Outline

- Introduction
 - **■** What is a distributed DBMS
 - Problems
 - Current state-of-affairs
- Background
- Distributed DBMS Architecture
- Distributed Database Design
- Semantic Data Control
- Distributed Query Processing
- Distributed Transaction Management
- Distributed Database Operating Systems
- Open Systems and Interoperability
- Parallel Database Systems
- Distributed Object Management
- Concluding Remarks

Motivation

integration ≠ centralization

Distributed Computing

- A concept in search of a definition and a name.
- A number of autonomous processing elements (not necessarily homogeneous) that are interconnected by a computer network and that cooperate in performing their assigned tasks.

Distributed Computing

Synonymous terms

- distributed function
- distributed data processing
- multiprocessors/multicomputers
- satellite processing
- backend processing
- dedicated/special purpose computers
- timeshared systems
- functionally modular systems

What is distributed ...

- Processing logic
- **■** Functions
- Data
- Control

What is a Distributed Database System?

A distributed database (DDB) is a collection of multiple, logically interrelated databases distributed over a computer network.

A distributed database management system (D–DBMS) is the software that manages the DDB and provides an access mechanism that makes this distribution transparent to the users.

Distributed database system (DDBS) = DDB + D–DBMS

What is not a DDBS?

- A timesharing computer system
- A loosely or tightly coupled multiprocessor system
- A database system which resides at one of the nodes of a network of computers this is a centralized database on a network node

Centralized DBMS on a Network

Distributed DBMS Environment

Implicit Assumptions

- Data stored at a number of sites ⇒ each site *logically* consists of a single processor.
- Processors at different sites are interconnected by a computer network ⇒ no multiprocessors
 - parallel database systems
- Distributed database is a database, not a collection of files ⇒ data logically related as exhibited in the users' access patterns
 - relational data model
- D-DBMS is a full-fledged DBMS
 - → not remote file system, not a TP system

Shared-Memory Architecture

Examples: symmetric multiprocessors (Sequent, Encore) and some mainframes (IBM3090, Bull's DPS8)

Shared-Disk Architecture

Examples : DEC's VAXcluster, IBM's IMS/VS Data Sharing

Shared-Nothing Architecture

Examples: Teradata's DBC, Tandem, Intel's Paragon, NCR's 3600 and 3700

Applications

- Manufacturing especially multi-plant manufacturing
- Military command and control
- EFT
- Corporate MIS
- Airlines
- Hotel chains
- Any organization which has a decentralized organization structure

Advantages of DDBS

- Local autonomy
- **■** Improved performance
- Improved reliability/availability
- Economics
- Expendability
- Shareability

Disadvantages of DDBS

- Lack of experience
- Complexity
- Cost
- Distribution of control
- Difficulty of change

Distributed DBMS Issues

■ Distributed Database Design

- how to distribute the database
- replicated & non-replicated database distribution
- a related problem in directory management

Query Processing

- convert user transactions to data manipulation instructions
- optimization problem
- min{cost = data transmission + local processing}
- general formulation is NP-hard

Distributed DBMS Issues

Concurrency Control

- **⇒** synchronization of concurrent accesses
- consistency and isolation of transactions' effects
- deadlock management

Reliability

- **→** how to make the system resilient to failures
- atomicity and durability

Relationship Between Issues

Related Issues

Operating System Support

- operating system with proper support for database operations
- dichotomy between general purpose processing requirements and database processing requirements

Open Systems and Interoperability

- Distributed Multidatabase Systems
- **→** More probable scenario
- ➡ Parallel issues

Distributed DBMS Promises

- 1 Transparent management of distributed, fragmented, and replicated data
- ② Improved reliability/availability through distributed transactions
- **13** Improved performance
- 4 Easier and more economical system expansion

Transparency Support

- No replication yet
- Generally no fragmentation
 - Horizontal fragmentation may come
- Limited distribution transparency
 - path specification
 - aliasing
 - remote login to a DBMS
- Most are multiple-client/single-server

Distributed Transactions in Commercial Systems

Some do not provide it at all

- \longrightarrow Oracle 6.x \Longrightarrow have to open one database at a time
- **Sybase** ⇒ primitives are there, applications have to implement distributed transactions themselves

Others do

■ Ingres, NonStop SQL, Oracle V.7

Replication support

- Either nonexistent, or
- ROWA rule: Read One Write All

Potentially Improved Performance

- Proximity of data to its points of use
 - Requires some support for fragmentation and replication
- Parallelism in execution
 - **➡** Inter-query parallelism
 - **➡** Intra-query parallelism

Parallelism Requirements

- Have as much of the data required by each application at the site where the application executes
 - Full replication
- How about updates?
 - Updates to replicated data requires implementation of distributed concurrency control and commit protocols

Commercial System Alternatives

- Multiplex time between read and updates
 - → Have database open for reads during regular hours; perform updates after hours
 - Banks do this
- Multiplex the database
 - Query database
 - Production database

System Expansion

- Issue is database scaling
- Emergence of microprocessor and workstation technologies
 - Demise of Grosh's law
 - Client-server model of computing
- Data communication cost vs telecommunication cost

Example

Ε

ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

G

ENO	JNO	RESP	DUR
E1 E2 E3 E3 E4 E5 E6 E7 E7	J1 J2 J3 J4 J2 J2 J4 J3 J5 J3	Manager Analyst Analyst Consultant Engineer Programmer Manager Manager Engineer Engineer Manager	12 24 6 10 48 18 24 48 36 23 40

J

JNO	JNAME	BUDGET	LOC
J1 J2	Instrumentation Database Develop		Montreal New York
J3	CAD/CAM	250000	New York
J4 J5	Maintenance CAD/CAM	310000 500000	Paris Boston

S

TITLE	SAL	
Elect. Eng.	40000	
Syst. Anal.	34000	
Mech. Eng.	27000	
Programmer	24000	