2016年全国硕士研究生入学统一考试

超越考研数学(一)模拟(一)

(科目代码: 301)

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定位置的边框区域内,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

-、选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合要求 的. 请将所选项前的字母填在答题纸指定位置上.

- (1) 设函数 $f(x) = \lim_{n \to \infty} \frac{x^2 + e^{(n+1)x}}{1 + e^{nx}}$, 则点 x = 0 为 f(x) 的 ().
- (A) 连续点
- (B) 跳跃间断点
- (C) 可去间断点
- (2) 设f(x) 是连续且单调增加的奇函数, $F(x) = \int_0^x (2u-x)f(x-u)du$,则F(x)是(
- (A) 单调增加的奇函数

(C) 单调增加的偶函数

- (D) 单调减少的偶函数
- (3) 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在点 x_0 处条件收敛,则().
- (A) x_0 必在 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛区间的内部 (B) x_0 必在 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛域的外部
- (C) x_0 必是 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛域的端点 (D) 以上三种情形均有可能
- (4) 将极坐标系下的二次积分 $\int_0^{\frac{3\pi}{4}}d heta\int_0^1 f(1+r\cos heta,r\sin heta)rdr$ 转化成直角坐标系下的二次积分 为 (
 - (A) $\int_{-\sqrt{2}}^{0} dx \int_{-x}^{\sqrt{1-x^2}} f(x,y) dy + \int_{0}^{1} dx \int_{0}^{\sqrt{1-x^2}} f(x,y) dy$
 - (B) $\int_{\frac{\sqrt{2}}{2}}^{1} dx \int_{1-x}^{\sqrt{1-(x-1)^2}} f(x,y) dy + \int_{1}^{2} dx \int_{0}^{\sqrt{1-(x-1)^2}} f(x,y) dy$
 - (C) $\int_{0}^{\frac{\sqrt{2}}{2}} dy \int_{-y}^{\sqrt{1-y^2}} f(x,y) dx + \int_{\frac{\sqrt{2}}{2}}^{1} dy \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f(x,y) dx$
 - (D) $\int_{0}^{\frac{\sqrt{2}}{2}} dy \int_{1-y}^{1+\sqrt{1-y^2}} f(x,y) dx + \int_{\frac{\sqrt{2}}{2}}^{1} dy \int_{1-\sqrt{1-y^2}}^{1+\sqrt{1-y^2}} f(x,y) dx$
 - (5) 设A,B均为三阶非零矩阵, 满足AB=O,其中 $B=\begin{pmatrix} 1 & -1 & 1 \\ 2a & 1-a & 2a \\ a & -a & a^2-2 \end{pmatrix}$,则().
 - (A) a = 2 时,必有 r(A) = 1
- (B) $a \neq 2$ 时,必有 r(A) = 2
- (C) a = -1时, 必有r(A) = 1
- (D) $a \neq -1$ 时,必有r(A) = 2
- (6) 已知二次型 $f(x_1,x_2,x_3)=x_1^2-x_2^2+2ax_1x_3+4x_2x_3$ 的秩为2,则该二次型的正负惯性指数分 别为().
 - (A) 2, 0 (B) 0, 2
- (C) 1, 1 (D) 依赖于 a 的取值

数学一模拟一试题 第1页(共3页)

研 超 越 考

- (7) 设A, B为随机事件,且0 < P(A) < 1,下列说法正确的是(
- (A) 若P(A) = P(AB),则 $A \subset B$ (B) 若 $P(A \cup B) = P(AB)$,则A = B
- (C) 若 $P(\overline{A}\overline{B}) = P(AB)$,则A, B 互为对立事件 (D) 若 $P(B|A) = P(B|\overline{A})$,则A, B 相互独立
- (8)设随机变量 $X \leq Y$, $F_X(x)$ 和 $F_Y(y)$ 分别为 X 和 Y 的分布函数, F(x,y) 为 (X,Y) 的分布 函数,则对任意的t,有(
 - (A) $F_X(t) \le F_Y(t)$, $F(t,t) = F_X(t)$ (B) $F_Y(t) \le F_X(t)$, $F(t,t) = F_X(t)$
 - (C) $F_{Y}(t) \le F_{Y}(t)$, $F(t,t) = F_{Y}(t)$ (D) $F_{Y}(t) \le F_{X}(t)$, $F(t,t) = F_{Y}(t)$
- 二、填空题:9~14 小题, 每小题 4 分, 共 24 分. 请将答案写在答题纸指定位置上.
- (9) 设 f(x) 为可导的偶函数, $\lim_{x\to 0} \frac{f(\cos x)}{x^2} = 2$,则曲线 y = f(x) 在点 (-1, f(-1)) 处的法线方程
 - $(10) \int \frac{\cos x \sin^3 x}{1 + x^2} dx = \underline{\qquad}$
- (11) 设函数 z=z(x,y) 由方程 $x-az=\varphi(y-bz)$ 确定,其中 φ 可导,a,b 为常数,且 $a-b\varphi'\neq 0$, 则 $a\frac{\partial z}{\partial y} + b\frac{\partial z}{\partial y} =$
- (12)设正值函数 φ 连续,若 a>0,b>0,c>0,则曲面 $(z-a)\varphi(x)+(z-b)\varphi(y)=0$ 与柱面 $x^2 + v^2 = c^2$ 及平面 z = 0 所围成的空间立体的体积 V =_______
 - (13) 设 $\alpha = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\beta = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$, 对任意的正整数n, 矩阵 $(E + \alpha \beta^T)^n = \underline{\qquad}$
- (14) 设 (X_1,X_2,\cdots,X_n) 为来自总体 $X\sim P(\lambda)$ 的一个简单随机样本,若 $\frac{1}{n}\sum_{n}^n a^{X_i}$ 为 e^{λ} 的无偏估计, 则常数*a* = __
- 三、解答题:15~23 小题,共 94 分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程 或演算步骤.
 - (15) (本题满分 10 分) 设 0 < x < 1,证明(I) $\ln(1+x) < \frac{x(2x+1)}{(x+1)^2}$;(II) $(1+\frac{1}{x})^x(1+x)^{\frac{1}{x}} < 4$.
- (16) (本题满分 10 分) 将 yOz 坐标面上的曲线段 y = f(z) ($f(z) > 0, 0 \le z \le 12$) 绕 z 轴旋转一 周所得旋转曲面与xOy坐标面围成一个无盖容器.已知它的底面积为 $16\pi(m^2)$,如果以 $3(m^3/s)$ 的速度 把水注入容器内,在高度为z (m)的位置,水的上表面积以 $\frac{3}{z+1}$ (m²/s)的速度增大. (I)试求曲线 y = f(z)的方程; (II)若将容器内水装满,问需要多少时间?

数学一模拟一试题 第2页(共3页)

超 越 考 研

(17) (本题满分 10 分) 求过第一卦限中点 (a,b,c) 的平面,使之与三个坐标平面所围成的四面体的体积最小.

(18)(**本题满分10分**)设函数
$$y = y(x)$$
 满足 $\Delta y = \frac{1-x}{\sqrt{2x-x^2}} \Delta x + o(\Delta x)$,且 $y(1) = 1$,计算 $\int_1^2 y(x) dx$.

(19) (本题满分 10 分) 设曲面 Σ 是锥面 $x = \sqrt{y^2 + z^2}$ 与球面 $x^2 + y^2 + z^2 = 1$, $x^2 + y^2 + z^2 = 2$ 所围立体表面取外侧, f(u) 为连续可微的奇函数,计算曲面积分

$$I = \iint_{\Sigma} x^3 dy dz + [y^3 + f(yz)]dz dx + [z^3 + f(yz)]dx dy.$$

(20) (本题满分 11 分) 已知 $\alpha_1, \alpha_2, \alpha_3$ 为三个三维列向量, $A = \alpha_1 \alpha_1^T + \alpha_2 \alpha_2^T + \alpha_3 \alpha_3^T$. (I) 证明

存在矩阵
$$B$$
,使得 $A=B^TB$;(II)当 $\alpha_1,\alpha_2,\alpha_3$ 线性无关时,证明 $r(A)=3$;(III)当 $\alpha_1=\begin{pmatrix}1\\2\\3\end{pmatrix},\alpha_2=\begin{pmatrix}2\\2\\1\end{pmatrix}$,

$$\alpha_3 = \begin{pmatrix} 3 \\ 4 \\ 4 \end{pmatrix}$$
时,求 $Ax = 0$ 的通解.

- (21)(**本题满分 11 分**) 设 A 是二次型 $f(x_1,x_2,x_3)$ 的矩阵,r(A)=1. 齐次线性方程组 (2E-A)x=0 的通解为 $x=k\alpha_1$, 其中 $\alpha_1=(-1,1,1)^T$, k 为任意实数.(I) 求解齐次线性方程组 Ax=0;(II) 求二次型 $f(x_1,x_2,x_3)$.
- (22)(本题满分 11 分)设二维随机变量 $(X,Y)\sim N(0,0;1,4;\frac{1}{2})$. 已知 $\Phi(1)=0.8413$,其中 $\Phi(x)$ 为标准正态分布的分布函数,求 $p=P\{Y<2X<Y+2\big|2X+Y=1\}$.
- (23)(**本题满分 11** 分)设总体X的密度函数为 $f(x,\lambda)=\frac{1}{2\lambda}e^{\frac{|x|}{\lambda}}$, $-\infty < x < +\infty$,其中未知参数 $\lambda > 0$. (X_1,X_2,\cdots,X_n) 是总体X的一个容量为n的简单随机样本.(I)求 λ 的矩估计量 $\hat{\lambda}_M$;(II)求 λ 的最大似然估计量 $\hat{\lambda}_L$;(III)求 $E(\hat{\lambda}_L)$.

2016年全国硕士研究生入学统一考试

超越考研数学(一)模拟(二)

(科目代码: 301)

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定位置的边框区域内,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

★元 择题: 1~8 小题,每小题 4分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合要求 **飞声将**所选项前的字母填在答题纸指定位置上.

(1)设f(x) 具有二阶连续导数, $\lim_{x\to 0} \frac{f(x)}{x} = 0$, $f''(0) \neq 0$,若 $\lim_{x\to 0} \frac{e^{f(x)} - ax - b}{x^2} = c \neq 0$,则(

(A)
$$a = 0, b = 1, c = \frac{1}{2}f''(0)$$

(B)
$$a=1, b=1, c=\frac{1}{2}f''(0)$$

(C)
$$a=1, b=0, c=f''(0)$$

(D)
$$a=1, b=1, c=f''(0)$$

(2) 设函数 f(x) 连续,则下列结论不成立的是(

(A)
$$\int_0^{\pi} f(\sin x) dx = 2 \int_0^{\frac{\pi}{2}} f(\sin x) dx$$
 (B) $\int_0^{\pi} f(\sin^2 x) dx = 2 \int_0^{\frac{\pi}{2}} f(\sin^2 x) dx$

(B)
$$\int_0^{\pi} f(\sin^2 x) dx = 2 \int_0^{\frac{\pi}{2}} f(\sin^2 x) dx$$

(C)
$$\int_0^{\pi} f(\cos x) dx = 2 \int_0^{\frac{\pi}{2}} f(\cos x) dx$$
 (D)
$$\int_0^{\pi} f(\cos^2 x) dx = 2 \int_0^{\frac{\pi}{2}} f(\cos^2 x) dx$$

(D)
$$\int_0^{\pi} f(\cos^2 x) dx = 2 \int_0^{\frac{\pi}{2}} f(\cos^2 x) dx$$

(3) 设 f(u) 为可微函数, f(0)=0, f'(0)=2,记D, 为圆心在原点,半径为t 的圆域,若 $t\to 0^+$ 时, $\iint_{\mathbb{R}} f(x^2 + y^2) dx dy = at^k$ 是等价无穷小,则().

(A)
$$a = \frac{\pi}{2}$$
, $k = 2$ (B) $a = \frac{\pi}{2}$, $k = 4$ (C) $a = \pi$, $k = 2$ (D) $a = \pi$, $k = 4$

(B)
$$a = \frac{\pi}{2}, k = 4$$

(C)
$$a = \pi, k = 2$$

(D)
$$a = \pi, k = 4$$

(4)设平面点集 $D = \{(x,y) | 0 < y < x^2, -\infty < x < +\infty \}$,函数 $f(x,y) = \begin{cases} 1, & (x,y) \in D, \\ 0, & (x,y) \notin D, \end{cases}$ 则在点(0,0) 处(

(A) $\lim_{\substack{x\to 0\\x\to 0}} f(x,y)$ 存在 (B) f(x,y)连续 (C) f(x,y)偏导数存在 (D) f(x,y)可微

(B)
$$f(x,y)$$
 连续

(C)
$$f(x,y)$$
 偏导数存在

(5) 设A为 $n \times m$ 矩阵,B为 $m \times n$ 矩阵,且AB可逆,则必有(

(A) A 的行向量组线性无关,B 的行向量组也线性无关

(B) A 的列向量组线性无关,B 的列向量组也线性无关

(C) A 的行向量组线性无关,B 的列向量组也线性无关

(D) A 的列向量组线性无关,B 的行向量组也线性无关

(6) 设A是三阶矩阵,A的秩r(A)=1,A有特征值 $\lambda=0$,则 $\lambda=0$ (

(A) 必是 A 的二重特征值

(B) 至少是 A 的二重特征值

(C) 最多是A的二重特征值

(D) 可能是A的一、二或三重特征值

(7) 设随机变量 $X \sim \begin{pmatrix} 1 & 2 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}, Y \sim U[-1,1], 且 X 和 Y 相互独立, 则 <math>P\{Y \leq 0 | X + Y \leq 2\} = 0$

(A) $\frac{1}{4}$

(B) $\frac{1}{2}$ (C) $\frac{2}{3}$

数学一模拟二试题 第1页(共3页)

- (8) 设随机变量 $X \sim U[-1,1]$, $Y = \begin{cases} 1-4X, & X < 0, \\ 1 & X > 0 \end{cases}$ 则下列结论正确的是().
- (A) Y 为连续型随机变量
- (B) Y 为离散型随机变量
- (C) EY = 1 (D) EY = 2
- 二、填空题:9~14 小题,每小题 4 分,共 24 分。请将答案写在答题纸指定位置上。
 - (9) 曲面 $z = \frac{x^2}{2} + \frac{y^2}{4}$ 与平面 2x y + z = 1 垂直的法线方程为______.
- (10) 设二阶常系数非齐次线性方程 $y'' + py' + qy = ae^x$ (p,q,a 是常数) 有两个特解 $y_i = xe^x$, $y_2 = e^{2x} + xe^x$,则该方程的通解为_____
 - (11) 方程 $x^{5} + 2x + \cos x = a$ 的实根个数为
 - (12) 设L 为从点A(1,0) 到B(0,1) 再到C(-1,0) 的折线,则积分 $\int_L \frac{\mathrm{d}x + \mathrm{d}y}{|x| + |y|} =$ _______.
- (13) 已知A为三阶矩阵, $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 3 & 1 \\ 2 & 0 & 0 \end{pmatrix}$,若 $(A-E)^{-1} = B-E$,则|A| =______.
 - (14) 设随机事件 A, B 相互独立,且 P(A) = 0.5, P(B) = 0.2,令 $X = \begin{cases} 1, & AB$ 发生, 0, AB不发生,
- $Y = \begin{cases} 1, & A \cup B$ 发生, $y \in A \cup B$ 发生, $y \in A \cup B$ 发生, $y \in A \cup B$ $y \in A$ $y \in A \cup B$ $y \in A \cup B$ $y \in A$ $y \in$
- 三、解答题:15~23 小题,共 94 分. 请将解答写在答题纸指定位置上、解答应写出文字说明、证明 过程或演算步骤
 - (15) (本趣满分 10 分) 设偶函数 f(x) 在 $(-\infty, +\infty)$ 内可导, f(0) = 0 ,求 $\lim_{t \to 0} \frac{\int_0^t dy \int_y^t f(x-y) dx}{(\sqrt[3]{\cos t} 1) \sin t}$.
- (16) (本题满分 10 分) 设函数 f(x) 在[0,1]上连续,(0,1)内可导,f(0)=0, f(1)=1. (I)证明 存在 $a \in (0,1)$ 使得 $f(a) = \frac{1}{3}$; (II) 证明存在不同的 $\xi_1, \xi_2, \xi_3 \in (0,1)$,有 $\frac{1}{f'(\xi_1)} + \frac{1}{f'(\xi_2)} + \frac{1}{f'(\xi_3)} = 3$.
 - (17) (本题满分 10 分) 设函数 f(x) 连续. (I)证明: 对于任意的实数 a,b ,均有

$$\int_0^{2\pi} f(a\cos x + b\sin x) dx = \int_{-\pi}^{\pi} f(\sqrt{a^2 + b^2}\sin x) dx;$$

(II) 计算 $I_n = \int_0^{2\pi} (3\cos x + 4\sin x)^n dx$, 其中 n 为正整数.

数学一模拟二试题 第 2 页 (共 3 页)

(18) (本题满分 10 分) 设函数 f(x) 具有二阶连续导数,且满足 f(0)=1, f'(0)=0 如果积分

$$\int_{L} y^{2} f'(x) dx + 2y(f'(x) - x) dy$$

与路径无关,求 f(x) ,并计算积分 $I = \int_{(0,0)}^{(1,1)} y^2 f'(x) dx + 2y(f'(x) - x) dy$.

- (19) (本题满分 10 分) 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n+1}{n+1} x^{2n}$ 的收敛域及和函数.
- (20) (本题满分 11 分) 已知非齐次线性方程组 $\begin{cases} x_1 + x_2 + x_3 + x_4 = -1, \\ 4x_1 + 3x_2 + 5x_3 x_4 = -1, \\ 3x_1 + x_2 + 4x_3 + 2x_4 = 0, \\ ax_1 + x_2 + 3x_3 + bx_4 = 1 \end{cases}$ 有两个线性无关的解.

(I)证明方程组系数矩阵
$$A$$
 的秩 $r(A)=3$;(II)设 $\alpha_1=\begin{pmatrix}1\\1\\1\\1\end{pmatrix}$, $\alpha_2=\begin{pmatrix}4\\3\\5\\-1\end{pmatrix}$, $\alpha_3=\begin{pmatrix}3\\1\\4\\2\end{pmatrix}$, $\alpha_4=\begin{pmatrix}a\\1\\3\\b\end{pmatrix}$,证明 α_4 必

可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示且表示法唯一,并求a, b的值.

- (21) (本题满分 11 分) 设二次型 $f(x_1,x_2,x_3,x_4)=x^TAx$ 的正惯性指数为 p=1,二次型的矩阵 A 满足 $A^2-A=6E$. (I)求 $f(x_1,x_2,x_3,x_4)$ 在正交变换 x=Qy 下的标准形,并写出二次型的规范形;(II)求行列式 $\left|\frac{1}{6}A^*+2A^{-1}\right|$,其中 A^* 为 A 的伴随矩阵;(III)记 $B=A^2-kA+6E$,问 k 满足何条件时,二次型 $g(x_1,x_2,x_3,x_4)=x^TBx$ 正定?
- (22)(本题满分 11 分) 设随机变量 X 的概率密度函数 $f(x) = ae^{-x^2}$, $-\infty < x < +\infty$. (I) 求常数 a ; (I) 求 $Y = \max\{X, X^2\}$ 的概率密度函数.
- (23)(**本题满分 11** 分)设 (X_1,X_2,X_3,X_4) 是来自总体 $X\sim N(0,1)$ 的简单随机样本,记 $Y_1=X_1+X_2$, $Y_2=X_3-X_4. \quad (\text{I})问 \frac{Y_1^2}{Y_2^2} \text{和} \frac{Y_1^2+Y_2^2}{2}$ 分别服从何分布?(II)求 $P\{Y_1^2+Y_2^2\leq 8\ln 2\}$.

数学一模拟二试题 第 3 页 (共 3 页)

2016年全国硕士研究生入学统一考试

超越考研数学(一)模拟(三)

(科目代码: 301)

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定位置的边框区域内, 写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

、选择题: 1~8 小题, 每小题 4分, 共 32分. 下列每题给出的四个选项中, 只有一个选项是符合要求 的, 请将所选项前的字母填在答题纸指定位置上.

- (1) 曲线 $y = x^2 \arctan \frac{1}{x} + \frac{1}{x} \arctan(x^2)$ (
- (A) 有一条渐近线
- (B) 有两条渐近线 (C) 有三条渐近线
- (D) 没有渐近线
- (2) 设函数 f(x) 连续,且 f(x) > 0. $F(x) = \int_{a}^{x^2} t f(x^2 t) dt$,则(
- (A) F(x) 在点 x = 0 处取最小值
- (B) F(x)在点x=0处取最大值
- (C) F'(x) 在点 x = 0 处取最小值
- (D) F'(x) 在点 x = 0 处取最大值
- (3) 设函数 f(x) 在 [0,1] 上连续,且 $\lim_{x\to \frac{1}{c}} \frac{f(x)}{\cos \pi x} = -1$,而 $S(x) = \sum_{n=1}^{\infty} b_n \sin n\pi x$, $x \in (-\infty, +\infty)$,其

中 $b_n = 2\int_0^1 f(x) \sin n\pi x dx, n = 1, 2, 3 \cdots$,则函数值 $S(\frac{3}{2}) = ($).

- (A) 0
- (B) 1

- (4) 设D是由直线 $y=x, x=\frac{1}{2}$ 及x轴所围成的区域,则二重积分

$$I_1 = \iint_D \sin(x+y)^2 d\sigma, \quad I_2 = \iint_D \sin(x^2+y^2) d\sigma, \quad I_3 = \iint_D \sin(4x^2) d\sigma$$

的大小关系为(

- (A) $I_1 < I_2 < I_3$ (B) $I_3 < I_2 < I_1$ (C) $I_2 < I_1 < I_3$ (D) $I_2 < I_3 < I_1$
- (5) 设A为n阶方阵(n>2), A^* 为A的伴随矩阵,则下列命题正确的是(
- (A) 若 Ax = 0 有 n 个线性无关的解,则 $A^*x = 0$ 仅有零解
- (B) 若 Ax = 0 仅有 n-1 个线性无关的解,则 $A^*x = 0$ 仅有一个线性无关的解
- (C) 若 Ax = 0 仅有1个线性无关的解,则 $A^*x = 0$ 有 n-1 个线性无关的解
- (D) 若 Ax = 0 仅有零解,则 $A^*x = 0$ 有 n 个线性无关的解
- (6) 矩阵 $\begin{pmatrix} 1 & a & 1 \\ a & b & a \\ 1 & a & 1 \end{pmatrix}$ 与 $\begin{pmatrix} 2 & a & b \\ 0 & 2 & c \\ 0 & 0 & 0 \end{pmatrix}$ 相似的充分必要条件为 ().
- (A) a = 0, b = 2, c = 2
- (B) a = 0, b = 2, c 为任意常数
- (C) a = 0, b = 0, c = 0
- (D) a = 2, b = 2, c 为任意常数

超 越 考 研

- (7) 设有随机变量X 和凹函数g(x),若g(x)可导,EX 和Eg(X) 均存在,则().
- (A) Eg(X) = g(EX)
- (B) $Eg(X) \ge g(EX)$
- (C) $Eg(X) \leq g(EX)$
- (D) Eg(X) 和 g(EX) 的大小关系不确定
- (8) 设随机变量 $X \sim U(a,b)$, 由切比雪夫不等式得 $P\{|X| \le 1\} \ge \frac{2}{3}$, 则(a,b) = (
- (A) (-2,2)
- (B) (0,4)
- (C) (-1,1)
- (D) (0,2)
- 二、填空题:9~14 小题, 每小题 4 分, 共 24 分. 请将答案写在答题纸指定位置上.
- (9) 当 x > -1 时,函数 f(x) 的一个原函数为 $\ln(x+1)$,若 $F(x) = \lim_{t \to \infty} t^3 [f(x+\frac{1}{t}) f(x)] \sin \frac{x}{t^2}$,则 $\int_0^1 F(x) dx = \underline{\qquad}$
- (10) 已知凹曲线 y = y(x) 在任一点 P(x,y) 处的曲率 $K = \frac{1}{(\sqrt{1+x^2})^3}$,且 y(0) = 0,则 $y(x) = ______$.
- (11) 由曲线 $y = x^2 1$,直线 y = -1, x = 2 所围成的曲边梯形绕 y 轴旋转一周所得旋转体体积为______.
- (12) 设函数 z = z(x, y) 具有二阶连续偏导数,且满足 $\frac{\partial^2 z}{\partial x \partial y} = x + y, z(x, 0) = x, z(0, y) = y^2$,则 z(x, y) =______.
- (13) 设向量 α_1 =(1,1)^T, α_2 =(0,1)^T 和 β_1 =(2,1)^T, β_2 =(1,3)^T, ξ 在 α_1 , α_2 下的坐标为(-1,1)^T,则 ξ 在 β_1 , β_2 下的坐标为______.
- (14) 设事件 A, B 相互独立,A, C 互斥,P(A) = 0.2, P(B) = 0.3, P(C) = 0.4,则 $P(AB|\overline{C}) =$ _____.
- 三、解答题:15~23 小题, 共 94 分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.
 - (15) (本题满分 10 分) (I) 证明当x > 0时, $\frac{x}{1+x} < \ln(1+x) < x$;
 - (II) $\forall I(x) = \int_0^1 \frac{\ln(1+xt)}{t} \cos \frac{\pi}{2} t dt$, $\vec{x} \lim_{x \to 0^+} \frac{I(x)}{x}$.
- (16)(**本题满分 10 分**) 设幂级数的系数满足 $a_0 = 5$, $na_n = a_{n-1} + 3(n-1)$, $n = 1, 2, 3 \cdots$. (I)求幂级数的和函数 S(x) 满足的一阶微分方程;(II)求 S(x) .

超 越 考 研

- (17) (本题满分 10 分) 设函数 $z=xf(x-y,\varphi(xy^2))$, f 具有二阶连续偏导数, φ 具有二阶导数,且 $\varphi(x) 满足 \lim_{x\to 1} \frac{\varphi(x)-1}{(x-1)^2} = 1$,求 $\frac{\partial^2 z}{\partial x \partial y}\bigg|_{(1,1)}$.
- (18) (本题满分 10 分) 设函数 f(x),g(x) 在 [a,b] 上均二阶可导,且 $g''(x) \neq 0$,证明: (I) $g(b)-g(a) \neq g'(a)(b-a); \quad \text{(II)} \ \text{在}(a,b)$ 内至少存在一点 ξ ,使 $\frac{f(b)-f(a)-f'(a)(b-a)}{g(b)-g(a)-g'(a)(b-a)} = \frac{f''(\xi)}{g''(\xi)}.$
- (19) (本题满分 10 分) 求半圆柱面 $x^2 + y^2 = 1$ ($y \ge 0$) 被平面 z = 0 及椭圆抛物面 $z = 2x^2 + y^2$ 所截下的有限部分图形的面积.
 - (20) (本题满分 11 分)设 $\alpha_1,\alpha_2,\alpha_3,\alpha_4,\beta$ 为4维列向量,记 $A=(\alpha_1,\alpha_2,\alpha_3,\alpha_4),B=(\alpha_1,\alpha_2,\alpha_3)$,

已知非齐次线性方程组
$$Ax=\beta$$
 的通解为 $x=\begin{pmatrix}1\\-1\\2\\1\end{pmatrix}+k_1\begin{pmatrix}1\\2\\0\\1\end{pmatrix}+k_2\begin{pmatrix}-1\\1\\1\\0\end{pmatrix}$ (k_1,k_2 为任意常数),试求 $By=\beta$ 的

诵解.

- (21) (**本题满分 11** 分)设二次型 $f(x_1,x_2,x_3)=x_1^2-x_2^2+2ax_1x_3+4x_2x_3$. (I) 若a>2,求二次型 $f(x_1,x_2,x_3)$ 的规范形;(II) 若二次型 $f(x_1,x_2,x_3)$ 的正负惯性指数均为1,求该二次型在正交变换下的标准形.
- (22) (**本题满分 11** 分)设随机变量 (X,Y) 服从平面区域 $D: x^2 + y^2 \le 1$ 上的均匀分布, (R,Θ) 为 (X,Y) 的极坐标表示,其中 $0 \le R \le 1, 0 \le \Theta \le 2\pi$. (I) 求 $P\{R \le \frac{1}{2}, \Theta \le \frac{\pi}{2}\}$; (II) 求 (R,Θ) 的密度函数 $f_{R,\Theta}(r,\theta)$,以及 R 和 Θ 的边缘密度函数 $f_{R}(r)$ 和 $f_{\Theta}(\theta)$,并问 R 和 Θ 是否相互独立?
- (23) (本题满分 11 分)为估计某盒子中球的个数 N (N>10),先从盒子中任取10个球,涂上颜色后放回盒子中并搅拌均匀,然后再从盒子中有放回地任取 6 个球,发现其中有 4 个的球涂有颜色,(I) 求 N 的矩估计值;(II) 求 N 的极大似然估计值;(III) 若继续从盒子中有放回地取球,求第 4 次取球恰好第 2 次取到涂有颜色球的概率 p 的极大似然估计值.

2016年全国硕士研究生入学统一考试

超越考研数学(一)模拟(四)

(科目代码: 301)

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定位置的边框区域内,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

一、选择题: 1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合要求 的. 请将所选项前的字母填在答题纸指定位置上.

(1) 设函数
$$f(x)$$
 具有一阶连续导数,且 $\lim_{x\to 0} \left[\frac{e^x - 1}{x^2} + \frac{f(x)}{x} \right] = 3$,则()

(A)
$$f(0) = -1, f'(0) = \frac{5}{2}$$
 (B) $f(0) = -1, f'(0) = -\frac{5}{2}$

(B)
$$f(0) = -1, f'(0) = -\frac{5}{2}$$

(C)
$$f(0) = 1, f'(0) = \frac{5}{2}$$

(D)
$$f(0) = 1, f'(0) = -\frac{5}{2}$$

(2) 设函数 f(x) 在 [a,b] 上二阶可导,且对任意的 $x \in (a,b)$,有 f''(x) + u(x)f'(x) + v(x)f(x) = 0,

其中 $\nu(x) < 0$,则下列结论正确的是(

- (A) f(x) 在 (a,b) 内可取正的最大值,但不可取负的最小值
- (B) f(x) 在(a,b) 内可取负的最小值,但不可取正的最大值
- (C) f(x) 在(a,b)内可取正的最大值,也可取正的最小值
- (D) f(x) 在 (a,b) 内不能取正的最大值,也不能取负最小值

(3) 设函数
$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0, \end{cases}$$
 则 $f(x,y)$ 在点 $(0,0)$ 处 $(0,0)$ 之 $(0,0)$

- (A) 连续, 但偏导数不存在
- (B) 不连续, 但偏导数存在
- (C) 连续且偏导数存在
- (D) 不连续且偏导数不存在

(4) 设函数
$$f(x) = \begin{cases} \frac{e^x - 1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$
 $g(x) = \begin{cases} \frac{e^x - 1}{x}, & x \leq 0, \\ 0, & x > 0, \end{cases}$ $F(x) = \int_0^x f(t) dt, G(x) = \int_0^x g(t) dt$, 则

在点x=0处(

- (A) F(x)不可导; G(x)不可导
- (B) F(x)不可导; G(x)可导
- (C) F(x)可导; G(x)不可导
- (D) F(x)可导; G(x)可导

(5) 设
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$
, $\alpha_1 = (a_{11}, a_{12}, a_{13})^T$, $\alpha_2 = (a_{21}, a_{22}, a_{23})^T$, ξ 为 $Ax = 0$ 的基础解系,则

有().

- (A) α_1,α_2 线性无关, α_1,α_2,ξ 线性相关
- (B) α_1, α_2, ξ 线性无关

(C) α_1,α_2,ξ 两两线性相关

(D) α_1, α_2, ξ 两两正交

第1页(共3页) 数学一模拟四试题

越

- (6) 设A为n阶实对称阵,将A的第一行的2倍加到第三行,再将第三列的(-2)倍,加到第一列, 得到矩阵B,则B(
- (A) 必对称 (B) 必可相似对角化 (C) 必不可对角化 (D) 必可逆
- (7) 下列函数中,为某随机变量X的分布函数的是(
- (A) $F(x) = \frac{1 + \operatorname{sgn}(x)}{2}$ (B) $F(x) = \frac{x}{x + e^{-x}}$ (C) $F(x) = \frac{1}{1 + e^{x}}$ (D) $F(x) = \frac{1}{1 + e^{-x}}$

- (8) 下列命题正确的是().
- (A) 设随机变量 $X \sim B(1,p), Y \sim B(1,p)$,如果X 与 Y不相关,则X 与 Y相互独立
- (B) 设随机变量 $X \sim P(1), Y \sim P(1)$,如果X 与 Y不相关,则X 与 Y相互独立
- (C) 设随机变量 $X\sim N(0,1), Y\sim N(0,1),$ 如果 X 与 Y 不相关,则 X 与 Y 相互独立
- (D) 设随机变量 $X \sim U[-1,1], Y \sim U[-1,1]$, 如果 $X \ni Y$ 不相关,则 $X \ni Y$ 相互独立
- 二、填空题:9~14 小题,每小题 4 分,共 24 分.请将答案写在答题纸指定位置上.
 - (9) 设函数 $f(x) = x^2 \sin 2x$, 则当 $n \ge 1$ 时, $f^{(2n+1)}(0) =$ ______
 - (10) $\int_{0}^{1} (\ln x)^{2} dx = \underline{\qquad}$
 - (11) 函数 $u = \ln(x^2 + y^2 + z^2)$ 在点 $(1, -1, \sqrt{2})$ 处沿各方向的方向导数的最大值为_____
 - (12) 设空间曲线 $\Gamma: \begin{cases} y = e^t \sin t, & 0 \le t \le 2, & \text{则} \Gamma \text{ 的弧长} s = \underline{\hspace{1cm}} \end{cases}$
 - (13)设A为三阶非零矩阵,且 $A^2=O$,则Ax=0的基础解系中所含向量的个数为_
 - (14) 设随机变量 $X \sim E(\lambda)$, $Y = (X EX)^2$, 则 $P\{Y < EY\} =$ ______.
- 三、解答题:15~23 小题, 共 94 分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程 或演算步骤.
 - (15) (本题满分 10 分) 已知m为实常数,讨论方程 $x^2 me^x 3 = 0$ 实根的个数.
- (16) (本题满分 10 分) 设函数F(u,v)具有二阶连续偏导数,证明由方程 $F(\frac{x-x_0}{z-z_0},\frac{y-y_0}{z-z_0})=0$ 所 确定的隐函数 z = z(x, y) 满足下列两个等式

(I)
$$(x-x_0)\frac{\partial z}{\partial x} + (y-y_0)\frac{\partial z}{\partial y} = z - z_0;$$
 (II) $\frac{\partial^2 z}{\partial x^2} \cdot \frac{\partial^2 z}{\partial y^2} = (\frac{\partial^2 z}{\partial x \partial y})^2.$

数学一模拟四试题 第 2 页 (共 3 页)

超 越 考 研

- (17)**(本题满分 10 分)** 讨论级数 $\sum_{n=1}^{\infty} [\sin n \cdot \int_{0}^{1} (1-x)x^{n-1} \ln(1+x) dx]$ 的敛散性,如果该级数收敛,问它是条件收敛还是绝对收敛?
- (18) (本题满分 10 分) 设函数 y(x) ($x \ge 1$) 二阶可导,且 y'(x) > 0, y''(x) > 0, y(1) = 1. 如果曲线 y = y(x) 从点 $P_0(1,1)$ 到其上任一点 P(x,y) 的弧长等于曲线 y = y(x) 在点 P(x,y) 处的切线在 y 轴截距的绝对值,求此曲线方程.
- (19)(本题满分 10 分)设S是由xOz平面内的一段曲线 $z=x^2-1$ ($1 \le x \le 2$)绕z 轴旋转一周所得的有向曲面,其中各点处的法向量与z 轴正向成钝角,计算曲面积分

$$I = \iint_{S} x^{2}(x-1)dydz - (3x^{2}y - y^{2})dzdx + (4xz - x^{2})dxdy.$$

- (20)(本题满分 11 分)设 B 是秩为 2 的 5×4 矩阵, $\alpha_1 = (1,1,2,3)^T$, $\alpha_2 = (-1,1,4,-1)^T$, $\alpha_3 = (a,b,6,2)^T$ 是齐次线性方程组 Bx = 0 的解向量.(I)求 a,b 的值;(II)求 Bx = 0 的正交的基础解系.
 - (21) (本题满分 11 分) 设二次型 $f(x_1, x_2, x_3) = \sum_{i=1}^{3} (a_{i1}x_1 + a_{i2}x_2 + a_{i3}x_3)^2$, $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$.
- (I) 写出二次型 $f(x_1,x_2,x_3)$ 的矩阵; (II) 证明二次型 $f(x_1,x_2,x_3)$ 正定的充要条件为 $|A|\neq 0$.
- (22)(**本题满分 11 分)**连续做某项试验,每次试验只有成功和失败两种结果.已知第一次试验成功和失败的概率均为 $\frac{1}{2}$,且当第n次成功时,第n+1次成功的概率为 $\frac{1}{2}$;当第n次失败时,第n+1次成功的概率为 $\frac{3}{4}$.(I)求第n次试验成功的概率 P_n ;(II)用 X 表示首次获得成功的试验次数,求数学期望 EX.
- (23)(**本题满分 11 分)**设总体 X 服从对数正态分布,即 $\ln X \sim N(\mu, \sigma^2)$,其中 μ 已知, σ^2 未知. (X_1, X_2, \cdots, X_n) 是总体 X 的一个容量为 n 的简单随机样本.(I)求 X 的概率密度函数;(II)求 σ^2 的最大似然估计量 $\hat{\sigma}^2$;(III)判断 $\hat{\sigma}^2$ 是否是 σ^2 的无偏估计.

2016年全国硕士研究生入学统一考试

超越考研数学(一)模拟(五)

(科目代码: 301)

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定位置的边框区域内,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

考 研 越 超

一、选择题: 1~8 小题,每小题 4分,共 32分.下列每题给出的四个选项中,只有一个选项是符合要求 的. 请将所选项前的字母填在答题纸指定位置上.

(1) 设函数 f(x) 在点 x=1 处右连续,则(

(A) f(-x) 在点 x = -1 处右连续, $f(-\frac{1}{x})$ 在点 x = -1 处右连续

(B) f(-x) 在点 x = -1 处左连续, $f(-\frac{1}{x})$ 在点 x = -1 处左连续

(C) f(-x) 在点 x = -1 处右连续, $f(-\frac{1}{x})$ 在点 x = -1 处左连续

(D) f(-x) 在点 x = -1 处左连续, $f(-\frac{1}{x})$ 在点 x = -1 处右连续

(2) 下列说法不正确的是(

(A) 若数列 $\{b_n\}$ 有界,级数 $\sum_{i=1}^{\infty}a_n$ 绝对收敛,则级数 $\sum_{i=1}^{\infty}a_nb_n$ 绝对收敛

(B) 若级数 $\sum_{n=1}^{\infty} a_n$ 收敛, $\lim_{n\to\infty} na_n = 0$, 则级数 $\sum_{n=1}^{\infty} n(a_n - a_{n+1})$ 收敛

(C) 若数列 $\{a_n\}$ 满足 $\lim_{n\to\infty}\frac{a_{n+1}}{a}=a<1$,则级数 $\sum_{n=1}^{\infty}a_n$ 收敛

(D) 若级数 $\sum_{n=0}^{\infty} a_n$ 绝对收敛,则级数 $\sum_{n=0}^{\infty} (a_1 a_n + a_2 a_n + \dots + a_n^2)$ 绝对收敛

(3) 设函数 f(x) 在点 x=0 的某去心邻域内可导,且 $\lim_{x\to 0^+} f'(x)=2$,则(

(A) f(x) 在点 x = 0 处右连续,但右导数不一定存在

(B) f(x) 在点 x = 0 处右导数存在且 $f'_{+}(0) = 2$

(C) 存在 $\delta > 0$, 使得f(x)在 $(0,\delta)$ 内单调递增

(D) f(x) 在点 x = 0 处一定不取极值

(4) 设 $I = \int_{0}^{\sqrt{\pi}} \cos x^{2} dx, J = \int_{0}^{\pi} \cos x e^{\sin^{2}x} dx$,则(

(A) I > 0, J < 0

(B) I > 0, J = 0 (C) I < 0, J > 0

(D) I < 0, J = 0

(5) 已知 A_1 , A_2 为 n 阶方阵,非齐次线性方程组 $A_1x=\beta_1$ 与 $A_2x=\beta_2$ 同解,则下列命题

(I) A_1 与 A_2 必等价; (II) A_1 与 A_2 的列向量组必等价; (III) A_1 与 A_2 的行向量组必等价;

(IV) β , 必可由 A 的列向量组线性表示;

(V) $A_2x = \beta_1$ 必有解

中,正确的个数为(

(A) 1

(B) 2

(C) 3

(D) 4

第1页(共3页) 数学一模拟五试题

20、21全程考研资料请加群712760929

(6) 设A为n阶方阵, α , β 为n维列向量,a,b,c为常数,已知 $\left|A\right|=a$, $\left|b \quad \alpha^T \atop \beta \quad A\right|=0$,则 $\left|c \quad \alpha^T \atop \beta \quad A\right|=0$

().

- (A) 0
- (B) $\alpha^T \beta$
- (C) (c-b)a
- (D) a

(7) 设二维随机变量(X,Y)在区域 $D = \{(x,y)|x^2 + y^2 \le 1\}$ 上服从均匀分布,记 $U = \max\{X,Y\}$, $V = \min\{X,Y\}$,则EU - EV = (

 $(A) \frac{4\sqrt{2}}{3\pi}$

- (B) $\frac{2\sqrt{2}}{2\pi}$
- (C) $\frac{4\sqrt{2}}{2}$ (D) $\frac{2\sqrt{2}}{2}$
- (8)在产品检验时,原假设 $H_{\scriptscriptstyle 0}$ 为产品合格.若在检验过程中发现将一些不合格品误以为合格品,则 当样本容量n固定时,(
 - (A) 犯弃真错误的概率 α 和犯存伪错误的概率 β 都会变大
 - (B) 犯弃真错误的概率 α 和犯存伪错误的概率 β 都会变小
 - (C) 犯弃真错误的概率 α 会变小, 犯存伪错误的概率 β 会变大
 - (D) 犯弃真错误的概率 α 会变大, 犯存伪错误的概率 β 会变小
- 二、填空题:9~14 小题,每小题 4分,共 24分.请将答案写在答题纸指定位置上.
 - (9) $\lim_{n \to \infty} (\arctan \frac{1}{n})^{\frac{4}{3}} (1 + \sqrt[3]{2} + \sqrt[3]{3} + \dots + \sqrt[3]{n}) = \underline{\hspace{1cm}}$
 - (10) 微分方程 $y'' + 4y = 2\cos^2 x$ 的特解形式为____
 - (11) 设 $z = \int_0^{x^2 y} f(t, e^t) dt$, 其中 f 具有一阶连续偏导数,则 $\frac{\partial^2 z}{\partial x^2 \partial x} =$ ____
 - (12) 设L为从点(2,0)沿心形线 $r=1+\cos\theta$ 的上半曲线到点(0,0)的有向曲线,则

 $\int_{L} (e^{x} + 1) \cos y dx - [(e^{x} + x) \sin y - x] dy = \underline{\qquad}.$

- (13)设A为三阶不可逆矩阵, α , β 是线性无关的三维列向量,且满足 $A\alpha=\beta$, $A\beta=\alpha$,则与A相 似的对角阵 Λ =
 - (14) 设总体 $X \sim P(1)$, (X_1, X_2, X_3, X_4) 是来自总体 X 的简单随机样本,则 $P(\overline{X} > \frac{1}{4}) =$ ______.
- 三、解答题:15~23 小题,共 94 分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程 或演算步骤.
- (15) (本题满分 10 分) 设 $x_1 = 2$, $x_{n+1} = \frac{3}{4}x_n + \frac{1}{x^3}$, $n = 1, 2, \cdots$. (I) 证明 $\lim_{n \to \infty} x_n$ 存在,并求此极限 值; (II) 证明级数 $\sum_{n=0}^{\infty} (-1)^n (x_n - x_{n+1})$ 收敛.
- (16) (本题满分 10 分) 求函数 $z = f(x, y) = x^2 + y^2 2x + 2y$ 在闭区域 $D: x^2 + y^2 \le 4, x \ge 0$ 上的 最大值与最小值.

第2页(共3页) 数学一模拟五试题

超 越 考 研

(17) (本**题满分 10** 分)设曲线L的参数方程为 $\begin{cases} x = t - \sin t, \\ y = 1 - \cos t \end{cases}$ ($0 \le t \le 2\pi$). (I) 求L的参数方程确定的函数 y = y(x)的定义域; (II) 求曲线L与x轴围成的平面图形绕y轴旋转一周而形成的旋转体体积 V_y ; (III) 设曲线L的形心坐标为(x,y),求y.

- (18) (本题满分 10 分) 设函数 f(x) 在[0,1]上具有二阶连续导数,且 f'(0) = f'(1) = 0.
 - (I)证明至少存在一点 $\xi \in (0,1)$,使得 $2f(\frac{1}{2}) = f(0) + f(1) + \frac{f''(\xi)}{4}$;
 - (II)证明至少存在一点 $\eta \in (0,1)$, 使得 $|f(1)-f(0)| \le \frac{|f''(\eta)|}{4}$.
- (19) (本题满分 10 分) 计算曲面积分 $I = \iint_{\Sigma} \frac{x^2 dy dz + y^2 dz dx + (z^2 + 1) dx dy}{2x^2 + 2y^2 + z^2}$, 其中 Σ 是上半球面 $x^2 + y^2 + z^2 = 1$ ($z \ge 0$),取上侧.
 - (20) (本题满分 11 分) 设 $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$, $X_n(n=0,1,\cdots)$ 均为 3 阶方阵,且满足 $X_{n+1} = AX_n + E$,

 $n=0,1,\cdots$, 其中 $X_0=O$, 求 X_n .

(21) (本题满分 11 分) 设矩阵
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & a \end{pmatrix}$$
与 $\Lambda = \begin{pmatrix} 0 \\ & 1 \\ & & 2 \end{pmatrix}$ 合同.(I) 求常数 a ;(II)

求正交变换x = Qy,化二次型 $f = x^T Ax$ 为标准形.

- (22) (本题满分 11 分)设随机变量 $X\sim U[-1,3]$. (I)求 $Y=\begin{cases} 0, & X<0,\\ 1, & X\geq 0 \end{cases}$ 的分布律和条件概率 $P\{X\leq \frac{1}{2}\Big|Y=1\}\;;\;\; (II)求 Z=XY$ 的分布函数 $F_Z(z)$.
- (23) (本题满分 11 分) 设随机变量 $\chi^2 \sim \chi^2(1)$, $F \sim F(1,1)$, $T \sim t(1)$. (I)求 $P\{\chi^2 \leq 1\}$;(II)求 $P\{F \leq 1\}$;(III)求 $P\{-1 < T < 1\}$, 其中 $\Phi(1) = 0.8413$.

数学一模拟五试题 第 3 页 (共 3 页)