- ES-S1 - - 2020-2021 ·

- Correction - Epreuve 1 -

EXERCICE 1

1. Question préliminaire.

Soient E un \mathbb{R} —espace vectoriel de dimension finie d, f un endomorphisme de E et λ un réel. $\mathrm{Ker}(f)$ désigne le noyau de f, et $\mathrm{Im}(f)$ son image. On note $f^2 = f \circ f$. Enfin, Id_E est l'endomorphisme identité de E.

a. Démontrer que :

$$\operatorname{Ker}(f - \lambda \operatorname{Id}_E) \subset \operatorname{Ker}(f^2 - \lambda^2 \operatorname{Id}_E)$$

Soit $x \in \text{Ker}(f - \lambda \text{Id}_E)$. On a $(f - \lambda \text{Id}_E)(x) = 0$ donc $f(x) = \lambda x$, puis $f^2(x) = \lambda f(x) = \lambda^2 x$; finalement, $(f^2 - \lambda^2 \text{Id}_E)(x) = 0$, c'est à dire $x \in \text{Ker}(f^2 - \lambda^2 \text{Id}_E)$.

Quel lien peut-on en déduire entre les valeurs propres de f et celles de f^2 ? Si λ est une valeur propre de f et x un vecteur propre associé, l'inclusion précédente prouve que x est un vecteur propre de f^2 pour la valeur propre λ^2 . On conclut que $\{\lambda^2, \lambda \in \operatorname{Sp}(f)\} \subset \operatorname{Sp}(f^2)$.

b. Démontrer que si $Ker(f) \cap Im(f) \neq \{0\}$, alors

$$\dim \left(\operatorname{Ker}(f^2) \right) \ge \dim \left(\operatorname{Ker}(f) \right) + 1$$

D'après la question précédente appliquée à $\lambda = 0$, on a $\operatorname{Ker}(f) \subset \operatorname{Ker}(f^2)$, et donc $\dim (\operatorname{Ker}(f)) \leq \dim (\operatorname{Ker}(f^2))$.

D'autre part, soit $x \in \text{Ker}(f) \cap \text{Im}(f)$ tel que $x \neq 0$. Alors il existe $y \in E$ tel que x = f(y) et donc, $0 = f(x) = f^2(y)$, d'où $y \in \text{Ker}(f^2)$. Comme $x = f(y) \neq 0$, $y \notin \text{Ker}(f)$ et donc l'inclusion $\text{Ker}(f) \subset \text{Ker}(f^2)$ est stricte, puis dim $(\text{Ker}(f)) < \text{dim}(\text{Ker}(f^2))$, ce qui implique dim $(\text{Ker}(f)) + 1 \leq \text{dim}(\text{Ker}(f^2))$.

c. On désigne par χ_f et χ_{f^2} les polynômes caractéristiques respectifs de f et f^2 . Démontrer que :

$$\chi_{f^2}(X^2) = (-1)^d \chi_f(X) \chi_f(-X)$$

Par définition, $\chi_{f^2} = \det (X \operatorname{Id}_E - f^2)$ donc par factorisation et propriété du déterminant,

$$\chi_{f^2}(X^2) = \det \left(X^2 \operatorname{Id}_E - f^2 \right)$$

$$= \det \left(X \operatorname{Id}_E - f \right) \circ \left(X \operatorname{Id}_E + f \right)$$

$$= \det \left(X \operatorname{Id}_E - f \right) \det \left(X \operatorname{Id}_E + f \right)$$

$$= \det \left(X \operatorname{Id}_E - f \right) \det \left(- \left(-X \operatorname{Id}_E - f \right) \right)$$

$$= (-1)^d \det \left(X \operatorname{Id}_E - f \right) \det \left(-X \operatorname{Id}_E - f \right)$$

$$= (-1)^d \chi_f(X) \chi_f(-X)$$

2. Dans cette question, n désigne un entier naturel supérieur ou égal à 3, E est l'espace vectoriel $\mathbb{R}_n[X]$ des polynômes à coefficients réels de degré au plus n.

Soit f l'application définie, pour tout polynôme P de E, par :

$$f(P) = (X^{2} - X + 1)P(-1) + (X^{3} - X)P(0) + (X^{3} + X^{2} + 1)P(1)$$

a. Démontrer que f est un endomorphisme de E.

f est clairement linéaire, et comme pour tout polynôme P de E, f(P) est de degré au plus 3 et que $n \ge 3$, on conclut que $f(P) \in E$. f est donc bien un endomorphisme de E.

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 1 sur 4

b. Déterminer Ker(f) et Im(f). Préciser leur dimension.

Soit $P \in E$. Alors, par identification, on a:

$$f(P) = 0 \iff (X^2 - X + 1)P(-1) + (X^3 - X)P(0) + (X^3 + X^2 + 1)P(1) = 0$$

$$\iff (P(0) + P(1)) X^3 + (P(-1) + P(1)) X^2 + (-P(-1) - P(0)) X + P(-1) + P(1) = 0$$

$$\iff \begin{cases} P(0) + P(1) = 0 \\ P(-1) + P(1) = 0 \\ P(-1) + P(0) = 0 \\ P(-1) + P(1) = 0 \end{cases}$$

$$\iff P(-1) = P(0) = P(1) = 0$$

On en déduit que $Ker(f) = \{X(X-1)(X+1)Q, Q \in \mathbb{R}_{n-3}[X]\}$ ou encore

 $Ker(f) = Vect \left\{ X(X-1)(X+1), X(X-1)(X+1)X, X(X-1)(X+1)X^2, \dots, X(X-1)(X+1)X^{n-3} \right\}.$

Ker(f) est donc engendré par une famille de polynômes échelonnée en degré qui est donc libre. Ceci en fait une base de Ker(f) qui est donc de dimension n-2.

Ensuite, on a $\operatorname{Im}(f) \subset \operatorname{Vect}\left\{X^2 - X + 1, X^3 - X, X^3 + X^2 + 1\right\}$ et $\operatorname{dim}\left(\operatorname{Vect}\left\{X^2 - X + 1, X^3 - X, X^3 + X^2 + 1\right\}\right) = \operatorname{dim}\left(\operatorname{Vect}\left\{X, X^2 + 1, X^3\right\}\right) = 3$ car engendré par une famille de polynômes échelonnée en degré qui est donc libre. Le théorème du rang donne $\operatorname{dim}\left(\operatorname{Im}(f)\right) = 3$ et donc l'égalité $\operatorname{Im}(f) = \operatorname{Vect}\left\{X^2 - X + 1, X^3 - X, X^3 + X^2 + 1\right\}$ ou encore $\operatorname{Im}(f) = \operatorname{Vect}\left\{X, X^2 + 1, X^3\right\}$.

c. f est-il injectif? Surjectif?

 $\operatorname{Ker}(f)$ est de dimension $n-2 \geq 1$ donc $\operatorname{Ker}(f) \neq \{0\}$ puis f non injectif. Et par suite, en dimension finie pour un endomorphisme, f non injectif équivaut à f non surjectif.

- **d.** Justifier que 0 est valeur propre de f. Que peut-on dire de sa multiplicité? On sait que f est non injectif donc 0 est valeur propre de f de multiplicité au moins la dimension de Ker(f), c'est-à-dire n-2.
- e. Montrer que les polynômes $Q_1 = 3X^3 + 4X^2 3X + 4$ et $Q_2 = X^3 + X$ sont des vecteurs propres de f. Quelles sont les valeurs propres associées? $f(Q_1) = 4Q_1$ et $Q_1 \neq 0$; on en déduit que Q_1 est vecteur propre de f associé à la valeur propre 4. $f(Q_2) = 2Q_2$ et $Q_2 \neq 0$; on en déduit que Q_2 est vecteur propre de f associé à la valeur propre 2.
- **f.** A-t-on $Ker(f) \oplus Im(f) = E$? On a $X^3 - X = X(X+1)(X-1) \in \text{Ker}(f) \cap \text{Im}(f)$ donc $\text{Ker}(f) \cap \text{Im}(f) \neq \{0\}$, et par suite, on n'a pas $\operatorname{Ker}(f) \oplus \operatorname{Im}(f) = E.$
- **g.** Quelles sont les valeurs propres de f^2 ? En déduire que f^2 est diagonalisable. D'après la question **1.a**), on sait que $0^2 = 0$, $2^2 = 4$ et $4^2 = 16$ sont valeurs propres de f^2 . Dans la question précédente, on a vu que $\operatorname{Ker}(f) \cap \operatorname{Im}(f) \neq \{0\}$ donc d'après la question 1.b), $\dim (\operatorname{Ker}(f^2)) \ge \dim (\operatorname{Ker}(f)) + 1 = n - 1$. Donc 0 est valeur propre de f^2 de multiplicité au moins n - 1. $\dim \left(\operatorname{Ker}(f^2)\right) + \dim \left(\operatorname{Ker}\left(f^2 - 4\operatorname{Id}_E\right)\right) + \dim \left(\operatorname{Ker}\left(f^2 - 16\operatorname{Id}_E\right)\right) \ge n - 1 + 1 + 1 = n + 1 = \dim(E) \text{ et ainsi } \dim \left(\operatorname{Ker}(f^2)\right) + \dim \left(\operatorname{Ker}\left(f^2 - 4\operatorname{Id}_E\right)\right) + \dim \left(\operatorname{Ker}\left(f^2 - 16\operatorname{Id}_E\right)\right) = \dim(E), \text{ car les espaces propres sont en }$ somme directe. Par conséquent, $\dim (\operatorname{Ker}(f^2)) = n - 1$, $\dim (\operatorname{Ker}(f^2 - 4\operatorname{Id}_E)) = \dim (\operatorname{Ker}(f^2 - 16\operatorname{Id}_E)) = 1$, et les valeurs propres de f^2 sont 0, 4 et 16, de multiplicités respectives n-1, 1 et 1. On conclut que f^2 est diagonalisable dans \mathbb{R} .
- h. f est-il trigonalisable? Diagonalisable? Préciser ses valeurs propres et les sous-espaces propres. On sait que χ_f est unitaire, de degré $n+1=\dim(E)$, et d'après les questions **2.d**) et **2.e**), qu'il est divisible par $X^{n-2}(X-2)(X-4)$. Donc il existe $a\in\mathbb{R}$ tel que $\chi_f=X^{n-2}(X-2)(X-4)(X-a)$. χ_f est alors scindé dans \mathbb{R} puis f est au moins trigonalisable. D'après la question précédente, on sait aussi que $\chi_{f^2}=X^{n-1}(X-4)(X-16)$ et donc $\chi_{f^2}(X^2)=X^{2n-2}(X^2-4)(X^2-16)$.

Spé PT Page 2 sur 4 Par ailleurs, la question 1.c) donne $\chi_{f^2}(X^2) = (-1)^d \chi_f(X) \chi_f(-X)$, c'est à dire ici

$$X^{2n-2}(X^2-4)(X^2-16) = (-1)^{n+1}X^{n-2}(X-2)(X-4)(X-a)(-X)^{n-2}(-X-2)(-X-4)(-X-a)$$
$$= X^{2n-4}(X^2-4)(X^2-16)(X^2-a^2)$$

Ce qui montre que a=0.

Finalement, $\chi_f = X^{n-1}(X-2)(X-4)$, donc 0 est valeur propre de multiplicité n-1 et le sous-espace propre associé est de dimension n-2. Par conséquent f n'est pas diagonalisable.

De plus

$$E_0(f) = \text{Ker}(f) = \text{Vect}\{X(X-1)(X+1), X(X-1)(X+1)X, X(X-1)(X+1)X^2, \dots, X(X-1)(X+1)X^{n-3}\}, E_2(f) = \text{Ker}(f-2\text{Id}_E) = \text{Vect}\{Q_2\} \text{ et } E_4(f) = \text{Ker}(f-4\text{Id}_E) = \text{Vect}\{Q_1\}.$$

EXERCICE 2

Soit n un entier naturel supérieur ou égal à 2. On travaille dans l'espace euclidien \mathbb{R}^n muni du produit scalaire usuel, noté $(\cdot|\cdot)$. On désigne par $\|\cdot\|$ la norme euclidienne de \mathbb{R}^n . On note $\mathscr{B} = (e_1, \ldots, e_n)$ la base canonique de \mathbb{R}^n .

On rappelle que si F et G sont deux sous-espaces vectoriels supplémentaires de \mathbb{R}^n alors la projection sur F parallèlement à G est un endomorphisme p de \mathbb{R}^n qui vérifie $p \circ p = p$. On a alors $F = \operatorname{Im}(p)$ et $G = \operatorname{Ker}(p)$. Cette projection est dite orthogonale si de plus F et G sont orthogonaux.

1. Soit p un projecteur orthogonal de \mathbb{R}^n . En écrivant, pour tout vecteur u de \mathbb{R}^n , u = p(u) + (u - p(u)), montrer que :

$$\forall u \in \mathbb{R}^n, \|p(u)\| \le \|u\|$$

Pour tout vecteur u de \mathbb{R}^n , u = p(u) + (u - p(u)), $p(u) \in \text{Im}(p)$ et $p((u - p(u))) = p(u) - p^2(u) = 0$ donc $(u - p(u)) \in \text{Ker}(p)$. Par conséquent, p(u) et (u - p(u)) sont orthogonaux, puis par le théorème de Pythagore, $||u||^2 = ||p(u) + (u - p(u))||^2 = ||p(u)||^2 + ||u - p(u)||^2 \ge ||p(u)||^2$ et enfin $||p(u)|| \le ||u||$.

2. Soit p un projecteur de \mathbb{R}^n vérifiant

$$\forall u \in \mathbb{R}^n, \|p(u)\| \le \|u\|$$

a. Soit $x \in \text{Im}(p)$ et $y \in \text{Ker}(p)$. En considérant le vecteur $u = x + \lambda y$, $\lambda \in \mathbb{R}$, montrer que :

$$\forall \lambda \in \mathbb{R}, \ \lambda^2 ||y||^2 + 2\lambda(x|y) \ge 0$$

Posons $u = x + \lambda y$ avec $\lambda \in \mathbb{R}$. On a alors $||p(x + \lambda y)|| \le ||x + \lambda y||$, soit encore $||p(x) + \lambda p(y)|| \le ||x + \lambda y||$, c'est-à-dire $||x|| \le ||x + \lambda y||$ puisque $x \in \text{Im}(p)$ et $y \in \text{Ker}(p)$. Dès lors, en élevant au carré, et en utilisant une identité de polarisation, on obtient $||x||^2 \le ||x||^2 + 2\lambda(x|y) + \lambda^2 ||y||^2$ soit finalement $\forall \lambda \in \mathbb{R}, \ \lambda^2 ||y||^2 + 2\lambda(x|y) \ge 0$.

En déduire que (x|y) = 0.

Si y = 0 alors (x|y) = 0. Sinon $||y||^2 > 0$ et $\lambda^2 ||y||^2 + 2\lambda(x|y)$ est un trinôme du second degré en λ . Ce dernier est positif si, et seulement si son discriminant est négatif ou nul, c'est à dire $4(x|y)^2 \le 0$, ce qui est équivalent à (x|y) = 0.

- **b.** Montrer que p est un projecteur orthogonal. p est le projecteur sur $\operatorname{Im}(p)$ parallèlement à $\operatorname{Ker}(p)$, or $\operatorname{Im}(p) \perp \operatorname{Ker}(p)$ comme prouvé à la question précédente, donc p est un projecteur orthogonal.
- 3. Soit f un endomorphisme de \mathbb{R}^n . On définit l'application f^* par

$$\forall x \in \mathbb{R}^n, \ f^*(x) = \sum_{i=1}^n (f(e_i)|x) e_i$$

a. Vérifier que f^* est un endomorphisme de \mathbb{R}^n . $\forall x \in \mathbb{R}^n$, $f^*(x) \in \mathbb{R}^n$ et la linéarité de f^* découle de la bilinéarité de produit scalaire.

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 3 sur 4

b. En exprimant x dans la base \mathscr{B} , montrer que, pour tout $(x,y) \in \mathbb{R}^n \times \mathbb{R}^n$,

$$(f(x)|y) = (x|f^*(y))$$

On décompose $x = \sum_{i=1}^n x_i e_i$ dans la base canonique, et comme celle-ci est orthonormée pour le produit scalaire usuel, on a $x_i = (x|e_i)$. En utilisant la linéarité de f et la bilinéarité du produit scalaire, on a d'une part $(f(x)|y) = \left(\sum_{i=1}^n x_i f(e_i)|y\right) = \sum_{i=1}^n x_i (f(e_i)|y)$, et d'autre part $(x|f^*(y)) = \left(x|\sum_{i=1}^n (f(e_i)|y)e_i\right) = \sum_{i=1}^n (f(e_i)|y)(x|e_i) = \sum_{i=1}^n x_i (f(e_i)|y)$, d'où l'égalité.

c. Soit g un endomorphisme de \mathbb{R}^n vérifiant pour tout $(x,y) \in \mathbb{R}^n \times \mathbb{R}^n$,

$$(f(x)|y) = (x|g(y))$$

Montrer que $g = f^*$.

Soient $x, y \in \mathbb{R}^n$. On a (f(x)|y) = (x|g(y)) donc $(x|f^*(y)) = (x|g(y))$ puis $(x|f^*(y)-g(y)) = 0$. En particulier, pour $x = f^*(y) - g(y)$, on obtient $\forall y \in \mathbb{R}^n$, $(f^*(y) - g(y)|f^*(y) - g(y)) = ||f^*(y) - g(y)||^2 = 0$, ce qui donne $\forall y \in \mathbb{R}^n$, $f^*(y) - g(y) = 0$. On a donc montré que $\forall y \in \mathbb{R}^n$, $g(y) = f^*(y)$ ou encore $g = f^*$.

- **4.** Soit p un projecteur orthogonal de \mathbb{R}^n .
 - **a.** Montrer que, pour tout $(x,y) \in \mathbb{R}^n \times \mathbb{R}^n$,

$$(p(x)|y) = (p(x)|p(y))$$

Soit $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$. On a (p(x)|y) - (p(x)|p(y)) = (p(x)|y - p(y)) = 0 puisque $p(x) \in \text{Im}(p), y - p(y) \in \text{Ker}(p)$, et par hypothèse $\text{Im}(p) \perp \text{Ker}(p)$.

b. En déduire que $p = p^*$.

Soit $(x,y) \in \mathbb{R}^n \times \mathbb{R}^n$. Alors (x|p(y)) = (p(y)|x) = (p(y)|p(x)) = (p(x)|p(y)) = (p(x)|y).

D'après **3.c**), on peut conclure que $p = p^*$.

- **5.** Soit p un projecteur.
 - **a.** Montrer que $\operatorname{Im}(p^*) \subset (\operatorname{Ker}(p))^{\perp}$.

Soit $x \in \text{Im}(p^*)$ et $y \in \text{Ker}(p)$. Alors $\exists z \in \mathbb{R}^n$, $(x|y) = (p^*(z)|y) = (z|p(y)) = (z|0) = 0$.

On a donc montré que $\operatorname{Im}(p^*) \subset (\operatorname{Ker}(p))^{\perp}$.

b. Soit $y \in (\text{Ker}(p))^{\perp}$. Montrer que, pour tout $x \in \mathbb{R}^n$, (x - p(x)|y) = 0. Soit $y \in (\text{Ker}(p))^{\perp}$. On sait que pour tout $x \in \mathbb{R}^n$, $x - p(x) \in \text{Ker}(p)$ donc (x - p(x)|y) = 0.

En déduire que $y=p^*(y)$ puis que $(\operatorname{Ker}(p))^{\perp}\subset\operatorname{Im}((p^*).$

Par linéarité à gauche, on obtient $(x|y) = (p(x)|y) = (x|p^*(y))$ puis par linéarité à droite, $(x|y-p^*(y)) = 0$.

En particulier, pour $x = y - p^*(y)$, on a $(y - p^*(y))|y - p^*(y)| = 0 = ||y - p^*(y)||^2$ donc $y - p^*(y) = 0$, soit encore $y = p^*(y)$.

On a montré que pour tout $y \in (\operatorname{Ker}(p))^{\perp}$, $y \in \operatorname{Im}(p^*)$, c'est à dire $(\operatorname{Ker}(p))^{\perp} \subset \operatorname{Im}(p^*)$.

c. Montrer que si $p = p^*$, alors p est un projecteur orthogonal. D'après **5.a**) et **5.b**), on a $(\text{Ker}(p))^{\perp} = \text{Im}(p^*) = \text{Im}(p)$ donc p est un projecteur orthogonal.

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 4 sur 4