16/11/2017 HackerRank

Alice and Bob's Silly Game ■

Submissions Leaderboard Discussions Editorial	Problem	
---	---------	--

Alice and Bob invented the following silly game:

- The game starts with an integer, n, that's used to build a **set** of n distinct integers in the inclusive range from 1 to n (i.e., $set = \{1, 2, 3, ..., n 1, n\}$).
- Alice always plays first, and the two players move in alternating turns.
- During each move, the current player chooses a prime number, p, from set. The player then removes p and all of its multiples from set.
- The first player to be unable to make a move loses the game.

Alice and Bob play g games. Given the value of n for each game, print the name of the game's winner on a new line. If Alice wins, print Alice; otherwise, print Bob.

Note: Each player always plays optimally, meaning they will not make a move that causes them to lose the game if some better, winning move exists.

Input Format

The first line contains an integer, g, denoting the number of games Alice and Bob play. Each line i of the g subsequent lines contains a single integer, n, describing a game.

Constraints

- $1 \le g \le 1000$
- $1 \le n \le 10^5$

Subtasks

• $1 \le n \le 1000$ for 50% of the maximum score

Output Format

For each game, print the name of the winner on a new line. If Alice wins, print Alice; otherwise, print Bob.

Sample Input 0

3

1

5

Sample Output 0

Bob

Alice

Alice

Explanation 0

16/11/2017 HackerRank

Alice and Bob play the following g = 3 games:

- 1. We are given n = 1, so $set = \{1\}$. Because Alice has no valid moves (there are no prime numbers in the set), she loses the game. Thus, we print Bob on a new line.
- 2. We are given n = 2, so $set = \{1, 2\}$. Alice chooses the prime number p = 2 and deletes it from the set, which becomes $set = \{1\}$. Because Bob has no valid moves (there are no prime numbers in the set), he loses the game. Thus, we print Alice on a new line.
- 3. We are given n = 5, so $set = \{1, 2, 3, 4, 5\}$. Alice chooses the prime number p = 2 and deletes the numbers 2 and 4 from the set, which becomes $set = \{1, 3, 5\}$. Now there are two primes left, 3 and 5. Bob can remove either prime from the set, and then Alice can remove the remaining prime. Because Bob is left without a final move, Alice will always win. Thus, we print Alice on a new line.

Submissions:<u>1633</u>
Max Score:30
Difficulty: Medium
Rate This Challenge:
☆ ☆ ☆ ☆ ☆

f ⊌ in

Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature