Recommender System

Book source: Mining of Massive Datasets (http://www.mmds.org)
by
Jure Leskovec, Anand Rajaraman, Jeff Ullman

Example: Recommender Systems

Customer X

- Buys Metallica CD
- Buys Megadeth CD

Customer Y

- Does search on Metallica
- Recommender system suggests Megadeth from data collected about customer X

Recommendations

blogs, news items, ...

del.icio.us

Types of Recommendation Systems

- Content based
 - Based on content similarity
- Collaborative filtering

Content-based Recommendations

 Main idea: Recommend items to customer x similar to previous items rated highly by x

Example:

- Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

Item Profiles

- For each item, create an item profile
- Profile is a set (vector) of features
 - Movies: author, title, actor, director,...
 - **Text:** Set of "important" words in document

User Profiles and Prediction

- User profile possibilities:
 - Weighted average of rated item profiles
 - Variation: weight by difference from average rating for item
 - ...
- Prediction heuristic:
 - Given user profile x and item profile i, estimate

$$u(x,i) = cos(x,i) = \frac{x \cdot i}{||x|| \cdot ||i||}$$

Pros

- No need for data on other users
- Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
- +: Able to provide explanations

Pros

- Finding the appropriate features is hard
- Recommendations for new users
- How to build a user profile?
- Overspecialization
 - Never recommends items outside user's content profile
 - Unable to exploit quality judgments of other users

Collaborative Filtering

- Consider user x
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N

Finding "Similar" Users

- Let r_x be the vector of user x's ratings
- Jaccard similarity measure
 - Problem: Ignores the value of the rating
- Cosine similarity measure
 - $sim(\mathbf{x}, \mathbf{y}) = cos(\mathbf{r}_{\mathbf{x}}, \mathbf{r}_{\mathbf{y}}) = \frac{r_{x} \cdot r_{y}}{||r_{x}|| \cdot ||r_{y}||}$
 - Problem: Treats missing ratings as "negative"
- Pearson correlation coefficient
 - S_{xy} = items rated by both users x and y

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}}$$

Similarity Metric

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Intuitively we want: sim(A, B) > sim(A, C)
- Jaccard similarity: 1/5 < 2/4
- **Cosine similarity:** 0.386 > 0.322
 - Considers missing ratings as "negative"
 - Solution: subtract the (row) mean

	l		HP3	TW	SW1	SW2	SW3
\overline{A}	2/3	1/3		5/3	-7/3		
B	1/3	1/3	-2/3				
C				-5/3	1/3	4/3	
D		0					0

sim A,B vs. A,C: 0.092 > -0.559

Notice cosine sim. is correlation when₃ data is centered at 0

Rating Predictions

From similarity metric to recommendations:

- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item s of user x:

•
$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$
 Shorthand: $s_{xy} = sim(x, y)$

$$r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$$

Other options?