MA331 Homework02

Problem 1. Assume that $N \sim \mathcal{B}(n, p)$, a Binomial distribution with number of trials n and probability of success p. Set p = 0.4.

- (i) For n = 20, 30, 50, 75, 100, accurately compute $P(N \le 8.25)$ by using R function.
- (ii) For n = 20, 30, 50, 75, 100, approximate $P(N \le 8.25)$ by using Laplace theorem.
- (iii) Evaluate and scatter plot errors of all approximations of (ii), i.e., the absolute difference between the accurate computation and the Laplace approximation.
- (iv) What do you perceive based on the scatter plot of errors in (iii).

Problem 2. Check the instruction of R commands 'plot(density(x))'. Generate a SRS of size n for the population $X \sim \mathcal{N}(2, 3^2)$, and evaluate the samples of

$$\frac{\bar{X}-2}{\sqrt{3^2/n}}, \qquad \frac{(n-1)S^2}{3^2}, \qquad \left(\frac{\bar{X}-2}{\sqrt{3^2/n}}, \frac{(n-1)S^2}{3^2}\right),$$

respectively. Then, based on the corresponding samples, plot estimated density curves of $\frac{\bar{X}-2}{\sqrt{3^2/n}}$ and $\frac{(n-1)S^2}{3^2}$, respectively, and also make the scatter plot of $\left(\frac{\bar{X}-2}{\sqrt{3^2/n}}, \frac{(n-1)S^2}{3^2}\right)$.

- (i) For n=20, simulate $\frac{\bar{X}-2}{\sqrt{3^2/n}}$ and $\frac{(n-1)S^2}{3^2}$ for 100 times.
- (ii) For n = 30, simulate $\frac{\bar{X}-2}{\sqrt{3^2/n}}$ and $\frac{(n-1)S^2}{3^2}$ for 100 times.
- (iii) For n=50, simulate $\frac{\bar{X}-2}{\sqrt{3^2/n}}$ and $\frac{(n-1)S^2}{3^2}$ for 100 times.
- (iv) For n = 75, simulate $\frac{\bar{X}-2}{\sqrt{3^2/n}}$ and $\frac{(n-1)S^2}{3^2}$ for 100 times.
- (v) Based on the plots of $\frac{\bar{X}-2}{\sqrt{3^2/n}}$ and $\frac{(n-1)S^2}{3^2}$ in (i) (iv) describe your findings on probability distributions of $\frac{\bar{X}-2}{\sqrt{3^2/n}}$ and $\frac{(n-1)S^2}{3^2}$, respectively.
- (vi) Based on the scatter plots of $\left(\frac{\bar{X}-2}{\sqrt{3^2/n}}, \frac{(n-1)S^2}{3^2}\right)$ in (i) (iv) describe your findings on the statistical association between $\frac{\bar{X}-2}{\sqrt{3^2/n}}$ and $\frac{(n-1)S^2}{3^2}$.

1

Problem 3. Show that E[N] = np for $N \sim \mathcal{B}(n, p)$.

Problem 4. Show that E[T] = 0 for $T \sim \mathcal{T}_n$.