Often when carrying out theoretical and empirical political analysis, we want to work in sets that are simultaneously linear spaces and metric spaces.

- Often when carrying out theoretical and empirical political analysis, we want to work in sets that are simultaneously linear spaces and metric spaces.
- ▶ In particular, we want to work in spaces where the algebraic structure of the space works is consistent with its geometric structure.

- Often when carrying out theoretical and empirical political analysis, we want to work in sets that are simultaneously linear spaces and metric spaces.
- In particular, we want to work in spaces where the algebraic structure of the space works is consistent with its geometric structure.
- A normed linear space accomplishes this.

- Often when carrying out theoretical and empirical political analysis, we want to work in sets that are simultaneously linear spaces and metric spaces.
- In particular, we want to work in spaces where the algebraic structure of the space works is consistent with its geometric structure.
- A normed linear space accomplishes this.
- In the quantitative sequence, you will be working almost exclusively in normed linear spaces.

▶ For any linear space X, a **norm**, denoted ||x||, is a measure of the size of the elements satisfying the following properties:

- For any linear space X, a **norm**, denoted ||x||, is a measure of the size of the elements satisfying the following properties:
 - ▶ 1. $||x|| \ge 0$

- ▶ For any linear space X, a **norm**, denoted ||x||, is a measure of the size of the elements satisfying the following properties:
 - ▶ 1. $||x|| \ge 0$
 - 2. ||x|| = 0 if and only if x = 0

- ▶ For any linear space X, a **norm**, denoted ||x||, is a measure of the size of the elements satisfying the following properties:
 - ▶ 1. $||x|| \ge 0$
 - 2. ||x|| = 0 if and only if x = 0
 - ▶ 3. $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{R}$

- For any linear space X, a **norm**, denoted ||x||, is a measure of the size of the elements satisfying the following properties:
 - ▶ 1. $||x|| \ge 0$
 - 2. ||x|| = 0 if and only if x = 0
 - ▶ 3. $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{R}$
 - ▶ 4. $||x + y|| \le ||x|| + ||y||$ (triangle inequality)

- For any linear space X, a **norm**, denoted ||x||, is a measure of the size of the elements satisfying the following properties:
 - ▶ 1. $||x|| \ge 0$
 - 2. ||x|| = 0 if and only if x = 0
 - ▶ 3. $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{R}$
 - ▶ 4. $||x + y|| \le ||x|| + ||y||$ (triangle inequality)
- ▶ A norm on X induces a metric on X, d(x, y) = ||x y||

- For any linear space X, a **norm**, denoted ||x||, is a measure of the size of the elements satisfying the following properties:
 - ▶ 1. $||x|| \ge 0$
 - 2. ||x|| = 0 if and only if x = 0
 - ▶ 3. $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{R}$
 - ▶ 4. $||x + y|| \le ||x|| + ||y||$ (triangle inequality)
- ▶ A norm on X induces a metric on X, d(x,y) = ||x y||
- Recall properties of metric:

- For any linear space X, a **norm**, denoted ||x||, is a measure of the size of the elements satisfying the following properties:
 - ▶ 1. $||x|| \ge 0$
 - 2. ||x|| = 0 if and only if x = 0
 - ▶ 3. $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{R}$
 - ▶ 4. $||x + y|| \le ||x|| + ||y||$ (triangle inequality)
- ▶ A norm on X induces a metric on X, d(x,y) = ||x y||
- Recall properties of metric:
 - ▶ $d(x, y) \ge 0$
 - $d(x,y) = 0 \iff x = y$
 - b d(x,y) = d(y,x)
 - $d(x,z) \leq d(x,y) + d(y,z)$

- ▶ For any linear space X, a **norm**, denoted ||x||, is a measure of the size of the elements satisfying the following properties:
 - ▶ 1. $||x|| \ge 0$
 - 2. ||x|| = 0 if and only if x = 0
 - ▶ 3. $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{R}$
 - ▶ 4. $||x + y|| \le ||x|| + ||y||$ (triangle inequality)
- ▶ A norm on X induces a metric on X, d(x, y) = ||x y||
- Recall properties of metric:
 - \rightarrow $d(x,y) \geq 0$
 - $d(x,y) = 0 \iff x = y$
 - b d(x,y) = d(y,x)
 - $d(x,z) \leq d(x,y) + d(y,z)$
- Proof

- For any linear space X, a **norm**, denoted ||x||, is a measure of the size of the elements satisfying the following properties:
 - ▶ 1. $||x|| \ge 0$
 - 2. ||x|| = 0 if and only if x = 0
 - ▶ 3. $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{R}$
 - ▶ 4. $||x + y|| \le ||x|| + ||y||$ (triangle inequality)
- ▶ A norm on X induces a metric on X, d(x, y) = ||x y||
- Recall properties of metric:
 - $d(x,y) \geq 0$
 - $d(x,y) = 0 \iff x = y$
 - b d(x,y) = d(y,x)
 - $b d(x,z) \leq d(x,y) + d(y,z)$
- Proof
 - ► $d(x,y) = ||x-y|| \ge 0$

- ▶ For any linear space X, a **norm**, denoted ||x||, is a measure of the size of the elements satisfying the following properties:
 - ▶ 1. $||x|| \ge 0$
 - 2. ||x|| = 0 if and only if x = 0
 - ▶ 3. $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{R}$
 - ▶ 4. $||x + y|| \le ||x|| + ||y||$ (triangle inequality)
- ▶ A norm on X induces a metric on X, d(x, y) = ||x y||
- Recall properties of metric:
 - \rightarrow $d(x, y) \ge 0$
 - $d(x,y) = 0 \iff x = y$
 - b d(x,y) = d(y,x)
 - $d(x,z) \leq d(x,y) + d(y,z)$
- Proof
 - ► $d(x,y) = ||x-y|| \ge 0$
 - $d(x,y) = 0 \iff ||x-y|| = 0 \iff x-y = 0 \iff x = y$

- For any linear space X, a **norm**, denoted ||x||, is a measure of the size of the elements satisfying the following properties:
 - ▶ 1. $||x|| \ge 0$
 - 2. ||x|| = 0 if and only if x = 0
 - ▶ 3. $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{R}$
 - ▶ 4. $||x + y|| \le ||x|| + ||y||$ (triangle inequality)
- ▶ A norm on X induces a metric on X, d(x, y) = ||x y||
- Recall properties of metric:
 - \rightarrow $d(x, y) \ge 0$
 - $d(x,y) = 0 \iff x = y$
 - b d(x,y) = d(y,x)
 - $d(x,z) \leq d(x,y) + d(y,z)$
- Proof
 - ► $d(x,y) = ||x-y|| \ge 0$
 - $d(x,y) = 0 \iff ||x-y|| = 0 \iff x-y = 0 \iff x = y$
 - d(x,y) = ||x-y|| = ||(-1)(y-x)|| = (-1)||y-x|| = d(x,y)

- ▶ For any linear space X, a **norm**, denoted ||x||, is a measure of the size of the elements satisfying the following properties:
 - ▶ 1. $||x|| \ge 0$
 - 2. ||x|| = 0 if and only if x = 0
 - ▶ 3. $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{R}$
 - ▶ 4. $||x + y|| \le ||x|| + ||y||$ (triangle inequality)
- ▶ A norm on X induces a metric on X, d(x, y) = ||x y||
- Recall properties of metric:
 - \rightarrow $d(x, y) \geq 0$
 - $d(x, y) = 0 \iff x = y$
 - b d(x,y) = d(y,x)
 - $d(x,z) \leq d(x,y) + d(y,z)$
- Proof
 - ► $d(x, y) = ||x y|| \ge 0$
 - $d(x,y) = 0 \iff ||x-y|| = 0 \iff x-y = 0 \iff x = y$
 - d(x,y) = ||x-y|| = ||(-1)(y-x)|| = (-1)||y-x|| = d(x,y)
 - $d(x,z) = ||x-z|| = ||x-y+y-z|| \le ||x-y|| + ||y-z|| = d(x,y) + d(y,z)$

▶ A linear space with a norm, $(X, \|\cdot\|)$, is called a **normed** linear space.

- ▶ A linear space with a norm, $(X, \|\cdot\|)$, is called a **normed** linear space.
- ▶ A normed linear space is a subclass of **metric linear spaces** which is a linear space equipped with a metric.

- ▶ A linear space with a norm, $(X, \|\cdot\|)$, is called a **normed** linear space.
- ▶ A normed linear space is a subclass of **metric linear spaces** which is a linear space equipped with a metric.
- ▶ It is a special type of metric linear space with rich interaction of the algebraic and linear structures.

Say a government agency is devising a proposal to build a new highway.

- Say a government agency is devising a proposal to build a new highway.
- ▶ A production plan $y = (y_1, ..., y_n)$ is a list of the net outputs of various goods and services where y_i is net output of commodity i.

- Say a government agency is devising a proposal to build a new highway.
- ▶ A production plan $y = (y_1, ..., y_n)$ is a list of the net outputs of various goods and services where y_i is net output of commodity i.
- ▶ How could we measure the overall "size" of the plan?

- Say a government agency is devising a proposal to build a new highway.
- ▶ A production plan $y = (y_1, ..., y_n)$ is a list of the net outputs of various goods and services where y_i is net output of commodity i.
- ▶ How could we measure the overall "size" of the plan?
- ▶ What if we simply added up the net outputs of all the goods and services i.e. $\sum y_i$?

- Say a government agency is devising a proposal to build a new highway.
- ▶ A production plan $y = (y_1, ..., y_n)$ is a list of the net outputs of various goods and services where y_i is net output of commodity i.
- ▶ How could we measure the overall "size" of the plan?
- ▶ What if we simply added up the net outputs of all the goods and services i.e. $\sum y_i$?
- Since some of the net outputs are negative, it would be more appropriate to take their absolute value first.

- Say a government agency is devising a proposal to build a new highway.
- ▶ A production plan $y = (y_1, ..., y_n)$ is a list of the net outputs of various goods and services where y_i is net output of commodity i.
- ▶ How could we measure the overall "size" of the plan?
- ▶ What if we simply added up the net outputs of all the goods and services i.e. $\sum y_i$?
- Since some of the net outputs are negative, it would be more appropriate to take their absolute value first.
- ▶ Therefore one possible measure of size is

$$||y||_1 = \sum_{i=1}^n |y_i|$$

$$||y||_2 = \sqrt{\sum_{i=1}^n y_i^2}$$

Another way to compensate for the negativity of some net inputs is to square the individual inputs as in

$$||y||_2 = \sqrt{\sum_{i=1}^n y_i^2}$$

▶ What we probably really care about is the "output" of the project i.e. how much road will the agency produce.

$$||y||_2 = \sqrt{\sum_{i=1}^n y_i^2}$$

- ▶ What we probably really care about is the "output" of the project i.e. how much road will the agency produce.
- Can we measure the size of the plan y by the output of road, y_r?

$$||y||_2 = \sqrt{\sum_{i=1}^n y_i^2}$$

- ▶ What we probably really care about is the "output" of the project i.e. how much road will the agency produce.
- ► Can we measure the size of the plan y by the output of road, y_r?
- ▶ No: $|y_r| = 0$ does not imply ||y|| = 0

$$||y||_2 = \sqrt{\sum_{i=1}^n y_i^2}$$

- ▶ What we probably really care about is the "output" of the project i.e. how much road will the agency produce.
- ► Can we measure the size of the plan y by the output of road, y_r?
- No: $|y_r| = 0$ does not imply ||y|| = 0
- ▶ It is possible for a government program to consume inputs and produce no outputs.

$$||y||_2 = \sqrt{\sum_{i=1}^n y_i^2}$$

- ▶ What we probably really care about is the "output" of the project i.e. how much road will the agency produce.
- Can we measure the size of the plan y by the output of road, y_r?
- No: $|y_r| = 0$ does not imply ||y|| = 0
- It is possible for a government program to consume inputs and produce no outputs.
- ▶ A related measure that does meet the requirements of a norm uses the largest component of *y* as the measure of the size or the plan:

$$||y||_{\infty} = \max_{i=1}^{n} |y_i|$$

Euclidean Space

▶ The **Euclidean norm**, $||x||_2$ generalizes the conventional Pythagorean notion of the length of a vector in two and three-dimensional space.

Euclidean Space

- ▶ The **Euclidean norm**, $||x||_2$ generalizes the conventional Pythagorean notion of the length of a vector in two and three-dimensional space.
- ▶ In \mathbb{R}^2 , the Euclidean norm expresses the Pythagorean theorem that in a right triangle, the squared length of the hypotenuse is equal to the sum of the squares of the two sides:

$$||x||^2 = |x_1|^2 + |x_2|^2$$
.

Euclidean Space

- ▶ The **Euclidean norm**, $||x||_2$ generalizes the conventional Pythagorean notion of the length of a vector in two and three-dimensional space.
- ▶ In \mathbb{R}^2 , the Euclidean norm expresses the Pythagorean theorem that in a right triangle, the squared length of the hypotenuse is equal to the sum of the squares of the two sides: $||x||^2 = |x_1|^2 + |x_2|^2$.
- ▶ The space $(\mathbb{R}^n, \|\cdot\|_2)$ is referred to as a **Euclidean space**.

▶ As we saw in the metric spaces lecture, completeness is one of the most desirable properties of a metric space.

- ▶ As we saw in the metric spaces lecture, completeness is one of the most desirable properties of a metric space.
- Recall that a metric space is called complete if every Cauchy sequence converges in the space.

- ▶ As we saw in the metric spaces lecture, completeness is one of the most desirable properties of a metric space.
- Recall that a metric space is called complete if every Cauchy sequence converges in the space.
- ▶ A complete normed linear space is referred to as a Banach space.

- ▶ As we saw in the metric spaces lecture, completeness is one of the most desirable properties of a metric space.
- Recall that a metric space is called complete if every Cauchy sequence converges in the space.
- ▶ A complete normed linear space is referred to as a Banach space.
- Euclidean space is an example of a Banach space.

- ▶ As we saw in the metric spaces lecture, completeness is one of the most desirable properties of a metric space.
- Recall that a metric space is called complete if every Cauchy sequence converges in the space.
- ▶ A complete normed linear space is referred to as a Banach space.
- Euclidean space is an example of a Banach space.
- It turns out that any finite dimensional normed linear space is a Banach space.

▶ Given a sequence $x_1, x_2, x_3, ...$ of elements of a normed linear space, their sum is called a **series**.

- ▶ Given a sequence $x_1, x_2, x_3, ...$ of elements of a normed linear space, their sum is called a **series**.
- We typically deal with infinite series in game theory when we study repeated games.

- ▶ Given a sequence $x_1, x_2, x_3, ...$ of elements of a normed linear space, their sum is called a **series**.
- We typically deal with infinite series in game theory when we study repeated games.
- ► For an infinite series, we can define a sequence of **partial sums** whose *n*th term is

$$s_n = \sum_{i=1}^n x_i$$

- ▶ Given a sequence $x_1, x_2, x_3, ...$ of elements of a normed linear space, their sum is called a **series**.
- We typically deal with infinite series in game theory when we study repeated games.
- ► For an infinite series, we can define a sequence of **partial sums** whose *n*th term is

$$s_n = \sum_{i=1}^n x_i$$

▶ If $s_1, s_2, ...$ converges to some s, we say that the series $x_1, x_2, ...$ is **convergent** and we call $s = x_1 + x_2 + ...$ the sum of the infinite series.

$$(\frac{1}{2^k})_{k=1}^{\infty} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

$$s_1 = \frac{1}{2}$$

$$s_2 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$

$$s_3 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8}$$

$$s_1, s_2, s_3, \dots = \frac{1}{2}, \frac{3}{4}, \frac{7}{8} \dots \to 1$$

$$s = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 1$$

▶ If an infinite series does not have a sum, we say that the series is **divergent**.

- ▶ If an infinite series does not have a sum, we say that the series is **divergent**.
- Example: $(1)_{k=1}^{\infty} = 1 + 1 + 1 + \dots$

- ▶ If an infinite series does not have a sum, we say that the series is **divergent**.
- ▶ $s_1, s_2, s_3, s_4, ... = 1, 2, 3, 4, ...$ which tends to infinity. ■

- ▶ If an infinite series does not have a sum, we say that the series is **divergent**.
- ▶ $s_1, s_2, s_3, s_4, ... = 1, 2, 3, 4, ...$ which tends to infinity. ■
- ▶ When we have a convergent series, the terms in the sequence tend towards zero.

- ▶ If an infinite series does not have a sum, we say that the series is **divergent**.
- ► $s_1, s_2, s_3, s_4, ... = 1, 2, 3, 4, ...$ which tends to infinity. \blacksquare
- When we have a convergent series, the terms in the sequence tend towards zero.
- ▶ The reverse of this, however, is not true.

- If an infinite series does not have a sum, we say that the series is divergent.
- ▶ $s_1, s_2, s_3, s_4, ... = 1, 2, 3, 4, ...$ which tends to infinity. ■
- When we have a convergent series, the terms in the sequence tend towards zero.
- ▶ The reverse of this, however, is not true.
- A sequence that converges does not necessarily induce a sequence of partial sums that converges.

▶ The series $(\frac{1}{k})_{i=1}^{\infty}$ is called the *harmonic series*.

- ▶ The series $(\frac{1}{k})_{i=1}^{\infty}$ is called the *harmonic series*.
- ▶ The sequence $\frac{1}{n}$ converges to zero.

- ▶ The series $(\frac{1}{k})_{i=1}^{\infty}$ is called the *harmonic series*.
- ▶ The sequence $\frac{1}{n}$ converges to zero.
- ▶ The sequence of partial sums of the series however diverges:

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \dots$$

$$> 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \dots$$

$$= 1 + (\frac{1}{2}) + (\frac{1}{4} + \frac{1}{4}) + (\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}) + (\frac{1}{16} + \dots + \frac{1}{16})$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots = \infty$$

A special type of sequence in which each term in the sequence is a constant multiple of the previous term is called a **geometric series**: $x + \delta x + \delta^2 x + ...$

- A special type of sequence in which each term in the sequence is a constant multiple of the previous term is called a **geometric series**: $x + \delta x + \delta^2 x + ...$
- ▶ A geometric series converges if and only if $|\delta| < 1$ and converges to $\frac{x}{1-\delta}$.

- A special type of sequence in which each term in the sequence is a constant multiple of the previous term is called a **geometric series**: $x + \delta x + \delta^2 x + ...$
- ▶ A geometric series converges if and only if $|\delta| < 1$ and converges to $\frac{x}{1-\delta}$.
- ► Example: $1 + \frac{1}{2} + \frac{1}{4} + \dots = \sum_{i=1}^{\infty} (\frac{1}{2})^{i-1} = \frac{1}{1-1/2} = 2$

- A special type of sequence in which each term in the sequence is a constant multiple of the previous term is called a **geometric series**: $x + \delta x + \delta^2 x + ...$
- ▶ A geometric series converges if and only if $|\delta| < 1$ and converges to $\frac{x}{1-\delta}$.
- Example: $1 + \frac{1}{2} + \frac{1}{4} + ... = \sum_{i=1}^{\infty} (\frac{1}{2})^{i-1} = \frac{1}{1-1/2} = 2$
- Geometric series will play an important role in models where players discount the future.

Recall that every compact set in a metric space is closed and bounded.

- Recall that every compact set in a metric space is closed and bounded.
- ▶ The reverse, however, is not guaranteed to hold.

- Recall that every compact set in a metric space is closed and bounded.
- ▶ The reverse, however, is not guaranteed to hold.
- ▶ We have seen already via the Heine-Borel theorem that the two are equivalent for a subset S of (\mathbb{R}^n, d_2) .

- Recall that every compact set in a metric space is closed and bounded.
- ▶ The reverse, however, is not guaranteed to hold.
- ▶ We have seen already via the Heine-Borel theorem that the two are equivalent for a subset S of (\mathbb{R}^n, d_2) .
- ▶ Therefore the two are also equivalent in $(\mathbb{R}^n, \|\cdot\|_2)$ i.e. in Euclidean space.

- Recall that every compact set in a metric space is closed and bounded.
- ▶ The reverse, however, is not guaranteed to hold.
- ▶ We have seen already via the Heine-Borel theorem that the two are equivalent for a subset S of (\mathbb{R}^n, d_2) .
- ▶ Therefore the two are also equivalent in $(\mathbb{R}^n, \|\cdot\|_2)$ i.e. in Euclidean space.
- We originally took this powerful result for granted.

- Recall that every compact set in a metric space is closed and bounded.
- ▶ The reverse, however, is not guaranteed to hold.
- ▶ We have seen already via the Heine-Borel theorem that the two are equivalent for a subset S of (\mathbb{R}^n, d_2) .
- ▶ Therefore the two are also equivalent in $(\mathbb{R}^n, \|\cdot\|_2)$ i.e. in Euclidean space.
- We originally took this powerful result for granted.
- Now we will prove it.

▶ A **limit point** (or "accumulation" point or "cluster" point) of a set A is a point a such that for all r > 0, there exists at least one point $c \in A \setminus \{a\}$ such that $c \in B_r(a)$.

- ▶ A **limit point** (or "accumulation" point or "cluster" point) of a set A is a point a such that for all r > 0, there exists at least one point $c \in A \setminus \{a\}$ such that $c \in B_r(a)$.
- Intuitively, a limit point is a set where no matter how little you move off of it, you intersect points of the set.

- ▶ A **limit point** (or "accumulation" point or "cluster" point) of a set A is a point a such that for all r > 0, there exists at least one point $c \in A \setminus \{a\}$ such that $c \in B_r(a)$.
- Intuitively, a limit point is a set where no matter how little you move off of it, you intersect points of the set.
- Limit points need not be in the set.

- ▶ A **limit point** (or "accumulation" point or "cluster" point) of a set A is a point a such that for all r > 0, there exists at least one point $c \in A \setminus \{a\}$ such that $c \in B_r(a)$.
- Intuitively, a limit point is a set where no matter how little you move off of it, you intersect points of the set.
- Limit points need not be in the set.
- **Example:** Every point in [0,1] is a limit point of (0,1).

Lemma

A closed subset of a compact set is compact.

Lemma

A closed subset of a compact set is compact.

▶ Let K be a closed subset of a compact set $T \subset X$ and let C_K be an open cover of K.

Lemma

A closed subset of a compact set is compact.

- ▶ Let K be a closed subset of a compact set $T \subset X$ and let C_K be an open cover of K.
- ▶ Then $U = X \setminus K$ is an open set and $C_T = C_K \cup U$ is an open cover of T.

Compactness in Euclidean Space

Lemma

A closed subset of a compact set is compact.

- ▶ Let K be a closed subset of a compact set $T \subset X$ and let C_K be an open cover of K.
- ▶ Then $U = X \setminus K$ is an open set and $C_T = C_K \cup U$ is an open cover of T.
- Since T is compact, then C_T has a finite subcover C'_T that also covers K.

Compactness in Euclidean Space

Lemma

A closed subset of a compact set is compact.

- ▶ Let K be a closed subset of a compact set $T \subset X$ and let C_K be an open cover of K.
- ▶ Then $U = X \setminus K$ is an open set and $C_T = C_K \cup U$ is an open cover of T.
- Since T is compact, then C_T has a finite subcover C'_T that also covers K.
- ▶ Since U does not contain any point of K, the set K is already covered by $C'_K = C'_T \setminus U$ i.e. a finite subcollection of the original collection C_K .

Compactness in Euclidean Space

Lemma

A closed subset of a compact set is compact.

- ▶ Let K be a closed subset of a compact set $T \subset X$ and let C_K be an open cover of K.
- ▶ Then $U = X \setminus K$ is an open set and $C_T = C_K \cup U$ is an open cover of T.
- Since T is compact, then C_T has a finite subcover C'_T that also covers K.
- ▶ Since U does not contain any point of K, the set K is already covered by $C'_K = C'_T \setminus U$ i.e. a finite subcollection of the original collection C_K .
- It is therefore possible to extract from any open cover C_K of K a finite subcover.

Theorem

Theorem

For a subset S of Euclidean space \mathbb{R}^n , S is compact if and only if it is closed and bounded.

▶ Recall the definition of compact: every open cover of *S* has a finite subcover.

Theorem

- ▶ Recall the definition of compact: every open cover of *S* has a finite subcover.
- We start by showing that compact implies closed.

Theorem

- ▶ Recall the definition of compact: every open cover of *S* has a finite subcover.
- We start by showing that compact implies closed.
- Let a be a limit point of S and let C be an arbitrary collection of open sets such that every open set $U \in C$ is disjoint from some neighborhood, V_U of a.

Theorem

- ▶ Recall the definition of compact: every open cover of *S* has a finite subcover.
- We start by showing that compact implies closed.
- ▶ Let a be a limit point of S and let C be an arbitrary collection of open sets such that every open set $U \in C$ is disjoint from some neighborhood, V_U of a.
- ▶ Then C fails to cover S.

Theorem

- ▶ Recall the definition of compact: every open cover of *S* has a finite subcover.
- We start by showing that compact implies closed.
- Let a be a limit point of S and let C be an arbitrary collection of open sets such that every open set $U \in C$ is disjoint from some neighborhood, V_U of a.
- ▶ Then C fails to cover S.
- ▶ Indeed $\cap V_U$ is a neighborhood W of a in \mathbb{R}^n .

Theorem

- Recall the definition of compact: every open cover of S has a finite subcover.
- We start by showing that compact implies closed.
- Let a be a limit point of S and let C be an arbitrary collection of open sets such that every open set $U \in C$ is disjoint from some neighborhood, V_U of a.
- ▶ Then C fails to cover S.
- ▶ Indeed $\cap V_U$ is a neighborhood W of a in \mathbb{R}^n .
- ▶ Since a is a limit point of S, W must contain a point $x \in S$.

Theorem

- ► Recall the definition of compact: every open cover of *S* has a finite subcover.
- We start by showing that compact implies closed.
- Let a be a limit point of S and let C be an arbitrary collection of open sets such that every open set $U \in C$ is disjoint from some neighborhood, V_U of a.
- ▶ Then C fails to cover S.
- ▶ Indeed $\cap V_U$ is a neighborhood W of a in \mathbb{R}^n .
- ▶ Since *a* is a limit point of *S*, *W* must contain a point $x \in S$.
- ► This point is not covered by *C* since every *U* in *C* is disjoint from *V*_U and hence disjoint from *W* which contains *x*.

Theorem

Theorem

For a subset S of Euclidean space \mathbb{R}^n , S is compact if and only if it is closed and bounded.

▶ If S is compact but not closed, then it has a limit point $a \notin S$.

Theorem

- ▶ If S is compact but not closed, then it has a limit point $a \notin S$.
- ▶ Consider a collection C' consisting of an open neighborhood N(x) for every $x \in S$ chosen small enough not to intersect some neighborhood V_x of a.

Theorem

- ▶ If S is compact but not closed, then it has a limit point $a \notin S$.
- ▶ Consider a collection C' consisting of an open neighborhood N(x) for every $x \in S$ chosen small enough not to intersect some neighborhood V_x of a.
- ► Then C' is an open cover of S but any finite subcollection of C' has the form of C from the previous slide and thus cannot be a finite subcover of S.

Theorem

- ▶ If S is compact but not closed, then it has a limit point $a \notin S$.
- ▶ Consider a collection C' consisting of an open neighborhood N(x) for every $x \in S$ chosen small enough not to intersect some neighborhood V_x of a.
- ► Then C' is an open cover of S but any finite subcollection of C' has the form of C from the previous slide and thus cannot be a finite subcover of S.
- ▶ This contradicts the compactness of *S*.

Theorem

- ▶ If S is compact but not closed, then it has a limit point $a \notin S$.
- ▶ Consider a collection C' consisting of an open neighborhood N(x) for every $x \in S$ chosen small enough not to intersect some neighborhood V_x of a.
- ► Then C' is an open cover of S but any finite subcollection of C' has the form of C from the previous slide and thus cannot be a finite subcover of S.
- ▶ This contradicts the compactness of *S*.
- ▶ Therefore every limit point of *S* is in *S* so *S* is closed.

Theorem

Theorem

For a subset S of Euclidean space \mathbb{R}^n , S is compact if and only if it is closed and bounded.

Now we show that compact implies bounded.

Theorem

- Now we show that compact implies bounded.
- Consider the open balls centered on a common point.

Theorem

- Now we show that compact implies bounded.
- Consider the open balls centered on a common point.
- ► This can cover any set, because all points in the set are some distance away from that point.

Theorem

- Now we show that compact implies bounded.
- Consider the open balls centered on a common point.
- This can cover any set, because all points in the set are some distance away from that point.
- Any finite subcover of this cover must be bounded because all balls in the subcover are contained in the largest open ball within that subcover.

Theorem

- Now we show that compact implies bounded.
- Consider the open balls centered on a common point.
- This can cover any set, because all points in the set are some distance away from that point.
- Any finite subcover of this cover must be bounded because all balls in the subcover are contained in the largest open ball within that subcover.
- Therefore any set covered by this subcover must also be bounded.

Theorem

Theorem

For a subset S of Euclidean space \mathbb{R}^n , S is compact if and only if it is closed and bounded.

Finally, we show that closed and bounded implies compact.

Theorem

- Finally, we show that closed and bounded implies compact.
- ▶ If a set $S \in \mathbb{R}^n$ is bounded, then it can be enclosed in an n-box $T_0 = [-a, a]^n$ where a > 0.

Theorem

- Finally, we show that closed and bounded implies compact.
- ▶ If a set $S \in \mathbb{R}^n$ is bounded, then it can be enclosed in an n-box $T_0 = [-a, a]^n$ where a > 0.
- ▶ By the lemma, if we can show that T_0 is compact, then because S is a closed subset of T_0 , that will prove that S is compact.

Theorem

- Finally, we show that closed and bounded implies compact.
- ▶ If a set $S \in \mathbb{R}^n$ is bounded, then it can be enclosed in an n-box $T_0 = [-a, a]^n$ where a > 0.
- ▶ By the lemma, if we can show that T_0 is compact, then because S is a closed subset of T_0 , that will prove that S is compact.
- ▶ Assume FSOC that that T₀ is not compact.

Theorem

- Finally, we show that closed and bounded implies compact.
- ▶ If a set $S \in \mathbb{R}^n$ is bounded, then it can be enclosed in an n-box $T_0 = [-a, a]^n$ where a > 0.
- ▶ By the lemma, if we can show that T_0 is compact, then because S is a closed subset of T_0 , that will prove that S is compact.
- ▶ Assume FSOC that that T₀ is not compact.
- ► Then there exists an infinite open cover C of T₀ that does not admit any finite subcover.

Theorem

Theorem

For a subset S of Euclidean space \mathbb{R}^n , S is compact if and only if it is closed and bounded.

▶ By bisecting each of the sides of the T_0 box, T_0 can be broken into 2^n sub n-boxes, each of which has a diameter equal to half the diameter of T_0 .

Theorem

- ▶ By bisecting each of the sides of the T_0 box, T_0 can be broken into 2^n sub n-boxes, each of which has a diameter equal to half the diameter of T_0 .
- ▶ Then at least one of the 2^n sections of T_0 must require an infinite subcover of C.

Theorem

- ▶ By bisecting each of the sides of the T_0 box, T_0 can be broken into 2^n sub n-boxes, each of which has a diameter equal to half the diameter of T_0 .
- ▶ Then at least one of the 2^n sections of T_0 must require an infinite subcover of C.
- ▶ Otherwise *C* itself would have a subcover formed by taking the union of the finite subcovers of the sections.

Theorem

- ▶ By bisecting each of the sides of the T_0 box, T_0 can be broken into 2^n sub n-boxes, each of which has a diameter equal to half the diameter of T_0 .
- ▶ Then at least one of the 2^n sections of T_0 must require an infinite subcover of C.
- ▶ Otherwise *C* itself would have a subcover formed by taking the union of the finite subcovers of the sections.
- ▶ Call this T_1 . The sides of T_1 can be bisected as well which yields 2^n smaller sections of T_1 , at least one of which must require an infinite subcover of C.

Theorem

Theorem

For a subset S of Euclidean space \mathbb{R}^n , S is compact if and only if it is closed and bounded.

▶ Continuing this process gives us a decreasing sequence of nested *n*-boxes: $T_0 \supset T_1 \supset T_2 \supset ... \supset T_k \supset ...$

Theorem

- ▶ Continuing this process gives us a decreasing sequence of nested *n*-boxes: $T_0 \supset T_1 \supset T_2 \supset ... \supset T_k \supset ...$
- ▶ The side length of T_k is $\frac{2a}{2^k} \to 0$.

Theorem

Theorem

For a subset S of Euclidean space \mathbb{R}^n , S is compact if and only if it is closed and bounded.

▶ Define a sequence (x_k) such that each x_k is in T_k .

Theorem

- ▶ Define a sequence (x_k) such that each x_k is in T_k .
- ► The sequence is Cauchy.

Theorem

- ▶ Define a sequence (x_k) such that each x_k is in T_k .
- The sequence is Cauchy.
- ▶ Because the sequence is Cauchy, it converges to a limit, *L*.

Theorem

- ▶ Define a sequence (x_k) such that each x_k is in T_k .
- The sequence is Cauchy.
- ▶ Because the sequence is Cauchy, it converges to a limit, *L*.
- ▶ Since each T_k is closed, $L \in T_k$ for all k.

Theorem

- ▶ Define a sequence (x_k) such that each x_k is in T_k .
- The sequence is Cauchy.
- ▶ Because the sequence is Cauchy, it converges to a limit, *L*.
- ▶ Since each T_k is closed, $L \in T_k$ for all k.
- Since C covers T_0 , then it has some member $U \in C$ such that $L \in U$.

Theorem

- ▶ Define a sequence (x_k) such that each x_k is in T_k .
- The sequence is Cauchy.
- ▶ Because the sequence is Cauchy, it converges to a limit, *L*.
- ▶ Since each T_k is closed, $L \in T_k$ for all k.
- Since C covers T_0 , then it has some member $U \in C$ such that $L \in U$.
- ▶ Since U is open, there is an open ball $B_n(L) \subseteq U$.

Theorem

- ▶ Define a sequence (x_k) such that each x_k is in T_k .
- The sequence is Cauchy.
- ▶ Because the sequence is Cauchy, it converges to a limit, *L*.
- ▶ Since each T_k is closed, $L \in T_k$ for all k.
- Since C covers T_0 , then it has some member $U \in C$ such that $L \in U$.
- ▶ Since *U* is open, there is an open ball $B_n(L) \subseteq U$.
- ▶ For a large enough k, we have $T_k \subseteq B_n(L) \subseteq U$.

Theorem

- ▶ Define a sequence (x_k) such that each x_k is in T_k .
- The sequence is Cauchy.
- ▶ Because the sequence is Cauchy, it converges to a limit, *L*.
- ▶ Since each T_k is closed, $L \in T_k$ for all k.
- Since C covers T_0 , then it has some member $U \in C$ such that $L \in U$.
- ▶ Since *U* is open, there is an open ball $B_n(L) \subseteq U$.
- ▶ For a large enough k, we have $T_k \subseteq B_n(L) \subseteq U$.
- ▶ But this contradicts our claim that we need an infinite number of members of C in order to cover T_k .

Theorem

- ▶ Define a sequence (x_k) such that each x_k is in T_k .
- The sequence is Cauchy.
- ▶ Because the sequence is Cauchy, it converges to a limit, *L*.
- ▶ Since each T_k is closed, $L \in T_k$ for all k.
- Since C covers T_0 , then it has some member $U \in C$ such that $L \in U$.
- ▶ Since *U* is open, there is an open ball $B_n(L) \subseteq U$.
- ▶ For a large enough k, we have $T_k \subseteq B_n(L) \subseteq U$.
- ▶ But this contradicts our claim that we need an infinite number of members of C in order to cover T_k .
- ► Therefore T₀ is compact.

Theorem

- ▶ Define a sequence (x_k) such that each x_k is in T_k .
- ▶ The sequence is Cauchy.
- ▶ Because the sequence is Cauchy, it converges to a limit, *L*.
- ▶ Since each T_k is closed, $L \in T_k$ for all k.
- ▶ Since C covers T_0 , then it has some member $U \in C$ such that $L \in U$.
- ▶ Since *U* is open, there is an open ball $B_n(L) \subseteq U$.
- ▶ For a large enough k, we have $T_k \subseteq B_n(L) \subseteq U$.
- ▶ But this contradicts our claim that we need an infinite number of members of C in order to cover T_k .
- ▶ Therefore T_0 is compact.
- \triangleright Since S is a closed subset of T_0 , S is compact.

Closely related to the Heine-Borel theorem is the Bolzano-Weierstrass theorem.

- Closely related to the Heine-Borel theorem is the Bolzano-Weierstrass theorem.
- ► In metric spaces, a set is compact if and only if it is sequentially compact,

- Closely related to the Heine-Borel theorem is the Bolzano-Weierstrass theorem.
- In metric spaces, a set is compact if and only if it is sequentially compact,
- ► A metric space is sequentially compact if every infinite sequence has a convergent subsequence.

- Closely related to the Heine-Borel theorem is the Bolzano-Weierstrass theorem.
- In metric spaces, a set is compact if and only if it is sequentially compact,
- ▶ A metric space is sequentially compact if every infinite sequence has a convergent subsequence.
- ► The Bolzano Weierstrass theorem will allow us to use this equivalence to write a simpler proof of the Heine-Borel theorem.

Theorem

Every bounded sequence in \mathbb{R}^n has a convergent subsequence.

Let (x_n) be a bounded sequence.

Theorem

- Let (x_n) be a bounded sequence.
- ▶ Without loss of generality assume that every term in the sequence lies in [0,1].

Theorem

- Let (x_n) be a bounded sequence.
- ▶ Without loss of generality assume that every term in the sequence lies in [0,1].
- ▶ Divide [0,1] into two intervals, $[0,\frac{1}{2}]$ and $[\frac{1}{2},1]$.

Theorem

- Let (x_n) be a bounded sequence.
- ▶ Without loss of generality assume that every term in the sequence lies in [0,1].
- ▶ Divide [0,1] into two intervals, $[0,\frac{1}{2}]$ and $[\frac{1}{2},1]$.
- At least one of the halves contains infinitely many terms of (x_n) .

Theorem

- Let (x_n) be a bounded sequence.
- ▶ Without loss of generality assume that every term in the sequence lies in [0,1].
- ▶ Divide [0,1] into two intervals, $[0,\frac{1}{2}]$ and $[\frac{1}{2},1]$.
- At least one of the halves contains infinitely many terms of (x_n) .
- ▶ Denote that interval I_1 which has length $\frac{1}{2}$.

Theorem

- Let (x_n) be a bounded sequence.
- ▶ Without loss of generality assume that every term in the sequence lies in [0,1].
- ▶ Divide [0,1] into two intervals, $[0,\frac{1}{2}]$ and $[\frac{1}{2},1]$.
- At least one of the halves contains infinitely many terms of (x_n) .
- ▶ Denote that interval I_1 which has length $\frac{1}{2}$.
- Let (x_{n_k}) be the subsequence of (x_n) consisting of every term that lies in I_1 .

Theorem

- ▶ Let (x_n) be a bounded sequence.
- ▶ Without loss of generality assume that every term in the sequence lies in [0,1].
- ▶ Divide [0,1] into two intervals, $[0,\frac{1}{2}]$ and $[\frac{1}{2},1]$.
- At least one of the halves contains infinitely many terms of (x_n) .
- ▶ Denote that interval I_1 which has length $\frac{1}{2}$.
- Let (x_{n_k}) be the subsequence of (x_n) consisting of every term that lies in I_1 .
- Now divide l_1 into two halves each of length $\frac{1}{4}$.

Theorem

- Let (x_n) be a bounded sequence.
- ▶ Without loss of generality assume that every term in the sequence lies in [0,1].
- ▶ Divide [0,1] into two intervals, $[0,\frac{1}{2}]$ and $[\frac{1}{2},1]$.
- At least one of the halves contains infinitely many terms of (x_n) .
- ▶ Denote that interval I_1 which has length $\frac{1}{2}$.
- Let (x_{n_k}) be the subsequence of (x_n) consisting of every term that lies in I_1 .
- Now divide I_1 into two halves each of length $\frac{1}{4}$.
- At least one of these contains infinitely many terms of the (x_{n_k}) and denote that half by I_2 .

Theorem

Every bounded sequence in \mathbb{R}^n has a convergent subsequence.

Continue this way to construct a sequence of nested intervals $I_1 \supseteq I_2 \supseteq ...$ where the length of I_n is $(\frac{1}{2})^n$ and each interval contains an infinite number of terms of the original sequence (x_n) .

Theorem

- Continue this way to construct a sequence of nested intervals $I_1 \supseteq I_2 \supseteq ...$ where the length of I_n is $(\frac{1}{2})^n$ and each interval contains an infinite number of terms of the original sequence (x_n) .
- Now construct a subsequence (z_n) of (x_n) made up of one term for each interval I_n .

Theorem

- Continue this way to construct a sequence of nested intervals $I_1 \supseteq I_2 \supseteq ...$ where the length of I_n is $(\frac{1}{2})^n$ and each interval contains an infinite number of terms of the original sequence (x_n) .
- Now construct a subsequence (z_n) of (x_n) made up of one term for each interval I_n .
- ▶ This is a Cauchy sequence: for all m, n > N, $|z_m z_n| < (\frac{1}{2})^N$.

Theorem

- Continue this way to construct a sequence of nested intervals $I_1 \supseteq I_2 \supseteq ...$ where the length of I_n is $(\frac{1}{2})^n$ and each interval contains an infinite number of terms of the original sequence (x_n) .
- Now construct a subsequence (z_n) of (x_n) made up of one term for each interval I_n .
- ▶ This is a Cauchy sequence: for all m, n > N, $|z_m z_n| < (\frac{1}{2})^N$.
- ▶ Since \mathbb{R}^n is a complete metric space, (z_n) converges.

▶ It is now much easier to prove that closed and bounded implies compact in \mathbb{R}^n .

- It is now much easier to prove that closed and bounded implies compact in \mathbb{R}^n .
- ▶ Consider a closed bounded subset S of \mathbb{R}^n .

- It is now much easier to prove that closed and bounded implies compact in \mathbb{R}^n .
- ▶ Consider a closed bounded subset S of \mathbb{R}^n .
- ▶ Let x_n be a sequence in S.

- It is now much easier to prove that closed and bounded implies compact in \mathbb{R}^n .
- ▶ Consider a closed bounded subset S of \mathbb{R}^n .
- ▶ Let x_n be a sequence in S.
- ▶ Because S is bounded, so is x_n .

- ▶ It is now much easier to prove that closed and bounded implies compact in \mathbb{R}^n .
- ▶ Consider a closed bounded subset S of \mathbb{R}^n .
- ▶ Let x_n be a sequence in S.
- ▶ Because S is bounded, so is x_n .
- ▶ By BW, x_n has a convergent subsequence in \mathbb{R}^n .

- It is now much easier to prove that closed and bounded implies compact in \mathbb{R}^n .
- ▶ Consider a closed bounded subset S of \mathbb{R}^n .
- ▶ Let x_n be a sequence in S.
- ▶ Because S is bounded, so is x_n .
- ▶ By BW, x_n has a convergent subsequence in \mathbb{R}^n .
- ▶ Since *S* is closed, the limit belongs to *S*.

- ▶ It is now much easier to prove that closed and bounded implies compact in \mathbb{R}^n .
- ▶ Consider a closed bounded subset S of \mathbb{R}^n .
- ▶ Let x_n be a sequence in S.
- ▶ Because S is bounded, so is x_n .
- ▶ By BW, x_n has a convergent subsequence in \mathbb{R}^n .
- ▶ Since *S* is closed, the limit belongs to *S*.
- ► Therefore *S* is sequentially compact and therefore compact.