

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 August 2001 (09.08.2001)

PCT

(10) International Publication Number
WO 01/57188 A2

(51) International Patent Classification⁷: C12N Jose, CA 95117 (US). DRMANAC, Radoje, T. [YU/US]; 850 East Greenwich Place, Palo Alto, CA 94303 (US).

(21) International Application Number: PCT/US01/03800

(22) International Filing Date: 5 February 2001 (05.02.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/496,914 3 February 2000 (03.02.2000) US
09/560,875 27 April 2000 (27.04.2000) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

US 09/496,914 (CIP)
Filed on 3 February 2000 (03.02.2000)
US 09/560,875 (CIP)
Filed on 27 April 2000 (27.04.2000)

(71) Applicant (for all designated States except US): HYSEQ, INC. [US/US]; 670 Almanor Avenue, Sunnyvale, CA 94086 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): TANG, Y., Tom [US/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). LIU, Chenghua [CN/US]; 1125 Ranchero Way, #14, San

(74) Agent: ELRIFI, Ivor, R.; Mintz, Levin, Cohen, Ferris, Glovsky, and Popeo, P.C., One Financial Center, Boston, MA 02111 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/57188 A2

(54) Title: NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

(57) Abstract: The present invention provides novel nucleic acids, novel polypeptide sequences encoded by these nucleic acids and uses thereof.

NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

1. TECHNICAL FIELD

The present invention provides novel polynucleotides and proteins encoded by such 5 polynucleotides, along with uses for these polynucleotides and proteins, for example in therapeutic, diagnostic and research methods.

2. BACKGROUND

Technology aimed at the discovery of protein factors (including e.g., cytokines, such as 10 lymphokines, interferons, CSFs, chemokines, and interleukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression cloning techniques clone novel polynucleotides "directly" in the sense that they rely on information directly related to the discovered protein (*i.e.*, partial DNA/amino acid sequence of the protein in the case of hybridization cloning; activity of the protein in the case of expression cloning). More recent 15 "indirect" cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization-based cloning techniques, have advanced the state of the art by making available large numbers of DNA/amino acid sequences for proteins that are known to have biological activity, for example, by virtue of their secreted nature in the 20 case of leader sequence cloning, by virtue of their cell or tissue source in the case of PCR-based techniques, or by virtue of structural similarity to other genes of known biological activity.

Identified polynucleotide and polypeptide sequences have numerous applications in, for example, diagnostics, forensics, gene mapping; identification of mutations responsible for 25 genetic disorders or other traits, to assess biodiversity, and to produce many other types of data and products dependent on DNA and amino acid sequences.

3. SUMMARY OF THE INVENTION

The compositions of the present invention include novel isolated polypeptides, novel 30 isolated polynucleotides encoding such polypeptides, including recombinant DNA molecules, cloned genes or degenerate variants thereof, especially naturally occurring variants such as allelic variants, antisense polynucleotide molecules, and antibodies that specifically recognize one or more epitopes present on such polypeptides, as well as hybridomas producing such antibodies.

The compositions of the present invention additionally include vectors, including expression 35 vectors, containing the polynucleotides of the invention, cells genetically engineered to contain such polynucleotides and cells genetically engineered to express such polynucleotides.

The present invention relates to a collection or library of at least one novel nucleic acid sequence assembled from expressed sequence tags (ESTs) isolated mainly by sequencing by hybridization (SBH), and in some cases, sequences obtained from one or more public databases. The invention relates also to the proteins encoded by such polynucleotides, along with therapeutic, diagnostic and research utilities for these polynucleotides and proteins. These nucleic acid sequences are designated as SEQ ID NO: 1-1350. The polypeptides sequences are designated SEQ ID NO: 1351-2700. The nucleic acids and polypeptides are provided in the Sequence Listing. In the nucleic acids provided in the Sequence Listing, A is adenosine; C is cytosine; G is guanine; T is thymine; and N is any of the four bases. In the amino acids provided in the Sequence Listing, * corresponds to the stop codon.

The nucleic acid sequences of the present invention also include, nucleic acid sequences that hybridize to the complement of SEQ ID NO:1-1350 under stringent hybridization conditions; nucleic acid sequences which are allelic variants or species homologues of any of the nucleic acid sequences recited above, or nucleic acid sequences that encode a peptide comprising a specific domain or truncation of the peptides encoded by SEQ ID NO:1-1350. A polynucleotide comprising a nucleotide sequence having at least 90% identity to an identifying sequence of SEQ ID NO:1-1350 or a degenerate variant or fragment thereof. The identifying sequence can be 100 base pairs in length.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO:1-1350. The sequence information can be a segment of any one of SEQ ID NO:1-1350 that uniquely identifies or represents the sequence information of SEQ ID NO:1-1350.

A collection as used in this application can be a collection of only one polynucleotide. The collection of sequence information or identifying information of each sequence can be provided on a nucleic acid array. In one embodiment, segments of sequence information is provided on a nucleic acid array to detect the polynucleotide that contains the segment. The array can be designed to detect full-match or mismatch to the polynucleotide that contains the segment. The collection can also be provided in a computer-readable format.

This invention also includes the reverse or direct complement of any of the nucleic acid sequences recited above; cloning or expression vectors containing the nucleic acid sequences; and host cells or organisms transformed with these expression vectors. Nucleic acid sequences (or their reverse or direct complements) according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology, such as use as hybridization probes, use as primers for PCR, use in an array, use in computer-readable media, use in sequencing

full-length genes, use for chromosome and gene mapping, use in the recombinant production of protein, and use in the generation of anti-sense DNA or RNA, their chemical analogs and the like.

In a preferred embodiment, the nucleic acid sequences of SEQ ID NO:1-1350 or novel segments or parts of the nucleic acids of the invention are used as primers in expression assays that are well known in the art. In a particularly preferred embodiment, the nucleic acid sequences of SEQ ID NO:1-1350 or novel segments or parts of the nucleic acids provided herein are used in diagnostics for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., *Science* 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

- 10 The isolated polynucleotides of the invention include, but are not limited to, a polynucleotide comprising any one of the nucleotide sequences set forth in SEQ ID NO:1-1350; a polynucleotide comprising any of the full length protein coding sequences of SEQ ID NO:1 - 1350; and a polynucleotide comprising any of the nucleotide sequences of the mature protein coding sequences of SEQ ID NO: 1- 1350. The polynucleotides of the present invention also include, but 15 are not limited to, a polynucleotide that hybridizes under stringent hybridization conditions to (a) the complement of any one of the nucleotide sequences set forth in SEQ ID NO:1-1350; (b) a nucleotide sequence encoding any one of the amino acid sequences set forth in the Sequence Listing (e.g., SEQ ID NO: 1351-2700); (c) a polynucleotide which is an allelic variant of any polynucleotides recited above; (d) a polynucleotide which encodes a species homolog (e.g. orthologs) of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of any of the polypeptides comprising an amino acid sequence set forth in the Sequence Listing.

- 20 The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising any of the amino acid sequences set forth in the Sequence Listing; or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides with biological activity that are encoded by (a) any of the polynucleotides having a nucleotide sequence set forth in SEQ ID NO:1-1350; or (b) polynucleotides that hybridize to the complement of the polynucleotides of (a) under stringent hybridization conditions. Biologically or immunologically active variants of any of the polypeptide sequences in the Sequence Listing, and "substantial 25 equivalents" thereof (e.g., with at least about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% amino acid sequence identity) that preferably retain biological activity are also contemplated. The polypeptides of the invention may be wholly or partially chemically synthesized but are preferably produced by recombinant means using the genetically engineered cells (e.g. host cells) of the invention.

The invention also provides compositions comprising a polypeptide of the invention. Polypeptide compositions of the invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

5 The invention also provides host cells transformed or transfected with a polynucleotide of the invention.

The invention also relates to methods for producing a polypeptide of the invention comprising growing a culture of the host cells of the invention in a suitable culture medium under conditions permitting expression of the desired polypeptide, and purifying the polypeptide from the culture or from the host cells. Preferred embodiments include those in which the 10 protein produced by such process is a mature form of the protein.

Polynucleotides according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology. These techniques include use as hybridization probes, use as oligomers, or primers, for PCR, use for chromosome and gene mapping, use in the recombinant production of protein, and use in generation of anti-sense DNA 15 or RNA, their chemical analogs and the like. For example, when the expression of an mRNA is largely restricted to a particular cell or tissue type, polynucleotides of the invention can be used as hybridization probes to detect the presence of the particular cell or tissue mRNA in a sample using, e.g., *in situ* hybridization.

In other exemplary embodiments, the polynucleotides are used in diagnostics as 20 expressed sequence tags for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The polypeptides according to the invention can be used in a variety of conventional procedures and methods that are currently applied to other proteins. For example, a polypeptide 25 of the invention can be used to generate an antibody that specifically binds the polypeptide. Such antibodies, particularly monoclonal antibodies, are useful for detecting or quantitating the polypeptide in tissue. The polypeptides of the invention can also be used as molecular weight markers, and as a food supplement.

Methods are also provided for preventing, treating, or ameliorating a medical condition 30 which comprises the step of administering to a mammalian subject a therapeutically effective amount of a composition comprising a polypeptide of the present invention and a pharmaceutically acceptable carrier.

In particular, the polypeptides and polynucleotides of the invention can be utilized, for example, in methods for the prevention and/or treatment of disorders involving aberrant protein 35 expression or biological activity.

The present invention further relates to methods for detecting the presence of the polynucleotides or polypeptides of the invention in a sample. Such methods can, for example, be utilized as part of prognostic and diagnostic evaluation of disorders as recited herein and for the identification of subjects exhibiting a predisposition to such conditions. The invention provides

5 a method for detecting the polynucleotides of the invention in a sample, comprising contacting the sample with a compound that binds to and forms a complex with the polynucleotide of interest for a period sufficient to form the complex and under conditions sufficient to form a complex and detecting the complex such that if a complex is detected, the polynucleotide of interest is detected. The invention also provides a method for detecting the polypeptides of the

10 invention in a sample comprising contacting the sample with a compound that binds to and form a complex with the polypeptide under conditions and for a period sufficient to form the complex and detecting the formation of the complex such that if a complex is formed, the polypeptide is detected.

The invention also provides kits comprising polynucleotide probes and/or monoclonal antibodies, and optionally quantitative standards, for carrying out methods of the invention. Furthermore, the invention provides methods for evaluating the efficacy of drugs, and monitoring the progress of patients, involved in clinical trials for the treatment of disorders as recited above.

The invention also provides methods for the identification of compounds that modulate (i.e., increase or decrease) the expression or activity of the polynucleotides and/or polypeptides of the invention. Such methods can be utilized, for example, for the identification of compound that can ameliorate symptoms of disorders as recited herein. Such methods can include, but are not limited to, assays for identifying compounds and other substances that interact with (e.g., bind to) the polypeptides of the invention. The invention provides a method for identifying a compound that binds to the polypeptides of the invention comprising contacting the compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and detecting the complex by detecting the reporter gene sequence expression such that if expression of the reporter gene is detected the compound binds to a polypeptide of the invention is identified.

The methods of the invention also provides methods for treatment which involve the administration of the polynucleotides or polypeptides of the invention to individuals exhibiting symptoms or tendencies. In addition, the invention encompasses methods for treating diseases or disorders as recited herein comprising administering compounds and other substances that modulate the overall activity of the target gene products. Compounds and other substances can

effect such modulation either on the level of target gene/protein expression or target protein activity.

The polypeptides of the present invention and the polynucleotides encoding them are also useful for the same functions known to one of skill in the art as the polypeptides and 5 polynucleotides to which they have homology (set forth in Table 2). If no homology is set forth for a sequence, then the polypeptides and polynucleotides of the present invention are useful for a variety of applications, as described herein, including use in arrays for detection.

10 **4. DETAILED DESCRIPTION OF THE INVENTION**

4.1 DEFINITIONS

It must be noted that as used herein and in the appended claims, the singular forms "a", "an" and "the" include plural references unless the context clearly dictates otherwise.

15 The term "active" refers to those forms of the polypeptide which retain the biologic and/or immunologic activities of any naturally occurring polypeptide. According to the invention, the terms "biologically active" or "biological activity" refer to a protein or peptide having structural, regulatory or biochemical functions of a naturally occurring molecule. Likewise "immunologically active" or "immunological activity" refers to the capability of the 20 natural, recombinant or synthetic polypeptide to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The term "activated cells" as used in this application are those cells which are engaged in extracellular or intracellular membrane trafficking, including the export of secretory or enzymatic molecules as part of a normal or disease process.

25 The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence 5'-AGT-3' binds to the complementary sequence 3'-TCA-5'. Complementarity between two single-stranded molecules may be "partial" such that only some of the nucleic acids bind or it may be "complete" such that total complementarity exists between the single stranded molecules. The degree of 30 complementarity between the nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands.

The term "embryonic stem cells (ES)" refers to a cell that can give rise to many differentiated cell types in an embryo or an adult, including the germ cells. The term "germ line stem cells (GSCs)" refers to stem cells derived from primordial stem cells that provide a steady 35 and continuous source of germ cells for the production of gametes. The term "primordial germ

cells (PGCs)" refers to a small population of cells set aside from other cell lineages particularly from the yolk sac, mesenteries, or gonadal ridges during embryogenesis that have the potential to differentiate into germ cells and other cells. PGCs are the source from which GSCs and ES cells are derived. The PGCs, the GSCs and the ES cells are capable of self-renewal. Thus these cells 5 not only populate the germ line and give rise to a plurality of terminally differentiated cells that comprise the adult specialized organs, but are able to regenerate themselves.

The term "expression modulating fragment," EMF, means a series of nucleotides which modulates the expression of an operably linked ORF or another EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked 10 sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are nucleic acid fragments which induce the expression of an operably linked ORF in response to a specific regulatory factor or physiological event.

The terms "nucleotide sequence" or "nucleic acid" or "polynucleotide" or 15 "oligonucleotide" are used interchangeably and refer to a heteropolymer of nucleotides or the sequence of these nucleotides. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA) or to any DNA-like or RNA-like material. In the sequences herein A is adenine, C is cytosine, T is thymine, G is guanine and N is A, C, G or T 20 (U). It is contemplated that where the polynucleotide is RNA, the T (thymine) in the sequences provided herein is substituted with U (uracil). Generally, nucleic acid segments provided by this invention may be assembled from fragments of the genome and short oligonucleotide linkers, or from a series of oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid which is capable of being expressed in a recombinant transcriptional unit comprising 25 regulatory elements derived from a microbial or viral operon, or a eukaryotic gene.

The terms "oligonucleotide fragment" or a "polynucleotide fragment", "portion," or "segment" or "probe" or "primer" are used interchangeably and refer to a sequence of nucleotide residues which are at least about 5 nucleotides, more preferably at least about 7 nucleotides, more preferably at least about 9 nucleotides, more preferably at least about 11 nucleotides and 30 most preferably at least about 17 nucleotides. The fragment is preferably less than about 500 nucleotides, preferably less than about 200 nucleotides, more preferably less than about 100 nucleotides, more preferably less than about 50 nucleotides and most preferably less than 30 nucleotides. Preferably the probe is from about 6 nucleotides to about 200 nucleotides, preferably from about 15 to about 50 nucleotides, more preferably from about 17 to 30 35 nucleotides and most preferably from about 20 to 25 nucleotides. Preferably the fragments can

be used in polymerase chain reaction (PCR), various hybridization procedures or microarray procedures to identify or amplify identical or related parts of mRNA or DNA molecules. A fragment or segment may uniquely identify each polynucleotide sequence of the present invention. Preferably the fragment comprises a sequence substantially similar to any one of SEQ

5 ID NOs:1-1350.

Probes may, for example, be used to determine whether specific mRNA molecules are present in a cell or tissue or to isolate similar nucleic acid sequences from chromosomal DNA as described by Walsh et al. (Walsh, P.S. et al., 1992, PCR Methods Appl 1:241-250). They may be labeled by nick translation, Klenow fill-in reaction, PCR, or other methods well known in the art. Probes of the present invention, their preparation and/or labeling are elaborated in Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY; or Ausubel, F.M. et al., 1989, Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, both of which are incorporated herein by reference in their entirety.

15 The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO:1-1350. The sequence information can be a segment of any one of SEQ ID NO:1-1350 that uniquely identifies or represents the sequence information of that sequence of SEQ ID NO:1-1350. One such segment can be a twenty-mer nucleic acid sequence because the probability that a twenty-mer is fully matched in 20 the human genome is 1 in 300. In the human genome, there are three billion base pairs in one set of chromosomes. Because 4^{20} possible twenty-mers exist, there are 300 times more twenty-mers than there are base pairs in a set of human chromosomes. Using the same analysis, the probability for a seventeen-mer to be fully matched in the human genome is approximately 1 in 5. When these segments are used in arrays for expression studies, fifteen-mer segments can be 25 used. The probability that the fifteen-mer is fully matched in the expressed sequences is also approximately one in five because expressed sequences comprise less than approximately 5% of the entire genome sequence.

Similarly, when using sequence information for detecting a single mismatch, a segment can be a twenty-five mer. The probability that the twenty-five mer would appear in a human genome 30 with a single mismatch is calculated by multiplying the probability for a full match ($1 \div 4^{25}$) times the increased probability for mismatch at each nucleotide position (3×25). The probability that an eighteen mer with a single mismatch can be detected in an array for expression studies is approximately one in five. The probability that a twenty-mer with a single mismatch can be detected in a human genome is approximately one in five.

The term "open reading frame," ORF, means a series of nucleotide triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

The terms "operably linked" or "operably associated" refer to functionally related nucleic acid sequences. For example, a promoter is operably associated or operably linked with a coding sequence if the promoter controls the transcription of the coding sequence. While operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements e.g. repressor genes are not contiguously linked to the coding sequence but still control transcription/translation of the coding sequence.

The term "pluripotent" refers to the capability of a cell to differentiate into a number of differentiated cell types that are present in an adult organism. A pluripotent cell is restricted in its differentiation capability in comparison to a totipotent cell.

The terms "polypeptide" or "peptide" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide or protein sequence or fragment thereof and to naturally occurring or synthetic molecules. A polypeptide "fragment," "portion," or "segment" is a stretch of amino acid residues of at least about 5 amino acids, preferably at least about 7 amino acids, more preferably at least about 9 amino acids and most preferably at least about 17 or more amino acids. The peptide preferably is not greater than about 200 amino acids, more preferably less than 150 amino acids and most preferably less than 100 amino acids. Preferably the peptide is from about 5 to about 200 amino acids. To be active, any polypeptide must have sufficient length to display biological and/or immunological activity.

The term "naturally occurring polypeptide" refers to polypeptides produced by cells that have not been genetically engineered and specifically contemplates various polypeptides arising from post-translational modifications of the polypeptide including, but not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation.

The term "translated protein coding portion" means a sequence which encodes for the full length protein which may include any leader sequence or any processing sequence.

The term "mature protein coding sequence" means a sequence which encodes a peptide or protein without a signal or leader sequence. The "mature protein portion" means that portion of the protein which does not include a signal or leader sequence. The peptide may have been produced by processing in the cell which removes any leader/signal sequence. The mature protein portion may or may not include the initial methionine residue. The methionine residue may be removed from the protein during processing in the cell. The peptide may be produced synthetically or the protein may have been produced using a polynucleotide only encoding for the mature protein coding sequence.

The term "derivative" refers to polypeptides chemically modified by such techniques as ubiquitination, labeling (*e.g.*, with radionuclides or various enzymes), covalent polymer attachment such as pegylation (derivatization with polyethylene glycol) and insertion or substitution by chemical synthesis of amino acids such as ornithine, which do not normally occur
5 in human proteins.

The term "variant"(*or "analog"*) refers to any polypeptide differing from naturally occurring polypeptides by amino acid insertions, deletions, and substitutions, created using, *e.g.*, recombinant DNA techniques. Guidance in determining which amino acid residues may be replaced, added or deleted without abolishing activities of interest, may be found by comparing
10 the sequence of the particular polypeptide with that of homologous peptides and minimizing the number of amino acid sequence changes made in regions of high homology (conserved regions) or by replacing amino acids with consensus sequence.

Alternatively, recombinant variants encoding these same or similar polypeptides may be synthesized or selected by making use of the "redundancy" in the genetic code. Various codon substitutions, such as the silent changes which produce various restriction sites, may be introduced to optimize cloning into a plasmid or viral vector or expression in a particular prokaryotic or eukaryotic system. Mutations in the polynucleotide sequence may be reflected in the polypeptide or domains of other peptides added to the polypeptide to modify the properties of any part of the polypeptide, to change characteristics such as ligand-binding affinities, interchain
15 affinities, or degradation/turnover rate.

Preferably, amino acid "substitutions" are the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, *i.e.*, conservative amino acid replacements. "Conservative" amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic
25 nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid. "Insertions" or
30 "deletions" are preferably in the range of about 1 to 20 amino acids, more preferably 1 to 10 amino acids. The variation allowed may be experimentally determined by systematically making insertions, deletions, or substitutions of amino acids in a polypeptide molecule using recombinant DNA techniques and assaying the resulting recombinant variants for activity.

Alternatively, where alteration of function is desired, insertions, deletions or
35 non-conservative alterations can be engineered to produce altered polypeptides. Such alterations

can, for example, alter one or more of the biological functions or biochemical characteristics of the polypeptides of the invention. For example, such alterations may change polypeptide characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate. Further, such alterations can be selected so as to generate polypeptides that are better suited
5 for expression, scale up and the like in the host cells chosen for expression. For example, cysteine residues can be deleted or substituted with another amino acid residue in order to eliminate disulfide bridges.

The terms "purified" or "substantially purified" as used herein denotes that the indicated nucleic acid or polypeptide is present in the substantial absence of other biological
10 macromolecules, *e.g.*, polynucleotides, proteins, and the like. In one embodiment, the polynucleotide or polypeptide is purified such that it constitutes at least 95% by weight, more preferably at least 99% by weight, of the indicated biological macromolecules present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 1000 daltons, can be present).

15 The term "isolated" as used herein refers to a nucleic acid or polypeptide separated from at least one other component (*e.g.*, nucleic acid or polypeptide) present with the nucleic acid or polypeptide in its natural source. In one embodiment, the nucleic acid or polypeptide is found in the presence of (if anything) only a solvent, buffer, ion, or other component normally present in a solution of the same. The terms "isolated" and "purified" do not encompass nucleic acids or
20 polypeptides present in their natural source.

The term "recombinant," when used herein to refer to a polypeptide or protein, means that a polypeptide or protein is derived from recombinant (*e.g.*, microbial, insect, or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (*e.g.*, yeast) expression systems. As a product, "recombinant microbial"
25 defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, *e.g.*, *E. coli*, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern in general different from those expressed in mammalian cells.

30 The term "recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. An expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3)
35 appropriate transcription initiation and termination sequences. Structural units intended for use

in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an amino terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed 5 recombinant protein to provide a final product.

The term "recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extrachromosomally. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked 10 to the DNA segment or synthetic gene to be expressed. This term also means host cells which have stably integrated a recombinant genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers. Recombinant expression systems as defined herein will express polypeptides or proteins endogenous to the cell upon induction of the regulatory elements linked to the endogenous DNA segment or gene to be expressed. The cells 15 can be prokaryotic or eukaryotic.

The term "secreted" includes a protein that is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence when it is expressed in a suitable host cell. "Secreted" proteins include without limitation proteins secreted wholly (*e.g.*, soluble proteins) or partially (*e.g.*, receptors) from the cell in which they are 20 expressed. "Secreted" proteins also include without limitation proteins that are transported across the membrane of the endoplasmic reticulum. "Secreted" proteins are also intended to include proteins containing non-typical signal sequences (*e.g.* Interleukin-1 Beta, see Krasney, P.A. and Young, P.R. (1992) Cytokine 4(2):134 -143) and factors released from damaged cells (*e.g.* Interleukin-1 Receptor Antagonist, see Arend, W.P. et. al. (1998) Annu. Rev. Immunol. 25 16:27-55)

Where desired, an expression vector may be designed to contain a "signal or leader sequence" which will direct the polypeptide through the membrane of a cell. Such a sequence may be naturally present on the polypeptides of the present invention or provided from heterologous protein sources by recombinant DNA techniques.

The term "stringent" is used to refer to conditions that are commonly understood in the art as stringent. Stringent conditions can include highly stringent conditions (*i.e.*, hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1X SSC/0.1% SDS at 68°C), and moderately stringent conditions (*i.e.*, washing in 0.2X SSC/0.1% SDS at 42°C). Other exemplary hybridization conditions are 30 described herein in the examples.

In instances of hybridization of deoxyoligonucleotides, additional exemplary stringent hybridization conditions include washing in 6X SSC/0.05% sodium pyrophosphate at 37°C (for 14-base oligonucleotides), 48°C (for 17-base oligos), 55°C (for 20-base oligonucleotides), and 60°C (for 23-base oligonucleotides).

- 5 As used herein, "substantially equivalent" can refer both to nucleotide and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between the reference and subject sequences. Typically, such a substantially equivalent sequence varies from one of those listed herein by no more than about 10 35% (*i.e.*, the number of individual residue substitutions, additions, and/or deletions in a substantially equivalent sequence, as compared to the corresponding reference sequence, divided by the total number of residues in the substantially equivalent sequence is about 0.35 or less). Such a sequence is said to have 65% sequence identity to the listed sequence. In one embodiment, a substantially equivalent, *e.g.*, mutant, sequence of the invention varies from a 15 listed sequence by no more than 30% (70% sequence identity); in a variation of this embodiment, by no more than 25% (75% sequence identity); and in a further variation of this embodiment, by no more than 20% (80% sequence identity) and in a further variation of this embodiment, by no more than 10% (90% sequence identity) and in a further variation of this embodiment, by no more than 5% (95% sequence identity). Substantially equivalent, *e.g.*, 20 mutant, amino acid sequences according to the invention preferably have at least 80% sequence identity with a listed amino acid sequence, more preferably at least 85% sequence identity, more preferably at least 90% sequence identity, more preferably at least 95% identity, more preferably at least 98% identity, and most preferably at least 99% identity. Substantially equivalent nucleotide sequences of the invention can have lower percent sequence identities, taking into 25 account, for example, the redundancy or degeneracy of the genetic code. Preferably, nucleotide sequence has at least about 65% identity, more preferably at least about 75% identity, more preferably at least about 80% sequence identity, more preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% identity, more preferably at least about 98% sequence identity, and most preferably at least 30 about 99% sequence identity. For the purposes of the present invention, sequences having substantially equivalent biological activity and substantially equivalent expression characteristics are considered substantially equivalent. For the purposes of determining equivalence, truncation of the mature sequence (*e.g.*, via a mutation which creates a spurious stop codon) should be disregarded. Sequence identity may be determined, *e.g.*, using the Jotun Hein method (Hein, J.

(1990) Methods Enzymol. 183:626-645). Identity between sequences can also be determined by other methods known in the art, e.g. by varying hybridization conditions.

The term "totipotent" refers to the capability of a cell to differentiate into all of the cell types of an adult organism.

- 5 The term "transformation" means introducing DNA into a suitable host cell so that the DNA is replicable, either as an extrachromosomal element, or by chromosomal integration. The term "transfection" refers to the taking up of an expression vector by a suitable host cell, whether or not any coding sequences are in fact expressed. The term "infection" refers to the introduction of nucleic acids into a suitable host cell by use of a virus or viral vector.
- 10 As used herein, an "uptake modulating fragment," UMF, means a series of nucleotides which mediate the uptake of a linked DNA fragment into a cell. UMFs can be readily identified using known UMFs as a target sequence or target motif with the computer-based systems described below. The presence and activity of a UMF can be confirmed by attaching the suspected UMF to a marker sequence. The resulting nucleic acid molecule is then incubated
- 15 with an appropriate host under appropriate conditions and the uptake of the marker sequence is determined. As described above, a UMF will increase the frequency of uptake of a linked marker sequence.

Each of the above terms is meant to encompass all that is described for each, unless the context dictates otherwise.

20

4.2 NUCLEIC ACIDS OF THE INVENTION

Nucleotide sequences of the invention are set forth in the Sequence Listing.

- The isolated polynucleotides of the invention include a polynucleotide comprising the nucleotide sequences of SEQ ID NO:1-1350 ; a polynucleotide encoding any one of the peptide sequences of SEQ ID NO:1351-2700; and a polynucleotide comprising the nucleotide sequence encoding the mature protein coding sequence of the polypeptides of any one of SEQ ID NO:1351-2700. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent conditions to (a) the complement of any of the nucleotides sequences of SEQ ID NO:1-1350 ; (b) nucleotide sequences encoding any one of the amino acid sequences set forth in the Sequence Listing; (c) a polynucleotide which is an allelic variant of any polynucleotide recited above; (d) a polynucleotide which encodes a species homolog of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of the polypeptides of SEQ ID NO: 1351-2700. Domains of interest may depend on the nature of the encoded polypeptide; e.g., domains in receptor-like polypeptides include ligand-binding, extracellular, transmembrane, or cytoplasmic

domains, or combinations thereof; domains in immunoglobulin-like proteins include the variable *immunoglobulin-like domains*; domains in enzyme-like polypeptides include catalytic and substrate binding domains; and domains in ligand polypeptides include receptor-binding domains.

5 The polynucleotides of the invention include naturally occurring or wholly or partially synthetic DNA, *e.g.*, cDNA and genomic DNA, and RNA, *e.g.*, mRNA. The polynucleotides may include all of the coding region of the cDNA or may represent a portion of the coding region of the cDNA.

The present invention also provides genes corresponding to the cDNA sequences disclosed
10 herein. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. Further 5' and 3' sequence can be obtained using methods known in the art. For example, full length cDNA or genomic DNA that
15 corresponds to any of the polynucleotides of SEQ ID NO:1-1350 can be obtained by screening appropriate cDNA or genomic DNA libraries under suitable hybridization conditions using any of the polynucleotides of SEQ ID NO:1-1350 or a portion thereof as a probe. Alternatively, the polynucleotides of SEQ ID NO:1-1350 may be used as the basis for suitable primer(s) that allow identification and/or amplification of genes in appropriate genomic DNA or cDNA libraries.

20 The nucleic acid sequences of the invention can be assembled from ESTs and sequences (including cDNA and genomic sequences) obtained from one or more public databases, such as dbEST, gbpri, and UniGene. The EST sequences can provide identifying sequence information, representative fragment or segment information, or novel segment information for the full-length gene.

25 The polynucleotides of the invention also provide polynucleotides including nucleotide sequences that are substantially equivalent to the polynucleotides recited above. Polynucleotides according to the invention can have, *e.g.*, at least about 65%, at least about 70%, at least about 75%, at least about 80%, 81%, 82%, 83%, 84%, more typically at least about 85%, 86%, 87%, 88%, 89%, more typically at least about 90%, 91%, 92%, 93%, 94%, and even more typically at
30 least about 95%, 96%, 97%, 98%, 99%, sequence identity to a polynucleotide recited above.

Included within the scope of the nucleic acid sequences of the invention are nucleic acid sequence fragments that hybridize under stringent conditions to any of the nucleotide sequences of SEQ ID NO:1-1350, or complements thereof, which fragment is greater than about 5 nucleotides, preferably 7 nucleotides, more preferably greater than 9 nucleotides and most
35 preferably greater than 17 nucleotides. Fragments of, *e.g.* 15, 17, or 20 nucleotides or more that

are selective for (*i.e.* specifically hybridize to any one of the polynucleotides of the invention) are contemplated. Probes capable of specifically hybridizing to a polynucleotide can differentiate polynucleotide sequences of the invention from other polynucleotide sequences in the same family of genes or can differentiate human genes from genes of other species, and are 5 preferably based on unique nucleotide sequences.

- The sequences falling within the scope of the present invention are not limited to these specific sequences, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequence provided SEQ ID NO:1-1350, a representative fragment thereof, or a nucleotide sequence at least 90% identical, preferably 95% 10 identical, to SEQ ID NO:1-1350 with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another codon that encodes the same 15 amino acid is expressly contemplated.
- 15 The nearest neighbor or homology result for the nucleic acids of the present invention, including SEQ ID NO:1-1350, can be obtained by searching a database using an algorithm or a program. Preferably, a BLAST which stands for Basic Local Alignment Search Tool is used to search for local sequence alignments (Altshul, S.F. J Mol. Evol. 36:290-300 (1993) and Altschul S.F. et al. J. Mol. Biol. 21:403-410 (1990)). Alternatively a FASTA version 3 search against 20 Genpept, using Fastxy algorithm.

Species homologs (or orthologs) of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

- 25 The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides.

The nucleic acid sequences of the invention are further directed to sequences which 30 encode variants of the described nucleic acids. These amino acid sequence variants may be prepared by methods known in the art by introducing appropriate nucleotide changes into a native or variant polynucleotide. There are two variables in the construction of amino acid sequence variants: the location of the mutation and the nature of the mutation. Nucleic acids encoding the amino acid sequence variants are preferably constructed by mutating the 35 polynucleotide to encode an amino acid sequence that does not occur in nature. These nucleic

acid alterations can be made at sites that differ in the nucleic acids from different species (variable positions) or in highly conserved regions (constant regions). Sites at such locations will typically be modified in series, *e.g.*, by substituting first with conservative choices (*e.g.*, hydrophobic amino acid to a different hydrophobic amino acid) and then with more distant choices (*e.g.*, hydrophobic amino acid to a charged amino acid), and then deletions or insertions may be made at the target site. Amino acid sequence deletions generally range from about 1 to 30 residues, preferably about 1 to 10 residues, and are typically contiguous. Amino acid insertions include amino- and/or carboxyl-terminal fusions ranging in length from one to one hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Intrasequence insertions may range generally from about 1 to 10 amino residues, preferably from 1 to 5 residues. Examples of terminal insertions include the heterologous signal sequences necessary for secretion or for intracellular targeting in different host cells and sequences such as FLAG or poly-histidine sequences useful for purifying the expressed protein.

In a preferred method, polynucleotides encoding the novel amino acid sequences are changed via site-directed mutagenesis. This method uses oligonucleotide sequences to alter a polynucleotide to encode the desired amino acid variant, as well as sufficient adjacent nucleotides on both sides of the changed amino acid to form a stable duplex on either side of the site of being changed. In general, the techniques of site-directed mutagenesis are well known to those of skill in the art and this technique is exemplified by publications such as, Edelman et al., *DNA* 2:183 (1983). A versatile and efficient method for producing site-specific changes in a polynucleotide sequence was published by Zoller and Smith, *Nucleic Acids Res.* 10:6487-6500 (1982). PCR may also be used to create amino acid sequence variants of the novel nucleic acids. When small amounts of template DNA are used as starting material, primer(s) that differs slightly in sequence from the corresponding region in the template DNA can generate the desired amino acid variant. PCR amplification results in a population of product DNA fragments that differ from the polynucleotide template encoding the polypeptide at the position specified by the primer. The product DNA fragments replace the corresponding region in the plasmid and this gives a polynucleotide encoding the desired amino acid variant.

A further technique for generating amino acid variants is the cassette mutagenesis technique described in Wells et al., *Gene* 34:315 (1985); and other mutagenesis techniques well known in the art, such as, for example, the techniques in Sambrook et al., *supra*, and *Current Protocols in Molecular Biology*, Ausubel et al. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be used in the practice of the invention for the cloning and expression

of these novel nucleic acids. Such DNA sequences include those which are capable of hybridizing to the appropriate novel nucleic acid sequence under stringent conditions.

Polynucleotides encoding preferred polypeptide truncations of the invention can be used to generate polynucleotides encoding chimeric or fusion proteins comprising one or more 5 domains of the invention and heterologous protein sequences.

The polynucleotides of the invention additionally include the complement of any of the polynucleotides recited above. The polynucleotide can be DNA (genomic, cDNA, amplified, or synthetic) or RNA. Methods and algorithms for obtaining such polynucleotides are well known to those of skill in the art and can include, for example, methods for determining hybridization 10 conditions that can routinely isolate polynucleotides of the desired sequence identities.

In accordance with the invention, polynucleotide sequences comprising the mature protein coding sequences corresponding to any one of SEQ ID NO:1-1350, or functional equivalents thereof, may be used to generate recombinant DNA molecules that direct the expression of that nucleic acid, or a functional equivalent thereof, in appropriate host cells. Also 15 included are the cDNA inserts of any of the clones identified herein.

A polynucleotide according to the invention can be joined to any of a variety of other nucleotide sequences by well-established recombinant DNA techniques (see Sambrook J et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY). Useful nucleotide sequences for joining to polynucleotides include an assortment of vectors, e.g., 20 plasmids, cosmids, lambda phage derivatives, phagemids, and the like, that are well known in the art. Accordingly, the invention also provides a vector including a polynucleotide of the invention and a host cell containing the polynucleotide. In general, the vector contains an origin of replication functional in at least one organism, convenient restriction endonuclease sites, and a selectable marker for the host cell. Vectors according to the invention include expression 25 vectors, replication vectors, probe generation vectors, and sequencing vectors. A host cell according to the invention can be a prokaryotic or eukaryotic cell and can be a unicellular organism or part of a multicellular organism.

The present invention further provides recombinant constructs comprising a nucleic acid having any of the nucleotide sequences of SEQ ID NO:1-1350 or a fragment thereof or any other 30 polynucleotides of the invention. In one embodiment, the recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a nucleic acid having any of the nucleotide sequences of SEQ ID NO:1-1350 or a fragment thereof is inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a 35 promoter, operably linked to the ORF. Large numbers of suitable vectors and promoters are

known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example.

Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia).

- 5 Eukaryotic: pWLneo, pSV2cat, pOG44, PXTI, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia).

The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., *Nucleic Acids Res.* 19, 4485-4490 (1991), in order to produce the protein recombinantly. Many 10 suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, *Methods in Enzymology* 185, 537-566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed 15 (transfected) with the ligated polynucleotide/expression control sequence.

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine 20 kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art. Generally, recombinant expression vectors will include origins of replication and selectable 25 markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of *E. coli* and *S. cerevisiae* TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), a-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the 30 periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an amino terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product. Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination 35 signals in operable reading phase with a functional promoter. The vector will comprise one or

more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include *E. coli*, *Bacillus subtilis*, *Salmonella typhimurium* and various species within the genera *Pseudomonas*, *Streptomyces*, and *Staphylococcus*, although others may also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (Promega Biotech, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced or derepressed by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Polynucleotides of the invention can also be used to induce immune responses. For example, as described in Fan et al., *Nat. Biotech.* 17:870-872 (1999), incorporated herein by reference, nucleic acid sequences encoding a polypeptide may be used to generate antibodies against the encoded polypeptide following topical administration of naked plasmid DNA or following injection, and preferably intramuscular injection of the DNA. The nucleic acid sequences are preferably inserted in a recombinant expression vector and may be in the form of naked DNA.

25 4.3 ANTISENSE

Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1-1350, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a protein of any of SEQ ID

NO:1351-2700 or antisense nucleic acids complementary to a nucleic acid sequence of SEQ ID NO:1-1350 are additionally provided.

In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence of the invention. The term "coding region" refers

- 5 to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence of the invention. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (*i.e.*, also referred to as 5' and 3' untranslated regions).

10 Given the coding strand sequences encoding a nucleic acid disclosed herein (*e.g.*, SEQ ID NO:1-1350), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of a mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of a mRNA. For example,

15 the antisense oligonucleotide can be complementary to the region surrounding the translation start site of a mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (*e.g.*, an antisense oligonucleotide) can be

20 chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, *e.g.*, phosphorothioate derivatives and acridine substituted nucleotides can be used.

Examples of modified nucleotides that can be used to generate the antisense nucleic acid

25 include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxymethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine,

30 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil,

35 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the

antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (*i.e.*, RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

5 The antisense nucleic acid molecules of the invention are typically administered to a subject or generated *in situ* such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a protein according to the invention to thereby inhibit expression of the protein, *e.g.*, by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of
10 an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified
15 such that they specifically bind to receptors or antigens expressed on a selected cell surface, *e.g.*, by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the
20 control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an -a n omeric nucleic acid molecule. An -a n omeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual -units, the strands run parallel to each other (Gaultier *et al.* (1987) *Nucleic Acids Res* 15: 6625-6641). The
25 antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue *et al.* (1987) *Nucleic Acids Res* 15: 6131-6148) or a chimeric RNA -DNA analogue (Inoue *et al.* (1987) *FEBS Lett* 215: 327-330).

4.4 RIBOZYMES AND PNA MOIETIES

30 In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as a mRNA, to which they have a complementary region. Thus, ribozymes (*e.g.*, hammerhead ribozymes (described in Haselhoff and Gerlach (1988)
35 *Nature* 334:585-591)) can be used to catalytically cleave a mRNA transcripts to thereby inhibit translation of a mRNA. A ribozyme having specificity for a nucleic acid of the invention can be

designed based upon the nucleotide sequence of a DNA disclosed herein (*i.e.*, SEQ ID NO:1-1350). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a SECX-encoding mRNA. See, *e.g.*, Cech *et al.* U.S. Pat. No. 4,987,071; and Cech *et al.* U.S. Pat. No. 5,116,742. Alternatively, SECX mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, *e.g.*, Bartel *et al.*, (1993) *Science* 261:1411-1418.

Alternatively, gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region (*e.g.*, promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells. See generally, Helene. (1991) *Anticancer Drug Des.* 6: 569-84; Helene. *et al.* (1992) *Ann. N.Y. Acad. Sci.* 660:27-36; and Maher (1992) *Bioassays* 14: 807-15.

In various embodiments, the nucleic acids of the invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, *e.g.*, the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup *et al.* (1996) *Bioorg Med Chem* 4: 5-23). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, *e.g.*, DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup *et al.* (1996) above; Perry-O'Keefe *et al.* (1996) *PNAS* 93: 14670-675.

PNAs of the invention can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antogene agents for sequence-specific modulation of gene expression by, *e.g.*, inducing transcription or translation arrest or inhibiting replication. PNAs of the invention can also be used, *e.g.*, in the analysis of single base pair mutations in a gene by, *e.g.*, PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, *e.g.*, S1 nucleases (Hyrup B. (1996) above); or as probes or primers for DNA sequence and hybridization (Hyrup *et al.* (1996), above; Perry-O'Keefe (1996), above).

In another embodiment, PNAs of the invention can be modified, *e.g.*, to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated that may

combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, *e.g.*, RNase H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996) above). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996) above and Finn *et al.* (1996) *Nucl Acids Res* 24: 3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, *e.g.*, 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA (Mag *et al.* (1989) *Nucl Acid Res* 17: 5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn *et al.* (1996) above). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, Petersen *et al.* (1975) *Bioorg Med Chem Lett* 5: 1119-1124.

In other embodiments, the oligonucleotide may include other appended groups such as peptides (*e.g.*, for targeting host cell receptors *in vivo*), or agents facilitating transport across the cell membrane (see, *e.g.*, Letsinger *et al.*, 1989, *Proc. Natl. Acad. Sci. U.S.A.* 86:6553-6556; Lemaitre *et al.*, 1987, *Proc. Natl. Acad. Sci.* 84:648-652; PCT Publication No. W088/09810) or the blood-brain barrier (see, *e.g.*, PCT Publication No. W089/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (See, *e.g.*, Krol *et al.*, 1988, *BioTechniques* 6:958-976) or intercalating agents. (See, *e.g.*, Zon, 1988, *Pharm. Res.* 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, *e.g.*, a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, etc.

25

4.5 HOSTS

The present invention further provides host cells genetically engineered to contain the polynucleotides of the invention. For example, such host cells may contain nucleic acids of the invention introduced into the host cell using known transformation, transfection or infection methods. The present invention still further provides host cells genetically engineered to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell.

Knowledge of nucleic acid sequences allows for modification of cells to permit, or increase, expression of endogenous polypeptide. Cells can be modified (*e.g.*, by homologous

recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the polypeptide at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the encoding sequences. See, for example, PCT International Publication 5 No. WO94/12650, PCT International Publication No. WO92/20808, and PCT International Publication No. WO91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (*e.g.*, ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the coding 10 sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by 15 calcium phosphate transfection, DEAE, dextran mediated transfection, or electroporation (Davis, L. et al., *Basic Methods in Molecular Biology* (1986)). The host cells containing one of the polynucleotides of the invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, Cv-1 cell, COS cells, 293 cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level. Mature proteins can 25 be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., in *Molecular Cloning: A Laboratory Manual*, Second Edition, Cold Spring Harbor, New York 30 (1989), the disclosure of which is hereby incorporated by reference.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, *Cell* 23:175 (1981). Other cell lines capable of expressing a compatible vector are, for example, the C127, monkey COS cells, Chinese Hamster Ovary 35 (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3

cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from *in vitro* culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements. Recombinant polypeptides and proteins produced in bacterial culture are usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.

Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or insects or in prokaryotes such as bacteria. Potentially suitable yeast strains include *Saccharomyces cerevisiae*, *Schizosaccharomyces pombe*, *Kluyveromyces* strains, *Candida*, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include *Escherichia coli*, *Bacillus subtilis*, *Salmonella typhimurium*, or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequence include polyadenylation signals, mRNA stability elements, splice

sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, *e.g.*, inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the host cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

4.6 POLYPEPTIDES OF THE INVENTION

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising: the amino acid sequences set forth as any one of SEQ ID NO:1351-2700 or an amino acid sequence encoded by any one of the nucleotide sequences SEQ ID NO:1-1350 or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides preferably with biological or immunological activity that are encoded by: (a) a polynucleotide having any one of the nucleotide sequences set forth in SEQ ID NO:1-1350 or (b)

polynucleotides encoding any one of the amino acid sequences set forth as SEQ ID NO:1351-2700 or (c) polynucleotides that hybridize to the complement of the polynucleotides of either (a) or (b) under stringent hybridization conditions. The invention also provides biologically active or immunologically active variants of any of the amino acid sequences set forth as SEQ ID NO:1351-2700 or the corresponding full length or mature protein; and "substantial equivalents" thereof (e.g., with at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, 86%, 87%, 88%, 89%, at least about 90%, 91%, 92%, 93%, 94%, typically at least about 95%, 96%, 97%, more typically at least about 98%, or most typically at least about 99% amino acid identity) that retain biological activity. Polypeptides encoded by allelic variants may have a similar, increased, or decreased activity compared to polypeptides comprising SEQ ID NO:1351-2700.

Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention. Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H. U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R. S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding sites.

The present invention also provides both full-length and mature forms (for example, without a signal sequence or precursor sequence) of the disclosed proteins. The protein coding sequence is identified in the sequence listing by translation of the disclosed nucleotide sequences. The mature form of such protein may be obtained by expression of a full-length polynucleotide in a suitable mammalian cell or other host cell. The sequence of the mature form of the protein is also determinable from the amino acid sequence of the full-length form. Where proteins of the present invention are membrane bound, soluble forms of the proteins are also provided. In such forms, part or all of the regions causing the proteins to be membrane bound are deleted so that the proteins are fully secreted from the cell in which they are expressed.

Protein compositions of the present invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the genetic code, encode an identical polypeptide sequence. Preferred nucleic acid fragments of the present invention are the ORFs that encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. This technique is particularly useful in producing small peptides and fragments of larger polypeptides. Fragments are useful, for example, in generating antibodies against the native polypeptide. Thus, they may be employed as biologically active or immunological substitutes for natural, purified proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.

The polypeptides and proteins of the present invention can alternatively be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. One skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

The invention also relates to methods for producing a polypeptide comprising growing a culture of host cells of the invention in a suitable culture medium, and purifying the protein from the cells or the culture in which the cells are grown. For example, the methods of the invention include a process for producing a polypeptide in which a host cell containing a suitable expression vector that includes a polynucleotide of the invention is cultured under conditions that allow expression of the encoded polypeptide. The polypeptide can be recovered from the culture, conveniently from the culture medium, or from a lysate prepared from the host cells and further purified. Preferred embodiments include those in which the protein produced by such process is a full length or mature form of the protein.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily follow known methods for isolating polypeptides and proteins in order to obtain one of the isolated polypeptides or proteins of the present invention. These include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography. See, e.g., Scopes, *Protein Purification: Principles and Practice*, Springer-Verlag (1994); Sambrook, et al., in Molecular Cloning: A Laboratory Manual; Ausubel et al., *Current Protocols in Molecular Biology*. Polypeptide fragments that

retain biological/immunological activity include fragments comprising greater than about 100 amino acids, or greater than about 200 amino acids, and fragments that encode specific protein domains.

The purified polypeptides can be used in *in vitro* binding assays which are well known in the art to identify molecules which bind to the polypeptides. These molecules include but are not limited to, for *e.g.*, small molecules, molecules from combinatorial libraries, antibodies or other proteins. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

In addition, the peptides of the invention or molecules capable of binding to the peptides may be complexed with toxins, *e.g.*, ricin or cholera, or with other compounds that are toxic to cells. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for SEQ ID NO:1351-2700.

The protein of the invention may also be expressed as a product of transgenic animals, *e.g.*, as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.

The proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications, in the peptide or DNA sequence, can be made by those skilled in the art using known techniques. Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, *e.g.*, U.S. Pat. No. 4,518,584). Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein. Regions of the protein that are important for the protein function can be determined by various methods known in the art including the alanine-scanning method which involved systematic substitution of single or strings of amino acids with alanine, followed by testing the resulting alanine-containing variant for biological activity. This type of analysis determines the importance of the substituted amino acid(s) in biological activity. Regions of the protein that are important for protein function may be determined by the eMATRIX program.

Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and are useful for screening or other immunological

methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are encompassed by the present invention.

The protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing 5 an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, Calif., U.S.A. (the MaxBac™ kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present 10 invention is "transformed."

The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed protein may then be purified from such culture (*i.e.*, from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification 15 of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearl™ or Cibacrom blue 3GA Sepharose™; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.

20 Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-S-transferase (GST) or thioredoxin (TRX), or as a His tag. Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.), Pharmacia (Piscataway, N.J.) and Invitrogen, 25 respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope ("FLAG®") is commercially available from Kodak (New Haven, Conn.).

Finally, one or more reverse-phase high performance liquid chromatography (RP- HPLC) steps employing hydrophobic RP-HPLC media, *e.g.*, silica gel having pendant methyl or other 30 aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

The polypeptides of the invention include analogs (variants). This embraces fragments, as well as peptides in which one or more amino acids has been deleted, inserted, or substituted. Also, analogs of the polypeptides of the invention embrace fusions of the polypeptides or modifications of the polypeptides of the invention, wherein the polypeptide or analog is fused to another moiety or moieties, *e.g.*, targeting moiety or another therapeutic agent. Such analogs may exhibit improved properties such as activity and/or stability. Examples of moieties which may be fused to the polypeptide or an analog include, for example, targeting moieties which provide for the delivery of polypeptide to pancreatic cells, *e.g.*, antibodies to pancreatic cells, antibodies to immune cells such as T-cells, monocytes, dendritic cells, granulocytes, etc., as well as receptor and ligands expressed on pancreatic or immune cells. Other moieties which may be fused to the polypeptide include therapeutic agents which are used for treatment, for example, immunosuppressive drugs such as cyclosporin, SK506, azathioprine, CD3 antibodies and steroids. Also, polypeptides may be fused to immune modulators, and other cytokines such as alpha or beta interferon.

15

4.6.1 DETERMINING POLYPEPTIDE AND POLYNUCLEOTIDE IDENTITY AND SIMILARITY

Preferred identity and/or similarity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in computer programs including, but are not limited to, the GCG program package, including GAP (Devereux, J., et al., Nucleic Acids Research 12(1):387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI), BLASTP, BLASTN, BLASTX, FASTA (Altschul, S.F. et al., J. Molec. Biol. 215:403-410 (1990), PSI-BLAST (Altschul S.F. et al., Nucleic Acids Res. vol. 25, pp. 3389-3402, herein incorporated by reference), eMatrix software (Wu et al., J. Comp. Biol., Vol. 6, pp. 219-235 (1999), herein incorporated by reference), eMotif software (Nevill-Manning et al, ISMB-97, Vol. 4, pp. 202-209, herein incorporated by reference), pFam software (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1), pp. 320-322 (1998), herein incorporated by reference) and the Kyte-Doolittle hydrophobicity prediction algorithm (J. Mol Biol, 157, pp. 105-31 (1982), incorporated herein by reference). The BLAST programs are publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul, S., et al. NCB NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215:403-410 (1990)).

4.7 CHIMERIC AND FUSION PROTEINS

The invention also provides chimeric or fusion proteins. As used herein, a "chimeric protein" or "fusion protein" comprises a polypeptide of the invention operatively linked to

another polypeptide. Within a fusion protein the polypeptide according to the invention can correspond to all or a portion of a protein according to the invention. In one embodiment, a fusion protein comprises at least one biologically active portion of a protein according to the invention. In another embodiment, a fusion protein comprises at least two biologically active portions of a protein according to the invention. Within the fusion protein, the term "operatively linked" is intended to indicate that the polypeptide according to the invention and the other polypeptide are fused in-frame to each other. The polypeptide can be fused to the N-terminus or C-terminus.

For example, in one embodiment a fusion protein comprises a polypeptide according to the invention operably linked to the extracellular domain of a second protein.

In another embodiment, the fusion protein is a GST-fusion protein in which the polypeptide sequences of the invention are fused to the C-terminus of the GST (*i.e.*, glutathione S-transferase) sequences.

In another embodiment, the fusion protein is an immunoglobulin fusion protein in which the polypeptide sequences according to the invention comprises one or more domains are fused to sequences derived from a member of the immunoglobulin protein family. The immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a ligand and a protein of the invention on the surface of a cell, to thereby suppress signal transduction *in vivo*.
The immunoglobulin fusion proteins can be used to affect the bioavailability of a cognate ligand. Inhibition of the ligand/protein interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, *e.g.*, cancer as well as modulating (*e.g.*, promoting or inhibiting) cell survival. Moreover, the immunoglobulin fusion proteins of the invention can be used as immunogens to produce antibodies in a subject, to purify ligands, and in screening assays to identify molecules that inhibit the interaction of a polypeptide of the invention with a ligand.

A chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, *e.g.*, by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for

example, Ausubel et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (*e.g.*, a GST polypeptide). A nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked 5 in-frame to the protein of the invention.

4.8 GENE THERAPY

Mutations in the polynucleotides of the invention gene may result in loss of normal function of the encoded protein. The invention thus provides gene therapy to restore normal 10 activity of the polypeptides of the invention; or to treat disease states involving polypeptides of the invention. Delivery of a functional gene encoding polypeptides of the invention to appropriate cells is effected *ex vivo*, *in situ*, or *in vivo* by use of vectors, and more particularly viral vectors (*e.g.*, adenovirus, adeno-associated virus, or a retrovirus), or *ex vivo* by use of physical DNA transfer methods (*e.g.*, liposomes or chemical treatments). See, for example, 15 Anderson, Nature, supplement to vol. 392, no. 6679, pp.25-20 (1998). For additional reviews of gene therapy technology see Friedmann, Science, 244: 1275-1281 (1989); Verma, Scientific American: 68-84 (1990); and Miller, Nature, 357: 455-460 (1992). Introduction of any one of the nucleotides of the present invention or a gene encoding the polypeptides of the present 20 invention can also be accomplished with extrachromosomal substrates (transient expression) or artificial chromosomes (stable expression). Cells may also be cultured *ex vivo* in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or 25 activity in such cells. Treated cells can then be introduced *in vivo* for therapeutic purposes. Alternatively, it is contemplated that in other human disease states, preventing the expression of or inhibiting the activity of polypeptides of the invention will be useful in treating the disease 30 states. It is contemplated that antisense therapy or gene therapy could be applied to negatively regulate the expression of polypeptides of the invention.

Other methods inhibiting expression of a protein include the introduction of antisense molecules to the nucleic acids of the present invention, their complements, or their translated RNA sequences, by methods known in the art. Further, the polypeptides of the present invention can be 30 inhibited by using targeted deletion methods, or the insertion of a negative regulatory element such as a silencer, which is tissue specific.

The present invention still further provides cells genetically engineered *in vivo* to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in

the cell. These methods can be used to increase or decrease the expression of the polynucleotides of the present invention.

- Knowledge of DNA sequences provided by the invention allows for modification of cells to permit, increase, or decrease, expression of endogenous polypeptide. Cells can be modified (*e.g.*, by 5 homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the protein at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the desired protein encoding sequences. See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No. WO 92/20808, and PCT 10 International Publication No. WO 91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (*e.g.*, ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotate) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the desired protein coding sequence, amplification of the marker DNA by standard selection methods results in 15 co-amplification of the desired protein coding sequences in the cells.

- In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to 20 replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or 25 protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequences include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

- The targeting event may be a simple insertion of the regulatory sequence, placing the gene 30 under the control of the new regulatory sequence, *e.g.*, inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally 35 occurring elements. Here, the naturally occurring sequences are deleted and new sequences are

added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the

5 property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial

10 xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436

15 (WO91/06667) by Skoultschi et al., each of which is incorporated by reference herein in its entirety.

4.9 TRANSGENIC ANIMALS

In preferred methods to determine biological functions of the polypeptides of the invention in vivo, one or more genes provided by the invention are either over expressed or

20 inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be

25 prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT

30 Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of a promoter of the polynucleotides of the invention is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even

35 replacing the homologous promoter to provide for increased protein expression. The homologous

promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

The polynucleotides of the present invention also make possible the development, through, *e.g.*, homologous recombination or knock out strategies, of animals that fail to express 5 polypeptides of the invention or that express a variant polypeptide. Such animals are useful as models for studying the *in vivo* activities of polypeptide as well as for studying modulators of the polypeptides of the invention.

In preferred methods to determine biological functions of the polypeptides of the invention *in vivo*, one or more genes provided by the invention are either over expressed or 10 inactivated in the germ line of animals using homologous recombination [Capechi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be 15 prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT 20 Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of the polynucleotides of the invention promoter is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the 25 homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

4.10 USES AND BIOLOGICAL ACTIVITY

30 The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified herein. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA). The 35 mechanism underlying the particular condition or pathology will dictate whether the

polypeptides of the invention, the polynucleotides of the invention or modulators (activators or inhibitors) thereof would be beneficial to the subject in need of treatment. Thus, "therapeutic compositions of the invention" include compositions comprising isolated polynucleotides (including recombinant DNA molecules, cloned genes and degenerate variants thereof) or

5 polypeptides of the invention (including full length protein, mature protein and truncations or domains thereof), or compounds and other substances that modulate the overall activity of the target gene products, either at the level of target gene/protein expression or target protein activity. Such modulators include polypeptides, analogs, (variants), including fragments and fusion proteins, antibodies and other binding proteins; chemical compounds that directly or

10 indirectly activate or inhibit the polypeptides of the invention (identified, e.g., via drug screening assays as described herein); antisense polynucleotides and polynucleotides suitable for triple helix formation; and in particular antibodies or other binding partners that specifically recognize one or more epitopes of the polypeptides of the invention.

The polypeptides of the present invention may likewise be involved in cellular activation
15 or in one of the other physiological pathways described herein.

4.10.1 RESEARCH USES AND UTILITIES

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as
20 an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of
25 the binding interaction.

- The polypeptides provided by the present invention can similarly be used in assays to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding polypeptide is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.
- 5 Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.
- 10 Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.
- 15

4.10.2 NUTRITIONAL USES

- Polynucleotides and polypeptides of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the polypeptide or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the polypeptide or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.
- 20
- 25

4.10.3 CYTOKINE AND CELL PROLIFERATION/DIFFERENTIATION ACTIVITY

- A polypeptide of the present invention may exhibit activity relating to cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor-dependent cell proliferation assays, and hence the assays serve as a convenient
- 30
- 35

confirmation of cytokine activity. The activity of therapeutic compositions of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+(preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e, CMK,

- 5 HUVEC, and Caco. Therapeutic compositions of the invention can be used in the following:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., *J. Immunol.* 137:3494-3500, 1986; Bertagnolli et al., *J. Immunol.* 145:1706-1712, 1990; Bertagnolli et al., *Cellular Immunology* 133:327-341, 1991; Bertagnolli, et al., *I. Immunol.* 149:3778-3783, 1992; Bowman et al., *I. Immunol.* 152:1756-1761, 1994.

- 10 Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A. M. and Shevach, E. M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human interleukin- γ , Schreiber, R. D. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

- 15 Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L. S. and Lipsky, P. E. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; DeVries et al., *J. Exp. Med.* 173:1205-1211, 1991; Moreau et al., *Nature* 336:690-692, 1988; Greenberger et al., *Proc. Natl. Acad. Sci. U.S.A.* 80:2931-2938, 1983; Measurement of mouse and human interleukin 6--Nordan, R. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., *Proc. Natl. Acad. Sci. U.S.A.* 83:1857-1861, 1986; Measurement of human Interleukin 11--Bennett, F., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9--Ciarletta, A., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

- 20 Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober,

Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 5 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

4.10.4 STEM CELL GROWTH FACTOR ACTIVITY

A polypeptide of the present invention may exhibit stem cell growth factor activity and be involved in the proliferation, differentiation and survival of pluripotent and totipotent stem 10 cells including primordial germ cells, embryonic stem cells, hematopoietic stem cells and/or germ line stem cells. Administration of the polypeptide of the invention to stem cells *in vivo* or *ex vivo* is expected to maintain and expand cell populations in a totipotential or pluripotential state which would be useful for re-engineering damaged or diseased tissues, transplantation, manufacture of bio-pharmaceuticals and the development of bio-sensors. The ability to produce 15 large quantities of human cells has important working applications for the production of human proteins which currently must be obtained from non-human sources or donors, implantation of cells to treat diseases such as Parkinson's, Alzheimer's and other neurodegenerative diseases; tissues for grafting such as bone marrow, skin, cartilage, tendons, bone, muscle (including cardiac muscle), blood vessels, cornea, neural cells, gastrointestinal cells and others; and organs 20 for transplantation such as kidney, liver, pancreas (including islet cells), heart and lung.

It is contemplated that multiple different exogenous growth factors and/or cytokines may be administered in combination with the polypeptide of the invention to achieve the desired effect, including any of the growth factors listed herein, other stem cell maintenance factors, and specifically including stem cell factor (SCF), leukemia inhibitory factor (LIF), Flt-3 ligand (Flt-25 3L), any of the interleukins, recombinant soluble IL-6 receptor fused to IL-6, macrophage inflammatory protein 1-alpha (MIP-1-alpha), G-CSF, GM-CSF, thrombopoietin (TPO), platelet factor 4 (PF-4), platelet-derived growth factor (PDGF), neural growth factors and basic fibroblast growth factor (bFGF).

Since totipotent stem cells can give rise to virtually any mature cell type, expansion of 30 these cells in culture will facilitate the production of large quantities of mature cells. Techniques for culturing stem cells are known in the art and administration of polypeptides of the invention, optionally with other growth factors and/or cytokines, is expected to enhance the survival and proliferation of the stem cell populations. This can be accomplished by direct administration of the polypeptide of the invention to the culture medium. Alternatively, stroma cells transfected 35 with a polynucleotide that encodes for the polypeptide of the invention can be used as a feeder

layer for the stem cell populations in culture or in vivo. Stromal support cells for feeder layers may include embryonic bone marrow fibroblasts, bone marrow stromal cells, fetal liver cells, or cultured embryonic fibroblasts (see U.S. Patent No. 5,690,926).

Stem cells themselves can be transfected with a polynucleotide of the invention to induce
5 autocrine expression of the polypeptide of the invention. This will allow for generation of undifferentiated totipotential/pluripotential stem cell lines that are useful as is or that can then be differentiated into the desired mature cell types. These stable cell lines can also serve as a source of undifferentiated totipotential/pluripotential mRNA to create cDNA libraries and templates for polymerase chain reaction experiments. These studies would allow for the isolation and
10 identification of differentially expressed genes in stem cell populations that regulate stem cell proliferation and/or maintenance.

Expansion and maintenance of totipotent stem cell populations will be useful in the treatment of many pathological conditions. For example, polypeptides of the present invention may be used to manipulate stem cells in culture to give rise to neuroepithelial cells that can be
15 used to augment or replace cells damaged by illness, autoimmune disease, accidental damage or genetic disorders. The polypeptide of the invention may be useful for inducing the proliferation of neural cells and for the regeneration of nerve and brain tissue, *i.e.* for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders which involve degeneration, death or trauma to neural cells or nerve tissue. In addition,
20 the expanded stem cell populations can also be genetically altered for gene therapy purposes and to decrease host rejection of replacement tissues after grafting or implantation.

Expression of the polypeptide of the invention and its effect on stem cells can also be manipulated to achieve controlled differentiation of the stem cells into more differentiated cell types. A broadly applicable method of obtaining pure populations of a specific differentiated
25 cell type from undifferentiated stem cell populations involves the use of a cell-type specific promoter driving a selectable marker. The selectable marker allows only cells of the desired type to survive. For example, stem cells can be induced to differentiate into cardiomyocytes (Wobus et al., Differentiation, 48: 173-182, (1991); Klug et al., J. Clin. Invest., 98(1): 216-224, (1998)) or skeletal muscle cells (Browder, L. W. In: *Principles of Tissue Engineering* eds. Lanza et al.,
30 Academic Press (1997)). Alternatively, directed differentiation of stem cells can be accomplished by culturing the stem cells in the presence of a differentiation factor such as retinoic acid and an antagonist of the polypeptide of the invention which would inhibit the effects of endogenous stem cell factor activity and allow differentiation to proceed.

In vitro cultures of stem cells can be used to determine if the polypeptide of the invention
35 exhibits stem cell growth factor activity. Stem cells are isolated from any one of various cell

sources (including hematopoietic stem cells and embryonic stem cells) and cultured on a feeder layer, as described by Thompson et al. Proc. Natl. Acad. Sci, U.S.A., 92: 7844-7848 (1995), in the presence of the polypeptide of the invention alone or in combination with other growth factors or cytokines. The ability of the polypeptide of the invention to induce stem cells
5 proliferation is determined by colony formation on semi-solid support *e.g.* as described by Bernstein et al., Blood, 77: 2316-2321 (1991).

4.10.5 HEMATOPOIESIS REGULATING ACTIVITY

A polypeptide of the present invention may be involved in regulation of hematopoiesis
10 and, consequently, in the treatment of myeloid or lymphoid cell disorders. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, *e.g.* in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with
15 irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (*i.e.*, traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or
20 treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and
25 paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either *in-vivo* or *ex-vivo* (*i.e.*, in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

Therapeutic compositions of the invention can be used in the following:

30 Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular
35 and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

- Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M. G. In *Culture of Hematopoietic Cells*. R. I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, N.Y. 1994; Hirayama et al., 5 Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I. K. and Briddell, R. A. In *Culture of Hematopoietic Cells*. R. I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, N.Y. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R. E. In *Culture of Hematopoietic Cells*. R. I. Freshney, et al. eds. Vol pp. 1-21, 10 Wiley-Liss, Inc., New York, N.Y. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In *Culture of Hematopoietic Cells*. R. I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, N.Y. 1994; Long term culture initiating cell assay, Sutherland, H. J. In *Culture of Hematopoietic Cells*. R. I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, N.Y. 1994.
- 15

4.10.6 TISSUE GROWTH ACTIVITY

- A polypeptide of the present invention also may be involved in bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as in wound healing and tissue repair and replacement, and in healing of burns, incisions and ulcers.
- 20 A polypeptide of the present invention which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Compositions of a polypeptide, antibody, binding partner, or other modulator of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of 25 artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

- A polypeptide of this invention may also be involved in attracting bone-forming cells, stimulating growth of bone-forming cells, or inducing differentiation of progenitors of 30 bone-forming cells. Treatment of osteoporosis, osteoarthritis, bone degenerative disorders, or periodontal disease, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes may also be possible using the composition of the invention.

Another category of tissue regeneration activity that may involve the polypeptide of the present invention is tendon/ligament formation. Induction of tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors *ex vivo* for return *in vivo* to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The compositions of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, *i.e.* for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a composition may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a composition of the invention.

Compositions of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

Compositions of the present invention may also be involved in the generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine,

kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring may allow normal tissue to regenerate. A polypeptide of the present invention may also exhibit angiogenic activity.

5 A composition of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

10 A composition of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

15 Therapeutic compositions of the invention can be used in the following:
Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon); International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

20 Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, H. I. and Rovee, D. T., eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

25 **4.10.7 IMMUNE STIMULATING OR SUPPRESSING ACTIVITY**
A polypeptide of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A polynucleotide of the invention can encode a polypeptide exhibiting such activities. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), *e.g.*, in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (*e.g.*, HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpes viruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, proteins of the present invention may also be useful where a boost to the immune system generally may be desirable, *i.e.*, in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitus, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein (or antagonists thereof, including antibodies) of the present invention may also be useful in the treatment of allergic reactions and conditions (*e.g.*, anaphylaxis, serum sickness, drug reactions, food allergies, insect venom allergies, mastocytosis, allergic rhinitis, hypersensitivity pneumonitis, urticaria, angioedema, eczema, atopic dermatitis, allergic contact dermatitis, erythema multiforme, Stevens-Johnson syndrome, allergic conjunctivitis, atopic keratoconjunctivitis, venereal keratoconjunctivitis, giant papillary conjunctivitis and contact allergies), such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein (or antagonists thereof) of the present invention. The therapeutic effects of the polypeptides or antagonists thereof on allergic reactions can be evaluated by in vivo animal models such as the cumulative contact enhancement test (Lastbom et al., Toxicology 125: 59-66, 1998), skin prick test (Hoffmann et al., Allergy 54: 446-54, 1999), guinea pig skin sensitization test (Vohr et al., Arch. Toxocol. 73: 501-9), and murine local lymph node assay (Kimber et al., J. Toxicol. Environ. Health 53: 563-79).

Using the proteins of the invention it may also be possible to modulate immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as, for example, B7)), *e.g.*, preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue

transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a therapeutic composition of the invention may prevent cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, a lack of costimulation may also be sufficient 5 to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular therapeutic compositions in preventing organ transplant 10 rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins *in vivo* as described in Lenschow et al., *Science* 257:789-792 (1992) and Turka et al., *Proc. Natl. Acad. Sci USA*, 89:11102-11105 15 (1992). In addition, murine models of GVHD (see Paul ed., *Fundamental Immunology*, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of therapeutic compositions of the invention on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune 20 diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block stimulation of T cells can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking 25 reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythematosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune 30 collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., *Fundamental Immunology*, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (*e.g.*, a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune 35 responses may be in the form of enhancing an existing immune response or eliciting an initial

immune response. For example, enhancing an immune response may be useful in cases of viral infection, including systemic viral diseases such as influenza, the common cold, and encephalitis.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by
5 removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed
APCs either expressing a peptide of the present invention or together with a stimulatory form of
a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the
patient. Another method of enhancing anti-viral immune responses would be to isolate infected
cells from a patient, transfet them with a nucleic acid encoding a protein of the present
10 invention as described herein such that the cells express all or a portion of the protein on their
surface, and reintroduce the transfected cells into the patient. The infected cells would now be
capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

A polypeptide of the present invention may provide the necessary stimulation signal to T
cells to induce a T cell mediated immune response against the transfected tumor cells. In
15 addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to
reexpress sufficient mounts of MHC class I or MHC class II molecules, can be transfected with
nucleic acid encoding all or a portion of (*e.g.*, a cytoplasmic-domain truncated portion) of an
MHC class I alpha chain protein and β_2 microglobulin protein or an MHC class II alpha chain
protein and an MHC class II beta chain protein to thereby express MHC class I or MHC class II
20 proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction
with a peptide having the activity of a B lymphocyte antigen (*e.g.*, B7-1, B7-2, B7-3) induces a T
cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding
an antisense construct which blocks expression of an MHC class II associated protein, such as
the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity
25 of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce
tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human
subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the
following methods:

30 Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation,
those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D.
H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and
Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19;
Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA
35 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J.

Immunol. 135:1564-1572, 1985; Takai et al., I. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bowman et al., J. Virology 61:1992-1998; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which 5 will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J. J. and Brunswick, M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

10 Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in 15 Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 20 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

25 Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 30 145:4037-4045, 1990; Zama et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development 35 include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

4.10.8 ACTIVIN/INHIBIN ACTIVITY

A polypeptide of the present invention may also exhibit activin- or inhibin-related activities. A polynucleotide of the invention may encode a polypeptide exhibiting such characteristics. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a polypeptide of the present invention, alone or in heterodimers with a member of the inhibin family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the polypeptide of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, U.S. Pat. No. 4,798,885. A polypeptide of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as, but not limited to, cows, sheep and pigs.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods.

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

4.10.9 CHEMOTACTIC/CHEMOKINETIC ACTIVITY

A polypeptide of the present invention may be involved in chemotactic or chemokinetic activity for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Chemotactic and chemokinetic receptor activation can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic compositions (*e.g.* proteins, antibodies, binding partners, or modulators of the invention) provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

- 5 Therapeutic compositions of the invention can be used in the following:
- Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell 10 population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Marguiles, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 15 1995; Muller et al Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

4.10.10 HEMOSTATIC AND THROMBOLYTIC ACTIVITY

- A polypeptide of the invention may also be involved in hemostasis or thrombolysis or 20 thrombosis. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Compositions may be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A composition of the invention may also be useful for dissolving or inhibiting formation of thromboses and for 25 treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

- Therapeutic compositions of the invention can be used in the following:
- Assay for hemostatic and thromolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 30 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

4.10.11 CANCER DIAGNOSIS AND THERAPY

- Polypeptides of the invention may be involved in cancer cell generation, proliferation or 35 metastasis. Detection of the presence or amount of polynucleotides or polypeptides of the

invention may be useful for the diagnosis and/or prognosis of one or more types of cancer. For example, the presence or increased expression of a polynucleotide/polypeptide of the invention may indicate a hereditary risk of cancer, a precancerous condition, or an ongoing malignancy. Conversely, a defect in the gene or absence of the polypeptide may be associated with a cancer 5 condition. Identification of single nucleotide polymorphisms associated with cancer or a predisposition to cancer may also be useful for diagnosis or prognosis.

- Cancer treatments promote tumor regression by inhibiting tumor cell proliferation, inhibiting angiogenesis (growth of new blood vessels that is necessary to support tumor growth) and/or prohibiting metastasis by reducing tumor cell motility or invasiveness. Therapeutic 10 compositions of the invention may be effective in adult and pediatric oncology including in solid phase tumors/malignancies, locally advanced tumors, human soft tissue sarcomas, metastatic cancer, including lymphatic metastases, blood cell malignancies including multiple myeloma, acute and chronic leukemias, and lymphomas, head and neck cancers including mouth cancer, larynx cancer and thyroid cancer, lung cancers including small cell carcinoma and non-small cell 15 cancers, breast cancers including small cell carcinoma and ductal carcinoma, gastrointestinal cancers including esophageal cancer, stomach cancer, colon cancer, colorectal cancer and polyps associated with colorectal neoplasia, pancreatic cancers, liver cancer, urologic cancers including bladder cancer and prostate cancer, malignancies of the female genital tract including ovarian carcinoma, uterine (including endometrial) cancers, and solid tumor in the ovarian follicle, 20 kidney cancers including renal cell carcinoma, brain cancers including intrinsic brain tumors, neuroblastoma, astrocytic brain tumors, gliomas, metastatic tumor cell invasion in the central nervous system, bone cancers including osteomas, skin cancers including malignant melanoma, tumor progression of human skin keratinocytes, squamous cell carcinoma, basal cell carcinoma, hemangiopericytoma and Karposi's sarcoma.
- 25 Polypeptides, polynucleotides, or modulators of polypeptides of the invention (including inhibitors and stimulators of the biological activity of the polypeptide of the invention) may be administered to treat cancer. Therapeutic compositions can be administered in therapeutically effective dosages alone or in combination with adjuvant cancer therapy such as surgery, chemotherapy, radiotherapy, thermotherapy, and laser therapy, and may provide a beneficial 30 effect, e.g. reducing tumor size, slowing rate of tumor growth, inhibiting metastasis, or otherwise improving overall clinical condition, without necessarily eradicating the cancer.

The composition can also be administered in therapeutically effective amounts as a portion of an anti-cancer cocktail. An anti-cancer cocktail is a mixture of the polypeptide or modulator of the invention with one or more anti-cancer drugs in addition to a pharmaceutically acceptable carrier for delivery. The use of anti-cancer cocktails as a cancer treatment is routine. 35

Anti-cancer drugs that are well known in the art and can be used as a treatment in combination with the polypeptide or modulator of the invention include: Actinomycin D, Aminoglutethimide, Asparaginase, Bleomycin, Busulfan, Carboplatin, Carmustine, Chlorambucil, Cisplatin (cis-DDP), Cyclophosphamide, Cytarabine HCl (Cytosine arabinoside), Dacarbazine, Dactinomycin, 5 Daunorubicin HCl, Doxorubicin HCl, Estramustine phosphate sodium, Etoposide (V16-213), Flouxuridine, 5-Fluorouracil (5-Fu), Flutamide, Hydroxyurea (hydroxycarbamide), Ifosfamide, Interferon Alpha-2a, Interferon Alpha-2b, Leuprolide acetate (LHRH-releasing factor analog), Lomustine, Mechlorethamine HCl (nitrogen mustard), Melphalan, Mercaptopurine, Mesna, Methotrexate (MTX), Mitomycin, Mitoxantrone HCl, Octreotide, Plicamycin, Procarbazine HCl, 10 Streptozocin, Tamoxifen citrate, Thioguanine, Thiotepa, Vinblastine sulfate, Vincristine sulfate, Amsacrine, Azacitidine, Hexamethylmelamine, Interleukin-2, Mitoguazone, Pentostatin, Semustine, Teniposide, and Vindesine sulfate.

In addition, therapeutic compositions of the invention may be used for prophylactic treatment of cancer. There are hereditary conditions and/or environmental situations (e.g. 15 exposure to carcinogens) known in the art that predispose an individual to developing cancers. Under these circumstances, it may be beneficial to treat these individuals with therapeutically effective doses of the polypeptide of the invention to reduce the risk of developing cancers.

In vitro models can be used to determine the effective doses of the polypeptide of the invention as a potential cancer treatment. These *in vitro* models include proliferation assays of 20 cultured tumor cells, growth of cultured tumor cells in soft agar (see Freshney, (1987) Culture of Animal Cells: A Manual of Basic Technique, Wiley-Liss, New York, NY Ch 18 and Ch 21), tumor systems in nude mice as described in Giovanella et al., J. Natl. Can. Inst., 52: 921-30 (1974), mobility and invasive potential of tumor cells in Boyden Chamber assays as described in Pilkington et al., Anticancer Res., 17: 4107-9 (1997), and angiogenesis assays such as induction 25 of vascularization of the chick chorioallantoic membrane or induction of vascular endothelial cell migration as described in Ribatta et al., Intl. J. Dev. Biol., 40: 1189-97 (1999) and Li et al., Clin. Exp. Metastasis, 17:423-9 (1999), respectively. Suitable tumor cell lines are available, e.g. from American Type Tissue Culture Collection catalogs.

30 4.10.12 RECEPTOR/LIGAND ACTIVITY

A polypeptide of the present invention may also demonstrate activity as receptor, receptor ligand or inhibitor or agonist of receptor/ligand interactions. A polynucleotide of the invention can encode a polypeptide exhibiting such characteristics. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and 35 their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions

and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses. Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant
5 receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods:

- 10 Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley- Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1- 7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988;
15 Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

By way of example, the polypeptides of the invention may be used as a receptor for a ligand(s) thereby transmitting the biological activity of that ligand(s). Ligands may be identified through binding assays, affinity chromatography, dihybrid screening assays, BIACore assays, gel 20 overlay assays, or other methods known in the art.

Studies characterizing drugs or proteins as agonist or antagonist or partial agonists or a partial antagonist require the use of other proteins as competing ligands. The polypeptides of the present invention or ligand(s) thereof may be labeled by being coupled to radioisotopes, colorimetric molecules or a toxin molecules by conventional methods. ("Guide to Protein
25 Purification" Murray P. Deutscher (ed) Methods in Enzymology Vol. 182 (1990) Academic Press, Inc. San Diego). Examples of radioisotopes include, but are not limited to, tritium and carbon-14 . Examples of colorimetric molecules include, but are not limited to, fluorescent molecules such as fluorescamine, or rhodamine or other colorimetric molecules. Examples of toxins include, but are not limited, to ricin.

30

4.10.13 DRUG SCREENING

This invention is particularly useful for screening chemical compounds by using the novel polypeptides or binding fragments thereof in any of a variety of drug screening techniques. The polypeptides or fragments employed in such a test may either be free in solution, affixed to a
35 solid support, borne on a cell surface or located intracellularly. One method of drug screening

utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or a fragment thereof. Drugs are screened against such transformed cells in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of
5 complexes between polypeptides of the invention or fragments and the agent being tested or examine the diminution in complex formation between the novel polypeptides and an appropriate cell line, which are well known in the art.

Sources for test compounds that may be screened for ability to bind to or modulate (*i.e.*, increase or decrease) the activity of polypeptides of the invention include (1) inorganic and
10 organic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of either random or mimetic peptides, oligonucleotides or organic molecules.

Chemical libraries may be readily synthesized or purchased from a number of commercial sources, and may include structural analogs of known compounds or compounds that are identified as "hits" or "leads" via natural product screening.
15

The sources of natural product libraries are microorganisms (including bacteria and fungi), animals, plants or other vegetation, or marine organisms, and libraries of mixtures for screening may be created by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of the organisms themselves. Natural product libraries include polyketides, non-ribosomal peptides, and (non-naturally occurring) variants thereof. For a
20 review, see *Science* 282:63-68 (1998).

Combinatorial libraries are composed of large numbers of peptides, oligonucleotides or organic compounds and can be readily prepared by traditional automated synthesis methods, PCR, cloning or proprietary synthetic methods. Of particular interest are peptide and oligonucleotide combinatorial libraries. Still other libraries of interest include peptide, protein,
25 peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, *Curr. Opin. Biotechnol.* 8:701-707 (1997). For reviews and examples of peptidomimetic libraries, see Al-Obeidi et al., *Mol. Biotechnol.*, 9(3):205-23 (1998); Hruby et al., *Curr Opin Chem Biol.*, 1(1):114-19 (1997); Dorner et al., *Bioorg Med Chem*, 4(5):709-15 (1996) (alkylated dipeptides).

30 Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or "lead") to optimize the capacity of the "hit" to bind a polypeptide of the invention. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested
35 for either cell/animal death or prolonged survival of the animal/cells.

The binding molecules thus identified may be complexed with toxins, *e.g.*, ricin or cholera, or with other compounds that are toxic to cells such as radioisotopes. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for a polypeptide of the invention. Alternatively, the binding molecules may be 5 complexed with imaging agents for targeting and imaging purposes.

4.10.14 ASSAY FOR RECEPTOR ACTIVITY

The invention also provides methods to detect specific binding of a polypeptide *e.g.* a ligand or a receptor. The art provides numerous assays particularly useful for identifying 10 previously unknown binding partners for receptor polypeptides of the invention. For example, expression cloning using mammalian or bacterial cells, or dihybrid screening assays can be used to identify polynucleotides encoding binding partners. As another example, affinity chromatography with the appropriate immobilized polypeptide of the invention can be used to isolate polypeptides that recognize and bind polypeptides of the invention. There are a number 15 of different libraries used for the identification of compounds, and in particular small molecules, that modulate (*i.e.*, increase or decrease) biological activity of a polypeptide of the invention. Ligands for receptor polypeptides of the invention can also be identified by adding exogenous 20 ligands, or cocktails of ligands to two cell populations that are genetically identical except for the expression of the receptor of the invention: one cell population expresses the receptor of the invention whereas the other does not. The response of the two cell populations to the addition of ligands(s) are then compared. Alternatively, an expression library can be co-expressed with the 25 polypeptide of the invention in cells and assayed for an autocrine response to identify potential ligand(s). As still another example, BIACore assays, gel overlay assays, or other methods known in the art can be used to identify binding partner polypeptides, including, (1) organic and inorganic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides or organic molecules.

The role of downstream intracellular signaling molecules in the signaling cascade of the polypeptide of the invention can be determined. For example, a chimeric protein in which the cytoplasmic domain of the polypeptide of the invention is fused to the extracellular portion of a 30 protein, whose ligand has been identified, is produced in a host cell. The cell is then incubated with the ligand specific for the extracellular portion of the chimeric protein, thereby activating the chimeric receptor. Known downstream proteins involved in intracellular signaling can then be assayed for expected modifications *i.e.* phosphorylation. Other methods known to those in the art can also be used to identify signaling molecules involved in receptor activity.

4.10.15 ANTI-INFLAMMATORY ACTIVITY

Compositions of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, 5 cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Compositions with such activities can be used to treat inflammatory conditions including chronic or acute 10 conditions), including without limitation intimation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Compositions of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

15 Compositions of this invention may be utilized to prevent or treat conditions such as, but not limited to, sepsis, acute pancreatitis, endotoxin shock, cytokine induced shock, rheumatoid arthritis, chronic inflammatory arthritis, pancreatic cell damage from diabetes mellitus type 1, graft versus host disease, inflammatory bowel disease, inflammation associated with pulmonary disease, other autoimmune disease or inflammatory disease, an antiproliferative agent such as for 20 acute or chronic myelogenous leukemia or in the prevention of premature labor secondary to intrauterine infections.

4.10.16 LEUKEMIAS

Leukemias and related disorders may be treated or prevented by administration of a 25 therapeutic that promotes or inhibits function of the polynucleotides and/or polypeptides of the invention. Such leukemias and related disorders include but are not limited to acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, myeloblastic, promyelocytic, myelomonocytic, monocytic, erythroleukemia, chronic leukemia, chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia (for a review of such disorders, see 30 Fishman et al., 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia).

4.10.17 NERVOUS SYSTEM DISORDERS

Nervous system disorders, involving cell types which can be tested for efficacy of intervention with compounds that modulate the activity of the polynucleotides and/or 35 polypeptides of the invention, and which can be treated upon thus observing an indication of

- therapeutic utility, include but are not limited to nervous system injuries, and diseases or disorders which result in either a disconnection of axons, a diminution or degeneration of neurons, or demyelination. Nervous system lesions which may be treated in a patient (including human and non-human mammalian patients) according to the invention include but are not limited to the following lesions of either the central (including spinal cord, brain) or peripheral nervous systems:
- (i) traumatic lesions, including lesions caused by physical injury or associated with surgery, for example, lesions which sever a portion of the nervous system, or compression injuries;
 - (ii) ischemic lesions, in which a lack of oxygen in a portion of the nervous system results in neuronal injury or death, including cerebral infarction or ischemia, or spinal cord infarction or ischemia;
 - (iii) infectious lesions, in which a portion of the nervous system is destroyed or injured as a result of infection, for example, by an abscess or associated with infection by human immunodeficiency virus, herpes zoster, or herpes simplex virus or with Lyme disease, tuberculosis, syphilis;
 - (iv) degenerative lesions, in which a portion of the nervous system is destroyed or injured as a result of a degenerative process including but not limited to degeneration associated with Parkinson's disease, Alzheimer's disease, Huntington's chorea, or amyotrophic lateral sclerosis;
 - (v) lesions associated with nutritional diseases or disorders, in which a portion of the nervous system is destroyed or injured by a nutritional disorder or disorder of metabolism including but not limited to, vitamin B12 deficiency, folic acid deficiency, Wernicke disease, tobacco-alcohol amblyopia, Marchiafava-Bignami disease (primary degeneration of the corpus callosum), and alcoholic cerebellar degeneration;
 - (vi) neurological lesions associated with systemic diseases including but not limited to diabetes (diabetic neuropathy, Bell's palsy), systemic lupus erythematosus, carcinoma, or sarcoidosis;
 - (vii) lesions caused by toxic substances including alcohol, lead, or particular neurotoxins; and
 - (viii) demyelinated lesions in which a portion of the nervous system is destroyed or injured by a demyelinating disease including but not limited to multiple sclerosis, human immunodeficiency virus-associated myelopathy, transverse myelopathy or various etiologies, progressive multifocal leukoencephalopathy, and central pontine myelinolysis.

Therapeutics which are useful according to the invention for treatment of a nervous system disorder may be selected by testing for biological activity in promoting the survival or differentiation of neurons. For example, and not by way of limitation, therapeutics which elicit any of the following effects may be useful according to the invention:

- 5 (i) increased survival time of neurons in culture;
 (ii) increased sprouting of neurons in culture or *in vivo*;
 (iii) increased production of a neuron-associated molecule in culture or *in vivo*, *e.g.*, choline acetyltransferase or acetylcholinesterase with respect to motor neurons; or
 (iv) decreased symptoms of neuron dysfunction *in vivo*.

10 Such effects may be measured by any method known in the art. In preferred, non-limiting embodiments, increased survival of neurons may be measured by the method set forth in Arakawa et al. (1990, *J. Neurosci.* 10:3507-3515); increased sprouting of neurons may be detected by methods set forth in Pestronk et al. (1980, *Exp. Neurol.* 70:65-82) or Brown et al. (1981, *Ann. Rev. Neurosci.* 4:17-42); increased production of neuron-associated molecules may
15 be measured by bioassay, enzymatic assay, antibody binding, Northern blot assay, *etc.*, depending on the molecule to be measured; and motor neuron dysfunction may be measured by assessing the physical manifestation of motor neuron disorder, *e.g.*, weakness, motor neuron conduction velocity, or functional disability.

In specific embodiments, motor neuron disorders that may be treated according to the
20 invention include but are not limited to disorders such as infarction, infection, exposure to toxin, trauma, surgical damage, degenerative disease or malignancy that may affect motor neurons as well as other components of the nervous system, as well as disorders that selectively affect neurons such as amyotrophic lateral sclerosis, and including but not limited to progressive spinal muscular atrophy, progressive bulbar palsy, primary lateral sclerosis, infantile and juvenile
25 muscular atrophy, progressive bulbar paralysis of childhood (Fazio-Londe syndrome), poliomyelitis and the post polio syndrome, and Hereditary Motorsensory Neuropathy (Charcot-Marie-Tooth Disease).

4.10.18 OTHER ACTIVITIES

30 A polypeptide of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape
35 (such as, for example, breast augmentation or diminution, change in bone form or shape);

effecting biorhythms or circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, co-factors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

15 **4.10.19 IDENTIFICATION OF POLYMORPHISMS**

The demonstration of polymorphisms makes possible the identification of such polymorphisms in human subjects and the pharmacogenetic use of this information for diagnosis and treatment. Such polymorphisms may be associated with, e.g., differential predisposition or susceptibility to various disease states (such as disorders involving inflammation or immune response) or a differential response to drug administration, and this genetic information can be used to tailor preventive or therapeutic treatment appropriately. For example, the existence of a polymorphism associated with a predisposition to inflammation or autoimmune disease makes possible the diagnosis of this condition in humans by identifying the presence of the polymorphism.

25 Polymorphisms can be identified in a variety of ways known in the art which all generally involve obtaining a sample from a patient, analyzing DNA from the sample, optionally involving isolation or amplification of the DNA, and identifying the presence of the polymorphism in the DNA. For example, PCR may be used to amplify an appropriate fragment of genomic DNA which may then be sequenced. Alternatively, the DNA may be subjected to 30 allele-specific oligonucleotide hybridization (in which appropriate oligonucleotides are hybridized to the DNA under conditions permitting detection of a single base mismatch) or to a single nucleotide extension assay (in which an oligonucleotide that hybridizes immediately adjacent to the position of the polymorphism is extended with one or more labeled nucleotides). In addition, traditional restriction fragment length polymorphism analysis (using restriction 35 enzymes that provide differential digestion of the genomic DNA depending on the presence or

absence of the polymorphism) may be performed. Arrays with nucleotide sequences of the present invention can be used to detect polymorphisms. The array can comprise modified nucleotide sequences of the present invention in order to detect the nucleotide sequences of the present invention. In the alternative, any one of the nucleotide sequences of the present invention can be placed on the array to detect changes from those sequences.

5 Alternatively a polymorphism resulting in a change in the amino acid sequence could also be detected by detecting a corresponding change in amino acid sequence of the protein, e.g., by an antibody specific to the variant sequence.

10 **4.10.20 ARTHRITIS AND INFLAMMATION**

The immunosuppressive effects of the compositions of the invention against rheumatoid arthritis is determined in an experimental animal model system. The experimental model system is adjuvant induced arthritis in rats, and the protocol is described by J. Holoshitz, et al., 1983, Science, 219:56, or by B. Waksman et al., 1963, Int. Arch. Allergy Appl. Immunol., 23:129.

15 Induction of the disease can be caused by a single injection, generally intradermally, of a suspension of killed Mycobacterium tuberculosis in complete Freund's adjuvant (CFA). The route of injection can vary, but rats may be injected at the base of the tail with an adjuvant mixture. The polypeptide is administered in phosphate buffered solution (PBS) at a dose of about 1-5 mg/kg. The control consists of administering PBS only.

20 The procedure for testing the effects of the test compound would consist of intradermally injecting killed Mycobacterium tuberculosis in CFA followed by immediately administering the test compound and subsequent treatment every other day until day 24. At 14, 15, 18, 20, 22, and 24 days after injection of Mycobacterium CFA, an overall arthritis score may be obtained as described by J. Holoskitz above. An analysis of the data would reveal that the test compound
25 would have a dramatic affect on the swelling of the joints as measured by a decrease of the arthritis score.

4.11 THERAPEUTIC METHODS

30 The compositions (including polypeptide fragments, analogs, variants and antibodies or other binding partners or modulators including antisense polynucleotides) of the invention have numerous applications in a variety of therapeutic methods. Examples of therapeutic applications include, but are not limited to, those exemplified herein.

4.11.1 EXAMPLE

One embodiment of the invention is the administration of an effective amount of the polypeptides or other composition of the invention to individuals affected by a disease or disorder that can be modulated by regulating the peptides of the invention. While the mode of administration is not particularly important, parenteral administration is preferred. An exemplary mode of administration is to deliver an intravenous bolus. The dosage of the polypeptides or other composition of the invention will normally be determined by the prescribing physician. It is to be expected that the dosage will vary according to the age, weight, condition and response of the individual patient. Typically, the amount of polypeptide administered per dose will be in the range of about 0.01 μ g/kg to 100 mg/kg of body weight, with the preferred dose being about 0.1 μ g/kg to 10 mg/kg of patient body weight. For parenteral administration, polypeptides of the invention will be formulated in an injectable form combined with a pharmaceutically acceptable parenteral vehicle. Such vehicles are well known in the art and examples include water, saline, Ringer's solution, dextrose solution, and solutions consisting of small amounts of the human serum albumin. The vehicle may contain minor amounts of additives that maintain the isotonicity and stability of the polypeptide or other active ingredient. The preparation of such solutions is within the skill of the art.

4.12 PHARMACEUTICAL FORMULATIONS AND ROUTES OF ADMINISTRATION

A protein or other composition of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources and including antibodies and other binding partners of the polypeptides of the invention) may be administered to a patient in need, by itself, or in pharmaceutical compositions where it is mixed with suitable carriers or excipient(s) at doses to treat or ameliorate a variety of disorders. Such a composition may optionally contain (in addition to protein or other active ingredient and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNF0, TNF1, TNF2, G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin. In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the disease or disorder in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet-derived growth

factor (PDGF), transforming growth factors (TGF- α and TGF- β), insulin-like growth factor (IGF), as well as cytokines described herein.

The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or other active ingredient or complement its activity or use in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein or other active ingredient of the invention, or to minimize side effects. Conversely, protein or other active ingredient of the present invention may be included in formulations of the particular clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent (such as IL-1Ra, IL-1 Hy1, IL-1 Hy2, anti-TNF, corticosteroids, immunosuppressive agents). A protein of the present invention may be active in multimers (*e.g.*, heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.

As an alternative to being included in a pharmaceutical composition of the invention including a first protein, a second protein or a therapeutic agent may be concurrently administered with the first protein (*e.g.*, at the same time, or at differing times provided that therapeutic concentrations of the combination of agents is achieved at the treatment site).

Techniques for formulation and administration of the compounds of the instant application may be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, latest edition. A therapeutically effective dose further refers to that amount of the compound sufficient to result in amelioration of symptoms, *e.g.*, treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, a therapeutically effective dose refers to that ingredient alone. When applied to a combination, a therapeutically effective dose refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein or other active ingredient of the present invention is administered to a mammal having a condition to be treated. Protein or other active ingredient of the present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When co-administered with one or more cytokines, lymphokines or other

hematopoietic factors, protein or other active ingredient of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein or other active ingredient of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors.

4.12.1 ROUTES OF ADMINISTRATION

Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections. Administration of protein or other active ingredient of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection. Intravenous administration to the patient is preferred.

Alternately, one may administer the compound in a local rather than systemic manner, for example, via injection of the compound directly into a arthritic joints or in fibrotic tissue, often in a depot or sustained release formulation. In order to prevent the scarring process frequently occurring as complication of glaucoma surgery, the compounds may be administered topically, for example, as eye drops. Furthermore, one may administer the drug in a targeted drug delivery system, for example, in a liposome coated with a specific antibody, targeting, for example, arthritic or fibrotic tissue. The liposomes will be targeted to and taken up selectively by the afflicted tissue.

The polypeptides of the invention are administered by any route that delivers an effective dosage to the desired site of action. The determination of a suitable route of administration and an effective dosage for a particular indication is within the level of skill in the art. Preferably for wound treatment, one administers the therapeutic compound directly to the site. Suitable dosage ranges for the polypeptides of the invention can be extrapolated from these dosages or from similar studies in appropriate animal models. Dosages can then be adjusted as necessary by the clinician to provide maximal therapeutic benefit.

4.12.2 COMPOSITIONS/FORMULATIONS

Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in a conventional manner using one or more physiologically acceptable carriers

comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. These pharmaceutical compositions may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or

5 lyophilizing processes. Proper formulation is dependent upon the route of administration chosen. When a therapeutically effective amount of protein or other active ingredient of the present invention is administered orally, protein or other active ingredient of the present invention will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the pharmaceutical composition of the invention may additionally contain a solid

10 carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein or other active ingredient of the present invention, and preferably from about 25 to 90% protein or other active ingredient of the present invention. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the

15 pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of protein or other active ingredient of the present invention, and preferably from about 1 to 50% protein or other active ingredient of the present invention.

20 When a therapeutically effective amount of protein or other active ingredient of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein or other active ingredient of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein or other active ingredient solutions, having due regard to pH, isotonicity, stability, and the like, is within

25 the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein or other active ingredient of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may

30 also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art. For injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known

35 in the art.

For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art. Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained from a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration. For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch. The compounds may be formulated for parenteral

administration by injection, *e.g.*, by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, *e.g.*, in ampules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending,

5 stabilizing and/or dispersing agents.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or

10 triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient may be in powder form for constitution with a

15 suitable vehicle, *e.g.*, sterile pyrogen-free water, before use.

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, *e.g.*, containing conventional suppository bases such as cocoa butter or other glycerides. In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by

20 implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

A pharmaceutical carrier for the hydrophobic compounds of the invention is a co-solvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. The co-solvent system may be the VPD co-solvent system. VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. The VPD co-solvent system (VPD:5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution. This co-solvent system dissolves hydrophobic compounds well, and itself produces low toxicity upon systemic administration. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of polysorbate 80; the fraction size of polyethylene glycol may be varied; other

30 biocompatible polymers may replace polyethylene glycol, *e.g.* polyvinyl pyrrolidone; and other

35

- sugars or polysaccharides may substitute for dextrose. Alternatively, other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity.
- 5 Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various types of sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the
- 10 biological stability of the therapeutic reagent, additional strategies for protein or other active ingredient stabilization may be employed.

The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and

15 polymers such as polyethylene glycols. Many of the active ingredients of the invention may be provided as salts with pharmaceutically compatible counter ions. Such pharmaceutically acceptable base addition salts are those salts which retain the biological effectiveness and properties of the free acids and which are obtained by reaction with inorganic or organic bases such as sodium hydroxide, magnesium hydroxide, ammonia, trialkylamine, dialkylamine,

20 monoalkylamine, dibasic amino acids, sodium acetate, potassium benzoate, triethanol amine and the like.

The pharmaceutical composition of the invention may be in the form of a complex of the protein(s) or other active ingredient(s) of present invention along with protein or peptide antigens. The protein and/or peptide antigen will deliver a stimulatory signal to both B and T

25 lymphocytes. B lymphocytes will respond to antigen through their surface immunoglobulin receptor. T lymphocytes will respond to antigen through the T cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins including those encoded by class I and class II MHC genes on host cells will serve to present the peptide antigen(s) to T lymphocytes. The antigen components could also be supplied as purified

30 MHC-peptide complexes alone or with co-stimulatory molecules that can directly signal T cells. Alternatively antibodies able to bind surface immunoglobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention.

The pharmaceutical composition of the invention may be in the form of a liposome in

35 which protein of the present invention is combined, in addition to other pharmaceutically

acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithins, phospholipids, saponin, bile acids, and the like. Preparation of such 5 liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Patent Nos. 4,235,871; 4,501,728; 4,837,028; and 4,737,323, all of which are incorporated herein by reference.

The amount of protein or other active ingredient of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of 10 the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein or other active ingredient of the present invention with which to treat each individual patient. Initially, the attending physician will administer low doses of protein or other active ingredient of the present invention and observe the patient's response. Larger doses of protein or other active ingredient 15 of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 µg to about 100 mg (preferably about 0.1 µg to about 10 mg, more preferably about 0.1 µg to about 1 mg) of protein or other active ingredient of the present invention per kg 20 body weight. For compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for 25 delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein or other active ingredient of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the methods of the invention. Preferably for bone and/or 30 cartilage formation, the composition would include a matrix capable of delivering the protein-containing or other active ingredient-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical applications.

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalcium phosphate,

5 hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above

10 mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalcium phosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability. Presently preferred is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns.

15 In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.

A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose,

20 hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl-methylcellulose, and carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate, poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5-20 wt %, preferably 1-10 wt % based on

25 total formulation weight, which represents the amount necessary to prevent desorption of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells. In further compositions, proteins or other active ingredients of the invention may be combined with other

30 agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF- α and TGF- β), and insulin-like growth factor (IGF).

The therapeutic compositions are also presently valuable for veterinary applications.

35 Particularly domestic animals and thoroughbred horses, in addition to humans, are desired

patients for such treatment with proteins or other active ingredients of the present invention. The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, *e.g.*, amount of tissue weight desired to be formed, the site of
5 damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (*e.g.*, bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final
10 composition, may also effect the dosage. Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either *in vivo* or *ex vivo* into cells for expression in a
15 mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA). Cells may also be cultured *ex vivo* in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced *in vivo* for therapeutic purposes.
20

4.12.3 EFFECTIVE DOSAGE

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. More specifically, a therapeutically effective amount means an amount
25 effective to prevent development of or to alleviate the existing symptoms of the subject being treated. Determination of the effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from appropriate *in vitro* assays. For example, a dose can be formulated in animal models to achieve a
30 circulating concentration range that can be used to more accurately determine useful doses in humans. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes the IC₅₀ as determined in cell culture (*i.e.*, the concentration of the test compound which achieves a half-maximal inhibition of the protein's biological activity). Such information can be used to more accurately determine useful doses in humans.

- A therapeutically effective dose refers to that amount of the compound that results in amelioration of symptoms or a prolongation of survival in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD₅₀ and ED₅₀. Compounds which exhibit high therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range 5 of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. See, e.g., Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p.1. Dosage amount and interval may be adjusted 10 individually to provide plasma levels of the active moiety which are sufficient to maintain the desired effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from *in vitro* data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.
- Dosage intervals can also be determined using MEC value. Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%. In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration.
- An exemplary dosage regimen for polypeptides or other compositions of the invention will be in the range of about 0.01 µg/kg to 100 mg/kg of body weight daily, with the preferred dose being about 0.1 µg/kg to 25 mg/kg of patient body weight daily, varying in adults and children. Dosing may be once daily, or equivalent doses may be delivered at longer or shorter intervals.
- The amount of composition administered will, of course, be dependent on the subject being treated, on the subject's age and weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.

4.12.4 PACKAGING

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may, for example, comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. Compositions comprising a compound of the 5 invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.

4.13 ANTIBODIES

Also included in the invention are antibodies to proteins, or fragments of proteins of the 10 invention. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, *i.e.*, molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, F_{ab}, F_{ab'} and F_{(ab')2} fragments, and an F_{ab} expression library. In general, an antibody molecule obtained from 15 humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG₁, IgG₂, and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.

20 An isolated related protein of the invention may be intended to serve as an antigen, or a portion or fragment thereof, and additionally can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An 25 antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, (for example the amino acid sequence shown in SEQ ID NO: 1351), and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 30 amino acid residues. 30 Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.

In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of -related protein that is located on the surface of the protein, *e.g.*, a 35 hydrophilic region. A hydrophobicity analysis of the human related protein sequence will

indicate which regions of a related protein are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte
5 Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, *Proc. Nat. Acad. Sci. USA* 78: 3824-3828; Kyte and Doolittle 1982, *J. Mol. Biol.* 157: 105-142, each of which is incorporated herein by reference in its entirety.
Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.
10 A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.

Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, incorporated herein by reference). Some of these antibodies are discussed below.

5.13.1 Polyclonal Antibodies

20 For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and *Corynebacterium parvum*, or similar immunostimulatory agents. Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, 35 synthetic trehalose dicorynomycolate).

The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (*e.g.*, from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (*The Scientist*, published by The Scientist, Inc., Philadelphia PA, Vol. 14, No. 8 (April 17, 2000), pp. 25-28).

10 **5.13.2 Monoclonal Antibodies**

The term "monoclonal antibody" (MAb) or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAb thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.

Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro.

The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

- Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, *J. Immunol.*, 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63).
- The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, *Anal. Biochem.*, 107:220 (1980). Preferably, antibodies having a high degree of specificity and a high binding affinity for the target antigen are isolated.
- After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown *in vivo* as ascites in a mammal.
- The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
- The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (*e.g.*, by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for

example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin 5 polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

5.13.2 Humanized Antibodies

10 The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')₂ or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the 15 corresponding sequences of a human antibody. (See also U.S. Patent No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable 20 domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 25 2:593-596 (1992)).

5.13.3 Human Antibodies

Fully human antibodies relate to antibody molecules in which essentially the entire 30 sequences of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies", or "fully human antibodies" herein.

- Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 *Immunol Today* 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: *MONOCLONAL ANTIBODIES AND CANCER THERAPY*, Alan R. Liss, Inc., pp. 77-96). Human monoclonal
- 5 antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. *Proc Natl Acad Sci USA* 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: *MONOCLONAL ANTIBODIES AND CANCER THERAPY*, Alan R. Liss, Inc., pp. 77-96).
- In addition, human antibodies can also be produced using additional techniques,
- 10 including phage display libraries (Hoogenboom and Winter, *J. Mol. Biol.*, 227:381 (1991); Marks et al., *J. Mol. Biol.*, 222:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans
- 15 in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (*Bio/Technology* 10, 779-783 (1992)); Lonberg et al. (*Nature* 368 856-859 (1994)); Morrison (*Nature* 368, 812-13 (1994)); Fishwild et al., (*Nature Biotechnology* 14, 845-51 (1996)); Neuberger (*Nature Biotechnology* 14, 826 (1996)); and
- 20 Lonberg and Huszar (*Intern. Rev. Immunol.* 13 65-93 (1995)).

Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host

25 have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The

30 preferred embodiment of such a nonhuman animal is a mouse, and is termed the XenomouseTM as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as

35 hybridomas producing monoclonal antibodies. Additionally, the genes encoding the

immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.

- An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.

- A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Patent No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.

- In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.

5.13.4 F_{ab} Fragments and Single Chain Antibodies

- According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Patent No. 4,946,778). In addition, methods can be adapted for the construction of F_{ab} expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal F_{ab} fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an F_{(ab')2} fragment produced by pepsin digestion of an antibody molecule; (ii) an F_{ab} fragment generated by reducing the disulfide bridges of an F_{(ab')2} fragment; (iii) an F_{ab} fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) F_v fragments.

35 **5.13.5 Bispecific Antibodies**

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.

5 Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, *Nature*, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a
10 potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker *et al.*, 1991 *EMBO J.*, 10:3655-3659.

Antibody variable domains with the desired binding specificities (antibody-antigen
15 combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH₂, and CH₃ regions. It is preferred to have the first heavy-chain constant region (CH₁) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin
20 light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh *et al.*, *Methods in Enzymology*, 121:210 (1986).

According to another approach described in WO 96/27011, the interface between a pair
25 of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH₃ region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino
30 acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g.
F(ab')₂ bispecific antibodies). Techniques for generating bispecific antibodies from antibody
fragments have been described in the literature. For example, bispecific antibodies can be
35 prepared using chemical linkage. Brennan *et al.*, *Science* 229:81 (1985) describe a procedure

wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Additionally, Fab' fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (V_H) connected to a light-chain variable domain (V_L) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol. 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991). Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on

a leukocyte such as a T-cell receptor molecule (*e.g.* CD2, CD3, CD28, or B7), or Fc receptors for IgG (Fc R), such as Fc RI (CD64), Fc RII (CD32) and Fc RIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These 5 antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).

5.13.6 Heteroconjugate Antibodies

10 Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared *in vitro* using known methods in synthetic 15 protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

5.13.7 Effector Function Engineering

It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, *e.g.*, the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved 25 internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shope, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that 30 has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).

5.13.8 Immunoconjugates

The invention also pertains to immunoconjugates comprising an antibody conjugated to a 35 cytotoxic agent such as a chemotherapeutic agent, toxin (*e.g.*, an enzymatically active toxin of

bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (*i.e.*, a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include 5 diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from *Pseudomonas aeruginosa*), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, *Aleurites fordii* proteins, dianthin proteins, *Phytolaca americana* proteins (PAPI, PAPII, and PAP-S), *Momordica charantia* inhibitor, curcin, crotin, *sapaponaria officinalis* inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the trichothecenes. A variety of 10 radionuclides are available for the production of radioconjugated antibodies. Examples include ^{212}Bi , ^{131}I , ^{131}In , ^{90}Y , and ^{186}Re .

Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), 15 active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., *Science*, 238: 1098 (1987). 20 Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

In another embodiment, the antibody can be conjugated to a "receptor" (such as streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is 25 administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (*e.g.*, avidin) that is in turn conjugated to a cytotoxic agent.

4.14 COMPUTER READABLE SEQUENCES

30 In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM 35 and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled

artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the 5 presently known methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen 10 to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, 15 Oracle, or the like. A skilled artisan can readily adapt any number of data processor structuring formats (e.g. text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

By providing any of the nucleotide sequences SEQ ID NO:1-1350 or a representative fragment thereof; or a nucleotide sequence at least 95% identical to any of the nucleotide 20 sequences of SEQ ID NO:1-1350 in computer readable form, a skilled artisan can routinely access the sequence information for a variety of purposes. Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. 25 Chem. 17:203-207 (1993)) search algorithms on a Sybase system is used to identify open reading frames (ORFs) within a nucleic acid sequence. Such ORFs may be protein encoding fragments and may be useful in producing commercially important proteins such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

As used herein, "a computer-based system" refers to the hardware means, software 30 means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention. As stated above, the 35 computer-based systems of the present invention comprise a data storage means having stored

therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon
5 the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of a known sequence which match a particular target sequence or target
10 motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, Smith-Waterman, MacPattern (EMBL), BLASTN and BLASTA (NPOLYPEPTIDEIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing
15 software packages for conducting homology searches can be adapted for use in the present computer-based systems. As used herein, a "target sequence" can be any nucleic acid or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target
20 sequence is from about 10 to 300 amino acids, more preferably from about 30 to 100 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally
25 selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzyme active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding
30 sequences).

4.15 TRIPLE HELIX FORMATION

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which
35 methods are based on the binding of a polynucleotide sequence to DNA or RNA.

Polynucleotides suitable for use in these methods are preferably 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 15241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Olmno, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the 10 design of an antisense or triple helix oligonucleotide.

4.16 DIAGNOSTIC ASSAYS AND KITS

The present invention further provides methods to identify the presence or expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using a nucleic acid probe or antibodies of the present invention, optionally conjugated or otherwise associated with a suitable label.

In general, methods for detecting a polynucleotide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polynucleotide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polynucleotide of the invention is detected in the sample. Such methods can also comprise contacting a sample under stringent hybridization conditions with nucleic acid primers that anneal to a polynucleotide of the invention under such conditions, and amplifying annealed polynucleotides, so that if a polynucleotide is amplified, a polynucleotide of the invention is detected in the sample.

25 In general, methods for detecting a polypeptide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polypeptide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polypeptide of the invention is detected in the sample.

30 In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the nucleic acid probes of the present invention and assaying for binding of the nucleic acid probes or antibodies to components within the test sample.

Conditions for incubating a nucleic acid probe or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid probe or antibody used in the assay. One 35 skilled in the art will recognize that any one of the commonly available hybridization,

amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G.R. et al., Techniques in Immunocytochemistry, 5 Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985). The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method 10 will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the 15 necessary reagents to carry out the assays of the present invention. Specifically, the invention provides a compartment kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the probes or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound probe or antibody.

20 In detail, a compartment kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one 25 compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or probe. Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the 30 primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed probes and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

35 **4.17 MEDICAL IMAGING**

The novel polypeptides and binding partners of the invention are useful in medical imaging of sites expressing the molecules of the invention (e.g., where the polypeptide of the invention is involved in the immune response, for imaging sites of inflammation or infection). See, e.g., Kunkel et al., U.S. Pat. NO. 5,413,778. Such methods involve chemical attachment of 5 a labeling or imaging agent, administration of the labeled polypeptide to a subject in a pharmaceutically acceptable carrier, and imaging the labeled polypeptide *in vivo* at the target site.

4.18 SCREENING ASSAYS

10 Using the isolated proteins and polynucleotides of the invention, the present invention further provides methods of obtaining and identifying agents which bind to a polypeptide encoded by an ORF corresponding to any of the nucleotide sequences set forth in SEQ ID NO:1-1350, or bind to a specific domain of the polypeptide encoded by the nucleic acid. In detail, said method comprises the steps of:

15 (a) contacting an agent with an isolated protein encoded by an ORF of the present invention, or nucleic acid of the invention; and

(b) determining whether the agent binds to said protein or said nucleic acid.

In general, therefore, such methods for identifying compounds that bind to a 20 polynucleotide of the invention can comprise contacting a compound with a polynucleotide of the invention for a time sufficient to form a polynucleotide/compound complex, and detecting the complex, so that if a polynucleotide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Likewise, in general, therefore, such methods for identifying compounds that bind to a 25 polypeptide of the invention can comprise contacting a compound with a polypeptide of the invention for a time sufficient to form a polypeptide/compound complex, and detecting the complex, so that if a polypeptide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Methods for identifying compounds that bind to a polypeptide of the invention can also 30 comprise contacting a compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a receptor gene sequence in the cell, and detecting the complex by detecting reporter gene sequence expression, so that if a polypeptide/compound complex is detected, a compound that binds a polypeptide of the invention is identified.

Compounds identified via such methods can include compounds which modulate the 35 activity of a polypeptide of the invention (that is, increase or decrease its activity, relative to

activity observed in the absence of the compound). Alternatively, compounds identified via such methods can include compounds which modulate the expression of a polynucleotide of the invention (that is, increase or decrease expression relative to expression levels observed in the absence of the compound). Compounds, such as compounds identified via the methods of the 5 invention, can be tested using standard assays well known to those of skill in the art for their ability to modulate activity/expression.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

10 For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention. Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can 15 readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like, capable of binding to a specific peptide sequence, in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspaczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

20 In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or 25 multiple ORFs which rely on the same EMF for expression control. One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix formation by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

30 Agents suitable for use in these methods preferably contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca 35 Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription

from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems.

Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents.

- 5 Agents which bind to a protein encoded by one of the ORFs of the present invention can be used as a diagnostic agent. Agents which bind to a protein encoded by one of the ORFs of the present invention can be formulated using known techniques to generate a pharmaceutical composition.

10 4.19 USE OF NUCLEIC ACIDS AS PROBES

Another aspect of the subject invention is to provide for polypeptide-specific nucleic acid hybridization probes capable of hybridizing with naturally occurring nucleotide sequences. The hybridization probes of the subject invention may be derived from any of the nucleotide sequences SEQ ID NO:1-1350. Because the corresponding gene is only expressed in a limited 15 number of tissues, a hybridization probe derived from of any of the nucleotide sequences SEQ ID NO:1-1350 can be used as an indicator of the presence of RNA of cell type of such a tissue in a sample.

Any suitable hybridization technique can be employed, such as, for example, *in situ* hybridization. PCR as described in US Patents Nos. 4,683,195 and 4,965,188 provides 20 additional uses for oligonucleotides based upon the nucleotide sequences. Such probes used in PCR may be of recombinant origin, may be chemically synthesized, or a mixture of both. The probe will comprise a discrete nucleotide sequence for the detection of identical sequences or a degenerate pool of possible sequences for identification of closely related genomic sequences.

Other means for producing specific hybridization probes for nucleic acids include the 25 cloning of nucleic acid sequences into vectors for the production of mRNA probes. Such vectors are known in the art and are commercially available and may be used to synthesize RNA probes *in vitro* by means of the addition of the appropriate RNA polymerase as T7 or SP6 RNA polymerase and the appropriate radioactively labeled nucleotides. The nucleotide sequences may be used to construct hybridization probes for mapping their respective genomic sequences. The 30 nucleotide sequence provided herein may be mapped to a chromosome or specific regions of a chromosome using well known genetic and/or chromosomal mapping techniques. These techniques include *in situ* hybridization, linkage analysis against known chromosomal markers, hybridization screening with libraries or flow-sorted chromosomal preparations specific to known chromosomes, and the like. The technique of fluorescent *in situ* hybridization of

chromosome spreads has been described, among other places, in Verma et al (1988) Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York NY.

Fluorescent *in situ* hybridization of chromosomal preparations and other physical chromosome mapping techniques may be correlated with additional genetic map data. Examples 5 of genetic map data can be found in the 1994 Genome Issue of Science (265:1981f). Correlation between the location of a nucleic acid on a physical chromosomal map and a specific disease (or predisposition to a specific disease) may help delimit the region of DNA associated with that genetic disease. The nucleotide sequences of the subject invention may be used to detect differences in gene sequences between normal, carrier or affected individuals.

10 **4.20 PREPARATION OF SUPPORT BOUND OLIGONUCLEOTIDES**

Oligonucleotides, *i.e.*, small nucleic acid segments, may be readily prepared by, for example, directly synthesizing the oligonucleotide by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer.

Support bound oligonucleotides may be prepared by any of the methods known to those of 15 skill in the art using any suitable support such as glass, polystyrene or Teflon. One strategy is to precisely spot oligonucleotides synthesized by standard synthesizers. Immobilization can be achieved using passive adsorption (Inouye & Hondo, (1990) J. Clin. Microbiol. 28(6) 1469-72); using UV light (Nagata *et al.*, 1985; Dahlen *et al.*, 1987; Morrissey & Collins, (1989) Mol. Cell Probes 3(2) 189-207) or by covalent binding of base modified DNA (Keller *et al.*, 1988; 1989); all 20 references being specifically incorporated herein.

Another strategy that may be employed is the use of the strong biotin-streptavidin interaction as a linker. For example, Broude *et al.* (1994) Proc. Natl. Acad. Sci. USA 91(8) 3072-6, describe the use of biotinylated probes, although these are duplex probes, that are immobilized on streptavidin-coated magnetic beads. Streptavidin-coated beads may be purchased from Dynal, 25 Oslo. Of course, this same linking chemistry is applicable to coating any surface with streptavidin. Biotinylated probes may be purchased from various sources, such as, *e.g.*, Operon Technologies (Alameda, CA).

Nunc Laboratories (Naperville, IL) is also selling suitable material that could be used. Nunc Laboratories have developed a method by which DNA can be covalently bound to the microwell 30 surface termed Covalink NH. CovaLink NH is a polystyrene surface grafted with secondary amino groups (>NH) that serve as bridge-heads for further covalent coupling. CovaLink Modules may be purchased from Nunc Laboratories. DNA molecules may be bound to CovaLink exclusively at the 5'-end by a phosphoramidate bond, allowing immobilization of more than 1 pmol of DNA (Rasmussen *et al.*, (1991) Anal. Biochem. 198(1) 138-42).

- The use of CovaLink NH strips for covalent binding of DNA molecules at the 5'-end has been described (Rasmussen et al., (1991). In this technology, a phosphoramidate bond is employed (Chu et al., (1983) Nucleic Acids Res. 11(8) 6513-29). This is beneficial as immobilization using only a single covalent bond is preferred. The phosphoramidate bond joins the DNA to the
- 5 CovaLink NH secondary amino groups that are positioned at the end of spacer arms covalently grafted onto the polystyrene surface through a 2 nm long spacer arm. To link an oligonucleotide to CovaLink NH via an phosphoramidate bond, the oligonucleotide terminus must have a 5'-end phosphate group. It is, perhaps, even possible for biotin to be covalently bound to CovaLink and then streptavidin used to bind the probes.
- 10 More specifically, the linkage method includes dissolving DNA in water (7.5 ng/ μ l) and denaturing for 10 min. at 95°C and cooling on ice for 10 min. Ice-cold 0.1 M 1-methylimidazole, pH 7.0 (1-MeIm₇), is then added to a final concentration of 10 mM 1-MeIm₇. A ss DNA solution is then dispensed into CovaLink NH strips (75 μ l/well) standing on ice.
- 15 Carbodiimide 0.2 M 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), dissolved in 10 mM 1-MeIm₇, is made fresh and 25 μ l added per well. The strips are incubated for 5 hours at 50°C. After incubation the strips are washed using, e.g., Nunc-Immuno Wash; first the wells are washed 3 times, then they are soaked with washing solution for 5 min., and finally they are washed 3 times (where in the washing solution is 0.4 N NaOH, 0.25% SDS heated to 50°C).
- 20 It is contemplated that a further suitable method for use with the present invention is that described in PCT Patent Application WO 90/03382 (Southern & Maskos), incorporated herein by reference. This method of preparing an oligonucleotide bound to a support involves attaching a nucleoside 3'-reagent through the phosphate group by a covalent phosphodiester link to aliphatic hydroxyl groups carried by the support. The oligonucleotide is then synthesized on the supported nucleoside and protecting groups removed from the synthetic oligonucleotide chain under standard 25 conditions that do not cleave the oligonucleotide from the support. Suitable reagents include nucleoside phosphoramidite and nucleoside hydrogen phosphorate.
- An on-chip strategy for the preparation of DNA probe for the preparation of DNA probe arrays may be employed. For example, addressable laser-activated photodeprotection may be employed in the chemical synthesis of oligonucleotides directly on a glass surface, as described by
- 30 Fodor et al. (1991) Science 251(4995) 767-73, incorporated herein by reference. Probes may also be immobilized on nylon supports as described by Van Ness et al. (1991) Nucleic Acids Res. 19(12) 3345-50; or linked to Teflon using the method of Duncan & Cavalier (1988) Anal. Biochem. 169(1) 104-8; all references being specifically incorporated herein.

To link an oligonucleotide to a nylon support, as described by Van Ness *et al.* (1991), requires activation of the nylon surface via alkylation and selective activation of the 5'-amine of oligonucleotides with cyanuric chloride.

- One particular way to prepare support bound oligonucleotides is to utilize the
- 5 light-generated synthesis described by Pease *et al.*, (1994) PNAS USA 91(11) 5022-6, incorporated herein by reference). These authors used current photolithographic techniques to generate arrays of immobilized oligonucleotide probes (DNA chips). These methods, in which light is used to direct the synthesis of oligonucleotide probes in high-density, miniaturized arrays, utilize photolabile 5'-protected *N*-acyl-deoxynucleoside phosphoramidites, surface linker chemistry and versatile
10 combinatorial synthesis strategies. A matrix of 256 spatially defined oligonucleotide probes may be generated in this manner.

4.21 PREPARATION OF NUCLEIC ACID FRAGMENTS

- The nucleic acids may be obtained from any appropriate source, such as cDNAs, genomic DNA, chromosomal DNA, microdissected chromosome bands, cosmid or YAC inserts, and RNA,
15 including mRNA without any amplification steps. For example, Sambrook *et al.* (1989) describes three protocols for the isolation of high molecular weight DNA from mammalian cells (p. 9.14-9.23).

- DNA fragments may be prepared as clones in M13, plasmid or lambda vectors and/or prepared directly from genomic DNA or cDNA by PCR or other amplification methods. Samples
20 may be prepared or dispensed in multiwell plates. About 100-1000 ng of DNA samples may be prepared in 2-500 ml of final volume.

The nucleic acids would then be fragmented by any of the methods known to those of skill in the art including, for example, using restriction enzymes as described at 9.24-9.28 of Sambrook *et al.* (1989), shearing by ultrasound and NaOH treatment.

- 25 Low pressure shearing is also appropriate, as described by Schriefer *et al.* (1990) Nucleic Acids Res. 18(24) 7455-6, incorporated herein by reference). In this method, DNA samples are passed through a small French pressure cell at a variety of low to intermediate pressures. A lever device allows controlled application of low to intermediate pressures to the cell. The results of these studies indicate that low-pressure shearing is a useful alternative to sonic and enzymatic DNA
30 fragmentation methods.

One particularly suitable way for fragmenting DNA is contemplated to be that using the two base recognition endonuclease, CviJI, described by Fitzgerald *et al.* (1992) Nucleic Acids Res. 20(14) 3753-62. These authors described an approach for the rapid fragmentation and fractionation

of DNA into particular sizes that they contemplated to be suitable for shotgun cloning and sequencing.

The restriction endonuclease *Cvi*JI normally cleaves the recognition sequence PuGCPy between the G and C to leave blunt ends. Atypical reaction conditions, which alter the specificity of this enzyme (*Cvi*JI**), yield a quasi-random distribution of DNA fragments from the small molecule pUC19 (2688 base pairs). Fitzgerald *et al.* (1992) quantitatively evaluated the randomness of this fragmentation strategy, using a *Cvi*JI** digest of pUC19 that was size fractionated by a rapid gel filtration method and directly ligated, without end repair, to a lac Z minus M13 cloning vector. Sequence analysis of 76 clones showed that *Cvi*JI** restricts pyGCPy and PuGCPu, in addition to PuGCPy sites, and that new sequence data is accumulated at a rate consistent with random fragmentation.

As reported in the literature, advantages of this approach compared to sonication and agarose gel fractionation include: smaller amounts of DNA are required (0.2-0.5 ug instead of 2-5 ug); and fewer steps are involved (no preligation, end repair, chemical extraction, or agarose gel electrophoresis and elution are needed)

Irrespective of the manner in which the nucleic acid fragments are obtained or prepared, it is important to denature the DNA to give single stranded pieces available for hybridization. This is achieved by incubating the DNA solution for 2-5 minutes at 80-90°C. The solution is then cooled quickly to 2°C to prevent renaturation of the DNA fragments before they are contacted with the chip. Phosphate groups must also be removed from genomic DNA by methods known in the art.

4.22 PREPARATION OF DNA ARRAYS

Arrays may be prepared by spotting DNA samples on a support such as a nylon membrane. Spotting may be performed by using arrays of metal pins (the positions of which correspond to an array of wells in a microtiter plate) to repeatedly transfer of about 20 nl of a DNA solution to a 25 nylon membrane. By offset printing, a density of dots higher than the density of the wells is achieved. One to 25 dots may be accommodated in 1 mm², depending on the type of label used. By avoiding spotting in some preselected number of rows and columns, separate subsets (subarrays) may be formed. Samples in one subarray may be the same genomic segment of DNA (or the same gene) from different individuals, or may be different, overlapped genomic clones. Each of the 30 subarrays may represent replica spotting of the same samples. In one example, a selected gene segment may be amplified from 64 patients. For each patient, the amplified gene segment may be in one 96-well plate (all 96 wells containing the same sample). A plate for each of the 64 patients is prepared. By using a 96-pin device, all samples may be spotted on one 8 x 12 cm membrane.

Subarrays may contain 64 samples, one from each patient. Where the 96 subarrays are identical, the dot span may be 1 mm² and there may be a 1 mm space between subarrays.

Another approach is to use membranes or plates (available from NUNC, Naperville, Illinois) which may be partitioned by physical spacers e.g. a plastic grid molded over the membrane, the grid 5 being similar to the sort of membrane applied to the bottom of multiwell plates, or hydrophobic strips. A fixed physical spacer is not preferred for imaging by exposure to flat phosphor-storage screens or x-ray films.

The present invention is illustrated in the following examples. Upon consideration of the present disclosure, one of skill in the art will appreciate that many other embodiments and variations 10 may be made in the scope of the present invention. Accordingly, it is intended that the broader aspects of the present invention not be limited to the disclosure of the following examples. The present invention is not to be limited in scope by the exemplified embodiments which are intended as illustrations of single aspects of the invention, and compositions and methods which are functionally equivalent are within the scope of the invention. Indeed, numerous modifications and 15 variations in the practice of the invention are expected to occur to those skilled in the art upon consideration of the present preferred embodiments. Consequently, the only limitations which should be placed upon the scope of the invention are those which appear in the appended claims.

All references cited within the body of the instant specification are hereby incorporated by reference in their entirety.

20 **5.0 EXAMPLES**

5.1 EXAMPLE 1

Novel Nucleic Acid Sequences Obtained From Various Libraries

A plurality of novel nucleic acids were obtained from cDNA libraries prepared from various human tissues and in some cases isolated from a genomic library derived from human chromosome 25 using standard PCR, SBH sequence signature analysis and Sanger sequencing techniques. The inserts of the library were amplified with PCR using primers specific for the vector sequences which flank the inserts. Clones from cDNA libraries were spotted on nylon membrane filters and screened with oligonucleotide probes (e.g., 7-mers) to obtain signature sequences. The clones were clustered into groups of similar or identical sequences. Representative clones were selected for 30 sequencing.

In some cases, the 5' sequence of the amplified inserts was then deduced using a typical Sanger sequencing protocol. PCR products were purified and subjected to fluorescent dye terminator cycle sequencing. Single pass gel sequencing was done using a 377 Applied Biosystems

(ABI) sequencer to obtain the novel nucleic acid sequences. In some cases RACE (Random Amplification of cDNA Ends) was performed to further extend the sequence in the 5' direction.

5.2 EXAMPLE 2

5 Novel Contigs

The novel contigs of the invention were assembled from sequences that were obtained from a cDNA library by methods described in Example 1 above, and in some cases sequences obtained from one or more public databases. The sequences for the resulting nucleic acid contigs are designated as SEQ ID NO: 1-1350 and are provided in the attached Sequence Listing. The contigs 10 were assembled using an EST sequence as a seed. Then a recursive algorithm was used to extend the seed EST into an extended assemblage, by pulling additional sequences from different databases (*i.e.*, Hyseq's database containing EST sequences, dbEST version 114, gb pri 114, and UniGene version 101) that belong to this assemblage. The algorithm terminated when there was no additional sequences from the above databases that would extend the assemblage. Inclusion of 15 component sequences into the assemblage was based on a BLASTN hit to the extending assemblage with BLAST score greater than 300 and percent identity greater than 95%.

Table 3 sets forth the novel predicted polypeptides (including proteins) encoded by the novel polynucleotides (SEQ ID NO:189-282) of the present invention, and their corresponding nucleotide locations to each of SEQ ID NO: 189-282. Table 3 also indicates the method by which 20 the polypeptide was predicted. Method A refers to a polypeptide obtained by using a software program called FASTY (available from <http://fasta.bioch.virginia.edu>) which selects a polypeptide based on a comparison of the translated novel polynucleotide to known polynucleotides (W.R. Pearson, Methods in Enzymology, 183:63-98 (1990), herein incorporated by reference). Method B refers to a polypeptide obtained by using a software program called GenScan for human/vertebrate 25 sequences (available from Stanford University, Office of Technology Licensing) that predicts the polypeptide based on a probabilistic model of gene structure/compositional properties (C. Burge and S. Karlin, J. Mol. Biol., 268:78-94 (1997), incorporated herein by reference). Method C refers to a polypeptide obtained by using a Hyseq proprietary software program that translates the novel polynucleotide and its complementary strand into six possible amino acid sequences (forward and 30 reverse frames) and chooses the polypeptide with the longest open reading frame.

The nearest neighbor results for SEQ ID NO: 1-1350 were obtained by a BLASTP version 2.0al 19MP-WashU search against Genpept release 120 and Geneseq database October 12, 2000, update 21 (Derwent), using BLAST algorithm. The nearest neighbor result showed the

closest homologue for SEQ ID NO:1-1350. The nearest neighbor results for SEQ ID NO: 1-1350 are shown in Table 2 below.

Tables 1, 2 and 3 follow. Table 1 shows the various tissue sources of SEQ ID NO: 1-1350. Table 2 shows the nearest neighbor result for the assembled contig. The nearest neighbor result 5 shows the closest homolog with an identifiable function for each assemblage. Table 3 contains the start and stop nucleotides for the translated amino acid sequence for which each assemblage encodes. Table 3 also provides a correlation between the amino acid sequences set forth in the Sequence Listing, the nucleotide sequences set forth in the Sequence Listing and the SEQ ID NO. in USSN 09/496,914.

TABLE 1

Tissue Origin	RNA Source	Hyseq Library Name	SEQ ID NOS:
adult brain	GIBCO	AB3001	111 151 188 215 662-665 877 910 927 976 1233 1319
adult brain	GIBCO	ABD003	41 49 74 101 111 120 132 141-142 151 217 225 238 271 317 404 446 469 503 513-514 535 550 564 573 666-669 798 898 910 927 976 1067 1083 1085 1178 1254
adult brain	Clontech	ABR001	39 216 238 327 356 535 927 1056 1121 1178-1180 1199 1251
adult brain	Clontech	ABR006	74 611 949 1034 1136
adult brain	Clontech	ABR008	14 32 41 61 81 86 89 120 132 138 145 147 188 197 208 225 227-239 250 300- 303 312 316 328-331 340 357-362 374 380 384-391 408 414 446 448 464-467 483 488 495-496 505 512 521 535 550 566 571 577 585 590 594 598 634 641 658 666 683 725 742 764 767 786 801 805 810 823 826 829 831 836 841 887- 923 927 934 943 950-951 963 976 995 1000-1001 1006 1026 1034 1048 1057- 1067 1086 1088 1090 1118 1120 1122- 1128 1142 1162 1181-1192 1199 1204 1218-1219 1225 1232 1253 1267 1271- 1306 1342 1347 1349-1350
adult brain	Clontech	ABR011	49 238 1219
adult brain	BioChain	ABR012	74 238
adult brain	Invitrogen	ABR013	868 1268
adult brain	Invitrogen	ABT004	49 117 138 191 217 252 291 305 535 566 596 663 670 746 798 816-819 876 892 898 922 943 963 1034-1036 1121
cultured preadipocytes	Strategene	ADP001	41 74 101 138 211 238 304 537 582 740 798 883 943 976 1067
adrenal gland	Clontech	ADR002	49 74 101 111 120 127 151 215 238 240-247 316 330 363-364 404 414 534- 535 833 924-940 950 963 976 1001 1003 1067-1070 1118 1156 1193-1200 1325
adult heart	GIBCO	AHR001	38 49 71-72 74-77 79 92 99 101 111 118 129 132 138 151 158-163 182 195- 203 215 217 238 264 269 353 384 398 408 434-439 446 504 512-513 519 537 562-573 577 611-614 616-619 658 661 671-672 722 734 757-773 815 828-835 874 891 898 919 926-927 976 988 1021 1037 1041 1062 1067 1071 1080 1083 1093 1122 1131 1185 1201 1254 1308 1331 1335
adult kidney	GIBCO	AKD001	41 49 51 71-74 78-85 94 100-101 103- 107 111 119-120 138 151 157 215 217- 218 238 250 264 294 304 384 404 440 446 454 477 504-505 509 514 518-519 535 537 564 574-583 620-627 639 653 673-675 705 753 789 831 844 851 859 877 909 918 927 956 963 976 1067 1074 1083 1095 1178 1302 1331 1335
adult kidney	Invitrogen	AKT002	11-12 41 49 111-112 215-217 294 316 446 487 564 575 844 868 910 927 976 1116
adult lung	GIBCO	ALG001	8 101 111 151 187 402 446 490 514

Tissue Origin	RNA Source	Hyseq Library Name	SEQ ID NOS:
			518 537 545 549 580 582 592 594 634 640 651-652 676-678 725 851 873 918 952 976 1042 1067 1076 1083 1152
lymph node	Clontech	ALN001	8 111 121 151 180-182 188 215 537 545 549 651 679-682 789 804-810 868 873 927 952 976 1042 1059 1335
young liver	GIBCO	ALV001	8 64 79 111 186 215-216 238 446 514 519 537 564 653 683-684 698 753 798 813 833 840 858 927 976 1038-1039 1051 1085 1224 1245 1256
adult liver	Invitrogen	ALV002	40 71 292-293 305 384 468-469 496 505 657 675 714 753 832 844 941-942 976 1040 1076 1256 1293
adult liver	Clontech	ALV003	976
adult ovary	Invitrogen	AOV001	8 32 36 38 41 49 51 71 74 79-80 101 104 111 120 122-125 138 140 143-149 151 188-190 207-212 215-217 238 264 316 384 409 440 445-446 496 504 512 514 518-519 535 537 549-550 564 566 571 580 582 600 618 638 657 667 681 685-697 699 705 722 735-744 761 771 815 833 842-865 868 875-876 918 926- 927 950 952 963 976 1023 1042 1048 1051 1059 1072 1076 1083 1117 1120 1124 1131 1144 1174 1224 1268 1331 1335
adult placenta	Clontech	APL001	102 217 238 537 641 700
placenta	Invitrogen	APL002	663 851 1048
adult spleen	GIBCO	ASP001	8 45 74 111 132 140 151 185 217 238 294 414 446 477 504 514 534 545 549 592 722 873 883 952 976 1041-1042 1083 1093-1094 1152 1224
testis	GIBCO	ATS001	72 107 111 113 126 140 151 183 215 238 446 497 537 642 701-706 811 877 927 962 976 1083 1117 1131
adult bladder	Invitrogen	BLD001	41 151 191 402-405 409 414 496 545 592 607 706 873 952 1178 1329-1335
bone marrow	Clontech	BMD001	8 58-62 65-68 74 79 108 111 116 137 147 151 164-174 213-215 238 305-307 374 404 446 460 466 516 519 534 538- 541 544-546 549-554 566 584 586 592 596 607 610 628-629 643-645 652 707- 708 774-789 844 866-871 873 919 927 952 963 976 998 1034 1042 1064 1083 1085 1120 1132 1152 1225 1229 1268 1307 1310
bone marrow	Clontech	BMD002	6 8 37-38 52 74 77 105 111 129 132 210 317 510-511 545 549 581 598 628 638 724 766 789 844 860 868 873 919 927 952 963 968 976 1042 1111 1141 1160-1161 1229 1266 1346
bone marrow	Clontech	BMD004	111 238 282 549 1083
adult colon	Invitrogen	CLN001	52 260 264 299 494 536 545 564 592 844 873 877 952 976 1042 1152 1268 1336-1337
adult cervix	BioChain	CVX001	49 51 129 132 151 205 207 238 332- 335 365-367 392-401 440 466 470-471 518 537 597 629 832 877 927 976 1006 1085 1117 1129-1134 1192 1202-1205 1219 1309-1328
diaphragm	BioChain	DIA002	74 976 1083

Tissue Origin	RNA Source	Hyseq Library Name	SEQ ID NOS:
endothelial cells	Strategene	EDT001	32 40-41 49 74 79 101 111 120 132 138 151 204-206 215-217 238 269 316 414 433 505 510 513 550 555 580 582 596 675 722 745 798 814 836-841 851 918 976 1041 1043 1073 1083 1131 1331
Genomic clones from the short arm of chromosome 8	Genomic DNA from Genetic Research	EPM001	525-532 927
Genomic clones from the short arm of chromosome 8	Genomic DNA from Genetic Research	EPM003	47 525
Genomic clones from the short arm of chromosome 8	Genomic DNA from Genetic Research	EPM004	525 927
Genomic clones from the short arm of chromosome 8	Genomic DNA from Genetic Research	EPM005	531
esophagus	BioChain	ESO002	74 138 238
fetal brain	Clontech	FBR001	441-442 927
fetal brain	Clontech	FBR004	215 893 927 1001
fetal brain	Clontech	FBR006	48 61 101 120 132 138 140 147 208 225 271 317 319 336 359 368 405-414 519 550 571 594 686 715 722 764 824 829 836 859 909 927 943 947 963 1057 1067-1068 1104 1135-1140 1162 1206- 1207 1235 1268 1288 1307-1308 1319 1338-1350
fetal brain	Clontech	FBRs03	111 446
fetal brain	Invitrogen	FBT002	41 51 120 151 192-194 264 504 512 535 683 761 798 820-827 844 876 909 963 976 1026 1048 1083 1144 1302
fetal heart	Invitrogen	FHR001	446 566 761
fetal kidney	Clontech	FKD001	51 74 111 127 140 151 184 294 537 550 630-631 1319
fetal kidney	Clontech	FKD002	111 976 1083
fetal kidney	Invitrogen	FKD007	238 974
fetal lung	Clontech	FLG001	463 566 976 1074 1083 1093
fetal lung	Invitrogen	FLG003	41 238 330 407 415-416 537 573 844 859 1048 1083 1116 1192
fetal liver-spleen	Columbia University	FLS001	8 14 34-35 37 41 43 49 51 54-56 63-64 69-71 74 77 79 87-90 101 107 110-111 114 120 128-131 138 140 147 150-155 197 210 215 217 225 238 312 367 384 414 440 446 460 468 483 496 504-507 511-515 518-519 523 533-535 537 541 544-545 547-550 555-560 564 566 571 577 582 585-586 598 636 646-647 649 652 664 698 709-710 714 722-723 731 735-736 746-753 761 784 798 823 829 832 844 851 858-859 868 873 876 898 927 943 949 952 963 976 984 1002 1021 1023 1040 1042 1044 1050 1083 1093 1116 1120 1129 1131 1144 1174 1217 1251 1254 1256 1302 1308 1311 1319
fetal liver-spleen	Columbia University	FLS002	8 36-37 41-46 49 54 64 71 74 79 101 111 120 129 147 207 210 215-216 238 250 330 353 359 366 383-384 414 478 505 508-509 511 515-524 534-535 537 544-545 564 566 571 577 591 598 638

Tissue Origin	RNA Source	Hyseq Library Name	SEQ ID NOS:
			663 671 698 714 722 725 727 751 798 851 859 873 876 909 927 949 952 983- 984 1002 1023 1042-1044 1085 1095 1131 1144 1178 1199 1233 1240-1270 1331 1340
fetal liver-spleen	Columbia University	FLS003	64 535 976 1256
fetal liver	Invitrogen	FLV001	8 101 120 138 217 446 468 535 566 580 722 730 749 844 918 943 976 1051 1256 1331
fetal liver	Clontech	FLV004	537 926 1256
fetal muscle	Invitrogen	FMS001	51 111 264 312 369-370 404 417-421 425 535 537 577 598 614 836 857 1141 1208 1268
fetal muscle	Invitrogen	FMS002	537
fetal skin	Invitrogen	FSK001	13-26 32 41 51 89 107 111 147 151 225 264 316 405 422-429 488-494 496 519 534-535 537 566 675 732 859 876- 877 898 947 949-950 963 976 1001 1062 1076 1083 1117 1144 1165 1268 1281
fetal skin	Invitrogen	FSK002	537 812
fetal spleen	BioChain	FSP001	87 549
umbilical cord	BioChain	FUC001	27-33 41 49 151 215 238 248-249 301 316 446 495-503 519 521 534-535 537 582 634 691 877 883 927 944-950 963 976 1001 1075 1142-1143 1171 1218 1243 1308
fetal brain	GIBCO	HFB001	41 49 57 79 87 103 111 120 132-135 138 145 151 188 197 207 215 238 264 271 294 316 367 414 440 446 466 504 513-514 535 542-543 550 564 571 596 635 648-654 675 711-715 722-723 798 832 872 876 883 927 976 1095 1144 1168 1171 1178 1211 1335
macrophage	Invitrogen	HMP001	238
infant brain	Columbia University	IB2002	49-50 77 81 89 105 111 136-138 140 151 161 175-179 185 216-217 264 295 299 308-310 371-373 462 476 504 511- 513 533 537 564 566 571 655-657 662 683 716-720 723 752 790-803 829 832 858-859 876 898 909 949 976 1045- 1047 1076-1087 1090 1093 1116 1122 1144 1209-1213 1225 1233 1256 1319 1341
infant brain	Columbia University	IB2003	41 50 77 104 132 215 238 508 512-513 519 566 655 714 794 918 943 976 1067 1092-1093 1233
infant brain	Columbia University	IBM002	311 472-473 753 1214
infant brain	Columbia University	IBS001	51 111 376 474 790 876 949 1144 1204 1221
lung , fibroblast	Stratagene	LFB001	151 316 462 514 534 582 675 939 1131
lung tumor	Invitrogen	LGT002	1-7 41 74 79 94 115 120 138-139 156 215 217 269 280 296 337 374-375 384 404 446 454 475-480 498 514 518-519 522 537 545 564 577 597 653 658 705 721-724 754-756 779 859 868 872-874 876-877 919 927 949 951-952 959 976 1002 1042 1048-1053 1076 1083 1088- 1089 1131 1144-1147 1216-1218 1229

Tissue Origin	RNA Source	Hyseq Library Name	SEQ ID NOS:
			1293 1311
lymphocytes	ATCC	LPC001	41 74 111 132 151 253 316 446 550 634 844 927 976 1085 1268
leukocyte	GIBCO	LUC001	8 11 41 74 86 91-98 101 109 111 120 147 151 212 215 218 238 252 288 312- 314 316 338 359 408 427 443-447 505 510 512 514 518 534 545 549-550 561 564 566 571 577 580 582 587-609 615 632-638 658-659 698 714 725-728 832 836 841 859 866 873-874 882-883 918- 919 927 943 952 963 976 1042 1076 1083 1090 1148 1152 1168 1195 1219- 1220 1224
leukocyte	Clontech	LUC003	74 100 215 232 238 339-341 446 545 657 660 729 873 883 927 952 963 1008 1042 1116 1120 1149-1150 1215 1222
Melanoma from cell line ATCC #CRL 1424	Clontech	MEL004	210 215 238 342 534 545 592 722 873 919 929 939 952 976 1071 1118 1218 1235 1245
mammary gland	Invitrogen	MMG001	8-10 40-41 49 73 80 114 138-140 147 217 250-256 264 297-299 305 377-378 398 446 481-486 505 512 537 545 549 571 592 725 730-733 816 829 836 844 868 873 876-877 898 926 943 951-960 963 976 995 1034 1042 1048 1054- 1055 1076 1083 1091 1093 1116-1117 1124 1152 1302
induced neuron cells	Strategene	NTD001	39 101 111 138 238 361 1225 1251 1319
retinoid acid induced neuronal cells	Strategene	NTR001	74 225 976
neuronal cells	Strategene	NTU001	129 225 238 304 313 361 657 976
pituitary gland	Clontech	PIT004	976
placenta	Clontech	PLA003	38 976
prostate	Clontech	PRT001	111 188 238 257-258 564 724 961-966 1067 1095
rectum	Invitrogen	REC001	238 430-431 841 859 868 963 1001 1116
salivary gland	Clontech	SAL001	8 151 402 432-433 446 496 868 952 976 1083 1120 1151 1184
small intestine	Clontech	SIN001	8 101 147 215 259-266 446 462 505 545 592 660 789 836 866 873 927 952 963 967-978 1042 1120 1152 1223- 1224
skeletal muscle	Clontech	SKM001	238 302 927 943 992 1031
spinal cord	Clontech	SPC001	74 111 132 151 215-216 238 264 267- 270 343-344 353 379 516 537 566 740 828 927 976 979-994 1092 1153-1159 1225 1250
adult spleen	Clontech	SPLc01	698 859 1042
stomach	Clontech	STO001	210 238 271-272 537 580 705 918 952 995 1171
thalamus	Clontech	THA002	61 219-220 273-276 312 315 330 596 963 996-1007 1059 1093 1160-1162
thymus	Clonetech	THM001	8 120 151 208 221 316-317 353 639 750 867 874 878-881 927 963 1023 1083 1094-1096 1124
thymus	Clontech	THMc02	8 61 114 129 132 210 225 231 306 317-319 336 340 359 380 398 446 448- 463 512 519 545 554 587 598 698 724- 725 789 812 836 868 873 927 947 952

Tissue Origin	RNA Source	Hyseq Library Name	SEQ ID NOS:
			976 1007 1042 1083 1085 1097-1116 1122 1147 1177 1226-1229 1234 1311 1313
thyroid gland	Clontech	THR001	14 41 49 76 94 111 144 151 183 188 210 217 222 253 264 271 277-286 294 320-326 345-352 361 381-382 446 467 483 514 534 549-550 564 578 602 649 844 882-883 927 950 956 976 1008- 1028 1076 1083 1117-1120 1142 1163- 1175 1230-1238 1308
trachea	Clontech	TRC001	223-225 238 287 353-354 514 545 592 611 873 883-884 927 952 1029-1031 1042 1151-1152 1170 1176-1177 1239
uterus	Clontech	UTR001	151 226 288-290 355 537 877 885-886 976 1001 1032-1033 1232

TABLE 2

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
1	B02829	Homo sapiens	Human G protein coupled receptor hRUP5 protein SEQ ID NO:10.	460	100
2	G03564	Homo sapiens	Human secreted protein, SEQ ID NO: 7645.	111	51
3	R26173	Homo sapiens	Part of Major Yo paraneoplastic antigen (CDR62) encoded by clone pY2.	293	76
4	L29536	Homo sapiens	calcium channel L-type alpha 1 subunit	191	65
5	Y94943	Homo sapiens	Human secreted protein clone yt14_1 protein sequence SEQ ID NO:92.	251	50
6	M11507	Homo sapiens	transferrin receptor	120	95
7	AF099100	Homo sapiens	WD-repeat protein 6	1941	93
8	Y92338	Homo sapiens	Human cancer associated antigen precursor from clone NY-REN-45.	245	82
9	G01343	Homo sapiens	Human secreted protein, SEQ ID NO: 5424.	226	91
10	AJ133798	Homo sapiens	copine VII protein	1127	68
11	G02449	Homo sapiens	Human secreted protein, SEQ ID NO: 6530.	584	99
12	X98330	Homo sapiens	ryanodine receptor 2	282	78
13	AL024498	Homo sapiens	dJ417M14.2 (novel serine/threonine-protein kinase (ortholog of mouse and rat MAK (male germ cell-associated kinase)))	293	100
14	AF045577	Pan troglodytes	olfactory receptor OR93Ch	191	36
15	G03131	Homo sapiens	Human secreted protein, SEQ ID NO: 7212.	93	39
16	UJ26595	Rattus norvegicus	prostaglandin F2a receptor regulatory protein precursor	569	89
17	B08918	Homo sapiens	Human secreted protein sequence encoded by gene 28 SEQ ID NO:75.	99	44
18	Y36203	Homo sapiens	Human secreted protein #75.	165	75
19	U15647	Mus musculus	reverse transcriptase	106	40
20	G02701	Homo sapiens	Human secreted protein, SEQ ID NO: 6782.	544	100
21	Y35923	Homo sapiens	Extended human secreted protein sequence, SEQ ID NO. 172.	1691	100
22	G04030	Homo sapiens	Human secreted protein, SEQ ID NO: 8111.	380	96
23	G02455	Homo sapiens	Human secreted protein, SEQ ID NO: 6536.	123	50
24	AF036329	Homo sapiens	gonadotropin-releasing hormone precursor, second form	284	90
25	G04067	Homo sapiens	Human secreted protein, SEQ ID NO: 8148.	96	32
26	S80119	Rattus sp.	reverse transcriptase homolog	100	34
27	U83303	Homo sapiens	line-1 reverse transcriptase	101	35
28	G03267	Homo sapiens	Human secreted protein, SEQ ID NO: 7348.	135	45

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
29	G04067	Homo sapiens	Human secreted protein, SEQ ID NO: 8148.	83	42
30	G02872	Homo sapiens	Human secreted protein, SEQ ID NO: 6953.	116	72
31	G03371	Homo sapiens	Human secreted protein, SEQ ID NO: 7452.	96	67
32	G03224	Homo sapiens	Human secreted protein, SEQ ID NO: 7305.	58	32
33	Y66688	Homo sapiens	Membrane-bound protein PRO1152.	2457	98
34	Y87071	Homo sapiens	Human secreted protein sequence SEQ ID NO:110.	348	95
35	U15131	Homo sapiens	p126	182	48
36	Y73464	Homo sapiens	Human secreted protein clone yl4_1 protein sequence SEQ ID NO:150.	982	90
37	AL133215	Homo sapiens	bA108L7.6 (semaphorin 4G (sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short cytoplasmic domain))	687	99
38	AC067969	amino acids 3338-4088	Homo sapiens ryanodine receptor 1 (skeletal)	386	66
39	AL031588	Homo sapiens	dJ1163J1.1 (mostly supported by GENSCAN, FGENES and GENEWISE)	493	76
40	G03628	Homo sapiens	Human secreted protein, SEQ ID NO: 7709.	110	51
41	AF132969	Homo sapiens	CGI-35 protein	228	68
42	Y36268	Homo sapiens	Human secreted protein encoded by gene 45.	220	88
43	X61048	Hydra sp.	mini-collagen	105	35
44	M76546	Heianthus annuus	hydroxyproline-rich protein	110	31
45	U82288	Caenorhabditis elegans	Rac-like GTPase	139	70
46	G03477	Homo sapiens	Human secreted protein, SEQ ID NO: 7558.	118	58
47	AF090942	Homo sapiens	PRO0657	113	63
48	G03564	Homo sapiens	Human secreted protein, SEQ ID NO: 7645.	90	59
49	AJ005560	Mus musculus	SPR2B protein	72	56
50	G02450	Homo sapiens	Human secreted protein, SEQ ID NO: 6531.	385	98
51	Y91649	Homo sapiens	Human secreted protein sequence encoded by gene 60 SEQ ID NO:322.	973	94
52	U93563	Homo sapiens	putative p150	105	38
53	Y55927	Homo sapiens	Human STLK2 protein.	699	85
54	G02607	Homo sapiens	Human secreted protein, SEQ ID NO: 6688.	145	56
55	AB008175	Mus musculus	hepatic nuclear factor 1-beta short form	356	74
56	M68941	Homo sapiens	protein-tyrosine phosphatase	165	41
57	AL031600	Homo sapiens	c390E6.1 (chloride channel 7)	338	76
58	AF011417	Mus musculus	putative pheromone receptor	143	55
59	AF167320	Mus musculus	zinc finger protein ZFP113	558	68
60	U73036	Homo sapiens	interferon regulatory factor 7	263	96
61	X07984	Mus musculus	protein-tyrosine kinase	297	69
62	Y29861	Homo sapiens	Human secreted protein clone cb98_4.	791	98
63	U35376	Homo sapiens	repressor transcriptional factor	485	65
64	AF265555	Homo sapiens	ubiquitin-conjugating BIR-domain enzyme APOLLON	785	74
65	G03883	Homo sapiens	Human secreted protein, SEQ ID NO: 7964.	88	95
66	AF177390	Manduca sexta	antennal specific membrane protein AMP	274	54
67	AB040800	Homo sapiens	SREB2	614	100
68	AF030027	Equine herpesvirus 4	24	213	26
69	G02965	Homo sapiens	Human secreted protein, SEQ ID NO: 7046.	261	95
70	W75770	Homo sapiens	Human oxidoreductase YTF03.	1144	98
71	AB011135	Homo sapiens	KIAA0563 protein	239	76
72	AB014885	Halocynthia roretzi	HrPOPK-I	813	78
73	AF045454	Cavia porcellus	phospholipase B	955	73
74	J02870	Mus	laminin receptor	308	61

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
		musculus			
75	Y00826	Rattus norvegicus	gp210 (AA 1-1886)	413	84
76	AF117754	Homo sapiens	thyroid hormone receptor-associated protein complex component TRAP240	351	54
77	Y38422	Homo sapiens	Human secreted protein.	468	76
78	Y14596	Homo sapiens	Human T-type voltage-gated Ca channel alpha-1-I (hCavT3).	1357	99
79	Y14591	Human papillomavirus type 68	APM-1 protein	767	100
80	AL137802	Homo sapiens	dJ798A10.2 (KIAA0445 protein)	71	34
81	AP000383	Arabidopsis thaliana	protein arginine N-methyltransferase-like protein	359	65
82	L46815	Mus musculus	DNA binding protein Rc	895	75
83	G01600	Homo sapiens	Human secreted protein, SEQ ID NO: 5681.	315	96
84	Y53886	Homo sapiens	A suppressor of cytokine signalling protein designated HSCOP-6.	538	71
85	AB029002	Homo sapiens	KIAA1079 protein	134	42
86	Y28678	Homo sapiens	Human cw272_7 secreted protein.	325	62
87	Y99368	Homo sapiens	Human PRO1326 (UNQ686) amino acid sequence SEQ ID NO:100.	156	48
88	AJ225124	Mus musculus	hyperpolarization-activated cation channel, HAC3	487	95
89	AF177203	Homo sapiens	cerebral cell adhesion molecule	290	56
90	Y28280	Homo sapiens	Human G-protein coupled receptor GRIR-2.	326	79
91	L39891	Homo sapiens	polycystic kidney disease-associated protein	1751	95
92	AF064876	Homo sapiens	ion channel BCNG-1	953	99
93	AF170723	Homo sapiens	protein kinase STK10	401	53
94	X13292	Trypanosoma brucei	GPI-phospholipase C (AA 1 - 358)	151	37
95	Y34127	Homo sapiens	Human potassium channel K+Hnov11.	661	99
96	X03638	Rattus norvegicus	sodium channel protein I (aa 1-2009)	1775	92
97	AF134213	Homo sapiens	ubiquitin-specific protease	1995	99
98	G00838	Homo sapiens	Human secreted protein, SEQ ID NO: 4919.	213	38
99	AF021935	Rattus norvegicus	myotonic dystrophy kinase-related Cdc42-binding kinase	675	48
100	AF279265	Homo sapiens	putative anion transporter 1	867	98
101	AC007878	Homo sapiens	match to nuclear protein, NP220; note: sequence difference at residue 58	160	60
102	U22829	Mus musculus	P2Y purinoceptor	264	42
103	Y45023	Homo sapiens	Human sensory transduction G-protein coupled receptor-B3.	516	99
104	Y94990	Homo sapiens	Human secreted protein vb21_1, SEQ ID NO:20.	787	98
105	Y87342	Homo sapiens	Human signal peptide containing protein HSPP-119 SEQ ID NO:119.	343	57
106	AF169312	Homo sapiens	hepatic angiopoietin-related protein	212	67
107	AF116657	Homo sapiens	PRO1310	74	52
108	AE000401	Escherichia coli	sialic acid transporter	587	96
109	Y38395	Homo sapiens	Human secreted protein encoded by gene No. 10.	693	100
110	Y78801	Homo sapiens	Hydrophobic domain containing protein clone HP00631 amino acid sequence.	182	94
111	Z25535	Homo sapiens	nuclear pore complex protein hnup153	464	85
112	Y94939	Homo sapiens	Human secreted protein clone ye90_1 protein sequence SEQ ID NO:84.	274	51
113	AF016365	Homo sapiens	hexokinase 1 isoform td	301	71
114	AC007956	Homo sapiens	unknown	520	75
115	M83738	Homo sapiens	protein-tyrosine phosphatase	251	92
116	AL157952	Homo sapiens	dJ875K15.1.1 (ets homologous factor (ets-domain transcription factor ESE-3A, isoform 1))	484	91
117	W18084	Homo sapiens	Human Aurora-2.	546	87

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
118	L41816	Homo sapiens	cam kinase I	407	62
119	AJ006710	Rattus norvegicus	phosphatidylinositol 3-kinase	627	93
120	AF026954	Bos taurus	pyruvate dehydrogenase phosphatase regulatory subunit precursor; PDP1	1646	94
121	S39392	Homo sapiens	protein tyrosine phosphatase, PTPase {EC 3.1.3.48}	373	68
122	U60805	Homo sapiens	oncostatin-M specific receptor beta subunit	262	88
123	Y44403	Homo sapiens	Human truncated tankyrase-1.	111	35
124	U88167	Caenorhabditis elegans	contains similarity to C2 domains	219	29
125	AF300648	Homo sapiens	guanine nucleotide binding protein beta subunit 4	693	90
126	AB021861	Mus musculus	apoptosis signal-regulating kinase 2	153	65
127	AF305210	Homo sapiens	concentrative Na+-nucleoside cotransporter hCNT3	807	97
128	M90360	Homo sapiens	protein kinase	220	73
129	D32202	Homo sapiens	alpha 1C adrenergic receptor isoform 2	574	86
130	AF208043	Homo sapiens	IFI16b	496	67
131	AF201734	Mus musculus	testis specific serine kinase-3	800	87
132	AF112886	Bos taurus	differentiation enhancing factor 1	159	74
133	AJ278314	Homo sapiens	phospholipase C-beta-1b	554	85
134	W74802	Homo sapiens	Human secreted protein encoded by gene 73 clone HSQEL25.	1157	87
135	AB020335	Homo sapiens	Pancreas-specific gene	668	96
136	W80408	Homo sapiens	A secreted protein encoded by clone dt674_2.	866	98
137	AC002563	Homo sapiens	putative RHO/RAC effector protein; 95% similarity to P49205 (PID:g1345860)	5041	99
138	Y96736	Homo sapiens	PRO3434, a novel secreted protein.	891	100
139	AB024034	Arabidopsis thaliana	DNA-damage inducible protein DDII-like	147	55
140	W97809	Homo sapiens	Human GTPase regulator GRAF.	248	56
141	Y51557	Homo sapiens	Human PLA2 protein.	125	46
142	AF090113	Rattus norvegicus	AMPA receptor binding protein	623	93
143	W26642	Homo sapiens	Human RECK cancer-inhibiting protein.	641	82
144	U87306	Rattus norvegicus	transmembrane receptor UNC5H2	578	84
145	AF264014	Homo sapiens	scavenger receptor cysteine-rich type 1 protein M160 precursor	727	92
146	W63683	Homo sapiens	Human secreted protein 3.	140	40
147	M96264	Homo sapiens	galactose-1-phosphate uridylyl transferase	513	81
148	D64014	Escherichia coli	HrsA	818	90
149	M83316	Escherichia coli	pppGpp phosphohydrolase	915	95
150	AL163279	Homo sapiens	homolog to cAMP response element binding and beta transducin family proteins	1261	99
151	AF179867	Homo sapiens	STE20-like kinase	940	99
152	R95332	Homo sapiens	Tumor necrosis factor receptor 1 death domain ligand (clone 3TW).	392	61
153	AF151859	Homo sapiens	CGI-101 protein	370	92
154	X66957	Homo sapiens	hexokinase type 1	489	81
155	Y16355	Homo sapiens	alternatively spliced form	432	92
156	G00857	Homo sapiens	Human secreted protein, SEQ ID NO: 4938.	349	78
157	AF159455	Mus musculus	zinc finger protein	352	74
158	L76191	Homo sapiens	interleukin-1 receptor-associated kinase	537	76
159	AP001743	Homo sapiens	putative gene, ankirin like, possible dual specificity Ser/Thr/Tyr kinase domain	670	98
160	AJ250425	Rattus norvegicus	Collybistin I	556	74
161	G02885	Homo sapiens	Human secreted protein, SEQ ID NO: 6966.	370	100

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
162	Z22968	Homo sapiens	M130 antigen	610	100
163	AF181121	Homo sapiens	ATP-dependent Ca2+ pump PMR1	336	92
164	AF055636	Homo sapiens	leucine-rich glioma-inactivated protein precursor	455	94
165	AF160798	Rattus norvegicus	calcium transporter CaT1	700	96
166	Y76332	Homo sapiens	Fragment of human secreted protein encoded by gene 38.	327	45
167	Y48607	Homo sapiens	Human breast tumour-associated protein 68.	1072	99
168	AB020741	Mus musculus	NIK-related kinase	197	43
169	AF252293	Homo sapiens	PAR3	596	44
170	U59429	Cricetinae gen. sp.	diacylglycerol kinase eta	481	82
171	AF035268	Homo sapiens	phosphatidylserine-specific phospholipase A1	386	42
172	AF127085	Mus musculus	semaphorin cytoplasmic domain-associated protein 3B	507	82
173	Y27918	Homo sapiens	Human secreted protein encoded by gene No. 123.	653	99
174	G02979	Homo sapiens	Human secreted protein, SEQ ID NO: 7060.	538	97
175	U36488	Mus musculus	embryonic stem cell phosphatase	168	55
176	W95629	Homo sapiens	Homo sapiens secreted protein gene clone gm196_4.	1022	100
177	AF289023	Homo sapiens	formiminotransferase cyclodeaminase form D	255	93
178	X04936	Homo sapiens	T-cell receptor alpha-chain (413 is 2nd base in codon)	710	99
179	AF127481	Homo sapiens	non-ocogenic Rho GTPase-specific GTP exchange factor	175	80
180	G00978	Homo sapiens	Human secreted protein, SEQ ID NO: 5059.	517	94
181	Y66645	Homo sapiens	Membrane-bound protein PRO1310.	671	96
182	AF110640	Homo sapiens	orphan seven-transmembrane receptor	862	100
183	AB020854	Bos taurus	orphan transporter short splicing variant	766	84
184	AF169691	Homo sapiens	cadherin-like protein VR8	375	38
185	AF126372	Homo sapiens	thyrotropin-releasing hormone degrading ectoenzyme	985	99
186	L20966	Homo sapiens	phosphodiesterase	541	76
187	G02920	Homo sapiens	Human secreted protein, SEQ ID NO: 7001.	254	93
188	Y94918	Homo sapiens	Human secreted protein clone dd504_18 protein sequence SEQ ID NO:42.	301	98
189	Y66713	Homo sapiens	Membrane-bound protein PRO1309.	694	100
190	G03244	Homo sapiens	Human secreted protein, SEQ ID NO: 7325.	331	73
191	U36771	Rattus norvegicus	sn-glycerol 3-phosphate acyltransferase	707	92
192	R05935	Homo sapiens	Secreted GPIIb subunit of multiple subunit polypeptide (MSP)GPIIb-IIIa.	157	72
193	M92084	Theileria parva	casein kinase II alpha subunit	364	50
194	Y66645	Homo sapiens	Membrane-bound protein PRO1310.	448	90
195	W95631	Homo sapiens	Homo sapiens secreted protein gene clone hj968_2.	382	49
196	AF255614	Rattus norvegicus	scaffolding protein SLIPR	680	99
197	AC021640	Arabidopsis thaliana	putative phosphatidate phosphohydrolase	300	41
198	AF073967	Mus musculus domesticus	olfactory receptor	316	43
199	W01730	Homo sapiens	Human G-protein receptor HPRAJ70.	617	98
200	AF117948	Homo sapiens	pancreas-enriched phospholipase C	625	89
201	AF128625	Homo sapiens	CDC42-binding protein kinase beta	636	94
202	AF117946	Homo sapiens	Link guanine nucleotide exchange factor II	1303	100
203	Y53021	Homo sapiens	Human secreted protein clone qc646_1 protein sequence SEQ ID NO:48.	701	99
204	AF227968	Homo sapiens	SH2-B beta signalling protein	182	79
205	S81752	Homo sapiens	DPH2L=candidate tumor suppressor gene	375	100

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
			{ovarian cancer critical region of deletion}		
206	U18315	Sus scrofa	parathyroid receptor	122	60
207	AF255342	Homo sapiens	putative pheromone receptor V1RL1 long form	170	96
208	S52051	Rattus sp.	neurotransmitter transporter	715	94
209	W63683	Homo sapiens	Human secreted protein 3.	840	99
210	D79992	Homo sapiens	similar to Drosophila photoreceptor cell-specific protein, calphotin.	541	82
211	AF117948	Homo sapiens	pancreas-enriched phospholipase C	1348	99
212	U81035	Rattus norvegicus	ankyrin binding cell adhesion molecule neurofascin	471	69
213	AF154846	Homo sapiens	zinc finger protein	798	56
214	AF102777	Mus musculus	FYVE finger-containing phosphoinositide kinase	933	93
215	AL163303	Homo sapiens	putative gene containing transmembrane domain	523	89
216	U26595	Rattus norvegicus	prostaglandin F2a receptor regulatory protein precursor	563	78
217	G04095	Homo sapiens	Human secreted protein, SEQ ID NO: 8176.	644	98
218	X75756	Homo sapiens	protein kinase C mu	314	81
219	Y66723	Homo sapiens	Membrane-bound protein PRO1100.	770	98
220	D88577	Mus musculus	Kupffer cell receptor	567	40
221	AF258465	Homo sapiens	OTRPC4	853	100
222	AF021935	Rattus norvegicus	myotonic dystrophy kinase-related Cdc42-binding kinase	636	96
223	AL136527	Homo sapiens	ba215B13.1 (A kinase (PRKA) anchor protein 11)	693	100
224	AB032417	Homo sapiens	WNT receptor Frizzled-4	690	99
225	AF030430	Mus musculus	semaphorin VIa	703	68
226	AE000218	Escherichia coli	putative dihydroxyacetone kinase (EC 2.7.1.2)	297	39
227	AF302150	Homo sapiens	phosphoinositol 3-phosphate-binding protein-2	2080	100
228	AB024573	Mus musculus	GTP-binding like protein 2	265	88
229	AF122924	Xenopus laevis	Wnt inhibitory factor-1	316	40
230	G03205	Homo sapiens	Human secreted protein, SEQ ID NO: 7286.	229	100
231	X98260	Homo sapiens	M-phase phosphoprotein 11	265	92
232	R92754	Homo sapiens	Human growth differentiation factor-12.	682	95
233	R75111	Homo sapiens	Glycosyl-phosphatidylinositol-specific phospholipase-D.	290	100
234	W69431	Homo sapiens	Human secreted protein cw1233_3.	235	97
235	Y08686	Homo sapiens	serine palmitoyltransferase, subunit II	859	81
236	AF118275	Homo sapiens	atrophin-related protein ARP	117	37
237	X81466	Mus musculus	Embryo Brain Kinase	460	62
238	U64857	Caenorhabditis elegans	similar to the BPTI/Kunitz family of inhibitors; most similar to tissue factor pathway inhibitor precursor (TFPI)	284	33
239	AJ250840	Mus musculus	serine/threonine protein kinase	739	63
240	AJ223472	Mus musculus	transcription elongation factor TFIIS.h	222	38
241	Y94906	Homo sapiens	Human secreted protein clone rb649_3 protein sequence SEQ ID NO:18.	353	52
242	AF169301	Homo sapiens	Na+/sulfate cotransporter SUT-1	591	99
243	L22022	Rattus norvegicus	orphan transporter v7-3	667	93
244	AF016191	Rattus norvegicus	potassium channel	1043	98
245	AF097366	Homo sapiens	cone sodium-calcium potassium exchanger	645	98
246	Y29868	Homo sapiens	Human secreted protein clone pp325_9.	497	98
247	AF180475	Homo sapiens	Not4-Np	188	83
248	Y17227	Homo sapiens	Human secreted protein (clone ya1-1).	690	99
249	AF250910	Manduca	death-associated small cytoplasmic leucine-rich	182	31

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
		sexta	protein SCLP		
250	AF192756	Kaposi's sarcoma-associated herpesvirus	Orf73	134	34
251	AB022694	Homo sapiens	MOK protein kinase	209	83
252	W55045	Homo sapiens	Neural adhesion molecule (ethb0018f2 product).	469	100
253	L46815	Mus musculus	DNA binding protein Rc	251	67
254	W68505	Homo sapiens	Human acid sensing ionic channel.	173	82
255	AF070066	Mus musculus	Citron-K kinase	1201	98
256	G02491	Homo sapiens	Human secreted protein, SEQ ID NO: 6572.	460	100
257	Z12841	Oryctolagus cuniculus	Phospholipase	368	80
258	Y95436	Homo sapiens	Human calcium channel SOC-3/CRAC-2.	1857	99
259	AJ222968	Mus musculus	L-periaxin	430	72
260	AJ250839	Homo sapiens	serine/threonine protein kinase	861	100
261	AJ249777	Homo sapiens	AMP-activated protein kinase gamma 3 subunit	758	98
262	AF141386	Rattus norvegicus	SLIT-2	198	40
263	AF022859	Homo sapiens	neuropilin-2(a0)	335	62
264	AF160477	Homo sapiens	Ig superfamily receptor LNIR precursor	387	91
265	Y44662	Homo sapiens	Human 14273 G-protein coupled receptor (GPCR).	636	99
266	U27269	Mus musculus	sodium glucose cotransporter	204	56
267	AF124491	Homo sapiens	ARF GTPase-activating protein GIT2	159	75
268	AF127389	Rattus norvegicus	putative taste receptor TR1	209	39
269	X98296	Homo sapiens	ubiquitin hydrolase	215	95
270	X78482	Streptococcus pyogenes	Fc-gamma receptor	129	26
271	AB009883	Nicotiana tabacum	KED	109	26
272	AF137367	Mus musculus	VPS10 domain receptor protein SORCS	899	97
273	L34938	Rattus norvegicus	ionotropic glutamate receptor	460	86
274	AL022724	Homo sapiens	dJ413H6.1.1 (hamster Androgen-dependent Expressed Protein LIKE PUTATIVE protein) (isoform 1)	188	74
275	AF265555	Homo sapiens	ubiquitin-conjugating BIR-domain enzyme APOLLON	173	94
276	G02872	Homo sapiens	Human secreted protein, SEQ ID NO: 6953.	148	56
277	L40380	Homo sapiens	thyroid receptor interactor	430	61
278	AB046851	Homo sapiens	KIAA1631 protein	283	96
279	AC008075	Arabidopsis thaliana	Contains PF00069 Eukaryotic protein kinase domain.	157	43
280	M83738	Homo sapiens	protein-tyrosine phosphatase	181	73
281	AK024397	Homo sapiens	unnamed protein product	439	91
282	AF141326	Homo sapiens	RNA helicase HDB/DICE1	497	84
283	AF156530	Mus musculus	ETS-domain transcriptional repressor PE1	605	76
284	Y29336	Homo sapiens	Human secreted protein clone cs756_2 alternate reading frame protein.	647	100
285	Y73402	Homo sapiens	Human secreted protein clone yc25_1 protein sequence SEQ ID NO:26.	300	90
286	AF016411	Homo sapiens	KCNA3.1B	137	100
287	W89253	Homo sapiens	Human ALP.	688	97
288	AF112886	Bos taurus	differentiation enhancing factor 1	750	96
289	AF113131	Homo sapiens	host cell factor homolog LCP	367	44
290	U52111	Homo sapiens	plexin-related protein	698	100
291	AF026504	Rattus	SPA-1 like protein p1294	603	89

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
		norvegicus			
292	AF102854	Rattus norvegicus	membrane-associated guanylate kinase-interacting protein 2 Maguin-2	124	53
293	X99211	Drosophila melanogaster	ubiquitin-specific protease	143	38
294	Y94943	Homo sapiens	Human secreted protein clone yt14_1 protein sequence SEQ ID NO:92.	185	94
295	Y94890	Homo sapiens	Human protein clone HP02798.	108	59
296	AF019767	Homo sapiens	zinc finger protein	154	96
297	Y28568	Homo sapiens	Secreted peptide clone bd577_1.	568	84
298	Y94943	Homo sapiens	Human secreted protein clone yt14_1 protein sequence SEQ ID NO:92.	182	97
299	B08906	Homo sapiens	Human secreted protein sequence encoded by gene 16 SEQ ID NO:63.	605	69
300	R58890	Homo sapiens	Human-32 cadherin-related molecule.	212	97
301	AF022859	Homo sapiens	neuropilin-2(a0)	277	100
302	Y71124	Homo sapiens	Human mitogenic regulator duox2.	716	97
303	Y44297	Homo sapiens	Human receptor tyrosine kinase.	228	97
304	D32050	Homo sapiens	alanyl-tRNA synthetase	192	80
305	U43586	Homo sapiens	protein kinase related to Raf protein kinases; Method: conceptual translation supplied by author	428	72
306	R54872	Homo sapiens	Human H13 viral receptor mutant 4.	280	95
307	D78572	Mus musculus	membrane glycoprotein	199	41
308	AF255614	Rattus norvegicus	scaffolding protein SLIPR	639	88
309	S79463	Mus sp.	semaphorin homolog-M-Sema F	162	89
310	AF178941	Homo sapiens	ATP-binding cassette sub-family A member 2	736	100
311	U03413	Dictyostelium discoideum	calcium binding protein	151	36
312	Y87347	Homo sapiens	Human signal peptide containing protein HSPP-124 SEQ ID NO:124.	744	100
313	Z97055	Homo sapiens	dJ388M5.4 (putative GS2 like protein)	789	99
314	AC004010	Homo sapiens	similar to Leucine-rich transmembrane proteins; 44% similarity to U42767 (PID:g1736918)	197	38
315	AL021392	Homo sapiens	dJ439F8.2 (supported by GENSCAN and GENEWISE)	278	38
316	U70209	Mus musculus	polycystic kidney disease 1 protein	165	38
317	AF109643	Rattus norvegicus	coxsackie-adenovirus-receptor homolog	223	38
318	AF104923	Homo sapiens	putative transcription factor	138	84
319	AF100287	Trypanosoma vivax	activated protein kinase C receptor homolog	141	38
320	G00588	Homo sapiens	Human secreted protein, SEQ ID NO: 4669.	125	51
321	Y21591	Homo sapiens	Human secreted protein (clone CC332-33).	459	97
322	D26070	Homo sapiens	human type 1 inositol 1,4,5-trisphosphate receptor	232	97
323	Y27918	Homo sapiens	Human secreted protein encoded by gene No. 123.	306	88
324	AF010144	Homo sapiens	neuronal thread protein AD7c-NTP	209	70
325	M19650	Homo sapiens	2',3'-cyclic-nucleotide 3'-phosphodiesterase (EC 3.1.4.37)	214	97
326	W80396	Homo sapiens	A secreted protein encoded by clone bp646_10.	140	70
327	X75756	Homo sapiens	protein kinase C mu	540	78
328	G02292	Homo sapiens	Human secreted protein, SEQ ID NO: 6373.	721	99
329	AF168990	Homo sapiens	putative GTP-binding protein	877	99
330	S67984	Homo sapiens	anti-HIV gp120 antibody heavy chain variable region	581	80
331	X13916	Homo sapiens	LDL-receptor related precursor (AA -19 to 4525)	2823	98
332	Y87330	Homo sapiens	Human signal peptide containing protein HSPP-107 SEQ ID NO:107.	1127	100
333	Y28503	Homo sapiens	HGFR3 Human Growth Factor Homologue 3.	320	98
334	AC002563	Homo sapiens	putative RHO/RAC effector protein; 95%	327	93

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
			similarity to P49205 (PID:g1345860)		
335	Y87347	Homo sapiens	Human signal peptide containing protein HSPP-124 SEQ ID NO:124.	1111	67
336	AF006466	Mus musculus	lymphocyte specific formin related protein	193	75
337	AF265555	Homo sapiens	ubiquitin-conjugating BIR-domain enzyme APOLLON	632	97
338	Y13443	Homo sapiens	Amino acid sequence of hSlc3-2.	516	100
339	Y07637	Homo sapiens	putative GABA-gated chloride channel	189	100
340	Y05734	Homo sapiens	Human Grb7 effector 2.2412 protein.	2156	99
341	AE000497	Escherichia coli	L-idonate transcriptional regulator	928	98
342	D90855	Escherichia coli	glycerol-3-phosphate dehydrogenase (EC 1.1.99.5) chain A, anaerobic	769	99
343	D85613	Escherichia coli	membrane component	399	100
344	M93239	Escherichia coli	transmembrane protein	232	100
345	M60177	Escherichia coli	enterobactin	759	99
346	D90699	Escherichia coli	Sensor protein copS (EC 2.7.3.-).	638	97
347	D90843	Escherichia coli	CapB protein.	552	100
348	M13422	Escherichia coli	49 kd protein	1193	96
349	L10328	Escherichia coli	similar to drug resistance translocases	340	90
350	X69942	Mus musculus	enhancer-trap-locus-1	560	82
351	AF239613	Homo sapiens	apamin-sensitive small-conductance Ca2+-activated potassium channel	463	80
352	D90777	Escherichia coli	3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157) (β-hydroxybutyryl-CoA dehydrogenase) (BhbD).	577	100
353	D90863	Escherichia coli	similar to	311	98
354	Y52386	Homo sapiens	Human transmembrane protein HP02000.	133	58
355	Y31645	Homo sapiens	Human transport-associated protein-7 (TRANP-7).	482	55
356	Y58637	Homo sapiens	Protein regulating gene expression PRGE-30.	119	51
357	AF119226	Homo sapiens	dual-specificity tyrosine phosphatase YVH1	1788	100
358	Y87219	Homo sapiens	Human secreted protein sequence SEQ ID NO:258.	165	100
359	J00132	Homo sapiens	beta-fibrinogen	233	93
360	G03789	Homo sapiens	Human secreted protein, SEQ ID NO: 7870.	128	70
361	R28916	Homo sapiens	Type III procollagen (prior art).	108	40
362	U16655	Rattus norvegicus	phospholipase C delta-4	649	65
363	G03119	Homo sapiens	Human secreted protein, SEQ ID NO: 7200.	95	42
364	U47276	Gallus gallus	chicken brain factor-2	104	34
365	G03789	Homo sapiens	Human secreted protein, SEQ ID NO: 7870.	183	65
366	G04091	Homo sapiens	Human secreted protein, SEQ ID NO: 8172.	118	46
367	X98258	Homo sapiens	M-phase phosphoprotein 9	564	75
368	AL021366	Homo sapiens	cICK0721Q.3 (Kinesin related protein)	3387	99
369	U70932	Peromyscus leucopus	reverse transcriptase	92	59
370	X86400	Homo sapiens	gamma subunit of sodium potassium ATPase like	242	73
371	G03172	Homo sapiens	Human secreted protein, SEQ ID NO: 7253.	165	56
372	U49974	Homo sapiens	mariner transposase	257	55
373	X13916	Homo sapiens	LDL-receptor related precursor (AA -19 to 4525)	21193	99
374	AF234765	Rattus norvegicus	serine-arginine-rich splicing regulatory protein SRRP86	1182	78
375	U49974	Homo sapiens	mariner transposase	172	55

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
376	G01984	Homo sapiens	Human secreted protein, SEQ ID NO: 6065.	221	67
377	G00669	Homo sapiens	Human secreted protein, SEQ ID NO: 4750.	600	100
378	X52574	Mus musculus	GTP binding protein	1456	91
379	R69095	Homo sapiens	Anti-HIV Fab tat31 light chain.	68	37
380	J04974	Homo sapiens	alpha-2 type XI collagen	125	37
381	AB002405	Homo sapiens	LAK-4p	530	43
382	U64830	Dictyostelium discoideum	protein tyrosine kinase	115	44
383	G02916	Homo sapiens	Human secreted protein, SEQ ID NO: 6997.	618	98
384	G01194	Homo sapiens	Human secreted protein, SEQ ID NO: 5275.	617	93
385	AJ245822	Homo sapiens	type I transmembrane receptor	4560	100
386	D86974	Homo sapiens	KIAA0220	2148	98
387	G03203	Homo sapiens	Human secreted protein, SEQ ID NO: 7284.	142	50
388	G04072	Homo sapiens	Human secreted protein, SEQ ID NO: 8153.	99	59
389	M12140	Homo sapiens	envelope protein	197	51
390	AJ293309	Homo sapiens	NHP2 protein	461	77
391	Y42751	Homo sapiens	Human calcium binding protein 2 (CaBP-2).	181	94
392	W48351	Homo sapiens	Human breast cancer related protein BCRB2.	241	66
393	Y14442	Homo sapiens	olfactory receptor protein	339	54
394	W85607	Homo sapiens	Secreted protein clone da228_6.	957	100
395	Y76332	Homo sapiens	Fragment of human secreted protein encoded by gene 38.	171	34
396	G03930	Homo sapiens	Human secreted protein, SEQ ID NO: 8011.	250	100
397	AB032904	Hylobates syndactylus	dopamine receptor D4	105	35
398	AJ007798	Homo sapiens	stromal antigen 3, (STAG3)	861	85
399	Y91405	Homo sapiens	Human secreted protein sequence encoded by gene 2 SEQ ID NO:126.	1047	92
400	Y29861	Homo sapiens	Human secreted protein clone cb98_4.	162	37
401	D87002	Homo sapiens	similar to rat integral membrane glycoprotein; accession number Z21513.	527	78
402	AF100754	Homo sapiens	ancient ubiquitous protein AUPI isoform	853	95
403	X74904	Gallus gallus	alpha-2-macroglobulin receptor	258	60
404	AF075462	Mus musculus	ADP-ribosylation factor-directed GTPase activating protein isoform b	545	89
405	X92887	Human endogenous retrovirus K	pol/env	162	30
406	Y30162	Homo sapiens	Human dorsal root receptor 4 hDRR4.	325	72
407	AK022626	Homo sapiens	unnamed protein product	2833	99
408	L13802	Homo sapiens	ribosomal protein small subunit	264	92
409	Y91600	Homo sapiens	Human secreted protein sequence encoded by gene 9 SEQ ID NO:273.	1788	89
410	W88745	Homo sapiens	Secreted protein encoded by gene 30 clone HTSEV09.	2004	99
411	AB043953	Mus musculus	Chat-H	2628	82
412	Y86233	Homo sapiens	Human secreted protein HNTMX29, SEQ ID NO:148.	1014	92
413	U10542	Pan troglodytes	MHC class I A	265	71
414	AF155097	Homo sapiens	NY-REN-7 antigen	850	95
415	G03203	Homo sapiens	Human secreted protein, SEQ ID NO: 7284.	88	48
416	Y57911	Homo sapiens	Human transmembrane protein HTMPN-35.	266	89
417	W27651	Homo sapiens	Secreted protein AT205.	481	60
418	Y76884	Homo sapiens	Retinoblastoma binding protein-7sequence.	3077	87
419	AF255559	Notothenia coriiceps	alpha tubulin	289	68
420	G01984	Homo sapiens	Human secreted protein, SEQ ID NO: 6065.	209	74
421	AL109827	Homo sapiens	dJ309K20.2 (acrosomal protein ACR55 (similar to rat sperm antigen 4 (SPAG4)))	1446	96
422	AC008075	Arabidopsis thaliana	F24J5.4	112	35

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
423	AF231705	Homo sapiens	Alu co-repressor 1	1090	100
424	AF234887	Homo sapiens	FLAMINGO 1	6268	97
425	Y35942	Homo sapiens	Extended human secreted protein sequence, SEQ ID NO. 191.	1961	99
426	AB009288	Homo sapiens	N-copine	635	98
427	LI2392	Homo sapiens	Huntington's Disease protein	16080	99
428	Y94990	Homo sapiens	Human secreted protein vb21_1, SEQ ID NO:20.	768	98
429	AJ293573	Homo sapiens	zinc finger protein Cezanne	542	87
430	Y84441	Homo sapiens	Amino acid sequence of a human RNA-associated protein.	2074	100
431	G02850	Homo sapiens	Human secreted protein, SEQ ID NO: 6931.	723	95
432	G04067	Homo sapiens	Human secreted protein, SEQ ID NO: 8148.	73	42
433	AF159296	Lycopersicon esculentum	extensin-like protein	613	48
434	W48351	Homo sapiens	Human breast cancer related protein BCRB2.	135	44
435	X73874	Homo sapiens	phosphorylase kinase	3442	97
436	AF161426	Homo sapiens	HSPC308	268	74
437	Y30812	Homo sapiens	Human secreted protein encoded from gene 2.	1055	52
438	G03798	Homo sapiens	Human secreted protein, SEQ ID NO: 7879.	168	56
439	X14766	Homo sapiens	GABA-A receptor alpha 1 subunit	2294	96
440	X02344	Homo sapiens	beta-tubulin	311	95
441	AF168418	Homo sapiens	activating signal cointegrator 1	1882	100
442	L11672	Homo sapiens	zinc finger protein	795	54
443	G03203	Homo sapiens	Human secreted protein, SEQ ID NO: 7284.	93	26
444	A52140	unidentified	HUMAN NDR	2451	100
445	X98330	Homo sapiens	ryanodine receptor 2	9356	99
446	AF116712	Homo sapiens	PRO2738	227	49
447	AF245447	Homo sapiens	sphingosine kinase type 2 isoform	576	99
448	AF133086	Homo sapiens	membrane-type serine protease I	2630	94
449	U87305	Rattus norvegicus	transmembrane receptor UNC5H1	817	93
450	AF081249	Homo sapiens	JAW1-related protein MRVIIA long isoform	4568	99
451	AC005498	Homo sapiens	R31665_1	316	62
452	M60235	Homo sapiens	granule membrane protein-140	464	73
453	AB036706	Homo sapiens	intelectin	730	88
454	G00918	Homo sapiens	Human secreted protein, SEQ ID NO: 4999.	263	81
455	Y22634	Homo sapiens	Human cytokine inducible regulatory protein-I (CIRP-I).	192	67
456	Y36705	Homo sapiens	Fragment of human secreted protein encoded by gene 62.	106	40
457	N91325	Homo sapiens	DNA encoding human growth hormone receptor.	3282	96
458	M19155	Plasmodium falciparum	S-antigen precursor	110	36
459	Y13377	Homo sapiens	Amino acid sequence of protein PRO257.	509	98
460	Y02693	Homo sapiens	Human secreted protein encoded by gene 44 clone HTDAD22.	149	43
461	Y14482	Homo sapiens	Fragment of human secreted protein encoded by gene 17.	184	54
462	Y53005	Homo sapiens	Human secreted protein clone pm749_8 protein sequence SEQ ID NO:16.	135	47
463	X84960	Triticum aestivum	low molecular weight glutenin	109	33
464	W19919	Homo sapiens	Human Ksr-1 (kinase suppressor of Ras).	1781	85
465	AF189764	Mus musculus	alpha/beta hydrolase-1	502	59
466	U93569	Homo sapiens	p40	101	30
467	Y41528	Homo sapiens	Fragment of human secreted protein encoded by gene 77.	1172	99
468	G02872	Homo sapiens	Human secreted protein, SEQ ID NO: 6953.	149	52
469	AJ000008	Homo sapiens	PI3-kinase	5832	97
470	X70922	Mus musculus	neurotoxin homologue	118	47
471	G03797	Homo sapiens	Human secreted protein, SEQ ID NO: 7878.	198	75
472	Y36705	Homo sapiens	Fragment of human secreted protein encoded by	72	57

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
			gene 62.		
473	G02313	Homo sapiens	Human secreted protein, SEQ ID NO: 6394.	328	100
474	Y07007	Homo sapiens	Breast cancer associated antigen precursor sequence.	1013	97
475	W93254	Homo sapiens	Human ESRP1 protein.	943	80
476	W48351	Homo sapiens	Human breast cancer related protein BCRB2.	236	65
477	Y02693	Homo sapiens	Human secreted protein encoded by gene 44 clone HTDAD22.	202	60
478	G01870	Homo sapiens	Human secreted protein, SEQ ID NO: 5951.	267	100
479	AF102777	Mus musculus	FYVE finger-containing phosphoinositide kinase	3427	92
480	G03052	Homo sapiens	Human secreted protein, SEQ ID NO: 7133.	123	53
481	W87701	Homo sapiens	A human membrane fusion protein designated SYTAX1.	221	77
482	G03119	Homo sapiens	Human secreted protein, SEQ ID NO: 7200.	131	39
483	AF210651	Homo sapiens	NAG18	124	59
484	AF010144	Homo sapiens	neuronal thread protein AD7c-NTP	343	50
485	G00637	Homo sapiens	Human secreted protein, SEQ ID NO: 4718.	129	70
486	U15174	Homo sapiens	BCL2/adenovirus E1B 19kD-interacting protein 3	149	73
487	Y76167	Homo sapiens	Human secreted protein encoded by gene 44.	627	100
488	AJ275213	Homo sapiens	stabilin-1	1244	91
489	G03798	Homo sapiens	Human secreted protein, SEQ ID NO: 7879.	313	65
490	L12392	Homo sapiens	Huntington's Disease protein	16081	100
491	G03789	Homo sapiens	Human secreted protein, SEQ ID NO: 7870.	197	66
492	J03799	Homo sapiens	laminin-binding protein	228	70
493	U15174	Homo sapiens	BCL2/adenovirus E1B 19kD-interacting protein 3	128	41
494	Y02693	Homo sapiens	Human secreted protein encoded by gene 44 clone HTDAD22.	197	67
495	AC005175	Homo sapiens	R31449_3	889	94
496	G03786	Homo sapiens	Human secreted protein, SEQ ID NO: 7867.	229	61
497	AB030237	Canis familiaris	D4 dopamine receptor	90	48
498	G02872	Homo sapiens	Human secreted protein, SEQ ID NO: 6953.	228	65
499	U70935	Peromyscus maniculatus	reverse transcriptase	213	52
500	U48508	Homo sapiens	skeletal muscle ryanodine receptor	26406	99
501	G03371	Homo sapiens	Human secreted protein, SEQ ID NO: 7452.	105	58
502	AF119851	Homo sapiens	PRO1722	156	62
503	AF113685	Homo sapiens	PRO0974	116	50
504	U79458	Homo sapiens	WW domain binding protein-2	322	59
505	W29651	Homo sapiens	Human secreted protein CD124_3.	608	55
506	W85459	Homo sapiens	Secreted protein encoded by clone dh1135_9.	986	70
507	Y86265	Homo sapiens	Human secreted protein HUSXE77, SEQ ID NO:180.	115	33
508	AL160175	Homo sapiens	bA243J16.3 (similar to MYLK (myosin, light poly peptide kinase))	184	92
509	U43360	Peromyscus maniculatus	reverse transcriptase	97	62
510	G03789	Homo sapiens	Human secreted protein, SEQ ID NO: 7870.	117	63
511	W79092	Homo sapiens	Human secreted protein dn740_3.	1058	100
512	AF010144	Homo sapiens	neuronal thread protein AD7c-NTP	205	64
513	AJ133439	Homo sapiens	GRIP1 protein	2151	100
514	AE003456	Drosophila melanogaster	CG6393 gene product	259	42
515	Z17206	Xenopus laevis	p46XIEg22	128	40
516	AF104413	Homo sapiens	large tumor suppressor 1	1766	94
517	G03797	Homo sapiens	Human secreted protein, SEQ ID NO: 7878.	92	40
518	AF151083	Homo sapiens	HSPC249	444	98
519	S80864	Homo sapiens	cytochrome c-like polypeptide	318	50
520	X92485	Plasmodium vivax	pval	170	61

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
521	G03790	Homo sapiens	Human secreted protein, SEQ ID NO: 7871.	159	59
522	AF121857	Homo sapiens	sorting nexin 7	259	40
523	G02654	Homo sapiens	Human secreted protein, SEQ ID NO: 6735.	82	37
524	W88627	Homo sapiens	Secreted protein encoded by gene 94 clone HPMBQ32.	253	73
525	AF119851	Homo sapiens	PRO1722	162	57
526	Y27761	Homo sapiens	Human secreted protein encoded by gene No. 47.	154	57
527	G02707	Homo sapiens	Human secreted protein, SEQ ID NO: 6788.	70	45
528	U47924	Homo sapiens	C8	1112	86
529	G04063	Homo sapiens	Human secreted protein, SEQ ID NO: 8144.	84	45
530	G03203	Homo sapiens	Human secreted protein, SEQ ID NO: 7284.	111	60
531	G04067	Homo sapiens	Human secreted protein, SEQ ID NO: 8148.	92	65
532	G03267	Homo sapiens	Human secreted protein, SEQ ID NO: 7348.	75	29
533	G03203	Homo sapiens	Human secreted protein, SEQ ID NO: 7284.	182	48
534	AF068286	Homo sapiens	HDCMD38P	861	100
535	U07707	Homo sapiens	epidermal growth factor receptor substrate	228	60
536	G01955	Homo sapiens	Human secreted protein, SEQ ID NO: 6036.	484	75
537	AF219232	Gallus gallus	qin-induced kinase	206	53
538	AF135022	Homo sapiens	mediator	128	100
539	G03267	Homo sapiens	Human secreted protein, SEQ ID NO: 7348.	141	59
540	AF016430	Caenorhabditis elegans	contains similarity to a BR-C/TTK domain	853	39
541	AC003093	Homo sapiens	OXYSTEROL-BINDING PROTEIN; 45% similarity to P22059 (PID:g129308)	408	66
542	M29487	Homo sapiens	integrin alpha subunit precursor	517	81
543	AF102530	Mus musculus	olfactory receptor F3	327	73
544	Y73431	Homo sapiens	Human secreted protein clone yb186_1 protein sequence SEQ ID NO:84.	386	100
545	AE004833	Pseudomonas aeruginosa	probable TonB-dependent receptor	279	42
546	G03793	Homo sapiens	Human secreted protein, SEQ ID NO: 7874.	264	53
547	Y69192	Homo sapiens	A human monocyte-macrophage apolipoprotein B receptor protein.	1772	67
548	Y91493	Homo sapiens	Human secreted protein sequence encoded by gene 43 SEQ ID NO:166.	176	100
549	G01571	Homo sapiens	Human secreted protein, SEQ ID NO: 5652.	777	99
550	AF044588	Homo sapiens	protein regulating cytokinesis 1; PRC1	1953	88
551	Y29332	Homo sapiens	Human secreted protein clone pe584_2 protein sequence.	1224	94
552	X98330	Homo sapiens	ryanodine receptor 2	24621	99
553	Y42782	Homo sapiens	Human UC Band #331 protein.	684	95
554	AB025258	Mus musculus	granophilin-a	501	41
555	AJ010346	Homo sapiens	RING-H2	1468	100
556	W92388	Homo sapiens	Human TR-interacting protein S239a.	538	92
557	AF119851	Homo sapiens	PRO1722	175	59
558	AF117756	Homo sapiens	thyroid hormone receptor-associated protein complex component TRAP150	183	32
559	G02872	Homo sapiens	Human secreted protein, SEQ ID NO: 6953.	319	68
560	D86214	Mus musculus	Ca2+ dependent activator protein for secretion	1010	93
561	AF187325	Canis familiaris	melanoma antigen	287	55
562	AJ001981	Homo sapiens	OXA1L	2512	99
563	Z17238	Rattus norvegicus	glutamate receptor subtype delta-1	338	66
564	W30638	Homo sapiens	Partial human 7-transmembrane receptor HAPO167 protein.	371	100
565	AC005620	Homo sapiens	R33590_1	467	97
566	Y99358	Homo sapiens	Human PRO1772 (UNQ834) amino acid sequence SEQ ID NO:63.	1138	78
567	AL031177	Homo sapiens	dJ889M15.3 (novel protein)	1002	58
568	AF151043	Homo sapiens	HSPC209	798	100

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
569	AF097518	Homo sapiens	liver-specific transporter	231	100
570	AB035698	Homo sapiens	Misshapen/NIK-related kinase MJNK-1	1532	100
571	Y07096	Homo sapiens	Colon cancer associated antigen precursor sequence.	1064	100
572	AL031177	Homo sapiens	dJ889M15.3 (novel protein)	735	55
573	Y66639	Homo sapiens	Membrane-bound protein PRO290.	254	45
574	AB037108	Homo sapiens	seven transmembrane domain orphan receptor	1883	99
575	D43949	Homo sapiens	This gene is novel.	836	100
576	Y48596	Homo sapiens	Human breast tumour-associated protein 57.	108	50
577	G00352	Homo sapiens	Human secreted protein, SEQ ID NO: 4433.	141	75
578	R95913	Homo sapiens	Neural thread protein.	140	65
579	AK025116	Homo sapiens	unnamed protein product	201	70
580	Y86473	Homo sapiens	Human gene 52-encoded protein fragment, SEQ ID NO:388.	77	70
581	AF196779	Homo sapiens	JM10 protein	450	100
582	AF188706	Homo sapiens	g20 protein	330	98
583	AB030234	Canis familiaris	D4 dopamine receptor	64	56
584	G02621	Homo sapiens	Human secreted protein, SEQ ID NO: 6702.	345	90
585	AL096828	Homo sapiens	dJ963E22.1 (Novel protein similar to NY-REN-2 Antigen)	268	85
586	Y30819	Homo sapiens	Human secreted protein encoded from gene 9.	235	35
587	G00357	Homo sapiens	Human secreted protein, SEQ ID NO: 4438.	132	56
588	G02872	Homo sapiens	Human secreted protein, SEQ ID NO: 6953.	182	79
589	AF235017	Mus musculus	2P1 protein	764	80
590	W88627	Homo sapiens	Secreted protein encoded by gene 94 clone HPMBQ32.	329	81
591	Y30709	Homo sapiens	Amino acid sequence of a human secreted protein.	110	43
592	Y53875	Homo sapiens	A human seven transmembrane signal transducer polypeptide.	1369	92
593	Y53051	Homo sapiens	Human secreted protein clone dd119_4 protein sequence SEQ ID NO:108.	1112	97
594	Y27658	Homo sapiens	Human secreted protein encoded by gene No. 92.	763	79
595	G03798	Homo sapiens	Human secreted protein, SEQ ID NO: 7879.	156	58
596	AF151110	Mus musculus	COP1 protein	2215	95
597	G03786	Homo sapiens	Human secreted protein, SEQ ID NO: 7867.	157	65
598	AF192499	Mus musculus	putative secreted protein ZSIG37	143	40
599	AF119855	Homo sapiens	PRO1847	236	76
600	G02872	Homo sapiens	Human secreted protein, SEQ ID NO: 6953.	212	73
601	Y00295	Homo sapiens	Human secreted protein encoded by gene 38.	567	88
602	AF184971	Homo sapiens	class II cytokine receptor ZCYTOR7	2015	74
603	AF061936	Homo sapiens	diacylglycerol kinase iota	773	96
604	AL096828	Homo sapiens	dJ963E22.1 (Novel protein similar to NY-REN-2 Antigen)	1333	93
605	AB033106	Homo sapiens	KIAA1280 protein	3915	100
606	X75756	Homo sapiens	protein kinase C mu	3916	99
607	D86983	Homo sapiens	similar to D.melanogaster peroxidasin(U11052)	5758	99
608	W69341	Homo sapiens	Secreted protein of clone CG279_1.	1377	99
609	W88627	Homo sapiens	Secreted protein encoded by gene 94 clone HPMBQ32.	339	82
610	Y27868	Homo sapiens	Human secreted protein encoded by gene No. 107.	116	62
611	AF202636	Homo sapiens	angiopoietin-like protein PPI158	2164	100
612	AF090944	Homo sapiens	PRO0663	218	82
613	Y02693	Homo sapiens	Human secreted protein encoded by gene 44 clone HTDAD22.	195	59
614	M87053	Rattus norvegicus	lens membrane protein	450	84
615	AC004232	Homo sapiens	FPM315	163	37
616	G01984	Homo sapiens	Human secreted protein, SEQ ID NO: 6065.	205	79

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
617	Y91524	Homo sapiens	Human secreted protein sequence encoded by gene 74 SEQ ID NO:197.	821	99
618	AJ245621	Homo sapiens	CTL2 protein	2258	99
619	Y76198	Homo sapiens	Human secreted protein encoded by gene 75.	108	64
620	AF067864	Homo sapiens	transferrin receptor 2 alpha	3922	94
621	D90721	Escherichia coli	Transmembrane protein dppC	573	90
622	W75858	Homo sapiens	Human secretory protein of clone CS752-3.	730	100
623	Y94982	Homo sapiens	Human secreted protein vb12_1, SEQ ID NO:4.	733	100
624	AF034745	Mus musculus	LNXp80	637	83
625	U42580	Paramecium bursaria Chlorella virus 1	Pro-rich, IPPPNMSLPLS (3x)	94	46
626	U79260	Homo sapiens	unknown	194	70
627	R95913	Homo sapiens	Neural thread protein.	99	50
628	G03450	Homo sapiens	Human secreted protein, SEQ ID NO: 7531.	427	100
629	Y36281	Homo sapiens	Human secreted protein encoded by gene 58.	590	100
630	Y02693	Homo sapiens	Human secreted protein encoded by gene 44 clone HTDAD22.	165	76
631	G02139	Homo sapiens	Human secreted protein, SEQ ID NO: 6220.	268	96
632	U16996	Homo sapiens	protein tyrosine phosphatase	351	80
633	AF121857	Homo sapiens	sorting nexin 7	2019	100
634	AF283772	Homo sapiens	similar to Homo sapiens ribosomal protein L10 encoded by GenBank Accession Number L25899	340	77
635	Y07090	Homo sapiens	Renal cancer associated antigen precursor sequence.	277	64
636	AB013382	Homo sapiens	DUSP6	414	76
637	G02872	Homo sapiens	Human secreted protein, SEQ ID NO: 6953.	315	71
638	M95762	Rattus norvegicus	GABA transporter	924	89
639	G03789	Homo sapiens	Human secreted protein, SEQ ID NO: 7870.	219	60
640	Y01400	Homo sapiens	Secreted protein encoded by gene 18 clone HNHFO29.	137	79
641	AC008075	Arabidopsis thaliana	F24J5.4	121	33
642	W74824	Homo sapiens	Human secreted protein encoded by gene 96 clone HAQBK61.	615	62
643	AB015982	Homo sapiens	serine/threonine kinase	485	98
644	Y25806	Homo sapiens	Human secreted protein fragment encoded from gene 23.	162	46
645	AF122904	Homo sapiens	membrane protein DAP10	474	100
646	AF233323	Homo sapiens	Fas-associated phosphatase-1	200	38
647	W48804	Homo sapiens	Homo sapiens clone BK158_1 protein.	1203	99
648	AF257330	Homo sapiens	COBW-like protein	1440	98
649	Y36203	Homo sapiens	Human secreted protein #75.	233	73
650	G02872	Homo sapiens	Human secreted protein, SEQ ID NO: 6953.	173	78
651	Y32199	Homo sapiens	Human receptor molecule (REC) encoded by Incyte clone 2022379.	1012	100
652	AB032909	Hylobates agilis	dopamine receptor D4	122	32
653	AK021848	Homo sapiens	unnamed protein product	186	69
654	W73411	Homo sapiens	Human secreted protein encoded by Gene No. 15.	57	37
655	L22455	Rattus norvegicus	mu opioid receptor	116	34
656	G03112	Homo sapiens	Human secreted protein, SEQ ID NO: 7193.	110	45
657	G02345	Homo sapiens	Human secreted protein, SEQ ID NO: 6426.	459	97
658	W88627	Homo sapiens	Secreted protein encoded by gene 94 clone HPMBQ32.	291	75
659	G02832	Homo sapiens	Human secreted protein, SEQ ID NO: 6913.	134	65
660	Y91423	Homo sapiens	Human secreted protein sequence encoded by gene 11 SEQ ID NO:144.	333	96

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
661	G03789	Homo sapiens	Human secreted protein, SEQ ID NO: 7870.	168	68
662	Y53886	Homo sapiens	A suppressor of cytokine signalling protein designated HSCOP-6.	375	43
663	W75771	Homo sapiens	Human GTP binding protein APD08.	629	100
664	AL096770	Homo sapiens	bA150A6.2 (novel 7 transmembrane receptor (rhodopsin family) (olfactory receptor like) protein (hs6M1-21))	480	55
665	AB037734	Homo sapiens	KIAA1313 protein	978	96
666	W82841	Homo sapiens	Human cerebral protein-1.	192	84
667	W82841	Homo sapiens	Human cerebral protein-1.	182	87
668	AB030184	Mus musculus	contains transmembrane (TM) region and ATP binding region	757	68
669	AB032919	Hylobates muelleri	dopamine receptor D4	85	37
670	AF107295	Rattus norvegicus	outer membrane protein	746	81
671	Z33642	Homo sapiens	leukocyte surface protein	394	93
672	W83608	Homo sapiens	Secreted protein clone du410_5.	261	91
673	G03203	Homo sapiens	Human secreted protein, SEQ ID NO: 7284.	106	48
674	AL035587	Homo sapiens	dJ475N16.4 (KIAA0240)	2388	99
675	Y59668	Homo sapiens	Secreted protein 108-005-5-0-C1-FL	1134	53
676	G03797	Homo sapiens	Human secreted protein, SEQ ID NO: 7878.	174	74
677	AF026954	Bos taurus	pyruvate dehydrogenase phosphatase regulatory subunit precursor; PDP _r	1013	95
678	L11625	Mus musculus	receptor protein-tyrosine kinase	545	96
679	AL031427	Homo sapiens	dJ167A19.3 (novel protein)	745	100
680	AJ133430	Mus musculus	olfactory receptor	528	77
681	G02532	Homo sapiens	Human secreted protein, SEQ ID NO: 6613.	179	70
682	G03789	Homo sapiens	Human secreted protein, SEQ ID NO: 7870.	336	76
683	Y94943	Homo sapiens	Human secreted protein clone yt14_1 protein sequence SEQ ID NO:92.	118	100
684	U43360	Peromyscus maniculatus	reverse transcriptase	100	37
685	G00885	Homo sapiens	Human secreted protein, SEQ ID NO: 4966.	162	60
686	AK001518	Homo sapiens	unnamed protein product	590	100
687	G01982	Homo sapiens	Human secreted protein, SEQ ID NO: 6063.	718	100
688	Y92241	Homo sapiens	Human cancer associated antigen precursor (MO-REN-46).	2405	99
689	AC024792	Caenorhabditis elegans	contains similarity to TR:P78316	423	36
690	Y27868	Homo sapiens	Human secreted protein encoded by gene No. 107.	183	81
691	Y56514	Homo sapiens	Human Jurkat cell clone P2-15 AIM10 longest ORF protein sequence.	180	88
692	Y27795	Homo sapiens	Human secreted protein encoded by gene No. 79.	1539	99
693	Y36268	Homo sapiens	Human secreted protein encoded by gene 45.	428	98
694	U12465	Homo sapiens	ribosomal protein L35	308	89
695	Y45272	Homo sapiens	Human secreted protein encoded from gene 16.	1517	99
696	AF191838	Homo sapiens	TANK binding kinase TBK1	1242	98
697	Y02693	Homo sapiens	Human secreted protein encoded by gene 44 clone HTDAD22.	275	75
698	Y87280	Homo sapiens	Human signal peptide containing protein HSPP-57 SEQ ID NO:57.	576	90
699	Y97999	Homo sapiens	Human SCAD family molecule HSFM-1, SEQ ID NO:1.	729	99
700	AJ006701	Homo sapiens	putative serine/threonine protein kinase	610	79
701	AF209198	Homo sapiens	zinc finger protein 277	2357	100
702	AJ298841	Mus musculus	torsinA protein	709	45
703	AK021729	Homo sapiens	unnamed protein product	622	98
704	Z46787	Caenorhabditis elegans	similar to Glutaredoxin, Zinc finger, C3HC4 type (RING finger)	920	51
705	G02882	Homo sapiens	Human secreted protein, SEQ ID NO: 6963.	589	98

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
706	G02501	Homo sapiens	Human secreted protein, SEQ ID NO: 6582.	125	58
707	R95326	Homo sapiens	Tumor necrosis factor receptor 1 death domain ligand (clone 2DD).	121	95
708	G03002	Homo sapiens	Human secreted protein, SEQ ID NO: 7083.	125	39
709	Y96202	Homo sapiens	IkappaB kinase (IKK) binding protein, Y2H56.	516	98
710	M63577	Saccharomyces cerevisiae	SFP1	131	59
711	AB026291	Rattus norvegicus	acetoacetyl-CoA synthetase	467	85
712	D21211	Homo sapiens	protein tyrosine phosphatase (PTP-BAS, type 3)	368	44
713	AF044033	Marmota marmota	olfactory receptor	615	83
714	G03561	Homo sapiens	Human secreted protein, SEQ ID NO: 7642.	251	100
715	AB033062	Homo sapiens	KIAA1236 protein	1380	100
716	G00577	Homo sapiens	Human secreted protein, SEQ ID NO: 4658.	80	73
717	Y96864	Homo sapiens	SEQ. ID. 37 from WO0034474.	835	99
718	AJ243396	Homo sapiens	voltage-gated sodium channel beta-3 subunit	234	100
719	U47334	Homo sapiens	similar to chicken gamma aminobutyric acid receptor beta4 subunit	578	99
720	AB020598	Homo sapiens	peptide transporter 3	1096	100
721	Y53886	Homo sapiens	A suppressor of cytokine signalling protein designated HSCOP-6.	570	74
722	J05046	Homo sapiens	insulin receptor-related receptor	6787	100
723	AF001958	Ambystoma tigrinum	electrogenic Na ⁺ bicarbonate cotransporter; NBC	111	41
724	AF127084	Mus musculus	semaphorin cytoplasmic domain-associated protein 3A	5253	94
725	X54673	Homo sapiens	GABA transporter	3114	99
726	AF016191	Rattus norvegicus	potassium channel	370	100
727	AB029559	Rattus norvegicus	BAT1	139	35
728	Y28503	Homo sapiens	HGFH3 Human Growth Factor Homologue 3.	2186	97
729	AJ011415	Homo sapiens	plexin-B1/SEP receptor	729	56
730	Z93096	Homo sapiens	bK390B3.1 (manic fringe (<i>Drosophila</i>) homolog)	142	68
731	Z10062	Homo sapiens	cDNA encoding a human vanilloid receptor homologue Vanirepl.	675	99
732	AF161382	Homo sapiens	HSPC264	492	94
733	AB029033	Homo sapiens	KIAA1110 protein	3826	99
734	AE000493	Escherichia coli	putative transport protein	592	97
735	AL033379	Homo sapiens	dJ417O22.2 (novel 7 transmembrane receptor (rhodopsin family) protein similar to high-affinity lysophosphatidic acid receptor homolog)	2173	99
736	AF132599	Homo sapiens	RANTES factor of late activated T lymphocytes-1	245	56
737	X55019	Homo sapiens	acetylcholine receptor delta subunit	883	99
738	X91906	Homo sapiens	voltage-gated chloride ion channel	1978	100
739	AB026116	Homo sapiens	organic anion transporter 4	1444	98
740	D00570	Mus musculus	open reading frame (196 AA)	83	24
741	W03626	Homo sapiens	Human thyrotropin GPR N-terminal sequence.	118	40
742	U66059	Homo sapiens	V _{segment} translation product	614	100
743	AF119815	Homo sapiens	G-protein-coupled receptor	2751	99
744	X16663	Homo sapiens	haematopoietic lineage cell protein (AA 1-486)	148	93
745	W67838	Homo sapiens	Human secreted protein encoded by gene 32 clone HLTCJ63.	448	95
746	W57260	Homo sapiens	Human semaphorin Y.	2414	100
747	W21578	Homo sapiens	Alzheimer's disease protein encoded by DNA from plasmid pGCS223Z.	968	65
748	Y94935	Homo sapiens	Human secreted protein clone yd218_1 protein sequence SEQ ID NO:76.	622	100
749	AL022238	Homo sapiens	dJ1042K10.5 (novel protein)	314	85
750	G03889	Homo sapiens	Human secreted protein, SEQ ID NO: 7970.	391	87

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
751	AB025258	Mus musculus	granuphilin-a	773	41
752	Y52386	Homo sapiens	Human transmembrane protein HP02000.	900	99
753	Y48586	Homo sapiens	Human breast tumour-associated protein 47.	2527	99
754	AJ272207	Homo sapiens	putative G protein-coupled receptor 92	694	100
755	M85183	Rattus norvegicus	vasopressin receptor	979	68
756	AF190501	Homo sapiens	leucine-rich repeat-containing G protein-coupled receptor 6	388	71
757	Y02692	Homo sapiens	Human secreted protein encoded by gene 43 clone HTADX17.	461	87
758	Z22535	Homo sapiens	ALK-3	439	98
759	R04932	Homo sapiens	Interferon-gamma receptor segment from clone 39 responsible for binding the target.	564	97
760	W74902	Homo sapiens	Human secreted protein encoded by gene 175 clone HE8B192.	1217	99
761	G03706	Homo sapiens	Human secreted protein, SEQ ID NO: 7787.	223	88
762	AB020676	Homo sapiens	KIAA0869 protein	4433	99
763	AK026992	Homo sapiens	unnamed protein product	2285	99
764	AF173358	Homo sapiens	glucocorticoid receptor AF-1 coactivator-1	573	100
765	AF268066	Mus musculus	netrin 4	2019	89
766	Y48585	Homo sapiens	Human breast tumour-associated protein 46.	1169	89
767	AF230378	Mus musculus	interleukin-1 delta	309	45
768	AF121975	Mus musculus	odorant receptor S18	268	62
769	AB008515	Homo sapiens	RanBPM	611	57
770	Y09945	Rattus norvegicus	putative integral membrane transport protein	458	50
771	AF226731	Homo sapiens	AD026	688	99
772	Y27132	Homo sapiens	Human glioblastoma-derived polypeptide (clone OA004FG).	1384	100
773	X87832	Homo sapiens	NOV/plexin-A1 protein	1821	98
774	AB025258	Mus musculus	granuphilin-a	500	41
775	AF125101	Homo sapiens	HSPC040 protein	232	93
776	G02815	Homo sapiens	Human secreted protein, SEQ ID NO: 6896.	314	95
777	G02493	Homo sapiens	Human secreted protein, SEQ ID NO: 6574.	191	68
778	R03301	Homo sapiens	Sequence of pre-human atrial natriuretic peptide.	213	45
779	AL357374	Homo sapiens	bA353C18.2 (novel protein)	232	100
780	AF100346	Homo sapiens	neuronal voltage gated calcium channel gamma-3 subunit	1434	89
781	Y19566	Homo sapiens	Amino acid sequence of a human secreted protein.	103	52
782	Y36233	Homo sapiens	Human secreted protein encoded by gene 10.	1098	93
783	AF084464	Rattus norvegicus	GTP-binding protein REM2	141	30
784	W49042	Homo sapiens	Human low density lipoprotein binding protein LBP-3.	2693	99
785	AF238381	Homo sapiens	PTOV1	1904	91
786	Y91870	Homo sapiens	Human apoptosis related protein.	547	100
787	Y71062	Homo sapiens	Human membrane transport protein, MTRP-7.	1062	94
788	AF117754	Homo sapiens	thyroid hormone receptor-associated protein complex component TRAP240	8684	98
789	AL049569	Homo sapiens	dJ37C10.3 (novel ATPase)	2848	96
790	AF151848	Homo sapiens	CGI-90 protein	745	96
791	Y08639	Homo sapiens	nuclear orphan receptor ROR-beta	1421	95
792	Y41706	Homo sapiens	Human PRO381 protein sequence.	644	99
793	AF121228	Homo sapiens	thyroid hormone receptor-associated protein complex component TRAP95	1037	100
794	G04072	Homo sapiens	Human secreted protein, SEQ ID NO: 8153.	124	62
795	Y69384	Homo sapiens	Amino acid sequence of a 14274 receptor protein.	119	100
796	W40215	Homo sapiens	Human macrophage antigen.	1358	99

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
797	AF258340	Homo sapiens	hepatocellular carcinoma-associated antigen 112	1151	99
798	AF159615	Homo sapiens	FGF receptor activating protein 1	461	98
799	Y59863	Homo sapiens	Human normal uterus tissue derived protein 26.	797	99
800	W70459	Homo sapiens	Human T1-receptor ligand III splice variant 2.	572	92
801	L00073	Homo sapiens	renin	1913	93
802	P92219	Homo sapiens (human)	CRI protein.	11963	97
803	X15357	Homo sapiens	ANP-A receptor preprotein (AA -32 to 1029)	5199	98
804	W64473	Homo sapiens	Human secreted protein from clone EC172_1.	4018	95
805	AJ243874	Homo sapiens	oligophrenin-4	2067	100
806	G01731	Homo sapiens	Human secreted protein, SEQ ID NO: 5812.	284	100
807	Z24680	Homo sapiens	garp	1562	83
808	AF171669	Homo sapiens	glycoprotein-associated amino acid transporter LAT2	1364	90
809	W70321	Homo sapiens	Secreted protein CC198_1.	1154	96
810	W74843	Homo sapiens	Human secreted protein encoded by gene 115 clone HOVBA03.	855	99
811	AF108831	Homo sapiens	K:Cl cotransporter 3	4561	100
812	AF092135	Homo sapiens	PTD014	862	100
813	AF283772	Homo sapiens	similar to Homo sapiens ribosomal protein L10 encoded by GenBank Accession Number L25899	784	100
814	G01563	Homo sapiens	Human secreted protein, SEQ ID NO: 5644.	330	100
815	AF051151	Homo sapiens	Toll/interleukin-1 receptor-like protein 3	3850	99
816	W95630	Homo sapiens	Homo sapiens secreted protein gene clone gn114_1.	358	100
817	G01082	Homo sapiens	Human secreted protein, SEQ ID NO: 5163.	549	100
818	AF151800	Homo sapiens	CGI-41 protein	1106	95
819	L00352	Homo sapiens	low density lipoprotein receptor	3980	100
820	X04434	Homo sapiens	IGF-I receptor	5832	99
821	G03844	Homo sapiens	Human secreted protein, SEQ ID NO: 7925.	572	100
822	AF212220	Homo sapiens	TERA	396	48
823	Y50125	Homo sapiens	Human glycoprophosphatidylinositol-anchored protein GPI-122.	4897	99
824	AF156778	Homo sapiens	ASB-3 protein	2675	98
825	AF096322	Homo sapiens	neuronal voltage-gated calcium channel gamma-2 subunit	1105	100
826	Y07972	Homo sapiens	Human secreted protein fragment #2 encoded from gene 28.	1540	100
827	AB032013	Homo sapiens	potassium channel Kv8.1	2435	95
828	Y13620	Homo sapiens	BCL9	5284	96
829	Y91474	Homo sapiens	Human secreted protein sequence encoded by gene 24 SEQ ID NO:147.	541	98
830	X54232	Homo sapiens	glypican	1625	87
831	X14830	Homo sapiens	acetylcholine receptor beta-subunit preprotein	2540	100
832	Y71262	Homo sapiens	Human chondromodulin-like protein, Zchm1.	1002	100
833	G03873	Homo sapiens	Human secreted protein, SEQ ID NO: 7954.	638	96
834	AC003030	Homo sapiens	R29828_1	1389	93
835	Y38422	Homo sapiens	Human secreted protein.	964	87
836	U41557	Caenorhabditis elegans	glycine-rich	85	36
837	AL121889	Homo sapiens	dJ1076E17.1 (KIAA0823 protein (continues in AL023803))	998	75
838	AJ011415	Homo sapiens	plexin-B1/SEP receptor	1580	60
839	W80398	Homo sapiens	A secreted protein encoded by clone cw1543_3.	1105	67
840	G00862	Homo sapiens	Human secreted protein, SEQ ID NO: 4943.	255	92
841	G02650	Homo sapiens	Human secreted protein, SEQ ID NO: 6731.	644	97
842	AF036717	Homo sapiens	FGFR signalling adaptor SNT-1	2629	99
843	Y73446	Homo sapiens	Human secreted protein clone yc27_1 protein sequence SEQ ID NO:114.	1089	100
844	G02872	Homo sapiens	Human secreted protein, SEQ ID NO: 6953.	357	69
845	AF151810	Homo sapiens	CGI-52 protein	1443	88
846	X83378	Homo sapiens	putative chloride channel	1620	99
847	AC004883	Homo sapiens	similar to general transcription factor 21; similar	655	96

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
			to AF038969 (PID:g2827207)		
848	X99886	Homo sapiens	monocyte chemotactic protein-2	160	76
849	AC005587	Homo sapiens	similar to mouse olfactory receptor 13; similar to P34984 (PID:g464305)	963	98
850	AB038237	Homo sapiens	G protein-coupled receptor C5L2	1767	100
851	AF124490	Homo sapiens	ARF GTPase-activating protein GIT1	3415	98
852	Y86217	Homo sapiens	Human secreted protein HWHGU54, SEQ ID NO:132.	1189	99
853	AF224741	Homo sapiens	chloride channel protein 7	3748	99
854	X17094	Homo sapiens	furin (AA 1-794)	3550	99
855	W78245	Homo sapiens	Fragment of human secreted protein encoded by gene 19.	1245	99
856	R97569	Homo sapiens	Interleukin-2 receptor associated protein p43.	1926	100
857	Y41765	Homo sapiens	Human PRO1083 protein sequence.	3211	99
858	AF057306	Homo sapiens	transmembrane proteolipid	481	84
859	AK025116	Homo sapiens	unnamed protein product	374	69
860	Y41312	Homo sapiens	Human secreted protein encoded by gene 5 clone HLDRM43.	824	100
862	Y25776	Homo sapiens	Human secreted protein encoded from gene 66.	895	99
863	Y74188	Homo sapiens	Human prostate tumor EST fragment derived protein #375.	96	30
864	AF167473	Homo sapiens	heme-binding protein	870	99
865	G02532	Homo sapiens	Human secreted protein, SEQ ID NO: 6613.	211	67
866	X54870	Homo sapiens	Type II integral membrane protein	1201	100
867	G00700	Homo sapiens	Human secreted protein, SEQ ID NO: 4781.	640	99
868	Y07894	Homo sapiens	Human secreted protein fragment encoded from gene 43.	388	88
869	J00123	Homo sapiens	preproenkephalin (1349	95
870	Y91632	Homo sapiens	Human secreted protein sequence encoded by gene 25 SEQ ID NO:305.	1048	98
871	L04311	Homo sapiens	GABA-alpha receptor beta-3 subunit	237	93
872	Y29988	Homo sapiens	Human cytokine family member EF-7 protein.	960	94
873	AF161382	Homo sapiens	HSPC264	1124	99
874	G03412	Homo sapiens	Human secreted protein, SEQ ID NO: 7493.	464	100
875	Y27572	Homo sapiens	Human secreted protein encoded by gene No. 6.	573	96
876	M15530	Homo sapiens	B-cell growth factor	171	56
877	W63681	Homo sapiens	Human secreted protein 1.	1652	99
878	L27867	Rattus norvegicus	neurexophilin	1448	98
879	Y10835	Homo sapiens	Amino acid sequence of a human secreted protein.	321	100
880	W88991	Homo sapiens	Polypeptide fragment encoded by gene 144.	936	100
881	AF118670	Homo sapiens	orphan G protein-coupled receptor	1971	100
882	AF208865	Homo sapiens	EDRF	528	100
883	Y18462	Homo sapiens	cathepsin L	209	72
884	Y94950	Homo sapiens	Human secreted protein clone dh1073_12 protein sequence SEQ ID NO:106.	348	100
885	AF070661	Homo sapiens	HSPC005	404	100
886	Y04315	Homo sapiens	Human secreted protein encoded by gene 23.	385	100
887	X92744	Homo sapiens	hBD-1	375	100
888	Y22496	Homo sapiens	Human secreted protein sequence clone cn621_8.	994	94
889	Y41293	Homo sapiens	Human soluble protein ZTMPO-1.	4595	99
890	G03714	Homo sapiens	Human secreted protein, SEQ ID NO: 7795.	147	63
891	AF208856	Homo sapiens	BM-014	1012	99
892	U29195	Homo sapiens	neuronal pentraxin II	2002	98
893	X68149	Homo sapiens	Burkitt lymphoma receptor 1	1953	100
894	Y94914	Homo sapiens	Human secreted protein clone pw337_6 protein sequence SEQ ID NO:34.	537	100
895	W61630	Homo sapiens	Clone HNFGW06 of EGFR receptor family.	326	63
896	M24110	Homo sapiens	G0S19-2 peptide precursor	481	100
897	Z68747	Homo sapiens	imogen 38	2018	99
898	AF186112	Homo sapiens	neurokinin B-like protein ZNEUROK1	619	100
899	AF225420	Homo sapiens	AD025	734	100

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
900	P60657	Homo sapiens	Sequence of human lipocortin.	1835	100
901	M27288	Homo sapiens	oncostatin M	1297	99
902	W85737	Homo sapiens	Polypeptide with transmembrane domain.	749	100
903	G01349	Homo sapiens	Human secreted protein, SEQ ID NO: 5430..	650	99
904	Y00261	Homo sapiens	Human secreted protein encoded by gene 4.	1133	99
905	AF039688	Homo sapiens	antigen NY-CO-3	771	99
906	AB007836	Homo sapiens	Hic-5	2544	100
907	AB017507	Homo sapiens	Apg12	224	100
908	AK000056	Homo sapiens	unnamed protein product	1537	98
909	Y86299	Homo sapiens	Human secreted protein HFOXB55, SEQ ID NO:214.	427	100
910	AF231023	Homo sapiens	protocadherin Flamingo 1	7393	99
911	Y14134	Homo sapiens	Vascular endothelial cell growth inhibitor beta protein sequence.	1319	100
912	Z90420	Homo sapiens	Human GDF-3 (hGDF-3) polypeptide encoding cDNA.	1950	100
913	Y19757	Homo sapiens	SEQ ID NO 475 from WO9922243.	1361	100
914	G03172	Homo sapiens	Human secreted protein, SEQ ID NO: 7253.	112	48
915	U14971	Homo sapiens	ribosomal protein S9	886	90
916	AF172854	Homo sapiens	cardiotrophin-like cytokine CLC	1204	99
917	AC005525	Homo sapiens	F22162_1	1963	100
918	AF166350	Homo sapiens	ST7 protein	4711	99
919	Y87285	Homo sapiens	Human signal peptide containing protein HSPP-62 SEQ ID NO:62.	430	100
920	Y36131	Homo sapiens	Human secreted protein #3.	465	88
921	AF193766	Homo sapiens	cytokine-like protein C17	724	100
922	Y95013	Homo sapiens	Human secreted protein vc48_1, SEQ ID NO:66.	357	100
923	X75208	Homo sapiens	protein tyrosine kinase-receptor	5256	100
924	Y96202	Homo sapiens	IkappaB kinase (IKK) binding protein, Y2H56.	813	98
925	AB039886	Homo sapiens	down-regulated in gastric cancer	785	78
926	G03368	Homo sapiens	Human secreted protein, SEQ ID NO: 7449.	55	50
927	Y48606	Homo sapiens	Human breast tumour-associated protein 67.	539	100
928	Y36151	Homo sapiens	Human secreted protein #23.	668	100
929	AF110399	Homo sapiens	elongation factor Ts	1666	100
930	AF210317	Homo sapiens	facilitative glucose transporter family member GLUT9	2763	99
931	Y73328	Homo sapiens	HTRM clone 082843 protein sequence.	931	100
932	G01959	Homo sapiens	Human secreted protein, SEQ ID NO: 6040.	274	100
933	U47924	Homo sapiens	B-cell receptor associated protein	1469	100
934	G03827	Homo sapiens	Human secreted protein, SEQ ID NO: 7908.	529	93
935	AB039371	Homo sapiens	mitochondrial ABC transporter 3	196	63
936	X56385	Canis familiaris	rab8	1064	100
937	B08906	Homo sapiens	Human secreted protein sequence encoded by gene 16 SEQ ID NO:63.	117	44
938	M13692	Homo sapiens	alpha-1 acid glycoprotein precursor	1064	99
939	Y53886	Homo sapiens	A suppressor of cytokine signalling protein designated HSCOP-6.	515	42
940	Y16630	Homo sapiens	Human Putative Adrenomedullin Receptor (PAR).	1904	99
941	AC005102	Homo sapiens	small inducible cytokine subfamily A member 24	627	99
942	M12886	Homo sapiens	T-cell receptor beta chain	1289	81
943	AF226046	Homo sapiens	GK003	1049	98
944	Y36078	Homo sapiens	Extended human secreted protein sequence, SEQ ID NO. 463.	667	100
945	M22877	Homo sapiens	cytochrome c	565	100
946	W67869	Homo sapiens	Human secreted protein encoded by gene 63 clone HHGDB72.	551	93
947	W67859	Homo sapiens	Human secreted protein encoded by gene 53 clone HBMCL41.	283	100
948	W85726	Homo sapiens	Novel protein (Clone BG33_7).	789	100
949	AJ242015	Homo sapiens	eMDC II protein	4236	100
950	G04075	Homo sapiens	Human secreted protein, SEQ ID NO: 8156.	567	99

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
951	AF110645	Homo sapiens	candidate tumor suppressor p33 ING1 homolog	1314	100
952	Y36111	Homo sapiens	Extended human secreted protein sequence, SEQ ID NO. 496.	402	70
953	AB012109	Homo sapiens	APC10	990	100
954	AF246221	Homo sapiens	transmembrane protein BRI	1405	100
955	AF054986	Homo sapiens	putative transmembrane GTPase	1883	100
956	W74726	Homo sapiens	Human secreted protein fg949_3.	1879	100
957	Y27096	Homo sapiens	Human viral receptor protein (ACVRP).	1581	100
958	AJ222967	Homo sapiens	cystinosin	1920	100
959	Y53052	Homo sapiens	Human secreted protein clone df202_3 protein sequence SEQ ID NO:110.	587	100
960	G02694	Homo sapiens	Human secreted protein, SEQ ID NO: 6775.	283	100
961	AF151855	Homo sapiens	CGI-97 protein	1214	96
962	U26592	Homo sapiens	diabetes mellitus type I autoantigen	250	65
963	AL050306	Homo sapiens	dJ47SB7.2 (novel protein)	3796	100
964	AF078859	Homo sapiens	PTD004	2089	100
965	AB020315	Homo sapiens	homologue of mouse dkk-1 gene: Acc# AF030433	1466	100
966	X04571	Homo sapiens	precursor polypeptide (AA -22 to 1185)	6580	99
967	AF146019	Homo sapiens	hepatocellular carcinoma antigen gene 520	993	99
968	AF071002	Homo sapiens	minK-related peptide 1; MiRP1	632	100
969	AB021227	Homo sapiens	membrane-type-5 matrix metalloproteinase	3545	100
970	AF180920	Homo sapiens	cyclin L ania-6a	1579	100
971	AF105365	Homo sapiens	K-Cl cotransporter KCC4	5621	99
972	AF083248	Homo sapiens	ribosomal protein L26 homolog	739	100
973	AJ132429	Homo sapiens	hyperpolarization-activated cyclic nucleotide gated cation channel hHCN4	6295	100
974	W61619	Homo sapiens	Clone HTPEF86 of TM4SF superfamily.	454	100
975	AF155100	Homo sapiens	zinc finger protein NY-REN-21 antigen	2261	100
976	AF275948	Homo sapiens	ABCA1	11763	99
977	AB026891	Homo sapiens	cystine/glutamate transporter	2552	100
978	AF117657	Homo sapiens	thyroid hormone receptor-associated protein complex component TRAP80	3348	99
979	AF044201	Rattus norvegicus	neural membrane protein 35; NMP35	1570	92
980	AF119297	Homo sapiens	neuroendocrine-specific protein-like protein 1	1170	99
981	AF155652	Homo sapiens	potassium channel modulatory factor	1983	99
982	W88499	Homo sapiens	Human stomach carcinoma clone HP10412-encoded protein.	1553	99
983	Z56281	Homo sapiens	interferon regulatory factor 3	2012	98
984	AB026125	Homo sapiens	ART-4	2160	100
985	Y14482	Homo sapiens	Fragment of human secreted protein encoded by gene 17.	172	70
986	AB023888	Homo sapiens	b-chemokine receptor CCR4	1895	100
987	W27291	Homo sapiens	Human H1075-1 secreted protein 5' end.	712	100
988	AF153450	Manduca sexta	juvenile hormone esterase binding protein	226	32
989	G03697	Homo sapiens	Human secreted protein, SEQ ID NO: 7778.	194	88
990	AF204159	Homo sapiens	potassium large conductance calcium-activated channel beta 3a subunit	1486	100
991	G02061	Homo sapiens	Human secreted protein, SEQ ID NO: 6142.	558	99
992	AL031266	Caenorhabditis elegans	VM106R.1	327	40
993	Y66749	Homo sapiens	Membrane-bound protein PRO1124.	4730	99
994	G01246	Homo sapiens	Human secreted protein, SEQ ID NO: 5327.	141	77
995	AF133845	Homo sapiens	corin	5811	99
996	AF117756	Homo sapiens	thyroid hormone receptor-associated protein complex component TRAP150	4999	100
997	W62066	Homo sapiens	Human stem cell antigen 2.	284	93
998	Y87173	Homo sapiens	Human secreted protein sequence SEQ ID NO:212.	725	100
999	Y13379	Homo sapiens	Amino acid sequence of protein PRO263.	1654	99
1000	Y95008	Homo sapiens	Human secreted protein vβ1, SEQ ID NO:56.	676	47
1001	AF190167	Homo sapiens	membrane associated protein SLP-2	1747	100

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
1002	G01234	Homo sapiens	Human secreted protein, SEQ ID NO: 5315.	398	96
1003	W73420	Homo sapiens	Human secreted protein encoded by Gene No. 24.	2150	100
1004	X12791	Homo sapiens	19kD SRP-protein (AA 1 - 144)	742	100
1005	M23323	Homo sapiens	membrane protein	642	100
1006	X63745	Homo sapiens	KDEL receptor	326	98
1007	Y35997	Homo sapiens	Extended human secreted protein sequence, SEQ ID NO. 382.	824	99
1008	AB032918	Hylobates moloch	dopamine receptor D4	92	35
1009	Y91680	Homo sapiens	Human secreted protein sequence encoded by gene 81 SEQ ID NO:353.	1372	99
1010	AL136125	Homo sapiens	dJ304B14.1 (novel protein)	825	98
1011	G03733	Homo sapiens	Human secreted protein, SEQ ID NO: 7814.	379	98
1012	Y17531	Homo sapiens	Human secreted protein clone BL205 14 protein.	818	97
1013	G00724	Homo sapiens	Human secreted protein, SEQ ID NO: 4805.	462	100
1014	AF288092	Naegleria gruberi	haem lyase	114	37
1015	AB045292	Homo sapiens	M83 protein	3867	99
1016	X15940	Homo sapiens	ribosomal protein L31 (AA 1-125)	644	100
1017	Y94873	Homo sapiens	Human protein clone HP02632.	1876	100
1018	AL024498	Homo sapiens	dJ417M14.1 (novel protein)	589	100
1019	X83425	Homo sapiens	Lutheran blood group glycoprotein	3054	99
1020	W03516	Homo sapiens	Prostaglandin DP receptor.	1864	100
1021	G03960	Homo sapiens	Human secreted protein, SEQ ID NO: 8041.	398	100
1022	Y91689	Homo sapiens	Human secreted protein sequence encoded by gene 93 SEQ ID NO:362.	768	100
1023	AE000660	Homo sapiens	hADV36S1	573	100
1024	AF132965	Homo sapiens	CGI-31 protein	1550	100
1025	W92380	Homo sapiens	Human TR-interacting protein S103a.	1466	97
1026	R66278	Homo sapiens	Therapeutic polypeptide from glioblastoma cell line.	830	100
1027	X65614	Homo sapiens	S100P calcium-binding protein	476	100
1028	Y41741	Homo sapiens	Human PRO704 protein sequence.	1323	100
1029	AJ001014	Homo sapiens	RAMP1	806	100
1030	W63682	Homo sapiens	Human secreted protein 2.	1354	99
1031	AK023007	Homo sapiens	unnamed protein product	766	100
1032	W97900	Homo sapiens	Human SR-B1 class B scavenger.	2672	99
1033	Y82453	Homo sapiens	Human TGC-440 secretory protein SEQ ID NO:1.	639	99
1034	Y73473	Homo sapiens	Human secreted protein clone yd178_1 protein sequence SEQ ID NO:168.	752	93
1035	Y86468	Homo sapiens	Human gene 48-cncodcd protein fragment, SEQ ID NO:383.	96	90
1036	U09813	Homo sapiens	mitochondrial ATP synthase subunit 9 precursor	698	100
1037	AJ242832	Homo sapiens	calpain	3699	99
1038	X66403	Homo sapiens	acetylcholine receptor epsilon subunit CHRNE	2574	100
1039	AJ242730	Homo sapiens	polyhomeotic 2	1310	100
1040	AF169968	Mus musculus	DNA binding protein DESRT	1453	80
1041	X52563	Bos taurus	permability increasing protein	383	29
1042	G00368	Homo sapiens	Human secreted protein, SEQ ID NO: 4449.	75	50
1043	G02532	Homo sapiens	Human secreted protein, SEQ ID NO: 6613.	60	53
1044	M94582	Homo sapiens	interleukin 8 receptor B	1850	100
1045	AL080239	Homo sapiens	bG256O22.1 (similar to IGFALS (insulin-like growth factor binding protein, acid labile subunit))	1704	50
1046	AF125101	Homo sapiens	HSPO40 protein	580	100
1047	W74809	Homo sapiens	Human secreted protein encoded by gene 81 clone HMWDN32.	176	100
1048	AL022238	Homo sapiens	dJ1042K10.4 (novel protein)	2201	100
1049	W88667	Homo sapiens	Secreted protein encoded by gene 134 clone HAIBP89.	1559	99
1050	AF097518	Homo sapiens	liver-specific transporter	2820	100

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
1051	W78324	Homo sapiens	Fragment of human secreted protein encoded by gene 81.	1318	98
1052	Y21851	Homo sapiens	Human signal peptide-containing protein (SIGP) (clone ID 2328134).	1643	95
1053	AL163815	Arabidopsis thaliana	putative protein	661	62
1054	Y76200	Homo sapiens	Human secreted protein encoded by gene 77.	262	100
1055	AJ276567	Homo sapiens	TC10-like Rho GTPase	1160	100
1056	Y27620	Homo sapiens	Human secreted protein encoded by gene No. 54.	154	96
1057	D14530	Homo sapiens	ribosomal protein	745	100
1058	AFI32000	Homo sapiens	TADA1 protein	1132	100
1059	AL031778	Homo sapiens	dJ34B21.1 (novel BZRP (benzodiazepine receptor (peripheral) (MBR, PBR, PBKS, IBP, Isoquinoline-binding protein)) LIKE protein)	920	100
1060	AF227135	Homo sapiens	candidate taste receptor T2R9	134	33
1061	Y27575	Homo sapiens	Human secreted protein encoded by gene No. 9.	1392	100
1062	ZI1697	Homo sapiens	HB15	1088	100
1063	AF123757	Homo sapiens	putative transmembrane protein	819	100
1064	AF155135	Homo sapiens	novel retinal pigment epithelial cell protein	2932	99
1065	Y41674	Homo sapiens	Human channel-related molecule HCRM-2.	936	99
1066	AJ250042	Homo sapiens	Rab5 GDP/GTP exchange factor homologue	2575	100
1067	Y36087	Homo sapiens	Extended human secreted protein sequence, SEQ ID NO. 472.	770	85
1068	Y94959	Homo sapiens	Human secreted protein clone mc300_1 protein sequence SEQ ID NO:124.	301	100
1069	Y94959	Homo sapiens	Human secreted protein clone mc300_1 protein sequence SEQ ID NO:124.	301	100
1070	W64535	Homo sapiens	Human leukocyte cell clone HP00804 protein.	2014	99
1071	X03145	Homo sapiens	pot. ORF III	148	50
1072	AL031177	Homo sapiens	dJ889M15.3 (novel protein)	821	91
1073	X82200	Homo sapiens	gpStaf50	249	62
1074	G03213	Homo sapiens	Human secreted protein, SEQ ID NO: 7294.	99	47
1075	Y36233	Homo sapiens	Human secreted protein encoded by gene 10.	506	55
1076	G03187	Homo sapiens	Human secreted protein, SEQ ID NO: 7268.	424	98
1077	L25899	Homo sapiens	ribosomal protein L10	332	76
1078	Y91447	Homo sapiens	Human secreted protein sequence encoded by gene 48 SEQ ID NO:168.	898	97
1079	G01862	Homo sapiens	Human secreted protein, SEQ ID NO: 5943.	290	89
1080	AB039723	Homo sapiens	WNT receptor frizzled-3	1376	92
1081	AB020527	Homo sapiens	Na/PO4 cotransporter homolog	269	100
1082	L13802	Homo sapiens	ribosomal protein small subunit	499	80
1083	W75098	Homo sapiens	Human secreted protein encoded by gene 42 clone HSXB125.	143	81
1084	G03564	Homo sapiens	Human secreted protein, SEQ ID NO: 7645.	83	51
1085	G04063	Homo sapiens	Human secreted protein, SEQ ID NO: 8144.	88	43
1086	AF090942	Homo sapiens	PRO0657	124	64
1087	G00517	Homo sapiens	Human secreted protein, SEQ ID NO: 4598.	129	41
1088	G04091	Homo sapiens	Human secreted protein, SEQ ID NO: 8172.	126	36
1089	AF140631	Homo sapiens	G-protein coupled receptor 14	364	82
1090	G04063	Homo sapiens	Human secreted protein, SEQ ID NO: 8144.	114	32
1091	S72304	Mus sp.	LMW G-protein	146	83
1092	W88708	Homo sapiens	Secreted protein encoded by gene 175 clone HEMAM41.	405	100
1093	W85612	Homo sapiens	Secreted protein clone fh123_5.	4358	97
1094	Y53012	Homo sapiens	Human secreted protein clone pm514_4 protein sequence SEQ ID NO:30.	1013	99
1095	Y92345	Homo sapiens	Human cancer associated antigen precursor from clone NY-REN-62.	409	100
1096	AF090942	Homo sapiens	PR00657	147	60
1097	L24521	Homo sapiens	transformation-related protein	166	58
1098	X56932	Homo sapiens	23 kD highly basic protein	490	70
1099	G04063	Homo sapiens	Human secreted protein, SEQ ID NO: 8144.	83	35
1100	Y02693	Homo sapiens	Human secreted protein encoded by gene 44 clone HTDAD22.	149	59

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
1101	AF119851	Homo sapiens	PRO1722	183	72
1102	G04086	Homo sapiens	Human secreted protein, SEQ ID NO: 8167.	207	62
1103	G04063	Homo sapiens	Human secreted protein, SEQ ID NO: 8144.	91	52
1104	X74856	Mus musculus	ribosomal protein L28	128	69
1105	G03789	Homo sapiens	Human secreted protein, SEQ ID NO: 7870.	130	62
1106	G03133	Homo sapiens	Human secreted protein, SEQ ID NO: 7214.	122	48
1107	G03040	Homo sapiens	Human secreted protein, SEQ ID NO: 7121.	69	43
1108	AF039942	Homo sapiens	HCF-binding transcription factor Zhangfei	744	99
1109	AF201951	Homo sapiens	high affinity immunoglobulin epsilon receptor beta subunit	738	94
1110	AF111108	Mus musculus	transient receptor potential 2	223	79
1111	AF119900	Homo sapiens	PRO2822	144	59
1112	Y16589	Homo sapiens	A protein that interacts with presenilins.	265	39
1113	G02872	Homo sapiens	Human secreted protein, SEQ ID NO: 6953.	178	67
1114	Y02999	Homo sapiens	Fragment of human secreted protein encoded by gene 121.	164	63
1115	Y30811	Homo sapiens	Human secreted protein encoded from gene 1.	1217	99
1116	X51394	Xenopus laevis	APEG precursor protein	130	40
1117	M27826	Homo sapiens	neutral protease large subunit	442	65
1118	G03371	Homo sapiens	Human secreted protein, SEQ ID NO: 7452.	72	60
1119	G03602	Homo sapiens	Human secreted protein, SEQ ID NO: 7683.	491	97
1120	Y35906	Homo sapiens	Extended human secreted protein sequence, SEQ ID NO. 155.	244	97
1121	G03714	Homo sapiens	Human secreted protein, SEQ ID NO: 7795.	122	65
1122	Y00337	Homo sapiens	Human secreted protein encoded by gene 81.	110	90
1123	AF084830	Homo sapiens	two pore domain K+ channel; TASK-2	703	94
1124	AF212862	Homo sapiens	membrane interacting protein of RGS16	442	88
1125	W64469	Homo sapiens	Human secreted protein from clone CW795_2.	191	53
1126	G01361	Homo sapiens	Human secreted protein, SEQ ID NO: 5442.	154	100
1127	G01361	Homo sapiens	Human secreted protein, SEQ ID NO: 5442.	165	100
1128	Y84320	Homo sapiens	Human cardiovascular system associated protein kinase-1.	815	99
1129	G02105	Homo sapiens	Human secreted protein, SEQ ID NO: 6186.	88	73
1130	Y32923	Homo sapiens	Transmembrane domain containing protein clone HP01512.	700	100
1131	Y29817	Homo sapiens	Human synapse related glycoprotein 2.	260	91
1132	Y91644	Homo sapiens	Human secreted protein sequence encoded by gene 43 SEQ ID NO:317.	525	96
1133	Y91449	Homo sapiens	Human secreted protein sequence encoded by gene 49. SEQ ID NO:170.	542	100
1134	AB017908	Homo sapiens	4F2 light chain	2399	93
1135	X51760	Homo sapiens	zinc finger protein (583 AA)	312	55
1136	Y99426	Homo sapiens	Human PRO1604 (UNQ785) amino acid sequence SEQ ID NO:308.	917	72
1137	G03790	Homo sapiens	Human secreted protein, SEQ ID NO: 7871.	102	50
1138	AF155106	Homo sapiens	NY-REN-36 antigen	768	91
1139	AL031055	Homo sapiens	dJ28H20.1 (novel protein similar to membrane transport proteins)	117	50
1140	AF011359	Bos taurus	regulator of G-protein signaling 7	138	96
1141	Y70018	Homo sapiens	Human Protease and associated protein-12 (PPRG-12).	623	100
1142	G04091	Homo sapiens	Human secreted protein, SEQ ID NO: 8172.	113	38
1143	AB030235	Canis familiaris	D4 dopamine receptor	89	48
1144	Y94922	Homo sapiens	Human secreted protein clone pv6_1 protein sequence SEQ ID NO:50.	539	88
1145	X99962	Homo sapiens	rab-related GTP-binding protein	398	96
1146	G03807	Homo sapiens	Human secreted protein, SEQ ID NO: 7888.	168	79
1147	G03712	Homo sapiens	Human secreted protein, SEQ ID NO: 7793.	512	85
1148	Y28279	Homo sapiens	Human G-protein coupled receptor GRIR-1.	705	76
1149	U13642	Caenorhabditis	exon 5 similar to transmembrane domain of S.	247	36

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
		<i>C. elegans</i>	cerevisiae zinc resistance protein		
1150	G03438	Homo sapiens	Human secreted protein, SEQ ID NO: 7519.	117	62
1151	G01003	Homo sapiens	Human secreted protein, SEQ ID NO: 5084.	181	80
1152	G03798	Homo sapiens	Human secreted protein, SEQ ID NO: 7879.	198	63
1153	X88799	Oryza sativa	DNA binding protein	95	41
1154	D85245	Homo sapiens	TR3beta	155	96
1155	R74272	Homo sapiens	Tumour suppressor protein, p53.	341	87
1156	Y86265	Homo sapiens	Human secreted protein HUSXE77, SEQ ID NO:180.	99	41
1157	G02577	Homo sapiens	Human secreted protein, SEQ ID NO: 6658.	263	98
1158	AF104334	Homo sapiens	putative organic anion transporter	185	42
1159	G01393	Homo sapiens	Human secreted protein, SEQ ID NO: 5474.	173	57
1160	W75771	Homo sapiens	Human GTP binding protein APD08.	224	81
1161	AF216833	Homo sapiens	M-ABC2 protein	410	83
1162	W67816	Homo sapiens	Human secreted protein encoded by gene 10 clone HCEMU42.	1156	100
1163	AF119851	Homo sapiens	PRO1722	230	70
1164	Y87252	Homo sapiens	Human signal peptide containing protein HSPP-29 SEQ ID NO:29.	113	31
1165	W64537	Homo sapiens	Human liver cell clone HP01148 protein.	338	82
1166	AF269286	Homo sapiens	HC6	134	64
1167	Y14482	Homo sapiens	Fragment of human secreted protein encoded by gene 17.	149	51
1168	D90789	Escherichia coli	Dipeptide transport system permease protein DppC.	411	90
1169	R63783	Homo sapiens	TG0847 protein.	344	90
1170	Y45274	Homo sapiens	Human secreted protein encoded from gene 18.	478	98
1171	D64154	Homo sapiens	Mr 110,000 antigen	347	96
1172	AB026256	Homo sapiens	organic anion transporter OATP-B	311	67
1173	G00357	Homo sapiens	Human secreted protein, SEQ ID NO: 4438.	60	52
1174	D87717	Homo sapiens	similar to human GTPase-activating protein(A49869)	178	59
1175	M64716	Homo sapiens	ribosomal protein	391	78
1176	R08330	Homo sapiens	Human IL-7 receptor clone H6.	285	67
1177	L06505	Homo sapiens	ribosomal protein L12	242	72
1178	AJ251885	Homo sapiens	organic cation transporter (OCT2)	276	88
1179	G03258	Homo sapiens	Human secreted protein, SEQ ID NO: 7339.	155	71
1180	G01207	Homo sapiens	Human secreted protein, SEQ ID NO: 5288.	282	90
1181	AF181856	Rattus norvegicus	tRNA selenocysteine associated protein	249	62
1182	AF161524	Homo sapiens	HSPC176	138	90
1183	G03789	Homo sapiens	Human secreted protein, SEQ ID NO: 7870.	282	66
1184	Y02671	Homo sapiens	Human secreted protein encoded by gene 22 clone HMSJW18.	107	71
1185	G03797	Homo sapiens	Human secreted protein, SEQ ID NO: 7878.	88	69
1186	G03564	Homo sapiens	Human secreted protein, SEQ ID NO: 7645.	118	46
1187	AB032905	Hylobates concolor	dopamine receptor D4	96	37
1188	G00956	Homo sapiens	Human secreted protein, SEQ ID NO: 5037.	292	78
1189	G03258	Homo sapiens	Human secreted protein, SEQ ID NO: 7339.	178	79
1190	G03361	Homo sapiens	Human secreted protein, SEQ ID NO: 7442.	324	76
1191	AF117755	Homo sapiens	thyroid hormone receptor-associated protein complex component TRAP230	187	70
1192	Y70455	Homo sapiens	Human membrane channel protein-5 (MECHP-5).	202	67
1193	G03052	Homo sapiens	Human secreted protein, SEQ ID NO: 7133.	99	42
1194	G02607	Homo sapiens	Human secreted protein, SEQ ID NO: 6688.	192	76
1195	W29661	Homo sapiens	Homo sapiens CI542_2 clone secreted protein.	2001	98
1196	Y14104	Homo sapiens	Human GABAB receptor 1d protein sequence.	239	69
1197	X61972	Homo sapiens	macropain subunit iota	149	90
1198	G00534	Homo sapiens	Human secreted protein, SEQ ID NO: 4615.	145	51
1199	Y86260	Homo sapiens	Human secreted protein HELHN47, SEQ ID NO:175.	1089	89
1200	G02607	Homo sapiens	Human secreted protein, SEQ ID NO: 6688.	154	57

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
1201	G00838	Homo sapiens	Human secreted protein, SEQ ID NO: 4919.	404	50
1202	M27826	Homo sapiens	neutral protease large subunit	202	49
1203	Y73424	Homo sapiens	Human secreted protein clone yi4_1 protein sequence SEQ ID NO:70.	265	61
1204	AF264014	Homo sapiens	scavenger receptor cysteine-rich type I protein M160 precursor	625	98
1205	Y36203	Homo sapiens	Human secreted protein #75.	219	59
1206	U78111	Gallus gallus	AQ	205	57
1207	AF095448	Homo sapiens	putative G protein-coupled receptor	416	76
1208	AF116715	Homo sapiens	PRO2829	127	75
1209	AF099137	Homo sapiens	MaxiK channel beta 2 subunit	475	95
1210	AF205718	Homo sapiens	hepatocellular carcinoma-related putative tumor suppressor	423	79
1211	Y27868	Homo sapiens	Human secreted protein encoded by gene No. 107.	224	70
1212	G00719	Homo sapiens	Human secreted protein, SEQ ID NO: 4800.	117	44
1213	G01009	Homo sapiens	Human secreted protein, SEQ ID NO: 5090.	351	73
1214	AF090942	Homo sapiens	PRO0657	124	70
1215	Y14427	Homo sapiens	Human secreted protein encoded by gene 17 clone HSIEA14.	99	77
1216	G03905	Homo sapiens	Human secreted protein, SEQ ID NO: 7986.	173	57
1217	Y57897	Homo sapiens	Human transmembrane protein HTMPN-21.	1173	100
1218	J00194	Homo sapiens	hla-dr antigen alpha chain	454	78
1219	Y59709	Homo sapiens	Secreted protein 76-28-3-A12-FL1.	470	92
1220	W81576	Homo sapiens	EBV-induced G-protein coupled receptor (EBI-2) polypeptide.	725	100
1221	W96745	Homo sapiens	High affinity immunoglobulin E receptor-like protein (IGERB).	650	98
1222	Y35911	Homo sapiens	Extended human secreted protein sequence, SEQ ID NO. 160.	135	31
1223	Y00278	Homo sapiens	Human secreted protein encoded by gene 21.	260	95
1224	AF161422	Homo sapiens	HSPC304	568	90
1225	U14970	Homo sapiens	ribosomal protein S5	202	95
1226	G01733	Homo sapiens	Human secreted protein, SEQ ID NO: 5814.	610	100
1227	AF099973	Mus musculus	schlafen2	333	56
1228	G01218	Homo sapiens	Human secreted protein, SEQ ID NO: 5299.	155	81
1229	AF217188	Mus musculus	YIP1B	801	63
1230	AF176813	Homo sapiens	soluble adenylyl cyclase	275	100
1231	X98333	Homo sapiens	organic cation transporter	1704	100
1232	W74955	Homo sapiens	Human secreted protein encoded by gene 77 clone HOEAS24.	212	53
1233	Y94940	Homo sapiens	Human secreted protein clone yi62_1 protein sequence SEQ ID NO:86.	526	100
1234	U76618	Mus musculus	N-RAP	482	82
1235	AF044924	Homo sapiens	hook2 protein	380	97
1236	G01459	Homo sapiens	Human secreted protein, SEQ ID NO: 5540.	417	100
1237	AF000018	Homo sapiens	adapter protein	164	84
1238	W88633	Homo sapiens	Secreted protein encoded by gene 100 clone HE8EU04.	250	90
1239	W29660	Homo sapiens	Homo sapiens CH27_1 clone secreted protein.	697	98
1240	AF004161	Oryctolagus cuniculus	peroxisomal Ca-dependent solute carrier	154	52
1241	Y92710	Homo sapiens	Human membrane-associated protein Zsig24.	709	97
1242	Y95002	Homo sapiens	Human secreted protein vc34_1, SEQ ID NO:44.	908	88
1243	Y44905	Homo sapiens	Human potassium channel molecule ERG-LP2 partial protein.	325	100
1244	AF284422	Homo sapiens	cation-chloride cotransporter-interacting protein	511	97
1245	Y53629	Homo sapiens	A bone marrow secreted protein designated BMS115.	1888	93
1246	AB039371	Homo sapiens	mitochondrial ABC transporter 3	389	97
1247	Y35911	Homo sapiens	Extended human secreted protein sequence, SEQ	168	39

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
			ID NO. 160.		
1248	AF072509	Rattus norvegicus	glutamate receptor interacting protein 2	559	90
1249	AF247042	Homo sapiens	tandem pore domain potassium channel TRAAK	661	98
1250	B08974	Homo sapiens	Human secreted protein sequence encoded by gene 27 SEQ ID NO:131.	1087	97
1251	L15313	Caenorhabditis elegans	putative	858	59
1252	Y29338	Homo sapiens	Human secreted protein clone it217_2 alternate reading frame protein.	278	75
1253	W01730	Homo sapiens	Human G-protein receptor HPRAJ70.	211	92
1254	G03074	Homo sapiens	Human secreted protein, SEQ ID NO: 7155.	294	83
1255	G01818	Homo sapiens	Human secreted protein, SEQ ID NO: 5899.	253	91
1256	AF286368	Homo sapiens	eppin-1	222	54
1257	AF220264	Homo sapiens	MOST-1	87	93
1258	G02227	Homo sapiens	Human secreted protein, SEQ ID NO: 6308.	281	78
1259	Y07970	Homo sapiens	Human secreted protein fragment #2 encoded from gene 26.	81	94
1260	R95332	Homo sapiens	Tumor necrosis factor receptor 1 death domain ligand (clone 3TW).	986	100
1261	AF140674	Homo sapiens	zinc metalloprotease ADAMTS6	172	36
1262	U28369	Homo sapiens	semaphorin V	237	67
1263	Y07049	Homo sapiens	Renal cancer associated antigen precursor sequence.	288	71
1264	Y36153	Homo sapiens	Human secreted protein #25.	187	80
1265	Y78114	Homo sapiens	Human cytokine signal regulator CKSR-2 SEQ ID NO:2.	723	93
1266	Y13397	Homo sapiens	Amino acid sequence of protein PRO334.	191	100
1267	AF030558	Rattus norvegicus	phosphatidylinositol 5-phosphate 4-kinase gamma	859	95
1268	U73167	Homo sapiens	candidate tumor suppressor gene LUCA-I	159	96
1269	AF190664	Mus musculus	LMBR2	552	76
1270	AL050332	Homo sapiens	dJ570F3.1 (homolog of the rat synaptic ras GTPase-activating protein p135 SynGAP)	820	98
1271	G02126	Homo sapiens	Human secreted protein, SEQ ID NO: 6207.	131	95
1272	AF125533	Homo sapiens	NADH-cytochrome b5 reductase isoform	253	92
1273	AL035661	Homo sapiens	dJ568C11.3 (novel AMP-binding enzyme similar to acetyl-coenzyme A synthethase (acetate-coA ligase))	1280	100
1274	AF064748	Mus musculus	S3-12	3523	61
1275	D17554	Homo sapiens	TAXREB107	377	78
1276	Y30715	Homo sapiens	Amino acid sequence of a human secreted protein.	643	90
1277	AF146760	Homo sapiens	septin 2-like cell division control protein	707	100
1278	Y05069	Homo sapiens	Human PIGR-2 protein sequence.	281	46
1279	X59668	Oryctolagus cuniculus	aorta CNG channel (rACNG)	267	85
1280	G01051	Homo sapiens	Human secreted protein, SEQ ID NO: 5132.	489	98
1281	G03411	Homo sapiens	Human secreted protein, SEQ ID NO: 7492.	120	43
1282	AF055084	Homo sapiens	very large G-protein coupled receptor-1	1635	100
1283	AF117814	Mus musculus	odd-skipped related 1 protein	357	98
1284	U87318	Xenopus laevis	NaDC-2	535	60
1285	AF061346	Mus musculus	Edp1 protein	452	68
1286	AB030182	Mus musculus	contains transmembrane (TM) region	582	68
1287	A13595	synthetic construct	immunosuppressive protein PP15	185	97
1288	AF254411	Homo sapiens	ser/arg-rich pre-mRNA splicing factor SR-A1	837	100
1289	AF084205	Rattus norvegicus	serine/threonine protein kinase TAO1	319	98

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
1290	AF038563	Homo sapiens	membrane associated guanylate kinase 2	523	100
1291	AF034837	Homo sapiens	double-stranded RNA specific adenosine deaminase	468	100
1292	M15888	Bos taurus	endozepine-related protein precursor	937	87
1293	AB010692	Arabidopsis thaliana	ATP-dependent RNA helicase-like protein	636	45
1294	AF209923	Homo sapiens	orphan G-protein coupled receptor	1570	100
1295	W67828	Homo sapiens	Human secreted protein encoded by gene 22 clone HFEAF41.	504	98
1296	AC004832	Homo sapiens	similar to 45 kDa secretory protein ; similar to CAA10644.1 (PID:g4164418)	648	65
1297	X80035	Oryctolagus cuniculus	cysteine rich hair keratin associated protein	575	70
1298	G02645	Homo sapiens	Human secreted protein, SEQ ID NO: 6726.	223	97
1299	Y59440	Homo sapiens	Human delta3 fragment #4.	122	32
1300	W70504	Homo sapiens	Leukocyte seven times membrane-penetrating type receptor protein JEG18.	459	81
1301	Y67315	Homo sapiens	Human secreted protein BL89_13 amino acid sequence.	3916	99
1302	M77693	Homo sapiens	spermidine/spermine N1-acetyltransferase	174	96
1303	G01331	Homo sapiens	Human secreted protein, SEQ ID NO: 5412.	254	69
1304	G01491	Homo sapiens	Human secreted protein, SEQ ID NO: 5572.	747	99
1305	AF148509	Homo sapiens	alpha 1,2-mannosidase	602	98
1306	G01658	Homo sapiens	Human secreted protein, SEQ ID NO: 5739.	333	98
1307	Y90899	Homo sapiens	D1-like dopamine receptor activity modifying protein SEQ ID NO:1.	332	98
1308	AF033120	Homo sapiens	p53 regulated PA26-T2 nuclear protein	348	52
1309	Y73388	Homo sapiens	HTRM clone 3376404 protein sequence.	147	66
1310	AF063243	Bos taurus	ribosomal protein L30	296	90
1311	AF224494	Mus musculus	arsenate inducible RNA associated protein	688	70
1312	Y73342	Homo sapiens	HTRM clone 2709055 protein sequence.	1154	100
1313	Y99419	Homo sapiens	Human PRO1780 (UNQ842) amino acid sequence SEQ ID NO:282.	1145	78
1314	AF116667	Homo sapiens	PRO1777	433	97
1315	W75100	Homo sapiens	Human secreted protein encoded by gene 44 clone HE8CJ26.	807	97
1316	AJ272078	Homo sapiens	APOBEC-1 stimulating protein	789	100
1317	AB041533	Homo sapiens	sperm antigen	2607	98
1318	U19617	Mus musculus	Elf-1	806	92
1319	U82598	Escherichia coli	ferric enterobactin transport protein	768	100
1320	D90892	Escherichia coli	SORBITOL-6-PHOSPHATE 2-DEHYDROGENASE (EC 1.1.1.140) (GLUCITOL-6-PHOSPHATE DEHYDROGENASE) (KETOSEPHOSPHATE REDUCTASE).	709	100
1321	W67847	Homo sapiens	Human secreted protein encoded by gene 41 clone HPBCJ74.	601	92
1322	AJ276101	Homo sapiens	GPRC5B protein	466	93
1323	AJ276101	Homo sapiens	GPRC5B protein	504	97
1324	Y58628	Homo sapiens	Protein regulating gene expression PRGE-21.	1584	100
1325	U91561	Rattus norvegicus	pyridoxine 5'-phosphate oxidase	1277	89
1326	AF125533	Homo sapiens	NADH-cytochrome b5 reductase isoform	1606	100
1327	Y32206	Homo sapiens	Human receptor molecule (REC) encoded by Incyte clone 2825826.	1531	90
1328	AF151048	Homo sapiens	HSPC214	657	85
1329	Y10530	Homo sapiens	olfactory receptor	1645	100
1330	AF180681	Homo sapiens	guanine nucleotide exchange factor	4314	99
1331	AF111856	Homo sapiens	sodium dependent phosphate transporter isoform NaPi-3b	3591	99
1332	Y13583	Homo sapiens	G-protein coupled receptor	2171	100
1333	AF078866	Homo sapiens	SURF-4	1395	100

SEQ ID NO:	Accession No.	Species	Description	Smith-Waterman Score	% Identity
1334	Y25755	Homo sapiens	Human secreted protein encoded from gene 45.	1380	96
1335	AF152325	Homo sapiens	protocadherin gamma A5	4742	99
1336	X74070	Homo sapiens	transcription factor BTF3	639	81
1337	AF095927	Rattus norvegicus	protein phosphatase 2C	1931	95
1338	G03877	Homo sapiens	Human secreted protein, SEQ ID NO: 7958.	621	100
1339	AL008582	Homo sapiens	bK223H9.2 (ortholog of <i>A. thaliana</i> F23F1.8)	626	100
1340	X61615	Homo sapiens	leukemia inhibitory factor receptor	5820	99
1341	Y01519	Homo sapiens	A carcinogenesis-inhibiting protein.	7528	97
1342	AF207600	Homo sapiens	ethanolamine kinase	2372	100
1343	U54807	Rattus norvegicus	GTP-binding protein	1167	97
1344	AC020579	Arabidopsis thaliana	putative phosphoribosylformylglycinamide synthase; 25509-29950	3283	51
1345	Y28576	Homo sapiens	Secreted peptide clone pE503 1.	944	100
1346	W74787	Homo sapiens	Human secreted protein encoded by gene 58 clone HHFHN61.	1171	100
1347	M55542	Homo sapiens	guanylate binding protein isoform I	2636	87
1348	AF183428	Homo sapiens	28.4 kDa protein	1329	100
1349	U70669	Homo sapiens	Fas-ligand associated factor 3	167	24
1350	AF295530	Homo sapiens	cardiac voltage gated potassium channel modulatory subunit	562	99

TABLE 3

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion
1	1351	A	2	337	1	TPSLIHQAPTPCPAGLWG/PPNGHYHGS*PGCHWPQAPHRA***GLLPRWLGHGLPGGPAAPWAASQWVDGVAGRLPGPAWSWHASGAAPAQPGPL*LLVPGSSGLPDPRDP
2	1352	A	27	100	366	IRNSSIRPMKERETKLSAKHMITCSASYDIRGLQIETTYHHTPIRMAKIQKT/GHHQC**ECGATGTIHGWWGCKVVEPLGKTVWQIPK
3	1353	A	40	3	314	HASAHASVVLKDNELEQQLGATGAYRARA LELEAEVAEMRQMLQLEHPFVNNGADKLRPDSMYVHLNEL*QSLVENMLLTVVDTTHRTPI*RSCNYTLALILFL
4	1354	A	74	2	292	TASALFSCPDLGGSLAGFAGRRASFHLECLKRQKDRGGDISQKTVLPLHLVHHQVAHTFGQATVTCQQARQSPG*RTNPE/ALQWVLPVSDGWHVLPLP
5	1355	A	78	114	850	ENCRVASNLPGVFFSEDTAQSGSYMRISAHPPNAGGEVSNGPKRKLTLMNFSLPSSGLNAGAFYALSTLLNRMVIWHYPGEEVNAGRIGLTIVIAGMLGAVISGIWLDRSKTYKETLVVYIMDTGGAWWCYTFLGTGDTCG*CFITAG\TMGFFMTGYPLGFEFAVEL\SYPESEGISSGLLNISAQVFGIIFTISQQQCIDNYGTKPGNIFLCVFLTLGAALTAFIKADLRQKANKETLEN
6	1356	A	81	97	376	EWFSYMLGSNMSVYHSP*SLEPLCKVLSES*A YLRVPFIRILLNAR*IRKAYKRMMSLEIKLL/RE*CLFQEMGLSLQWLYSARGDFFRATSLR
7	1357	A	93	2	872	TLSSAACLGDAWKELTIVAGAVSNQLLVWYPATALADNKPVAPDRRISGHVGIIFSMSYLESKGLLATASEDRSVRIWKGGDLRVPGGRVQNIGHCFGHSARVWQVKILLENYLISAGEDCVCLV

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \possible nucleotide insertion)
						WSHEGEILQAFRGHQGRGIRAJAAHERQAWVITGGDDSGIRLWHLVRGRYRLG/DLGSSLQVP**ARYTQGCGSGWLLATAGSD*YRGPVSL*RRGQVLGAAARG*TTFPVLLPAGGSSWSRGLRIVCYGQWGRSCQGCPHQHSNCCCGPDPVSWEAQALEGPAWL
8	1358	A	106	3	350	FSSLLSGRISTLRDETGAJLDGDPAACAPIKFLLTEELHRLRGVSIYVLRHEAQIYGITPLVCALI/CRRL*SDSCMRAALNDRGLYQVLIIDGLVQCLGFVDSDSRKMVSLT
9	1359	A	115	49	186	QAWAIFKGKYKEGDTGGPAVWKTRLRCALNKSSEFNEGPERERMDV
10	1360	A	123	2	1249	KGCRTQEKKVDRTEVIRTCINPVYSKLFVDFYFEEVQRRLRFEVHDISNNHNGLKEADFLGGMECTLGQIVSQRKLSKSLKHGNTAGKSSITVIAEELSGNDDYVELAFNARKLDDKDFFSKSDPFLEIFRMNDDATQQLVHRTEVVVMNNLSPAWKSFKVSVNSLCSGDPDRRLKCIVWDWDNSNGKHDFIGEFTSTFKEMRGAMEGKQVQWECINPKYAKAKKNYKNSGTVILNLCKIHKMHSFLDYIMGGCQIQFTVAIDFTA NGDPRNCSCLHYIHPYQPNEYLKALVAVGEICQDYDSDKMFPAFGFGARIPPEYTD SHDAINFNEDNP ECAGIQGVVEAYQSCFPKAPTFGTPTNICPHSSRKVAKFRRSEGN*HQGRAFAIIIFILVDPGQVGVY SQDMGPDNPGGHFV
11	1361	A	147	614	9	ACARKQLLGRTVFIWFVGQLLGGELKGYSKTNTTSSR PASSRGVTLSSSSSSSSSLTKDALPSSLKSDSTTITSGLVFPFRSLCVNPAKSSVSEVSSI KILLSSSVKYLE*KRTSCCFPDSSESKLSQLSS DERVSMGTTSSRKPTNSSSSLGALKMSATS*GSGSESPTFFLTGLQSPPSTRPREPLTARNSTTLTRDC
12	1362	A	177	12	416	LIPSEPALDSLVDPRVRSRKQPFVIVPYD TAI DT KIHFSLLDG NVGE PDMSAGFCPNHKAAMVLF LDRVYVY GIEVQDFLLHLEGGFLPDLRAAASLDT/AEIGAMDPLLS*LFTLCLMMFFFYPPINLLTMNVY
13	1363	A	249	535	105	WT FHRHLS PAPLIVCDQGTCVVSYYPQNIVQMPDTQMEQGLN/HLF LDGNA*PHS VECY CPS TFEIAIKITSFVLYFHRYRAPEVLLRSSVYSSPI DVAVGSI MAELYMLRPLFPGTSEVDEIFKICQVLGTPKKVSTLVPKLL
14	1364	A	254	572	201	YLLTXIGNLMM LLVINADSL RTXM*PFLGHFFF LDICYSSVTAQDAEFPVS*KPILVWG YIT*SF FFFIFSWGTNGCLLSAITYACYAAICHPLLS TMVMNRPLCTATVNATNKM GFLNSQVN
15	1365	A	257	425	68	THAKFLNKKFNPKLVLPKLVYVKA IPTKM AIEFLLECDQNI TKLICENT*KNI AKNT*KRRV TFTPIET*HPVKQMJKWQ*LTAWL RNRGYKKI QT PNPSETAPS VCRNL VFDKCG
16	1366	A	263	104	481	FCIFRTTEEDRGGDDCVSVWTKQRNNCSVSKDVF SKP VNIFWALEESV LGVKARQPKPFFA AGNTFEMTCKVSSSKNIKSPRYSVLIMA EKPV GDLSSPNET KYIISLDQDSVVKLENWTDASRV
17	1367	A	298	68	208	RKR TNPNIKLDKKF EHFKNEDI*ITSKHTKMWVSS SLAMKEMLT KTTM
18	1368	A	300	904	1	LVV GITGTRHHARV IFI FLVETGFPHVGQAGL ELLTSGDPP ALASQSA GITGM SHCARPK GHFG

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						IHLK*MFYITMSQKMP*PTINLILLLIIPGNLNIF KPNMGWLGPKTAFFV*KDEVLSGIPFAKGRCR WK*DY*C/LQEVTDPIMEKGKKKKRTASFFK GQPHQSTNALLRRCVR*RYHLSVTETAGLP* KNTGHIPGQPFLFKLVFKC*NVIC**QYKW*Q NIGVKNKSFCPH*S**SSPSL*FIGHHSRNF/CSFK TEPSVSVQAGGWQRNLSSLQAPPGLMPLSR ISLMSSWDYRRPPQ
19	1369	A	302	3	445	NSPSRWAKIQMFEHTFCG*GCG/ER/NVHIHCS WICRLRPLLWRAVREYLSKLKNAELSFDPGV SLLRIYAIADMPSI*DEKEALLFAFLAFHE*HC KSRJWAVIQ/CIHLWDWLRKL*CFHRMKFYA AV*NKPRHLLSHIWKDQVNILLK
20	1370	A	304	1	1339	FFFCGKEVPLFEQNKHPGPRAATTSPGA/HARA LLSAGEFTAGVGLSP*AIHSFVWLCTFIQHGA GGPCHQPGGSPGPWMHTTQAGHLWEGAYPG GSSTWHQVPGQLGGSGWGRERSLLGSFIK CSP CPHPPGFLRWMSPNQKPPTEENPGVMGRVWR LMPGESPLIWEAEKGKEDHLSPEGQGHSE/PVA PLHSSLGNTVKP*PKNQKPKQNRSRHGQ\GF MAGQQQSRPAAR*PPCPALTPASHAGTWPP RICRTVPGGPCSPSGFRSCR*GFSATRSWP DAEPPTSPDTAPRCCQTSDTSSQGPQ*S*WRR CRALPGRLCSAPAAGLRRARPRLSESRRGNSP PASPAAASARCPSWGPSCPAPPPSRPAAGTEP AAPSRCTAWLGEREPGPRPPGRPRSGRGP VSFAPEVLSLPAVRQTKSWRWRNEEITRPW ALVRSRGG
21	1371	A	326	799	1587	GSQVLPPPPSQDSATLPQDA*GPRAAPGQPVC E*GLQGAQVRRRLGEVLCQPQP*GAL*EQCLP HLSFSPRQGAAPDTEPSAWGPAPTGTGPGPL LRHVRLFSAAGPRAATPCPPALLHGPWAAPP ARPMFRGHPPVPRPLGPWGKVAAGPRALCLA GPVAVQGECATKPSG*GL*PAHLRGPPGPEVL QWHWQLSAGRDVPVAEDPPL*EGPLGPGGPA AAQAEPGADPEPEDKDQAAESRPAGAMSLSA QSGGPVGQGLR
22	1372	A	327	146	652	PHLENPHPEHSFGAFLT*STLSWSILSPREPSP GAPCPGPHPHLENPHLEHLLTWRTVTWSTLL PGAPCPYPEPHPHLEHPLTWSTPHLEHPSPGEPL SCRTPTRSILHRDHPLP*CLSTEESPI*GWGSLP APPSTPLVLDVAPPGPQPASSCPGRDSCYSVP GTVVSP
23	1373	A	348	397	2	CIVSSCQGTRKPCHELEDANKINKQSPTLEKIES LQESL*VKQ*LIVAEKYVQILHPRKKYFQRPL NNEKRKMKKRKEEKKKCRERMQRRSKWRR EEKKE*RREEVEERKKEKEDRKERKETSPRG SRLLLKD
24	1374	A	362	170	352	GRALDTAAGSPVQTAHGLPSDALAPLDDSM PWEGRITAQWSLHRKRHLARTLLVSRVRGPO
25	1375	A	384	373	128	YLITTILETGYLWKNRHSDQ*KRTENPERDQH KYPKVDFCKSNMSMKNRLCNKWHWTNWIFTD KKINLNKPHTKLTPNIKKN
26	1376	A	397	383	165	EVKNTNPFIIFSGTNLTWIRS!*RKSDEJNQRTK *MEKYSISLDRLRNLTVKMSFLPNLIYKFNTISI KIPANF
27	1377	A	406	103	380	KSKATGYMVNI*KLIV\FLYANDEOQLEIEMNK IVP\FNNGSKNKAFTNLTKYQNIQNRHAENYKJ LVNKJEDLNKWRNVLLSWIGRRNIINTMT

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, \=possible nucleotide insertion)
28	1378	A	408	14	427	TICTNKFNNLDEIK\FLERHKLSKLTQEEVENLITLKTSRETELVINK*VIPHKEKPGPDSFTGEFYQTKEEL/II/ILHKLFQTIKYGRILPNSVYETSI TLKPKEKDL\KENYRPLPLSNIDAK\LNKTLA NRI**HIR
29	1379	A	434	395	128	IYSKCMCERQLNN*ILKKNKVRGIAVPDVK VYYKPTVIK/TSWIL*KDSHIVEWRNLLENID PN/IKRLILDKGAEATEWRKDSFFRQWQ
30	1380	A	455	2	228	FFFETESHSTVTQAGVQWCNPFGKRFSCFGLSS SWDHYRYAPPRAANF*\FLVETGFYYVAQAGL KLLSPGDLPALAS
31	1381	A	462	393	2	QLMFDKGVKNIHWGWTPPPFTK*YWKNWISI CRRMLNPNVLSRYJKNSRKDLTVRPEPIKLV EENTGKTIQDTGLGK*FIAKTSKAQSTKTNK* KRQTRYIKLKKKSTASKENNVRKRQPLE*EK IFAN
32	1382	A	474	125	471	VKPYEIAVFLVLPYEYK*HLLSDPAIPLSGI*LKEIKAYT/RRJCTPMFAAPVSIA/RN*KQSK/CQ KQ*YVHRMEYYTTIKRSEILICTTTWVDFRNT ILRETDRIHKTYDVISLI
33	1383	A	488	1825	2	KSACSFICSEEQPASPSPPLKPGTYASETRPRDP HAAGPRRDSSEAETRPRGA/DGSGTVVKGT PGSPAPPCSWGHGG\ETEGAG*CPAAPGTDLR APGGSAGS*\GLPSAGGSRGRKGWRAAGRQP STR*GRPGRHGGRGE*AGHPEPRQSAQLQSAGL/ASSPEPMGAALAEKGSGDSRGAGPRPQE*P PSVLSRSVGS*G*G*AASGTASSPRSHSSRLGPP SAGFHGLRCGQPPFAAAPPGPWPWTGRPAGG AGSPAAAGTAPPATRGAQSRRQNRTAGRNA SPQTAAGAGSPVQWALSRTAG*TGETGSWC AGGTHQATHLAAWVCPTWSVRPGGSGPA AGLGR*GRHPAQSPPLPVPRG*PAWPQEAPSP SPASSEVALSSGSCWPDQAPGPARGSPAPLA PAWPAAGRGRQR*GRQSAHPPRR*STA VSL SGTS*WRSP*AGTRTQQC*SPWLVPACSSRP L*RGTRRPSTQQSPQTGTPGRSAGPGHPRS* GGRSPAGTGHLAGTQVASH*GHWPTALSCL WASASPPGEAPPQTGACIGTCRYRAASAR RSSVAPACA*GWQ*AGSPPAVLRGPP*RVRER GALTHRPRAPDE
34	1384	A	497	422	2	APGASVGRQAEG*RGGPTGRPPSALGVS/EAGRAGRAGEGRPVPAVPLCKSAQTSGPPKARLS\PLASCGRGPPGAAACATCAPPAGPAR SSRCRRRSPP*GPR*PSRPARPSGSAASRRQ KLTPCRCQFRLCA
35	1385	A	509	156	475	PTPYPG*QAAFLLRGPGLRPPA/DPSLR/HRN LTELVVAVTDENIVGLFAALLAERRVLLTAS KLSTLTSCDHAFCALLYPMRWEHVLIPTLPH LLDYC*CPPLPRT
36	1386	A	512	3	1631	FFFSFVCHLYCVSPTPGPHGRLATWL/PGLLA FLGLAAGGQTLCPAGELPGHARAQASGAPGS VLIAVPGRRRVHTCGPGPAAPSTRGECPPPAL GHTRPARPRPV\PFAPA\VPQEPGGQGHGAA/P PATGHSAPRGCPPARAAPTGSATPAPPAAACA AFHSAWSVPPAGRQHQ*RVPAFAFRRTTPGT PGQHLLDRPGAPPAQGSGPAPAPPRLAGPA GPAAPPPGPPAASWHSSLKSSSSL\GWSPLP VGPGLQ*TPPPQGP HLSGSCGGTSSWRGQR AAVARRLRSWNACGLSRVAGRSSASYPGRE

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						GRPSQSQ*PAGPPGMRGCCRLGW*PSSSGSD GPGPHPASTWLRAKGTGPSPACGCA*LPPPS VSAAPQSPRTRCPRGCAAAGLCVLAAAGAS HGAIGLPGVRVHTQRVHIH*GAG/GCQTPRPR LSRLPVGLPAPRCPVSAHPWHRRSGSSCHA ARLVPRHPAPGCP**TG*PLITGFPEP*A*GLP NHQAVGLEASGALQAGHRDELPTMVQLLDH SPDYPLKGRPHAP
37	1387	A	620	828	1	FRLPLAAGA/RGAAEPRVAVSMAPDPSAKIH WEASPEMQSKCHQKGKNNQTECFNHVRFLQ RLNSTHLYACGTHAQFQPLCAAIDAEATFLPTS FEEGKEKCPYDPARGFTGLIIDGGLYTATRYE FRSPIDIRRSRHPHSRLTEETPMHWLNG*EDE AQDDGG*GTTISFLLPWPAHDHPTPKSPGEPVH SIPVCCQVRGQPQSGKESPACLKSLSNCNLTH \DAEFVFSVLVRESKASAAGVDDDVKYYFFTE RATEKEGSFTQSRSSHVRARGIPPL
38	1388	A	739	1	427	FRAMVSSTLKLGISILNGGNAEVQ/QGNRGKG TSEEGKEG*EVPV*LPVSPPLPRPLQKMLDYL KDKKEVGFFOSIQALMQTC\GEKVMDADFT QDLFRFLQLLCEGHNNDFQNYLRTQTGNTTT INIIICTVDYLLRLQESI
39	1389	A	767	1	1030	TLDLTGPLLGGVPNVPKDFRGRNRQFGGCM RNLSVDGKNVDMAGFIANNGTREGCAARRN FCDGRRRQNNGTCVNRWNMYLCECPLRFGG KNCEQGEWPASSIPPVTAWEALLLDVPGTT VRGLHIQVRQPLVVYAAFTVDSHRPLQETVL RRAPAPASGVPSPSGVGVWDR*AGPAEPSPSTP ATVIISVPWYLGMLMFTRRKEDSVLMEATSGG PTSFRLQVTGAPCHQGTC*VGARGRDPMMLSG LRVTDGEWHHLLIELKNVKEDSEMKGHLVTM TLDYGMDDQVSWHLHLLWG*TLPPAQGKTGA SEDKVSVRGFRGCMQVRGGCGGRGEACPS QAAPRL
40	1390	A	801	69	399	IHKIIIHKEDLNWKWYIILCSGMERLSTVMIPVV PQIYKFNA*QVILKFTW*E*GAKITILRKNKL RGLVLVPLSTC*VKYLLDKVLPHIKTYEAR VNKSVVLVQVTIM
41	1391	A	835	7	195	SMLKERKFQFPSCLFQQYITWLGPYPYHVLFD SSVINFSIGAK*DILQSVMNCLYAKRIPCVT
42	1392	A	841	1	415	GSTHASGYDKTPDFILQVPAVEGHIIHWIES KASFGDECSSHAYLHDQFWSYWNSLKHRTW QGIGTVASNLSQL*TLNAPFPELLLFRSLARTG FVLT*RFGPGLVIYWYGFQELDCNRERGILL KACFPTNIVL
43	1393	A	845	358	92	PALSPAPVPPQKKGSPLPLDPCLGPSSWLLSVG LGWPR*PRRGPDPGSLPATPPLLTTPHITLLP QRPMPLPPSHAGLARPPPPEPISVP
44	1394	A	853	452	1	LPQYCFFPRLSPSKLVKHSAL**PSALKPPTK SPRCIPRTSLYFTICC/PPALQL/SPIEDPPAIYRS PPTHMLRSASQPLNQAPTLVKGHPPSRFLQG QVSCPQPTLPREKPLPLHRRPPRPAQPPPLPR PLTFSTRRNVDPEIPEFR
45	1395	A	894	379	162	GVYPPPTVFDNYSVQTSDGQIVSLNTWDTAG QEEYD/RLRTLS*PQTSIFVICFSIGNLEFFPIYGT WLSMSMGK
46	1396	A	900	1	366	TTKKTTLISNNVSSRSRSLPILPELKAFLSALAFNDPL EIQKYMRT/DQ*CVTHDISLYIVTKLALIFLIPR VFLFHQLNIT**CLHFFTMTTFIAIPFSFLFLGR

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, \=possible nucleotide deletion, =possible nucleotide insertion)
						D/KSLAMLPLVSNSPQVILPP
47	1397	A	944	162	2	QLQNLASRGCL*SQLRRLRRENRLNPAGGG CSEIAPICTPAWVTQRDFRKKK
48	1398	A	963	216	308	HFTPDRIAJVKNTRDHSWCWRGC*EEGAPARC
49	1399	A	967	466	1	PRKRESWWGERLP/PRGFPPAAEDAAPPGWK GRKHASRTARAHVFHIPQSIRSPVRGRPGDP RAAHTRSAGTRLQCKASRGG*GKGPAPTR*E GGPGSAPAPL PASSGCSLFPDSSPWT PPPPAPG AAAQP**TPRCPAALRAGAHIGRVGRPY
50	1400	A	973	45	421	EKCIALDVFVFCYIDHSSHCLMSCD*E/DQA LNFMPLMEPKMSKLAFLGQCRRSSTDSDG ALEEYAWVPPGLRPEQIQLYFACLPPEEKV VNSPGEKHRIKQLLYQLPPHDNEVRYCQSLSE E
51	1401	A	992	2095	194	IIRRHEAARSCLGCAAGHVAPGLRLLPTVRG PPGRRGPAAPGCVCY*SGESTFVSHVPQRMA WPGSAPPFGFHPLQSQTSPSDTVSSPQLSKEE DGPWEHPLSSSL*SLGQAGGNH*QPEELAG WEPRGPPSLAPSSPT/TMWTALVLIWIFSLSLS ESHAASNDPRNFVPNKM(WKGLVKRNASVET VDNKTSEDVTMAAASPVLTTKGTSAAHLNS MEVTTEDTSRTDVSEPATSGVAADGVTSIAPT AVASSTTAASITTAASSMTVASSAPTTAASST TVASIAPTTAASSMTAASSPTMLALPAPTST STGRTPSTTATGHPSLSTALAQVPKSSALPRT ATLATLTRAQTVATTANTSSPMSTRPSPSKH MPSDTAASPVPMPMRPQAQGPISQVSDQPVV NTTNKSTPMPSNTTPEPAPPTVTTTKAQR EPTASPVVPHTSPIPEMEAMSPTTQPSPPYT QRAAGPGTSQAPEQVETEATPGTDSTGPTPRS SGGTKMPATDSCQPSTQGQYMV/DHH*APHP GRGRQNNSPSGGAVTRGDPFHSLGFVCAGL *ELQEGLHPGGLNQRDVCGLRNVRGAGA WREAWPPLPRPFLLPLRPNQVLPNSGFAIEEC QMLKHI
52	1402	A	994	1	462	ESGEFLVSFTLKKPTNVFHINGMKFFNK/LIF *SHTDIAFYKIQHPPMLKALT KW A*EGT*PDR RYLH*SLRLNGEQLKTFPLRSGMR*G/CAILPL VNLAMLSIVPAVVPAGKTRHEKEITCPLIGQE EK*FS*FVGDMNTCVENKKESKKLE
53	1403	A	1011	1	630	PEVIQQSAYDSKADIWSLGITAIELAKGEPPNS DMHMPMRVLFLIPKNNPPTHCWRRLESFKEV *LMLA*TKDPSIRPTAKELLKHKFIVKNSKKT SYLTELIDRFKRWKAEGHSDDESDEGSDES TSRENNTNTHPEWSFTTVRKKPDPKKVQNGAEQ DLVQTLSCLSMIIPTPAELKQQDENNASRNQ AIEELEKSLIAEAAGPG
54	1404	A	1016	1	222	ISIDA*KAFDKIQH/CFMITLKKGIDGKYLN TIKAIDDRHTVSTILNVEKLKAFL*RSGTRQRF PISGSGARI
55	1405	A	1033	3	366	HASVDGDEGSDDVYYYYTPAILRELQALNTA EAAEHRPEEDRMLSEDPWRPAHMIKGYMP HNIPHTEVIDVTGLNQSHLYQHLNKGTPMKT OKRAALYTWHVLEQLEILRQINQQSHGPG
56	1406	A	1044	5	429	SVTLQTRSPSKPLSVRKLMDWEVVSRNSISE DRLETQSRASRSPVTPNQSQETPVDGKPLAL PPNQSQKNIRYHIYHLHQYYLDRHISATLP SSSGIPTPIAVITDALTDLVELILGQPCSEESGR APGTLFLAL

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, * =Stop codon, / =possible nucleotide deletion, =possible nucleotide insertion)
57	1407	A	1050	11	430	GAYAFETNGFPIMVLTTIDKIEGDVGIAGLYD MHNISLPMMAFLRLTVRCTSIIIPVTHVLSTPV TCLRRREKDGIVDVLSDTASNHNNGFPVEEH ADDTHPARLQGPTLRSQPMGPLKHKAFFERA NLGLVQRRLRLED
58	1408	A	1058	258	419	LKHRTDPVVGANNRALSCPTLTSITLCALCPL PCLGCPTXATCRLYQTITVAVVF
59	1409	A	1064	3	425	KAFSFTTSLIGHQRMHTGERPYCKCECGKTF KGSSSLNNHQRHTGEKPYKCNECGRAFSQC SSLIQHIIHRTGEKPYECTQCGKAFTSISRLSR HHRIHTGEKPFHCNECGKVFSYHSALIIHQRIH TGEKPYACKDVGK
60	1410	A	1065	204	419	GGPPGPFLAHTAGLQAPGPLAPAGDEGDL LLLAVQQSCLADHLLTASWGGK/DPIPTKALG EGQEGPLTV
61	1411	A	1079	3	383	RHSRAHLCQPFLVMRDLLQLGQDJPQGCHY LEENHLIHRDIAARNCLLSCAAPTRAATIGDF GMARYIYRTRYYQLGDRAL/LPRKWMPPPEAL LEGIFTYNTDSWTFGVLLWEIFSLGYMPYPGR TN
62	1412	A	1080	1	859	VVEFLWSRRPSGSSDPRPRPASKCQMMEER ANLMHMMKLSIKVLLQSAISLGRSLDADHA PLQQFFVVMEHCLKHGLKVKKFIGQNKSFF GPLELVEKLCPEASDIATSVRNLPBKTAVG GRAWLYLALMQKKLADYLKVLDNKHILLSE FYEPEALMMEEEGMVIVGLLVGLNVLDANLY CLKGEDLDSQVGVIDFSLYLKDVQDLDGGKE HERITDVLDDQKNYVEELNRHLSCTVGDLOQT KIDGLEKTNSKLQERVSAATDRICSLQEEQQQL REQNELIR
63	1413	A	1083	2	615	SSFAKHKRHTGEKPFICLECGKAFTSSTTLTK HRRHTGEKPYTCEECGKAFRQSAILYVHRRRI HTGEKPYTCGECGKTRFQSANLYAHKKKIHTG EKPYTCGDCGKTRFQSANLYAHKKKIHTGAEKP YKCKCECGKAFKSYY SILKHKRTHTRGMSYEG DEC/QRSLN/RSSILSNHKIIHNEEK/PLKCEKCE KAFNHTS/ICCRHKKN
64	1414	A	1084	946	1	KKQDLSSLTDDSKNAQAPALTSHLATLA SSSQSPEAIKQLLDSLGLPSLLVRSLASFCFSHIS SSESIAQSISDISQDKLRRHHVPQQCNKMPITAD LVAPILRFLTEVGNSHIMKDWLGGSEVNPLW TALLFLCHSGSTSGS\HNLGVAQQDQCKJSFS FFSWLTGTTQRTAJE\NATV AFFLQC\SC HPNNQKLMAQVLCELFQTSPORGNLPTSGNI \S\GFIR\RLFLQLMLEDEKVTMFLQSPCPLYKG RINATSHVIQHP\MYGAGHKFRTLHLPVSTTL SDVLDRVSDTPSITAKLISKQKDDKKKK
65	1415	A	1087	103	324	PRAFEFVHITEMIVG/RVQNIHLFTLQVLEDRA LFTMSVGSSLWSTYLJHVMALP/DRELLKPNA SVALHKLNSALV
66	1416	A	1095	3	493	HETCSVTHIVSFSLPFLNPSPHPASTPGHTENEQ PSLVWFDRGKFYLTPEGSSRGPSLTMGQAQD TLPVAAAFTETVNAYFKGADPSKCIVKITGE MVLSPAGITRHFANNPSAALTFRVINFSRLE HVLPNPQLLCNDTQNDANTK\EFVNMPNL MTHLK
67	1417	A	1098	57	356	LKLTSLGFIIGVSVVGNLISILLVKDKTLHRA PYYFLLDLCCSDILRSAICFPFVFNSVKNGST WTYGTLTCKVIAFLGVLSFCHTAFMLFCISVT

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, =possible nucleotide insertion)
						RYL
68	1418	A	1106	1	1326	MGKISATGINMGTCKCSWALVWHILESYDPKH YEREGMQDWDKTASGQSEEATQQSSQKPQPH YTYQSSSFLKYSSSESHLAWRENSSEGSFQF PGRSRARRPRTRQQRGAAAGPGRGAVRLG HPQSAAQPQLRAAARIPESPAAPPAQPRPGSA RNSDASGPASLSRTLGRASSPRPPQAPDVATP SPAALAPRAARGGSRAAALAGAEAEELRTL APRPTRAAAPP PPPPPPPLPPGAPPPPVRCSV RARAPPWR/PAATGPPPVPVAPSRLKGSARAP APALQIRKGTSGLPGRGGSGPGNNLSSVA GNWRGSSFAVERPGMAKYQGEVQSLKLDDD SVIEGVSDQVLVAVVVSFALIATLVYALFRNV HQNIH PENQELVRVLREQLQTEQDAPAATRQ QFYTD MYCPICLHQASFPVETNCGHLFCGSLT PNSI
69	1419	A	1107	2	466	FDTARLHEFGTSITQIFAVDNREDLQKWMEA FWQHFFDLSQWKHCCEELMKIEIMSPRKPPLF LTKEATS VYHDMSIDSPMKLES LTDIIQKKIEE TNGQFLIGQREESLP/SS/CGPHSLMVTKWSS RKRY/SYPASEPLHDEKGKKRQAPLPPSDK
70	1420	A	1111	698	23	ALRRRLHYVRATKVFLSFRPFWREEHIEGGH SNTDRPSRMIFYPPREGALLASYTWSDAAA AFAGLSREEALRALDDVAALHGPVVRQLW DGTGVVKRWAEDQHSQGGFVVQPPALWQT EKDDWTVTPYGRIVFAEH TAYPHGWVETAV KSALRAAIKINSRKGPASDTASPEGHASDMEG QGHVHGVAASSPSHDLAKEEGSHPPVQGQLSL QNTTHTRTSH
71	1421	A	1119	2	385	QKQTLQNGYLDSMMDILYLGSLPPELQVSSDE PPGPPEQAGLSQFHLEPETQNPETTEEIQSSLQ QEAAAQLPQLPEVVELSSTKA\EA PALPSQL EGVHSSTEQKAPAQQLPAFEEILAPLLIHHE
72	1422	A	1127	1	906	HAQYVGPYRLEKTLGKQGTGLVKLGVHCIT GQKVAIKVNREKLSESVLMKVEREIAILRLI EHPHVLLHG VYENKKYFPPDELTSGPSMLA QVSPHGKLSARRSWDLLSGFP RYLVLEHVSG GELFDYLVKKGRLTPKEARKFFRQIVSALDFC HSYSICH RDLKPENLLDEKNNIRIADFGMAS LQVGDSLLETSCGSPHYACPEVIKEKYDGR RADMWSCGVFHMPIFIPPDQCSSLRGMI EVEPEKR KVKRGVFHMPIFIPPDQCSSLRGMI EVEPEKR LSLEQIQKHPWYLGGNFIS
73	1423	A	1128	1	802	LRNALDVLHREVPRLVNLVDFLNPTIMRQV FLGNPDKCPVQQA/MLEPLGSKTETLDLRAE MPITCPTQNEPFLRTPRNSNYTYPIKPAJENWG SDFLCTEWKASNSVPTSVHQLRPADIKVVA LGDSLTTAVGARNPNNSSDLPTSWRGLSWSIG GDGNLETHTTLPNILKKFNPyLLGFSTSTWEG TAGLNVAEAGARARDMPAQAWDLVERMKN SPDINLEKDWLKVTLFIGGNDLCHYCENPEA HLATEYVQHQIQQALDILSE
74	1424	A	1139	60	480	FREPCLLVPGDHQPLREASWLA/LPPIGLWGT DSPLCCVEVAIPCNKG AHSGVGLKGWLLAQG VLGMRDTIPQEH PWESTPDLCFCRDPEEIEVE EQPAADA AVAKGEF/QGEQIAPVPAIIAHPE AADPAPVHTTAHKGA
75	1425	A	1147	2	413	PFPHQHPQEPVKGS CWPQSA LRGQCPGPVLGV TTTSDLC SLQPVVSSHRNPLLDLAAYDQEGR

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, \=possible nucleotide deletion, =possible nucleotide insertion)
						RFDFNSSL SIQWESTRPVLASIEPELPMQLVSQ DDESGQKKLHGLQAILVHEASGTTAITATAT GYQESHLSSAR
76	1426	A	1155	38	410	PIISAPAQDDPILLSFIHCLHANLLCVWRRDVK PDCKEIWIFWWGDEPNLVVQYIMNCMLWK KDSGKMAFPMVNGRC/FFKEIHNNLERCLMD KNFVLIGKWFVRPY YKDEKPVNKSEHLSCAF T
77	1427	A	1162	526	350	RFPQGLEVDVSTYPVLI ELLSRGWSEEELQGV LRGNNLLRVFRQVEK VQEENKWQSPL ED
78	1428	A	1171	I	1293	MAESASPSSAAAPAAE PGVTTEQPGPRSPPP SSSPPLGEEPLDGADPHVPHPD/LAPIAFFCLRQT TSPRNWC1KMVCNPWFECVSMLVILLNCVTL GMYQPCDDMDCLSDRCKILQVFDDFIFIFFA MEMVLKMVALGIFGKKCYLGDTWNRLDFFI VMAGMVEYSLDLQNINLSAIRTVRLRPLKA INRVPSMRILVNLLLDLPLMGNVLLLCFFVF FIFGIIGVQLWAGLLRNRCFLEENFTIQGDVAL PPYYQPEEDDEMPFCISLSDNGIMGCHEIPP LKEQGRECCLSKDDVYDFGAERQDLNASGL CVNWNRYYNVCRTGSANPHKGAINFDNIGY AWIVIFQVITLEGWV EIMYYVMDAHSFYNFY YFILLIISVREPGLLGGSFSTAQSPKCQGDSFP GVAAESSLRGWVLWLPGGG
79	1429	A	1175	1	405	PNDFKDMFPDLPGGPLGPKAENDYGA YLN FLSATHLGLLFPPWPVLEERKLKP KASQQCPI CHKVIMGAGKLPRHMRTHTGEKPYMCTICE VRFTRQDKLKIHM RKHTGERPYLCIHCNAKF VHNYDLKNHMR
80	1430	A	1182	25	198	EMNELSQQLSQQGRRGASQCPSPPAPTLPNPT PLCQLQLQRVN TGLPTPPCHPGAGAA
81	1431	A	1186	254	583	KTVLDVGAGTGILSIFCAQAGARRVYAVEAS AIWQQAREVVRFNGLEDRVHVLPGPVETVEL PEQVDAIVSEWMGYGLLHESMLSSVLHARTK VVKDGGFLPXSEL FM
82	1432	A	1187	2	716	DFVDAARNLPLESTKSPAEP SKVPSLED PRA SSQGLPSQGPVQNQGRRGEQRPK F/TVIQHT SSFEKSDSLQPSGLEGEDKPLAQFPSPPPAP HGRSAHSLQPKLVRQPNIQVPEILVTEEPDRPD TEPEPPPKEPEK TEEFQWPQGSQTLA QFPVEK LPPKKKRLGLAKMAQSSGESSFESSVPLFRSP SQESNVSLSGSSRSALFERDDHGKAEAPSPSF DMGPKPLGTHMLTV
83	1433	A	1188	517	804	ESPGLSKVLRGAFA YPFLDNPLFYRLGLC WGRGHGCGQE ALSTSHGYHLFCALLTGF LFA SHLPERLAPGRFDYIGHSHQLFHICAVLGTHF Q
84	1434	A	1192	45	476	LGDVGFWVERTPVHEAAQRGESLQLQQLIES GACVNQVTVD SITPLH AASLQGQARCVQLLL AAGAQVDARNIDGSTPLCECLRLGQHRVCEA LAVLRGQGPSPVHSVPPARGLHXRFRMC* GFLFDVGXNLEAHEHFHFGE P
85	1435	A	1194	69	410	KRSEEASAPPPLGGTGAAPTRASLPEQILLPR SCLEAR KSQPD EKLLSALHNSRTWN*EPRRSQ HRLVSP EVHPGRRGSSPGVAECKLTSAYFRT GRSPCPSLPGTTNTSLL
86	1436	A	1215	3	405	LPSHTCGNPGR LPNGIQQGSTFN LGDKVRYSC NLGFFLEGHA VLTCHAGSEN SATWDFPLPSC RADDACGGTLRG/AEWHLQ PPLPLG/ATKN

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, \'=possible nucleotide insertion)
						NADCTWTILAEGLDTIALVFIDFQLEDGYDFLEVTGTEGSSLW
87	1437	A	1216	226	964	GTARFGPMVGFGANRRAGRLPSLVLGVLLVIVVLAFLNYWSISSRHVLLQEEVAELQQVQRTEVARGRLEKRNSDLFAVVGHAQETDRPEGGLRPPQCPAAQQRGPREEMEDDKVQLQNNISYQMADIHHLKEQELRQEFLRQEDQLQDYRKNNNTYLVRKLEYESFCQCGQQMKELRAQHEENIKKLADQFLEEQQKQETQKIQSNDGKELDIINQVVPKIPKVVAENVADKNEPPSNHIPHG
88	1438	A	1218	1	534	PEFGTTISCGYLMATDVSRRPSVHKAVEIEQERVKSAAGAWIIHYPYSDFRFYWDLJMLLMVGNLIVLPVGITFFKEENSPPWIVFNVLSDTFFLLDLVLFNRTGIVVVEEGAEILLAPRAIRTRYLRTWFLVDLISSIPVDFYFLVVELEPRLDAEVYKTARALRIVRFTKILSSLRL
89	1439	A	1223	1	743	MGFDEVFMINLRRRQDRRERMLRALQAQEIICRLVEAVDGKVGMTRSNAAPGRHLAMLETLVVAPRFVADANLILNPDTLSLLIAENKTVVAPMLDSRAAYSNFWCGMTSQGYYKRTPAYIPIRKRDRRGCFAPVMVHSTFLIDLRKAASRNLAIFYPPHPDYTWSDDIIVFAFSCKQAEVQMYVCNKEEYGFLPVPLRAHSTLQDEAESFMHVQLEMVWPSSPSSAQSMAVVSADHGIVSYL
90	1440	A	1227	2	349	NKTSFIFYLKNIVVADLIMTLTFPRIVHDAGFGPWDFKFILCRYTSVLFYANMDTSIVVLGLIT/YDRY/WKVVRLH/WDSWMTGI/SFTRVYLLGLGARLWVFGKLILAKGGHGGISWL
91	1441	A	1245	3	1937	LGSSDVRAPIQRSELGAESPSSRMVASQAYNLTSALTPILTRSRVNLNEEPLTLAGFVSRAPANLSDVVQLIFLVDSNPFPFGYISNYTVSTKVASMAFQTQAGAQIPIERLASERAITVKVPNNSDWAARGHRSSANSV/VQPQAFVGAVVTLDSSNPAAVLHLQLNYTLLDGRYLSEEPEPYLAVYLHSEPRPNEHNCASRRIRPESLQGADHRPYTFFISPGRDPVGSYRLNLSSHFRWSALEVSVGLYTSLCQYFSEEDVVWRTEGLLPLEETSPRQAVCLTRHTAFTGTSFLVPPSHIRFVFPEPTADVNYIVMLTCAVCLVITYVMMAAILHKLDQLDASRGRAIPFCGQRGRFKYEILVKTGWGRGSGTTAHVGIMLYGVDSRSGHRHLDGDRAFHRNSLDIFQIATPHSLGSMWKRIVWHDNKGSPAFLQHIIIVRDQATARSTFLVNDWLSVETEANGLVEKEVLAASKASFRVPTPSAALLFRRLVAELQRGFFDKHIWLSIWDPRPPRCFTIQRATCCVLLICFLGANAVWYGAVGDSAYSTGRVSRLNPLSVDTAVGVLVSSVVVYPVYLAILFLFRMSRSKVGWGWPGSTGNGAWASACPCEPPLSSAAARGKGVHQRLLGKGQHT
92	1442	A	1246	5	562	VFDEENILNELNDPLREEIVNFNCRKLVATMPLFANADPNFVTAMLSKLRPEVFPQPGDYIIREGAVGKKMVFQHGVAGVITKSSKEMKLTDGSYFGEICLLTKGRRTASVRADTYCRLYSLSDNFNEVLEEYPMMRRAFETVAIDRLDRIGKKN SILLQKFQKDNLNTGVFNNQENEILKQIVKH
93	1443	A	1249	180	901	TVPPPPGGPSPAPLHPKRSPTSTGEAEELKEERLPGRKASCSTAGSGSRLPPASSPMVSSAHNPNAEIPERKDISTTPNNLPPSMMTRRNNTYVCTERPGAERPSLLPNGKENSSGTPRVPPASPSSHS

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						LAPPGERSRLARGSTIRSTFHGGQVRDRAGGGGGGVQNGPPASPTLAHEAALPAGRPRPTTNLFTKLTSLKTRVADEPERIGGPEVTRPRPQEDHLSPPGRGCSEL
94	1444	A	1261	3	385	KFSQWGLTPKLSNASP/WISLVKJKLMKWSVTQNLTFREQLEAGIRYFDLRVSSKPGDADQEYIFHGLFGIKVWDGLMEIDSFLTQHPQEIIFLDFNHFYAMDETHHKCLVLRHQAFGNKLCPACR
95	1445	A	1282	2	550	GPRDPNGEDPRFEIVEHFGIAWFTFELVARFAVADFLKKFKNALNLDMSIVPFYITLVVNLVVESTPTLANLGRVAQVLRLMRJPRILKLRHSTGLRSLGATLKYSYKEVGLLLLYLSVGISIFSVVAYTIEKEENEGLATIPACWWATVSMTTVGYGDVVPGTITAGKLTASACILA
96	1446	A	1294	1	1456	QLLPPSNRENAGLLVGRCLCSAALRPVGDLITSSGQAVRNAPQAGSAKAGKGKFQDNFEFIQYFKKFDANCNEKDYNPVAAAGQGQETEVAPSIVAPVLNKPNCPEGYICVKAGRNPNNGYTSFDTFSWAFLSLFRMLTQDYWENLYQLTLRAETTYMIF/LV/LVILLGSLYLVTLILAV/VAMA YEEQNQATLEEAEQKEAEFQQMLEQLKKQQEAAQQAATAASEHSREPSAAGRLSDSSSEASKLSSKSAKERRNRKRKQKEQSMSGEEKDED EFQKSESEDSSIRRKGFRRFSIEGNRLTYEKRYSPHQSSLISRGSLSFSPRRNSRTSLSFSPRGRAKDV GSENDFADEHSTFEDNESRRDSLFPVRRHGERRNSNLSTSRSRRMLAVFPANGKMHSTVDCNGVVSIVGGPSVPTSPVGQLLPEVIIDKPATDDNGTTTETEMRKRRSSSFHVSMDFLEDPSQRQRAMSIASILTNTVE
97	1447	A	1295	2	2057	IQTQLPTKSSQQLRKGGNCVRCKMQMNIAEVLLKYRIFTYNNNKGPNMLYIEIKAFVHFMINRYLSYGSGPKRFLPLVDLQYALEFASSKPVCTSPVDDIDASSPPSGSIPSQTLPSQTTEQQGALSSELPSTSPPSVAAISSRSVIIKPKFTQSRIPPDLPMHPAPRHITEEEESLVSCLHRWRTEIENDTRDLQESISRHRTIELMYSDKSMIQVYPRLHAVLVHEQANAGHYWAYIFDHRESRWMKYNDIAVTKSSWEELVRDSFGGYRNASAYCLMYINDKAQFLIQEDELIK TGQPLVGIELTLPPLRDFVEEDNQRFEKELEEWDAQLAQKALQEKLASSQLRESETS VITAQAAGDPKYLEQPSRSDFSKHLKEETIQTITKASHEHEDKSPETVLSQSAIKLEYARLVKLAQEDTPPETDYRLHHVVVYFIQNQAPKKIIEKTLLQEQFGDRLNSFDERCHNIMKVAQAKLEMICKPEEVNLEEYEWEHQDYRKFRETTMYLIIGLENFORESYIDSLLFLICAYQNNKELL SKGLYRGHDEELISHYRRECLLKLNEQAAELFESGEDREVNNGLIIMNEFTVPLPLLVDEMEEKDILAVEDMRNRWCSCYLGQEMEPHLQEKLTDFLPKLLDCSMEIKSFHEPPKLPSTSHEL CERFARIMLSLSRTPADGR
98	1448	A	1304	118	453	SGPSSRAIYLHRKEYSQNLTSEPTLLQHRVEHLMTCKQGSQRVQGPEDALQKLFEFDAHGRVWSQDLILQVRDGWLQLLDIETKEELDSYRLDSIQAMNVALTNCSYNSILS
99	1449	A	1306	3	1660	CGYFCHTTCAPQAPPVPPDLLRTALGVHPE TGTGTAYEGFLSVPRPSGVRRGWQRVFAALS

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, \=possible nucleotide insertion)
						DSRLLLFDAPDLRLSPPSGALLQVLDLRDPQF SATPVLASDVIHAQSRLPLPRJFRVTSQLAVPP TTCTVLLAEEGERERWLQVLGELQRLLLLD ARPRPRPVYTLKEAYDNGLPLLPHTLCAAILD QDRLALGTEEGLFVIHRLRSNDIFQVGECRRVQ QLTLSPSAGLLVLCGRGPSPVRLFALAELENI EV\EPVKIPESRGQCQVLAAGSILQARTPVLCVA VRKQVLCYQLGPGPWQRRIRELQAPATVQ SLGLLGDRLCVGAAGGFALYPLLNEAAPLAL GAGLVPEELPPSRGGLGEALGAVELSEFL LFTTAGIYVDGAGRKSRGHELLWPAAPMGW GYAAPYLTVFSENSIDVFDVRRAEWVQTVP KK\VRPLNPEGSLFLYCTEKVRLTYLRLNQLAE KDEFDIPDPLTDNSRQLFRTKSKRFFFFRVE EQQKQQRREMLKDPPVRSKLISPPTNFNHLV HVGPANGRPGARDKSP
100	1450	A	1318	918	190	SLCVPGPVDTGTFAVMMSMVGVSVTESLAPQA LNDSMINETARDAARVQVASTLSVLVGLFQV GLGLIHFGVVTVYLSEPLVRGYTTAAAVQVF VSQALKYVFGHLSSHSGPLSLIYTGLEVCWKL PQSKVGTVVTAAVAGVVLVVVVKKLNDKLQQ QLPMPIPGELLTLIGATGISYGMGLKHRFEAG PPVAPNTQLFSKLVGSFTAIAVVGFAIAISLGK IFALRHGYRVDNSNQVWVMDV
101	1451	A	1353	220	445	DWPDLFTYPLIGSPKCFQSARPEARMYRTVR SSHGNHALQEVLPRSIGHTEFTKQKHLEAAD GHPPPARMSIIFSR
102	1452	A	1363	542	2	AHLLMLNALATDLLYLTSLPFLIHYYASGEN WIFGDFMCKFIRFSFHNLYSSILFTCFSIFRY CVIIHPMSCSFIHKTRCAVVACAVVWIISLVA VIPMTFLITSTNRTNRSACLDLTSSDELNTIKW YNLILTALLCLPLVIVTLCYTTIHTLTHGHAN \DSCLKQKARRLTILL
103	1453	A	1371	2	410	CHSTESSSDFILPGDYLLGGLCPLHSGCLQVCSFNEHYGHLYFQAMRLAVEEINNSTALLPNITLGYQLYDVCSDSANVYATLRLVLSLPQHQHIELQGDLLHYSPTVLAVIGPDSTNRAATTAAALLSPFLVPMLEQ
104	1454	A	1376	3	432	NSRVEDRS/NMSLWTQNITVCPVRNVTRDGG FGPWSPWQPCEHLDGDNNSCLCRARSCDSP RPRCGGLDCLGPAIHIANCSRNGAWTPWSSW ALCSTSCGIGFQVRQRSCSNPAPRHGGRCIVG KSREERFCNENTPCPVPF
105	1455	A	1379	2	396	GLGLLYLIFAAVEGVMRVIGGSNHЛАVVLDD IIIAVIDSIFVWFIFISLAQTMKTLRLRKNTVKF SLYRHFKNLIFIAVLAISIVFMGWITKTFRIAK CQSDWMERWVDDAFWSFLFSLILIVIMFLWRPSA
106	1456	A	1383	1	432	EDGHGGWSSRCLVDHAEEGHREPWKRLCIW QRGGHEIRFAFYFPGPQHPLSPQICLAPETPPRG CPPVSSLHFISLQ/RLPRDCQELFQVGERQSGLF EIQPQGSPPFLVNCKMTSGTFWTCRTDSRVF QNANPSNAAHSEDQPTP
107	1457	A	1386	719	558	FFFVTRSHSVAQAECSGVFTAHRSLDLVGSSN YPALSLQSSWDHRRHTWLIF AFL
108	1458	A	1397	631	2	RVAISLLCAAIFIISFMVQSGAKRWPVGMLM VVVLFAFLYSWPIQALLPTYLKTDLAYNPHT VANVLSFGFGAAVGCCV/GGFLGDWLGTRK AYVCSLLASQLIIPVFAIGGANVWVLGLLLF

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						FQQMLGGQIAGILPKLIGGYFDTIDQRAAGLGFTYNVAGALGGALAPIIGALIAQRQLDLGTALASLSFSLTFVILRNRRPGKSLVR
109	1459	A	1402	15	387	VLVALPDTVTSETVTVTEVLGHRVTLPCLYSSWSHNSNSMCWGDQCPYSGCKEALIRTDGMRVTSRKSAYRLQGTIPRGDVSLTILNPSESDSGVYCCRIEVPGWFNDVKINVRLNLQRASST
110	1460	A	1421	3	350	HEDLSSLTRGSGNQERERQLKKLISLRDWM LAELAFTPVGVLATCA*SLLSC*YCVILFPCSCFFFHSPDALFSLLLSCYFPSPYCFFYYLFFSSPLCLLASSPPFLFILLASL
111	1461	A	1426	2	344	FTSTMTKPFKESEQEPA*ATLAFGAQTSTTAD QCALKPDLSYLNNSSSSSPATSAAGGGIFGSS TSSSNPPVATFVFGQSSDPVSSYGFVNTAESSTDSDLFSQDSKLATT
112	1462	A	1434	46	372	TTSWITCTRSCT*SGASSGPGWIPRTTWWRSRRSSQRTCSRACSGAWSRTW*RSS*TSSSSC STCSSSSSRCGRPGGPLGARGVHITSCLNSCMSSSTSSTTSTF
113	1463	A	1439	3	292	HEDIMTHYDRLVDE*ALNAGKQRYEKMISG MYLGEIVRNILIDFTKKGFLLRGQISEMLKTR GIFTFLLSNFLIVCIVLFFYVSFYLFQSCINFVL
114	1464	A	1463	1	396	KQQAVPEPHSSTTPQEQQEQNWYQDQLNLQ QRTKVHLPGHKTGPAVAKDTPEPVKKEFTVP ATSQGP*SPFSEEPPLPPSNEEVPPTLPP*EPQS EDP*KNA*LKQMHAATTHWQQHQHQVGC QYHGIMQ
115	1465	A	1464	291	2	AGSYPSMVWSCHWGVTKRRAL*VYSFEEG GRRKCQYWPLEKDSRIRFGFLTVSNLGVEN MNHYKKSTLEILNPEVNPNGFFFLLWQKQGEN NYCN
116	1466	A	1465	667	337	LPPQRPA*TDSYSTCNVSSGFLAGQSHNIHLQ YWTKYQVWEWLQHFLDTNQLDANCIPPQEF DINGEHLCSMSLQEFTAAGTAGQLLYSNLQ HLKWNGDSDLFLCLSLPC
117	1467	A	1479	1	381	GTSGGPKRVLVTERFPWQNPLPVNRGQAQR VLGPSNSFQRVPLQAQKLVSSHKGPGQNQKHK QLQATSVPHPVCMLNNTQSKQPLPSAPEN NPEEEELASDPNNEESL*RPWALEDPEIGRPLG KGK
118	1468	A	1485	3	385	TYLWL*GNPPFYEKNDGGLFELILRAKDEFNS PYWDDMSDSAKHFIRPLTGRDP*KPFPCDQPL QHPWIEGHTCLDNHQAASEPINNFAESKR NLAFLATGVVRHMRKLFMGANLEGPGPTVSH
119	1469	A	1486	1	398	GTTSKHH*LARSLIRGPFDHDLKPNAATRDQL NIIVSYPTKQLTYEEQDLGWKFRRYLTNQE KALTFLKLVWNWDLPQEAKQALELLGKWK PMDVKDSLELLSSHYTNPTVRRYAVARLRQADDDELLMYL
120	1470	A	1497	3	999	MGESPAV*GYFVLAGMNSAGLSFGGGAGKY LAEWMVHGYPSENVWELDLKRGALQSSRT FLRHRVMEVMPMLMYDLKVPHWDFQTGRQL RTSPLYDRLLDAQGARWMEKGFERPKYFVP PDKDLLALEQSKTFYKPDWFDIVESEVKCCK EAVCVIDMSSFTEFITSTGDQALEVLQYLFS NDLDVPGHIVHTGMLNEGGGYENDCSIARLNKRSFFMISPTDQQVHCWAWLKKHMPKDSN LLLEDVTWKYTALNLIGPRAVDVSELSPYAP

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, -=-possible nucleotide deletion, =possible nucleotide insertion)
						MTPDHFPFLCKEMSVGYANGIRVMSMTHT GEPGFMLYIPIEYRWGFTMLSTLVNS
121	1471	A	1498	3	306	AQFLLVGWDHIL*LVL*TNLTELGRITCDQN WPNSPDVLNHGCFYMQCLSKDCTIGYVSRE MI.VAHHTHVEEHTGTHLQYVSWPDHSVPDD SSDFVFEFN
122	1472	A	1533	121	329	LGLFSFWVWTEVLEEKDFSCETEDFKTLHCT WDPGTDTALGWSKQPSQSYTLEFES*VGSGYII DNFFLA
123	1473	A	1547	111	408	DARTTWPKRNGSSGIWPGDGAK*PPAVEQAE RGHVEMIEKLTFLNLHTSEKDKGONTALHLA AKHGHSPAVQVLLAQWQDINEMNEKQQTPL HVAADRG
124	1474	A	1555	1	745	MTFDDDDKNTYGVAVWKFFQTQLSRLSDL HRKSHLWRGIVSITLIEGRDLKAMDSNGLSDP YVKFRGLHQKYKSIMPKTLPNPQWRQFD HLYERGGVIDITAWDKDAGKRDDFIGRCQV DLSALSREQTHKLELQLEECEGHVLVVLT ASATVSIISLDSVNSLEDQKEREELKRYSPRL FHNLKDVGFLQVKVIRAEGLMAADVTGKSD PFCVVELNNDRLLHTVYKNLNPEWNKVFTL *VALVWKKFQTQSLRSLSDLHRKSHLWRGIVS ITLIEGRDLKAMDSNGLSDPYVKFRGLHQKY KSIMPKTLPNPQWRQFDHLYERGGVIDIT AWDKDAGKRDDFIGRCQVDLSALSREQTHK LELQLEECEGHVLVVLTASATVSIISLDSVN SLEDQKEREELKRYSPRLIFHNLKDVGFLQV KVIRAEGLMAADVTGKSDPFCVVELNNDRLL THTVYKNLNPEWNKVFTL
125	1475	A	1556	57	509	GGPAPNSRYAEP*KNSLAMT*AHADCENYVA CGGLDNCISIYNLKTREGNRVSRELPGHTGY LSCCRFLDDSQIVTSSGDTTCALWDIETAQQT TTFTGHSGDVMSLSSLSPDMRTFVSGACDASS KLWDIIRDGMCRQSFITGHVSDINAVS
126	1476	A	1592	3	178	KSEKSCVSSLAHFGTSCQRDYDAMVKLVETL EMLPTCDLADQHNPKHYAFALNR*ER
127	1477	A	1612	1	497	TESPLLVRPYLPYITKSELHAIMTAGFSTIAGS VLGAYISFGVPSSHLLTASVMSAPASLAAAKL FWPETEKPKITLKNAMEKMEGDSGNLL*AAT QGASSISLVIANIAVNIAFLALLSFMNSALA WVGNMFDPQLSFelicsyifMPFSFMMGV WPDSFM
128	1478	A	1619	286	486	CCMNSKAQESVFKNVLCNPALSEMPDVKA EDEVDFRASSISEEVAVGRIAATLKMKGPM TQAIRN
129	1479	A	1627	1	395	PTRGALARWIFGRFLCNIAAVDVRCCATTI MGLCIISIDRYVGVSYPLRYPTIVTQRRGLMA LLCVAWSLVIYIGPLLGWRHPAPEDETCQI NEEPGYVLFSTPGSFYPLAIMALVMN*RVYRV AKTE
130	1480	A	1638	2	466	DPRVRTKIVNRKTTIYEIQDKTGSMAVVGKG ECHNIPCEKGDKLRLFCFRLRKRENMSKLMS EMHSFIQIQKNTNQRSHDSRSMALPQEQSQHP KPSEASTLPESHLKTPOQMPPITPSSSSFTKVT KDKDJK*LLFNLYSSVEILPEVLHILKT
131	1481	A	1651	607	3	LAEGGDVFDCVLNGGPLPESRAKALFRQMVE AJRYCHGCGVAHRDLKCENALLQGFNLKLTD FGFAKVLPKSHRELSQTFCGSTAYAAPEVLQ GIPHDSSKGDVWSMGVVLVYMLCASLPFDD

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						TDIPKMLWQQQKGVSFPTHLSISADCQDLLKRLLEPDMLRPSIEEVSWHPWLAST**KQWQVLSNKVGGESKPDKKKK
132	1482	A	1656	150	48	LVAKSLLYCGCLFLQLAKNVGNNSFNDIMEANLTSPSPKTPSSDM*VFLIY*TYFGAWHVVDAQ
133	1483	A	1660	3	406	RKHIKLIIQKLSDVP*ECQNNQL*KLTEICEKEKKEFKKKMDDQRPEKITEASKDKSPMEEEKTEMIRSYIQEVGRYIKRLEEAQSKRLEKLREKHKEIRQPILDEPKGEGSSSFLSETCHEDTSWFPNFTP
134	1484	A	1666	1276	466	PGSTHASARITIYL*ILSNATEVDNNFSKPPPFFPAGAPPASSSSSSSSSSPTVSTAPPLIPPPGFPPPGAPPSSPLIPTIESGHSSGYDSRSARAFPYGVNAFPHLPGSAPSWSPLVDTSKQWDYYARSSSSSSSSSSSSPRDRDRER*RTTREREREDHSPTPSVFNDSDEERYRYREYAERGYERHRASREKEERHRERRRHEKEETRHKSSRSNSRRRHESEEGDSHRRHKHKKSKRSKEGKEAGSEPAEQESTEATPAE
135	1485	A	1673	1	417	PTRPVNSSQAFALVYYTLGAGGNLIAHMGLYRYWAGIGVLQSCESALTHYRLVANHVADISLTGGSVVQRIRLPDEVENPGMNSGMLQEDLIQYYQFLAEKGDVQAQVGLGQLHLHGGRGV*QNHQRAFDYFNLA
136	1486	A	1678	525	9	ANTSLSSAAVASPSSPCRTSTATTLPPPMPSFFCVFPSPSPSPSEFLSCIASVSRVHSLSSSSSGSSSTASSLNFSAIMGSSSATASWVLSTASTPPCPSALPSSPAQES*SLAASSSAWPVAGISPAGACTFPAGSASGAAKAPSPSWRCPSFRLFSLDDSSLSL
137	1487	A	1680	1	2999	AHRDEIQRKFDALRN SCTVITDLEEQLNQLTEDNAELNNQNQFYLSKQLDEASGANDEIVQLRS EVDHLRREITEREMOLTSQKQTMEALKTTCTMLEEQVMMDALENLDELLEKERQWEAWRSVLGDEKSQFECRVRELQRMLDTEKQSRARADQRITESQVVELAVKEHKAEILALQQALKEQKLKAESLSDKLNDLEKKHAMLEMNARSLLQQKLETERELKQLRLEEQAKLQQQMIDLQKNHIFRLTQGLQEALDRADLLKTTERSLEYQLENIVLYSHEKVKGMEGTISQQTKLIDFLQAKMDQPAKKKKVPLQYNEKLKALEKEKARCAELEEALQKTRIELRSAREEEAAHRKATDHPHPSTPATRQQIAMSAIVRSPEHQPSAMSLLAPPSSRRKESSTPEEFSSRLKERMHHNIPHRFNVGLNMRAKCACVCLDTVHFGRQASKCLECQVMCHPKCSTCLPATCGLPAEYVTHFTEAFCRDKMNSPGLQTEPSSSLHLEGWMKVPRNNKRGQQGWDRKYIVLEGSKVLIYDNEAREAGQRPVVEFELCLPDGDVSIHGAVGASELANTAKADVPYILKMESHPHTTCWPGRTLYLLAPSFPDKQRWVTALESVVAGGRVSREKAADAKLLGNSLLKLEGDDRLDMNCTLPFSDQVVLVGTEEGLYALNVLKNSLTHVPGIGAVFQIYIJKDLEKLLMIAGEERA LCLVDVKVKQSLAQSHLPAQPDISPNIFEAVKGCHLFAGKJENGGLCICAAMPSKVVILRYNENLSKYCIRKEIETSEPCSCIHFTNYSILIGTNKFYEIDMKQYTLEELDKNDHSLAPAVFAASSNSFPVSIVQVNSAGQREEYLLCFHEFGVFVDS

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, \=possible nucleotide insertion)
						YGRRSRITDLKWSRPLAFAVREPYLFVTHFNSLEVIEIQARSSAGTPARAYLDIPNPRYLGPAISSGAIYLASSYQDKLRLVICCKGNLVKESGTEHHRGPSSTSR*PASPLPQYQGQRALFQGRRK
138	1488	A	1686	2	526	GRPQGPAPGAGSPPEPGPGLWAALGCSLVWVPLCCLGGAAGRLL*ARSGKSGLRRRAHAGPPPGPCNSCP*CSAPESSGRGPLPGPGTGGVCSCWTRGCQTTARTAAAAAAGPAGRRPPGGAHQNGSCAASASQEAAAPPMCCPGRRVAVASPPETRCPAAPGTRCRLEAA
139	1489	A	1693	3	376	LPSMSNCNTSCFRLQSRTES*IRQAGHILLGRNEFIETKALGCAWFSLCYYLVLVFESSHKVDFVFIGV*CFSTPPGAQMFTIMSQACAERCNIMRLVDRRWAGIAKGVTQKIIGRVHLGEQKALGL
140	1490	A	1704	3	376	ERTNKFIKELMDGKNLIAATKSLSLVAQRKFAHSLRDFKFEFIGDAVTDDERCIDASLREFSNFLKNLEEQRREIMVS*EGCKLISQLSRGKKIWIKLVLVEVVVKHLSLGTVTVHCGKMRFPPEP
141	1491	A	1743	1	362	LITNKVFVARELSCLDVHLDSTGSTAVVADQDKLELELVLKGSYEDTQTSLGTASAFRFHYYMAAL*TELSGRLRSSKSNGWNGDNSTGYLTVPRLPLTIVKEVTMDVAPNVRGLNWMG
142	1492	A	1769	1	406	NNPSTLPRGS*PMSPRTTMGRRRQRRREHKSSLLASSTVPGGGQIVHTETTEVVLCDPLSGFGLQLQGIGIFATELSSPLVCFIEPDSPAERCGLLQVGDRVLSINGIATEDGTMEEANQLLRDAAAHKVV
143	1493	A	1789	1	447	QMLRNQGDQNTVPPDYHFADRIELL*PTEDQKNCIP*DTYLRPSALGNIVEVTHPCSPGPCPANELCEVNRRKGCTSGDPCLPYFCVQQGCKLGQA SDFIARQGTIQLQVPSASAGEVECYKICSCGQSLLENCMEMHCMDLPTDTSLALVR
144	1494	A	1814	1	404	PGRRFRPRLSQAGTDSGS*VFPDSFPSAPAEPILYFLQEPQDAYIVKNKPVELRCRAFPATQIYFKCNGEWSQNDHVTOEGLDEATGLRVREVHIEVSQQVVEELFGLEDYWCQCVAWSSAGTTKSRAYVRI
145	1495	A	1827	26	448	XVEEKHADTWRSXCLSDFFFHAAXLXCE*NCGDAISLSVGDHFGKGNGLWTAEKFQCEGSETHLALCPIVQHPEDTCIHSREVGVVCYRTDVRLVNGKSQCDGQVEINLGHWGSLCDTHWDPEDARVLCRQLNCGTAL
146	1496	A	1828	574	333	QHEGGDLRRRQLGEIQLTVRYVCLRAASAC*SMAAET*HHVPASGADPYVRVYLLPERKWA CRKKTSVKRKTLPELFDET
147	1497	A	1855	1	372	ERLVLTSHEHCLVLTFLWPSWTYHILLSRQHVRRLPKLTHAEHDHLASIMNKLLTNYDNLFETSVTYSMG*HGAPTGSEAGANWNH**LHAHYYPPLLRSDTVRFMVGSQLAQAQRDLTPEQ
148	1498	A	1879	568	7	LLSALDDKGGTQPSAFSNAPTIWCVTACAGIAHTYMAAEYLEKAGRKLGVNVVYVEKQGANGIEGRLTADQLNSATACIFAAEVAIKESERFN GIPALSPVVAEPIRHAALMQQALTLKRSDET RTVQQDTQPVKSVKTELQALLSGISFAVPLIVAGGTQVA*AV*RQGISSLHDVQVRTWNS
149	1499	A	1880	611	24	GLNSENALSNAMERGWQCLRLFAERLQDIPPSQIRVVATATLRLAVNAGDFIAKAQEILGCPVQVISGEEEARLIYQGVAHTGGADQRLVVD

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met Iod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, \=possible nucleotide insertion)
						IGGASTELVTGTGAQTT*LFSLSMGCVTWLERYFADRNLQQEKFDAAKAAREVLRPVADELRYHSHWKEVRGASVTVQALQEIMMAQGMDERITMEIWPPV
150	1500	A	1894	2	750	GRVDFFFTDYRPLIRDSNNYVLDEQTOQQAPHLMPPFLVDVDGNPHPTKYQRLVPGRENSADEHLIPQLGYVATSDGEVIEQIISLTQTNNDERSPESSILDGMRIRQLQQQQDORMGADQDTIPRGLSNGEETPRRGFRRLSLDIQSPPNIGLRRSGQVEGVRQMHQNAPRSQIATERDLQAWKRRVVVPEVPLGIFRKLEDFRLEKGEERNLVIIGRKRTKLQLSHKSDSVDGLVQSQRPTCRRKYP
151	1501	A	1900	141	785	GKTIQIQTMMQNKYKTVQKQYKTIPIKKNKA MEMQIKKKQFQDTCKVQTQYKALKNHQLEVTPKNEHKTILKTLKDEQTRKLAILAEQYEQSI NEMMASQALRLDEAQEAECQALRQLQQEMELLNAYQSKIKMQTEAQHERELQKLEQRVSLRRAHLEQKJEEELAALQKERSERIKNLLERQE REIETFDMESLRMFGFGNLVTLDDFPKEDYR
152	1502	A	1915	2	377	LVRLDDTQRDGLQNYEALLGLTNLSGRSDKL RQKIFKERALPDIEINYMFENHDQLRQAATECMCNMVHLKEVQERFLADGNDRKLVLVLLCG EDDDKVQNAAAGALAMLTAHHKKLCLKMT QVTT
153	1503	A	1921	1	237	AYQSLRLEYLQIPPVSRAYTTACVLTSAAVQL ELITPFQLYFIPELIFKHFQIWRLITNFLFFVPFG FNFLLYMIFLYT
154	1504	A	1928	2	354	EMVEGGEGKMCINTEWGGFDNGCIDDIRT YDTEVDEGSLNPGKQRYEKMTSGMYLGEIV RQILIDLTKQGLLFRGQISERLRTRGIFETKFLS QIESDRALLQVRRILQQLGLD
155	1505	A	1929	2	369	TEIAKIKMEAKKYEKELETMFQNDFEKACQA KSEALVLERKSTLERIHKHQEIETKEIYAQRQ LLLKDMDLLRGREAEKLQRVEAFESYQLELK DDYIIRTYRLIEDDRINIQISGHWQESP
156	1506	A	1935	1	270	VTRKLPFIVDAFTARAFRGSPAADCCLNEL DEDMHQKIAREMNLSETAFIRKLHPTDNFAQ RSCFGLIWFTPTTDLQILTSSILPSIL
157	1507	A	1936	584	305	ESKVNNNEKFRTRKSPKPAESPQSATKQLDQPTA AYEYYDAGHNHWCKDCNTICGTMFDFTHMH NKKHTQGOFOKSDFQKEELQQTFLPPERQG
158	1508	A	1939	1	423	TTHRLNVTAEPPTCSMPIYWMPDVPHRCITA NTCPVDLTDYCAQNGFYCLVYGFLPYGSLED RLHCQTCACPPLSWPQRLLDILLGTARAIQFLH QDSPSLIHDGKISSNVLIDERLTPKLGDFGLA RFSRFAGSSPIQSSM
159	1509	A	1974	3	401	HTSTARLLLHRGAGKEAVTSDGYTALHLAAR NGHLATVKLLVEEKADVLARGPLNQTAHL AAAIGHHSEVVEELVSADVIDLFD EQQLSALH LAAQGRHAQTVETLLRHGAHINLQSLKFQGG HGPATLLR
160	1510	A	1982	2	417	KFLKDLERKQYNKEEPLSEIGSCFLQNQEGFA IYSEYCNHNPAGACLELANLMKQGKYRHFFEA CRLLQQMIDIAIDGFLTPVQKICKYPLQLAEL LKYTTQEHDYNSNIKAAYEAMKNVACLINER KRKLESIDKIA
161	1511	A	1984	4	770	RETGSVSLSPSGLEGAEASYAVSPILYSSPDVKE LWLETLQGQRHSHTGVKSTPGQSAILMKLR SSHNASKTLNANNMETLIECQSEGDIKEHPLL

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, \=possible nucleotide insertion)
						ASCESEDSQLIEVKKKKKVLSWPFLMRRRLSPASDFSGALETDLKASLFDQPLSIICGDSDTLPRIQDILTLCLKGPGSTEGRRAANEKARKEELNEELNSGDAVDLERLPVHLLAVVFKDFLRSIPRKLLSSDLFEWMGALEMQDEEDRJEALK
162	1512	A	1986	864	501	LLNSGLFSAPDGNSNLEMRLTRGGNMCSGRIEKFQGRWGTVCDDDNFNIDHASVICRQLECGSAVSFGSSNFGEGRSGPIWFDDLCNGNESALWNCKHQGWGKHNCNDHAEDAGVICSSKD
163	1513	A	2001	419	187	AVDLSIDESSLTGETTPCSKVTAPOPAATNGDLASRSNIAFMGTLVRCGKAKGVVIGTGENSEFGDIINLSTFVVHS
164	1514	A	2012	284	597	SLLCLFPGTSTVVCKPIVIETQLYVIVAQLFGGSHIYKRDSFANKFIKIQAIEILKIRKPNDIETFKIENNWFVVAADSSKAGFTTIYKWERETGFYSHQSFR
165	1515	A	2013	2	403	EDPEELGHFYDYPMALFSTFELFTIIDGPANYNVDLPFMYSITYAAFAIAATLLMLNLLIAMMGDTHWRVAHERDELWRAQIVATTVMLERKLPRCLWPRSGICGREYGLGDRWILRVEDRQDLNRQRIQRYA
166	1516	A	2019	2	927	CCQREGGLKAVVQILSHGRNGLPGEASSQGLSAASSTPVFHLLAQIDSAPDNIDWVEMLFNKNMVTERLQNVMVLEQCFSDSLSSLYRFLTYSYLLAFNVWLLLAPVTLCYDWQVGSIPLVETIWDMRNLATIFLAVVMALLSLHCLAFAKRLEHKEVLVGLLFLVFPFIPASNLLFRVGFVVAERVLYMPMSMGYCILFVHGLSKLCTWLNRGCGATTLIVSTVLLLLFSWKTVKQNEIWLSSRESLFRSGVQTLPINAKVHYNYANFLKDQGRNKEAIYHYRTALNNNAKWDYLCWRFRKLTLDPL
167	1517	A	2025	696	71	AAASAASSLTVTLGRLASACSHSILRPGPGAASLWSASRRFNSQSTSYPGYVPKTSLSPPWPEVVLPPDVEETRHAEVVKKVNEMIVTGQYGRFLFAVVHFASRQWKVTSEDLILIGNEELDACGERIRLEKVLVGADNFTLLGKPLLGDLVREAVTIEKTESWPRIIMRFRKRKNFKKKRIVTTPQTVI.RINSIEIAPCLL
168	1518	A	2046	2	366	HLQVAARVFMPQLAQDASPAPKPLKGQAQAPQLQGAARVFMPQLAQAKASKPLQMGIAPPRLRRAARVLMLPQAAQVRAPRLLQVQSQVSKKQQAQQTSEPPQDLDQVPEEFQGQDQVLR
169	1519	A	2049	1	945	QNLEDREVNLNGVQTELITSPRTKDTLSDMTRTVEISGEGGPLIGHVVPFFSSLGRIGLGLFIRGIEDNSRSKREGLPHENECIVKINNVDLVDKTFAQAQDVFRQAMKSPSVLLHVLPQNRQYEKSIGLSLNIPGNNDGVLKTKVPPPVGKSGLKTANLTGTDSPETDASASLQQNKSPRVPRLLGGKPSSPSLSPLMGFGSNKNAKKIKIDLKKGPEGLGFITVVTRDSSJHGPGPIFVKNLPKGAAJKDGRQLSGDRILEVNGRDVTGRTQEELVAMLRSTKQGETASLVIARQEGHFLPRELVMFRSQSH
170	1520	A	2050	363	1	PVATHLTKILNSDEHAVVISSAKTLCTEVKDFVAKVEKTYDKTLENAVADAVASKCSVLNEKLEQILQLQALTDQSQAAPVLPGLSPLIVEEDAVESSSEESLGESKEQLGDDVTKPSSQKA
171	1521	A	2055	139	675	IPSRPWLGRTGLDPAGPLFNGKPHQDRLDPSDAQFVDVIHSDTDALGYKEPLGNIDFYPNGGLDQPGCPKTILGGFQYFKCDHQRSVYLYLSSL

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, \=possible nucleotide insertion)
						RESCTITAYPCDSYQDYRNGKCVSCGTSQKE SCPLLGGYYADNWKDHLRGKDPPMTKAFFDT AEESPFCMYHYFVDIITWNKNVR
172	1522	A	2056	3	361	LIQHKSAVEYAQS HLSLVS MCKE SHKC SEP K MEW KV KIRSDGTRY IT KRP VRD RIL KER AL KI KEER SGL TT DDD TMSE M KMGR Y WSKEER KQ HLVR GKE QRRR RREFMM RIRLK CLKES
173	1523	A	2060	1	387	GTRILSMQIPFVGFQPI RTSEHMAAAGV FALL QAYAFLQYLRDRLTKQEFQTLFFLG VSLAAG AVFL SVIYL TYTGYIA PWSGRF YSLW DTG Y A KIHPIIAS VSEHQPTT WVSFFF DLHILGCTFPAG
174	1524	A	2071	74	443	LLMGP KAKKSGSKKKVTKAERLKL LQEEE E RR LKEEE EARLK YKEE MERLEI QRIE KEK W HR LEAK D LERRNEE L ELYLLER CPEAE KL K QETKLLSQWKHYIQC DGS PDP SVAQEM NT
175	1525	A	2083	139	486	AALT W S QPQE FWPMEM QPIV TDMV TVHW V AESSTV GWLCALFRV THVG V GAT GHGV V CG RR VLG LPLPS PAPM PIMSL PEGES R KEREV Q RLQFPY LE PGH ELPAT LLAFLAAV
176	1526	A	2092	3	587	EGSVNF KFGVLFA KDGQLTDDEMFSNEIGSEP FQKFLNLLGDTITLKGWTG YRGGLDTKNDTT GIHSVYTVYQGHEIMFHVSTMLPY SKENQQ VERKR HIGNDIVTIVF QGE ESSPAFKPSMIRS HFT HIFAL VRYNQ QND NYRLK I FSEES VPLFG PPLPTPVFTDHQE FRD FLLV KLIN GEKATLET PCI
177	1527	A	2103	44	427	GKGQV SLEGRPH RGPLCL GSWWPGS RVP G C CDGA WLAWACWVFGNDFPSPASAACS ALLG CSVSTA CLC VPLCSG SPLAP FRR TAAL QEGL R RAVS VPLTA ETV ASLW PALQ ELARCGN LAC RSDLQ
178	1528	A	2104	2	409	ALQSTL GAVWLGLL NSLW KVA ESKD QV FQ PSTAAS SEGA VVE IFCNHSV SNAYN FFW YLHF PGCA P RLLV KGSKPS QQGR YNMT YERF SSSL LILQV READ AAV YYC AVE VPNTDKL IFGT GT RLQVFP NI QNP D
179	1529	A	2111	1	312	PTRSS TRPSSLF VHASAK GGEKEE GDDGH YL MRTESHT GLKGGNANLV FMLK RNT EPKKG SYHF DLERL RAAH ILF ERE QEH LAPGG ISMPL PPPLPL PA CLG
180	1530	A	2116	3	366	TSIKRAIE TTDV TRSFG WDSSEA WQQHDV QE LCRVMFD ALEQ KWQK QT EQADL INELY QGKL KD YVRS LECGY EGW RIDTYLDI PLV IRPY GSS QAFASV VCTFH LTACVSLH RIHN STVV
181	1531	A	2117	2	386	YGLGAH FGR LF IQAGIN END FYDG AW CAGR NDLO QWIE VDARR LTRFTGV IT QGRN SLW LS DWV TSYK VMV SNSD HTW VTG KNGSGD MIFE GNSE K EIPV LNE LPV PMV A RYI RIN PQ SWFDN GSIC I
182	1532	A	2123	1	493	RTKTDV YILNL A VAD LLL FTLP FWAVNA VH GWVL GKJM CKITSAL YT LN FVSGM QFLACISI DRYV A VT KVP SQSGV GK PCWI ICFCV WMAAI LLSIPQLV F YTVNDN ARCI PI FPR YL GTSM KAL IQM L EICIG FV VPFL IMGV CYF IT ART LMKMP NIKIS
183	1533	A	2140	3	561	RQA WHE AFK V RKE I LT V ICCLLA F CIGL IFV Q RSG NYF VTM FDD YSAT LPLL IV VILE NI A VCF VY GIDK FME DLK DML GFAPS R YYYY MW KYI

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, \=possible nucleotide deletion, =possible nucleotide insertion)
						SPLMLLSLLIASVNVNMGSLSPPGYNAWIEDKAS EEFLSYPTWGLAVCASLDVFAILPVPVAFIGR RFSLIDDGAGPFCSAAYTTTGCRTPYL
184	1534	A	2145	3	538	HELTVAAADRGQPPQSSVVPVTVTLDVND NPPVFTRASYRVTVPEDTPVGAEPLLHVEASD ADPGPHGLVRFTVSSGDPGSGFELDESSGTLR LAHALDCETQARHQLVVQAADPAGAHFALA PVTIEVQDVNDHGPAFLPNLLSTSVAENQPPG TLVTTLHAIDGAGAFGRRLRYHL
185	1535	A	2151	2	671	LDKLLDRMENYNIFNEYILKQVAATYIKLGW PKNNFNGSLVQASYQHEELRREVIMLACSGF NKHCHQQASTLISDWISSRNRRIPLNVRDIVY CTGVSSLDEDVWEFIWMKFHSTTAVSEKKIL LEALTCSDDRNLLNRLLNLNSLNEVVLQDAI DVIIHVARNPNGRDLAWKFFRDWKWLNLTRI RQKTLFDFAEPLAFIILYTAIDNPPLVREH E
186	1536	A	2153	2	400	GPMCDKHSFAAEKFHAGFIDYIVHPLWETWA HLALPDAQDILYTLEDNRNWVDSMIPQSPSPP LDEQNQRDWQQLLENLHVETLDEEDSEGPEK EGEGQTYFTSSKTLCGIVPQNTDSLGETGIHIC AHDKSP
187	1537	A	2158	227	442	FNCFRVASDSFLENSLLLIMILPLRNATQEFIG PGAVAYTCNPSTLGGWGGWITRSGVRDQPG QHGGTPS
188	1538	A	2167	3	486	AHLGGAWLTQRSLGWSAAPGPARAAKEVVA CIPQNQKMNIWRMKTSKHLQLLSFVLGAVSP AVVVPYMMVLQENGYGVEEGIPTLLMAASS MDDILAITGFNTCLSVFSSGCARSSGRNSKS LRTPLGTCEGCDSSIFSHLDHSSKWSTYGHSGA
189	1539	A	2168	2	412	EFLSSNQITQLPNTTFRPMPLRSVDLSYNKL QALAPDLFHGLRKLTTLHMRANAIQFVPUFIF QDCRSLKFLDIGYNQLKSLARNSFAGLFKLTE LHLEHNDLVKVNFAHPRLISLHSLCLRRNKVA AIVVSSLWD
190	1540	A	2179	64	399	MRLNQNTLLESFGXXRPYTSEHAPTYHQW MKADELLRWTTESEPLTLEHEYAMQRTWLED AYECTFIVLDAEKRAQPGATEEESCMVGDVN LFLTDLEDLTGEIEVILIAEP
191	1541	A	2190	1	469	CLDRAAGIRHERNVIYINETHTRHRGWLARR LSYVLFIQERDVHKGMFATNVTEVNNSSRV QEAIAEVAAELNPDGSAAQQQSKAVNKVKKK AKRILQEMVATVSPAMIRLTGWVLLKLFNSF FWNIQIHKGQLEMVKAAATETNLPLLFLPVHR SH
192	1542	A	2197	26	157	PSKXGGIRLLLTGTQLYGRFGSIALPLGDLDR DGYNCGREEPY
193	1543	A	2236	2	383	EYFPNSIWRSLFSTMMDLDIGFYTYRILQALS YTHSKGIMHRDVKPLNILCNSPRNKVILADW GLAEFYHPMRKYSVHVATRYYKSPEILLDYE YYDYSLDIWAvgVILLELLTLKLHVFEggDN EQ
194	1544	A	2241	105	409	RKGVGKMPTESEGRPGQERSDWVTSYKVMGS NDSHTFWTVKNGSGDMIFEGNSEKEIPVLNE LPVPMGARYIRINPQSFWFDNGSICMRMEILGC PLPDPNNY
195	1545	A	2245	1	672	MGVASDWTKRIEYQPGSGSMPLFPSIHLTC GAVSSLQIVTELQTNYIGKGCDRETYSEKSLQ

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, \=possible nucleotide insertion
						KLCGASSGIIDLLPSPSAATNWTAGLLVDSS EMIFKFDGRQGAKIPDGIVPKNLTDQFTITMW MKHGPSPGVRAEKETILCYSDKTEMNRHHY ALYVHNCRVFLLRKDFDQADTFRPAEFHW KLDQQALAKVDGQPGKSITRQLQEMPVTIQG ISLKPS
196	1546	A	2256	1	396	FRGTPVSGLTNRDTLAVIRHFREPIRLKTVKP GKVINKDLRHYLSLQFQKGSIDHKLQQVIRD NLYLRTIPTCTRAPRDGEVPGVDYNFISVEQF KALEESGALLESGYDGNFYGTPKPPAEPSPF QPDGV
197	1547	A	2259	43	594	QLAIEIGVRALLFGVVFVTEFLDPFQRVIQPEEI WLKYKNPLGQSDNIPTRLMFAISFLTPLAVICV VKIIIRRDKTEIKEAFLAVSLALALNGVCTNTI KLIVGRPRPDFFYRCFPDGVMNSEMHCTGDP DLVSEGGRKSFPSIHSSFAFSGLGFTTFYLAGKL HCFTESGRGKSWRLCAA1PL
198	1548	A	2275	3	404	TCTTVVVIPRMLVDLSESKTISLPECATQMFF FLGFA\$NCNCIMAAMSYDRYTAIINPLQYHT LMTRKICLQMMMASWMVGLFSLCIIVTVFN LSLCDLNLTQHYFCDISPVVSLACNYTFYHEM AIFVLSA
199	1549	A	2315	1	375	LTQMFFIHALSAIESTILLAMA\$D\$RYVAICHPL RHA\$AVLNNTVTAQIGIVAVVRGSLFFFPLPLLI KRLAFCHSNVL\$HSYCVHQDV\$MKLAYADTL PNVVYGLTAI\$LLVMGXDRMFISLSYFLII
200	1550	A	2334	2	409	PRVRPQQRKMSFFFKTELGEKLVTKLFETDF SDDPMLPSPDQLKKKAPFTNKKLKAHQTPVD ILKQKAHQ\$LASMQVQAYNGGNANPRPANNE EEEDEEDEYDYDYESLSDDNILED\$PENKSCH DQLQFEYKEEM
201	1551	A	2350	3	512	ISWEAQIAEIIQWVSD\$EKDARGYLQALASKM TEELAE\$LRSSSLGSRTLDPLWKVRRSQKLD\$M SARLELQSALEAERAKQLVQEELRKVKDAN LTLESKLKDSEAKNRELLEMEILKKMEEK FRADTGKLMCDSALFEYKYFSNECFYFLFD LIVTLEAPTEFQIQY
202	1552	A	2351	1	1003	PSSYSSDELSPGEPLT\$PPWAPLGAPERPEHLL NRVLERLAGGATRDSAASDILLDDIVLTHSLF LPTEKFQELHQYFVRAGGMEGPEGLGRKQA CLAMLLHFLDTYQGLLQEEEGAGHIKDLYL LIMKDESLYQGLREDT\$RLRHQLVETVELKIPE ENQPPSKQVQKPLFRHRRID\$CLQTRVAFRGS DEIFCRVYMPDH\$YVTIRSRLSASVQDILGSV TEKLQYSEEPAGRED\$LILVAVSSSGEKVLLQ PTEDCVFTALGINSHLFACTRD\$YEALVPLPE EI\$VSPGDTEIHRV\$EPEDVANHLTAFH\$ELFR CVHELEFV\$YVFHGE
203	1553	A	2361	2	403	NNLNCAEPLFEQNN\$LNVN\$NTQKKTVWLIH GYRPVGSIPLWLQN\$FV\$RILLNEEDMNIVVD WSRGATT\$FIYNRAVKNTRKVAVSLSVHIKNL LKHGASLDNFHFIGGSLGAHISGFVGKIFHGQ LGRITGLDP
204	1554	A	2390	280	476	SPSLLPQCLMSLSDL\$LS\$PAPP\$HLS\$PRCPSPQ AGSRLGAMRCAREMDATPMPPAPSCPSERT
205	1555	A	2400	543	745	AAVALRDISWQQPYPMDFYAGSSLGPWTVN HGQDRRRPHAPGRPAR\$KVQEGSARPPSAVAC EDCSCR

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, \'=possible nucleotide insertion)
206	1556	A	2406	122	485	DLSPDSREDHPQGHRRLLPKRPVRGSLMPGH THHPCPVSSSTNDTDPQIWVSVGSLRMGTGG MGANASTSPRCWDLSSGNKKWIQVPILASIV ESRGGLLATGVGGMCACVPRNQPLTGT
207	1557	A	2409	289	418	LWTLYRHKQQVQHNHSNRLSCRPSQEDRAT HTIMVLDKENTL
208	1558	A	2413	64	492	VQGTGXAFIAFTEAMTHFPASPVWAGMFFI MLINLGLGSMIGTMAGITTPIDTFKVPKEMFT GGCCVFAFLVGLLFVQRSGNYFTMFDDYSA TLPLTLIVENIAAVWYGTKKFMQELTEML GFRPYRFYFYMWKFVSP
209	1559	A	2417	3	877	EKERLLDEWFTLDEVPGKLHLRLIEWLTLMP NASNLKDVKLTDIKADKDQANDGLSALLILY LDSARNLPIRYKTNEPVWEENFTFFIHNPKRQ DLEVEVRDQEHQCPGLNLKVPLSQLTSEDM TVSQRFQLGNNSGPNTIKMKIALRVLHLEKRE RPPDHQHSAQVKRPSVSKEGRKTSIKSHMSG SPGPFGSNTAPSTPVIGGSDKGMEKAQPPE AGPQGLHDLGRSSSSLASPGHISVKEPTPSIA SDISLPIATQELRQRLRQLENGTLGQSPLGQI QLTIP
210	1560	A	2422	35	456	REFAASDLEPFTPTDQPI SPEAITQPSCLIKRQRA AGNPGSLAATJDHKPCSAPLEPKIQASRNQRW GAVRAAESLTDIAEPASPVHETPIDASQTQK VEPASKSRFTPELQAKVSHSRERALSTMATP HHAQPQRGE
211	1561	A	2431	1	764	RRYSQKLJQHTACQLLRTYPAATRIDSSNPNP LMFWLHGILQLVALNYQTDDLPLHINAAMFE ANGGCGYVLKPPVLWDKNCPMYQKFSPLER LDLSMDPAVYSLTIVSGQNVCPNSNMGSPCIE VDVLGMPLDSCHFRTKPIHRRTLNPMWNEQF LFHVHFEDLVFLRFAVVENNSAATQAQRIPL KALKRGYRHLQLRNLHNEVLEISSLFINSRRM EENSSGNTMSASSMFNTTEERKCLQTHRVTVH GVPG
212	1562	A	2436	1	411	GIRGTTGHLGCPIDDPSLTDTVSVVMEDKPI YINGTKKEEDDSLTIIFAVAKRDHVSDTCGAC TDLDHNLDKGYLTVLGEQATPTINRLGALPKG RANRTRDLELTYLAERIVRLTWIPGDANNRPI TDYDCQIEHQ
213	1563	A	2445	1	1294	MSSIGCLWWSRSSQIDGLTAEKSGPEKPHGT WLMPPELHPKEQILELLVLEQFLSILPEELQIWW QQHNPESEESVTLEDLEREFDDPGQQVVPAS POGPAVWKDLTCLRASQESTDIHLQPLKTQ LKSWKPCLSPKSDCENSETATKEGISEEKSQG LPQEPSFRGISEHESNLVWKQGSATGEKLSP SOGGSFQSVIFTNKSLGKRDLYDEAERCLLT TDSIMCQKVPPPEERPYRCDVCGHSFKQHSSLT QHQRHTGEKPYKCNCQCGKAFSLRSYLIIHQR IHSGEKA YECSEC GKAFNOSSA LIRRKIHTG EKACKCNECGKA FQS QSYLIIHQRHTGEKPY ECNECGK TFSQSSKLIRHQRHTGE PYECNE CGKA FRQ SSELITHORIHS GEK PYEC SEC GK A FSLSSNLIRHQRHSG
214	1564	A	2461	1	615	GIPGSTISSSRNIFLEDDLAWQSLIHPDSSNTPL STRLVS VQEDAGKSPARNRASITNLSDLRSG SPMVPSYETSVSPQANRTYVRTETTEDERKIL LDSVQLKDLWKKICHSSGMEFQDHRYWLR THPNICVGKELVNWLIRNGHIATRAQAIAGQ

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, !=possible nucleotide insertion)
215	1565	A	2464	3	2932	AMVDGRWLDCVSHHDQLFRDEYALYRPLQV LFSVYCQLECSKLIL GPGVRSSQDGMDAVFVHLRTAWPRCSFISGQ HGPGRHGRVVCSSQDSMADVFVHLRTAWPT CSLISGQHGPGESVSYEDDDIPAPASLLHVNA AAPALTNPATPVLCATPNNTAQKEKVPMSGMR QRPAVGVRISSRTPDLTCAVSTHSTVPGVRISSC TPDLTCAVSIHSTVPSVCISSTPDLTCAVSTH STVPGVRISSCTPDLTCAVSTHSTVPGVRISSR TPDLTCAVSIHATVPGVRISSCTPDLTCAVSIH ATVPGVRISSCTPDLTCAVSTHSTVPGVRISSR TPDLTCAVSIHATVPGVRISSCTPDLTCAVSIH ATVPGVRISSCTPDLTCAVSTHSTVPGVRISSR TPDLTCAVSIHATVPGVRISSRTPDLTCAVSIH ATVPGVRISSCTPDLTCAVSIHATVPGVRISSC TPDLTCAVSIHATVPGVRISSRTPDLTCAVSIH ATVPGVRISSCTPDLTCAVSIHATVPGVRISSR TPDLTCAVSIHATVPGVRISSCTPDLTCAVSIH TPDLTCAVSIHATVPGVRISSRTPDLTCAVSIH STVPGVRISSRTPDLTCAVSIHATVPGVHSSC TPDLTCAVSTHSTVPGVRISSRTPDLTCAVSIH STVPGVCISSTPDLTCAVSIHSTVPSVHSSCT PDLTCAVSIHSTVPGVRISSRTPDLTCAVSTH STVPGVHSSCTTDLTCAVSIHATVPGVHSSCT PDLTCAVSTHTVPGVRISSRTPDLTCAVSIH TVPGVRISSCTPDLTCAVSTHSTVPGVRISSRT PDLTCAVSTHSTVPGVRISSRTPDLTCAVSIH TVPGVHSSCTPDLTCAVSIHATVPGVRISSRT PDLTCAVSIHATVPGVHSSCTPDLTCAVSTH TVPGVRISSRTPDLTCAVSIHSTVPGVHSSCT PDLTCAVSTHSTVPGVHSSCTPDLTCAVSTH STVPGVHSSCTPDLTCAVSIHATVPSVHSSCT PDLTCAVSIHSTVPGLLTSVSQTSTG
216	1566	A	2477	1	414	FRTKSYRKGSYRCIVSEWIAEQGNWQEIQEK AVEATVVIQPTVLRAAVPKNVSAEKGELD LTCNITIDRADAVRPEVTWSFSRMPDSTLPGS RVLARLDRDFLVHSSPHVALSHVDARSYHLL VRDVSKENSGYYY
217	1567	A	2480	2	460	CRTLCEGQPQRFEYEYLGYKAGLYEAIADHY MQVLVCQHECVRELATRPGRLSPIENFLPLHY DYLQFAYYRVGEYVKALECAKAYLLCHPPD EDVLDNVDDYYESLNLDDSDIPASIEAREDLMF VKRHKLESELIKSAEGLGXSYTEPNYW
218	1568	A	2483	140	383	AFSSHFPSPAPQFPCEGFYGLYDKILLFKHDPT SANLQLVRSQGDIQEGDLVEVVLASATFED LQIRPHALTWHSYRAP
219	1569	A	2489	3	428	SSRLVLLAGAAALASGSQGDREPVYRDCVLUQ CEEQNCGGGALNHFRSRQPIYMSLAGWTCRD DCKYECMWTVTGVLYLQEGHKVPQFHGKWP FSRFLFFQEPASAVASFLNGLASLVMLCRYRT FV PASSPMYHTCVAFAA WVS
220	1570	A	2498	1	1297	MDGEAVRFTDNQCVSLHQEVDSVAMAPA AKPILRVQATPAFMAVTLVFSLVTLFVVVDH HHFGREAEMLRELIQTFKGHMEMSSAWVVEIQ MLKCRVDNVNSQLQVLGDLGNTNADIQMV KGVLKDATTLSLQTQMLRSLEGTNAEIQLR KEDLEKADALTFTQTLNFLKSSLNTSIELHVL SRGLEANSEIQLNASLETANTQAQLANSS LKNANAIEIYVLRGLHDVSNLRTQNVQLRNS LEGANAEIOGLKENLONTNAINSOTOAFIKSS

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, =possible nucleotide insertion)
						FDNTSAEIQFLRGHHLERAGDEIHVLKRDLMVTAQTKQKANGRLDQTDTQIQVFKSEMEVNVTLNAAQIQVLNGHMKNASREIQTLLKQGMKNA SALTSQTQMQLDSNLQKASAEIQRLRGDLENTKALTMEIQQQEQSRKTLHVWITSQEQLORTQ
221	1571	A	2501	3	500	RVRLNNNDGLSPLMMAAKTGKIGIFQHIIIRREV TDEDTRHLSRKFKDWAYGPVYSSLYDLSSLD TCGEEASVLEILVYNISKJENRHEMLAVEPINE LLRDKWRKGAVSFYINVVSYLCAMVIFTLT AYYQPLEGTPPYPRRTVDYLRLAGEVITLFT GVLFFFNT
222	1572	A	2508	3	395	DAHCQRKLAMQEFMEINERLTELHTQKQL ARHVRDKEEEVDLVMQKVESLRQELRRTER AKKELEVHTEAALAAEASKDRKLREQSEHYSK QLENELEGKQKQISYSPGVCSIEHQQEITKL KTDLEKK
223	1573	A	2544	2	412	NDPAIIISNSFAAVVHTIVNETLEMTSLEVTK MVDERTDYLTKSLKEKTTPFSHCDQAVLQCS EASSNKDMFADRLSKSIKHSIDKSVIPNIID KNAVYKESLPVSGEESQLTPEKSPKFPSQNZQ LTHCSLSAA
224	1574	A	2552	401	1	GASLCFISTAAFTVLTFLIDSCRFSYPERPIIFLSMCYNIISIAYIVRLTVGRERISCDFEAAAEPVLIQEGLKNTGCAIJFLIMYFFGMASSIWWVILTWFLAAGLKWGHEIAEMHSSYFHIAAWAIPAVK
225	1575	A	2563	724	1	MSARKERREKGEEECEGEKEKDGDDEDEKEEEKEGLGEEEKEAGKKKKQEEKEKEKGAVYSRVARICKNDMGGSQRVLEKHWTSTFLKARLNC SVPGDSFFYFDVLQSITDIQINGIPTVVGVFITTQLNSIPGSAVCAFSDMDIEKVFKGRFKEQKTPDSVWTAVPEDKVPKPRPGCCAKHGLAEAYKTSIDFPDETLSFIKSHPLMDSAVPPIADEPWFTKTRVRYRLTAISVDHSAAGPYH
226	1576	A	2571	449	3	EGVLFVYGNYVGDMNFEMAAEMAQEVAIPTRTVLTDDISSSPIEDRDGRRGVAGNFFIFKVAGAACDRGMSLEACEAVTRKANRTYTMGVALEPCSLPQTRRHNFEGAAEEMEIGMGHGERGVIREKMMPADAIVDHIMDRIFS
227	1577	A	2575	3	1197	VLSDLCLFYRDEKEEGILGSILLPSFQIALLTS EDHINRKYAFKAAHPMRMTYYFCTDTGKEMELWMKAMLDALAVQTEPVKRVDKITSENAPTKETNNIPNHRVLIKPEIQNNQKNKEMSKIEEKKALEAEKYGFQKDGDRPLTKINSVKLNSLPSEYESGACPAQTWHYRPINLSSSENKIVNVSLADLRRGGNRPNTGPLYTEADRVIQRTNSMQQLEQWIKIQKGRGHEEEETRGVISYQTLPRNMPSHRAQIMARYPEGYRTLPRNSKTRPESICSVTPSTHDKTLGPAGAEKRRSMRDDTMWQLYEWQQRQFYNKQSTLPRHSTLSSPKTMVNISDQTMHSIPTSPSHGRIAAYQGYSPQRTYRSEVSSPIQRGDVTIDRRHRAHHPKVK
228	1578	A	2583	3	330	LPFLGLGSVPQGMVMASPEMNPTICSVFEAHIVLLFHATTIFRRGFQVTLVGNVRQTAVVEKIHAKVRGTWPFFSPEVRKEGLLPQTGRELLDPTMGIKPHLWWVA
229	1579	A	2589	1	448	DDKNAQGIKRHKPTSGNAFTICKYPCGKSR ECVAPNICKCKPGYIGNSNCQTALCDPDCKNHGKCIKPNICQCLPGHGGATCDEEHCNPPCQH

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						GGTCLAGNLCTCPYGFVGPRCETMVCNRHC ENGGQCLTPDICQCCKPGWYGPTCSTA
230	1580	A	2593	2	138	AVTFSVVFAYVADITQEHERSMA YGLVCMFI LYLYLLRNAAFFLR
231	1581	A	2595	185	2	SGPYTDFTPWPTEEQKLEQALKTYPVNPPER WEKIAEA VPGRTKKACIKRYKVADLRISK
232	1582	A	2596	1	391	STVTGQPRLLDTAGHQQPFLELKIRANEPGA GRARRRTPTCEPATPLCCRRDHYVNFOELGW RDWILLPEGYQLNYCSGQCPTHLAGSPGIAAS FHSAVFSLLKANNPWPGRTSWCVPTARRPLS LLYL
233	1583	A	2601	184	403	LLFSDEIIIMAAPLRIADVTSGLIGGEDGRVYV YNGKETTLGDMTGKCKSWITPCPEEKVNVLQ NSIPYWERIT
234	1584	A	2614	178	335	PLTLCLPENNKKPPQADAVPDKELTLPVDSTIL DGSKSSDDQKIIISYLWEKTQ
235	1585	A	2616	2	896	DVLEVYGTGVASTRHEMTDKHKELEDLV AKFLNVEAACMFGMGMFATNSMNIPALVGKG CLILRDEVNHTSLVLGARLLGATIGIFKHNYA QSLEKLLRDAVIYQGPTRRAWKJLILVEGV YSMEGSIVHLPQHIAALKKKYKAYLYIDEAHSI GAVGPTGRGVTEFFGFLDPHEVDVLMGTFTKS FGASGGYIAGRKARILSPPACLVPNNTGSHSLH RLTRDLQMNEAMVALVTDRLOQGWNSGEGN WDRADKFGDLVDYLRVHSHSAVYASSMSPPI AEQIIRSLKLIMGLDGTQ
236	1586	A	2621	1	392	NTSSFPQPSPARPSLPHLSQHPSNPLLPLAS ADHPQCGRFLPLHPEPEPLCPSPSLSYPTLVSS WSSPFSSHGCPGGLYPFPPTSPKTIQPPGLAQK KMLCIPPCRQQLRGAQSMPGHGALSPLLLPP A
237	1587	A	2628	398	1	DLVCKISGFGRGPRDRSEAVYTMSGRSPAL WAAPETLQFGHFSASDVWSFGIJMWEVMAF GERPYWDMSGQDVKAVEDGFRLPPRNCPN LMHRLMLDCWQKDGERPRFSQIHSILSKMV QDPEPPNV
238	1588	A	2631	1	1104	WSPCSLTCVGVLQTRDVFCSHLLSREMNETV ILADELCRQPKPSTVQACNRFNCPPAWYPAQ WQPCSRCTCGGGVQKREVLCKQRMADGSFLE LPETFCASAKPACQQACKDDCPSEWLSDW TECSTCSEGQTQTRSAICRKMLKTGLSTVVNS TLCPPLFSSSIRPCMLATCARPGRPSTKHSPHI AAARKVYIQTTRQRKLFVGGGFAYLPLKTA VVLRCPARRVRKPLITWEKDQHQHLISSTTHVT VAPFGYLKJHRLKPSDAGVYTCASAGPAREHF VIKLIGGNRKLVARPLSPRSEEEVLAGRKGGP KEALQTHKHQNNGIFSMSGSKAERKGLAANPGS RYDDLVSRLLEQGAPCSSKKKN
239	1589	A	2636	1	678	MKPFDNILLDEHGHVHITDFNIAAMLPRETQIT TMAGTKPYMAPEMFSRKGAGYSFAVDWW SLGVTAELLRGRRPYHRSSTSSKEIVHTFET TVVTYPSAWSQEMVSSLKKLLEPNPDQRFQSQ LSDVQNFPYMNNDINWDAVFQKRLJPQFIPNK GRLNCDPTFELEEMILESKPLHKKKKRLAKK EKDMRKCDSSQTCLLQEHLDSVQKEFIINRE KVNRDCI
240	1590	A	2639	389	3	ELLDPTTPMRTKCIELLYAALTSSSTDQPKAD LWQNFAREIEEHVFTLYSKNIKKYKTCIRSKV ANLKNPRNSHLQQNLLSGTTSPREFAEMTV

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						EMANKELKQLRASYTESCIQEHYLPQVIDGTY
241	1591	A	2640	392	3	IRLTILRCVFMRLATICVLVFTLGSKITSCDDD TCDLCGYNQKLYPCWETQVGQEMYKLMIFD FIIILAVTFLVDFPRKLLVTYCSSCKLIQCWGQ QEFAIPDNVLGIVYQGTICWIGAFFSPLLPAMY
242	1592	A	2642	405	1	YFKNTTLLLGVVICVAAAEEKWNLHKRIALRMVLMAGAKPGMULLCFMCCTLLSMWLSNT STTAMVMPIVEAVLQELVSAEDEQLVAGNSN TEEAEPISDLVKNSQPSVELIFVNEDILDPLMK SPLMISQACI
243	1593	A	2646	412	2	CLAMIKGIQSSGKIIYFSSLFPYVVVICFLIRAF LLNGSIDGIRHMFTPKEIMLEPKVWREAATQ VFFALGLGFGGVIASFSSYNKRDNNCHFDAVL VSFINFFTSLATLVVFAVLGFKANVINEKCIT QNSETV
244	1594	A	2650	1	1271	MTTTLIGLLKTARLRLRVARKLDRYSEYG AAVLMLLMCIFALIAHWLACIWYAINVERP YLTDKIGWLDSLQQIGKRYNDSDSSSGPSIK DKYVTALYFTSSLTSVGFGNVSPNTNSEKIF SICVMLIGSLMYASIFGNVSAAIQRLYSGTARY HMQMLRVEFIRFHQIPNPLRQLLEYFQHA WTYTNGIDMNMVNTNGTCSSCTSDDGHFILVS NHHQGGIYIWSNDAASMQRPFNIKSSLGS TSDSNLNKYSTINKIPQLTLNFSEVKTEKKNSS PPSSDKTIIAPKVKDRTHNVTEKVTQVLSLGADVLPEYKLQAPRINKFTILHYSPFKAVWDWLILLVIYTIAIFTPYSAAFLNNDREEQKRRECGY SCSPLNVVDLIVDIMFIIDILINFRRTTYVNQEE VVSDPASV
245	1595	A	2656	385	2	NLTWWPLFRDVSFYVVDLIMLIIFFLDNVIMWWESLLLTAFCYVVFMKFNQVQEKKWVKQMINRNKVVVKVTAPEAQAKPSAARDKDEPTLP AKPRLQRGGSSASLHNSLMRNSIFQNKIHTLD PHV
246	1596	A	2660	200	506	VLVLQMNYQMLIYYVLFKVNNEFLAFEGPI LLDMRIKHLIKTNQLSQATALAKLCSDHPEIG IKGSFKQTYLVCLCTSSPNGKLIEEVSMFSFIS NYFLS
247	1597	A	2678	3	267	DAWVKNDIIFNQTERKOKISENLKHLASRVV VQKNLVFVVGLSQRLADPEVSPLVFFVILIFF VSLSTYLEIIFDPAQLCDSSEHIS
248	1598	A	2687	1	404	DFTTAAAMMRTLSLFGDVRSVDHRFSVTLFGAAIKSVKNPDKKSIEQVLDLVPLLLQSQENDAVAAESRQVLTICAQFLKWKLPREVYSKDPWHIKPTEAGTICRFFEKKCKGKINILEQTLYSKNPKL
249	1599	A	2692	1	440	FRRRRRRRERDCAAQGARRHCRHLAECKLVSFPIGYKVLRNVSQGQIHLITLANNELKSLTSKFMTTFSQLRELHLEGNFLHRLPSEVSALQHLKAIDLSRNQFQDFPEQLTALPALETINLEENEIVDVPVEKLAAMPALRSINL
250	1600	A	2693	459	21	LLPGSLGVPLHSQPWDPSPQCPRAPSTPRRLPPLGALSQALTFLSRAAKNHSQDPGKGTKPFP AAPAAPPPRSSLPAPLPMGLKDKGQPAPPTRIFNSPWHPATLPGALGPQLSQAAPSPIPPCLMGISSCPDLKLTKSSTP
251	1601	A	2694	2	404	FVFDLKLVRPGFAALLIHGASSVPGPETVRLR

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						QKRKKKAPDHSSGRKEELVTTHTVDKLETKK PVGRVLCGLSGELLHSLLLPRRKTEKRALGSH RKAGFPEHPVAPEPLNSNCQISKEGREQVLSEI GAGDCL
252	1602	A	2697	421	1	PQKSHSGAYQCFATRKAQTAQDFAIIALEDG TPRIVSSPFSEKVVNPGEQFSLMCAAKGAPPPT VTWALDDEPIVRDGSHRTNQYTMSDGTISH MNVTGPQIRDGGVYRCTARNLVGSAEYQARI NVRGPPSIRAMRNIT
253	1603	A	2698	65	401	ACCQWRRTLIPAKSTTWSCTISTPHPFRGSYS FDDHITDSEALSRSSHVFTHSPRMLKRQPAIEL PLGGEYSSDVPRPLSTQLSSLLGYFSTLMTG AAFTNNIASIIL
254	1604	A	2699	438	301	GQIHSQDPPFDQLGFGVAPGFQTIVACQEQR RVRGPWAEAGPGVGY
255	1605	A	2700	1	842	LQNREDSSEGIRKKLVEAEELEEKHREAQVS AQHLEVHLKQKEQHYEEKIKVLDNQIKKDLA DKETLENMMQRHEEEAHKGKILSEQKAMIN AMDSKIRSLEQRIVELSEANKLAANSSLFTQR NMKAQEEMISELRQQKFYLETQAGKLEAQN RKLEEQKLELKROLTELOSLQERESQLTALQ AARAALESQLRQAKTELETTAAEAEIQALT VGLGSNIFRLIKASARMSVELALSILAHP
256	1606	A	2701	2	405	FVGGPGADPPVAVMWDPRAARMIDLAYAE LLKESGNQVLKNGNFSLAIRKYDEAIQILLQL YQWGVPPRDLAVLLCNKSNAFFSLGKWNEA FVAAKECLOWDPTIVVKGYYRAGYSLLRLHQ PYEAARMFFEGLR
257	1607	A	2702	2	399	FVESASSRPPGCFSGDGRFWLVSEGRRGWD FNPSFSFLDPRYSVGGDENIGTVTTLANILREF NPSLKGFSVGTGKETSPNAFLNQA VAGGRAE DLPVQARRLVDMKNNDTRHFQE DWKIITLF GGNDL
258	1608	A	2709	1	1097	SVGARQGEARDRIRRFPKGDLLEVLAQVERI MTRKELLTVYSSSEDGESEEFETIVLKALVKACG SSEASAYLDELRLAVAWNRVDIAQSELFRGDI QWRSFHLEASLMDALLNDRPEFVRLLISHGLS LGHFLTPMRLAQLYSAAPSNSLIRNNLLDQASH SAGTKAPALKGGAAELRPPDVGHVRLMLLG KMCAPRYPSGGAWDPHGQGFGESMYLLSD KATSPLSLDAGLGQAPWSDLWALLNRA QMAMYFWEMGSNAVSSALGACLLLRVMAR LEPDAAAARRKDLAFKFEFGMVDFGECYR SSEVRAARLLRRCPWGDATCLQLAMQAD ARAFFAQDGVQLPTQKWWGDMARR
259	1609	A	2721	1	403	VYLGAGPGLFFSNEGAKEGEKENAPKLMPLR GGFSQREMVTGERSPSPEEEEEEEEGFERA SCRRGLFRVRLTRVGLAAPSKASRGQEGDAA PKSPVREKSPKFRFPRVSLSPKARSGSGDQEE GGLRVRLP
260	1610	A	2728	1	477	LLGGDLRYHLQQNVHFTEGTVKL YICELALA LEYLQRYHIIHRDIKPNDILLDEHGHVHTDFN IATVVKGAAERASSMA GTKPYMAPEVFQVYM DRGPGYSPVWDWSL GITAYELLRGWRPYEI HSVTPIDEILNMFKVERVHYSSTWCKGMVAL LRK
261	1611	A	2730	3	547	LTITDFILVLYRYYRSPLVQIYEIEQHKIETWR EIYLQGCFKPLVSISPNDLSLFEAVYTLIKNRIH

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, - =possible nucleotide deletion, + =possible nucleotide insertion)
						RLPVLDPVSGNVLHILTHKRLLKFLHIFGSLLPRPSYRTIQDLSGIGTFRDLAVVLETAPILTALDIFVDRRVSALVNECGTHPQDERLGLGWGLGEPGSEERLFPAAITSR
262	1612	A	2733	3	431	GPEPPGSAKLVFLDLSYNNLTQLGAGAFRSA GRLVKLSIANNNLGVGHEDAFETLESLQVLE LNDNNRLSLSVAALAAALPALRSLRLDGNPWL CDCDFAHLSWIQENASKLPKGDEIQCSLPM ESRRISLRACRRPASRV
263	1613	A	2736	2	343	PARISGVDPVVKATKGGENCSFEDNKNWQLWGLNGNPNFFKEPWGGRRNNHAKGFRRTW ARSSSQNQNRFTQNNRNFLRLQRDSQKKGQFARLISPLVNLQSPGGLEFOYQAT
264	1614	A	2738	2	245	RAMLKCLREGQQPPSYNWTRLDGPLPSGVRV DGDTLGFPPLTTEHSGIYVRHDTNEFSSRDSDHTDVLDPPEDSGKQVDL
265	1615	A	2752	2	388	AAGDAPLRSLEQANRTRFPFFSDVKGDHRLV LAAVETTVLVLIFAVSLLGNVCALVLVARRR RRGATACLVNLFCADLLFISAIPVLAVRWT EAWLLGPVACHLLFYVMTLSGSVTILTAAVSLER
266	1616	A	2755	192	1	AFREVGGYWGLLCEHLYAIPSKTSEGNWTAKLQGYLPLQDAFHIFQDPLTPWELILGLPV
267	1617	A	2760	434	714	ASRLEKQNSTPESDYDNTPNMMEPDGMGYMHRTSVPGEGLPRARDLAGLGQQKQFTTHTPFLYFQTHKGKDSSIRSEVTCLGISQCWRKGFF
268	1618	A	2762	1	405	IACTFCGQDEWSPERSTRCFRRSRFLAWGEP AVLLLLLSSLALGLVLAALGLFVHIRDSPVQASGGPLACFGLVCLGLVCLSVLLFPQSPSPARCLAQQPLSHLPLTGCLSTLFLQAAEIFVESEPLSWAE
269	1619	A	2772	3	243	TRPAEKIQYLVLFFFVMSHPSQAYDKLSLSDHLIAVNLNLLRREVSEHGRHLQQYFNLFVMYANLSKNLSFSEFCFDVSY
270	1620	A	2789	1	486	ELQSQQACTHTKETEQLRSQLQTLKQQHQQA VEQIAKAETHSSLSQLQARLQTVTREKEEL LQLSIERGKVQLQNQKQAEICQLEEKLEIANEDRKHALERFEQEAVAVDSNLRVRELQRKVVDGIQKAYDELRLQSEAFKKHSLLSKERELNGKLRLSP
271	1621	A	2795	1	568	KEKRVTVQLPTESIQKNQEDKLKMVPRKQRE FSGSDRGKLPGSEEKNQGPSMIGRKEERLITERKHEHLKNKSAPKVVKQVDAHLDQSQTQNFQQTQIQTAEKSAEHKKLPQPYNLSQEEKCLEVKGIQEKFQFSNTKDSKQEITQNKSFFSSVKE SQRDDGKGALNIVFRLKREELHQILSTVKQP
272	1622	A	2797	8	523	KCMQGKYAGAMESEPVCVTEADFDCDYGYESHSNGQCLPAFWNPSSLSKDCSLGQSYLNSTGYRKVVSNCTDGVRREQYTAKPQKCPGKAPRGLRIVTADGKLTAEQGHNVTLMVQLEEGDVQRTLQVDFGDGIAVSYVNLSMEDGIXHVYQNXGIXRXTVQVQDNDSLGS
273	1623	A	2801	72	395	HPSRSNVGPRQLTVWNTSNLSHDNRRKYIFS DEEGQNQLGIRIHQDIPPLPPRRRELPAVRTTNGKADSLNVRNSVMQELSELEKQIQVIRQELQLAVSRKTELEYH
274	1624	A	2805	168	320	ILWLYFETGTWVYPVFAKSLGLAALFSLREIFIARNGVVGETLTHCKRV

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
275	1625	A	2812	208	321	GSLATCQLSEPLLWFLRVLDTSALKAFHD MGKJIFQ
276	1626	A	2813	41	266	AGRSLHGAGDRAWVGISPTDWSPKVVELCK KYQQQTVVVAIDLADGETIPGSSLLPGHVQAY QVGPVRNRNGEAGPC
277	1627	A	2817	3	410	VLQERLNDNFQRKC1QLASSTEGKVDKLLMRN LFISYLHTPKHKQHEVLQAMGSILGITGEEME PLFQEEHGTATRWMTGWLEGGSKSVPKTPL GLNQQPALNGSFSELFVKFLKTESLSSLPTX LPPHNSPGKIK
278	1628	A	2821	238	457	GLSGPSCSCPSPPLPTIIISRAQLETALKWRNYE VKLRLLLLHEELQMEHDIRHYDLESVPMTWD PVDQNPRLRV
279	1629	A	2822	342	1	PLIPANLPAHSNPLQPLPSLPHFPLPATHKFPT TPPTFSSVPPPLPSLSSILHHSPLHSELNPHLQS CRLPSRSPSVSRELPPQSGPASSVPLAPTPLPDS VPSQRHPTXPPPAS
280	1630	A	2825	307	77	PSMVWSYHWGVKQKRLALCVFSFEEGGRK CGQYWPLEKDSRIRFGFTVTNLIGAVGEPG VAFQCDGQRREPTC
281	1631	A	2827	81	381	KMGTAVWVPEKEKERDKASQEGGDVLGAR QDCTPSLKSLSVATGNILLDEETAKAPLSTVSA NTTNMDEVPRPQALSGSSVVVSGCVASRS VILSLTSG
282	1632	A	2830	471	160	KLPXDKYELEPSPLTOYILERKSPHTCWQVFV TSSGKYNELGYPFGYLKASTTLTCVNLFVMP YNYPVLLPLLDDLFKVHKLKPNLKWRQAFDS YLKTLPPYYL
283	1633	A	2835	462	148	VSPALSLTPTIIFSYSPPGLSPFTSSCFNPEE MKHYLHSQACSVFNHYLSPRTFPYRGMLVP PLQCQMHPPEESTQFSIKLQPPPVGKRNRRERVE SSEESAP
284	1634	A	2836	2	384	KTLPLRTLLDLADGTTIKVGVGCSEDASKLLQ DYGLVVRGCLDLRYLAMRQRNNLLCNGLSL KSLAETVLFNPLDKSLLRCSNWDAETLTED QVIYAARDAAQISVALFHLLGYPFSRNSPGEK KR
285	1635	A	2843	20	271	PIRPYYSYSGLDRDCSWLPLAKAWLPDVML VCDRVSEDGINRQQAQEWCIKHGFELVELSP EELPEEDGKCLCVRRKYGTYI
286	1636	A	2845	197	278	TAEDVLTVAEHGVNLFDTAEVYAAKG
287	1637	A	2851	2	427	FVAEVRREWAKYMEVHEKASFINSSELHRAM NLHVGVLRLLSGPLDQVRAALPTPALSPKDK AVLQLNLKRILAKVQEMRDQRVSLEQQQLRELI QKDDITGSVTTDHSQMKKLFEELKKYDQL KVYLEQNLAAQDRVLICALT
288	1638	A	2859	2	469	FVNLLGILTICIECSGIHREMGAHISRIQSLELDK LGTSELLPAKNVGNNSFDIMEANLPSPSPKP TPSSDMTVRKEYITAKYVDHFRSRKTCSTSSA KLNELLEAIKSRDLLALIQVYAEGVELMEPLL EPGQELAETALHLAVTADOTSLHLVE
289	1639	A	2861	2	454	FVASGGPATARMSDSQFFCVAEERSGHCAVV DGNFLYVWGGYVSIEDNEVYLPNDEIWTYDI DSGLWRMHLHMEGELPASMSGSCGACINGKL YIFGGYDDKGYSNRLYFVNLRTRDETYIWEK ITDFEGQQPTPRDKLSCWVYKDRLIYFG
290	1640	A	2868	I	378	FRQGQLYKVFLHGSQQVYHSQQVGPPGSAI SPDLILLDSSGSHLYVLTAAHQVDRIPVAACPQF PDCASCLQAQDPLCGWCVLQGRCTRKGQCG

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, †=possible nucleotide insertion)
						RAGQLNQWLWSYEEEDSHCLHIQSLLPGHzPRQE
291	1641	A	2870	1	385	FRYMPNNRQQLLRKRHIGNDIVTIVFQEPMAL PFTPKSIRSHFQHVVFVIVKVHNPCTEVCYSV GVSRSKDVPFGPPPKGVTFPKSAVFRDFLL AKVINAENAAHKSEKFRAMATRTRQEYLKD LA
292	1642	A	2877	3	188	RPTRPPPATTQSPESTMDSLKEKSAILDLYI PPPPAVYPSPRYVAVHCHGMLVSCWCHL
293	1643	A	2878	1	427	REKEEEEVEEEDKVVKETEKEAEQEKEEDSL GAGTHPDAAIPSGERTCGSEGSRSVLDLVNF LSPEKLTAENRYYCESCASLQDAEKVVELSQ GPCYLILTLRFSFDLRTMRRKILDDVSIPLL LRLPLAGGRGQAYDL
294	1644	A	2879	109	245	QLCCFCFRQITLIVYILSFIGMVIFTFTLDLRYI IIVFVTGGVLG
295	1645	A	2880	3	320	LASSQHGLNNLSSLFSICKTCIRTMDHHCPRA NNCVGEQNHRFFCALHCKSKHFCIEFTLNTNF FNCFLPGAEKSTIDAPPSLQPFLQDSKYNTALS LSESISQ
296	1646	A	2892	209	363	SQYSHSLDYHLLQVTKNPFTLGDSSNPGQTE RLQEFSQKMDQVRGHWPVST
297	1647	A	2893	8	424	SPXTLXLDTFILLGIQDNLVLILATPPFMAGG KLYSTMGRFLRDRKNPACREMAVULLANLA QGDSLAAARAIAVQKGSIGHLLGFLEDSLAAQ IQQSQASLLHMHNPPFEPTSVDMMRACRALALAKVDDNHSEF
298	1648	A	2894	310	445	FWIYFPSPFMTGYLPLGFEGFAVEITYPESEGTS SGLLNASAQVN
299	1649	A	2898	1	492	KIKAKNLTNYDLCISIFLGTSTLLVWVGVIRYL GFQAYNVNLTMQASLPKVLRFCACAGMIY LGYTFCGWIVLGPVHDKFENLNTVAECLFSL VNGDDMFATFAQIQQQKSILVWLFSRLYLYSFISLFIYMLSLFIALITSDYDTIKKFQQNGFPETD LQEFL
300	1650	A	2901	1	445	PVWWNSLNGASEVTFSVHVKDGGSFPKTDST TVTVRFVNKADEFPKVRAKEQTFMFPENQPVSLVTTITGSSLRGEPMYYIASGNLGNTFQIDQ LTGQVSIQPLDFEKIQKYVVIEARDGGVPPFSSYEKLIDITVLDVNDNAPIF
301	1651	A	2902	162	433	THFICLPLGYCFPLLDKDLQLPSGFNCNFDFLE EPCGWMYDHAKWLRTTWASSSSPNDRTFPG KPAVSEDMKELRPACSTYFNPRFPYKL
302	1652	A	2909	2	412	GPQMLCKKIYFIWVTRSQCQFEWLADIMQEVEENDHQDQLVSIVHIYVTQLAEKFDLRTTMLYI CERHFQKVLNRSLSFTGLRSITHFGRPPFEPFFN SLQEVHPQVRKIGVFCGPPGMTKNVEKACQLVNRQDRAHM
303	1653	A	2914	291	453	KLNRWLCCFYWSWSFGILLYEMVTLGAPPYEP VPPTSILEHLQRRKIMKRPSSCS
304	1654	A	2926	179	354	PGVPSQALKRAESLKKCLSVMEAKVKAQTAGNKDVQREIADLGEVGAASLPPSSPGA
305	1655	A	2938	135	438	GMGYLHAKGILHKDLKSKNVFYDNGKVIT DFGLFSISGVLQAGRREDKLRIQNGWLCHLA PEIIRQLSPDTEEDKLPFSKHSDVFGALTIWYELHAREWP
306	1656	A	2944	2	329	VRWNNSCNCSAFGNAGASLSTSLOESSGCLWEIGKWLSCSLLSFPSPLAVLIITFCIVTGLGREALTKGALWAVFLLAGSALLCAEVTVGVIWRQPE

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						SKTKLSFKVSSA
307	1657	A	2950	2	411	NYLCIAKNSAGSAMGKTRLVVQVPPVIENGL PDLSTTEGSHAPLPCARGSPEPNITWDKDQQ PVSGAEGKFTIQPSGEELLVKNLEQQDAGTYT CTAENA,VGRARRRVHHTILVLPVFTTLPGDRS LRLGDRLWLR
308	1658	A	2951	1	407	PTRPRPVRFDNEFDAESQRKRRTTSVSKMERM DSSLPEEEDEDKEAINGSGNAENRERHSESS DWMKTVPSYNQTNSMDFRNYMMRDETLEP LPKNWEMAYTDTGMIYFIDHNTKTTWLDPL RLCKKAKAPEDC
309	1659	A	2954	2	179	QDFLTILTETPTIGLLYVGAREALFAFSMEALE LQGAvgRRGVAGGSRACQRARPRGAVLG
310	1660	A	2959	1	419	QDMMERAIIDTFVGHDVVVEPGSYVQMFPPYPC YTRDDFLFVIEHMMPLCMVISWVYSVAMTIQ HIVAEKEHRLKEVMKTMGMLNAVHWVAWF TGFVQLSISVTALTIALKYGQVLMHSHVVIW LFLAVYAVATIMFCF
311	1661	A	2963	3	465	MKPQMPGLGAPNGYGPGRGRACVPGCPERR PWVPHLLPSSPGYLGVMKAQKPGAGEGMK PKPGLRGTLPKPKSGHGHENGWPWPGCNA RVAPMPLLPLPTGVPSDKEGGWGGLKSOPPS AVQNGKLPGHQPPNGYGPAGEPGFNGGLEPQ KI
312	1662	A	2967	3	405	WLAQEWSPTCTVCGQGLRYRVVLCIDHRGM HTGGCSPKTKPHIKEECIVPTPCYKPKKEKLPV EAKLPWFQQAQLEEGA AVSEEPSFPEAWS ACTVTCVGVGTQVRIVRCQVLLSFSQSVDLPI DECEGPKPA
313	1663	A	2969	2	430	VVADNCRQGYLDALRFLERRGLTKEPVWLT LVSKEPPAPADGNWDAGCDQRRKGGLSLNW KVPHVQVKDVPNFEQLSPELEAAKKACTRD PSRWARFWHSGPGQVLTLYLLLPCPLPEYIYF RSRRLVVWLPDVPAIDLWWMQ
314	1664	A	2971	422	33	LDXSHNALQRLRPGLAPLFQQLRALHLDHNE LDALGRGVFVNASNGLRLLDLSSNTLRALGRH DLDGLGALEKLLFNRLVHLDEHAFHGLRA LSHYLYGCNELASFSFDHLHGLSATHLLTDL SSNRM
315	1665	A	2973	1	525	ITVSTHASGSPFGLEPQSGWLWVRAALDREA QELYILKVMAVSGSKAELGQQTGTATVRVSI LNQNEHSPLRSEDPTFLAVAENQPPGTSVGRV FATDRDGSPPNGRLTYSLQLQSEDASKAFRIHPQ TGEVTTLQTLDRQSSYQLLVQVQDGGSP RSTTGTVHVAVLDLNNDT
316	1666	A	2978	2	400	ELVVELVSAGKSGPERNTYEVQVVTGNVPKA GTDANVYLTIYGEETYDGTGERPLKSDKSNSK FEQQQTDTFTIYAIIDLGALTKIRIRHDNTGNR AGWFELDRIDITDMNNEITYYFPCQRWLAVEE DDGQLSRE
317	1667	A	2981	3	440	VLNCQGRPTRPVRINQDGQEVLYLAESDNVR LGCPTYVLDPPDDYGPNGL DIEWMQVNSNP HRENVFLSYQDKRINHGSPLPHLQHRRVRAAS DPSQYDASINLMNLQVSDTATYECRVKTTM ATRKVIVTVQARPAVPMCWTEGQ
318	1668	A	2995	119	414	LPEKEFPIRKSSSLKVTKCLFTEQPKPILRFA ENYDARLLRIDIANLREQVQELFNKTYGKQ RRTPEGEHVAAVDREVAGFPVPAEGISGETIH
319	1669	A	2999	2	332	GFFAYTYGRLVVVEDLHSGAQHQHWSGHSAEI

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, \=possible nucleotide deletion, =possible nucleotide insertion)
						STLALSHSAQVLASASGRSSTTAHCQIRVWD VSGGLCQHLIFPHSTTVLALAFSPDDRLVTLDHDGRTLALWGTGHL
320	1670	A	3000	693	322	IDESTGLIITVNYLDYETKTSYMMNVSATDQA PPFNQGFCSVYITLLNELDEAVQFSNASYEAA ILENLALGTEIVRVQAYSIDNLNQITYRFDAY TSTQAKALFKIDAITVRGWGQGAPPFPI
321	1671	A	3001	6	383	RIPRGKACXTVLRGSTGELEGFASRSLPPQPC GWGQSSDLLSRIDLDELMKKDEPPFLDFPDITLE GFEYAFNEKGQLRHIKTGEPFVFNYREHLHWR WNQKRYEALGEITTKVYVYELLEKDCNSKKVS
322	1672	A	3007	192	447	ERVRNSLFPGRGDSQCACCPSSPVWFLETGF LFPWLFLQVEVIKKAYMQGEVEFEDGENKG DGAASPRNVGHNIYILAHQLARH
323	1673	A	3019	18	245	KELLFYHLIVNNNFFNTRYAKIHIPIIASVSEH QPTTWWSSFFDLHLILVCTFPAGLWFCIKNIND ERVFGKRGF
324	1674	A	3020	523	797	LCYFSARYHQRKIFGILYIFTLSAINRKEPNLFI YLFIFFEMESHHSVTHAGVQRHNLNSLQLPLPG FKRFSCLCFLSSWNYRGAPPGPANF
325	1675	A	3022	2	156	NDFLPLYFGWVLTKSSETLRKAGQVFLEEL GNHKAFKKELRQCRWQVGAL
326	1676	A	3023	38	172	KMVRGSKKLISFFPGPGYGILAGRDPSKGLAT FCLNKEALKDEFE
327	1677	A	3027	1	385	LTLEFLLLPAASELAHGKRLACCIVDHKLPEC GFYGLYDKILLFKHDPTSANLLQLVRSSGDIQ EGDLVEVVLASATFEDFQIRPHALTVHSYRA PAFCDHCGEMLFGLVRQGLKCDGCGLNYHKRC
328	1678	A	3030	13	569	ITRPTISCQRPGPGLAAGMLPYTVNFKVSA LTGALNAHNKAADVWGWQGLIAYGCHSLV VVIDSITAQTQVLEKHKAADVVKVKWAREN YHHNICSPYCLRLASADVNKGIIWVDVAAGV AQCEIQEHAKPIQDVQWLWNQDASRDLLAI HPPNYIVLWNADTGTLWKKSYADNILSFSFD
329	1679	A	3038	90	744	SVNLPPSLWPWEEAMDSTKSEPLKGSPEAED GNIEYKKLVNPSPQYRFEHLVTQMKWRLQEG RGEAVYQIGVEDNGLLVGLAEEMRASLKT HRMAEKVGADITVLREREVDYDSDMPRKITE VLVRKVPDNQQFQLDLRVAVLGNVDSGKSTL LGVLTTQGELDNGRGRARLNLFRIHLHEIQSGR TSSISFEILGFNSKGEVHGINGTQWGQTLRMG W
330	1680	A	3040	3	397	LCSTLLLTIWSVLSQITLKESGPTLMKPTET LTLTCTFSGFSLNTSGVGVAWIROQPPGKALE WLALJYWDDDCKRYSPLSLNDRLTIAKDTSRNQ VVLTMTNMGPVDTATYYCAQFARGARGSN WFDPWGQ
331	1681	A	3043	3	1509	AGIRHEAPPTTSNRHRRQIDRGVTHLNISGLK MPRGIAIDWVAGNVYWTDSGRDVIEVAQMK GENRKTLSGMIQDPEHAIVVDPLRGTMYWSD WGNHPKIETAAMDGTLRETLVQDNIQWPTG LAVDYHNERLYWADAKLSVIGSIRLNQTDPI VAADSKRGLSHPFSIDVFEDYIYGVTYINNRV FKIHKFGHSPLVNLTGGSHASDVVLYHQHK QPEVTPCDRKCEWLCLLSPSGPVCTCPNG KRLDNGTCVPVPSPTPPPDAAPRPGTCNLQCFN GGSCFLNARRQPKCRCQPRYTGDKCELDQC

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion
						WEHCRNGGTCAASPGMPTCRCPTGFTGPKC TQQVCAGYCANNSTCTVQNQGNQPCRCCLPG FLGDRQCQYRQCSGYCENFGTCQMAADGSRQ CRCTAYFEGRSRCEVNKCSRLEGACVVNKQS GDVTCTCNDGRVAPSLCTCVGHCSNGSCT MNSKMMPECQCPCPPMTGPRCEEHVFSQQQP GHIASILIP
332	1682	A	3045	3	952	TITISNFHTQVNRTYCCGYRAGPMPHQISLVG AVDEEVGVDYFPEFLDMLEESPFLKMLTPWGT LSSLRLQCRSQSDDGPMWVRPGEQMIPTAD MPKSPFKRRRSMNEIKNLQYLPRTEPREVLF EDRTRAHDHVQGFDWQSTAAGVVLKAV QFGEWSDQPRITKDVICFHAEEDFTDVVQRLQ LDLHEPPVSQCVQWVDEAKLNQMRRREGIRY ARIQLCDNDIYFIPRNVIHQFKTVSAVCLAW HIRLKQYHPVVEATQNTESNSNMDCGLTGKR ELEVDSQCVRIKTESEACTEIQLTTASSFP PASE
333	1683	A	3046	497	167	SACSTGPPELPGRATRSLTRPANQKCGDGDR YYDGCAMIAMNGSVAQGSQFSLDDVEVLT ATLDLEDVRSYRAEISSRNLAWSAPVDTCVG CSSKTWKVAPFVRAWWRP
334	1684	A	3053	37	276	VITDLEEQLNQLTEDNAELNNQNFYLSKQLD EASGANDEIVQLRSEVDHLRREITEREMQLTS QKQVRRVNKKVRSLEDF
335	1685	A	3054	2	846	WDAWGWDWSDCRTGGGASYSLLRCLTGR NCEGQNIRYKTCNSHDCPPDAEDFRAQQCSA YNDVQYQGHYYEWLPRYNDPAAPCALKCH AQGQNLVVELAPKVLDGTRCNTDSLDMCISG ICQAVGCDRQLGSNAKEEDNCVGVCAGDGSTC RLVRGQSKSHVSPEKREENVIAVPLGSRSVRI TVKGPAHFLFIESKTLQGSKGEHSFNPGVFVV ENTTVEFQRGSERQTFKIPGPLMADFIKTRY TAAKDSVUVQFFFYQPISHQWRQTDFFPCTVT CGGG
336	1686	A	3058	54	347	VVGKQEAGAHSDSCLLHTPPRLTPAHSRKA LRNSRIVSQKDDVHVCIMCLRAIMNYQVSRG AWDWRLGSPACPHWGLHKLPLRWDPPLSLYP VLCWTG
337	1687	A	3059	2	709	ILTLSVELTRFETLTPRFSATVPPCWVEVQQE QQQRRHPQHLHQHQHHGDAAQHTRTWKLQT DSNSWDEHVfelVLPKACMVGHVDFKFVLN SNITNIPQIQVTLKKNKAPGLGVNGLRLCPF LEDHKEDILCGPVWLASGLDLSGHAGMLTLT SPKLVKGMAGGKYRSFLIHVKAVNERGTEEI CNGGMRPVVRLPSLKHQSNKGYSLASLLAK VAAGKEKSSNVKNENTSGTRK
338	1688	A	3060	85	384	KAFYNYHVLELLQMLVTGGVSSQLEQHLDK DKVYGVADSCSTSLLSGRNRCRKLGSSLHETIL SDVNPRNTFGQLFCGSDDLFGILCVGLYRIIDE EELNP
339	1689	A	3063	236	362	CFLCLSGDFMVMTIFFNVSRRFGYVAFQNYV PSSVTTMLS WV
340	1690	A	3065	3	1249	DLWQFTPPLHEAASKNRVEVCSLLLSSYGA DPTLLNCHNKSAILDAPTPQLKERLAYEFKGHSLL QAAREADVTRJUKKHLSELMVNFKHPQTHETA LHCAAASPYPKRKQ1CELLLRKGANNEKTK FLTPLHVASEKAHDVVVEVVVKHEAKVNAL DNLGQTSLHRAAYCGHLQTCRLLSYGCDPN

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met cod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						IISLQGFTALQMGNENVQQLLQEGLSLGNSEA DRQLLEAKAGDVETVKKLCTVQSVNCRDIE GRQSTPLHFAAGYGNRVSVVEYLLQHGADVH AKDKGGVLPHNACSYGHYEVAELLVKHGA VVNVAIDLWKFPTPLHEAAAKGKYEICKLLLQ HGADPTKKNRDGNTPLDLVKDGDTIDQDLLR GDAALLDAAKKGCLARVKKLSSPDNVNCRD TQGRHSTPLHLAGK
341	1691	A	3070	1	547	GVLPSFQNQLFADILAGIESVTSEHNYQTLLI NYNYDRDSEEESVINLLSYNIDGILSEKYHTI RTVKFLRSATIPVVELMDVQGERLDMEVGFD NRQAAFDMVCTMLEKRVRHKILYLGSKDDT RDEQRYQQYCDAMMLHNLSPLRRNPRAISSI HLRMQLMRDALSANPDLGVFCTN
342	1692	A	3073	463	3	RINRCRKPSDADILVPGDTISLIGTTSLRIDYNE IDDRNRTAEEVDILLREGEKLAPVMAKTRILR AYSGVRLVASDDDPGSRNVRGIVLLDHAE RDGLDGFIITGGKLMTYRLMAEWATDAVC RKLGNTRPCTTADALPGSQEPAKVP
343	1693	A	3075	250	1	LLIYLAIIFAPVAMSALAGVKSQQVRIRAAQS LGASRAQVLWFVILPGALPEILTGLRIGLGVG WSTLVAAELIAATRGLGFN
344	1694	A	3076	2	138	LYFDAYLQLSQVAAISTFCCLLIGYPLAWAV AHSKPSTRNILLL
345	1695	A	3078	469	3	LKIRGQRIELGEIDRVMQALPDVEQAVTHAC VINQAAATGGDARQLVGYLVSQSGPLDTS A LQAQLRETLPPHMVPPVLLQLPQLPLIANGKL DRKALPPELKAQAPGRAPKAGSETIIAAAFS SLLGCDVQDADDFALFGHSLLAMKLAT
346	1696	A	3082	404	2	QNITSKDLDRVRLDPQTVPIEQLVLSFNHMI ERJEDVFRQNSNFSADIAHEIRTPITNLITQTEI ALSQSRSQKELEDVLYSNLEELTRMAKMVSD MLFLAQADNNQLIPEKKMLNLAHEVGKVFD QFEALPE
347	1697	A	3084	3	340	NELTFKEAEISKLTYTKVHPAYRTLLEKRQALE DEKAALKLNGRVTAMPKTQQEIVRLTRDVESGQ QVYMQLLNKEQELKITEASTVGDVRIVDPAIT QPGVLKPKKGLIILGAI
348	1698	A	3086	723	10	TQAMVVWQQKACAEDDPQLSGRHWLHAATL YNIAAYPHLKGGDDLAEQAQALSNRAYEEAA QRLPGTMQRQMEFTVPGGAPITGFLHMPKGDG PFPTVLMCGGLDAMQTDYYSLYERYFAPRGI AMLTIDMPSVGFSKWKLTQDSSLHQHVULK ALPNVPWVDHTRVAAGFGRGANVAVRLAY LESPRLKAVACLGPVVHTLLSGLKCQQQVPE MYLDVLASRLGMHDASTKSSTRENH
349	1699	A	3087	2	249	RJRSSDPEITLAGTPLHAAYLIGMTLICAGFSV GFGVAMSQALGPFSLRAGVASSTLGIAQVCG SSLWIWLAAVVGIGAWN
350	1700	A	3099	3	424	EAPEATPQPSQPGPSPSPLSAEEENAEGEVSR ANTPDSIDITEKTEDSSVPETPDNERKASISYFK NQRGIQYIDLSSDSEDVSPNCNSNTVQEKTFN KDTVIIVSEPSDEEESQGLPTMARRNDDISELE DLSGMEDLK
351	1701	A	3108	2	404	IKKNHIIGYQLLHRRALFEKRTLSDYALIFG MFGIVVMVIETELSWGAYYKAPLYSLALKCL ISLFTIILGLTIVYHAREIQLFMANYGADDWR SALTYEPIFLILLEALRGVIATPCRVSLWDLGLDLP

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, \=possible nucleotide deletion, =possible nucleotide insertion)
352	1702	A	3110	341	2	AQLAEVCPQTLLTTNTSSISITAIAAEIKNPER VAGLHFFNPAPVMKLVEVSGLATAAEVVE QLCELTLSWGKQPVRCHSTPGFIVNRVARPY YSEAWRALEEQAPEVI
353	1703	A	3111	3	188	HPSLFRIAFAVFLTYMTVGLPLPVPLFVHHEL GYGNTMVGIAVGIQFLATVLTRGYAGRRA
354	1704	A	3116	367	225	WQLFHNLNGTFLNIGETDTESCVNGWVYDRSS FPFSNMTEVTRGLVFSL
355	1705	A	3117	101	53	VINLVYLISSPRPELKPVDKESEVVMKFPDGF EKFSPPILQLDEVDFYYDPKHVIFSRSLSVASDL ESRICVVGENGAGKSTMLKLLGDLAPVRGI RHAHRNLKIGYFSQHVGAGT*TSACGNL LGTQVFLGRPEEEYRHQLGFGMGISGELGHA SSLPAICLGGQKEAEVAFCSDGLLPCPNFLVIL DEPTNNHLGHGRAIEALGPCLQTISGVGVILVS HE*SALSRLVCRELVWC*GRSTSPF
356	1706	A	3121	137	466	RGGRDWGEHNQRLEEHQARAWQGAMDAG AASREHARWQGTGLAPGTRAVAPTCVQGL PQERSVCRPFFSSRWREGPVWALGAGAHGKP RWSGGVRCVVRRGRWFTPAPH
357	1707	A	3124	1249	229	MLEAPGPSDGCESNPSASRVSCAGQMLEVQ PGYFGGAAAVAEVDHLREAGITAVLTVDS EPSFKAGPGVEDLWRLFVPALDKPETDLLSH LDRCVAFIGQARAEGRAVLVHCHAGVSRSV AJITAFLMKTDLQLPFEKAYEKLQILKPEAKMN EGFEWQLKLYQAMGYEVDTSSAIYKQYRLQ KVTEKYPELQNLPQELFADPFTVSQGLKDE VLYKCRKCRRLSFRSSILDHREGSGPIAFAH KRMTPSSMLTTGRQAQCTSIFYEPVQWMESA LLGVMMDGQLCPKCSAKLGSFNWYGEQCSC GRWITPAFQJHKNRVDEMKGILPVLSQGTGKI
358	1708	A	3127	816	139	EVETLGPRTPGP/EAQSQPTPGSCPGWQEPPGP TPPP*LSGPQPGQAPVLGKLLPDPETPAGKTP LGKHFWWGLPVTSANFSPGAAA*FGGALSPP GGDL/GHMLLQGPPSPFRLQQQ*QTPPGSHSP PTANREINPGPAAAADTRSCWGHKRSWRGW RGLAPWRLGFGSPGP*PAPAGIP/GRPTWEgg KGAGGKPSETLTRSPPVWRGKRGSANGFLSW VQLQ
359	1709	A	3132	3	191	HEHLLLLLCVFLVKSQGVNDNEEGFFSARG HRPLDKKREDAPNLRPALADUTVCDYRAQIA *AASTPKRAASIAHNAVSCR*AQIA
360	1710	A	3134	1	286	REPPRPALEFFF*DRVSLCCPGWNAAVSQLT AAPTSQVQ/SDSPTFPSSWDYRHVPEYPANFL *RQGFPMLPRLVSNWSAQTVHPPRPPKVLQL QA
361	1711	A	3135	56	1449	PVPAPRVSPSARGAPRRLPGVRGPRHS/WA AD*RGSRM/PPRAPAPSPTGP/APGGKKVRGR VPEDPDAYEPRCSAL*V*PTHVTSPQFCDP*N GQIRSYFTVLLRGLNETMLVK/PLCRREP/PEA GPGRQSTPAVTRDHQRQHEDPRGAGRQWDAD PRPSAP/PAEVATGSRPGRHMMWMLCLAAQQ APGLPHRTSIRPGWRRLTEPEAWARRHRRPW GQRGAVRPPPQGAAPPSPHQGRRNTDPSAT PRLTVMSRCLAPDLKAPASGPRGWRRGMPQ SS/GALLWTPPPTRGSHSPRPREALRAIHPA GPK/SRAGASGRLPEVYGVWTFTPPEAGT F/LIPSPT*MSPALVIOPPPVTQMGRLISGLPR QG*PSGAPW*LPGLAQLAFQCHLPHDEVGPP

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, \=possible nucleotide insertion)
						RNQSPGLNDTLSSGLPMGPRRQVWPLARVG GHSSPREPQVLKKPLWGQTDAGVGSALYP DNL
362	1712	A	3136	1270	274	RVGMVLGTREVGDSTPPSPPLYPFTGNEFVQ HNTWQLSRVYPSDLRTDSSYNPQELWNAG CQM/V*GGSRDWEEGVEEQQVGNKFSSDGR VGECSRKL LG*EMLSVDITSRYRAPSTYLLNS LKEGLEGLHGESCSSFLLGPSVAMNMQTAGL EMDICDGHRQNGCGYVLPKDFLRDIQSSF HPEKPISPFKAQTLLNQVISVQQLPKVDKTKE GSIVDPLVKVQIFGVRLDTARQETNYVENNG FNPYWGQTLCFRVLGPDFPMLRGKMDYDW KSRNDLLGKTPCPGTCMQQGYRHILLSKDG ISLRPASIFVYICIQEGLGDES
363	1713	C	3139	60	248	MFAGSYGKSMFSFSKVKVLNCLPKWRYHFVIA PAMNESPLAPHLHQHLVFSVFQVLTILIGV**
364	1714	A	3140	57	418	SAFKTLQLPAFSLYFDLGSLKLLIRIHTSIVK NHKVESPRMTMSPG*DPOQFLQIPQPRPPQLRV GLTSGLIQHFHSPSSCQFPLLRGPPRQPPLGI SGASLCPVLSPPR*PLQPSSL
365	1715	A	3145	122	413	LLPYPSLSFVFLRQCHFVTIRLECNVVSAHCN LHLPGSSDSPASAS*VAGTTGVCHTRLIFVF LV*TGFHYVAQAGLELLTA*SPPQLPKVVGL QA
366	1716	A	3150	247	2	VGEKLHDIFGNDFDMPKAQATKEKIDKLN FIKIKKLICIEGYY/NREPQNKRKIFANYVSDK GLMATTIYEELLKLSNKLQ
367	1717	A	3152	3	2367	QLKQNQPKRAHVEDGGSRSKQGNEQSKKT PIEKSDFAAATHPRAFYLSKPDETPNAWMSD SGTGLTYWKLEEKDMHHSLPETLEKTFISLSS TDVSPNQVLTLDPTLHMKPQQISGIQPHGLP NALDDDRISFSPDSVLEPSMSSPSDIDSFSQASN VTSQLPGFPKYPSTSHTKASPVDSWKQNQTFQNE SRTSSTFPSVYTITSNDISVNTVDEENTVMVAS ASVSQSQLPGTANSVPECISLTSLEDPVILSKR QLKEKEHRRVKDALNTENKLDAYTQISDLKR MISKLEAQVKQVEHENMLSRLHNSRIHVRPS RANTLATSDVSRKWLIPGAEYSIFTGQPLDT QDSNVNDNQLEETCSLGHRSPLEKDSSP/GSSST SLLIKKQRETSDTPIMRALKEDEGKIFKNWG TQTEKEDTSNSLL*/INPRQTETSVNASRSPEK CAQQRKQRKLNNSASQRSSSLPPSNRKSSPTKRE EIMLTPVTVAYSPKRSPKENLSPGFSHLLSKN ESSPIREKTYSEKATDNHVNHNSSCPEVPNGV KKVSVRTAWEKNKSVSYEQCKPVSVTPQGN DFEYTAKIRTLAETERFFDELTKEDQIEAAL SRMPSPGGRITLQTRLNQVKCLSLNLL
368	1718	A	3163	2	2350	EFKSGGCAGLVAAGAVLVLYPASRAGERT RVPGPAPSSLPLHSPGACGTEVDMDPQRSP LEVKGNIELKRPLIKAPSQPLSGSRLKRRPDQ MEDGLEPEKKRTRGLGATTKITSHPRVPSLT TVPQTQGQTTAQKVSKKTGPRCSTAIATGLK NQKPVPAVPVQKSGTSGVPPMAGGKKPSKRP AWDLKGQLCDLNAELKRCRERTQTLQENQ

SEQ ID NO. of nucleotide sequence	SEQ ID NO. of peptide sequence	Method	SEQ ID NO. in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \possible nucleotide insertion)
						QLQDQLRDAQQQVKALGTERTTLEGHHLAKV QAQAEQGQQQEKLNRACVLEERLSTQEGL VQEQQKKQVELQEERRGLMSQLEEKERRLQT SEAALSSSSQAEVASLRQETVAQAAALLTERER LHGLEMERRLHNQQLQELKGNIJFCRVRPV LPGEPTPPPGLLLFPSCPGGGSDPPTRLSRSRD ERRGTLSGAPAPPTRHDFSFDRVFPPGSQGDE VFEEIAMLVQSALDDGYPVCFIFAYGQTSQGKTF TMEGGPGGDQPLLEGQIPRALRHLFSVAQELSG QGWTVSFVASYVEIYNETVRDLLATGTRKGQ GGECEIRRAAGPGSEELTVTNARYVPVSCEKEV DALLHLARQNRAVARTAQNERSSRSHSVSQL QISGEHSSRGLQCGAPSLSVLAGSERLDPGL ALPGGERERLRETQAINSSLSTLGLVIMALSN KESHVPYRNSKLTYLLQNSLGGSAKMLMFV NISPLEENVSSESLSNLSRFASKVEPSVLFGTAQS NRWKWTDPDLCVVCVCCVCCVCCVCCVCP MSMYRVRRGGRVAGGCFIGWRAPCPRAIK
369	1719	A	3165	365	12	GYTSQGRWIDIERGPLTANTESLIHENNNFNALP GYIRKIE*I*YKKN*INFVGVLNNIVKISILS/K IYRFDAIPVKILTRFFINLDKLILKFVLKTKIAK NRIKTFYIMRRKKLGDS
370	1720	A.	3170	393	42	GASISPSAVIDGVVEGLKPMQEQEAGPCLD *HMAPEQWVAPRVRLLFLRFLPSVLHALIIAAA QSSAAEDEDPRN*GQSEDQAPNQNGLIVIVH RVHVPLGAAATPVPHSHFPR
371	1721	A	3173	770	510	GNNGCGLSQIPPSHLGAFSRGSLLSRG\ DPRGP PPHPVIVFFVVEIQGFTVLAARMVIS*PCDPP ALASQSAGITGVSHLARPQNLYF
372	1722	A	3180	381	76	RVLHHHDNPVAHSSPKREISQEFQLEIRHLP*S PDLAPSGCFLNLKNIFK\GTHFSLVDNVKK TVSTWLH/SQNAQFYKDRLNGWYHCLQKCL OHY*AYVEK
373	1723	A	3181	410	14101	RREVAGPEGKGLLLASAHTMLTPPLLLLPLL SALVAAAIDAPKTCSPKQFACRDQITCISKGW RCDCGERDCPDGSDEAPEICPQSKAQRCQPNE HNCLGTELCPVPMCSRNCNGVQDCCMDGSDEGP HCRELQGNCNSRLGCQHHCVPTLDGPTCYCNS SFQLQADGKTCDFDECSCVYGTCSQLCTND GSFICGCVEGYLLQPDNRSCAKNEPVDRPP VLLIANSQNILATYLSGAQVSTITPTSTRQTTA MDFSYANETVCWVHVVGDSAATQQLKCAR PGLKGFDVDEHTINISLHHVEQMAIDWLTGN FYFVDDIDDRIFVCNRNGDTCVTLLDLEYNP KGIALDPAMGVFFTDTYGGQIPKVERCDMDG QNRTKLVDSKIVFPHGIFTDLVSRLVYWADA YLDYIEVVDYEGKGRTIIGQGILIEHLYGLTVF ENLYATNSDNANAQKTSVIRVNRNFNSTEY QVVTRVDKGALHIYHQRQQPRVRSHACEN DQYKGPKCRGSDICLLANSHKARTCRCRSGFS LGSDDGKSCKKPEHELFVYGGKGRPGIIRGMD MGAKVVPDEHMIPIENLMNPRALDFHAETGFI YFADTTSYLIGRKIDGTERETILKDGJHNVE GVAVDWMGDNLYWTDDGPKTISVARLEK AAQTRKTLIEGKMTTHPRAIVVDPLNGWMYW TDWEEDPKDSRRGRLERAWMDGSHRDIFVT SKTBLWPNGLSDLIPAGRLYWDADFDRJETI LLNGTDRKIVYEGPELNHAGLCHGNYLFW TEYRSGSVYRLERGVGGAPPTVLLRSERPPI

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, \=possible nucleotide deletion, /=possible nucleotide insertion)
						FEIR\MYDAQHQQVGSNKCRVNNAAGCSSLCL ATPGSRQCACAEDQVLADGVTCLANPSYVP PPQCQPGEFACANSRCIQERWKCDGDNDCLD NSDEAPALCHQHTCPSDRFKCEENNRCIPNRW LCDGDNDCGNSEDESATCSARTCPPNQFSC ASGRCPISWTCDLDDDCGDRSDESASCAYPT CFPLTQFTCNNGRCININWRCNDNDCCGDNS DEAGCShSCSSTQFKCNSGRCIPEHWTCDGD NDCGDYSDETHANCTNQATRPPGGCHTDEF QCRLDGLCIPLRWRCDGDTDCMDSSDEKSCE GVTHVCDPSVKFGCKDSARCISKAWVCDGD NDCEDNSDEENCESLACRPPSHPCANNTSVC LPPDKLCGDGNDDCGDSDEGELCDQCSLNN GGCSHNCVASPGEVGCSCPLGMELGPDNHT CQIQSYCAKHLKCSQKCDQNKFSVKCSCYEG WVLEPDGESCRSLDPFKPFIIFSNRHEIRRDLH KGDYSVLVPGLRNNTIALDFHLSQSALYWTDV VEDKIYRGKLLDNGALTSFEVVVIQYGLATPEG LAVDWIAGNIYWVESNLQIEVAKLDGTLRT TLLAGDIEHPRAJALDPRDGILFWTDWDASLP RJEAASMSGAGRRTVHRETGSGGWPNGLTV DYLEKRILWIDARSDAIYSARYDGSGHMEVL RGHEFLSHPFAVTLYGGEVYWTDWRTNTLA KANKWTGHNVTVVQRTNTQPFDLQVYHPSR QPMAPNPCEANGGQGPCSHLCLINYNRTVSC ACPHLMKLHKDNTTCYEKKFLLYARQMEIR GVDDLAPYYNYIISFTVPDFIDNVTVLDYDARE QRVYWSDVRTQAIKRADINGTGVETVVSADL PNAHGLAVDWVSRNLFWTSYDTNKKQINV RLDGSFKNAVVGQGLEQPHCLVVHPLRGKY WTGDGNISMANMDGSNRTLLFSGQKGPVGL AIDFPESKLYWISSGGNHTINRCNLDGSGLEVID AMRSQLGKATALAIMGDKLWWADQVSEKM GTC SKADGSGSVVLRNSTLVMHMKVYDESI QLDHKGTPNPGCSVNNGDCSQLCLPTSETTRSC MCTAGYSLRSGQQACEGVGSFLYLVHEGIR GIPLDPNDKSDALVPVSGTSLAVGIDFHAEEND TIYWDMDGLSTISRAKRDQTWREDVVTNGIG RVEGLIAVDWIAGNIYWTDQGFDVIEVARLNG SFRYVVVISQGLDKPRAITVHPEKGYLFWTEW GQYPRIERSRLDGTERVVLVNVSISWPNGISV DYQDGKLYWCDARTDKIERIDL-ETGENREVV LSSNNMDMFSVSVFEDFIYWSDRTHANGSIK RGSKDNATDSVPLRTGIGVQLKDJKVFNRDR QKGTVCAVANGGCQQCLCYRGRGQRACA CAHGMIAEDGASCHEYAGYLLYSERTILKSI HLSDERNLNAPVQPFEDPEHMKNVIALAFDY RAGTSPGTPNRJFFSDIHFGNIQQINDDGSRRIT IVENVGSGEGLAYHRGWDTLYWTSYTTSTIT RHTVDQTRPGAFERETVITMSGDDHPRAFVL DECQNLMFWTNWNEQHPSIMRAALSGANVL TLIEKDIRTNGLAIDHRAEKLYFSDATLDKIE RCEYDGSHRYVILKSEPVHPFGLAVYGEHIF WTDWVRAVQRankHVGSNMKLLRVDIPQ QPMGIIAVANDTNSCELSPCRINNGGCQDLC LTHQGHVNCSCRGGRILQDDLTCAVNSSCR AQDEFECANGECINFSLTCDGVPHCCKDKSDE KPSYCNCSRCKKTFRQCSNGRCVSNMLWCN GADDCGDGSDEIPCNKTACGVGEFRCRDGTC IGNSSRCNQFVDCEADASDEMNCSATDCSSYF

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, !=possible nucleotide insertion)
						RLGVKGVLFQPCERTSLCYAPS WVCDGAND CGDYSERDERCPGVKPRCPLNYFACPSGRCP MSWTCDDKEDECEHGEDETHCNKFCSEAQFE CQNHRICISKQWLCDGSDDCGDGSDAAHCE GKTCGPSFSSCP GTHV CVP ERWL CDGD KDCA DGADESIAAGCLY NSTCDDREFMCQNRQCIP KHFVCDH DRDCADGS DESPECEYPTCGPSEF RCANGRCLSSRQWECDGEN DCHDQSDEAPK NPHCTSPEHKCNASSQFLCSSGRCAVAEALLCN QDDCGDSSDERGCHINECLS RLKLSGCSQDC EDLKIGFKCRCPGFRLLKDDGRTCA DVDECS TTFPCSQR CINTHG SYKCLC VEGYAPRG GD P HSCKAVT DEEPFLIFAN RYYLRLKLNL DGS NY TLLKQGLNN AVALDFDYREQM IYWT DVT TQ GSMIRRMHLNGNSNVQVLHRTGLSNPDGLAV DWVGGNLYWCDKGRDTIEVSKLNGAYRTVL VSSGLREPRALVV DVQNGYLYWTDWGDHSL IGRIGMDGSSRSVIVDTK ITWPNGLTL D YVTE RIYWADARED YIEFASLDGSNRHVV VLSQDIPH IFALTFLFEDYVY WTDWETKS INRAHKTTGTN KTLLISTLH R PMLDHVFHALR QPDVNP HPCK VNNGGCSNLCLLSPGGGHKCACPTNFYLGS D GRTCVSNC TASQFVCKNDK CIPFWWKC DTE DDCGDHSDEPPDCPEFKCRPGQFCSTGIC TN PAFICDGDND CQDN SDEANC DIHV CLPSQFK CTNTNRCIPGIFRCNGQDNCGD GEDERDCPE VTCAPNQFQCSITKRCI PRVWVCDR DN DCVD GSDEPANCTQMTCV D EFRCKDS GR CIPAR W KCDGEDDCDGDSDEPK ECDERT CCEPY QFRC KNNRCVGRWQCDYDNDCGDN SDEES CTPR PCSESEFSCANGRCIAGRWKCDG DHDCADG S DEKDCTPRCMDMQFQCKSGH CIPLRWRCDA DADCM DGSDEEACGTGVRT CPLDEFQCNNT LCKPLA WKCDGEDDCGDN SDEEPE CARF V CPPNRPFRCKND RVCL WIGRQCDG TDNC GD GTDEEDCEPPTAHTTHCKDKKEFLCRNQRC L SSSLRCNMFD DC GDGS DEEDCSIDP KLT SCAT NASICGDEAR CVR TEKAAYCACRSGFHTVPG QPGCQDINECLRGTC SQLCN NTKG GHLC SC ARNF MKT HNT CKAEGSE YQV LYIADDNEIRS LFP GHPHSAYEQAFQG D ESRV RDA MDV HVKA GRVYWTN WHTGTISYRSLPPA APPTTS NR R RQIDRGV THLN S IGLKMP RGLAIDW VAGN VY WTDSGRDVIEVAQMKGENRKT L ISGMID EPH AIVVDPLRG TMY WSDWGNHPKIETAAMDGT L RETLVQDNIQWPTGLA VD YHNERLYWADA KLSVIGSIRL NGTDP IV AADSKRGLSHPF SIDV FEDYIYGV TYINNRVFKIH KFGHSP LVNL TG LSHASDV VLYHQHK QPEV TNPCDRKK CEWL CLLSPSGPVCTC PNGK RLDN GTCV PVPSPT PP PDAPRPGTCNLQCFN GGSCFLNARR QPK CRC QPRYTGD KCE LDQ CW EHC R N GGTCA ASPG MPTCRCP TGTGP KCTQQV CAGY CANN STCT VNQGNQPQCRCR CLPGFLGDR CQYRQC SGYCE NF GT CQMA ADGS RQ CRCT AYFEG SRCE VNK CSRCLEGACV VN KQSGD VT C NCTD GRVAPS CLTCVG HCSNGG SCT MN SKMM PECQC CP PHM TGP CEEH VFSQQ PGHIA SILIPL LLLL LV VAGVVF WYKRRV QGAKGFQH QRMT NGAM NVEIGN PTYK MYEGGE PDDVG GLL DADF AL

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, =possible nucleotide insertion)
						DPDKPTNFTNPVYATLYMGGHGSRHSLASTD EKRELLGRGPEDEIGDPLA
374	1724	A	3187	191	1815	CLELASAGKIPPEESKALSLLAPAPTMTSLMPG AGLLPIPTPNPLTTLGVSSLGAIPAAALDPNI ATLGEIPQPPLMGNVDPSKIDEIRRTVYVGNL NSQTTADQLLEFFKQVGEVKFVRMAGDET QPTRFAFVEFADQNSVPRALAFLNGVMFGDRP LKHINHSNNAAVKPPEMTPQAAAKELEEVVMKR VREAQSFSIAAIEPGWLVHSTSLCNDFLGCF*RR RMYRE*APCTICGTFLCLINWDL*LF*AYTA K*FFPPRVWKEQ*KKRR RSRSHTRSKSRSSSK SHSRRKRKSQSCHKRSRSHNRSRSRQKDRRRSK SPHKRKRSKSERRRKSRSRSHSRDKRKTREKI KEKERVKEDREKEREREKEKERGKN KDRDKEREDREKDKEKDREEREREKEHEKD RDKEKEKEQDKEKEKEKDRSKEIDEKRKKDK KSRTPPRSYNASRRRSRSSRERRRRRSRSSRS PRTSKTIKRKSSRSRSPRSRNKKDKKREKERD HISERRERERSTSMRKSSNDRGKEKLEKNST S
375	1725	A	3192	415	101	AHSSHQTRAILQEFOQWDIIRHPPLSPNLALSG F FPNLKKSLSLRGTHFSSVKK\TTLTWLNSQDP WF/FFYP*SPDLQIPSSFRNGLNDWYHHSQKC PDLDGAYVKK
376	1726	A	3199	931	418	GV*WCDLGSPQPPPGFKQFCGLRSSWDYR HVPPHPANFVFLLETGFLHAGQAGL\GDPPAS ASQSAGITGVSHWPKNHLIFYACLVIRSKRI K
377	1727	A	3201	274	1285	KTGYTSRGSPLSQSSIDSELSTSELEDDSIM GYKLQDLTDVQIMARLQEESLRQDYASTSAS VSRHSSSVLSSGKKGTCSDQEYDQYSLEDEE EFDHLPPQPRPLPRCPSPFQRGIPHSQTFSIREC RRSPSSQYFPSNNYQQQQYYSPQAQTPDQQP NRTNGDK/PKCKYA*PSPDAKYNCH**QHSSP VTVRNSQSFDSLHGAGNGISRIQSCIPSPGQL QHRVHSVGHFPVSIRQPLKATAVYSPTVQGSS NMPLSNGLQLYSNTGIPTPNKAASGIMGRS ALPRPSLAINGSNLPRSKIAQPVRSFLQPPKPL SSLSTLRDGNWRDGCY
378	1728	A	3202	112	1789	VPGVTESRPSVLRGDHLFALLSSETHQEDPIT YKGFVHKVIELDRVVLKLSFSMSLLSRFVGWG* PFKVNFY/TFNRQPLRVQHRALELTGRWLLW PMLFPVAPRDVPLLPDSVKKLYDRSLESNP EQLQAMRHIVTGTRPAPYIIFGPPGTGKTVT LVEAIKVVKHLPKAHILACAPSNSGADLLC QRLRVHLPSSYIYRLLAPSRSRDIRMVPEDIKPCCN WDAKKGEYVFPAKKLQEVRLITTLITAGR LVSAQFPIDHFTIFIDEAGHCMEPESLVAIAG LMEVKETGDPGGQLVLAGDPRQLGPVLRSP TQKHGLGYSLLERLLTYSNLYKKGPDGYDPQ FITKLLRNYRSHPITLDIPNQLYYELEGQACA DVVDRERFCRWAGULPRQGFPIIFHGVGMKD EREGRNSPFFNPEEAATVTSYKLLLAPSSKK GKARLSPRSVGVISPYRKQVEKIRYCITKldr ELRGLDDIKDLKVTCSTVTPCLPCAPTCPLP ETSSSFHSSPRPRTPAALNRARALPEPLTPGD SNLRVWDGIRKPACLTNTSCHS
379	1729	A	3206	432	130	PKAAPSVXLWFPPFL*GSFKPTKGHTXCVXIK *LSTREAXDSXPGRQIAXXRQGGKVETTAL

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, =possible nucleotide insertion)
						XKQSNNGTRASSYXEPDAXEQWKFPHKKLQLPGXTHE
380	1730	A	3207	187	507	GGTGHPHPARPLSGVGGCQCSHSPWTAGSPEQRDHAPAHKQIEAGQGLPGPQA WGG*KGPAXLLPGPGGGPGPVASLEARAQASSGVTPNGGRTYPYPTFSSGE
381	1731	A	3225	1	840	GTRPGHLPAPSDGFCV/HL*SIPSWGFS*GES/EMQLITSLGLQEFDIARNVLEIYAQILVVWIGIFFCPLLPFIQMIMLFIMFYSKNISLMMNFQPPSKAWRASQMFTFFFLFFFPSFTGVLC TLAITIWRLKPSADCGRPGLPLFIHSIYSWIDTLSTRPGYLWVWVWIYRNIGSVHFFFILTIVLIITYLYWQITEGRKIMIRLLHEQIINEGKDKMFIEKLIKLDQMEKKANPSSLVLERREVEQQGFLHLGEDGSDLRSRRSVQEGNPRA
382	1732	A	3238	256	38	LLMIKVSSCTCSCHLHHHHHHHHRHQQHNSLFFSLKSSNSNSTLPVYLSYNIIIVFSKCLVPDFLFSNACL
383	1733	A	3241	1542	343	KGAPSFVRLYQYPNFAGPHAALANKSFFKADKVTMLWNKKATAVLVIASTDVDKTGTGASYYGEQTLHYIATNGESAVVQLPKNGPIYDVVWNSSTEFCAVVGFMPAKATIFNLKCDPVFDFGTGPRNAAYYSPHGHILVLAGFNLILQI*AD/IMKVWNVKNYKLISKPVASDSTYFAWCDFGEHILTATCAPRLRVNNNGYKIWHYTGSILHKYDVPSNAELWQWSWQPFLDGIFPAKTTTYQAVPSEVPNEEPKVATAYRPALRNKPITNSKLHEEEPPQNMKPQSGNDKPLSKTALKNQRKHEAKKAAKQEARDKSPDLAPTPAPQSTPRNTVSQSISGDP EIDKKIKNLKKKLKAIEQLKEQAATGKQLEKNQLEKIQKETALLQELEDLELGIRSPAARSPGLEPTCLLFVIAAIAAVFVDSAIPRLTQHRPQDGSPYTIILDPPLYLPGQCAPPQLSQCARRVHGEKLRRTFPGPRHRCAGTAKMSASLVRATRAVSKRKLQPTRAALTTPSAVN KIKQLLKDKPEHVGVKVGVRTRGCNGLSYTL EYTKTKGDSDEEVIQDGVRFIEKKAQLTLLGTEMDYVEDKLSSEFVFNNPNIKGTCGCGESFNI
384	1734	A	3242	3	678	IRSPAARSPGLEPTCLLFVIAAIAAVFVDSAIPRLTQHRPQDGSPYTIILDPPLYLPGQCAPPQLSQCARRVHGEKLRRTFPGPRHRCAGTAKMSASLVRATRAVSKRKLQPTRAALTTPSAVN KIKQLLKDKPEHVGVKVGVRTRGCNGLSYTL EYTKTKGDSDEEVIQDGVRFIEKKAQLTLLGTEMDYVEDKLSSEFVFNNPNIKGTCGCGESFNI
385	1735	A	3243	3190	664	VAMGTPRAQHPPPPQQLFLILLSCPWIQGPLKEEEILPEPGSETPTVAASEALAELLHGALLRRGPEMGYLPGLPGLPEGGEETTTTTTTTVTTVTVSPVLCNNNISEGEGYVESPDLGSPVSRTLGLDDCTSYIHVPGYGIEIQVQTNLNSQEEELLVLAGGGSPGLAPRLLANSSMILGEGQVLRSPNRLLLHFQSPRVPRGGGFRHYQAYLLSCGFP PRPAHGDVSVTDLHPGGTATFHCDSGYQLQGETLICLNTRPSWNGETPSCMASCGTIHNA TLGRJVSPEPGGAVGPNLTCRWVIEAAEGRRLHLHFERVSLDEDNDRLMVRSGGSPLSPVIYDS DMDDVPERGLISDAQSLYVELLSETPANPLLLSLRFEAFFECTRCFAPFLAHGNVTTDPEYRPG ALATFSCLPGYALEPPGPNAIECVDPTEPHWNDTEPACKAMCGGELSEPAGVVLSPDWQSYSPGQDCVWGVHVQEEKRILLQVEILNVREG DMLTLQFQAPPGPNNPGLGQGFVLHFKEVPRNDTCPELPPPEWGWRASHGDLIRGTVLTYQCEPGYELLGSDILTCQWDLSWSAAPPACQKI

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, =possible nucleotide insertion)
						MTCADPGELANGHRTASDAGFPVGSHVQYRC LPGYSLEGAAMLTCSRDTGTPKWSDRVPKC ALKYEPCLNPGVPENGYQTLYKHHYQAGESL RFFCYEGFELIGEVITTCVPGHPSQWTSQPPLC KVTQTTDPSRQLLEGGNLALAILPLGLVIVL SGVYIYYTQLQGKSLFGFSGSHSYSPIT'ESDF SNPLYEAQDTREYEVSI
386	1736	A	3250	5725	3984	GTSTVTMATKKHFSIINLLGMLLKKDNQDT RKLLMTWALEAVAVMKKSETYAPLFCLPSF HKFKGLLADTLVEDVNICLQACSSLHALSSS LPDDLLQRCVDVCRVQLVHRGTCIRQAFGKL LKSIPLGVLFSNNNHTIEQEISLALRSHMSKAP SNTFHPQDFSD/VISFLYGNNSHRTGKDWNLE RLFYSCQRLLDKRDQSTIPRNLLKTDALWQW AIWEAAQFTVLSKLRTPGRAQDTFTIEGIIR SLAGTLNPDQDVSVQWTADNDEGHGNNQL RLVLLLQYLENLEKLMYNAYEGCANALTSP KVIRTFLYTNRQTCQDWLTRIRLSIMRVGLLA GQPAVTVRHGF DLLTEMKTTSLSQGNELEVSI MMVVEALCELHCPEAIQGLAVWSSSIVGKHL LWINSVAAQQAEGRFEKASVEYQEHLCAMTG VDCCISSFDKSVLTLASAGCKSASKHCLNGE SRKSVLSKPTDSSPEVINYLGNKACECYISTA DWAAVQEWQNAlIHDLLKSTSSTS NLKADF NYIKSLSSFESGKFV рЕТЕQLELLPGENINLLA GGSKEKIDMKKLLRNМ
387	1737	A	3255	380	76	MDIFLYNCKYQVQTEI*NSIQHIMA\SKKLSRF LKYVHN*AENYKTLMK*INEDLNKQRDVРY *STARLNKMSIPTKTIFRFKAIYIKIPATYFIET NMQ
388	1738	A	3260	685	428	PQWLGLQVYALPPANFVFFFEMRSTILAQTG FELLDSSDL PASASKSAGITCM SHARTLSK *WPFCLSA TOEKFC*PASEGVAW
389	1739	A	3269	1	332	LDGYHTPIYMLNRJRLPAAL*II SDQTGHALT LTRLETQMINADYQNKLTLDYLLTTDREVYE PFNLTNYCLHHNQRLGAYDLG*V*Q/KLAHV PVQV*HGFDP ЕAMFR
390	1740	A	3270	2	372	GRCHDQNKGKS\DGPDQAQEACGGESTYQEL LVNQNPNIGQPLACRRLTRKIYEGIKKAVKPNH SPRGVKVHKFVNKGKGEKGIMVLAGDTLGI YCLLPCMC*DRKLTYAHIPSTTDLGAGAGY
391	1741	A	3273	1	187	FFQEMLDIMKAISDMMGKCTYPVLKEDAPRQ HVETFFQEEELTRS QEGMKGLENFLMFAMPP DDSKEKGK*FFQEMLDIMKAISDMMGKCTY PVLKEDAPRQHVETFFQVGINQKSRGHEVRR KFPDVCHAPR
392	1742	A	3281	901	521	FFFFGDGVSPCROAGV*WHDLDSLQNLPPGFK RFSYLSLPSWW\DYRHVLPRQANFCIF/M*RRG FTMLARMVMSIS*PRDLPALASQSAGITGVSHH APPQMDFTALLCFALKGCLPRQKEGGTLNLI
393	1743	A	3283	385	3	RNRSSVPEFVLLGLSAGPQTQTLFVLFVVIC LLTVMGNLLLLVVINADSCLHTPMYFFLGQL SFLDLCHSSVTAPKLL ENILLSEKKTISVEGCM A*VFFVFA TGGTESSLLAVMAYDRYVAIRTR G
394	1744	A	3284	575	1054	CTKCKADCDTCFNKNFCTKCKSGFYHLGKC LDNCPEGLEANNHTMECVSIVHCEVSEWNP WSPCTKKGKTCGFKRGTE TRVREIIQHPSAKG NLCPPTNETRKCTVQRKKCQKGERGKKGRE

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, △=possible nucleotide deletion, ▲=possible nucleotide insertion)
						RKRKKPNKGESKEAIPDSKSLESSKEIPEQREN KQQQ
395	1745	A	3286	1	340	RVLYVPMSGFCILVAHGWQKJSTKSVFKKLS WICLSTMVILTHSLKTFRHRNWDWESEYTLFMS ALKVNKNNNAKLWNNVGHALENEKNFERAL KYFLQATHVQPDDIGAHMNVRG
396	1746	A	3293	1	172	GFRAVVMTVKTEAKGTLTYSRMRGMVAIL IAFMKQRMMGLNDFIQKIANNSYACKQ
397	1747	A	3295	12	401	AEPACGASSCTPPSLRSSSSQSVPGLPGRPL WSEACAFL*AAAPQGPASPCCGLPSGFPVRW AQCCPPGAGLRFPEGLGSVLSPRRCPVSRGS GLSAVPQEVPMSGFLGPGLRACPQEAPSRLRA GLT
398	1748	A	3300	1912	2768	KQRWRQNIQRKGPKRYIVIAGNSQSHQPMIFS MLRKLKPVTCRDVLPEIRAI CIEEIGCWMQSY STSF LTD SYLK YIGWT LHDKH REV RVK CVKA LKG LYGNRDLTARLELFTGRFKDWMVSMIV DREYSVAEAVRLLILIKNMEGVLMVDCE SVYPIV*ASN*GLASAVGEFLYWKLFYPECEI RTMGGREQRQSPGAQRTFFQLLSSFFVESKSH SVTQAGVQWQFSAHARDLCLPGSSNSHVSASR VAGIAGAHRHTWLIVYFFSWRQGFAVLAGLVNSN
399	1749	A	3301	536	2391	LSYGCKAPSRI SHLHKFLFLLPSSLMGYSE SPPPITDSWAPFISLTHHVLSQSQSPLLNCWI CLSTHTQ*FTALPADL LTWTQSNSVLHISYLAI PFLADSFLKPV/L*PGNSAKHL SFLKSSLMSMVS GRAVALLH LIA SGLTSI QTNTASSK PPIWG YL STQTSFISPPPLCLSRTYPNP AHTMVGVQVPQ SLCLGIFTL/RTPCRPSILHPNYKII STSAWQKV LCFSGSPTIHTS LHLTTGSSFLSFHPIPGFPAAN SALYVSSLKGPPGK NVTIPSPVTGT*QPPHRGS N/RLTVKDNNFLSPKPNSLHQLPSQ\TPYQAL TGAALAGSYPIWENENTL SWLPTFTYNFCLST PSLFFLCDTN*YLCL PANWSGTCTLV FQAPTI NILPPNQTILSVEA SISSPIRNK WALH LITLLT GLGITAALGTGIAGITTSITSY QTLFTTLSNTVE DMHTSITSLQRQLDFL VGVILQNWRVLDLLT TEKGGTCIYLQEECCFCVNESGIVHIAVRRLH DRAAEEL*HQVADSWWQGSSLLR WIPWVAPF LGPLIFLFLLMIGPCIFNL VSRFISQRLNCFIQ ASMQKHIDNIFHLCHV*YQSLRGNHSEAPEPR P
400	1750	A	3303	2	453	THWRHSSGVPGSITARRRRRELEIATSDNQE YYNRLCQEVTNRERNDQKMLADLDDLNRTK KYLEERLIELLRDKDALWQKSDALEFQQKLS AEERWLGDETEANHCLDC KREFSWMVRHHIC RICGRJFCYYCCNNYVLSK HGGKKERCC
401	1751	A	3304	1	626	MAPQHSSLDKV PQQQASTVCFCFQDILQHSQ CTEHKDSLWPGPARGSQPF GAHNTRLSPDSCP EKIVLRA LKDSRAGMPEQDKDPGVQENPDD QRVPQGTGDAPS AFRPLWDNGGLSPFVSRP GPLERD LHAQRSEVTY NQR SQSSWMSSFPKR NAFVSPYSSMGQAQP/GLPKTNPIGE ESCCWEG LSLSTQILG*QKPSKYI PSLCKR
402	1752	A	3305	1678	172	MELPSGPGPERLFD SHRLPGDCFL LLVLLY A PVG FCLL VRLRFLGIHVFLVSCALPDSV LRRF VVRTMC A VLGLVARQEDSGLRDHSVRVLISN HVT PFDHNIVNLLT CTVSESEA SATGRFP

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met cod	SEQ ID NO: in USN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						GAQLKAPLSPLAFRMEDTEALPLTPILYPTCQ FFFFFLNFIALLAFSSPGSQPLLNSPPSFVCWSR FMEMNGRGELEVSLKRCASTRLPPTPLLLF PEEEATNGREGLLRFSSWPFSIQDVVQPLTLQ VQRTLVSFTVSDASWVSELL\WSLFVPFTVY QVRWLRPVHRQLGEANEELRVQQLVAKE LGQTGTRLTPA\DKAEHMKRQRHPRLRPQS AQSSFPSPSWLSS/SDVQTGQTLGFREFKESF CPHVAIGVFIPERPWPKTGCCKTLTHLILL*G GPVSFSCPADIHPRTGT*VPTQQASGLPSFPSYG PARGGVL*HPSAAQQPLTFA\KSSWARAGRAL QERKQ\ALYEYARRFTERRAPGGLD
403	1753	A	3307	44	447	DPSPSLLAVALGLRAGERTRSGPGSSSPSGGIS GGASAGLASSSPECACGRSHFTCAVSALGET CIPAQWQCDGNDCCGDHSDEDGICLPTCSPL DFHCDNGKCIRRSWVCDSDNDCEDDSDEQD CPPRECEED
404	1754	A	3311	409	1	PRHGWRRLGLRDRPRLQKVKKSVKAIYIPG QDHVQNEEIYARVLDKFGSNFLSRDNADLGT AFVKFSTLTK*LSALLKNLLQGLSRNVIFTLDS LLKGDLKGVKGDLKPKFDKAWKDYETKFAK IEKEKREREWR
405	1755	A	3322	12	458	AAVPENPDDPPRVRPRVRIFTWEDCIAGQA KVLCNDSYGVTDWSPKGAFIRLTSQSVGNG HPASKENDQMVDTIKNTTKVPIIWWTYGDMVE PRPQMIRPAVGAKHELWKILMALKKIKIWE GKYTKPSQYNPNYMLAHDNSVV
406	1756	A	3324	1	426	LSMLSTISTEHLRSVLWPIWYCCHCPTHLSAV MCVLLWALSLLQSILEWMFCFLFSDVDSDN WCQILDFTLVAVLFLRLVLCGFTLVLLVRJIC GSQKMPLTRLYVTILLTGLVFLFCSLPLSIQ*F LLYWIEKDLDL
407	1757	A	3328	213	1841	SGDLSPAELMMLTIGDVVKQLIEAHQGKDID LNKVKTAKTAAYGLSAQPLRVDIAAVPPQY RKVLMPKLAKPRTASGIAVVAVMCKPHRC PHISFTGNICVYCPGGPDSDFEYSTQSYTGYEP TSMRAIRARYDPFLQTRHRIEQLKQLGHHSV KVEFIVMGTFMALPEEYRDYFIRNLHDALS GHTSNNIYEAVKYSERSLTKCIGITIETRPDYC MKRHLSDMLTYGCTRLEIGVQSVYEDVARD TNRGHTVKAVCESFHAKDSGFKVVAHMMP DLPNVGLERDIEQTEFFENPAFRPDGLKLYP TLVIRGTLGYELWKSGRYKSYSPLSDLVELVA RILALVPPWTRVYRVQRDIPMPLVSSGVEHG NLRELALARMKDLGIQCRDVRTREVGQIEIH HKVRPYQVELVRRDYVANGGWETFLSYEDP DQDILIGLRLRKCEETFRFELEGGGSIVREL HVYGSVVPVSSRDTKFQHQGFGMLLMEEA ERIAREEHGSGKIAVISGVGTRNYYRKIGYRL QGPYMVKMLK
408	1758	A	3335	3	467	AIASPRAAGIRHELTSTMAGKNKRLTKGGK KGAKKKAV/DNIINIGKTLVTRTQRTKIASDG LKGRVFEESLADLQNDVTDGYLLRVI*VAFTT ERTNQI/REVFNKLIPDSICKDIEKACQSIYPLH DDFARKVKMLKKPKFELRKLMEHGEGRSS
409	1759	A	3338	7	1252	PRWRNSARDEILLSFPQNYYIQWLNGSLIHL WNLASLFSNLCLFVLMPPAFFFLESEGFAGLK KGIRARILETGMLLLALLLILGIVWWVASALID NDAASMESLYDLWEFYLPYLYSCISLMGCLL

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, \=possible nucleotide deletion, =possible nucleotide insertion)
						LLLCTPVGL\SRMFTVMGQLLVKPTILEDLDE QYIITLEEEQPKWAVFIRW/KYNIMELE QELENVKTLLTKLERRKKASAWERNLVYP AVMVLLLIETTSISVLLVACNLCLLVDETAMPK GTRGPIGNASLSTFGVGAALEIILIFYLMVS SVVGFYSLRFFGNFTPKKDDTTMTKIIGNCVS ILVLSSALPVMSRTLGIITRFDLLGDFGRFNWL GNFYIVLSYNNLFAIVTTLCLVRKFTSAVREE LFKALGLHLKLHPNTSRDSETAKPSVNGHQK AL
410	1760	A	3339	127	1433	GSHRFSLASPLDPVEVGPYCDTPTMRTLFNLL WLALACSPVHTTLSKSDAKKAASKTLLLEKSQ FSDKPVQDRGLVVTDIKAESVVLEHRSYCSA KARDRHFAGDVLCGYVTPWNNSHGVDVKVFG SKFTQISPVWLLQLKRRGREMFVEVTGLHDVDQ GWMRRAVRKHAKGL*CLGSCLRTGLTMISG/ YVLDSEDEIEELSKTVVQVAKNQHDFGVVE VWNQLLSQKRVGLIHMMLTHIAEALHQARLL ALLVIPPAITPGTDQLGMFTHKEFEQOLAPVLD GFSLMTYDYSTAHQPGPNAPLSWVRAVCQV LDPKSKWRSKILLGLNFYGMDYATSKDAREP VVGARYIQTLKDHRPRMVWDQSQVSEHFFEY KKSRSGRHVVFYPTLKSQVRLELAELGVG VSIWELGQQLDYFYDLI*VGIAASAVDVFFSK PWSE
411	1761	A	3342	74	2701	VATRKLAKGFTQFAKMTEGTKKTSKKFKFFK FKGFGSFSNLPRSFTLRRSSASISRQSHLEPDTF EATQDDDMVTVPKSPPAYARSSSDMYSHMGTM PRPSIKQAQNQSAARQAQEAGPKPNLVPGGV PDPPGLEAAKEVMVKATGPLEDTPAMEPNPS AVEVDPIRKPEVPTGDVEEERPPRDVHSERA GEPEAGSDYVFKSKEKYILDSSPEKLHKELEE ELKLSSTDLSLTDGCTSTSLLPRPDRSIRSCA GDFLIRDLSLTDGTYVLTCSRWRNQALHKJN KVVVKAGESYTHIQYLFEQESFDHVPALVRY HVGSRKAQESEQSGAIYCPVNRTFPLRYLEAS YGLGQGSSKPASPVSPSGPKGSHMKRRSVTM TDGLTADKVTRSDDGCTSTSLLPRPDRSIRSCA LSMDQIPDLHSPMSPISESPSSPAYSTVTRVA APAAPSATALPASPVARSSSEPOLCPGSAPKT HGESDKGPHTPSPSHTLGKASPSPLSSYSDPDS GHYCQLOPPVVRGSREWAATETSSQQARSYGE RLKELSENGAPEGDWGKTFVPIVEVTSSFNP ATFQSLLIPRDNRPLEVGLLRKVKELAEVDA RTLARHVTKVDCVVARILGVTKEMQTLMGVR RWGMELLTLPHGIRKLRLDLLERFHTMSJML AVDILGCTGSAERAALLHKTIQLAAELRGTMGNMFSFAAVMGALDMAQISRLEQTWVTLR QRHTEGAIILYEKKLKPFKSLNEKGKEGPPLSN TTTPHVLPLITLLECDSSAPPEGPEPWGSTEHGV EVVLAHLEAARTVAHHGGLYHTNAEVKLQG FQARPELLEVFSTEFQMRLLWGSQGASSSSQA RRYEKFDKVLTLALKLEPAVRSSSEL
412	1762	A	3347	1	898	IDRAAECRTKPLPMAVSIRGNADSIVACLVLM VLYLIKKRIVACAAYFYGFAVHMKIVPETYI LPITLHLLPDRDNDKSLRQFRYTFQACL*ELL KRLCNRTALMFVAVAGLTFFALSFCFYYEYG WEFLEHTYFYHLTRRDIRHNFSPYFYMLYLT AESKWSFSLGIAAFLPQLILLSAVSFAYYRDL VFCWFHTSIFVTFNKVCTSQYFLWYLCLLPL

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, \=possible nucleotide deletion, \ =possible nucleotide insertion)
						VMPLVRMPWKRAVLLMLWFIGQAMWLAPAYVLEFQGKNTFLFIWLAGLFFLINC SILIQIISHYKEEPLTERIKYD
413	1763	A	3361	3	474	PIPVRWNSLEGRLLRGYEOHANNDGKDYISRN*DLRSWTAADMAAQITKRKWEAEFAEQIKA YLEGTCVER/LRTHLENGKETLQLTEQSSQPTI PIVGIVAGLVLLGAVVTGAVVSAVMCRKKNS GHFLPTDRVSYSEAASSDHAGQSDVSLTACK V
414	1764	A	3363	1488	453	HQILELKILKTKTNPDYDEDLVQEASSEDVL GVHMVDKDTERDIEMKRQLRLLRELHYLYST WKKYQEAMKTSGLGPQRERDEGSGLGPLCP PEILSETLPGSVKKRVCFCPSEDHLEEFIAEHLPE ASNQSLITVAHADAGTQTNGDLEDLEEHGP GQTVSEEADEVHMMEGDPDTLAELLIRDVLQ ELSYYNGEEEUDPEEVKTSGLVPQRGDLEDLE EHVPGQTVSEEATGVHMMQVDPATLAKSDL EDLEEHVPEQTVSEEATGVHMMQVDPATLA KQLEDSTITGSHHQMSASPSSAAPAAEATEKTK VEEEVKTRPKKKTRKPSKSRWNVLKCWD IFNIF
415	1765	A	3369	431	315	IPWSWVGRLSVRKMSILF*LTYNYNAILNKTP PSFSPSL
416	1766	A	3373	42	651	RQEKGMLGEIGASGVRLSMLKERKKQNMGKNGNVTLTPLPAVQCQCHLQPAGRSPLPSSHS APGLCSPLHPLQPQQEASTCPSTLQGREKAA PGQGRPLCSLWAGGAGAIPGERGAEGRGPSD QAPDPKSGPWFPPGLGAPAEVRLHNVPHNL RRPLP*ARGK*PPNSGCPWSEGRAKQPLSCG PKPQCSLPSQVPGDTH
417	1767	A	3382	2	2061	EAQDPRACTGPDAGGRFAARDAPGNSLRPPPS SPP/GWPQLRLPRVPGSELRCGKPERGRLLP ASPPGKIRGWPPIGSKRPGLGGRSFPPGFAPRT WRPEARGPSVQSLPPIFSPQSQAQTTAR*RP GAP KNAGRCGGAIRGPRLSLGPPPQPPAPALPAR ASAGAGAAAAAAALAVGGVVRGAGGARGTGGY GHCSGR/PTGRTGPQGPQGPMPMPARPR*AS S TRGSRRGPGSRPARAAAAPRAGDHGRRV RHLRQHTAV*EPRLGDATAAPPGGAAGPGAPAP R\GPGWDCALLPSPGPGRSPRAVGCAEPEIWDP SPRRGTSPVPSVRSLRSEPANPRLGLPALLNSY PLKGPGLPPPWPGRPTQGHIITVQPSGSCIEH SKSLD/RGPWGAPPWGPsSSGLCSPKLATAGP PQSWGLCQIGRRGLGGPLKRGET/GLL*GC SMDHANRTKGPGVPTSNCFSHIPGGDGCSD HSSCEGHPD LHAGREMPAAPGLSELERVRFT VGCGLASGISSASVGLSPNRAGGPGQGDW EMYPVSWQTQESGGQ/SPKTGR*VGMLQA GAGSLQGGTGDGWVWLWEDGP/RG*DSPLPS GTGTEP*TPTITSIPFFPQPSGVYPSRATLLPMPS Y*ALGPSANKPLLSFLYRGLCCRISLQLA KGIGQLSEIPLLNVETAFWSMWVVTYFRK
418	1768	A	3398	304	2121	EEEEEEEDDDDNNEEEFECYPPGMKVQVRYGRGKNQKMYEASIKDSDVEGGEVLYLVH YCGWNVRYDEWIKA DKIVR PADKNVPKIKH RKKIKNKL DKEKDKDEK YSPKNCKP ALGP NPPFQTNPISWKWYPKL DLTD AKNS DTAH IKSI EITSILNGLQASESSAEDSEQED ERGAQDM DN NGKEE SKIDH LTNNRNDLISKEEQNSSLLEE

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, \=possible nucleotide insertion)
						NKVHADLVISKPVSKSPERLRKDIIEVLSEDTDYEDEVTKKRKDVKDTTDKSSKPQIKRGKRRYCNTECLKTGSPGKKEEKAKNKESLCMENSSNSSDDEEETKAKMTPTKYNGLEEKRKSLRTTGFYSGFSEVAEKRIKLLNNSDERLQNSRAKDRKDVGWSSIQQGPWKTLKELFSDSDTEAAASPPHPAPEEGVAEESLQTVAAEEESCSPSV ELEKPPPVNVDSPKPIEKTVEVNDRKAEPFSSGSNFSA*IPLPYLHLNRLHQSL*QKGSRQQSS VTVSEPLAPNQEEVRSIKSETDSTIEVDVSVAGE LQDLQSERE*LASFRCQCELKQ**SARTRTS*KSLYRSEKSERCSGRRKFIKKAEKKP*SNSGK QQKEGK
419	1769	A	3399	206	463	QRECLSIHIGQAQIIGDACWELYCLEHGIQPNGVVLDTQQDQLENAKMEHTNASFDTFFCE TRAGKHVPRALFVDFLEPTVIDGIR
420	1770	A	3408	1010	685	RRLSFFF*IWSSVLVTQARVQWRDLGSPQPLP PGFKRFSCLSLPSWDYRHPSPRPVNF/HVFLV VMGFHHVGQAGLELTSGDLPALASQ SARITGVNHCAQPRGHFH
421	1771	A	3409	355	1326	ADSNLIESCWQELGLGPWGGDWWRVEQVGAS ASLRFPREVC SIRFLFTA VSLLSLFLSAFWLGL LYLVSPLENEPKEMLTLSLEYHERVRSQGQQL QQLQAEIDLKLHKEVSTVRAANSERVAKLVF QRLNEDFVRKPDYALSSVGASIDLQKTSHDY ADRNTAYFWNRFSFWNYARPPTVILEPHVFP GNCWAFEGDQQGVVIQLPGRVQLSDITLQHP PPSVEHTGGANSAPR DFAVFFLSSFTHQGLQ VYDETEVSLGKFTFDVEKSEIQTFLQNDPPA AFPKVKIQILSNWGHPRFTCLYRVRAHGVRT SEGAEGSAQGPH
422	1772	A	3412	2	421	EFDAQPSIGLAVFKRP*ATTGSDPGPKRGMN YLVSCSMRSPESGKGEPGTARDY TPMGRPPP PVPSVSPGPLPGSLAIAPHSPHPWEQQPPRG QARSPPGGWLGSAT/RVRRPHNHP/RGH/HSP VDTAGAPASPGPDVCE
423	1773	A	3420	91	706	DAQRAIYSSVGPASLQRQQDGAVKESGR/ RGGVRSFSRAAAAMAPIKVGDAIPAVEVFEG EPGNKVNLAELFGKGKGVLFGVPGAFTP GCS KTHLPGFVEQAEALKAKGVQVVA CLSVNDA FVTGEWGRAHKAEGKVRLADPTGAFGKET DLLDDDSLVSIFGNRRLKRFMSMVQDGIVKA LNVEPDGTGLTCSLAPNIISQL
424	1774	A	3421	4	7688	RQVTRVGVTRVLGSTTA AVFLSVEDDNDNAPQ FSEKRYVVQVREDVTPGAPVLRVTASDRDKG SNAVVHYSIMSGNARGQFYLDQATGALDV SPLDYETTKEYTLRVRAQDGGRPPLSNVSGL VTVQVLDINDNAPIFVSTPFQATVLESVPLGY LVLHVQAIDADAGDNARLEYRLAGVGHDFP FTINNGTGWISVAEELDREEVDFYSGFVEAR DHGTPALTASASVSVTALDVNDNNPTFTQPE YTVRNEDA AVGTSVTVSAVDRDAHSVITY QTSGNTRNRF SITSQSGGGLVSLALPLDYKLE RQYVLA VTASDGT RQDTAQIVVNVT DANTRP VFQSSH YTVNVNEDRPA GTTVV LISATDE DTGENARITY FMEDSIPQFRIDADTGA VTTQ AELDYEDQVSY TLAITARDNGIPQKS DTTYLEI LVNDVNDNAPQFLRDSYQGSVYEDVPPFTSV LQISATDRD SGLNGRVFYT FQGGDDGDGDFI

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						VESTSGIVRTLRLDRENVQAQYVLRAYAVDK GMPPPARTPMETVTVLVDVNNDNPVFEQDEFD VFVEENSPIGLAVARVATADPDEGTNAQIMY QIVEGNIPEVFKQLDIFSGELTALVLDLYEDRPE YVLVIQATSAPLVSRAVHVRI.LLDRNDNPPV LGNFEILFNNYVTNRSSFPGGAIRVPAHDP DISDSLTYSFERGNELSLVLLNASTGELKLSR ALDNNRPLEAMISVLVSDGVHSVTAQCALRV TIITDEMILHSITLREDMSPERFLSPLLGLFIQ AVAAATLATAPPDVVVVFNVQRDTDAFGGHILN VSLSVGQPPGPGGGPFLPSEDLQERLYLNRS LLTAISAQRVLPFDDNCLREPCENYMRCVSV LRFDSSAPFIASSSVLFRPIHPVGGLRCRCPFG TGDYCETEVLDLCYSRPGPHGRCRSREGGYT CLCRDGTYGEHCEVARSGRCTPGVKNGGT CVNLLVGGFKCDCPSGDFEKPYCQVITRSFP AHSFITFRGLRQRFHFTLALSFAKERDGLLL YNGRFNEKHDFVALEVIQEQQVQLTFSAGEST TTVSPFVPGGVSDGQWHTVQLYYNKPLLG QTGLPQGPSEQKVAVVTVDGCDTGVALRGFS VLGNYSCAAQGTQGGSKKSLDLTGPILLGG VPDLPESFPVVRMRQFVGCMRNLQVDSRHIDM ADFIANNGTVPGCPACKNVCDSKTCHNGGTC VNQWDASFCECPPLGFGGKSCAQEMANPQHF LGSSLVAWHGLSLPISQPWYLSLMFRTRQAD GVLLQAITRGRSTTILQLREGHVMLSVEGTGL QASSLRLEPGRANDGDWHHAQLALGAIGGP GHAILSPDYGQQRAEGNLGPRLHGLHLSNITV GGIPGPAGGVARGFRGCLQGVRSDTPEGVN SLDPHGESINVEQGCSLPDPCDSNCPANP CSNDWDSYSCSCDPGYYGDNCTNVCDLNPC EHQSVCTRKPSAPHYTCECPPNYLGPYCET RIDQPCPRGWGHTCGPCNCDVSKGFDPPDC NKTSGECHCKENHYRPPGSPTCLLCDCYPTG SLSRVCDCPEDQCPCKPGVIGRQCDRCDNPF AEVTNGCEVNYDCSPAIEAGIWWPRTRFG LPAAAPCPKGSGFTAVRHCDEHRGWLPPNL NCTSITFSELKGFAERLQRNESGLDSRSQQL ALLLRNATQHTAGYFGSDVKVAYQLATRLL AHESTQRGFGLSATQDVHFTENLLRVRGSALL DTANKKRHWELIQQTTEGGTAWLLQHYEAYAS ALAQNMRTYLSPTIVTPNIVISVVRLDKGN FAGAKLPRYEALRGEQPPDLETTVILPESVFR ETPPVVRPAGPGEAQEPEELARRQRRHPELSQ GEAVASVIIYRTLAGLLPHNYDPDKRSLRVPK RPIINTVVSISVHDDEELLPRALDKPVTQFR LLETEERTKPICVFVNHSILVSGTGGWSARGC EVVFRNESIVSQCNHMTSFAVLMDVSRR NGEILPLKTLTYVALGVTLAALLLTFFFLL RILRSNQHGIRRNLTAAALGLAQLVFLLGINQA DLPFACTVIAILLHFLYLCTFSWALLEALHLY RALTEVRDVNTGPMRFYYMLGWGVPAFITG LAVGLDPEGYGNPDFCWLSIYDTLIWSFAGP VAFAVSMGVFLYILAARASCAAQRQGFEKKG PVSGLQPSFAVLLLSATWLLALLSVNSDTLL FHYLFATCNCIQQGPFLSYVVLSEVRKALK LACSRKPSPDPALTITKSTLTSSYNCPSYADG RLYQPYGDSAGSLHSTSRSGKSQPSYIPFLR EESALNPGVQGPPGLGGIPGR/LCFLGRFKDQQ HDS*TRDFDSLISLEDDQSGSYASTHSSDSEE

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, =possible nucleotide insertion)
						EEEEEEEAAFPGEQGWDSLGLPGAERLPLHS TPKDGPGPKAWPGDFITAKESSGNGAP EERLRENGDALSREGSLGPLPGSSAQPHKGIL KKKCLPTISEKSSLRLPLEQCTGSSRGSSASE GSRGGPPSRPPPRQSLQEQLNGVMPPIAMSIKA GTVDEDSSGSEFLFFNPLH
425	1775	A	3429	155	1417	GEPAVQSCDCGCTQRSCPWLVAAPGLLSSSSS RAASVREAEADPLQPASIHPVSQGSRGPEGSL GSAECLPGDPLGARRATRAHSPVPGPPPSLPA AGTAVKRGQLQPG*GA/GATSTPGTGAATGGL CGPAWAAPS AVGPCCCCPSISTPSQMRSA RP SLGCLPSWAS\PGTEHPPGPQGP GP GS*DLC SV* KREFORCPWAGMVILHRISAADPARAPGPDS NLQSALQQPATGCSEPAAVYSPPIGLWGA**P EYG*PQHSLPG*TAPADR*PAGIKDRVYSNSI YELLENGORAGTCVLEYATPLQTLFAM SQYS QAGFSR EDRLEQAKLCRTLEDILADAPESQN NCRLIA YQEPA DSSFLSQEVLRHLRQE EKE EVTVGSLKTS A VPST STMSQ EPELLISGM EKP LPLRTDFS
426	1776	A	3431	1662	369	AIWWLSWLQHDLLPTPTQVAIDFTASNGDPR SSQSLHCLSPRPQNPYHLQALRAVGGICQDYD/ SVGESGAGGNRQGGLAQRIPLQLFLPSDKRFP AFGFGARIPPNEFVG*MRGKEGDGGGRV SQA E KAGPHCSRLALTGASHDFAINFDPE NPECEGK RGDFHLPLRPADTLHTGAQTPLPRAQLPVPST HPPRVFTIEISGVIASYRRCLPQIQLYGPTNVAP INRVAEPAQREQSTGQATKYSVLLVLT DGV VSDMAETRTAIVRASRLPMSIIIVGVGNADFS DMRLLDGDDGPLRCPRGVPAARDIVQFVPFR DFKDVSPPGPFRKLKDSSASHPPKSSDLRLPPFD VLLRTREPSWPP*SPTSPSDDPASPTLPLTPNHI TVPTLVAAPSALAKCVALAEVPRQVVEYYASQ GISPGAPR PCTLATT PSPSP
427	1777	A	3446	79	9748	GCQSCWP AWP RLRRGPASAGRLGRKAPW GLPGRVQDGRPLRF CFYLRPRAPIAPVLSGA ASRPEASGDCRAGRETAMATLEKLMKAFESL KSFQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ PPPPPQQLPQPPPQAPQPLLPQPPPPPPPP GPAVAEPLHRPKKELSATKKDRVNHC LTIC ENIVAQSVRNSPEFQKL LGIAMELFLLCSDDA ESDVRMVADECLNKVIKALMDSNLPLQLEL YKEIKKNAGRSLRAALWRFAELAHLVRPQK CRPYLVNLLPC LTRTSKRPEESVQETLAAAVP KIMASGFNFANDNEIKVLLKAFLANLKSSSPTI RTAACGSAVSICQHSRRTQFY SWLLNVLLG LLVPVEDEHSTLLJLGVLLTLRYLVP LLQQQV KDTSLKGSGFVGTRKEMEVSPSAEQLVQVYEL TLHHTQHQDHNVVTG ALELLQQLFRTPPPEL LQTLTAVGGIGQLTAKEESGGRSRSGSIVELI AGGGSSCSPVLSRKQKGKVLLGEEE ALEDD S ESRSDVSS SALTASV KDEISGELAASSGVSTPG SAGHDITEQPRRSQHTLQADSVDLASCDLTSS ATDGDEEDILSHSSSQVSAVPSDPA MLD NDG TQASSPISDSSQTTTEGPDSA VTPSDSSEIVLD GTDNQYLG LQIGQPQ DEDEEATGILPDEASEA FRNSSMALQQA HLLKNM SHCRQPSDSSV DKF VLRDEATEPGDQENKPCRIKGDIGQSTDDDS APL VHC VRL LSASFLTGGK NVL VPDR DV RV SVK ALA LSCV GA AVAL HPESFFSKLY KVPLD

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, =possible nucleotide insertion)
						TTEYPEEQYVSDILNYIDHGDPQVRGATAILC GTLICSLRSRSHVGDWMTIRTLTGNTFSL ADCIPLLRTKLKDESSVTCKLACTAVRNCVM SLCSSSYSELGLQLIIDVLTLRNSSYWLVRTTEL LETLAEIDFRLVSFLEAKAENLHRGAAHYTGL LKLQERVLNNVVIHLLGDEDPRVRHVAAASL IRLVPKLFYKCDQQQADPVVAARDQSSVYL KLLMHETQPSSHFSTITRIYRGYNLLPSITD VTMENNLSRVIAAVSHELITSTTRALTFGCCE ACLLLSTAFPVCIWSLGWHCGVPPPLASDES RKSCTVGMATMILTLLSAWFPFLDSAHQDAL ILAGNLLAASAPKSLRSSWASEEEANPAATK QEEVWPALGDRAVPMVEQLFSHLKVNIC AHVLDVDAVPGPAIKAALPSLTNPPLSPIRK GKEKEPGEQASVPLSPKKGSEASAASRQSDTS GPVTTSKSSLGSFYHLPYLKLHDVLIKATHA NYKVTLDLQNSTEKFGFLRSALDVLSQILEL ATLQDIGKCVEEILGYLKSCFSREPMMATVC VQQLLKTLFGTNLASQFDGLSSNPKSQGRA QRLGSSSVRPGLYHYCFMAPYTHFTQALADA SLRNMVQAEEQENDTSGWFDVLQKVSTQLKT NLTSVTKNRADKNAIHNNHIRLFEPLOVKAALKQ YTTITCVQLQKVLQDLLAQLVQLRVNYCLL DSDQVFIGFVLKQFEYIEVGQFRESEAIIPNIFF FLVLLSYERYHSKQIIGIPKIIQLCDGIMASGR KAVTHAIPALQPIVHDLFVLRGTNKADAGKE LETQKEVVVSVMLRLIQYHQVLEMFI VLQQ CHKENEDKWKRLSRQIADIILPMLAKQQMHI DSHEALGVNLTLFEILAPSSLRPVDMLLRSMF VPNTMASVSTVQLWISGILA ILRVLISQSTD IVLSRIQELSFSPYLISCTVINRLRDGSTSTLE EHSEGKQIKNLPEETFSRFLQLVGIILEDIVT KQLKVEMSEQQHTFYCQELGTLLMCLHIFKS GMFRRTIAAATRLFRSDGCGGSFYTLDLSNLR ARSMITTHPALVLLWCQILLVNHTDYRWW AEVQQTPKRHSLSSTKLLSPQMSGEEEDSDL A AKLGMCNREIVRRGALILFCDYVCQNLHDSE HTLWLVNHIQDLISL SHEPPVQDFISAVHRNS AASGLFIQAIQSRCENLSTPTMLKTLQCLEGI HLSQSGAVLTVYVDRLLCTPFRVLARMVDIL ACRRVEMILLAANLQSSMAQLPMEELNRRIQEY LQSSGLAQRHQLYSLDRFRLSTMQDSLSPS PPVSSHPLDGDHVSLETVSPDKDWYVHLVK SQCWTRSDSALLEGAELVNRIPAEDMNAFM MNSEFNLSLLAPCLSLGMSEISGGQKSALFEA AREVTLARVSGTVQQLPAVHHVFQPELPAEP AAYWSKLNDLFGDAALYQSLPTLARALAQY LVVVKSLPSHLHLPPEKEKDIVKFVVATLEAL SWHLIHEQIPLSLDLPQAGLDCCCLALQLPGL WSVVSSTEFVTHACSLIYCVHFILEAVA VQPG EQLLSPERRNTPKAISEEEEVDPNTQNPKYI TAACEMVAEMVESLQSVLALGHKRNGVPA FLTPLRNIIISLARLPLVNSYTRVPPLVWKLG WSPKPGGDFGTAFPEIPVEFLQEKEVFKEIFIYR INTLGWTSRTQFEETWATLLGVLVTQPLVME QEESPPEEDTERTQINVLAVQAIITSVLSAMT VPVAGNPAVSCLQQPRNKPLKALDTRGRK LSIIRGIVEQEIQAMVSKRENIATHHLYQA WD PVPSLSPATTGALISHEKLLLQINPERELGSMS YKLGQVSIHSVWLGNSTITPLREEEWDEEEEE

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						ADAPAPSPTSPVNSRKHAGVDIHSCSQFL LELYSRWILPSASSARRPAILISEVVRSLLVVS DLFTERNQFELMYVTTELRRVHPSEDEILAQ YL.VPATCKAAAVLGMKDVAEPVSRILLESTL RSSHLPSRVRGALHGILYVLECDLLLDTAKQLI PVISDYLLSNLKGLIAHCVNIIHSQQHVLMVMCAT AFYLIENYPLDVGPEFSASIIQMCGVMLSGSE ESTPSIIYHCALRGLERLLLSEQLSRLDAESLV KLSVDRVNHYSPHRAAMAALGLMLTCMYTG KEKVSPGRTSDPNPAAPDSESIVAMERVSVL FDRIRKGFPCEARVVVARILPQFLDDFFPPQDIM NKVIGEFLSNQQPYPOFMATVVYKVFTQLHS TGQSSMVRDVWMLSLSNFTQRAPVAMATWS LSCFFVSASTSPWVAALPHVISRMGKLEQVD VNLFCLVATDFYRHQIEEELDRRAFQSLEV VAAPGSPYHRLLTCLRNVHKVTTC
428	1778	A	3449	3	430	NSRPSPSAALVEVLLRSGSTFPHTVSGGWAA WGPWSSCSRDCELGFRVRKRCTCNPEPRNGG LPCVGDAEYQDCNPQACPVRGAWSCWT'S WSPCSASCGGGHYQTRSCSTSAPSPGEDICL GLHTEALCATQACPEGWS
429	1779	A	3464	583	3	DALDRRYLERCHPAAGGWVGEGE*ALCQKT/ RFSGVLEPPLPSLKDGGRFPAWT*RSCSKSLR AAFTSQFFPSRRSRASPGSAPGNGQNLTEQHP CPGSCDPQVLSASWM*VEHRSKFRPPP*NSTI PPES/RS*QGGTVQTGQHSSGREAGSWRARGR NAGRR*KGGGKJGTQGAVRARKECRGEMA SGETDSE
430	1780	A	3473	2802	270	FRMRIFLHCPWNQQMWKIWNLLETSLESCKA HLSIQKLLKERQQLPVPFKHRDSIVETLKRHR VVVVAGETGSGKSTQVPHFLEDDLLNEW ASKCNIVCTPERRISA VSLANRVCDELGCENG PGGRNSLCGYQIRMESRACESTRLLYCTTGV LLRKLQEDGLLSNVS/HMFIVDEVHHERSVQS DFLLIILKEILQKRSIDLHILMSATVDSEKFST YFTHCPILRISGRSYPVEVFHLEDIEETGFVLE KDSEYCQKFLEEEEVITINVTSKAGGIKKYQE YIPVQTGAHADLNPFYQKYSSRTQHAILYMN PHKINLDLILELLAYLDKSPQFRNIEGAVLIFL PGLAHIQQLYDLSNDRRFYSERVKIALHSI LSTDQAAATLPPPGVRKIVLATNIAETGITI PDVVVIDTGRTKENKYHESSQMSSLVETFVS KASALQRQGRAGRVRDGFCFRMYTRERFEG FMDYSVPEILRVPLEELCLHIMCNLGSPEDF LSKALDPQQLQVISNAMNLLRKIGACELNEPK LTPLGQHLAALPVNVKIGKMLIFGAIFGCLDP VATLAAMTEKSPFTTPIGRKDEADLAKSAL AMADSDHHTIYNAYLGWKKARQEGGYRSEI TYCRRNFLNRTSLLTLEDVKQELIKLVKAAGF SSSTTSTSWEGNRASQTLSFQEIALLKAVLVA GLYDNVGKIIYTKSVDVTEKLACIVETAQGK AQVHPSSVNRDLQTHGWLLYQEKRIRYARVY LRETTLITPPFPVLLFGGDIIEVQHRRERLLSIDGW IYFQAPVKIAVIFKQLRVLIDSVLRKLENPK MSLENDKILQIITELIKTENN
431	1781	A	3474	1	441	FRPAPGHVQP*GGSSAAGGGLLSHPRPCQQ PCPPAPAPSPRPRSLGSLGQRVPAALAATAAQEL PATLGGDGGKPALTAGEAALPGLHRSGVPA AARC*PCT/SRPT*STLSPVAAWWCRPSRRQ QRGEASTGGASGRRCGSCFQV

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, \=possible nucleotide deletion, =possible nucleotide insertion)
432	1782	A	3478	416	23	QLRRLTLPNFKTY/YSS*IEIAWH**KNMQID QWFRRESPEIDLCKYS*LSFDKEAKAIK/WKE CSLFNWK/YKNWM/LHVQKKRI*VQTLHPS QKLK\SKWIKDLNVECRITKLLDQEYPGDLGY SRALNSGSR
433	1783	A	3504	1876	552	CLAPCSPQPEKNGMQP LPLLYQQLLHS SLGAPGESTLLVRTSKLLVGLGLQLLVWLL QTRSLLAQLQHLTSSAPLLAAPTAVCSCSRCS APRSRCVVARPAARTGLPTPAPASSPAPAASPA PAASPAPAAESTAPQPLJILLPKP/PPAPGAPPBP GAPPBPRAASPSAASPAPPASPVLTASPPPLP AASPSPAASPAPPASPVLTASPLPAASPSA ASPAPPASPVLTASPLPAASPALAASPVHT ASPPVHVASPPVHTASPPVHVASPPVHTASPP VHVASPPVHTASPHVHASPPVHVHASPPVHV HASPPVHTASPPVHVHASPPVHVASPPVHV ASPPVHVASPPVHVASPPVHVASPPVHVASPPVH VHTASPPVHVHASPPVHVHASPPVHVAYPPVHV ASPPVHVASPPVHVASPPVHVASPPVHVASPPVH QPGAVFPHSLAPSLGGWSHLVAALP
434	1784	A	3516	142	590	GGVNRPRSETEQVKTPVLISSWDYRHPPRPA SFFVFLV*TGF\TALARMVLI\$WPCDLPTSASQ SAGITGVRHH\ARLLYFEQESHSVTQAGW\WQ WHNLGSLQPLSLEDRLSPGVLGCSALCRSGV RTKEGINMVTSERGTTLRPKEG
435	1785	A	3529	1	3161	MSLVRRALEALDELDLFGVKGGPQSIVHVL ADEVQHCQSIILNSLLPRASTSKEVDASLLSVVS FPAFAVEDSQLVELTKQEITKLQGRYGCCRF LRDGYKTPKEDPNRLYY/ENPAELKLPEENIEC EWPLFWTYFILDGVFVSGNAEQVQEYKEALEA VLIGKNGVPLLPELYSVPPDRVDEEYQNPHT VDRVPMGKLPHMWGQSLYILGSLMAEGFLA PGEIDPLNRRFSTVPKPVDVVVQVYPSLPHGCS SKSPSHQCTIISIRTRKITAPVSLAETEEIKTIL KDKGIYVETIAEVYPIRVQPARILSHIYSSLEIF LPFLNSVSGCNNRMKLSGRPYRHMGVLGTSK LYDIRKTIFTFTPQFIDQQQFYLALDNKMIVE MLRTDSLSYLCSRWRMTGQPTTIFPISHSMLDE DGTSLNSSILAALRKMQDGYFGGARVQTGKL SEFLTSCCTHLSFMDPGPEGKLYSEDYDDN YDYLESGNWMDYDSTS HARCGDEVARYL DHLLAHTAPHPKLAPTSQKGGLDRFQAAVQT TCDLMSLVTKAELHVQNVMYLPTKLFQA SRPSFNLLDSPHPRQENQVPSVRVEIHLPRDQ SGEVDFKALVLOLKETSSLQEQADILYMLYT MKGPDWNTELYNERSATVRELLTELYGKVG EIRHWGLIRYISGILRKVEALDEACTDLLSH QKHLTVGLPPREKTISAPLYEALTQLIDEA SEGDMISILTQEIMVYLA MYMRTQPGFLFAE MFRLRIGLIIQVMATELAHSLRCSAEEATEGL MNLSPSAMKNLLHHILSGKEFGVERSVRPTD SNVSPAISIHEIGAVGATKTERTGIMQLKSEIK QSPGTSMTPSSGSFPSA YDQQSSKDSRGQW QRRRLDGALNRV PVVGFYQKVWVKVLQKCH GLSVEGFVLPSSTTREMTPGEIKFSVHVESVL NRVPQPEYRQLLVEAILVLTMLADIE\HSIGS IIAVEKIVHIANDLFLQEOKTLLGADDTMLAKD PASGICLTYD SAPSGRFGTMYLSKAAATV VQEFLPHSICAMQ
436	1786	A	3546	73	393	CP*LTWELLEVKAEVLQDSLDRYSTPSSCL EQPDSCRPYGRSFYALEEKHVIFSLDVGETDN

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, =possible nucleotide insertion)
						KGKGKTI ^G I*TFKGRKG ^G TYQREHDANPLA PXSARSCWMRK ^G
437	1787	A	3554	5157	2939	AVRAEPGLEELSSGLRAHSPSATTVCPEAQG SASGCRYAAHPHWGLGGAAAAGGSWEPQPP RPVCEPAGRGKPHPPAAPRSPPLLPGSRRRPHA AQPGARARTSPPPASARNMAARPAATLAWSL LLLSSALLREGCRARFVAERDSEDDGEEPVVF PESPLQSPTVLVAVLARNAAHLPFLGCLER LDYPKSRM ^A IWAATDHNVNDNTTEIFREWLK NVQR ^L YHYVEWRPMDEPESYPDEIGPKHWP TSRFAHV ^M KLRQAALRTAREKWSDYILFIDV DNFLTNPQLNLIAENKTIVAPMLESRGLYS NFWCGITPKGFYKRTPDYVQIREWKRTGCFP VPMVHSTFLIDLRKEASDKLT ^F YPPHQDYTW TFDDIIVFAFSSRQAGIQMYLCNREHYGYLPIPLKPHQTLQEDIENLIHVQIEAMIDRPPMEPSQ YVSVPVKYPD ^K MGFDEFMINLKRRKGQGGD RWLRTLYEQEIEVKIVEAVDGKALNTSQLKA LNIELMPGYRDPYSSRPLTRGEIGCFLSHYSV WKEVIDRELEKTLVIEDDVRFEHQFKKKLMK LMDNIDQAQLDWELIYIGRKR ^M QVKEPEKA VPNVANLVEADYSYWT ^L GYVISLEGAQKL ^V GANPFGKMLPVDFLPVMYNKHPVAEYKEY YESRDLKA ^F SAEPLIYPT ^H YT ^G QPGYLSDE TSTIWDNETVATDWDRTHAWKS ^R KQSRIYSN AKNTEALPPPTS ^L D ^T VPSRDEL
438	1788	A	3563	130	527	IFFNSSSLFCRVFCLFLRW ^S FTLV ^A QARVQ*C NLSSLQPLPPGF ^K *FSCLSPPRS*DYRRPPP ^R PA NFLYF**RQGFTVLGQAGLELLT/S/GDPP ^T SA SQSAGITGVSHRAWPVHAISTHISLV ^K TRPSLT ^T LG
439	1789	A	3565	446	1834	LLQ ^P AMRKSPGLSDCLWA ^W ILLSTLTGRSY GQPSLQD ^E LKDN ^T TV ^F TRLDRL ^L DGYDNRL RPGLGERVTEVKTDI ^F VTSFGPVSDHDM ^E YTI DVFFRQS ^W KD ^E RLKF ^K GPM ^T VLRLNNLMAS KIWTPDTFFFHNGKKSVAHNMTMPNKLLR ^I TE DGTLLYT ^M RLTV ^R \ECPMAFGRDFPM ^D IAH ACPLKFGSYAYTRAEVVYEW ^T REP ^A R ^S VVV AEDGSRLNQYD ^L LGQTVD ^S GIVQS ^S TGEYVVV MTT ^H FHLKR ^I GYFVIQTYLPCIMT ^V LSQV ^S F WLNRESV ^P ARTVFGVTTVL ^T M ^T TL ^S ARNSL PKVAYATAMDWFIAV ^C YAFVFSALIEFATVN YFTKRGYAWDGKSVV ^P ERPKKV ^K DPLIKKN NTYAPTATS ^T PNLARGDPGLATI ^A KSATIEP KEVKPETK ^P PEPKIT ^T N ^S VSKIDRLSRIA ^F PLL FGIFNLVY ^W ATYL ^N RE ^Q LKAP ^T PHQ
440	1790	A	3568	1	350	STSSCF ^{PA} AAAIMREIVHLQAGQC ^G NQIGAK FWEVISDEH ^G IDPTGTYHGDSLQLERINVYY NEATGEAPVPS ^T ALRGPRGPCLG*RPPV ^P AG GK ^Y V ^P RAVL ^V DMEPGTMD ^S V
441	1791	A	3569	2	1751	FVAVAGAVSGEPLVHWCTQQQLRKTFGLDVS EEI ^I QYVLSIESAEEIREYV ^V T ^D LLQ ^N EGKKGQ FIEELITK ^W QKNDQ ^E LISDPLQQC ^F KKD ^E ILDG QKSGDHLKR ^G RKKGRNRQEVPA ^F TEPD ^T TA ^E VKTPFDLAKAQENSNSVKKKT ^K FVNLYTREG QDR ^L AVL ^L PG ^R H ^P CD ^C LGQ ^K H ^K L ^I NNCLICG RIVCEQEGSP ^C PLFC ^G CTL ^V C ^T THEEQD ^I L ^R GDS N ^K SQ ^K L ^L KKLMSGV ^E NS ^G KV ^D ISTKD ^L LP ^H QELRIKSG ^L EKA ^I HKDKL ^L EF ^D RTSIRRTQ ^V I

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						DDESDYFASDSNQWLSKLERETLQKREEELR ELRHASRLSKKVITDFAGRKILEEENSLAEYH SRLDETIQAIANGTLNQPLTKLDRSSEEPLGVL VNPNMYQSPPQWVHDHTGAASQKKAFRSSGF GLEFNSFQHQQLRIQDQEFOEGFDGGWCLSVH QPWASLLVRGIKRVEGRSWYTPHRGRLWIAA TAKKPSPQEVSQATYRLLRGKDVEFPNDY PSGCLLGCVLDLIDCLSQQKFKEQFPDISQESDS PFVFICKNPQEMVVVKFPIKGNPKIWKLDISKIH QGAKKGLMKNQKAV
442	1792	A	3576	1	2019	MPRSHTGERLCEGKEGSQCAENFSPNLSVTK TAGVKPYECTICGKAFMRLLSLTRHMRSH AIRANEKPKYCCKEC\GRAFSLSQILSK\HERSH TGEKPKYKCKQCGKTFIYHQPFQRHERTHIGEK PYECKQCGKALCSSSLRVHERIHTGEKPYEC KQCGKAFCSRSSIRVHERHTHTGEKPYACK\EC GKAFIS\TTSVLTHMITHNGDRPYKCKECGKA FIFPSFLRVHERIHTGEKPKYKCKQCGKAFRWS TSIQIHERIHTGEKPKYCKECGKAFSRISYFRIHERT HTGEKPKYECCKCGKTNYPLDLKJHKRNHTG EKPYECKECAKTFISLENFRRRHMITHGDGPY KCRDCGKVIFPSALRTHERTHTGEKPYECKQ CGKAFSCSSYIRIHKRTHTGEK\PYECKECKG AFIYPTSFQGHMRMHGTGEKPKYKCKECGKA LHSSFR\RHTRJHNYEKPLEC*Q\CGKAFSVSTS LKKPMRNAQSDRKLY/KCEK*EKVFNNSNRCF QSCENS\REKSCQCK*YRKRDTR*FMYSQV PHNHVSVSNGPYR/CGSPIRLYNT*NISINRNL VAVVTP*CSTLFKCLWCWCKRAALSVV*IVQ DSGRGRWLTPVIPALWEAKAGGSRGQEIKTIL ANTVKPHLY
443	1793	A	3578	287	114	DFYERKFQFIEGHKQIVNKWRDLLCSWKRK LSIIKKSVLQNNL*FSAASMRFQKVFF
444	1794	A	3582	3335	1909	HLFFSLFLAAMAMTGSTPCSSMSNHTKERVT MTKVTLENFNLIAQHEEREMRQKKLEKV MEEEGLKDEEKRLRRAHARKETEFLRLKRT RLGLEDFESLKVGIRGAFGEVRLVQKKDTGH VYAMKILRKADMLEKEQVGHIRAERDILVEA DSLWVVKMFYSFQDKLNLNYLIMEFLPGGDM MTLMMKKDTLTEEETQFYIAETVLAIDSIIQL GFIHRDIKPNDNLLDSKGHVVKLSDFGLCTGLK KAHRTEFYRNLNHSLSDFTFQNMNSKRKAE TWKRNRRQLAFSTVGTDPYIAPEVFMQTGYN KLCDWWSLGVIMYEMILIGYPPFCSETPQETY KKVMWNKETLTFPPEVPISEKAKDLILRFCC WEHRIGAPGVEEIKSNSFFEGVDWEHIRERPA AISIEKSIDDTSNFDEPESDILKPTVATSNHPE TDYKNKDWWFINYTYKRFEGLTARGAIPSYM KAAK
445	1795	A	3584	1	6169	RTRGIEKRFAYSFLLQLQQLIRYVDEAHQYILEFD GGSRGKGEHF PYEQEIKFFAKVVLPLIDQYFK NHRLYFLSAASRPLCSGGHASNKEKEMVTSL FCKLGVLVRHRISLFGNDATSIVNCLHILGQT LDARTVMKTGLESVKSALRAFLDNAAEDLE KTMENLKQGQFTHTRNQPKGVTIQINYTTVA LLPMLSSLFEHIGQHQFGEDLILEDVQVSCYRI LTSLYALGTSKSIYVERQRSALECLAAFAGA FPVAFLETHLDKHNIYSIYNTKSSRERAALSLP TNVEDVCPNIPSLEKLMEEIVELAESGIRYTQ

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, =possible nucleotide insertion)
						MPHVMEVILPMLCSYMSRWWEHGPENNPERAEMCCTALNSEHMNTLLGNILKIIYNNLGIDE GAWMKRALAVFSQPIINKVVPQQLKTHFLPLM EKLKKKAATVVSEEDHLKAEARGDMSEAEIL LILDEFTTLARDLYAFYPLLIRFGDYNRALKWL KEPNPEAEELFRMVAEVFIYWSKSHNFKREE QNFVVQEINNNMSFLITDTSKMSKAASDQ ERKKMCRKGDRYSMQTSLIVAAALKRLLPIGL NICAPGDQELLIAKNRFSLKDTEDEVRDIIIRS NIHLQGKLEDPAIRWQMALYKDLPNRTDDTS DPEKTVERVLIDIANVLFHLEQKSKRVRGRHY CLVEHPQRSSKKAVWHKLLSKQRKRAVVACF RMAPLYNLPRLRAVNLFQGYEKSWIETEEH YFEDKLIEDLAKPGAEPPPEEDEGTKRVDPHLQ LILLFSRTALTEKCKLEEDFLYMAYADIMAKS CHDEEDDDGEEEVKSFEEKEMEKQKLLYQQ ARLHDRGAAEMVLQTISASKGETGPMVAAT LKLGIAILNGGNSTVQQKMLDYLKEKKDVGF FQSLAGLMQSCSVLDLNAFERQNKAEGLGVM VTEEGSGEKVQLQDDEFTCDLFRFLQLLCEGH NSDFQNYLRTQTGNNTTVNIIISTVDYLLRVQ ESISDFYWWYSGKDVIDEQGQRNFSKAIQVA KQVFNTLTEYIQQGCTGNQQSLAHSRLWDAV VGFLHVFAHMQMQLSQDSSQIELLKELMDLQ KDMVVMLLSMLEGNVVNGTIGKQMVDMLV ESSNNVEMILKFDMLFLKLKDLSDDTFKEYD PDGKGVIKRFDFHKAMESHKHYTQSETEFL SCAETDENETLDYEEFKRFHEPAKDGFNVAV LLTNLSEHMPNDTRLQTFLAELSVLNYFQP FLGRIEIMGSAKRIERVYFEISESSRTQWEKPQ VKESKRQFIFDVVNEGEGEKEKMELFVNFCED TIFEMQLAAQISESDLNERSANKEESEKERPEE QGPRMAFMSILTFRSALFALRYNITLTMRMLS LKSLKKQMKKVKKMTVKDMVTAFFSSYWSI FMTLLHFVASVFRGFFRIICSLLGGSLVEGA KKIKVAELLANMPDPTQDEVRGDGEGERKP LEAALPSEDLTDLKELTEESDLLSDIFGLDLKR EGGQYKLIPHNPNAGLSDLMSNPVPMPEVQE KFQEQQKAKEEEKEEETKSEPEKAEGEDGE KEEKAKEDKGKQKLRLQLHTRYGEPEVPESA FWKKJIAYQQKLLNYFARNFYNMRLALFV AFAINFILLFYKVSTSSVVEGKELPTRSSSENA KVTSLDSSSHRIIAVHYVLEESSGYMEPTVRL PILHTVISFCIIGYYCLKVPLVIFKREKEVARK LEFDGLYITEQPSEDDIKGQWDRLVINTQSFP NNYWDKFVVKRKVMDKYGEFYGRDRISELLG MDKAALDFSDAREKKPKKDSSLASVLSID VKYQMWKLGVVFTDNSFLYLAWYMTMSVL GHYINNFFAAHLLDIAMGFKTLRTILSSVTH NGKQLVLTGVLLAVVVYLYTVVAFNFRKF YNKSEDGDTPDMKCDMLTCYMFHMYVGVRAGGGIGDEIEDPAGDEYEIYRIIFDTFFFFVI VILLAIIQGLIIDAEGELRDQQEQVKEDMETKC FICGIGNDYFDTVPHGFETHLQEHNLANYLFLMYLINKDETEHTGQESYVWEMYQERCWE FFPAGDCFRKQYEDQLN
446	1796	A	3592	1	355	AGLELLNSDDPPALASQSAGITGVTRTPSLFF* DTVLCCSGWSAVAPSRLTAALFS*AQAVCL SLPRSWDYRRW/PPHPANFCIFCRDE/SLA/ML PRLVSNWTQAILLPRPKMLGLQV

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, \=possible nucleotide deletion, =possible nucleotide insertion)
447	1797	A	3598	1202	1070	LFVGGGPICPEGASGFAPGPAPAPRVGVDAEVGR*V*GAAASQGA/GSLRPRPTGPQHGAWLQVWGAAAVCAGPAM/*AVRAKRGPRAG*EPNSPWRSGVLAA\RAVGAGPWP*P*PGCS*ARGPSSRSAPGLASGPAAPLLQGVHSSAGPLLCYINGTALALGLKP**AWGWGEWRPKG
448	1798	A	3604	3115	557	FRRKGGGPKDFGAGLKYNRSRHEKVNGLEE GVEFLPVNNVKKVEKHGPGRWVVLAAVLIG LLLVLIGIGFLVWHLQYRDVRVQKVFGNGYM RITNENFVDAYENSNSTEFVSLASKVKDALKL LYSGVPFLGPYHKESAVTAFSEGSVIAYYWSE FSIPQHLVEEAERVMAEERVVMLPPRARSLKS FVVTSVVAFTPTDSKTVQRTQDNNSCSFGHLAR GVELMRFTTPGFPDSPYPAHARCQWAALRGD ADSVLSLTFRSFDLASCDERGRHLV\TVYNTL SPMEEHALVQLCGTYPPSYNLTFHSISQNVL LITLITNTERRHPGFEATFFQLPRMSSCGGRL RKAQGTFNSPYYPPGHYPPNIDCTWNIEVPNN QHVVKVRKFYFYILLEPGVPAGTCPKDYVEING EKYCGERSQFVVTNSNSNKITVRFHSDQSYTDT GFLAEYLSYDSSDPCPGQFTCRTGRCIRKELR CDGWADCTDHSDELNCSCDAHQFTCKNKF CKPLFWVCDSLNDCCDNSDEQGSCPIAQTF RCSNGKCLSKSQQCNGKDDCGDGSDEASCP KVNVVTCTKHTYCLNGLCLSKGNPECDGK EDCSDGSEDEKDCDCGRLRSFTRQARVVGGTD ADEGEWPWQVSLHALGQGHICGASLISPWNWL VSAAHCYIDDRGFRYSQPTQWTAFLGLHDQS QRSAPGVQERRLKRRIISHPFFNDFTFDYDIALL ELEKPAEYSSMVRPICLPDASHVFAGKAIWV TGWGHQTYGGTGALILQKGEIRVINQTTCE LLPQQITPRMMCVCFLSGGVDSQGDGGPL SSVEADGRIFQAGVVSVWDGCAQRNKGTVY TRLPLFRDWIKENTGV
449	1799	A	3618	2	613	FVSGSPWRMDGSTERLEARRPAGRLPWSSRQ EMTRRPSLMAGRQHGWSAQQSATVANPVPG ANPDLLPHFLGEPEPDVYIVKNKPVLLVCKAV PATQIFFKCNGEWVVRQVDHVIERSTDGSSGLP TMEVRINVSRRQVKEVFGLEEVWCQCVAWS SSGTTKSQLKAYIRIAYLRKNFQEPLAKEVSL EQGIVLPCRPEGIPPAE
450	1800	A	3620	1	2676	MEPSLGQGMDLTCPCPGVSPACGAQASWSIFG ADAAEVPGTGRHSQEAAMPHIPEDEEPPGE PQAAQSPAGQQGPPTAGVSCSPTPTVLTGDA TSPEGETDKNLANRVHSPHKRLSHRHLKVST ASLTSVDPAGHIIIDLVNDQLPDISISEEDKKNN LALLEEAKLVSERFLRRGRKSRSPGDSPSA VSPNLSPSASPSSRSNSLTVPTPPEGDEADVS SPHPGEPNVPKGGLADRQKNDQRKVSQGRLAP RPPPVEKSKEIAIEQKENFDPLQYPTTPKGGLA PVTNSSGKMALNSPQPGPVESELGKQLLKTG WEGSPLPRSPTQDAAGVGPPASQGRGPAGEP MGPEAGSKAELPPTVSRPPLLRLGLSWDSGPEE PGPRLQKVLAKLPLAEEEKRFAGKAGGKLAK APGLKDFQIQVQPVRMQKLTKLREEHILMRN QNLVGLKLPDLSEAAEQEKGGLPSELSPAIEEE ESKSGLDVMPNISDVLLRKLRVHRSLPGSAPP LTEKEVENVFVQLSSAFRNDSYTLESRINQAE RERNLTEENTEKLENFKASITSSASLWHHCE HRETYQKLLEDIAVLHRLAARLSSRAEVVGA

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, =possible nucleotide insertion)
						VRQEKRMSKATEVMQMVENLKRTEYEDH AELMEFKKLANQNNSRSRSGPSEDGVLR TARS MSLTLGKNMPRRRVSVAVVPKFNALNLPQ TPSSSSIPSPLASESPNGKGSLPVTSALPALLE NGKTNGDPDCEASAPALTSCLELSQETKA RMEEEAYSKGFQEGLKKTKEQLDKKEEEEEEQ KSESPEEPEVEETEEEEKDPRSSKLEELVHFL QVMYPKLCQHWQVIWMMAAVMLVLTVVL GLYNSYNCSAEQADGPLRSTCSAAQKDSW WSSGLQHEQPTEQ
451	1801	A	3623	504	198	OLIQHQHTVHTGRKLYECKECGKAFNQGSTLI RHQRIHTGEKPYECKVCGKAFRVSSQLKQHQ RIHTGERPYQCCKELKGRGAEMLAVLAVKEQ NRTPVNYGK
452	1802	A	3628	2	195	MTCILHSAKAFHY*SSCSFSCEEGFALIGPEVV QCTALGVWTAPAPVCIAVQCQHLEALNEGT MG*DYPFTAFAYGSSCKYECHTVYRVRLD MLHSRGCYLWNNGHFTT*EAISCEPLERPCH*S V*CSFSCEEGFALIGPEVVQCTALGVWTAPAP VCIAVQCQHLEALNEGTMG
453	1803	A	3637	662	142	IQAKGLGIWHVPNPKSPMQHWRKGSSLRYRT DTGFLQTGLGHNLGIYQKYPVKYGECKCWT DNGPVIPVVYDFGDAQKTASYYSPYQREFT AGFVQFRVFNNERAANALCAGMRVTGCNT EHHCIGGGGYFPEASPQQCGDFSGFDWSGYGT HVGSSSREITEAAVLLFYR
454	1804	A	3641	1	362	TQVHPAMLGLDELGRSGCGHCTQADLRFGD AAGRDPGQDNDRNTAEPAFPFFFFVMAAAA ALRAPAQSSVTFEDAVAVNFSELEWSLLNEAQ GCLYHDVMLETLTLLISLKGVLILNCDSL
455	1805	A	3646	2	414	AAAGRGAASGALTGEGGGEQGRRVGLGSRAH SLLLGPFTNSCQVSSQPPRVAAGLGLPLKHEPS RPQPSPRGPRTVRAVGPGAHQDTPCPFEV PRKVPLVGEAPGLPPEERSRGWRRDTPGLQE SRVRAPSYDDIT
456	1806	A	3656	396	8	QIVSFNSYLTLYTKNNLKSMDLNVNTEMIK LLELKNIHNLG*AKFFLN*IQKALIKRKILIHWP/LIKIK/SFCSDLSDTIKKMKRQTTVWEQTFIHI SVKELVSRIYEAFQLQFNKTVNRPVFDIKKEQKF
457	1807	A	3660	14	1961	SEAKLGGPTGMDLWQLLLTLALAGSSDAFSG SEATAAILSRAPWSLQSVNPGLKTNSSKEPKF TKCRSPERETFSCHWTDEVHHGTKNLGPQLFYTRRNNTQEWKECPDYVSAGENSCYFN SSFTSIWIPYCIKLTSNNGTVDEKCFCSVDEIVQ PDPPIALNWTLNNVSLTGIGHADIQVRWEAPRN ADIQKGWMVLEYELQYKEVNETWKWMMDP ILTTSVPVYSLKVDKEYEVVRSRQNRNSGNY GEFSEVLYVTLQPMQSFTCEEDFYFPWLIIIF GIFGLTVMLFVFLFSKQQRIKMLILPPVPVPKI KGIDPDLLKEGKLEEVTILAIHDSYKPEFHS DDSWVEFIELDIDEPEDEKTEESDTDRLLSSDH EKLHINLGVKDGDGSGRTSCCEPDILETDFNAH DIHEGTSEVAQPQRALKGEADLLCLDQKNQNN SPYHDACPATQQPSVIQAEKNKPQLPTEGAE STHQAAHIQLSNPSSLNSIDFYAQVSDITPAGS VVLSPGQKNCAGMSQCDMHPMEMVSLCQENFLMDNA YFCEADAKK CIPVAPHIKVESHIQP\SLNQEDIYITTESLT\TAAGSP\GTGEHVPGSEM

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, =possible nucleotide insertion)
						PVPDYTSIHIVQSPQGLILNATALPLPDKEFLS SCGYVSTDQLNKIMP
458	1808	A	3663	154	462	TRAPASGRSGAGLALSANAPDSGGHPGATEG PAGSLAHASGSARGTWRVRGRGSHGWERTV GAGGCANPVPALHSCASAPRGTGRVSALGPK TGSSPLSSPKG
459	1809	A	3664	902	135	LGKYNTSMAFLDFVLHNSTGEIRYITEDDVQ SQNALGKYNTSMALFESNSFEKTIILESPYYVD LNQTLFVQVSLHTSDPNLVVFLDTCRASPTSD FASPTYDLIKSGCSRDETCKVYPLFGHYGRF QFNAFKFLRSMSSVYLQCKVLICDSSDHQSRC INQGCVRSRKRDISYYWKWTDSIIGPRLKRDR SAANGNSGFQHETHAEETPNQPFNSVHLFSFM VLALNVVTATITVRFVNQRADYQ\YQKLQ NY
460	1810	A	3670	850	557	LGILMSPQVEAGEI*ALLTPPPGCMQFSPLTL/P K*WVSPGLTP/PPPEVPSVFLVEPGLPHAGQA GLDLL\TSGDPPASTSQSARTTDVSHRAQPLAI S
461	1811	A	3671	2472	2099	IGVLAFETGSCSVTRLYCGIIMPHCSLDLAGS TSAFRIAGTTSVHHHPQLTFFFFWIETGSHCV VQTGL*LLALSNPPALASQIAGISGMSHRAWP GLVLYSLEFSLLCASQSLIMLFTCYNE
462	1812	A	3672	394	110	VKPVNGESKR*DADTQTCGEADEQLQTW CYYD/STKSFFYISCG*KRKPTWAENRRLNA KMFGIPLHSNSDPWPWYEEREVIGFHRSRVSRG HGS
463	1813	A	3673	348	1	QRNPFSAGHPQRPTSGSQSELLAQPRLRGR KSSFQRDQDVW*SQAVPKRQ*QRNPFSAGHP QRPTSGSQSELLAQPRLRGRKSSFSRDQDV WPGQKPRPSQQHQHQMCASTLGQRSPFALEP VPAYHGRDRPFASARPSPVGIPKPRAAPAGG GWRRJRPKSTK
464	1814	A	3676	2253	320	PVIQRCSPQYGFSLIISFFLKCVCSETSQQPPSR KVFQLLPSPTLTRSKSHESQLGNRIDDVSSM RFDSLHGSPQMVRDIDGLSVTHRFSKSWLS QVCHVCQKSMIFGVVKCKHCRLKCHNKTKE APACRISFLPLTRLRTTESVPSDINNPVDRAAE PHFGTLKALTKEHPPAMNHLDSSNPSSTT FSTPSSPAFPFTSSNPSSATTTPNPSPGQR\DSR FNFPSC/AYFIHHR\Q\QFIPDISHAFAAHAPLPE AADGTRLDDQPKADVLEAHEAEAEPEAGK SEAEDDEDEVDDLPSSRRPWRGPIRKASQTS VYLQEWDIPFEQVELGEPIGQGRWGRVHGR WHGEVARLLEMMDGHNQDH\KLFKKEVMN YRQTRHENVVLFMGACMNPPHLLAITSFCKG RTLHSFVRDPKTSLDINKTRQIAQEIKGMGY LHAKGIVHKDLKSRNVFYDNGKVVITDFGLF \GISGVVPEGRRENQLKLSHDWLCLYAPEIVR EMTPGKDQDQLPFSKAADVYAFGTWVYELQ ARDWPLKNQAAEASIWIQIGSGEGMKRVLTS VSLGKEVSENLSACWAFDLQERPS\FSLLMD MLEKLKPKNRRLSHPGHF*KSADINSSKVVPR FERFGLGVLESSNPKM
465	1815	A	3679	8	803	IPSPAWWNSTWADTFSLLLALAVALYLGYY WACVLOTHRAFCASNTEDLETVVNNHIKRYP QAPLLAVGISFGGILVLNHLAQARQAAGLVA ALTLSACWDSFETTRSLETPLNSLLFNQPLTA GLCQLVERLSY/E*DLQARTIRQFDERYTSVA

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, \=possible nucleotide insertion)
						FGYQDCVTTYKAASPRTKIDAIRIPVLYLSAA DDPFSTVCALPKQAAQHSPYVALLITARGGH GFLEGLLPWQHWYMSRLLHQYAKAIFQDPE GLPDLRALLPSEDRNS
466	1816	A	3684	3	307	SSQYIVQSKTKIFL*AAEKQ/RHTCRRFSIRLS ANISQQTGEARGQWPSVFKVLKEKKLSTKKS FGQK*GRRKTFPDQK/LREFDTTRPTIQEML TGVLQG
467	1817	A	3687	2465	837	ELPTPLIAAHQLYNVADHASSYHMKPLRMA RPGGPEHNEYALVSAWHSSGSYLDSEGLRHQ DDFDVSLLVCHCAAPFEEQGEAERHVRLQF FVVLTSQRELFPRLTADMRRFRKPPRLPPEPE APGSSAGSGPEASGLILAPGPAPLFPPLAAEVG MARARLAQLVRLAGGHCRRTDLWKRLFLL PPGPDRRLGGRLALAELLELEAVHAKSIGD IDPQLDCFLSMTVSWYQSLIKVLLSRFPQSCR HFQSPDLGTQYLVVNLNQKFTDCFVLVFLDSH LGKTSLLTVVFREPPVQPQDSESPPAQLVSTY HHLESVINTACFTLWTRLL*GSDLH*MSLFL ESWAYQIAACQRQD*PALLGPRASQTLSDTKG FVTMMS*GSAAPAWQQEPPSPNTSH*PIQDSR ESGQPRGPLGPFWGTPFGPPGRVSGVHTGWQ TPPRAPLPESCPLPLTTVSHLCPLSLRVFTSHL DITAGHSRDDTWVPALPLKHLRPPSPFA LGPWVSHPLMRWVQKLSHLHSNPGTGFMSG GKQQRN
468	1818	A	3691	960	499	QTCRKDKRAIYPHFCNE*MNEIKAI*SGTGGI QCFHSQNDSAFFFLFELLETFCSCAA/TVQWH DFLSMQPPPPGFKQFTCLSSLSSWNYRR\PPP PGNF*FLVKTGFPHVGQTGFELLTSSDLaPLA SQNGGTGMSPCAWPFFFFFFFGLC
469	1819	A	3714	4747	495	MAYSWQTDPNPNESHEKQYEHQEFLFVNQP HSSSQVSLGFQIVDEISCKIPHYESEIDENTFF VPTAPKW DSTGHSLNEAHQISLNEFTSKSREL SWHQVSKAPAIGFSPSVLPKPQNTNKECSWG SPIGKHHGADDRSFSIIAPSFTSLDKINLEKEL ENENHNYHIGFESSIPPTNSSFSSDFMPKEENK RSGHVNIVEPSMLLKGSLOPGMWESTWQK NIESIGCSIQLVEVPQSSNTSLASFNCNKVKKIR ERYHAADVNFNSGKIWSTTAFPYQLFSKTK FNIHIFIDNSTQPLHFMPCANYLVKDLIAEILH FCTNDQLLPKDHLISVWGSSEEFLQNDHCLGS HKMFQDKSVIQLHLQKSREAPGKLSRKHEE DHQSFYLNQNLLEFMHIWKVSRQCLLTIRKY DFHLKYLKLTQENVYNIIEEVKKICSVLGCE TKQITDAVNELSILQRKGENFYQSSETSAKG LIEKVTTELSTSISIYQLNVYCNSPYADFQPVN PRCTSYLNPGPLPSHLSFTVYAAHNIPETWVHR INFPLEIKSLPRESMLTVKLFGIACATNNANLL AWTCLPLPKESILGSMILFSMTLQSEPPVEM ITPGVWDVSQPSVTLQIDFPATGWEYMKPD SEENRSNLEEPLKECIKHIARLSQKQTPLLLSE EKKRYLWFYRFYCNNENCSPLVLGSAFW DERTVSEMHITILRRWTFSQPLEALGLLTSSFP DQEIRKVAVQQLDNLLNDELLEYLPQLVQAV KFEWNLESPLVQLLLHRSLSQSIQVAHRLYWL LKNAENEAYFKSWYQKLLAALQFCAGKALN DEFSKEQKLKILGIDGERVKSASDHQRQEVL KKEIGRLEEFFQDVNTCHLPLNPALCIKGIDH DACSYFTSNALPLKITFINANLMGKNISIIFKA

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, \=possible nucleotide insertion)
						GDDLRQDMVLVQLIQVMMDNWLQEGLDMQ MIIYRCLSTGKDQRQLVQMVPDAVTLAKIHRH SGLIGPLKENTIKKWFQSQHNHLKADYEKALR NFFYSCAGWCVVTIFLGVCDRHNDNIMLTKS GHMFHIDFGKFLGHQAQTFGGIKRDRAPFITS EMAEYFITEGGKKNPQHFQDFVIELCCRAYNIIR KHSQLLLNLLEMMLYAGILPELSGNQDLKY VYNNLRPQDTDEATHFTKKIKESLECFPVK LNLLIHTLAQMSAISPSTSQTFPQESCLLST TRSIERATILGFSKKSSNLYLIQVTHSNNETSL TEKSFEQFSKLHSQQLQKFASLTLPFPHWW HLPFTNSDHRRFRDLNHYMEQILNVSHETVN SDCVLSFFLSEAGQQTVEEESPVYLGEKFPDK KPKVQLVISYEDVKLTILVKHMKNIHPDGSA PSAHVEFYLLPYPPSEVRRLRTKSVPKCTDPTY NEIVVYDEVTELQGHVLMILIVKSXTVFGAI NIRLCSPVLDKEKWYPLGNSII*PLLLFSSFGM KSLEKDEFVGGMLLSNPPI
470	1820	A	3718	430	75	SHGSISIINLHQGCVFLPSLPAQGLRCYRCLA VLEGASCSSVSCPFLDGVCVSQKVSV/CWQ*/ CPWGARAEGRLSAVVDSQISCKKGDLCAV VLAAGSPWALCVQLLSLGSVFLWALL
471	1821	A	3723	891	494	LRQSL/NSPVQAGVQWRDSSLQAPPRFTPLS CLSLPSSWDYRRRLPPCLANFLYF**RRGFTML ARMVLIS*PRDPASASQ*STEITGGSHRAQHP TDSRDHSERSVKSHEVISELRMKVIKCKVAF SKNPI
472	1822	A	3734	443	251	GFIET*NFCVSKDTSKCLS/RLPTWKNUVFAN *ISDKGLVSRICQELLRLDAEQVSSTAGLSL
473	1823	A	3746	3	500	THASGGARSGAGWAGRGRVRAVGTEAGRGGIF LTLSILRTRDLPSPAMSEGVDLIDIYADEEFNQ DPEFNNTDQIDLYDDVLTATSQPSDDRSSSTE PPPPVRQEPSPKPNKTPAILYTYSGLRNRRA AVYVGFSFWWTTDQQLIQVRSIGVYDVGEV KFAENRAK
474	1824	A	3753	2	5262	RPLFAREGGIYAVLVCMQEYKTSVLVQQAG LAALKMLAVASSSEIPTFVTGRDSIHSLFDAQ MTREIFASIDSATRPGSESLLTVPAAVILMLN TEGCSAARNGLLLNLLCNHHITLGDQIUTQ ELRDTLFRHSGIAPRTEPMPTTRTILMMMLNR YSEPPGSPVERAALETPIIQGQDGSPPELLRSLV GGPSAELLLDLERVLCREGSPGGAVRPLLKRL QOETOPFLLRLTLDAPGPNKTLLSVLRVIT RLDFPEAMVLPWHEVLEPCLNCLSGPSSDSE IVQELTCFLHRLASMHKDYAIVLCCLGAKEL LSKVLDKHSAQLLLGCERLRLVTECEKYAQL YSNLTSSILAGCIMQVLGQIEDHRRTHQPINP FFDVFLRHLQCQGSSVEVKEDKCWEKVEVSSN PHRASKLTDHNPKTYWESNGSTGSHYITLHM HRGVLRQLTLLVASEDSSYMPARVVVF GG DSTSCIGTELNTVNVMPSASRVILLELNRFW PIIQIRIKRCQQGGIDTRVRGVEVLGPKPTFWP LFREQLCRRTCPYTIQAWSRDIEDHRRRL LQLCPRLNRVLRHEQNFADRFPLPDDEAAQAL GKTCWEALVSPVQNITSDAEGVSALGWLL DQYLEQRETCSRNPNSRAASFASRVRRLCHLL VHVEPPGPSPEPSTRPSKNSKGRDRSPAPSP VLPSSSLRNITQCWLSSVQEVSRLAAAWR APDFVPRYCKLYEHLQRAGSELFGPRAAFML

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						ALRSGFSGALLQQSFLTAAHMSEQFARYIDQ QIQGGGLIGGAGPGEVEMLGQLQRHLEPMVLSG LELATTFEHFYQHYMADRLLSFGSSWLEGAV LEQIGLCFPNRLPQLMLQSLSTSEELQRQFHLF QLQRDLKI.FLEQEDEEEKRL.*EEEEEEEEEAE EKELFIEDPSPAISILVLSPRCWPVSPLCYLYHP RKCLPTEFCDAFLDRFFSFYQSQSNHPVLDMG PHRRLQWTWLGRAELQFGKQILHVSTVQMWW LLLKFQNQTEEVSVETLLKDSDLSPPLLQALV PLTSGNGPLTLHEGQDFPHGGVRLRHEPGPQ RSGEALWLIPPPQAYLNVEKDEGRITLEQKRNL LSCLLVRILKAHGEKGLHIDQLVCLVLEAWQ KGPNPPGTGLGHTVAGGVACTSTDVLSCLHLL GQGYVKRRDDRPQILMYAAPEPMGPCRGQA DVPFCGSQSETSKPSPEAVATLASLQLPAGRT MSPOEVEGLMKQTVRQVQETLNLEPDVAQH LLAHSHWGAEQILLQSYSEDPEPLLLAAGLCV HQAQAVPVRPDHCPCVCVSPLGCDLDSLCC MHYCCKSCWNEYLTRIEQNLVLNCTCPIAD CPAQPTGAFIRAISSPEVISKYEKALLRGYVE SCSNLTWCNPQGCDRILCRQGLGCGTTCSK CGWASCFCNSPPEAHYPASCGHMSQWVDDG GYYDGMSVEAQSKHLAKLISKRCPSQCAPIE KNEGCLHMTCAKCNHGFCWRCLKSWKPNH KDYYNCAMSAMVSKAARQEKFQDYNERCTFH HQAREFAVNLRNRVSIAHEVPPPRSFTFLNDA CQGLEQARKVLAYACVYSFYSQDAEYMDVV EQQTENLEHTNALQILLEETLLRCRDASSL RLLRADCLSTGMELLRRIOERLLAIIQHSAQD FRVGLQSPSVEAWEAKGPNMPGSPQASSGP EAEEEEEDDEDVDPEWQQDEFDEELNDNSFS YDESENLDQETFFFGEDEEDEDEAYD
475	1825	A	3754	1093	96	GTSRNQHSPKTHA*RSS/WPQPPPFLFPLPLQPQ ATGRRRRRTTQRATAALLTDGTTKTGAAW SRRPLCWPSRTTGAPGAK*AVLVRSATPTTN PPNPQSPGAAGKLRAPGNRAG/SEPSSQEPPP DGTRARPAITGVAQSPATRATPSLPCLHVPPAP SRGQTLGVRTTGRASRLTVDRSRLSWPGRSA RSGGGRWRPNAPRGRWPRAP*SWEPGSWTE PWRWPFPAAESPPhRCIYCTNHVSPAGPARPS HVYIIRATINSISHPLCRAQSSPWEAGVWRR PAQPASTDVNINLLRKPRVKRHDLYQFLGN TLWEEGRQRPPETLQPAR
476	1826	A	3758	901	521	FFFGNGVSPCPQAGV*WHLDLSLQLNLLPGFK RFSYLSLPSSW\DYRHVPPRQANFCIF/M*RRG FTMLARMVSI*PRDLPALASQSAGITGVSHH APPQMDFTFALLCFAPKGCLPRQKEGTLNLI
477	1827	A	3761	843	575	GVISAHCNRL/CHLPGSSNSPASASQVAGTIG ARTTPS*IFVFLVETGFHHVSQDGLDLL/NFVI RPRRPLKVGLQACTRARLPSPLKEL
478	1828	A	3763	267	1240	HLLSFHLWSASLDCLEQLSQERHVKGMLLGP PPVNESTKPSPSPWKLTPPMCSIPPVFPKSGS PTTSWS/PSGHSKLEVERAQTGPFCLHIYCP*P GVTDDNTSLLHYIPFPL\ASGLVCFAH*FPSY WTGHFSASQAWLRQVPEVSKHLQCPSAESLL TMEYHQPEDPAPGKAGTAEAVIPENHEVLAG PDEHPQDTDARDADGEAREREPP/RRPSFAA*P VWGQP\ESPLPEASSAPPGPTLGTPEVETIRA CSMPQELP*SPRTRQPEPDFYCVKWIPWKGE QTPHITQSTNGPLPSPCHEHPLSSVEGEAPPA

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						EGSDHIG
479	1829	A	3766	2	2152	YSPIRLLEVCPVPLPKIFIKRQAPLKVSLLQDLK DFFQKVSVYVAIDERLASLKTDTFSKTREEK MEDIFAQKEMEEGEFKNWIEKMQARLMSSS VDTPQQQLQSVPESLIAKKQSLCEVLQAWNRR LQDLFQQEKGRKRPSVPPSPGRLRQGEESKIS AMDASPRNISPGQLQNGEKEKDRFLTTLSQSST SSTHLQLPPTPEVMSEQSVGGPPELDTASSSE DVFDGHLLGSTDSQVKEKSTMKAIFANLLPG NSYNPIPPFPDPDKHYLMEHERVPIAVCEKE PSSIIAFALSCKEYRNALEELSKATQWNSAEE GLPINSTSRSRKSSSPIRLPEMSGGQTNRITTE TEQPPTKKASGMLSFRGTAGKSPDLSSQKRE TLRGADSAYYQVGQTGKEGTENQGVEPQDE VDGGDTQQKQLINPHVELQFSDANAKFYCRL YYAGEFHMKMREVILDSSEEDFIRSLSHSSPWQ ARGGKSGAAFYATEDDRFILKQMPLEVQSF LDFAPHYFNYITNAVQQKRPTALAKILGVYRI GYKNSQNNTTEKLDLLVMENLFYGRKMAQ VFDLKGSLRNRNVKTDTGKESCDVVLLDENL LKMVRDNPLYIRSHSKAVLRTSIHSDSHFLSS HLIIDYSLLVGRDDTSNELVVGHIDYIRTFTWD KKLEMVVKSTGILGGQG*MPTVVSPELYRTR FCEAMDNYFLMVPDHTGLGLNC
480	1830	A	3777	251	3	QGCGSAGTLIH**ECKMVQLLWKT**QFLIKLN\KDPAITLDVYPNEVKNYVRTKTYTQMFI\ANFIMAKSWKQPTHPSVRT
481	1831	A	3779	333	3	EAAIROPEPNILDVNQIFKDLAMIHDQGDLID SIEANAESSEVLVERAPGQLQRPAYYYQKKSRR KKMCLVVLVQTAIIICERIM*VVYTTKWSPPIVLPVSCFOGQKFN
482	1832	A	3780	2	371	TGGRQGKNDHTSITEKPSRDFNRHLITQNI*M PNQDMKSSNSLIIRKVQIKPTILYHHIFTRKA KMKTDTKTKYR*GFKAIITLICHCSQDCKLQ*S/L*ENHFMIIFPKAEQHITYDTTIPFLR
483	1833	A	3787	43	448	LMKDLSPYVMETHYLNLNER/RSMWRHIIG KLPNTKDQEKEILKAIRGRREVIQGS/RQQYRR PAAFSAAEKARRLWCS/VFNIERRNL/CEYPTK LSFNIKGEMTFSKTEFITNRPSLKMLLKDRIQEEGKMF*KEKCFKRKE
484	1834	A	3798	1	727	FFFFETERSVAQAGVQWCNLGLSQLALPPGF SHSPASASRVAGTTGTRI*ARLIFYIFSRDGVS PC*PGWS*SPDLVIRPPRLPKCWDRYREPPRP A*FFVFLVEQGFTMLARMVSIS*PQ/CDLPAS VSQNAGITGVSHCAWPCLHFCFFGFFFEMESC SVAQAEVQWHDLRSLQAPPGFTPFSCLSLPG SWDYRRPPRPRANFCIFSRDGVSPC*PGWSRS PDLVIRPRPPKVLGLQA
485	1835	A	3802	1	239	FFFPEMECLTVSQAGVQWYNLHSLQPLPPGF KQFSCULSPSSWD*RVPTSRPAKF/CVIF*DGV SHCOPGWSAVVQOPPLH
486	1836	A	3811	378	98	RYD*SSQSENIPQKEFLLKYP*CTATLGMRN MSIMKKKSIIFSAFYKVSPLSLLL\HLLAIEWG FHIEQLTIHQHFLNEYELESDFVHIVBYM
487	1837	A	3814	771	320	FDPDWTRAAGIRHEKPKALAYRENSPGDL PPPPLPPPEEEASWAL/GAEGSRQHVLPGAGA QWGEESGPGRAPGSPAGAPPR*RGLAPNSRP SFLSRGQGTSTCSTAGSNSSRGSSSRGPG RSRSRSQRSRSQSRPGQKRREEPR

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, \'=possible nucleotide insertion)
488	1838	A	3818	1	781	FACLLEILPYAPILSWTACPPAMAGPRGLLP LCLLAFCLAGFSVRGQVLFKGCDVKTTFVT HVPCTSCAAIKQTCPMSGWLRELPDQITQDCR YEVQLGGSMVMSGCRKCRKQVVKACCP GYWGSRCHECPGGAETPCNGHGTCLDMDR NGTCVCQENFRGSACQECQDPNRGPDQSV CSCVHGVCNHGPRGDGSCLCFAGYTGPHC QELPVWQELGFPQNPNPLRK/APNCKCLPG*H RNGLIATPNPCR
489	1839	A	3822	934	669	FFFSEMEERSVTRLECSGAISAHRLLGSSNSP ASAS*VAGTIGACHHAQLIFVFLVETGFHHVG QDGLDLL/NLMHPPRPPKVLGFQA
490	1840	A	3825	79	9748	GCQSCWPAWPRLRRRGPA\$AGARLGRKAPW GLPGRVQDGRPLRPFYLRPRAPIAVPLSGA ASRPEASGDCRAGRETAMATLEKLMKA\$ESL KSFQQQQQQQQQQQQQQQQQQQQQQQQQQPPPP PPPPPPQLQPQPPQQAQPLLPQPQPPP\$PPPP GPAVAEELPLHRPKKELSATKKDRVNHC\$TIC ENIVAQS\$VRNSPEFQKLLGIAMELFLLCSDDA ESDV\$RMVADECLNKVIKALMDSNL\$PRLQLEL YKEIKKNGAPRSLRAALWRFAELAHLVRPQK CRPYLVNLLPCLTRTSKRPEESVQETLAAAVP KIMASFGNFANDNEIKVLLKAFIANLKSSPTI RTAAGSAVSICQHSRRTQYFY\$WLLNVLLG LLVPVEDEHSTLLILGVLLTLRYLVP\$LLQQQV KDTSLKG\$FGVTRKEMEVSPSAEQLVQVYEL TLHHTQHQDHNVVTGAEELLQQLFRTPPEL LQTLTA\$VGGIGQLTA\$AKEESGGRSRSGSIVELI AGGGSSCPVLSRKQKGKVLLGEEEALEDD\$ ESRSDVSSALTASV\$KDEISGELAASSGVSTPG SAGHDII\$TEQPR\$QHTLQADSV\$DLASCDLTSS ATDGDEEDILSHSSSQVSAVPSDPA\$MDLN\$G TQASSPISDSSQTT\$EGPDSAVTP\$DSSEIVLD GTDNQY\$GLQIGQPQDEEEATGILPDESEA FRN\$SSMALQQAHLLKNM\$HCRQPSDSSVDF VLRDEATEPGDQENKPCRIKGDIGQSTD\$DS APLVHCVRLLSASFLLTG\$GK\$NLV\$PDRDV\$RV SVKALAL\$CVGAVALHPESFFSKLYKVPLD TTEYPEEQYVSDILNYIDHGD\$PQVRGATAILC GTLIC\$ILSRSRFHVGDWMG\$TIRTLGNTFSL ADCIPLLRTKLDESSVTCKLACTAVRN\$CVM SLCSSSYSELGLQLI\$DVL\$RNSSYWL\$VTEL LET\$LAEIDFRLV\$FLEAKAENLHRGAH\$Y\$TGL LKLQ\$ERVLNNVVHILLGDEDPRV\$RHVAASL IRLVPKLFYKCDQGQADPVVA\$ARDQSSVYL KLLMHETQPPSHFSV\$TITR\$YRGYNLLPSITD VTMENNLSRVIAAVSH\$ELT\$T\$RALTFGCCE ALCLLSTAFFCVIWSL\$GWHCGV\$PPLSASDES KSCTVGMATMIL\$TLLSSA\$WPLDLSA\$H\$QDAL ILAGNLLAASAPKSLRSSWA\$EEEANPAATK QEEVWPALG\$DRAVLP\$MV\$EQLF\$HILLKVNIC AHVLD\$VAPGPAIKAALPSLTNP\$PSLSP\$IRK GKEKEPGEQASVPLSP\$KK\$SEASAASRQSDTS GPVTT\$KSSSLGSFYHILPSYLKLHDV\$LKATHA NYKVTL\$DLQNSTEKFG\$FLRSALDVLSQILEL ATLQD\$IGKCEEILGYILKSCFSREPMMATVC VQQLLKTLFGTNLA\$QFDGL\$SSNP\$KSQGRA QRLGSS\$VRPGLYHYCFMAPYTHFTQALADA SLRN\$MVQAEQENDTSGWFDVLQKVSTQLKT NLTSVTKNRA\$DKNAIH\$HIRLFEP\$LV\$IKALKQ

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						YTTTTCVQLQKQVQLDLLAQLVQLRVNYCLL DSDQVFIFGVLFQKFYEIVGQFRESEAIIPIINFF FLVLLSYERYHSKQIIGIPKIIQLCDGIMASGR KAVTHAIPALQPVHDLFVLRGTNKADAGKE LETQKEVVVSMLRLIQYHQVLEMFLVLQQ CHKENEDWKWRLSRQIAIDIILPMLAKQQMHI DSHEALGVNLNTLFEILAPSSLRPVDMLLRSMF VTPNTMASVSTVQLWISGILAILRVLISQSTED IVLSRQEELSFSPYLYSCTVINRLRDGDSTSTLE EHSEGKQKQNLPEETFSRFLLQLVGILLEDIVT KQLKVEMLEQEQHFTYCQELGTLLMCLIHFKS GMFRRTAAATRLFRSDGCGGSFTLDLSNLR ARSMITTHPALVLLWCQILLVNHTDYRW AEVQQTPKRHSLSSTKLSPQMSGEEDSDLA AKLGMCNRIVRRGAIILFCDYVCQNLHDSE HLTWLIVNHIQDLSLSSHEPPVQDFISAVERNS AASGLFIQAISRCENLSTPTMLKKTLCLEGI HLSQSQAVLTLYVDRLCTPFRVLAQMVDL ACRRVEMLLAANLQSSMAQLPMEELNRIQEY LQSSGLAQRHQRLYSLLDRFLSTMQDSLSPS PPVSSHPLDGDHVSLETVSPDKDWYVHLVK SQCWTRSDSALLEGAELVNRIPAEDMNAFM MNSEFNLSLLAPCLSLGMSEISGGQKSALFEA AREVTLARVSGTVQQLPAVHHVFQPELPAEP AAVWSKLNLDLFGDAALYQSLPTLARALAQY LvvvSKLPSHLHLPPEKEKDIVKFVVATLEAL SWHLIHEQIPLSDLQAGLDCCCLALQLPGL WSVVSSTEFVTHACSLIYCVHFILEAVAVQPG EQLSPERRTNTPKAISEEEEEEDPNTQNPKYI TAACEMVAEMVESLQSVLALGHKRNSGVPA FLTPLRNIIISLARLPLVNSYTRVPPLVWKG WSPKPGDFGTAFPEIPVFEFLQEKEVFKEFYR INTLGWTTSRTQFEETWATLLGVLTQPLVM QEESPPEEDTERTQINVLAVQAITSLVLSAMT VPVAGNPRAVSCLEQQPRNKPLKALDTRFGRK LSIIRGIVEQEIQAMVSKRENIATHLYQA WPVPSLSPATTGALISHEKLLLQINPERELGSMS YKLGQVSIHSVWLGNISITPLREEEWDEEEEEE ADAPAPSPTSPVNSRKHRAGVDIHSCSQFL LEYLSRWILPSSSARRTPAILISEVRSLLVVS DLFTERNQFELMYVTTELRRVHPSEDEILA YLVPATCKAAAVLGMDKAVAEPVSRLEESTL RSSHLPSRVGALHGVLVYVLECDLDDTAQL IPVISDYLLSNLKGIACVNIHSQQHVLMCA TAFYLIENYPLDVGPEFSASIQMCGVMLSGS EESTPSIIYHCALRGLERLLLSEQLSRLDAESL VKLSVDRNVHSPHRAAMAALGLMLTCMYT GKEKVSPGRTSDPNAAPDSESIVAMERSV VLFDJRKGFPCEARVVARILPQFLDDFFPQ DIMNKVIGEFLSNQQYPQFMATVVFYKVVFQT LHSTGQSSMVRDWVMLSLSNFTQRAPVAMA TWSLSCFFVSASTSPWVAAILPHVISRMGKLE QVDVNLFLCVAATDFYRHQIEEELDRRAFQSV LEVVAAPGSPYHRLTCLRNVHKVTTC
491	1841	A	3826	469	302	SNPPASA SRVAGITGVHQHAWLIFVFLVEMEF HHVGQAVLKLISGDPVSASQSA
492	1842	A	3836	392	88	VAPSPMIMPDLFYRDPEEIEKEE*AAAEEK\EE FQSEWTAVV/P/EFTA TQSEVADWFKDMQVP SVPIQQFPTE DWST*PTMNDWSATSTAQTTE WVRITEW P

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
493	1843	A	3838	19	380	TPSDMNRAFETDTQSIGEKNRSPSEPDYFERK KFKRS*EKAHRYKIDQPEDIPLKVEFLCKHSK CTATLSMRNMSLMMKKCSFSEEFIAFFPSLL VCHLLAIKLGFYIEIHLTTFNNTF
494	1844	A	3845	2	352	FFFLRRSL/DSVAQAEAQWLIELGLLQAPPPGF KPISLPGLPSSWDYGRPPPCANFCIF/M*RRG FTVLARMVLIS*PCDPTLASQGTAITGMSYH ARPQDIDFLYAHQGRCWFRL
495	1845	A	3847	1774	40	DIFFRRAKEGMQDEAQFSVEMPLTGKAYL WADKYRPRKPRFFFNRVHTGFENWKYNQTHY DFDNNPPKIVQGYKFNFYPDLIDKRSTPEYFL EACADNKDFAILRFHAGPPYEDIAFKIVNREW EYSHRHGRCQFANGIFQLWFHFKRYRYRR* RPWGTAGRCPRGHSKGASVKL VVTGPLSGL QGRGFTSHLRPHLSFARPQFPP*KGHH*AC HGELRRHWDRLLA*GPDATEGALGASFHEH EG GQQPPADLTVQADTLHRPSARLGGAHACPK RRPHRVLWRWARGAWAWRCQAREKQETQG QPCHITGHPLGREAAEPAAAGAAPALAHRPPF ARTGSTE\PGPCWRPIRHCCRDP\WTPTLCRD WPPTHPVLAGGVHFPAAG\IGGCVEVPVSVN VMGTKSH*AVLPPPSTPGGGQGLPSEGWGLE KGEGLPPGIPPPGLLTGPW\SMRPVTPSAHIR TVAPSHSPFSGQEGRGPHGCHSPGR\SGP\AGR LVLQHPTGSTPEAKRKVPPGPEGHPTSPVT SPRPTAPPRHYPASSGNSSVCFSKKTCRWEKK SFVMLELAYWQDRMF
496	1846	A	3849	830	442	AKSPLPLG*IQR/NLGSKLRLPQFK*FTCLG LLSSWDYRSLPPRPFVNFCILVELGFHHVDQAG LKLLTSSALPALSQAETGMSHRIWPLPLLR RPPVIRJAPPRLPNLITSKALSPNMAFT
497	1847	A	3859	2	393	ALRKTRRDGIARTGAQPAASWKGTNNYPWR LEMAGRPGSQEQSKDRGTGSLPPPSQRPLGPS PEGAGPSPPPGIPRGGGSSSEGP/PQLLFVPR RFPAPKKGLPSDTPHSKAPPTPHLILGGEDSQ VPIL
498	1848	A	3860	253	634	KNASTVYSSQGDPKSFFFLLRWSLALVAQAG EQ*RDLSSLQPPPQGFK*FSCLSLPSSWDYRCP LPCLANF*FLVETGFHHVGQADLKLLTSGDP PTSASESAGITGVSHRAWPRIHFLYWKTFFL
499	1849	A	3863	423	263	APSQISVAFLYAA/DKLFKEI*KKIPFIAS/DKI KIGINLTKEVKYLYTENYTILMKEIK/DTDKW KDILY*WIGKINI*KMSTPPKAIYRFNAIPTKIP MTFTEIEKSIKFIWNHKKPPNTQSNIQEKE*S FCSILLWVFGGFLWFHMNFMDFSISVKNVIGI LVGIALNL
500	1850	A	3865	2	15246	LPRGCLWLCLQRSPTPARQPSRPARSPLPLFP DLRPWASLDIMGDAEAEDEVQFLRTDDEV VLQCSATVLKEQLKLCCLAAEFGGNRLCFLEP TSNAQNVPPLAICCFLVLEQSLSVRALQEML ANTVEAGVESSQGGGHRTLLYGHAILLRHAH SRMYLSCLTTSRSMTDKLAFDVGLQEDATGE ACWWTMHPASKQRSEGEKVRVGDDIILVSVS SERYLHLSSTASGELQVDASFMQTLWNMNPIC SRCEEGFVTGGHVRLFHGHMDECLTISPADS DDQRRLVYYEGGAVCVTHARSLWRLEPLRIS WSGSHLRWGQPLRVVRHVTGQYLATEDQG LVVVDASKAHTKATSFCFRISKEKLDVAPKR DVEGMGPPEIKEYGESLCFVQHVASGLWLYA

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						APDPKALRLGVLKKAAMLHQEGHMDALSL TRCQQEESQAARMIHSTNGLYNQFIKSLDSFS GKPRGSPPAGTALPIEGVILSLQDLIIYFEPPS EDLQHEEKQSCLRSLRNQRQLFQEEGMLSMV LNCIDRLNVYTTAAHFAEFAGEEEAESWKEI VNLLYELLASLIRGNRSNCALFSTNLDWLVS KLDRLEASSGILEVLYCVLIESPEVLNIIQENHI KSIISLLDKHGRNHKVLDVLCSCVCNGVAV RSNQDLITENLLPGRELLLQTNLINYVTSIRPN IFVGRAEGTTQYSKWYFEVMVDEVTPLTAQ ATHLRVGWALTEGYTPYPGAGEGWGGNGV GDDLYSYGFDFGLHLWTGHVARPVTPGQHL LAPEDVISCCCLDSVPsisFRINGCPVQGVFESF NLDGLFFPVVSFSAGVKVRFLGGRHGEFKF LPPGYACHEAVLPRLHLEPIKEYRREGP RGPHLVGPSRCLSHTDFVPCPVDTVQIVLPPH LERIREKLAENIHELWALTRIEQGWVYGPVRD DNKRLHPCLVDFHSLEPERNYNLQMSGETL KTLLALGCHVGMADKAEDNLKTKLPKY MMSNGYKPAPLDSLHVRLTPAQTTLVDRRAE NGHNWARDRVGQGWWSYSAVQDIPARRNPR LVPYRLLDEATKRSNRDSSLCAVRTLLGGY NIEPPDQEPEQSIVENQSRCDRVRIFRAEKSYT QSGRWYFEFEAVTTGEMRVGWARPELRPDV ELGADELAYVFNGHRGQRWHLGSEPFGRPW QPGDVVGCMIDLNTNTIIFTLNGEVLMSDSGS ETAFREIEIGDGFLPVCSLPGPGVQVGHNLGQD VSSLRFFAACGLQEGFEPFAINMQRPVTTWFS KGLPQFEPVPLEPHYEVSRVDGTVDTPPCLR LTHRTWGSQNSLVEMLFLRLSLPVQFHQHFR CTAGATPLAPPGLQPPAEDEARAAEPDPDY NLRRSAGGWSEAENGKEGTAKEGAPGGTPQ AGGEAQPARAENEKDATTENKKRGFLFKA KKVAMMTQPPATPTLPRLPHDVVPADNRDD PEIILNTTYYYSVVRVFAQQEPCVVAGWVT PDYHQHDMSFDLSKVRVVTVMGDEQGNV HSSLKCSNCYMWVGDFVSPGQQGRISHTDL VIGCLVDLATGLMTFTANGKESNTFFQVEPN TKLFPAVFVLPTHQNVIQFELGKQKNIMPLSA AMFOSERKNPAPQCPCRLEMQMLMPVWSR MPNHFLQVETRRAGERLGWAVQCQEPLTMM ALHYPEENRCMDILELSERLDLQRFHSHTLRL YRAVCALGNRVAHALCSHVDQAQLLHALE DAHLPGLRAGYYDILLISIHLESACRSRRSML SEYIVPLTPETRAITLFFFGRSTENGHPRHGLP GVGVTTSLRPPHHFSPPCFVAALPAAAGA \wedge EA ARLSPAIPALEALRDALKRMLGEAVRDGGQHA RDPSVGA \wedge FQFVPLVKLVSTLLVMGIFGDE DVKQILKMICPEVFEEEEEEDEEEEEE EKEEDEEEETAQEKEDEEKEEEAAE \wedge GEKEEG LEEGLLQMKLPESVKLQMCHLLEYFCDQELQ HRVESLAFAAERYVDKLOANQRSRYGLLIKA FSMTAAETARRTREFRSPPQEIQNMLLQFKDG TDEEDCPLPEEIRQDLDHFQDLLAHCGIQLD GEEEPEEETTLGSRMLSLEKVRVLVKKEEK PEEERSAAEKSPLSLLQELVSHMVRWAQEDF VQSPELVRAFMFSLLHRYQYDGLGELLRALPRA YTISPSVVEDTMSLLECLGQIRSLLIVQMGMPQE ENLMIQSIGNIMNNKVFYQHPNLMRALGMHE TVMEVMVNVLGGGESKEIRFPKMTSCCRFL

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						CYFCRISRNQQRNSMFDHLSYLLENSGIGLGM QGSTPLDVAASVIDNNELALALQEQLDEKV VSYLAGCGLQSCPMLVAKGYPDIGWKPCGG ERYLDFLRFAVFVNGESEENANVVVRLLIR KPECFGPALRGEFGSGLLAAIEEAIRISEDPAR DGPGRIRRREHFGEEPPEENRVHLGHAIMS FYAAALIDLGGRCAPEMHLIQAGKGEALRIRAI LRSVPLEDLVGIIISLPLQIPTLKGKDGAJVQPK MSASFVPDHAKSMVLFLLDRVYGIENQDFLLH VLDVGFLPDMDRAAASLDTATFSTTEMALAV NRYLCLAVLPLITKCAPLFAGTEHRAIMVDS MLHTVYRLSRRGRSLTKAQRDVIEDCLMSLCR YIRPSMLQHLLRRRLVFDVPILNNEFAKMLPKLL TNHYERCWKYYCLPTGWANFGVTSEEELHL TRKLFWGIFDLSAHKKYDPELYRMAMPCLC AIAGALPPDYVDASYSSKAEKKATVDAEGNF DPRPVETLNVIPEKLDASFINKFAEYTHEKWA DKIQNNWSYGENIDEELKTHPMRLPYKTFSE KDKEIYRWPPIESLKAMIAWEWTIEKAREGE EEKTEKKKTAKISQSAQTYDPREGYNPQPPDL SAVTLSELQAMAELQIAENYHNTWGRKKKQ ELEAKGGGTHPLLPYDILTAKARDREKA QUELLKFLQMNGYAVTRGLKDMELDSSIEKR FAFGFLQQQLRWMDISQEFIAHLEAVVSSGRV EKSPHEQEIKFFAKILLPLINQYFTNHCLYFLS TPAKVLGSGGHASNKEKEMITSLFCKLAALV RHRVSLFGTDAPAVVNCLHILARSIDARTVM KSGPEIVKAGLRSFFESASEDIEKMVENRLG KVSQARTQVKGVGQNLTYTTLVALLPVTTLF QHIAQHQFGDDVILDDVQVSCYRTLCSIYSLG TTKNTYVEKLRLPALGECLARLAAAMPVAFLE PQLNEYNACSVYTTKSPRERAILGLPNSVEEM CPDIPVLERLMADIGGLAESGARYTEMPHIVIE ITLPMLCYLPRWWERGPEAPPSALPAGAPP CTAVTSDFHLSNLGNILRIIVNNLGIDEASWM KRLAVFAQPIVSRARPELLQSHFIPTIGRLRK AGKVVSEEEQALEAKAEAQEGELLVRDEFS VLCRDLYALYPLLIRYVVDNNRAQWLTEPNPS AEELFRMVGEIFIYWSKSHNFKREEQNFVUQ NEINNMSFLTADNKSKMAKAGDIQSGGSDQE RTKKKRRGDRYSVQTSLIVATLKKMLPIGLN MCAPTDQDLITLAKTRYALKDTDEEVREFLH NNLHLQGKVEGPSLWRQWQMALYRGVPGREE DADDPEKIVRRVQEVSAYVYLDQTEHPYKS KKAVWHKLLSKQRRAVVAFCRMTPLYNLP THRACNMFLESYKAAWILTEDHSFEDRMIDD LSKAGEQEEEEEEVEEKKPDPHLQLVHFSRT ALTEKSKLDEDLYMAYADIMAKSCHLEEG GENGEAEEEEVSFEEKQMEKQRLLYQQARL HTRGAAEMVLQMISACKGETGAMVSSTLKL GISILNGGNAEVQQKMLDYLKDKKEVGFQFS IQALMOTCSVLDLNAFERQNKAEGLGMVNE DGTVINRQNGEKVMADDEFTQDLFRFLQLLC EGHNNDNFQNYLRTQTGNTTTINIICTVDYLL RLQESISDFYWYSGKDVIIEEQGKRNFSKAM SVAKQVFNSLTEYIQQPCTGNQQSLAHSRLLW DAVVGFLHVFAHMMLKLAQDSSQIELLKEL LDLQKDMVVMLLSSLLEGNVNGMIARQMV DMLVESSNVEMILKFFDMFLKLKDIVGSEAF QDYVTDPRLISKDFQKAMDSQKQFSGPEI

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \possible nucleotide insertion)
						QFLLSCSEADENEMINCEEFANRFQEPARDIGFNVAVLLTNLSEHVPHDPRHLNFLELAESILEYFRPYLGRIEIMGASRRIERIYFEISETNRAQWEMPQVKESKRQFIDVVNEGGEAEKMELFVSFCEDTIFEMQIAAQISEPEGEPEDEDEGAGAAEAGAEGAEAGAAGLEGTAATAAAGATARVVAAGRALRGLSYRSLSRRRVRLRLTAREAATAVAAALLWAATRAGAAAGAGAAAGALGLLWGSLFGGGLVEGAKKVTVTELLAGMPDPTSDEVHGEQPAGPGGDADGEGASEGAGDAAEGAGDEEEAVHEAGPGGADGAVAVTDGGPFRPEGAGGLGDMGDTTPAEPPTPEGSPILKRKLGVDGVEEELPPEPEPEPEPEPEKADAENGKEKEEVPEPTPEPPKKQAPPSSPKKEAGGEFWGELEVQRVKFLNYLSRNFTYTLRFLALFLAFAINFILLFYKVSDSPPGEDDMEGAAGDVSGAGSGGSSGWGLGAGEEAEGDEDENMVYYFLEESTGYMEPALRCLSLHHTLVAFLCIIGYNCLKVLVIFKREKELARKLEFDGLYITEQPEDDDVKGQWDRLVLNTPSFPSNYWDKFVKRKVLDKGDIYGRERIAELLGMDLATLEITAHNERNKPNNPPPGLLTWLMSIDVKYQIWKFGVIFTDNSFLYLGWYMVMSLLGHYNNFFFAHLLDIAMGVKTLRTILSSVTIHINGKQLVMTVGLAVVVVLYTVVAFNFFRKFYNKSEDEDEPDMKCDMMTCYLFHMYVGVRAGGGIGDEIEDPAGDEYEYLRYVVFDIRFFFFVIVILLAIQGLIIDAFGERLDRDQQEQVKEDMETKCFICIGGSDFDTPPHGFETHITLEEHNLANYMFMLMYLNUKDETEHTGQESYVWKMYQERCWDFFFAGDCFRKQYEDQLS
501	1851	A	3869	467	665	VIVAIYCOLIFDKGAKTIQ*PFQQIAL/CKRMKLGPCFTPCGKINSEWIRESVRVKTIKHLEIGN
502	1852	A	3888	1042	724	SGMQWRDLTPLQLPLPPRFQFSCLSLPGSWDYRHAPVPLLTNF*FLVEMGFCYVGQAGRKLLASSDQSALASQSAGITGISTAPGPPFFLNFEAGSCSVAQAGVQ
503	1853	A	3891	1773	1193	EVDSQSGVQ*QAPGSQLQLQTGGLK/VSCLLSRQDYRSSLPHLASCCYYYYYY/VFL*RRGLTTLVQGGKLKLLPSSNPASAP*TAGITGMSHCAGPHFNF*MFRKISCIRE*F*HTRIYDIPFLILFFKETWVLLCYPGWPQIPGLKPSCLRLSSWDHRCAPPCPASFFIFHVDRVSPPCPGLVSITFKMLLL
504	1854	B	3896	279	70	MVSKSKSILMSYNHVELTFSDMKMPEAFRTQKHTIYLIPYQVIFWSTGKDAMRSFMMPFYQKEYYENQ*
505	1855	A	3899	2	1396	EPGVPTKTKTFDKPDFNRTNSPGFQKKVQFGNENTKLERKVPPELNNISNKLNEHFSRGTLVNLQVAYNGDPEGALIQFATYEAAKKAISTEAVLNNRFIKVYWHREGSTQQLQTTSKVMQPLVQQPILPVVKQSVKERLGPVPSSTIEPAEAQSASSDLPQVLSTLLA*QKQCHIQLL/WKAAQKTLLVSTSAVDNNEAQKKKQEALKLQQDVRKRKQEILEKHETQKMLISKLEKNKTMKSEDKAEIMKTEVLTKNITKLKDEVKAASPGRCLPKSIKTKTQMKEELLDELDLYKKMFAQAGEEVTELRRKYTELQLEAAKRGILSSGRGRGIHSRGRAVHGRGRGRGRGVPGHAVVDHRPRALEIS

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, \ =possible nucleotide insertion)
						AFTESDRELLPHFAQYGEIEDCQIDDSSLHA VITFKTRAEAAAVHGFKGQDLKLAWN KPVTNISAVETEEVEPDEEEQREIIIA
506	1856	A	3911	1952	919	DAELSGTSLVLTQCCRKIKDTVQKLASDHK DIHSSVRVGKAIDKNFDSDISSVGIDGCWQA DSQRLLNEVMVEHFFRQGMLDVAAEELCQES GLSVDPQSKEPFVELNRILEALKVVRVLRALE WAVSNREMLIAQNSSLFKLHRLYFISLLMG GTTNQREALQYAKNFQPFALNHQKDQVLM GSLVYLRRGGIENSPYVHLLDANQWADICDIFT RDACALLGLSVESPLSVSFSAGCVALPALNIK AVIEQRQCTGVWNQKDELPIEV\DLG+KSAGY HSIFACPILRQQTDDNNPPMKLVCGHINSRDAL NKMFNGSKLKCPCPMEQSPGDAKQIFF
507	1857	A	3936	439	18	SHFPSPAPGICPDAPPPLPRPSKGLGHPGTAGA PGSGARCHPPSTCSPSWASP*GAKASPALPR SHGVTLCKAQAHLCRGEDSKDASGSTSQA WEPG*GAWGMPRCQGPALGSCFCPPGTTVQ RPAKQRDKRNHRHLGR
508	1858	A	3944	120	412	WCPAGTLDFFGPQEMVLLEIEVMNQLNHRNL IQLYAAIETPHEJVLFME\YECPK*W*GLGGGT TRHGASRGGVCAHSIEGGELFERIVDEDYHLET EV
509	1859	A	3949	31	392	LTKTPSPREKGRGVLSVLLMMI*KCRVIFVKIP MVFFLQNFC/RILNVAWTGD*PNTL*KEQRG ITFSDSKS*YKATIKTMWYCHKNRYID/ERN RIEPEINPCICDKIIFRKLMSMTQ
510	1860	A	3954	1013	885	FSETRACCPRLHEHSGRJEAHCSLNIPGSSDPPT SASSVAATIG
511	1861	A	3956	1	1054	PPAWAPRSPLIWAPTSGRHPCRAALPWSTSSV RWQPSEKQPPPAAHRGPADSLSTAAGAAELS AEGAGKSRGSQECDWWNRPKTVRDTLLALH QHGHSGPFESK\KKEPALTAVARTARKRKPS PEPEGEVGP\PK\TERPSRGCPHPQRGSRSP*L LHPLLCLRHPLPHLIPTGPHRLKRPRMP\SP MAALILVADNAGGSHASKDANQVHSTTRRN SNSPSPSSMNQRRLGPREVGGQAGNTGGL EPVHPASLPDSSLATSAPLCCTLCHERLEDTH FVQCPSPVSHKFCFPCSRQS\KQQGASGEVYC PSGEK CPLVGSNVPWFAMQGEIATILAGDVK VKKERDS
512	1862	A	3957	1086	3	QDRARLDCCSATSAHCNLRPGS*DSPASASR VAGTTDTHHTWLILGSSVQTGFDHVGQAG LELLTSGDPPISASESAGIMGMSHCVWP*SWG LSHHMAPPQGDGGRARGTPGPEQSFWNLSC H*PRCQVPS*LMTQL/FWGRHQYNPTMKRGK LRHREACSLPLPGEPEGPQOPSS*SQNPCSSL FHHGL*AWLWCPELLLQQQARRH*RSPPS/FK CPATLSLTAWSQTKRIRSQFLLPWL*RAL*H PPCCHWPSSRSLGDPLLPRSGQ*RDGT*ASTFC SYF*DTESHLVQAQGVQWRDLGSLQPPCPRL K\RFSLSPSSYTHR\YVPSHLAESCISSRDRIP PSRPDRSRSNSNSL
513	1863	A	3961	3038	476	VALTTSMCCNKQVIVIDKIKSASIADRCGALH VGDHILSIDGTSMEYCTLAETQFLANTTDQ VKLEILPHQOTRLALKGPDHVKIQRSDRQLT WDSWASHSSLHTNHYNTYHPDHCRVPAL TFPKAPPNSPPALVSSSFPTSMSAYSLSLNL MGTLPRLSYSTSPRGTMRRRLKKDFKSSL

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \possible nucleotide insertion)
						SLASSTVLAGQVVHETTEVVLTADPVTFGIQLQGSVFATETLSSPLISYEADSPAERCGVLQIGDRVMAINGPTEDSTFEEASQLLRDSSI
						TSKVTLIEFVDVAESVIPSSGTFHVVKLPKKHNVELGITISSPSSRKPGDPVLVISDIKKGSVAHRTGTLELGDKLLAIDNIRLDNCMSMEDAVQILQQC
						EDLVVKLKIRKDEDSNDEQESSGAIYTVELKRYYGPLG\TISGTEEPFDL*IISSLTKGGLAERTGAIHIGDRIL\AINSSSLKGKPLSEAHILLQMAG
						ETVTLKIKK\QTDQSAQSPKKFPSSHLSLDGDVEEDSSPAQKPGKLSDMYPHSHGCPVDSAVD
						SWDGS\ADTS\YGETG\TSFQASGY\NFNTYDWRSPKQRGS\LSPVT\KPRSQTYPDVGLSYED
						WDRSTA SGFAGAA\DSAETEQUEENFWSQALE
						DLET CGQSGILRELEATIMSGSTMMSNHEAPT
						PRSPAGS\DRPSFQERSSSRPHYSQTTRSNTLPSDVGRKS\VTLRKM\QEIKEIMSPTPVELHKVT
						LYKDS\DMEDFGFSVADGLLEKGVYVKNIRPAGPGDLGGLKPYDRLLQVNHVTRDFDCCLV
						VPLIAESGNKLLDVISRNPASQKS\IDQQSLPGD\SEQNSAFFQQPSHGGNLETREPTINTL
514	1864	A	3967	833	800	LEKQGVSGMATKRLARQLGLIRRKSIAPANGNLGRSKSKQLFDYLIVIDFESTCWNDGKHHSQE\IEFPAVLLNTSTGQIDSEFQAYVQPQEHPILSEFCMELTG\KQAOQVDEGVPLKJCLSQFCKWIHKIQQQKNIIFATGISEPS/DF*SKIMCICYLVR*RJSYTY*SKHKSKG
515	1865	A	3969	492	182	CRFWGISTHCDTCPLSPQTTEG**EGDLWSLDLLGPEFLARKPLFKTKTYQSTP*SISKNE/FTCPNFIIEEGTDLIF*QVKHNPCHRLTPEEGTVQLNRADS
516	1866	A	3977	2	1357	KMLC/QKE\SNYIRLKRAKMDKSMFVKIKTLGIGAFGEVCLARKVDTKALYATKTLRKDVLLRNQVAHVKAERDILAEADNEWVVRLYYSFQDKDNLYFMDYIPGGDMMSLLIRMGIFPESLARFYIAELTCAVESVHKMGFIHRDIKPDNILIDRDGH\KLTDFGLCTGFRWTHDSKYYQSGDHPRQDSMDFSNEWGD\PSSRCGDRLKPLERRAARQHQRCLAHSLVGTPNYIAPEVLLRTGYTQLCDWWSVG\VLIFEMLVGQPPFLAQTPLETQMKVINWQTS\HIPPQAKLSPEASDLI\IKLCRGPEDRLGKNGADEIKAHPF*NQFDFSQ*PEDSRSAFKQFP*NHTTP\TDTSNFDPVDPDKLWSDDNEEENVNDTLNGWYKNGKHPEAHFYEFTFRRFFDDNGY\PYNPKPIEY\YINSQGSEQSDEDDQNTGSEIKNRDLVYV
517	1867	A	3980	1358	1022	FFFKKFTQSLGFLLFSFSLFSCFFFHFVLFYC
						VFLDRVPLCHPGWSAVVQSQVT/VNLPPSWD*RCRPPH/LANLCNFCRDISFTTLPLRLV\LN\TWA
						QAIFQPQPKV\GLQV
518	1868	A	3986	974	666	SPEMESHPITQAGVQWHHLSSLQPLPPGFK*FSCFSLPE*LGYRHVP\PPCLANSVFSVEMGFLHVGQAGLELLTSGDLPALASQ\AGITG\SHRAR
						PENGFENIF
519	1869	A	3994	751	126	NQGLRHVG\LCRTCLVNQMFASSILGKSHHHS
						LISINQGHNALWKAAGGPLPLKAGY\YCQSFSPCDDSLKYG\ISWDEKDLTV\QRDTHKRSVLRWIS
						QRGK\IAVEMEEGH\CLL\PLGTECLGIK\PIV
						H\LFSEMGE\NRP\VMG\ARHVYSNAALLSFTP

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, \=possible nucleotide deletion, \=possible nucleotide insertion)
						LRCLGGEKHKGSLHARPVIVPSLELHYDMDSI AHVFADLLIITLPSYYIPFC
520	1870	A	3999	882	698	QSFRLSLSSWDYRHM*PRLANF*TFFCRDR/ SLALLPRLVSNSWPQAIPPRPPKVLGLQT
521	1871	A	4011	1346	1178	FFF*ETVSCSAS*AGVRSHDNSSLQPPSPG\SSN PPTSASHVAGATGTHHHAWLLSV
522	1872	A	4015	2	377	QGIALLTRMGESVKHVTGGYKLRTTRPLEFAA IGDYLDTFALKLGTIDRIAQRRIKEEIEYLVELR EYGPVYSTWSALEGELAEPLEGVSACIGNCST AL*ELTDDMTTEDFLFVLREYILYSDSMK
523	1873	A	4018	341	19	ERVIHNQIQQAAQRSPHIFNARRSS/PRPNIVELP KVKEVCKTSKS/GQVIYKGVSIRLRLANFLAEP L*NRREWDEAIKVKEKQ\FLSKMVYPANLSE GNEGDTISFFPAK
524	1874	A	4020	1067	743	FFLRLWSL/DSVAQAGVKWCNLGSLQAPPGF TPPSCLSLPSSWDYRHPPLAN*LTNFLCF** RQGFTVLARMVLIS*PHDLPASASQAGITGL SHCSWPPTSSILS
525	1875	A	4021	781	351	QFRVFFFLRSHSVAQAGMQWHDHSSLQPL PPLRKQ/F/SHLSPPSIWDYRRVPPCLVNFSIFF VETGSCQCPLQLLGSSNPPASASQSGAGIAGISH QGQPE*SFDIRFACVIAALRETFCQCLCSASRVN NKIINRPPTHVESSF
526	1876	A	4024	80	341	TPSSTSRTGTEEQQSSKMAWQRREEKEHLNVR RSSAEDGWKADKP/VDG*TPGEDHLPTPSPFQ LHIHSSESOLHHSVKSPPSLSFRLM
527	1877	A	4026	593	230	DFYLYPERKKRGQMMTAWSLTTRPQESVAFE DVAVYFTTKEWAIMGPAERALYRDVMLEN YGGCGPL*CHPTSKPALVFSLEQGKESCFSPA TGSSLRNNDWRAGWIGYLELRYTYLS
528	1878	A	4028	1160	242	GTSELLCICQRWNWGPAFPFRPGGLALAPTLQL VEMGSAKSVPTPARPPPWNKHLARVADPRS PSAGILRTPIQVESSPQPGLPAGEQLEGLKHAQ DSDPRSRPTLGIARTPMKTSSGDPPSPLVKQLSE VFETEDSKSNLPPPEPVLPPEAPLSSELDLPLGT QLSVEEQMPPWNQTEFPSKQVFSKEEARQPT ETPVASQSSDKPSRDPETPRSSIGSMRNRWKPNSSKVL\GKSPLHPSCQDDNSPGTLTLRQGKA AFKPLSENSELKEGAILGTGR\LLKTEGRA WEQQQD\HDKENQHFPLVES
529	1879	A	4039	2	366	KDMVLIMEMQSMITMKCPQYL*E*RKIPDITK CW*GCGSTGILIFC/WS*PL*KTI*QPR*FKQI*T ILTHIYSIM*EHTFHNAVG*\LSDIYPRFMKGYV HTEICT*MFIAVLFVVVKTWKQF
530	1880	A	4057	358	3	LLEVNGNTIVFTKAQNKKNKGSRSLFKQL RKYGSRINLLKSKHDKNICCTENYKT*MKEIEA /DTDKWKDILCSWIRRIHMKDILCSWIGRTHV VKISILPKVNYRFYLISIKIIMAI
531	1881	A	4061	50	278	TQGTEEIYKISSCEWVQASFSTPLTLHDFKIY HKATVIKMVWWYWHRO*KFSKN/RIESSEIEPH IYDQFIFDKGEKIIQEKGNSSFFNN/MCWKNWIFT*KR
532	1882	A	4069	19	368	NDLLENFKFWE*FKE*LENINGTVTEKETGGV YKELSSPKYSGTRQFYGGTISNFPGKJISMVY KLFQNTTE/TEGRHPISLYEFRITLITIPNKDNIYL QIWMPVSLMNIVTLKCP
533	1883	A	4076	1	355	PIRKFTKVAG*KSNTPK*LAFLHINNEQFENKU/ ITNI/PFIIASKRICKYSGISLTKEMKDLYTETLLR KIKEDTNWKDI/SCFWVGR/LNIVKMPK/VIC

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						IFNAIPIKMPMMCMMAKIEKNSS
534	1884	A	4088	3	1931	IIDSSTRRMESERSPYRQLIDGYLSSSHWNC GAPGQDTKAQSMVLVEQSEKLRLSTFSHQVL QTRLVDAAKALNLVHCHCLDIFINQAFDMQR DLQITPKRLEYTRKKENELEYESLMNIAKRQE EMKDMIVETLNTMKEELDDATNMEFKDVI VPENGEVGVTREIKCCIRQIQELIISRLNQAVA NKLSSVDYLRESFVGTLERCLQSLEKSQDV S VHITSNYLKQILNAAYHVEVTFHSGSSVTRM LWEQIKQIQRITWVSPPAITLEWKRKVAQEAI ESLSASKLAKSICSQFRTRLNNSHEAFAASLRQ LEAGHSGRLEKTEDLWLRLVRKDHAAPRLARLS LESRSLQDVLLHRKPQKLGQELGRGQYGVVYL CDNWGHHFPCALKSVVPPDEKHWNLDALEF HYMRSLPKHERLVDLHGVIDNYGGGSSIA VLLIMERLHRDLYTGLKAGLTLETQJALDV VEGIRFLHSQGLVHRDIKLKNVLLDKQNRAKI TDLGFCKPEAMMSGSIVGTPIHMAPELFTGK YDNSVDVYAFGILFWYICSGSVKLPEAFERCA SKDHLWNNVRRGARPERLPVDEECWQLME ACWDGDPLKRPLLGIVQPMQLQGIMNRLCKSNSEQPNRGLDDST
535	1885	A	4090	2	417	ALMPHEANYEEIFLTKTDKDMDFESGLEVRE IFLKTR/GLPSTLLAHIWALCDSKDCGKLSKD HFALAFHLITQKLIKGDPPVLTPEKJPSNR ASLQKVTELTRKPVCIIFKGTTILWRITDSIWMK HNRKRIWLRA
536	1886	A	4102	569	829	DHQK*KNIPCSWIGRNINIVKMSILPKAIYRFSAI PIKIPMTFFTEI*S*NVYRTTKTQE*AKAISKK EQNLEESHYLDKF*YYRAV
537	1887	A	4104	54	281	SIDCEHLIRRMLVLDPSKRLTIAQIKEHKWML IEVPVQRPVLYPQEQNEPSIGEFNEQVRLMHSLGIDQQKTJE
538	1888	A	4109	141	314	IRHIPLKIRSVVSHLKCFCYKFLTFFFAGCSQPL VPRENITAWMNAIGLIITALPVS
539	1889	A	4111	268	1	ASRPGWGHSY*FNQQEVDTLKRPIASSEI*MM I*KFATVKSPGPYRFTAESHTFKEDLVPILW PLFPKIIYREGTLPHSFYEASITL
540	1890	A	4142	198	2064	PEPGAGRAATPWGPLFWRGRGSRCCEKAAE AALGDFLGLHRRRTQQPAVDRLLSASAQWR VRGHGGVRESGRAPQQPGRRGRPRKRPR GRWRREGCAGGGRGVCAAWSQRSIAGNN DYRLPHKMSNSHPLRPFATVGEIDHVHILSEH IGALLIGEEYGDVTIVVEKKRFPAAHRVILAAR CQYFRALLYGMRESQPEAEIPLQDITAEAIT MLLKYIYTGRATLTDEKEEVLLDFSLAHKY GFPELEDSTSEYLCITLNIQNVCMTFDVASLY SLPLKLTCCMFMDRNAAQEVLSSEGFLSLSK TALLNIVLRDSAFAPEKDIFLALLNWCKHNSK ENHAEIMQAQVRLPLMSLTELLNVVRPSGLLSP DAILDAIKVRSESRDMDLNRYGMLIPEENIAT MKYGAQVVKGELKSALLDGDQTQNYLDHG FSRHPIDDDCRSGIEIKLGQPSIINHVRILLWDR DSRSYSYFIEVSMDELWDWVRIDHSQYLCRS WQKLYFPARVCRYIRIVGTHNTVINKIFHIVAF ECMFTNKTFTLEKGLIVPMENVATIADCASVI EGVSRSRNALLNGDTKNYDWDSGYTCHQLG SGAIIVVQLAQPYMIGSIRVLLWDCDDRSY
541	1891	A	4146	282	778	GTLGYPNGARGQPQDNFFAHQ\VSHHPPISAC

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						HAESENFAFWQDMWKWNKFWGKSLEIVPVGTVNVSLPRFGDHFEWNKVTSCIHNVLSGQRWIEHYGEVLRNTQDSSCHCKITFCKAKYWSSNVHEVQGAVLRSRGRVLHRLFGKWHEGLYRGPTPGQCWIWP
542	1892	A	4147	44	433	SDVADVCNDIVFSYRTTITLLEGA*LTHR YVAQDPKGQQLRSLLHTCDSAPAGSQGTWSTSCRINHLIFRGGAAQITFLATFDDSPKAVLGDRLLLTTANVSSENNTPRTSKTTFQLELSVKDAVYTVVSSH
543	1893	A	4153	678	11	TISYPQCLTQMYFLISFANVDTFLPIALDHYVAICSAHQ*CSIHP/ELCQGLPVLA*AGSSLISPVHTVIMSRALFCSSAQISHFYRDAYLLMKIASCSHT*INQHVFGLAVVFLAPCALILVSYIRIAAAILRIPSPTRRRKACSISSHLSLVLFYGTVLGICI*PPDSFSAQDALATIMTVVTSMLNPFIYSLMNKEVQEAVRRLFSRGSHSSWCW
544	1894	A	4158	3	538	LLYAQAGVQ*LNLSLQPQPAGLKQSSHPSLSSWDYRYSTPHPANFFVEMEFHHVAQAGLELGSGDLPSTSAGITGVSHHAPPRLSSEGSLLGHLLCPLMVFPPLCVFVLISSSLAGEEAAGLRVQKLWPAVVLSHLPVCWFHCNSGIWEVIELKVGREGHVLPWQAHVVEF
545	1895	A	4160	1	412	HPLGLGLVPSEIFSPQDKKAADGSILAPARGEDEAGLKGSMFDGRLQASVSFVFRIQRVGSAMQDTASAPCPLPYPTSHCFMAGGKSRSQGW ELELSGEPAVGWQVLAGYTYTQARYLRDASEANVGQPLRPVDPR
546	1896	A	4174	1252	1190	FFQVFIFLFLIFFKTEFHSCCPGAQWHDLDSLQPPPPRFKGFSCLSLPSSWDYRHAPAH PANFVFLVETGFLHVIGQASLELPTSGDTPASASQSA GITGVSHHA*PRASGRCW
547	1897	A	4176	3029	1	AGPDGLAAPASCQGARGQTRVPGAFSWLAPGSHASEGLAPGVPPAGGVSQAELTAPPQEGWGLGAPPAAPR PESDEKRAGSDAVRSFSRGA RDSLGQRRLGGTRGAQPAKGAQRTMGPASGFHSFPPRPHQEPEPRSSCWQHLLWHCPWPQPSRLPRLTPAQLLQPGVLAAPPGP*HVPGLAQSPWPLPSGPRSP*DPLHQGALVPLPQGGSPHTAPHCLPSVLSPAIQQLPPTAST/SSRSPPAS TMAPIPSALAVWEPAQSSPQLSSAPADSSPLP ALPKVLPWTQKPLLGCCLCQSPPLLSPPDQI/RCPPACSPA AASSFSFESQCPAPS KASPAPA ALIVGPHPP*SQQPQSOSVHPHGPGGPQPL AASSLFWMFCQPPPQFLWHRPLPVTGKA LASIPLCFRPAPGSLRQTPLPPQFHIPRPGLSAP/PP PASGTSDSSDSRSPASAARVWPPA SPPP AARHRPHIPPEYFLSPCPFSCGFPRLLGRPRRQ ALQT PRAWDLPLPGSSAPLCSGPELP*APPPLP PFPRVA*LGSGHPPSAQVPGLW*RCV*GHPIP RPVGHS*SGPPHSPL*APPQAWPLELPPSRQC LQPLHLRAAQPLDPCCSLSPPGPPPLPVPALPSWPGP*SPSPASSQPPYHAGLPGPQSSPLPPGLPQLPSLRSGSQQPQLLFQCPGPGAVVWGKGSPQPLSPHPPP/ARTQTFPVASRSLSPGTAPYSVCLTPSRASSLPEVVLASSLPKIPQSSGSVPLGPTSPMP*CFHRPSPLP/LSSPFPA\LRPQAPQFPLHLP P*PPAPSPGCPLPPLAQHQSPPSPHARSTLT PPLWPSLALLP*PLPPPVPVPSFSASLLCSLPAH

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, \=possible nucleotide deletion, =possible nucleotide insertion)
						GTPASPGRLRSCLGKPKTLPWISFWPPSGRLA PGTWQPW/PVSPAPLSCLSAWDPWELPSPQPQ VCSTAELPTSCLLSSPGP PAFQPPRFGCL*GPP GPPGLPLQSSLFP PVPQPPAPPALQWG LHLPGGRTK
548	1898	A	4180	2369	844	RJHREEDFQFILKGIAIRLLSNPLLQTLYLPNSTK KIQFHQEELLVLFWKLCDFNKVGQPRGALQGD GEQLPQ*PGGRDSVRLRGVGQSCPSLELSPLG PSPHP*KFLFFVLKSSDVLDILVPIFLFLNDAR ADQSRVGLMHIGVFI LLSGECNFGVRLNKP YSIRVPMIDIPVFTGTHADLLIVVFHKIITSGHQ RLQPLFDCLLTIVVNVPYLSKSLSMVTANKLL HLLEAFSTTWFIFSAQNHHLVFVLLLEVFNNI IQYQFDGNSNLVYAIIRKRSIFHQLANLPTDPP TIHKALQRRRRTPEPLSRTGSQGGAPPWRAPA PLPLQSQAPSVPVVWLLQALTS*PRSPRCQR MAPCGPWNLSPSRAWRMAARLRGSPARHGG SSGDRP/HSSASGQWSPTPEWVLSWKSKLPLQ TIMRLLQVLVPQVEKICIDKGLTDESEILRFLQ HGTLVGLLPVPHPILRKYQANSGTAMWFRT YMWGVIVYLNRVNDPPVWYDTDVKLFEIQRV
549	1899	A	4191	858	321	LPWQRLGVLLSRGKMAVTGWLESRLTAQKT ALLQDGRRKVHYLFPDGKEMAEYDEKTSE LLVRKWRVKSALGAMGQWQLEVGDPAPLG AGNLGPELIKESNANP FMRKDTKMSFQWRIR NLPYPKDVSYSVSDQKERCIIVRTTNKKYYK KFSIPDLDRHQLPLDDALLSFATPTAP
550	1900	A	4192	1	1980	IRHTGSDIAGVCGWLLSGPCGVGLLDSRLL GASAMRSEVLAEEISIVCLQKALNHREIWE LIGIPEDQRLQRTEVVVKKHKELLDMMIAEEE SLKERLIKSISVCQKELENLTCSELHVEPFQEEG ETTILQLEKDLRTQVELMRKQKKERKQELKL LQEQQDQELCIEILCPMPHYDIDSASVPSLEELNQ FRQHVITLRETAKSREEF/VSSIKRQIILCME ELDHTPDTSFERDVVCEDEDADFCLSLENIATL QKLLRQLEMQKSNEAVCEGLRTQARELW DRLQIPEEEEREAVATIMSGSKAKVRK ALQ LE VDRLEELEKCKTMKKVIEAIRVELVQYWDQC FYSQEQRQAFAPFCADEYTESLLQLHDAEIVR LKNYYEVHKEFEGVQKWEETWRLFLEFER KASDPNRFNTNRGGNLLKEEKQRAKLQKMLP KLEELKARIEL WEQEHSKAFMVNGQKFME YVAEQWEMHRLEKERAKQERQLKNKKQTET EMLYGSAPRTPSKRRGLAPNTPGKARKLNNT TMSNATANSSIRPIFGGTVYHSPVSRLLPPSGSK PVAASTCSGKKTPTGRHGANKENLELNGSI LSGGYPGSAPLQRNFNSINSVASTYSEFADPSLS DSSTVGLQRELSKASKSDATSGILNSTNIQS
551	1901	A	4194	3	1008	AWHEGLVSSPAIGAYLSASYGDSLVLVATV VALLDICFILVAVPESLPEKMRPVSWGAQISW KQADPFAISLKKVGKDVDTLL CITVCLSYLPE AGQYSSFVLYLRIQVIGFGITVKIAFIAMVGI LSIVAQTAFSLSLMRSLGNKNTVLLGLGFQML QLAWYGFGSQAWMWAAGTVAAAMSSITFP AJSALVSRNAESDQQGVQAQGIITGIRGLCNGL GPALYGFIFYMFHVTELGPKLNNSNNVPLQ GAVIPGPPFLFGACIVLMSFLVALFPIEYSKAS GVQKHSNSSSGSLNTPERGSDEDIEPLLQDS SIWELSSFEEPGNQCTEL

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine, C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
552	1902	A	4197	2	14302	ARPPPAPGSRQQKQKAAPGAAAAAELRGAR EPAPARRRTGMADGGEGEDEIQFLRIDDEVV LQCTATIHKEQQKLCLAAEGFGNRRLCFLESTS NSKNVPPDLSICITFVLEQSLSVRALQEMLANT VEKSEGQVDPEKWFMMKTAAQGGGHRTLL YGHAILLRHSYSGMYLCCLSTSRSSTDKLAFD VGLQEDTTGEACAWWTIHASKQRSEGEKVR VGDDLILVSVSSEYLNHSYGNGLSHVDAAF QQTLLWSVAPISSGSEAAQGYLIGGDVLRLHH GHMDECLTVPSGEHGEQRRTVHYEGGAVS VHARSLWRLETLRVAWSGSHIRWGQPFLRLR HVTIGKYLSSLMEDKNNLLMDKEKADVKSTA FTFRSSKEKLDGVVKRKEVDGMGTSEIKYGDS VCYIQHVDTGLWLTYQSVDVKSVRMGSQKR KAIMHHEGHMDDGISLSRSQHEESRTARVIRS TVFLNRFIRGLDALSKAKASTVDLPIESVSL SLQDLIGYFHPPDEHLEHEDKQNRLRALKNR ONLFQEEMINLVLECIDRLHVYSSAAHFAD VAGREAGESWKSILNSLYELLAALIRGNRKN CAQFSGSLDWLISRLERLEASSGILEVLHCVL VESPEALNIKEGHIKSIISLLDKHGRNHKVLD VLCSLCVCHGVAVRSNQHLCNDNLLPGRDLL LQTRLVNHSMSMRPNIFLGVSEGSQAQYKKWY YELMVHDTEPFVTAEATHLRVGWASTEGYSP YPGGGEEWGGNGVGDDLFSYGFDGLHLWSG CIARTVSSPNQHLLRTDDVISCLLDSLAPSISF RJNGQPVQGMFENFNIDGLFFPVVSFSAGIKV RFLLGGRRGEFKFLPPGYAPCYEAVLPKEKL KVEHSREYKQERTYTRDLLGPTVSLTQAAFT PIPVDTSQIVLPPHLERIREKLAENIHELWVMN KIELGWQYGPVRDDNKROHPCLVEFSKLPEQ ERNYNLQMSLETLKTLALGCHVGISDEHAE DKVKKMKLKPKNYQLTSGYKPAPEMDLSFIKLT PSQEAMVDKLAENAHNWARDRIRQGWTY GIQQDVKNRRNPRLVPYTPLDDRTKKSNKDS LREAVRTLLGYGYNLEAPDQDHAARAEVCS GTGERFRIFRAEKTYAVKAGRWYFEFETVTA GDMRVGWSRPGCQPDQELGSDERAFAFDGF KAQRWHQGNEHYGRSWQAGDVVGCMVDM NEHTMMFTLNGEILLDDSGSELAFKDFDVGD GFIPVCSLGVAVQVGRMNFGKDVTSLKYFTIC GLQEGLYEPFAVNTNRDITMWLSKRLPQFLQV PSNHEHIEVTRIDGTIDSSPCLKVTQKSFGSQN SNTDIMFYRLSMPIECAEVFSKTVAGGLPGAG LFGPKNDLEDYDADSDFEVLMKTAHGHLLVP DRVDKDKEATKPEFNHKDYAQEKPSRLKQ RFLLRRTKPDYSTSHSARLTEDVLAADDRDDY DFLMQTSTYYYSVRIFPQEPANWVGWITS DFHQYDTGFDDLRVRTVTLGDKEKGKVHE SIKRSNCYMCVAGEMSPGQGRNNNGLEIGC VVDAASGLLTFIANGKELSTYYQVEPSTKLFP AVFAQATSPNVFQFELGRIKNVMPMSAGLFKS EHKNPVPQCPRRLHVQFLSHVLWSRMPNQFL KVDVSRISERQGWLVQCLDPLQFMSLHIEEEN RSVDILELTEQEELLKHFYHTLRLYSAVCALG NHRVAHALCSHVDEPQLLYAIENKYMPGLLR AGYYDLLIDIHLSYYATARLMNNNEYIVPM EETKSITLFPDENKKHGLPGIGLSTSRLPRMQF SSPSFVSIISNECYQYSPEFPLDILSKTIQMLTE AVKEGSLHARDPVGTTTEFLFVPLIKLFYTLLI

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, \=possible nucleotide insertion)
						MGIFHNEDLKHILQLIEPSVFKEATPEEESDT LEKELSVDDAKLQGAGEEAKGGKRPKEGLL QMKLPEPVKLQMCLLQYLCDCQVRHRIEAI VAFSDDFVAKLQDNQRFRYNEVMQALNMSA ALTARKTKEFRSPPQEIQINMLLNFKDDKSECP CPEEIRDQLLDFHEDLMTHCGIELDEDGSLDG NSDLTIRGRLLSLEVKVTYLKKKQAEPVIES DSKKSSTLQQLISETMVRWAQESVIEDPELVR AMFVLLHRQYDGIGGLVRALPKTYTINGVSV EDTINLLASLGQIRSLLSVRMGKEEKLMIRG LGDIMNNKVFYQHPNLMRALGMHETVMEV MVNVLGGESKEITFPKMVANCCRFLCYFCR ISRNQNQKAMFDHSYLLENSSVGLASPAMRG STPLDVAASVMDNNEALALREPDLEKVVR YLAGCGLQSCQMLVSKGYPDIGWNPVEGER YLDFLRFAVFCNGESVEENANVVVRLIRRPE CFGPALRGEGGGNGLLAAMEEAIKIAEDPSRD GPSPNSGSSKTLDTEEEEDDTIHMGNAIMTFY SALIDLLGRCAPEMHLIHAGKGEAIRSILRS LIPLGDLVGVISIAFQMPTIAKDGNVVEPDMS AGFCPDHKAAMVLFLDRVYGIEVQDFLLHLL EVGFLPDRLAAASLDTAAALSATDMALALNRY LCTAVLPPLLTRCAPFLAGTEHHA SLDSLHHT VYRLSKCGSLTKAQRDSIEVCLLSICGQLRPS MMQHLLRRLVFDVPLLNEHAKMPLKLLTNH YERCWKYYCLPGGWGNFGAASEEELHLSRK LFWGIFDALSQKKYEQELFKLALPCLSAVAG ALPPDYMESNYVSMMEKQSSMDSEGNFNQ PVDTSNITIPEKLEYFINKYAEHSHDKWSMDK LANGWIYGEIYSDSSKVQPLMKPYKLLSEKE KEIYRWPIKESLKTMLARTMRTERTREGDSM ALYNRTRISQTSQLVDAAHGYSRAIDMS NVTLSRDLHAMAEMMAENYHNIAKKKCM ELESKGCGNHPLLVPYDTLTAKEKAKDREKA QDILKFQLINGYAVSRGFKDLELDTPSIEKRFA YSFLQQQLIRYVDEAQYILEFDGGSRGKGEHF PYEQEIKFFAKVVLPLIDQYFKNHRLYFLSAA SRPLCSGGHASNKEKEMVTSLFCKLGVLRH RJSLFGNDATSIVNCLHILGQTLTDARTVMKTG LESVKSALRAFLDNAAEDLEKTMENLKQGQF THTRNQPKGVTQIINYTTVALLPMLSSLFEHI GQHQFGEDLILEDVGQVSCYRILTSLYALGTSK SIYVERQRSALGECLAFAAGAFPVAFLETHLD KHNIYSIYNTKSSRERAALSLPTNVEDVCNPIP SLEKLMEIVELAESGIRYTOQMPHVMEVILPM LCSYMSRWWHEGPENNPERAEMCCTALNSE HMNTLLGNILKIIYNNLIGIDEAWMKRЛАV SQPIINKVKPQLLKTHFLPLMEKLKKKAATVV SEEDHLKAEARGDMSEAELLILDEFTLARDL YAFYPLLIRFDYNRAKWLKEPNPEAELFR MVAEVFIYWSKSHNFKREEQNFV VQNEINN MSFLITDTKSKMSKAAVSDQERKKMKRKGDRYSMQTSILVAALKRLLPIGLNICAPGDQELIA LAKNRFSLKDTEDEVRDIIIRSNIHLQGKLEDPAIRWQMALYKDLPNRRTDDTSDEPEKTVERVL DIANVLFHFILEQKSRSVGRRRHYCLVEHPQRSK KAVWHKLLSKQRKRAVVACFRMAPLYNLPR HRAVNLFQGYEKSWIETEEHYFEDKLIEDLA KPGAEPPPEDEGTKRVDPHLQLILLFSRTALT EKCKCLEEDFLY MAYADIMAKSCHDEEDDDG

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, \'=possible nucleotide insertion)
						EEEVKSSEEKEMEKQKLLYQQARLHDRGAA EMVLQTISASKGETGPMPVAATLKLGLIAILNGG NSTVQQKMLDYLKEKKDVGGFFQSLAGLMQS CSVLDLNAFERQNKAEGLGMVTEEGSGEKV LQDDEFTCDLFRLQLLCEGHNSDFQNYLRT QTGNNTTVNIIISTVDYLLRVQESISDFYWYY SGKDVIDEQGQRNFSKAIQVAKQVFNTLTEYI QGPCTGNQQSLAHSRLWDAVVGFLHVFAHM QMKLSQDSSQIELLKELMDLQKDMVVMLLS MLEGNVVNGTIGKQMVDMLEVSSNNVEMIL KFFDMFLKLKDLTSSDTFKEYDPDGKGIVISK RDFHKAMESHKHTQSETEFLLSCAETDENE TLGYEEFVKRFHEPAKDIFGNVAVLLTNLSEH MPNDTRLQTFLAEASVLYNPFQPLGRIEIMG SAKRIERYFEISESSRTQWEKPQVKESKRQFI FDVVNEGGEKEKMELFVNFCEDTIFEMQLAA QISESDLNERSANKEESEKERPEEQGPRMAFF SILTVRSALFALRYNILTLMRMLSLKSLKKQM KKVKKMTVKDMVTAFFSSYWSIMTLLHFV ASVFRGFFRIJCSLLLGGSLVEGAKKIKVAELL ANMPDPTQDEVRGDGEEGERKPLEAALPSED LTDLKELTEESDLLSDFGLDLKREGGQYKLIP HNPNAGLSDLMSNPVPMPPEVQEKFQEQQAKAK EEEKEEETKSEPEKAEGEDGEKEEAKAKED KGKQKLRQLHTRYGEPEVPESAFWKKIIAY QQKLLNYFARNFYNMRLALFVAFAINFILL FYKVSTSSVVEGKELPTRSSSENAKVTSLDSS SHRIIAVHYVLEESSGYMEPTVRILPILHTVIS FCIIGYYCLKVPLVIFKREKEVARKEVARKLEFDGLYI TEQPSEDDIKGQWDRLVINTQSFPNNYWDKF VKRKVMDKYGEFYGRDRISELLGMDKAALD FSDAREKKPKKDSSLASAVNSIDVKYQMW KLGVVFTDNSFLYLAWYMT
553	1903	A	4199	31	767	LPELNRGAGLRRRAEPSERGGGAERTQQVAA LPLSHGHSHGGGGCRAAER/VGAARGSAAC AYGLYLRIDKGRQLQCLNESREGSGRGVFKPW ERAD\DRSKFVESDADEELLFNIPFTGHVKLK GIIMGEDDDSHPSEMLRYKNIPQMSFDDTER EPDQTFSLNRDLTGELEYATKISRFSNVYHL SI HISKNPGADTTKVFYIIGLRGEWTTELRRHEVTI CNYEASANPADHRVHQVTPQTHFIS
554	1904	A	4200	1	961	GIPCTEMGNFDNANVTGEIEFAIHYCfkTHSL EICIKACKNLAYGEEKKKCNPYVKTYLLPD RSSQGKRKTGVQRNTVDPTFQETILKYQVAPA QLVTRQLQVSVWHLGLARRVFLGEVIIPLAT WDFDFDTTQSFRWHPLRAKADKYEDSVPQS NGELTVRAKLVLPSPTRKLQEAQEGTDQPSL HGQLCLVVLGAKNLPVRPDGTLNSFVKGCLT LPDQQKLRLKSPVLRKQACPQWKHSFVFSGV TPAQLRQSSLELTWWWDQALFGMNDRLGGT\ RLGSKGDTAVGGDACSQSKLQWQKVLSPPN LWTDMTLVLI
555	1905	A	4211	331	2419	KENKKARNLRMNQSRSSRSRDGGSEETLPQDH NHHENERRWQQERLHREEAAYQFINELNDE DYRLMRDHNLGGTPGEITSEELQQRDGVKE QLASQPDLRDGTNYRDSEVPRESSHEDSLLE WLNTFRRTGATRSGQNGNOTWRAVSRTNP NNGEFRRSLEIHVNHENRGFEIHGEDYTDIPLS DSNRDHTANRQRQSTS\SPVARTRSQTSVNFN GSSSNIPRTRLASRGQNPAGSFSTLGRRLRNGI

SEQ ID NO: of nucl-eotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						GGAAGIPRANASRTNFSSHTNQSGGSELRQE GQRFGAAHVWENGARSNVTVRNTNQRLEPI RLRSTSNSRSRSPIQRGSGTVYHNSQRESRPV QQTRRSVRRGRTRVFLEQDRERERRGTAY TPFSNSRLVSRITVEEGEESSRSSTA VRRHPTIT LDLQVRVIRPGENRDRDSIANRTSRVGLAE NTVTIESNSGGFRTISRLERSGIRTYVSTITVP LRRISENELVEPSSVALRSILRQIMTGFGELOSSL MEADSESELQRNGQHLPDMHSELSNLGTDN NRQHREGSSQDRQAQGDSTEMHGENETTQP HTRNSDSRGGQRQLRNPNNLVETGTLPIRLAH FFLLNESDDDRIRGLTKEQIDNLSTRHYEHN SIDSELGKICSV CISDYVTGNKLRLQPCMHEF HIIHCIDRWLSENCTC PICRQPVLGSNIANNG
556	1906	A	4212	3	462	LQRQRQHPAAAAPVPRCFCTFCFTDIVIMPKR KSPNTEKGDKGSVKTKQEPTRRSARLSAKPA PPKPEPKRKTSAKKEPGAKISRGAKGKKEEK QEAAGKEGTAPSENGETKAEEIHISRSTVNST SRGTPPSTLSVKQIETVRVKGTEN
557	1907	A	4213	774	507	ARRFSCLTQTSWGRH/GPPR/PANFVFLVET GFLHIGQAGHKLPTSGDPPASASQSARITGMS HRTWFLASFLIDSKNFIVYKIMYTL
558	1908	A	4225	3	1253	TYRHAEREHPETSSATKVSYDYRKRPKLLD GDQDFSDGRTQKYCKEEDRKYSFQKGPLNRE LDCFNTGRGRETQDGQVKEPFKPSSKDKDSIAC TYSNKNDVDLRSSNDKWKEKKKEGDCRKE SNSSSNQLDKSQKLPDVKPSPINLRKKSLSVK VDVKKTVDTFRVASSYSTERQMSHDLVAVG RKSENFHPVFEHLDSTQNTENKPTGEFAQEIIIT IIHQVKANYFPSPGITALHERFSKMDIHKADV NEIPLNSDPEIIRRDIIDMSLAELOSKQAVIYESE QTLIKIIDPNDLHRHDIERRRKERLQNEDEHIFHI ASAAERDDQNSSFNSKNYTTQRKDIIITHKPFEV EGNNHRNTRVRFPKSNFRGGRCQPNYKSGLVQ KSLYIQAKYQRLRFTGPRGFITHKFRERLMRK KKVP
559	1909	A	4235	1	323	KFSIPFFLRLWSFTLVPRLEGNDMISVHCNLGL LGLSHSPASASQVGGITGTQHHTGLIFGFLIET EFHHVGQAGLELLTSGDPPALAFQSAGITGVSHHAWLQLVNS
560	1910	A	4246	2	1569	TLSLLERVLMKDITPVQEEVKTVIRKCLEQ AALVNYSRSEYAKIEGKKREMYELPVFCLA SQVMDLTIQNQKDAENVGRLLTAKKLEDTIR LAELVIEVLQQNEEHHAFAFWSDLMVEH AETFLSLFAVDMDAALEVQPPDTWDSFPLFQ LLJNDFLRTGLLICNGKIFHKHLQDLFAPLVV R/YMWLDLGSSPIAQSIHRGLLSRESWEPVNN GSGTSEDLFWKLDALQTFIRDHLHWFEEFGK HLEQRLKLMASDMIESCVKRTRIAFEVKLQK TSSIQQIFRVPQFNMAPCFNVGMGLAKGSIQPKL CSMEMGQEFAKMWHQYHSKIDELIEETV KEMITLLVAKFTILEGVLAJKLSRYDEGTLFS SFLSFTVKAASKYVDVPKPGMDVADAYVTF VRHSQDVLRDKVNEEMYIERLFQDWYNSSM NVICTWLDRMDLQLHIYQLKTLIRMVKKTY RDFLRQGVLDSTLN SKTYETIRNRLTVEEATA SVSEGGGLQGISMKDSDEEDED
561	1911	A	4257	1300	654	SELVQFLLIKDKKKIPIKRADILKHVIGDYKDI FPDLFKRAAERLQYVFGYKLVELEPKSNTYIL

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, =possible nucleotide insertion)
						INTLEPVEEDAEMRGDQGIPPTGLLMIVLGLI FMKGNTIKETEAWDFLAL GKYPTKKHLIFG DPKKLITEDFVRQRYLEYRRIPHTDPVDYEFQ WGPRTNLETSKMKVLFVAKVHNQDPKDWP PAQYCEALADEENRARQPQSPGPAPSS
562	1912	A	4260	1	1498	MVTWLWYRFLPTSNMAKLRSLLPPDLRLQFWLHARLQKCFLSRGCGSYCAGAKASPLPGK MAMGLMCGRMRELLRLLQSGRRVHSVAGPSQ WLGPPLTTRLLFPAPCCCCRPHYLFLAASGPRSLSSTAISFAEVQVQAPPVVAATPSPTAVPEV ASGETADVVQTAEEQSFAELGLGSYTPVGLI QNLLEFMHVDLGLPWGAIAACTVFARCLIF PLIVTGQREAARIHNHLPEIQKFSSRIREAKLA GDHIEYYKASSEMALYQKKGIGIKLYKPLILPV TQAPIFISFIALREMANLPVPSLQTGGLWWF QDLTVSDPIYILPLAVTATMWAVLELGAEYG VQSSDLQWMRNVIRMMPLITLPITMHFPTAV FMYWLSSNLFSLVQVSLRIPAVRTVLKIPQR VVHDLDKLPPREGFLESFKKGWKNAMETRQLREREQRMRNQLELAARGPLRQTFHNPLLQ PGKDNPNNPSSSSSSPKSKYPWHDTLG
563	1913	A	4265	623	116	MGGGLAPTQTLPLEPTREYQNTQLSVSYLLPEQN THGTRRTLSSGPSNNLPLPLSSSATMPMSMQCK HRSPNGGLFRQSPVK/TPPIPMSFQPVPGGVLP RGSGGNPPHGTSILTAPPALLPHPPHTHQSF LIQENNNTNHTSHHTHTYTETLSFFLYICVNN DRMEWGKSVF
564	1914	A	4270	3	368	ILKRKLSSLNSEVSTIQNTMLAFKATAQLFIL GCTWCGLLQVGPAAQVMAYLFTIINSLQGF FIFLVYCLLSVQQVQKQYQKWFREIVKSKESES ETYTLSSKMGPDASKPSEGDFVFPRTSE
565	1915	A	4288	83	406	RNSRPLWCSPPASQPRQAPVSQSCCCPLPSSSS PPSALLAPTKPRAALGTLLYECSPELCCTMLP PAWLLMLCQAPRPQDPDPRLTQPEKSLQEAP GQTGASRTPRT
566	1916	A	4298	1041	229	LNSSQKLAACLIGVEGGHSLDSSLVLRSFYVL GVRYLTLTFTCSTPWAESSTKFRHHMYTNVS GLTSFGEKVVBEELNRGMIDLSYASDTLIRR VLEVSQAPVIFSHSAARAVCDNLLNVPDDILQ LLKKNGGIVMTLSMGVLQCNCNLLANVSTVA DHFDHIRAVIGSEFIGIGGNYDGTGRFPQGLIE DVSTYPVLIIEELLRSRWSSEELQGVLRGNLL VFRQVEKVRREESRAQSPVEAEFPYQQLSTSCH FHLGASEWTPLLLIWR
567	1917	A	4299	1	1106	GATPLGSGVGGRTGKMDAATLTYDTLRAEFE DFPETSEPVWILGRKYSIFTEKDEILSDVASRL WFTYRKNFPAIGGTGPTSDTGWGCMRLRCGQ MIFAQALVCRHLGRDWWRWTQRKROPDSYFS VLNAFIDRKDSYYSIHQIAQMVGVEGKSIGQ WYGPNTVAQVLLKLAVFDTWSSLAVHIAMD NTVVMEIRRLCRTSVCAGATAFPADSDRH CNGFPAGAEVTNRSPWRPLVLLIPLRLGLTD INEAYVETLKHCMMMPQSLGVIGGKPNSAHY FIGYVGEELEYLDPTHITQPAVEPTDGCFLPDES FHCOHPPCRMSIAELDPSIAVVRGGHLSTQAF GAECCLGMTRKTFGFLRFFSMLG
568	1918	A	4300	2012	1843	SRKFLLTITPVLYFLTSFYTKYDQIHFVLNTVS LMSVLIPKLPQLHGVRIFGINKY
569	1919	A	4302	186	531	WTFCLFL/WWVPESARWLLTQGHVKEAHRY

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \possible nucleotide insertion)
						LLHCARLNGRPVCEDFSQEVRLNVCVSMHI CVWWGVGCVKCLPPRAHHIWQEKPGLPHRT VTESKLEAEGTKEKAREKERKKKS
570	1920	A	4308	3	869	RSGQGKVYGLIGRRRFQQMDVLEGFLNLITIS GKRNKLRVYYLSWLRLNKILHNDPEVEKKQG WTTVGDMEGCGHYRVRVKYERIKFLVIALKSS VEVYAWAPKPYHKFMFKSFAIDLPHRPLL DLTVEEGQRLKVIYGSAGFHAVDVDSGNSY DIYIPVHQSQTIPHAIIFLPNTDGMEMLLCYE DEGVYVNTYGRJKDVLQWGEMPTSVAVIC SNQIMGWGEKAIEIRSVETGHLDGVFMHKRA QLRKFLCERNDKVFFASVRSGGSSQVYFMTL NRNCIMNW
571	1921	A	4309	9	524	ASREMDVTKVCGEEMYQLNKTNMEKDEAE KEHREFRAKTNRDLEIKDQEIEKLRIELDESK QHLEQEQQKAALAREECLRLTELLGESEHQL HLTRQEKSIDIQQFSKSEAQAQALQAQQREQE LTQKIQQMEAQHDKTENEQYLLLTSQNTFLT KLKEECCTLAKKLEQISO
572	1922	A	4318	1	1119	GATPLGSVGGRTGKMDAATLTYDTLRFAEFE DFPETSEPWLGRKYISIFTEKDEILSDVASRL WFTYRKNPAAIGGTGPTSDTGWCMLRCGQ MIFAQALVCRHLGRDWWRWTQRKRQPDSYFS VLNAFIDRKDSYYSIHQIAQMVGVEGKSIGQ WYGPNTVAQVLKLAFLDFTWSSLAVHIAMD NTVVMEEIRRLCRTSVPAGATAFPADSDRH CNGFPAGAEVTNRSPWRPLVLLPLRLGLYT DINEAYVAETLAHCFHGWQPQFPFG/VVREGK PNSAHYFIGVGEELIYLDPHTTQPAVEPTDG CFIPDESFHQCQHPPCRMSIAELPSIAVVRGGH LSTQAFGAECCLGMRTRKTFGFLRFFSMLG
573	1923	A	4333	363	1066	GGPVGLASKPFDQILYGHTEVLSVGISTELD MAVSGSRDGTVIJHTIQKGQYMRTRLRPCESS LFLTIPNLAIISWEGHIVVYSSSTEKTTLIERM HYICFSINGKYLGSQILKEQVSDICIIIGEHIVTG SIQGFLSIRDHLHSNLNSINPLAMRLPIHCVCVT KEYSHILVGLEDGKLIVVGVGKPAEVKPSIN FISHAVGDYFGSPSFQLIKSPLGINKLKAKFD FSKGSK
574	1924	A	4346	359	1234	MDTLEEVTWANGSTAALPPLAPNISVPHRCLL LYEDIGTSRVRYWDLLLIPPNVLFLFLWK LPSARAKJRITSSPIFIYIILVFVVALVGIARA VVSMTVTSNAATVADKILWEITRFFLLAIEL SVIILGLAFLGHLESKSSIKRVLAITTVLSLAYSV TQGTLEIILYDHALSAEDFNIIYGHGGRQFWL VSSCFFFLVYSLVVLPLKTPKERISLPSRRSFY VYAGILALLNLLQGLGSVLLCPDIEGLCVD ATTFLYFSFFAPLIYVAFLRGFFGSEPKILF
575	1925	A	4360	2038	1512	GCWWRHPWLASQRDCLDCRIQLAEKFVKAV SKPSRDPDMNPIRVKEVYRLEEMEKIFVRLEM KIKGSSGTPKLSYTGRDDDRHFVPMGLYIVRT VNEPWTMGFSKSFKKFFYNKKTKDSTFDLP ADSIAPFHICYYGRLFWEWGDGIRVHDSQKP QDQDKLSKEDVLSFIQMHR
576	1926	A	4365	69	500	QVEGRQGREVKRTAWRISPVWRPARCRRRST PQP/PE/PGAQQQERHRQGEAPMQALDPRAEQ GPQAQSHAACQPEPEPPRVLLPTAARGGVQ GRP/GLSRHPLAPHPQTHTPWPQSGRLPCAS EPLPLGGIRPTPGLEPKGRDLM

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
577	1927	A	4366	785	502	SAPPKKKNGVLFLSPRLKSSGAIWVHSTPTLW ASSNSRASTPKVAGITGARPHARIIFVFLIEMG FHNVGQAGL/DLTLVICPPQPKLLGLQM
578	1928	A	4367	1	221	FFFFFLKKSRCVTQAGVQGPISLHPPPPGFKRF SRLSLLSSWDYRHP/HAAFCIFS RDGVSPYWS SGWSRTPDLR
579	1929	A	4383	1	224	FETESHSTVTQAGMWHNLGSLQPMP/PGLKR FSCLRLQQSSWDHRHAPPHLAHFCIFS RDGVSP CWPGWSSTPDLK
580	1930	A	4397	410	94	SRLKPYSTNTAKKLPATNIPNLDCFTAKLYQ \VFKKGNHILHELPQNKEEGAFFNS/FYEASFT LRPKSDRDIKEEYSTISLLSTDTKILMSKYK QLKSSDL
581	1931	A	4414	670	3	VLVHRQCGGILRLRRKEAVSVLDSADIEVTDS RLPHATIVDHRPQHRWLETNCAPPQLIQGKA RSAPKPSQASGHFSVELVRGYAGFGLTLGGG RDVAGDTPLAVRGLLKDGP/AQRCCRLEVD LVLHINGESTQGLTHAQAVERIRAGGPQLHL VIRRPLETHPGKPRGVGEPRKGVVPSWPDRSP DPGGPEVTGSRSSSTSLVQHPPSR TTLKKTRG SPE
582	1932	A	4424	194	449	VLYIRKKRLEKLRHQQLMPMYNFDPTEEQDE LEQELLEHGRDAASVQAATSVQAMQGKTTL PSIQGPLQRPSRLVFTDVANAIHV
583	1933	A	4435	1	166	APGPPVPPPGSPPEQMPGCPASMP/DPPP PPEQMPGPGCPVSAPP/GPPPGSPPEQMPGCPV SAPPALLQDTSV
584	1934	A	4439	1	628	SATPQQPSAPQHQGTLNQPPVPGMDEMSYQ APPQLQLPSAQPPQPSNPNGAHTLNQGPQPGT APATQHSQAGPATGQAYGPHTYTEPAKPK GQQLWNRMKPAPGT/EVSSSTSRSDPLLLPPR ALAPTQRRASTVVLAPSPT/SEKVQNHSGSSAR GNLSGKPPDWPLGHERVCGALLHRL*VGGG QGPHGKAAQGGAAGAAAGRLGLYH
585	1935	A	4463	10	144	HKPVTNSDTQEVPLEKAKQVLTIIATFKHTT SIFDDFAHYEKRO
586	1936	A	4464	1309	103	LNAESYVSFTTKLDIPTAAKYEYGVPLQTSDS FLRFPSSLTSSLCTDNNPAAFLVNQAVKCTR INLEQCEEIEALSMAYFSSPEILRVPSRSKKVPI TVQSIVIQLNKTLTREDITDVLQPTLVNAGH FSLCVNVLEVVKYSLTYTDAGEVTKADLSFV LGTVSSVVVPLQQKFIEHFLQENTQPVPLSGN PGYVVGLPLAAGFQPHKGSGIIQTTNRYGQLT ILHSTTEQDCLALEGVRTPVLFGYTMQSGCK LRLTGALPCQLVAQKVKSLLWGQGFPDYVA PFGNSQGP/ADMMDWVPIHFITQSFRKDSCQ LPGALVIEVKWTKYGSLLNPQAKIVNVTANLI SSSFPEASGNERTILISTAVTFVDVSAPAEAG FRAPPAINARLPNFNFFFV
587	1937	A	4471	614	387	LLGRASAC/LQLOQSSW/D/HRPMLPYLANFVF CKDR/SFTWLPLRLVLSNLQVILLPWPPTGCD NKHEPPCPATKRRHGSII
588	1938	A	4480	1720	1458	HDLGSLQPPPPGFKRFSCSLPSSWDYRLMPP CPANFCIII/DFLVEΤGHHVGQASHELLTSGD PPTSASQAGITGMSYHTWFGES
589	1939	A	4487	922	332	APVTTSPRVGQPW/RTALALRSYRARPSLRC PPVELPWAPRRGHRLSPADDELYQRTRISLLQ REAAQAMYIDSYSNSRGFMINGNRVLGPCALL PHSVVQWNVGSQHQTEDSFSLFWLLEPRIEI

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, \ =possible nucleotide insertion)
						VVVTGDRTERLQSQVLQAMRQRGIAVEVQ DTPNACATFNFLCHEGRVTGAALIPPPGGTSL TSLGQAAQ
590	1940	A	4492	1	472	FFFETESRSVAQAGVQWRDLGSLQAPPGFT PFSCSLPSSWDYRRPLRPANFFVLTETGFP RFSRDGLDLLTS/GDPPTSASQSAGITGVSHR ARPKRIGEPRRKCGNAVVWPSTSLGDHRVTS VPHQGGLPGPIRVAPSSAGQREASQGPPGR
591	1941	A	4495	1444	1116	IAARFTLAKTNQLKRPTMIDSICKTR\YIYT MEYYADTERNEIMSFGTAVWELAAILSKLM LKDNWVEDTIPQGAVPCTATAEGMKRLLFAL EPWDSSCPHPSSGV
592	1942	A	4496	2	919	RTRPLFSGRPTRPVCTMSDERRLPGSAGVWL VCGGLSLLANAWGILSVGAKQKKWKPLEFL LCTLAATHMLNVAVPIATYSVVQLRRQRPDF EWNEGCKVFVSTFYTLTLATCFSVTSLSYHR MMWMCWPVNRYLNSNAKKQAGHTVMGIWM GSFISALPAVGWHDTSERFYTHGCRFIVAEI GLGFGVCFLLVGGSVAMGVICTAIALFQTL AVQVGRQADHRAFTVPTIVVEDAQGKRRSSI DGSEPAKTSQTGLVTTIVFIYDCLMGFPVL GPFSLADTHLSDLPYTWGDRDSSGACVM
593	1943	A	4506	2	193	FFFEAECSVVPQAGVQRPDLGWLHAPPP\GSC HFPASASQVAGTTHARHHTQLI\AFL VENGL C
594	1944	A	4507	1327	647	KMAGGVRPRLGLRALCRVLLFLSQFCILSGG ESTEIPPYVMKCPNSNGLCSRLPADCIDCTNFS CTYGKPVTFDCAVKPSVTCDQDFKSQKNFII NMTCRFCWQLPETYECTNSTSCMTVSCPQ RYPANCTR\DHVHCLGNRTFPKMLYCNWT GGYKWWYGLWLLRHPRWGLGADRFYLG P VAGTAGSKLFSFGGLGIWTLIDVLLIGVGYVG PADGSLYI
595	1945	A	4512	533	264	FFFKMESYSVARLECSGAISAPCNLHLLGSNN SPASASRV/AGNIGARHHTQQJFVLLVQMRVH YVGQDGLLL/NLMIHPPRSPKVGLQAA
596	1946	A	4513	3	1674	HASDHL\YPNFLVNELILKQKQRFEERFKLDS HVSTNTGHRWQIFQDWLGTQDQDNLDLANY NLMLELLVQKKKQLEAESHAQQLQILMEFLK VARRNKREQLEQI\QKELSVLEEDIKRVEEMS GLYSPVSEDSTVPQFEAPSPSHSSIIDSTEYSQP PGFSGSSQTKKOPWYNSTLASRRKRLTAHFE DLEQCYFSTRMSRISDDSRRTASQLDEFQECLS K\TRYNSVRPL\ATLSYASDLYNGSQYKSLV FEFDRCDCDYFAIAGVTKKIKVYEYDVTIQDA VDIHYPENEMTCNSKISCISWSSYHKNLLASS DYEGTVILWDGFTGQRSKVVQEHEKRCWSV DFNLMDPKLLASGSDDAKVKLWSTNLDNSV ASIEAKANVCCVKFSPSSRYHLAFGCADHCV HYYDI.RNTKQPMVFKGHRKAVSYAKFVSG EEIVSASTSQLKLWNVGKP\YCLRSFKGHIN EKNFV\GLASNGDYIACGSENNSLYLYKGLS KTLTFKFDTVKSVLDKDRKEDDTNEFVSACWRA LPDGESENVLIAANSQGTIMKVLELV
597	1947	A	4518	536	824	RSLALSPGLECSGMISAHCNLHLLGSSDPPTS ASQVAEITSVRHHTWLIFC\NLGQMGFHHVGE QAGLELLTSWDPAILPSQSAGIIGMSPHAWPP
598	1948	A	4524	1	384	FDTENVNIGGDFDAAGVFR\CRLPGAYFFSF TLGKLPRKTLVSKLMKNRDEVQAMIYDDGSS

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						RRREMOQSQVMLALRRGDAVWLISHDHGDYGAYSNHGKYITFSGFLVYPDLAPAAPPGLGASELL
599	1949	A	4526	366	776	MGQPAPYAEQPIQGGDAGELCKCDFLVFTSPNPEAVCEAGTPAMFQTAWRQMECSIIAQAGVQWRDPGSLHPPPLGFKRFSCSLPSSWDYKAPPHPANFCIFSRDQVSPCWPGWSRSLDLVI PPPWLPKVGLQAA
600	1950	A	4529	776	334	FFFETESCYVAQAGVQWCDLCQLQAPPGSSDPPASASRVAGTTGARHHTQLIFVFLVETGFH\MLARDGLKLLTSSDPPASASQSSWDYRREPPRLANFFVFLVETGSRYVAQAGVQWLFTGAIPLLISTGVLTCSVSDLGRFTPP
601	1951	A	4533	1460	403	HEVQESIHFLFESEFSRGISDNYTIALITYALSSVGSPKAKEALNMLTWRAEQEGGMQFWVSSESKLSDSWQPRSLDIEVAAYALLSHFLQFQTSEGIPIMRWLSRQRNSLGGFASTQDTTVALKALSFAALMNERTNTIQVTVTGPSSPSPVKFLIDTHNRLLLQTAELADGTANGSV/SISANGFGFAICQLNVVYNVKASGSSRRRRIQNEAFDLDVAVKENKDDLNHVVDLNVCTSFGPGRSGMALMEVNLLSGFMVPSEAISLSETVKKVEYDHGKLNLYLDSVNETQFCVNIPAVRNFKVSNTQDASVSIVDYYEPERRQAVRSYNSEVKLSSCDLCDSDVQRLPLS
602	1952	A	4540	1963	295	MRAPGRPALRPLPLPPLLLLLLSSPWGRAVPCVSGGLPKPANITFLSINMKNVLQWTPPEGLQGVKVTYTVQFYIYGQKKWLNKSECRNINRTYCDSAETSDYEHQYYAKVKAIWGTKCSKWAEGRFYPFLETQIGPPEVALTTDEKSIS\VVLTAPEKWKRNPEDLPVSMQQIYSNLKYNVSVLNTKSNRTWSQCVTNHTLVLTVLEPNTLYCVHVESFVPGPPIPRAQPSEKQCARTLKQDQSSEFKAKIIFWYVLPISITVFLFSVMGYSIYRYIHVG\KEKHPANLILYIG\NEFDKRFVPA\EKIV\INFITLNIS\DDDSKISHQDMSSLGKSSDVSSLNDPQPSGNLRPPQEEEVKHTMLGYASHLMEIFCDSEENTEGTSFTQQESLSRTIPPDKTVIEYEYDVRTTDICAGPEEQLSLQEEVSTQGTLLESQAALAVLGPQTLQSYTPQLQDLDPLAQEHTDSEEGPEE\EPSTTLVDWDPQTGRLCIPSLSSFDQDSEGCEPSEGDLGEEGLLSRLYEEPAPDRPPGENETYLMQFMEEWGLYVQMCN
603	1953	A	4543	3	600	YSAVEFVQEAGSISDWWNPALRKRLMSDSGLGMIAPYYEDSDLKDLSHSRVLQSPVSSEDHAI LQAVIAGDLMKLIESYKNNGSLLIQGPDHCSLLHYAAETGNGEIVKYIYDHGPSELLOMADSETGETALHKAACQRNRACQLLVDAGASLRK\TDSKGKTPQERAQQAGDPDLAA/YTIESRQN\YKVIGHEDLETA
604	1954	A	4548	3	938	QDNKVQNGSLHQKDTVHDNDFEPYLTGQANQSNSYPSMSDPYLSYYPPSIGFPYSLNEAPWSTAGDPPPIPYLTGYGQLSNGDHFMHDAVFGQPGGLGNNIYQHRFNFFPENPAFAWGTSGSQQQQTQSSAYGSSYTYPPSSLGGTVDGQPGFHSDTLSKAPGMNSLEQGMVGLKIGDVSSAVKTVGSVSSVALTGVLSGNGGTNVNMPVSKPTSWAAIASPKAPKPKMKTKGPMVMGGGLPPPPIKHMDIGTWDNKGPVKAQVQQAP

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, !=possible nucleotide insertion)
						SPQAAPQPQQVAQPLPAQPPALAQPQYQSPQ QPPQ
605	1955	A	4553	2	2304	ILLQEKRNCCLMQLEEARTRLTSYLSQLKSLC ASTLTVSSGSSRGSLASSRGSLASSRGSLSSVS FTDIYGLPQYEKPDAEGSQLLRFDLIPFDLSLR DAPFSEPPGPGSFHKQRRLSDTPQSLASLSSRS SLSSLSPSSPLDTPFLPASRDSPLAQLADSCE GPGLGALDRLLRAHASAMGDEDLPGMAALQP HGVPGDGEPRHERGPPASAPVGGTVTLRED SAKRLERRARRISACLSDYSLASDSGVFEPLT KRNEADEEPAYGDTASNQDPQIHVGLLRDSG SECLLVHVLQLKNPAGLAVKEDCKVHIRVYL PPLDSGTPNTYCSKALEFQVPLVFNEVFRIPV HSSALTLSLQLYVCVSVTQLQEEELLGIAQIN LADYDSLSEMQLRWHSVQVFTSVLNHQGRGR LGVQERAPPGLHTPSSPA/STDAVTVLLAR TTAQLQAVERELAEERAKLEYTEEVELEMER KEEQAEAIERSWQADSDGCSNCTQTSPPY PEPCCMGIDSILGHGPFAAQAGPYSPEKFQPSPL KVDKETNTEDLFLEEAASLVKERPSRRARGSP FVRSGTIVRSQTFSPGARSQYVCRLYRSDSDS STLPKSPFVRNTLERRTLRYKQCSRSSLALM MARTSLDELDLQASRTRQRQLNEELCALRE LRQRLEDAQLRGQTDLPPWLRDERLRGLLR EAERQTRQTKLDRYRHEQAAEMLKKASKEI YOLRGQSHEKEPIQVQTFRKEIAFFTRPRINIPPL PADDV
606	1956	A	4555	3429	776	PGSGPGPAPFLAPVAAPVGGISFHQLIGLSREP VLLQDSSGDYSLAHVREMACSIVDQKFPEC GFYGYMDKILLFRHDPTSENILQLVKAAASDIQ EGDLIEVVL SASATFEDFQIRPHALFVHSYRA PAFCDCDGEMLWGLVIRQGLKCEGGCGLNHY KRCAFKIPNNCSGVRRRLSNVSLTGVSTIRT SSAELSTSAPDEPLLQKSPSESFIGREKRNSQ SYIGRPILDKILMSKVVKVPHTFVIHSYTRPTV CQYCKKLKGLFRQGLQCKDCRFNCHKRCA PKVNNCLGEVTINGDLLSPGAESDVVMEEG SDDNDSERNSGLMDMEEAMVQDAEMAMA ECQNDSGEMQDPDPDHEDANRTISPSTSNNIP LMRRVQSVKHTKRSSTVMKEGWMVHYTS KDTLRKRHYWRLDISKCITLFQNQDTGSRYYKE IPLSEILSLEPVKTSALIPNGANPHCFEITTANV VYYVGENVNPSSSPNNSVLTSGVGADVAR MWEIAIQHALMPVIPKGSSVGTGTNLHRDISV SISVSNCOIQENVDISTVYQIFPDEVLGSGQFGI VYGGKHRKTGRDVAKIIDKLRPTKQESQLR NEVAILQNLHHPGVVNLCMFETPERVFVVM EKLHGDMLEMISSEKGRLEHITKFLITQILV ALRHLHFKNIVHCDLKPNENVLLASADPFPQV KLCDCFGFARIIGEKSFRRSVVGTPAYLAPEVL RNKGYNRSLSMWSVGVIYVSLSGTPPFNED EDIHDQIQNAAFMYPNPWKEISHEAIDLINN LLQVKMRKRYSVDKTLSHPWLQDYQTWLDL RELECKIGERYITHESDDLWEEKYAGEQGLQ YPTHLLNPSASHSDTPEETETEMKALGERVSIL
607	1957	A	4563	1	4499	SRPWWLRA SERPSAPSAMAKRSRGPGRRCLL ALVLFCAWGTLAVVAQKPGAGCPSRCLCFRT TVRCMHLLLEAVPAVAPQTSILDRLFNRIREI QPGAFRRLRNLNLLNNNNQIKRIPSGAFEDL ENKLYLYKNEIQSIDIQRQAFKGLASLEQLYL

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, \=possible nucleotide insertion)
						HFNQIELDPDSFQHLPKLERLFLHNNRITHL VPGTFNHLESMKRLRLDSNTLHCDCIELWLA DLLKTYAESGNAQAAICEYPRRIQGRSVATI TPEELNCERPRITSEPODADVTSGNTVYFTCR AEGNPKPPEIJWLRRNNNELSMKTDSDLNLDD GTLMIQNTQETDQGIYQCMAKNVAGEVKTQ EVTLRYFGSPARPTFVIQPQNTEVLVGESVTL ECSATGHPPPRISWTRGDRTPLPVDPRVNITPS GGLYIQNQVVGDSGEYACSATNNIDSVHATA IIIVQALPQFTVTPQDRVVIEGQTVDQCEAK GNPPPVIATWKGGSQLSVDRRLVLSSTGLRI SGVALHDQGQYECQAVNIIGSQKVVAHTLVQ PRVTPVFASIPSDTTVEVGANQLPCSSQGEP EPAITWNKNDGVQVTESGKFHSPEGFLTINDV GPADAGRYECVARNTIGSASVSMVLSVNVPD VSRNGDPFVATSIVEAIATVDRAINSTRTHLF DSRPRSPNDLLALFRYPRDPYTVEQARAGEIF ERTLQLIQEHVQHGLMVDLNGTSYHYNDLVS PQYLNLIANLSGCTAHRVNNCSDMCFHQKY RTHDGTCCNLQHPMWGASLTAFERLLKSVY ENGFNTPRGINPHRLYNGHALPMPRLVSTTLI GTETVTPDEQFTHMLMQWGQFLDHLDSTV VALSQARFSDGQHCSNVCSNDPPCF SVMIPPNS DSRARSGARCMMFFVRSSPVCVGSGMTSLLMNS VYPREQINQLTSYIDAENVYGSTEHEARSIRD LASHRGLLRQGIVQRSGKPLLPFATGPPTECM RDENESPICPCFLAGDHRAANEQLGLTSMHTLW FREHNRIATELLKLNPHWDGDTIYETRKIVG AEIQHITYQHWLPKILGEVGMRTLGEYHGYD PGINAGIFNAFATIAAFRFGHTLVNPLLLPGID ENFQPIAQDHPLPHKAFFSPFRIVNEGGIDPLL RGLFGVAGKMRVPSQLNTELTERLPSMAHT VALDLAAINIQRGRDHGIPPYHDYRVYCNLS AAHTFEDLKNEIKNPEIREKLKRLYGSTLNID LFPALVVEDLVPGSRLGPQLMCLLSTQFKRLR DGDRLWYENPGVSPAQLTQIKQTSLARILCD NADNITRVQSDVFRVAEFPHGYYGSCDEIPRVD LRVWQDCCEDCRTCQFNAFSYHFRGRRSLE FSYQEDKPTKKTRPRKIPSVGRQGEHLSNSTS AFSTRSDASGTNDFQRCWSEMQKTITDLR TQIKKLESRLSTTECDAGGESHANNTKWK KDACTICECKDGQVTCFVEACPPATCAVPVNI PGACCPVCLQKRAEERP
608	1958	A	4566	354	1135	FSFLC/GVSGRLGLDSEEDYYTPQKVDPKAL IIVAVQCGCDGTFLLTQSGKVLAGLNEFNL GLNQCMGSIINHEAYHEVPTTSFTLAKQLSF YKIRTIAPGKTHAAIDERGRLLTFCGNKCGQ LGVGNYKKRLGINLLGGPLGGKQVIRVSCGD EFTIAATDDNHIFAWGNNGNGRLAMPTPERP HGSDICTSWPRPIFGSLHHVPDFLSCRGWHTILI VEKVLNSKTRSNSSGLSIGTVFQSSSPGGGE GGPDAW
609	1959	A	4567	1	412	FFFFETESRSVAQAGVQWRDLGSLQAPPGFT PFSCLSLPSSWDYRRPPLRPANFFVLFVETGF HRFSRDGLDLT/S/GDPPASASQSAGITGVSH RARPRINLRNVIYSFAVTYCLNYISLAMSSTL KLSFHVLSGS
610	1960	A	4570	697	467	ECRGVISAHCCTLCLPSSSDSASAFAIRVARTT GTCDYAQLIFAFLVEMGFHHVGQDGLHLL/N LVIIRRPPPKVGLQAA

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, \=possible nucleotide insertion)
611	1961	A	4571	25	1396	ADPHTTVIRFFPAASATKRVLPVLRVSSPRWNPNVPESPRIPAPRLPKRMMSGAPTAGAALMLCAATAVLLSAQGGPVQSNSPRFASWDEMNVLAHGLLQLGQGCANTGAHPQSAERAGAIRLSACGSACQGTGEGSTDPLAPESRVDPEVLHSQTQLKAQNSRIQQQLFHKVAAQQQRHLEKQHLRIQHLQSQFGGLLDHKLDHEVAKPARRKRLPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFIEIQPQGSPPFLVNCKMTSDGGWTVIQRHDGSVDFNRPWEAYKAGFQDPHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELIQFSVHLGGEDITA YSLQTA PVA GQLCATTVPPSGLSVPFSTWDQDHDLRRDKNCAKSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKGIFWKWRGRYYPLQATTMLIOPMAAEAAAS
612	1962	A	4575	162	3	FFFETESRSVAQAGVQWRDLSSLQPPPP\SRGSPASASPVGATGTRHHRTRG
613	1963	A	4584	687	321	PLAQRPPFLWVTVKTNGH\WGSSTYPFWGSNS/PASASOVA GIPNARHQARIIFVFVLEPRFHHVGRAGLGFL/NLAICLPQHPKVGLQACNLNIKPHPAHKYISM\QFNVHFMCMSVHIYI
614	1964	A	4589	727	299	PGSAQSAQRGRGRRRARAGSATQITMYSFMGGGLFCAWVGTTILLVAMATDHWQM\YRLSGSFAHQGLWRYCLGNKCYLQTDIA\YNATRAFMLSALCAISGIMGIMAF/GWVAVLMTFFAGIFYMCA\YR VHECRRLSTPR
615	1965	A	4590	2	414	TILPEKIQA WAQKQCPQSGEEAVALVVHLEKETGRLRQQVSSPVHREKHSPPLGA AWEVADFQPEQVETQPRAVSREEPGSLHSGH\QEQLNKRERRPLPKNARPSPWPVPALADEWNTLHQEVTTTRLPAGSQEPVKD
616	1966	A	4592	773	488	DFALVAQAGVQWHNLGSPQPLPPGFKRFSCSLPSSWEYRCVPP/RLANFVFL VEMGFLHVQAGLELPTSGDPPALASQAGITGVITVPSGPG
617	1967	B	4595	84	478	XRHGLREPLLERCAAASSFQHSSLGREL PYDPVDTEGFEGGDMQERFLP\PEYILDPEPQPTREKQLQE\LQQQ\EEEEE\QRQQRREERRRQQNLRARSREHPVVGHPDPALPPSGVNCSCGAEHCQDAR*
618	1968	A	4596	2945	1188	ARSRNSARGVYGMCVDTLFCLEDLERNDGSAERPYFMCSTLKKPLARRCFPAIHAYKGVL MVGNETTYEDGHGSRKNITDLVEGAKKANGVLEARQLAMRIFEDYTVSWYWIIGLVIAMAMSLLSIIHLLAGIMGWVMIIME\SELGYRIFHCYMEYSLRGEAGSDVSLV\DLGFQTD\DRVY\HLRQTWLAFMII\LSILEVII\LLFLRKRLIAIALIKEASRAVGYVMCSLLYPLVTFLLCLCIAYWASTAVFLSTSNEAVYKIFDDSPCPFTAKTCNPETFPSSNESRQCPNARCQFAFYGGESGYHRALLGLQIFNAFMFFWLANFVLA LGQVTLAGAFASYYWALRKPD\LP\PLFSAFGRALRYHTGSLA\FGALIAVQJIRVILEYLDQRLKAENKFAKCLMTCLKCCFWCLEKFIKFLRNAYIMIAIYGTNFTSARNAFFL\LMRNII\RAVLDKVTDFLFLLGKLLIVGSVGILAFFFT\THRIRIVQDTAPPLNYYWVPILT\TVIVGSY\IAHGF\FSVYGMCVDTLFCFLEDLERNDGSAERPYFMSSTLKKLNKTNKKAES
619	1969	A	4601	2	357	RTSVEPYILGEF/RKLSNN\TKVVKTEYKATEY

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						GLAYGHFSYEFNSNHRDVVVDLQGWVTGNKG GLIYLTDPIQHSVDQKVFTTNFGKRGIFYFFN NQHVECNEICHRLSLTRPSMEKPCKS
620	1970	A	4606	1	2415	MERLWGLFORAQQLSPRSSQTVYQRVEGPR KGHLLEEEEDGEEGAEITLAHFCPMELRGPEP LGSRPRQPQNLIPWAAAGRRAAPYLVLTALLIF TGAFLLGYVAFRGSCQACGDSVLVVSEDVN YPEPLDFHQGRLYWSDLQAMFLQFLGEGRL EDTIRQTSRERVAGSAGMAALTQDIRAALS RQKLDHVWTDTHYVGLQFPDPAHPNTLHWV DEAGKVGEGQLPLEDPDVYCPYSAIGNVTGEL VYAHYGRPEDLQDLRARGVDPVGRLLLVRV GVISFAQKVTAQDFGAQGVLIYPEPADFSQ DPPKPSLSSQQAVYGHVHLGTGDPYTPGFPFS NQTQFPPVASSGLPSIPAQPISADIASRLLRK KGVPAPQEWWQGSLLGSPYHLGPGPRLRLVNN NHRTSTPINNIFGCIEGRSEPDHYVVIGAQRDA WGPGAAKSAVGTAILLELVRTFSSMVSNGFR PRRSLLFISWDGGDFGSVGSTEWLEGYLSVL HLKAVVYVSLDNAVLGDDDKPHAKTSPLLTSL IESVLKQVDSPNHSQGTLYEQVVFTNPSPWD AEVIRPLPM\DSAY\STAFVGVPAVEFSFME DDQ\AYPFLHTKEDTYENLHKVLQGRLPAVA QAVAQLAGQLLIRLSHDRLLPLDFGRYGDVV LRHIGNLNEFSGDLKARGTLQWVYSARGDY IRAAEKLRLQEYISSEERDERLTRMYNVRIMRV EFYFLSQVYSPADSPFRHIFMGRGDHTLGALL DHLRLRSNSSGTPGATSTGFQ\ESRFRQL ALL\TWADACKGAANALSGDVWNIDNNF
621	1971	A	4610	793	334	ISRVDDFVGSGIANVIIAVIAVIFSIPAFARLVRG NTLVKQQTFIESARSIGASDMTVLLRHILPGT GSSIVVFFTMRIGTSIISAASLSFLGLGAQPPTP EWGAMLNEARADMVIAPHAVVFPAIAFLTV LAFNLLGDGLRDALDPKIG
622	1972	A	4614	2	820	LVYVMIAIFCIAASMSLYNCLAALIHKIPYGG CTIACRGKNMEVRILIFLGLCIAAVVVAWF RNEDRWAWILQDILGIAFCLNLIKTLKLPNFK SCVILLGLLLYDVFFFITPFITKNGESIMVEL AAGPFGNNEKNDGNLVEATGQPSAPHEKLPV VIRVPKLIYFSVMSVCLMPVSILGFGDIIVPGL LIAYCRRFDVQTGSSYYVSV\TVAYAIGMIL TFVVLGLMKKGQPALLYLVPCTLITA/CQFV AWETVREMKKFWERTVTS
623	1973	A	4619	17	691	TLVSVVEFVRRADLTREDLAPSSVDSGQAGF GGCCESGLPNTMPSAFSVSSFPVSIAPVLQT DWTEPWLMGLATFHACVLLTCLSSRSYRLQ IGHFLCLVILVYCAEYJNEAAAMNWRLFSKY QYFDSRGMPISIVFSAPLLVNAMIIIVMWVV KTLNVMTDLKNAQERRKEKKRRRKED*GAA AAWSLRPSRPPSAAVCAWASFQLTHG LKNRCFI
624	1974	A	4622	164	668	VSCYTALQSIMNQPEANDPEPLCAVCGQAH SLEENHFYSYPEVDDDLICHICLQALLDPLD TPCGHTYCTLCLTNFLVEKDFCPMDRKPLVL QHCKKSSILVNKLNLKLLVTCFPREHCTQVL QRCDLEHHFQTSQLWGTHL*SQLGRLRQED CLSPGVHHCSEV
625	1975	A	4625	474	473	CFLSPSPLLPPLLSSSSPSFPLPPPPTLLPSTLP PPPLIPSS*LSP

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, =possible nucleotide insertion)
626	1976	A	4629	249	3	KLKGNECFCYHCNCVIFLMIKK*GLFLC*IYFILFFET*SHSFTRLECSGTISAHCSLQLQGSSNSPASASQVAGIAGTHH
627	1977	A	4635	1	301	FFFFETKPFAPQAGGQGPSRGSLNPLPTOLKQFSGLTLSRSGNNNGPRPPRVNFGLRGNGVPPGGAG*PRPPDRLRGPPGLAPPQGGNNGDPPRAYL
628	1978	A	4648	1357	782	KLFSSQRLLFGPHIQAINPSFLLSFFPS*LLAMRTVGNNAFILVFLVYRIVLLLF*HV*PAYFQPSKNKTAKINCN*RPFLFLVCYLL*AELHIGIFIANFYDCIPNKLNEHLWPKLLQSLIFHVDFCGFLHKVFYICFTELLFLYFL*LFIKVSCSII*CSTICVFSYKSFAVIIFFVDNTRFFSFGF
629	1979	A	4660	18	999	HHELTLELLQNPKEVLTRSEIQDVNYSLEAVKVKTCQIPLMKEMLKRFQVAVNLAEDTAHPKLVFSQEGRYVKNTIASASSWPVFSSAWNYFAGWRNPQKTAVERFQHLSCVLGKNVFTSGKHYWEVESRDSLEVAVGVCREDMVGITDRSKMSPDVGWIWAIYWSAAGYWPLIGPGTPTQQEPALHRGVYLDRGTGNVSFYSAVDGVHLHTFSCSSVSRLRPFWLSPLASLVIPPVTDRK*GFSSPDQNSFPVVQLRDTHPWFPCPSCLYPGWSIFWVSLTVTPFGICPLCASQEAVPWEVGLANGDGTGNPFRFWEIFL
630	1980	A	4669	2	358	FFFFFETESHVAQAGMQWRNLGSLPAPPGFTPFFCLSLNNGWDYRRPPPHLANFFVLLVETGFHDVGQDGDLLLTS*STPSASQSAEITGVSHCTRKKIRAKGHVEFFFESHVETPIRGTDDEHEECTVQEYSAKGNTCLRPNAV AHTCNPCTLGGGRWRIT*GSGVQDQPGPTWQNPVFLERPRRALHSSPGLTTQRILWAQGLWWGAGSTGCSRGPREGVFREG
631	1981	A	4674	953	614	TPIRGTDDEHEECTVQEYSAKGNTCLRPNAV AHTCNPCTLGGGRWRIT*GSGVQDQPGPTWQNPVFLERPRRALHSSPGLTTQRILWAQGLWWGAGSTGCSRGPREGVFREG
632	1982	A	4678	34	314	RSTHASGMISPSFGFMGHLLRLEFEILPSTPNP*LPSYQGEAAGSSLISHLQTFSPDLKGVYCTFPASGLAPVPTHWTVSELSRSPVATAATFC
633	1983	A	4696	1	1365	RTLGMEGERRASQAQFSSGLPAGGANGESPAGAPFGSSGSALLQAEVLDLDEDEDDELLLEVFSKDASLMDDMSFSPMMPTPLSMINQIKFEDEPDLKDLFITVDEPESHVTIETFTITYIITKTSRGEFDSSEFEVRRRYQDFWLKGKLEEAHPTLII PPLPEKFIVKGMVERFNDDFIETRKALHKFLNRIADHPTLTFNEDFKJFLTAQAWELSSHKKQGPGLLSRMGQTVRASSMRGVKNRPEEFM EMNNNIELFSQKINLIDKISQRIYKEEREYFDEMKEYGPHILWSASEEDLVDTLKDVASCIDRCCKATEKRMMSGLSEALLPVVHEYVLYSEMLMGVMKRRDQIQAELSKVEVLTYKKADTDLL PEEIGKLEDKVECANNAKADWERWKQNMQNDIKLAFTDMAEENIHYYEQCLATWESFLT SQTNLHLEASEDKP
634	1984	A	4708	421	158	SYWVGEDYTYKFEVILIDPFHKAIRNPDTQWISKAVYKHREMCGLTSTGRKSHGLEKDRMFPHAIGGSCRAA*RRRKTLPFCYH
635	1985	A	4709	42	341	YIKQPDAKERRTVHWKKETESEASEITIPPSTPGVPQAPGHWEDYGRGDNFYLPH*DGGIVLWNIFNRMPIARKNITDGEHHEYLIEVPRLFHTSED
636	1986	A	4721	2	351	EKPDHFFPEGTSFIHEPRRPN*GDLVHCLGGISRSTTVTA*LMQKLNLMSNDAYYIVIMKMSS

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, \=possible nucleotide insertion)
						ISPNFNSMDQPLDFQRTLGLRSPCYNRVPAQK MYFTTPSNHNAYQVDHSVQST
637	1987	A	4726	664	253	NTGLTCISIQRKCGETQLYRREENRLILLQDH LKSESFQVLTLSPRLEFSGLISAHCNLRPGSS DSSASSRAAGITGVHHIHWLIFFFL VETGFL HAG*AGLELLTSGDPPASASRSAGITGVSHHA RPRETRFL
638	1988	A	4734	24	592	GGMDSRVSGTTTSNGETKPVYPVMEKKEEDG TLERGHWNNKMEFVLSVAGEIIGLGNVWRFP YLCYKNNGGAFFIPYL VFLFTCGIPVFLLETAL GQYTSQGGVTAWRKICPIFEGIGY ASQMIVIL LNVYYIIVLA WALFYLFSSFTIDLPWGCGYHE WNTEHCMEFQKTNGSLNGTSENATSPVIEFW
639	1989	A	4743	1040	699	QGLTLLPRMECSATITAHCSLELPGSIDLPTSA S*VAR TTGTHHHPWLILVLLL*TWGSYYVAQ AGLELLGSSNLPAAMVSQSAQJIGHDHCAWA TSNHVLYTQEGLRRGKEG
640	1990	A	4771	527	2	GRJDCPHPATVLAQPIFIDACSVLGAYQGAQN WIRRRCPLPSGCLKMNRREIGPLQHSLCCPGWS QTPGLKAILLRQPDK*GLQMEHSCPPAWSA MARSRLTATSASQVQAILLPQPPGTIDSCSPS PDHEQQPLSWVLPPPQKDMNPREQQVALGP QAAALPWAVWRNDCFPR
641	1991	A	4780	16	473	RPSSQCGGIPTGWKKGLAPELSSSELSSPPLPAR LQLAASPYFSPSWAECPQPVPAGTHATWCLA RVWARMTPPGPAGIPSHPLPPPERSVPIPSP FPARDSGSRQGHSTDRYKHTDAPRDAHRRVP QRDTDTGVHTGSGTHAHTPPEK
642	1992	A	4798	1	487	GYSFRCDIVDYSRSPТАLRMARTCWLYYFSK FIELLDTIFFVLRKKNSQVTFLHVFHHTIMPW TWWFGVKFAAGGLGTFHALLNTAVHVVMY SYYGLSALGPAYQKYLWWKKYLTSQLQVQF VIVAIHISQFFFMEDCKYQFPVFACIIMSYSFM FLLLFLH
643	1993	A	4799	2	391	LMAFIEMHISGLVYLIKTKIYSYFSMLNFLL QEIPLSEILRISSPRDFTNISQGSNPFCIEITDT MVYFVGENNGDSSHNPVLAATGVGLDVAQS WEKAIRQALMPVTPQASVCTSPGQGKDHSK Q*ASVCTSPGQGKDHSKQ
644	1994	A	4800	488	101	AYPLFAVHPVHTECVAGVVGRAYLLCALFFL LSFLGYCKAFRESNKEAHSSTFWVLLSIFLG AVAMLCKEQQITVLRVRAATWLGPASFVCPFP SYKDIWGWPCLCGVLHAYIPLLV
645	1995	A	4805	458	126	LLWTTVLCQTPARPKSTMIIHLGHILFLLLKV AAAAQTPGERSSLPAFYPGTSGSCSGCGSLSL PLLAGLVAADAVASLIVGAFLCARPRRSP AQEDGKVYINMPGRG
646	1996	A	4817	47	1033	LQGDTWHLSSLHSFSLRHGGVPGRGLLEGNL LQPQAPGHDMTSIPFPGDRLLQVDGVLICGLT HKQAVQCLKGPGQVARVLVERRVRPSTQQC PSANDSMGDERTAVSLVTALPGPRSSCVSVT DGPKF*SSN*KRIANGLGFSFVQMEKESCSHL KSDLVRIKRLFPGHPAEENGIAAGDIILGRE WEGPRKASSSRCRGSWAMQLSVQAGPSFAS YYPAAVEVLHLLRGAPQEVTLLCRPPPGAL PELEQEWTPELSADKEFTRATCTDSCTSPIL GSRGQLGTVPPQMQGKAWGLRPESSQKAIR EGTMGAKTERDLGPVP
647	1997	A	4854	1044	335	PRVRGDWPLEKKKSNSNIHPIFSWCGSTDSKD

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, =possible nucleotide insertion)
						IVMPYDLDTSVLETMGRVSLDMMSVQANTGPPWESKNSTAVWRGRDSRKERLELVKLSRKHPELIDAFAFTNNFFFKHDENLYGPIVKHISFFDFFKHKYQINIDGTVAAYRLPYLLVGDSVVLKQDSIYYEHFYNELQPWKHYIPVKSNLSDLLEKLKWAKDHDEEAKKIAKAGQEFAARNLNGDIFCYYFQTFRNMPYK
648	1998	A	4867	2030	837	AGMPAVGSADEEDPAEEDCPELVPMETTQSEEEEKSGLGAKIPVTITGYLGAGKTIILNYILTEQHSKRVAVILNEFGEGSALEKSLAVSQGELYEEWLERNGCLCCSVKDNLRAIENLMQKKGKFYDYLLETTGLADPGAVASMFWVDAELGSDIYLDGIIITVDSKYGLKHLAEEKPDGLINEATRQVALADAILINKTDLVPEEDVKKLRRTIRSINGLCQILETQRSRVDLNSVLDLHAFDSLSGISLQKQLQHVPGTQPHLDQSIVTITFDVPGNAKEEHLNMFIQNLLWEKNVRNKDNHCMEVIRLKGLVSIKDKSQQVIVQGVHELYDLEETPVSWKDDTERTNRLVLLGRNLKDILKQLFIATVTETEKQWTHFKEDQVCT
649	1999	A	4873	226	189	DGVSSLPLPKLGVQWAQYWAHWQPLPGFKRFSCLSLRSSWD*KCAPPHPAFVFLVEMGFHRVQAGLELRSGDPASASQSAGITGVSHLA*PTSMPLLPFQRLCVYI
650	2000	A	4874	2	437	FFFLRRSFAFVAQAGVQWCDLGSPQPLPPGFK*FSCLSLPSSWDYRHAPPCPS*FLYF**RQGFTMLARVLVNS*PHDLPSPSQSAEIKGVSHRCAPASFYLFLKYYLEAKFCA*GECAPSAGVGAGYKRGHKSCLLINCVVQI
651	2001	A	4898	1701	771	DAWG裴TRALARILNPDSFIEPRPGRLPELEATRPHMEPKASCAPAALMERKFHVLVGVTGSVAALKPLLVSKLLDIPGLEVAVVTTERAKHFYSPQDIPVTLYSDADEWEMWKSRSRDPVLHIDLRRWADLLLVAPLDANTLGKVASGICDNLTCVMWARDRSKPPLLFCPAMNTAMWEHPITAQQVDQLKAFGVYEIPCVAKKLVCGDEGLGAMAEVGTIVDKVKEVLFQHSGFQQS*PGISVMGVPLYSEWWQAKSVKMDVGKIGGYPHLLNGGPA LSLPRGQACSRLNWTEGPGLSFFQPGEEAAA
652	2002	A	4927	1	611	FRGRQTSPRPARGFSPWRPPGMQEPPSGECPASP*LPCASNRLLAFGGLIFPCAPLVPYPAPFSPLLPAFPSCAPRPRAHTHSRTHPSAPLVPKPSSRARQGSPIPSRASSPSCSWAQVPGVALARCAGVC KPGDSWRVAACISGRCSRGRSGPQRNPEQSFRGAWGPSFWGSWKSQRELSAGGAQAWP LLGSAGSGLRLGEA
653	2003	A	4965	2	283	FFFFI*DGVSLCHPGWNAVARSWLTATSASRVQA VSCFRLPSSWDYRHATMPG*FF*YF**RWGFTLAILVLSN*PQVICPPWPKVLTQ
654	2004	A	4968	3	437	RPGIPGRRFRRSWFQCOLP*EPEPGLESLATPGDIPA VGLGALGVIPPVRVPQRPPTQRSQGRGW DPERDPGCRVQVSRGPRFGEQKTPGLQGCLP PPCLTHLAAASCVVVWCGRWKRDSAECQCDHSCSAVSQQEDRCRSSCS
655	2005	A	4983	201	397	MNNNTTCIQPSMISSMALPIYILLCIVGVFGNTLSQWIFLTIGKKTSTHIYLSHLVTANLLVC
656	2006	A	4988	332	159	LVHKDMYREFEEEAAQASNKHVTRCLTSVIREVHIKTMR*HFLPIRLEKNNNIKD
657	2007	B	5008	129	465	MAGMKTASGDYIDSSWELRVFVGEEDEAES

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, =possible nucleotide insertion)
						VTLRVTGESHHGGVLLKIVEQINRKQDWSDH AIWWEQKRQWLQTHTWTLKDYGILADARLF FGPQHPRVILRLPNRRALRLX*
658	2008	A	5017	1	292	FFFKKETESHSSVTQAGVQWHDGLSLQPPPGF KFRSCLSLSSWDYRCAPPANFVFLVETGF HHVAQAGLKLTL*SANGLSTSPLPIPLFILLS
659	2009	A	5018	17	338	RGHGCKSLTGGTPGNWGDGLLVEDWSHLIF T*NSLVSPVLGKWSPLCQGPGLSAVHTWPWL MAACWAHVVKTHMRPGLAVLPRLVNSWS *AIIILWPKALGLQA
660	2010	A	5028	2	310	SRVDDFVGERRGGCDECLCGHTRGLRAVPLG HPGHLCQPPGPA*FLDYCRGCCPHVPVGST AGSCPRQQKTTPGPTVLCVCSFWIYQRGEPH HRTGARWNH
661	2011	A	5050	752	431	RQSCSSTQAKVQWFHYGPLQSQPPGLKQSSQ LSLPNSRDRHRVPPRLAIFSFAETGSPYFAQAS LELLGSSHPPTSASQSARITGVSHRAWPLK*F NLNQYQILTMM
662	2012	A	5054	48	103	ELNNGPQMPLCNCGNLAVTGSWADRSPLH EAASQGRLLALRTLJLSQGYNVNAVTLHDVTP LHEACLDHVACARTLLEAGANVNAITIDGV TPLFNACSGQSPSCAELLLEYGAQAQLESCLP SPTHEGASKGHHECLDILISWGIDVDQEIPHSG TPLYVACMAQQFHCIWNLIYAGAGVRKGKY WDTPLPGAGHQSTQKLE*LFAMVEIWQ
663	2013	A	5066	951	580	VRNS*SFAHCASVYKHHYMDGQTPCLFVSSK ADLPEGVAVSGPSPAEFCRKHRLPAPVPFSCA GPAEPSTTIFTQLATMAAFPHLVHAELHPSSF WLRGLLGVVGAAVAVALSFSLYRVLVKSQ
664	2014	A	5071	550	1	LSFIEVLSMEQVNKTVVREFVVLGFSSLARLQ QLLFVFLLLYLFTLGTNAIIISTIVLDRALHTP MYFFLAJLSCSEICYTFVIVPKMLVDLLSQKK TISFLGCAIQMFSFLFFGSSHSFLAAAMGYDR YMNICNPRLYSVLMGHGVCMGMLAAWAC GFTVSLVTSLVFHLPFHSSNQHE
665	2015	A	5074	496	692	QQYHNTGSAGHHAHCVGHSPHVHYPSCG CPL*IQRGLPSFNSLEGHSLKDSGHEESVQLDSE HDVQRSLYCDTAVNVLNTSVTSMSQMPD HDQNEGHCREECRILGHSDRCWMPPRNPMPI RSKSPEHVRNIIALSIEATAADVEAYDDCGPT KRTFATFGKDVSDFHAAERPTLKGKRTVDVT ICSPKVNSVIREAGNGCEAISPVTSPHLKSSL PTKPSVSYEIVDPGITAARRC
666	2016	A	5080	408	248	IMLLSTSS*VYFQSSTKDSHFFLDFQKTPPL VGPKAQLSGLQLQPCLYKRR
667	2017	A	5081	129	247	DLTNSHFFLFDQKTPGPLGGPKAQFSSLQLQ PCVY*RR
668	2018	A	5086	852	233	NIKSNDRWVQIKTAYKYFF*KNGDNYNWVF RALPTTFADIENLKYLFLTRDASQPFYLGHTV IFGDLEYVTVEGGIVLSRELMKRLNRLLDNSE TCADQSVIWKLSEDKQLAICLKYAGVHAENA EDYEGRDFVNTKPIAQIIEALSNNPQQVVEG CCSDMAITFNGLTPQKMEVMMYGLYRLRAF GHYFNDTLVFLPPVGSEND
669	2019	A	5101	1	329	PGRPTRPPLTLAHVSPEPAGPSCDSLAAQPG ASGV*VQHDSHPPLLGSQCLSEPVPGSHGPP RGCQHEAACPCPRGPGSDGLHHASAACASLPP SPILPVLLPELGPL
670	2020	A	5102	3	547	DAWGNRCAVGAAPRLJHLHLCCTPADPSRKP

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, \=possible nucleotide insertion)
						DEL*NMNGRVDYLVIEEEINLTRGLPSGLGFNI VGGTDQQYVSNDSGIYVSRIKENGAAALDGR LQEGDKILSVNGQDLKNLLHQDAVDLFRNA GYA VSLRVQHRLQVQNGPIGHRGEGDPGIPF FMVLVPVFALTMVAAWAFMRYRQQL
671	2021	A	5105	672	400	RDGREELCLQQEPTLPSRICSSAPLYFLFICPF VLLLLLISLLCLYWAKRLSTLRSNTRKEA LWVDLKEAGGVTTNRMED*EEDECN
672	2022	A	5148	72	314	IIFYFSYNIFLKITELLNDVERLKQALNGLSQLTYTSGNPTKRQSQQLDTLHQHVKSLEQQLAVSNQAHGALQEYVLAPCS
673	2023	A	5152	210	335	REILCSRIGRLNIV*MSLFPNLTCRINAIPKIPA NHFVEVT
674	2024	A	5153	3	2953	LTEDQPFIDLQKSLQEANITEQT LAEEAYLDA SIGSSQQFAQAQLHPSSASFTQASNVSNYSG QTLQPIGVTHVPVGASFA SNTVGVQHGFMQH VGISVPSQHLSNNSQISGSGQIQLISFGNHPMMTINNLDSQHILKGSGQQAPS NVSGGLLV HRQTPNGNSLFGNSSSSPVAQPVTVPFNSTNF QTSLPVHNIIJQRGLAPNSNKVPINIQPKPIQM GQQNTYVN VNNLG IQQHHVQ QGQISFASASSPQ GSVVGPHEMSVNJVNQNCNTRKPVT SQAVSSTG GSIVHSPMGQPHAPQSQFLIPTSLVSSNSVH HVQTINGQLLQTQPSQLISGQVASEHVMLNR NSSNMLRTNQPYTGPMLN NNQNTAVHLVSGQ TFAASGSPVIANHASPQLVGGQMP LQQASPT VLHLSPGQSSVSQGRPGFATMPSVTSMSGPSRFPAVSSASTAHPSLGSAVQSGSSGSNFTGDQL TQPNRTPVPSVSHRLPVSSSKSTSTSNTPGT GTQQQFFCQAQKKCLNQTSPISAPKTTDGLR QAQIPGLLSTTLPQDGSKVISASLGTAQPQ QEKVVGSSPGHPAVQVESHSGGQKRPAAKQ LTKGAFILQQLQRDQAHTVTPDKSHFRSLSD AVQRLLSYHVCQGSMPTEEDLRKV DNEFETV ATQLLKRTQAMLNKYRC LLEDAMRNINPPAE MVMIDRMFNQEERASLSRDKRLALVDPEGFQ ADFCCSFKLDKA AETQFGRSDQHGSKASSSLQPPAKA QGRDRAKTGVTEPMNHQFHL VP NHIVVSAEGNISKKTECLGRALKFDK VGLVQ YQSTSEEKASRREPLKASQCSPGPGEH RKTSS RSDHGTESKLSSILADSHLEMTCNSFQDKSL RNSPKNEVLHTDIMKGSGEPQPDQLTKSLET TFKNILELKKA GRQPQSDPTVSGSVELDFPNF SPMASQENCLEKFIPDHSEGVVETDSILEAV NSILEC
675	2025	A	5154	599	1880	LKKMEPFSCDTFVALPPATVDNRIIFGKNSDR LYDEVQEVVYFPAVVHDNLGERLKCTYIEID QVPETYAVVLSRPAWLWGAEMGANEHGVCIGNEAVWGREEVCD EALLGMDLVRGLERA DTAEKALNVIVDLLEKYGQGGNCTEGRMVFSYHNSFLIADRNEA WILETAGKYWAAEKVQE GVRNISNQLSITTKIAREHPDMRNYAKRKGW WDGKKEFDFAAAYSYLDTAKMMTSSGRYCE GYKLLNKHKGNTFETMMEILRDKPSGINME GEFLTTASMVFILPQDSSLPCIHFFTGTGDP PER SVFKPFPFVPHISQLLDTSSPTELEDLVKKKS HFKPDRRHPLYQKHQQALEVVNNNEEKAKI MLDNMRKLEKELFREMESILQNKHLDVEKIV NLFPQCTKDEIQIYQSNLCSVKSS

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, =possible nucleotide insertion)
676	2026	A	5155	2	306	FFFLRRSLALSPRPDCGLQWRNLGSLQAPPG FTPFSCSLSPSSWDYRPPPRPANFLYF**RRG FTLLARMVIS*PHDPPASASQSAGITGVSHRA RPT
677	2027	A	5167	97	740	FFHSV DLLALEQSKTFYKPDWF DIVESEVKCC KEAVCVIDMSSFTEFITSTGDQALEV LQYL SNDLDVPGHIVHTGMLNEGGGYEENDCSIAR LNKRSFFMISPTDQQVHCWAWLKKHMPKDS NLLLEDVTW KYTALNLIGPRAVDVLS ESYA PMTPDHFPSLFCKEMSVGYANGIRVMSMTHT GEPGFMLYIPIEYRWGFTMLSTLVNS
678	2028	A	5183	1919	2018	PALCRLRDDMTVCVADFGLSKKIYSGDYYRQ GRIAKMPVKWIAIESLADR VYT SKSDVWAFG VTMWEIA TRGMTPY PGVQNH EMYDYLLHG HRLKQPEDCLDELCKI**SPQSP
679	2029	A	5190	39	499	RESQVKHF KMRKIDLC LSEGSEVILATSSDE KHPPENI DGNPETFWTTGMFPQEFCIFCHKH VRIERLVIQS YFVQTLKIEKSTSKEPVDFEQWI EKDLVHTEGQLQN EEV AHDGSATYLRFIIVS AFDHFA SVHSVS AEGTVVSNLSS
680	2030	A	5204	541	92	EILAVLK LACGDISLN ALALMVATAVLT APL LLICLSYLFILSAILRVPSAAGRCKAFSTCSAH RTVVVVYFGTISFMYFKPKAKDPNVDKTV AL FYGVVTPSLNP IYSLRNAEVKA AVLTL RG LLSRKASHCYCCPLPLSAGIG
681	2031	A	5207	10	247	VPDNGDVTKLPVCSTLVEETSLTVSEAMEQSI KNESPLPGT LAHTCNTSTLGGR GRWIT*GREF DTSMANMV KPCLYRK
682	2032	A	5210	2	231	FFFETESYSITQAGVQWP NLSS LKT LPPGFK*F SCLSLPSSWDYR CLPPCPANFCIFS RNGVLPC WPGWSRTPDLS
683	2033	A	5218	85	402	CPSVSG LIKSDL RRHN INIGIT NVDK AVSN IF MIILLRSMYRINV KPYFFI*LFFSRVNC*SVIIG YARC YTFLIF*LFL*IPADSPTDQEPK TVMLSK QSESAI
684	2034	A	5220	1	194	NLMKEMQNLNSEN HKT WEEY KDTK*IMS YF YG*ALNV KMAV LPK LMYRF SATL VKIPQHL TDS
685	2035	A	5228	260	440	LHSQDGNSDPRKPQGEMSAHAFPVQTC GEED QKKTPQVPINFT ELSKCS* *KIMSGERE
686	2036	A	5239	79	508	GGEAAARAAKLSSPRHRVGRERGVGGMS AFSEA AALEKKL SELSNSSQSVQTL SLWLI JH KHSRP IVTVWERELRKAKPNRKL TFLYLAND VIONSKRKGPEFTKDFAPVIVEAFK HVSETD ESCKKHLGRVLSIWEERS
687	2037	A	5244	1	428	MAAVVAATALKRGARNARVLRGILAGATA NKASHNTRALQSHSSPEGKEEPEPLSPELEYI PRKRGK NPMKAVGLAWAIGFPCGILLFILT KR EV DKDRV KQM KARQNM RLSNTGEYESQRFR ASSQ SAPSP DVGS GVQ VT
688	2038	A	5249	1	1407	LQQTEDKSLLNQGS SSEEVAGSSQKM GQPGP SGDSLAL HRLS LRRQ NYLSEKQFFAEEW QRKIQVLA DQKEGVSGC VPTESLASL CTTQS EITDLSASCLRG FMPEKLQIVK PLEG SQTL Y HWQQLAQP NLGTILD PRPGV ITKGFTQLPGD AIYHISDLE EEEEGITFQVQQPL EEEKLSTS KPV TGF LPPITSAGGP VT VATANPGK CLS CT NSTFTFTC RILH PSDITQV TPSSG FP SLSC GSS GSSSNTA VNSPALAYRL SIGESITN RRD STTT

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, \=possible nucleotide deletion, =possible nucleotide insertion)
						FSSTMSLAKLLQERGISAKVYHSPISENPLQPLPKSLAIPSTPPNSPSHSPCPSPPI.PFEPRVHLSENFLASRAEFTFLQEMYGLRPSRNPPDVGQLKMNLVDRLKRLGIAVRVVKNPAGQENGRCQEAEIGPQKPDASAVYLNGSSLLGGRLRNQSLPVIMGSFAAPVCTSSPKMGVLKD
689	2039	A	5254	2	2621	LSLFGSRALGRSGARAMAKAKVGARRKASGAPAGARGGPKAKANSNPFEVKVNRRQKFQILGRKTRHDVGLPGVSARALRKRTQTLLKEYKE RDKNFVFRDKRFGEYNMSPEEKMMKRFALEQQRHHKKSIYLNNEDELTHYGQSLADIEKHNDIVDSDSDAEDRGTLGELTAAHFGGGGLLHKKTQQEGEEREKPKSRLKEELIELIAKSKQEKRERQAQREDALELTEKLDQDWKEIQTLLSHKTPKSENRDKKEKPKPDAVDMMVRELGFEMKAQPSNSRMKTEAELAKEEQEHLRKLEAE RLRRMLGKDEDENVKPKHMSADDLNDGFVLDKDDDRLLSYKDGMNVEEDVQEEQSKEASDPESNEEGDSSGGEDTEESDSDPSDSHLDLESNVEEEENEKPAKEQRQTPGKGLISGKERAGKATRDELPYTFAAPESTYEELRSLLLGRSMEEQLLVVERIQKCNHPSLAEGNKALEKLFGLLEYVGDLATDDPPDLTVIDKLVVHLYHLCQMFPESASDAIKFVLRDAMHEMEMETKGRAALPGLDVLIYLKITGLLFPSTSDFWHPVVTPALVCLSQLLTCKPILSLQDQVVKGLFVCCLFLEYVALSQRFIPELINFLLGILYIATPNKASQGSTLVHPRALGKNSELLVVSAREDVATWQQSSLRLWA SRLRAPTSTEANHRLSCLAVGLALLKRCVLMYGSLSFHAIMGPLRALLTDHLADCSHPQELQELCQSTLTTEMESQKQLCRPLTCEKSKPVPVLFPTPRLVKVLEFGRKQGSSKEEGERKRLIHKKREFKGAVREIRKDQNQFLARMQLSEIMERDAERKRVKQLFNSLATQEGEWKAALKRKKFKK
690	2040	A	5261	1	304	FFFFVFLVETGFHVHGQAGLELLTSGDPPTWASQSAGITGVSHCSWPVIYVLSTLLHAVRNVLFKRTFPLKSSSFLSYDKEIFPILVLKFYLVTLTSFVK
691	2041	A	5270	3	158	NCHTTHCTANWVHLPGTGGWKIDGPAAALEVLSSFFFFLKF SYKPQNV
692	2042	A	5282	56	1268	GMEPVGCCGECRGSSVDPRTFVLSNLAEVVERVLTFLPAKALLRVCVCRLWRECVRRVLRTHR SVTWISAGLAEGAHLEGHCLVRVVAEELENVRLPHTVLYMADSETFISLEECRGHKRAR KRTSMETALALEKLFPKQCQVVLGIVTPGIVVTPMGSGSNRPQEIEIIGESGFALLFPQIEGIKIQPFHFIKDPKNLTLERHQLEVGLLDNPELRVVLF FGYNCCKVGASNYLQQVNSTFSDMNIILAGGQVDNLSSLTSEKNPLDIDASGVVGLSFSGHRIQSATVLLNEDVSDEKTAEAAMQRLLKAANIPEHNTIGFMFACVGRGFQYYRAKGNVEADAFRKFFPSVPLFGFFGNGEIGCDRIVTGNFILRCKNEVKDDDLFHSYTTIMALIHLGSSK
693	2043	A	5301	362	507	EELKERFGPGLVIYWGFIQELDCNRERGILLKACFPNTIVTLCHSIA
694	2044	A	5310	1	204	RVLTAINTLKENLRKFYKGKKDKPLDLRPKKTRAMRRRLNMHEENLTKKQHRKERLYPLRKYAAKA
695	2045	A	5315	125	1596	EIRSTAVKSEVQVCISLLLLEDRTMPKKAKP

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, \'=possible nucleotide insertion)
						TGSGKEEGPAPCKQMKLEAGGPSALNFDSP SSLFESLISPIKTETFFKEFWEQKPLLIQRDDPA LATYYGSFLKLTDLKSLCSRGMYYGRDVNV CRCVNGKKVLNKDGKAHFLQLRKDFDQKR ATIQFHQPQRFKDELWRIQEKLECYFGSLVGS NVYITPAGSQGLPPHYDDVEVFILQLEGEKH WRLYHPTVPLAREYSVEAEERIGRPVHEFML KPGDLYFPRGTIHQADTPAGLAHSTHVTIST YQNNSWGDFLLLTISGLVFDTAKEDVELRTG IPRQLLLQVESTTVATRRLSGFLRTLADRLEG TKELLSDDMKKDFIMHRLPPYSAGDGAELSTP GGKPLRLDSSVRLQFKDHIVLTVLPDQDQSD ETQEKMVVIYHSLKNSRETHMMGNEEETEFH GLRFPLSHLDALKQIWNSPAISVKDLKLTTDE EKESLVLSLWTECLIQVV
696	2046	A	5318	1476	742	LMKXYLEAAELGEISDIHTKLLRLSSSQGTIET SLQDIDSRLSPGGSLADAWAHQEGTHPKDRN VEKLQVLLNCMTEIYYQFKKDKAERRLAYN EEQIHKFDKQKLYYHATKAMTHFTDECVKK YEAFLNKSEEWRKMLHLRKQLLSLTNQCFDI EEEVSKYQEYTNELQETLPQKMFASSGIKHT MTPIPSSNTLVEMLGMKKLKEEMEGVVKE LAENNHILESGGSLMDGGLKNVDCL
697	2047	A	5320	244	478	LDYNNFLFEMTFGLVSQAGVQWHDLGSLQPP PPGFKQFSCLSLPSSWDYRHLPPHLANFSREG VSPSWPGWSRTPDVR
698	2048	A	5324	266	714	LPIRKSLSRSVRSGFPPTSQSPITRNLDGTASGSC LAKTVTGSFLFRINVGLRGLVAGGIALLGTP VGGLLMAFKQKYSGETVQERKQKDRKALHEL KLEEWKGRLQVTEHLPKEKIESSI.QEDEPENDAKKIEALLNPRNPNSVIDKQDKD
699	2049	A	5334	699	277	RPHGHLCVCISSAAGLGVNGLADYCASKFAA FGFAESVFVTFVQKQKGKTTIVCPFFIKTGM FEGCTTGCPSLPILEPKYAVEKIVEAILQEKM YLYMPKLLYFMMFLKSFLPLKTGLIADYLGI LHAMDGFADQKK
700	2050	A	5344	3	614	PTAEE MSSLTPESSPELAKRSWFGNFISLDKEE QIFLVLKDPLSSSIKADIVHAFLSIPSLSHSVLS QTFSRAEYKASGGPSVFQKPVRFQVDISSEG PEPSPRRDGSGGGGIYSVFTTLISGPSSRFKRV VETIQAQLLSTHDQPSVQALADEKNGAQTRP AGAPPRSLQPPPGRPDPELSSSPRRGPPDKKK LLATNGTPL
701	2051	A	5346	3	1383	HASVLFCRVMMAASKTQGAVARMQEDRDGSC STVGGVGYGDSDKDCILEPLSLPESPGGTTTLE GSPSPVPCIFCEEHFVVAEQDKLLKHMIIIEHKIV IADVKLVADFQRYILYWRKRFTEQPIIDFCCSV IRINSTAPFEEQENYFLLCDVLPEDRILREELQ KQRLREILEQQQQERNDTNFHGVCMFCNEEF LGNRSVILNHMAREHAFNIGLPDNIVNCNEFL CTLQKLDNLQCLYCEKTFRDKNTLKDHMR KKQHRKJINPKNREYDRFYVINYLELGKSWEE VQLEDDRELLDHQEDDWSDWEEHPSAVCL FCEKQAETIEKLYVHMEDAHEFDLLKIKSELG LNFYQQVKLVNFIRRQVHQCRCYCHVKFKS KADLRTHMEETKHTSLLPDRKTWDQLEYYFP TYENDTLLWTLSSESSDLTAQEQNENVPUISE DTSKLYALKQSSILNQLL
702	2052	A	5356	2502	1540	MAAAATRGCRPWGSLLGLGLVSAAAAAWD

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, \'=possible nucleotide insertion)
						LASLRCTLGAFCECDFRPDLPGLECDLAQHL AGQHLAKALVVALKAFVRDPAPTKPLVLSL HGWTGTGSKSYVSSLLAHYLFQGGLRSRPH HFSPVLHFPHPHSIERYKKDLKSWVQGNLTA CGRSLFLFDEMDKMPGPGMLMEVLRPFLGSSWV VYGTNYRKAIFIFISNTGEQINQVALEAWRS RRDREEILLQELEPVISRAVLDNPAPHGSNSGI MEERLLDAVPFLPLQRHIVRHCVLNELAQL GLEPRDEVVQAVLDDTTFFPEDEQLFSSNGCK TVASRIAF
703	2053	A	5380	278	657	LFLQKLRLMKTEEEARTHTEIEMFLRKEQQKL EERLEFWMEKYDKDTEMKQNELNALAKTKA SDLAHLQDLAKMIREYEQVIIEDRIEKERSKK KVQDLLELKSVIKLQAWWRGTMIRREIGGF KM
704	2054	A	5381	1	1003	FRGRAVKMAAVVEVEVGGAAGERELDEV DMSDSLSPPEQWRVEHARMHAKHRGHEAMH AEMVLILATLVQAQLLVQWKQRHPRSYN MVTLFQMWWVVPFLYFTVKLHWWRFLVIWLF SAVTAFVTFRATRKPLVQTTPRLVYKWFLLIY KISYATGIVGYMAVMFTLFGLNLLFKIKPEDA MDFGISLFLYGLYYGLERDFAEMCADYMA STIGFYSESGMPTKHLSDSVCACVCGQQIFVVDV SEEGIIENTYRLSCNHVFHEFCIRGWCVIGKK QTCPYCKEKVDLKRMFSNPWERPHVMYGQL LDWLRYLVAWPVIIGVVQGINYLGLE
705	2055	A	5396	3	675	IYDRDPLQLATRAGQQLDINMAGEPKPYRPKP GNKRPLSALYRLESKEPFLSVGGYVFDYDYY RDDFYNLRFDYHGRVPPPPRAVPLKRPRA VTTTRRGKGVFSMKCGSRSTASGSTGSKLKS DELQTIKKELTQIKTKIDSVLGRLDKIEKQQK AEEAQKQLLEESLVIQEECVSEIADHSTEPP AEGGPADAGEEMTDGIEEAFDEDGGHELFLQ IK
706	2056	A	5410	2	98	GRVGLNLEGRGCSEPKWRHCTPTWATEQDSI S
707	2057	A	5415	6	287	PFKLTPSFLSHAFSSGQERKVFIENHICKCNT VRGVFVLEFGNYTILLGLDSHGNSNLGAP EEGLGAGRKRRTSVEKSGGAGVTRKKRDP
708	2058	A	5423	3	291	SSSNPLGSPSTLWKLCSFVLHNKSCCCSFSGS TPTLRAITLTVRVCGFPIEVSKTTNPLGRTNNNS GCTIFKTVTLSTARASLLKSVRPRTHOKE
709	2059	A	5424	679	347	RIRHEEKGSRGRGRRTSEEDTPKKKKHKGG SEFTDTILSVHPSDVLDMPVDPNEPTYCLCHQ VSYGEMIGCDNPDCPIEWFHACVDLTTKPK GKWFPCRCVQEKRKK
710	2060	A	5442	1073	559	QESLKKKIQPKLSSLTSSSVSRGNVSTPPRHSS GSLTPPVTPPITPSSSSRSSTPTGSEYDEEEVDY EESDSDESWTIESAISEAILSSMCNGEEK PFACPVPGCKKRYKNVNGIKYHAKNGHRTQI RVRKPFKCRCGKSYKTAQGLRHHTINFHPPV SAEIURKMQQ
711	2061	A	5449	1	319	GDSLCVPQYNKYREERVILFLKMASGHAFQP DLVKRIRDIAIRMGSLARHVPSLILETKGIPYTL NGKKVEAVKQIAGKAVEQGGAFSNPETLD LYRDIPELQGF
712	2062	A	5499	91	749	RPTPGHGFWMQPLTKDAGMSLSSVTLASAL QVRGEALSEEIWSLLFLAAEQLLEDLRNDSS DYVVCPWSALLSAAGSLSFQGRVSHIEAAPF

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, △=possible nucleotide deletion, ▲=possible nucleotide insertion)
						KAPELQLQQSEDEQPDPASQMHVYSLGMLTY WSAGFHVPHPHQPLQLCEPLHSILLTMCEDQPH RRCTLQSVEACRVHEKEVSVYPAPAGLHIR RLVGLVLGTISEVSREPFCSSSSCWCSCVAIKI
713	2063	A	5506	22	478	VEELILVSRLDPLHLTPMYFFLAHLSFLDLSPT TSSIPQLLYNLNGCDKTISYMGCAIQLFLFLGL GGVECLLLAVMAYDRCAICKPLHYMVIMN PRLCRGLVSVTWGCGVANSLAMSPVTLLRPR CGHHEVDHFLCEMPALIRMACISTV
714	2064	A	5514	25	220	AIRPYWCENNIIGIGKLSTADGKAFADPEVLR RLTSSVSCALDEAAAALTRMRAESTANAGQS DK
715	2065	A	5526	3	810	KVTAPRRPQRYSGGHGSNDNSVLSGELPPAM GRTALFHSGGSSGYESLRRDSEATGSASSAP DSMSEGAASPGARTSLKSPKKRATGLQRR RLIPAPLPDTTALGRKPSLPGQWVDLPPPLAG SLKEPFEIKVYEIDDVERLQRPRPTPREAPTQG LACVSTRRLAERRQQQLREVQAKHKHLCEE LAETQGRMLMELPGRWLEQFEDPELEPESAE YLAALERATAALEQCVNLCKAHVMVMTCFD ISVAASAAIPGPQEVDV
716	2066	A	5529	458	790	SPGYGENKFTVSXNIAVPLCEMNKIYSYYSD SSSSERTMDLVLEMNTNSIHWCIGRQLG KLHPSSSLCLALTLLSSVQGLQSISGLRLTDTF LKRTYEYDDIAQVCV
717	2067	A	5531	3	460	NSEDLLKYFNPESWQEQLDNMYLDTPRYRG RSYHDRKSKVLDLRLNDDAKRYSCTPRNYS VNIREELKLANVVFFPRCLLVQRCGGNCGCG TVNWRSCCTCNSGKTVKKYHEVLQFEGHIIKR RGRAKTMALVDIQLDHHERCDCICSSRPPR
718	2068	A	5586	311	88	AVLKNMAPMTALGLLLDHILNLILFLSAGEDF TSVVSEIMMYYILLVFLTLWLLIEMIYCVRKVS KAEAAAQENA
719	2069	A	5598	1	330	KNCANEAVVQKILDRLVLSRYDVRLPNFGSM LATNSTRGLNEDELMAHGQEKDSSSESDSC PPSPGCSFTEGFSFDLLNPDYVPKVDKWSRFL FPLAFLGNIVAAERC
720	2070	A	5628	798	148	LPPAQIPEAWLLLANVVVVLILVPLKDRLIDP LLLRKCLLPSALQKMALGMFFGFTSVIVAGV LEMERLHYIHHNETVSQQIGEVLYNAAPLSIW WQIPQYLIIGISEFASIPGLEFAYSEAPRSMQG AIMGIFFCLSGVGSSLLGSSLVALLSLPGGWLH CPKDFGNINNCRMDLYFFLAGIQAVTALLF VVIAGRYERASQGPASHSRFSRDRG
721	2071	A	5632	146	536	MSALIVKRLSAELTLFSELPTVLGANVNAAKLHETALHHAALKVNVDLIEMLIEFGNNIYARDNRGKPKPSDYTWSAFAKCFEYYEKTPLT LSQLCRVNLRKATGVRGLEKIAKLNIPPRLLD YLSYN
722	2072	A	5638	3	3806	CPSLDIRSEVAELRQLENCSVVEGHLQILLMF TATGEDFRGLSFPRLTQVTDYLLLFRVYGLS LRDLFPNLA VIRGTRLFLGYALVIFEMPFLRD VALPALGA VL RGA VRV EKNQELCHLSTIDW GLLQPAPGАНHVGНKLGEЕСАДВСРВГVLGA AGEPCAKTTFSGHTD YRCWTSSHСQRCVCP СHMACTARGEССТЕCLGGCSQPEDPRACT ACRHLYFQGACLWACPPGTYQYESWRCVTA ERCASLHHSVPGRASTFGIHQGSCLAQCPSGFT RNSSSIFCHKCEGLCPKECKVGTKTIDSQAA

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, \=possible nucleotide insertion)
						QDLVGCTHVEGSSLILNLRQGYNLEPQLQHSL GLVETITGFLKIKHSFALVSLGFFKNLKLIRGD AMVDGNYTLYVLDNQNLLQQQLGSWVAAGLTIPVGKIQFAFNPRLCLEHIYRLEEVITGTRGRQN KAEINPRNGDRAACQTRTLRFVSNTVEADRI LLRWERYEPLEARDLISFIVYYKESPFQNATE HVGPDACGTQSWNLLDVELPLSRTQEPMVTLS ASLPKPWTQYAVFVRAITLTTEEDSPHQGAQS PIVYLRTLPAAPTVPQDVISTSNSSSHLLVRW KPPTQRNGNLTYYLVLWQRLAEDGDLYLND YCHRGRLRPLTSNNDPFDGEDGDEAEMESD CCPCQHPGGQVLPPLAEQAESFQKKFENFLH NAITIPSPWKVTSINKSPQRDSGRHRRAAGPL RLGGNSSDFEIQEDKVPRERAVALSGLRFTEY RIDIHACNHAHTVGCSAATFVARTMPHRE ADGIPGKVAWEASSKNSVLLRWLEPPDPNGL ILKYEIKYRRLGEEAATVLCVSRRLYAKFGGV HALLPPGNYASRVRATSLAGNGSWTDVAF YILGPEEEDAGGLHVLLTATPVGLTLLIVLAA LGFFYGKRNRTLYASVNPEYFSASDMYVPD EWEVPREQISHIRELGQGSFGMVYEGLARGE AGEESTPVALKTVNELASPRECIEFLKEASVM KAFKCHHVVRLLGVVSQGQPTLVIMELMTR GDLKSHLRSLRPEANNPGLPQPALGEMIQM AGEIADGMYLAANKFVHRDLAARNCMVSQ DFTVKIGDFGMTRDVYETDYYRKGGKGLLP VRWMAPESLKDGIFTTHSDVWSFGVVWEIV TLAEQPYQGLSNEQVLFVMDGGVLEELEGCP LQLQELMSRCWQPNPRLRPSFTHLDISQEEEL RPSFRLLSFYYSSPECRGARGSLPTTDAEPDSSP TPRDCSPQNGGPGH
723	2073	A	5672	1	216	LAWIDNILPEKEKKETDKKRKRKKGAHEDCDEEPQFPPPSVIKPMESVQSDPQNGIHCIAKRSSWSYSL
724	2074	A	5704	4235	940	AGRGRRSRPVWAASWGGRRPAAARRPRGLATMFGFELRFDGVDPDLKCALCHKVLEDPLTPCGHVFCA GCVLPWVQEGSCPACRGRLSAKELNHVPLPKRLIKLKDICKAYATRGCGRVVKLQQLPEHLERCDFAPARCRHAGCGQVLL RRDVEAHMRDACDARPVGRQCQEGCGPLTHGEORAGGHCCARALRAHNGALQARLGALHKALKKEALRAGKREKSLVAQLA AQQLELQMTALRYQKKTTEYSARLDSLRCVAAPPGGKGETKS LTLVLRDGSGLGFNIIGRPSVDNIJDGSSSEGIFVSKIVDSGPAAKEGLQIHDRRIEVNGRDL SRATHDQAVEAFKTAKEPITVQVLRRT PRTKMF TPPSESQLVDTGTQTDITFEHIMALTKMSSPSPVLDPEEHPSAHEYDPMNDYI GDIHQEMDREELEEEVDLYRMNSQDKLGLTCYR TDDEDIGIYISEIDPNSIAAKDGRIREGDRII QINGIEVQNREEAVALLSEENKNFSLIARAEQLD EGWMDDDRNDFLDDLHMDMLEEQHHQAMQFTA SVLQQKKHDEDGGTTDTATILSNQHEKDSGVGR TDESTRNDESSEQENNNGDDATASSNPLAGQRKLTCSQDTLGS GDLPFSNESFISADCTDADYLGI PVDCECFRELLELCQVK SATPYGLYYPGSP LDAGKSDPESVDKELELLNEELRSIELECL SIVRAHKMQQLKEQYRESWMLHNSGFRNYNTSIDVRRHE LSDITELPEKSDKDSSAYNTGESC RSTPLTLEISP DNSLRR

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						AAEGISCPSEGGAVGVTTEAYGPASKNLLSITE DPEVGTPTYSPSLKELDPNQPLESKERRASDG SRSPTPSQKLGSAYLPSYHHSPTYKAHIPAHA QHYQSYMLIQQQSAVEYAQSQMSLVSMCK DLSSPTPSEPRMEWKVKIRSDGTRYITKRPVR DRLLRERALKIREERSGMTTDDDAVSEMKM GRYWSKEERKQHLVKAKEQRRRREFMMQSR LDCLKEQQAAADRKEEMNILELSKKKMMKKR NKKIFDNWMTIQELLTHGTKSPDGTRVYNF LSVTTV
725	2075	A	5707	3	1770	QISTEVSEAPVANDKPCTLVVKVQKKAADLP DRDTWKGRFDLMSCVGYAIGLGNVWRFPY LCGKNGGAAFLIPYFTLIFAGVPFLLECSLG QYTSIGGLGVWKLAPMFKGVGGLAAAALVLSFW LNIYYIVISWAIYLYLNSFTITLPWKQCDNP WNTDRCFNSYMSVNTTNMTSAVVEFWERN MHQMTDGLDKPGQIRWPLAITLAIAWLVYF CIWKGVGWTGKVVYFSATYPYIMLIILFFRGV TLPGAKEGILFYITPNFRKLDSEWLDAATQ IFFSYGLGLGSLIALGSYNSFHNNVYRDSIIVC CINSCTSMFAGFVIFSIVGFMAHVTKRSIADV AASGPGLAFLAYPEAVTQLPISPLWAILFFSM LLMLGIDSQFCCTVEGFITALVDEYPRLLRNRR ELFIAAVCIISYILGLSNIITQGGIYVFKLFDYYS ASGMSLLFLVFFECVSISWFYGVNRFYDNIQE MVGSRPCIWVKLCWSFFTPIIVAGVFIFSAVQ MTLTMGNYVFPKGQGVGWLMALSSMVL IPGYMAYMFLTLKGSLKQRIQVMVQPSEDIV RPENGPEQPQAGSTSKEAYI
726	2076	A	5711	156	423	PPRDPGRTPELRGSAFRKTGANMPVRRGHVA PQNTFLGTIRKFEQNKKFIAANARVNCAII YCNDGFCEMTGFCSRDPVMQKPCTCD
727	2077	A	5716	3	274	HASEYFFKLCSFQVFLSFPLATIVIDVGLVVIP LVKSPNVHYVYVLLVLSGLLFYIPLIHFKIRL AWFEKMTCYLQLLFNCLPDVSEE
728	2078	A	5737	1899	649	IQASRASPYPYPRVKVDFALSCHEDLLAPISEP IEWKYHSPEEEISLGpacwlWDFLRRSQQAGFL LPLSGGVDSAATACLIYSMCCQVCEAVRSGN EEVLADVRTIVNQISYTPQDPDRDLCGRILITC YMASKNQQETCTRARELAQQIGSHHISLNID PAVKAVMGIFSLVTGKSPLFAAHGGSRENL ALQNVQARIQMVLAYLFAQLSLWSRGVHGG LLVLGSANVDESLLGYLTKYDCSSADINPIGG ISKTDLRAFVQFCIQRQLPALQSILLAPATAE LEPLADGQVSQTDEEDMGMTYAEHSVYGKL RKVAKMGPYSMFCKLLGMWRHICTPRQVAD KVKRFFSKYSMNRHKMTLTPAYHAENYSPE DNRFDLRPFYNTSWPWQFRCIENQLQLER AEPQSLDGV
729	2079	A	5741	1	5976	PGCAARLSRARAPGPGAAAGAGRKRLADPGPP PASRRLRAPGSRPRLAAPCTRRAAQPAHARMA PRAAGGÁPLSARAAAASPPPFQTPPRCPVPLL LLLLGAARAGALEIQRRFPSPTPTNNFALDG AAGTVYLAAVNRLYQLSGANLSLEAEAAVG PVPDSLCHAPQLPQASCHEPRLTDNYNKIL QLDPGQGLVVVCGSIYQGFCQLRRGNISAV AVRFPPAAPAEPVTVPFSMLNVAANHPNAS TVGLVLPPAAGAGGSRLLVGATYTGYSFFF PRNRSLEDHRFENTPEIAIRSLDTRGDLAKLFT

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, △=possible nucleotide insertion)
						FDLNPSDDNLKIKQGAKEQHKLGFVSAFLHP SDPPGAQSYAYLALNSEARAGDKEQSARSL LARICLPHGAGDAKKLTESYIQLGLQCAGG AGRGDLYSRLVSVPARERLFAVFERPQGSPA ARAAPAAACAFRFADVRRAAIRAARTACFVEP APDVVAVLDSVVQGTGPACERKLNQIQLQPEQ LDCGAAHILQHPLSILQLPLKATPVFRAPGLTSV AVASVNNTAVFLGTVNGRLLKINLNESMQ VVSRRVVTVAYGEPVHHVMQFDPADSGYLY LMTSHQMARMVKVAACNVHSTCGDCVGAAAD AYCGWCALETRCTLCQDCTNNSQQHFWTSA SEGPSRCPAMTVLPSEIDVRQEYPGMILQISGS LPLSLGMEMACDYGNINRTVARVPGPAFGHQ IAYCNLLLPRDQFPFPNNQDHVTVEMSVRVN GRNIVKANFTIYDCSRTAQVYPTACTSCLSA QWPCFWCSQQHSCVSNQSRCEASPNTSPQD CPRTLSSLAPVPTGGSQNILVPLANTAFFQG AALECSFGLEEIFEAVVWNESVVRCDQVVLH TTRKSQVFPQLSLQLKGRPARFLDSPPEPMTVM VYNCAMGSPDCSQCLGREDLGHLCMWSDGC RLRLGPLQPMAGTCPAPEIRAIPEPLSGPLDG GT LLTIRGRNLGRRLSDVAHGVWIGGVACEPLP DRYTVSEEIVCVTGAPGPLSGVVTVNASKE GKSDRDRFSYVLPLVHSLEPTMGPKAGGTRITI HGNDLHVSELQVLVNDTDPCTELMRDTSI ACTMPEGALPAPVPCVRFERRGVHGNLTW FWMQNPNVITAISPRRSPVSGGRTITVAGERPH MVQNVSMAVHHIREPTLCKVLNSTLITCPSP GALSNASAPVDFFINGRAYADEVAVAEELLD PEEAQRGSRFLRDYLNPQFSTAKREKWIKH HPGEPLTLVIHVSTKGAGKEQDSLGLQSHEY RVKJGQVSCDIQIVSDRIHCSVNESLGAAVGQ LPITIQVGNFNQTIATLQLGGSETAIIIVSIVICSV LLLLSSVVALFVFCRKSSRAERYWQKTLQME EMESQIREEIRKGFAELQTDMTDLTKELNRSQ GIPFLEYKHFTVTRTFPKCSSLYEERYVLPQRST LNSQGSSQAQETHPLLGEWKIPESCRPNMEE GISLFSSLLDNKHFLIVFVHALEQQKDFAVRD RCSLASLITIALHGKLEYYTSMKELLVDLID ASAAKNPKLMRLRRTESVVEKMLTNWMSICM YSCLRETVGEPFFLLCAIKQQINKGSIDAITG KARYTLNEEWLLRNIEAKPRNLNVSFQCGC MDSLSVRAMDTDTLTQVKEKILEAFCKNVPY SQWPRAEDVDLEWFASSTQSYILRDLDDTSV VEDGRKKLNLAHYKIKEGASLAMSLLDKKD NTLGRVKLDLDETEKFHLVLPTDELAEPKKSH RQSHRKKVLPETIYLTRLSTKGTLQKFLDDLF KAILSIREDKPPLAVKYFFDFLEEQAEKRGISD PDTLHJWKTNSLPLRFWVNILKNPQFVFDIDK TDHIDACLSVIAQAFIDACSIIDLQLGKDSPTN KLLYAKEIPEYRKIVQRYYYKQIQQDMTPLSEQE MNAHLAEESRKYQNEFNTNVAMAELYKYAK RYRPQIMALEANPTARRTQLQHKFEQVVAL MEDNIYECEYSEA
730	2080	A	5744	3	292	QPSPFLFHSHLETQLLRTAQLPEQVSWPWGQ VANGKGNQRNMGSQPSPSLLAfernlelqimG LGYSLLMGKLRPRAKDTLRVHRDSTPSPLT LKD
731	2081	A	5747	1	382	FLKCMRKAFRSSKLLQVGYTPDGKDDYRWC FRVDEVNWTWNTNVGIINEDPGNCEGVKRT

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						LSFSLRSSRVSGRHWKNFALVPLREASARDRQSAQPEEVYLQRQSGSLKPEDAEVFKSPAASGEK
732	2082	A	5753	198	3	AQAESSTVASPEATAGPLCTRIPNVPPPPIRP PGKLQALQPCPSPVRFTSARIPPASRPQTKS
733	2083	A	5754	2	2223	AAGPPGLEAEGRAPESAGPGPGGDAETPGL PPAHSGTLMMAFRDVTQIANQNISVSSSTAL SVANCLGAQTVQAPAEPAAAGKAEQGETSGR EAPEAPAVGREDASADESCAEAGAGSAADG ATAPKTEEEEEEEETAEVGRGAEAEAGDLEQ LNRTSTSTKSAKSGSEASASASKDALQAMILS LPRYHCENPASCKSPTLSTDTRLRKRLYRIGLN LFNINPDKGIQFLISRGFIPDTPIGVAHFLLQRK GLSRQMIGEFLGNSKQFNRDVLDCVVDEM DFSSMELDEALRKFQAHIRVQGEAQKVERLIE AFSQRYCMCNPPEVQQFHNPDTIFILAFAIILL NTDMYSPNIKPDRKMMLEDFIRNLRGVDDG ADIPRELVVGIYERIQQKELKSNEHDHTYVTK VEKSIVGMKTVLSVPHRRLVCCSRLFEVTDV NKLQKQAAHQREVFLFDNLLVILKLCPKKKSS STTYTFCKSVGLLGMQFQLFENEYYSHGITLV TPLSGSEKKQVLFCAJGSDEMOKFVEDLKE SIAEVTELEQIRIEWELEKQQGTKTLSFKPCGA QGDPSKQGSPTAKREAALRERPAESTVESSI HNRQLQTSHNSGLAERGAPVPPPDQLQPSPPR QTQTPPLPPPPTPPGTLVQCQQIVKIVLVDKPC LARMEPLLSQALSCYTSSSDSCGSTPLGGPG SPVKVTHQPPPLPPPPPYNPHQFCPPGSLLH GHRYSSGSRSLV
734	2084	A	5788	8	362	SSVMGDLVQGQLEEQIVARDENSWLIDGGTP IDDMVRVLDI D EFPQSGNYETIGGFMMFMLRKIPKRTDSVKFAGYKFEVVDIDNYRIDQLLVRTIDSKATALSPKLPDAKDKEESVA
735	2085	A	5827	1	1257	MVFSAVLTAFTGTNTITFVYYENTYMNITL PPPFQHPDLSPLLRYSFETMAPTGSSLTVNST AVPTTPAFAKSLNLPQITLSAIMIFILFVSFLG NLVVCMLMVYQKAAMRSAINILLASLAFAADM LLAVLNMPFALVTILTTRWIFGKFFCRVSAMFWLFWIEGVAILLIIISDRFLIIVQRQDKLNPYRAKVLIAVSWATSCVAFPLAVGNPDLQIPSRA PQCVFGYTTNPGYQA YVILISLISFIPFLVILY SFMGIILNTLRHNALRIHSYPEGICLSQASKLGL MGLQRPFQMSIDMGFKTRAFTTILILFAVFIVCWAPFTTYSLVATFSKHFYQQHNNFEISTWLL WLCYLSALNPLIYWWRIKKFHDACLDMMPKSFKFLPQLPGHTKRRIRPSAVVCGEHTRVV
736	2086	A	5870	3	268	FTRSDDELARHYRHTGEKRFSCPLCPKQFSRS DHLTKHARRHPTYHPPMIEYRGRRRTPRIDPP LTSEVESSASGSGPGPAPSFTICL
737	2087	A	5871	2	521	LTWPQLFLETLPPELLHMSRPAEDGSPSGALVR RSSSLGYISKAEEYFLLKSRSDLMFKEKQSERH GLARRLTARRPPASSEQAQQELFNELKPAV DGANFIVNHMRDQNYYNEEKDSWNRVART VDRLCLFVVTPTVMVVGTAWIFLQGVYNQPPP QPFPGDPYSYNVQDKRFI
738	2088	A	5881	1	1160	LVVTAITAILAFPNETYTRMSTSELISELFNDCG LLDSSKLCDYENRFNTSKGGELPDRPAGVGVY SAMWQLALTLLIKIVITIFTFGMKIPSGLIFPS MAVGAIAGRLLGVGMEQLAYYHQEWTVFNS

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						WCSQGADCTPGLYAMVGAACLGGVTRMT VSLVVIMFELTGGLEYIVPLMAAAAMTSKWA DALGREGIYDAHIRNLNGYPFLEAKEEFAHKT AMDVMKPRRNDPLLTVLTDQSMTVEDVETII SETTYSGFPVVVSRESQRLVGFVLLRDLIISIE NARKKQDGVVSTSIIYFTEHSPPLPPYTPPTLK LRNILDLSPTVTDLTPMEIVVDIFRKLGRLQC LVTHNGRLLGIITKKDVLKHIAQMANQDPDSI LFN
739	2089	A	5892	2	916	TLQLAASVPFFAISLJSWWLPESARWLJINGKP DQALQELRKVARINGHKEAKNLTIEVLMSSV KEEVASAKEPRSVLDLFCVPVLRWRSCAMLV VNFSLLISYYGLVFDLQLSLGRDIFLQLALFGA VDFLGRATTALLSFLGLRRTIQAGSQAMAGL AILANMLVPQDLQTLLRVVFAVLGKGCFGISL TCILTYKAELFPTPVRMATDGLILHTVGRGLA MMGPLILMSRQALPLPPLLYGVISIASSLVVL FFLPETQGLLPDTIQDLESQKSTAAQGNRQE AFTVESTSLLIEVALHGAL
740	2090	A	5900	2	426	RPIKTLGIGFHFSVDGVHFLTQREVQNLWKE NLIILDTAKKHGYEVVDFITITMGRYKEFLQG KCGCHFHEVVKSLSKEYNFIMKMRSRNHIM GRYFSNQSKLQQGTVTNFRSPYHVRGPINQV CSEILLSRMCANKRTM
741	2091	A	5910	3	412	RMPESTLLIIICENGYILEAPLPTIKQEEDDHDV VSYEIKDMCIKCFHSSVKSKILRIEIKRER QRELKEKIREERRNKLAAEMGEDGEKEFQEE EEEKEEEEEEEPLPEIFIPSTPSILCFGYSEPG KFWV
742	2092	A	5936	1	482	MGCRLLCVVFCCLLQAGPLDTAVSQTPKYLV TQMGNDSIKCEQNLGHDTMYWYKQDSKK FLKIMFSYNNKELIINETVPNRFSPKSPDKAH NLHINSLELDGDSAVYFCASSQDTALQSHCIPV HKPPGSARKLQGSVCTCTQGSSLHSLMASDG VPVC
743	2093	A	5938	1	1566	MNSFFGTPAASWCLLESVDVSSAPDKEAGRER RALSVQRGGPAWSGSLEWSRQSAQDRRL GLSRQTAKSSWSRSRDRCCRAWWILVPA ADRARRERFIMNEKWDTNSSENWHPIWNVN DTKHHLYSDDNITYVNYYLHQPOVAIFIISYP LIFFLCMMGNTVVCFIVMRNKHMHTVTNLFI LNLAISDILVGIFCMPIITLDNIIAGWPFGNTM CKISGLVQGQISVAASVFTLVAIAVDRFOCVVY PFKPKLTKTAFVIIMIWVLAITIMSPAVMLH VQEEKYYRVRLLNSQNKTSPVYWCREDWPQN EMRKIYTTTVLFANIYLAPLSLIVIMYGRIGISLF RAAVPHTGRKNQEWHVVSRKKKQIJKMLLI VALLFILSWLPLWTLMMLSODYADLSPNELQII NIYIYPFAHWLAFGNSSVNPIIYGFNFENFRRG FQEAFQLQLCQKRAKPMEMAYALKAKSHVLIN TSNQLVQESTFQNPHGETLLYRKSAEKPQQE LVMEELKETTSSEI
744	2094	A	5966	149	327	SHVCVSHYAGSSGCPAGAGAGAGAVALGISAVA LYDYQGGRGLGVARGAWYMEAPDIRQDM
745	2095	A	5970	413	856	GAPHTDWAWAPTMSGLGSGRGRQGTLOSS PLSLPLLLAGVTGILATELFQDMARPAACMV CGALMWIMLILVGLGFPFIMEALSHFLYVPFL GVCVCGAIYTGLFLPETKGKTFQEISKELHRL NFPFRRAQGPTWRSLEVQSTEL

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met cod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
746	2096	A	5971	3	1343	AQTARRIGLELDTEGHRLFVAFSGCIVYLPRLCARHGACQRSCLASQDPYCGWHSSRGCVDI RSGGGTVDQAGNQESMEHGDQCDGATGSQ SGPGDSAYGVRRDLPASASRSVPIPLLAVAAFAFLGASVSGLLVSCACRRAHRRRGK DIE TPGLPRPLSLRSLARLHGGGPEPPPSKDGDA VQTQLYTTFLPPEGVPPPELACLPTPESTPE LPVKHLRAAGDPWEWNQRNNNAKEGPGRSR GGHAAGGPAPRVLVRPPPPGCPGQADEVTTLEELLRYLHGPQPPRKGAEPPAPLTSRALPPEP APALLGGPSPRPHECASPLRLDVPPEGRCASA PARPALSAPAPRVLGVGGGRRLPFSGHRAPPAL LTRVPSGGPSRYSGGPGKHLLYLGRPEGYRG RALKRVDVEKPQLSLKPPLVGPSRQAVPNG GRFNF
747	2097	A	5998	2	754	DHASLPCSWNHRFDFVETRHFIGDHSGQVTILKLEQEENCTLVTTFRGHTGGVTALCWDPVQ RVLFGSSSDHSVIMWDIGGRKGTAIELQGHNDRVQALSYAQHTRQLJSCGGDGGSIVVNMD VERQETPEWLDSDSCQKCDQFFFNFQKQMWDSSKKIGLRQHHCRKCGKAVCGCKSSKRSSIPLMGFEFEVRCDSCHEAITDEERAPTAFTHD SKHNIVHVHFDATRGWLTSQTDKVIKLWDMTPVVS
748	2098	A	6001	2	747	AMVFGGVVPPYVPQYRDIRRTQNAQDFSTYVCLVLLVANILRILFWFGRRFESPLLWQSAIMLTMLMLKLCTEVRVANELENARRSFTAADSKDEEVKVA PRRSFLDFDPHFWQWQSSFSDYVQCULAFGTGVAGYITYLSIDSALFVETLGFLAVLTEAMLGVPLQYRNHRHOSTEGMSIKMVLMTSGDAFKTAYFLLKQPLQFSVCGLLQVLVDLAILGQAYAFARHPQKPA PHAVHPTGTKAL
749	2099	A	6002	2	447	GRPDRSELVRMHILEETFAEPSLQATQMKLK RARLADDLNEKIAQRPGPMELVEKNILPV DSSVKEAIIQVGKEDYPTQGDFSFDEDSSDALSPDQPASQESQGSAASPSEPKVSESPSPVTTNTPAQFASVSPTVPEFLKTPPTAD
750	2100	A	6004	2	427	LLTQAMLVLPHRPQWFTPGPRLQAQGPCQEGWRWELRLRNYVPEDEDLNKRRVPQAKPD AVQEVKVEQLEAAKPEPVIEEVDLAKLAPRKPDWDLKRDVAKKLEKLLKRTQRAIAELRERLKQGEDSLDSA VDAATEHKTC
751	2101	A	6007	33	1280	TDQAKVDNQPEKLVRSAEDVSTVPTQPDNPFSHPDKLKRMSKSVPAFLQDESDDRETDTASE SSYQLSRHKKSPSSLTNLSSSSGMTSLSSVSGS VMSVYSGDFGNLEVKGNIQFAIEYVESLKELHVFVAQCKDLAADADVKKQRSDPYVKA YLLPDKGKMGKKKTLLVKKTLNPVYNEILRYKIEKQILKTQKLNLISIWHRDTFKRNSFLGEVELDLE TWDWDNKQNQKQLRWYPLKRKTA PVALEAE NRGEMKLAQYVPEPVPGKKLPTTGEVHIWVKECLDLPLLRGSHLNSFVKCTILPDTSRKS RQKTRAVGKTTNP1FNHTMVYDGFRPEDLMEACVELTVWDHYKLTNQFLGGLRIGFTGKSYGT EVDWMGSTSEEVALWEKMVN SPNTWIEATLPLRMLLIAKISK
752	2102	A	6028	108	1283	KEIFSPFELISVKPLCLLGVTCQSMAFEELL SQVGGLGRFQMLHLVFLPSLMLLIPHILL ENFAAAIPGHRCWVHMLDNNTGSGNETGILSEDA

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, \=possible nucleotide insertion)
						LLRISIPLDSNLRPEKCRRVHPQWQLLHNGTIHSTSEADTEPCVDGWVYDQSYPSTIVTKWDLVCDYQSQLKSVVQFLLTGMLVGGIIGGHVSDRGRRFILRWGLLQLAITDTCAAFAPTFPVYCVLRFLAGFSSMIIISNNSLPITEWRPNSKALVVILSSGALNIGQILGGLAYVFRDWQTLHVVASVPFFVFFLSRWLVESARWLIIITKLDEGLKALRKVARTNGIKNAEETLNIEVVRSTMQEE
753	2103	A	6043	1	1470	DAAQTKTTVWDLFRNPSMRKRICILVFLRKKNLKEKA DSFESILRLIFEIHHSGEKGDIVVFLACEQDIEKVCTEVYQGSNLNPDLGELVVVPLYPKEKCSLFKPLDETEKRCQVYQRRVVLTTSGEFLIWSNSVRFVIDVGVERRKVVYNPRIRANSLVMQPISQSQAEIRKQILGSSSGKFFCLYTEEFASKDMTPLKPAEMQEANLTSMVLFMKRIDIAGLGHCDFMNRPAPESLMQALEDLDYLAALDNDGNLSEFGIIMSEFPPLDPQLSKSILASCFDCVDEVLTIAAMVTAPNCFSHVPHGAEEAALT
754	2104	A	6055	2	394	CWTFLHPEGDHFTLISIYKAYQDTTLNSSEYCVEKWC RDYFLNCSALRMADVIRAELEIJKRJELPYAEPAFGSKENTLNKALLSGYFMQIARDVDGSGNYLMLTHKQVAQLHPLSGYSITKKMPEWVLFHKFSISENNYIRITSEISPELFMQLVPQYYFSNLPPSEKDILQQVVDHLSPVSTMNKEQQMCETCPETEQRCTLQ YYALHHWPFPDLCQTTGAIFQMNMYGSCIFLMLINVDRYAAJVHPLRLRHLRRPRVARLLCLGVWALILVFVAVPAARVHRPSRCRYRDLEVRLCFESFSDELWKGRLLPLVLLAEALGFLLPLAAVYSS
755	2105	A	6059	3	1795	LGLGSGTLLSVSEYKKKYREHVLQLHARVKERNARSVKITKRPTKLLIAPESAAPPEALGPAEEPEPGRARRSDHTFNRFLRRDEEGRRLPTVVQLGPAGIGKTMAAKKILYDWAAGKLYQGQVDFAFFMPGCELLERPGTRSLADIILDQCPDRGA PVPQMLAQPQRLLFILDGADELPA LGGPEAAPCTDPFEAASGARV LGGLLSKALLPTALLVTT RAAAPGRLQGRLCSPQCAEVRGFSDKDKKKYF YKFFRDERRAERA YRFVKENETLFALCFV PFVCWIVCTVLRQQLLEGRDLSRTSKTTTSVY LLFITSV LSSAPVADGPRLQGDRLRNLCRLARE GVLGRRQAFAEKELEQLELRGSKVQTLFLSK KELPGVLETETVYQFIDQSFQELAALSYLLE DGGVPRTAAGGVGTLRGDAQPHSHLVLTTRFLFGLLSAERM RDIERHFGCMV SERVKQEA LRWVQGQGQCPGVAP EVTEGAKGLE DTEE PEEEE EGEEPNYPLLELLYCL YETQEDAFVRQALCRPELALQRVRFCRM DVAVLSY CVRCCPA GQALRLISCR LVA AQUEKKKSLGKRLQASLG GG
756	2106	A	6060	12	436	SGRPTRPAKPTGQGMGRFMLTLVCQGSIMMS ARDLIMNLTTELQPGLFHHLRFLEELRLSGNH LSHIPGQAFSGLYSLKILMLHN NNQLGGIPAQA LWEPLPSLQLSLR LDANLISLVPERSFEGLSSLRH LWLDDN ALTEIPS
757	2107	A	6063	54	419	ITPLGLGAADMCAF PWLLLLL LQEGSQRRL WRWCGSEEVVAVLQESISLPLEIP PDEEVENII WSSHKS LATV VPGKEGHPATIMVTNPHYQG

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, =possible nucleotide insertion)
						QILTMRLRSLQQPSASWPRDCSSCSW
758	2108	A	6066	125	438	IGISCPATIFVPMFSHSLIGIGEYQLPYYNMV PSDPSYEDMREVVCVKRLRPIVSNRWNDEC LRAVLKLMSECWAHNPAASRLTALRIKKTLAK MVESQDVKI
759	2109	A	6072	3	650	PGRRFRPAALEERAMEKLREKVPFQNRGKGT LSSIIPNNNSDTRKATEETTSLSKPEYVNPDFRW SKDPSSKSGNLLETSEVGWTTSNPEELDPIRLA LLGKSGLSCQVGSAATSHPVSCQEPIDEDQRISP KDKSTAGREFSGQVSHQITSENQCTPIPSSTV HSSVADMQNMPAAVHALLTQPSLSAAPFAQ RYLGTLGSTLTPQCHAGNATVW
760	2110	A	6077	3	730	PLRLTLMEEVLLLGLKDREGYTSFWNDCISSG LRGCMILIELPLRGRLOLEACGMRKRSLLTRK VICKSDAPTGDVLLDEALKHVKETQPPETVQ NWIELLSGETWNPLKLHYQLRNVRERLAKNL VEKGVLTEKQNFLFDFMTTHPLTNNNIKQR LIKKVQEAVLDKWVNNDPHRMDRLLALIYL AHASDVLENAFAPLLDEQYDLATKVRQLLD LDPEVECLKANTNEVLWAVVAFTK
761	2111	A	6078	833	390	IVSFHLSGFKKFVPPFSFLSVHGLQVDHEYHSV HQKLSADMADHSNLLRSLLVGAEDARLMRD MKTMKSRYMELYDLNRDLLNGYKIRWNHH TELLGNLKAVNQAIQRAQRRLRVGKPKNQVIT ACRDAIRSNNTLFKIMRVGTASS
762	2112	A	6079	2	2686	KKAITCGEKEKQDLIKSMLKDGFRTDRGS HSDLWSSSSLESSSFPLPKQYLDVSSQTDISG SFGINSNNQLAEKVRLRLRYEEAKRRIANLKI QLAKLDSEAWPVLDSERDRLILINEKEELLK EMRFISPRKWTQGEVEQLEMARKRLEKDLQ AARDTQSALKATERLKLNSKRNRQLVRELEEAAT RQVATLHSQLKSLSSSMQSLSSGSSPGSLTSSR GSLVASSLDSSTSASFDTLYYDPFEQLDSELQ SKVEFLLEGATGFRPSGCITIHEDEVAKTQ KAEGGGRLQALRSLSGTPKSMTSLSPRSSLSS PSPPCSPLMADPLLAGDAFLNSLEFEDPELSA TLCELSLGNSAQERYRLEEPGTEGKQLGQAV NTAQGCGLKVACVSAAVSDESVAGDSGVYE ASVQRLGASEAAAFDSDESEAVGATRIQIALK YDEKNKQFAILIIQLSMLSALLQQQDQKVNI R VAVLPCSESTTCLFRTRPLDASDTLVFNEVFW VSMSYPALHQKTLRVDVCTTDRSHLEECLGG AQISLAEVCRSGERSTRWYNLLSYKYLKKQS RELKPVGVMAPASGPASTDAVSALLEQTAWE LEKRQEGRSSTQTLEDSWRYEETSENEAVAE EEEEEEEEEEEDVFTEKASPDMDGYPALK VDKETNTETPAPSPTVVRPKDRRVGTSPQGP F LRGSTIIRSKTFSPGPQSQYVCRLNRSDDSST LSKKPPFVRNSLERRSRVMKRPSPPPQPSVVK SLRSERLIRTSLDLELDLQATRTWHSQTLQEIS VLKELKEQLEQAKSHGEKELPQWLREDERFR LLLRMLEKRMdraehmgelqtDKMMRAAA KDVHRLRGQSCKEPPEVQSFREKMAFFTRPR MNIPALSADDV
763	2113	A	6082	3	1558	PHPIRFSKLCVSFNNQEQYNQFCVIEEASKANE VLENLTQGKMCVPKGTRKLLFKFVAKTED VGKKIEITSVDLALGNETGRCVVLNWQGGGG DAASSQEALQAARSFKRRPKLPDNEVHWGSII IQASTMIISRPVNISVHLLHEPPALTNEMYCLV

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, \=possible nucleotide insertion)
						VTVQSHEKTQIRDVKLTAGLKPQQDANLTQKTHVTLHGTELCDESYPALLTDIPVGDLHPGEQLEKQMLYVRCGTVGSRMFLVYVSYLINTTVEEKEIVCKCHKDETVTIETVFPFDVAVKFVSTKF EHLERVYADIPFLLMTDLLSASPWALTIVSSE LHLAPSMTTVDQLESQVVDNVILQGTGESASECF CLQCPSLGNIEGGVATGHYIISWKRTSAMENI PIITTIVTLPHVIVENIPLHVNAADLPSFGRVRES LPVKYHILQNKTDLVQDVEISVEPSDAFMFSG LKQIRLRLPGTEQEMLYNFYPLMAGYQQQLPS LNINLLRFPNFTNQLLRRFIPTSIFVKPQGRLMDDTSTIAAA
764	2114	A	6093	1	1422	AAADLANSNAGAAVGRKAGPRSPPSAPAPAPP PPPAPAPPTLGNHHQESPGWRCCRTLERN ALMFNNELMADVFVVGPPGATRTVPAHKY VLAVGSSVFYAMFYGDLAEVKSEIHIPDVEPA AFLILLKYMYSDEIDLEADTVLATLYAAKKYI VPALAKACVNFLTSELEAKNACVLLSQSRLF EEPELTQRCWEVIDAQAEMLRSEGFCEIDR QTLEIIVTREALNTKEAVVFEAVLNWAEAEC KRQGLPITPRNKRHVLGRALYLVRRIPTMTLEE FANGAAQSDILTEETHSIFLWYTATNKPRLD FPLTKRKGLAPQRCHRFFQSSAYRSNQWRYRG RCDSIQFAVDRRRFVIAGLGLYGSSSGKAEYSV KIELKRLGVVLAQNLTKFMSDGSNTFPVWF EHPVQVEQDTFYTASA VLDGSELSYFGQEGM TEVQCGKVAFQFQCSSDSTNGTGVQGGQIPE LIFYA
765	2115	A	6099	1	1150	SGFTHYAIYDFIVKGSCFCNVHADQCIPVHGF RPVKAPGTFHMHVHGKCMCK-HNTAGSHCQH CAPLYNDRPWEAADGKTGAPNECRTCKCNG HADTCFHDVNVWEASGNRSGGVCCDCQHN TEGQYCQRCKPGFYRDLRRPFSADACKPCS CHPVGSAVLPANSVTFCDPSNGDCPCPKGVA GRRCDRCMVGYWGFYDGYCRPCDCAGSCD PITGDCISHTDIDWYHEVPDFRPVHNKSEPP WEWEDAQGFSAALLHSGKCECKEQTLCNAKA FCGMKYSVVLKIKILSAHKDGTHVEVNVKIK KVLKSTKLKIFRGKRTLYPESWTDRGCTCPIL NPGLEYLVAGHEDIRTGKLIVNMKSFVQHWK PSLGRKVMDILKRECK
766	2116	A	6103	2	384	MTAAATATVLKEGVLEKRSGGLLQLWKRKR CVLTERGLQLFEAKGTGGRPKELSPARIKAVE CVESTGRHIYFTLVTEGGGEIDFRCPLEDPGW NAQITLGLVKFKNQQAIQTVRARQSLGTGTL VS
767	2117	A	6106	1	542	SGSSHASDGSGFQELRICSEDQTPLIAGMCSP MARYYIIKYADQKALYTRDGQLLVGDPVAD NCCAECIKCTLPNRGLDRTKVPFLGIQGGSRC LACVETEEGSPSLQLEDVNIEELYKGGEATRF TFFQSSGSAFRLEAAAWPGWFLCGPAEPQQ PVQLTKESEPSARTKFYFEQSW
768	2118	A	6109	3	292	FILQAVLQLSSQEARYKAFGTCVSHIGAILAF YTPSVISSVMHRVARCAAPHVHILLANFYLLF PPMVNPPIYGVKTKQIRDLSLGSIPEKGCVNRE
769	2119	A	6110	1	711	RHEPSCSINGVASTSKQNHSKYPAPSSSSSS SSSSSSPSSVNYSESNSTDSTSOSQHHSSTSNO ETSDSEMEMAEHYPNVGVLGSMSTRIVNGAY KHEDLQTDESSMDDRHPRRQLCGGNQAATE

SEQ ID NO. of nucleotide sequence	SEQ ID NO. of peptide sequence	Method	SEQ ID NO: in USN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						RILFGRELQALSEQLGREYGKNAHTEMLQDAFSLLAYSDPWSCPVGQQQLDPIQREPVCAALNSAILESQLPKQPPLMLALGQASECLRMLMARAAGLGSFARVDDYLYH
770	2120	A	6125	2	570	YFGNLNHVQHLGNNVFLLQTLFGAVILLANC VAPWALKYMNKRASQMLLMFLLACLLAIIF VPQEMQMLREVLATLGLGASALANTLAFAH GNEVIPTIIRARAMGINATFANIA GALAPLMM ILSVYSPPLPWIIYGVFPFISGF APLL PETRNK PLFDTIQDEKNERKD PREPKQEDPRVEVTQF
771	2121	A	6126	909	353	RSFVLDTASAICNYNAHYKNHPKYWCRCGYF RDYCNIIAFSPNSTNHVALRDTGNQLIVTMSC LTKEDTG WYWCGIQRDFARDMDMFTELIVT DDKGTLANDFWSGKDL SGNKTRSKAPKVV RKADRSRTSILII CILITGLGIISVISHLTKRRRS QRNRVGNTLKPFPSRVLT PKEMAPTEQM
772	2122	A	6148	7	810	FVLGILALSHTISP FMNKFFPASFPNRQYQLLF TQGSGENKEEINYEFDTKDLVCLGLSSIVGV WYLLRKHWIANNLFGLAFLSNGVELLHLNN VSTGCILLGGFLIYDVFWVFGTNVMVTVAKS FEAPIKLVFPQDLLEKGLEANNFAMLGLGDV VIPGFIALLLRFDISLKKNTHTYFYTSAAYIF GLGLTIFIMHIFKHAQPALYL VPACIGFPV ALAKGEVTEMFSYEESENPKDPAAVTESKEGT EASASKGLEKKEK
773	2123	A	6161	3	1088	COPMLVTRKNHPKLLRRTESVAEKMLTNW FTFLLYKFKLKESAGEPLFMLYCAIKHQMEKG PIDAITGEARYSLSEDKLIRHLIDYKTLTLNCV NPENENAPEVPVKGLCDTGTAKEKLLDA AYKGVPYSQRPKAADMDLEWRQGRMARIIL QDEDVTTKIDNDWKRNLTAHYQVTDGSSV ALVPKQTSAYNISNSSTFTKSLSRYESMLRTA SSPDSLRSRTPMITPDLES GTKLWHL VKNHDH LDQREGDRGSKMVSEIYLTRLATKGTQKLF VDDLFTETFSTAHRGSALPLAIKYMFDLDEQ ADKHQIHADVRHTWKSNCPLRFWVNVIK NPQFVFDIHKNSITDACLSVV
774	2124	A	6163	860	125	KTAVKKRNLNPVFNETLRY SVPQAELQGRVL SLSVWHRESLGRNIFLGEVEVPLDTWDWGSE PTWLPLQPRVPPSPDDLPSRGLL ALSLK YVPA GSEGAGLPPSGELHFVWKEARDLPLRAGSL DTYVQCFVLPDDSRASRQRTRV VVRRSLSPVF NHTMVYDGFGPADLRQACAELSLWDHGALA NRQLGGTRLSLGTGSSYGLQVPWMDSTPEEK QLWQALLEQPC EWDGLLPLRTNLA PRT
775	2125	A	6191	2	392	ARGIGSLGRDHSGSGGGTGMAGAWVRKAAD YVRSKDFRDYL MSTMTHWGPVANWGLPIAAIT DMK\KSPEIISRRMTFAL*CYSLTFVRFAYVQ PWNWLMLGCHTA VDFDQLISSMPCISHGMT ASASAL
776	2126	A	6217	1	827	FRGYWGWR EAF TDASWSGGLGP GPGKPGMKIT RQKHAKKHLGFFRNNNFGVREPYQILLDGTFC QAALRGRIQLREQLP RYLMGETQLCTT RCVL KELETLGKDL YGA K LIAQKCQVRNC PHFKNA VSGSECLLSMVEEGNPHHYF VATQDQNL SVK VKKPGVPLMFIIQNTMVL DKPSK TIAFVKA VESGRLSQCMRK KVSNISKRN RV**KTLNRG RRKKRKKIISGPNPLSCLKKKKAPDTQSSASE KKRKRKRKRIRNRSNPKV LSEKQNAEGE

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, \=possible nucleotide insertion)
777	2127	A	6236	1038	1402	YYQISSLPSIVGNIGIFWLLICIFLAKQGGSR*FQPFGPRPRGGGHLRSGVLGQPGQHGETP/SFFYNSKISPALWGPVIPSALGGEAGKSL*PRRQRFQRGGIAPLPSRVGRAKLFLKKK
778	2128	A	6237	422	913	ASFFHHHRGAFLLLLAIPGS*GQDQSLIHWSNAVSNAIDLDDLN*LDHLEEKMPLEVKVVP PQVLSSEPN*RSGGCFSAPSFEVPPWTGEVKP/SPQRDGALGQGPLGIPSDSILALLKKQT*RA LLNWPLGLSRRSSCFGQDGQDLKPRSGLGCNSFRYRR
779	2129	A	6249	420	36	ARAPSPSFVSDVELSDPARERGEMPVAVGPGQGSQPCFDVRVKMFGVMGCAVGMAAGALFTGTSCLSSILVSSSG/SGMGRGRELMMGGIGKTM MQSGGTGTFMFAMIGMIRC*PWLPPTSVPShQSQPMY
780	2130	A	6263	415	1380	RIMRMCDRGIQMLITTVGAFAAFLSMTIAVGTDYWLYSRGVCRTKSTSNDNETSRKNEEVMT HSGLWRTCCLEGAFRGVCKKIDHFPEADAYEQDTAEYLLRAVRASSVFPILSVTLLFFGGLCV AASEFHRSRHNVILSAGIFFVSAGLSNIIIGIVYISANAGRTPGQRDSKKSYSYGWSF/YFSGAFS FIIGR/IIC*GVGLPWHIYIEKHQQQLRAKSHSEFLKKSTFARLPPYRYRFRRRRSSRSTEPRSRDLS PISKGFHTIPSTDISMFTLSRDPSKITMGTLNSDRDHAFLQFHNSTPKESLHNPNANRRTPV
781	2131	A	6274	832	318	RIIKVKDLKQTIAIKTAYPRCKCLVEMDQIFHLQVKQKQLAACLCTWQARDPDCPSTKVVL/VGPGMGCVALFQDSIAWSNKSMPSSLSAISQSPCQVQAPEGPSSFHPTLSFTCLSWQGGDLEFLGDLKGCSSELKNFQELITQSAVHPKADVWWYCGRPLLGTLPSON
782	2132	A	6281	1324	393	WISLPSSLLCRKNGSSAEDDRR\GEPSAEEAEGEREDWGIGSA*SVGAVSKVPSARF*RTYPSDEEEEVTHQKSSSSDSNSEEHRKKKTSRSRNKKRKKNSSKRKHRKYSDSDNSSESNTSDSDDKKRVKAKKKKKKKHKTKKKKNNKTKKESSDSSCKDSEEDLSEATWMEQPNVADTMIDIGPEAPIJHTSQDEKPLKYGHALLPGEAAMA EYVKAGKRIPRRGEIGLTSEEIGSFECGYVM SGSRHRRMEA VRLRKENQIYSADEKRALASF NQEERRKRESKILASREMVKKTKGKDDK
783	2133	A	6305	201	1032	WDDYPQGALRREAAEGLHFLGPPGRVRGQLRGITGPAWYCHSPSHLLSAFCHLPTPSRCPAMARPPVPGSVVVNPWNHES/RRGGVPGPLHS AQEPPAGVWAA*AASAAA\LSIDTASYKIFVSGKSGVGKTAVALVAKLAGLEVPPVVHETTGIQTTVVFWPAKLQASSRVMFRFEPWDCGESALKKFDHMILLACMENTDAFLFLFSFTDRASFEDLPGQLARIAGEAPGVVRMVIGSKFDQYMHTDVPERDLTAFRQAWEPLLLRVKSVPGRLG
784	2134	A	6308	86	96	GSSPDPA S LITMKNQDKKNGAAKQSNPKSSPQGPEAGPEGAQERPSQAAPAVEAEGPGSSQAPRKPEGAQARTAQSGALRDVSEELSRLQLEDILSTYCVDDNNQGGPGEDGAQGEPAEPEDAEKSRTYVARNGEPEPTPVVNGEKEPSKGDPNTEEIRQSDEVGD RDHRRPQEKKAKGLGKEITLLMQLTNTLSTPEEKLAALCKYAEELLEEHRSQKQMLLQKKQSQLVQEKDHLRGEHSKAVLA

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, \=possible nucleotide deletion, ^=possible nucleotide insertion
						RSKLESLCRELQRHNRSLKEEGVQRAREEEEKRKEVTSHFQVTLNDIQQLQMEQHNERNNSKLRQENMELAERLKKLIEQYELREEHIDKVFHKDLQQQLVDALKLQQAQEMLKAEAEERHQREKDPLLKEAVESQRMCELMKQQETHLKQQLALYTEKFEFQNTLSKSSEVFTTIFKQEMEKMTKKIKKLEKETTMYRSRWESENKALLEMAEAKTVRDKELEGLQVKIQRLEKLCRALQT/GAQ^PVRGQRWGSHRTSAVRIFS
785	2135	A	6319	1493	889	SPQGPLLRSVSPVSAGASSVTPGGAQPGVTTTPPSLVAVAPAGSAAAGPAAGWQ^HAGCR/WTKLPWSWMRPMKIFFSEYRSISTRISHDAL^EKCTQPAKPLSMIRTGSSVSPG/PLVKWNWTREFRNSGTRVVSSCCGMSCMYSFLGHCSV/SQDPLVHVVDVGWQPPLGPTVGLRPGLLPHDTTPCQKLVVDLLDWA
786	2136	A	6320	551	135	RWLVPVAECDDSSCVGCTGECPGNCKECISGYA REHGQCADVDECSLAETKTCVRKNENCYNTPGSYVCVCPDGFEET/RRCLCAAGR^SHRRRKPDAAALPRRPVMCRTYPLNYSEGCPVENVALRMPSPAVDSCGGERLPA
787	2137	A	6330	1693	227	DYVLTAAELHRQRSPGVSFGLSVFNLMMNAIMGSILGLAYVMANTGVFGFSFLLLTVALLASYSVHLLLSMCITQAYLGP^TNYFMPVLA^H^LTCLPLIEFLQSL^NSL^AVTSYEDLGLFAFLGLPKLVVAGTHIQNIGAMQSSYLLIIKTELPAAAEFLTGDYSRYWYLDGQTLIICVGVFPLALLPKIGFLGYTSSLSSFFMMFFALVVIKKWSICPCPLTNYVEKGFBQISNVTDCKPKLHFHSKESAYALPTMAFSFLCHTSILPIYCELOQSPSKRQMNVNTNTAIALSFLIYFISALFGYLTFYD/GTTKAQRGEVTCRJRKDKVESELLKG***IP^SHDVVVVMTVKLCILFAVLLTVPLIHFPARKAVTMMFFSNFPFSWIRHFLITLALNIIIVLLAIYVPDFIRNVFGVVGASTSTCLIFPGLFYKLKSREDFLSWKKGVGCFCL/LLSFKTSILRNSLSVYIILPASRKSIYFKI
788	2138	A	6351	1	6622	PRSLCFLSLWAAEAABLADCGLRRRRRLRGTM SASFVPGNGASLEDCHCNLFCLADLTGKIKWKKYVWQGPTSAPILFPVTEEDPILSSFSRCLKADVLG/VWRRDQRPERREL^IFWGGEDP/VLLTLFTMTYQKKKMECGRMDFFPMNAVLCFSKAVHNLLERCLMNRFVRIGKWFVVKPYEKDEKPINKSEHLSCSFTFLHGDSNVCTSVEINQHQPVYLLSEEHTLAQQNSNPQVILCPFGLNQNTLGQAFKMSDSATKKLIGEWKFQYPISCCLEKEMSEEKQEDMDWEDDSLAAVEVLVAGVRMIYPAFCFLVVPQSDIPTSPVGSTHCSSCLGVHQPAS TRDPAMSSVLTTPPTSPEEVQTVDPQSVQKWVKFSSVSDGFNSDSTSHTHGGKIPRKLANHVVDRVWQECDNMRAQNKRKYASSGGLCEEATAAKVASWDFVEATQRTNCSCRLRHKNLKSRNAGQQGQAPSLGQQQKILPKHKTNEKQEKSEKPQKRPLTPFHRSVSDVGM/ADSAVASQLVISAPDSQ\ VRFNSIR\TNIDVAK\TPQMHGTEMANSPPPPPLSP\HPCDVVDEGVTKTPSTPQS QHFYQMPTPDPPLVPSKPMEDRIDSLSQSFPPQYQEA\VEPTVYVGTAVNLEDEANIAWKYYKFPKKDVEFLPPLPSDKFKDDPVGPFQGQESVTSVTELVMVQCKPLKVSDELVQQQYQKINQNLKSAIASDAEOEPKIDPYAFVEGDEEFLFDDKKD

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, \=possible nucleotide insertion)
						RQNSEREAGKKHKVEDGTSSVTLSHEEDA MSLFSPSIKQDAPRPTSHARPPSTSILYDSDLAVS YTDLDNLFNSDEDLTPGSKRSANGSDDK ASCKESKTGNDLPLSCISTADLHKMYPTPPSL EQHIMGFSPMNNKEYGSMDTTPGGTVLE GNSSSIGAQFKIEVDEGFCSPKPSEIKDFSYVY KPENCQILVGCSMFAPLKTLPSQYPLIKLPEE CIYRQSWTVGKLELLSGPSMPFIKEGDGSNM DQEYGTAYTPQHTSTCGMPPSAPPNSNAGI LPSPSTPRFPPTPRTPRTPRGAGGPASAQGS VKYENSDLYSPASTPSTCRPLNSVEPATVPSIP EAHSLYVNLLSLESVMNLFKDCNSDSCCICVC NMNIKGADVGVYIPDPTQEAQYRCTCGFSAV MNRKFGNNSGLFFEDELDIIGRNTDCGKEAE KRFEALRATSAEHVNGGLKESEKL SDDLILL QDQCTNLSPFGAADQDPFPKSGVVISNWVRV EERDCCNDCYLALEHGRQFMNDMSGGKVDE ALVKSSLHPWSKRNDVSMQCSQDILRMLLS LQPVLQDAIQKKRTVRPVGQGPLTWQQFH KMAGRGSYGTDESPEPLPIPTFLLGYDYDYLVLSPFALPYWERLMLEPYGSQRDIAVVLCPE NEALLNGAKSFFRDLTAYIESCRLGQHRPVSR LLTDGIMRVGSTASKKLSEKLVAEWFSQAAD GNNAEFSKLKYAQVCRYDLGPYLASLPLDS SLLSQPNLVAPTSQSLITPPQMTNTGNANTS ATLASAAASSTMVTSGVAISTSVATANSTLT ASTSSSSSSNLSGVSSNKLPSFPPFGSMSNA AGSMSTQANTVQSGQLGGQOTSALQTAGISG ESSLPLTOPHPDVSESTMDRDKVGPTDGDASH AVTYPPAIVVYIIDPFTYENTDESTNSSSVWTL GLLRCFLEMVQTLPPHIKSTVSQVQIIPCQYLLQ PVKHEDREIYPQHLKSLAFSAFTQCRRPLPTS TNVKTLTGFGPGLAMETALRSPDRPECIRLYA PPFLAPVKDKQTELGETFGEAGQKYNVLFGYCLSHDQRWILASCTDLYGELLETCIINIDVP NRARRKKSSARKFGLQKLWEWCLGLVQMSS LPWRVVIGRLGRIGHGELKDWSCLLSRRNLQ SLSKRLKDMCRMCGISAADSPSILSACLVAMEPQGSFVIMPDSVSTGSVFGRTTLNMQTSQL NTPQDTSTCHILVFPTSAVQVASATYTTENL DLAFNPNDGADGMGIFDLLDTGDDLDPDII NILPASPTGSPVHSPGSHYPHGGDAKGQSTD RLLSTEPHEEVPNILQOPLALGYFVSTAAGPLPDWFWSACPQAQYQCPLFLKASLHLHVPSV QSDELLHSKHSHPLDSNQTSVLRFVLEQYN ALSWLTCDPATQDRRSCLPIHFVVLNQLYNFINML
789	2139	A	6359	I	2002	TGT TEDGLDVMGVVPLKGQAFLPLVPEPRR LPVGPLLRALATCHALSRLQDTPVGDPMDLK MVESTGWVLEEEPAADSAFGTQVLAVMRPP LWEPLQLQAMEEPPVPSVLHRFPFSSALQRM SVVVAWPATQPEAVVKGSPELVAGLCNPET VPTDFAQMLQSYTAAGYRVVALASKPLPSVP SLEAAQQLTRDTVEGDSLGLLVMRNLLKP QTTPVIQALRRTRIRAVMVTGDNLQTAVTVA RGCGMVAPQEHLIVHATHPERGQPAASLEFLP MESPTAVNGVKDPDQAASYTVEPDRSRHLA LSGPTFGIVVKHFPKLLPKVLVQGTVFARMAP EQKTELVCELQKLQYCVGMCGDGANDCGAL KAADVGISLSQAEASVSPFTSSMASIECVPM

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, =possible nucleotide insertion)
						VIREGRCSLDTSFSVFKYMALYSLTQFISVLILYTINTNLGDLQFLAIDLVTITTVAVLMSRTGPALVLGRVRPPGALLSPVPLSLLLQMVLVTGVQLGGYFLTLAQWPWFVPLNRTVAAPDNLPNYENTVVFSLSFQYLI.LAAAVSKGAPFRPRLTNNVPFLLASAL*SSVLVVLVLSPLGLLHGPLALRNITDTGFKLLLVGLVTLNFGGLHAGERARPVPPRLPAPPPAQAQSRRFKQLERELAEQPWPPLPAGPLR
790	2140	A	6380	76	1059	SSAGSARKLQVMALAA RLWRLLPFRGAAPGSRPAGTSGSRGHGCPCCRFRGFEVGMNP GTFKRGLLSALS YLGFTYQVISQAAV VHATAKVEEILEQADYLYESGETEKLYQLLTQYKESEDAELLWRLARASRDVAQLSRTSEEKKLLVYEALEYAKRA/L/EKNESSFASHK WYAICLSDVGDYEGIKAKIANAYIIKEHFEKAIELNPKD ATS IHLMGWIWCYTFAEMPWYORRIA*NACLQLPP*FPPYEKALGYFHR AEQVDPNFYSKNLLLLGKTYKLHINKKLA AFWLMKAKDYP AHTEEDKQIQTTEAAQLLTFS EKN
791	2141	A	6434	3	1460	IALLIVDGLAWDDQGGGLALLHISP SKLIL*QDSGMS/YVMVRCTITTRAFFKSLLCHICQYSIGPQ*VTC PGQDACKE*KSTAN*GG*RE**PQVLFF AFLSNPAVKFGRMSKKQRDSL YAEVQKHQQ RLQEQRQQSGEAEALARVYSSSISNGLNSLN NETSGTYANGSVIDLPKSEGY YNNVVGQSPDQSGLDMTGIKQIKQEP IYDLTSPVNLFYISSFNN\GQLAPGITMTEIDRIAQNIKSHLET CQY TMEELHQLAWQTHTYEEIKAYQS KSREALW QQCAIQITHAIQYVVEFAKRITGFMELCQNDQ ILLKSGCLEVVLVRMCR AFNPL.NNTVLFEG KYGGQMFMKALGSDDLVNEAFDFAKNLCSLQLTEEEIALFSSAVLISPDRAWLIEPRKVQKLQEKIYFALQHV IQKNHLDDET LAKLIAKIPTITA VCNLHGEKLQVFQKQSHPEIVNTLFPPLYKELFNPDCATACK
792	2142	A	6440	92	781	SRGTFRCCRDFFPFCFSNMRFLWN AVLTLFV TSLIGALIPEPEVKIEV LQKPFICH RKT KGGDLMLVHYEGYLEKDGS LFHSTHKHNNGQPIWFT LGILEALKW GPG A*K/DMCVGEKRKLIPPA LGYKGEGKGKIPPESTLIFNIDLLEIRNGPRSH ESFQEMDLNDDWKL SKDEV KAYLKKEFEKH GAVVNESHHD ALVEDIFDKED EKDGFISAREFTYKHDEL
793	2143	A	6446	3201	152	PRLKRLVTEEDGGARPEALGKIA PRTPAELG ARADQELVTALMCDLRPAAGGMDLAYV CEWEKWSKSTHCPSPVPLACAWSCRNLIAFTM DLR SDDQDLTRMIHILDTEHPWDLHSIPSEHH EAITC LEWDQSGFPGFLFSRWTGQIK\ CWS MGVSTLA NSWE SS VGS LVEGGPHLWALS\ WLH\ NGV KLA LHEKSGASSFGEKFSR\ VKFS PS LTFLFGGNAMEGWIAVTVSGLVTV SLLQ\ PSQVLTSTESLCRLRARVALADIAFTGGGNIVVATADGSSA\SPVQFYKVCVS VVSEKCRIDT DILPSL FMRC TTDLRKDKFPAITHLKFLARD MSEQVLLCASSQTSSIVECWSLRKEGLPVNNI FQQISPVVGDKQPTILKWRILSATNDDRVSA VIALPKLPLSTNTDLKVASDTQFYPGLGLAL AFHDGSVHIVHRLSLQTM A VFYSSAAPRVD EPAMKRPRTAGPAVHLKAMQLSWTSLALVG

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, △=possible nucleotide deletion, ▲=possible nucleotide insertion)
						IDSHGKLSQLRLSPSMGHPLEVGLALRHLLFL LEYCMVTGYDWWDILLHVQPSMVQSLVEKL HEYYTRQTAALQQVLSTRILAMKASLCKLSP CTVTRVCDYHTKLFJIAISSTLKSLLRPHFLNT PDKSPGDRLTEICTKITDVIDKVMINLKTEEF VLDMNTLQLAQQLQWVGDFVLYLLASLPN QPCPTSECPCTSEPSPTSEPSPTSEPS*SLCG SLLRPGHzFLRDGTSLGMLRELMVVIRIWGLL KPSCLPVYVATSDTQDSMSLLFRLLTKLWICC RDEGPASEPDEALVDECCLLPSQLLJPSLDWL PASDGLVSRLQPQPKIDHLRLHLGACPTEEC LQLDGLARAPGQPKIDHLRLHLGACPTEEC KACTRCGVITMLKSPNRTTAVKQWEQRWIK NC/LVRWALVAGAPQPLPLSPAAPQPLLSYPSA APEPGCCKSHRSPWTLLGAVNLSPPCRAVEG RGPDACVTSRASEEAPAFVQLGPQSTHHSPT PRSLDHLPEDPR
794	2144	A	6490	418	585	NGDKADLENESCRAQVLMPVVPAWEAEGG GSIEPRDLRLQ*AVITPL\TPAWVTQ
795	2145	A	6499	395	1027	KLLWLPPHSEQKRSPLYHPQGPSGTTPSAP/F S SHSPPPSLLQA\PSIAAFRLRTHGHISASGPLRMP FPH/H*NAFLLVFPQGRSQLTS/PSHYLCREVFP DHHHHHLCRLSLESSPLFHHRVLFCPVKQNVN STRAQJFCFLVFHVIGCRCINTFPLHLFLHLWL HFLQJPLCKKNKNSVKGKTVVGRGCQSAAGS DTRVRAAVGAPGLPVPLV
796	2146	A	6503	68	936	HSALLTHSSFCVFTLCQDFFTYSSMSEEVTYA DLQFQNSSEMEKIMEPIGEKGFGEKAPPASHVWR PAALFLTLCLLILLIGLVLASMFHVTLKIEM KKMNKLQNISEELQRNISLQLMSNMNISNKIR NLSTTLQTIAATKLCRELYSKEQEHKCKPCPRR WIWHKDSCYFLSDDVQTWQESKMACAAQN ASLLKINNNKALEFIKSQSRSYDYWLGLSPEE DS/YSWYEESG*YNQPSAWVIRNAPDLNNMY CGYINRLYVQQYHCTYKQRMICEKMANPVQ LGSTYFREA
797	2147	A	6507	1	881	PGSTHASARSQVPRSAGEAAPHSSRRPPGLPH APRAASAQLEERMRDPHPGMTLQEGDCRGS QTSLMTGTDSEMAPEAPQHTIDVHIHQ ESALAKLLTCCSALRPRATQARGSSRLLVAS WVMQIVLGILSAVLGGFFYIRDYTLVTSGA AIWTGAVAVLAGAAAIFIYEKRGGTYWALLR TLLALAFAFTAIAALKLNEDFRYGYSYYN S ACRISSSDWNTPAPTQSPEEVRRHLCTSFM DMLKALFRTLQAMLLGVWILLLASLTPLWL /SL/RGECSQPKG*VPKRDQKEMLEVSGI*PG STHASARSQVPRSAGEAAPHSSRRPPGLPHAP RAASAQLEERMRDPHPGMTLQEGDCRGSQT VSLTMGTADSDEMAPEAPQHTIDVHIHQES ALAKLLTCCSALRPRATQARGSSRLLVASW VMQIVLGILSAVLGGFFYIRDYTLVTSGAAI WTGAVAVLAGAAAIFIYEKRGGTYWALLRTL LALAFAFTAIAALKLNEDFRYGYSYYN SAC RISSSSDWNTPAPTQSPEEVRRHLCTSFM DM LKALFRTLQAMLLGVWILLLASLTPLWYC WRMFPTKGVSP
798	2148	A	6528	912	2287	VPNYLPSVSSAIGGEGVPQRYVWRFCIGLHSAP RFLVAFAFYWNHYLSCTPCSCYRPLCRLNF G LNVVENLALLVLTIVSSSED/TWVPG*GRSG

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						EVFPEGTGLPLPHSDLPTS CGHSLQCGSQQSFPPAIHENAFIVFIASSLGHMLLTCLWR LT KKHTVSQEV DGLSLAGAPRQP RRKSRTS VL RJRV MVRWE LSSNGNPGRGV LGLGLG NKL RVV GQNL GL*HC VVVVWETGE*KRW RLQMGIE*GVASRRQ*VRNSV RGV LVCH NSAPP MY MGFF SPTVFGGGVGG*LHVTFILHPPEVEAAGIPLLL GPSLPQRQGREHIVVILA APACAFH DR*WEP REIRPSP*ELGLRGEPTLSYPASC RVR QPIP*D RKSYSW KQRLFI INFISFFS ALAVYFRHN MYCEAGVYTI FAILEYTVVLTNMAFHIMTAWWDFGNKELLITSQPEEKRF
799	2149	A	6529	1	874	FFFFQRIN FIEHSGSVSLLALACDLGW CEDWS CCLVQGGGDLVDV VQT NHGEDEAAGGDTDSV DEARCKESQ QEAQENLREDLCLESFAKDKIL QIEGSER EHEETRTKQAALDGEPLGGGQLTA VHLHPSKEQQGQEGGERQRGAR THHW RGW EKGRRV RLPPSGKL RADQP VRKLG GPTPS/T ELPG LQPHAPTPHTA/PATPTY SPA DTPN PPV RWK CPLV PVEPRTRQLCRERTRKA CPPK PRPL GLPGDPTGPVTHHAPPV SPTGASGQERRAEP GAVSYAHASATK
800	2150	A	6544	2	662	SAQRWAAVAGRWG C RLL ALLLVPGPGGAS EITFELPDNAKQCFYEDIAQGT KCTLEFQVITG GHYDVDCRLED PDGKVLYKEMKKQYDSFTF TASKNGTYKFCFSNEFSTFTHKT VYFDFQVG E\THLCFLVR/DRVSALTQ MESACVSIHEALKS VIDYQTHFLRREAQGRSRAEDLNTRVAYWSV GEALILLVV SIGVFLLK SFFSDKRTTT RVGS
801	2151	A	6556	1	1319	TPCMECIKG EGLREPQNL SG SQREPQTEGSM DGWRRMP RWG LLLL WG S CT FGLP TD TTF KRIFLKR M P SIRE S LKER GV DMARL GP EWS QP MKR LTLG NTSS VILT NYMDT QY YGEIGIGTP PQTFK VVFD TGSS NVW VPSSK CSRL YTACVY HKLF DAS DSSS YKHNGTE LTR YST GTV SGFL SQDIITVGGITV TQM FGEV TEMP ALP FM LAEF DGV VGM GFIEQ AIGR VTP I FD NIIS QGV LKED VFSFY YNRD SENS QSL GGQ IVL GG SDPQHYE GN FH YIN LIK TGV WQI QM KG VSV GS ST LLCE DG CL AL VDTG ASY ISG ST SSIE KL MEAL GAKE KRL FDY VVK CNEG PTL PP TFL LGG KDT PLT SADYL FQES YSS KKL STL AIH AMY I P P T GPT L V ALGA T FV RKF YTE FDRG NN PHG FALAR
802	2152	A	6567	13	6147	MCLGRM GASS PRS PE PVG PPA PGLP FCCGGSL LAVV VLL ALPVA WQCN APE WLPF ARPT NL TDEF EPI GTYL NYE C R PGY GS GRPF SIICLKNS WVTGAKDR C R R KSCRN PPD PV NGMVH VIKG IOFGSQIKY S CT KGY R LIGSS SATC II SGDT VIW DNETP IDC RIPC GLP PT IT NGDF I STN REN FHY GSVV TYRCN PG SG GRK V FEL VGEPSI YCTS ND DQVGIW SG PA PQC II PNK CTP PN VENG IL VSD NRSLFSL NEV VEFRCQ PGF VMK GPR RVK CQA LNKWEPEL PSCSRV CQ PPP DV LHAERT QR DK DNFSPG QEV FYSC EPY DLR GA ASMR CT P QG DWSP AAPT CEV KSCDD FMG QL NLNG RVL FPV NLQLGAKV DFVC D EGF QLKG SS ASY CVLAG MESLWNS SVPV C EQI FCP SPP V IPN GRH TGKP LEVFPFGK AVNYTC DP HD RGT SF D LIGEST IR CTSDPQNGVWSSPAPRCG IL GH CQAPDHFL FAKLKT QT NASDFP I GTS LKY ECRPE YY GRPF

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, =possible nucleotide insertion)
						SITCLDNLVWSSPKDVCKRKSCCKTPDPVNG MVHVITDIQVGSRINYSCTTGHRLIGHSSAECI LSGNAAHWSTKPPICQRIPCGLPPTIANGDFIS TNRENFHYSVVTYRCNPMSGGRKVFELVGE PSIYCTSNDQVGIVSGPAPQCIPNKCTPPNV ENGILVSDNRSLFLSNEVEFRCQPGFVMKGP RRVKCQALNKWEPELPSCSRVCQPPPDVLHA ERTQRDKDNFSPGQEVFYSCEPGYDLRGAAS MRCTPQGDWSAPAFTCEVKSCDDFMGQLLN GRVLFPVNLQLGAKVDFVCDEGFQLKGSSAS YCVLAGMESLWNSSVPVCEQIFCPSPPVIPNG RHTGKPLEVFPFGAVNYTCDPHPDRGTSFD LIGESTIRCTSDPQNGWSSPAPRCGILGHC QAPDHFLFAKLKTQTNASDFPIGTSLKYECRP EYYGRPFSITCLDNLVWSSPKDVCKRKSCKTP PDPVNGMVHVITDIQVGSRINYSCTTGHRLIG HSSAECILSGNTAHWSTKPPICQRIPCGLPPTI ANGDFISTNRENFHYSVVTYRCNLGSRGRK VFELVGEPSIYCTSNDQVGIVSGPAPQCIPN KCTPPNVENGILVSDNRSLFLSNEVEFRCQP GFVMKGPRRVKCQALNKWEPELPSCSRVCQ PPPEILHGEHTPSHQDNFSPGQEVFYSCEPGY DLRGAASLHCTPQGDWSPEAPRCAVKSCDDF LGQLPHGRVLFPLNLQLGAKVSFVCDEGFRL KGSSVSHCVLVGMRSLLWNNSVPVCEHIFCPN PPAILNGRHTGTPSGDIPYGKEISYTCDPHPDR GMTFNLIGESTIRCTSDPHGNGVWSSPAPRCE LSVRAGHCKTPEQFPFASPTIPINDFEFPVGTS LNYECRPGYFGKMFISICLENLVWSSVEDNC RRKSCGPPPEPFGMVHINTDTQFGSTVNYSC NEGFRLLIGSPSTTCLVSGNNVTWDKKAPICEII SCEPPPTISNGDFYSNNRTSFHNNTVVYQCH TGPDGEQLFELVGERSIYCTSKEQDQGVGVWSS PPPRCISTNKCTAPEVENAIRVPGNRSFFSLTEI IRFRCCQPGFVMSHTVQCQTNGRWGPKLPH CSRVCQPPPEILHGEHTLSHQDNFSPGQEVFY SCEPSYDLRGAASLHCTPQGDWSPEAPRCTV KSCDDFLGQLPHGRVLLPLNLQLGAKVSFVC DEGFRLLGRSASHCVLAGMKALWNSSVPVC EQIFCPNPPAIIJNGRHTGTPLGDIQYKVEVSYT CDPHDRGMFTVNALIGESTIRRTSEPHGNGVWS SPAPRCELPVGAACPQPKIQNGHYIGGHVSL YLPGMТИYCDPGYLLVGKGFIIFCTDQGIWS QLDHYCKEVNCNSFPLFMNGISKEMKKVYH YGDYVTLKCEDGYTLEGSPWSQQCADDRWD PPLAKCTSRTHDALIVGTLSGTIFILLIIFLSWI ILHRKGNNAHENPKEVAIHLHSQGGSSVHP RTLQTNEENSRLP
803	2153	A	6574	2	3233	HGRSARLAAPVAEAMPGPRRPAGSRLRLLL LLLPPPLLLLRG SHAGNLTVAVVPLANTSY PWSWAIRVGAPELALAQVVKARPDLPLPGWT VRTVLGSSENALGVCSDTAAPLAADLKW HNPBVFLGPGCVYAAAPVGRFTAHWVPL TAGAPALGFGVKDEYALTTRAGPSYAKLGDF VAALHRRRLGWERQALMLYAYRPGDEEHCF LVEGLFMRVRDRLNLITVDHLEFAEDDLHYT RLLRTMPRKGRVIYICSSPDAFRTLMLLA GLCGEDYVFHLDIFGQSLQGGQGPAPRRPW ERGDGQDVSAQRQAFQAALKITYKDPMPEYL EFLKQLKHLAYEQNFTMEDGLVNTIPASFH

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/bod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, \=possible nucleotide insertion)
						DGLLLYIQAVENTELAHGGTVTDGENITQRMW NRSFQGVGTGYLKIDSSGDRETDFLWDMDPE NGAFRVVLYNNGTSQELVAVSGRKLNWPLG YPPPDIPKCGFDNEPDACNQDHLSLTVLALV GSLSLLGILIVSFFYRKMQLEKELASELWRVR WEDVEPSSLERHLSAGSRLTLSGRGSNYGSL LTTEGQFQVFAKTAAYKGNLVAVKRVNRKR IELTRKVLFELKHMRDVQNEHLTRFGACTD PPNICLTEYCPRGSLQDILENESITLDWMFRY SLTNDIVKGMLFLHNGAICSHGNLKSSNCVV DGRFVLKITDYGLESFRDLDPEQGHFTVYAKK LWTAPELLRMASSPVVRGSQAGDVYSFGIILQE IALRSGVFHVEGLDLSPKEIERRVTRGEQPPFR PSLALQSHLEELGLLMQRCWAEDPQERPPFQ QIRLTLRKFNRENNSNILDNLLSRMEQYANNL EELVEERTQAYLEEKRAEALLYQILPHSAE QLKRGETVQAEAFDSVTIYFSDIVGFTALSAE STPMQVVTLNNDLYTCFDAVIDNFDVYKVET IGDAYMVSVGLPVNRGLHACEVARMALAL LDAVRSPRIRHRPQEQLRLRIGIHTGPVCAGV VGLKMPRYCLFGDTVNTASRMESNGEALKI HLSS\ETKAVL\EEFGGFELELRGDVEMKGKG KVRTYWLLGERGSSTRG
804	2154	A	6585	2	3837	DAPGRPPVRLPTMELLEDGVVYQEEPSSGAV MSERVSGLAGSIYREFERLIVRYDEEVVKEIIP LVVAVLENLDSVFAQDQEHQVELELLRDDNE QLITQYEREKALRKHAEEKFIEFEDSQEQEKK DLQTRVESLESQTROQELKAKNYADQISILEE REAEKLKEYNALHQRHTEMIHNYMEHLERT KLHQLSGSDQLESTAHSRJRKERPISLGIFPLP AGDGLLTPDAQKGGETPGSEQWKFQELSQPR SHTSLKDELSDVSQGGSKATTTPASTANSDDVA TIPTDTPLKEENEGFKVTDAPNKSSEISKHEV QVAQETRNVSTGSAENEKSEVQAIESTPEL DMDKDLGSGYKGSSTPTKGNIENKAFLDRNTESL FEELSSAGSGSLIGDVDEGADLLGMGREVENLI LENTQLLETKNALNIVKNDLIAKVDELTCEK DVLQGELEAVKQAKLKLEEKNRELEEEELRKA RAEAEDARQKAKDDDDSDIPTAQKRKFRTRVE MARVLMERNQYKERLMLQEAVRWTEMIR ASRENPMQEKKRSSIWQFFSRLFSSSSNTTK KPEPPVNLIKYNAPTSHVTPSVKKRSSTLSQLP GDKSKAFDFLSEETEASLASREQKREQYRQ VKAHVQKEDGRVQAFGWSLPQKYKQVTING QGENKMKNLPVPVYLRLDEKDTSMKLWCA VGVNLSGGKTRDGGSVVGASVFYKDVGALD TEGSKQRSASQSSLKLDQELKEQQKELKNQ EELSSLVWICTSTHSATKVLIIADAVQPGNILDS FTVCNSHVLCIASVPGARETDYPAGEDLSESQ QVDKASLCGSMTSNSAETDSLLGGITVVG SAEGVTGAATSPSTNGASPVMKDPPPEMEAEN SEVDENVPTAAEATEATEGNAGSAEDTVDIS QTGVYTHEVFTDPLGVQIPEDLSPVYQSSND SDAYKDQISVLPNEQDLVREEAQKMSSLPT MWLGAQNGCLYVHSSVAQWRKCLHSIKLKD SILSIVHVKGIVLVALADGTLAIFHRGVDGQW DLSNYHLLDLGRPHIISIRCMVVHDKVWC YRNKIYVQPKAMKIEKSFDAAHPRKESQVRQ LAWVGDGWVWSIRLDSTRLYHAHTYQHLQ DVDJEPYVSKMLGTGKLGFSVRITALMVSC

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						NRLWVGTGNGVIISIPLTETVILHQGRLLGLRANKTSGVPGNRPGSVIRVYGDENSNDKVTPGTFIPYCSMAHAQLCFHGRDAVKFFAVPGQVISPQSSSSGTDLTGDKGRGHLHRSLVVRRP
805	2155	A	6605	469	2602	FGRLLWGTAFKSWKMKAIPHLILLYATFTQSLKVVTKRGSDAGCTDWISIDIKKYQVLVGEPVRICKALFYGYIRTNYSLAQSAQLSLMWYKS SGPGDFEERPIAFDGSRMSKEEDSIWFRPTLLQDSGLYACVIRNSTYCMKVSIISLTVGENDTGLCYNSKMKYFEKAEKSKEISCRDIEDFLLPTREPEIWYKECRTKTWRPSIVFKRDTLLIREVREDDIGNYTCELKYGGFVVRRITELTVTAPLTDKPPKLLYPMESKLTIQETQLGDSANLTCRAFFGYSGDVSPLIYWMKGEKFIEDLDENRVWE SDIKILKEHLGEQEVSISLJVDSVEEGDLGNYS CYVENGNRRHASVLLHKRELMYTVELAGGLGAIILLLVCLVITYKCYKIEIMLFYRNHFGA EELDDGDNKDYDAYLSYTAKVDPDQWNQETGE EERFALEILPDMLEKHYGYKLFIPDRDLIPTGT YIEDVARCVDQSQRLLIVMTPNYVVRRGWSIF ELETRLRNMLVLTGEIKVILIECSELRGIMNYQE VEALKHTIKLLTVKWHGPCKCNKLNKFWKR LQYEMPFKRIEPITHEQALDVSEQGPFGELQT VSAISMAAATSTALATAHPDLRSTFHNTYHS QMRQKHYYRSYEVDVPPGTPLTSIGNQHT YCNIPMTLINGQRPQTKSREQNPDEAHTNSA ILPLLPRETSISSVI
806	2156	A	6614	3	1584	NSARGGVGVGRGARAMATVQEKAALNLSALHSPAHRPPGFSVAQKPGATYVWSSIINTLQTQEVKKRRHRLKRHNDCFVGSEAVDVIFSHL IQNKYFGDVDIPRAKVVRCVQALMDYKVFEAVPTKVFHKDKKPTFEDSSCSLYRFTTIPNQDSQLGKENLYSPARYADALFKSSDIRSASLEDLWENLSLK PANSPHVNISSLSPQVINEVWQE ETIGRLQLVDLPLDSLLKQQEAVPKIPQPKRQSTMVNSSNYLDRGILKAYSDSQEDEWLSAAIDCLEYLPDQMVMVEISRSPFEPQDRTDLVKE LLFDAIGRYYSSREPLLNHLSDVHNGIAELLVNGKTEIALEATQLLLKLLDFQNREFRRLLYF MAVAANPSEFKLQKESDNRMVVKRIFSKAIVDNKNLSKGKTDLLVFLMDHQKDVFKIPGT LHKIVSWKLMAIQNGRDPNRDAGYIYCQRI DQRDYSNITEKTTIDELLYLLKTLDED SKLSA KEKKK\LLGQFYKCHPDFIEHFQD
807	2157	A	6615	4198	2094	FGIVGTFALETDELDSDRDPAIFSLCDFGAMRPQILLALLTGLAAQHQDKVPCKM/VKMLCPDRVDKVSCQVLGLLOQPSVLPDDTETLDLSGNQLRSILASPLGQYTAIRHLDLSTNEISFLQPGAFQALTHLEIHLSLAHNRLAMATALSAGGLGPLPRVTSLDLSGNSLYSGLLERLLGEAPS LHTLSLAENSRTLRTHTFRDMPALEQLDLHSNVLMDEDGAFEGLPRLTHLNLSRNSLTCISDFSLQQLRVVLDLSCNSIEAFQTASQPQAEFQLTWLDLRENKLLHFPLAALPRLIYLNLNNLIRLPTGPPQDSKGIIHAPSEGWSALPLSAPSGNASGRPLSQLLNLDLSYNEIELIPDSFLEHLSLCFLNLSRNCLRTFEARRLGSPLCMLLDDLSHNALE TLELGARALG\SLRTLLLQGNALRDLPPYTFA NLASLQRNLNQGNRVSPCGGPDEPG\ASGCV\AFSGITSLRSLSLVDNEIELLAGAFLHTPLTE

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, \=possible nucleotide insertion)
						LDLSSNPGLLEVATGALGGLEASLEVLAQGN GLMVLQVDLPCFICLKRLNLAENRLSHLPW TQAVSLEVLDLRRNNFSLLPGSAMGGLETSLR RLYLGQNPPLSCCGNGWLAQLHQGRVDVDA TQDLICRFSQQEVSLSHVRPEDCEKGGLKNI NLIIILTFILVSAILLTLAACCCVRRQKFNQQ YKA
808	2158	A	6619	153	1852	FKALSQYIYTNTHLEREAAFEVAIIRRMEEG ARHRNNTEKKHPGGGESDASPEAGSGGGGV ALKKEIGLVSACGIIVGNIIGSGIFVSPKGVL AGSVGLALIVWIVTGFIIVGALCYAELGVNI PKSGGDYFYVKDIFGGLAGFLRLWIAVLYIYP TNQAVIALTFSNYVLQPLFPTCFPPESGLRLLA AICLLLLTWVNCSWRWATRVQDIFTAGKL ALALIIIMGIVQICKGEYFWLEPKNAFENFQE DIGLVALAFLQGSFAYGGWNFLNYVTEELV DPYKLNIPRAIFISIPLVTFVYVFANV/ALYVT AMSPQELVLASNAVAVTFGEKLLGVMAWIM PISVALSTFGVNGNSLFSSRLFFAGAREGHLP SVLAMIHVKRCTPIPALLFTCISTLLMLVTS MYTLINYVGFINYLFYGVTVAGQIVLRWKKP DIPRPIKINLLFPPIYLLFWAFLLVFSLWSEPV CGIGLAIMLTGVPVYFLGVYWQHKPKCFSDFI ELLTLVSQKMCVVVYPEVERGSGTEEANED MEEQQQPMYQPTPTKDKDVAGQPQP
809	2159	A	6621	1041	223	QDSRKMLPSTSVDNLVQGNGVLSRDAARH TAGAKRYKYLRLRFRQMDFEEAWQMLY LFTSPQRVYRNFHYRKQTQDKWQARDPAFL VLLSIWLVCVSTIGFGVLDMGFFETIKLLLWV VLIDCVGVGLLIATLMWFISNKYLVKRQSRD YDVEWGYAFD2VHLNAFYPPLLVILHFQLFFIN HVLTDTFIGYLVGNTLWLVAVGYYIYVTFL GYSVGLLFFS\ALPFLKNTVILLYPFAPLILLYG LSQLGWNFTHTLCFSYKYRVK
810	2160	A	6623	160	822	SPASGHCRNLNGAAVAMFGCLVAGRLVQTA QQVAEDEKVFDFLPDYESINHVVVFMLGTIPPF EGMGGGSVYFSYPSDNGMPVVQLLGFVTNGK PSAIFKISGLKSGEGSQHPFGAMNIVRTPSVAQ IGISVELLDSMAQQTGVNAAVSSVDSFTQFT QKMLDNFYNFASSFAVSQ/VPDDTQ/RPSEMF IPANVVLKWYENFQRRTSTEPSSLLENIIWIKINF
811	2161	A	6627	18	3367	LEGSLNTERAKYYLTITMPHTVTKVEDPEEG AAASISQEPLSLADIKARIQDSDEPDLSQNSITG EHSQLLDDGHKKARNAYLNNNSNYEEGDEYF DKNLALFEEEMDTRPKVSSLLNRMANYTNL QGAKEHEEAENITEGKKPTKTPQMGTFMG VYLPCLQNIFGVILFLRLTWVVGTAGVLQAF AIVLICCCCTMLTAISMSAIATNGVVPAGGSY FMISRALGPFGGAVGLCFYLGTFAAAMYIL GAIEIFLVYIVPRAAIFHSDDALKESAAMLNN MRVYGTAFVLMLVYVFIGVRYVNKFASFL ACVIVSILAIYAGAIKSSFAPPHFVCMGLGNRT LSSRHIDVCSKTKEINNMTPSKLWGFFCNSS QFFNATCDEYFVHNNTS1QGIPGLASGIITEN LWSNYLPKGELIIEKPSAKSSDVGLSINHEYVL VDITTSFTLLVGIFPPSVTGMAGSNRSGDLKD AQKSIPIGTILAILTTSFVYLSNVVLFGACIEGV VLRDKFGDAVKGNLUVGTLSWPSPWVIVIGS FFSTCGAGLQLSLTGAPRLLQAJAKDNIIPFLRV

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, \=possible nucleotide insertion)
						FGHSKANGEPTWALLTAIAELGILIASLDL VAPILSMFFLMCYLFVNLLACALQTLRTPNW RPRFRYYHWAISFMGMSICLALMFIISSWYYA IVAMVIAGMIKYIEYQGAKEWGDGIRGLS LSAARFALLRLEEGPPHTKNWRPQLLVLLKL DEDLHVKHPRLLTFASQLKAGKGLTIVGSVIV GNFLENYGEALAAEQTIKHLMEAEKVKGFHQ LVVAAKLREGISHLIQSCLGGMKHNTVVMM GWPNNGWRQSEDARAWKFIGTVRVTTAAHL ALLVAKNISFFPSNVEQFSEGNIDVWWIVHDG GMLMLLPFLKKQHKVWRKCSIRFFTVAQLE DNSIQMKKDLATFLYHLRIEAEVEVVEMHDS DISAYTYERTLMMEQRSQMLRHMRRLSKTER DREAQLVKDRNSMRLTSIGSDEDEETETYQ EKVHMTWTDKYMASRGQKAKSMEGFQDL LNMRPDQSNVRMMHTAVKLNEVIVNK SHEA KLVLLNMPGPGRNPEGDENYMEFLEVTEGL ERVLLVRGGGSEVITIYS
812	2162	A	6628	66	640	AVCTMSEMAELSELYEESSDLQMDVMPGEG DLPQMEVGSGSRELSLRPSRSGAQQLQEEEGP MEEEEEAQPMIAPEGKRSLANGPNAGEQPGQ VAGADFESEDEGEFFDWEDDYDYPEEEQLS GAGYRVSAALEEADKMFRLTREPALDGGFQ MHYEKTPFDQLAFIEELFVSLMVVNRLTEELG CDEIIDRE
813	2163	A	6630	708	1355	AKMGAYKYIQLWRKKQSDVMRFLLRVRC WQYRQLSALHRAPRPTRPDKARRLGYKAKQ GY/VYIYGFVFAVIYRIRVRRGGRKRPVPKG ATYGKPVHHGVNQLKFARSLQSVAEERAGR HCGALRVLNSYWVGEDSTYKFFEVILDPFHKA AIRRNPDQTQWITKPVHKREMRLTSAGRKS RGLGKGHFKFHHTIGGSRRRAAWRRRNTLQLH RYR
814	2164	A	6635	201	1705	KGTEMNKSWRQSRRRHGRRSHQNPWFRLR DSEDRSDSRAAQPAHDSGHGDDESPSTSSGT AGTSSVPelpG/FDPEKKRYFRLIPGHNNCN PLTKESIRQKEMESKRLRLQQEDRRKKIARM GFNASSMLRKSQLGFLNVNTYCHLAHELRLS CMERKKVQIRSMDFPSALASDRFNLLADTNS DRLFTVNDVTVGGSKGYGIINLQLSCKPTTLKV MHENLYFTNRKVNSVCWASLNHLDShILLC LMGLAETPGCATLLPASLFWNSHPAGIDRPG/ MLCSFRIPGAWSCAWSLNQANNCFSIGLSR RVLLTNVVTGHRQSGFTNSDVLAAQQFALMA PLLFNGCRSGEIAIDLRCGNQKGKGWKATRLF HDSAVTSVRLQDEQYLMASDMAKGIKLWD LRTTKCVRQYEGHVNEYAYLPLHVHEEEGIL VAVGQDCYTRIWSLHDARLLRTIPSYPASKA DIPSVAFSSRLGGSRGAPGLLMAVGQDLYCY SYS
815	2165	A	6643	659	3282	NKNILEVPSARTTRIMGDHLDLLGVVLMAG PVFGIPSCSFDRGIAFYRFCNLTVQPVQLNNT RLLLSFPNYIRTVAASSPFLEQLQLLELGSQYT PLTIDKEAFRNLPNLRIIDLGSSKIYFLHPDAF QGLFHLFELRLYFCGLSDAVLKDGYFRNLKA LTRLDSLKNQIRSLYLYHPSFGKLNLSKSIDFSS NQIFLVCEHELEPLQGKTLSSLFFSLAANSLYSR VSVDWGKCMNPFRNMVLEILDVSGNGWT DITGNFSNAISKSQAFSLILAHHIMGAGFGFH IKDPDQNTFAGLARSSVRHLDLSHGFVFSLNS

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, =possible nucleotide insertion)
						RVFETLKDVLVNLAYNKINKIADEAFYGLD NLQLVNLNSYNLLGELYSSNFYGLPKVAYIDL QKNHIAIIQDQTFKFLQTLQTLRDNALTTIH FIPSIPDIFLSGNKLVTLPKINLTANLIHLSENK LENLDILYFLLRVPHLQILILNQNRFSSCSGDQ TPSENPSELQFLGLENMLQLAWETELCWDFV EGLSHLQLVLYLNHNHYNLNSLPPGVFSHLTALR GLSLSNSRNLTVLSHNDLPANLEILDISRNQLL APNPDVFVSLSVLDITHINKFICECELSTFINWL NHTNVTIAGPPADIYCVY/PDSLGSVSLFSLSTE GCDEEEVILKSLKFSLFIVCTVTLTFLMFTILT TVTKFRGFCFICYKTAQRLVFKDHQPGTEPDMDY KYDAYLCFSKDKFTWVQNALLKHDLTQYSD QNRFNLCFEERDFVPGENRP\ANIQDAIWNSR KIVCLVSRHFLRDGWCLEARFSYAQGRCLSDL NSALIMVVVGSLSQYQLMKHQSIRGFVQKQQ YLRWPEDLQDVGWFLHKLSQQILKEKEKK KDNNIPLQTATVATIS
816	2166	A	6646	1	3811	RDRAGVRPAGKQHA AAAFYDVGGDRPWDS GNTQLPPLRNPKANAMFGAGDEDDEDDTDFLSPS GGARLASLFGGLDQAAAGHGNEFFQYTAPKQP KKGGQTAATGNQATPKTAPATMSTPTILVAT AVHAYRTNGQYVKQGKFGAAVLGNHTR EYRILLYISQQQPVTVAJHVNFEL.MVRPNNNY STFYDDQRQNWSIMFESEKAAVEFVNKQVCIA KCNSTSSLDAVLSQDLIVADGPAVEVGDSDE VAYTGWLQFNHVLGQVFDSTANKDKLRLKG LSGSKVIKGWEDGMLGMKKGGKRLLIVPPA CAVGSEGIVGWTQATDSILVFEVEVRRVKJA KDSGSDGHVSRRDSAAPSPIPGADNLNADPV VSPPTSIPFKSCEPALRTKSNSLSEQLAINTSPD AVAKAKLISRMAKMGQPMLPILPPQLDSNDSEI EDVNTLQGGGQPVTPSVQPSLQPAHPALPQ MTSQAPQPSVTGLQAPSALMQVSSLDHSA VSGNAQSFPYAGM QAYA YPQASAVTSQLQ PVRPLYPAPLSSQPPHFQGSGDMAFLMTEAR QHNTIRMAVSKVADKMDHLMTIKEELQKH SAGNSMLIPMSMVTMETS MIMSNIQRIIQENER LKQEILEKSNRIEEQNDKISELIERNQRYVEQS NLMMEKRNNSLQATATENTQARVLHAEQEKAKVTEELAAATAQVSHLQLKMTAHQKKETEL QMQLTESLKETDILRGQLTKVQAKLSELQET SEQAQSFKSEKQNRKQLELKVTSEEELTDLRVEKESLEKNLSERKKSQAQRSQAEEEJDEIRKSYQEELDKLRLQKKTRVSTDQAAAEQLS LVQAELOQTQWEAKCEHLLASAKDEHLQQYQ EVCAQRDAYQQKLVLQKEKSVCFACLAQAZITALTQNEQHIKELEKNKSQMSGVEAAAS DPSEKVKKIMNQVFQSLRREFELESYNGRTI LGTMMNTIKMVTLQQLNQQEKEESSSEEEE EKAEEPRRPSQEQSASASSGQPQAPLNRRP ESPMVPSQVVEEAVPLPPQALTTSDGHRR KGDSEAELSEIKDGSLLPELSCIPSHRVLGPP TSIPPEPLGPVSMDSLCEESLAASPMMAAK\PDN PSGKVCVREVAPDGPLQESSTRLSLTS\DPPE GDPLALGPESPGEPPQPPQLKKDDVTSSTGPHK ELSSTEAGSTVAGAALRPSHHSQRSSLGDEE DELFKGATLKA LRPKAQPEEEDEDEVSMKGR PPPTPLFGDDDDDDIDWLG
817	2167	A	6649	63	1073	FFRSSSDNGSPIRQYE/HSTPAHQGPVMLEG

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						K\$/ARNSQLRIVLVGKTAGKSATGNSILGRKVFHSGTAAKSITKKCEKRSSSWKETELVVVDTPGIFDTEVPNETSKIEIRCILLTSPGPHALLLVVPGLGRYTEEHKATEKILKMFGERARSMILIFTRKDDLGDTNLHDYLREAPEDIQDLMDFGDRYCALNNKATGAEQEAQRAQLLGLIQRVVRENKEGCYTNRMYQRAEEEIJKQTQAMQELHRVELEREKARIEEYEKIRKLEDKVEQEKRKKQMEKLAEQAHYAVRQQQRARTEVESKD
818	2168	A	6660	357	1890	APGSWTRVVLTLDCPSLRSRSPRSLLDPGMPGISARGLSHEGRKQLAVNLTRVLALYRSILDA
819	2169	A	6661	65	2686	YIIEFFTDNLWDTLPCSWQEALDGLKPPQLATMLLGMPGEVVRYSVWPPLALKSTACALAFTRMPGFQTPSELENPSQSRLTAPFRKHVRPKKQHEIRRLGELVKKLSDFT/GLHPGCRRGLRPGHLSRFMALGLGMVKSIEGDQRLVERAQRLDQELLQALEKEEKRNPNQVVTQSPRHSPHHVWRVVDPTALCEELLPLENPCQGRA
820	2170	A	6666	17	4146	RLLTGLIACGDLSVALLRHFSCPEVVVALASVGCCYMKLSDPGYPLSQWVAGLPGYELPYRLREGACHALEEYAERLQKAGPGLRTHCYRAALETVIRRPARPELRRPGVQGIPRVHELKIEEYVQRGLQRVGLDPQLPLNLAALQAHQAENRVVAFFSLALLLAPLVETLILLDRLLYLQEQA
						LSPIGFHAELLPIFSPELSPRNLVLVATKMPLEGALSVLETDSGSGHCLAEAAASMGPWGKWLRWTVALLLA
						AAAGTAVGDRCERNEFQCQDGKCI SYK WVCDGSAECQDGSDESQETCLS VTC KSGDFSCGGRVNRCIPQFWRC DGQVDCDNGSDEQGCPPKTC
						SQDEFRC HDGK CISRFV CDSDR DCLDG SDEASCPVLT CGPAS FQCN S STCIP QL WAC DNDPD
						CEDGSDEW PQRCR GLYV FQGDSSPCSAFE FHCLSGECIHSSWRCDGGPDCKDKSDEENCAVATCRPDEFQCS DGN C IHSRQCDREYDCKDMS
						DEV GCVN VTLC EGP NFKCHSGECITLDKVCNMARD CRDWSDEPIKECGTNECLDNNGCS
						HVCNDLKIGYECLCPDGFQLVAQRRCEDIDE
						CQDPDTCSQLCVNLEGGYK CQCEEGFQLDPHTKACKAVGSIAYLFFTNRHEVRKMTLDRSEY
						TSLIPNLRNVV ALDTEVASNRIY WSDL SQRMI
						CSTQLDRAHGVS YSYDTV ISRD IQAPD GLA VDWIHSNIY WTDSV LGTVS VADTKGVKRKTLFR
						ENGSKPRAJVVDPVHGFMW TWDWGTPAKIK
						KGGLNGVDIYSLV TENIQWPNGITLDLLSGRL
						YWVDSKLHSISIDVNGGNRK TILED EKRLAH
						PFSLAVFEDKVFWT DII NEA IF SAN RL TGSDV
						NLLAENL LSPEDMVLFHNLTQPRGV NWCERT
						TLSNGGCQYLC LCPAPQINPHSPKFTCACP DGM
						LLAR DMR SCLTEG VEA AVAT QET STV RLKV S
						STA VRTQH TTTRPV P DTS RLPG A TPGL TT VEI
						VTM SHQ ALGD VAGR GN EKKPSS VRAL SIVL
						PIVLLVFLCLGVFL WKNW RLKNINS INF DNP
						VYQKTTEDEVHICHN QDGYSYPSRQM VSLED
						DVA ERGISSQIKGMKSGSGGGSP TLWGLLFLSAA
						LSLWPTSGEICGPGIDIRNDYQQLKRL ENCT VI
						EGYLHILLISKAEDYRSYRFPKLT VITEYLLL F
						RVAGLESLGDLFPNLT VIRGWKL FYN YALV IF

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, =possible nucleotide insertion)
						EMTNLKDILGYLNLRNITRGVAIRIEKNADLCYL STVDWSLILDAVSNNYIVVGNGKPPKECGDLCP GTMEEEKPMCEKTTINNEYNYRCWTINRCQK MCPSTCGKRACCTENNECCHPCECLGSCSAPDN DTACVACRHHYYAGVCVPACPPNTYRFEGW RCVDRDFCANILSAESSDSEGFVVIHDGECKMQE CPMSGFIRNGSQSMYCIPCEGCPKVCCEEKKT KTIDSVTSAQMLQGCTIFKGNNLLINIRRGNNIA SELENFMGLIEVVTGTVKIRHSHALVSLFLK NLRLILGEEQLEGNGNSFYVLDNQNQLQQLWD WDHRNLTIKAGKMYFAFPNKLCVSEIYRMEE VTGTKGRQSKEINTRNNGERASCESDVLHF TSTTSKNRIITWHRYRPPDYRDLSFTVYYK EAPFKNVTEYDGQDAGCSNSWNMVDVDLPP NNDVEPGILLHGLKPWTQYAVYVKAVTLM VENDHIRGAKSEILYIRTNASVPSIPLDVLSAS NSSSQLIVKWNPPSLPNGNLSYIVRWQRQP QDGYLYRHNYCSKDKPIRKYADGTDIEEV ENPKTEVCGGEGKGPCACPKTEAEKQAEKEE AEYRKVFENFLHNSIFVPRPERKRDVMQVA NTTMSSRSRNTTAADTYNIDPEELETEYPFF ESRVDNKERTVISNLRPFTLYRIDIHSCNHEAE KLGCSASNFSARTMPAEGADDIPGPVTWEP RPENSIFLKWPPEPNPGLILMYEIKYGSQVE DQRECVRSRQEYRKYGGAKLNRLNPGBTYARI QATSLSGNGSWTDPVFFYVQAKRYENFIHLII ALPVAVLIVGGLVIMLYVFHRKRNNSLGN GVLYASVNPEYFSAADVYVPDEWEVAREKIT MSRELGQGSFGMVYEGVAKGVVKDEPETRV AIKTVNEAASMRRERIEFLNEASVMKEFNCHH VVRLLGVVSQGQPTLVIMELMTRGDLKSYLR SLRPEMENNPLVAPPSSLKMIQMAJEADGM AYLNANKFVHRDLAARNCMVAEDFTVKIGD FGMTRDIYETDYYRKGGKGLPVRWMSPESL KDGVFYTYSDDVWSFGVVLWEIALTAEQPYQ GLSNEQVLRFVMEGGGLDKPDNCPDMLFEL MRMCWQYNPKMRPSLEIISIKEEMEPGFRE VSFYYSEENKLPEEELDLEPENMESVPLDPS ASSSSLPLPDRHSGKAENGPGPGLVLRASF DERQPYAHMNGGRKNERALPLPQSSTC
821	2171	A	6691	106	825	GRVLFRGCGVGHKGQVLMGTFLAQDWLSE SNHVFCVSSMLRQKRLASSVLCRGKKVW LDPNETNEIANANSRQQIRKLKDGLIIRKPVT VHSRARCRKNTLARRKGRHMIGKRKGTAN ARMPEKVTVWMMRMRILRRLRRLYRES/KYR ESKKIDRHMYHSLYLVKGNGVFKNKRILMEH IHKLKADKARKKLLADQAEARRSKTKEARK RREERLQAKKEEIKTSEEETKK
822	2172	A	6715	772	21	DFRPGPLLPRKKKMFGFHKPKMYSIEGC\CI SGAKSSSS\RTFDSKRYEK\DFQ\SCFGLHETR\SGD\ CNA\CVLL\KRWKKLPAGSKK\NWNH VVDARAGPSL\KTTLKPKKVKTL\SGNRK\ST QISKLQKEFKR\HNSDAHSTTS\ASAPVAQSPLF TVNQFRWTGSDTGVGFGPSNRNHPVFSFLDL\TYWKRQKICCGNYKGRFGEVLDTHLFKPCC SNKKA\AAEKP\EEQGPEPLPISTQEWVTEVFM
823	2173	A	6727	3	4063	PYLATLQLDSSLJPPKYOTPPAAAQGQATPG NAGPLAPNGSAAPPAGSAFNPNTSNSSTNPAA SSASAGSSVPPVSSASAAGGISQISTTSSSGFSGS VGGNPSTGGISADRTQGNIGCGGDTPGQS

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \possible nucleotide insertion)
						SSQPSDGQESNVPVGSLADPDYLNTPQMNTPVTNSAAPASNAGAVLPSPATPRFSVPTPRTRTPRTPRGGTAGSQGSVKYDSTDQGSPASTPSTTRPLNSVEPATMQPIPEAHSLYVTLILSDSVMNIFKDRNFDSICCACANMNIKGADVGLYIPDSSNEDQYRCTCGFSAIMNRKLGYNGLFLEDELDIFGKNSDIGHQAAERRLAMCQSTFLPQVEGTKKPQEPPISLLLLQNQHTQPFAVLNFLDYISSNNRQTLPCVSWSYDRVQADNNDYWTECFNALEQGRQYVDNPTGGKVDEALVRSATVHSWPHSNVLDISMNSSQDVVRMLLSLQPFLQDAIQKKRTGRTWENIQHVQGPLTWQQFHKMAGRGTGSEESPEPLPIIIVGYDKDFLTISPFLPFWERLLDPYGGHRDVAYIVVCPENEALLEGAKTFFRDLSAVYEMCRLGQHKPICKVLRDGIMRVGKTVAQKLTDELVSEWFNPWSGEENDNHSRLKLYAQVCRHHLAPYLATLQLDSSLIPPKYQTTPAAAQGQATPGNAGPLAPNGSAAPPAGSAFNPTSNSSTNPAAASSASGSSVPPVSSSASAPGISQISTTSSSGFSGSVGGQNPSTGGISADRTQGNIGCGDTPGQSSSQPSQDGQESVTERERIGIPTEPDSADSHAHPPAVVIYMVPDFTYAAEEDSTSGNFWLSSLMRCYTEMLDNLPEHMRNSFIQIVPCQYMLQTMKDEQVFYIQLKSMAFSVYCQCRRPLPTQIHKSLTGFPAAASIETLKNPERPSPIQLYSPPFILAPIKDKQTELGETFGEASQKYVNLVFGYCLSHDQRWLLASCTDLHGELLETCVVNIALPNRSRRSKVSARIGLQKLWEWCIGIVQMTSLPWRVVIGRIGRLGHGELKDWSILLGECSLQTIISKLLKDVCRMCGISAADSPSILSACLVAMEPQGSFVVMPDAVTMGSVFRSTALNMQSSQLNTPQDASCTHILVFPTTSIQQVAPANYPNEQDFSPNDDMFVDLPPDDMDNDIGILMTGNLHSSPNSSPVGSPSGIGVGSHFQHSRSQGERLLSREAPEELKQQPLALGYFVSTAKAENLPQWFWSSCPQAQM/QCPLFLKASLHHHSIVAQTDELLPARNSQRVPHPLDSKTTSDVLRFVLEQYNALSWLTCNPATQDRTSCLPVHVVLQLYNAIMNIL
824	2174	A	6732	2440	365	VEEGLGRRRTPPGGRGPGVTPARPGPDSVRRRLPPSSAAFSHRRHNLCSRRRRGGGGGGGGGGGGGTTIKRPGITGPTAATSPSGEPGNAASAPLSLLSPFPQQTYYQHPGVAEPSAYGGRDVACASLVFGRLQHRRGGDRKRGLLGRSSGDAASDQPFRCRGSGTAGRLVKQMDFTEAYADTCSTVGLAAREGVNVKVLRKLLKKGRSVDVADNRGWMPHIHEAAAHNSVECLQMLINADSENYYIKMKTSEGFCALHLAASQGHWKIVQILLEAGADPNATTLETTPLFLAVENGQIDVLRLLLQHGANVNGSHSMCGWNSLHQASFQENAEIILLLRKGANKECQDDFGITPLFVAAQYGKLESLSILISSGIANVNCQALDKATPLFIAAQEGHTKCVELLSSGADPDLYCNEDSWQLPIHAAAQMGHTKILDLLIPLTNRACTDTGLNKVSPVYSAVFGGHEDCLEILLRNGYSPDAQACLVFGFSSPVCMAFQKDCEFFGIVNILLKYGAQINELHLAYCLKYEKFSIFRYFLRKGCSDLGPWNHIYEFVNHAJKAQAKYKEWLPHLLVAGFDPLILLCNSWIDSVSIDTLITTLEFTNWKTLPAPAVERMLSARASNAWILQHQIATVPSLTHLCRLEIRSSLKSERLRSDSYIS

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, =possible nucleotide insertion)
						QLPLPRSLHNYLLYEDVLRMYEVPELAAIQDG
825	2175	A	6735	277	1252	RIMGLFDGRGVQM LLTVGAFAAFSLMTIAVG TDYWLYSRGVCKTKSVSENETSKNEEVMT HSGLWRTCCLEGNFKGLCKQIDHFPEDADYE ADTAEYFLRAVRASSIFIPILSVILLFMGGLCIA ASEFYKTRHNII SAGIFFVSAGLSNIIGIIVYIS ANAGDPSKSDDSKKN S YSYGWSFYFGALSFIIA EMVGVLAVHMFDIRHKQLRATARAI TDYLQ ASAATRIPSYRYR YQRRSRSSRSTEPHSRDA SPVGKGFNTLPSTEISMYTLSRDPLKAATTPT ATYNNSDRDNFLQVHNCI QKENKDLSLHSNTA NRRTTPV
826	2176	A	6744	3	5177	SDDLRTGLFQDVQDAESLKLPGVYEVLFYNE TEDCPGMMLWRYPEPRGLTLVRITPVPFNTT EDPDISTADLGDVLDQDPCSLEYWDELQKVVF AFREFNLSESKVCELOLPDINLVNDQKKLVSS DLWRIVLNSSQNGADDQSSASESGSQSTCDPL VTPTALACTRVDSCFTPWVPSLCVFSQFAH LEFHLCHLDQLGTAAQYQLQPFWSDRNMP S ELEYMIVSFREPHEM YL RQWNNGSVCQEIQFL AQADCKLLECRNVTM QSVVKPFSIFGQMAVS SDVVEKLLDCTVIVDSVFN LGQHV VHVS LNT AIQA WQQNKCPEVEELVFSH FVICNDTQETL RFGQVDTDENILLASLHSHQYSWRSHKSPQL LHICIEGWGNWRWSEPFSDVHAGTFIRTIQYR GRTASLIKVQQLNGVQKQIIICGRQJICSYLSQ SIELKVVQHYIGQDGQAVVREHFDCLTAKQK LPSYILENNELTEL CVKAKGDEDWSDVCLE SKAPEYSIVQVPSN SIIYVWCTVLTLEPNS QVQQRMIVFSPLFIMRSHLDP IIIHLEKRSLGL SETQII PGKQEKPLQNIEPDLVHHLT FQAREE YDPSDCAPVPISTSLIKQIATKVHPGTVNQILD EFYGPEKSLQPIWPYNNKKDSDRNEQLSQWD S PMRVKLSIWKPVYVRTL LIELL PWALLINESKW DLWLFEGEKIVLQVPA GKIIPPNFQEA FQIGIY WANTNTVHKSVIAKLVHNLTSPKWKDGGNG EVVTLDEAFVDT EIRLGAFPGHQKLQFCIS SMVQQGIQIIQIEDKT TINNTPYQIFYKPQLSV CNPHSGKEYFRVPDSATFSICPGGEQPMKSS SLPCWDLMPDISQS VLDASLLQKQIMLGSPA PGADSSQCWSLPAIVRPEFPRQSVA VPLGNFR ENGFCTR AIVLTYQEHLGV TYLTSEDPS PRV IIHNRCPVKMLIKE NIKDIPKFEVYCKKIPSECS IHH ELYHQISSYPDCKTKD LPSLL RVEPLDE VTTEWSDAIDINSQGTQVVF LTGF GYVYV DV VHQCGTVF ITVAPEGKAGPIL TTNRAPEKIV TF/KMFITQLSLAVFDDLTHHKASAELLRLTL DNIFLCVAPGAGPLPGEEPVAALFELYC VEIC CGDLQLDNQLYNKS NFHFAVLVCQGEKAEP I QCSKMQSLLISNKELEYKEKCFIKLCITLNEG KSILCDINEFSPELKPARLYVEDTFVYYIKTLF DTYLPNSRLAGHSTHLSGGKQVLPMQVTQH ARALVNPV KLRKLVIQPVNLLVSIASLKL YI ASDHTPLSFSVFERGPIFTTARQLVHALAMHY AAGALFRAGWVVGSLDILGSPASLVR SIGNG VADFFRLPYEGLTRGPAGFVSGVSRGTTSFVK HISKGTLTSITNLATSLARNMDRLS LDEEHYN RQEERRQLPESLGEGLRQGLSRLGISLLGAI AGIVDQPMQNFKQTSEAQASAGHKAKGVISG

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion
						VGKGMGVFTKPIGGAAELVSVTGYGILHAGLSQLPKQRHQPSDVHADQAPNSHVYVWKLMLQSLGRPEVHMALDVVLVRGSGQEHEGCLLLTSEVLFVVSVSEDTQQQAFPVTEIDCAQDSKQNLLTVQLKQPRVACDVEVDGVRRERLSEQQYNRLVDYITKTSCHLAPCSSMQIPCPVVAEPPPSTVKTYYHLYVDPHPFAQVFLSKFTMVNKALRKGF
827	2177	A	6748	2	1662	FVGAPRRGNPFGSPGNPGRHHQGPCHRPRGKTAGSGVPLTWRPQAAATGLEMPSSGRALLDSPLDGSLSLTDSSVFCSEGEGEPLALGDCFTNVGGSRFVLSQQALSCFPHTRLGKLAVVASYRRPGALAAVPSPLECDDANPVDNEYYFDRSSQAFRYVLHYRTGRLHVMEQLCALCSFLQEQI QYWGIDELSIDSCCRDRYFRRKELSETLDFKKDTEDQESQHESEQDFSQGCPCTVRQKLWNILEKPGSSTAARJFGVISIJFVGVSIIINMALMSAELSWLDLQLLEILEYVCISWFTGEFVLRFLCVDRRCRFLRKVPNIIDLAILPFYITLLVESLSGQSQTQELAENVGAHCPGCLRLRALRMLKAAGRHSITGLRSLSGMITQCYEEVGLLNLFLSVGSISSTEVFYFAEQSIPDTTFTSVPCAWWATTSMTTVGYGDIRPDTTGKIVAFMCILSGILVLAUPIAIJNDRFSACYFTLKLKEAAVRQREALKKLTNIATDSYISVNLRDVYARSIMEMRLKGRRERASTRSSGGDDWF
828	2178	A	6786	5672	1360	GTHPASSGPVPLPAAVSAATREELGEPVFVTASSGFQSMHSNNPKVRSSPSGNTQSSPKSKQEVMPVRPTVMSPSGNPQLDKSFNSQGKQGGASASQSPSPCDSKSGGHTPKALPGPGGSMGLKNGAGNGAKGKGKRERSISADSFDQRDGPCTPNDSDDIKECNSADHIKSQDSQHTPHSMTPSNATAPRSSTPPHGQTTATEPTPAQKTPAKVYVYVFSTEMANKAAEAVLKGQVETIVSFHIQNISNNKTERSTAPLNTQISALRNPKLPQQPPANQDQNSQNTRLQPTPPIPAPAPKPAAPRPLDRESPGVENKLIPSVGSPASSTPLPPDGTPGNSTPNRAVTPVSQGSNSSADPKAPPPPPVSSGEPPTLGENPDGLSQEQLERHRERSLQTLRDIQRLMFFDEKEFTGAQSGGPQQNPVGVLDPGPKPEGPIQAMMAQSLSLGKPGPRTDVGAPFGPGHQRDVFPSPDEMVPSSMNSQSGTIGPDHLDHMTPEQIAWLKLQEFYEEKRRKPEQVvvvQQCSLDMMVHQHGRGVRVGRGPPPPYQMTPSSEGWAPGGTEPFSDGINMPHSLPPRGMAPHPNMPGSQMRPLPGFAGMINSEMEGPVNPNPASRPGRLSGVSWPDDVPKIPDKGRNFPPGGQIFSGPGRERFPNPOGLSEEMFOQQQLAEKQLGLPPGMAMEGIRPSMEMNRMIQGSQRHMEPGNNPIFPRIPVVEGLSPSRGDFPKGIPPQMGPGRELEFGMVPSGMKDVDNLNVNMGNSNSQMIQKMREAGAGPEEMLKLRPGGSMDLPAQQKMVPLPFGEHPPQELYGMGPRPLPMSQGPGNSGRLRNREPIGPDQRTNSRLSHMPPLPLNPSSNPTSLNTAPPVQRGLGRKPLDISVAGSQVHSPGINPLKSPITMHQVQSPMLGSPSGNLKSPQTSPSLAGMLAGAAAASIKSPPVVLGSAASAVPVLKSPSLPAPSPGWTSSEPPPLQSPGIPPNHKAPLTMASPAMLGNVNESGGPPPPTASQPASVNPBG\SLPSSTPYTMPEPTSONPLSIMMSRIMSKFAMPS\SNPGYHNDAI

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, \=possible nucleotide insertion)
						KTVASSDDDSPPARSPNLPSMNNMPGMGINTQNPRISGPNPVVPMPTLSPMGMTQPLSHSNQMPSPNAVGPNIPPHGVPMGPGLMSHNPIMGHGSQEPPMVQPGRMGFPQGFPPVQSPQQVVPFPNGPSGGQGSFPGGMGFPGEPLGRPSNLPQSSADAAALCKPGPGPGPDSTVLGNSMPSVFTDPDLQE VIRPGATGIPEFDLSRIIPSEKPSQLQYFPRGEVPGRKQPQGPQPGFQSHMQGMMGEQAPRMGLALPGMGGPGPVGTPDILGTAPSMPGHNPMRPPAFLQQGMMGPHHRMMSPAQSTMPGQPTLMSNPAAVGMIPGKDRCGPAGLYTHPGPVGSPGMMMSMQGMMGP\NRTS
829	2179	A	6797	433	3	ASFFNFSCICKIILEVGVPPVGHPAHDDVGGRHGPGGR/GSRSRPSLQCACPGGRRSGCPAGSSPASTCPPSGGSGADRFGPSPPPPSREAAPTAGAAASSTSSGASCPPVASSRWGVRSRTRSGSGGEREPRDRP SERPRLV
830	2180	A	6800	3	1911	LPERAFGPRTPRAPPRLRRRLLLSPPPRPPPPLDREPRAPGPWLCPSPRAGTAQDPARIRERRGRVAGGAAGPAMELRARGWWLLCAAALVACARGDPASKSRSCGEVRQIYGAKGFSSSDVHQAEISGEHLRICPQGYTCTSEMEENLANRSHAELTALRDSSRVLQAMLATQLRSFDDHFQHLNDNSERTLQATFPAGFELYTQNARAFRDLYSELRLYYRGANLHLEETLAEFWARLLERLFKQLHPQLLLPDDYLDCLGKQAEALRPFGEAP\RERLRLRATRA\ FVAAR\SFVQGLGVAS\DVVRKVAQVPLGPEC\ SRAVIEAGSYC/ALHCVGVPGARCPDYLCRNVLKGCCLANQADLDAEWRLNLLDSMVLJTDKFWTGTSVESVIGSVHTWLAEAINALQDNRDTLTAKVIQGCGNPKVNPQGPGPBEKRRGKLAPRERPPSGTILEKLVSEAKAQLRDVQDFWISLPGTLCEKSMALSTASDDRCWNGMARGRYLPEVMGDGLANQINNPEVEVDITKPDMTIRQQIMQLKIMTNRLRSAYNGNDVDFQDASDDGSGSGSGDGCLDDLCGRKVSRKSSSSRTPLTHALPGLSEQQKTSAASCPQPTFLPLLLFLALT\ VARPRWR
831	2181	A	6808	2	1522	ASRHGMPTGALLMLLGALGPPLAPGVRGSEAEGRLREKLFGSYDSSVRPAREVGDRVRVSVDLILAQLISLNKEDEEMSTKVYLDLEWTDYRLSDWPAEHHDGIDSLRITAESVWLPDVVLLNNNDGNFDVALDISVVVSSDGSVRWQPPGIYRSSCSIQVTYFPFDWQNCTMVFSSSYSDSSEVSLQTGLGPDGQGHQEIHIEGTFIENGQWENIHKPSRLIQPPGDPRGGREGQRQEVIFYLIIRRKPLFYLVNVIAPCILITLLAIFVFYLPPDAGEKMGLSIFALLTLTVFLLLADKVVPETSLSPVIIKYLMTFMVLVTFSVILSVVVVLNLHHRSPHTHQMPFLWVROIFIHKPLYLRKRPKPERDLMPPEPPHCSSPGSGWGRGTDEYFIRKPPSDFLFPKPNRFQPELSAPDLRRFIDGPNRVA\ ALLPELREVSSISYIAROLQE\ EQEDHDAKEDWQFVAMVVDRFLWTFIIFTSGVTLVIFLDATYHLPPPDPFP
832	2182	A	6824	71	1079	ETMAKNPPENCEDCHLNAEAFSKKICKSLKICGLVFGILALTLIVLFWGSKHFWPEVPKKAYDMEHTFYSNGEKKKIYMEIDPVTRTEIFRSGNGTDETLEVHDFKNGYTGIVFVGLQKCFIKTQIKVIEFSEEEEIDENEETITTFEQSVIWVPAEKPIENRDFLKN SKILEICDNVTMYW\ NPTLIS

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						GTFAKQLHHNFAFIJLVSELQDFEEEGEDLHPP ANEKKGIEQNEQWVVPQVKVEKTRHARQAS EEELPINDYTENGIEFDPMLEDERGYCCCIYCR GRNYCRRVCPEPLLGGYPYPCYQGGRVICRV IMPCNWWVARMLGRV
833	2183	A	6846	116	602	EAEQEVCAGAKCCGDAPHVENREEETARIGP GVMESEKFERALNNLIVENVNQNENDEKDEKE QVANKGEPLALPLNVSEYCVPRGNRRRFRVR QPILQYRWDIMHRLGEQARMREENMERIGE EVRQLMKEKLREKQLSHSLRAVSTDPPHHDDH DEFC\LM
834	2184	A	6851	3	2024	PNGVALLHLPGAAVIPNTNYMFQDALGGRSR GSREESPAPSRAPASLWRRLLVVVEAKMAA HAAAAAAQAAAQAQAAHEAADSWYLALLGF AEHFRTSSPPKIRLCVHCLQAVFPFKPPORIEA RTHLQLGSVLYHHTKNSEQARSHLEKAWLIS QQPQFEDVKFEASSLSELYCQENSVDAAKP LLRKAIQISQQTPTYWHCRLLFQLAQLHTLEKD LVSACDLLGVGAEYARVVGSEYTRALFLSK GMILLMERKLQEVHPLLTLCGQIVENWQGN PIQKESLRVFFLVLQVTHYLDAGQVKSVKPC LKQLQQCITQSTLHDDEILPSNPADLFHWLP KEHMCVLUVLYLTVMHSQMAGYLEKAQKYT DKALMQLEKLKMLDCSPILSSFQVILLEHIJM CRLVTGHKATALQEISQVCQLCQQSPRLFSN HAAQLHTLLGLYCVSVNCMDNAEAQFTTAL RLTNHQELWAFITVTNLASVYIREGRHQEVVLYSLLERINPDHSFPVSSHCLRAAAFYVRLGF SFFQGRYNEAKRFLRETLKMSNAEDLNRLTA CSLVLLGHIFYVLGNHRESNNMVVPAMOLAS KIPDMSVQLWSSALLRDLNKACGNAMDAHE AAQMHQNFQSQQLLQDHIEACSLPEHNLTWT DGPPPVQFOAQONGPNTSLASLL
835	2185	A	6855	334	1268	PTRRPILPLTSPKAISVPSPLQGKQHTLVKSCL SVSGIGGLVSLSSRMKLQLTLAVSVTALKFWS AYVPCQTQDRDALRLLTEQIDLIRRMCASYSE LELVTSAKALNDTQKLAQCLIGVEGGHSDLNS LSILRTFYMLGVRYLTLTHTCNPWAESSAK GVHSFYNNISGLTDGEKVVAEAMNRLGMMV DLSHVSDAVARRALEVSQAPVIFSHSAARGV CNSARNVPDDILQLLEERWAFVMVSLFHGE LIQWQPIRPMCSTVADHFDHKAVIGSKFIGI GGDYDGAGKYRKKTCKAPWRTSSRMSS
836	2186	A	6862	315	11	PPRSRPSCWRKKVGPGRPWWGGTGGPGQQ RPEIIRLLPLPMTGACGAVAASRTGSSPG/SSL PNGHGGKGSGGLANGLAGNP\GHLGLGSSFGT GPGSGRPP
837	2187	A	6863	2	1615	VLRGQRGPAGGLAEERRGRNEWRIHDVTT APFPGLVQRRSRLLIVSQVRYFLKNKVSPDLC NEDGLTLHQCCIDNFEIIVKLLLSHGANVN AKDNELWTPLHAAATCGHINLVKILVQYGA DLLAVNSDGNMPYDLCEDEPTLDVIETCMAY QGITQEKEJNEMRVAPEQQMIADIHCMAAGQ DLDWIDAQGATLLHIAHGANGYLRAAEELLGDH GVRVDVKDWDGWEPLHAAAFWGQMMAE LLVSHGANLNARTSMDEMPLCEEEEFKVL LLELK\HKHDVIMKSQRLRKSSLSSRTSHRQA S/SVGKVVRRTQPVGTPNL\YRKEYE/GEEAJ LWQRSAEAEDQRTSTYNGDIRETERTDQENKD

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, \=possible nucleotide insertion)
						PNPRLÉKPVLLSEFPTKIPRGELDMPVENGLR APVSAQYQALANGDVWKVHEVPDYSMAYG NPVGADATPPWSSYKEQSPQTLLERKRQRAA AKLLSHPFSLSTHLGSSSMARTGESSSEGKAPLI GGRTSPYSSNGTSVYYTVTSGDPPLKFKAPI EEMEEKVHGCCRIS
838	2188	A	6865	6291	739	AGPLEPRVQVGAMALQLWALTLLGLLGAGAS LRPRKLDFFRSEKELNHLAVDEASGVVYLGA VNALYQLDAKLQLEQQVATGPVLDNKKCTP PIEASQCHEAEMLDNVNQLLLVDPPRKRLVE CGQLLKGICALRALSNISLRLFYEDGSGEKSF VASNDEGVATVGLVSSTPGGDRVLFGKG NGPHDNGIIVSTRLLDRTDSREAFEAYTGHAT YKAGYLSTNTQQFVAAFEDGPYVFFVFNQQD KHPARNRTLLARMCREDPNYYSYLEMDLQC RDPDIHAAAFGTCLAASVAAPGSGRVLYAVF SRDSRSSGGPGAGLCLFLDEVHAKMEANRN ACYTGTREARDFYKPFHCDIQCGGHAPGSSK SFPGESEHLPPYPLGSRDGLRGTAVLQRGGLN LTAVTVAEEENNHTV AFLGTSDRILKVYLT DGTSSEYDSILVEINKRVKRDLVLSGDLGSLY AMTQDKVFRLPVQECLSYPTCTQCRDSQDPY CGWCVVEGRCTRKAECPRAEEASHWL WSRS KSCVAVTSAQPQNMSRRAQGEVQLTVSPLPA LSEEDELLCLFGESPPHPARVEGEAVICNSPSS IPVTPPGQDHAVTIQLLRRGNIFLTSYQYPF YDCRQAMSLEENLPCISCVSNRWTQWDLR YHECREASPNPEDGIVRAHMEDSCPQFLGPSP LVIPMNHETDVNFQGKNLDTVKGSSLHVGSD LLKFMEPVTMQESGTFAFRTPKLSHDANETL PLHLYVKSYGKNIJDSLHVTLYDCSFGRSDC SLCRAANPDYRCAWCGGQSRCVYEALCN SECPPPVIQPETGPLGGGIRITILGSNLGVQ AGDIQRISVAGRNCFSFQPERYSVSTRIVCVIEA AETPFTGGVEVDVFGKLGRSPPNVQTFQQP KPLSVEPQQGPQAGGTTLTIHGTHLDTGSQED VRVTLNGVPCKVTKFGAQQLQCVTGPQATRG QMLLEVSYGGSPVPNPGIFFTYRENTPVLA PLRSFASGGRSINVGTQGQFSLIQRFA LQSWQPPREAESLQPMVVGTDYVFHNDTK VVFLSPA PEEPEAYNLT VLI EAGAF EYV PDPTF ENFTGG VKK QVN KL R GT LN KAM L Q EA F V GA E R C T M K T L T E T D L Y C E P P E V O P P K R Q K R D T T H N L P E F I V K F G S R E W V L G R V Y D T R V S D V P L S L I P L V I V P M V V V I A V S V Y C Y W R K S Q Q A E R E Y K I S Q L E E S V R D R C K K E F T D L M I E M E D Q T N D V H E A G I P V L D Y K T Y T D R V F F L P S K D G K D V M I T G K L D I P E P R R P V V E Q A L Y Q F S N L L N S K S F L I N F I H T E N Q P E F S A R A K V Y F A S L L T V A L H G K L E Y Y T D I M H T L F L L E Q Y V V A K N P K L M I R R S E T V V U M S I C L Y Q Y L K D S A G E P L Y K L F K A I K H Q V E K G P V D A V Q K K A Y T L N D T G L G D D V E Y A P L T V S V V Q D E G V D A P V K V L N C D T I S Q V K E K I D Q V Y R G Q P C S C W P R P D S V V L E W R P G S T A Q I L S D D L T S Q R E G R W K R V N T L M H Y N V R D G A T L I L S K V G V S Q Q P E D S Q Q D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D N F F Q S V L A P G H A V P P A V K Y F F D L P G E R H A L L E E E N R V W H L V R P T D E V D E G K S K R G S V K E K E R T K A I T E Y L T R L S V K G T L Q Q F V D

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, \=possible nucleotide deletion, \ =possible nucleotide insertion)
						HIKTNSLPLRFWVNILKNPHFIFDVHVHEVV DASVIAQTFMDACTRTEHLSRDSPSNKLL YAKEISTYKKMVEDYYKGIRQMVGQVSDQDM NTHLAEISRAHTDSLNTLVALHQLYQYTQKY YDEIINALEEDPAAQKMQLAFLRLQQIAALE NKVTDL
839	2189	A	6872	1	1485	RARRLALQCHVCVCALTPGEQSRRRLPGQT WLMFSCFCFSQDQNSFSSTTVTECDEDPVSLH EDQTDCCSSLRDENNKENYPDAGALVEEHAPP SWEPQQQNVEATVLVDSVLRPSMGNFKSRKPK KSIFKAESGRSHGESQETEHVVSSQSECQVRA GTPAHESPQNNAFKCQETVRL\QPRIDQRTAT SPKDAFETR\QDLNEEEEAAQVHGVKDPAPAS TQSVLADGTDSADPSPVHKDGQNEADSAPE DLHSVGTSLLL/YHTDGDNPNTAVRHGCSLF SGQSQRNFNLDPESAPSPPSTQQFMMMPRSSRC SCGDGKEPQTITQLTKHIQSLKRKIRKFEEKFE QEKKYRPSPHDKTSNPEVLIKWMNDLAKGRK QLKELKLSEEQGSAPKGPPRNLLCEQPTVP RENGKPEAAGPEPSSSGEETPDAALTCLKERR EQLPPQEDSKVTKQDKNLKPLYDRYRIIKQIL STPSLIPTIVSQDTCMLLLCTDV
840	2190	A	6873	2	2054	FFRFYFSFIRLAFMSLADLTKTNIDEHFFGVAL ENNRSAACKRSPGTGDFSRNSNASNKSVDY SRSQCSCGLSSQYDYSEDFLCDCSEKAINRN YLKQPVVKEKEKKKYNVSKISQSKGQKEISV EKKHTWNASLFNSQIHMIAQRDAMAHRLS ARLHKIKGLKNEADMHHKLEAJLTENQFLK QLQLRHLKAIGKYENSQNNLPQIMAKHQNEV KNLRQLLRKSQEKERTLRSRKLRETDSQLLKT KDILQALQKLSEDKNAEERELTHKLSIIITK MDANDKKIQSLEKQLRLNCRAFSRQLAIETR KTLAAQTATKTLQVEVKHLQQKLKEKDREL EIKNIYSHRILKNLHDTEDYPKVSSTKSVQAD RKJLPFTSMRHQGTQKSDVPPL/TTKGKKATG NJDHKEKSTEINHEIPHCVNKLKPQEDSKRKY EDLSGEEKHLEVQILLENTGRQKDKKEDQEK KNIFVKEEQELPPKIIIEVIHPERESNQEDVLR EKFKRSMQRNGVDDT/LGKGTAHYTKGPLRQ RRHYSFTEATENLHHGLPASGGPANAGNMR YSHSTGKHLNREEMELEHS\DSGYEPFGKS SRIKVKDTTRDKKSSLMEELFGSGYVLKTD QSSPGVAKGSEEPLQSKESHPLPPSQASTSHA FGDSKTVVNSIKPSSPTEGKRKIII
841	2191	A	6874	3	2867	SSRTREEMEEKEILRRQIRLLQGLIDDYKILHG NAPAPGPTAASGWQPPPTYHSGRAFSARYPRP SRRGYSSHIGPSWRKKYSLVNRPPGSDPPA DHAVRPLHGARGGQPPVPPQQHVLERQVQLS QQQNVVIVKVKPPSKSGSASASGAQRGSLEEF DTPWSDQRPREGEPEPPRQLQPSRPTRARG TCSEDPLLVQCQKEPGKPRMVKSFGVGDP REPRRTVSESviaVKAASFPSSALPPRTGVALG RKLGSHSVASCAPQLLGDRRVDAHTDQPV SGS VGGPARPASGPQRQAREASL VVT CRTNKF RKNNYKWWAASSKSPRVARRALSPRVAEE VCKASAGMANKEVKPOLIADPEPKPRKPATS SKPGSAPS SKYKWKA SPSASSSSFRWQSEAG SKDHASQLSPVLSRSPSGDRPALAHSGLKPLS GETPLSAYKVKTRTKIIRR RGSTS LPGD KKSG TSPAATAKSHLSLRRRQALRGKSSPVLKTPN

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \possible nucleotide insertion
						KGLVQVTKHRLCRLPPSRAHLPTKEASSLHA VRTAPTSKVTKTRYRIVKKTPASPLSAPPPLS LPSWRARRLSLSRSVLNRLRPVASGGGKAQ PGSPWWRSKGYRCIGGVLYKVSANKLSKTSG QPSDAGSRPLLRTGRLDAGSCRSLASRAVQ RSLAIIRQARQRREKRKEYCMYYNRFGRCNR GERCPYIHDPKEKVAVCTRFRGTCKKTDGTC PFSHHVSKEMPKVCSYFLKGICNSNCYPYSHV YVSRKAEVCSDFLKGYCPLGAKCKKHTLLC PDFARRGACPRGAQCQLLHRTQKRHSRRAT SPAPGPSDATAKSRSVASHGPRKPSASQRPTR QTPSSAALTAAAVALAAPPHCPGGSASPSSSKAS SSSSSSSSPPASLDHEAPSLQEAAALAAACSNR LCKLPSFISLQSSSPGQAQPRVRAPRAPLTKD GKPLHIKPRL
842	2192	A	6898	506	2071	WPDLVHTWSSEEAMGSCCSCPDKDTVPDNH RNKFKVINVDDDGNELGSGIMELTDTEILYT RKRDSVKWHYLCLRRYGYDSNLFSFESGRRC QTGQGIFAFKCARAEELFNMLQEIMQNNSIN VVEEPVVERNNHOTELEVPRTPRTPTPGFAA QNLPNGYPRYPSFGDASSHPSSRHPGSVGSARL PSVGEESTHPLLVAEEQVHTYVNTTGVQEER KNRTSVHVHPLEARVSNAESSTPKEEPSSIEDR DPQILLEPEGVKFVFLGPTPVQKQLMEKEKLE QLGRDQVSGSGANNTEWDTGYDSDERRDAP SVNKLVYENINGLSSIPASGVRRGRLTSTSTSD TQNIINNSAQRRTALLNYENLPSLPPVWEARK LSRDEDDNLLGPKTPSLNGYHNNLDPMHNVYV NTENVTPASAHKIEYSRRDCTPTVFNFDIR RPSLEHRQLNYIQVDLEGSDSDNPQTPKPTP TPLPQTPTRRTELYAVIDIERTAAMSNLQKAL PRDDGTSRKTRIINSTLDSL
843	2193	A	6919	2	663	AGRPGTTASGKMA YQSLRLEYLQIPPV SRA YTTACVLTAAVQLELITPFQLYFNPELIFKHF QIWRLITNFLFFGPVGFNFLFMFLYRYCRM LEEGSFRGRTADFVFMFLFGGFLMTLFGLFVS L/VFLGPGLYNN/GSSMCGAE\EPLCPHELLRP SQLPGPLSALGAHGIFLVVGE\NHCPFGYCS WTHIFFLGRCSQSTWNKNSENTIYFESYF
844	2194	A	6928	902	366	HRLCMPIQGACGERME/FSLLLPGLECNGVIL AHCNLRPGSSNSPASASQVAGITGVCHHAR LJFVFSVETGFLHAGQAGLELLTSGDPPASAS QSAGITGKSQHTRPGYEFIIPIYSAAQEDALK LM
845	2195	A	6939	1660	317	LYPENLGESELFPILLPPPWPDGGRPCCVEMS TRAKKLRRWILEEKESVAGAVOTLLRSQE GGV\TSAAASTLSEPPRRTQESRTRTRALGLPT LPMEKLAASSTEPQGPRPVLGRESVQVPDDQD FRSFRSECEAEVGWNLTYSRAGVSVVVQAV EMDRTLHKIKCRMECCDVPAETLYDVLDHIE YRKKWDNSVIETFDIARLTVNADVGYYSWR CPKPLKNRDVITLRSWLPMGADYIIMNYSVK HPKYPPRKDLVRAVSIQTGYLIQSTGPKSCVIT YLAQVDPKGSLPKWVNVKSSQFLAPKAMKK MYKA CLKYPEWKQKHLPHFKPWLAHPEQSP LPSLALS\ELSVQHADS\LENIDESAV\AESREE R\MGGAGGEG\SDDDTSLYAEAPHRFRETETG PGAGRALGAAAAPALSPHPPGTWWHRARP RRVLQPGWTEPQ

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, \'=possible nucleotide insertion)
846	2196	A	6944	42	2672	RRKMGCRGSILCCCWRCCCCGERETRTPE ELTILGETQEEEDILPRKDYESLDYDRCINDP YLEVLETMDNKKGRRYEAVKWMVVFAIGV CTGLVGLFVDFVFVRLTQLKFGVVQTSVEECS QKGCLALSLELLGFNLTFTVFLSLLGLIEPVE AGSGITEGKCYLYARQVPGVLVRLPTLLWKAL GVLLTVAAMLLIGLGSMPMIHSGSVVGAGLPQ FQSISLRKIQFNPFPYFRSDRYGK\DKRDFVSAG AAAGVAAAAGFAPIGGTLFSLEEGSSFWNQGL TWKVLFCMSATFTLNFFRSQIQFGSWGSFQL PGLLNFGEFKCSDDSKKCHLWTAMD LGFFV VMGVIGGLL GATFNCLNKRLAKYRMRNVHP KPKLVRVLESLLVSLVITVVVFVASMVLGEC RQMSSSSQIGNDSFQLQVTEDVNNSIKTFFCP NDTYNDMATLFFNPQESAILQLFHQDGTFSPV TLALFFVLYFLLACWTYGISVPMSGFVPSLLC GAAGFRLVANVLKSYI GLGHISGTFA LIGAA AFLGGVV RMTISLT VILIESTNEITYGLPIMVT LMVGKWTGDF FNKG\YDIHVG LRGVP LLEW ETEVEMDKL RASDIMEPNL TYVYPHTRIQSLV SILRTTVHIAFPV VTENRGNEKEFMKGQNQLIS NNIKFKKSSIL TRAGEQRKRSQS MKSYPSS EL RNCMCDEHIASEEPAEKEDLLQQM LERRYTPY PNLYPDQSPSEDWTMEERFRPLTFHGLLRLSQ LVTL VRGV CYSESQ SSASQ PRL SYAEMAED YPRYPD IH DLD LTL N P R MIV DV T P YMN P SPF TVSPNTHV SQV FNLF RTM GLR HLP VNAV GE IVGI TRHN LT YEFQARL RQHY QT I
847	2197	A	6951	3	1994	NTNSSSVTNSAAGVEDLNIVQVTVPDNEKER LSSIEKIKQLREQVNDLFSRKFG EA JGVDFPVK VPYRKITFNGCVV IDGMPPGVFKAPGY LEI SSMRRILEAAE FIKFTVIRPLPGLELSNGEYST VGKRKIDQEGRFV FQE KWER AYFF VEVQNI ST CLICKRSMSVKEYNLLRHYQT NH SKHYDQY MERMRDEKLHELK G L R K Y L L G L S D T E C P E QKQVFANPSPTQKSPVQPVEDLAGNLWEKLR EKIRSFVAY SIAIDE ITDINNTQLAIF IRGVDE NFDVSEELLD TVP MTG TKG NEIFSRV EKSLK NFCINWSKL VSVAST GT PPM DANN GLVTKL KSRVATFCKGAELK SICCIIH PESLCAQ\KLKM DHVMDVVVKSVN WIC SRGL NHSEFT TLL YEL DSQYGSLLYYTEIKWL SRGL VLK RFF ESLEE I DSFMSSRGKPLPQLSSIDWIRDLAFLVDMTM HLNALNISLQGH SQI V TQMYDLIR AFLAKL CL WETHL TRN NLAHFPTLKL VSRN ESDGL NYIP KIAELK TEFQ KRL SDF KLYE SEELT L FSSPF STK I DSVHEELQMEVIDLQ CNT VLK T KYD KV GIPE FYKYLWGSY PKYKH CAKI LSM FG STYICEQ LFSIMKLSKTKYCSQLKDSQWD SVL HIAT
848	2198	A	6985	3	289	SVQYLPGRP RTI THA\STD APLMLKFTPLPSKT K ASAPVQCLL MAATFSPQGLAKPHSGTIPIT\ C CFNAJNTKPIQRL ESYTRIT NIQCPKEAVM
849	2199	A	6999	963	5	LDFLCHR DMGDNITSITEFLLGPVGPRIQM LLFGLFSLFVFTLLGNGTILGLISLDSRLHAP MYFFL SHL A VVDIA YACNTV PRML VNLL HP AKPISFAGRMM QTFLFSTFAVTECLL VVMS YDLYVVAICHPL RYLA IMTWRVCITLA VTSW T TGVLLSLIHLV LLLLPLPFCRPQK IYHFFCEILA VLKLACADTHINENMVLAGAISGLV GPLSTIV VS YM CIL CAIL QI QSRE VQRKA FCT CF SHLC VI

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, \=possible nucleotide insertion)
						GLFYGTAIMYVGPRYGNPKEQKKYLLFHSLFNPMLNPLICSLRNSEVKNLKRVLGVERAL
850	2200	A	7001	1	1011	MGNDSVSYEGDYSDLSDRPVDCLDGACLAI DPLRVAPLPLYAAIFLVGVPGNAMVAWVAG KVARRVGATWLLHLAVADLLCCLSLPILAV PIARGGHWPYGAVGCRALPSIILLTMYASVLL LAALSADLCFLALGPWA\CLRFS/GACGVQVA CGAAWTLLALLTVPSAJYRRLHQEHFPARLQ CVVDYGGSSSTENAVTAIRFLFGFLGPLVAVA SCHSALLCWAARRCRPLGTAIVVGFFVCWAP YHLLGLVLTVAAPNSALLARALRAEPLIVGL ALAHSCLNPMFLYFGRAQLRRSLPAACHW ALRESQQQDESVDISKSTSHDLVSEMEV
851	2201	A	7011	1	2310	AAASPLRMSRKGPRAEVCADCSAPDPGWASI SRGVLVCDCECCSVHRSRSLGRHISIVKHLRHS AWPPTLLQMVMVHTLASNGANSIWEHSLLDPAQV QSGPALKQTPKDKVHPIKFIRAKYQMLAF VHKLPCRDDDGVTAKDLSQLHSSVRTGNLE TCLRLLSLGAQANFFHPEKGTTPLHVAAKAG QTLQAELLVVYGAQDPGSPDVNGRTPIDYARQ AGHHELAERLVECYQELTDRLAFYLCGRKPD HKNGHYIPQMADSLLSELAKAAKKLQAL SNRLFEELAMDVYDEVDRRENDAAVWLATQN HSTLVTERAVPFLPVNPNEYSATRNQGRQKL ARFNAREFATLIIDILSEAKRRQQGKSLSSPTD NLELSRSQSDDQHDYDVSASDEDTDQEP LRSTGATRSNRARSMDSSLDGAVTLQEYL ELKKALATSEAKVQQLMKVNSSLDELRLQ REIHKLQAENLQLRQPPGPVTPPLPSERAEH TPMAPGGSTHRRDRQAFSMYEPGSALKPFGG PPGDELTTRLQPFHSTELEDDAIYSVHVPAGL YRIRKGVSASAFTPSSPLLSCSQEGSRHTSK LSRHGSGADSDENTQSGDPLLGLEGKRFLE LGKEEDFHPELESLDGDLDPGLPSTDVILKT EQVTKNIQELLRAAQEFKHDSFVPCSEKIHLA VTEMASLFPKRALEPVRSLLRLLNASAYRLQ SECRTVPPPEPGAPVDFQLLTQQVIQCAYDIA KAAKQLVITITREKKQ
852	2202	A	7016	484	1777	RISKIQVYYSTGYSSRKMNPTLGLAIFLAVLL TVKGLLKPSFPSPRNYKALSEVQGWKQRMAA KELARQNMIDLGFKLKKLAFYNPGRNIFLSP LSISTAFSMLCLGAQDSTLDEIKQGFNFRKMP EKDLHEGFHYIIHELTQKTCQLKLSIGNTLFID QRQPQRKFLEDAKNFYSAETILTMFQNLEM AQKQINDFI/ESKTHGKINNLNIENDPGTVML ANYIFRARWKHEFDPNVTKEEDFFLEKNSS VKVPMMRSGIYQVGYDDKLSCTILEIPYQK NITAIFILPDEGKLKHLEKGLQVDTFSRWKTL LSRRVVVDVSPVRLHMTGTFDLKKTLSYIGVS KIFEEHGDLTKIAPHRSLKVGAEVNKAELKM DERGTEGAAGTGAQTLPMETPLVVVKIDKPYL LLIYSEKIPSVLFLGKIVNPIKG
853	2203	A	7017	1	3293	MTHACNPSTLGGQGRIRTRSHGRRRSSRGPV ARHVAAGAGHENKHCGSRRFPAGVAPRRAM ANVSKKVWSGRDRDDEEAAPLRRRTARPG GGTPLLNGAGPGAARQSPRSALFRVGHMSSV ELDDELLEPDMDPFPFPKEIPHNEKLLSLKY ESLDYDNSENQLFLEERRINHTAFLTVEIKR WVICALIGLTGLVACFIDIVVENLAGLKRYVI KGSILPNIDKFTEKGGLFSLLLWATLNAAFV

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \possible nucleotide insertion)
						LVGSVIVAFIEPVAAAGSGIPQIKCFLNGVKIPH VVRLKTLVIKVGVLISVVGGLAVGKEGPMT HGSVIAAGSQGRSTSLLKRDFKIFEFYFRRDTE KRDFVSAGAAAGVSAFGAPVGGVLFSLLEEG ASFWNQFLTWRJFFASMISTFTLNFVLSIYHG NMWDLSSPGLINFGFRFDSEKMAYTIHEIPVFI AMGVVGGVLGAVFNALNYWLTMFRIJRYIHR PCLQVIEAVLVAATVATVAFVLIYSSRDCQPL QGGMSMSPQLFCADGEYNSMAAAFFNTPEK SVVSLFHDPGGSYNPLTLGLFTLVYFFLACWT YGLTVSAGVFPISPLIGAAWGRLFGISLSYLTG AAIWADPGKYALMGAAGAQLGGIVRMTLSLT VIMMEATSNTVYGFPIMLVLMATAKIVGDFVIE GLYDMHIQLQSVPFLHWEAPVTSHSLTAREV MSTPVTCRLRRREKVGIVDVLSDTASNHNFG PVVEHADDTQPRLQGLILRSQLIVLLKHKVF VERSNLGVQRRLRLKDFRDAYPRFPIQSH VSQDERECTMDLSEFMNPSPYTVPOEASLPR VFKLFRALGLRHLVVVDNRNQVVGVLVTRKD LARYRLGKRGLEELSLAQTAGPKAQATAEGRV AGAAQQPCOLRAVTLEDLGILLLAGGLASPEP LSLEELSERVESSHTSTASVPEQDTAKHWNQ LEQWVVELQAEVACLREHKQRERATRSSL RELLQVRARVQLQGSELRQLQQEARPAQAP EKEAPEFSGLQNQMQLDKRLVEVREALTRL RRRQVQQAERRGAEQEAGLRLAKLTDLLQ QEEQGREVACGALQKNQEDSSRRVDLEVAR M
854	2204	A	7037	139	2604	AGTWEPRPYDQAKETGAPGSQPPVPPMELRP WLLWWVVAATGTLVLAADAQGOKVFTNTW AVRIPGGPAVANSVARKHGFLNLQIFGDYY HFWHRGVTKRSLSPHRPRHSRLQREPQVQWL EQQVAKRRTKRDVYQEPTDPKFQQWYLSG VTQ\RDLMVKAAWAQGYTGHGIVVSILDDGI EKNHPDLAGNYDPGASFVNDQDPDPQPRY TQMNDNRHGTRCAGEVAAVANNVGCVGVGV AYNARIGGVRLMDGEVTDAVEARSLGLNPN HIIHYSASWGPEDDGKTVDGPARLAEAFFR GVSQGRGGLGSIFVVASGNNGGREHDSCNCD GYTNSIYTLSISSATQFGNVPWYSEACSSTLA TTYSSGNQNEQIVTTDLRKCTESHTGTGSAS APLAAGHALTEANKNLTWRDQMHLVVQTS KPAHLNANDWATNGVGRKVSHSYGYGLLD AGAMVALAQNWTTVAPQRKCIIDILTEPKDI GKRLEVRKVTACLGEPNHITRLEHAQARLT LSYNRRGDLIAHLVSPMGTRSTLLAARPHDY SADGFNDWAFMTTHSWDEDPSGEWVLEIEN TSEANNYGTLTKFTLVLYGTAPEGLPVPESS GCKTLTSQACVVCEEGFSLHQKSCVQHCPP GFAPQVLDTHYSTENDVETIRASVCAPIHAS CATCQGPALTDCLSCPSHASLDPVEQTCSRQS QSSRESPQQQPRRLPPEVEAGQRLRAGLLPS HLPEVVAGLSCAFTVLFVFTVFLVLQLRSGFS FRGVKVYTMDRGLISYKGLPPEAWQEECPSD SEDEGRERTAFIKDQSAL
855	2205	A	7058	3	1441	QRPASQOLLAPFAAEALPGAPRAAMAQHFSLA ACDVVGFDLDHTLCRYNLPESAPIYNSFAQF LVKEKGYDKELLNVTPEDWDFCKGLALDL EDGNFLKLANNGTVLRASHGTTMMTPEVLA EAYGKKEWKHFLSDTGMACRSRGKYYFYDN

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						YFDLPGALLCARVVDYLTKLNNGQKTFDFW KDVAQIQHNYKMSAFKENCGIYFPEIKRDPG RYLHSRPESVKWLRQLKNAGKILLITSSHS DYCRLLCAIYILGNDFTDLFDIVITNALKPGFF SHLPSQRPFRTLENDEEQEAI.PSLDKPGWYSQ GNAVHLYLELLKKMTGKPEPKVVYFGDSMHS DIFPARHYSNWETVLILEELRGDEGTRSQRPE ESEPLEKKKGKYECPKAKPLNTSSKKWGSFFI DSVLGLENTEDSLVYTWSCKRISTYSTIAJPSI EAIAELPLDYKFTRFSSNSKTAGYYPNPLV LSSDETLISK
856	2206	A	7082	396	1635	SSPSVFEFEHAQVPVFTMEFLKTCVLRNACT AVCFWRSKVVKQPKPSVRRISTTSPRSTVMPAW VIDKYGKNEVLRFTQNMMPPIHYPNEVIVK VHAASVNIPDVNMRSGYGYGATALNMKRDPLH VKIKGEFPPLTLGRDVSGVVMECGLDVKYFK PGDEVVAAVPPWKQGTLSEFVVVSGNEVSH KPKSLTHTQAASLPYVALTAWSAINKVGGLN DKNCTGKRVLILGASGGVGTFAIQVMKAWD AHVTAVCSQDASELVRKLGADDVIDYKSGSV EEQLKSLKPDFILDNVGGSTETWAPDFLKK WSGATYVTLVTPFLNMDRLGIAADGMLQTG VTVGSKALKHFWKGVHYRWAFFMASGPCL DDIAELVDAGKIRPVVIEQTFPFSKVPEAFLKV ERGHARGKTVINV
857	2207	A	7088	320	2417	LRRRKMTQSLLQTTLFLLSLLFLVQGAHGR GHREDPRFCRSQRNQTHRSSLHYKPTPDLRISIE NSEEALTVHAPFPAAHPASRSFPDPRGLYHFC LYWNRHAGRLHLLYGKRDFLSDKASSLCF QHQEESLAQGPPLLATSVTSSWPQNISLPSA ASFTFSFHSPPHGTGAHNASVDMCELKRDQL LSQFLKHPQKASRRPSAAPASQQLQOSLESKLT SVRFMGDMGSFEEDRINATVWLQOPTAGLQ DLHJHSRQEEEQSEIMEYSVLLPRTLQFORTKG RSGEAEKRLLLVDFSSQALFQDKNSSQVLGE KVLGIVVQNTKVANLTEPVVLTFOHQQLQPKN VTLQCVFWVEDPTLSSPGHWSSAGCETVRRE TQTSCFCNHLLTYFAVLMVSSVEVDAVHKHY LSLLSYVGCVVSALA CLVTIAAYLCSRVPPLPC RRKPRDYTIKVHMNLLAVFLLDTSFLLSEPV ALTGSEAGCRASAIFLHFSLLTCLSWMGLEG YNLYRLVVEVFGTYVPGYLLKLSAMGWGFPI FLVTLVALVDVDNYGPIILA VHRTEPEGVIYPS MCWIRDSLVSYTNLGLFSLVFLFNMAMLAT MVVQILRLRPTHQKWSHVLLCLSLVGLGLP WALIFFSFASGTFQLVVLYLFSIITSFQGFLIFI WYWSMRLQARGGPSPPLKSNSDSARLPISSGS TSSSRJ
858	2208	A	7091	185	415	DAGAVKSSDTNIWFRGMCDKKGHRCPS*G QPQHFHVAFHTEAEGAMFYFRLHVIHRVMQS QQQLFPSTLFSWLLE
859	2209	A	7136	3	302	FFFWRQSLALLPRLECGSGATGAHCNLHFPGSS DCPTSAS*LAGITGACYHAWLLFVFLAETGFH HVGQGGLELLTSSDPSGSASQSAGITGVSHCT WPI
860	2210	A	7156	23	591	ALSTETRTPDMRLLLVTSLVVVLLWEAGAV PAPKVPIMQVKHWPSEQDPKEAWGARVVE PPEKDDQLVVLFPVQKPKLTTEEKPREGQGR GPILPGTKAWMETEDTLGRVLSPEPDHDSLY

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						HPPPEEDQGEERPRLLWVMPNHQVILLGPEEDQDHIVHPQ*GSRGHHCPRPVPRPRLGLGPSPLCPS
861	2211	A	7161	1220	1003	NYVCTIAF*EKKMGF*LSLSCLVLLFVLFLDCI LTTTTRIMFHCTYLFASVCLSLNTLSPNCL KSAMILQ
862	2212	A	7211	665	847	LKYYHITMGIYKTGKKVIL*KSSMSNRFSVIF YKNIQKLSFSNYVYHQNYVFSSDWSYDF
863	2213	A	7212	924	1273	HGSscalGDLAPG*LPSGPVLSSPAVRL*RKP LVWDPSPCLPATGPT*GLVVLVLCGPDC*WA RGQHEHKMRAP*SCRVTVNLAKKKKTDQ CIKPNYQSPPKECVDYNILANSVA
864	2214	A	7214	845	1619	SDKGKKADRKNHRLRHAFPLPHRVRERLH DPKVPVDADHVQGQDPGRAAHDIHGEDVTE KVSKDPLAPDEVGDTDEGHDRHGREGVQR HGHDQEAEVAYEERACEGGKFATVEVTDKPV DEALREAMPKVAKYAGGTNDKGIGMGMTV PISFAVFPNEDGSLQKQLKVWFRIPNQFOSDP PAPSDKSVKJIEEREGITVYSMQFGGYAKEAD YVAQATRLRAALEGTATYRGDIYFCTGYDPP MKPYGRRNEIWLLKT
865	2215	A	7246	559	682	RRLGAVAHAYTSSTLGGRRGWIT*GQELQTS LANMAKPRLY
866	2216	A	7257	641	1310	TCTYKYLGMWIRGRRSRHSWEMSEPHNYNL DLKKSDFSTRWQKQRCPVVSKCRENASPFF FCCFIAVAMGIRFIIMVAIWSAVFLNSLFNQEV QIPLTESYCGPCPKNWICYKNNCYQFFDESKN WYESQASCMSQNASSLKVKVSKEDQDLLKLW KSYHWMLVHPIPTNGSWQWEDGSIILSPNLLT IIEMQKGDCALYASSFKGYIENCSTPNTYICM QRTV
867	2217	A	7288	151	396	SIKIIAEFGSNGPDFWWFFRYWSP*LFRQQVVFI MPFFQTLWLMANRFCSIFTTNVANNCWVTPYHCWLSVVVCRCEHGI
868	2218	A	7298	3	272	PDTVIIGGRGSGGKEFGRWVLW*VFE*RLGTP KGSCPAGGSRMVSESD*EGRGC*ASYPCAC* AGS*WR*GSRPAGRTPPRSLSHARPP
869	2219	A	7332	1223	332	PRRDAEDRDESCLNPAFPIGLLHPNVSNSMAR FLTLCIWLWLLPGPLLATVRAECSDCATCS YRLVRPADINFLACVMECEGKLPQLKIWETC KELLQLSKPELPQDGTSIREN SKPEESHLLA KRYGGFMKRYGGFMKKMDELYPMEPEEEA NGSEILA KRYGGFMKKDAEEDDSLANSSDILL KELLETGDNRERSHHDQGSDNEEEVSKRYGG FMRGLKRSPOLKEAKELQKRYGGFMRRVG PQKW*MTSPQNRYGGFLKRFAEALPSDEEGE SYSKEVPEMEKRYGGFMRF
870	2220	A	7382	216	1018	EIHQLRTERTQFLDES RKNPNS*QANLLRGGG AGQGRGRGAESGGSGRGE GP GSDGRLPATGD FWSPRSQRGGCCGRRAPRPEAMENGAVYSPT TEEDPGPARGPRSGLAAYFFMGRPLRRVL KGLQLLISLLA FICEEEVVSQCTLGGLYFFEF VSCSAFLSLLLIVYCTPFYERVDTTKVKSSD FYITLTGCVFLLASIFVSTHDRTSAEIAJVF GFIASFMFLLDFTMLYEKRQESLRKPENTT RAEALTEPLNA
871	2221	A	7403	3	393	SCAMCSGLI*LLPPIWLSWTLGTRGSEPRSVN DPGNMSFVKETVDKLLTGRCFREREAPRR ALRGAALPGESEAGDPESLRSSVNADWIQYS

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, \=possible nucleotide insertion)
						DLWEAEVSTPRCEAGFCQECFRTPGNQEKGDPFIC
872	2222	A	7413	1061	359	FVDIVSVVEFPHCPEARFPAQHGQDSKRLTLC PGGS*PQATLHLDLRMRSASPTKEIQVKKYK CGLIKCPANFYAFKICSGAANVVGPTMCFED RMIMSPVKNNVGRGLNIALVNNGTTGAVLGQ KAFDMYSGDVMHLVKFLKEIPGGALVLVAS YDDPGTKMNDESRKLFSDLGSSYAKQLGFRD SWVFIGAKDLRGKSPFEQFLKEQPQTQNKYE GWPELLEMEGCMPPKPF
873	2223	A	7429	2242	2394	ILKCAGHGGSCL*SQHFGRRLWEDRLRLGVQ DHPGQHCETPSLLKIERKLF
874	2224	A	7468	146	894	PCTSCVLWATLHLPASTRKAPQAECGMISITE WQKIGVGITGFGIFILFGTLLYFDHSVLLAFGN LLFLTGLSLIIGLRKTFWFFFQRHKLKGTFSLL GGVVIVLRLWPPLLGMFLETYGFFSLFKGFFPV AFGFLGNVCNIPFLGALFRLQGTSSMV*KTE MSSLNLDHWLKGAKREEEWEPPPQSPALTHSP TYPGPPQVQKERNGAEQLTSNPQVDSRGCQE AEMQTPRRLGWGWWYHTLTLYL WEEK
875	2225	A	7498	91	251	GEKPVPTWLQDEAGQWLLGFVAQPWGWP SERHEP*HGGVLFRLCPSAPPGKL
876	2226	A	7544	403	587	YSCLCFLFKHTSFKNHSVHILGTVVHAYNPN ILGGQGGWIA*GQEFTSLGNTVRPCLYK
877	2227	A	7566	2	940	GCAPDTRFFVPEPGGRGAAPWVALVARGGC TFKDKVLVAARRNASAVVLYNEERYGNITLP MSHAGTGNIIVIMISYPKGREILELVQKGIPV TMTIGVGRHVQEFIGSQSVVFVAIAFITMMII SLAWLIFYIYIQRFLYTGSQIGSQSHRKETKKVI GQLLHTVKHGEKGJIDVDAENCAVCIENFKV KDIIRILPKHIFHRICIDPWLLDHRTCPMCKL DVIKALGYWGEPGDVQEMPAPESPGRDPAA NLSLALPDDDGSDESSPPSASAEPQCDCPSF KGDAAGENTALLEAGRSDSRHGGPIS
878	2228	A	7586	315	1232	ERSLLCKVDVRWIYSEGTKTQRHRQGSLR RGRMQAACWYVLFLLQPIVYLVTCANLTNG GKSELLKSGSSKSTLKHWTTESSKDSLISRLLS QTFRGKENDTDLDRYDTPEPYSEQDLWDW LRNSTDLQEPRPRAKRRIPIVTKGKFKKMFGW GDFHSNIKTVKLNLLITGKIVDHGNGTFSVYF RHNSTGQGNVSVSLVPPTKIVEFDLAQQTVID AKDSKSFNCRIEYEKVDKATKNTLCNYDPSK TCYQEQTQSHVSWLCSKPKVVICIYISFYSTD YKLVQKVCVDYNYHSITPYFPSG
879	2229	A	7605	479	391	TESWKLKWWSPCLDQNLNGSAPGNVFIHG
880	2230	A	7612	93	659	DAAVAMTAQGGLVANRGRRFKWAIELSGPG GGSGRRSRDRGSGQGDSLYPVGYLDKQVPDTS VQETDRILVEKRCWDIALGPLKQIPMNLFIMY MAGNTSISFPTMMVCMMAWRPIQALMAISAT FKMLESSSQKFLQGLVYLIGNLMGLALAVYK CQSMGLLPTHASDWLAFPERMEFSGGGLL
881	2231	A	7615	291	1452	SPQKTMRSHTITMTTSVSSWPYSSHMRFIT NHSDQPPQNFNSATPNVTCPMDEKLLSTVLTT SYSVIFIVGLVGNIIALYVFLGIHRKRNSIQIYL LNVAIAIDLIFCLPFRIMYHINQNWKTLGVIL CKVVGTLYFMNMYISIILLGFISLDRYIKJNRSI QQRKAITTQOSIYVCCIVWMLALGGFLTMIL TLKKGGHNSTMCFHYRDKNNAKGEAIFNFI

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \possible nucleotide insertion)
						VVMFWLFLLIISYIKIGKNLLRISKRRSKFPN SGKYATTARNSSFIVLIFTICFVPYHAFRFIYISS QLNVSSCYWKEIVHKTNEIMLVLSSFNNSCLDP VMYFLMSSNIRKIMCQLLFRRFQGEPSRSEST SEFKPGYSLHDTSVAVKIQSSSKST
882	2232	A	7617	67	379	RQMAILKANKDLISAGLKEFSVLLNQQVFND PLVSEEDMVTVVEDWMNFYINYYRQQVTGE PQERDKALQELRQELNTLANPFLAKYRDFLK SHELPSPPPPSS
883	2233	A	7622	400	215	KVKTCRYNPKYSAANDTGFVDIPSREKDLAK AVATVGPIVSAVGASHVFFQFYKKGKHLS
884	2234	A	7638	2640	2861	APVLILQMVKLSIVLTPQFLSHDQGQLTKELQ QHVKSVCPCCEYLRKVSECRCQMGPGALEQFP GLSCHTSHSG
885	2235	A	7642	201	455	PSRGKMELEAMSRYTSPVNPAVFFPLTVLL AIGMFATWFFFYEVITSTKYTRDIYKELLISL VASLFMFGVLFLLLWVGIYV
886	2236	A	7692	61	569	APENPFSRQHFNSETKVKLSLKTGTWLGNA HLGEHFSTHHEGLSGKVVGFLVKNILEVRN GGMETRHPGKVSSWFHRWDRAEQHNHAE HHEDVPQGDEDPSKSEAQQEFPDVTCAGLP GLLPKALRVLFLQLKVQHRPGIHQRPEQQD VSDHRYGRSVRQNPK
887	2237	A	7693	85	315	NPGCCLPVAMRTSYLLFTLCLLLSEMASGG NFLTGLGHRSRDHYNCVSSGGQCLYSACPIFTK IQGTCYRGKAACKC
888	2238	A	7702	242	1298	APSHRRRYLSPSRSAAGQLGNMALERLCSVLK VLLITVLVVEGIAVAQKTQDGQNIGIKHIPAT QCGIWVRTSNGGHFASPNNPDSYPPNKECIYI LEAAPRQRIELTFDEHYYIEPSFECRFDHLEVR DGPFGFSPSLIDRYCGVKSPPPLRSTGRFMWIKF SSDEELEGFLGFRAKYSFIPDPDFTYLGILNPPIP DCQFELSGADGIVRSSQVEQEEKTKPGQAVD CIWTIKATPKAKIYLRFLDYQMEHSNECKRNF VAVYDGSSSIENLKAFCSTVANDVMLKTGI GVIRMWADEGSRLNRFRMLFTSFGGASPAQA ALSFCHSNMCINNSLVCNGVQNCAYPWDEN HC
889	2239	A	7707	185	2911	CHYIMNPSTHHPASAGGSILGLFDFFGLGLGE MTMDALLARLKLNNPDDLREEIVKAGLKCGP ITSTTRFEKKLAAQALLEQGGRLLSSFYHHEA GVTALSQDPQRILKPAEGNPTDQAGFSEDRDF GYSVGLNPPEEEAVTSKTCVPSDSTDYRAG ATASKEPPLYYGVCVPYEDVPARNERIYVYE NKKEALQAVKMIKGSRKFAKSTREDAEKFAR GICDYFPSPSKTSPLSPVKTAPLFNSNDRLKDG LCLSESETVNKERANSYKNPRTQDLTAKLRK AVEKGEEDTFSIDLWSNPRYLIGSGDNPTIVQ EGCRYNMVHVAKENQASICQLTLDVLENP DFMRMLMPDDDEAMLQKRIRYVVVDLYLNTP DKMGYDTPLHFACKFGNADVNVNLSSHHLI VKNSRNKYDKTPEDVICERSKNKSVELKERIR EYLKGHYYVPLLRAETSSPVIGELWSPDQTA EASHVSRGGSPRDPVLTLLRAFAGPLSPAACE DFRKLWKTTPREKAGFLHHVKKSDPERGFER VGRELAEHELGPWVEYWEFLGCFVDSLSSQE GLQRLEEYLTTQOEIGKKAQQETGEREASCRD KATTSGSNNSISVRAFLDEDDMSLEEIKNRQNA ARNNSSPTVGAFTGHTRCASFPLQEADLIEAA

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \possible nucleotide insertion)
						EPGGPHSSRNGLCHPLNHSRTLAGKRPKAPRGEEAHLPPVSDLTVEFDKLNLQNIGRSVSCKTPDESTKTKDQILTTSRINAVERDLLEPSPADQLNGHRRTESEMSARIAKMSLSPSSPRHEDQLEVTREPARRLFLFGEEPSKLDQDVLALECADVDPHQFPAVHRWKSAVLCYSPSDRQSWPSPAVKGRFKSQLPDLSGPHYSYSPGRNSVAGSNPAKPGLGSPGRYSPVHGSQRLRRMARLAEALAL
890	2240	A	7711	360	269	RHMPVIPALWEAEVGILLEPRRSSRASAWATE
891	2241	A	7721	61	1175	KLPWEPFSLIKMQIIRHSEQTLKTAISKNPVLVSQYEKLDAGEQRLLMNEAFQPASDLFGPITLHPSDWDITSHPEAPQDFEQFFSDPYRKTPSPNKRSIYIQSIGSLGNTRIISEEYIKWLTYCAYFYGLRVKLLEPVPVSVTRCSFRVNENTHNLQIHAGDILKFLKKKKPEDAFCVVGITMIDL YPRDSWNFVFGQASLTDGVGIFSFARYGSDFYSMHYKGKVKKLKKTSSSDYSIFDNYYIPEITSVLLRSCCKTLTHEIGHIFGLRHQCWLACLMQGSNHL EEARRPLNLCPICLHKLQCAVGFSIVERYKA LVRWIDDESSDTPGATPEHSHEDNGNLPKVEAFKEWKEWIJKCLAVLQK
892	2242	A	7723	2	1650	SAPTAPARPCRAERGSGGGMLALLAASVALAVAAGAQDSPAPGSRFVCTALPPEAVHAGCPLPAMPMQGGAQSPEEEELRAAVLQLRETVVQQKETLASARAIRELTGKLARCEGLAGGGKARGAGATGKDTMGDLPRDPGHVVEQLSRLQTLKDRLESLEPLPAMPMQGGAQSPEEEELRAAVLQLRETVVQQKETLASARAIRELTGKLARCEGLAGGKARGAGATGKDTMGDLPRDPGHVVEQLSRLQTLKDRLESLEHQLRANVSAGLPGDFREVLQQLRGELEQRLRKGAELDEKSLLNETSAHRQKTESTLNALLQRVTELERGNSAFKSPNAFKVSLPLRTNYLYGKIKKTLPELYAFTICLWLRSSASPGMGTFSYAVPGQANEIVLIEWGNNNIELINDKVAQLPLFVSDGKWHHICVTWTTTRDMWEAFQDGKKGTLGENLAPWHPIKPGGVILGQEQQDTVGGRFDATQAFVGELSQFNIWDRVLRVRAQEIVNIANCSTNMPGNIIPWVDNNVDVFGGASKWPVETCEERLLD
893	2243	A	7729	3554	2419	LTAGTAMNYPLTLEMDLENLEDLFWELDRLDNYNDTSIVENHLCPATGPLMASFKAVFVPVAYSILFLGVIGNVLVVLVILERHRQTRSSTETFLFHLAVADLLLVLFLPFAVAEGSGVGWVLGTFLCKTVIALHKVNFYCCSLLLACIAVDRYLAIVHAVHAYRHRRLLSIHITCGTIWLVGFLLALPEI LFAKVSQGHNNNSLPRCTSSEQENQAETHAWFTSRFLYHVAGFLLPMLVMGWCYVGVVHRLRQAQRRPQRQKAVRVAILVTSIFFLCWSPYHIVIFLDTLARLKAVDNTCKLNGSLPVAITMCEFLGLAHCCLNPMILYTFAGVKFRSDLSRLLTKLGCTGPASLCQLFPSPWRRSSLSESENATSLTTF
894	2244	A	7738	670	287	FVTRAGRWGAGARVRGGAGGMASGAARWLVLAPVRSGALRSGPSLRKGDVSAWSGSGRSLVPSRSVIVTRSGAILPKPVKMSFGLLRVFSIVIPFLYVGTLISKNFAAALLEEHDFVPEDDDDDD
895	2245	A	7753	119	278	APYAHQSQVHCLDKVCGLPFLNPEVPDQFYRLWLSLFLHAGKEAPHCPRTPL
896	2246	A	7754	1	372	SPAWWNSQQRVVSFLALLTLEPTFHLLPIM

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, =possible nucleotide insertion)
						QVSTAALAVLLCTMALCNQVLSAPLAADPTP ACCFSYTSRQIPQNFILADYFETSSQCSKPSVIFL TKGRQVCADPVSWVQKYVSDLELSA
897	2247	A	7761	1725	445	RPRRRGTHHIFSCVLGSFRVSAMFPVRSTFLPL RPLSRHPLSSGSPETSAAIMLLTVRHGTIVRY RSSALLARTKNNIQRYFGTNVICSKDKQSVM RTEETSKESETSESQDSEKENTKKDLLGIKGGMK VELSTVNVRTTKPKRRLPLSLEATLGRLLRA TEYAPKKRIEPLSPELVAAASAVADSLPFDFQK TTKSELLSQLQHEEESRAQRDAKRPKISFSNI ISDMKVARSATARVSRPELRIQFDEGYDNYP GQEKTDDLKKRKNIIFTGKRLNIFDMMAVTKE APETDTSPSLWDVEFAKQLATVNEQPLQNGF EELIQWTKEGKLWEFPINNEAGFDDDGSEFH EHIFPLEKHLESFPKQGPJRHFMELVTCGLSKNP YLSVKQKVEHIEFWRNFYFNEKKDILKESNIQF KLRPWKFLFRNN
898	2248	A	7775	85	496	SCQTTPQAQSCSTGTMRIMLLFTAILAFSLA QSFGAVCKEPQEEVPGGGRSKRDPDLYQLL QRLFKSHSSLEGLLKALSQASTDPKESTSPEK RDMHDFFVGLMGKRSVQPDSPTDVNQENVP SFGLKYPPIRAE
899	2249	A	7785	179	703	PFHLGASSNTFRLQVQTQESKAQKEVKMCFI FSKCMNNESMKNQKEFMLMNARLQLERQLIM QSEMERRQMAMQIAWSREFLKYGTFGLA AISLTAGAIKKKKPAFLVPIVPLSFLITYQYDL GYGTLLERMKGEAEDILETEKSKLQLPREGMIT FESIEKARKEQSRRFFIDK
900	2250	A	7789	1465	300	VWPLPLKSYKIRSPSLHQCCEIFREEFLFSSLQE GRDKDTFSKMMAMKFLKQAWFIENEQEY VQTVKSSKGPGSAVSPYPTFNPSSDVAAALH KAIMVKGVDEATIJDILTKRNAQRRQKIAAY LQETGKPLDETLKKALTGHLEEVVLALLKTP AQFDADELRAAMKGLGTDEDTLIEILASRTN KEIRDINRVYREELKRDLLAKDITSDTSGDFRN ALLSLAKGDRSEDGFVGVNEDLADSARALYE AGERKGTDVNVFNTILTTRSYPLQRVFQKY TKYSKHDMMNKVLDELKGDIIEKCLTAIVKCA TSKPAFFAEKLHQAMKGVGRHKALIRIMVS RSEIDMNDDIKAFYQKMYGISLCQAILDETKGD YEKILVALCGGN
901	2251	A	7796	2	807	VEFHQPQRARAGARAPSMGVLLTQRTLSSLVL ALLFPSMASMAIGSCSKEYRVLQLQLQKQT DLMQDTSRLLDPYIIRQGLDVPKLREHCRERP GAFPSEETLRGLGRRCLQTLNATLGCVLHRL ADLEQRLPKAQDLERSGLNIEDLEKLQMAPR NILGLRNNIYCMAQLLDSNTAEPTEKAGRGA SQPPTPTPASDAFQRKLEGCRFLHGYYHRFMH SVGRVFSKWGESPNSRRHHSPHQALRKGVRR TRPSRKGKRLMTRQLPRL
902	2252	A	7802	2	721	TAARRRQKGTAAARRLOKGTAARRRQKGTAAARRR QKGTAAARRRQKGTAAARRPQKGTAAARRRQKG TAARRRQKGTAAARRRQKGLAISRGCPCASR AGGVRGAGSRLRAMAPKVFRQYWDIPDGTD CHRKAYSTTSIASVAGLTAAGYRVTLNPPGTF LEGVAKVGQYTPTAAAVGAVFGLITCISAHV REKPDDPLNYFLGGCAGGLTGARTHNYGIG AACAVYFGIAASLVKMGRLEGWEVFAKPKV

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \possible nucleotide insertion)
903	2253	A	7807	1	584	PWLPWSDGRAASSRKCPRSFPVQVGKMA VSTVFSTSSLMLALSRSHLLSPLLSVTSFRRFY RGDSPTDSQKDMIEIPLPPWQERTDESIETKR ARLLYESRKRGMLENCILLSLFAKEHLQHMT EKQLNLYDRLINEPSNDWDIYYWATEAKPAP EIFENEVMALLRDFAKNKNKEQRLRAPDLEY LFEKPR
904	2254	A	7813	40	821	GAGR ALGH LETGAGDVAALPARKFPRSLLG AGAR LGWTMNVFRILGDL SHLLAMILLLGK IWRSKCCKGISGKSQILFALVFTTRYLDLFTNF ISIYNTVMKVVFLLCAYVTVYMIYGKFRKTF DSENDTFRLEFLVPIVGLSFLENYSFTLLEIL WTFSIYLESVAILPQLFMISK TGEAETITTHYL FFL GLYRALY LANWIRR YQTENFYDQIAVVS GVVQTIFYCDFFYLYVTKGRSWDDSNADTGL RSYSSI
905	2255	A	7817	1399	881	LSNKDVLPQLKDENS KLRRKLNEVQSFSEA QT EMVRTLERK LEAKM IKEYESDYHDLESVVQ QVEQNLELMTKRAVK AENHVVKLKQEISLL QAQVSNFQRENEALRCGQGASLTVKQNAD VALQNLRVVMNSAQASIEQLVSGAETLNLV A EILKSIDRISEVKDEEEDS
906	2256	A	7822	3	1462	DSPRNRFIELGRPRTTRPGPRPAMEDLDAL LSDLETTSHMPRSSGAPKERPAEPLTPPPSYG HQPQTGSESSGASGDKDHYLSTVCKPRSPK PAAPAAPPFSSSSGVLTGCLCELDRLI.QELNA TQFNITDEIMSQPSSKVVASGEQKEDQSEDKK RPSLPSSPSPGLPKASATSATLELDRLMASLSD FRVQNHLPASGPTQPPVVSSNEGSPSPPEPTG KGSDLTMLGLLQSDSLSSRRGVPTQAKGLCGSC NKP IAGQVVTALGRAWHPEHFCGGCSTAL GGSSFFEKDGAPFCPECYFERFSPRCGFNCQPI RHKMVTALGTHWHPHEFCCVSCGEPPGDEG FH EREGRPYCRRDFLQLFAPRCQGCQGPILDN YISALSAL WHPDCFVCRECFCAPFSGGSFFEHE GRPLCENIHARRGSLCATCGLPVTCRVSA LGRRFHDPDHTCTFCLRPLTKGSFQERAGKPY CQPCFLKLFG
907	2257	A	7828	1792	1671	FIYVNQSFAPS PDPDQEVGTL YECFGSDGKLVLH YCKSQAWG
908	2258	A	7842	110	1172	KLSCPCSHGTRTVAVRGPRLKAGVQWHD LG SLOPPPGLKQSSHLSLSSSWDFRHAPTHPET YTCKPMIEMEQAEAQLAELDLLASMFPGENE LIVNDQLAVAEKLDCIEKKTMEGRSSK VYFTI NMNLDVSDEKMA MFSLACILPFKYPAVLPEI TVRSVLLRSRQQTQLNTDLTAFLQKHCHGDV CILNATEWVREHASGYVSRDTSSSPTTGSTVQ SVDLIFTRLWIYSHHIYNKCKRKNI LEWAKEL SLSGFMSMPGKPGVV CVEGPQSAEEFWARLR KLNWKRLIRHREDIPFDGTINDETERQRKFSIF EEKVFSVNGARGNHMDFGQLYQFLNTKGCG DVFMFLWV
909	2259	A	7870	3067	2923	EGICVYTIFIYVHMYTRTCMHTYPYMMNSV LISSEILLIPS SKYLFESK
910	2260	A	7884	212	4874	GALTWSHPLLAVCPQGVWLGS TPSGSPALLP PSHRVNAEPGCVVTNA CASG PCPPHANC RD WQTF SCTCOPGYYGPGCVDA CLLNPCQNQG SCRHLPGAPHG YTCD CVGGYFGHCEHRMD QQCPRGWWGSPTCGPCNC DVHKGFDPNCNK

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, \=possible nucleotide insertion)
						TNGQCHCKEFHYRPRGSDSCLPCDCYVGST SRSCAPHSGQCPICRPGALGRQCNSCDSPFAEV TASGCRVLYDACPKSLSRSGVWWWPQTKGVL ATVPCPRGALGLRGAGAAVRLCDEAQGWLE PDLFNCTSPAFRELSSLIDGLELNKTALDTME AKKLAQRRLREVGTGHTDHYFSQDVRTARLL AHLLAFESHQQQFGLTATQDAHFNEPLLWA GSALLAPETGDLWAALGQRAPGGSPGSAGLV RHLEEYAAATLARNMELTYLPMPMLVTPNIML SIDRMELHPSSPRGARRYPRYHSNLFRGQDAW DPHTHVLLPSQSPRPSPSEVLPSSSIENSTTSS VVPPPPAPEPEPGISIIILVYRTLGLLPAQFQ AERRGARLPQNPPVMNSPVSVAVFHGRNFLR GILESPISLEFRLQLTANRSKAICVQWDPPGLA EQHGVWTARDCELVHRNGSHARCRCSRTGT FGVLMDASPRERLEGDLELLAVFTHVVVAWS VAALVLTAAIILSLRSLKSNVRGIGHANAAA LGVAELLFLLGIGRTHNQI.VCTAVILLHYFF LSTFAWLFVQGLHLYRQMVEPRNVDRGAMR FYHALGWGVPAVLLGLAVGLDPGYGNPDF CWISVHEPLIWSFAGPVVLVIVMNGTMFLA ARTSCSTGQREAKTSALTTRSSFLLLLVS A SWLFGLLAVNHSILAFHYLHAGLCGLQGLAV LLFCVLNADARAAWMPACLRKAAPEEAR PAPGLGPAGYNNTALFEE\$GLIRITLGASTVSS VSSARSRTQDQDSQRGRSYL RDNVLVRHGS AADHTDHSLSQAHQAPTLDVAMFHRDAGA DDSDSDSLSEEERSLIPSSESEDNGRTRGRF QRPLCRAAQSERRLTTPKDVGNDLSSYWPA LGECEAAPCALQTWGSEERRLGLDTSKDAAN NNQPDALTSGDETSLGRAQRQRKGILKNRL QYPLVPQTRGAPELSWCRAATLGHRAPPAAS YGRYAGGGTGSLSQASRYSSREQLDLLLRR QLSRERLEEAPAVLRLSRPGSQECMDAAPG RLEPKDRGSTLPQQPRDYPGAMAGRFGSR DALDLGAPREWLTLLPPRRTDLDPOPPPPLP LSPQRQLSRDPPLPSRPLDSLRSNSREQLDQ VPSRHPSREALGPLPQLLRAEDSVSGPSHGP STEQLDILSSILASFNSALSSVQSSSTPLGPHT TATPSATASVLPGPSTPRSATSHSISELSPDSEPR DTQALLSATQAMDLLRRDYHMERPLLNQEHE LEELGRWGSAPRTHQWRTWLQCSRARAYAL LLQHLPVLVWLPYRVPVRDWLLGDLLSGLSVA IMQLPQGLAYALLLAGLPPVFGLYSSFYPVFIY FLFGTSRHSIUSVESLCVPGPVDT
911	2261	A	7890	21	806	EFGTSRSSRSMMAEDLGLSGETASVEMLPEHG SCRKPKRSSSARWALTCCVLVLPFLAGLTTYL LVSQLRAQGEACVQFQALKGQEFAPSHQV YAPLRADGDKPRAHLTVVRQPTQHFKNQFP ALHWEHELGLAFTKNRMNTNKFLLIPESGD YFIYSQVTFRGMTSECSEIRQAGRPNKPDSITV VITKVTDSSYPEPTQLLMGTKSVCVEVGSNWFO PIYLGAMFSLQEGDKLMVNVDISLVDTKE DKTFFGAFL
912	2262	A	7891	1263	111	ACGIRHEGALPGLTATPEAMLRFLPDLAFLSFL LILALGQAVQFQEYVFLQFLGLDKAPSQPKFQ PVYIILKKIFQDREAAATTGVSRLCYVKELG VRGNVLRFLPDQGFFLYPKKISQAASSCLQKLL YFNLSAIKEREQLTLAQLGLDLGPNSYYNLGP ELELALFLVQEPHVGQTPKPGKMFVLSV

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, =possible nucleotide insertion)
						PWPQGAHVFNLLDVAKDWNNDPRKNFGLFL EILVKEDRDSGVNFQPEDTCARLRCSDLHASLL VVTLPDPQCHPSRKRAAIPVPLSCKNLCH RHQLFINFRDLGWHKWIAPKGFMANYCHGE CPFSLTISLNSSNYAFMQLMHAVDPEIPQAV CIPTKLSPISMLYQDNNDNVILRHYESDMVVD ECGCG
913	2263	A	7892	15	849	ASRLPRPGPGCGADMRLPLLGLLVFAGCTFA LYLLSTRLPRGRRLGSTEAGGRSLWFPSDLAE LRELSEVLREYRKEHQAYVFLFCGAYLYKQ GFAIPGSSFLNVLAGALFGPWLGLLLCCVLT VGATCCYLLSSIFGKQLVVSYFPDKVALLQR KVEENRNSLFFFLLFLRLFPMPNWFNLNSAPI LNPIIVQFFFSLIGLIPYNFICVQTGSILSTLTS LDALFSWDTVFKLLAIAMVALIPGTLLKKFSQ KHLQLNETSTANHIHSRKDT
914	2264	A	7893	815	959	KSGWWWWLTPLIPALWEAQTEGSLRPEVKNRLSNITRPFFSKKKKILV
915	2265	A	7909	3	641	HASGPGLLRRRGSGANMPVARSWVCRKT YVTPRPRPFEKSRRLDQEKLIGEYGLRNKREV WRVKFTLAKIRKAARELLTLDEKDPRRLFEG NALLRLVRIGVLDEGKMKLDYLGLKIEDFL ERRLQTQVFKGLAKSIHHAHVLIQQCHIRVR EQVVNILEFTVRLDSQKHIDFSLCFPIGVANPS HVKRKNASKGQGGAGARDDEEEE
916	2266	A	7914	3	967	VAHTWHTCQRQLSQLTHRSLIKYLLIDTHAC QVLILKHTHASLSPSCQECFPSSIPSASHMVS HPHPPPSPRWRGQTPEGGLPAASPCGPGPRSCFS SILPTGDSWGMALCLCTVLWHLPAVPALNRT GDPGPGPSIQKTYDLTRYLEHQLRSLAGTYLN YLGPPFNEPDFNPPRLGAETLPRATVDLEVW RSLNDKLRLTQNYEAYSHLLCYLRLGLNRQAA TAELRRSLAHFCTSLLQGLLGSIAVGMAALGY PLPQPLPGTEPTWTPGPAHSDFLQKMDDFWL LKELQTWLWRSACKDFNRLKKKMQPPAAVT LHLGAHGF
917	2267	A	7921	2	1166	RPRRGQGLVQEVTENVTVAEGGVAEITCRL HQYDGSIIVVIQNPARQLFFNGTRALKDERFQ LEEFSPRRVRIRLSDARLEDEGGYFCQLYTED THHQIATLTVLVAPENPVVEVREQAVEGGEV ELSCLVPRSRPAATLRWYRDRKELKGVSQQ ENGVVWVASTVRFRVDRKDDGGIIICEAQN QALPSGHSKQTQVVLDVQYSPTARIHASQAV VREGDTLVLTCAVTGPNPRPNQIRWNRGNESL PERAEA VGETLTPGLVSADNGTYTCEASNK HGHARALYLVVYGESRLRPTEGGGGAPDP GAVVEAQTSVPYAIVGGLALLVFLICVLVG MVWCSVRQKGSYLTHEASGLDEQGEAREAF LNGSDGHKRKEFFI
918	2268	A	7938	3	2653	RRRLPPASPSSVSSSLPSAVVMACRWSTK ESPRWRSALLLFLAGVGNGALAEHSENVH ISGVSTA GETPEQIRAPSGIITSPGWSEYPAK INC SWFIRANPGEITISFQDFDIQGSRRCNLD WLTIETYKNIESYRACGSTIPPPYISSQDHIIWIR FHSDDNISRKGFRLAYFSGKSEEPNCACDQFR CGNGKCipeAWCNNMDECGRDSDEEICAKE ANPPTAAAFQPCAYNQFQCLSRTFKVYTCLP ESLKCDGNIDCLDLGDEIDCDVPTCGQWLKY FYGTFNSPNYPDFYPPGSNCTWLIIDTDHRK

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, †possible nucleotide insertion)
						VILRFTDFKLDGTGYGDYVKIYDGLEENPHK LLRVLTAFDSHA PLTVSSSGQIRVHFCADKV NAARGFNATVQVDGFCLPWEIPCGGNWGCY TEQQRCRDGYWHCPNGRDETNTMCQKEFP CSRNGVCYPRSDRCNYQNHCPNGSDEKNCF CQPGNFHCKNNRCVFESWVCDSQDDCGDGS DEENCPVIVPTRLVITAAVIGSLICGLL VIALG CTCKLYSLRMFERRSFETQLSRVEAELLRREA PPSYGQLIAQGLIPPVEDFPVCSPNQASVLENL RLAVRSQLGFTSVRLPMAGRSSNIWNRI FNFA RSRHSGSLALVSADGDEVVPSQSTSREPERNH THRSLSFVESDDTDTENERRDMAGASGGVA APLPKVPPPTAVEATVGACASSSTQSTRGGH ADNGRDVTISVEPPSVSPARHQLTSALS RMTQ GLRWVRFTLGRSSSLSQNQSPLRQLDNGVSG REDDDDVEMLPISDGSSDFDVNDCSRPLL DL ASDQQGQGLRQPYNATNPGV RPSNRDGP CERC GIVHTAQIPDTCLEVTLKNETSDDEA LLC
919	2269	A	7951	1674	1839	VVRVTCCPPARSTTERTNAYDEEDCVEMVAS GGWNDVACHITMYFMCEFDKKNM
920	2270	A	7953	47	572	GGRASWPEQAKEPRREGHTDKQQTEDVLA AGLRCLPHLPAICARRMSPAFRAMDVEPRAKG VLLEPFVHQVGHHSCVLRFNETTLCKPLVPRE HQFYETLPAEMRKFTPQYKGKSQLL EGLPHW RGDVRDRGHGRPWQPSLEPSLPPTLCPSSL SS FSSSWPSAQHLTPSVFN PW
921	2271	A	7957	612	812	RSGRTVTGIGYSKALQSSNRNTKSLLQNEF MMVYSFRALSFESTWATFQHGGEATKSRSL SSTQ
922	2272	A	7967	1443	1660	ENITEKWKEIWMCRGNKSCCWTIFIKDRHLT VSCKSKSGETLLICIFCSNLVGFFF GIRGFSN WELVKPN
923	2273	A	7981	1	3023	GSAPRAATAMARARPPPPS PPPGLLP LPLPLLLPAGCRALEETLMDTKWV TSELA WT SHPESGWEEVSGYDEAMNP IRTYQVCNVRES SQNNWLRTGFIWRRDVQRVY VELKFTVRDC NSIPNIPGSC KETFNLFFYEA DSDV ASASSPFW MENPYVKVDTIAPDESFSR LDAGR VNTK VRS FGPLSKAGFYLA FDQGACMSL ISVRAFYKK CASTTAGF ALFPETLTGAEP TLVIA PGTCIPN AVEVSPV LKLYCNGDGEWM VPVGACTCATG HEPAAKESQC RCP CPPSYKAKQGEGP CLPCPP NSRTTSPAA SI CTCHNN FYRADSDSADS ACTT VPSPPRGVISVN VNETS LLEWSE PRDLG V RDD LLYNVICKKCHGAGGA SACRSC DDNVEF VPR QLGLSEPRVHTS HLAHTTRYTFEVQA VNGVS GKSP LPPRYAAVN ITT NQAAPSEVPTL RLHSS SGSSLTLSW APPERPN G VILDYEM KYFEKSEG IASTV TSQMNSVQLDGLRP DARYVVQ VRART VAGYQOY SRPAE FETT SERGSGA QQLQ EQLP LIVG SATAGLV FVVA VVVIAI VCLR KQRH GS DSE YTEKLQ QYIAPGM KVYIDPFTYEDPNEA VREFAKEIDVSCVKIEEVIGAGEFGEVCRGRL KQPG RREV FVAIKTLKV GYTERQ RRD FLSEA SIMGQFDHP NIURLEG VVT KSRPV MILTE FME NCALDSFLRLN DQFTV IQLVGMLRGIAAGM KYLSEM NYVHRDLAARNILVNSNLVCKV SDF GLSRFLEDDPSD PTY TSSLGGKIPRWT APEAI AYRKFTSASDVWSY GIVMWEVMSYGERPY

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, =possible nucleotide insertion)
						WDMSNQDVINADEVQDYRLPPPMDCPTALHQ LMLDCWVDRNLRPKFSQIVNTLDKLIRNAA SLKVIASAQSGMSQPILLDRTVPDYTTFTITVGD WLDAIKMGRYKESFVSAGFASFDLVAQMTE EDLLRIGVTLAGHQKKILSSIQDMRLQMNQT LPVQV
924	2274	A	7985	1	503	FRPRTKKATAMYLEHYLDSIENLPCELQRNF QLMRELDQRTEDEKKAEIDILAAEYISTVKTLS PDQRVERLQKIQNAYSKCKEYSDDKVQLAM QTYEMVDKHIRRLADLARFEADLKDKMEG SDFESSGGRGLKKGRGQKEKRGSRGRGRRTS EEDTPKKKKHKG
925	2275	A	7994	447	589	LPCSFCAQCMSSFERVWLQQSHFHNPWRNSR SPIRCYCQWHWPVCVHC
926	2276	A	7996	925	582	GPCKVCCITLAIMLQCHSFYRKDVQVEHPKS LNPKYSQIENFLSADMALKRKCLLSISDLDFW IWDAQPVGIMQTLQNLKKIPNGCFWSQAFQI RDTQPLPLGGRYYTITRQ
927	2277	A	7998	2	353	R1QRPLNSRSPNHSLFVKAELTAKQATMKLSV CLLLVTIALCCYQANAECPALVSELLDFFI SEPLFKLSLAKFDAPPEAVAAKLGVKRCTDQ MSLQRSLIAEVLVKILKKCSV
928	2278	A	8004	130	588	LAPLRCQPGTRTQPRSHPAANDPSAAMSAG ARGLRATYHRLLDKVELMLPEKLRPLYNHPA GPRTVFFWAPIWKWGLVCAGLADMARPAEK LSTAQSVALMATGFIWSRYSLVIIPKNWSSLFA VNFFVGAAGASQLFRJWRYNQELKAKAHK
929	2279	A	8007	2	1016	EFARRRVFIAAREMSLLRSLRVFLVARTGSYP AGSLLRQSPQPRHTFYAGPRLSASASSKELL KLRRKTYGSFVNCKKALETCGGDLKQAEIWL HKEAQKEGWSKAAKLQGRKTKEGLIGILLQE GNTTVLVEVNCETDFVSRNLKFQOLLVQQVAL GTMMHCQTLKDQPSAYSKGFLNSELSGLPA GPDREGSLKDQLALAIGKLGENMILKRAAWV KVPMSGFVVGSYVHGAMQSPSLHKLVLGKYG ALVICETSEQKTNLEDVGRLGQHVVGMAPL SVGSLDDEPGEAETKMLSQPYLLPSITLGQ YVQPQGVSVVDFVRFECGEGEAEAETE
930	2280	A	8008	3	1679	NSRVWGPWTPEPSAGSLRP MARKQNRNSKEL GLVPLTDDTSAGPPGPGRALLECDHLRSGV PGGRRRKDWSCSLLVASLAGAFGSSFLYGYN LSVNVNAPTPYIKAFYNESWERRHGRPIDPDTL TLLWSVTVSIFAIGGLVGTLIVKMIGKVLGRK HTLLANNNGFAISAALLMACSLQAGAFEMLIV GRFIMGIDGGVALSVPMLSEISPKEIRGSLG QVTAIFICIGVFTGQLLGLPELLGKESTWPYL GVIVVPAVVQLSLPFLPDSPRYLLEKHNEA RAVKAFQTFLGKADVSQEVEEVLAESRVQRS IRLVSVLELLRAPYVRWQVVTIVTMACYQL CGLNAIWFTYNTSIFGKAGIPAKIPYVTLSTGG IETLAAVFSGLVIEHLCRRPLLIGGFGLMGLFF GTLITILTLQDHAPWVPYLSIVGILAIASFCSG PGGIPFILTGEFFQQSQSPAAFIAGTVNWLSN FAVGLLFFFIQKSLSDTYCFLVFATICITGAIYL YFVLVPETKNRTYAEISQAFSKRNKAYPPEEKI DSAVTDGKINGRP
931	2281	A	8009	861	300	AAGAVVSAMPKAKGKTRRQKF GYSVNRKRL NRNARRKAAPRIECSHIRHAWDHAKSVRQNL AEMGLAVDPNRAVPLRKVKAMEVDIEER

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						PKELVRKPYVLNDLEAEASLPEKKGNTLSRD LIDYVRYMVENHGEDYKAMARDEKNYYQD TPKQIRSKINVYKRFYPAEWQDFLDLSQKRK MEVE
932	2282	A	8011	412	1	SNLCLGNNSWRWRWAKSRHHCIPTVTLSKRSG DIRGSHFSSPQRQRSQRVPKGETARVLRAGK QGRGQIPICPCWP PPPPPPGSPGPGRQFHQ SLEAKARHPASVREMRGKVKMRRALRAPA STRASSRQPNPK
933	2283	A	8012	147	1077	PPVPPASRSDMAQNLKDLAGRLPAGPRGMGT ALKLLLGGAGAVAYGVRESVFIVEGGHRAIFF NRIGGVQVQDTILAEGLHFRIPWQYPIIYDIRA RPRKISSPTGSKDLQMVNISLRVLSRPNAQEL PSMYQRLGLDYEEVLP SIVNEVLSKSVVAKF NASQLITQRAQVSLLIRRELTERAKDFSLILDD VAITELSFSREYTAAVEAKQVAQQEAQRAQF LVEKAKQEQRQKJVQAEGEAEAAKMLGEAL SKNPGYIKLRKIRAAQNIKTIATSONRIYLTA DNLVLNQDESFRGSDSLIKGKK
934	2284	A	8023	255	982	SQFSLSQVLVDSAEEGSLAAAELAAQKREQ RLRKFRELHLMRNEAKRLNHQEVEEVDKRL KLPANWEAKKARLEWELKEEKKECAARG EDYEVKVLLLEISAEDAERWERKKKRKNPDLG FSDYAAAQLRQYHRLTKQIKPDMETYERLRE KHGEEFFPTSNSLLHGTHVPSTEEIDRMVIDLE KQIEKRDKYSRRPYNNDADIDYINERNAKF NKKAERFYGYTAEIKQNLERGTA V
935	2285	A	8027	59	310	LVSSTVNLLTEKAPWNSLAWTVTSYVFLKFL QGGGTGSTGMRDSALTLLGIGGPSHRHSLSI RL SQHSSPAPMYSQTFHILV LG
936	2286	A	8032	1	639	SGRECNMAKTYDYLFKLLIGDSGVGKTCVL FRFSEDAFNSTFISTIGIDFKIRTIELDGKRIKLQ IWDTAGQERFRTTTAYYRGAMGIMLVYDIT NEKSFDNRNWRNIEEHASADVEKMLGNKC DVNDKRVSKERGEKLALDYGIKFMETSAK ANINVENAFFTLARDIKAKMDDKKLEGNSPQG SNQGVKITPDQQKRSFFFRCVLL
937	2287	A	8039	393	311	EETHSENSYILEKYIPISANLTIA
938	2288	A	8052	675	1334	LHPAAATSTAWLHVPPGLSMALSWVLTVLSLL PLLEAQIPLCANLVPVPITNATLDRITGKWFYI ASAFRNEEYNKSQVQEIQATFFYFTPNKTEDTIF LREYQTRODQCINYTTLYNVQRENGTISRYV GGQEFAHLLIRDTKTYMLAFDVNDEKNW GLSVYADKPETTKEQLGEFYEALDCLRIPKSD VYTDWKDKCEPLEKQHEKERKQEEGES
939	2289	A	8055	12	1039	SSVAEFPERVQLSQPNWNFGAGGAWSDF AEQLKWSAELARLGE SIMDGKQGGMDGSKP AGPRDFPGIRLLSNPLMGDAVSDWSPMHEAA IHGHQLSLRNLI SQGWA VNI ITADHV SPLHEA CLGGHLSCVKILLKGHAQVNGVTADWHTPL FNACVSGSWDCVNLLQHGASVQPESDLASP IHEAARRGHVECVNSLIA YGGNIDHKISHLGT PLYLACENQQRACVKKLLES GADVNQGKGQ DSPLHAVARTASEELACLLMDFGADTQA KN AEGKRPVELVPPESPLAQLFLEREGPPSLMQL CRLRIRKCFGIQQHHKITKLVLPEDLKQFLH L
940	2290	A	8058	2	1203	KVLSIREPAHSTAR KASEP SQPSQPSQPGGH LI ARLRTMDLHLFDYSEPGNFSDISWPCNSSDCI

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, =possible nucleotide insertion)
						VVDTVMCPNMPNKSVLLYTLSFIYIFIFVIGMIANSVVVVNVNIQAKTTGYDTHCYILNLAIADLWVVTIPVWVSVLQHNOQWPMGELETCKVTHLIFSINLFGSIFFLTCMSVDRYLSITYFTNTPSSRKKMVRVVCILVWLLAFCVSLPDTYYLKTVTSASNNEYCRSFYPEHSIKEWLIGMELVSVVLGFAVPFSIIAVFYFLLARAISASSDQEKGSSRKIIFSYVVVFLWCWLPYHVAVLLDIFSLHYIPTCRLEHALFTALHTVQLSLVHCCVNPVLYSFIRNYRYELMKAFIGKYSAKTGLTKLIDA SRVSETEYSALEQSTK
941	2291	A	8059	73	432	DMAGLMTIVTSLFLGVCAHHIPTGSVVLPS PCCMFVSKRIPENRRVVSYQLSSRSTCLKAGVIFTIKKQQFCGDPKQEWVQRYMKNLDAKQKKSAPRARA VAVKGPVQRYPGNQTTC
942	2292	A	8067	278	1262	GGIGEKQRPSCLGRCCLDPSSLVLMNISLGLGS VFSAVISQKPSRDICQRGTSLTIQCQVDSQVT MMFWYRQQPGQSLTLIATANQGEATYESGF VIDKFPISRPNLTFSTLTVSNMSPEDSSIYLCSA GRQGTYEQQYFGPGTRLTVTEDLKNVFPPEVA VFEPSEAEISHTQKATLVCLATGFYFPDHVELS WWVNGKEVHSGVSTDPPQPLKEOPALNDSRY CLSSRLRVSATFWQNPRNHFRQCQVQFYGLSENDEWTQDRAKPVTQIVSAEAWGRADCGFTS ESYQQGVLSATILYEILLGKATLYAVLVSALV LMAMVKRKDSRG
943	2293	A	8070	1	879	MVKVVPATRGNLPRSQLTGTHQHCQPREPKITASERLRRRPRATARLRAHAAPPPEPLAVFAPPSDRKELLALPVACDPVIASVMSWVQAASLIQPGDKGDVFDEEADESLLAQREWQSNMQR RVKEGYRDGIDAGKAVTLQQGFNQGYKKGAEVILNYGRLRGTLSALLSWCHLHNNSNSTLINKINNLLDAVGQCEEYVLIKHLKSITTPPSHVVDLL DSIEDMDLCHVVPAEKKIDEAKDERLCENNAEFNKNC SKSHSGIDCSYVECCRQEHAHSGKPKPHMDFGTDSQF
944	2294	A	8073	1	797	ESARWSRQLRRTLIRLSFPISCGRSASHAFGGCK MAATSGTDEPVSGELVSVAHALSLPAESYGN DPDIEMAWAMRAMQHAEVYYKLSSVDPQFLKLTKVDDQIYSEFRKNFETLRIDVLDPEELKSESAKEWRPFCLKFNGIVEDFNYGTLLRD CSQGYTEENTIFAPRIQFFAIEJARNREGYNKAVYISVQDKEGEKGVNNGGEKRADSGEEENTKNGGEKGADSGEEKEEGINREDKTDKGGEK GKEADKEINKSGEKAM
945	2295	A	8074	2	505	GAATLRSASSAARKAAEAEQVWLHLHRYLSADRRVGLREWGRPASERECSLCQRLKREL NMGDVEKGKKIFIMKCSQCHTVEGGKHKT GPNLHGLFGRKTGQAPGYSYTAANKNKGIIWGEDTLMEYLENPKKYIPGTMIFVGIKKKEERADLIAYLKKATNE
946	2296	A	8081	42	590	EGRRGKFGGKLCNFILFYFHSNSAESRMDVLFVAIFAVPLILGQEYEDEERLGEDEYYQVYYYTVTTPSYDDFSADFTIDYSIFESEDRLNRLDKDITEAIETTISLETARADHPKPVTVKPVTEPQSPRSEAMPVRLSPILPPVRVPLFRWGCGISC KKVGRRLLMTLWMGVWQEEIGR
947	2297	A	8084	322	549	GGGSSPRELAGAAGLTVTSQAVAARRQQPSFSRARAPAHSLRAALSASSARSWGAVSRDRG

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, \=possible nucleotide insertion)
948	2298	B	8093	3905	846	MEPGEVKDRILENISVKKLQSYYFAACEDEI PAIRNHDKVLQRLCEHLDHALLYGLQDLSSG YWVLLVVFTRREAIKQIEVLQHVATNLGRSR AWLYLALNENSLESYRLFQENLGLHKYYV KNALVCSDHDLTLFLTVSGLEFIRFELDLD A PYLDDAPYMPDYKPKQYLLDFEDRRLPSSVHG SDSLSLSNSFNSVTSTNLWEWDDSAIAPSSEDYD FGDVFPAPVPSVPSSTDWEDGDLTDTVSGPRST ASDLTSSKASTRSPTQRQNPFNEEPAETVSSS DTTPVHTTSQEKEEAQALDPDAACTELEVIRV TKKKKIGKKKSRSDEEASPLHPACSKKCA KQGDGDSRNNSPSSLGRDSPDTMLASPQEEGE GPSSTTESSERSEPGPLLIPEMKDTSMERLGQPL SKVIDQLNGQLDPSTWCRAEPPDQSFRTGSP GDAPERPPLCDFSEGLSAPMDFYRFTVESPST VTSGGGHHDPAGLGQPLHVPSPEAGQEEE GGGGEQQTPRPLEDTTREAQELEAQSLVRE GPVSEPEPGTQEVLCKLKDQPSPCLSSAEDS GVDEGQGPSEMVSSEFRVDNNHLLLLMH VFRNEEEQLFKMIRMSMGHMEGNLQLLYVLL TDCYVYLLRKGATEKPYLVVEAVSYNELDY VSVGLDQQTVKLVCTNRRKQFLDTADVAL AEFFLASLKSAMIKGCREEPPYPSILTDATMEK LALAKFVAQESKCEASAATVRFYGLVHWED PTDESLGPTCHCSPPEGTTIKEGMLHYKAGT SYLGKEHWKTCFVLSNGILYQYPDRTDVIP LLSVNMGGEQCGGCCRANITDRPHAFQVILS DPPCLELSAESEAEMAEMWMQHLCQAVSKGVIP PQGVAPSPCIPCCVLTDTRLFTCHEDCQTSF FRSLGTAKLGDISASTEPGKEYCVLEFSQDS QQLLPPWIVYLSCTSLEDRLLSALNSGWKTIY QVDPHTAIQEASNKKKFEDALSILHSAWQR SDSLCRGGRASRDPWC*
949	2299	A	8095	9	2374	ARRADTVLLESPSMLQGLLPVSLLSVAVSAI KELPGVKKYEVVYPIRLHPLHKREAKEPEQQ EQFETELKYKMTINGKIAVLYLKKKNLLAP GYTETYYNSTGKEITTSPQIMDDCYYQGHILN EKVSDASISTCRGLRGYFSQGDQRYFIEPLSPI HRDGQEHALFKYNPDEKNYDSTCGMDGVL WAHDLQCNIALPATKLVKKDRKVQEHEKY IEYYLVLDNGEFKRYNENQDEIRKRVFEMAN YVNMLYKKLNTHVALVGMEIWTDKDKIKIT PNASFTLENFSKWRGSVLSRRKRHDIAQLITA TELAGTTVGLAFMSTMCSPPYSVGVVQDHSD NLLRVAGTMAHEMGNFGMFHDDYSCKCPS TICVMDKALSFYIPTDFSSCSRSLSYDKFFEDKL SNCLFNAPLPTDIISTPICGNQLVEMGEDCDC GTSEECTNCCDAKTKIKATFQCALGECCEK CQFKKAGMVCRPAKDECDLPEMCNGKSGNC PDDRFQVNGFPCHHGKGHCLMGTCPTLSEQ CTELWGPGETEADKSCYNRNEGGSKYGYCR RVDDTLIPCKANDTMCGKLFQGGSDNLPW KGRIVTFLTCKTFDPEDTSQEIGMVANGTKCG DNKVCINAECDIEKAYKSTNCSSKCKGHAV CDHELQCQCEEGWIPPDCCDSSVVFHFSIVVG VLFPMAVIFVVVAMVIRHQSSREKQKKDQRP LSTTGTRPHKQKRKPQMVKAVQPQEMSQMK PHVYDLPVEGNEPPASFHKDTNALPPTVFKD NPMSTPKDSNPKA

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
950	2300	A	8100	1	1251	MGLLLMILASAVALGSFLTLLAQFFLLYRRQPEPPADEARAGEGFRYIKPVPGLLLREYLGGGRDEEPSGAAPEGGATPTAAPETPAPPTRETCYFLNATILFLFRELRTDALTRRWVTKKKVFEELLQTKTAGRLLLEGSLSRDVFLGETVPFIKTRLVRVPVPSATGEPDGPEGEALPAACPEELAFEAEVYNGGFHLAIDVDLVFGKSAYLGVKLSRVVGRLRLVFTRVPFTHWFFSFVEDPLIDFERSQFEGRPPMPQLTSIVNQLKKIIRKHTLPNYKIRFKPFPYQTLQGFEEDEEHIIHQWALTEGRLKVTLLECSRLLIFGSYDREANVHCTLELSSSVWEEKQRSSIKTGTISLTAVFMGWHRVSEAPGLWYKLLVLDLFWGLEDGGPLLTVPRLQCPG
951	2301	A	8108	1612	839	EVALFCFEMAAAGMYLEHYLDSIENLPFELQRNFQLMRDLDQRTEDLKAEIDKLATEYMSSARSLSEEKLALLKQIQEAYGKCKEGGDDKVQLAMQTYEMVDKHIRRLTDLARFEADLKEKQIESSDYDSSSSKGKKKGRTQKEKKAARARSKGKNSDEEAPKTAQKKKKLVRTSPEYGMPSVTFGSVHPSDVLDMPVDPNEPTYCLCHQVSYGE MIGCDNPDCSIEWHFACVGLTTKPRGKWFCPRCSQERKKK
952	2302	A	8112	595	291	PSVA\$LARRFSGRALWPPSHSVPGNRALCPRLHGTTLPGGNQRELARQNMKKQSDFSVKGKRRDDGLSAAARKQRDSTPRDSEIMQQKQKKANEKKEEP
953	2303	A	8118	1	669	VCA GIR DPC STPLAKPAAAGGAENLSFGKQPG LETNILKMTTPNKTTPGADPKQLERGTGVREI GSQAVWLSLSSCKPGFGVDFQLRDNNLETYWQ SDGSQPHLVNIQFRRKTTVKTLCIYADYKSDES YTPSKISVRVGNFNFHNLQEIRQELVEPSGWIHVPLTDNHKKPRTFMIQIAVLANHQNGRDTHMRQIKIYTPVEESSIGKPRCTTIDFMMYRSIR
954	2304	A	8133	66	1015	PPLPPRSFPNLFSRPEPLPEPGRRGCNRSREPARAPS PPPFEGAPGRAMVKVTFNSALAQKEAKKDEPKSGEEALIIPDAVAVDCKDPDDVV PVGQRRAWCWCMCFCGLAFMLAGVILGGAYLYKYFALQPDDVYYCGIKYIKDDVILNEPSADAPAALYQTIENIKIFEEEEEVEFISVVPVFADS DPANIVHDNFNKKLTAYLDDNLKDCKYVPLNTSIVMPPRNLLLELLINIKAGTYLPQS YLIHEHMVITDRIENIDHLGFFIYRLCHDKETYKLQRRETIKGIOKREASNCFAIRHFNKF AVE TLICS
955	2305	A	8143	35	1171	VESRSAWHEGEDQIDRDFIRNQMNLTL DVKKKIKEVTEEVANKVSCAMTDEICRLS VLVD EFCSEFHNPNDVLK IYKSELNKHIEDGMGRNLADR CTDEVNALVLTQTCQEEIIENLKPLL PAGIQDKLHTLIPCKKF DLSYNLN YHKLCDFQEDIVFRFSLGWSSLVHRFLGPRNAQRVLLGLSEP IFQLPRSLASTPTA PT PTPA TPDNA SQEELMITLVT GLASVTSRTSMGIIIVGGVIWKTIGWKLLSVS LTMYGALYLYERL SWTTHAKERAFKQQFVN YATEKLRMIVSSTSANC SHQVKQQIATTFARL CQQVDITQKQLEEEIARLPKEIDQLEKIQNS KLLRNKA VQLENELENFTKQFLPSSNEES
956	2306	A	8157	1854	798	ASGPAPSSSSAMAAAACGPGAGGYCLLLGLHLFLTAGPALGWNDPDRMLLRDVKA TLHY

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, \'=possible nucleotide insertion)
						DRYTTSRRLDPIPQLKCVGGTAGCDSYTPKVIQCQNKGWGDGYDVQWECKTDLDDIAKYKFGKT VVSCEGYESSEDQYVLRGSCGLEYNLDYTEL GLQKLKESGKQHGFASFSDDYYKKWSSADSC NMSSGLITIVVLLGIAFVVYKLFLSDGQYSPPP YSEYPFPFSHRYQRFTNSAGPPPGFKSEFTGPQ NTGHGATSGFGSAFTGQQGYENSGPGFWTG GTGGILGYLFGSNSRAATPFSDWYYPSYPPSY PGTWNRNAYSPHLGGGSYSVCSNSDTKTRTA SGYGGTRRR
957	2307	A	8159	1492	528	THVVMTCMCYAPHQVLSYINGVTTSKPGVSL VYSMPSRNLSLRLERGLQEKGDSGPYSCSVNVQ DKQGKSRGHSIKTLELNVLVPPAPPSCRLQGV PHVGANVTLSCQSPRSKPAVQYQWDRQLPSF QTFFAPALD VIRGSLSLTNLSSSMAGVYVCKA HNEVGTACQCNVTLEVSTGPGAAVVAGAVVG TLVGLGLLAGLVLYHRRGKALEEPANDIKE DAIAPRTLWPWKSSDTISKNGTLSSVTSARAL RPPHGPPRPGALTPTPSLSSQALPSPLPTTDG AHPQPISPIPGGVSSSGLSRMGAJVPMVPAQS QAGSLV
958	2308	A	8161	2340	1192	ELARRPKQQSEKSRNMIRNWLTIFILFPLKLV EKCESSVSLTVPPVVKLENGSSTNVSLTRLPP LNATLVTIFETFRSKNITILELPDEVVVPVGVT NSSFQVTSQNVQQLTVYLHGNHSNQTGPRIR FLVIRSSAISIINQVIGWYIFVAWSISFYQVIM NWRRKSVIGLSPDFDVALNLTGFVAYSFVNIGL LWVVPYIKEQFLLKYPNGVNPVNSNDVFFSLH AVVLTLLIVQCCLVERGGQRVSWPAIGFLVL AWLFAFVTMIVAAVGVJTWLQFLFCFSYIKL AVILVKYFPQAYMFYYKSTEGWSIGNVLL DFTGGFSFLSQMFLOQSYNDQWTLIFGDPTK FGLGVFSIVFDVVFVFIQHFCLYRKRPGYDQLN
959	2309	A	8163	521	1345	GERAGRRRGLGVWAQPQPLLPRPVGSRRE MQPPGPPIYAPTNQGDFTFVSSADAEDLSGI ASPDVKLNLGQDFIKESTATTFLRQRGYGYWL LEVEDDDPEDNKPLLEELDDIDLKDIIYKIRC LMPMPSLGFNRQVVRDNPDFWGPLAVVLFFS MISLYGQFRVVSWIITIWIFGSLTIFLLARVLG GEVAYGQVLGVIGYSSLPLIVIAPVLLVVGSF EVVSTLIKLFGVFWAAAYSAAASLLVGEFKTK KPLLIYIPFLLYIYFLSLYTGV
960	2310	A	8167	1	2921	MTCFKGQKGEQRSHAFEAANKDHAKVPSPN LYSQLNALQFTVDERSLWLNFLLDLKQSL NQFMavyKLNNDNSKSDEHVDRVVDGLMLK FVIPSEVKSECHQDQPRAIQSSEMIATNTRH CPNCRHSDEALFQDFKDCDFFSKTYTSFPKS CDNFNLHPIFQRHAHEQDTKMHEIYKGNIITP QLNKNTLKTSAATDVWAVYFSQFWIDYEGM KSGKGRPIFVDSFPLSIWICQPTRYAESQKEP QTCNQVSLNTSQSESSSDLAGRLLRKKLKEY YSTESEPLTNGGQKPSSSDTFFRFSPSSSEADI HLLVHVHKVSMQINHYQYLLLFLHESLILL SENLRKDVEAVTGSPASQTSICIGILRSAELA LLLHPVDQANTLKSPTVSESVSPVVPDYLPTEN GDFLSSKRKQISRDINRIRSFTVNHMSDNRSM SVDSLHPLKDPLLFKSASDTNLQKGISFMDY LSDKHLGKISEDESSGLVYKSGSGEIGSETSD KKDSFYTDSSSVLNYREDSNILSFDSDGQNQNI LSSTLTSKGNETIESIFKAEDLLPEAASLSENL

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \possible nucleotide insertion)
						DISKEETPPVRTLKSQSSLGKPKERCPPNLAPLCVSYKNMKRSSSQMSLDTISLDSMILEEQLL ESDGSDSHMFLEKGNNKNSTTNYRGTAESVN AGANLQNYGETSPDAISTNSEGAQENHDDLM SVVFKITGVNGEIDIRGEDTEICLQVNQVTP DQLGNISLRHYLCNRPVGSQDKAVIHSKSSPE ISLRFESGPAGVIHSLLAEKNGFLQCHIENFST EFLTSSLMNIQHFLEDETVATVMPMKIQVSNT KINLKDDSPRSSTVSLEPAVTVHIDL VVER SDDGSFHIRDHSMLNTGNDLKENWKSDSLTTSGKYDLKKQRSVTQATQTSPGVPWPSQSANT FPEFSFDFTREQLMEENESLKQELAKMAL AEAHLEKDALLHHIKKMTVE
961	2311	A	8172	1442	682	TAAMSIFTPTNQIRLTNVAVVRMKRAGKRFETACYKNKVVGVWRSGVEKDLDEVLQTHSVFVN VSKGQVAKKEDLISAFGTDDQTEICKQILTKG EVQVSDKERHTQLEQMFRDIATIVADKCVPN PETKRPYTVILIERAMKDIHYSVKTNKSTKQQALEVIKQLKEKMKIERAHMRLRFILPVNEGKKL KEKLKPLIKVIESEDYQQQLEIVCLIDPGCFREI DELIKKETKGKGSLEVNLKDVEEGDEKFE
962	2312	A	8175	286	587	NISNKAEVSSHPSPVISHSMDSFGQPBPEDNQS VLRRMQKKYWTKVQVFIATGKKEDEHLVA SDAELDAKLEVFHVSQETCTELLKIIEK YQLRLNGMKS
963	2313	A	8181	13	2215	AEGCAERRGTEPVVELSMSWESGAGPGLGSQ GMDLVWSAWYGGCKVKGKGSLPLSAHGIVV AWLSRAEWDDQVTVYLFCDDHKLQRYALNRTVWRSRSGNELPLAVASTADLIRCKLLDVTG GLGTDELRLLYGMALVRFVNLSERKTKFAK VPLKCLAQEVDNIPDWIVDLRHELTKKMphi NDCRRGCYFVLDWLQKTYWCRQLENSLRET WELEEFREGIEEEDQEEDKNIVVDDITEQKPE PQDDGKSTESDVKAQGDGDSKGSEEDSHCKK ALSHKELYERARELLVSYEEEQFTVLEKFRYL PKAIAWNNPSPRVECVAELKGVTCEA VLDALFLDDGFLVPTFEQLAALQIEYEENVDL NDVLVPKPFQSFQWQPLLRGLHSQNFTQALLE RMLSELPALGISGIRPTYILRWTVELIVANTKT GRNARRFSAGQWEARGWRLFNCASLDWP RMVESCLGSPCWASPQLRIIFKAMGQGLPD EEQEKLRLICSYTQSGENSLVQESEASPIKG SPYTLDSLWYVSKPASSFGSEAKAQQQEEQ GSVNDVKEEEKEEVLPDQVEEEEENDDQE EEEEDDEDDEEEDRMEVGPFTGQESPTA ENARLLAQKRGALQGSAWQVSSVEDVRWDTF PLGRMPGQTEDPAELMLENYDTMYLLDQPV LEQRLEPSTCKTDTLGLSCGVGSGNCNSSSSNFEGLLWSQGQLHGLKTGLQFL
964	2314	A	8184	6	1393	EPRRNFRDDSTRPRTRGRTRGRRRRACRSAEGTGLRSLLPPRQLPAGPFSRCRWDPVSSPR PSTMPPKGGDGKPPPIIGRGFTSLKIGIVGLPNVGKSTFNVLTNSQASAENFPCTIDPNESR VPVPDERFDLQCQYHKPASKIPAFLNVVDIRLVKGAGNGQGLGNAFLSHISACDGIFHLTRA FEDDDITHEGSVDPIRDIEIHEELOLKDEEMI GPIIDKLEKVAVRGGDKKLKPEYDIMCKVKS WVIDQKKPVRFYHDWNDKEIEVLNKHLFLTS KPMVYLVNLSEKDYIRKKNKWLIKIKEWVD KYDPGALVIPFGSALELKQELSAERQKYLE

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, =possible nucleotide deletion, \=possible nucleotide insertion)
						ANMTQSALPKIIKAGFAALQLEYFFTAGPDEV RAWTIRKGTKAPQAAGKIH TD FEKGFIMAEV MKYEDFKEEGSENAVKAA GKYRQQGRNYJV EDGDIJFFKFPNTPQQPKKK
965	2315	A	8195	1437	594	RFSFLSFLSLSPSEMMALGAAGATRVFVAMV AAALGGHPPLGVATLNSVLNSNAIKNLPPPL GGAAGHPGSAVSAAPGILYPGGNKYQTIDNY QPYPCAEDEECGTDEYCASPTRGGDAGVQIC LACRKRRKRCMRHAMCCPGNYCKNGICVSS DQNHFREGEIEETITESFGNDHSTLDGYYSRRTT LSSKMYHTKGQE GSVCRLSSDCASGLC CARRH FW SKICKPV LKEGQVCTKHRRKGSHGLEIFQ R CYCGEGLSCR IQKDH HQASNSSLH LTCQRH
966	2316	A	8207	416	4082	KFKLIKIMLLTLIILLPVVS KFSFV SLSAPQHW SCPE GTLAGNGN STCVGPAPFLIFSHGNSIFRI DTEGTNYEQLVV DAVGSVIMDFH YNEKRIY WVDLERQLLQ RVFLNGSRQERVCNIEKNVSG MAINWINEEV IWNSNQ QEGIITVTD MKGNNSHI LLSALKY PANVA VDPVERF IF WSSEVAGSLY RADLDGVGV KALLE TSEK JTA VSL DVL DKRL FWI QYNREGSN SLIC SCDYDGGSV HISKHPTQ HNL FAMS LGDRIFY STWK MKT WIANKHTG KDMVRINL LHSSFVPLGELKVVHPLAQPKAED DTWEPEQKL C KLRKGNC S STVCGQDLQSHLC MCAEGY AL SDRDRK YCEGNDW KYCEDV NEC AFWNHGCTLGCKNTPGSY YCTCPVG FVLLPD GKRCHQLVSCP RVNVSEC SHDCVLTSEGPLCF CPEGSVLERD GKTCSG C S P DNGGSQL CVPL SPV SWECDCFP GYDLQ LDEKSCA ASGPQPFL LFANSQDIRHMHDG TDYGTLLSQQMGMVY ALDHD PVENKIY FAHTALKWIERANMDGSQ RERLIEEGV DVP EGLA VDWIGRRFY W TDRGK SLIGRS DLNGKRSK II T IENIS QPRGIAVHPMAK RLFWTDTG INPRIESSS LQGLGRLVIASSDLIW PSGITIDFLTDKLYWCDAKQS VIEMANLDGSK RRRLTQNDV GH PFAV AVFEDYVWFSDWAMP SVIRVN KRTG KDRV RLQGSMLKPSS LVV VHP LAKPGADPCL YQNGGCEHICK KRLGTA WCS CREGF MKASDGK T CLALDGH QLLAGGEV DL KNQVTPLDILSKTRV SEDNITESQHMLVAEIM VSDQDDCAPVGCS MYARCIS EGEDATCQCLK GFAGDGKLC S DIDECEM GVPV C P PASSK CINT EGGYVCRCS EGYQGDG I HCLD IDEC QLG VHS CGENAS CTNTEGGYTCMCAGRL SEP GLICPD STPPPHL REDDH HYSVRNSD SECPL SHDGYCL HDGVC MYIE ALDKY ACNCVVG YIGERCQYR DLKWWELRHAGHGQQQKVIVVAVCVVVLV MLLLLSLWGAHYYRTQKLLSKNPKNPYE ESS RDVRSRRPA DTEDGMSSCPQFWVVIKEHQD LKNGGQPVAGEDGQ AADGSMQPTSWRQEPQ LCGMGTEQGGC WIPVSSDKGSCPQVMERSFH MPSYGTQTLEGGV EKPHSLL SANPLWQQRAL DPPHQ MELTQ
967	2317	A	8210	3	601	SSAMGSRSSHAAVIPDGDSIRRETGSQASLL RLHHRFRALDRNKKG YLSRMDLQQIGALAV NPLGDRJIESFFPDGSQRVDFPGFV RVLAHFRP VEDED TETODPKKPEPLNSRRNKLHYAFQLY DLD RDGK ISRHEMLQV LRLMVGVQVTEEQL ENIADRTVQEADED GDGA VSFVEFTKSLEKM DVEHKMSIRJLK

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
968	2318	A	8211	2	409	ISSCPHTAYEGSMSTLSNFTQTLEDVFRRIFITYMDNWRQNTTAEQEALQAKVDAENFYYVILYLMVMIGMFSIIAILVSTVKSKRREHSNDPYHQQYIVEDWQEKYKSQLNLNEESKATIHENIGAAGFKMSP
969	2319	A	8215	1	1938	GMPRSRGRAAPGPPPPPPPGQAPRWSRWRVPGRLLLLLPALCCLPGAARAAAAAAGAGNRAAVAVAVARADEAEAPFAGQNWLKSYGYLLPYDSRASALHSAKALQSAVSTMQQFYGIPVTGVLDQTTIEMKKPRCGVPDHPHLSRRRNKRYALTGQKWRQKHITYSIHNYTPKVGELDTRKAIRQAFDVWQKVPLTFEEVPYHEIKSDRKADIMIFFASGFHGDSSPFDGEGGFLAHAYFPGPFIGGDTHFDSDEPWTLGNANHDGNDLFLVAVHELGHALGLEHSSDPSAIMAPFYQYMETHNFKLQPQDLQGIQKIYGPAPLEPTRPLPTLPVRRIHSPSERKHERQPRPPRPLLGDPRSTPGTKPNICDGNTNTVALFRGEMFVFKDRWFWRRLRNNRVQEYPMQIEQFWKGLPARJDAAYERADGRFVFFKGDKYWVFKEVTEPGYPHSLGELGSCLPREGIDTALRWEPVGKTYFFKGERWRYSEERRATDPGYPKPITVWKGIPQAPQGAFISKEGYTTYFYKGRDYWKFDNQKLSVEPGYPRNLRDWMCNQKEVERKERLIPQDDVDIMVTINDPGSVNAVAVVPCILSCLVLVYTIFQFKNKTCGPQPVTTYKRPVQEWT
970	2320	A	8216	1235	2223	SRLSLQFYVSFRRTGLFTCKLIVEIFFRNYMNDSLRTNVFVRFQPETIACACIYLAARALQIPLPTRPHWFLLFGTTEEEIQEICETLRLYTRKKPNYLEKEVEKRKVALQEAQLKAKGLNPDGTPALSTLGGFSASKPSSPREVKAEEKSPISINVKTVKKEPEDRQQASKSPYNGVRKDSDKRSRNSRSASRSRSRTRSRSRSHTPRRHYNRRSRSGTYSSRSRSRSRHSESPRRHHNHGSPHLAKHTRDDLKSSNRHGHKRKKRSRSRSQSKSRDHSDAAKKHRHERGHHRDRRERSRSFERSHKSKHHGGSRGHGRHRR
971	2321	A	8217	3	3274	DCRLQAAMPTNFTVVPEAHADGGGDETAERTEAPGTPEGPEPERPSPGDGNPRENSPFLNNVEEQESFEGKNMALFEEEMDSNPMVSSLNNKLANYTNLSQGVVHEEDEESRRREAKAPRMGTFIGVYLPCLQNLGVILFLRLTWIVGVAGVLESFLIVAMCCTCTMLTAISMSAIATNGVVPAGGSYYMISRSLGPEFGGAVGLCFYLGTTFAGAMYILGTIEIFLTYISPGAAIFQAEAAAGGEAAAMLHNMRVYGTCTLVLMALVVFGVVKYVNKLAVFLACVVLSILAIYAGVIKSAFDPPDIPVCLLGNRNLTSRRSFDACVKAYGHNNSATSALWGLFCNGSQPSAACDEYFIQNNVTEIQGIPGAASGVFLENLWSTYAHAGAFVEKKGVPSVPVAEESRASLTPYVLTIAASFTLLVGIYFPSVTGIMAGSNRSGDLKDAQKSIPTGTILAVTTSFIYLSCIVLFGACIEGVVLRDKFGEALQGNLVIGMLAWPSPWVIVIGSFSTCGAGLQTLTGAPRLQAJARDGIVPFLQVFGHKKANGEPTWALLTVLICETGILIASLDSVAPILSMFFLMCYLFVNLACAVQTLRTPNWRPRFKFYHWTLSFLGMSCLALMFICSWYYALSAMLIAGCIYKYEYRGAEKEWDGDGIRGLSLSNAARYALLRVEHGPPHTKNWRPQVLVMLNLDAEQAMKHPRLLSFTSQ

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						LKAGKGLTIVGSVLEGTYLDKHM E QRAEE NIRSLMSTE T KGFCQLVVSSSLRDGM S HLIQ SAGLGGLKHN T VLMAWPASWK Q EDNPFSW KNFVDTVRD T TAAH Q ALLVAKNVDSFPQNQ ERFGGGHIDVVWIVHDGGMLMLLPFLRQH KVWRKCRM R IFTVAQVDDNSIQMK K DLM Q MF LYHLRISAEVEVVEMVEND I SAFTYERTLMM EQRSQMLKQM Q LSKNE Q ERE A QLIHDRNTAS HTAAAART Q APPTPD K VQMTWTREKLIAEK YRSRDTSLSGFKDL F SM K PD Q SNVRRMHTAV KLNGVVNL N KSQDAQLVLLNMPGP K NRQGD ENYMEFLEVLT E GLNRVLLVRGG G REV T IYS
972	2322	A	8224	701	246	TSRRVTMKFNPFVTSDRSKNRKR R HFNAPSHV RRKIMSSPLSKERQ K YNVRSMP I R K D D EV Q VVRGHYKG Q Q Q IKVV V Y V Y R KK V Y V Y I ERV Q REKANGTTVHG I HPSKV V ITRL K LD K DR K KI LERKAKSRQVG K E K GYKEELIE K M Q E
973	2323	A	8237	873	4610	GCPHAGGKGRVPTGGTGGRTWSPSAA P RSC PRPGPTPAPGAMDKLPPSMR K R L YSLPQQVG AKA W IM D EE E DA E EE E GAGGR Q D P RR S IR L R PLPSPSA A AGGTESR S ALGA A AD S EGP A RG AGK S ST N GC R FR G SL A LS G SR G GG S GG T SGSSHGH L HD S AE E RR L IA E GD A SP G ED R TP P GLAAE P ER P G A SA Q PA A SP PP QQ PP Q P AS A CEQPSVDT A IKVEGGAAAGD Q IL P EA V RL G QAGFMQRQFG A ML Q PG V NK F SLRM F GS Q KA VEREQ R V K SAG F WI H P Y SD F RF Y WDL T ML LLMVG N LI I P V GI T FFKD E NT T P W IV F NV V SD TFFL I DL V LN F RT G IV V ED N TE J LD P RI K MK YL K SWFM V DF I SSIP V DY I FL I VET R ID S E V Y K TARAL R IV R FT K IL S LL R LL R LS R LR I Y I H Q WE EIFHMTYD L ASAV R V I N L IG M LL L CH W D G CLQFL V PM L QDFP D DC W V S INNN M VNN S WG K QSYALFKAMSH I .CIGYGRQ A P V GM S DV WLTMLS M IV G AT C YAM F IGH A TL I Q S LD S RRQYQE K Y K Q V EQ Y Q MS F HK L PPD T R Q R J HD YYEHRY Q G K MFDE E ES I LG E SE P LE R EE I INF N C RKL V AS M PL F AN A D P N F VT S ML T KL R FE V F Q PGDY I IRE G TK K MF I Q H GV V SV L T K GN K E T KL A D G SY F GE I CL L TR G R R TA V RAD T Y C R L Y S LS V DN F NE V LE E Y P MM R AF E TV A LD R DRIGKK N S I LL H K V Q H DL N SG F Y V Q N E I IQ O Q V Q H D RE M A H CA H R V Q AA AS A T P T P T P V I W TPL Q AP L Q AA ATT V A I AL T H P RL P AA I FR PPPG S GL G LN G AG Q TP R HL K RL Q SL P AL G S ASPASSP S Q V DT P SSSS F HI Q Q L AG F SA P AG L S PLLPSSSSPPPG A CG G SP A PT P AG V ATT A G F GH F HK L AL G GS L SSSSD S PL T PL Q PG A R S Q AA Q PS P APP G ARG G GL P EH F L P PP P SS R SP S SP Q QL G QP P GE L SL G LA T GP L ST P ET P PR Q PE P PSL V AG A GG G ASP V G F TP R GG L SP G GI S PG P RT F PS A PP R AS G SH G SL L PP A SS PP PP Q V P QR RGT P PL T PG R LT Q DL K L I S A SP Q PA L P Q D G A Q T LRRASPHSS G ES M AA F PL F PRAG GG SG G SS S GGLGPPGR P Y G AI P Q G Q H VT L PR K TSS G SL PP LSL G AR A TSS GG PL T AG P Q R EP G AR P EV R SK L PS N L
974	2324	A	8247	279	468	EYK Q WERRFL S CQN R ND L GY G K P R K GG GL LVPVK D AS R ICSL T Y L LG S H W NN L VR S P V L G

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, \'=possible nucleotide insertion)
975	2325	A	8249	62	1571	LVALKNWPKGNTNIPAPQSPVFGEAVSGVYMTKVLGMAPVLGPRPPQEQVGPLMVKVEEKEEKGKYLPSLEMFRQRFRQFGYHDTPGPREALSQLRLVLCCEWLREPIHTKEQILELLVLEQFLTILPQELQAQVQEHCPESAEEAVTILEDLERELDEPGHQVSTPPNEQKPVWEKISSSGTAKESPSMQPQPLETSHKYESWGLYIQESGEEQEFAQDPRKVRDCRLSTQHEESEADEQKGSEAEGLKGDIISVIIANKPEASLERQCVNLENEGTKKPPLQEAGSKKGRESVPTKPTPGERRYICAECGKAFTNSNLTKHRRTHTGEKPYVCTKCGKAFSHSSNLTLYHRTHLVDRPYDCKCGKAFGQSSDLLKHQRMLHTEAPYQCKDCGKAFSGKGSLRHYRIHTGEKPYQCNECGKSFSQHAGLSSHQLHTGEKPYKCCECGKAFNHSSNFNKHRIHTGEKPYWCHCGKTFCSKSNLKHQRVHTGEAEP
976	2326	A	8257	298	7086	GNMACWPQLRLLLWKNLTFRRRQTCQLLEVAWPLFIFLILISVRLSYPPYEQHECHFPNKAMPSAGTLPWVQGIIICANNPCFRYPTGEAPGVVGPNKSVARLFSDARRLLLYSQKDTSMKDMRKVRLTLQQIKKSSSNLKQDFLVDNETFSGFLYHNLSLPKSTVDKMLRADVILHKVFLQGYQLHLSLCNGSKSEEMIQLGDQEVSCLCGLPREKLAAAERVLRNSMDILKPIRTLNSTSPFPSKELAEATKTLHLSLGTLAQELFSMRWSWSDMRQEVMFNTNVSSSSSTQIYQAVSRIVCGHPEGGGLKIKSLNWYEDNNYKALFGGNGETEADAE TFYDNSTTPYCNDLMKNLESSPLSRIWKALKPLLVGKILYTPDTPATRQVMAEVNKTQELAVFHDLGMEWELSPKWTMENSQEMDLVRMLLDSRDNDHFWEQQLDGLDWTAQDIVAFLAKHPEDVQSSNGSVYTWREAFNETNQAITRSRFMECVNLNKLPIATEVWLINKSMEELLDERKFWAGIVFTGPGSIELPHHVKYKIRMGIDNVERTNKIKDGYWDPGPRADPFEDMRYVVWGGFAYLQDVVEQAIIRVLTGTEKKTGVYMQQMPYPCYVDDIFLRVMSRSMPFLMTLAWIYSAVIIKGIVYEKEARLKETMRIMGLDNSILWFSWFISSLIPLLVSAGLLVVILKLGNLPPYSDPSVVFVFLSVFAVVTILOCFLISTLFSRANLAAACGGIIYFTLYLPYVLCAWQDYVGFTLKIFASLLSPVAFGFGCEYFALFEEQGIGVQWDNLFESPVEEDGFNLTTSVSMSMLFDFTFLYGVMTWYIEAVFPGQYGPWPWFPCFKSYWFGEESDEKSHPGSNQKRSEICMEEEPETHLKLGVSIQNLVKVYRDGMKVAVDGLALNFYEGQITSFLGHNGACKTTMSILTGLFPPSTSFTAYLCKDIRSEMSTIRQNLGVCPQHNVLDFMLTVEEHFWYARLKGLSEKHVKAEQMA LDVGLPSSKLKSKTSQLSGGMQRKLSVALFVGGSKVVILDEPTAGVDPYSRRGIWELLKYRQGRTIILSTHHMDEADVLDGRIAISHGKLCCVGSSLFLKNQLCGTGYLLTUVKKDVESSLSSCRNNSSTVSYLKKEDSVSQSSDAGLGSDHESDTLTIDVSAISNLIRKHVSEARLVEDIGHELTYVLPLYEAKEGAFVELFHEIDDRSDLGISSYGYSETTLEEFLKVAEEGVDAETSDGTLPARRNRRAFGDKQSCLRPTEDDAADPNDSIDPESRETLLSGMDGKGSYQVKGWKLTTQQQFVALLWKRLIARRSRKGFFAQIV

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, =possible nucleotide insertion)
						LPAVFVCLALVFSLIVPPFGKYPSLELQPWMY NEQYTFVSNDAPEDTGTLELLNALTKDPGFG TRCMEGNPPIPDTPCQAGEEEWTTAPVPQTIM DLFQNGNWTMQNPSPACQCSSDKKKMLPV CPPGAGGLPPPQRKQNTADILQDLTGRNISDY LVKTYVQIAKSLKNKIWVNEFRYGGFSLGV NTQALPPSQEVNDATKQMKKHLKLAKDSSA DRFLNSLGRFMTGLD'IRNNVKVWFNNKGW HAISFLNVINNAILRANLQKGENPSPHYGITAF NHPLNLTKQQLSEVAPMTTSVDVLVSICVIFA MSFVPASFVFLIQERVSKAKHLQFISGVKPVI YWLSNFVWDMCNYVVPATLVIIIFCFQQKSY VSSTNLPLVALLLLLGYGWSITPLMYPASFVFK IPSTAYVVLTSVNLFIGINGSVATFVLELFTDN KLNNINDILKSVFLIFPHFCLGRGLIDMVKNQ AMADALERFGENRFVSPSWDLVGRNLFAM AVEGVVFPLITVLIQYRFFIRPRPVNAKLSPLN DEDEDVRERQRILDGGGQNDILEIKELETKIY RRKRKPAVDRICVGIPPGECFGLLGVNGAGK SSTFKMLTGDTTVTRGDAFLNRNSILSNIHEV HQNMGYCPQFDAITELLTGREHVEFFALLRG VPEKEVGKVGWEAIRKLGLVKYGEKYAGNY SGGNKRKLSTAMALIGGPPVFLDEPTTGMD PKARRFLWNCAHSVKEGRSVVLTSHMEEC EALCTRMAIMVNGRFRCGLGSVQHLKNRFGD GYTIVVRIAGSNPDLKPVQDFGGLAFTP GSVPK EKHNRNMLQYQLPSSLSSLARIFSILSQSKKRLH IEDYSVSQTTLDQVFVNFAKDQSDDDHKLKD LSLHKNQTVVVDVAVLTSFLQDEKVKE SYV
977	2327	A	8260	3	1567	IPGSTISFLCFIFPPCVPTMVRKPVVTISKGG YLQGNVNNGRLPSLNKEPPGQEKFVQLRKV TLLRGVSIIGTIIGAGIFISPKGVLQNTGSVGM SLTIWTVCGVLSLFGALSYAELGTTIKKSGGH YTILEVFGPLPAFVRVWVELLJIRPAATAVIS LAFGRYILEPFFIQCIEPELAKLITAVGITVVM VLNSMSVWSARIQIFLTFCKLITALIIVPGV MQLIKGQTQNFKDAFSGRDSSITRPLAFYYG MYAYAGWFYLNFVTEEVENPEKTIPLAICISM AIVTIGYVLTNVAYFTTINAELLNSNAVAT FSERLLGNFLSVALPPIVVALSCFGSMNGGVFAV SRLFYVASREGHLPEILSMIHVRKHTPLPAVIV LHPLTMIMLFSGDLDSSLNFLSARWLFIGLA VAGLIYLRYKCPDMHRPFKVPLFIPALFSFTC LFMVALSLYSDPFSTGIGFVITLTGVPAAYLFII WDKKPRWFRIMSEKITRLQILEVYVPEEDKL
978	2328	A	8261	2	2165	RGGSLRCVLGKLLGQLLCFQSERCVRPEGGL RHRGCGLLSSRLSAGKPPRLTSFFGSGWGVLP LADAASMSGVRAVRISIESACEKQVHEVGLD GTETYLPLPLSMSQNLARLAQRIIDSQGSGSEE EEAAGTEGDAQEWPAGSSADQDDEEGVVK FQPSLWPWDSVRNNLRLSALTEMCVLYDVLSI VRDKKFMTLDPSQDALPPKQNPTQLQLISK KKSLAGAAQILLKGAERLTKSVTENQENKLQ RDFNSELLRLRQHWKLKVGDKILGDSLRS AGSLFPHHGTFEVKNTDLDKKIPEDY CPL DVQIPSDLEGSAVYIKVSIQKQAPDIGD LGTVN LFKRPLPKSKPGSPHWQTKEAAQNVLLCKEI FAQLSREAVQIKSQVPHIVVKNQIISQPFPSLQ LSISLCHSSNDKKSQKFATEKQCPEDHL YVLE HNLHLLIREFHKTQLSSIMMPHPASAPFGHKR

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						MRLSGPQAFDKNEINSLQSSEGLLEKIIKQAK HIFLRSRAATIDSLASRIEDPQIQAHWSNIND VYESSVKVLITSQGYEQICKSISQLQLNIGVEQI RVVHRDGRVITLSYQEQLQDFLLSQMSQHQ VHA\QQLAKVMGVWQLSFSNHWGLGPIESIG NASAITVAPSGDYAISVRNGPESGSKIMVQF PRNQCKDLPKSDVLDQDNKWSHLRGPKEVQ WNKMEGRNFVYKMELLMSALSPCLL
979	2329	A	8289	2	1053	FVWNPRGGRKRQQAAVTQAATRASGTPSP RDGTMQTGKLSVANKA PGTGQQVHGEKK EAPAVPSAPPSEEEATSGEGMKAGAFPPAPTA VPLHP SWAYVDPSSSSSYDNGFPTGDHEFTT FSWDDQKVRRVFRK VYTILLJQLLVTLAVV ALFTFCDPVKDYYQANPGWY WASYAVFFAT YLT LACCSGPRRHFPWNLLTVFTLSMAYLT GMLSSYYNTTSVLLCLGIT ALVCLSVTVFSFQ TKFDFTSCQGVLFVLLMTLFFSGJLIAILPFQ YVPWLHAVY AALGAGVFTLFLALDTQLLMG NRRHSLSPPEEYIFGALNIYLDIYIFTFFLQLFG TNRE
980	2330	A	8305	59	857	ASQLPDYSISPPSLPPRISFHPSPTLARVAMAEP SEATQSHSISSSSFGAEP SAPGGGGSPGACPAL GTKSCSSSCAVHD LIFWRDVKKTGFVFGTTI MLLSLAAFSVISVSYLILALLSVTISFRIYKSV IQAVQKSEE GHPKAYLDVDITLSSSEAFHNY MNAAMVHINRALKLIIRFLVEDLVDSLKLA VFMWLMTYVGAVFNGITLLILAELLI FSPVPIV YEKYKTQJDHYVGIARDQTKSIVEKIQAKLPG IAKKKAE
981	2331	A	8308	186	1337	TRMSRHEGVSCDACLKGNFRGRRYKCLICYD YDLASCYEGATTTRHTTDHPMQCILTRVD FDLYYGGEAFSVEQPQSFCTCPYCGKMGYET SLQEHVTSEHAETSTEVICPICAALPGGDPNH VTDDFAAHITLEHRAPRDLDDESSGVRHVRR MFHPGRGLGGPRARRSNMHFTSSSTGGLSSS QSSYSPSNREAMDPIAELLSQLSGVRSAGGQ LNSSGSPSASQQLQQLQMLQLERQHAQAA RQ QLETARNATRRNTSSVTTITQSTATTNIAN TESSQQITLQNSQFLTLRNDPKMSETEROSM E SERADRSLFVQELLSTLVREESSSSDED DR GEMADFGAMGCVDIMPLDVALENLNKESN KGNEPPPPL
982	2332	A	8315	1	1004	GSTHASADAWAQWFCTEALVMGAPVWYLV AAALLVGFILFLTRS RGRAASAGQEP LHNEEL AGAGRVAQPGPLEPEEPRAGGRPRRRDLS RLQAQRRAQRVAWA EADENE EEA VILA QEE EGVEKPAETHLSKGIGAKKLKLEE KQARKA QREAEEAEREERKRLESQREA EWKKEERLR LEEEQKEEERKAREEQ AQRHEEY LKLKEA FVVEEEGVGETMTEEQSQSFLTEFINYIKQSK VVLL EDLASQVGLRTQDTINRJQDLLAEGTIT GVIDDRGKFIVITPEELA AVANFIRQRGRVSIA ELAQASNSLIAWGRESPAQAPA
983	2333	A	8320	244	1420	RRRW RARGGLVPTLA WAEATGAYVPG RDKP DLPTWKRNFRSALNRKEGLRLAEDRSKDPHD PHK IYEFVN SGVGDFSPQD TS PDTN GGGSTSD TQEDILD ELLGNMVLAPL PDPGPPSLAV APEP CPQPLRSPSLDNPTFPNLGPSENPLKRL LVPG EEW EFEV TAFYGRQVFQQTISCPEGLRLVGS

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \possible nucleotide insertion)
						EVGDRTLPGWPVTLPPGMSLTDGVMSYVRHVLSCLCGGGLALWRAGQWLWAQLRGHCHTYWAVSEELPNNSGHGPDGEGVPKDKEGGVFDLGPFIVGSLGPDDLTTEGSGRSPRYALWFCVGESWPQDQPWTKRLVMKVVTCLRALVEMARVGGASSLENTVDLHISNSHPLSLTSDQYKAYLQDLVEGMDFQGGGES
984	2334	A	8321	1	1243	ANMAPVEHHVADAGAFLRHAALQDIGKNIYTIREVVTEIRDKAISTRRLAVLPYELRFKEPLPEYVRLVTEFSKKTGDPYPSLSATDIQVLAITYQLEAEFGVGVSHLKQEPQVKVSSSIQHPETPLHISGFHLPYKPKPPQETEKGHSACEPENLEFSSFMFWRNPLPNIDHELQELLIDRGEDVPSEEEEEEEENGFDKRDDSDDGGGWITPSNIKQIQQLENGCDVPEDRVGCLTTDFAMQNVLQMGLHVLAVNGLIREARSYILRCHGCFKTTDMSRVFCSHCGNKTLLKKVSVTSDDGTLMHMHSRNPKVLPNPRGLRYSLPTPKGGKYAINPHLTEDQRFPQLRLSQKARQKTNVAPDYIAGVSPFVENDISSRSATLQVRDSTLGAARRRLNPNAKKFKK
985	2335	A	8322	352	529	RRNNNIRQFIMKVCISGQARWLTPVVVPVLWETEAGRSLELKSLRPAWATWGNPISTKINK
986	2336	A	8325	89	1172	KMNPDTIADTTIDESIYSNYYLYESIPKPCTKEGIKAFGELFLPPLYSLVFVFGLLGNSSVVLVLFKYKRLRSMTDVYLLNLALISDILLFVFSLPFWGYYAADQWWFGLGLCKMISWMYLVGFYSGIFFVMLMSIDRYLAIVHAVFSLRARTLYGVITSLATWSVAVFASLPGFLFSTCYTERNHTYCKTKYSLNNTTWKVSSLNEINLGLVPIGLMPCYSMIIRTLQHCKNEKKNNKAVKMIFAVVVLFLGFWTPYNIVLFLTELVELEVLDQCTTERYLDYAIQATETLAFVHCCLNPPIYFFLGEKFRKYILQLFKTCRGLFVLCQYCGLLQIYSAADTPSSSYTQSTMHDHLDHAL
987	2337	A	8326	3	470	SLSAMRFLAATFLLLAATAAQAEPVQFKDCGSVDGVIKEVNVSOPCTQPCQLSKGQSYSVNVTFTSNIQSKSSKAVVHGILMGVPVPFPIPEPDGCKSGINCPIQKDCKTYSYLNKLPKVSEYPSIKLVVEWQLQDDKNQSIFCWEIPVQIVSHL
988	2338	A	8335	1205	323	VIKMALAARLLPQFLHSRSLPCGAVRLRTPA VAEVRLPSATLCYFCRCLGLGAALFPRSR ALAASALPAQGSRWPVLSLSSPGLPAAFASFPAC PQRSYSTE EKPQQHQKTKMIVLGFSNPINWVRTRIKAFLIWAYFDKEFSITEFSEGAKQAFAH VSKLLSQCKFDLLEELVAKEVLHALKEKVTS LPDNHKNALAANIDEIVFTSTGDISIYYDEKG RKFVNILMCFWYLTSAHIPSETLRGASVFQVK LGNQNVTETKQLLSASYEFPQREFTQGVKPDWT IARIEHSKLE
989	2339	A	8349	67	185	MSGFIHQQLIQNLFCVYHTRLKTSQGLCLLSKSLHPMS
990	2340	A	8361	210	1115	ASPFLRPQGHDSGEREPFSQTPGLMQPFSIPVQITLQGSRRRQGRTAFPASGKKRETDXSDGDPLDVHKRLPSTS TEDRAVMLGFAMMGMGSVLMF FLLGTTILKPFMLSISQREESTCTAIHTDIMDDWLDCAFTCGVHCHGQGKYPCLQVFVNLSHPGQKALLHYNEEAQVINPKCFYTPKCHQDRNDL LNSALDIKEFFDHKGTPFSCFYSPASQSEDVI

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, \=possible nucleotide insertion)
						LIKKYDQMAIFHCLFWPSLTLGGALIVGMVRLTQHLSLLCEKYSTVVRDEVGGKVPYIEQHQFKLCIMRSKKGRAEKS
991	2341	A	8369	9	921	SSVVEFSALSVSMAICLSPSQLQKFQQDGFLVLEGFLSAECVAMMQRIGEIVAEADMVPLHCRTEFSTQEEEQLRAQSTDYFLSSGDKIRFFFKEKGVDKGNFLVPPEKSINKIGHALHAHDGVFKSITHSFKVQTLARSLGLQMPVVVQSMYIFKQPHFGGEVSPHQDASFLYTEPLGRVLGVWIAVEDATLENGCLWFIPGSHTSGVSRRMVRAPVGSAPGTSFLGSEPARDNSLFVPTVQRGALVLIHGEVVKHKQNLSDRSRQAYTFHLMMEASGTTWSPENWLQPTAELPFPQLYT
992	2342	A	8370	906	4	MALSGNCSCRYYPREQGSAVPNSSFEVVELNVGGQVYFRHSTLISIPHSLLWKMFSPKRDTANDLAKDSKGRFFIDRGFLFRYILDYLDRDRQVVLPDHFPEKGRLKREAAYFOLPDLVKLLTPDEIKQSPDEFCHSDFEDASQGSDTRICPPSSLLPADRKWGFITVGYRGSCTLGREGQADAKFRRVPRILVCGRISLAKEVFGETLNESRDPDRAPERYSRFYLFKHLMGAPASNFIILGFWGLGQNQDKHPVNIYLQQRSVIRPDLTSKKAGDLKGKGDAQEVSRRRWLGDPEHL
993	2343	A	8379	1	2794	MRMQRHKNDTMDFGDGSKRIGGGVLCLLHQNTSFIKLNNNGFEDIVIVIDPSVPEDEKIIEQIEDMVTIASTYLFEATEKRRFFFKNVSILIPENWKENPQYKRPKHENHKHADVIVAPPTLPGRDEPYTKQFTECGEKGEYIHFTPDLLLGKKQNEYGPPGKLFVHEWAHLRWGVFDEYNEDQPFYRAKSKKIEATRCASAGISGRNRVYKCQGGSCLRACRIDSTTKLYGKDCQFPDKVQTEKASIMFMQSIDSVEFCNEKTHNQEAPSLQNIKCNFRSTWEVISNSEDFKNTIPMVTPPPPVSFLLKIRQRIVCLVLDKSGSMGGKDRLNRMNQAACKHFLQTVENGSSWGMVHFSTATIVNKLIQIKSSDERNTLMAGLPTYPLGGTSICSGIKYAFQVIGELHSQLDGSEVLLTDGEDNTASSCIDEVKQSGAIVFHIALGRAADEAVIEMSKITGGSHFYVSDEAQNNGLIDAFGALTSGNTDLSQKSLQLESKGLTLSNAWMNDTVIJDSTVGKDTFLITWNSLPPSISLWDPSGTIMENFTVDATSKMAYLSIPGTAKVGTWAYNLQAKANPETLTITVTSRAANSSVPPITVNAKMNKDVNSFSPSMIVYAEILQGYVPVLGANVIAFIESQNGHTEVLELLDNGAGADSFKNDGVSYRIFTAYTENGRYSLKVRAGGANTARLKLRRPPLNRRAAIPGWVVNGEIEANPPRPEIDEDTQTTLEDFSRTASGGAFVVSQVPSLPLPDQYPPSQITDLDATVHEDKIIWTWAPGDNFVGKVQYIIRJSASILDLRDSFDDALQVNITDLSPEAKNESFAFKPENISEENATHIFIAJKSIDKSNLTSKVSNIAQVTLFIPQANPDDIDPTPTPTPTPDKSHNSGVNISTLVLSVIGSVIVNFILSTII
994	2344	A	8385	231	644	INSSPRTGRDHQEQLNLHTERDSRSQRALKIPRQNPGIFYWIFLPSRSHSASHGSRQRQVSCQGTDQEILKMRNTFAELKNSLEALSSRMDQAEERRGTQAGVQWRDHGSLQPQPPEFKQCFHLSLSSSWDYRACLSS
995	2345	A	8390	194	3421	AWRKSSVPPRGRGEKSDQDKSGQKNKR

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possibly nucleotide deletion, =possible nucleotide insertion)
						DFLSMKQSPALAPEERCRRAGSPKPVLRAADDNNMGNCGSQQLATANLLRFLLVLIPCICALVLLLEILLSYVGTLLQKVYFKNSNGSEPLVTDGEIQGSDVILNTIYNQSTVVSTAHPDQHVPWTTDASLPGDQSCHRNTSACMNITHSQCQMLPYHATLPLLSSVRNMEMEKFLKFTYLHRLSCYQHIMLFGCTLAFPECIIDGDDSHGLLPCRSFCEAAKEGCESVLMGVNYSWPDFLRCSQFRNQTESSNVSRICFSPOQENGKQLLCGRGENFLCASGICIPGKLQCNQYNDQDWSDAEAHNCSENLFHCHTGKCLNYSVLCVDGYDDCGDLSDEQNCDCNPTTEHRCGDGRCIAWEVCDGDHDCCVDKSDEVNCSCHSQGLVECRNGQCIPSTFQCDGDEDCKDGSDDEENCSVIQTSCQEGDQRCLYNPCLDSCGGSSLCDPNNSLNCSQCEPITLECMNLPYNSTSYPNYFGHRTQKEASISWESSLFPALVQTCYKLYMFSCITLVPKCDVNTGEHIPPCRALCEHSKERCESVLGIVGLQWPEDTDCSQFPEEENDNQTCMPDEYVEECSPSHFKCRSGQCVLASRRCDGQADCDSSDEENCGCKERDLWECPSNKQCLKHTVICDGFDPDCPDYMDKEKNCSFCQDDELECANHACVSRTLWCDGEADCSDSSDEWDCTLSINVNSSSFLMVHRAATEHHVCADGWQEILSQLACKQMGLGEPSVTKLQEQEKEPRWLTLSNWSLNGTTLHELLVNGQSCESRSKISLLCTKQDCGRRPAARMKRILGGRTSRPGRPWQCSLQSEPSGHICGCVLIAKKWVLTVAHCFCGRENAAVWKVVLGINNLDHPSVFMQTRFVKTIILHPRYSRAVVDYDISIVELSEDISETGYVVRPVLPNPNEQWLEPDTYCYITGWGHMGNKMFPKLQEGEVRIISLEHCQSYFDMKTITTRMICAGYESGTVDSCMGDGGPLVCEKPGGRWTLFGLTSGVCFSKVLPGPVYSNVSYFVEWIKRQIYIQTFLNN
996	2346	A	8392	199	3085	KVILSSEMSTKNTSKSGRSSRSRSASRSRSRSFSKRSRSRSLSSRSRKRLSSRSRSRSYSPAHRERNHPRVYQNRDFRGHNRGYRRPYYFRGRNRGFYPWGQYNRGGYGNYRSNWQNYRQAYSPRRGRSRSPKRRSPSPRSRSHSRNSDKSSSDRSRSSSSRSSSNHSRVESSKRKSAKEKKSSSKDSRPSQAAGDNQGDEVKEQTFSGGTSQDTKASESKPWPDATYGTGSASRASASELSPRERSPALKSPLQSVVRRSPRSPVPKPSPLSSTSQMGSTLPSGAGYQSGTHQGQFDHGSGLSPSKKSPVGKSPGSTGTYGSSQKEESAASGAAYTKRYLEEQKTENGKDEQKQTNTDKEKIKEKGFSSTDGLGDGKMKSDSFAPKTDSKEPFRGQSOPKRYKLRDDFEKKMADFHKEMDDQDKDAKGRKESEFDDEPKFMSKVIGANKNQEEEKSGKWEGLVYAPPGKEKQRKTELEEEFPERSKKEDRGKRSEGGHHRGFVPEKNFRVTAYKAVQEKSPPRKTSESRDKLGAKGDFPTGKSFSITREAQVNVRMDSFDEDLARPSGLLAQERKLCRDLVHSNKKQEFRSIFQHIQSAQSQRSPSELAQHIVTIVHHVKEHHFGSSGMTHERFTKYLKRGTEQEAAKNKKSPFHRRIDISPSTFRKHGLAHDEMKSREPGYKAEGKYKDDPVDLRLDIERRKKHHERDLKRGKSRESVDSRDSSHSRESAEKTEKTHKGSKKQKKHRRARDRSRSSSSSQSSHYSYKAEYEYTEEREESTGFDKSRL

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, \'=possible nucleotide insertion)
						GTKDFVGPSERGGGRARGTFQFRARGRGWG RGNYSGNNNNNNSNNDFQKRNREEEWDPYEYT PKSKKYYLHDDREGEGSQDKWVSRGRGRGAF PRGRGRFMFRKSSTSPKWAHDKFSGEEGEIE DDESGTENREKKDNIQPTTE
997	2347	A	8398	202	552	CPALGGRQDLQGTIRLLWAHDSGVGGQKA KS KQENLESLEATGREEEGGQQGPVTKGVL LA LL MAGLALQPGTALLCYSCKAQVSNE DCLQ VENCTQLGEQCWTARIREWGDDSRQA
998	2348	A	8400	697	301	NPPSACTPGSCDSCSGRGRDLAFDSVWSTNN MSDPDRRPNKVLRYKPPPSECNPALDDPTPDY MNLLGMIFSMCGLMLKLKWCAWVAVYCSFI SFANSRSSEDTKQMMSFMLSISAVVMSYLQ NPQPMTTPW
999	2349	A	8401	93	1126	ASASHITSGHLRCFPGSEGVTMARCFSLVLL LTSIWTTRLLVQGSLRAEELSIQVSCRIMGITL VSKKANQQLNFTEAKEACRLLGLSLAGKDQ VETALKASFETCSYGVWVGDFVVISRISPQPK CGKNGVGVLIWKVVPVSRQFAAYCYNSSDTW TNSCIPETTTKDPNFTQTATQTTEFIVSDSTYS VASPYSTIPAPTTTPAPASTSIPRRKKLICVTE VFMETSTMSTETEPFVENKAFAKNEAAGFGG VPTALLVLALLFFGAAAGLGFCYVKRYVKA F PFTNKNQQKEMIETKVKEEKANDSNPNEES KKTDKNPEEKSPSKTTMRCLEAEV
1000	2350	A	8406	2	777	KERCQFVVVKPMPLSTVGSFLQDLQNEDKGIKT AAIFTADGNMISASTLMDILLMNDFLVINKI AYDVQCPKREKPSNEHTAEEMEHMSLVHRL FTILHLEESQKKREHHLLKEJDHLKEQLQPLE QVKAGIEAHSEAKTSGLLWAGLALLSIQGGA LAWLTWWVYWSDIMEPVTYFITFANSMVFF AYFIVTRQDYTSAVKSRSQFLQFFFHKSKQQ HFVDVQQYNKLKEDLAKAKESLKQARHSCL QMQVEELNEKN
1001	2351	A	8410	1400	264	VGFWERPLRSSRWFRRLRRWEMLARAARG TGALLLRGSSLASGRAPRARRASSGLPRNTVVLF VPQQEAWWVERMGRFHRILEPGLNLIPIVLD RIRVYQSLKEIVINVPEQSAVTLDNVTLQIDGV LYLRIMDPYKASYGVEDPEYAVTQLAQTTM RSELGKLSDLKVFRERESLNASIVDAINQAAD CWGIRCLRYEIKDIHVPPRKVESMQMQVEAE RRKRATVLESEGTRRESAINVAEGKKQAQILAS EA EAKAEQINQAA GEASA VLA KAKAKA EAI RI LAAALTQHNGDAAASLTVAEQYVVS AF SKLA KDSNTILLPSNP GDVTSMVAQAMGVVGALT KAPVPGTPDSLSSGSSRDVQGTDASLDEELDR VKMS
1002	2352	A	8421	134	941	NRENLLSERMMMDPCSVGVQLRTTNECHKTY YTRHTGFKTLQELSSNDMLLLQLRTGMLTSG NNTICFHVKIYDIDRFEDLQKSCCDPFNIHKKL AKKNLHVIDLDDATFLSAKFGRQLVPGWKLC PKCTQINGSVDVDTEDRQKRKPESDGRATAK ALRSLQFTNPGRQTEFAPETGKREKRLTKN ATAGSDRQVIPAKSKVYDSQGLLIFSGMDLC DCLDEDCLGCFYACPACGSTKCGAECRCDRK WL YEQIEIEGGEIHNKHAG
1003	2353	A	8427	3	1416	TEWGLSGSCP GCSPL EPGSRGRGAA AWRI LR CRRLEPSPF LTOPNLAQS QP PA PV TDPS VT MHPA VFLSLP DLRC SLLL VTWVFT PVTTEIT

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						SLDTENIDEILNNADVALVNFYADWCRFSQM LHPIFEASDVIKEEFPNENQVVFARVDCDQH SDIAQRYRISKYPTLKLFRNGMMMKREYRGQ RSVKALADYIRQQKSDPPIQEIRDLAETTLDRS KRNIIGYEQQKDSDNYRVFERVANILHDDCAF LSAFGDVSKPERYSGDNIIYKPPGHSAPDMVY LGAMTNFDVTYNWIQDKCVPLVREITFENG ELTEEGLPFLILFHMKEDTESLEIFQNEVARQL ISEKGTINFLHADCDKFRHPLLHIQKTPADCP VIAIDSFRHMYVFGDFKDVLJPGKLKQFVFDL HSGKLHREFHHGPDPDTAPGEQAQDVASSP PESSFQKLAPSEYRYTLLRDRDEL
1004	2354	A	8432	910	387	GLSRKLRAGFLPGFCRVSPCGSWVETLVKM ACAAARSPADQDRFICIYPAYLNKKTIAEGR RIPISKAVENTPATEIQDVCSAVGLNVFLEKN KMYSREWRNDVQYRGRVRVQLKQEDGSLC LVQFPSRKSVMLYAAEMPKLKTTRTQTKTGG DQSLQQEGSKKGKGKKKK
1005	2355	A	8453	90	530	QSHETKMQSGTHWRVLGLCLLSVGWVGQD GNEEMGGITQTPYKVVISGTTVILTCPQYPGSE ILWQHNDKNIIGDEDDKNIGSDEDHLSLKEF SELEQSGYYVCYPRGSKPEDANFYLYLARG NPGLQNRYHRLFREDHSKGHSQ
1006	2356	A	8458	3	307	AVQRIRHEMNIFRLTGDLHLLAAIVLLLKI KTRSCAGISGKSQQLFALVFTRYLDLFTSFIS LYNTSMKVWYAIHRNVFHLQCTGLWTLNLC QLCIFN
1007	2357	A	8459	43	553	GAGAGGDWAAMDKLKKVLSGQDTEDRSGL SEVVEASSLSWSTRIKGFIACPAIGILCSLLGT VLLWVPRKGLHLFAVFYTFGNIASIGSTIFLM GPVKQLKRMFEPTRLIATIMVLLCFALTCSA FWWHNKGLALIFCILQSLALTWYSLSFIPFAR DAVKKCFAVCLA
1008	2358	A	8462	487	150	AQDIRSVHSLGQKSTFVKHFRTLSHLHGLPDP PPHWPPQERSPPSHPCMPSHRPQIPQLNSGPS DPRWGCVGPMPTSTCLPGAVERASTTKASLP KCPVDSSLPTPEACFL
1009	2359	A	8465	134	954	ETRVKTSLELLRTQLEPTGTVGNTIMTSQPVP NETIIVLPSNVINFSQAEKPEPTNQGQDSLKKH LHAEIKVIGTIQILCGMMVLSLGILASASFSPN FTQVTSTLLNSAYPFIGPFFFFISCGSLSIATEKRL TKLLVHSSLVGSILSALSALVGFIILSVKQATL NPASLQCELDKNNIPTRSYVSFYHDSLYT CYTAKASLAGTLSMLICLLEFCLAVLTAVL RWKQAYSDFPGSVLFPLPHSYIGNSGMSSKMT HDCGYEELLTS
1010	2360	A	8468	2	473	KYRYRRPYPMRKJCQVGPAGLAFILNISPVA HRVALCHLAGCQEQQAWYHTLQILFFLVSAY FFSCPVPKEYFPGSCDIVGHGHQIFHAFLSIC LSQFLAIIQDYQGRQEIFLQRHGPLSVHMACL SFFFLAACSAATAALLRHVKVAKRLTKKDS
1011	2361	A	8478	5	409	TELSQLEKAHP PADMGRRKSKRKPPP KKMT GTLETQFTCPFCNHEKSCDVKMDRARNTGV I SCTVCLEEFQTPITCILGNLGFFQRVGRGLES G PCSSGPLCALVQGQSRPEEQVPPSDFCGVRR C RAGFQCQ
1012	2362	A	8481	2810	1652	RTSTQKWWQSVFNDSQEHLRFYCNPENDRM RMKYGGQEFWADLNAMNVYETTEFDQLRR LSTPPSSNVNSIYHTVWKFFCRDHFGWREYPE

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, \=possible nucleotide insertion)
						SVRLJEEANSRGLKEVRFMMWNHYILHNS FFRREIKRRLPLRSCFILLPYLQLTGGVPTQAP PPLEATSSQIICPDGVTSANFYPETWVYMHPSQDFIQVVPVAEDKSYSRIIYNLFHKTVPEFKYR ILQILRVQNQFLWEKYKRRKEYMNRMKFGR DRIINERHLFHGTSDVVDGICKHNFDPRVCG KHATMFGQGSYFAKKASYSHNFSKKSSKGV HFMFLAKVLITGRYTMGSHGMRRPPPVPNGS VTSDLYDSCVDNFFEPQIFVIFNDDQSYPYFVIQYEVSNTVSI
1013	2363	A	8488	2	517	IENCRCRTRLRQAWHHEVCGNKMAAPIPGFSLCSRFLGWWFRQPVLTQSAIVPVRTKKRFTPIYQPKFKEFMQHARKAGLVIPPEKSDRSIHLAGTAGIFDAVVPPEGDARISSLKEGLIERTERMKKTMASQVSIRRIKDYDANFKIKDFPEKAKDIFIEGSPLY
1014	2364	A	8501	363	17	YIRTGYVYICIIYAQLMYTYYIRTAYVYICILY AQLMYTYYLYTHSLCIHMYSIRTAYVYICIIY AQIMYTYVFYTHRLCIHMYSIRTDYVYICILY AQLMYTYYVFYTHSYMSDE
1015	2365	A	8504	3	2190	NSSEHFSQLPQLSFYSWVGSARLFRFRVPPDAVLLRWLLQVSRESGAACIDAEITVHFRSGAPPVINPLGTSFPDDTAVQPSFQVGVPLSTTPRSNASVNVSHPAPGDWFVA AHLPPSSQKIELKG LAPTCAYVFQPELLVTRVVEISIMEPDVPLPQTLLSHPSYLKVFPDVTRELLERDCVSNGSLGCVPRLTVGPVTLPSNFQKVLTCTGAPWPCRLLLPSPPWDRWLQVTAESLVGPLGTVAFAVAALTACRPRSVTIQPLLQSSQNQSFNASSGLLSPSPDHQDLGRSGRVDRSPFCLTNYPVTREDMDVSVHFQPLDRVSRVRCSDTPSVMRLRLNTGMDSGSLTISLRANKTEMRNETVVVACVNAASPFLGFNTSLNCTTAFFQGYPLSLSAWSRRANLIIPYPETDNWYLSLQLMCPENAEDCEQAVVHVETTLYLVPCLNDCGPYGQCLLRRHSYLYASCCKAGWRGWSCTDNSTAQTVAQQRAATLLLTLSNLMLFLAPIAVSVRRFFLVEASVYAYTMFFSTFYHACDQPGEAVLCILSYDTLQYCDFLGSGAAIWVTILCMARLKTVLKVLFLGTIVAMSLQDRRGMWNMLGPCLFAFVIMASMWAYRCGHRQCYPITSWQRWAFYLLPGVSMASVGIAIYTSMMTSDNYYTHSIWHILLAGSAALLLPPPDQPAEPWACSQKFPCHYQICKNDREELYAVT
1016	2366	A	8511	1	453	KWYPSGPVRIPGRFYYKLPAHGRRCRMADPKGGEKKKGGRSAINEVVTRYTINIHKRJHGVGFKKRAPRALKEIRKFAKEMGTPDVRIDTRLNKAVWAKIGRNVPYRIRVRLSRKRNEDEDSPNKLYTLVTYVVPVTTFKNLQTVNVDEN
1017	2367	A	8513	54	1196	LERTPASADMAWTKYQLFLAGLMLVTGSINTLSAKWADNFMAEGCCGSKEHSFQHPFLQAVGMFLGEFSCLAAYLLRCRAAGQSDSSVDPQQPFPNPLLFLPPALCDMTGTSMLYVVALNMTSASSFQMLRGAVIDTGLFSVAFLGRRVLSQWLGILATIAGLVVVGLADLLSKHDSQHKLSEVITGDLIJIMAQIIVAIQMVLEEKFVYKHNVHPLRAVGTEGLFGFVILSLLVPMYYIPAGSFSGNPRTGLEDALDAFCQVQQPLIAVALLGNISSIAFFNAGISVTKELSATTRMVLDSLRTVVIWAL

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, \=possible nucleotide deletion, \ =possible nucleotide insertion)
						SLALGWEAFHALQILGFLILLIGTALYNGLHRLLLGGTRPINDAS
1018	2368	A	8518	324	694	SFPFWTEKRRMEKPLFPLVPLHWFGFGYTALVVSGGIVGVYVKTGSVPGLAAGLLFGSLAGLGAQQLYQDPGRNVWGFGLAATSVTFVGVMGMRSYYYGKFMPVGLAGASLLMAAKVGVRMLMTSD
1019	2369	A	8526	2	1787	VSAAAVNMEPPDAPAQARGAPRLLLAVLLAAHPDAQAEVRLSVPPLVEVMRGKSVILDCTPTGTHDHYMLEWFLTDRSGARPRLASAEMQGSELQVTMHDRGRSPPYQLDSQGRVLAEAQVGDERDYVCVVRAGAAGTAEEAARLNVFAKPEATEVSPNKGTLSVMEDSAQEIASTSNSRGNPAPKITWYRNGQRLEVPVEMNPEGYMTSRTVREASGLSLSTSTLYLRLRKDDRDASFHCAAHYSPEGRHGRLLDSPTFHLTLHYPTEHVQFWVGSPSTPAGWVREGDTVQLLCRGDGSPSEYTLFRLQDEQEEVLNVNLEGNLTEGVTRGQSGTYGCRVEDYDAADDVQLSKTLELRVAYLDPLELSEGKVLSLPLNSRAVVNCVHGLPTPALRWTKDSTPLGDGPMLSSITFDNSNGTYVCEASLPTVPLSRTQNFTLLVQGSPELKTAIEPKADGSWREGDEVTLICSARGHDPDKLSQLGGSPAEPPIPGRQGWVSSSLTKVTSALSRDGISCSEASNPHGNKRHVHFGTVSPQTSQAGVAVMAVAVGVLVLLVVAVFYCVRRKGPGCCRQRREKGAP
1020	2370	A	8530	2	1200	PRVRLLRPSRSRSCRGILLSTRAPGPSFRSLHSPLLPHAMKSPFYRCQNTTSVEKGNSAVMGGVLFSTGLGNLLALGLLARSGLGWCSRPLRPLPSVFYMLVCGLTVDLLGKCLLSPVVLAAYAQNRSLRVLAPALDNDNLQCAFAMMSFFGLSSTLQLLAMALECWLSLGHFFYRRHITLRLGALVAPVVAFSLAFCALPFMFGFKFVQYCPGTWCFIQMVHEEGSLSVLGYSVLYSSLMALLVLATVLCNLGAMRNLYAMHRRRLQRHPRSCTRDCAEPRADGREASPQPLLELDHLLLALMTVLFTMCSPVIYRAYYGAFKDVKEKNRTSEEAEDLRALRFLSVISIVDPWFIIIFRSPVFRFFFHKIFIRPLRYRSRCSNSTNMESSL
1021	2371	A	8536	1	237	RRGEIDMATEDGVLELELETETSGPERPPEKPRKHDSGAADLERVTDYAEEKEIQSSNLETAMSVIDGRRRSREQKAKQER
1022	2372	A	8537	94	541	RKERRRRRRMEAUVFVFSLLDCALIFSLVYFIITLSDLECDYINARSCCSKLNKWVPIELIGHTIVTVLLMSLHWFIFLLNLPVATWNIFYRIYMPSGNMGVFDPTEIHNRGQLKSHMKEAMIKLGFHLLCFFMYLYSMILALIND
1023	2373	A	8540	26	431	RMMKCPQALLAIFWLLSWVSSEDKVVQSPSLVVHEGDTVTLCNSYEVTNFRSLWYKQEKKAPTFMLTSSGIEKKSGRILSSILDKKELSSILNITATQTGDSAIYLCAEAQCSLVTCQLSYNSTAEALQL
1024	2374	A	8544	1731	743	GVRRLRYSPIAVVMVGEAGRDLRRRAVATIAEKMAVLAPIALVYSPVRLSRWLAQPYLLSALLSAAFLVVKLPLCHGLPTQREDGNPCDFDWREVEILMFLSAJVMMKNRRSITVEQHIGNIFMFSKVANTILFFRLDIRMGLLYITLCIVFLM

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, \'=possible nucleotide insertion)
						TCKPPLYMGPEYIKYFNDKTIIDEEELERDKRVTWIVEFFANWSNDQCSFAPIYADLSLKYNCTGLNFGKVDVGRYTDVSTRYKVSTSPKTQLPTLILFQGGKEAMRRPQIDKKGRAVSWTFSEENVIREFNLNELYQRAKKLSKAGDNIPPEQPVASPTITVSDGENKKDK
1025	2375	A	8546	2194	1707	TVSFHKTMASLKCSTVVVCIVCLEPKYRCPA CRVPYCSCVCFRKHEQCNPETRPVEKKIRS ALPTKTVKPVENKDDDSIADFLNSDEEDR VSLQNLKNLGESETLRSLLNPHLRQLMVNL DQGEDKAALKMRAYMQEPLFVEFADCCLGIVEPSQNEES
1026	2376	A	8547	1078	594	VGMELPAVNWKVILLGHWLLTWGCIVFSGSYAWANFTILALGVWAVAQRDSIDAISMFLGG LLATIFLDIVHISIFYPRVSLTDTGRFGVGMAIL SLLLKPLSCCFVYHMRYERGGELLVHTGFLG SSQDRSAYQTIDSÆAPADPFAVPEGRSQDARGY
1027	2377	A	8557	1	340	DFLGPASPQEEGGSSESTMTELETAMGMIIDV FSRYSGSEGSTQTLTKGELKVLMEKELPGFLQ SGKDKDAVDKLLKDLDANGDAQVDFSEFIVF VAAITSACHKYFEKAGLK
1028	2378	A	8569	20	963	KMAATLGPLGSQQWRRLSARDGSRRLLL LLLGSGGGPQQVVGAGQTFEYLKREHSLSKPYQGEAPRCFLRDWELQVHFKIHGQGKKNL HGDGLAJWYTKDRMOPGPVFGNMDKFVGLGVFVDTYPNEEKQQERVFVPIYAMVNNGSLSY DHERDGRTELGGCTAIVRNLIHYDTFLVIRY VKRHLTIMMDIDGKHEWRDCIEVPGVRLPRGYYFGTSSITGDSLSDNHDVISLKLFLTVERTPE EEKLHRDVFLPSVDNMKLPMTAPLPLSLGAFLIVFFSLVFSVFAIVIGIILYNKWQEQRKRFY
1029	2379	A	8572	1	578	AAAASHRSRARSRPDRVSSGPAPRRAQSSAGRVASGLDSAPLCTMARALCRLPRLGLWLLAHHLFMTTACQEANYGALLRELCLTQFQVDM EAVGETLWCDWGRTRTYSYRELADCTWHMAEKLGCFWPNAEVDRFFLAHVGRYFRSCPISGR AVRDPGGSILYPFIVVPTVTLVTALVVWQS KRTEGIV
1030	2380	A	8574	1352	372	DSSTVKGGSESRHLCIPDLKGKARTTREASSG SRTCGRRTLSCTSAKSSWTYRSGRLSWQSIKG THLTITQALRQPLHRAPLLPGQLCWSPRPLEK NKAMGRPLLPLLLLQPPAFLQPGGGSTGSGP SYLYGVTPQPKHLSASMGSVEIPFSFYYPWEL AIVPNVRISWRRGHFGQSFYSTRPPSIIKDY VNRLFLNWTEQQESGFLRISNLRKEDQSVYFCRVELDTRRSGRQQLQSIKGTKLTITQAVTT TTWRPSSTTIAGLRVTESKGHSESWHLSDT AIRVALAVAVLKTIVGLLCLLLLWWRRRKGSRAPSSDF
1031	2381	A	8580	905	340	RRTAGIYPCFPKPGRTHALCSVVLLLTGQLAFFDDFQESCAMMWQKYAGSRRSMPLGARILFHGVFYAGGFIAIVYLIQKFHSRALYYKLAV EQLQSHPEAQEALGPPLNIHYKLIDRENFDI VDAKLKJPVSGSKSEGGLYVHSSRGPFORWHLDEVFLEKDGQQIPVFKLSGENGDEVKKE
1032	2382	A	8593	2558	961	RRRPRLLPGAEPCPRVGPRRADMGCSAKARWAAGALGVAGLLCAVLGAVMIVMVPSTIKQ

SEQ ID NO; of nucl-eotide seq- uence	SEQ ID NO: of peptide seq- uence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						QVLKNVRIDPSSLSFNMWKEIPPIFYLSVYFFDVMNPSEILKGEKPQVRERGPVYREFRHKSNTFNNNDTFSLEYRTFQFQPSKSHGSESDYIVMPNILVLAAGVMMENKPMTLKLIMTLAFTTLGERAFMNRTVGEMWGYKDPLVNLINKYFPGMFPFKDKFGLFAEENNNSDGLFTGFTGVQNI SRIHLVDKWNGLSKVDFWHSDQCNMINGTSQGMWPPFMTPESSEFYSPEACRSMKLMYKE SGVFEGLTYRFVAPKTLFANGSIIYPNEGFCPCLESQIQNVSTCRFSAPLFLSHPHFLNADPVL AEAVTGLHPNQEAHSLFLDIHPVTGIPMNCVKLQLSLYMKSVAGIGQTGKIEPVVLPLLWFAESGAMEGETLHTFTYQLVLMVKVMHYAQYVLLALGCVLLLVPVICQIRSQEKCYLFWSSSSKKGSKDKEAIQAYSESLMTSAPKGSVLQEAKL
1033	2383	A	8595	595	767	AHLPDTLLLPPHSPTVPTPKSFQCSQKACFSRSFCLLLSLVSSSLVSSLSCPPLTQA
1034	2384	A	8597	640	164	VTTSCIIPFAFGLGVRASERLAEIDMPYLLKYQPMMQTIGOKYCMDPAVIAGVLSRKSPGDKILVNMGDRTMVQDPGSQAPTSWISESQVFQTTEVLTTRITELQRREPTWTPDQYLRRGLCAYSGGAGYVRSSQDLSCDFCNDVLARAKYLKRHG F
1035	2385	A	8603	936	204	AMASTLEYSPSPPLRLLVGPAAGFSRAARADLSWDPMAFFTGLWGPFTCVSRVLSSHICFSTTGSLSAIQKMTRVRVVDNSALGNSPYHRAPRCIHVYKNGVGKVGDDQILLAIGQKKKALIVGHCMPGPRMTPRFDSSNVVLIEDNGNPVGTRIKTPIPTSLRKREGEYSKVLIAQNFV
1036	2386	A	8606	1	562	PTRAHSFDLCCSPCCRRLLGREEAGEEPTSPVTOQLQPRSPCEECKMFACAKLACTPSLIRAGSRVAYRPISASVLSRPEASRTGEGSTVFNGAQNGVSQLIQREFQTSASIRDIDTAAKFIGAGAATVGVAGSGAGIGTVFGSIIIGYARNPSLKQQLFSYAIGFAISEAMGLFCLMVAFL/LFAM
1037	2387	A	8615	2	2364	SPGPSLPESAESLDGSQEDKPRGSCAEPITFTDTGMVAHINNSRLKAKGVGQHDNAQNFGNQSF EELRAACLRKGELFEDPLPAEPSSLGFKDGLGPN SKNVQNISWQRPKDIINNPLFIMDGISPTDCQGILGDCWLLAIGSLTTCPKLLYRVVPRGOSFKKNYAGIFHFQIWQFGQWVNVVVDDRLPTKNDKLVFVHSTERSEFWSALLEKAYAKLGSYEALSGGSTMEGLLEDFTGGVAQSFQLQRPQPNLLRLRKAVERSLSMGCSIEVTSDELESMTDKMLVRGHAYSVTGLQDVHYRGKMETLIRVRNPWGRIEWNGAWSDSAREWEEVASDIQMQLLHKTEDGEFWMSYQDFLNNFTLLEICNLTPDTLSDGYKSYWHTFYEGSWRTGSSAGGRNHPGTFWTNPQFKISLPEGDDPEDDAEGNVVVCTCLVALMQKNWRHARQQGAQLQTIGFVLYAVPKEFQNIQDVHLKKEFFTQYQDHGFSEIFTNSREVSSQLRLLPGEYIIIPSTFEPHRDADFLLRVFTEKHSESSELDEVNYAEQLQEEKVSED DMDQDFLHLFKIVAGEGKEIGVYELQRLLNRMAIKFKSFKTKGFGGLDACRCMINLMDKDGSGKLGLLEFKILWKKLKKWMDFRECQDHSGT LNSYEMRLVIEKAGIKLNNKVMQVLVARYADDLIDFDFSIFCFLRLKTMTFFLTMDPKNTGHICLSLEQVLGEGWEGICRIAPACPSTPPPPS

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, \=possible nucleotide insertion)
						SDVPGPASCPRLLFPPWDLVPSTVAADDHVGEAL
1038	2388	A	8621	3	1494	RSRMARAPLGVLLLLGLLGRGVGVKNEELRLYHHILFNNYDPGSRPVREPEDTVTISLKVTLTNLISLNEKEETLTTSVWIGIDWQDYLRLNYSKDDFGGIETLRVPSLVWLPEIVLENNIDGQFGVAYDANVLVYEGGSVTWLPPAIYRSVCAVEVTYFPFDWQNCSLIFRSQTYNAEEVEFTFAVDNDGKTINKIDIDTEAYTENGEWAIDFCPGVIRRHGGATDGPGETDVIYSLIIRRKPFLFYVINIIVPCVLISGLVLLAYFLPAQAGGQKCTVSINVLLAQTVFLFLIAQKIPETSLSVPLLGRFLIFVMVATLIVMNCVIVLNVSQRTPTTHAMSPRRLRHVLLELPRLLGSPPPPEAPRAASPRRASSVGLLLRAEELILKKPRSELVFEGQRHRQGTWTAACQSLGAAAPEVRCCVDAVNFAESTRDQEATGEEVSDWVRMGNALDNICFWAALVLFSGSSLIFLGAYFNRPDLPYAPCIQP
1039	2389	A	8636	1	900	PGRERPGGGGARRRPQHLALLPSERPDCATLQAMENELPVPHTSSSACATSSTS GASSSSGCNNSSSGGSGRPPTGPQISVYSGIPDRQTVQVIQQ ALHRQPSTAQYLQQMYAAQQQHMLQTA ALQQQHLSAQQLQSLAAVQQASL VSNRQGSTSGSNVSAQAPAQSSSINAASPAAAQLLNRA QSVNSAAASGIAQQAVLLGNTSSPAL TASQA QMYLRAQMLIFTPTATVATVQPELGTGSPARPPTPAQVQNLTLRTQQTAAAASGPTPTQPVLPSLALKPTPGSQPLPTPA
1040	2390	A	8645	98	1388	ASQLAFFGKLTSPSRDFQGCRGAUTCCSFHEHRHQSGRCLSTGMAPNLKGRPRKKKPCPQRRDSFSGVKDSNNNSDGKAVAKVKCEARSA LTKPKNNHNCKVSNEEKPKVAIGEECRADEQAFVALYKYMKERKTPIERIYLGFKQJNLWTMFQAAQKLGGYETITARRQWKHYDELGGNPGSTSAATCTRHYERLILPYERFIKGEEDKPLPPIKPRKQENSSQENENKTKVSGTKRIKHEIPKSKKEKENAPKPKDAAEVSSQEKEQETLISQKSIPEPLPAADMKKKIEGYQEFSAKPLASRVDPEKDNETDQGSNSEKVAEEAGEKGPTPPLPSA PLAPEKDSDLVPGASKQPLTPSALVDSKQESKLCCFTESPESEPQEASFPLPHHTGHRWQTRMRRMTNCPPWQITLPTAP
1041	2391	A	8646	113	1492	LLQEMCTKTIPVWLWGCFLLWNLYVSSSQTIYPGIKARITQRALDYGVQA GMKMIEQMLKEKKLPDLSGSSESLEFLKVDDYVNYNFSNIKISAFSFNTSLAFVPGVGKALTNHGTANISTDWGFESP LFVLYNSFAEPMEKPLKLNLMELCPIASEVKALNANLSTLEVLTKIDNYTLLDYSLISSPEITE NYLDLNLKGVFYPLENLTDPFPSPVFLPERNSNSMLYIGIAEYFFKSASFHFTAGVFNTLSTEEISNHFVQNSQGLGNVLSRIAIEIYILSQPFMVRIMATEPPIINLQPGMFTLDIPASIMMLTQPKNSIVETIVSMDFVASTSVGLVILGQRLVCSLSLNRFRALPESNRSNIEVLRFENILSSILHFGVPLANAKLQQGFPLPNPHKFLFVNNSDIEVLEGFLLISTDLKYETSSKQQPSFHVWEGLNLISRQWRGKSAP
1042	2392	A	8672	538	170	ARRIARTRESKAAVSQDNVPALQPGKKKKLRGGKKKKFKFFRLPKEFKKQLMYSPSNFKKM

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, \=possible nucleotide insertion)
						TSAGNTVQCLNKLKYVIYSAQYPAYGNITT LDMITSTDHVLEQDFWICFTFYSVKERQI
1043	2393	A	8688	359	17	GLKTRAPATPTFQREVLGPAKQDMQRRCPRI GLMTSLLKPIKRRWRDYKRWKSGGFTGESC HHADTLGDRGGLQGDHSELLQWQKRILRTE GEPSPKYIISKNIIFPICSYITGFL
1044	2394	A	8718	292	1490	GTVKTSVATPITAGHCSGGVLQVKSPATQS GFKFTSKMEDFNMESDSFEDFWKGEDLSNYS YSSTLPPFLDDAACPEPESLEINKYFVVIIYAL VFLLSLGNGLVMLVILYSRVGRSVTDVYLL NLALADLFLALTLPPIWAASKVNGWIFGTFLC KVVSLLKEVNFYSGILLACISVDRYLAIVHA TRTLTQKRYLVKFICLISIWGLSLLLALPVLLPR RTVYSSNVSPACYEDMGNNTANWRMLLRIL PQSFGFIVPLLIMFCYGFILRTLFAHMGQK HRAMRVIFAVVLLFLLCWLPPYNLVLLADTLM RTQVIQETCERRNHIDRALDATEILGILHSCLN PLIYAFIGQKFRHGLLKILAHIGLISKDSLPKDS RPSFVGSSSGHTSTIL
1045	2395	A	8724	254	3184	FRANLAITVANRRGAQGGKMHTCPPVTLEQ DLHRKMHISWMLQTLAFAVTSLVLSCAETIDY YEGERCDNACPCEEKDGILTVCENRGIIISLSEIS PPRFPIYHLLSGNLLNRYPNEFVNVTGASIL HLGSNVIQDIETGAFHGLRGLRLHLNNNKL ELLRDDTFGLENLLEYLQVDYNYISVIEPNAF GKLHLLQVLILNDNLLSLPNNLFRFPVPLTHL DLRGNRNLKLLPYVGLLQHMDKVVELQLEEN PWNCSCELISLKDWLDSISYASALVGDVVCETP FRLHGRDLDDEVSKQELCPRLISDYEMRPQT LSTTGYLHTTPASVNSVATSSSAVYKPPLKPP KGTRQPKNPKRVRPSTSQQPSKDLGYSNYGPSIA YQTQSPVPLECPТАССNLQISDLGLNVNCQE RKIESIAELQPKPYNPKKMYLTENYIAVVRRT DLLEATGDLHLHGNRNISMIDQDRAFTGDLTN LRLYLNGNRIERLSPELFYGLQSLQYLFQY NLIREIQSGTFDPVPNLQLLFLNNNNLQAMPS GVFSGLTLLRLNRLRSNHFSLPVSGVLDQLKS LIQIDLHDNPWDCTCDIVGMKLWVEQLKVG VLVDEVICKAPKKFAETDMRSIKSELLCPDYS DVVVPSTPTPSSIQVPARTSAVTPAVRLNSTGA PASLGAGGGASSVPLSVLILSSLVFIIMSVFVA AGLFVLMKRRKKNQSDHTSTNNSDVSSFN MQYSVYGGGGTGGPHPAHVHHRGPALPK VKTPAGHVYEYIPHPLGHMCKNPIYRSREGN SVEDYKDLHELKVTYSSNHHLQQQQQPPPPP QQPOQQQPPQLQLPGEERERRESHHLRSPAYS VSTIEPREDLLSPVQDADRFYRGILEPDKHCAST TPAGNSLPEYPKFCSPAAYTFSPNYDLRRPH QYLHPGAGDSRLREPVLSPPSAVFVEPNRNE YLELKAKLNVEPDYLEVLEKQTTFSQF
1046	2396	A	8736	28	452	SPSAAGGLAWVSLALGSGSRGRDHSGSGVG AMAGALVRKAADYVRSKDFRDYLMLSTHF GPVANWGLPIAAINDMKKSPEIISGRMTFALC CYSLTFMRFAYKVQPRNWLLFACHATNEVA QLIQGGRLIKHEMTKTA SA
1047	2397	A	8741	673	924	ALPGTPQTVLNTDGKVKSFTSPHSNPNLPP AKFFTSLQSLNWWSHLPPSPATESVGKRGNAK PPTTKLLHSSPLWNFFAQQL
1048	2398	A	8747	3	5054	PEVTKPSLSQPTAASPIGSSPSPPVNGGNNAKR

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, \'=possible nucleotide insertion)
						VAVPNGQPPSAARYMPREVPFRFCQQDHK VLLKRGQPPPSMCMLGGGAGPPCTAPGAN PNNAQVTGALLQSESGTAPDSTLGAAASNY ANSTWGSGASSNNGTSPNPIHIWDKVIVDGS DMEEWPCIASKDIESSENITDNNNSASNPGSE KSTLPGSTTSNKKGKGSQCQSASSGNECNLGV WKSDPKAKSVQSSNSTENNINGLGNWRNVS GQDRIGPGSGFSNFNPNSPNSAWPALVQEGETS RKGAEUDNSNSAQAQVSTVGQTSREQSKME NAGVNFGVSGREQAQIHNTDGPKNQNTNSL NLSSPNPMENKGMPFGMGLGNTSRSTDAPSQ STGDRKTGSGVSGWAARGPSGTDVSGQSN SGNNGNNGKERDSWKASVQKSTGSKNDS WDNNNRSTGGSWNFCPQDSNDNKWGEQN KMTSGVSQGEWKQPTGSDELKIGEWGPNQPN SSTGAWDNQKGHLLENQGNAQAPCWGRSS SSTGEVEQGSTGSNHKAGSSDHSNSGRSY RPTHPCDCQAVLQTLLSRTDLDPRVLSNTGWG QTQIKQDTVWDIEEVPRPEGKSDKGTEGWES AATQTKNSGGWGDAPSQSNSQMKSGWGELS ASTEWKDPKNTGGNDYKNNNSSNWGGGR PDEKTPSSWNENPSKDQGWGGGRQPNQGWS SGKNGWGEEVDTQTKNSNWESSASKPVSGWG EGGQNEIGTWGNGGNASLASKGKWEDCKRS PAWNETGRQPNWNKQHQQQQPPQPPPQ PEASGSWGGPPPPPGNVRPNSWSSGPQPA TPKDEEPSWEEPSPQISRKMDIDDGTSAWG DPNSYNKVNVLWDKNSQGGPAPREPNLPTP MTSKSASDSKSMQDGWGESDGPTVQARHPS WEEEEDGGVWNTTGSGSASSHNNSAWGQG GKKQMCKSLKGNNNDSWMNPLAKQFSNMG LLSQTEDNPSSKMDLSVGSLSDKKFVDKRA MNLGFNDIMRKDRSGFRPPNSKDMGTTDS GPYFEKGSHGLFGNSTAQSRGLHTPVQPLN SSPSLRAQVPPQFISPQVSASMLKQFPNSGLSP GLFNVGPQLSPQQIAMLSQLPQIPQFLACQL LLQQQQQQQLLNQRKISQAVRQQQEQQLA RMVSALQQQQQQQQRQPGMKGHSHPVGPK PHLDNMVPNALNVGLPDLQTKGPIPQYGSF SSGGMDYGMVGGKEAGTESRFKQWTSMME GLPSVATQEANMHKNGAIVAPGKTRGGSPY NQFDIIPGDTLGGHTGPAGDSWLPAKSPPTNK IGSKSSNASWPPEFQCPVFWKGIQNIDPESDP YVTPGSVLGGTATSPIVTDHQLLRDNTGS NSSLNTSLPSPGAWPYSASDNSFTNVHSTS AKFPDYKSTWSPDPIGHNPTLHSNKMWKNHISS RNTTPLLPRPPGLTNPKPSSPWSTAPRSVRG WGTQDSRLASASTWSDGGSVRPSYWLVLHN LTPQIDGSTLRTICMQHQHPLLTFHNLNTQGTA LIRYSTKQEAAKAQTALHMCVGLNNTILAEF ATDDEVSRFLAQAQPPPTAATPSAPAAGWQS LETGQNQSDPVGPALNLFGGSTGLGQWSSSA GGSSGADLAGASLWGPPNYSSLWGVPTVED PHRMGSPAPLLPGDLLGGGSDSI
1049	2399	A	8748	200	1387	VPWKRQDEQLSLQVETLYLDSPAVIDLLSPTF LPPSSLPPFLQIVDSSSACTLDSFFFPLAPWDS PQDCGFKDHQPLTLQALTVELARWTLMLLLS TAMYGAHAAPLLALCHVDGRVPFRPSSAVLLT ELTKLLLCAFSLVGWQAWPQGPPPWQAA PFALSALLYGANNNLVIYLQRYMDPSTYQVL

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \possible nucleotide insertion)
						SNLKIGSTAFLYCLCLRHLRSVRQGLALLL MAAGACYAAAGGLQVPGNTLPSPPPAAAASP MPLHITPLGLLLLILYCLISGLSSVYTELLMKR QRPLALQNLFLYTFGVVLLNLGLHAAGGSGP GLLEGFSGWAALVVLSQLANGLMSAVMKH GSSITRLFVVSCSLVVNAVLSAVLRLQLTAA FFLATLLIGLAMRLYYGSR
1050	2400	A	8758	3	1660	WVSSMGFEELLEQVGGFGPFQLRNVALLALP RVLLPLHFLLPIFLAAPVAHRCALPGAPANFS HQDVWLEAHLPREPDGTLLSCLRFAYPQALP NTTLGEERQSRGELEDEPATVPCSQGWEYDH SEFSSTIATESQWDLVCEQKGLNRAASTFFF GVLVGAVAFGYLSDRFRGRRLLLVAAYVSTLV LGLASAASVSYVMFAITRTLTG SALAGFTIIV MPLELEWILDVEHRTVAGVLSSTFWTGGVML LALVGYLIRDWRWLLLAATLPCAPGILSLWW VPESARWLLTQGHVKEAHYLLHCARLNGR PVCEDSFSQEAVSKVAAGERVVRRPSYLDLF RIPRLRHISLCCVVVWFGVNFSYYGLSLDVS GLGLNVYQTQLLFGAELPSKLLVYLSVRYA GRRLTQAGTLLGTALAFGTRLLVSSDMKSWS TVLAVMGKAFTSEAATTAYLFTSEL YPTVLR QTGMGLTALVGRLGGSLAPLAALLDGWVLS LPKLTYGGIALLAAGTALLPETRQAQLPETI QDVERKSAPTSQEEEMPMKQVQN
1051	2401	A	8759	515	1625	EIRTPVAVSSAPS GDSEGDEEETTQDEVSSHTS EEDGGVVKVEKELENTEQPVGGNEVVEHEV TGNLNSDPILLECQCPLCQLDCGSREQLIAHV YQHTAAVVSAKSYMCPCVCGRALSSPGSLGR HLLHSEDQRSNCAVCGARFTSHATFNEKLP EVLNMESLPTVHNEG PSSAEGKDIASFPPVYP AGILLVCNNCAAYRKLEAQTPSVRKWALRR QNEPLEVRLQRLERERTAKKSRRDNETPEERE VRRMRDREAKRLQRMOTDEQRARRLQRDR EAMRLKRANETPEKQRQARLIREAKRLKRR LEKMDMMMLRAQFGQDPSAMAALAAEMNFF QLPVSGVELDSQLLGKMAFEEQNSSLH
1052	2402	A	8763	1106	70	RHGHHGRDRGGGRVARPGGLGRYPGRGAA ASLVFVPTRRRSGPSGTASVAAMAYHSGYGA HGSKHRARAAPDPPLFDDTSGGYSSQPGGY PATGADVAFSVNHL LGDPMANVAMAYGSSI ASHGKDMVHKELHRFVSVSKLKYYFAVDTA YVAKKLGLLVFPYTHONWEVQYSRDAPLPP RQDLNAPDLYIPTMAFITYVLLAGMALGIQK RFSPEV LGLCASTALVWVVMEV LALLGLYL ATVRSDSLTFHLLAYSGYKYVGMILS VLTGL LFGSDGYYVALAWTSSALMYFIVRSLRTAAL GPDSMGGPVPRQLQLYLTGAAA AFQPLIY WLTFH LVR
1053	2403	A	8768	2	712	RPPRVWYPERLELSAAAPRW SHRTAPGIMVF YFTSSSVNSSA YTII YM GKDKYENEDLKHGW PEDIWFHVDKLSSAHVYRLHKG ENIEDIPKE VLMDCAH LVKANSIQGCKMNNVN VVYTPW SNLKKTADMDVGQIGFHRQKDVKIVTVEKK VNEILNRLEKT KVERFPDLA AEKECRDREER NEKKAQI QEMKKREKEEMKKREMDEL RSY SSLMKV ENMSSNQD GND SDEFM
1054	2404	A	8769	344	527	REATTLACRNCSWVFSRCSLGACKPTVCSMP SLSRQGSQTLCLRLA EYC MESVDSQRLLS

SEQ ID NO. of nucleotide sequence	SEQ ID NO. of peptide sequence	Method	SEQ ID NO. in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, !=possible nucleotide insertion)
1055	2405	A	8770	430	1104	QQESPAAGAARMNCKEGTIDSSCGCRGNDEK KMLKCVVVGDGAVGKTCLLMSYANDAFPEE YVPTVFDHYAVTVVGGKQHLLGLYDTAGQ EDYNQLRPLSYPNTDVFPLICFSVVPASVHN VQEEWVPELKDCMPHPVYVLIGTQIDLRRDPK TLARLLYMKEKPLTYEHGVKLAKAIGAQCYL ECSALTQKGLKAVFDEAILTIFHPKKKKRCS EGHSCCSII
1056	2406	A	8773	261	332	NPRIQLSGNSCCAGSCRVWLSEQ
1057	2407	A	8778	3	477	PAGIRHEQARGADRMRGKCRGLRTARKLRSH RRDQKWHDKQYKKAAHLGALKANPFGGAS HAKGIVLEKVGVEAKQPNSAIRKCVRVQLIK NGKKITAFVPPNDGCLNFIEENDEVLVAGFGR KGHAVGDIPIGPVRFKVVVKVANVSLALYKGK KERPRS
1058	2408	A	8808	171	881	PGLSQEPPGSMSMETVVVIAIGVLAIFLASFAAL VLVCQRQYCRPRDLLQRYDSKPIVDLIGAME TQSEPELELDVVTINPHIEAILENEDWIEDA SGLMSHCIAILKICHTLTEKLVAMTMGSGAK MKTSASVSDIIVVAKRISPRVDDVVKSMSYPPPL DPKLLDARTTALLSVSHLVLTWNACHLTG GLDWIDQSLSAEAEHLEVLREAALASEPDKG LPGPEGFLQEQSAI
1059	2409	A	8809	246	757	MRLQGAIFVLLPHLGPILVWLFTRDHMSGWC EGPRMLSWCPFYKVLLVQTIAISVVGASY LVWVKDLGGGLGWPLALPLGLYAVQLTISWT VLVLFFTvhNPGLALLHLLL YGLVVSTALI WHPINKLAALLLPYLAWLTVTSAUTYHLWR DSSLCPVHQCPQTEKSD
1060	2410	A	8810	304	381	PKLSVYPLQSHHCLSEPFQSLVCCLA
1061	2411	A	8820	1673	848	SCKTENLLEMWWFQQQLSFLPSALVIWTSAA FIFSYITAVTLHHIDPALPYISDTGTVAPEKCLF GAMLNIAAVLCIATIYVRYKQVHALSPEENVI IKLNKAGLVLGILSCLGLSIVANFQKTTLFAA HVSGAVLTFGMGSLYMFVQTILSYQMOPKIH GKQVFIRLLLVWCGVSALSMLTCSSVLHS GNFGTDLEQKLHWNPEDKGYVLHMITTAEE WSMSFSFFGFLTYIRDQKISLRVEANLHGL TLYDTACPINNERTRLSRDI
1062	2412	A	8824	1	763	GGAPPASPVARESPVSGAQGSSRTRGHKRAA GARAPQLCSSWQRRAAPAMSRGQLLLLLSCA YSLAPATPEVKVACSEDVLPCTAPWDPQVP YTWSWVKLLEGGERMETPQEDHLRGQHYH QKGQNQNSFDAPNERPYSLKIRNTTCSNSGTYR CTLQDPDGQRNLSGKVILRVTGCPAQRKEET FKKYRAEVLLALVIFYLTLLIIFTCKFARLQSI FPDFSKAGMERAFLPVTPSNKHLGLVTPHKT ELV
1063	2413	A	8826	147	627	CETSTSSAGHAPCRHAAQGPPAEPGLRLCSE HQRLHAWPPPGRPRPSLWPPKNGKWHSGKRT AGGRPQRRPSRRQSQRPSAWSGSPRMHSPGQ KCSLMCPHRSQDSLSTAIFQRSPGANTGRALH CVLSKEMKSVQRSLGLSRHLSQSKRKHIFVLT
1064	2414	A	8835	2982	1869	LKDTLKSQMTQEASDEAEDMKEAMNRMIDE LNKQVSELSQLYKEAQAEELEDYRKRKSLDEV TAEYIHKAEHEKLMQLTNVSRAKAEDALSE MKSQYSKVLNEQLKQLVDAQKENS SITE HLQVITLRTAAKEMEKEISNLKEHLASKEVE

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, \=possible nucleotide deletion, =possible nucleotide insertion)
						VAKLEKOLLEEEKAAMTDAVPRSSYEKLQS SLESEVSVLASKLKESVKEKEKVHSEVVQIRS EVSVQVKREKENIQTLLKSKEQEVENELLQKFQ QAQEELAEMKRYSESSSKLEEDDKKINEMS KEVTKLKEALNSLSQLSYSTSSSKRQSQLEA LQQQVKQLQNQLAECKKQHQEVISVYRMHL LYAVQGQMDEDVQKVLKQILTMCKNQSQKK
1065	2415	A	8841	3	663	AAATAASLSPRGCR RTPSSDVGPSRAPPSA APLPTGRAQMSPSGRLCLLTIVGLLPTRGQTL KDTTSSSSADATIMDIQVPTRAPDAVTELQP TSPTPTWPADETQPQPTQTQQLEGTDGPLVT DPETHKSTKAHPTDDTTLSERPSPSTDVQT DPQLTKPSGFHEDDPFFYDEHTLRKRGLLVA AVLFITGJILTSGKCRQLSRLCRNHCR
1066	2416	A	8853	3806	2204	FVGEQECCGCEAGAGRGAQTYPGEAERWFG RRRRGRVVSRSRKMSLKSERRGIHVVDQSDLL CKKGCGYYGNPAWQGFCSKCWREEYHKAR QKQIQEDWELAERLQREEEEAFASSQSSQGA QLTFSKFEKKTNEKTRKVITVKKFSASSR VGSKKEIQEAKAPSINRQTSIETDRVSKEFIE FLKTFHKTGQEIKYKQTKLFLEGMHYKRDLSIE EQSECAQDFYHNVAERMQTRGKVPPERVEKI MDQIEKYIMTRLYKYYVCPETTDDEKKDLAI QKRIRALRWVTPQMLCVPVNEDIPEVSDMVV KAITDIEMDSKRVPRDKLACITKCSKHIFNAI KITKNEPASADDLPTLIYIVLKGNPPRLQSN QYITRCNPSSLMTGEDGGYFTNLCCAFAFIE KLDQAQSLNLSQEDFDRYMSGQTSPRKQEAES WSPDACLGVKQMYKNLQLSQLNERQERIM NEAKKLEKDLIDWTDGIAREVQDIVEKYPLEI KPPNQPLAIDSENVENDKLPPPLQPQVYAG
1067	2417	A	8855	1372	1513	SNMREVGCGLWLPVPIPAFWEAEVGGSLAERS LRQA WATKQDPISKKK
1068	2418	A	8856	1530	1583	PCRPGMECNMSMISVHCNL
1069	2419	A	8857	1530	1583	PCRPGMECNMSMISVHCNL
1070	2420	A	8866	293	1675	PYPQGGYVPGYPQEGYPQGPYPQGGYPQGP YQSPFPPNPYQGPQVFPGQDPDSPQHGNYQ EEGPPSYYDNQDFPATNWDDKSIRQAFIRKVF LVLTQLSRTLSTSVFTVAEVKGFRVENV WTYYVSYAVFFISLIVLSCCGDFRKHPWNL VALSVLTASLSYMGVMIASFYNTTEAVIMAVG ITAVCFVVIFSMQTRYDFTSCMGVLLVSM VVLFIFAILCIFIRNRILEIVYASLGALLFTCFLA VDTQLLLGNKQLSLSPEEYVFAALNLYTDIINI FLYILTIIGRAKE*PSSSSLCLRWHGWPGPCP WHGSASCTSPSCPQAAQPREKDASLQPSCMY TADTSIWTRCGHSMAPLVLPPPFRGTAKATFPC HLLSTHCCMSPVCQPTPGTGGSTRSRGEGLSQ EVRVHFVPPVPAPQPQGVEHPSPPHPPGVLP GDMRSGGLIPVLSPE
1071	2421	A	8868	2	358	ARGNTLYHLPLRLCRKLNLWFSASTLYDVQH DDKMGNSNTFFKRNDCRYVMISCKADMAYDN VRHPPFM*SNKLIIMEETYLNIIKA VYDRPTASII LNGEKLKVFPVRSGT*QGCSVWP
1072	2422	A	8870	33	658	MESVLSKYEDQITIFTDYEEYPDDELVWIL GKQHLLKTEKSLLSDISARLWFTYRRKFSP GGTGPSSDAGWGCMRLRCGQMMLAQALICRH LGRDWWSWEKQKEQPKEYQRILQCFLDRKDC

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, \=possible nucleotide insertion)
						CYSIHQMAQMVGVGECKS\GEWVLGPNTV\AQGV*KNLAI\LFDEW\NSGLVYVSMNDNPGSIA\RFPKKLCRVPL\SA\DTAGLTGP
1073	2423	A	8879	146	412	DFSV*GDVDIEVTCPICLQLL\TEPLSLNCGLRL*QVCITA*IKESVISSG*SSSPVCHTFQPANLRTSRYLP*SIKSLGPDEPQEG
1074	2424	A	8884	67	435	HLQGRSIRTLQLTGENEKNEVSRIRRSGPWKEISFGDYICHTFQGDCWADRSPLHEAAAHGRLLALKTLIAQGVNVNLWTL/DRVSSLHEACL*GPVACAKPYWKMVPRHGGTVTGPPLLMV
1075	2425	A	8896	1294	248	RSGDRNGLTHQLGGSQGSRNOSYRSRSRSRSLRPSAPRGIPFASASSSVYYGSYSRPYGSDFWPWSLLDKEREESLRQKRLSERERIGELGAPEVWGLSPKNPEPDSD\DEHTPVEDEPPKSTTSASTSEEKKKKSSRSKERSKRRKKKSSKRKHKKYSESDSDSDSETDSSDEDNKRAKKAKKKEKKKHRSKKYKKRSKKSRKESSDSSKESQEEFLNPWKDRTKAEPSDLIGEPAKTLTSQDDKPLNYGHALLPGEAAMAAYVKAGKRIPRRGEIGLTR*RNCHHLNAQVM**VVSRRRMEAVRTAKREPESTVLMRREPLHPFNPRRETKE
1076	2426	A	8899	146	789	GRSTEAEKEPAFDERTGKGRRRLP\AGEFHG*E*APGPGPRSFQVSRKMPEE\PPGARKHPFSGKFYLDLPGAKNLQFLTGAIQQLG\GVIEGFLSKEVSYIVSSRREVKAESSGKSHRGCPSPSPSEVRVETSAMVDPKGSHPRSRKPVDSVPLSRGKELLQKAIRNQK**CTVQQLSHCRLV\GEKTTAKRSQREHVQQQSQEHGKWPDLKGPR
1077	2427	A	8901	352	3	AKIGAYKYIQLWRKQSDVMHFLRVRCWQYPALHРАГЕWQLSALHRAPRSTQPDKACRLGYKAKQGYIYRICVRRGGWKCVPVKAVT\YGKPVHGVN*LKFAQSLQSVAAEQ
1078	2428	A	8905	536	781	ACPAENREVPEMAAGQAPHA\PGAGPGQPAPALPFAATPGSRGQALCRGGRRQHLHGPLH\RP*QAAPALHAGCQLAPHPT
1079	2429	A	8912	121	376	NLIWKLCVTERRLVILDNYDLASE/YEANKYICNRJQFKPGQDKYFTLGLPTGSTPL*CYPKLEYNKNGHLSFKYVKTFSMDEY
1080	2430	A	8920	381	1788	SSES\PSDPGRMAMTWIVFSLWPLTVFMGHIGHHSLSFSCPEITLRCMCQDL\PYNTTFMPNLLNHYDQQTAALAMEPFH\PMVNLD\CSRD\FRPFLCALYAPICMEYGRVTLPCRRLCQRAYSECSKLME\MF\GPW\PEDMEC\SRFPDCDEP\Y\PR\VLVDLN\A\GEPTEGAPVAVQRDYGF\WC\PRELKIDPDLGYSFLHVRDCSPPCPNM\YFRREELS\ARYFIGLISII\CLSATLTFVTF\LDVTRF\YPERPIKCYAVWHMMVSLIFF\JGFLLED\RVACNA\SI\PAQYKA\STVTQGSHN\ACTMLF\I\LYFFTMAGSVWWVILITITWFLAAVPKWGSEAI\KKALLFHASAWGIPGTLT\I\LLAMN\KIEGDNISGVCFVGLYD\VDALRYFVLA\PLCLYVVVGVS\LLAGIISLN\VR\IEIPL*KENQDKL\VKF\MI\RGVFS\IYLVPLL\VVIGCYFYEQAYRG\I\WETT\WI\QERC
1081	2431	A	8922	56	420	EERTKMS\TGPDV\KATVGD\ISSDG\NLNV\AQEECSRKGIVDEF\FFPLLSN*\CIWTQ\QG\Y\Q\OSSYGT\LANFVFC\SVR\HGLA\I\QLCN\FSIYTQQMNLS\IA\PA\MVNN\TAPP\Q\PN\ASTER\PS\T
1082	2432	A	8923	355	1079	PFGTPS\ST\MA\VV\K\N\K\CL\MK\GG\K\GV\KK\VV

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						GPFSKKDQYDVKAPAMFNIRNTGK/LVART QGTQIASDGLKGLLFEVSLADLQNDEVAFRK FKLITEDVQDKNCLTNFYGMDLTCDKICSMV EKWSTMIEAHVDVKTDGYFFHLCVGFTKK HNNQILKTSY*HQQS/RQIQKKMMEIMT*EV QTNDLKEVVNLIPDNIGKDTEKV/CPIYPLH DVFIRVKMLENPGFERMLRGGGSSS
1083	2433	A	8948	28	385	LTWPQPCHIPSCPAMSEETLQSKLAAAKKKLP WGAVQGSRAMSDLLLLLTLLLLLMLLGFW AGYSGQLAGVAWSAGSPPI/RYKFHVEPYGET GWLLT/ESCSISPCKLCSIAVH*DNPWF
1084	2434	A	8950	156	318	HYTPINTDTIENSENNKCW*GY*EVGLIHHW WGGKRVQPFWRVWQKRRTLNLRV
1085	2435	A	8956	16	413	HMGQLGYFIQCWWECKRLISFWKTI*QSPAK *TIYTSYDTAIPIS/GI/YPKRMSSKCHQETCAR MFILAPFTATIKGKQLTCPVLEERIDY/MWYS HKYYIKVKRNL*VTITHTWVNLNILMFEIILW YSHKY
1086	2436	A	8962	868	1026	H*KILQVGRAQRAXSRL*SQLLRRRLRHESHL NPGARGCSEARLHRCTPAWTT
1087	2437	A	8985	58	330	LHVKHGHFQLVFSEVICHCILMPVS*ELQRL *ERSVCAFHVICIQTYVCLQVYACMCVYYICM FVYSVYGCGLCTCVCMDVYICVCVQEFL
1088	2438	A	8989	394	404	N*KWLHVNVRIQSIF/KRNQK/INSHELKLD KKFLDMMSNA*STKKHDKLD/LIKFKT/LCSA KYTVKRKIHPTDLEKMLRNHLSDKD*YS/GV YKDL SKLNRRKTE/S*/VKKWVKDLSRYFIKE VISMENKHKKIFSTS
1089	2439	A	8991	60	329	MALTPESPSSFPGLAATGSSVPEPPGGPNATL NSSWDSPTEPSSLEDLEATGTIGTLLSDMGVV GVEDNAYTLEVNSRYSMRAVGIM*IHL
1090	2440	A	8996	2	351	SNITILT*MKKYDNTFCW*GCGQIG/T/LIYC WQESKFIQAFWWSKIQQYLA*ISHIHFDPAPFL GGYPGGTQSVFVLTGVLVSSVFYNMKMLHTR LLIAALFIIVQYWKQSKDHYI
1091	2441	A	8997	97	456	YPLPVCYSLSGPRGEHWNSLGGKSSCPLPLPT LVSSRFKISKVIVVGDLSVGKTCILNR*GGAG AELGRVGPGLARWAGSRSQHLVPSQVCKDS FDKNYKAPIGADFEMERFEVLGIPF
1092	2442	A	8999	548	811	SSFIKRHILIFEDDWQTTCCIHPHHP*RCQ FHIFYVSVONSISPSLSVSSHPDRPDHEVHQH RAAHHHQHGQGPLGHGLVARVG
1093	2443	A	9002	3	2745	ALLGLQQPAQSLILSRSSVMGVRLQGFVGS TCPHICTVVNFKELAEHHRSKYPGCTPTIVVD AMCCRLYWYTPESWICCGQWREYFSALRDF VKTFTAAGIKLFFFDDGMVEQDKRDEWVKRR LKNNREISRIFHYIKSHKEQGRNMFFIPSGLA VFTRFALKTLGQETLCSLQEADEYEVASYGLQ HNCLGILGEDTDYLIYDTCYFSISELCLESLD TVMLCREKLCESLGLCVADPLAACLLGNDII PEGMFESFRYKCLSSYTSVKENFDKGNIILA VSDHISKVLYYQGEKKLEEILPL/VTKQSSFL *RNGIISFTRT/INLHGFSKNPKV**LWTNK*YP RVQTPNPGKKFPCVQMLNPGKKFPCVQALNP GEKFPCIH/PEPRQEVPCTSDPEPRQEVPCTG PESRREVPMCSDPPEPRQEVPMTGPEPRQEVP MCTGPEARQEVPMTDSEPRQEVPMTDSEP RQEVPMTGSEPRQEVPMTGPESRQEVPMT GPESRQEVLIRTDPESRQEIMCTGHESKQEV

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						PICTDPISKQEDSMCTHAEINQKLPVATDFEFK LEALMCTNPEIKQEDPTNVGPEVKQQVTMVS DTEILKVARTHVVQAESYLVYNIMSSGEIECS NTLEDELDDQALPSQAFIYRPIQRVYSLLED CQDVSTCLAVKEWFVYPGNPLRHPDLLVRPL QMTIPGGTPSLKILWLQNQEPEIQVRRLDTLLA CFNLSSSREELQAVESPQFQALCCLLIYLFVQV DTLCLEDLHAFIAQALCLQGKSTSOLVNLQP DYINPRAVQLGSLLVRGLITLVVNSACGF WKTSDFMPWNVFDGKLFHQKYLQSEKGYA VEVL/CRTK*ISAHQIPQEGSRLQGLHEGEQT HHWPSPLGLTPRREVGKTLQLPQDGLWV
1094	2444	A	9021	97	834	AREACRAKTDFFGRRFLWPSCCCRIVVGAET*HMAEPVSPLKHVFVLAKKAITAIFDQLLEFT EGSHFVEATYKNPELDRIATEDDLVEMQGY KDKLSIIGEVLSRRHMVKAFFGRTSSGKSSVIANMLWDKVLPGSIGHITNCFLSVEGTGDGDKAYLMTEGSDEKKSVKTVNQLAHALHMDKDLKAGCLVRVFWPKAKCALLRDDLVLVDGPGTDVTELDSWIDKFCTKSSTREITNSGSDT
1095	2445	A	9022	1	537	LVLNSRVEDFVPPEGAGRTLPPFALRPLAACW LLHRRARRSSALCPRPRSWGVSGGEGAGAREP*ITSSSCCLSAA/SHLISQSPNMAGARRRIRPQ LAKEKIEGHCHICTSVPGEPVFLGKDKAFTFDYVFDIDSQQEQIYIQCIEKLIJEGCFEGYNATVFAYGQT\AGAKTYTMGTGFD
1096	2446	A	9029	1	285	FFFFNVCKSPKVPKPGCKEESTGTLFKNTLISL GQHSETPSLKKKLAGYSGMCL*SQVLRRLRQEDCLSPGGGNCRS*SCPYTPAWITERDPV
1097	2447	A	9032	716	357	ARSTFGFWGEILWCWGFLKRSLALSPrVKCGAI LAHCNFHRAGFPPLSCLSLPNRWEYRPPARP GKFFLVFLVETGFQC/G*DGLDLLTSRSACLG LPKCWDYRREPAASIIQTTFFFINSK
1098	2448	A	9038	230	652	KVVVMSCEDINISGSFYRNKLKYLAFLCKRTSTNPSQGPYHLWVPSHFWQTTCGRLPHKTKQG*AALDHLKVFDRIPLYDKKKQMAVSATLEVVRPKP*RKFAYLGHWAQKVDWKYQAMTA TMGEKRKVYYQKICYQKK
1099	2449	A	9043	185	372	IIFYSHQQCMRV/WQGCGDIETLJHCW*E*KIIHSL/WK/TV*QFLKRLYLHLPHNSVIAFLGISPRKIKTCPONSCSTSMLINAIIHNDQWKWKKINI
1100	2450	A	9045	763	584	RQSLALSPRECGSTISAHCRLCPLVFTPLSCLSLTSSWDYRPPPHANFLYFK*RRGF
1101	2451	A	9050	275	2	LFFLRKVSNQFLSPSLLPVNFGFWFAFLLLLFL/FEMESLPVA/RVECSGTISAHCNLCPLPGSSDSPASAS*VAGITDMCRYTQLILFHAS
1102	2452	A	9053	449	1224	KTSMFWKFDLHSSSHIDTLLEREDVTLKELMDEEDVLUCEKAQNRKLIFFLLKAECLEDLVSFN*EEPPQDMDEKIRYKYPNISCELLTSVDVSQMNDRLGEDESLLMKLYSFLLNDSPLNPLLASFFSKVLSILISRKPQEIVDFLKKKHDFVDLIIKHIGTSAIMDLLLRLTCIEPPQPRQDVLN/WFKVQRNL*HST*NVMDISKYVNLHWGLNKSHELL*LLLQCVLQWLNEEKIIQRLVEIVHPSQEDVSSLV
1103	2453	A	9058	403	3	GLHVYDFQVYREHILTNVKKCSVSFWGLREWLYLQMYEIIKSPRFPIHKMTDITKCW*GCIGAAGMQI/H/CW/WCVNVGFWEWS*YYLLKLSIST/PYDPAPLLGIYL*ETRVYIHPKTCMRMLIA

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, \=possible nucleotide insertion)
						APFVLA VNC
1104	2454	A	9064	75	393	KWLFSSLNITGRGDIIGHLKWLDCR\NCSSFPKRNRQTHSTESNLKAGHSFGYN*LIH*NS\VKTDCCGCGANSKGVVVVVMKV\KTAQQKQTTSYMQIGTTKNSRAT
1105	2455	A	9065	366	778	DLLILRNLAFFPELKKRNCISRFYLAYHLHKIYSRSILLCNNCSGFYILSL*QYDVFFFNYFFFDRDRAWPCCPGWSAAWLTVILAHYRRPGLERSCCLSLSSSWDHRRVPPCPANF*/YFSMGMFTA FPRLVLNS*TQGI
1106	2456	A	9083	673	816	ESGSLIH*WWENKPAQPLWWEI*QHVQKLPTHFPCDPAIPLLGCIPED
1107	2457	A	9086	580	18	KPSSGSFIRAIYIFLSTAHPALFSQLVRTKLT*AFSQSSVLWAHKQQKTSLSLVR/ERLQIKTA VRENFLPIRLAKILKLDNVKCWQG/SGSNMSL I/HCWWWEYNVIIWNSVTFPKRVEHVYITYAPEISVR*IHGGLPLTVHQETHTSVFRGAPSVIP ETR/CRPTKESINKLLHIYTMEHYGDENK
1108	2458	A	9093	540	1	GGNDCSVTPITPEGRKEIT*KRKF*EKTDRLP GA/PPSRTPPTPYPCPHGDRLLPPSPLPAGPA SAFFPAERSRGHRRASL*RARWSAAVPRRSA GSASEPVQSRWLRLPVGSDSPPAVPVRVCAPADSRPAAPGSRLPDGPLDSPAPSRTPSSVD*GG QRPPPPSGDSLSPPGCCRY
1109	2459	A	9099	1255	1425	HESYHVNPNCNPVAPTSAGHSIG*KWPSWL GAVAHCNPSTLVGRGGRITRGQELR
1110	2460	A	9103	242	70	EEQFFFFAVGMFP*VDFLAPASGELWDRRLRT CSRPFTRHQSGFLAFLRVCSSLSDLDDSVVGP SALLSSV/LNQGGRNVLEAREAAKHTI*RQS LLRKQRNKRMRAIP
1111	2461	A	9110	189	121	SFLSVRLCNGAIMAHCALPLPG
1112	2462	A	9113	100	910	RRRGGGSRRRTPTVPAPGPGPSFGMDVRFYP AAAGDPASLDFAQCLGYGGYSKFGNNNNYM NMAEANNAFFAASEQTFTHTPSLGDDEEFIEIPPIT PPPESDPAALGMPDVLLPFQALSDPLPSQGEFT PQFPQSLDLPSITISRNLVEQDGVLHSSGLHM DQSHTQVSQYRQDPSLIMRIPSST*PDAARSG VMPPAQLTTINQSQLAQLGLNLGGASMPHT SPSPPASKSATPSPSSSINEEADAEANRAIGEK RAAPDSGKKPKTPKK
1113	2463	A	9120	3452	3051	FRLRPSFALVPQAGVQWCALSWLQPPSPRFK*F SCLSLPSSWDYRHVPPR PANFFVLLVETGFLH VGQAGHEPLTSGDPPASASQSAGITGVSHQA WPSFFIFSRDTVLLCCSGWSRTSGLKQSACLS LLKWCWDY
1114	2464	A	9122	152	377	NQLPLQQWTFFIYETGFCVAQAGVQCRDHS SLHP*PPGSSSDPPAPP*VLGITGQRHYACLIILYLYVQTVPORV
1115	2465	A	9124	553	981	QRPLLRQQLGSWPTCRSLEGDLASPW**RLPG SPRMRRSGT/ATLNLPSPQGTVRTA VEFQVM TQTQSI.SFLLGSSASLDCGFSMAPGLDLISVE WRLOHKGRGRGDLHLPDHLSVPSSADHPAQQPSQFN GRNL YFLPLFR
1116	2466	A	9135	48	410	SASHEPAEH DGGADSL SASQPPR PAGRPAGA QHVHVPPWTDVLAGQD RRAPTAGDGA PWP APGGHVPSTRPHDPAEFHADEAAGRRGGRLQ PAAPHALPAGLPHGPPAPA/PAEGGGTP*GSA GAGGP*GSPAGRACGAAGCRPRP PPAASSA *NSAGS*GL VEGT*PPGAGH GAPSPAVGARLS

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						CPARTSVQGGTWTCA*APAGRPAAGLGGWEAE RESAPPSCSAGS*DAD*GAEPWGAGSRSWGS
1117	2467	A	9141	380	939	KSGHWAKECLQPPIPQPCPICVGPHWKSDCP TCPGAVPRAPGTLPLQGSLTDSPFDLLSLVAED *CCLMASEASWTTTELWVTLTVEGKSV/CL NTEATHSTLPSFQGPVSLASITVVVGIDGQASKP LKTPQLWCQLGQYSFMHYFLVIPTCPVPLLG* GILTAKLSAFLTIPRLQPHLIAALSPSS
1118	2468	A	9154	471	2	AAGQVVVVEVTSHLYLCITSDAAGLRLLPPAES ERGEHHGHCPEAELPPLPRPQYCLAKHPLLRLKP EEKIKLDPYLTQHTKINSKQIKYLS/VRAKTTQ LVEGNIGVNQLQNTELKQH*INGFLDTTPEAQETKEKTNKLNFKKVKRQLAEWEKIFQIA
1119	2469	A	9155	2	3187	ACPRLARRRRVRSLSRRRGWLRARWSRGQ NNMAARRITQETFDAVLQEKAKKYHMDASG EAVSETLQFKAQDLLRAVPRSRAEMYDDVHS DGRYSLSGSVAHSRDAGRESLRSDFSGPSFR SSNPSISDDSYFRKECGRDLEFSHSNSRDQVIG HRKLGHFRSQDWKFALRGSWEQDFGHPVSQ ESSWSQFYSFGPSAHLGDFGSSRLIEKECLEK ESRDYDVDHPGEADSV/LRGGSQVQARGRAL NIVDQEGLLKGGETQGLLTAKGGVGKLVTL RNVSTKKIPTVNRITPKTQGTNQIQKNTPSPD VTLGTPNGTEDIQFPQKIPGLDLKLNRLPRR KMSFDHDKSDVFSRGIEIIKWAGFHITKDDIK FSQLFQTLFELETETCAKMLASFCKCSLKPEHR DPCFFTIKFLKHSALKTPRVDNEFLNMLLDKG AVKTKNCFFEIIKPFDKYIMRLQDRLLKSVTP LLMACNAAYELSVKMKTLSNPDLALALETTN SLCRKSLALLGQTFLSASSFRQEKIL*AVGLQ DIAPSPAFAFPNFEDSTLFGREYIDHLKAWLVSGCPLQVKKAEPPEPMREEEKMIPPTKPEIQAK APSSLSDAVPQRADHRVVGTIDQLVKRVIEGS LSPKERTLILKEDPAYWFLSDENSLEYKYYKL KLAEMQRMSENLRGADQKPTSADCRAVAML YSRAVRNLKKKLPWQRRGLLRAQGLRG WKARRAVTTGTQTLFLRAPGLKHHGRQAPG LSQAKPSLPDRNAAKDCPPDPVGPSQDPSL EASGPSPKPGAVDISEAPQTSSPCPSADIDMKT METAEKLARFVAQVGPEIEQFSIENSTDNPDL WFLHDQNSSAFKFYRKVFELCPSICFTSSPH NLHTGGDITGSQESPVDLMEGEAEFEDEPP PREAELESPEVMPEEEDEDDEDGGEAAPAPG GAGKSEGSTPADGLPGEAAEDDLAGAPALSQ ASSGTCFPKRKRISSSKSLKVGMIPAKRVCLIQE PKGECPVGTVASSTVLGVWWAVRVRDRWR HFNPKEFCAPLQNVSRHSCPVV
1120	2470	A	9163	124	207	PPRACRPCPRACPCPPT*KCSQPVSWPC
1121	2471	A	9166	272	523	PMSSLQGCFYTFKCIIFKGIFLLILSNIJAF**EK V/CSHITDSLKFIGKGWVGMVTHACNPGTLG G*GGWIA*VREFETSLGNM
1122	2472	C	9170	442	236	MNRRRFLRPADCHSGMRGTENGACSEGESQI HCGAGGEVQLVHVVNQPENGCLQFDSTHIT FSKRQN*
1123	2473	A	9171	10	423	MVDRSPLLTSVIIFYLAIGAAIFEVLEEPHWKE AKKNYYTQKLHLLKEFPCLGQEGLDKILEVV SDAAGQGVAITGNQTFNNWNWPNAMEAAT VITIGYGVNAVKTPGGRGLFCGFYGLFGVPFC LTWINALGKFFG

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
1124	2474	A	9173	3	374	GPSPSLLVLPQEPGGTGTGTVRAGAGAGMWL WEDQGGLLGPFSFLMLMLLLETTRNPVNACLL TGSLFVLLGVFSFEPVPSCRALQELKPRDRISA IAHRRGGRHDPPEENTLGAI/R/QGS**WSNRR
1125	2475	A	9179	704	188	ESSSGLLFQCFQGIHVQKLTQARPTLFSWWL CSKPPKETGELENAESGGDGGRGGKQDNV AWWRRRMQKG\DFPWDDDEDFFQSGPFGGQA LPMGFFYLFRDPGREGITWKHFVQYYLARGL VDRLEVNVKQSVRVIPAPGTSSEVRGEKAE YCRHKFISCKNVVFYFFQ
1126	2476	A	9183	153	233	MEYMAESTDRSPGHILCCECGVPISPNN
1127	2477	A	9185	1	321	LTGQLGSILLRVFSKSRAGLGARKLKAYRTM EYMAESTDRSPGHILCCECGVPISPNAQY\CV ACLRSSFH\YHCIPKLFIHPFSKTSSAFITPSHY LTFFSTIS
1128	2478	A	9186	183	847	VLKFLLLQTMDEQSQGMQGPPVPQFQPQKAL RPDMGYNTLANFRIEKKIGRGQ\FSEVYRAAC L\LDGVPVALKKVQIFDLMADAKARADCIEID LLKQLNHPNVIKYYASFIEDNELNIVLEADA GDLSRMKHFKKQKRLIPERTVWKYFVQLCS ALEHMHSRVMHRDIKPANVFITATGVVKLG DLGLGRFRFSSKTTAAHSLVGTPYMSPERJHD NG
1129	2479	A	9190	1	370	GTSWKIPSAAVSESSPNGAAYASGLPCGVRG PPWAGLALLPSPTLMAILRRPTVSSLDNDIT RATT\KIRVVATITRARIEDMRHSATALTRPD ATTAQIPKLPVTVCNRANPGIPPSVL
1130	2480	A	9194	131	487	AYLKRLPVPESTITGFARLTVSEWLRLLPFLGV LALLG\YLA\VRPFLPKKKQQKDSDLN\KIQKEN PKV\NEINIEDLCLTKAA\YCRCWRSKTFPAC DGS\HNKH\NELTGDNVG\PLIKKK
1131	2481	A	9201	184	605	KELVDEKSERGRAMDPVSQLASAGTFRVLKE PLAFLRALELLFAIFAFATCGGYSGGLRLSVD CVNKTESNLSIDIAFAYPFLHQVT\EG\PTCE GKERHK\ALALGDSSSAEEFGTVAGFAFLYSL AATGVYIFFQN\KY
1132	2482	A	9206	1	852	GGGRAGAGSRDMGSTDSKLNFRKA\VIQLTTK TQPVEATDDAFWDQFWADTATSVQDV\ALV PAAEIRAVEREESPSNLATLCYKAVEKLVQGA ESGC\HSEKEKQIVLNC\SRLLTRVLPYIFEDPD WRGFFWSTVPGAGRGQGQEEDDEHARPLAE SLLAIADLLCPDFTVQSHRRSTVDSAEDVH SLDSCEYIWEAGVGF\AHSPQNYIHDMNRME LLKLL\TCFSEAMY\LP\APESWQH/RTHWFSS FVSSENRHALPLFTSLLNTVCAYDPVEY\GIPY NHLY
1133	2483	A	9208	1165	1463	GPRARVQGFGSGADIVKFMALGSMYLVLTJIV AKVLRGAEPCCGPLKNRVLRPCPLP/VPLPPP HPQPSRGNPV\GCLPTYKV\YKLLSWPLHSNS NVYFIV
1134	2484	A	9210	66	1586	MAGAGPKRRALSAPVAEEKEAREKIMAAK RADGAAPAGEGE\GEGVTLQGNITLLKGVA\VV AIMGSGI\FTPTGVLKEAGSPGLALVVWAAC GVFSIVGALCYAELGTTISKSGGDYAYMLDV YGSLPAFLKLWIELIIRPSSQY\VALVFATYL LKPLFPTCPVPEEA\KLVAC\CV\LLTAVNC YSVKAATRVQDAFAAAKLLALALI\LLGFVQI GKGDVSNLDPNFSFEGTKLDVG\NIVLALYSG LFAYGGWNYLN\NFVTEEMINPYRN\PLAIIISLP

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, \=possible nucleotide insertion)
						IVTLVYVLTNLAYFTTLSTEQMLSSEAVAVDF GNYHLGVMSWIIPVFVGLSCFGSVNGSLFTSS RLFFVGSRREGHPLSILSMIHPQLLTPVPSLVFT CVMTLFYAFSKDIFSVINFFSFFNWLCVALAII GMIWLRHRKPELERPIKVNLALPVFFFILACLF LIAVSFWKTTPWVASDFTIILSGLPVYFFFGV WWKNPKWAPPGLSPRSPCVRSCMVVPQ
1135	2485	A	9216	40	410	RDRLLPPAYFCRPVVCCVVTALDVGSPEQEM DLVAFEDVAVNFTQEWSLLDPSQKNLYREV MQETLRNLASIGEKWKDQNIEDQYKNPRNNL RSLLGERVDENTEHCGETSSQIPDDTLNK
1136	2486	A	9223	3	983	RRRRRSRYRRCSRFPFPGPLAVSMPHAKPG DLVFAKMKGYPHWPARIIDDIADGAVKPPP KYPIFFFGTHETAFLGPDKDLPYDKCKDKYGK PNKRKGFGNEGLWEIQNNPHASYSAPPVSSSD SEAPEANPADGSDADEDDEGRGVMAVTAVT ATAASDRMESDSDSDKSSDNGLKRKTPALK MSVSKRARKASSDLDDQASVSPSEEENSESSSE SEKTSQDFTEPKKAAVRAPRRGPLGGRKKK APSASDSDSKADSDGAKPEPVAMARSASSSSS SSSSSDSDVSVKKPPRGRKPAEKPLPKPRGRK PKPERPPSSSSD
1137	2487	A	9229	21	239	LFPRLECRDPVTVNCLTNLPGSKNAPTTASQV GSTWNYRGGLPHPTNFFVKTGFRCSQAGLKL RGSREPPAWA
1138	2488	A	9231	1664	2	TRSGVNTCEVGVTTEPECLGPCEPGTSVNL EGVWHETEEGVLVVNVTWRNKTYVGTLLD CTKHWDAPPFRCESPTSDEMRGGRRGKR ARSAAAAPGSEASFTESRGLQNKRNRRGANGK GRRGSLNASGRRTPPNCAEEDIKAPSSTNKR KNKPPMELDLNSSSEDNKPGRVVRTNSRSTP TTPQGKPETTFLDQGCSSPVLIDCPHPNCNKK YKHINGLRYHQAHAHDPENKLEFEPDSEDK ISDCCEEGLSNVALECSEPSTSVSAYDQLKAPA SPGAGNPPGTPKGKRELMSNGPGSIIGAKAGK NSGKKKGNNELNNLPVISNMTAALDSCSAA DGSLAAEMPKLEAEGLIDKKNLGDKEGKGGK ANNCKTDKNPSKLKSARPIAPAPAPTPPQLIA IPTATFTTTTGTTGTPGLPSLTITTVQATPKSPPL KPIQPKPTIMGEPITVNPALVSLKDKKKEKR KLKDKEGKETGSPKMDAKLGKLEDSKGASK DLPGHFLKDHLNKNEGGLANGLSESQESRMAS IKAEDAKVYTFTDNAAPSPSIGS
1139	2489	A	9234	207	443	TRRGQPWRRRAAAAGILPGREAAACLPSC/AS VTAAVSGLLVGYELGIISGALLQIKTLLALSC HEQEMGVSSLVIGALL
1140	2490	A	9238	248	328	MAQGNNVYQTSNNGVADESPNMLVYRKV
1141	2491	A	9242	2	535	FVEAAVKMLGSLVLRKALAPRLLLRSP TLRGHGGASGRNVTTGSLGEPOWLRVATGG RPGTSPALFSGRGAATGGRQGGRFDTKCLAA ATWGRLPGPEETLPGQDSWNGVPSRAGLGM\ WPWAAALVVHCVSKSPSNKDAALLEAARAQ \NMQEVSNRCALLHSAAVQEYGYGN
1142	2492	A	9245	157	466	HLCFWFFFGLFLPEQQIMLFATLLRMAQGCD FALGNDFLNITTKAQATKEKLDKLDFIKIKTC CTSMDAIKEPLETKWTKAFTVSHVSYKRLLF GICKEYSRQ
1143	2493	A	9247	264	115	GLPQQTSTIQPPGTPDGARDFTSTIQPPGAPDG ARDSTSIIHMRMGPEIPPP

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \possible nucleotide insertion)
1144	2494	A	9260	1	401	KKVPGRLSEMSFSLNFTLPANTTSSPVTDCCP SLGLAAGIPLLVATALLVALLFTLIHRRRSSIE AMEESDRPCEISEIDDNPKISENPRRSPTHEKN TMGAQEAHIIYVKTVAGSEEPVHDYRPTIEM ERR
1145	2495	A	9264	175	411	METIWIVYQFRLIEIGDSTVVGKSCLLHRFTQGRF PGLRSPACDPVTGVVDFFSRLLEIEPGKRIKLLL WDTAGQERFISIT
1146	2496	A	9277	592	814	MFTYLEGREGIKSQPKMEPHSVTRLECSGMI SAHCSLNLPGTSDSPASASR/VAGTTGMRHHA WLIFAFLVETGF
1147	2497	A	9279	1255	2	FRRGRREEKEEEEEEEEGWVNGMENSHPP HHHHHQPPPQPGPSGERRNHHWRSYKLMIDP ALKKGHHKLYRYDGQHFSLAMSSNRPVEIVE DPRVVGWTKNKELELSVPKFKIDEFYVDQV PPKQVTFAKLNDNIRENFLRDMCKYGEVEE VEILYNPKTKKHLGIAKVVFATVRGAKDAVQ HLHSTSVMGNIIHVELDTKGETRMRFYELLV TGRYTPQTLPGELDAVSPIVNETLQLSDALK RLKDGGLSAGCGSGSSSVTPNSGGTPFSQDTA YSSCRLDTPNSYG/QGTPLTPLGTPFSQDSYY SSRQPTPSYLFSDQPAVTFKARRHESKFTDAY NRRHEHHYVHNSPAVTAVAGATAAFRGSSD LPFGTVGGTGGSSGPPFKAQPQDSATFAHTPP PAQATPAPGFR
1148	2498	A	9302	1026	6	IASIQNADTMPGVGLLVSHTLVSQRCPNY ADPQNLTDVSIPLLLEVSGDPELQPVLAGLFL SMCLVTVLGNLLIIAISPDSHLHTPMYFFSN LSPDV\GFTSTTVPK\MDV\QSRSRVISYAG CLTQKSLFAIFGGTEENMLLSVMAYDRFAI CHPLVHSAIMNPCFCALVLLSFFFLSQLDSL HSWIVLQFTIKNVEISNFVCDPSQLKFAACSD SIINSIFIYFKDPERQLVLAGLFLSMCLVTVL GNLIIILDVSPDSHLPTPMYFFLSNLSPDIGFT STTVPKMVIDIQSHGRVIFYAGCLTQMSLFAIF GGMEERHAPECDCGL
1149	2499	A	9303	1	699	MASQEKDFIGWGTIHLFRKPQRSFFGKLLRE FRLVAADRSRSMGRYMLFGVINLICTGFLLMWC SS\INSIAL\TSYTYLT\TFLDFSLMTCLISYWT RKPSPVYPSGFERLEVLAVFASTVLAQLGALF ILKESAERFLEQPEIHTGRLLVGTFVALCFNL TMLSIRNKPFAVYSEAASTSWLQEHVADLSR SLCGIIPGLSSIFLPRMNPVLLIDLAGAFALCIT YMLIEI
1150	2500	A	9308	797	693	DRSTSVTRAGVQWCSLSLQPRTPGLLRSCL SLP
1151	2501	A	9309	205	406	VAIKELPVWKWSKPTRTAKEPPQTQQRAG SKTAAPPCQWSRMASEGPNIPCPGARHSDKQ FLICITI
1152	2502	A	9314	913	504	KPSPLTPPAVVLPPSAVLNLVNTFSSFPQEV QGPLCGPRKRKGRLAVTIPFFGLS/LPKYMDHRR PPPHR\EIFVFVFLAETGFHRASQAGPDPLPTS/S/I PPTSA/FPKCWEYRSEPQCLPGCLSFSGILLDL GTNVSLRAA
1153	2503	A	9315	392	1	HPHRPRPGFRSPARSSRCPVLTSLPPFPSPSP PADDLVKAGRDRKDQPVR/ERRLRPNPGRLG GPR\PRPARARS/CHQPLLTRVCPRSPPEARA PAPAAPARGRGAPKRNRPTDTRAPRGSSAR PGNS

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \possible nucleotide insertion)
1154	2504	A	9321	331	433	MPC/QAQYGTAPSPGPRDHASDPLTPEIKPT
1155	2505	A	9324	180	275	MEEPQSDPSVEPPLSQETFSDLWKLLENNVL
1156	2506	A	9326	383	619	MISPSRTEGDPPLPPP/ECEGQEVRGFGGGPAK EAAQRHCRASVILRMRRPGQGSSRPARVPLRGPDSHRLREPPSPP
1157	2507	A	9327	152	292	YERRGRSGGGSHHPAGAQPGGRAIGAGWQS KEPLWEGLQRSGSPLPG
1158	2508	A	9328	1	430	QELKQGPNPLAPSPSAPSTSAGLGDCNHRVD LSKTFSVSALAMLQERRCLVVVLTDSRCFL VCMCFLTQIQLMVSGYLSSVITIERRYSLKS SESGLLVSCFDIGNLVVVVFVSYFRGRRRRP/ RVAAVGLLDLEGEMI
1159	2509	A	9334	108	383	KGNQVNNGNGNQLKRKHESMCVSLTQNTVR LMEAGLPQKQAERADELFEAQLVIVVKLDER VLNAL\YSSVGLQWFKESDLHRLLEISPR
1160	2510	A	9338	2	430	FVGRPRGLSDRLEDLFLAGFRVGERLRTAAM KRYVRILLGEGAEHVADPVPGGRGVPRGEA DHIDQELREEIHKANVERVVHDVSQEATIEKI RTKWIPLV/RWGHDHA/EGPGVIKSYLPSGRSM EAELPIMSQLTEIETCVEC
1161	2511	A	9341	1	390	NSRVDDFVAPGLSEAGKLLGLEFFPERQRLAA AVG/CSPMSGVISMSAPFFLGKIIADIYTNP DYSDNLTRLCLGLSGVFLCGAAANAIRVYLM QTSRQRVVKRLRTSLFSSILGQEVAFSDKAGT GELI
1162	2512	A	9343	84	837	QGRFRAFCWQRDFLQPPGMRLSALLALASKV TLPPHYRYGMSPPGSVADKRKNPPWIRR VVEPISDEDWYLFCDGTVEILEGKDAGKQKG VVQVIRQRNWVVVGGLNTHYRIGKTM GTMIPSEAPLLHRQVKLVDPMDRK PTEIEWR FTEAGERVRVSTRSGRIIPKPEFPRADGIVPET WIDGPKDT SVEDAERTYVPC LTKLQEEVME AMGIKETR NTRRSIGE EPGAEQLLPNFC PSLE G
1163	2513	A	9346	967	616	DSSLALSPRLECSGAISAHCNLT TPPGFTP SCLS LPSSWAYRCASPHPD NFFVFL VESGFHHVGQ AGLKLLISSD PPTSA/FPKCWDY RRD\\SSAPAT FSSYQRNN PDLILND TIMPNIK
1164	2514	A	9347	3	1099	SSFTPCM RTVHSNTS VSSLL HRPGHVT PQLTI HGGWRH IIRDHT AIDEWDF NPSKFL IYTCLL FSVLL PLRLDG IIQWSY WAVF APIWL WKLLV VAGAS VGAGV WARNP RYRTE GEAC VEFKA MLIAVG IHL LMLFEV LVC CDR VERG THFW V F M P L F V P S V A C W G F R H D R S L E I L C S V N I L Q F I A L K D R I I H W P W L V V F V P L W L S L L T L M A T T F R R K G G N H W W F A I R R D F C Q D Q L P Q P T G K P P P L T D H H G E K A L P L Q N K D R G S W P A R G S P R L L
1165	2515	A	9362	547	991	DVSIGP PLR RRC SGRE QTR SLS FP SD PE SS FSP V P E G V R L A D G P G H C K G R V E V K H Q N Q W Y T V C Q T G W S L R A A K V V C R Q L R C G R A V L T Q K R C T K H A Y G R K P I W L S Q M A C S G P E P T L H D C P F R P L G E D T L F H V E Y T S V H G R E L S A K D
1166	2516	A	9363	201	387	PPILRW TPPSG KNN FFF ESE FY/SS PR VECS GA ISA H LA H CN L C P G S S D S P A S A F Q V A S
1167	2517	A	9368	707	1087	AVL TPC LSP C P S P R I P R P S R P Y P G R R S L S H T P P

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, \=possible nucleotide deletion, \=possible nucleotide insertion)
						PRPLILYAPAPRPGTAFIPHSHPPPDLLRPTATPA/TPCPSLPPPPRPLHPTQPSALLPDPPPWPPLPPPPSS/RPPRDPDSTSYSPTFPPT
1168	2518	A	9375	511	15	MMLSEETS A V R P Q K Q T R F N G A K L V W M L K G S P I T V S A V I V L M L L M M / I F S P W L A T H D P N A I D L T A R L L P S A A H W F G T D E V G R D L F S R V L V G S Q Q S I L A G L V V V A T T G M I G S P L E C L F G E L G G R A D A I F M R V M D I M R S / I P S L V L T M E K T A A L G P S L F N A M Q A S S H
1169	2519	A	9377	42	410	GNGRVA PRDPG AVASAE PGL I T H D S G V N P N N S A R R M E A M A G S N W L S G V N V V L V M A Y W S L V F V L L F I F A K R Q I M R F A M K S L R G P H G P V G H N A P K D L K E E J D I L L S R V H N I K Y E P H L L A D D D A
1170	2520	A	9378	302	1303	G V S G F S A S V L R Q R R M E D E L E P S L R P R T Q I Q G R I L L T I C A A G I G G T F Q F G Y N L S I N A P T L H I Q E F T N E T W Q A R T G E P L P D H L V L L M W S L I V S L Y P L G G L F G A L L A G P L A I T L G R K K S L L / V N N I F V V S A A I L F G F S R K A G S F E M I M L G R L A S W G V N A G V S M N I Q P M L P G G E S A P K E L R G A V A M S S A I F T A L G I V M G Q V V G L S T T A T G L R G L A G E L E E L E E R E A A C Q G C R A R R P W E L F Q H R A L R R Q V T S L V V L G S A M E L C G N D S V Y A Y A S S V F R K A G V P E A K I Q Y A I I G T G S C E L L T A V V S V S L E G A L P P P A L W O G T P R S F A L N Q F T L Q K K K K
1171	2521	A	9381	2	412	R G P A S A Q E D E R A T A P L E R V R A R G R M T T S S A L F P S L L P C S W S T S N K Y L A E F R A G K M S L K G T T E T P D K R K G L A Y / I Q Q T D D S L I H F C W K D R T S G N V E D D L I F P P D C E F K R L P Q C P N G R V V Y V L K F K A G S K R L F F W M Q E P
1172	2522	A	9384	20	355	G W N G R S T E A S P A A E A P H V P H K E T K A A M G T Q C I H G G K V R P D H M L I T V V H K I K L F V L C H S L L Q L C A I M S D Y L K S S I Y T V E K R L G L F R P T S G L L A S F N E V G N T A L I V L E S Y
1173	2523	A	9393	430	87	L C Q C I V P G Q Q K E T F S L N P S S A T V R F Y L * L S L Q Q R K E D Q * I I L * Y H L N K D C L H I F M S A I T L Y M K I * K I F V L F D N I M F E T P F Y I I * F I F L F S Q N L K R J R Q V I R P P I F S K I N N G P
1174	2524	A	9397	77	374	E R L E I G R L G G E R G S G P A S C L R V I D V S G M W D Q R L V K L A L L Q L L R A F Y G I K V K G V R V H R D C G T F E S S S T L I R V S * F G V P C N A L A H F G V T H F * Y I L D F L G M L
1175	2525	A	9399	66	397	H E S S R A D R D K M D T R G S T Y T D A D P V N K S G G T A K M N K W S K G K V R D K L N N L V L F D T A T Y D K L C K E V P N Y K L I T L A V V S E R L K I P G S L A R A A L H E L L S R G L I * L V I Q H I A Q V I Y
1176	2526	A	9408	2	299	L D L T H V I S L S I S I S I T V T I L G T T F G M V I P L L D V V Y G E R G Y A Q N G D F * D A Q L D D Y S F S C Y S H A Q V N G A P N S L T R A Y D D P * V K I S G L E C Q K V G A L V E V K C L N L
1177	2527	A	9416	2	402	C N F L R S S R I R V H S T P A A S T M P P K V D P N E I K V V Y L R C T G G E V R A T S A L A P K I G P L G L S S I K V G V D F V * A T G D W N V L I I S V I L T I R I L L S H I F V V P P F C F D H L I A F W D L Q S L I F L H V I F S L F I T L L F C F F S I F
1178	2528	A	9419	142	426	T P L F D L W P R V V L S W L E T V L T S L R T R R A A S G P P A C R I M P T V D D V L E H G G E V H F L Q K Q M L Y L L A L I * D T F A P I Y V G I V F L G F T P D H R C R S P G V A E L
1179	2529	A	9420	1450	1655	L S S A G T K M N L N * K N Y W P G A S A H A C N P S T L G G Q S R C I T R S G D R D H P G * H G E T P S V L K I Q K I S R A W W R A P

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \possible nucleotide insertion)
1180	2530	A	9422	176	375	HRPQTTRPDWKPR*T*PQGK*GRLSSEISPASPP SRFSRSTKPVPPKADPPARQKLTGVHLAPLLK
1181	2531	A	9436	2	274	PIAASLRM MYNLQP YTEENL ICTAFA TATM VETVP IARTILDRLT GIPHGY CFVE*ADWATADKCVH IYNGKPLPGATPLLSLQLHQLAHLGS
1182	2532	A	9442	3	240	VDKCSKS SIVLSE YCPHC MCSLSTD PKPFGQL SMILK*MGAGDEKISAMGKARV D HREL YLGL LYPTEDYKL TFRARH
1183	2533	A	9444	384	3	LKD FQPW ALHDWPLF CCCC TFLFLV LECFTR KGCG SWAPWL S LQCQH FGPR PRWA DHLS RV RDQ PGQ YSKTTFLPKIQKL AGHSGAHL*S*LL ERMRWKNR NLNP GGRC SEPRWH HCTPGWAT ERG
1184	2534	A	9462	391	655	LSGF KSLMP KIP LQYI YV RV RTT WSF CLPLDG RK LMLS*YSK*LT*KYNILPEY SRMTL PPGMV IHTCNP STLG GRAG WIV*AQEFET
1185	2535	A	9467	215	566	RCPM WQGQ ASRMDP AKA K DRE ASTCCS LA WWWGWE CWV RALK LSSGPAG PLACW VAK KKSL SLSGP VYPSEK GAGLY VF*DRV SLCH PG WS AVV QFWL TAAS NSC FSLL SSWDY RCA
1186	2536	A	9468	275	452	HIPQL HTK THYV PTPR MVNK I*QIDNSKP WQR GG*TG ILT HCW*ESKL VQPL W KIVW HYQ
1187	2537	A	9469	388	3	EVAPG PSQL PRRV TDGG DRPQ FSLPG PRLP Q SSRGA EPC L SNCI HSP A PRK QRM GDSDQ*STP NPASPH PEA P QEPW DAS GSV GFSL GRGAK ASS*VPGK GRG PRQ GSELL A ETILE FLALAN S
1188	2538	A	9471	124	397	TMDKKNRH GN SLDMA SEI HMTGP MCLIENTT GRLMAN PEA LK ILSA T QPM VEE A IAGLY RAC *FYLTNN LAG MKK GLC LGSTEQA HTIGI
1189	2539	A	9480	584	769	GHVQS QHFG RPR RADH LRG DGRDHPG*HDET PSLL KIQK ISWA WW RAPV VPAT WEAE AE EW R
1190	2540	A	9483	463	86	VTVG L TLL RG A PRFTAG*PPS GGGPPL AP LL PRQH CTLQ THRLHLP EAPV KV*KT*RLFPGLR GASSC RRRR CNP VLAARKA GSPRS HSTRE NC RRS CPDTA HRRRRR GRRRN PSC VRSP RWR
1191	2541	A	9489	1	411	LADAL CLS A AATGA V RP GARA QPSTR RRL SP SVR VCC RAA AAS NLL YSSCL QRH SERA EEG ERG SLS A KCC S L V RGG C S S N SHS FRR IT*EI MAA FVLL SYEQRPL KRP RL GP DV YPP DP KQ KEEEL TAV NVK
1192	2542	A	9497	389	161	VSFLSMSS GH CIR STRG SKM VSWS VIA KI QEI* CEEDER KMARE F L A E FM STY VMM NIHM IVE KDT YSDHEE INTS
1193	2543	A	9509	186	1	IAK SQ*KRW QRSG AMETLK HG W WECK LV QF FG KTF VN VN*S*TYV YPC DK JILL L GLY PTEM
1194	2544	A	9512	58	433	PLQ RSK C TL RCL RAK PWA WS QSPR ACSS AL LKSS RS RASS LNV QC IL QSNP QGH QRI*KQKA SSKG QQ FRR*KEH PFM LKTL NKL RIE GT*LKI RRAI YDN PT ANI IVE QK LEAFPL RTG TRQ
1195	2545	A	9515	595	1223	GHGAPS F QTQ VPRTP*ASWPVV PAASE SAP AGGGASLPV AAGSC A AP HTE PGAPQHLL DC PCPL CLAR PP RRPL P DTCYGP GS GR SAS LA EPP LPRC SCAP LRS ASAP QV S*CV*AVNLL PHNL*PLH L LHD*EKA WGFL FSS ASHCFQQG QIC LLP APGSG PCG ATARPS RC GRAGGS RARR PIPP GP GTR RTPS GC QNPA ASGG

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
1196	2546	A	9518	229	468	RSPTATPAPHAMGPGAPFARGGRPLPLLGAM AERVAPCGWDLHTPYLPRTNSRRTPHL**EPHA GYIGALFPMSSGGWPQQQ
1197	2547	A	9521	289	448	IAWLSQLFFPSNQANLCFLCYKLTADSRYRG HAMRHLTGNTSMAIRFL*ADSRFQVQRARYE APNWKYKYGY*IPVDMLC
1198	2548	A	9524	204	1	KNKKTTKCLSLIVTLNISGPQN*NKRHRVAEWI VKQEPNICHL*ETHFFPRDTYRLKEREQKKRKS SYS
1199	2549	A	9546	1785	1943	GGRFESKLTNAGWQRNSFFIGPPKSIPWAA V*QRGDGKNPVGTHLNRPVGTX
1200	2550	A	9548	186	1	VNAEKEF*KIQHYFMTKSQNKLHIEHTYLKPI KAIYDKWTSIDLNLQKL*AFFLRLVIVRQI
1201	2551	A	9549	591	2	SSVVEFPRGPRSSLPLLDSTIFPGSSPNWTGGC GSCPSSGE*LVSPGSEQRKKYSNSNVIMHETSQ YHVQHLATFIMDKSEAITSVDDAIRKLVQLSS KEKJWTTQEMLLQVNQDSLRLLDIESQEELEDPL PLPTVQRSGTQLNQLRYPVSVLLVCQDSEQSK PDVHFFHCDEVEAELVHEYMESALTDCRLGK AMRP
1202	2552	A	9552	428	1	KYGNEGHWRSRQCPNPGKPIRPCPLCRGPHWK LDCERPPQGPLPSLPELAKTYSYSDLTGLATED *WPGMDAPATTIASSKTRVTLMVAGRPVFF LI*YRATYSALPNFGPTQSSQVSVVGIDGQV SKPRAUTPLFCSLHTF
1203	2553	A	9568	517	738	RRKFERKQKQ*RYREGKQYRQDKMKEWG EKEKRRREKGEREERKMRHRERKGESGQRD TMENWRVERLTEKER
1204	2554	A	9573	83	415	EDKRLRLLVDGDSRCAGR*IYHDGFWTICD DGWDLSDAHVVVCQKLGCGVAFNATVSAHFG EGSGPIWLDDLNCTGTESH LWQCPSRGWQGHDCRHKEADAVICSEFTALR
1205	2555	A	9577	64	424	ARGSCPTRPRTANGRMGETKDAPQMLVTFK DVAVTFFREEWRQLVLVHRTL YR*GMILETC GLLDTLRHNVPQPDVVHLLYHGQTQLLIVKRE VSHSPCAQDMRELFTREATLTPHPYNNGA
1206	2556	A	9584	38	476	TLGAVLFSEVSKESSTS HSGGQLGRQNRPKL SNFITPSSPRLK*TASSQRNLGQILNMFLTAV NPQPLSTPSWQIETKYSTKVLTGNWMEERRK GLPYKHLITHHQEPHYLISTYDDHYNRHG YNPGLPLRWTWNGQKLLWL
1207	2557	A	9586	2	412	LRSSPAALLRALCITTVTGTLALRSRVATTN PDGCRNVLRPKYYRLCDKAESWGIALETVPT GVAVTSWAIMLTVLTVCKGQDYNRQKLP THILCLL*EKGIFGLTFAFIIGLDGSTG PTRFL FGILFSICFS
1208	2558	A	9597	122	3	IKNYWPGMVAHACNPSPPLGGGRWIA*AQK FADAWADA W
1209	2559	A	9611	148	558	KSLRNWV DLLNNNTWKADRF FCHSSRTSTIRK GDPGPTFSKMSIWTSGRTSSSYRHDEKRNIYQ RIRDHDL DKRKT VTALKAGEDRAILLGLAM MVC SIMM*FLLGITLRSYMQSVWTRESQCT LLNASITETFNC
1210	2560	A	9618	384	2	SLHDMLMLAEQQQKQKWAVNTQNTAWSNA DSKFGQRILEKMEWSKGRGLGVQEQQGPDDI KVQVKNNNDLGLQATINNEANWIAHQDDFNW LLAELNTCQRQETADS***WSPKN SHVGKDS GELSAK
1211	2561	A	9620	316	610	QKHPGGQQLGRSPQEDSRFH NKASSGVSRVR

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /'=possible nucleotide deletion, =possible nucleotide insertion)
						LGRRAWLTPVPI TLWEAKAGGSPE*D*AGRGSRL*SQHFGRPRRVDHLSAVQDQPGQHGETPSLLKIQKIN*VWGRL*SSYSEAAEAGESL
1212	2562	A	9623	297	344	QFPVDG DYQKIEKITQLFQAQNLSCLAMTRTREL*KGGGKGRHE*AVVPFLKKGGYGVKAPAILNTSNC*T*CF*ETKMLSDDPKACVF EVSSADL*NTSGFVIR
1213	2563	A	9624	2	356	AELSLASTACGRNTSGDSL PYDRAPISSPLATSGTILSAISCLWDLPTPVLRVGLSCQPSMSSQIPRMYSTDVEAAVN SLEDLYLQAYYAYLCVG LYFHRDDMALEGVS RFL*ELAE
1214	2564	A	9634	776	912	SLSRWVRAKL*VPYNQENCLNPRGGCSEPRSHYCTPAWATEKDS
1215	2565	A	9636	220	426	KPGNFAVSEY*DITSGQLKTA VRG*IEMTSTEE NFGEKLHDIGFGNGFLDKT*KAQATKAKIDK
1216	2566	A	9637	391	76	CFLEDGCTQAS*AEEAAVSPSMAEEEQGSTSCRERRSIRFKMKNHSPDDTIKENVTISNIRTRKINHLPETERNLLEHGLMYIRLNAAFCSLVAHS LFGFILKAT
1217	2567	A	9655	2008	2432	LHCKMGALETQTHPCSQNMLRSLQKCCCKVEEHHLQPVQVLQTLLHSATAGTCRRPARPPAPPTPTPWRSRQSGKQSERAS*LKG RGRGYGL GALGRRGGRALGGSRWPPLPGETLFSGCKHRRRRRGSDAAPGEEAGT
1218	2568	A	9658	3	405	HASARALLSPNLSPNNKMAISGGPV LGFFIIA VLMSAQEPWAKEEHVIQAEFYLNPDQS GEFMLDFEGEDTFHGDMAKKETVWRLE*LARLDNFEAQRALANIAADQAALEIMDMGSDYTLIPNVPPKVTVL
1219	2569	A	9662	3	284	PDWTEKRKMQDTGSILPLHWFGFGYAALVAYGGIYGVVKAGSVPSLAAGLLFGSLSGLGAYQLSQDPRNVWVFLATSTLAGIMGMRFYHSGKL
1220	2570	A	9669	200	699	LLLTGYI QTQLQNQQQLSGNQQEMQAVDNL TSAPGNTSLCTR DYKITQVLFPLLYTVLFFVG LITNGLAMR IFFQIRSKNSNFIIFLKNTVISD LLMILTFPFKILSDAKLGTGPLRTFVCQVTSVIFYFTMYISISFLGLITIDRYQKTT RPFKTSNPKNLLGAKIK
1221	2571	A	9676	164	562	KERDSSTFSAA MTM QMGMEQAMP GAGPGVPQLGNMAV IHSHLWKGLQEKFLKGEPKV LGV VQILTALMSLSM GITMMC MMASNTYGSNPISVYIGYTIWGSVMFIISGSLSIAAGIRTTKGLVRGSLGMNITSS
1222	2572	A	9688	43	412	VAKMVKCCSAIGCASRCLPNSKLKGLTFHVFP TDENIKRKWV LAMKRLDVNAAGIWEPKKG DVLC SRHFKK TDFDRSAPNIKLPGVIPSIFDS PYH LQGKREKLHCRKNFTLKTVPATN YNH
1223	2573	A	9696	308	564	RTSMGILYSEPICQAA YQNDFGQVWRWVKE DSSYANVQDGFGNGDTPLICACRRGHV RIVSFLLKKECLCQPQKPERENLLACCE
1224	2574	A	9700	3	632	DAWASGGELGSLFDHHVQRAVCDTRAKYRE GRRPRAVKV YTINLESQYLLIQGVPAVGVMK ELVERF ALYGAIEQYNALDEYPAE DFTEVYLI KFMNLQ SARTAKR KMDEQSF GG LLHVCYA PEFETVEETRKKLQMRKAYVVKTENKDHY VTKKKLVTEHKDTEDFRQDFHSEMSGFCKA ALNTSAGNSNPYLPYSCELPLCYFSSK

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, △=possible nucleotide deletion, ▲=possible nucleotide insertion)
1225	2575	A	9710	1	163	RSGCVLRLMTEWETGAPAVAETPDIKLFGKWS TDDVHNDISLQDYIAGVRLILL
1226	2576	A	9713	82	492	QGLPSFLPAFGPSGSWLGPAPTLGSSCNTVDT ICHGYSERPLFYLSCFDLLGLCWLTETLLYG ASVANKDIICYCNLQAVGQIFYISSFLYTVDNYI WYLYTELRMKHTQSGQSTSPLVIDYTCRVCQ MAFVFSSLI
1227	2577	A	9720	3	416	GKWKRTQVPLLGEECADMDLARKEFLRGNG LAAGKMNISIDLDTNYAELVLNVGRVTLGEN NRKKMKDKCQLRKQQNEVNSRAVCALLNSGG GVIKAEVENKGYSYKDGIGLDLENSFSNML PFVPNFLDFMQNGNYF
1228	2578	A	9723	278	411	EASSNTVASNVADKTDPHSMNSRVFIGNLN LTVLQKSDVEAVF
1229	2579	A	9725	121	902	LFAMSGFENLNTDFYQTYSISDDQSQQSYDY GGSGGPYSKQYAGYDYSQQGRFPVPPDMMQP QQPYTQGQIYQPTQAYTPASPQPFYGNNEDEEP PLLEELGINFDHIWQKTLTVLHPLKVADGSIM NETDLAGPMVFCLAFGATLLAGKIQFGYVY GISAIGCLGMFCLLNLMSMTGVSGCVASVL GYCLLPAMILSSFAVIFSLQGMVGIIITAGIIW WCSFSASKIFISALAMEGQQLLVAYPCALLYG VFALISVF
1230	2580	A	9739	11	247	TFVLNMNTPKEFQDWPIVRIAAHLPDLIVYG HFSPERPFMDYFDGVLMFVDISGCKRDVCL MWMSNRLAWEFTCRA
1231	2581	A	9744	37	1100	TPLFDFWPGFVLSWLQPLSASLRARRAASGPP ACRIMPPTVDDVLEHGGEFHFFPKQMFFLLA LLSATFAPIYVGIVFLGFTPDHRCRSPGVAEELS LRCGWSPAEEELNYTVPGPGPAGEASPRQCRR YEVDWNQSTFDVCDPLASLDTNRSRLPLGPC RDGWVYETPGSIVTIEFLNVLCANSWMLDFQ SSVNVGFIGSMSIGYIADRFGRKLCLTTVLI NAAAGVLMAISPTYTWMILFRLIQGLVSKAG WLIGYILITEFVGRRYRRTVGIFYQVAYTVGL LVLAGVAYALPHWRWLQFTVALPNFFFLLY YWCIPESPRWLISQNKAEMARIKIHKANG KSLPASL
1232	2582	A	9753	164	517	PGPGMKGQPPPITPTSWLPPWRAYVAAAVLC YINLLNYMNWFIIAGVLLDIQEVFQISDNHAG LLQTVFVSCLLLSAPVFGYLGDRHSRKATMS FGILLWSGAGLSSSFISPRYSWLF
1233	2583	A	9757	25	419	LPAPWTERVRKSEGLVGTCLGDPMASPRTVT IVALSVALGLFFVFMGTIKLTPRLSKDAYSEM KRAYKSYVRALPLKKMGINSILI.RKSIGALE VACGIVMTLVPGRPKDVANFFLLLVLAVLF FHQLV
1234	2584	A	9765	71	456	RLELDWGFSLHFLPVAYLCPLSSGFEMNVQP CSRCGYGVYPAEKISCIDQIWHKACFHCEVC KMMLS VNNFVSHQKPYCHAHPNKNNTFTS VYHTPLNLNVRTFPEAISGIHDQEDGEQCKSV FHWD
1235	2585	A	9767	52	559	IRSGAMSVDKAELCGSLLTWLQTFHVPSPCA SPQDLSSGLAVAYVLNQIDPSWFNEAWLQGI SEDPGPNWKLKVTSGLLIRGQTGEEMTRDGP ARHMSWVMGRKRDRCLVINHLFIHSSMEYSP CARPGHSARNNTDKNLPHTAJILVTSNTYTTI KINFQAGRSGSCL
1236	2586	A	9770	352	608	FRGEALTIVRFLT KRFIGEYASNFESIYKKHLC

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						LERKQLNLEIYDPCSQTKAKFSLTSELHWA DGFVIVYDISDRSSFAFAKALI
1237	2587	A	9793	266	515	NILAIYYFPFPRLFLRDSQSNPKAFALTLC HQIKNFQILPVSI DALTPPPLVVCFLVSLTHFS RYKPTRPVCI TQFGC
1238	2588	A	9802	537	967	ELGAGRSRDREAMEAAVKEEISVEDEAVDKNI FRDCNKIAFYRRQKQWL SKKSTYRALLD TDEDSTRFQIINEASKVPLLAEIYIGIEGNIFRLK INEETPLKPRFEVPDVLTSKPSTVRLISCGDT GSLIADGKGDLKC
1239	2589	A	9805	105	540	VPGDPAMVRAGAVGAHL PASGLDIFGDLKK MNKRQLYYQVLNFAMIVSSALMIWKG LIVLT GS SESPIVVVLGSMEPAFHRGDLLFTNFRED PIRA GEIVVVFKEGRDIPIVHRVIKVHEKDNG DIKFLTKGDNNEGDDRGSYK
1240	2590	A	9819	3	305	TDGRDPLPCAARRGGGGEC CAGWVAEWS PQPLDPAMLLWMQGFVLEAVACQDNDDYLR Y GILFEDLDCNGDG VVDIELQEGLRNWSSAF DPNSEEHG
1241	2591	A	9834	841	1209	SPARGKSNSRTDV MITAPKNKKM TENLA APEA LDSSTHSSTATQSRA KMNT PAPT STVPA IPR GGSGGPP PCAP HDRV SSVL QC DTQAM DHKTE SSH SV VE FL FK RT K TP SF HPA VRE NR
1242	2592	A	9843	3	589	TISCGPATEPPAS LSSASS DDFC KEK TED DRYS LGSSL DSGM RTPL C RIC FQG PEQ GELL SPCR C DGS VK C TH Q P CLIK W SER GC W S CE LY KY H VIA IA ST K N PL Q W QA IS LT V IE K V Q V A A I I L G S L F I A S I S W L F R D P A R E V M I S R T L G P E V G G S I G M F Y L A N C G C A V S L L G L V E S V L D V F G A R F A R E M V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D S K T Y N A S V L P V R V E D M V R M E V F L A Q R L L F G I A Q P Q L P P K C R R E R P A G A D S L S W G A G P R I S Y V Y P E L A H S P R W G G I M V Y N V D

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /ossible nucleotide deletion, \possible nucleotide insertion)
1248	2598	A	9853	58	444	RVDDFVYSGGKDAGGADVSACRRQSIPEE FRGITVVELIKKEGSTLGLTISGGTDKGKPR VSNLRCGGLAARS DLLNIGDYIRSVNGIHLTR LRHDEIJTLKNVGERVVLEVEYELPPPGCPT WT
1249	2599	A	9856	2	1265	LPPPRPSRHRRGRAGTRASAAAAAGPTVSAV RAPVRGQDSDGAGTPQGRLAGRAHLSRVGA SGSGVAAGPAARHAPRRRCADAGEAVGASC GRCAVALLSGVCTLVSTHVCVGSGCPGAAGT PMGAGDGAGASAESA VTTAFOEPPARPLQAGS GAGPAPGRAMRSTLLALLALVLLYLVSGAL VFRALEQPHEQQAQRELGEVREKFRLRAHPCV SDQELGLLIKEVADALGGGADPETNSTSNSSH SAWDLGSAFFSGTIITIGGGGDWHVGGGK ELPHGGRCRETEGSQVAPRLPASPLCPGYGN VALRTDAGRFLCIFYALVGIPLFGILLAGVGD RLGSSLRHGIGHIEAIFLKWHVPPELVRVLSA MLFLLIGCLLFVLTPTFVFCYMEDWSKLEAIY FVIVTLTTVFGDYVA
1250	2600	A	9873	2	652	FVVPSCCGIPGRAPNGASRPTMGNSASRNDF EWVYTDQPHQPTQRRKEILAKYPAIKALMRPDP RLKWAVLVVLVQMLACWLVRGLAWRWLL FWAYAFGGCVNHSLTLAIHDISHNAAGTGR AARNRWLAVFANLPGVYAAASFKKYHVDH HRYLGGDGLDVDPTRLEGWFFCTPARKLL WLVLQPFFYSLRPLCVHPKA VTRMEVNLTV QLA
1251	2601	A	9875	150	1209	PVIMPLHFSPGDIVRPSCCVSSSPKLRRNAHSR LESYRPDTDL SREDTCNLQHISDRENIDDLN MEFNPSDHRPRASTIFLSKSQTDVREKRKSLFIN HHPPGQIARKYSSCSTIFLDDSTVSQPNLKTYI KCVALAIYHIKNRDPDRMLLDIFDENLHPL SKSEVPPDYDKHNPEQKQIYRFVRTLFSAAQL TAECAITLVYLERLLTYAEIDIICPANWKRV LGAILLASKVWDDQAVWNVDYCQILKDTIV DMNELERQFLELLQFNINPVSSVYAKYYFDL RSLAEANNLSFPLEPLSRERAHKLEAISRLCED KYKDLRRSARKRSASADNLTPRWSPAIIIS
1252	2602	A	9879	6	376	KRPDSRPPAQYRAGPTRPRTRGCELLYWKAT KAVGIKMGSLS TANVEFCLDVFKELNSNNIG DNIFPSSSLLYALSMVLLGARGETEEQLEKV WNSSEVCSEPRSLSCSRSGSAKLLSLYQ
1253	2603	A	9880	180	388	KEQAELLYGLYQCQCDLTLSHPSSVPMSSC NFTHATFVLIGIPGLEKAHF FWVGFPILLSMYVA AMFGNC
1254	2604	A	9881	19	494	VISFQIITDTIMDSSTAHS PVFLVFPPEITASEYE STELSATTSTQSPLQKL FARKMKI LGTIQILF GIMTSFGVIFLFTLLKPYPRPFIFLSGYPFWG SVLFINSGAFLIAVKRKTTETLILSRIMNFLSA LGAIAGI LLT FEFHPRSKLHL
1255	2605	A	9896	72	386	RPGREQRDCFQAPPGLGGRQTDMMHHPLT GATCVGLPNVGMCPQLSGALT FMYLQQGNQ EATVAPDTMAQPYASAQFAPPQNGIPGEYTA PHPHPAPEYTGQTT
1256	2606	A	9902	95	399	SGGPAGL LHRPVLPKMG LSGLLPILVPFILLG DIQEPGHAEGILGKPCPKIKVECEVEEIDQCTK PRDCPENMKCCPFSRGKCLDFRKVSLTLYH KEELE
1257	2607	A	9905	374	459	EHLKSTPNRLGVVAHTCNPSTLGGRRGGW

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence.	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence.	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
1258	2608	A	9911	364	1974	AGPGVPAVGGRWASGPGLGGRTLCGPPDH QRRGPSCGASGDPQCVGSPHPQRPLLARP GARLLPGHLPSPRPPRLPTQGPPAAFRGPVR PQGGGHHIPLPTPGGPCFAVSESGSGSALLLS YLGECGSSSYVTGAACISPVLRCREWFEAGLP WPYERGFLLHQKIALSRYATALEDTVDTSR LFRSRSLRREFEALFCHTKSFPISWDAYWDRND PLRDVDEAAVPVLCICSADDPVCGPPDHTLT ELFHSNPYFFLSSRHHGHCFLRQEPLPAWS HEVILESFRALTEFFRTEERIKGLSRHRASFLG GRRRGALQRREVSSSNLEEIFNWKRSYTRL MAAAAGAAAAPGSREPQDRPECGAGHGPGR YYRHPERWLLRPEAFLGPLRTRAPSADSDQR ERPAARSGPEMVRYPVVAVLAPYLALSQD PMVKSSASGQGASGSYNHVREEMLIKAGGA MSRRVVRQSFKRHFVFGQAADQAYEDIRV SKVTWDSSFCAVNPKFLAIIVEAGGGGAFTVL PLAK
1259	2609	A	9919	693	935	GCPKFIGESTCCWIFPSSVITQCVVAKPRAA TLSKAERLRSQPGPEQGGSSYRPRTPTAAAIL PPRPGRSHRKRKLVSTK
1260	2610	A	9921	455	1082	QRSLCSAIEKDGGDVKALYRRSQALEKLGR LDQAVLDLQRCVSLEPKNKVFQEALRNIGGQ IQEKVRYMSSTDAKVEQMFQILLDPEEKGTE KKQKASQNLVVLAREDAGAEKIFRSNGVQLL QRLLDMGETDMLAALRTLVGICSEHQSRTV ATLSILGTRRVVSILGVESQAVSLAACHLQV MFDALKEGVKKGFRGKEGAJIV
1261	2611	A	9928	1	438	GFRGAEAPGAAQAPKKKKPRPTEGGPGAGSG RGKDPYRGPTELLHQPKPPKDEFLSSLESYEIAF PTRVDHNGALLAFSPPPPQRRTGATEAES RLKYKEASPSTHFLLNLTRSSRLLAGHVSVEY WTREGLAWQRADRPHCLYA
1262	2612	A	9931	168	435	AAEMGRAGAAAVIPGLLAWAVGLGGPPPA PPRLPFCLQELQGRHALHTFSLERTCSYQDFL WADEGRLLHVGAQDLATWHTLSPGLW
1263	2613	A	9938	247	488	RMSATSVDQRPKGQQGNKVSQVNQNSIHQKDG CNDDDFEPYLRSPDNQSNSYPPMSDPYMPGY YAPSIGFPYSLGEAAWSQL
1264	2614	A	9941	61	277	ESIGLTALGPRRRPWEHRWSDPTILKMKGWG WLALLGALLGTAWARRSQDLHCGACKAVR RRRVRQFNHYD
1265	2615	A	9956	2	522	FVASEVSKMPVPASWPHPGPFLLTLLLGLT EVAGEEEELQMIQPEKLLLVTVGKTATLHCTV TSLLPVGPVLWFRGVGPGRELIYNQKEGHFP RVITVSDLTKRNNMDFSIRISSITPADVGTYY CVKFRKGSPDHVEFKSGAGTELTSVRGEYSVG FLSQVWWLSSHDFMN
1266	2616	A	10002	243	387	PKNNACHLLFTAVCQPRCKHGECLGPNKCKC HPGYAGKTCNQGRKTV
1267	2617	A	10004	36	707	LPAPASTWSVARETMASSSVPPATVSAATAG PGPGFGFAASKTKKHHFVQQKVKFVRAADPLV GVFLWGVVAHSINELSQVPPPVMILLPDDFKAS SKIKVNNHFLHRENLPSPHKFKKEYCPQVFRNL RDRFGIDDDQDYLVSLTRNPPSESEGSDGRFLIS YDRTLVIKEVSSEDIAADMHSNLSNYHQVRPLS SPILSLSLLTYSSAIVSNRCQLGRKLIGRENP
1268	2618	A	10005	2	209	GEGYELFVPSNGVPAVCHMVGRPHRAVLSP SQDELEHSLGESAAQGAAGVVLWWSWENTR

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						TKVSLGLA
1269	2619	A	10010	245	688	FGMLKNKGHSKKDNLAVNAVALQDHILHD LQLRNLSVADHSKTQVQKKENKSLKRDTKAI IDTGLKTTTQCPKLEDSEKEYVLDPKPPPLTL AQKLGLIGPPPPPSSDEWEVKVKQRSLLQGDS VQPCPICKEEFLRPQVFSIRG
1270	2620	A	10011	2	588	RVDDFVRPLPPGLMSRSRASIHRGSIPAMSYA PFRDVRGPSTHRTQYVHSPYDRPGWNPRFCII SGNQLLMLDEDEIHPLLIRDRSESSRNKLLR RTVSVPVEGRPHGEHEYHLGRSRRKSVPGGK QYSMEGAAPAFRPSQGFLSRRLKSSIKRTKS QPKLDRTSSFRQILPRFRSADHDRYRGWSMW DEIDV
1271	2621	A	10013	209	363	LPAPPNLSPRLSFQFPGGNDNYLTITGPSHP FLSGAEVSQSCRGGRA
1272	2622	A	10014	7	388	SAVTISWKRSVVMGIQTSPALLASLGAGLVT LLGLAVGGSYLVRRSRPQVTLLDPNEKDLLR LIDKTLARSPCCKHIYLSTRDGSLSIKYTPVTS SDEDQGYVDIDKVLYLKGVHPTFPEGGKMSH
1273	2623	A	10016	1	1339	MAARTLGRGVGRLLGSLRGLSGQPARPPCGV SAPRRAASGPSGSAPA VAAAAAQPGSYPALS AQAAAREPAAFWGPLARDTLVWDTPYHTVVW DCDFSTGKIGWFLGGQLNVSVNCLDQHVVRKS PESVALIWERDEPGTEVRITYRELLETTCRLA NTLKRHGVRGDRVAIYMPVSPLAVAAMLA CARIGAVHTVIFAGFSAESLAGINDAKCKVV ITFNQGLRRGRRVELKKIVDEAVKHCPVQH VLVAHRTDNKVHMGDLDVPLEQEMAKEDP VCAPESMGSEDMLFMLYTSGSTGMPKGIVHT QAGYLLYAAALTHKLVDHFHQPGDIFGCVADIG WITGHSYVVGPLCNATSVLFESTPVYPNA GRYWETVERLKIINQFYGAPTAVRLLLKYGD AWVKKYDRSSLRTLGSVGEPINCEAWEWLH RVVGDSRCTLVDTWWQT
1274	2624	A	10017	1	3750	FRPGQTPRSPASHVLTMSAPDEGRDPPKPKG KTLGSFFGSLPGFSSARNLVANAHSARARPA ADPTGAPAAEAAQPQAQVAAHPEQTAPWTE KELQPSEKMVSGAKDVLCSKMSRAKDAVSS GVASVVDVAKGVVQGGLDTTRSLATGTKEV VSSGVTGAMDMAKGAVQGGLDTSKAVLTG TKDTVSTGLTGAVNVAKGTVQAGVDTIKTV LTGKDTVTGVMGAVNLAKGTVQTGVETS KAVLTGTDKDAVSTGLTGAVNVARGSIQTGV DTSKTVLTGTDKDTVCSGVTGAMNVAKGT GVDTSKTVLTGTDKDTVCSGVTGAMNVAKGT IQTGVDTSKTVLTGTDKDTVCSGVTGAMNV KGTIQTGVDTTKTVLTGKNTVCSGVTGAVN LAKEAIQGGLDTIKSMVMGKTDIMSTGLTG AANVAKGAMQTGLNTTQNIAITGKDTVCSG VTGAMNLARGTIQTGVDTIKJVLTGKDTV SGVTGAANVAKGAQVGGLDTIKSVLGTKD AVSTGLTGAVNVAKGTVQTGVDTIKTVLTG TKDTVCSGVTSAVNVAKGAVQGGLDTKSV VIGTKDTMSTGLTGAAANVAKGAQVGTGDTA KTVLTGTDKDTVTTGVLGVAVNVAKGTVQTGM DTIKTVLTGTDKDTIYSGVTSAVNVAKGAVQT GLKTTQNIAITGKNTGSGVTSAVNVAKGAA QTGVDTAKTVLTGTDKDTVTTGKDTVCSGVTGAAN GTVQTSVDTTCKTVLTGTDKDTVCSGVTGAAN

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, !=possible nucleotide insertion)
						YGYVTADFSIQSSSASPGGVDYILHGSTVTFQ HGQNLISFINISIIDDNESEFEEPIEILLTGATGG AVLGRHLVSRIIAKSDSPFGVIRFLNQSISKIA NPNTMILSLVLERGGLLGEIQVNWETVGPNSQEALLPQNDRDIADPVSGLFYFGEEGGVRTII LTIYPHEEIEVEETFIJKLHLVKGEAKLDSRAK DVTLTIQEFGDPPNGVVQFAPETLSKKTYSEPL ALEGPLLITFVRRVKGTFGEIM
1283	2633	A	10088	316	516	MGSKTLPAFPVPIHPSLQLTNYSFLQAVNGLPT VPSDHLPNLYGFSALHAVHLHQWTLCGPAM HLXRS
1284	2634	A	10091	2	569	FVSPSRAMASALIYVSKFKSFVILVVTPLLLLP LVLMPAKFVRCAVVIILMAIYWCTEVIPAV TSLMPVLLPFLQIQLDSRQVCVQYMKDTNML FLGGGLIVAVAVERWNLHKRIALRTLLWVGA KPARLMLGFMGVTAALLSMWISNTATTAMMV PIVEAILQQMEATSAAATEAGLELVDKGKAKE LP
1285	2635	A	10092	290	728	KQSTRPDVMTLYPLHWQEEMSGESVVSSAVP AAATRTTSFKGTSPSSKYVKLNVGGALYYTT MQTLTQKQDTMLKAMFSGRMVEVTDSEGWL IDRCGKHFTGTLNYLRDGAVPLPESRREIEELL AEAKYYLVQGLVEECQAALQV
1286	2636	A	10100	1	574	RPRGRGAWAGPGGDDYSGVRRQQRRTRISGS QRGSDAAAGTMGCCGRCSLJCLCALQLVSAL ERQIFDFLGFWAPIGNFLHIIIVILGLFGTIQ YRPRYIMVYTWTALWVTWNVFIICFYLEVGL SKDTDLMTNFISVHRSWWREHGPVCVRRLVLPSSAHGMMDDYTYVSVTGCIVDFQYLEVI HSA
1287	2637	A	10103	252	376	RSRPMGDPKIWEQIGSSFIQHYYQIFDNDRTQL GAIYVFSQL
1288	2638	A	10107	1	478	MEEEEDERSRKTEESGEDRGDGPPDRDPTLSPS AFILRAIJQQAVGSSLQGDPNDKDGSRCHGL RWRRCRSPRSEPRSQESGGTDTATVLDMATD SFLAGLVSDLPPDTWVPSRLDLRPGESEDM LELVAEVIRIGDRDPIPLPVPSLLPRLRAWRTG KT
1289	2639	A	10113	237	438	LLSRMPSTNRAGSLKDPEIAELFFKEDPEKLFT DLREIGHGSGFAAYFARDVRTNEVVAIKKMS YSG
1290	2640	A	10114	367	856	RGAKAKSAVLPPGPPCCSILILSPPAPLTPRSPG TEATRPTAMSKSLKKKSHWTSKVHESVIGRN PEGQLGFELKGGAENGQFPYLGEVKPGKVAY ESGSKLVSEELLLEVNETPVAGLTIRDVLAVI KHCKDPLRLKCVKQGESSGLLSVLPGGGTARGAQ
1291	2641	A	10116	128	591	RTIRETERRSALSCSVLKSEPLGLQPQASQQR RRRRLPGRQRQVQVEGGGSQLRAWVLAMASV LGSGRGSGLLSSQLCKSKRRRRRRSKRDKV VSILSTFLAPFKHLSPGITNTEDDDTLSTSSAE VKENRNVGNLAARPPSGDRARCGATR
1292	2642	A	10121	1	749	QRRRFRAGLWGGHGLTDGLRRNGCGCSAR VPRVGERLRGHRCPDPLCLLDMLFLSFHAG SWESWCCCCLIPADRPWDRGQOHWQLEADTRSVHETRFEAAVKVIQSLPKNGSFQPTNEMM LKFYSFYKQATEGPCKLSRPGFWDPIGRYKW DAWSSLGDMTKEEAMIAYVEEMKKIETMP MTEKVEELLRVIGPFYEIVEDKKSGRSSDITSD

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \possible nucleotide insertion)
						LGNVLTSTPNAKTVNGKAESSDSGAESEEEEAC
1293	2643	A	10124	2	989	PLMSLVRVVEFVAASSAQKTPSRLENYYMVC KADEKFNLQVLHFLRNHKQEKLHVFFRYSSGL CGRGIRDLSARMCSTCACVEYYGKALEVLVK GVKIMCIHGKMKYKRKNKIFMEFRKLQSGILV CTDVMARGIDIPENVNWVLQYDPPSNASAFVH RCGRTARIGHGGSALVFLLPMEESYINFLAIN QKCPLQEMKPQRNTADLLPKLKSMAADRA VFEKGKMAFVSYVQAYAKHECNLFRLKDL DFASLARGFALLRMPKMPPELRGKQFPDFVPV DVNTDTIPFKDKIREKQROKLLEQQREKTN EGRRKFIKNAWSKQAKKK
1294	2644	A	10129	91	1042	VTMYKDCIESTGDYFLLCDAEGPWGHILESLA JLGIVTILLLLAFLFLMRKIQDCSQWNVLPQT LLFLLSVLLGLFLGLAFAFIAELNQQTAPVRYFLF GVLFALCFSCLLAHASNLVKLVRGCVFSWT TILCIAIGCSLLQIIIATEYVTLMTRGMMFVN MTPCQLNVDFVLLVVYVFLMALITFFVSKAT FCGPCENWQKHGRLLIFITVLFSSIWWVVWISML LRGNPQFQRQPQWDDPVVCIALVTNAWVFL LLYIVPELCILYRSCRCQECPLQGNACPVTAYQ HSFQVENQELSRSRKWKVLLNSDFLSHSGA
1295	2645	A	10133	376	518	RPRVVTHNSQWCFLPDHPGWLPQSGAPG GRGAPRQEFGPGSSWRQV
1296	2646	A	10135	3	551	EWSDLDPFMGIMSGQVGDLSPSQEKS LAQFRE NIQDVL SALPNPDDYFLRLRWLQARSFDLQKS EDMLRKHMEFRKQQDLANILA WQPPEVVRL YNANGICGHGEGSPVWYHIVGSDQPKGLLL SASKQELLRDSFRSCELLRECELQSQKLGKR VEKIIAIFGLEGLGLRDLWKPGIELLQE
1297	2647	A	10138	48	407	MVSSCCGGSVCSDDQGCCGQDLQCETCCRPSCEE TTCCRRTTCCRPSCCVSSCCRPQCCQSVCCQPT CSRPSCCQTTCCRRTCYRPSCCVSSCCRPQCC QPVCCQPTCCRPSCCEITCCCHPXCC
1298	2648	A	10156	94	453	GGNRKSAEMFSQVPRTPASGCYLYNSMTPEG QEMYLRFQITRRSPYRMSRILARHQLVTKI QQEIEAKEACDWLRAAGFPQYAQLYEDSQFP INIVAVKNDHDFLEKDLGEPLCRRLLNT
1299	2649	A	10161	1	393	PRFSELVDGRGRVSARFGGSPSKAATVRSQPT ASAQLENMEEAPKRVSLALQLPEHGSKDIGN VPGNCSENPCQNGGTCVPGADAHSDCGPGF KGRRCELACIKVSRPCTRLFSETKAFPVWEGG VCHHV
1300	2650	A	10162	98	391	AKIASLERIMPANYCTRDPGDNTDFRYIFI VTYTGILGPGLIGNILALWVFYGYMKETKRA VIFMINLAIADLLQVLSLPLRIFYYLKHDWPF VPV
1301	2651	A	10165	1	7545	PGIRVGITSQTGLSSNLQENCSKLAFASSHGTE KQLQCMPMEGRGRASSISLDLQKGKGFEGKTG EKHVGVGSGARHSPQASAGGSPWQRGKAQT RWLGKPDGPKRRRGSPQEEGGLRVSAAAR LLCGSANRCKVLVRQNSTPNTQQPAVHPSTP PSRPLPQAGRCLVAPLRLPHPDWVAAKTLAKA LRAPGKPVRLAAPSPLGDLGAPGLPGPSTAP RTLSVEEPGVENCQLCLYADVTDPVLCLGQK DPGVEGKHCEKEKISSKELKHVKHAKSEPSKP ARRLSESLHVVDENKNEISKIEREHKRRSTPV IMEGVQEETDTRDVKRQVERSEICTEEPQKQ

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *==Stop codon, /=-possible nucleotide deletion, \=possible nucleotide insertion)
						KSTLNEKHLKKDDSETPHLKSLKKKEVKSS KEPKEREKTPSEDKLSVKHKYKGDCDMHKTG DETELSSEKGLKVEENIQKQSQQTKLSSDDK TERKSCHKRNERKLSQLGKDGPVSEYIIKKTDE NVRKENNNKKERRLSAEKTKAEHKSRSSDSK IQKDSLGSQKHGITLQRRESESYSEDKCDMDST NMDSNLKPEEVHKEKRTKSLLEEKVLVLS KSQTQGKQVKKVETELQEGATQATTPKPD KEKNTEENDSEKQRKSKVEDKPFETGVPEV LETASSSAHSTQKDSSHRAKLPLAKEKYKSD KDSTSTRLERKLSDGHKSRSLKHSSKDIKKKD ENKSDDKDGKEVDSSHEKARGNSSLMEKKL SRLCENRRGSLSQEMAKGEEKLAANTLSTP SGSSLQRPKKSGDMTLIPEQEPMEIDSEPGVE NVFEVSKTQDNRNNNNSHQDIDSENMKQKTS ATVQKDELRTCTADSKATAPAYKPGRRGTGV NSNSEKHADHRSRTLTKKMHQSAVSKMNPGE KEPIHRGTTVEVNIDSETVHMLLSAPSENDRV QKNLKNTAAEEHVQAQGDATLEHSTNDLSSPS LSSVTVVPLRESYDPDVPLFDKRTVLEGSTA STSPADHSALPNQSLTVRESEVLKTSKEGG EGFTVDTPAKASITSKRHIPEAHQATLLDGKQ GKIVIMPLGSKLTGVIVENENITKEGLVDM KKENDLNAEPNLKQTIKATVENGKKDGIADV HVVGLNTEKYAETVKLKHKRSPGKVKDID VERRNENSEVDTSAGSGSAPSVLHQRNQGTE DVATGPRAEKTSVATSTEGKDKDVTLSPVK AGPATTSSETRQSEVALPCSTSIEADEGLIIGT HSRNNPLHVGAEEASECTVFAAAEEGGAVVTE GFAESETFLSTKEGESGECAVAESEDRAIDL LAVHAVKIEANVNSVVTEEKDADAVTSGSEE KCDGSLSRDSEIVEGTITFISEVESDGAUTSAG TEIJAGSISSEEVDGSQGNMMRMGPKETEG TVTCTGAEGRSNDNFVICSVTGAGPREERMVT GAGVVLDGNDAPPGTSASQEGDGSVNDGTE GESAVTSTGITEDGEGPSCTGSEDSSEGAFAIS SESEENGESAMDSTVAKERGVNPLVAAGPCD DEGIVTSTGAKEEDEEGEDVVTSTGRGNEIGH ASTCTGLGEESEGVLICESAEGDSQIGTVVHE VEAEAGAAIMNANENNVDMSGTEKGSKDT DICSSAKGIVESSVTSAVSGKDEVTPVPGGC GPMTSAAASDQSDSQLEKVEDTTISTGLVGG YDVLVSGEVPECEVAHTSPSEKEDEDIITSVE NEECDGLMATTASGDITQNNSLAGGKNQGK VLIISTSTTNDYTPQVSAITDVEGLSDLARTE ENMEGTRVTEEFEAAPMPSAVSGDDSQLTAS RSEEKDECAMISTSIGEEFELPISSATTIKCAES LQPVAAAVEERATGPVLISTADFEQGPMPSAPP EAESPLASTSKEEKDECALISTSIAEECEASVS GVVSEENERAGTVMEEKDGSGIISTSSVEDC EGPVSSA VPQEEGDPSPVTAPEEMGDTAMISTS TSEGCEAVMIGAVLQDEDRLTITRVEDLSDA AIISTSTAECMPISASIDRHEENQLTADNPEGN GDLSATEVSKHKVPMPSLIAENNCRCPGPV GGKEPGPVAVSTEEGHNGPSVHKPSAGQGH PSAVCAEKEEKGKECPEIGPFAGRGQKESTL HLINAEEKNVLLNSLQKEDKSPETGTAGGSST ASYSAGRLEGNAMEANSPAHILRGPEQTSGQTAK DSSVSSIRYLAAVNTGAIKADDMPPVQGTV EHSFLPAEQQQGSEEDNLKTSTTKCITGQESKIA

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						SHTMIPPATYSVALLAPKCEQDLTIKNDYSGK WTDQASAETGDDNSTRKSPEEGDIMTVS SEENVCIDIGNEESPLNVLGGKLKLKANLKMEA YVPSEEKNGEILAPPESLCGGKGPSGIAELQRE PLLVNESLNVENSGFRTEEEHMPKR KRKQHYLSSEDEPDNPVLDRIETAQRQC PETEPHATKEENSRDLEELPKTSSETNSTTSRV MEEKDEYSSSETTGEKPEQNDDTIKSQE
1302	2652	A	10167	321	842	EPSLFPFLRPSPARPPRPPAPFSPPELAGPEPH FVFYFFLSYVHPPKELAKYEYMEQVILTEKG NSTVAGRGTSVRCLSPRPLPPLPLLADLLE DGFGEHPFYHCLVAEVPKHEWTPEGNPSPPF EARETKCYVRSSVGCVPLTTQAETENLDR KNSQQVFKLLKKK
1303	2653	A	10171	206	429	NMILLKKRRLLINSLGEGTINGLLDELLETNV LSQEDTEIVKCENVTVIDKARDLLDSVIRKG ARACTICITYI
1304	2654	A	10184	970	1524	LCTLSPGSGTAGSCLTTEPGTELGTSAQNGF YHEAVVLFQALKLNQDHLFGNRSCFCHER LGQPAWALADAQVALTLRPGWPRGLFRLGK ALMGLQRFRAAAVFQETLRGGSQPDAAREL RSCLLHLLQGQRGGICAPPLSPGALQPLPHA ELAPSGLPSLRCRSTALRSPGLSPLLH
1305	2655	A	10194	2	394	TDLLGRRFRVDGAAMAACEGRRSGALGSSQ SDFLTPPVGGAPWAATTVVMYPPPPPPhR DFISVTLSGESYDNSKSWRRSCWRKWQL SRLQRNMILFLAFLFCGLLFYINLADHWKG IRNTCT
1306	2656	A	10195	1	410	IPGSTISLEGPLSKWTNVMKWQYRWFVLDY NAGILSYYTSKDKMMRGSRRGCVRLRGAVID GIDDEDDSTFTITVDQKTFHFQARDADEREK WIHALEETILRHTLQLQVRVFTWPDSSLVGA FFFWLVSQFFFK
1307	2657	A	10205	85	308	QGLPSTMVKLGCSFGKPGKDQGDGAAM DSVPLISPLDISQLQPPLPDQVVIKTQTEYQLS SPDQQNYTKSR
1308	2658	A	10214	2	453	ECGGIRQPGPGPPPALARAPAATMNRVGGSPS AAANYLLCTNCRKVLRKDKRIRVSQPLTRGP SAFIPEKEVVQANTVDERTNFLVEEYSTSGRSL DNITQVMSLHTQYLESFLRSQFYMLRMDGPL PLPYRHIAJIMAARHQCSYLNM
1309	2659	A	10233	45	421	RGWPEQQTGRPRDVAROPRCQKEEGRRRLP RALESRFTQGSERSRWGPLESTKENVQCGH RPAFPNSSWLPFHERLQVQNGECPWQVSIQM SRKHLCGGSLIHWWVVLTAAHCRRRTLLDM AV
1310	2660	A	10241	243	442	AFQLFNAKCESAFLSKRNPLQRNWTVLYRRK HKKGQSAEIQKKRTRRAFKFQRAITGASLADI MAK
1311	2661	A	10261	751	176	LPGADYGGGHLSIRI.FHI.I.LTSAAWVPDESQ VTLNSAICVLSTVLIMEFPDLGKHCSEKTCQ LDFLPVKCDACKQDFCKDHFPYAAHKCPFAF QKDVHVPVCPLCNTPIPVKKGQIPDVVVGDHI DRDCDSHPGKKKEIFTYRCSKEGCKKKEML QMVCAQCHGNFCIQHRPLDHSCRHGSRPTI KAG
1312	2662	A	10270	3	669	STSSDEGPSASTPMINKTGKFSAEKPVIEVP SMTILDKKDGEQAKALFEKVRKFRAHVVEDSD

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, \=possible nucleotide insertion)
						LIYKLYVVQVTVIKTAKFIFILCYTANFVNAISFEHVCKPKVEHLIGYEVFECTHNMAYMLKKLLISYISHCIVYGFICLYTLFWLFRIPLKEYSFEKVREESSFSIDPVKNDFAFLLHMDVQYDQLYSKRFGVFLSEVSENKLREISLNHEWTFEKL
1313	2663	A	10287	1221	266	GAHRVLSPAQGAQPRLRSAASVEVSMVGQRVLLVAFLLSGVLLSEAAKILTISTLGGSHYLLLDRVSQILQEHHGNVTMLHQSGKFLIPDIKEEKSYQVIRWFSPEDHQKRIKKHFDSYIETALDGRKESEALVKLMEIFGTCQSILLSRKDMDSLKNEYDLVFEAEFDPCSFLIAEKLVKPFVAILPTTGFGLDFGLPSPLSYVPVFPSSLTDHMDFWGRVKNFLMFFSFRSRQWDMQSTFDNTIKEHPEGSRPVLSHLLKAELWFVNSDCAFDFARPLLPNTVYIGGLMEKPIKPVQVSEPSAFSLGFT
1314	2664	A	10288	536	1890	NVQLAKFSSTLVFFFSCDADPSALAKYVLAALKDKSEKELKALCIDQLDVFLQKETQIFVEKLFDAVNTKSYPPEQPSGSILKVEFFPPQEKDIKKEEITKEEEREKKFSRRLNHSSPOSSSRYERENRSRDERKKDDRSRKRDYDRNPPRRDSYRDYNRNRGRSRSYRSRSRSWSKERLRERDRDRSRTRSRTRSRERDLVKPKYDLDRTDPLENNTPVSSVPSISSGGHYPVPTLSSITIVIAPTHHGNNTESWEFHEDQVDHNSYVRPPMPKKRCRDYDEKGFCMRGDMCPFDHGSDPVVEDVNLPGMQPPPAQPPVVEGPPPPGLPPPPILTPPPVNLRPPVPPPGLPPSLPPVTGPPPLPLQPSGMDAPPNSATSSVPTVTTGIHHQPPPAPPSSLFTADTYDTDGYNPNEAPSITNTSRPMYRHVRVHPRAKLG
1315	2665	A	10293	447	1331	SHPLLSCPEKVSALKAAAEEAAEERRTRGAGSRGICAGLRSVAPGPEPLKQEEGRREWGSIGTPSPCGSAQAAAAAAEATEKIPALRPALLWALLAWLCCATPAHALQCRDGYEPVCVNEGMCVTYHNGTGYCKCPEGFLGEYCQHRDPCEKNRCQNGGTCAVAQAMLGKATCRCASGFTGEDCQYSTSHPCFVSRPCLNGGTCHMLSRTDYECTCQVGFTRGRNPCKPGGNLNYQFNGIIVVYSGGSVPPSGTKTSKPAEHNAMGTGSKNFASGLLWVMVSGATSTSTSTL
1316	2666	A	10294	118	572	SLSMESNHKSGDGLSGTQKEAALRALVQRTGYSLVQENGQRKYGGPPPGWDAAPPERGCEIFI GKLPRLDFEDELPLCEKIKIYEMRMMMDFNGNNRGYAFVTSNKVEAKNAIKQLNNYEIRNGRLLGVCASVDNCRLFVGGIPKTKK
1317	2667	A	10301	158	1956	LLKSCGVLLSGVCIPCEGKGPTVLVIQTAVPQDRPTKSSMRSAAKPWNPPAIRAGGHGPDRVRPLPAASSGMKSSSTS LAFESRSLRKASSEDTLNKGSTAASGVVRLKKTATAGAISELTESRLRSGTGAFTTTKRTGIPAPREFSVRERSVPRGPSNPKRSVSSPTSSNTPTKHLRTPSTKPQKENEGGEKALESQVRELLAEAKAKDSEINRLRSELKYKEKRTLNAEGTDAALGPNVDGTSVSPGDTEPMIRALEEKKNKNFQKELSDLEEENRVLKEKLIYLEHSPNSEGAASHIGDSSCPTSITQESSFGSPTGNQLSSDIDEYKKNIHGNALRTSGSSSDVTKAISLPDASDFEHTITAETPSRPLSSTSNPFKSSKCSTAGSSPNVSSELSLASLTEKIQKMENHHSTAEELQATLQELSDQQQMVQELTAE

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, / =possible nucleotide deletion, \=possible nucleotide insertion)
						NEKLVDEKTILETFSFHQHRERAEEQLSQENEKLMNLLQERVKNEEPTTQEGKIIIELEQKCTGILEQGRFEREKLLNIQQQLTCSLRKVEENQGALEMIKRLKEENEKLNNEFLELERHNHNNMMAKTL EECRVTLEGLKMENGSLKSHLQG
1318	2668	A	10303	333	879	GECFIMAAVVQQNDLVFEFAASNVMEDEQLGDPAIFFPATIVEHPVGADILNSYAGLACVEEPNDMITESSLDVAEEEEEIDDDDDDTILTVEASCHDGDETETIEAAEALLNMIDSPGPMLEKRNNNIFSSPEDDMVVAPVTHSVSVLDGIPPEVMETQ QVQEKYADSPGASSPEQPKRKKK
1319	2669	A	10322	169	654	MEVRMSGSVAVTRAIAVPGLLLIIATASLLIGAKSLPASVVEAFSGTCQSADCTIVLDARLPRTLAGILAGAGLLAGALMQTLTRNPLADPGLLGVNAGASFAIVLGAALFGYSSAQEQLAMAFAGALVASLIVAFTGSQGGGQLSPVRLTL AGVXL
1320	2670	A	10323	441	2	KMNQVAVVIGGGQTLGAFLCHGLAAEGYRVAVVDIQSDFKAANVAQEINAEGESMAYGFGADATSEQSVLALSRGVDEIFGRV DLLVYSAGIAKAASFISDFQLGDFDRSLQVLNVGYFLCAREFSRMLRDGIQGRJLQNSKSDE
1321	2671	A	10332	1	453	RHRTAGPGSTISSRTDASASAPAARAMPCYEYTAKLTSDCSRPSLQWYTRAQSKMRRPRLLLKDILKCTLVFGVRILYIILKNYTTTECDMKNMHYVDPDHVRAQKYAQQVLUQKESPPKFAKTS MALLFEHRYSVDLLPFVQKAPTDESEA
1322	2672	A	10333	25	423	EPSNGPVVY SALGNEDDEILLLGKDIIGTFAASERKMRAHQVLTFLLFVITSGASENASTSRGC GLDLPQNVYLCDLDAIWGIVVEAVAGAGA LITLLLMLI LLLGRLPFIKEKEKKSPA VLHFLFLGTLG
1323	2673	A	10334	52	426	SSLGNEDDEILS LAKDITGMFVASHRKMRAHQVLTFLLFVITSGASENASTSRGC GLDLPQNVYLCDLDAIWGIVVEAVAGAGA LITLLLMLI LLLGRLPFIKEKEKKSPA VLHFLFLGTLG
1324	2674	A	10336	1	932	ERLCFPCMQS KIYSYMSPNKCSGMRFPLQEE NSVTNH EVKCQGKPLAGIYRKREEKR NAGNAVR SAMKSEEQKIKDARKGPLVPFPNQKSEA AEPKTPPSSCDSTNAIAKQALKKPKIGKQAA PRKKAQGKTQQRKLTDFYPVRRSSRKSKAE LQSEERKRIDEJESGKEEGMKIDLJDGKG RGVIATKQFSRGDFVVEYHGDIEITAKKREAL YAQDPSTGCYMYYFQYLSKTYCVDATRETN RLGR LINHSKCGNCQT KLHDIDGVPHL LIAS RDIAAGEELL YDYGDRSKASIEAH PWLKH
1325	2675	A	10338	3	870	PGSTISCSELKGTQC RATA GSRGRPPMTCWL RGVTATFG RPAEWPGYLSHL CGRS AAMD LGPMRKS YRGD REA FEETHL TS LDPV KQFA AWFEEAVQCPD IGEANAM CLAT CTRDGKPSARML LLKGFGKDGFR FFTNF ESRKG KELD SNP FASL VFYWEPLNRQ VR VEGPV KKLPEEEAECYFHS RPKSSQIGAVVSHQSSVIPDREYLRKKNEELE QLYQDQE VP KPK SWGGYVLY PQVME FWQG QTNR LH DRIVFRRGLPTGDSPLGPMTHRGEE DWLYER LAP
1326	2676	A	10344	2	984	ARAAAHC GICRLV RWWRK RRSV MGI QTSPVLLASLGVLV TLLGLA VGSY LVRS RRPQ VTLLDPNE KYLLRLLD KTTV SHNTKRFRF ALPTA

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						HHTLGLPVGKHIYLSTRIDGSLVIRPYTPVTSD EDQGYVDLVIKVYLGKGVHPKFPEGGKMSQY LDSLKVGDVVEFRGPSGLLTYTGKGHFNQPNKKSPPEPRVAKKLGMIAGGTGITPMLQLIRA ILKVPEDPTQCFLFANQTEKDILREDLEELQ ARYPNRFKLWFTLDHPPKDWAYSKGFVTADMIREHLPAAPGDDVLVLLCGPPPMVQLACHPN LDKLGYSQKMRFTY
1327	2677	A	10345	1	968	LQSAGEGVTHVLLILESPARPVAAVTQVQRR RYHRLSDMSMLAERRRKQKWA VDPQNTAW SNDDSKFGQRMLEKMGWSKGKGLGAQEQQ ATDHIKVQVKNNHLLGLGATINNEDNWIAHQ DDFNQLLAELNTCHGQETTDSSDKKEKKSF SLEEKSKISKNRVHYMKFTKGKDLSRSKTDL DCIFGKRQSKKTPEGDASPTEENETTTSAF TIQEYFAKRMALANKPKQVPGSDISETQVE RKRGKRNKRKEATGKDVESYLQPKAKRHTEG KPERAEAQERVAKKKSAPEEQLRGPCWDQ SSKASAQDAGDHVQPA
1328	2678	A	10346	173	439	GSAAMVKIKCWNGVATWLWVANDENCGI CRMAFNCGCPDCVKPGDDCPLVWGQCSHCF HMHCILKWLAQQVQQHCPMCRQEWFKE
1329	2679	A	10351	3	964	QMEPGNDTQISEFLLLGSQEPGLQPFLFGLFL SMYLTVLGNLILIALTISDSHLHTPMYFFLSN LSPADICVSTTIPKMLMNIQTQNKVITYIACL MQMYFFILFAGFENFLLSVMAYDRFVAICHPLHYMVIMNPHELCGLLVLASWTMSALYSLLQI LMVVRLSFCTALEIPHFFCELNQVQI.ACSDSF LNHMVITYPTVALLGGGPLTGILYSYSKISSIONAISSAQGKYKAFSTCASHLSVSLFYGAJLGV YLSSAATRNSHSSATASVMYTVVTPMLNPFI YSLRNKDIKRALGHLLWGTMKGQFFKKCP
1330	2680	A	10352	34	2573	IPFLKSCCCCCLFDPPPLDQVQECEVERV TEHGTPKPFRKFDSVAFGESQSEDEQFENDLE TDPPNWQQQLVSREVLLGLKPCEIKRQEVINEL FYTERAHVRTLKVLVDQVFYQRVSREGILSPSE LRKIFSNLEDILQLHIGLNEQMKAVRKRNETS VIDQIGEDLLTWFGPGEELKLKHAATFCSNQ PFALEMKSRSQKKDSRFQTFVQDAESNPLCRR LQLKDIPTQMORLTKYPLLDNIATYTEWPT EREKVKAADHCRQILNYVNQAVKEAENKQ RLEDYQRLRTSSLKLSEYPNVEELRNLDLT RKMIIHEGPLVWKVNRDKTIDLTYTLLLEDILV LLQKQDDRLVLRCHSKILASTADSKHTFSPV1 KLSTVLRQVATDNKALFVISMSDNGAQIYE LVAQTVSEKTVWQDLICRMAASVKEQSTKPI PLPQSTPCEGDDNEEDPSKLKEEYHGHSVTGL QSPDRDLGLESTLISSKQSHSLSTSGKSEVRD LFVAERQFAKEQHTDGTLEVGEDYQIAIPDS HLPVSEERWALDALRNLLKQLI.VQQLGLT EKSVQEDWQHFPRYRTASQGPQTDSVIQNSE NIKAYHSGEGHMPFRGTGDIATCYSRSTSE SFAPRDSVGLAPQDSQASNIVMDHMMITPE MPTMEPEGGLDDSGEHFFDAREAHSDENPSE GDGAVNKEEKDVNLRISGNYLILDGYDPVQE SSTDEEVASSLTLQPMTGIPAVESTHQQQHSP QNTHSDGAISPFTEFLVQQRWGAMEYSCFEI QSPSSCADSQSQIMYEYHKIEADLEHLKKVEE SYTILCQLLAGSALTDKHSOKS

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Method	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
1331	2681	A	10353	1	2100	AVEFAEGALTMAPWPPELGDAQPNPDKYLEG AAGQQPTAPDKSKETNKTDNTAEAPVTKIPELLP SYSTATLIDEPTEVDDPNLPLQLDSGIKWSE RTDKGKILCFFQGIGRLLLGFYFFVCSDLIL SSAFQLVGGKMAQGQFSNSSIMSNPLGLVIG VLVTVLVQSSSTSTSIVSMVSSSLTVRAAIP IIMGANIGTSITNTIVALMQVGDRSEFRRRAFA GATVHDFNWLSQLVLLPVEVATHYLEUITQL IVESFHFKNGEDAPDLLKVITKPFTKLIVQLDK KVISQIAMDEKAKNKSLVKIWCKTFTNKTQ INVTPSTANCTSPSLCWTDGIQNWTMKNV YKENIAKCOHQIFVNHFILPDLAVGTILLISLLV LCGCLIMIVKILGSVLKGQVATVIKKTINTDFP PPFAWLTGYLAILVGAGMTIVQSSSVFTSAL TPLIGIGVITIERAYPLTLGSNIGTTTAIALAAL ASPGNALRSSLQIALCHFFFNISGILLWYPIPFT RLPIRMAKGLGNISAKYRWFADVFLIIFFFFLIP LTVFGLSLAGWRVLVGVGVPVVFIILVCLR LLQSRCPRVLPKKLQNWNFLPLWMRSLKWP DAVVSKFTGCFQMRCCCCCRVCCRACCLLC GCPKCCRCRSKCCEDLEAQEGQDVPKAPET FDNITISREAQGEVPASDSKTECTAL
1332	2682	A	10354	30	1377	SQOGSQPHRGQPPSLLTAPHSDLPLALPPGPR GSQGKLRRLVLPMSVKPSWGPSEGVTAVP TSDLGEIHNWTELLDLFNHTLSECHVELSQST KRVVFALYLMAMFVVGLENLLVICVNWRG SGRALGMNLYYILNMAIADLGIVLSPVWMLE VTLDYTWLWGSFSCRFTHYFYFVNMYSSIFF LVCLSVDRYVTLTSASPWSQRYQHRVRAM CAGIWVLSAIPLPEVVHIQLVEGPEPMCLFM APPETYSTWALAVALSTTILGFLLPFPLITVFN VLTACRLRQPQPKSRRHCLLCAYVAVFV MCWLPYHVTLLLTLHGTHISLHCHLVHLLY FFYDVIDCFSMLHCVINPILYNFLSPHFRGRLL NAVHVYLPKDQTAKAGTCASSSCSTQHSIIT KGDSQAAAAPHPEPSSLFQAHLLPNTSPISP TQPLTPS
1333	2683	A	10358	2	884	AAGAGADGREPASERASRAEPPAVAMGQND LMGTAEDFADQFLRVTQYLPHVARLCLIST FLEDGIRMWFQWSEQRDYIDTTWNCGYLLA SSFVFLNLLGQLTGCVLVLSRNFVQYACFGLF GHALQTIAYSLWDLKFLMRNLALGGGLLL LAESRSEGKSMFAGVPTMRESSPKQYMQLGG RVLLVLMFMTLLHFDSAFFSIVQNVGTALMI LVAIGFKTKLAALTLVWLFAINVYFNAFWT IPVYKPMHDFLKYDFFQTMSVIGGLLVVAL GPGGVSMDEKKKEW
1334	2684	A	10367	59	1562	QAWSLQVALSPFPFAPSNSFAAVPQLLFP ELPLPHVPGQESAKRRSARRFLIMSELTKELM EL.VWGTKSSPGLSDTJFCRWTQGFVFSESEGS ALEQFEGGPCAVIAPVQAFLLKKLLFSSEKSS WRDCSQEEQKELLCHTLCDILESACCDHSGS YCLVSWLRGKTTETASISGSPAESSCQVEHS SALAEEVLGFERFHAIQKRSFRSLPELKDAV LDQYSMWGNKFGVLLFLYSVLLTKGNIENIKN EIEDASEPLIDPVYGHGSQSLINLLTGHAWSN VWDGDRECSGMKLLGIHEQAAVGFLTLMEA LRYCKVGSYLKISKIPYLDCLASETHLTVFFA KDMALVAPEAPSEQARRVFQTYDPEDNGFIP DSLLEDVMKALDLVSDPEYINLMKNKLDPEG

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met/hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /possible nucleotide deletion, \=possible nucleotide insertion)
						LGILLCPFLQEFPFDQGSSGPESFTVHYNGL KQSNYNEKVMVYVEGTAVVMGFEDPMLQTD DTPIKRCQLTKWPYIELL WTTDRSPSLN
1335	2685	A	10375	82	2929	TRTKRRLGREKAMASPPRGWGCGELLPFML LGTLCEPGSGQIRYSMPEELDKGSFVGNIAKD LGLEPQELAERGVRIVSRRQLFALNPRSGS LVTAGRIDREELCAQSPLCVVNFMILVENKM KIYGVEEIIDINDNPFPRRDEELKVKVNENA AAGTRLVLPFARDADVGVNLSRSYQLSSNLH FSLDVVSGTDGQKYPELVLEQPLDREKETVH DLLLTALDGDPVLSGTTHIRTVLVDANDNA PLFTPSEYSVVPENIPVGTRLLMLATADPDE GINGKLTYFSRNEEEKISETFQLDSNLGEISTL QSLDYEEESRFYLMEVVAQDGGALVASAKVV VTVQDVNDNAPEVILTSLTSSISEDCPLPGTVIA LFSVHDGDGSGENGEIACSPRNLPKLEKSV NYYHLLTTRDLREETSNDYNITLTVMMDHGTP PLSTESHIPLKVADVNDNPNFPQASYSTS ENNPRGVISFSVTAHDPSGDNARVTVSLAE DTFQGAPLSSYVSINSDTGVLYALRSFDYEQL RDLQLWVTAIDSGNPPLSSNVSLSLFVI.DQN DNTPEILYPALPTDGSTGVELAPRSAEPGYLV TKVVAVDKDSGQNAWLSYRLLKASEPGLFA VGLHTGEVRTARALLDRDAKQSLVVAVED HGQPPLSATFTVTVAVADRIDILADLGSIKTP IDPEDDLITLYLVVAVA AVSCVFLAFVIVLLV LRLRRWHKSRLLQAEGSRLAGVPAHFVGV DGVRAFLQTYSHEVSLTADSRKSHLIFPQPNY ADTLLSESECEKSEPLLMSDKVDANKEERRV QQAPPNTDWRFSQLAQRPGBTSGSQNGDDTGT WPNNQFDTEMLQAMILASASEAADGSSTLGG GACTMGLSARYGPQFTLQHVLOQELGSDYR QNVYIPGSNATLTN\AGKRDGKAPAGGN KKSGKKEKK
1336	2686	A	10379	1	557	RPRRRQPSFSCRVLVEDPPCFRTNSMNQE LAKLQAQVRIGGKGTAARRKKKVVHRTATAD DKKLQSSLKKLAVNNAIGIEEVNMKDDGT HFNNPKVQASLSANTFAITGHAEAKPITEMLP GILSQLGADSLTSRKLAEQFPRQVLDSKAP PEDIDEEDDDVVDLIVENFDEASKNEAN
1337	2687	A	10380	1	1263	IPGSTISWSPA AARGLSVCRCCRI.HPASAMDL FGDLPEPERSPRPAAGKEAQKGPLLFDLPPA SSTDGSGGPLLFDLPPASSGDGCSLATSISQ MVKTGKGAKRKTSEEKNGSEELVEKKVC KASSVIFGLKGYVAERKGEREEMQDAHVILN DITEECRPPSSLITRVSYFAVFDGHGGIRASKF AAQNLHQNLIRKF PKGDVISVEKTVKRCLLD TFKHTDEFLKQASSQKPAWKDGSTATCVLA VDNLYIANLGDSSRAILCRYNEESQKHAALSL SKEHNPTQYEERMRIQKAGGNVRDGRV LGV LEVRSRISGDGQYKRCGVTSPDIRRCQLTPND RFILLACDGLFKVFTPEEA VN FILSCL TREGKSAADARYEAACNR LANKA VQR GSAD NVTVMVRIGH
1338	2688	A	10385	3	589	GPSQSMAGELEGGPLSGLLNALAQDTFH YPGITEELLRSQLYPEVPPPEFRPFLAKMRGIL KSIASADMDFNQLAEFLTAQTKKQGGITSDQ AAVISKFWKSHKTIRESLMNQSRWNSGLRG LSWRVDGKSQSRHSQIHTPV AII ELELGKY QESEFLCLEFDEVKVNQILKTLSEVEESISTLIS

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, \=possible nucleotide deletion, ^=possible nucleotide insertion)
						QPN
1339	2689	A	10386	50	390	LGAMAKHHIPDLIFCRKQAGVAIGRLCEKCDG KCVICDSYVRPCTLVRICDECNYGSYQGRCVI CGGGPGVSDAYYCKECTIQEKDRDGC PKIVNL GSSKTDLFYERKKYGFKRR
1340	2690	A	10388	113	3472	SQLRKGA SATHSSPSRTDCIAQMMDIYVCLK RPSWMVDNKRMRTASNFQWLLSTFILLYLM NQVNSQKGAGPHDLKCVTNNLQVWNCSWK APSGTGRGTDYEVCIENRSRSCYQLEKTSIKIP ALSHGDYEITINSLHDFGSTSFKFTLNEQNVS IPDTPEILNLSADFSTSTLYLKWNDRGSVFPHR SNVIWEIKVLRKESMELVKLVTHNTLNGKD TLHHWSWASDMPLCAIHFVEIRCYIDNLHFS GLEEWSDWSPVKNISWPDSTKVFQPKD KVIL VGSDITFCCVSQE KVLSALIGHTNCPLIHL DGE NVAIKRNISVSASSGTNVVFTTEDNIFGTVIF AGYPPDTPQQLNCETHDLKEIICSWNPGRVTA LVGPRATSYTLVÉFSFGKYVRLKRAEA PTNES YQLLFQMLPNQEYINFTLNAHNPLGRSQSTIL VNITEKVYPHTPTSFVKVDINSTAVKLSWHP GNFAKINFLCEIEIKKSNSVQEQRNVTIKGVE NSSYLVADLKLNPNYTL YTFRJRCSTETFWKW SKWSNKKQHLLTEASPSKGPDFTWREWSSDG KNLIIYWKLPLNNEANGKILSYNVSCSSDEETQ SLSEIPDPQHKAEJRLDKNDYIISVVAKNSVGS SPPSKIASMEIPNDDLKIEQVVGGMKGILLTW HYDPNMTCDYVIKWCNSSRSEPCLMDWRKV PSNSTETVIESDEFRPGIRYNFFLYGCRNQGY QLLRSMIGYIEELAPIVAPNFTVEDTSADSILV KWEDIPVEELRGFLRGYLFYFGKGERDTSKM RVLESGRSDIKVKNITDISQTKTRIADIQGKTS YHLVLRAYTDGGVGPEKSMYVVTKENSGVGL IIAIJLIPVAVA VIVGVVTSILCYRKREWIKETFY PDIPNPENCKALQFQKSVC EGSSALKTLEMNP CTPNNVVELETRSAFPKIEDTEIVSPVAERPEN RSDAKPENHVVESYCPPPIEEEIPNPAADETGG TAQVIYIDVQSMSYQPQAKPEEEQENDPVGGA GYKPQMHLPINSTVEDIAAEEEDLDTAGYRP QANVNTWNLVSPDSPRSIDSNSEIVSFGSPCSI NSRQFLIPPKDEDSPKSNGGGWSFTNFFQNKP ND
1341	2691	A	10392	1	5057	MLPPKHLSATPKKSWAPNLYE LDSDLTKEP DVII GEGPTDSEFFHQFRNLIYVEFVGPRKTL IKLRLNCLDWLQPETRTKEEIELL VLEQYLTI PEKLKPWVRAKKPENCEKLVTLL ENYKEMY QPEGESLHGVLVVSAGLRCPLGLSASTLLTW SGLDNSLSWAAVGMCVLWDIELHHDFLGV ATKSVSTHAQGDAAQGLGGTIVRMWARD SN LATGVLLDDNNSDVTSDDDMTRNRRESSPPH SVHSFSGDRDWDRRGRSRDTEPRDRWHSHTR NPRS RMRP PRDLSLPVVAKTSFEMDREDDRDS RAYESRSQDAESYQNVV DLAEDRKPHNTI QDNMENYRKLLSLGVQLAEDDGHSHMTQGHSS RSKR SAYPSTS RGLKT MPEAKKSTHRRGICED ESSHGVIMEKFIKDVSRSSKSGRAESSDRSQ RFPRMSDDNWKDISLNKRESVIQQRVYEGNA FRGGFRFNSTL VSRKRVLERKRRYHFDTDGK GSIIHDQKGCPRKKP FECGSEM RKA MSVSSL SLSSPSFTE S QPIDFGAMPYVCDECGRSF SVIS EFVEHQIMHTRENLYEYGESFIHSVAVSEVQK

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Mct hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, †=possible nucleotide insertion)
						SQVGGKRFEEKDCGETFNKSAALAEHRKJHA RGYLVECKNQECEEAFFMPSPTFSELQKIJYGK DKFYECRVCKETFLHSSALIEHQKIHFGDDKD NEREHERERERERGETFRPSPALNEFQKMYG KEKMYECKVCGETFLHSSSLKEHQKIHTRGN PFENKGKVCETFPQGSQSLKRRQKTYNKEKLC DFTDGRDAFMQSSELESHQKIHRSRKNLFEGR GYEKSVIHSGPFTESQKSHTITRPLESDEDEKA FTISSNPYENQKJPTKENVYEAKSYSERSVIHSL ASVEAQKSHSVAGPSKPKVMAESTIQSFDAIN HQVRVAGGTSEGREGESRSVHSLVASKPPRS HNGNELVESNEKGESSIYISDLNDKRQKIPAR ENPCEGGSKNRNYEDSVIQSVFRAKPQKSVP GEGSGEFKKDGEFSVPSSNVREYQKARAKKK YIEHRSNETSVIHSPLPGEQTFRPRGMLYECQ ECGECFAHSSDLTEHQKIHDRKPGSRNYYE WSVIRSLAPTDQTSYQAQEYQAKEQARNKCK DFRQFFATSEDLNNTQKIJYDQEKEKSHGEESQGE NTDGEETHSEETHGQETIEDPVIQGSDMEDPQ KDDPDDKIYECECDGGLGFVDLTDLTDHQKVH SRKCLVDSREYTHSVIHTHSISEYQRDYTGEO LYECPKCGESFIHSSFLFEHQRIHEQDQLYSM KGCDDDFIAALLPMKPRRNRAAERNPALAGSA IRLLCQGQFIHSSALNEHMRLHREDDLLEQS QMAEEAIPIGLALTEFQRSQTEERLFECAVCG ESFVNPAELADHVTVKNEPYEYGSSYTHTS FLTEPLKGAIIPFYECKDCGKSFHSTVLTKHKE LHLEEEEDEAAAAAAAQQEVEANVHPQ VVLRIGQLNVEAAEPEVEAAEPEVEAAEPEV EAAEPNGEAEGPDGEAAEPIGEAGQPNGEAE QPNQDADEPDGAGIEDPEERAEEPEGKAEEPE GDADEPDGVIEDPEEGEDQEIQVEEPYYDC HECTETFTSSTAFSEHLKTHASMIIFEPANAFG ECSGYIERASTSTGGANQADEVYFKCDVCGQ LFNDHLSLARHQNTHTG
1342	2692	A	10393	2	1350	GRPRSSSDNRNFLRERAGLSSAAVQTRIGNSA ASRRSPAARPVAPPALPRGRPGTEGSTSLS APAVLVVAVAVVVVVVSAWAMANYIH PPGSPEVPKLNVTVDQDQEERHRCREGALSLLQ HLRPHWDQEVTLQLFTDGTNKLIGCYVGN TMEDVVLVRJYGNKTELLVDRDEEVKSFRVL QAHCAPQLYCTFNNGLCYEFIQGEALDPKH VCNPAlFRIARIQLAKIHAIIAHNGWIPKSNL WLKMGKYFSLIPTGFADEDINKRFLSDIPSSQI LQEEMTWMEKILSNLGSPVVLCNDLLCKNI YNEKQGDVQFIDYEYSGYNYLAYDIGNHFNE FAGVSDVDYSLYPDRELQSQWLRAYLEAYK EFKGFGTEVTEKEVEIIFIQVNQFALASHFW GLWALIQAKYSTIEFDLGYAIIVRFNQYFKM KPEVTALKVPE
1343	2693	A	10394	102	839	PEAQTSVALAREKGHLPTMRHEAPMQMASA QDARYGQKDSSDQNFDYMFKLLIJGNSSVGK TSFLFRYADDTSFTAFTVGDFTVKTVFKN EKRIKLQIWDTAGQERYRTTTAYYRGAMGFI LMYDITNEESFNAVQDWSTQIKTYSWDNAQ VILVGNKCDMEDERVISTERGQHGLEQLGFE FFETSAKDNINVKQTFERLVDIICDKMSESLET DPAITAAKQNTRLKETTPPPQPNCAC
1344	2694	A	10395	2	4136	DRPPWNSRVDDFTNLIHLSKGHISPAKDTs LQQRTPAEMSPVLFYVTPSGHEGAASGHTR

SEQ ID NO: of nucl-eotide sequence	SEQ ID NO: of peptide sequence	Met hod	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=-possible nucleotide deletion, \=possible nucleotide insertion)
						RKLQGKLPQLQGVETELCYNVNWTAEALPSA EETKKLMLWFLGCPPLLDDVARESWLLPGSN DLLELVGPRLNFSTPTSTNIVSVCATGLGPV DRVETTRYRLSFAHPPSAEVEAIALATLHDR MTEQHFPHPIQSFSPESMPEPLNGPINLGEGR LALEKANQELGLALDSWLDLFYTKRFQELQR NPSTVEAFDLAQSNSEHSRHWFHKQGLHVDG QKLVHSLFESIMSTQESSNPNNVLKFCDNSSA IQGKEVRFLRPEDPTRPSRFQQQQGLRHVVFT AETHNFPTGVCPFSGATTGTGGRIRDVQCTG RGAHVVAGTAGYCFGNLHIPGYNLPWEDLSF QYPGNFARPLEVAIEASNGASDYGKFGEPV LAGFARSLGLQLPDGQRREWIKPIMFSGGIGS MEADHISKEAPEPGMEEVKVGGPVYRGVGG GAASSVQVQGDNTSDLDFGAVQRGDPEMEQ KMNRVIRACVEAPKGNCISLHDQGAGGNG NVLKELSDPAGAIYTSRFQLGDPTLNALIEW GAEYQESNALLRSPNPRDFLTHVSARERCPA CFVGTITGDRRIVLVDRECVPRRNGQGDAP PTPPPPTVDLELEWVLGKMPRKEFFLQRKPP MLQPLALPPGLSVHQALERVLRLPAVASKRY LTNKVDRS VGGLVAQQQCVGPLQTPLADVA VVALSHEELIGAATALGEQPVKSLDPKVAA RLAVAEALTNLVFALVTDLRDVKCSGNWM WAALKPGEAALADACEAMVA VMAALGVA VDGGKDLSMAARVGTETVRAPGSLVISAYA VCPDITATVTPDLKHPEGRGHLYYVALSPGQ HRLGGTALAQCFSQLGEHPPDLDL PENLVRA FSITQGLLKDRLLCSGHDVSDGGLVTCLEM AFAGNCGLQVDVPPRVDPVLSVLF AEEPGLV LEVQE PDLAQV LKRYRDAGLHCLELGHTE AGPHAMVRVSVNGAVVLEEPVGE RLWEE TSFQLDRLQAEPRCVAEEERGLRERMGPSYC LPPTFPKASVPREPGGPSPRVAJLREEGSNGDR EMADAFHLAGFEVWDVTMQDLCGAI GLDT FRGVAFVGGFSYADVLGSAKGWAAAVTFHP RAGAELRRFRKRPD TFSLGVCNGCQLL ALLG WVGGDPNEDAEMGPDSQPARPGLLLHNJ SGRYESRWASVRVGP GPALMLRGMEGA VLP VWSAHGE GYVAFSSPELQAQIEARGLAPLHW ADDDGNPTEQYPLNPNGSPGGVAGICSCDGR HLAVMPH PERA VRPWQWA WRPPPFDTLTT PWLOLFINARNWTLEGSC
1345	2695	A	10396	65	642	GVRGFWAGTMASRAGPRAAGTDGSDFQHRE RVAMHYQMSVTLKYEIKKLYVHLVIWLLL AKMSVGHRLRLSHDQVAMPYQWEYPYLLSI LPSLLGLLSFPRNNISTYLVLSMISMGLFSIAPLI YGSMEMFPAAQQLYRHGKAYRFLFGFSAVSI MYLVLVLA VQVHAWQLYYSKLLDSWFTST QEKKHK
1346	2696	A	10398	1	718	DDFVRCCGPQSAAMGASARLLRAVIMGAPGS GKGTVSSRJTTFH FELKHLSSGDLLRDNMLRGT EIGVLAKAFIDQGKLIPDDVMTRLALHELKNL TQYSWLLDGFPRTLQPAEALDRAYQIDTVINL NVPFEVIKQRLTARWIHPASGRVYNIEFNPPK TVGIDDLTGEPLI QREDDK PETVIKRLKAYED OTKPVLEYYQKKGVLETFSGTETNKIWPYVY AFLQTKV PQR SQK ASVTP
1347	2697	A	10402	153	1969	KHRQENN ALDMAPEIHM TGP MCCLIENTNGEL VANPEALKILSAITQPVVVAIVGLYRTGKS Y

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of peptide sequence	Met codon	SEQ ID NO: in USSN 09/496 914	Predicted beginning nucleotide location corresponding to first amino acid residue of peptide sequence	Predicted end nucleotide location corresponding to last amino acid residue of peptide sequence	Amino acid sequence (A=Alanine C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
						LMNKLAGKNKGFSLGSITVKSHTKGIVWMWCVPHPKKPEHTVLLDTEGLGDVKKGDNQNDSWIFTLA VLLSSTLVYNNSMGTINQQAMDQLYYVTELTHRIRSKSSPDENENEDSADFVSFFPDFVWTLRDFSLDLEADGQPLTPDEYLEYSLKLTO GTSQKDKNFNLPRLCIRKFFPKKCFVFDLPIHRRKLAQEKLQD EELDPEFVQQVADFCSYIFSN SKTKTLSGGIKVN GPRLESVLT YINAISR GDLPCMENAVLALA QIENSAAVQKAIAHYD QQMGGKVQLPAETLQELLDLHRV SEREATEV YMKN SPKDVDHLFQK LAAQLDKKRDDFCK QNQEASSDRCSALLQVIFSPL EEEVKAGIYSK PGGYCLFIQKLQD LEKKYYEPRKG I QAEEL QTYLKSKE SVTDAILQ TDQILTEKEKEIEVEC VKAESAQASAKMV EEMQIKYQQMMEKEKS YQEHVKQLTEKMERERAQLLEE QEKTLTSKL QEQARVLKERCQGESTQLQNEIQKLQKTLKK KTKRYMSHLKI
1348	2698	A	10404	5	892	TQLPAPLSGVLSRLQLGSGAPLLTWVQETAG VAGGA PRRTPTVMTWRLALARASAPLLRVPLSDSW ALLPASAGVKTLLPVPSFEDVS IPEKPKL RFIERAPLVPKVRREPKNLSDIRGPSTEATEFT EGNFAILALGGGYLHWGHFEMMR LTINRSM DPKNMFAIW RVPAFPKPI TRKSVGH RMGGGK GAIDHYVTVPKAGR L VVEMGGRCEFEVQG FLDQVAHKLPFAAKAVSRGTLEKMRKDQEE RERNNQNPWTFERIATANMLGIRKVLSPYDL THKGKYWGKFYMPKRV
1349	2699	A	10409	59	1184	LRRNCSALGGLFQTII SDMKGSYPVWEDFINK AGKLQSQLRTTVVAAAFLDAFQKVADMAT NTRGGTREIGS ALTRMC MRHRSIEAKL RQFSS ALIDCLINPLQE QMEEWKVANQLDKDHAK EYKKARQEIKKKSSDTLK LQKKAKKGRGDIQ PQ L DSALQDVNDK YLLEETEKQAVRKALIE ERGRFCTFISM LRPVIEEEISMLGEITHLQTISE DLKSLTMDPHKLPSSSEQVILDLKGS DYSWS YQT PPSPTTMSRKSSVCSSLNSVNSSDSRSS GSHSHSPSSH YR RSSN LAQQAPVRLSSVSSH DSGFISQDAFQS KSPSPMPEAPNQRKEKRE PDPNGGGT I ASGPPAAE EEAQRP RSM
1350	2700	A	10410	511	958	AGRGGPGKPVSWSSGP GSPGQ TQR RS WVKST RGHSSLLPPS QDFVAGLSVILRGTVDDRLNW AFNLYD LNKDG CICKEEMLDIMKSIYDMMG KYTYPALREEAPREHV E SFFQKMDRN KDG V VTIEEFIESCQKD ENIMRS MQLFDNV I

WHAT IS CLAIMED IS:

1. An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 1-1350, a mature protein coding portion of SEQ ID NO: 1-1350, an active domain of SEQ ID NO: 1-1350, and complementary sequences thereof.
2. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide hybridizes to the polynucleotide of claim 1 under stringent hybridization conditions.
3. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide has greater than about 90% sequence identity with the polynucleotide of claim 1.
4. The polynucleotide of claim 1 wherein said polynucleotide is DNA.
5. An isolated polynucleotide of claim 1 wherein said polynucleotide comprises the complementary sequences.
6. A vector comprising the polynucleotide of claim 1.
7. An expression vector comprising the polynucleotide of claim 1.
8. A host cell genetically engineered to comprise the polynucleotide of claim 1.
9. A host cell genetically engineered to comprise the polynucleotide of claim 1 operatively associated with a regulatory sequence that modulates expression of the polynucleotide in the host cell.
10. An isolated polypeptide, wherein the polypeptide is selected from the group consisting of:
 - (a) a polypeptide encoded by any one of the polynucleotides of claim 1; and
 - (b) a polypeptide encoded by a polynucleotide hybridizing under stringent conditions with any one of SEQ ID NO:1-1350.
11. A composition comprising the polypeptide of claim 10 and a carrier.
12. An antibody directed against the polypeptide of claim 10.

13. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
 - a) contacting the sample with a compound that binds to and forms a complex with the polynucleotide of claim 1 for a period sufficient to form the complex; and
 - b) detecting the complex, so that if a complex is detected, the polynucleotide of claim 1 is detected.
14. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
 - a) contacting the sample under stringent hybridization conditions with nucleic acid primers that anneal to the polynucleotide of claim 1 under such conditions;
 - b) amplifying a product comprising at least a portion of the polynucleotide of claim 1; and
 - c) detecting said product and thereby the polynucleotide of claim 1 in the sample.
15. The method of claim 14, wherein the polynucleotide is an RNA molecule and the method further comprises reverse transcribing an annealed RNA molecule into a cDNA polynucleotide.
16. A method for detecting the polypeptide of claim 10 in a sample, comprising:
 - a) contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex; and
 - b) detecting formation of the complex, so that if a complex formation is detected, the polypeptide of claim 10 is detected.
17. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
 - a) contacting the compound with the polypeptide of claim 10 under conditions sufficient to form a polypeptide/compound complex; and
 - b) detecting the complex, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
18. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:

a) contacting the compound with the polypeptide of claim 10, in a cell, under conditions sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and

b) detecting the complex by detecting reporter gene sequence expression, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.

19. A method of producing the polypeptide of claim 10, comprising,

a) culturing a host cell comprising a polynucleotide sequence selected from the group consisting of a polynucleotide sequence of SEQ ID NO: 1-1350, a mature protein coding portion of SEQ ID NO: 1-1350, an active domain of SEQ ID NO: 1-1350, complementary sequences thereof and a polynucleotide sequence hybridizing under stringent conditions to SEQ ID NO: 1-1350, under conditions sufficient to express the polypeptide in said cell; and

b) isolating the polypeptide from the cell culture or cells of step (a).

20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1351-2700, the mature protein portion thereof, or the active domain thereof.

21. The polypeptide of claim 20 wherein the polypeptide is provided on a polypeptide array.

22. A collection of polynucleotides, wherein the collection comprises the sequence information of at least one of SEQ ID NO: 1-1350.

23. The collection of claim 22, wherein the collection is provided on a nucleic acid array.

24. The collection of claim 23, wherein the array detects full-matches to any one of the polynucleotides in the collection.

25. The collection of claim 23, wherein the array detects mismatches to any one of the polynucleotides in the collection.

26. The collection of claim 22, wherein the collection is provided in a computer-readable format.

27. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.
28. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising an antibody that specifically binds to a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.

Pages 340 to 1963 of this application contain amino acid sequence listings.
They can be obtained at the address given below.

Les pages 340 to 1963 de cette demande contiennent des listages des séquences d'acides aminés. Elles peuvent être obtenues à l'adresse indiquée ci-dessous.

World Intellectual Property Organization
34, chemin des Colombettes
CH-1211 Genève 20