Método SIMPLEX

Marcone Jamilson Freitas Souza

Departamento de Computação Programa de Pós-Graduação em Ciência da Computação Universidade Federal de Ouro Preto http://www.decom.ufop.br/prof/marcone

E-mail: marcone@iceb.ufop.br

Resolução gráfica de PPL's

- Passos para resolver graficamente um PPL:
 - Determinar o gradiente da função objetivo (Gradiente é perpendicular à reta definida pela função objetivo)
 - b) Caminhar no sentido e direção do gradiente da função objetivo até tangenciar a região viável
 - c) O ponto de tangência representa a solução ótima x*

Fundamentação do Método SIMPLEX

Seja resolver o seguinte PPL:

Fundamentação do Método SIMPLEX

- O ótimo de um PPL, se existir, ocorre em pelo menos um vértice do conjunto de soluções viáveis.
- Situações que podem ocorrer com relação ao conjunto M de soluções viáveis:
 - 1) $M = \{\}$

Neste caso não há solução viável => Não há solução ótima

- 2) M é não vazio
 - a) M é limitado

Única solução ótima, a qual é vértice

Infinidade de soluções ótimas, e pelo menos uma é vértice (no caso, duas são vértices)

- 2) M é não vazio
 - b) M é ilimitado

Única solução ótima, a qual é vértice

Infinidade de soluções ótimas, sendo uma vértice

- 2) M é não vazio
 - b) M é ilimitado

Infinidade de soluções ótimas, e pelo menos uma vértice (no caso, duas são vértices)

Não há soluções ótimas

Forma-padrão de um PPL

PPL está na forma-padrão quando é posto na forma:

(min) ou (max)
$$z = \sum_{j=1}^{n} c_{j} x_{j}$$

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad \forall i = 1, \dots, m$$

$$x_j \ge 0 \quad \forall j = 1, ..., n$$

sendo
$$b_i \ge 0 \quad \forall i = 1, ..., m$$

Redução de um PPL qualquer à forma-padrão

Restrições do tipo ≤

$$2x_1 + 3x_2 \le 5$$

$$2x_1 + 3x_2 + x_3 = 5$$

$$x_3 \ge 0$$

Restrições do tipo ≥

$$x_1 + 6x_2 \ge 7$$
 $x_1 + 6x_2 - x_4 = 7$

Redução de um PPL qualquer à forma-padrão

• Existe b_i < 0

Solução: Basta multiplicar restrição i por -1

Existem variáveis não-positivas:

Seja $x_k \le 0$:

Solução: Criar variável x_k ' tal que x_k ' = - x_k

Assim, modelo terá variável $x_k' \ge 0$

Redução de um PPL qualquer à forma-padrão

 Existem variáveis livres, isto é, variáveis x_k que podem assumir qualquer valor real (negativo, nulo ou positivo):

<u>Solução</u>: Substituir x_k por $x_k' - x_k''$, com $x_k' \ge 0$ e $x_k'' \ge 0$

$$x_k' > x_k'' \Leftrightarrow x_k > 0$$

$$X_k' = X_k'' \Leftrightarrow X_k = 0$$

$$x_k' < x_k'' \Leftrightarrow x_k < 0$$

PPL é de maximização:

$$\max f(x) = -\min \{-f(x)\}\$$

Caracterização de vértice

$$x_1 + 2x_2 + 0x_3 + 0x_4 + 0x_5$$
 $x_1 + x_3 + x_4 = 2$
 $x_1 + x_2 + x_5 = 3$
 $x_1 + x_2 + x_3 + x_4 + x_5 \ge 0$

Caracterização de vértice

- Em um ponto no interior do conjunto (não pertencente a nenhuma aresta) não há variáveis nulas
- Em uma aresta há, pelo menos, uma variável nula
- Em um vértice há, pelo menos, n-m variáveis nulas

Caracterização de vértice

- Para gerar um vértice:
 - Escolher uma matriz não-singular B tal que:

$$Bx^{B} + Rx^{R} = b$$

- Fazer $x^R = 0$
- Se ao resolver o sistema Bx^B = b, for obtido x^B ≥ 0, então x = (x^B x^R)^t = (x^B 0)^t é vértice
- Deste procedimento resulta uma Solução Básica Viável (SBV), com o significado geométrico de vértice.

Definições

- B = base
- $X = (X^{B} X^{R})^{t}$
 - x^B = vetor das variáveis básicas
 - x^R = vetor das variáveis não-básicas
- Solução Básica (SB): vetor x tal que

$$Bx^B=b e x^R = 0$$

Solução Básica Viável (SBV): vetor x tal que

$$Bx^{B}=b; x^{B} \ge 0 e x^{R} = 0$$

 Solução Básica Viável Degenerada (SBVD): É uma SBV em que existe variável básica nula

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$$
A
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

VB	X ₁	X ₂	X ₃	X ₄	X ₅	
X ₃	1	0	1	0	0	2
X ₄	0	1	0	1	0	2
X ₅	1	1	0	0	1	3
	1	2	0	0	0	Z

PPL na forma canônica: Base é a identidade e coeficientes das VB's na função objetivo são todos nulos.

VB	X ₁	X ₂	X ₃	X ₄	X ₅	
X ₃	1	0	1	0	0	2
X ₄	0	1	0	1	0	2
X ₅	1	1	0	0	1	3
	1	2	0	0	0	Z

$$VB = \{x_3 = 2, x_4 = 2, x_5 = 3\}$$

Solução inicial:

$$VNB = \{x_1 = 0, x_2 = 0\}$$

$$x^{(0)} = (0 \ 0 \ 2 \ 2 \ 3)^t$$
; $z = 0$

,		VB	X ₁	X ₂	X ₃	X ₄	X ₅	
,	(L ₁)	X ₃	1	0	1	0	0	2
—	(L ₂)	X ₄	0		0	1	0	2
	(L ₃)	X ₅	1	1	0	0	1	3
'	(L ₄)		1	2	0	0	0	Z

Transformações elementares:

$$L_3 \leftarrow -L_2 + L_3$$

$$L_4 \leftarrow -2L_2 + L_4$$

	VB	X ₁	X ₂	X ₃	X ₄	X ₅	
(L ₁)	X ₃	1	0	1	0	0	2
(L ₂)	X ₂	0	1	0	1	0	2
(L ₃)	X ₅	1	0	0	-1	1	1
(L ₄)		1	0	0	-2	0	z-4

$$VB = \{x_3 = 2, x_2 = 2, x_5 = 1\}$$

Final da Iteração 1:

$$VNB = \{x_1 = 0, x_4 = 0\}$$

$$x^{(1)} = (0 \ 2 \ 2 \ 0 \ 1)^t; z = 4$$

		VB	X ₁	X ₂	X ₃	X ₄	X ₅	
	(L ₁)	X ₃	1	0	1	0	0	2
	(L ₂)	X ₂	0	1	0	1	0	2
1	(L ₃)	X ₅		0	0	-1	1	1
	(L ₄)		1	0	0	-2	0	z-4

$$L_1 \leftarrow -L_3 + L_1$$

$$L_1 \leftarrow -L_3 + L_1$$
 $L_4 \leftarrow -L_3 + L_4$

	VB	X ₁	X ₂	X ₃	X ₄	X ₅	
(L ₁)	X ₃	0	0	1	1	-1	1
(L ₂)	X ₂	0	1	0	1	0	2
(L ₃)	X ₁	1	0	0	-1	1	1
(L ₄)		0	0	0	-1	-1	z-5

$$VB = \{x_1 = 1, x_2 = 2, x_3 = 1\}$$

Final da Iteração 2:

$$VNB = \{x_4 = 0, x_5 = 0\}$$

$$x^{(2)} = (1 \ 2 \ 1 \ 0 \ 0)^t$$
; $z = 5$

Interpretação geométrica

Situação em que a origem não pode ser solução inicial: Exemplo 2

Método das Duas Fases

- Primeira fase (Criar problema auxiliar P'):
 - Introduzir variáveis de folga e variáveis artificiais
 - Variáveis de folga: introduzidas quando há variáveis do tipo ≥ ou ≤
 - Variáveis artificiais: introduzidas quando há restrições do tipo ≥ ou =
 - Criar função objetivo artificial:

$$z^a = \sum x_i^a \ \forall i$$

- Variáveis básicas iniciais: variáveis de folga associadas às restrições ≤ e variáveis artificiais
- Objetivo da primeira fase: minimizar a função objetivo artificial
- Caminhar de SBV em SBV de P' até alcançar SBV do problema original P (situação que ocorre quando todas as variáveis artificiais são nulas).

Método das Duas Fases

- Segunda fase:
 - A partir de uma SBV do problema original P, gerar SBV cada vez melhores até se atingir a solução ótima.
- Aplicando o método das duas fases ao PPL dado, tem-se:

	VB	X ₁	X ₂	X ₃	X ₄	X ₅	X ₁ ^a	
(L ₁)	X ₃	1	0	1	0	0	0	2
(L ₂)	X ₄	0	1	0	1	0	0	2
(L ₃)	X ₁ ^a	1	1	0	0	-1	1	3
(L ₄)		0	0	0	0	0	1	Z ^a
(L ₅)		1	2	0	0	0	0	Z

Redução à forma canônica: $L_4 \leftarrow -L_3 + L_4$

Método das Duas Fases

,		VB	X ₁	X ₂	X ₃	X ₄	X ₅	X ₁ ^a	
	- (L ₁)	X ₃		0	1	0	0	0	2
	(L ₂)	X ₄	0	1	0	1	0	0	2
	(L ₃)	X ₁ ^a	1	1	0	0	-1	1	3
1	(L ₄)		-1	-1	0	0	1	0	z ^a -3
	(L ₅)		1	2	0	0	0	0	Z

$$L_3 \leftarrow -L_1 + L_3$$

$$L_4 \leftarrow L_1 + L_4$$

$$L_5 \leftarrow -L_1 + L_5$$

Método das Duas Fases

,		VB	X ₁	X ₂	X ₃	X ₄	X ₅	X ₁ ^a	
1	(L ₁)	X ₁	1	0	1	0	0	0	2
	(L ₂)	X ₄	0	1	0	1	0	0	2
	- (L ₃)	X ₁ ^a	0		-1	0	-1	1	1
1	(L ₄)		0	-1	1	0	1	0	z ^a -1
	(L ₅)		0	2	-1	0	0	0	z-2

$$L_2 \leftarrow -L_3 + L_2$$

$$L_4 \leftarrow L_3 + L_4$$

$$L_5 \leftarrow -2L_3 + L_5$$

	VB	X ₁	X ₂	X ₃	X ₄	X ₅	X √ ^a	
(L ₁)	X ₁	1	0	1	0	0	0	2
(L ₂)	X ₄	0	0	1	1	1	-1	1
(L ₃)	X ₂	0	1	-1	0	-1	1	1
(L ₄)		0	0	1	0	0	1	Z a
(L ₅)		0	0	1	0	2	-2	z-4

Fim da primeira fase: $z^a = 0$

x = (2, 1); z = 4

Método das Duas Fases

							<u>_</u>	
		VB	X ₁	X ₂	X ₃	X ₄	X ₅	
'	(L ₁)	X ₁	1	0	1	0	0	2
<u> </u>	-(L ₂)	X ₄	0	0	1	1		1
	(L ₃)	X ₂	0	1	-1	0	-1	1
,	(L ₄)		0	0	1	0	2	z-4

$$L_3 \leftarrow L_2 + L_3$$

$$L_4 \leftarrow -2L_2 + L_4$$

	VB	X ₁	X ₂	X ₃	X ₄	X ₅	
(L ₁)	X ₁	1	0	1	0	0	2
(L ₂)	X ₅	0	0	1	1	1	1
(L ₃)	X ₂	0	1	0	1	0	2
(L ₄)		0	0	-1	-2	0	z-6

Solução ótima: $x^* = (2,2)$; $z^* = 6$

Método das Duas Fases: Interpretação Geométrica

Outro exemplo de aplicação do Método das Duas Fases: Exemplo 3

$$\begin{bmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$$

$$A \qquad \qquad b$$

Método das Duas Fases: Exemplo 3

 Introduzindo variáveis artificiais no PPL dado, tem-se:

	VB	X ₁	X ₂	X ₃	X ₄	X ₅	X ₁ ^a	X ₂ ^a	
(L ₁)	X ₁ ^a	1	0	-1	0	0	1	0	2
(L ₂)	X ₄	0	1	0	1	0	0	0	2
(L ₃)	x ₂ ^a	1	1	0	0	-1	0	1	3
(L ₄)		0	0	0	0	0	1	1	Z ^a
(L ₅)		1	2	0	0	0	0	0	Z

Transf. para forma canônica:

$$L_4 \leftarrow -L_1 - L_3 + L_4$$

		VB	X ₁	X ₂	X ₃	X ₄	X ₅	X ₁ ^a	X ₂ ^a	
	- (L ₁)	X ₁ ^a		0	-1	0	0	1	0	2
	(L ₂)	X ₄	0	1	0	1	0	0	0	2
	(L ₃)	X ₂ ^a	1	1	0	0	-1	0	1	3
	(L ₄)		-2	-1	1	0	1	0	0	z ^a -5
	(L ₅)		1	2	0	0	0	0	0	Z

$$L_3 \leftarrow -L_1 + L_3$$

$$L_4 \leftarrow 2L_1 + L_4$$
 $L_5 \leftarrow -L_1 + L_5$

$$L_5 \leftarrow -L_1 + L_5$$

		VB	X ₁	X ₂	X ₃	X ₄	X ₅	X ₁ ^a	X ₂ ^a	
	(L ₁)	X ₁	1	0	-1	0	0	1	0	2
	(L ₂)	X ₄	0	1	0	1	0	0	0	2
	-(L ₃)	X ₂ ^a	0		1	0	-1	-1	1	1
	(L ₄)		0	-1	-1	0	1	2	0	z ^a -1
	(L ₅)		0	2	1	0	0	-1	0	z - 2

$$L_2 \leftarrow -L_3 + L_2$$

$$L_4 \leftarrow L_3 + L_4$$

$$L_5 \leftarrow -2L_3 + L_5$$

	VB	X ₁	X ₂	X ₃	X ₄	X ₅	x ₁ a	\mathbf{X}_2^{a}	
(L ₁)	X ₁	1	0	-1	0	0	1	0	2
(L ₂)	X ₄	0	0	-1	1	1	1	-1	1
(L ₃)	X ₂	0	1	1	0	-1	-1	1	1
(L ₄)		0	0	0	0	0	1		Z ^a
(L ₅)		0	0	-1	0	2	1	-2	z-4

Fim da primeira fase: $z^a = 0$

x = (2, 1); z = 4

							V	
		VB	X ₁	X ₂	X ₃	X ₄	X ₅	
'	(L ₁)	X ₁	1	0	-1	0	0	2
-	- (L ₂)	X ₄	0	0	-1	1		1
	(L ₃)	X ₂	0	1	1	0	-1	1
'	(L ₄)		0	0	-1	0	2	z-4

$$L_3 \leftarrow L_2 + L_3$$

$$L_4 \leftarrow -2L_2 + L_4$$

			ſ	V	ı	1	
	VB	X ₁	X ₂	X ₃	X ₄	X ₅	
(L ₁)	X ₁	1	0	-1	0	0	2
(L ₂)	X ₅	0	0	-1	1	1	1
(L ₃)	X ₂	0	1	0	1	0	2
(L ₄)		0	0	1	-2	0	z-6

x₃ pode entrar na base melhorando o valor de z indefinidamente. Assim, não há solução ótima.

Método das Duas Fases: Interpretação Geométrica do Exemplo 3

Método das Duas Fases: Exemplo 4

$$\begin{bmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$$

$$A$$

$$b$$

Método das Duas Fases: Exemplo 4

 Introduzindo variáveis artificiais no PPL dado, tem-se:

	VB	X ₁	X ₂	X ₃	X ₄	X ₅	X ₁ ^a	X ₂ ^a	
(L ₁)	X ₁ ^a	1	0	-1	0	0	1	0	2
(L ₂)	X ₄	0	1	0	1	0	0	0	2
(L ₃)	X ₂ ^a	1	1	0	0	-1	0	1	3
(L ₄)		0	0	0	0	0	1	1	Z ^a
(L ₅)		1	1	0	0	0	0	0	Z

Transf. para forma canônica:

$$L_4 \leftarrow -L_1 - L_3 + L_4$$

		VB	X ₁	X ₂	X ₃	X ₄	X ₅	X ₁ ^a	X ₂ ^a	
	-(L ₁)	X ₁ ^a		0	-1	0	0	1	0	2
	(L ₂)	X ₄	0	1	0	1	0	0	0	2
	(L ₃)	x ₂ ^a	1	1	0	0	-1	0	1	3
	(L ₄)		-2	-1	1	0	1	0	0	z ^a -5
	(L ₅)		1	1	0	0	0	0	0	Z

$$L_3 \leftarrow -L_1 + L_3$$

$$L_4 \leftarrow 2L_1 + L_4$$
 $L_5 \leftarrow -L_1 + L_5$

$$L_5 \leftarrow -L_1 + L_5$$

		VB	X ₁	X ₂	X ₃	X ₄	X ₅	X ₁ ^a	X ₂ ^a	
	(L ₁)	X ₁	1	0	-1	0	0	1	0	2
	(L ₂)	X ₄	0	1	0	1	0	0	0	2
	-(L ₃)	X ₂ ^a	0		1	0	-1	-1	1	1
	(L ₄)		0	-1	-1	0	1	2	0	z ^a -1
	(L ₅)		0	1	1	0	0	-1	0	z-2

$$L_2 \leftarrow -L_3 + L_2$$

$$L_4 \leftarrow L_3 + L_4$$

$$L_4 \leftarrow L_3 + L_4$$
 $L_5 \leftarrow -L_3 + L_5$

	VB	X ₁	X ₂	X ₃	X ₄	X ₅	x ₁ a	$\mathbf{X}_2^{\mathbf{a}}$	
(L ₁)	X ₁	1	0	-1	0	0	1	0	2
(L ₂)	X ₄	0	0	-1	1	1	1	-1	1
(L ₃)	X ₂	0	1	1	0	-1	-1	1	1
(L ₄)		0	0	0	0	0	1	1	z ^a
(L ₅)		0	0	0	0	1	1	-1	z-3

Fim da primeira fase: $z^a = 0$

x = (2, 1); z = 3

		VB	X ₁	X ₂	X ₃	X ₄	X ₅	
	(L ₁)	X ₁	1	0	-1	0	0	2
	(L ₂)	X ₄	0	0	-1	1	1	1
<u></u>	(L ₃)	X ₂	0	1		0	-1	1
	(L ₄)		0	0	0	0	1	z-3

Solução ótima: z = 3; $x_1 = 2$; $x_2 = 1$; x_3 é VNB nula

$$L_1 \leftarrow L_3 + L_1$$
 $L_2 \leftarrow L_3 + L_2$

$$L_2 \leftarrow L_3 + L_2$$

	VB	X ₁	X ₂	X ₃	X ₄	X ₅	
(L ₁)	X ₁	1	1	0	0	-1	3
(L ₂)	X ₄	0	1	0	1	0	2
(L ₃)	X ₃	0	1	1	0	-1	1
(L ₄)		0	0	0	0	1	z-3

Outra solução ótima: z = 3; $x_1 = 3$; $x_2 = 0$

	VB	X ₁	X ₂	X ₃	X ₄	X ₅	
(L ₁)	X ₁	1	1	0	0	-1	3
(L ₂)	X ₄	0	1	0	1	0	2
(L ₃)	X ₃	0	1	1	0	-1	1
(L ₄)		0	0	0	0	1	z-3

Assim, todos os pontos da aresta que liga os pontos (2, 1) e (3, 0) são ótimos. Isto é, todos os pontos da forma:

$$x^* = (x_1, x_2) = \alpha \times (2, 1) + (1 - \alpha) \times (3, 0)$$
, sendo $\alpha \in [0, 1]$

Método das Duas Fases: Interpretação Geométrica do Exemplo 4

