Прикладной вейвлет-анализ

Лабораторная работа №3

Двумерное дискретное преобразование Хаара

Отчет о работе представляется в формате PDF.

Задание 0 (общее)

Написать функции, которые осуществляют многоуровневое двумерное вейвлет-преобразование (разложение и восстановление) на основе вейвлета Хаара. Можно рассмотреть только случай квадратной матрицы размерности $2^J, J \in \mathbb{N}$. Провести сравнение с библиотечной функцией, которая реализована в используемом вами языке программирования.

В дальнейшем будем считать, что C — матрица, соответствующая некоторому черно-белому изображению. Полученную после вейвлетразложения матрицу обозначим \tilde{C} .

Вариант 1

- 1) Для некоторого ε обнулить все элементы матрицы \tilde{C} , меньшие ε по модулю, после чего применить вейвлет-восстановление для получения матрицы изображения $C_{\varepsilon} \approx C$. Изобразить картинку, соответствующую C_{ε} .
- 2) Для матриц C и C_{ε} вычислить коэффициент PSNR стандартную количественную оценку искажений для изображений. PSNR расшифровывается как peak signal-to-noise ratio (пиковое отношение сигнал/шум) и вычисляется по формуле

$$PSNR = 20 \log_{10} \left(\frac{M_{gray}}{rms} \right),$$
 где

- M_{gray} количество градаций серого; ${
 m rms}=\sqrt{\frac{1}{m\cdot n}\sum_{i=1}^m\sum_{j=1}^n(c_{ij}-c_{ij}^\varepsilon)^2}$ среднеквадратичное отклонение между точками исходного и точками «сжатого» изображения;
- m и n соответственно число строк и столбцов в матрице изображения.
- 3) Изменяя значение ε построить диаграмму «процент нулей PSNR», содержащую как минимум 10 значений. Полученные данные изобразить на общей диаграмме. Сделать выводы.

Содержание отчета

- ullet «Сжатые» изображения \widetilde{C} и их коэффициенты PSNR для вейвлетов а) и б) и трех различных значений ε .
 - Диаграмма «процент нулей PSNR» из пункта 2.
 - Исходные тексты всех программ.

Вариант 2

- 1) Построить изображение, полученные путем обнуления в матрице D
- а) всех коэффициентов d^{1r} $(j=\overline{1,J})$, b) всех коэффициентов d^{1B} , c) всех коэффициентов $d^{1_{\text{д}}}$, и последующего вейвлет-восстановления.
- 2) Описать эффект, которые имеют преобразования из п. 1. Что получится, если обнулить сразу все три набора $d^{1\lambda}$? Почему?
- 3) Провести аналогичные эксперименты с коэффициентами $d^{j\lambda}$ для j>1, привести соответствующие изображения, сделать выводы.
- 4) Какую полезную информацию могут нести наибольшие по модулю

коэффииценты среди $d^{j\lambda}$ (при фиксированных j и λ)? Проведите эксперименты и подтвердите свои выводы соответствующими изображениями.

Содержание отчета

- Для каждого пункта задания изображения и выводы.
- Исходный код всех программ.