PH 103: Electricity and Magnetism

Tutorial Sheet 6: Mutlipole Expansion and Dielectrics

Multipole Expansion

- 1. An electric dipole \vec{p} is fixed at the origin, making an angle β with the z-axis. Calculate the electric flux through the hemispherical surface of radius R resting on the x-O-y plane and centred at the origin. [Ans.: $p\cos\beta/2\epsilon_0R$]
- 2. A dipole $\vec{p} = p \,\hat{k}$ is fixed at the origin. Calculate the work done in moving a point charge $+\mathbf{Q}$ from the point $\mathbf{A}(r,\theta=\pi/2)$ to the point $\mathbf{B}(r,\theta=0)$ [r and θ are polar coordinates] in two different ways: (a) from the potential at the two points, and (b) by calculating the line integral of E from A to B.

[Ans.: $Qp/4\pi\epsilon_0 r^2$]

- 3. A circular area of radius a lies in the x-y plane, and is centered at the origin. It has a charge density $\sigma(r,\theta) = \sigma_0 r \cos \theta$. Obtain the multipole expansion up to the quadrupole term for a point P located at (0,0,z), with $z \gg a$. (Ans: monopole term=zero, dipole moment $\vec{p} = \hat{i} \sigma_0 \pi a^4/4$).
- 4. Two pure dipoles $\vec{p_1}$ and $\vec{p_2}$ are oriented in space such that $\vec{p_1}$ has position vector $\vec{r_1}$ with respect to $\vec{p_2}$. The angle between $\vec{p_1}$ and $\vec{r_1}$ and $\vec{p_2}$ and $\vec{r_2}$ are θ' and θ , respectively, while the angle between the two dipoles is ϕ . Show that the mutual interaction energy between the two dipoles is $U = p_1 p_2 (\cos \phi 3 \cos \theta \cos \theta') / 4\pi \epsilon_0 r^3$.
- 5. A sphere of radius a centered at the origin carries a volume charge density $\rho(r,\theta) = \rho_0 a (a-2r) \sin \theta / r^2$ where ρ_0 is a constant, and r, θ are the usual spherical polar coordinates. Find the approximate potential (up to the quadrupole term) at large distances for points on the z-axis. [Ans. zero up to dipole]
- 6. Four point charges -2q, 3q, -2q and q are placed at the points (0,a,0), (0,0,a), (0,-a,0) and (0,0,-a), respectively. Using spherical polar coordinates, calculate the approximate potential (up to the quadrupole term), for large distances from the origin. [Ans. : zero up to the dipole term]
- 7. A thin ring of radius a carrying a constant linear charge density λ is kept in the x-O-y plane with centre as origin. Using spherical coordinates, calculate the first three terms in the multipole expansion for the potential $(r \gg a, \theta = 0)$ of the ring. Why is the term proportional to $1/r^2$ missing in the expansion. [Ans. : $V \simeq \frac{a\lambda}{2\epsilon_0 r} \left(1 \frac{a^2}{2r^2}\right)$]

Dielectrics

1. A uniformly polarized dielectric sphere of radius R has a frozen-in polarization $\vec{P} = P_0 \hat{k}$. Calculate the surface (σ_b) and volume (ρ_b) charge densities. Calculate the electric field inside the sphere. Find the potential at any point outside the sphere $(r \gg R)$ where r is

the distance from the centre of the sphere which coincides with the origin of the coordinate system. [Ans. $\sigma_b = P_0 \cos \theta$, $E_{in} = (P_0/3\epsilon_0)(-\hat{k})$, $V_{out} = (P_0R^3 \cos \theta)/(3\epsilon_0r^2)$].

- 2. An unpolarized dielectric sphere of radius R is placed in a uniform electric field $\vec{E} = E_0 \hat{k}$. Find the electric field both inside as well as outside the sphere by solving the Laplace's equation.
- 3. A thick spherical shell of inner radius a and outer radius b has a "frozen in" polarization $P(r) = \frac{k}{r}\hat{r}$ where k is a constant and r is the distance from the centre. Find \vec{D} and \vec{E} everywhere. Also find σ_b and ρ_b . [Ans. $\sigma_b = -k/a$ at r = a, $\sigma_b = +k/b$ at r = b $\rho_b = -3a/r^2$, $\vec{D} = 0$ everywhere, $E(a < r < b) = (k/\epsilon_0 r)(-\hat{r})$, E = 0 everywhere else].
- 4. A spherical capacitor consists of an inner conducting sphere of radius R_1 and an outer concentric conducting shell of radius R_3 . The region $R_1 \leq r \leq R_2$ is filled with a material of dielectric constant κ . The inner conductor has a charge Q while the outer conducting shell which is grounded has a charge -Q. Calculate (i) the displacement vector \vec{D} , the electric field \vec{E} and the potential in the two regions $R_1 \leq r \leq R_2$ and $R_2 \leq r \leq R_3$, (ii) the polarization vector \vec{P} and the bound surface (σ_b) and volume (ρ_b) charge densities in the dielectric. [Ans. $\vec{D}(r \leq R_1) = \frac{Q}{4\pi r^2}$]
- 5. A conducting sphere of radius R having charge +Q is surrounded by a dielectric medium with a dielectric constant that varies as $\kappa = 3R/r$ and extends from r = R to r = 2R (where r is the radial distance). Calculate
 - (a) the polarization vector \vec{P}
 - (b) the bound volume charge densities in the dielectric and
 - (c) the total polarization charge on the surface r = 2R.

[Ans.
$$\vec{P} = \frac{Q}{4\pi r^2} (1 - \frac{r}{3R}) \hat{r}, \, \rho_b = Q/12\pi a R r^2, \, Q/3$$
]

- 6. A dielectric rod in the shape of a right circular cylinder of length 2L and radius R is polarized in the direction of its length. The polarization P is uniform and has a magnitude P_0 . Taking the origin at the centre of the cylinder, calculate the electric field at a point z, where |z| < L/2.
- 7. Consider a dielectric with displacement vector given by $\vec{D}_0 = \epsilon_0 \vec{E}_0 + \vec{P}$, where all the three quantities are uniform.
 - (a) A small spherical cavity is hollowed out of the material. Find the electric field \vec{E} and \vec{D} at the centre of the cavity. [Ans. $\vec{E} = \vec{E}_0 + \frac{\vec{P}}{3\epsilon_0}$, $\vec{D} = \vec{D}_0 \frac{2}{3}\vec{P}$]
 - (b) Find the electric field \vec{E} and \vec{D} inside a needle-shaped cavity running parallel to the direction of polarization. [Ans. $\vec{E} = \vec{E}_0$, $\vec{D} = \vec{D}_0 \vec{P}$]
 - (c) Find the electric field \vec{E} and \vec{D} for a thin wafer shaped cavity with its plane perpendicular to the direction of polarization. [Ans. $\vec{E} = \vec{E}_0 + \frac{\vec{P}}{3\epsilon_0}$, $\vec{D} = \vec{D}_0$]

- 8. A conducting sphere of radius R is half submerged in a linear homogeneous semi infinite liquid dielectric medium of dielectric constant κ . The sphere is at a potential V_0 . Assuming that there is no bound charge at the liquid-air interface, calculate
 - (a) the potential at a point outside the sphere
 - (b) the electric field, the displacement vector and the bound charge density in the dielectric and
 - (c) total free charge on the conductor.

[Ans.
$$V = V_0 R/r$$
, $\vec{E} = \frac{V_0 R}{r^2} \hat{r}$, $\vec{D} = \epsilon_0 \kappa \vec{E}$, $\sigma_b = \epsilon_0 (\kappa - 1) V_0 / R$, $\rho_b = 0$, $Q_{free,tot} = 2\pi \epsilon_0 (\kappa + 1) V_0 R$].

- 9. Obtain the boundary conditions that the field vectors must satisfy at the interface between two dielectrics. If the electric field vector \vec{E}_1 in a semi-infinite medium of permittivity ϵ_1 makes an angle θ with the interface with a second infinite dielectric medium of permittivity ϵ_2 , find the angle ϕ that the field vector \vec{E}_2 in the second medium makes with the interface. [Ans. $\tan \phi = (\epsilon_2/\epsilon_1) \tan \theta$]
- 10. The plane z=0 marks the boundary between the free space (z>0) and an infinite dielectric medium (z<0) with dielectric constant $\kappa=8$. The electric field in the free space, immediately next to the interface is $\vec{E}=2\hat{i}+3\hat{j}+4\hat{k}$. Determine the electric field on the dielectric side of the interface. [Ans. $\vec{E}=2\hat{i}+3\hat{j}+0.5\hat{k}$].