

Hochschule Rheinklain - University of Applied Sciences $2.7 \ \textit{Image Analysis Tools}, \ \textit{Otsu} - \textit{Binarization (optional)}$ • Probability for g to appear in one of the classes : $P_0 = \sum_{g=0}^T p(g) \qquad \qquad P_1 = \sum_{g=T+1}^{G-1} p(g)$ • Mean grey value μ of the image : $\mu = \mu_0 P_0 + \mu_1 P_1 \qquad \mu_0 \ \text{and} \ \mu_1 \ \text{are the mean values of the classes}$ • The variances σ^2 of the classes are : $\sigma_0^2 = \sum_{g=0}^T p(g) * (g - \mu_0)^2 \qquad \qquad \sigma_1^2 = \sum_{g=T+1}^{G-1} p(g) * (g - \mu_1)^2$ • The variance between the classes : $\sigma_{zw}^2 = P_0 (\mu_0 - \mu)^2 + P_1 (\mu_1 - \mu)^2$ Prof. Dr. D. Richter Department [Design>Computer Science>Media]

