Notas de Relatividad General

Abel 'Ender'

(https://github.com/EnderMk9/Notas_RG)

2 de julio de 2021

Resumen

Estas notas son tomadas de una seríe de vídeos de YouTube creada por **Javier García**, que se puede encontrar aquí, sobre Tensores, Geometría Diferencial y Relatividad General.

Estas notas no son una reproducción exacta de los vídeos, sino una recopilación del contenido que juzgo más relevante de ellos.

La plantilla para este documento ha sido tomada de aquí

Índice

1.	Tens	sores	2
	1.1.	Convenio de sumación de Einstein	2
	1.2.	Covarianza y Contravarianza	2

1. Tensores

1.1. Convenio de sumación de Einstein

Antes de comenzar conviene explicar el **convenio de sumación de Einstein**, que nos va a permitir escribir expresiones de forma compacta que utilizando el símbolo de sumatorio, \sum , serían muy largas.

Tomemos por ejemplo un vector \vec{v} expresado en función de una base e_i , con componentes v^i , donde i no es un exponente, sino un superíndice, esta elección es la clave del criterio.

$$\vec{v} = \sum_{i=1}^{n} v^{i} e_{i} = \sum v^{i} e_{i} \equiv v^{i} e_{i}$$

Para poder aplicar el criterio tenemos que tener claro cuales son los posibles valores que puede tomar el índice, en este caso, desde 1 hasta la dimensión del espacio vectorial.

La clave está en que cuando tenemos un superíndice y un súbindice iguales en un mismo término, esto indica una suma con respecto a ese índice, denominado **índice mudo**, porque solo indica la suma.

Otro ejemplo es aplicado a formas bilineales o transformaciones lineales, los detalles se detallan posteriormente.

$$\phi(\vec{v}, \vec{w}) = A_{ij}v^i w^j \qquad f(\vec{v})^j = M^j{}_i v^i$$

Se observa también que en una ecuación los índices no mudos a ambos lados deben coincidir.

1.2. Covarianza y Contravarianza

Las componentes de un vector de un espacio vectorial V se indican con un superíndice, mientras que los vectores de la base con un subíndice. Por el contrario, las componentes de un vector de V^* , el dual, se indican con un subíndice y la base dual se indica con superíndices.

1.2.1. Base Dual

$$e^i(e_j) = \delta^i_j$$

Recordemos que la base dual se define de esta forma, donde e^i son los vectores de la base dual, e_j son los vectores de una base cualquiera de V, y δ^i_j es el delta de Kronecker, así pues si los indices son iguales el resultado será 1 y si son distintos será 0.

1.2.2. Métrica

De nuevo, recordemos que para medir distancias, recurrimos a un producto escalar, que define una métrica euclidea, de tal forma que

$$|\vec{v}| = \sqrt{\phi(\vec{v}, \vec{v})} = \sqrt{\vec{v}^t g \ \vec{v}} = \sqrt{g_{ij} v^i v^j}$$

De tal forma que g es una matriz que define al producto escalar que llamamos la métrica o el tensor métrico, y g_{ij} son sus componentes, las cuales dependen de la base de los vectores.

1.2.3. Subir y bajar índices

En el caso \mathbb{R} , en el que trabajamos, podemos definir un isomorfismo entre V y V^* tal que $\vec{v} \mapsto \phi(-, \vec{v})$, dónde $\vec{v} \in V$ y $\phi(-, \vec{v}) = g_{ij}v^ie^j$, donde e^j es la base dual, así pues llegamos a

$$v_j = g_{ij}v^i$$
 $v^j = g^{ij}v_i$ $g^{ij} = (g_{ij})^{-1}$

Esto es muy importante pues nos permite pasar las coordendas de un vector de V a V^* y viceversa.