Deep learning -- Beyond Supervised Learning

Junjie Cao @ DLUT Spring 2018

Outline

Unsupervised Learning

- 化繁為簡
 - Auto-encoder
- 無中生有

Reinforcement Learning

Unsupervised Learning

• 化繁為簡

Learn a low dimensional feature from many input images without supervision

• 無中生有

Generate images similar with a set of images from code

Outline

Unsupervised Learning

- 化繁為簡
 - Auto-encoder
- 無中生有

Reinforcement Learning

Auto-encoder

Deep Auto-encoder

• NN encoder + NN decoder = a deep network

Reference: Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural networks." *Science* 313.5786 (2006): 504-507

Deep Auto-encoder

Auto-encoder

De-noising auto-encoder

More: Contractive auto-encoder

Ref: Rifai, Salah, et al. "Contractive auto-encoders: Explicit invariance during feature extraction." *Proceedings of the 28th International Conference on Machine Learning (ICML-11)*. 2011.

Vincent, Pascal, et al. "Extracting and composing robust features with denoising autoencoders." ICML, 2008.

• Greedy Layer-wise Pre-training again

• Greedy Layer-wise Pre-training again

Greedy Layer-wise Pre-training again

Greedy Layer-wise Pre-training again

Outline

Unsupervised Learning

- 化繁為簡
 - Auto-encoder
- 無中生有

Reinforcement Learning

Creation

Creation

Generative Models: https://openai.com/blog/generative-models/

What I cannot create, I do not understand.

Richard Feynman

https://www.quora.com/What-did-Richard-Feynman-mean-when-he-said-What-I-cannot-create-I-do-not-understand

Auto-encoder

Variation Auto-encoder (VAE)

Ref: Auto-Encoding Variational Bayes,

https://arxiv.org/abs/1312.6114

Why VAE?

VAE

Cifar-10

https://github.com/openai/iaf

Source of image: https://arxiv.org/pdf/1606.04934v1.pdf

Problems of VAE

It does not really try to simulate real images

Generative Adversarial Network (GAN)

What are some recent and potentially upcoming breakthroughs in unsupervised learning?

Yann LeCun, Director of Al Research at Facebook and Professor at NYU Written Jul 29 · Upvoted by Joaquin Quiñonero Candela, Director Applied Machine Learning at Facebook and Huang Xiao

Adversarial training is the coolest thing since sliced bread.

I've listed a bunch of relevant papers in a previous answer.

Expect more impressive results with this technique in the coming years.

What's missing at the moment is a good understanding of it so we can make it work reliably. It's very finicky. Sort of like ConvNet were in the 1990s, when I had the reputation of being the only person who could make them work (which wasn't true).

Ref: Generative Adversarial Networks, http://arxiv.org/abs/1406.2661

擬態的演化

http://peellden.pixnet.net/blog/post/40406899-2013-%E7%AC%AC%E5%9B%9B%E5%AD%A3%EF%BC%8C%E5%86%AC%E8%9D%B6%E5%AF%82%E5%AF%A5

The evolution of generation

Cifar-10

• Which one is machine-generated?

Ref: https://openai.com/blog/generative-models/

畫漫畫

- Ref: https://github.com/mattya/chainer-DCGAN
- Ref: http://qiita.com/mattya/items/e5bfe5e04b9d2f0bbd47

Image-to-Image Translation with Conditional Adversarial Networks – cvpr16

Outline

Unsupervised Learning

- 化繁為簡
 - Auto-encoder
- 無中生有

Reinforcement Learning

Scenario of Reinforcement Learning

Scenario of Reinforcement Learning

Supervised v.s. Reinforcement

Supervised

Scenario of Reinforcement Learning

Supervised v.s. Reinforcement

Supervised:

Next move: "5-5"

Next move: "3-3"

Reinforcement Learning

First move ____ many moves | Win!

Alpha Go is supervised learning + reinforcement learning.

Difficulties of Reinforcement Learning

- It may be better to sacrifice immediate reward to gain more long-term reward
 - E.g. Playing Go
- Agent's actions affect the subsequent data it receives
 - E.g. Exploration

Deep Reinforcement Learning

Deep Reinforcement Learning

Different network depth

Better retrieval performance, Less user labor

More applications

- Alpha Go, Playing Video Games, Dialogue
- Flying Helicopter
 - https://www.youtube.com/watch?v=0JL04JJjocc
- Driving
 - https://www.youtube.com/watch?v=0xo1Ldx3L5Q
- Google Cuts Its Giant Electricity Bill With DeepMind-Powered Al
 - http://www.bloomberg.com/news/articles/2016-07-19/google-cuts-its-giant-electricity-bill-with-deepmind-powered-ai

To learn deep reinforcement learning

- Lectures of David Silver
 - http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
 - 10 lectures (1:30 each)
- Deep Reinforcement Learning
 - http://videolectures.net/rldm2015_silver_reinforcement_learning/

Conclusion

如何成為武林高手

- 內外兼修
 - 内功充沛, 恃強克弱
 - 招數精妙,以快打慢
- · Deep Learning 也需要內外兼修
 - 內力: 運算資源
 - 招數: 各種技巧
- 内力充沛,平常的招式也有可能發會巨大的威力
- 只有內力、沒有招數
 - · WavNet 並不是只憑蠻力

希望大家都可以成為內外兼修的高手

Thanks