Zespołowe przedsięwzięcie inżynierskie:

Projekt i implementacja systemu kooperacji autonomicznych robotów mobilnych w zadaniach jednoczesnej lokalizacji i mapowania

Wstęp – wyjaśnienie tematu ZPI

Cel:

 opracowanie komputerowego systemu kooperacji autonomicznych robotów mobilnych e-puck

Zadania grupy robotów mobilnych:

- lokalizacja samolokalizacja, lokalizacja elementów środowiska, w tym pozostałych robotów
- mapowanie tworzenie mapy badanego środowiska

Podział prac

Jan Krzywda

- Tworzenie algorytmów eksploracji terenu oraz współpracy
- Implementacja algorytmów
- Przegląd literaturowy

Michał Rogowski

- Obsługa rzeczywistych robotów
- Implementacja rozwiązań mapy
- Testy

Grzegorz Kiernozek

- Kompleksowa obsługa środowiska
- Planowanie i koordynacja projektuImplementacja rozwiązań

Składowe projektu

Robot

E-puck

Środowisko symulacji

Webots 6.3.2

Oprogramowanie

- Eclipse
- SVN
- Java
- Freedcamp

Rzeczywiste środowisko

Makieta

Zadania zespołu

Semestr pierwszy:

- 1 Podział zadań i planowanie pracy
- 2 Wybór środowiska
- 3 Opracowanie modelu mapy
 - Wybór/zdefiniowanie algorytmów:
- Sterowania ruchem
 - Mapowania
- 5 Stworzenie prototypu systemu komputerowego

Zadania zespołu

Semestr drugi:

Wybór/zdefiniowanie algorytmów:

- Generowania mapy
- Lokalizacji
- Kooperacji
- 7 Implementacja algorytmów
- 8 Implementacja struktury projektu
- 9 Stworzenie rzeczywistego środowiska
- 10 Przeprowadzenie symulacji na rzeczywistych robotach
- 11 Poprawki, stworzenie dokumentacji, finalizacja projektu

Kalendarz prac

Przybliżony harmonogram prac wraz z przedziałami czasowymi

Tasks	Marzec	Kwiecień	Maj	Czerwiec	Październik	Listopad	Grudzień
1. Podział zadań	_						
2. Wybór środowiska							
3. Opracowanie modelu mapy							
4. Algorytmy sterowania ruchem i mapowania							
5. Stworzenie systemu komputerowego							
6. Algorytmy generowania mapy, lokalizacji, kooperacji							
7. Implementacja algorytmów							
8. Implementacja struktury projektu							
9. Stworzenie rzeczywistego środowiska							
10. Testy na rzeczywistych robotach							
11. Poprawki, dokumentacja, finalizacja projektu							

Wykorzystane elementy robota

- 1 Czujniki odległości
- 2 Kamera + diody
- 3 Nadajnik + odbiornik
- 4 Przetworniki jazdy
- 5 Komunikacja Bluetooth

Schemat logiki systemu

Dane czujników i kamer

[Bluetooth]

Manager [Komputer]

- Analiza informacji z czujników i kamer
- Aktualizacja map robotów
- 3. Jeśli widzimy e-pucka próba złączenia map
- Wyznaczenie następnego kroku dla każdego z e-pucków, na podstawie mapy przez niego odkrytej i jego czujników
- 5. Wysłanie decyzji do e-pucków

Decyzje kolejnego ruchu [Bluetooth]

E-puck0, E-puck1 Controller [E-pucki]

- Rekalibracja
- 2. Ruch na podstawie otrzymanej decyzji od Mangera
- 3. Wysłanie zaktualizowanych informacji z czujników i kamery

Rzeczywiste środowisko

Przykład uruchomieniowy

Dziękujemy za uwagę

Dokumentacja oraz pliki źródłowe dostępne są wraz z projektem u opiekuna ZPI – dr inż. Macieja Hojdy