I²C 互換シリアルインターフェース内蔵DRV8830使用

最大1A対応低電圧モータドライバモジュール

特長

- ・Hブリッジ電圧制御モータドライバ
 - ・DCモータ、ステッピングモータの1巻線 または他のアクチュエータ/負荷を駆動可能。
 - ・高効率のPWM電圧制御により、電源電圧の 変化に対してモータ速度を一定に保持。
 - ・低オン抵抗: ハイサイド+ローサイド=450mΩ
- ·最大連続駆動電流:1A
- ·動作電源電圧範囲:2.75V~6.8V
- ・スリープモード電流:300nA(標準)
- ・I²C互換シリアルインターフェース
- (同一バス上に最大9デバイスを使用可能)
- ・電流制限回路および障害通知出力内蔵

DRV8830は、電池駆動の玩具や、プリンタ、その他の低電 圧またはバッテリ駆動の動作制御アプリケーションに対して、 統合されたモータ・ドライバ・ソリューションを提供します。1 つの H ブリッジ・ドライバを搭載し、1個の DC モータ、また はステッピング・モータの1つの巻線を駆動でき、ソレノイド など他の負荷も駆動できます。出力ドライバ・ブロックはNチャ ネルおよび P チャネル・パワー MOSFET で構成され、 H ブリッ ジとしてモータ巻線を駆動します。 PCB に十分なヒートシンク が備えられていれば、DRV8830は最大1Aの連続出力雷流 を供給できます。 DRV8830 は、 2.75V ~ 6.8V の電源電圧で 動作します。 バッテリ寿命を長く保ちながら、 バッテリ電圧 の変動に対して一定のモータ速度を維持するため、 PWM 電 圧レギュレーション方式が採用されています。 出力電圧は、 内部電圧リファレンスおよび DAC を使用して、I2C 互換インター フェイス経由でプログラミングされます。 過電流保護、 短絡 保護、低電圧誤動作防止、および過熱保護のために、内 部保護機能が用意されています。 ピッチ変換基板に実装済 みで、2.54mmピッチのユニバーサル基板などに付属のピ ンヘッダで取り付けできます。

名前	ピン	I/O ⁽¹⁾	説明	外部部品または接続			
GND	5	_	デバイスのグランド				
VCC	4	_	デバイスおよびモータの電源	0. $1\mu F$ (最小) のセラミックコンデンサを使用してGNDにバイパスします。			
SDA	9	10	シリアル・データ	l ² Cシリアルバスのデータ線。			
SCL	10		シリアル・クロック	l ² Cシリアルバスのクロック線。			
A0	7	I	アドレス設定0	GNDに接続、VCCに接続、 またはオープンにして、I ² Cベースアドレスを設定します。			
A1	8		アドレス設定1				
FAULTn	6	OD	障害通知出力	障害状態が発生するとLowになるオープンドレイン出力です。			
OUT1	3	0	ブリッジ出力1	モーター巻線に接続します。			
OUT2	1	0	ブリッジ出力2				
ISENSE	2	10	電流センス抵抗	GNDとの間に電流センス抵抗を接続します。この抵抗値によって電流制限レベルが設定されます。			

DRV8830は、低電圧、過電流、および過熱状態から完全に保護されています。FAULTnピンによって障害状態がシステムに通知されます。また、シリアル・インターフェイスのFAULTレジスタで障害の要因を確認できます。内部チップ温度が約160°Cを超えた場合、デバイスは、温度が安全なレベルに低下するまでディスエーブルとなります。

デバイスが過熱シャットダウン状態になる傾向がある場合には、消費電力が過剰であるか、ヒートシンクが不足しているか、または周囲温度が高すぎることを示しています。DRV8830の消費電力で大勢を占めるのは、出力 FET 抵抗 RDS(ON) で消費される電力です。ステッピング・モータを駆動したときの平均消費電力は、おおまかに見積もることができます。

ここで、PTOT は合計消費電力、 RDS(ON) は各 FET の抵抗、 IOUT(RMS) は各

(1) 方向: I=入力、O=出力、OZ=3ステート出力、OD=オープンドレイン出力、IO=入出力

推奨動作	条件(動作温度範囲内)	MIN	NOM	MAX	単位
VCC	モーター電源電圧範囲	2. 75		6. 8	V
I _{out}	連続Hブリッジ出力電流(1)	0		1	Α

(1) 消費電力および温度の制限に従う必要があります。

巻線に流れる RMS 出力電流です。 IOUT(RMS) は、フルスケール出力電流設定 × 0.7 にほぼ等しくなります。 係数の 2 は、各巻線について任意の時点で 2 つの FET (ハイサイドとローサイド) に巻線電流が流れているためです。 デバイスで消費できる最大電力は、 周囲温度およびヒートシンクに依存します。 RDS(ON) は温度とともに増加する ため、デバイスの温度が上昇すると、 消費電力は増加します。 ヒートシンクのサイズを決定する際には、 この点を考慮する必要があります。

 $P_{TOT} = 2 \bullet R_{DS(ON)} \bullet (I_{OUT(RMS)})^2$

雷圧設定(VSET DAC)

DACに接続された内部リファレンス電圧が備えられて おり、PWMレギュレーション出力電圧の設定に使用さ れる電圧を生成します。VSETビットにより制御され、 出力電圧は4xVREFx(VSET+1) /64で算出されま す。VREFは内部の1.285Vリファレンスです。0x00h ~0x05hは予約されており、有効な電圧指定範囲は、 $0x06h(0.48V) \sim 0x3Fh(5.06V)$ です。

I2Cアドレス

A1ピン A0ピン		A3A0ビット	アドレス(書き込み)	アドレス(読み取り)
0	0	0000	0xC0h	0xC1h
0	オープン	0001	0xC2h	0xC3h
0	1	0010	0xC4h	0xC5h
オープン	0	0011	0xC6h	0xC7h
オープン	オープン	0100	0xC8h	0xC9h
オープン	1	0101	0xCAh	0xCBh
1	0	0110	0xCCh	0xCDh
1	オープン	0111	0xCEh	0xCFh
1	1	1000	0xD0h	0xD1h

I2Cタイミング要件

= 275V~6V T₄ = -40°C~85°C(特に記述のない限り)

		標	標準モード		ファースト・モード		単位	
		MIN	TYP	MAX	MIN	TYP	MAX	
f _{scl}	I ² Cクロック周波数	0		100	0		400	kHz
t _{sch}	I ² CクロックHigh時間	4			0.6			μs
t _{scl}	I ² CクロックLow時間	4.7			1.3			μs
t _{sp}	I ² Cスパイク時間	0		50	0		50	ns
t _{sds}	I ² Cシリアル・データ・セットアップ時間	250			100			ns
t _{sdh}	² Cシリアル・データ・ホールド時間	0			0			ns
t _{icr}	I ² C入力立ち上がり時間			1000	20+0.1Cb (2)		300	ns
t _{icf}	I ² C入力立ち下がり時間			300	20+0.1Cb (2)		300	ns
t _{ocf}	I ² C出力立ち下がり時間			300	20+0.1Cb (2)		300	ns
t _{buf}	I ² Cバス解放時間	4.7			1.3			μs
t _{sts}	I ² Cスタート・セットアップ時間	4.7			0.6			μs
t _{sth}	I ² Cスタート・ホールド時間	4			0.6			μs
t _{sps}	I ² Cストップ・セットアップ時間	4			0.6			μs
t _{vd} (data)	データ有効時 間 SCL LowからSDA有効まで)			1			1	μs
t _{vd} (ack)	ACKデータ有効時間 (SCL LowからSDA LowまでのACK信号)			1			1	μς

(1)実製品の検査は行っていません。(2)C_b = 1つのバス・ラインの合計容量(pF単位)

I²C読み取りモード

レジスタ0 - CONTROL

CONTROLレジスタは、出力の状態設定、および出力電圧に対するDAC設定に使用されます。

このレジスタは次のように定義されています。

D7 -D2	D1	D0
VSET[50]	IN2	IN1

VSET[5..0]:

DAC出力電圧を設定します。前述の「電圧設定」を参照してください。

IN2: N1とともに出力の状態を設定します。前述の「ブリッジ制御」を参照してください。

IN1: N2とともに出力の状態を設定します。前述の「ブリッジ制御」を参照してください。

レジスタ1 - FAULT

FAULTレジスタは、障害状態の要因の読み取り、および障害を示すステータス・ビットのクリアに使用されます。

このレジスタは次のように定義されています。

D7	D6 -D5	D4	D3	D2	D1	D0
CLEAR	未使用	ILIMIT	OTS	UVL0	0CP	FAULT

CLEAR: 1を書き込むと、障害ステータス・ビットがクリアされます。

ILIMIT: セットされている場合、障害要因が電流制限状態の継続であることを示します。 OTS: セットされている場合、障害要因が過熱状態(OTS)であることを示します。 UVL0: セットされている場合、障害要因が低電圧誤動作防止であることを示します。 OCP: セットされている場合、障害要因が過電流(OCP)であることを示します。

FAULT: いずれかの障害状態が発生するとセットされます。 本紙記載のデータは、参考データです。

ご使用にあたってはメーカの最新データシートをご参照ください。