10.3. Monday for MAT4002

Proposition 10.6 Let K and L be two simplifical complexes, and $f:|K| \to |L|$ be a continuous mapping. If there exists a simplicial mapping $g:K \to L$ such that $f(\operatorname{st}_K(v)) \subseteq \operatorname{st}_L(g(v)), \forall v \in V(K)$, then

$$|g| \cong f$$

Recall the definition

$$\operatorname{st}_K(\mathbf{v}) = \bigcup \{\operatorname{inside}(\sigma) : \sigma \text{ is a simplex of } |K| \text{ and } x \in \sigma\}$$

Proof. • We first show a statement: Suppose that $\sigma = \{v_0, ..., v_n\} \in \Sigma(K)$, and $x \in \operatorname{inside}(\sigma) \subseteq |K|$. If $f(x) \in |L|$ lies in the inside of the (unique) simplex $\tau \in \Sigma_L$, then $g(v_0), ..., g(v_n)$ are vertices of τ .

By definition of inside(σ), $x = \sum_{i=0}^{n} \alpha_i v_i$ with $\alpha_i > 0$ and $\sum_{i=1}^{n} \alpha_i = 1$. Therefore, $x \in \operatorname{st}_K(v_i)$ for i = 1, ..., n, where

$$\operatorname{st}_{K}(v_{i}) := \left\{ av_{i} + \sum_{j=1}^{m} b_{j}w_{j} \mid a > 0, b_{j} > 0, a + \sum_{j=1}^{m} b_{j} = 1, \{v_{i}, w_{1}, \dots, w_{m}\} \in \Sigma_{K} \right\}.$$

Therefore, $f(x) \in \operatorname{int}(\operatorname{st}_K(v_i)) \subseteq \operatorname{st}_L(g(v_i))$, which follows that

$$f(x) = ag(v_i) + \sum_{j=1}^{m} b_j u_j$$
, where $a > 0, b_j > 0, a + \sum_{j=1}^{m} b_j = 1, \{g(v_i), u_1, \dots, u_m\} \in \Sigma_L$

Therefore, $g(v_i)$ is a vertex of the simplex τ , i = 1, ..., n. Moreover, $\{g(v_0), ..., g(v_n)\}$ spans a simplex, which is a face of τ , and therefore $\{g(v_0), ..., g(v_n)\} \in \Sigma_L$.

• Therefore, the mapping $g: K \to L$ maps simplicies to simplicies, which is a simplicial mapping. We can construct a homotopy between f and |g| as follows: Consider any $x \in |K|$, and let $\tau \in \Sigma_L$ be such that $f(x) \in \operatorname{inside}(\tau)$. We write $x = \sum_{i=0}^n \lambda_i v_i$ for some $\{v_0, \dots, v_n\} \in \Sigma_K$ and $\lambda_i \geq 0, \sum_{i=1}^n \lambda_i = 1$. Applying our claim,

$$|g|(x) = \sum_{i=0}^{n} \lambda_i g(v_i),$$

where $g(v_0), \dots, g(v_n)$ are all vertices of τ .

We can directly construct a homotopy between f and |g|. Before that, we need some reformulations. Since $f(x) \in \operatorname{inside}(\tau)$, we let $f(x) = \sum_{i=0}^{m} \mu_i \tau_i$. Since $|g|(x) = \sum_{i=0}^{n} \lambda_i g(v_i) \in \operatorname{inside}(\tau)$, we rewrite $|g|(x) = \sum_{i=0}^{m} \lambda_i' \tau_i$. We define the map

$$H: |K| \times I \to |L|$$

with $(x,t) \mapsto \sum_{i=0}^{m} t \lambda_i' + (1-t)\mu_i$

which follows that $f \simeq |g|$.

Theorem 10.2 — **Simplicial Approximation Theorem.** Let K,L be simplicial complexes with V_K finite, and $f:|K| \to |L|$ be continuous. Then there exists a subdivison |K'| of |K| together with a simplicial map g such that $|g| \simeq f$.

Here the way for constructing subdivison |K'| is as follows. There exists a constant $\delta > 0$. As long as the coarseness of K' is less than δ , our constructed subdivision satisfies the condition.

Proof. The sets $\{\operatorname{st}_L(w) \mid w \in V(L)\}$ forms an open cover of |L|, which implies $\{f^{-1}(\operatorname{st}_L(w))\}$ forms an open cover of |K|. By compactness, there exists a finite subcover of |K|, denoted as

$$|K| \subseteq \bigcup_{i=1}^n f^{-1}(\operatorname{st}_L(w_i))$$

There exists a small number $\delta > 0$ such that for any $x,y \in |K|$ with $d(x,y) < \delta$, $x,y \in f^{-1}(\operatorname{st}_L(w_i))$ for some i. Then we construct a simplicial subdivision |K'| of |K| with coarseness less than δ , i.e., $\forall x,y \in \operatorname{st}_{K'}(v)$, $d(x,y) < \delta$.

Therefore, $\operatorname{st}_{K'}(v) \subseteq f^{-1}(\operatorname{st}_L(w_i))$ for any $v \in V(K)$, and some $w_i \in V(L)$, i.e., $f(\operatorname{st}_{K'}(v)) \subseteq \operatorname{st}_L(w_i)$.

Setting $g(v) = w_i$ and applying proposition (10.6) gives the desired result.

10.3.1. Group Presentations

Group is a highlight of our course, which interwises topology and algebra. I assume that most students have learnt abstract algebra course MAT3004, and encourage those without this knowledge to read the notes for group posted on blackboard.