CMOS Inverter: DC Analysis

 Analyze DC Characteristics of CMOS Gates by studying an Inverter

pFET: $V_{Tp} < 0$ $\beta_p = \kappa'_p \left(\frac{W}{L}\right)_p$

- DC Analysis
 - DC value of a signal in static conditions
- · DC Analysis of CMOS Inverter
 - Vin, input voltage
 - Vout, output voltage
 - single power supply, VDD
 - Ground reference
 - find Vout = f(Vin)

- plot of Vout as a function of Vin
- vary Vin from 0 to VDD (and in reverse!)
- find Vout at each value of Vin

nFET: $V_{Tn} > 0$ $\beta_n = k'_n \left(\frac{W}{L}\right)_n$

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Inverter Voltage Transfer Characteristics

- Output High Voltage, V_{OH}
 - maximum output voltage
 - occurs when input is low (Vin = OV)
 - pMOS is ON, nMOS is OFF
 - pMOS pulls Vout to VDD
 - V_{OH} = VDD
- Output Low Voltage, V_{OL}
 - minimum output voltage
 - occurs when input is high (Vin = VDD)
 - · pMOS is OFF, nMOS is ON
 - nMOS pulls Vout to Ground
 - V_{OL} = 0 V
- Logic Swing
 - Max swing of output signal

$$\cdot$$
 $V_L = VDD$

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Inverter Voltage Transfer Characteristics

- Gate Voltage, f(Vin)
 - V_{GSn} =Vin, V_{SGp} =VDD-Vin
- Drain Voltage, f(Vout)

 $-V_{DSn}=Vout$, $V_{SDp}=VDD-Vout$

- Transition Region (between V_{OH} and V_{OL})
 - Vin low
 - Vin < Vtn
 - Mn in Cutoff, OFF
 - Mp in Triode, Vout pulled to VDD
 - Vin > Vtn < ~Vout
 - Mn in Saturation, strong current
 - Mp in Triode, V_{se} & current reducing
 - Vout decreases via current through Mn
 - Vin = Vout (mid point) ≈ ½ VDD
 - Mn and Mp both in Saturation
 - maximum current at Vin = Vout
 - Vin high
 - Vin > ~Vout, Vin < VDD |Vtp|
 - Mn in Triode, Mp in Saturation
 - Vin > VDD |Vtp|
 - Mn in Triode, Mp in Cutoff

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Noise Margin

Vout

 $V_{OH} = V_{DD}$

Mp on Mn off

 $V_{I\!L}$

 $V_{out} = V_{in}$

Mn on

- Input Low Voltage, V_{II}
 - Vin such that Vin $\langle V_{IL} = logic 0 \rangle$
 - point 'a' on the plot
 - where slope, $\frac{\partial Vin}{\partial Vout} = -1$
- Input High Voltage, V_{IH}
 - Vin such that Vin > $V_{\rm IH}$ = logic 1
 - point 'b' on the plot
 - where slope =-1

- measure of how stable inputs are with respect to signal interference

-
$$VNM_H = V_{OH} - V_{IH}$$

$$- |VNM_L = V_{IL} - V_{OL}| = V_{IL}$$

- desire large VNMH and VNML for best noise immunity

Switching Threshold

 $V_{OH} = V_{DD}$.

- Switching threshold = point on VTC where Vout = Vin
 - also called midpoint voltage, V_M
 - here, $Vin = Vout = V_M$
- · Calculating V_M
 - at V_M , both nMOS and pMOS in Saturation
 - in an inverter, $I_{Dn} = I_{Dp}$, always!
 - solve equation for V_M

- express in terms of V_M

$$\frac{\beta_n}{2}(V_M - V_{tn})^2 = \frac{\beta_p}{2}(V_{DD} - V_M - |V_{tp}|)^2 \implies \sqrt{\frac{\beta_n}{\beta_p}}(V_M - V_{tn}) = V_{DD} - V_M - |V_{tp}|$$

- solve for
$$V_{M}$$

$$V_{M} = \frac{VDD - \left|V_{p}\right| + V_{m}\sqrt{\frac{\beta_{n}}{\beta_{p}}}}{1 + \sqrt{\frac{\beta_{n}}{\beta_{p}}}}$$

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Effect of Transistor Size on VTC

Recall $\beta_n = k'_n \frac{W}{L}$ $\frac{\beta_n}{\beta_p} = \frac{k'_n \left(\frac{W}{L}\right)_n}{k'_p \left(\frac{W}{L}\right)_p}$

$$V_{M} = \frac{VDD - \left|V_{tp}\right| + V_{tm} \sqrt{\frac{\beta_{n}}{\beta_{p}}}}{1 + \sqrt{\frac{\beta_{n}}{\beta_{p}}}}$$

- If nMOS and pMOS are same size

$$\frac{\beta_n}{\beta_p} = \frac{\mu_n C_{oxn} \left(\frac{W}{L}\right)_n}{\mu_p C_{oxp} \left(\frac{W}{L}\right)_n} = \frac{\mu_n}{\mu_p} \cong 2or3$$

- (W/L)n = (W/L)p - Coxn = Coxp (always) $\frac{\beta_n}{\beta_p} = \frac{\mu_n C_{oxn} \left(\frac{W}{L}\right)_n}{\mu_p C_{oxp} \left(\frac{W}{L}\right)_p} = \frac{\mu_n}{\mu_p} \approx 2or3$ • If $\frac{\mu_n}{\mu_p} = \frac{\left(\frac{W}{L}\right)_p}{\left(\frac{W}{L}\right)_n}$, then $\frac{\beta_n}{\beta_p} = 1$ since L normally min. size for all tx, can get betas equal by making Wp larger than Wn

- · Effect on switching threshold
 - if $\beta_n \approx \beta_p$ and Vtn = |Vtp|, V_M = VDD/2, exactly in the middle
- Effect on noise margin
 - if $\beta_n \approx \beta_p$, V_{IH} and V_{IL} both close to V_M and noise margin is good

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Example

- Given
 - $k'n = 140uA/V^2$, Vtn = 0.7V, VDD = 3V
 - $k'p = 60uA/V^2$, Vtp = -0.7V
- Find
 - a) tx size ratio so that V_M = 1.5V
 - b) V_M if tx are same size

transition pushed lower as beta ratio increases

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

CMOS Inverter: Transient Analysis

- Analyze Transient Characteristics of CMOS Gates by studying an Inverter
- · Transient Analysis
 - signal value as a function of time
- Transient Analysis of CMOS Inverter
 - Vin(t), input voltage, function of time
 - Vout(t), output voltage, function of time
 - VDD and Ground, DC (not function of time) $v_{\rm DD}$
 - find Vout(t) = f(Vin(t))
- Transient Parameters
 - output signal rise and fall time
 - propagation delay

 V_{in}

Lecture Notes 7.8

 V_{DD}

Vout

Mp

Mn

Transient Response

 V_{in}

- · Response to step change in input
 - delays in output due to parasitic R & C
- Inverter RC Model
 - Resistances

- Rn =
$$1/[\beta_n(V_{DD}-Vtn)]$$

- Rp = $1/[\beta_n(V_{DD}-|Vtp|)]$

- Output Cap. (only output is important)
 - C_{Dn} (nMOS drain capacitance)

$$-C_{Dn} = \frac{1}{2} Cox W_n L + C_j A_{Dnbot} + C_{jsw} P_{Dnsw}$$

• $C_{\rm Dp}$ (pMOS drain capacitance)

$$- C_{Dp} = \frac{1}{2} Cox W_p L + C_j A_{Dpbot} + C_{jsw} P_{Dpsw}$$

Load capacitance, due to gates attached at the output

-
$$C_L = 3 Cin = 3 (C_{Gn} + C_{Gp})$$
, 3 is a "typical" load

· Total Output Capacitance

- Cout =
$$C_{Dn} + C_{Dp} + C_{L}$$

 v_{DD}

 C_{Dp}

╟┰

 C_{Dn}

 R_p

term "fan-out" describes # gates attached at output

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Fall Time

- Fall Time, t_f
 - time for output to fall from '1' to '0'
 - derivation:

$$i = -C_{out} \frac{\partial V_{out}}{\partial t} = \frac{V_{out}}{R_n}$$

- initial condition, Vout(0) = VDD
- solution

$$t = \tau_n \ln \left(\frac{V_{DD}}{Vout} \right)$$

- definition
 - \cdot t_f is time to fall from 90% value $[V_{\scriptscriptstyle 1},\!t_{\scriptscriptstyle x}]$ to 10% value $[V_{\scriptscriptstyle 0},\!t_{\scriptscriptstyle y}]$

$$t = \tau_n \left[\ln \left(\frac{V_{DD}}{0.1 V_{DD}} \right) - \ln \left(\frac{V_{DD}}{0.9 V_{DD}} \right) \right]$$

•
$$t_f = 2.2 \tau_n$$

 V_{DD} V_{in}

 V_{DD}

Vout

- (a) Discharge circuit
- (b) Output waveform

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Rise Time

- Rise Time, t_r
 - time for output to rise from '0' to '1'
 - derivation:

$$i = C_{out} \frac{\partial V_{out}}{\partial t} = \frac{V_{DD} - V_{out}}{R_p}$$

- initial condition, Vout(0) = 0V
- solution

 \cdot t_f is time to rise from 10% value $[V_{\scriptscriptstyle 0},t_{\scriptscriptstyle u}]$ to 90% value $[V_{\scriptscriptstyle 1},t_{\scriptscriptstyle v}]$

•
$$t_r$$
 = 2.2 τ_p

(a) Charge circuit

 $V_{out}(0) = 0 \text{ V}$

nFET off

 V_{DD} V_{in}

 V_{DD}

 t_1

 $V_{out}(t)$

 V_{DD}

 V_{out}

 $f_{\text{max}} = 1/(t_r + t_f)$ faster than this and the output can't settle

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Propagation Delay

 V_{in}

Vout

- Propagation Delay, tp
 - measures speed of output reaction to input change

$$- t_p = \frac{1}{2} (t_{pf} + t_{pr})$$

- Fall propagation delay, t_{pf}
 - time for output to fall by 50%
 - reference to input switch
- Rise propagation delay, t_{pr}
 - time for output to rise by 50%

Total Propagation Delay

$$t_p = 0.35(\tau_n + \tau_p)$$

Propagation delay measurement:

- from time input reaches 50% value

 t_{pf}

- to time output reaches 50% value

Add rise and fall propagation delays for total value

Lecture Notes 7.12

50%

Switching Speed -Resistance

Rise & Fall Time

-
$$t_f = 2.2 \tau_n$$
, $t_r = 2.2 \tau_p$,

Propagation Delay

$$-t_{p} = 0.35(\tau_{n} + \tau_{p})$$

In General

- delay
$$\propto \tau_n + \tau_p$$

- $\tau_n + \tau_p = Cout (Rn+Rp)$

Define delay in terms of design parameters

- Rn+Rp =
$$\frac{(V_{DD}-Vt)(\beta_n+\beta_p)}{\beta_n \beta_p (V_{DD}-Vt)^2}$$

- Rn+Rp =
$$\frac{\beta_n + \beta_p}{\beta_n \beta_p (V_{DD} - Vt)}$$

$$\tau_n = R_n C_{out}$$

$$\tau_{\rm n} = R_{\rm n} C_{\rm out}$$
 $\tau_{\rm p} = R_{\rm p} C_{\rm out}$

Rn = $1/[\beta_n(V_{DD}-Vtn)]$ $\beta = \mu Cox (W/L)$

$$Rp = 1/[\beta_p(V_{DD}-|Vtp|)]$$

$$Cout = C_{Dn} + C_{Dp} + C_{L}$$

Beta Matched if $\beta_n = \beta_p = \beta$,

Rn+Rp =
$$\frac{2}{\beta (V_{DD}-Vt)} = \frac{2 L}{\mu Cox W (V_{DD}-Vt)}$$

Width Matched if $W_n = W_n = W$, and $L = L_n = L_p$

Rn+Rp =
$$\frac{L (\mu_n + \mu_p)}{(\mu_n \mu_p) Cox W (V_{DD}-Vt)}$$

• if Vt = Vtn = |Vtp| To decrease R's, U, W, VDD, W

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Switching Speed -Capacitance

- From Resistance we have
 - ψ L, $\hat{\Pi}$ W, $\hat{\Pi}$ VDD, ($\hat{\Pi}\mu_p$, $\hat{\Pi}$ Cox)
 - but ↑ VDD increases power
 - ↑ W increases Cout
- · Cout

-
$$Cout = \frac{1}{2} Cox L (W_n + W_p) + C_j 2L$$

 $(W_n + W_p) + 3 Cox L (W_n + W_p)$

- · assuming junction area ~W·2L
- · neglecting sidewall capacitance

- Cout
$$\approx$$
 L (W_n+W_p) [3 $\frac{1}{2}$ Cox +2 C_i]

- Cout $\propto L (W_n + W_p)$

$$C_{Dp} = \frac{1}{2} Cox W_p L + C_j A_{Dpbot} + C_{jsw} P_{Dpsw}$$

$$\sim 2L$$

Cout = $C_{Dn} + C_{Dp} + C_{L}$

if L=Ln=Ln

Ů L

To decrease Cout, $\Downarrow L$, $\Downarrow W$, $(\Downarrow C_j, \Downarrow C_{ox})$

• Delay \propto Cout(Rn+Rp) \propto L W $\frac{L}{W \text{ VDD}} = \frac{L^2}{\text{VDD}}$

Decreasing L (reducing feature size) is best way to improve speed!

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Lecture Notes 7.14

estimate

 $C_{L} = 3 (C_{Gn} + C_{Gp}) = 3 Cox (W_{n}L + W_{p}L)$

 $C_{\rm Dn} = \frac{1}{2} Cox W_{\rm n} L + C_{\rm j} A_{\rm Dnbot} + C_{\rm jsw} P_{\rm Dnsw}$

Switching Speed -Local Modification

- · Previous analysis applies to the overall design
 - shows that reducing feature size is critical for higher speed
 - general result useful for creating cell libraries
- How do you improve speed within a specific gate?
 - increasing W in one gate will not increase C_G of the load gates
 - Cout = C_{Dn} + C_{Dp} + C_{L}
 - increasing W in one logic gate will increase $C_{Dn/p}$ but not C_L
 - C_L depends on the size of the tx gates at the output
 - as long as they keep minimum W, $C_{\rm L}$ will be constant
 - thus, increasing W is a good way to improve the speed within a local point
 - But, increasing W increases chip area needed, which is bad
 - · fast circuits need more chip area (chip "real estate")
- Increasing VDD is not a good choice because it increases power consumption

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

CMOS Power Consumption

- $P = P_{DC} + P_{dyn}$
 - P_{DC}: DC (static) term
 - P_{dyn}: dynamic (signal changing) term

- $-P = I_{DD} V_{DD}$
 - \cdot I_{DD} DC current from power supply
 - ideally, I_{DD} = 0 in CMOS: ideally only current during switching action
 - leakage currents cause $I_{\rm DD}$ > 0, define **quiescent** leakage current, $I_{\rm DDQ}$ (due largely to leakage at substrate junctions)
- $P_{DC} = I_{DDQ} V_{DD}$
- Pdyn, power required to switch the state of a gate
 - charge transferred during transition, Qe = Cout VDD
 - assume each gate must transfer this charge 1x/clock cycle
 - P_{DD} Qe f = Cout V_{DD}^2 f, f = frequency of signal change

• Total Power, $P = I_{DDQ} V_{DD} + Cout V_{DD}^2 f$

Power increases with Cout and frequency, and **strongly** with VDD (second order).

 I_{peak}

 I_{DDQ}

Mn on

 V_{DD}

(a) VTC

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Lecture Notes 7.16

(b) DC current

Multi-Input Gate Signal Transitions

- In multi-input gates multiple signal transitions produce output changes
- What signal transitions need to be analyzed?

- for a general N-input gate with M_0 low output states and M_1 high output states $v_A v_B v_{out}$

• # high-to-low output transitions = $M_0 \cdot M_1$

• # low-to-high output transitions = $M_1 \cdot M_0$

- total transitions to be characterized = $2 \cdot M_0 \cdot M_1$

• example: NAND has $M_0 = 1$, $M_1 = 3$

- don't test/characterize cases without output transitions table
- Worst-case delay is the slowest of all possible cases
 - worst-case high-to-low
 - worst-case low-to-high
 - often different input transitions for each of these cases

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Lecture Notes 7.17

0

 V_{DD}

0

 V_{DD}

(ii) O

(iii) V_{DD}

 V_{DD}

 V_{DD}

Series/Parallel Equivalent Circuits

- Scale both W and L
 - no effective change in W/L
 - increases gate capacitance

inputs must be at same value/voltage

- Series Transistors
 - increases effective L

- Parallel Transistors
 - increases effective W

(a) Separate transistors

(b) Single equivalent FET

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

NAND: DC Analysis

 $V_B \mid V_{out}$

 $0 | V_{DD}$

 $V_{DD} V_{DD}$

(iii) V_{DD}

- Multiple Inputs
- Multiple Transitions
- Multiple VTCs
 - VTC varies with transition

transition from 0,0 to 1,1 pushed right of others

· why?

- · assume all tx have same L
- V_M = V_A = V_B = Vout

- can merge transistors at this point

- if $W_{pA}=W_{pB}$ and $W_{nA}=W_{nB}$
 - series nMOS, $\beta n \Rightarrow \frac{1}{2} \beta n$
 - parallel pMOS, $\beta p \Rightarrow 2 \beta p$

- can now calculate the NAND V_{M}

 V_{DD}

Simultaneous switching

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Lecture Notes 7.19

 $(\beta_n/2)$

NAND Switching Point

- · Calculate VM for NAND
 - 0,0 to 1,1 transition
 - · all tx change states (on, off)
 - · in other transitions, only 2 change
 - $V_M = V_A = V_B = Vout$
 - set $I_{Dn} = I_{Dp}$, solve for V_M

$$V_{M} = \frac{VDD - \left|V_{tp}\right| + V_{tn} \frac{1}{2} \sqrt{\frac{\beta_{n}}{\beta_{p}}}}{1 + \frac{1}{2} \sqrt{\frac{\beta_{n}}{\beta_{p}}}}$$

- denominator reduced more
 - VTC shifts right
- For NAND with N inputs

$$V_{M} = \frac{VDD - \left|V_{lp}\right| + V_{m} \frac{1}{N} \sqrt{\frac{\beta_{n}}{\beta_{p}}}}{1 + \frac{1}{N} \sqrt{\frac{\beta_{n}}{\beta_{p}}}}$$

series nMOS means more resistance to output **falling**,

shifts VTC to right

to balance this effect and set V_M to $V_{DD}/2$, can increase β by increasing Wn

but, since $\mu_n > \mu_p$, $V_M \approx V_{DD}/2$ when Wn = Wp

 V_{DD}

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

NOR: DC Analysis

- Similar Analysis to NAND
- Critical Transition
 - 0,0 to 1,1
 - when all transistors change
- V_{M} for NOR2 critical transition w_{DD} v_{DD}
 - if $W_{pA}=W_{pB}$ and $W_{nA}=W_{nB}$
 - parallel nMOS, $\beta n \Rightarrow 2 \beta n$
 - series pMOS, $\beta p \Rightarrow \frac{1}{2} \beta p$

for NOR2

for NOR-N - series pMOS resistance means slower rise

- VTC shifted to the left
- to set V_M to $V_{DD}/2$, increase Wp
 - this will increase βp

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

NAND: Transient Analysis

- · NAND RC Circuit
 - R: standard channel resistance
 - C: Cout = $C_L + C_{Dn} + 2C_{Dp}$
- · Rise Time, t_r
 - Worst case charge circuit
 - 1 pMO5 ON

$$- \begin{array}{c} \tau_{r} = 2.2 \ \tau_{p} \\ \cdot \ \tau_{p} = R_{p} \ \textit{Cout} \end{array}$$

- best case charge circuit
 - 2 pMOS ON, Rp \Rightarrow Rp/2
- · Fall Time, t_f
 - Discharge Circuit
 - 2 series nMOS, $Rn \Rightarrow 2Rn$
 - · must account for internal cap, Cx

-
$$t_f = 2.2 \tau_n$$

• $\tau_n = Cout (2 R_n) + C \times R_n$

(a) Charging circuit

(b) Discharging circuit

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Lecture Notes 7.22

 V_{DD}

NOR: Transient Analysis

i_{dis}

- · NAND RC Circuit
 - R: standard channel resistance
 - C: Cout = C_L + $2C_{Dn}$ + C_{Dp}
- · Fall Time, t_f
 - Worst case discharge circuit
 - · 1 nMOS ON

- best case discharge circuit
 - 2 nMOS ON, $Rn \Rightarrow Rn/2$
- · Rise Time, t_r
 - Charge Circuit
 - 2 series pMOS, $Rp \Rightarrow 2Rp$
 - must account for internal cap, Cy

-
$$t_r = 2.2 \tau_p$$

• $\tau_p = Cout (2 R_p) + Cy R_p$

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Lecture Notes 7.23

 V_{DD}

NAND/NOR Performance

- Inverter: symmetry $(V_M = V_{DD}/2)$, $\beta n = \beta p$
 - $(W/L)_p = \mu_n/\mu_p (W/L)_n$
- Match INV performance with NAND
 - pMOS, β_P = βp , same as inverter
 - nMOS, β_N = $2\beta n$, to balance for 2 series nMOS
- Match INV performance with NOR
 - pMOS, β_P = 2 βp , to balance for 2 series pMOS
 - nMOS, β_N = β n, same as inverter
- NAND and NOR will still be slower due to larger Cout
- This can be extended to 3, 4, ... N input NAND/NOR

gates

(b) NAND2

(c) NOR2

β is adjusted by

changing transistor

size (width)

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

(a) Inverter

NAND/NOR Transient Summary

- Critical Delay Path
 - paths through series transistors will be slower
 - more series transistors means worse delays
- Tx Sizing Considerations
 - increase W in series transistors
 - balance β_n/β_p for each cell

- Worst Case Transition
 - when all series transistor go from OFF to ON
 - and all internal caps have to be
 - · charged (NOR)
 - · discharged (NAND)

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Performance Considerations

- Speed based on β n, β p and parasitic caps
- DC performance (V_M , noise) based on $\beta n/\beta p$
- Design for speed not necessarily provide good DC performance
- Generally set tx size to <u>optimize speed</u> and then test DC characteristics to ensure adequate noise immunity
- Review Inverter: Our performance reference point
 - for symmetry $(V_M = V_{DD}/2)$, $\beta n = \beta p$
 - which requires $(W/L)_p = \mu_n/\mu_p (W/L)_n$
- Use inverter as reference point for more complex gates
- Apply slowest arriving inputs to series node closest to output
 - let faster signals begin to charge/discharge nodes closer to VDD and Ground

slower output signal faster power supply

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Timing in Complex Logic Gates

- Critical delay path is due to series-connected transistors
- Example: f = x(y+z)
 - assume all tx are same size
- Fall time critical delay
 - worst case, x ON, and y or z ON

-
$$t_f = 2.2 \tau_n$$

• $\tau_n = Rn Cn + 2 Rn C_{out}$
- $C_{out} = 2C_{Dp} + C_{Dn} + C_L$
- $Cn = 2C_{Dn} + C_{Sn}$

- Rise time critical delay
 - worst case, y and z ON, x OFF

-
$$t_r = 2.2 \tau_p$$

• $\tau_p = \text{Rp } Cp + 2 \text{ Rp } C_{\text{out}}$
- $C_{\text{out}} = 2C_{\text{Dp}} + C_{\text{Dn}} + C_{\text{L}}$
- $Cp = C_{\text{Dp}} + C_{\text{Sp}}$

size vs. tx speed considerations $\Uparrow Wnx \Rightarrow \Downarrow Rn$ but $\Uparrow Cout$ and $\Uparrow Cn \Downarrow Wny \Rightarrow \Downarrow Cn$ but $\Uparrow Rn$

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Sizing in Complex Logic Gates

- Improving speed within a single logic gate $\beta_p = 2\beta_p$
- An Example: $f = \overline{(a b + c d) x}$
- nMOS
 - discharge through 3 series nMOS
 - set $\beta_N = 3\beta n$
- · pMOS
 - charge through 2 series pMOS
 - set β_P = $2\beta p$
 - but, Mxp is alone so β_{P1} = βp
 - but setting β_{P1} = $2\beta p$ might make layout easier

 These large transistors will <u>increase capacitance</u> and <u>layout area</u> and may only give a small increase in speed

Advanced logic structures are best way to improve speed

STATE

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Timing in Multi-Gate Circuits

· What is the worst-case delay in multi-gate circuits?

- too many transitions to test manually
- Critical Path
 - longest delay through a circuit block
 - largest sum of delays, from input to output
 - intuitive analysis: signal that passes through most gates
 - · not always true. can be slower path through fewer gates

path through most gates

critical path if delay at D input is very slow

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Lecture Notes 7.29

AB CD | F

0 0 0 1 0 0 1 0

1 0 0 0 1 1 1 0 0

1 1 1 1 1

Power in Multi-Input Logic Gates

- · Inverter Power Consumption
 - $-P = P_{DC} + P_{dyn} = V_{DD}I_{DDQ} + C_{out}V_{DD}^2f$
 - · assumes gates switches output state once per clock cycle, f
- · Multi-Input Gates
 - same DC component as inverter, $P_{DC} = V_{DD}I_{DDQ}$
 - for dynamic power, need to estimate "activity" of the gate, how often will the output be switching

-
$$P_{dyn} = aC_{out}V_{DD}^2f$$
, a = activity coefficient

NOR NAND

- estimate activity from truth table

•
$$\alpha = p_0 p_1$$

- p_o = prob. output is at 0

-
$$p_1$$
 = prob. of transition to 1

 A
 B
 A + B
 A · B

 0
 0
 1
 1

 0
 1
 0
 1

 1
 0
 0
 1

 1
 1
 0
 0

 1
 1
 0
 0

p0=0.75 p0=0.25 p1=0.25 p1=0.75 a=3/16 a=3/16

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Timing Analysis of Transmission Gates

- TG = parallel nMOS and pMOS
- · RC Model

- nMOS pulls output low
- pMOS pushes output high
- R_{TG} = max (Rn, Rp)
- $Cin = C_{Sn} + C_{Dp}$
 - if output at higher voltage than input

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Lecture Notes 7.31

 C_{out}

 V_{tn}

 R_{TG}

Pass Transistor

- Single nMOS or pMOS tx
- · Often used in place of TGs
 - less area and wiring
 - can't pull to both VDD and Ground
 - typically use nMOS for better speed $_{v_{in}}$

$$-\tau_n = Rn C_{out}$$

$$- t_f = 2.94 \tau_n$$

 $- t_n = 18 \tau_n$

· much slower than fall time

____Φ=1

x=1 $v=0 \Rightarrow 1$

 V_G

- nMOS can't pull output to VDD
 - rise time suffers from threshold loss in nMOS

ECE 410, Prof. F. Salem/Prof. A. Mason notes update