Devoir surveillé n° 10 Version 2

Durée : 3 heures, calculatrices et documents interdits

I. Adjoint d'un endomorphisme.

Soit $(E, \langle \cdot | \cdot \rangle)$ un espace vectoriel euclidien, et $\mathscr{B} = (e_1, \ldots, e_n)$ une base orthonormale de E. Soit u un endomorphisme de E. On définit l'application u^* de E dans E par :

$$\forall x \in E, \quad u^*(x) = \sum_{i=1}^n \langle x | u(e_i) \rangle e_i.$$

- 1) Montrer que u^* est un endomorphisme de E. On l'appelle l'adjoint de u.
- 2) a) Soit $x \in E$. Montrer que:

$$\forall j \in \{1, \dots, n\}, \ \langle u^*(x) \mid e_j \rangle = \langle x \mid u(e_j) \rangle.$$

b) En déduire que pour tout $(x,y) \in E^2$:

$$\langle u^*(x) \mid y \rangle = \langle x \mid u(y) \rangle.$$

c) Montrer que si une application v de E dans E satisfait :

$$\forall (x,y) \in E^2, \ \langle v(x) \mid y \rangle = \langle x \mid u(y) \rangle,$$

alors $v = u^*$.

Quel est l'adjoint de u^* ?

- 3) Montrer que la définition de u^* ne dépend pas de la base orthonormale choisie.
- 4) Montrer que, dans toute base orthonormale, la matrice de u^* est la transposée de celle de u.
- 5) Montrer que:

$$\operatorname{Ker} u^* = (\operatorname{Im} u)^{\perp}$$
 et $\operatorname{Im} u^* = (\operatorname{Ker} u)^{\perp}$

- 6) L'endomorphisme u est dit symétrique si et seulement si $u^* = u$.
 - a) Caractériser matriciellement un endomorphisme symétrique.
 - b) Que peut-on dire de l'image et du noyau d'un endomorphisme symétrique?
 - c) Montrer qu'une symétrie est un endomorphisme symétrique si et seulement si c'est une symétrie orthogonale.
 - d) Montrer qu'un projecteur est un endomorphisme symétrique si et seulement si c'est un projecteur orthogonal.
- 7) L'endomorphisme u est dit antisymétrique si et seulement si $u^* = -u$.

- a) Caractériser matriciellement un endomorphisme antisymétrique.
- b) Que peut-on dire de l'image et du noyau d'un endomorphisme antisymétrique?
- c) Montrer que u est antisymétrique si et seulement si :

$$\forall x \in E, \ \langle u(x) \mid x \rangle = 0$$

- 8) Soit u un endomorphisme antisymétrique.
 - a) Montrer que:

$$\forall x \in \text{Im } u, \ \forall \lambda \in \mathbb{R}, \ u(x) = \lambda x \Longrightarrow x = 0$$

- **b)** Soit u' l'endomorphisme de Im u induit par u. Montrer que pour tout $\lambda \in \mathbb{R}$, $\det(u' \lambda \operatorname{Id}_{\operatorname{Im} u}) \neq 0$.
- c) En déduire que le rang de u est pair.

II. Théorème de réarrangement de Riemann.

On rappelle qu'une série réelle est semi-convergente si elle converge sans converger absolument. On appelle réarrangement d'une série $\sum_{n\geqslant 0}u_n$ toute série $\sum_{n\geqslant 0}u_{\varphi(n)}$, où $\varphi:\mathbb{N}\to\mathbb{N}$ est une bijection. Un réarrangement d'une série consiste donc juste à permuter les termes de cette série.

Préliminaire : Un exemple.

1) Donner un exemple simple de série semi-convergente en le justifiant brièvement.

Partie I : Réarrangement de série absolument convergente.

On se propose de montrer le résultat suivant : « tout réarrangement d'une série absolument convergente est convergent et la somme de cette série et de ses réarrangements coïncident ». Soit $\sum_{n\geqslant 0}u_n$ une série absolument convergente, soit $\varphi:\mathbb{N}\to\mathbb{N}$ une bijection.

- 1) Montrer que la suite des sommes partielles de la série $\left(\sum_{n\geqslant 0} \left|u_{\varphi(n)}\right|\right)$ est majorée et en déduire le premier point.
- 2) Soit $\varepsilon > 0$ et $N \in \mathbb{N}$ tel que $\sum_{n=N+1}^{+\infty} |u_n| \leqslant \varepsilon$. Montrer qu'il existe $N' \in \mathbb{N}$ vérifiant $\left|\sum_{n=0}^{N} u_n \sum_{n=0}^{N'} u_{\varphi(n)}\right| \leqslant \varepsilon$.
- 3) En déduire que $\left|\sum_{n=0}^{+\infty}u_n-\sum_{n=0}^{+\infty}u_{\varphi(n)}\right|\leqslant 3\varepsilon$ et conclure.

Partie II : Théorème de réarrangement de Riemann.

On montre maintenant le théorème de réarrangement de Riemann : « soit une série semi-convergente et $\ell \in \mathbb{R}$, alors il existe un réarrangement convergent de cette série dont la somme vaut ℓ ». Soit $\sum_{n \geq 0} u_n$ une série semi-convergente et $\ell \in \mathbb{R}$. On note $A = \{n \in \mathbb{N} \mid u_n \geq 0\}$ et

 $B = \{n \in \mathbb{N} \mid u_n < 0\}$. On construit aussi les suites (a_n) et (b_n) définies par, si $n \ge 0$, $a_n = 0$ si $u_n < 0$ et $a_n = u_n$ sinon; $b_n = 0$ si $u_n > 0$ et $b_n = u_n$ sinon.

- 1) Justifier que les ensembles A et B sont infinis.
- 2) Étudier la nature de $\sum_{n\geqslant 0}a_n$ et de $\sum_{n\geqslant 0}b_n$ (n'en détailler qu'une).

On construit alors la permutation φ par récurrence en suivant l'idée suivante : si la somme partielle précédente est inférieure à ℓ , on rajoute le premier terme positif de (u_n) non rajouté, et inversement si elle est supérieure à ℓ . On pose donc $\varphi(0) = 0$ et, si $n \in \mathbb{N}$, en supposant que $(\varphi(0), \ldots, \varphi(n))$ est construite :

- si $\sum_{k=0}^{n} u_{\varphi(k)} > \ell$, on pose $\varphi(n+1)$ comme étant le plus petit élément de $B \setminus \{\varphi(0), \dots, \varphi(n)\}$;
- si $\sum_{k=0}^{n} u_{\varphi(k)} \leq \ell$, on pose $\varphi(n+1)$ comme étant le plus petit élément de $A \setminus \{\varphi(0), \dots, \varphi(n)\}$.

Par construction, $\varphi : \mathbb{N} \to \mathbb{N}$.

- 3) Justifier brièvement que φ est injective.
- 4) Montrer que si à partir d'un certain rang φ ne prend que des valeurs dans A ou que des valeurs dans B, alors $\sum_{n\geqslant 0}u_{\varphi(n)}$ diverge.
- 5) Montrer que si à partir d'un certain rang φ ne prend que des valeurs dans A ou que des valeurs dans B, alors $\sum_{n\geq 0} u_{\varphi(n)}$ converge. Quelle conclusion en tirer?
- 6) On veut montrer que φ est surjective. Supposons qu'il existe $N \in \mathbb{N} \setminus \text{Im } \varphi$. Sans perte de généralité, on peut supposer que $N \in A$, le cas $N \in B$ étant similaire. Montrer qu'à partir d'un certain rang, $\varphi(n) \in B$ et conclure.
- 7) Montrer que $(u_{\varphi(n)})$ converge vers 0.
- 8) Si $n \in \mathbb{N}$, notons:
 - c(n) le plus grand entier naturel c inférieur ou égal à n-1 tel que $[\varphi(c) \in B$ et $\varphi(c+1) \in A]$ ou $[\varphi(c) \in A$ et $\varphi(c+1) \in B]$;
 - d(n) le plus petit entier naturel d supérieur ou égal à n tel que $[\varphi(d) \in B$ et $\varphi(d+1) \in A]$ ou $[\varphi(d) \in A$ et $\varphi(d+1) \in B]$

Les question précédentes justifient l'existence de c (à partir d'un certain rang, mais on ne s'en souciera pas) et de d.

Moralement, ce sont donc les indices des deux changements de signes de u_{φ} qui encadrent $\varphi(n)$.

- a) Montrer que $c(n) \xrightarrow[n \to +\infty]{} +\infty$.
- **b)** Si $n \in \mathbb{N}$, encadrer $\sum_{k=0}^{n} u_{\varphi(n)}$ et en déduire une majoration de $\left| \sum_{k=0}^{n} u_{\varphi(n)} \ell \right|$ faisant intervenir $u_{\varphi(c(n)+1)}$ et $u_{\varphi(d(n))}$.
- c) Conclure.