Math 445 Homework 3

Due Wednesday, September 22

- 11. [NZM p.83, # 13] When applying the Pollard ρ method, starting from a_1 , suppose we find that a_1, \ldots, a_{17} are all distinct, mod n, but then $a_{18} \equiv a_{11}$. What is the smallest k for which $a_{2k} \equiv a_k$?
- 12. [The RSA algorithm works even if (A, n) > 1.]

Show that if n=pq is a product of distinct primes and $de\equiv 1\pmod{(p-1)(q-1)}$, then $A^{de}\equiv A\pmod{n}$.

(Hint: show that it works mod p and q, first.)

- 13. [NZM p. 86, # 5] Show that if $p^2|n$ for some $p \ge 2$, then there are $a \not\equiv b \pmod n$ for which $a^k \equiv b^k \pmod n$ for every $k \ge 2$.
- 14. Show that if n|m, and (10, m) = 1, then the period of the decimal expansion of 1/n divides the period of the decimal expansion of 1/m.
- 15. Show that for every $n \geq 2$, $\operatorname{ord}_{3^n}(10) = 3^{n-2}$. (Hint: induction! Show first that $\operatorname{ord}_{3^n}(10)|3^{n-2}$, and then that it can't be *smaller*.) [Consequently, the period of $1/3^n$ is 3^{n-2} .]