Package 'civilR'

March 24, 2019

Type Package
Title Civil Engineering R package
Version 0.1.0
Author Alena Fournier-Carrie & Marc Fournier-Carrie
Maintainer Marc Fournier-Carrie <marc@shadowboxingskills.com></marc@shadowboxingskills.com>
Description Civil Engineering R package
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Imports roxygen2, readxl, devtools, dplyr, writexl Suggests knitr, rmarkdown VignetteBuilder knitr
R topics documented:
axial_compression_force calculated_NEd check_local_buckling_resistance_about_zz_axis check_overall_buckling_resistance_about_yy_axis check_overall_buckling_resistance_about_zz_axis civilR compute_output_table convert_member_dimensions_string_to_elements convert_member_dimensions_to_string effective_length_of_member effective_second_moment_of_area Euler_buckling_load extract_member_dimensions imperfection_factor_yy 1

```
read_input_table
15
Index
  19
```

axial_compression_force

Calculate the axial compression force

Description

Compute Axial Compression Force, N_{ed} [kN], for member without including Temperature effect. Used as trial for the top level strut where temperature changes could not be neglected. As well can be used to calculate final N_{ed} for struts from low levels of excavation, where temperature effect could be neglected.

Usage

```
axial_compression_force(isTopLevel = T, DL = 1, LL = 1, L = 12.5, P=247, theta = 90, spacing = 6, Lcry = 12.7, Lcrz = 1, steel_grade = "S355", member_type = "UB", alpha_T = 1.2e-05, delta_T = 10, k_T = 0.8, E = 210, IL = 50, gamma = 1.35)
```

Is member located at top level? [boolean]

Arguments

isTopLevel

•	1 1
DL	Dead load / self-weight of member $[kN/m]$
LL	Live load / imposed load $[kN/m]$
L	Total length of member $[m]$
Р	Axial compression force of member per meter $[kN/m]$
theta	Angle to wall $[deg]$
spacing	spacing $[m]$
Lcry	critical length major axis $[m]$
Lcrz	critical length minor axis $[m]$
$steel_grade$	steel_grade $[N/mm^2]$, categorical: 'S355' or 'S275'
$member_type$	member_type, categorical: 'UC' or 'UB'
alpha_T	Thermal coef. of expansion $[degC]$
$delta_{-}T$	Change in temperature from the Installation temperature $[degC]$

calculated_NEd 3

k_T	Coefficient Of Temperature Effect [dimensionless]
Е	Young's Modulus of Elasticity $[GPa]$
IL	Accidental Impact Load $[kN/m]$
gamma	Partial factor for action [dimensionless], as per EN 1990:2002 standard

Details

First of all function check which combination govern in ULS (Ultimate Limit State) without including Temperature load, TL [kN]. Then include TL calculations for Load Combinations applying partial factors based on the Table A1.2(B), EN1990-2002, p53 Compare maximum from ULS and ALS to define which mistake could govern.

Value

 N_{ed} Axial compression force [kN], TL Temperature Load [kN]

Description

```
Generate calculated N_{E_d}, N_{E_{dc}} [kN].
```

Usage

```
calculated_NEd(N_b_Rd, Ieff, MEd, h0, A)
```

Arguments

N_b_Rd	Overall buckling resistance of the struts about the axis $[kN]$
Ieff	Effective second moment of area $[mm^4]$
MEd	Second order moment $[kN.m]$
h0	Distance between centroids of chords $[m]$
A	Cross-section area of strut $[cm^2]$

Value

```
N_{E_{dc}} Calculated N_{E_d} [kN]
```

check_local_buckling_resistance_about_zz_axis

Perform check #3, calculating the local buckling resistance of struts about minor z - z axis

Description

Calculate the local buckling resistance of member about minor z-z axis, based on EC3 Approach.

$$L_e = kL_{ch}$$

[mm] where L is the critical length for buckling about minor axis z-z Steps of the check performed for laced struts:

1. Plastic resistance of the cross-section to compression [kN]

$$N_{pl,R_d,ch} = 2(A f y)$$

2. The Euler buckling load [kN]

$$N_{cr,ch} = \frac{\pi^2 E I_{zz}}{L_e^2}$$

3. Relative slenderness [dimensionless]

$$\bar{\lambda_{ch}} = \sqrt{\frac{N_{pl,R_d,ch}}{N_{cr,ch}}}$$

4. Calculate Φ_{ch} parameter for slenderness reduction factor

$$\Phi_{ch} = 0.5 \left[1 + \alpha \left(\bar{\lambda_{ch}} - 0.2 \right) + \bar{\lambda_{ch}}^{2} \right]$$

5. Slenderness reduction factor [dimensionless]

$$X_{ch} = \frac{1}{\Phi_{ch} + \sqrt{{\Phi_{ch}}^2 - {\lambda_{ch}^-}^2}}$$

6. Output overall buckling resistance of the struts about z-z minor axis [kN]

$$N_{b,R_d,ch} = X_{ch} N_{pl,R_d,ch}$$

The partial factors γ_M that are applied to resistance of members to instability: $\gamma_{M_1} = 1$

Usage

check_local_buckling_resistance_about_zz_axis(trial_member_size,
 member_type, steel_grade, k, Lch, E)

Arguments

trial_member_size

Trial member size

member_type member_type, categorical: 'UC' or 'UB'

steel_grade steel_grade $[N/mm^2]$, categorical: 'S355' or 'S275'

k Coefficient [dimensionless] Lch Length of chord [mm]

E Young's Modulus of Elasticity [GPa]

Value

 $N_{b,Rd,X}$ Local buckling resistance of struts about z-z axis $[kN], f_y, N_{pl,R_d}, N_{cr}, \bar{\lambda}, \alpha_{yy}, X$

check_overall_buckling_resistance_about_yy_axis

Perform check #1, calculating the overall buckling resistance of member about major y - y axis

Description

Calculate the overall buckling resistance of member about y-y axis, based on EC3 Approach.

$$L_e = kL$$

[mm] where L is the critical length for buckling about major axis y-y Steps of the check performed for laced struts:

1. Plastic resistance of the cross-section to compression [kN]

$$N_{pl,R_d} = 2(A f y)$$

2. The Euler buckling load [kN]

$$N_{cr,X} = \frac{\pi^2 E I_{yy}}{{L_c}^2}$$

3. Relative slenderness [dimensionless]

$$\bar{\lambda_X} = \sqrt{\frac{N_{pl,R_d}}{N_{cr,X}}}$$

4. Calculate Φ_X parameter for slenderness reduction factor

$$\Phi_X = 0.5 \left[1 + \alpha \left(\bar{\lambda_X} - 0.2 \right) + \bar{\lambda_X}^2 \right]$$

5. Slenderness reduction factor [dimensionless]

$$X_x = \frac{1}{\Phi_X + \sqrt{{\Phi_X}^2 - \bar{\lambda_X}^2}}$$

6. Output overall buckling resistance of the struts about y - y axis [kN]

$$N_{b,R_d,X} = X_X N_{pl,R_d}$$

The partial factors γ_M that are applied to resistance of members to instability: $\gamma_{M_1} = 1$

Usage

```
check_overall_buckling_resistance_about_yy_axis(trial_member_size,
  member_type, steel_grade, k, L, E)
```

Arguments

trial_member_size

Trial member size

member_type member_type, categorical: 'UC' or 'UB'

steel_grade steel_grade $[N/mm^2]$, categorical: 'S355' or 'S275'

 $\begin{array}{ccc} \mathsf{k} & & \text{Coefficient [dimensionless]} \\ \mathsf{L} & & \text{Total length of member } [m] \end{array}$

E Young's Modulus of Elasticity [GPa]

Value

 $N_{b,Rd,X}$ Overall buckling resistance of struts about major y-y axis [kN], $N_{b,R_d,X}$, f_y , N_{pl,R_d} , $N_{cr,X}$, λ_X , α_{yy} , X

check_overall_buckling_resistance_about_zz_axis

Perform check #2, calculating the overall buckling resistance of struts about major z - z axis

Description

Calculate the overall buckling resistance of member about z-z axis, based on EC3 Approach.

$$L_e = k L$$

[mm] where L is the critical length for buckling about major axis z-z Steps of the check performed for laced struts:

1. Plastic resistance of the cross-section to compression [kN]

$$N_{pl,R_d} = 2(A f y)$$

2. The Euler buckling load [kN]

$$N_{cr,Y} = \frac{\pi^2 E I_{eff}}{L_c^2}$$

3. Relative slenderness [dimensionless]

$$\bar{\lambda_Y} = \sqrt{\frac{N_{pl,R_d}}{N_{cr,Y}}}$$

4. Calculate Φ_Y parameter for slenderness reduction factor

$$\Phi_Y = 0.5 \left[1 + \alpha \left(\bar{\lambda_Y} - 0.2 \right) + \bar{\lambda_Y}^2 \right]$$

civilR 7

5. Slenderness reduction factor [dimensionless]

$$X_Y = \frac{1}{\Phi_Y + \sqrt{\Phi_Y^2 - \bar{\lambda_Y}^2}}$$

6. Output overall buckling resistance of the struts about z-z axis [kN]

$$N_{b,R_d,Y} = X_Y N_{pl,R_d}$$

The partial factors γ_M that are applied to resistance of members to instability: $\gamma_{M_1} = 1$

Usage

```
check_overall_buckling_resistance_about_zz_axis(trial_member_size,
  member_type, steel_grade, k, L, E, h0)
```

Arguments

trial_member_size

Trial member size

member_type, categorical: 'UC' or 'UB'

steel_grade steel_grade $[N/mm^2]$, categorical: 'S355' or 'S275'

k Coefficient [dimensionless]

L Total length of member [m]

E Young's Modulus of Elasticity [GPa]

h0 Distance between centroids of chords [mm]

Value

 $N_{b,Rd,Y}$ Overall buckling resistance of struts about z-z axis [kN], $N_{b,R_d,Y}$, f_y , N_{pl,R_d} , I_{eff} , $N_{cr,Y}$, λ_Y , α_{yy} , X

 $\mathop{\mathrm{civilR}}\nolimits$

Package civilR

Description

Civil Engineering package.

 ${\tt compute_output_table} \quad \textit{Export output table to Excel file}$

Description

Export output table to Excel file.

Usage

```
compute_output_table(file_name = "tables/input/output_processed_table.xlsx")
```

Arguments

file_name

Path and file name of the output table

Value

None

 ${\tt convert_member_dimensions_string_to_elements}$

Convert individual member dimensions to a string

Description

Convert individual member dimensions to a string.

Usage

```
convert_member_dimensions_string_to_elements(s)
```

Arguments

s String of the member dimensions

Value

- h Member height [mm]
- b Member width [mm]
- m Member weight [kg/m]

convert_member_dimensions_to_string

Convert the member size individual dimensions to a standard string

Description

Generate a combined string from given three individual elements, separated by "x".

Usage

```
convert_member_dimensions_to_string(h, b, m)
```

Arguments

```
\begin{array}{lll} \mathbf{h} & & \mathbf{Member\ height}\ [mm] \\ \mathbf{b} & & \mathbf{Member\ width}\ [mm] \\ \mathbf{m} & & \mathbf{Member\ mass}\ [kg/m] \end{array}
```

Value

String of the member dimensions

```
effective_length_of_member
```

Calculate the effective length of member

Description

Calculate the effective length of member, L_e [m].

Usage

```
effective_length_of_member(k, L)
```

Arguments

k Effective length coefficient [dimensionless]
L Length of strut between restraints [m]

Value

```
L_e Effective length of strut [m]
```

10 Euler_buckling_load

effective_second_moment_of_area

Calculate the effective second moment of area

Description

Compute the effective second moment of area $[mm^4]$. I_{eff} is a function of the distance between the centroids of the chords and the section area of a chord, calculated as $I_{eff} = 0.5 h_0^2 A$.

Usage

```
effective_second_moment_of_area(h0, A)
```

Arguments

h0 Distance between centroids of chords [mm]

A Cross-section area of strut $[cm^2]$

Value

 I_{eff} Effective second moment of area $[mm^4]$

Euler_buckling_load Calculate the Euler buckling load

Description

Calculate the Euler buckling load [kN]

$$N_{cr,ch} = \frac{\pi^2 E I}{L_e^2}$$

Usage

Euler_buckling_load(Le, E, I)

Arguments

Le Effective length of strut [mm]

E Young modulus $[MPa \text{ or } MN/m^2]$

I - check 1: I_{yy} , second moment of area Axis y - y [cm^4]. Check 2: I_{eff} , Effective second moment of area [mm^4]. Check 3: I_{eff} or I_{zz} [mm^4]

Value

 N_{cr} Euler buckling load [kN]

extract_member_dimensions

Extract dimensions from reference table

Description

Function that looks into the Blue Book https://www.steelforlifebluebook.co.uk/ for dimensions and properties.

Usage

```
extract_member_dimensions(h, b, m, member_type)
```

Arguments

 $\begin{array}{lll} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$

Value

- A Area of section $[cm^2]$
- tw Thickness of web [mm]
- tf Thickness of flange [mm]
- Iyy Second moment of area axis y y $[cm^4]$
- sh Depth of section [mm]
- sb Width of section [mm]
- Izz Second moment of area axis z z [cm^4]

imperfection_factor_yy $Calculate\ the\ imperfection\ factor\ \alpha_yy\ for\ rolled\ section\ [dimensionless]$

Description

Calculate the imperfection factor α_{yy} for rolled section [dimensionless].

Usage

```
imperfection_factor_yy(h, b, tf)
```

Arguments

 $\begin{array}{ll} \mbox{h} & \mbox{Member height } [mm] \\ \mbox{b} & \mbox{Member width } [mm] \end{array}$

tf thickness of the flange [mm]

Value

 α_{yy} Imperfection factor for y-y axis [dimensionless]

imperfection_factor_zz Calculate the imperfection factor α _zz for rolled section

Description

Calculate the imperfection factor α_{zz} for rolled section.

Usage

```
imperfection_factor_zz(h, b, tf)
```

Arguments

 $\begin{array}{ll} {\sf h} & & {\sf Member\ height}\ [mm] \\ {\sf b} & & {\sf Member\ width}\ [mm] \end{array}$

tf thickness of the flange [mm]

Value

 α_{zz} Imperfection factor for z-z axis [dimensionless]

maximum_shear_force_in_the_lacing

Calculate the maximum shear force in the lacing

Description

Calculate the maximum shear force in the lacing, V_{E_d} [kN] (for a laced strut subject to a compressive axial force only)

 $V_{E_d} = \pi \, \frac{M_{E_d}}{L}$

Usage

maximum_shear_force_in_the_lacing(MEd, L)

Arguments

MEd Second order moment [kN.m]

Length of strut between restraints [m]

Value

 V_{E_d} Maximum shear force in the lacing [kN] (for a laced strut subject to a compressive axial force only)

max_compressive_axial_force_in_chords

Maximum compressive axial force in the chords

Description

Determine maximum compressive axial force in the chords at mid-length of the strut, N_{ch,E_d} [kN]

Usage

```
max_compressive_axial_force_in_chords(trial_member_size, member_type,
   steel_grade, k, L, n, Ad, Lch, E, h0, Ned)
```

Arguments

trial_member_size

Trial member size

$member_type$	member_type, categorical: 'UC' or 'UB'
$steel_grade$	steel_grade $[N/mm^2]$, categorical: 'S355' or 'S275'
k	Coefficient of length as function of wall rigidity [dimensionless]
L	Length between two restraints $[m]$
n	Number of lacing planes, default $[n=2]$
Ad	Section area of diagonal (lacing), $[cm^2]$
Lch	Length of chord of betwee restrains (lace points) $[m]$
Е	Young modulus $[GPa \text{ or } GN/m^2]$
h0	Distance between centroids of chords $[m]$

Value

Ned

 N_{ch,E_d} Maximum compressive axial force in the chords [kN], S_v , $N_{cr,ch}$, M_{E_d}

Axial compression Force [kN]

overall_buckling_resistance_about_axis

 ${\it Calculate}$ the overall buckling resistance of the memeber about the axis

Description

General case to compute the overall buckling resistance of the member, N_{b,R_d} [kN], about the axis, calculated as:

$$N_{b,R_d} = X N_{pl,R_d}$$

Usage

overall_buckling_resistance_about_axis(X, N_pl_Rd)

14 process_input_table

Arguments

X Slenderness reduction factor [dimentionless]

 N_pl_Rd Plastic resistance of the cross-section to compression [kN]

Value

 N_{b,R_d} Overall buckling resistance of the struts about the axis [kN]

```
plastic_resistance_of_cross_section_to_compression
```

 ${\it Calculate}$ the plastic resistance of the cross-section to compression

Description

Calculate the plastic resistance of the cross-section to compression [N], based on cross-section area A and yield strength f_y .

Usage

```
plastic_resistance_of_cross_section_to_compression(A, fy)
```

Arguments

A Cross-section area of the strut $[cm^2]$

fy Yield strength $[kN/mm^2]$

Value

 N_{pl,R_d} Plastic resistance of the cross-section to compression [N]

Description

Process input table.

Usage

```
process_input_table()
```

Value

Processed table, adding computed outputs:

read_input_table 15

 $read_input_table$

Read input table from given Excel file

Description

Read input table from given Excel file.

Usage

```
read_input_table(file_name = "tables/input/trial1_kotik.xlsx")
```

Arguments

 ${\tt file_name}$

Path and file name of the input table

Value

Input table

relative_slenderness

Calculate the relative slenderness

Description

Calculate the relative slenderness [dimensionless]

$$\bar{\lambda} = \sqrt{\frac{N_{pl,R_d}}{N_{cr}}}$$

Usage

relative_slenderness(N_pl_Rd, Ncr)

Arguments

 N_pl_Rd Plastic resistance of the cross-section to compression [kN]

Ncr Euler buckling load [kN]

Value

 $\bar{\lambda}$ Relative slenderness [dimentionless]

16 shear_stiffness

 $second_order_bending_moment$

Calculate the second order bending moment

Description

Compute the second order bending moment, M_{E_d} [kN.m]. The maximum bending moment, including the bow imperfection and the second order effects, calculated as:

$$M_{E_d} = \frac{N_{E_d} e_0 + M_{E_d}^{I}}{1 - \frac{N_{E_d}}{N_{cr,Y}} - \frac{N_{E_d}}{S_v}}$$

Usage

second_order_bending_moment(L, Ned, Sv, Ncr)

Arguments

Length of strut between restraints [mm]

Ned axial_compression_force [kN]

Sv Shear stiffness for K-shape lacing [kN]

Ncr Euler buckling load from check #2 global zz [kN]

Value

 M_{E_d} Second order moment [kN.m]

 $shear_stiffness$

Calculate the shear stiffness for K-shape lacing

Description

Calculate the shear stiffness for K-shape lacing [kN]. The expression of shear stiffness is:

$$S_v = \frac{n E A_d L_{ch} h_0^2}{d^3}$$

Usage

 $shear_stiffness(n = 2, Ad, Lch, E, h0)$

Arguments

n	Number of planes of lacing, default $[n=2]$
Ad	Section area of diagonal (lacing), $[cm^2]$

Length of chord of between restrains (lace points) [m]

E Young modulus $[GPa \text{ or } GN/m^2]$

h0 Distance between centroids of chords [m]

Value

 S_v Shear stiffness for K-shape lacing [kN]

slenderness_reduction_factor

Calculate the slenderness reduction factor

Description

Calculate the slenderness reduction factor X [dimentionless] for the general case.

$$\Phi = 0.5 \left[1 + \alpha \left(\bar{\lambda} - 0.2 \right) + \bar{\lambda}^2 \right]$$
$$X = \frac{1}{\Phi + \sqrt{\Phi^2 - \bar{\lambda}^2}}$$

Usage

slenderness_reduction_factor(alpha, lambda_bar)

Arguments

alpha Check #1: imperfection factor α_{yy} for rolled section [dimentionless].

Check 2 & 3: imperfection factor α_{zz} for rolled section [dimentionless]

lambda_bar, Relative slenderness $\bar{\lambda}$ [dimentionless]

Value

X Slenderness reduction factor [dimentionless]

Description

Calculate Temperature Load as a function of a surface changes of temperature, TL [kN]. Usually used for calculation of Axial Compression Force for the top level member.

$$TL = \alpha_T \, \delta_T \, k_T \, E \, A$$

Usage

temperature_load(alpha_T = 1.2e-05, delta_T = 10,
$$k_T = 0.8$$
, $E = 210$, $A = 94.4$)

Arguments

alpha_T Thermal coefficient of expansion [degC]delta_T Change in temperature from the Installation temperature [degC]

k_T Coefficient Of temperature effect [dimensionless]

E Young's Modulus of Elasticity [GPa or GN/m2]

A Sectional area from table for given member size [cm^2]

Value

TL Temperature load [kN]

18 yield_strength

trial_member_size

Determine member size

Description

Find optimized designation [height (mm) x width (mm) x mass (kg/m)] (also called member size) for given Axial Compression Force and critical length for major and minor axis. Searching into the tables based on the 'Compression' tables of the Blue Book https://www.steelforlifebluebook.co.uk/

Usage

```
trial_member_size(Lcry, Lcrz, Ned, steel_grade, member_type)
```

Arguments

 $\begin{array}{lll} \textbf{Lcry} & \text{critical length major axis } [m] \\ \textbf{Lcrz} & \text{critical length minor axis } [m] \\ \textbf{Ned} & \text{Axial compression force } [kN] \\ \end{array}$

steel_grade steel_grade $[N/mm^2]$, categorical: 'S355' or 'S275'

member_type, categorical: 'UC' or 'UB'

Value

Member size [height (mm) x width (mm) x mass (kg/m)]

 $yield_strength$

Calculate the yield strength

Description

```
Calculate the yield strength, f_y [N/mm<sup>2</sup>]
```

Usage

```
yield_strength(tw, tf, steel_grade)
```

Arguments

tw Thickness of the web [mm]tf Thickness of the flange [mm]

steel_grade steel_grade $[N/mm^2]$, categorical: 'S355' or 'S275'

Value

```
f_y Yield strength [N/mm^2]
```

Examples

```
yield_strength(tw=47.6, tf=77, steel_grade="S355")
```

Index

```
axial_compression_force, 2
calculated_NEd, 3
check_local_buckling_resistance_about_zz_axis,
check_overall_buckling_resistance_about_yy_axis,
check_overall_buckling_resistance_about_zz_axis,
civilR, 7
civilR-package (civilR), 7
compute_output_table, 8
convert_member_dimensions_string_to_elements,
convert_member_dimensions_to_string, 9
effective_length_of_member, 9
effective_second_moment_of_area, 10
Euler_buckling_load, 10
extract_member_dimensions, 11
imperfection_factor_yy, 11
imperfection_factor_zz, 12
max_compressive_axial_force_in_chords,
maximum_shear_force_in_the_lacing, 12
overall_buckling_resistance_about_axis,
plastic_resistance_of_cross_section_to_compression,
{\tt process\_input\_table},\, 14
read_input_table, 15
relative_slenderness, 15
second_order_bending_moment, 16
shear_stiffness, 16
slenderness\_reduction\_factor, 17
temperature_load, 17
trial_member_size, 18
yield_strength, 18
```