

Integrative Project In Industrial Electronics and Computers Engineering

Sensoring System for Superficial Sea Streams

5S - Drifter

Professors: Luis Gonçalves and Sergio Lopes

Student: Vinicius C. A. Carvalho - PG56208

Agenda

- Introduction
 - Project Statement
 - Project Statement Analysis
- Analysis
 - Requirements
 - Constraints
 - State of the Art
 - System Architecture
- Design
- Implementation

Introduction

Project Statement

- 20 to 26% of the ocean is mapped (superficial and deeper areas).
- Around 80% of commercial trades are made by the sea.
- Risky environment.

Project Statement

IPC (Iberian Poliward Current)

NAD: North Atlantic Drift PC: Portugal Current

IPC: Iberian Poleward Current

AzC: Azores Current.

Project Statement Analysis

- Data acquisition
 - Power Level
 - Wave Intensity
 - Position
 - Temperature
- Send Data Wirelessly
- Store Data Locally
- Autonomy (Low Power)
- Resistant and buoyant outer shell

Analysis

- Microcontroller
- GNSS
- Mobile Communication
- Power Source
- Sensors
 - IMU
 - Temperature
 - Power Source Level

- Next Sea Next generation monitoring of coastal ecosystems in a scenario of global change
- Sonda Synchronized Atmospheric and Oceanic Data Acquisition

- Border Control
- Climate Modeling
- Traffic management
- Aquaculture management
- Public oceanographic research
- Marine spatial planning
- Defense and security

Requirements

- Search and selection of hardware components
 - Low Power and Low Cost
- Software/Hardware design
 - Communication within modules and peripherals
- PCB design*
- Energy Harvesting*
- 5S outer shell as a 3D design
- Product realization
- Laboratory Tests
- Documentation

* On analysis

Constraints

- Be presented for evaluation within deadline
- Limited team.
- Be validated at the ocean.
- Have an autonomy of a month at minimum
- Due to the low power consumption and lab availability, an STM32 will be used.

System Architecture

Peripheral Architecture

System Architecture

System Architecture

Memory Architecture

Package_data

- + Power_level: char
- + Temperature [N]: int
- + IMU [N]: int
- + GNSS [2] [N]: int
- + Errors

Memory Architecture

System Architecture

System Architecture

Design

- Microcontroller: STM32
- GNSS and Nb-IoT: ST87M01 evaluation kIT
- Sensors
 - IMU: ISM330BX
 - Temperature: DS18B20
- Batteries
 - Solar energy
 - Controller: AEM10941
 - Panel: SM111K06L
 - Batteries:

Design

Implementation

Thanks:D

Any questions?

