C - C - 6 - 2025

상압저장탱크의 검사·변경 및 보수에 관한 기술지원규정

2025. 3.

한국산업안전보건공단

기술지원규정은 산업안전보건기준에 관한 규칙 등 산업안전보건법령의 요구사항을 이행하는데 참고하거나 사업장 안전·보건 수준향상에 필요한 기술적 권고 규정임

기술지원규정의 개요

○ 작성자 : 한국산업안전보건공단 김 영 조 ○ 개정자 : 한국산업안전보건공단 전문기술실

- 제·개정경과
- 1998년 7월 화학안전분야 및 기계안전분야 기준제정위원회 심의
- 1998년 9월 총괄기준제정위원회에서 심의
- 2006년 7월 기계안전분야 기준제정위원회 심의
- 2006년 9월 총괄기준제정위원회 심의
- 2012년 4월 기계안전분야 기준제정위원회 심의(개정)
- 2024년 11월 화학안전분야 전문위원회 심의(개정)
- 2025년 1월 표준제정위원회 본위원회 심의(개정)
- 관련규격 및 자료
- KS B 6225 ; 2023 "용접식 강제 석유 저장 탱크의 구조"
- API Standard 650 13th Edition, "Welded steel tanks for oil storage"
- API Standard 653 5th Edition, "Tank inspection, repair, alteration and reconstruction"
- NFPA 326 "National fire protection association"
- 관련 법규·규칙·고시 등
- 산업안전보건 기준에 관한 규칙 제2편 제2장 제4절 제278조(개조ㆍ수리 등)
- 기술지원규정의 적용 및 문의
 - 이 기술지원규정에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지(www.kosha.or.kr)의 기술지원규정 소관 분야별 문의처 안내를 참고하시기 바랍니다.
 - 동 규정 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2025년 3월 26일

제 정 자 : 한국산업안전보건공단

<u>목 차</u>

1. 목 적
2. 적용범위1
3. 용어의 정의1
4. 적합성평가2
5. 검사9
6. 안전작업허가11
7. 보수 및 변경12
8. 용접19
9. 용접부 검사와 시험20
10. 수압시험22
11. 탱크 기초 침하시험23
12. 탱크 이름판 및 기록 유지27

상압저장탱크의 검사 · 변경 및 보수에 관한 기술지원규정

1. 목 적

이 규정은 산업안전보건기준에관한 규칙(이하 "안전보건규칙"이라 한다) 제2편 제2장 제4절 제278조(개조·수리 등)의 규정에 따라 인화성 물질을 저장하는 상압저장탱크의 검사·변경 및 보수에 관한 사항을 정함을 목적으로 한다.

2. 적용범위

이 규정은 안전보건규칙 별표 7의 화학설비 및 부속설비 중 지상에 설치되어 인화성물질을 저장하는 용접구조로 된 상압저장탱크의 기초, 밑판, 옆판, 지붕 및 기타 부속설비의 검사· 변경 및 보수 등에 대하여 적용한다.

3. 용어의 정의

- (1) 이 규정에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "보수"라 함은 상압 저장탱크의 최초의 설계·제작시의 크기 또는 구조에 대한 변화없이 결함 또는 부식에 의하여 열화된 부분을 절단, 용접 또는 열처리 작업 등의 방법으로 수리하는 것을 말한다.
 - (나) "변경"이라 함은 절단, 용접 또는 열처리 등의 작업을 통하여 저장탱크의 크기 또는 구조 등에 변화를 가져오는 것을 말한다.
 - (다) "상압저장탱크(Atmospheric pressure tank)"라 함은 대기압 하에서 운전되는 탱크를 말한다.
 - (라) "애뉼러 판(Annular plate)"이라 함은 동체의 하중을 지탱하기 위하여 동체의 밑에 설치한 원형판을 말한다.
 - (마) "부식여유(Corrosion allowance)"라 함은 저장탱크의 재질 및 탱크 내·외부의 환

C - C - 6 - 2025

경영향에 의해 발생할 수 있는 부식에 견딜 수 있도록 일정 여유치를 부여한 두께를 말하며 일반적으로 저장탱크의 설계시에 부식여유를 고려하여 제작한다.

(2) 그 밖에 이 규정에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 안전보건규칙에서 정하는 바에 의한다.

4. 적합성 평가

4.1 적합성평가 실시

탱크검사결과 부식 등의 물리적 변화가 발생한 경우에는 보수 또는 변경하지 않고 적합하게 계속 사용할 수 있는지에 대한 평가를 실시하여야 한다.

4.2 적합성평가 항목

적합성 평가에는 탱크의 지붕, 열판, 밑판 및 기초 부분에 다음 사항을 포함하여야 한다.

- (1) 저장된 제품 또는 바닥부 물에 의한 내면 부식
- (2) 외부환경 노출에 의한 외면 부식
- (3) 허용응력기준과 실제 받고 있는 응력 대비
- (4) 저장물질 변경에 따른 물질의 비중, 온도, 부식성 및 재질의 적합성
- (5) 탱크 운전지역에서 금속 설계 온도
- (6) 외부 지붕 하중, 풍하중 및 지진하중
- (7) 탱크 기초, 토양 및 침하 상태
- (8) 건설재료의 화학적 분석 및 기계적 특성
- (9) 기존 탱크의 변형

C - C - 6 - 2025

(10) 채우거나 비우는 비율, 빈도와 같은 운전상태

4.3 탱크 지붕의 평가

4.3.1 일반사항

- (1) 탱크지붕의 최소사용두께는 5 mm 이상이어야 한다.
- (2) 탱크지붕의 판두께가 부식에 의하여 625 cm 내에서 평균 2.2 mm 이하로 두께가 감소된 부분이 있거나 구멍이 있는 경우에는 이 부분을 보수하거나 교체하여야 한다.

4.3.2 고정식 지붕

부식뿐만 아니라 지붕을 지지하는 구조물인 래프터, 거더, 지지기둥 등에 대한 안전성을 점검하여야 한다. 특히 파이프 지지기둥에 대한 부식이 발생되고 있는 지를 점검하여야 한다.

4.3.3 부유식 지붕

- (1) 지붕판 및 폰툰(Pontoon)에 발생한 국부부식을 점검하여야 한다.
- (2) 지붕을 지지하는 구조물의 기밀(Sealing)시스템, 지붕의 롤링 사다리, 빗물 배출 시스템, 배기 시스템 등을 점검하여야 한다.

4.4 탱크옆판의 평가

4.4.1 보수 · 변경 여부의 결정

설계상의 부식여유보다 심한 부식 또는 균열 등에 의하여 탱크의 구조적 안전성에 영향을 받기 때문에 주기적으로 보수 또는 변경여부에 대한 평가를 실시하여야 한다.

- (1) 보수작업 전에 탱크 옆판의 균열여부 및 두께를 측정 부식정도 등을 파악하여 보수 여부를 결정하여야 한다.
- (2) 탱크 옆판의 국부부식은 탱크의 구조적 안전성에 영향을 미치지 않으나 심한 국부부식들이 서로 가까이 존재할 경우에는 보수를 고려하여야 한다.

- (3) 탱크옆판의 유효두께를 측정하여 그 두께가 설계두께를 만족하지 못하는 경우에는 부식된 부분을 보수 · 변경하거나 저장액위를 감소시켜 운전하여야 한다. 허용저장액위는 4.4.1 (4)에 명시된 설계 계산식에 의하여 산출된 두께로부터 높이를 역으로 계산하여 저장액위범위를 결정한다.
- (4) 탱크 옆판의 설계두께는 KOSHA GUIDE 「상압저장탱크의 설계에 관한 기술지침」에 따라 계산한다.
- (5) 검사에 의한 옆판의 유효두께는 계산두께에서 부식여유를 뺀 값으로 한다.

4.4.2 옆판의 두께 부식 측정

탱크 각단의 옆판 두께가 부식에 의하여 두께감소가 있을 때에는 <그림 1>의 측정위치에 따라 측정하여 그 결과에 따라 판정한다.

- (1) 전면에서 부식이 가장 심한 부분의 두께(t min)를 측정한다.
- (2) 상당한 크기의 부식정도가 다른 부분이 있을 때의 유효두께 측정은 부식이 가장 심한 점(t₂)을 통과하는 최대길이 1 m내의 수직면에서 최소 5개의 균일 간격 점(a, b, c, d, e)에서 측정한 두께의 평균값(t awa)으로 한다.
- (3) 다음의 경우를 모두 만족하는 경우에 한하여 탱크를 계속 사용할 수 있다.
- (가) 측정한 두께의 평균값(t avg)이 설계두께 값 이상으로 다음 검사 시점까지의 부식 여유를 더한 값보다 큰 경우
- (나) 측정한 최소두께(t min)가 설계두께 값의 60% 이상으로 다음 검사 시점까지의 부식여유를 더한 값보다 큰 경우

<그림 1> 부식 단면의 측정위치

4.4.3 넓게 분포된 국부부식 평가

국부부식이 넓게 분포된 경우에는 다음의 경우에 한하여 계속 사용할 수 있다.

- (1) 국부부식에 의한 잔여 판 두께가 계산두께의 2분의 1보다 클 때
- (2) 임의의 200 mm 길이의 수직선상에 존재하는 국부부식 길이의 합이 50 mm를 초과하지 아니할 때

4.4.4 탱크 변형 평가

- (1) 탱크의 동체는 지반침하, 내용물 하중 및 탱크내부의 과압, 진공, 풍압 또는 설치기술 미숙 등으로 인하여 동체가 진원을 벗어나거나 국부적으로 굴곡, 변형이 되거나 용접부위가 뒤틀리거나 하는 등의 변형에 대하여 평가를 실시하여야 한다.
- (2) 탱크변형은 그 원인에 대한 정밀분석을 실시하여 수정작업의 필요성 및 계속 사용 여부를 <표 1>에 따라 파단하다.

항 목		허용범위		측정방법		
수직도(Plumbness)		1 200 × 탱크높이(mm)		탱크 상단에서 1단 하부까지 수직으로 측정		
		탱크지름(D)	오차범위			
		12 m 미만	± 13 mm	탱크 1단과 밑판의 용접부로		
진원도(Roundness)		12 m 이상, 45 m 미만		부터 300 mm 높이에서 진원도		
		45 m 이상, 75 m 미만 ± 25 mm		측정		
		75 m 이상 ± 32 mm				
				동체 바깥지름과 같은 900 mm의		
동체의	수평변형	13 mm		원호를 만들어 동체의 수평으로		
부분적 변형				진원과의 차를 측정		
	수직변형	13 mm		900 ㎜의 직선자를 만들어 동체		
	1 기단경	13 mm		의 수직선상의 차를 측정		

<표 1> 탱크의 변형 허용범위

4.4.5 탱크 옆판의 결함평가

균열 또는 라미네이션(Lamination)과 같은 결함은 보수작업범위를 결정하기 위하여 철저히 점검하여야 한다. 균열 중 옆판과 밑판 용접부에 발생된 것은 반드시 보수하여야 한다.

4.5 탱크 밑판의 평가

4.5.1 일반사항

탱크 밑판에서 누설을 방지하기 위하여 부식 및 결함검사를 주기적으로 실시하여야 한다.

4.5.2 밑판 누설의 원인

- (1) 국부적 부식
- (2) 용접부 및 열영향부의 부식
- (3) 용접부의 균열
- (4) 지붕 지지부하 및 침하에 의한 응력
- (5) 밑판과 탱크기초의 접촉면에서의 부식
- (6) 부적절한 드레인에 의한 부식
- (7) 불균일한 침하
- (8) 탱크기초에 균일하지 않은 물질의 충진(예: 모래와 진흙)

4.5.3 밑판 누설

탱크 밑판을 교체한 경우에는 밑판에서의 누설 여부를 판단할 수 있는 누설감지 통로를 설치하여 누설되는 지점의 위치를 탱크외부에서 쉽게 감지할 수 있도록 한다.

4.5.4 밑판의 최소예상 잔여두께 결정

(1) 일정 사용 기간후의 탱크 밑판의 최소 잔여두께의 계산은 밑판에서 발생한 부식을 종류별로 측정하여 다음 식에 의하여 결정한다.

$$t_{min.} = t_0 - GC_a - P_m - UP_a - (P_{rm} + UP_{rm} + GC_r)O_r$$

C - C - 6 - 2025

t min. : 최소 잔여두께(mm)

to : 당초의 밑판두께(mm)

GCa : 전면부식 평균 깊이(mm)

Pm : 내부 국부부식에 의한 최대깊이(mm)

UPa : 밑판이면의 국부부식의 평균깊이(mm)

P_{rm} : 내부 국부부식 최대 부식속도(mm/y)

(단, 내부에 라이닝된 경우에는 "0"으로 한다)

UPm: 밑판 이면의 국부부식 속도(mm/y)

(단, 방식설비가 설치된 경우에는 "0"으로 한다)

GCr : 전면부식 평균속도(mm/y)

Or : 다음 검사시까지 사용예상년수

(2) 예상 사용년수 사용 후의 최소 밑판 잔여두께가 다음 <표 2>에 있는 최소밑판두께 보다 작은 경우에는 밑판을 라이닝, 보수 또는 교체하거나 차기 내부검사 주기를 단축하여야 한다.

<표 2> 허용 최소 밑판 두께

차기 검사시 최소 밑판 두께	밑판 및 기초설계상태		
2.54 mm	- 탱크저면에 누설감지기구가 없는 경우		
1 97 mm	- 누설감지기구가 있는 경우		
1.27 mm	- 밑판에 1.0 ㎜ 이상 라이닝 한 경우		

4.5.5 애뉼러 판의 최소두께

(1) 지진부하를 고려할 필요가 없는 경우의 저장내용물의 비중이 1.0 이하인 애뉼러 판의 최소두께는 다음 <표 3>의 수치에 차기 검사 시점까지의 부식여유를 더한 값 이상이어야 한다.

<표 3> 애뉼러 판 두께

옆판 최하단의	옆판 최하단에 발생하는 응력(MPa) 주)				
두께(mm)	< 168	< 186	< 205	< 223	
t \le 19	4.32	5.08	5.84	7.62	
$19 < t \le 25$	4.32	5.59	7.88	9.65	
$25 < t \le 32$	4.32	6.60	9.65	12.19	
$32 < t \le 38$	5.59	8.64	11.94	14.99	
t > 38	6.86	10.16	13.46	17.27	

C - C - 6 - 2025

주) 이 응력은 다음 식에서 구한다.

 $\sigma = [2.34D(H-1)] / t$

여기서, σ : 응력(MPa)

D: 저장탱크의 안지름(m)

H: 최고 물 누설 시험의 높이(m) t: 옆판 최하단의 두께(호칭)(mm)

(2) 지진부하를 고려하여야 하는 경우의 애뉼러 판의 두께는 지진부하 요구사항에 따라 지진부하 평가를 실시하여 실제 두께를 계산하여야 한다.

4.6 탱크 기초에 대한 평가

- (1) 탱크 기초의 열화는 침하, 마멸, 콘크리트의 생석회화 및 하부의 수분에 의하여 발생하며 콘크리트 강도를 저하시킨다.
- (2) 콘크리트가 떨어지거나 균열이 발생한 경우에는 철근의 부식 및 콘크리트 구조로 물의 흡입을 방지하기 위하여 보수하여야 한다.
- (3) 탱크 고정볼트의 변형과 구조물의 과도한 균열은 지반침하 또는 탱크의 과부하를 나타 내므로 주의하여야 한다.

5. 검사

5.1 일반사항

검사주기를 결정하는 요소에는 다음과 같은 것들이 있다.

- (1) 육안검사 결과
- (2) 부식여유와 부식속도
- (3) 부식방지 조치
- (4) 이전 검사시 발견된 상태
- (5) 건설 또는 보수시 사용자재와 방법

- (6) 탱크의 위치
- (7) 누설감지 시설(독립지역 또는 타 위험물질과 동일지역)
- (8) 법적 요구사항

5.2 외부검사

5.2.1 일상검사

- (1) 탱크의 외부 상태는 일상적으로 육안검사에 의하여 점검ㆍ기록되어야 한다.
- (2) 일상적인 외부검사 주기는 최소한 매 1개월 마다 실시한다.
- (3) 탱크 외부의 일상 검사에는 누설, 옆판의 변형, 침하, 외면부식, 기초의 상태, 도장 상태, 보온상태 등을 점검하여야 한다.

5.2.2 외부검사

- (1) 모든 탱크는 옆판의 부식속도수명의 ¼년(부식여유두께/부식속도÷4)마다 자격을 가진 검사원(사업장 소속 검사원 포함)에 의한 육안검사를 받아야 한다.
- (2) 단열재가 설치된 탱크는 필요한 범위 내에서 단열재를 제거하고 검사하며 옆판의 외면 상태 및 지붕의 상태를 확인하여야 한다.
- (3) 탱크 밑판의 외면부식이 음극부식 방지 시스템으로 제어되는 경우에는 부식방지 시스템 및 탱크접지 시스템을 주기적으로 점검하여야 한다.

5.2.3 옆판의 두께측정

- (1) 사용중인 탱크의 옆판에 대한 균일한 부식상태는 초음파 두께측정기로 측정한다.
- (2) 초음파에 의한 두께 측정은 다음 주기를 초과해서는 아니된다.
- (가) 신설한 탱크인 경우에는 설치 시점으로부터 5년
- (나) 부식속도를 모를 경우에는 매 5년마다

KOSHA GUIDE C - C - 6 - 2025

(다) 부식속도를 아는 경우에는 최대측정주기는 잔여 부식여유 두께를 2배의 Cv(Cv: 부식속도)로 나눈값, 단 최대 15년을 초과하여서는 아니 된다.

5.3 내부검사

5.3.1 일반사항

탱크내부 검사는 다음 사항을 확인하거나 수집하기 위하여 실시한다.

- (1) 탱크 밑판의 부식여부와 누설여부
- (2) 밑파과 옆파의 최소두께
- (3) 탱크 침하정도

5.3.2 내부검사 주기

- (1) 내부검사 주기는 옆판의 부식속도에 의하여 결정하며 탱크 옆판의 최소 요구두께 계산값과 부식속도에 따라 결정한다.
- (2) 실제검사 주기는 다음 검사시점에서의 밑판의 최소두께가 <표 2> 두께값 보다 작지 않도록 결정이 되어야 하며 20년을 초과할 수 없다.

5.4 검사 기록의 유지

검사 기록은 정기검사 및 탱크의 유지관리의 기본이 되므로 각 탱크별로 설계·설치기록서, 검사이력서 및 보수·변경이력서 등을 각각 만들어 유지하여야 한다.

6. 안전작업허가

6.1 위험확인

휘발성이 큰 석유류의 상압저장탱크의 내부검사, 보수 또는 변경작업을 실시할 때에는 사전에 발생할 수 있는 화재·폭발, 질식·중독 등의 위험을 확인하여야 한다.

6.2 안전교육

탱크 내 작업이 필요한 경우 작업 근로자에 대해서는 화학설비의 탱크 내 작업과 관련된 특별교육을 실시하여야 한다.

6.3 안전작업허가 및 안전조치

- (1) 상압저장탱크의 검사, 보수 또는 변경시에는 KOSHA GUIDE「안전작업허가지침」 및 KOSHA GUIDE「밀폐공간작업 프로그램 수립 및 시행에 관한 기술지침」에 따라 화기작업허가 및 밀폐공간 안전보건작업 허가 등 안전작업허가를 사전에 얻은 후, 필요한 안전조치를 취하여 안전을 확보한 후 작업에 임하여야 한다.
- (2) 저장탱크 내부의 검사 또는 보수시에는 작업 시작전에 탱크내부의 가스농도 및 산소 농도를 측정하여야 한다.
- (3) 남아있는 저장물질을 배출할 때 탱크내부에서 사용하는 펌프는 공기에 의하여 구동되는 공기압식 펌프이어야 한다.
- (4) 추락의 위험 등이 있는 곳에는 비계 및 발판 등을 견고히 설치하고, 작업자는 안전대를 착용한 후 안전대 부착설비에 안전대를 부착한 후 작업에 임하여야 한다.

7. 보수 및 변경

7.1 보수에 따른 재질선정

- (1) 보수 및 변경시 사용하는 옆판 및 밑판의 재질은 당초의 설계도면에 명시된 재료와 동일한 것을 사용하거나 KS B 6225「용접식 강제 석유 저장 탱크의 구조」에서 추천하는 재료로서 사용조건에 맞는 재질을 선정하여 사용하여야 한다. 다만 보유하고 있는 자재의 재질을 확인할 수 없는 경우에는 화학성분 분석시험 및 기계적시험을 수행하여 적합성을 확인하여야 한다.
- (2) 탱크에 부착하는 부속 구조용 강재는 최소 SS400(또는 A36)의 요구조건에 적합한 것이상의 재질이어야 한다.
- (3) 플랜지 및 볼트/너트는 최초 설치시의 재질 명세와 일치하거나 그 이상의 재질이어야 한다.

- (4) 기존의 지붕 판 및 밑판을 재사용할 때에는 과도한 부식이나 국부부식 상태를 점검한 후 사용하여야 한다.
- (5) 용접자재는 KS 규격 또는 미국 용접협회(AWS) 명세에 맞는 재료를 선정하여야 한다.

7.2 옆판의 제거와 교체

- (1) 교체용 판재의 두께는 교체되는 동일한 단(Shell course)의 가장 큰 호칭두께보다 커야 한다.
- (2) 교체판재의 최소크기는 300 mm 또는 교체판 두께의 12 배중 큰 것이어야 한다.

7.2.1 교체 옆판재의 최소이격거리

- (1) 교체 옆판재와 기존 용접선과의 이격거리 및 교체 옆판재 끼리의 이격거리는 <그림 2>와 같다.
- (2) 용접선이 교차되는 점은 90° 각도를 이루어야 한다.
- (3) 기존의 옆판재는 1개 이상의 옆판 또는 전체를 제거하고 교체할 수 있다. 이 경우 기존 수평용접선을 따라 절단하고 교체 옆판재를 삽입한 후 재 용접을 할 수 있다.

주1) 새로운 수직이음 용접을 하기 전에 기존 수평용접 부위를 새로운 수직 용접이음부로 부터 300 mm를 절단한 후 용접하고 수평 절단부는 수직용접 이음부를 먼저 용접한 후 용접한다.

기호	옆판 두께에 따른 용접 가장자리의 최소 간격				
	$t \leq 13 \text{ mm}$	t > 13 mm			
R	150 mm	150 mm와 6 t중 큰 것			
В	150 mm	250 mm와 8 t중 큰 것			
Н	75 mm	250 mm와 8 t중 큰 것			
V	150 mm	250 mm와 8 t중 큰 것			
A	300 mm	300 mm와 12 t중 큰 것			
С	75 mm와 5 t중 큰 것				

t : 교체판 두께(mm)

<그림 2> 교체판과 기존 용접선과의 이격거리

7.2.2 교체 옆판재의 가공

- (1) 교체 옆판재의 절단 및 용접면 가공은 절단기, 에지 플레이너, 자동 또는 반자동 가스 절단기로 이루어져야 한다. 다만 고장력강은 가스 절단하였을 경우에는 용접하는 끝 부분을 없애고, 필요에 따라 경화층, 변질부 등을 그라인더 등으로 제거한 후에 매끄럽게 다듬질한다.
- (2) 옆판의 굽힘율에 맞추기 위해 옆판의 두께와 저장탱크 안지름의 한도는 <표 4>에 따른다.

<표 4> 옆판의 굽힘 가공을 요하는 저장 탱크 안지름의 한도

옆판의 두께구분(mm)	저장탱크 안지름의 한도(m)
9 이하	12 이하
9 초과 12 이하	18 이하
12 초과 16 이하	35 이하
16 초과	모두

7.2.3 용접이음설계

- (1) 탱크 교체 옆판재는 맞대기 용접이음으로 완전 용입을 하여야 한다. 겹치기 이음의 필렛 용접은 허용되지 않는다.
- (2) 교체 옆판재의 용접시 기존탱크의 변형을 방지하기 위하여 이음부 고정, 입열, 이음별 용접순서 등을 고려하여야 한다.

7.2.4 용접부 결함수정

- (1) 용접부의 균열, 용입 불량, 슬래그 혼입, 과대한 기공은 끝가공 또는 그라인딩으로 완전히 제거한 후 재용접하고 비파괴검사를 실시하여야 한다.
- (2) 옆판의 세로 이음에는 0.4 mm, 수평 이음에는 0.8 mm를 초과하는 깊이의 언더컷 (Under cut)이 있어서는 안 된다.
- (3) 허용범위를 벗어난 언더컷(Under cut)은 덧살용접을 하고 그라인딩하여야 한다.
- (4) 옆판의 맞대기 이음의 보강 용접 높이는 한쪽 면에서 <표 5>의 값을 초과 하여서는 안 된다. 또한 이음 판재의 두께가 서로 다른 경우에는 얇은 쪽의 두께를 기준으로 한다.

<표 5> 맞대기 이음의 보강 용접 높이 한도

판 두께(mm)	세로 이음(mm)	수평 이음(mm)
12 이하	2.4 이하	3.0 이하
12 초과 25 이하	3.0 이하	4.5 이하
25 초과	4.5 이하	6.0 이하

7.3 탱크 옆판의 노즐(Nozzle) 용접

7.3.1 기존 노즐의 보수

- (1) 보강판이 없는 기존 노즐에 보강판을 추가할 경우에 보강판의 크기는 노즐의 외경에 따른 규격에 적합하도록 하고 기존 용접선과의 이격거리는 <그림 3>과 같다.
- (2) 노즐이 탱크내면으로 돌출한 경우에는 보강판을 탱크내부에 설치할 수 있다.

t 및 T(최대)	A
14 mm	6 mm
20 mm	8 mm
24 mm	10 mm
27 mm	11 mm
33 mm	13 mm
40 mm	14 mm
45 mm	16 mm

<그림 3> 보강판 추가 용접

7.3.2 기존 노즐의 위치변경

(1) 탱크 밑판 높이를 변경하는 경우에 발생하는 노즐 위치는 <그림 4>와 같이 새로운 밑판 높이만큼 노즐을 평행 이동하고 절개 후 재용접한다.

상향 조정 전 상향 조정 후 <그림 4> 기존노즐 위치변경(노즐상향조정)

(2) 기존노즐의 각 부분(노즐 목부분, 플랜지, 보강판)은 상태가 양호한 경우에는 재사용할 수 있다.

7.4 탱크 밑판의 보수

7.4.1 탱크 밑판의 보수에 있어 가장 중요한 부분은 애뉼러 판 끝으로부터 300 mm 부분으로, 이 부분은 광범위하게 존재하는 국부부식, 밑판 및 옆판과 밑판 용접부의 균열을 제외하고는 보수용접을 하여서는 아니되며 밑판 또는 애뉼러 판을 교체하여야 한다.

7.4.2 탱크 밑판의 부분 교체

애뉼러 판 끝으로부터 300 mm 내에 보수범위가 클 경우에는 밑판을 절단하고 새로운 판으로 교체한다.

7.4.3 탱크 밑판의 완전 교체

(1) 새로운 밑판과 기존 밑판 사이에 모래, 자갈 또는 콘크리트와 같은 비부식성 완충재를

C - C - 6 - 2025

약 75 ㎜에서 100 ㎜정도 삽입하여야 한다.

- (2) 탱크 밑판 높이와 평행하게 옆판을 절단하고 절단면을 그라인당하여 용접 준비를 한다.
- (3) 기존 밑판 아래의 기초에 빈공간이 있는 경우에는 모래, 분쇄 자갈, 그라우팅 (Grouting)재 등으로 채워야 한다.
- (4) 기존의 노즐위치는 밑판 높이 상승에 따라 조정되어야 한다.
- (5) 부유식 지붕 탱크인 경우에는 새로운 밑판으로 지붕이 최저 위치로 왔을 때 지붕 높이를 유지하도록 지붕 지지대를 조정하여야 한다.
- (6) 부유식 또는 고정식의 지붕 중량을 지지하는 지지대 하중판을 설치하여야 한다.
- (7) 교체하는 밑판의 두께는 최소 6.0 ㎜ 이상이어야 한다.

7.5 지붕의 보수

7.5.1 고정식 지붕의 보수

- (1) 새로운 고정식 지붕판의 최소두께는 5 ㎜에 부식여유를 더한 수치 이상이어야 한다. 단, 지붕의 단열재, 적설 등에 의한 유효부하가 1.2 kPa 이상인 경우에는 지붕판 두께는 허용응력을 고려하여 계산되어야 한다.
- (2) 지붕의 지지 시스템(래프터, 거더, 지지기둥 및 기둥밑판 등)은 설계명세에 따라 보수 또는 변경되어야 한다.
- (3) 지붕판의 저장 탱크 정상부 보강에 대한 부착은 지붕판의 윗면에서 한쪽 연속 필렛 용접으로 하고, 필렛의 크기는 4.5 mm를 초과해서는 안된다.

7.5.2 부유식 지붕의 보수

- (1) 부유식 지붕의 보수는 당초 설계도면에 의하여 실시하고 폰툰 또는 콤파트먼트의 누설은 재용접 또는 보수판을 사용하여 보수한다.
- (2) 루프 실을 사용중 보수할 경우에는 지붕이 시스템의 4분의 1 이상의 기능을 상실시켜서는 아니되며 보수중에는 루프가 중심을 잡도록 공간유지용 임시 스페이서(Spacer)를 사용해야

KOSHA GUIDE C - C - 6 - 2025

한다.

- (3) 옆판과의 기계적 마멸, 저장물질 및 기후조건에 의하여 루프 실이 성능을 발휘하지 못할 경우에는 루프 실 제조자의 권고에 따라 교체한다.
- (4) 루프 실을 고정하는 외륜판(Rim plate)의 두께가 2.5 mm 이하인 경우에는 교체하여야 하며 새로운 외륜판은 최소한 5 mm 이상이어야 한다.
- (5) 지붕 위의 활동 부분인 가동 사다리, 회전 멈춤, 검척판 등은 발화가 되지 않는 재료를 사용하여야 한다.

7.6 운전중 노즐 설치(핫탭 : Hot tap)

(1) 사용중인 기존 탱크에 노즐을 설치하고자 할 때에는 핫탭(Hot tap)을 이용할 수 있으며 호칭노즐 크기(NPS)에 따라 요구되는 최소 옆판 두께는 <표 6>과 같다.

노즐 크기(mm)	최소 옆판 두께(㎜)
< 150	5
≤ 200	6
≤ 250	8
≤ 350	10
≤ 400	11
≤ 450	13

<표 6> 핫탭 노즐크기 및 최소 옆판 두께

(2) 핫탭(Hot tap) 용접

- (가) 용접자재는 저수소계 용접 재료를 사용한다.
- (나) 내용물에 증기가 있는 탱크 지붕 상부에서는 핫탭(Hot tap)을 하여서는 아니 된다.
- (다) 과도하게 국부부식이 있거나 라미네이션이 있는 옆판에는 핫탭(Hot tap)을 적용할 수 없다.
- (라) 핫탭(Hot tap) 용접중 응력부식균열에 의한 파괴가 일어날 수 있는 탱크에는 사용하여서는 아니 된다.
- (마) 어느 방향으로도 핫탭(Hot tap) 노즐과 인근 노즐과의 최소거리는 $\sqrt{R^{\! imes}T}$ 이상

KOSHA GUIDE C - C - 6 - 2025

이어야 한다(R: 탱크반경(mm), T: 탱크옆판 두께(mm)).

- (바) 노즐 파이프는 옆판에 완전 용입이 될 수 있도록 가공되어야 한다.
- (사) 노즐 파이프와 옆판과의 용접을 완료한 후에 설치하는 노즐 보강판은 <그림 5>와 같이 두 조각판으로 하여 사용가능하고 완전히 용입 되도록 하여야 하며 용접시의 입열을 최소한으로 유지하여야 한다.

8. 용접

8.1 용접에 필요한 검정

용접절차 명세서의 검정 및 용접사의 검정은 KOSHA GUIDE 「화학공장의 정비·보수에 관한 안전관리지침」및 KS B 6750「압력용기-설계 및 제조 일반」에 따라 검정한 후 실제 보수용접에 적용한다.

<그림 5> 핫탭(Hot tap) 용접

8.2 용접사 자격

각 용접사는 용접자격에 관한 검정결과를 유지하고 검사원이 요구하는 경우 제시하여야 한다.

8.3 용접부 각인

용접 완료 후 각 용접사는 자신이 수행한 용접부에 용접 길이 1 m 마다 부여된 용접사 식별 번호를 각인하거나 용접 상세도면에 용접 이음별로 용접사 식별 번호를 기록·유지 하여야 한다.

9. 용접부 검사와 시험

9.1 비파괴검사 일반

- (1) 육안검사, 자분탐상시험, 액체침투탐상시험, 초음파탐상시험, 방사선투과시험 등 각비파괴 검사는 적용절차와 검사원자격 및 허용범위에 대하여 비파괴 절차서를 작성한후 수행하여야 한다.
- (2) 비파괴검사는 검정된 자격자에 의하여 수행하여야 한다.
- (3) 비파괴검사는 KS B 0816「침투탐상 검사방법 및 침투 지시의 분류」, KS B 0845 「(강용접 이음부의 방사선투과 검사」, KS D 0213「강자성 재료에 대한 자분탐상 검사와 지시의 분류」및 KS D 0233「압력용기용 강판에 대한 초음파탐상검사」에 따라 판정하고, 불합격시 재보수 후 비파괴검사를 다시 실시하여야 한다.

9.2 용접부별 비파괴검사

9.2.1 노즐 용접

- (1) 탱크 옆판의 열영향부에는 라미네이션 발생 여부를 확인하기 위하여 초음파 탐상 시험을 실시한다.
- (2) 보수 용접을 위한 끝가공 및 그라인당 부위는 자분 탐상 시험 또는 액체 침투 탐상 시험을 실시한다.

- (3) 탱크 옆판과 노즐 용접부 및 탱크 옆판과 보강판의 용접부는 자분 탐상 시험 또는 액체 침투 탐상시험을 실시한다.
- (4) 응력 제거를 위한 열처리가 필요한 용접부는 열처리가 완료되고 수압시험 전에 자분 탐상 시험 또는 액체 침투 탐상 시험을 실시한다.
- (5) 탱크 옆판 보수시 삽입판을 사용한 경우에는 맞대기 용접을 하여야 하며 전길이 방사선 투과 시험을 실시한다.

9.2.2 탱크 옆판의 용접

탱크 옆판 간의 용접부는 다음에 따라 방사선 투과 시험을 실시한다.

- (1) 수직 용접부는 각 이음마다 방사선 투과 시험을 실시한다.
- (2) 수평 용접부는 15 m 마다 방사선 투과 시험을 실시한다.
- (3) 수직 용접부와 수평 용접부가 교차하는 용접부는 모든 교차 용접부에 대하여 방사선 투과 시험을 실시한다.
- (4) 방사선 투과 시험의 유효 필름길이는 최소한 150 ㎜ 이상이어야 한다.

9.2.3 탱크 옆판과 밑판과의 용접

탱크 옆판과 밑판과의 용접부는 전용접부에 대하여 진공시험을 실시한다. 진공시험에 사용하는 진공상자의 상부면은 검사부위를 관찰할 수 있도록 투명하게 하며 바닥면은 검사면에 밀착될 수 있도록 한다. 또한 요구되는 진공은 진공펌프 또는 공기흡출기 등을 이용하여 만든다.

9.2.4 탱크 밑판 용접

탱크 밑판간의 용접부는 전용접부에 대하여 진공시험을 실시한다.

9.2.5 보수 용접부의 결함

(1) 보수 용접을 위한 끝가공 및 그라인딩 부위는 자분 탐상 시험 또는 액체 침투 시험으로

C - C - 6 - 2025

결함이 완전히 제거되었음을 확인한다.

- (2) 맞대기 이음 용접부는 전길이 방사선 투과 시험 또는 초음파 탐상 시험을 실시한다.
- (3) 필렛 용접부는 전길이 자분 탐상 시험 또는 액체 침투 탐상 시험을 실시한다.

10. 수압시험

10.1 수압시험의 적용

다음과 같은 보수 또는 변경을 한 경우에는 최대 액면수위까지 물을 채운 후 24시간 동안 유지하면서 수압시험을 실시하여 누설이 없어야 한다.

- (1) 호칭노즐 크기 300 mm 이상의 노즐 설치 보수
- (2) 탱크 옆판의 교체 보수
- (3) 300 ㎜ 이상의 탱크 밑면 애뉼러 판 보수
- (4) 300 ㎜ 이상의 탱크 옆판의 수직 용접부의 보수 또는 밑면 애뉼러 판의 보수
- (5) 탱크 밑판의 교체 보수
- 10.2 수압시험의 면제

주요 보수 또는 변경에 해당하는 경우라도 다음을 만족 할 때는 수압시험을 면제할 수 있다.

(1) 탱크 옆판 용접시

수직용접 및 수평 용접시 완전 용입이 되고 배면 용접전에 자분 탐상 시험 또는 액체 침투 탐상 시험을 실시하고 최종 용접 후 전길이 방사선 투과 시험을 실시한 경우

(2) 탱크 밑판 또는 밑면 애뉼러 판 용접시

표준에 따라 설계하고 표준에서 인정하는 판 재질을 사용한 경우

KOSHA GUIDE C - C - 6 - 2025

(3) 탱크 노즐 용접시

노즐 용접부인 노즐 파이프와 옆판 용접 및 노즐 파이프와 보강판 용접이 완전용입이 되도록 배면 용접전에 그라인당부에 대하여 자분 탐상 시험 또는 액체 침투 탐상 시험을 실시하고 용접 완료 후 초음파 탐상 시험을 실시한 경우

10.2 누설시험

신설 또는 변경된 노즐 보강판은 공기에 의한 누설시험을 실시한다.

11. 탱크 기초 침하시험

11.1 탱크 침하시험 일반

- (1) 탱크의 침하시험은 탱크 동체의 침하와 탱크 밑판 침하를 측정하는 것으로 수압시험 중 및 수압시험 후에 각각 실시한다.
- (2) 탱크 침하를 측정하는 기준점의 개수(N)는 D/3으로써 <그림 6>과 같다(D : 탱크 지름, m)
 - (가) 동체 침하를 측정하는 경우에는 원주 길이를 N으로 나누어 설치하되 측정점간의 최대 간격은 9 m 이하이어야 한다.
- (나) 탱크 밑판 침하를 측정하는 경우에는 지름을 N으로 나누어 설치하되 측정점간의 최대 간격은 3 m 이하이어야 한다.

주) 침하 측정점은 최소 8곳에서 행하며 측정점간 최대 간격은 옆판 원주길이로 9 m 이다.

<그림 6> 탱크 침하 측정점

11.2 침하 평가

- (1) 탱크 침하는 탱크 동체의 경우에는 탱크 원주방향을, 탱크 밑판의 경우에는 지름의 침하 높이를 측정 기록하여 평가한다.
- (2) 탱크 동체 침하

(가) 균일침하

탱크 기초의 토질 특성에 따라 크게 달라지는 것으로 균일하게 침하하는 경우에는 탱크 자체에는 응력을 야기시키지 않으나 배관 설치시 신축이음 등을 고려하여야 한다.

(나) 면경사 침하

① 탱크가 <그림 7>과 같이 경사면에 따라 회전하는 것으로 이 경우 액면 상승으로 인하여 탱크 동체에 응력을 증가시키며 과도한 경우 부유지붕식 탱크에서 루프 실 이 걸려 부유지붕의 이동을 방해할 수도 있다.

<그림 7> 면경사 침하

② 면경사 침하의 경우 허용경사도는 탱크의 수직도를 측정하여 결정하며 허용 경사도(d)는 탱크높이 × 1/100(mm) 이하이다.

(다) 비면경사 침하

① 탱크가 비면경사 침하로 침하되는 경우 탱크 동체에는 큰 응력이 작용하며 탱크 상부와 타원형을 형성하여 부유식 지붕의 기능을 방해한다. 이 경우에는 탱크 동체와 밑판의 구조적 안전성을 재검토하여야 한다. ② 비면경사 침하의 경우 최대허용 비경사면 침하변형도(S)는 다음 식에 의하여 계산 한다.

$$S = \frac{(L^2 \times Y \times 11)}{2[(E \times H)]}$$

여기서, S: 비경사면 침하변형도(m)

L: 측정점 간의 동체원주 아크길이(m)

Y : 항복강도(MPa)

E : 탄성계수(Young's modulus)(MPa)

H : 탱크높이(m)

(라) 가장 자리 침하

① 동체와 밑판의 용접부 부근에서 <그림 8>과 같이 밑판의 변형으로 탱크 동체가 가장자리에서 침하가 일어나는 경우로 옆판과 밑판 용접부의 구조적 안전성을 철저히 검토하여야 한다.

<그림 8> 가장자리 침하

② 최대허용 침하크기(B)는 다음 식에 의하여 계산한다.

$$B_a = 3.083 \ell$$

여기서, Ba: 최대침하크기(cm)

ℓ : 옆판으로부터 침하 시작점까지의 거리(m)

(마) 탱크 밑판의 침하

① 탱크 밑판 침하에는 <그림 9>와 같이 동체 부근의 침하와 동체와 떨어진 부근의 침하가 있으며 모두 국부침하이다.

<그림 9> 탱크 밑판 침하

② 최대허용 처짐 또는 부풀음 크기는 다음과 같다.

 $B_b = 0.031R$

여기서, Bb: 최대허용 처짐 또는 부풀음 크기(mm)

R: 처짐 또는 부풀음 지역의 내접원 반지름(mm)

12. 탱크 이름판 및 기록 유지

12.1 탱크 이름판

탱크 보수 및 변경을 통하여 탱크의 용량, 최대허용 운전액위 또는 운전조건(내용물의 비중, 온도, 압력)이 달라진 경우에는 <표 7>과 같이 비부식성 재질로 된 이름판을 재제작

하여 최초의 이름판 옆에 부착한다.

<표 7> 탱크 이름판

(탱 크 번 호)						
보수・변경	보수・변경 작업회사명 :					
보수・변경 완료일 : 최초적용코드 :						
보수・변경	적용코드 :		탱크지름 : 탱크높이	:		
옆판	재질	두께	비중 :			
			설계압력 :			
			최대 허용 운전높이 :			
			최대 운전온도 :			
			최초 설계온도 :			

12.2 보수・변경 기록 유지

탱크의 주요 보수 또는 변경 시 다음 자료를 기록 유지한다.

- (1) 설계 조건
- (2) 보수・변경 도면
- (3) 보수・변경에 따른 각종 계산서
- (4) 주요 자재의 자재 시험성적서(최소 1년)
- (5) 용접부 비파괴검사 기록서(최소 1년)
- (6) 수압시험 및 침하평가서(최소 1년)

기술지원규정 개정 이력

□ 개정일 : 2025. 2. 3.

○ 개정자 : 한국산업안전보건공단 전문기술실

○ 개정사유 : 참고규격(API STD 653) 관련내용 최신화

- 주요 개정내용
- (4.2 적합성평가 항목) 기존탱크의 변형 등 적합성평가 항목 3개 추가(근거, API STD 653 41.3)
- (4.4.4. 탱크 변형평가) 표 1. 탱크의 변형 허용범위 두께 수정(근거, API STD 650 7. 5)
- (4.5.4. 밑판의 최소예상 잔여두께 결정) 표 2. 차기검사시 최소 밑판 두께 수정 (근거, API STD 653 Table 4. 4a)
- (4.5.5. 애뉼러 판의 최소두께) 표 3. 애뉼러 판 두께 수정(근거, API STD 653 Table 4.5a)
- (7.3.1. 기존 노즐의 보수) 그림 3. 보강판 추가용접 두께 수정(근거, API SID 653 Figure 9. 7)
- (7.5.1. 고정식 지붕의 보수) (1)의 최소두께 및 유효부하 수정(근거, API STD 653 9. 12. 2. 1)
- (7.6. 운전중 노즐설치) 표 6. 노즐크기 및 최소옆판 두께 수정(근거, API STD 653 Table 9. la)
- (11.1. **탱크 침하시험 일반)** 그림 6. 탱크 침하 측정점 수정(근거, API SID 653 ANNEX B Figure B. 2)
- (11.2.(다) 비면경사평가) 최대허용 비경사면 침하변형도(S) 계산공식 수정(근거, API SID 653 ANNEX B 3 2 1)
- (11.2.(마) 탱크 밑판의 침하) 최대허용 처짐 또는 부풀음 크기 계산공식 수정(근거, API STD 653 ANNEX B 3 3)

		재	공표	:	2025.	3.	26.
--	--	---	----	---	-------	----	-----

○ 기술지원규정 영문 명칭 복원(KSH-GUIDANCE→KOSHA GUIDE)으로 재공표