T. Leblé, leble@ann.jussieu.fr

TD 3 : Dérivabilité

Exercice 1Étudier la continuité, la dérivabilité, et la continuité de la dérivée des fonctions suivantes : $f_1: x \mapsto x|x|, f_2: x \mapsto \frac{\sin x}{x}$ si $x \neq 0$ et $f_2(0) = 1, f_3: x \mapsto x^2 \sin \frac{1}{x}$ si $x \neq 0$ et $f_3(0) = 0$.

Exercice 2 Montrer que si f est une fonction dérivable en un point x_0 alors

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h} = f'(x_0).$$

Étudier la réciproque.

Exercice 3 Soit f une application dérivable sur \mathbb{R} . Montrer que si f est paire alors f' est impaire. Montrer que si f est périodique de période T alors f' l'est aussi.

Exercice 4 On considère la fonction f définie sur \mathbb{R} par $x \mapsto f(x) = (x^2 + 1) \sin x$.

- Calculer la dérivée de f.
- Montrer de deux façons que l'équation $(x^2 + 1)\cos x + 2x\sin x$ admet une solution dans $[0, \pi]$.
 - En appliquant le théorème de Rolle à une fonction bien choisie.
 - En appliquant le théorème des fonctions intermédiaires à une fonction bien choisie.

Exercice 5 En utilisant le théorème des accroissements finis montrer que

- 1. $\forall (x, y) \in \mathbb{R}^2, |\sin x \sin y| \le |x y|$
- 2. $\forall (x, y) \in \mathbb{R}^2, |e^x e^y| \ge e^{\min(x, y)} |x y|$

Exercice 6 Soit f une fonction dérivable qui admet la même limite en $+\infty$ et $-\infty$. Montrer que f' s'annule.

Exercice 7 Soit f une fonction dérivable sur \mathbb{R} . Montrer que si $\lim_{x+\infty} f'(x) = +\infty$ alors $\lim_{x+\infty} \frac{f(x)}{x} = +\infty$. Montrer que si $\lim_{x+\infty} f'(x) = l$ alors $\lim_{x+\infty} \frac{f(x)}{x} = l$.

Exercice 8 Soit I un intervalle de \mathbb{R} et k > 0. On dit qu'une fonction $f: I \to \mathbb{R}$ est k-Lipschitz lorsque $|f(x) - f(y)| \le k|x - y|$ pour tout x, y dans I. On dit que f est Lipschitz lorsqu'elle est k-Lipschitz pour un certain k > 0.

- 1. Écrire les définitions avec des quantificateurs. Écrire leur négation.
- 2. Montrer qu'une fonction de classe C^1 sur \mathbb{R} est Lipschitz sur tout segment.
- 3. Montrer que $x \mapsto x^2$ et $x \mapsto \exp(x)$ ne sont pas Lipschitz sur \mathbb{R} .
- 4. La somme de deux fonctions Lipschitz est-elle Lipschitz? Le produit de deux fonctions Lipschitz est-il Lipschitz?