# IPCC第5次報告書について

温暖化防止活動推進員 横浜会議 2013年10月31日 県民センター

推進員 西田 進

### お話の順序

- 1. IPCCとは
- 2. IPCC第5次評価報告書とは
- 3. 今回発表されたワーキンググループ I (自然科学的根拠)の報告書の概要
- 4. 報告書の入手方法
- 5. おわりに

質疑と討議

### IPCCとは

IPCC(Intergovernmental Panel on Climate Change)とは、「気候変動に関する政府間パネル」のことである

気候変動についての科学的な研究成果の収集・評価のための、専門家でつくる政府間機構で、機構自体は研究はしない

数年おきに発行される評価報告書 (Assessment Report) は、

気候変動に関する世界中の数千人の専門家の 科学的知見を集約した報告書であり、国際政治 および各国の政策に強い影響を与えつつある

組織としてのIPCC(代表はラジェンドラ・パチャウリ議長)は、米国のアル・ゴア元副大統領とともに、2007年ノーベル平和賞を受賞した



ラジェンドラ・パチャウリ

### 今までに発表された IPCCの報告書

Assessment Report(評価報告書)が、数年ごとに発表される

報告書(略称) 発行年

第1次評価報告書(FAR) 1990年

第2次評価報告書(SAR) 1995年

第3次評価報告書(TAR) 2001年

第4次評価報告書(AR4) 2007年

第5次評価報告書(AR5) 2014年

特定のテーマについて Special Report(特別報告)が、発表される

(例) Carbon Dioxide Capture and Storage

(二酸化炭素の回収・貯蔵) 2005年

### IPCCの3つのワーキンググループ(WG)

3つのWGと総会の目的・近々の開催場所・時期は次の通り

- WG I The Physical Science Basis 気候変動の自然科学的根拠 Stockholm, 23-26 September 2013 (今年9月)
- WG II Impacts, Adaptation and Vulnerability 気候変動の影響・適応・脆弱性 Yokohama, 25-29 March 2014
- WG II Mitigation of Climate Change 気候変動の緩和策 Berlin, 7-11 April 2014
- 総会 Synthesis Report (統合報告書) Copenhagen, 27-31 October 2014

## 「WG I 自然科学的根拠」の報告書の構成

| Summary for Policymakers 政策決定者向けの要約                                         | り 要約の抄訳(8頁)  | 36頁       |
|-----------------------------------------------------------------------------|--------------|-----------|
| Technical Summary                                                           |              | 129       |
| 1 Introduction                                                              | 序            | 64        |
| 2 Observations: Atmosphere and Surface                                      | 観測:大気と地表面    | 165       |
| 3 Observations: Ocean                                                       | 観測:海洋        | 106       |
| 4 Observations: Cryosphere                                                  | 観測:極地        | 105       |
| 5 Information from Paleoclimate Archives                                    | 古気象          | 140       |
| 6 Carbon and Other Biogeochemical Cycles                                    | 炭素循環         | 169       |
| 7 Clouds and Aerosols                                                       | 雲とエアゾール      | 149       |
| 8 Anthropogenic and Natural Radiative Forcing                               | 人為及び自然の放射強制力 | 141       |
| 9 Evaluation of Climate Models                                              | 気候モデル        | 207       |
| 10 Detection and Attribution of Climate Change                              | 気候変動の検出      | 134       |
| 11 Near-term Climate Change                                                 | 短期気候変動       | 123       |
| 12 Long-term Climate Change                                                 | 長期気候変動       | 177       |
| 13 Sea Level Change                                                         | 海面水位の変動      | 124       |
| 14 Climate Phenomena and their Relevance for Future Regional Climate Change |              |           |
|                                                                             | 将来の地域的気候変動   | 147       |
| Annex I: Atlas of Global and Regional Climate Projections 気候予測地図 85         |              |           |
| Annex II: Climate System Scenario Tables                                    | 気候システムのシナリオ  | <b>52</b> |
| Annex III: Glossary                                                         | 用語集          | 34        |
| 合計 2287頁                                                                    |              |           |

### WGIの第5次報告書を第4次報告書と比べてみると

- 1. 気候システムの温暖化は疑う余地がない。 1880~2012年の間に全地球平均地表温度は、0.85 ℃上昇 第4次では1850~2005年の間に、0.76 ℃上昇だった
- 2. 1992~2005年に3000m以深の水温が上昇している可能性 が高い(新見解)
- 3. 19世紀以降の海面水位の上昇率は、それ以前の2000年間 の平均的な上昇率よりも大きい(新見解)
- 4. CO<sub>2</sub>の累積排出量と全地球平均気温の上昇量は、ほぼ比例 関係にある(新見解)
- 5. 気候予測の精度が向上した スーパーコンピュータの性能と気候モデルが改善され、気候 変動の予測の精度が改善した

#### 気候システムのモデル化:気候に影響するいろいろな現象



IPCC 第4次評価報告書より

### シミュレーションのためのモデルの進歩(メッシュの微細化)



#### シミュレーションの際のメッシュは、益々微細になった

第5次報告書では、このようなメッシュも一部に使われている



IPCC 第5次評価報告書より 10

### 温暖化が人為的要因によることの証明

自然要因のみを考慮したモデル計算では、過去の気温が再現されないが、自然要因と人為要因の両方を考慮したモデル計算では、過去の気温が再現される。



### 気温の予測

#### 全地球平均地表温度の過去観測値と将来予測値

Global average surface temperature change



## 海面水位の予測

#### 全地球平均海面水位の上昇



### 文献の入手

- 1. IPCCトップページ(下記の2、3、4は ここからアクセスできます) http://www.ipcc.ch/
- 2. WG I 報告書のSummary for Policymakers http://www.climatechange2013.org/images/uploads/WGIAR5-SPM\_Approved27Sep2013.pdf
- 3. WG I 報告書のTechnical Summary http://www.climatechange2013.org/images/uploads/WGIAR5\_WGI-12Doc2b\_FinalDraft\_TechnicalSummary.pdf
- 4. WG I 報告書のすべての章の内容 http://www.climatechange2013.org/report/review-drafts/
- 5. WG I 報告書のSummary for Policymakersの文科省・気象庁・環境省による抄訳 IPCC第5 次評価報告書第1作業部会報告書 政策決定者向け要約(SPM)の概要(速報版) http://www.meti.go.jp/press/2013/09/20130927006/20130927006-2.pdf

上記のURLが改行されている場合は、連続して入力して下さい。 "\_" と "-" が混用されていますが、これで正しいです。

14

# おわりに

IPCC第5次報告書には、気候変動に関する最新の知見が満載されている。

地球温暖化は疑う余地がなく、1880~2012年の間に全地球平均地表温度は 0.85 [0.65~1.06] ℃ 上昇したといわれる。 [ ]は可能性5-95%の値

シミュレーションによると、温室効果ガスの排出シナリオ RCP8.5 の場合には、1986-2005年平均に比して、2100年には下記の上昇が予想される。

全地球平均地表温度は、3.7 [2.6~4.8] °C 全地球平均海面水位は、0.63 [0.45~0.82] m

IPCC報告書は、Websiteから容易に入手できる。 報告書を読むに当って、IPCCの権威におもねることなく、批判的精神で臨み たい。

また、IPCC報告の内容を政策に反映させることについては IPCCの責任外であることを認識したい。某新聞は、「IPCCの報告から原発は必要だ」と言っている。(情報リテラシー)



最後に、ご清聴に感謝します

この資料は下記からダウンロードできます http://nishida-s.com/cc/ipccAR5shoukai

お問合せは joy@nishida-s.com まで、どうぞ