Supporting Information

Machine-Learning-Guided Mutagenesis for Directed Evolution of Fluorescent Proteins

Yutaka Saito, ^{1,2}† Misaki Oikawa, ³† Hikaru Nakazawa, ³ Teppei Niide, ³ Tomoshi Kameda, ¹ Koji Tsuda, ^{4,5,6}* Mitsuo Umetsu^{3,5}*

¹Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.

²Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.

³Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.

⁴Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.

⁵Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo, 103-0027, Japan.

⁶Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.

† These authors contributed equally to this work.

* Joint corresponding authors:

Koji Tsuda (tsuda@k.u-tokyo.ac.jp)

Mitsuo Umetsu (mitsuo@tohoku.ac.jp)

Fig. S1. Benchmark of amino acid descriptors. For each amino acid descriptor, COMBO was trained by an Bayesian optimization procedure. The fluorescence performance score of the current best example is plotted for a given number of training data. Z-scale, T-scale, ST-scale showed better performance than the other descriptors. (**B**) is a magnified version of the late stage of training in (**A**).

Table S1. The reference GFP and YFP used in this study. The amino acid sequences are shown with the four mutations colored in red (S65G, S72A, H77Y, and T203F).

 181
 190
 200
 210
 220
 230
 238

HYQQNTPIGD GPVLLPDNHY LS**f**QSALSKD PNEKRDHMVL LEFVTAAGIT HGMDELYK

Table S2. Sequences of 22-c trick primers for point saturation and site-directed random mutagenesis in GFP. XXX is NDT, VHG, or TGG. For PCR, the forward primers with NDT, VHG, and TGG was mixed at the ratio of 12:9:1, respectively. YYY is AHN, CDB, or CCA. For PCR, the forward primers with AHN, CDB, and CCA was mixed at the ratio of 12:9:1, respectively.

Primer	Sequence
External forward	GTGACGGTCTTCCCCTCTAG
External reverse	GAGTGCGGCCGCTTTGTAGAGCTCATCCATGCCATGTGTAAT
S65-forward	CTTGTCACTACTTTC XXX TATGGTGTTCAATGC
S65-reverse	GCATTGAACACCATA YYY GAAAGTAGTGACAAG
S72-forward	GGTGTTCAATGCTTT XXX CGTTATCCGG
S72-reverse	CCGGATAACG YYY AAAGCATTGAACACC
H77- forward	CCCGTTATCCGGAT XXX ATGAAACGGC
H77- reverse	GCCGTTTCAT YYY ATCCGGATAACGGG
T203- forward	CATTACCTGTCGXXXCAATCTGCCCTT
T203-reverse	AAGGGCAGATTG YYY CGACAGGTAATG

Table S3. Sequences of mutagenesis primers for preparing the top 78 candidate variants proposed by machine learning. Red, blue and orange characters are the mutagenesis sites for the residues 65, 72, and 77, respectively.

Primer	Sequence
External forward	GTGACGGTCTTCCCCTCTAG
External reverse	GAGTGCGGCCGCTTTGTAGAGCTCATCCATGCCATGTGTAAT
Group A	
S65S72H77-forward 1	ACTACTTTCGSGTATGGTGTTCAATGCTTTGSGCGTTATCCG
	GATTWTATGAAACGGCATGACTTTTTCAAGAG
S65S72H77-reverse 1	GCCGTTTCATAWAATCCGGATAACGCSCAAAGCATTGAACAC
	CATACSCGAAAGTAGTGACAAGTGTTGGCC
S65S72H77-forward 2	ACTACTTTCGSGTATGGTGTTCAATGCTTTGSGCGTTATCCG
	GATCATATGAAACGGCATGACTTTTTCAAGAG
S65S72H77-reverse 2	GCCGTTTCATATGATCCGGATAACGCSCAAAGCATTGAACAC
	CATACSCGAAAGTAGTGACAAGTGTTGGCC
Group B	
S65S72H77-forward 3	ACTACTTTCGGGTATGGTGTTCAATGCTTTTSTCGTTATCCG
	GATTWTATGAAACGGCATGACTTTTTCAAGAG
S65S72H77-reverse 3	GCCGTTTCATAWAATCCGGATAACGASAAAAGCATTGAACAC
	CATACCCGAAAGTGGCACAAGTGTTGGCC
S65S72H77-forward 4	ACTACTTTCGGGTATGGTGTTCAATGCTTTTSTCGTTATCCG
	GATCATATGAAACGGCATGACTTTTTCAAGAG
S65S72H77-reverse 4	GCCGTTTCATATGATCCGGATAACGASAAAAGCATTGAACAC
	CATACCCGAAAGTGACAAGTGTTGGCC
Group C	
S65S72H77-forward 5	ACTACTTTCGCGTATGGTGTTCAATGCTTTTSTCGTTATCCG
	GATTWTATGAAACGGCATGACTTTTTCAAGAG
S65S72H77-reverse 5	GCCGTTTCATAWAATCCGGATAACGASAAAAGCATTGAACAC

ריא וחא ריני	ירירי אי אי איריודי א	GTGACAAGTGTTGGCC	
LAIAL.	1 . (TAAA(T A	((T (T A (. A A (T (T 1 (T (T (. (

S65S72H77-forward 6 ACTACTTTCGCGTATGGTGTTCAATGCTTTTSTCGTTATCCG

GATCATATGAAACGGCATGACTTTTTCAAGAG

S65S72H77-reverse 6 GCCGTTTCATATGATCCGGATAACGASAAAAGCATTGAACAC

CATACGCGAAAGTAGTGACAAGTGTTGGCC

Group D

S65S72H77-forward 7 ACTACTTTCGGGTATGGTGTTCAATGCTTTGSGCGTTATCCG

GATTGGATGAAACGGCATGACTTTTTCAAGAG

S65S72H77-reverse 7 GCCGTTTCATCCAATCCGGATAACGCSCAAAGCATTGAACAC

CATACCCGAAAGTAGTGACAAGTGTTGGCC

Group E

S65S72H77-forward 8 ACTACTTTCGGGTATGGTTTCAATGCTTTTCTCGTTATCCG

GATTATATGAAACGGCATGACTTTTTCAAGAG

S65S72H77-reverse 8 GCCGTTTCATATAATCCGGATAACGAGAAAAGCATTGAACAC

CATACCCGAAAGTAGTGACAAGTGTTGGCC

Table S4. Detected GFP variants from the top 78 GFP variants. The 63 detected variants are red-colored in the table.

Ranking -	I	Amino ac	eid residu	ie	Ranking	Amino acid residue			
	65	72	77	203	_	65	72	77	203
1	G	A	Y	Y	40	A	A	Y	W
2	G	A	Н	Y	41	G	S	Y	Н
3	G	A	F	Y	42	A	A	Y	Н
4	G	A	Н	Н	43	A	A	F	W
5	G	G	Н	Y	44	A	A	F	Н
6	G	G	Y	Y	45	G	C	Н	W
7	G	A	Y	Н	46	G	C	Н	Н
8	G	G	F	Y	47	G	S	Н	W
9	G	A	F	Н	48	G	A	W	Н
10	G	G	Н	Н	49	G	C	Y	Н
11	G	A	Н	W	50	G	C	Y	W
12	G	A	Y	W	51	A	G	Н	Н
13	G	G	Y	Н	52	G	S	F	Н
14	G	A	Н	F	53	G	S	Y	W
15	A	A	Н	Y	54	G	C	F	Н
16	G	G	F	Н	55	G	G	W	Y
17	A	A	Y	Y	56	A	G	Y	Н
18	G	G	Y	F	57	A	A	Y	F
19	G	A	F	W	58	A	G	F	Н
20	G	A	F	F	59	A	A	Н	F
21	A	A	F	Y	60	G	C	F	W
22	G	S	Y	Y	61	A	A	F	F
23	G	G	Н	F	62	A	G	Н	W
24	G	S	Н	Y	63	G	S	F	W
25	G	C	Н	Y	64	A	C	F	Y
26	G	G	F	F	65	G	A	W	F
27	G	G	Н	W	66	A	C	Н	Y
28	G	C	Y	Y	67	A	G	Y	F

29	G	G	Y	W	68	G	S	Y	F
30	G	S	F	Y	69	G	A	W	W
31	A	G	Н	Y	70	A	G	Y	W
32	G	C	F	Y	71	A	G	F	W
33	A	G	Y	Y	72	A	C	Y	Y
34	G	A	W	Y	73	A	S	Y	Y
35	A	G	F	Y	74	A	G	Н	F
36	A	A	Н	W	75	G	G	W	Н
37	G	G	F	W	76	A	G	F	F
38	A	A	Н	Н	77	A	S	Н	Y
39	G	S	Н	Н	78	A	S	F	Y

Table S5. Benchmark of amino acid descriptors. ST + T + Z: feature vectors of ST-scale, T-scale, and Z-scale are concatenated into a single vector and used in machine learning. All: feature vectors of all descriptors are concatenated into a single vector and used in machine learning.

	Rank of the				
Descriptor	reference YFP				
ST-scale	11724				
T-scale	1313				
Z-scale	10280				
ST + T + Z	4715				
All	10292				

Table S6. Sequence similarity between the predicted variants and the training data.

For the 12 predicted variants better than the reference YFP, the yellow fluorescent variants in the training data with the most similar sequences are shown. Also shown is the number of differed residues out of the four mutated positions.

12 variants better than the		UD:00 1	
reference YFP	training data	#Different residues	
GAYY	GAYF		1
GAHY	GAYF, SSHY		2
GAFY	GAYF		2
GGHY	SSHY		2
GGYY	GAYF		2
GGFY	GAYF, SSHY, GVTH		3
GCHY	SSHY		2
GCYY	GAYF		2
GSFY	SSHY		2
GCFY	GAYF		3
GAWY	GAYF		2
GGWY	GAYF, SSHY, GVTH		3

Data file S1. Complete list of all unknown variants ranked by machine learning.

(given as a separate Excel file)