

JYOTHY INSTITUTE OF TECHNOLOGY

Affiliated to VTU, Belagavi
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
Accredited by NBA, New Delhi

ASSIGNMENT 1

Course Code	18CS71
Course Name	Artificial Intelligence and Machine Learning

USN	1JT18CS063
Name	Vinyas S
Semester	7
Academic	2021-2022
Year	

Signature of student

Signature of Instructor

Course Code	18CS71
Course Name	Artificial Intelligence and Machine Learning
Semester	7
Program	Computer Science and Engineering

01. The data set contains the house price for Allahabad.

The data set is given in Annexure A.

Design and develop a python program to

- Print the value of co-eff and intercept.
- Predict the price of 985 sqft and 1225 sqft.

Use appropriate python library. Attach the screen shot.

Annexure A House Price in Allahabad

Price (Rs in lakhs)
36
34
30
28
30
31
60
70
54

1250	65
900	37
930	40
820	37
780	32
980	35
1050	43
1280	62
1320	67
1430	80
1100	56

PROGRAM:

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear model import LinearRegression
x=np.array([1000,950,800,650,720,850, 1400, 1450, 1200, 1250, 900,
930, 820, 780, 980, 1050, 1280, 1320, 1430, 1100])
y=np.array([36,34, 30,28,30,31, 60,70,54, 65,37,40, 37,32, 35,43,
62, 67, 80, 5])
linearRegression=LinearRegression()
x=x.reshape(-1,1)
linearRegression.fit(x,y)
print(linearRegression.coef_)
print(linearRegression.intercept_)
y1=(linearRegression.coef *985)+linearRegression.intercept
print(y1)
y2=(linearRegression.coef *1225)+linearRegression.intercept
print(y2)
```

OUTPUT:

2. The data set contains the house price for Mysore.

The data set is given in Annexure B.

Clean the data for any missing values.

Design and develop a python program to

- a) Predict the price of a house of 10000 sqft, 2 bedroom, 4 years old and 1 car parking.
- b) Predict the price of a house of 800 sqft, 2 bedrooms, 5 years old and 1 car parking.

Use appropriate python library Attach the screenshot.

Annexure B House prices in Mysore

Area(sqft) lakhs)	bedrooms	age	car parking	price(Rs in
1000	2	5	1	36
950	2	3	1	34
800	2	7	0	30
650	1	6	0	28
720		3	0	30
850	2	4	0	31
1400	3	5	1	60
1450	3	8	1	70
1200	3	7	1	54
1250	3	5	1	65
900		6	0	37

930	1	3	0	40
820	1	5	0	37
780	1	3	0	32
980	2	8	0	35
1050	2	6	1	43
1280	2	5	1	62
1320	3	4	1	67
1430	3	5	1	80
1100	2	7	1	56

PROGRAM:

```
import numpy as np
import pandas as pd
import math
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
df=pd.read_csv("assign1of2.csv")

median_bedrooms=math.floor(df.bedrooms.median())
df.bedrooms=df.bedrooms.fillna(median_bedrooms)

linearRegression=LinearRegression()

linearRegression.fit(df[['area','bedrooms','age','carparking']],df.price)

print("Coefficient",linearRegression.coef_)
```

```
print("Intercept", linearRegression.intercept )
```

print("Predicted value of 10000sqft, 2 bedroom, 4 years old and 1
car parking",linearRegression.predict([[10000,2,4,1]]))

print("Predicted value of 800 sqft, 2 bedrooms, 5 years old and 1
car parking",linearRegression.predict([[800,2,5,1]]))

OUTPUT:

3. For the diabetes data set given in Annexure C,
Design and develop a python program to
Classify the person with age 22 and 53 into diabetic or not.

Use appropriate python library. Attach the screen shot.

Annexure C Diabetes dataset.

Age	Diabetic
22	No
25	No
47	Yes
52	No
46	Yes
56	Yes
55	No
60	Yes
62	Yes
61	Yes

```
18
           Yes
28
           No
27
           No
29
           No
49
           Yes
55
           Yes
25
           Yes
58
           Yes
19
           No
18
           No
21
           No
26
           No
```

PROGRAM:

```
import pandas as pd
import numpy as np
data = pd.read_csv('Diabetes.csv')

X=data[['Age']]

Y=data['Diabetic']

from sklearn import preprocessing as ps
label_encoder = ps.LabelEncoder()

Y=label_encoder.fit_transform(Y)

from sklearn.naive_bayes import GaussianNB as GNB
model = GNB()
model.fit(X,Y)
tests = [22,53]
```

```
for test in tests:
    if(model.predict([[test]])[0]==1):
        print("Person of age {} years is classified as diabetic".format(test))
    else:
        print("Person of age {} years is classified as not diabetic".format(test))
```

OUTPUT:

Person of age 22 years is classified as not diabetic Person of age 53 years is classified as diabetic