

Лаборатория суперкомпьютерных технологий для биомедицины, фармакологии и малоразмерных структур

Роль моделирования в процессе разработки программноаппаратных платформ

Григорий Речистов

grigory.rechistov@phystech.edu

Сложность современных вычислительных систем

Использование программных моделей

Терминология

Возможности симуляции

В начале компьютеры были простыми...

«Простые» системы в наше время

Photo credit: http://www.flickr.com/photos/nickhubbard/3409810403/in/set-72157616317868572/

Почему разработка только на реальном железе невыгодна

В игру вступают программные модели

Использование программных моделей

- Новое аппаратное обеспечение
- Совместная разработка аппаратуры и ПО
- Экспериментальные архитектуры
- Предсказание производительности, потребления мощности
- Обеспечение совместимости с другими архитектурами

Жизненный цикл разработки аппаратного

Совместная разработка ПО и аппаратуры

Экспериментальные архитектуры

Многоядерные системы

Векторные системы

Новые ISA

Безопасные системы

Транзакционная память

Сетевые топологии

Обеспечение совместимости

Терминология

Типы симуляторов

Режима приложения

Функциональные

Потактовые

Полноплатформенные

Программные

Гибридные

Терминология

Что может симулятор?

Неразрушающее изучение

Повторяемость

Сохранение состояния

Синхронная остановка

Обращение времени

Кто использует симуляцию?

Google

Подводя итоги

Программные модели создаются задолго до момента доступности аппаратуры

Они используются повсеместно для совместной разработки ПО/железа

Симуляция позволяет делать вещи, о которых раньше можно было только мечтать

На следующей лекции...

Классификация симуляторов Характеристики симуляторов:

- точность симуляции,
- скорость симуляции,
- совместимость с инструментами

Спасибо за внимание!

Все материалы курса выкладываются на сайте лаборатории: http://iscalare.mipt.ru/material/course materials/

Замечание: все торговые марки и логотипы, использованные в данном материале, являются собственностью их владельцев. Представленная здесь точка зрения отражает личное мнение автора, не выступающего от лица какой-либо организации.