

Optimal Design Methodology

Optimal Design Problem Definition

In multi-stage rocket design, basic design variables are masses within each stage.

Payload mass and ideal burnout velocity can either be objective function or constraint.

Optimal Design Problem Definition

In most cases, **objective** is to maximize, either \mathbf{m}_* for a given \mathbf{V}_* , or vice versa.

In all these cases, No. of stages is used as a parameter.

Optimal Design Method

Among the **many** techniques, **gradient** based methods are **useful** for problems that allow **differentiation**.

Typically, there is an **objective** function that is optimized, with respect to the **design** variables.

Optimal Design Description

Further, there are **constraints** that the solution needs to **satisfy.**

In the **present** case, either V_* can be taken as **objective** function & π_* as constraint or vice versa.

Optimal Solutions Concept

In **gradient** based methods, **partial** derivatives of objective **function**, with respect to design **variables**, are driven to **zero**, while satisfying the **constraint** exactly.

Thus, for an 'N' stage vehicle having 'N' design variables, we have 'N+1' equations, for 'N' unknowns.

Optimal Solutions Concept

It is **well** known that for **such** a system of **equations**, we can extract 'N' solutions based on **least** squares method.

However, if an **exact** solution is **desired**, then we need to **add** one more **unknown**, to make the system **square**.

Summary

To **summarize**, optimal methods are **capable** of providing good solutions for the **stage-wise** payload ratios.

Further, we **note** that we can make use of **gradient-based** techniques to set up the applicable **solution** methodology.