

Time series definition [1]

Informal definition

A time-series is a set of observation x_t each one being recorder at a specific time t.

Formal definition

A time series model for the observed data x_t is a specification of the joint distribution (or possibile only the mens covariance) of a sequence of random variable X_t of which x_t is postulated to be a realization

A binary process

Consider the sequence of iid random variables, with $P[X_t = 1] = p$ and $P[X_t = -1] = 1 - p$

Random walk

The random walk is obtained by cumulatevely summing iid random variables. Thus a random walk with zero mean is obtained by defining

Marzio De Corato Review 22 luglio 2024 2 / 18

Stationarity, autocovariance and autocorrelation[1]

Mean Function

Let X_t be a time series with $E(x_t^2 < \infty$ The mean function of X_t is $\mu_X(t) = E(X_t)$. The covariance function of X_t is $\gamma_X(r,s) = Cov(X_r,X_s) = E[(X_r - \mu_X(r))(X_s - \mu_X(s))] \quad \forall r,s$

Weakly stationary TS

 X_t is weakly stationary if i) $\mu_X(t)$ is indipendent from time t and ii) $\gamma_X(t+h)$ is indipendent of t $\forall h$

Autocovariance function

At lag h the autocovariance function is defined as $\gamma_X(h) = \mathit{Cov}(X_{t+h}, X_t)$

Autocorellation function

At lag h the autocorrelation function is defined as

$$\rho(h)_X = \frac{\gamma_X(h)}{\gamma_X(0)} = Cor(X_{t+h}, X_t)$$

Stationarity, autocovariance and autocorrelation [1]

Stationarity, autocovariance and autocorrelation [2]

Linear process

Time series X_t is a linear process if it has the representation

$$X_t = \sum_{j=-\infty}^{\infty} \psi_j Z_{t-j}$$

for all t, where $Z_t \approx \mathrm{WN}(0,\sigma^2)$ and ψ_j is a sequence of costants with $\sum_{j=-\infty}^\infty \psi_j < \infty$. In terms of backward shift operator B $BX_t = X_{t-1}$ we have $X_t = \varphi(B)Z_t$ Therefore the previous definition can be casted as $X_t = \varphi(B)Z_t$ in which $\varphi(B)$ can be thought as a linear filter that when applied to the white noise input series Z_t produces the output X_t

Linear process

The time series X_t is an ARMA(1,1) process if its stationary and satisfiy (for every t)

$$X_t - \varphi X_{t-1} = Z_t + \varphi Z_{t-1}$$

where $Z_t \approx \mathrm{WN}(0, \varphi^2)$ and $\varphi + \theta \neq 0$ or in terms of filters φ and θ

$$\phi(B)X_t = \theta(B)Z_t$$

Remarks

- \bullet A stationary solution of the ARMA(1,1) equation exists if and only if $\varphi \neq \pm 1$
- If $|\varphi| < 1$, then the unique stationary solution is given by $X_t = Z_t + (\varphi + \theta) \sum_{j=1}^{\infty} \varphi^{j-1} Z_{t-j}$. In this case we say that X_t is causal or a causal function of Z_t or a causal function of Z_t since X_t can be espressed in terms of the current and past values Z_s , $s \le t$
- If $|\phi| > 1$, then the unique stationary solution is given by $X_t = -\theta \phi^{-1} Z_t (\phi + \theta) \sum_{j=1}^{\infty} \phi^{-j-1} Z_{t-j}$. The solution is noncausal, since X_t is then a functional of Z_s $s \ge t$

Wold decomposition [1]

Prediction operator based on the infinite past X_t , $-\infty < t < n$

$$\tilde{P}_n X_{n+h} = \lim_{m \to -\infty} P_{m,n} X_{n+h}$$

Wold decomposition X_t , $-\infty < t < n$

 X_t is a non-deterministic stationary time series, then

$$X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j} + V_t$$

where V_t is deterministic

ARMA (p,q)

 X_t is an ARMA(p,q) process if X_t is stationary and if for every t,

$$X_t - \phi_1 X_{t-1} - \dots - \phi_1 X_{t-q} - = Z_t + \phi Z_t + \phi_1 Z_{t-1} + \dots + \theta_q Z_{t-q}$$

where $Z_t \approx WN(0, \sigma^2)$ and the polynomials $(1 - \phi_1 z - ... - \phi_p z^p)$ and $(1 + \phi_1 z + ... + \phi_p z^p)$ have no common factor.

Review 22 luglio 2024 10 / 18

Causality

An ARMA(p,q) process X_t is causal, or a causal function of Z_t if there exist constants ϕ_j such that $\sum_{i=0}^{\infty} |\phi_j| < \infty$ and

$$X_t = \sum_{j=0}^{\infty} \sum_{j=0} \phi_j Z_{t-j} \quad \forall \quad t$$

this is equivalent to the condition

$$\phi(z) = 1 - \phi_1 z - ... - \phi_p z^p \neq |z| < 1$$

Marzio De Corato Review 22 luglio 2024

Spectral Analysis [1]

Spectral density

Given a zero mean stationary time series X_t with autocovariance function $\gamma()$ satisfying $\sum_{h=-\infty} |\gamma(h)| < \infty$, the spectral density of X_t is the function defined by

$$f(\lambda) = \frac{1}{2\pi} \sum_{h} e^{-ih\lambda} \gamma(h) - \infty < \lambda < \infty$$

with the condition that

$$f(\lambda) \ge 0 \quad \forall \lambda$$

$$\gamma(h) = \int_{-\pi}^{\pi} e^{ih\lambda} f(\lambda) d\lambda \forall h$$

Spectral Analysis [1]

Spectral Representation of The ACVF

A function $\gamma()$ defined on the integers is the ACVF of a stationary time series if and only if there exists a right-continuous, non-decresing, bounded function F on $[-\pi,\pi]$ with $F(-\pi)=0$ such that:

$$\gamma(h) = \int_{(-\pi,\pi]} e^{ih\lambda} dF(\lambda)$$

for all integers h. F is a genralized distribution function that is called the spectral distribution function of $\gamma()$

Linear process

The process Y_t is the output of a linear filter $C = \{c_{t,k}, t, k = 0 \pm 1, ...\}$ applied to an input process X_t if $Y_t = \sum_{k=-\infty}^{\infty} c_{t,k} X_k$ $t = 0, \pm 1, ...$

Time invariant

The filter is said to be time-invariant if the weights $c_{t,t-k}$ are indipendent of t e.g. $c_{t,t-k} = \phi_k$

$$Y_t = \sum_{k=-\infty}^{\infty} \phi_{t,k} X_{t-k}$$

$$Y_{t-s} = \sum_{k=-\infty}^{\infty} \phi_{t,k} X_{t-s-k}$$

The TLF ϕ is to be causal if $\phi_j = 0$ for j < 0

Transfer function

Let X_t be a stationary time series with mean zero and spectral density $f_x(\lambda)$. Suppose that $\Phi = \{\phi_j, j=0,\pm 1,...\}$ is an absolutely summable TLF. Then the time series

$$Y_t = \sum_{j=-\infty}^{\infty} \phi_j X_{t-j}$$

is stationary with mean zero and spectral density

$$f_{Y}(\lambda) = |\Psi(e^{-i\lambda})|^{2} f_{X}(\lambda) = \Psi(e^{-i\lambda}) \Psi(e^{i\lambda}) f_{X}(\lambda)$$

where $\Psi(e^{-i\lambda})=\sum_{j=-\infty}^{\infty} \varphi_j e^{-ij\lambda}$ where $\Psi(e^{-i})$ is called the transfer function of the filter, and the squared modulus $|\Psi(e^{-i})|$ is referred to as the power transfer function of the filter.

Simple moving average

$$Y_t = \frac{1}{2q+1} \sum_{|j| < q} X_{t-j}$$

where
$$\psi = (2q+1)^{-1}, j = -q, ..., q$$
 and ψ_j

Figure 4-12 The transfer function $D_{10}(\lambda)$ for the simple moving-average filter

Gibbs phenomenon

The poor approximation in the neighborhood of cut-off frequency (ω_c)

Figure 4-13
The transfer function for the ideal low-pass filter and truncated Fourier approximations $\Psi^{(q)}$ for q = 2.10

Bibliography I

- [1] Peter J Brockwell e Richard A Davis. Introduction to time series and forecasting. Springer, 2002.
- [2] Jianhua Hao e Fangai Liu. "Improving long-term multivariate time series forecasting with a seasonal-trend decomposition-based 2-dimensional temporal convolution dense network". In: *Scientific Reports* 14.1 (2024), p. 1689.