Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

2.1 ELEMENTARY SORTS

- rules of the game
- selection sort
- insertion sort
- shellsort
- shuffling

Insertion sort demo

• In iteration i, swap a[i] with each larger entry to its left.

Insertion sort

Algorithm. ↑ scans from left to right.

Invariants.

- Entries to the left of ↑ (including ↑) are in ascending order.
- Entries to the right of † have not yet been seen.

Insertion sort inner loop

To maintain algorithm invariants:

Move the pointer to the right.

Moving from right to left, exchange
 a[i] with each larger entry to its left.

```
for (int j = i; j > 0; j--)
if (less(a[j], a[j-1]))
    exch(a, j, j-1);
else break;
```


Insertion sort: Java implementation

```
public class Insertion
 public static void sort(Comparable[] a)
    int N = a.length;
    for (int i = 0; i < N; i++)
       for (int j = i; j > 0; j--)
          if (less(a[j], a[j-1]))
             exch(a, j, j-1);
          else break;
 private static boolean less(Comparable v, Comparable w)
 { /* as before */ }
 private static void exch(Comparable[] a, int i, int j)
 { /* as before */ }
```

Insertion sort: animation

40 random items

Insertion sort: animation

40 reverse-sorted items

algorithm position in order not yet seen

Insertion sort: animation

40 partially-sorted items

Insertion sort: mathematical analysis

Proposition. To sort a randomly-ordered array with distinct keys, insertion sort uses $\sim \frac{1}{4} N^2$ compares and $\sim \frac{1}{4} N^2$ exchanges on average.

Pf. Expect each entry to move halfway back.

Trace of insertion sort (array contents just after each insertion)

Insertion sort: trace

																			a[]																	
_ i	j	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
		Α	S	0	М	Ε	W	Н	Α	Т	L	0	Ν	G	Ε	R	1	Ν	S	Ε	R	Т	1	О	N	S	0	R	Т	Ε	Х	Α	М	Р	L	Ε
0	0	Α	S	0	M	Ε	W	Н	Α	Т	L	0	Ν	G	Ε	R	1	Ν	S	Ε	R	Т	1	0	Ν	S	0	R	Т	Ε	Х	А	M	Р	L	Ε
1	1	А	S	0	M	Ε	W	Н	Α	Т	L	0	Ν	G	Ε	R	1	Ν	S	Е	R	Т	1	0	Ν	S	0	R	Т	Ε	X	А	M	Р	L	Ε
2	1	Α	0	S	M	Ε	\mathbb{W}	Н	А	Т	L	0	Ν	G	Ε	R	-	Ν	S	Ε	R	Т	1	0	Ν	S	0	R	Т	Ε	Х	А	M	Р	L	Е
3	1	Α	М	О	S	Ε	W	Н	Α	Т	L	0	Ν	G	Ε	R	1	Ν	S	Е	R	Т	1	0	Ν	S	0	R	Т	Ε	Х	А	M	Р	L	Е
4	1	А	Ε	М	0	S	W	Н	А	Т	L	0	Ν	G	Ε	R		Ν	S	Ε	R	Т		0	Ν	S	0	R	Т	Ε	Х	А	M	Р	L	Е
5	5	А	Ε	M	0	S	W	Н	А	Т	L	0	Ν	G	Ε	R	1	Ν	S	Ε	R	Т	1	0	Ν	S	0	R	Т	Ε	Х	А	M	Р	L	Е
6	2	А	Ε	Н	М	О	S	W	Α	Т	L	0	Ν	G	Ε	R		Ν	S	Ε	R	Т	1	0	Ν	S	0	R	Т	Ε	Х	А	M	Р	L	Е
7	1	Α	Α	Ε	Н	М	0	S	W	Т	L	0	Ν	G	Ε	R	1	Ν	S	Ε	R	Т		0	Ν	S	0	R	Т	Ε	Х	Α	M	Р	L	Е
8	7	Α	Α	Ε	Н	M	0	S	Т	W	L	0	Ν	G	Ε	R	1	Ν	S	Е	R	Т		0	Ν	S	0	R	Т	Ε	Х	Α	M	Р	L	Е
9	4	Α	Α	Ε	Н	L	М	0	S	Т	W	0	Ν	G	Ε	R		Ν	S	Ε	R	Т	1	0	Ν	S	0	R	Т	Ε	Χ	А	M	Р	L	Е
10	7	Α	Α	Ε	Н	L	M	0	0	S	Т	W	Ν	G	Ε	R		Ν	S	Ε	R	Т	1	0	Ν	S	0	R	Т	Ε	Χ	А	M	Р	L	Е
11	6	Α	Α	Ε	Н	L	M	N	0	0	S	Т	W	G	Ε	R		Ν	S	Ε	R	Т	1	0	Ν	S	0	R	Т	Ε	Χ	Α	M	Р	L	Е
12	3	Α	Α	Ε	G	Н	L	М	Ν	О	О	S	Т	W	Ε	R		Ν	S	Ε	R	Т		0	Ν	S	0	R	Т	Ε	Х	Α	M	Р	L	Е
13	3	Α	Α	Ε	Ε	G	Н	L	М	N	О	0	S	Т	W	R	1	Ν	S	Ε	R	Т		0	Ν	S	0	R	Т	Ε	Х	Α	M	Р	L	Е
14	11	Α	Α	Ε	Ε	G	Н	L	M	Ν	0	0	R	S	Т	W		Ν	S	Ε	R	Т		0	Ν	S	0	R	Т	Ε	Х	Α	M	Р	L	Е
15	6	Α	Α	Ε	Ε	G	Н	-1	L	М	Ν	0	0	R	S	Т	W	Ν	S	Ε	R	Т		0	Ν	S	0	R	Т	Ε	Х	А	M	Р	L	Е
16	10	Α	Α	Ε	Ε	G	Н		L	M	Ν	N	0	О	R	S	Т	W	S	Ε	R	Т		0	Ν	S	0	R	Т	Ε	Х	Α	M	Р	L	Е
17	15	Α	Α	Е	Ε	G	Н		L	M	Ν	Ν	0	0	R	S	S	Т	W	Е	R	Т		0	Ν	S	0	R	Т	Ε	Х	Α	M	Р	L	Е
18	4	Α	Α	Е	Ε	Ε	G	Н	I	L	М	N	N	О	0	R	S	S	Т	W	R	Т		0	Ν	S	0	R	Т	Ε	Х	Α	M	Р	L	Е
19	15	Α	Α	Ε	Ε	Ε	G	Н	1	L	M	Ν	Ν	0	0	R	R	S	S	Т	W	Т		0	Ν	S	0	R	Т	Ε	Х	Α	M	Р	L	Е
20	19	Α	Α	Ε	Ε	Е	G	Н	-	L	M	Ν	Ν	0	0	R	R	S	S	Т	Т	W		0	Ν	S	0	R	Т	Ε	Х	Α	M	Р	L	Е
21	8	Α	Α	Е	Ε	Е	G	Н		- 1	L	М	N	N	0	О	R	R	S	S	Т	Т	W	0	Ν	S	0	R	Т	E	Х	Α	M	Р	L	Е
22	15	Α	Α	Е	Ε	Е	G	Н		-	L	M	Ν	N	0	0	O	R	R	S	S	Т	Т	W	Ν	S	0	R	Т	Ε	Х	Α	M	Р	L	Е
23	13	Α	Α	Е	E	Е	G	Н			L	M	N	Ν	N		0	0	R	R	S	S	Т	Т	W	S	0	R	Т	E	Х	Α	M	Р	L	Е
	21																												Т						L	
	17																																			
	20																																		L	
	26																																			
	5																																			
	29																																			
	2																																			
	13																																			
	21																																			
	12																																			
54	7																																			
		А	A	А	E	E	E	E	E	G	Н	ı	ı	L	L	M	M	N	N	N	O	O	O	O	۲	К	К	К	2	5	5	I	ı	I	W	X

Insertion sort: analysis

Best case. If the array is in ascending order, insertion sort makes N-1 compares and 0 exchanges.

AEELMOPRSTX

Worst case. If the array is in descending order (and no duplicates), insertion sort makes $\sim \frac{1}{2} N^2$ compares and $\sim \frac{1}{2} N^2$ exchanges.

XTSRPOMLFEA

Insertion sort: partially-sorted arrays

Def. An inversion is a pair of keys that are out of order.

Def. An array is partially sorted if the number of inversions is $\leq c N$.

- Ex 1. A sorted array has 0 inversions.
- Ex 2. A subarray of size 10 appended to a sorted subarray of size N.

Proposition. For partially-sorted arrays, insertion sort runs in linear time.

Pf. Number of exchanges equals the number of inversions.

number of compares = exchanges +
$$(N - 1)$$

Insertion sort: practical improvements

Half exchanges. Shift items over (instead of exchanging).

- Eliminates unnecessary data movement.
- No longer uses only less() and exch() to access data.

Binary insertion sort. Use binary search to find insertion point.

- Number of compares $\sim N \lg N$.
- But still a quadratic number of array accesses.

