

# Using developmental modeling to specify learning and representation of the passive in English children

Emma Nguyen<sup>1</sup> and Lisa Pearl<sup>2</sup>

University of Connecticut<sup>1</sup>, University of California-Irvine<sup>2</sup>



## Lexical Semantic Profiles and Age of Acquisition

Lexical profiles (combinations of lexical features) correlate well with the observed age of acquisition (AoA) of the English verbal be-passive (Maratsos et al. 1985; Nguyen & Pearl 2017)

Eleanor was hugged by Edward. < Eleanor was loved by Edward.

The semantic features defining these profiles were descriptive, proposed and defined to explain specific empirical results. We additionally propose the syntactically-motivated feature of transitivity.

8 lexical features of interest: 7 semantic (F1-F7: Stative, Volitional, Affectedness, Object-Experiencer, Subject-Experiencer, Agent-Patient, and Actionality), 1 syntactic (F8: Transitivity).

| Profile | Verb   | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | Obs AoA |
|---------|--------|----|----|----|----|----|----|----|----|---------|
| 1       | carry  | -  | +  | +  | -  | -  | +  | +  | +  | 3yrs    |
| 2       | annoy  | +  | +  | +  | +  | -  | -  | -  | +  | 3-4yrs  |
| 3       | find   | -  | -  | -  | -  | _  | +  | +  | +  | 4-5yrs  |
| 4       | forget | -  | -  | -  | -  | +  | -  | -  | +  | 4-5yrs  |
| 5       | hate   | +  | -  | -  | -  | +  | -  | -  | +  | 5yrs    |

### **Model Evaluation**

Assumption:  $c_{+pass}$  priors < 0.50 are reasonable, indicating an initial bias against the passive structure (i.e., the passive operation takes some work).

Goal: Identify which features can be heeded in order to yield passivization for all 5 observed profiles, while still having a passivization prior < 0.5.

## Lexical Features in Child-Directed Speech

If a modeled child is taking full advantage of the input, would she yield the observable passive acquisition behavior?

| Profile | 1    | 2    | 3    | 4    | 5    |
|---------|------|------|------|------|------|
| All     | 0.21 | 0.43 | 0.81 | 0.98 | 0.99 |

The child would have to be hugely biased in favor of the passive (the passive would have to be really easy) to passivize verbs from profiles 3-5.

#### Now what?

It's possible that children are filtering the input.

Input filtering is predicted to be necessary (Gagliardi et al. 2012, 2017) - children can't heed all the lexical feature information in their input at age five in order to passivize the way they do.

## Simulating input filters over lexical features

Input filters can operate over any lexical feature. If a lexical feature is filtered out by the modeled child, that feature value is ignored during the likelihood calculation.

Approach: Use Bayesian inference to formalize the conditions under which children's input could yield observed passive acquisition behavior.





View learning as a classification problem: Is a verb in the passivizable class (+pass) o

Is a verb in the passivizable class (+pass) or the not-passivizable class (-pass), based on the lexical features associated with verbs that are +/-pass in the child's input?

$$P(c_{+pass} | v_{f_1}, ... v_{f_n}) \propto P(c_{+pass}) \cdot \prod P(v_{f_i} | c_{+pass})$$

The probability of a verb being in the passivizable class, based on the the verb's lexical feature values How difficult passivization is (near 0 = hard, near 1 = easy)

 $f_i \in F$  How likely these lexical feature values are for verbs in the passivizable class, based on the input

Model's target output: the five profiles corresponding to the 30 verbs experimentally attested for by age five (Nguyen & Pearl 2017).

We don't know what this should be *a priori* for children.

**How:** We can compare the likelihoods of the lexical profile feature values for  $c_{+pass}$  and  $c_{-pass}$ . Passivizing a verb with a specific lexical profile  $(P(c^{+pass} | v_{f1} \dots v_{fn}) > 0.50)$  results when  $c_{+pass}$ 's prior \* likelihood >  $c_{-pass}$ 's prior \* likelihood. From this, we can then calculate the prior  $P(c_{+pass})$ , using the **ratio of the likelihoods**.

$$l_{+pass} = \prod_{f_i \in F} P(v_{f_i} | c_{+pass}) \qquad l_{-pass} = \prod_{f_i \in F} P(v_{f_i} | c_{-pass})$$

What we do: Calculate what the prior would need to be in order for five-year-olds to passivize the verbs they do, assuming they were learning from lexical feature frequencies in their input.

$$P(c_{+pass}) \cdot l_{+pass} > P(c_{-pass}) \cdot l_{-pass}$$
  
 $P(c_{+pass}) \cdot l_{+pass} > (1 - P(c_{+pass})) \cdot l_{-pass}$ 

$$P(c_{+pass}) > \frac{l_{-pass}}{l_{+pass} + l_{-pass}}$$

We estimate these values from a portion of the CHILDES Treebank (Pearl & Sprouse 2013), which includes the Brown Corpus (Brown 1973) [Adam, Eve, and Sarah] and the Valian corpus (Valian 1991): 113,024 child-directed speech utterances from 1;06 to 5;01 (62,772 tokens of 747 verbs (73% were passivizable))

Table: Likelihood probabilities

|            | $P(v_{f_i})$ | $ c_{+pass})$ | $P(v_{f_i} c_{-pass})$ |      |  |
|------------|--------------|---------------|------------------------|------|--|
| $v_{f_i}$  | 1            | 0             | 1                      | 0    |  |
| ACTIONAL   | 0.92         | 0.08          | 0.89                   | 0.11 |  |
| STATIVE    | 0.07         | 0.93          | 0.09                   | 0.91 |  |
| VOLITIONAL | 0.92         | 0.08          | 0.77                   | 0.23 |  |
| AFFECTED   | 0.85         | 0.15          | 0.53                   | 0.47 |  |
| OBJ-EXP    | 0.05         | 0.95          | 0.02                   | 0.98 |  |
| SUBJ-EXP   | 0.03         | 0.97          | 0.05                   | 0.95 |  |
| AGT-PAT    | 0.87         | 0.13          | 0.63                   | 0.37 |  |
| TRANS      | 0.94         | 0.06          | 0.71                   | 0.29 |  |

# Results of Input Filters

| Profile         | 1    | 2    | 3    | 4    | 5    |
|-----------------|------|------|------|------|------|
| Trans           | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 |
| Trans & Obj-Exp | 0.44 | 0.21 | 0.44 | 0.44 | 0.44 |

Passivization priors of feature combinations that still allow a match to five-year-old passivization behavior across the five verb profiles. Only two feature combinations are viable (both of which involve transitivity) - all other combinations lead to passivization priors > 0.5 in order to match observable passivization at age five.

## Takeaway

The transitivity feature seems key, while the object-experiencer feature may also play a role.

Selected References: Crain & Fodor. (1993). Competence and Performance.; Liter, Huelskamp, Weerakoon, & Munn. (2015). What drives the Maratsos Effect, agentivity or eventivity?; Maratsos, Fox, Becker, & Chalkley. (1985) Semantic restrictions on children's passives.; Messenger, Branigan, McLean, & Sorace. (2012). Is young children's passive syntax semantically constrained? Evidence from syntactic priming.; Nguyen. (2016). Felicity of the by-phrase is not enough: Re-evaluating O'Brien et al. (2006).; Pearl, & Sprouse. (2013). Syntactic islands and learning biases: Combining experimental syntax and computational modeling to investigate the language acquisition problem.; Pinker, LeBeaux, & Frost. (1987). Productivity and constraints in the acquisition of the passive.

## Discussion

Five-year-olds are predicted to view the passive structure as somewhat - but not strongly - costly. The input filtering that successfully matches observed passivization behavior leads to priors that are usually only slightly less than 0.5. (Note: The highest estimate is the smallest the prior could be and still allow passivization. If the passive prior is the same across verbs and verb profiles, the highest estimate for a combination is therefore the one that may be assumed to hold.)

Future work can apply the same process to three- and four-year-old behavior to yield a quantified snapshot of the developmental trajectory of both the passive learning process and representation.