20. IZOLACE TEPELNÉ, ZVUKOVÉ A PROTI OTŘESŮM

Šíření tepla

- vedením u tuhých konstrukcí
- proudění tepla v kapalinách, ve vzduchu

Možnosti úniku tepla

- stěnami
- stropní konstrukcí
- otvory
- netěsnostmi
- předsazenou konstrukcí

Posouzení dle normy ČSN 73 0540

- provádí se pro zimní období
- venkovní teplota všechny navrhované venkovní teploty
- vnitřní teplota:
 - o pro obytné místnosti a občanské stavby se uvažuje 20-21°C
 - o pro další občanské stavby dle normy ČSN

Tepelná vodivost

- schopnost materiálu vést teplo
- součinitel tepelné vodivosti λ [W/mK] (čím menší λ, tím je materiál lepší izolant)
- Definice: množství tepla, které projde konstrukcí a ploše 1m² tloušťky konstrukce 1m za 1s při rozdílu teplot 1K
- Příklady tepelné vodivosti u vybraných materiálů:
 - o PB 1,23-1,36
 - o ŽB- 1,43-1,74

- o Ocel 58
- o Porobeton 0,08
- o EPS 0,034

Tepelný odpor

- čím větší je tepelný odpor tím je menší prostup tepla
- tepelný odpor vyjadřuje, jakou plochou konstrukce a při jakém rozdílu teplot na jejich povrchu dojde k přenosu 1 Wattu, čili k přenosu energie o velikosti 1 J za 1 sekundu.
- Má označení R a jednotku [m²·K/W].

VÝPOČET PROSTUPU TEPLA

$$R=rac{d}{\lambda}\,[ext{m}^2 \cdot ext{K/W}]$$

d - tloušťka konstrukce

Tepelný odpor při prostupu tepla

 posouzení zahrnuje vliv prostupu tepla ze vzduchu do stavební konstrukce a vliv přestupu tepla z konstrukce do vzduchu

 R_t - odpor při prostupu tepla [m²·K/W]

$$R_t = (R_{si} + R + Rse)$$

Součinitel prostupu tepla

 množství tepla, které prostoupí z jednoho prostředí do druhého v konstrukci o ploše 1m² určité tloušťky z uvažované hmoty a nebo více hmot za 1s při rozdílu teplot 1K

VÝPOČET SOUČINTELE PROSTUPU TEPLA

$$U_t(U) = rac{1}{R_{si} + R + Rse} = rac{1}{R_t}$$

Tepelný odpor při	Relativní vlhkost			
přesunu tepla	nahoru	vodorovně	dolu	
R_{si}	0,10	0,13	0,17	
R _{se}	0,04	0,04	0,04	

Požadavky T.I. na stavební konstrukci

- posuzováno na U
- energetický štítek budovy
- domy standardní požadované hodnoty
- domy nízkoenergetické a pasivní doporučené hodnoty

Teplota na vnitřním povrchu konstrukce

- nejnižší vnitřní povrchová teplota má mít jistou rezervu a musí být vyšší než je teplota rosného bodu
- teplota vnitřního povrchu se provádí výpočtem
- dnešní běžné podmínky není nutné výpočet provádět, pokud je dodrženo požadované hodnoty

Hodnoty rosného bodu

and the same of th							
Teplota vzduch		Relativní vlhkost					
	20%	40%	60%	80%	90%		
15	-6,9	1,5	7,3	11,6	13,4		
18	-4,7	4,2	10,1	14,5	16,3		
20	-3,2	6	12	16,4	18,3		
22	-1,8	7,8	13,9	18,4	20,3		
25	0,5	10,5	16,7	21,3	23,2		

Tepelné izolace

Historické materiály

- seno
- sláma
- lišejníky
- zvláštní ale účinná je trvalá vrstva sněhu

Pěnové tepelné izolace

Pěnový polystyren (EPS)

• produkt polymerace styrenu, který je následně zpěňován a nařezán do bloků

Extrudovaný polystyren (XPS)

- má uzavřené póry -> je nenasákavý
- lze použít ve vlhkém prostředí kde působí jako součást hydroizolace

Lité pěnové izolace

V důsledku recyklačních snah ve výstavbě, kdy dochází k poměrně velkému odpadu při
zateplování budov deskami z tuhých termoizolačních pěn, zejména EPS, vznikla technologie lité
tepelné izolace ThermoWhite

Pěnové sklo

 Vyrábí se ze speciálního hlinitosilikátového skla, rozemletého na prášek a smíchaného s velmi jemným uhlíkovým prachem

Vakuová izolace

 Vakuové izolační panely (označované zkratkou VIP) však obsahují jako výplň tuhou síťovou strukturu složenou z klastrů (shluků) částic oxidu křemičitého (SiO2) nanometrických rozměrů viz obr. výše. Tato prostorová, velmi jemná síť je známá pod názvem aerogel

Tepelné izolace z nerostných materiálů

Minerální vlna

- Vyrábí se tavením hornin, nejčastěji jde o čedič nebo křemen, podle výchozích surovin se pak jedná o kamennou či skelnou vlnu
- Kamenná vlna vzniká tavením čediče, do jemných vláken jsou vstřikována pojiva, hydrofobizační oleje, protiplísňové přísady etc.

Přírodní materiály

Konopí

- velmi využívané technické rostliny
- největší předností je rychlá obnovitelnost roste mnohem rychleji než dřevo, navíc nevyžaduje žádnou velkou péči ani ošetřování chemickými látkami

Celulóza

• izolační materiály se vyrábějí z recyklovaného novinového papíru

Sláma

- nejobvyklejší stavební i tepelně-izolačních materiál našich předků
- její obliba v současnosti opět roste

Tepelné mosty

- jsou místa v budově kterými uniká teplo do exteriéru
- kromě úniku tepla se mohou projevovat také kondenzací vlhkosti -> nebezpečí plísní

Zvukové izolace

Zvuk - mechanické vlnění

Hluk - nežádoucí obtěžující zvuk

Zvuk může vznikat:

- chvěním
- prouděním planu nebo kapaliny
- kombinací

Působení zvuku na člověka

akustický tlak p [Pa]	akustická intenzita I [W.m ⁻²]	hladina akustického tlaku L [dB]	příklad prostředí, kde se vyskytuje
cca 60	cca 10	cca 130	práh bolesti
2	10-2	100	diskotéka
0,2	10 ⁻⁴	80	rušná ulice
0,02	10 ⁻⁶	60	kancelář
0,002	10 ⁻⁸	40	obývací pokoj
0,0002	10 ⁻¹⁰	20	ložnice v noci
0,00002	10 ⁻¹²	0	práh slyšení

Šíření zvuku

- Ve volném prostoru
 - o zvuk se rozšiřuje na stále větší plochu
 - o intenzita hluku se vlivem vzdálenosti zmenšuje
- V uzavřeném prostoru
 - akustická energie se odráží od stěn, podlah zpět ke zdroji => zvýšení hladiny akustického tlaku
 - nábytek, textilie, akustické obklady z pórovitých materiálů, kmitající membrány a desky,
 dutinové rezonátory zvuk se neodráží zpět do místnosti
- Šíření zvuku mezi místnostmi
 - o při průchodu konstrukcí se zvuk výrazně snižuje
- Zvuk šířený konstrukcí
 - o dochází ke chvění konstrukce vibrace strojů, kročejový hluk

Zásady návrhu neprůzvučných konstrukcí

- dostatečná hmotnost konstrukce
- vzduchotěsnost, tmelení spár, těsnění
- konstrukce se vzduchovou mezerou
- dvojité příčky s prázdným uložením
- stropy se zvukoizolačním pohledem

• hmotné stěny se zvukoizolačním pohledem

Izolace proti otřesům

- stoje mohou do konstrukcí přenášet otřesy
- v přízemních podlažích lze stroje ukotvit na základy které jsou odděleny mezerou od ostatních konstrukcí, tyto základy je třeba zaizolovat izolační vanou
- ve vyšší patrech lze stroje uložit na pružiny nebo gumové válečky

Základ stroje s klikovým mechanismem

Izolovaný základ kotle připojeného na potrubí