

Monoclonal Antibody TherapySeptember 12th

Johan Nilvebrant, PhD

School of Engineering Sciences in Chemistry, Biotechnology and Health Protein Engineering

johan.nilvebrant@biotech.kth.se

About me

- MSc molecular biotechnology KTH (2007)
- PhD proteomics/protein engineering KTH (2012)
- Postdoc antibody engineering Toronto (2014-16)
- Researcher protein/antibody engineering KTH (2016-)

- Current research interests
 - Engineering affinity proteins for use in basic research, structural biology, immunology, diagnostics and therapy of cancer, infectious disease etc.

Top ten now and before

2000-2011

Billion USD (11 yrs)						
#1	Lipitor	121	Pfizer			
#2	Plavix	74	BMS/Sanofi			
#3	Advair	58	GSK			
#4	Zyprexa	50	Eli Lilly			
#5	Enbrel	45	Amgen/Pfizer			
#6	Nexium	44	AstraZ			
#7	Singulair	38	Merck			
#8	Seroquel	37	AstraZ			
#9	Lovenox	33	Sanofi			
#10	Humira	32	Abbott			

2017

Billion USD (1 yr)							
#1	Humira	18	AbbVie				
#2	Rituxan	9.2	Roche				
#3	Revlimid	8.2	Celgene				
#4	Enbrel	7.9	Amgen/Pfizer				
#5	Herceptin	7.4	Roche				
#6	Eliquis	7.4	BMS/Pfizer				
#7	Remicade	7.2	J&J/Merck				
#8	Avastin	7.1	Roche				
#9	Xarelto	6.6	Bayer/J&J				
#10	Eylea	6.0	Bayer/Regeneron				

Small molecule Antibody Other biological

Today

- Antibody structure and function
- Antibody generation, humanization, in vitro selection
- Pros and cons of antibody therapy

Key concepts

------ BREAK -----

Mechanisms of action

Overview of current and future approaches

- Effector functions
- Bispecific antibodies, checkpoint inhibitors, immunomodulators
- Antibody engineering
- Fc-fusions
- Alternative scaffold binders

Vaccines and antibodies

In 1796 Edward Jenner discovered that cowpox or vaccinia induced protection against human smallpox - an often fatal disease

In 1890 Emil von Behring and Shibasaburo Kitasato discovered that the serum of vaccinated individuals contained substances that specifically bound to the relevant pathogen, which they called antibodies

1901

The magic bullet

Paul Ehrlich reasoned (1897) that if a compound could be made that selectively targeted a disease-causing organism, then a toxin for that organism could be delivered along with the agent of selectivity. Hence, a "magic bullet" - an ideal therapeutic agent - would be created that killed only the organism targeted

The concept of a "magic bullet" has to some extent been realized by the development of antibody-drug conjugates (a monoclonal antibody linked to a cytotoxic drug) used to direct cytotoxins to targets (e.g. cancer cells)

Monoclonal antibodies (hybridoma), Milstein and Köhler 1975

1984

Antibody structure and function

Adaptive immunity

Clonal selection

Clonal selection of lymphocytes is the central principle of adaptive immunity

<u>Central tolerance:</u> deletion of lymphocytes specific for self antigens present in generative (primary) organs

<u>Peripheral tolerance:</u> deletion or anergy of lymphocytes that recognize self antigens in peripheral tissue

Monoclonal antibodies (mAbs)

- Monoclonal antibodies are:
 - Monospecific and identical because they are derived from a single parent cell
 - (Traditionally) Produced by fusing a B-cell secreting the desired antibody with a myeloma cell capable of growing indefinitely in culture
 - Targeted to the same epitope with the same affinity (identical antigen-binding sites)

Antibodies – multiple functions

Target binding

Effector functions

Fc-gamma receptors (FcyR)
Neonatal Fc-receptor (FcRn)

Antibody domains and CDRs

- Normal IgGs are ≈150 kDa tetramers comprising pairs of identical heavy and light chains
- Highly selective antigen binding is mediated by the variable domains in each of the two Fab-arms
- The Fc region mediates effector functions including cytotoxicity (cell-mediated or complement dependent), phagocytosis and serum half-life

Antibody diversity

Hypervariable regions fall in loops of V domain structure

- Each lymphocyte generates a unique antigen receptor by rearranging its receptor genes
- Combinatorial diversity

Hybridoma technology

Immunization with antigen + adjuvant, wait several months
Collect B-cells from spleen and fuse with immortal tumor cells

Milstein and Köhler 1975

"for theories concerning the specificity in development and control of the immune system and the discovery of the principle for production of monoclonal antibodies"

Antibody humanization

"HAMA": human anti-mouse antibodies

- loss of functional activity of the therapeutic
- induction of side effects
- interference in immunoassays

Evolution of antibody therapeutics

- Mouse monoclonal antibodies
 - Hybridoma technology
 - Major limitations: immunogenicity, lack of effector functions, short serum half-life
- Antibody chimerization and humanization (mid 1980s)
- Human antibodies (1990s)
 - Large phage display libraries (human antibody fragments)
 - Transgenic mice (human immunoglobulin genes)
- Evolving technologies (2000s)
 - yeast, ribosome, mRNA, mammalian and E. coli display libraries
 - Direct cloning of human antibodies from human blood- or bone marrow-derived cells

30 years of mAb/Fc-fusion approvals

Oncology Inflammation

>75 FDA/EMA-approved products ca. 300 in development

Rapidly expanding market

Market expected to reach 125 billion USD in sales by 2020 (almost +50 % in 3 years!)

Antibody fragments

Fab = fragment antigen binding scFv = single-chain fragment variable dAb = domain antibody

Fc = fragment crystallizable

Fully human mAbs

Synthetic antibody libraries

GAT AAAT CT GGTCTTATTTCC

Cloning of mAbs from Ebola survivors

Cell

.... D. Cit.

Article

Antibodies from a Human Survivor Define Sites of Vulnerability for Broad Protection against Ebolaviruses

Pros and cons of mAbs

Pros and cons of mAbs

- Good solubility and stability
- Long serum half-life
- High specificity and potency "any target"
- Low toxicity, typically well-tolerated
- Multiple mechanisms of action
- High success rates
- Well-established class of molecules
- Very poor oral bioavailability (typically i.v.)
- Incomplete absorption following i.m. or s.c. administration
- Nonlinear distribution and elimination
- Immunogenicity (anti-drug antibodies)
- Expensive (mammalian cell production and high doses)
- Limited to extracellular target space/cell surface antigens
- Limited tissue penetration due to large size

Current development

- Tailor effector functions
- Tailor half-life
- Expand target space (CNS, intracellular targets)
 - Challenging!
- Multiple targets bi- and multispecifics
- Payloads (e.g. antibody-drug conjugates)
- O ...
- Omit the antibody entity alternative protein scaffolds

BREAK

Mechanisms of action

Rituximab*
Ofatumumab
Ocrelizumab
GA101*
Alemtuzumab
Muromonab*
Epratuzumab*

Otelixizumab*
Teplizumab*
Muromonab*
GA101*
Infliximab*
Adalimumab*
Rituximab*

^{*} Several modes of action

Neonatal Fc-receptor (FcRn)

FcRn – optimization of recycling

- Engineer target release at pH 6
- Increase the number of cycles in which a mAb binds to and releases antigen for lysosomal degradation
- Many mAbs only bind one antigen molecule during their lifetime in plasma

Immune checkpoint inhibitors

Immune checkpoint inhibitors restore and augment the antitumor immune activities of cytotoxic T-cells by blocking immune checkpoint molecules on T-cells or their ligands on antigen-presenting and tumor cells

Bispecific antibodies

Bispecific antibodies

Binds to activated factor IX and to factor X mediating activation of the latter, which is normally the function of VIII

Antibody engineering

>100 bispecific formats reported

Why so many?

Immunoconjugates

- Antibody-drug conjugates (ADCs)
 - Mylotarg (FDA-approved 2001; discontinued 2010, reapproved 2017) CD33
 - Adcentris (2011) CD30
 - Kadcyla (2013) HER2
 - Besponsa (2017) CD22

- None yet approved
- Immunotoxins (e.g antibody-toxin fusion)
 - Ontak (discontinued in 2014)
- Radioimmunoconjugates
 - Several approved, e.g. Zevalin (CD20)

Nanobodies

Non-antibody scaffolds

Drug Discovery Today

Scaffold	Parental protein	Structure	Randomization	MW (kDa)
Affibodies	Z domain (protein A)	α-helical	Helix randomization	6
Affilins	γ-B-crystallin	β-sheet	Beta-strand randomization	20
ATTIIINS	Ubiquitin	α/β	Beta-strand randomization	10
Anticalins	Lipocalin	β-sheet + α-helical terminus	Loop randomization Beta-strand randomization	20
Atrimers	C-type lectin (tetranectin)	α/β	Loop randomization	3×20
Avimers	A-domain	Ca ²⁺ binding Disulfide constrained	Loop randomization	4
Bicyclic peptides	Peptide	Chemically constrained	Loop randomization	2
Cys-knots	Peptide	β-sheet Disulfide constrained	Loop randomization	4
DARPins	Ankyrin repeats	α-helical + β-turn	Helix randomization Beta-turn randomization	14-21
FN3 scaffolds (Adnectins, Centyrins, Pronectins, Tn3)	Fibronectin (type III)	β-sheet	Loop randomization Beta-strand randomization	10
Fynomers	SH3 domain (fyn kinase)	β-sheet	Loop randomization	7
Kunitz domains	Serine protease	α/β Disulfide constrained	Loop randomization	7
OBodies	OB-fold	β-sheet	Loop randomization Beta-strand randomization	12

KTH:

- Affibody technology
- ADAPT-technology

Several potential advantages

- Convenient production in bacterial hosts or by chemical synthesis
- Lack of disulfide-bonds
- Chemical and thermal stability
- Easy (re-) folding
- No effector functions
 - May add payloads
- Improved tissue penetration and faster clearance

Combinatorial protein engineering

johan.nilvebrant@biotech.kth.se