UNCLASSIFIED

AD 285 796

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

285 796 285 796

100

Research Note

Errors in Six and Twelve Hour Predictions of Upper Level Winds

E. M. DARLING, JR

Abstract

Analysis of a large sample of wind forecasts for 6- and 12- hour periods reveals that subjective forecasts are linearly related to the wind at the beginning of the forecast interval. This relationship enables one to develop a regression equation between forecast error and persistence error by means of which it is possible to extend the results derived from this sample.

The variation of forecast and persistence errors with geography, level and season is discussed. It is found that the maximum advantage of subjective forecasts over persistence is 10% for 6-hour periods and 20% for 12-hour periods.

Acknowledgments

The contribution of Captain Clifford D. Kern, USAF, to the success of this research is gratefully acknowledged. Captain Kern made the original suggestion that the study be undertaken. He was instrumental in obtaining the data. His assistance in the preliminary stages of analysis was invahiable.

The author also wishes to express his appreciation to Sister M. Leonarda and her student assistants on the Math Project at Regis College who worked for more than a year at the task of performing the tedious computations of forceast error statistics which appear in this report.

Contents

Section			Page
	Abstr Ackno	act owledgments	iii iii
	List	of Illustrations	vii
	List-	of Tables	ix
	Symb	ols	xi
1	Intro	luction	1
	1. 1.	Background	1
	1, 2,	Data and Analysis	2
2	Metho	odology	4
	2.1.	Vector Variance of the Wind, σ^2	5
	2. 2.	Forecast Errors	6
	2, 3,	Persistence Errors	8
	2.4.	Persistence Correlation	8
3	Month	ily and Seasonal Forecast Errors	10
	3, 1,	Monthly Forecasts	11
	3, 2,	Seasonal Forecasts	12
4	Gener	calization of Results	37
	4, 1,	Application of Regression Theory	37
	4, 2,	Persistence Errors for a Five Year Sample	40
	4, 3,	Generalized Seasonal Statistics on Short Period Forecast Divors	41
	4, 4,	Analysis of Forecast Error Statistics	79
	Refer	ences	87

Illustrations

Figure		Page
1	RP, Root Mean Square Error of Six-Hour	81
	Persistence Forecasts (knots), Winter,	
	300 mb.	
2	RP, Root Mean Square Error of Six-Hour	82
	Persistence Forecasts (knots), Summer,	
	300 mb.	
3	RVP, Percent (%) Reduction in Variance of	83
	Six-Hour Persistence Forecasts, Winter,	
	300 mb.	
4	RVP, Percent (%) Reduction in Variance of	84
	Six-Hour Persistence Forecasts, Summer,	
	300 mb,	
5	FA, Forceast Advantage (%) for Six-Hour	85
	Subjective Forecasts, Winter, 300 mb.	
6	FA, Forecast Advantage (%) for Six-Hour	86
	Subjective Forecasts, Summer, 300 mb.	

			Tables
	Table		Page
	1	Wind Data, Portland, Maine, Winter Index to Tables 2, 3, 4, 5	11 13
	2	Monthly Wind Statistics and Six-Hour Forecast Errors	14
	3	Monthly Wind Statistics and Twelve- Hour Forecast Errors	23
	4	Seasonal Wind Statistics and Six- Hour Forecast Errors	31
,	5	Seasonal Wind Statistics and Twelve- Hour Forecast Errors	34
	6	Stations for which Seasonal Persistence Errors were Computed (Charles 1959, 1960)	42
		Index to Tables 7, 8	44
	7	Seasonal Wind Statistics and Derived Six- Hour Forecast Errors	45
	8	Seasonal Wind Statistics and Derived Twelve-	62

Hour Foreast Errors

Symbols 3 4 1

GENERAL TERMINOLOGY

Vector: a capital letter with an arrow above it. A list of all vector quantities appears on page $\mathbf{4}$.

Vector Magnitude: a capital letter.

Angle between two vectors: a Greek letter.

Vector Component: lower case pair of letters, the first of which is the same as the vector designation and the second is either x (west-east, positive from the west) or y (south-north, positive from the south).

SPECIFIC SYMBOLS

	p	forecast period
	i	a particular observation
	N	total number of cases
	σ^2	vector variance of the wind (climatic variance)
	σ	standard vector deviation of the wind
	∇	vector mean wind (magnitude)
	VFE	vector variance of forecast errors
	MF	mean square error of subjective forecasts
	RF	root mean square error of subjective forecasts
	MP	mean square error of persistence forecasts
	RP	root mean square error of persistence forecasts
	r	vector persistence correlation
a, b,	β	constants in linear regression equations
	ρ	coefficient of correlation between an observed and an estimated quantity
	RVP	percent reduction in variance of persistence forecasts with respect
		to climatology
	FA	forecast advantage over persistence

Errors in Six- and Twelve-Hour Predictions of Upper-Level Winds

1. INTRODUCTION

1.1 Background

Verification data for 6- and 12-hour predictions of upper-level winds are singularly lacking in the meteorological literature. The few verification studies available are mainly concerned with 24-hour forecasts, since this is the interval which has proved to be most applicable to a wide variety of military and civilian operations (e.g. McRae and Phillpot, 1959, Aubert et al, 1960, Darling and Lund, 1962). However, the advent of jet aircraft and missiles, operating in an electronically controlled environment where the time scale is ever shrinking, has given rise to the need for accurate short-period wind forecasts. The aim of this paper is to specify our present capability to provide such forecasts.

The most complete data available on wind forecast errors, based on data collected prior to 1958, is contained in an Air Weather Service report by Ellsaesser (1957) which outlines the findings of many investigators concerning errors in persistence and subjective forecasts for periods of 6 to 48 hours as a function of atmospheric level and season. However the usefulness of this report is limited by the fact that the 6-hour data were obtained entirely by extrapolation from 12 and 24 hours. Furthermore, the verification data from widely separated geographic regions were combined to produce a set of mean statistics. These crude procedures were necessitated by the tack of an adequate data sample at the time this report was written.

^{&#}x27; Semi-automatic Ground Unvironment. (Author's manuscript received for publication, 18 May 1962)

In the past four years the 4th Weather Wing, Air Weather Service has conducted a series of wind forecast verification programs in an effort to appraise its current capability to support the SAGE* System of Air Defense. The forecast periods of interest were 6 and 12 hours; the levels: 30,000 and 40,000 ft. During the thirteen-month period, December 1958 through December 1959, 16 upper air stations in the U. S. participated in this verification program. The Air Weather Service has published two preliminary studies based on these data (4WWSS, 1959), summarizing the results which were of immediate concern to SAGE operators. Lack of manpower and the press of other problems precluded completion of the analysis of this unique data sample.

In a recent paper Darling and Kern (1961) demonstrate the crucial effect of wind forecast errors on certain manned intercept tactics programmed for the SAGE system. Estimates of the magnitude of this wind effect suggest that accurate 6-hour forecasts would be needed to support these tactics.

A study by Darling (1960) on weather requirements of the forthcoming automated FAA* Air Traffic Control System indicates the desirability of wind predictions for periods of 6 hours to be entered in the memory of the flight control computer. This conclusion was corroborated by an analysis performed by Borg-Warner Corporation (1961) under FAA contract.

In the course of reviewing these and other operational problems it became apparent to the author that a detailed survey of current wind forecasting capability for short periods was long overdue. Such a survey would serve a dual purpose: (1) it would provide a basis for evaluating our current capacity to support operations such as those cited above; (2) where deficiencies in capability are discovered the study would indicate the degree of improvement required and hence the type of research program needed. Accordingly, it was decided that such a survey would be prepared at GRD, based on the 13 months of data collected by the Air Weather Service.

Federal Aviation Agency

e. The author is indebted to Col. Robert Bundgaard, Scientific Services, 4th Weather Wing, for his cooperation in furnishing these data.

1.2 Data and Analysis

For each of the 16 stations (section 3) participating in the upper wind verification program the following data were tabulated by AWS units for the period December 1958 through December 1959:

Forecast period:

6 or 12 hours. Only Portland, Maine had data for both periods.

Levels:

30,000 and 40,000 feet.

Time:

Time of the beginning and ending of each forecast period, GMT.

Winds (direction [degrees] and speed

Observed wind at the beginning of the forecast period. Subjective wind forecast made at the

[knots]):

beginning and pertaining to the end of the period.

Observed (verifying) wind at the end of the period.

Because the verifying procedure was carried out as a supplementary activity by weather units in the field, there were certain times when this duty had to be neglected in favor of more urgent operational responsibilities. As a result the station samples all contain gaps and in some cases entire months are missing (e. g. one of the stations was moved from Albuquerque to El Paso during the winter 1958-59). The total number of verifications possible during this period is 28,512 six-hour forecasts and 12,672 twelve-hour. The corresponding actual numbers were 19,749 (69%) and 8,586 (68%). The number of cases for each station, level, month and season are listed in the tables of Section 3.

The following quantities were computed from these data:

Vector variance of the wind - i. e., the climatic variance.

Root mean square error of persistence forecasts. This is the error which results when the measured wind at the beginning of a period is used as a forecast of the wind at the end of the period.

Root mean square error of subjective forecasts.

Equations for computing these quantities are developed in Section 2. The calculated monthly and seasonal errors are presented and discussed in Section 3.

Through the application of regression theory it is proved in Section 4 that a subjective short-period forecast is essentially a linear function of the observed wind at the beginning of the period. Making use of this property,

Finally, the relative merits of persistence and subjective forecasts are explored in detail. Charts showing the geographical distribution of quantities measuring the performance of these two types of forecasts are presented.

2. METHODOLOGY

The equations used to compute the vector variance, forecast error and persistence error are developed in this section. The following terminology has been adopted:

A capital letter with an arrow above it designates a vector. The absence of an arrow over a capital letter indicates the magnitude of the vector - e. g. V is the magnitude of \vec{V} . Greek letters denote the angle between two vectors. The following vectors appear in the equations. (The subscript, i, denotes a particular observation):

\vec{V}_1	the measured wind
- v	the vector mean wind for a sample of N observations
15,	vector deviation from the mean
F.	forecast wind vector
<u>1-</u> ;	vector mean forecast wind
$\vec{E_i}$	forecast error
√° _{і -р}	the measured wind at the (i-p) th observation, where p is the forecast period
F _i	persistence error

Vector components are denoted by a lower case pair of letters, the first of which is the same as the vector designation and the second is either x (west-east) or y (south-north) - e.g., \vec{F}_i has components fx_i and fy_i .

2.1 Vector Variance of the Wind, σ²

The deviation of a wind from the mean is written as:

$$\vec{D}_i = \vec{V}_i - \vec{V}$$

By the law of cosines:

$$D_i^2 = V_i^2 + \overline{V}^2 - 2V_i \overline{V} \cos O_i$$

where O_{i} is the angle between $|\vec{V}_{i}|$ and $\overline{\vec{V}},$

By definition (Brooks, 1953):

$$\sigma^2 = \frac{1}{N} - \sum_{i=1}^{N} - D_i^2 = \frac{1}{N} - \sum_{i=1}^{N} \left[V_i^2 + \overline{V}^2 - 2V_i \overline{V} \cos \theta_i \right]$$
 (1)

Since V_i cos O_i is the component of \overrightarrow{V}_i in the direction of $\overline{\vec{V}}$ it follows that

$$\frac{1}{N} = \sum_{i=1}^{N} V_i \cos O_i = \overline{V}$$
 (2)

Substituting (2) into (1) and reducing:

$$\sigma^2 = \frac{\sum_{i=1}^{N} |V_i|^2}{N} = \nabla^2 \tag{3}$$

Note that the first term is simply the mean sum of squares of N wind speeds. The second term must be computed from wind components:

$$\nabla^{2} = \left(\frac{\sum_{i=1}^{N} v x_{i}}{N}\right)^{2} + \left(\frac{\sum_{i=1}^{N} v y_{i}}{N}\right)^{2}$$
(4)

2.2 Forecast Errors

The expression for the variance of forecast errors is derived from the vector forecast error, \vec{E}_i

$$\vec{E}_{i} = (\vec{F}_{i} - \vec{F}) - (\vec{V}_{i} - \vec{V})$$
 (5)

The vector variance of forecast errors, VFE, is:

$$VFE = \frac{1}{N} \sum_{i=1}^{N} E_i^2$$

$$= \frac{1}{N} \sum_{i=1}^{N} (F_i - \overline{F})^2 + (V_i - \overline{V})^2 - 2(F_i - \overline{F})(V_i - \overline{V}) \cos \alpha_i$$

where α_i is the angle between $\vec{V}_i = \overline{\vec{V}}$ and $\vec{F}_i = \overline{\vec{F}}$.

Substituting equation (3):

$$VFE = \frac{\sum_{i=1}^{N} |F_i|^2}{N} = \frac{\sum_{i=1}^{N} |V_i|^2}{N} = \nabla^2 = \frac{2}{N} \sum_{i=1}^{N} (F_i - F) (V_i - \nabla) \cos \alpha_i$$
 (5a)

The computation of VFE is quite lengthy because of the last term in this equation which involves the following calculations:

Let ϕ_i be the direction of the vector, \vec{F}_i - \vec{F}_i ; ψ_i the direction of \vec{V}_i - $\overline{\vec{V}}$. Then:

$$F_{i} - \overline{F} = [(fx_{i} - \overline{fx})^{2} + (fy_{i} - \overline{fy})^{2}]^{\frac{1}{d}}$$

$$V_{i} - \overline{V} = [(vx_{i} - \overline{vx})^{2} + (vy_{i} - \overline{vy})^{2}]^{\frac{1}{d}}$$

$$\phi_{i} = \tan^{-1} \left(\frac{fy_{i} - \overline{fy}}{fx_{i} - \overline{fx}}\right)$$

$$\psi_{i} = \tan^{-1} \left(\frac{\overline{vy_{i}} - \overline{vy}}{vx_{i} - \overline{vx}}\right)$$

$$\alpha_i = \phi_i - \psi_i$$

All of the above quantities must be computed for each day and substituted into Equation (5) in order to determine VFE.

Equation (5) can be simplified in the case where the forecasts are unbiased (i. e. $\vec{V} = \vec{P}$).

$$\vec{\mathbf{F}}_{i} = \vec{\mathbf{V}}_{i} - \vec{\mathbf{F}}_{i} \tag{6}$$

The mean square error of the forecasts, MF, is defined by the following equation:

$$MF = \frac{1}{N} - \sum_{i=1}^{N} E_{i}^{2} = \frac{1}{N} - \sum_{i=1}^{N} - V_{i}^{2} + E_{i}^{2} - 2V_{i}E_{i} \cos \beta_{i}$$
 (6a)

where β_i is the angle between \vec{V}_i and \vec{F}_i .

Since Equation (6a) involves only vector magnitudes and angles, it is possible to compute MF directly from tabulated values of \vec{V}_i and \vec{F}_i , thereby avoiding the recourse to components required in evaluating Equation (5a).

Although there is no reason to assume that wind forecasts are biased it was decided to test this hypothesis on actual data. Four months of 12-hour forecast data for Portland, Maine were selected for this purpose. Quantities computed were \overrightarrow{V} , \overrightarrow{F} , VFE and \overrightarrow{MF} . The results, presented in Table 1, clearly substantiate the hypothesis that $\overrightarrow{V} = \overrightarrow{F}$ as the small difference between these two mean vectors is below the noise level of the data. As a consequence VFE is very nearly equal to MF and we are justified in using Equation (6a) rather than the more complex Equation (5a) in computing forecast errors.

2.3 Persistence Errors

When the wind at the beginning of a forecast period is used as a forecast of the wind at the end of the period, p, then the error due to persistence may be written:

$$\dot{\mathbf{j}}_{i}^{5} \approx \dot{\mathbf{y}}_{i} - \dot{\mathbf{y}}_{i-D} \tag{7}$$

The mean square error of persistence forecasts, MP, is then defined as:

$$MP = \frac{1}{N} \sum_{i=1}^{N} P_i^2 = \frac{1}{N} \sum_{i=1}^{N} \left[|V_i|^2 + |V_{i-p}|^2 - 2|V_i|V_{i-p}| \cos \gamma_i \right]$$
 (7a)

where \mathbf{y}_i is the angle between \mathbf{v}_i^* and \mathbf{v}_{i-p}^* .

2.4 Persistence Correlation

Durst (1954) has derived the following expression for the stretch correlation, r_s between vectors \vec{V} and \vec{W}_i :

$$\mathbf{v} = \frac{\frac{1}{N} \sum_{i=1}^{N} \mathbf{D}_{\mathbf{v}_{i}}^{\mathbf{v}_{i}} + \mathbf{D}_{\mathbf{w}_{i}}^{\mathbf{v}_{i}}}{\sigma_{\mathbf{v}} \sigma_{\mathbf{w}}}$$
(8)

Wind Data, Portland, Maine; Winter Table 1.

vector mean wind.

vector mean forecast wind.

VFE variance of forecast errors.

MF mean square error of forecasts.

			- \	.	1 10	•	1	
Month	Year	Lavel K ft	Direction (deg.)	Speed (kts)	Direc- tion (deg.)	Speed (kts)	VFE (kts²)	MF (kts ²)
Dec	1958	30	261	79.6	261	81.8	1275	1312
		40	260	76.3	259	76.1	686	682
Jan	1959	30	267	76.9	269	79.8	1030	1034
		40	270	73.6	269	76.2	928	929
Feb	1959	30	273	82.5	272	85.0	1396	1405
		40	278	88.6	276	86.7	806	822
Dec	1959	30	265	66.3	269	66.5	1550	1454
		40	260	57.9	266	61.6	700	758
Win	Dec '58	30	268	79.6	268	82.2		1262
	Feb 159	40	270	79.1	268	79.3		812

where \vec{D}_{v_i} and \vec{D}_{w_i} are deviations from the respective means; σ_v and σ_w are standard vector deviations. The dot in the numerator denotes a scalar product. In the case where the two winds are measured at the beginning and end of a period, p, at a particular station, then

$$\vec{v} = \vec{v}_{i-p}; \vec{w} = \vec{v}_i$$

$$\vec{\overline{v}}_{i-p} = \vec{\overline{v}}_i$$

and $\sigma_{V} = \sigma_{W} = \sigma_{0}$, the standard vector deviation of the wind. Equation (8) then reduces to the vector persistence correlation:

$$r = \frac{\frac{1}{N} \sum_{i=1}^{N} |\vec{b}_{i-p}| \cdot |\vec{b}_{i}|}{\sigma^{2}} = \frac{\frac{1}{N} \sum_{i=1}^{N} |\vec{b}_{i-p}| |\vec{b}_{i}| \cos |\vec{\epsilon}_{i}|}{N \sum_{i=1}^{N} |\vec{b}_{i-p}| |\vec{b}_{i}| \cos |\vec{\epsilon}_{i}|}$$
(9)

where \mathbf{e}_i is the angle between $\widetilde{\mathbf{D}}_{i\neg p}$ and $\widetilde{\mathbf{D}}_i$. Expressing Equation (7) in terms of deviations from the mean, substituting into Equation (7a), reducing by the law of cosines and introducing (9):

$$MP = 2\sigma^2 (1-v) \tag{10}$$

or

$$RP = \sigma \left(2(1-r)\right)^{\frac{1}{2}} \tag{11}$$

3. MONTHLY AND SEASONAL FORECAST ERRORS

Equations (3), (6a), (7a) and (9) of Section 2 have been used to compute monthly and seasonal values of the vector variance, forecast and persistence mean square errors, and persistence correlation at 30,000 and 40,000 ft for the thirteen-month period, December 1958 through December 1959. The forecast period was either 6 or 12 hours for the following stations (synoptic index numbers appear in parentheses):

6-hour forecasts

Santa Monica
International Falls (747)
Sault Saint Marie (734)
Great Falls (775)
Topeka (456)
Norfolk (308)
LaGuardia (503)
Portland, Maine (606)

Pepperrell AFB, Nfld (807)

12-hour forecasts

El Paso (270)
Montgomery (226)
Spokane (785)
Flint, Mic., 357)
Oakland (493)
Seattle (793)
Oklahoma City (353)
Portland, Maine (606)

Quantities tabulated are:

σ standard vector deviation of the wind, knots

RP = [MP] , root mean square error of the persistence forecasts, knots

RF ~ [MF] , root mean square error of the subjective forecasts, knots

r the persistence correlation

N number of cases

Tables 2 and 3 contain the monthly data for 6 and 12 hours, respectively. A blank in the tables indicates that data are either missing or insufficient.

3.1 Monthly Forecasts

These data are discussed in the following paragraphs in terms of the variation of error with forecast period, forecast type, height, geography and time.

3. 1. 1. SIX-HOUR VS TWELVE-HOUR FORECASTS

The effect of forecast period can best be seen by comparing the data for Portland, Maine in Tables 2h (p. 21) and 3h (p. 30). The 12-hour values of RP and RF generally range from six to ten knots higher than the corresponding 6 hour values. The difference between 6-and 12-hour errors is greatest in winter, least in summer. Annual average values of RF are about 24 kts for 6 hours and 31 kts for 12 hours.

3, 1, 2. PERSISTENCE VS SUBJECTIVE FORECASTS

The salient feature of the comparison between RP and RF is the tendency of persistence and forecast errors to vary in parallel in the sense that large values of RP are associated with large values of RF ard vice versa. Furthermore, it may be seen that persistence errors of about 20 kts and above are preponderantly associated with values of RF which are less than RP. Conversely, for persistence errors of less than 20 kts RF tends to be greater than

the corresponding RP.

3. 1. 3. VARIATION OF ERRORS WITH HEIGHT

During the winter months forecast errors (both RP and RF) are larger at 30,000 ft than at 40,000 ft. In the summer the reverse is true for most stations. The standard vector deviation of the wind exhibits the same behavior.

3.1.4. GEOGRAPHICAL DISTRIBUTION

Both the six-and twelve-hour errors show the same type of distribution with geography. Centers of maximum error are located in the north-eastern and northwestern corners of the country. Smallest errors occur over the north-central and southern portions. Errors over the central U.S. are intermediate in magnitude.

3, 1, 5. ANNUAL VARIATION

At 30,000 ft the general pattern of annual variation in forecast error consists of a marked minimum in the summer months and considerably higher values during the remainder of the year. The maximum error may occur in any season except summer, but winter seems to be the favored time. At 40,000 ft minimum errors tend to be registered in winter or spring; maximum errors in summer or fall.

3.2 Seasonal Forecasts

In order to increase the sample size for each error statistic with the aim of achieving a more stable result the data for individual months were combined into seasons in the following manner:

Months	Season
Dec '58, Jan, Feb '59	Winter
Mar, Apr, May 159	Spring
June, Jul, Aug 159	Summer
Sen. Oct. Nov 159	Fall

Values of σ_r MP, MF and r were computed for each season using the same equations as before. Six-hour errors are shown in Table 4_1 12-hour values in Table 5. The remarks in paragraphs 3, 1, 1, through 3, 1, 5, above apply to these seasonal errors.

- Table 2. Monthly Wind Statistics and Six-Hour Forecast Errors
- Table 3. Monthly Wind Statistics and Twelve-Hour Forecast Errors
- Table 4. Seasonal Wind Statistics and Six-Hour Forecast Errors
- Table 5. Seasonal Wind Statistics and Twelve-Hour Forecast Errors

Table Number	2	3	4	5
Symbols used in tables	14	23	31	34
Stations				
El Paso		23		34
Elint		25		35
Great Falls	17		32	
International Falls	15		3.1	
La Guardia	20		33	
Montgomery		24		34
Norfalk	19		32	
Oakland		27		35
Oklahoma City		29		36
Pepperrell AFB, Nfld	22		33	
Portland, Maine	21	30	33	36
Santa Monica	14		31	
Sault Ste. Marie	16		3.1	
Seattle		28		35
Spokane		26		34
Topeka	18		32	

Table 2. Monthly Wind Statistics and Six-Hour Forecast Errors

σ standard vector deviation of the wind.

RP root mean square error of persistence forecasts.

RF root mean square error of subjective forecasts.

r six hour persistence correlation.

N number of cases.

a. SANTA MONICA						
Month	Level (K ft)	α knots	RP knots	RF knots	r	N
December 1958	.30	27.3	16.6	16.9	.82	101
	40	31.1	16.7	17.0	.86	102
January 1959	30	33.6	23.2	20.7	.76	118
	40	34.8	17.1	24.6	.88	112
February	30	44.1	25.2	20.1	.84	87
	40	29.5	17.4	14.3	.83	76
Narch	30	26.3	20.3	18.6	•70	116
	40	34.4	19.4	18.7	•84	114
April	30	33.8	17.7	17.0	.86	116
	40	35.5	17.0	18.4	.88	114
May	30	33.1	20.9	19.3	.80	114
	40	27.5	15.7	16.6	.84	110
June	30	21.9	13.2	14.0	.82	111
	40	27.1	15.4	15.5	.84	105
July	30	19.0	8.3	13.1	•91	109
	40	24.8	10.1	10.1	•92	114
August	30	21.4	12.4	12.3	.84	117
	40	29.2	12.2	13.1	.91	119
September	30	22.2	14.2	13.2	.80	111
	40	26.1	14.7	14.3	.84	108
October	30	31.8	18.5	17.3	.83	118
	40	35.5	19.1	17.1	.86	115
November	30	28.9	19.1	19.4	•78	117
	40	35.6	19.3	19.3	•85	115
December	30	47.8	25.4	21.9	.86	112
	40	56.0	22.6	16.1	.92	99

Table 2. Monthly Wind Statistics and Six-Hour Forecast Errors (continued)

b. INTERNATIONAL FALLS (747)						
Month	Level (K ft)	σ knots	RP knots	RF knots	r	N
December 1958	30 40					·
January 1959	30 40	43.5 33.8	24.9 15.4	26.8 20.6	.82 .90	111
February	30	40.7	24.8	23.6	.81	100
	40	25.9	15.6	16.3	.82	98
March	30	40.5	30.0	27.2	•73	98
	40	19.7	12.8	13.3	•79	97
April	30	49.8	27.4	25•7	.85	96
	40	27.0	16.5	15•9	.81	93
May	30	51.7	16.0	28.2	•95	101
	40	44.4	21.3	23.2	•88	96
June	30	39.1	24.1	20.8	.81	95
	40	42.0	22.8	21.0	.85	91
July	30	31.3	22 .1	15.9	•75	104
	40	34.2	22 . 7	18.0	•78	104
August	30	36.9	21.6	27.1	.83	92
	40	37.0	22.0	20.0	.82	94
September	30	46.4	28.2	22.9	.82	105
	40	42.2	26.8	23.1	.80	95
October	30	45.3	29.8	21.7	•78	94
	40	39.0	17.4	12.9	•90	91
November	30	55.9	32.0	26.8	. 84	101
	40	41.3	22.7	19.4	. 85	88
December	30	52.5	25.5	28.7	.88	102
	40	36.9	21.7	21.7	.83	95

Table 2. Monthly Wind Statistics and Six-Hour Forecast Errors (continued)

	c. SAU	LT STE M	ARIE (7	<u>34)</u>		
Month	Level (K ft)	g knots	RP knots	RF knots	r	N
December 1958	30 40	39.5 23.7	28.8 16.6	25.1 16.0	•73 •76	10
January 1959	30	50.8 37.6	27.4 17.4	_20.6 16.1	-85 -89	10
February	30	44.4	30.5	29.3	.76	
,	40	28.0	17.9	19.3	.80	7
March	30 40	45.2 23.4	29.0 17.4	23•3 15•5	•79 •72	10
April	30	45.2	25.2	21.1	.84	-
Whiti	40	29.6	19.3	14.9	79	ģ
May	30 40	39.0 36.6	26.9 25.1	24.7 19.9	.76 .76	10
June	30 40	40.9 43.7	24.4 22.3	20.2 18.0	•82 •87	10
July	30 40	33.6 35.1	18.3	15.0 17.8	.85 .82	į
August	30 40	28.1 32.0	18.4 22.9	19.1 19.2	•79 •74	10
September	30 40	46.5 42.0	30.8 25.1	23.9 26.3	•78 •82	(
October	30 40	43.0 38.2	28.0 20.5	22.0 8.6	•79 •86	10
November	30 40	52.2 39.3	29.1 18.0	13.5 18.0	•84 •89	
December	30 40	51.7 30.3	27.2 16.4	24.8 15.8	.86 .85	10

Table 2. Monthly Wind Statistics and Six-Hour Forecast Errors (continued)

ď.	GREAT	FALLS	(775)

Month	Level (K ft)	σ knots	RP knots	RF knots	r	N
December 1958	30	45•5	31.6	31.5	•76	90
	40	3 5•3	- 23.2	24.7	•78	85
January 1959	30	46-1	28.2	25.8	.81	112
	40	33•7	20.3	22.9	.82	98
February	30	44.4	25.9	25.8	.83	84
	40	26.8	10.7	13.2	.92	80
March	30	46.8	29.9	32.1	.80	118
	40	29.4	16.2	19.5	.85	113
April	30	51.0	25.5	27•3	.88	94
	40	36.0	18.5	20•7	.87	92
May	30	46.4	16.8	23.6	•93	101
	40	33.5	19.9	19.1	•82	97
June	30	33.8	22.7	23.9	•77	102
	40	35.5	20.9	23.9	•83	102
July	30	30.4	19.3	19.5	.80	118
	40	44.1	36.2	36.3	.66	118
August	30	34.0	26.1	25.4	.70	114
	40	35.5	19.6	21.3	.85	105
September	30 40	40.3 32.4	25.1 18.9	25.4 22.8	.81 .83	
October	30 40					
November	30 40					
December	30 40					

WENT WITH LEAD OF

MARKETAR S.I. Doorsales

Table 2. Monthly Wind Statistics and Six-Hour Forecast Errors (continued)

e. TOPEKA (456)								
Month	Level (K ft)	σ knots	RP knots	RF knots	r	N		
December 1958	30	45.4	29.2	27.2	•79	76		
	40	33.0	19.0	18.4	•84	69		
January 1959	30	50.0	30.3	29.0	.82	96		
	40	45.2	22.5	22.3	.88	79		
February	30	34.9	28.0	20.3	.68	87		
	40	37.5	26.4	20.1	•75	70		
March	30	41.5	30.0	28.5	.74	104		
	40	25.0	22.2	17.4	.61	99		
April	30	45.9	26.1	22.2	.84	97		
	40	40.0	20.7	21.1	.86	92		
Hay	30	31.7	24.9	22.9	•69	96		
	40	35.7	26.7	23.6	•72	92		
June	30	23.7	15.2	9.4	•79	95		
	40	32.6	20.6	21.9	•80	88		
July	30	26.7	21.1	21.5	.69	100		
	40	29.2	24.7	24.5	•64	99		
August	30	26.3	18.0	17.5	•77	68		
	40	35.6	22.2	22.0	•81	65		
September	30	33.5	18.4	15.7	.85	92		
	40	37.4	28.7	24.4	.71	89		
October	30	43.1	30.4	28.2	•75	97		
	40	40.5	28.4	27.0	•75	91		
November	30.	47.2	30.5	27.6	•79	111		
	40	40.3	25.5	26.0	•80	102		
December	30	43.4	31.5	27.2	•74	107		
	40	44.0	25.7	26.2	•83	89		

Table 2. Monthly Wind Statistics and Six-Hour Forecast Errors (continued)

f. NORFOLK (308)

	4 . 41.	OVER CTRIZE	7007			
Month	Level (K ft)	σ knots	RP knots	RF knots	r	N
December 1958	30	44.4	32.5	33.9	•73	35
	40	44.5	27.8	26.3	•80	31
January 1959	30	44.8	30.3	24.7	•77	83
	40	37.2	20.6	28.0	•85	61
February	30	40.4	28.9	27.6	•74	78
	40	40.8	29.1	29.4	•74	62
March	30	49.0	37.0	25.6	•72	86
	40	35.4	22.6	23.6	•80	70
April	30	36.6	27.4	22.2	•72	101
	40	39.1	22.5	21.4	•83	97
May	30	38.0	18.1	19.2	.89	108
	40	36.5	18.3	17.7	.88	98
June	30	33. 4	17.8	15.8	.86	110
	40	36.9	19.8	18.6	.86	100
July	30	18.9	12.5	12.0	.78	101
	40	28.4	16.9	16.4	.82	100
August	30	25.7	13.2	4.4	.87	99
	40	37.3	17.6	15.6	.89	87
September	30	28.8	12.3	13.4	.91	96
	40	39.7	17.8	17.7	.90	93
October	30	38.6	19.8	17.0	.87	107
	40	45.6	24.7	22.4	.85	101
November	30	40.1	29.3	24.4	.73	94
	40	43.2	23.0	24.0	.86	87

51.6 45.5

December

32.2 29.7 .80 .79

27.2 26.1 102 68

Table 2. Monthly Wind Statistics and Six-Hour Forecast Errors (continued)

g. LAGUARDIA (503)									
Month	Level (k ft)	σ knots	RP knots	RF knots	r	N			
December 1958	30 40	47.7	36.5 23.1	34.4	•71 -•78	79 62			
	40	35.1	2301	2201	70	UE.			
January 1959	30 40	50.5	26.8	27.0	.86	92			
	40	37.5	24.1	23.0	•79	77			
February	30	45.9	34.0	31.1	•73	82			
	40	36.1	27.4	28.2	•71	69			
March	30	47.5	32.8	28.7	.76	95			
	40	33.6	21.0	18.8	.80	86			
April	30	47.3	37.8	33.7	.68	89			
	40	38.9	25.3	22.2	•79	88			
May	30	44.4	19.9	21.4	•90	116			
-	40	46.2	23.0	21.5	.88	101			
June	30	31.1	23.5	23.4	•72	110			
	40	37.3	21.7	20.2	.83	108			
July	30	27.7	17.9	15.2	•79	105			
•	40	36.6	21.2	18.3	.83	105			
August	30	25.3	17.2	17.0	•77	108			
	40	38.5	20.3	19.9	.86	108			
September	30	35.6	18.8	19.5	-86	106			
	40	43.7	24.2	20.7	.85	104			
October	30	40.4	22.3	20.3	.85	102			
	40	42.8	24.5	26.5	.84	98			
November	30	48.2	29.2	25.6	.82	89			
	40	44.0	24.7	24.9	.84	8ó			
December	30								
	40								

Table 2. Monthly Wind Statistics and Six-Hour Forecast Errors (continued)

	h.	h. PORTLAND (606)				
Month	Level (K ft)	σ knots	RP knots	RF knots	r	N
- 1050		Knots	KIIOLB	AHOUB		
December 1958	30 4 0					
			_		0 -	
January 1959	30	47.3	28.2	28.8	-82	91 81
	40	37.2	19.6	21.0	.86	0
February	30	46.8	33.7	27.3	.74	90
	40	34.3	26.0	22.5	.71	7.
March	30	46.6	31.6	26.6	•77	9:
	40	28.9	17.3	16.4	.82	8
April	30	43.6	30.0	23.9	•76	90
Whili	40	34.0	20.8	21.0	.81	9.
Мыу	30	39.7	22.4	19.1	.84	10
· iay	40	39.6	20.9	19.4	.86	10
June	30	42.9	22.7	23.8	.86	10
ou ne	40	47.0	18.5	17.5	.92	9
July	30	34.4	27.3	18.9	.68	9
oury	40	41.0	25.1	20.9	.81	ý
August	30	33.8	20.4	22.8	.82	8
augus:	40	43.0	22.9	26.4	.86	7
September	30	38.6	20.3	21.0	.86	8
5617 (62.001	40	42.8	21.5	23.6	.87	8
October	30	37.5	26.2	22.4	.76	8
	40	35.3	25.7	22.7	•74	8
November	30	46.6	34.3	29.0	.73	9
	40	41.7	25.	21.9	.82	7
December	30	47.9	34.5	24.6		7
~~~~~	40	28.6	18.7	15.4		6

Table 2. Monthly Wind Statistics and Six-Hour Forecast Errors (continued)

i. PEPPERRELL (807)							
Month	Level (K ft)	$\sigma$ knots	RP knots	RF knots	r	И	
December 1958	30 40						
January 1959	<b>30</b>	48.2 37.6	30.0 19.6	24.7 16.8	•81 •86	100	
February	30 40	46.6 33.0	28.1 18.4	28.8 17.7	•82 •85	8 8	
March	30 40	46.2 26.5	32.4 18.3	32.2 24.0	•75 •76	9	
April	30 40	56.6 35.3	33.0 21.0	33.0 20.3	.83 .82	10	
May	30 40	62.6 49.5	32.2 20.7	36.4 22.8	.87 .13	11 11	
June	30 40	55.8 50.9	27.9 24.8	26.1 24.2	.88 .88	11 10	
July	30 40	38.2 41.4	24.0 24.5	24.3 26.0	.80 .82	11 11	
August	30 40	37•3 45•4	22.0 22.4	23.1 21.8	.83 .88	11	
September	30 40	43.1 44.7	29.3 26.4	31.6 28.0	•77 •83	120	
October	30 40	49.8 46.8	30.8 30.0	31.2 28.5	.81 .80	12:	
November	30 40	52.7 45.1	33.1 29.6	32.7 28.2	.80 .78	11. 9:	
December	30 40	49.0 31.0	35.6 18.3	33.8 18.6	•74 •83	10 ¹	

Table 3. Monthly Wind Statistics and Twelve-Hour Forecast Errors

- standard vector deviation of the wind.
- RP root mean square error of persistence forecasts.
- RF root mean square error of subjective forecasts.
- r twelve-hour persistence correlation.
- N number of cases.

a. EL PASO (270)

a. El PASO (270)									
Month	Level (K ft)	σ knots	RP knots	RF knots	r	N			
December 1958	<b>30</b> 40			<u> </u>					
January 1959	30 40								
February	30 40								
March	30	25.6	34.6	37.4	.09	15			
	40	28.0	30.9	32.6	•39	14			
April	30	20.5	16.0	18.4	.69	31			
	40	30.3	24.3	21.3	.68	20			
Hay	30	20.0	16.2	18.7	.67	37			
	40	25.7	20.9	20.8	.67	29			
June	30	24.7	16.9	17.0	.77	54			
	40	30.3	23.0	23.9	.71	48			
July	30	16.8	14.3	14.8	.64	54			
	40	21.1	18.8	18.9	.60	54			
August	30	12.8	10.7	10.7	.65	52			
	40	17.5	16.4	16.7	.56	54			
September	30	20.8	16.3	14.8	•70	49			
	40	24.1	16.0	16.6	•78	43			
October	30	29.4	24.1	21.2	.66	44			
	40	28.3	26.1	23.7	.58	38			
November	30	28.4	28.7	24.6	.49	34			
	40	26.3	27.4	25.7	.46	18			
December	30	31.5	34.3	31.5	•41	23			
	40	23.4	27.8	33.9	•29	13			

Table 3. Monthly Wind Statistics and Twelve-Hour Forecast Errors (continued)

Month	Level	σ	RP	R <b>F</b>	r	N
	(K ft)	knots	knots	knots		N
December 1958	30				· · · · · · · · · · · · · · · · · · ·	
	40					
January 1959	30 40	36.2	32.7	30.5	-59	51
	40	35•2	32.6	30.7	•57	51
February	30	35.8	34.7	36.7	•53	54
	40	34.5	29.1	33.8	<b>.</b> 64	46
March	30	37.0	33.3	28.6	.60	50
	40	38.7	32.0	28.8	<b>.</b> 66	41
April	30	35.2	26.0	24.8	•73	36
	40	42.7	33.5	31.3	•69	33
May	30	25.5	15.8	14.4	.81	56
	40	34.5	31.3	24.1	• 59	56
June	30	25.9	19.2	22.0	•72	59
	40	35.6	24.9	21.9	•75	58
July	30	17.0	13.9	13.6	.67	59
	40	22.0	17.2	17.4	• 70	59
August	30	19.1	16.2	15.5	.64	60
	40	25.2	19.3	22.9	•71	60
September	30	21.1	17.7	17.8	.65	55
	40	25.6	21.8	21.5	.64	54
October	30	33.3	23.8	22.1	.74	56
	40	41.4	26.5	24.2	.80	50
November	30					
	40					
December	30	37.7	38.2	31.5	. 49	5.2

Table 3. Monthly Wind Statistics and Twelve-Hour Forecast Errors (continued)

d. FLINT (637)							
Month	Level (K ft)	σ knots	RP knots	RF knots	r	И	
December 1958	30	41.5 22.4	47.6 16.6	42.6 23.0	•34 •73	42 37	
January 1959	30	51.0	42.1	32.3	.66	49	
	40	37.0	28.4	23.9	.71	46	
February	30	39.3	38.1	33.3	•53	41	
	40	29.1	27.6	24.0	•55	33	
March	30	38.1	40.1	30.3	.45	52	
	40	22.5	22.2	18.5	.51	50	
April	30	40.6	43.3	32.6	·43	49	
	40	29.1	25.0	17.5	•63	47	
May	30	32•3	25-7	22.2	.68	54	
	40	33•5	30-4	24.7	.59	52	
June	30	37.5	24.6	19.1	•78	47	
	40	45.0	30.2	24.5	•78	47	
July	30	28.4	25.9	17.1	•58	57	
	40	33.4	27.4	25.7	•66	5 <b>3</b>	
August	30	25.5	21.7	19.7	•64	45	
	40	31.2	24.0	22.5	•70	45	
September	30 40						
October	30 40						
November	30 40						
December	30 40						

Table 3. Monthly Wind Statistics and Twelve-Hour Forecast Errors (continued)

7. WWW (7.1)								
Month	Level (K ft)	σ knots	RP knots	RF knots	r	n		
December 1958	30 40							
January 1959	30	52.4	40.1	37.1	•71	62		
	40	37.2	25.5	25.8	•77	58		
February	30	45.1	35.0	29.0	.70	54		
	40	<b>31.8</b>	21.0	24.3	.78	54		
March	30	48.8	46.8	37.1	•54	62		
	40	26.2	23.1	22.5	•61	62		
April	30	49.1	31.9	32.4	•79	56		
	40	42.0	24.5	19.1	•83	54		
May	30	47.8	29.0	32.3	.82	5 <b>8</b>		
	40	36.6	21.7	17.3	.82	58		
June	30	38.6	28.3	16.8	•73	56		
	40	37.5	27.2	24.9	•74	52		
July	30	28.5	27.3	17.9	•54	60		
	40	23.0	23.5	20.9	•48	60		
August	30	37.0	28.4	24.7	.70	62		
	40	38.9	30.5	25.9	.69	<b>6</b> 2		
September	30	53.5	37.9	34.8	•75	58		
	40	46.4	28.4	22.9	•81	57		
October	30	54.8	39.0	52.2	•75	62		
	40	45.8	32.2	26.1	•75	57		
November	30	46.5	43.7	21.4	•56	60		
	40	41.3	35.9	29.8	• <b>6</b> 2	51		
December	30	50.7	45.5	35.5	.60	62		
	40	32.4	28.4	28.1	.71	60		

Table 3. Monthly Wind Statistics and Twelve-Hour Forecast Errors (continued)

• OAKLAND (493)									
Month	Level (K ft)	σ knots	RP knots	RF knots	r	N			
December 1958	30	31.9	26.3	24.5	.66	50			
	40	32.3	21.7	23.1	•77	50			
January 1959	30	45.1	33.4	30.9	•73	57			
	40	43.6	33.4	32.3	•71	54			
February	30	50.5	33.8	29.9	.78	43			
	40	32.7	24.9	22.6	.71	38			
March	30	29.1	28.0	24.8	•54	60			
	40	30.6	31.3	28.1	•48	56			
April	30	34.7	28.0	25.9	.68	58			
	40	34.0	23.6	26.2	.76	59			
Hay	30	42.0	36.3	33.2	.63	62			
	40	35.8	28.2	29.0	.69	62			
June	30	31.8	22.3	20.5	•75	57			
	40	38.0	28.6	23.3	•72	58			
July	30	18.4	16.0	14.5	.62	56			
	40	21.9	18.5	18.7	.64	56			
August	30	28.2	21.6	22.2	.71	58			
	40	31.9	23.5	23.5	.73	58			
September	30	37.1	26.3	24.7	•75	58			
	40	39.1	27.8	20.6	•75	57			
October	30	32.6	24.0	24.3	.73	53			
	40	34.4	30.7	26.5	.60	55			
November	30	28.8	28.6	28.2	•51	49			
	40	31.6	30.6	31.5	•53	48			
December	30	46.2	35.7	33.0	.70	48			
	40	47.7	40.3	30.4	.64	36			

Table 3. Monthly Wind Statistics and Twelve-Hour Forecast Errors (continued)

f. <u>SEATTLE (793)</u>						
Month	Level (K ft)	σ knots	RP knots	RF knots	r	N
December 1958	30	41.2	37.3	38.7	•59	34
	40	31.8	29.5	32.1	•57	33
January 1959	<b>30</b>	65.0	47.0	42.8	•74	58
	40	44.6	28.7	25.8	•79	58
February	30	48.2	37.0	36.8	.70	54
	40	34.2	21.6	21.7	.80	54
March	30	47.7	49.7	40.9	•46	58
	40	30.0	28.6	24.1	•54	58
April,	30	51.3	43.1	38.9	.65	<b>60</b>
	40	38.2	24.2	24.6	.80	60
May	30	54.5	35.2	34.9	•79	62
	40	37.7	22.8	21.3	•82	62
Jun•	30	40.0	30.9	28.7	.70	60
	40	35.1	25.7	23.5	.73	60
July	30	30.6	27.2	24.2	.60	<b>59</b>
	40	27.3	22.8	21.2	.65	59
August	30	34.2	27.5	25.0	.68	59
	40	36.0	29.7	27.4	.66	57
September	30	59.1	36.2	33.7	.81	56
	40	56.3	27.6	25.2	.88	54
October	30	50.2	40.9	35.3	.67	62
	40	42.3	34.6	39.6	.66	57
November	30	44.4	43.5	39,2	.52	56
	40	38.9	36.2	31.9	.57	53
December	30	53.6	48.7	42.1	•59	58
	40	45.0	35.4	30.4	•69	53

ale a

g. OKLA	AMOH	CITY	(353)
---------	------	------	-------

Month	Level (K ft)	σ knots	RP knots	RF knota	r	N
December 1958	30 40					
January 1959	30 40					
February	30 40					
March	30	42.5	35.9	35.4	.64	41
	40	31.8	27.7	27.2	.62	35
April	30	39.5	36.5	30.2	•57	56
	40	37.8	29.2	21.4	•70	56
May	30	23.9	24.1	20.4	.49	48
	40	32.6	33.3	28.6	.48	48
June	30	28.3	29.1	24.4	.47	52
	40	<b>39.</b> 2	34.6	33.2	.61	48
July	30 40	26.0 28.4	21.6	20.5 23.0	.66 .70	57 58
August	30	20.6	14.5	13.9	•75	58
	40	22.9	16.6	14.8	•74	58
September	30	28.1	20.6	20.1	.73	58
	40	31.1	25.8	24.8	.66	55
October	30	32.4	29.2	25.7	•59	57
	40	35.9	31.1	29.5	•63	57
November	30	45.5	42.3	35.1	•57	56
	40	40.1	37.7	36.0	•56	55
December	30 40	44.9 42.5		30.8 29.3	.60 .63	60 60

Table 3. Monthly Wind Statistics and Twelve-Hour Forecast Errors (continued)

	h.	PORTLAN				
Month	Level (K ft)	σ knots	RP knots	RF knots	r	N
December 1958	30	48.7	52.0	36.2	.43	29
	40	32.5	28.6	26.1	•60	29
January 1959	30		39.8.	32.2	66	30
**	40	38.2	34.0	30.5	.60	30
February	30	45.8	45.4	37.5	•51	38
•	40	39.0	33.4	28.7	.63	33
March	30	43.4	45.0	37.1	.46	51
	40	28.4	26.3	22.5	•57	50
April	30	49.2	44.5	32.7	•59	56
	40	34.1	28.6	25.8	.65	48
May	30	39.9	28.8	29.5	•74	56
·	40	40.2	31.9	27.8	.68	58
June	30	41.7	29.4	25.0	•75	55
	40	48.5	29.6	27.6	.8í	54
July	30	35.0	28.5	23.8	.67	49
•	40	44.1	32.3	28.6	.73	51
August	30	34.4	24.7	25.1	• 74	55
•	40	44.1	28.0	26.2	-80	54
September	30	38.2	33.8	33.3	•61	54
-	40	39.8	29.1	29.8	•73	53
October	30	39.3	34.0	22.7	.62	50
	40	37.9	32.9	32.8	.62	46
November	30	48.8	49.4	36.4	.49	51
	40	45.7	34.7	33.2	.71	45
December	30	50.1	46.1	38.1		42
	40	34.6	31.4	27.5		31

Table 4. Seasonal Wind Statistics and Six-Hour Forecast Errors

σ standard vector deviation of the wind.

RP root mean square error of persistence forecasts.

RF root mean square error of subjective forecasts.

r six hour persistence correlation.

N number of cases.

	8.	SANTA M	ONICA			
Season	Level (K ft)	σ knots	RP knots	RF knots	r	N
Winter	30 40	36.5 33.7	21.9	19.3	.82 .87	306 290
Spring	30	32.1	19.7	18.3 18.0	.81 .87	346 338
_	40	34.4 21.9	17.4	13.2	.86	337
Summer	30 40	28.3	12.7	13.0	.90	338
Fall	30	29.4	17.5	16.9	.89	346
	40	34.1	17.9	17.1	.86	338
	b. INTER	LANOITAN	FALLS	(742)		
Winter	30 40	42.5 30.4	25.6 15.5	25.4 18.6	.82 .87	211 200
Spring	30 40	49.1 34.4	25.1 17.2	27.0 18.0	.87 .88	295 286
Summer	30 40	37.4 39.5	22.6	21.5 19.6	.82 .83	2 <b>9</b> 1 289
Fall	30 40	50.5 41.5	30.0 22.7	23.9 19.0	.82 .85	300 274
	c. <u>SA</u>	ILT STE	MARIE (7	134)		
Winter	30 40	45.6 31.1	28.8 17.2	24.9 17.0	.80 .85	292 271
Spring	30 40	43.6 31.0	27.2	23.1 17.1	.81 .78	31 <i>2</i>
Summer	40 30	35.9	20.6	18.4	.85	905
	40	38.6	22.1	18.4	.84	285
Fall	30 40	47.4 40.2	29.3 21.7	20.4 18.8	.81 .86	291 268

Season

Fall

Table 4. Seasonal Wind Statistics and Six-Hour Forecast Errors (continued)

	(K ft)	knots	knots	knots		
Winter	30	46.7	28.7	27.7	.81	286
	40	<b>34.0</b>	- <b>19.0</b> —-	- <b>21.1</b>	.84	<b>263</b>
Spring	30	50.1	25.0	28.1	88	313
	40	34.8	18.2	19.8	.86	302
Summer	30	33•5	22.8.	23.0	•77	334
	40	35•2	19.3	21.1	•85	325
Fall	30 40					
		TOPEKA	(456)			
Winter	30	45.4	29.2	25.8	•79	259
	40	40.8	22.8	20.4	•84	218
Spring	30	41.1	27.2	24.8	.78	297
	40	35.3	23.3	20.8	.78	283
Summer	30	26.1	18.3	16.9	•75	263
	40	32.9	22.7	23.0	•76	252
Fall	30	45.0	27.3	24.8	.82	300
	40	43.5	27.5	25.8	.80	282
	f. 1	ORFOLK	(308)			
Winter	30	43.7	30.2	27.7	.76	196
	40	41.9	25.8	28.3	.81	154
Spring	30	46.4	27.9	22.2	.82	295
	40	42.8	21.1	20.7	.88	265

14.8 18.2

21.5 22.1

40.6 48.4

30 40 .86 .86

.86 .90

18.7 21.5 310 287

297 281

Table 4. Seasonal Wind Statistics and Six-Hour Forecast Errors (continued)

	g. <u>L.</u>	<u>AGU ARI</u>	OIA (503)			
Season	Level (K ft)	σ knots	RP knots	RF knots	r	N
Winter	30	49.6	32.4	30.8	•79	253
	40	37.7	25.0	24.8	• <b>78</b>	208
Spring	30	49.0	30.3	27.9	.81	300
	40	43.4	23.2	20.9	.86	275
Summer	30 40	28.8 38.3	19.8	18.9 19.5	•76 •85	323 321
Fall	30	44.7	23.5	21.7	.86	297
	40	46.5	24.5	24.0	.86	282
	h. ]	PORTLAND	(606)			
Winter	30	48.0	31.1	28.1	.79	181
	40	36.8	22.7	21.7	.81	160
Spring	30	45.9	28.1	23.2	.81	298
	40	37.6	19.8	19.1	.86	283
Summer	30	38.4	23.7	21.9	.81	277
	40	44.6	22.3	21.6	.88	262
Fall	30 40	47.5 46.7		24.4 22.7	.83 .86	266 243
	i. <u>]</u>	PEPPERRE	LL (807)			
Winter	30	47.7	29.2	26.6	.81	18 <b>3</b>
	40	35.8	19.0	17.2	.86	182
Spring	30	58.7	32.5	34.1	ز8.	316
	40	40.8	20.2	22.3	88.	305
Summer	30	44.9	24.7	24.5	. 85	343
	40	46.2	23.9	24.1	. 85	338
Fall	30	51.7	31.0	31.8	.82	356
	40	47.9	28.6	28.2	.82	334

Table 5. Seasonal Wind Statistics and Twelve-Hour Forecast Errors

σ standard vector deviation of the wind.

RP root mean square error of persistence forecasts.

RF root mean square error of subjective forecasts.

r twelve-hour persistence correlation.

N number of cases.

	a.	EL PASC	(270)			
Season	Level (K ft)	σ knots	RP knots	RF knots	r	N
Winter	<b>30</b> 40	<u> </u>				
Spring	30	23.6	20.7	22.6	.61	83
	40	29.9	24.5	24.1	.66	63
Summer	30 40	21.3	14.2 19.4	14.5 19.9	•78 •74	160 156
Fall	30	28.0	22.9	20.0	.66	127
	40	28.0	22.6	21.4	.68	99
	b. ]	MONTGOME	RY (226	<u>L</u>		
Winter	30	36.4	33.8	33.8	•57	105
	40	35.2	31.0	32.2	•61	97
Spring	30	41.5	25.7	22.9	.81	142
	40	49.8	32.1	27.6	.79	130
Summer	30	23.0	16.6	17.4	•74	178
	40	31.0	20.7	20.9	•78	177
Fall	30 40	31.4 38.2	21.0	20.1 22.8	.78 .80	111 104
	c. S	POKANI	: <b>(7</b> 85)			
Winter	30	52.5	37.8	33.6	•74	116
	40	37.5	23.4	25.1	•80	112
Spring	30	51.0	37.0	34.1	•74	176
	40	36.6	23.1	19.8	•80	174
Summer	30	35•7	28.0	20.2	.69	178
	40	34•6	27.3	24.0	.69	174
Fall	30	55.9	40.3	33.8	.74	180
	40	48.1	32.2	26.3	.78	165

Table 5. Seasonal Wind Statistics and Twelve-Hour Forecast Errors (continued)

	d.	FLINT	(637)			
Season	Level (K ft)	σ knots	RP knots	RF knots	r	N
Winter	30	45.3	42.8	36.2	•56	132
	- 40	31.7	25.0	23.6	.69	116
Spring	30	37.6	36.9	28.6	•52	155
	40	29.0	26.2	20.6	•59	149
Summer	30	32.3	24.3	18.6	•72	149
	40	38.3	27.4	24.3	•74	145
Fall	30 40					
	•• 9	DAKLAND	(493)			
Winter	30	43.6	31.3	28.6	•74	150
	40	38.3	27.5	26.8	•74	142
Spring	30	36.6	31.1	28.3	.64	180
	40	34.9	27.8	27.8	.68	177
Summer	30	27.7	20.2	19.4	•74	171
	40	32.8	23.9	22.0	•74	172
Fall	30	34.1	26.3	25.7	.70	160
	40	36.2	29.7	26.3	.66	160
	f. SE	TTLE (7	93)			
Winter	30	56.7	41.3	39.7	•73	146
	40	41.2	26.5	26.0	•79	145
Spring	30	54.2	42.9	38.2	.69	180
	40	37.1	25.3	23.4	.77	180
Su <b>≋≘e</b> r	30	36.4	28.6	26.0	.69	178
	40	33.9	26.2	24.1	.70	176
Fall	30	52.8	40.3	36.1	.71	174
	40	48.0	33.0	32.9	.76	164

Table 5. Seasonal Wind Statistics and Twelve-Hour Forecast Errors (continued)

	g. Qi	AMOHALIA	CITY (3			
Season	Level (K ft)	σ knots	RP knots	RF knots	r	N
Winter	30 40					
Spring	30	36.8	32.7	29.1	.60	145
	40	36.8	30.3	25.6	.66	139
Summer	30	24.8	22.3	19.9	.60	167
	40	31.0	24.8	24.2	.68	164
Fall	30	38.2	31.9	27.6	.65	171
	40	38.7	31.9	30.4	.66	167
	h. P	ORTLAND	(606)			
Winter	30	48.0	45.9	35.5	•54	97
	40	38.8	32.2	28.5	•66	92
Spring	30	47.6	40.0	33.1	.65	163
	40	38.1	29.2	25.6	.71	156
Summer	30	38.3	27.6	24•7	•74	159
	40	46.7	29.9	27•5	•79	159
Fall	30	48.7	39.7	31.5	.67	155
	40	47.8	32.2	31.8	.77	144

#### 4. GENERALIZATION OF RESULTS

### 4.1 Application of Regression Theory

The results in section 3 can be generalized by a straightforward application of regression theory. Let us assume that the forecast wind vector,  $\vec{F}$ , is a linear function of the observed wind at the beginning of the forecast period,  $\vec{V}_{i-D}$ .

#### Then

$$\vec{i}_i - \vec{k} = b (\vec{v}_{i-p} - \vec{v}) = b \vec{b}_{i-p}$$

where b is a constant to be determined by least squares.

From Equation (5)

$$\dot{E_{i}} = b_{i}\dot{D_{i-p}} - \dot{D_{i}}$$

$$\dot{E_{i}}^{2} = D_{i}^{2} + b^{2}D_{i-p}^{2} - 2bD_{i}D_{i-p}\cos\Theta_{i}$$
(12)

where  $\theta_i$ , is the angle between  $\hat{D_i}$  and  $\hat{b_{i+1}}$ 

$$MF \simeq \frac{1}{N} \sum_{i=1}^{N} E_i^{-2} - \frac{1}{N} \sum_{i=1}^{N} \left\{ |D_i|^2 + b^2 |D_{i-p}^2| - 2b |D_i| D_{j-p} \cos \theta_i \right\}$$

$$\sigma^2 + b^2 |\sigma|^2 - 2br |\sigma|^2$$
(12a)

by Equations (1) and (9).

Thus MF =  $\sigma^2$  (1 - 2br + b²). Differentiating with respect to -b, and setting the result equal to zero we find:

Hence

$$MF = \sigma^2 (1 - r^2) \tag{13}$$

Substituting (10):

$$MF = \frac{1 - r^2}{2 (1 - r)} MP$$

$$= \left\lceil \frac{1 + r}{2} \right\rceil MP \tag{14}$$

or

$$RF = \left[\frac{1+r}{2}\right]^{\frac{1}{2}}RP \tag{14a}$$

Equation (14a) explains the parallel fluctuation of RF and RP noted in

paragraph 3. 1. 2.—Although the coefficient,  $\left[\frac{1+r}{2}\right]^{\frac{1}{2}}$ , is not a constant it is

a slowly varying function of r. For example, the 6- and 12-hour persistence correlations in Tables 4 and 5 are seen to vary between about , 6 and , 9 for

which 
$$\left[\frac{1+r}{2}\right]^{-\frac{1}{2}}$$
 varies between .89 and .97. This suggests that a linear

regression equation linking RF and RP should fit the error data quite well. In order to test this idea a linear equation of similar form to (14a) was fitted to the data in Tables 4 and 5 by least squares. The regression coefficient in this equation was then compared with the coefficient in Equation (14a) for a particular case. Standard errors were also computed for the two equations.

Let  $y \in RF$  and  $x \in RP$ ,  $|\sigma_y|^2$  and  $|\sigma_x|^2$  are variances,  $|\widehat{x}|$  and  $|\widehat{y}|$  are mean values,  $|\rho|$  is the coefficient of correlation between x and y, and  $|\beta|$  is a constant.

In general:

$$\mathbf{y_i} = \beta \mathbf{x_i} \tag{15}$$

The mean square error of y is:

$$M_{\mathbf{y}} = \frac{1}{N} \sum_{i=1}^{N} \left[ \mathbf{y}_{i} - \beta \mathbf{x}_{i} \right]^{2}$$

$$+ \frac{1}{N} \sum_{i=1}^{N} \left[ \left( \mathbf{y}_{i} - \overline{\mathbf{y}} \right) + \beta \left( \mathbf{x}_{i} - \overline{\mathbf{x}} \right) + \left( \overline{\mathbf{y}} - \beta \overline{\mathbf{x}} \right) \right]^{2}$$

$$+ \frac{\sigma_{\mathbf{y}}^{2} + \beta^{2} \sigma_{\mathbf{x}}^{2} - 2 \beta \rho \sigma_{\mathbf{y}} \sigma_{\mathbf{x}} + \left( \overline{\mathbf{y}} - \beta \overline{\mathbf{x}} \right)^{2}$$

$$(16)$$

Differentiating with respect to  $\beta$  and setting the result equal to zero:

$$\beta = \frac{\rho \sigma_{\mathbf{y}} \sigma_{\mathbf{x}} + \overline{\mathbf{x}} \overline{\mathbf{y}}}{\sigma_{\mathbf{x}}^2 + \overline{\mathbf{x}}^2} \tag{17}$$

Thus

$$y_{i} = \begin{bmatrix} \rho \sigma_{y} \sigma_{x} + x y \\ \sigma_{x}^{2} + x^{2} \end{bmatrix} x_{i}$$
 (18)

Comparing the coefficients in Equations (14a) and (17) for the 6-hour data at 30,000 ft. (Table 4) where the average persistence correlation is seen to be about 0.8, we find:

$$\left[\frac{1+r}{2}\right]^{\frac{1}{2}} = .95$$

From Table 4 the following values were computed:

Substituting these values into (17):

$$\beta = .92$$

Thus it is evident that Equations (14a) and (18) are essentially identical in this case. As a final check the standard error of estimate, SE, was computed for both equations, using Equation (16) (i.e.  $SE^2 = M_y$ ) with the appropriate value of  $\beta$ . For Equation (14a) SE = 2.5 kts; for Equation (18) SE = 2.4 kts.

The foregoing analysis indicates that the assumption of a linear relation between the forecast wind and the existing wind at forecast time is indeed valid. Furthermore the relationship is a strong one, accounting for all but 23% of the random variability of RF for 6-hour forecasts at 30,000 feet. However, one additional point should be taken into consideration, namely the fact that RF tends to be greater than RP for values of RP less than about 20 kts. In an attempt to account for this behavior the form of Equation (15) was expanded to include a constant term, a:

$$\mathbf{y}_{i} = \mathbf{a} + \mathbf{b} \, \mathbf{x}_{i} \tag{19}$$

Again applying least squares the constants are found to be

$$a = \overline{y} - \rho \frac{\sigma_y}{\sigma_x} \overline{x}$$

$$b = \rho \frac{\sigma_y}{\sigma_x}$$

where the symbols are the same as in Equation (18).

Initially, four linear regression equations of the form (19) were developed from the data in Tables 4 and 5, one for each level and forecast period.

The results were as follows:

Forecast period, hrs.	6	6	12	12
Level, Kft	30	40	30	40
Number of cases	35	35	29	29
a	1.58	3, 45	3.88	3.86
ь	0.86	0.81	0.76	0.79
ρ	0.88	0.84	0, 95	0,84
Standard error, kts	2.4	1, 8	2, 2	1. 9

It is apparent that the four equations are sufficiently similar to warrant combining all the data into a single equation. The resulting relation is:

$$RF = 3.96 \pm 0.773RP$$
 (20)

for which the number of cases is 128,  $\rho$  ° .93 and the standard error of estimate is 2.0 kts. This equation accounts for all but 14% of the random variability of RF for all levels, seasons and forecast periods. Solving (20) we find

 $RF \stackrel{>}{=} RP$  when  $RP \stackrel{\leq}{=} 17.2$  which agrees very well with the data*.

### 4.2 Persistence Errors for a Five Year Sample

We have seen that Equation (20) provides a reliable estimate of the root mean square forecast error, RF, once the persistence error, RP, is known. Equation (11) expresses RP as a function of the standard vector deviation of

^{*} In Tables 4 and 5 the seasonal value of RP is found to be less than or equal to 17, 2 kts in 9 cases. For 7 of those cases RF ^RP.

the wind,  $\sigma$ , and the persistence coefficient, r. In a recent publication Charles (1959, 1960) has tabulated values of  $\sigma$  and 24-hour persistence correlation for 15 levels from 950 to 10 mb at 51 stations on a monthly and seasonal basis for the five-year period, 1953-58. From these data it is possible to compute persistence errors for a large number of stations.

Accordingly, seasonal values of RP were computed for the 300- and 200-mb levels (approximately 30K and 40K feet) for the 50 stations listed in Table 6. As before, the forecast periods considered were 6 and 12 hours. The appropriate persistence correlations were derived from the 24-hour values by the well known exponential relation:

$$\mathbf{r}_{\mathbf{t}} = \mathbf{c}^{-\mathbf{k}\mathbf{t}} \tag{21}$$

where  $\mathbf{r}_t$  is the persistence correlation at time t, and k is a constant.

At each station and level this equation was solved for k by substituting  ${\bf r}_{24}$ . That value of k was then used to calculate  ${\bf r}_6$  and  ${\bf r}_{12}$ . Having computed RP the corresponding RF was then determined from Equation (20).

### 4.3 Generalized Seasonal Statistics on Short Period I orecast Errors

We are now in a position to examine quantitatively, two fundamental questions which arise in connection with the short-period wind prediction problem:

- (1) As a forecast technique, what advantage does short-period persistence offer in comparison with climatology? In other words, by what amount is the present wind a better estimator than the climatic mean wind?
- (2) What advantage, if any, does a subjective forecast have over persistence?

In answering Onestion (1) it is convement to measure the improvement of persistence over climatology by means of the percent reduction in variance, RVP. By definition:

$$RVP = 100 \left[ 1 + \frac{MP}{\sigma^2} \right] \tag{22}$$

Table 6. Stations for which Seasonal Persistence Errors were Computed (Charles 1959, 1960)

Index No.	Station	Index No.	Station
200	Nome, Alaska	445	Columbia, Mo.
265	Fairbanks, Alaska	531	Rantoul
273	Anchorage, Alaska	429	Dayton
964	Whitehorse, Yukon	520	Pittsburgh
398	Annette, Alaska	405	Washington, D. C
879	Edmonton, Alberta	503	Hempstead, N. Y
793	Seattle	506	Nantucket
747	International Falls	297	Long Beach
681	Boise	365	Albuquerque
775	Great Falls	259	Fort Worth
764	Bismarck	340	Little Rock
655	St. Cloud	327	Nashville
645	Green Bay	317	Greensboro
734	Sault Ste-Marie	308	Norfolk NAS
537	Mt. Clemens	208	Charleston, S. C.
528	Buffalo	274	Tueson
722	Maniwaki, Quebec	265	Big Springs
	Rome	240	Lake Charles
712	Caribou	232	Burrwood
597	Medford	226	Montgomery
493	Oakland	206	Jacksonville
486	Ely	250	Brownsville
469	Denver	202	Miami
451	Dodge City	525	San Juan, P. R.
553	Omaha	806	Albrook, C. Z.

Question (2) may be answered in terms of an index called the forecast advantage, FA, which is expressed as follows:

Let RVF be the percent reduction in variance of subjective forecasts with respect to climatology. Then

$$= 100 \left[ \left( 1 - \frac{MF}{\sigma^2} \right) - \left( 1 - \frac{MP}{\sigma^2} \right) \right]$$

$$= 100 \left[ \frac{MP - MF}{\sigma^2} \right]$$
(23)

Thus we see that FA measures the residual improvement which subjective forecasts register over persistence after the advantage of persistence over climatology has been accounted for.

Tables 7 and 8 contain the generalized seasonal statistics on short-period forecast errors at 300 and 200 mb based on the methods developed in this paper. Quantities tabulated are:

σ	(Charles, 1959)
$\mathbf{RP}$	Equation (11)
$\mathbf{RF}$	Equation (20)
r	(Charles, 1960) plus Equation (21)
RVP	Equation (22)
FA	Equation (23). Whenever RE⊇RP the value

of FA is entered as zero.

## INDEX TO TABLES 7 AND 8

Table 7. Seasonal Wind Statistics and Derived Six-Hour Forecast Errors.

Table 8. Seasonal Wind Statistics and Derived Twelve-Hour Forecast Errors.

Table number	7	8		7	8
	P	age		Pa	ıge
SYMBOLS	45	62		45	32
Stations					
Albrook, C.Z.	61	78	Jacksonville	60	77
Albuquerque	56	73	Lake Charles	59	76
Anchorage, Alaska	45	62	Little Rock	56	73
Annette, Alaska	46	63	Long Beach	55	72
Big Spring	58	75	Maniwaki, Quebec	50	67
Bismarck	48	65	Medford	51	68
Веіве	47	64	Miami	60	77
Brownsville	60	77	Montgomery	59	76
Buffalo	50	6 <b>7</b>	Mt. Clemens	49	66
Burrwood	59	76	Nantucket	55	72
Caribon	51	68	Nashville	57	74
Charleston, S. C.	58	75	Nome, Alaska	45	62
Columbia, Mo.	53	70	Norfolk NAS	57	7.4
Dayton	54	71	Oakland	5.1	68
Denver	52	69	Omaha	53	70
Dodge City	52	69	Pittsburgh	54	71
Ely	52	69	Rantoul	53	70
Edmonton, Alberta	46	63	Rome, N. Y.	50	67
Fairbanks, Alaska	45	62	San Juan, P. R.	61	78
Fort Worth	56	73	Sault Ste. Marie	49	66
Great Falls	48	65	Seattle	47	64
Green Bay	4.9	66	St. Cloud	48	65
Greensboro	57	7.4	Tueson	58	75
Hempstead, N. Y.	55	72	Washington, D. C.	54	71
International Falls	49	64	Whitehorse, Yukon	46	63

-----

Table 7. Seasonal Wind Statistics and Derived Six-Hour Forecast Errors

- σ standard vector deviation of the wind.
- RP root mean square error of persistence forecasts.
- RF root mean square error of subjective forecasts.
- r six-hour persistence correlation.
- RVP percent reduction in variance of persistence forecasts with respect to climatology.
- FA forecast advantage over persistence.

#### NOME, ALASKA (200)

Season	Level	<u> </u>	RP	RF_	r	RVP	FA
	(mb)	knots	knota	knots		1/8	5_
Winter	300	39,6	21.0	20.2	<b>.</b> 86	72	2.0
	200	33.0	14.5	15.2	•90	81	0
Spring	300	37.4	20.9	20.1	.84	69	2.3
	200	27•4	14.0	14.8	.87	74	0
Summer	300	38.0	20.5	19.8	.85	71	1.9
	200	29.7	14.3	15.0	.89	77	0
Fall	300	39.4	23.2	21.9	.83	65	3.8
	200	30.6	15.6	16.0	.87	74	O
	FA	irbanks.	ALASKA (2	<u>65)</u>			
Winter	300	42.3	22.8	21.6	ر8.	71	2.9
	200	34.7	15.3	15.8	•90	61	O
Spring	300	35.1	21.1	20.3	.82	64	2.7
•	200	26.4	12.1	13.3	•90	7 <del>9</del>	O
Summer	300	35.1	19.7	19.2	.84	68	1.5
	500	27.0	1.5.0	14.0	•89	77	0
Fall	300	38.8	23.3	0.55	.82	64	3.9
	500	30.4	14.6	15.3	<b>-</b> 89	77	0
	<u>Air</u>	CHORAGE.	ALASKA (2	73)			
Winter	300	46.0	25.8	23.9	.84	88	4.4
	<b>20</b> 0	36.9	17.0	17.1	• 90	79	0
Spring	300	39.0	22.6	21.4	.84	67	3.5
	200	29.1	14.3	15.0	•88	76	0
Summer	300	38.6	20.5	19.8	.86	72	1.8
	200	3 <b>1.</b> 0	14.3	15.0	• 50	79	0
Fal1	300	43.6	26.2	24.7°	.82	64	5.3
	200	34.5	18.3	18.1	.86	72	0.6

Table 7. Seasonal Wind Statistics and Derived Six-Hour Forecast Errors (continued)

# WHITEHORSE, YUKON (964)

Season	Level (mb)	d knots	RP knots	RF knots	r	RVP ≸	FA %
Winter	300	43.8 35.9	25.8 17.2	23.9 17.3	.83 .89	65	4.8
	200	25.4	17.02	17.00	•07	* *	•
Spring	300	41.9	23.5	22.1	-84	69	3.6
	200	31.0	15.2	15.7	.88	76	0
Summer	300	34.7	18.7	18.4	<b>.</b> 85	70	0.8
Jum 91	200	28.3	13.9	14.7	.88	76	0
Fall	300	40.4	23.8	22.4	.83	65	4.1
	200	35.7	18.2	18.0	•87	74	0.6
	<b>≜</b> N	NETTE. AI	ASKA (398	2			
Winter	300	46.0	28.1	25.7	.81	62	6.0
	200	37.8	20.4	19.7	<b>.</b> 85	70	2.0
Spring	300	46.9	23.9	22.4	.87	74	3.2
Phirms	200	35.3	18.0	17.9	87	74	0.3
Summer	300	42.1	22.3	21.2	.86	72	2.6
	200	34.5	16.6	16.8	.89	77	0
Fall	300	44.6	26.8	24.7	.82	64	5.4
	200	40.4	22.6	21.4	•84	69	3.2
	EI	MONTON.	LBERTA (8	<u> 379)</u>			
Winter	300	39.4	27.2	25.0	•76	53	7.3
	200	31.0	17.7	17.6	.84	67	0.4
Spring	300	41.7	25.4	23.6	-81	62	5.1
	200	29•7	16.0	16.3	.85	70	0
Summer	<b>30</b> 0	36.7	24.2	22.7	-78	56	5.2
•	200	32.8	17.7	17.6	-85	70	0.3
Fall	300	41.9	27.7	25.4	•78	56	7.0
	200	37.6	22.2	21.1	.83	65	3.4

Table 7. Seasonal Wind Statistics and Derived Six-Hour Forecast Errors (continued)

### **SEATTLE (793)**

Season	Level (mb)	σ knots	RP knots	RF knots	r	RVP	FA \$
Winter	300	54•3	34.8	30.9	.80	59	8.7
	2 <b>00</b>	42•7		23.5	.83	<b>65</b>	4.5
Spring	300	53•9	30.7	27•7	.84	67	6.0
	200	40•0	21.6	20•7	.85	70	2.4
Summer	300	43.4	25.6	23.8	.83	65	4.8
	200	39.2	19.2	18.8	.88	7 <b>6</b>	1.0
Fall	300	52.4	30.9	27•9	•83	65	6.4
	200	46.0	25.8	23•9	•84	68	4.5
	IN	TERNATION	AL FALLS	(747)			
Winter	300	47.5	30.9	27.8	•79	57•	7.8
	200	38.4	19.6	19.1	•87	74	1.3
Spring	300	45.8	29•3	26.6	.80	60	7•2
	200	37.0	22•2	21.1	.82	64	3•5
Summer	300 200	39.6 41.9	22•2 22•6	21.4	•84 •85	69 70	2•9 3•0
Fall	300	51.0	32.6	29•2	.80	59	8.1
	200	43.8	26.7	24•6	.81	62	5.6
	BO	ISE (681)					
Winter	300	45.6	29•2	26.5	.80	59	7.0
	200	39.4	22•5	21.3	.84	67	3.4
Spring	300	46.0	27.6	25•3	.82	64	7.6
	200	38.6	20.8	20•0	.85	70	2.2
Summer	300 200	32.6 33.8	19.6 17.9	19.1 17.8	.82 .86	64 72	1.7
Fall	300	45.0	28.4	25•9	.80	61	6.7
	200	43.3	24.2	22•7	.84	68	3.6

Table 7. Seasonal Wind Statistics and Derived Six-Hour Forecast Errors (continued)

Season	Level (mb)	a knots	RP knots	RF knots	r	RVP %	FA \$
Winter	300 200	49•5 38•8	34.6 23.7	30.7 22.3	•76 •81	51 62	10.3
Spring	300	46.2	27•3	25.1	.83	65	5.4
	200	36.7	19•5	19.0	.86	72	1.4
Summer	300	36.7	19.8	19.3	.85	70	1.5
	200	37.6	19.2	18.8	.87	74	1.1
Fall	300	47.9	29•2	25•4	.81	62	9.0
	200	42.7	23•9	22•4	.84	69	3.8
	BI	SMARCK (7	<u>(64)</u>				
Winter	300	44.0	26.8	24.7	.81	62	5.6
	200	35.3	18.7	18.4	.86	72	0.9
<b>S</b> pring	300	43.1	24.6	23.0	.84	67	4.1
	200	37.2	19.0	18.7	.87	74	0.8
Summer	30 <b>0</b> 200	33.8 36.7	19.3 18.7	18.9 18.4	•84 •87	67 74	1.3
Fall	300	44.8	27 • 3	25.1	.81	62	5•7
	200	41.3	22 • 3	21.2	.85	70	2•8
	ST	CLOUD (	655)				
Winter	300	47.3	28.9	26.3	.81	62	6.3
	200	38.8	19.0	18.7	.88	76	0.8
Spring	300	44.6	26.8	24.7	•82	64	5•4
	200	37.4	20.2	19.6	•85	70	1•7
Summer	300 200	35•3 37•8	18.7 19.3	18.4 18.9	-86 -87	72 74	0.8
Fall	300	45.6	27.8	25•5	.81	62	5•9
	200	43.4	23.0	21•7	.86	72	3•1

Table 7. Seasonal Wind Statistics and Derived Six-Hour Forecast Errors (continued)

GREEN	BAY	<u>(645)</u>
-------	-----	--------------

Season	Level (mb)	σ knots	RP knots	RF knots	r	R <b>V</b> P	FA \$
Winter	300 200	50.6 43.1	30.4 22.0	27.5	.82 .87	64 <b>74</b>	6.6 2.3
Spring	<b>300</b>	45•2	27.6	25•3	.81	62	6.0
	200	40•4	22.6	21•4	.84	69	3.2
Summer	300 200	35•9 38•2	19.4 20.6	19.0 19.9	•85 •85	70 70	1.2
Fall	300	46.4	27.8	25.4	.82	64	5•9
	200	43.4	23.4	22.0	.85	70	3•4
	SA	ULT STE. M	ARIE (734	7			
Winter	300	53.4	32.6	29•2	.81	62	7•4
	200	45.0	25.2	2 <b>3•</b> 4	.84	69	4•3
Spring	300	47.9	30 • 2	27•3	.80	61	7•3
	200	41.1	23 • 0	21•7	.84	69	3•4
Summer	300	39•2	23•1	21.8	•83	65	3•7
	200	42•9	23•2	21.9	•85	70	3•2
Fn11	300	50.0	31.5	28.3	.80	61	7•7
	200	46.0	26.2	24.2	.84	67	4•8
	MI	CLEMENS	(537)				
Winter	300	54.9	35•7	31.6	•79	57	9•1
	200	45.4	24•5	22.9	•85	70	3•7
Spring	300	48.1	30.3	27•4	.80	61	7•2
	200	44.0	26.0	24•1	.83	65	4•9
Summer	300	35+9	21.5	20.6	•82	64	2.9
	200	41•7	22.5	21.4	•85	70	2.8
Fall	300	46.8	30.0	27 • 2	.80	59	7.3
	200	44.6	26.3	24 • 3	.83	65	5.1

Table 7. Seasonal Wind Statistics and Derived Six-Hour Forecast Errors (continued)

# BUFFALO (528)

Season	Level (mb)	o knots	RP knots	RF knots	r	RVP	FA \$
Winter	300	52•2	33•9	30.2	•79	57	8.7
	200	44•6	24•1	22.6	•85	70	3.5
Spring	<b>300</b>	47.9	30.7	27 • 7	<b>.8</b> 0	59	7.6
	200	42.5	24.2	22 • 7	<b>.</b> 84	67	3.9
Summer	300	35•9	20.5	19.8	.84	67	2•7
	200	41•1	21.8	20.8	.86	72	2•5
Fall	300	46.0	27.6	25•3	.82	64	5.8
	200	42.9	24.5	22•9	.84	67	4.1
	MA	NIWAKI Q	UEBEC (72	2)			
Winter	300	50.6	33•4	29•8	•78	56	8.8
	200	43.4	23•4	22•0	•85	70	3.4
<b>Bpring</b>	300	48.7	30•7	27•7	.80	61	7.4
	300	41.9	22•6	21•4	.85	70	3.0
Summer	300	38.6	22.8	21.6	.83	65	3•5
	200	41.7	22.5	21.4	.85	70	2•8
Fall	300	46.2	29•1	26.4	.80	61	7.0
	200	43.6	25•7	23.8	.83	65	4.9
	RO	ME					
Winter	300	55.1	35.8	31.6	•79	58	9•2
	200	45.8	26.1	24.1	•84	67	4•8
Spring	300	49.7	32.3	28.9	•79	57	8.4
	200	46.6	28.4	25.9	•81	62	6.3
Summer	300	40.0	21.6	20.7	.85	70	2•4
	200	45.6	24.6	23.0	.85	70	3•7
Fall	300	48.9	29•3	26.6	.82	64	6.3
	200	46.4	26•4	24.4	.84	67	4.7

## CARIBOU (712)

Season	Level (mb)	o knots	RP knots	RF knots	r	RVP ≸	FA \$
Winter	300	56.6	36•2	31.9	.80	59	9.0
	200	47.3	25•5	23.7	.85	70	4.0
Spring	<b>300</b>	51.6	33.0	29.5	.80	<b>59</b>	8.2
	200	42.7	24.3	22.7	.84	67	4.1
Summer	300	42.1	26.5	24.4	.80	61	5•8
	200	43.1	24.6	23.0	.84	67	4•1
Fall	300	50.0	33.0	29•5	•78	56	8.8
	200	46.6	29.4	26•7	•80	61	7.0
	ME	DFORD (59	7)				
Winter	300	51.0	31.1	28.0	.81	63	7.0
	200	42.9	23.2	21.9	.85	70	3.2
Spring	300	47•3	27.9	25•5	.83	65	5•7
	200	41•1	23.0	21•7	.84	69	3•4
Summer	300 200	37 • 8 37 • 2	21.5 19.0	20.6 18.6	.84 .87	67 74	2.6
Fall	300 200	47.9 44.8	26.8 22.8	24.7 21.6	.84 .87	69 74	4.7
	OA.	KLAND (49	13)				
Winter	300	51.2	28•7	26.1	.84	69	5•3
	200	46.9	23•9	22.4	.87	74	3•2
Spring	300	46.9	26.3	24.3	.84	69	4.6
	200	41.1	22.2	21.1	.85	70	2.8
Summer	300	33.0	17.5	17.5	.86	72	0
	200	34.9	17.1	17.2	.88	76	0
Fall	300	46.0	24.8	23•1	.85	70	3.8
	200	44.0	22.4	21•3	.87	74	2.5

中国的基础的基础的基础的基础的,是是是不是是国际的基础的。在于一种的,但一种,是一种。

Table 7. Seasonal Wind Statistics and Derived Six-Hour Forecast Errors (continued)

ELY	(486)	

Season	Level (mb)	o knots	RP knots	RF knots	r	RVP	FA S
Winter	300 200	48.7 43.1	29•2 22•8	26.5 21.6	.82 .86	64 72	6.2
Spring	<b>300</b>	45.8	26.1	24.1	.84	67	4.7
	200	40.7	22.8	21.6	.84	69	3.2
Summer	300 200	29•5 31•6	16.8 15.5	17.0 15.9	•84 •88	67 76	0
Fall	300 200	43.1 41.7	25•4 22•5	23.6 21.4	.83 .85	65 70	4.7
	DEN	VER (469)					
Winter	300	51.2	30.7	27•7	.82	64	6.6
	200	46.4	24.6	23•0	.86	72	3.5
Spring	300	45.0	28.8	26.2	.80	60	7.1
	200	43.6	23.5	22.1	.85	70	3.4
Summer	300	28.5	14.5	15.2	.87	74	0
	200	32.8	15.1	15.6	.80	79	0
Fall	300	42.1	25•7	23.8	•81	<b>62</b>	5•3
	200	43.6	23•5	22.1	•85	70	3•4
	DOD	E CITY (	451)				
Winter	300	50.4	31.5	28.3	.80	61	7.4
	200	44.8	22.8	21.6	.87	74	2.7
Spring	300	43.3	25.5	2 <b>3.</b> 7	.83	65	4.7
	200	41.9	21.4	20.5	.87	74	2.1
Summer	300 200	26.0 30.3	15.3 14.5	14.2 15.2	.87 .89	74 77	0
Fall	300	42.7	23.9	22.4	.84	69	3.8
	200	43.1	23.3	22.0	.85	70	3.2

Table 7. Seasonal Wind Statistics and Derived Six-Hour Forecast Errors (continued)

OMARA (553))

Season	Level (mb)	o knots	RP knots	RF knots	r	RVP %	FA g
Winter	300	51.6	33.0	29•5	.80	59	8.2
	200	45.4	24.1	22•6	.86	72	3.4
Spring	300	47.5	27•1	24.9	•84	67	5•1
	200	44.2	22•5	21.4	•87	74	2•5
Summer	300 200	29.1 34.0	15•7 18•0	16.1 17.9	.85 .86	70 72	0
Fall	300	46.4	28.3	25.8	.81	62	6.3
	200	43.6	23.5	22.1	.85	70	3.4
	<u>co</u>	LUMBIA. M	ISSOURI (	445)			
Winter	300	55•1	33.6	29•9	.81	62	7•6
	200	50•2	26.6	21•5	.86	72	9•7
Spring	300	46.4	26.4	24.4	.84	67	4.7
	200	44.6	23.6	22.2	.86	72	3.2
Summer	300 200	28.5 32.4	15.1 17.5	15•6 17•5	.86 .85	72 70	0
Fall	300	43.6	25•7	23.8	.83	65	5.0
	200	43.1	23•3	22.0	.85	70	3.2
	RA	NTOUL (5	<u>51)</u>				
Winter	300	54.3	33.1	29.6	.81	62	7•5
	200	48.3	25.6	23.8	.86	72	3•8
<b>S</b> pring	300	46.9	29•4	26.8	.80	61	6.9
	200	45.0	25•2	23.5	.84	69	4.1
Summer	300	30.1	17.2	17•3	.84	67	0
	200	36.1	20.6	19•9	.84	67	2•2
Fall	500	44.6	27 • 2	25.0	.81	62	5•8
	200	43.6	24 • 4	22.8	.84	69	7•6

Table 7. Seasonal Wind Statistics and Derived Six-Hour Forecast Errors (continued)

DAYTON (429)
--------------

Season	Level	σ knots	RP knots	RF knots	<b>r</b>	RVP ≸	FA
Winter	300	56.1	35•3	31.2	.80	60	8.5
	200	50.0	28•0	25.6	.84	69	5.1
Spring	<b>300</b>	46.0	<b>24.8</b>	23.1	• <b>85</b>	70	3.8
	200	43.6	25.7	23.8	•83	65	4.9
Summer	300	31.8	18.1	18.0	.84	67	0
	200	35.7	20.9	20.1	.84	67	2.4
Fall	300	43.1	29•3	26.6	•77	54	8.1
	200	42.7	24•3	22.7	•84	67	4.1
	P	TTS BURGH	(520)				
Winter	300	54•1	35•7	31.6	•78	56	9.4
	200	47•9	28•7	26.2	•82	64	6.0
Spring	300	48.3	30.4	27.5	.80	61	7•2
	200	45.8	26.1	24.1	.84	67	4•8
Summer	300 200	34.0 40.4	19.4 21.8	19.0 20.8	.84 .85	67 70	1.4
Fall	300	46.8	30.0	27•2	.80	79	7•3
	200	43.8	24.5	22•9	.84	69	4•0
	WA	SHINGTON .	(405)				
Winter	300	53•2	34•6	30.7	•79	58	8.9
	200	45•6	26•9	24.8	•83	65	5.2
Spring	300	46.0	28.1	25.7	.81	62	6.1
	200	46.8	26.7	24.6	.84	67	4.9
Summer	300 200	34.9 40.4	17.8 19.8	17.7 19.3	.87 .88	74 76	0.2
Fall	300	44.6	26.3	24.3	•83	65	5•1
	200	44.2	23.4	22.1	•86	72	3•0

Table 7. Seasonal Wind Statistics and Derived Six-Hour Forecast Errors (continued)

HEMPST	EAD (	503)

Season	Level (mb)	σ knots	RP knots	RF knots	r	RVP ≴	FA \$
Winter	300 200	56.8 46.4	38.6 29.2	33.8 26.5	•77 •80	54 61	10.7
Spring	<b>300</b> 200	<b>49.1</b> -44.6	<b>30.0</b> 26.8	27.2 24.7	.81 .82	<b>62</b> 64	<b>6.6</b> 5.4
Summer	300	38.0	21.3	20.4	.84	69	2.4
	200	42.9	22.7	21.5	.86	72	2.9
Fall	300	49.3	30.1	27•2	.81	62	6.8
	200	49.8	26.9	24•8	.85	70	4.4
	NAN	TUCKET (5	06)				
Winter	300	57.6	37•4	32.9	•79	57	9•5
	200	49.5	29•7	26.9	•82	64	6•5
Spring	300	48.9	29.8	27.0	.81	62	6.7
	200	44.4	24.9	23.2	.84	69	4.1
Summer	300	39.8	21.5	20.6	.85	70	2.4
	200	43.4	23.0	21.7	.86	72	3.1
Fall	300	47.9	28.7	26.2	.82	64	6.0
	200	48.7	26.3	24.3	.85	70	4.3
	LONG	BEACH (	297)				
Winter	300	47.3	26.5	24.4	.84	69	4.6
	200	46.9	23.9	22.4	.87	74	3.2
Spring	300	42.7	25•2	23.4	.83	65	4.8
	200	41.7	22•1	21.0	.86	72	2.7
Summer.	300 200	26.0 30.1	12.5 13.8	13.6 14.6	∎89 •90	77 79	0
Fall	300 200	36•5 36•7	20.8 19.5	20.0 19.0	.84 .86	67 72	2.4

Table 7. Seasonal Wind Statistics and Derived Six-Hour Forecast Errors (continued)

AL BUQ	UERQUE	(365)

Season	Level (mb)	σ knots	RP knots	RF knots	r	RVP \$	FA \$
Winter	300 200	44.8 42.7	26.9 23.1	24.8 21.8	.82 .85	64 70	5.4 3.1
<b>S</b> pring	300 200	40.7 39.0	25.6 21.8	23.8 20.8	-80 -84	61 69	5.4 2.8
Summer	300 200	24•2 29•5	11.6 13.6	12.9 14.7	.89 .90	77 79	0
Fall	300 200	36.5 40.7	20.4 20.8	19.7 20.0	.84 .87	69 74	2.0 1.9
	FOR	T WORTH (	259)				
Winter	300 200	45.0 43.6	27.0 23.5	24.8 22.1	.81 .85	62 70	5•5 3•3
Spring	300 200	41.3 43.3	22.3 23.4	21.2 22.0	.85 .85	70 70	2.8 3.3
Summer	300 200	23•3 29•3	11.4 14.1	12.8 14.9	.88 .89	76 77	0
Fall	300 200	37.4 40.0	20.2 19.6	19.6 19.1	•85 •88	70 76	1.8
	LIT	TLE ROCK	(340)				
Winter	300 200	45.6 44.4	26.0 24.0	24.1 22.5	.84 .85	67 <b>7</b> 0	4.6 3.5
Spring	300 200	41.1 43.6	23.4 21.4	22.1 20.5	.84 .88	67 76	3.6 2.0
Summer	300 200	25.8 30.4	12.6 14.6	13.7 15.2	.88 .89	76 77	0
Fall	300 200	38.6 40.0	19•7 20•4	19•2 19•7	•87 •87	74 74	1.3

Table 7. Seasonal Wind Statistics and Derived Six-Hour Forecast Errors (continued)

31 4 ATT 1	TLLE	(7001
NASH	VILLE	しちごりり

Season	Level	d knots	knots	RF knots	r	RVP %	FA %
Winter	300	44.4	27.1	24.9	.82	64	5•7
	200	42.7	14.3	15.0	.84	67	0
Spring	300 200	43.3 44.6	23.4 21.9	22.1	.85 .88	70 76	3.3 2.2
Summer	300	26.6	14.4	15.1	.85	70	0
	200	32.4	16.5	16.7	.87	74	0
Fall	300	39•2	23.9	22.4	.82	64	4.4
	200	40•2	22.9	21.7	.84	67	3.4
	GR	EENSBORO	(317)				
Winter	300	45.4	29•5	26.8	•79	58	7.4
	200	41.7	25•4	23.6	•81	62	5.1
Spring	300	42.5	24.2	22.7	.84	67	3.9
	200	43.6	23.1	21.8	.86	62	3.1
Summer	300	28.5	16.0	16.3	.84	68	<b>o</b>
	200	33.8	16.6	16.8	.88	76	o
Fall	300	40.4	23.0	21.7	.84	67	3.6
	200	40.5	19.8	19.3	.88	76	1.2
	NO	RFOLK (30	8)				
Winter	300	50.4	32.3	28.9	.80	59	8.0
	200	45.6	27.4	25.1	.82	64	5.8
Spring	300 200	45.0 44.6					
Summer	300 200	32.4 38.6					
Fall	300 200	44.0 45.0					

Table 7. Seasonal Wind Statistics and Derived Six-Hour Forecast Errors (continued)

CHARLESTON, S. C. (2	(80	
----------------------	-----	--

Season	Level (mb)	c knots	RP knots	RF knots	r	RVP ≸	FA \$
Winter	300 200	40.4 39.0	25•5 23•8	23•7 22•4	.80 .81	61 62	5•4 4•3
Spring	<b>300</b> 200	41.3 44.2	21.9 22.5	20.9 21.4	.86 .87	<b>72</b> 74	2•5 2•5
Summer	300 200	26.6 33.2	14.4 16.9	15.1 17.0	•85 •87	70 74	0
Fall	300 200	40.0 42.1	21.2 19.4	20.4 19.0	.86 .90	72 79	2.1 0.9
	<u>T</u>	UCSON (2	74)				
Winter	300 200	46.9 46.9	21.6 19.2	20.7 18.8	•90 •91	79 83	1.8
8pring	300 200	41.9 41.3	25.1 21.9	23.4 20.9	.82 .86	64 72	4.7 2.5
Summer	300 200	23.7 28.7	14.2 15.2	14.9 15.7	.82 .86	64 72	0
Fall	300 200	35•3 38•6	19.1 18.9	18.7 18.6	•85 •88	70 76	1.2
	<u>B</u>	IG SPRIN	G (265)				
Winter	300 200	42.9 41.3	23.2 20 <b>.2</b>	21.9 19.6	•85 •88	70 76	3.1 1.4
Spring	300 200	37.4 39.2	19.8 20.8	19.3 20.0	•86 •86	72 72	1.4
Summer	300 200	23•3 29•7	13.7 16.6	14.6 16.8	.83 .84	65 69	0
Fall	300 2 <b>0</b> 0	34.5 38.4	17.6 18.4	17.6 18.2	.87 .89	74 77	0 0•5

Table 7. Seasonal Wind Statistics and Derived Six-Hour Forecast Errors (continued)

	<u>I.A</u>	KE CHARLE	8 (240)				
Season	Level (mb)	σ knots	RP knots	RF knots	r	RVP	FA S
Winter	300	39.6	20.2	19.6	•87	74	1.5
	200	40.4	19.8	19.3	•88	76	1.2
Spring	<b>300</b> 200	37.6 40.9	20.3 19.6	19.7 19.1	-85 -89	<b>70</b> 77	1.8
Summer	300 200	23.5 30.8	14.1 16.6	14.9 16.8	•82 •85	64 70	0
Fall	300	36.5	17.5	17.5	.89	77	0
	200	39.4	18.9	18.6	.89	77	0.7
	BU	REWOOD (2	232)				
Winter	300 200	37·4 39·6	20.2 19.0	19.6 18.7	•85 •89	70 77	1.7
Spring	300	35•3	17.3	17.3	.88	76	0
	200	39•2	18.8	18.5	.89	77	0•7
Summer	300 200	22.5 28.9	12.2 16.2	13.4 16.5	•85 •84	70 69	0
Fall	300	34.9	16.8	17.0	.89	77	0
	200	38.8	17.8	17.7	.90	79	0•2
	MO	NTGOMERY	(226)				
Winter	300	44.4	21.3	20.4	•89	77	1.7
	200	44.6	20.5	19.8	•90	79	1.4
Spring	300	42.9	25•3	23.5	.83	65	4.8
	200	47.5	23•3	22.0	.88	76	2.6
Summer	300	24.6	14.8	15.4	•82	64	0
	200	32.4	18.5	18.3	•84	67	0.7
Fall	300	41.7	20.4	19.7	.88	76	1.6
	200	44.2	21.2	20.4	.89	77	1.7

Table 7. Seasonal Wind Statistics and Derived Six-Hour Forecast Errors (continued)

Season	Level	o knots	RP knots	RF knots	r	RVP	FA %
Winter	300 200	40.0 41.9	20.4 20.1	19•7 19•5	.87 .89	74 77	1.6 1.4
Spring [	3 <b>00</b> 200	38.8 45.2	17.8 19.9	17.7	•90	79 81	0.2 1.2
Summer	300 200	22.1 29.3	10.8 12.9	12•3 13•9	.88 .90	76 81	0
Fall	300 200	37•2 41•1	17.1 18.1	17.2 18.0	•90 •90	79 81	0 0•2
	BRO	WNS VILLE	(250)				
Winter	300 200	34•3 38•6	18.2 18.9	18.0 18.6	.86 .88	72 76	0.5 0.8
Spring	300 200	29.5 33.6	15.9 17.8	16.2 17.7	.85 .86	70 72	0 0•3
Summer	300 200	20.0 27.9	10.2 14.2	11.8 14.9	.87 .87	74 74	0
Fall	300 200	31.0 35.5	14.9 15.6	15.5 16.0	.89 .90	77 81	0 0
	MIA	MI (202)					
Winter	300 200	37 • 2 37 • 0	18.2 19.6	18.0 19.1	.88 .86	76 72	0.5 1.4
<b>S</b> pring	300 200	33.0 38.2	15.8 18.3	16.2 18.1	.89 .89	77 77	0 0•5
Summer	300 300	19.2 28.7	10.4 14.1	12.0 14.9	.85 .88	70 76	0
Fall	300 200	32.2 39.4	14.2 17.3	14.9 17.3	.90 .90	81 81	0

Table 7. Seasonal Wind Statistics and Derived Six-Hour Forecast Errors (continued)

SAN JUAN. P. R.								
Season	Level	g knots	RP knots	RF knots	r	RVP ≰	FA %	
Winter	300 200	27•7 29•9	13.6 14.7	14.5 15.3	.88 .88	76 76	0	
Spring	300 200	23.9 29.1	11.5 14.3	12.8 15.0	.89 .88	77 76	0	
Summer	300 200	16.7 23.5	9.5 12.0	11.3 13.2	.84 .87	67 74	0 0	
Fall	30 <b>0</b> 200	22.1 30.1	10.8 13.8	12.3 14.6	•88 •90	76 79	0	
	<b>AL</b> B	ROOK. C.	Z. (806)					
Winter	300 200	21.5 26.6	10.3 13.0	11.9 14.0	.89 .88	77 76	0	
Spring	300 200	18.0 23.1	8.3 11.1	io.4 12.5	•90 •89	79 77	0 0	
Summer	300 200	11.2 18.2	8.2 12.6	10.3 13.7	•73 •76	47 53	<b>o</b> 0	
Fall	300 200	13.4 19.8	7•9 10•1	10.1 11.8	.83 .87	65 74	<b>0</b> 0	

Table 8. Seasonal Wind Statistics and Derived Twelve-Hour Forecast Errors σ standard vector deviation of the wind. RProot mean square error of persistence forccasts. RГ root mean square error of subjective forecasts. six-hour persistence correlation. r RVP percent reduction in variance of persistence forecasts with respect to climatology. FAforecast advantage over persistence.

## NOME . ALASKA (200)

Season	Level (mb)	d knots	RP knots	RF knots	r	RV <b>P</b>	FA S	
Winter	300	39.6	28.5	26.0	•74	48	8.7	
	200	33.0	19.8	19.3	•82	64	1.8	
Spring	300	37•4	28.0	25.6	•72	44	9•2	
	200	27•4	18.9	18.6	•76	53	1•5	
Summer	300	38.0	28.1	25•7	•73	45	8.9	
	200	29.7	19.6	19•1	•78	56	2.2	
Fall	<b>3</b> 00	39.4	31.1	28.0	.68	73	11.8	
	200	30.6	21.4	20.5	.76	51	4.0	
FAI RBANKS. ALASKA (265)								
Winter	300	42•3	30.9	27.9	•73	47	9•9	
	200	34•7	21.2	20.4	•81	62	2•8	
Spring	300	35.1	28.4	25.9	.67	34	11.0	
	200	26.4	16.6	16.8	.80	61	0	
Summer	300	35.1	26.3	24.3	•72	44	8.2	
	2 <b>0</b> 0	27.0	17.6	17.6	•79	57	0	
Fall	300	38.8	31.4	28.2	•67	34	12.7	
	200	30.4	20.1	19.5	•78	56	2.6	
	ANCH	ORAGE. A	ASKA (273	7)				
Winter	300 200	46.0 36.9	35•0 23•2	31.0 21.9	.71 .80	42 61	12.5	
Spring	300	39.0	30.0	27.2	•70	41	10.5	
	200	29.1	19.8	19.3	•77	54	2.3	
Summer	300	38.6	28•2	25.8	•73	47	8.7	
	200	31.0	19•5	19.0	•80	61	2.0	
Fall	300	43.6	35.8	31.6	•66	33	14.9	
	200	34.5	24.8	23.1	•74	48	6.9	

Table 8. Seasonal Wind Statistics and Derived Twelve-Hour Forecast Errors (continued)

WHITEHORSE.	YUKON	(964)
-------------	-------	-------

Season	Level (mb)	σ knots	RP knots	RF knots	r	RVP	FA S
Winter	300	43.8	34.6	30.7	•68	37	13.2
	200	25.9	23.3	22.0	•79	57	4.6
Spring-	300 200	41.9 31.0	31.4 20.5	28.2 19.8	.78	44 56	10.9 2.9
Summer	300	34•7	26.0	24.1	•72	44	7•9
	200	28•3	19.2	18.8	•77	54	1•9
Fall	300	40.4	31.9	28.6	.69	<b>38</b>	12.2
	200	35.7	24.6	23.0	.76	53	6.0
	ANN	ETTE. AL	BKA (398)	L			
Winter	300	46.0	38.2	33•5	•66	31	15.8
	200	37.8	28.0	25•6	•73	45	9.0
<b>S</b> pring	300	46.9	33.3	29•7	•75	50	10.3
	200	35.3	24.4	22•8	•76	53	6.1
Summer	300	42•1	30.3	27.4	•74	48	9.4
	200	34•5	22.8	21.6	•78	56	4.5
Fall	300	44.6	36.6	32·3	•66	33	14.9
	200	40.4	30.3	27·4	•72	44	10.3
	EDMO	NTON. AL	BERTA (82	<u>र</u> )			
Winter	300	39•4	36.2	31.9	•58	15	19,9
	200	31•0	24.2	22.7	•70	40	7•3
Spring	300	41.7	35.0	31.0	•65	30	15.2
	200	29.7	21.7	20.7	•73	47	4.8
Summer	300	36.7	32.7	29•2	•61	21	16.1
	200	32.8	24.6	23•0	•72	44	7.1
Fall	300	41.9	36.9	32.5	.61	23	17.4
	200	37.6	29.7	26.9	.68	37	11.2

Table 8. Seasonal Wind Statistics and Derived Twelve-Hour Forecast Errors (continued)

SEATTLE (793)

Season	Level (mb)	σ knots	RP knots	RF knots	r	RVP	FA \$
Winter	300 200	54.3 42.7	46.7 33.7	40.1 30.0	.63 .68	26 37	19.4
Spring	300 200	53.9 40.0	41.5 29.6	<b>36.</b> 0 26.8	.70 •73	41 45	14.7
Summer	300	43.4	34•3	30.5	•68	37	13.1
	200	39.2	27•0	24.8	•76	47	7.4
Fall	300	52•4	41.4	36.0	.68	37	15.2
	200	46•0	35.4	31.3	.70	41	12.9
	INT	ERNATIONA	L FALLS (	247)			
Winter	300	47.5	41.3	35•9	•62	25	18.5
	200	38.4	26.9	24•8	•76	51	7.4
<b>S</b> pring	300	45.8	38.9	34•1	•64	28	16.7
	200	37.0	30.0	27•2	•67	34	11.7
Summer	300	39.6	30.1	27•2	•71	42	10.6
	200	41.9	31.0	27•9	•73	45	10.4
Fall	300	51.0	43.9	37•9	.63	26	18.7
	200	43.8	36.8	32•4	.65	30	15.9
	BOL	SE (681)					
Winter	300	45.6	39•7	34•7	.62	25	17.9
	200	39.4	30•3	27•4	.70	41	10.8
Spring	300	46.0	37•7	33.1	.66	33	15.4
	200	38.6	28•2	25.8	.73	47	8.7
Summer	300	32.6	26.4	24.4	.67	34	9.6
	200	33.8	24.3	22.7	.74	48	6.6
Fall	300	45.0	37.8	33.2	•65	30	16.1
	200	43.3	32.9	29.4	•71	42	11.6

Table 8. Seasonal Wind Statistics and Derived Twelve-Hour Forecast Errors (continued)

GREAT	FALLS	(775)
-------	-------	-------

Season	Level (mb)	ø knots	RP knots	RF knots	r	RVP ≸	FA \$
Winter	300 20 <b>0</b>	49.5 38.8	46.0 32.2	39•5 28•9	•57 •66	13 31	22.7
Spring	300	46.2	37.0	32.6	•68	<b>35</b>	14.3
	200	36.7	26.1	24.1	•75	50	7.5
Summer	300	36.7	27•5	25•2	•72	44	9.0
	200	37.6	26•3	24•3	•76	51	7.2
Fall	300	47.9	40.2	35.0	.65	30	17.0
	200	42.7	32.5	29.1	.71	42	11.5
	BIS	MARCK (76	<u>54)</u>				
Winter	300	44.0	37•0	32.6	•65	30	15.8
	200	35.3	25•4	23.6	•74	48	7.1
Spring	300 200	43•1 37•2	33.6 26.0	29.9 24.1	•70 •76	40 51	12.6
Summer	300	33.8	26.7	24.6	•69	38	9.4
	200	36.7	25.7	23.8	•76	51	7.0
Fall	300 200	44.8 41.3	37.6 31.0	33.0 27.9	•65 •72	30 44	16.2
	ST.	CLOUD (6	<u>55)</u>				
Winter	300 200	47.3 38.8	39•3 26•4	34.3 24.4	•66 •77	31 54	16.4
8pring	<b>30</b> 0	44.6	36.1	31.1	•67	34	17.5
	300	37.4	27.7	25.4	•73	45	8.7
Summer	300	35•3	25.4	23.6	•74	48	7•1
	200	37•8	26.8	24.7	•75	50	8•3
Fall	300	45.6	37.8	33.2	•66	31	15.7
	200	43.4	31.7	28.5	•73	47	10.2

Table 8. Seasonal Wind Statistics and Derived Twelve-Hour Forecast Errors (continued)

# GREEN BAY (645)

Season	Level (mb)	o knots	RP knots	RF knots	r	RVP	FA \$
Winter	300 200	50.6 43.1	41.0 30.6	35.6 27.6	•67 •75	34 50	16.2
Spring	300	45.2	37 • 5	33.0_	•66	31	15.5
	200	40.4	30.7	27.7	•71	42	10.7
Summer	300	35•9	26.6	24.5	•73	45	8.3
	200	38•2	28.6	26.1	•72	44	9.4
Fall	300	46.4	37.6	33.0	•67	34	15.1
	200	43.4	32.5	29.1	•72	44	11.1
	SAU	LT ST. MA	RIE (734)				
Winter	300	53.4	43.8	37.8	•66	33	17.2
	200	45.0	34.6	30.7	•70	41	12.6
<b>S</b> pring	300	47.9	40.2	35.0	•64	29	17.0
	200	41.1	31.2	28.1	•71	42	10.9
Summer	300 200	39•2 42•9	31.4 31.3	28.2 28.2	.68 .73	35 47	12.4
rall .	300	50.0	42.0	36.4	•64	29	17.6
	200	46.0	35.9	31.7	•70	40	13.4
	HI	CLEMENS (	537)				
Winter	300	54.9	47.8	40.9	•62	25	20.3
	200	45.4	33.6	29.9	•73	45	11.4
Spring	300	48.1	40.4	35.2	•64	29	17.0
	200	44.0	34.8	30.9	•68	37	13.2
Summer	<b>300</b>	35.9	29.4	26.7	•66	33	11.8
	200	41.7	30.9	27.9	•73	45	10.1
Fall	300 200	46.8 44.6	40.7 35.7	35.4 31.6	•62 •68	25 35	18.4

Table 8. Seasonal Wind Statistics and Derived Twelve-Hour Forecast Errors (continued)

BUFFALO (528)

Season	Level (mb)	g knots	RP knots	RF knots	r	RVP	FA \$
Winter	300 200	52•2 44•6	45.9 <b>33.4</b>	39.4 29.8	.61	23	20.3
Spring	<b>30</b> 0 200	47.9 42.5	41.7 33.1	36•2 29•6	•62 •70	25 39	18.7
Summer	300	35.9	27•6	25.3	•70	41	9.4
	200	41.1	29•6	26.8	•74	48	9.3
Fall	300	46.0	37•7	33.1	•66	33	15.4
	200	42.9	33•0	29.5	•70	41	11.9
	MAN	IWAKI, QU	IEBEC (722	<u>u</u>			
Winter	300	50.6	45.0	38.7	•61	21	20.6
	200	43.4	32.6	29.2	•72	44	11.2
Spring	300	48.7	41.!+	36.0	•64	28	17.6
	200	41.9	31.0	27.9	•73	45	10.4
Summer	300 200	38.6 41.7	30.5 31.3	27•5 25•2	•68 •72	37 44	11.7
Fall	300	46.2	39•3	34•3	.64	28	17.2
	200	43.6	34•4	30•6	.68	37	13.0
	HOME	2					
Winter	300	55.1	48.5	41.4	.61	2.jh	21.0
	200	45.8	35.3	31.2	.70	41	13.0
Spring	300	49.7	43.7	37•7	•61	23	19.8
	200	46.6	38.7	33•9	•66	31	16.0
Summer	300	40.0	29.2	26.5	•73	47	9.4
	200	45.6	33.7	30.0	•.3	45	11.3
Fall	300	48.9	39•1	34 · .	•68	35	15.0
	200	46.4	36•7	32 · 3	•69	38	14.1

Table 8. Seasonal Wind Statistics and Derived Twelve-Hour Forecast Errors (continued)

CARIBOU (	712)	
-----------	------	--

Season	Level (mb)	σ knots	RD knots	RF knots	r	RVP ≰	FA \$
Winter	<b>300</b>	56.6	48.7	41.6	.63	26	20.0
	200	47.3	35.5	31.4	.72	44	12.3
Spring	300	51.6	43.9	37•9	.64	28	18.4
	200	42.7	33.3	29•7	.70	40	12.4
Summer	300	42.1	35•4	31.3	•64	29	15.4
	200	43.1	33•6	29.9	•70	40	12.6
Fall	300	50.0	44.5	38.4	•61	21	20.2
	200	46.6	39.1	34.2	•64	29	16.5
	MED	FORD (597	i)				
Winter	300	51.0	42.3	36.7	.66	31	17.0
	200	42.9	31.7	28.5	•73	45	10.5
Spring	300	47.3	37•4	32.9	•68	37	14.1
	200	41.1	31•6	28.4	•71	41	11.4
Summer	300	37.8	29•9	27.1	•69	38	11.2
	200	37.2	26•4	24.4	•75	50	7.3
Fall	300	47.9	35•9	31.7	•72	44	12.4
	200	44.8	31•8	28.5	•75	50	9.9
	OAK	LAND (493	<u>)</u>				
Winter	300	51.2	38.9	34.0	•71	42	13.6
	200	46.9	32.4	29.0	•76	53	9.5
Spring	300	46.9	35.6	31.5	•71	42	12.5
	200	41.1	30.0	27.2	•73	47	9.5
Summer	300	33.0	23.8	22.4	•74	48	5•9
	200	34.9	23.0	21.7	•78	56	4•8
Fall	300 200	46.0 44.0	34.5 30.8	30.6 27.8	•72 •76	44 51	12.0

Table 8. Seasonal Wind Statistics and Derived Twelve-Hour Forecast Errors (continued)

ELY	′	h	Ω	6	١
FiL Y	L	4	О	0	,

Season	Level (mb)	σ kno <b>ts</b>	RP knots	RF knots	r	RVP ≸	FA \$
Winter	300	48.7	39.9	34.8	.66	33	16.1
	200	43.1	31.0	27.9	.74	48	9.8
Spring	300	45.8	35•7	31.6	•70	40	13.2
	200	40.7	<b>30•9</b>	27.8	• <b>71</b>	42	11.0
Summer	300	29•5	22•7	21.5	•70	41	6.1
	200	31•6	21•5	20.6	•77	54	3.8
Fall	300	43.1	34.0	30•2	.68	37	13.1
	200	41.7	30.9	27•8	.73	45	10.5
	DE	NVER (4	<u>3 9</u> )				
Winter	300	51•2	42.0	36•4	•66	29	16.7
	200	46•4	33.4	29•8	•74	48	10.6
Spring	300	45.0	39•2	34•3	•62	25	17.8
	200	43.6	31•8	28•5	•73	47	10.5
Summer	300	28.5	20.0	19.4	•76	51	2.9
	200	32.8	21.0	20.2	•80	59	3.1
Fall	300	42.1	34.9	30.9	•66	31	14.8
	200	43.6	31.8	28.5	•73	47	10.5
	100	OGE CITY	(451)				
Winter	300	50.4	42.0	36.4	•64	29	17.6
	200	44.8	31.8	28.5	•75	50	9.9
Spring	300	43•3	34•2	30.4	•68	37	13.1
	200	41•9	29•7	26.9	•75	50	9.0
Summer	300	26.0	18.2	18.0	•76	51	1.1
	200	30.3	20.0	19.4	•78	56	2.6
Fall	300	42.7	32.5	29.1	•71	42	11.5
	200	43.1	31.9	28.6	•73	45	10.7

Table 8. Seasonal Wind Statistics and Derived Twelve-Hour Forecast Errors (continued)

	AMO	HA (553)					
Sesson	Level (mb)	σ knots	RP knots	RF knots	r	RVP ≸	FA 5
Winter	300	51.6	43.9	37.9	.64	28	18.4
	200	45.4	32.7	29.2	.74	48	10.5
dpring	300	47.5	37.5	33.0	.69	38	14.1
	200	44.2	30.9	27.8	.76	51	9.3
Summer	300	29.1	21.5	20.6	•73	45	4.5
	200	34.0	24.5	22.9	•74	48	6.6
Fall	300	46.4	38.0	33·3	.66	<b>33</b>	15.6
	200	49.5	32.9	29·4	.73	45	11.0
	COL	UMBIA. MI	SSOURT (4	45)			
Winter	300	55.1	45.2	38.9	•66	33	17.4
	200	50.2	36.1	31.9	•74	48	11.3
Spring	300	46.4	36.7	32.3	.69	38	14.1
	200	44.6	32.1	28.8	.74	48	10.1
Summer	300	28.5	20.5	19.8	•74	48	3.5
	200	32.4	24.3	22.7	•72	44	7.2
Fall	300	43.6	34.4	30.6	.68	37	13.0
	200	43.1	31.5	28.3	.73	47	10.3
	RAN	TOUL (531	<u>)</u>				
Winter	300	54.3	45.6	39•2	.65	30	18.4
	200	48.3	34.8	30•9	.74	48	11.0
Spring	300	46.9	39.4	34.4	.65	70	16.8
	200	45.0	34.2	30.4	.71	42	12.0
Summer	300	30.1	23.8	22.4	.69	38	7.1
	200	36.1	27.8	25.4	.70	41	9.8

36.6 33.6 .66 .70

15.2 12.4

52.2 29.9

44.6 43.6

300 200

Pal1

Table 8. Seasonal Wind Statistics and Derived Twelve-Hour Forecast Errors (continued)

**DAYTON (429)** 

Season	Level (mb)	σ knots	RP knots	RF knots	r	RV₽ ≸	FA \$
Winter	300	56.1	47.1	40.4	.64	29	18.6
	200	50.0	38.0	33.3	.71	42	13.4
Spring	<b>300</b> 200	<b>46.0</b> 43.6	33.6 34.4	30.0 30.6	•73 •68	47 37	10.8
Summer	300	31.8	24.8	23.1	•70	40	8.1
	200	36.7	28.3	25.8	•70	41	10.0
Fall	300	43.1	38.8	34.0	•60	19	18.8
	200	42.7	33.7	30.0	•69	38	12.9
	PI	TTS BURGH	(520)				
Winter	300	54.1	48.1	41.1	.60	20	21.3
	200	47.9	38.3	33.6	.68	35	14.7
<b>S</b> pring	300	48.3	40.6	35•3	•64	29	17.2
	200	45.8	36.2	31•9	•69	38	14.0
Summer	300	34.0	26.9	24•7	•69	38	9•8
	200	40.4	29.9	27•1	•73	45	9•8
Fall	300	46.8	39•8	34•7	•64	28	17.3
	200	43.8	33•3	29•7	•71	42	11.8
	WAL	MOTOMINE	(405)				
Winter	300	53•2	46.3	39.8	.62	24	19.8
	200	45•6	36.5	32.2	.68	35	14.2
Spring	300	46.0	58.6	33.8	•65	30	16.4
	200	46.8	37.0	32.6	•69	38	14.0
Summer	300	34.9	24.4	22.8	•76	51	6•2
	200	40.4	27.9	25.5	•76	53	7•9
Fall	300	44.6	35•2	31.2	•68	37	13.4
	200	44.2	33•6	29.9	•74	48	12.0

Table 8. Seasonal Wind Statistics and Derived Twelve-Hour Forecast Errors (continued)

HEMPSTEAD (503)

Season	Level (mb)	σ knots	RP knots	RF knots	r	RVP	FA \$
Winter	300 200	56.8 46.4	51.1 39.0	43•5 34•1	•60 •64	19 - <b>29</b>	22.3
<b>S</b> pring	300	49.1	41.2	35•8	•65	30	17.2
	200	44.6	35.7	31•6	•68	35	13.9
Summer	300	38.0	28•9	26.3	•71	42	9•9
	200	42.9	30•9	27.9	•74	48	9•6
Fall	300	49.3	41.4	36.0	•65	30	17.2
	200	49.8	37.3	32.8	•72	44	12.7
	·NA	NTUCKET (	<u>506)</u>				
Winter	300	57•6	50.1	42•7	•62	24	20.7
	200	49•5	39.6	34•6	•68	35	15.1
Spring	300	48.9	40.6	35•3	•66	31	16.8
	200	44.4	34.2	30•4	•70	41	12.5
Summer	300	39.8	29•5	26.8	•73	45	9.6
	200	43.4	31•2	28.1	•75	50	9.8
Fall	300	47•9	38.8	34.0	•67	34	15.2
	200	48•7	35.6	31.5	•73	47	11.6
	LO	NG BEACH	(297)				
Winter	300	47•3	35•9	31.7	•71	42	12.7
	200	46•9	32•4	29.0	•76	53	9.5
Spring	300	42.7	33•7	30.0	•68	<i>37</i>	12.9
	200	41.7	30•0	27.2	•74	48	9.2
Summer.	300	26.0	16.9	17.0	•79	57	υ
	200	30.1	18.4	18.2	•81	62	0•8
Fall	300 200	36.5 36.7	28.8 26.1	26.2 24.1	•69 •75	38 50	10.7

Table 8. Seasonal Wind Statistics and Derived Twelve-Hour Forecast Errors (continued)

ALBUQUERQUE (	365)
---------------	------

Season	Level	o knots	RP knots	RF knots	r	RVP ≸	FA \$
Winter	300	44.8	36.3	32.0	•67	34	14.6
	200	42.7	31.6	28.4	•73	45	10.6
Spring	300	40.7	33.8	30.0	•65	30	14.3
	200	39.0	29.2	26.5	•72	44	9.8
Summer	300 200	24•2 29•5	15.7 18.6	16.1 18.3	•79 •80	57 61	0.0
Fall	.;00	36.5	27•7	25.4	•72	44	9•3
	200	40.7	28•5	26.0	•76	51	8•3
	FO	RT WORTH	(259)				
Winter	300	45.0	36.9	32.5	•66	33	15.1
	200	43.6	31.8	28.5	•73	47	10.3
<b>S</b> pring	300 200	41.3	31.0 31.6	27.9 28.4	•72 •73	44 47	10.6 10.3
Summer	300	23•3	15.8	16.2	•77	5 <b>4</b>	0.0
	200	29•3	19.0	18.6	•79	57	1.5
Fall	300	37•4	27 • 3	25.1	•73	47	8.4
	200	40•0	27 • 2	25.0	•77	54	2.2
	LU	TLE ROCK	(340)				
Winter	300	45.6	36.0	51.8	•69	38	13.7
	200	44.4	33.5	29.7	•7∂	44	11.5
Spring	300 200	41.1	31.6 29.6	28.4 26.8	•70 •77	41 54	11.4 8.2
Summer	300	25.8	17•£	17.7	•76	53	0.4
	200	30.4	21•0	19.0	•76	56	2.6
Fall	300	38±6	27.0	24.8	•76	91	7・5
	200	40±0	28.0	25.6	•76	91	8・0

Table 8. Seasonal Wind Statistics and Derived Twelve-Hour Forecast Errors (continued)

NASHVILLE	(327)
Man A Time	

Season	Level (mb)	o knots	RP knots	RF knots	r	R <b>V</b> P ≰	FA \$
Winter	300	44.4	36.0	31.8	•67	34	14.4
	200	42.7	33.3	29.7	•70	40	12.4
Spring	300	43.3	32.0	28.7	• <b>73</b>	<b>45</b>	10.7
	200	44.6	30.3	27.4	•77	54	8.4
Summer	300	26.6	20.0	19.4	•72	44	3.3
	200	32.4	22.7	21.5	•76	51	5.1
Fall	300 200	39•2 40•2	31.8 31.4	28.5 28.2	•67 •70	34 40	12.9
	GRE	ENSBORG	(317)				
Winter	300	45.4	40.4	35•2	•61	23	19.1
	200	41.7	34.6	30•7	•66	31	14.6
Spring	300	42.5	32.7	29•2	•71	41	12.0
	200	43.6	31.4	28•2	•74	48	10.0
Summer	300	28•5	21.7	20.7	•71	42	5•2
	200	33•8	23.0	21.7	•77	54	5•1
Fall	300	40.4	31•9	28.6	•69	38	12.2
	200	40.5	27•9	25.5	•76	53	7.8
	NO	RFOLK (30	<u>)8)</u>				
Winter	300	50.4	43.8	37.8	•63	25	19•3
	200	45.6	56.9	30.5	•67	34	14•7
Spring	300 200	45.0 44.6					
Summer	300 200	32.4 38.6					
Fall	300 200	44.0 45.0					

Table 8. Seasonal Wind Statistics and Derived Twelve-Hour Forecast Errors (continued)

CHARLESTO	W C.	α.	(2081
CHARGEST	)IV. D.		LZVOJ

Season	Level (mb)	σ knots	RP knots	RF knots	r	RVP	FA 5				
Winter	300	40.4	33.9	30.2	•64	29	14.5				
	200	39.0	32.8	29.3	•65	30	14.3				
Spring	300	41.3	29•7	27.0	•74	48	9.0				
	200	44.2	30•9	28.0	•76	51	8.7				
Summer	300	26.6	19•4	19.0	•73	47	2•2				
	200	33.2	22•9	21.7	•76	53	4•9				
Fall	300	40.0	28.8	26.2	•75	50	8.9				
	200	42.1	26.9	24.8	•80	59	6.1				
	TUCSON (274)										
Winter	300	46.9	29•5	26.8	.80	61	6.9				
	200	46.9	26•7	24.6	.84	67	4.9				
<b>S</b> pring	300	41.9	33·9	30.2	.67	34	13.4				
	200	41.3	29·7	26.9	.74	48	9.3				
Summer	300	23•7	19.2	18.8	•67	34	2.7				
	200	28•7	20.7	20.0	•74	48	3.5				
Fall	300	35•3	26.5	24.4	•72	44	8.6				
	200	38•6	29.0	26.4	•77	54	9.7				
	BI	SPRING C	(265)								
Winter	300	42.9	31.3	28•2	•73	47	10.0				
	200	41.3	31.0	27•9	•77	54	10.7				
Spring	300	37.4	27.3	25•1	•73	47	8.2				
	200	39.2	27.8	25•5	•75	50	8.0				
Summer	300	23•3	18.4	18.2	.68	37	1.3				
	200	29•7	22.3	21.2	.72	44	5.4				
Fall	300	34.5	24.1	22.6	•76	51	5•9				
	200	38.4	25.3	23.5	•78	56	6•0				

# LAKE CHARLES (240)

Season	Level (mb)	o knots	RP knots	RF knots	r	RVP ≸	FA 5				
Winter	300	39.6	27•7	25.4	•76	51	7.8				
	200	40.4	30•3	27.4	•77	54	10.3				
Spring	300	37.6	27.8	25•5 •	•73	45	8.7				
	200	40.9	26.6	24•5	•79	57	6.4				
Summer	300	23•5	19.0	18.7	•67	34	2.0				
	200	30•8	22.8	21.6	•73	45	5.6				
Fall	300	36.5	23•7	22•3	•79	57	4.8				
	200	39.4	25•6	23•8	•79	57	5.7				
	BURRWOOD (232)										
Winter	300	37.4	27•7	25•4	•73	45	8.7				
	200	39.6	26•1	24•1	•78	56	6.4				
Spring	300	35•3	24.0	22•5	•77	54	5.6				
	200	39•2	25.5	23•7	•79	57	5.8				
Summer	300	22.5	16.6	16.8	•73	45	0				
	200	28.9	22.0	21.0	•71	42	5•1				
Fall	300	34.9	22•9	21.5	•79	57	4.4				
	200	38.8	29•4	22.8	•80	61	5.0				
	MOI	TGOMERI	(226)_								
Winter	300	44.4	29•3	26.6	•78	56	7•7				
	200	44.6	27•2	25.0	•81	62	5•8				
<b>S</b> pring	300	42•9	33•9	30.2	.68	37	12.9				
	200	47•5	30•2	28.9	.77	54	9.2				
Summer	300	24.6	19•9	19.3	•67	34	3•9				
	200	32.4	25•6	23.8	•69	38	8•5				
Fall	300	41.7	28.4	25•9	•77	54	7.8				
	200	44.2	28.7	26•2	•79	57	7.0				

Table 8. Seasonal Wind Statistics and Derived Twelve-Hour Forecast Errors (continued)

JACKS	ONVILLE	(206)

Season	Level (mb)	σ knots	RP knots	RF knots	r	RVP %	FA %					
Winter	300	40.0	28.C	25.6	•76	51	8.0					
	200	41.9	27.2	25.0	• <b>79</b>	57	6.5					
Spring	300	38.8	24.4	22.8	.80	61	5.0					
	200	45.2	27.6	25.3	.81	62	6.0					
Summer	300 200	2 <b>2.</b> 1 29 <b>.</b> 3	15.0 17.6	15.6 17.6	•77 •82	54 64	0					
Fall	300	37.2	22•7	21.5	.81	62	3.8					
	200	41.1	25•1	23.4	.81	62	4.9					
	BROWNSVILLE (250)											
Winter	300	34.3	24•7	23.0	•74	48	6.9					
	200	38.6	26•2	24.2	•77	54	6.9					
Spring	300	29.5	21.8	20.8	•73	45	4.9					
	200	33.6	24.2	22.7	•74	48	6.2					
Summer	300	20.0	14.0	14.8	•76	51	0					
	200	27.9	19.3	18.9	•76	53	2•0					
Fall	300	31.0	20•2	19.6	•79	57	2•5					
	200	35.5	21•7	20.7	•81	62	3•4					
	MI	MI (202)										
Winter	300	37 • 2	25•7	23.8	•76	•53	6.8					
	200	37 • 0	26•6	24.5	•74	•48	7.8					
Spring	300	33.0	21.4	20.5	•79	57	3•5					
	200	38.2	25.2	23.4	•78	56	6•0					
Summer	300	19.2	14.0	14.8	•73	47	0					
	200	28.7	18.9	18.6	•78	56	1•4					
Fall	300	32•2	19.6	19•1	.81	62	1.9					
	200	39•4	23.2	21•9	.83	65	5.8					

Table 8. Seasonal Wind Statistics and Derived Twelve-Hour Forecast Errors (continued)

		M-JUAN- 3	. R. (52)	77			=
Season	Level	σ knots	RP knots	RF knots	r	RVP ≸	FA 5
Winter	300 200	27•7 29•9	18.8 19.7	18.5 19.2	•77 •78	54 56	1.5 2.2
Spring	300 200	23•9 29•1	15.5 19.2	15.9 18.8	•79 •78	57 5 <b>6</b>	0 1.8
Summer	300 200	16.7 23.5	13.2 16.2	14.2 16.5	•69 •76	38 5 <i>3</i>	0 0
Fall	300 200	22.1 30.1	15.9 19.0	16.2 18.6	•77 •80	54 61	0 1.7
	<u>AT</u> .	BROOK. C.	2. (806)				
Winter	300 200	21.5 26.6	14.0 18.4	14.8 18.2	•79 •76	57 53	0 1•0
Spring	300 200	18.0 23.1	11.5 14.8	12.8 15.4	.80 .80	59 59	0
Summer	300 200	11.2 18.2	10.8 16.6	16.8	•54 •58	08 17	0
Fall	300 200	13.4 19.8	10.6 14.1	17.7 14.9	.68 .75	37 50	t:

## 4.4 Analysis of Forecast Error Statistics

Selected quantities from Tables 7 and 8 were plotted on maps and analyzed in order to obtain a clearer picture of the geographical variations. The following charts for 6 hours at 300 mb are presented here to illustrate patterns which were found to be typical:

$\mathbf{RP}$	winter, Figure 1
$\mathbf{RP}$	summer, Figure 2
RVP	winter, Figure 3
RVP	summer, Figure 4
FA	winter, Figure 5
FA	summer, Figure 6

#### 4. 4. 1. DISTRIBUTION OF PERSISTENCE ERRORS

As noted in paragraph 3. 1. 4, the maximum persistence errors occur over the northeastern and northwestern U. S.; minimum errors over north central and southern sections. Between winter (Fig. 1) and summer (Fig. 2) the average error decreases by about 1/3 and the entire distribution shifts northward so that the maximum centers are located over southern Canada while a minimum center appears over the southwestern U. S. There seems to be some relationship between the vector mean wind field and the persistence distribution, especially in winter when the axes of maximum wind and maximum RP virtually coincide.

### 4. 4. 2. THE REDUCTION IN VARIANCE FIELD

The distribution of RVP in winter (Fig. 3) consists of minima in the eastern, central and northwestern U. S. with increasing values to the south. The principal feature of the summer distribution (Fig. 4) is a large area of maximum reduction over the central U. S., flanked by elongated areas of minimum values to the west and east. From Equations (10) and (22) we find that RVP = 100 [ 2r - 1], hence the contours in Figures 3 and 4 can be relabelled in terms of the persistence correlation.

## 4, 4, 3. FORECAST ADVANTAGE DISTRIBUTION

It is apparent that 6-hour subjective forecasts offer very little advantage over persistence. The maximum forecast gain is achieved in the winter (Fig. 5) when an advantage of 10% over persistence is attained in the northeastern and northwestern U. S. While small, this forecast advantage is

not fortuitous; a rough estimate of the probable effect of observational uncertainties in these regions shows them to be an order of magnitude smaller than the forecast advantage.

The results in summer (Fig. 6) indicate a decisive advantage for persistence. In fact south of 40°N the value of FA is negative everywhere. The only areas of positive forecast advantage are north of 40°N, reaching a maximum of about 5% in southern Canada. At 200 mb the gain of subjective forecasts is even less than at 300 mb except in the summer where the 200-mb values are larger for a few stations.

The performance of 12-hour subjective forecasts (Table 8) show a considerable improvement over the 6-hour results. For example at 300 mb in winter the 12-hour forecast advantage is greater than 20% over the northeastern and northwestern U. S. Also, in the summer the contour of zero advantage at 300 mb lies along the southern border of the U. S.

Figure 1. RP, Root Mean Square Error of Six-Hour Persistence Forecasts (knots), Winter, 300mb,





Figure 3. FVP, Percent (*) Reduction in Variance of Six-Hour Persistence Forecasts, Winter, 300mb.

Figure 4. RVP, Percent (7) Reduction in Variance of Six-Hour Persistence Forecasts, Summer, 200mb.



Figure 5. F.A. Forecasts Advantage (7) for Six-Hour Subjective Forecasts, Winter, 300mb.



Fit. Forecast Advantage (*) for Six-Hour Subjective Forecasts, Summer, 300mb.

Aubert, E. J. et al, 1960, Factor Analysis and Stepwise Regression Applied to the 24-hour Prediction of 500-mb Winds, Temperatures and Heights over a Silent Area (UNCL title), AFSG No. 119 (CONF) February.

Borg-Warner Corporation, 1961, Analysis of Aviation Meteorological Requirements, final report under Contract No. FAA/BRD-139, July.

Brooks, C. E. P. and Carruthers, N., 1953, Handbook of Statistical Methods in Meteorology, M. O. 538, Air Ministry, London, p.196.

Charles, B. N., 1959, U. S. Weather Bureau - Sandia Corporation Upper Wind Statistics from USWB-FCDA Data, Volume I. Basic Statistics, Part B: Months and Seasons Over Five-Year Period, Sandia Corporation, New Mexico.

Charles, B. N., 1960, U. S. Weather Bureau - Sandia Corporation Upper Wind Statistics from USWB-FCDA Data, Volume II, Interlevel Wind Correlations, Sandia Corporation, New Mexico.

Darling, E. M. Jr., and Kern, C. D., Capt., USAF, 1961, Effectiveness of the SAGE System in Relation to Wind Forecast Capability (UNCL title), AFSG No. 133 (SECRET), May.

Darling, E. M. Jr., 1960, Weather for Air Traffic Control and Aviation, 1960-1975, Special report prepared at the request of the Federal Aviation Agency, April.

Darling, E. M. Jr. and Lund, I. A., 1962, Silent Area Wind Prediction for USAF Manned Bombers (UNCL title), Air Force Survey in Geophysics, No. 146.

Durst, C. S., 1954, Variation of Wind with Time and Distance, Geophysical Memoirs No. 93, M. O. 584a, Air Ministry, London, p. 93.

Fourth Weather Wing Scientific Services (4WWSS), 1959, Report on the Upper Wind Verification Program for December, January and February, published in June; Report on the Upper Wind Verification Program for March, April and May, published in September.

Ellsaesser, Maj. H. W., 1957, An Investigation of the Errors in Upper-Level Wind Forecasts, AWSTR 105-140/2 and same title, Change A, AWS 105-140/1A, November.

McRae, J. N. and Phillpot, H. R. 1959, Some Statistics Relating to 300 and 200-mb Winds and Temperatures and Forecasts of these Elements on the Sydney-Nandi Air Route, <u>Australian Meteorological Magazine</u>, Melbourne, No. 25:1, p. 28, June.

UNCLASSIFIED	1. Meteorology—wind I. Darling, E. M.		IINCI ASSIBIED	1. Meteorology—wind	I. Darling, E. M.		UNCLASSIFIED	-
•••	AF Cambridge Research Laboratories, Bedford, Mass. Geophysics Research Directorate ERRORS IN SIX - AND TWELVE - HOUR PREDICTIVES OF UPPER-LEVEL WINDS by E. M. Darling.  July 1962. 88 pp. incl. illus.  AFCRL-62-682. Unclassified report	Analysis of a large sample of wind forecasts for 6- and 12- hour periods reveals that subjective forecasts are linearly related to the wind at the beginning of the forecast interval. This relationship enables one to develop a regression equation between forecast error and persistence error by means of which it is possible to extend the results derived from this sample. The variation of forecast and persistence errors with geography, level and season is discussed. It is found that the maximum advantage of subjective forecasts over persistence is 10% for 6-hour periods and 20% for 12-hour periods.		. AF Cambridge Research Laboratories, Bedford,	Mass. Geophysics Research Directorate ERRORS IN SIX-AND TWELVE - HOUR PREDIC- TIONS OF UPPER-LEVEL WINDS by E. M. Darling. July 1962. 88 pp. incl. illus. AFCRL-62-682 Unclassified report	Analysis of a large sample of wind forecasts for 6- and 12- hour periods reveals that subjective forecasts are linearly related to the wind at the beginning of the forecast interval. This relationship enables one to develop a regression equation between forecast error and persistence error by means of which it is possible to extend the results derived from this sample. The variation of forecast and persistence errors with geography, level and persistence errors with geography, level and assason is discussed. It is found that the maximum advantage of subjective forecasts over persistence is 10% for 6-hour periods and 20% for 12-hour periods.		
UNCLASSIFIED	i. Meteorology-wind I. Darling, E.M.	GELLING LONG	UNCLASSIFIED	1. Meteorology-wind	I. Darling, E.M.		CNCLASSIFTED	
•	4F Cambridge Research Laboratories, Bedford, Mass. Geophysics Research Directorate ERRORS IN SIX-AND TWELVE - HOUR PREDICTIONS OF UPPER-LEVEL WINDS by E. M. Darling. July 1962. 88 pp. incl. illus. Unclassified report	Analysis of a large sample of wind forecasts for 5- and 12- hour periods reveals that subjective fore casts are linearly related to the wind at the beginning of the forecast interval. This relationship enables one to develop a regression equation between forecast error and persistence error by means of wh.c. it is possible to extend the results derived from this sample. The variation of forecast and persistence errors with geography, level and season is discussed. It is found that the maximum advartage of subjective forecasts over persistence is 10% for 6-hour periods and 20% for 12-hour periods.		1F Cambridge Research Laboratories. Bedford,	NIA.8. Geophysics Research Directorate ERRONEN SIX-AND TWELVE - HOUR PREDICTIVES OF UPPER-LEVEL WINDS by E. M. Darling. July 1962. 88 pp. incl. illus. Unclassified report	Inalysis of a large sample of wind forecasts for its and 12-hour periods reveals that subjective forecasts are linearly related to the wind at the beginning of the forecast interval. This relationship enables one to develop a regression equation between forecast error and persistence error by means of which it is possible to extend the results derived from this sample. The variation of forecast and persistence errors with geography, level and persistence errors with geography. Ievel and season is fiscussed. It is found that the maximum advantage of subjective forecasts over persistence is 10% for 5-hour periods and 20% for 12-hour periods.		

Ė

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED CHITASSIFIED UNCLASSIFIED

The second secon

. --

1

ŧ