

Bài 12. Biểu đồ lớp

Mục đích

- Mô tả khung nhìn tĩnh của hệ thống và cách đưa nó vào trong một mô hình.
- Minh họa cách đọc và hiểu một biểu đồ lớp.
- Mô hình hóa mối liên kết (association) và kết tập (aggregation) và chỉ ra cách mô hình chúng vào biểu đồ lớp.
- Mô hình tổng quát hóa (generalization) trên một biểu đồ lớp.

Nội dung

- □ 1. Biểu đồ lớp (Class diagram)
 - 2. Liên kết (Association)
 - 3. Kết tập (Aggregation)
 - 4. Tổng quát hóa (Generalization)

Page	1

1.1. Lớp (Class)

- Sử dụng hình chữ nhật gồm 3 thành phần
 - Tên lớp
- Các thuộc tính
- Các phương thức

Class_Name
attribute1
attribute2
attribute3
method1()
method2()
method3()

5

Biểu diễn thuộc tính

- Chỉ ra tên, kiểu và giá trị mặc định nếu có
 - attributeName : Type = Default
- Tuân theo quy ước đặt tên của ngôn ngữ cài đặt và của dự án.
- Kiểu (type) nên là kiểu dữ liệu cơ bản trong ngôn ngữ thực thi
 - Kiểu dữ liệu có sẵn, kiểu dữ liệu người dùng định nghĩa, hoặc lớp tự định nghĩa.

0

Mô tả phương thức

- Tên phương thức:
 - Mô tả kết quả
 - Sử dụng góc nhìn của đối tượng khách (client đối tượng gọi)
 - Nhất quán giữa các lớp
- · Chữ ký của phương thức:

operationName([direction] parameter:class,...):returnType

- Direction: in (mặc định), out hoặc inout

Phạm vi truy cập (Visibility)

 Phạm vi truy cập được sử dụng để thực hiện khả năng đóng gói

Phạm vi truy cập được biểu diễn như thế nào?

- Các ký hiệu sau được sử dụng:
- + Public access
 - # Protected access
- Private access

Phạm vi (Scope)

- Xác định số lượng thể hiện của thuộc tính/thao tác:
 - $\,{}^{_{\odot}}$ Instance: Một thể hiện cho mỗi thể hiện của mỗi lớp
 - Classifier: Một thể hiện cho tất cả các thể hiện của lớp
- Phạm vi Classifier được ký hiệu bằng cách gạch dưới tên thuộc tính/thao tác.

Class1	
- classifierScopeAttr - instanceScopeAttr	
+ classifierScopeOp () + instanceScopeOp ()	

Ví dụ: Scope

Student
- name - address - studentID - nextAvailID: int
+ addSchedule ([in] theSchedule : Schedule, [in] forSemester : Semester + getSchedule ([in] forSemester : Semester) : Schedule + hasPrerequisites ([in] forCourseOffering : CourseOffering) : boolean # passed ([in] theCourseOffering : CourseOffering) : boolean + getNextAvailID () : int

11

1.2. Biểu đồ lớp là gì?

- Biểu đồ lớp chỉ ra sự tồn tại của các lớp và mối quan hệ giữa chúng trong bản thiết kế logic của một hệ thống
 - Chỉ ra cấu trúc tĩnh của mô hình như lớp, cấu trúc bên trong của chúng và mối quan hệ với các lớp khác.
 - Chỉ ra tất cả hoặc một phần cấu trúc lớp của một hệ thống.
- Không đưa ra các thông tin tạm thời.
- Khung nhìn tĩnh của một hệ thống chủ yếu hỗ trợ các yêu cầu chức năng của hệ thống.

12

Biểu đồ lớp (Class Diagram - CD)

• Khung nhìn tĩnh của hệ thống

CloseRegistrationController			
+ is registration open?() + close registration()			
	Professor		
	- name - employeeID : UniqueId - hireDate - status - discipline - maxLoad		
	+ submitFinalGrade() + acceptCourseOffering() + setMaxLoad() + takeSabbatical() + teachClass()		

Page 4

Gói (package)

- Một cơ chế chung để tổ chức các phần tử thành nhóm.
- Một phần tử trong mô hình có thể chứa các phần tử khác.

University Artifacts

Ví dụ: Registration Package

Nội dung

1. Biểu đồ lớp (Class diagram)

- □ 2. Liên kết (Association)
 - 3. Kết tập (Aggregation)
 - 4. Tổng quát hóa (Generalization)

18

Liên kết (association) là gì?

- Mối liên hệ ngữ nghĩa giữa hai hay nhiều lớp chỉ ra sự liên kết giữa các thể hiện của chúng
- Mối quan hệ về mặt cấu trúc chỉ ra các đối tượng của lớp này có kết nối với các đối tượng của lớp khác.

19

Bội số quan hệ (Multiplicity)

- Bội số quan hệ là số lượng thể hiện của một lớp liên quan tới MỘT thể hiện của lớp khác.
- Với mỗi liên kết, có hai bội số quan hệ cho hai đầu của liên kết.
 - Với mỗi đối tượng của Professor, có nhiều Course Offerings có thể được dạy.
 - Với mỗi đối tượng của Course Offering, có thể có 1 hoặc 0 Professor giảng dạy.

Professor	instructor	CourseOffering
	01 0*	

Ví dụ về bội số quan hệ RegisterForCoursesForm 1 RegistrationController 0..1 Student 1 CourseOffering

Nội dung

- 1. Biểu đồ lớp (Class diagram)
- 2. Liên kết (Association)
- ⇒3. Kết tập (Aggregation)
 - 4. Tổng quát hóa (Generalization)

Page	7
------	---

Kết tập (aggregation) là gì?

- Là một dạng đặc biệt của liên kết mô hình hóa mối quan hệ toàn thể-bộ phận (whole-part) giữa đối tượng toàn thể và các bộ phận của nó.
 - Kết tập là mối quan hệ "là một phần" ("is a part-of").
- Bội số quan hệ được biểu diễn giống như các liên kết khác

24

Ví dụ về kết tập

25

Cấu thành (Composition) là gì?

- Một dạng của kết tập với quyền sở hữu mạnh và các vòng đời trùng khóp giữa hai lớp
 - Whole sở hữu Part, tạo và hủy Part.
 - Part bị bỏ đi khi Whole bị bỏ, Part không thể tồn tại nếu Whole không tồn tại.

Page 8

Association, Aggregation and Composition

Mối quan hệ giữa các lớp

- (relationship)
 - Liên kết (Association)
 - · Sử dụng (use-a)
 - Kết tập (Aggregation)
 - · Strong association · has-a/is-a-part
 - Hợp thành (Composition)
 - · Strong aggregation
 - · Share life-time

Ví du - Association

```
public class StudentRegistrar {
 public StudentRegistrar (){
     (new RecordManager()).initialize();
}
```

- · Một lớp sử dụng lớp khác
- Lời gọi phương thức của đối tượng thuộc lớp này trong lớp kia
- · Thường được cài đặt bằng tham chiếu (nhưng không bắt

Ví du – Aggregration vs. Composition

- Aggregation University and Chancellor
 - Nếu không có trường Đại học (University), hiệu trưởng (Chancellor) không thể tồn tại.
 - Nếu không có Chancellor, University vẫn có thể tồn tại
- Composition University and Faculty
 - University không thể tồn tại nếu không có các giảng viên (Faculty) và ngược lại (share time-life)

 - Thời gian sống của University gắn chặt với thời gian sống của Faculty
 Nếu Faculties được giải phóng thì University không thể tồn tại và ngược lại

Nội dung

- 1. Biểu đồ lớp (Class diagram)
- 2. Liên kết (Association)
- 3. Kết tập (Aggregation)
- □ 4. Tổng quát hóa (Generalization)

30

Tổng quát hóa (Generalization)

- Mối quan hệ giữa các lớp trong đó một lớp chia sẻ cấu trúc và/hoặc hành vi với một hoặc nhiều lớp khác
- Xác định sự phân cấp về mức độ trừu tượng hóa trong đó lớp con kế thừa từ một hoặc nhiều lớp cha
 - Đơn kế thừa (Single inheritance)
- Đa kế thừa (Multiple inheritance)
- Là mối liên hệ "là một loại" ("is a kind of")

Lớp trừu tượng và lớp cụ thể (Abstract and Concrete Class) • Lớp trừu tượng không thể có đối tượng • Chữ a phương thức trừu tượng • Chữ nghiêng • Lớp cụ thể có thể có đối tượng Discriminator Animal + communicate () There are no direct instances of Animal

+ communicate ()

All objects are either lions or tigers

communicate ()

31

Page 10

Ví dụ về Đơn kế thừa

Một lớp kế thừa từ MỘT lớp khác

33

Ví dụ về Đa kế thừa

Một lớp có thể kế thừa từ nhiều lớp khác

Sử dụng đa kế thừa chỉ khi cần thiết và luôn luôn phải cần thận!

Đa hình (Polymorphism) là gì?

 Khả năng che giấu các thực thi khác nhau dưới một giao diện duy nhất.

Case study: Hệ thống đăng ký học đơn giản

 Xây dựng biểu đồ lớp cho chức năng "Đăng ký khóa học"

Bài tập

- Given:
 - A set of classes and their relationships
- Draw:
 - · A class diagram

Daa	_	1	2
Pag	JE	ı	J