

The Challenges of Low Power Design: A System-on-Chip with 152 Power Domains

David Bean Ericsson

May 22nd, 2014 Reading, UK

Agenda

Design Overview

Low Power Design & Implementation

Low Power Verification

Conclusions

Q&A

The SoC and Why Low Power?

- Presentation describes SoC with 152 shut down domains
 - TSMC 28nm HPM
- Low power design critical for Ericsson
 - New applications require increasing computation
 - High leakage power of sub 90nm processes
 - Market pressure
- Low power flow
 - UPF
 - Synopsys low power verification tools

SoC layout plot

The Challenge of Low Power

- Overall Challenges
 - Pioneering the low power flow for our design group
 - The shut down domains are a large proportion of chip area

No previous experience with UPF or Synopsys low power

verification tools

- Advanced low power design
 - Static multi supply design
 - Same voltage level for all design
 - 152 partitions can be shut down
 - RAM macros with shut down and deep sleep modes

= shut down domain (0.9V/off)

SoC layout showing shut down domains

Low Power Tool Flow

- We used a mixed vendor tool flow
 - Can choose best-in-class for each flow step
 - But can give compatibility issues when sharing files

Responsibility for support can get blurred.

Low Power Design Coding

- RTL (Verilog)
 - Designed with UPF in mind
 - Power domains correspond to single modules
 - Wrappers around power domains for placing AON logic and isolation cells (-location parent)
 - Include power control nets and power management
 - Regular design reviews to keep team informed of low power issues

UPF

- Defines power domains
- Defines power modes using power state table (PST)
- Adds multi voltage cells
 - Power switches, isolation gates, level shifters
- Must be supported by all tools in the flow

UPF Design Choices

- Power intent specification
 - Controlled document defining power intent
- UPF 1.0
 - To keep UPF methodology simple
 - Not confident that all tools/vendors would support UPF 2.0
- Hierarchical UPF
 - Modular design
 - 152 power domains but only 5 power domain modules
 - Which RTL modules require a UPF?
 - Each power domain or power domain wrapper
 - Each block in the physical hierarchy (P&R block)

Top level

Power State Table (PST) reduction

- Impossible to verify 2¹⁵² power states!
- The architecture has some limitations which reduce this but not many
- Used design modularity & hierarchy in UPF to reduce PST
 - Only expand power states once for duplicated modules by constraining expansion to high levels.

Power State Table (PST) reduction

- Impossible to verify 2¹⁵² power states!
- The architecture has some limitations which reduce this but not many
- Used design modularity & hierarchy in UPF to reduce PST
 - Only expand power states once for duplicated modules by constraining expansion to high levels.

```
TOP - AON
  MERGED PST PD 0 PD 1
                                    add port state VDD -state {ON 0.81}
                                    add port state VSS -state {GND 0.0}
                       PD 1 constrained
                                    add port state PSW/vout -state {ON 0.81} -state {OFF off}
PD 0
                  PD 1
                                    create pst TOP pst -supplies {PSW/vout VDD VSS}
PD
                 PD
                 PST
                                     add_pst_state s0 -pst PD_pst -state {OFF ON GND}
                 SO ON
                                    add pst state sl -pst PD pst -state {ON ON GND}
S1 OFF
                 S1 OFF
```


Power State Table (PST) reduction

- Impossible to verify 2¹⁵² power states!
- The architecture has some limitations which reduce this but not many
- Used design modularity & hierarchy in UPF to reduce PST
 - Only expand power states once for duplicated modules by constraining expansion to high levels.

SRAM macro

Related

to VDDM

VDD

PD LS

DS

(scmr) VDDM

Handling RAM macros: Ensuring level shifters were placed correctly

The RAM macros power control pins were driven by RAM

core supply so needed level shifters

- 1. In UPF use connect_supply_net to specify connections for all these pins
 2. In DC use mv_allow_ls_on_leaf_pin_boundary
- 3. Check the multi voltage library has required LS attribute on VDD pin called "scmr" (std_cell_main_rail) so it can be placed in an AON area.

Shut down domain reset policy

- Clamp resets to power domains active when isolated
 - Ensures all power domains have reset applied on power up and are initialised to a known state.
 - No retention registers in the power domains
 - Gives "ISO_DEVICE_REDUNDANT" warnings in MVRC which were waived.

UPF changes required for back end tools

- Floorplanning tool required:
 - load_upf sub-block calls before defining supply nets
 - create_supply_port and create_supply_net Can go before load_upf but any commands which refer to ports/nets from sub-blocks must go after
- Place & route tool required:
 - All IO supplies to be present in UPF top level
 - Ensure supplies in UPF match up with the physical IO groupings. Some voltage regions were physically split and this required duplicating supplies in the UPF
 - PST in every UPF file
 - Including UPFs for P&R blocks with no shut down domains

Low Power Verification Tool Flow

- Synopsys low power verification tools
 - MVCMP, MVDBGEN,MVSIM & MVRC
- Dynamic simulation
 - MVSIM + NCSIM using PLI
- Static rule checking
 - MVRC

Dynamic Simulation using MVSIM

- Using RTL + UPF (golden)
- Test suite built to verify the following
 - Power Control
 - Power on/off sequences for each power domain
 - Power domains function correctly after power cycled
 - Power Intent
 - Blocks that share interfaces with a shut down domain

 Power states reduced by verifying all interfaces to shut down domains. Don't need to verify all 2¹⁵² power modes!

MVSIM Challenges

Single MVSIM license

- Could only run simulations sequentially
- Test suite took 4 days to run!
- We run standard sims on a multiprocessor grid but could not use this.
- Require this for future project which would need low power capability with standard license.

Coverage

- Test suite covers all 152 power domains
- But MVSIM coverage had limited capability (improved in VCS-NLP)

Assertions written to check power off/on sequence rules

Evaluation of VCS-NLP

- VCS-NLP vI_2014.03
 - Carried out after tape out on full low power test suite
 - No PLI overhead
 - Improved speed, capacity & coverage

NCSIM+MVSIM vs VCS-NLP Simulation Performance

NCSIM+MVSIM vs VCS-NLP Peak Memory

Static Rule Checking using MVRC

- Vectorless detection of connectivity & architecture errors
 - Missing, illegal or redundant isolation/level shifters (uses PST)
 - Supply & power control connectivity
 - Clock, reset, enables & power control architectural checks
- Ran at multiple stages in flow (sign off underlined)
 - Final RTL + UPF (golden)
 - Gate level netlist + UPF' (UPF written by synthesis tool)
 - Power and ground (PG) netlist + UPF (golden)
 - PG netlist + UPF" (UPF written by P&R tool)

PG netlist checked continuously during back-end flow

Synopsys Users Group

Mixed vendor flow

- Third party tool used for Place & Route
 - UPF" was not compatible with Synopsys tools
 - Some UPF commands interpreted differently
 - No connect_supply_net for multi voltage cells
 - MVRC sign off run with PG netlist + UPF (golden)
 - Using mvdbgen -verilog_pg_connections to extract supply connections from the netlist

Architecture Checks

- Traces "special" signals (clocks, resets, iso/psw/scan enables) and checks for corruption
 - USE create_clock and create_reset to specify signals
 - Also use infer_sources to automatically infer special net sources
- Problem occurred when tracing back through clock gate enables (solution on next slide)
 - Thousands of X_PROPAGATION errors flagged for clock gate enable sources in shut down domains
 - These were protected by isolation gates so were okay but needed a method to clear these to ensure no real errors

Architecture Checks

- Run checks twice
 - 1. Without tracing through clock gate enables and with halt_at_isolation_data false Flags errors relating to clock sources
 - 2. With tracing through clock gate enables and with halt_at_isolation_data true Flags errors on clock gate enables.

Synopsys Users Group

Well Bias Checks

- In this design all nwell ties must be connected to the always on supply, VDD. For the power domains this requires a different tie cell so wanted to check that the correct cells were placed.
 - To check that all pg_pin's of type nwell are connected to VDD
 set_back_bias -domain <domainName> -type nwell -net VDD
 - To check that all pg_pin's of type pwell are connected to VSS set back bias -domain <domainName> -type pwell -net VSS

Using Isolation gates as logic gates

- In some power domains power switch acknowledge signals were combined inside the domain. A 2-input AON gate did not exist in the multi-voltage library
 - Used an isolation gate to combine the signals
 - Used set_var_ignore_logic_iso_cells to identify these cells
 - Architecture checks still flagged "X_PROPAGATION" errors and "ISOLATED_AON_SIGNAL" warnings
 - These had to be manually checked and waived

Capacity Issues

- MVRC did not have the capacity to run the top level PG netlist
- Solution was to run in two passes with different modules black boxed (in top level) for each run
- Compromised checks
- Only acceptable because there were no multi-voltage cells at the top level

Verdi Signoff-LP Evaluation

Results

- Synopsys Verdi Signoff-LP vH-2013.06
 - Ran all PG netlist blocks after tape out
 - Ran top level PG netlist in three hours using 37 GB of RAM!

Bugs Caught by MVRC

- Wrong supply connection to RAM Macros
- Wrong supply connection to LS
- Missing ISO cells
- Buffers placed between LS and RAM macro
- Redundant AON buffers in power domain
- Redundant LS before DDR phy pins

Lessons Learnt

- Write a power intent spec before starting coding
- Write RTL with consideration for low power flow
 - build wrappers around power domains
 - take care when adding power control blocks
- Build knowledge by attending Synopsys low power training courses & workshops
- Hold regular peer reviews
 - Keep design team involved in UPF flow
- Don't hesitate to contact Synopsys support when problems arise
- Pipe clean flow to layout netlist ASAP to highlight issues

Recommendations for our next project

- Use a simulator with native low power capability
- Migrate from MVRC to Verdi Signoff-LP for static rule checking
 - improved capacity, performance & coverage tools
- If possible integrate low power into more simulation test benches
 - should not be a special case
 - Note that this requires a new licensing model

Presentation Title Subtitle if Needed

Presenter's Name
Spell Out Company Name

Month Day, Year (XXXX)

SNUG Location

Slide Title

- First level (Arial 24)
 - Second level (Arial 20)
 - Third level (Arial 18)
 Code font size (Courier New Bold 16)
- Use Presenter View when delivering your presentation!
 - Click on Slide Show
 - Click on Use Presenter View

Presenter View is a great way for you to view your presentation with your speaker notes on one computer (your laptop, for example), while the audience views the notes-free presentation on a different monitor.

Presenter View also allows you to keep track of your time and also how many slides you have left while presenting.

Slide Title

Synopsys Users Group

Subtitle if Needed

- First level (Arial 24)
 - Second level (Arial 20)
 - Third level (Arial 18)
 Code font size (Courier New Bold 16)
- Text should NOT overlap the slide number and SNUG 2014 text

Two Column Layout

Subtitle if Needed

Synopsys Users Group

- First level
 - Second level
 - Third level
 Code font size

- First level
 - Second level
 - Third level
 Code font size

Two Column Layout

Column Title

- First level
 - Second level
 - Third level
 Code font size

Column Title

- First level
 - Second level
 - Third level
 Code font size

Shape Coloring and Format

Text Box Example

Title Slide

Subtitle if Needed

