Geometry of Hilbert schemes

Professor Kai Behrend

Notes by: David Steinberg, Pooya Ronagh

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA ROOM 121 - 1984 MATHEMATICS ROAD, BC, CANADA V6T 1Z2

E-mail address: pooya@math.ubc.ca

Abstract. The goal of this course is to define/construct the Hilbert scheme. The applications are to Donaldson-Thomas invariants.

1.	Representable functors	2
2.	Projective space	4
3.	Closed immersions/subpresheaves	4
4.	\mathcal{O}_X -modules	8
5.	Hilbert schemes	12
6.	Flatness	12
7.	Hilbert scheme of n points	15
8.	Sheaves/Schemes	16
9.	Grassmannians	20
10.	Properties of the Hilbert schemes of n points	21
11.	Tangent space to \widetilde{H}	26
12.	Points of $Hilb^n(\mathbb{A}^s)$ as locus of n points in \mathbb{A}^s	27
13.	Euler characteristics	27
14.	Computing the Euler characteristic of $Hilb^n(Y(\mathbb{C}))$	29
15.	Euler characteristic of schemes over \mathbb{C}	32
16.	$Hilb^n(\mathbb{A}^3)$ as a critical locus	34
17.	Singular loci of hypersurfaces	35
18.	Behrend function for general Hilbert schemes of n points	36

Contents

1. Representable functors

Here we develop an alternative point of view to schemes; that is we view schemes of functors (functor of points). This leads to construction of moduli spaces.

Convention: All rings are commutative with unit, and morphisms of rings map unit to unit. An R-algebra is a ring A with a ring map $R \to A$. Consequently, note that a Z-algebra is just any ring (for any ring R there is a unique morphism of rings $\mathbb{Z} \to R$).

Let X be a functor $X: R-alg \to Set$ via $A \mapsto X(A)$ and on morphism $A \stackrel{\varphi}{\to} B \mapsto X(A) \stackrel{\varphi_*}{\to} X(B)$ we call these functors presheaves.

Example 1. View the affine scheme cut out by $y^3 = x^3 - x$ over \mathbb{Z} by a functor

$$X: \mathbb{Z} - alg \to Set$$
$$A \mapsto X(A) = \{(x, y) \in A \times A : y^3 = x^3 - x\}.$$

One can check that this is actually a functor. More generally let R be a ring and $f_1, \dots, f_r \in R[x_1, \dots, x_n]$. Then let X be the presheaf

$$X(A) = \{(x_1, \dots, x_n) \in A^n : f_1(x_1, \dots, x_n) = f_2(x_1, \dots, x_n) = \dots = f_r(x_1, \dots, x_n) = 0\}$$

this is a presheaf and in fact this functor is the affine scheme defined by f_1, \dots, f_n . This functor is in fact representable by $Z(f_1, \dots, f_r) \subset \mathbb{A}_R^n$.

One interesting special case is when r = 0. Then $X = \mathbb{A}_{R}^{n}$:

$$\mathbb{A}_R^n(A) = \{(x_1, \dots, x_n) \in A^n\}$$

and if $r \neq 0$ then X is a subfunctor of \mathbb{A}_R^n .

More exclusively for an R-algebra A we correspond the functor Spec A given by

Spec
$$A : R - alg \rightarrow Set$$

 $B \mapsto Spec A(B) = Hom_R(A, B)$

This is a functor representable by A (i.e. it is $h_{Spec A}$). Recall that an isomorphism $X \cong h_{Spec A}$ is given by a universal object $x_0 \in X(A)$.

DEFINITION 1. An affine scheme over R is a representable presheaf $X : R - alg \rightarrow Set$ i.e. there exists an R-algebra A and $x_0 \in X(A)$ representing X.

REMARK. The category of presheaves with morphisms being natural transformations among them, admits fibered products. Here is a construction: given

define $W: R-alg \to Set$ via $A \mapsto X(A) \times_{Y(A)} Z(A)$ is the fibered product promised. This complete the diagram to a square

$$\begin{array}{c} W \longrightarrow Z \\ \downarrow & \downarrow f \\ X \longrightarrow Y \end{array}$$

which satisfies the universal mapping property in the category of presheaves.

REMARK. Our most interesting case if when $R = \mathbb{C}$ and then $X(\mathbb{C})$ is the set of \mathbb{C} -valued points of X.

2. Projective space

We know that

$$\mathbb{P}^n: R-alg \to Set$$

is given by

$$\mathbb{P}^n(A) = \{(L, s_0, \dots, s_n) : L \text{ is an invertible } A\text{-module}, s_0, \dots, s_n \in L \text{ such that } L = \sum_{i=0}^n A s_i\}/\sim .$$

and on mappings we have

$$A \to B \mapsto (L, s_0, \dots, s_n) \mapsto (L \otimes_A B, s_0 \otimes_A 1, \dots, s_n \otimes_A 1).$$

DEFINITION 2. An A-module L is invertible if for any prime ideal \mathfrak{p} of A, the localization $L_{\mathfrak{p}}$ over $A_{\mathfrak{p}}$ is free of rank one (i.e. there is $s \in L_{\mathfrak{p}}$ such that $A_{\mathfrak{p}} \to L_{\mathfrak{p}}$ via $a \mapsto as$ is an isomorphism).

Note 2.1. If L is invertible over A and $\varphi: A \to B$ is a morphism, and is a prime ideal of B, then ideal of B, then

$$(L \otimes_A B)_{\mathfrak{q}} = L \otimes_A B \otimes_B B_{\mathfrak{q}} = L \otimes_A B_{\mathfrak{q}} = L \otimes_A A_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} B_{\mathfrak{q}} = L_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} B_{\mathfrak{q}}$$

and $L_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} B_{\mathfrak{q}}$ is free of rank 1 on $B_{\mathfrak{q}}$. Thus $L \otimes_A B$ is invertible over B if L is invertible

Definition 3. The isomorphism of the above data is given by $(L, s_0, \dots, s_n) \cong (M, t_0, \dots, t_n)$ if the is an isomorphism of A-modules $\varphi: L \to M$ such that $\varphi(s_i) = t_i$ for all i.

EXAMPLE 2. If A = k is a field, an invertible module over it is just a 1-dimensional vector space. Thus

$$\mathbb{P}^n(k) = \{(s_0, \dots, s_n) \in k^{n-1} : s_0, \dots, s_n \in k \text{ such that not all are zero }\}/k^*$$

by a canonical isomorphism.

3. Closed immersions/subpresheaves

Let's first consider the affine case: Let A be an R-algebra and $I \subset A$ is an ideal of it. The projection $A \to A/I$ induces a morphism of affine schemes $Spec\ A/I \to Spec\ A$ and consequently a morphism $\operatorname{Hom}_R(A/I,.) \to \operatorname{Hom}_R(A,.)$ by composition. We can regard $\operatorname{Hom}_R(A/I,.)$ as a subfunctor of $\operatorname{Hom}_R(A,.)$: any morphism $A/I \to B$ is a morphism $A \to B$ that vanishes on I, hence for all B, $Spec\ A/I(B)$ is a subset of $Spec\ A(B)$ so it is a subpresheaf of $Spec\ A$.

Now let $f: Y \to X$ be a morphism of presheaves/R.

DEFINITION 4. f is a closed immersion if for every R-algebra A and every $x \in X(A)$ there is an ideal $I \subset A$ such that

$$Spec A/I \longrightarrow Spec A$$

$$\downarrow \qquad \qquad \downarrow^{x}$$

$$Y \xrightarrow{f} X$$

is a fibered product.

EXAMPLE 3. Let $f = zy^2 - x^3 + z^2x \in R[x, y, z]$ be the homogeneous polynomial given. Define $Z(f) \subset \mathbb{P}^2$ by $(L, x, y, z) \in \mathbb{P}^2(A)$ such that $zy^2 - x^3 + z^2x \in L^{\otimes 3}$ in zero. Check that $Z(f) \subset \mathbb{P}^2$ is a closed immersion.

Note 3.1. Recall that $GL_m : R - alg \to Set$ via $A \mapsto Gl_n(A)$ is a representable functor and the special case of m = 1 is denoted by \mathbb{G}_m . Besides, the additive group object \mathbb{G}_a is the functor $A \mapsto A^+$. Recall also the notion of action of a group presheaf G on presheaf X. As an example we have the action of \mathbb{G}_m on $\mathbb{A}^{n+1} - \{0\}$ where

$$\mathbb{A}^{n+1} - \{0\} : A \mapsto \{(a_0, \dots, a_n) \in \mathbb{A}^{n+1} : \langle a_0, \dots, a_n \rangle = 1\}$$

More generally let $I \subseteq A$ be an ideal, the corresponding closed subscheme is $Spec\ A/I \rightarrow Spec\ A$ when

$$Spec A/I(B) = \{A \rightarrow B : IB = 0\}$$

and its open complement is given by

$$U(B) = \{A \to B : IB = B\}.$$

EXAMPLE 4. $\mathbb{G}_m(A)$ acts of $\mathbb{A}^{n+1} - \{0\}(A)$ by

$$\lambda.(a_0,\dots,a_n) \mapsto (\lambda a_0,\dots,\lambda a_n)$$

also we have a morphism of presheaves $\mathbb{A}^{n+1} - \{0\} \to \mathbb{P}^n$ given by

$$(a_0, \dots, a_n) \mapsto (A, a_0, \dots, a_n)$$

_

Note that the automorphism group of A and A-module is the same as A^* i.e. the group of units of A. Thus for all A, we have an injection

$$\mathbb{A}^{n+1} - \{0\}(A)/\mathbb{G}_m(A) \hookrightarrow \mathbb{P}^n(A)$$

which is not always surjective.

In fact, let Y be any affine variety over an algebraically closed field k. Let $A = \mathcal{O}(Y)$ be the affine coordinate ring which is a finitely generate k-algebra but an infinite dimensional k-module. Let K be the quotient field of Y. Then all localizations are contained canonically in K, $A \hookrightarrow K$. If K is an invertible A-module then $L \to L \otimes_A K$ is an injection, and $L \otimes_A K$ is a 1-dimensional K vector space hence isomorphic to K. So think of K as an K-submodule of K.

If $L = \langle m_1, \dots, m_n \rangle$, $m_i \in K$, multiplying by common denominator we get L as a sub-module of A. So every finitely generated invertible A-module is isomorphic to an ideal of A, which is locally principal. We conclude that

$$\mathbb{P}^n(A) = \{(L, a_0, \dots, a_n) : L \subset K \text{ as an } A\text{-submodule, locally principal }\}/A^*.$$

- ► EXERCISE 1. (1) $Y = Spec(\mathbb{C}[x,y]/(y^2 x^3 + x))$ is an affine elliptic curve. Then $(x,y) \subset A$ is a locally principle ideal but not principle.
 - (2) Let $A = \mathbb{C}[x, y]$ and $Y = \mathbb{A}^2$ then (x, y) is not locally principle.

By uniqueness of extension $\operatorname{Hom}(A_f,B) \to \operatorname{Hom}(A,B)$ is injective. The image is all $\varphi: A \to B$ such that $\varphi(f) \in B^*$. Think of $\operatorname{Spec} A_f \to \operatorname{Spec} A$ as a subfunctor: Say $F: \operatorname{Sch}/k \to \operatorname{Set}$ via $X \mapsto \operatorname{Hom}(X,\operatorname{Spec} A_f)$ is a subfunctor of it.

$$Spec A/(f) \xrightarrow{q^\#} Spec A \longleftrightarrow Spec A_f$$

$$\varphi^\# \uparrow$$

$$Spec k$$

for any field k and any $\varphi: A \to k$. Then $\varphi(f) = 0$ if $\varphi^{\#}$ factors through $\operatorname{Spec} A/(f)$ and $\varphi(f)$ is invertible if $\varphi^{\#}$ factors through $\operatorname{Spec} A_f$. This justifies to a certain extent calling $\operatorname{Spec} A_f$ the open complement of $\operatorname{Spec} A/(f)$. In fact $\operatorname{Spec} A_f \hookrightarrow \operatorname{Spec} A$ is an open immersion and it is affine.

Not all open immersions are affine:

EXAMPLE 5. $\mathbb{A}^n = \{0\} \to \mathbb{A}^n$ is not affine. Because the subfunctor

$$\mathbb{A}^{n} - \{0\} \xrightarrow{q^{\#}} \mathbb{A}^{n} \longleftrightarrow * = Spec R$$

$$\downarrow^{\varphi^{\#}}$$

$$Spec k$$

Then for all $\varphi: R[x_1, \dots, x_n] \to k$, if exists $\varphi(x_i) \neq 0$ then factors through $\mathbb{A}^n - \{0\}$ and if $\varphi(x_i) = 0$ for all i then factors through 0. In case R = k, algebraically closed field, if Y is an affine variety, then the morphism of varieties $Y \to \mathbb{A}^n$ factors through $\mathbb{A}^n - \{0\}$ if and only if $\forall \rho \in Y$, $a_i(\rho) \neq 0$ for any $i : \Rightarrow \langle a_1, \dots, a_n \rangle$ is contained in no maximal ideal. $\Rightarrow \langle a_1, \dots, a_n \rangle = A$ motivating the definition of $\mathbb{A}^n - \{0\}$.

Definition 5. $f: X \to Spec A$ is an open immersion iff

- (1) $X(B) \to Spec A(B)$ is injective for all B (i.e. f is a mono)
- (2) There exists an ideal $I \subset A$ such that $\varphi \in \text{Hom}(A, B)$ is in X(B) iff $\varphi(I)B = B$.

EXAMPLE 6. $\mathbb{A}^n - \{0\} \hookrightarrow \mathbb{A}^n = Spec[x_1, \dots, x_n]$ is an open immersion and $I = (x_1, \dots, x_n)$.

EXAMPLE 7. Spec $A_f \to Spec A$ is an open immersion I = (f).

Definition 6. $f: X \to Y$ is an open immersion iff

- (1) $X(B) \to Y(B)$ is injective for all B (i.e. f is a mono)
- (2) $\forall A, y \in Y(A)$ the fibered product $U \to Spec A$ is an open immersion from

$$\begin{array}{ccc}
U & \longrightarrow \mathcal{S}pec & A \\
\downarrow & & \downarrow \\
X & \stackrel{f}{\longrightarrow} Y
\end{array}$$

REMARK. The definitions (1) and (2) agree if Y is affine: Given $\varphi: B \to A$, $U \hookrightarrow Spec\ B$ is the complement of $Spec\ B/f \hookrightarrow Spec\ B$ then $V = U \times_{Spec\ B} Spec\ A$ is the complement of $Spec\ A/IA \hookrightarrow Spec\ A$.

REMARK. If A is an R-algebra, $f_1, \dots, f_n \in A$ such that $(f_1, \dots, f_n) = A$ then $\operatorname{Spec} A_f \subset \operatorname{Spec} A$ form an open cover in the sense that every $\operatorname{Spec} k \xrightarrow{\varphi^\#} \operatorname{Spec} A$ for any field k factors through at least one $\operatorname{Spec} A_{f_i} \subset \operatorname{Spec} A$; i.e. $\varphi : A \to k$ can't map each f_i to zero, otherwise $\varphi(A) = 0$ but we know that $\varphi(1) = 1$.

REMARK. (1) The previous definition is actually correct only for noetherian schemes. The correct definition is as follows: Let L be an A-module, is invertible if $\exists f_1, \dots, f_n \in A$ such that $(f_1, \dots, f_n) = 1$ (or elementary open covering $\{Spec\ A_{f_i} \subset Spec\ A\}_{i=1,\dots,n}$) such that $\forall i = 1, \dots, n\ L_{f_i}$ free rank 1 over A_{f_i} .

1

8

(2) If $i: Z \to X$ is a closed immersion, define the subfunctor $U \subset X$ by $U(A) = \{x \in X(A): I_{(x)}A = A\}$ (this comes from definition of closed immersion). Then $U \to X$ is an open immersion and ideal $I \subset A$ for which "IB = B iff $I^nB = B$ " defines open the open complement. It is not clear that every open immersion has a closed complement.

LEMMA 1 (Baby descent theory). $\langle f_1, \dots, f_n \rangle = A$ and M be an A-module. Then

$$M \stackrel{\gamma}{\to} \prod_i M_{f_i} \stackrel{\alpha, \beta}{\Rightarrow} \prod_{i,j} M_{f_i f_j}$$

where $M_{ab} = (M_a)_b$, and $\alpha(m)_{i,j}$ is the image of $m_i \in M_{f_if_j}$ and $\beta(m)_{i,j}$ is the image of m_j in $M_{f_if_j}$. Then

- (1) γ is injective
- (2) If $\alpha(x) = \beta(x)$ then $x \in \text{im}(\gamma)$.

that is the sequence is exact.

Note that we have the commutative diagram

$$\begin{array}{ccc} M & \longrightarrow M_a \\ \downarrow & & \downarrow \\ M_b & \longrightarrow M_{ab} \end{array}$$

Theorem 3.1. $\mathbb{A}^n \to \mathbb{P}^n$ via

$$\mathbb{A}^{n}(A) \to \mathbb{P}^{n}(A)$$
$$(a_{1}, \dots, a_{n}) \mapsto (A, 1, a_{1}, \dots, a_{n})$$

is an open immersion and is the complement of the closed immersion $Z(x_0) \hookrightarrow \mathbb{P}^n$ given by

$$Z(x_0)(A) = \{(L, \ell_0, \dots, \ell_n) \in \mathbb{P}^n(A) : \ell_0 = 0\}.$$

4. \mathcal{O}_X -modules

Definition 7. Let X be a presheaf. A presheaf M together with

- (1) $M \stackrel{\pi}{\to} X$ is a morphism.
- (2) $: \mathbb{A}^1 \times M \to M$ such that

$$\mathbb{A}^1 \times M \xrightarrow{\cdot} M$$

$$\downarrow^{\pi}$$

$$X$$

9

(3) $+: M \times_X M \to M$ such that

$$M \times_X M \xrightarrow{+} M$$

$$\downarrow^{\pi}$$

$$X$$

(4) $+: M(A) \times_{X(A)} M(A) \to M(A)$ such that

$$M(A) \times_{X(A)} M(A) \xrightarrow{+} M(A)$$

$$\downarrow^{\pi}$$

$$X(A)$$

get induced maps $A \times M_x \to M_x$ and $M_x \times M_x \to M_x$ making M_x an A-module. The induced map comes from $\operatorname{Hom}(\operatorname{Spec} A, \mathbb{A}^1) \cong \operatorname{Hom}(k[x], A) \stackrel{?}{\cong} A \times M_x \to M_x$ satisfying

(I) For any A and $x \in X(A)$ the set

$$M_x = \{ m \in M(A) : m \mapsto x \in X(A) \text{ under } \pi \}$$

we have

$$\mathbb{A}^{1}(A) \times M(A) \xrightarrow{\times} M(A)$$

$$\downarrow^{\pi}$$

$$X(A)$$

(II) For every $\varphi: B \to A$ and equivalently

get map $M_y \to M_{\varphi_* y}$ which is B-linear.

Such an object is called an \mathcal{O}_X -module.

DEFINITION 8. In (II) get induced morphism of A-modules $M_y \otimes_B A \to M_{\varphi_* y}$. If this is an isomorphism for all φ and y, then M is called quasi-coherent.

EXAMPLE 8. In the case $M = \mathbb{A}^1 \times X$, and $M \to X$ is the projection on second factor, then $\mathbb{A}^1 \times M \to M$ is the mapping

$$A \times A \times X \to A \times X$$

 $(a, b, x) \mapsto (ab, x)$

and the product is the mapping

$$(\mathbb{A}^1 \times X) \times_X (\mathbb{A}^1 \times X) \to \mathbb{A}^1 \times X$$
$$((a, x), (b, x)) \mapsto (a + b, x)$$

Then $M_x = \mathbb{A}^1 \times \{x\}$, more generally $\mathcal{O}_X^{\oplus n}$ is given by

$$M = \mathbb{A}^n \times X \to X.$$

(*** \mathbb{A}^1 action on \mathbb{A}^n etc.)

Remark. For $\mathcal{O}_X^{\oplus n} = \mathbb{A}^n \times X$ the structure map is

$$\mathbb{A}^{n} \times X \overset{\operatorname{proj}}{\to} X$$

$$\mathbb{A}^{n} \times X \overset{\operatorname{proj}}{\longrightarrow} X$$

$$\uparrow x$$

$$Spec A[x_{1}, \dots, x_{n}]^{a} \longrightarrow Spec A$$

(*** this diagram appears without explanation!)

Remark. The interesting case: affine X and coherent \mathcal{O}_X -module

Let A be an R-algebra and M is an A-module, then there is an A-algebra S and module map $\psi: M \to S$ such that for any A-algebra B

$$\operatorname{Hom}_{A-alg}(S,B) \to \operatorname{Hom}_{A-mod}(M,B)$$

 $\varphi \mapsto \varphi \circ \psi$

is bijective. In fact we shall take S to be the symmetric product

$$\operatorname{Sym}_A M = \bigoplus_{n \geq 0} S_A^n M = \bigoplus_{n \geq 0} M^{\otimes n} / (x \otimes y - y \otimes x).$$

This is because for any $\alpha: A \to B$ a map of A-modules, there is a unique extension of α to $\operatorname{Sym}_A(M) \stackrel{\widetilde{\alpha}}{\to} B$ given by

$$\widetilde{\alpha}(m_1 \cdots m_n) = \alpha(m_1) \cdots \alpha(m_n).$$

EXAMPLE 9.
$$M = A^n$$
, $\operatorname{Hom}_{A-alg}(A[x_1, \dots, x_n], B) = B^n = \operatorname{Hom}_{A-mod}(A^n, B)$ therefore $\operatorname{Sym}_A(A^n) \cong A[x_1, \dots, x_n]$.

Given A, M as above we have a natural morphism $Spec \operatorname{Sym} M \to Spec A$. Let $\mathcal{M} = Spec \operatorname{Sym} M$ and X = Spec A. We now show that \mathcal{M} is an \mathcal{O}_X -module. We need a morphism $\mathbb{A}^1 \times Spec \operatorname{Sym} M \to Spec \operatorname{Sym} M$, i.e. a morphism

$$\operatorname{Sym} M \stackrel{\pi}{\to} \operatorname{Sym} M \otimes k[x]$$

which is given naturally. Let $y: Spec B \to Spec A$ be an element of X(B). Then

$$\mathcal{M}_y = \{m : \mathcal{S}pec\ B \to \mathcal{M} : \pi \circ m = y\}.$$

So if $y: \varphi^{\#}: Spec B \to Spec A$ then

$$\mathcal{M}_{\omega^{\#}} = \operatorname{Hom}_{A-alg}(\operatorname{Sym}_A M, B).$$

And this turns $\mathcal{M} \to \mathcal{S}pec\ A$ into an $\mathcal{O}_{\mathcal{S}pec\ A}$ -module. We also desire that $\mathcal{M} \to X$ is quasi-coherent. So we need for any mapping $A \to B$ that

be an isomorphism. BUT this is not true for an arbitrary A-module M.

DEFINITION 9. AN A-module N is projective if for any epimorphism $\pi: N \to M$ of A-modules there exists a section $s: M \to N$.

Example 10. Free modules are projective!

EXAMPLE 11. Invertible modules are projective.

If M is a projective finitely generated module then the mapping 4.1 is an isomorphism.

Step 1. First we prove this when M is free of finite rank.

$$A^{\oplus n} \otimes_A B \cong \operatorname{Hom}_A(A^{\oplus n}, A) \otimes_A B \to \operatorname{Hom}_A(A^{\oplus n}, B) \cong B^{\oplus n}$$

Step 2. Say M is finitely generated and projective, then we have a surjection $A^{\oplus n} \to M \to 0$ and there is a section of it $s: M \to A^{\oplus n}$. But we can also complete the sequence with its kernel K by

$$0 \to K \to A^{\oplus n} \to M \to 0$$

and the fact that this short exact sequence is split, implies that $M \oplus K \cong A^{\oplus n}$. We know from previous step that $\operatorname{Hom}_A(A^{\oplus n}, A) \otimes_A B \cong \operatorname{Hom}_A(A^{\oplus}, B)$ therefore

$$\operatorname{Hom}_A(M \oplus K, A) \otimes_A B \cong \operatorname{Hom}_A(M \oplus K, B)$$

But both sides split

$$(\operatorname{Hom}_A(M,A) \otimes B) \oplus (\operatorname{Hom}_A(K,A) \otimes B) \cong \operatorname{Hom}_A(M,B) \oplus \operatorname{Hom}_A(K,B)$$

the result follows because the isomorphism is induced by direct sum of maps as in ??.

DEFINITION 10. The \mathcal{O}_X -module $M \to X$ is a vector bundle if $M \to X$ is affine and $\forall A, x \in X(A)$ there is a projective A-module P of finite rank making the following diagram cartesian:

$$\begin{array}{ccc}
M & \longrightarrow X \\
\uparrow & & \uparrow x \\
Spec \operatorname{Sym} P & \longrightarrow Spec A
\end{array}$$

If $M \to X$ is a vector bundle, then for any $A, x \in X(A)$,

$$M_x = \operatorname{Hom}_{A-alg}(\operatorname{Sym} P, A) \quad \text{, i.e. sections } \mathcal{S}\mathit{pec} \, A \to \mathcal{S}\mathit{pec} \, \operatorname{Sym} A$$

$$\operatorname{Hom}_{A-mod}(P, A) =: P^{\vee}$$

EXAMPLE 12 (Eventual example). $\mathbb{A}^{n+1} - \{0\} \to \mathbb{P}^n$ is a vector bundle.

5. Hilbert schemes

Suppose X is a quasi-projective scheme, i.e. $X \overset{cl.im.}{\hookrightarrow} Z \overset{op.im.}{\hookrightarrow} \mathbb{P}^n$.

$$Hilb(X)(A) = \{ \text{ closed subschemes } Z \text{ of } X \times \mathcal{S}pec A, \text{ flat over } \mathcal{S}pec A \}$$

in particular if k if a field, then

$$Hilb(X)(k) = \{ \text{ closed subschemes } Z \subset X \}.$$

We can complete to a diagram

$$Z \xrightarrow{\text{cl. imm.}} X \times \mathcal{S}pec A \longrightarrow \mathcal{S}pec A$$

$$\downarrow \qquad \qquad \downarrow Z$$

$$3 \longrightarrow X \times Hilb(X) \longrightarrow Hilb(X)$$

using 3 such that both squares are cartesian.

$$\mathfrak{Z}(A) = \{(s,Z) : Z \subset X \times \mathcal{S}pec(A) \text{ is a closed immersion and } s : \mathcal{S}pec(A) \rightarrow Z \text{ a morphism such that the following is commutative.} \}$$

We can think of a close subscheme $Z \subset X \times Spec A$ as a family of subschemes of X parametrized by Spec A:

$$Z_{t} \xrightarrow{\text{cl. imm}} X \longrightarrow \mathcal{S}pec \ k$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Z \longrightarrow X \times \mathcal{S}pec \ A \longrightarrow \mathcal{S}pec \ A$$

6. FLATNESS

13

6. Flatness

Flatness is the rigorous mathematical expression for the notion of a "continuously varying family".

DEFINITION 11. A is a ring and M is an A-module. M is said to be flat if the functor $M \otimes_A$ – is exact.

Note that tensor product is right-exact, hence we only need to check left-exactness. In particular, if $I \subset A$ is an ideal, we have an exact sequence

$$0 \to I \to A \to A/I \to 0$$

and if M is flat then

$$0 \to I \otimes_A M \to M \to M/IM \to 0$$

is exact. Hence $I \otimes_A M \to IM$ is an isomorphism. Conversely if this is true for all $I \subset A$ then M is flat.

EXAMPLE 13. Free modules are flat. Projective modules are also flat (since they are direct sums of free modules). Every localization $S^{-1}A$ is flat.

PROPOSITION 1. M is flat over A iff M_m if flat over A_m for any maximal ideal $m \in A$.

LEMMA 2. Let M be a flat A-module. Then every linear relation $\sum_{i=1}^{n} a_i x_i = 0$ in M $(a_i \in A, x_i \in M)$ can be lifted to some free module of finite rank. i.e. there exists A^s, φ, b_{ij} such that $A^s \stackrel{\varphi}{\to} M$ via $e_i \mapsto y_i$, $x_i = \sum_i b_{ij} y_j$ for all i and $\sum_i a_i b_{ij} = 0$.

PROOF. Matsumura 2, Ch. 2, Section 3 [ey too rooooohet joghd!]

COROLLARY 1. If A is an integral domain, then M is torsion-free if it is flat.

PROOF. If M has torsion element x, i.e. ax = 0 for some $a \neq 0$, then by the lifting property, there is $b_1, \dots, b_r \in A$ and $y_1, \dots, y_r \in M$ such that $\sum b_j y_j = x$ and $ab_j = 0$ for all j. But if $a \neq 0$ then $b_j = 0$ for all j, thus x = 0.

From this we learn that:

COROLLARY 2. If A is a local ring and M is a finitely generated A-module then M is flat iff M is free. In some sense flatness is a globalization of being free!

For the prove we recall

LEMMA 3 (Nakayama's lemma). Let I be an ideal in R, and M a finitely-generated module over R. If IM = M, then there exists an $r \in R$ with $r \cong 1 \pmod{I}$, such that rM = 0.

6. FLATNESS 14

PROOF OF COROLLARY. (Matsumura (2), Ch. 2, Section 3) We only need to show that flatness implies being free. In fact it suffices to show that for a minimal set of generators x_1, \dots, x_n of M, they form a basis as well. First we need to show that $x_1, \dots, x_n \in M$ are such that their images $\overline{x_1}, \dots, \overline{x_n} \in M/\mathfrak{m}$ are linearly independent over k then they are linearly independent over A. For this use the previous lemma together with induction on n. Secondly, we should show that if $\overline{x_1}, \dots, \overline{x_n}$ generate M/\mathfrak{m} then their lifts x_1, \dots, x_n generate M. If $r \in M$ is not generated by x_i 's then rM is an A module such that $\mathfrak{m}(rM) = 0$ and thus by Nakayama's lemma rM = 0, contradicting it's nontriviality.

DEFINITION 12. An A-algebra is flat if it is flat as an A-module.

LEMMA 4 (Support of M is closed!). Let A be a ring, M a finitely generate A-module. Let \mathfrak{p} be a prime ideal, such that $M_{\mathfrak{p}} = 0$. Then there exists $s \notin \mathfrak{p}$ such that $M_s = 0$.

Note 6.1. We are not going to use noetherian condition!

PROOF. Let m_1, \dots, m_n generate M. Then $\frac{m_1}{1}, \dots, \frac{m_n}{1} \in M_{\mathfrak{p}}$ are all zero! Thus there are $s_1, \dots, s_n \notin \mathfrak{p}$ such that $s_i m_i = 0$ in M. Let $s := \prod s_i$, then $s m_i = 0$ for all i. Also note that $s \notin \mathfrak{p}$. Hence sm = 0 for all $m \in M$ and $M_s = 0$.

PROPOSITION 2. Let A be a ring and M and A-module. Let $n \in \mathbb{Z}$ be an integer. Then the following are equivalent:

- (1) M is Zariski-locally free of rank n (i.e. there are $f_1, \dots, f_r \in A$ such that $\langle f_1, \dots, f_r \rangle = A$ 1 with M_{f_i} free of rank n over A_{f_i} for all i).
- (2) M is finitely generated and at every maximal ideal $M_{\mathfrak{m}}$ is free of rank n.
- (3) M is finitely generated, flat and for all maximal ideal \mathfrak{m} , $M/\mathfrak{m}M$ is n-dimensional vector space over A/\mathfrak{m} .

REMARK. The tensor product of noetherian rings is not necessarily noetherian. That is why we insist on not using the noetherian conditions. As an example not that $\mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R}$ is not noetherian.

If we restrict to noetherian rings, then the fiber product of affine schemes may not be affine. This is inconvenient: it forces you to restrict to certains kinds of fiber products: at best we have under Hilbert's basis theorem that if A, B are noetherian and B is a finitely-generated A-algebra then $B \otimes_A C$ is noetherian.

As a result restriction to noetherians, forces restriction to affine morphisms of finite type (i.e. morphisms $X \to Y$ such that for all cartesian diagrams

$$Spec B \longrightarrow Spec A$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \longrightarrow Y$$

Proof. TO DO

REMARK. The scheme $Spec A_m$ can be thought of as the germ of Spec A at \mathfrak{m} and $Spec A/\mathfrak{m}$ as the point at \mathfrak{m} . The above is a passage between information at a point and information of an infinitesimal neighborhood. We can conclude that the vector bundles over Spec A are in one-to-one correspondence with the finitely generated flat modules such that all fibers are vector spaces of some dimension.

7. Hilbert scheme of n points

 $Hilb^n(X)(A) = \{ \text{ closed subscheme } Z \subset X \times \mathcal{S}pec A \text{ with the following properties holding for it } \}$

<u>Properties:</u> That $Z \to Spec A$ is flat and finite. And for every maximal ideal \mathfrak{m} of A with t corresponding to the A/\mathfrak{m} -valued point of Spec A and Z_t for the fiber product,

$$Z_t \longrightarrow \mathcal{S}pec\ A/\mathfrak{m}$$

$$\downarrow \qquad \qquad \downarrow t$$

$$Z \longrightarrow \mathcal{S}pec\ A$$

then $Z_t = Spec B$ for an A/\mathfrak{m} -algebra B and $\dim_{A/\mathfrak{m}} B = n$ as a vector space.

Definition 13. An affine morphism $X \to Y$ is flat/finite if for any cartesian diagram

$$Spec B \longrightarrow Spec A$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X \longrightarrow Y$$

B is flat/finite A-algebra. Note that being a finite A-algebra means being finitely generated as an A-module.

EXAMPLE 14. $X = \mathbb{A}^1$ and A = k a field. Then any Z = Spec k[t]/I is flat over k obviously, and is finite since k[t] is a PID and hence I = (f) for some polynomial f, thus k[t]/(f) is finite dimensional.

 $Hilb^n(\mathbb{A}^1)(k) = \{ \text{ closed subscheme } Z \subset \mathbb{A}^1_k \text{ eq. } I \subset k[t] \text{ such that } Z = Spec(k[t]/I) \text{ has our properties} \}$

It remains to note that we want the fibers (here being only $\operatorname{Spec} k[t]/I = \operatorname{Spec} k[t]/(f)$) be n-dimensional k-vector space, so we demand f to be a degree n polynomial. So we showed that

$$Hilb^n(\mathbb{A}^1)(k)\cong k^n$$

in a canonical way.

We will prove now the following

Proposition 3.

$$Hilb^n(\mathbb{A}^1) = \mathbb{A}^n$$

.

PROOF. It suffices to show that $Hilb^n(\mathbb{A}^1)(A) = \mathbb{A}^n(A)$ in a natural way! We are looking for ideals $I \subset A[t]$ such that B = A[t]/I is flat and finitely generated as A-module and for every maximal ideal $\mathfrak{m} \subset A$, we have that $B/\mathfrak{m}B = B \otimes_A A/\mathfrak{m}$ is a vector space of dimension n over A/\mathfrak{m} . By proposition 2 this corresponds precisely to ideals $I \subset A[t]$ such that B = A[t]/I is Zariski locally free of rank n.

Claim. If I is Zariski locally free of rank n over A, then I = (f) for a unique monic $f \in A[t]$.

Consider $1, t, \dots, t^{n-1} \in B$; these give a basis of B/\mathfrak{B} over A/\mathfrak{A} for any maximal $\mathfrak{m} \subset A$ as $B/\mathfrak{B} \cong A[t]/\mathfrak{m}A[t] \cong A/\mathfrak{m}[t]$.

Note 7.1. If k is an algebraically closed field then for such f we have the splitting $f = \prod_{i=1}^{n} (t - \alpha_i)$ hence any $Z \subset \mathbb{A}^1_k$ corresponds to the finite set of points $\alpha_1, \dots, \alpha_n \in \mathbb{A}^1_k$. But we always a functor in the other direction:

$$\mathbb{A}^n \to Hilb^n(\mathbb{A}^1)$$

$$(\alpha_1, \dots, \alpha_n) \mapsto \prod_{i=1}^n (t - \alpha_i)$$

So we can think of $Hilb^n(\mathbb{A}^1)$ as the quotient of \mathbb{A}^n by S_n as the permutation of α_i 's is irrelevant.

REMARK. $Hilb^n(\mathbb{P}^1) = \mathbb{P}^n$.

8. Sheaves/Schemes

Recall that a presheaf is just a functor $X: R-alg \rightarrow Set$.

DEFINITION 14. (1) Let $\{U_i \to X\}_{i \in I}$ be a family of open immersions of presheaves. The family is a (Zariski) open covering if for any A and for all $x \in X(A)$ when we complete to cartesian diagrams

$$\begin{array}{ccc} V_i & \longrightarrow \mathcal{S}pec \ A \\ \downarrow & & \downarrow \\ U_i & \longrightarrow X \end{array}$$

the fibered products V_i satisfy $\{V_i \to Spec A\}$ is a Zariski open covering of Spec A in the following sense!

(2) $\{V_i \to \mathcal{S}pec\ A\}$ is an open covering if for any field k and all R-algebra morphism $A \stackrel{\varphi}{\to} k$ there exists i such that $\varphi^\#$ factors through V_i making the following diagram commute

$$Spec(k)$$

$$\downarrow^{i} \qquad \downarrow^{\varphi^{\#}}$$

$$V_{i} \xrightarrow{\kappa} Spec A$$

DEFINITION 15. The presheaf X is a sheaf if for all R-algebra A, and for all open coverings $\{U_i \to Spec\ A\}_{i \in I}$, the following sequence is exact.

$$0 \to X(A) \to \prod X(U_i) \Rightarrow \prod_{i,j} X(U_{ij})$$

here we have more generally than ever defined $X(U) = \operatorname{Mor}_{presh}(U, X)$. The last maps are easy to describe on the image objects, the first one $X(A) \to \prod X(U_i)$ is given vie $x: X \to \operatorname{Spec} A \mapsto x|_{U_i}$

$$U_i \xrightarrow{x|_{U_i}} X$$

$$\downarrow^x$$

$$\downarrow^x$$

$$V_i \xrightarrow{\mathcal{S}pec} A$$

Remark. (1) These are Zariski sheaves; we can use different notions of coverings and get different notions of sheaves.

(2) Let X be a Zariski sheaf. Then we get an induced sheaf $X|_{Spec\ A}$ on the topological space $Spec\ A$, for every A.

$$X|_{Spec(A)}(U) = \operatorname{Mor}_{presh}(U, X)$$

where $U \subset Spec A$ is Zariski open subset.

(3) X is a "big sheaf" and $X|_{Spec A}$ is a "small sheaf".

LEMMA 5. For X to be a sheaf it suffices to check that for any A and $a_1, \dots, a_n \in A$ such that $\langle a_1, \dots, a_n \rangle = A$ then following is exact

$$0 \to X(A) \to \prod_{i=1}^{n} X(\operatorname{Spec} A_{a_i}) \Rightarrow \prod_{i,j} X(\operatorname{Spec} A_{a_i} \cap \operatorname{Spec} A_{a_j})$$

PROOF. This follows from sheaf theory on any space and $Spec\ A_f \subset Spec\ A$ form a basis of topology.

Lemma 6. Let B be an R-algebra, then Spec B is a sheaf.

PROOF. From the previous lemma we need only to take some R-algebra A, where $\langle a_1, \dots, a_n \rangle = A$ and show exactness of

$$\operatorname{Hom}(B,A) \to \prod \operatorname{Hom}(B,A_{a_i}) \rightrightarrows \operatorname{Hom}(B,A_{a_ia_j})$$

For the first arrow suppose $\varphi, \psi : B \to A$ and the compositions $\varphi_i, \psi_i : B \xrightarrow{\varphi, \psi} A \hookrightarrow A_{a_i}$ are identical for all i. Thus $\psi_i(b) - \varphi_i(b) = 0 \in A_{a_i}$ for all $b \in B$ and for any i. So $\psi(b) - \varphi(b) \mapsto 0$ in $\prod A_{a_i}$. But $A \to \prod_i A_{a_i}$ is injective hence $\varphi = \psi$. In fact in the same paradigm, the exactness follows from the exactness of the following diagram

$$0 \to A \to \prod_i A_{a_i} \rightrightarrows \prod_{i,j} A_{a_i a_j}.$$

Definition 16. A presheaf X is a scheme if

- (1) X is a sheaf, and
- (2) There exists an open covering $\{U_i \to X\}$ of X such that each U_i is an affine scheme.

REMARK. Let (S, \mathcal{O}_S) be a scheme in the usual sense. This induces a functor $X : R - alg \rightarrow Set$ via $A \mapsto \operatorname{Mor}_{sch}(Spec A, S)$. We claim that X satisfies the new definition of scheme.

EXAMPLE 15. \mathbb{P}^n is a scheme. For any R-algebra, A, such that $(a_1, \dots, a_k) = A$,

$$0 \to \mathbb{P}^n(A) \to \prod \mathbb{P}^n(A_{a_i}) \Rightarrow \prod \mathbb{P}^n(A_{a_i a_i})$$

should be shown to be exact. Given $(L_i, \ell_{0_i}, \dots, \ell_{n_i})$ a collection of descent data for $i = 1, \dots, n$, such that we have isomorphisms

$$\varphi_{ij}: (L_i)_{a_i a_j} \to (L_j)_{a_j a_i}$$

sending $\ell_{k_i} \mapsto \ell_{k_j}$ for all k_i 's, we need to construct an invertible A-module L with sections ℓ_0, \dots, ℓ_n an isomorphisms $\varphi: L_{a_i} \to L_i$ mapping $\ell_j \mapsto \ell_{j_i}$. Thus we have

$$\prod_{i} L_{i} \Rightarrow \prod_{i,j} (L_{i})_{a_{i}a_{j}}$$
$$(x_{i})_{i} \Rightarrow (x_{i})_{i,j}, \varphi_{ij}^{-1}((x_{j})_{j,i})$$

Define

$$L = \{x = (x_i)_i \in \prod L_i : \alpha(x) = \beta(x)\}\$$

This has the structure of an A-module because of A-linearity of α and β . Now we want to check that L is invertible: suffices to prove

$$L_{a_i} \cong L_i$$

since invertibility is a local property. This follows from the isomorphism $\varphi_i: L_{a_i} \to L_i$ which we will define promptly. Let's first define the sections of L. Let $\ell_k = (\ell_{k_i})_i$ which is a well-defined element of L because of the definition of φ_{ij} . We also demand that (ℓ_0, \dots, ℓ_n) generate L. Construction:

$$\begin{array}{c} L_{a_i} \stackrel{\varphi_i}{-} \to L_i \\ \uparrow \\ \downarrow \\ L \end{array}$$

Since L_i is an A_{a_i} -module get a unique map: $L \otimes_A A_{a_i} \to L_i$ via $\ell \otimes a \mapsto a$.proj. Verify locally that φ_i is an isomorphism. Without loss of generality now suppose L_i is free of rank 1. The remaining claims are local in $Spec\ A$ and can be checked in a Zariski neighborhood of any maximal ideal \mathfrak{m} of A. Thus without loss of generality let $L_i = A$, then

$$L = \ker(\prod A_{a_i} \xrightarrow{\alpha - \beta} \prod A_{a_i a_j}) = A \checkmark$$

So \mathbb{P}^n is a sheaf!

Next we show \mathbb{P}^n is locally affine. Let $U_i: \mathbb{A}^n \xrightarrow{\varphi_i} \mathbb{P}^n$ via $(a_1, \dots, a_n) \mapsto (A, a_1, \dots, 1, \dots, a_n)$ defines an open immersion and $\{U_i \to \mathbb{P}^n\}_{i=0,\dots,n}$ is an affine Zariski open cover. It suffices to show the following: Given a field k and element $(a_0, \dots, a_n) \in \mathbb{P}^n(k) \cong k^{n+1} - \{0\}/k^*$, we can find a_i non-zero such that

$$\langle a_0, \dots, a_n \rangle = \langle \frac{a_0}{a_i}, \dots, 1, \dots, \frac{a_n}{a_i} \rangle.$$

So Spec(k) factors through U_i and this completes the proof.

DEFINITION 17. A scheme X is quasi-projective if there exists an open and closed subscheme $U, Z \subset \mathbb{P}^n$ such that $X = U \cap Z$.

PROPOSITION 4. If X is quasi-projective then $Hilb^n(X)$ is a (quasi-projective) scheme.

PROOF. First we show that $Hilb^n(X)$ is a sheaf. We know that $Hilb^n(X)(A)$ is the set of closed immersions $Z \hookrightarrow X \times Spec A$ such that $Z \to Spec A$ is finite, affine, flat and the fibers are all of length n. (Note: We say an affine scheme Spec B over field k has length n if $\dim_k B = n$.) We want to consider algebras $A = \langle a_1, \dots, a_n \rangle$. Suppose that we have the local data that

such that for any i, j we have an isomorphism $Z_i|_{Spec A_{a_i a_j}} \xrightarrow{\varphi_{ij}} Z_j|_{Spec A_{a_j a_j}}$ and want to construct a global affine Z = Spec B.

The idea is to show that Z = Spec B where B is constructed from the local data, as a locally free A-module. To construct it locally we use sheaf properties, then we check that it is a closed immersion locally!

Define $\mathfrak{Z} \hookrightarrow \mathbb{P}^1 \times \mathbb{P}^n$ as the zero-locus of $t_0 x^n + t_1 x^{n-1} y + \dots + t_n y^n$, where t_i 's are coordinates on \mathbb{P}^n and x, y are coordinates on \mathbb{P}^1 . This polynomial is homogeneous of degree 1 in t and of degree n in x and y. The claim is that $\mathfrak{Z} \hookrightarrow \mathbb{P}^1 \times \mathbb{P}^n \to \mathbb{P}^n$ is affine, finite, flat and the fibers are of length n. So \mathfrak{Z} defines a morphism $\mathbb{P}^n \to Hilb^n(\mathbb{P}^1)$. We now want to check that this is an isomorphism. We only need to check this locally as both are sheaves. This completes the proof that

PROPOSITION 5. $Hilb^n(\mathbb{P}^1) = \mathbb{P}^n$.

The last thing to prove in this section is that

PROPOSITION 6. $Hilb^{\ell}(\mathbb{A}^n)$ is a quasi-projective scheme.

9. Grassmannians

The presheaf G(m,n) is defined by

$$G(m,n)(A) = \{ \text{ short exact sequences of } A\text{-modules } 0 \to U \to A^n \to Q \to 0$$

such that U and Q are finite, flat of degree m and $n-m$ respectively $\}/\cong$

The equivalence relation on the short exact sequences is existence of the following commutative diagrams:

$$0 \longrightarrow U \longrightarrow A^n \longrightarrow Q \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow U' \longrightarrow A^n \longrightarrow Q' \longrightarrow 0$$

Note that a quotient Q as above (finite flat), determines the finite, flat, degree n-m kernel U in other words:

$$G(m,n)(A) = \{ \text{ submodules of } A^n \text{ such that the quotient is finite flat degree } n-m \}$$

= $\{ \text{ s.e.s } 0 \to U \to O^n_{Spec A} \to Q \to 0 \text{ where } U, Q \}$
are locally free coherent of ranks m and $n-m \}$

PROPOSITION 7. G(m,n) is a projective scheme.

Proof.

$$G(m,n) \stackrel{\rho}{\to} \mathbb{P}^{\binom{n}{n-m}-1}$$
$$(A^n \twoheadrightarrow Q) \mapsto (\bigwedge_A^{n-m} A^n \twoheadrightarrow \bigwedge_A^{n-m} Q)$$

The canonical basis of $\bigwedge^{n-m} A^n$ gives $\binom{n}{n-m}$ elements $\ell_i \in \bigwedge_A^{n-m} Q$ so $(\bigwedge_A^{n-m} Q, \ell_0, \dots, \ell_{\binom{n}{n-m}-1}) \in \mathbb{P}^{\binom{n}{n-m}-1}$. Note that $\bigwedge^{n-m} A^n$ is again free.

Claim: ρ is a closed immersion. For this it suffices to show that ρ_0 is a closed immersion for all standard open affines of $\mathbb{P}^{\binom{n}{m}-1}$.

$$\mathbb{A}^{m(n-m)} \xrightarrow{\rho_0} \mathbb{A}^{\binom{n}{m}-1}$$

$$\downarrow \qquad \qquad \downarrow^{i_0}$$

$$G(m,n) \xrightarrow{\rho} \mathbb{P}^{\binom{n}{m}-1}$$

Tracing on an R-algebra A we have

$$\operatorname{Hom}(A^m, A^{n-m}) \xrightarrow{\rho_0} A^{\binom{n}{m}-1} \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$G(m, n)(A) \xrightarrow{\rho} \mathbb{P}^{\binom{n}{m}-1}(A)$$

The left downwards arrow is $\varphi \in M_{n-m \times m}(A) \mapsto (I_{n-m \times n-m}|\varphi) : A^n \twoheadrightarrow A^{n-m}$. The upper right arrow is

$$\varphi \mapsto$$
 all determinants of $n - m \times n - m$ minors of $(I|\varphi)$.

It is easy to check that the diagram is cartesian. It remains to prove that ρ_0 is a closed immersion. This is equivalent to having that the corresponding maps of rings is a surjection. This follows of existence of π such that $\pi \circ \rho_0 = \mathrm{id}$. The determinant of minors of $(I|\varphi)$ gives φ , and this is the mapping π .

Now: $Hilb^{\ell}(\mathbb{A}^n)$ is a locally closed subscheme of some G(M,N). For the general case of the proof that $Hilb^p(X)$ is a quasi-projective scheme look at [Bertram]. Here we give a proof of this specific case along the same ideas.

TO DO

10. Properties of the Hilbert schemes of n points

Up to here we have shown that if X is a quasi-projective scheme over R then $X^{[n]} := Hilb^n X$ is a quasi-projective scheme by showing that it is a locally closed subscheme of a Grassmannian. We have seen that if k is a field, then $X^{[1]} = X$, $Hilb^n(\mathbb{A}^1) = \mathbb{A}^n$. Now we will show that $Hilb^n(\mathbb{A}^2)$ is a smooth variety if R is a field k.

We would like to write $Hilb^n(\mathbb{A}^r) = \widetilde{H}^n/\operatorname{Gl}_n$ where \widetilde{H}^n is a scheme and Gl_n acts freely on it. We will then show that in the case when r = 2, \widetilde{H}^n is smooth.

Proposition 8.

$$Hilb^n(\mathbb{A}^2) = \{(V, B_1, B_2, v_0) : V \text{ is an } n\text{-dimensional vector space, } B_i \in \operatorname{End}(V)$$

 $and [B_1, B_2] = 0 \text{ and } v_0 \in V \text{ such that there is no } W \not\subseteq V \text{ containing } v_0 \text{ and } B_1, B_2 \text{ are stable}\}/\cong$

The rest of this section is the proof of this theorem. More precisely we will show (10.1)

 $Hilb^n(\mathbb{A}^2)(A) = \{(V, B_1, B_2, v_0) : V \text{ is a finite flat } A\text{-module of rank } n, B_i \in \operatorname{End}_A(V)$ $(10.2) \quad \text{and } [B_1, B_2] = 0 \text{ and } v_0 \in V \text{ such that } A[x_1, x_2] \to V \text{ via } x_i \mapsto B_i(v_0)\}/\cong$

By definition $Hilb^n(\mathbb{A}^2)(A)$ is the set of commutative diagrams

$$B \overset{\varphi}{\longleftarrow} A[x_1, x_2]$$

where B is a finite flat A-algebra of rank n. Associat to this the following data:

$$V = B$$
, $B_i = \text{multiplication by } \varphi(x_i)$, $v_0 = \varphi(1) = 1_B$

Note that under this, $[B_1, B_2] = 0$ and under $\varphi : A[x_1, x_2] \to B$ we have $x_i \mapsto \varphi(x_i).1 = B(v_0)$. Moreover,

$$f(x_1, x_2) \mapsto f(B_1, B_2)(v_0)$$

and is surjective. Thus the properties in 10.1 holds here.

Conversely given data as in 10.1,

$$I = \{ f(x_1, x_2) \in A[x_1, x_2] : f(B_1, B_2) = 0 \in \text{End}(V) \}.$$

To show that $0 \to I \to A[x_1, x_2] \to V \to 0$ is exact where the last mapping is given by $f(x_1, x_2) \mapsto f(B_1, B_2)(v_0)$, beside trivial things, we have to show that $f(B_1, B_2)(v_0) = 0$ implies $f(B_1, B_2) = 0$. Let $v \in V$ be arbitrary vector, given by $v = g(B_1, B_2)(v_0)$, then

$$f(B_1, B_2)v = f(B_1, B_2).q(B_1, B_2).v_0 = 0.$$

This completes the proof that $V \cong A[x_1, x_2]/I$ as A-modules. Now we want to endow V with a ring structure to get that $\varphi : A[x_1, x_2] \to V$ is an A-algebra morphism. We define the multiplication by

$$(f(B_1, B_2)v_0).(g(B_1, B_2)v_0) = f(B_1, B_2)g(B_1, B_2)v_0.$$

Now define

$$\widetilde{H}^n(A) = \{(B_1, B_2, v_0) \in M_{n \times n}(A) \times M_{n \times n}(A) \times A^n, \text{ such that } [B_1, B_2] = 0, A[x_1, x_2] \twoheadrightarrow A^n\}$$

which is a subfunctor of $M_{n \times n} \times M_{n \times n} \times \mathbb{A}^n \cong \mathbb{A}^{2n^2 + n}$.

The condition $[B_1, B_2] = 0$ defines a closed subscheme of \mathbb{A}^{2n^2+n} . The surjectivity of $A[x_1, x_2] \twoheadrightarrow A^n$ translates to the fact that if we associate to $A[x_1, x_2]$ the corresponding quasi-coherent sheaf on the affine space, and to A^n the coherent sheaf. The cokernel which is hence coherent is supported away from our desired points! The support of a coherent sheaf is closed hence this is an open condition. So \widetilde{H}^n is an open subscheme of a closed subscheme of \mathbb{A}^{2n^2+n} .

Define the morphism of schemes $\widetilde{H}^n \stackrel{\pi}{\to} Hilb^n(\mathbb{A}^n)$ via

$$(B_1, B_2, v_0) \mapsto (A^n, B_1, B_2, v_0).$$

Next step is to involve the action of Gl_n . Define an action

$$Gl_n \times \widetilde{H}^n \stackrel{sigma}{\to} \widetilde{H}^n$$

$$Gl_n(A) \times \widetilde{H}^n(A) \to \widetilde{H}^n(A)$$

$$g.(B_1, B_2, v_0) \mapsto (gB_1g^{-1}, gB_2g^{-1}, gv_0)$$

Lemma 7. We have a cartesian diagram:

PROOF. The proof of this is easy; remember that one step of it is to show that given $(B_1, B_2, v_0), (B'_1, B'_2, v'_0) \in \widetilde{H}^n(A)$ there is an isomorphism $g: A^n \to A^n$ in $g \in Gl_n(A)$ sych that $g.(B_1, B_2, v_0) = (B'_1, B'_2, v'_0)$.

REMARK. This g is unique; we know g on B_1v_0 and B_2v_0 and this determines g on all of A^n .

Lemma 8. $\pi: \widetilde{H}^n \to Hilb^n(\mathbb{A}^2)$ is sheaf surjective.

PROOF. This means that for all R-algebra A and all mappings $Spec A \to Hilb^n(\mathbb{A}^2)$ there is an open covering of Spec A, $\langle f_1, \dots, f_n \rangle = 1$ such that for all $i \in \{1, \dots, s\}$ there is a dotted map making the following diagram commutes:

$$Spec(A_{f_i}) \overset{ outsightarrow}{\longrightarrow} Spec A \overset{ outsightarrow}{\longrightarrow} Hilb^n(\mathbb{A}^2)$$

Take a covering over which V becomes free. Then over $Spec\ A_{f_i}$ choose isomorphism $A_{f_i}^n \cong V_{f_i}$, via this isomorphism B_1, B_2 map to matrices in $M_{n \times n}(A_{f_i})$ which we take as B'_1 and B'_2 . And v_0 maps to an element of A_{f_i} which we take as v'_0 . This defines a lift $Spec(A_{f_i}) \to \widetilde{H}^n$.

REMARK. The above lemmas say that $\widetilde{H}^n \to Hilb^n(\mathbb{A}^2)$ is a principle bundle with structure group GL_n ; i.e. a GL_n -bundle. This definition makes sense for X is a scheme and Y a GL -scheme and $Y \xrightarrow{\pi} X$ a GL_n -invariant maps. For other groups the Zariski topology on X may not be fine enough, and we must use the etale topology instead. Zariski topology however works for GL_n , SL_n and Sp_{2n} .

We conclude that

COROLLARY 3. There exists a Zariski open covering $\{U_i\}$ of $Hilb^n(\mathbb{A}^2)$ such that the following is cartesian:

$$Gl_n \times U_i \xrightarrow{open} \widetilde{H}^n$$

$$\downarrow^{\text{proj}} \qquad \qquad \downarrow^{\pi}$$

$$U_i \xrightarrow{open} Hilb^n(\mathbb{A}^2)$$

PROOF. For this note that $Hilb^n(\mathbb{A}^2)$ is a scheme. So it has an affine covering. Refine this covering to get another one by the previous lemma which has lifts

$$U_i \xrightarrow{s_i} \widetilde{H}^n$$

$$\downarrow$$

$$U_i \longleftrightarrow Hilb^n(\mathbb{A}^2)$$

We get cartesian squares:

$$GL_{n} \times U_{i} \longrightarrow GL_{n} \times \widetilde{H}^{n} \longrightarrow \widetilde{H}^{n}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \sigma$$

$$U_{i} \xrightarrow{s_{i}} \widetilde{H}^{n} \xrightarrow{\pi} Hilb^{n}(\mathbb{A}^{2})$$

Since $\pi \circ s_i$ is the inclusion it is an open immersion, implying that the top composition is also an open immersion.

The trivial principal GL-bundle over X is $\operatorname{GL}_n \times X \to X$ with GL_n action by left multiplication. Every GL_n -bundle is locally trivial by definition.

REMARK. All the above works with \mathbb{A}^r not just \mathbb{A}^2 , get principal GL_n -bundle

$$\widetilde{H}^n \to Hilb^n(\mathbb{A}^r)$$

where

$$\widetilde{H}^n = \{(B_1, \dots, B_n, v_0) \in M^r_{n \times n} \times A^n : \forall i, j[B_i, B_j] = 0, A^n \text{ generated by } B_i(v_0) \text{s}\}.$$

However the following depends heavily on r = 2:

THEOREM 10.1. Let R = k an algebraic closed field, $\operatorname{char}(k) = 0$ and consider $\operatorname{Hilb}^n(\mathbb{A}^2)$. Then \widetilde{H}^n is a smooth subvariety of $M^2_{n \times n} \times \mathbb{A}^n_k$.

Here on, we assume R = k is algebraically closed.

DEFINITION 18. A small extension is a pair $I \leq A^1$ where A^1 is a finite dimensional local k-algebra and I is an ideal of A^1 with dimension one over k.

Let $A = A^1/I$. Then from the exact sequence $0 \to I \to A^1 \to A \to 0$ we have that A^1 is an extension of A by I. Let \mathfrak{m} be the maximal ideal of A and \mathfrak{m}^1 be the maximal ideal of A^1 . Then \mathfrak{m}^1 is a flat A^1 module and hence $\mathfrak{m}^1 \otimes_{A^1} I \cong I\mathfrak{m}^1 = 0$ hence $I^2 = 0$. However I is an A^1 -module and since I.I = 0 we get a well-defined action of A on A. Moreover this action factors to give an action of A/\mathfrak{m} on A. So $A \cong A/\mathfrak{m}$ as a vector space over A/\mathfrak{m} .

EXAMPLE 16. Small curvilinear extension: $A^1 = k[t]/(t^{\ell+1})$, $A = k[t]/t^{\ell}$ and $I = \langle t^{\ell} \rangle$.

DEFINITION 19. A k-presheaf is smooth if for every small extension $I \to A' \to A$, $X(A') \to X(A)$ is surjective.

If $p \in X(k)$ is a point, X is smooth at p if considering $X(A) \to X(A/\mathfrak{m}) = X(k)$ for any $x \in X(A)$ that maps to $p \in X(k)$ under $X(A) \to X(A/\mathfrak{m})$ then there is $x' \in X(A')$ such that $x' \mapsto x$.

EXAMPLE 17. Take $A' = k[t]/(t^3)$ and $A = k[t]/(t^2)$ and $I = \langle t^2 \rangle$. Take $X = Spec k[x, y]/(y^2 - x^3)$. Then $X(A') \to X(A)$ is not surjective; take $(t, t) \in X(k[t]/(t^2))$. Then (t, t) is living above the point $p : Spec Am \to X$ given by the origin, and hence X is not smooth at the origin.

Suppose $\operatorname{char} k \neq 2$.

Proposition 9. \widetilde{H} is smooth.

LEMMA 9. Consider the trace form for a small extension $I \to A' \to A$ given by

$$M_{n \times n}(A') \times M_{n \times n}(I) \to I$$

 $(\xi, X) \mapsto \operatorname{tr}(\xi X).$

If $W \subset M_{n \times n}(I)$ is an A-submodule, then $W \to W^{\perp \perp}$ is sujrective.

PROOF. The trace form is a non-degenrate symmetric bilinear pairing and we may think of $W \subset M_{n \times n}(k) \cong k^{n^2}$ in lieu of the identification $I \cong k$.

Choose $(B_1, B_2, v_0) \in \widetilde{H}^n(A)$.

LEMMA 10. Let
$$W = \{[B_1, X_2] - [B_2, X_1] \in M_{n \times n}(I) : X_1, X_2 \in M_{n \times n}(I)\}$$
. Then
$$W^{\perp} = \{\xi \in M_{n \times n}(A') : \exists f \in A[z_1, z_2], \xi = f(B_1, B_2) \mod \mathfrak{m}'\}.$$

TO DO

LEMMA 11. Let $\widetilde{B}_1, \widetilde{B}_2$ be arbitrary lefts of B_1, B_2 to $M_{n \times n}(A')$. Then $[\widetilde{B}_1, \widetilde{B}_2] \in M_{n \times n}(I)$ and is in $(W^{\perp})^{\perp}$.

TO DO

Let $(\widetilde{B}_1, \widetilde{B}_2, \widetilde{v}_0)$ be any lift of (B_1, B_2, v_0) to A'. Then $[\widetilde{B}_1, \widetilde{B}_2] \in W$. So there are $X_1, X_2 \in M_{n \times n}(I)$ such that

$$[\widetilde{B}_1, \widetilde{B}_2] = [B_1, X_2] - [B_2, X_1]$$

Thus $[\widetilde{B}_1 - X_1, \widetilde{B}_2 - X_2] = 0$ (since $[X_1, X_2] \in M_{n \times n}(I^2)$ and $I^2 = 0$). On the other hand,

$$A'[z_1, z_2] \longrightarrow A'^n$$

$$\downarrow \qquad \qquad \downarrow$$

$$A[z_1, z_2] \longrightarrow A^n$$

The lower arrow is surjective and by Nakayama's lemma for the A'-module A'^n we have that the above arrow is also surjective (lift generators). This completes the proof of the fact that

$$(\widetilde{B}_1 - X_1, \widetilde{B}_2 - X_2, \widetilde{v}_0) \in \widetilde{H}(A')$$

and that consquently \widetilde{H}^n is smooth.

11. Tangent space to \widetilde{H}

Let $p = (B_1, B_2, v_0) \in \widetilde{H}(k)$. The tangent space of \widetilde{H} at p is given by

$$T_p\widetilde{H} = \text{preimage of } p \text{ under } \widetilde{H}(k[\varepsilon]) \to \widetilde{H}(k).$$

This preimage consists of all $(B_1 + \varepsilon X_1, B_2 + \varepsilon X_2, v_0 + \varepsilon x_0)$ such that $X_1, X_2 \in M_{n \times n}(I)$ and $x_0 \in k^n$ satisfying $[B_1 + \varepsilon X_1, B_2 + \varepsilon X_2] = 0$, i.e.

$$T_p\widetilde{H} = \{(X_1, X_2, x_0) : [B_1, X_2] = [B_2, X_1]\}.$$

For $A' = k[\varepsilon]$, $A = k, I = \langle \varepsilon \rangle$, we replace the two-form $\operatorname{tr}: M_{n \times n}(k[\varepsilon]) \times M_{n \times n}(\varepsilon) \to \langle \varepsilon \rangle$ by

$$\operatorname{tr}(.,.): M_{n\times n}(k)\times M_{n\times n}(k)\to k$$

Then we have $W \subset M_{n \times n}(k)$ with the notation as above, $k[z_1, z_2] \to W^{\perp}$ via $f(z_1, z_2) \mapsto f(B_1, B_2)$ is surjective with kernel

$$K = \{ f \in k[z_1, z_2] : f(B_1, B_2)v_0 = 0 \}.$$

but under the mapping $f(z_1, z_2) \mapsto f(B_1, B_2)v_0$ we have the short exact sequence

$$0 \to K \to k[z_1, z_2] \to k^n \to 0$$

hence $W^{\perp} \cong k^n$, so dim $(W^{\perp}) = n$ and hence dim $(W) = n^2 - n$.

On the other hand W fits into the short exact sequence

$$0 \to T_p \widetilde{H} \to M_{n \times n}(k)^2 \times k^n \to W \to 0$$

where the projection is given by $(X_1, X_2, X_0) \mapsto [B_1, X_2] - [B_2, X_1]$. Hence

$$\dim T_p\widetilde{H} = 2n^2 + n - n^2 + n = n^2 + 2n$$

and thus dim $\widetilde{H} = n^2 + 2n$ and dim $(\widetilde{H}/\operatorname{GL}_n) = 2n$ and finally

COROLLARY 4. $Hilb^n(\mathbb{A}^2)$ is a smooth scheme of dimension 2n.

12. Points of $Hilb^n(\mathbb{A}^s)$ as locus of n points in \mathbb{A}^s

DEFINITION 20. The point $[B_1, \dots, B_s, v_0] \in Hilb^n \mathbb{A}^s$ is semi-simple if all B_i 's are diagonalizable. Since they commute, they are simultaneously diagonalizable, so we have that such a point is equivalent to $[D_1, \dots, D_s, v'_0]$.

Note that all entries of v_0' are non-zero from the spanning criterion. Let $D_i = \begin{pmatrix} \lambda_1^{(i)} & 0 \\ & \ddots \\ 0 & \lambda_n^{(i)} \end{pmatrix}$,

and define $x_j = (\lambda_j^{(1)}, \dots, \lambda_j^{(n)}) \in \mathbb{A}^s$. Then $x_1, \dots, x_n \in \mathbb{A}^s$ are n distinct points (again by spanning criterion). The converse procedure from n points $x_1, \dots, x_0 \in \mathbb{A}^s$ to getting points on Hilbert scheme, is obvious. So

$$Hilb_{ss}^n(\mathbb{A}^s) = (\mathbb{A}^s)_0^n.$$

For simplicity work with s=2. We will work on an algebraically closed field k. If $[B_1,B_2,v_0] \in Hilb^n(\mathbb{A}^2)(k)$ we get data $(V_i,\lambda_i,\mu_i)_{i\in\{1,\dots,r\}}$ such that $V=\bigoplus_{i=1}^r V_i$ into generalized eigenspaces. Assume that $\dim V_i \geq \dim V_{i+1}$ so that we get a partition of n given by $(\alpha_1,\dots,\alpha_r)$. This partition corepsonds to $[B_1,B_2,v] \in Hilb^n(\mathbb{A}^2)$. The subscheme of \mathbb{A}^2 corresponding to $[B_1,B_2,v]$ is the ideal

$$I = \{ f \in k[z_1, z_2] : f(B_1, B_2) = 0 \in \text{End}(k^n) \}$$

The polynomials $\prod_{i=1}^r (z_1 - \lambda_i)^N$ and $\prod_{i=1}^r (z_1 - \mu_i)^N$ are in the ideal and so is $\prod_I (z_1 - \lambda_i)^N \prod_J (z_2 - \mu_j)^N$ for any index sets $I \coprod J = \{1, \dots, r\}$. Thus $(a, b) \in Z(I)$ iff $(a, b) = (\lambda_i, \mu_i)$ for some $i \in \{1, \dots, r\}$.

13. Euler characteristics

Let X be a scheme over \mathbb{C} . Then $X(\mathbb{C})$ is a topological space. We want to compute $\chi(X(\mathbb{C}))$.

Definition 21. The analytic topology:

- (1) $X(\mathbb{C})$ has the Zariski topology: $U \subset X(\mathbb{C})$ is open iff there is an open subscheme $X' \subset X$ such that $U = X'(\mathbb{C}) \hookrightarrow X(\mathbb{C})$.
- (2) $X = \cup_i X_i$ open subschemes, $X_i \hookrightarrow \mathbb{A}^{n_i}$ closed subscheme $X(\mathbb{C}) = \cup_i X_i(\mathbb{C})$. And $X_i(\mathbb{C}) \hookrightarrow \mathbb{A}^{n_i}(\mathbb{C}) = \mathbb{C}^{n_i}$

the analytic topology on \mathbb{C}^{n_i} induces a topology on $X_i(\mathbb{C})$. Put the finest topology on $X(\mathbb{C})$ such that $X_i(\mathbb{C}) \hookrightarrow X(\mathbb{C})$ are all open subsets.

One would like to prove that the topology is independent of choices: the main point is that if $Y \hookrightarrow \mathbb{A}^n$ is a closed subscheme and likewise is a closed subscheme $Y \hookrightarrow \mathbb{A}^m$, then $Y(\mathbb{C})$ gets the same topology from \mathbb{C}^n and \mathbb{C}^m .

We may extend $Y \to \mathbb{A}^m$ to $G : \mathbb{A}^n \to \mathbb{A}^m$. Use continuity of G in the analytic topology.

Let Y/\mathbb{C} be a smooth variety, $p \in Y(\mathbb{C})$, then there is an (analytic) open neighborhood such that $p \in U \subset Y(\mathbb{C})$, and $U \to \mathbb{C}^m$ is an analytic isomorphism onto open subset. Algebraically the best we can do is to take Y smooth and $p \in Y$ then there is a Zariski open neighborhood $p \in U \subset Y$ and $U \to \mathbb{A}^r$ is etale. Consider the example of elliptic curves for instance.

DEFINITION 22. If X, Y are smooth then $f: X \to Y$ is etale if f is bijective on Zariski tangent spaces.

$$\begin{array}{c} \operatorname{Spec} k \longrightarrow X \\ \downarrow & \downarrow f \\ \operatorname{Spec}(k[\varepsilon]) \longrightarrow Y \end{array}$$

If X, Y are of finite type schemes over the algebraically closed field k, we will have then that for all small extensions $A' \to A$ the following diagram completes:

$$\begin{array}{c} \mathcal{S}pec\ A \hookrightarrow X \\ \downarrow \qquad \downarrow \qquad \downarrow \\ \mathcal{S}pec\ A' \hookrightarrow Y \end{array}$$

Remark. (1) If we only get the existence of the diagonal arrow, then f is smooth.

- (2) If we only have the uniqueness of the diagonal arrow, then f is called unramified.
- (3) If we put Y = Spec k the we get back the notion of smoothness (of X).

Let Y be a smooth variety over \mathbb{C} and let $U \subset Y(\mathbb{C})$ be an open. We get open subsets of $Hilb^nY(\mathbb{C})$ by considering all $[Z] \in Hilb^nY(\mathbb{C})$ such that $Z \subset U \subset Y$. Denote this by $Hilb^n(U) \subset Hilb^n(Y)$.

REMARK. The map $Hilb^n(Y(\mathbb{C})) \to Y(\mathbb{C})^n/S_n$ is continuous. For $Y = \mathbb{A}^2$ we have that

$$Hilb^n \mathbb{A}^2(\mathbb{C}) \to (\mathbb{C}^2)^n / S_n$$

via $[B_1, B_2, v_0] \mapsto \sum_{i=1}^r \alpha_i(\lambda_i, \mu_i)$.

Then if $U \to \mathbb{A}^s$ is an isomorphism onto an open ste we get an induce map

$$Hilb^n(U) \to Hilb^n(\mathbb{A}^s)$$

from an open subset.¹ It is however not true that if U_i is a cover of Y then $Hilb^n(U_i)$ is a cover of $Hilb^n(Y)$.

Let $Z \subset Y$ be a subscheme of length n. Suppose $Z = Z_1 \cup \cdots \cup Z_r$ were these components are disjoint, and suppose there exists $U_i \supset Z_i$ with $U_i \hookrightarrow \mathbb{A}^s$ admitting holomorphic coordinates and for simplicity assume $U_i \cap U_j = \emptyset$. Let length Z_i be α_i . The partition of n being $\alpha = (\alpha_1, \dots, \alpha_r)$, then the morphism

$$\prod_{i=1}^{r} Hilb^{\alpha_i} U_i \stackrel{\varphi}{\to} Hilb^n Y$$

via $(Z'_1, \dots, Z'_r) \mapsto \cup_i Z'_i$ is an open neighborhood of [Z]. And via coordinates

$$\prod_{r=1}^{r} Hilb^{\alpha_i}(U_i) \hookrightarrow \prod_{i=1}^{r} Hilb^{\alpha_i}(\mathbb{A}^s)$$

is an open embedding. This is how we resolve the problem of finding an open cover of the Hilbert schemes of n points.

14. Computing the Euler characteristic of $Hilb^n(Y(\mathbb{C}))$

We do this when Y is a smooth algebraic variety over \mathbb{C} .

If X is a scheme over \mathbb{C} then

$$\chi(X(\mathbb{C})) = \sum_{i \geq 0} (-1)^i \dim_{\mathbb{Q}} H_c^i(X(\mathbb{C}), \mathbb{Q}).$$

Recall that we know the

Theorem 14.1. If $U \subset X$ is an open subscheme, $Z \subset X$ is a closed subscheme such that the complete of Z is U then

$$\chi(X(\mathbb{C})) = \chi(U(\mathbb{C})) + \chi(Z(\mathbb{C})).$$

PROOF. Use long exact sequence of cohomology (possibly with compact support).

¹Authors: $Hilb^n(U)$ is the pre-image of U^n/S_n along the Hilbert-Chow map

Definition 23. A stratification of a scheme X is

- (1) A finite index set I, partially ordered
- (2) $\forall i \in I$ a locally closed subscheme $Z_i \subset X$ such that $X = \coprod_i Z_i$ and $\forall i \in I$

$$\bigcup_{j\geq i} Z_j \hookrightarrow X$$
 is closed and $Z_i \hookrightarrow \bigcup_{j\geq i} Z_j$ is open.

Given a stratification (Z_i) of a scheme X, then

$$\chi(X(\mathbb{C})) = \sum_{i \in I} \chi(Z_i(\mathbb{C})).$$

REMARK. Any scheme of finite type over \mathbb{C} admits a stratification $(Z_i)_{i\in I}$ where each Z_i is smooth: Consider $X_{red} \subset X$ which is a closed subscheme. Then there is an open subset of X_{red} which is smooth. Let it be Z_0 and $Z_0 \hookrightarrow X$ is locally closed.

For $Hilb^n(Y)$ we stratify by partition: Let $\alpha \vdash n$ be a partition of n, $\alpha = (\alpha_1, \dots, \alpha_n)$ where $\alpha_i \geq \alpha_{i+1}$ and $\alpha_r > 0$. Let $[Z] \in Hilb^n(Y)(k)$ where k is any field. Then we know that Z = Spec(B) for a finite k-algebra B.

PROPOSITION 10. Every finite dimensional k-algebra B is (up to order) uniquely isomorphic to a product $B \cong B_1 \times \cdots \times B_r$ where B_i is a local finite dimensional k-algebra.

So every k-valued point $Spec\ k \to Hilb^n Y$ has an associated partition given by $(\dim_k(B_1), \dots, \dim_k(B_n))$. Let $Hilb^n_{\alpha} Y$ be the set of points with their corresponding partition being α . We put a partial order on the set of all paritions of n by defining $\alpha \geq \beta$ if and only if α is a refinment of β . The question is whether $(Hilb^n_{\alpha} Y)_{\alpha \vdash n}$ is a stratification of $Hilb^n_{\alpha} Y$.

It suffices to prove the assertion locally; i.e to show that for any ring A, and any closed subscheme $Z \hookrightarrow Y_A$ the diagram

gives a stratification of Spec A.

Recall that we had defined $Hilb_{\alpha}^{n}(\mathbb{A}^{s})$ is another particular way too. If $[B_{1}, \dots, B_{s}, v] \in Hilb_{\alpha}^{n}(\mathbb{A}^{s})(k)$ then V decomposes to generalized simultaneous eigenspaces $\bigoplus_{i=1}^{r} V_{i}$ and $\alpha = (\dim V_{1}, \dots, \dim V_{r})$.

LEMMA 12. If $I \subset k[z_1, \dots, z_r]$ is the deal corresponding to $[B_1, \dots, B_s, v_0]$ (meaning $I = \{f : f(B) = 0\}$) then $k[z]/I \cong \bigoplus_{i=1}^r V_i$ as k-algebras, and each V_i is local.

This lemma shows that the two partitions are in fact the same!

LEMMA 13. If $Z \to Spec\ A$ is a finite, flat, rank n morphism, there is an affine covering $Spec\ A_{f_i}$ of $Spec\ A$ where $\langle f_1, \dots, f_r \rangle = 1$ such that over $Spec\ A_{f_i}$ if Z_i fits into the cartesian diagram

$$Z_i \longrightarrow \mathcal{S}pec \ A_{f_i}$$

$$\downarrow \qquad \qquad \downarrow$$

$$Z \longrightarrow \mathcal{S}pec \ A$$

then there exists an embedding

Proof. TO DO

This last lemma also implies that the verification of out claimed stratification reduces to the proof that it is so for $Y = \mathbb{A}^n$. We proceed with the proof of the latter.

TO DO

We restate this result in the following

THEOREM 14.2. $(Hilb_{\alpha}^{n}(Y))_{\alpha \vdash n}$ is a stratification of $Hilb^{n}Y$. Moreover each $Hilb_{\alpha}^{n}Y$ has a natural scheme structure induced by the flattening stratification.

COROLLARY 5.
$$\chi(Hilb^n(Y)(\mathbb{C})) = \sum_{\alpha \vdash n} \chi(Hilb^n_\alpha(Y)(\mathbb{C})).$$

Now let $\alpha \vdash n$ be any partition. We don't in general have a morphism

$$\prod_{i=1}^r Hilb^{\alpha_i}Y \to Hilb^nY$$

vai $(Z_1, \dots, Z_r) \mapsto Z_1 \cup \dots \cup Z_r$. The problem is that it is not in general the case that $Z_1 \cup \dots \cup Z_r$ is a subscheme of Y. This however is the case when Z_i 's are disjoint! So we pass to

Let $V \subset \prod_{i=1}^r Hilb^{\alpha_i}Y$ be the set of all Z_1, \dots, Z_r such that $i \neq j$ implies $Z_i \cap Z_j = \emptyset$.

Lemma 14. V is an open subscheme.

Proof. TO DO

So for $Spec A \to V$ given by (Z_1, \dots, Z_r) the scheme $Z_1 \coprod \dots \coprod Z_r$ defines a map $Spec A \to Hilb^n Y$. Let Z_{α} denote the fiber product in the following cartesian diagram

$$Z_{\alpha} \xrightarrow{} V \xrightarrow{} \prod Hilb^{\alpha_i} Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Hilb^n_{\alpha} Y \xrightarrow{} Hilb^n Y.$$

Here $Z_{\alpha} \to Hilb_{\alpha}^{n}Y$ is a Galois cover with Galois group $\operatorname{Aut}(\alpha)$. Then

$$\chi(Hilb^nY) = \sum_{\alpha \vdash n} \chi(Hilb_{\alpha}^nY) = \sum_{\alpha \vdash n} \frac{1}{\#\operatorname{Aut}(\alpha)} \chi(Z_{\alpha}).$$

To compute $\chi(Z_{\alpha})$ we observe that it fits into another cartesian diagram:

$$Z_{\alpha} \longrightarrow \prod_{i} Hilb_{(\alpha_{i})}^{\alpha_{i}} Y$$

$$\downarrow \qquad \qquad \downarrow$$

$$Y_{0}^{r} \longrightarrow Y^{r}$$

 $Hilb_{(m)}^m Y \to Y$ is a Zariskli locally trivial fibration with fibers F_n being the punctual Hilbert scheme which is a subscheme of $Hilb^n(\mathbb{A}^s)$ consisting of all subschemes of \mathbb{A}^s supported at the origin, this corresponds to $\{(B_1, \dots, B_s, v_0)\}$ such that all B_i 's are nilpotent, $s = \dim Y$. Hence $\chi(Z_\alpha) = \chi(Y_0^r) \prod \chi(F_{\alpha_i})$.

15. Euler characteristic of schemes over \mathbb{C}

THEOREM 15.1. If X is of finite type over \mathbb{C} then $\chi(X(\mathbb{C})) = \chi_c(X(\mathbb{C}))$.

REMARK. For any locally compact space X, $z \in X$ closd, and U = X - Z, then $\chi_c(X) = \chi_c(U) + \chi_c(Z)$. This is not true for χ without the compact support restriction. For example $X = \mathbb{R}$, and $Z = \{0\}$, then $\chi(\mathbb{R}) = 0$, $\chi(Z) = 1$, $\chi(\mathbb{R} - \{0\}) = 2$, while $\chi_c(\mathbb{R}) = -1$, $\chi_c(Z) = 1$, $\chi_c(\mathbb{R} - \{0\}) = -2$.

PROPOSITION 11. If \mathbb{G}_m over \mathbb{C} act on the finite type \mathbb{C} -scheme X without fixed points then $\chi(X(\mathbb{C})) = 0$.

REMARK. The finite stabilizers were used in the proof to pretend $Z = X/\mathbb{G}_m$ is a "space" so that $\chi(Z)$ is finite. The proof works for any connected algebraic group G if all stabilizers are finite. This will imply that there are no fixed points and hence the quotient stack [X/G] is a Deligne-Mumford stack. Then $[X/G](\mathbb{C})$ is an orbifold and so $\chi([X/G](\mathbb{C}))$ is finite. We may then conclude that $\chi(X(\mathbb{C})) = 0$ due to the fact that $\chi(G) = 0$.

Remark. Given a complex manifold $U \hookrightarrow Y$ being an analytic open immersion and $U \hookrightarrow \mathbb{A}^s$ again analytically, we get and induced diagram

$$Hilb^n(U) \xrightarrow{\text{open}} Hilb^n Y$$
 $Hilb^n(\mathbb{A}^s)$

We have to rely on the exitence of the analytic category which $X(\mathbb{C})$ in an object of for all finite-type \mathbb{C} -schemes X. We use this to prove that for an open subscheme $U \subset Y$, $Hilb^n(U)$ is an analytic subspace of $Hilb^n(Y)$ and is hence an "analytic space".

TO DO

The above argument shows that if $U \subset Y$ is open, there is an analytic open of $Hilb^n(Y)$ which represents $Hilb^n(U)$. And thus:

COROLLARY 6. All analytic Hilbert schemes we need are representable.

Let's calculate $\chi(Hilb^n(\mathbb{A}^s))$ now. The tool is the natural $T = (\mathbb{G}_m)^s$ action on \mathbb{A}^s via weight $(1,\dots,1)$:

$$(\lambda_1, \dots, \lambda_s)(a_1, \dots, a_s) \mapsto (\lambda_1 a_1, \dots, \lambda_s a_s).$$

The T also acts on $Hilb^n(\mathbb{A}^s)$

$$T(A) \times Hilb^n \mathbb{A}^s(A) \to Hilb^n(\mathbb{A}^s)(A) = \{(V, B_1, \dots, B_s, v_0) : \text{ with conditions! } \}/\cong (\lambda_1, \dots, \lambda_s)(V, B_1, \dots, B_s, v_0) \mapsto (V, \lambda_1 B_1, \dots, \lambda_s B_s, v_0).$$

Recall that an action of \mathbb{G}_m on $Spec\ A$ if an only if A is graded by \mathbb{Z} . So the exitence of an action of $(\mathbb{G}_m)^s$ on \mathbb{A}^s is equivalent to the existence of the s-fold grading on $\mathbb{C}[x_0, \dots, x_s]$ where the i-th degree of a polynomial is the degree in x_i , $(1 \le i \le s)$. An element is homogeneous if and only if each variable occurs with the same power in each monomial, iff it is a monomial. Each graded piece is a 1-dimensional module and had a canonical basis (the monic).

The fixed points of $T(\mathbb{C}) = (\mathbb{C}^*)^s$ on $Hilb^n(\mathbb{A}^s)(\mathbb{C}) = \{I \leq \mathbb{C}[x_1, \dots, x_s] : \operatorname{corank} I = n\}$ are given by :

I is fixed $\Leftrightarrow I$ is homogeneous

- \Leftrightarrow I is generated by homogeneous elements
- \Leftrightarrow I is generated by monomials

in the latter case we say I is a monomial ideal. These are in one-to-one correspondence with the s-D partitions of n (when s=2 these would be the usual partitions of n, when s=3 they are the 3D partitions of it, etc.). Thus the number of $T(\mathbb{C})$ -fixed points of $Hilb^n(\mathbb{A}^s)(\mathbb{C})$ is equal to $P_s^{(n)}$, denoting the number of s-partitions of n. We conclude that

COROLLARY 7. $\chi(Hilb^n(\mathbb{A}^s(\mathbb{C}))) = \chi(\text{fixed point set}) + \chi(\text{complement}) = P_n^{(s)}$.

There is also a generating function that these numbers fit in:

$$F^{(s)}(g) = \sum_{n=0}^{\infty} \chi(Hilb^{n}(\mathbb{A}^{s}(\mathbb{C})))t^{n} = \sum_{n=0}^{\infty} P_{n}^{(s)}t^{n} = \begin{cases} \frac{1}{1-t} & s=1\\ \prod_{k=1}^{\infty} \frac{1}{1-t^{k}} & s=2\\ \prod_{k=1}^{\infty} \frac{1}{(1-t^{k})^{k}} & s=3 \end{cases}$$

16. $Hilb^n(\mathbb{A}^3)$ as a critical locus

Proposition 12. M is a smooth scheme.

PROOF. We know that $M = \widetilde{M}/\mathrm{Gl}_n$ where

$$\widetilde{M} = \{(B_1, B_2, B_3, v_0) : \text{ stability condition } \} \subset M_{n \times n}^3 \times \mathbb{A}^n$$

is an open subscheme in some basis chosen and has dimension $3n^2 + n$, hence in particular smooth.

$$Gl_n \times \widetilde{M} \xrightarrow{act} \widetilde{M}$$

$$pr \downarrow \qquad \qquad \downarrow^{\pi}$$

$$\widetilde{M} \xrightarrow{\pi} M$$

We know that this is cartesian, that π is sheaf surjective, and M is a sheaf. From these facts it follows that M is a smooth scheme

And $\widetilde{M} \to M$ is a principal Gl_n -bundle. $Hilb^n(\mathbb{A}^3) \to M$ is a closed subscheme given by $[B_i, B_j] = 0$ and is in general very singular.

The goal is now to show that there exists a regular function $f \in \mathcal{O}(M)$ (i.e. a map $M \stackrel{f}{\to} \mathbb{A}^1$) such that $Hilb^n(\mathbb{A}^3) = Z(df)$. Moreover $Hilb^n(\mathbb{A}^3) \subseteq Z(f) = f^{-1}(0)$. So $Hilb^n(\mathbb{A}^3)$ is the singular locus of the hypersurface $Z(f) \subset M$.

$$f((V, B_1, B_2, B_3, v_0)) := \operatorname{tr}(B_1[B_2, B_3]).$$

where V is a finite flat module over a \mathbb{C} -algebra A.

16.1. Computing df. Work on $\widetilde{M} \subseteq M_{n \times n}^3 \times \mathbb{A}^n$. Consider a $\mathbb{C}[\varepsilon]$ -valued point of \widetilde{M} :

$$b + \varepsilon x = (B_1 + \varepsilon X_1, B_2 + \varepsilon X_2, B_3 + \varepsilon X_3, v_0 + \varepsilon x_0)$$

Then we have,

$$f(b + \varepsilon x) = \text{tr}((B_1 + \varepsilon X_1)[B_2 + \varepsilon X_2, B_3 + \varepsilon X_3])$$

= \text{tr}(B_1[B_2, B_3]) + \varepsilon \{\text{tr}(X_1[B_1, B_3]) + \text{tr}(B_1[X_2, B_3]) + \text{tr}(B_1[B_2, X_3])\}

Thus $df_b: M_{n\times n}^3 \times \mathbb{C}^n \to \mathbb{C}$ is the \mathbb{C} -linear mapping

$$(x_1, x_2, x_3, v_0) \mapsto \operatorname{tr}(X_1[B_1, B_3]) + \operatorname{tr}(B_1[X_2, B_3]) + \operatorname{tr}(B_1[B_2, X_3]).$$

The partial derivatives with respect to the standard coordinates are obtained by setting

$$(X_1, X_2, X_3, x_0) = \begin{cases} (E_{ij}, 0, 0, 0) \\ (0, E_{ij}, 0, 0) \\ (0, 0, E_{ij}, 0) \\ (0, 0, 0, e_i) \end{cases}$$

We know that

$$\operatorname{tr}(E_{ij}[B_1, B_3]) = (j, i) \text{ entry of } [B_1, B_3]$$

 $\operatorname{tr}(B_1[E_{ij}, B_3]) = -(j, i) \text{ entry of } [B_1, B_3]$
 $\operatorname{tr}(B_1, [B_2, E_{ij}]) = (j, i) \text{ entry of } [B_1, B_2]$

So the Jacobian is given by

$$df = ([B_1, B_3]^t, [B_3, B_1]^t, [B_1, B_2]^t, 0).$$

On \widetilde{M} have $\widetilde{f}:\widetilde{M}\to\mathbb{A}^1$ with $Z(df)=\widetilde{H}$. Then follows that for $f:M\to\mathbb{A}^1$ we have

$$Z(df) = Hilb^n(\mathbb{A}^3) = M.$$

REMARK. $Z(df) \subset Z(f)$ by choice of f. So $Hilb^n(\mathbb{A}^3)$ is the singular locus of the hyperplane $f^{-1}(0) \subset M$. This is NOT true in higher dimensions!

17. Singular loci of hypersurfaces

Let $f: \mathbb{C}^m \to \mathbb{C}$ be a holomorphic function. $V = f^{-1}(0)$ and let H = Z(df). We assume $f \in \langle \frac{\partial f}{\partial x^i} \rangle$. Thus H will be the singular locus of V. Assume p is the origin of \mathbb{C}^m and let

$$\nu_H(p) = (-1)^m (1 - \chi(F_p)).$$

If p is an isolated singularity of V (isolated point of H), then F_p is homotopy equivalent to a bonquet of (m-1)-spheres, and

$$\nu_H(p) = (-1)^m (1 - \chi(\text{bonquet})) = (-1)^m (1 - (1 - (-1)^{m-1}) + \text{spheres}) = \#\text{spheres}$$

and this is known as the Milnor number of the singularity.

REMARK. The Milnor number is equal to $\dim_{\mathbb{C}} \mathcal{O}(H)$ so $\nu_H(p)$ is a natural generalization of Milnor number to non-isolated singularities.

We now define the weighted Euler characteristic χ^B of H with weight ν_H to be

$$\chi(H, \nu_H) = \sum_{H_{\alpha}} \nu_H |_{H_{\alpha}} \chi(H_{\alpha})$$

where $\{H_{\alpha}\}$ is an stratification of H and ν is constant on each stratum. This is also the Donaldson-Thomas invariant of H.

For $p \in M^n$ choose an analytic coordinate chart around $p \in U \subset M^n$ and $U \hookrightarrow \mathbb{C}^{2n^2+n}$.

Theorem 17.1. Milnor fiber is invariant under biholmorphic maps:

Then $F_p^{(g)} \cong F_q^{(f)}$ is a homeomorphism.

So by this fact every point $p \in M$ has a well-defined Milnor fiber F_p , hence we get $\nu : M \to \mathbb{Z}$ via $p \mapsto (-1)^{2n^2+n}(1-\chi(F_p)) = (-1)^n(1-\chi(F_p))$ as a \mathbb{Z} -valued function on M which vanished outside of $Hilb^n(\mathbb{A}^3)$.

18. Behrend function for general Hilbert schemes of n points

The goal is to define and compute $\nu: Hilb^nY \to \mathbb{Z}$ for any smooth \mathbb{C} -scheme Y of dimension 3. Let $p = [Z] \in Hilb^nY(\mathbb{C})$ for some subscheme $Z \hookrightarrow Y$. Choose holomorphic coordinate charts for Y, $\{U_i\}$. If $Z = Z_1 \coprod \cdots \coprod Z_r$ where length of Z_i is α_i and $\alpha \vdash n$ is a partition of n. Assume $Z_j \subset U_j$ for all j and for simplicity suppose that U_1, \cdots, U_r are pairwise disjoint.

$$p = ([Z_1], \dots, [Z_r]) \in \prod_{i=1}^r Hilb^{\alpha_i} U_i \xrightarrow{open} Hilb^n Y \ni [Z]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\prod_{i=1}^r Hilb^{\alpha_i} \mathbb{A}^3 \xrightarrow{proj_i} Hilb^{\alpha_i} \mathbb{A}^3 \xrightarrow{\nu} \mathbb{A}^1$$

This shows that $\nu_{Hilb^nY}(p) = \prod_{i=1}^r \nu_{Hilb^{\alpha_i}\mathbb{A}^3}([Z_i])$.

Is this well-defined? For this we need independence of choice of charts and independence of partition $Z_1 \coprod \cdots \coprod Z_r$.

TO DO

REMARK. ν_{Hilb^nY} is constructible, i.e. there is a stratification of $Hilb^nY$ such that ν is constant on each stratum.

This follows from the corresponding fact for Milnor fibers! Now $\chi(Hilb^nY, \nu)$ can be defined analogous to the above and is well-defined.

THEOREM 18.1. $\chi(Hilb^nY, \nu) = (-1)^n \chi(Hilb^nY)$.

So for any smooth scheme Y of dimension 3 over \mathbb{C} :

$$\sum_{n=0}^{\infty} \chi(Hilb^{n}Y, \nu)t^{n} = \sum_{n=0}^{\infty} \chi(Hilb^{n}Y)(-t)^{n} = \left(\prod_{k=1}^{\infty} \frac{1}{(1-(-t)^{k})^{k}}\right)^{\chi(Y)}.$$

$$\chi(Hilb^{n}Y,\nu) = \sum_{\alpha \vdash n} \chi(Hilb_{\alpha}^{n}Y,\nu_{Hilb^{n}Y})$$

$$= \sum_{\alpha \vdash n} \frac{1}{\# \text{Aut}(\alpha)} \chi(Z_{\alpha},\nu_{Hilb^{n}Y})$$

$$= \sum_{\alpha \vdash n} \frac{1}{\# \text{Aut}(\alpha)} \chi(Z_{\alpha},\prod \nu_{Hilb^{\alpha_{i}}\mathbb{A}^{3}})$$

$$= \sum_{\alpha \vdash n} \frac{1}{\# \text{Aut}(\alpha)} \chi(Y_{0}^{r}) \prod_{i=1}^{r} \chi(F_{\alpha_{i}},\nu_{Hilb^{\alpha_{i}}\mathbb{A}^{3}})$$

So until now we have reduced this computation to $Hilb^n(\mathbb{A}^3)$.

Recall that \mathbb{G}_m^3 acts on M^n . Let $T \subset \mathbb{G}_m^3$ be defined by $\lambda_1 \lambda_2 \lambda_3 = 1$ and this is isomorphic to \mathbb{G}_m^2 .

f is constant on T-orbits. As a result T acts on $Hilb^n(\mathbb{A}^3)$ and hence as before

$$\chi(Hilb^n\mathbb{A}^3,\nu)=\sum_p\nu(p)$$

where p ranges on the fixed points of the action of T.

Suppose $p \in Hilb^n(\mathbb{A}^3)$ is a fixed point of the action of T. Since the T-action on \mathbb{A}^3 is compatible with the action of it on points of $Hilb^n(\mathbb{A}^3)$, the fact that p is fixed implies that the support of the corresponding closed subscheme of \mathbb{A}^3 is also fixed. But the action of T on \mathbb{A}^3 has only the origin as fixed point. Thus the closed subscheme corresponding to p is supported only at the origin. Suppose that the corresponding ideal is $I \subset \mathbb{C}[x,y,z]$. Then by general theory on graded rings, I has to be generated by eigenvectors of the action of T. But these are all of the form g(xyz)m(x,y,z) where m is a monomial. We can assume that $g(0) \neq 0$. Thus $g \notin I$. Hence $V(\langle g \rangle + I) = \emptyset$. Hence $\alpha g + \beta = 1$, and $m\alpha g + m\beta = m$. So the left hand side is also in I, i.e. $m \in I$. Thus I is generated by its monomials. Hence is any monomial ideal.

Now from the following more general example we have that $\chi(F_p) = 0$. Thus $\nu(p) = (-1)^{\dim M^n} (1-0) = (-1)^n$,

$$\chi(Hilb^n \mathbb{A}^3, \nu) = \sum_{p \text{ fixed}} \nu(p) = (-1)^n P_n^{(3)}.$$