Propriété	Fonction exponentielle	Fonction logarithme
Valeurs particulières	$e^0 = 1$ $e^1 = e$	$\ln(1) = 0$
Équations	$e^x = e^y \Leftrightarrow x = y$	$\ln(x) = \ln(y) \Leftrightarrow x = y > 0$
Inéquations	$e^x < e^y \Leftrightarrow x < y$	$\ln(x) < \ln(y) \Leftrightarrow 0 < x < y$
Signe	$e^x > 0 \ \forall x \in \mathbb{R}$	$\ln(x) < 0 \text{ si } x \in]0,1[,$ $\ln(x) > 0 \text{ si } x > 1$
Propriétés calculatoires	$e^{a+b} = e^a \times e^b$ $(e^a)^b = e^{ab}$ $e^{a-b} = \frac{e^a}{e^b}$ $e^{-b} = \frac{1}{b}$	$\ln(ab) = \ln(a) + \ln(b)$ $a, b > 0 \frac{n \ln(a) = \ln(a^n)}{\ln(\frac{a}{b}) = \ln(a) - \ln(b)}$ $-\ln(b) = \ln(\frac{1}{b})$
Limites	$\lim_{x \to -\infty} e^x = 0$ $\lim_{x \to +\infty} e^x = +\infty$	$\lim_{x \to 0^+} \ln(x) = -\infty$ $\lim_{x \to +\infty} \ln(x) = +\infty$
Asymptotes	L'axe des abscisses en $-\infty$.	L'axe des ordonnées en 0.
Dérivée	$(e^x)' = e^x$ $(e^{u(x)})' = u'(x)e^{u(x)}$	$(\ln(x))' = \frac{1}{x} (\ln(u(x)))' = \frac{u'(x)}{u(x)} \text{ (si } u(x) > 0)$
Fonctions composées	$e^{u(x)}$ a les mêmes variations que $u(x)$	$\ln(u(x))$ a les mêmes variations que $u(x)$ (et est définie si et seulement si $u(x) > 0$).