Exercises I1

Exercise 1.1

Since
$$X\perp Y$$
 $f_{XY}(x,y)=f_X(x)f_X(y)=e^{-x-y}\mathbb{1}_{x\geq 0,y\geq 0}$

$$egin{align} Z &= (Z_1,Z_2) \ Z_1 &= rac{X}{X+Y} \ Z_2 &= X+Y \ g^{-1}(z_1,z_2) &= (z_1z_2,z_2-z_1z_2) \ J(z) &= egin{pmatrix} z_2 & z_1 \ -z_2 & 1-z_1 \end{pmatrix} \ |\operatorname{det} I| &= |z_2| = -z_2 \ |z_2| \end{aligned}$$

$$|\det J|=|z_2|=\underbrace{z_2}_{>0}$$

 $f_{Z_1Z_2}(z_1,z_2)
eq 0$ when

$$(riangle) egin{cases} z_1 z_2 \geq 0 \ z_2 - z_1 z_2 \geq 0 \end{cases}
ightarrow egin{cases} z_2 \geq 0 \ 0 \leq z_1 \leq 1 \end{cases}$$

$$f_{Z_1Z_2}(z_1,z_2) = e^{-z_1z_2 - (z_2 - z_1z_2)}z_2 = z_2e^{-z_2}$$
 when $(riangle)$ else it's 0

Now we determine the PDFs of Z_1 and Z_2 using the marginal rules:

$$egin{aligned} f_{Z_1}(z_1) &= \int_0^{+\infty} z_2 e^{-z_2} \, dz_2 = 1 \ f_{Z_2}(z_2) &= \int_0^1 z_2 e^{-z_2} \, dz_1 = z_2 e^{-z_2} \end{aligned}$$

We have $Z_1 \perp Z_2$ because:

$$f_{Z_1Z_2}(z_1,z_2)=f_{Z_1}(z_1)f_{Z_2}(z_2)$$

Exercise 1.2

$$egin{aligned} X_n \sim Bin(n, heta) \ f_{X_n(k)} = inom{n}{k} heta^k (1- heta)^{n-k} \end{aligned}$$

a. we need to prove that $\lim_{n \to \infty} P(|\frac{X_n}{n} - \theta| > \epsilon) = 0 \ \ orall \epsilon > 0(\star)$

 $\mathbb{E}(X_n)=rac{n heta}{n}= heta$ from expectation of Bin and linearity $\sigma_{X_n}^2=rac{n heta(1- heta)}{n^2}=rac{ heta(1- heta)}{n}$ from variance of Bin and the property of variance $(\mathrm{var}(rac{X}{lpha})=rac{1}{lpha^2}\mathrm{var}(X))$

we can use Chebychev inequality:

- $0 \leq P(|\frac{X_n}{n} \theta| > \epsilon) \leq \frac{\theta(1-\theta)}{n\epsilon^2}$, the left hand side of this inequality is equal to 0 and the right hand side converges to 0 for $n \to \infty$ so we proved (\star) . \square
- b. Since in a. we proved that $X_n/n \stackrel{\mathrm{P}}{\to} \theta$ if we take g(x) = 1-x we have from the properties of convergence in probability that $g(X_n/n) \stackrel{\mathrm{P}}{\to} g(\theta) = 1-\theta$. \square
- c. Since we proved b. and a. we can use the property of convergence in probability that states that if

$$X_n \stackrel{P}{\longrightarrow} X, \ Y_n \stackrel{P}{\longrightarrow} Y \ \mathrm{then} \ X_n Y_n \stackrel{P}{\longrightarrow} XY$$
 .

We apply this property with $\frac{X_n}{n}$ and $1-\frac{X_n}{n}$ and we get

$$rac{X_n}{n}(1-rac{X_n}{n})\stackrel{P}{\longrightarrow} heta(1- heta).$$