Defining and using functions in R

https://github.com/mbjoseph/r-intro-functions

Max Joseph

3/8/2017

A simple function

```
c(1, 2, 3, 4, 5)
```

```
## [1] 1 2 3 4 5
```

Functions are objects too!

```
## function (...) .Primitive("c")
```

Primitive functions

Functions written in R

```
## function (x, na.rm = FALSE)
## sqrt(var(if (is.vector(x) || is.factor(x)) x else as.dom
```

```
## na.rm = na.rm))
## <bytecode: 0x7f9f20f23270>
## <environment: namespace:stats>
```

sd

Example: temperature conversion

```
x <- 30
y <- ((x - 32) * (5 / 9)) + 273.15
y
## [1] 272.0389
```

Example: temperature conversion

```
fahr_to_kelvin <- function(fahr) {
  kelvin <- ((fahr - 32) * (5 / 9)) + 273.15
  kelvin
}
fahr_to_kelvin(30)
## [1] 272.0389</pre>
```

Name

Arguments

```
fahr_to_kelvin <- function(fahr) {
  kelvin <- ((tf - 32) * (5 / 9)) + 273.15
  kelvin
}</pre>
```

Body

There	are	only	two	${\tt hard}$	things	in	${\tt Computer}$	Science:	
cache invalidation and naming things.									

-- Phil Karlton

What's in a (function) name?

```
f()
my_func()
t_funk()
f2k()
convert_temperature()
fahr_to_kelvin()
```

Body

What your function does

```
fahr_to_kelvin <- function(fahr) {
  kelvin <- ((fahr - 32) * (5 / 9)) + 273.15
  kelvin
}</pre>
```

3 weird tricks to a great function body your physician doesn't want you to know!

- 1. Express intent
- 2. Be nice to humans
- 3. Self-contain your functions

1. Express your intent with meaningful names

```
fahr_to_kelvin <- function(fahr) {
   kelvin <- ((fahr - 32) * (5 / 9)) + 273.15
   kelvin
}
not
fahr_to_kelvin <- function(x) {
   y <- ((x - 32) * (5 / 9)) + 273.15</pre>
```

2. Document what the function does for human readers

```
fahr_to_kelvin <- function(fahr) {
    # Convert temperature in fahrenheight to kelvin
    # args: fahr (numeric) - temp. in fahrenheight
    # returns: kelvin (numeric) - temp. in kelvin
    kelvin <- ((fahr - 32) * (5 / 9)) + 273.15
    kelvin
}</pre>
```

3. Make your functions self-contained

^Bad

```
offset <- 273.15

fahr_to_kelvin <- function(fahr) {
    # Convert temperature in fahrenheight to kelvin
    # args: fahr (numeric) - temp. in fahrenheight
    # returns: kelvin (numeric) - temp. in kelvin
    kelvin <- ((fahr - 32) * (5 / 9)) + offset
    kelvin
}</pre>
```

Environments

R associates each object with an **Environment** By default, objects \rightarrow **Global environment** (demo)

Function environments

```
fahr to kelvin <- function(fahr) {
  kelvin \leftarrow ((fahr - 32) * (5 / 9)) + 273.15
 kelvin
fahr_to_kelvin(fahr = 100)
## [1] 310.9278
kelvin
## Error: object 'kelvin' not found
```

Self-contained functions

1. Act like functions

Self-contained functions

2. Are robust to the state of the global environment

```
offset <- 273.15

fahr_to_kelvin <- function(fahr) {
    # Convert temperature in fahrenheight to kelvin
    # args: fahr (numeric) - temp. in fahrenheight
    # returns: kelvin (numeric) - temp. in kelvin
    kelvin <- ((fahr - 32) * (5 / 9)) + offset
    kelvin
}</pre>
```

Review

Function parts:

- name
- arguments
- body

Best practices:

- use a good name
- document your function
- contain your function

But wait, there's more!

We haven't covered the why and when yet.

Short version:

- DRY (do not repeat yourself)
- modularity
- ease of maintenance