Final Project Rakamin Batch 35

Kelompok 1 ShipTime Forecasters

Shoppedia Delivery Prediction

The Team

-SHIPTIME FORECASTERS-

LINE - UP THE PROBLEM

Background Problem

Business Recommendation

Business Simulation

Background

Rendahnya persentase pengiriman barang tepat waktu pada e-commerce Shoppedia sebesar 40%. Kondisi ini dapat berdampak pada customer retention, yang akan mempengaruhi jumlah sales (potential revenue loss sebesar ~\$1.400.000).

Status Pengiriman Barang

Faktanya...

84,1%

Amazon

Per Mei 2020, Amazon Delivery On-Time Rate mencapai 84,1%. (statista.com)

Customer tidak akan membeli kembali suatu merek jika pengirimannya terlambat. (**Oracle**)

Background

Goals

Meningkatkan *Delivery on Time (DoT) rate* dari **40%** ke **60%**.

Business Metrics

Delivery on Time (DoT) Rate

Objective

- Membuat model yang dapat memprediksi apakah barang dapat sampai tepat waktu atau tidak.
- Membuat rekomendasi bisnis berdasarkan hasil prediksi untuk menurunkan potential revenue loss.

B

Project Timeline

Data Set

12 Columns and 10999 Rows

ID

Nomor Identifikasi Pelanggan

Warehouse Block

Perusahaan memiliki gudang yang dibagi menjadi A, B, C D, dan F

Mode of Shipment

Metode pengiriman produk melalui kapal, pesawat, atau jalur darat

Customer Care Calls

Jumlah panggilan yang dibuat untuk pertanyaan tentang pengiriman

Data Set

12 Columns and 10999 Rows

Customer Rating

1 adalah yang terendah (Terburuk), 5 adalah yang tertinggi (Terbaik)

Biaya Produk dalam Dolar AS

Prior purchases

Jumlah Pembelian Sebelumnya

importance

Kategori produk (rendah, sedang, tinggi)

Data Set

12 Columns and 10999 Rows

Gender

Laki-laki dan Perempuan

Discount offered

Diskon yang diberikan

Weight in gms

Berat dalam gram

Delivered on time

1 menunjukkan bahwa barang TIDAK tepat waktu dan 0 menunjukkan bahwa barang tersebut tepat waktu

Data Insight (1)

"Pengiriman semua barang dengan Diskon > 10% terlambat"

Asumsi:

- Barang dengan diskon besar tidak diperhatikan performa pengirimannya.
- Pengurangan delivery cost pada barang dengan diskon besar sebagai penyebab keterlambatan barang.

Rekomendasi: Melakukan penyesuaian discount rate dan penelusuran lebih lanjut penyebab keterlambatan barang dengan diskon besar.

Data Insight (2)

"Pengiriman semua barang dengan berat 2000 - 4000 gram terlambat"

Asumsi:

- Berat barang "tanggung" (kategori 2000 - 4000 gram tidak optimal jika digabung dengan kategori berat ringan)
- 2. Jumlah barang sedikit dibanding kelompok berat lain, jadi tidak terlalu diperhatikan performa pengirimannya.

Rekomendasi:

- Analisa lebih dalam penyebab keterlambatan pada berat 2000 -4000 gram
- Tracking delivery untuk memastikan status pengiriman barang.

Data Insight (3)

"Barang dengan *importance* tinggi paling banyak yang terlambat"

Asumsi: barang dengan *importance* 'high' memiliki proses outbound yang rumit sehingga rasio keterlambatannya lebih tinggi dibanding tingkat *importance* yang lain.

Rekomendasi: Diperlukan data tambahan terkait dasar penggolongan kategori *product importance*.

Classification Model

Data PreProcessing

Handling Missing Value, Duplicate, dan Invalid Value

Tidak ditemukan *missing* value, duplicated data, dan invalid value pada dataset.

Feature Extraction, Feature Selection, dan Feature Encoding

- Dilakukan pembuatan feature Weight_class untuk kategorisasi barang berdasarkan berat menjadi 4 kategori.
- Dilakukan drop pada fitur ID, Customer_rating, Warehouse_block, Mode_of_Shipment, dan Gender.
- Dilakukan feature encoding pada fitur
 Product_importance.

Handling Outlier dan Data Transformation

Handling outlier dilakukan dengan data transformation yang robust terhadap outlier (Quantile Transformation) dan standardization, untuk menjaga agar dataset tetap utuh dan stabil pada saat proses modelling.

Modelling

Classifier Metrics	Logistic Regression	KNN	Decision Tree	Random Forest	AdaBoost	XGBoost	CatBoost
Accuracy	0.63	0.67	0.67	0.63	0.68	0.68	0.68
Precision	0.65	0.78	0.83	0.65	0.83	0.81	0.81
Recall	0.80	0.61	0.55	0.81	0.58	0.60	0.61
ROC - AUC	0.71	0.74	0.75	0.74	0.74	0.74	0.75

Recall: digunakan untuk meminimalkan kesalahan prediksi pada barang yang terlambat dianggap sebagai barang tidak terlambat.

Feature Importance

- 2 Fitur yang paling besar pengaruhnya adalah **Discount_offered** dan **Weight_class.**
- Semakin tinggi nilai diskon, semakin tinggi kemungkinan barang terlambat.
- Semakin rendah berat barang, semakin tinggi kemungkinan barang terlambat.

Business Recommendation (1)

Penyesuaian Rate Diskon

Melakukan penyesuaian pemberian diskon kepada pada kelompok barang dengan diskon >10%

Rata-rata diskon awal (barang yang terlambat): **38%** Rata-rata penyesuaian : **10%**

! Penyesuaian Rate Diskon pada barang yang terlambat akan mengakibatkan *Customer Loss*!

Asumsi *Customer Loss*: 25% (hanya *customer* yang mengalami keterlambatan)

Business Simulation (1)

Pre -		n	111	On	
LIC -	U				

1	# Delivery Terlambat	529
2	Rata-rata Diskon Awal	38%
3	Rata-rata Diskon Penyesuaian	10%
4	Potensi Customer Loss	25%
5	Rata-rata Harga Barang	\$196

Penyesuaian Diskon pada Transaksi yang Terlambat

Revenue Awal

\$103.684

Anggaran Diskon Awal

\$39.400

Revenue Awal Setelah Diskon

\$64.284

Penyesuaian

Potensial Revenue Loss

\$25.921

Revenue Penyesuaian

\$77.763

Anggaran Diskon Penyesuaian

\$7.776

Revenue Penyesuaian
Setelah Diskon

\$69.987

Ada penambahan Revenue setelah menerapkan penyesuaian diskon, sebesar \$ 5.703, meskipun mengalami Customer Loss.

Business Recommendation (2)

Melakukan investasi untuk *improvement* operasional pengiriman (berfokus pada berat barang yang mempengaruhi keterlambatan pengiriman)

Business Simulation (2)

The Urgency

Customer Loss

Potential Revenue Loss

Forecasting Pengiriman Barang

Keterlambatan barang berpotensi menyebabkan customer tidak kembali melakukan transaksi di masa depan.

Potensi *revenue* yang hilang karena *customer* tidak kembali melakukan transaksi.

Simulasi dilakukan untuk memberikan treatment yang tepat pada barang setelah melakukan prediksi keterlambatan barang.

Pre-Condition

	Prediksi Tidak Terlambat	Prediksi Terlambat	Total Aktual
Aktual Tidak Terlambat	340	555	895
Aktual Terlambat	252	1053	1305
Total Prediksi	592	1608	2200

Tidak dilakukan modelling: 1.305 dari 2.200 barang terlambat dan tidak diberikan treatment Potential Revenue Loss: 1.305 x \$213 (rata-rata harga barang) = ~**\$280.000**

Forecasting dengan Machine Learning!

Get The Fact

- Untuk meningkatkan

 Delivery on Time rate,

 diperlukan biaya

 tambahan.
- Rata-rata biaya
 pengiriman barang
 sebesar **10 15%** dari
 total harga barang
 (hopstack.io).

- Total harga barang dari 2.200 transaksi yang diprediksi: **\$460.926**
- Biaya total pengiriman barang: 12,5% x \$460.926 = **~\$60.000**
- Biaya pengiriman per barang: \$60.000 / 2.200 = **\$27 / barang**

The Resources

Shoppedia hanya berhasil mengirim **40% barang tepat waktu** dengan biaya pengiriman **\$60.000 (\$27 / barang)**. Biaya pengiriman per barang agar barang tepat waktu: \$150.000 / 2.200 = \$68 / barang

Untuk mengirimkan **100% barang tepat waktu**, diperlukan biaya pengiriman **\$150.000** (2.5x kapasitas normal)

Untuk meningkatkan *DoT rate*, Shoppedia diberikan **budget tambahan** sebesar **33% dari budget normal (\$20.000)**

Calculating...

Total budget untuk meningkatkan *DoT rate*:

- 1. \$60.000 (budget awal)
- 2. \$20.000 (budget tambahan)
- 3. ~\$6,000 (tambahan budget dari penyesuaian diskon)
- 4. Total: **\$86.000**

Alokasi pemberian budget berdasarkan hasil prediksi machine learning:

Barang diprediksi tepat waktu:

Budget normal (\$27 / barang)

592 x \$27 = ~\$16.000

Barang diprediksi **terlambat**:

Budget tambahan (\$68 / barang)

Sisa budget: \$86.000-\$16.000 =

\$70.000

Barang yang dapat diberikan budget

tambahan dari sisa budget:

70.000/68 = 1.030 barang

Prediksi barang yang akan terkirim tepat waktu:

340 (budget normal) **+ 1.030** (budget tambahan)

= 1.370 barang

1.370 / 2.200 x 100% = **62%**

Potential Revenue Loss Salvaged

1.305 x \$213 (rata-rata harga barang) = ~**\$280.000**

Potential Revenue Loss (after treatment):

830 x \$213 (rata-rata harga barang) = ~\$180.000

Potential Revenue Loss Salvaged:

\$280.000 - \$180.000 = **\$100.000** (~36% potential revenue salvaged)

Summary

Hasil prediksi model *machine learning* dan simulasi rekomendasi bisnis (penyesuaian *discount rate* dan *improvement* operasional pengiriman barang) dapat meningkatkan *Delivery on Time rate* dari 40% menjadi **62%**.

Terima