BLOQUE 2. ASPECTOS CUALITATIVOS DE LA QUÍMICA (tema 3 del libro)

Ej. 1

4> Sabemos que 40 uma es la masa del átomo de calcio. Calcula:

- a) La masa en gramos de 1átomo de Ca.
- b) ¿Cuál de las siguientes cantidades tienen mayor número de átomos? 40 g de Ca; 0,20 moles de Ca; $5 \cdot 10^{23}$ átomos de Ca.

Sol. 1 a) $m = 6.6 \cdot 10^{-23}$ g; b) 40 g de

Ej. 2

5> Si tenemos en cuenta que 56 uma es la masa del átomo de hierro. calcula:

- a) La masa atómica en gramos de 1átomo de Fe.
- b) Cuál de las siguientes cantidades tiene mayor número de átomos de Fe: 56 g, 0,20 moles o 5 · 10²³ átomos.

Sol. 2 a) $m = 9.3 \cdot 10^{-23}$ g; b) 65 g de **Sol. 5** d = 0.52 g/L Fe.

Ej. 3

6> Responde a las siguientes cuestiones:

- a) ¿En cuál de las siguientes cantidades de los elementos que se enumeran a continuación existe un mayor número de moles: 100 g de hierro, 100 g de oxígeno molecular, 100 g de cinc o 100 g de níquel?
- b) ;Y un mayor número de átomos?

Sol. 3 a) En los 100 gramos de oxígeno molecular; b) En los 100 gramos de oxígeno molecular.

Ej. 4

10> Sabiendo que un gas a 1,5 atm y 290 K tiene una densidad de 1,178 g/L, calcula su masa molecular.

Sol. 4 $M = 18.7 \, \text{g/mol}$

Ej. 5

11> Calcula la densidad del metano (CH₄) a 700 mmHg y 75 °C.

Sol. 5
$$d = 0.52 \,\mathrm{g/L}$$

S: d = 0.52 g/L

2 BLOQUE 5. QUÍMICA DEL CARBONO (tema 5 del libro)

Ej. 6

- 7> Formula los siguientes alcanos:
- a) n-pentano
- b) 2,3,5-trimetilheptano
- c) 4-etil-2,6-dimetiloctano
- d) 4,6-dietil-2,4,8-trimetilnonano
- e) 4-etil-2,2,5,8-tetrametil-6-propildecano
- f) 3,7-dietil-5-isopropildecano

Ej. 7

- 9> Formula los siguientes hidrocarburos insaturados:
- a) But-1-eno
- b) Pent-2-eno
- c) Hexa-2,4-dieno
- d) 3-butilhexa-1,4-dieno
- e) But-2-ino
- f) 3,4-dimetilpent-1-ino
- g) 3,6-dimetilnona-1,4,7-triino
- h) Pent-1-en-3-ino
- i) Hept-3-en-1,6-diino
- j) 4-etilhexa-1,3-dien-5-ino

Ej. 8

- 11> Formula los siguientes hidrocarburos cíclicos:
- a) Etilciclohexano
- b) Ciclopenteno

- c) Ciclohexino
- d) 1,1,4,4-tetrametilciclohexano
- e) 3-etilciclopenteno
- f) 2,3-dimetilciclohexeno
- g) 4-ciclobutilpent-1-ino
- h) 3-ciclohexil-5-metilhex-2-eno
- i) Ciclohexa-1,3-dieno
- j) 3-ciclopentilprop-1-eno

12> Nombra los siguientes hidrocarburos cíclicos:

f)
$$CH_3 - CH - CH_2 - C - CH_2 - CH_3$$

$$CH_3 - CH - CH_2 - C - CH_2 - CH_3$$

$$CH_3 - CH_2 - CH_3$$

$$CH_3 - CH_3 - CH_3$$

13> Formula los siguientes hidrocarburos aromáticos:

- a) Metilbenceno (tolueno)
- b) Etenilbenceno
- c) 1,3-dietilbenceno
- d) 1-butil-4-isopropilbenceno
- e) Para-propiltolueno
- f) 3-fenil-5-metilheptano
- g) 4-fenilpent-1-eno
- h) 2,4-difenil-3-metilhexano

Ej. 11

15> Formula los siguientes derivados halogenados:

- a) 2-cloropropano
- b) 1,3-dibromobenceno
- c) 1,1,2,2-tetrafluoretano
- d) 1,4-diclorociclohexano
- e) 4-bromopent-1-ino
- f) 3-flúor-5-metilhex-2-eno
- g) 1,4-dibromo-6-ciclopentiloct-2-eno
- h) 4-yodo-3,5-difenilpent-1-ino
- i) 4-clorobut-1-eno
- j) 1,2-dibromobenceno

17> Formula los siguientes alcoholes y éteres: 18> Nomb ra los siguientes alcoholes y éteres:

- a) 3-metilpentan-1-ol
- b) Butano-1,2,3-triol
- c) 2-fenilpropano-1,3-diol
- d) Ciclohexanol
- e) Hexa-3,5-dien-2-ol
- f) Fenol (Hidroxibenceno)
- g) 2-etilpentan-1-ol
- h) Pent-3-en-1-ol
- i) Etilisopropiléter
- j) Etenilfeniléter
- k) Dimetiléter
- l) Butilciclopentiléter

Ej. 13

18> Nombra los siguientes alcoholes y éteres:

a) CH₃OH

b)
$$CH_2OH - CH_2 - CH - CH = CH_2$$

 CH_2
 CH_3

d)
$$CH_3 - CH_2 - CH - CHOH - CH_3$$
 CH_3

f)
$$CH_3-CH_2-CH_2-O-CH_2-CH_2-CH_3$$

g)
$$CH_2 = CH - O - CH - CH_3$$

 CH_3

h)
$$CH_3 - (CH_2)_3 - CH_2 - O - C \equiv CH$$

VER EN EL LIBRO, PÁGINA 135

- a) Etanal (acetaldehído)
- b) Benzaldehído
- c) 3-metilpentanal
- d) 2-metilpentanodial
- e) Propenal
- f) Hex-2-endial
- g) 5-ciclohexilpent-3-inal
- h) 3-metilpent-2-enal
- i) Hex-2-endial
- j) Pentan-2-ona
- k) Hexa-2,4-diona
- l) 3-clorobutanona
- m) 1,4-difenilpentan-2-ona
- n) Hexa-1,5-dien-3-ona

Ej. 15

20> Nombra los siguientes aldehídos y cetonas: VER EN EL LIBRO, PÁGINA 136

- a) HCHO
- b) CH₃-CH₂-CH₂-CHO
- c) OHC-CH=CH-CHO

d)
$$CH_2 = C - CH_2 - (CH_2)_4 - CHO$$

e)
$$OHC-CH=CH-CH_2-CH(CH_3)-CHO$$

f)
$$CH_3 - CH - CH = CH - CHO$$
 C_6H_5

g)
$$CHO-CH_2-C=C-CH_2-CH_2-CHO$$

h)
$$CH_3-CO-CH_2-CH_3$$

i)
$$CH_3-CH=CH-CH_2-CO-CH_3$$

j)
$$CH_3-CO-CH_2-CH_2-CH_2-CO-CH_3$$

k)
$$CH_3-CH(CH_3)-CO-CH_2-CH(CH_3)-CH_3$$

l)
$$CH_2 = CH - CO - CH = CH - CH_3$$

21> Formula los siguientes ácidos y ésteres:

- a) Ácido etanoico (ácido acético)
- b) Ácido 3-metilhexanoico
- c) Ácido 2-fenilpentanodioico
- d) Ácido tricloroetanoico
- e) Ácido but-3-enoico
- f) Ácido hepta-2,4-dienoico
- g) Ácido pent-2-enodioico
- h) Ácido benzoico
- i) Butanoato de metilo
- j) Propanoato de etilo
- k) Benzoato de propilo
- l) Etanoato de octilo
- m) 3-cloropentanoato de etenilo
- n) But-3-enoato de isopropilo

23> Formula los siguientes compuest os con funciones nitrogenadas:

- a) Isopropilamina
- b) Pentan-3-amina
- c) Buta-1,3-diamina
- d) 3-etilhexan-3-amina
- e) 3,5-dimetilhexan-1-amina
- f) Pent-3-en-2-amina
- g) N-metilfenilamina
- h) N-ciclopentilbutilamina
- i) Etanamida
- j) N-metiletanamida
- k) 4-fenilpentanamida
- l) N-etilhex-4-enamida

Ej. 18

24> Nombra los siguientes compuestos nitrogenados:

a)
$$CH_3 - CH - CH_2 - CH_3$$

 \mid
 NH_2

d)
$$CH_3 - CH - NH - CH = CH_2$$
 CH_3

f)
$$CH_3-CH_2-CH_2-CH_2-CH_2-CO-NH_2$$

g)
$$CH_3-CH=CH-CH_2-CO-NH_2$$

25> Formula los siguientes compuestos orgánicos:

- a) 2,2-dimetilpentano
- b) Hepta-1,5-dieno
- c) 1-fenilpent-2-ino
- d) 3-isopropilciclohexeno
- e) 1-butil-3-metilbenceno
- f) Butano-1,3-diol
- g) Butileteniléter
- h) But-3 enal
- i) Hex-5-in-2-ona
- j) Ácido 3-isopropilhexanoico
- k) Pentanoato de metilo
- l) 5-meilhexan-2,4-diamina
- m) N-metiletilamina
- n) N,N-dietilbutilamina
- o) Hex-3-enamida
- p) N-metilbutanamida

Ej. 20

27> Formula y nombra:

- a) Dos hidrocarburos alifáticos que presenten isomería de cadena.
- b) Dos aminas con isomería de posición.
- c) Dos compuestos oxigenados con isomería de función.

Ej. 21

28> Escribe y nombra:

- a) Todos los isómeros de cadena de fórmula C_5H_{12} .
- b) Cuatro isómeros de función de fórmula C₄H₈₀.
- c) Tres isómeros de posición de la amina C₅H₁₃N.

Dados los siguientes compuestos, formúlalos y justifica cuáles de ellos presentan isomería geométrica y cuáles isomería óptica:

- a) 2-clorobutano
- b) Pent-3-en-2-ol
- c) Pentan-3-amina
- d) 2-fenilpent-2-eno

2.1 Problemas propuestos

2.1.1 Grupos funcionales y series homólogas

Ej. 23

7. Escribe el número de carbonos y el grupo funcional al que corresponden los siguientes compuestos:

- a) Octano
- b) Butanamina
- c) Pentinamida
- d) Ácido decanoico
- e) Hexenal
- f) Propanona
- g) Butino
- h) Hepteno
- i) Metanol
- j) Dietiléter

Ej. 24

8. Indica si la estructura de cada pareja representa el mismo compuesto o compuestos diferentes, identificando los grupos funcionales presentes:

- a) CH₃CH₂OCH₃ y CH₃OCH₂CH₃
- b) CH₃CH₂OCH₃ y CH₃CHOHCH₃
- c) CH₃CH₂CH₂OH y CH₃CHOHCH₃

- 9. Contesta a cada uno de los siguientes apartados referidos a compuestos de cadena abierta:
 - a) ¿Qué grupos funcionales pueden tener los compuestos de fórmula molecular C_nH_{2n+2}O?
 - b) ¿Qué compuestos tienen por fórmula molecular C_nH_{2n-2} ?

Ej. 26

- 10. Nombra y formula los siguientes compuestos orgánicos:
- a) CH₃-CH₂-COOH
- b) $CH_3-CH_2-C\equiv CH$
- c) CH₃-CHOH-CH₂-CH₂-CH₃
- d) $CH_3-CH_2-CO-CH_2-CH_2-CH_3$
- e) C₆H₁₄
- f) Metil etil éte
- g) Metanoato de propil
- h) Dietilamin
- i) Pentana
- j) Metilpropen

Ej. 27

- 13. Formula las siguientes especies químicas:
- a) 1-bromo-2,2-diclorobutano
- b) Trimetilamina
- c) 2-metilhex-1,5-dien-3-ino
- d) Butanoato de 2-metilpropilo
- e) Tolueno (metilbenceno)
- f) Propanamida
- g) 2,3-dimetilbut-1-eno
- h) Ácido 2,3-dimetilpentanodioico

14. Nombra las siguientes especies químicas:

- a) $H_2C=CH-CH=CH-CHO$
- b) $H_3C-CO-CO-CH_3$
- c) $H_2C = CH CH = CH CH_2 COOH$
- d) $H_3C-CH_2-NH-CH_2-CH_3$
- e) CH≡C−CH₂−COOH
- f) CH₃-CH₂-CH(CH₃)-CONH₂
- g) $H_3C-C(OH)_2-CH_2-CH_2OH$

Ej. 29

15. Nombra y/o formula los siguientes compuestos:

- a) CHCl₃
- b) CH₃-CH₂-CHO
- c) $CH_3-CH_2-CH_2-CH_2-CO-NH_2$
- d) $(CH_3)_2$ -CHOH
- e) 2,2-dimetilbutano
- f) Para-diaminobenceno
- g) Ciclohexano
- h) Etil propil éter

Ej. 30

16. Formula o nombra, según corresponda:

- a) 1-etil-3-metilbenceno
- b) 2-metilpropan-2-ol
- c) 2-metil-propanoato de etilo
- d) Pent-3-en-1-amina
- e) ClCH=CH-CH₃

f) $CH_3-CH_2-O-CH_2-CH_3$

g) $CH_3-CH(CH_3)-CO-CH_2-CH(CH_3)-CH_3$

h) $CH_2 = CH - CH_2 - CO - NH - CH_3$

Ej. 31

20. Formula o nombra los siguientes compuestos:

a) Cromato de cobre(II)

b) Hidruro de magnesio

c) Hidrogenosulfuro de bario

d) Etanamina

e) Propan-1,2-diol

f) $Fe(OH)_2$

g) H_2SO_3

h) N_2O_5

Ej. 32

21. Formula o nombra los siguientes compuestos orgánicos :

a) 3-etil-2-metilhexano

b) 1-bromopent-2-ino:

c) 3-etilhe xano-1,5-diol:

d) 3-metilpentan-2,4-diamina

e) $CH_2 = CH - CH_2 - CO - O - CH_3$

f) $C_6H_5-O-C_6H_5$

g) $CH_3-CH_2-CO-NH-CH_2-CH_3$

h) $COOH-CH_2-CH_2-CHBr-COOH$

2.1.2 Isomería estructural y espacial

Ej. 33

- 23. Formula los siguientes compuestos orgánicos:
- a) But-3-en-2-ona
- b) Buta-1,3-dien-2-ol
- c) Dietiléter

¿Cuáles de ellos son isómeros entre sí?

Ej. 34

24. Escribe y nombra cinco isómeros de cadena de fórmula molecular C₆H₁₄.

Ej. 35

25. Escribe y nombra cuatro isómeros de función de fórmula molecular C_4H_8O .

Ej. 36

28. Escribe y nombra todos los isómeros estructurales de fórmula C5H10

Ej. 37

Formula y nombra:

- a) Dos isómeros de posición de fórmula C₃H₈O
- b) Dos isómeros de función de fórmula C₃H₈O
- c) Dos isómeros geométricos de fórmula C₄H₈
- d) Un compuesto que tenga dos carbonos quirales (asimétricos) de fórmula C₄H₈BrCl

Ej. 38

31. Un derivado halogenado etilénico que presenta isomería cis-trans está formado en un 22,4% de C, un 2,8% de H y un 74,8% de bromo. Además, a 130 °C y 1 atm de presión, una muestra de 12,9 g ocupa un volumen de 2 L. Halla su fórmula molecular y escribe los posibles isómeros.

Sol. 38 $C_4H_6Br_2$

Ej. 39

32. Un alcohol monoclorado está formado en un 38,1% de C, un 7,4% de H, un 37,6% de Cl y el resto es oxígeno. Escribe su fórmula semidesarrollada sabiendo que tiene un carbono asimétrico y que su fórmula molecular y su fórmula empírica coinciden.

Sol. 39 ðC3H7OCl

Ej. 40

33. Un hidrocarburo monoinsaturado tiene un 87,8% de carbono. Si su densidad en condiciones normales es $3,66\,\mathrm{g/L}$, determina sus fórmulas empírica y molecular.

Sol. 40 Formula empírica: C₃H₅; Fórmula molecular: C₆H₁₀.

3 BLOQUE 4. Transformaciones energéticas y espontaneidad (tema 6 del libro)