1 nalen

א. f(1) = f(-1) , לכן f אינה חד-חד-ערכית.

ב. מכיוון שלכל f(x), הוא שורש ריבועי של מספר ממשי, בפרט (שורש היא תמיד השורש הלא-שלילי. אם לפעולת השורש היו שתי תוצאות, היא לא היתה פונקציה).

 $oldsymbol{i}$ אינה על f, ולכן f אינה על אפוא בתמונת הממשיים השליליים אינם אפוא

 $f(x) = \sqrt{x^2 + 1} \geq 1$, ולכן $x^2 + 1 \geq 1$, $x^2 \geq 0$, ממשי, $x^2 \geq 0$, ולכן $x^2 \geq 0$, ולכן $x^2 \geq 0$.

 $f(x)=\sqrt{x^2+1}>1$. $x^2+1>1$ הכן $x^2>0$ אז $x\neq 0$ אם $x\neq 0$ לכן ניתן לראות את $x\neq 0$ כפונקציה מהממשיים החיוביים אל הממשיים הגדולים מ- $x\neq 0$. כאמור בשאלה, נסמן פונקציה זו ב- $x\neq 0$. נבדוק את תכונות $x\neq 0$

, g(x)=g(y) ן x,y>0 אם x^2+y^2 אם $x^2+y^2+y^2+1$, $x^2+y^2+1=y^2+1$, $x^2+y^2+1=\sqrt{y^2+1}=\sqrt{y^2+1}$ משמע מכיוון ש- $x^2+y^2+1=y^2+1$, נובע מכאן $x^2+y^2+1=y^2+1=y^2+1$, און נובע מכאן $x^2+y^2+1=y^2+$

g(x)=z נחפש x המקיים z>1 * על: יהי

g(x) = z ונבדוק אם יש פתרון בתחום ההגדרה של g(x) = z

. $x = \pm \sqrt{z^2 - 1}$ נקבל אחרי חילוץ $z = \sqrt{x^2 + 1}$ מתוך

כעת, מכיוון ש- z>1 גם z>1>0 , לכן z>1-2 ולכן קיים שורש ריבועי ממשי. נבחר את השורש החיובי. הוא גדול ממש מ- z>0 , וקיבלנו פתרון בתחום המבוקש.

שימו לב: מכיוון שהעלינו בריבוע במהלך החילוץ, יש לבדוק שאכן הפתרון פותר את המשוואה

המקורית $z = \sqrt{x^2 + 1}$ (למשל $z = \sqrt{z^2 + 1}$ אבל $z = \sqrt{z^2 + 1}$ המקורית אינו מחייב שהיה שוויון במקור !) .

 $z=\sqrt{z^2}$ במשוואה : $z=\sqrt{x^2+1}$ במשוואה : $z=\sqrt{z^2-1}$ לאחר פישוט המשוואה : $z=\sqrt{z^2-1}$ שימו לב שמשוואה זו אינה נכונה לכל z , היא נכונה אםם z>0 ! הנחנו z>1 ולכן התנאי מתקיים.

a מצאנו פתרון בתחום הנתון, לכן a היא a קבוצת הממשיים הגדולים מ-a

2 הפופה

לפני שניגשים לפתור חשוב להבין את הגדרתה של f^* , ובפרט את תחום ההגדרה והטווח שלה. לפני שניגשים לכל קבוצה חלקית X של X של f^* מתאימה לכל קבוצה חלקית f של f החת הפונקציה f

פתרון השאלה:

 f^* אינה חחייע: f^* אינה f^* אינה שר f^* אינה ונראה שר f^* אינה חחייע: $f(a_1)=f(a_2)=b\in B$, $a_1\neq a_2$ מההנחה, יהיו $a_1,a_2\in A$ מקיימים $a_1,a_2\in A$ אז f^* ולכן f^* אינה חחייע.

f אינה חחייע: f אינה חחייע: f אינה חחייע: $f_*(X) = f_*(Y)$ אינה חחייע: $f_*(X) = f_*(Y)$ או שקיים $f_*(X) = f_*(Y)$ או שקיים $f_*(X) = f_*(Y)$ או שייך ל- $f_*(X) = f_*(Y)$ אינ שוב מהגדרת $f_*(X) = f_*(Y)$ המקיים $f_*(X) = f_*(Y)$ מכאן, שוב מהגדרת $f_*(X) = f_*(Y)$ המקיים $f_*(X) = f_*(Y)$ מכאן, שוב מהגדרת $f_*(X) = f_*(Y)$ המקיים $f_*(X) = f_*(Y)$

a
otin aולכן a
otin a a
otin A הנחנו ש-a
otin a
otin Aולכן a
otin A ולכן a
ot

3 APICA

. f = g כלומר

 $f(n) \leq f(n)$, n - N א. רפלקסיביות: תהי f - f באופן טריביאלי, לכל $f(n) \leq f(n)$, רפלקסיביות: תהי $f(n) \leq f(n)$.

g(n) - K אנטי-סימטריוּת: תהיינה f,g - F ונניח ש- f,g - f ונניח ש- g(n) - g(n

(g,h) - K $_{lk}$ (f,g) - K $_{lk}$ $_{lk}$ (f,g) - $_{lk}$ $_{lk}$

 $g(n) \leq h(n)$ נגם $f(n) \leq g(n)$, $n \cdot N$ משמע לכל

 $f(n) \le h(n)$, n - N מתכונת הטרנזיטיביות של היחס ב בטבעיים, לכל (f,h) - K כלומר

g(n)=7 ותהי f(n)=n ותהי

מצאנו שני איברים של F שהיחס K אינו משווה ביניהם, לכן K אינו סדר-מלא.

- ג. תהי f f , נראה ש- f אינה איבר מקסימלי. $g \neq f$. מובן ש- g(n) = f(n) + 1 . מובן ש- g(n) = f(n) + 1 . לפיכך g(n) . לפיכך g(n) . לפיכך g(n) . לפיכך g(n) . מקסימלי.

4 APICA

ההוכחה לא קלה, כדאי לקרוא אותה בעיון. מי שפתר כך או באופן דומה יכול בהחלט להיות מרוצה! מי שניסה לפתור ונתקע באמצע - קיראו והבינו את ההוכחה שכאן. ומי שחשב שפתר בכמה שורות - כדאי להבין היכן הטעות בהוכחה שניסחתם.

 $D_{\mathbf{l}}^{D_{\mathbf{l}}}$ פירושו $D_{\mathbf{l}}^{D_{\mathbf{l}}}$ כלומר החזקה ה- \mathbf{n} של היחס

 $0^- k < N$ טענת-עזר: יהיו X,Y קבוצות המקיימות $Z = X - \{x\}$ נטיח עוד ש- $X^- X$, נסמן $X^- X$ נסמן $X^- X$

|Z | Y| = k - 1 , |X | Z| = 1

הוכחה:

$$X \cdot Z = X \cdot (X - \{x\}) = (X - (X - \{x\})) \cdot ((X - \{x\}) - X)$$

= $\{x\}$, ... = $\{x\}$

|X - Z| = 1 رور

$$Z \cdot Y = (X - \{x\}) \cdot Y = ((X - \{x\}) - Y) \cdot (Y - (X - \{x\}))$$

= $((X - Y) \cdot (Y - X)) - \{x\}$
= $(X \cdot Y) - \{x\}$

את המעבר מהשורה הראשונה לשנייה כאן נשאיר כתרגיל לא קשה, בעזרת הזהות

.11 או בעזרת שאלה 3א בממיין, A - B = A . B'

 $(X \cup Y) - \{x\} \mid = k-1$ מכיוון ש- $\{x \cup Y\}$, ומהנתון און השאלה בממ"ן.

 $D_1^n = D_n$ ן $1 \le n$ עלינו להוכיח באינדוקציה כי לכל

 $D_{1}^{1} = D_{1}$ מיידי, n = 1 בדיקה עבור n = 1

 $D_{l}^{n+1} = D_{n+1}$ ננוכית, $D_{l}^{n} = D_{n}$ מעבר: ננית

 $D_{l}^{n+1} = D_{l}D_{l}^{n}$, מהגדרת חזקה של יחס ואסוציאטיביות כפל

 $D_{l}^{n+1} = D_{l}D_{n}$ ולכן, $D_{l}^{n} = D_{n}$ מהנחת האינדוקציה,

 D_1D_n = D_{n+1} עלינו אפוא להוכיח ש-

את השוויון הזה נוכיח עייי הכלה דו-כיוונית.

 D_1D_n בכיוון אחד: נוכיח ש- הכלה בכיוון אחד:

(X,Y)י D_1D_n ש- עוכית (X,Y)י D_{n+1} יהי

(X,X) D_n (X,X) D_1 D_1 D_2 (X,Y) D_1 D_2 D_3 D_4 D_4 D_5 D_5 D_6

X - עשאינו ב- Y או קיים איבר של X שאינו ב- X או אפוא X לכן קיים איבר של X שאינו ב- X

x - Y , x - X ב.ה.כ. (בלי הגבלת כלליות) נניח

 $\mid X \mid Y \mid \leq n+1$ פירושה $(X,Y)^{\perp}$ בירושה

 $\mid Z \mid Y \mid \leq n \quad , \mid X \mid Z \mid = 1 \quad$ מטענת העזר שהוכחנו, נקבל קבוצה $\mid Z \mid Y \mid \leq n \quad , \mid X \mid Z \mid = 1$

(Z,Y) - D_n , (X,Z) - D_1 משמע

מהגדרת כפל יחסים, $D_{\mathrm{l}}D_{n}$ כמבוקש.

הכלה בכיוון השני: נוכיח ש- חבלה בכיוון השני:

 $(X,Y)^{-}$ D_{n+1} U_{n+1} U_{n+1} U_{n+1}

(Z,Y) - D_n -, (X,Z) - D_1 - כך ש- Z - $P(extbf{\final})$ מהגדרת כפל יחסים, קיים

איתי הראבן