Reacciones en la Glucólisis

ATP

Glucosa	\rightarrow	G-6-P		-1
F-6-p	\rightarrow	F-1,6-di-P		-1
2 <i>G</i> li-3-P	\rightarrow	2 Ac-1,3-di-P	+2 NADH	(2x3)= +6
2 Ac-1,3-di-P	\rightarrow	2 Ac-3-P		(2x1)= +2
2 PEP	\rightarrow	2 Piruvato		(2x1)= +2
2 Piruvato	\rightarrow	2 Acetil-CoA	+2 NADH	(2x3)= +6

ATC

```
2 Ac. Isocítrico \rightarrow 2 \alpha -Ceto Glutárico +2 NADH (2x3)= +6 2 \alpha -Ceto Glutárico \rightarrow 2 Succinil-CoA +2 NADH (2x3)= +6 2 Succinil-CoA \rightarrow 2 Ac. Succínico (2x1)= +2 2 Ac. Succínico \rightarrow 2 Ac. Fumárico +2 FADH (2x2)= +4 2 Ac. Málico \rightarrow 2 Ac. Oxalacético +2 NADH (2x3)= +6
```

Total: 40 - 2 = 38 ATP

Al atravesar la membrana, impermeable a esta molécula se consume energía, en el caso del músculo serían de 2 ATP; por lo que el balance global sería:

Total: 38 - 2 = 36 ATP

El NADH producido en el Citosol durante la Glucólisi es transferido a la mitocondria mediante un mecanismo de "lanzaderas" que convierten el NADH citoplasmático en NADH mitocondrial.