイルス結合活性を有する機能性物質溶液をプレートに添加して4℃で一晩静置した後、該溶液を除去する。次いでラミニン溶液を添加して37℃、2時間インキュベートし、さらに2% BSAによるブロッキングを行った後、プレートをPBSで洗浄する。

なお、コート操作に使用する機能性物質溶液は1ウェルあたり0.5 mlずつ 添加した。

 10^5 個のL1210細胞と、0.5ml のE co-EGFPウイルス上清液(10^5 cfu/ml)を添加して24時間培養を続けた。培養終了後、細胞を細胞剥離用緩衝液(バイオウィタカー社製)にて回収し洗浄した後、FACSVantage(ベクトンディキンソン社製)を使用したフローサイトメトリー(励起波長488m、蛍光波長 $515\sim545$ m)によりEGFP発現細胞の解析を行い、遺伝子導入効率(全細胞に対するEGFP発現細胞の割合)を算出した。実験結果を表 $2\sim5$ に示す。

表 2.

		ラミニン添加	叩濃度とコート記	ţ
機能性物質	無添加	5 μg/ml	20 μg/ml	20 μg/ml
(80 µg/m])	-	プレコート	プレコート	カクテル
BSA (2%)	1.12	5.20	6.55	6.22
H-271	5.41	11.19	17.52	9.67
H-296	4.83	5.96	5.51	6.95
CH-271	4.00	6.72	13.73	17.34
CH-296	6.48	7.08	6.02	16.77

遺伝子導入効率は%で示した。

表3

機能性物質		ラミニ	ン添加濃度	
(80 µg/ml)	無添加	20 μg/ml	40 μg/ml	60 μg/ml
BSA (2%)	1.36	5.14	4.74	3.82
CH-271	16.89	32.05	24.45	23.46
CH-296	17.80	18.79	20.44	19.31

プレートのコートはカクテル法により行った。また、遺伝子導入効率は%で示した。

表4

CH-296		ラミニ	ン添加濃度	
添加濃度	無添加	5 μg/ml	10 μg/ml	20 μg/ml
無添加	0.69	4.09	6.76	6.89
10 μg/ml	4.67	11.81	9.36	7.01
20 μg/ml	5.16	11.64	10.57	8.49
40 μg/ml	4.41	10.49	11.52	9.11
80 μg/ml	5.11	10.87	11.48	11.10
160 μg/ml	5.19	9.04	11.84	10.88
320 μg/ml	実施せず	実施せず	10.27	10.54

プレートのコートはカクテル法により行った。また、遺伝子導入効率は%で示した。

表5.

CH-271		ラミニ	ン添加濃度	
添加濃度	無添加	5 μg/ml	10 μg/ml	20 μg/ml
無添加	0.69	4.09	6.76	6.89
10 μg/ml	4.61	7.16	6.28	6.34
20 μg/ml	4.71	12.98	8.98	5.99
40 μg/ml	3.64	17.32	14.50	8.78
80 µg/ml	3.60	18.30	14.76	9.15
160 μg/ml	3.52	16.34	17.08	12.67

プレートのコートはカクテル法により行った。また、遺伝子導入効率は%で示した。

実施例5

5

10

ラミニンを使用したマウスC-kit陽性骨髄細胞への遺伝子導入 マウスC-kit陽性骨髄細胞の調製は以下のように行なった。6~8週令の C3H/He雌マウス(日本エスエルシー社製)の大腿骨より骨髄細胞を採取し、得られた細胞をフィコールーハイパク(1.0875g/ml、ファルマシア社製)を用いた密度勾配遠心分離にかけ、低密度単核細胞画分を調製した。得られ

15

20

25

た細胞をPBSで洗浄後、Ery-Lysis緩衝液(155 m NH_4 Cl、10 m KH CO_3 、0.1 m EDTA、pH7.4)で赤血球を溶解させ、さらにPBSで洗浄した。こうして得られた骨髄細胞に抗マウスCD117抗体(7r-1 cm 10 cm

ウイルス感染に先立って、マウスC-kit陽性骨髄細胞は、Luskey らの方法 [ブラッド (Blood)、第80巻、第396~402頁 (1992年)]を基にして予備刺激を行なった。すなわち、20% FCS、20ng/ml組換えマウスインターロイキンー3 (ジェンザイム社製)、50ng/ml組換えヒトインターロイキンー6 (ジェンザイム社製)、100ng/ml組換えマウス幹細胞因子 (ジェンザイム社製)、50単位/mlのペニシリンおよび50 μ g/mlのストレプトマイシンを含有する α -MEM (バイオウィタカー社製)中で5%炭酸ガス存在下、37℃で2日間培養した。

表面未処理細胞培養用 24 穴マイクロプレートを種々の濃度のマウスラミニンと $80 \mu g/ml$ のCH-271との混合液を用いるカクテル法にてコートした後、 2% BSAで 30分間ブロッキングし、さらにPBSで洗浄を行なった。また、対照としてCH-271のかわりに 2% BSAを使用したプレートも作製した。このマイクロプレートに 1 ウェルあたり 10^5 個のC-k it 陽性骨髄細胞と 0.5mlのEco-EGFPウイルス上清液(10^5 cfu/ml)を添加してウイルス感染を行なった。これを 48 時間培養した後、0.5mlの新鮮な培地を添加しさらに 24 時間培養を続けた。培養終了後、細胞を細胞剥離用緩衝液にて回収し洗浄した後、実施例 4 記載の方法により遺伝子導入効率を算出した。 2 回の実験を行った結果を表 6 および 7 に示す。

表6

		ラミニン添加濃度	
	無添加	10 μg/ml	20 μg/ml
. BSA	0.18	0.25	0.16
CH-271	0.69	3.93	2.64

遺伝子導入効率は%で示した。

表 7

5

10

		ラミニン	添加濃度			
	無添加	無添加 2.5 μg/ml 5 μg/ml 10 μg/ml				
BSA	1.37	1.80	2.63	5.38		
CH-271	9.95	16.12	15.28	17.00		

遺伝子導入効率は%で示した。

表6および7に示されるように、マウスラミニンとウイルス結合活性を有する 機能性物質CH-271とをカクテル法にてコートしたプレート上でC-kit 陽性骨髄細胞をレトロウイルス感染させた場合にも、非常に高い遺伝子導入効率 増強効果が認められることが明らかになった。ラミニン併用時の遺伝子導入効率 は、CH-271単独使用時に比較して最大で5.7倍上昇した。

さらに、Eco-EGFPウイルス上清液として、10⁷cfu/mlのタイターのものを使用して上記同様の操作を行った。3回の実験で得られた遺伝子導入効率の平均を表8に示す。この場合にも、レトロウイルス結合活性を有する機能性物質による遺伝子導入効率はラミニンの併用によって向上することが示された。

表8

		ラミニン	·添加濃度	· · · · · · · · · · · · · · · · · · ·
	無添加	2 μg/ml	4 μg/ml	6 μg/ml
BSA	5.88	11.77	19.33	27.09
H-271	25.12	53.39	55.65	56.45
CH-271	43.06 .	66.87 ⁻	73.67	77.76
CH-296	76.84	81.57	83.30	85.48

遺伝子導入効率は%で示した。

実施例6

ラミニンを使用したマウス脾臓細胞由来CD3陽性T細胞への遺伝子導入マウス脾臓細胞由来CD3陽性T細胞の調製は以下のように行なった。6~8週令のC3H/He雌マウスの脾臓より細胞を採取し100μmメッシュ(ファルコン社製)に通し残渣を除去した。得られた細胞を10% FCSを含有するハンクス平衡塩溶液(HBSS、バイオウィタカー社製)で洗浄後、Ery-Lysis緩衝液で赤血球を溶解させ、さらにHBSSで洗浄した。得られた細胞を30μmメッシュ(ミルテニーバイオテク社製)に通し残渣を除去した後、CD3陽性T細胞濃縮カラム(アールアンドディーシステムズ社製)にて精製した。ウイルス感染実験に使用するマウスCD3陽性T細胞は、抗マウスCD3およびCD28抗体(どちらも、1μg/ml、ファーミンゲン社製)を固定化したシャーレ上で、10% FCS、50単位/mlのペニシリンおよび50μg/mlのストレプトマイシンを含有するRPMI1640培地(バイオウィタカー社製)中で5%炭酸ガス存在下、37℃で2日間培養し、予備刺激を行なった。

 $20 \mu g/ml$ のマウスラミニンと $80 \mu g/ml$ のCH-296の混合液を使用し、実施例5と同様にして24穴マイクロプレートをコートした。このマイクロプレートに1ウェルあたり 10^5 個のCD3陽性T細胞と0.5mlのE co-EGF Pウイルス上清液(10^5 cfu/ml)を添加して3時間のウイルス感染を行なった。その後、10% FCS、500単位/mlの組換えマウスインターロイキン-1 α (ジェンザイム社製)、10ng/mlの組換えマウスインターロイキン-2(ジ

10

5

15

20

エンザイム社製)、50単位/mlのペニシリンおよび50μg/mlのストレプトマイシンを含有するRPMI1640培地を添加しさらに48時間培養を続けた。培養終了後、細胞を細胞剥離用緩衝液にて回収し洗浄した後、実施例4記載の方法により遺伝子導入効率を算出した。その結果を表9に示す。

5 表 9

機能性物質	導入効率(%)
BSA (対照)	0.83
CH-296	8.78
CH-296/マウスラミニン	13.20

遺伝子導入効率は%で示した。

表9に示されるように、マウスCD3陽性T細胞への遺伝子導入効率はラミニンの共存により上昇することが明らかとなった。

実施例7

10 遺伝子導入へのラミニン分子中の糖鎖の関与

1 ウェルあたり 5 0 μ lの 5 μ g/mlのマウスラミニンと 8 0 μ g/mlの CH - 2 7 1 の混合液を使用し、実施例 5 と同様にして 9 6 穴マイクロプレートをコートした後、プレートを各種の糖鎖切断活性を有する酵素で処理して、遺伝子導入効率への影響について検討した。

プレートは以下に示す条件で酵素処理に供した: Oーグリカナーゼ (Endo-α-N-acetylgalactosaminidase、生化学工業社製)、エンドグリコシダーゼH (Endo-β-N-acetylglucosaminidase H、生化学工業社製)、エンドーβーガラクトシダーゼ (Endo-β-galactosidase、生化学工業社製) およびαーマンノシグーゼ (α-Mannosidase、生化学工業社製) は50mMのクエン酸ーリン酸緩衝液 (p H 5.0)でそれぞれ500mU/ml、500mU/ml、250mU/mlおよび2mU/mlの酵素液を調製した。グリコペプチダーゼF (Peptide: N-glycosidase F、宝酒造社製)は100mMトリスー塩酸緩衝液(p H 8.6)で250mU/mlの酵素液を調製した。各酵素液をそれぞれ1ウェルあたり50μ1ずつ分注し、3

10

7℃、20時間反応させた。その後、PBSにて3回洗浄を行なった後、ウイルス感染実験に用いた。

10% FCSならびに50単位/mlのペニシリンおよび 50μ g/mlのストレプトマイシンを添加したRPMI1640培地中で生育させたマウス白血病細胞L1210の10 ¹個とPM5 n e o ウイルス上清液 50μ l (10 ¹cfu/ml) とを上記マイクロプレート1 ウェルに添加した。これを24時間培養したのち、培地を最終濃度0.75 mg/mlのG418 (ギブコ社製)を含有するものと交換して、さらに48時間培養を行なった。G418 m性細胞を実施例3 記載の方法により測定し、その結果を表10に示す。なお、表10は3回の実験結果を総合したものである。

表10

		A STATE OF THE PERSON NAMED IN COLUMN NAMED IN
機能性物質		吸光度
BSA (2%、対照)	第つ	0.000 ± 0.030
CH-271 (80 µg/ml)	消こ	1.376 ± 0.012
CH-271/ラミニン (80 μg/ml: 5 μg/ml)	熊し	1.781 ± 0.062
CH-271/ラミニン (80 μg/ml: 5 μg/ml)	0ーグリカナーゼ	1.886 ± 0.071
. CH-271/ラミニン (80 µg/ml: 5 µg/ml)	エンドグリコシダーゼH	1.214 ± 0.017
CH-271/ラミニン (80 μg/ml: 5 μg/ml)	E−β−ガラクトシダーゼ	1.939 ± 0.083
CH-271/ラミニン (80 µg/ml: 5 µg/ml)	αーマンノンダーゼ	1.657 ± 0.033
CH-271/ラミニン (80 µg/ml: 5 µg/ml)	グリコペプチダーゼF	1.610 ± 0.036

表10に示すように、ラミニンを併用した場合にはCH-271単独に比べて G418耐性細胞出現率は増加している。このラミニンを用いてコートしたプレートを酵素処理した場合、エンドグリコシダーゼH処理によってラミニンによる 遺伝子導入促進効果は全く消失してしまった。また、α-マンノシダーゼもしく

10

15

20

25

はグリコペプチダーゼF処理でも多少の遺伝子導入効率の低下が認められた。ラミニン分子上の糖鎖についての報告 [バイオキミカ・エト・バイオフィジカ・アクタ (Biochim Biophysi. Acta)、第883巻、第112~126頁 (1986年)] によると、ラミニン分子上の糖質のほとんどはアスパラギンに結合する Nー結合型糖鎖であり、ラミニン1分子あたり43分子のNー結合型の糖鎖が結合している。それらの糖鎖のなかでエンドグリコシダーゼH処理によって切り出される糖鎖は高マンノース型のアスパラギンーNー結合型糖鎖である。また、αーマンノシダーゼ処理によっても遺伝子導入効率の低下が認められたことより、ラミニン分子中の (Mannose)。 - (GlucNAc)。 - Asnおよび/または (Mannose)。 - (GlucNAc)。 - Asnのような、αーマンノシダーゼ処理により切断される α 1 - 2および/または α 1 - 6結合のマンノース構造を持つ糖鎖が重要な働きをしていると考えられる。このように、ラミニンによる遺伝子導入促進効果はラミニン分子中の糖鎖、特に高マンノース型の糖鎖によることを明らかにできた。

上記の (Mannose) $_9$ — (GlucNAc) $_2$ — Asnの遺伝子導入への関与を以下に示す実験により確認した。

ラクトースを固定化したセファロースCL-2B(ファルマシア社製)を使用して脱脂大豆粉(シグマ社製)より調製した大豆アグルチニン1gを加熱変性後、10 mM塩化カルシウムを含有する20 m I の50 mMトリスー塩酸緩衝液(p H 7. 2)中、20 m g のアクチナーゼE(科研製薬社製)を用いて37 C、2 E 夜消化した。酵素を加熱失活させた後、セファデックスG-15(50 m I)、およびセファデックスG-25(150 m I)カラムを用いたクロマトグラフィーを行い、(Mannose)。- (GlucNAc)。- (GlucNAc) - (GlucNAc)

CH-271と、上記の(Mannose)。-(GlucNAc)。-Asnとが共有結合で固定化されたマイクロプレートを作成した。すなわち、96 穴カルボプレート(住友ベークライト社製)を 4 m g / m 1 の水溶性カルボジイミド溶液を用いて 3 7 \mathbb{C} 、2時間活性化した後、滅菌水で 3 回洗浄した。 2 \mathbb{C} B S A、あるいは 8 \mathbb{C} $\mathbb{$

ェルに添加し、37 \mathbb{C} 、2時間の固定化反応を行った。次いで0.2%グリシン溶液による4 \mathbb{C} 、15時間のブロッキングを行い、以下の遺伝子導入実験に用いた。

上記マイクロプレートの1ウェル当たりに、10³個のL1210細胞と0.

1 mlのEco-EGFPウイルス上清液(10⁶cfu/ml)とを添加して48時間培養後、新鮮なRPMI1640培地(FCS、ペニシリン、ストレプトマイシン含有)0.1mlを添加してさらに24時間培養した。細胞を回収、洗浄した後、実施例4記載の方法により遺伝子導入効率を算出した。2回の実験結果の平均を表11に示す。

表11

极能性物質				糖鎖添加濃度			
(80 µg/ml)	無添加	2.8 µg/ml	5.5 µg/ml 11.1 µg/ml 22.1 µg/ml 44.2 µg/ml 88.5 µg/ml	11.1 µg/ml	22.1 µg/ml	44.2 µg/ml	88.5 µg/ml
BSA (2%)	1.68	実施せず	実施せず	実施せず	1.24	1.65	実施せず
CH-271	26.9	27.1	29.9	34.7	39.2	52.0	58.7
遺伝子導入効率は%で示した。	、効率は%	で示した。					

表11に示されるように、(Mannose) $_9$ - (GlucNAc) $_2$ - AsnをCH - 271 とともに固定化したウェルでは、使用した糖鎖の濃度依存的に遺伝子導入効率が上昇した。すなわち、ラミニン分子上に存在するものと同じ構造の糖鎖が、遺伝子導入効率の向上に寄与することが確認された。

実施例8

抗CD4モノクローナル抗体を用いたCD4陽性細胞に特異的な遺伝子導入 各々1 μ g/mlの抗マウスCD4、抗マウスCD44モノクローナル抗体 (いずれもファーミンゲン社製) と、各々80 μ g/mlのH-271、CH-271、CH-271、CH-296とを組み合わせ、実施例4記載の方法に従い表面未処理細胞培養用 24穴マイクロプレートをコートした。なお、H-271についてはプレコート 法、CH-271とCH-296についてはカクテル法を用いた。

このマイクロプレート1ウェルあたりに0.5mlのEco-EGFPウイルス 上清液 (10⁷cfu/ml) を添加し、32℃で3時間インキュベートした後、1 10 0% FCS、50単位/mlのペニシリンおよび50 μ g/mlのストレプトマイシ ンを含有するRPMI1640培地でプレートを洗浄した。続いて実施例6記載 の方法にしたがって調製し、予備刺激したマウス脾臓細胞由来CD3陽性T細胞 を1ウェルあたり105個添加して3時間のウイルス感染を行なった。その後、 15 10% FCS、500単位の組換えマウスインターロイキン-1a、10ng/ mlの組換えマウスインターロイキン-2、50単位/mlのペニシリンおよび50 μg/mlのストレプトマイシンを含有するRPMI1640培地を添加しさらに 48時間培養を続けた。培養終了後、細胞を細胞剥離用緩衝液にて回収し洗浄し、 細胞をファイコエリスリン (PE、ファーミンゲン社製) ラベルした抗マウスC 20 D4モノクローナル抗体 (ファーミンゲン社製) およびプロピニウムアイオダイ ド(PI、シグマ社製)にて染色した。この細胞についてFACSVantag eを使用したフローサイトメトリー(励起波長488nm、蛍光波長515~54 5 nmおよび562~588 nm) を行い、生細胞中のCD4抗原の発現とEGFP の発現の二次元解析を行い、CD4陽性細胞、CD4陰性細胞それぞれへの遺伝 25 子導入効率を算出した。この結果を表12に示す。なお、表12は4回の実験結 果を総合したものである。

表12

機能性物質	CD4 陽性細胞への導入効率	CD4 陰性細胞への導入効率
	(%)	(%)
BSA (対照)	0.16±0.07	0.11±0.07
抗 CD4 抗体	0.24±0.19	0.12±0.04
抗 CD44 抗体	1.92±0.82	1.95±1.00
H-271	31.02±7.34	16.54±4.30
抗 CD4 抗体/H-271	58.91±8.11	20.32±4.46
抗 CD44 抗体/H-271	56.08±7.53	40.96±7.04
CH-271	44.63±6.40	26.21±5.73
抗 CD4 抗体/CH-271	64.81±9.74	25.97±1.25
抗 CD44 抗体/CH.271	60.29±8.71	44.10±3.56
CH-296	48.81±8.77	29.45±4.70
抗 CD4 抗体/CH-296	62.93±6.45	30.84±3.27
抗 CD44.抗体/CH-296	56.79±9.87	41.37±1.14

平均值土標準偏差值)

表12に示されるとおり、モノクローナル抗体とフィブロネクチンフラグメントの両方をコートしたプレート上でレトロウイルス感染を行うと、マウス脾臓細胞由来CD3陽性T細胞において、遺伝子導入効率の増強効果が認められた。

とりわけ特筆すべき点は、抗CD4モノクローナル抗体とレトロウイルス結合 活性を有する機能性物質とを組み合わせてウイルス感染を行なった場合、CD4 陽性細胞への遺伝子導入効率がCD4陰性細胞への効率と比較して非常に高いも のであった。例えば、H-271との組み合わせではCD4陽性細胞への遺伝子

5

導入効率が約60%と非常に高効率であったのに対し、CD4陰性細胞への遺伝子導入効率は20%程度にとどまった。フィブロネクチンフラグメントとしてCH-271、CH-296を使用した場合も同様の結果が得られた。

一方、CD44抗原はCD4陽性細胞、CD4陰性細胞とも98%以上発現しており、抗CD44モノクローナル抗体を使用して上記同様のレトロウイルス感染を行なった場合、細胞のCD4抗原の発現とは無関係に遺伝子導入効率が上昇すると考えられたが、表12の結果はそれを裏付けるものであった。

実施例9

10 抗CD8aモノクローナル抗体を用いたCD8陽性細胞に特異的な遺伝子導入レトロウイルス結合活性を有する機能性物質としてH-271を、抗体として抗マウスCD8a(ファーミンゲン社製)、抗マウスCD44モノクローナル抗体を使用した他は実施例8と同様に行なった。なお、CD8陽性、陰性細胞の検出にはファイコエリスリン(PE、ファーミンゲン社製)ラベルした抗マウスCD8aモノクローナル抗体(ファーミンゲン社製)を使用した。得られた結果を表13に示す。なお、表13は2回の実験結果を総合したものである。

表13

CD8 陽性細胞への導入効率	CD8 陰性細胞への導入効率
(%)	(%)
0.22±0.08	0.28±0.00
0.36±0.20	0.28±0.02
0.98±0.34	0.92±0.20
20.08±4.71	96 43+6 07
36.07±1.57	24.42±0.55
46.93±0.88	47.16±0.75
98 0.07	± 4.71 ± 1.57 ± 0.88

(平均值土標準偏差值)

表13に示されるとおり、抗CD8aモノクローナル抗体とフィブロネクチンフラグメントの併用により、マウス脾臓細胞由来CD3陽性T細胞への遺伝子導入効率の増強効果が認められた。

抗CD8aモノクローナル抗体の場合も、実施例8の結果と同様に、該抗体が

認識するCD8抗原を発現する細胞に対して高い遺伝子導入効率を示した。また、CD8陽性、陰性両細胞の98%以上で発現している抗CD44モノクローナル 抗体を使用した場合にはCD8陽性、陰性細胞間での遺伝子導入効率に差は見られなかった。

上記の実施例8および9の実験結果の示す意義は非常に大きく、標的細胞特異的な抗体とウイルス結合性機能性物質との混合物質(カクテル)で培養器をコートし、その培養器上で標的細胞を含む細胞群に目的遺伝子を組み込んだレトロウイルスを感染させると、標的細胞特異的に目的遺伝子を導入することが可能であることを証明された。

10

15

20

5

実施例10

抗体を用いた細胞選択的な遺伝子導入

80μg/mlのCH-271と各種細胞表面抗原に対するモノクローナル抗体(抗-CD4、抗-CD8、抗-CD44、抗-CD49c、抗-CD49d および抗-CD49e抗体;いずれもファーミンジェン社製)各々1μg/mlとを使用し、実施例4記載の方法に従って表面未処理細胞培養用24穴マイクロプレートをカクテル法によりコートした。

標的細胞には、K 5 6 2 (ヒト慢性骨髄性白血病細胞、ATCC CCL-2 4 3)、HSB-2 (ヒト急性リンパ球性白血病細胞、CCRF-HSB-2、ATCC CCL-1 2 0. 1)、MOLT-3 (ヒト急性リンパ球性白血病細胞、ATCC CRL-1 5 5 2)、TF-1 (ヒト赤白血病細胞、ATCC CRL-1 5 5 2)、TF-1 (ヒト赤白血病細胞、ATCC CRL-2 0 0 3)を用いた。これらの細胞について、ラベルした上記の各種モノクローナル抗体を使用してFACS解析を行い、当該抗体に対応する抗原の発現率を測定した。

上記のマイクロプレートの1ウェルあたりに0.5 mlのAmpho-EGF Pウイルス上清液 (1×10°cfu/ml)を添加し、32℃で3時間インキ ュベートした後、10%FCS、50単位/mlのペニシリンおよび50μg/ mlのストレプトマイシンを含有するRPMI1640培地で洗浄した。上記培 地1mlに上記の各種細胞を各々1×10°個になるように懸濁してウェルに添 加し、ウイルス感染を行なった。さらに3日間培養を行なった後、細胞剥離用緩衝液にて細胞を回収、洗浄し、実施例4に記載のフローサイトメトリー法でEGFP遺伝子の導入効率を算出した。

以上の結果を表 1 4 に示す。なお、この結果は 3 回の実験結果を平均値で表したものである。

表14

5

	1							
	使用細胞							
ļ	HS	B-2	МО	LT-3	T	F-1	К	562
使用	導入	CD抗原	導入	CD抗原	導入	CD抗原	導入	CD抗原
抗体	効率	発現率	効率	発現率	効率	発現率	効率	発現率
	(%)		(%)		(%)		(%)	
無添加	100		100		100		100	
CD4	106. 7		100. 7	+/-	108. 8	+/-	104. 9	
CD8	130. 4	++	130. 4	++	107. 0	_	116. 9	_
CD44	173. 7	++	172. 5	++	188. 9	+++	135. 1	
CD49c	153. 9	+++	102. 7	-	115. 6	_	106. 3	
CD49d	159. 2	++	165. 3	+++	150. 3	+++	97. 5	
CD49e	185. 5	+++	127. 5	+	128. 9	++	172. 6	+++

遺伝子導入効率は、各々の細胞における抗体無添加での遺伝子導入効率を

100%とした場合の相対値(%)で表した。

10 CD抗原発現率は、FACS測定における陽性率(%)をそれぞれ以下のように示した。

-:10%以下、 +/-:10-30%、 +:30-60%、

++:60-90%、+++:90%以上

15 表14に示されたように、ウイルス結合物質としてCH-271、細胞結合物質として各種細胞上の抗原に対する抗体を用いたカクテル法での遺伝子導入において、抗原の発現率と遺伝子導入効率には相関関係が認められた。

さらにレトロウイルス結合能を有する機能性分子として、CH-271にかえ

て80μg/mlポリリジンを用いた遺伝子導入実験を行った。使用したモノクローナル抗体、細胞、その他の実験条件は上記と同様に行なった。得られた結果を表15に示す。なお、結果は3回の実験結果を平均値で示したものである。

5 表15

15

		使用細胞						
	нѕ	B-2	MOLT-3 T		Т	F – 1	K	562
使用	導入	CD抗原	導入	CD抗原	導入	CD抗原	導入	CD抗原
抗体	効率	発現率	効率	発現率	効率	発現率) 効率	発現率
	(%)		(%)		(%)		(%)	
無添加	100		100		100		100	
CD4	103. 3		104. 1	+/-	98.6	+/-	99. 4	_
CD8	116. 3	++	136. 7	++	100. 8	_	92. 4	_
CD44	155. 5	++	144. 9	++	253. 1	+++	102. 6	_
CD49c	160. 1	+++	104. 7		116. 1	_ ,	100. 6	_
CD49d	138. 2	++	156. 3	+++	187. 7	+++	103. 1	_
CD49e	142. 5	+++	140. 0	+ ·	166. 1	++	129. 2	+++

遺伝子導入効率は、各々の細胞における抗体無添加での遺伝子導入効率を100%とした場合の相対値(%)で表した。

CD抗原発現率は、FACS測定における陽性率(%)をそれぞれ以下のように示した。

10 -:10%以下、+/-:10-30%、+:30-60%、

++:60-90%、+++:90%以上

表15に示されたように、ポリリジンをウイルス結合物質として用い、細胞結合物質として各種細胞上の抗原に対する抗体を用いてカクテル法により、遺伝子導入実験を行なったところ、抗原の発現率と遺伝子導入効率には相関関係が認められた。

以上の2つの実験の結果、標的細胞上に発現している抗原を特異的に認識する 抗体を細胞結合物質として用いたカクテル法で遺伝子導入することにより、所望

10

15

20

の標的細胞に特異的な遺伝子導入が可能であることが示された。

実施例11

デフェロキサミン含有培地で前培養した標的細胞への遺伝子導入

10% FCS、50単位/mloのペニシリンおよび50 μ g/mloストレプトマイシンを含有するRPMI1640培地中で培養されたヒト骨髄性白血病細胞HL-60 (ATCC CCL-240)を、感染実験前日より種々の濃度のデフェロキサミン(deferoxamin、シグマ社製)を含む上記培地に移して、5%炭酸ガス存在下、37 $^{\circ}$ で20時間前培養を行なった。細胞は使用時にデフェロキサミンを含まない新鮮な培地で洗浄後、 2×10^5 細胞/mlとなるように調製して以下の感染実験に使用した。

表面未処理細胞培養用 24 穴マイクロプレートに $80 \mu g/ml$ の CH-271 を 1 ウェルあたり 0. 5 ml 添加し、4 \mathbb{C} で一晩静置した後、2 % BSAで 3 の分間ブロッキングし、さらに PBS で洗浄した。上記マイクロプレート 1 ウェルあたりに 0. 5 ml の Ampho - EGF Pウイルス上清液(10^6 cfu/ml)を添加し、32 \mathbb{C} で 3 時間 インキュベートした後、10 % FCS、50 単位/mlのペニシリンおよび $50 \mu g/ml$ のストレプトマイシンを含有する RPM 11640 培地でプレートを洗浄した。 続いて前培養した HL -60 細胞を 1 ウェルあたり 10^5 個添加して 48 時間培養した後、10 % FCS、50 単位/mlのペニシリンおよび $50 \mu g/ml$ のストレプトマイシンを含有する RPM 11640 培地の 10^5 の 10^5 の 1

表16

デフェロキサミン処理濃度	機能性物質	導入効率
(μM)		(%)
無添加	BSA (対照)	0.01
無添加	CH-271	0.14
6.25	CH-271	0.22
12.5	CH-271	0.27
25	CH-271	0.35
50	CH-271	0.71

表17

デフェロキサミン処理濃度	機能性物質	導入効率
(µM)	*	(%)
無添加	BSA (対照)	0.02
無添加	CH-271	0.25
40	CH-271	11.14

表16および17に示されるとおり、CH-271単独では遺伝子導入効率が 非常に低いHL-60細胞でも、デフェロキサミンであらかじめ20時間処理す ることにより、遺伝子導入効率が向上することが確認された。

実施例12

5

培養上清中のウイルス感染阻害物質の存在の検出

実施例2で調製したTKNe o ウイルス上清をDMEM、NIH/3T3細胞

10 (ATCC CRL-165.8) の培養上清、φCRIP細胞の培養上清のそれ

ぞれで312.5cfu/mlとなるよう希釈して以下の操作に使用した。

表面未処理細胞培養用 24 穴マイクロプレートに 1 ウェルあたり 0.5 mlの 3 2μ g/mlの CH-296 を添加して室温に 2 時間放置した後、 2% BSAで 3 0 分間ブロッキングし、さらに PBS で洗浄した。このプレート 1 ウェルあたりに、上記のウイルス液 1 m 1 と 2×10^4 個の NIH/3 T 3 細胞を加え、 3 7 でで一晩インキュベーションした。その後、 0.75 mg/mlの G 4 18 を含む選択培地で 1 0 日間培養し、出現したコロニー数を数えた。 G 4 18 を含まない培地で得られたコロニー数に対する G 4 18 耐性コロニー数の割合を遺伝子導入効率とし、その結果を表 1 8 に示す。

表18

希釈液	遺伝子導入効率(%)
DMEM (対照)	100
NIH/3T3細胞培養上清	20.6
φ C R I P細胞培養上清	15.7

遺伝子導入効率は対照に対する相対効率(%)で示した。

10 表18に示されるように、ウイルスをDMEMで希釈した場合に比べ、NIH / 3 T 3 細胞培養上清または φ CRIP細胞培養上清で希釈した場合は、導入効率は5分の1以下に低下した。NIH/3 T 3 細胞は φ CRIP細胞や本実験に用いたTKNe o ウイルスベクター産生細胞の調製に用いられたGP+Em v A m 1 2 細胞等、数多くのパッケージング細胞の親株である。該細胞の培養液上清中にレトロウイルスの感染を阻害する活性が見出されたことは、同様のパッケージング細胞を用いて調製されたウイルス上清にも阻害物質が含有されていることを示唆する。

実施例13

20 ウイルス液中に存在するウイルス感染阻害物質の除去 実施例12で示されたウイルス感染阻害物質を除去するため、以下のような方

15

20

25

法を用いた。なお、レトロウイルスを含有する試料としては、実施例2で調製したTKNeoウイルス上清を ϕ CRIP細胞の培養上清で5000cfu/mlとなるよう希釈した後、さらにDMEMで2倍希釈して使用した。

上記のウイルス液1mlを実施例11に記載の方法でCH-296コートしたプレートのウェルに添加し、1~5時間インキュベーションしてウイルス粒子をCH-296上に接触・保持させた後、PBSでプレートを3回洗浄し、2×10⁴個のNIH/3T3細胞を含むDMEM1mlを加えた。対照として、上記ウイルス液1mlに2×10⁴個のNIH/3T3細胞を懸濁したものをただちにCH-296でコートしたプレートに移した。これらのプレートを37℃で一晩インキュベーションして細胞にウイルスを感染させた。感染後の細胞は、0.75mg/mlのG418を含む選択培地で10日間培養し、出現したコロニー数を数えた。G418を含まない培地で得られたコロニー数に対するG418耐性コロニー数の割合を遺伝子導入効率とし、その結果を図3に示す。

図3に示すようにCH-296をコートしたプレートにウイルス粒子を接触・保持させた場合、3時間後には対照の実験区よりも導入効率は高くなった。すなわち、ウイルス液中に存在するウイルス感染阻害活性を上記の操作にて除去できることが示された。

実施例14

ウイルス液中に存在する酪酸ナトリウムの除去

レトロウイルスベクタープラスミド p L E I Nを、φ C R I P細胞に導入して得られた組換えレトロウイルス産生細胞は10% C Sを含有する D M E M 中で培養した。10cm径のプレートでセミコンフルエントにまで生育したときに、培地を10% F C S を含有する 7mlのR P M I 1640、または5m M 酪酸ナトリウム(ナカライテスク社製)と10% F C S とを含有する 7mlのR P M I 1640に交換し24時間培養した後に上清を0.45ミクロンのフィルターでろ過してウイルス上清とした。ウイルス上清の力価は実施例2に記載の方法で測定した。酪酸ナトリウムを含まないウイルス液の力価は3.3×10 c fu m l 、5m M の酪酸ナトリウムを含むウイルス液の力価は2×10 c fu m l であった。

10

15

酪酸ナトリウムには、細胞周期を停止して細胞の増殖を抑制したり、分化を誘導したりする作用があり、感染細胞に悪影響を及ぼす可能性も考えられる。ウイルス液中に含まれる酪酸ナトリウムを除去するために、以下のような方法を用いて評価した。

標的細胞としてHL-60細胞を用いた。実施例12に記載した方法でCH-296でコートしたプレート上で、上記のウイルス液を1ウェルあたり0.5ml 添加し、37℃で3時間インキュベーションしてウイルス粒子をCH-296上に接触・保持させた。インキュベーション終了後、PBSでプレートを3回洗浄した後、5×10⁴個のHL-60細胞を含む10% FCSを含有するRPM I1640培地0.5mlを加えた。対照として上記ウイルス液0.5mlに5×10⁴個のHL-60細胞を懸濁したものをただちにCH-296でコートしたプレートに加えた。37℃、一晩インキュベーションして細胞に感染させた後、10% FCSを含有するRPM I1640培地1mlを添加してさらに48時間培養した後、細胞数を計数し、また実施例4に記載のフローサイトメトリー法でEGFP発現細胞を検出して遺伝子導入効率を解析した。その結果を表19に示す。

表19

実験区/ウイルス上清	細胞数 (個/プレート)	遺伝子導入効率 (%)
CH-296		
酪酸ナトリウム:-	2. 0×10 ⁵	2. 21
'酪酸ナトリウム:+	1.8×10 ⁵	52.98
対照		·
酪酸ナトリウム:-	1. 7×10 ⁵	2. 74
酪酸ナトリウム:+	4. 0×10 ⁴	35.46

表19に示されるように、対照実験区での遺伝子導入効率は酪酸ナトリウムを 添加して調製したウイルス液を使用したものの方が高く、ウイルス調製における 酪酸ナトリウムの効果が確認された。しかし、酪酸ナトリウム使用上清での生育

10

15

20

25

細胞数は、使用しないものの1/4以下であり、酪酸ナトリウムによって細胞の生育が抑制されることが確認された。一方、CH-296でコートされたプレートに予めウイルス粒子を接触、保持させた場合には、対照実験区、酪酸ナトリウム使用上清で見られた細胞生育抑制は見られない。また、遺伝子導入効率にも低下は見られず、むしろ上昇していた。このようにウイルスをCH-296上に接触させた後、洗浄する操作を施すことによって、酪酸ナトリウムの影響を受けず、しかも高い遺伝子導入効率を得ることができることが示された。

次に、DEAEーデキストランを使用して同様の実験を行った。

DEAEーデキストラン(シグマ社製)を10mg/mlとなるようPBSに溶解後、0.22ミクロンのフィルターで滅菌ろ過し、プレートのコーティングに供した。細胞培養用表面処理6穴プレート(岩城硝子社製)の1ウェル当たりに、PBS 10容と上記のDEAEーデキストラン溶液1容とを混合したもの1.1mlずつを添加し、4℃で一晩インキュベートした。プレートよりDEAEーデキストラン溶液を除き、2%BSA溶液を1ウェルあたり2mlずつ加えて30分間処理した後、プレートを1ウェルあたり2mlのPBSで3回洗浄した。なお、対照として、DEAEーデキストラン溶液にかえてPBSで同様の操作を行ったプレートを作成した。

レトロウイルスベクタープラスミドpLEINをGP+E86細胞[ジャーナル・オブ・ウイロロジー、第62巻、第1120~1124頁(1988)]に導入した組換えレトロウイルス産生細胞を使用し、酪酸ナトリウムを添加する上記の方法でウイルス上清を調製した。このウイルス上清1容を10% CSを含有するDMEM20容で希釈した希釈ウイルス液(1.6×10 fcfu/ml)を1ウェルあたり1mlずつ添加し、37℃で2時間インキュベートした。このプレートを1ウェルあたり2mlのPBSで3回洗浄した後、5×10 f個のNIH/3T3細胞を加えて5%炭酸ガス存在下、37℃で3日間培養した。培養終了後、細胞をトリプシン処理にて回収し、実施例4に記載のフローサイトメトリー法でEGFP発現細胞の解析を行い、遺伝子導入効率を調べた。結果を表20に示す。

表20

コーティング	遺伝子導入効率(%)
DEAEーデキストラン	26.7
対照	0. 7

遺伝子導入効率は全細胞に対するEGFP陽性細胞の割合(%)で示した。

表20に示されるように、DEAEーデキストランもレトロウイルス結合活性 を有しており、本発明の遺伝子導入方法に使用可能であることが示された。

実施例15

5

10

15

20

25

遠心法を利用したレトロウイルスと機能性物質との結合

ネオマイシン耐性遺伝子を含有するレトロウイルスプラスミド、DOLベクター [プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシーズ・オブ・ザ・USA、第84巻、第2150~2154頁(1987年)] が導入されたCRIP細胞を10%CS、ならびに50単位/mlのペニシリンおよび50 μ g/mlのストレプトマイシンを含有するDMEMで培養した。DOLウイルス上清は、上記産生細胞をセミコンフルエントに生育させた10cm径のプレートについて、培地を10%CSを含有する5mlのDMEMに交換し、その24時間後に採取した上清を0.45ミクロンのフィルター(ミリポア社製)でろ過して調製した。このウイルス上清の力価は8.7×10 5 cfu/mlであった。

レトロウイルスの細胞への感染に使用する遠心管(50m1容ポリプロピレン製コニカルチューブ、ファルコン社製)は以下に示す操作にしたがってCH-296で被覆した。すなわち、 $40\mu g/mloCH-296$ を含む3mloPBSを静かに遠心管の底に入れ、直立した状態で4 $\mathbb C$ 、16時間インキュベートした。次に、CH-296溶液を2%のBSAを含む3.5mloPBSに交換してさらに30分間室温でインキュベートした後、5mloのハンクス平衡塩溶液(HBSS、ギブコ社製)で遠心管を洗浄した。

DOLレトロウイルスのCH-296コート遠心管底部への結合は以下のよう

10

15

20

25

にして行った。すなわち、上記のDOLウイルス上清原液、10倍希釈液、あるいは100倍希釈液それぞれ5mlを遠心管に入れ、 $2900 \times g$ 、25 $\mathbb C$ 、3時間遠心することによって、強制的にレトロウイルスをCH-296上に結合させた。比較のために、 $40 \mu g/mloCH-296$ を含むPBSを使用し、これを $8 \mu g/cm^2$ となるように使用してCH-296をコートした表面未処理細胞培養用6穴プレート(ファルコン社製)上に、上記同様のウイルス上清を添加し、37 $\mathbb C$ 、4時間、静置状態でインキュベートして結合させたものも以下の操作に用いた。

遠心を実施してレトロウイルスを強制的に結合させたCH-296コート遠心管を使用し、NIH/3T3細胞への遺伝子導入を行った。すなわち、各段階に希釈したウイルス液を遠心した上記のCH-296コート遠心管に、1×10⁵個のNIH/3T3細胞を入れ、37℃、3時間インキュベートした(以下、遠心法とする)。また、上記のマイクロプレートについても同様の条件でインキュベートを行った(以下、バインディング法とする)。さらに、対照として、CH-296をコートしたマイクロプレートにウイルス液とNIH/3T3細胞混合液を加え、37℃、3時間インキュベートしたものを従来の感染法として比較した(以下、上清法とする)。インキュベーション終了後、回収した細胞への遺伝子導入効率を実施例13に記載の方法で調べた。その結果を図4に示す。図中、横軸はウイルス上清の希釈率、縦軸は遺伝子導入効率を示す。また、白抜きは上清法、網掛けはバインディング法、黒塗りは遠心法で得られた結果をそれぞれ示す。

図4に示されるように、遠心法を用いた場合には、従来の上清法はもとより、 感染に先立ってウイルスをCH-296上に自然吸着させた場合(バインディン グ法)と比べても高い遺伝子導入効率を得ることができた。すなわち、ウイルス を遠心力によって強制的に沈降させることにより、より多くのウイルス粒子が容 器底面のCH-296上に結合することが示された。特に、希薄なウイルス液の 場合には、遠心による効果が顕著に見られた。

また、上記の遠心下および静置状態でのウイルス結合操作の後に回収されたウ イルス上清の力価測定を行った結果を表21に示す。

15

20

表21

試料	ウイルス力価	結合操作後の回収率
	(cfu/ml)	(%)
ウイルス上清 (未使用)	8. 7×10 ⁵	100
バインディング法からの回収上清	7. 8×10 ⁵	89.4
遠心法からの回収上清	7. 6×10 ⁴	8.8

表21に示されるように、静置状態での場合、回収された上清は操作前の約8割から9割の力価を有するのに対し、遠心下で強制的に結合させた場合には、上清の力価は操作前の1割以下であった。これは、遠心力によって、より多くのウイルス粒子がCH-296上に結合したことを示すものである。また、遠心後に遠心管を洗浄したPBSに含まれるウイルス量はもとの液の2%程度であること、この洗浄操作の有無が遺伝子導入効率にほとんど影響を与えないことからも、遠心を利用した場合にはウイルス粒子がCH-296上に強固に保持されていることが示唆された。

10 さらに、上記の遠心法による遺伝子導入効率を、遠心下に細胞へのウイルス感 染を実施する方法と比較した。

実施例14記載のGP+E86細胞を使用して調製されたウイルス上清をNIH/3T3細胞の培養液上清で1×10⁵cfu/mlに希釈したウイルス液5mlを用いて遠心法、および遠心力によりウイルスを細胞上に沈降させて感染させる方法(遠心感染法、WO95/10619号公報を参照)のそれぞれでNIH/3T3細胞への遺伝子導入効率を比較した。すなわち、CH-296をコートした遠心管に上記のウイルス液を添加して30℃で2900×g、4時間遠心した後に遠心管をPBSで洗浄し、次いで細胞を加えて37℃、4時間感染させたもの(遠心法)、CH-296をコートした遠心管に細胞を加えて2時間培養した後にウイルス液を入れ、さらに30℃で2900×g、4時間の遠心を行って感染を実施したもの(遠心感染法)のそれぞれで遺伝子導入を実施した。なお、遠心管のCH-296によるコートは上記の方法で行い、また、それぞれの遺伝子導入操作には1×10⁵個のNIH/3T3細胞を使用した。感染後の細胞を6

0 mmプレートに播き直し、2日間培養した後に実施例4に記載のフローサイトメトリー法でEGFP遺伝子の導入効率を調べた。この結果を図5に示す。

図5に示されるように、遠心法での遺伝子導入効率は遠心感染法での効率より 高いことが示された。これはウイルス液中に存在する感染阻害物質が洗浄操作に よって除かれたためと考えられる。

請 求 の 範 囲

- 1. 下記工程を包含することを特徴とするレトロウイルスによる標的細胞への遺伝子導入方法:
- 5 (1)担体上に固定化されたレトロウイルス結合活性を有する機能性物質にレ トロウイルスを含有する溶液を接触させる工程、
 - (2) レトロウイルスの結合した担体を洗浄する工程、および
 - (3) レトロウイルスの結合した担体を標的細胞と接触させてインキュベートする工程。
- 10 2. 担体上に固定化されたレトロウイルス結合物質にレトロウイルスを含有する溶液を接触させる工程が3時間以上にわたる請求項1記載の方法。
 - 3. (1)の工程において、レトロウイルスとレトロウイルス結合活性を有する機能性物質との接触の頻度が物理的に高められることを特徴とする請求項1または2記載の方法。
- 4. (1)の工程が、遠心力によりレトロウイルスを担体上に固定化されたレトロウイルス結合物質上に沈降させることによって実施される請求項3記載の方法。
 - 5. レトロウイルス結合活性を有する機能性物質が、フィブロネクチン、線維芽細胞増殖因子、V型コラーゲン、ポリリジン、DEAEーデキストラン、これらのフラグメント、およびこれらと同等のレトロウイルス結合活性を有する物質から選択されるものである請求項1~4いずれか1項記載の方法。
 - 6. レトロウイルス結合活性を有する機能性物質が、標的細胞結合活性を有するものである請求項1~5いずれか1項記載の方法。
- 7. レトロウイルス結合活性を有する機能性物質と標的細胞結合活性を有する 25 他の機能性物質が固定化された担体を使用する請求項1~6いずれか1項記載の 方法。
 - 8. 標的細胞結合活性を有する機能性物質が、細胞接着性のタンパク質、ホルモン、サイトカイン、抗体、糖鎖、炭水化物および代謝物から選択されるものである請求項7記載の方法。

10

20

- 9. 担体として、細胞培養用の容器または粒子状の担体を使用する請求項1~ 8いずれか1項記載の方法。
- 10. レトロウイルスを含有する溶液が、レトロウイルス産生を促進する物質の共存下に得られたレトロウイルス産生細胞の培養上清である請求項1~9いずれか1項記載の方法。
- 11. レトロウイルスを含む溶液が、酪酸ナトリウムの共存下に得られた培養上清である請求項10記載の方法。
- 12. レトロウイルスを使用して標的細胞へ遺伝子を導入する方法において、 下記の2種の機能性物質の存在下でレトロウイルスを標的細胞に感染させること を特徴とする標的細胞への遺伝子導入方法:
 - (1) レトロウイルス結合活性を有する機能性物質、および
 - (2) 標的細胞特異的な抗体。
 - 13. 抗体が標的細胞表面の生体物質を認識するものである請求項12記載の方法。
- 14. レトロウイルスを使用して標的細胞へ遺伝子を導入する方法において、 下記の2種の機能性物質の存在下でレトロウイルスを標的細胞に感染させること を特徴とする標的細胞への遺伝子導入方法:
 - (1) レトロウイルス結合活性を有する機能性物質、および
 - (2) ラミニン、ラミニンフラグメント、ラミニン由来糖鎖あるいは高マン ノース型糖鎖。
 - 15. レトロウイルス結合活性を有する機能性物質がフィブロネクチン、線維 芽細胞増殖因子、V型コラーゲン、ポリリジン、DEAEーデキストラン、これ らのフラグメント、およびこれらと同等のレトロウイルス結合活性を有する物質 から選択されるものである請求項12~14いずれか1項記載の方法。
- 25 16. レトロウイルス結合活性を有する機能性物質が標的細胞結合活性を有するものである請求項15記載の方法。
 - 17. 2種の機能性物質の少なくとも一方が担体に固定化されている請求項1 2~16いずれか1項記載の方法。
 - 18. 担体として細胞培養用の容器または粒子状の担体を使用する請求項17

記載の方法。

- 19. レトロウイルスを使用して標的細胞へ遺伝子を導入する方法において、 レトロウイルスとの接触に先立って標的細胞を、Fe濃度を低下させた培地中で 培養することを特徴とする標的細胞への遺伝子導入方法。
- 5 20. レトロウイルスとの接触に先立ってデフェロキサミンを含有する培地中で標的細胞を培養する請求項19記載の方法。
 - 21. ペプチドまたはタンパクを化学的に修飾することを特徴とするペプチドまたはタンパクのレトロウイルス結合活性を向上させる方法。
 - 22. ペプチドまたはタンパクを水溶性カルボジイミドで処理する工程を包含 することを特徴とする請求項21記載の方法。
 - 23. ペプチドまたはタンパクを水溶性カルボジイミドとジアミノ化合物とで処理する工程を包含することを特徴とする請求項22記載の方法。
 - 24. ペプチドまたはタンパクが、フィブロネクチン、線維芽細胞増殖因子、 V型コラーゲン、これらのフラグメント、およびこれらと同等のレトロウイルス 結合活性を有する物質から選択されるものである請求項21~23いずれか1項
- 15 結合活性を有する物質から選択されるものである請求項21~23いずれか1項 記載の方法。
 - 25. 請求項21~24いずれか1項記載の方法で処理されたペプチドまたは タンパクを含有することを特徴とするレトロウイルス結合活性を有する機能性物 質。
- 26. 請求項25記載のレトロウイルス結合活性を有する機能性物質の共存下 にレトロウイルスを標的細胞に感染させることを特徴とする標的細胞への遺伝子 導入方法。

図4

International application No.
PCT/JP99/03403

		PCI/C	
A. CLAS	SIFICATION OF SUBJECT MATTER		
	Cl ⁶ Cl2N15/86, C07K14/78		
	o International Patent Classification (IPC) or to both	national classification and IPC	
	S SEARCHED		
Minimum d Int.	locumentation searched (classification system followed C1 C12N15/86, C07K14/78	d by classification symbols)	
Documenta	tion searched other than minimum documentation to the	he extent that such documents are inclu	ded in the fields searched
Electronic d WPI	lata base consulted during the international search (na (DIALOG), BIOSIS (DIALOG)	me of data base and, where practicable,	search terms used)
	·		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where a	•	Relevant to claim No.
Х	JP, 9-71542, A (Sumitomo Ph Ltd.),	armaceuticals Co.,	21, 24-26
	18 March, 1997 (18. 03. 97)		
	& WO, 97/02047, A & EP, 84	4004, A	
A	JP, 9-510874, A (Indiana Un 4 November, 1997 (04. 11. 97	1-26	
	& WO, 95/26200, A & EP, 75		
	& US, 5686278, A	•	
A	Thomas Moritz et al., "Fibronectin Improves 1-26 Transduction of Reconstituting Hematopoietic Stem		
	Transduction of Reconstituti Cells by Retroviral Vectors: E	ng Hematopoietic Stem	
	Binding to Chymotryptic Carbo	xy-Terminal Fragments"	
	Blood (1996) Vol. 88 No. 3 P	,855-862	
A	Thomas Moritz et al., "Bone	Marrow Extracellular	1-26
	Matrix Molecules Improve Gen Hematopoietic Cells via Retro	e Transfer into Human viral Vectors" J. Clin.	
	Invest. (1994) Vol. 93 No. 4	P.1451-1457	
		·	
× Furthe	er documents are listed in the continuation of Box C.	See patent family annex.	
	categories of cited documents: ant defining the general state of the art which is not	"T" later document published after the inte date and not in conflict with the applic	rnational filing date or priority
consider	ed to be of particular relevance	the principle or theory underlying the	invention
"L" docume	document but published on or after the international filing date and which may throw doubts on priority claim(s) or which is	"X" document of particular relevance; the considered novel or cannot be conside	claimed invention cannot be red to involve an inventive step
special i	establish the publication date of another citation or other reason (as specified)	when the document is taken alone "Y" document of particular relevance; the	claimed invention cannot be
means	ent referring to an oral disclosure, use, exhibition or other	considered to involve an inventive step combined with one or more other such	when the document is documents, such combination
	nt published prior to the international filing date but later than rity date claimed	being obvious to a person skilled in the document member of the same patent	e art
Date of the a	actual completion of the international search	Date of mailing of the international se	arch report
	ptember, 1999 (09. 09. 99)	21 September, 1999	(21. 09. 99)
Name and m Japan	ailing address of the ISA/ nese Patent Office	Authorized officer	
Facsimile No	5 .	Telephone No.	

International application No.

PCT/JP99/03403 C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Te-hua Tearina Chu et al., "Retroviral Vector 12, 13, 15-18 A Particles Displaying the Antigen-Binding Site of an Antibody Enable Cell-Type-Specific Gene Transfer" JOURNAL OF VIROLOGY (1995) Vol. 69 No. 4 P.2659-2663

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

International application No.

PCT/JP99/03403

Box 1 Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reason
1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such a extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: Claims 1 to 18 and 21 to 26 pertain to methods for transferring a geninto target cells by using functional substances having an activity to binding to retroviruses, methods for improving the retrovirus-binding activity of a peptide or a protein and the functional substances per se having an activity to binding to retroviruses. On the other hand, claims 19 and 20 pertain to methods for transferring a gene into target cells by using a medium in which the Fe-concentration has been lowered. Claims 19 and 20 never relate to functional substances having an activity of binding to retroviruses. Such being the case, these two groups of inventions are not considered as relating to a group of inventions so linked inventions are not considered as relating to a group of inventions so linked as a searchable claims. 2. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. 3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No. PCT/JP99/03403

s to form a si	ngle general inv	ventive concept.		
·				
		·		
•		.•		1
	. •	•		
			•	
·		•		
	•			•
		·		
			•	

Form PCT/ISA/210 (extra sheet) (July 1992)

A. 発明の Int. Cl ⁶ C	属する分野の分類(国際特許分類(I P C)) 1 2 N 1 5 / 8 6, C 0 7 K 1 4 / 7 8			
			•	
B. 調査を	 行った分野			
調査を行った	最小限資料(国際特許分類(IPC))			
int. Ci C	12N15/86, C07K14/78			
·				
最小限資料以外	外の資料で調査を行った分野に含まれるもの			
			÷	
国際調本では				
WPI(D	用した電子データベース(データベースの名称 I ALOG),BIOSIS(DIALOG)	、調査に使用した用語)	· .	
C 間本上	7 1 273 2 3 3 4 4 4			
引用文献の	ると認められる文献		関連する	
カテゴリー*	11117年 人の一間の間が一段達する		請求の範囲の番号	
X	JP,9-71542,A(住友製薬株式会社) & WO,97/02047,A & EP,844004,A	18. 3月. 1997 (18. 03. 97)	$\begin{array}{c} 21, \\ 24-26 \end{array}$	
A	JP, 9-510874, A(インディアナ・ユニファンデーション) 04. 11月. 1997 (& EP, 752874, A & US, 5686278, A	1-26		
A	Thomas Moritz et al. "Fibronectic Reconstituting Hematopoietic Ster Vectors: Evidence of Direct Viral Carboxy-Terminal Fragments" Blood P. 855-862	m Cells by Retroviral Binding to Chymotryptic	1-26	
区欄の続きにも文献が列挙されている。 □ パテントファミリーに関する別			紙を参照。	
もの 「E」国際 国際後に位 「L」優先 日本献 で 「O」 「O」 「O」 「C」	Dカテゴリー 他のある文献ではなく、一般的技術水準を示す 自日前の出願または特許であるが、国際出願日 会表されたもの 三張に疑義を提起する文献又は他の文献の発行 は他の特別な理由を確立するために引用する 理由を付す) こる開示、使用、展示等に言及する文献 自日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの 「&」同一パテントファミリー文献		
国際調査を完了	した日 09.09.99	国際調査報告の発送日 2	1.09.99	
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号		特許庁審査官(権限のある職員) 新見 浩一 印 電話番号 03-3581-1101	AN 9162 内線 3488	

(続き). 用文献の テゴリー*	関連すると認められる文献 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号 1-26 12,13, 15-18	
A	Thomas Moritz et al. "Bone Marrow Extracellular Matrix Molecules Improve Gene Transfer into Human Hematopoietic Cells via Retroviral Vectors" J. Clin. Invest. (1994) Vol. 93 No. 4 P. 1451-1457		
A	Te-hua Tearina Chu et al. "Retroviral Vector Particles Displaying the Antigen-Binding Site of an Antibody Enable Cell-Type-Specific Gene Transfer" JOURNAL OF VIROLOGY (1995) Vol. 69 No. 4 P. 2659-2663		
	· · · · · · · · · · · · · · · · · · ·		
٠.			

	第1欄 請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き)	1
	法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。	1
-		
	1.	
		١
	·	
	2. 請求の範囲 は、有意義な国際調査をすることができる程度する形式の理解を対象してい	
	2. [] 請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、	ļ
	3. 請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に	
	従って記載されていない。	
	第Ⅱ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)	ĺ
	次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。	
j		
	請求の範囲1-18、21-26は、レトロウイルス結合活性を有する機能性物質を用いた標的細胞のの違伝ス第1+2	-
-	ではいか神心への退仏丁等人方法、ヘノナトまたはダンバクのレトロウイルス結合活性を向上させる方法、レトロウイルス結合活性を有する機能性物質自体に関するようでは、特殊など	
	- 単四10~40は、16億度を以下させに登取を用いた層的細胞への潜兵之道を主法に明チャー!	
	そして、請求の範囲19~20は、レトロウィルフは今年代な方子スポギルサー	
	- 内生ダ゙ダ゙グ゙ク、こイレウ ム゙フンク無的はか単一の一般的益明神今を形成するとより活用しょい。!	ŀ
	る一群の発明であるとは認められない。	
	1. 区 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求	
	の範囲について作成した。	
	2. 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の独仕を求めなった。	
1	加調査手数料の納付を求めなかった。	
	3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この屋間ではない。	
	3.	
1		
	4. 出願人が必要な追加盟を手数料を期間内に独供しなかったので、この屋内ではいい、またい。	
	4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。	
	户加细木工料料 ○ B ※ ○ 九 ↓ ○ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
	追加調査手数料の異議の申立てに関する注意	
	図 追加調査手数料の納付と共に出願人から異議申立てがなかった。	
L,		