Ex 1 Parmi les matrices suivantes, effectuer tous les produits possibles de deux matrices (il y en a 9):

$$A = \left(\begin{array}{cccc} 1 & 2 & 3 \end{array} \right); \ B = \left(\begin{array}{cccc} 1 & 1 & 2 & 2 \end{array} \right); \ C = \left(\begin{array}{cccc} 1 & 2 & 1 & 2 \\ 2 & 0 & 2 & 0 \end{array} \right);$$

$$D = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}; E = \begin{pmatrix} 1 & 2 & 1 \\ -2 & -1 & 0 \\ 2 & 1 & -1 \\ 0 & 3 & 1 \end{pmatrix}; F = \begin{pmatrix} 1 & 2 \\ 3 & 1 \\ -2 & 1 \end{pmatrix}$$

Ex 2 Soient
$$A = \begin{pmatrix} 4 & -2 & 0 \\ 6 & -3 & 0 \\ 3 & -2 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} -3 & 2 & 0 \\ -6 & 4 & 0 \\ -3 & 2 & 0 \end{pmatrix}$. Calculer AB et BA .

En déduire que ni A ni B n'est inversible.

Ex 3 Soient A et B deux matrices nilpotentes de $\mathcal{M}_n(\mathbb{K})$ qui commutent. Montrer que AB et A+B sont nilpotentes.

$$\mathbf{Ex\ 4}\ \ \mathrm{Si}\ (a,b,c)\in\mathbb{R}^{3},\ \mathrm{on\ note}\ M\ (a,b,c)=\left(\begin{array}{ccc} a+c & b & -c \\ b & a+2c & -b \\ -c & -b & a+c \end{array}\right)\ \mathrm{et}\ \mathcal{A}=\left\{M\ (a,b,c)\ ,\ (a,b,c)\in\mathbb{R}^{3}\right\}$$

- a) Montrer que toute combinaison linéaire d'éléments de A est dans
- b) Montrer que tout produit d'éléments de A est dans A.

Ex 5 Soit
$$A = \begin{pmatrix} 0 & 0 & i \\ i & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{C})$$
.

- a) Calculer A^k , $k \in \mathbb{N}$
- b) Montrer que M commute avec A si et seulement si M est combinaison linéaire de I, A et A^2 .

Ex 6 A l'aide d'une matrice nilpotente, calculer
$$A^n$$
, $n \in \mathbb{Z}$, où $A = \begin{pmatrix} -1 & a & a \\ 1 & -1 & 0 \\ -1 & 0 & -1 \end{pmatrix}$, $a \in \mathbb{C}$.

Ex 7 Soient (x_n) , (y_n) et (z_n) les suites définies par récurrence par $x_0=1,\ y_0=-1,\ z_0=1,$ et

$$\forall n \in \mathbb{N}, \begin{cases} x_{n+1} = 4x_n - 3y_n - 3z_n \\ y_{n+1} = 3x_n - 2y_n - 3z_n \\ z_{n+1} = 3x_n - 3y_n - 2z_n \end{cases}$$

- $\forall n \in \mathbb{N}, \; \left\{ \begin{array}{l} x_{n+1} = 4x_n 3y_n 3z_n \\ y_{n+1} = 3x_n 2y_n 3z_n \\ z_{n+1} = 3x_n 3y_n 2z_n \end{array} \right.$ a) Calculer les puissances de $A = \left(\begin{array}{cc} 4 & -3 & -3 \\ 3 & -2 & -3 \\ 3 & -3 & -2 \end{array} \right)$ à l'aide et d'un polynôme annulateur et de suites récurrentes.
- b) En déduire les expressions de (x_n) (y_n) et (z_n) en fonction de n.

Ex 8 Soit $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$. Montrer qu'il existe deux suites (a_n) et (b_n) telles que $\forall n \in \mathbb{N}, \ A^n = a_n A + b_n A^2$

Calculer (a_n) et (b_n) et en déduire la forme générale de A^n , $n \in \mathbb{N}$.

Ex 9 Soit
$$A=\left(egin{array}{cc}a&b\\c&d\end{array}
ight)\in\mathcal{M}_{2}\left(\mathbb{K}\right)$$
 . On note $\operatorname{tr}A=a+d$ et $\det A=ad-bc$.

a) Montrer que : $A^2 - (\operatorname{tr} A) A + (\det A) I_2 = 0$. (théorème de Cayley-Hamilton pour la dimension 2)

b) Soit
$$\lambda \in \mathbb{R}$$
. A l'aide du a), calculer $B^n, n \in \mathbb{N}$, avec $B = \left(\begin{array}{cc} 1 - \lambda + \lambda^2 & 1 - \lambda \\ \lambda - \lambda^2 & \lambda \end{array} \right)$

Ex 10 Calculer les inverse des matrices
$$A = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1+i & 1 & i \\ 0 & -i & 1 \\ 2-i & 1 & 0 \end{pmatrix}$.

PCSI 1 Thiers 2019/2020 **Ex 11** Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$. On note $\operatorname{Tr}(A) = \sum_{i=1}^n a_{ii}$ (**trace** de A)

a) Montrer que pour $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$ et $(\lambda, \mu) \in \mathbb{R}^2$, $\operatorname{Tr}(\lambda A + \mu B) = \lambda \operatorname{Tr} A + \mu \operatorname{Tr} B$

- b) Montrer que pour $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$, $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$
- c) Montrer que pour $A \in \mathcal{M}_n(\mathbb{K})$ et $P \in GL_n(\mathbb{K})$, on a $\operatorname{Tr}(PAP^{-1}) = \operatorname{Tr} A$

Ex 12 a) Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $P \in GL_n(\mathbb{K})$, et $B = PAP^{-1}$. Calculer A^k $(k \in \mathbb{N})$ à l'aide de A et P

b) Application : soit
$$A = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$
 et $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -2 \end{pmatrix}$.

Ex 13 Soient $n \in \mathbb{N}^*$ et $\omega = e^{2i\pi/n}$, et $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$ définie par $a_{ij} = \omega^{(i-1)(j-1)}$.

On note \overline{A} la matrice de terme général $\overline{a_{ij}}$. Calculer $A\overline{A}$, et en déduire que A est inversible, en donnant A^{-1} .

Ex 14 Soient $(a_1, \ldots, a_n) \in \mathbb{R}^{*n}_+$, $D = \text{Diag}(a_1, \ldots, a_n)$, $J \in \mathcal{M}_n(\mathbb{K})$ la matrice dont tous les termes valent 1. On pose A = J + D. Si $X = \begin{pmatrix} x_1 \\ x_n \end{pmatrix}$, calculer ${}^t XX$ puis ${}^t XAX$, et en déduire que A est inversible.

Ex 15 On note $J \in \mathcal{M}_n(\mathbb{K})$ la matrice dont tous les termes valent 1.

- a) Soit $A \in \mathcal{M}_n(\mathbb{K})$, et σ la somme de tous les coefficients de A. Montrer que $JAJ = \sigma J$. Que vaut J^2 ?
- b) Soit $A=(a_{ij})\in\mathcal{M}_n$ définie par : $\left\{\begin{array}{ll} a_{ij}=0 & \text{si }i=j\\ a_{ij}=1 & \text{sinon} \end{array}\right.$. Montrer que $A\in GL_n\left(\mathbb{R}\right)$ et calculer A^{-1} .

Ex 16 Soit
$$N = \begin{pmatrix} 0 & 1 & & 0 \\ & \ddots & \ddots & \\ & 0 & \ddots & 1 \\ & & & 0 \end{pmatrix} \in \mathcal{M}_n$$
. Montrer que N est nilpotente.

Ex 17 Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice nilpotente d'ordre $p \ge 1$. On pose $B = I_n - A$.

Montrer que B est inversible et exprimer son inverse à l'aide de A (penser à la factorisation de $I-A^p$)

Application:
$$A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
. Montrer que $A \in GL_4$ et calculer A^{-1}

Ex 18 Lemme d'Hadamard: soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$ une matrice à diagonale strictement dominante, c'est-à-dire vérifiant $\forall i \in \llbracket 1, n \rrbracket, \ |a_{ii}| > \sum_{j \neq i} |a_{ij}|$. Montrer que A est inversible.

<u>Indication</u>: on pourra raisonner par l'absurde, en supposant l'existence d'un élément $X=(x_1,\ldots,x_n)$ non nul tel que AX = 0 et en considérant $\max(|x_1|, \dots, |x_n|)$.

Ex 19 Matrices élémentaires: si $(k, \ell) \in [[1, n]]^2$, on considère la matrice $E_{k\ell}$ de \mathcal{M}_n (\mathbb{K}) dont tous les termes sont nuls hormis le terme d'indice (k,ℓ) qui vaut 1. On rappelle que

$$\delta_{ij} = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ sinon} \end{cases}$$

- a) Exprimer le terme général de $E_{k\ell}$ à l'aide du symbole de Kronecker δ .
- b) Exprimer une matrice $A=(a_{ij})\in\mathcal{M}_n\left(\mathbb{K}\right)$ à l'aide des matrices $E_{k\ell}$
- c) Pour $(k, \ell, p, q) \in [1, n]^4$, calculer $E_{k\ell} E_{pq}$
- d) Pour $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$, calculer $AE_{k\ell}$ et $E_{k\ell}A$.
- e) En déduire que la multiplication à gauche de A par $I_n + \lambda E_{pq}$ opère $L_p \leftarrow L_p + \lambda L_q$

Ex 20 En utilisant les matrices élémentaires E_{ij} (exercice 19), déterminer toutes les matrices A de $\mathcal{M}_n(\mathbb{K})$ vérifiant :

$$\forall M \in \mathcal{M}_n(\mathbb{K}), AM = MA$$

2 PCSI 1 Thiers 2019/2020

- **Ex 21** a) Soit $M \in \mathcal{M}_2(\mathbb{K})$. Montrer que $\operatorname{rg} M = 1 \Longleftrightarrow \exists L \in \mathcal{M}_{12}(\mathbb{K}) \setminus \{0\}, \ \exists C \in \mathcal{M}_{21}(\mathbb{K}) \setminus \{0\} \ / \ M = LC$. Calculer dans ce cas M^n pour $n \in \mathbb{N}$.
 - b) Soit $n \in \mathbb{N}^*$. Résoudre dans $\mathcal{M}_2\left(\mathbb{C}\right)$ l'équation $M^n = A$, où $A = \left(\begin{array}{cc} 2 & 3 \\ 4 & 6 \end{array} \right)$ On pourra raisonner sur le rang d'une telle matrice M.
- **Ex 22** On considère la matrice $A \in \mathcal{M}_n(\mathbb{R})$ de terme général $a_{ij} = \frac{1}{(i+j-1)!}$

Soit
$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n$$
 vérifiant $AY = 0$. On définit le polynôme. $P = \sum_{k=1}^n \frac{y_k}{(n+k-1)!} X^{n+k-1}$

- a) Calculer $P^{(k)}(1)$ pour $k \in [0, n-1]$.
- b) En déduire que P = 0, et conclure sur la matrice A.
- Ex 23 Soit $A \in GL_n(\mathbb{R})$. On suppose que tous les coefficients de A et de A^{-1} sont positifs ou nuls. Montrer que sur chaque colonne de A, il y a un unique terme non nul.
- Ex 24 Une méthode hors programme de calcul de puissances : soit $A=\begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}$.
 - a) Calculer A^2 , et en déduire un polynôme P du second degré qui annule A.
 - b) Déterminer le reste de la division euclidienne de X^n par P.
 - c) En déduire A^n , pour $n \in \mathbb{N}$.
 - d) Même question avec $B=\left(\begin{array}{cc} -8 & 4 \\ -9 & 4 \end{array}\right)$.