潜在狄利克雷分配 Latent Dirichlet Allocation

西安交通大学管理学院 信息管理与电子商务系 智能决策与机器学习研究中心 刘佳鹏

简介

- ▶ 潜在狄利克雷分配(latent Dirichlet allocation, LDA)作为 基于贝叶斯学习的话题模型,是潜在语义分析、概率潜在语 义分析的扩展,于2002年由Blei等提出
- ▶ LDA在文本数据挖掘、图像处理、生物信息处理、商业和管理(特别是市场营销、信息系统)等领域被广泛使用

简介

- ▶ LDA模型是文本集合的生成概率模型
- ▶ 假设每个文本由话题的一个多项分布表示,每个话题由单词 的一个多项分布表示
 - ▶ 该假设与概率潜在语义分析的假设相同
- ▶ 特别假设文本的话题分布的先验分布是狄利克雷分布,话题 的单词分布的先验分布也是狄利克雷分布
 - ▶ 该假设是概率潜在语义分析中没有的
- ▶ 先验分布的导入使LDA能够更好地应对话题模型学习中的过 拟合现象
 - ▶ 因为引入了先验分布,所以LDA模型是概率潜在语义分析的 贝叶斯扩展

简介

- ▶ LDA的文本集合的生成过程如下:
- ▶ 首先随机生成一个文本的话题分布,
- 之后在该文本的每个位置,依据该文本的话题分布随机生成 一个话题
- 然后在该位置依据该话题的单词分布随机生成一个单词
- ▶ 直至文本的最后一个位置, 生成整个文本
- ▶ 重复以上过程生成所有文本

LDA的文本生成过程

对比: 概率潜在语义分析的文本生成过程

- ▶ 多项分布(multinomial distribution)是一种多元离散随机变量的概率分布,是二项分布(binomial distribution)的扩展
- ▶ 假设重复进行n次独立随机试验,每次试验可能出现的结果有k种,第i种结果出现的概率为 p_i ,第i种结果出现的次数为 n_i 。如果用随机变量 $X = (X_1, X_2, \cdots, X_k)$ 表示试验所有可能结果的次数,其中 X_i 表示第i种结果出现的次数,那么随机变量X服从多项分布

$$P(X_1 = n_1, X_2 = n_2, \dots, X_k = n_k) = \frac{n!}{n_1! n_2! \dots n_k!} p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$$
$$= \frac{n!}{\prod_{i=1}^k n_i!} \prod_{i=1}^k p_i^{n_i}$$

其中 $p = (p_1, p_2, \cdots, p_k)$, $p_i \ge 0, i = 1, 2, \cdots, k$, $\sum_{i=1}^k p_i = 1$, $\sum_{i=1}^k n_i = n$,则称随机变量X服从参数为(n, p)的多项分布,记作 $X \sim \mathsf{Mult}(n, p)$

- ▶ 特别地,当试验的次数n为1时,多项分布变成类别分布 (categorical distribution)类别分布表示试验可能出现的k种 结果的概率
 - ▶ 显然多项分布包含类别分布
 - ▶ 实际上LDA模型中的多项分布指的就是类别分布

- ▶ 二项分布是多项分布的特殊情况
- ▶ 二项分布是指如下概率分布: X为离散随机变量, 取值为m, 其概率质量函数为

$$P(X = m) = \binom{n}{m} p^m (1-p)^{n-m}, \quad m = 0, 1, 2, \dots, n$$

其中 n 和 p $(0 \le p \le 1)$ 是参数

- ▶ 当 n 为 1 时, 二项分布变成伯努利分布(Bernoulli distribution)或 0-1 分布
 - ▶ 伯努利分布表示试验可能出现的 2 种结果的概率
 - ▶ 显然二项分布包含伯努利分布

- 狄利克雷分布(Dirichlet distribution)是一种多元连续随机 变量的概率分布,是贝塔分布(beta distribution)的扩展。 在贝叶斯学习中,狄利克雷分布常作为多项分布的先验分布 使用
- **定义(狄利克雷分布)**: 若多元连续随机变 $= \theta = (\theta_1, \theta_2, \dots, \theta_k)$ 的概率密度函数为

$$p(\theta \mid \alpha) = \frac{\Gamma\left(\sum_{i=1}^{k} \alpha_i\right)}{\prod_{i=1}^{k} \Gamma\left(\alpha_i\right)} \prod_{i=1}^{k} \theta_i^{\alpha_i - 1}$$

其中 $\sum_{i=1}^{k} \theta_i = 1$, $\theta_i \ge 0$, $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$, $\alpha_i > 0$, $i = 1, 2, \dots, k$, 则称随机变量 θ 服从参数为 α 的狄利克雷分布,记作 $\theta \sim \text{Dir}(\alpha)$

▶ 式中 Γ(s) 是伽马函数, 定义为

$$\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx, \quad s > 0$$

具有性质

$$\Gamma(s+1)=s\Gamma(s)$$

当 s 是自然数时,有

$$\Gamma(s+1)=s!$$

▶ 由于满足条件 $\theta_i \ge 0$, $\sum_{i=1}^k \theta_i = 1$, 所以狄利克雷分布 θ 存在于 (k-1) 维单纯形上

▶ 上图为二维单纯型上的狄利克雷分布,参数分别 为 $\alpha = (3,3,3), \alpha = (7,7,7), \alpha = (20,20,20), \alpha =$ $(2,6,11), \alpha = (14,9,5), \alpha = (6,2,6)$

- ▶ 贝塔分布是狄利克雷分布的特殊情况
- ▶ 贝塔分布是指如下概率分布: X 为连续随机变量, 取值范围为 [0,1], 其概率密度函数为

$$p(x) = \begin{cases} \frac{\Gamma(s+t)}{\Gamma(s)\Gamma(t)} x^{s-1} (1-x)^{t-1}, & 0 \leqslant x \leqslant 1\\ 0, & \sharp \text{ 性} \end{cases}$$

其中 s > 0 和 t > 0 是参数

上述几种概率分布之间的关系

- 狄利克雷分布有一些重要性质:
 - ▶ (1) 狄利克雷分布属于指数分布族
 - ▶ (2) 狄利克雷分布是多项分布的共轭先验(conjugate prior)
- ▶ 共轭先验: 如果后验分布与先验分布属于同类, 则先验分布与后验分布称为共轭分布(conjugate distributions), 先验分布称为似然函数的共轭先验(conjugate prior)
- 例如:如果多项分布的先验分布是狄利克雷分布,则其后验分布也为狄利克雷分布,两者构成共轭分布。作为先验分布的狄利克雷分布的参数又称为超参数
- ▶ 使用共轭分布的好处是便于从先验分布计算后验分布

- ▶ 设 $W = \{w_1, w_2, \dots, w_k\}$ 是由 k 个元素组成的集合
- ▶ 随机变量 X 服从 W 上的多项分布, $X \sim \text{Mult}(n, \theta)$, 其中 $n = (n_1, n_2, \dots, n_k)$ 和 $\theta = (\theta_1, \theta_2, \dots, \theta_k)$ 是参数
- ▶ 参数 n 为从 \mathcal{W} 中重复独立抽取样本的次数, n_i 为样本中 w_i 出现的次数, $i = 1, 2, \dots, k$
- ▶ 参数 θ_i 为 w_i 出现的概率 $(i = 1, 2, \dots, k)$

- ▶ 将样本数据表示为 D, 目标是计算在样本数据 D 给定条件 下参数 θ 的后验概率 $p(\theta \mid D)$
- ▶ 对于给定的样本数据 D. 似然函数是

$$p(D \mid \theta) = \theta_1^{n_1} \theta_2^{n_2} \cdots \theta_k^{n_k} = \prod_{i=1}^k \theta_i^{n_i}$$

▶ 假设随机变量 θ 服从狄利克雷分布 $p(\theta \mid \alpha)$, 其中 $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$ 为参数, 则 θ 的先验分布为

$$p(\theta \mid \alpha) = \frac{\Gamma\left(\sum_{i=1}^{k} \alpha_i\right)}{\prod_{i=1}^{k} \Gamma\left(\alpha_i\right)} \prod_{i=1}^{k} \theta_i^{\alpha_i - 1} = \frac{1}{B(\alpha)} \prod_{i=1}^{k} \theta_i^{\alpha_i - 1} = Dir(\theta \mid \alpha)$$

▶ 根据贝叶斯规则, 在给定样本数据 D 和参数 α 条件下, θ 的后验概率分布是

$$p(\theta \mid D, \alpha) = \frac{p(D \mid \theta)p(\theta \mid \alpha)}{p(D \mid \alpha)}$$

$$= \frac{\prod_{i=1}^{k} \theta_{i}^{n_{i}} \frac{1}{B(\alpha)} \theta_{i}^{\alpha_{i}-1}}{\int \prod_{i=1}^{k} \theta_{i}^{n_{i}} \frac{1}{B(\alpha)} \theta_{i}^{\alpha_{i}-1} d\theta}$$

$$= \frac{\Gamma\left(\sum_{i=1}^{k} \alpha_{i} + n_{i}\right)}{\prod_{i=1}^{k} \Gamma\left(\alpha_{i} + n_{i}\right)} \prod_{i=1}^{k} \theta_{i}^{\alpha_{i}+n_{i}-1}$$

$$= \text{Dir}(\theta \mid \alpha + n)$$

- 可以看出先验分布和后验分布都是狄利克雷分布,两者有不同的参数,所以狄利克雷分布是多项分布的共轭先验
- ▶ 狄利克雷后验分布的参数等于狄利克雷先验分布参数 $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_k)$ 加上多项分布的观测计数 $n = (n_1, n_2, \cdots, n_k)$,好像试验之前就已经观察到计数 $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_k)$,因此也把 α 叫做先验伪计数(prior pseudo-counts)

- ▶ 潜在狄利克雷分配(LDA)是文本集合的生成概率模型
- 模型假设话题由单词的多项分布表示, 文本由话题的多项分布表示, 单词分布和话题分布的先验分布都是狄利克雷分布
- ▶ 文本内容的不同是由于它们的话题分布不同
- 严格意义上说,这里的多项分布都是类别分布,在机器学习与自然语言处理中,有时对两者不作严格区分

- ▶ LDA 模型表示文本集合的自动生成过程:
- 首先,基于单词分布的先验分布(狄利克雷分布)生成多个单词分布,即决定多个话题内容
- 之后,基于话题分布的先验分布(狄利克雷分布)生成多个话题分布,即决定多个文本内容
- 然后,基于每一个话题分布生成话题序列,针对每一个话题,基于话题的单词分布生成单词,整体构成一个单词序列,即生成文本
- ▶ 重复这个过程生成所有文本

- ► LDA模型中文本的单词序列是观测变量, 文本的话题序列是 隐变量, 文本的话题分布和话题的单词分布也是隐变量
- 利用LDA进行话题分析,就是对给定文本集合,学习到每个 文本的话题分布,以及每个话题的单词分布
- ▶ 这就是LDA模型的学习目标:给定文本集合,通过后验概率分布的估计,推断模型的所有参数

- ▶ 潜在狄利克雷分配(LDA)使用三个集合:
- ▶ (1) 单词集合 $W = \{w_1, \dots, w_v, \dots, w_V\}$, 其中 w_v 是第 v 个单词, $v = 1, 2, \dots, V$, V 是单词的个数
- ▶ (2) 文本集合 $D = \{ \mathbf{w}_1, \dots, \mathbf{w}_m, \dots, \mathbf{w}_M \}$, 其中 \mathbf{w}_m 是第 m 个文本, $m = 1, 2, \dots, M$, M 是文本的个数
 - 文本 \mathbf{w}_m 是一个单词序列 $\mathbf{w}_m = (w_{m1}, \dots, w_{mn}, \dots, w_{mN_m})$, 其中 w_{mn} 是文本 \mathbf{w}_m 的第 n 个单词, $n = 1, 2, \dots, N_m, N_m$ 是文本 \mathbf{w}_m 中单词的个数
- ▶ (3) 话题集合 $Z = \{z_1, \dots, z_k, \dots, z_K\}$, 其中 z_k 是第 k 个话 题, $k = 1, 2, \dots, K$, K 是话题的个数

▶ 话题的单词分布及其先验分布:

- ▶ 每一个话题 z_k 由一个"单词的条件概率分布 $p(w \mid z_k)$ " 决定, $w \in W$
- ▶ 分布 p(w | z_k) 服从多项分布(严格意义上类别分布), 其参数 为 φ_k
 - ▶ 参数 φ_k 是一个 V 维向量 $\varphi_k = (\varphi_{k1}, \varphi_{k2}, \cdots, \varphi_{kV})$, 其中 φ_{kv} 表示话题 z_k 生成单词 w_v 的概率
 - ▶ 所有话题的参数向量构成一个 $K \times V$ 矩阵 $\varphi = \{\varphi_k\}_{k=1}^K$
 - ▶ 参数 φ_k 服从狄利克雷分布(先验分布), 其超参数为 β
 - ▶ 超参数 β 也是一个 V 维向量 $\beta = (\beta_1, \beta_2, \dots, \beta_V)$

▶ 文本的话题分布及其先验分布:

- ▶ 每一个文本 \mathbf{w}_m 由一个"话题的条件概率分布 $p(z \mid \mathbf{w}_m)$ " 决 $\mathbf{z}, z \in \mathbf{Z}$
- ▶ 分布 $p(z \mid \mathbf{w}_m)$ 服从多项分布(严格意义上类别分布), 其参数为 θ_m
 - ▶ 参数 θ_m 是一个 K 维向量 $\theta_m = (\theta_{m1}, \theta_{m2}, \dots, \theta_{mK})$, 其中 θ_{mk} 表示文本 \mathbf{w}_m 生成话题 \mathbf{z}_k 的概率
 - ▶ 所有文本的参数向量构成一个 $M \times K$ 矩阵 $\theta = \{\theta_m\}_{m=1}^M$
 - ightharpoonup 参数 θ_m 服从狄利克雷分布(先验分布), 其超参数为 α
 - ▶ 超参数 α 也是一个 K 维向量 $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_K)$

▶ 每一个文本 \mathbf{w}_m 中的每一个单词 \mathbf{w}_{mn} 由该文本的话题分布 $p(z \mid \mathbf{w}_m)$ 以及所有话题的单词分布 $p(w \mid z_k)$ 决定

- ▶ LDA文本集合的生成过程如下:
- ▶ 给定单词集合 W, 文本集合 D, 话题集合 Z, 狄利克雷分布 的超参数 α 和 β
- ▶ (1) **生成话题的单词分布:** 随机生成 K 个话题的单词分布。具体过程如下, 按照狄利克雷分布 $Dir(\beta)$ 随机生成一个参数向量 φ_k , $\varphi_k \sim Dir(\beta)$, 作为话题 z_k 的单词分布 $p(w \mid z_k)$, $w \in W$, $k = 1, 2, \cdots, K$

▶ (2) 生成文本的话题分布: 随机生成 M 个文本的话题分布。具体过程如下:按照狄利克雷分布 $Dir(\alpha)$ 随机生成一个参数向量 $\theta_m, \theta_m \sim Dir(\alpha)$,作为文本 \mathbf{w}_m 的话题分布 $p(z \mid \mathbf{w}_m), m = 1, 2, \cdots, M$

- ▶ (3) 生成文本的单词序列:
 - 随机生成 M 个文本的 N_m 个单词。文本 $\mathbf{w}_m(m=1,2,\cdots,M)$ 的单词 $w_{mn}(n=1,2,\cdots,N_m)$ 的生成 过程如下:
 - (3-1) 首先按照多项分布 $Mult(\theta_m)$ 随机生成一个话题 $z_{mn}, z_{mn} \sim Mult(\theta_m)$
 - (3-2) 然后按照多项分布 $Mult(\varphi_{z_{mn}})$ 随机生成一个单词 $w_{mn}, w_{mn} \sim Mult(\varphi_{z_{mn}})$
- ▶ 注: 文本 \mathbf{w}_m 本身是单词序列 $\mathbf{w}_m = (w_{m1}, w_{m2}, \dots, w_{mN_m}),$ 对应着隐式的话题序列 $\mathbf{z}_m = (z_{m1}, z_{m2}, \dots, z_{mN_m})$

(LDA 的文本生成算法)

- (1) 对于话题 z_k $(k = 1, 2, \dots, K)$:
- 生成多项分布参数 $\varphi_k \sim \text{Dir}(\beta)$, 作为话题的单词分布 $p(w|z_k)$;
- (2) 对于文本 $\mathbf{w}_m \ (m = 1, 2, \dots, M)$:
- 生成多项分布参数 $\theta_m \sim \text{Dir}(\alpha)$,作为文本的话题分布 $p(z|\mathbf{w}_m)$;
- (3) 对于文本 \mathbf{w}_m 的单词 w_{mn} $(m=1,2,\cdots,M,\ n=1,2,\cdots,N_m)$:
 - (a) 生成话题 $z_{mn} \sim \text{Mult}(\theta_m)$, 作为单词对应的话题;
 - (b) 生成单词 $w_{mn} \sim \text{Mult}(\varphi_{z_{mn}})$ 。

- ▶ LDA 的文本生成过程中, 假定话题个数 K 给定, 实际通常通过实验选定
- ▶ 狄利克雷分布的超参数 α 和 β 通常也是事先给定的
 - ▶ 在没有其他先验知识的情况下, 可以假设向量 α 和 β 的所有分量均为 1, 这时的文本的话题分布 θ_m 是对称的, 话题的单词分布 φ_k 也是对称的

- ► LDA模型本质是一种概率图模型(probabilistic graphical model)
- ▶ 下图为LDA作为概率图模型的板块表示(plate notation), 亦称为盘式记法

- ▶ 结点表示随机变量,实心结点是观测变量,空心结点是隐变量
- ▶ 有向边表示概率依存关系
- ▶ 矩形(板块)表示重复,板块内数字表示重复的次数

▶ 结点 α 和 β 是模型的超参数, 结点 φ_k 表示话题的单词分布的参数, 结点 θ_m 表示文本的话题分布的参数, 结点 z_{mn} 表示话题, 结点 w_{mn} 表示单词

▶ 结点 β 指向结点 φ_k , 重复 K 次, 表示根据超参数 β 生成 K 个话题的单词分布的参数 φ_k

▶ 结点 α 指向结点 θ_m , 重复 M 次, 表示根据超参数 α 生成 M 个文本的话题分布的参数 θ_m

▶ 结点 θ_m 指向结点 z_{mn} , 重复 N_m 次, 表示根据文本的话题分 布 θ_m 生成 N_m 个话题 z_{mn}

▶ 结点 z_{mn} 指向结点 w_{mn} , 同时 K 个结点 φ_k 也指向结点 w_{mn} , 表示根据话题 z_{mn} 以及 K 个话题的单词分布 φ_k 生成 单词 w_{mn}

板块表示的优点是简洁,板块表示展开之后,成为普通的有 向图表示

