# 1 Outline

Particles in equilibrium

Accelerating particles

Motion with friction and air/uid resistance

# 2 Particles in Equilibrium

A body acted on by zero net force moves with constant velocity.

The mutual forces of **action** and **reaction** between two bodies are equal, opposite and collinear.



$$netforce = \sum_{\mathbf{r}} \mathbf{F} = 0$$
$$\mathbf{n} + \mathbf{w} = 0$$

or operating with components and magnitudes (watch the sign!)

$$n - w = 0$$

# 2.1 Example (equilibrium; collinear forces)



# 2.2 Example (equilibrium; non-collinear forces)



### 2.3 Example (equilibrium; object on an inclined plane)



### 3 Particles in Motion

In an inertial frame of reference, the **acceleration** of an object is **directly proportional to the net force** acting on it, and **inversely proportional to the mass** of the object.



### 3.1 Example: Elevator (tension in a massless cable)

The elevator is moving downward but slowing to a stop. What is the tension in the supporting massless cable?



$$ma_y = T - mg \Rightarrow T = m(a_y + g)$$

### 3.2 Example: Elevator (apparent weight)

A woman inside the elevator of the previous example is standing on a scale. How will the acceleration of the elevator aect the scale reading?



inertial frame of reference (e.g. the elevator shaft)

$$ma_y = n - mg \Rightarrow n = m(a_y + g)$$

### 3.3 Example: two objects in direct contact

two objects in contact acted upon an external force, frictionless surface



no motion along y direction (net forces have zero y component), Newton's second law for motion along x direction (operate with magnitudes, but watch the signs!)

$$m_1 a = F - P'$$
$$m_2 a = P$$

Newton's third law for the pair of forces between the blocks

$$P = P'$$
result:  $a = \frac{F}{m_1 + m_2}$ 

### 3.4 Example: two objects in contact and Newton's third law



# 3.5 Example: Atwood's machine



solution: 
$$a=(\frac{m_2-m_1}{m_1+m_2})g=const$$
 
$$T=(\frac{2m_1m_2}{m_1+m_2})g$$

special cases: 
$$m_1 = m_2 \Rightarrow a = 0, T = m_1 g$$
  
 $m_2 \gg m_1 \Rightarrow a \approx g, T \approx 2 m_1 g$ 

## 3.6 Example: incline

Two objects of dierent masses connected by a massless cord that passes over a frictionless pulley of negligible mass.



solution: 
$$a = (\frac{m_2 sin\theta - m_1}{m_1 + m_2})g = const$$

$$T = \frac{m_1 m_2}{m_1 + m_2} (1 + sin\theta)g$$

### 4 Friction and Fluid/Air Resistance

#### 4.1 Frictional Forces

When a body rests or slides on a surface, the **friction force** is parallel to the surface.

The friction and normal forces are really components of a single contact force.



Friction between two surfaces arises from interactions between molecules on the surfaces.



#### 4.1.1 Kinetic vs Static Friction

Kinetic friction appears when a body slides over a surface. The magnitude of the kinetic friction force is

$$f_k = \mu_k n$$

Static friction force acts when there is no relative motion between bodies.

The magnitude of the **static friction force** can vary between zero and its maximum value:

$$f_s \le \mu_s n$$

Before the box slides, static friction acts. But once it starts to slide, it turns into kinetic friction.



### 4.1.2 Values of Coefficients of Friction

| Materials                   | Coefficient of Static Friction, $\mu_s$ | Coefficient<br>of Kinetic<br>Friction, $\mu_k$ |
|-----------------------------|-----------------------------------------|------------------------------------------------|
| Steel on steel              | 0.74                                    | 0.57                                           |
| Aluminum on steel           | 0.61                                    | 0.47                                           |
| Copper on steel             | 0.53                                    | 0.36                                           |
| Brass on steel              | 0.51                                    | 0.44                                           |
| Zinc on cast iron           | 0.85                                    | 0.21                                           |
| Copper on cast iron         | 1.05                                    | 0.29                                           |
| Glass on glass              | 0.94                                    | 0.40                                           |
| Copper on glass             | 0.68                                    | 0.53                                           |
| Teflon on Teflon            | 0.04                                    | 0.04                                           |
| Teflon on steel             | 0.04                                    | 0.04                                           |
| Rubber on concrete<br>(dry) | 1.0                                     | 0.8                                            |
| Rubber on concrete (wet)    | 0.30                                    | 0.25                                           |

#### 4.1.3 Example (static vs kinetic friction)

Before the crate moves, static friction acts on it. After it starts to move, kinetic friction acts.



#### 4.1.4 Example (inclined pull)

The angle of the pull aects the normal force, which in turn aects the friction force.

#### (b) Free-body diagram for moving crate



#### 4.1.5 Example (static friction)

There is no friction between block A and the tabletop, but the coefficient of static friction between block A and block B is  $\mu_s \neq 0$ . A light string attached to block A passes over a frictionless, massless pulley, and block C is suspended from the other end of the string. Masses of blocks A and B are given.



What is the maximum mass that block C can have, so that blocks A and B still slide together when the system is released from rest?

If A and B move together, all three blocks have the same acceleration.



$$(m_A + m_B)a = T$$
$$m_C a = m_C g - T$$

solution: 
$$a = \frac{m_C}{m_A + m_B + m_C} g$$

Block B moves acted upon the (static) frictional force.

$$m_B a = f_s$$
 
$$f_s \le \mu_s N = \mu_s m_B g = f_{s,max}$$

Hence it will not slide as long as  $a \leq \mu_s g$ 

**case 1**:  $\mu_s \ge 1$ 

Since  $a \leq g$  for this system, the inequality  $a \leq \mu_s g$  always holds, irrespective of the value of mass  $m_C$ . (Maximum frictional force that can be provided is greater than that required for the block to move with acceleration a.) For any mass  $m_C$  block B moves together with block A.

**case 2**: 
$$\mu_s < 1$$

$$\frac{m_C}{m_A + m_B + m_C} g \le \mu_s g$$

$$m_C \le \frac{(m_A + m_B)\mu_s}{1 - \mu_s}$$

# 4.1.6 Example (two objects on a rough surface, connected by a massless cord)



**solution:** 
$$a = \frac{m_2 - \mu m_1}{m_1 + m_2} g = const$$

$$T = \frac{m_1 m_2}{m_1 + m_2} (1 + \mu) g$$

### 4.1.7 Example (motion on a rough incline)



### 4.1.8 More Examples (DIY)...

two objects connected by a massless cord, rough incline, frictionless pulley



"train"



### 4.2 Fluid/Air Resistance

The fluid resistance (drag) force f on a body depends on the speed of the body. Usually  $\mathbf{f} \propto -v^p \frac{\mathbf{V}}{v}$  with p=1 or 2.

A falling body reaches its **terminal speed** when the resisting force equals the weight of the body.

#### (a) Free-body diagrams for falling with air drag



Before terminal speed: Object accelerating, drag force less than weight.

At terminal speed  $v_t$ : Object in equilibrium, drag force equals weight.