Test 2 for CS2334(01) November 28, 2016

StudentName: 10 10 10 10 10 10 Group N: 1 Index: 5, 35

I.(20%) Mark \bigcirc if the statement is *true*, and mark \times otherwise.

(x) (a) Let $A \in \mathbb{R}^{m \times n}$, then the nullspace of A must be a subspace of \mathbb{R}^n and the column space of A must be a subspace of R^m .

- (()) (b) Let $S = \{[x,y]^t | x = 2y\} \subset \mathbb{R}^2$, then S is a vector subspace of \mathbb{R}^2 and $\dim(S) = \mathbb{R}^2$
- (χ) (c) Let V and W be subspaces of vector space \mathbb{R}^2 with $V \cap W = \{0\}$ and $\dim(V) = \{0\}$ dim(W) = 1, then $V \cup W$ is a vector subspace of \mathbb{R}^2 .
 - (\(\)(d) If $A \in \mathbb{R}^{n \times n}$ is nonsingular, then $Null(A) = \{0\}$.
 - (e) Let S and T be vector subspaces of \mathbb{R}^n , then S+T is a vector subspace of \mathbb{R}^n and $\dim(S+T)=\dim(S)+\dim(T)$.
 - (\bigcirc) (f) If $span(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) = R^m$, then $n \ge m$.
 - (() (g) If nonzero vectors \mathbf{x} and \mathbf{y} have $\|\mathbf{x}\|_2 = \|\mathbf{y}\|_2$, then $(\mathbf{x} + \mathbf{y}) \perp (\mathbf{x} \mathbf{y})$.
 - (h) Let $U = span([1,0,1]^t)$ and $V = span([0,1,0]^t)$ be vector subspaces of \mathbb{R}^3 , then
- (i) Every square matrix A can be factored as the product of Q and R, where Q is orthogonal and R is $upper - \Delta$.
 - (\mathcal{F}_m) (j) Let $H_1, H_2, \dots, H_m \in \mathbb{R}^{n \times n}$ be Householder matrices, define $H = \prod_{j=1}^m H_j$, then H_j is symmetric and orthogonal.
 - (())(k) ★ set of nonzero mutually orthogonal vectors must be linearly independent.

II.(28%) Answer each of the following questions.

(A) Express $\mathbf{x}=[2,1,3]$ as a linear combination of $\mathbf{u}=[1,1,1],\ \mathbf{v}=[1,1,0],\ \mathbf{w}=[1,0,0].$

(B) Let $\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z} \in R^4$ be orthonormal vectors, then $\|\mathbf{w} - 3\mathbf{x} + 5\mathbf{y} - \mathbf{z}\|_2 = \underline{b}$

$$A = \left[\begin{array}{rrrr} 1 & 2 & -1 & 1 \\ 2 & 4 & -3 & 3 \\ 1 & 2 & 1 & 5 \end{array} \right]$$

Then $dim(Null(A)) = \underline{\hspace{1cm}}$, and and the rank of A is $\underline{\hspace{1cm}}$.

(D) Let
$$\mathbf{x} = [1, -3, 5, 1]^t$$
, then $\|\mathbf{x}\|_1 = 1$, $\|\mathbf{x}\|_2 = 1$, $\|\mathbf{x}\|_{\infty}^2 = 1$.

(E) Let
$$x, y, z \in \mathbb{R}^2$$
 and let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that $L([1,2]^t) = [-2,3]^t$, $L([1,-1]^t) = [5,2]^t$. Then $L([7,2]^t) = [14,17]^t$

(F) Let
$$L: \mathbb{R}^3 \to \mathbb{R}^2$$
 be a linear transformation such that $L([1,0,0]^t) = [1,0]^t$, $L([0,1,0]^t) = [1,-1]^t$, $L([0,0,1]^t) = [1,1]^t$. Then $Ker(L) = \{(1,0,0]^t\}$

(G) Let $\mathbf{a} = [1, 1, 1]^t$, $\mathbf{x} = [1, 3, 8]^t$, then the projection vector of \mathbf{x} along the line \mathbf{a} is (4, 4, 4)

III.(12%) Find the best least squares fitting line for the data set $\{[-1,0]^t, [0,1]^t, [1,3]^t, [2,8]^t\}$ and plot your solution associated with the above data points.

y = ? x + ?

in complete!

IV.(10%) Let $\mathbf{v} = [x, y]^t \in R^2$, draw the figure and mark its (x,y) coordinates of intersections with x and y axis respectively for (a) $\|\mathbf{v}\|_1 = 2$, (b) $\|\mathbf{v}\|_2 \leq 3$, and (c) $\|\mathbf{v}\|_{\infty} \leq 4$.

V.(10%) Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ be linearly independent vectors in R^n and let $A \in R^{n \times n}$ be a nonsingular matrix. Define $\mathbf{y}_j = A\mathbf{x}_j$ for $1 \leq j \leq k$. Prove that $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_k$ are linearly independent vectors.

A is a nonsingular matrix >> det(A) = 0 = y = Ax 有唯一解 => if x is L, I, then y is L.I.

VI.(20%) Let $\mathbf{w} \in R^n$ be a unit vector, that is, $\|\mathbf{w}\|_2 = 1$, and define a Householder matrix $G = I - 2\mathbf{w}\mathbf{w}^t$. Denote $\sigma = \|\mathbf{x}\|_2$, where $\mathbf{x} = [x_1, x_2, \dots, x_n]^t \in R^n$.

- (a) Show that G is symmetric and orthogonal.
- (b) Let $\mathbf{v} = \mathbf{x} \sigma \mathbf{e}_1$ and $\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|_2}$, define $H = I 2\mathbf{u}\mathbf{u}^t$. Show that $H\mathbf{x} = \sigma \mathbf{e}_1$.

(a) symmetric:
$$G = (I - 2ww^t)^t = I^t - 2(w^t)^t w^t = I - 2ww^t = G \times 0$$
orthogonal: $GG^t = (I - 2ww^t)(I - 2ww^t)$

$$= I - 4ww^t + 4ww^t ww^t = I - 4ww^t + 4ww^t = I \times 0$$

HX=66, X=H-1.66= 8H6=8(I-1/2/X-66)(X-66), 6