东南大学数字逻辑电路

实验报告

学号: 04022212

姓名: ___ 钟 源___

2023年12月7日

实验名称:实验5 触发器时序逻辑电路设计

实验类型:综合性

成绩:

一、实验内容提要

使用 74194 和 74138 设计序列信号发生器,产生两组不同序列:

- 1.熟悉 74194 和 74138 芯片
- 2.列出状态转移真值表和转换图
- 3.给出电路实现方案

4.调试电路,根据自己的学号最后两位,实现两组不同的周期序列: 当控制信号 X=0 时,输出学号后两位对应的 6 位二进制数,当 X=1 时,输出学号后两位对应的在模为 50 的 6 位二进制补数。(比如,如果学号为 15,则 X=0 输出 001111; X=1 输出 100011)

二、实验仪器与元器件

1.ADALM2000 1台

2.面包板 1 块

3.集成芯片:

1) SN74HC138N 1片

2) SN74HC153N 1片

3) SN74HC194N 1片

4) SN74HC04N 1片

4.杜邦线 8条, 导线若干。

三、设计过程及步骤

1. X=0 时,输出序列"001100":

利用 74194 的右移功能实现输出序列,则主循环状态转移如下:

	Q_3^n	Q_2^n	Q_1^n	Q_0^n	D _{SR}	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
	0	0	1	1	0	0	1	1	0
主	0	1	1	0	0	1	1	0	0
土 循	1	1	0	0	0	1	0	0	0
环	1	0	0	0	0	0	0	0	0
<u> </u>	0	0	0	0	1	0	0	0	1
	0	0	0	1	1	0	0	1	1

得到卡诺图并设计逻辑表达式如下:

$$D_{SR} = \overline{Q_3} * \overline{Q_1}$$

但当 $Q_3Q_2Q_1Q_0$ 为 0010 时,有 0010—>0100—>1001—>0010,无法加入主循环,实现自启动。 考虑到自启动,得到卡诺图并设计逻辑表达式如下:

Q3Q2	OD	0	11	D
0.0			0	Х
0 (X	×	Χ	0
11	D	X	X	×
10	0	×	×	Х

$$D_{SR} = \overline{Q_3} * \overline{Q_2} * \overline{Q_1}$$

完整的状态转移真值表如下:

	Q_3^n	Q_2^n	Q_1^n	Q_0^n	D _{SR}	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
+	0	0	1	1	0	0	1	1	0
	0	1	1	0	0	1	1	0	0
主循	1	1	0	0	0	1	0	0	0
环	1	0	0	0	0	0	0	0	0
Δ Υ	0	0	0	0	1	0	0	0	1
	0	0	0	1	1	0	0	1	1
	0	0	1	0	0	0	1	0	0
	0	1	0	0	0	1	0	0	0
	0	1	0	1	0	1	0	1	0
핆	1	0	1	0	0	0	1	0	0
副循	0	1	1	1	0	1	1	1	0
环	1	1	1	0	0	1	1	0	0
小	1	0	0	1	0	0	0	1	0
	1	0	1	1	0	0	1	0	0
	1	1	0	1	0	1	0	1	0
	1	1	1	1	0	1	1	1	0

状态转移图如下:

2.X=1 时,输出序列"1100110":

利用 74194 的右移功能实现输出序列,则主循环状态转移如下:

	Q_1^n	Q_2^n	Q_3^n	D _{SL}	Q_1^{n+1}	Q_2^{n+1}	Q_3^{n+1}
	1	0	0	1	0	0	1
+	0	0	1	1	0	1	1
主	0	1	1	0	1	1	0
循环	1	1	0	1	1	0	1
环	1	0	1	0	0	1	0
	0	1	0	0	1	0	0
副循	0	0	0	1	0	0	1
环	1	1	1	0	1	1	1

考虑到自启动,得到卡诺图并设计逻辑表达式如下:

$$D_{SL} = \overline{Q_2} * \overline{Q_1} + \overline{Q_3} * Q_1$$

3.电路设计图:

4.实现方法:

1) 使用 SN74HC194N:

得到相应的 Q_3 , Q_2 , Q_1 , Q_0 , 具体接法如下引脚图所示:

2) 使用 SN74HC138N:

由译码器的功能表,得到相应的 S_0 , S_1 ,具体接法如下引脚图所示:

3) 使用 SN74HC153N:

由数据选择器的功能表,得到相应的 D_{SR}, D_{SL}, 具体接法如下引脚图所示:

4) 使用 SN74HC004N:

得到相应的 $\overline{Q_1}$,具体接法如下引脚图所示:

5.电路照片:

原图:

注解:

注: 接线中红线接高电平, 蓝线接地。

四、结果分析

原图:

注解:

得到实验结论:

输出结果与实验要求真值一致:

X=0 时, Q₃稳定输出序列"001100";

X=1 时, Q₃稳定输出序列"1100110"。