6 Multivariate models

- 6.1 Basics of multivariate modeling
- 6.2 Normal mixture distributions
- 6.3 Spherical and elliptical distributions
- 6.4 Dimension reduction techniques

6.1 Basics of multivariate modeling

6.1.1 Random vectors and their distributions

Joint and marginal distributions

- Let $X = (X_1, ..., X_d) : \Omega \to \mathbb{R}^d$ be a d-dimensional random vector (representing risk-factor changes, risks, etc.).
- The (joint) distribution function (df) H of X is

$$H(\boldsymbol{x}) = F_{\boldsymbol{X}}(\boldsymbol{x}) = \mathbb{P}(\boldsymbol{X} \leq \boldsymbol{x}) = \mathbb{P}(X_1 \leq x_1, \dots, X_d \leq x_d), \quad \boldsymbol{x} \in \mathbb{R}^d.$$

■ The *jth margin* or *marginal df* F_j of X is

$$F_{j}(x_{j}) = \mathbb{P}(X_{j} \leq x_{j})$$

$$= \mathbb{P}(X_{1} \leq \infty, \dots, X_{j-1} \leq \infty, X_{j} \leq x_{j}, X_{j+1} \leq \infty, \dots, X_{d} \leq \infty)$$

$$= H(\infty, \dots, \infty, x_{j}, \infty, \dots, \infty), \quad x_{j} \in \mathbb{R}, \ j \in \{1, \dots, d\}.$$

(interpreted as a limit).

■ Similarly for k-dimensional margins. Suppose we partition X into $(X_1^\top, X_2^\top)^\top$, where $X_1 = (X_1, \dots, X_k)^\top$ and $X_2 = (X_{k+1}, \dots, X_d)^\top$, then the marginal distribution function of X_1 is

$$F_{X_1}(x_1) = \mathbb{P}(X_1 \leq x_1) = H(x_1, \dots, x_k, \infty, \dots, \infty).$$

■ *H* is absolutely continuous if

$$H(\boldsymbol{x}) = \int_{-\infty}^{x_d} \dots \int_{-\infty}^{x_1} h(z_1,\dots,z_d) \, dz_1 \dots dz_d = \int_{(-\infty,x]} h(\boldsymbol{z}) \, d\boldsymbol{z}$$
 for some $h \geq 0$ then known as the *(joint) density of* \boldsymbol{X} *(or* \boldsymbol{H}). Similarly, the j th marginal d f F_j is absolutely continuous if $F_j(x) = \int_{-\infty}^x f_j(z) \, dz$ for some $f_j \geq 0$ then known as the density of X_j (or F_j).

In case h exists, $F_j(x_j) = \int_{-\infty}^{x_j} \int_{(-\infty,\infty)} h(z) \, dz_{-j} \, dz_j = \int_{-\infty}^{x_j} f_j(z_j) \, dz_j$, so that $f_j(z_j)$ can be recovered from h via

$$\underbrace{\int_{-\infty}^{\infty}\dots\int_{-\infty}^{\infty}}_{d-1\text{-many}}h(z_1,\dots,z_{j-1},z_j,z_{j+1},\dots,z_d)\,dz_1\dots dz_{j-1}dz_{j+1}\dots dz_d.$$

- Existence of a joint density \Rightarrow Existence of marginal densities for all k-dimensional marginals, $1 \le k \le d-1$. The converse is false in general (counter-examples can be constructed with copulas; see later).
- By replacing integrals by sums, one obtains similar formulas for the discrete case, in which we call densities probability mass functions.
- lacksquare Sometimes it's convenient to work with the survival function H of $oldsymbol{X}$, given by

$$ar{H}(m{x}) = ar{F}_{m{X}}(m{x}) = \mathbb{P}(m{X} > m{x}) = \mathbb{P}(X_1 > x_1, \dots, X_d > x_d), \quad m{x} \in \mathbb{R}^d,$$
 with corresponding j th marginal survival function $ar{F}_j$

$$\bar{F}_j(x_j) = \mathbb{P}(X_j > x_j)
= \bar{H}(-\infty, \dots, -\infty, x_j, -\infty, \dots, -\infty), \quad x_j \in \mathbb{R}, \ j \in \{1, \dots, d\}.$$

Note that, unlike for d=1, $\bar{H}(x) \neq 1-H(x)$ in general.

Conditional distributions and independence

- A multivariate model for risks in the form of a joint df, survival function or density, implicitly describes their dependence structure. We can then make statements about condtional probabilities.
- As before, consider $X = (X_1^\top, X_2^\top)^\top \sim H$. The conditional df of X_2 given $X_1 = x_1$ is $F_{X_2|X_1}(x_2|x_1) = \mathbb{P}(X_2 \leq x_2|X_1 = x_1) = \mathbb{E}[\mathbb{1}_{\{X_2 \leq x_2\}} | X_1 = x_1]$, where $\mathbb{E}[\cdot|\cdot]$ denotes conditional expectation (not discussed here).
- A useful identity for conditional dfs is

© QRM Tutorial | P. Embrechts, R. Frey, M. Hofert, A.J. McNeil

$$\begin{split} &\int_{(-\infty, \boldsymbol{x}_1]} F_{\boldsymbol{X}_2 | \boldsymbol{X}_1}(\boldsymbol{x}_2 \, | \, \boldsymbol{z}) \, dF_{\boldsymbol{X}_1}(\boldsymbol{z}) \\ &= \int_{\mathbb{R}^d} \mathbb{1}_{\{\boldsymbol{z} \leq \boldsymbol{x}_1\}} \mathbb{E}[\mathbb{1}_{\{\boldsymbol{X}_2 \leq \boldsymbol{x}_2\}} \, | \, \boldsymbol{X}_1 = \boldsymbol{z}] \, dF_{\boldsymbol{X}_1}(\boldsymbol{z}) \\ &= \mathbb{E}[\mathbb{1}_{\{\boldsymbol{X}_1 \leq \boldsymbol{x}_1\}} \mathbb{E}[\mathbb{1}_{\{\boldsymbol{X}_2 \leq \boldsymbol{x}_2\}} \, | \, \boldsymbol{X}_1]] = \mathbb{E}[\mathbb{E}[\mathbb{1}_{\{\boldsymbol{X}_1 \leq \boldsymbol{x}_1, \boldsymbol{X}_2 \leq \boldsymbol{x}_2\}} \, | \, \boldsymbol{X}_1]] \\ &\stackrel{\mathsf{tower}}{=} \mathbb{E}[\mathbb{1}_{\{\boldsymbol{X}_1 \leq \boldsymbol{x}_1, \boldsymbol{X}_2 \leq \boldsymbol{x}_2\}}] = H(\boldsymbol{x}), \end{split}$$

Section 6.1.1 p. 302

where the second-last equality holds by the tower property of conditional expectations.

- If $x_1 \to \infty$, then $F_{X_2}(x_2) = \int_{\mathbb{R}^d} F_{X_2|X_1}(x_2|z) dF_{X_1}(z)$. Furthermore, if H has a density h, then $f_{X_2}(x_2) = \int_{\mathbb{R}^d} f_{X_2|X_1}(x_2|z) dF_{X_1}(z)$.
- If H has density h and f_{X_1} denotes the density of X_1 , then

$$h(\boldsymbol{x}_1, \boldsymbol{x}_2) = \frac{\partial^2}{\partial \boldsymbol{x}_2 \partial \boldsymbol{x}_1} H(\boldsymbol{x}_1, \boldsymbol{x}_2) = \frac{\partial}{\partial \boldsymbol{x}_2} F_{\boldsymbol{X}_2 | \boldsymbol{X}_1}(\boldsymbol{x}_2 | \boldsymbol{x}_1) f_{\boldsymbol{X}_1}(\boldsymbol{x}_1)$$
$$= f_{\boldsymbol{X}_2 | \boldsymbol{X}_1}(\boldsymbol{x}_2 | \boldsymbol{x}_1) f_{\boldsymbol{X}_1}(\boldsymbol{x}_1).$$

We call

$$f_{\mathbf{X}_2|\mathbf{X}_1}(\mathbf{x}_2 \mid \mathbf{x}_1) = \frac{h(\mathbf{x}_1, \mathbf{x}_2)}{f_{\mathbf{X}_1}(\mathbf{x}_1)}$$
 (19)

the conditional density of X_2 given $X_1=x_1$. In this case, the conditional df $F_{X_2|X_1}(x_2\,|\,x_1)$ is given by

$$F_{X_2|X_1}(x_2 \mid x_1) = \int_{-\infty}^{x_{k+1}} \dots \int_{-\infty}^{x_d} \frac{h(x_1, z)}{f_{X_1}(x_1)} dz_{k+1} \dots dz_d.$$

■ Inspired by (19), we call X_1 and X_2 independent if

$$H(x_1, x_2) = F_{X_1}(x_1)F_{X_2}(x_2), \quad \forall x_1, x_2.$$

■ If H has density h, then X_1 and X_2 are independent if

$$h(x_1, x_2) = f_{X_1}(x_1) f_{X_2}(x_2), \quad \forall x_1, x_2.$$

In this case, $f_{X_2|X_1}(x_2 \mid x_1) = h(x_1, x_2)/f_{X_1}(x_1) = f_{X_2}(x_2)$.

■ The components X_1, \ldots, X_d of X are (mutually) independent if

$$H(\boldsymbol{x}) = \prod_{j=1}^{d} F_j(x_j), \quad \forall \, \boldsymbol{x},$$

or, if H has density h,

$$h(\boldsymbol{x}) = \prod_{j=1}^d f_j(x_j), \quad \forall \, \boldsymbol{x}.$$

Moments and characteristic function

■ If $\mathbb{E}|X_j| < \infty$, $j \in \{1, ..., d\}$, the *mean vector* of X is defined by

$$\boldsymbol{\mu} = \mathbb{E}\boldsymbol{X} = (\mathbb{E}X_1, \dots, \mathbb{E}X_d).$$

One can show: X_1,\ldots,X_d independent $\Rightarrow \mathbb{E}[X_1\cdots X_d]=\prod_{j=1}^d\mathbb{E}[X_j]$

• If $\mathbb{E}[X_i^2] < \infty$ for all j, the covariance matrix of X is defined as

$$\Sigma = \operatorname{Cov}[X] = \mathbb{E}[(X - \mathbb{E}X)(X - \mathbb{E}X)^{\top}].$$

Its (i, j)th element is

$$\sigma_{ij} = \Sigma_{ij} = \text{Cov}[X_i, X_j] = \mathbb{E}[(X_i - \mathbb{E}X_i)(X_j - \mathbb{E}X_j)]$$

= $\mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j];$

the diagonal elements are $\sigma_{ij} = \text{Var}[X_i], j \in \{1, \dots, d\}.$

■ The *cross covariance matrix* between two (admissible) random vectors X, Y is defined as $Cov[X, Y] = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)^{\top}]$. Note that Cov[X, X] = Cov[X].

■ If $\mathbb{E}[X_j^2] < \infty$, $j \in \{1, ..., d\}$, the *correlation matrix* of \boldsymbol{X} is defined as the matrix $P = \operatorname{Cor}[\boldsymbol{X}]$ with (i, j)th element

$$\rho_{ij} = P_{ij} = \operatorname{Cor}[X_i, X_j] = \frac{\operatorname{Cov}[X_i, X_j]}{\sqrt{\operatorname{Var}[X_i] \operatorname{Var}[X_j]}}$$

which is in [-1,1] with $\rho_{ij}=\pm 1$ if and only if $X_j\stackrel{\text{a.s.}}{=} aX_i+b$ for some $a\gtrless 0$ and $b\in\mathbb{R}$. This follows from the Cauchy–Schwarz inequality $|\langle X_i,X_j\rangle|\leq \sqrt{\langle X_i,X_i\rangle\langle X_j,X_j\rangle}$ applied to the inner product $\langle X_i,X_j\rangle:=\mathbb{E}[X_iX_j].$

- X_i, X_j ($i \neq j$) independent $\not\equiv \operatorname{Cov}[X_i, X_j] = 0$. The only known distribution for which uncorrelatedness implies independence is the multivariate normal distribution.
- Some properties:
 - 1) For all $A \in \mathbb{R}^{k \times d}$, $\boldsymbol{b} \in \mathbb{R}^k$:
 - $\blacktriangleright \quad \mathbb{E}[AX + b] = A\mathbb{E}X + b = A\mu + b;$
- © QRM Tutorial | P. Embrechts, R. Frey, M. Hofert, A.J. McNeil

 $\operatorname{Cov}[AX + \boldsymbol{b}] = A \operatorname{Cov}[X]A^{\top} = A\Sigma A^{\top}; \text{ if } k = 1 \ (A = \boldsymbol{a}^{\top}),$ $\boldsymbol{a}^{\top} \Sigma \boldsymbol{a} = \operatorname{Cov}[\boldsymbol{a}^{\top} X] = \operatorname{Var}[\boldsymbol{a}^{\top} X] \ge 0, \quad \boldsymbol{a} \in \mathbb{R}^{d},$ (20)

i.e., covariance matrices are *positive semidefinite* (and, trivially, symmetric).

2) If Σ is a positive definite matrix (i.e., $\mathbf{a}^{\top}\Sigma\mathbf{a} > 0$ for all $\mathbf{a} \in \mathbb{R}^d \setminus \{0\}$),

- then Σ is invertible (since pos. def. $\Rightarrow \Sigma a \neq 0 \Rightarrow \operatorname{rank} \Sigma = d \dim \ker \Sigma = d \dim \{b : \Sigma b = 0\} = d$ (Rank-nullity Theorem)). 3) A symmetric, positive definite (positive semidefinite) Σ can be written
- 3) A symmetric, positive definite (positive semidefinite) Σ can be written as $\Sigma = AA^{\top} \tag{21}$

for a lower triangular matrix
$$A$$
 with $A_{jj} > 0$ $(A_{jj} \ge 0)$ for all j . L is known as *Cholesky factor* (also denoted by $\Sigma^{1/2}$) of the *Cholesky decomposition* (21).

lacktriangle Properties of X can often be shown with the *characteristic function*

$$\phi_{\boldsymbol{X}}(\boldsymbol{t}) = \mathbb{E}[\exp(i\boldsymbol{t}^{\top}\boldsymbol{X})], \quad \boldsymbol{t} \in \mathbb{R}^d.$$

 X_1, \ldots, X_d are independent $\Leftrightarrow \phi_{\boldsymbol{X}}(t) = \prod_{j=1}^d \phi_{X_j}(t_j)$ for all t.

Proposition 6.1

A symmetric matrix $\boldsymbol{\Sigma}$ is a covariance matrix if and only if it is positive semidefinite.

Proof.

- " \Rightarrow " As we have seen in (20), a covariance matrix Σ is positive semidefinite.
- " \Leftarrow " Let Σ be positive semidefinite with Cholesky factor A. Let \boldsymbol{X} be a random vector with $\operatorname{Cov} \boldsymbol{X} = I_d = \operatorname{diag}(1,\ldots,1)$ (e.g., $X_j \stackrel{\text{ind.}}{\sim} \operatorname{N}(0,1)$). Then $\operatorname{Cov}[A\boldsymbol{X}] = A\operatorname{Cov}[\boldsymbol{X}]A^\top = AA^\top = \Sigma$, i.e., Σ is a covariance matrix (namely that of $A\boldsymbol{X}$).

6.1.2 Standard estimators of covariance and correlation

- Assume $X_1, \ldots, X_n \sim H$ (daily/weekly/monthly/yearly risk-factor changes) to be serially uncorrelated (i.e., multivariate white noise) with $\mu = \mathbb{E} X_1$, $\Sigma = \operatorname{Cov} X_1$, $P = \operatorname{Cor} X_1$.
- Non-parametric method-of-moments-like estimators of μ, Σ, P are

$$ar{X} = rac{1}{n} \sum_{i=1}^n m{X}_i$$
 (sample mean; unbiased; colMeans)

$$S = \frac{1}{n-1} \sum_{i=1}^{n} (\boldsymbol{X}_i - \bar{\boldsymbol{X}}) (\boldsymbol{X}_i - \bar{\boldsymbol{X}})^{\top} \text{ (sample cov. mat.; unbiased; var)}$$

$$R = (R_{ij}) \text{ for } R_{ij} = \frac{S_{ij}}{\sqrt{S_{ii}S_{jj}}} \text{ (sample cor. matrix; unbiased; cor)}$$

• \bar{X} and R are also MLEs; $\frac{n-1}{n}S$ is the MLE for Σ .

• Clearly, \bar{X} is unbiased. Since the X_i 's are uncorrelated,

 $\mathbb{E}S = \frac{1}{n-1} \sum_{i=1}^{n} \mathbb{E}[(\boldsymbol{X}_{i} - \bar{\boldsymbol{X}})(\boldsymbol{X}_{i} - \bar{\boldsymbol{X}})^{\top}]$

$$\operatorname{Cov}[\bar{\boldsymbol{X}}] = \frac{1}{n^2} \sum_{i=1}^{n} \operatorname{Cov}[\boldsymbol{X}_i] = \frac{1}{n} \operatorname{Cov}[\boldsymbol{X}_1] = \frac{1}{n} \Sigma.$$

S is unbiased since

$$= \frac{1}{n-1} \sum_{i=1}^{n} \mathbb{E}[(\boldsymbol{X}_i - \boldsymbol{\mu})(\boldsymbol{X}_i - \boldsymbol{\mu})^{\top} - (\bar{\boldsymbol{X}} - \boldsymbol{\mu})(\bar{\boldsymbol{X}} - \boldsymbol{\mu})^{\top}]$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} (\Sigma - \operatorname{Cov} \bar{\boldsymbol{X}}) \underset{\operatorname{Cov}[\bar{\boldsymbol{X}}] = \Sigma}{=} \frac{n}{n-1} (1 - 1/n) \Sigma = \Sigma.$$

• Check that $S = \frac{1}{n-1}ABA^{\top}$ for $A = (X_1, \dots, X_n) \in \mathbb{R}^{d \times n}$ and $B = I_n - \frac{1}{n}\mathbf{1}_n\mathbf{1}_n^{\top} \in \mathbb{R}^{n \times n}$ (where $\mathbf{1}_n = (1, \dots, 1) \in \mathbb{R}^n$). Since rank $A \leq \min\{n, d\}$, rank $B = n - \dim \ker B = n - 1$, and rank $(ABA^{\top}) \leq n - 1$

S is not invertible. To obtain a positive definite (and thus invertible) estimator of Σ , see, e.g., Matrix::nearPD().

lacksquare Further properties of $\bar{m{X}}, S, R$ depend on H.

6.1.3 The multivariate normal distribution

Definition 6.2 (Multivariate normal distribution)

$$m{X} = (X_1, \dots, X_d)$$
 has a multivariate normal (or Gaussian) distribution if $m{X} \stackrel{\text{d}}{=} m{\mu} + A m{Z},$ (22)

where
$$\mathbf{Z} = (Z_1, \dots, Z_k)$$
, $Z_j \stackrel{\text{ind.}}{\sim} \mathrm{N}(0,1)$, $A \in \mathbb{R}^{d \times k}$, $\boldsymbol{\mu} \in \mathbb{R}^d$.

- $\blacksquare \mathbb{E} \boldsymbol{X} = \boldsymbol{\mu} + A \mathbb{E} \boldsymbol{Z} = \boldsymbol{\mu}$
- $\operatorname{Cov}[\boldsymbol{X}] = \operatorname{Cov}[\boldsymbol{\mu} + A\boldsymbol{Z}] = A\operatorname{Cov}[\boldsymbol{Z}]A^{\top} = AA^{\top} =: \Sigma$

Proposition 6.3 (Characteristic function)

Let X be as in (22) and $\Sigma = AA^{\top}$. Then the cf of X is

$$\phi_{m{X}}(m{t}) = \mathbb{E}[\exp(im{t}^{ op}m{X})] = \exp\Big(im{t}^{ op}m{\mu} - \frac{1}{2}m{t}^{ op}\Sigmam{t}\Big), \quad m{t} \in \mathbb{R}^d.$$

Proof.

- $Z_1 \sim N(0,1)$ has density $\varphi(x) = \exp(-x^2/2)/\sqrt{2\pi}$ which satisfies
 - i) $\varphi(x) = \varphi(-x);$
 - ii) $\varphi'(x) = -x\varphi(x)$.

 $\varphi(x) = -x\varphi(x)$

By Euler's Formula, the characteristic function
$$\phi_{Z_1}(t)$$
 of Z_1 is given by
$$\phi_{Z_1}(t) = \int_{-\infty}^{\infty} (\cos(tx) + i\sin(tx))\varphi(x) dx = \int_{-\infty}^{\infty} \cos(tx)\varphi(x) dx.$$

Hence,

$$\phi_{Z_1}'(t) = \int_{-\infty}^{\infty} \sin(tx)(-x)\varphi(x) \, dx = \int_{-\infty}^{\infty} \sin(tx)\varphi'(x) \, dx = -t\phi_{Z_1}(t).$$

© QRM Tutorial | P. Embrechts, R. Frey, M. Hofert, A.J. McNeil

Section 6.1.3 | p. 312

We also know that $\phi_{Z_1}(0)=1$. This initial value problem has the unique solution $\phi_{Z_1}(t)=\exp(-t^2/2)$.

• Now let $\tilde{t}^{\top} = t^{\top} A$. Then

$$\phi_{\boldsymbol{X}}(\boldsymbol{t}) = \mathbb{E}[\exp(i\boldsymbol{t}^{\top}(\boldsymbol{\mu} + A\boldsymbol{Z}))] = \exp(i\boldsymbol{t}^{\top}\boldsymbol{\mu})\mathbb{E}[\exp(i\tilde{\boldsymbol{t}}^{\top}\boldsymbol{Z})]$$

$$\stackrel{\text{ind.}}{=} \exp(i\boldsymbol{t}^{\top}\boldsymbol{\mu}) \prod_{j=1}^{d} \mathbb{E}[\exp(i(\tilde{t}_{j}Z_{j}))] = \exp\left(i\boldsymbol{t}^{\top}\boldsymbol{\mu} - \frac{1}{2}\sum_{j=1}^{d} \tilde{t}_{j}^{2}\right)$$

$$= \exp\left(i\boldsymbol{t}^{\top}\boldsymbol{\mu} - \frac{1}{2}\tilde{\boldsymbol{t}}^{\top}\tilde{\boldsymbol{t}}\right) = \exp\left(i\boldsymbol{t}^{\top}\boldsymbol{\mu} - \frac{1}{2}\boldsymbol{t}^{\top}AA^{\top}\boldsymbol{t}\right)$$

$$= \exp\left(i\boldsymbol{t}^{\top}\boldsymbol{\mu} - \frac{1}{2}\boldsymbol{t}^{\top}\boldsymbol{\Sigma}\boldsymbol{t}\right)$$

- We see that the multivariate normal distribution is characterized by μ and Σ , hence the notation $X \sim \mathrm{N}_d(\mu, \Sigma)$.
- $N_d(\mu, \Sigma)$ can be characterized by univariate normal distributions. To see this we first need the following theoretical result.

Theorem 6.4 (Cramér–Wold)

Let $X, X_n, n \in \mathbb{N}$, be random vectors. Then

$$oldsymbol{X}_n \overset{\mathsf{d}}{\underset{n \uparrow \infty}{
ightarrow}} oldsymbol{X} \quad \Longleftrightarrow \quad oldsymbol{a}^ op oldsymbol{X}_n \overset{\mathsf{d}}{\underset{n \uparrow \infty}{
ightarrow}} oldsymbol{a}^ op oldsymbol{X} \quad orall \, oldsymbol{a} \in \mathbb{R}^d$$

Proof.

" \Rightarrow " This follows directly from the Continuous Mapping Theorem with the continuous map being $q(x) = a^{\top}x$.

"
$$\Leftarrow$$
" $\phi_{\boldsymbol{X}_n}(\boldsymbol{t}) = \mathbb{E}[\exp(i\cdot 1\cdot \boldsymbol{t}^{\top}\boldsymbol{X}_n)] = \phi_{\boldsymbol{t}^{\top}\boldsymbol{X}_n}(1) \underset{n\uparrow\infty}{\to} \phi_{\boldsymbol{t}^{\top}\boldsymbol{X}}(1) = \phi_{\boldsymbol{X}}(\boldsymbol{t})$ for all \boldsymbol{t} . The result then follows by the Lévy Continuity Theorem. \square

Corollary 6.5

Let X, Y be two random vectors. Then

$$oldsymbol{X} \stackrel{ ext{d}}{=} oldsymbol{Y} \quad \Longleftrightarrow \quad oldsymbol{a}^ op oldsymbol{X} \stackrel{ ext{d}}{=} oldsymbol{a}^ op oldsymbol{Y} \quad orall \, oldsymbol{a} \in \mathbb{R}^d.$$

Proposition 6.6 (Characterization of $N_d(\mu, \Sigma)$)

$$m{X} \sim \mathrm{N}_d(m{\mu}, \Sigma) \iff m{a}^{ op} m{X} \sim \mathrm{N}(m{a}^{ op} m{\mu}, m{a}^{ op} \Sigma m{a}) \quad orall \, m{a} \in \mathbb{R}^d.$$

Proof.

"⇒"
$$\phi_{\boldsymbol{a}^{\top}\boldsymbol{X}}(t) = \mathbb{E}[\exp(it\boldsymbol{a}^{\top}\boldsymbol{X})]$$
$$= \phi_{\boldsymbol{X}}(t\boldsymbol{a}) = \exp\left(i(t\boldsymbol{a})^{\top}\boldsymbol{\mu} - \frac{1}{2}(t\boldsymbol{a})^{\top}\boldsymbol{\Sigma}(t\boldsymbol{a})\right)$$
$$= \exp\left(it(\boldsymbol{a}^{\top}\boldsymbol{\mu}) - \frac{1}{2}t^{2}(\boldsymbol{a}^{\top}\boldsymbol{\Sigma}\boldsymbol{a})\right).$$

Uniqueness of characteristic functions $\Rightarrow \boldsymbol{a}^{\top} \boldsymbol{X} \sim \mathrm{N}(\boldsymbol{a}^{\top} \boldsymbol{\mu}, \boldsymbol{a}^{\top} \boldsymbol{\Sigma} \boldsymbol{a}).$

"
$$\Leftarrow$$
" Let $m{Y} \sim \mathrm{N}_d(m{\mu}, \Sigma)$. We have just seen that $m{a}^{\top} m{Y} \sim \mathrm{N}(m{a}^{\top} m{\mu}, m{a}^{\top} \Sigma m{a})$ for all $m{a} \in \mathbb{R}^d$, so $m{a}^{\top} m{X} \stackrel{\mathrm{d}}{=} m{a}^{\top} m{Y}$ for all $m{a} \in \mathbb{R}^d$. By Corollary 6.5, $m{X} \stackrel{\mathrm{d}}{=} m{Y} \sim \mathrm{N}_d(m{\mu}, \Sigma)$.

Consequences:

- $\label{eq:margins: X in Nd} \bullet \text{ Margins: } \boldsymbol{X} \sim \mathrm{N}_d(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \overset{\boldsymbol{a} = \boldsymbol{e}_j}{\underset{\text{see copulas}}{\nleftrightarrow}} X_j \sim \mathrm{N}(\mu_j, \sigma_{jj}^2), \quad j \in \{1, \dots, d\}.$
- Sums: $X \sim N_d(\mu, \Sigma) \stackrel{a=1}{\Rightarrow} \sum_{j=1}^d X_j \sim N(\sum_{j=1}^d \mu_j, \sum_{i,j} \sigma_{ij}).$

Proposition 6.7 (Density)

Let $X \sim N_d(\mu, \Sigma)$ with $d \leq k$, rank A = d ($\Rightarrow \Sigma$ pos. definite, invertible). Then X has density

$$f_{m{X}}(m{x}) = rac{1}{(2\pi)^{d/2}\sqrt{\det\Sigma}} \expigg(-rac{1}{2}(m{x}-m{\mu})^{ op}\Sigma^{-1}(m{x}-m{\mu})igg), \quad m{x} \in \mathbb{R}^d.$$

Proof. Let $m{X} \stackrel{\text{d}}{=} \mu + Am{Z}$ with $\operatorname{rank} A = d$, $m{Z} = (Z_1, \dots, Z_d)$, $Z_i \stackrel{\text{ind.}}{\sim} \operatorname{N}(0,1)$, $i \in \{1,\dots,d\}$. The density of $m{Z}$ is

$$f_{oldsymbol{Z}}(oldsymbol{z}) = \prod_{j=1}^d f_{Z_j}(z_j) = rac{1}{(2\pi)^{d/2}} \exp\Bigl(-rac{1}{2}oldsymbol{z}^ op oldsymbol{z}\Bigr), \quad oldsymbol{z} \in \mathbb{R}^d.$$

© QRM Tutorial | P. Embrechts, R. Frey, M. Hofert, A.J. McNeil

Section 6.1.3 | p. 316

By the Density Transformation Theorem,

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = f_{T(\boldsymbol{Z})}(\boldsymbol{x}) = f_{\boldsymbol{Z}}(T^{-1}(\boldsymbol{x})) \left| \det \frac{d}{d\boldsymbol{x}} T^{-1}(\boldsymbol{x}) \right|.$$

With $T(z)=\mu+Az$, we have $T^{-1}(x)=A^{-1}(x-\mu)$ and $\frac{d}{dx}T^{-1}(x)=A^{-1}$, and thus

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{d/2}} \exp\left(-\frac{1}{2}(A^{-1}(\boldsymbol{x} - \boldsymbol{\mu}))^{\top}(A^{-1}(\boldsymbol{x} - \boldsymbol{\mu}))\right) |\det(A^{-1})|.$$

Now
$$(A^{-1})^{\top}A^{-1} = (A^{\top})^{-1}A^{-1} = (AA^{\top})^{-1} = \Sigma^{-1}$$
 and $\det(A^{-1}) = 1/\det(A) = 1/\sqrt{\det(A)\det(A^{\top})} = 1/\sqrt{\det\Sigma}$ and thus the result follows.

Consequences:

■ Sets of the form $S_c = \{ \boldsymbol{x} \in \mathbb{R}^d : (\boldsymbol{x} - \boldsymbol{\mu})^\top \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) = c \}$, c > 0, describe points of equal density. Contours of equal density are thus ellipsoids. Whenever a multivariate density $f_X(\boldsymbol{x})$ depends on \boldsymbol{x} only

through the quadratic form $(x - \mu)^{\top} \Sigma^{-1} (x - \mu)$, it is the density of an elliptical distribution (see later).

■ The components of $X \sim N_d(\mu, \Sigma)$ are mutually independent if and only if Σ is diagonal, i.e., if and only if the components of X are uncorrelated.

Left: $N_d(\mu = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \Sigma = \begin{pmatrix} 1 \\ -0.7 \\ 1 \end{pmatrix})$; Right: $t_{\nu=4}(\mu, \frac{\nu-2}{\nu}\Sigma)$ (same mean and covariance matrix as on the left-hand side)

The definition of $N_d(\mu, \Sigma)$ in terms of a stochastic representation ($X \stackrel{\text{d}}{=} \mu + AZ$) directly justifies the following sampling algorithm; see also mvtnorm::rmvnorm(, method="chol").

Algorithm 6.8 (Sampling $N_d(\boldsymbol{\mu}, \Sigma)$)

Let $X \sim N_d(\boldsymbol{\mu}, \Sigma)$ with Σ positive definite.

- 1) Compute the Cholesky factor A of Σ ; see, e.g., Press et al. (1992).
- 2) Generate $Z_j \stackrel{\text{ind.}}{\sim} \mathrm{N}(0,1)$, $j \in \{1,\ldots,d\}$ (R: done with inversion!).
- 3) Return $\boldsymbol{X} = \boldsymbol{\mu} + A\boldsymbol{Z}$, where $\boldsymbol{Z} = (Z_1, \dots, Z_d)$.

Further useful properties of multivariate normal distributions

Linear combinations

If $X \sim N_d(\boldsymbol{\mu}, \Sigma)$ and $B \in \mathbb{R}^{k \times d}$, $\boldsymbol{b} \in \mathbb{R}^k$, then

$$BX + b = B(\mu + AZ) + b = (B\mu + b) + BAZ$$
$$\sim N_k(B\mu + b, BA(BA)^{\top}) = N_k(B\mu + b, B\Sigma B^{\top}).$$

© QRM Tutorial | P. Embrechts, R. Frey, M. Hofert, A.J. McNeil

Section 6.1.3 | p. 319

Special case (see variance-covariance method; or Proposition 6.6): ${m b}^{\top}{m X}\sim {\rm N}({m b}^{\top}{m \mu},{m b}^{\top}\Sigma{m b})$

Marginal dfs

Let $X \sim \mathrm{N}_d(\mu, \Sigma)$ and write $X = (X_1^\top, X_2^\top)^\top$, where $X_1 \in \mathbb{R}^k$, $X_2 \in \mathbb{R}^{d-k}$, and $\mu = (\mu_1^\top, \mu_2^\top)^\top$, $\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$. Then

$$X_1 \sim \mathrm{N}_k(\boldsymbol{\mu}_1, \Sigma_{11})$$
 and $X_2 \sim \mathrm{N}_{d-k}(\boldsymbol{\mu}_2, \Sigma_{22})$.

Proof. Choose $B = \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ 0 & I_{d-k} \end{pmatrix}$, respectively.

Conditional distributions

Let X be as before and Σ be positive definite. Then

$$X_2 \mid X_1 = x_1 \sim N_{d-k}(\mu_{2.1}, \Sigma_{22.1}),$$

where
$$\mu_{2.1} = \mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(x_1 - \mu_1)$$
 and $\Sigma_{22.1} = \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}$.

Proof. Via conditional densities or as follows: Consider $Z=AX_1+X_2$ with $A=-\Sigma_{21}\Sigma_{11}^{-1}$. Note that $(Z,X_1)=\begin{pmatrix}A&I_{d-k}\\I_k&0\end{pmatrix}X$ is jointly © QRM Tutorial | P. Embrechts, R. Frey, M. Hofert, A.J. McNeil Section 6.1.3 | p. 320

normal. Since $Z=X_2+AX_1$, we know that $(X_2\,|\,X_1=x_1)\stackrel{\rm d}=Z-Ax_1$ is multivariate normal (since Z is). We have left to show that the formulas for $\mu_{2,1}$ and $\Sigma_{22,1}$ hold. Since $A=-\Sigma_{21}\Sigma_{11}^{-1}$,

$$Cov[Z, X_1] = Cov[X_2, X_1] + ACov[X_1] = \Sigma_{21} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{11} = 0,$$

hence Z and X_1 are independent. Therefore

$$egin{aligned} m{\mu}_{2.1} &= \mathbb{E}[m{X}_2 \,|\, m{X}_1 = m{x}_1] = \mathbb{E}[m{Z}] - \mathbb{E}[m{A}m{X}_1 \,|\, m{X}_1 = m{x}_1] \ &= \mathbb{E}m{X}_2 + A\mathbb{E}m{X}_1 - Am{x}_1 = m{\mu}_2 + \Sigma_{21}\Sigma_{11}^{-1}(m{x}_1 - m{\mu}_1), \end{aligned}$$

$$\Sigma_{22.1} = \operatorname{Cov}[\boldsymbol{X}_2 \,|\, \boldsymbol{X}_1 = \boldsymbol{x}_1] = \operatorname{Cov}[\boldsymbol{Z} - A\boldsymbol{X}_1 \,|\, \boldsymbol{X}_1 = \boldsymbol{x}_1]$$

= $\operatorname{Cov}[\boldsymbol{Z} - A\boldsymbol{x}_1] = \operatorname{Cov}\boldsymbol{Z} = \operatorname{Cov}[\boldsymbol{X}_2 + A\boldsymbol{X}_1]$

$$= \operatorname{Cov}[\boldsymbol{X}_{2}] + A \operatorname{Cov}[\boldsymbol{X}_{1}]A^{\top} + \operatorname{Cov}[\boldsymbol{X}_{2}, \boldsymbol{X}_{1}]A^{\top} + A \operatorname{Cov}[\boldsymbol{X}_{1}, \boldsymbol{X}_{2}]$$

$$= \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{11}(-\Sigma_{21}\Sigma_{11}^{-1})^{\top} + \Sigma_{21}(-\Sigma_{21}\Sigma_{11}^{-1})^{\top} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}.$$

Noting that $(\Sigma_{21}\Sigma_{11}^{-1})^{\top} = (\Sigma_{11}^{-1})^{\top}\Sigma_{21}^{\top} = (\Sigma_{11}^{\top})^{-1}\Sigma_{12} = \Sigma_{11}^{-1}\Sigma_{12}$, the form of $\Sigma_{22,1}$ easily follows.

Quadratic forms

Let $X \sim \mathrm{N}_d(\mu, \Sigma)$, Σ positive definite with Cholesky factor A. Furthermore, let $Z = A^{-1}(X - \mu)$. Then $Z \sim N_d(\mathbf{0}, I_d)$. Moreover,

$$(\boldsymbol{X} - \boldsymbol{\mu})^{\top} \Sigma^{-1} (\boldsymbol{X} - \boldsymbol{\mu}) = \boldsymbol{Z}^{\top} \boldsymbol{Z} \sim \chi_d^2,$$
 (23)

which is useful for (goodness-of-fit) testing of $N_d(\mu, \Sigma)$; see later. *Proof.* Clear via linearity and definition, and the definition of χ_d^2 .

Convolutions

Let $X \sim \mathrm{N}_d(\boldsymbol{\mu}, \Sigma)$ and $Y \sim \mathrm{N}_d(\tilde{\boldsymbol{\mu}}, \tilde{\Sigma})$ be independent. Then

$$X + Y \sim N_d(\mu + \tilde{\mu}, \Sigma + \tilde{\Sigma}).$$

Proof. By independence, $\phi_{X+Y}(t)$ factors into

$$\begin{split} &= \phi_{\boldsymbol{X}}(\boldsymbol{t})\phi_{\boldsymbol{Y}}(\boldsymbol{t}) = \exp\Bigl(i\boldsymbol{t}^{\top}\boldsymbol{\mu} - \frac{1}{2}\boldsymbol{t}^{\top}\boldsymbol{\Sigma}\boldsymbol{t}\Bigr) \exp\Bigl(i\boldsymbol{t}^{\top}\tilde{\boldsymbol{\mu}} - \frac{1}{2}\boldsymbol{t}^{\top}\tilde{\boldsymbol{\Sigma}}\boldsymbol{t}\Bigr) \\ &= \exp\Bigl(i\boldsymbol{t}^{\top}(\boldsymbol{\mu} + \tilde{\boldsymbol{\mu}}) - \frac{1}{2}\boldsymbol{t}^{\top}(\boldsymbol{\Sigma} + \tilde{\boldsymbol{\Sigma}})\boldsymbol{t}\Bigr), \end{split}$$

which is the cf of $N_d(\mu + \tilde{\mu}, \Sigma + \tilde{\Sigma})$.

Further properties:

- 1) Univariate t_{ν} distribution: $Z \sim \mathrm{N}(0,1)$, $W \sim \chi_{\nu}^2$ independent $\Rightarrow X = Z/\sqrt{W/\nu} \sim t_{\nu}$. With $Y = \mu + \sigma X$, one has $\mathbb{E}Y = \mu$ if $\nu > 1$ and $\mathrm{Var}[Y] = \frac{\nu}{\nu-2}\sigma$ if $\nu > 2$.
 - Generalization of χ^2_{ν} to $\nu>0$: $\chi^2_{\nu}=\Gamma(\nu/2,1/2)$ where $\Gamma(\alpha,\beta)$ has density $f(x)=\beta^{\alpha}x^{\alpha-1}e^{-\beta x}/\Gamma(\alpha)$ (β is the rate; see also R).
- 2) If $X_1, \ldots, X_n \stackrel{\text{ind.}}{\sim} \mathrm{N}_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\mathrm{rank} \, \boldsymbol{\Sigma} = d$, then

$$\sum_{i=1}^{n} (\boldsymbol{X}_{i} - \bar{\boldsymbol{X}})(\boldsymbol{X}_{i} - \bar{\boldsymbol{X}})^{\top} \sim W_{d}(\Sigma, n-1) \quad (\textit{Wishart distr.}) \quad (24)$$

and $\bar{\boldsymbol{X}}$ and (24) are independent. For $X = (\boldsymbol{X}_1^\top, \dots, \boldsymbol{X}_n^\top)^\top$, one has $X^\top X = \sum_{i=1}^n \boldsymbol{X}_i \boldsymbol{X}_i^\top \sim \mathrm{W}_d(\Sigma, n)$; special case: $\mathrm{W}_1(1, n) = \chi_n^2$.

6.1.4 Testing multivariate normality

By Proposition 6.6,

$$X_1, \ldots, X_n \stackrel{\text{ind.}}{\sim} \mathrm{N}_d(\mu, \Sigma) \Rightarrow a^\top X_1, \ldots, a^\top X_n \stackrel{\text{ind.}}{\sim} \mathrm{N}(a^\top \mu, a^\top \Sigma a).$$

This can be tested statistically (for some a) with various goodness-of-fit tests (e.g., Q-Q plots) known for univariate normality (however, for $a = e_j$, $j \in \{1, \ldots, d\}$, we would only test normality of the margins, not joint normality). Alternatively, (23) could be used to test joint normality.

Univariate tests

Formal statistical tests (see fBasics::NormalityTests)

- For general univariate df *F*:
 - Kolmogorov-Smirnov (stats::ks.test())
 - ► Cramér—von Mises (for normal df: nortest::cvm.test())

- Anderson-Darling (recommended by D'Agostino and Stephens (1986);ADGofTest::ad.test())
- For $N(\mu, \sigma^2)$:
 - ▶ D'Agostino (fBasics::dagoTest(), moments::agostino.test())
 - ► Shapiro-Wilk (stats::shapiro.test())
 - Jarque-Bera (tseries::jarque.bera.test(),
 moments::jarque.test())

Graphical tests

Let X_1,\ldots,X_n be iid, $\hat{F}_n(x)=\frac{1}{n}\sum_{i=1}^n\mathbbm{1}_{\{X_i\leq x\}}$ the corresponding empirical distribution function (edf). Suppose we want to graphically test whether $X_1,\ldots,X_n\sim F$ for some df F based on given realizations x_1,\ldots,x_n . Let $x_{(1)}\leq\cdots\leq x_{(n)}$ denote the corresponding ordered statistics. Possible options are:

- P-P plot: Plot $\{(p_i, F(x_{(i)})): i=1,\ldots,n\}$, where $p_i:=$ ppoints(n) [i] $\approx \frac{i-1/2}{n}$.
- \blacksquare Q-Q plot: Plot $\{(F^-(p_i),x_{(i)}):i=1,\ldots,n\}$ (differences in tails better visible).

Justification:

- 1) Glivenko–Cantelli: $\sup_{x\in\mathbb{R}}|\hat{F}_n(x)-F(x)|\overset{\text{a.s.}}{\underset{n\uparrow\infty}{\to}}0$
- 2) $\hat{F}_n(x) \underset{n \to \infty}{\to} F(x) \ \forall \, x \in C(F) \Leftrightarrow \hat{F}_n^-(u) \underset{n \to \infty}{\to} F^-(u) \ \forall \, u \in C(F^-);$ see van der Vaart (2000, Lemma 21.2)
- By 1), the first (and thus the 2nd) part of 2) holds. Hence, for the true underlying F, $x_{(i)}=\hat{F}_n^-(i/n)\approx\hat{F}_n^-(p_i)\approx F^-(p_i)$.
- Interpretation: If F is (reasonably close to) the underlying unknown df, P-P and Q-Q plots resemble lines close to y=x (possibly after standardization to mean 0 and variance 1).

Multivariate tests

Formal statistical tests

- Multivariate Shapiro-Wilk (mvnormtest::mshapiro.test())
- Mardia's test (dprep::mardia()):
 - According to (23), if $X \sim \mathrm{N}_d(\mu, \Sigma)$ with Σ positive definite, then $(X \mu)^\top \Sigma^{-1} (X \mu) \sim \chi_d^2$.
 - Let $D_i^2 = (\boldsymbol{X}_i \bar{\boldsymbol{X}})^\top S^{-1} (\boldsymbol{X}_i \bar{\boldsymbol{X}})$ denote the squared Mahalanobis distances and $D_{ij} = (\boldsymbol{X}_i \bar{\boldsymbol{X}})^\top S^{-1} (\boldsymbol{X}_j \bar{\boldsymbol{X}})$ the Mahalanobis angles.
 - Let $b_d = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n D_{ij}^3$ and $k_d = \frac{1}{n} \sum_{i=1}^n D_i^4$. Under the null hypothesis one can show that asymptotically for $n \to \infty$,

$$\frac{n}{6}b_d \sim \chi^2_{d(d+1)(d+2)/6}, \quad \frac{k_d - d(d+2)}{\sqrt{8d(d+2)/n}} \sim N(0,1),$$

which can be used for testing; see Joenssen and Vogel (2014).

Graphical test

■ Due to \bar{X} and S, the D_i^2 's are not exactly following a χ_d^2 anymore. It turns out that $\frac{n}{(n-1)^2}D_i^2 \overset{H_0}{\sim} \mathrm{Beta}(d/2,(n-d-1)/2)$; see Gnanadesikan and Kettenring (1972). Check this with a Q-Q plot. For large n, the approximate χ_d^2 distribution is fine.

Example 6.9 (Multivariate (non-)normality of 10 Dow Jones stocks)

- We apply Mardia's test (of multivariate skewness and kurtosis) to daily/weekly/monthly/quarterly log-returns of 10 (of the 30) Dow Jones stocks from 1993–2000.
- We also compare D_i^2 data to a χ_{10}^2 using a Q-Q plot.

Mardia's (asymptotic) test based on the multivariate measures of skewness and kurtosis:

n	Daily	Weekly	Monthly	Quarterly
	2020	416	96	32
b_{10} p -value	9.31	9.91	21.10	50.10
	0.00	0.00	0.00	0.02
k_{10} p -value	242.45	177.04	142.65	120.83
	0.00	0.00	0.00	0.44

Conclusion: Daily/weekly/montly data: Evidence against joint normality Quarterly data: CLT effect seems to take place (but too little data to say more); still evidence against joint normality.

Q-Q plot of D_i^2 data against a χ_{10}^2 distribution:

(a) daily data; (b) weekly data; (c) monthly data; and (d) quarterly data

Example 6.10 (Simulated data vs BMW-Siemens)

Is the BMW-Siemens data (see Section 3.2.2) jointly normal?

Considering the first margin only:

Considering the second margin only:

Q-Q plot of the simulated (left) or real (right) D_i^2 's against a χ_2^2 :

Advantages of $N_d(\mu, \Sigma)$

- Inference "easy".
- Distribution is determined by μ and Σ .
- Linear combinations are normal ($\Rightarrow VaR_{\alpha}$ and ES_{α} calculations (for portfolios, for example) are easy).
- Marginal distributions are normal.
- Conditional distributions are normal.
- Quadratic forms are known.
- Convolutions are normal.
- Sampling is straightforward.
- Independence and uncorrelatedness are equivalent.

Drawbacks of $N_d(\mu, \Sigma)$ for modeling risk-factor changes

- 1) Tails of univariate (normal) margins are too thin (generate too few extreme events).
- 2) Joint tails are too thin (generate too few joint extreme events). $N_d(\mu, \Sigma)$ cannot capture the notion of tail dependence (see later).
- 3) Very strong symmetry known as radial symmetry: X is called radially symmetric about μ if $X \mu \stackrel{\text{d}}{=} \mu X$. For $N_d(\mu, \Sigma)$: $X \mu \stackrel{\text{d}}{=} AZ \stackrel{\text{d}}{=} A(-Z) = -AZ \stackrel{\text{d}}{=} -(X \mu) = \mu X$.

In short:

- Elliptical distributions (a generalization of normal mixture distributions) can address 1) and 2) while sharing many of the desirable properties of $N_d(\mu, \Sigma)$.
- Normal mean-variance mixture distribution can also address 3) (but at the expense of tractability in comparison to $N_d(\mu, \Sigma)$).
- © QRM Tutorial | P. Embrechts, R. Frey, M. Hofert, A.J. McNeil Section 6.1.4 | p. 336

6.2 Normal mixture distributions

Idea: Randomize Σ (and μ) with a non-negative rv W.

6.2.1 Normal variance mixtures

Definition 6.11 (Multivariate normal variance mixtures)

The random vector \boldsymbol{X} has a (multivariate) normal variance mixture distribution if

$$\boldsymbol{X} \stackrel{\mathsf{d}}{=} \boldsymbol{\mu} + \sqrt{W} A \boldsymbol{Z},\tag{25}$$

where $Z \sim \mathrm{N}_k(\mathbf{0}, I_k)$, $W \geq 0$ is a rv independent of Z, $A \in \mathbb{R}^{d \times k}$, and $\mu \in \mathbb{R}^d$. μ is called *location vector* and $\Sigma = AA^{\top}$ *scale* (or *dispersion*) matrix.

Observe that $(\boldsymbol{X} \mid \boldsymbol{W} = \boldsymbol{w}) \stackrel{\text{d}}{=} \boldsymbol{\mu} + \sqrt{w} A \boldsymbol{Z} = \mathrm{N}_d(\boldsymbol{\mu}, w A A^\top) = \mathrm{N}_d(\boldsymbol{\mu}, \boldsymbol{w} \Sigma);$ or $(\boldsymbol{X} \mid \boldsymbol{W}) \stackrel{\text{d}}{=} \mathrm{N}_d(\boldsymbol{\mu}, \boldsymbol{W} \Sigma).$ \boldsymbol{W} can be interpreted as a shock affecting the volatilities of all risk factors.

Properties of multivariate normal variance mixtures

Assume $\operatorname{rank}(A) = d \leq k$ and that Σ is positive definite. Let $Y = \mu + AZ$.

- $\blacksquare \ \, \mathsf{lf} \ \, \mathbb{E}\sqrt{W} < \infty, \, \mathsf{then} \ \, \mathbb{E}[\boldsymbol{X}] \stackrel{\mathsf{ind.}}{=} \boldsymbol{\mu} + \mathbb{E}[\sqrt{W}]A\mathbb{E}[\boldsymbol{Z}] = \boldsymbol{\mu} + \boldsymbol{0} = \boldsymbol{\mu} \ \, (=\mathbb{E}\boldsymbol{Y})$
- If $\mathbb{E}W < \infty$, then

$$\begin{aligned} \operatorname{Cov}[\boldsymbol{X}] &= \operatorname{Cov}[\sqrt{W}A\boldsymbol{Z}] = \mathbb{E}[(\sqrt{W}A\boldsymbol{Z})(\sqrt{W}A\boldsymbol{Z})^{\top}] \\ &\stackrel{\mathsf{ind}}{=} \mathbb{E}[W] \cdot \mathbb{E}[A\boldsymbol{Z}\boldsymbol{Z}^{\top}A^{\top}] = \mathbb{E}[W] \cdot A\mathbb{E}[\boldsymbol{Z}\boldsymbol{Z}^{\top}]A^{\top} \\ &= \mathbb{E}[W]AI_{k}A^{\top} = \mathbb{E}[W]\Sigma \neq \sum_{\mathsf{in \ general}} (= \operatorname{Cov}[\boldsymbol{Y}]) \end{aligned}$$

■ However, if they exist (i.e., if $\mathbb{E}W < \infty$), $\operatorname{Cor}[X]$ and $\operatorname{Cor}[Y]$ are equal: $\operatorname{Proof. Cov}[X] = \mathbb{E}[W]\Sigma \Rightarrow \operatorname{Cov}[X_i, X_j] = \mathbb{E}[W]\Sigma_{ij}$ and $\operatorname{Var}[X_i] = \mathbb{E}[W]\Sigma_{ii}$. This implies that

$$\operatorname{Cor}[X_i, X_j] = \frac{\operatorname{Cov}[X_i, X_j]}{\sqrt{\operatorname{Var}[X_i] \operatorname{Var}[X_j]}} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{jj}}} = \operatorname{Cor}[Y_i, Y_j]. \quad \Box$$

Lemma 6.12 (Independence in normal variance mixtures)

Let $X = \mu + \sqrt{W}AZ$ with $\mathbb{E}W < \infty$ and $A = I_d$ ($\Rightarrow \text{Cov}[X] =$ $\mathbb{E}[W]\operatorname{Cov}[\boldsymbol{Z}] = \mathbb{E}[W]I_d$ (uncorrelated)). Then

 X_i and X_j are independent $\iff W$ is a.s. constant (i.e., $X \sim N_d$).

Proof. W.I.o.g. assume $\mu = 0$.

"
$$\mathbb{E}|X_i| \, \mathbb{E}|X_j| \stackrel{\mathrm{ind.}}{=} \, \mathbb{E}[|X_i||X_j|] = \mathbb{E}[W|Z_i||Z_j|] \stackrel{\mathrm{ind.}}{=} \, \mathbb{E}[W] \, \mathbb{E}|Z_i| \, \mathbb{E}|Z_j|$$

$$\geq \mathbb{E}[\sqrt{W}]^2 \, \mathbb{E}|Z_i| \, \mathbb{E}|Z_j| \stackrel{\mathrm{ind.}}{=} \, \mathbb{E}|\sqrt{W}Z_i| \, \mathbb{E}|\sqrt{W}Z_j| = \, \mathbb{E}|X_i|\mathbb{E}|X_j|$$
Jensen

⇒ We must have "=" in Jensen's inequality. This hols if and only if

W is constant a.s.; so $X \sim N_d(0, WI_d)$ in this case.

" \Leftarrow " W a.s. constant $\Rightarrow X \sim N_d(\mathbf{0}, WI_d) \Rightarrow X_i, X_i$ independent.

Recall: If $X \sim \mathrm{N}_d(\mu, \Sigma)$, then $\phi_X(t) = \exp(it^\top \mu - \frac{1}{2}t^\top \Sigma t)$. Furthermore, $X \mid W = w \sim \mathrm{N}_d(\mu, w\Sigma)$ (or: $X \mid W \sim \mathrm{N}_d(\mu, W\Sigma)$)

 Characteristic function: The cf of a multivariate normal variance mixtures is

$$\phi_{\boldsymbol{X}}(\boldsymbol{t}) = \mathbb{E}[\exp(i\boldsymbol{t}^{\top}\boldsymbol{X})] = \mathbb{E}[\mathbb{E}[\exp(i\boldsymbol{t}^{\top}\boldsymbol{X}) \mid W]]$$
$$= \mathbb{E}[\exp(i\boldsymbol{t}^{\top}\boldsymbol{\mu} - \frac{1}{2}W\boldsymbol{t}^{\top}\boldsymbol{\Sigma}\boldsymbol{t})] = \exp(i\boldsymbol{t}^{\top}\boldsymbol{\mu})\mathbb{E}[\exp(-W\frac{1}{2}\boldsymbol{t}^{\top}\boldsymbol{\Sigma}\boldsymbol{t})].$$

LS transform: The Laplace-Stieltjes transform of F_W is

$$\hat{F}_W(\theta) := \mathcal{LS}[F_W](\theta) := \mathbb{E}[\exp(-\theta W)] = \int_0^\infty e^{-\theta w} dF_W(w).$$

Therefore, $\phi_{\boldsymbol{X}}(\boldsymbol{t}) = \exp(i\boldsymbol{t}^{\top}\boldsymbol{\mu})\hat{F}_{W}(\frac{1}{2}\boldsymbol{t}^{\top}\boldsymbol{\Sigma}\boldsymbol{t})$. We thus introduce the notation $\boldsymbol{X} \sim M_{d}(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \hat{F}_{W})$ for a d-dimensional multivariate normal variance mixture.

 $f_{\mathbf{X}}(\mathbf{x}) = \int_0^\infty f_{\mathbf{X}|W}(\mathbf{x} \mid w) \, dF_W(w)$

■ **Density:** If Σ is positive definite, $\mathbb{P}(W=0)=0$, the density of \boldsymbol{X} is

$$= \int_0^\infty \frac{1}{(2\pi)^{d/2} w^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{(\boldsymbol{x} - \boldsymbol{\mu})^\top \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}{2w}\right) dF_W(w)$$

$$\Rightarrow \text{ Only depends on } \boldsymbol{x} \text{ through } (\boldsymbol{x} - \boldsymbol{\mu})^\top \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu}).$$

$$\Rightarrow \text{ Multivariate normal variance mixtures are elliptical distributions.}$$

If Σ is diagonal and $\mathbb{E}W < \infty$, X is uncorrelated (as $\mathrm{Cov}[X] = \mathbb{E}[W]\Sigma$) but not independent unless W is constant (a/ \overline{W} greates dependence).

but not independent unless
$$W$$
 is constant (\sqrt{W} creates dependence).

• Linear combinations: For $X \sim M_d(\mu, \Sigma, \hat{F}_W)$ and $Y = BX + b$, where $B \in \mathbb{R}^{k \times d}$ and $b \in \mathbb{R}^k$, we have $Y \sim M_k(B\mu + b, B\Sigma B^\top, \hat{F}_W)$.

Proof. Recall that $\phi_{\boldsymbol{X}}(\boldsymbol{t}) = \exp(i\boldsymbol{t}^{\top}\boldsymbol{\mu})\hat{F}_{W}(\frac{1}{2}\boldsymbol{t}^{\top}\boldsymbol{\Sigma}\boldsymbol{t})$. Thus, $\phi_{\boldsymbol{Y}}(\boldsymbol{t}) = \mathbb{E}[\exp(i\boldsymbol{t}^{\top}(B\boldsymbol{X}+\boldsymbol{b}))] = \exp(i\boldsymbol{t}^{\top}\boldsymbol{b}) \cdot \mathbb{E}[\exp(i(B^{\top}\boldsymbol{t})^{\top}\boldsymbol{X})]$

 $= \exp(i\boldsymbol{t}^{\top}\boldsymbol{b}) \, \phi_{\boldsymbol{X}}(B^{\top}\boldsymbol{t}) = \exp(i\boldsymbol{t}^{\top}(\boldsymbol{b} + B\boldsymbol{\mu})) \, \hat{F}_{W}(\frac{1}{2}\boldsymbol{t}^{\top}B\Sigma B^{\top}\boldsymbol{t}). \qquad \Box$ If $\boldsymbol{a} \in \mathbb{R}^{d} \, (\boldsymbol{b} = \boldsymbol{0}, \, B = \boldsymbol{a}^{\top} \in \mathbb{R}^{1 \times d}), \, \boldsymbol{a}^{\top}\boldsymbol{X} \sim M_{1}(\boldsymbol{a}^{\top}\boldsymbol{\mu}, \boldsymbol{a}^{\top}\Sigma \boldsymbol{a}, \hat{F}_{W}).$

If $a \in \mathbb{R}^a$ (b = 0, $B = a^+ \in \mathbb{R}^{1 \wedge a}$), $a^+ X \sim M_1(a^+ \mu, a^+ \Sigma a, F_W)$.

© QRM Tutorial | P. Embrechts, R. Frey, M. Hofert, A.J. McNeil Section 6.2.1 | p. 341

Sampling:

Algorithm 6.13 (Simulation of $m{X} = m{\mu} + \sqrt{W} A m{Z} \sim M_d(m{\mu}, \Sigma, \hat{F}_W)$)

- 1) Generate $Z \sim N_d(\mathbf{0}, I_d)$.
- 2) Generate $W \sim F_W$ (with LS transform \hat{F}_W), independent of Z.
- 3) Compute the Cholesky factor A (such that $AA^{\top} = \Sigma$).
- 4) Return $X = \mu + \sqrt{W}AZ$.

Example 6.14 ($t_d(\nu, \mu, \Sigma)$ distribution)

- 1) Generate $Z \sim N_d(\mathbf{0}, I_d)$.
- 2) Generate $V \sim \chi^2_{\nu}$ and set $W = \frac{\nu}{V} \sim \mathrm{Ig}(\nu/2, \nu/2)$. Alternatively, W = 1/V with $V \sim \Gamma(\nu/2, \mathrm{rate} = \nu/2)$.
- 3) Compute the Cholesky factor A (such that $AA^{\top} = \Sigma$).
- 4) Return $X = \mu + \sqrt{W}AZ$.

Examples of multivariate normal variance mixtures

Multivariate normal distribution

$$W=1$$
 a.s. (degenerate case)

■ Two point mixture

$$W = \begin{cases} w_1 \text{ with probability } p, \\ w_2 \text{ with probability } 1 - p \end{cases} \quad w_1, \ w_2 > 0, \ w_1 \neq w_2.$$

Can be used to model ordinary and stress regimes; extends to k regimes.

Symmetric generalised hyperbolic distribution

W has a generalised inverse Gaussian distribution (GIG); see McNeil et al. (2015, p. 187)

Multivariate t distribution

W has an inverse gamma distribution W=1/V for $V\sim \Gamma(\nu/2,\nu/2).$

▶ $\mathbb{E}[W] = \frac{\nu}{\nu - 2} \Rightarrow \operatorname{Cov}[X] = \frac{\nu}{\nu - 2} \Sigma$. For finite variances/correlations, $\nu > 2$ is required. For finite mean, $\nu > 1$ is required.

 $\,\blacktriangleright\,\,$ The (elliptical) density of the multivariate t distribution is given by

$$f_{X}(x) = \frac{\Gamma((\nu+d)/2)}{\Gamma(\nu/2)(\nu\pi)^{d/2}|\Sigma|^{1/2}} \left(1 + \frac{(x-\mu)^{\top}\Sigma^{-1}(x-\mu)}{\nu}\right)^{-\frac{\nu+d}{2}},$$

where $\mu \in \mathbb{R}^d$, $\Sigma \in \mathbb{R}^{d \times d}$ is a positive definite matrix, and ν is the degrees of freedom. Notation: $X \sim t_d(\nu, \mu, \Sigma)$.

- $t_d(\nu, \mu, \Sigma)$ has heavier marginal and joint tails than $N_d(\mu, \Sigma)$.
- ▶ BMW–Siemens data: Simulations from fitted $N_d(\mu, \Sigma)$ and $t_d(3, \mu, \Sigma)$:

6.2.2 Normal mean-variance mixtures

- Radial symmetry implies that all one-dimensional margins of normal variance mixtures are symmetric.
- Often visible in data: Joint losses have heavier tails than joint gains.

Idea: Introduce asymmetry by mixing normal distributions with different means and variances.

X has a (multivariate) normal mean-variance mixture distribution if

$$\boldsymbol{X} \stackrel{\mathsf{d}}{=} \boldsymbol{m}(W) + \sqrt{W} A \boldsymbol{Z},\tag{26}$$

where

- \blacksquare $Z \sim N_k(\mathbf{0}, I_k);$
- $W \ge 0$ is a scalar random variable which is independent of Z;
- $A \in \mathbb{R}^{d \times k}$ is a matrix of constants;
- $m:[0,\infty)\to\mathbb{R}^d$ is a measurable function.

Normal mean-variance mixtures add radial asymmetry: Let $\Sigma = AA^{\top}$ and observe that $\boldsymbol{X} \mid W = w \sim N_d(\boldsymbol{m}(w), w\Sigma)$. In general, they are no longer elliptical and $\operatorname{Cor}(\boldsymbol{X}) \neq \operatorname{Cor}(\boldsymbol{Y})$ (where $\boldsymbol{Y} = \boldsymbol{\mu} + A\boldsymbol{Z}$)

Example 6.15 (Generalized hyperbolic distribution)

• Here, $m(W) = \mu + W\gamma$. Since

$$\mathbb{E}[X \mid W] = \mu + W\gamma,$$
$$\operatorname{Cov}[X \mid W] = W\Sigma$$

one has

$$\mathbb{E}\boldsymbol{X} = \mathbb{E}[\mathbb{E}[\boldsymbol{X} \mid W]] = \boldsymbol{\mu} + \mathbb{E}[W]\boldsymbol{\gamma} \quad \text{if } \mathbb{E}W < \infty,$$

$$\operatorname{Cov}[\boldsymbol{X}] = \mathbb{E}[\operatorname{Cov}[\boldsymbol{X} \mid W]] + \operatorname{Cov}[\mathbb{E}[\boldsymbol{X} \mid W]]$$

$$= \mathbb{E}[W]\boldsymbol{\Sigma} + \operatorname{Var}[W]\boldsymbol{\gamma}\boldsymbol{\gamma}^{\top} \quad \text{if } \mathbb{E}[W^{2}] < \infty.$$

If W has a GIG distribution, then X follows a generalised hyperbolic distribution. $\gamma = 0$ leads to (elliptical) normal variance mixtures; see McNeil et al. (2015, Sections 6.2.3) for details.

6.3 Spherical and elliptical distributions

Empirical examples (see McNeil et al. (2015, Sections 6.2.4)) show that

- 1) $M_d(\mu, \Sigma, \hat{F}_W)$ (e.g., multivariate t, NIG) provide superior models to $N_d(\mu, \Sigma)$ for daily/weekly US stock-return data;
- 2) the more general radially asymmetric normal mean-variance mixture distributions did not seem to offer much of an improvement.

We soon study elliptical distributions, a generalization of $M_d(\mu, \Sigma, \hat{F}_W)$.

6.3.1 Spherical distributions

Definition 6.16 (Spherical distribution)

A random vector $Y = (Y_1, \dots, Y_d)$ has a spherical distribution if for every orthogonal $U \in \mathbb{R}^{d \times d}$ (i.e., $U \in \mathbb{R}^{d \times d}$ with $UU^{\top} = U^{\top}U = I_d$)

 $Y \stackrel{d}{=} UY$ (distributionally invariant under rotations and reflections)

Theorem 6.17 (Characterization of spherical distributions)

Let $||t|| = (t_1^2 + \cdots + t_d^2)^{1/2}$, $t \in \mathbb{R}^d$. The following are equivalent:

- 1) Y is spherical.
- 2) \exists a characteristic generator $\psi:[0,\infty)\to\mathbb{R}$, such that $\phi_Y(t)=\mathbb{E}[e^{it^\top Y}]=\psi(||t||^2), \forall t\in\mathbb{R}^d$.
- 3) For every $a \in \mathbb{R}^d$, $a^{\top}Y \stackrel{d}{=} ||a||Y_1$ (linear combinations are of the same type \Rightarrow subadditivity of $\operatorname{VaR}_{\alpha}$ for elliptically distr. losses).
- Proof. 1) \Rightarrow 2): $\phi_{\boldsymbol{Y}}(t) = \phi_{U\boldsymbol{Y}}(t) = \phi_{\boldsymbol{Y}}(U^{\top}t)$ for all $U \in \mathbb{R}^{d \times d}$ orthogonal. Since U can only change the direction of t but not its length, $\phi_{\boldsymbol{Y}}(t)$ only depends on $\|t\|$, i.e., the length of $t \Rightarrow$ we can define $\psi(\|t\|^2) = \phi_{\boldsymbol{Y}}(t)$.
- 2) \Rightarrow 3): $\phi_{Y_1}(t) = \phi_{Y}(te_1) = \psi(t^2)$ (*). Now $\phi_{\boldsymbol{a}^{\top}Y}(t) = \phi_{Y}(t\boldsymbol{a}) = \psi(t^2\|\boldsymbol{a}\|^2) = \psi((t\|\boldsymbol{a}\|)^2) = \phi_{Y_1}(t\|\boldsymbol{a}\|) = \phi_{\|\boldsymbol{a}\|Y_1}(t)$
- © QRM Tutorial | P. Embrechts, R. Frey, M. Hofert, A.J. McNeil

3) \Rightarrow 1): $\phi_{UY}(t) = \mathbb{E}[\exp(i(U^{\top}t)^{\top}Y)] = \mathbb{E}[\exp(ia^{\top}Y)] = \mathbb{E}[\exp(i\|a\|Y_1)]$ $= \mathbb{E}[\exp(i\|\boldsymbol{t}\|Y_1)] = \mathbb{E}[\exp(i\boldsymbol{t}^{\top}\boldsymbol{Y})] = \phi_{\boldsymbol{Y}}(\boldsymbol{t})$

Due to the above characterizations, we introduce the notation $Y \sim S_d(\psi)$.

Theorem 6.18 (Stochastic representation)

 $Y \sim S_d(\psi)$ if and only if

$$m{Y} \stackrel{ ext{d}}{=} R m{S},$$
 (27) for independent $\emph{radial part } R \geq 0$ and $m{S} \sim \mathrm{U}(\{m{x} \in \mathbb{R}^d: \|m{x}\| = 1\}).$

(27)

Proof. Let Ω_d be the characteristic generator of S.

"\(\Righta\)"
$$Y \sim S_d(\psi) \Rightarrow \phi_Y(\|t\|u) = \psi(\|t\|^2 u^\top u) = \psi(\|t\|^2)$$
 for all $u \in \mathbb{R}^d$: $\|u\| = 1$. Replacing u by S and integrating leads to $\psi(\|t\|^2) = \mathbb{E}_S[\phi_Y(\|t\|S)] = \mathbb{E}_S[\mathbb{E}_Y[e^{i\|t\|S^\top Y}]] = \mathbb{E}_Y[\Phi_S(\|t\|Y)] = \mathbb{E}_Y[\Omega_d(\|t\|^2 Y^\top Y)]$. We thus obtain that

© QRM Tutorial | P. Embrechts, R. Frey, M. Hofert, A.J. McNeil Section 6.3.1 p. 349

$$\begin{aligned} \phi_{\boldsymbol{Y}}(\boldsymbol{t}) &= \psi(\|\boldsymbol{t}\|^2) = \mathbb{E}_{R}[\Omega_d(\|\boldsymbol{t}\|^2 R^2)] = \int_0^\infty \Omega_d(\|\boldsymbol{t}\|^2 r^2) \, dF_R(r) \\ &= \int_0^\infty \phi_{\boldsymbol{S}}(r\boldsymbol{t}) \, dF_R(r) = \phi_{RS}(\boldsymbol{t}) \text{ for all } \boldsymbol{t} \in \mathbb{R}^d. \end{aligned}$$

" \Leftarrow " Let $Z \sim \mathrm{N}_d(\mathbf{0}, I_d)$. Since Z is spherical and $\|Z/\|Z\|\| = \|Z\|/\|Z\| = 1$, $S \stackrel{\mathrm{d}}{=} Z/\|Z\|$. As such, S itself is spherical, since $US \stackrel{\mathrm{d}}{=} UZ/\|Z\| \stackrel{\mathrm{d}}{=} Z/\|Z\| \stackrel{\mathrm{d}}{=} S$ for any orthogonal $U \in \mathbb{R}^{d \times d}$. Theorem 6.17 Part 2) implies that $\phi_S(t) = \Omega_d(\|t\|^2)$, so $\phi_{RS}(t) = \mathbb{E}[\exp(it^\top RS)] = \mathbb{E}_R[\mathbb{E}[\exp(it^\top RS)|R]] = \mathbb{E}_R[\phi_S(Rt)] = \mathbb{E}_R[\Omega_d(R^2\|t\|^2)]$, which is a function in $\|t\|^2$ and thus, by 2), RS is spherical.

Corollary 6.19

If $Y \sim S_d(\psi)$ and $\mathbb{P}(Y = \mathbf{0}) = 0$, then $(\|Y\|, \frac{Y}{\|Y\|}) \stackrel{\text{d}}{=} (R, S)$ since

$$(\|Y\|, \frac{Y}{\|Y\|}) \stackrel{d}{=} (\|RS\|, \frac{RS}{\|RS\|}) = (|R|\|S\|, \frac{S}{\|S\|}) = (R, S).$$

In particular, $\|Y\|$ and $Y/\|Y\|$ are independent (\Rightarrow goodness-of-fit).

■ If $Y \sim S_d(\psi)$ and admits a density f_Y , then the *inversion formula* $f_Y(y) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-it^\top y} \phi_Y(t) \, dt$ and Theorem 6.17 Part 2) show that for any orthogonal U,

$$\begin{split} & = \frac{1}{\mathsf{subs.}} \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-i s^\top \boldsymbol{y}} \phi_{\boldsymbol{Y}}(U\boldsymbol{s}) \, d\boldsymbol{s} \\ & = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-i s^\top \boldsymbol{y}} \psi((U\boldsymbol{s})^\top U\boldsymbol{s}) \, d\boldsymbol{s} \\ & = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-i s^\top \boldsymbol{y}} \psi(s^\top \boldsymbol{s}) \, d\boldsymbol{s} = \cdots = f_{\boldsymbol{Y}}(\boldsymbol{y}). \end{split}$$

This implies that $f_Y(y) = g(\|y\|^2)$ for a function $g: [0, \infty) \to [0, \infty)$ referred to as *density generator*. So $f_Y(y)$ is constant on hyperspheres in \mathbb{R}^d .

■ For $Y \sim t_d(\nu, \mathbf{0}, I_d)$, $g(x) = \frac{\Gamma((\nu+d)/2)}{\Gamma(\nu/2)(\pi\nu)^{d/2}} (1 + \frac{x}{\nu})^{-(\nu+d)/2}$.

 $f_{\mathbf{Y}}(U\mathbf{y}) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-i(U^{\top}\mathbf{t})^{\top}\mathbf{y}} \phi_{\mathbf{Y}}(\mathbf{t}) d\mathbf{t}$

Example 6.20 (Standardized multivariate normal variance mixtures)

• $m{Y} \sim M_d(m{0}, m{I_d}, \hat{F}_W)$ is spherical (recall: $m{Y} \stackrel{\text{d}}{=} m{0} + \sqrt{W} I_d m{Z}$) since

$$\phi_{\boldsymbol{Y}}(\boldsymbol{t}) = \mathbb{E}[\exp(i\boldsymbol{t}^{\top}\sqrt{W}\boldsymbol{Z})] = \mathbb{E}_{W}[\mathbb{E}[\exp(i(\boldsymbol{t}\sqrt{W})^{\top}\boldsymbol{Z}) \mid W]]$$
$$= \mathbb{E}[\exp(-\frac{1}{2}W\boldsymbol{t}^{\top}\boldsymbol{t})] = \hat{F}_{W}(\frac{1}{2}\boldsymbol{t}^{\top}\boldsymbol{t}) = \hat{F}_{W}(\frac{1}{2}\|\boldsymbol{t}\|^{2}),$$

so $\boldsymbol{Y} \sim S_d(\psi)$ by Theorem 6.17 Part 2). We see that the characteristic generator of \boldsymbol{Y} is $\psi(t) = \hat{F}_W(t/2)$.

- For $Y \sim N_d(\mathbf{0}, I_d)$, $\psi(t) = \exp(-t/2)$. By Corollary 6.19, simulating $S \sim \mathrm{U}(\{x \in \mathbb{R}^d : \|x\| = 1\})$ can thus be done via $S \stackrel{\mathrm{d}}{=} Y/\|Y\|$. Fang et al. (1990, pp. 48) show that ψ generates $S_d(\psi)$ for all $d \in \mathbb{N}$ if and only if it is the characteristic generator of a normal mixture.
- Standardized normal variance mixtures \subseteq spherical distributions. They do not coincide, however, since $S \sim \mathrm{U}(\{x \in \mathbb{R}^d : \|x\| = 1\})$ is spherical but not a normal variance mixture (if it was, $S = \sqrt{W}Z$, so \sqrt{W} would have to scale Z_1, \ldots, Z_d differently in order for $\|S\| = 1$).

Example 6.21 (R, S, Cov, Cor)

lacksquare It follows from $m{Y} \sim N_d(\mathbf{0}, I_d)$ and $m{R}^2 = m{Y}^{ op} m{Y} \sim \chi_d^2$ that

$$\mathbf{0} = \mathbb{E} \mathbf{Y} = \mathbb{E} R \mathbb{E} \mathbf{S} \implies \mathbb{E} \mathbf{S} = \mathbf{0},$$

$$I_d = \operatorname{Cov} \mathbf{Y} = \mathbb{E} [R^2] \operatorname{Cov} \mathbf{S} = d \operatorname{Cov} \mathbf{S} \implies \operatorname{Cov} \mathbf{S} = I_d/d.$$
 (28)

- For $Y \sim S_d(\psi)$ with $\mathbb{E}[R^2] < \infty$, it follows that $\operatorname{Cov} Y = \mathbb{E}[R^2] \operatorname{Cov} S = \frac{\mathbb{E}[R^2]}{d} I_d$ and thus $\operatorname{Cor} Y = I_d$.
- For $X = \mu + AY$ with $\mathbb{E}[R^2] < \infty$ and Cholesky factor A of a covariance matrix Σ , we have $\operatorname{Cov} X = \frac{\mathbb{E}[R^2]}{d}\Sigma$ and $\operatorname{Cor} X = P$ (the correlation matrix corresponding to Σ).
- Example: For $Y \sim t_d(\nu, 0, I_d)$, $R^2 = Y^\top Y = W Z^\top Z$ for $Z \sim N_d(\mathbf{0}, I_d)$. Therefore, $\frac{R^2}{d} = \frac{Z^\top Z/d}{(\nu/W)/\nu} = \frac{\chi_d^2/d}{\chi_\nu^2/\nu} \sim F(d, \nu)$ and thus $\mathbb{E}[R^2/d] = \frac{\nu}{\nu-2}$. It follows that $X \sim t_d(\nu, \mu, \Sigma)$ has $\operatorname{Cov} X = \frac{\nu}{\nu-2} \Sigma$ and $\operatorname{Cor} X = P$ which we already know from Section 6.2.1.

6.3.2 Elliptical distributions

Definition 6.22 (Elliptical distribution)

A random vector $\boldsymbol{X} = (X_1, \dots, X_d)$ has an elliptical distribution if

$$oldsymbol{X} \stackrel{ ext{d}}{=} oldsymbol{\mu} + A oldsymbol{Y}, \quad ext{(multivariate affine transformation)}$$

where $Y \sim S_k(\psi)$, $A \in \mathbb{R}^{d \times k}$ (scale matrix $\Sigma = AA^{\top}$), and (location vector) $\boldsymbol{\mu} \in \mathbb{R}^d$.

- By Theorem 6.18, an elliptical random vector admits the stochastic representation $X \stackrel{d}{=} \mu + RAS$, with R and S as given in (27).
- The characteristic function of an elliptical random vector \boldsymbol{X} is $\phi_{\boldsymbol{X}}(t) = \mathbb{E}[e^{it^{\top}\boldsymbol{X}}] = \mathbb{E}[e^{it^{\top}(\boldsymbol{\mu} + A\boldsymbol{Y})}] = e^{it^{\top}\boldsymbol{\mu}} \mathbb{E}[e^{i(A^{\top}t)^{\top}\boldsymbol{Y}}] = e^{it^{\top}\boldsymbol{\mu}} \psi(t^{\top}\Sigma t).$ Notation: $\boldsymbol{X} \sim \mathbb{E}_d(\boldsymbol{\mu}, \Sigma, \psi)$ (= $\mathbb{E}_d(\boldsymbol{\mu}, c\Sigma, \psi(\cdot/c))$, c > 0).
- If Σ is positive definite with Cholesky factor A, then $X \sim \mathrm{E}_d(\mu, \Sigma, \psi)$ if and only if $Y = A^{-1}(X \mu) \sim S_d(\psi)$.
- © QRM Tutorial | P. Embrechts, R. Frey, M. Hofert, A.J. McNeil

- Normal variance mixture distributions are (all) elliptical (most useful examples) since $X \stackrel{\text{d}}{=} \mu + \sqrt{W}AZ = \mu + \sqrt{W}\|Z\|AZ/\|Z\| = \mu + RAS$ with $R = \sqrt{W}\|Z\|$ and $S = Z/\|Z\|$. By Corollary 6.19, R and S are indeed independent.
- If $X \sim \mathrm{E}_d(\mu, \Sigma, \psi)$ with $\mathbb{P}(X = \mu) = 0$, then $Y = A^{-1}(X \mu) \sim S_d(\psi)$. Corollary 6.19 implies that

$$\left(\sqrt{(\boldsymbol{X}-\boldsymbol{\mu})^{\top}\Sigma^{-1}(\boldsymbol{X}-\boldsymbol{\mu})}, \frac{A^{-1}(\boldsymbol{X}-\boldsymbol{\mu})}{\sqrt{(\boldsymbol{X}-\boldsymbol{\mu})^{\top}\Sigma^{-1}(\boldsymbol{X}-\boldsymbol{\mu})}}\right) \stackrel{\text{d}}{=} (R, \boldsymbol{S}), \quad (29)$$

which can be used for testing elliptical symmetry. One can also use the following result for testing.

Proposition 6.23

Let $X \sim E_d(\boldsymbol{\mu}, \Sigma, \psi)$ for positive definite Σ and $\mathbb{E}[R^2] < \infty$ (i.e., $\operatorname{Cov}[X]$ finite). For any $c \geq 0$ such that $\mathbb{P}((X - \boldsymbol{\mu})^\top \Sigma^{-1} (X - \boldsymbol{\mu}) \geq c) > 0$,

$$\operatorname{Cor}[X \mid (X - \mu)^{\top} \Sigma^{-1} (X - \mu) \ge c] = \operatorname{Cor}[X].$$

Proof. $X \mid ((X - \mu)^{\top} \Sigma^{-1} (X - \mu) \geq c) \stackrel{\text{d}}{\underset{(29)}{=}} \mu + RAS \mid (R^2 \geq c) \stackrel{\text{ind.}}{\underset{=}{=}} \mu + \tilde{R}AS$ where $\tilde{R} \stackrel{\text{d}}{=} (R \mid R^2 \geq c)$. Therefore, the conditional distribution remains elliptical with scale matrix Σ and thus the claim holds. \square

6.3.3 Properties of elliptical distributions

■ **Density:** Let Σ be positive definite and $Y \sim S_d(\psi)$ have density generator g. The Density Transformation Theorem implies that $X = \mu + AY$ has density

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \frac{1}{\sqrt{\det \Sigma}} g((\boldsymbol{x} - \boldsymbol{\mu})^{\top} \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu})),$$

which depends on x only through $(x - \mu)^{\top} \Sigma^{-1} (x - \mu)$, i.e., is constant on ellipsoids (hence the name "elliptical").

■ Linear combinations: For $m{X} \sim \mathrm{E}_d(m{\mu}, \Sigma, \psi)$, $B \in \mathbb{R}^{k \times d}$ and $m{b} \in \mathbb{R}^k$,

$$BX + b \sim E_k(B\mu + b, B\Sigma B^\top, \psi).$$

If $a \in \mathbb{R}^d$ (take b = 0 and $B = a^{\top} \in \mathbb{R}^{1 \times d}$), $a^{\top} X \sim \mathrm{E}_1(a^{\top} \mu, a^{\top} \Sigma a, \psi) \quad \text{(as for } \mathrm{N}(\mu, \Sigma)). \tag{30}$

From $a = e_j = (0, \dots, 0, 1, 0, \dots, 0)$ we see that all marginal distributions are of the same type.

Proof. Similarly as for multivariate normal variance mixtures,

$$\phi_{BX+b}(t) = \mathbb{E}[\exp(it^{\top}(BX+b))] = e^{it^{\top}b}\phi_{X}(B^{\top}t)$$
$$= e^{it^{\top}(b+B\mu)}\psi(t^{\top}B\Sigma B^{\top}t).$$

- Marginal dfs: As for $N_d(\boldsymbol{\mu}, \Sigma)$, it immediately follows that $\boldsymbol{X} = (\boldsymbol{X}_1^\top, \boldsymbol{X}_2^\top)^\top \sim E_d(\boldsymbol{\mu}, \Sigma, \psi)$ satisfies $\boldsymbol{X}_1 \sim E_k(\boldsymbol{\mu}_1, \Sigma_{11}, \psi)$ and $\boldsymbol{X}_2 \sim E_{d-k}(\boldsymbol{\mu}_2, \Sigma_{22}, \psi)$.
- Conditional distributions: One can show that

 $m{X}_2 \mid m{X}_1 = m{x}_1 \sim E_{d-k}(m{\mu}_2 + \Sigma_{21}\Sigma_{11}^{-1}(m{x}_1 - m{\mu}_1), \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}, \tilde{\psi}),$ where the characteristic generator $\tilde{\psi}$ is given in Embrechts et al. (2002). For $N_d(m{\mu}, \Sigma)$ the characteristic generator remains the same.

- Quadratic forms: It follows from (29) that $(X \mu)^{\top} \Sigma^{-1} (X \mu) \stackrel{\text{d}}{=} R^2$. If $X \sim N_d(\mu, \Sigma)$, then $R^2 \sim \chi_d^2$; and if $X \sim t_d(\nu, \mu, \Sigma)$, then $R^2/d \sim F(d, \nu)$.
- Convolutions: Let $X \sim \mathrm{E}_d(\mu, \Sigma, \psi)$ and $Y \sim \mathrm{E}_d(\tilde{\mu}, c\Sigma, \tilde{\psi})$ be independent. Then

$$aX + bY \sim E_d(a\mu + b\tilde{\mu}, \Sigma, \psi^*)$$

for $a,b\in\mathbb{R},\ c>0$, and $\psi^*(t)=\psi(a^2t)\tilde{\psi}(b^2ct)$. Therefore, if a=b=c=1, then $\boldsymbol{X}+\boldsymbol{Y}\sim \mathrm{E}_d(\boldsymbol{\mu}+\tilde{\boldsymbol{\mu}},\Sigma,\psi(\cdot)\tilde{\psi}(\cdot))$.

Proof. $\phi_{a\boldsymbol{X}}(\boldsymbol{t}) = e^{i\boldsymbol{t}^{\top}a\boldsymbol{\mu}}\,\psi(a^2\boldsymbol{t}^{\top}\boldsymbol{\Sigma}\boldsymbol{t})$ and $\phi_{b\boldsymbol{Y}}(\boldsymbol{t}) = e^{i\boldsymbol{t}^{\top}b\tilde{\boldsymbol{\mu}}}\,\tilde{\psi}(b^2c\boldsymbol{t}^{\top}\boldsymbol{\Sigma}\boldsymbol{t}).$ By independence of \boldsymbol{X} and \boldsymbol{Y} , $\phi_{a\boldsymbol{X}+b\boldsymbol{Y}}(\boldsymbol{t}) = \phi_{a\boldsymbol{X}}(\boldsymbol{t})\phi_{b\boldsymbol{Y}}(\boldsymbol{t})$ $= e^{i\boldsymbol{t}^{\top}(a\boldsymbol{\mu}+b\tilde{\boldsymbol{\mu}})}\psi^*(\boldsymbol{t}^{\top}\boldsymbol{\Sigma}\boldsymbol{t}), \text{ so } a\boldsymbol{X} + b\boldsymbol{Y} \sim \mathrm{E}_d(a\boldsymbol{\mu}+b\tilde{\boldsymbol{\mu}},\boldsymbol{\Sigma},\psi^*). \qquad \square$

• We see that many nice properties of $N_d(\mu, \Sigma)$ are preserved.

Proposition 6.24 (Subadditivity of VaR in elliptical models)

Let $L_i = \lambda_i^{\top} X$, $\lambda_i \in \mathbb{R}^d$, $i \in \{1, ..., n\}$, with $X \sim \mathrm{E}_d(\mu, \Sigma, \psi)$. Then $\mathrm{VaR}_{\alpha}(\sum_{i=1}^n L_i) \leq \sum_{i=1}^n \mathrm{VaR}_{\alpha}(L_i)$ for all $\alpha \in [1/2, 1]$.

Proof. Consider a generic $L = \boldsymbol{\lambda}^{\top} \boldsymbol{X} \stackrel{\text{d}}{=} \boldsymbol{\lambda}^{\top} \boldsymbol{\mu} + \boldsymbol{\lambda}^{\top} A \boldsymbol{Y}$ for $\boldsymbol{Y} \sim S_k(\psi)$. By

Theorem 6.17 Part 3), $\lambda^{\top}AY \stackrel{\text{d}}{=} \|\lambda^{\top}A\|Y_1$, so $L \stackrel{\text{d}}{=} \lambda^{\top}\mu + \|\lambda^{\top}A\|Y_1$ (all of the same type). By Translation Invariance and Positive Homogeneity,

$$VaR_{\alpha}(L) = \boldsymbol{\lambda}^{\top} \boldsymbol{\mu} + \|\boldsymbol{\lambda}^{\top} A\| VaR_{\alpha}(Y_1).$$
 (31)

Applying (31) to $L = \sum_{i=1}^{n} L_i$ and $L = L_i$, $i \in \{1, ..., n\}$, and using that $\operatorname{VaR}_{\alpha}(Y_1) \geq 0$ for $\alpha \in [1/2, 1]$, we obtain $\operatorname{VaR}_{\alpha}(\sum_{i=1}^{n} L_i)$

$$= \operatorname{VaR}_{\alpha}((\sum_{i=1}^{n} \lambda_{i})^{\top} \boldsymbol{X}) = \sum_{i=1}^{n} \lambda_{i}^{\top} \boldsymbol{\mu} + \|\sum_{i=1}^{n} \lambda_{i}^{\top} A\| \operatorname{VaR}_{\alpha}(Y_{1})$$

$$\leq \sum_{i=1}^{n} \boldsymbol{\lambda}_{i}^{\top} \boldsymbol{\mu} + (\sum_{i=1}^{n} \|\boldsymbol{\lambda}_{i}^{\top} A\|) \operatorname{VaR}_{\alpha}(Y_{1}) = \sum_{i=1}^{n} (\boldsymbol{\lambda}_{i}^{\top} \boldsymbol{\mu} + \|\boldsymbol{\lambda}_{i}^{\top} A\| \operatorname{VaR}_{\alpha}(Y_{1}))$$

$$= \sum_{i=1}^{n} \operatorname{VaR}_{\alpha}(L_{i}). \text{ Note: For } \lambda_{i} = e_{i}, \operatorname{VaR}_{\alpha}(\sum_{i=1}^{d} X_{i}) \leq \sum_{i=1}^{d} \operatorname{VaR}_{\alpha}(X_{i}).$$

6.3.4 Estimating scale and correlation

- Suppose $X_1, ..., X_n \sim E_d(\mu, \Sigma, \psi)$. How can we estimate μ, Σ and P? (P is the correlation matrix corresponding to Σ ; this always exists)
- $lackbox{$\bar{X}$}$, S, R may not be the best options for heavy-tailed data (e.g., concerning robustness against contamination).

M-estimators for μ , Σ (see Maronna (1976))

- Goal: Improve given estimators $\hat{\boldsymbol{\mu}}, \hat{\Sigma}$.
- Idea: Compute improved estimates by downweighting observations with large $D_i = \sqrt{(\boldsymbol{X}_i \hat{\boldsymbol{\mu}})^{\top} \hat{\Sigma}^{-1} (\boldsymbol{X}_i \hat{\boldsymbol{\mu}})}$ (these are the ones which tend to distort $\hat{\boldsymbol{\mu}}$, $\hat{\Sigma}$ most).
- This can be turned into an iterative procedure that converges to so-called *M*-estimates of location and scale ($\hat{\Sigma}$ is in general biased).

Algorithm 6.25 (M-estimators of location and scale)

- 1) Set k=1, $\hat{\boldsymbol{\mu}}^{[1]}=\bar{\boldsymbol{X}}$ and $\hat{\Sigma}^{[1]}=S$.
- 2) Repeat until convergence:

2.1) For
$$i \in \{1, \dots, n\}$$
 set $D_i = \sqrt{(\boldsymbol{X}_i - \hat{\boldsymbol{\mu}}^{[k]})^{\top} \hat{\Sigma}^{[k]-1} (\boldsymbol{X}_i - \hat{\boldsymbol{\mu}}^{[k]})}$.

2.2) Update:

$$\hat{\boldsymbol{\mu}}^{[k+1]} = \frac{\sum_{i=1}^{n} w_1(D_i) \boldsymbol{X}_i}{\sum_{i=1}^{n} w_1(D_i)},$$

where w_1 is a weight function, e.g., $w_1(x) = (d+\nu)/(x^2+\nu)$ (or $\mathbb{1}_{x \le a} + (a/x)\mathbb{1}_{x \ge a}$ for some value a).

2.3) Update:

$$\hat{\Sigma}^{[k+1]} = \frac{1}{n} \sum_{i=1}^{n} w_2(D_i^2) (\boldsymbol{X}_i - \hat{\boldsymbol{\mu}}^{[k]}) (\boldsymbol{X}_i - \hat{\boldsymbol{\mu}}^{[k]})^{\top},$$

where w_2 is a weight function, e.g., $w_2(x)=w_1(\sqrt{x})$ (or $(w_1(\sqrt{x}))^2$).

2.4) Set k to k + 1.

Estimating P via Kendall's tau

lacktriangle One can show (see later) that if $m{X} \sim E_d(m{\mu}, \Sigma, \psi)$, then

$$\tau(X_i, X_j) = \frac{2}{\pi} \arcsin(P_{ij}), \quad i \neq j,$$
(32)

where P is the matrix of pairwise correlations corresponding to Σ (always existing, no matter whether the second moments of X_1, \ldots, X_d do).

- Estimate $\tau(X_i, X_j)$ by $\hat{\tau}_{ij}$ (see later) and solve $\hat{\tau}_{ij}$ w.r.t. P_{ij} to obtain \hat{P}_{ij} (this does not require estimating variances/covariances).
- $(\hat{P}_{ij})_{ij}$ is not necessarily positive definite. There are various methods for finding a "near" matrix which is positive definite, see, e.g., Higham (2002) (or Matrix::nearPD()).

Example 6.26 (Correlation estimation for heavy-tailed data)

Consider n=3000 realizations of independent samples of size 90 from $t_2\left(3,\mathbf{0},\left(\begin{smallmatrix}1&0.5\\0.5&1\end{smallmatrix}\right)\right)$ (\Rightarrow linear correlation 0.5).

(a) Pearson's correlation; (b) Inversion of pairwise Kendall's tau estimator

The Kendall's tau transform method produces estimates that show less variation (and thus provides a more efficient way of estimating ρ).

6.4 Dimension reduction techniques

6.4.1 Factor models

Explain the variability of \boldsymbol{X} in terms of common factors.

Definition 6.27 (p-factor model)

 $oldsymbol{X}$ follows a p-factor model if

$$X = a + BF + \varepsilon, \tag{33}$$

where

- 1) $B \in \mathbb{R}^{d \times p}$ is a matrix of factor loadings and $a \in \mathbb{R}^d$;
- 2) $\mathbf{F} = (F_1, \dots, F_p)$ is the random vector of *(common) factors* with p < d and existing $\Omega := \operatorname{Cov}[\mathbf{F}]$, *(systematic risk)*;
- 3) $\varepsilon = (\varepsilon_1, \dots, \varepsilon_d)$ is the random vector of *idiosyncratic error terms* with $\mathbb{E}[\varepsilon] = \mathbf{0}$, $\Upsilon := \operatorname{Cov}[\varepsilon]$ diag., $\operatorname{Cov}[F, \varepsilon] = (0)$ (*idiosync. risk*).

- Goals: Identify or estimate F_t , $t \in \{1, ..., n\}$, then model the distribution/dynamics of the (lower-dimensional) factors (instead of X_t , $t \in \{1, ..., n\}$).
- Factor models imply that $\Sigma := \operatorname{Cov}[X] = B\Omega B^{\top} + \Upsilon$.
- With $B^* = B\Omega^{1/2}$ and $\mathbf{F}^* = \Omega^{-1/2}(\mathbf{F} \mathbb{E}[\mathbf{F}])$, we have

$$X = \mu + B^* F^* + \varepsilon,$$

where $\boldsymbol{\mu} = \mathbb{E}[\boldsymbol{X}]$. We have $\boldsymbol{\Sigma} = \boldsymbol{B}^*(\boldsymbol{B}^*)^\top + \boldsymbol{\Upsilon}$. Conversely, if $\operatorname{Cov}[\boldsymbol{X}] = \boldsymbol{B}\boldsymbol{B}^\top + \boldsymbol{\Upsilon}$ for some $\boldsymbol{B} \in \mathbb{R}^{d \times p}$ with $\operatorname{rank}(\boldsymbol{B}) = p < d$ and diagonal matrix $\boldsymbol{\Upsilon}$, then \boldsymbol{X} has a factor-model representation for a p-dimensional $\boldsymbol{\varepsilon}$.

Example 6.28 (One-factor/equicorrelation model)

Let $\mathbb{E}[X] = 0$, $\Sigma = \text{Cov}[X] = \rho J_d + (1 - \rho)I_d$ $(J_d = (1) \in \mathbb{R}^{d \times d})$.

- Then $\Sigma = BB^{\top} + \Upsilon$ for $B = \sqrt{\rho} \mathbf{1}$ and $\Upsilon = (1 \rho)I_d$.
- Any Y with $\mathbb{E}Y = 0$, $\operatorname{Var}Y = 1$ independent of \boldsymbol{X} leads to the factor decomposition of \boldsymbol{X}

$$F = \frac{\sqrt{\rho}}{1 + \rho(d-1)} \sum_{j=1}^{d} X_j + \sqrt{\frac{1 - \rho}{1 + \rho(d-1)}} Y, \quad \varepsilon_j = X_j - \sqrt{\rho} F.$$

We have $\mathbb{E}[F]=0$, $\mathrm{Var}[F]=1$, so $\pmb{X}=\pmb{0}+BF+\pmb{\varepsilon}=\sqrt{\rho}\pmb{1}F+\pmb{\varepsilon}.$

- The requirements of Definition 6.27 are fulfilled since $Cov[F, \varepsilon_j] = 0$, $Cov[\varepsilon_j, \varepsilon_k] = 0$ for all $j \neq k$.
- $\operatorname{Var}[\bar{X}_n] = \operatorname{Var}[\sqrt{\rho}F + \bar{\varepsilon}_d] = \rho + \frac{1-\rho}{d} \underset{(d \to \infty)}{\longrightarrow} \rho$ (systematic factor matters!)
- If $X \sim \mathrm{N}(\mu, \Sigma)$, take $Y \sim \mathrm{N}(0, 1)$ (then F is also normal). One typically writes this (one-factor) equicorrelation model as $X = \sqrt{\rho}F + \sqrt{1-\rho}Z$, where $F, Z_1, \ldots, Z_d \stackrel{\mathrm{ind.}}{\sim} \mathrm{N}(0, 1)$.
- © QRM Tutorial | P. Embrechts, R. Frey, M. Hofert, A.J. McNeil

6.4.2 Statistical estimation strategies

Consider $X_t = a + BF_t + \varepsilon_t$, $t \in \{1, ..., n\}$. Three types of factor model are commonly used:

- 1) Macroeconomic factor models: Here we assume that F_t is observable, $t \in \{1, \dots, n\}$. Fitting B, a is accomplished by time series regression (see later).
- 2) Fundamental factor models: Here we assume that the matrix of factor loadings B is known but the factors F_t are unobserved (and have to be estimated from X_t , $t \in \{1, ..., n\}$, using cross-sectional regression at each t).
- 3) Fundamental factor models: Here we assume that neither the factors F_t nor the factor loadings B are observed (both have to be estimated from X_t , $t \in \{1, ..., n\}$). The factors can be found with principal component analysis (see later).

6.4.3 Estimating macroeconomic factor models

There are two equivalent approaches.

Univariate regression

Consider the (univariate) time series regression model

$$X_{t,j} = a_j + \boldsymbol{b}_j^{\mathsf{T}} \boldsymbol{F}_t + \varepsilon_{t,j}, \quad t \in \{1, \dots, n\}.$$

- To justify the use of the ordinary least-squares (OLS) method to derive statistical properties of the method it is usually assumed that, conditional on the factors, the errors $\varepsilon_{1,j},\ldots,\varepsilon_{n,j}$ form a white noise process (i.e., are identically distributed and serially uncorrelated).
- \hat{a}_j estimates a_j , \hat{b}_j estimates the jth row of B.

Multivariate regression

■ Here, construct large matrices:

$$X = \underbrace{\begin{pmatrix} \boldsymbol{X}_1^\top \\ \vdots \\ \boldsymbol{X}_n^\top \end{pmatrix}}_{n \times d}, \quad F = \underbrace{\begin{pmatrix} 1 & \boldsymbol{F}_1^\top \\ \vdots & \vdots \\ 1 & \boldsymbol{F}_n^\top \end{pmatrix}}_{n \times (p+1)}, \quad \tilde{B} = \underbrace{\begin{pmatrix} \boldsymbol{a}^\top \\ B^\top \end{pmatrix}}_{(p+1) \times d}, \quad E = \underbrace{\begin{pmatrix} \boldsymbol{\varepsilon}_1^\top \\ \vdots \\ \boldsymbol{\varepsilon}_n^\top \end{pmatrix}}_{n \times d}.$$

This model can be expressed by $X = F\tilde{B} + E$ (estimate \tilde{B}).

- Assume the unobserved $\varepsilon_1, \ldots, \varepsilon_n$ form a white noise process. Then, conditional on F_1, \ldots, F_n , we have a multivariate linear regression, see, e.g., Mardia et al. (1979), with estimator $\hat{B} = (F^\top F)^{-1} F^\top X$.
- Now examine the condititions of Definition 6.27: Do the errors vectors ε_t come from a distribution with diagonal covariance matrix, and are they uncorrelated with the factors?

• Consider the sample correlation matrix of $\hat{E} = X - F \tilde{B}$ (model residual matrix; hopefully shows that there is little correlation in the errors) and take the diagonal elements as an estimator $\hat{\Upsilon}$ of Υ .

6.4.4 Estimating fundamental factor models

- Consider the cross-sectional regression model $X_t = BF_t + \varepsilon_t$ (B known; F_t to be estimated; $Cov[\varepsilon] = \Upsilon$); note that a can be absorbed into F_t . To obtain precision in estimating F_t , we need $d \gg p$.
- First estimate F_t via OLS by $\hat{F}_t^{\text{OLS}} = (B^\top B)^{-1} B^\top X_t$. This is the best linear unbiased estimator if the ε is homoskedastic. However, it is possible to obtain linear unbiased estimates with a smaller covariance matrix via generalized least squares (GLS).
- To this end, estimate Υ by $\hat{\Upsilon}$ via the diagonal of the sample covariance matrix of the residuals $\hat{e}_t = X_t B\hat{F}_t^{\text{OLS}}$, $t \in \{1, ..., n\}$.
- Then estimate \mathbf{F}_t via $\hat{\mathbf{F}}_t = (B^{\top} \Upsilon^{-1} B)^{-1} B^{\top} \Upsilon^{-1} \mathbf{X}_t$.
- © QRM Tutorial | P. Embrechts, R. Frey, M. Hofert, A.J. McNeil

6.4.5 Principal component analysis

- Goal: Reduce the dimensionality of highly correlated data by finding a small number of uncorrelated linear combinations which account for most of the variance in the data; this can be used for finding factors.
- **Key:** Any symmetric *A* admits a *spectral decomposition*

where
$$A = \Gamma \Lambda \Gamma^\top,$$

- 1) $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_d)$ is the diagonal matrix of eigenvalues of A which, w.l.o.g., are ordered so that $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_d$; and
- 2) Γ is an orthogonal matrix whose columns are eigenvectors of A standardized to have length 1.
- Let $\Sigma = \Gamma \Lambda \Gamma^{\top}$ with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d \geq 0$ (positive semidefiniteness \Rightarrow all eigenvalues ≥ 0) and $Y = \Gamma^{\top}(X \mu)$ (the so-called *principal component transform*). The jth component $Y_j = \gamma_j^{\top}(X \mu)$ is the jth principal component of X (where γ_j is the jth column of Γ).

- We have $\mathbb{E}Y = \mathbf{0}$ and $\mathrm{Cov}[Y] = \Gamma^{\top}\Sigma\Gamma = \Gamma^{\top}\Gamma\Lambda\Gamma^{\top}\Gamma = \Lambda$, so the principal components are uncorrelated with $\mathrm{Var}[Y_j] = \lambda_j$, $j \in \{1, \ldots, d\}$. The principal components are thus ordered by variance (from largest to smallest).
- One can show:
 - The first principal component is that standardized linear combination of X which has maximal variance among all such combinations, i.e., $\operatorname{Var}(\gamma_1^\top X) = \max\{\operatorname{Var}(\boldsymbol{a}^\top X): \boldsymbol{a}^\top \boldsymbol{a} = 1\}.$
 - For $j \in \{2, \ldots, d\}$, the jth principal component is that standardized linear combination of \boldsymbol{X} which has maximal variance among all such linear combinations which are orthogonal to (and hence uncorrelated with) the first j-1-many linear combinations.
- $\sum_{j=1}^{d} \operatorname{Var}(Y_j) = \sum_{j=1}^{d} \lambda_j = \operatorname{trace}(\Sigma) = \sum_{j=1}^{d} \operatorname{Var}(X_j)$, so we can interpret $\sum_{j=1}^{k} \lambda_j / \sum_{j=1}^{d} \lambda_j$ as the fraction of total variance explained by the first k principal components.

Principal components as factors

 \blacksquare Inverting the principal component transform $\pmb{Y} = \Gamma^{\top}(\pmb{X} - \pmb{\mu})$, we have

$$X = \mu + \Gamma Y = \mu + \Gamma_1 Y_1 + \Gamma_2 Y_2 =: \mu + \Gamma_1 Y_1 + \varepsilon$$

where $Y_1 \in \mathbb{R}^k$ contains the first k principal components. This is reminiscent of the basic factor model.

■ Although $\varepsilon_1, \dots, \varepsilon_d$ will tend to have small variances, the assumptions of the factor model are generally violated (since they need not have a diagonal covariance matrix and need not be uncorrelated with Y_1). Nevertheless, principal components are often interpreted as factors.

Sample principal components

- Assume X_1, \ldots, X_n with identical distribution, unknown mean vector μ and covariance matrix Σ with the spectral decomposition $\Sigma = \Gamma \Lambda \Gamma^{\top}$ as before.
- Estimate μ by \bar{X} and Σ by $S_x = \frac{1}{n} \sum_{t=1}^n (X_t \bar{X}) (X_t \bar{X})^\top$. © QRM Tutorial | P. Embrechts, R. Frey, M. Hofert, A.J. McNeil Section 6.4.5 | p. 373

- Apply the spectral decomposition to S_x to get $S_x = GLG^\top$, where G is the eigenvector matrix and $L = \operatorname{diag}(l_1, \ldots, l_d)$ is the diagonal matrix consisting of ordered eigenvalues.
- Define the "sample principle component transforms" $Y_t = G^{\top}(X_t \bar{X})$, $t \in \{1, ..., n\}$. The jth component $Y_{t,j} = g_j^{\top}(X_t \bar{X})$ is the jth sample principal component at time t (g_j is the jth column of G).
- The rotated vectors $Y_1, ..., Y_n$ have sample covariance matrix L:

$$S_y = \frac{1}{n} \sum_{t=1}^n (\mathbf{Y}_t - \bar{\mathbf{Y}}) (\mathbf{Y}_t - \bar{\mathbf{Y}})^\top = \frac{1}{n} \sum_{t=1}^n \mathbf{Y}_t \mathbf{Y}_t^\top$$
$$= \frac{1}{n} \sum_{t=1}^n G^\top (\mathbf{X}_t - \bar{\mathbf{X}}) (\mathbf{X}_t - \bar{\mathbf{X}})^\top G = G^\top S_x G = L.$$

Thus the rotated vectors show no correlation between components and the components are ordered by their sample variances, from largest to smallest. Now use G and Y_t to calibrate an approximate factor model. We assume our data are realisations from the model

$$X_t = \bar{X} + G_1 F_t + \varepsilon_t, \quad t \in \{1, \dots, n\},$$

where G_1 consists of the first k columns of G and $F_t = (Y_{t,1}, \ldots, Y_{t,k})$, $t \in \{1, \ldots, n\}$.

• In practice, the errors ε_t do not have a diagonal covariance matrix and are not uncorrelated with F_t . Nevertheless the method is a popular approach to constructing time series of statistically explanatory factors from multivariate time series of risk-factor changes.