Lecture 5, Sept. 21

- 1) No office hours this afternoon
- 2) WA1→ Due 2:30 PM Monday, Sept. 26. Submit in dropbox outside Math Tutorial Center.

Least Upper Bound Property If $S \subset \mathbb{R}$ is non-empty and bounded above, then S has a least upper bound.

Archimedean Property I

5.1 Theorem. \mathbb{N} is not bounded above.

Proof. Suppose that $\mathbb N$ was bounded above. Then $\mathbb N$ has a least upper bound α .

Note that $\alpha - \frac{1}{2} < \alpha$. Hence $\alpha - \frac{1}{2}$ is not an upper bound for \mathbb{N} . Then there exists $n \in \mathbb{N}$ with $\alpha - \frac{1}{2} < n \le \alpha$. But then $n+1 \in \mathbb{N}$ and $n+1 > \alpha$ which is impossible.

Therefore \mathbb{N} must not be bounded above.

Note. Let $S \neq \emptyset \subset \mathbb{R}$ be bounded above. Let $\alpha = lub(S)$. if $\epsilon > 0$ then there exist $x_0 \in S$ with $\alpha - \epsilon < x_0 \leq \alpha$.

Archimedean Property II

5.2 Corollary. Let $\epsilon > 0$, Then there exists $n \in \mathbb{N}$ such that

$$0 < \frac{1}{n} < \epsilon$$

Proof. Take $\alpha = \frac{1}{\epsilon}$ in Archimedean Property I.

Density of $\ensuremath{\mathbb{R}}$

5.3 Definition. A subset $S \subset \mathbb{R}$ is said to be dense if for every $\epsilon > 0$ and $x \in \mathbb{R}$,

$$S \cap (x - \epsilon, x + \epsilon) \neq \emptyset$$

or equivalently if $S \cap (a, b) \neq \emptyset$ for all a < b in \mathbb{R}

5.4 Proposition. \mathbb{Q} and $\mathbb{R}\backslash\mathbb{Q}=\mathbb{Q}^c$ are dense in \mathbb{R}

Absolute Values

5.5 Definition.

$$f(x) = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

5.6 Example.

$$g(x) = \frac{|x|}{x}$$

 $Domain = \{x \in \mathbb{R} \mid x \neq 0\}$

$$g(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$$

Geometric Interpretation of |x|

- |x| represents the distance from x to 0.
- |x a| represents the distance from x to a.

Note. Distance between (0,0) and (x,y)

$$\sqrt{x^2+y^2}$$

Properties of |x|

- 1) $|x| \ge 0$ and $|x| = 0 \iff x = 0$
- 2) |ax| = |a||x| for all $a \in \mathbb{R}, x \in \mathbb{R}$
- 3) Triangle Inequality

$$|x - z| + |z - y| \ge |x - y|$$

5.7 Theorem. Triangle Inequality *If* x, y, $z \in \mathbb{R}$, *then*

$$|x - z| + |z - y| \ge |x - y|$$

Proof. Use Geometric Interpretation.

5.8 Theorem. Variants I For all $x, y \in \mathbb{R}$,

$$|x + y| \le |x| + |y|$$

5.9 Theorem. Variants II For all $x, y \in \mathbb{R}$,

$$||x| - |y|| \le |x - y|$$