Unit 13

——Programmable Logic Devices

张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

- PLD的背景知识
- ROM及其应用

Applications——1. 设计组合逻辑电路

F1 = A'BC+AB'C'+ABC'+ABC, F2 = A'B'C'+A'BC'+A'BC+AB'C'+ABC

$$F1 = \Sigma (3, 4, 6, 7), F2 = \Sigma (0, 2, 3, 4, 7)$$

利用ROM设计

组合逻辑函数的通用方法

- 2. 画出全译码的与阵
- 3. 若 Σ 中包含 m_i ,则或阵中, 在输出线与第 m_i 条字线的 交点处画一个•

Applications——2. 设计函数运算表

例:设计实现函数运算 $y = x^2$, x = 24位二进制数

或门阵列(存储矩阵)

 $x = B_3B_2B_1B_0: 0\sim 15$

 $y = x^2$: 0~15²

 $y: Y_7Y_6Y_5Y_4Y_3Y_2Y_1Y_0$

 B_3 B_2 B_2 B_1 B_1 B_0 B_0

实现函数运算 $y = x^2$ 的真值表

		输	入					输	出				注
	B_3	B_2	B_1	B_0	Y_7	Y_6	Y_5	Y_4	Y_3	Y_2	Y_1	Y_0	十进制数
	O	O	O	0	0	0	O	O	O	O	O	O	0
	O	O	O	1	0	0	O	O	O	O	O	1	1
	O	O	1	0	0	0	o	O	O	1	O	0	4
	O	O	1	1	0	0	o	O	1	0	O	1	9
	O	1	O	0	0	0	O	1	O	O	O	O	16
	O	1	O	1	0	0	0	1	1	O	O	1	25
	O	1	1	0	0	0	1	O	O	1	O	1	36
	O	1	1	1	0	O	1	1	0	0	0	1	49
	1	O	O	0	0	1	0	O	O	O	O	O	64
	1	O	O	1	0	1	O	1	O	O	O	1	81
	1	O	1	0	0	1	1	O	O	1	O	O	100
	1	O	1	1	0	1	1	1	1	O	O	1	121
	1	1	0	0	1	O	0	1	O	0	0	O	144
	1	1	O	1	1	0	1	O	1	O	O	1	169
	1	1	1	0	1	1	O	O	O	1	O	O	196
_	1	1	1	1	1	1	1	0	0	0	0	1	225

Applications—— 3. 设计一个同步时序的码制转换器,将串行输入的8421BCD码转换为串行输出的余3码。

■ 转换器的输入和输 出都是最低位优先

 t_0 时刻: 看 $X \rightarrow Z(0 \rightarrow 1)$ t_1 时刻: 看 $t_1 t_0$ 时刻的 $X \rightarrow Z$ t_2 时刻: 看 $t_2 t_1 t_0$ 时刻的 $X \rightarrow Z$ t_3 时刻: 看 $t_3 t_2 t_1 t_0$ 时刻的 $X \rightarrow Z$

U—									
	In	X put CD)		Z Output (excess-3)					
t ₃	t_2	t_1	t_0	t_3 t_2 t_1 t_0					
0	0	0	0	0 0 1 1					
0	0	0	1	0 1 0 0					
0	0	1	0	0 1 0 1					
0	0	.1.	1.	0 1 1 0					
0	1	0	0	0 1 1 1					
0	1	0	1	1 0 0 0					
0	1	1	0	1 0 0 1					
0	1	.1.	_1_,	1 0 <u>1 0</u>					
1	0	0	0	1 0 1 1					
1	0	0	1	1 1 0 0					

1 State graph and state table

2 Reduction of State Table

4 Transition table

(b) Transition table

		Next	Present		
	Present	State	Output (Z)		
Time	State	X = 0 1	X = 0 1		
t_0	Α	ВС	1 0		
t ₁	В	D E	1 0		
	С	E E	0 1		
t ₂	D	н н	0 1		
	E	н м	1 0		
t_3	Н	AA	0 1		
	M	A -	1 –		

(b) Transition table									
		$Q_2^+ Q_3^+$	2						
$Q_1Q_2Q_3$	X = 0	<i>X</i> = 1	X = 0	X = 1					
A 0 0 0	001	010	1	0					
B 0 0 1	011	100	1	0					
C 0 1 0	100	100	0	1					
D 0 1 1	101	101	0	1					
E 100	101	110	1	0					
H 1 0 1	000	000	0	1	\Box				
<i>M</i> 1 1 0	000	-	1	_					

(c) Truth table

 $Z D_1 D_2 D_3$

 $X \quad X \quad X$

3 State Assignment

方案1:逻辑门+D触发器

方案2: ROM+D触发器

每一组输入对应 ROM的一个存 储单元的地址 每一组输出对 应ROM的一 个存储单元中 的存放内容

_ ,	/_							77
	22.	(c) Tru	th	ta	ble		!
X	Q_1	Q_2	Q_3		Z	D_1	D_2	D_3
0	0	0	0		1	0	0	1
0	0	0	1		1	0	1	1
0	0	1	0		0	1	0	0
0	0	1	1		0	1	0	1
0	1	0	0		1	1	0	1
0	1	0	1		0	0	0	0
0	1	1	0		1	0	0	0
0	1	1	1		Х	Х	X	Х
1	0	0	0		0	0	1	0
1	0	0	1		0	1	0	0
1	0	1	0		1	1	0	0
1	0	1	1		1	1	0	1
1	1	0	0		0	1	1	0
1	1	0	1		1	0	0	0
1	1	1	0		Х	Х	Х	Х
1	1	1	1		Х	Х	Х	Х