APPROACH TO THE NEW LOWER SECONDARY CURRICULUM

CHEMISTRY PAPER 1

FIRST EDITION 2024

All rights reserved

No part of this book may be reproduced, stored in a retrieval system or transmitted by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the copyright owner.

Contents

Pro	eface		4
Ac	knowle	edgement	5
In	troduc	ction to chemistry 545/1	6
1.	First	element of construct	8
	1.1.	Manufacture of oxygen	10
	1.2.	Manufacture of chlorine	12
	1.3.	Manufacture of sodium hydroxide	14
	1.4.	Extraction of Iron	
	1.5.	Manufacture of ammonia	18
	1.6.	Manufacture of ammonia fertilizers	19
	1.7.	Manufacture of ammonium nitrate	19
	1.8.	Manufacture of urea	21
	1.9.	Manufacture of ammonium suphate	22
	1.10.	Manufacture of cement	22
	1.11.	Manufacture of biogas	24
	1.12.	Manufacture of copper	26
	1.13.	Manufacture of oil from crude oil	28
	1.14.	Manufacture of ethanol	29
	1.15.	Extraction of Aluminium	31
	1.16.	Manufacture of sulphuric acid	32
	1.17.	Manufacture of soapless detergents	34
	1.18.	Manufacture of soapy detegents	35
2.	Seco	nd element of construct	37
	2.1.	Nuclear processes	38
	2.2.	Medicine and drugs	41
	2.3.	Detergents	43
	2.4.	Food additives	46
3.	Third	l element of construct	48
	3.1.	Using materials	49
	3.2.	Structures and properties of substances	54
	3.3.	The periodic table	55
	3.4.	Elements	57
	3.5.	Mole concept	59

	3.6.	Polymers	60
	3.7.	Mixtures	63
	3.8.	Trends in the periodic table	64
4.	Fourt	h element of construct	66
	4.1.	Natural resources	67
	4.2.	Rocks and minerals	73
	4.3.	Water	75
	4.4.	Air	76
	4.5.	Tress	77
	4.6.	Carbon based fuels	79
5.	Samp	81	
	5.1.	Set 1	81
	5.2.	Set 2	87
	5.3.	Set 3	94
	5.4.	Set 4	100
	5.5.	Set 5	106
	5.6.	Set 6	112
	5.7.	Set 7	118
	5.8.	Set 8	124
	5.9.	Set 9	131
	5.10.	Set 10	137
	5.11.	Set 11	143

Preface

My objective in writing this chemistry book was to prepare O'level students for the UCE examinations which compressively covers the modern approach to the new lower secondary curriculum.

The content in this book has been extended considerably to make it suitable for all students at ordinary level.

This workbook has been written in line with the revised chemistry syllabus for the new Lower Secondary Curriculum. The knowledge and skills which have been incorporated are what is partly required to produce a learner who has the competences that are required in the 21st century.

This book provides summary notes on assessable areas for each of the four elements of construct for the chemistry paper 1.

This book also contains a variety of sample examination papers for the learner to widen his/her subject knowledge.

The learner is expected to be able to work as an individual, in pairs and groups according to the nature of the item in order to be able to share learning experiences with their colleagues.

SSEKYANZI RONALD

Acknowledgement

I would like to express my sincere appreciation to all those who worked tirelessly towards the production of this book.

My sincere gratitude goes to my family and friends for supporting all my initiatives both financially and spiritually. Many thanks go to my parents Mr. Kaliisa John Musisi and Mrs. Joan Kaliisa for educating me.

My task has been made possible through my being able to draw on the counsel of the staff of chemistry department of Nakaseke Christian Secondary School. I am indebted to Mr. Mabiike Deo the head of science department Kololo High School and Mr. Otiya Muhammad head of science department NCSS and head chemistry department Mbogo College School Kawempe.

I have been fortunate in receiving once again the guidance from my former teachers Mr. Mulisa Brian and Mr. Basingura Fredrick.

My work has benefited from advise on content and presentation which I received from Mr. Ofwono and Mr. Otiya Muhammad.

I welcome any suggestions for improvement to continue making my service delivery better.

Please get to me through <u>ssekyanzironaldjr123@gmail.com</u> or contact 0708540273/0788610321

RONALD SSEKYANZI

INTRODUCTION TO CHEMISTRY PAPER 1 (545/1)

The revised new lower secondary curriculum requires a learner to do **two** papers ie theory and practical compared to the old curriculum which had three papers.

In this book we shall concentrate on the theory paper 545/1.

The entire content of theory was grouped into four elements of construct to avoid duplicating/multiple testing of competences.

The paper has **two** sections; section **A** that has **two** compulsory items and section **B** has **two** parts ie part **I** having **two** items and **part II** also having **two** items and the learner is requested to attempt only **one** item from each of the two parts. The learner will be required to attempt a total **four** examination items **two** from section A and **two** from section B from the four elements of construct which we are going to explore in details.

THE LISTS OF ALL TOPICS IN THE THEORY PAPER ARE AS FOLLOWS

SENIOR 1	THEME	TOPIC
Term 1	Introduction to chemistry	Chemistry and society
	and experimental	Experimental chemistry
	Particle nature of matter	States and changes of
		states of matter
		Using materials
Term 2	Temporary and permanent	Temporary and permanent
	changes to materials	changes
		Mixtures, elements and
		compounds
Term 3	Air and environment	Air
		Water
	Earth and space	Rocks and minerals

SENIOR 2	THEME	TOPIC
Term 1	Acids and alkalis	Acids and alkalis
		Salts
	The periodic table	The periodic table
Term 2	Carbon in the environment	Carbon in the environment
Term 3	Order of reactivity of	The reactivity series
	metals	

SENIOR 3	THEME	TOPIC
Term 1	Carbon in life	Carbon in life
	Structures and Bonds	Structures and Bonds
Term 2	Using equations in	Formulae, stoichiometry
	Chemistry	and mole concept
	Structures and	Properties and structures
	substances	of substances
Term 3 Fuels and energy Fossil Fuels		Fossil Fuels
	Reactants and products	Chemical reactions

SENIOR 4	THEME	TOPIC
Term 1	Redox reactions	Oxidation and reduction
		reactions
		Industrial processes
Term 2	Periodicity	Trends in the periodic
		table
	Thermochemistry	Energy changes during
		chemical reactions
Term 3	Consumable chemicals	Chemical for consumers
		Nuclear processes.

A breakdown of the first four elements of construct

FIRST ELEMENT OF CONSTRUCT

The learner appreciates the contribution of chemistry to our economy. (For items 3 and 4 in part one of section B)

Topics

- Air (oxygen)
- Industrial processes
- Chemistry and society
- Carbon in life (mainly on crude oil, fermentation and saponification)
- Chemical reactions (contact and haber processes)
- Oxidation and reduction. (in iron extraction and for the concepts of electrolysis in extraction of aluminum, copper, manufacture of sodium hydroxide and chlorine)

ASSESSABLE AREAS

(a) Manufacture of oxygen gas	(f) Manufacture of sodium hydroxide	Each Process involves
(b) Manufacture of chlorine gas (c) Extraction of	(g) Manufacture of sulphuric acid(h) Manufacture of cement	V - vessel Cp - chemical processes
metals(Na, Al, Fe, Cu, Zn) (d) Manufacture of fertilizers (e) Manufacture of detergents	(i) Manufacture of Ethanol (j) Manufacture of bio gas	Cd - conversion to desired product Ch - coherence Pr -purification
detergents		

BASIS OF ASSESSMENT

BASIS OF ASSESSMENT		CRITERIA OF ASSESSMENT
Α	Raw materials Rm	All raw material
		any one raw material
		no raw material
В	Process of	Process of production with all V, Cp, Ch, Pr
	production Pp	Process of production with any three of V, Cp, Ch, Pr
		Process of production with any one of V, Cp, Ch, Pr
		No process of production
С	Side effects of the process of production and	Any one danger identified, explained and mitigated
	mitigation Se	Any one danger identified and explained OR identified and mitigated OR explained and mitigated
		Any one danger identified OR explained OR mitigated
		No danger identified, explained or mitigated
D	Social benefits of the process of production Sb	Any one social benefit identified, effect of the benefit and impact of the benefit
		Any one social benefit identified and effect of the benefit OR identified and impact of the benefit OR effect of the benefit and impact of the benefit
		Any one social benefit identified OR effect of the benefit OR impact of the benefit No social benefit identified

LET'S EXPLORE THE SUMMARY NOTES ON THE ASSESSABLE AREAS FOR THIS ELEMENT OF CONSTRUCT

MANUFACTURE OF OXYGEN

Air is a mixture of different components contains 21% oxygen. Due to respiratory illnesses caused by COVID-19, there was an increased demand for oxygen by patients in hospitals. The government supply of oxygen is not enough and is planning to set up an oxygen production plant with minimal environmental impact.

However, the science club members in your school would like to know how the process of production of oxygen will be carried out.

Task:

As a chemistry student, make a summary you will use during the presentation.

Expected responses following the basis of assessment

Raw materials

Liquid air/air

Process of production

Air is passed through air filters to remove dust and smoke particles.

Air is passed through concentrated sodium hydroxide solution to absorb/ remove carbon dioxide which is acidic.

$$2NaOH_{(aq)}+CO_{2(q)} \longrightarrow Na_2CO_{3(aq)}+H_2O_{(1)}$$

Air is free from Carbon dioxide is now passed through Silicon (IV) oxide/silica get to absorb water vapor. Carbon dioxide and water vapor are removed from air before it is liquefied because they solidify and block the apparatus.

The air is now compressed at 200 atmospheres and allowed to cool by making it escape into a large space through a jet. The process of cooling is repeated several times to obtain liquid air at about $-200^{\circ}C$. The liquid air is fractionally distilled using a fractionating column/tower. Nitrogen boils off first because it has a lower boiling point $(-196^{\circ}C)$ leaving behind Oxygen with a higher boing point $(-183^{\circ}C)$. Both nitrogen and Oxygen collected contain traces of noble gases. Pure oxygen is then stored under pressure in steel cylinders.

Side effects of the production and mitigation

(a) Explosion of oxygen cylinders due to high pressure. This can cause other materials to ignite spontaneously/ catch fire. The resulting fire can cause damage to equipment and injury to people.

Mitigation

- ✓ Regular maintenance and monitoring of cylinders
- ✓ Keeping cylinders in a cool area/ avoid exposure to heat.
- (b) Exposure to liquid oxygen can cause severe skins and eye irritation and burns. This may cause loss of vision and cancer.

Mitigation

- \checkmark Posting hazard and warning information in the working area.
- Communicating all information on the health and safety hazards of oxygen to potentially exposed workers; for example submerging the affected body in warm water.

(c) Air pollution by waste gases. Acidic gases can cause acidic rain which leads to crumbling of buildings, lowering the soil PH and corrosion of roofs made of iron.

Mitigation

- ✓ Fitting catalytic converters in exhaust pipes of machines to convert oxides
 of nitrogen into nitrogen and Carbon monoxide to Carbon dioxide.
- ✓ Neutralize the acidic gases before releasing waste gases into the atmosphere.

Social benefits of the process of production

- ✓ Employment opportunity; improved income thus better standard of living.
- ✓ Development of infrastructure eg electricity lines, roads, hospitals and schools. Etc., improved road network will facilitate trade hence improved income and better standards of living.

MANUFACTURE OF CHLORINE (INDUSTRIAL)

Sample scenario

One of the large scale uses of chlorine is treating water, to ensure that chlorine is readily available and at a cheaper cost, Government has cleared a local investor to set up a chlorine production plant near Lake Katwe in Kasese district. However, the community is concerned about its environmental effects and how the environmental process will occur

Grab your copy at 15k