Определение температуры Кюри гадолиния

Шмаков Владимир Б04-105 Сентябрь, МФТИ

Введение

Целью данной работы является изучение температурной зависимости магнитной восприимчивости. Данные, полученные в работе, позволят вычислить температуру Кюри Θ_p и парамагнитную температуру Θ_k .

Эффект изменения магнитой восприимчивости вещества от температуры может быть использован для проектирования датчиков, измеряющих температуру окружающей среды.

Более широкое применение получил обратный эффект - эффект изменения температуры вещества от приложения внешнего магнитного поля(магнитное охлаждение). Существуют методы получения сверхнизких температур($< 1 \, \mathrm{K}$), основанные на данном эффекте.

Основные сведения о зависимости магнитной восприимчивости от температуры

Парамагнетики - вещества, атомы которых обладают магнитным моментом в отсутствие внешнего магнитного поля:

Пусть атомы некоторого парамагнетика обладают магнитным моментом \mathfrak{m}_a . Приложим внешнее магнитное поле B. Тогда энергия каждого из атомов определяется как скалярное произвдение $(\vec{B},\vec{\mathfrak{m}}_a)$. Максимальное значение данного произвдения $U_{max}=B\mathfrak{m}_a$.

Вещество находится в состоянии равновесия → энергия атомов подчиняется распределению Гиббса:

$$dn \propto e^{-\frac{U(lpha)}{k_{
m B}T}}dlpha$$
 (1)

Разложим экспоненту по формуле Тейлора, получим:

$$n_+ = n_0 e^{\mathfrak{m}_a B/k_{\mathrm{B}}T} pprox n_0 \left(1 + rac{\mathfrak{m}_a B}{k_{\mathrm{B}}T}
ight) \quad n_- pprox n_0 \left(1 - rac{\mathfrak{m}_a B}{k_{\mathrm{B}}T}
ight)$$

Где n_+ - количество атомов, магнитный момент которых сонаправлен с внешним магнитным полем.

Из условия $n_+ + n_- = n$ находим, что нормировочная константа $n_0 = n/2$.

Таким образом суммарный магнитный момент равен:

$$M=n_+\mathfrak{m}_a-n_-\mathfrak{m}_a=rac{\mathfrak{m}_a^2n}{k_{
m B}T}B=rac{B}{\chi}$$

Получили закон Кюри:

$$\chi \propto \frac{1}{T}$$
 (3)

Методика

Оборудование

В эксперименте используется следующее оборудование:

- Катушка
- Образец из гадолиния
- Термостат
- Частотометр
- Цифровой вольтметр
- ullet LC автогенератор
- Термопара медь-констатан

Экспериментальная установка

Схема экспериментальной установки изображена выше.

«Ядром» установки является автогенератор(LC контур). В колебательный контур помещен образец гадолиния. Таким образом величина ее индуктивности изменяется в зависимости от магнитной восприимчивости образца:

$$L - L_0 \propto \chi \tag{4}$$

Период колебаний LC контура находится по формуле:

$$\tau = 2\pi\sqrt{LC} \tag{5}$$

Таким образом, период колбеаний без образца равен:

$$\tau_0 = 2\pi\sqrt{L_0C} \tag{6}$$

Из формул 0,1,2 понимаем, что величина χ пропорциональна разности квадратов периодов колебаний τ и τ_0 :

$$\tau^2 - \tau_0^2 \propto L - L_0 \propto \chi \tag{7}$$

Таким образом, должно выполняться соотношение пропоциональности

$$\frac{1}{\tau^2 - \tau_0^2} \propto T - \Theta_p \tag{8}$$

Обработка результатов эксперимента

Предварительный график

Для каждого измерения вычислим величину

$$\frac{1}{\tau^2 - \tau_0^2}$$

Построим график зависимости данной величины от температуры:

На графике видим характерный излом - отклонение от линейной зависимости.

Линейная интерполяция

Из предварительного графика понимаем, что линейная зависимость имеет излом около четвертой точки. Интерполируем точки часть зависимости после $T=20^{\circ}$ методом наименьших квадратов. Получим:

Коэффициент наклона $lpha = 0.031 \pm 0.0005$ Пересечение с осью y: $eta = -0.5 \pm 0.01$

Теперь можем найти пересечение линейной интерполяциии с осью x. Найденная точка является искомой температурой Θ_p :

$$\Theta_p = -rac{eta}{lpha}$$

Оценив погрешность получаем: $\Theta_p = 17 \pm 1~{}^{\circ}C$

Используя участок нелинейной зависимости можем оценить температуру максимальной намагниченности Θ . К сожалению, на этом участке всего 4 экспериментальные точки, поэтому достоверно восстановить исходную зависимость не является возможным. Попробуем провести наилучшую прямую через данные точки.

Итоговый график

Построим график по полученным данным. Нанесём на него вышеописанные прямые:

Сравним полученные значения с табличными

Согласно источнику википедия температура Кюри Gd составляет примерно $19~^{\circ}C$. В эксперименте нашли парамагнитную температуру $\Theta_p=17\pm 1~^{\circ}C$. Как видим величина Θ_p близка к Θ_k . И они отличаются лишь на 5%.

По участку графика, отклоняющемуся от линейной зависимости, оценили величину Θ - температуру максимальной намагниченности. По нашим данным она составила примерно $5^{\circ}C$.

Согласно источнику википедия, данная температура составляет примерно $4.9^{\circ}C$. Таким образом экспериментально вычисленное значение Θ совпало с табличным.

Вывод

Удалось вычислить величину Θ_p . Погрешность измерения Θ_p составила $\sim 6\%$.

Помимо Θ_p удалось вычислить температуру максимальной намагниченности гадолиния. Получилось $\Theta=5~^{\circ}C$.

Приложение

Данные, полученные в ходе работы:

	tau [mus]	T [C]	deltaU [mV]
0	7.970000	14.200000	-0.012000
1	7.948000	15.070000	-0.015000
2	7.861500	17.120000	-0.015000
3	7.729300	19.100000	-0.018000
4	7.540100	21.090000	-0.020000
5	7.338700	23.080000	-0.022000
6	7.211700	25.090000	-0.019000
7	7.156100	27.070000	-0.020000
8	7.113000	29.070000	-0.020000
9	7.078000	31.080000	-0.020000
10	7.060000	33.060000	-0.020000
11	7.038000	35.060000	-0.020000
12	7.032200	37.040000	-0.020000
13	7.018400	39.030000	-0.020000
14	7.014700	40.000000	-0.020000

Ссылки

Программа для рассчетов размещна в репозитории: https://github.com/ShmakovVladimir/Labs Табличные значения взяты из википедии