Álgebra / Álgebra II Examen Final 29/06/2015

Nombre y Apellido:

Justifique todas sus respuestas.

- 1. (15 pts.) Sea W el subespacio de \mathbb{R}^4 generado por el conjunto $\mathcal{B} = \{(1, -1, 1, 2), (2, 2, -1, -1), (0, 1, 0, -2)\}$ y sea $U = \{(x, y, x, t) \in \mathbb{R}^4 : x + y z + 2t = 0\}.$
 - a) Dar una descripción implícita y una base del subespacio $W \cap U$.
 - b) Probar que \mathcal{B} es una base de W y determinar las coordenadas de un vector $(x, y, z, t) \in W$ en la base ordenada \mathcal{B} .
 - c) Hallar un subespacio W' de R4 tal que R4 = W \oplus W'.
- 2. (15 pts.) Sea $T: \mathbb{R}^4 \to \mathbb{R}^3$ la transformación lineal definida en la forma

$$T(x, y, z, t) = (x - y, z - t, x - y + z - t).$$

- a) Dar una descripción implícita de NuT, calcular su dimensión y mostrar una base.
- b) Dar una descripción implícita de Im T, calcular su dimensión y mostrar una base.
- c) Hallar $[T]_{B_1}^{B_2}$, donde B_1 y B_2 son las bases ordenadas de \mathbb{R}^4 y \mathbb{R}^3 dadas, respectivamente, por

$$\mathcal{B}_1 = \{(1,1,0,0), (-1,0,1,0), (-1,0,0,1), (1,-1,1,1)\}, \qquad \mathcal{B}_2 = \{(0,1,0), (-1,0,-1), (1,0,-1)\}.$$

3. (15 pts.) Sea
$$A(z) = \begin{pmatrix} 1 & 0 & z \\ 0 & -z & 0 \\ z & 0 & 1 \end{pmatrix} \in \mathbb{C}^{3 \times 3}$$
.

a) Calcular el determinante de A(z).

 $B_1 = \{(1,1,0,0), (-1,0,1,0), (-1,0,0,1), (1,-1,1,1)\},\$

3. (15 pts.) Sea
$$A(z) = \begin{pmatrix} 1 & 0 & z \\ 0 & -z & 0 \\ z & 0 & 1 \end{pmatrix} \in \mathbb{C}^{3 \times 3}$$
.

- a) Calcular el determinante de A(z).
- b) Probar que A es inversible y determinar su inversa,
- c) Hallar todos los valores de $z \in \mathbb{C}$ tal que A(z) sea inversible.
- 4. (15 pts.) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - a) Existe una matriz $A \in \mathbb{C}^{5 \times 3}$ tal que las filas de A son linealmente independientes.
 - b) Existe una transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que (1, -1) es un vector propio de T de valor propio -2 y (1, 1) es un vector propio de T de valor propio 0.
 - c) Si U y W son subespacios de un espacio vectorial V tales que dim V = 5 y dim $U = \dim W = 3$, entonces $U \cap W \neq \{0\}$.

Parte Teórica

- 5. (20 pts.) Sea V un espacio vectorial sobre el cuerpo F generado por un conjunto finito de vectores $\{\beta_1, \ldots, \beta_m\}$. Probar que todo subconjunto linealmente independiente de V es finito y no tiene más de m elementos.
- 6. (20 pts.) Sean V, W espacios vectoriales de dimensión finita sobre un cuerpo F y sea $T: V \to W$ una transformación lineal. Demostrar que dim $V = \dim \operatorname{Nu} T + \dim \operatorname{Im} T$.

	The second second				
Parte práctica	1	2	3	4	Total