

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

3-PKE

•

.

.

.

THE

CHEMICAL HISTORY OF A CANDLE.

•

.

~·

COURSE OF SIX LECTURES

ON THE

CHEMICAL HISTORY OF A CANDLE:

TO WHICH IS ADDED

A LECTURE ON PLATINUM.

BY

MICHAEL FARADAY, D.C.L., F.R.S.,

FULLERIAN PROPESSOR OF CHEMISTRY, ROYAL INSTITUTION; POREIGN ASSOCIATE OF THE ACADEMY OF SCIENCES, ETC.

Delivered before a Juvenile Auditory at the Royal Institution of Great Britain during the Christmas Holidays of 1860-1.

EDITED BY WILLIAM CROOKES, F.C.S.

OR LIBRAY NUMEROUS HAUSTRATIONS.

EW-Y

NEW YORK:

HARPER & BROTHERS, PUBLISHERS,

FRANKLIN SQUARE.

1861.

ENGLIN

PREFACE.

FROM the primitive pine torch to the paraffine candle, how wide an interval! between them how vast a contrast! The means adopted by man to illuminate his home at night stamp at once his position in the scale of civilization. The fluid bitumen of the far East. blazing in rude vessels of baked earth; the Etruscan lamp, exquisite in form, yet ill adapted to its office; the whale, seal, or bear fat, filling the hut of the Esquimaux or Lap with odor rather than light; the huge wax candle on the glittering altar; the range of gas-lamps in our streets, all have their stories to tell. All, if they could speak (and after their own manner they can), might warm our hearts in telling how they have ministered to man's comfort, love of home, toil, and devotion.

Surely, among the millions of fire-worshipers and fire-users who have passed away in earlier ages, some have pondered over the mystery of fire; perhaps some clear minds have guessed shrewdly near the truth. Think of the time man has lived in hopeless ignorance; think that only during a period which might be spanned by the life of one man has the truth been known!

Atom by atom, link by link, has the reasoning chain been forged. Some links too quickly and too slightly made have given way, and been replaced by better work; but now the great phenomena are known, the outline is correctly and firmly drawn, cunning artists are filling in the rest, and the child who masters these Lectures knows more of fire than Aristotle.

The candle itself is now made to light up the dark places of nature; the blowpipe and the prism are adding to our knowledge of the earth's crust, but the torch must come first.

Among the readers of this book, some few may devote themselves to increasing the stores of knowledge: the Lamp of Science must burn. "Alere flammam." W. C.

CONTENTS.

LECTURE 1.	
A CANDLE: THE FLAME-ITS SOURCES-STRUCTURE-	PAGE
MOBILITY—BRIGHTNESS	9
· ·	
LECTURE II.	
BRIGHTNESS OF THE FLAME AIR NECESSARY FOR	
COMBUSTION.—PRODUCTION OF WATER	39
LECTURE III.	
PRODUCTS: WATER FROM THE COMBUSTION NATURE	
OF WATER.—A COMPOUND.—HYDROGEN	64
LECTURE IV.	
HYDROGEN IN THE CANDLE BURNS INTO WATER	
THE OTHER PART OF WATER.—OXYGEN	94
LECTURE V.	
OXYGEN PRESENT IN THE AIR NATURE OF THE AT-	
MOSPHERE ITS PROPERTIES OTHER PRODUCTS	
FROM THE CANDLE CARBONIC ACID ITS PROPER-	
TIPO	121

CONTENTS.

LECTURE VI.

CARBON OR CHARCOAL COAL - GAS	- RESPIRATION
AND ITS ANALOGY TO THE BURNING C	DF A CANDLE
· · <u></u>	
LECTURE ON PLATINUM	185
жолгра	910

LECTURES

ON THE

CHEMICAL HISTORY OF A CANDLE.

LECTURE I.

A CANDLE: THE FLAME — ITS SOURCES— STRUCTURE—MOBILITY—BRIGHTNESS.

I PURPOSE, in return for the honor you do us by coming to see what are our proceedings here, to bring before you, in the course of these lectures, the Chemical History of a Candle. I have taken this subject on a former occasion, and, were it left to my own will, I should prefer to repeat it almost every year, so abundant is the interest that attaches itself to the subject, so wonderful are the varieties of outlet which it offers into the various departments of philosophy. There is not a law under which any part of this universe is governed which does not come into play and is

touched upon in these phenomena. There is no better, there is no more open door by which you can enter into the study of natural philosophy than by considering the physical phenomena of a candle. I trust, therefore, I shall not disappoint you in choosing this for my subject rather than any newer topic, which could not be better, were it even so good.

And, before proceeding, let me say this also: that, though our subject be so great, and our intention that of treating it honestly, seriously, and philosophically, yet I mean to pass away from all those who are seniors among us. I claim the privilege of speaking to juveniles as a juvenile myself. I have done so on former occasions, and, if you please, I shall do so again. And, though I stand here with the knowledge of having the words I utter given to the world, yet that shall not deter me from speaking in the same familiar way to those whom I esteem nearest to me on this occasion.

And now, my boys and girls, I must first tell you of what candles are made. Some are great curiosities. I have here some bits of timber, branches of trees particularly famous for their

burning. And here you see a piece of that very curious substance, taken out of some of the bogs in Ireland, called candle-wood; a hard, strong, excellent wood, evidently fitted for good work as a register of force, and yet, withal, burning so well that where it is found they make splinters of it, and torches, since it burns like a candle, and gives a very good light indeed. And in this wood we have one of the most beautiful illustrations of the general nature of a candle that I can possibly give. The fuel provided, the means of bringing that fuel to the place of chemical action, the regular and gradual supply of air to that place of actionheat and light-all produced by a little piece of wood of this kind, forming, in fact, a natural candle.

But we must speak of candles as they are in commerce. Here are a couple of candles commonly called dips. They are made of lengths of cotton cut off, hung up by a loop, dipped into melted tallow, taken out again and cooled, then redipped, until there is an accumulation of tallow round the cotton. In order that you may have an idea of the various characters of

these candles, you see these which I hold in my hand-they are very small and very curious. They are, or were, the candles used by the miners in coal mines. In olden times the miner had to find his own candles, and it was supposed that a small candle would not so soon set fire to the fire-damp in the coal mines as a large one; and for that reason, as well as for economy's sake, he had candles made of this sort-20, 30, 40, or 60 to the pound. They have been replaced since then by the steel-mill, and then by the Davy lamp, and other safetylamps of various kinds. I have here a candle that was taken out of the Royal George,(1) it is said, by Colonel Pasley. It has been sunk in the sea for many years, subject to the action of salt water. It shows you how well candles may be preserved; for, though it is cracked about and broken a good deal, yet when lighted it goes on burning regularly, and the tallow resumes its natural condition as soon as it is fused.

Mr. Field, of Lambeth, has supplied me abundantly with beautiful illustrations of the candle and its materials; I shall therefore now refer to them. And, first, there is the suetthe fat of the ox-Russian tallow, I believe, employed in the manufacture of these dips, which Gay-Lussac, or some one who intrusted him with his knowledge, converted into that beautiful substance, stearin, which you see lying beside it. A candle, you know, is not now a greasy thing like an ordinary tallow candle, but a clean thing, and you may almost scrape off and pulverize the drops which fall from it without soiling any thing. This is the process he adopted: (2) The fat or tallow is first boiled with quick-lime, and made into a soap, and then the soap is decomposed by sulphuric acid, which takes away the lime, and leaves the fat rearranged as stearic acid, while a quantity of glycerin is produced at the same time. Glycerin -absolutely a sugar, or a substance similar to sugar-comes out of the tallow in this chemical change. The oil is then pressed out of it; and you see here this series of pressed cakes, showing how beautifully the impurities are carried out by the oily part as the pressure goes on increasing, and at last you have left that substance, which is melted, and cast into candles

as here represented. The candle I have in my hand is a stearin candle, made of stearin from tallow in the way I have told you. Then here is a sperm candle, which comes from the purified oil of the spermaceti whale. Here, also, are yellow bees'-wax and refined bees'-wax, from which candles are made. Here, too, is that curious substance called paraffine, and some paraffine candles, made of paraffine obtained from the bogs of Ireland. I have here also a substance brought from Japan since we have forced an entrance into that out-of-the-way place—a sort of wax which a kind friend has sent me, and which forms a new material for the manufacture of candles.

And how are these candles made? I have told you about dips, and I will show you how moulds are made. Let us imagine any of these candles to be made of materials which can be cast. "Cast!" you say. "Why, a candle is a thing that melts, and surely if you can melt it you can cast it." Not so. It is wonderful, in the progress of manufacture, and in the consideration of the means best fitted to produce the required result, how things turn up which one

would not expect beforehand. Candles can not always be cast. A wax candle can never be cast. It is made by a particular process which I can illustrate in a minute or two, but I must not spend much time on it. Wax is a thing which, burning so well, and melting so easily in a candle, can not be cast. However, let us take a material that can be cast. Here is a frame, with a number of moulds fastened in it. The first thing to be done is to put a wick through them. Here is one-a plaited wick, which does not require snuffing(3)-supported by a little wire. It goes to the bottom, where it is pegged in; the little peg holding the cotton tight, and stopping the aperture so that nothing fluid shall run out. At the upper part there is a little bar placed across, which stretches the cotton and holds it in the mould. The tallow is then melted, and the moulds are filled. After a certain time, when the moulds are cool, the excess of tallow is poured off at one corner, and then cleaned off altogether, and the ends of the wick cut away. The candles alone then remain in the mould, and you have only to upset them, as I am doing, when out they tum-

ble, for the candles are made in the form of cones, being narrower at the top than at the bottom; so that, what with their form and their own shrinking, they only need a little shaking and out they fall. In the same way are made these candles of stearin and of paraffine. It is a curious thing to see how wax candles are made. A lot of cottons are hung upon frames, as you see here, and covered with metal tags at the ends to keep the wax from covering the cotton in those places. These are carried to a heater, where the wax is melted. As you see, the frames can turn round; and, as they turn, a man takes a vessel of wax and pours it first down one, and then the next, and the next. and so on. When he has gone once round, if it is sufficiently cool, he gives the first a second coat, and so on until they are all of the required thickness. When they have been thus clothed, or fed, or made up to that thickness, they are taken off and placed elsewhere. I have here, by the kindness of Mr. Field, several specimens of these candles. Here is one only half finished. They are then taken down and well rolled upon a fine stone slab, and the conical top

is moulded by properly shaped tubes, and the bottoms cut off and trimmed. This is done so beautifully that they can make candles in this way weighing exactly four or six to the pound, or any number they please.

We must not, however, take up more time about the mere manufacture, but go a little farther into the matter. I have not yet referred you to luxuries in candles (for there is such a thing as luxury in candles). See how beautifully these are colored; you see here mauve, Magenta, and all the chemical colors recently introduced, applied to candles. You observe, also, different forms employed. Here is a fluted pillar most beautifully shaped; and I have also here some candles sent me by Mr. Pearsall, which are ornamented with designs upon them, so that, as they burn, you have, as it were, a glowing sun above, and a bouquet of flowers beneath. All, however, that is fine and beautiful is not useful. These fluted candles, pretty as they are, are bad candles; they are bad because of their external shape. Nevertheless, I show you these specimens, sent to me from kind friends on all sides, that you may see what is done and what may be done in this or that direction; although, as I have said, when we come to these refinements, we are obliged to sacrifice a little in utility.

Now as to the light of the candle. We will light one or two, and set them at work in the performance of their proper functions. You observe a candle is a very different thing from a lamp. With a lamp you take a little oil, fill your vessel, put in a little moss or some cotton prepared by artificial means, and then light the top of the wick. When the flame runs down the cotton to the oil, it gets extinguished, but it goes on burning in the part above. Now I have no doubt you will ask how it is that the oil which will not burn of itself gets up to the top of the cotton, where it will burn. We shall presently examine that; but there is a much more wonderful thing about the burning of a candle than this. You have here a solid substance with no vessel to contain it; and how is it that this solid substance can get up to the place where the flame is? How is it that this solid gets there, it not being a fluid? or, when it is made a fluid, then how is it that

it keeps together? This is a wonderful thing about a candle.

We have here a good deal of wind, which will help us in some of our illustrations, but tease us in others; for the sake, therefore, of a little regularity, and to simplify the matter, I shall make a quiet flame, for who can study a subject when there are difficulties in the way not belonging to it? Here is a clever invention of some costermonger or street-stander in the market-place for the shading of their candles on Saturday nights, when they are selling their greens, or potatoes, or fish. I have very often admired it. They put a lamp-glass round the candle, supported on a kind of gallery, which clasps it, and it can be slipped up and down as required. By the use of this lampglass, employed in the same way, you have a steady flame, which you can look at, and carefully examine, as I hope you will do, at home.

You see then, in the first instance, that a beautiful cup is formed. As the air comes to the candle, it moves upward by the force of the current which the heat of the candle produces, and it so cools all the sides of the wax, tallow,

or fuel as to keep the edge much cooler than the part within; the part within melts by the flame that runs down the wick as far as it can go before it is extinguished, but the part on the outside does not melt. If I made a current in one direction, my cup would be lop-sided. and the fluid would consequently run over; for the same force of gravity which holds worlds together holds this fluid in a horizontal position. and if the cup be not horizontal, of course the fluid will run away in guttering. You see. therefore, that the cup is formed by this beautifully regular ascending current of air playing upon all sides, which keeps the exterior of the candle cool. No fuel would serve for a candle which has not the property of giving this cup. except such fuel as the Irish bog-wood, where the material itself is like a sponge and holds its own fuel. You see now why you would have had such a bad result if you were to burn these beautiful candles that I have shown you, which are irregular, intermittent in their shape, and can not, therefore, have that nicely-formed edge to the cup which is the great beauty in a candle. I hope you will now see that the perfec-

tion of a process—that is, its utility—is the better point of beauty about it. It is not the best looking thing, but the best acting thing, which is the most advantageous to us. This goodlooking candle is a bad-burning one. There will be a guttering round about it because of the irregularity of the stream of air and the badness of the cup which is formed thereby. You may see some pretty examples (and I trust you will notice these instances) of the action of the ascending current when you have a little gutter run down the side of a candle, making it thicker there than it is elsewhere. As the candle goes on burning, that keeps its place and forms a little pillar sticking up by the side, because, as it rises higher above the rest of the wax or fuel, the air gets better round it, and it is more cooled and better able to resist the action of the heat at a little distance. Now the greatest mistakes and faults with regard to candles, as in many other things, often bring with them instruction which we should not receive if they had not occurred. We come here to be philosophers, and I hope you will always remember that whenever a result happens, especially if it

be new, you should say, "What is the cause? Why does it occur?" and you will, in the course of time, find out the reason.

Then there is another point about these candles which will answer a question-that is, as to the way in which this fluid gets out of the cup, up the wick, and into the place of combustion. You know that the flames on these burning wicks in candles made of bees'-wax. stearin, or spermaceti, do not run down to the wax or other matter, and melt it all away, but keep to their own right place. They are fenced off from the fluid below, and do not encroach on the cup at the sides. I can not imagine a more beautiful example than the condition of adjustment under which a candle makes one part subserve to the other to the very end of its action. A combustible thing like that, burning away gradually, never being intruded upon by the flame, is a very beautiful sight, especially when you come to learn what a vigorous thing flame is - what power it has of destroying the wax itself when it gets hold of it, and of disturbing its proper form if it come only too near.

But how does the flame get hold of the fuel? There is a beautiful point about that—capillary attraction.(4) "Capillary attraction!" you say -"the attraction of hairs." Well, never mind the name; it was given in old times, before we had a good understanding of what the real power was. It is by what is called capillary attraction that the fuel is conveyed to the part where combustion goes on, and is deposited there, not in a careless way, but very beautifully in the very midst of the centre of action, which takes place around it. Now I am going to give you one or two instances of capillary attraction. It is that kind of action or attraction which makes two things that do not dissolve in each other still hold together. When you wash your hands, you wet them thoroughly: you take a little soap to make the adhesion better, and you find your hand remains wet. This is by that kind of attraction of which I am about to speak. And, what is more, if your hands are not soiled (as they almost always are by the usages of life), if you put your finger into a little warm water, the water will creep a little way up the finger, though you may not stop to examine it. I have here a substance which is rather porous—a column of salt—and I will pour into the plate at the bottom, not water, as it appears, but a saturated solution of salt which can not absorb more, so that the action which you see will not be due to its dissolving any thing. We may consider the plate to be the candle, and the salt the wick, and this solution the melted tallow. (I have colored the fluid, that you may see the action better.) You observe that, now I pour in the fluid, it rises and gradually creeps up the salt higher and higher; and provided the column does not tumble over, it will go to the top. If

this blue solution were combustible, and we were to place a wick at the top of the salt, it would burn as it entered into the wick. It is a most curious thing to see this kind of action taking place, and to observe how singular some of the circumstances are about it. When you wash your hands, you take a towel to wipe off the water; and it is by that kind of wetting, or that kind of attraction which makes the towel become wet with water, that the wick is made wet with the tallow. I have known some careless boys and girls (indeed, I have known it happen to careful people as well) who, having washed their hands and wiped them with a towel, have thrown the towel over the side of the basin, and before long it has drawn all the water out of the basin and conveyed it to the floor, because it happened to be thrown over the side in such a way as to serve the purpose of a siphon.(5) That you may the better see the way in which the substances act one upon another, I have here a vessel made of wire gauze filled with water, and you may compare it in its action to the cotton in one respect, or to a piece of calico in the other. In fact, wicks are sometimes made of a kind of wire gauze. You will observe that this vessel is a porous thing; for if I pour a little water on to the top,

it will run out at the bottom. You would be puzzled for a good while if I asked you what the state of this vessel is, what is inside it, and why it is there? The vessel is full of water. and yet you see the water goes in and runs out as if it were empty. In order to prove this to you I have only to empty it. The reason is this: the wire, being once wetted, remains wet; the meshes are so small that the fluid is attracted so strongly from the one side to the other as to remain in the vessel, although it is porous. In like manner, the particles of melted tallow ascend the cotton and get to the top; other particles then follow by their mutual attraction for each other, and as they reach the flame they are gradually burned.

Here is another application of the same principle. You see this bit of cane. I have seen boys about the streets, who are very anxious to appear like men, take a piece of cane, and light it, and smoke it, as an imitation of a cigar. They are enabled to do so by the permeability of the cane in one direction, and by its capillarity. If I place this piece of cane on a plate containing some camphene (which is very much

like paraffine in its general character), exactly in the same manner as the blue fluid rose through the salt will this fluid rise through the piece of cane. There being no pores at the side, the fluid can not go in that direction, but must pass through its length. Already the fluid is at the top of the cane; now I can light it and make it serve as a candle. The fluid has risen by the capillary attraction of the piece of cane, just as it does through the cotton in the candle.

Now the only reason why the candle does not burn all down the side of the wick is that the melted tallow extinguishes the flame. You know that a candle, if turned upside down, so as to allow the fuel to run upon the wick, will be put out. The reason is, that the flame has not had time to make the fuel hot enough to burn, as it does above, where it is carried in small quantities into the wick, and has all the effect of the heat exercised upon it.

There is another condition which you must learn as regards the candle, without which you would not be able fully to understand the philosophy of it, and that is the vaporous condition which is represented in the diagram, varying with atmospheric disturbances, and also vary-

ing according to the size of the candle. It is a bright oblong, brighter at the top than toward the bottom, with the wick in the middle, and, besides the wick in the middle, certain darker parts toward the bottom, where the ignition is not so perfect as in the part above. I have a drawing here, sketched many years ago by Hooker, when he made his investigations. It is the drawing of the flame of a lamp, but it will apply to the flame of a candle. The cup of the candle is the vessel or lamp; the melted spermaceti is the oil; and the wick is common

to both. Upon that he sets this little flame, and then he represents what is true, a certain quantity of matter rising about it which you do not see, and which, if you have not been here before, or are not familiar with the subject, you will not know of. He has here represented the parts of the surrounding atmosphere that are very essential to the flame, and that are always present with it. There is a current formed, which draws the flame out: for the flame which you see is really drawn out by the current, and drawn upward to a great height, just as Hooker has here shown you by that prolongation of the current in the diagram. You may see this by taking a lighted candle, and putting it in the sun so as to get its shadow thrown on a piece of paper. How remarkable it is that that thing which is light enough to produce shadows of other objects can be made to throw its own shadow on a piece of white paper or card, so that you can actually see streaming round the flame something which is not part of the flame, but is ascending and drawing the flame upward. Now I am going to imitate the sunlight by applying the voltaic battery to the electric lamp. You now see our sun and its great luminosity; and by placing a candle between it and the screen, we get the shadow of the flame. You

observe the shadow of the candle and of the wick; then there is a darkish part, as represented in the diagram, and then a part which is more distinct. Curiously enough, however, what we see in the shadow as the darkest part of the flame is, in reality, the brightest part; and here you see streaming upward the ascending current of hot air, as shown by Hooker, which draws out the flame, supplies it with air, and cools the sides of the cup of melted fuel.

I can give you here a little farther illustration, for the purpose of showing you how flame goes up or down according to the current. I have here a flame—it is not a candle flame but you can, no doubt, by this time generalize enough to be able to compare one thing with another: what I am about to do is to change the ascending current that takes the flame upward into a descending current. This I can easily do by the little apparatus you see before me.

The flame, as I have said, is not a candle flame, but it is produced by alcohol, so that it shall not smoke too much. I will also color the flame with another substance, (6) so that you may

trace its course; for, with the spirit alone, you could hardly see well enough to have the opportunity of tracing its direction. By lighting this spirit of wine we have then a flame produced, and you observe that when held in the air it naturally goes upward. You understand now, easily enough, why flames go up under ordinary circumstances: it is because of the draught of air by which the combustion is formed. But now, by blowing the flame down, you see I am enabled to make it go downward into this little chimney, the direction of the current being changed. Before we have concluded this course of lectures we shall show you a lamp in which the flame goes up and the smoke goes down, or the flame goes down and the smoke goes up. You see, then, that we have the power in this way of varying the flame in different directions.

There are now some other points that I must bring before you. Many of the flames you see here vary very much in their shape by the currents of air blowing around them in different directions; but we can, if we like, make flames so that they will look like fixtures, and we can

photograph them-indeed, we have to photograph them-so that they become fixed to us, if we wish to find out every thing concerning them. That, however, is not the only thing I wish to mention. If I take a flame sufficiently large, it does not keep that homogeneous, that uniform condition of shape, but it breaks out with a power of life which is quite wonderful. I am about to use another kind of fuel, but one which is truly and fairly a representative of the wax or tallow of a candle. I have here a large ball of cotton, which will serve as a wick. And, now that I have immersed it in spirit and applied a light to it, in what way does it differ from an ordinary candle? Why, it differs very much in one respect, that we have a vivacity and power about it, a beauty and a life entirely different from the light presented by a candle. You see those fine tongues of flame rising up. You have the same general disposition of the mass of the flame from below upward, but, in addition to that, you have this remarkable breaking out into tongues which you do not perceive in the case of a candle. Now, why is this? I must explain it to you, because, when

you understand that perfectly, you will be able to follow me better in what I have to say hereafter. I suppose some here will have made for themselves the experiment I am going to show you. Am I right in supposing that any body here has played at snapdragon? I do not know a more beautiful illustration of the philosophy of flame, as to a certain part of its history, than the game of snapdragon. First, here is the dish; and let me say, that when you play snapdragon properly you ought to have the dish well warmed; you ought also to have warm plums, and warm brandy, which, however, I have not got. When you have put the spirit into the dish, you have the cup and the fuel; and are not the raisins acting like the wicks? I now throw the plums into the dish, and light the spirit, and you see those beautiful tongues of flame that I refer to. You have the air creeping in over the edge of the dish forming these tongues. Why? Because, through the force of the current and the irregularity of the action of the flame, it can not flow in one uniform stream. The air flows in so irregularly that you have what would

otherwise be a single image broken up into a variety of forms, and each of these little tongues has an independent existence of its own. Indeed, I might say, you have here a multitude of independent candles. You must not imagine, because you see these tongues all at once, that the flame is of this particular shape. A flame of that shape is never so at any one time. Never is a body of flame, like that which you just saw rising from the ball, of the shape it appears to you. It consists of a multitude of different shapes, succeeding each other so fast that the eye is only able to take cognizance of them all at once. In former times I purposely analyzed a flame of that general character, and the diagram shows you the different parts of

Fig. 6.

which it is composed. They do not occur all at once: it is only because we see these shapes in such rapid succession that they seem to us to exist all at one time.

It is too bad that we have not got farther than my game of snapdragon: but we must not, under any circumstances, keep you beyond your time. It will be a lesson to me in future to hold you more strictly to the philosophy of the thing than to take up your time so much with these illustrations.

LECTURE II.

A CANDLE: BRIGHTNESS OF THE FLAME.—
AIR NECESSARY FOR COMBUSTION.—PRODUCTION OF WATER.

WE were occupied the last time we met in considering the general character and arrangement as regards the fluid portion of a candle, and the way in which that fluid got into the place of combustion. You see, when we have a candle burning fairly in a regular, steady atmosphere, it will have a shape something like the one shown in the diagram, and will look pretty uniform, although very curious in its character. And now I have to ask your attention to the means by which we are enabled to ascertain what happens in any particular part of the flame; why it happens; what it does in happening; and where, after all, the whole candle goes to; because, as you know very well, a candle being brought before us and burned, disappears, if burned properly,

without the least trace of dirt in the candlestick; and this is a very curious circumstance. In order, then, to examine this candle carefully, I have arranged certain apparatus, the use of which you will see as I go on. Here is a candle; I am about to put the end of this glass tube into the middle of the flame—into that part which old Hooker has represented in the diagram as being rather dark, and which you can see at any time if you will look at a candle carefully, without blowing it about. We will examine this dark part first.

Now I take this bent glass tube, and introduce one end into that part of the flame, and you see at once that something is coming from the flame, out at the other end of the tube; and if I put a flask there, and leave it for a little while, you will see that something from the middle part of the flame is gradually drawn out, and goes through the tube, and into that flask, and there behaves very differently from what it does in the open air. It not only escapes from the end of the tube, but falls down to the bottom of the flask like a heavy substance, as indeed it is. We find that this is the wax of the candle made into a vaporous fluid-not a gas. (You must learn the difference between a gas and a vapor: a gas remains permanent; a vapor is something that will condense.) If you blow out a candle, you perceive a very nasty smell, resulting from the condensation of this vapor. That is very different from what you have outside the flame; and, in order to make that more clear to you, I am about to produce and set fire to a larger portion of this vapor; for what we have in the small way in a candle, to understand thoroughly, we must, as philosophers, produce in a larger way, if needful, that we may examine the different parts. And now Mr. Anderson will give me a source of heat, and I am about to show you what that vapor is. Here is some wax in a glass flask, and I am going to make it hot, as the inside of that candleflame is hot, and the matter about the wick is hot. [The lecturer placed some wax in a glass flask, and heated it over a lamp.] Now I dare say that is hot enough for me. You see that the wax I put in it has become fluid, and there is a little smoke coming from it. We shall very soon have the vapor rising up. I will make it still hotter, and now we get more of it, so that I can actually pour the vapor out of the flask into that basin, and set it on fire there. This, then, is exactly the same kind of vapor as we have in the middle of the candle; and that you may be sure this is the case, let us try whether we have not got here, in this flask, a real combustible vapor out of the middle of the candle. [Taking the flask into which the tube from the candle proceeded, and introducing a lighted taper.] See how it

burns. Now this is the vapor from the middle of the candle, produced by its own heat; and that is one of the first things you have to consider with respect to the progress of the wax in the course of its combustion, and as regards the changes it undergoes. I will arrange another tube carefully in the flame, and I should not wonder if we were able, by a little care, to get that vapor to pass through the tube to the other extremity, where we will light it, and obtain absolutely the flame of the candle at a place distant from it. Now, look at that. Is

not that a very pretty experiment? Talk about laying on gas—why, we can actually lay on a candle! And you see from this that there

are clearly two different kinds of action—one the production of the vapor, and the other the combustion of it—both of which take place in particular parts of the candle.

I shall get no vapor from that part which is already burnt. If I raise the tube (Fig. 7) to the upper part of the flame, so soon as the vapor has been swept out what comes away will be no longer combustible; it is already burned. How burned? Why, burned thus: In the middle of the flame, where the wick is. there is this combustible vapor; on the outside of the flame is the air which we shall find necessary for the burning of the candle; between the two, intense chemical action takes place, whereby the air and the fuel act upon each other, and at the very same time that we obtain light the vapor inside is destroyed. If you examine where the heat of a candle is, you will find it very curiously arranged. Suppose I take this candle, and hold a piece of paper where is the heat of that Annual Its you not see that it is not in the make to be in a ring, exactly in the place where I will you the chemical action was; and

even in my irregular mode of making the experiment, if there is not too much disturbance, there will always be a ring. This is a good experiment for you to make at home. Take a strip of paper, have the air in the room quiet, and put the piece of paper right across the middle of the flame—(I must not talk while I make the experiment)—and you will find that it is burnt in two places, and that it is not burnt, or very little so, in the middle; and when you have tried the experiment once or twice, so as to make it nicely, you will be very interested to see where the heat is, and to find that it is where the air and the fuel come together.

This is most important for us as we proceed with our subject. Air is absolutely necessary for combustion; and, what is more, I must have you understand that *fresh* air is necessary, or else we should be imperfect in our reasoning and our experiments. Here is a jar of air; I place it over a candle, and it burns very nicely in it at first, showing that what I have said about it is true; but there will soon be a change. See how the flame is drawing upward, present-

ly fading, and at last going out. And going out, why? Not because it wants air merely, for the jar is as full now as it was before; but it wants pure, fresh air. The jar is full of air, partly changed, partly not changed; but it does not contain sufficient of the fresh air which is necessary for the combustion of a candle. These are all points which we, as young chemists, have to gather up; and if we look a little more closely into this kind of action, we shall find certain steps of reasoning extremely interesting. For instance, here is the oil-lamp I showed you—an excellent lamp for our experiments - the old Argand lamp. I now make it like a candle sobstructing the passage of air into the centre of the flame]; there is the cotton; there is the oil rising up in it; and there is the conical flame. It burns poorly because there is a partial restraint of air. I have allowed no air to get to it save round the outside of the flame, and it does not burn well. I can not admit more air from the outside, because the wick is large; but if, as Argand did so cleverly, I open a passage to the middle of the flame, and so let air come in

there, you will see how much more beautifully it burns. If I shut the air off, look how it smokes; and why? We have now some very interesting points to study: we have the case of the combustion of a candle; we have the case of a candle being put out by the want of air; and we have now the case of imperfect combustion, and this is to us so interesting that I want you to understand it as thoroughly as you do the case of a candle burning in its best possible manner. I will now make a great flame, because we need the largest possible illustrations. Here is a larger wick [burning turpentine on a ball of cotton]. All these things are the same as candles, after all. If we have larger wicks, we must have a larger supply of air, or we shall have less perfect combustion. Look, now, at this black substance going up into the atmosphere; there is a regular stream of it. I have provided means to carry off the imperfectly-burned part, lest it should annoy you. Look at the soots that fly off from the flame; see what an imperfect combustion it is, because it can not get enough air. What, then, is happening? Why, certain

bustion. You see, then, these two great distinctions; and upon these differences depend all the utility and all the beauty of flame which we use for the purpose of giving out light. When we use oil, or gas, or candle for the purpose of illumination, their fitness all depends upon these different kinds of combustion.

There are such curious conditions of flame that it requires some cleverness and nicety of discrimination to distinguish the kinds of combustion one from another. For instance, here is a powder which is very combustible, consisting, as you see, of separate little particles. It is called lycopodium,(7) and each of these particles can produce a vapor, and produce its own flame; but, to see them burning, you would imagine it was all one flame. I will now set fire to a quantity, and you will see the effect. We saw a cloud of flame, apparently in one body; but that rushing noise [referring to the sound produced by the burning] was a proof that the combustion was not a continuous or regular one. This is the lightning of the pantomimes, and a very good imitation. [The experiment was twice repeated by blowing lycopodium from a glass tube through a spirit flame.] This is not an example of combustion like that of the filings I have been speaking of, to which we must now return.

Suppose I take a candle and examine that part of it which appears brightest to our eyes. Why, there I get these black particles, which already you have seen many times evolved from the flame, and which I am now about to evolve in a different way. I will take this candle and clear away the gutterage, which occurs by reason of the currents of air; and if I now arrange a glass tube so as just to dip into this luminous part, as in our first experiment, only higher, you see the result. In place of having the same white vapor that you had before, you will now have a black vapor. There it goes, as black as ink. It is certainly very different from the white vapor; and when we put a light to it we shall find that it does not burn, but that it puts the light out. Well, these particles, as I said before, are just the smoke of the candle; and this brings to mind that old employment which Dean Swift recommended to servants for their amusement, namely, writing to glow. This is the pipe through which we convey this particular gas, which we call hydrogen, and which you shall know all about next time we meet. And here is a substance called oxygen, by means of which this hydrogen can burn; and although we produce, by their mixture, far greater heat(8) than you can obtain from the candle, yet there is very little light. If, however, I take a solid substance, and put that into it, we produce an intense light. If I take a piece of lime, a substance which will not burn, and which will not vaporize by the heat (and because it does not vaporize remains solid, and remains heated), you will soon observe what happens as to its glowing. I have here a most intense heat produced by the burning of hydrogen in contact with the oxygen; but there is as yet very little light-not for want of heat, but for want of particles which can retain their solid state; but when I hold this piece of lime in the flame of the hydrogen as it burns in the oxygen, see how it glows! This is the glorious lime light, which rivals the voltaic light, and which is almost equal to sunlight. I have here a piece

of carbon or charcoal, which will burn and give us light exactly in the same manner as if it were burnt as part of a candle. The heat that is in the flame of a candle decomposes the vapor of the wax, and sets free the carbon particles; they rise up heated and glowing as this now glows, and then enter into the air. But the particles, when burnt, never pass off from a candle in the form of carbon. They go off into the air as a perfectly invisible substance, about which we shall know hereafter.

Is it not beautiful to think that such a process is going on, and that such a dirty thing as charcoal can become so incandescent? You see it comes to this—that all bright flames contain these solid particles; all things that burn and produce solid particles, either during the time they are burning, as in the candle, or immediately after being burnt, as in the case of the gunpowder and iron filings—all these things give us this glorious and beautiful light.

I will give you a few illustrations. Here is a piece of phosphorus, which burns with a bright flame. Very well; we may now con-

LECTURE III.

PRODUCTS: WATER FROM THE COMBUSTION.—
NATURE OF WATER.—A COMPOUND.—HYDROGEN.

I DARE say you well remember that when we parted we had just mentioned the word "products" from the candle; for when a candle burns we found we were able, by nice adjustment, to get various products from it. There was one substance which was not obtained when the candle was burning properly, which was charcoal or smoke, and there was some other substance that went upward from the flame which did not appear as smoke, but took some other form, and made part of that general current which, ascending from the candle upward, becomes invisible, and escapes. There were also other products to mention. You remember that in that rising current having its origin at the candle we found that one part was condensable against a cold spoon, or against

a clean plate, or any other cold thing, and another part was incondensable.

We will first take the condensable part, and examine it, and, strange to say, we find that that part of the product is just water—nothing but water. On the last occasion I spoke of it incidentally, merely saying that water was produced among the condensable products of the candle; but to-day I wish to draw your attention to water, that we may examine it carefully, especially in relation to this subject, and also with respect to its general existence on the surface of the globe.

Now, having previously arranged an experiment for the purpose of condensing water from the products of the candle, my next point will be to show you this water; and perhaps one of the best means that I can adopt for showing its presence to so many at once is to exhibit a very visible action of water, and then to apply that test to what is collected as a drop at the bottom of that vessel. I have here a chemical substance, discovered by Sir Humphrey Davy, which has a very energetic action upon water, which I shall use as a test of the presence of

water. If I take a little piece of it—it is called potassium, as coming from potash—if I take a little piece of it, and throw it into that basin, you see how it shows the presence of water by lighting up and floating about, burning with a violet flame. I am now going to take away the candle which has been burning beneath the vessel containing ice and salt, and you see a

drop of water—a condensed product of the candle—hanging from the under surface of the dish. I will show you that potassium has the same action upon it as upon the water in that basin in the experiment we have just tried.

See! it takes fire, and burns in just the same manner. I will take another drop upon this glass slab, and when I put the potassium on to it, you see at once, from its taking fire, that there is water present. Now that water was produced by the candle. In the same manner, if I put this spirit-lamp under that jar, you will soon see the latter become damp, from the dew which is deposited upon it-that dew being the result of combustion; and I have no doubt you will shortly see, by the drops of water which fall upon the paper below, that there is a good deal of water produced from the combustion of the lamp. I will let it remain, and you can afterward see how much water has been collected. So, if I take a gas-lamp, and put any cooling arrangement over it, I shall get water -water being likewise produced from the combustion of gas. Here, in this bottle, is a quantity of water - perfectly pure, distilled water, produced from the combustion of a gas-lampin no point different from the water that you distill from the river, or ocean, or spring, but exactly the same thing. Water is one individual thing; it never changes. We can add to it

by careful adjustment for a little while, or we can take it apart and get other things from it: but water, as water, remains always the same, either in a solid, liquid, or fluid state. Here again [holding another bottle] is some water produced by the combustion of an oil-lamp. A pint of oil, when burnt fairly and properly, produces rather more than a pint of water. Here, again, is some water, produced by a rather long experiment, from a wax candle. And so we can go on with almost all combustible substances, and find that if they burn with a flame, as a candle, they produce water. You may make these experiments yourselves: the head of a poker is a very good thing to try with, and if it remains cold long enough over the candle, you may get water condensed in drops on it; or a spoon, or ladle, or any thing else may be used, provided it be clean, and can carry off the heat, and so condense the water.

And now—to go into the history of this wonderful production of water from combustibles, and by combustion—I must first of all tell you that this water may exist in different conditions; and although you may now be ac-

quainted with all its forms, they still require us to give a little attention to them for the present; so that we may perceive how the water, while it goes through its Protean changes, is entirely and absolutely the same thing, whether it is produced from a candle, by combustion, or from the rivers or ocean.

First of all, water, when at the coldest, is ice. Now we philosophers-I hope that I may class you and myself together in this case-speak of water as water, whether it be in its solid, or liquid, or gaseous state-we speak of it chemically as water. Water is a thing compounded of two substances, one of which we have derived from the candle, and the other we shall find elsewhere. Water may occur as ice; and you have had most excellent opportunities lately of seeing this. Ice changes back into water-for we had on our last Sabbath a strong instance of this change by the sad catastrophe which occurred in our own house, as well as in the houses of many of our friends - ice changes back into water when the temperature is raised; water also changes into steam when it is warmed enough. The water which we have here before

us is in its densest state;(11) and, although it changes in weight, in condition, in form, and in many other qualities, it still is water; and whether we alter it into ice by cooling, or whether we change it into steam by heat, it increases in volume - in the one case very strangely and powerfully, and in the other case very largely and wonderfully. For instance, I will now take this tin cylinder, and pour a little water into it, and, seeing how much water I pour in, you may easily estimate for yourselves how high it will rise in the vessel: it will cover the bottom about two inches. I am now about to convert the water into steam for the purpose of showing to you the different volumes which water occupies in its different states of water and steam.

Let us now take the case of water changing into ice: we can effect that by cooling it in a mixture of salt and pounded ice(12)—and I shall do so to show you the expansion of water into a thing of larger bulk when it is so changed. These bottles [holding one] are made of strong cast iron, very strong and very thick—I suppose they are the third of an inch in thickness; they

are very carefully filled with water, so as to exclude all air, and then they are screwed down tight. We shall see that when we freeze the water in these iron vessels, they will not be able to hold the ice, and the expansion within them will break them in pieces as these [pointing to some fragments] are broken, which have been bottles of exactly the same kind. I am about to put these two bottles into that mixture of ice and salt for the purpose of showing that when water becomes ice it changes in volume in this extraordinary way.

In the mean time, look at the change which has taken place in the water to which we have applied heat; it is losing its fluid state. You may tell this by two or three circumstances. I have covered the mouth of this glass flask, in which water is boiling, with a watch-glass. Do you see what happens? It rattles away like a valve chattering, because the steam rising from the boiling water sends the valve up and down, and forces itself out, and so makes it clatter. You can very easily perceive that the flask is quite full of steam, or else it would not force its way out. You see also that

the flask contains a substance very much larger than the water, for it fills the whole of the flask over and over again, and there it is blowing away into the air; and yet you can not observe any great diminution in the bulk of the water, which shows you that its change of bulk is very great when it becomes steam.

I have put our iron bottles containing water into this freezing mixture, that you may see what happens. No communication will take place, you observe, between the water in the bottles and the ice in the outer vessel. But there will be a conveyance of heat from the one to the other, and if we are successful-we are making our experiment in very great haste-I expect you will by-and-by, so soon as the cold has taken possession of the bottles and their contents, hear a pop on the occasion of the bursting of the one bottle or the other, and, when we come to examine the bottles, we shall find their contents masses of ice, partly inclosed by the covering of iron which is too small for them, because the ice is larger in bulk than the water. You know very well that ice floats upon water; if a boy falls through a hole into the water, he tries to get on the ice again to float him up. Why does the ice float? Think of that, and philosophize. Because the ice is larger than the quantity of water which can produce it, and therefore the ice weighs the lighter and the water is the heavier.

To return now to the action of heat on water. See what a stream of vapor is issuing from this tin vessel. You observe, we must have made it quite full of steam to have it sent out in that great quantity. And now, as we can convert the water into steam by heat, we convert it back into liquid water by the application of cold. And if we take a glass, or any other cold thing, and hold it over this steam, see how soon it gets damp with water: it will condense it until the glass is warm - it condenses the water which is now running down the sides of it. I have here another experiment to show the condensation of water from a vaporous state back into a liquid state, in the same way as the vapor, one of the products of the candle, was condensed against the bottom of the dish and obtained in the form of water; and to show you how truly and thoroughly these changes

74 CONTRACTION OF STEAM WHEN CONDENSED.

take place, I will take this tin flask, which is now full of steam, and close the top. We shall see what takes place when we cause this water or steam to return back to the fluid state by pouring some cold water on the outside. [The lecturer poured the cold water over the vessel, when it immediately collapsed.] You see what

has happened. If I had closed the stopper, and still kept the heat applied to it, it would have burst the vessel; yet, when the steam returns to the state of water, the vessel collapses, there

being a vacuum produced inside by the condensation of the steam. I show you these experiments for the purpose of pointing out that in all these occurrences there is nothing that changes the water into any other thing; it still remains water; and so the vessel is obliged to give way, and is crushed inward, as in the other case, by the farther application of heat, it would have been blown outward.

And what do you think the bulk of that water is when it assumes the vaporous condition? You see that cube [pointing to a cubic

foot]. There, by its side, is a cubic inch, exactly the same shape as the cubic foot, and that bulk of water [the cubic inch] is sufficient to expand into that bulk [the cubic foot] of steam; and, on the contrary, the application of cold will contract that large quantity of steam into this small quantity of water. [One of the iron bottles burst at that moment.] Ah! There is one of our bottles burst, and here, you see, is a crack down one side an eighth of an inch in width. The other now exploded, sending the freezing mixture in all directions.] This other bottle is also broken; although the iron was nearly half an inch thick, the ice has burst it asunder. These changes always take place in water; they do not require to be always produced by artificial means; we only use them here because we want to produce a small winter round that little bottle instead of a long and severe one. But if you go to Canada, or to the North, you will find the temperature there out of doors will do the same thing as has been done here by the freezing mixture.

To return to our quiet philosophy. We shall not in future be deceived, therefore, by any changes that are produced in water. Water is the same every where, whether produced from the ocean or from the flame of the candle. Where, then, is this water which we get from a candle? I must anticipate a little, and tell you. It evidently comes, as to part of it, from the

candle, but is it within the candle beforehand? No, it is not in the candle; and it is not in the air around about the candle which is necessary for its combustion. It is neither in one nor the other, but it comes from their conjoint action, a part from the candle, a part from the air; and this we have now to trace, so that we may understand thoroughly what is the chemical history of a candle when we have it burning on our table. How shall we get at this? I myself know plenty of ways, but I want you to get at it from the association in your own minds of what I have already told you.

I think you can see a little in this way. We had just now the case of a substance which acted upon the water in the way that Sir Humphrey Davy showed us,(13) and which I am now going to recall to your minds by making again an experiment upon that dish. It is a thing which we have to handle very carefully; for you see, if I allow a little splash of water to come upon this mass, it sets fire to part of it; and if there were free access of air, it would quickly set fire to the whole. Now this is a metal—a beautiful and bright metal—which

will do when it meets with water. It will tell us the story so beautifully, so gradually and regularly, that I think it will please you very much.

I have here a furnace with a pipe going through it like an iron gun-barrel, and I have stuffed that barrel full of bright iron turnings, and placed it across the fire to be made red-hot. We can either send air through the barrel to come in contact with the iron, or we can send steam from this little boiler at the end of the barrel. Here is a stop-cock which shuts off the

steam from the barrel until we wish to admit it. There is some water in these glass jars, which

PRODUCT OF DECOMPOSITION OF STEAM, 81

I have colored blue, so that you may see what happens. Now you know very well that any steam I might send through that barrel, if it went through into the water, would be condensed; for you have seen that steam can not retain its gaseous form if it be cooled down; you saw it here [pointing to the tin flask] crushing itself into a small bulk, and causing the flask holding it to collapse; so that if I were to send steam through that barrel it would be condensed, supposing the barrel were cold; it is therefore heated to perform the experiment I am now about to show you. I am going to send the steam through the barrel in small quantities, and you shall judge for yourselves, when you see it issue from the other end, whether it still remains steam. Steam is condensible into water, and when you lower the temperature of steam you convert it back into fluid water; but I have lowered the temperature of the gas which I have collected in this jar by passing it through water after it has traversed the iron barrel, and still it does not change back into water. I will take another test and apply to this gas. (I hold the

ward as a product of its combustion; but when it burns it produces water only; and if we take a cold glass and put it over the flame, it becomes damp, and you have water produced immediately in appreciable quantity; and nothing is produced by its combustion but the same water which you have seen the flame of the candle produce. It is important to remember that this hydrogen is the only thing in nature which furnishes water as the sole product of combustion.

And now we must endeavor to find some additional proof of the general character and composition of water, and for this purpose I will keep you a little longer, so that at our next meeting we may be better prepared for the subject. We have the power of arranging the zinc which you have seen acting upon the water by the assistance of an acid, in such a manner as to cause all the power to be evolved in the place where we require it. I have behind me a voltaic pile, and I am just about to show you, at the end of this lecture, its character and power, that you may see what we shall have to deal with when next we meet. I hold here the

extremities of the wires which transport the power from behind me, and which I shall cause to act on the water.

We have previously seen what a power of combustion is possessed by the potassium, or the zinc, or the iron filings; but none of them show such energy as this. [The lecturer here made contact between the two terminal wires of the battery, when a brilliant flash of light was produced.] This light is, in fact, produced by a forty-zinc power of burning; it is a power that I can carry about in my hands through these wires at pleasure, although if I applied it wrongly to myself it would destroy me in an instant, for it is a most intense thing, and the power you see here put forth while you count five [bringing the poles in contact and exhibiting the electric light] is equivalent to the power of several thunder-storms, so great is its force.(14) And that you may see what intense energy it has, I will take the ends of the wires which convey the power from the battery, and with it I dare say I can burn this iron file. Now this is a chemical power, and one which, when we next meet, I shall apply to water, and show you what results we are able to produce.

plate comes out clean, and the plate which was clean comes out coated with copper; and thus you see that the same copper we put into this solution we can also take out of it by means of this instrument.

Putting that solution aside, let us now see what effect this instrument will have upon water. Here are two little platinum plates which I intend to make the ends of the battery, and this (c) is a little vessel so shaped as to enable me to take it to pieces, and show you its construction. In these two cups (A and B) I pour mercury, which touches the ends of the wires connected with the platinum plates. In the vessel (c) I pour some water containing a little acid (but which is put in only for the purpose of facilitating the action; it undergoes no change in the process), and connected with the top of the vessel is a bent glass tube (D), which may remind you of the pipe which was connected with the gun-barrel in our furnace experiment, and which now passes under the jar (F). I have now adjusted this apparatus, and we will proceed to affect the water in some way or other. In the other case I sent the

water through a tube which was made red-hot; I am now going to pass the electricity through the contents of this vessel. Perhaps I may boil the water; if I do boil the water I shall get steam; and you know that steam condenses when it gets cold, and you will therefore see by that whether I do boil the water or not. Perhaps, however, I shall not boil the water, but produce some other effect. You shall have the experiment and see. There is one wire which I will put to this side (A), and here is the other wire which I will put to the other side (B), and you will soon see whether any disturbance takes place. Here it is seeming to boil up famously; but does it boil? Let us see whether that

106 RESULTS OF DECOMPOSITION OF WATER.

here (at A), and the other there (at B); and I have little shelves with holes which I can put

upon each pole, and so arrange them that whatever escapes from the two ends of the battery will appear as separate gases; for you saw that the water did not become vaporous, but gaseous. The wires are now in perfect and proper connection with the vessel containing the water, and you see the bubbles rising; let us collect these bubbles and see what they are. Here is a glass cylinder (0); I fill it with water and put it over one end (A) of the pile, and I will take another (H), and put it over the other end (B) of the pile. And so now we have a double apparatus, with both places delivering gas. Both these jars will fill with gas. There

they go, that to the right (H) filling very rapidly; the one to the left (o) filling not so rapidly; and, though I have allowed some bubbles to escape, yet still the action is going on pretty regularly; and were it not that one is rather smaller than the other, you would see that I should have twice as much in this (H) as I have in that (o). Both these gases are colorless; they stand over the water without condensing; they are alike in all things-I mean in all apparent things; and we have here an opportunity of examining these bodies and ascertaining what they are. Their bulk is large, and we can easily apply experiments to them. I will take this jar (H) first, and will ask you to be prepared to recognize hydrogen.

Think of all its qualities—the light gas which stood well in inverted vessels, burning with a pale flame at the mouth of the jar, and see whether this gas does not satisfy all these conditions. If it be hydrogen it will remain here while I hold this jar inverted. [A light was then applied, when the hydrogen burnt.] What is there now in the other jar? You know that the two together made an explosive mix-

116 IRON WIRE BURNED IN OXYGEN.

down together into the jar. The wood is now alight, and there it burns as wood should burn

in oxygen; but it will soon communicate its combustion to the iron. The iron is now burning brilliantly, and will continue so for a long time. As long as we supply oxygen, so long can we carry on the combustion of the iron, until the latter is consumed.

We will now put that on one side, and take some other substance; but we must limit our experiments, for we have not time to spare for all the illustrations you would have a right to if we had more time. We will take a piece of sulphur: you know how sulphur burns in the air; well, we put it into the oxygen, and you will see that whatever can burn in air can burn with a far greater intensity in oxygen, leading you to think that perhaps the atmosphere itself

owes all its power of combustion to this gas. The sulphur is now burning very quietly in the

oxygen; but you can not for a moment mistake the very high and increased action which takes place when it is so burnt, instead of being burnt merely in common air.

I am now about to show you the combustion of another substance — phosphorus. I can do it better for you here than you can do it at home. This is a very combustible substance; and if it be so combustible in air, what might you expect it would be in oxygen? I am about to show it to you not in its fullest intensity, for if I did so we should almost blow the apparatus up; I may even now crack the jar, though I do not want to break things carelessly. You see how it burns in the air. But what a glorious

fects of combustion. If I test it with a taper as I do oxygen and hydrogen, it does not burn like hydrogen, nor does it make the taper burn like oxygen. Try it in any way I will, it does neither the one thing nor the other; it will not take fire; it will not let the taper burn; it puts out the combustion of every thing. There is nothing that will burn in it in common circumstances. It has no smell; it is not sour; it does not dissolve in water; it is neither an acid nor an alkali; it is as indifferent to all our organs as it is possible for a thing to be. And you might say, "It is nothing; it is not worth chemical attention; what does it do in the air?" Ah! then come our beautiful and fine results shown us by an observant philosophy. Suppose, in place of having nitrogen, or nitrogen and oxygen, we had pure oxygen as our atmosphere; what would become of us? You know very well that a piece of iron lit in a jar of oxygen goes on burning to the end. When you see a fire in an iron grate, imagine where the grate would go to if the whole of the atmosphere were oxygen. The grate would burn up more powerfully than the coals; for the iron of

the grate itself is even more combustible than the coals which we burn in it. A fire put into the middle of a locomotive would be a fire in a magazine of fuel, if the atmosphere were oxvgen. The nitrogen lowers it down and makes it moderate and useful for us, and then, with all that, it takes away with it the fumes that you have seen produced from the candle, disperses them throughout the whole of the atmosphere, and carries them away to places where they are wanted to perform a great and glorious purpose of good to man, for the sustenance of vegetation, and thus does a most wonderful work, although you say, on examining it, "Why, it is a perfectly indifferent thing." This nitrogen in its ordinary state is an inactive element; no action short of the most intense electric force, and then in the most infinitely small degree, can cause the nitrogen to combine directly with the other element of the atmosphere, or with other things round about it; it is a perfectly indifferent, and therefore to say, a safe substance.

But, before I take you to that result, I must tell you about the atmosphere itself. I have at it; see how it has gone down; see how it is bent in; you will see the bladder go in more and more, until, at last, I expect it will be driven in and broken by the force of the atmosphere pressing upon it [the bladder, at last, broke with a loud report]. Now that was done entirely by the weight of the air pressing on it, and you can easily understand how that is. The particles that are piled up in the atmosphere stand upon each other, as these five cubes do; you can easily conceive that four of these five cubes are resting upon the bottom one, and

if I take that away the others will all sink down. So it is with the atmosphere; the air that is above is sustained by the air that is beneath, and when the air is pumped away from beneath them, the change occurs which you saw when I placed my hand on the air-pump, and which you saw in the case of the bladder, and which you shall see better here. I have tied over this jar a piece of sheet India-rubber, and I am now about to take away the air from the inside of the jar; and if you will watch the India-rubber—which acts as a partition between the air below and the air above-you will see, when I pump, how the pressure shows itself. See where it is going to: I can actually put my hand into the jar; and yet this result is only caused by the great and powerful action of the air above. How beautifully it shows this curious circumstance!

Here is something that you can have a pull at when I have finished to-day. It is a little apparatus of two hollow brass hemispheres, closely fitted together, and having connected with it a pipe and a cock, through which we can exhaust the air from the inside; and although the two halves are so easily taken apart while the air is left within, yet you will

started, by virtue of the elasticity of the air. just as I pressed into the copper bottle the particles of air by means of the pump. Now this depends upon a wonderful property in the air, namely, its elasticity, and I should like to give you a good illustration of this. If I take any thing that confines the air properly, as this membrane, which also is able to contract and expand so as to give us a measure of the elasticity of the air, and confine in this bladder a certain portion of air; and then, if we take the atmosphere off from the outside of it, just as in these cases we put the pressure on - if we take the pressure off, you will see how it will then go on expanding and expanding, larger and larger, until it will fill the whole of this bell-jar, showing you that wonderful property of the air, its elasticity, its compressibility, and expansibility, to an exceedingly large extent, and which is very essential for the purposes and services it performs in the economy of creation

We will now turn to another very important part of our subject, remembering that we have examined the candle in its burning, and have found that it gives rise to various products. We have the products, you know, of soot, of water, and of something else, which you have not yet examined. We have collected the water, but have allowed the other things to go into the air. Let us now examine some of these other products.

Here is an experiment which I think will help you in part in this way. We will put our candle there, and place over it a chimney, thus. I think my candle will go on burning, because the air-passage is open at the bottom and the top. In the first place, you see the moisture appearing—that you know about. It is water produced from the candle by the action of the air upon its hydrogen. But, besides that, something is going out at the top: it is not moisture - it is not water - it is not condensible; and yet, after all, it has very singular properties. You will find that the air coming out of the top of our chimney is nearly sufficient to blow the light out I am holding to it; and if I put the light fairly opposed to the current, it will blow it quite out. You will say, that is as it should be, and I am supposing that you think

we collect it over water very easily. Then you know that it has an effect, and becomes white in contact with lime-water; and when it does become white in that way, it becomes one of the constituents to make carbonate of lime or limestone.

The next thing I must show you is that it really does dissolve a little in water, and therefore that it is unlike oxygen and hydrogen in that respect. I have here an apparatus by which we can produce this solution. In the lower part of this apparatus is marble and acid, and in the upper part cold water. The valves are so arranged that the gas can get from one to the other. I will set it in action now, and you can see the gas bubbling up through the water, as it has been doing all night long, and by this time we shall find that we have this substance dissolved in the water. If I take a glass and draw off some of the water, I find that it tastes a little acid to the mouth; it is impregnated with carbonic acid; and if I now apply a little lime-water to it, that will give us a test of its presence. This water will make the lime-water turbid and white, which is proof of the presence of carbonic acid.

Then it is a very weighty gas; it is heavier than the atmosphere. I have put their respective weights at the lower part of this table, along with, for comparison, the weights of the other gases we have been examining:

	Pint.	Cubic Foot.
Hydrogen	3 grs.	1 oz.
Oxygen		11
Nitrogen	104	11
Air	10 7	11
Carbonic acid	161	1 9

A pint of it weighs $16\frac{1}{3}$ grs., and a cubic foot weighs $1\frac{9}{10}$ oz., almost two ounces. You can see by many experiments that this is a heavy gas. Suppose I take a glass containing nothing else but air, and from this vessel containing the carbonic acid I attempt to pour a little of this gas into that glass—I wonder whether any has gone in or not. I can not tell by the appearance, but I can in this way [introducing the taper]. Yes, there it is, you see; and if I were to examine it by lime-water, I should find it by that test also. I will take this little bucket, and put it down into the well of carbonic acid—indeed, we too often have real wells of carbonic acid—and now, if there is any

carbonic acid, when it floated in it midway.] It is floating as the balloon floated by virtue of the greater weight of the carbonic acid than of the air. And now, having so far given you the history of the carbonic acid, as to its sources in the candle, as to its physical properties and weight, when we next meet I shall show you of what it is composed, and where it gets its elements from.

TROPURE VIL

CARBON OR CHARGOAL—COAL-GAS.—RESPIRA-TION AND ITS AKALOGY TO THE BURNING OF A CANDLE.—CONCLUSION.

A LADY who honors me by her presence at these lectures has conferred a still farther obligation by sending me these two candles, which are from Japan, and, I presume, are made of that substance to which I referred in a former lecture. You see that they are even far more highly ornamented than the French candles, and, I suppose, are candles of luxury, judging from their appearance. They have a remarkable peculiarity about them, namely, a hollow wick-that beautiful peculiarity which Argand introduced into the lamp and made so valuable. To those who receive such presents from the East, I may just say that this and such like materials gradually undergo a change which gives them on the surface a dull and dead appearance; but they may easily be restored to

first part of our experiment; and now what follows? The carbon which you saw flying off from the turpentine flame in the air is now entirely burned in this oxygen, and we shall find that it will, by this rough and temporary experiment, give us exactly the same conclusion and result as we had from the combustion of the candle. The reason why I make the experiment in this manner is solely that I may cause the steps of our demonstration to be so simple that you can never for a moment lose the train of reasoning, if you only pay attention. All the carbon which is burned in oxygen, or air, comes out as carbonic acid, while those particles which are not so burned show you the second substance in the carbonic acid, namely, the carbon—that body which made the flame so bright while there was plenty of air, but which was thrown off in excess when there was not oxygen enough to burn it.

I have also to show you a little more distinctly the history of carbon and oxygen in their union to make carbonic acid. You are now better able to understand this than before, and I have prepared three or four experiments

by way of illustration. This jar is filled with oxygen, and here is some carbon which has been placed in a crucible for the purpose of being made red-hot. I keep my jar dry, and venture to give you a result imperfect in some degree, in order that I may make the experiment brighter. I am about to put the oxygen and the carbon together. That this is carbon (common charcoal pulverized) you will see by the way in which it burns in the air [letting some of the red-hot charcoal fall out of the cruciblel. I am now about to burn it in oxygen gas, and look at the difference. It may appear to you at a distance as if it were burning with a flame; but it is not so. Every little piece of charcoal is burning as a spark, and while it so burns it is producing carbonic acid. I specially want these two or three experiments to point out what I shall dwell upon more distinctly by-and-by-that carbon burns in this way, and not as a flame.

Instead of taking many particles of carbon to burn I will take a rather large piece, which will enable you to see the form and size, and to trace the effects very decidedly. Here is the

jar of oxygen, and here is the piece of charcoal, to which I have fastened a little piece of wood, which I can set fire to, and so commence the combustion, which I could not conveniently do without. You now see the charcoal burning, but not as a flame (or if there be a flame it is the smallest possible one, which I know the cause of, namely, the formation of a little carbonic oxide close upon the surface of the carbon). It goes on burning, you see, slowly producing carbonic acid by the union of this carbon or charcoal (they are equivalent terms) with the oxygen. I have here another piece of charcoal, a piece of bark, which has the quality of being blown to pieces - exploding - as it burns. By the effect of the heat we shall reduce the lump of carbon into particles that will fly off; still every particle, equally with the whole mass, burns in this peculiar way - it burns as a coal and not like a flame. You observe a multitude of little combustions going on, but no flame. I do not know a finer experiment than this to show that carbon burns with a spark.

Here, then, is carbonic acid formed from its

elements. It is produced at once; and if we examined it by lime-water, you will see that we have the same substance which I have previously described to you. By putting together 6 parts of carbon by weight (whether it comes from the flame of a candle or from powdered charcoal) and 16 parts of oxygen by weight, we have 22 parts of carbonic acid; and, as we saw last time, the 22 parts of carbonic acid combined with 28 parts of lime, produced common carbonate of lime. If you were to examine an oyster-shell and weigh the component parts, you would find that every 50 parts would give 6 of carbon and 16 of oxygen combined with 28 of lime. However, I do not want to trouble you with these minutiæ; it is only the general philosophy of the matter that we can now go into. See how finely the carbon is dissolving away [pointing to the lump of charcoal burning quietly in the jar of oxygen]. You may say that the charcoal is actually dissolving in the air round about; and if that were perfectly pure charcoal, which we can easily prepare, there would be no residue whatever. When we have a perfectly cleansed and purified gas, which produces carbonic acid abundantly: you do not see the carbon, but we can soon show it to you. I will light it, and as long as there is any gas in this cylinder it will go on burning. You see no carbon, but you see a flame, and because that is bright it will lead you to guess that there is carbon in the flame. But I will show it to you by another process. I have some of the same gas in another vessel, mixed with a body that will burn the hydrogen of the gas, but will not burn the carbon. I will light them with a burning taper, and you perceive the hydrogen is consumed, but not the carbon, which is left behind as a dense black smoke. I hope that by these three or four experiments you will learn to see when carbon is present, and understand what are the products of combustion when gas or other bodies are thoroughly burned in the air.

Before we leave the subject of carbon, let us make a few experiments and remarks upon its wonderful condition as respects ordinary combustion. I have shown you that the carbon, in burning, burns only as a solid body, and yet you perceive that, after it is burned, it ceases to

be a solid. There are very few fuels that act like this. It is, in fact, only that great source of fuel, the carbonaceous series, the coals, charcoals, and woods, that can do it. I do not know that there is any other elementary substance besides carbon that burns with these conditions; and if it had not been so, what would happen to us? Suppose all fuel had been like iron, which, when it burns, burns into a solid substance. We could not then have such a combustion as you have in this fireplace. Here also is another kind of fuel which burns very well—as well as, if not better, than carbon -so well, indeed, as to take fire of itself when it is in the air, as you see. [Breaking a tube full of lead pyrophorus.] This substance is lead, and you see how wonderfully combustible it is. It is very much divided, and is like a heap of coals in the fireplace: the air can get to its surface and inside, and so it burns. But why does it not burn in that way now when it is lying in a mass? [Emptying the contents of the tube in a heap on to a plate of iron.] Simply because the air can not get to it. Though it can produce a great heat, the great

and place it in one of the tubes; it will go on, you see, burning very well. You observe that

the air which feeds the flame passes down the tube at one end, then goes along the horizontal tube, and ascends the tube at the other end in which the taper is placed. If I stop the aperture through which the air enters, I stop combustion, as you perceive. I stop the supply of air, and consequently the candle goes out. But now what will you think of this fact? In a former experiment I showed you the air going from one burning candle to a second candle. If I took the air proceeding from another candle, and sent it down by a complicated arrangement into this tube, I should put this burning candle out. But what will you say

when I tell you that my breath will put out that candle? I do not mean by blowing at all, but simply that the nature of my breath is such that a candle can not burn in it. I will now hold my mouth over the aperture, and without blowing the flame in any way, let no air enter the tube but what comes from my mouth. You see the result. I did not blow the candle out. I merely let the air which I expired pass into the aperture, and the result was that the light went out for want of oxygen, and for no other reason. Something or other-namely, mylungs -had taken away the oxygen from the air, and there was no more to supply the combustion of the candle. It is, I think, very pretty to see the time it takes before the bad air which I throw into this part of the apparatus has reached the candle. The candle at first goes on burning, but so soon as the air has had time to reach it it goes out. And now I will show you another experiment, because this is an important part of our philosophy. Here is a jar which contains fresh air, as you can see by the circumstance of a candle or gas-light burning it. I make it close for a little time,

course I can either draw in air (through A), and so make the air that feeds my lungs go through the lime-water, or I can force the air out of inv lungs through the tube (B), which goes to the bottom, and so show its effect upon the limewater. You will observe that however long I draw the external air into the lime-water, and then through it to my lungs, I shall produce no effect upon the water -- it will not make the lime-water turbid; but if I throw the air from my lungs through the lime-water several times in succession, you see how white and milky the water is getting, showing the effect which expired air has had upon it; and now you begin to know that the atmosphere which we have spoiled by respiration is spoiled by carbonic acid for you see it here in contact with the lime-water

I have here two bottles, one containing limewater and the other common water, and tubes which pass into the bottles and connect them. The apparatus is very rough, but it is useful notwithstanding. If I take these two bottles, inhaling here and exhaling there, the arrangement of the tubes will prevent the air going

ACTION OF BREATH ON LIME-WATER. 173

backward. The air coming in will go to my mouth and lungs, and in going out will pass

through the lime-water, so that I can go on breathing, and making an experiment very refined in its nature and very good in its results. You will observe that the good air has done nothing to the lime-water; in the other case, nothing has come to the lime-water but my respiration, and you see the difference in the two cases.

Let us now go a little farther. What is all this process going on within us which we can not do without, either day or night, which is

LECTURE ON PLATINUM.

[Delivered before the ROYAL INSTITUTION on Friday, February 22, 1861.]

WHETHER I was to have the honor of appearing before you this evening or not seemed to be doubtful upon one or two points. One of these I will mention immediately; the other may or may not appear during the course of the hour that follows. The first point is this. When I was tempted to propose this subject for your attention this evening, it was founded upon a promise, and a full intent of performing that promise, on the part of my friend Deville, of Paris, to come here to show before you a phenomenon in metallurgic chemistry not common. In that I have been disappointed. His intention was to have fused here some thirty or forty pounds of platinum, and so to have made manifest, through my mouth and my statement, the principles of a new process in metallurgy

in relation to this beautiful, magnificent, and valuable metal; but circumstances over which neither he nor I, nor others concerned, have sufficient control, have prevented the fulfillment of that intention, and the period at which I learned the fact was so recent that I could hardly leave my place here to be filled by another, or permit you, who in your kindness have come here to hear what might be said, to remain unreceived in the best manner possible to me under the circumstances. I therefore propose to state as well as I can what the principles are on which M. Deville proceeds, by means of drawings, and some subordinate or inferior experiments.

The metal platinum, of which you see some very fine specimens on the table, has been known to us about a hundred years. It has been wrought in a beautiful way in this country, in France, and elsewhere, and supplied to the consumer in ingots of this kind, or in plates, such as we have here, or in masses, that by their very fall upon the table indicate the great weight of the substance, which is, indeed, nearly at the head of all substances in that respect.

This substance has been given to us hitherto mainly through the philosophy of Dr. Wollaston, whom many of us know, and it is obtained in great purity and beauty. It is a very remarkable metal in many points besides its known special uses. It usually comes to us in grains. Here is a very fine specimen of native platinum in grains. Here is also a nugget or ingot, and here are some small pieces gathered out of certain alluvial soils in Brazil, Mexico, California, and the Uralian districts of Russia.

It is strange that this metal is almost always found associated with some four or five other metals, most curious in their qualities and characteristics. They are called platiniferous metals; and they have not only the relation of being always found associated in this manner, but they have other relations of a curious nature, which I shall point out to you by a reference to one of the tables behind me. This substance is always native, it is always in the metallic state, and the metals with which it is found connected, and which are rarely found elsewhere, are palladium, rhodium, iridium, osmium, and ruthenium. We have the names in

Both the lead and the sulphur are wanted; for the iron that is there present, as you see by the table, is one of the most annoying substances in the treatment that you can imagine, because it is not volatile; and while the iron remains adhering to the platinum, the platinum will not flow readily. It can not be sent away by a high temperature - sent into the atmosphere so as to leave the platinum behind. Well, then, a hundred parts of ore and a hundred parts of sulphuret of lead, with about fifty parts of metallic lead, being all mingled together in a crucible, the sulphur of the sulphuret takes the iron, the copper, and some of the other metals and impurities, and combines with them to form a slag; and as it goes on boiling and oxidizing, it carries off the iron, and so a great cleansing takes place.

Now you ought to know that these metals, such as platinum, iridium, and palladium, have a strong affinity for such metals as lead and tin, and upon this a great deal depends. Very much depends upon the platinum throwing out its impurities of iron and so forth by being taken up with the lead present in it. That you may

have a notion of the great power that platinum has of combining with other metals, I will refer you to a little of the chemist's experience-his bad experience. He knows very well that if he takes a piece of platinum-foil and heats a piece of lead upon it, or if he takes a piece of platinum-foil, such as we have here, and heats things upon it that have lead in them, his platinum is destroyed. I have here a piece of platinum, and if I apply the heat of the spirit-lamp to it, in consequence of the presence of this little piece of lead which I will place on it, I shall make a hole in the metal. The heat of the lamp itself would do no harm to the platinum, nor would other chemical means; but because there is a little lead present, and there is an affinity between the two substances, the bodies fuse together at once. You see the hole I have made. It is large enough to put your finger in, though the platinum itself was, as you saw, almost infusible, except by the voltaic battery. For the purpose of showing this fact in a more striking manner, I have taken pieces of platinum-foil, tin-foil, and lead-foil, and rolled them together; and if I apply the blowplatinum is increased, and also its malleability and other physical properties. [The image of the voltaic discharge through vapor of silver was now thrown upon the screen.] What you have now on the screen is an inverted image of what you saw when we heated the silver before. The fine stream that you see around the silver is the discharge of the electric force that takes place, giving you that glorious green light which you see in the ray; and if Dr. Tyndall will open the top of the lamp, you will see the quantity of fumes that will come out of the aperture, showing you at once the volatility of silver.

I have now finished this imperfect account. It is but an apology for not having brought the process itself before you. I have done the best I could under the circumstances, and I know your kindness well, for if I were not aware that I might trust to it, I would not appear here so often as I have done. The gradual loss of memory and of my other faculties is making itself painfully evident to me, and requires, every time I appear before you, the continued remembrance of your kindness to enable me to

get through my task. If I should happen to go on too long, or should fail in doing what you might desire, remember it is yourselves who are chargeable by wishing me to remain. I have desired to retire, as I think every man ought to do before his faculties become impaired; but I must confess that the affection I have for this place, and for those who frequent this place, is such that I hardly know when the proper time has arrived.

THE NEW YORK PUBLIC LIBRARY REFERENCE DEPARTMENT

	-		
	-		
		-	-
	5 - 5		
			-
		i e	
	-		
	_		
		1	
FFM 428			
rice service	Section 1997	100000000000000000000000000000000000000	

