Sala: 2103 Octombrie 2014

CURS 4: ALGEBRĂ

Conf. univ. dr.: Dragos-Pătru Covei

Specializarea: C.E., I.E., S.P.E.

Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat. El poate fi distribuit numai cu permisiunea autorului.

4.1 Suma şi intersecţia a două subspaţii vectoriale

Amintim următorul rezultat:

Teoremă 4.1.1 Dacă (V, K) este spațiu vectorial iar V_1, V_2 sunt subspații vectoriale în V atunci

$$\begin{array}{lcl} V_{1} \cap V_{2} & = & \{ \, v \in V | \, v \in V_{1} \, \, \$i \, \, v \in V_{2} \} \\ V_{1} + V_{2} & = & \{ \, v_{1} + v_{2} | \, v_{1} \in V_{1} \, \, \$i \, \, v_{2} \in V_{2} \} \\ & = & \{ \, v \in V | \, \exists v_{1} \in V_{1} \, \, \$i \, \, \exists v_{2} \in V_{2} \, \, \, astfel \, \, \widehat{incat} \, \, v = v_{1} + v_{2} \} \end{array}$$

sunt subspații vectoriale ale lui V.

Remarcă 4.1.1 $V_1 \cap V_2$ este numit subspațiul vectorial intersecție iar $V_1 + V_2$ este numit subspațiul vectorial sumă.

4.2 Teorema lui Hermann Günther Grassmann (1809–1877)

Teoremă 4.2.1 Dacă (V, K) este spațiu vectorial cu $\dim_K V \in \mathbb{N}^*$ iar V_1, V_2 sunt subspații vectoriale în V atunci

$$\dim_K (V_1 + V_2) - \dim_K V_2 = \dim_K V_1 - \dim_K (V_1 \cap V_2).$$

Demonstrație. Fie $B_{V_1 \cap V_2} = \{v_1, ..., v_m\}$ bază în $V_1 \cap V_2$. Dacă extindem această bază la

$$B_{V_1} = \{v_1, ..., v_m, u_{m+1}, ..., u_r\} \overset{baz\check{a}}{\subset} V_1 \text{ și } B_{V_2} = \{v_1, ..., v_m, w_{m+1}, ..., w_s\} \overset{baz\check{a}}{\subset} V_2$$

atunci

$$S = \{v_1,...,v_m,u_{m+1},...,u_r,w_{m+1},...,w_s\}$$

este sistem de generatori pentru $V_1 + V_2$. Arătăm că S este liniar independent. Realizăm o combinație liniară, egală cu vectorul nul

$$0_V = \sum_{i=1}^m a_i v_i + \sum_{j=m+1}^r b_j u_j + \sum_{k=r+1}^s c_k w_k.$$

Rezultă că v definit prin

$$v = \underbrace{\sum_{i=1}^{m} a_i v_i + \sum_{j=m+1}^{r} b_j u_j}_{\in V_1} = -\underbrace{\sum_{k=r+1}^{s} c_k w_k}_{\in V_2}$$

este un vector din $V_1 \cap V_2$ și $b_j = 0$ (j = m + 1, ..., r) deoarece B_{V_1} este liniar independent. Mai mult

$$0_V = \sum_{i=1}^{m} a_i v_i + \sum_{k=r+1}^{s} c_k w_k$$

iar de
oarece B_{V2} este liniar independent deducem că $a_i=c_k=0$. Așadar

$$\dim_K (V_1 + V_2) = \dim_K V_1 + \dim_K V_2 - \dim_K (V_1 \cap V_2).$$

CURS 4: ALGEBRĂ 4-2

4.3 Sumă directă de subspații vectoriale

Definiție 4.3.1 Fie (V, K) spațiu vectorial. Spunem că suma $V_1 + V_2$ a subspațiilor vectoriale V_1 , V_2 din spațiul vectorial V este directă, dacă oricare ar fi $v \in V_1 + V_2$ există $v_1 \in V_1$ și $v_2 \in V_2$ unici, astfel încât $v = v_1 + v_2$. Notăm această situație prin $V_1 \oplus V_2$. Așadar

$$V_1 \oplus V_2 = \{ v \in V | \exists ! v_1 \in V_1 \text{ si } \exists ! v_2 \in V_2 \text{ astfel incat } v = v_1 + v_2 \}.$$

Teoremă 4.3.1 Fie (V, K) spațiu vectorial. Dacă V_1, V_2 sunt subspații vectoriale în V atunci suma $V_1 + V_2$ este directă dacă şi numai dacă $V_1 \cap V_2 = \{0_V\}$.

Demonstrație. " \subset " Presupunem $v \in V_1 \cap V_2$. Atunci

$$v = \underset{\in V_1}{v} + 0_V = 0_V + \underset{\in V_2}{v}$$

iar ţinând cont că scrierea lui v este unică, deducem că $v = 0_V$.

"⊃" Dacă $v_1+v_2=v_1'+v_2'$ pentru $v_1,v_2\in V_1$ iar $v_1',v_2'\in V_2$ atunci $\underbrace{v_1-v_1'}_{\in V_1}=\underbrace{v_2'-v_2}_{\in V_2}$. Aşadar

$$\begin{array}{cccc} v_1=v_1' & \text{si} & v_2=v_2' \\ \text{deoarece} \ v_1-v_1'\in V_1\cap V_2=\{0_V\} & \text{deoarece} \ v_2-v_2'\in V_1\cap V_2=\{0_V\} \end{array}$$

adică reprezentarea ca sumă este unică.

Remarcă 4.3.1 Dacă (V, K) este spațiu vectorial cu $\dim_K V \in \mathbb{N}^*$ iar V_1, V_2 sunt subspații vectoriale în V astfel încât suma $V_1 + V_2$ este directă, atunci

$$\dim_K (V_1 + V_2) = \dim_K V_1 + \dim_K V_2.$$

Demonstrație. Deoarece $\dim_K (V_1 \cap V_2) = 0$ rezultatul este o consecință a Teoremei 4.2.1.

4.4 Teorema de caracterizare a sumei directe

Definiție 4.4.1 Fie V_1, V_2, \ldots, V_m subspații vectoriale ale spațiului vectorial de tip finit (V, K). Spunem că V este sumă directă de V_1, V_2, \ldots, V_m și scriem $V = \bigoplus_{i=1}^m V_i$ sau $V = V_1 \oplus \ldots \oplus V_m$ dacă orice vector din V se scrie în mod unic ca o sumă de vectori din V_1, V_2, \ldots, V_m . În această situație se mai spune că subspațiile vectoriale V_1, V_2, \ldots, V_m sunt suplimentare.

Dăm următoarea caracterizare a sumei directe.

Teoremă 4.4.1 Fie (V,K) spațiu vectorial de dimensiune finită. Următoarele sunt echivalente

$$i)$$
 $V = \bigoplus_{i=1}^{m} V_i$.

ii)
$$V = V_1 + ... + V_m = \sum_{i=1}^m V_i \text{ si } V_i \cap \left(\sum_{j=1, j \neq i}^m V_j\right) = \{0_V\} \ \forall i = 1, ..., m.$$

iii)
$$V = \sum_{i=1}^{m} V_i \ \text{si dim}_K V = \dim_K V_1 + \dots + \dim_K V_m = \sum_{i=1}^{m} \dim_K V_i.$$

CURS 4: ALGEBRĂ 4-3

4.5 Teorema de existență a suplimentului

Teoremă 4.5.1 Fie (V, K) spațiu vectorial cu $\dim_K V = n \in \mathbb{N}^*$. Dacă $X \subset V$ este subspațiu vectorial în V atunci există $Y \subset V$ subspațiu vectorial astfel încât $V = X \oplus Y$.

Demonstrație. Fie $p = \dim_K X \le n$ și $B_X = \{b_1, ..., b_p\}$ o bază a lui X. Cum $\dim_K V = n$ putem completa B_X până la o bază B_V a lui V, astfel

$$B_V = \{b_1, ..., b_n, g_1, ..., g_{n-n}\}.$$

Demonstrăm că $Y = Span\{g_1,...,g_{n-p}\}$ are proprietatea că $V = X \oplus Y$. Evident

$$X + Y \subset V. \tag{4.5.1}$$

Pe de altă parte

$$\forall v \in V, \ v = \underbrace{\sum_{i=1}^{p} \alpha_i b_i}_{x \in X} + \underbrace{\sum_{i=1}^{n-p} \beta_i g_i}_{y \in Y} = x + y \in X + Y \Longrightarrow V \subset X + Y. \tag{4.5.2}$$

Relațiile (4.5.1) și (4.5.2) implică

$$V = X + Y. (4.5.3)$$

Mai mult, observăm că

$$\dim_K X + \dim_K Y = p + (n - p) = n = \dim_K V = n. \tag{4.5.4}$$

În final (4.5.3) şi (4.5.4) arată că este aplicabil punctul iii) al Teoremei 4.5.1 şi deci $V = X \oplus Y$.

4.6 Exemple de operatori liniari

Exemplul 4.6.1 Fie (V, K) spatiu vectorial.

- 1) Aplicația $1_V: V \to V$ definită prin $1_V(x) = x$ pentru orice $x \in V$ este un operator liniar, numit operatorul identic.
- 2) Dacă V_1, V_2 sunt subspații vectoriale în V atunci aplicația $O: V_1 \to V_2$ definită prin $O(x) = 0_{V_2}$ pentru orice $x \in V_1$ este un operator liniar, numit operatorul nul.
- 3) Notăm cu $C^1_{[a,b]}$ mulțimea tuturor funcțiilor $f(\cdot):[a,b]\to\mathbb{R}$ derivabile pe [a,b] cu derivata continuă. Aplicația

$$D: C^{1}_{[a,b]} \to C^{0}_{[a,b]}, \ D(f) = f'$$

este un operator liniar numit operator de derivare.

4) Notăm cu $C^0_{[a,b]}$ mulțimea tuturor funcțiilor $f\left(\cdot\right):[a,b]\to\mathbb{R}$ continue pe [a,b]. Aplicația

$$I: C_{[a,b]}^{0} \to C_{[a,b]}^{1}, \ I(f) = \int_{a}^{x} f(t) dt, \ x \in [a,b]$$

este un operator liniar numit operatorul de integrare.

4.7 Proprietăți ale operatorilor liniari

Teoremă 4.7.1 Fie (V_1, K) şi (V_2, K) spații vectoriale iar $f: V_1 \to V_2$ operator liniar. Următoarele au loc i) $f(0_{V_1}) = 0_{V_2}$.

CURS 4: ALGEBRĂ 4-4

- ii) $f(-x) = -f(x) \ \forall x \in V_1.$
- *iii)* $f(\sum_{i=1}^{m} \alpha_i x_i) = \sum_{i=1}^{m} \alpha_i f(x_i), \ \alpha_i \in K, \ x_i \in V_1 \ cu \ i = 1, ..., m.$
- iv) Dacă X este subspațiu vectorial în V_1 atunci f(X) este subspațiu vectorial în V_2 .

4.8 Operații cu operatori liniari. Operator invers

Teoremă 4.8.1 Fie (V_1, K) şi (V_2, K) spații vectoriale. Dacă pe mulțimea $L_K(V_1, V_2)$ considerăm operațiile

$$i) \quad (f+g)(x) = f(x) + g(x)$$

$$ii) \quad (\alpha f) x = \alpha f(x)$$

$$(\alpha f) x = \alpha f(x)$$

unde $f(x), g(x) \in L_K(V_1, V_2)$ iar $\alpha \in K$, atunci $(L_K(V_1, V_2), K)$ are o structură de spațiu vectorial în raport cu operațiile definite.

Definiție 4.8.1 Fie (V_1,K) , (V_2,K) și (V_3,K) spații vectoriale. Dacă $f:V_1\to V_2$ și $g:V_2\to V_3$ sunt operatori liniari atunci aplicația

$$\left(g\circ f\right)\left(\cdot\right):V_{1}\rightarrow V_{3}\ definit\ prin\ \left(g\circ f\right)\left(x\right)=g\left(f\left(x\right)\right)\ pentru\ x\in V_{1}$$

se numește produsul (sau compunerea) operatorilor liniari f, g.

Remarcă 4.8.1 Fie (V_1,K) , (V_2,K) și (V_3,K) spații vectoriale. Dacă $f:V_1\to V_2$ și $g:V_2\to V_1$ sunt operatori liniari atunci $(g \circ f)(\cdot): V_1 \to V_3$ este operator liniar.

Definiție 4.8.2 Fie (V_1, K) și (V_2, K) spații vectoriale. Operatorul liniar $f: V_1 \to V_2$ se numește inversabil g îndeplinind aceste condiții atunci se notează cu f^{-1} și se numește inversul operatorului liniar f.

Teoremă 4.8.2 Fie (V_1, K) şi (V_2, K) spații vectoriale. Operatorul liniar $f: V_1 \to V_2$ este inversabil dacă şi numai dacă este bijectiv.