19 日本国特許庁(JP)

①実用新案出願公告

⑫実用新案公報(Y2)

 $\Psi 2 - 9771$

51 Int. Cl. 5

識別記号

庁内整理番号

❷❸公告 平成2年(1990)3月12日

A 61 B 5/0408

7916-4C

A 61 B 5/04 3 0 0

(全5頁)

図考案の名称 生体用誘導電極

> ②)実 願 昭61-80851

65公 開 昭62-192707

22出 願 昭61(1986)5月28日 ❸昭62(1987)12月8日

@考案 者 湷 水 忠 冶 東京都文京区本郷2丁目35番8号 フクダ電子本郷事業所

72)考 案 小 野 寺 者 康晃

東京都文京区本郷2丁目35番8号 フクダ電子本郷事業所

勿出 願 フクダ電子株式会社 人

東京都文京区本郷3丁目39番4号

個代 理 人

题参考文献

弁理士 鈴木 淳也

審査官 乾 雅 浩

特開 昭51-124082 (JP, A)

特開 昭59-116006 (JP, A)

特開 昭53-118884 (JP, A) 特開 昭61-67703 (JP, A)

特開 昭61-39514 (JP, A)

実開 昭57-5243 (JP, U)

1

匈実用新案登録請求の範囲

- (1) 樹脂製フイルムの一方の面には銀蒸着層を形 成するとともに銀蒸着層の表面には導電性接着 剤を塗布し、前記樹脂製フイルムの他方の面に は発泡シートを貼着してなる略長方形状の生体 5 誘導電極であつて、この生体用誘導電極の略中 央部に、短辺のひとつを折曲可能な非切込部と し他の三辺を切込部とする略平行四辺形で且つ その平行四辺形の切込部の長辺が前記略長方形 てなる端子を有することを特徴とした、生体用 誘導電極。
- (2) 前記端子の平行四辺形の切込部の長辺は、切 込端部がそれぞれ外側に曲線状に形成されたも 生体用誘導電極。
- (3) 前記端子の平行四辺形の切込部の長辺は、切 込端部がそれぞれ円形孔状に形成されたもので ある実用新案登録請求の範囲第1項記載の生体 用誘導電極。

考案の詳細な説明

〔産業上の利用分野〕

2

本考案は生体用誘導電極、詳しくは生体の皮膚 面に固定して、生体内に発生する微弱電流を導出 するための生体用誘導電極に関するものである。 [従来の技術]

周知のように生体に発生する生体電気は、心 臓、脳、筋肉などの活動によつて誘起されてい る。

特に心臓に発生した生体電気は、生体の皮膚面 に誘起された微弱電圧を外部の心電計で記録し、 状の生体用誘導電極の長辺に非平行に形成され 10 心臓の異常を診断している。そしてこの心電計 は、入力部を生体と電気的に結合させるために生 体の皮膚の表面に生体誘導電極を密着しなければ ならない。

この皮膚の表面に密着される従来の電極を、第 のである実用新案登録請求の範囲第1項記載の 15 5 図、第6 図、第7 図に従つて説明すると、第5 図は生体用誘導電極1の斜視図で、この生体用誘 導電極1は略円形の粘着基材16を有している。

> この粘着基材 1 6 は中央部が切欠されて開口 1 7が形成されているドーナツ状の織布であつて、 20 その裏面側は第7図に示されるように生体の皮膚 面Mに密着するために粘着性を帯びている。

> > この粘着基材 16の上面側に前記開口 17を閉

3

塞して硬質の合成樹脂で形成されている電極板嵌 合部 18 が接着されている。この電極板嵌合部の 表面側から磁石性のリード線結合部 19 が突設さ れている。

に示されるように直接生体の皮膚面Mに接触して 心臓からの微弱電圧を導出する電極板 20 が固定 されている。

第6図に示されたものは、リード線接続体21 の裏面図であつて、前記電極板20から導出され 10 た心臓からの微弱電圧をリード線 4 を介して心電 計(図示せず)に導くためのものである。このリ ード線接続体21は前記生体用誘導電極1と略同 じ大きさを有する硬質樹脂製で、内部に凹所22 を形成しその凹所 2 2 に磁石性の電極結合部 2 3 15 が固定され、この電極結合部23にリード線4の 一端が接続され、リード線4の他端は心電計(図 示せず)に接続している。

以上のような構成の生体用誘導電極1を利用し クリームを塗布して電気抵抗を減少させたうえ第 7図に示されるように生体用誘導電極 1の粘着基 材16をその上に接着し、次いでリード線接続体 21の磁石性の電極結合部23を、生体用誘導電 続体21を生体用誘導電極1に連結して、電極板 20から導出される心臓からの微弱電圧をリード 線4を介して心電計(図示せず)に記録する。 〔考案が解決しようとする問題点〕

双方にそれぞれ磁石を用いているため重くなり、 磁石を支える構造も複雑で大きくなり、かたい感 じがするため生体の皮膚面にとりつける器具とし ては好ましくないものであるともに製造コストも 高価になる。

本考案はこのような従来の生体用誘導電極が、 重く且つ構造が複雑でかたい感じがし、製造コス トも高価であるという問題点を解決することを目 的とする。

〔問題点を解決するための手段〕

上記目的を達成するため本考案は次のような生 体用誘導電極を提供する。すなわち本考案は、樹 脂製フイルムの一方の面には銀蒸着層を形成し、 その銀蒸着層の表面には導電性接着剤を塗布して

なり、前記樹脂製フイルムの他方の面には発泡シ ートを貼着してなる略長方形状の生体用誘導電極 であつて、この生体用誘導電極の略中央部に、短 辺のひとつを折曲可能な非切込部とし他の三辺を このリード線結合部19の下面側には、第7図 5 切込部とする略平行四辺形で且つその平行四辺形 の切込部の長辺が前記略長方形状の生体用誘導電 極の長辺に非平行に形成されてなる端子を有する

(作用)

本考案の生体用誘導電極の導電接着剤の塗布面 を生体の皮膚面にあてると生体用誘導電極は皮膚 面に接着固定されるとともに、心臓などの生体内 の微弱な生体電気は皮膚面から前記導電接着剤を 通じて低抵抗で銀蒸着層に流れる。

ことを特徴とした、生体用誘導電極である。

生体用誘導電極の中央部に形成された略平行四 辺形の非切込部よりなる短辺の部分を折り曲げて 立ち上げると略平行四辺形の端子を形成し、はさ み易くなる。

これをクリップ等ではさむと、生体用誘導電極 て心電図を記録するには、先ず生体の皮膚面Mに 20 の一部である端子の銀蒸着層から前記生体電気が クリップに流れ、クリップからリード線を通じて 心電計(図示せず)に流れる。

〔実施例〕

本考案の実施例について、以下図面にしたがつ 極1のリード線結合部19に接着してリード線接 25 て本考案の構成が実際上どのように具体化される かをその作用とともに説明する。

第1図は本考案の実施例の概要説明図で、生体 の皮膚面Mに本考案の生体用誘導電極 1 が貼着さ れ、その生体用誘導電極1の端子2をクリップ3 しかし、上記従来例はリード線側と電極側との 30 ではさみ、クリツプ3からリード線4で外部の心 電計(図示せず)に結ばれていることを示す。

> なお、5はリード線4を固定するための粘着テ ープである。

第2図は本考案の生体用誘導電極1の一実施例 35 の斜視図で、説明の便宜上一部切欠してある。

図の1aは生体用誘導電極1の本体で、ポリエ ステルの樹脂製フイルム6の一方の面に銀蒸着層 7を形成し、さらにその銀蒸着層7の表面に導電 性接着剤8を塗布する。

この導電性接着剤 8 の塗布面は生体の皮膚面M に前記生体用誘導電極 1 を低抵抗で接着させる面 である。

また、前記樹脂製フイルム6の他方の面には、 ブダジエン系の独立発泡シート9を接着剤などで 5

接着することによつて本体 1 a が形成される。

本体 1 a は短辺と長辺を有する長方形状であ る。本体 1 a の略中央部には、短辺のひとつを折 り曲げ可能な非切込部10と、他の短辺の切込部 **11**と、長辺の切込部 **12**, **13**とで形成された 5 菱形に近い略平行四辺形の端子 1 4 が設けられ る。

この端子14の前記長辺12,13は、本体1 aの長辺と非平行に、すなわち角度Qを以て形成 されている。

これは、端子14をできるだけ長めに形成して クリップではさみ易くするとともに、端子14を 引つ張る力の方向と切込方向とを変えることによ つて引つ張る力を弱めることにより、長辺 1 2, 13の切込端部12a, 13aの損傷を防ぐ効果 15 となり、互に補強し合うため強靱性に富む。 をねらつたものである。

第3図は本考案の生体用誘導電極の他の実施例 の斜視図であつて、前述の第2図と異なるところ は端子14の基端である非切込部10の両端にお 13 a が外側に曲線を以て形成され、端子14の 非切込部 10 近辺の幅をひろげることによって端 子14の強化をはかつたものである。

第4図は本考案の生体用誘導電極のさらに他の 実施例を示す斜視図で、前述の第2図、第3図と 25 異なるところは、端子 1 4 の基部である非切込部 10の両端において、前記長辺12,13の切込 端部12a,13aを円形孔状に形成したことで ある。

さび効果が発生しなくなり、端子14が保護され る。

〔考案の効果〕

以上述べたように、本考案は樹脂製フィルムの 一方の面に銀蒸着層を形成し、その銀蒸着層の表 35 切込部、11~13……切込部、14……端子。 面には導電性接着剤を塗布し、前記樹脂製フイル

ムの他方の面には発泡シートを貼着して本体を形 成し、この中央部に切込部を設けて端子を形成す るという単純な構造であるため、大量生産に適し コストの大幅な低減が可能である。

6

したがつて使い捨てが可能で、一人ひとり新し いものを使用することにより清潔を保ち、他の患 者から病気が伝染するのを防止できる。

また、導電性接着剤を塗布してなるため本考案 は使用の際に皮膚にクリームを塗布しなくてもよ 10 いから作業性に富む。

さらに、本考案は全体がフレキシブルな構造で あるため生体の皮膚面によくなじみ使用し易い。

加えて、本考案は強度の面では樹脂製フィルム と発泡シートとによる二重の層で形成されること

同時に、本考案は端子が本体の略中央部に設け てあるため、剝がれにくく安定使用ができる。

その上、本考案は端子が本体の長辺に対して斜 めに切込部を設けて形成してあるため、立上がり いて長辺12,13のそれぞれの切込部12a,20形状が長めに形成され、クリップではさみ易く、 且つ力の加わる方向が切込部方向と異なるため引 つ張る力を弱め、端子の切込部における損傷を防 止する効果がある。

図面の簡単な説明

第1図は本考案の実施例の概要説明図、第2図 は本考案の生体用誘導電極の一実施例の斜視図、 第3図は本考案の生体用誘導電極の他の実施例の 斜視図、第4図は、本考案の生体用誘導電極のさ らに他の実施例を示す斜視図、第5図は従来の生 これによつて前記切込端部12a,13aのく 30 体用誘導電極の斜視図、第6図は従来のリード線 接続体の裏面図、第7図は従来の生体用誘導電極 の使用状態を示す図である。

> 6……樹脂製フイルム、7……銀蒸着層、8… …導電性接着剤、9……発泡シート、10……非

第7図

