$$\iint\limits_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS = \oint\limits_{C} \mathbf{F} \cdot d\mathbf{r}$$

$$\iiint\limits_{D} \nabla \cdot \mathbf{F} \, dV = \iint\limits_{S} \mathbf{F} \cdot \mathbf{n} \, dS$$

Table 14.2

	Explicit Description $z = g(x, y)$		Parametric Description	
Surface	Equation	Normal	Equation	Normal
		$n=\pm(-z_r,-z_s,1)$		$n = t_u \times t_v$
Cylinder	$\chi^2 \pm \chi^2 = \sigma^2,$	$\mathbf{n} = \langle x, y, 0 \rangle, \mathbf{n} = a$	$\mathbf{r} = (a\cos u, a\sin u, r),$	$\mathbf{n} = \langle a \cos u, a \sin u, 0 \rangle, \mathbf{n} = a.$
	$0 \le z \le h$		$0 \le u \le 2\pi, 0 \le v \le h$	
Cone	$z^2 = x^2 + x^2$	$\mathbf{n} = \langle x/z, y/z, -1 \rangle,$	$\dot{\mathbf{r}} = \langle v \cos u, v \sin u, v \rangle,$	$\mathbf{n} = \langle v \cos u, v \sin u, -v \rangle.$
	$0 \le z \le h$	$ \mathbf{n} = \sqrt{2}$	$0 \le u \le 2\pi, 0 \le v \le h$	$ \mathbf{n} = \sqrt{2}v$
Sphere	$x^2 + y^2 + z^2 = a^2$	$\mathbf{n} = \langle x/z, y/z, 1 \rangle,$	$\mathbf{r} = \langle a \sin u \cos u,$	$\mathbf{n} = (a^2 \sin^2 u \cos v, a^2 \sin^2 u \sin v.$
		$ \mathbf{n} = a/z$	$a \sin u \sin v$, $a \cos u$,	$a^2 \sin u \cos u \rangle, \mathbf{n} = a^2 \sin u$
			$0 \le u \le \pi, 0 \le v \le 2\pi$	
Paraboloid	$z = x^2 + y^2,$	$\mathbf{n}=\langle 2x,2y,-1\rangle,$	$\mathbf{r} = \langle v \cos u, v \sin u, v^2 \rangle.$	$\mathbf{n} = (2v^2 \cos u, 2v^2 \sin u, -v).$
	$0 \le z \le h$	$ \mathbf{n} = \sqrt{1 + 4(x^2 + y^2)}$	$0 \le u \le 2\pi, 0 \le v \le \sqrt{h}$	$ \mathbf{n} = v\sqrt{1 + 4v^2}$