جزوه کامل از مفاهیم مختلف برنامهنویسی در پایتون

1. طراحی توابع و مدیریت ورودیها:

- مسئله: ایجاد تابعی که تعداد متغیرهای ورودی را محاسبه کرده و مجموع آنها را برگرداند.
- نکته: در مسائل واقعی، تمام جزئیات مشخص نیستند و برنامهنویسان باید تمام جنبهها را در نظر بگیرند.
- تابع نباید مجموع مقادیر قبلی را ذخیره کند و باید با هر مجموعه ورودی جدید مجموع را محاسبه کند.
 - روشهایی برای حل مسئله:
 - 1. استفاده از توابع آماده len) و sum().
 - 2. استفاده از حلقه برای شمارش عناصر و محاسبه مجموع.
 - مدیریت آرگومانهای کلیدی (kwargs) و موقعیتی (args).
 - نیازی به دریافت ورودی جدید در داخل تابع نیست.

2. سیستمهای عددی و نمایش باینری:

- دادهها در کامپیوتر با استفاده از سیستم باینری (مبنای 2) ذخیره میشوند.
 - تبدیل مبنای 10 به باینری:
 - تقسیم مکرر بر 2 و ذخیره باقیماندهها به صورت معکوس.
 - مقدار مکانی هر بیت برابر است با 2 به توان مکان آن بیت.
 - (MSB) بیتهای بااهمیت کم (LSB) و بااهمیت زیاد \circ
 - فقط بیت LSB تعیین میکند که عدد باینری فرد یا زوج است.

3. تبدیل باینری به دهدهی:

- هر بیت در مقدار مکانی خود ضرب شده و مجموع حاصل بهدست میآید.
 - توابع پایتون:
 - o bin () برای تبدیل عدد دهدهی به رشته باینری.
 - یرای تبدیل رشته عددی در یک مبنای مشخص به عدد دهدهی. \circ
 - مثال: (int('1100100', 2).
- اگر مبنا مشخص نشود، به صورت پیشفرض مبنای 10 در نظر گرفته میشود.
 - ورودی int() باید یک رشته باشد.
- پیشوندهای "0b" (باینری)، "0o" (هشتهشتی) و "0x" (شانزدهشانزده) مبنای عدد را مشخص میکنند.

4. سیستمهای عددی هشتهشتی و شانزدهشانزده:

- برای سادهسازی اعداد باینری طولانی استفاده میشوند.
- تبدیل باینری به هشتهشتی: گروهبندی بیتها به دستههای سهتایی.
- تبدیل باینری به شانزدهشانزده: گروهبندی بیتها به دستههای چهارتایی (A-F برای مقادیر 10 تا 15).
 - توابع پایتون:
 - oct) و hex) برای تبدیل به رشتههای هشتهشتی و شانزدهشانزده. ◦
- تبدیل به مبنای 10 از سایر مبناها با استفاده از مجموع ضرب ارقام در مبنای به توان مکان رقم انجام
 میشود.

5. کاربردهای شانزدهشانزده و کدگذاری کاراکترها:

- برای نمایش رنگها و آدرسهای حافظه استفاده میشود.
 - کدگذاری کاراکتر:
 - :ASCII o
- از یک بایت (8 بیت) برای هر کاراکتر استفاده میکند.
 - شامل حروف انگلیسی، اعداد و برخی نمادها.
- توابع پایتون: ord() (کد ASCII) و chr) (تبدیل کد به کاراکتر).
 - :UTF-8 o
 - از 1 تا 4 بایت برای هر کاراکتر استفاده میکند.
 - قابلیت نمایش کاراکترهای بیشتری، از جمله ایموجیها.
 - کاراکترهای ASCII در UTF-8 مشابه هستند.

6. مدیریت خطا با بلوکهای Try-Except:

- برای مدیریت خطاها در زمان اجرا.
 - خطاهای مختلف:
- SyntaxError، ModuleNotFoundError، ZeroDivisionError، ValueError، TypeError ه
 - Traceback: نشان میدهد خطا کجا رخ داده و چه پیامی دارد.
 - ساختار:
 - o کدی که ممکن است خطا ایجاد کند در بلوک try قرار میگیرد.
 - o بلوک except برای مدیریت خطاها.
 - o الوک else در صورت عدم وقوع خطا اجرا میشود. ○
 - بلوک finally برای تمیزکاری و بستن منابع، بدون توجه به وقوع خطا اجرا میشود.

- مدیریت خطاهای خاص با انواع مختلف except:
- .:except TypeError:، except ZeroDivisionError o
- تنها یک بلوک finally در هر ساختار try-except میتواند وجود داشته باشد.

7. ایجاد خطا با raise:

- استفاده از raise برای تولید خطاهای خاص.
- زمانی استفاده میشود که ورودیها نامعتبر هستند یا عملیات نمیتواند تکمیل شود.

8. بررسیهای برنامه با assert:

- کلمه کلیدی assert برای بررسی وضعیت برنامه.
- اگر شرطی نادرست باشد، AssertionError تولید میشود.
 - مناسب برای توسعه و اشکالزدایی، اما نه برای کد نهایی.

9. مديريت فايلها:

- باز کردن فایل با open():
- o حالتها: 'r' (خواندن)، 'w' (نوشتن و بازنویسی)، 'a' (افزودن).
 - خروجی: یک شی فایل برای خواندن یا نوشتن.
 - كدگذاري پيشفرض: UTF-8.
 - خواندن فایل:
 - o متد read) تمام فایل یا تعداد مشخصی کاراکتر را میخواند.
 - o متد readline) یک خط را میخواند. ○
- اشارهگر فایل موقعیت فعلی خواندن/نوشتن را مشخص میکند.
 - o متد seek) برای جابجایی اشارهگر فایل. o

• بستن فایل:

- o متد close) منابع را آزاد کرده و تغییرات را ذخیره میکند.
 - o استفاده از with open) برای بستن خودکار فایل.

نوشتن در فایل:

- o الاز (newline (\n) برای افزودن خطوط جدید. ناراکتر
 - o حالت 'w' فایل را بازنویسی میکند.
 - o حالت 'a' به انتهای فایل اضافه میکند.
- o حالت 'x' فایل جدید ایجاد کرده و اگر فایل وجود داشته باشد، FileExistsError تولید میکند.
 - حذف فایل یا پوشه:

- os.remove(filepath) تابع os.remove
- os.rmdir(folderpath) تابع os.rmdir
- os.path.exists(filepath) تابع os.path.exists(filepath) برای بررسی وجود فایل قبل از حذف