$$I^{G}(J^{PC}) = 0^{+}(4^{+})$$

$f_4(2050)$ MASS

<i>VALUE</i> (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
2018±11 OUR	AVERAGE	Error includes s	cale f	actor of	2.1. See the ideogram below.
1960 ± 15		AMELIN	06	VES	36 $\pi^- p \rightarrow \omega \omega n$
2005 ± 10		¹ BINON	05	GAMS	33 $\pi^- p \rightarrow \eta \eta n$
1998 ± 15		ALDE	98	GAM4	$100 \; \pi^- p \rightarrow \; \pi^0 \pi^0 n$
2060 ± 20		ALDE	90	GAM2	38 $\pi^- p \rightarrow \omega \omega n$
2038 ± 30		AUGUSTIN	87	DM2	$J/\psi ightarrow \gamma \pi^+ \pi^-$
2086 ± 15		BALTRUSAIT.	87	MRK3	$J/\psi \rightarrow \gamma \pi^+ \pi^-$
2000 ± 60		ALDE			$100 \pi^- p \rightarrow n2\eta$
2020 ± 20	40k	² BINON	84 B		$38 \pi^- p \rightarrow n2\pi^0$
2015 ± 28		³ CASON	82	STRC	$8 \pi^+ p \rightarrow \Delta^{++} \pi^0 \pi^0$
2031^{+25}_{-36}		ETKIN	82 B		$23 \pi^- p \rightarrow n2K_S^0$
2020 ± 30	700	APEL	75		$40 \pi^- \rho \rightarrow n2\pi^0$
2050 ± 25		BLUM	75	ASPK	18.4 $\pi^- p \rightarrow nK^+K^-$
• • • We do not	use the foll	owing data for ave	erages	s, fits, lin	nits, etc. • • •
$1966 \!\pm\! 25$		⁴ ANISOVICH	09	RVUE	0.0 p p, πN
$1885 + 14 + 218 \\ -13 - 25$		⁵ UEHARA	09	BELL	10.6 $e^+e^- \rightarrow e^+e^-\pi^0\pi^0$
$2018\pm~6$		ANISOVICH	001		$2.0 \ \overline{p}p \rightarrow \eta \pi^0 \pi^0, \pi^0 \pi^0,$
~ 2000		6 MARTIN	98	RVUE	$N \overline{N} o \pi \pi$

⁷ MARTIN ~ 2010 97 RVUE $\overline{N}N \rightarrow \pi\pi$ ⁸ OAKDEN 94 RVUE $0.36-1.55 \overline{p}p \rightarrow \pi \pi$ ~ 2040 ⁹ OAKDEN 94 RVUE 0.36–1.55 $\overline{p}p \rightarrow \pi\pi$ ~ 1990 ¹⁰ ALPER 80 CNTR 62 $\pi^- p \to K^+ K^- n$ 1978 ± 5 ¹⁰ ROZANSKA SPRK 18 $\pi^- p \rightarrow p \overline{p} n$ 80 2040 ± 10

¹⁰ CORDEN OMEG 12–15 $\pi^- p \rightarrow n2\pi$ 1935 ± 13 EVANGELIS... 79B OMEG 10 $\pi^- p \rightarrow K^+ K^- n$ 1988 ± 7

¹¹ ANTIPOV 1922 ± 14 CIBS 25 $\pi^- p \rightarrow p3\pi$

¹ From the first PWA solution.

² From a partial-wave analysis of the data.

³ From an amplitude analysis of the reaction $\pi^+\pi^- \rightarrow 2\pi^0$.

⁴K matrix pole.

⁵ Taking into account the $f_2(1950)$. Helicity-2 production favored.

⁶ Energy-dependent analysis.

⁷ Single energy analysis.

⁸ From solution A of amplitude analysis of data on $\overline{p}p \rightarrow \pi\pi$. See however KLOET 96 who fit $\pi^+\pi^-$ only and find waves only up to J=3 to be important but not significantly

⁹ From solution B of amplitude analysis of data on $\overline{p}p \rightarrow \pi\pi$. See however KLOET 96 who fit $\pi^+\pi^-$ only and find waves only up to J=3 to be important but not significantly resonant. $10 \frac{10}{I(J^P)} = 0(4^+)$ from amplitude analysis assuming one-pion exchange.

¹¹ Width errors enlarged by us to $4\Gamma/\sqrt{N}$; see the note with the $K^*(892)$ mass.

$f_4(2050)$ WIDTH

VALUE (MeV)	EVTS		DOCUMENT ID		TECN	COMMENT
237± 18 OUR	AVERAG	E	Error includes se	cale f	actor of	1.9. See the ideogram below.
$290\pm~20$			AMELIN	06	VES	$36 \pi^- p \rightarrow \omega \omega n$
$340\pm~80$		12	BINON	05		33 $\pi^- p \rightarrow \eta \eta \eta$
$395\pm~40$			ALDE	98	GAM4	$100 \ \pi^- p \rightarrow \ \pi^0 \pi^0 n$
$170\pm~60$			ALDE	90		38 $\pi^- p \rightarrow \omega \omega n$
304 ± 60			AUGUSTIN	87		$J/\psi \rightarrow \gamma \pi^+ \pi^-$
$210\pm~63$			BALTRUSAIT.	87	MRK3	$J/\psi \rightarrow \gamma \pi^+ \pi^-$
400 ± 100		10	ALDE	86 D		$100 \pi^- p \rightarrow n2\eta$
240 ± 40	40k	13	BINON			$38 \pi^- p \rightarrow n2\pi^0$
190 ± 14			DENNEY	83	LASS	10 $\pi^+ n/\pi^+ p$
$186 ^{+ 103}_{- 58}$		14	CASON	82	STRC	$8 \pi^+ p \rightarrow \Delta^{++} \pi^0 \pi^0$
$305 + 36 \\ -119$			ETKIN	82 B		$23 \pi^- p \rightarrow n2K_S^0$
$180\pm~60$	700		APEL	75	NICE	$40 \pi^- p \rightarrow n2\pi^0$
$225 {+} {}^{+}120 \\ -70$			BLUM	75	ASPK	18.4 $\pi^- p \to n K^+ K^-$
• • • We do not ι	ise the fo	llov	ving data for ave	erages	s, fits, lin	nits, etc. • • •
260± 40		15	ANISOVICH			$0.0 \; \overline{p} p, \; \pi N$
$453 \pm 20 + 31 \\ -129$		16	UEHARA	09	BELL	10.6 $e^+e^- \rightarrow e^+e^-\pi^0\pi^0$
182 ± 7			ANISOVICH	001		$2.0 \ \overline{p}p \rightarrow \eta \pi^0 \pi^0, \pi^0 \pi^0,$
~ 170		17	MARTIN	98	RVUE	$rac{\eta}{N}\eta,\eta\eta',\pi\pi$ $N\overline{N} o\pi\pi$
HTTP://PDG.LBL.GOV Page 2 Created: 5/30/2017 17:20						

~ 200	¹⁸ MARTIN	97	RVUE	$\overline{N}N \rightarrow \pi\pi$
\sim 60	¹⁹ OAKDEN	94	RVUE	0.36–1.55 $\overline{p}p \rightarrow \pi\pi$
\sim 80	²⁰ OAKDEN			0.36–1.55 $\overline{p}p \rightarrow \pi\pi$
243± 16	²¹ ALPER			62 $\pi^- p \to K^+ K^- n$
140 ± 15	²¹ ROZANSKA	80	SPRK	18 $\pi^- p \rightarrow p \overline{p} n$
263± 57	²¹ CORDEN	79	OMEG	$1215 \ \pi^- \ p \rightarrow \ n2\pi$
100± 28				$10 \pi^- p \rightarrow K^+ K^- n$
107 ± 56	²² ANTIPOV	77	CIBS	$25 \pi^- p \rightarrow p3\pi$

²² Width errors enlarged by us to $4\Gamma/\sqrt{N}$; see the note with the $K^*(892)$ mass.

 $^{^{12}\,\}mathrm{From}$ the first PWA solution. $^{13}\,\mathrm{From}$ a partial-wave analysis of the data.

¹⁴ From an amplitude analysis of the reaction $\pi^+\pi^- \rightarrow 2\pi^0$.

¹⁶ Taking into account the $f_2(1950)$. Helicity-2 production favored.

¹⁷ Energy-dependent analysis.

¹⁸ Single energy analysis.

¹⁹ From solution A of amplitude analysis of data on $\overline{p}p \to \pi\pi$. See however KLOET 96 who fit $\pi^+\pi^-$ only and find waves only up to J=3 to be important but not significantly

²⁰ From solution B of amplitude analysis of data on $\overline{p}p \rightarrow \pi\pi$. See however KLOET 96 who fit $\pi^+\pi^-$ only and find waves only up to J=3 to be important but not significantly

 $²¹ I(J^P) = 0(4^+)$ from amplitude analysis assuming one-pion exchange.

$f_4(2050)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$\omega\omega$	seen
Γ_2	$\pi\pi$	$(17.0 \pm 1.5)~\%$
Γ_3	$K\overline{K}$	$(6.8^{+3.4}_{-1.8}) \times 10^{-3}$
Γ_4	$\eta \eta \ 4\pi^0 \ \gamma \gamma$	$(2.1\pm0.8)\times10^{-3}$
Γ_5	$4\pi^0$	< 1.2 %
Γ_6	$\gamma \gamma$	
Γ ₇	$a_2(1320)\pi$	seen

$f_4(2050) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(K\overline{K}) \times \Gamma($	$\gamma\gamma)/\Gamma_{ m t}$	otal			-		$\Gamma_3\Gamma_6/\Gamma$
VALUE (keV)		CL%	DOCUMENT ID		TECN	COMMENT	
• • • We do no	t use the	following d	lata for averages	s, fits,	limits,	etc. • • •	
< 0.29		95	ALTHOFF	85 B	TASS	$\gamma \gamma \to K \overline{K} \pi$	
$\Gamma(\pi\pi) \times \Gamma(\gamma)$	$\gamma)/\Gamma_{ m to}$	tal					$\Gamma_2\Gamma_6/\Gamma$
VALUE (eV)	CL%	EVTS	DOCUMENT ID		TECN	COMMENT	
• • • We do no	t use the	following d	lata for averages	s, fits,	limits,	etc. • • •	
$23.1 ^{+ 3.6 + 70.5}_{- 3.3 - 15.6}$		2	³ UEHARA	09	BELL	$10.6 e^{+}e^{-} = 0.00 e^{+}$	0
<1100	95 1	13 ± 4	OEST	90	JADE	$e^+e^- \rightarrow e^+$	$e^-\pi^0\pi^0$
23 Taking into	account	the <i>f</i> ₂ (1950). Helicity-2 pro	ductio	on favor	ed.	

$f_4(2050)$ BRANCHING RATIOS

$\Gamma(\omega\omega)/\Gamma_{total}$	DOCUMENT ID		TECN	COMMENT
seen	AMELIN	06	VES	$36 \pi^- p \rightarrow \omega \omega n$
ullet $ullet$ We do not use the follow	ing data for average	s, fits,	limits, e	etc. • • •
not seen	BARBERIS	00F		450 $pp \rightarrow p_f \omega \omega p_S$
$\Gamma(\omega\omega)/\Gamma(\pi\pi)$				Γ_1/Γ_2
VALUE	DOCUMENT ID		TECN	COMMENT
1.5±0.3	ALDE	90	GAM2	$38 \pi^- p \rightarrow \omega \omega n$
$\Gamma(\pi\pi)/\Gamma_{\text{total}}$				Γ_2/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.170 ± 0.015 OUR AVERAGE				
0.18 ± 0.03	²⁴ BINON	83 C	GAM2	$38 \pi^- p \rightarrow n4\gamma$
0.16 ± 0.03	²⁴ CASON	82	STRC	$8 \pi^+ \rho \rightarrow \Delta^{++} \pi^0 \pi^0$
$0.17\ \pm0.02$	²⁴ CORDEN	79	OMEG	12–15 $\pi^- p \rightarrow n2\pi$
²⁴ Assuming one pion exchang	ge.			

HTTP://PDG.LBL.GOV

Page 4

$\Gamma(K\overline{K})/\Gamma(\pi\pi)$				Γ_3/Γ_2
VALUE	DOCUMENT ID		TECN	COMMENT
$0.04^{+0.02}_{-0.01}$	ETKIN	82 B	MPS	$23 \pi^- p \rightarrow n2K_S^0$
$\Gamma(\eta\eta)/\Gamma_{ m total}$				Γ ₄ /Γ
<i>VALUE</i> (units 10 ⁻³)	DOCUMENT ID		TECN	COMMENT
2.1±0.8	ALDE	86 D	GAM4	100 $\pi^- p \rightarrow n4\gamma$
$\Gamma(4\pi^0)/\Gamma_{ m total}$				Γ ₅ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
<0.012	ALDE	87	GAM4	$100 \ \pi^- p \rightarrow 4\pi^0 n$
$\Gamma(a_2(1320)\pi)/\Gamma_{\text{total}}$				Γ ₇ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
seen	AMELIN	00	VES	$37 \pi^- p \rightarrow \eta \pi^+ \pi^- n$

*f*₄(2050) REFERENCES

ANISOVICH UEHARA AMELIN	09 09 06	IJMP A24 2481 PR D79 052009 PAN 69 690 Translated from YAF 69	V.V. Anisovich, A.V. Sar S. Uehara <i>et al.</i> D.V. Amelin <i>et al.</i> 715	rantsev (BELLE Collab.) (VES Collab.)
BINON	05	PAN 68 960 Translated from YAF 68	F. Binon et al.	
AMELIN ANISOVICH	00 00J	NP A668 83 PL B491 47	D. Amelin <i>et al.</i> A.V. Anisovich <i>et al.</i>	(VES Collab.)
BARBERIS	005 00F	PL B484 198	D. Barberis <i>et al.</i>	(WA 102 Collab.)
ALDE	98	EPJ A3 361	D. Alde <i>et al.</i>	(GAM4 Collab.)
Also	30	PAN 62 405	D. Alde et al.	(GAMS Collab.)
71130		Translated from YAF 62		(G/TIVIS CONSD.)
MARTIN	98	PR C57 3492	B.R. Martin et al.	
MARTIN	97	PR C56 1114	B.R. Martin, G.C. Oades	(LOUC, AARH)
KLOET	96	PR D53 6120	W.M. Kloet, F. Myhrer	(RUTG, NORD)
OAKDEN	94	NP A574 731	M.N. Oakden, M.R. Pen	
ALDE	90	PL B241 600	D.M. Alde et al.	(SERP, BELG, LANL, LAPP+)
OEST	90	ZPHY C47 343	T. Oest et al.	(JADE Collab.)
ALDE	87	PL B198 286	D.M. Alde et al.	(LANL, BRUX, SERP, LAPP)
AUGUSTIN	87	ZPHY C36 369	J.E. Augustin et al.	(LALO, CLER, FRAS+)
BALTRUSAIT	. 87	PR D35 2077	R.M. Baltrusaitis et al.	(Mark III Collab.)
ALDE	86D	NP B269 485	D.M. Alde et al.	(BELG, LAPP, SERP, CERN+)
ALTHOFF	85B	ZPHY C29 189	M. Althoff et al.	(TASSO Collab.)
BINON	84B	LNC 39 41	F.G. Binon et al.	(SERP, BELG, LAPP)
BINON	83C	SJNP 38 723	F.G. Binon et al.	(SERP, BRUX+)
		Translated from YAF 38		
DENNEY	83	PR D28 2726	D.L. Denney et al.	(IOWA, MICH)
CASON	82	PRL 48 1316	N.M. Cason et al.	(NDAM, ANL)
ETKIN	82B	PR D25 1786	A. Etkin <i>et al.</i>	(BNL, CUNY, TUFTS, VAND)
ALPER	80	PL 94B 422		(AMST, CERN, CRAC, MPIM+)
ROZANSKA	80	NP B162 505	M. Rozanska <i>et al.</i>	(MPIM, CERN)
CORDEN	79	NP B157 250	M.J. Corden <i>et al.</i>	(BIRM, RHEL, TELA+) JP
EVANGELIS	79B	NP B154 381	C. Evangelista <i>et al.</i>	(BARI, BONN, CERN+)
ANTIPOV	77 75	NP B119 45	Y.M. Antipov et al.	(SERP, GEVA)
APEL BLUM	75 75	PL 57B 398 PL 57B 403	W.D. Apel <i>et al.</i> (I	KARLK, KARLE, PISA, SERP+) JP
DLUIVI	15	FL 3/D 403	vv. Dium <i>et al.</i>	(CERN, MPIM) JP