Chapitre 6: Espaces probabilisés

- 0 Ensembles dénombrables
- I Notion d'espaces probabilisés
- II Propriétés élémentaires des probabilités
- III Probabilités conditionnelles et indépendantes
- IV Espace probabilisé discret

0 – Ensembles dénombrables

<u>Définition</u>:

Un ensemble est dénombrable s'il est fini ou en bijection avec №.

 \rightarrow un ensemble est dénombrable s'il est en bijection avec une partie de \mathbb{N} .

Propositions:

- R n'est pas dénombrable.
- Le produit cartésien d'un nombre fini d'ensemble dénombrables est dénombrable.
- Une union finie ou dénombrable d'ensembles dénombrables est dénombrable.

Théorème de Cantor-Bernstein (HP):

Soient A, B deux ensembles.

S'il existe $\varphi_1: A \to B$ *et* $\varphi_2: B \to A$ *injectives, alors il existe* $\psi: A \to B$ *bijective.*

I – Notion d'espaces probabilisés

Prérequis:

- Univers Ω = Résultats possibles de l'expérience
- Evènement = partie de Ω , groupement de résultats

<u>Définitions</u>: Soit Ω un ensemble.

 $T \subset \mathcal{P}(\Omega)$ est une tribu sur Ω si :

- $\emptyset \in T$
- $\forall A \in T, \bar{A} \in T$
- $\forall (A_n)_{n\in\mathbb{N}} \in T^{\mathbb{N}}, \bigcup_{n\in\mathbb{N}} A_n \in T$

 (Ω, T) est un espace probabilisable.

Les éléments de T s'appellent les évènements.

 $P: T \to [0; 1]$ est une probabilité sur un espace probabilisable (Ω, T) si :

- $\forall A \in T, P(A) \in [0; 1]$
- $P(\Omega) = 1$
- $\forall (A_n)_{n \in \mathbb{N}} \in T^{\mathbb{N}}$ deux à deux disjoints, $P(\bigcup_{n \in \mathbb{N}} A_n) = \sum_{n \in \mathbb{N}} P(A_n)$

 (Ω, T, P) est un espace probabilisé.

<u>Propositions</u>: Soient (Ω, T, P) un espace probabilisé et $A, B \in T$.

- $A \cap B \in T$
- $\forall (A_n) \in T^{\mathbb{N}}, (\bigcap_{n \in \mathbb{N}} A_n) \in T$
- $P(\bar{A}) = 1 P(A)$
- $A \subset B \Rightarrow P(A) \leq P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

II – Propriétés élémentaires des probabilités

Soit (Ω, T, P) un espace probabilisé.

- Soit $(A_n) \in T^{\mathbb{N}}$ croissant pour l'inclusion. $(\forall n, A_n \subset A_{n+1})$

$$P(A_n) \xrightarrow[n \to +\infty]{} P\left(\bigcup_{n \in \mathbb{N}} A_n\right)$$