Contents

- Step 1: Import CSV Data
- Step 2: R Bridge Implementation
- Step 3: MDFT Formulation to Calculate Preference Dynamics
- Helper Functions

Step 1: Import CSV Data

(reference apolloMain_5 amd apolloMain_6 as example for data manipulation) biasData = readtable('user_choices.csv'); % Replace with the path to your data file disp('user bias data imported successfully.'); taskChoice_Data = readtable('user_choices.csv'); % Replace with the path to your data file disp('user task choice data imported successfully.');

```
robotChoice_Data = readtable('G:\My Drive\myResearch\Research Experimentation\Apollo\apollo\data\Bounding_Overwatch_Data\HumanData_Bounding_Overwatch.csv');
% Convert all column headers to lowercase
robotChoice_Data.Properties.VariableNames = lower(robotChoice_Data.Properties.VariableNames);
disp('User robot choice data imported successfully.');
% Randomly select 10 rows (or all rows if fewer than 10)
numRows = height(robotChoice_Data);
randomIndices = randperm(numRows, min(10, numRows));
robotChoice_Data = robotChoice_Data(randomIndices, :);
% Extract robot state attributes dynamically
robot_states = struct();
attributeSuffixes = {'traversability', 'visibility'}; % No leading underscores
for i = 1:3
    for attr = attributeSuffixes
        csvColName = sprintf('robot%d_%s', i, attr{1});  % Matches CSV column names
        structFieldName = attr{1};  % Valid field name
        if ismember(csvColName, robotChoice_Data.Properties.VariableNames)
            robot states.(['robot' num2str(i)]).(structFieldName) = robotChoice Data.(csvColName);
        else
            warning('Missing attribute column: %s', csvColName);
            robot_states.(['robot' num2str(i)]).(structFieldName) = NaN(height(robotChoice_Data), 1);
        end
    end
end
% Extract choice data and other metadata
choices = robotChoice Data.choice;
participant_ids = robotChoice_Data.id;
stake_types = robotChoice_Data.stakes;
time_spent = robotChoice_Data.timeelapsed;
```

User robot choice data imported successfully.

Step 2: R Bridge Implementation

```
disp('Initializing R bridge...');

% Configure paths
rscript_path = 'C:\Program Files\R\R-4.4.2\bin\x64\Rscript.exe';
r_script = 'G:\My Drive\myResearch\Research Experimentation\Apollo\apollo\example\DFT_Bounding_Overwatch.R';
csvFile = 'G:\My Drive\myResearch\Research Experimentation\Apollo\apollo\data\Bounding_Overwatch_Data\HumanData_Bounding_Overwatch.csv';
outputDir = 'G:\My Drive\myResearch\Research Experimentation\Apollo\apollo\output_BoundingOverwatch';

% Verify installations
if ~isfile(rscript_path)
    error('Rscript.exe not found at: %s', rscript_path);
elseif ~isfile(r_script)
    error('R script not found at: %s', r_script);
elseif ~isfile(csvFile)
```

```
error('Input CSV not found at: %s', csvFile);
elseif ~isfolder(outputDir)
   warning('Output folder does not exist, creating: %s', outputDir);
   mkdir(outputDir);
% Execute R with JSON output
   % Use proper argument formatting
    cmd = sprintf(['"%s" "%s" ', ...
               '-i "%s" -o "%s"'], ...
               rscript_path, r_script, csvFile, outputDir);
[status,result] = system(cmd);
    if status == 0
        % Handle output path (whether directory or file)
        if isfolder(outputDir)
           jsonFile = fullfile(outputDir, 'DFT_output.json');
           jsonFile = outputDir;
        end
       % Parse JSON output
        if exist(jsonFile, 'file')
            jsonText = fileread(jsonFile);
            params = jsondecode(jsonText);
            \% Extract parameters with validation
            %Boundedphi1, phi2 parameters
            %phi1 = max(0, validateParam(params, 'phi1', 0.5)); % Ensure non-negative
            %phi2 = min(max(0, validateParam(params, 'phi2', 0.8)), 1); % Constrain 0-1
            %Raw phi1, phi2 parameters
            phi1 = validateParam(params, 'phi1', 0.5);
            phi2 = validateParam(params, 'phi2', 0.8);
            tau = 1 + exp(validateParam(params, 'timesteps', 0.5));
            error_sd = min(max(0.1, validateParam(params, 'error_sd', 0.1)), 1); % still clip here
            % Extract attribute weights
            beta_weights = [
               params.b_attr1;
               params.b_attr2;
               params.b_attr3;
               params.b_attr4
            1;
            % Get initial preferences from ASCs
            initial P = [
               validateParam(params, 'asc_1', 0);
               validateParam(params, 'asc_2', 0);
                validateParam(params, 'asc_3', 0);
            disp('Estimated Parameters:');
            disp(['phi1: ', num2str(phi1)]);
            disp(['phi2: ', num2str(phi2)]);
            disp(['tau: ', num2str(tau)]);
            disp(['error_sd: ', num2str(error_sd)]);
            disp('Initial Preferences (from ASCs):');
            disp(initial_P');
           error('R output file not found');
        end
       error('R execution failed: %s', result);
   end
catch ME
   disp('Error during R execution:');
    disp(getReport(ME, 'extended'));
    [phi1, phi2, tau, error_sd] = getFallbackParams();
   beta_weights = [0.3; 0.2; 0.4; 0.5]; % Default weights
   initial_P = zeros(3,1); % Neutral initial preferences
```

Initializing R bridge...

Step 3: MDFT Formulation to Calculate Preference Dynamics

```
for current_trial = 1:height(robotChoice_Data)
         num_attributes = 4;
                   robotChoice_Data.c11(current_trial), robotChoice_Data.c12(current_trial), robotChoice_Data.c13(current_trial), robotChoice_Data.c14(current_trial);
                   robotChoice\_Data.c21(current\_trial), \ robotChoice\_Data.c22(current\_trial), \ robotChoice\_Data.c23(current\_trial); \\ robotChoice\_Data.c23(current\_trial), \ robotChoice\_Data.c24(current\_trial); \\ robotChoice\_Data.c23(current\_trial), \ robotChoice\_Data.c24(current\_trial), \\ robotChoice\_Data.c24(current\_trial), robotChoice\_Data
                   robotChoice\_Data.c31(current\_trial), \ robotChoice\_Data.c32(current\_trial), \ robotChoice\_Data.c34(current\_trial), \ robotChoice\_Data
         1;
         % Normalize M values by dividing by 2 and clamping to [0.01, 1]
         M = M / 2;
         M = max(0.01, min(1, M));
         attributes = {'C1 - Easy Nav, Low Exposure', 'C2 - Hard Nav, Low Exposure', 'C3 - Easy Nav, High Exposure', 'C4 - Hard Nav, High Exposure'};
         beta = beta_weights ./ sum(abs(beta_weights));
         beta = beta';
          [E_P, V_P, choice_probs, P_tau] = calculateDFTdynamics(...
                   phi1, phi2, tau, error_sd, beta, M, initial_P);
         \% Display results for the trial
         disp('=== Trial Analysis ===');
          disp(['Trial: ', num2str(current_trial)]);
          disp(['Participant: ', num2str(participant_ids(current_trial))]);
          disp(['Actual Choice: Robot ', num2str(choices(current_trial))]);
          disp('M matrix (alternatives × attributes):');
          disp(array2table(M, ...
                      'RowNames', {'Robot1', 'Robot2', 'Robot3'}, ...
                     'VariableNames', attributes));
         disp('DFT Results:');
         disp(['E_P: ', num2str(E_P', '%.2f ')]);
          disp(['Choice probabilities: ', num2str(choice_probs', '%.3f ')]);
          [~, predicted_choice] = max(choice_probs);
          disp(['Predicted choice: Robot ', num2str(predicted_choice)]);
          disp(['Actual choice: Robot ', num2str(choices(current_trial))]);
         disp(' ');
          if predicted_choice == choices(current_trial)
                  disp('√ Prediction matches actual choice');
          else
                   disp('X Prediction differs from actual choice');
         % Plot evolution
         figure:
         plot(0:tau, P_tau);
         xlabel('Preference Step (\tau)');
         ylabel('Preference Strength');
         legend({'Robot1', 'Robot2', 'Robot3'});
          title(sprintf('Preference Evolution (Trial %d)', current_trial));
         grid on;
end
%{
%% Step 4: Output Results
disp('Saving results to CSV...');
output_table = table(E_P, V_P, P_tau(end,:)', ...
                                                     'VariableNames', {'ExpectedPreference', 'VariancePreference', 'FinalPreferences'});
writetable(output_table, 'results.csv');
disp('Results saved successfully!');
%}
=== Trial Analysis ===
Trial: 1
Participant: 124737
Actual Choice: Robot 1
M matrix (alternatives × attributes):
                                 C1 - Easy Nav, Low Exposure C2 - Hard Nav, Low Exposure C3 - Easy Nav, High Exposure C4 - Hard Nav, High Exposure
         Robot1
                                                          0.61235
                                                                                                                                        0.36002
                                                                                                                                                                                                                     0.31357
                                                                                                                                                                                                                                                                                                    0.061235
          Robot 2
                                                          0.67166
                                                                                                                                        0.40339
                                                                                                                                                                                                                     0.33544
                                                                                                                                                                                                                                                                                                    0.067166
                                                                                                                                        0.38025
                                                                                                                                                                                                                       0.3267
                                                                                                                                                                                                                                                                                                    0.064269
          Robot3
                                                          0.64269
DFT Results:
E_P: 38.60 -37.56 -1.14
Choice probabilities: 1.000 0.000 0.000
Predicted choice: Robot 1
Actual choice: Robot 1
```

✓ Prediction matches actual choice

=== Trial Analysis ===

Trial: 2

Participant: 141831 Actual Choice: Robot 2

M matrix (alternatives × attributes):

C1 - Easy Nav, Low Exposure C2 - Hard Nav, Low Exposure C3 - Easy Nav, High Exposure C4 - Hard Nav, High Exposure

0.55165 0.47237 0.093092 Robot1 0.93092 Robot2 0.91086 0.54608 0.45586 0.091086 Robot3 0.89683 0.50696 0.47955 0.089683

DFT Results:

E P: -21.64 7.97 13.57

Choice probabilities: 0.000 0.004 0.996

Predicted choice: Robot 3 Actual choice: Robot 2

X Prediction differs from actual choice

=== Trial Analysis ===

Trial: 3

Participant: 125802 Actual Choice: Robot 2

M matrix (alternatives × attributes):

C1 - Easy Nav, Low Exposure C2 - Hard Nav, Low Exposure C3 - Easy Nav, High Exposure C4 - Hard Nav, High Exposure

Robot1 0.87744 0.49305 0.47213 0.087744 Robot2 0.82781 0.48521 0.42538 0.082781 Robot3 0.91154 0.53071 0.47199 0.091154

DFT Results:

E_P: -12.60 63.31 -50.82

Choice probabilities: 0.000 1.000 0.000

Predicted choice: Robot 2 Actual choice: Robot 2

✓ Prediction matches actual choice

=== Trial Analysis ===

Trial: 4

Participant: 175044 Actual Choice: Robot 1

M matrix (alternatives × attributes):

C1 - Easy Nav, Low Exposure C3 - Easy Nav, High Exposure C4 - Hard Nav, High Exposure C2 - Hard Nav, Low Exposure

Robot1 0.68277 0.41427 0.33677 0.068277 Robot2 0.57966 0.36179 0 27584 0 057966 Robot3 0.69305 0.41089 0.35146 0.069305

DFT Results:

E_P: -41.44 100.67 -59.33

Choice probabilities: 0.000 1.000 0.000

Predicted choice: Robot 2 Actual choice: Robot 1

X Prediction differs from actual choice

=== Trial Analysis ===

Trial: 5

Participant: 181700 Actual Choice: Robot 2

M matrix (alternatives × attributes):

C1 - Easy Nav, Low Exposure C2 - Hard Nav, Low Exposure C3 - Easy Nav, High Exposure C4 - Hard Nav, High Exposure

Robot1 1 0.64335 0.51853 0.10563 Robot2 1 0.61778 0.51598 0.10307 Robot3 0.66045 0.54499 0.10959

DFT Results:

E P: 3.13 2.50 -5.74

Choice probabilities: 0.651 0.349 0.000

Predicted choice: Robot 1 Actual choice: Robot 2

X Prediction differs from actual choice

=== Trial Analysis ===

Trial: 6

Participant: 141831

Actual Choice: Robot 3

M matrix (alternatives × attributes):

C1 - Easy Nav, Low Exposure C2 - Hard Nav, Low Exposure C3 - Easy Nav, High Exposure C4 - Hard Nav, High Exposure

Robot1	0.69731	0.41723	0.34981	0.069731
Robot2 Robot3	0.64031 0.73778	0.32027 0.43043	0.38407 0.38113	0.064031 0.073778
<pre>X Prediction diff === Trial Analysi Trial: 7 Participant: 1418 Actual Choice: Ro M matrix (alterna</pre>	Fers from actual choice s === 31	C2 - Hard Nav, Low Exposure	C3 - Easy Nav, High Exposure	C4 – Hard Nav, High Exposure
Robot1 Robot2 Robot3	0.83588 0.85245 0.8226	0.50869 0.48627 0.48042	0.41077 0.45143 0.42444	0.083588 0.085245 0.08226
DFT Results: E_P: 9.06 -27.23 Choice probabilit Predicted choice: Actual choice: Ro	ies: 0.000 0.000 1.000 Robot 3			
·	s === 10	C2 - Hard Nav, Low Exposure	C3 - Easy Nav, High Exposure	C4 - Hard Nav, High Exposure
Robot1 Robot2 Robot3	0.69463 0.67178 0.66209	0.43809 0.42342 0.4035	0.326 0.31553 0.32479	0.069463 0.067178 0.066209
Choice probabilit Predicted choice: Actual choice: Ro X Prediction diff === Trial Analysi Trial: 9 Participant: 2145 Actual Choice: Ro	bot 1 Fers from actual choice s === 04 bot 2			
,	tives × attributes): - Easy Nav, Low Exposure	C2 - Hard Nav, Low Exposure	C3 - Easy Nav, High Exposure	C4 - Hard Nav, High Exposure
Robot1 Robot2 Robot3	0.39489 0.65797 0.64762	0.23867 0.43425 0.4014	0.19571 0.28952 0.31099	0.039489 0.065797 0.064762
DFT Results: E_P: 223.27 -112 Choice probabilit Predicted choice: Actual choice: Ro	ies: 1.000 0.000 0.000 Robot 1			
=== Trial Analysi				
		C2 - Hard Nav, Low Exposure	C3 - Easy Nav, High Exposure	C4 - Hard Nav, High Exposure

E_P: 85.43 125.25 -210.79

Choice probabilities: 0.000 1.000 0.000

Predicted choice: Robot 2 Actual choice: Robot 3

 $\ensuremath{\mathsf{X}}$ Prediction differs from actual choice

Helper Functions

```
function param = validateParam(params, name, default)
   if isfield(params, name) && isnumeric(params.(name))
        param = params.(name);
   else
        warning('Using default for %s', name);
        param = default;
   end
end

function [phi1, phi2, tau, error_sd] = getFallbackParams()
   phi1 = 0.5 + 0.1*randn();
   phi2 = 0.8 + 0.1*randn();
   tau = 10 + randi(5);
   error_sd = 0.1 + 0.05*rand();
   warning('Using randomized default parameters');
end
```

```
Estimated Parameters:
phi1: 3.3786
phi2: 0
tau: 22027.4658
error_sd: 1
Initial Preferences (from ASCs):
-0.0165 -0.0888 0
```

lished with MATLAB® R2022b	