Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»
Факультет Программной Инженерии и Компьютерной Техники

Домашнее задание №2 Вариант 16 Выполнил: Горин Семён Дмитриевич Группа Р3108

Задание

Изображение с таблицей – графом.

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0		4	3			2	2	2	4		3
e2		0					1	4		5	1	
e3	4		0		3	2			1	4	4	3
e4	3			0		3	5		2		3	4
e5			3		0	1	4	5	3		1	5
e6			2	3	1	0	2	2				
e7	2	1		5	4	2	0	1		2		3
e8	2	4			5	2	1	0			3	5
e9	2		1	2	3				0		1	
e10	4	5	4				2			0	1	1
e11		1	4	3	1			3	1	1	0	
e12	3		3	4	5		3	5		1		0

В виде таблицы Word:

V/V	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
E1	0		4	3			2	2	2	4		3
E2		0					1	4		5	1	
E3	4		0		3	2			1	4	4	3
E4	3			0		3	5		2		3	4
E5			3		0	1	4	5	3		1	5
E6			2	3	1	0	2	2				
E7	2	1		5	4	2	0	1		2		3
E8	2	4			5	2	1	0			3	5
E9	2		1	2	3				0		1	
E10	4	5	4				2			0	1	1
E11		1	4	3	1			3	1	1	0	
E12	3		3	4	5		3	5		1		0

Найти кратчайшие пути от начальной вершины е1 ко всем остальным вершинам

1. $l(e_1) = 0^+$; $l(e_i) = \infty$, для всех $i \neq 1$, $p = e_1$

Результаты итерации запишем в таблицу

	1
e_1	0+
e_2	8
e ₃	8
e ₄	8
e ₅	8
e ₆	8
e ₇	8
e ₈	8
e 9	8
e ₁₀	8
e ₁₁	8
e ₁₂	8

 $2. \; \Gamma e_1 = \{e_3, \, e_4, \, e_7, \, e_8, \, e_9, \, e_{10}, \, e_{12}\}$ - все пометки временные, уточним их:

$$l(e_3) = min[\infty, 0^+ + 4] = 4;$$

$$l(e_4) = min[\infty, 0^+ + 3] = 3;$$

$$l(e_7) = min[\infty, 0^+ + 2] = 2;$$

$$l(e_8) = min[\infty, 0^+ + 2] = 2;$$

$$l(e_9) = min[\infty, 0^+ + 2] = 2;$$

$$l(e_{10}) = min[\infty, 0^+ + 4] = 4;$$

$$l(e_{12}) = min[\infty, 0^++3] = 3;$$

- 3. $l(e_i^+) = min[l(e_i)] = l(e_7) = l(e_8) = l(e_9) = 2;$
- 4. Вершина e_7 получает постоянную пометку $l(e_7) = 2^+, \, p = e_7$

	1	2
e_1	0+	
e_2	∞	∞
e ₃	∞	4
e ₄	∞	3

e ₅	8	8
e ₆	8	8
e ₇	8	2+
e ₈	8	2
e 9	∞	2
e ₁₀	8	4
e ₁₁	8	8
e ₁₂	∞	3

$$\Gamma e_7 = \{e_1,\,e_2,\,e_4,\,e_5,\,e_6,\,e_8,\,e_{10},\,e_{12}\}$$

Временные пометки имеют вершины e_2 , e_4 , e_5 , e_6 , e_8 , e_{10} , e_{12} – уточняем их:

$$l(e_2) = min[\infty, 2^++1] = 3;$$

$$l(e_4) = min[3,2^++5] = 3;$$

$$l(e_5) = min[\infty, 2^+ + 4] = 6;$$

$$l(e_6) = min[\infty, 2^+ + 2] = 4;$$

$$l(e_8) = min[2, 2^++1] = 2;$$

$$l(e_{10}) = min[4,2^++2] = 4;$$

$$l(e_{12}) = min[3, 2^{+}+3] = 3;$$

6.
$$l(e_i^+) = min[l(e_i)] = l(e_7) = l(e_8) = l(e_9) = 2;$$

7. Вершина e_8 получает постоянную пометку $l(e_8) = 2^+, p = e_8$

	1	2	3
e ₁	0+		
e_2	∞	∞	3
e ₃	∞	4	3
e ₄	∞	3	3
e ₅	∞	8	6
e ₆	∞	8	4
e ₇	∞	2+	
e ₈	8	2	2+
e 9	∞	2	2
e ₁₀	8	4	4
e ₁₁	8	8	8
e ₁₂	∞	3	3

$$\Gamma e_8 = \{e_1, e_2, e_5, e_6, e_7, e_8, e_{11}, e_{12}\}$$

Временные пометки имеют вершины e_2 , e_5 , e_6 , e_7 , e_8 , e_{11} , e_{12} – уточняем их:

$$l(e_2) = min[3,2^++5] = 3;$$

$$l(e_5) = min[6, 2^+ + 4] = 6;$$

$$l(e_6) = min[4,2^++2] = 4;$$

$$l(e_{11}) = min[\infty, 2^+ + 2] = 4;$$

$$l(e_{12}) = min[3, 2^{+}+3] = 3;$$

9.
$$l(e_i^+) = min[l(e_i)] = l(e_7) = l(e_8) = l(e_9) = 2;$$

10. Вершина e_9 получает постоянную пометку $l(e_9) = 2^+$, $p = e_9$

	1	2	3	4
e ₁	0+			
e_2	∞	8	3	3
e ₃	∞	4	3	3
e ₄	8	3	3	3
e ₅	8	8	6	6
e ₆	8	8	4	4
e ₇	∞	2+		
e ₈	∞	2	2+	
e 9	∞	2	2	2+
e ₁₀	8	4	4	4
e ₁₁	8	8	8	4
e ₁₂	8	3	3	3

11. Не все вершины имеют постоянные пометки,

$$\Gamma e_9 = \{e_1, e_3, e_4, e_5, e_{11}\}$$

Временные пометки имеют вершины е₃, е₄, е₁₁ – уточняем их:

$$l(e_3) = min[3,2^++5] = 3;$$

$$l(e_4) = min[4, 2^+ + 4] = 4;$$

$$l(e_{11}) = min[4,2^++1] = 3;$$

12.
$$l(e_i^+) = min[l(e_i)] = l(e_2) = l(e_3) = l(e_4) = l(e_{12}) = 3;$$

13. Вершина e_2 получает постоянную пометку $l(e_2) = 3^+, p = e_2$

	1	2	3	4	5
e ₁	0+				

e_2	∞	∞	3	3	3+
e ₃	∞	4	3	3	3
e ₄	∞	3	3	3	3
e ₅	8	8	6	6	6
e ₆	8	8	4	4	4
e ₇	∞	2+			
e ₈	∞	2	2+		
e 9	∞	2	2	2+	
e ₁₀	∞	4	4	4	4
e ₁₁	∞	∞	∞	4	3
e ₁₂	∞	3	3	3	3

$$\Gamma e_2 = \{e_7,\,e_8,\,e_{10},\,e_{11}\}$$

Временные пометки имеют вершины e_{10} , e_{11} – уточняем их:

$$l(e_{10}) = min[4,3^++5] = 4;$$

$$l(e_{11}) = min[3,3^++1] = 3;$$

15.
$$l(e_i^+) = min[l(e_i)] = l(e_2) = l(e_3) = l(e_4) = l(e_{11}) = l(e_{12}) = 3;$$

16. Вершина e_3 получает постоянную пометку $l(e_3) = 3^+$, $p = e_3$

	1	2	3	4	5	6
e ₁	0+					
e_2	∞	∞	3	3	3+	
e ₃	∞	4	3	3	3	3+
e ₄	∞	3	3	3	3	3
e ₅	∞	∞	6	6	6	6
e ₆	∞	∞	4	4	4	4
e ₇	∞	2+				
e ₈	∞	2	2+			
e 9	8	2	2	2+		
e ₁₀	8	4	4	4	4	4
e ₁₁	∞	∞	∞	4	3	3
e ₁₂	∞	3	3	3	3	3

17. Не все вершины имеют постоянные пометки,

$$\Gamma e_3 = \{e_1, e_5, e_6, e_9, e_{10}, e_{11}, e_{12}\}$$

Временные пометки имеют вершины e_5 , e_6 , e_{10} , e_{11} , e_{12} – уточняем их:

$$l(e_5) = min[6,3^++3] = 6;$$

$$l(e_6) = min[4,3^++2] = 4;$$

$$l(e_{10}) = min[4,3^++4] = 4;$$

$$l(e_{11}) = min[3,3^++4] = 3;$$

$$l(e_{12}) = min[3,3^++3] = 3;$$

18.
$$l(e_i^+) = min[l(e_i)] = l(e_2) = l(e_3) = l(e_4) = l(e_{11}) = l(e_{12}) = 3;$$

19. Вершина e_4 получает постоянную пометку $l(e_4) = 3^+$, $p = e_4$

	1	2	3	4	5	6	7
e ₁	0+						
e_2	∞	∞	3	3	3+		
e ₃	∞	4	3	3	3	3 ⁺	
e ₄	∞	3	3	3	3	3	3 ⁺
e ₅	∞	∞	6	6	6	6	6
e ₆	∞	∞	4	4	4	4	4
e ₇	∞	2+					
e ₈	∞	2	2+				
e 9	∞	2	2	2+			
e ₁₀	∞	4	4	4	4	4	4
e ₁₁	∞	∞	∞	4	3	3	3
e ₁₂	∞	3	3	3	3	3	3

20. Не все вершины имеют постоянные пометки,

$$\Gamma e_4 = \{e_1, e_6, e_7, e_9, e_{11}, e_{12}\}$$

Временные пометки имеют вершины е₆, е₁₁, е₁₂- уточняем их:

$$l(e_6) = min[4,3^++3] = 4;$$

$$l(e_{11}) = min[3,3^++3] = 3;$$

$$l(e_{12}) = min[3,3^{+}+4] = 3;$$

21.
$$l(e_i^+) = min[l(e_i)] = l(e_2) = l(e_3) = l(e_4) = l(e_{11}) = l(e_{12}) = 3;$$

22. Вершина e_{11} получает постоянную пометку $l(e_{11})=3^+,\,p=e_{11}$

	1	2	3	4	5	6	7	8
e ₁	0+							
e_2	∞	∞	3	3	3 ⁺			

e ₃	∞	4	3	3	3	3 ⁺		
e ₄	∞	3	3	3	3	3	3 ⁺	
e ₅	∞	∞	6	6	6	6	6	6
e ₆	8	8	4	4	4	4	4	4
e ₇	∞	2+						
e ₈	∞	2	2+					
e 9	∞	2	2	2+				
e ₁₀	∞	4	4	4	4	4	4	4
e ₁₁	∞	∞	∞	4	3	3	3	3 ⁺
e ₁₂	∞	3	3	3	3	3	3	3

$$\Gamma e_{11} = \{e_2,\,e_3,\,e_4,\,e_5,\,e_8,\,e_9,\,e_{10}\}$$

Временные пометки имеют вершины е5, е10 – уточняем их:

$$l(e_5) = min[6,3^++1] = 4;$$

$$l(e_{10}) = min[4,3^++1] = 4;$$

24.
$$l(e_{i}^{+}) = min[l(e_{i})] = l(e_{2}) = l(e_{3}) = l(e_{4}) = l(e_{11}) = l(e_{12}) = 3;$$

25. Вершина e_{12} получает постоянную пометку $l(e_{12})=3^+,\,p=e_{12}$

	1	2	3	4	5	6	7	8	9
e ₁	0+								
e_2	∞	8	3	3	3+				
e ₃	∞	4	3	3	3	3+			
e ₄	∞	3	3	3	3	3	3 ⁺		
e ₅	8	8	6	6	6	6	6	6	4
e_6	∞	8	4	4	4	4	4	4	4
e ₇	∞	2+							
e ₈	8	2	2+						
e 9	8	2	2	2+					
e ₁₀	∞	4	4	4	4	4	4	4	4
e ₁₁	∞	∞	∞	4	3	3	3	3 ⁺	
e ₁₂	∞	3	3	3	3	3	3	3	3 ⁺

26. Не все вершины имеют постоянные пометки,

$$\Gamma e_{12} = \{e_1, e_3, e_4, e_5, e_7, e_8, e_{10}\}$$

Временные пометки имеют вершины е5, е10 – уточняем их:

$$l(e_5) = min[6,3^++5] = 4;$$

$$l(e_{10}) = min[4,3^++1] = 4;$$

27.
$$l(e_i^+) = min[l(e_i)] = l(e_5) = l(e_6) = l(e_{10}) = 4;$$

28. Вершина e_5 получает постоянную пометку $l(e_5) = 4^+$, $p = e_5$

	1	2	3	4	5	6	7	8	9	10
e_1	0+									
e ₂	∞	∞	3	3	3+					
e ₃	∞	4	3	3	3	3 ⁺				
e ₄	∞	3	3	3	3	3	3 ⁺			
e ₅	∞	∞	6	6	6	6	6	6	4	4+
e ₆	∞	∞	4	4	4	4	4	4	4	4
e ₇	∞	2+								
e ₈	∞	2	2+							
e 9	∞	2	2	2+						
e ₁₀	∞	4	4	4	4	4	4	4	4	4
e ₁₁	∞	∞	∞	4	3	3	3	3 ⁺		
e ₁₂	∞	3	3	3	3	3	3	3	3 ⁺	

29. Не все вершины имеют постоянные пометки,

$$\Gamma e_5 = \{e_3, e_6, e_7, e_8, e_9, e_{11}, e_{12}\}$$

Временные пометки имеют вершины e_6- уточняем их:

$$l(e_6) = min[4, 3^++1] = 4;$$

30.
$$l(e_i^+) = min[l(e_i)] = l(e_5) = l(e_6) = l(e_{10}) = 4;$$

31. Вершина e_6 получает постоянную пометку $l(e_6) = 4^+, p = e_6$

	1	2	3	4	5	6	7	8	9	10	11
e ₁	0+										
e ₂	∞	∞	3	3	3+						
e ₃	∞	4	3	3	3	3+					
e ₄	∞	3	3	3	3	3	3+				
e ₅	∞	∞	6	6	6	6	6	6	4	4+	
e ₆	∞	∞	4	4	4	4	4	4	4	4	4+
e ₇	∞	2+									
e ₈	∞	2	2+								
e 9	∞	2	2	2+							

e ₁₀	∞	4	4	4	4	4	4	4	4	4	4
e ₁₁	8	∞	∞	4	3	3	3	3+			
e ₁₂	∞	3	3	3	3	3	3	3	3+		

- 32. Не все вершины имеют постоянные пометки,
- $\Gamma e_6 = \{e_3, e_4, e_5, e_6, e_7, e_8\}$
- 33. Вершина e_{10} получает постоянную пометку $l(e_{10})=4^+,\, p=e_{10}$
- Все вершины имеют постоянные пометки.

Итого:

- e1: 0
- e2:3
- e3:3
- e4:3
- e5:4
- e6:4
- e7: 2
- e8: 2
- e9: 2
- e10: 4
- e11: 3
- e12: 3