Programare logică

Demonstrarea ecuațiilor condiționate

Demonstrarea ec. condiţionate

 (S,Σ) signatura, X mulţime de variabile Γ mulţime de ecuaţii condiţionate

Teoremă deducției. Sunt echivalente:

(1)
$$\Gamma \models (\forall X)t \doteq_s t' if H$$

(2)
$$\Gamma \bigcup \{(\forall X)u \stackrel{.}{=}_{s'} v \mid u \stackrel{.}{=}_{s'} v \in H\} \vdash (\forall X)t \stackrel{.}{=}_{s} t'$$

Demonstrarea ec. condiţionate

 (S,Σ) signatura, X mulţime de variabile Γ mulţime de ecuaţii condiţionate

Teoremă deducției. Sunt echivalente:

(1)
$$\Gamma \models (\forall X)t \doteq_s t' if H$$

(2)
$$\Gamma \bigcup \{(\forall X)u \stackrel{\cdot}{=}_{s'} v \mid u \stackrel{\cdot}{=}_{s'} v \in H\} \vdash (\forall X)t \stackrel{\cdot}{=}_{s} t'$$

Demonstraţie: (1) \Rightarrow (2) este evidentă (2) \Rightarrow (1) este evidentă pentru $X = \emptyset$

Pentru a demonstra (2) \Rightarrow (1) cu X mulţime arbitrară de variabile vom folosi Teorema constantelor

$\Sigma(X)$

 (S,Σ) signatură, X mulţime de variabile

mulţimea X poate fi privită ca o signatură care are numai operaţii constante:

variabila $x \in X_s$ devine operaţia constantă $x : \to s$

$\Sigma(X)$

 (S,Σ) signatură, X mulţime de variabile

- mulţimea X poate fi privită ca o signatură care are numai operaţii constante: variabila $x \in X_s$ devine operaţia constantă $x : \to s$
- $\blacksquare X = \{X_{w,s}\}_{w \in S^*, s \in S}$
 - $\blacksquare X_{w,s} = \emptyset$ pentru $w \neq \lambda$
 - $\blacksquare X_{\lambda,s} = X_s$

$\Sigma(X)$

 (S,Σ) signatură, X mulţime de variabile

- mulţimea X poate fi privită ca o signatură care are numai operaţii constante: variabila $x \in X_s$ devine operaţia constantă $x : \to s$
- $\blacksquare X = \{X_{w,s}\}_{w \in S^*, s \in S}$
 - $\blacksquare X_{w,s} = \emptyset$ pentru $w \neq \lambda$
 - $\blacksquare X_{\lambda,s} = X_s$
- $\Sigma(X) := \Sigma \cup X$
 - $\Sigma(X)_{w,s} = \Sigma_{w,s}$ pentru $w \neq \lambda$
 - $\square \Sigma(X)_{\lambda,s} = \Sigma_{\lambda,s} \cup X_s$

- $\blacksquare A \Sigma$ -algebră, $a: X \to A$ atribuire
 - $\blacksquare(A, a)$ este $\Sigma(X)$ -algebră
 - $\blacksquare A_x := a_s(x)$ oricare $x \in X_s$, $s \in S$
 - lacktriangleorice $\Sigma(X)$ -algebră poate fi construită astfel

- $\blacksquare A \Sigma$ -algebră, $a: X \to A$ atribuire
 - $\blacksquare(A, a)$ este $\Sigma(X)$ -algebră
 - $\blacksquare A_x := a_s(x)$ oricare $x \in X_s$, $s \in S$
 - lacktriangleorice $\Sigma(X)$ -algebră poate fi construită astfel
- $\blacksquare T_{\Sigma(X)} = \{T_{\Sigma(X),s}\}_{s \in S}$
 - $\blacksquare T_{\Sigma(X),s} = T_{\Sigma}(X)_s$
 - $T_x := x$ oricare $x \in X_s$, $s \in S$

- $\blacksquare A \Sigma$ -algebră, $a: X \to A$ atribuire
 - $\blacksquare(A, a)$ este $\Sigma(X)$ -algebră
 - $\blacksquare A_x := a_s(x)$ oricare $x \in X_s$, $s \in S$
 - lacktriangleorice $\Sigma(X)$ -algebră poate fi construită astfel
- $\blacksquare T_{\Sigma(X)} = \{T_{\Sigma(X),s}\}_{s \in S}$
 - $\blacksquare T_{\Sigma(X),s} = T_{\Sigma}(X)_s$
 - $T_x := x$ oricare $x \in X_s$, $s \in S$
- $\blacksquare T_{\Sigma(X)}$ este $\Sigma(X)$ -algebră iniţială

- $\blacksquare A \Sigma$ -algebră, $a: X \to A$ atribuire
 - $\blacksquare(A, \boldsymbol{a})$ este $\Sigma(X)$ -algebră
 - $\blacksquare A_x := a_s(x)$ oricare $x \in X_s$, $s \in S$
 - lacktriangleorice $\Sigma(X)$ -algebră poate fi construită astfel
- $\blacksquare T_{\Sigma(X)} = \{T_{\Sigma(X),s}\}_{s \in S}$
 - $\blacksquare T_{\Sigma(X),s} = T_{\Sigma}(X)_s$
 - $\blacksquare T_x := x \text{ oricare } x \in X_s, s \in S$
- $lacksquare T_{\Sigma(X)}$ este $\Sigma(X)$ -algebră iniţială
- $\blacksquare(A, a) \ \Sigma(X)$ -algebră
 - $\tilde{\boldsymbol{a}}:T_{\Sigma(X)}\to A$ unicul morfism

Teorema constantelor I

 (S,Σ) signatura, X mulţime de variabile

Teorema constatelor. Sunt echivalente:

- $\blacksquare A \models_{\Sigma} (\forall X)t \doteq_{s} t'$
- $\blacksquare(A, \boldsymbol{a}) \models_{\Sigma(X)} (\forall \emptyset) t \doteq_s t' \text{ oricare } \boldsymbol{a} : X \to A$

variabilele "sunt" constante despre care nu ştim nimic

Teorema constantelor II

 (S,Σ) signatura, X mulţime de variabile E o mulţime de Σ -ecuaţii necondiţionate

Teorema constatelor. Sunt echivalente:

$$\blacksquare E \models_{\Sigma} (\forall X)t \stackrel{\cdot}{=}_s t' if H$$

$$\blacksquare E \bigcup \{ (\forall \emptyset) u \stackrel{.}{=}_{s'} v \mid u \stackrel{.}{=}_{s'} v \in H \} \models_{\Sigma(X)} (\forall \emptyset) t \stackrel{.}{=}_{s} t'$$

Demonstrarea ecuațiilor condiționate

 (S,Σ) signatura, X mulţime de variabile Γ mulţime de ecuaţii condiţionate

Teoremă deducției. Sunt echivalente:

(1)
$$\Gamma \models (\forall X)t \doteq_s t' if H$$

(2)
$$\Gamma \bigcup \{(\forall X)u \stackrel{.}{=}_{s'} v \mid u \stackrel{.}{=}_{s'} v \in H\} \vdash (\forall X)t \stackrel{.}{=}_{s} t'$$

(3)
$$\Gamma \bigcup \{(\forall X)u \stackrel{.}{=}_{s'} v \mid u \stackrel{.}{=}_{s'} v \in H\} \models (\forall X)t \stackrel{.}{=}_{s} t'$$

Exemplu

Orice funcție inversabilă la dreapta este injectivă.

$$S := \{s\}, \Sigma := \{f : s \to s, g : s \to s\}$$

 $\Gamma := \{(\forall \{x\}) g(f(x)) \stackrel{\cdot}{=} x\} \ (g \text{ inversa la dreapta a lui } f)$

$$\Gamma \vdash (\forall \{x, y\}) \ x \doteq y \ if \ \{f(x) \doteq f(y)\}$$

$$\Gamma \cup \{(\forall \{x,y\}) \ f(x) \doteq f(y)\} \vdash (\forall \{x,y\}) \ x \doteq y \ \text{(teorema deducţiei)}$$

(1)
$$(\forall \{x, y\}) f(x) \doteq f(y)$$
 (ipoteză)

(2)
$$(\forall \{x,y\}) g(f(x)) \stackrel{\cdot}{=} g(f(y)) (C_{\Sigma})$$

(3)
$$(\forall \{y\}) g(f(y)) \doteq y \text{ (Sub}\{x \leftarrow y\})$$

(4)
$$(\forall \{x, y\}) g(f(x)) \stackrel{.}{=} y$$
 (2,3,T)

(5)
$$(\forall \{x\}) x \stackrel{\cdot}{=} g(f(x))$$
 (S)

(6)
$$(\forall \{x, y\}) \ x \doteq y \ (4,5, T)$$