

MEC-E8006 Fatigue of Structures

Project work descriptions

Project work cases

- The project work case (application case) is selected by team. The following options are available:
 - Welded cruciform joint in low strength steel
 - Post-weld-treated joint in high strength steel
 - Cut-plate edge in high strength steel
 - Team own project work
- All components are loaded by constant amplitude loading with selected load level.
- For option A-C, the reference material (e.g. geometry measurements, material data) is given in my course folder.
- In the option D, the reference material is defined by team using existing literature.

- Common fatigue critical detail in welded structures, such as ship, bridge, crane structures
- Fatigue test specimen including fillet welded cruciform joint
- A constant amplitude loading with load range of 45.6 kN and load ratio R=0.1

Table 1: Mechanical properties and the constants for stress–life curves from tests at zero mean stress on un-notched axial specimens (Unit MPa)

	Yield Strength		True Fracture Strength	$\sigma_a = \sigma_f'(2N_f)^b = AN_f^B$		
Material	σ_o	Strength σ_u	$ ilde{\sigma}_{fB}$	σ_f'	A	b = B
AH36	425	550	980	1100	1016	-0.115

Table 2: Cyclic Stress-Strain and Strain-Life Constants (Unit MPa)

	Cycli	Cyclic <i>σ</i> -ε Curve			Strain-Life Curve			
Material	E	H'	n'	σ_f'	b	$arepsilon_f'$	С	
AH36	210 000	794	0,143	1100	-0,115	0,632	-0,583	

Table 3: Constants for the Walker equation

	Yield	Toughness	Walker Equation				
Material	$\sigma_{ m o}$	K_{Ic}	C_0	m	γ	γ	
	MPa	MPa √m	$\frac{\text{mm/cycle}}{(\text{MPa}\sqrt{\text{m}})^m}$		$(R \ge 0)$	(<i>R</i> < 0)	
AH36	425	190	6.89E-09	3.00	0.92	0	

Table 4: Constants for the Forman equation

	Yield	Toughness	Forman Equ	ation .
Material	σ_o	K_{Ic}	C_2	m_2
	MPa	MPa√m	mm/cycle	
			$(MPa\sqrt{m})^{m_2-1}$	
AH36	425	190	2.30E-07	3.00

- Common fatigue critical detail in welded structures, such as ship, bridge, crane structures
- Fatigue test specimen including fillet welded cruciform joint, which is post-weld treated
- A constant amplitude loading with load range of 77.2 kN and load ratio R=-0.43

Table 1: Mechanical properties and the constants for stress–life curves from tests at zero mean stress on un-notched axial specimens (Unit MPa)

	Yield Strength	Ultimate Strength	True Fracture Strength	$\sigma_a = \sigma$	$f'(2N_f)^b$	$=AN_f^B$
Material	σ_o	σ_u	$ ilde{\sigma}_{fB}$	σ_f'	A	b = B
S690	744	810	1220	1170	1119	-0.064

Table 2: Cyclic Stress-Strain and Strain-Life Constants (Unit MPa)

	Cyclic σ - ε Curve			Strain-Life Curve			
Material	E	H'	n'	σ_f'	b	$arepsilon_f'$	С
AH36	210 000	1353	0,077	1170	-0,064	1,351	-0,722

Table 3: Constants for the Walker equation

	Yield	Toughness	Walker Equation				
Material	$\sigma_{ m o}$	K_{Ic}	C_0	m	γ	γ	
	MPa	MPa \sqrt{m}	$\frac{\text{mm/cycle}}{(\text{MPa}\sqrt{\text{m}})^m}$		$(R \ge 0)$	(R < 0)	
S690	744	150	6.89E-09	3.00	0.82	0	

Table 4: Constants for the Forman equation

	Yield	Toughness	Forman Equation	
Material	σ_o	K_{Ic}	C_2	m_2
	MPa	MPa√m	mm/cycle	
			$(MPa\sqrt{m})^{m_2-1}$	
S690	744	150	2.30E-07	3.00

- Common fatigue critical detail in complex structures
- Fatigue test specimen including cut plate edge, which is sandblasted. The plate thickness is 15.3 mm.
- A constant amplitude loading with load range of 253 KN and load ratio R=0.1

C

Sandblasted surface

Table 1: Mechanical properties and the constants for stress–life curves from tests at zero mean stress on unnotched axial specimens (Unit MPa)

	Yield Strength	Ultimate Strength	True Fracture Strength	$\sigma_a = \sigma$	$f'(2N_f)^b$	$=AN_f^B$
Material	σ_o	σ_u	$ ilde{\sigma}_{fB}$	σ_f'	A	b = B
S690	744	810	1220	1353	1294	-0.064
oper	ge balcony nings			Rolling direction of plate	Surface polision Surfac	
	-	Fatigue-critical opening corner		Pure shear		Pure tension

Table 2: Cyclic Stress–Strain and Strain–Life Constants (Unit MPa)

	Cyclic σ - ε Curve			Strain-Life Curve			
Material	E	H'	n'	σ_f'	b	$arepsilon_f'$	С
AH36	210 000	1353	0,077	1170	-0,064	1,351	-0,722

Table 3: Constants for the Walker equation

	Yield	Toughness	Walker Equation				
Material	$\sigma_{ m o}$	K_{Ic}	C_0	m	γ	γ	
	MPa	MPa √m	$\frac{\text{mm/cycle}}{(\text{MPa}\sqrt{\text{m}})^m}$		(<i>R</i> ≥ 0)	(<i>R</i> < 0)	
S690	744	150	6.89E-09	3.00	0.82	0	

Table 4: Constants for the Forman equation

	Yield	Toughness	Forman Equ	ation
Material	σ_o	K_{Ic}	C_2	m_2
	MPa	MPa√m	mm/cycle	
			$(MPa\sqrt{m})^{m_2-1}$	
S690	744	150	2.30E-07	3.00

Geometry data

Download and analysis of the geometry data

- 1. Download the zip-file: Project work Geometry data.zip
- 2. Welded joint analysis (Case A and B)
 - Use GOM software in order to analyze 3D geometry model: https://www.gom.com/3d-software/gom-inspect.html
 - Use e.g. Microsoft Excel to analyze 2D section file (*.asc files);
 see Example.txt and Example.xlsx files
- 3. Plate edge roughness analysis (Case C)
 - Use e.g. Microsoft Excel to analyze 2D section file; see "Roughness profile.txt" and "Roughness profile.xlsx" files

