Lenguajes y Compiladores

Analizador Sintáctico Parsing Ascendente

W UNLAM

Etapas del Compilador

- Toma el programa a analizar y aplicando la gramática devuelve una lista de reglas en un orden determinado generando un Arbol de parsing
- Este árbol es abstracto, no se crea sino que se expresa a través de la lista de reglas aplicadas.

4

Análisis sintáctico

Parsing

Parsing ascendente

Parsing ascendente

- También denominado "Bottom Up"
- Análisis Sintáctico en el que se divide el programa de usuario hasta llegar al símbolo distinguido (start).
- Se dice que este proceso es LR
- "Left" porque lee el programa de usuario de izquierda a derecha.
- "Right" porque para aplicar las reglas busca asociar con el lado derecho de la definición de cada regla.

Parsing ascendente

SLR ó LR(0)
LR (1)
LALR (look ahead left to right)

Parsing ascendente

- Es indiferente que sean recursivas a derecha o a izquierda.
- No debe ser una gramática ambigua
- Se utiliza desde el nacimiento del lenguaje C.

Implementación del método SLR

Parsing ascendente

- 0. <ASIG'> → <ASIG>
- 1. $\langle ASIG \rangle \rightarrow id := \langle EXPRESION \rangle$
- 2. <EXPRESION> → <EXPRESION> + <TERMINO>
- 3. $\langle EXPRESION \rangle \rightarrow \langle TERMINO \rangle$
- 4. <TERMINO> → < TERMINO> * <FACTOR>
- 5. $\langle TERMINO \rangle \rightarrow \langle FACTOR \rangle$
- 6. $\langle FACTOR \rangle \rightarrow id$
- 7. $\langle FACTOR \rangle \rightarrow cte$
- La gramática se encuentra "aumentada"
- Se genera un nuevo símbolo distinguido
- Se establece una única regla con este no terminal

GRADO DE AVANCE DE UNA REGLA EN EL RECONOCIMIENTO

- Será determinado por un punto (.) en algún lugar de la regla
- Lo que lo que está delante del punto se considera ya analizado
- Lo que está después del punto estará pendiente de análisis

GRADO DE AVANCE DE UNA REGLA EN EL RECONOCIMIENTO

<EXPRESION> → <EXPRESION> + <TERMINO>

Al comienzo, se debe analizar toda la regla:

<EXPRESION> → . <EXPRESION> + <TERMINO>

Si <EXPRESION> es reconocido:

<EXPRESION> → <EXPRESION> . + <TERMINO>

Cuando toda la regla fue analizada <EXPRESION> → <EXPRESION> + <TERMINO>.

- La tabla se construye con un grupo de estados que forman un autómata finito
- El primer estado coloca el (.) delante del símbolo distinguido ya que se necesita analizar toda la gramática.
- Luego toda vez que un punto queda delante de un símbolo no terminal, se expanden las reglas encabezadas por el mismo.

ESTADO 0

<asig'> → . <asig> <asig> → . id := <expression>

Se debe definir cuáles elementos válidos son los que pueden llegar a aparecer a continuación del punto.

- $0. < ASIG' > \rightarrow < ASIG >$
- 1. $\langle ASIG \rangle \rightarrow id := \langle EXPRESION \rangle$
- 2. <EXPRESION> → <EXPRESION> + <TERMINO>
- 3. <EXPRESION> → <TERMINO>
- 4. <TERMINO> → < TERMINO> * <FACTOR>
- 5. <TERMINO> → <FACTOR>
- 6. $\langle FACTOR \rangle \rightarrow id$
- 7. $\langle FACTOR \rangle \rightarrow cte$

Como el punto está delante de un No Terminal, debemos aplicar una regla para resolverlo, a medida que hacemos esto generamos otro estado.

15

ESTADO 0

 $\langle ASIG' \rangle \rightarrow . \langle ASIG \rangle$

 $\langle ASIG \rangle \rightarrow$. id := $\langle EXPRESION \rangle$

¿Que ocurre cuando estando en el estado 0 llega un <ASIG > o un id?

- $0. < ASIG' > \rightarrow < ASIG >$
- 1. $\langle ASIG \rangle \rightarrow id := \langle EXPRESION \rangle$
- 2. <EXPRESION> → <EXPRESION> + <TERMINO>
- 3. <EXPRESION> → <TERMINO>
- 4. <TERMINO> → < TERMINO> * <FACTOR>
- 5. <TERMINO> → <FACTOR>
- 6. $\langle FACTOR \rangle \rightarrow id$
- 7. $\langle FACTOR \rangle \rightarrow cte$

ESTADO 0

 $\langle ASIG' \rangle \rightarrow . \langle ASIG \rangle$

 $\langle ASIG \rangle \rightarrow$. id := $\langle EXPRESION \rangle$

ASIG

ESTADO 1

<ASIG $'> \rightarrow <$ ASIG>.

ID

ESTADO 2

 $\langle ASIG \rangle \rightarrow id := \langle EXPRESION \rangle$

ESTADO 3

<ASIG> → id := . <EXPRESION>

- <EXPRESION> → . <EXPRESION> + <TERMINO>
- <EXPRESION> → . <TERMINO>
- <TERMINO> → . < TERMINO> * <FACTOR>
- $\langle TERMINO \rangle \rightarrow . \langle FACTOR \rangle$
- $\langle FACTOR \rangle \rightarrow .id$
- $\langle FACTOR \rangle \rightarrow$, cte

- $0. < ASIG' > \rightarrow < ASIG >$
- 1. <ASIG> → id := <EXPRESION>
- 2. <EXPRESION> → <EXPRESION> + <TERMINO>
- 3. <FXPRESION> → <TERMINO>
- 4. <TERMINO> → < TERMINO> * <FACTOR>
- 5. <TERMINO> → <FACTOR>
- 6. $\langle FACTOR \rangle \rightarrow id$
- 7. $\langle FACTOR \rangle \rightarrow cte$
- Aparece un No Terminal delante del punto, <EXPRESION>
- Se desarrollan las reglas que definen a este No Terminal
- Además se incluyen las reglas 4 y 5 ya que una <EXPRESION> es un <TERMINO>
- Ídem para las reglas 6 y 7

17

18

ESTADO 4

<ASIG $> \rightarrow$ id := <EXPRESION> .

<EXPRESION> → <EXPRESION> . + <TERMINO>

ESTADO 9

<EXPRESION> → <EXPRESION> + . <TERMINO>

<TERMINO> → . < TERMINO> * <FACTOR>

 $\langle TERMINO \rangle \rightarrow . \langle FACTOR \rangle$

 $\langle FACTOR \rangle \rightarrow .id$

 $\langle FACTOR \rangle \rightarrow .cte$

- $0. < ASIG' > \rightarrow < ASIG >$
- 1. $\langle ASIG \rangle \rightarrow id := \langle EXPRESION \rangle$
- 2. <EXPRESION> → <EXPRESION> + <TERMINO>
- 3. <EXPRESION> → <TERMINO>
- 4. <TERMINO> → < TERMINO> * <FACTOR>
- 5. <TERMINO> → <FACTOR>
- 6. $\langle FACTOR \rangle \rightarrow id$
- 7. $\langle FACTOR \rangle \rightarrow cte$

19

Análisis sintáctico Parsing ascendente

ESTADO 5

<EXPRESION> → <TERMINO> .

<TERMINO> → < TERMINO> . * <FACTOR>

ESTADO 10

<TERMINO> → < TERMINO> * . <FACTOR>

 $\langle FACTOR \rangle \rightarrow .id$

<FACTOR $> \rightarrow$. cte

0. $\langle ASIG' \rangle \rightarrow \langle ASIG \rangle$

- 1. <ASIG> → id := <EXPRESION>
- 2. <EXPRESION> → <EXPRESION> + <TERMINO>
- 3. <EXPRESION> → <TERMINO>
- 4. <TERMINO> → < TERMINO> * <FACTOR>
- 5. <TERMINO> → <FACTOR>
- 6. $\langle FACTOR \rangle \rightarrow id$
- 7. $\langle FACTOR \rangle \rightarrow cte$

ESTADO 6

 $\langle TERMINO \rangle \rightarrow \langle FACTOR \rangle$.

ESTADO 7

 $\langle FACTOR \rangle \rightarrow id.$

ESTADO 8

 $\langle FACTOR \rangle \rightarrow cte$.

Notar: Estos estados no generan nuevos estados

ESTADO 11

 $\langle EXPRESION \rangle \rightarrow \langle EXPRESION \rangle + \langle TERMINO \rangle$.

<TERMINO> → <TERMINO> . * <FACTOR>

ESTADO 9

<EXPRESION> → <EXPRESION> + . <TERMINO>

<TERMINO> → . < TERMINO> * <FACTOR>

<TERMINO> → . <FACTOR>

 $\langle FACTOR \rangle \rightarrow .id$

 $\langle FACTOR \rangle \rightarrow .cte$

 $0. < ASIG' > \rightarrow < ASIG >$

1. $\langle ASIG \rangle \rightarrow id := \langle EXPRESION \rangle$

2. <EXPRESION> → <EXPRESION> + <TERMINO>

3. <EXPRESION> → <TERMINO>

4. <TERMINO> → < TERMINO> * <FACTOR>

5. <TERMINO> → <FACTOR>

6. $\langle FACTOR \rangle \rightarrow id$

7. $\langle FACTOR \rangle \rightarrow cte$

CTE

ESTADO 7

<FACTOR> → id.

ESTADO 8 <FACTOR> → cte.

21

<TERMINO> → <TERMINO> * <FACTOR>.

FACTOR

ESTADO 10

<TERMINO> → < TERMINO> * . <FACTOR>

 $\langle FACTOR \rangle \rightarrow .id$

 $\langle FACTOR \rangle \rightarrow .cte$

ID

- 0. <ASIG'> → <ASIG>
- 1. <ASIG> → id := <EXPRESION>
- 2. <EXPRESION> → <EXPRESION> + <TERMINO>
- 3. <EXPRESION> → <TERMINO>
- 4. <TERMINO> → < TERMINO> * <FACTOR>
- 5. <TERMINO> → <FACTOR>
- 6. $\langle FACTOR \rangle \rightarrow id$
- 7. $\langle FACTOR \rangle \rightarrow cte$

CTE

ESTADO 7

 $\langle FACTOR \rangle \rightarrow id.$

ESTADO 8

 $\langle FACTOR \rangle \rightarrow cte$.

22

Análisis sintáctico Parsing ascendente

ESTADO 11

<EXPRESION> → <EXPRESION> + <TERMINO> .

<TERMINO> → <TERMINO> . * <FACTOR>

ESTADO 10

<TERMINO> → < TERMINO> * . <FACTOR>

 $\langle FACTOR \rangle \rightarrow .id$

 $\langle FACTOR \rangle \rightarrow .cte$

- 0. $\langle ASIG' \rangle \rightarrow \langle ASIG \rangle$
- 1. <ASIG> → id := <EXPRESION>
- 2. <EXPRESION> → <EXPRESION> + <TERMINO>
- 3. <EXPRESION> → <TERMINO>
- 4. <TERMINO> → < TERMINO> * <FACTOR>
- 5. <TERMINO> → <FACTOR>
- 6. $\langle FACTOR \rangle \rightarrow id$
- 7. $\langle FACTOR \rangle \rightarrow cte$

ESTADO 12

<TERMINO> → <TERMINO> * <FACTOR>.

No existen estados abiertos.

Se da por finalizado el algoritmo de generación de estados.

Para facilitar el armado de la tabla se reemplazará la notación BNF por notación de gramáticas

- $0. < ASIG' > \rightarrow < ASIG >$
- 1. $\langle ASIG \rangle \rightarrow id := \langle EXPRESION \rangle$
- 2. <EXPRESION> → <EXPRESION> + <TERMINO>
- 3. <EXPRESION> → <TERMINO>
- 4. <TERMINO> → < TERMINO> * <FACTOR>
- 5. <TERMINO> → <FACTOR>
- 6. $\langle FACTOR \rangle \rightarrow id$
- 7. $\langle FACTOR \rangle \rightarrow cte$

- 0. $A' \rightarrow A$
- 1. $A \rightarrow id := E$
- 2. E→ E+ T
- 3. $E \rightarrow T$
- 4. $T \rightarrow T^* F$
- 5. $T \rightarrow F$
- 6. $F \rightarrow id$
- 7. $F \rightarrow cte$

25

GOTO

 Se detectan aquellos estados en los que se llega cuando recibe un No Terminal

ESTADO 1 (0, A)

ESTADO 4 (3, E)

ESTADO 5 (3, T)

ESTADO 6 (3, F)

ESTADO 11 (9, T)

ESTADO 6 (9, F)

ESTADO 12 (10, F)

27

Análisis sintáctico Parsing ascendente

ESTADO 1 (0, ASIG)
ESTADO 4 (3, EXPRESION)
ESTADO 5 (3, TERMINO)
ESTADO 6 (3, FACTOR)

ESTADO 11 (9, TERMINO) ESTADO 6 (9, FACTOR) ESTADO 12 (10, FACTOR)

	id	:=	+	*	cte	\$ Α	E	T	F
0						1			
1									
2									
3							4	5	6
4									
5									
6									
7									
8									
9								11	6
10									12
11									
12									

ACCIONES

DESPLAZAR: se consume token siguiente que forma parte de la lectura de la entrada del usuario de izquierda a derecha.

(SHIFT o DESPLAZAR a NUMERO DE ESTADO)

REDUCIR: se reconoce el lado derecho de una regla y se define como el elemento No Terminal del lado izquierdo.

(SUBIR UN NIVEL EN EL ÁRBOL)

DESPLAZAR

 Se detectan aquellos estados en los que se llega cuando recibe un Terminal

ESTADO 2 (0, ID)

ESTADO 3 (2, :=)

ESTADO 7 (3, ID)

ESTADO 8 (3, CTE)

ESTADO 9 (4, +)

ESTADO 10 (5, *)

ESTADO 7 (9, ID)

ESTADO 8 (9, CTE)

ESTADO 7 (10, ID)

ESTADO 8 (10, CTE)

ESTADO 10 (11, *)

ESTADO 2 (0, id) ESTADO 9 (4, +) ESTADO 7 (10, id) ESTADO 3 (2, :=) ESTADO 10 (5, *) ESTADO 8 (10, cte) ESTADO 7 (3, id) ESTADO 7 (9, id) ESTADO 10 (11, *) ESTADO 8 (3, cte) ESTADO 8 (9, cte)

	id	:=	+	*	cte	\$ Α	E	Т	F
0	D2					1			
1									
2		D3							
3	D7				D8		4	5	6
4			D9						
5				D10					
6									
7									
8									
9	D7				D8			11	6
10	D7				D8				12
11				D10					
12									

REDUCIR

Se obtienen aquellos estados que tienen al menos una regla con punto al final de todo, es decir, cuando han completado el avance.

ESTADO 1 (0, ASIG)	$ \rightarrow $.
ESTADO 4 (3, EXPRESION)	$\langle A \rangle \rightarrow id := \langle E \rangle$.
ESTADO 5 (3, TERMINO)	$\langle E \rangle \rightarrow \langle T \rangle$.
ESTADO 6 (3, FACTOR)	$\langle T \rangle \rightarrow \langle F \rangle$.
ESTADO 7 (3, id)	$\langle F \rangle \rightarrow id$.
ESTADO 8 (3, cte)	$\langle F \rangle \rightarrow$ cte .
ESTADO 11 (9, TERMINO)	$\langle E \rangle \rightarrow \langle E \rangle + \langle T \rangle$.
ESTADO 6 (9, FACTOR)	$\langle T \rangle \rightarrow \langle F \rangle$.
ESTADO 7 (9, id)	$\langle F \rangle \rightarrow id$.
ESTADO 8 (9, cte)	$\langle F \rangle \rightarrow$ cte .
ESTADO 12 (10, FACTOR)	$\langle T \rangle \rightarrow \langle T \rangle * \langle F \rangle$.
ESTADO 7 (10, id)	$\langle F \rangle \rightarrow id$.
ESTADO 8 (10, cte)	$\langle F \rangle \rightarrow$ cte .
LSTADO 8 (10, Cle)	

32

REDUCIR

Para completar la tabla, se deberá llenar cada casillero [NUMERO ESTADO, Sgt(No terminal)] (1)

```
0. A' \rightarrow A

1. A \rightarrow id := E

2. E \rightarrow E + T

3. E \rightarrow T
```

- 4. T → T* F
 5. T → F
- 6. $F \rightarrow id$
- 7. $F \rightarrow cte$

```
Sgt(A') = { $ }

Sgt(A) = Sgt(A') = { $ }

Sgt(E) = Sgt(A) U { + } = { $, + }

Sgt(T) = Sgt(E) U { * } = { $, +, * }

Sgt(F) = Sgt(T) = { $, +, * }
```

```
Sgt(A') = { $ }

Sgt(A) = { $ }

Sgt(E) = { $, + }

Sgt(T) = { $, +, * }

Sgt(F) = { $, +, * }
```


1. $A \rightarrow id := E$

2. E→ E+ T

3. $E \rightarrow T$

4. $T \rightarrow T^* F$

5. $T \rightarrow F$

6. $F \rightarrow id$

7. $F \rightarrow cte$

33

	id	:=	+	*	cte	\$	А	Е	Т	F
0	D2						1			
1						COMPILACION OK				
2		D3								
3	D7				D8			4	5	6
4			D9			R1 : A→ id := E				
5			R3 : E → T	D10		R3 : E → T				
6			$R5:T \rightarrow F$	$R5:T \rightarrow F$		$R5:T \rightarrow F$				
7			$R6:F \rightarrow id$	R6 : F→ id		R6 : F→ id				
8			R7 : F → cte	R7 : F→ cte		R7 : F→ cte				
9	D7				D8				11	6
10	D7				D8					12
11			R2 : E→ E+ T	D10		R2 : E → E+ T				
12			R4 : T → T* F	R4 : T → T* F		R4 : T → T* F				

Parsing ascendente

PILA
0
0 id 2
0 id 2 := 3
0 id 2 := 3 id 7
0 id 2 := <u>3 F</u> 6
0 id 2 := <u>3 T</u> 5
0 id 2 := <u>3 E</u> 4
0 id 2 := 3 E 4 + 9
0 id 2 := 3 E 4 + 9 id 7
0 id 2 := 3 E 4 + <u>9 F</u> 6
0 id 2 := 3 E 4 + <u>9 T</u> 11
0 id 2 := 3 E 4 + 9 T 11 * 10
0 id 2 := 3 E 4 + 9 T 11 * 10 cte 8
0 id 2 := 3 E 4 + 9 T 11 * <u>10 F</u> 12
0 id 2 := 3 E 4 + <u>9 T</u> 11
0 id 2 := <u>3 E</u> 4
0 A 1 COMPILACION EXITOSA!

0. $A' \rightarrow A$

- $A \rightarrow id := E$
- $E \rightarrow E + T$
- $E \rightarrow T$
- $T \rightarrow T^* F$
- $T \rightarrow F$
- $F \rightarrow id$

PRG POR ANALIZAR

id := id + id * cte \$

:= id + id * cte \$

id + id * cte \$

 $F \rightarrow cte$ 7.

34

	id				cte	\$	Α			
0	D2						1			
1										
2		D3								
3	D7				D8			4	5	6
4			D9			R1 : A→ id := E				
5			R3 : E → T	D10		R2 : E → E+ T				
6			R5 : T → F	R5 : T → F		R5 : T → F				
7			$R6:F \rightarrow id$	R6 : F→ id		R6 : F→ id				
8			R7 : F → cte	R7 : F→ cte		R7 : F→ cte				
9	D7				D8				11	6
10	D7				D8					12
11			R2 : E→ E+ T	D10		R2 : E → E+ T				
12			R4 : T → T* F	R4 : T → T* F		R4 : T → T* F				

id * cte \$											
* cte \$											
* cte \$	0	id D2	:=	+	•	cte	\$	A 1	E	T	F
* cte \$ * cte \$ cte \$	2		D3								
. 4	3	D7				D8			4	5	6
cte \$	4			D9			R1 : A→ id := E				
	5			R3 : E → T	D10		R2 : E→ E+ T				
Ş	6			R5 : T → F	R5 : T → F		R5 : T → F				
۲	7			R6 : F → id	R6 : F→ id		R6 : F→ id				
\$ \$ \$ \$	8			R7 : F → cte	R7 : F→ cte		R7 : F→ cte				
\$	9	D7				D8				11	6
Y	10	D7				D8					12
\$	11			R2 : E→ E+ T	D10		R2 : E → E+ T				
<u>ب</u>	12			R4 : T → T* F	R4 : T → T* F		R4 : T → T* F				

Parsing ascendente

Finalmente el parsing aplicó las reglas : 6, 5, 3, 6, 5, 7, 4, 2, 1, 0

Parsing ascendente

¿Preguntas?

Conjuntos primeros y siguientes

Conjunto primeros

Se define como "primero" de un No Terminal dado, todo aquel Terminal que aparece en primer lugar dentro de algunas de las reglas que definen a dicho No Terminal.

- 1. $\langle ASIG \rangle \rightarrow id := \langle EXPRESION \rangle$
- 2. $\langle EXPRESION \rangle \rightarrow \langle TERMINO \rangle \langle R \rangle$
- 3. $\langle R \rangle \rightarrow + \langle EXPRESION \rangle$
- 4. $\langle R \rangle \rightarrow \lambda$
- 5. $\langle TERMINO \rangle \rightarrow \langle FACTOR \rangle \langle Q \rangle$
- 6. $\langle Q \rangle \rightarrow * \langle TERMINO \rangle$
- 7. $\langle Q \rangle \rightarrow \lambda$
- 8. $\langle FACTOR \rangle \rightarrow id$
- 9. $\langle FACTOR \rangle \rightarrow cte$

Conjunto primeros

Prim(ASIG)

Por regla 1 el primer terminal que aparece es un "id", entonces:

Prim(ASIG) = { id }

Ninguna otra regla tiene ASIG como no terminal del lado izquierdo

- 1. $\langle ASIG \rangle \rightarrow id := \langle EXPRESION \rangle$
- 2. $\langle EXPRESION \rangle \rightarrow \langle TERMINO \rangle \langle R \rangle$
- 3. $\langle R \rangle \rightarrow + \langle EXPRESION \rangle$
- 4. $\langle R \rangle \rightarrow \lambda$
- 5. $\langle TERMINO \rangle \rightarrow \langle FACTOR \rangle \langle Q \rangle$
- 6. $\langle Q \rangle \rightarrow * \langle TERMINO \rangle$
- 7. $\langle Q \rangle \rightarrow \lambda$
- 8. $\langle FACTOR \rangle \rightarrow id$
- 9. $\langle FACTOR \rangle \rightarrow cte$

Como EXPRESION tiene como primer elemento a TERMINO, el conjunto Prim(TERMINO) está incluido en Prim(EXPRESION)

Prim(EXPRESION) = Prim(TERMINO) = { id, cte }

 $Prim(R) = \{ + \}$

Como TERMINO tiene como primer elemento a FACTOR, lo que esté en conjunto primeros de FACTOR estará en primeros de TERMINO

Prim(TERMINO) = Prim(FACTOR) = { id, cte }

40

Análisis sintáctico

Conjunto primeros

Para Q, el primero es un signo "*" ya que el [vacío] no se tiene en cuenta, Prim(Q) = { * }

En ambas reglas de FACTOR lo que aparece primero son el "id" y la "cte", entonces:

Prim(FACTOR) = { id, cte }

- 1. $\langle ASIG \rangle \rightarrow id := \langle EXPRESION \rangle$
- 2. $\langle EXPRESION \rangle \rightarrow \langle TERMINO \rangle \langle R \rangle$
- 3. $\langle R \rangle \rightarrow + \langle EXPRESION \rangle$
- 4. $\langle R \rangle \rightarrow \lambda$
- 5. <TERMINO> → <FACTOR><Q>
- 6. $\langle Q \rangle \rightarrow * \langle TERMINO \rangle$
- 7. $\langle Q \rangle \rightarrow \lambda$
- 8. $\langle FACTOR \rangle \rightarrow id$
- 9. $\langle FACTOR \rangle \rightarrow cte$

Si al momento de obtener los primeros de un No Terminal, el primer símbolo de su regla es otro No Terminal, que deriva en λ entonces deberán obtenerse los primeros del siguiente símbolo

41

Análisis sintáctico

Conjunto siguientes

Se define como "siguiente" de un No Terminal dado, todo aquel Terminal que aparece inmediatamente a la derecha del No Terminal en cualquier derivación.

- 1. $\langle ASIG \rangle \rightarrow id := \langle EXPRESION \rangle$
- 2. $\langle EXPRESION \rangle \rightarrow \langle TERMINO \rangle \langle R \rangle$
- 3. $\langle R \rangle \rightarrow + \langle EXPRESION \rangle$
- 4. $\langle R \rangle \rightarrow \lambda$
- 5. $\langle TERMINO \rangle \rightarrow \langle FACTOR \rangle \langle Q \rangle$
- 6. $\langle Q \rangle \rightarrow * \langle TERMINO \rangle$
- 7. $\langle Q \rangle \rightarrow \lambda$
- 8. $\langle FACTOR \rangle \rightarrow id$
- 9. $\langle FACTOR \rangle \rightarrow cte$

EXPRESION

Análisis sintáctico

Conjunto siguientes

Sgt(ASIG)

El símbolo \$ está incluido en el conjunto
Siguiente del símbolo distinguido (start) ya
que representa el final de la cadena de datos
a analizar.

ASIG

id := EXPRESION

- 1. $\langle ASIG \rangle \rightarrow id := \langle EXPRESION \rangle$
- 2. <EXPRESION> → <TERMINO> <R>
- 3. $\langle R \rangle \rightarrow + \langle EXPRESION \rangle$
- 4. $\langle R \rangle \rightarrow \lambda$
- 5. $\langle TERMINO \rangle \rightarrow \langle FACTOR \rangle \langle Q \rangle$
- 6. $\langle Q \rangle \rightarrow * \langle TERMINO \rangle$
- 7. $\langle Q \rangle \rightarrow \lambda$
- 8. $\langle FACTOR \rangle \rightarrow id$
- 9. $\langle FACTOR \rangle \rightarrow cte$

Al observar todas las reglas en donde se encuentra derivado el No terminal EXPRESION (lado derecho) notamos que:

EXPRESION posee, por un lado la regla 1, por la cual lo que se encuentre al final de ASIG seguirá al final de EXPRESION.

Por otro lado, por la regla 3 lo que haya al final de R será lo mismo que hay al final de EXPRESION

Sgt(EXPRESION) = Sgt(ASIG) U Sgt(R) = { \$ }

En la regla 2 lo que hay al final de EXPRESION es lo que tiene R al final Sgt(R) = Sgt(EXPRESION) = { \$ }

Conjunto siguientes

Por regla 2, lo que "viene" después de TERMINO es lo primero de R. Pero si R es vacío, lo que "viene" es lo último de EXPRESION

Por regla 6 los siguientes de Q forman parte de los siguientes de TERMINO.

```
Sgt(TERMINO) = Prim(R) U Sgt(EXPRESION)
U Sgt(Q) = { +, $ }
```

- 1. $\langle ASIG \rangle \rightarrow id := \langle EXPRESION \rangle$
- 2. <EXPRESION> → <TERMINO> <R>
- 3. $\langle R \rangle \rightarrow + \langle EXPRESION \rangle$
- 4. $\langle R \rangle \rightarrow \lambda$
- 5. <TERMINO> → <FACTOR><Q>
- 6. $\langle Q \rangle \rightarrow * \langle TERMINO \rangle$
- 7. $\langle Q \rangle \rightarrow \lambda$
- 8. $\langle FACTOR \rangle \rightarrow id$
- 9. $\langle FACTOR \rangle \rightarrow cte$

Por regla 5 los siguientes de TERMINO están incluidos en los Sgt(Q) Sgt(Q) = Sgt(TERMINO) = { +, \$ }

Por regla 5, después de FACTOR están los primeros de Q. Por regla 6, después de FACTOR encontramos el primero de Q.

Si Q es vacío en la regla 5, lo que sigue es el siguiente de TERMINO Sgt(FACTOR) = Prim(Q) U Sgt(TERMINO) = { *, +, \$ }