A clique graph based merging strategy for decomposable SDPs

 $\label{eq:michael Garstka} \underline{\text{Michael Garstka}}^1 \cdot \text{Mark Cannon}^1 \cdot \text{Paul Goulart}^1$ ${}^1\text{University of Oxford, UK}$

21st IFAC World Congress, Berlin (virtual) 13th - 17th July 2020

Why are decomposable SDPs useful?

Why are decomposable SDPs useful?

Overview

Matrix Sparsity and Graphs

Chordal decomposition

Clique merging

- Clique tree-based merging strategies
- Clique graph-based merging strategy

Benchmarks

Conclusion

Complete subgraph

Clique 1

Clique 3

Chordal graph

Chordal graph

Chordal decomposition

Dual SDP*

$$\begin{array}{ll} \text{maximize} & b^\top y \\ \text{subject to} & \sum_{i=1}^m A_i y_i + S = C \\ & S \in \mathbb{S}^n_+ \end{array}$$

Sparse matrix cones

$$\mathbb{S}^{n}(E,0) := \{ S \in \mathbb{S}^{n} \mid S_{ij} = S_{ji} = 0, \text{ if } i \neq j, (i,j) \notin E \}$$

 $\mathbb{S}^{n}_{+}(E,0) := \{ S \in \mathbb{S}^{n}(E,0) \mid S \succeq 0 \}$

Chordal decomposition

Dual SDP*

maximize
$$b^{\top}y$$
 subject to $\sum_{i=1}^{m}A_{i}y_{i}+S=C$
$$S\in\mathbb{S}^{n}_{+}(E,0)$$

Sparse matrix cones

$$\mathbb{S}^{n}(E,0) := \{ S \in \mathbb{S}^{n} \mid S_{ij} = S_{ji} = 0, \text{ if } i \neq j, (i,j) \notin E \}$$

$$\mathbb{S}^{n}_{+}(E,0) := \{ S \in \mathbb{S}^{n}(E,0) \mid S \succeq 0 \}$$

Agler's theorem

Agler's theorem*

Let G(V,E) be a chordal graph with a set of maximal cliques $\{\mathcal{C}_1,\ldots,\mathcal{C}_p\}$. Then $S\in\mathbb{S}^n_+(E,0)$ if and only if there exist matrices $S_\ell\in\mathbb{S}^{|\mathcal{C}_\ell|}_+$ for $\ell=1,\ldots,p$ such that

$$S = \sum_{\ell=1}^{p} T_{\ell}^{\top} S_{\ell} T_{\ell}.$$

maximize
$$b^{\top}y$$
 subject to $\sum_{i=1}^{m}A_{i}y_{i}+S=C$ $S\in\mathbb{S}_{+}^{n}(E,0)$

$$S_{11}$$
 S_{12}
 0
 0
 0
 S_{16}
 S_{21}
 S_{22}
 S_{23}
 S_{24}
 0
 S_{26}

 0
 S_{32}
 S_{33}
 S_{34}
 0
 0

 0
 S_{42}
 S_{43}
 S_{44}
 S_{45}
 S_{46}

 0
 0
 0
 S_{54}
 S_{55}
 S_{56}
 S_{61}
 S_{62}
 0
 S_{64}
 S_{65}
 S_{66}

maximize
$$b^{\top}y$$
 subject to $\sum_{i=1}^{m}A_{i}y_{i}+S=C$ $S\in\mathbb{S}_{+}^{n}(E,0)$

$$S_{11}$$
 S_{12}
 0
 0
 0
 S_{16}
 S_{21}
 S_{22}
 S_{23}
 S_{24}
 0
 S_{26}
 0
 S_{32}
 S_{33}
 S_{34}
 0
 0
 0
 S_{42}
 S_{43}
 S_{44}
 S_{45}
 S_{46}
 0
 0
 0
 0
 0
 0
 0
 0
 S_{61}
 0
 0
 0
 0
 0
 0
 0
 0
 S_{61}
 0
 0
 0
 0
 0
 0
 0
 0
 S_{61}
 0
 0
 0
 0
 0
 0
 0
 0
 S_{61}
 0
 0
 0
 0
 0
 0
 0
 0
 0
 S_{61}
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 S_{61}
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

$$\begin{array}{ll} \text{maximize} & b^\top y \\ \text{subject to} & \sum_{i=1}^m A_i y_i + S = C \\ & S \in \mathbb{S}_+^n(E,0) \end{array}$$

	S_{11}	S_{12}	0	0	0	S_{16}
	S_{21}	S_{22}	S_{23}	S_{24}	0	S_{26}
ľ	0	S_{32}	S_{33}	S_{34}	0	0
	0	S_{42}	S_{43}	S_{44}	S_{45}	S_{46}
١.	0	0	0	S_{54}	S_{55}	S_{56}
	S_{61}	S_{62}	0	S_{64}	S_{65}	S_{66}

$$\begin{array}{ll} \text{maximize} & b^\top y \\ \text{subject to} & \sum_{i=1}^m A_i y_i + S = C \\ & S \in \mathbb{S}_+^n(E,0) \end{array}$$

S_{12}	0	0	0	S_{16}
S_{22}	S_{23}	S_{24}	0	S_{26}
S_{32}	S_{33}	S_{34}	0	0
S_{42}	S_{43}	S_{44}	S_{45}	S_{46}
0	0	S_{54}	S_{55}	S_{56}
S_{62}	0	S_{64}	S_{65}	S_{66}
	S_{22} S_{32} S_{42} 0	S_{32} S_{33} S_{42} S_{43} 0 0	$egin{array}{cccc} S_{22} & S_{23} & S_{24} \\ S_{32} & S_{33} & S_{34} \\ S_{42} & S_{43} & S_{44} \\ 0 & 0 & S_{54} \\ \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$

$$\begin{array}{ll} \text{maximize} & b^\top y \\ \text{subject to} & \sum_{i=1}^m A_i y_i + S = C \\ & S \in \mathbb{S}_+^n(E,0) \end{array}$$

$$\begin{array}{ll} \text{maximize} & b^\top y \\ \text{subject to} & \sum_{i=1}^m A_i y_i + S = C \\ & S \in \mathbb{S}_+^n(E,0) \end{array}$$

 $\begin{array}{ll} \text{maximize} & b^\top y \\ \text{subject to} & \sum_{i=1}^m A_i y_i + \sum_{\ell=1}^3 T_\ell^\top S_\ell T_\ell = C \end{array}$

 $S_1 \in \mathbb{S}_+^{|\mathcal{C}_1|}, S_2 \in \mathbb{S}_+^{|\mathcal{C}_2|}, S_3 \in \mathbb{S}_+^{|\mathcal{C}_3|}$

Clique merging

- Combine cliques by introducing new edges in the graph
- One merge operation:
 - o replaces two PSD constraints by one larger PSD constraint
 - removes equality constraints
 - \rightarrow trade-off depends on the employed solver algorithm
- Obvious cases:

Algorithm: First-order solver

Factor constraint matrix; while not converged:

L...

Eigenvalue decomposition of PSD decision variables;

Algorithm: Clique tree-based merging

Algorithm: Clique tree-based merging

Compute clique tree;

*Available packages: SparseCoLO [FKK+09], Chompack [AV15]

Algorithm: Clique tree-based merging

Compute clique tree;

Traverse tree depth-first: C_i :

*Available packages: SparseCoLO [FKK+09], Chompack [AV15]

Algorithm: Clique tree-based merging

Compute clique tree;

Traverse tree depth-first: C_i : Find child node: C_j ;

if heuristic condition $f(C_i, C_j) \ge \gamma$ holds:

Available packages: SparseCoLO [FKK+09], Chompack [AV15]

Algorithm: Clique tree-based merging

Compute clique tree;

Traverse tree depth-first: C_i : Find child node: C_j ;

if heuristic condition $f(C_i, C_j) \ge \gamma$ holds:

Available packages: SparseCoLO [FKK+09], Chompack [AV15]

Algorithm: Clique tree-based merging

Compute clique tree;

Traverse tree depth-first: C_i :

Find child node: C_j ;

if heuristic condition $f(C_i, C_j) \ge \gamma$ holds:

$$C_m \leftarrow C_i \cup C_j$$

*Available packages: SparseCoLO [FKK+09], Chompack [AV15]

Algorithm: Clique tree-based merging

Compute clique tree;

Traverse tree depth-first: C_i :

Find child node: C_j ;

if heuristic condition $f(C_i, C_j) \ge \gamma$ holds:

$$C_m \leftarrow C_i \cup C_j$$

*Available packages: SparseCoLO [FKK+09], Chompack [AV15]

- Designed for interior-point solvers
- + Clique tree cheap to compute and evaluate
- Disregards distant merge candidates
- Relies on heuristic parameters

Algorithm: Clique graph-based merging

Algorithm: Clique graph-based merging

Compute clique intersection graph;

in this example: $e(\mathcal{C}_i, \mathcal{C}_j) = \left|\mathcal{C}_i\right|^3 + \left|\mathcal{C}_j\right|^3 - \left|\mathcal{C}_i \cup \mathcal{C}_j\right|^3$

Algorithm: Clique graph-based merging

Compute clique intersection graph; Compute edge weights $w_{ij} = e(C_i, C_j)$;

in this example: $e(\mathcal{C}_i, \mathcal{C}_j) = \left|\mathcal{C}_i\right|^3 + \left|\mathcal{C}_j\right|^3 - \left|\mathcal{C}_i \cup \mathcal{C}_j\right|^3$

Algorithm: Clique graph-based merging

Compute clique intersection graph; Compute edge weights $w_{ij} = e(C_i, C_j)$; while $w_{ij} > 0$ exists:

in this example:
$$e(\mathcal{C}_i, \mathcal{C}_j) = \left|\mathcal{C}_i\right|^3 + \left|\mathcal{C}_j\right|^3 - \left|\mathcal{C}_i \cup \mathcal{C}_j\right|^3$$

Algorithm: Clique graph-based merging

Compute clique intersection graph;

Compute edge weights $w_{ij} = e(C_i, C_j)$;

while $w_{ij} > 0$ exists:

Merge $\mathcal{C}_i, \mathcal{C}_j$ with max weight $\to \mathcal{C}_m$;

in this example:
$$e(\mathcal{C}_i, \mathcal{C}_j) = \left|\mathcal{C}_i\right|^3 + \left|\mathcal{C}_j\right|^3 - \left|\mathcal{C}_i \cup \mathcal{C}_j\right|^3$$

Algorithm: Clique graph-based merging

Compute clique intersection graph;

Compute edge weights $w_{ij} = e(C_i, C_j)$;

while $w_{ij} > 0$ exists:

Merge $\mathcal{C}_i, \mathcal{C}_j$ with max weight $ightarrow \, \mathcal{C}_m$;

Update edge weights connected to C_m ;

Renchmarks

- Goal: Reduce the projection time of our first-order ADMM solver COSMO
- **Problem set:** Large, chordal SDPs from the SDPLib collection
- Setup: Compare different merge strategies with our solver
 - a) No decomposition

b) No merging

c) SparseCoLO merging

- d) Parent-child merging
- e) Clique graph merging (nominal)
- f) Clique graph merging (estimated)

Benchmark results

Benchmark results

Table: Solve time for different merging strategies (s).

problem	$NoDe^1$	$NoMer^2$	SpCo ³	$ParCh^4$	CG1 ⁵	CG2 ⁶
maxG11	29.7	4.11	7.9	3.69	2.72	2.82
maxG32	320.98	21.12	27.08	13.09	12.47	15.79
maxG51	29.12	28.04	19.86	9.59	5.67	8.25
mcp500-1	10.28	1.04	1.19	0.78	0.47	0.37
mcp500-2	8.9	10.25	7.61	5.97	2.08	1.95
mcp500-3	7.66	22.69	30.45	15.76	5.41	4.35
mcp500-4	11.63	51.37	60.52	21.92	5.32	8.74
qpG11	173.81	6.05	6.48	7.65	4.14	3.87
qpG51	607.61	138.38	155.04	150.14	113.87	85.19
thetaG11	225.89	8.28	37.16	10.24	9.01	5.95
thetaG51	505.33	82.48	587.79	103.47	28.28	78.08

¹No decomposition

 $^{^2{}m No}$ merging

³SparseCoL0 ⁴Parent-Child

⁵Clique graph (nominal)

⁶Clique graph (estimated)

- Novel clique graph based merging strategy
- Considers all pair-wise merges
- Customisable to solver algorithm and hardware used
- Reduced per-iteration time of our solver

- Novel clique graph based merging strategy
- Considers all pair-wise merges
- Customisable to solver algorithm and hardware used
- Reduced per-iteration time of our solver

Future work:

- Test with interior-point solver
- Extend strategy to consider multithreading

- Novel clique graph based merging strategy
- Considers all pair-wise merges
- Customisable to solver algorithm and hardware used
- Reduced per-iteration time of our solver

Future work:

- Test with interior-point solver
- Extend strategy to consider multithreading

Solver package available:

https://github.com/oxfordcontrol/COSMO.jl

- Novel clique graph based merging strategy
- Considers all pair-wise merges
- Customisable to solver algorithm and hardware used
- Reduced per-iteration time of our solver

Future work:

- Test with interior-point solver
- Extend strategy to consider multithreading

Solver package available:

https://github.com/oxfordcontrol/COSMO.jl

Questions? michael.garstka[at]eng.ox.ac.uk

Bibliography

- J. Agler, W. Helton, S. McCullough, and L. Rodman.
 Positive semidefinite matrices with a given sparsity pattern.

 Linear Alaebra and its Applications, 107:101–149, 1988.
- M. S. Andersen and L Vandenberghe. CHOMPACK: A Python package for chordal matrix computations, 2015.
- B. Borchers.

 SDPLIB 1.2, A library of semidefinite programming test problems.

 Optimization Methods and Software, 11(1-4):683–690, 1999.
- K. Fujisawa, S. Kim, M. Kojima, Y. Okamoto, and M. Yamashita. User's manual for SparseCoLO: Conversion methods for sparse conic-form linear optimization problems.
 Report B-453, Dept. of Math. and Comp. Sci. Japan, Tech. Rep., pages 152–8552, 2009.
 - R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkowicz. Positive definite completions of partial Hermitian matrices.