第二章 线性规划的对偶理论与 灵敏度分析

2.2 对偶问题的基本性质

修贤超

机电工程与自动化学院 上海大学

xcxiu@shu.edu.cn

- 单纯形法计算的矩阵描述
 - □ 原问题的矩阵表达

$$\max \ z = CX$$
 s.t.
$$\begin{cases} AX \le b \\ X \ge 0 \end{cases} \Longrightarrow$$

$$\max z = CX + \frac{0X_B}{S.t.}$$
 s.t.
$$\begin{cases} AX + I_m X_B = b \\ X, X_s \ge 0 \end{cases}$$

- 单纯形法计算的矩阵描述
 - □ 原问题的矩阵表达

$$\max \ z = CX$$

$$\text{s.t.} \begin{cases} AX \le b \\ X \ge 0 \end{cases} \Longrightarrow \max \ z = CX + 0X_B$$

$$\text{s.t.} \begin{cases} AX + I_m X_B = b \\ X, X_s \ge 0 \end{cases}$$

- \square I 为初始基, X_S 为基变量
- \square 决策变量分为 $X = (X_B, X_N)$
- \square 将系数矩阵 (A,I) 分为 (B,N) 两块,其中 B 是基变量的系数矩阵, N 是非基变量的系数矩阵
- $\ ullet$ 将目标函数的系数 C 分为 C_B , C_N , 分别对应于基变量 X_B 和非基变量 X_N , 并且记作 $C=(C_B,C_N)$

- 例 1
 - □ 写出下面问题的对偶问题

max
$$z = 2x_1 + x_2$$

s.t.
$$\begin{cases} 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

□ 标准化

$$\max z = 2x_1 + x_2 + 0x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} 5x_2 + x_3 = 15 \\ 6x_1 + 2x_2 + x_4 = 24 \\ x_1 + x_2 + x_5 = 5 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

- 例 1
 - □ 标准化

$$\max z = 2x_1 + x_2 + 0x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} 5x_2 + x_3 = 15 \\ 6x_1 + 2x_2 + x_4 = 24 \\ x_1 + x_2 + x_5 = 5 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

□ 列出初始单纯形表

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	x_1	$ x_2 $	$ x_3 $	$ x_4 $	$ x_5 $
0	$\begin{array}{c c} x_3 \\ x_4 \\ x_5 \end{array}$	15	0	5	1	0	0
0	x_4	24	6	2	0	1	0
0	x_5	5	1	1	0	0	1

- 例 1
 - □ 迭代前的单纯形表

项目	非基变量	基变量		
$C_B \mid $ 基 $\mid b \mid$	$\mid X_B \mid X_N$	X_S		
$0 \mid X_S \mid b$	$\mid B \mid N$	I		
σ	$\mid C_B \mid C_N$	0		

□ 迭代后的单纯形表

项目		基变量	:	非基理	变量
C_B 基 b		X_B		X_N	$ X_S $
$C_B \mid X_B \mid B^{-1}b$		I		$B^{-1}N$	$ B^{-1}$
σ		0		$C_N - C_B B^{-1} N$	$V \mid -C_B B^{-1}$

- 例 1
 - □ 迭代前的单纯形表

项目	非基变量	基变量		
C _B 基 b	$X_B \mid X_N$	X_S		
$0 \mid X_S \mid b$	$\mid B \mid N$	I		
σ	$\mid C_B \mid C_N$	0		

□ 迭代后的单纯形表

项目	:	基变量	:	非基3	变量	
C_B 基 b		X_B		X_N		X_S
$C_B \mid X_B \mid B^{-1}U$		I		$B^{-1}N$		B^{-1}
σ		0		$C_N - C_B B^{-1} I$	V .	$-C_BB^{-1}$

□ 对"增广"矩阵做初等行变换

- 单纯形法计算的矩阵描述
 - □ 检验数
 - 由于 $C_B C_B I = 0$, 于是

$$C_N - C_B B^{-1} N \le 0, -C_B B^{-1} \le 0$$

$$\downarrow \downarrow C - C_B B^{-1} A \le 0, -C_B B^{-1} \le 0$$

• 利用
$$Y^{\top} = C_B B^{-1}$$
, 得到

$$A^{\top}Y \ge C^{\top}, \ Y \ge 0$$

- 单纯形法计算的矩阵描述
 - □ 检验数
 - 由于 $C_B C_B I = 0$, 于是

$$C_N - C_B B^{-1} N \le 0, -C_B B^{-1} \le 0$$

$$\downarrow \downarrow \\
C - C_B B^{-1} A \le 0, -C_B B^{-1} \le 0$$

• 利用 $Y^{\top} = C_B B^{-1}$, 得到

$$A^{\top}Y \geq C^{\top}, \ Y \geq 0$$

lue 将检验数 $-C_BB^{-1}$ 取相反数,即为其对偶问题的一个可行解

- 单纯形法计算的矩阵描述
 - □ 检验数
 - 由于 $C_B C_B I = 0$, 于是

$$C_N - C_B B^{-1} N \le 0, -C_B B^{-1} \le 0$$

$$\downarrow \downarrow \\
C - C_B B^{-1} A \le 0, -C_B B^{-1} \le 0$$

• 利用 $Y^{\top} = C_B B^{-1}$, 得到

$$A^{\top}Y \geq C^{\top}, \ Y \geq 0$$

- lue 将检验数 $-C_BB^{-1}$ 取相反数,即为其对偶问题的一个可行解
- 当原问题为最优解时,对偶问题为可行解,且两者具有相同的目标 函数值,即

$$w = Y^{\top}b = C_B B^{-1}b = z$$

■ 对偶问题的基本性质

□ 对称性: 对偶问题的对偶是原问题

- 对偶问题的基本性质
 - 对称性: 对偶问题的对偶是原问题
 - luepsilon 弱对偶定理: 若 $\overline{X},\overline{Y}$ 分别是原问题和对偶问题的可行解,则存在

$$C\overline{X} \leq \overline{Y}^\top b$$

- 对偶问题的基本性质
 - 对称性: 对偶问题的对偶是原问题
 - luepsilon 弱对偶定理: 若 $\overline{X},\overline{Y}$ 分别是原问题和对偶问题的可行解,则存在

$$C\overline{X} \leq \overline{Y}^\top b$$

推论 1: 原问题任一可行解的目标函数值是其对偶问题目标函数值的下界,反之,对偶问题任一可行解的目标函数值是其原问题目标函数值的上界。

- 对偶问题的基本性质
 - 对称性: 对偶问题的对偶是原问题
 - luepsilon 弱对偶定理: 若 $\overline{X}, \overline{Y}$ 分别是原问题和对偶问题的可行解,则存在

$$C\overline{X} \leq \overline{Y}^\top b$$

- 推论 1: 原问题任一可行解的目标函数值是其对偶问题目标函数值 的下界,反之,对偶问题任一可行解的目标函数值是其原问题目标 函数值的上界。
- 推论 2: 若原问题有可行解且目标函数值无界,则其对偶问题无可行解;反之,对偶问题有无界解,则原问题无可行解。

- 对偶问题的基本性质
 - 对称性: 对偶问题的对偶是原问题
 - luepsilon 弱对偶定理: 若 $\overline{X}, \overline{Y}$ 分别是原问题和对偶问题的可行解,则存在

$$C\overline{X} \leq \overline{Y}^\top b$$

- 推论 1: 原问题任一可行解的目标函数值是其对偶问题目标函数值 的下界,反之,对偶问题任一可行解的目标函数值是其原问题目标 函数值的上界。
- 推论 2: 若原问题有可行解且目标函数值无界,则其对偶问题无可行解;反之,对偶问题有无界解,则原问题无可行解。
- 推论 3: 若原问题有可行解,对偶问题无可行解,则原问题目标函数值无界;反之,对偶问题有可行解,而原问题无可行解,则对偶问题的目标函数值无界。

- 对偶问题的基本性质
 - $flue{flue{\Box}}$ 最优性定理: 若 \overline{X} , \overline{Y} 分别是原问题和对偶问题的可行解,且 $C\overline{X} \leq \overline{Y}^{\top}b$,则他们分别是原问题和对偶问题的最优解。

- 对偶问题的基本性质
 - □ 最优性定理: 若 \overline{X} , \overline{Y} 分别是原问题和对偶问题的可行解,且 $C\overline{X} \leq \overline{Y}^{\top}b$,则他们分别是原问题和对偶问题的最优解。
 - 对偶定理: 若原问题有最优解,对偶问题也有最优解,且目标函数值相等。或若原问题与对偶问题均具有可行解,则两者均具有最优解,且它们最优解的目标函数值相等。

■ 对偶问题的基本性质

- □ 最优性定理: 若 \overline{X} , \overline{Y} 分别是原问题和对偶问题的可行解,且 $C\overline{X} \leq \overline{Y}^{\top}b$,则他们分别是原问题和对偶问题的最优解。
- 对偶定理: 若原问题有最优解,对偶问题也有最优解,且目标函数值相等。或若原问题与对偶问题均具有可行解,则两者均具有最优解,且它们最优解的目标函数值相等。
- □ 互补松弛性: 在线性规划问题的最优解中,若对应某一约束条件的对偶变量值为非零,该约束条件取严格等式。反之,若约束条件取严格不等式,则其所对应的对偶变量一定为 0。

- 例 2
 - 🛾 试用对偶理论证明上述线性规划问题无最优解

$$\max \ z = x_1 + x_2$$
 s.t.
$$\begin{cases} -x_1 + x_2 + x_3 \le 2 \\ -2x_1 + x_2 - x_3 \le 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- 例 2
 - 🛮 试用对偶理论证明上述线性规划问题无最优解

$$\max z = x_1 + x_2$$
s.t.
$$\begin{cases} -x_1 + x_2 + x_3 \le 2\\ -2x_1 + x_2 - x_3 \le 1\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

□ 上述问题的对偶问题

min
$$w = 2y_1 + y_2$$

s.t.
$$\begin{cases}
-y_1 - 2y_2 \ge 1 \\
y_1 + y_2 \ge 1 \\
y_1 - y_2 \ge 0 \\
y_1, y_2 \ge 0
\end{cases}$$

■ 例 2

🔲 试用对偶理论证明上述线性规划问题无最优解

$$\max z = x_1 + x_2$$
s.t.
$$\begin{cases}
-x_1 + x_2 + x_3 \le 2 \\
-2x_1 + x_2 - x_3 \le 1 \\
x_1, x_2, x_3 \ge 0
\end{cases}$$

□ 上述问题的对偶问题

min
$$w = 2y_1 + y_2$$

s.t.
$$\begin{cases}
-y_1 - 2y_2 \ge 1 \\
y_1 + y_2 \ge 1 \\
y_1 - y_2 \ge 0 \\
y_1, y_2 > 0
\end{cases}$$

□ 由第 1 个约束条件,可知对偶问题无可行解,因而无最优解,由此原问题也无最优解。

8 / 12

- 例 3
 - □ 已知线性规划问题

min
$$w = 2x_1 + 3x_2 + 5x_3 + 2x_4 + 3x_5$$

s.t.
$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 + 3x_5 \ge 4\\ 2x_1 - x_2 + 3x_3 + x_4 + x_5 \ge 3\\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

已知其对偶问题的最优解为 $y_1^* = 4/5, y_2^* = 3/5, z = 5$, 试用对偶理论找出原问题的最优解。

- 例 3
 - □ 原问题

min
$$w = 2x_1 + 3x_2 + 5x_3 + 2x_4 + 3x_5$$

s.t.
$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 + 3x_5 \ge 4\\ 2x_1 - x_2 + 3x_3 + x_4 + x_5 \ge 3\\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

🔲 对偶问题

$$\text{s.t.} \begin{cases} y_1 + 3y_2 \\ y_1 + 2y_2 \le 2 & (1) \\ y_1 - y_2 \le 3 & (2) \\ 2y_1 + 3y_2 \le 5 & (3) \\ y_1 + y_2 \le 2 & (4) \\ 3y_1 + y_2 \le 3 & (5) \\ y_1, y_2 \ge 0 \end{cases}$$

■ 例 3

将
$$y_1^* = 4/5, y_2^* = 3/5$$
 的值代入约束条件得

$$(2) = 1/5 < 3, \ (3) = 17/5 < 5, (4) = 7/5 < 2$$

- 例 3
 - 将 $y_1^* = 4/5, y_2^* = 3/5$ 的值代入约束条件得

$$(2) = 1/5 < 3, (3) = 17/5 < 5, (4) = 7/5 < 2$$

f 它们为严格不等式,由互补松弛性得 $x_2^* = x_3^* = x_4^* = 0$

- 例 3

$$(2) = 1/5 < 3, (3) = 17/5 < 5, (4) = 7/5 < 2$$

- f 它们为严格不等式,由互补松弛性得 $x_2^* = x_3^* = x_4^* = 0$
- \square 因 $y_1,y_2 \ge 0$,原问题的两个约束条件应取等式,故有

$$x_1^* + 3x_5^* = 4, \ 2x_1^* + x_5^* = 3$$

求解后得到 $x_1^* = 1, x_5^* = 1$

- 例 3

$$(2) = 1/5 < 3, (3) = 17/5 < 5, (4) = 7/5 < 2$$

- f 它们为严格不等式,由互补松弛性得 $x_2^* = x_3^* = x_4^* = 0$
- \square 因 $y_1, y_2 \ge 0$,原问题的两个约束条件应取等式,故有

$$x_1^* + 3x_5^* = 4, \ 2x_1^* + x_5^* = 3$$

求解后得到 $x_1^* = 1$, $x_5^* = 1$

 $f \Box$ 故原问题的最优解为 $X^*=(1,0,0,0,1)^{ op}$,最优值为 $w^*=5$

- 小结
 - □ 对称性
 - □ 弱对偶定理
 - □ 最优性定理
 - □ 对偶定理
 - □ 互补松弛性
- 课后作业: P75, 习题 2.2, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9

$Q\&\mathcal{A}$

Thank you! 感谢您的聆听和反馈