ASEN 5050 SPACEFLIGHT DYNAMICS Lecture 5: Two-Body Motion

Prof. R. S. Nerem University of Colorado – Boulder

Lecture 5: The Two Body Problem

Space News

Today

- Talk about why Kepler's Equations matter and why/how they are useful.
- For instance:

– Where will the satellite be in 10 minutes?

$$v \Rightarrow M + 10 \min M_2 \Rightarrow v$$

Lecture 5: The Two Body Problem 3

Derivation of Kepler's Equation

If
$$t$$
 is given:
 $M = n(t - t_p)$
Solve E - e sin $E = M$ for E
 $r = a(1 - e \cos E)$
and $cos v = \frac{a \cos E - ae}{r}$
 $sin v = \frac{b}{r} sin E$
 $a \sqrt{1 - e^2}$

If ν is given:

$$r = \frac{p}{1 + e \cos v}$$

$$\cos E = \frac{r \cos v + ae}{a}$$

$$\sin E = \frac{r \sin v}{b}$$
Solve $E - e \sin E = M$ for t (or M)

Another Useful Relation:

$$tan\frac{v}{2} = \sqrt{\frac{1+e}{1-e}} tan\frac{E}{2}$$

Example Using Mean/Eccentric Anomalies

For a satellite in an Earth orbit with h_A =3000 km and h_p =300 km, how long does it take to go from an altitude of 1000 km to one of 2000 km?

$$r = a(1 - e\cos E)$$

$$r_{\oplus} = 6378 \text{ km} \implies r_P = 6678 \text{ km}, r_A = 9378 \text{ km}$$

$$a = \frac{r_A + r_P}{2} = 8028 \text{ km}$$

$$e = \frac{r_A - r_P}{r_A + r_P} \implies e = \frac{2700}{16056} = 0.1682$$

Lecture 5: The Two Body Problem

5

Example Using Mean/Eccentric Anomalies

For a satellite in an Earth orbit with h_A =3000 km and h_p =300 km, how long does it take to go from an altitude of 1000 km to one of 2000 km?

$$r = a(1 - e\cos E)$$

 $r = (8028 \text{ km})(1 - (0.1682)\cos E)$

Plug in r = (6378 + 1000) km and (6378 + 2000) km to determine the Eccentric Anomaly at those critical moments.

Compute the time between them.

Example Using Mean/Eccentric Anomalies

For a satellite in an Earth orbit with h_A =3000 km and h_P =300 km, how long does it take to go from an altitude of 1000 km to one of 2000 km?

$$r = a(1 - e\cos E)$$

 $r = (8028 \text{ km})(1 - (0.1682)\cos E)$

$$r_1 = 7378km \implies r_1 = a(1 - e\cos E_1) \implies \cos E_1 = 0.4815, \quad E_1 = 61.22^{\circ} \text{ or } 29878^{\circ}$$

 $r_2 = 8378km \implies r_2 = a(1 - e\cos E_2) \implies \cos E_2 = -0.2593, \quad E_2 = 105.03^{\circ} \text{ or } 25497$

Find the time of flight between E_1 =61.22° to E_2 =105.03°

Lecture 5: The Two Body Problem

Example Using Mean/Eccentric Anomalies

For a satellite in an Earth orbit with h_A =3000 km and h_p =300 km, how long does it take to go from an altitude of 1000 km to one of 2000 km?

Find the time of flight between E_1 =61.22° to E_2 =105.03°

$$M_1 = E_1 - e \sin E_1 \rightarrow M_1 = 52.78^{\circ}$$

 $M_2 = E_2 - e \sin E_2 \rightarrow M_2 = 95.72^{\circ}$
 $n = \sqrt{\frac{\mu}{a^3}} = 181^{\circ}/\text{hr}$

$$\Delta M = n\Delta t \rightarrow \Delta t = 14.2 \text{ minutes}$$

Example Using Mean/Eccentric Anomalies

What is the <u>altitude</u> of this same satellite 10 minutes past apogee? At apoapse, $M_1=180^{\circ}$.

10 minutes past apoapse:

$$M_2 = M_1 + 181^{\circ} / hr \left(\frac{10}{60}hr\right) = 210.16^{\circ}$$

 $M_2 = 210.16^{\circ} = E_2 - e\sin E_2$ $e = 0.1682$

Solve for E_2

$$r = a(1 - e\cos E_2)$$
 $a = 8028 \text{ km}$
 $h = r - 6378 \text{km}$

Lecture 5: The Two Body Problem 9

Example Problems

1) An Earth satellite is observed to have a perigee height of 100 km and an apogee height of 600 km. Find the period (and e).

$$a = \frac{r_A + r_P}{2} = \frac{100 + 6378 + 600 + 6378}{2} = 6728 \text{ km}$$

$$P = 2\pi \sqrt{\frac{a^3}{\mu}} = 5492.11 \text{ sec} = 1.5256 \text{ hours}$$

$$e = \frac{r_A - r_P}{r_A + r_P} = \frac{6978 - 6478}{6978 + 6478} = 0.0372$$

Can also find $v_A^{}$, $v_P^{}$, p , μ (if P given).

Example Problems

2) How many days each year is the Earth farther from the Sun than 1AU? (1 AU=149,597,870 km)

$$\Delta t = \frac{M_2 - M_1}{n} \qquad n = \frac{360}{365.26} = 0.9856 \text{ deg/} day$$

$$M_1 = E_1 - e \sin E_1 \qquad We \text{ need} \qquad r > a \qquad e = 0.0167$$

$$M_2 = E_2 - e \sin E_2 \qquad or \ r = a(1 - e \cos E) > a$$

$$r = a(1 - e \cos E) \qquad 1 - e \cos E > 1$$

$$e \cos E < 0$$

$$\cos E < 0$$

$$90^\circ < E < 270^\circ$$

$$E_1 = 90^\circ \quad M_1 = E_1 - e \sin E_1 = 89.04^\circ; \qquad E_2 = 270^\circ \quad M_2 = E_2 - e \sin E_2 = 270.96^\circ$$

$$\Delta t = \frac{M_2 - M_1}{n}$$

$$\Delta t = 184.6 \quad days$$

Lecture 5: The Two Body Problem 11

Example Problems

3) Neglecting the eccentricity of Neptune's orbit, how many years in each Pluto orbit is Pluto closer to the Sun than Neptune?

$$r_{P} = a_{P}(1 - e_{P}cosE) \qquad a_{P} = 39.544 \text{ AU}, \quad e_{P} = 0.249$$

$$r_{N} = a_{N} \quad (e_{N} = 0.009) \qquad a_{N} = 30.11 \text{ AU}$$
Need $r_{P} = a_{P}(1 - e_{P}cosE) < a_{N}$

$$\Rightarrow cosE > \frac{1}{e_{P}}(1 - \frac{a_{N}}{a_{P}}) = \frac{1}{0.249}(1 - \frac{30.11}{39.544}) = 0.956077$$

$$\Rightarrow |E| < 17.0445^{\circ}$$

$$\Rightarrow |M| < 12.9097^{\circ} \qquad (M = E - e_{P}sinE)$$
Duration = $\frac{2 \times 12.9097^{\circ}}{n_{P}} = 17.7 \text{ years}$

$$n_{P} = \frac{360^{\circ}}{246.74 \text{ years}}$$

Canonical Units

- 1. Reduce size of numbers
- 2. More mathematically stable
- 3. Speed up algorithms
- 4. Allow different orgs to use standard values
- 5. Reduce maintenance programming

Define distance unit to be one Earth radius: $1 ER = R_{\theta} = 6378.137 \text{ km}$

We want
$$\mu_{\oplus}$$
=1, so define $\mu_{\oplus} = \frac{ER^3}{TU^2}$

Thus our time unit (TU) is:
$$TU = \sqrt{\frac{{R_{\oplus}}^3}{\mu_{\oplus}}}$$

TU is time for satellite to cover 1 radian in a circular orbit of radius R_{\oplus} .

$$TU = \sqrt{\frac{6378.137^3}{398600.44}} = 806.8$$
 seconds

Vallado uses canonical units in examples throughout the book.

Lecture 5: The Two Body Problem 13

Canonical Units: Example 1

Given: A geosynchronous orbit Find: The semi-major axis (a)

P = 24 sidereal hours = 86164/806.8 = 106.795869 TU

$$a = \left(\mu \left(\frac{P}{2\pi}\right)^2\right)^{1/3} = \left(1\left(\frac{106.7958697}{2\pi}\right)^2\right)^{1/3} = 6.610734645 \text{ ER}$$

$$a = 6.610734645(6378.1363) = 42164.17124 \text{ km}$$

Lecture 5: The Two Body Problem 15

Orbital Elements

Figure 2-16. Classical Orbital Elements. The six classical orbital elements are the *semimajor* axis, a; eccentricity, e; inclination, i; right ascension of the ascending node, Ω — often referred to as simply the node; argument of perigee, ω ; and true anomaly, ν . I haven't shown scale and shape elements (a and e) because I've introduced them in Chap. 1.

Law of Cosines $\vec{A} \cdot \vec{B} = AB \cos \alpha$ - useful for many angular relationships

We'll start with deriving the eccentricity vector Then inclination, and the other angles

Lecture 5: The Two Body Problem 17

Orbital Elements

From our two-body derivation, we have:

$$\dot{\vec{r}} \times \vec{h} = \mu \frac{\vec{r}}{r} + \vec{B}$$
 (Eq 1-23 from Vallado)

Since $e = \frac{B}{\mu}$,

then $\vec{e} = \frac{\vec{B}}{\mu}$, the **eccentricity vector**, and

 $\vec{e} = \frac{\vec{v} \times \vec{h}}{\mu} - \frac{\vec{r}}{r}$
where $|\vec{e}| = e$. \vec{e} points towards periapse.

Figure 2-16. Classical Orbital Elements. The six classical orbital elements are the *semimajor* axis, a; eccentricity, e; inclination, i; right ascension of the ascending node, Ω — often referred to as simply the node; argument of perigee, ω ; and true anomaly, ν . I haven't shown scale and shape elements (a and e) because I've introduced them in Chap. 1.

Lecture 5: The Two Body Problem

Orbital Elements

Now, let's define our other orbital elements.

The <u>inclination</u>, i, refers to the tilt of the orbit plane. It is the angle between \hat{K} and \bar{h} , and varies from 0-180°.

 $0^{\circ} < i < 90^{\circ}$ Prograde orbit (w/Earth's rotation) $90^{\circ} < i < 180^{\circ}$ Retrograde orbit (against Earth rotation) $i = 90^{\circ}$ Polar Orbit

$$\cos i = \frac{\hat{K} \cdot \bar{h}}{\left| \hat{K} \right\| \bar{h} \right|}$$

19

The <u>right ascension of the ascending node</u>, Ω , is the angle in the equatorial plane from \hat{I} to the ascending node. The <u>ascending node</u> is the point on the equator where the satellite passes from South to North (opposite for the descending node).

The <u>line of nodes</u> connects the ascending and descending nodes. The node vector, \bar{n} , points towards the ascending node and is denoted:

$$\vec{n} = \hat{K} \times \vec{h}$$

The *node* lies between 0° and 360°.

$$\cos \Omega = \frac{\hat{I} \cdot \vec{n}}{\left|\hat{I}\right| \left|\vec{n}\right|} = \frac{n_x}{n}$$
 If $n_y < 0$, then $\Omega = 360^\circ - \Omega$

$$\sin \Omega = \frac{h_x}{h \sin i} \qquad \cos \Omega = \frac{-h_y}{h \sin i}$$

21

Lecture 5: The Two Body Problem

Orbital Elements

The <u>argument of periapse</u>, ω , measured from the ascending node, locates the closest point of the orbit (periapse) and is the angle between \bar{n} and \bar{e} .

The <u>true anomaly</u>, v, is the angle between periapse and the satellite position; thus:

$$\cos v = \frac{\vec{e} \cdot \vec{r}}{|\vec{e}||\vec{r}|} \qquad If (\vec{r} \cdot \vec{v}) < 0, \ v = 360^{\circ} - v$$

($\vec{r} \cdot \vec{v}$ is positive going away from periapse, negative coming towards periapse.)

Lecture 5: The Two Body Problem 23

Special Cases

Elliptical Equatorial Orbits – Ω is undefined, so we use <u>true</u> longitude of periapse, $\widetilde{\omega}_{true}$?

$$\cos \widetilde{\omega}_{true} = \frac{\hat{I} \cdot \vec{e}}{|\hat{I}| |\vec{e}|}$$
 If $(e_y < 0)$, then $\widetilde{\omega}_{true} = 360^{\circ} - \widetilde{\omega}_{true}$

For $i = 0^{\circ}$, equivalent to astronomers' <u>longitude of periapse</u>, $\widetilde{\omega}$, where $\widetilde{\omega} = \Omega + \omega$

Special Cases

Circular Orbits – ω is undefined, use <u>argument of latitude</u>, u, where:

$$\cos u = \frac{\vec{n} \cdot \vec{r}}{|\vec{n}||\vec{r}|} \qquad \text{If } (r_z < 0), \text{ then } u = 360^\circ - u$$

Lecture 5: The Two Body Problem 25

Special Cases

Circular Equatorial – $\,\omega$ and $\,\Omega$ undefined

$$cos(\lambda_{true}) = \frac{\hat{I} \cdot \vec{r}}{|\hat{I}||\vec{r}|}$$
 If $(r_j < 0)$, $\lambda_{true} = 360^{\circ} - \lambda_{true}$

Two Line Element Sets

Card #					4			Satellite Number							ati gn		ıal or				Yr		Da	ıy	of	Υe		bo		1 18 :	fra	ıct	ioi	n)		N	Лe			oti					tiv	⁄e		s	ec	Aea on rev	d d	eri	va	tiv	e]	Bst	tar	(/	EF	₹)				Eph		Ele	em ım	Chl. Sum	
		Τ	Γ	Ι	Τ	Τ		Y	ear	I	.cl	ı#	J	Pie	ce			Γ		Γ	Τ	Τ	Τ	T	I						Γ		5	T	Τ	Ι	Τ	Τ	T	T					S		Γ							S			Γ	Γ	Τ	15	S	E			I	\prod	П	Ι				
		Τ	Г	Τ	Τ	Τ						Γ	Γ	Τ	T						Τ	Τ	Τ	T	T						Γ			Τ	Τ	Τ	Τ	T	T	T																	Γ	Γ	Τ	Τ	T	T			I	П	П	Τ				
1		ا 6	6	(9	Ţ	J	8	6	0	1	7	A	Y	Τ		9	3	3	5	2			5	3	5	0	2	9	3	4			Ι.	C	0) () (0	7	8	8	9			0	0	0	0	0		0			1	0	5	2	9	,T.	- :	3		0	T	П	3 4	1 2	2			
								Inc	elir	nat	io	n (de	g)		F	_				ns (c		1 o g)	f			Ec	ce	ent	ric	cit	y			Α	۱rg	g of	f P		ige	ee				M		n A			aly	,]	Me	ear	ı N	Лο	tic	n	(re	ev/	'da	y)		Е	po Re	ch v	71.1	Clin			
П			Г	Τ	Τ		Ι	Г		Г		Γ	Γ	Τ	I	Γ	Γ	Γ		Γ	Τ	Τ	Τ		Į				Г		Γ	Τ		Г	Τ	Τ	Τ	Τ	T	Т		Т				Г	Γ	Γ					Π			Г	Г	Γ	Γ	Τ	Τ	Т	Π		T	П	П	Τ	Ī			
2		1 6	6	(9	,	T	5	1		6	1	ç	9 ()	Γ	1	3		3	3	4	1 (o		0	0	0	5	7	7	C)	1	C) 2	2 .		5	6	8	0		2	5	7		5	9	5	0		1	5		5	9	1	1	1	1 (0	7	0	44	17	8 6	5 9	,			

Figure 2-19. Transmission Format for the Two-Line Element Set. This example TLE set uses data from the previous example in the text. Note the use of implied decimal points. S is the sign of the values, and E is the exponent.

Available at http://www.celestrak.com

$$\overline{n} = \sqrt{\frac{\mu}{\overline{a}^3}} \qquad e \qquad i \qquad \Omega \qquad \omega \qquad M$$

$$\frac{\dot{n}}{2} \qquad \frac{\ddot{n}}{6} \qquad B^* = \frac{1}{2} \frac{C_D A}{m} \rho_0 \qquad UTC$$

 \overline{a} , \overline{n} are "Kozai" means. B* is a drag parameter.

Lecture 5: The Two Body Problem 27

Two Line Element Sets

Example

1 16609U 86017A 93352.53502934 .00007889 00000 0 10529-3 34

2 16609 51.6190 13.3340 0005770 102.5680 257.5950 15.59114070 44786

Epoch: Dec 18, 1993 12h 50min 26.5350 sec UTC

 $\overline{n} = 15.59114070 \text{ rev/day} \Rightarrow \overline{a} = 1.06118087 \text{ ER} = 6768.357 \text{ km}$

$$\frac{\dot{n}}{2} = 7.889 \times 10^{-5} \text{ rev/day}^2 \qquad \frac{\ddot{n}}{6} = 0.0 \text{ rev/day}^3$$

$$B^* = 1.0529 \times 10^{-4}$$
 $e = 0.0005770$ $i = 51.6190^{\circ}$

$$\Omega = 13.3340^{\circ}$$
 $\omega = 102.5680^{\circ}$ $M = 257.5950^{\circ}$

Errors can be as large as a km or more.

Orbital Elements from \vec{r} and \vec{v} (and t)

Algorithm 9 in the book

p. 112 - 116

First compute the following vectors

$$\vec{h} = \vec{r} \times \vec{v}$$
 $\vec{n} = \hat{K} \times \vec{h}$ $\vec{e} = \frac{\vec{v} \times \vec{h}}{\mu} - \frac{\vec{r}}{r}$

$$h = |\vec{h}| \qquad n = |\vec{n}| \qquad e = |\vec{e}|$$

Compute the energy: $\frac{v^2}{2} - \frac{\mu}{r} = \varepsilon$

$$a = -\frac{\mu}{2\varepsilon} \quad \left(or \ p = h^2 / \mu \Rightarrow a = p / (1 - e^2) \right) \quad \Omega = \cos^{-1} \left(\frac{n_x}{n} \right) \qquad \text{If } (n_y < 0), \ \Omega = 360^\circ - \Omega$$

$$e = |\vec{e}| \quad \text{or } e = \left[1 + 2\varepsilon h^2 / \mu^2 \right]^{1/2} \qquad \omega = \cos^{-1} \left(\frac{\vec{n} \cdot \vec{e}}{ne} \right) \qquad \text{If } (e_x < 0), \ \omega = 360^\circ - \omega$$

$$i = \cos^{-1} \left(\frac{h_z}{h} \right) \qquad v = \cos^{-1} \left(\frac{\vec{e} \cdot \vec{r}}{er} \right) \qquad \text{If } (\bar{e} \cdot \vec{v} < 0), \ v = 360^\circ - v$$

Lecture 5: The Two Body Problem 29

Orbital Elements from \vec{r} and \vec{v} (and t)

Test using Example 2-5 in book

$$\tan(\frac{v}{2}) = \sqrt{\frac{1+e}{1-e}} \tan(\frac{E}{2})$$

$$M = E - e \sin E$$

$$t_p = t - \frac{(E - e \sin E)}{n}$$

$$n = \sqrt{\frac{\mu}{a^3}}$$

Review of Two-Body Problem

$$m_{sat}\ddot{\vec{r}}_{sat} = -\frac{Gm_{\oplus}m_{sat}}{r^2}\frac{\vec{r}}{r} \qquad m_{\oplus}\ddot{\vec{r}}_{\oplus} = \frac{Gm_{\oplus}m_{sat}}{r^2}\frac{\vec{r}}{r}$$

$$\ddot{\vec{r}} = -\frac{G(m_{\oplus} + m_{sat})}{r^2}\frac{\vec{r}}{r} \cong -\frac{\mu}{r^3}\vec{r} \qquad \mu = Gm_{\oplus}$$

$$\vec{h} = \vec{r} \times \vec{v} \qquad \vec{r}_{CM} = \vec{a}t + \vec{b} \qquad h = r^2\dot{\theta} = r^2\dot{v}$$

$$\varepsilon = \frac{\vec{v}^2}{2} - \frac{\mu}{r} \qquad \text{Energy Integral}$$

$$\downarrow_{KE} \stackrel{}{\rightharpoonup}_{PE} \qquad \text{both relative to one of the bodies}$$

$$r = \frac{p}{1 + e\cos v} \qquad v = \theta - \omega \qquad \text{true anomaly}$$
Equation of conic section
$$p = h^2/\mu \qquad \text{semilatus rectum}$$

$$e = Ah^2/\mu$$

Lecture 5: The Two Body Problem 31

Review of Two-Body Problem

Elliptical Orbits
$$0 \le e < 1$$

 $a = \text{semimajor axis}$ $b = a\sqrt{1 - e^2}$ $e = \frac{\sqrt{a^2 - b^2}}{a}$
 $b = \text{semiminor axis}$ $e = \frac{b^2}{a} = a(1 - e^2) = \frac{h^2}{\mu}$
 $r_p = \frac{p}{1 + e} = a(1 - e)$ $r_A = \frac{p}{1 - e} = a(1 + e)$

Flight Path Angle $h = rv \cos \phi_{\text{fpa}}$

$$\varepsilon = -\frac{\mu}{2a} \implies v^2 = \mu(\frac{2}{r} - \frac{1}{a})$$
 Vis-Viva Equation

Review of Two-Body Problem

$$\Rightarrow \mathbf{v}_{P} = \sqrt{\frac{\mu (1+e)}{a (1-e)}} \qquad \mathbf{v}_{A} = \sqrt{\frac{\mu (1-e)}{a (1+e)}}$$

$$\mathbf{v}_{C} = \sqrt{\frac{\mu}{r}} \qquad \mathbf{v}_{ESC} = \sqrt{\frac{2\mu}{r}} \quad (a = \infty)$$
Also $e = \sqrt{1 + \frac{2\varepsilon h^{2}}{\mu^{2}}}$

$$P = 2\pi \sqrt{\frac{a^{3}}{\mu}} \qquad n = \sqrt{\frac{\mu}{a^{3}}} \qquad n^{2}a^{3} = \mu$$

$$r = a(1 - e\cos E)$$

$$E - e\sin E = n(t - t_{p}) = M$$