Quiz, 10 questions

Congratulations! You passed!

Next Item

1/1 point

1.

Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

 $x^{(i) < j >}$

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

- $x^{(j) < i>} \ x^{< j>(i)}$

Quiz, 10 questions

2.

Consider this RNN:

This specific type of architecture is appropriate when:

$$\bigcap T_x = T_y$$

It is appropriate when every input should be matched to an output.

$$T_x < T_y$$

$$T_x > T_y$$
 $T_x = 1$

$$T_x = 1$$

Quiz, 10 questions

3.

To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

Quiz, 10 questions

4.

You are training this RNN language model.

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- Estimating $P(y^{<1>}, y^{<2>}, ..., y^{< t-1>})$
- $igcap ext{Estimating } P(y^{< t>})$
- Stimating $P(y^{< t>} | y^{< 1>}, y^{< 2>}, ..., y^{< t-1>})$

Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

Estimating $P(y^{< t> | y^{< 1>}, y^{< 2>}, ..., y^{< t>})$

Quiz, 10 questions

5.

You have finished training a language model RNN and are using it to sample random sentences, as follows:

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.

Correct

Yes!

Recurrent Neural Networks Quiz, 10 questions

10000

are all	e training an RNN, and find that your weights and activations taking on the value of NaN ("Not a Number"). Which of these is ost likely cause of this problem?
	Vanishing gradient problem.
0	Exploding gradient problem.
Corr	ect
	ReLU activation function g(.) used to compute g(z), where z is too large.
	Sigmoid activation function g(.) used to compute g(z), where z is too large.
~	1 / 1 point
and ar	se you are training a LSTM. You have a 10000 word vocabulary, e using an LSTM with 100-dimensional activations $a^{< t>}$. What is nension of Γ_u at each time step?
	1
0	100
	ect rect, Γ_u is a vector of dimension equal to the number of len units in the LSTM.
	300

Quiz, 10 questions

8.

Here're the update equations for the GRU.

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$

$$a^{< t>} = c^{< t>}$$

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

- Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Betty's model (removing Γ_r), because if $\Gamma_u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

Correct

Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependant on $c^{< t-1>}$.

Quiz, 10 questions

9.

Here are the equations for the GRU and the LSTM:

 $\begin{array}{lll} & & & & & & & & \\ \tilde{c}^{< t>} = \tanh(W_c [\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) & & \tilde{c}^{< t>} = \tanh(W_c [a^{< t-1>}, x^{< t>}] + b_c) \\ & & & & & \\ \Gamma_u = \sigma(W_u [c^{< t-1>}, x^{< t>}] + b_u) & & & & \\ \Gamma_u = \sigma(W_u [a^{< t-1>}, x^{< t>}] + b_u) & & & \\ \Gamma_r = \sigma(W_r [c^{< t-1>}, x^{< t>}] + b_r) & & & & \\ \Gamma_f = \sigma(W_f [a^{< t-1>}, x^{< t>}] + b_f) & & \\ c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>} & & \\ c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>} \\ & & & \\ a^{< t>} = \Gamma_o * c^{< t>} \\ & & \\ a^{< t>} = \Gamma_o * c^{< t>} \\ \end{array}$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the blanks?

$$\Gamma_u$$
 and $1 - \Gamma_u$

Correct

Yes, correct!

- Γ_u and Γ_r
- $1 \Gamma_u$ and Γ_u
- \bigcap Γ_r and Γ_u

Quiz, 10 questions

10.

You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>}$, ..., $x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>}$, ..., $y^{<365>}$. You'd like to build a model to map from $x\to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

	Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
	Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
0	Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{<1>}$,, $x^{< t>}$, but not on $x^{< t+1>}$,, $x^{< 365>}$
Corre Yes!	ect
	Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather.

