4.4 Polynomial Regression

So far we have been discussing a Multiple Linear Regression model

$$Y_i = \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \varepsilon_i$$

The aforementioned model is **linear** both with respect to the predictors (X_{ij}) and the coefficients (β_i) .

Consider now the following models:

$$Y_i = \beta_1 X_{i1} + \beta_2 X_{i1}^2 + \beta_3 X_{i2} + \beta_4 X_{i2}^2 + \beta_5 X_{i1} X_{i2} + \varepsilon_i$$

or

$$\log_{10} Y_i = \beta_1 X_{i1} + \beta_2 \sqrt{X_{i1}} + \beta_3 e^{X_{i3}} + \varepsilon_i$$

These two models are both *non-linear* with respect to the predictors but **linear** with respect to the coefficients β_i .

On the other side, the model below

$$Y_i = \frac{\gamma_0}{1 + \gamma_1 e^{\gamma_2 X_i}} + \varepsilon_i$$

is non-linear both with respect to the parameters *and* the predictors. More generally, we denote a **non-linear model** as

$$y_i = f(X_i, \gamma) + \varepsilon_i$$

where we assume that f is a smooth function.

If we want to estimate the model parameters in the model above, we can use the *Least-Squares* approach as usual. We write the *RSS* as

$$RSS = \sum_{i=1}^{n} \left(y_i - f(X_i, \gamma) \right)^2$$

and we *minimize* it with respect to γ . The **normal equations** are

$$\frac{\partial RSS}{\partial \gamma_k} = -2\sum_{i=1}^n \left(y_i - f(X_i, \gamma) \right) \left[\frac{\partial f(X_i, \gamma)}{\partial \gamma_k} \right], \ \forall k = 1, ..., p$$

Setting these equations equal to 0 yields the *least-squares* estimators for γ_k . However, solving this non-linear system of equations is highly complex, and it typically requires either *direct numerical search methods* (such as Gauss-Newton) or a method that searches for the minimum in *RSS* (such as a method similar to steepest descent).

The approach above only works when we know function *f*. When this is not known, then we need to *approximate* it using the data. For simplicity in the presentation of the results, we consider only one predictor.

Consider the following model

$$y_i = f(x_i) + \varepsilon_i,$$

where y_i is the response variable, x_i is a predictor, f is a *smooth* function, and the error terms ε_i are IID $N(0, \sigma^2)$ random variables.

Our goal is to estimate f using methods that we have already discussed. This implies that we need to represent f in such a way that the model above becomes a *linear* model. This can be done by choosing a *basis*, i.e. defining the space of functions of which f is an element. Once we choose the basis functions, they will be treated as **completely known**.

4.4.1 Polynomial Basis Functions

If $b_i(x)$ is the *j*th basis function, then *f* has the following representation

$$f(x) = \sum_{j=0}^{d} b_j(x)\beta_j$$

for some values β_i . Therefore, we write the nonlinear model $y_i = f(x_i) + \varepsilon_i$ as a linear model

$$y_i = \beta_0 + \sum_{j=1}^d b_j(x_i)\beta_j + \varepsilon_i$$

Suppose that f is believed to be a 4th order polynomial, so the space of polynomials of order 4 and below contains f.

A basis for this space is

$$b_0(x) = 1$$

$$b_1(x) = x$$

$$b_2(x) = x^2$$

$$b_3(x) = x^3$$

$$b_4(x) = x^4$$

so that the model becomes

$$y_{i} = \beta_{0} + \beta_{1}x_{i} + \beta_{2}x_{i}^{2} + \beta_{3}x_{i}^{3} + \beta_{4}x_{i}^{4} + \varepsilon_{i}$$
$$= \beta_{0} + \sum_{j=1}^{d} b_{j}(x_{i})\beta_{j}$$

Illustration of the Polynomial Basis Functions

Representation of a function in terms of basis functions using a polynomial basis. The following code creates the plots the polynomial basis function up to order 4

```
x=seq(0, 1, by=0.001)
b0 = rep(1, length(x))
b1 = x
b2 = x^2
b3 = x^3
b4 = x^4

fun1 = 4*b0 -10* b1 + 16*b2 + 2*b3 -10*b4

par(mfrow = c(2,3))
plot(x, b0, type='l', lty=3, ylab=expression("b"[0]*"(x)=1"))
plot(x, b1, type='l',lty=3, ylab=expression("b"[1]*"(x)=x"))
plot(x, b2, type='l',lty=3, ylab=expression("b"[2]*"(x)=x"^2))
plot(x, b3, type='l',lty=3, ylab=expression("b"[3]*"(x)=x"^3))
plot(x, b4, type='l',lty=3, ylab=expression("b"[4]*"(x)=x"^4))
plot(x, fun1, type='l', ylab="f(x)", main=expression("f(x) = 4 - 10 x + 16 x"^2*
```


Polynomial Regression Model

A *non-linear* model can be represented using a basis of polynomial functions as follows:

$$y_i = f(x_i) + \varepsilon_i \longrightarrow y_i = \beta_0 + \sum_{j=1}^d b_j(x_i)\beta_j + \varepsilon_i$$

where \emph{d} is the degree of the polynomial component.

How do we choose d?

1. Forward Approach: Keep adding terms until the last added term is not significant.

2. $Backward\ Approach$: Start with a large d, and keep eliminating the terms that are not statistically significant, starting with the highest order term.

Once we pick a value of d, then we usually do **not** test the significance of the lower-order terms. Therefore, when we decide to use a polynomial of degree d, by default, we include *all* the lower-order terms in our model.

<u>Reasoning</u> In regression analysis, we do not want our results to be affected by a change of location/scale of the data. Consider the following example:

Suppose the data $\{y_i, x_i\}_{i=1}^n$ are generated by the model:

$$y_i = x_i^2 + \varepsilon_i, \quad \varepsilon_i \sim N(0, \sigma^2)$$

But, they are instead recorded as $\{z_i, x_i\}_{i=1}^n$, where $z_i = x_i + 2$, that is,

$$y_i = (z_i - 2)^2 + \varepsilon_i = 4 - 4z_i + z_i^2 + \varepsilon_i$$

The linear term could become significant, if we shift the x values.

Exception: When we have a particular polynomial function in mind, e.g. the data are collected to test a particular physics formula $Y \approx X^2 + constant$, then you should test whether you can drop the linear term.

The Chicago Pumpkins Example

The pumpkins.csv data set contains information regarding the size and price of pumpkins sold in the Chicago area. Our goal in this example is to *predict* the size of the pumpkin (response) based on its price (predictor).

The scatter plot of the data is shown below:

```
pumpkins = read.csv("data/ch4/chicagopumpkins.csv",header=TRUE)
plot(pumpkins$price, pumpkins$size, pch=20, xlab="Pumpkin's Price", ylab="Pumpkir")
```


We see that a linear fit is probably *not* a good idea. Indeed,

```
lm.pumpkins = lm(size ~ price, data=pumpkins)
summary(lm.pumpkins)
```

```
##
## Call:
## lm(formula = size ~ price, data = pumpkins)
##
## Residuals:
      Min
               10 Median
##
                               30
                                      Max
## -1.6272 -0.7594 0.2244 0.3728 2.8245
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.5948315 0.0988339 6.018 6.35e-09 ***
## price
              0.0096781 0.0006856 14.117 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9477 on 246 degrees of freedom
## Multiple R-squared: 0.4475, Adjusted R-squared: 0.4453
## F-statistic: 199.3 on 1 and 246 DF, p-value: < 2.2e-16
```

Although the predictor is significant at explaining the response, the \mathbb{R}^2 is on the lower end and the scatter plot does not support a straight line as a good fit.

```
plot(size ~ price, data=pumpkins)
points(size ~ price, data=pumpkins, pch=8)
abline(lm.pumpkins, col="blue", lwd=2)
```


We want to select a *higher order* model and we will do so following a Forward Selection approach first and a Backward Selection method second:

1. We start with a **Forward Selection** approach, i.e. we start by a linear model, and we keep **adding** higher order terms until the added term becomes *statistically insignificant*.

```
# Forward Selection
lm.pumpkins = lm(size ~ price , data=pumpkins)
summary(lm.pumpkins)
```

```
##
## Call:
## lm(formula = size ~ price, data = pumpkins)
##
## Residuals:
      Min
               10 Median
##
                               30
                                      Max
## -1.6272 -0.7594 0.2244 0.3728 2.8245
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5948315 0.0988339 6.018 6.35e-09 ***
## price
              0.0096781 0.0006856 14.117 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9477 on 246 degrees of freedom
## Multiple R-squared: 0.4475, Adjusted R-squared: 0.4453
## F-statistic: 199.3 on 1 and 246 DF, p-value: < 2.2e-16
lm.pumpkins2 = lm(size ~ price + I(price^2), data=pumpkins)
summary(lm.pumpkins2)
```

```
##
## Call:
## lm(formula = size ~ price + I(price^2), data = pumpkins)
##
## Residuals:
      Min
               10 Median
##
                               30
                                      Max
## -1.6438 -0.6029 0.3695 0.4895 2.3941
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                                              0.353
## (Intercept) 1.093e-01 1.174e-01 0.932
## price
               3.037e-02 3.208e-03 9.469 < 2e-16 ***
## I(price^2) -9.051e-05 1.375e-05 -6.582 2.8e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.8754 on 245 degrees of freedom
## Multiple R-squared: 0.5305, Adjusted R-squared: 0.5267
## F-statistic: 138.4 on 2 and 245 DF, p-value: < 2.2e-16
lm.pumpkins3 = lm(size \sim price + I(price^2) + I(price^3), data=pumpkins)
summary(lm.pumpkins3)
```

```
##
## Call:
## lm(formula = size \sim price + I(price^2) + I(price^3), data = pumpkins)
##
## Residuals:
               10 Median
##
      Min
                               30
                                      Max
## -1.2786 -0.4937 -0.1368 0.5531 1.8633
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.414e+00 1.691e-01 -8.36 4.83e-15 ***
               1.256e-01 9.079e-03 13.83 < 2e-16 ***
## price
## I(price^2) -9.845e-04 8.239e-05 -11.95 < 2e-16 ***
## I(price^3) 2.228e-06 2.034e-07
                                    10.95 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7182 on 244 degrees of freedom
## Multiple R-squared: 0.6853, Adjusted R-squared: 0.6814
## F-statistic: 177.1 on 3 and 244 DF, p-value: < 2.2e-16
lm.pumpkins4 = lm(size \sim price + I(price^2) + I(price^3) + I(price^4), data=pumpkins4
summary(lm.pumpkins4)
```

```
##
## Call:
## lm(formula = size \sim price + I(price^2) + I(price^3) + I(price^4),
##
       data = pumpkins)
##
## Residuals:
               10 Median
##
      Min
                               30
                                      Max
## -1.3200 -0.4497 -0.1241 0.5539 1.7925
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.871e+00 3.782e-01 -7.590 6.83e-13 ***
               2.314e-01 2.630e-02 8.800 2.60e-16 ***
## price
## I(price^2) -2.565e-03 3.785e-04 -6.776 9.25e-11 ***
## I(price^3)
              1.061e-05 1.973e-06 5.378 1.76e-07 ***
## I(price^4) -1.470e-08 3.443e-09 -4.271 2.80e-05 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6941 on 243 degrees of freedom
## Multiple R-squared: 0.7073, Adjusted R-squared: 0.7025
## F-statistic: 146.8 on 4 and 243 DF, p-value: < 2.2e-16
lm.pumpkins5 = lm(size ~ price + I(price^2) + I(price^3) + I(price^4) + I(price^5)
summary(lm.pumpkins5)
```

```
##
## Call:
## lm(formula = size ~ price + I(price^2) + I(price^3) + I(price^4) +
##
       I(price^5), data = pumpkins)
##
## Residuals:
##
       Min
                 10
                      Median
                                   30
                                          Max
## -1.38082 -0.46537 -0.08211 0.53463
                                       1.91954
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -1.691e+00 7.112e-01 -2.378 0.0182 *
## price
              1.305e-01 5.791e-02 2.253 0.0251 *
## I(price^2) -2.479e-04 1.244e-03 -0.199 0.8422
## I(price^3) -1.078e-05 1.113e-05 -0.969 0.3333
## I(price^4) 7.118e-08 4.409e-08 1.615
                                             0.1077
## I(price^5) -1.248e-10 6.386e-11 -1.954
                                             0.0519 .
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6901 on 242 degrees of freedom
## Multiple R-squared: 0.7118, Adjusted R-squared: 0.7059
## F-statistic: 119.6 on 5 and 242 DF, p-value: < 2.2e-16
```

We see that the 5th order model has a 5th order term with p-value equal to 0.0519, which is **higher than 5%**, so we conclude that the optimal order for the polynomial, according to the forward selection method is d = 4. So, the fitted model is:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x + \hat{\beta}_2 x^2 + \hat{\beta}_3 x^4 + \hat{\beta}_4 x^4$$

If we plot all the fitted models, we have:

Forward Selection Models

The magenta line is the one that corresponds to the 4th order model.

2. We can also select *d* using the **Backward Elimination** approach, that is we start with a large value for *d* and we eliminate terms *until the highest order term in the model is statistically significant*:

##

```
4.4 Polynomial Regression | STAT 425: Statistical Modeling I
lm.pumpkins10 = lm(size \sim price + I(price^2) + I(price^3) + I(price^4) + I(price^6)
summary(lm.pumpkins10)
##
## Call:
## lm(formula = size \sim price + I(price^2) + I(price^3) + I(price^4) +
       I(price^5) + I(price^6) + I(price^7) + I(price^8) + I(price^9) +
##
       I(price^10), data = pumpkins)
##
## Residuals:
##
        Min
                   10
                        Median
                                       30
                                                Max
## -1.44082 -0.45530 -0.01853 0.53535 2.12546
```

```
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.331e+01 2.671e+01
                                    0.498
                                             0.619
## price
              -2.191e+00 4.274e+00 -0.513
                                             0.609
## I(price^2)
             1.396e-01 2.625e-01
                                   0.532
                                             0.595
## I(price^3) -4.389e-03 8.140e-03 -0.539
                                             0.590
## I(price^4) 8.198e-05 1.458e-04
                                   0.562
                                             0.575
## I(price^5) -9.818e-07
                         1.624e-06 -0.605
                                              0.546
## I(price^6) 7.731e-09 1.163e-08
                                   0.664
                                             0.507
## I(price^7) -3.970e-11 5.374e-11 -0.739
                                             0.461
## I(price^8) 1.276e-13 1.549e-13
                                   0.824
                                              0.411
## I(price^9) -2.321e-16 2.535e-16 -0.916
                                              0.361
## I(price^10) 1.821e-19 1.800e-19 1.012
                                              0.313
##
## Residual standard error: 0.6483 on 237 degrees of freedom
## Multiple R-squared: 0.7509, Adjusted R-squared: 0.7404
## F-statistic: 71.45 on 10 and 237 DF, p-value: < 2.2e-16
```

 $lm.pumpkins9 = lm(size \sim price + I(price^2) + I(price^3) + I(price^4) + I(price^5 summary(lm.pumpkins9)$

```
##
## Call:
## lm(formula = size \sim price + I(price^2) + I(price^3) + I(price^4) +
       I(price^5) + I(price^6) + I(price^7) + I(price^8) + I(price^9),
##
##
       data = pumpkins)
##
## Residuals:
##
      Min
               10 Median
                               30
                                      Max
## -1.4514 -0.4230 -0.0091 0.5177 2.1072
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -1.191e+01 9.589e+00 -1.242
                                              0.2154
               1.877e+00 1.450e+00
## price
                                     1.295
                                              0.1967
## I(price^2) -1.125e-01 8.271e-02 -1.360
                                              0.1751
## I(price^3) 3.506e-03 2.316e-03
                                    1.514
                                              0.1314
## I(price^4) -6.094e-05 3.623e-05 -1.682
                                              0.0939 .
## I(price^5) 6.252e-07 3.391e-07
                                    1.844
                                              0.0664 .
## I(price^6) -3.875e-09 1.945e-09 -1.993
                                              0.0475 *
## I(price^7)
             1.425e-11 6.704e-12
                                     2.125
                                              0.0346 *
## I(price^8) -2.859e-14 1.276e-14 -2.241
                                              0.0259 *
## I(price^9)
              2.411e-17 1.030e-17
                                    2.340
                                              0.0201 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6483 on 238 degrees of freedom
## Multiple R-squared: 0.7499, Adjusted R-squared: 0.7404
## F-statistic: 79.27 on 9 and 238 DF, p-value: < 2.2e-16
lm.pumpkins8 = lm(size \sim price + I(price^2) + I(price^3) + I(price^4) + I(price^5)
summary(lm.pumpkins8)
```

```
##
## Call:
## lm(formula = size \sim price + I(price^2) + I(price^3) + I(price^4) +
       I(price^5) + I(price^6) + I(price^7) + I(price^8), data = pumpkins)
##
##
## Residuals:
##
       Min
                 10
                      Median
                                   30
                                           Max
## -1.39988 -0.45678 -0.05827 0.53309 2.02119
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.140e+00 3.347e+00
                                    2.731 0.006791 **
## price
              -1.368e+00 4.257e-01 -3.215 0.001486 **
## I(price^2)
              7.522e-02 2.032e-02
                                    3.702 0.000266 ***
## I(price^3) -1.798e-03 4.783e-04 -3.759 0.000214 ***
## I(price^4) 2.262e-05 6.154e-06
                                    3.675 0.000293 ***
## I(price^5) -1.611e-07
                          4.541e-08 -3.549 0.000466 ***
## I(price^6) 6.535e-10 1.918e-10 3.407 0.000771 ***
## I(price^7) -1.406e-12 4.316e-13 -3.259 0.001282 **
## I(price^8)
               1.246e-15 4.008e-16
                                    3.108 0.002112 **
## ---
                  0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
## Signif. codes:
##
## Residual standard error: 0.6544 on 239 degrees of freedom
## Multiple R-squared: 0.7441, Adjusted R-squared: 0.7355
## F-statistic: 86.87 on 8 and 239 DF, p-value: < 2.2e-16
```

Starting with an order 10 model, we identify that an 9th order model is optimal according to the backward elimination criterion. If we plot all the fitted models, we have:

Backward Selection Models

The magenta line is the one that corresponds to the 9th order model.

For the fitted model we finally choose, we should (as always) perform diagnostic tests.

4.4.2 Orthogonal Polynomials

Fitting high order polynomials is generally **not recommended**, since they are very *unstable* and *difficult to interpret*. In addition, successive predictors x^j are *highly correlated* introducing multicollinearity problems. One way around this is to fit **orthogonal polynomials** of the form:

$$y_i = \beta_0 + \beta_1 z_1 + \dots + \beta_d z_d + \varepsilon_i$$

where each $z_j = a_1 + b_2 x + ... + \kappa_j x^j$ is a polynomial of order j with coefficients chosen such that $z_i^{\mathsf{T}} z_j = 0$ (i.e. the inner product of any two polynomials is zero).

The Chicago Pumpkins Example

In R , we can fit orthogonal polynomials using the poly function. In the code below, we repeat the same process as before (for choosing d) using the orthogonal polynomials.

```
# Forward Selection
lm.pumpkins02 = lm(size ~ poly(price,2), data=pumpkins)
summary(lm.pumpkins02)
```

```
##
## Call:
## lm(formula = size ~ poly(price, 2), data = pumpkins)
##
## Residuals:
      Min
               10 Median
##
                               30
                                      Max
## -1.6438 -0.6029 0.3695 0.4895 2.3941
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   1.70161
                             0.05559 30.612 < 2e-16 ***
## poly(price, 2)1 13.37846
                             0.87538 15.283 < 2e-16 ***
## poly(price, 2)2 -5.76139  0.87538 -6.582  2.8e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.8754 on 245 degrees of freedom
## Multiple R-squared: 0.5305, Adjusted R-squared: 0.5267
## F-statistic: 138.4 on 2 and 245 DF, p-value: < 2.2e-16
lm.pumpkins03 = lm(size ~ poly(price,3), data=pumpkins)
summary(lm.pumpkins03)
```

```
##
## Call:
## lm(formula = size \sim poly(price, 3), data = pumpkins)
##
## Residuals:
      Min
               10 Median
##
                               30
                                      Max
## -1.2786 -0.4937 -0.1368 0.5531 1.8633
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                               0.0456 37.313 < 2e-16 ***
                    1.7016
## poly(price, 3)1 13.3785
                               0.7182 18.628 < 2e-16 ***
## poly(price, 3)2 -5.7614
                               0.7182 -8.022 4.35e-14 ***
## poly(price, 3)3
                               0.7182 10.954 < 2e-16 ***
                   7.8672
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7182 on 244 degrees of freedom
## Multiple R-squared: 0.6853, Adjusted R-squared: 0.6814
## F-statistic: 177.1 on 3 and 244 DF, p-value: < 2.2e-16
lm.pumpkins04 = lm(size \sim poly(price,4), data=pumpkins)
summary(lm.pumpkins04)
```

```
##
## Call:
## lm(formula = size ~ poly(price, 4), data = pumpkins)
##
## Residuals:
              10 Median
##
      Min
                             30
                                   Max
## -1.3200 -0.4497 -0.1241 0.5539 1.7925
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  1.70161
                            0.04407 38.608 < 2e-16 ***
                           0.69408 19.275 < 2e-16 ***
## poly(price, 4)1 13.37846
## poly(price, 4)2 -5.76139
                           0.69408 -8.301 7.22e-15 ***
## poly(price, 4)3 7.86718 0.69408 11.335 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6941 on 243 degrees of freedom
## Multiple R-squared: 0.7073, Adjusted R-squared: 0.7025
## F-statistic: 146.8 on 4 and 243 DF, p-value: < 2.2e-16
lm.pumpkins05 = lm(size \sim poly(price,5), data=pumpkins)
summary(lm.pumpkins05)
```

```
##
## Call:
## lm(formula = size ~ polv(price, 5), data = pumpkins)
##
## Residuals:
##
       Min
                  10
                      Median
                                    30
                                            Max
## -1.38082 -0.46537 -0.08211 0.53463
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
                               0.04382 38.831 < 2e-16 ***
## (Intercept)
                    1.70161
## poly(price, 5)1 13.37846
                               0.69009 \quad 19.387 < 2e-16 ***
## polv(price, 5)2 -5.76139
                               0.69009 -8.349 5.35e-15 ***
## poly(price, 5)3 7.86718
                               0.69009 11.400 < 2e-16 ***
## poly(price, 5)4 -2.96423
                              0.69009 -4.295 2.53e-05 ***
## poly(price, 5)5 -1.34841
                               0.69009 - 1.954
                                                 0.0519 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6901 on 242 degrees of freedom
## Multiple R-squared: 0.7118, Adjusted R-squared: 0.7059
## F-statistic: 119.6 on 5 and 242 DF, p-value: < 2.2e-16
newprice = data.frame(price=seg(17, 255, 1))
plot(pumpkins$price, pumpkins$size, pch=20, ylim=c(0,5),xlab="Pumpkin's Price",
lines(newprice$price, predict(lm.pumpkins02, newprice), col="blue", lty=1, lwd=2)
lines(newprice$price, predict(lm.pumpkins03, newprice), col="orange", lty=1, lwd=
lines(newprice$price, predict(lm.pumpkins04, newprice), col="magenta", lty=1, lwc
lines(newprice$price, predict(lm.pumpkins05, newprice), col="green", lty=1, lwd=2
legend(230, 1.3, legend=c("d=2", "d=3", "d=4", "d=5"),
       col=c("blue", "orange", "magenta", "green"), lty=c(1,1,1,1), cex=0.8, lwd=
```

Forward Selection Models: Orthogonal Polynomials

Backward Selection

lm.pumpkins010 = lm(size ~ poly(price,10), data=pumpkins)
summary(lm.pumpkins010)

```
##
## Call:
## lm(formula = size ~ poly(price, 10), data = pumpkins)
##
## Residuals:
##
       Min
                 10
                      Median
                                   30
                                           Max
## -1.44082 -0.45530 -0.01853 0.53535 2.12546
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     1.70161
                                0.04117 41.335 < 2e-16 ***
## poly(price, 10)1
                    13.37846
                                0.64829 20.636 < 2e-16 ***
## polv(price, 10)2
                    -5.76139
                                0.64829 - 8.887 < 2e-16 ***
## poly(price, 10)3
                                0.64829 12.135 < 2e-16 ***
                    7.86718
## poly(price, 10)4
                    -2.96423
                                0.64829 -4.572 7.77e-06 ***
## poly(price, 10)5
                    -1.34841
                                0.64829 - 2.080 0.03861 *
## polv(price, 10)6
                    -1.45456
                                0.64829 - 2.244 0.02578 *
## poly(price, 10)7
                                0.64829 -3.979 9.20e-05 ***
                    -2.57955
## poly(price, 10)8
                                          3.137 0.00192 **
                     2.03378
                                0.64829
## poly(price, 10)9
                     1.51698
                                0.64829
                                          2.340 0.02012 *
## poly(price, 10)10
                     0.65591
                                0.64829
                                          1.012 0.31269
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6483 on 237 degrees of freedom
## Multiple R-squared: 0.7509, Adjusted R-squared: 0.7404
## F-statistic: 71.45 on 10 and 237 DF, p-value: < 2.2e-16
lm.pumpkins09 = lm(size \sim poly(price, 9), data=pumpkins)
summary(lm.pumpkins09)
```

```
##
## Call:
## lm(formula = size \sim poly(price, 9), data = pumpkins)
##
## Residuals:
##
       Min
                10 Median
                               30
                                      Max
## -1.4514 -0.4230 -0.0091 0.5177 2.1072
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   1.70161
                              0.04117 41.333 < 2e-16 ***
                              0.64833 20.635 < 2e-16 ***
## poly(price, 9)1 13.37846
## poly(price, 9)2 -5.76139
                              0.64833 - 8.887 < 2e-16 ***
## poly(price, 9)3 7.86718
                              0.64833 12.135 < 2e-16 ***
## poly(price, 9)4 -2.96423
                              0.64833 -4.572 7.76e-06 ***
## poly(price, 9)5 -1.34841
                              0.64833 - 2.080 0.03861 *
## polv(price. 9)6 -1.45456
                              0.64833 - 2.244 0.02578 *
## poly(price, 9)7 -2.57955
                              0.64833 -3.979 9.20e-05 ***
## poly(price, 9)8 2.03378
                              0.64833
                                       3.137 0.00192 **
## poly(price, 9)9 1.51698
                               0.64833
                                       2.340 0.02012 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6483 on 238 degrees of freedom
## Multiple R-squared: 0.7499, Adjusted R-squared: 0.7404
## F-statistic: 79.27 on 9 and 238 DF, p-value: < 2.2e-16
lm.pumpkins08 = lm(size \sim poly(price, 8), data=pumpkins)
summary(lm.pumpkins08)
```

```
##
## Call:
## lm(formula = size ~ poly(price, 8), data = pumpkins)
##
## Residuals:
##
       Min
                  10
                      Median
                                    30
                                            Max
## -1.39988 -0.45678 -0.05827 0.53309 2.02119
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    1.70161
                               0.04155 40.951 < 2e-16 ***
## poly(price, 8)1 13.37846
                              0.65437
                                        20.445 < 2e-16 ***
## polv(price, 8)2 -5.76139
                                        -8.805 2.71e-16 ***
                               0.65437
## poly(price, 8)3 7.86718
                                        12.023 < 2e-16 ***
                               0.65437
## poly(price, 8)4 -2.96423
                              0.65437
                                       -4.530 9.32e-06 ***
## poly(price, 8)5 -1.34841
                              0.65437 - 2.061 0.040421 *
## poly(price, 8)6 -1.45456
                              0.65437 - 2.223 0.027162 *
## poly(price, 8)7 -2.57955
                              0.65437 -3.942 0.000106 ***
## poly(price, 8)8 2.03378
                              0.65437
                                        3.108 0.002112 **
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6544 on 239 degrees of freedom
## Multiple R-squared: 0.7441, Adjusted R-squared: 0.7355
## F-statistic: 86.87 on 8 and 239 DF, p-value: < 2.2e-16
```

plot(pumpkins\$price, pumpkins\$size, pch=20, ylim=c(0,5), xlab="Pumpkin's Price", lines(newprice\$price, predict(lm.pumpkins010, newprice), col="blue", lty=2, lwd=2 lines(newprice\$price, predict(lm.pumpkins09, newprice), col="orange", lty=2, lwd= lines(newprice\$price, predict(lm.pumpkins08, newprice), col="magenta", lty=2, lwc legend(225, 1.2, legend=c("d=10", "d=9", "d=8"), col=c("blue", "orange", "magenta")

Backward Selection Models: Orthogonal Polynomials

4.4.3 Piece-wise Polynomials

If the true mean of E(Y|X=x)=f(x) is too wiggly, we might need to fit a higher order polynomial, which is not always a good idea. Instead we consider **piece-wise polynomials**:

- 1. we divide the range of x into several intervals, and
- 2. within each interval, f(x) is a low-order polynomial, e.g., cubic or quadratic, but the polynomial coefficients will be different from interval to interval
- 3. we require the overall f(x) to be continuous up to certain derivatives.

This method is also called "broken-stick regression". Its benefit is that it localizes the influence of each data point to a particular segment, but overall it is not a very smooth line as the one we obtain by fitting a single polynomial for the whole data set.