Thesis

Shay Ben Moshe

?

1 Overview Of Chromatic Homotopy Theory

Our goal is to motivate the introduction of Morava K-theory K(n) and Morava E-theory E(n), and other variants of Morava E-theory $E(k,\Gamma)$, and their connection to formal group laws. There are different views on what chromatic homotopy theory is. **TODO** write some more

1.1 The Balmer Spectrum

We will start with an algebraic motivation. Let R be a noetherian ring. Consider the symmetric monoidal stable ∞ -category $\operatorname{Ch}(R)$ of chain complexes on R. **TODO be more specific** It is then natural to ask how much information about R is encoded in the category $\operatorname{Ch}(R)$. We will try to recover $\operatorname{Spec} R$, as a topological space, from $\operatorname{Ch}(R)$.

Remark 1.1.1. Balmer's work actually recovers the structure sheaf as well. TODO reference

Definition 1.1.2. A perfect complex is a complex that is quasi-isomorphic to a bounded complex of finitely-generated projective modules. These objects are the compact objects in Ch(R), thus they can be defined categorically. Their full subcategory is denoted by $Ch_{perf}(R)$.

Definition 1.1.3. Let \mathcal{C} be some symmetric monoidal stable ∞ -category. A full subcategory \mathcal{T} is *thick* if:

- $0 \in \mathfrak{T}$,
- it is closed under cofibers (that is if $a \to b \to c$ is a cofiber sequence in \mathcal{C} and $a, b \in \mathcal{T}$, then $c \in \mathcal{T}$),
- it is closed under retracts.

Example 1.1.4. Consider the case $\mathcal{C} = \operatorname{Ch}_{\operatorname{perf}}(R)$ (e.g. over \mathbb{Z} , bounded chain complexes of finitely-generated free abelian groups). Let $K_{\bullet} \in \operatorname{Ch}(R)$, and define $\mathfrak{T}_{K_{\bullet}} = \{A_{\bullet} \in \operatorname{Ch}_{\operatorname{perf}}(R) \mid A_{\bullet} \otimes K_{\bullet} = 0\}$. We claim that $\mathfrak{T}_{K_{\bullet}}$ is thick. Clearly $0 \in \mathfrak{T}_{K_{\bullet}}$. Let $A_{\bullet} \to B_{\bullet}$ be a morphism between two complexes in \mathfrak{T} . The cofiber of $A_{\bullet} \to B_{\bullet}$ is the pushout $B_{\bullet} \times_{A_{\bullet}} 0$. Since tensor is left, tensoring the cofiber with K_{\bullet} is given by the pushout $(B_{\bullet} \otimes K_{\bullet}) \times_{A_{\bullet} \otimes K_{\bullet}} (0 \otimes K_{\bullet}) = 0 \times_{0} 0 = 0$, therefore the cofiber is indeed in \mathfrak{T} . Lastly, if $A_{\bullet} \to B_{\bullet} \to A_{\bullet}$ is the identity and $B_{\bullet} \otimes K_{\bullet}$, we get that $\mathrm{id}_{A_{\bullet} \otimes K_{\bullet}}$ factors through 0, which implies that $A_{\bullet} \otimes K_{\bullet}$ is 0, so that $A_{\bullet} \in \mathfrak{T}$.

Definition 1.1.5. A thick subcategory \mathfrak{T} is an ideal if $a \in \mathfrak{T}, b \in \mathfrak{C} \implies a \otimes b \in \mathfrak{T}$. Furthermore, it is a prime ideal if it is a proper subcategory, and $a \otimes b \in \mathfrak{T} \implies a \in \mathfrak{T}$ or $b \in \mathfrak{T}$. The spectrum of the category is defined similarly to the classical spectrum of a ring: As a set, Spec $\mathfrak{C} = \{\mathfrak{P} \text{ prime ideal}\}$. For any family of objects $S \subseteq \mathfrak{C}$ we define $V(S) = \{\mathfrak{P} \in \operatorname{Spec} \mathfrak{C} \mid S \cap \mathfrak{P} = \emptyset\}$. We topologize Spec \mathfrak{C} with the Zariski topology by declaring those to be the closed subsets. We also denote Supp $(a) = V(\{a\})$.

Example 1.1.6. We continue the example of $\mathfrak{T}_{K_{\bullet}}$. Clearly if $A_{\bullet} \otimes K_{\bullet} = 0$ then also $A_{\bullet} \otimes B_{\bullet} \otimes K_{\bullet} = 0$, so it is an ideal. Let \mathfrak{p} be a prime ideal in R in the usual sense, and take $K_{\bullet} = R_{\mathfrak{p}}$ (concentrated at degree 0), then $A_{\bullet} \otimes K_{\bullet} = (A_{\bullet})_{\mathfrak{p}}$ (level-wise localization). Now, assume that $0 = (A_{\bullet} \otimes B_{\bullet})_{\mathfrak{p}} = (A_{\bullet})_{\mathfrak{p}} \otimes R_{\mathfrak{p}} (B_{\bullet})_{\mathfrak{p}}$ Assume by negation that $(A_{\bullet})_{\mathfrak{p}}$, $(B_{\bullet})_{\mathfrak{p}} \neq 0$, i.e. $(A_n)_{\mathfrak{p}}$, $(B_m)_{\mathfrak{p}} \neq 0$ but $(A_n)_{\mathfrak{p}} \otimes R_{\mathfrak{p}} (B_m)_{\mathfrak{p}} = 0$ for some n, m. Well, localization of projective is projective, and a projective over a local ring is free, and clearly if the tensor of two free modules vanish then one of them vanishes, so $(A_n)_{\mathfrak{p}} = 0$ or $(B_m)_{\mathfrak{p}} = 0$, which is a contradiction. Therefore $\mathfrak{T}_{\mathfrak{p}}$ is a prime ideal.

Theorem 1.1.7. The map $\operatorname{Spec} R \to \operatorname{Spec} (\operatorname{Ch}_{\operatorname{perf}} (R))$, given by $\mathfrak{p} \mapsto \mathfrak{T}_{\mathfrak{p}} = \left\{ A_{\bullet} \mid (A_{\bullet})_{\mathfrak{p}} = 0 \right\}$ is a homeomorphism.

TODO reference

Proposition 1.1.8. Prime ideals pullback: Let $F: \mathcal{C} \to \mathcal{D}$ be a reduced symmetric monoidal functor that preserves cofibers, between two symmetric monoidal stable ∞ -categories, and let \mathcal{P} be a prime ideal in \mathcal{D} , then $F^*\mathcal{P} = \{a \in \mathcal{C} \mid F(a) \in \mathcal{P}\}$ is a prime ideal.

Proof. Clearly $F(0) = 0 \in \mathcal{P}$ since F is reduced, so $0 \in F^*\mathcal{P}$. Since F preserves cofibers, for $a, b \in F^*\mathcal{P}$, i.e. $F(a), F(b) \in \mathcal{P}$, and a map $a \to b$ we get $F(\text{cofib}\,(a \to b)) = \text{cofib}\,(F(a) \to F(b)) = \text{cofib}\,(F(a) \to F(b)) \in \mathcal{P}$. Let $a \to b \to a$ be a retract, that is the composition is the identity, s.t. $b \in F^*\mathcal{P}$. We know that $F(a) \to F(b) \to F(a)$ is also a retract by functoriality, thus $F(a) \in \mathcal{P}$, that is $a \in F^*\mathcal{P}$. We conclude that $F^*\mathcal{P}$ is indeed a thick subcategory.

Let $a \in F^*\mathcal{P}, b \in \mathcal{C}$, since F is monoidal, $F(a \otimes b) = F(a) \otimes F(b) \in \mathcal{P}$, so $a \otimes b \in F^*\mathcal{P}$, that is $F^*\mathcal{P}$ is an ideal. Lastly, assume that $a \otimes b \in F^*\mathcal{P}$, again since F is monoidal, $F(a \otimes b) = F(a) \otimes F(b) \in \mathcal{P}$, so $a \in F^*\mathcal{P}$ or $b \in F^*\mathcal{P}$, that is $F^*\mathcal{P}$ is a prime ideal.

Now, recall that $Ch(R) \cong Mod_{HR}$, therefore we can reinterpret the above theorem as $Spec(R) \cong Spec(Mod_{HR}^{comp})$ (where the comp denotes the compact objects in the category). We shall turn this theorem into a definition:

Definition 1.1.9. Let R be an \mathbb{E}_{∞} -ring. We define the *spectrum* of R to be Spec $R = \operatorname{Spec}(\operatorname{Mod}_{R}^{\operatorname{comp}})$.

A natural question to ask then is what is $\operatorname{Spec} \mathbb{S}$. Recall that $\operatorname{Mod}_{\mathbb{S}} = \operatorname{Sp}$, the category of spectra, and that the compact objects in spectra are the finite spectra $\operatorname{Sp}^{\operatorname{fin}}$. So, unwinding the definitions, the question can rephrased as finding the prime ideals in $\operatorname{Sp}^{\operatorname{fin}}$, and their topology. Chromatic homotopy theory provides an answer to this question.

1.2 MU And Complex Orientations

Throughout this section, let E be a multiplicative cohomology theory (that is, equipped with a map $E \otimes E \to E$ which is associative and unital up to homotopy).

Consider the map $S^2 \to \mathrm{BU}(1)$ classifying the universal complex line bundle. Concretely, under the identifications $S^2 \cong \mathbb{C}\mathrm{P}^1$ and $\mathrm{BU}(1) \cong \mathbb{C}\mathrm{P}^{\infty}$, this map can be realized as the inclusion $\mathbb{C}\mathrm{P}^1 \subseteq \mathbb{C}\mathrm{P}^{\infty}$. This map induces a map $\tilde{E}^2(\mathrm{BU}(1)) \to \tilde{E}^2(S^2) \cong \tilde{E}^0(S^0) \cong E^0(*) = E_0$. Since E is unital, there is a canonical generator $1 \in E_0$.

Definition 1.2.1. E is called *complex oriented* if the map $\tilde{E}^2(BU(1)) \to E_0$ is surjective, equivalently, if 1 is in the image of that map. A choice of a lift $x \in \tilde{E}^2(BU(1))$ of $1 \in E_0$ is called a *complex orientation*.

Example 1.2.2. Let R be some ring, and consider HR. It is known that $HR^*(\mathbb{C}P^n) \cong R[x]/(x^{n+1})$ and $HR^*(\mathbb{C}P^\infty) \cong R[[x]]$, where |x| = 2, and the maps induced by the inclusions of projective spaces maps x to x. Therefore we see that $x \in HR^2(\mathrm{BU}(1))$ is mapped to $x \in HR^2(S^2) = \mathbb{Z}\{x\}$, which is mapped to the generator of the reduced part of $HR^0(S^0) = R \oplus R$. Therefore x is a complex orientation for HR.

Example 1.2.3. Let K be complex K-theory, then we know that $K_* = \mathbb{Z}\left[\beta^{\pm 1}\right]$ where β is the Bott element, with $|\beta| = 2$. It is also known (by Atiyah-Hirzebruch spectral sequence) that $K^*(\mathbb{C}P^n) \cong K_*[t]/(t^{n+1})$ and $K^*(\mathbb{C}P^\infty) \cong K_*[t]$ (here |t| = 0), where the maps induced by the inclusions of projective spaces maps t to t. We deduce that $\beta t \in K^2(\mathrm{BU}(1))$ is mapped to $\beta t \in K^2(S^2) = \mathbb{Z}\{\beta t\}$, which is mapped to $t \in K^0(S^0) = \mathbb{Z}\{t\}$, which is indeed the generator of the reduced part. Therefore $x = \beta t$ is complex orientation for K. **TODO write the reduced thing more clearly**

Example 1.2.4. Recall that MU is constructed as the colimit MU = colim MU (n). Also, MU (1) $\cong \Sigma^{\infty-2}$ BU (1). Therefore we get a canonical map $\Sigma^{\infty-2}$ BU (1) \to MU, which gives a cohomology class $x_{\text{MU}} \in \text{MU}^2$ (BU (1)).

Proposition 1.2.5 (TODO reference). x_{MU} is indeed a complex orientation for MU.

Theorem 1.2.6. MU is the universal complex oriented cohomology theory: Let E be a multiplicative cohomology theory, then there is a bijection between (homotopy classes of) multiplicative maps $MU \to E$ and complex orientations on E. The bijection is given in one direction by pulling back x_{MU} along a multiplicative map.

Assume that E is complex oriented with a complex orientation x.

Theorem 1.2.7 ([Rav86, 4.1.4]). As E_* -algebras, E^* (BU (1)) $\cong E^*$ [[x]] and E^* (BU (1) \times BU (1)) $\cong E^*$ [[y, z]].

TODO maybe indicate the use of AHSS

The tensor product of complex line bundles is classified by a universal map BU (1) × BU (1) → BU (1). Therefore we get a map E^* (BU (1)) $\to E^*$ (BU (1) × BU (1)), which is completely determined by the image of $x \in E^*$ [[x]] in E^* [[y, z]] as above. Therefore, a choice of a complex orientation on E gives rise to an element F_E (y, z) $\in E^*$ [[y, z]].

Proposition 1.2.8 ([Rav86, 4.1.4]). F_E is a formal group law on E_* . We call the height of F_E the height of E.

Example 1.2.9. Consider again HR. It is known that the tensor of complex line bundles induces the map $R[[x]] = HR^*(BU(1)) \to HR^*(BU(1) \times BU(1)) = R[[y,z]]$ given by $x \mapsto y + z$. This is the additive formal group law. It is immediate that [p] = px. So for $R = \mathbb{Q}$ we get that the height of $H\mathbb{Q}$ is 0, while for $R = \mathbb{F}_p$ we have px = 0 so the height of $H\mathbb{F}_p$ is ∞ .

Example 1.2.10. We return to the example of complex K-theory. It is known that the tensor of complex line bundles induces the map $K_*[[t]] = K^*(BU(1)) \to K^*(BU(1)) \times BU(1)) = K_*[[u,v]]$ given by $t \mapsto u+v+uv$. Note that to comply with the definition of the formal group law, we should use the isomorphism $K^*(BU(1)) \cong K_*[[x]]$, i.e. the element $x = \beta t$. We get that $x = \beta t \mapsto \beta u + \beta v + \beta uv = y + z + \beta^{-1}yz = F_K(y,z)$. By induction we prove that the n-series is $[n](x) = \beta (1 + \beta^{-1}x)^n - \beta$. This is clear for n = 1, and we have:

$$[n+1](x) = x + [n](x) + \beta^{-1}x [n](x)$$

$$= x + \beta (1 + \beta^{-1}x)^{n} - \beta + x (1 + \beta^{-1}x)^{n} - x$$

$$= \beta (1 + \beta^{-1}x) (1 + \beta^{-1}x)^{n} - \beta$$

$$= \beta (1 + \beta^{-1}x)^{n+1} - \beta$$

Example 1.2.11. By taking the cofiber of the multiplication-by-p map, we get a spectrum K/p, mod-p K-theory, with coefficients $(K/p)_* = \mathbb{F}_p\left[\beta^{\pm 1}\right]$. It is evident that $F_{K/p}\left(y,z\right) = y + z + \beta^{-1}yz$ as well. From the result above, it follows that $[p]\left(x\right) = \beta\left(1 + \beta^{-1}x\right)^p - \beta = \beta\left(1^p + \beta^{-p}x^p\right) - \beta = \beta^{-p}x^p$ which shows that the height is exactly 1.

A formal group law on E_* is the same data as a map from the Lazard ring L, so the complex orientation gives a map $L \to E_*$. In particular, since MU is complex oriented, there is a canonical map $L \to \mathrm{MU}_*$.

Theorem 1.2.12 (Quillen, [Rav86, 4.1.6]). The canonical map $L \to MU_*$ is an isomorphism.

1.3 BP, Morava K-Theory And Morava E-Theory

A good principle in homotopy theory (and many other areas in math) is to do study it one prime at a time. This is possible in homotopy theory due to the arithmetic square **TODO reference**. So, let us fix a prime p. It turns out that once we p-localize MU to $MU_{(p)}$, it splits:

Theorem 1.3.1 ([Rav86, 4.1.12]). There exists an associative commutative ring spectrum BP (which depends on the prime p), which is a retract of $MU_{(p)}$. The homotopy groups of BP are $BP_* = \mathbb{Z}_{(p)}[v_1, v_2, \ldots]$ where $|v_n| = 2(p^n - 1)$.

For convenience we denote $v_0 = p$ (and indeed $|v_0| = 2(p^0 - 1) = 0$). Since BP is a retract of MU it comes with a map MU \rightarrow BP, that is a complex orientation.

Proposition 1.3.2 (TODO reference). The p-series of the formal group law associated to BP is $[p](x) = \sum v_n x^{p^n}$.

Once we have BP, we can turn to the definition of Morava K-theory and Morava E-theory

Definition 1.3.3. Let $0 < n < \infty$. Morava K-theory at height n and prime p, denoted by K(p,n) or K(n) when the prime is clear, is the spectrum obtained by killing $p = v_0, \ldots, v_{n-1}, v_{n+1}, \ldots$ in BP and inverting v_n . Therefore $K(n)_* = \mathbb{F}_p\left[v_n^{\pm 1}\right]$. We also define $K(0) = H\mathbb{Q}$ and $K(\infty) = H\mathbb{F}_p$. Similarly, Morava E-theory at height n and prime p, denoted by E(p,n) or E(n), is the spectrum obtained by killing v_{n+1}, v_{n+2}, \ldots in BP and inverting v_n . Therefore $E(n)_* = \mathbb{Z}_{(p)}\left[v_1, v_2, \ldots v_{n-1}, v_n^{\pm 1}\right]$.

Since Morava K-theory and E-theory are obtained from BP by cofibers and filtered colimits, they are equipped with a map from BP, so they are also equipped with a complex orientation. It is then evident that the p-series associated to the formal group laws of K(n) and E(n) are $v_n x^{p^n}$ and $v_0 x + \dots v_n x^{p^n}$ respectively, and are therefore of height exactly n and height $\leq n$ respectively. (Note that by the example of HR, this is also true for K(0) and $K(\infty)$.)

We want to describe some properties of Morava K-theory. To do so we first need some definitions.

Definition 1.3.4. Let R be an evenly graded ring. R is called a *graded field* if every non-zero homogenus element is invertible, equivalently it is a field F concentrated at degree 0, or $F\left[\beta^{\pm 1}\right]$ for β of positive even degree. An \mathbb{A}_{∞} -ring E is a *field* if E_* is a graded field.

Example 1.3.5. Clearly K(n) for $0 \le n \le \infty$ is a field.

Proposition 1.3.6. A field E is has Kunneth, i.e. $E_*(X \otimes Y) \cong E_*(X) \otimes_{E_*} E_*(Y)$ for any spectra X, Y.

Proposition 1.3.7 ([Lur10, 24]). Let $E \neq 0$ be a complex oriented cohomology theory, whose formal group law has height exactly n, then $E \otimes K(n) \neq 0$. Let E be a field s.t. $E \otimes K(n) \neq 0$, then E admits the structure of a K(n)-module. (Here $0 \leq n \leq \infty$.)

Example 1.3.8. As we have seen before mod-p K-theory, K/p, has height exactly 1 and coefficients $(K/p)_* = \mathbb{F}_p\left[\beta^{\pm 1}\right]$. It is also known that K, and K/p, are A_{∞} ring spectra, from which it follows that K/p is a field. Therefore, we deduce that K/p is a K (1)-module. Since $|\beta| = 2$ and $|v_1| = 2(p-1)$ it is free of rank p-1.

From this we also deduce some form of uniqueness for Morava K-theory:

Corollary 1.3.9. Let E be a field with $E_* \cong \mathbb{F}_p\left[v_n^{\pm 1}\right]$, which is also complex oriented with height exactly n, then $E \cong \mathrm{K}\left(n\right)$ (as spectra).

1.4 The Balmer Spectrum Spec $\mathbb{S}_{(p)}$ And Spec \mathbb{S}

We are now in a position to state the answer for Spec \mathbb{S} . However, it will be easier to state it first for Spec $\mathbb{S}_{(p)}$, and then pullback prime ideals. We know that $\mathrm{Mod}_{\mathbb{S}_{(p)}} = \mathrm{Sp}_{(p)}$, and the compact objects there are $\mathrm{Sp}_{(p)}^{\mathrm{fin}}$, the p-localizations of finite spectra.

Proposition 1.4.1. Let $\mathfrak{I}_E = \ker E_* = \left\{ X \in \operatorname{Sp_{(p)}^{fin}} \mid E_* \left(X \right) = 0 \right\}$ (equivalently $X \otimes E = 0$) i.e. the E-acyclics, then \mathfrak{I}_E is thick.

Proof. The exact same proof from $Ch_{perf}(R)$ works.

Definition 1.4.2. We define $\mathcal{C}_{p,\geq n} = \mathcal{T}_{\mathrm{K}(n-1)}$, the K(n-1)-acyclics. By the above it is thick. Also, $\mathcal{C}_{p,\geq 0} = \mathrm{Sp}_{(p)}^{\mathrm{fin}}$ and $\mathcal{C}_{p,\geq \infty} = \{0\}$, which are trivially thick. When the prime is clear, we will denote by $\mathcal{C}_{\geq n}$.

Proposition 1.4.3 ([Lur10, 26]). For $X \in \operatorname{Sp_{(p)}^{fin}}$, if $\operatorname{K}(n)_*(X) = 0$ then $\operatorname{K}(n-1)_*(X) = 0$.

Definition 1.4.4. We say that a spectrum $X \in \mathrm{Sp}_{(p)}^{\mathrm{fin}}$ is of $type\ n$ (possibly ∞), if its first non-zero Morava K-theory homology is K(n).

Corollary 1.4.5. $\mathcal{C}_{\geq n}$ is the full subcategory of finite p-local spectra of type $\geq n$ (i.e. $\left\{X \in \operatorname{Sp_{(p)}^{fin}} \mid \forall m < n : \operatorname{K}(m)_*(X) = 0\right\}$). Thus clearly $\mathcal{C}_{\geq n+1} \subseteq \mathcal{C}_{\geq n}$.

Proposition 1.4.6 (TODO reference). The inclusions are proper $\mathcal{C}_{>n+1} \subseteq \mathcal{C}_{>n}$.

Proposition 1.4.7. If $X \in \operatorname{Sp}_{(p)}^{\operatorname{fin}}$ is not contractible, then X has a finite type. Therefore $\bigcap_{n < \infty} \mathcal{C}_{\geq n} = \{0\} = \mathcal{C}_{\geq \infty}$.

Proof. Let X be non-contractible. Then $\mathbb{HZ}_*(X) \neq 0$. Let m be the first non-zero degree. Using the universal coefficient theorem and the fact that the spectrum is p-local we get that $(\mathbb{HF}_p)_m(X) \neq 0$, thus $(\mathbb{HF}_p)_*(X) \neq 0$. Since X is finite, $(\mathbb{HF}_p)_*(X)$ is bounded. Atiyah-Hirzebruch spectral sequence for X with cohomology K(n) has E^2 -page given by $E_{p,q}^2 = H_p\left(X; K(n)_q(*)\right)$. Since $K(n)_q = \mathbb{F}_p$ for $q = 0 \mod 2$ $(p^n - 1)$ and 0 otherwise, we see that the rows $q = 0 \mod 2$ $(p^n - 1)$ are $(\mathbb{HF}_p)_*(X)$, and the others are 0. Therefore if we take n such that the period $2(p^n - 1)$ is larger then the bound on $(\mathbb{HF}_p)_*(X)$, then all differentials have either source or target 0. Thus, the spectral sequence collapses at the E^2 -page, and since $(\mathbb{HF}_p)_*(X) \neq 0$, we get hat $K(n)(X) \neq 0$, i.e. X has type < n.

Proposition 1.4.8. $\mathcal{C}_{\geq n}$ is a prime ideal (note that $\mathcal{C}_{\geq 0}$ is not a proper subcategory, thus only for $n = 1, 2, ..., \infty$).

Proof. For X,Y by Kunneth we have $K(n-1)_*(X \otimes Y) = K(n-1)_*(X) \otimes K(n-1)_*(Y)$. Therefore, if $X \in \mathcal{C}_{\geq n}$, i.e. the homology vanishes, then so does the homology of $X \otimes Y$, i.e. $X \otimes Y \in \mathcal{C}_{\geq n}$, so $\mathcal{C}_{\geq n}$ is an ideal. If $X \otimes Y \in \mathcal{C}_{\geq n}$ then the homology of the product vanishes, therefore one in the right side must vanish (they are graded vector spaces), so $\mathcal{C}_{>n}$ is a prime ideal.

Theorem 1.4.9 (Thick Subcategory Theorem [HS98]). If \mathfrak{T} is a thick subcategory of $\mathrm{Sp}^{\mathrm{fin}}_{(p)}$, then $\mathfrak{T}=\mathfrak{C}_{\geq n}$ for some $n=0,1,2,\ldots,\infty$.

Remark 1.4.10. The proof relies on a major theorem called the Nilpotence Theorem.

Corollary 1.4.11. Spec $\mathbb{S}_{(p)} = \{\mathbb{C}_{\geq 1}, \mathbb{C}_{\geq 2}, \dots, \mathbb{C}_{\geq \infty}\}$, and the topology is such that the closed subsets are chains $\{\mathbb{C}_{\geq k}, \mathbb{C}_{\geq k+1}, \dots, \mathbb{C}_{\geq \infty}\}$ for some $k \geq 1$.

Proof. Follows immediately from the previous results.

We now want to move to finding Spec S. Note that the p-localization functor $L_{(p)}$ is a Bousfield localization. As such it is left (its right adjoint is the inclusion), and in particular preserves cofibers. It also clearly sends 0 to 0, i.e. reduced. Now, since $L_{(p)}$ is smashing, i.e. $L_{(p)}X = X \otimes \mathbb{S}_{(p)}$, we also get that it is symmetric monoidal. As we have seen in 1.1.8, under these conditions we can pullback primes. Therefore $\mathcal{P}_{p,\geq n} = L_{(p)}^* \mathcal{C}_{p,\geq n} = \left\{X \in \operatorname{Sp^{fin}} \mid \operatorname{K}(n-1)_*\left(X_{(p)}\right) = 0\right\}$ and $\mathcal{P}_{p,\geq \infty} = L_{(p)}^* \mathcal{C}_{p,\geq \infty} = \left\{X \in \operatorname{Sp^{fin}} \mid X_{(p)} = 0\right\}$ are prime ideals. Note that $\mathcal{P}_{p,\geq 1} = \left\{X \in \operatorname{Sp^{fin}} \mid \operatorname{H}\mathbb{Q}_*\left(X_{(p)}\right) = 0\right\} = \left\{X \in \operatorname{Sp^{fin}} \mid \operatorname{H}\mathbb{Q}_*\left(X\right) = 0\right\}$ **TODO explain** so it is independent of p, and we will denote it by $\operatorname{Sp^{fin}}_{tor}$.

Theorem 1.4.12 (**TODO explain/reference**). Spec $\mathbb{S} = \left\{ \operatorname{Sp_{tor}^{fin}} \right\} \cup \bigcup_{p} \left\{ \mathcal{P}_{p, \geq 2}, \dots, \mathcal{P}_{p, \geq \infty} \right\}$, and the topology is such that the closed subsets finite unions of chains $\left\{ \mathcal{P}_{\geq k}, \mathcal{P}_{\geq k+1}, \dots, \mathcal{P}_{\geq \infty} \right\}$ for some $k \geq 1$ (i.e. they may include $\operatorname{Sp_{tor}^{fin}}$). **TODO diagram**

TODO regarding the topology, maybe I should prove that the pullback is also continous?

References

- [HS98] M. Hopkins and J. H. Smith. Nilpotence and stable homotopy theory II. Annals of Mathematics, 148(1), second series, 1-49, 1998.
- [Lur10] J. Lurie. Chromatic homotopy theory. 252x course notes, 2010.
- [Rav86] D. C. Ravenel. Complex Cobordism and Stable Homotopy Groups of Spheres. Academic Press, New York, 1986.