实验报告

课程	姓名		学 5	17
指导教师	专业班级	瓦	成	E T

实验三 存储器实验

一、实验目的

- 1. 掌握存储器的组成结构和工作原理。
- 2. 掌握静态随机存储器 RAM 工作特性及数据的读写方法。
- 3. 掌握存储器扩展的基本原理和方法。

二、实验设备

PC 机一台, Logisim 实验系统一套。

三、实验原理及内容

计算机在处理汉字输出的时候,需用到汉字的字形码。字形码是用点阵表示的汉字字型代码,是汉字的输出形式。汉字字库用于输出汉字字形码,字形码点阵信息量大,占用存储空间大,16*16 点阵需 256 位才能显示一个汉字,如图 3-1 所示。

图 3-1 16*16 字形码点阵

国标 GB2312 将汉字以行列矩阵形式排列,分为 94 行,94 列,分别用 7 位区号表示行号,7 位位号表示列号,就构成了汉字的区位码,图 3-2 为部分汉字区位码。

区位码	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
16区	旭可	阳	埃	挨	哎	唉	哀	皑	癌	蔼	矮	艾	碍	爱	隘	鞍	氨	安	俺	按
17区	薄	雹	保	堡	饱	宝	抱	报	暴	豹	鲍	爆	杯	碑	悲	卑	北	辈	背	贝
18区	病	并	玻	菠	播	拨	钵	波	博	勃	搏	铂	箔	伯	帛	舶	脖	膊	渤	泊
19区	场	尝	常	长	偿	肠	广	敞	畅	唱	倡	超	抄	钞	朝	嘲	潮	巢	吵	炒
20区	础	储	矗	搐	触	处	揣	川	穿	椽	传	船	喘	串	疮	窗	幢	床	闯	创

图 3-2 汉字区位码

汉字字库通过区号、位号进行检索,输出汉字的字形码。地址输入为:区号(7位)、位号(7位),逻辑地址为:(区号-1)*94+位号-1,区号、位号从1开始。数据输出为:256位点阵信息。

现有 8 片 16K*32 位 ROM, 用于在 Logisim 平台构建 GB2312 汉字编码的 16K*256bit 点阵汉字字库, 电路输入为汉字区号和位号, 电路输出为 8×32 位 (16*16=256 位点阵信息), 如图 3-3 所示。

图中有一块空白的 16K*32 位电路,需要用 4 片 4K*32 位 ROM 替换。请设计该空白电路的电路连接图。

1. 设计思想

用 4 片 $4K \times 32$ 位 ROM 按照字扩展的扩展方式实现 $16K \times 32$ 位 ROM。通过计算得出,实现上图电路,共需要 $16K \times 32$ 位/ $4K \times 32$ 位=4 片 ROM 芯片。

地址线连接,4K×32 位 ROM 中地址线是 12 位,16K×32 位 ROM 中地址线的位数是 14 位。要用分线器分出来两个接口。将 4 片 4K×32 位 ROM 的地址(A)端并联,将并联后的地址段连接在分线器的 0-11 位对应的分线端口,分线器 12-13 两位对应的分线端口作为选能端连接译码器和多路选择器的选择端。

Selection: Splitter					
Facing	North				
Fan Out	2				
Bit Width In	14				
Appearance	Left-handed				
Bit 0	1 (Left)				
Bit 1	1 (Left)				
Bit 2	1 (Left)				
Bit 3	1 (Left)				
Bit 4	1 (Left)				
Bit 5	1 (Left)				
Bit 6	1 (Left)				
Bit 7	1 (Left)				
Bit 8	1 (Left)				
Bit 9	1 (Left)				
Bit 10	1 (Left)				
Bit 11	1 (Left)				
Bit 12	0 (Right)				
Bit 13	0 (Right)				

图 3-4 分线器数据图

数据线连接,选择多路选择器,数据为32位,但输出LED矩阵位为16×16,该数据线应该有16位。多路选择器的输入端分别与四片ROM的数据(D)端连接,选择端连接分线器12-13两位对应的分线端口,输出端为D1。

片选信号连接,选择译码器,连接原理为:将整个存储系统地址线的低位用于译码器的输入端,而译码器的输出端用于连接四个芯片各自合适的片选信号线。在页面中增加一个译码器,译码器的选择端连接分线器 12-13 两位对应的分线端口,输出端分别与四个 ROM 的 sel 端连接。

2. 电路连接图

图 3-5 存储器扩展电路图

3.拆分字库文件到 4 片 4K*32 位 ROM

完成空白电路设计后,在 8 片 16K*32 位 ROM 中载入字库文件(空白电路的字库文件 HZK 16_1 需拆分成 4 个字库文件,载入 4 片 4K*32 位 ROM 中)。

每片 16K×32 位 的 ROM 的内部各自存储 16K 个地址,每个地址里存放 4 个字节数据。地址范围都一样: 0x0000~0x3FFF。每片 4K×32 位的 ROM,地址范围都一样: 0x000~0xFFF,每个共有 4K 个地址,现在将 16K×32 位的 ROM 中的数据按照顺序,每 4K 个为一组分为四组,分别放到 4 片 4K×32 位 的 ROM 中去。 将 HZK16_1 .txt 中的 1~4096 个数据放到 0 号 4K 的 ROM中,4097~8192 个数据放到 1 号 4K 的 ROM中,8193~12288 个数据放到 2 号 4K 的 ROM中,12289~16384 个数据放到 3 号 4K 的 ROM中。

4.实验结果分析

打开 logisim 中的字库测试电路,设置时钟频率为 8Hz,按 Ctrl+k 进行电路仿真,将仿真结果与参考字库输出结果进行对比。

图 3-6 字库测试电路

刚开始电路仿真时,结果错误,LED 灯亮红,检查后,发现拆分字库有问题。四个 4K×32 位的 ROM 当中,数据并不是平分的,而是以 4K 为一组分别放在四组不同的芯片当中,需注意地址区间的划分。数据导入到 ROM 中,顺序错误,连接未一一对应,导致存储扩展的输出引脚显示不了部分字形阵,需按固定顺序从左到右地址增加。修改后结果正确。

logisim运行的实验结果如下(截取部分图):

图 3-7 字库测试电路结果 1

图 3-8 字库测试电路结果 2

图 3-9 字库测试电路结果 3

四、思考题

1. 某计算机的主存地址空间中,0x0000 到 0x3FFF 为 ROM 存储区域,0x4000 到 0x5FFF 为保留地址区域,0x6000 到 0x7FFF 为 RAM 地址区域。ROM 的控制信号为 CS^* 和 OE^* ,RAM 的控制信号为 CS^* 、 OE^* 和 WE^* ,CPU 地址线 $A15\sim A0$,数据线 $D7\sim D0$,读控制线为 RD^* ,写控制线为 WR^* 。若 ROM 采用 $8K\times 8$ 的芯片,RAM 芯片采用 $4K\times 4$ 的芯片,试分析每个芯片的地址范围,画出与总线的连接图。

图 4-1 芯片个数

图 4-2 地址分配

片选逻辑,将 A13, A14, A15 作为 74LS138 译码器的输入端,选择 / Y0、 / Y1、 / Y3 作为片选信号。 / Y0、 / Y1 分别为 R0M(1)(2)的片选信号 / CS0 和 / CS1。根据图 4-2 地址分配可以看出 A12 为 0 时,RAM(1)(2),将 / Y3 和 A12 相或后作为其片选信号 / CS2;A12 为 1 时,RAM(3)(4),将 / Y3 和非 A12 相或后作为其片选信号 / CS3。

图 4-3 连接图

五、实验心得体会