

Figure 1

Human
Glial Cell Line-Derived
Neurotrophic Factor Receptor Protein

10 30 50
AATCTGGCCTCGAACACGCCATTCTCCGCGCCGTTCCAATAACCACAACTAACATCCCTA

70 90 110
ACGAGCATCCGAGCCGAGGGCTCTGCTCGAAATCGTCCTGGCCAACTCGGCCCTTCGA

130 150 170
GCTCTCGAAGATTACCGCATCTATTTTTTTCTTTTTCTTTCTAGCGCAGATA

190 210 230
AACTGAGCCCGGAAAGGAAAGGAGGGGGGGGACACCATTGCCCTGAAAGAATAATAA

250 270 290
GTAAAATAACAAACTGGCTCCTGCCGCAGCTGGACGCCGTTGAGTCCAGGTTGGG

310 330 350
TCGGACCTGAACCCCTAAAAGCGGAACCGCCTCCGCCCTGCCATCCGGAGCTGAGTC

370 390 410
GCCGGCGGCGGTGGCTGCTGCCAGACCCGGAGTTCTCTTTCACTGGATGGAGCTGAAC

430 450 470
TTTGGGCGGCCAGAGCAGCACAGCTGTCCGGGATCGCTGCACGCTGAGCTCCCTCGGCA

490 510 530
AGACCCAGCGCGGCTGGATTTTTGGGGGGGGGGACCAAGCCCCGCGCCGGCACC

550 570 590
ATGTTCTGGCGACCCCTGTACTTCGCGCTGCCGCTTGGACTTGCTCCTGTGGCGAA
M F L A T L Y F A L P L L D L L S A E

Figure 1 (continued)

610 630 650
GTGAGCGGCCGGAGACCGCCTGGATTGCGTGAAAGCCAGTGATCAGTGCCTGAAGGAGCAG
V S G G D R L D C V K A S D Q C L K E Q

670 690 710
AGCTGCAGCACCAAGTACCGCACGCTAAGGCAGTGCCTGGCGGGCAAGGAGACCAACTTC
S C S T K Y R T L R Q C V A G K E T N F

730 750 770
AGCCTGGCATCCGGCCTGGAGGCCAAGGATGAGTGCCTGGCGCCATGGAGGCCCTGAAG
S L A S G L E A K D E C R S A M E A L K

790 810 830
CAGAACTCGCTCTACAAC TGCCGCTGCAAGCGGGTATGAAGAAGGAGAAGAACTGCCTG
Q K S L Y N C R C K R G M K K E K N C L

850 870 890
CGCATTACTGGAGCATGTACCAGAGCCTGCAGGGAAATGATCTGCTGGAGGATTCCCCA
R I Y W S M Y Q S L Q G N D L L E D S P

910 930 950
TATGAACCAGTTAACAGCAGATTGTCAGATATATTCCGGTGGTCCCATTCATATCAGAT
Y E P V N S R L S D I F R V V P F I S D

970 990 1010
GTTTTCAAGTGGAGCACATTCCAAAGGAACAACTGCCTGGATGCAGCGAAGGCC
V F Q Q V E H I P K G N N C L D A A K A

1030 1050 1070
TGCAACCTCGACGACATTGCAAGAAGTACAGGTCGGCGTACATCACCCCGTGCACCACC
C N L D D I C K K Y R S A Y I T P C T T

1090 1110 1130
AGCGTGTCCAACGATGTCTGCAACCGCCGCAAGTGCCACAAGGCCCTCCGGCAGTTCTTT
S V S N D V C N R R K C H K A L R Q F F

Figure 1 (continued)

1150 1170 1190
GACAAGGTCCGGCCAAGCACAGCTACGGAATGCTTCTGCTCCTGCCGGACATGCC
D K V P A K H S Y G M L F C S C R D I A

1210 1230 - 1250
TGCACAGAGCGGAGGCAGACAGACCATCGTGCCTGTGTGCTCCTATGAAGAGAGGGAGAAG
C T E R R R Q T I V P V C S Y E E R E K

1270 1290 1310
CCCAACTGTTGAATTGCAGGACTCCTGCAAGACGAATTACATCTGCAGATCTGCCCT
P N C L N L Q D S C K T N Y I C R S R L

1330 1350 1370
GCGGATTTTTTACCAACTGCCAGCCAGAGTCAGGTCTGTCAGCAGCTGTCTAAAGGAA
A D F F T N C Q P E S R S V S S C L K E

1390 1410 1430
AACTACGCTGACTGCCCTCGCCTACTCGGGCTTATTGGCACAGTCATGACCCCCAAC
N Y A D C L L A Y S G L I G T V M T P N

1450 1470 1490
TACATAGACTCCAGTAGCCTCAGTGTGGCCCCATGGTGTGACTGCAGCAACAGTGGAAC
Y I D S S S L S V A P W C D C S N S G N

1510 1530 1550
GACCTAGAAGAGTGCTGAAATTTGAATTCTCAAGGACAATACATGTCTAAAAAT
D L E E C L K F L N F F K D N T C L K N

1570 1590 1610
GCAATTCAAGCCTTGGCAATGGCTCCGATGTGACCGTGTGGCAGCCAGCCTCCAGTA
A I Q A F G N G S D V T V W Q P A F P V

1630 1650 1670
CAGACCACCACTGCCACTACCACCACTGCCCTCCGGTTAAGAACAAAGCCCCGGGCA
Q T T T A T T T A L R V K N K P L G P

Figure 1 (continued)

1690 1710 1730
GCAGGGTCTGAGAATGAAATTCCCACTCATGTTTGCCACCGTGTGCAAATTACAGGCA
A G S E N E I P T H V L P P C A N L Q A

1750 1770 1790
CAGAACGCTGAAATCCAATGTGTCGGGCAATACACACACCTCTGTATTCCAATGGTAATTAT
Q K L K S N V S G N T H L C I S N G N Y

1810 1830 1850
GAAAAAGAAGGTCTCGGTGCTTCCAGGCCACATAACCACAAAATCAATGGCTGCTCCTCCA
E K E G L G A S S H I T T K S M A A P P

1870 1890 1910
AGCTGTGGTCTGAGCCCAC TGCTGGCCTGGTGGTAACCGCTCTGTCCACCCATTATCT
S C G L S P L L V L V V T A L S T L L S

1930 1950 1970
TTAACAGAAACATCATAGCTGCATTAACCAATATGGACATGTAAAAAGACAAAA
L T E T S *

1990 2010 2030
ACCAAGTTATCTGTTCCCTGTTCTCTGTATAAGCTGAAATTCCAGTTAGGAGCTCAGTT

2050 2070 2090
GAGAACAGTCCATTCAACTGGAACATTTTTTTT.CCTTTAAGAAAGCTTCTTGT

2110 2130 2150
GATCCTT.GGGGCTTCTGTGAAAAACCTGATGCCAGTGCTCCATCCAAACTCAGAAGGCTT

2170 2190 2210
TGGGATATGCTGTATTTAAAGGGACAGTTGTAACCTGGGCTGTAAAGCAAACGGGGC

2230 2250 2270
TGTGTTTCGATGATGATGAT.ATCATGAT.ATGAT.....

2290 2310 2330
.....GATTTAACAGTTACTTCTGGCCTTCCTAGCTAGAGAAGGAG

08966254-052092

Figure 1 (continued)

2350 2370 2390
TTAATATTCTAAGGTAACCTCCATATCTCCTTAATGACATTGATTCTAATGATATAA

2410 2430 2450
ATTCAGCCTACATTGATGCCAAGCTTTGCCACAAAGAAGATTCTTACCAAGAGTGG

2470 2490 2510
GCTTGTTGGAAACAGCTGGTACTGATGTCACCTTATATGTACTAGCATTCCACG

2530 2550
CTGATGTTATGTAACAGTTCTGCACTCTGTACAAAAGAAAA

Note: The dots in the above sequence listing from 2240 to 2300 indicate positions of divergence between different receptor clones. One of the human clones contains an insert of 39 nucleotides from 2258 to 2297 and has different bases at positions 2244 and 2253.

Figure 2

**Human
Glial Cell Line-Derived
Neurotrophic Factor Receptor Protein**

Figure 3

Rat
Glial Cell Line-Derived
Neurotrophic Factor Receptor Protein

08866354-052002

10 30 50

AGCTCGCTCTCCGGGGCAGTGGTGTGGATGCACCGGAGTTGGCTGGCAAGTTGG

70 90 110

GTCGGAACTGAACCCCTGAAAGCGGGTCCGCCTCCGCCCTCGCGCCCGCCGGATCTGA

130 150 170

GTCGCTGGCGCCGGTGGCGGCAGACGGAGTCTGCTCTCACCTGGATGGAGCT

190 210 230

GAACTTGAGTGGCCAGAGGAGCGCAGTCGCCGGGATCGCTGCACGCTGAGCTCTC

250 270 290

CCCGAGACCGGGCGGCGGCTTGGATTGGGGGGGACCAGCTGCGCGGAC

310 330 350

CATGTTCCCTAGCCACTCTGTACTTCGCGCTGCCACTCCTGGATTCGCTGATGTCGCGCA
M F L A T L Y F A L P L L D L L M S A E

370 390 410

GGTGAGTGGTGGAGACCGTCTGGACTGTGAAAGCCAGCGATCAGTGCCTGAAGGAACA
V S G G D R L D C V K A S D Q C L K E Q

430 450 470

GAGCTGCAGCACCAAGTACCGCACACTAAGGCAGTGGCTGGCGGGCAAGGAAACCAACTT
S C S T K Y R T L R Q C V A G K E T N F

490 510 530

CAGCCTGACATCCGGCCTTGAGGCCAAGGATGAGTGGCTAGCGCCATGGAGGCCTTGAA
S L T S G L E A K D E C R S A M E A L K

Figure 3 (continued)

550 570 590
GCAGAAGTCTCTGTACAAC TGCCGCTGCCAAGCGGGGCATGAAGAAAGAGAACATTGTCT
Q K S L Y N C R C K R G M K K E K N C L

610 630 650
GCGTATCTACTGGAGCATGTACCAGAGCCTGCAGGGAAATGACCTCCTGGAAGATTCCCC
R I Y W S M Y Q S L Q G N D L L E D S P

670 690 710
GTATGAGCCGGTTAACAGCAGGTTGTCAGATATATTCCGGCAGTCCC GTTCATATCAGA
Y E P V N S R L S D I F R A V P F I S D

730 750 770
TGTTTCCAGCAAGTGGAACACATTCAAAGGGAACAACTGCCTGGACGCAGCCAAGGC
V F Q Q V E H I S K G N N C L D A A K A

790 810 830
CTGCAACCTGGACGACACCTGTAAGAAGTACAGGT CGGCCTACATCACCCCTGCACCAC
C N L D D T C K K Y R S A Y I T P C T T

850 870 890
CAGCATGTCCAACGAGGTCTGCAA CGCCGTAAGTGCCACAAGGCCCTCAGGCAGTTCTT
S M S N E V C N R R K C H K A L R Q F F

910 930 950
CGACAAGGTTCCGGCAAGCACAGCTACGGGATGCTCTTGCTCCTGCCGGACATCGC
D K V P A K H S Y G M L F C S C R D I A

970 990 1010
CTGCACCGAGCGGGCGACAGACTATCGTCCC GTGTGCTCCTATGAAGAACGAGAGAG
C T E R R R Q T I V P V C S Y E E R E R

1030 1050 1070
GCCCAACTGCCTGAGTCTGCAAGACTCCTGCAAGACCAATTACATCTGCAGATCTGCCT
P N C L S L Q D S C K T N Y I C R S R L

Figure 3 (continued)

1090 1110 1130
TGCAGATTTTACCAACTGCCAGCCAGAGTCAGGCTGTCAAGGCTTAAGGA
A D F F T N C Q P E S R S V S N C L K E

1150 1170 - 1190
GAACTAGCAGACTGCCTCCTGGCCTACTCGGGACTGATTGGCACAGTCATGACTCCAA
N Y A D C L L A Y S G L I G T V M T P N

1210 1230 1250
CTACGTAGACTCCAGCAGCCTCAGCGTGGCACCATGGTGTGACTGCAGCAACAGCGGCAA
Y V D S S S L S V A P W C D C S N S G N

1270 1290 1310
TGACCTGGAAGACTGCTTGAATTTCTGAATTTTAAGGACAATACTGTCTCAAAAAA
D L E D C L K F L N F F K D N T C L K N

1330 1350 1370
TGCAATTCAAGCCTTGGCAATGGCTCAGATGTGACCATGTGGCAGCCAGCCCCCTCCAGT
A I Q A F G N G S D V T M W Q P A P P V

1390 1410 - 1430
CCAGACCACCACTGCCACCACTACCACTGCCTCCGGTCAAGAACAAAGCCTCTGGGCC
Q T T A T T T A F R V K N K P L G P

1450 1470 1490
AGCAGGGTCTGAGAATGAGATCCCCACACACGTTTACCAACCTGTGCGAATTGCAGGC
A G S E N E I P T H V L P P C A N L Q A

1510 1530 1550
TCAGAACGCTGAAATCCAATGTGTCGGTAGCACACACCTCTGTCTTGATAGTGATTT
Q K L K S N V S G S T H L C L S D S D F

1570 1590 1610
CGGAAAGGATGGTCTCGCTGGTGCCTCCAGCCACATAACCACAAAATCAATGGCTGCTCC
G K D G L A G A S S H I T T K S M A A P

08866354-052092

Figure 3 (continued)

1630 1650 1670
TCCCAGCTGCAGTCTGAGCTCACTGCCGGTGCTGATGCTCACCGCCCTGCTGCCCTGTT
P S C S L S S L P V L M L T A L A A L L

1690 1710 1730
ATCTGTATCGTTGGCAGAAACGTCGTAGCTGCATCCGGAAAAACAGTATGAAAAGACAAA
S V S L A E T S *

1750 1770 1790
AGAGAACCAAGTATTCTGTCCTGTCCTTTGTATATCTGAAAATCCAGTTTAAAAGCT

1810 1830 1850
CCGTTGAGAACAGTTCACCCAACCTGAACTCTTCCTTGTAAAGAAAGCTTGTGG

1870 1890 1910
CCCTCAGGGGCTTCTGTTGAAGAACTGCTACAGGGCTAATTCCAACCCATAAGGCTCTG

1930 1950 1970
GGCGTGGTGCCTTAAGGGACCATTGCACCATGTAAGCAAGCTGGCTTATCATG

1990 2010 2030
TGTTTGATGGTAGGGATGGTAGTGGTGTGATGATGGTAATTAAACAGCTTGAACCCCTG

2050 2070 2090
TTCTCTACTGGTTAGAACAGGAGATACTATTGATAAAGATTCTCCATGTCTTACTC

2110 2130
AGCAGCATTGCCTCTGAAGACAGGCCCGCAGCCGTCG

0 8 8 6 6 3 5 4 0 5 2 0 6

Figure 4

Rat
Glial Cell Line-Derived
Neurotrophic Factor Receptor Protein

M F L A T L Y F A L P L L D L L M S A E 20
V S G G D R L D C V K A S D Q C L K E Q 40
S C S T K Y R T L R Q C V A G K E T N F 60
S L T S G L E A K D E C R S A M E A L K 80
Q K S L Y N C R C K R G M K K E K N C L 100
R I Y W S M Y Q S L Q G N D L L E D S P 120
Y E P V N S R L S D I F R A V P F I S D 140
V F Q Q V E H I S K G N N C L D A A K A 160
C N L D D T C K K Y R S A Y I T P C T T 180
S M S N E V C N R R K C H K A L R Q F F 200
D K V P A K H S Y G M L F C S C R D I A 220
C T E R R R Q T I V P V C S Y E E R E R 240
P N C L S L Q D S C K T N Y I C R S R L 260
A D F F T N C Q P E S R S V S N C L K E 280
N Y A D C L L A Y S G L I G T V M T P N 300
Y V D S S S L S V A P W C D C S N S G N 320
D L E D C L K F L N F F K D N T C L K N 340
A I Q A F G N G S D V T M W Q P A P P V 360
Q T T T A T T T T A F R V K N K P L G P 380
A G S E N E I P T H V L P P C A N L Q A 400
Q K L K S N V S G S T H L C L S D S D F 420
G K D G L A G A S S H I T T K S M A A P 440
P S C S L S S L P V L M L T A L A A L L 460
S V S L A E T S * 468

Figure 5

Human GDNF receptor Clones -- Alignment to generate consensus sequence

	- 237		- 188
Gdnfr	AATCTGGCCT CGGAACACGC CATTCTCCGC GCCGCTTCCA ATAACC ACTA		
Hsgr-21af	TCTGGCCT CGGAACACGC CATTCTCCGC GCCGCTTCCA ATAACC ACTA		
Hsgr-21bf	AATCTGGCCT CGGAACACGC CATTCTCCGC GCCGCTTCCA ATAACC ACTA		
21acon	TCTGGCCT CGGAACACGC CATTCTCCGC GCCGCTTCCA ATAACC ACTA		
21bcon	AATCTGGCCT CGGAACACGC CATTCTCCGC GCCGCTTCCA ATAACC ACTA		
	- 187		- 138
Gdnfr	ACATCCCTAA CGAGCATCCG AGCCGAGGGC TCTGCTCGGA AATCGTCCTG		
Hsgr-21af	ACATCCCTAA CGAGCATCCG AGCCGAGGGC TCTGCTCGGA AATCGTCCTG		
Hsgr-21bf	ACATCCCTAA CGAGCATCCG AGCCGAGGGC TCTGCTCGGA AATCGTCCTG		
21acon	ACATCCCTAA CGAGCATCCG AGCCGAGGGC TCTGCTCGGA AATCGTCCTG		
21bcon	ACATCCCTAA CGAGCATCCG AGCCGAGGGC TCTGCTCGGA AATCGTCCTG		
	- 137		- 88
Gdnfr	GCCCAACTCG GCCCTTCGAG CTCTCGAAGA TTACCGCATC TATTTTTTTT		
Hsgr-21af	GCCCAACTCG GCCCTTCGAG CTCTCGAAGA TTACCGCATC TATTTTTTTT		
Hsgr-21bf	GCCCAACTCG GCCCTTCGAG CTCTCGAAGA TTACCGCATC TATTTTTTTT		
21acon	GCCCAACTCG GCCCTTCGAG CTCTCGAAGA TTACCGCATC TATTTTTTTT		
21bcon	GCCCAACTCG GCCCTTCGAG CTCTCGAAGA TTACCGCATC TATTTTTTTT		
	- 87		- 38
Gdnfr	TTCTTTTTT TCTTTTCCTA GCGCAGATAA AGTGAGCCCG GAAAGGGAAG		
Hsgr-21af	TTCTTTTTT TCTTTTCCTA GCGCAGATAA AGTGAGCCCG GAAAGGGAAG		
Hsgr-21bf	TTCTTTTTT TCTTTTCCTA GCGCAGATAA AGTGAGCCCG GAAAGGGAAG		
21acon	TTCTTTTTT TCTTTTCCTA GCGCAGATAA AGTGAGCCCG GAAAGGGAAG		
21bcon	TTCTTTTTT TCTTTTCCTA GCGCAGATAA AGTGAGCCCG GAAAGGGAAG		

Figure 5 (continued)

	- 37	12
Gdnfr	GAGGGGGCGG GGACACCATT GCCCTGAAAG AATAAATAAG TAAATAAAC	
Hsgr-21af	GAGGGGGCGG GGACACCATT GCCCTGAAAG AATAAATAAG TAAATAAAC	
Hsgr-21bf	GAGGGGGCGG GGACACCATT GCCCTGAAAG AATAAATAAG TAAATAAAC	
21acon	GAGGGGGCGG GGACACCATT GCCCTGAAAG AATAAATAAG TAAATAAAC	
21bcon	GAGGGGGCGG GGACACCATT GCCCTGAAAG AATAAATAAG TAAATAAAC	
	13	62
Gdnfr	AACTGGCTCC TCGCCGCAGC TGGACGCGGT CGGTTGAGTC CAGGTTGGGT	
Hsgr-21af	AACTGGCTCC TCGCCGCAGC TGGACGCGGT CGGTTGAGTC CAGGTTGGGT	
Hsgr-21bf	AACTGGCTCC TCGCCGCAGC TGGACGCGGT CGGTTGAGTC CAGGTTGGGT	
21acon	AACTGGCTCC TCGCCGCAGC TGGACGCGGT CGGTTGAGTC CAGGTTGGGT	
21bcon	AACTGGCTCC TCGCCGCAGC TGGACGCGGT CGGTTGAGTC CAGGTTGGGT	
	63	112
Gdnfr	CGGACCTGAA CCCCTAAAAG CGGAACCGCC TCCC GCCATCCC	GG
Hsgr-21af	CGGACCTGAA CCCCTAAAAG CGGAACCGCC TCCC GCCATCCC	GG
Hsgr-21bf	CGGACCTGAA CCCCTAAAAG CGGAACCGCC TCCC GCCATCCC	GG
21acon	CGGACCTGAA CCCCTAAAAG CGGAACCGCC TCCC GCCATCCC	GG
21bcon	CGGACCTGAA CCCCTAAAAG CGGAACCGCC TCCC GCCATCCC	GG
	113	162
Gdnfr	AGCTGAGTCG CCGGCGGCCGG TGGCTGCTGC CAGACCCGG A GTT CCT CTT	
Hsgr-21af	AGCTGAGTCG CCGGCGGCCGG TGGCTGCTGC CAGACCCGG A GTT CCT CTT	
Hsgr-21bf	AGCTGAGTCG CCGGCGGCCGG TGGCTGCTGC CAGACCCGG A GTT CCT CTT	
21acon	AGCTGAGTCG CCGGCGGCCGG TGGCTGCTGC CAGACCCGG A GTT CCT CTT	
21bcon	AGCTGAGTCG CCGGCGGCCGG TGGCTGCTGC CAGACCCGG A GTT CCT CTT	
	163	212
Gdnfr	TCACTGGATG GAGCTGA ACT TTGGCGGCC AGAGCAGCAC AGCTGTCCGG	
Hsgr-21af	TCACTGGATG GAGCTGA ACT TTGGCGGCC AGAGCAGCAC AGCTGTCCGG	
Hsgr-21bf	TCACTGGATG GAGCTGA ACT TTGGCGGCC AGAGCAGCAC AGCTGTCCGG	
21acon	TCACTGGATG GAGCTGA ACT TTGGCGGCC AGAGCAGCAC AGCTGTCCGG	
21bcon	TCACTGGATG GAGCTGA ACT TTGGCGGCC AGAGCAGCAC AGCTGTCCGG	

Figure 5 (continued)

	213	262
Gdnfr	GGATCGCTGC ACGCTGAGCT CCCTCGGCAA GACCCAGCGG CGGCTCGGGA	
Hsgr-21af	GGATCGCTGC ACGCTGAGCT CCCTCGGCAA GACCCAGCGG CGGCTCGGGA	
Hsgr-21bf	GGATCGCTGC ACGCTGAGCT CCCTCGGCAA GACCCAGCGG CGGCTCGGGA	
21acon	GGATCGCTGC ACGCTGAGCT CCCTCGGCAA GACCCAGCGG CGGCTCGGGA	
21bcon	GGATCGCTGC ACGCTGAGCT CCCTCGGCAA GACCCAGCGG CGGCTCGGGA	
	263	312
Gdnfr	TTTTTTTGGG GGGGCGGGGA CCAGCCCCGC GCCGGCACCA TGTTCCCTGGC	
Hsgr-21af	TTTTTTTGGG	
Hsgr-21bf	TTTTTTTGGG	
21acon	TTTTTTTGGG GGGGCGGGGA CCAGCCCCGC GCCGGCACCA TGTTCCCTGGC	
21bcon	TTTTTTTGGG GGGGCGGGGA CCAGCCCCGC GCCGGCACCA TGTTCCCTGGC	
	313	362
Gdnfr	GaCCCTGTAC TTTCGCGCTGC CGCTCTTGGA CTTGCTCCTG TCGGCCGAAG	
21acon	GNCCCTGTAC TTTCGCGCTGC CGCTCTTGGA CTTGCTCCTG TCGGCCGAAG	
21bcon	GACCCTGTAC TTTCGCGCTGC CGCTCTTGGA CTTGCTCCTG TCGGCCGAAG	
	363	412
Gdnfr	TGAGCGGCGG AGACCGCCTG GATTGCGTGA AAGCCAGTGA TCAGTGCCTG	
21acon	TGAGCGGCGG AGACCGCCTG GATTGCGTGA AAGCCAGTGA TCAGTGCCTG	
21bcon	TGAGCGGCGG AGACCGCCTG GATTGCGTGA AAGCCAGTGA TCAGTGCCTG	
	413	462
Gdnfr	AAGGAGCAGA GCTGCAGCAC CAAGTACCGC ACGCTAACGC AGTGCCTGGC	
21acon	AAGGAGCAGA GCTGCAGCAC CAAGTACCGC ACGCTAACGC AGTGCCTGGC	
21bcon	AAGGAGCAGA GCTGCAGCAC CAAGTACCGC ACGCTAACGC AGTGCCTGGC	
	463	512
Gdnfr	GGGCAAGGAG ACCAACTTCA GCCTGGCATC CGGCCTGGAG GCCAAGGATG	
21acon	GGGCAAGGAG ACCAACTTCA GCCTGGCATC CGGCCTGGAG GCCAAGGATG	
21bcon	GGGCAAGGAG ACCAACTTCA GCCTGGCATC CGGCCTGGAG GCCAAGGATG	

Figure 5 (continued)

	513		562
Gdnfr	AGTGCCGCAG CGCCATGGAG GCCCTGAAGC AGAAGTCGCT CTACA ^A CTGC		
21acon	AGTGCCGCAG CGCCATGGAG GCCCTGAAGC AGAAGTCGCT CTACA ^A CTGC		
21bcon	AGTGCCGCAG CGCCATGGAG GCCCTGAAGC AGAAGTCGCT CTACA ^A CTGC		
	563		612
Gdnfr	CGCTGCAAGC GGGGTATGAA GAAGGAGAAG AACTGCCTGC GCATTTACTG		
21acon	CGCTGCAAGC GGGGTATGAA GAAGGAGAAG AACTGCCTGC GCATTTACTG		
21bcon	CGCTGCAAGC GGGGTATGAA GAAGGAGAAG AACTGCCTGC GCATTTACTG		
	613		662
Gdnfr	GAGCATGTAC CAGAGCCTGC AGGGAAATGA TCTGCTGGAG GATTCCCCAT		
21acon	GAGCATGTAC CAGAGCCTGC AGGGAAATGA TCTGCTGGAG GATTCCCCAT		
21bcon	GAGCATGTAC CAGAGCCTGC AGGGAAATGA TCTGCTGGAG GATTCCCCAT		
	663		712
Gdnfr	ATGAACCAGT TAACAGCAGA TTGTCAGATA TATTCCGGGT GGTCCCATTG		
21acon	ATGAACCAGT TAACAGCAGA TTGTCAGATA TATTCCGGGT GGTCCCATTG		
21bcon	ATGAACCAGT TAACAGCAGA TTGTCAGATA TATTCCGGGT GGTCCCATTG		
	713		762
Gdnfr	ATATCAGATG TTTTCAGCA AGTGGAGCAC ATTCCCAAAG GGAACA ^A CTG		
21acon	ATATCAGATG TTTTCAGCA AGTGGAGCAC ATTCCCAAAG GGAACA ^A CTG		
21bcon	ATATCAGATG TTTTCAGCA AGTGGAGCAC ATTCCCAAAG GGAACA ^A CTG		
	763		812
Gdnfr	CCTGGATGCA GCGAAGGCCT GCAACCTCGA CGACATTGCA AAGAAGTACA		
21acon	CCTGGATGCA GCGAAGGCCT GCAACCTCGA CGACATTGCA AAGAAGTACA		
21bcon	CCTGGATGCA GCGAAGGCCT GCAACCTCGA CGACATTGCA AAGAAGTACA		
	813		862
Gdnfr	GGTCGGCGTA CATCACCCCG TGCA ^A CCACCA GCGTGTCCAA GATGTCTGC		
Hsgr-29a	GTCGGCGTA CATCACCCCG TGCA ^A CCACCA GCGTGTCCAA TGATGTCTGC		
21acon	GGTCGGCGTA CATCACCCCG TGCA ^A CCACCA GCGTGTCCAA CGATGTCTGC		
21bcon	GGTCGGCGTA CATCACCCCG TGCA ^A CCACCA GCGTGTCCAA CGATGTCTGC		
29brc	GTCGGCGTA CATCACCCCG TGCA ^A CCACCA GCGTGTCCAA TGATGTCTGC		

Figure 5 (continued)

	863	912
Gdnfr	AACCGCCGCA AGTGCCACAA GGCCCTCCGG CAGTTCTTG ACAAGGTCCC	
Hsgr-29a	AACCGCCGCA AGTGCCACAA GGCCCTCCGG CAGTTCTTG ACAAGGTCCC	
21acon	AACCGCCGCA AGTGCCACAA GGCCCTCCGG CAGTTCTTG ACAAGGTCCC	
21bcon	AACCGCCGCA AGTGCCACAA GGCCCTCCGG CAGTTCTTG ACAAGGTCCC	
29brc	AACCGCCGCA AGTGCCACAA GGCCCTCCGG CAGTTCTTG ACAAGGTCCC	
	913	962
Gdnfr	GGCCAAGCAC AGCTACGGAA TGCTCTTCTG CTCCCTGCCGG GACATCGCCT	
Hsgr-29a	GGCCAAGCAC AGCTACGGAA TGCTCTTCTG CTCCCTGCCGG GACATCGCCT	
21acon	GGCCAAGCAC AGCTACGGAA TGCTCTTCTG CTCCCTGCCGG GACATCGCCT	
21bcon	GGCCAAGCAC AGCTACGGAA TGCTCTTCTG CTCCCTGCCGG GACATCGCCT	
29brc	GGCCAAGCAC AGCTACGGAA TGCTCTTCTG CTCCCTGCCGG GACATCGCCT	
	963	1012
Gdnfr	GCACAGAGCG GAGGCGACAG ACCATCGTGC CTGTGTGCTC CTATGAAGAG	
Hsgr-29a	GCACAGAGCG GAGGCGACAG ACCATCGTGC CTGTGTGCTC CTATGAAGAG	
21acon	GCACAGAGCG GAGGCGACAG ACCATCGTGC CTGTGTGCTC CTATGAAGAG	
21bcon	GCACAGAGCG GAGGCGACAG ACCATCGTGC CTGTGTGCTC CTATGAAGAG	
29brc	GCACAGAGCG GAGGCGACAG ACCATCGTGC CTGTGTGCTC CTATGAAGAG	
	1013	1062
Gdnfr	AGGGAGAAC CCAAATGTTT GAATTGCGAG GACTCCTGCA AGACGAATTA	
Hsgr-21ar		GAATTGCGAG GACTCCTGCA AGACGAATTA
Hsgr-21br		A
Hsgr-29a	AGGGAGAAC CCAAATGTTT GAATTGCGAG GACTCCTGCA AGACGAATTA	
21acon	AGGGAGAAC CCAAATGTTT GAATTGCGAG GACTCCTGCA AGACGAATTA	
21bcon	AGGGAGAAC CCAAATGTTT GAATTGCGAG GACTCCTGCA AGACGAATTA	
29brc	AGGGAGAAC CCAAATGTTT GAATTGCGAG GACTCCTGCA AGACGAATTA	

Figure 5 (continued)

	1063	
Gdnfr	CATCTGCAGA TCTCGCCTTG CGGATTTTT TACCAACTGC CAGCCAGAGT	1112
Hsgr-21ar	CATCTGCAGA TCTCGCCTTG CGGATTTTT TACCAACTGC CAGCCAGAGT	
Hsgr-21br	CATCTGCAGA TCTCGCCTTG CGGATTTTT TACCAACTGC CAGCCAGAGT	
Hsgr-29a	CATCTGCAGA TCTCGCCTTG CGGATTTTT TACCAACTGC CAGCCAGAGT	
21acon	CATCTGCAGA TCTCGCCTTG CGGATTTTT TACCAACTGC CAGCCAGAGT	
21bcon	CATCTGCAGA TCTCGCCTTG CGGATTTTT TACCAACTGC CAGCCAGAGT	
29brc	CATCTGCAGA TCTCGCCTTG CGGATTTTT TACCAACTGC CAGCCAGAGT	
	1113	
Gdnfr	CAAGGTCTGT CAGCAGCTGT CTAAAGGAAA ACTACGCTGA CTGCCCTCCTC	1162
Hsgr-21ar	CAAGGTCTGT CAGCAGCTGT CTAAAGGAAA ACTACGCTGA CTGCCCTCCTC	
Hsgr-21br	CAAGGTCTGT CAGCAGCTGT CTAAAGGAAA ACTACGCTGA CTGCCCTCCTC	
Hsgr-29a	CAAGGTCTGT CAGCAGCTGT CTAAAGGAAA ACTACGCTGA CTGCCCTCCTC	
21acon	CAAGGTCTGT CAGCAGCTGT CTAAAGGAAA ACTACGCTGA CTGCCCTCCTC	
21bcon	CAAGGTCTGT CAGCAGCTGT CTAAAGGAAA ACTACGCTGA CTGCCCTCCTC	
29brc	CAAGGTCTGT CAGCAGCTGT CTAAAGGAAA ACTACGCTGA CTGCCCTCCTC	
	1163	
Gdnfr	GCCTACTCGG GGCTTATTGG CACAGTCATG ACCCCCCACT ACATAGACTC	1212
Hsgr-21ar	GCCTACTCGG GGCTTATTGG CACAGTCATG ACCCCCCACT ACATAGACTC	
Hsgr-21br	GCCTACTCGG GGCTTATTGG CACAGTCATG ACCCCCCACT ACATAGACTC	
Hsgr-29a	GCCTACTCGG GGCTTATTGG CACAGTCATG ACCCCCCACT ACATAGACTC	
21acon	GCCTACTCGG GGCTTATTGG CACAGTCATG ACCCCCCACT ACATAGACTC	
21bcon	GCCTACTCGG GGCTTATTGG CACAGTCATG ACCCCCCACT ACATAGACTC	
29brc	GCCTACTCGG GGCTTATTGG CACAGTCATG ACCCCCCACT ACATAGACTC	
	1213	
Gdnfr	CAGTAGCCTC AGTGTGGCCC CATGGTGTGA CTGCAGCAAC AGTGGGAACG	1262
Hsgr-2		TGGGAACG
Hsgr-21ar	CAGTAGCCTC AGTGTGGCCC CATGGTGTGA CTGCAGCAAC AGTGGGAACG	
Hsgr-21br	CAGTAGCCTC AGTGTGGCCC CATGGTGTGA CTGCAGCAAC AGTGGGAACG	
Hsgr-29a	CAGTAGCCTC AGTGTGGCCC CATGGTGTGA CTGCAGCAAC AGTGGGAACG	
21acon	CAGTAGCCTC AGTGTGGCCC CATGGTGTGA CTGCAGCAAC AGTGGGAACG	
21bcon	CAGTAGCCTC AGTGTGGCCC CATGGTGTGA CTGCAGCAAC AGTGGGAACG	
29brc	CAGTAGCCTC AGTGTGGCCC CATGGTGTGA CTGCAGCAAC AGTGGGAACG	

Figure 5 (continued)

	1263	1312
Gdnfr	ACCTAGAAGA GTGCTTGAAA TTTTGAAATT TCTTCAAGGA CAATACATGT	
Hsgr-2	ACCTAGAAGA GTGCTTGAAA TTTTGAAATT TCTTCAAGGA CAATACATGT	
Hsgr-9	A GTGCTTGAAA TTTTGAAATT TCTTCAAGGA CAATACATGT	
Hsgr-21ar	ACCTAGAAGA GTGCTTGAAA TTTTGAAATT TCTTCAAGGA CAATACATGT	
Hsgr-21br	ACCTAGAAGA GTGCTTGAAA TTTTGAAATT TCTTCAAGGA CAATACATGT	
Hsgr-29a	ACCTAGAAGA GTGCTTGAAA TTTTGAAATT TCTTCAAGGA CAATACATGT	
21acon	ACCTAGAAGA GTGCTTGAAA TTTTGAAATT TCTTCAAGGA CAATACATGT	
21bcon	ACCTAGAAGA GTGCTTGAAA TTTTGAAATT TCTTCAAGGA CAATACATGT	
29brc	ACCTAGAAGA GTGCTTGAAA TTTTGAAATT TCTTCAAGGA CAATACATGT	
	1313	1362
Gdnfr	CTTAAAAATG CAATTCAAGC CTTTGGCAAT GGCTCCGATG TGACCGTGTG	
Hsgr-2	CTTAAAAATG CAATTCAAGC CTTTGGCAAT GGCTCCGATG TGACCGTGTG	
Hsgr-9	CTTAAAAATG CAATTCAAGC CTTTGGCAAT GGCTCCGATG TGACCGTGTG	
Hsgr-21ar	CTTAAAAATG CAATTCAAGC CTTTGGCAAT GGCTCCGATG TGACCGTGTG	
Hsgr-21br	CTTAAAAATG CAATTCAAGC CTTTGGCAAT GGCTCCGATG TGACCGTGTG	
Hsgr-29a	CTTAAAAATG CAATTCAAGC CTTTGGCAAT GGCTCCGATG TGACCGTGTG	
21acon	CTTAAAAATG CAATTCAAGC CTTTGGCAAT GGCTCCGATG TGACCGTGTG	
21bcon	CTTAAAAATG CAATTCAAGC CTTTGGCAAT GGCTCCGATG TGACCGTGTG	
29brc	CTTAAAAATG CAATTCAAGC CTTTGGCAAT GGCTCCGATG TGACCGTGTG	
	1363	1412
Gdnfr	GCAGCCAGCC TTCCCAGTAC AGACCACCAC TGCCaCTACC ACCACTGCC	
Hsgr-2	GCAGCCAGCC TTCCCAGTAC AGACCACCAC TGCCACTACC ACCACTGCC	
Hsgr-9	GCAGCCAGCC TTCCCAGTAC AGACCACCAC TGCCACTACC ACCACTGCC	
Hsgr-21ar	GCAGCCAGCC TTCCCAGTAC AGACCACCAC TGCCACTACC ACCACTGCC	
Hsgr-21br	GCAGCCAGCC TTCCCAGTAC AGACCACCAC TGCCACTACC ACCACTGCC	
Hsgr-29a	GCAGCCAGCC TTCCCAGTAC AGACCACCAC TGCCGCTACC ACCACTGCC	
21acon	GCAGCCAGCC TTCCCAGTAC AGACCACCAC TGCCACTACC ACCACTGCC	
21bcon	GCAGCCAGCC TTCCCAGTAC AGACCACCAC TGCCACTACC ACCACTGCC	
29brc	GCAGCCAGCC TTCCCAGTAC AGACCACCAC TGCCGCTACC ACCACTGCC	

Figure 5 (continued)

	1413	1462
Gdnfr	TCCGGGTTAA GAACAAGCCC CTGGGGCCAG CAGGGTCTGA	GAATGAAATT
Hsgr-2	TCCGGGTTAA GAACAAGCCC CTGGGGCCAG CAGGGTCTGA	GAATGAAATT
Hsgr-9	TCCGGGTTAA GAACAAGCCC CTGGGGCCAG CAGGGTCTGA	GAATGAAATT
Hsgr-21ar	TCCGGGTTAA GAACAAGCCC CTGGGGCCAG CAGGGTCTGA	GAATGAAATT
Hsgr-21br	TCCGGGTTAA GAACAAGCCC CTGGGGCCAG CAGGGTCTGA	GAATGAAATT
Hsgr-29a	TCCGGGTTAA GAACAAGCCC CTGGGGCCAG CAGGGTCTGA	GAATGAAATT
21acon	TCCGGGTTAA GAACAAGCCC CTGGGGCCAG CAGGGTCTGA	GAATGAAATT
21bcon	TCCGGGTTAA GAACAAGCCC CTGGGGCCAG CAGGGTCTGA	GAATGAAATT
29brc	TCCGGGTTAA GAACAAGCCC CTGGGGCCAG CAGGGTCTGA	GAATGAAATT
	1463	1512
Gdnfr	CCCACTCATG TTTTGCCACC GTGTGCAAAT TTACAGGCAC	AGAAGCTGAA
Hsgr-2	CCCACTCATG TTTTGCCACC GTGTGCAAAT TTACAGGCAC	AGAAGCTGAA
Hsgr-9	CCCACTCATG TTTGCCACC GTGTGCAAAT TTACAGGCAC	AGAAGCTGAA
Hsgr-21ar	CCCACTCATG TTTGCCACC GTGTGCAAAT TTACAGGCAC	AGAAGCTGAA
Hsgr-21br	CCCACTCATG TTTGCCACC GTGTGCAAAT TTACAGGCAC	AGAAGCTGAA
Hsgr-29a	CCCACTCATG TTTGCCACC GTGTGCAAAT TTACAGGCAC	AGAAGCTGAA
21acon	CCCACTCATG TTTGCCACC GTGTGCAAAT TTACAGGCAC	AGAAGCTGAA
21bcon	CCCACTCATG TTTGCCACC GTGTGCAAAT TTACAGGCAC	AGAAGCTGAA
29brc	CCCACTCATG TTTGCCACC GTGTGCAAAT TTACAGGCAC	AGAAGCTGAA
	1513	1562
Gdnfr	ATCCAATGTG TCGGGCAATA CACACCTCTG TATTTCCAAT	GGTAATTATG
Hsgr-2	ATCCAATGTG TCGGGCAATA CACACCTCTG TATTTCCAAT	GGTAATTATG
Hsgr-9	ATCCAATGTG TCGGGCAATA CACACCTCTG TATTTCCAAT	GGTAATTATG
Hsgr-21ar	ATCCAATGTG TCGGGCAATA CACACCTCTG TATTTCCAAT	GGTAATTATG
Hsgr-21br	ATCCAATGTG TCGGGCAATA CACACCTCTG TATTTCCAAT	GGTAATTATG
21acon	ATCCAATGTG TCGGGCAATA CACACCTCTG TATTTCCAAT	GGTAATTATG
21bcon	ATCCAATGTG TCGGGCAATA CACACCTCTG TATTTCCAAT	GGTAATTATG
29brc	ATCCAATGTG TCGGGCAATA CACACCTCTG TATTTCCAAT	GGTAATTATG

09866354 - 052093

Figure 5 (continued)

	1563		1612
Gdnfr	AAAAAGAAGG TCTCGGTGCT TCCAGCCACA TAACCACAAA ATCAATGGCT		
Hsgr-2	AAAAAGAAGG TCTCGGTGCT TCCAGCCACA TAACCACAAA ATCAATGGCT		
Hsgr-9	AAAAAGAAGG TCTCGGTGCT TCCAGCCACA TAACCACAAA ATCAATGGCT		
Hsgr-21ar	AAAAAGAAGG TCTCGGTGCT TCCAGCCACA TAACCACAAA ATCAATGGCT		
Hsgr-21br	AAAAAGAAGG TCTCGGTGCT TCCAGCCACA TAACCACAAA ATCAATGGCT		
21acon	AAAAAGAAGG TCTCGGTGCT TCCAGCCACA TAACCACAAA ATCAATGGCT		
21bcon	AAAAAGAAGG TCTCGGTGCT TCCAGCCACA TAACCACAAA ATCAATGGCT		
29brc	AAAAAGAAGG TCTCGGTGCT TCCAGCCACA TAACCACAAA ATCAATGGCT		
	1613		1662
Gdnfr	GCTCCTCCAA GCTGTGGTCT GAGCCCCTG CTGGTCCTGG TGTTAACCGC		
Hsgr-2	GCTCCTCCAA GCTGTGGTCT GAGCCCCTG CTGGTCCTGG TGTTAACCGC		
Hsgr-9	GCTCCTCCAA GCTGTGGTCT GAGCCCCTG CTGGTCCTGG TGTTAACCGC		
Hsgr-21ar	GCTCCTCCAA GCTGTGGTCT GAGCCCCTG CTGGTCCTGG TGTTAACCGC		
Hsgr-21br	GCTCCTCCAA GCTGTGGTCT GAGCCCCTG CTGGTCCTGG TGTTAACCGC		
21acon	GCTCCTCCAA GCTGTGGTCT GAGCCCCTG CTGGTCCTGG TGTTAACCGC		
21bcon	GCTCCTCCAA GCTGTGGTCT GAGCCCCTG CTGGTCCTGG TGTTAACCGC		
29brc	GCTCCTCCAA GCTGTGGTCT GAGCCCCTG CTGGTCCTGG TGTTAACCGC		
	1663		1712
Gdnfr	TCTGTCCACC CTATTATCTT TAACAGAAAC ATCATAGCTG CATTAAAAAA		
Hsgr-2	TCTGTCCACC CTATTATCTT TAACAGAAAC ATCATAGCTG CATTAAAAAA		
Hsgr-9	TCTGTCCACC CTATTATCTT TAACAGAAAC ATCATAGCTG CATTAAAAAA		
Hsgr-21ar	TCTGTCCACC CTATTATCTT TAACAGAAA		
Hsgr-21br	TCTGTCCACC CTATTATCTT TAACAGAAA		
21acon	TCTGTCCACC CTATTATCTT TAACAGAAA		
21bcon	TCTGTCCACC CTATTATCTT TAACAGAAA		
29brc	TCTGTCCACC CTATTATCTT TAACAGAAAC ATCATAGCTG CATTAAAAAA		
	1713		1762
Gdnfr	ATACAATATG GACATGTAAA AAGACAAAAA CCAAGTTATC TGTTTCCTGT		
Hsgr-2	ATACAATATG GACATGTAAA AAGACAAAAA CCAAGTTATC TGTTTCCTGT		
Hsgr-9	ATACAATATG GACATGTAAA AAGACAAAAA CCAAGTTATC TGTTTCCTGT		
29brc	ATACAATATG GACATGTAAA AAGACAAAAA CCAAGTTATC TGTTTCCTGT		

Figure 5 (continued)

Figure 5 (continued)

	2063	2112
Gdnfr	AACAGTTTA CTTCTGGCCT TTCCTAGCTA GAGAAGGAGT TAATATTTCT	
Hsgr-2	AACAGTTTA CTTCTGGCCT TTCCTAGCTA GAGAAGGAGT TAATATTTCT	
Hsgr-9	AACAGTTTA CTTCTGGCCT TTCCTAGCTA GAGAAGGAGT TAATATTTCT	
29brc	AACAGTTTA CTTCTGGCCT TTCCTAGCTA GAGAAGGAGT TAATATTTCT	
	2113	2162
Gdnfr	AAGGTAACTC CCATATCTCC TTTAATGACA TTGATTTCTA ATGATATAAA	
Hsgr-2	AAGGTAACTC CCATATCTCC TTTAATGACA TTGATTTCTA ATGATATAAA	
Hsgr-9	AAGGTAACTC CCATATCTCC TTTAATGACA TTGATTTCTA ATGATATAAA	
29brc	AAGGTAACTC CCATATCTCC TTTAATGACA TTGATTTCTA ATGATATAAA	
	2163	2212
Gdnfr	TTTCAGCCTA CATTGATGCC AAGCTTTTT GCCACAAAGA AGATTCTTAC	
Hsgr-2	TTTCAGCCTA CATTGATGCC AAGCTTTTT GCCACAAAGA AGATTCTTAC	
Hsgr-9	TTTCAGCCTA CATTGATGCC AAGCTTTTT GCCACAAAGA AGATTCTTAC	
29brc	TTTCAGCCTA CATTGATGCC AAGCTTTTT GCCACAAAGA AGATTCTTAC	
	2213	2262
Gdnfr	CAAGAGTGGG CTTTGTGGAA ACAGCTGGTA CTGATGTTCA CCTTTATATA	
Hsgr-2	CAAGAGTGGG CTTTGTGGAA ACAGCTGGTA CTGATGTTCA CCTTTATATA	
Hsgr-9	CAAGAGTGGG CTTTGTGGAA ACAGCTGGTA CTGATGTTCA CCTTTATATA	
29brc	CAAGAGTGGG CTTTGTGGAA ACAGCTGGTA CTGATGTTCA CCTTTATATA	
	2263	2312
Gdnfr	TGTACTAGCA TTTTCCACGC TGATGTTAT GTACTGTAAA CAGTTCTGCA	
Hsgr-2	TGTACTAGCA TTTTCCACGC TGATGTTAT GTACTGTAAA CAGTTCTGCA	
Hsgr-9	TGTACTAGCA TTTTCCACGC TGATGTTAT GTACTGTAAA CAGTTCTGCA	
29brc	TGTACTAGCA TTTTCCACGC TGATGTTAT GTACTGTAAA CAGTTCTGCA	
	2313	2362
Gdnfr	CTCTTGACAA AAAGAAAAAA CACCTGTCAC ATCCAAATAT AGTATCTGTC	
Hsgr-2	CTCTTGACAA AAAGAAAAAA	
Hsgr-9	CTCTTGACAA AAAGAAAAAA	
29brc	CTCTTGACAA AAAGAAAAAA CACCTGTCAC ATCCAAATAT AGTATCTGTC	

08866354 - 052032

Figure 5 (continued)

	2363	2412
Gdnfr	TTTCGTCAA AATAGAGAGT GGGGAATGAG TGTGCCGATT CAATACCTCA	
29brc	TTTCGTCAA AATAGAGAGT GGGGAATGAG TGTGCCGATT CAATACCTCA	
	2413	2462
Gdnfr	ATCCCTGAAC GACACTCTCC TAATCCTAAG CCTTACCTGA GTGAGAAGCC	
29brc	ATCCCTGAAC GACACTCTCC TAATCCTAAG CCTTACCTGA GTGAGAAGCC	
	2463	2512
Gdnfr	CTTTACCTAA CAAAAGTCCA ATATAGCTGA AATGTCGCTC TAATACTCTT	
29brc	CTTTACCTAA CAAAAGTCCA ATATAGCTGA AATGTCGCTC TAATACTCTT	
	2513	2562
Gdnfr	TACACATATG AGGTTATATG TAGAAAAAAA TTTTACTACT AAATGATTTC	
29brc	TACACATATG AGGTTATATG TAGAAAAAAA TTTTACTACT AAATGATTTC	
	2563	2612
Gdnfr	AACTATTGGC TTTCTATATT TTGAAAGTAA TGATATTGTC TCATTTTTT	
29brc	AACTATTGGC TTTCTATATT TTGAAAGTAA TGATATTGTC TCATTTTTT	
	2613	2662
Gdnfr	ACTGATGGTT TAATACAAAA TACACAGAGC TTGTTTCCCC TCATAAGTAG	
29brc	ACTGATGGTT TAATACAAAA TACACAGAGC TTGTTTCCCC TCATAAGTAG	
	2663	2712
Gdnfr	TGTCGCTCT GATATGAAC TCAACAAATAC AGCTCATCAA AAGCAGACTC	
29brc	TGTCGCTCT GATATGAAC TCAACAAATAC AGCTCATCAA AAGCAGACTC	
	2713	2762
Gdnfr	TGAGAACGCCT CGTGCTGTAG CAGAAAGTTC TGCATCATGT GACTGTGGAC	
29brc	TGAGAACGCCT CGTGCTGTAG CAGAAAGTTC TGCATCATGT GACTGTGGAC	
	2763	2812
Gdnfr	AGGCAGGAGG AACACAGAAC AACAAGCATT GTCTTTGTC ATTGCTCGAA	
29brc	AGGCAGGAGG AACACAGAAC AACAAGCATT GTCTTTGTC ATTGCTCGAA	

0386635F-052092

Figure 5 (continued)

	2813		2862		
Gdnfr	GTGCAAGCGT	GCATAACCTGT	GGAGGGAACT	GGTGGCTGCT	TGTAAATGTT
29brc	GTGCAAGCGT	GCATAACCTGT	GGAGGGAACT	GGTGGCTGCT	TGTAAATGTT
	2863		-		2912
Gdnfr	CTGCAGCATH	TCTTGACACA	CTTGTCAATGA	CACAATCCAG	TACCTTGGTT
29brc	CTGCAGCATH	TCTTGACACA	CTTGTCAATGA	CACAATCCAG	TACCTTGGTT
	2913			2962	
Gdnfr	TTCAGGTTAT	CTGACAAAGG	CAGCTTGAT	TGGGACATGG	AGGCATGGGC
29brc	TTCAGGTTAT	CTGACAAAGG	CAGCTTGAT	TGGGACATGG	AGGCATGGGC
	2963				
Gdnfr	AGGCCGGAA				
29brc	AGGCCGGAA				

08866354-032002

Figure 6

Figure 7A

DECEMBER 1980

Figure 7B

Figure 8

Figure 9A

Figure 9B

B

C

Figure 10

Figure 11

Figure 12

260E50 "415E99830

GDNF Signaling Model

Figure 13

Figure 14
Human GRR2

1	CATGAAGAACCTCAGTAAGTCTCAGACTTGCCCCAAAGGAGCCAACTAGTTACTCCCT	60
61	GGTCTGTTACAGAGGATCTGGCTATTACACTCAACAGCAAAATTCAATTCAATCCCGCT	120
121	AAAGATATAAGAATCACTAGGAAKAATAAGCCAGAACTCAAGACAGAAATAGCATTAAAGT	180
181	AGTTCCCTCAGTACAGTGAGCAGAAGCTGGCCACTCTACGACTCTAWAAGACTCAGAAAA	240
241	GCTTACTAGGGACCWCTGGCATWCCGGTGCCTATGTGGGGATTCGTAACGTCTTGAG	300
301	GTCAGAACGCTGCCCTCAAAATAGTTCTTCTCAAAACGGTTTCAGGCTTGTTAGAAAGG	360
361	GAAGACTTCACTGCCACTTTACCCAGATCATCTACCCATCCTTCCAATGAATGGGAAG	420
421	CTTCAGCCACCCCTACCAGGCTCCTAAAATCACCAACTTGAGAGAAAAACTATAACGTTGC	480
481	TCTACCACTGAGGTTAAAGAAAGTCACAGAACAGAAAAGAACTCTGGGAAACA	540
541	GTCAAATTGGCTATTAAGACATTAGTTACAGGCCCTGTACCTCTCCTCTAGAAACCC	600
601	GGGAGTACACCGCAGAGGAGAGAGAGGCCAAGCCACCAAGCAAAGTCAACCAATCTGGC	660
661	AAAGGGCGTCCCCTGCGGCTTCAGTCCAAGAAGTGGATCCTGCTGGTTGCAGTC	720
721	TCTTCTATCTCCTCACTCCTATTTACCCCTTGAAAGTGGTACTGAATAGCCGTTCCCA	780
781	AGCAGAGGCCCTTGTATACGGGTGCTACAGTCGCCTGGTGGAAACACCTGGCAGAGT	840
841	TGTTTGGTGCCAGGATGGCCACTGAAGGCATCTGCTGTGGACACACACACACACACA	900
901	CACACACACACACACACAGAGAGAGAGAGAGAGAAAGACACACGCACGCAGAGACACAC	960
961	GGTCACTGGAATTCCATTAGAAAAAGTGGAGCCGAGCAAGGGTTAGCGGGAGAAGATT	1020
1021	TTTGAATCTTGTCTCGTCTGGTGCAGAACAGCGACTCCAGTCTCGTCCTCGAACG	1080
1081	TCCGACTGGATTGTTCTGGCGCTGACACCCGTCGTGGATTCTTTCTATTGCATT	1140

1141	TTATTCCGACCCCCCTCCCTGCCGCTCCTCCAGCCCTCACTCGCAAATCGCCTCTCT	1200
1201	CCCCACCTCCCCAGGCCCTCCTGGGAAGCGCAGGGAAATTGGACCCGGGGACTCACG	1260
1261	CCTTCCCAGACGATTGGAGGGAGGGCTGACCCAGGACTGGCTGTTGGCTTAGAAAGC	1320
1321	CGATACACAGATA CGCGTATATTGATTGTAGCGGGCAAGGGGGCGTCGAGAGGCAGCA	1380
1381	GCCCATCGCCCGCCTCTCACCCACCCCTCCAGCCAGAGGCAGAATCGCAGGACTCGG	1440
1441	GATCTTCATCGGGTGGACTAGCTGGATCTCCGCATTGGATTGGCTGATTACCACTG	1500
1501	CTTGGCTATTATTATTGTTGTTACTACTATTATTTTTACCCAAGGGAGAAAGA	1560
1561	CAAAAAAACGGTGGATTATTAAACATGATCTGGCAAACGTCTCTGCCTCTTCT	1620
1	M I L A N V F C L F F F	12
1621	TTCTAGACGACACCCCTCCGCTCTTGCCAGCCCTCCTGCAGGGCCCCGAGCTCC	1680
13	L D D T L R S L A S P S S L Q G P E L H	32
1681	ACGGCTGGCGCCCCCAGTGGACTGTGTCCGGGCAATGAGCTGTGTGCCGCCAATCCA	1740
33	G W R P P V D C V R A N E L C A A E S N	52
1741	ACTGCAGCTCTCGCTACCGCACTCTGCCAGTGCCTGGCAGGCCGACCGAACACCA	1800
53	C S S R Y R T L R Q C L A G R D R N T M	72
1801	TGCTGGCCAACAAGGAGTGCCAGGCGCCCTGGAGGTCTTGCAGGAGAGCCCGCTGTACG	1860
73	L A N K E C Q A A L E V L Q E S P L Y D	92
1861	ACTGCCGCTGCAAGCGGGCATGAAGAAGGAGCTGCAGTGTCTGCAGATCTACTGGAGCA	1920
93	C R C K R G M K K E L Q C L Q I Y W S I	112
1921	TCCACCTGGGCTGACCGAGGGTGAGGAGTTCTACGAAGCCTCCCCATGAGCCGGTGA	1980
113	H L G L T E G E E F Y E A S P Y E P V T	132
1981	CCTCCCGCCTCTCGGACATCTCAGGCTTGCTCAATCTCTCAGGGACAGGGCAGACC	2040
133	S R L S D I F R L A S I F S G T G A D P	152
2041	CGGTGGTCAGCGCCAAGAGCAACCATTGCCTGGATGCTGCCAAGGCCTGCAACCTGAATG	2100
153	V V S A K S N H C L D A A K A C N L N D	172
2101	ACAACTGCAAGAAGCTGCGCTCCTACATCTCCATCTGCAACCGCGAGATCTGCCCA	2160
173	N C K K L R S S Y I S I C N R E I S P T	192

卷之三

2161 193	CCGAGCGCTGCAACCGCCGCAAGTGCACAAGGCCCTGCGCCAGTTCTCGACCGGGTGC E R C N R R K C H K A L R Q F F D R V P	2220 212
2221 213	CCAGCGAGTACACCTACCGCATGCTCTGCTCCTGCCAAGACCAGGGTGCCTGAGC S E Y T Y R M L F C S C Q D Q A C A E R	2280 232
2281 233	GCCGCCGCAAACCATCCTGCCAGCTGCTCCTATGAGGACAAGGAGAACGCCAACTGCC R R Q T I L P S C S Y E D K E K P N C L	2340 252
2341 253	TGGACCTGCGTGGCGTGTGCCGGACTGACCACCTGTGTCGGTCCCGGCTGGCCGACTTCC D L R G V C R T D H L C R S R L A D F H	2400 272
2401 273	ATGCCAATTGTCGAGCCTCCTACCAGACGGTCACCAGCTGCCCTGCGGACAATTACCAAGG A N C R A S Y Q T V T S C P A D N Y Q A	2460 292
2461 293	CGTGTCTGGCTCTATGCTGGCATGATTGGTTGACATGACACCTAACTATGTGGACT C L G S Y A G M I G F D M T P N Y V D S	2520 312
2521 313	CCAGCCCCACTGGCATCGTGGTGTCCCCCTGGTGCAGCTGTCGTGGCAGCGGGAACATGG S P T G I V V S P W C S C R G S G N M E	2580 332
2581 333	AGGAGGAGTGTGAGAAGITCCTCAGGGACTTCACCGAGAACCCATGCCCTCCGGAACGCCA E E C E K F L R D F T E N P C L R N A I	2640 352
2641 353	TCCAGGCCCTTGCAACGGCACGAACGTGAACGTGTCCCCAAAAGGCCCTCGTTCCAGG Q A F G N G T N V N V S P K G P S F Q A	2700 372
2701 373	CCACCCAGGCCCTCGGGTGGAGAACGACGCCCTTTGCCAGATGACCTCAGTGACAGTA T Q A P R V E K T P S L P D D L S D S T	2760 392
2761 393	CCAGCTTGGGACCAAGTGTCACTACCACCTGCACGTCTGTCCAGGAGCAGGGCTGAAGG S L G T S V I T T C T S V Q E Q G L K A	2820 412
2821 413	CCAACAACCTCAAAGAGTTAACGATGTGCTTCACAGAGCTCACGACAAATATCATCCCAG N N S K E L S M C F T E L T T N I I P G	2880 432
2881 433	GGAGTAACAAGGTGATCAAACCTAACCTCAGGCCAGCAGAGCCAGACCGTCGGCTGCC S N K V I K P N S G P S R A R P S A A L	2940 452
2941 453	TGACCGTGTCTGCTGAAACTGGCCTTGTAGGCTGTGGGAACCGAGTCAG T V L S V L M L K L A L *	3000 464
3001	AAGATTGAAAGCTACGCAGACAAGAACAGCCGCTGACGAAATGGAAACACACAG	3060

0989087654321009876543210

3061	ACACACACACACCTTGCAAAAAAAAATTGTTTCCCACCTGTGCGTGAACCTGTCTC	3120
3121	CTCCCAGGTTCTCTCTGGAGAAGTTTGTAAACCAAACAGACAAGCAGGCAGGCAGC	3180
3181	CTGAGAGCTGCCAGGGTCCCCTGGCAGGGAAACTCTGGTGCCGGGAGGGCACGAG	3240
3241	GCTCTAGAAATGCCCTCACTTCCTGGTGTCTCTCTGGACCCTCTGAAGCAG	3300
3301	AGACCGGACAAGAGCCTGCAGCGGAAGGGACTCTGGCTGTGCCTGAGGCTGGCTGGGG	3360
3361	CAGGACAACACAGCTGCTCCCCAGGCTGCCACTCTGGGACCCGCTGGGGCTGGCAG	3420
3421	AGGGCATCGGTAGCGGGGAGCGGGCTGCCATGAGGTCCACCTCAGCCCTTGGC	3480
3481	TTCAAGGATGGAGATGGTTTGCCCTCCCTCTGCCCTCGGTGGGCTGGTGGTCTG	3540
3541	CAGCTGGTGTGGAACCTCCCCACGGATGGCGGTGGAGGGGTCGCACCGTGCTGGCT	3600
3601	CCCCCTGACTGTAGCACGGAGTGTGGGCTGGGGCCAGCTCCAGGAGGGCTTGAGAGC	3660
3661	TCAGCCTGCCTGGAGAGCCCTTGTGGCGAGGCATTAAACTGGCACCAAGCTTCTTC	3720
3721	TCGGTGGCAGAAATTGAAAGTCAGAGAGAACGGCCTTGTGGCTTTGCTTCTTCTT	3780
3781	CGTGGTCCTTGGCAGGCCCTCCCTGGGAGAGGGAGAGACACAGCCGGTG	3840
3841	TGTGTCTGCAGCACCGTGGCCCTCAAGCTTCTGCTGTCTCCCTCCTCCTT	3900
3901	CCCCTTCTTCCCTCATTCCTAGACGTACGTCAACTGTATGTACATACCGGGCTCC	3960
3961	TCTCCTAACATATGTATATACACATCCATATACATATATTGTGTGGTTCCCTTCT	4020
4021	TTCCTTTTAAGCAACAAACTATGAAATAATACCCAACAGATGAGCGAAATGTA	4080
4081	TTATTGTAAAGTTATTTTTAATACTGTTGTCTATAATGGGGAAAAGGACATTGGC	4140
4141	CCCGCAGTGCCTGCCAGTCAGCCTGGCTGGCTCTGGTGGGGCTCTGATCCGCAT	4200
4201	CCAAGCTAACCAAGGCTCCAATAACGTGCG	4232

Figure 15
Human GRR3

1	CAAGTCAAAGGTTAACATGATCCAAGAGGCCAGAGAGACTTTAGGACAATAATAGGAA	60
61	TAAAGCAAGGCCACAGGCCTCAGCTCCTGATGCCAGATGTTGGCAGGATCCGGGGAC	120
121	AGGGCAGTGCAGGCAGTAGTTCCATCCTCCATCCAGGGGAGGAGCGAGGGAGCGCGG	180
181	AGCCCCGGCGCCTACAGCTGCCATGGTGCGCCCCCTGAACCCGCGACCGCTGCCGCCGT	240
1	M V R P L N P R P L P P V	13
241	AGTCCTGATGTTGCTGCTGCTGCTGCCCGTCGCCGCTGCCCTCGCAGCCGGAGACCC	300
14	V L M L L L L P P S P L P L A A G D P	33
301	CCTTCCCACAGAAAGCCGACTCATGAACAGCTGCTCCAGGCCAGGAGGAAGTGCCAGGC	360
34	L P T E S R L M N S C L Q A R R K C Q A	53
361	TGATCCCACCTGCAGTGCTGCCTACCACCACTGGATTCCCTGCACCTCTAGCATAAGCAC	420
54	D P T C S A A Y H H L D S C T S S I S T	73
421	CCCACTGCCCTCAGAGGAGCCCTCGGTCCCTGACTGCCCTGGAGGCAGCACAGCAACT	480
74	P L P S E E P S V P A D C L E A A Q Q L	93
481	CAGGAACAGCTCTCTGATAGGCTGCATGTGCCACCGGCGCATGAAGAACCAAGGTTGCCTG	540
94	R N S S L I G C M C H R R M K N Q V A C	113
541	CTTGGACATCTATTGGACCGTTCACCGTGCCCGAGCCTGGTAACTATGAGCTGGATGT	600
114	L D I Y W T V H R A R S L G N Y E L D V	133
601	CTCCCCCTATGAAGACACAGTGACCAGCAAACCTGGAAAATGAATCTCAGCAAACGTGAA	660
134	S P Y E D T V T S K P W K M N L S K L N	153
661	CATGCTCAAACCAGACTCAGACCTCTGCCTCAAGTTGCCATGCTGTGTACTCTCAATGA	720
154	M L K P D S D L C L K F A M L C T L N D	173
721	CAAGTGTGACCGGCTGCGCAAGGCCTACGGGGAGGCAGTGCCTCCGGGCCCCACTGCCAGCG	780
174	K C D R L R K A Y G E A C S G P H C Q R	193
781	CCACGTCTGCCCTCAGGCAGCTGCTCACTTTCTCGAGAAGGCCGCCAGCCCCACGCGCA	840
194	H V C L R Q L L T F F E K A A E P H A Q	213
841	GGGCCTGCTACTGTGCCCATGTGCCCTAACGACCGGGCTGCCGGGGAGCGCCGGCGCAA	900
214	G L L L C P C A P N D R G C G E R R R N	233

901	CACCATGCCCCCAACTGCGCGCTGCCGCTGTGGCCCCAACTGCCTGGAGCTGCGCG	960
234	T I A P N C A L P P V A P N C L E L R R	253
961	CCTCTGCTTCTCCGACCGCTTGAGATCACGCCCTGGTGGATTCCAGACCCACTGCCA	1020
254	L C F S D P L C R S R L V D F Q T H C H	273
1021	TCCCACATGGACATCCTAGGAACCTGTGCAACAGAGCAGTCAGATGTCTACGAGCATACCT	1080
274	P M D I L G T C A T E Q S R C L R A Y L	293
1081	GGGGCTGATTGGGACTGCCATGACCCCCAACCTTGCCAGCAATGTCAACACCAGTGTGC	1140
294	G L I G T A M T P N F A S N V N T S V A	313
1141	CTTAAGCTGCACCTGCCGAGGCAGTGGCAACCTGCAGGAGGAGTGTGAAATGCTGGAGG	1200
314	L S C T C R G S G N L Q E E C E M L E G	333
1201	GTTCTTCTCCCACAACCCCTGCCCTACGGAGGCCATTGCAGCTAACATGCGTTTCACAG	1260
334	F F S H N P C L T E A I A A K M R F H S	353
1261	CCAACCTCTCTCCCAGGACTGGCCACACCCCTACCTTGCTGTGATGGCACACCAGAACATGA	1320
354	Q L F S Q D W P H P T F A V M A H Q N E	373
1321	AAACCCCTGCTGTGAGGCCACAGCCCTGGTGCCTCTCTTTCTGCACGCTTCCCTT	1380
374	N P A V R P Q P W V P S L F S C T L P L	393
1381	GATTCTGCTCTGAGCCTATGGTAGCTGGACTTCCCCAGGGCCCTTCCCTCCACCAC	1440
394	I L L L S L W *	400
1441	ACCCAGGTGGACTTGCAGCCCACAAGGGGTGAGGAAAGGACAGCAGCAGGAAGGAGGTGC	1500
1501	AGTGCGCAGATGAGGGCACAGGAGAACAGCTAACGGTTATGACCTCCAGATCCTTACTGGTC	1560
1561	CAGTCCTCATCCCTCCACCCATCTCCACTTCTGATTGCTGCCCTCCTGGTGGC	1620
1621	CACAATTAGCCATGTCATCTGGTGGTGACCAGCTCCACCAAGCCCCTTGTGAGCCCTT	1680
1681	CCTCTGACTACCAGGATCACCAAGAACATCTAACAGTTAGCCTTCTCTATTGCATTCCAG	1740
1741	ATTAGGGTTAGGGTAGGGAGGACTGGGTGTTCTGAGGCAGCCTAGAAAGTCATTCTCCTT	1800
1801	TGTGAAGAAGGCTCCTGCCCTCGTCTCCTCTGAGTGGAGGATGGAAAACACTACTGC	1860
1861	CTGCACTGCCCTGTCCCCGATCCTGCCAACATCTGGGCATCAGGAGCTGGAGCCTGTG	1920

1921 GGCCTTGCTTTATTCCCTATTATTGTCTAAAGTCTCTGGGCTCTGGATCATGATTAA 1980

1981 ACCTTTGACTG 1991

088663514 • 053052

Figure 16
Rat GRR2

1	GC GG CG CG TCG AC TTG ACC ATG C AG A C A C T T T T CAG GC CT CT GT CT GG TG AAG TT	60
61	GG CAG ATAC AAG CAAG GCCC GAAAG GGGT CTCAG CCTCT CTCCT GGGC CCTGG ACT	120
121	GAG TTAGG CTTG CTTCTGG TTGT CTTCTAAAGG CACGGT GATA CAGA ATGATGAGACTAG	180
181	GCTGGAGGGGCTTCTGCTTCTGTGTGACCTTGAGTTATCTCCCTCGTTGGATC	240
241	CGAGCTTCCTGGAATATGATGTTGAATATGAATATGAGTTCTGCCTAAGGTCCAGACAG	300
301	GCTCTGAGGGTTAACTGACTTTGGAGCCTCAAATCAATACCTGGATGGAGTGGGGT	360
361	TTGTCCAATGGGAGTTGAGGCAAGATCCCTTGCA TAAGCCTTGCCACATCATGTTGAAG	420
421	CCATGCCATTCTGTCTGGACTATTGGCATCTTACCTTCCAGCAGTT CAGTGAAGGCCT	480
481	TCCTGGATT TATCATTCTGTGTTCCACTGCCTAGGATTGTGCTCAAGAGGAAATGAATGT	540
541	GAACC ATGGT TAGGGGAGTATGGCCAACCAGGTTGGTCTGTGTTGACCTGGTCTTG 1 M V V G E Y G Q P G W V C V D L G L G	600 19
601	GTGTTCTTTGTGTAAAGTGGGTGAGAAGTTCCCAAACCTTAGGCCTACATTGGGTC 20 V L L C K V G E K F L Q T L G L H W G Q	660 39
661	AGAGACTGTGGTGGCCCTCATT CATGCTTGTCTCCCTCCACTACCCAGACGAAACCC 40 R L W W P S F M L V F P S H Y P D E T L	720 59
721	TCCGCTCTTGGCCAGCCCTCCTCCCTGCAGGGCTCTGAGCTCCACGGCTGGCGCCCC 60 R S L A S P S S L Q G S E L H G W R P Q	780 79
781	AAGTGGACTGTGTCGGCCAATGAGCTGTGCGGCTGAATCCA ACTGCAGCTCCAGGT 80 V D C V R A N E L C A A E S N C S S R Y	840 99
841	ACCGCACCCCTCGGCAGTGCCTGGCAGGCCGGATCGCAATACCATGCTGCCAATAAGG 100 R T L R Q C L A G R D R N T M L A N K E	900 119
901	AGTGCCAGGCAGCCCTGGAGGTCTTGAGAAAGCCC ACTGTATGACTGCCCTGCAAGC 120 C Q A A L E V L Q E S P L Y D C R C K R	960 139

961 GGGGCATGAAGAAGGAGCTGCAGTGTCTGCAGATCTACTGGAGCATCCATCTGGGGCTGA 1020
 140 G M K K E L Q C L Q I Y W S I H L G L T 159

1021 CAGAGGGTGAGGAGTTCTATGAAGCTCCCCATGAGCCTGTGACCTCGCGCCTCTCGG 1080
 160 E G E E F Y E A S P Y E P V T S R L S D 179

1081 ACATCTTCAGGCTCGCTTCAATCTTCAGGGACAGGGACAGACCCGGCGGTCACTACCA 1140
 180 I F R L A S I F S G T G T D P A V S T K 199

1141 AAAGCAACCACCGCCTGGATGCCGCCAACCTGAATGACAACCTGCAAGAAC 1200
 200 S N H C L D A A K A C N L N D N C K K L 219

1201 TTCGCTCCTCTTATATCTCCATCTGCAACCGTGAGATCTCTCCCACCGAACGCTGCAACC 1260
 220 R S S Y I S I C N R E I S P T E R C N R 239

1261 GCCGCAAGTGCCACAAGGCTCTGCGCCAGTTCTTGACCGTGTGCCAGCGAGTATACT 1320
 240 R K C H K A L R Q F F D R V P S E Y T Y 259

1321 ACCGCATGCTCTCTGCTCCTGTCAGGACCAGGCATGTGCTGAGCGTCGCCGGCAAACCA 1380
 260 R M L F C S C Q D Q A C A E R R R Q T I 279

1381 TCCTGCCAGTTGCTCCTATGAGGACAAGGAGAAGCCAACTGCCTGGACCTGCGCAGCC 1440
 280 L P S C S Y E D K E K P N C L D L R S L 299

1441 TGTGTCGTACAGACCACCTGTGCCGGCCACTGGCAGATTCCACGCCAACTGTCGAG 1500
 300 C R T D H L C R S R L A D F H A N C R A 319

1501 CCTCCTACCGGACAATCACCAAGCTGTCCTGCGGACAACCTACCAAGGCATGTCTGGCTCCT 1560
 320 S Y R T I T S C P A D N Y Q A C L G S Y 339

1561 ATGCTGGCATGATTGGTTGATATGACACCCAACCTATGTGGACTCCAACCCACGGGCA 1620
 340 A G M I G F D M T P N Y V D S N P T G I 359

1621 TCGTGGTGTCTCCTGGTCAATTGTCGTGGCAGTGGAACATGGAAGAAGAGTGTGAGA 1680
 360 V V S P W C N C R G S G N M E E E C E K 379

1681 AGTTCCCTAGGGACTTCACGGAAAACCCATGCCCTCCGAATGCCATTCAAGGCCTTGGTA 1740
 380 F L R D F T E N P C L R N A I Q A F G N 399

1741 ATGGCACAGATGTGAACATGTCTCCCAAAGGCCCTCACTCCCAGCTACCCAGGCCCTC 1800
 400 G T D V N M S P K G P S L P A T Q A P R 419

1801 GGGTGGAGAAGACTCCTTCACTGCCAGATGACCTCAGTGAAGCACCAGCCTGGGGACCA 1860
 420 V E K T P S L P D D L S D S T S L G T S 439

1861 GTGTCATCACCAACCTGCACATCTATCCAGGAGCAAGGGCTGAAGGCCAACAACTCCAAAG 1920

440	V I T T C T S I Q E Q G L K A N N S K E	459
1921	AGTTAACATGTGCTTCACAGAGCTCACGACAAACATCAGTCCAGGGAGTAAAAAGGTGA	1980
460	L S M C F T E L T T N I S P G S K K V I	479
1981	TCAAACCTAACCTCAGGCTCCAGCAGAGCCAGACTGTCGGCTGCCTTGACTGCCCTCCCAC	2040
480	K L N S G S S R A R L S A A L T A L P L	499
2041	TCCTGATGCTGACCTTGGCCTTGTAGGCCTTGGAACCCAGCACAAAAGTTCTTCAAGCA	2100
500	L M L T L A L *	506
2101	ACCCAGATATGAACCTCCGCCTGACAAAATGGAAACACACGCATACACACATGCCACACA	2160
2161	CAGACACACACACAGACACACACACACACACATACAGACGTCGACGGCGCCGC	2215

Figure 17
Rat GRR3

1	GC GG CC CG TC GAC CG AC GG CC AG CAG GC AG CG CT GC CG GG TCC G CG GT CC AG A	60
61	CC CG CC AT GG GG CT CT CC CG AG CC CG AC CG CC CG CT AG TG AT CC TG CT ACT GG TG	120
1	M G L S R S P R P P P L V I L L L V	18
121	CT GT CG CT GT GG CT AC CC CT GG AA AC AGG AA AC TT CC TT CC AC AG AGA AC AGG CT TG TG	180
19	L S L W L P L G T G N S L P T E N R L V	38
181	AAC AGC GT TA CC CAGG CC AG AAAA AT GC GAGG CT AAT CC CG CT TG CA AGG CT GC CT AC	240
39	N S C T Q A R K K C E A N P A C K A A Y	58
241	CAG CAC CT GG ACT CC TG CA CCC CAG T CT CAG CAGT CC ACT GC CCT CAG GG AGT CT GC CC	300
59	Q H L D S C T P S L S S P L P S G E S A	78
301	AC AT CT GC AG CG TG CCT TG AAG CAG CAG CA ACT CAGG A AC AG CT CT CT CAT AG ACT GC	360
79	T S A A C L E A A Q Q L R N S S L I D C	98
361	AG GT GC C ACC CG CG CA TG AAG CAC CA AG CT AC CT GT CT GG AC AT TT ATT GG ACC GT TC AC	420
99	R C H R R M K H Q A T C L D I Y W T V H	118
421	CCT GT CC GA AG C CT TG GT ACT AC GAG TT GG AC GT CT CAC CCT AT GA AG AC AC AGT G ACC	480
119	P V R S L G D Y E L D V S P Y E D T V T	138
481	AG CAA ACC CT GG AAA AT GA AT CT CAG CA AG CT GAG CAT GCT CAA ACC CAG ACT CC GAC CT C	540
139	S K P W K M N L S K L S M L K P D S D L	158
541	TGC CT CAA AT TT GCT AT GCT GT GT ACT CT TA AC GACA AGT GCG ACC CG CT CC GAA AGG CC	600
159	C L K F A M L C T L N D K C D R L R K A	178
601	TAC GGG GAG GCG TG CT CAG GG AT CC CG CT GCC AG CG CC ACC CT CT GC CT AG CT AG CT GC CG	660
179	Y G E A C S G I R C Q R H L C L A Q L R	198
661	TC CT TCT CG AGA AGG CGG CAG AGT CC AC GCT CAG GG CT TG CT GT GT CC CT GT GC A	720
199	S F F E K A A E S H A Q G L L L C P C A	218
721	CCC GAAG AT GC GGG CT GT GGG GAG CG CC GG CG CA AC ACC AT CG CCCCC AG TT GC GCC CTC	780
219	P E D A G C G E R R R N T I A P S C A L	238
781	CC GT CT GT GG CCCC CA ACT GC CT AG AT CT TG GAG CT TG CC GT GC GG ACC CT CT GT GC	840
239	P S V A P N C L D L R S F C R A D P L C	258

841 AGATCACGCCTGATGGACTTCCAGACCCACTGCCACCCATGGACATCCTCGGGACTTGT 900
 259 R S R L M D F Q T H C H P M D I L G T C 278

901 GCAACTGAGCAGTCAGATGTCTGCAGGCATACTGGGCTAATTGGGACTGCCATGACC 960
 279 A T E Q S R C L R A Y L G L I G T A M T 298

961 CCAAACCTCATCAGCAAGGTCAACACTACTGTTGCCTTAGGCTGTACCTGCCGAGGCAGT 1020
 299 P N F I S K V N T T V A L G C T C R G S 318

1021 GGCAACCTGCAGGACGAGTGTGAACAGCTGGAAAAGTCCTCTCCCAGAACCCCTGCCTC 1080
 319 G N L Q D E C E Q L E K S F S Q N P C L 338

1081 ATGGAGGCCATTGCGGCTAAATGCCTTCCACAGACAACACTCTTCTCCCAGGACTGGCG 1140
 339 M E A I A A K M R F H R Q L F S Q D W A 358

1141 GACTCTACTTTCTGTGATGCAGCAGCAGAACAGCAGCCCTGCTTGAGGCCCCAGCTC 1200
 359 D S T F S V M Q Q Q N S S P A L R P Q L 378

1201 AGGCTACCGTTCTGTCTTCTTCATCCTTACCTTGATTCTGCTGCAGACCCCTGGTAA 1260
 379 R L P V L S F F I L T L I L L Q T L W * 397

1261 CTGGGCTCCCTCAGGGTCCTTGTCCCTCTCCACACACCCAGACCGACTTGAGCCTGTG 1320

1321 ATGGGAGAGAAAATGCTGGCTCTGGAAGAAGATGCAACCAGGCTCACTGCACATCCTGT 1380

1381 CTGCTCCAGATGAGGTCTTGGAAAGAAGCGAGGGCTGTGACCGTTAGAATCCTGAGCGGC 1440

1441 CAGCTTCAAACCTCTCCTACTTAACCTGCTTGGCTGCTCCCTCCCTAGGACCTTGTAC 1500

1501 TCCAGTTGGCTGTATATTGTGGTGGTGAATTAGCTTCCACCTCCAGCCCTTCTCCTGT 1560

1561 TTCCCAGGACCACCCAGGGCTAATGACTCACTCATTCTGGTGCCTCTCCAGGAAGGC 1620

1621 AGGCTGAGGGTTCTGAGGCAGCTGAGAAAGATGGTCCCTTGTGAGGAAGGCTGGTGGTC 1680

1681 CAACCGTCGACGCCGCCGC 1699

Figure 18
Alignment of the Amino Acid Sequences of GDNFRs

1		50
Mgdnfr	-----MFLATL YFVLPLLDLL MSAEVSG.GD RLDCVKASDQ	
Rgdnfr	-----MFLATL YFALPLLDLL MSAEVSG.GD RLDCVKASDQ	
Hgdnfr	-----MFLATL YFALPLLDLL LSAEVSG.GD RLDCVKASDQ	
Hgrr2	~~~MILANV FCLFFFLLDT LRSLASPSSL QGPELHGWRP PVDCVRANEL	
Rgrr2	~~~~~ML VFPSPHYPDET LRSLASPSSL QGSELHGWRP QVDCVRANEL	
Hgrr3	MVRPLNPRPL PPVVLMLLLL LPPSPLPLAA GDPLPTESRL MNSCLQARRK	
Rgrr3	MGLSRSPRPP PLVILLLVLS L...WLPLGT GNSLPTENRL VNSCTQARKK	
51		100
Mgdnfr	CLKEQSCSTK YRTL RQCVAG KETNFSLTSG LEAKDEC RSA MEALKQKSLY	
Rgdnfr	CLKEQSCSTK YRTL RQCVAG KETNFSLTSG LEAKDEC RSA MEALKQKSLY	
Hgdnfr	CLKEQSCSTK YRTL RQCVAG KETNFSLASG LEAKDEC RSA MEALKQKSLY	
Hgrr2	CAAESNCSSR YRTL RQCLAG RDRNTML... .ANKECQAA LEVLQESPLY	
Rgrr2	CAAESNCSSR YRTL RQCLAG RDRNTML... .ANKECQAA LEVLQESPLY	
Hgrr3	CQADPTCSAA YHHLD SCTSS ISTPLP.SEE PSVPADC LEA AQQLRNSSLI	
Rgrr3	CEANPACKAA YQHLD SCTPS LSSPLP.SGE SATSAAC LEA AQQLRNSSLI	
101		150
Mgdnfr	NCRCKRGMKK EKNCLRIYWS MYQSL.QGND LLEDSPYEPV NSRLSDIFRA	
Rgdnfr	NCRCKRGMKK EKNCLRIYWS MYQSL.QGND LLEDSPYEPV NSRLSDIFRA	
Hgdnfr	NCRCKRGMKK EKNCLRIYWS MYQSL.QGND LLEDSPYEPV NSRLSDIFRV	
Hgrr2	DCRCKRGMKK ELQCLQIYWS IHLGLTEGEE FYEASPYEPV TSRLSDIFRL	
Rgrr2	DCRCKRGMKK ELQCLQIYWS IHLGLTEGEE FYEASPYEPV TSRLSDIFRL	
Hgrr3	GCMCHRRMKN QVACLDIYWT VHRARSLGNY ELDVSPYE.. DTVTS	
Rgrr3	DCRCHRRMKH QATCLDIYWT VHPVRS LGDY ELDVSPYE.. DTVTS	
151		200
Mgdnfr	VPFISDV FQQ VEHISKGN NC LDAAKACNL DTC KKYRSAY ITP CTTSMS.	
Rgdnfr	VPFISDV FQQ VEHISKGN NC LDAAKACNL DTC KKYRSAY ITP CTTSMS.	
Hgdnfr	VPFISDV FQQ VEHIPKGNN C LDAAKACNL DICK KKYRSAY ITP CTTSVS.	
Hgrr2	ASIFSGTGAD PVVSAKS NH C LDAAKACNL DNCKKL RSSY ISICNREISP	
Rgrr2	ASIFSGTGTD PAVSTKSNHC LDAAKACNL DNCKKL RSSY ISICNREISP	
Hgrr3	KPWKMNL SKL NMLKPDS DLC LKFAMLC TLN DKCDRLRKAY GEACS....	

Rgrr3 KPWKMNLSKL SMLKPDS DLC LKFAMLCTLN DKCDRLRKAY GEACS.....

201

250

Mgdnfr NEVCNRRKCH KALRQFFDKV PAKHSYGM LF CSC..RDVAC TERRRQTIVP
Rgdnfr NEVCNRRKCH KALRQFFDKV PAKHSYGM LF CSC..RDIAC TERRRQTIVP
Hgdnfr NDVCNRRKCH KALRQFFDKV PAKHSYGM LF CSC..RDIAC TERRRQTIVP
Hgrr2 TERCNRRKCH KALRQFFDRV PSEYTYRMLF CSC..QDQAC AERRRQTILP
Rgrr2 TERCNRRKCH KALRQFFDRV PSEYTYRMLF CSC..QDQAC AERRRQTILP
Hgrr3 GPHCQRHVCL RQLLTFFEKA AEPHAQGLLL CPCAPNDRGC GERRRNTIAP
Rgrr3 GIRCQRHLCL AQLRSFFEKA AESHAQGLLL CPCAPEDAGC GERRRNTIAP

DRAFT - DRAFT

251

300

Mgdnfr VCSYEERERP NCLNLQDSCK TNYICRSRLA DFFTNCPES RSVSNCLKEN
 Rgdnfr VCSYEERERP NCLSLQDSCK TNYICRSRLA DFFTNCPES RSVSNCLKEN
 Hgdnfr VCSYEEREKP NCLNLQDSCK TNYICRSRLA DFFTNCPES RSVSSCLKEN
 Hgrr2 SCSYEDKEKP NCLDLRGVCR TDHLCRSRLA DFHANCRASY QTVTSCPADN
 Rgrr2 SCSYEDKEKP NCLDLRSLCR TDHLCRSRLA DFHANCRASY RTITSCPADN
 Hgrr3 NCALPP.VAP NCLELRRRLCF SDPLCRSRLV DFQTHCHP.. MDILGTCATE
 Rgrr3 SCALPS.VAP NCCLDLRSFCR ADPLCRSRLM DFQTHCHP.. MDILGTCATE

301

350

Mgdnfr YADCLLAYSG LIGTVMTPNY VDSS..SLSV APWCDCSNSG NDLEDCLKFL
 Rgdnfr YADCLLAYSG LIGTVMTPNY VDSS..SLSV APWCDCSNSG NDLEDCLKFL
 Hgdnfr YADCLLAYSG LIGTVMTPNY IDSS..SLSV APWCDCSNSG NDLEECLKFL
 Hgrr2 YQACLGSYAG MIGFDMTPNY VDSSPTGIVV SPWCSCRGSG NMEEECEKFL
 Rgrr2 YQACLGSYAG MIGFDMTPNY VDSNPTGIVV SPWCNCRGSG NMEEECEKFL
 Hgrr3 QSRCLRAYLG LIGTAMTPNF ASNVENTSVAL S..CTCRGSG NLQEECEMLE
 Rgrr3 QSRCLRAYLG LIGTAMTPNF ISKVNTTVAL G..CTCRGSG NLQDECEQLE

351

400

Mgdnfr NFFKDNTCLK NAIQAFGNNS DVTMWQPAP. PVQTTTATTT TAFRIKNKPS
 Rgdnfr NFFKDNTCLK NAIQAFGNNS DVTMWQPAP. PVQTTTATTT TAFRVKNKPL
 Hgdnfr NFFKDNTCLK NAIQAFGNNS DVTVWQPAF. PVQTTTATTT TALRVKNKPL
 Hgrr2 RDFTENPCLR NAIQAFGNGT NVNVSPKGP. SFQATQAPRV EKTPSLPDDL
 Rgrr2 RDFTENPCLR NAIQAFGNGT DVNMSPKGP. SLPATQAPRV EKTPSLPDDL
 Hgrr3 GFFSHNPCLT EAIAAKMRFH SQLFSQDWPH PTFAVMAHQN ENPAVRPQPW
 Rgrr3 KSFSQNPCLM EAIAAKMRFH RQLFSQDWAD STFSVMQQQN SSPALRPQLR

401

450

Mgdnfr GPACSENEIP THVLPPCANL QAQKLKSNVS GSTHLCLSDN DYGKDGLAGA
 Rgdnfr GPAGSENEIP THVLPPCANL QAQKLKSNVS GSTHLCLSDS DFGKDGLAGA
 Hgdnfr GPAGSENEIP THVLPPCANL QAQKLKSNVS GNTHLCISNG NYEKEGL.GA
 Hgrr2 SDSTS...LG TSVITCTSV QEQLKANNS KELSMCFTEL TTNIIPGSNK
 Rgrr2 SDSTS...LG TSVITCTSI QEQLKANNS KELSMCFTEL TTNISP GSKK
 Hgrr3 VPSLFSCTL P LILLLSLW~~ ~~~~~ ~~~~~ ~~~~~ ~~~~~
 Rgrr3 LPVLSFFILT LILLQTLW*~ ~~~~~ ~~~~~ ~~~~~

451

490

Mgdnfr	SSHITTKSMA APPSCGLSSL PVMVFTALAA LLSVSLAETS
Rgdnfr	SSHITTKSMA APPSCSLSSL PVLMLTALAA LLSVSLAETS
Hgdnfr	SSHITTKSMA APPSCGLSPL LVLVVTALST LLSLTETS~~
Hgrr2	VIKPNSGPSR ARPSAALTVAL SVLMLKLAL* ~~~~~~
Rgrr2	VIKLNSGSSR ARLSAALTAL PLLMLTLAL* ~~~~~~
Hgrr3	~~~~~ ~~~~~ ~~~~~ ~~~~~
Rgrr3	~~~~~ ~~~~~ ~~~~~ ~~~~~

Figure 19
GDNFR Family of Receptors

	1	50
Consensus	MV..l...p .pp...m.l. llslalPl.. .lggael.g. .Rl..dCv.A.	
Hgdnfr	MFLAT LYFALPLLDL LLSAEVSGGD RL..DCVKAS	
Rgdnfr	MFLAT LYFALPLLDL LMSAEVSGGD RL..DCVKAS	
Hgrr2	MILANVF CLFFFLLDDTL RSLASPSS.. LQGPELHW. RPPVDCVRAN	
Rgrr2	MLV FPSHYPDETL RSLASPSS.. LQGSELHW. RPQVDCVRAN	
Hgrr3	MVRPLNPRPL PPVVLMLLLL LPPS.PLP.L AAGDPLPTES RLMNSCLQAR	
Rgrr3	MGLSRSPR PPPLVILLLV LSLWLPLG.. .TGNSLPTEN RLVNSCTQAR	
	51	100
Consensus	..C.ae..Cs ..YrtLrqC. ag...nt.La sg.E..... C..A.e.L..	
Hgdnfr	DQCLKEQSCS TKYRTLRQCV AGKETNFSLA SGLEAKDE.. CRSAMEALKQ	
Rgdnfr	DQCLKEQSCS TKYRTLRQCV AGKETNFSLT SGLEAKDE.. CRSAMEALKQ	
Hgrr2	ELCAAESNCS SRYRTLRQCL AGRDRNTMLA NK.E..... CQAALEVLQE	
Rgrr2	ELCAAESNCS SRYRTLRQCL AGRDRNTMLA NK.E..... CQAALEVLQE	
Hgrr3	RKCQADPTCS AAYHHLDSCT ..SSISTPLP SE.EPSVPAD CLEAAQQLRN	
Rgrr3	KKCEANPACK AAYQHLDST ..PSLSSPLP SG.ESATSAA CLEAAQQLRN	
	101	150
Consensus	ssLydCrCkR gMKke..CL. IYWs.h..l. .Gn..le.SP YEp.VtSrls	
Hgdnfr	KSLYNCRCKR GMKKEKNCLR IYWSMYQSLQ .GNDLLEDSP YEP.VNSRLS	
Rgdnfr	KSLYNCRCKR GMKKEKNCLR IYWSMYQSLQ .GNDLLEDSP YEP.VNSRLS	
Hgrr2	SPLYDCRCKR GMKKELQCLQ IYWSIHLGLT EGEEFYEASP YEP.VTSRLS	
Rgrr2	SPLYDCRCKR GMKKELQCLQ IYWSIHLGLT EGEEFYEASP YEP.VTSRLS	
Hgrr3	SSLIGCMCHR RMKNQVACLD IYWTVHRARS LGNYELDVSP YEDTVTSKPW	
Rgrr3	SSLIDCRCHR RMKHQATCLD IYWTVHPVRS LGDYELDVSP YEDTVTSKPW	

	151	200
Consensus	difr..s..sd..... ksn.CLdaAk aCnLnD.Ckk lRsaYi..C.	
Hgdnfr	DIFRVVPFIS DVFQQVEHIP KGNCLDAAK ACNLDDICKK YRSAYITPCT	
Rgdnfr	DIFRAVPFIS DVFQQVEHIS KGNCLDAAK ACNLDDTCKK YRSAYITPCT	
Hgrr2	DIFRLASIFS GTGADPVVSA KSNHCLDAAK ACNLNDNCKK LRSSYISICN	
Rgrr2	DIFRLASIFS GTGTDPAVST KSNHCLDAAK ACNLNDNCKK LRSSYISICN	
Hgrr3	KMNL..SKLN MLKPD..... .SDLCLKFAM LCTLNDKCDR LRKAYGEAC.	
Rgrr3	KMNL..SKLS MLKPD..... .SDLCLKFAM LCTLNDKCDR LRKAYGEAC.	
	201	250
Consensus	...S..erCn RrkChkaLrq FFdkvp..h. ygmLfCsC.. .D.aC.ERRR	
Hgdnfr	TSVS.NDVCN RRKCHKALRQ FFDKVPAKHS YGMLFCSC.. RDIACTERRR	
Rgdnfr	TSMS.NEVCN RRKCHKALRQ FFDKVPAKHS YGMLFCSC.. RDIACTERRR	
Hgrr2	REISPTERCN RRKCHKALRQ FFDRVPSEYT YRMLFCSC.. QDQACAERRR	
Rgrr2	REISPTERCN RRKCHKALRQ FFDRVPSEYT YRMLFCSC.. QDQACAERRR	
Hgrr3	...SG.PHCQ RHVCLRQLLT FFEKAAEPPA QGLLLCP CAP NDRGCGERRR	
Rgrr3	...SG.IRCQ RHLCLAQLRS FFEKAAESHA QGLLLCP CAP EDAGCGERRR	
	251	300
Consensus	qTI.PsCsye ..ekPNCLdL r..Crted.lC RSRLaDF.tn C....r.v.s	
Hgdnfr	QTIVPVCSYE EREKPNCNLN QDSCKTNYIC RSRLADFFTN CQPESRSVSS	
Rgdnfr	QTIVPVCSYE ERERPNCNSL QDSCKTNYIC RSRLADFFTN CQPESRSVSN	
Hgrr2	QTILPSCSYE DKEKPNCNL DL RGVCRTDHLC RSRLADFHAN CRASYQTVTS	
Rgrr2	QTILPSCSYE DKEKPNCNL DL RSLCRTDHLC RSRLADFHAN CRASYRTITS	
Hgrr3	NTIAPNC.AL PPVAPNCLEL RRLCFSDPLC RSRLVDFQTH C.HPMIDILGT	
Rgrr3	NTIAPSC.AL PSVAPNCNL DL RSFCRADPLC RSRLMDFQTH C.HPMIDILGT	
	301	350
Consensus	C.a.ny..CL .aY.G1IGt. MTPNyvdss. t...VapwC. CrsgSGN..ee	
Hgdnfr	CLKENYADCL LAYSGLIGTV MTPNYIDSSS ..LSVAPWCD CSNSGNDLEE	
Rgdnfr	CLKENYADCL LAYSGLIGTV MTPNYVDSSS ..LSVAPWCD CSNSGNDLED	
Hgrr2	CPADNYQACL GSYAGMIGFD MTPNYVDSSP TGIVVSPWCS CRGSGNMEEE	
Rgrr2	CPADNYQACL GSYAGMIGFD MTPNYVDSNP TGIVVSPWCN CRGSGNMEEE	
Hgrr3	C.ATEQSRCL RAYLGLIGTA MTPNFASN VN TS..VALSCT CRGSGNLQEE	
Rgrr3	C.ATEQSRCL RAYLGLIGTA MTPNFISKVN TT..VALGCT CRGSGNLQDE	

00000000000000000000000000000000

351

400

Consensus	Cekfl.fF.. NpCL.nAIqA fgng.....p.fsvt.t.a
Hgdnfr	CLKFLNFFKD NTCLKNAIQA FGNGS....D VTVWQPAFPV QTTTATTNTTA
Rgdnfr	CLKFLNFFKD NTCLKNAIQA FGNGS....D VTMWQPAPPV QTTTATTNTTA
Hgrr2	CEKFLRDFTE NPCLRNAIQA FGNGTNV....NVSP KGPSFQATQAA
Rgrr2	CEKFLRDFTE NPCLRNAIQA FGNGTDV....NMSP KGPSLPATQAA
Hgrr3	CEMLEGFFSH NPCLTEAIAA KMRFHSQQLFS QDWPHPTFAV MAHQNENPAV
Rgrr3	CEQLEKSFSQ NPCLMEAIAA KMRFHRQLFS QDWADSTFSV MQQQNSSPAL

401

450

Consensus	.rv...PsL.s....l. t.v...C..l Q.Q.LK.N.S .e...Cf.el
Hgdnfr	LRVKNKP.LG PAGSENEIP. THVLPPCANL QAQKLKSNVS GNTHLCISNG
Rgdnfr	FRVKNKP.LG PAGSENEIP. THVLPPCANL QAQKLKSNVS GSTHLCISNG
Hgrr2	PRVEKTPSLP DDLSDSTS LG TSVITTC TSV QEQLKANNS KELSMCFTEL
Rgrr2	PRVEKTPSLP DDLSDSTS LG TSVITTC TSI QEQLKANNS KELSMCFTEL
Hgrr3	RPQPWVPSLF SCTLPLLLL SLW
Rgrr3	RPQLRLPVLS FFILTLILLQ TLW

451

499

Consensus	ttn....sg. ...i....s.. A.pS.aL..L pvlmltalA. LLS....
Hgdnfr	NYEKEGL.GA SSHITTKSMA APPSCGLSPL LVRVVTALST LLSTETs
Rgdnfr	DFGKDGLAGA SSHITTKSMA APPSCSLSSL PVLMLTALAA LLSVSLA
Hgrr2	TTNIIPGSNK VIKPNSGPSR ARPSAALTlVl SVLMLK.LAL
Rgrr2	TTNISPGSKK VIKLNSGSSR ARLSAALTAL PLLMLTLAL

Figure 20

Human GDNFR α	MFLATLTYFALPLLDLILSAEVSGGDRLDCVKASDOCLKE
Rat GDNFR α	MFLATLTYFALPLLDLILSAEVSGGDRLDCVKASDOCLKE
Human GRR2	MILANVFCLFFFLLDTLRLSLASPSSLQGPTELHGWRPPVDCVRANELCAAЕ
Rat GRR2	MLVFPSPHYPDETLRSLASPSSLQGPTELHGWRPOVDCVRANELCAAЕ
Human GDNFR α	QSCSTKYRTLRCQVAGKETNFSIASGLEAKDECRSAMEALKQKSLYNCRC
Rat GDNFR α	QSCSTKYRTLRCQVAGKETNFSITSGLEAKDECRSAMEALKQKSLYNCRC
Human GRR2	SNCSSRYRTLRCQLAGRDRN.....TMIANKECQAALEVLQESPLYDCRC
Rat GRR2	SNCSSRYRTLRCQLAGRDRN.....TMIANKECQAALEVLQESPLYDCRC
Human GDNFR α	KRGMKKEKNCLRIYWSMYQL.QNDLLEDDSPYEPVNSRLSDIFRVPVVPFI
Rat GDNFR α	KRGMKKEKNCLRIYWSMYQL.QNDLLEDDSPYEPVNSRLSDIFRVPVVPFI
Human GRR2	KRGMKKELOCLQIYWSIHLGLTEGEEFYBASPYEPVTSRLSDIFRFLASIF
Rat GRR2	KRGMKKELOCLQIYWSIHLGLTEGEEFYBASPYEPVTSRLSDIFRFLASIF
Human GDNFR α	SDVFQQVEHIPKGNNCLDAAKACNLDDICKYRSAYITPCTTSVS.NDVC
Rat GDNFR α	SDVFQQVEHISKGNNCLDAAKACNLDDICKYRSAYITPCTTSMS.NEVC
Human GRR2	SGTGADPVVSAKSNHCLDAAKACNLNDNCKLRLSSYISICNREISPTERC
Rat GRR2	SGTGTDAVSTKSNHCLDAAKACNLNDNCKLRLSSYISICNREISPTERC
Human GDNFR α	NRRKCHKALRQFFDKVPAKHSYGMLFCSCRDIACTERRQTIVPVCSYEE
Rat GDNFR α	NRRKCHKALRQFFDKVPAKHSYGMLFCSCRDIACTERRQTIVPVCSYEE
Human GRR2	NRRKCHKALRQFFDRVPSEYTYRMLFCSCQDQACAERRQTILPSCSYED
Rat GRR2	NRRKCHKALRQFFDRVPSEYTYRMLFCSCQDQACAERRQTILPSCSYED
Human GDNFR α	REKPNCNLQDSCKTNYICRSRLADFFTNCOPERSVSSCLKENYADCIL
Rat GDNFR α	RERPNCLISLQDSCKTNYICRSRLADFFTNCOPERSVSNCLENYADCIL
Human GRR2	KEKPNCLDLRGVCRTDHLCRSRLADFHANCRAASYQIVTSCPADNYOACIG
Rat GRR2	KEKPNCLDLRSLCRTDHLCRSRLADFHANCRAASYRTITSCPADNYOACIG
Human GDNFR α	AYSGLIGTVMTPNYIDS..SLSMAPWDCSNSGNDELCLKFLNFFKDН
Rat GDNFR α	AYSGLIGTVMTPNYVDSS..SLSMAPWDCSNSGNDELCLKFLNFFKDН
Human GRR2	SYAGMIGFDMPNYVDSSPTGIVVSPWCSRGSGNMEEECEKFIRDFTEН
Rat GRR2	SYAGMIGFDMPNYVDSSPTGIVVSPWCSRGSGNMEEECEKFIRDFTEН
Human GDNFR α	TCLKNAIQAFGNGLSDVTWQOPAPVQTTTATTTTAFLRVKNKPLGPAGSEN
Rat GDNFR α	TCLKNAIQAFGNGLSDVTWQOPAPVQTTTATTTTAFLRVKNKPLGPAGSEN
Human GRR2	PCLRNAIQAFGNGLNVNVSPKGPSFOATOAPRVEKTPSLPDDLSDSTS..
Rat GRR2	PCLRNAIQAFGNGLDVNMSPKGPSLPAATOAPRVEKTPSLPDDLSDSTS..
Human GDNFR α	EIPTHVLPPCANLCAQKLKSNVSGNTHLCIISNGNYEKEGL.GASSHITTK
Rat GDNFR α	EIPTHVLPPCANLCAQKLKSNVSGNTHLCLSDSDFCKDGLAGASSHITTK
Human GRR2	.LGTSVITTCSTSQEQGLKANNSKELSMCFTELTTNIIPGSNKVIKPNSG
Rat GRR2	.LGTSVITTCSTSQEQGLKANNSKELSMCFTELTTNISPGSKKVIKLNSG
Human GDNFR α	SMAAPPSCGLSPLLVIVVT.ALSTLI..SLIETS
Rat GDNFR α	SMAAPPSCSISLSSLPVIMLT.ALAALLSVSIAETS
Human GRR2	PSRARPSAALTIVLSVLMILKIAL
Rat GRR2	SSRARISSAALTALPILMLTIAL

200850 " 415E 99280

Figure 21

Figure 22

20252000-05320030

Figure 23

Figure 24

0 2 4 6 8 10 12 14 " 0 2 4 6 8 10

Figure 25

Figure 26

	1	
CONSENSUSP....l.tl.s l..p1.1..S	r...d Cv.A...Q.a
GDNFRMFLATLYF ALPLLDLLMS	AEVSGGDRLD CVKASDQCLK
GRR2	MLVFP SHYPDETLRS LASPSSLQGS	ELHGWRPQVD CVRANELCAA
GRR3	<u>MGLSRSPRPP PLVILLLVLS WLPLGTGNS</u>	LPTENRLVNS CTQARKKCEA
	51	100
CONSENSUS	e..Cs..Yrt LrqC.ag... n.....a ..eC..A.e.	L..ssLydCR
GDNFR	EQSCSTKYRT LRQCVAGKET NFSLTSGLEA KDECRSMEA LKQKSLYNCR	
GRR2	ESNGSSRYRT LRQCLAGRDR N.....TMLA NKECQALEV LQESPPLYDCR	
GRR3	NPACKAAAYQH LDSCTPSLSS PLPGES.AT SAACLEAAQQ LRNSSLIDCR	
	101	150
CONSENSUS	CkRgMKke.. CL.IYWs.h. l..G...le .SPYE.pVtS rlsdifr..s	
GDNFR	CKRGMKKEKN CLRIYWSMYQ SL.QGNDLLE DSPYE.PVNS RLSDIFRAVP	
GRR2	CKRGMKKELO CLOIYWSIHL GLTEGEFYE ASPYE.PVTS RLSDIFRLAS	
GRR3	CHRRMKHQAT QLDIYWTVHP VRSLGDYELD VSPYEDTVTS ..KPWKMNLs	
	151	200
CONSENSUS	..S....d... ...ksn.Cld aAkaCnLnD. Ckk1RsAYi. .C....S..e	
GDNFR	FISDVFQQVE HISKGNNCLD AAKACNLDDT CKKYRSAYIT PCTTSMS.NE	
GRR2	IFSGTGTDPA VSTKSNHCLD AAKACNLNDN CKKLRSYYIS ICNREISPTE	
GRR3	KLSMLKPD...SDLCLK FAMLCNLNDK CDRLRKAYGE AG....SG.I	
	201	250
CONSENSUS	rCnRrkChka LRqFFdkvp. .h.ygmLfCs C...D.aC.E RRRqTI.PsC	
GDNFR	VCNRRKCHKA LRQFFDKVPA KHSYGMFCS C..RDIACTE RRRQTIVPVC	
GRR2	RCNRRKCHKA LRQFFDRVPS EYTYRMLFCS C..QDQACAE RRRQTILPSC	
GRR3	RCQRHLCLAQ LRSFFEKAEE SHAQGLLLCP CAPEDAGCGE RRRNTIAPSC	
	251	300
CONSENSUS	sye..e.PNC LdLrs.Grtd .1CRSRLADF .tnC.p..r. .t.C.a.ny.	
GDNFR	SYEERERPNC LSLQDSCKTN YICRSRLADF FTNCQPEERS VSNCNLKENYA	
GRR2	SYEDKEKPNC LDLRSLCRTD HLCRSRLADF HANCASYRT ITSCPADNYQ	
GRR3	ALPSVA.PNC LDLRSFCRAD PLCRSRLMDF QTHCHPMIDL GT.C.ATEQS	
	301	350
CONSENSUS	.CL.aY.G1I Gt.MTPNyvd s..t...Vap wC.CrgSGN. .eeCekf1..	
GDNFR	DCLLAYSGLI GTVMTPNYVD SSSL..SVAP WCDCSNSGND LEDCLKFLNF	
GRR2	ACLGSYAGMI GFDMTPNYVD SNPTCIVVSP WCNCRGSGNM EEECEKFLRD	
GRR3	RCLRAYLGLI GTAMTPNFIS KVNTT..VAL GCTCRGSGNL QDEQEQUEKS	
	351	400
CONSENSUS	F..NpCL.nA IqAfngng.dv .msq..p... .t.a..... rv...p.1..	
GDNFR	FKDNTCLKNA IQAFGN G SDV TMWQPAPPVQ TTTATTTAF RVKNKP.LGP	
GRR2	FTENPCLRNA IQAFGN G TDV NMSPKGPSLP ATQAP..... RVEKTPSLPD	
GRR3	FSQNPQLMEA IAAKMRFHRO LFSQDWADST FSVMQQQNS PALRPQ....	
	401	450
CONSENSUS	..s.....t .v...c...q .q.lk.n.s.c.....	
GDNFR	AGS.ENEIPT HVLPPCANLQ AQKLKS N VSG STHLCLSDSD FGKDGLAGAS	
GRR2	DLSDSTS L G T SVITTCTSIQ EQGLK A NN S K ELSMCFTELT TNISPGSKKV	
GRR3	
	451	489
CONSENSUSs..a ..s..1..LP vLm t .1... 1...1.ets	
GDNFR	SHITTKSMAA PPSCSLSSL P VLMLTALAAL LSVSLAETS	
GRR2	IKLNSGSSRA RLSAALTALP LLMLT L AL	
GRR3 LRLP VLSFFILT L LI LLOT L W	