

VECTORIZATION AND LOCALITY OPTIMIZATIONS FOR SEISMIC IMAGING METHODS THROUGH AUTOMATED CODE GENERATION

F. Luporini¹, M. Lange¹, M. Louboutin², N. Kukreja¹, G.Gorman¹

¹Imperial College London, ²The University of British Columbia (Seismic Lab for Imaging and Modeling)

2017 SIAM Conference on Computational Science and Engineering

MS: Efficiency of High-Order Methods on the 2nd Generation Intel Xeon Phi Processor

27/02/2017

Driving application: inversion problems for seismic imaging

http://www.open.edu/openlearn/science--maths--technology/science/environmental--science/earths--physical--resources--petroleum/content--section--3.2.1

- Challenging physics, many variants (e.g., wave equations),
- Big computational cost (wave simulation through subsurface)

So, it is not the "usual" Poisson equation that we aim to solve...

$$\begin{split} &\frac{m}{\rho}\frac{d^2p(x,t)}{dt^2} - (1+2\epsilon)(G_{\bar{x}\bar{x}} + G_{\bar{y}\bar{y}})p(x,t) - \sqrt{(1+2\delta)}G_{\bar{z}\bar{z}}r(x,t) = q, \\ &\frac{m}{\rho}\frac{d^2r(x,t)}{dt^2} - \sqrt{(1+2\delta)}(G_{\bar{x}\bar{x}} + G_{\bar{y}\bar{y}})p(x,t) - G_{\bar{z}\bar{z}}r(x,t) = q, \\ &p(.,0) = 0, \\ &\frac{dp(x,t)}{dt}|_{t=0} = 0, \\ &r(.,0) = 0, \\ &\frac{dr(x,t)}{dt}|_{t=0} = 0, \\ &D_{x1} = \cos(\theta)\cos(\phi)\frac{d}{dx}\bigg|_{t} + \cos(\theta)\sin(\phi)\frac{d}{dy} - \sin(\theta)\frac{d}{dz} \\ &D_{x2} = \cos(\theta)\cos(\phi)\frac{d}{dx} + \cos(\theta)\sin(\phi)\frac{d}{dy}\bigg|_{t} - \sin(\theta)\frac{d}{dz}|_{t} \\ &G_{\bar{x}\bar{x}} = \frac{1}{2}\left(D_{x1}^{T}(\frac{1}{\rho})D_{x1} + D_{x2}^{T}(\frac{1}{\rho})D_{x2}\right) \end{split}$$

(incomplete) specification of the TTI (Tilted Transverse Isotropy) forward operator

rotated second order differential operators

So, it is not the "usual" Poisson equation that we aim to solve...

||x|||y - 1||z + 1| + 2.5e-2F*v[t + 1]|x||y + 1||z + 1||x||y||z + 1||x||y||z + 1||x||y||z + 1||x||y||z + 1| + 1.0e-1F*v[t + 1]|x||y||z + 1| + 1.0e-1F*v[t + 1]|x||y||z + 1||x + 2||y||z + 1||x||y||z + 1||x||x||x + 1||x||x + 1||x + 1||x1)*sin(theta[x][y][z - 1]) + (-7.5e-2F*v[t + 1][x][y][z - 1] + 1.0e-1F*v[t + 1][x][y][z - 1] - 2.5e-2F*v[t + 1][x][y][z - 1])*sin(theta[x][y][z - 1])*cos(phi[x][y][z - 1])*cos(theta[x][y][z - 1]) + 3.75e-2F*v[t + 1][x][y][z - 1] + 1.0e-1F*v[t + 1][x][y][z - 1] - 2.5e-2F*v[t + 1][x][y][z - 1])*sin(theta[x][y][z - 1])*cos(phi[x][y][z - 1]) + (-7.5e-2F*v[t + 1][x][y][z - 1]) + (-7.5e-2F*v[t + 1][x][y][z - 1])*sin(theta[x][y][z - 1])*sin(theta[x][y][z - 1])*cos(phi[x][y][z - 1])*cos(phi[x][y][z - 1])*sin(theta[x][y][z - 1])*sin(theta[x][y][z - 1])*sin(theta[x][y][z - 1])*cos(phi[x][y][z - 1])*sin(theta[x][y][z - 1])*sin(theta[x][y][z - 1])*sin(theta[x][y][z - 1])*cos(phi[x][y][z - 1])*sin(theta[x][y][z - 1])*sin(theta[x][y][x - 1])*sin(theta[x][x - 1])*sin(theta[x][y][x - 1])*sin(theta[x][x - 1])*sin(theta[x][x - 1])*sin(theta[x][x - 1])*sin(theta[x][x - 1])*sin(theta[x - 1][x - 1])*sin(theta[x - 1][x - 1][x - 1][x - 1](x - 1](x - 1))*sin(theta[x - 1][x - 1][x - 1][x - 1]x - 1*sin(theta[x - 1][x - 1][x - 1]x - 1)*sin(theta[x - 1][x - 1][x - 1][x - 1][x - 1]x - 1*sin(theta[x - 1][x - 1][x - 1]x - 1)*sin(theta[x - 1][x - 1][x - 1][x - 1][x - 1]x - 1*sin(theta[x - 1][x - 1][x - 1]x - 1)*sin(theta[x - 1][x - 1][x - 1][x - 1][x - 1]x - 1*sin(theta[x - 1][x - 1][x - 1][x - 1]x - 1*sin(theta[x - 1][x - 1][x - 1][x - 1]x - 1*sin(t + 1][x + 2][y][z]) * sin(theta[x][y][z]) * cos(phi[x][y][z]) * cos(phi[x][y][z]) * cos(phi[x][y][z]) * (-2.5e-2F*v[t + 1][x - 2][y][z - 1] + 2.5e-2F*v[t + 1][x - 2][y][z + 1]) * cos(theta[x - 2][y][z]) * (-2.5e-2F*v[t + 1][x - 2][y][z]) * (-2.5e-2F*v[t + 1][x+2.5e-2F*v[t+1][x-2][y+1][z])*sin(phi[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x-2][y][z])*sin(theta[x+1[z] - 2.5e-2F*v[t + 1][x + 2][y + 1][z])*sin(theta[x][y + 1][z])*sin(thet 2.5e-2F*v[t+1][x+1][y+2][z])*sin(phi[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][z])*sin(theta[x+1][y][x])*sin(theta[x+1][y][x])*sin(theta[x+1][y][x])*sin(theta[x+1][y][x])*sin(theta[x+1][y][x])*sin(theta[x+1][y][x])*sin(theta[x+1][-1][y][z+1] - 2.5e - 2F*v[t+1][x-1][y][z+2])*cos(theta[x-1][y][z]) + (-7.5e - 2F*v[t+1][x-1][y][z] + 1.0e - 1F*v[t+1][x-1][y+1][z] - 2.5e - 2F*v[t+1][x-1][y+2][z])*sin(phi[x-1][y][z])*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z])*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z])*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z])*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z])*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z])*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z])*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][z]))*sin(theta[x-1][y][x]))*sin(theta[x-1][y][x]))*sin(theta[x-1][y][x]))*sin(theta[x-1][y][x]))*sin(theta[x-1][y][x]))*sin(theta[x-1][y][x]))*sin(theta[x-1][y][x]))*sin(theta[x-1][y][x]))*sin(theta[x-1][y][x]))*sin2])*cos(theta[x][y][z]) + (-7.5e-2F*v[t + 1][x][y][z] + 1.0e-1F*v[t + 1][x][y + 1][z] - 2.5e-2F*v[t + 1][x][y + 2][z])*sin(phi[x][y][z])*sin(theta[x][y][z]))*sin(phi[x][y][z]) 2.5e-2F*v[t+1][x+1][y][z])*sin(theta[x][y][z])*cos(phi[x][y][z]) + (-7.5e-2F*v[t+1][x][y][z] + 1.0e-1F*v[t+1][x][y][z+1] - 2.5e-2F*v[t+1][x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][z+2])*cos(phi[x][y][x+2])*cos(phi[x][y][x+2])*cos(phi[x][y][x+2])*cos(phi[x][y][x+2])*cos(phi[x][y][x+2])*cos(phi[x][x+2])*cos(phi[x][x+2])*cos(phi[x][x+2])*cos(phi[x][x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phi[x+2])*cos(phSnapshot of a C + 1][x][y][z] - 7.5e-2F*v[t+1][x][y][z-2] + 1.0e-1F*v[t+1][x][y][z-1])*cos(theta[x][y][z-2]) + (-7.5e-2F*v[t+1][x][y][z-2] + 1.0e-1F*v[t+1][x][y+1][z-2])implementation of a 1.25e-2F*((-2.5e-2F*v[t+1][x-1][y-2][z]+2.5e-2F*v[t+1][x+1][y-2][z])*sin(theta[x][y-2][z])*cos(phi[x][y-2][z])+(-2.5e-2F*v[t+1][x][y][z]-7.5e-2F*v[t+1][x][y][z]-7.5e-2F*v[t+1][x][y][z]-7.5e-2F*v[t+1][x][y][z]-7.5e-2F*v[t+1][x][y][z]-7.5e-2F*v[t+1][x][y][z]-7.5e-2F*v[t+1][x][y][z]-7.5e-2F*v[t+1][x][y][z]-7.5e-2F*v[t+1][x][y][z]-7.5e-2F*v[t+1][x][y][z]-7.5e-2F*v[t+1][x][y][z]-7.5e-2F*v[t+1][x][y][z]-7.5e-2F*v[t+1][x][y][z]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x][y]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x]-7.5e-2F*v[t+1][x] $[z])*\sin(\text{theta}[x][y-2][z]) + (-7.5e-2F*v[t+1][x][y-2][z] + 1.0e-1F*v[t+1][x][y-2][z+1] - 2.5e-2F*v[t+1][x][y-2][z+2])*\cos(\text{theta}[x][y-2][z]))*\sin(\text{theta}[x][y-2][z]) + (-7.5e-2F*v[t+1][x][y-2][z]) + (-7.5e-2F*v[t+1][x][y-2][x]) + (-7.5e-2F*v[t+1][x][x][y-2][x]) + (-7.5e-2F*v[t+1][x][x][y-2][x]) + (-7.5e-2F*v[t+1][x][x][x]) + (-7.5e-2F*v[t+1][x][x]x + (-7.5e-2F*v[t+1][x][x][x]) + (-7.5e-2F*v[t+1][x][x]x + (-7.5e-2F*v[t+1][x]x + (-7.5e-2F*v[t+1]x + (-7.5e-2F*v[t+1]x$ finite difference + ||[x][y - 1][z] + ||.0e - ||F*v[t + 1][x][y - 1][z + 1] - 2.5e - 2F*v[t + 1][x][y - 1][z + 2])*cos(theta[x][y - 1][z]))*sin(phi[x][y - 1][z]))*sin(theta[x][y - 1][z]))*delta[x][y - 1][x][y - 1scheme (2nd order in +3.75e-2F*(-(-2.5e-2F*u[t+1][x][y-1][z]+2.5e-2F*u[t+1][x][y+1][z])*cos(phi[x][y][z])+(-7.5e-2F*u[t+1][x][y][z]+1.0e-1F*u[t+1][x+1][y][z]1.25e-2F*(-(-2.5e-2F*u[t+1][x-2][y-1][z]+2.5e-2F*u[t+1][x-2][y+1][z])*cos(phi[x-2][y][z])+(-2.5e-2F*u[t+1][x][y][z]-7.5e-2F*u[t+1][x-2][y][z]+2.5e-2F*u[t+1][x-2][y][z]+2.5e-2F*u[t+1][x-2][y][z]+2.5e-2F*u[t+1][x-2][y][z]+2.5e-2F*u[t+1][x-2][y][z]+2.5e-2F*u[t+1][x-2][y][z]+2.5e-2F*u[t+1][x-2][y][z]+2.5e-2F*u[t+1][x-2][y][z]+2.5e-2F*u[t+1][x-2][y][z]+2.5e-2F*u[t+1][x-2][y][z]+2.5e-2F*u[t+1][x-2][y][z]+2.5e-2F*u[t+1][x-2][y][x]+2.5e-2F*u[t+1][x-2][y][x]+2.5e-2F*u[t+1][x][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5e-2F*u[t+1][x]-2.5space and time) for + 5.0e-2F*((-2.5e-2F*u[t+1][x-1][y-1][z] + 2.5e-2F*u[t+1][x+1][y-1][z])*sin(phi[x][y-1][z]) - (1.0e-1F*u[t+1][x][y][z] - 7.5e-2F*u[t+1][x][y-1][z]TTI in a cubic grid ||x|||x||| ||x||| ||2])*sin(theta[x][y][z - 1]) + (-2.5e-2F*u[t + 1][x][y - 1][z - 1] + 2.5e-2F*u[t + 1][x][y + 1][z - 1])*<math>sin(theta[x][y][z - 1])*cos(theta[x][y][z - 1]) + (-7.5e-2F*u[t + 1][x][y - 1][x - 1])*<math>sin(theta[x][y][z - 1])*cos(theta[x][y][z - 1]) + (-7.5e-2F*u[t + 1][x][y - 1][x - 1])*<math>sin(theta[x][y][z - 1])*cos(theta[x][y][z - 1]) + (-7.5e-2F*u[t + 1][x][y - 1][x - 1])*<math>sin(theta[x][y][z - 1])*cos(theta[x][y][z - 1]) + (-7.5e-2F*u[t + 1][x][y - 1][x - 1])*<math>sin(theta[x][y][x - 1])*cos(theta[x][y][x - 1]) + (-7.5e-2F*u[t + 1][x][y - 1][x - 1])*<math>sin(theta[x][y][x - 1])*cos(theta[x][y][x - 1]) + (-7.5e-2F*u[t + 1][x][y - 1][x - 1])*<math>sin(theta[x][y][x - 1])*cos(theta[x][y][x - 1]) + (-7.5e-2F*u[t + 1][x][y - 1][x - 1])*<math>sin(theta[x][y][x - 1])*cos(theta[x][y][x - 1]) + (-7.5e-2F*u[t + 1][x][y - 1][x - 1])*cos(theta[x][y][x - 1])*cos(theta[x][y][x - 1][x - 1])*cos(theta[x][y][x - 1][x - 1])*cos(theta[x][y][x - 1][x - 1][x - 1]x - 1)*cos(theta[x][y][x - 1][x - 1]x - 1)*cos(theta[x][y][x - 1][x - 1][x - 1]x - 1)*cos(theta[x][y][x - 1][x - 1]x - 1)*cos(theta[x][x - 1][x - 1][x - 1]x - 1)*cos(theta[x][x - 1][x - 1][x - 1]x - 1)*cos(theta[x][x - 1][x - 1][x - 1]x - 1)*cos(theta[x - 1][x - 1][x - 1]x - 1)*cos(theta[x - 1][x - 1][x - 1]x - 1)*cos(theta[x - 1][x - 1][x - 1]x - 1)*cos(theta[x - 1][x - 1][x - 1][x - 1]x - 1)*cos(theta[x - 1][x - 1][x - 1]x - 1)*cos(theta[x - 1][x - 1][x - 1]x - 1)*cos(theta[x - 1][x - 1][x - 1]x - 1)*cos(theta[x - 1][x - 1][x - 1]x - 1)*cos(theta[x - 1][x - 1][x - 1]x - 1)*cos(theta[x - 1][x - 1][x - 1]x - 1)*cos(theta[x - 1][x - 1][x - 1]x - 1)*cos(theta[x - 1][x - 1][x - 1]x - 1)*cos(theta[x - 1][x - 1][x - 1]x - 1)*cos(theta[x - 1][x - 1]x - 1)*cos(theta[2][y][z - 1])*cos(phi[x][y][z - 1])*sin(theta[x][y][z - 1]) + 3.75e-2F*(-(-2.5e-2F*u[t + 1][x][y][z - 1]) + 2.5e-2F*u[t + 1][x][y][z + 1])*sin(theta[x][y][z - 1])*cos(phi[x][y][z - 1])*cos(phi[x][y][x - 1])*cos(phi[x][x - 1])*cos(phi[x][x - 1])*cos(phi[x][x - 1])*cos(phi[x - 1])*cos(phi[x][x - 1])*cos(phi[x][x - 1])*cos(phi[x - 1])*cos (-2.5e-2F*u[t+1][x-2][y][z-1]+2.5e-2F*u[t+1][x-2][y][z])+(-2.5e-2F*u[t+1][x-2][y][z])+(-2.5e-2F*u[t+1][x-2][y-1][z]+2.5e-2F*u[t+1][x-2][y+1][z])*sin(phi[x-2][y][z])*cos(theta[x-2][y][z])+(-2.5e-2F*u[t+1][x][y][z])*sin(phi[x-2][y][z])*cos(theta[x-2][y][z])+(-2.5e-2F*u[t+1][x][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][z])*sin(phi[x-2][y][x])*sin(phi[x-2][y][x])*sin(phi[x-2][y][x])*sin(phi[x-2][y][x])*sin(phi[x-2][y][x])*sin(phi[x-2][y][x])*s[z] - 7.5e - 2F * u[t + 1][x - 2][y][z] + 1.0e - 1F * u[t + 1][x - 1][y][z]) * cos(phi[x - 2][y][z]) * cos(phi[x - 2][y][z])1])*sin(theta[x - 1][y][z]) + (-2.5e-2F*u[t + 1][x - 1][y - 1][z] + 2.5e-2F*u[t + 1][x - 1][y + 1][z])*sin(phi[x - 1][y][z])*cos(theta[x - 1][y][z]) + (1.0e-1F*u[t + 1][x][y][z] - 7.5e-2F*u[t + 1][x - 1][y][z] - 2.5e-2F*u[t + 1][x - 1][y][z])*sin(phi[x - 1][y][z])*cos(theta[x - 1][y][z]) + (1.0e-1F*u[t + 1][x][y][z] - 7.5e-2F*u[t + 1][x - 1][y][z])*sin(phi[x - 1][y][z])*sin(phi[x - 1][y][z]) + (1.0e-1F*u[t + 1][x][y][z])*sin(phi[x - 1][y][z])*sin(phi[x - 1] [y + 1][z - 1] + 2.5e-2F*u[t + 1][x][y + 1][z + 1])*sin(theta[x][y + 1][z]) + (-7.5e-2F*u[t + 1][x][y + 1][z] + 1.0e-1F*u[t + 1][x + 1][y + 1][z] - 2.5e-2F*u[t + 1][x + 2][y + 1][z])*cos(phi[x][y + 1][z])*cos(theta[x][y + 1][x][y + 1][z])*cos(theta[x + 1][y][z]) - 1.25e-2F*u[t + 1][x][y]= 2.5e-2F*u[t + 1][x][y]= 1.25e-2F*u[t + 1][x][y - 1][z])*cos(theta[x][y - 1][z])*cos(theta[x][y - 1][z]) + (-7.5e-2F*u[t + 1][x][y - 1][x][y - 1][x][y - 1][x][y - 1][x](y - 1][x][y - 1][x](y 2.5e-2F*u[t+1][x-2][y][z])*cos(phi[x-1][y][z])*cos(theta[x-1][y][z])+(-7.5e-2F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z+1]-2.5e-2F*u[t+1][x-1][y][z+2])*sin(theta[x-1][y][z])+(-7.5e-2F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][z]+1.0e-1F*u[t+1][x-1][y][x]+1.0e-1F*u[t+1][x-1][y][x]+1.0e-1F*u[t+1][x-1][y][x]+1.0e-1F*u[t+1][x-1][y][x]+1.0e-1F*u[t+1][x-1][y][x]+1.0e-1F*u[t+1][x-1][y][x]+1.0e-1F*u[t+1][x-1][y][x]+1.0e-1F*u[t+1][x-1][y][x]+1.0e-1F*u[t+1][x-1][y][x]+1.0e-1F*u[t+1][x-1][y][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1F*u[t+1][x]+1.0e-1

[y + 2][z])*sin(phi[x][y][z])*cos(theta[x][y][z])*sin(phi[x][y][z])*cos(theta[x][y][z])*cos(theta[x][y][z])*cos(theta[x][y][z])*cos(theta[x][y][z])*cos(theta[x][y][z])*cos(theta[x][y][z])*cos(theta[x][y][z])*cos(theta[x][y][z])*cos(theta[x][y][z])*cos(theta[x][y][z])*cos(theta[x][y][z])*cos(theta[x][y][z])*cos(theta[x][y][z])*sin(theta[x][y][z])*sin(theta[x][y][z])*sin(theta[x][y][z])*sin(theta[x][y][z])*sin(theta[x][y][z])*sin(theta[x][y][z])*cos(theta[x][y][z])*sin(theta[x][y][z])*cos(theta[x][y][z])*cos(theta[x][y][z])*cos(theta[x][y][z])*sin(theta[x][y][z]

1.0e-1F*u[t+1][x-1][y+1][z]-2.5e-2F*u[t+1][x-1][y+2][z])*sin(phi[x-1][y][z])*cos(theta[x-1][y][z])*cos(theta[x-1][y][z])*cos(theta[x-1][y][z])+3.75e-2F*u[t+1][x-1][y][z]+2.5e-2F*u[t+1][x][y][z]+2.5e-2F*u[t+1][x][y][z]+1.0e-1F*u[t+1][x][x][y][z]+1.0e-1F*u[t+1][x][x][x]+1.0e-1F*u[t+1][x][x][x]+1.0e-1F*u[t+1][x][x][x]+1.0e-1F*u[t+1][x][x][x]+1.0e-1F*u[t+1][x][x][x]+1.0e-1F*u[t+1][x][x][x]+1.0e-1F*u[t+1][x][x][x]+1.0e-1F*u[t+1][x][x][x]+1.0e-1F*u[t+1][x][x][x]+1.0e-1F*u[t+1][x][x][x]+1.0e-1F*u[t+1][x][x][x]+1.0e-1F*u[t+1][x][x]+1.0e-1F*u[t+1][x][x]=1.0e-1F*u[t+1][x][x]=1.0e-1F*u[t+1][x][x]=1.0e-1F*u[t+1][x][x]=1.0e-1F*u[t+1][x][x]=1.0e-1F*u[t+1][x]

Why we need HPC implementations

- Huge number of floating-point operations: more than 6000 per loop iteration for a 16th order TTI operator
- Realistic 3D grids may have more than 10⁹ grid points (e.g., 2.82 billions in SEAM benchmark)
- Often more than 3000 time steps
- Two operators: forward + adjoint
- Usually 30000 shots ("MPI level")
- Around 15 Full-Waveform Inversion (FWI) iterations
- $\approx 6000 \times 2.82 \times 10^9 \times 3000 \times 2 \times 30000 \times 15 \approx 46 \text{ billion TFLOPs}$
- \approx 100 wall-clock days executing on the TACC Stampede (assuming Linpack-level performance)

Devito: automated high performance finite difference

Real-world seismic imaging:

- Complex inversion methods (e.g., FWI)
- Change of physics (e.g., acoustic, VTI, TTI accuracy ⇒ complexity)
- Change of discretization (FD schemes, up to very high order)
- Boundary conditions, data acquisition, source/receivers modeling...
- •

Devito (∈ OPESCI)

- Not "Yet another DSL for toy problems": language + escape hatches
- Interdisciplinary research effort
- Used by geophysicists to write inversion operators
- Based on actual compiler technology (you can write your own passes!)
- This talk: the Devito compiler, its performance optimizations, application to real-world Acoustic and TTI operators

The compilation flow: from symbolics to HPC code

Symbolic equations

Data objects

DSE - Devito Symbolic Engine

Loop scheduler

DLE - Devito Loop Engine

Declarations, headers, ...

Low level code

The compilation flow: from symbolics to HPC code

The compilation flow: from symbolics to HPC code

A sequence of compiler passes to reduce FLOPS (no loops at this stage!)

CSE

- Common sub-expressions elimination
 - C compilers do it already... but necessary for symbolic processing and compilation speed

- Common sub-expressions elimination
 - C compilers do it already... but necessary for symbolic processing and compilation speed
- Heuristic re-factorization of recurrent terms
 - E.g., finite difference weights: 0.3*a + ... + 0.3*b => 0.3*(a+b)
 - Many possibilities (doesn't leverage domain properties yet!)

A sequence of compiler passes to reduce FLOPS (no loops at this stage!)

- Common sub-expressions elimination
 - C compilers do it already... but necessary for symbolic processing and compilation speed
- Heuristic re-factorization of recurrent terms
 - E.g., finite difference weights: 0.3*a + ... + 0.3*b => 0.3*(a+b)
 - Many possibilities (doesn't leverage domain properties yet!)

Factorizer impact:

TTI, space order 4: $1100 \rightarrow 950$

TTI, space order 8: $2380 \rightarrow 2120$

TTI, space order 12: $4240 \rightarrow 3760$

TTI, space order 16: 6680 → 5760

- Common sub-expressions elimination
 - C compilers do it already... but necessary for symbolic processing and compilation speed
- Heuristic re-factorization of recurrent terms
 - E.g., finite difference weights: 0.3*a + ... + 0.3*b => 0.3*(a+b)
 - Many possibilities (doesn't leverage domain properties yet!)

- Common sub-expressions elimination
 - C compilers do it already... but necessary for symbolic processing and compilation speed
- Heuristic re-factorization of recurrent terms
 - E.g., finite difference weights: 0.3*a + ... + 0.3*b => 0.3*(a+b)
 - Many possibilities (doesn't leverage domain properties yet!)
- Trigonometric functions are evil
 - Extremely costly
 - Therefore, approximation with e.g. Taylor polynomials
 - Vectorizable, quicker to compile

- Common sub-expressions elimination
 - C compilers do it already... but necessary for symbolic processing and compilation speed
- Heuristic re-factorization of recurrent terms
 - E.g., finite difference weights: 0.3*a + ... + 0.3*b => 0.3*(a+b)
 - Many possibilities (doesn't leverage domain properties yet!)
- Trigonometric functions are evil
 - Extremely costly
 - Therefore, approximation with e.g. Taylor polynomials
 - Vectorizable, quicker to compile
- Heuristic hoisting of time-invariant quantities
 - Currently, only Approximator's output (but pass is general)...
 - ... to minimize extra memory consumption
 - This is enhanced by the "aliases detection algorithm"

A sequence of compiler passes to introduce parallelism, SIMD vectorization and to improve data locality

Cache opts

Total Thread Count:

- Cache optimizations (mostly L1 cache)
 - Loop fission + elemental functions (register locality)

40.1%

Memory Latency :

3.5%

- Padding + data alignment (split loads)
- Work in progress: data layout transformations

General Exploration General Exploration viewpoin 🔜 Collection Log 🍈 Analysis Target 🔥 Analysis Type 🔞 Summa Intel VTune, Broadwell E5-2620 v4,TTI space orders 4-8-12 Elapsed Time [©]: 487.651s Clockticks: 5,099,766,000,000 Instructions Retired: 4,963,350,000,000 CPI Rate 12: 1.027 MUX Reliability ... 0.752 MUX Reliability ** 0.751 MUX Reliability 2: 0.754 Front-End Bound *: 2.2% Front-End Bound :: 2.0% Front-End Bound :: 1.7% Back-End Bound $^{\circ}$: 76.0% Back-End Bound **: 77.5% Back-End Bound *: 79.0% 54.7% Memory Bound :: 53.1% Memory Bound ": 55.2% 31.0% 28.5% 31.4% 3.9% oads Blocked by Store Forwarding *: 0.0% Loads Blocked by Store Forwarding 2: 0.0% Loads Blocked by Store Forwarding .: 0.0% 0.0% 0.0% 13.5% 38.7% Split Loads *: 4K Aliasing (2): 22.8% 68.3% Split Loads ": 4K Aliasing *: 36.6% FB Full $^{\circ}$: 22.1% 4K Aliasing (*) 31.4% 0.0% FB Full *: 100.0% FB Full (2): 89.2% 3.3% D L3 Bound ": 24.7% 11.2% D L3 Bound ": 4.0% Memory Bandwidth 24.1% Contested Accesses **: 0.0% ○ DRAM Bound ②: 24.5% 34.7% Memory Latency Data Sharing :: 0.0% Memory Bandwidth **: 15.3% 95.0% L3 Latency 2: 5.2% 0.0% Memory Latency ": 37.5% SQ Full 0 0.3% 0.0% Local DRAM 19.3% Store Bound ⁽²⁾: 1.8% ○ DRAM Bound ^①: 12.1% Remote DRAM ... 0.0% 22.7% Memory Bandwidth **: 12.1% Remote Cache 0.0% Retiring **: 20.5%

Store Bound [®]:

A sequence of compiler passes to introduce parallelism, SIMD vectorization and to improve data locality

Cache opts

- Cache optimizations (mostly L1 cache)
 - Loop fission + elemental functions (register locality)
 - Padding + data alignment (split loads)
 - Work in progress: data layout transformations

- Cache optimizations (mostly L1 cache)
 - Loop fission + elemental functions (register locality)
 - Padding + data alignment (split loads)
 - Work in progress: data layout transformations
- DRAM optimizations: loop blocking
 - ID, 2D, 3D supported (but no time loop)
 - Auto-tuning supported

- Cache optimizations (mostly L1 cache)
 - Loop fission + elemental functions (register locality)
 - Padding + data alignment (split loads)
 - Work in progress: data layout transformations
- DRAM optimizations: loop blocking
 - ID, 2D, 3D supported (but no time loop)
 - Auto-tuning supported
- SIMD vectorization
 - Through compiler auto-vectorization
 - Why should I bother using intrinsics?
 - Various #pragmas introduced (e.g., ivdep, alignment, ...)

- Cache optimizations (mostly L1 cache)
 - Loop fission + elemental functions (register locality)
 - Padding + data alignment (split loads)
 - Work in progress: data layout transformations
- DRAM optimizations: loop blocking
 - ID, 2D, 3D supported (but no time loop)
 - Auto-tuning supported
- SIMD vectorization
 - Through compiler auto-vectorization
 - Why should I bother using intrinsics?
 - Various #pragmas introduced (e.g., ivdep, alignment, ...)
- OpenMP
 - #pragma collapse clause on the Xeon Phi

TTI on Broadwell (8 threads, single socket)

TTI on Broadwell (8 threads, single socket)

TTI on Xeon Phi (64 threads, cache mode, quadrant)

TTI on Xeon Phi (64 threads, cache mode, quadrant)

Acoustic on Broadwell

Acoustic on Broadwell

Conclusions and resources

- Devito (part of OPESCI): towards an efficient and sustainable finite difference DSL
- Driven/inspired by real-world seismic imaging
- Based on actual compiler technology
- Performance: promising, but still quite a lot to do
- Future: plug in backends such as YASK

Useful links

- http://www.opesci.org
- https://github.com/opesci/devito

Appendix

Experimentation details

- Compiler
 - ICC 17 -xHost -O3 (-O2 no difference)
 - -xMIC-AVX512 on Xeon Phi
- OpenMP
 - Single socket (still no support for NUMA issue through first touch)
 - Thread pinning
 - Numactl
- Intel(R) Xeon(R) E5-2620 v4 2.1 Ghz "Broadwell" (8 cores per socket)
- Intel(R) XeonPhi(R) 7650
 - 68 cores (used only 64)
 - Quadrant mode (still no support for NUMA)
 - Tried I, 2, 4 threads per core. Shown I thread (no critical differences)
 - Cache mode performs equivalently to Flat mode when datasets fit in MCDRAM
- Roofline calculations available at: https://gist.github.com/FabioLuporini/12485f08576674d8452fec8673d6f26e
 - Memory bandwidth: STREAM
 - CPU peak: pen & paper
 - Operational intensity: source-level analysis (automated through Devito)

	Intel Broadwell	Intel Xeon Phi
Acoustic forward		
TTI forward		

	Intel Broadwell	Intel Xeon Phi
Acoustic forward		
TTI forward		

	Intel Broadwell	Intel Xeon Phi
Acoustic forward		
TTI forward		

	Intel Broadwell	Intel Xeon Phi
Acoustic forward		
TTI forward		

	Intel Broadwell	Intel Xeon Phi
Acoustic forward		
TTI forward		

	Intel Broadwell	Intel Xeon Phi
Acoustic forward		
TTI forward		

Devito Loop Engine (example output)

```
int Kernel(float *restrict damp_vec, float *restrict delta_vec, float *restrict epsilon_vec, float *restrict m_vec, float
*restrict phi_vec, ..., const int x_size, const int y_size, const int z_size, const int x_block_size, const int y_block_size,
struct profiler *timings)
 // PADDED BUFFERS
 float (*pu)[532][532][536];
 posix_memalign((void**)&pti3, 64, sizeof(float[532][532][536]));
 // TIME INVARIANTS
 for (int x = 0; x < x size; x += 1)
  for (int y = 0; y < y_size; y += 1)
    #pragma noinline
    f_2_0(phi_vec,x_size,x,y_size,y,z_size,(float*) pti0,(float*) pti1,(float*) pti2,(float*) pti3,theta_vec);
 for (int time = 0; time < time size; time += 1)
   // NEXT SLIDE
```

Devito Loop Engine (example output)

```
#pragma omp parallel
 /* Flush denormal numbers to zero in hardware */
  MM SET DENORMALS ZERO MODE( MM DENORMALS ZERO ON);
 MM SET FLUSH ZERO MODE( MM FLUSH ZERO ON);
 #pragma omp for schedule(static, I)
 for (int x block = 4; x block < x size - (x size - 8)%(x block size) - 4; x block += x block size)
                                                                                     Loop blocking loops
  for (int y block = 4; y block < y size - (y size - 8)%(y block size) - 4; y block += y block size)
   double ptemp276[536] attribute ((aligned(64)));
   double ptemp278[536] __attribute__((aligned(64)));
   // MORE PADDED TEMPORARIES
   for (int x = x_block; x < x_block + x_block_size; x += I) Intra-block loops
    for (int y = y block; y < y block + y block size; y += 1)
     #pragma noinline
                                                                                SIMD dimension
     f_2_I ((float*) ptemp276,z size,(float*) pu,t size,x size,x,y size,y,tl);
     #pragma noinline
     f_2_I19((float*) pts48,z_size,(float*) pts49,(float*) pts50,(float*) pv,t_size,x_size,x,y_size,y,t2); within these
                                                                                        functions
// BLOCKING REMAINDER LOOPS
// MODEL SOURCES AND RECEIVERS
```

f 2 477(m vec,x size,y size,z size,(float*) pu,t size,(float*) pv,src vec,time size,src coords vec,d size,time,t2);

f 2 478((float*) pu,t size,x size,y size,z size,(float*) pv,rec vec,time size,rec coords vec,d size,time,t2);

#pragma noinline

#pragma noinline

DLE significantly benefited from Intel VTune

10.1%

of Pipeline Slots

Retiring [©]:

Acoustic on Xeon Phi (64 threads, in MCDRAM)

Acoustic on Xeon Phi (64 threads, in MCDRAM)

Acoustic on Xeon Phi (64 threads, needs DRAM)

Acoustic on Xeon Phi (64 threads, needs DRAM)

Devito Symbolic Engine (example output)


```
ti0[x][y][z] = 1.6e+1F*(-fabs(theta[x][y][z]) + 3.1416F)*theta[x][y][z]/(-4.0F*(-fabs(theta[x][y][z]) + 3.1416F)*fabs(theta[x][y][z]) + 4.93483e+1F)
...

temp33 = 2.5e-2F*((-v[t + 1][x][y][z - 1] + v[t + 1][x][y][z + 1])*ti2[x][y][z] + (-v[t + 1][x][y - 1][z] + v[t + 1][x][y + 1][z])*ti0[x][y][z]*ti3[x][y][z]) + (-7.5e-2F*v[t + 1][x][y][z] + 1.0e-1F*v[t + 1][x + 1][y][z] - 2.5e-2F*v[t + 1][x + 2][y][z])*ti0[x][y][z]*ti1[x][y][z]

temp34 = ...

temp35 = ... temp33 ...
```

Devito Symbolic Engine (example output)


```
ti0[x][y][z] = 1.6e+1F*(-fabs(theta[x][y][z]) + 3.1416F)*theta[x][y][z]/(-4.0F*(-fabs(theta[x][y][z]) + 3.1416F)*fabs(theta[x][y][z]) + 4.93483e+1F)
...

temp33 = 2.5e-2F*((-v]t + 1][x][y][z - 1] + v[t + 1][x][y][z + 1])*ti2[x][y][z] + (-v[t + 1][x][y - 1][z] + v[t + 1][x][y] + 1][z])*ti0[x][y][z]*ti3[x][y][z]) + (-7.5e-2F*v[t + 1][x][y][z] + 1.0e-1F*v[t + 1][x + 1][y][z] - 2.5e-2F*v[t + 1][x + 2][y][z])*ti0[x][y][z]*ti1[x][y][z]

temp34 = ...
temp35 = ... temp33 ...
```