INF2604 - Geometria Computacional

Waldemar Celes

celes@inf.puc-rio.br

Departamento de Informática, PUC-Rio

Região convexa

Uma região é dita convexa se todos os pares de pontos da região são visíveis entre si.

▶ Dada uma região convexa R, qualquer linha \overline{pq} entre dois pontos de R está contida na região: $\overline{pq} \subset R$.

$$\alpha \mathbf{p} + \beta \mathbf{q} \in R, \quad \alpha, \beta >= 0, \quad \alpha + \beta = 1$$

Visão intuitiva

► Considere um conjunto de pregos numa superfície plana; o fecho convexo 2D é definido por um elástico que envolve o conjunto de pregos (pontos).

Visão intuitiva

► Considere um conjunto de pregos numa superfície plana; o fecho convexo 2D é definido por um elástico que envolve o conjunto de pregos (pontos).

Dado um conjunto de pontos $S = \{\mathbf{p}_1, ... \mathbf{p}_n\}$, o fecho convexo de S é o conjunto de todas as combinações convexas de S:

▶ Uma combinação convexa de *S* é expressa por:

$$\lambda_1 \mathbf{p}_1 + \cdots + \lambda_n \mathbf{p}_n$$

► Fecho convexo:

$$conv(S) = \left\{ \lambda_1 \mathbf{p}_1 + \dots + \lambda_n \mathbf{p}_n | \lambda_i \geq 0, \sum \lambda_i = 1 \right\}$$

Determinação do fecho convexo de um conjunto de pontos

▶ Identificação dos vértices pertencenes ao fecho

Determinação do fecho convexo de um conjunto de pontos

▶ Identificação dos vértices pertencenes ao fecho

Algoritmos para construção de fecho convexo

- ► Incremental
- ► Gift wrapping
- ▶ Varredura de Graham
- Dividir e conquistar

Ideia: assume que temos o fecho de k pontos

▶ Incrementalmente, calculamos o fecho de k + 1 pontos

ldeia: assume que temos o fecho de k pontos

▶ Incrementalmente, calculamos o fecho de k+1 pontos

Suposições:

- ▶ Não existem pontos com coordenadas x coincidentes
- ► Não existem pontos colineares

Ideia: assume que temos o fecho de k pontos

▶ Incrementalmente, calculamos o fecho de k+1 pontos

Suposições:

- ▶ Não existem pontos com coordenadas x coincidentes
- Não existem pontos colineares

Algoritmo

- Ordena pontos em ordem crescente de coordenada x
- Forma $conv(H_3)$ com os três primeiros pontos
 - Orientação antihorária
- ▶ Adiciona ponto \mathbf{p}_{k+1}
 - ► Como \mathbf{p}_{k+1} é o ponto mais à direita do conjunto corrente, ele pertence a $conv(H_{k+1})$
 - Acrescenta \mathbf{p}_{k+1} no fecho na ordem correta
 - ► Elimina pontos que não mais pertencem ao fecho

Linha de Suporte

Definição

- ▶ Seja P um polígono convexo e \mathbf{x} um ponto em ∂P
 - ► Uma linha L contento x suporta P em x se P está todo em um dos lados de L
 - ► L é dita tangente de P em x

Determinação dos pontos eliminados do fecho devido a \mathbf{p}_{k+1}

▶ Determinar as duas tangentes a P que passa por \mathbf{p}_{k+1}

Determinação dos pontos eliminados do fecho devido a \mathbf{p}_{k+1}

- ▶ Determinar as duas tangentes a P que passa por \mathbf{p}_{k+1}
- ightharpoonup Computar a visibilidade das arestas de P em relação a \mathbf{p}_{k+1}
 - Vértices de silhueta pertencem às tangentes
 - ► Vértices "visíveis" são retirados do fecho

Algoritmo em funcionamento

- ► Ordenação dos pontos:
- ► Teste de visibilidade:

- ► Ordenação dos pontos:
 - $ightharpoonup O(n \log n)$
- ► Teste de visibilidade:

- ► Ordenação dos pontos:
 - $ightharpoonup O(n \log n)$
- ► Teste de visibilidade:
 - $ightharpoonup O(n^2)$
 - O(k) para cada inserção \mathbf{p}_{k+1}

Análise de complexidade

- ► Ordenação dos pontos:
 - $ightharpoonup O(n \log n)$
- ► Teste de visibilidade:
 - $ightharpoonup O(n^2)$
 - ▶ O(k) para cada inserção \mathbf{p}_{k+1}

▶ Complexidade do algoritmo: $O(n^2)$

Análise de complexidade

- ► Ordenação dos pontos:
 - $ightharpoonup O(n \log n)$
- ► Teste de visibilidade:
 - $ightharpoonup O(n^2)$
 - O(k) para cada inserção \mathbf{p}_{k+1}

▶ Complexidade do algoritmo: $O(n^2)$

▶ É possível diminuir a complexidade desse algortimo?

Análise de complexidade

- ► Ordenação dos pontos:
 - $ightharpoonup O(n \log n)$
- ► Teste de visibilidade:
 - $ightharpoonup O(n^2)$
 - O(k) para cada inserção \mathbf{p}_{k+1}

▶ Complexidade do algoritmo: $O(n^2)$

- ▶ É possível diminuir a complexidade desse algortimo?
 - ▶ Sim, determinação das tangentes pode ser O(n) amortizada

Casos degenerados

- ▶ Pontos com mesma coordenada x
 - ▶ Podemos aplicar uma rotação arbitrária

Casos degenerados

- ▶ Pontos com mesma coordenada x
 - Podemos aplicar uma rotação arbitrária

- Pontos colineares
 - Ambiguidade de que pontos pertencem ao fecho

Casos degenerados

- ▶ Pontos com mesma coordenada x
 - ▶ Podemos aplicar uma rotação arbitrária

- Pontos colineares
 - Ambiguidade de que pontos pertencem ao fecho

▶ Parte de um ponto garantidamente no fecho

- ▶ Parte de um ponto garantidamente no fecho
 - ► Selecione o ponto mais abaixo (e mais à direita)

Fecho Convexo

- ▶ Parte de um ponto garantidamente no fecho
 - ► Selecione o ponto mais abaixo (e mais à direita)
- ▶ Trace segmentos de reta aos demais pontos
 - Escolha o ponto com menor ângulo (antihorário) com eixo x
 - ► Tem-se a primeira aresta do fecho

- ▶ Parte de um ponto garantidamente no fecho
 - Selecione o ponto mais abaixo (e mais à direita)
- ► Trace segmentos de reta aos demais pontos
 - Escolha o ponto com menor ângulo (antihorário) com eixo x
 - ► Tem-se a primeira aresta do fecho
- ▶ Para cada novo ponto adicionado no fecho
 - Trace segmentos para demais pontos
 - ► Escolha o ponto com menor ângulo em relação à última aresta do fecho

Análise de complexidade

► Escolha do ponto inicial

- ► Escolha do ponto inicial
 - ► *O*(*n*)

- ► Escolha do ponto inicial
 - ► O(n)
- ► Escolha dos demais
 - ▶ Verificação dos segmentos para escolha do próximo ponto:

- ► Escolha do ponto inicial
 - ► O(n)
- ► Escolha dos demais
 - ightharpoonup Verificação dos segmentos para escolha do próximo ponto: O(n)

- ► Escolha do ponto inicial
 - ► O(n)
- ► Escolha dos demais
 - \blacktriangleright Verificação dos segmentos para escolha do próximo ponto: O(n)
 - ▶ Número de vezes que a verificação é feita

- ► Escolha do ponto inicial
 - ► O(n)
- ► Escolha dos demais
 - \blacktriangleright Verificação dos segmentos para escolha do próximo ponto: O(n)
 - ▶ Número de vezes que a verificação é feita
 - Número de pontos no fecho: h

Análise de complexidade

- ► Escolha do ponto inicial
 - ► *O*(*n*)
- ► Escolha dos demais
 - \blacktriangleright Verificação dos segmentos para escolha do próximo ponto: O(n)
 - Número de vezes que a verificação é feita
 - Número de pontos no fecho: h

► Complexidade do algoritmo: *O*(*nh*)

Algoritmo por varredura de Graham

Ron Graham, Bell Laboratories

- ▶ Necessidade de achar fecho de 10 000 pontos
- ► Publicação em artigo de 1972
 - ▶ Provavelmente, primeiro artigo em Geometria Computacional

Algoritmo por varredura de Graham

- ► Selecione o ponto mais abaixo (e mais à direita)
- ► Trace segmentos de reta aos demais pontos
 - ▶ Ordene pontos em ordem crescente de ângulo com x
- ▶ Processa cada ponto *c* em ordem
 - ► Em relação à última aresta ab
 - ► Se dobra à esquerda: acrescenta no fecho
 - ► Se dobra à direita: b deve ser descartado do fecho
 - Retrocede até achar uma dobra à esquerda

Análise de complexidade

Análise de complexidade

▶ Ordenação dos pontos: $O(n \log n)$

Análise de complexidade

- ▶ Ordenação dos pontos: $O(n \log n)$
- ► Processamento de cada ponto:

Análise de complexidade

- ► Ordenação dos pontos: O(n log n)
- \triangleright Processamento de cada ponto: O(n)
 - ► Cada ponto é processado no máximo 2 vezes
 - Adição ao fecho
 - ► Remoção do fecho

Análise de complexidade

- ► Ordenação dos pontos: $O(n \log n)$
- \triangleright Processamento de cada ponto: O(n)
 - ► Cada ponto é processado no máximo 2 vezes
 - Adição ao fecho
 - ► Remoção do fecho

Complexidade do algoritmo: $O(n \log n)$

É possível melhorar a complexidade do algoritmo?

É possível melhorar a complexidade do algoritmo?

- ► Determinação de fecho engloba ordenação
- ▶ $O(n \log n)$ é limite inferior

É possível melhorar a complexidade do algoritmo?

- Determinação de fecho engloba ordenação
- ▶ $O(n \log n)$ é limite inferior

Algoritmo pode ser estendido para 3D?

Fecho Convexo

É possível melhorar a complexidade do algoritmo?

- Determinação de fecho engloba ordenação
- ▶ $O(n \log n)$ é limite inferior

Algoritmo pode ser estendido para 3D?

► Como ordenar os pontos?

- Ordena os pontos segundo coordenada x
- ▶ Recursivamente
 - ▶ Divide em dois conjuntos A e B
 - $ightharpoonup dim[A] = \lceil n/2 \rceil$
 - dim[B] = |n/2|
 - ► Constroi fechos de A e B
 - ► Combina conv(A) e conv(B)

Subdivisão até dim[S] < 3

► conv(S) trivial

Desafio reside na combinação

- \blacktriangleright Achar duas tangentes entre os polígonos conv(A) e conv(B)
 - ► Suportam os fechos por cima e por baixo

Subdivisão até $dim[S] \leq 3$

► conv(S) trivial

Desafio reside na combinação

- ▶ Achar duas tangentes entre os polígonos conv(A) e conv(B)
 - ► Suportam os fechos por cima e por baixo

Complexidade do algoritmo: $O(n \log n)$

▶ Desde que a combinação seja em tempo O(n)

Determinação das tangentes em ordem linear

- ► A representa o fecho à esquerda e B à direita
 - ▶ a e b são pontos mais à direita e à esquerda de A e B
- ▶ A partir de **a**, ache a tangente que suporta B
 - ► A partir de **b**, percorre no sentido antihorário, atualizando **b**
- ▶ A partir de **b**, ache a tangente que suporta A
 - ► A partir de **a**, percorre no sentido horário, atualizando **a**
- Repita até que a tangente dos dois fechos seja encontrada
- Execute procedimento similar para achar tangente superior

Fecho convexo em 3D

Algorithm	2D Complexity	3D Complexity
Incremental	$O(n^2)$	$O(n^2)$
Gift wrapping	O(nh)	O(nf)
Divide-and-conquer	$O(n \log n)$	$O(n \log n)$
Graham scan	$O(n \log n)$	3

Fecho convexo em 3D

Algoritmo incremental

- ▶ Dado um fecho Q, determinar o fecho de $Q \cup \mathbf{p}$
 - Determinar os planos tangentes
 - Arestas de silhueta suportam esses planos
 - ► Faces visíveis são removidas
 - ► Faces formadas pelas arestas e o ponto **p** são adicionadas

Fecho convexo em 3D

Algoritmo dividir e conquistar

- ▶ Desafio: dados dois fechos A e B, determinar $conv(A \cup B)$
 - ▶ Determinar o plano π que suporta A e B por baixo
 - ► Considerar que este plano toca A e B nos pontos a e b
 - ► Rotacionar o semi-plano ao redor de **ab** até tocar **r**
 - r é vizinho de a ou de b, o que torna a busca local
 - ► Repetir a rotação até fechar o cilindro de faces a incluir
 - ▶ Descartar as faces dentro desse cilindro de A e B

Aplicação: visibilidade de pontos

Problema:

▶ Dada um nuvem densa de pontos P, determinar o conjunto de pontos visíveis V do ponto de vista do ponto c

Aplicação: visibilidade de pontos

Problema:

▶ Dada um nuvem densa de pontos P, determinar o conjunto de pontos visíveis V do ponto de vista do ponto c

Aplicação: visibilidade de pontos

Solução:

► Inversão dos pontos: espelhamento esférico

$$\mathbf{p}_i' = f(\mathbf{p}_i) = \mathbf{p}_i + 2(r - \|\mathbf{p}_i\|) \frac{\mathbf{p}_i}{\|\mathbf{p}_i\|}$$

- ▶ Constrói o fecho convexo $conv(\{\mathbf{p}_i'\},\mathbf{c})$
 - ▶ Pontos do fecho são os pontos visíveis

