Topics: transistors, op-amps

Reading: my notes, supplementary info on transistors (see website)

Reading questions:

- 1. For the transistor whose characteristic curves are shown at right,
- a) Roughly what is the value of β (or h_{FE}) at V_{CE} of 4 volts, say.
- b) If the power rating of the transistor P_{max} is 0.05 W, is there any region of the curves shown for which P_{max} would be exceeded? (Power dissipated by a BJT \sim $V_{CE}I_{C.}$) Explain. Also, shade in roughly the region where P_{max} is exceeded.

- i) Is there voltage gain (that is, is v_{out}/v_{in} much different from 1)? If so, what does the gain depend on?
- ii) If the voltage at the base rises by 0.1 V, what does the voltage at the emitter rise by?
- iii) Is the output signal inverted with respect to the input signal?

- 5. For the emitter follower (a.k.a. common collector),
- i) is there voltage gain (that is, is v_{out}/v_{in} different from 1)? If so, what does the gain depend on?
- ii) If the voltage at the base rises by 0.1 V, what does the voltage at the emitter rise by?
- iii) Is the output signal inverted with respect to the input signal?

Problems: (assume that all transistors are npn silicon, like the 2N3904)

- 1) This is an emitter follower with the base biased quiescently above ground so that a single supply can be used without clipping negative input signals.
- a) Find the expected quiescent values of V_B, V_E, and V_C.
- b) Find the expected quiescent values of I_B , I_E , and I_C (hint: start with I_E and assume β =100).
- c) Check to make sure that the quiescent I_B is small compared to the quiescent current through the 50k resistor. Why is it important to design the circuit so that this is the case?
- d) For roughly what range of V_{in} (+ and) is the output free from clipping?
- e) Would you need the 45k and 50k resistors if you had a 15V power supply as well as a +15V supply available? Why?

- 3. a) What does the circuit at right do (Assume $V_R=0$)? Explain using the golden rules of op-amps.
- b) What is the maximum current that can be measured (without saturating the op amp) in the figure at right if R_f is 10 M? Assume ± 15 V supplies are being used to power the op amp.

Topics: transistors, op-amps

Reading: my notes, supplementary info on transistors (see website)

Reading questions:

- 1. For the transistor whose characteristic curves are shown at right,
- a) Roughly what is the value of β (or h_{FE}) at V_{CE} of 4 volts, say.
- b) If the power rating of the transistor P_{max} is 0.05 W, is there any region of the curves shown for which P_{max} would be exceeded? (Power dissipated by a BJT \sim $V_{CE}I_{C.}$) Explain. Also, shade in roughly the region where P_{max} is exceeded.

- i) Is there voltage gain (that is, is v_{out}/v_{in} much different from 1)? If so, what does the gain depend on?
- ii) If the voltage at the base rises by 0.1 V, what does the voltage at the emitter rise by?
- iii) Is the output signal inverted with respect to the input signal?

- 5. For the emitter follower (a.k.a. common collector),
- i) is there voltage gain (that is, is v_{out}/v_{in} different from 1)? If so, what does the gain depend on?
- ii) If the voltage at the base rises by 0.1 V, what does the voltage at the emitter rise by?
- iii) Is the output signal inverted with respect to the input signal?

Problems: (assume that all transistors are npn silicon, like the 2N3904)

- 1) This is an emitter follower with the base biased quiescently above ground so that a single supply can be used without clipping negative input signals.
- a) Find the expected quiescent values of V_B, V_E, and V_C.
- b) Find the expected quiescent values of I_B , I_E , and I_C (hint: start with I_E and assume β =100).
- c) Check to make sure that the quiescent I_B is small compared to the quiescent current through the 50k resistor. Why is it important to design the circuit so that this is the case?
- d) For roughly what range of V_{in} (+ and) is the output free from clipping?
- e) Would you need the 45k and 50k resistors if you had a 15V power supply as well as a +15V supply available? Why?

- 3. a) What does the circuit at right do (Assume $V_R=0$)? Explain using the golden rules of op-amps.
- b) What is the maximum current that can be measured (without saturating the op amp) in the figure at right if R_f is 10 M? Assume ± 15 V supplies are being used to power the op amp.

Topics: transistors, op-amps

Reading: my notes, supplementary info on transistors (see website)

Reading questions:

- 1. For the transistor whose characteristic curves are shown at right,
- a) Roughly what is the value of β (or h_{FE}) at V_{CE} of 4 volts, say.
- b) If the power rating of the transistor P_{max} is 0.05 W, is there any region of the curves shown for which P_{max} would be exceeded? (Power dissipated by a BJT \sim $V_{CE}I_{C.}$) Explain. Also, shade in roughly the region where P_{max} is exceeded.

- i) Is there voltage gain (that is, is v_{out}/v_{in} much different from 1)? If so, what does the gain depend on?
- ii) If the voltage at the base rises by 0.1 V, what does the voltage at the emitter rise by?
- iii) Is the output signal inverted with respect to the input signal?

- 5. For the emitter follower (a.k.a. common collector),
- i) is there voltage gain (that is, is v_{out}/v_{in} different from 1)? If so, what does the gain depend on?
- ii) If the voltage at the base rises by 0.1 V, what does the voltage at the emitter rise by?
- iii) Is the output signal inverted with respect to the input signal?

Problems: (assume that all transistors are npn silicon, like the 2N3904)

- 1) This is an emitter follower with the base biased quiescently above ground so that a single supply can be used without clipping negative input signals.
- a) Find the expected quiescent values of V_B, V_E, and V_C.
- b) Find the expected quiescent values of I_B , I_E , and I_C (hint: start with I_E and assume β =100).
- c) Check to make sure that the quiescent I_B is small compared to the quiescent current through the 50k resistor. Why is it important to design the circuit so that this is the case?
- d) For roughly what range of V_{in} (+ and) is the output free from clipping?
- e) Would you need the 45k and 50k resistors if you had a 15V power supply as well as a +15V supply available? Why?

- 3. a) What does the circuit at right do (Assume $V_R=0$)? Explain using the golden rules of op-amps.
- b) What is the maximum current that can be measured (without saturating the op amp) in the figure at right if R_f is 10 M? Assume ± 15 V supplies are being used to power the op amp.

Topics: transistors, op-amps

Reading: my notes, supplementary info on transistors (see website)

Reading questions:

- 1. For the transistor whose characteristic curves are shown at right,
- a) Roughly what is the value of β (or h_{FE}) at V_{CE} of 4 volts, say.
- b) If the power rating of the transistor P_{max} is 0.05 W, is there any region of the curves shown for which P_{max} would be exceeded? (Power dissipated by a BJT \sim $V_{CE}I_{C.}$) Explain. Also, shade in roughly the region where P_{max} is exceeded.

- i) Is there voltage gain (that is, is v_{out}/v_{in} much different from 1)? If so, what does the gain depend on?
- ii) If the voltage at the base rises by 0.1 V, what does the voltage at the emitter rise by?
- iii) Is the output signal inverted with respect to the input signal?

- 5. For the emitter follower (a.k.a. common collector),
- i) is there voltage gain (that is, is v_{out}/v_{in} different from 1)? If so, what does the gain depend on?
- ii) If the voltage at the base rises by 0.1 V, what does the voltage at the emitter rise by?
- iii) Is the output signal inverted with respect to the input signal?

Problems: (assume that all transistors are npn silicon, like the 2N3904)

- 1) This is an emitter follower with the base biased quiescently above ground so that a single supply can be used without clipping negative input signals.
- a) Find the expected quiescent values of V_B, V_E, and V_C.
- b) Find the expected quiescent values of I_B , I_E , and I_C (hint: start with I_E and assume β =100).
- c) Check to make sure that the quiescent I_B is small compared to the quiescent current through the 50k resistor. Why is it important to design the circuit so that this is the case?
- d) For roughly what range of V_{in} (+ and) is the output free from clipping?
- e) Would you need the 45k and 50k resistors if you had a 15V power supply as well as a +15V supply available? Why?

- 3. a) What does the circuit at right do (Assume $V_R=0$)? Explain using the golden rules of op-amps.
- b) What is the maximum current that can be measured (without saturating the op amp) in the figure at right if R_f is 10 M? Assume ± 15 V supplies are being used to power the op amp.

