

Dynamic Programming

Objective

• Dynamic programing: new technique for solving optimization problems.

Understand why we use dynamic programming.

Apply DP on many examples.

What is Dynamic Programing (DP)?

• First used by Richard Bellman in the 1950s

Conceived to optimally plan multistage processes

 Usually refers to simplifying a decision by breaking it down into a sequence of decision steps over time

Main Ideas

1. Recursion: Divide the problem into sub-problems, so that their solutions can be combined into a solution to the problem.

2. Tabulation of sub-problems: Solve each sub-problem just once and save its solution in a "look-up" table.

- Computing the nth Fibonacci number recursively:
 - F(n) = F(n-1) + F(n-2)
 - F(0) = 0
 - F(1) = 1

- What is the Recurrence relationship?
 - -T(n) = T(n-1) + T(n-2) + 1
- What is the solution to this?
 - Clearly it is $O(2^n)$, but this is not tight.
 - A lower bound is $\Omega(2^{n/2})$.
 - You should notice that T(n) grows very similarly to F(n), so in fact $T(n) = \Theta(F(n))$.
- Obviously not very good, and we know that there is a better way to solve it!

Computing the nth Fibonacci number using as follow:

$$- F(0) = 0$$

$$- F(1) = 1$$

$$- F(2) = 1+0 = 1$$

$$- ...$$

$$- F(n-2) =$$

$$- F(n-1) =$$

$$- F(n) = F(n-1) + F(n-2)$$

0	1	1	• • •	F(n-2)	F(n-1)	F(n)

- Efficiency:
 - Time O(n)
 - Space O(n) \rightarrow can be improved to O(1)

• The approach is only $\Theta(n)$.

- Why is the naive recursion so inefficient?
 - Recomputes many sub-problems.
 - How many times is F(n-3) computed? Try to draw a solving tree by yourself and answer this question.

• Does F(n-3) necessarily need to be computed so many times?

Memoization

- Easy solution to avoid duplicate computation: 'memoization'
 - Remember solutions of all the sub-problems
 - Trade space for time

Sub-problem	Opt Solution		
fib(4)	3		
fib(3)	2		
fib(2)	1		
fib(1)	1		
fib(0)	0		

Dynamic Programming

- Ideas
 - Ensure all needed recursive calls are already computed and memorized → a good schedule of computation
 - (Optional) Reused space to store previous recursive call results
 - Arrive at the same efficient (special) solution for Fib()

Analyze the sub-problems

This process is Dynamic Programming!

Dynamic Programming

• Dynamic Programming is an algorithm design technique for optimization problems: often minimizing or maximizing.

• Like divide and conquer, DP solves problems by combining solutions to sub-problems.

- Unlike divide and conquer, sub-problems are not independent.
 - Sub-problems may share sub-sub-problems.

Dynamic Programming

- The term Dynamic Programming comes from Control Theory, not computer science. Programming refers to the use of tables (arrays) to construct a solution.
- In Dynamic Programming, we usually reduce time by increasing the amount of space.
- We solve the problem by solving sub-problems of increasing size and saving each optimal solution in a table (usually).
- The table is then used for finding the optimal solution to larger problems.
- Time is saved since each sub-problem is solved only once.

Two Ways to Think and Implement DP

- Top down:
- Think of it like a recursive algorithm.
- To solve the big problem:
 - Recurse to solve smaller problems
 - Those recurse to solve smaller problems
 etc..
- The difference from divide and conquer:
 - Keep track of what small problems you've already solved to prevent resolving the same problem twice.
 - Aka, "memoization"

- Bottom up:
- For Fibonacci:
- Solve the small problems first
 - fill in F[0],F[1]
- Then bigger problems
- Then bigger problems
 - fill in F[n-1]
- Then finally solve the real problem.
 - fill in F[n]

Example of Top-Down Fibonacci

- define a global list F = [0,1,None, None, ..., None]
- **def** Fibonacci(n):
 - **if** F[n] != None:
 - return F[n]
 - else:
 - F[n] = Fibonacci(n-1) + Fibonacci(n-2)
 - return F[n]

Memoization Visualization

The Process of Applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.
- Step 5: If needed, code this up like a reasonable person.

Dynamic Programming

- Underpins many optimization problems, e.g.,
 - Matrix Chaining optimization
 - Longest Common Subsequence
 - 0-1 Knapsack Problem
 - Transitive Closure of a direct graph
 - Shortest path

 Next we will give many example problems to help understand the basic idea of Dynamic Programming.

Matrix Chain-Products

Review: Matrix Multiplication.

$$-C = A *B$$

- -A is $d \times e$ and B is $e \times f$
- $-O(d \cdot e \cdot f)$ time

Matrix Chain-Products

Matrix Chain-Product:

- Compute $A=A_0*A_1*...*A_{n-1}$
- $-A_i$ is $d_i \times d_{i+1}$
- Problem: How to parenthesize?

Example

- $-B is 3 \times 100$
- C is 100×5
- -D is 5×5
- -(B*C)*D takes 1500 + 75 = 1575 ops
 - $(3 \times 100 \times 5) + (3 \times 5 \times 5)$
- -B*(C*D) takes 1500 + 2500 = 4000 ops

Enumeration Approach

Matrix Chain-Product Alg.:

- Try all possible ways to parenthesize $A=A_0*A_1*...*A_{n-1}$
- Calculate number of ops for each one
- Pick the one that is best

• Running time:

- The number of parenthesizations is equal to the number of binary trees with n-1 nodes
- This is exponential!
- It is called the Catalan number, and it is almost 4^n .
- This is a terrible algorithm!

Greedy Approach

- Idea #1: repeatedly select the product that uses the fewest operations.
- Counter-example:
 - A is 101×11
 - B is 11 \times 9
 - C is 9 \times 100
 - D is 100×99
 - Greedy idea #1 gives $A^*((B^*C)^*D)$), which takes 109989+9900+108900=228789 ops
 - (A*B)*(C*D) takes 9999+89991+89100=189090 ops
- The greedy approach is not giving us the optimal value.

- The optimal solution can be defined in terms of optimal sub-problems
 - There has to be a final multiplication (root of the expression tree) for the optimal solution.
 - Say, the final multiplication is at index k: $(A_0^*...^*A_k)^*(A_{k+1}^*...^*A_{n-1}).$
- Let us consider all possible places for that final multiplication:
 - There are n-1 possible **splits**. Assume we know the minimum cost of computing the matrix product of each combination $A_0...A_i$ and $A_{i+1}...A_{n-1}$. Let's call these $N_{0,i}$ and $N_{i+1,n-1}$.
- Recall that A_i is a $d_i \times d_{i+1}$ dimensional matrix, and the final result will be a $d_0 \times d_n$.

Define the following:

$$\left| N_{0,n-1} = \min_{0 \le k < n-1} \{ N_{0,k} + N_{k+1,n-1} + d_0 d_{k+1} d_n \} \right|$$

– Then the optimal solution $N_{0,n-1}$ is the sum of two optimal sub-problems, $N_{0,k}$ and $N_{k+1,n-1}$ plus the time for the last multiplication.

• Define sub-problems:

- Find the best parenthesization of an arbitrary set of consecutive products: $A_i * A_{i+1} * ... * A_j$.
- Let N_{i,i} denote the minimum number of operations done by this sub-problem.
 - Define $N_{k,k} = 0$ for all k.
- The optimal solution for the whole problem is then $N_{0,n-1}$.

• The characterizing equation for $N_{i,j}$ is:

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

- Note that, for example $N_{2,6}$ and $N_{3,7}$, both need solutions to $N_{3,6}$, $N_{4,6}$, $N_{5,6}$, and $N_{6,6}$. Solutions from the set of no matrix multiplies to four matrix multiplies.
 - This is an example of high sub-problem overlap, and clearly pre-computing these will significantly speed up the algorithm.

Recursive Approach

• We could implement the calculation of these $N_{i,j}$'s using a straightforward recursive implementation of the equation (aka not pre-compute them).

```
Algorithm Recursive Matrix Chain(S, i, j):
   Input: sequence S of n matrices to be multiplied
   Output: number of operations in an optimal parenthesization of S
   if i=j
      then return 0
  for k \leftarrow i to j do
      N_{i,j} \leftarrow \min\{N_{i,j},
                         RecursiveMatrixChain(S, i ,k)
                          + Recursive Matrix Chain(S, k+1,j) + d_i d_{k+1} d_{j+1}
   return N_{i,i}
```

Subproblem Overlap

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + \ldots \}$$

How to schedule the sub-problems?

Dynamic Programming Algorithm

- High sub-problem overlap, with independent sub-problems indicate that a dynamic programming approach may work.
- Construct optimal sub-problems "bottom-up." and remember them.

HKUST(GZ)

- N_{i,i}'s are easy, so start with them
- Then do problems of *length* 2,3,... sub-problems, and so on.
- Running time: O(n³)

Dynamic Programming Algorithm


```
Algorithm matrixChain(S):
    Input: sequence S of n matrices to be multiplied
    Output: number of operations in an optimal parenthesization of S
    for i \leftarrow 1 to n-1 do
       N_{i,i} \leftarrow 0
    for b \leftarrow 1 to n-1 do
        \{b = j - i \text{ is the length of the problem }\}
        for i \leftarrow 0 to n - b - 1 do
           j \leftarrow i + b
            N_{i,j} \leftarrow +\infty
            for k \leftarrow i to j-1 do
                N_{i,i} \leftarrow \min\{N_{i,i}, N_{i,k} + N_{k+1,i} + d_i d_{k+1} d_{i+1}\}
    return N_{0,n-1}
```

Algorithm Visualization

- The bottom-up construction fills in the N array by diagonals
- N_{i,j} gets values from previous entries in i-th row and j-th column
- Filling in each entry in the N table takes O(n) time.
- Total run time: O(n³)
- Getting actual parenthesization can be done by remembering "k" for each N entry

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

Algorithm Visualization

• A₀: 30 X 35; A₁: 35 X15; A₂: 15X5;

A₃: 5X10; A₄: 10X20; A₅: 20 X 25

0	1	2	3	4	5	_
0	15,750	7,875	9,375	11,875	15,125	
	0	2,625	4,375	7,125	10,500	
	•		4,575			
		0	750	2,500	5,375	
			0	1,000	3,500	
				0	5,000	
					0	

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

$$N_{1,4} = \min\{$$

$$N_{1,1} + N_{2,4} + d_1 d_2 d_5 = 0 + 2500 + 35*15*20 = 13000,$$

$$N_{1,2} + N_{3,4} + d_1 d_3 d_5 = 2625 + 1000 + 35*5*20 = 7125,$$

$$N_{1,3} + N_{4,4} + d_1 d_4 d_5 = 4375 + 0 + 35*10*20 = 11375$$

$$\}$$

$$= 7125$$

Algorithm Visualization

 $(A_0*(A_1*A_2))*((A_3*A_4)*A_5)$

Matrix Chain-Products

- Some final thoughts
 - –We reduced replaced a $O(2^n)$ algorithm with a $O(n^3)$ algorithm.
 - –While the generic top-down recursive algorithm would have solved $O(2^n)$ sub-problems, there are $O(n^2)$ sub-problems.
 - Implies a high overlap of sub-problems.
 - -The sub-problems are independent:
 - Solution to $A_0A_1...A_k$ is independent of the solution to $A_{k+1}...A_n$.

Matrix Chain-Products Summary

- Determine the cost of each pair-wise multiplication, then the **minimum** cost of multiplying three consecutive matrices (2 possible choices), using the pre-computed costs for two matrices.
- Repeat until we compute the minimum cost of all n matrices using the costs of the minimum n-1 matrix product costs.
 - − *n*-1 possible choices.

Two Features of DP

- Optimal substructure
 - –an optimal solution to the problem contains within it optimal solutions to subproblems.
- Overlapping substructure
 - -the same subproblems are solved multiple times.

The 0/1 Knapsack Problem

- Given: A set S of n items (one piece each), with each item i having
 - w_i a positive weight
 - b_i a positive benefit
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are not allowed to take fractional amounts, then this is the 0/1 knapsack problem.
 - In this case, we let T denote the set of items we take
 - Objective: maximize

$$\sum_{i \in T} b_i$$

- Constraint:

$$\sum_{i \in T} w_i \le W$$

Linear Programming formulation

Example

- Given: A set S of n items, with each item i having
 - b_i a positive "benefit"
 - w_i a positive "weight"
- Goal: Choose items with maximum total benefit but with weight at most W.

"knapsack"

box of width 9 in

Solution:

- item 5 (\$80, 2 in)
- item 3 (\$6, 2 in)
- item 1 (\$20, 4 in)

First Attempt

- S_k: Set of items numbered 1 to k.
- Define B[k] = best selection from S_k .
- Problem: does not have sub-problem optimality:
 - Consider set $S=\{(3,2),(5,4),(8,5),(4,3),(10,9)\}$ of (benefit, weight) pairs and total weight W=20

Best for S_4 :

Best for S₅:

Second Attempt

- S_k: Set of items numbered 1 to k.
- Define B[k,w] to be the best selection from S_k with weight at most w
- This does have sub-problem optimality.

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

- I.e., the best subset of S_k with weight at most w is either:
 - the best subset of S_{k-1} with weight at most w or
 - the best subset of S_{k-1} with weight at most $w-w_k$ plus item k

Knapsack Example

Knapsack of capacity W = 5

$$w_1 = 2$$
, $v_1 = 12$ $w_2 = 1$, $v_2 = 10$

$$w_3 = 3$$
, $v_3 = 20$ $w_4 = 2$, $v_4 = 15$

item	weight	value		
1	2	\$12		
2	1	\$10		
3	3	\$20		
4	2	\$15		

Max item allowed	Max Weight						
	0	1	2	3	4	5	
0	0	0	0	0	0	0	
1	0	0	12	12	12	12	
2	0	10	12	22	22	22	
3	0	10	12	22	30	32	
4	0	10	15	25	30	37	

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

Algorithm

• Since B[k,w] is defined in terms of B[k-1,*], we can use two arrays of instead of a matrix.

- Running time is O(nW).
- Not a polynomial-time algorithm since W may be large.
- Called a pseudo-polynomial time algorithm.

Algorithm

Input: set S of n items with benefit b_i and weight w_i ; maximum weight W

Output: benefit of best subset of S with weight at most W

let **A** and **B** be arrays of length W + 1

for
$$w \leftarrow 0$$
 to W do
$$B[w] \leftarrow 0$$
for $k \leftarrow 1$ to n do
$$CODY ARRAY B integral$$

copy array **B** into array **A**

for
$$w \leftarrow w_k$$
 to W do
if $A[w-w_k] + b_k > A[w]$
then

$$B[w] \leftarrow A[w - w_k] + b_k$$

return
$$B[W]$$

All-pairs shortest paths

Input: Digraph G = (V, E), where $V = \{1, 2, ..., n\}$, with edge-weight

function $w: E \to \mathbb{R}$.

Output: $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

IDEA:

Run Bellman-Ford once from each vertex.

Bellman-Ford algorithm

Bellman-Ford*(G,s):

- $d^{(0)}[v] = \infty$ for all v in V
- $d^{(0)}[s] = 0$
- **For** i=0,...,n-1:
 - **For** v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_{u \text{ in } v \text{ in Neighbors}} \{d^{(i)}[u] + w(u,v)\})$
- If $d^{(n-1)} != d^{(n)}$:
 - Return NEGATIVE CYCLE 🕾
- Otherwise, dist(s,v) = d⁽ⁿ⁻¹⁾[v]

Bellman-Ford is also an example of...

Dynamic Programming!

Running time: O(mn)

All-pairs shortest paths

Input: Digraph G = (V, E), where $V = \{1, 2, ..., n\}$, with edge-weight function $w : E \to \mathbb{R}$.

Output: $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

IDEA:

- Run Bellman-Ford once from each vertex.
- Time = $O(V^2E)$.
- Dense graph $(\Theta(n^2) \text{ edges}) \Rightarrow \Theta(n^4)$ time in the worst case.

Good first try! Can we use DP to solve it?

Optimal substructure

Sub-problem(k-1):

For all pairs, u,v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in {1,...,k-1}.

Let $D^{(k-1)}[u,v]$ be the solution to Sub-problem(k-1).

Our DP algorithm will fill in the n-by-n arrays $D^{(0)}$, $D^{(1)}$, ..., $D^{(n)}$ iteratively and then we'll be done.

Label the vertices 1,2,...,n

(We omit some edges in the picture below – meant to be a cartoon, not an example).

k+1

Question: How can we find D^(k)[u,v] using D^(k-1)?

 $D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, ..., k\}$.

 $D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, ..., k\}$.

 $D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, ..., k\}$.

Case 2 continued

 Suppose there are no negative cycles.

> Then WLOG the shortest path from u to v through {1,...,k} is **simple**.

• If that path passes through k, it must look like this:

- This path is the shortest path from u to k through $\{1,...,k-1\}$.
 - sub-paths of shortest paths are shortest paths
- Similarly for **this path**.

Case 2: we need vertex k.

$$D^{(k)}[u,v] = D^{(k-1)}[u,k] + D^{(k-1)}[k,v]$$

Case 1: we don't need vertex k.

Case 2: we need vertex k.

$$D^{(k)}[u,v] = D^{(k-1)}[u,v]$$

$$D^{(k)}[u,v] = D^{(k-1)}[u,k] + D^{(k-1)}[k,v]$$

• $D^{(k)}[u,v] = \min\{D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v]\}$

Case 1: Cost of shortest path through {1,...,k-1}

Case 2: Cost of shortest path from u to k and then from k to v through {1,...,k-1}

- Optimal substructure:
 - We can solve the big problem using solutions to smaller problems.
- Overlapping sub-problems:
 - $-D^{(k-1)}[k,v]$ can be used to help compute $D^{(k)}[u,v]$ for lots of different u's.

• $D^{(k)}[u,v] = \min\{D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v]\}$

Case 1: Cost of shortest path through {1,...,k-1}

 Using our <u>Dynamic programming</u> paradigm, this immediately gives us an algorithm!

Floyd-Warshall algorithm

- Initialize n-by-n arrays $D^{(k)}$ for k = 0,...,n
 - $-D^{(k)}[u,u] = 0$ for all u, for all k
 - $-D^{(k)}[u,v] = \infty$ for all $u \neq v$, for all k
 - $-D^{(0)}[u,v] = weight(u,v)$ for all (u,v) in E.

The base case checks out: the only path through zero other vertices are edges directly from u to v.

- For k = 1, ..., n:
 - For pairs u,v in V^2 :
 - $D^{(k)}[u,v] = min\{D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v]\}$
- Return D⁽ⁿ⁾

This is a bottom-up **Dynamic programming** algorithm.

We've basically just shown

• Theorem:

If there are no negative cycles in a weighted directed graph G, then the Floyd-Warshall algorithm, running on G, returns a matrix D⁽ⁿ⁾ so that:

 $D^{(n)}[u,v]$ = distance between u and v in G.

- Running time: O(n³)
 - Better than running Bellman-Ford n times!

- Storage:
 - Need to store two n-by-n arrays, and the original graph.

As with Bellman-Ford, we don't really need to store all n of the D(k).

What if there are negative cycles?

- Just like Bellman-Ford, Floyd-Warshall can detect negative cycles:
 - "Negative cycle" means that there's some v so that there is a path from v to v that has cost < 0.
 - $Aka, D^{(n)}[v,v] < 0.$
- Algorithm:
 - Run Floyd-Warshall as before.
 - If there is some v so that $D^{(n)}[v,v] < 0$:
 - return negative cycle.

What have we learned?

- The Floyd-Warshall algorithm is another example of *dynamic programming*.
- It computes All Pairs Shortest Paths in a directed weighted graph in time $O(n^3)$.

Can we do better than O(n³)?

- There is an algorithm that runs in time $O(n^3/\log^{100}(n))$.
 - [Williams, "Faster APSP via Circuit Complexity", STOC 2014]
- If you can come up with an algorithm for All-Pairs-Shortest-Path that runs in time $O(n^{2.99})$, that would be a really big deal.
 - Let me know if you can!
 - See [Abboud, Vassilevska-Williams, "Popular conjectures imply strong lower bounds for dynamic problems", FOCS 2014] for some evidence that this is a very difficult problem!

Nothing on this slide is required knowledge in the exam!

Recap

- Two shortest-path algorithms:
 - Bellman-Ford for single-source shortest path
 - Floyd-Warshall for all-pairs shortest path
- Dynamic programming!
 - This is a fancy name for:
 - Break up an optimization problem into smaller problems
 - The optimal solutions to the sub-problems should be sub-solutions to the original problem.
 - Build the optimal solution iteratively by filling in a table of sub-solutions.
 - Take advantage of overlapping sub-problems!

The End