A Quality Score Based Algorithm for House Price Prediction

Yi Wang

Mar. 12. 2021

Code: https://github.com/ywang110/HouseAssessment

Outline

- Motivation
- Challenging
- Problem Formulation
 - Quality score estimation
 - Non-quality score estimation
- Data Preprocessing
- Feature Engineering
- Evaluation Data & Metrics
- Performance
- Some Applications
 - Lasso Coefficients
 - School Ranks
 - Recommend a Market deal
 - Market Value Index
- Code Structure

Motivation

- Problem Statement
 - Predict the market price of a property given historical sells and features.
 - Build a market value index for every property style per zip code/school code.
- Expected deliverables
 - a *real time* online house pricing system to guide the listing price (*suggested, low and high* range) for the online house seller
 - A market value index to track the market change of every house style per zip code/ school code
- Business impact
 - Able to use it for either individual e-market seller/buyer (opendoor, zillow, redfin) or a business real estate investment
 - For individual seller/buyer: improve online customer retention rate, indirectly or indirectly boost business revenue
 - For business investment: Market value index can be used to evaluate/track the market

Challenging

- House price is sensitive to the real life market value (time)
- Historical transaction data does not fully represent the current market
- Most data are categorically based, features spaces could be large to build a good model
- Model complexity & interpretation for business use

Problem Formulation

A house price is formulated as

- *Price*^{style}(t): price per square foot, training one model **per style** (e.g. townhouse, single family, condo, etc)
- β^T features : **quality score** of a house
 - Not sensitive to the market change, e.g.
 - #bedrooms, #bathrooms, size, lot area, house condition, stories, years built
 - Include the seasonality feature, e.g. sell month, sell quarter

Problem Formulation

• A house price is formulated as

$$Price^{(style)}(t) = \beta^{T} features + \gamma_{zipcode}(t) + \gamma_{schoolcode}(t) + \alpha_{intercept}(t) + \epsilon$$
Quality score

Non-quality score

Flutuation

- $\gamma_{zipcode}(t) + \gamma_{schoolcode}(t) + \alpha_{intercept}(t)$: **Non-quality score** (**market score**) of a house
 - Sensitive to the market change *t*, e.g.
 - market in a particular zip code, market in a particular school zone changes over time
 - Include the intercept $\alpha_{intercept}(t)$
- ϵ : individual fluktuation
 - Follows a Gaussian $N(\mu, \sigma^2)$ distribution
 - Indicate a house is either overpriced or underpriced comparing to the average

Quality score estimation

$$Price^{(style)}(t) = \beta^{T} features + \gamma_{zipcode}(t) + \gamma_{schoolcode}(t) + \alpha_{intercept}(t) + \epsilon$$

- β^T features:
 - quality score coefficients β are **trained offline**
 - The model assumes the quality of a house does not change much in training period
 - *features* used in model
 - House features:
 - #bedrooms, #bathrooms, size, lot area, house condition (good, bad, ...), stories, years built, roof materials, grade (A, B, C, ...), CDU, basement, garage, fireplace, years to sell (how many years since sold)
 - Seasonality features: sale month, sale quarter

Non-quality score estimation

- Let non-quality score $\gamma(t) = \gamma_{zipcode}(t) + \gamma_{schoolcode}(t) + \alpha_{intercept}(t)$, we **online estimate** non-quality score coefficients $\hat{\gamma}(t)$ using **KNN**
 - 1. Choose the k most recent sold houses on the market (k=10) for the same **style**, **zipcode**, **schoolcode**.
 - 2. For these recently sold houses i=1 to k, compute their non-quality scores by $\gamma_i(t) = PriceSold_i^{(style)}(t) \beta^T features_i$
 - 3. Rank and removal the first and last 10% percentile of $\gamma(t)_i$, so we have k-2 left.
 - 4. Calculate the estimated non-quality scores as

$$\hat{\gamma}_{suggest}(t) = median(\gamma(t)_i), i = 1,2,...,k-2$$

$$\hat{\gamma}_{low}(t) = max(\gamma(t)_i), i = 1,2,...,k-2$$

$$\hat{\gamma}_{high}(t) = min(\gamma(t)_i), i = 1,2,...,k-2$$

5. Use three scores $\hat{\gamma}_{suggest}(t)$, $\hat{\gamma}_{lower}(t)$, $\hat{\gamma}_{high}(t)$ to compute **suggested**, **low** and **high** price range.

Data Preprocessing

- Categorical data level reduction
 - Example Categorical data levels:
 - "Grade": 22 categories
 - "CDU": 9 categories
 - "Roof": 10 categories
 - "Sale Month": 12 categories
 - Covert some categorical data into numeric data (numerical encoding)
 - Reduce the feature dimension, model variance (overfitting)
 - Reorder the converted numerical data before feeding into model (numerical encoding)
- Noise removal, e.g.
 - Remove houses with sold price < \$20k, houses with no tax record
 - Remove the first and last 5% percentile of price for each style
 - Fill missing data
- Log transformation
 - An unit increase of some features result in proportional increase of price
- Response
 - Per square feet price

• Convert categorical data to numerical data and redo encoding after sorting

• Response choose: model price per square feet, instead of price or log(price)

Feature Engineering

- Feature selection uses built-in scores in our 3 regression models
 - Lasso regression
 - Random Forest regression
 - Xgbooting tree regression
- Dummy variable are created for our non-quality score features
 - $\gamma_{zipcode}(t)$
 - $\gamma_{schoolcode}(t)$

Evaluation Data & Metrics

- Evaluation Data
 - 20 years data, 340532 properties, 29 styles, 127 zip codes, 46 school codes
 - Training year: 2000-2015
 - 234365 properties
 - Testing year: 2016 2021 (recent 5 years)
 - 106167 properties
- Evaluation Metrics
 - median absolute error rate

$$median(\frac{|Price^{(style)}(t) - Price^{(style)}(t)|}{Price^{(style)}(t)})$$

Performance

- "quality": quality model
- "lasso one": a single lasso model
- "lasso style": one lasso model per style
- "rf one": a single random forest model
- "rf style": one random forest model per style
- "xgb one": a single xgb model

Performance

Lasso Model's Interpretation

- Positively contribute to price per square feet:
 - Grade, Condition, CDU, Fireplaces, Garage, Sale month, Sale quarter
- Negatively contribute to price per square feet:
 - Stories, Living Area, Years built, Years to sell
- Features not selected:
 - Roof material, Basement, Bedrooms, Lot Area, Bath

Selected Feature	Lasso Coeff		
Stories	-1.304		
Grade	3.232		
Condition	0.000659		
CDU	4.095		
Fireplaces	5.695		
Garage	3.829		
Living Area	-0.01067		
Years built	-0.07906		
Sale month	0.08816		
Years to sell	-1.2994		
Sale quarter	3.57002		

School Ranks

• In single lasso model, use the model non-quality score $\hat{\gamma}_{schoolcode}(t)$ instead of price per square feet to buy a house for school attendance.

rank	School ID by Model Score	School ID by Price per Sqft	Model Score	Price per Sqft
0	3	26	16.901005	112.27125
1	26	17	10.705427	111.20941
2	32	27	6.849829	110.05766
3	27	28	6.565823	109.65551
4	17	8	4.1878069	109.19439
5	42	32	3.9063721	107.5653
6	2	20	3.3590302	103.5131
7	20	5	2.9442477	101.81237
8	5	24	2.7791844	95.510712
9	24	3	2.5594571	95.204031
10	8	43	0.4851836	95.044302
11	25	34	0.2660076	94.745909

Recommend a market deal

• A recommended deal is the ranked list of properties whose listing price is relative low comparing to its predicted price.

$$deal = Min(\frac{ListingPrice^{style}(t)}{Price^{style}(t)})$$

Market value index

- Non-quality score can be considered as a **market score** which does not depend on the house quality.
- The estimation of non-quality score based on recent sold house prices within a short time window is actually the **market value index** (similar to Zillow Home Value Index (ZHVI)) for the same zip and school code.

$$\gamma_i(t) = PriceSold_i^{(style)}(t) - \beta^T features_i$$

- A real-time pricing system:
 - The quality score can be periodically trained offline and saved into database
 - The real-time market value index can be estimated online based on recent transactions to guide the market

Code Structure

• Python + OOP

Code: https://github.com/ywang110/HouseAssessment