- 1. Fie funcția $f:[1,\infty)\to\mathbb{R},\ f(x)=\int_1^x t(1-\ln^2 t)dt$. Aflați abscisa punctului de maxim local. **(9 pct.)** a) e; b) $2\sqrt{e}$; c) $\sqrt[3]{e^2}$; d) $\frac{1}{e}$; e) \sqrt{e} ; f) e^2 .
- 2. Să se determine numărul real m astfel încât $\begin{vmatrix} m & 6 \\ 1 & 2 \end{vmatrix} = 0$. (9 pct.)
 - a) m = 1; b) m = 3; c) m = 2; d) m = 5; e) m = 0; f) m = 4.
- 3. Să se determine numărul natural n astfel încât 4, $\frac{n+8}{2}$ și 8 să fie trei termeni consecutivi ai unei progresii aritmetice. (9 pct.)
 - a) n = 4; b) n = 1; c) n = 2; d) n = 3; e) n = 0; f) n = 6.
- 4. Fie funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = e^x + x^2$. Atunci f'(0) este: (9 pct.)
 - a) 4; b) 1; c) -1; d) 3; e) 0; f) 2.
- 5. Să se rezolve în \mathbb{R} inecuația 3x 1 > x + 3. (9 pct.)
 - a) x < 1; b) x < -2; c) x > 2; d) x > 3; e) x < 2; f) x < 3.
- 6. Mulțimea soluțiilor reale ale ecuației $x^2 6x + 8 = 0$ este: (9 pct.)
 - a) $\{-1,3\}$; b) $\{1,5\}$; c) \emptyset ; d) $\{1\}$; e) $\{-4,-2\}$; f) $\{2,4\}$.
- 7. Pe mulțimea \mathbb{Z} a numerelor întregi se definește legea de compoziție $x \circ y = xy 5x 5y + 30$. Atunci suma elementelor simetrizabile în raport cu legea de compoziție " \circ " este: (9 pct.)
 - a) 10; b) 9; c) 6; d) 0; e) 5; f) 8.
- 8. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt{x+3}-1=x$. (9 pct.)
 - a) x = 3; b) $x \in \emptyset$; c) x = -5; d) $x \in \{-1, 2\}$; e) x = 0; f) x = 1.
- 9. Fie $M = \{1, 2, 3, ..., 999\}$. Să se determine numărul elementelor mulțmii M care conțin cifra 9 cel puțin o dată: (9 pct.)
 - a) 271; b) 243; c) 270; d) 274; e) 275; f) 272.
- 10. Se consideră ecuația $3^{x^2+1} = 9$. Atunci soluțiile acesteia sunt: (9 pct.)
 - a) $-1 ext{ si } 1; ext{ b) } 2 ext{ si } 3; ext{ c) } -2 ext{ si } 2; ext{ d)} -\sqrt{2} ext{ si } \sqrt{2}; ext{ e) } 0; ext{ f) } 0 ext{ si } 5.$