

	Zau	tend	liin	3	Ale	orit	thu	.;	(iv	requ	alit	7 0	angts	zint	<i>)</i> .	(31)
1.	Ste	νţ	ශ්	ith c		inėl	rial	Je.	مهذل	le	Poju	t ×	4 4	, c	hor	še_
	Sm	all	<i>^\c</i>	ucub	ers	٤,	, ε	2, Ce	٤3	t	. +	egt	Con	nven	geno	e
9.	g If	the -	9. (xi)		Se o,	ى ئ - ئ	1.2.	, , .	m	/ x	; {/	a	icite	vicr	hear
	-		O'S	رايم				., _,	1		Ci		Poic	et)		
					S;:		⊿ {	, (^χ	i <i>)</i>	ے	- s	teep dix	est ecti	des	رصر	4
	\	10V	nali	æ	5; : Si	ic		Sui	.Feeb	لو	ma	ww	er	و ما	go to	Step
					an											
з.	Fiv	nd	a	พ	sabl	e (Jear	zibl	d	irec	tian					3
	que	. d	نبو	ctia	√- fi	نبطن	uz -	ba	obled —	u:	/					
				Ma	rimi	70		Σ	-)	Mini	iui Z	e.	-d			/
	Sı	<i>L</i> bje	ct ,	to	s^{τ}	73	(Xi) +	0;	X	≲ c		j =	1,2,		P
				7	์ รู้ -	71	+	X	<u> </u>	>		ュ	ن ک ' سا	1, 32	i	
					_	1 =	\$i	<u> </u>	, i	こり	2, ۰۰۶	, se	.r ~ el	cong	trai	~t
					of a									Aice	Islo	
щ.	J	} 1	tre '		رو م								AC	८- ≭	೬೪೦	
	•	ĩ)k	√ *	· >	d* ε₁	<u> </u>	ao t	5 S	^ t⊷	= ; 5) c /	aki	უ	è =	s ′	
		- U	•		1	, (י ע		~ {		O.		Ţ,	•	~	

5.	$\chi_{i+1} = \chi_i + \chi_i \leq i$
	L'optimal step leight and 5 se
	How to find definal Steplength?
6- EV	Juste f (×ixi)
7. Test	for convergence
	f(xi) - f(xi+1) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	$f(\chi \tilde{\epsilon})$
	rivate aptace X = Xix, otherwise
8	to Step 8. t i = i+1 y repeat from Step 2.
8.	t i = i+1 m supert from Step 2.
The iss	ues to be addressed to suplement the
	algorithm.
i) find	au appropriate usable Jeasible direction.
, . S	
2) find	a suitable step buyth along S
Direction-	ficiding moblen:
IH	Xi lies in the interior of the feasible
Negia	
	$\mathbf{S} \mathbf{c} = -\nabla \mathbf{f}(\mathbf{X} \mathbf{c})$
If g	one of the (Xi) = 0
	ag: generate roudon diretions co check
	if they satisty AZCOB

In general, one can have several directions that satisby @ 400. (33) However we would like to choose the best direction among these qualified condidates Given a Print Xi, find the vector S 4 a Scalar d, that maximizes d subject 6 linear in 8; $4d \Rightarrow S^T \nabla 9$; $(X_i) + (D_j d) \leq 0$ $i \in J$ linear in 8; $4d \Rightarrow S^T \nabla 9$; $(X_i) + (X_i) + (X_i) \leq 0$ $S^T \nabla 9$; $(X_i) + (X_i) \leq 0$ $S^T \nabla 9$; $(X_i) + (X_i) \leq 0$ $S^T \nabla 9$; $(X_i) + (X_i) \leq 0$ $S^T \nabla 9$; $(X_i) + (X_i) \leq 0$ $S^T \nabla 9$; $(X_i) + (X_i) \leq 0$ $S^T \nabla 9$; $(X_i) + (X_i) \leq 0$ $S^T \nabla 9$; $(X_i) + (X_i) \leq 0$ $S^T \nabla 9$; $(X_i) + (X_i) \leq 0$ $S^T \nabla 9$; $(X_i) + (X_i) \leq 0$ $s^{T} \nabla f(\underline{x}i) \leq 1$ Of is an arbitrary to contacter 0;=1 (Simplicity The maximum value of & gives the best S that makes STVf(xi) regative & STV9;(xi) as negative as possible simultaneagly. Minimize – L 5.t. 8 331 + 82 331 + ... + 8 391 + 0, x < 0 8, 392 + 82 392 + · · · + 8n 372 + 02d & 0

