One - Stage Reduction Gearbox Technical Report

Table of Contents

Title and Abstract	3
Executive Summary	3
Introduction	3
Synthesis and Decision on General Layout	6
Single Stage Spur Gear	6
Single Stage Helical Gear	7
Design Procedure and Sample Calculations	8
Gear Calculations:	8
Shaft Calculations:	12
Key Calculations:	17
Bearing Calculations:	18
Discussion - Conclusions	19
Supporting Information to Determine the Conclusion:	21
Gear Design:	21
Pinion Shaft	22
Gear Shaft	24
Key	26
Bearing	26
References	26
Appendices	28
Appendix A: List of Symbols	28
Appendix B: Tables	30
Appendix C: Figures	38
Appendix C: Equations	43

Title and Abstract

Executive Summary

The designing of a single reduction gearbox was focused when conducting the implementation of the single reduction gear box project. Our group of ten members focused on designing a single reduction spur gearbox. Which includes a series of gears, shafts, bearings, keys, housing and mechanical keys and shafts that meet to the specification of our team. The objective of our team was to create a gearbox design that can handle 25 HP and an input speed of 1750 rpm and an output speed of 500 rpm.

The design of our gearbox was executed by the implementation of using Microsoft excel spreadsheets to create equations for each design component of the gearbox. The initial design of the gearbox was designed using solid works and the proper fixtures between the contact parts of housing and the connectors of bearing loads were executed through the simulation process.

Introduction

The function of a gearbox is to transfer a portion of energy from one device into another device by increasing its torque. When creating our gearbox design our group focused on many key aspects of the gearbox.

The gear attachments were carefully considered when designing our solid works as the pinion and gears were fixed onto the shafts. When designing our gear components, the necessary factors of safety of the bending and wearing are calculated and determined to ensure a proper rotation of the gears.

A major design component in our gearbox was the creation of the shafts. When designing our shafts, the size of the shaft and the arrangement of the shaft assemblies were determined to judge location of the bearings. The creation of the shaft key in the gearbox was very critical as the input shaft key had to fail the ultimate shear strength before the gears or the shafts began to yield. Our group calculated the yielding and shear failure safety factors of the shaft keys. This calculation process ensures that the failure will occur in the weakest key initially as this prevents the rest of the gearbox from overloads.

The gearbox housing was another major component towards the designing process of our gear box. As the gearbox housing provided the necessary support of the bearing to ensure that all components of the gearbox are sealed and are properly fixed in place. As in our designing creation of our gearbox there were two mounted points assembled in the gearbox.

By using the software of solid works our group was able to properly design and assemble part modeling of our gear box design. Initially our group designed drawings of the shaft in order to get an outlook of the gearbox components. When creating our design and drawing a judgment of the necessary tolerances and dimensions were heavily measured and considered when developing our gearbox. Each of our drawings displayed clear information on the sizing of the shafts and the gears. With proper dimensions and drawings presented our group was able to efficiently start on the design modelling of solid works and the simulation process by assembling the necessary parts into the gearbox design.

The delivered power will be in the range 25 HP, and the input speed used for our gearbox is 1750rpm and the output speed is 500 rpm. The input and output shafts designed in our gearbox were 100mm long and were displayed on the slots of the outside of the gearbox.

The gear pressure angle for our design specification was at an angle of 20°, in our gearbox design a helix angle was not used. The design life for the gears and bearings were 20,000 hours of life.

In our gear box design two keys were developed using solid works software the formation of the gear and pinions were developed with the use of a yielding safety factor of ny 2. The fatigue safety factors for both the gears and pinions are 1.2. The bending of our pinion is 1.2 also, yet for the gear the bending was calculated to be 1.5.

In our gearbox design our group went with a diametral pitch of 6, with the data provided in the section 14-4 of the Shigley's Mechanical Engineering Design eBook. The required measurements of the development of the gears and pinions used in the gearbox were collected from the figure and tables of 14-4 section.

In our gearbox design we were able to precisely mark the axial locations of the gears on the shaft. In the gearbox the motor shaft was required to couple with the input shaft for the proper assembly the input shaft measurements were taken to be extended over the housing component for a proper assembly connection with the motor shaft. For the output shafts of the gearbox the mates had to have a proper connection with the drive shaft in the propeller. With the correct tolerance and dimension used in the solid works software, our proper assembly of the gearbox was conducted. A design reliability of 0.999 was also used through the development of our gearbox design

When developing the gears component of our gearbox we ensured that the number of teeth in the gear stay at the limit of 75 to ensure proper rotational components can be established within the gearbox.

The diameters of our shafts used in the gearbox were 1 inch and the length of each shaft used were less than 10 inches to ensure that the shaft would fit into the gearbox. Each bearing used in the gearbox had a 95% reliability with a design life component of 20,000 hours.

The gears in the gearbox were at commercial quality of 99.9 reliability and the centre of distance marked between each gear had a separation distance of 10 inches in the gearbox from its center location.

An example of gearbox layout

1. pinion; 2. bearing; 3. connecting bolt for bearing cover; 4. high speed shaft; 5. gear; 6. bearing cover; 7. pinion; 8. middle shaft; 9. bearing; 10. bearing cover; 11. bearing; 12. low speed shaft; 13. bearing cover; 14. gear; 15. housing connecting bolt; 16. guide pin; 17. high-speed stage center distance; 18. low-speed stage center distance.

Synthesis and Decision on General Layout

Single Stage Spur Gear

When designing a one-stage speed reduction gearbox there were two various design choices that were presented. The option of using spur gear or helical gears was a critical design and ultimately designing our gear box. The differences and benefits of using one gear over another required our team members to gain a proper understanding of the two gears. When using spear gears in our gearbox there teeth are in a straight manner and the teeth are parallel to the axis of the gear. The spur gears when compared to the helical gears are very loud gears and the transmission of the gears are not the smoothers. The spur gears tend to produce a higher efficient power and this was one of the reasons our group tended to lean towards developing a gearbox that contained the use of spur gears. In the gearbox design the spur gear when in use at the higher power loads will vibrate and cause the noise of the gearbox to be heard in a loud manner when higher speeds are produced.

Single Stage Helical Gear

The second option was using helical gears in our gearbox , our group initially gained a proper understanding of spur gears and their implication towards a gearbox. When studying the effects of helical gears instead of a gear box we were able to compare that in helical gears the teeth are arranged in an angle to the gears axis. The helical gears provided a more smoother and quieter operation compared to the spur gears in the gearbox design. Helical gears inside a gearbox have a higher load carrying capacity and thus creating a greater tooth strength for the gears teeth. The main difference in design layout between the two gears is that helical gears transmit power in between the parallel and the non parallel shafts. Spur gears only had the ability to transmit power to the parallel shafts. After analyzing and studying the design layout between the two gears our group tended to lean towards designing a single stage spur gearbox due to the gearbox's ability to produce a high efficient power.

Design Procedure and Sample Calculations

Gear Calculations:

Design Procedure - First Iteration Parameters:

Pinion Teeth Number (Np) = 20
Gear Teeth Number (Ng) = 70
Material used: Gray Cast Iron Class 40
Diametral Pitch (Pd) = 4
Pressure Angle = 20°
Input Power (P) = 25 HP
Input Speed (n) = 1750 rpm
Output Speed = 500 rpm
Life (N) = 20,000 hours
Reliability = 99.9%
Gear Ratio (mg) = 3.5

Pinion Pitch Diameter:

dp = Np/Pd = 5

Gear Pitch Diameter:

dg = Ng/Pd = 17.5

Pitch Line Speed:

 $V = (\pi * Dp * n)/12 = 2290.74$

<u>Transmitted Load:</u>

Wt = (33,000 * P)/V = 360.14

Face Width Guidelines:

Fmin = 8/Pd = 2 inch Fnom = 12/Pd = 3 inchFmax = 16/Pd = 4 inch

Face Width/Pinion Diameter Ratio:

F/Dp = 0.6

Elastic Coefficient: 1554.116

vp = 0.211Ep = 14.5 Mpsi

Elastic Coefficient:

The elastic coefficient was calculated, using the values found in Table A-5.

$$Cp = (1\pi * (1 - vp^2)/Ep + (1 - vg^2)/Eg) 0.5$$

Poisson's Ratio for Gray Cast Iron: v = 0.211

Modulus of Elasticity for Gray Cast Iron: E = 14.5 Mpsi

Lewis Form Factor:

Based on the assumed number of pinion teeth, 20, and gear teeth, 70, table 14-2 is used to find the Lewis Form Factor for the pinion and gear.

$$Yp = 0.309$$

$$Yg = 0.4246$$

Bending Geometry Factor:

Using figure 14-6, the bending geometry factor for the pinion and the gear can be found.

$$Jp = 0.320$$

$$Jg = 0.405$$

<u>Surface Strength Geometry Factor</u>:

$$I = (\cos(\phi)\sin(\phi) * mg)/(2mn * (mg + 1)$$

$$I = 0.125$$

Load Distribution Factor:

$$Km = 1 + Cmc(CpfCpm + CmaCe)$$

$$Cpm = 1$$

$$Cma = A + BF + CF$$
 2

Using Table 14-9, A, B and C can be found.

$$A = 0.127$$

$$B = 0.0158$$

C = 0.0001093

$$Cma = 0.158$$

$$Km = 1.212$$

Size Factor:

$$Ks = 1.192((F \lor Y)/(Pd)) 0.053$$

The pinion and gear are assumed to have constant thickness

$$Kbp = 1 Kbg = 1$$

Dynamic Factor:

$$Kv = ((A + \sqrt{V})/A) B = 1.497$$

$$B = 0.25(12 - Qv)^{3} = 0.731$$

Hardness Ratio Factor:

$$CH = 1 + A'(mg - 1)$$

$$A' = 8.98(10 - 3)(HBP/HBG) - 8.29(10 - 3)$$
 $1.2 \le (HBP/HBG) \le 1.7$

The pinion and gear material are assumed to both be Gray Cast Iron Class 40, which means they have the same Brinell hardness value. Since (HBP/HBG) = 1, A'=0

$$CH = 1$$

Temperature Factor:

The temperature factor can be found assuming that the oil temperature in the gearbox will have a maximum value of 120 degrees.

$$KT = 1$$

Reliability Factor:

As per the design requirements, the gearboxe's reliability should be 99.9%. The reliability factor can be found using table 14-10.

$$KR = 1.25$$

Bending Stress Cycle Factor:

From figure 14-14, the formula for the bending stress cycle factor, for cycles over, is:

$$YNp = 0.841$$

$$Cycles\ Ngear = 2.1x10^9$$

$$YNg = 0.876$$

$$Cycles\ YNp = 6.0x10^8$$

Contact Stress Cycle Factor:

From figure 14-15, the formula for the contact stress cycle factor, for cycles over, is:

$$ZNp = 0.741$$

$$ZNg = 0.795$$

Using the gear design factors, the bending and contact stress values can be found.

$$(\sigma bending)$$
p = $Wt(KoKvKmKbp\ Ksp\)(Pd/(FJp)\ (\sigma bending)$ = 3155 psi $(\sigma bending)$ g = $Wt(KoKvKmKbg\ Ksg\))(Pd/(FJg)$ = 2512 psi $(\sigma contact)$ p = $Cp(WtKoKvKsp\ KmCf\ /dpFI)$ 0.5 = 31,232 psi $(\sigma contact)$ g = $Cp(WtKoKvKsg\ KmCf\ /dpFI)$ 0.5 = 31,354 psi

With the selected material of Gray Cast Iron class 40 for the pinion and gear, the "fully corrected" bending (S't) and contact stress (S'c) can be found. Using table 14-4, figure 14-2, table 14-7 and figure 14-5.

$$(S't)p = St(YNp / KTKR) = 7,030 \text{ psi}$$

 $(S't)g = St(YNg / KTKR) = 5,376 \text{ psi}$
 $(S'c)p = Sc(ZNp CH / KTKR) = 63,204 \text{ psi}$
 $(S'c)g = Sc(ZNg CH / KTKR) = 59,152 \text{ psi}$

The bending and contact safety factors can be calculated for the pinion and gear, using the "fully corrected" numbers and bending and contact stress numbers calculated.

$$(SF)P = (S't)p/(\sigma bending) = 2.77$$

 $(SF)G = (S't)g/(\sigma bending) = 3.63$
 $(SH)P = (S'c)p/(\sigma contact) = 1.52$
 $(SH)G = (S'c)g/(\sigma contact) = 1.62$

Shaft Calculations:

Tensile strength(room temperature) (ksi) Sut = 123 ksi Yield strength (ksi) Suy = 94 ksi Corrected endurance limit (ksi) Se' = 61.5 ksi

Torque (eq 18-1):

T pinion = 900 in lb

T gear= 3150in lb

$$T = 63000 x H / n_p$$

Transmitted load:

$$W_{t \, Gear} = W_{t \, Pinion} = 600.24 \, lb$$

Wt = 33000 x H / N_p

Total force:

$$W_{Gear} = W_{Pinion} = 638.76 lb$$
$$\underline{W} = \frac{W_t}{cos(2\pi/180)}$$

Moment max:

$$M_{max \; Gear} = M_{max \; Pinion} = 1437.22 \; lb \; in$$

Shaft Length (in): 9

Gear Width (in): 3 Bearing Width (mm): 18

$$Mmax = \frac{T_f x Shaft Length}{2}$$

Stresses

Bending moment alternating (lbf in):

$$M_{a~Gear} = M_{a~Pinion}$$
 $M_a = M_{max} \times (w_b/L_s) = 1437.22 \times (0.354/4.500) = 113.17~{\rm lbf}$ in

Bending moment mean (lbf in):

$$M_{m \; Gear} = M_{m \; Pinion}$$

 $M_{m} = 0 \; lbf \; in$

Torque alternating (lbf in):

$$\underline{T_a = 0}$$
 lbf in

Torque mean (lbf in):

$$T_{m\,Pinion} = 900\,lbf$$
 in

$$T_{m Gear} = 0 lbf in$$

Marin Factors

Surface factor (machined) T-6-2:

Surface Factor Eq. 6-19:

$$k_{a Gear} = k_{a Pinion}$$

$$\underline{k_a = a \times S_{ut}}^{b = a} = 2 \times 123^{-0.217} = 0.704^{=}$$

Shaft Diameter (in):

Size Factor (rotating shaft), Eq. 6-20:

$$k_{a \; Gear} = k_{a \; Pinion}$$

 $k_a = 0.879 \times d^{-0.107} = 0.879 \times 1.889^{-0.107} = 0.821$

Loading Factor, Eq. 6-26:

$$k_{c Gear} = k_{c Pinion}$$

 $\underline{k_c = 1}$

<u>Temperature Factor:</u>

$$k_{d Gear} = k_{d Pinion}$$

 $k_{d} = 1$

Reliability Factor (0.999) T-6-5:

$$k_{e \ Gear} = k_{e \ Pinion}$$

 $\underline{k_e = 0.753}$

Modified Endurance Limit, Eq.6-18:

$$S_{e\ Gear} = S_{e\ Pinion}$$

 $S_{e} = ka \times kb \times kc \times kd \times ke \times Se' = 26.767 \, \mathrm{ksi}$

Notch Sensitivity, q

Bending

Neuber constant:

$$\sqrt{a_{Gear}} = \sqrt{a_{Pinion}}$$

$$\sqrt{a=0.246-3.08(10^{-3})} = 1.51(10^{-5})$$

$$\sqrt{a=0.246-3.08(10^{-3})} = 1.51(10^{-5})$$

$$\sqrt{a_{Gear}} = \sqrt{a_{Pinion}}$$

$$\sqrt{a=0.246-3.08(10^{-3})} = 1.51(10^{-5})$$

$$\sqrt{a_{Gear}} = \sqrt{a_{Pinion}}$$

$$\sqrt{a=0.246-3.08(10^{-3})} = 1.51(10^{-5})$$

$$\sqrt{a_{Gear}} = \sqrt{a_{Pinion}}$$

$$\sqrt{a_{Gear}} = \sqrt{a_{Gear}}$$

$$\sqrt{a_{Gear}} = \sqrt{a_$$

$$q_{Gear} = q_{Pinion}$$

$$q=1/(1+Va/Vr) = 0.7554$$

Torsion

Neuber constant:

Fatigue Stress Concentration Factor

$$Gear = Pinion$$

$$D/d = 1.5/d = 0.794$$

 $r/d = 0.011$

Stress Conc. Factor (Fig.A15-9):

$$k_{t Gear} = k_{t Pinion}$$

 $\underline{k_t} = 1.45$

Stress Conc. Factor (shear) (Fig.A15-8):

$$k_{ts \; Gear} = k_{ts \; Pinion}$$

 $\underline{k_{ts} = 1.15}$

Fatigue Stress Concentration Factor (Eq.6-32):

$$k_{f Gear} = k_{f Pinion}$$

 $k_{f} = 1 + q(k_{f} - 1) = 1.340$

Fatigue Stress Concentration Factor (shear) (Eq. 6-32):

$$k_{fs Gear} = k_{fs Pinion}$$

 $k_{fs} = 1 + qs(k_{ts} - 1) = 1.120$

Fatigue Factor of Safety

DE Goodman Safety Factor (Eq.7-7):

$$A = \sqrt{4 (kf x Ma)^{2} + 3(kfs x Ta)^{2}}$$

$$B = \sqrt{4 (kf x Mam + 3(kfs x Tm)^{2}}$$

$$nf = \frac{\pi d^{3}}{16} (\frac{A}{Sc} + \frac{B}{Sut})^{-1}$$

$$n_{f Gear} = 116.956$$

$$n_{f Pinion} = 51.924$$

Alternating Stress(kpsi) (Eq. 7-4):

$$\frac{\sigma_{a}{'} = [(\frac{32 \, x \, kf \, x \, M_{a}}{\pi \, x \, d^{3}})^{2} + [(\frac{36 \, x \, kf \, s \, x \, T_{a}}{\pi \, x \, d^{3}})^{2}]^{1/2}}{\pi \, x \, d^{3}}$$

$$\sigma_{a \, Gear}{'} = 0.229 \, kpsi \qquad \qquad \sigma_{a \, Pinion}{'} = 228.866 \, kpsi$$

$$\frac{\text{Mean Stress (kpsi) (Eq. 7-5):}}{\sigma_{m \, Gear}{'} = 0.0 \, kpsi} \qquad \qquad \sigma_{m \, Pinion}{'} = 16055.646 \, kpsi$$

Maximum Von Mises (kpsi) (Eq. 7-15):

$$\frac{\sigma_{max}' = \left[(\frac{32 \, x \, kf \, x \, (M_m + M_a)}{\pi \, x \, d^3})^2 + 3 \left(\frac{16 \, x \, kfs \, x \, (T_m + T_a)}{\pi \, x \, d^3} \right)^2 \right]^{1/2}}{\sigma_{max \, Gear}' = 0.229 \, kpsi} \qquad \sigma_{max \, Pinion}' = 1336.915 \, kpsi$$

First Cycle Yielding (2.5 min) (Eq. 7-16):

$$nfy = \frac{Syt}{\sigma_{max}'}$$

$$n_{fy\;Gear} = 410.721 \qquad \qquad n_{fy\;Pinion} = 70.311$$

Key Calculations:

Horsepower (hp) =25 RPM_{Pinion} = 1750 RPM_{Gear} = 500 Shaft Diameter (in) = 1.772 S_{yt} of Shaft (ksi) = 94 S_{yt} of Hub (ksi) = 140 Desired Safety Factor = 2

Pinion Key Material:

Key Thickness (t) = 0.5 Key Height (H) = 0.375 S_{vt} of Pinion key (ksi) = 24

Gear Key Material:

Key Thickness (t) = 0.5
Key Height (H) = 0.375
$$S_{yt}$$
 of Gear key (ksi) = 32

Gear Torque:

$$T_g (lb in) = \frac{(HP) (63025)}{RPM_g} = 3151.3$$

Pinion Torque:

$$T_g (lb in) = \frac{(HP) (63025)}{RPM_p} = 900.4$$

Gear Force Fg (lb):

$$F_g = \frac{T_g}{(D_s/2)_{\text{res}}} = 3557.4$$

Pinion Force Fp (lb):

$$F_p = \frac{T_p}{(D_s/2)_{\text{proj}}} = 1016.4$$

Ssy of Pinion Key (ksi):

$$S_{sv} = 0.577 \, x \, S_{vt} = 13.8$$

Ssy of Gear Key (ksi):

$$S_{sy} = 0.577 x S_{yt} = 18.5$$

Length for Shear (in):

$$L_{Shear} = \frac{F \times n}{S_{yt} \times 1000 \times t}$$

$$L_{Shear Gear} = 0.771 \qquad \qquad L_{Shear Pinion} = 0.295$$

Key Length (in):

$$L_{Key} = \frac{2 x F x n}{H x S_{yt} x 1000}$$

$$L_{Key Gear} = 1.186 \qquad L_{Key Pinion} = 0.452$$

Shaft Length (in):

$$L_{Shaft} = \frac{2 x F x n}{H x S_{yt} x 1000}$$

$$L_{Shaft Gear} = 0.404 \qquad L_{Shaft Pinion} = 0.115$$

Hub Length (in):

$$L_{Hub} = \frac{2 x F x n}{H x S_{yt} x 1000}$$

$$L_{Hub Gear} = 0.271 \qquad L_{Hub Pinion} = 0.077$$

Final Key Lengths:

MAX(Ls:Lh)

 $L_{Final\ Gear}$ = 1.186

 $L_{Final\ Pinion}$ = 0.452

Bearing Calculations:

Bore (mm) Table 11-2:

$$Bore_{Pinion} = 25\ 30\ 35\ 40\ 45$$
 $Bore_{Gear} = 25\ 30\ 35\ 40\ 45$

Radial Force (lbf):

$$F_{Radial} = \frac{W}{2}$$

$$F_{Radial\ Pinion}$$
= 319.38

$$F_{Radial\ Gear}$$
= 300.12

Axial Force (lbf):

$$F_{Axial\ Pinion} = F_{Axial\ Gear} = 0$$

Life (hours):

$$Life_{Hours\ Pinion} = Life_{Hours\ Gear} = 20000$$

RPM:

$$RPM_{Pinion} = 1750$$

$RPM_{Gear} = 500$

V (1 for internal rotation):

$$V_{Pinion} = V_{Gear} = 1$$

C10 (KN)Table 11-2:

$$C_{10 Pinion}$$
= 14, 19.5, 25.5, 30.7, 33.2

 $C_{10 Gear}$ = 14, 19.5, 25.5, 30.7, 33.2

CO (KN)Table 11-2:

$$C_{0 Pinion}$$
= 6.95, 10, 13.7, 16.6, 18.6

 $C_{0 Gear}$ = 6.95, 10, 13.7, 16.6, 18.6

Fa/C0:

$$F_r/(C_o \times 0.224808942443 * 1000)$$

$$\frac{F_a}{c_0}pinion = 0.204, \, 0.142, \, 0.104, \, 0.086, \, 0.076 \quad \frac{F_a}{c_0}gear = 0.192, \, 0.134, \, 0.097, \, 0.080, \, 0.072$$

e Table 11-1:

$$e_{Pinion}$$
= 0.31, 0.28, 0.265, 0.26, 0.24

Fa/V(Fr) (Eq 11-11a):

$$\frac{F_a}{V \times F_r}$$

$$\frac{F_a}{V \times F_r}$$
 pinion = $\frac{F_a}{V \times F_r}$ gear = 0

X1 Table 11-1:

$$X_{1 Pinion} = X_{1 Gear} = 1$$

<u>Y1 Table 11-1:</u>

$$Y_{1 Pinion} = Y_{1 Gear} = 1$$

Fe (lbf) eq 11-12:

$$(X1 \times V \times F_r) + (Y1 \times F_r)$$

$$F_{e \ Pinion} = 319.382$$

$$F_{e,Gear}$$
 = 300.121

a (3 for ball bearing):

$$a_{Pinion} = 3$$
 $a_{Gear} = 3$

C required:

$$(F_e \times 4.44822162825/1000) \times (((Life \times RPM \times 60)/(10^6))^(1/a))$$

$$C_{Pinion} = 18.19$$

$$C_{Pinion} = 11.26$$

Safety Factor:

$$C_{10}/C_{required}$$

$$SF_{Pinion}$$
 = 0.77, 1.07, 1.40, 1.69, 1.82 SF_{Gear} = 1.24, 1.73, 2.26, 2.73, 2.95

Discussion - Conclusions

The final product of our gear box design was conducted with the use of Microsoft excel, and solid works software. Calculating precise dimensions and tolerances was a requirement to get the necessary measurements towards building our final gear box design.

The design specifications for our designed gearbox were

- Power delivered 25HP
- Input speed: 1750 rpm

- Output speed: 500 rpm
- Gear pressure angle: normal 20 degrees
- The fatigue safety factors for pinion and gears are 1.2 and 1.2 and 1.5 for bending
- Design shafts with first cycle yielding safety factor $ny \ge 2.5$.
- Design keys with yielding safety factor ny = 2
- The total length of each shaft is 7 in
- The diameter of each designed shaft is 1 in

The specifications of our gear box design were implemented to fit each individual component of the gear and shafts for each designed component to properly fit into the single gear box. Each of the designed components were worked on separately, although the dimensions of each part were dependent on one another. The dependency of the part in the gearbox was used efficiently and developed accurately to their required dimensions in order to deliver the required powers at the proper output and input speeds.

The first components developed in our gearbox were the pinion and gears. The design pinion had 18 teeth and the gears were designed to have 75 teeth. Using Shigley's Mechanical Engineering Design eBook from the tables and data present in section 14-4 and with the necessary calculation steps. The 40 gray cast iron material was used for the pinions and 30 gray cast iron material used for gears designed in our gear box design. When choosing our material, we focused on ensuring the pinion has a stronger material than the gear to ensure they can withstand the pressure of the gears in the gearbox.

With the completion of the design process of the gear and pinions, our focus shifted towards the designing of the shafts. The shafts had to have proper dimensions in length in order to meet the needs of the gears and bearings of the gearbox. The length of shafts as well as the diameter of the shafts was determined as the diameter if the shaft had to be able to prevent the shafts from bending due to the forces of the gears present.

When developing the keys in the gearbox the measurements of the gears and shaft length were carefully considered to accommodate the designing and implementation of the keys in the gearbox.

The final design component that was developed in our gearbox was the housing component. The housing component in our gear box provided the necessary support for each of the bearings and allowed the space between the shafts. Two housing components were mounted, and the dimensions were carefully conserved to allow the space for the assembly of the pinions and gears in the gearbox design.

The overall design of the gearbox project allowed our team members to gain a proper understanding of the topic covered in our lectures. The principles of the shafts, gears and bearings were each explored in this project. The necessary knowledge gained in class lectures were helpful when designing our gearbox. As the challenges of obtaining proper measurements and calculations were simplified by previous knowledge gained in class. The problems faced in

this project allowed an opportunity for our members to gain an insightful understanding of the real-world problems we may face as future engineer's working in the job industry. The understanding of adapting and changing measurements and deriving equations to fit our needs were gained and selecting proper material based on cost and need were also learned through this project. With this project we as a team applied the concepts learned in class to create our very own design of a functionable gearbox design.

Supporting Information to Determine the Conclusion:

Gear Design:

Pinion Shaft

WorkSheet 2: Pinion Shaft Design												
	AISI 1020 C	D (T-A-20)	AISI 1040 C	D (T-A-20)		AISI 1030 Q						
					Temp (°F)	400	800	1200				
Tensile strength(room temperature) (ksi)	S _{ut} =	68	S _{ut} =		S _{ut} =	123	106	85				
Yield strength (ksi)	S _{yt} =	57	S _{yt} =		S _{yt} =	94	84	64				
Corrected endurance limit (ksi)	S _e =	34	S _e =	42.5	S _c =	61.5	53	42.5				
Calculation:												
Material Properties	Variable											
Tensile strength(room temperature) (ksi)	S _{ut} =	123		Note:	changeable p	arameter						
Yield strength (ksi)	S _{yt} =	94			Selected M	laterial						
Corrected endurance limit (ksi)	S _o ' =											
	a =											
		-0.217										
Stresses												
Location	A (Bearing to	Shoulder)	B (Shoulde	r to Gear)	C (keyse	eat)	D (Gear Snap	ring Groove)	D (Outside Sna)	p ring Groove)	E (outsid	le key)
Bending moment alternating (lbf in)	Ma =	101.85	Ma =	1006.05	Ma =	1437.22	M _a =	1006.05	Ma =	0	M _a =	
Bending moment mean (lbf in)	M _m =	0	M _m =	0	M _m =	0	M _m =	0	M _m =	0	M _m =	
Torque alternating (lbf in)	T _a =	0	T _a =	0	T _a =	0	T. =	0	T _a =	0	T _a =	
Torque mean (lbf in)	T _m =	900	T _m =	900	T _m =	900	T _m =	0	T _m =	900	T _m =	90
Marin Factors	- m		- m			500			- "	500		-
Surface factor (machined) T-6-2	a:	2	a:	2	a:	2	a:	2	a:	2	a:	
ouride ration (matrimed) 1 o 2	b:	-0.217	b:	-0.217	b:	-0.217	b:	-0.217	b:	-0.217	b:	-0.21
Surface Factor Eq. 6-19	K _a :	0.704	K _a :	0.704	K _a :	0.704	K ₂ :	0.704	K _s :	0.704	K _a :	0.70
Shaft Diameter (in)	d (48mm) ;	1.890	d (48mm) ;	1.890	d (45mm) ;	1.772	d (44.5mm) :	1.752	d (44.5mm) ;	1.752	d (40mm) ;	1.57
Fatigue Stress Concentration Factor											7/10/27	
	D/d	1.089	D/d	1.089			a/t	0.644	a/t	0.644	7/7377	
Fatigue Stress Concentration Factor	D/d r/d	0.015	D/d r/d	0.015			a/t r/t	0.115	a/t r/t	0.115	***************************************	
Fatigue Stress Concentration Factor Stress Conc. Factor (Fig. A15-9)	D/d r/d K _t :	0.015 1.45	D/d r/d K _i :	0.015 1.45	K, (T-7-1):	2.2	a/t r/t K ₁ (T-7-1):	0.115 5.5	a/t r/t K _t (T-7-1):	0.115 5.5	K, (T-7-1):	2.2
Fatigue Stress Concentration Factor Stress Conc. Factor (Fig. A15-9) Stress Conc. Factor (shear) (Fig. A15-8)	D/d r/d K _t : K _{ts} :	0.015 1.45 1.15	D/d r/d K _i : K _n :	0.015 1.45 1.15	K _{ts} (T-7-1):	3	a/t r/t K ₁ (T-7-1): K ₁₁ (T-7-1):	0.115 5.5 3.25	a/t r/t K _t (T-7-1): K _{ts} (T-7-1):	0.115 5.5 3.25	K ₁ (T-7-1): K ₁ (T-7-1):	3
Fatigue Stress Concentration Factor Stress Conc. Factor (Fig. A15-9) Stress Conc. Factor (shear) (Fig. A15-8) Fatigue Stress Concentration Factor (fig. 6-32)	D/d r/d K _t ; K _h ;	0.015 1.45 1.15 1.266	D/d r/d K _t : K _n :	0.015 1.45 1.15 1.266	K _{ts} (T-7-1): K _s :	3 1.709	a/t r/t K ₁ (T-7-1): K ₃ (T-7-1): K ₄ ;	0.115 5.5 3.25 3.274	a/t r/t K _t (T-7-1): K _{ti} (T-7-1): K _{ti}	0.115 5.5 3.25 3.274	K _t (T-7-1): K _t ₅ (T-7-1): K _t :	3 1.709
Fatigue Stress Concentration Factor Stress Conc. Factor (Fig. A15-9) Stress Conc. Factor (phear) (Fig. A15-8) Fatigue Stress Concentration Factor (Fig. 6-32) Fatigue Stress Concentration Factor (Fig. 6-32)	D/d r/d K _t : K _{ts} :	0.015 1.45 1.15	D/d r/d K _i : K _n :	0.015 1.45 1.15	K _{ts} (T-7-1):	3	a/t r/t K ₁ (T-7-1): K ₁₁ (T-7-1):	0.115 5.5 3.25	a/t r/t K _t (T-7-1): K _{ts} (T-7-1):	0.115 5.5 3.25	K ₁ (T-7-1): K ₁ (T-7-1):	3
Fatigue Stress Concentration Factor Stress Conc. Factor (Fig A15-9) Stress Conc. Factor (bhear) Fig A15-8 Fatigue Stress Concentration Factor (Eq. 6-32) Fatigue Stress Concentration Factor (blear) (Eq. 6-32) Fatigue Factor of Satley	D/d r/d K ₄ ; K ₅ ; K ₆ ;	0.015 1.45 1.15 1.266 1.099	D/d r/d K _t : K _n : K _t :	0.015 1.45 1.15 1.266 1.099	K _b (T-7-1): K _d : K _b :	3 1.709 2.317	$a/t \\ r/t \\ K_t (T-7-1); \\ K_h (T-7-1); \\ K_h (K_h; K_h; K_h; K_h; K_h; K_h; K_h; K_h; $	0.115 5.5 3.25 3.274 2.298	$\begin{array}{c} a/t \\ r/t \\ K_1(T-7-1); \\ K_{fi}(T-7-1); \\ K_{fi} \\ K_{fi}; \end{array}$	0.115 5.5 3.25 3.274 2.298	K _t (T-7-1): K _{t s} (T-7-1): K _t : K _t :	3 1.709 2.317
Fatigue Stress Concentration Factor Stress Conc. Factor (Fig. A15-9) Stress Conc. Factor (phear) (Fig. A15-8) Fatigue Stress Concentration Factor (Fig. 6-32) Fatigue Stress Concentration Factor (Fig. 6-32)	D/d r/d K _t ; K _h ;	0.015 1.45 1.15 1.266	D/d r/d K _t : K _n :	0.015 1.45 1.15 1.266	K _{ts} (T-7-1): K _s :	3 1.709	a/t r/t K ₁ (T-7-1): K ₃ (T-7-1): K ₄ ;	0.115 5.5 3.25 3.274	a/t r/t K _t (T-7-1): K _{ti} (T-7-1): K _{ti}	0.115 5.5 3.25 3.274	K _t (T-7-1): K _t ₅ (T-7-1): K _t :	3 1.709
Fatigue Stress Concentration Factor Stress Conc. Factor (Fig A15-9) Stress Conc. Factor (bhear) Fig A15-8 Fatigue Stress Concentration Factor (Eq. 6-32) Fatigue Stress Concentration Factor (blear) (Eq. 6-32) Fatigue Factor of Satley	D/d r/d K ₄ ; K ₅ ; K ₆ ;	0.015 1.45 1.15 1.266 1.099	D/d r/d K _t : K _n : K _t :	0.015 1.45 1.15 1.266 1.099	K _b (T-7-1): K _d : K _b :	3 1.709 2.317	$a/t \\ r/t \\ K_t (T-7-1); \\ K_h (T-7-1); \\ K_h (K_h; K_h; K_h; K_h; K_h; K_h; K_h; K_h; $	0.115 5.5 3.25 3.274 2.298	$\begin{array}{c} a/t \\ r/t \\ K_1(T-7-1); \\ K_{fi}(T-7-1); \\ K_{fi} \\ K_{fi}; \end{array}$	0.115 5.5 3.25 3.274 2.298	K _t (T-7-1): K _{t s} (T-7-1): K _t : K _t :	3 1.709 2.317
Stress Conc. Factor (Fig. A15-9) Stress Conc. Factor (Fig. A15-9) Stress Conc. Factor (phear) (Fig. A15-8) Fatigue Stress Conce. Factor (phear) (Fig. A15-8) Fatigue Stress Concentration Factor (fig. 6-32) Fatigue Factor of Saftey DE Goodman Safety Factor (Eq. 7-7)	D/d r/d K ₁ ; K ₂ ; K ₃ ; n ₄	0.015 1.45 1.15 1.266 1.099	D/d r/d K ₁ ; K _n ; K _r ; K _r ;	0.015 1.45 1.15 1.266 1.099	K _{ts} (T-7-1): K _t : K _{ts} :	3 1.709 2.317 3.204	$\begin{array}{c} a/t \\ r/t \\ K_t(T-7-1); \\ K_h(T-7-1); \\ K_h(T-7-1); \\ K_f; \\ K_h; \end{array}$	0.115 5.5 3.25 3.274 2.298	$\begin{array}{c} a/t \\ r/t \\ K_{t}(T-7-1); \\ K_{t_{t}}(T-7-1); \\ K_{t_{t}}(K-7-1); \\ K_{t_{t}}(K_{t_{t}}); \end{array}$	0.115 5.5 3.25 3.274 2.298	K ₁ (T-7-1): K ₁ ,(T-7-1): K ₁ ; K ₁ : n ₁	3 1.709 2.317 9.672
Fatigue Stress Concentration Factor Stress Conc. Factor (Fig. A15-9) Stress Conc. Factor (bhear) (Fig. A15-8) Fatigue Stress Concentration Factor (£q. 6-32) Fatigue Factor of Saftey DE Goodman Safety Factor (£q. 7-7) Alternating Stress(kpat) (£q. 7-4)	D/d r/d K _t ; K _t ; K _t ; K _t ; σ ₃ ':	0.015 1.45 1.15 1.266 1.099 12.612	D/d r/d K_c; K_n; K_c; K_n; on	0.015 1.45 1.15 1.266 1.099 10.216	K _{tb} (T-7-1): K _t : K _{tb} : n _t : σ _a ^t :	3 1.709 2.317 3.204	$a/t \\ r/t \\ K_t \{T-7-1\}; \\ K_n \{T-7-1\}; \\ K_n \{T-7-1\}; \\ K_h; \\ K_h; \\ G_h^*; \\$	0.115 5.5 3.25 3.274 2.298 7.914	$a/t \\ r/t \\ K_t (T-7-t) \\ K_n (T-7-1) \\ K_n (T-7-1) \\ K_h \\ K_h \\ C_h $	0.115 5.5 3.25 3.274 2.298 9.752	K_{t} (T-7-1): K_{t} , (T-7-1): K_{f} : K_{f} : n_{f} : n_{g} : n_{g} :	3 1.709 2.317 9.672

Gear Shaft

Location	A (Bearing to S	houlder)	B (Shoulder to	Gear)	C (keyseat)		D (Gear Snap Rin	g Groove)	E (outside key)	
Bending moment alternating (lbf in)	M _a =	101.85	M _a =	862.33	M _a =	1293.50	M _a =	862.33	M _a =	0.0
Bending moment mean (lbf in)	M _m =	0	M _m =	0	M _m =	0	M _m =	0	M _m =	
Torque alternating (lbf in)	T _a =	0	T _a =	0	T _a =	0	T _a =	0	T _a =	
Torque mean (lbf in)	T _m =	0	T _m =	0	T _m =	3150	T _m =	3150	T _m =	3150
Marin Factors										
Surface factor (machined) T-6-2	a:	2	a:	2	a:	2	a:	2	a:	
	b:	-0.217	b:	-0.217	b:	-0.217	b:	-0.217	b:	-0.21
Surface Factor Eq. 6-18	K _a :	0.704	K _a :	0.704	K _a :	0.704	K _a :	0.704	K _a :	0.704
Shaft Diameter (in)	d (48mm) :	1.890	d (48mm) :	1.890	d (45mm) :	1.772	d (44.5mm) :	1.752	d (40mm) :	1.57
Size Factor (rotating shaft), Eq. 6-19	K _b :	0.821	K _b :	0.821	K _b :	0.827	K _b :	0.828	K _b :	0.83
Loading Factor, Eq. 6-25	K _c :	1	K _c :	1	K _c :	1	K _c :	1	K _c :	:
Temperature Factor	K _d :	1	K _d :	1	K _d :	1	K _d :	1	K _d :	
Reliability Factor (0.999) T-6-4	K _e :	0.753	K _e :	0.753	K _e :	0.753	K _e :	0.753	K _e :	0.75
Modified Endurance Limit, Eq.6-17	S _e =	26.767	S _e =	26.767	S _c =	26.953	S _e =	26.985	S _e =	27.29
Notch Sensitivity, q										
Notch radius, r (in) :	0.020		0.020		0.020		0.010		0.020	
Bending										
Neuber constant, Va (Eq. 6-35) :	0.0458		0.0458		0.0458		0.0458		0.0458	
q (Eq. 6-33):	0.7554		0.7554		0.7554		0.6859		0.7554	
Torsion										
Neuber constant, va (Eq. 6-36) :	0.0358		0.0358		0.0358		0.0358		0.0358	
qs (Eq. 6-33):	0.7979		0.7979		0.7979		0.7362		0.7979	
Fatigue Stress Concentration Factor										
	D/d	0.794	D/d	0.794			a/t	0.121		
	r/d	0.011	r/d	0.011			r/t	0.022		
Stress Conc. Factor (Fig.A15-9)	K _e :	1.45	K _t :	1.45	K, (T-7-1):	2.2	K _t (T-7-1):	5.5	K _t (T-7-1):	2.3
Stress Conc. Factor (shear) (Fig.A15-8)	K _{ts} :	1.15	K _{ts} :	1.15	K _{ts} (T-7-1):	3	K _{ts} (T-7-1):	3.25	K _{ts} (T-7-1):	
Fatigue Stress Concentration Factor (Eq.6-32)	K _f :	1.340	K _f :	1.340	K _f :	1.906	K _f :	4.087	K _f :	1.90
igue Stress Concentration Factor (shear) (Eq. 6-32)	K _{fs} :	1.120	K _{fs} :	1.120	K _{ts} :	2.596	K _{fs} :	2.657	K _{ts} :	2.59
Fatigue Factor of Saftey										
DE Goodman Safety Factor (Eq.7-7)	n _t	129.951	n _t	15.349	n _t	3.662	n _t	2.786	nt	6.660
Alternating Stress(kpsi) (Eq. 7-4)	σ _a ':	0.206	σ _a ':	1.744	σ _a ':	4.517	σ _a ':	6.675	σ _a ':	0.000
Mean Stress (kpsi) (Eq. 7-5)	σ _m ':	0.000	σ _m ':	0.000	σ _m ':	5.595	σ _m ':	13.727	σ _m ':	18.46
Maximum Von Mises (kpsi) (Eq. 7-15)	σ _{max} ':	0.206	σ _{max} ':	1.744	σ _{max} ':	10.112	σ _{max} ':	20.402	σ _{max} ':	18.46
First Cycle Yielding (2.5 min) (Eq. 7-16)	n _f	456.357	n _f	53.900	n _f	9.296	n ₊	4.607	n _e	5.090

Calculations:					
	Torque (18-1)	Т	3150	in Ib	
	Transmitted load	Wt	540.22	lb	
	total force	W	574.89	lb	
	Moment max	M _{max}	1293.50	lb in	
	Shaft Length (in)		9.00	Half	4.5
	Gear Width (in)		3.00	Widths	1.5
	Bearing Width (mm)		18.00	(in)	0.35433

Key

WorkSheet 4: Key Des	ign					
Input Values						
Horsepower (hp)	25					
RPM Pinion	1750					
RPM Gear	500					
Shaft Diameter (in)	1.772					
S _{yt} of Shaft (ksi)	94					
S _{yt} of Hub (ksi)	140					
Desired Safety Factor	2					
	_					
	Pinion Key Material	AISI 1006 HR				
Table 7-6	Key Thickness (t)	0.500				
Table 1-0	Key Hieght (H)	0.375				
Table A-20	S _{yt} of Pinion key (ksi)	24.0				
	Gear Key Material	AISI 1018 CD				
Table 7-6	Key Thickness (t)	0.500				
	Key Hieght (H)	0.375				
Table A-20	S _{yt} of Gear key (ksi)	32.0				
	Gear Torque T _G (lb*in)	3151.3				
	Pinion Torque T _P (lb*in)	900.4				
	Gear Force F _G (lb)	3557.4				
	Pinion Force F _G (lb)	1016.4				
Eq 5-21	S _{zy} of Pinion Key (ksi)	13.8				
240 21	S _{ry} of Gear Key (ksi)	18.5				
	Pinion					
Eq 8-53	Length for Shear (in)	0.294				
Length For Bearing	Key Length (in)	0.452				
Stress (Eq 8-55)	Shaft Length (in)	0.115				
	Hub Length (in)	0.077				
Eq 8-53	Gear Length for Shear (in)	0.771				
	Key Length (in)	1,186				
Length For Bearing	Shaft Length (in)	0.404				
Stress (Eq 8-55)	Hub Length (in)	0.271				
	eerigar(iii)	0.211				
	Final Length Pinio	n Key (in)				
	0.452					
	Final Length Gea	r Key (in)				
	1.186					

Bearing

	1	В	earing /	4			В	earing 6	3	
Bore (mm) Table 11-2	25	30	35	40	45	25	30	35	40	45
Radial Force (lbf)			287.44					287.44		
Axial Force (lbf)			0					0		
Life (hours)			20000					20000		
RPM			1750			1750				
V (1 for internal rotation)			1			1				
C ₁₀ (KN)Table 11-2	14	19.5	25.5	30.7	33.2	14	19.5	25.5	30.7	33.2
Co (KN)Table 11-2	6.95	10	13.7	16.6	18.6	6.95	10	13.7	16.6	18.6
F _a /C _o	0.184	0.128	0.093	0.077	0.069	0.184	0.128	0.093	0.077	0.069
e Table 11-1	0.31	0.28	0.265	0.26	0.24	0.31	0.28	0.265	0.26	0.24
F _a /V(F _r) (Eq 11-11a)			0					0		
X ₁ Table 11-1	1	1	1	1	1	1	1	1	1	1
Y ₁ Table 11-1	0	0	0	0	0	0	0	0	0	0
F _e (lbf) eq 11-12	287.44	287.44	287.44	287.44	287.44	287.44	287.44	287.44	287.44	287.44
a (3 for ball bearing)	3	3	3	3	3	3	3	3	3	3
Crequired	16.37	16.37	16.37	16.37	16.37	16.37	16.37	16.37	16.37	16.37
Safety Factor	0.86	1.19	1.56	1.87	2.03	0.86	1.19	1.56	1.87	2.03
			Gear Sh	aft Bear	ing					
			learing /					learing (
Bore (mm) Table 11-2	25	30	35	40	45	25	30		40	45
Radial Force (lbf)			270.11					270.11		
Axial Force (lbf)			0					0		
RPM			20000 500					20000 500		
V (1 for internal rotation)			1					1		
C ₁₀ (KN)Table 11-2	14	19.5	25.5	30.7	33.2	14	19.5	25.5	30.7	33.2
C ₀ (KN)Table 11-2	6.95	10	13.7	16.6	18.6	6.95	10	13.7	16.6	18.6
F _a /C ₀	0.173	0.120	0.088	0.072	0.065	0.173	0.120	0.088	0.072	0.065
e Table 11-1	0.31	0.28	0.265	0.26	0.24	0.31	0.28	0.265	0.26	0.24
F _a /V(F _r)	5.52	0.20	0	0.20		0.02	0.20	0		0
X ₁ Table 11-1	1	1	1	1	1	1	1	1	1	1
Y ₁ Table 11-1	0	0	0	0	0	0	0	0	0	0
F _c (lbf) eq 11-12	270.11	270.11	270.11	270.11	270.11	270.11	270.11	270.11	270.11	270.11
a (3 for ball bearing)	3	3	3	3	3	3	3	3	3	3
Crequired	10.13	10.13	10.13	10.13	10.13	10.13	10.13	10.13	10.13	10.13
Safety Factor	1.38	1.92	2.52	3.03	3.28	1.38	1.92	2.52	3.03	3.28

References

Types of Gearboxes | Rexnord. (2012). Rexnord.com. https://www.rexnord.com/blog/articles/gear/types-of-gearboxes

TMechanical Systems and Signal Processing | 2022 Elsevier B.V., https://www.sciencedirect.com/science/article/abs/pii/S0888327016303168

ResearchGate Ovidiu Buiga | 2012 July, https://www.researchgate.net/figure/The-sketch-of-the-single-stage-helical-gear-unit-fig2-289230457

ResearchGate Yongsheng Ma | 2012 August, https://www.researchgate.net/figure/An-example-of-gearbox-layout-1-pinion-1-2-bearing-1-3-connecting-bolt-for-bearing-fig1-257601771

Gear Motions Precision in Motions | 2022, https://gearmotions.com/helical-gears-vs-spur-gears/

Appendices

Appendix A: List of Symbols

 C_f Surface condition factor

 C_H Hardness-ratio factor (gear only)

 C_P Gear elastic coefficient

 C_{10} Bearing catalogue load rating

 d_P, d_G Pitch diameter of pinion and gear, respectively

E Young's Modulus

F Face widthH Input power

I Surface-strength geometry factor

 J_P , J_G Bending-strength geometry factor for pinion and gear, respectively

 K_B Rim thickness factor,

 k_a, k_b, k_c, k_d, k_e Marin factors for fatigue loading

 K_m Load distribution factor,

 K_o Overload factor,

 $(K_s)_P$, $(K_s)_G$ Size factor for pinion and gear, respectively

 K_R Gear design reliability factor

 K_T Gear design temperature factor

 K_{v} Dynamic Factor,

 N_P , N_G Number of teeth of pinion and gear, respectively

 m_G Gear ratio

n Input velocity

N Life cycles

 P_d Diametral pitch

R Reliability

S_c Contact strength number for cast iron

 S_e Corrected endurance limit

 S_{e}^{\prime} Uncorrected endurance limit

 $(S_H)_{P_I}(S_H)_G$ Safety factor for contact stress

 $(S_F)_P$, $(S_F)_G$ Safety factor for bending

 S_t Unadjusted bending stress number

 S_{ut} Ultimate tensile strength

 S_{yt} Tensile yield strength

T Torque

 $(Y_N)_P$, $(Y_N)_G$ Stress cycle factor for bending stress

V Pitch line velocity

 v_P, v_G Poisson's ratio for pinion and gear

W^t Transmitted load

 $(Z_N)_P$, $(Z_N)_G$ Stress cycle factor for contact stress

 ϕ Pressure angle for spur gear

 ϕ_t Transverse pressure angle

 ϕ_n Normal pressure angle

 ψ Helix angle

 $(\sigma)_P$, $(\sigma)_G$ Bending stress on pinion and gear, respectively

 $(\sigma_C)_P$, $(\sigma_C)_G$ Tooth wear (contact stress) for pinion and gear

Appendix B: Tables

Table 6-2

Parameters for Marin Surface Modification Factor, Eq. (6–19)

	Fact	Exponent	
Surface Finish	S _{ut} , kpsi	S _{ut} , MPa	Ь
Ground	1.34	1.58	-0.085
Machined or cold-drawn	2.70	4.51	-0.265
Hot-rolled	14.4	57.7	-0.718
As-forged	39.9	272.	-0.995

Table 6-5

Reliability Factors k_e Corresponding to 8 Percent Standard Deviation of the Endurance Limit

Reliability, %	Transformation Variate z_a	Reliability Factor k_e
50	0	1.000
90	1.288	0.897
95	1.645	0.868
99	2.326	0.814
99.9	3.091	0.753
99.99	3.719	0.702
99.999	4.265	0.659
99.9999	4.753	0.620

Table 7-6

Inch Dimensions for Some Standard Squareand Rectangular-Key Applications

Source: Joseph E. Shigley, "Unthreaded Fasteners," Chap. 24 in Joseph E. Shigley, Charles R. Mischke, and Thomas H. Brown, Jr. (eds.), Standard Handbook of Machine Design, 3rd ed., McGraw-Hill, New York, 2004.

Shaft	Diameter	Key	Size	
Over	To (Incl.)	w	h	Keyway Depth
<u>5</u>	$\frac{7}{16}$	$\frac{3}{32}$	$\frac{3}{32}$	3 64
$\frac{7}{16}$	9 16	$\frac{1}{8}$	$\frac{3}{32}$	$\frac{3}{64}$
		$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{16}$
$\frac{9}{16}$	$\frac{7}{8}$	$\frac{3}{16}$	$\frac{1}{8}$	$\frac{1}{16}$
		$\frac{3}{16}$	$\frac{3}{16}$	$\frac{3}{32}$
$\frac{7}{8}$	$1\frac{1}{4}$	$\frac{1}{4}$	$\frac{3}{16}$	$\frac{3}{32}$
		$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{8}$
$1\frac{1}{4}$	$1\frac{3}{8}$	$\frac{5}{16}$	$\frac{1}{4}$	$\frac{1}{8}$
		$\frac{5}{16}$	$\frac{5}{16}$	$\frac{5}{32}$
$1\frac{3}{8}$	$1\frac{3}{4}$	<u>3</u>	$\frac{1}{4}$	$\frac{1}{8}$
		<u>3</u>	<u>3</u>	$\frac{3}{16}$
$1\frac{3}{4}$	$2\frac{1}{4}$	$\frac{1}{2}$	3 8	$\frac{3}{16}$
		$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{4}$
$2\frac{1}{4}$	$2\frac{3}{4}$	<u>5</u>	$\frac{7}{16}$	$\frac{7}{32}$
		<u>5</u> 8	<u>5</u> 8	5 16
$2\frac{3}{4}$	$3\frac{1}{4}$	$\frac{3}{4}$	$\frac{1}{2}$	$\frac{1}{4}$
		$\frac{3}{4}$	$\frac{3}{4}$	3/8

Table 11-1

Equivalent Radial Load
Factors for Ball Bearings

		F _a /(VF _r) ≤ e	F _a /(V	F _r) > e
F _a /C ₀	е	X_1	Y_1	<i>X</i> ₂	Y ₂
0.014*	0.19	1.00	0	0.56	2.30
0.021	0.21	1.00	0	0.56	2.15
0.028	0.22	1.00	0	0.56	1.99
0.042	0.24	1.00	0	0.56	1.85
0.056	0.26	1.00	0	0.56	1.71
0.070	0.27	1.00	0	0.56	1.63
0.084	0.28	1.00	0	0.56	1.55
0.110	0.30	1.00	0	0.56	1.45
0.17	0.34	1.00	0	0.56	1.31
0.28	0.38	1.00	0	0.56	1.15
0.42	0.42	1.00	0	0.56	1.04
0.56	0.44	1.00	0	0.56	1.00

^{*}Use 0.014 if $F_a/C_0 < 0.014$.

Table 11-2

Dimensions and Load Ratings for Single-Row 02-Series Deep-Groove and Angular-Contact Ball Bearings

			Fillet	Shoulder			Load Ra	tings, kN	
Bore,	OD,	Width,	Radius,	Diamet	er, mm	Deep (Groove	Angular	Contact
mm	mm	mm	mm	d _s	dн	C ₁₀	C _o	C ₁₀	Co
10	30	9	0.6	12.5	27	5.07	2.24	4.94	2.12
12	32	10	0.6	14.5	28	6.89	3.10	7.02	3.05
15	35	11	0.6	17.5	31	7.80	3.55	8.06	3.65
17	40	12	0.6	19.5	34	9.56	4.50	9.95	4.75
20	47	14	1.0	25	41	12.7	6.20	13.3	6.55
25	52	15	1.0	30	47	14.0	6.95	14.8	7.65
30	62	16	1.0	35	55	19.5	10.0	20.3	11.0
35	72	17	1.0	41	65	25.5	13.7	27.0	15.0
40	80	18	1.0	46	72	30.7	16.6	31.9	18.6
45	85	19	1.0	52	77	33.2	18.6	35.8	21.2
50	90	20	1.0	56	82	35.1	19.6	37.7	22.8
55	100	21	1.5	63	90	43.6	25.0	46.2	28.5
60	110	22	1.5	70	99	47.5	28.0	55.9	35.5
65	120	23	1.5	74	109	55.9	34.0	63.7	41.5
70	125	24	1.5	79	114	61.8	37.5	68.9	45.5
75	130	25	1.5	86	119	66.3	40.5	71.5	49.0
80	140	26	2.0	93	127	70.2	45.0	80.6	55.0
85	150	28	2.0	99	136	83.2	53.0	90.4	63.0
90	160	30	2.0	104	146	95.6	62.0	106	73.5
95	170	32	2.0	110	156	108	69.5	121	85.0

Table 14-2	Number of		Number of
Values of the Lewis	Teeth	r	Teeth
Form Factor Y (These	12	0.245	28
Values Are for a Normal	13	0.261	30
Pressure Angle of 20°,	14	0.277	34
Full-Depth Teeth, and a	15	0.290	38
Diametral Pitch of Unity	16	0.296	43
in the Plane of Rotation)	17	0.303	50
	18	0.309	60
	19	0.314	75
	20	0.322	100
	21	0.328	150
	22	0.331	300

24

26

Table 14-3

Repeatedly Applied Bending Strength S_t at 10^7 Cycles and 0.99 Reliability for Steel Gears Source: ANSI/AGMA 2001-D04.

0.337

0.346

Material	Heat	Minimum Surface	Allowable I	Bending Stress psi	Number 5,2
Designation	Treatment	Hardness ¹	Grade 1	Grade 2	Grade 3
Steel ³	Through-hardened Flame ⁴ or induction hardened ⁴ with type A pattern ⁵	See Fig. 14–2 See Table 8*	See Fig. 14–2 45 000	See Fig. 14–2 55 000	_
	Flame ⁴ or induction hardened ⁴ with type B pattern ⁵	See Table 8*	22 000	22 000	_
	Carburized and hardened	See Table 9*	55 000	65 000 or 70 000 ⁶	75 000
	Nitrided ^{4,7} (through- hardened steels)	83.5 HR15N	See Fig. 14–3	See Fig. 14-3	_
Nitralloy 135M, Nitralloy N, and 2.5% chrome (no aluminum)	Nitrided ^{4,7}	87.5 HR15N	See Fig. 14–4	See Fig. 14–4	See Fig. 14–4

400

Rack

Y

0.353

0.359

0.371 0.384

0.397

0.409

0.422

0.435

0.447

0.460 0.472

0.480

0.485

Table 14-4

Repeatedly Applied Bending Strength S_t for Iron and Bronze Gears at 10^7 Cycles and 0.99 Reliability Source: ANSI/AGMA 2001-D04.

Material	Material Designation ¹	Heat Treatment	Typical Minimum Surface Hardness ²	Allowable Bending Stress Number, S ₁₁ ³ psi
ASTM A48 gray	Class 20	As cast	_	5000
cast iron	Class 30	As cast	174 HB	8500
	Class 40	As cast	201 HB	13 000
ASTM A536 ductile	Grade 60-40-18	Annealed	140 HB	22 000-33 000
(nodular) Iron	Grade 80-55-06	Quenched and tempered	179 HB	22 000–33 000
	Grade 100-70-03	Quenched and tempered	229 HB	27 000–40 000
	Grade 120-90-02	Quenched and tempered	269 HB	31 000-44 000
Bronze		Sand cast	Minimum tensile strength 40 000 psi	5700
	ASTM B-148 Alloy 954	Heat treated	Minimum tensile strength 90 000 psi	23 600

Table 14-5

Nominal Temperature Used in Nitriding and Hardnesses Obtained Source: Darle W. Dudley, Handbook of Practical Gear Design, rev. ed., McGraw-Hill, New York, 1984.

				ness,
Steel	Temperature Before Nitriding, °F	Nitriding, °F	Rockwel Case	Core
Sieci	before Mirruing, 1		cuse	Core
Nitralloy 135*	1150	975	62-65	30-35
Nitralloy 135M	1150	975	62-65	32-36
Nitralloy N	1000	975	62-65	40-44
AISI 4340	1100	975	48-53	27=35
AISI 4140	1100	975	49-54	27-35
31 Cr Mo V 9	1100	975	58-62	27–33

^{*}Nitralloy is a trademark of the Nitralloy Corp., New York.

Table 14–6Repeatedly Applied Contact Strength S_c at 10^7 Cycles and 0.99 Reliability for Steel Gears *Source: ANSI/AGMA 2001-D04*.

Material Designation	Heat Treatment	Minimum Surface Hardness ¹	Allowable Co Grade 1	ntact Stress Num Grade 2	ber,² <i>S_o,</i> psi Grade 3
Steel ³	Through hardened ⁴	See Fig. 14-5	See Fig. 14-5	See Fig. 14-5	_
	Flame ⁵ or induction	50 HRC	170 000	190 000	_
	hardened ⁵	54 HRC	175 000	195 000	_
	Carburized and hardened ⁵	See Table 9*	180 000	225 000	275 000
	Nitrided ⁵ (through	83.5 HR15N	150 000	163 000	175 000
	hardened steels)	84.5 HR15N	155 000	168 000	180 000
2.5% chrome (no aluminum)	Nitrided ⁵	87.5 HR15N	155 000	172 000	189 000
Nitralloy 135M	Nitrided ⁵	90.0 HR15N	170 000	183 000	195 000
Nitralloy N	Nitrided ⁵	90.0 HR15N	172 000	188 000	205 000
2.5% chrome (no aluminum)	Nitrided ⁵	90.0 HR15N	176 000	196 000	216 000

Table 14-7

Repeatedly Applied Contact Strength S_c 10^7 Cycles and 0.99 Reliability for Iron and Bronze Gears *Source: ANSI/AGMA 2001-D04.*

Material	Material Designation ¹	Heat Treatment	Typical Minimum Surface Hardness ²	Allowable Contact Stress Number, ³ <i>S_c,</i> psi
ASTM A48 gray cast iron	Class 20 Class 30 Class 40	As cast As cast As cast	— 174 НВ 201 НВ	50 000–60 000 65 000–75 000 75 000–85 000
ASTM A536 ductile (nodular) iron	Grade 60–40–18 Grade 80–55–06	Annealed Quenched and tempered	140 HB 179 HB	77 000–92 000 77 000–92 000
	Grade 100-70-03	Quenched and tempered	229 HB	92 000–112 000
	Grade 120–90–02	Quenched and tempered	269 HB	103 000–126 000
Bronze	_	Sand cast	Minimum tensile strength 40 000 psi	30 000
	ASTM B-148 Alloy 954	Heat treated	Minimum tensile strength 90 000 psi	65 000

Elastic Coefficient $C_p(Z_E)$, $\sqrt{\text{psi}}$ ($\sqrt{\text{MPa}}$) **Table 14-8**

		G	ear Material a	nd Modulus o	f Elasticity	E_G , lbf/in
Pinion Material	Pinion Modulus of Elasticity E _p psi (MPa)*	Steel 30 × 10 ⁶ (2 × 10 ⁵)	Malleable Iron 25 × 10 ⁶ (1.7 × 10 ⁵)	Nodular Iron 24 × 10 ⁶ (1.7 × 10 ⁵)	Cast Iron 22 × 10 ⁶ (1.5 × 10 ⁵)	Alumin Bronz 17.5 × 1 (1.2 × 1
Steel	30 × 10 ⁶ (2 × 10 ⁵)	2300 (191)	2180 (181)	2160 (179)	2100 (174)	1950 (162)
Malleable iron	25 × 106 (1.7 × 105)	2180 (181)	2090 (174)	2070 (172)	2020 (168)	1900 (158)
Nodular iron	24 × 106 (1.7 × 105)	2160 (179)	2070 (172)	2050 (170)	2000 (166)	1880 (156)
Cast iron	22 × 106 (1.5 × 10 ⁵)	2100 (174)	2020 (168)	2000 (166)	1960 (163)	1850 (154)
Aluminum bronze	17.5 × 10 ⁶ (1.2 × 10 ⁵)	1950 (162)	1900 (158)	1880 (156)	1850 (154)	1750 (145)
Tin bronze	16 × 106 (1.1 × 105)	1900 (158)	1850 (154)	1830 (152)	1800 (149)	1700 (141)

Poisson's ratio = 0.30.

Table 14–10
Reliability Factors $K_R(Y_Z)$

Reliability	$K_R(Y_Z)$
0.9999	1.50
0.999	1.25
0.99	1.00
0.90	0.85
0.50	0.70

Table A-5 †Often preferred.

Physical Constants of Materials

		lus of city E	Modu Rigid	lus of ity G	Poisson's	Un	it Weigh	ı w
Material	Mpsi	GPa	Mpsi	GPa	Ratio ν	lbf/in³	lbf/ft ³	kN/m³
Aluminum (all alloys)	10.4	71.7	3.9	26.9	0.333	0.098	169	26.6
Beryllium copper	18.0	124.0	7.0	48.3	0.285	0.297	513	80.6
Brass	15.4	106.0	5.82	40.1	0.324	0.309	534	83.8
Carbon steel	30.0	207.0	11.5	79.3	0.292	0.282	487	76.5
Cast iron (gray)	14.5	100.0	6.0	41.4	0.211	0.260	450	70.6
Copper	17.2	119.0	6.49	44.7	0.326	0.322	556	87.3
Douglas fir	1.6	11.0	0.6	4.1	0.33	0.016	28	4.3
Glass	6.7	46.2	2.7	18.6	0.245	0.094	162	25.4
Inconel	31.0	214.0	11.0	75.8	0.290	0.307	530	83.3
Lead	5.3	36.5	1.9	13.1	0.425	0.411	710	111.5
Magnesium	6.5	44.8	2.4	16.5	0.350	0.065	112	17.6
Molybdenum	48.0	331.0	17.0	117.0	0.307	0.368	636	100.0
Monel metal	26.0	179.0	9.5	65.5	0.320	0.319	551	86.6
Nickel silver	18.5	127.0	7.0	48.3	0.322	0.316	546	85.8
Nickel steel	30.0	207.0	11.5	79.3	0.291	0.280	484	76.0
Phosphor bronze	16.1	111.0	6.0	41.4	0.349	0.295	510	80.1
Stainless steel (18-8)	27.6	190.0	10.6	73.1	0.305	0.280	484	76.0
Titanium alloys	16.5	114.0	6.2	42.4	0.340	0.160	276	43.4

Table 14-9

Empirical Constants *A*, *B*, and *C* for Eq. (14–34), Face Width *F* in Inches* *Source: ANSI/AGMA* 2001-D04.

Condition	Α	В	С
Open gearing	0.247	0.0167	$-0.765(10^{-4})$
Commercial, enclosed units	0.127	0.0158	$-0.930(10^{-4})$
Precision, enclosed units	0.0675	0.0128	$-0.926(10^{-4})$
Extraprecision enclosed gear units	0.00360	0.0102	$-0.822(10^{-4})$

^{*}See ANSI/AGMA 2101-D04, pp. 20-22, for SI formulation.

Table A-20

Deterministic ASTM Minimum Tensile and Yield Strengths for Some Hot-Rolled (HR) and Cold-Drawn (CD) Steels [The strengths listed are estimated ASTM minimum values in the size range 18 to 32 mm ($\frac{3}{4}$ to $1\frac{1}{4}$ in). These strengths are suitable for use with the design factor defined in Sec. 1–10, provided the materials conform to ASTM A6 or A568 requirements or are required in the purchase specifications. Remember that a numbering system is not a specification.] *Source:* 1986 SAE Handbook, p. 2.15.

1	2	3	4	5	6	7	8
UNS No.	SAE and/or AISI No.	Process- ing	Tensile Strength, MPa (kpsi)	Yield Strength, MPa (kpsi)	Elongation in 2 in, %	Reduction in Area, %	Brinell Hardness
G10060	1006	HR	300 (43)	170 (24)	30	55	86
		CD	330 (48)	280 (41)	20	45	95
G10100	1010	HR	320 (47)	180 (26)	28	50	95
		CD	370 (53)	300 (44)	20	40	105
G10150	1015	HR	340 (50)	190 (27.5)	28	50	101
		CD	390 (56)	320 (47)	18	40	111
G10180	1018	HR	400 (58)	220 (32)	25	50	116
		CD	440 (64)	370 (54)	15	40	126
G10200	1020	HR	380 (55)	210 (30)	25	50	111
		CD	470 (68)	390 (57)	15	40	131
G10300	1030	HR	470 (68)	260 (37.5)	20	42	137
		CD	520 (76)	440 (64)	12	35	149
G10350	1035	HR	500 (72)	270 (39.5)	18	40	143
		CD	550 (80)	460 (67)	12	35	163
G10400	1040	HR	520 (76)	290 (42)	18	40	149
		CD	590 (85)	490 (71)	12	35	170
G10450	1045	HR	570 (82)	310 (45)	16	40	163
		CD	630 (91)	530 (77)	12	35	179
G10500	1050	HR	620 (90)	340 (49.5)	15	35	179
		CD	690 (100)	580 (84)	10	30	197
G10600	1060	HR	680 (98)	370 (54)	12	30	201
G10800	1080	HR	770 (112)	420 (61.5)	10	25	229
G10950	1095	HR	830 (120)	460 (66)	10	25	248

Appendix C: Figures

Figure 14-2

Figure 14-3

Figure 14-4

$$m_N = \frac{p_N}{0.95Z}$$

Value for Z is for an element of indicated numbers of teeth and a 75-tooth mate

Normal tooth thickness of pinion and gear tooth each reduced 0.024 in to provide 0.048 in total backlash for one normal diametral pitch

Figure 14-14

Repeatedly applied bending strength stress-cycle factor V_N (ANSI/AGMA 2001-D04.)

Figure 14-15

Pitting resistance stress-cycle factor Z_N. (ANSI/AGMA 2001-D04.)

Figure 15-8

Figure 15-9

1	able of Ov	erload Factors, K _o				
Driven Machine						
Power source	Uniform	Moderate shock	Heavy shock			
Uniform	1.00	1.25	1.75			
Light shock	1.25	1.50	2.00			
Medium shock	1.50	1.75	2,25			

Appendix C: Equations

$$k_{a} = aS_{iit}^{b}$$

$$k_{b} = \begin{cases} (d/0.3)^{-0.107} = 0.879d^{-0.107} & 0.11 \le d \le 2 \text{ in} \\ 0.91d^{-0.157} & 2 < d \le 10 \text{ in} \\ (d/7.62)^{-0.107} = 1.24d^{-0.107} & 2.79 \le d \le 51 \text{ mm} \\ 1.51d^{-0.157} & 51 < d \le 254 \text{ mm} \end{cases}$$

$$k_{c} = \begin{cases} 1 & \text{bending} \\ 0.85 & \text{axial} \\ 0.59 & \text{torsion} \end{cases}$$

$$K_{f} = 1 + q(K_{t} - 1) \quad \text{or} \quad K_{fs} = 1 + q_{shear}(K_{ts} - 1) \qquad (6-32)$$

$$q = \frac{1}{1 + \frac{\sqrt{a}}{\sqrt{r}}}$$

$$\sqrt{a} = 0.246 - 3.08(10^{-3})S_{sit} + 1.51(10^{-5})S_{iit}^{2} - 2.67(10^{-8})S_{iit}^{3} \quad 50 \le S_{sit} \le 250 \text{ kpsi}$$

$$\sqrt{a} = 1.24 - 2.25(10^{-3})S_{sit} + 1.60(10^{-6})S_{sit}^{2} - 4.11(10^{-10})S_{sit}^{3} \quad 340 \le S_{sit} \le 1700 \text{ MPa}$$

$$(6-35)$$

$$\sqrt{a} = 0.190 - 2.51(10^{-3})S_{sit} + 1.43(10^{-6})S_{sit}^{2} - 4.11(10^{-10})S_{sit}^{3} \quad 340 \le S_{sit} \le 1500 \text{ MPa}$$

$$(6-36)$$

$$\sigma'_{a} = (\sigma_{a}^{2} + 3\tau_{a}^{2})^{1/2} = \left[\left(\frac{32K_{f}M_{a}}{\pi d^{3}} \right)^{2} + 3 \left(\frac{16K_{fs}T_{a}}{\pi d^{3}} \right)^{2} \right]^{1/2}$$

$$\sigma'_{m} = (\sigma_{m}^{2} + 3\tau_{m}^{2})^{1/2} = \left[\left(\frac{32K_{f}M_{a}}{\pi d^{3}} \right)^{2} + 3 \left(\frac{16K_{fs}T_{m}}{\pi d^{3}} \right)^{2} \right]^{1/2}$$

$$\sigma'_{max} = \left[(\sigma_{m} + \sigma_{a})^{2} + 3(\tau_{m} + \tau_{a})^{2} \right]^{1/2}$$

$$\sigma'_{max} = \left[(\sigma_{m} + \sigma_{a})^{2} + 3(\tau_{m} + \tau_{a})^{2} \right]^{1/2}$$

$$\sigma'_{max} = \left[\left(\frac{32K_{f}(M_{m} + M_{a})}{\pi d^{3}} \right)^{2} + 3 \left(\frac{16K_{fs}(T_{m} + T_{a})}{\pi d^{3}} \right)^{2} \right]^{1/2}$$

$$\sigma'_{max} = \left[\left(\frac{32K_{f}(M_{m} + M_{a})}{\pi d^{3}} \right)^{2} + 3 \left(\frac{16K_{fs}(T_{m} + T_{a})}{\pi d^{3}} \right)^{2} \right]^{1/2}$$

$$\sigma'_{max} = \left[\left(\frac{32K_{f}(M_{m} + M_{a})}{\pi d^{3}} \right)^{2} + 3 \left(\frac{16K_{fs}(T_{m} + T_{a})}{\pi d^{3}} \right)^{2} \right]^{1/2}$$

$$\sigma'_{max} = \left[\left(\frac{32K_{f}(M_{m} + M_{a})}{\pi d^{3}} \right)^{2} + 3 \left(\frac{16K_{fs}(T_{m} + T_{a})}{\pi d^{3}} \right)^{2} \right]^{1/2}$$

$$\sigma'_{max} = \left[\left(\frac{32K_{f}(M_{m} + M_{a})}{\pi d^{3}} \right)^{2} + 3 \left(\frac{16K_{fs}(T_{m} + T_{a})}{\pi d^{3}} \right)^{2} \right]^{1/2}$$

$$\tau = \frac{F}{A} \tag{8-53}$$

$$\sigma = -\frac{F}{A} \tag{8-55}$$

$$F_e = X_i V F_r + Y_i F_a \tag{11-12}$$

$$C_p = \left[\frac{1}{\pi \left(\frac{1 - v_P^2}{E_P} + \frac{1 - v_G^2}{E_G} \right)} \right]^{1/2} \tag{14-13}$$

$$\sigma = \begin{cases} W' K_o K_v K_s \frac{P_d}{F} \frac{K_m K_B}{J} & \text{(U.S. customary units)} \\ W' K_o K_v K_s \frac{1}{bm_i} \frac{K_H K_B}{V_J} & \text{(SI units)} \end{cases}$$

$$\sigma_c = \begin{cases} C_p \sqrt{W' K_o K_v K_s \frac{K_m}{d_{q_F} F} \frac{C_f}{I}} \\ Z_E \sqrt{W' K_o K_v K_s \frac{K_H}{d_{q_B} b} \frac{Z_R}{Z_f}} & \text{(SI units)} \end{cases}$$

$$K_v = \begin{cases} \left(\frac{A + \sqrt{V}}{A} \right)^B & V \text{ in ft/min} \\ \left(\frac{A + \sqrt{200V}}{A} \right)^B & V \text{ in m/s} \end{cases}$$

$$A = 50 + 56(1 - B) & (14-27)$$

$$A = 50 + 56(1 - B) & (14-28)$$

$$B = 0.25(12 - Q_v)^{2/3} & (14-30)$$

$$K_m = C_{mf} = 1 + C_{mc}(C_{pf}C_{pm} + C_{mu}C_e) & (14-30)$$

$$C_{pf} = \begin{cases} \frac{F}{10d_P} - 0.025 & F \le 1 \text{ in} \\ \frac{F}{10d_P} - 0.0375 + 0.0125F & 1 < F \le 40 \text{ in} \\ \frac{F}{10d_P} - 0.1109 + 0.0207F - 0.000 228F^2 & 17 < F \le 40 \text{ in} \\ C_{ma} = A + BF + CF^2 & \text{(see Table 14-9 for values of } A, B, \text{ and } C \text{)} & (14-34)$$

$$S_{sy} = 0.577S_y$$
 (5-21)
 $S_e = k_a k_b k_c k_d k_e k_f S_e'$ (6-18)
 $C_H = 1.0 + A'(m_G - 1.0)$ (14-36)

where

$$A' = 8.98(10^{-3}) \left(\frac{H_{BP}}{H_{BG}}\right) - 8.29(10^{-3})$$
 $1.2 \le \frac{H_{BP}}{H_{BG}} \le 1.7$

$$K_B = \begin{cases} 1.6 \ln \frac{2.242}{m_B} & m_B < 1.2\\ 1 & m_B \ge 1.2 \end{cases}$$
 (14-40)

$$H = T_i \omega_i = T_o \omega_o \tag{18-1}$$

$$K_s = \frac{1}{k_h} = 1.192 \left(\frac{F\sqrt{Y}}{P}\right)^{0.0535}$$
 (a)

$$V = \pi dn/12 \tag{13-34}$$

$$W_t = 33\ 000 \frac{H}{V} \tag{13-35}$$