z/OS Communications Server 2.5

SNA Diagnosis Volume 1: Techniques and Procedures

© Copyright International Business Machines Corporation 2000, 2021.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

Tables	
About this document	vvii
Who should read this document	
How this document is organized	
How to use this document	
How to contact IBM service	
Conventions and terminology that are used in this information	
How to read a syntax diagram	
Prerequisite and related information	
Summary of changes for SNA Diagnosis Volume 1: Techniques a	
Changes made in z/OS Communications Server Version 2 Release 5	
Changes made in z/OS Communications Server Version 2 Release 4	
Changes made in z/OS Communications Server Version 2 Release 3	xxx
Part 1. Diagnostic techniques	
Chapter 1. Diagnosing VTAM problems: Where to begin	3
Determining whether the problem is VTAM or non-VTAM	3
Common problems and symptoms	
Common problems in subarea networks	
Descriptions of common problems in subarea networks	
Common problems in APPN networks	
Descriptions of common problems in APPN networks	
Common problems in HPR networks	
Descriptions of common problems in HPR networks	
Common symptoms and associated VTAM problem types	
VTAM internal trace (VIT) analysis tool problems	
Common symptoms and actions	
Documenting an APAR for VIT analysis tool problems	
VTAM dump analysis tool problems	
Checklist for isolating the problem	
Documenting an APAR for dump analysis tool problems	
Recommended documentation for VTAM problems	
Methods for submitting documentation	
Submitting documentation using FTP	
Using electronic transfer through email attachments	
Submitting documentation on tape	
Necessary documentation	
Chapter 2. Collecting documentation for specific types of problems	53
Common problem determination procedures	53
Abnormal end (abend)	
Wait	
Loop	

Message problem	78
Incorrect output	80
Performance problem	83
Storage problem procedure	85
Documentation problem	88
Failing module	89
Symptom string structure	
Reporting the problem to IBM	
Chapter 3. Collecting documentation for TSO/VTAM problems	93
Initial TSO/VTAM problem analysis	
Logon problems	
TSO/VTAM abends	
ABENDOAB	
ABENDOAC	
ABENDOAD	
ABEND15D	
Parameter initialization problems	
Hung terminal problems	
Incorrect output problems	
Screen management problems	
Screen size problems	
Performance problems	
•	
Part 2. Diagnostic procedures	107
· · · · · · · · · · · · · · · · · · ·	
Chapter 4. Using DISPLAY and MODIFY operator commands	109
Using VTAM DISPLAY commands for problem determination	
Display buffer pool use	
DISPLAY CSDUMP	
DISPLAY CSMUSE	
DISPLAY EE	
DISPLAY EEDIAG	116
DISPLAY EEDIAG,TEST=YES	120
DISPLAY EEDIAG,TEST=PENDING	132
Display Enterprise Extender connection network unreachable partner information	132
Display HPR route test	133
Display ID for an RTP connection	134
Display ID for an RTP PU with HPRDIAG=YES	135
Display ID for an RTP PU with HPRDIAG=YES and CLEAR=ALL	136
Display path tables	
Display resource status	
Display resources in a pending state	137
Display route status	
Example: Solving path problems	
Display route test	144
Display RTPS options	
Display TDU information	
Display traces	
Display VTAM storage	
Display workload information for a device	
Using VTAM MODIFY commands for problem determination	
Issuing the MODIFY CSDUMP command	
Modifying input/output problem determination	
Modifying message module identification	
Issuing the MODIFY TOPO command to clear EE connection network unreachable pa	
information	

Modifying tuning statistics	158
Issuing the MODIFY VTAMOPTS command to change start option values	
Chantan E. Hairardurana	450
Chapter 5. Using dumps	
Dumps on MVS operating system	
Abend dump	
Coupling facility structures dump	
FFST dump	
Stand-alone dump	
SVC dump	
Formatting and printing dump output	
IPCS service aids	
ABDUMP service aid	
SADMP service aid	161
Chapter 6. Using VTAM dump analysis tools	163
Enhanced VTAM dump analysis tools	
Operating environment	
Using VTAM interactive problem control system (IPCS) CLISTs	
Obtaining online help for CLISTs	
Debugging CLIST errors.	
Printing CLIST output	
Sample VTAM dump analysis functions	
Using the panel interface	
Using the IPCS command line	
Using the batch option	
VTAM formatted dump procedures	
ADDICONY	
APPLMOD5	
APPLMODE	
APPMODAL	
APPNBASE	
ATMDATA	
CSMALL	
CSMBUF	
CSMCMPID	
CSMOWNER	182
CSMP00L	184
FINDDSIB	186
FINDSIB	188
FNDADJCP	192
FNDANDCB	193
FNDCOS	193
FNDDECB	
FNDENDEL	
FNDLCB	
FNDNDREC	
FNDNDWGT	
FNDNODE	
FNDREREC	
FNDSCCB	
FNDSITCB	
FNDTGREC	
FNDTGWGT	
HOST	
HPRIP	
ISTVABND	
ISTVDUMP	212

SDUMP parameter list	214
ISTVMAP	214
ISTVSAVE	216
ISTVSLIP	218
MNPSC, MNPSD, MNPSF	
PABSCÁN	
PARTNRLU	
RDTCHECK	
RDTFULL	
RDTHIER	
RDTSUM	
ROUTES	
RTPINFO	
SES	
SIBCHECK	
SPANC	
SRTFIND	
STORAGE	
TOPOLOGY	
TRSTRACE	
VITAL	
VTAM	
VTBASIC	
VTBUF	
VTCVTPAB	
VTFNDMOD	
VTMODS	
VTNODE	260
VTREADYQ	261
VTRPH	262
VTVIT	262
VTVRBLK	264
VTWRE	265
hapter 7. Using traces	269
Traces provided by VTAM	269
Activating network traces	
Starting the generalized trace facility (GTF)	282
Formatting and printing trace records	
Trace output	
VTAM trace record formats	
Buffer contents trace	
Buffer contents trace for 3270 IDS incidents	
Configuration services XID exit (CSX) buffer trace	
Directory services session management exit (DSME) buffer trace	
I/O trace	
QDIOSYNC trace	
Resource state trace	
Session management exit (SME) buffer trace	
SMS (buffer use) trace	
TGET/TPUT trace for TSO/VTAM	
3270 data stream formatting	
Traces provided by TCP/IP	312
hapter 8. Using the VIT analysis tool	315
Setting up and running the VIT analysis tool	
Step 1. Record a VIT	
Step 2. Set up to run the tool	

Step 3. Create the parameters for the job	
Step 4. Run the job	318
Step 5. Check the output	318
Return codes	318
Environment	319
Analyzing storage	319
Counting request/response units (RUs)	326
Extracting information from the VIT	333
Using the timing options	341
Start and stop time	341
Report interval	
Parameter syntax	342
Using the I/O options	
Trace wrapped	
Format output	
Parameter syntax	
Operands	
Creating your own parameter data set	345
Chapter 9. Using other problem-solving tools	
Recording NMVT alerts in LOGREC	
Hardware error recording	
Logical unit connection test (IBMTEST)	
VTAM load module list	
Using save-area module linkage conventions—Subarea	
Using save-area module linkage conventions—APPN	351
Appendix A. Channel programs	353
Channel programs for channel-attached type 2 and type 4 physical units	353
Channel commands for channel-attached type 2 and type 4 physical units	
Channel program sequences	
PUNS-related channel programs	
Channel programs for channel-to-channel adapters (CTCA), multipath channel (MPC), and A	
host-to-host channels	
Channel programs for activating the CTC connection	
Channel commands for channel-to-channel (CTC) adapters	
XID channel program (X-side)	
XID channel program (Y-side)	
Channel programs for CTC data transfer: Blocking protocol	
Channel programs for channel-to-channel adapters: Nonblocking protocol	
Channel programs for multipath channel (MPC)	
Channel programs for activating the MPC connection	
Channel commands for activating the MPC connection	
Channel programs for MPC data transfer	
Channel program for HPDT MPC data transfer	
Channel command words	
Channel programs	
Annon din D. Notacoule flores	205
Appendix B. Network flows	
Generic BIND (GBIND) AMRUS	
Index of generic BIND (GBIND) AMRU flows	
Index of resource activation flows	
Session establishment tlows	
Session establishment flows	406
Session establishment flows	406 407

Index of deactivation and session termination flows	429
Error detection and recovery and SSCP management services	445
Index of error detection and recovery and SSCP management services flows	446
Appendix C. APPN flows	453
CP-CP session flows	
Index of CP-CP session flows	
Directory services flows	
Index of directory services flows	
Register resource flows	
Locate resource flows	
LU-LU session flows	
Index of LU-LU session flows	
Dependent LU server flows	
Index of dependent LU server flows	
Single subnetwork flows	
Cross subnetwork flows	
High-Performance Routing flows	
Index of High-Performance Routing flows	540
Appendix D. Control point/control block (CPCB) operation codes	549
Appendix 3. Control point, control block (of C2) operation codes	
Appendix E. Storage and control block ID codes	565
VTAM control block ID codes	
Appendix F. Installing dump analysis and VIT analysis tools	571
Concatenating target data sets used in the installation	
Customizing IPCS interface	
Verifying dump formatter panels	
Customizing ISPF interface	
Verifying trace formatter panels	
vernying trace formatter panets	5/5
Appendix G. Problem topics in other libraries	577
Appendix H. Architectural specifications	591
Appendix II. Arciiilecturat specifications	
Appendix I. Accessibility	583
Notices	
Terms and conditions for product documentation	
IBM Online Privacy Statement	589
Policy for unsupported hardware	589
Minimum supported hardware	589
Programming interface information	590
Policy for unsupported hardware	590
Trademarks	
Diblicaronby	E04
Bibliography	591
Index	505
111UGA	373
Communicating your comments to IBM	ራ በ5
Communicating your comments to IDM	, 903

Figures

1. Overview of the abend procedure	54
2. Overview of the wait procedure	58
3. PAB locations	63
4. Normal PABs, extended PABs, and slightly extended PABs	63
5. Very extended PAB	64
6. Finding LQAB groups	66
7. Finding waiting request elements for an LQAB group	67
8. Pointers to VTAM locks	71
9. Overview of the loop procedure (part 1 of 2)	74
10. Overview of the loop procedure (part 2 of 2)	75
11. Overview of the message procedure	79
12. Overview of the incorrect output procedure	81
13. Overview of the performance procedure	84
14. Overview of the documentation procedure	88
15. Overview of the failing module procedure	89
16. Example of a symptom text string in output	90
17. Enterprise Extender inactivity flows	118
18. Enterprise Extender configuration with firewalls	120
19. Connectivity test without policy-based routing enabled	122
20. EE connectivity test with a single policy-based routing rule enabled	123
21. Basic EE connectivity test (successful connection)	124
22. Basic EE connectivity test (unsuccessful connection)	124
23. Enterprise Extender with multipath routing enabled	126

24. EE connectivity test with multipath routing enabled (part 1 of 2)	127
25. EE connectivity test with multipath routing enabled (part 2 of 2)	128
26. Enterprise Extender with policy-based routing	129
27. EE connectivity test with multiple policy-based routing rules enabled	131
28. Example of DISPLAY route status output	138
29. Path problem example network configuration	139
30. Output of a successful route test	144
31. Output of a failed route test	145
32. Route test failure (TG inactive or migration)	146
33. Route test failure (ER not reversible, exceeds maximum length, or not defined)	146
34. One example of how a TDU war might occur	149
35. Network traces provided by VTAM	270
36. Starting GTF for the VTAM buffer contents trace	282
37. Format for buffer contents trace records for VTAM API and TSC	285
38. Format for line trace records	286
39. Example of partial buffer contents trace output	288
40. Example of full buffer contents trace output	288
41. Example of 3270 IDS trace output	290
42. Example of configuration services XID exit (CSX) buffer trace output	293
43. Example of directory services session management exit (DSME) buffer trace output	295
44. Example of session management exit (SME) buffer trace output	303
45. Example of SMS trace output	304
46. Example of TGET/TPUT trace output	307
47. Example of 3270 data stream output - part 1	309
48. Example of 3270 data stream output - part 2	310

49. Sample JCL for VIT analysis	316
50. Sample VIT analysis tool interactive routine	317
51. VTAM internal trace analysis option panel	318
52. VTAM storage analysis option panel	319
53. Storage analysis with a stop time	326
54. VTAM request/response unit counting	327
55. RU code options	330
56. RU modify options	330
57. VIT extraction Boolean expression panel	334
58. VIT extraction template	335
59. Example of VIT extraction	340
60. VTAM timing options panel	341
61. VTAM I/O options panel	344
62. Parameters coded on multiple lines	346
63. Save-area module linkage conventions—subarea	350
64. Save-area module linkage conventions—APPN	352
65. Data areas used by channel programs for PU types 2 and 4	354
66. Format of Write CCWs with chained data	357
67. Example of an XID exchange	361
68. Data areas used for XID channel programs (X-side)	365
69. Data areas used for XID channel programs (Y-side)	366
70. Buffers used for normal data transfer	367
71. Data areas used for normal data transfer (X-side)	368
72. Data areas used for normal data transfer (Y-side)	369
73. Data areas used for normal data transfer (X-side) nonblocking	371

74. Data areas used for normal data transfer (Y-side) nonblocking	373
75. MPC activation flow	375
76. MPC transmit buffers used for normal data transfer	377
77. Indirect address word structure of multipath channel programs for normal data flow	377
78. Basic read Seldom Ending Channel Program structure of HPDT multipath channel	378
79. Example of Seldom Ending Channel Program structure of HPDT multipath channel	378
80. Data areas used by a channel program for channel-attached non-SNA devices	380
81. Sending an ACTLU request for a logical unit (LU)	392
82. Sending an ACTPU request for a communication controller or physical unit (PU)	393
83. Sending a BIND request to a secondary logical unit (SLU)	393
84. Activating a virtual route (VR) and the associated explicit route (ER)	394
85. Activating a channel-attached communication controller	396
86. Activating a link-attached communication controller	397
87. Activating a link (ACTLINK)	397
88. Activating a switched link with takeover	398
89. Activating a cross-subarea link station	398
90. Establishing a switched connection	399
91. Activating a physical unit type 2.0	400
92. Activating a physical unit type 2.0 with load required	400
93. Moving a SYSGENed physical unit	401
94. Moving a dynamically added physical unit	402
95. SSCP takeover of peripheral node logical units	402
96. Activating a logical unit	403
97. Activating an application program and processing an OPEN ACB request	403
98. Activating CDRM with ERP response	403

99. Activating CDRM with COLD response	404
100. Activating a CDRM with a virtual-route-based transmission group	404
101. Back-to-back gateway NCP request sessions	405
102. Gateway VTAM requests session	406
103. Non-gateway VTAM requests session	406
104. Default partitioning of gateway VTAM responsibility spanning three networks	408
105. Multiple gateway VTAMs and back-to-back gateway NCPs	409
106. Primary logical unit initiate, OPNDST ACQUIRE	410
107. Primary logical unit initiate, SIMLOGON	410
108. Primary logical unit initiate, SIMLOGON(RELREQ)	411
109. Primary logical unit initiate, SIMLOGON(RELREQ): Session is pending active or already in progress	412
110. Independent PLU initiating cross-domain session with independent SLU	413
111. Dependent PLU initiating cross-domain session with independent SLU	413
112. PLU initiating request for single gateway VTAM and single gateway NCP	414
113. Independent PLU requesting session with independent SLU through single gateway VTAM and single gateway NCP	415
114. PLU-initiated request setup queued for single gateway NCP and single gateway VTAM	416
115. Secondary logical unit initiate (LOGON)	417
116. Secondary logical unit initiate (REQSESS)	417
117. Secondary logical unit initiate (INIT SELF)	418
118. Sending an unformatted request to the SSCP	418
119. Dependent SLU initiating a cross-domain session with application LU	419
120. SLU initiating request for single gateway VTAM and single gateway NCP	419
121. SLU initiating request for single gateway connecting three or more networks	420
122. SLU initiating request for predesignated control of gateway NCP by middle host (part 1 of 2)	421
123. SLU initiating request for predesignated control of gateway NCP by middle host (part 2 of 2)	422

124. Third party initiating CLSDST PASS	. 423
125. Third party initiating CLSDST PASS with NOTIFY	. 424
126. Third party initiating request spanning three networks	. 425
127. Initiating session using VARY NET,LOGON or LOGAPPL	426
128. Notification of PLU availability for autologon	427
129. Failure (CDINIT rejection) of session initiated by an SLU for single gateway VTAM and single gateway NCP	. 427
130. Failure (SETCV failure) of session initiation by an SLU for single gateway VTAM and single gateway NCP	. 428
131. Failure (CINIT rejection) of setup procedure initiated by an SLU for single gateway VTAM and single gateway NCP	429
132. Deactivating a logical unit: Immediate	. 431
133. Deactivating a logical unit: Forced	. 431
134. Deactivating a logical unit with giveback	. 432
135. Independent primary logical unit (PLU) sends BFCLEANUP for cross-domain LU-LU session with independent secondary logical unit (SLU)	
136. Independent primary logical unit (PLU) sends UNBIND for cross-domain LU-LU session with independent secondary logical unit (SLU)	433
137. Primary logical unit (PLU) sends UNBIND for multiple gateway VTAMs and single gateway NCP	433
138. Primary logical unit (PLU) sends UNBIND for single gateway VTAM and single gateway NCP	. 434
139. Secondary logical unit (SLU) requests TERMINATE SELF for multiple gateway VTAMs and back- to-back gateway NCPs	434
140. Secondary logical unit (SLU) requests TERMINATE SELF (CLEANUP) for single gateway VTAM and single gateway NCP	435
141. Secondary logical unit (SLU) requests TERMINATE SELF for single gateway VTAM and single gateway NCP	. 435
142. Active session termination of type 2.1 nodes	436
143. Deactivating a PU acting as an adjacent link station for independent LU sessions	436
144. Deactivating sessions or LUs using VARY NET,TERM unconditional	. 437
145. Deactivating sessions or LUs using VARY NET.TERM cleanup	438

146. Terminating a queued session	438
147. CLOSE ACB processing	439
148. Deactivating an application program	440
149. Deactivating a CDRM: Normal	440
150. Deactivating a CDRM: Immediate	441
151. Deactivating a CDRM: Forced	441
152. Deactivating a CDRM without affecting active sessions: Immediate	442
153. Deactivating a CDRM without affecting active sessions: Forced	442
154. Deactivating a CDRM on a VTAM level before V3R4.1: Forced or immediate	443
155. SSCP-SSCP session termination causes LU-LU sessions to be broken	444
156. Route failure in intermediate network causes termination of LU-LU sessions	445
157. Route failure in intermediate network causes termination of SSCP-SSCP sessions	445
158. Error recovery processing: Soft INOP	446
159. Error recovery processing: Hard INOP	447
160. FORWARD and DELIVER routing	447
161. Unsolicited LPDA-2 test on thresholds reached for an LPDA-2 PU with one link segment	447
162. Unsolicited LPDA-2 test on thresholds reached for an LPDA-2 PU with two link segments	448
163. Unsolicited LPDA-2 test on permanent link error with two link segments	448
164. Establishment of XRF primary and backup sessions	449
165. XRF session switch (takeover)	450
166. Secondary logical unit initiate with USERVAR (LOGON)	451
167. Third-party initiate (CLSDST PASS)	452
168. CP-CP contention-winner session activation	458
169. CP-CP contention-loser session activation	460
170. Host CP initiating deactivation of CP-CP session	461

171. Remote node initiating deactivation of CP-CP session	461
172. Activating a leased APPN node type 2.1	462
173. Activating an APPN host-to-host channel	463
174. Resource registration: EN to NN to CDS	465
175. Resource registration with error recovery	466
176. Locate resource: EN to NN	466
177. Locate resource: EN to NN to EN	467
178. Locate resource: EN to NN to two ENs	468
179. Locate resource: EN to NN to NN to NN	469
180. Locate resource: CP network broadcast initiation	470
181. Locate resource: EN to NN to subarea network	471
182. Locate resource: Complex APPN network	472
183. Locate resource: Complex APPN network using more than one CDS (part 1 of 2)	474
184. Locate resource: Complex APPN network using more than one CDS (part 2 of 2)	475
185. Locate resource: Network node server, NN1, of the originating logical unit (OLU) is at pre-V4R2 level (part 1 of 2)	476
186. Locate resource: Network node server, NN1, of the originating logical unit (OLU) is at pre-V4R2 level (part 2 of 2)	477
187. Locate resource: APPN and subarea network (part 1 of 3)	478
188. Locate resource: APPN and subarea network (part 2 of 3)	479
189. Locate resource: APPN and subarea network (part 3 of 3)	480
190. Locate resource: Directory search verification reduction	481
191. Locate resource: SLU-initiated session	482
192. Locate resource: CP-CP session terminates	483
193. Locate resource: Network node receives network broadcast request	484
194. EN (PLU)—NNSAPPN network, PLU-initiated, with no queueing	487
195. EN (PLU)—NNSAPPN network, PLU-initiated, queued by the PLU	487

196. EN (PLU)—NNSAPPN network, PLU-initiated, queued by the SLU	488
197. EN (SLU)—NNSAPPN network, SLU-initiated, with no queueing	488
198. EN (SLU)—NNSAPPN network, SLU-initiated, queued by the PLU	489
199. APPN networkNNS—EN (SLU), PLU-initiated, no queueing	489
200. APPN networkNNS—EN (SLU), PLU-initiated, queued by the SLU	490
201. APPN networkNNS—EN (PLU), SLU-initiated, no queueing	490
202. APPN networkNNS—EN (PLU), SLU-initiated, queued by the PLU	491
203. SA(PLU)==ICNAPPN network (SLU), DSRLIST transforming into PLU-initiated, search-only	491
204. SA (PLU)==ICNAPPN network (SLU), PLU-initiated, with no queueing	492
205. SA (PLU)==ICNAPPN network (SLU), PLU-initiated, USERVAR resolution required	493
206. SA (PLU)==ICNAPPN network (SLU), PLU-initiated, queued by the SLU (part 1 of 2)	493
207. SA (PLU)==ICNAPPN network (SLU), PLU-initiated, queued by the SLU (part 2 of 2)	494
208. SA (SLU)==ICNAPPN network (PLU), SLU-initiated, no queueing	495
209. SA (SLU)==ICNAPPN network (PLU), SLU-initiated, queued by the PLU	496
210. SA (SLU)==ICNAPPN network (PLU), autologon, PLU not available initially	497
211. SA(PLU)==ICNAPPN network(SLU), orderly termination of active session	498
212. APPN network(PLU)ICN==(SA)SLU, orderly termination of active session	499
213. SA(SLU)==ICNAPPN network(PLU), forced termination of pending active session	499
214. SA(PLU)==ICNAPPN network(SLU), forced termination of pending active session (PLU accessible without going into APPN)	500
215. SA(PLU)==ICNAPPN network(SLU), forced termination of queued session	501
216. SA(PLU)==ICNAPPN network(SLU), forced termination of queued session (PLU accessible without going into APPN)	502
217. SA (PLU)==ICNAPPN network (SLU), session release request	502
218. SA (SLU)==ICNAPPN network (PLU), session release request	503
219. CLSDST PASS through APPN. The SLU is single-session capable	503
220. CLSDST PASS from APPN to subarea. The SLU is single-session capable	504

221. EN-NN-EN, PLU-initiated, no queueing (Including BIND flows for intermediate network node)	505
222. Intermediate network node (INN) BIND	.506
223. APPN network (PLU)ICN==SA(SLU), PLU-initiated, search-only flow transformed into a DSRLST	506
224. APPN network (PLU)ICN==SA(SLU), PLU-initiated, no queueing	.507
225. APPN network (PLU)ICN==SA(SLU), PLU-initiated, directed search without required precomputed RSCV	508
226. APPN network (PLU)ICN==SA(SLU), PLU-initiated, USERVAR resolution required	.509
227. APPN network (PLU)ICN==SA(SLU), PLU-initiated, queued by the SLU	510
228. APPN network (SLU)ICN==SA(PLU), SLU-initiated, no queueing	.511
229. APPN network (SLU)ICN==SA(PLU), SLU-initiated, queued by the PLU (part 1 of 2)	512
230. APPN network (SLU)ICN==SA(PLU), SLU-initiated, queued by the PLU (part 2 of 2)	513
231. APPN network (SLU)ICN==SA(PLU), autologon (PLU not available initially)	514
232. APPN network (PLU)ICN==VR-based TG==ICNAPPN network (SLU), PLU-initiated	515
233. DLUR-initiated CPSVRMGR pipe activation	517
234. DLUS-initiated CPSVRMGR pipe activation	518
235. Dynamic PU activation	519
236. Dynamic registration and activation of dependent LUs	519
237. Activation of predefined dependent LUs	.520
238. SSCP-PU session activation race	520
239. CPSVRMGR pipe deactivation	521
240. Downstream PU outage	522
241. Receipt of REQDISCONT (normal) from downstream PU	523
242. Receipt of REQDISCONT (immediate) from downstream PU	524
243. Normal SSCP-PU/SSCP-LU session deactivation	.525
244. Forced SSCP-PU/SSCP-LU session deactivation	526
245. Giveback SSCP-PU/SSCP-LU session deactivation (ANS=STOP)	527

246. Giveback SSCP-PU/SSCP-LU session deactivation (ANS=CONT)	528
247. APPN PLU-initiated LU-LU session to a dependent SLU	529
248. USS SLU-initiated LU-LU session to APPN PLU	.530
249. USS SLU-initiated LU-LU session to subarea PLU	531
250. USS flows for LU-LU session termination	.532
251. PLU-initiated search with DLUS and DLUR within different subnetworks, PLU through the subarea (part 1 of 2)	533
252. PLU-initiated search with DLUS and DLUR within different subnetworks, PLU through the subarea (part 2 of 2)	534
253. PLU-initiated session with DLUS and PLU in same subnetwork and DLUR in another (part 1 of 2)	535
254. PLU-initiated session with DLUS and PLU in same subnetwork and DLUR in another (part 2 of 2)	536
255. SLU-initiated session with DLUS and DLUR within different subnetworks (part 1 of 2)	537
256. SLU-initiated session with DLUS and DLUR within different subnetworks (part 2 of 2)	538
257. An example of two Rapid-Transport Protocol (RTP) nodes with a T2.1 connection	.541
258. Two Rapid-Transport Protocol (RTP) nodes with virtual-route-based transmission group	542
259. Rapid-Transport Protocol (RTP) connection over portion of session path	.543
260. Rapid-Transport Protocol (RTP) across composite nodes with T2.1 connection through NCP	544
261. Rapid-Transport Protocol (RTP) across composite nodes with T2.1 connection through VTAM	545
262. Rapid-Transport Protocol (RTP) across composite nodes with a virtual-route-based transmission group, NCP does ANR routing	546
263. Rapid-Transport Protocol (RTP) across composite nodes with a virtual-route-based transmission group, VTAM does ANR routing	547
264. Sample IPCS panel BLSPPRIM customization	.572
265. Addition of option 7 to the IPCS primary option menu	572
266. Main menu for selecting dump options	.573
267. Sample ISPF panel ISR@PRIM customization	574
268. Addition of option V to the ISPF/PDF primary option menu	.575
269. Main menu for selecting trace parameters	575

Tables

1. Index of common problems in subarea networks	4
2. Index of common problems in APPN networks	21
3. Index of common problems in HPR networks	34
4. Index of problem symptoms and associated VTAM problem types	38
5. VIT analysis tool problems: Common symptoms and actions	42
6. Recommended documentation for VTAM problems	46
7. VTAM locks	68
8. IST messages associated with CSA storage problems	86
9. IST messages associated with private storage problems	87
10. ABENDOAB information in LOGREC	96
11. ABENDOAB information in a dump of SDWA	97
12. Processing externally recorded trace data	283
13. Printing external trace entries	283
14. Symbols and numbers for formatting and printing VTAM traces	283
15. Fields in VTAM trace output	284
16. Fields in the buffer contents trace	289
17. Fields in the 3270 IDS trace	290
18. Fields in the SMS trace	305
19. Location of TPUT (outbound) error	306
20. Location of TGET (inbound) error	306
21. Explanation of the 3270 data stream	310
22. Boolean expression operators in order of precedence	338
23. VTAM channel commands for type 2 and type 4 physical units	354

24. PUNS-related channel programs	358
25. Channel commands for channel-to-channel adapters	362
26. Channel command words for channel-attached non-SNA 3270 devices	380
27. Write data channel program	381
28. Read Modified channel program	382
29. Read buffer channel program	382
30. Erase/Write channel program	384
31. Erase/Write Alternate channel program	384
32. Erase All Unprotected channel program	385
33. Index of network flows	387
34. Index of generic BIND (GBIND) AMRU flows	392
35. Index of resource activation flows	394
36. Index of session establishment flows	407
37. Index of deactivation and session termination flows	429
38. Index of error detection and recovery and SSCP management services flows	446
39. Index of APPN flows	453
40. Index of CP-CP session flows	457
41. Index of directory services flows	464
42. Index of LU-LU session flows	485
43. Index of dependent LU server flows	515
44. Index of High-Performance Routing flows	540
45. Control point/control block operation codes (CPCBOPC)	549
46. Control block ID codes	565
47. Target data sets for dump and trace tools	571
48. Related information on problem topics in other libraries	577

About this document

This document is intended to help system programmers in a VTAM® environment to diagnose problems with the VTAM program. Use the document to isolate and identify problems with your VTAM network and to collect appropriate documentation to resolve network problems.

The information in this document includes descriptions of support for both IPv4 and IPv6 networking protocols. Unless explicitly noted, descriptions of IP protocol support concern IPv4. IPv6 support is qualified within the text.

Who should read this document

System programmers should use this document to analyze a VTAM problem, classify the problem as a specific type, and provide information about the problem to an IBM® Support Center representative.

How this document is organized

This document is organized into the following parts:

- Part 1, "Diagnostic techniques," on page 1 describes how to identify a problem.
- Part 2, "Diagnostic procedures," on page 107 describes how to use diagnostic procedures.
- Appendix A, "Channel programs," on page 353, Appendix B, "Network flows," on page 387, Appendix B, "Network flows," on page 387, Appendix D, "Control point/control block (CPCB) operation codes," on page 549, Appendix E, "Storage and control block ID codes," on page 565, Appendix F, "Installing dump analysis and VIT analysis tools," on page 571, Appendix G, "Problem topics in other libraries," on page 577, Appendix H, "Architectural specifications," on page 581, and Appendix I, "Accessibility," on page 583 provide additional information for this document.

How to use this document

You should be familiar with the service aids for VTAM and the procedures for reporting problems to an IBM Support Center representative.

How to contact IBM service

For immediate assistance, visit this website: https://www.ibm.com/mysupport

Most problems can be resolved at this website, where you can submit questions and problem reports electronically, and access a variety of diagnosis information.

For telephone assistance in problem diagnosis and resolution (in the United States or Puerto Rico), call the IBM Software Support Center anytime (1-800-IBM-SERV). You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m. – 5:00 p.m., local customer time).

Outside the United States or Puerto Rico, contact your local IBM representative or your authorized IBM supplier.

If you would like to provide feedback on this publication, see <u>"Communicating your comments to IBM" on page 605.</u>

Conventions and terminology that are used in this information

Commands in this information that can be used in both TSO and z/OS UNIX environments use the following conventions:

• When describing how to use the command in a TSO environment, the command is presented in uppercase (for example, NETSTAT).

- When describing how to use the command in a z/OS UNIX environment, the command is presented in bold lowercase (for example, **netstat**).
- When referring to the command in a general way in text, the command is presented with an initial capital letter (for example, Netstat).

All the exit routines described in this information are *installation-wide exit routines*. The installation-wide exit routines also called installation-wide exits, exit routines, and exits throughout this information.

The TPF logon manager, although included with VTAM, is an application program; therefore, the logon manager is documented separately from VTAM.

Samples used in this information might not be updated for each release. Evaluate a sample carefully before applying it to your system.

z/OS no longer supports mounting HFS data sets (The POSIX style file system). Instead, a z/OS File System (ZFS) can be implemented. The term hierarchical file system, abbreviated as HFS, is defined as a data structure that has a hierarchical nature with directories and files. References to hierarchical file systems or HFS might still be in use in z/OS Communications Server publications.

Note: In this information, you might see the following Shared Memory Communications over Remote Direct Memory Access (SMC-R) terminology:

- Roce Express®, which is a generic term representing IBM 10 GbE Roce Express, IBM 10 GbE Roce
 Express2, and IBM 25 GbE Roce Express2 feature capabilities. When this term is used in this
 information, the processing being described applies to all of these features. If processing is applicable
 to only one feature, the full terminology, for instance, IBM 10 GbE Roce Express will be used.
- Roce Express2, which is a generic term representing an IBM Roce Express2® feature that might operate in either 10 GbE or 25 GbE link speed. When this term is used in this information, the processing being described applies to either link speed. If processing is applicable to only one link speed, the full terminology, for instance, IBM 25 GbE Roce Express2 will be used.
- RDMA network interface card (RNIC), which is used to refer to the IBM 10 GbE RoCE Express, IBM[®] 10 GbE RoCE Express2, or IBM 25 GbE RoCE Express2 feature.
- Shared RoCE environment, which means that the "RoCE Express" feature can be used concurrently, or shared, by multiple operating system instances. The feature is considered to operate in a shared RoCE environment even if you use it with a single operating system instance.

Clarification of notes

Information traditionally qualified as Notes is further qualified as follows:

Attention

Indicate the possibility of damage

Guideline

Customary way to perform a procedure

Note

Supplemental detail

Rule

Something you must do; limitations on your actions

Restriction

Indicates certain conditions are not supported; limitations on a product or facility

Requirement

Dependencies, prerequisites

Result

Indicates the outcome

Tip

Offers shortcuts or alternative ways of performing an action; a hint

How to read a syntax diagram

This section describes how to read the syntax diagrams used in this book.

Read the diagrams from left-to-right, top-to-bottom, following the main path line. Each diagram begins
on the left with double arrowheads (►►) and ends on the right with two arrowheads facing each other
(►◄).

• If a diagram is longer than one line, the first line ends with a single arrowhead (►) and the second line begins with a single arrowhead.

```
First Line — OPERAND1 — OPERAND2 — OPERAND3 — OPERAND4 — OPERAND5 →

Second Line →
```

• Required operands and values appear on the main path line.

```
➤ REQUIRED_OPERAND →
```

You must code required operands and values.

If there is more than one mutually exclusive required operand or value to choose from, they are stacked vertically in alphanumeric order.

```
REQUIRED_OPERAND_OR_VALUE_1

REQUIRED_OPERAND_OR_VALUE_2
```

• Optional operands and values appear below the main path line.

You can choose not to code optional operands and values.

If there is more than one mutually exclusive optional operand or value to choose from, they are stacked vertically in alphanumeric order below the main path line.

```
OPERAND_OR_VALUE_1
OPERAND_OR_VALUE_2
```

An arrow returning to the left above an operand or value on the main path line means that the operand
or value can be repeated. The comma means that each operand or value must be separated from the
next by a comma.

• An arrow returning to the left above a group of operands or values means more than one can be selected, or a single one can be repeated.

A word in all uppercase is an operand or value you must spell exactly as shown. In this example, you
must code OPERAND.

Note: VTAM and IP commands are not case sensitive. You can code them in uppercase or lowercase. If the operand is shown in both uppercase and lowercase, the uppercase portion is the abbreviation (for example, OPERand).

```
→ OPERAND →
```

If an operand or value can be abbreviated, the abbreviation is described in the text associated with the syntax diagram.

• If a diagram shows a character that is not alphanumeric (such as parentheses, periods, commas, and equal signs), you must code the character as part of the syntax. In this example, you must code **OPERAND=(001,0.001)**.

```
\longrightarrow OPERAND \longrightarrow = \longrightarrow (\longrightarrow 0.001 \longrightarrow ) \longrightarrow
```

• If a diagram shows a blank space, you must code the blank space as part of the syntax. In this example, you must code **OPERAND=(001 FIXED)**.

```
\longrightarrow OPERAND \longrightarrow = \longrightarrow (\longrightarrow 001 \longrightarrow FIXED \longrightarrow) \longrightarrow
```

Default operands and values appear above the main path line. VTAM uses the default if you omit the
operand entirely.

• A word in all lowercase italics is a *variable*. Where you see a variable in the syntax, you must replace it with one of its allowable names or values, as defined in the text.

```
→ variable →
```

• References to syntax notes appear as numbers enclosed in parentheses above the line. Do not code the parentheses or the number.

Notes:

¹ An example of a syntax note.

• Some diagrams contain *syntax fragments*, which serve to break up diagrams that are too long, too complex, or too repetitious. Syntax fragment names are in mixed case and are shown in the diagram and in the heading of the fragment. The fragment is placed below the main diagram.

```
Reference to Syntax Fragment

Syntax Fragment

1ST_OPERAND ____, ___ 2ND_OPERAND _____, ___ 3RD_OPERAND _____
```

Prerequisite and related information

z/OS Communications Server function is described in the z/OS Communications Server library. Descriptions of those documents are listed in "Bibliography" on page 591, in the back of this document.

Required information

Before using this product, you should be familiar with TCP/IP, VTAM, MVS[™], and UNIX System Services.

Softcopy information

Softcopy publications are available in the following collection.

Titles	Description
IBM Z Redbooks	The IBM Z ^{®®} subject areas range from e-business application development and enablement to hardware, networking, Linux [®] , solutions, security, parallel sysplex, and many others. For more information about the Redbooks [®] publications, see http://www.ibm.com/ systems/z/os/zos/zfavorites/.

Other documents

This information explains how z/OS references information in other documents.

When possible, this information uses cross-document links that go directly to the topic in reference using shortened versions of the document title. For complete titles and order numbers of the documents for all products that are part of z/OS, see z/OS Information Roadmap (SA23-2299). The Roadmap describes what level of documents are supplied with each release of z/OS Communications Server, and also describes each z/OS publication.

To find the complete z/OS library, visit the z/OS library in $\underline{IBM Documentation}$ (https://www.ibm.com/docs/en/zos).

Relevant RFCs are listed in an appendix of the IP documents. Architectural specifications for the SNA protocol are listed in an appendix of the SNA documents.

The following table lists documents that might be helpful to readers.

Title	Number
DNS and BIND, Fifth Edition, O'Reilly Media, 2006	ISBN 13: 978-0596100575
Routing in the Internet, Second Edition, Christian Huitema (Prentice Hall 1999)	ISBN 13: 978-0130226471
sendmail, Fourth Edition, Bryan Costales, Claus Assmann, George Jansen, and Gregory Shapiro, O'Reilly Media, 2007	ISBN 13: 978-0596510299
SNA Formats	GA27-3136
TCP/IP Illustrated, Volume 1: The Protocols, W. Richard Stevens, Addison-Wesley Professional, 1994	ISBN 13: 978-0201633467
TCP/IP Illustrated, Volume 2: The Implementation, Gary R. Wright and W. Richard Stevens, Addison-Wesley Professional, 1995	ISBN 13: 978-0201633542
TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX Domain Protocols, W. Richard Stevens, Addison-Wesley Professional, 1996	ISBN 13: 978-0201634952
TCP/IP Tutorial and Technical Overview	GG24-3376
Understanding LDAP	SG24-4986
z/OS Cryptographic Services System SSL Programming	SC14-7495
z/OS IBM Tivoli Directory Server Administration and Use for z/OS	SC23-6788
z/OS JES2 Initialization and Tuning Guide	SA32-0991
z/OS Problem Management	SC23-6844
z/OS MVS Diagnosis: Reference	GA32-0904
z/OS MVS Diagnosis: Tools and Service Aids	GA32-0905
z/OS MVS Using the Subsystem Interface	SA38-0679

Title	Number
z/OS Program Directory	GI11-9848
z/OS UNIX System Services Command Reference	SA23-2280
z/OS UNIX System Services Planning	GA32-0884
z/OS UNIX System Services Programming: Assembler Callable Services Reference	SA23-2281
z/OS UNIX System Services User's Guide	SA23-2279
z/OS XL C/C++ Runtime Library Reference	SC14-7314
Open Systems Adapter-Express Customer's Guide and Reference	SA22-7935

Redbooks publications

The following Redbooks publications might help you as you implement z/OS Communications Server.

Title	Number
IBM z/OS Communications Server TCP/IP Implementation, Volume 1: Base Functions, Connectivity, and Routing	SG24-8096
IBM z/OS Communications Server TCP/IP Implementation, Volume 2: Standard Applications	SG24-8097
IBM z/OS Communications Server TCP/IP Implementation, Volume 3: High Availability, Scalability, and Performance	SG24-8098
IBM z/OS Communications Server TCP/IP Implementation, Volume 4: Security and Policy-Based Networking	SG24-8099
IBM Communication Controller Migration Guide	SG24-6298
IP Network Design Guide	SG24-2580
Managing OS/390 TCP/IP with SNMP	SG24-5866
Migrating Subarea Networks to an IP Infrastructure Using Enterprise Extender	SG24-5957
SecureWay Communications Server for OS/390 V2R8 TCP/IP: Guide to Enhancements	SG24-5631
SNA and TCP/IP Integration	SG24-5291
TCP/IP in a Sysplex	SG24-5235
TCP/IP Tutorial and Technical Overview	GG24-3376
Threadsafe Considerations for CICS	SG24-6351

Where to find related information on the Internet

z/OS

This site provides information about z/OS Communications Server release availability, migration information, downloads, and links to information about z/OS technology

http://www.ibm.com/systems/z/os/zos/

z/OS Internet Library

Use this site to view and download z/OS Communications Server documentation

http://www.ibm.com/systems/z/os/zos/library/bkserv/

z/OS Communications Server product

The page contains z/OS Communications Server product introduction

https://www.ibm.com/products/zos-communications-server

IBM Communications Server product support

Use this site to submit and track problems and search the z/OS Communications Server knowledge base for Technotes, FAQs, white papers, and other z/OS Communications Server information

https://www.ibm.com/mysupport

IBM Communications Server performance information

This site contains links to the most recent Communications Server performance reports

http://www.ibm.com/support/docview.wss?uid=swg27005524

IBM Systems Center publications

Use this site to view and order Redbooks publications, Redpapers, and Technotes

http://www.redbooks.ibm.com/

z/OS Support Community

Search the z/OS Support Community Library for Techdocs (including Flashes, presentations, Technotes, FAQs, white papers, Customer Support Plans, and Skills Transfer information)

z/OS Support Community

Tivoli® NetView® for z/OS

Use this site to view and download product documentation about Tivoli NetView for z/OS

http://www.ibm.com/support/knowledgecenter/SSZJDU/welcome

RFCs

Search for and view Request for Comments documents in this section of the Internet Engineering Task Force website, with links to the RFC repository and the IETF Working Groups web page

http://www.ietf.org/rfc.html

Internet drafts

View Internet-Drafts, which are working documents of the Internet Engineering Task Force (IETF) and other groups, in this section of the Internet Engineering Task Force website

http://www.ietf.org/ID.html

Information about web addresses can also be found in information APAR II11334.

Note: Any pointers in this publication to websites are provided for convenience only and do not serve as an endorsement of these websites.

DNS websites

For more information about DNS, see the following USENET news groups and mailing addresses:

USENET news groups

comp.protocols.dns.bind

BIND mailing lists

https://lists.isc.org/mailman/listinfo

BIND Users

- Subscribe by sending mail to bind-users-request@isc.org.
- Submit questions or answers to this forum by sending mail to bind-users@isc.org.

BIND 9 Users (This list might not be maintained indefinitely.)

- Subscribe by sending mail to bind9-users-request@isc.org.
- Submit questions or answers to this forum by sending mail to bind9-users@isc.org.

The z/OS Basic Skills Information Center

The z/OS Basic Skills Information Center is a web-based information resource intended to help users learn the basic concepts of z/OS, the operating system that runs most of the IBM mainframe computers in use today. The Information Center is designed to introduce a new generation of Information Technology professionals to basic concepts and help them prepare for a career as a z/OS professional, such as a z/OS systems programmer.

Specifically, the z/OS Basic Skills Information Center is intended to achieve the following objectives:

- Provide basic education and information about z/OS without charge
- Shorten the time it takes for people to become productive on the mainframe
- Make it easier for new people to learn z/OS

To access the z/OS Basic Skills Information Center, open your web browser to the following website, which is available to all users (no login required): https://www.ibm.com/support/knowledgecenter/zosbasics/homepage.html?cp=zosbasics

Summary of changes for SNA Diagnosis Volume 1: Techniques and Procedures

This document contains terminology, maintenance, and editorial changes, including changes to improve consistency and retrievability. Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.

Changes made in z/OS Communications Server Version 2 Release 5

This document contains information previously presented in z/OS Communications Server: SNA Diagnosis Vol 1, Techniques and Procedures, which supported z/OS Version 2 Release 4.

Changed information

- Removal of CMIP from VTAM, see the following topics:
 - "VTAM locks" on page 68
 - "VTAM internal trace (VIT)" on page 278
 - "VTAM trace record formats" on page 284
 - "Buffer contents trace" on page 286
 - "Choosing between partial and full buffer contents trace" on page 287
 - "Buffer contents trace operation" on page 287
 - Appendix D, "Control point/control block (CPCB) operation codes," on page 549

Removed information

- Patch areas
- Removal of CMIP from VTAM:
 - Buffer contents trace for CMIP services API
 - When to use the buffer contents trace for CMIP services API

Changes made in z/OS Communications Server Version 2 Release 4

This document contains information previously presented in z/OS Communications Server: SNA Diagnosis Vol 1, Techniques and Procedures, which supported z/OS Version 2 Release 3.

Changed information

• Network support for z/OS Container Extensions, see "I/O trace" on page 295.

Changes made in z/OS Communications Server Version 2 Release 3

This document contains information previously presented in z/OS Communications Server: SNA Diagnosis Vol 1, Techniques and Procedures, which supported z/OS Version 2 Release 2.

New information

- VTAM 3270 intrusion detection services, see the following topics:
 - "Buffer contents trace for 3270 IDS incidents" on page 289
 - "3270 IDS trace operation" on page 290
 - "3270 IDS trace output" on page 290

- "3270 data stream formatting" on page 308
 - "3270 data stream output" on page 308
 - "Explanation of the 3270 data stream" on page 310

Changed information

VTAM 3270 intrusion detection services, see the following topics:

- "Missing VTAM trace records" on page 17
- Chapter 6, "Using VTAM dump analysis tools," on page 163
 - "SPANC" on page 241
 - "STORAGE" on page 246
- "Traces provided by VTAM" on page 269
 - "Formatting and printing trace records" on page 282
 - "Using IPCS with the GTF trace option" on page 283
 - "VTAM trace record formats" on page 284

Part 1. Diagnostic techniques

Chapter 1. Diagnosing VTAM problems: Where to begin

This information includes the following topics:

- To help you determine the source of your problem, see <u>"Determining whether the problem is VTAM or</u> non-VTAM" on page 3.
- To compare your problem to a list of common problems that have been identified by the IBM Support Center, see "Common problems in subarea networks" on page 4, "Common problems in APPN networks" on page 20, and "Common problems in HPR networks" on page 34.

For additional information, see "Common symptoms and associated VTAM problem types" on page 38.

- If you are having problems with the trace or dump analysis tools, see "VTAM internal trace (VIT) analysis tool problems" on page 41 and "VTAM dump analysis tool problems" on page 43.
- To gather additional documentation to help you to solve your problem, see <u>"Recommended documentation for VTAM problems"</u> on page 44.
- To prepare your documentation for submission to the IBM Support Center, see <u>"Submitting</u> documentation on tape" on page 50.

Determining whether the problem is VTAM or non-VTAM

Problems can be classified into two types:

VTAM problems

These are problems that occur in the VTAM program.

Non-VTAM problems

These are problems that occur because of changes to your network or problems caused by other application programs or software in the network, such as a network control program (NCP) or a local area network (LAN).

If you did any of the following actions, the problem might be in your network setup, in your configuration, or in another IBM product:

- Did you modify an application program that has run without problems in the past?
- Did you modify a product exit routine that has run without problems in the past?
- Did you change the processing environment? For example, did you introduce a new host processor or communication controller?
- Did you modify the operating system, or did you install a new release of the operating system?
- Did you add a new terminal to your VTAM network that had incorrect features or incorrect Request for Engineering Activity (REA) and Engineering Change (EC) levels?
- Did you attach a link?
- Did you set switches at a terminal?
- Did you initialize link parameters for a programmable controller?
- Did you modify installation-provided VTAM tables? For example, did you modify logmode, Class of Service (CoS), or unformatted system services (USS) tables?
- Did you modify VTAM messages?

If you cannot resolve the problem on your own:

- Compare your problem to the examples in <u>"Common problems in subarea networks" on page 4</u> and "Common problems in APPN networks" on page 20.
- Check Table 4 on page 38 for your problem symptom.

- Follow the instructions in <u>"Recommended documentation for VTAM problems"</u> on page 44. To gather additional information, see <u>Chapter 2</u>, <u>"Collecting documentation for specific types of problems," on page 53.</u>
- For non-VTAM problems, call your IBM branch office. For suspected VTAM problems, do either of the following steps:
 - If you have access to IBMLink, search for known problems in this area. If no applicable matches are found, report the problem to IBM by using the electronic technical report (ETR) option on IBMLink.
 - Contact the IBM Software Support Center at 1-800-IBM-SERV.

If a reported problem is a hardware, network definition, or user definition error, the IBM Support Center representative creates an ASKQ item for VTAM. The ASKQ item includes the solution for the problem and can be found in the problem determination database (PDDB).

Common problems and symptoms

This topic contains the following information:

- "Common problems in subarea networks" on page 4
- "Common problems in APPN networks" on page 20
- "Common problems in HPR networks" on page 34
- "Common symptoms and associated VTAM problem types" on page 38

Even in cases when a VTAM problem has the same symptoms as a non-VTAM problem, by studying similar examples in this topic, you may be better prepared when you contact the IBM Support Center.

If you have access to a software support database, you can search for your problem in that database and apply any recommended correction.

Common problems in subarea networks

<u>Table 1 on page 4</u> includes a brief description of several common problems that occur in subarea networks. For additional information, see the page indicated.

Table 1. Index of common problems in subarea networks

Problem	See page
Abend 0C4 in ISTTSCPF when move character instruction processed (reason code 4, 10, or 11)	"Abend 0C4 occurs in ISTTSCPF" on page 8
Abend in user exit ISTEXCCS, ISTEXCSD, ISTEXCAA, or ISTEXCVR with a dump taken by VTAM ESTAE ISTIECXT, ISTEXCEX, or ISTCSCSD	"Abend in user exit ISTEXCCS, ISTEXCSD, ISTEXCAA, or ISTEXCVR" on page 8
Activating an NCP and resources fail	Sense codes 10030000 and 08090000 received when activating an NCP
APPL-APPL storage expansion failure with messages IST154I, IST561I, IST999E, IST566I, and IST930I	"Messages IST154I, IST561I, IST999E, IST566I, and IST930I received for APPL- APPL storage expansion failure" on page 17
BIND failure with message IST663I (sense code 083500xx or 08210000) and USSMSG07	"Sense code 083500xx or 08210000 received with BIND failure" on page 19

Table 1. Index of common problems in subarea networks (continued)

Problem	See page
CICS® logon problem with message IST663I (sense code 08210000)	"Message IST663I (sense code 08210000) and cannot log on to CICS" on page 16
CINIT failure with message IST663I (sense code 08010000)	"Sense code 08010000 received with CINIT failure" on page 18
DSRLST pending condition and CD DSEARCH PENDING in message IST530I or message IST1278I	"Message IST530I or IST1278I received with pending DSRLST condition" on page 15
LU hung in PNFYx state.	"LU hung in PNFYx state" on page 9
Message IKT029I with return code 061001 (TSO logon failure from a session manager application program)	"Message IKT029I (return code 061001) received with TSO logon failure" on page
Message IST259I and sessions end unexpectedly for a terminal, PU, line, or NCP.	"Message IST259I received and sessions end unexpectedly" on page 11
Message IST259I indicating that an INOP RU was received for a link problem	"Message IST259I received with INOP RU" on page 10
Message IST264I (required CoS entry undefined) and message IST663I with sense code 08610000	"Message IST663I (sense code 08610000) and IST264I received for undefined CoS entry" on page 16
Message IST467I with error type 05, 07, 08, or 0B during activation of a PU	"Message IST467I received with CONTACTED ERROR TYPE 05, 07, 08, or 0B" on page 11
Message IST530I (DSRLST pending condition)	"Message IST530I or IST1278I received with pending DSRLST condition" on page 15
Message IST530I (GUNBIND pending)	"Message IST530I or IST1278I received with GUNBIND PENDING or session hangs in PSESEND state" on page 13
Message IST530I (NMVT PENDING)	"Message IST530I or IST1278I received with NMVT PENDING" on page 15
Message IST663I with sense code 08010000 (CINIT failure)	"Sense code 08010000 received with CINIT failure" on page 18
Message IST663I with sense code 08210000 (CICS logon problem)	"Message IST663I (sense code 08210000) and cannot log on to CICS" on page 16

Table 1. Index of common problems in subarea networks (continued)

Problem	See page
Message IST663I (sense code 083500xx or 08210000) and USSMSG07 (BIND failure)	"Sense code 083500xx or 08210000 received with BIND failure" on page 19
Message IST663I (sense code 08610000) and message IST264I (required CoS entry undefined)	"Message IST663I (sense code 08610000) and IST264I received for undefined CoS entry" on page 16
Message IST1278I (DSRLST pending condition)	"Message IST530I or IST1278I received with pending DSRLST condition" on page 15
Message IST1278I (GUNBIND pending)	"Message IST530I or IST1278I received with GUNBIND PENDING or session hangs in PSESEND state" on page 13
Message IST1278I (NMVT PENDING)	"Message IST530I or IST1278I received with NMVT PENDING" on page 15
Messages IST154I, IST561I, IST999E, IST566I, and IST930I (APPL-APPL storage expansion failure)	"Messages IST154I, IST561I, IST999E, IST566I, and IST930I received for APPL-APPL storage expansion failure" on page 17
PNFYx resource state and LU hung	"LU hung in PNFYx state" on page 9
PSESEND session termination state and hung session	"Message IST530I or IST1278I received with GUNBIND PENDING or session hangs in PSESEND state" on page 13
Resources fail when activating an NCP (sense codes 10030000 and 08090000).	Sense codes 10030000 and 08090000 received when activating an NCP
Sense code 08010000 with message IST663I (CINIT failure)	"Sense code 08010000 received with CINIT failure" on page 18
Sense code 08210000 with message IST663I (CICS logon problem)	"Message IST663I (sense code 08210000) and cannot log on to CICS" on page 16
Sense code 083500xx or 08210000 (message IST663I) and USSMSG07 (BIND failure)	"Sense code 083500xx or 08210000 received with BIND failure" on page 19
Sense code 08610000 (message IST663I) and message IST264I (required CoS entry undefined)	"Message IST663I (sense code 08610000) and IST264I received for undefined CoS entry" on page 16

Table 1. Index of common problems in subarea networks (continued)

Problem	See page
Sense code 08610000 (message IST663I) and message IST264I (required CoS entry undefined)	"Message IST663I (sense code 08610000) and IST264I received for undefined CoS entry" on page 16
Sense code 0888000x with session failure	"Session failure with sense code 0888000x" on page 20
Sense code 800A0000 or no message with session failure	"Sense code 800A0000 or no message, and sessions end unexpectedly" on page 19
Sense code 80130104 and path problems	"Example: Solving path problems" on page 138
Sense codes 10030000 and 08090000. (Resources fail when activating an NCP.)	Sense codes 10030000 and 08090000 received when activating an NCP
Session fails with sense code 0888000x.	"Session failure with sense code 0888000x" on page 20
Session hung with PSESEND session termination state.	"Message IST530I or IST1278I received with GUNBIND PENDING or session hangs in PSESEND state" on page 13
Sessions end unexpectedly for a terminal, PU, line, or NCP with message IST259I.	"Message IST259I received and sessions end unexpectedly" on page 11
Sessions end with no message or sense code 800A0000.	"Sense code 800A0000 or no message, and sessions end unexpectedly" on page 19
Storage problem	"Storage problem procedure" on page 85
TSO application program receives partial input for the TGET macroinstruction.	"Partial input for TGET received by TSO" on page 18
TSO logon failure from a session manager application program with message IKT029I and return code 061001	"Message IKT029I (return code 061001) received with TSO logon failure" on page
USS message USSMSG07 and message IST663I with sense code 083500xx or 08210000 (BIND failure)	"Sense code 083500xx or 08210000 received with BIND failure" on page 19
VTAM trace records were expected but are not in the GTF trace data set.	"Missing VTAM trace records" on page 17

Descriptions of common problems in subarea networks

This topic includes examples of common problems in subarea networks. See <u>Table 1 on page 4</u> for an index of these problems.

Abend 0C4 occurs in ISTTSCPF

Problem statement

An abend 0C4 with a reason code of 4, 10, or 11 occurs in all levels of the module ISTTSCPF when a move character instruction is processed.

Common symptoms

The USS message contains unexpected or extraneous characters, but not all USS messages are affected. Devices might not activate correctly or might fail to log on correctly. An abend 0Cx might occur in module ISTTSCPF.

Probable cause

The USSTAB is incorrectly defined. In this module, register 4 points to storage that may not be paged-in (reason code 10 or 11) or to storage that should not be accessed (reason code 4).

The TSCB contains a data length field (TSCDATLN) equal to the length of the USSMSG text plus the length field itself. Subtracting the value in register 4 from the starting address of the USSMSG table shows that only the value of TSCDATLN (minus 2 bytes) was moved because the full amount of storage that was referenced was not paged-in.

User response

Code only the length of the USSMSG entry in the USSMSG table. Do not include the size of the length field

•

Problem statement

An abend 0C4 with a reason code of 4, 10, or 11 occurs in all levels of the module ISTTSCPF when a move character instruction is processed.

Common symptoms

The USS message contains unexpected or extraneous characters, but not all USS messages are affected. Devices might not activate correctly or might fail to log on correctly. An abend OCx might occur in module ISTTSCPF.

Probable cause

The USSTAB is incorrectly defined. In this module, register 4 points to storage that may not be paged-in (reason code 10 or 11) or to storage that should not be accessed (reason code 4).

The TSCB contains a data length field (TSCDATLN) equal to the length of the USSMSG text plus the length field itself. Subtracting the value in register 4 from the starting address of the USSMSG table shows that only the value of TSCDATLN (minus 2 bytes) was moved because the full amount of storage that was referenced was not paged-in.

User response

Code only the length of the USSMSG entry in the USSMSG table. Do not include the size of the length field.

Abend in user exit ISTEXCCS, ISTEXCSD, ISTEXCAA, or ISTEXCVR

Problem statement

A failure occurred when running VTAM Exit Facility Subtask. If an ABEND code occurs in user exit ISTEXCCS, ISTEXCSD, ISTEXCAA, or ISTEXCVR, a VTAM ESTAE will attempt to take a dump for the abnormally ending user exit.

Common symptoms

An ABEND code occurred. If VTAM attempts to issue the SDUMPX, message IST413I will be issued. If SDUMPX is issued but the dump fails, message IST257I will give the reason code for the dump failure.

Note that the VRDATA KEY=DAE macro is issued before issuing the SDUMPX to make the dump eligible for MVS DAE (Dump Analysis and Elimination) dump suppression. Thus, if the user has DAE in

effect at the time of the errors, duplicate dumps with matching symptoms will be suppressed by the MVS DAE facility, and VTAM will issue the following message:

IST257I VTAM SDUMP FAILED WITH RETURN CODE 08 REASON X'0B'

Probable cause

The following list shows some of the common problems with user-written exits:

- The pointer to the VTAM Exit Services parameter list was not valid when the session management exit called VTAM EXIT Services.
- The pointer to the EXMPL (the pointer to the input parameter list in the VTAM Exit Services parameter list) was nonzero, but was not valid when the exit called VTAM Exit Services.
- The pointer to the message text in the EXMPL was nonzero, but was not valid when the exit called VTAM Exit Services.
- Some portion of the message text could not be accessed by VTAM Exit Services. (For example, the session management exit passed a message length in the EXMPL that exceeded the storage area owned by the Session Management Exit.)

User response

Consult the symptom string or PSW and registers, or both, at the time of ABEND. Consult any related storage or addresses in the dump.

LU hung in PNFYx state

Problem statement

An LU can hang in a PNFYx state if the application program does not issue the CLSDST macroinstruction when a LOSTERM user exit routine is scheduled.

Common symptoms

An LU is hung in a PNFYx state. The LU is unable to log on to an application.

Probable cause

An application program failed to issue the CLSDST macroinstruction when the LOSTERM user exit routine was scheduled with a reason code indicating that the CLSDST macroinstruction should be issued.

User response

Check with the owner of the application program for known problems. A VTAM internal trace with the application interface (API) option active indicates whether the LOSTERM user exit was scheduled and the reason code that was passed. The API trace option can also be used to determine if the CLSDST was issued by the application in response to a LOSTERM user exit.

Notes:

- 1. See "PNFYx status" in "Using the VARY INACT, FORCE command" on page 71 for information on the VARY INACT, FORCE command and PNFYx status.
- Coding the LOSTERM parameter on the APPL definition statement allows you to recover this type of hung resource without having to cancel the application. See the <u>z/OS Communications Server: SNA</u> <u>Programming</u> for more information.
- 3. The information in this problem description is from information APAR II00757. See that APAR for additional information.

Message IKT029I (return code 061001) received with TSO logon failure

Problem statement

Cannot log on to TSO from a session manager application.

Common symptoms

The following message is displayed:

IKT029I RC= 061001 SENSE= code TERMINAL termid ABOUT TO BE RELEASED BY VTAM

Probable cause

Either the application or D/T8100 expects the first BIND from TSO to be from terminal control address space (TCAS). TCAS will send only the BIND for the TSO subapplication program (TSOxxxxx).

User response

If the secondary logical unit (SLU) does not support this type of session initiation, specify FASTPASS=NO on the SLU definition statement to force TCAS to send a BIND to the SLU before the TSO subapplication program sends its own BIND.

Message IST259I received with INOP RU

Problem statement

Message IST259I is generated by the inoperative (INOP) RU processor. The INOP RU is generated by the data link control (DLC) component for the subarea controlling the link, either intermediate network node (INN) or route extension (REX).

Common symptoms

The following message is displayed:

IST259I INOP RECEIVED FOR nodename CODE = code

If the link is INN, an ER.INOP will also flow, producing a series of explicit route (ER) or virtual route (VR) failure messages. This leads to an incorrect diagnosis when you do not associate the ER.INOP with the link or link station INOP.

If message IST259I contains the name of a channel-attached NCP or a local device, message IOS000I might accompany the failure.

If message IST259I contains the name of a channel-attached 3172 device, messages IST1411I, IST1412I, or IST1430I will indicate the reason for the INOP. For more information, see z/OS Communications Server: SNA Messages.

Some local SNA controllers require I/O buffer size to be an even number. For example, if an odd number is coded for a 3174, message IST259I with CODE=01 will be displayed at activation.

Probable Cause

NCP link

This is a communication facility problem. Either the retry limit is exhausted, a negative acknowledgment is received for an SDLC transmission, a modem error occurred, or a link failure occurred.

Channel link

Either a data transfer count mismatch occurred, an NCP abend has occurred, or the NCP was reloaded by another host.

User Response

Trace the link.

List the system LOGREC to obtain the data from the record management statistics (RECMS) that accompany an INOP originating in an NCP node. The RECMS identifies the error that produced the INOP. Use environmental record editing and printing (EREP) to print the LOGREC records. Use the network problem determination application (NPDA) to interpret the RECMS record.

VTAM does not generate the RECMS for channel link and link station failures. The LOGREC entry for a local device will contain only statistical data.

Correct the error condition.

Note: The IBM Support Center representative can only suggest that you list LOGREC and assist you with interpreting the record.

If a channel-attached SNA device (NCP or cluster controller) is experiencing the INOPs at a regular or predictable interval (for example, every hour), the problem could be that the VTAM ERP routine has been deleted. Verify that CSECT ISTZBMOK in load module IGE0004 (LPALIB) has not been deleted.

Message IST259I received and sessions end unexpectedly

Problem statement

One or more sessions have ended unexpectedly, and a terminal, PU, line, or NCP is in a wait state.

Common symptoms

The following message is displayed:

```
IST259I INOP RECEIVED FOR nodename CODE = code [text]
```

Probable cause

- If the node is an NCP, the NCP detected an error and generated the INOP RU message.
- If the node is a channel-to-channel (CTC) link or a CTC link station, VTAM detected an error from an IO operation and generated the INOP RU message.
- If the node is a local attachment device, VTAM detected an IO error and generated the INOP RU message.

User response

- For an explanation of the code in IST259I, see the description of the message in <u>z/OS</u> Communications Server: SNA Messages.
- · Check the system log for system (IOS) error messages that contain status information.
- If the NetView program is installed, check NPDA for logged errors.
- Run EREP against LOGREC, and check for errors related to the device.

Note: This information should identify the component causing the error. Contact the appropriate service organization for help with a specific component problem.

Message IST467I received with CONTACTED ERROR TYPE 05, 07, 08, or 0B

Problem statement

Message IST467I is received with contacted error type 05, 07, 08, or 0B during activation of a resource. The message indicates that the XID was rejected by the PU.

Common symptoms

IST467I is the first in a group of messages. The exchange ID (XID) received by VTAM is shown in messages IST1574I and IST1580I. The XID sent by VTAM is shown in messages IST1574I and IST1586I. Compare the XIDs to determine why the PU rejected the XID.

Sample XIDs from an IST467I message group:

Note: If *type* is **OB** in message IST467I, additional error information may be contained in a CV X'22' appended to the end of the XID. See the **User Response** for an example.

Probable cause

Note: The explanations that follow cover more than the single error that the sample XID1 and XID2 represent.

The first digit of the XID is the format. In the preceding sample XIDs, the format is format 2.

Byte X'12' of the XID1 received from the NCP is the error byte.

• Bit 0

Reserved (unused)

Bit 1

Received XID unacceptable

Bit 2

Incompatible

Bit 3

Transmission group (TG) undefined

Bit 1 of byte X'12' is set for the following reasons:

- 1. The XID2 at displacement X'00' was not equal to 24 or 25.
- 2. The XID2 at displacement X'08' was not equal to 20.
- 3. The XID2 at displacement X'13' was not equal to 00.
- 4. The XID2 at displacement X'1E' was not equal to 02.
- 5. Depending on the release of NCP you have:
 - a. For NCP V4R3, V5R2, and higher: The XID2 from VTAM at displacement X'0B'—X'0C' is less than 1296 decimal (X'0510'). The value in this field is the result of MAXBFRU from the HOST macro times the IOBUF buffer size in the VTAM start list. This error is set only when the NCP definitions have specified the HOST connection using GROUP LNCTL=CA.
 - b. For NCP before V4R3 and V5R2: The XID2 from VTAM at displacement X'0B'—X'0C' is less than (XID plus X'20'—X'21') times (XID plus X'22'—X'23') minus (XID plus X'24') in the XID sent by NCP. This result corresponds to the value specified on the MAXBFRU operand times the value specified on the UNITSZ operand minus the value specified on the BFRPAD operand.
- 6. There is no path to the subarea number defined at X'11' in the XID2 that uses this connection.
- 7. Bit 2 of byte X'12' is set because the received XID1 at X'25' is not equal to X'20', and an existing connection exists with the origin subarea.
- 8. Bit 3 of byte X'12' is set because either the TG number in the XID2 at displacement X'0D' or the subarea from the XID2 at X'11' is unknown to the NCP.

User Response

Reasons "2" on page 12, "3" on page 12, and "4" on page 12 should not occur, but should help to verify XID offsets.

For reason "5" on page 12, see the z/OS Communications Server: SNA Resource Definition Reference and the *NCP*, *SSP*, and *EP Resource Definition Reference* regarding specification of buffer sizes.

For reason "6" on page 12, see the z/OS Communications Server: SNA Resource Definition Reference and the NCP, SSP, and EP Resource Definition Reference regarding the definition of PATH statements. Also, transmission group (TG) mismatch could cause the problem. A TG mismatch could occur, for example, if an NCP is attached as a CA major node, and TG=ANY is coded in the CA major node in VTAM, and TG=ANY is coded on the NCP line definition for this attachment.

For reason <u>"7" on page 12</u>, see the z/OS Communications Server: SNA Resource Definition Reference regarding the use of the CHANCON parameter of the PCCU macro.

For reason <u>"8" on page 12</u>, see the *NCP*, *SSP*, and *EP Resource Definition Reference* regarding the use of the CANETID parameter on the BUILD macro. Verify that it is coded correctly for each network in which it is assigned.

Note:

- 1. In the sample XID1 given above, byte X'12' contains the value X'50'. Bit 2 and bit 3 indicate that the XID2 was unacceptable and that the transmission group was not defined. The problem in this case was that there were no PATH definition statements defined in the NCP for the host subarea.
- 2. The contacted error type 05 can also be posted if the NETIDs in the 2 XIDs do not match.
 - The NETID will appear in a CV X'12' at the end of the XIDs. If they do not match, correct the NETID operand on the PU definition statement in one or both PU definitions.
- 3. A contacted error type 05 may occur if a channel-to-channel connection is defined between two VTAM systems that have the same subarea. Subarea numbers must be unique.

In this case, the 4 bytes starting at offset X'E' in XID1 and XID2 will be the same. XID offset X'E' contains the subarea numbers. XID1 contains the subarea number of the receiver, and XID2 contains the subarea number of the sender.

The following example is for type 0B when a CV X'22' is appended to the end of the XID.

```
IST467I CONTACTED ERROR TYPE 0B FOR ID = AHHCPU1
IST1580I XID RECEIVED BY VTAM:
           +000 348AFFF0 99260000 10CB4100 00000080 *...0.....
IST1581I
           +010 00060530 0000000E 09F1C9E2 E3D7E4E2 *.....1ISTPUS
IST1581I
IST1581I
           +020 40400E0C F4D5C5E3 C14BE2E2 C3D7F1C1 *
                                                            .4NETA.SSCP1A
         +030 0E08F7C1 C8C8C3D7 E4F14609 09800000 *..7AHHCPU1....
IST1581I
          +040 00000000 01103A00 2311040E 02F5F6F9 *.....
IST1581I
          +050 F5F1F1F7 F0F1F8F0 F10804F0 F4F0F4F0 *511701801..04040
TST1581T
          +060 F00A06C1 C3C661E5 E3C1D416 11011300 *0..ACF/VTAM..
IST1581I
IST1581I
           +070 11F9F0F2 F1000000 0000F0F1 F3F2F0F8 *.9021.....013208
IST1581I
           +080 F2220700 09040000 0000
          CONTROL VECTOR 22 ANALYSIS:
IST1582I
             BYTE OFFSET OF FIRST BYTE IN ERROR = X'0009'
IST1583I
             BIT OFFSET OF FIRST BIT IN ERROR = X'04
IST1584I
IST1586I XID SENT BY VTAM:
IST1581I +000 34B1FFF0 992B0000 10F74100 00000080 *...0.....7...
          +010 15060530 0010000E 09F1C9E2 E3D7E4E2 *.....1ISTPUS
+020 40400E0C F4D5C5E3 C14BE2E2 C3D7F2C1 * ..4NETA.SSCP2A
IST1581I
IST1581I
IST1581I
           +030 0E08F7C1 C8C8C3D7 E4F14609 09801500 *..7AHHCPU1.....
           +040 00000000 02612E30 00088001 00280000 *..../.....
IST1581I
           +050 00002381 141D0000 007800AC DED371AC *.....L..
IST1581I
          +060 DED37108 D4000000 000000000 08D20000 *.L.M...K..
+070 00000000 00103A00 2311040E 02F5F6F9 *......569
TST1581T
IST1581I
IST1581I
           +080 F5F1F1F7 F0F1F8F0 F10804F0 F4F0F4F0 *511701801..04040
IST1581I
           +090 F00A06C1 C3C661E5 E3C1D416 11011300 *0..ACF/VTAM..
IST1581I
           +0A0 11F9F0F2 F1000000 0000F0F1 F3F2F0F8 *.9021.....013208
IST1581I
           +0B0 F2
IST314I END
```

see the description of message IST467I in <u>z/OS Communications Server: SNA Messages</u> for additional information.

Message IST530I or IST1278I received with GUNBIND PENDING or session hangs in PSESEND state

Problem statement

A GUNBIND PENDING message is received at logoff time in a cross-domain environment (if IOPD is specified or defaulted in the VTAM start options), or the session hangs in PSESEND session termination state.

Common symptoms

Message IST530I or IST1278I:

```
GUNBIND PENDING FROM applname TO LU
```

Message IST530I or IST1278I

```
GUNBIND PENDING FROM VTAM TO LU
```

• The session displays PSESEND as the session termination state.

Probable cause

- The application did not issue a CLSDST macroinstruction.
- The device did not respond to the UNBIND request or returned a response that was incorrect or not valid.
- A virtual route between the primary logical unit (PLU) subarea and the secondary logical unit (SLU) subarea is held or blocked.
- The network ID defined in the NCP does not match the network ID coded in the VTAM start options.

User response

• Enter (on the terminal owning the host) and note the status:

```
D NET, ID=devicename, E
```

• If the session termination state is PSESEND, enter:

```
D NET, SESSIONS, SID=sid
```

(where the SID is that of the PSESEND session in the IST635I message group)

This display will show which session partner is withholding the session end signal to complete the session termination.

- If a SESSEND is needed from the PLU, VTAM is waiting for a CLSDST macroinstruction to be issued.
- If a SESSEND is needed from the SLU, there is usually a problem in a network element, such as the host VTAM, NCP, or SLU.
- If the device is remote and hangs in PSESEND session termination state at logoff, start the following trace (in the device-owning host), and trace a logon and logoff:

```
F NET, TRACE, TYPE=BUF, ID=devicename
```

Check the X'15' vector in the SESSST and SESSEND RUs (if they are present) to see if the network ID matches the network ID coded in the VTAM start options.

• Enter (on the application-owning host) and note the status:

```
D NET, ID=applname, E
```

This indicates whether other sessions are affected. If the application name has many sessions, this display output can be very large.

```
D NET, ID=devicename, E
```

This indicates whether the session status matches the session status in the device host.

```
{\tt D\ NET,ROUTE,DESTSUB=device\_subarea\_number,TEST=YES}
```

This indicates that a virtual route is held or blocked.

```
D NET, TERM, SID=sid, TYPE=FORCE
```

This may help expedite session termination.

• If it is suspected that no CLSDST macroinstruction is being issued, a buffer trace of the application and a VTAM internal trace with MODE=EXT,OPT=API specified may be needed to verify:

- That the application was notified of session termination
- Which exit was scheduled
- What actions or commands were issued (if any) by the application

Message IST530I or IST1278I received with NMVT PENDING

Problem statement

Message IST530I or IST1278I is issued for a PU even though the NetView program (if installed) or the System p network management program for System p devices receives session awareness (SAW) data for an SNA device.

Common symptoms

Message IST530I or IST1278I is issued each time the IOPD timer expires. For additional information, see the message descriptions in z/OS Communications Server: SNA Messages.

Probable cause

The device is not real-time monitor capable. This means that the device did not process the response and return the requested information properly to the NetView program for most devices, or to Network Management/6000 for System p devices. A microcode change is needed to permanently resolve this problem.

User response

You can prevent this problem by pointing the device to a KCLASS and using a SAW data filter to stop VTAM from attempting to collect the data.

Note: See the z/OS Communications Server: SNA Network Implementation Guide and z/OS Communications Server: SNA Resource Definition Reference for details on how to code a SAW data filter.

Message IST530I or IST1278I received with pending DSRLST condition

Problem statement

A DSRLST PENDING message is received. Message IST530I or IST1278I is issued with CD DSEARCH PENDING FROM netid TO netid.

Common symptoms

Message IST530I or IST1278I is issued for the application.

Probable cause

- The ADJSSCP table was not coded; the ADJSSCP table is coded incorrectly; or the IOINT value is too low.
- The start option DYNASSCP and the ADJSSCP table are not correctly tuned.

User response

• To identify the ADJSSCP, enter (with or without a NETID operand):

D NET, ADJSSCPS

• To determine the current value of IOINT, enter:

D NET, VTAMOPTS, OPTIONS=IOINT

• To identify the ADJSSCP, enter (with or without a NETID operand):

D NET, ADJSSCPS

• To determine the DYNASSCP value, enter one of the following codes and note the DYNASSCP value specified:

Message IST663I (sense code 08210000) and cannot log on to CICS

Problem statement

Sessions cannot log on to CICS.

Common symptoms

The message IST663I CINIT REQUEST FROM adjnode FAILED, SENSE=08210000 is received.

Probable cause

When running CICS with AUTO-INSTALLATION, the terminal definition in the terminal control table terminal entry (TCTTE) must match the VTAM LOGMODE definition statement for the device.

User response

Either change the VTAM LOGMODE definition statement to match the CICS TCTTE, or code LOGMODE=0 in the TCTTE. Adding LOGMODE=0 to the TCTTE forces CICS to use VTAM's LOGMODE definition statement for this session.

Message IST663I (sense code 08610000) and IST264I received for undefined CoS entry

Problem statement

A required CoS entry is UNDEFINED.

Common symptoms

The following messages are received:

```
IST663I request REQUEST FAILED, SENSE=08610000
IST264I REQUIRED COS luname UNDEFINED
HASP208 LOSTTERM SCHEDULED SNA, VTAM, 14
JSX026 J003, RTNCD 1012 REQSESS/TERMSESS OPEN OPNSEC FAILED
SENSE 08570002
```

Message IST891I may be issued with the IST663I message group and provides information about the identity of the nodes involved.

Probable cause

An incorrect CoS table was referenced. The NetView program also has a CoS table, and the NetView program library was concatenated in front of the VTAM library, causing the wrong table selection.

User response

To ensure that you are using the correct table, enter:

```
D NET,ID=resourcename
```

Check the library search order to ensure that there are no duplicate table names. Reassemble the table, and check the condition codes. If the condition code received is what you expected, relink it to the table.

Message IST718I and IST719I received when activating a CDRM

Problem statement

The messages IST718I and IST719I are received during the activation of a CDRM.

Common symptoms

The following messages are displayed:

IST718I ADDRESS INVALID FOR NETID=cdrmnetid CDRM=cdrmname CODE=X'code' IST719I SUBAREA subarea ELEMENT el

Probable cause

The message is usually a symptom of a duplicate definition for a network address.

The duplicate may have been defined using the SUBAREA and ELEMENT parameters in another CDRM definition or in a GWPATH definition in a gateway NCP.

The duplicate may have been defined using the ADJNETSA and ADJNETEL parameters in another CDRM definition or in a GWPATH definition.

User response

If the duplicate network cannot be found by inspecting other definitions, run a VTAM internal trace with OPT=(NRM,MSG). When the trace is completed and IST718I and IST719I have been issued, use the console DUMP command to dump the VTAM region and CSA.

- Locate the MSG entry for the IST718I message in the trace.
- Before the message entry there should be an SRTF entry with a nonzero return code, usually 04. This SRTF entry points either directly or indirectly to the duplicate.
- See the SRTx VIT entry in z/OS Communications Server: SNA Diagnosis Vol 2, FFST Dumps and the VIT.
- The SRT entry address field points to an SRT entry that can be located in the dump of VTAM. This SRT entry plus X'10' points to the definition that has the duplicate network address.

Messages IST154I, IST561I, IST999E, IST566I, and IST930I received for APPL-APPL storage expansion failure

Problem statement

If APPL-APPL sessions are not paced at the session level, storage expansion failures can occur with messages IST154I, IST561I, IST999E, IST566I, and IST930I. The job entry subsystem (JES) has experienced this failure.

Common symptoms

The following messages are symptoms of storage expansion failures.

```
IST154I EXPANSION FAILED FOR LFBUF OR IOBUF BUFFER POOL
IST561I STORAGE UNAVAILABLE
IST999E VTAM MESSAGE LOST-INSUFFICIENT STORAGE
IST566I STORAGE UNAVAILABLE xxxx SUBPOOL xxx
IST930I LU-LU SESSION USING 15% OF IOBUF
```

Probable cause

If an APPL-APPL session is not paced at the session level, there is no limit to the number of VTAM I/O buffers that the session can use.

User response

Code VPACING operands on the APPL definition statements for both applications, and code a nonzero value for the SSNDPAC parameter on the LOGMODE operand for the secondary LU. To verify pacing for the session, start a buffer trace with ID=APPLID specified before you start the APPL-APPL session. The BIND RU will contain the pacing values for the session.

Missing VTAM trace records

Problem statement

The expected output data is missing from a VTAM trace that was run with GTF active.

Common symptoms

There is no VTAM data, missing VTAM data, or unwanted data in the GTF trace data set.

Probable cause

When TRACE=USR is specified, GTF collects all USR events issued in the MVS system.

User response

To select the events you want to trace, specify USRP on the GTF macroinstruction and select the required event identifiers (EIDs) as shown in the following examples:

VTAM buffer EIDs: FEF FF1 FF0 (EFEF EFF1 EFF0)

VTAM line trace EIDS (not formatted by GTFTRACE): FE4 FF2 (EFE4 EFF2)

VTAM I/O trace EID: FE1 (EFE1)
VTAM internal trace EID: FE1 (EFE1)
VTAM 3270 IDS trace EID: F90 (EF90)

See "Activating network traces" on page 270 for more information.

Note: To prompt the system for VTAM records, specify USRP in the parameter field of the GTF procedure. You must code a GTF procedure that is used by VTAM only. If you do not, you will get GTF USR output that contains unwanted records.

Partial input for TGET received by TSO

Problem statement

A TSO application program receives partial input for the TGET macroinstruction.

Common symptoms

The TSO application program does not receive the entire data-stream buffer from a device. A partial buffer from a device will cause the application to enter a wait state. If the host application program then issues a second TGET, the second section of the buffer is returned to the host application program before processing for the first TGET is completed.

Probable cause

The TSO application issued the set full-screen mode (STFSMODE) macroinstruction without specifying the NOEDIT option. The error occurs most often after the application program sends a read partition query (RPQ) to the device. Many newer devices return the attribute byte X'1E' that is returned in the RPQ entry. TSO interprets the X'1E' as an end-of-input field mark. The NOEDIT option of the STFSMODE macroinstruction prevents TSO VTAM from validating the input data. This causes the entire buffer to be returned to the application program.

User response

Verify the options on the STFSMODE macroinstruction. If STFSMODE is correct, see "Incorrect output problems" on page 100 for more information.

Sense code 08010000 received with CINIT failure

Problem statement

A CINIT request fails with the sense code 08010000 if an application rejects a terminal logon request by issuing the CLSDST macroinstruction.

Common symptoms

The following message is displayed:

IST663I request REQUEST FAILED, SENSE=08010000

The logon from a terminal fails with the USS message USSMSG07.

Probable cause

When an SLU logs on to an application, VTAM builds a CINIT RU and schedules the LOGON exit routine for the application PLU. If the application is not prepared to accept a session with this SLU, it rejects the logon by issuing a CLSDST macroinstruction. If the application does not supply sense code information about the CLSDST, VTAM builds a negative CINIT response with the sense code

08010000. In many cases, the application will also issue a message indicating the reason for the logon rejection.

User response

Check the message log for a message indicating a failure for this application. Run a buffer trace on the application name to see whether the CINIT passed to the application. The VTAM internal trace with the API option contains data about the LOGON exit and the CLSDST macroinstruction.

Sense code 083500xx or 08210000 received with BIND failure

Problem statement

BIND failure occurs with sense code 083500xx or 08210000.

Common symptoms

The following messages are displayed in response to a terminal logon request:

```
IST663I BIND REQUEST FAILED, SENSE=083500xx
or
IST663I BIND REQUEST FAILED, SENSE=08210000
and
USSMSG07 luname UNABLE TO ESTABLISH SESSION—BIND FAILED
WITH SENSE sense
```

Probable cause

The sense codes indicate that the BIND contains parameters that are not valid. The sense code 08210000 gives no further explanation. Sense code 083500xx supplies an index (xx) into the BIND that identifies the bytes that the BIND receiver cannot interpret.

VTAM extracts BIND parameters from the LOGMODE entry associated with the logon, based on the LOGON command, the USSPARM PARM=LOGMODE from the USSTAB, or the default on the LU definition specified by DLOGMOD. The source of the BIND parameters can also be the application, which may override many of the parameters supplied by VTAM when the OPNDST macroinstruction is issued. When the requested LOGMODE cannot be found, VTAM may use a default LOGMODE (ISTCOSDF), which may contain session parameters that are unacceptable to the application.

User response

Run a buffer trace on the application name for a terminal session logon to an application that is rejected by the BIND with a sense code of 083500xx or 08210000. This traces the CINIT request, which includes the VTAM supplied parameters. If the BIND that follows the CINIT request does not match these parameters, they were changed by the application. The documentation for the rejecting LU should list its required BIND parameters.

To prevent VTAM from using the default LOGMODE (ISTCOSDF), ensure that the requested LOGMODE is defined in the specified LOGMODE table. See the z/OS Communications Server: SNA Network Implementation Guide and z/OS Communications Server: SNA Resource Definition Reference for more information on ISTCOSDF.

Sense code 800A0000 or no message, and sessions end unexpectedly

Problem statement

A session ended unexpectedly and either no message is received or an exception request (EXR) with a sense code of 800A0000 flows to the destination LU.

Common symptoms

Upon receiving the sense code 800A0000, the LU might return the code in a response. Some LUs will include the code in an UNBIND.

Probable cause

If a path information unit (PIU) is too large to be passed from one PU type 4 or type 5 to another, an exception request (EXR), containing sense code 800A0000 and up to 3 bytes of the RU, may be generated. See Table 48 on page 577 to determine what document describes the building of the EXR.

User response

For VTAM and NCP nodes in the session path, check the following definition values for each configuration used:

- VTAM to channel-attached NCP: VTAM will take the smaller of the following two values:
 - MAXDATA value on the PCCU definition statement (or on the LINE definition statement for a channel-attached NCP).
 - Value sent in the XID of the maximum PIU size for the NCP. This number will be the product of the BFRS value from the BUILD definition statement and the TRANSFER value from the channel adapter LINE definition statement for 3745 or 3720 with V5 NCP or from the BUILD definition statement for other NCPs.
- Channel-attached NCP to VTAM: The product of the MAXBFRU value from the HOST definition statement (or from the LINE definition statement for a channel-attached NCP) and the IOBUF size from the VTAM start options. This value will be the maximum size that can flow from the NCP to the host.
- VTAM-to-VTAM connection across a channel-to-channel interface:
 - If both VTAMs have the CTCA enhancement: The product of the MAXBFRU value from the CTCA LINE definition statement and the IOBUF size from the VTAM start options.
 - If one or neither of the VTAMs has the CTCA enhancement: The product of the MAXBFRU value from the LINE macro and the IOBUF size from the VTAM start options.
- NCP to link-attached NCP: The product of the TRANSFR value on the LINE definition statement and the BFRS value on the BUILD definition statement.
- NCP to link-attached VTAM: The product of the MAXBFRU value from the CA LINE definition statement and the IOBUF size from the VTAM start options.

Note:

- 1. The definition statements for all PU type 4 or type 5 nodes on the session path must be checked, because any PU type 4 or type 5 can change the PIU into an 800A0000 exception request.
- 2. The information in this problem description is from information APAR II03990.

Session failure with sense code 0888000x

Problem statement

An attempt to establish a session fails with sense code 0888000x in an intermediate VTAM along the session setup path.

Common symptoms

The session establishment is terminated.

Probable cause

The intermediate VTAM that set the 0888000x sense codes is operating with NQNMODE=NAME or is a VTAM version lower than V4 and therefore cannot define multiple resources with the same name, even if the network identifiers are different.

User response

Change the intermediate domain to operate with NQNMODE=NQNAME to allow definition of multiple resources with the same name and different network identifiers, or reroute the session through another path.

Common problems in APPN networks

<u>Table 2 on page 21</u> includes a brief description of several common problems that occur in APPN networks. For additional information, go to the page indicated.

Table 2. Index of common problems in APPN networks

Problem	See page
Best path not taken for the session	"Session did not take the best path" on page 33
Message IST489I received during session takeover	"Message IST489I or IST1272I received during session takeover" on page 24
Message IST264I (required CoS entry undefined) and message IST663I (sense code 08610000)	"Message IST663I (sense code 08610000) and IST264I received for undefined CoS entry" on page 25
Message IST663I (sense code 08610000) and message IST264I (required CoS entry undefined)	"Message IST663I (sense code 08610000) and IST264I received for undefined CoS entry" on page 25
Messages IST1097I and IST1280I (sense code 08A00005) received with CP-CP session failure	"Messages IST1097I and IST1280I (sense code 08A00005) received with CP- CP session failure" on page 25
Messages IST1110I, IST1112I, IST1765I, and IST1766I received during CP-CP session activation failure	"Messages IST1110I, IST1112I, IST1765I, and IST1766I received during CP- CP session activation failure" on page 26
Messages IST1110I and IST1113I issued during CP-CP session activation failure	"Messages IST1110I and IST1113I received during CP-CP session activation failure" on page 26
Messages IST1110I and IST1246I issued during CP-CP session activation failure	"Messages IST1110I and IST1246I received during CP-CP session activation failure" on page 26
Messages IST1110I, IST1246I, and IST1280I (sense code 80050000) issued during CP-CP session activation failure	"Messages IST1110I, IST1246I, and IST1280I received during CP-CP session activation failure" on page 27
Messages IST1110I and IST1280I (sense code 08B50000) issued during CP-CP session activation failure	"Messages IST1110I and IST1280I (sense code of 08B50000) received during CP-CP session activation failure" on page 28
Messages IST1110I and IST1280I (sense code 08910006) issued during CP-CP session activation failure	"Messages IST1110I and IST1280I (sense code 08910006) received during CP- CP session activation failure" on page 27

Table 2. Index of common problems in APPN networks (continued)

Problem	See page
Messages IST1110I, IST1280I (sense code 101E000A), and IST1356I issued during CP-CP session activation failure	"Messages IST1110I, IST1356I, and IST1280I (sense code 101E000A) received during CP-CP session activation failure" on page 27
Message IST1272I received during session takeover	"Message IST489I or IST1272I received during session takeover" on page 24
Messages IST1774I and IST1775I received during LU-LU session activation	"Messages IST1774I and IST1775I received during LU-LU session activation" on page 28
MNPS recovery not successful	"MNPS session recovery error" on page 33
Resource not found but resource exists in network	"Resource not found but resource exists in network" on page 28
Sense code 08210002 issued during a session activation failure	"Sense code 08210002 received with session activation failure" on page 29
Sense code 0821000A issued during a session activation failure	"Sense code 0821000A received with session activation failure" on page 29
Sense code 083B0001 issued and session lost	"Sense Code 087D000A or 083B0001 received and session lost during takeover" on page 30
Sense code 08610000 (message IST663I) and message IST264I (required CoS entry undefined)	"Message IST663I (sense code 08610000) and IST264I received for undefined CoS entry" on page 25
Sense code 087D0001 issued during a session activation failure	"Sense code 087D0001 received with session activation failure" on page 29
Sense code 087D000A issued and session lost	"Sense Code 087D000A or 083B0001 received and session lost during takeover" on page 30
Sense code 08910006 and messages IST1110I and IST1280I issued during CP-CP session activation failure	"Messages IST1110I and IST1280I (sense code 08910006) received during CP-CP session activation failure" on page 27
Sense code 08A00005 received unexpectedly with CP-CP session failure	"Messages IST1097I and IST1280I (sense code 08A00005) received with CP- CP session failure" on page 25

Table 2. Index of common problems in APPN networks (continued)

Problem	See page
Sense code 08B50000 and messages IST1110I and IST1280I issued during CP-CP session activation failure	"Messages IST1110I and IST1280I (sense code of 08B50000) received during CP- CP session activation failure" on page 28
Sense code 10145046 (AS/400) issued during a session activation failure	"Sense code 10145046 received with session activation failure" on page 30
Sense code 101E000A and messages IST1110I, IST1356I, and IST1280I issued during CP-CP session activation failure	"Messages IST1110I, IST1356I, and IST1280I (sense code 101E000A) received during CP-CP session activation failure" on page 27
Sense code 80050000 and messages IST1110I, IST1246I, and IST1280I issued during CP-CP session activation failure	"Messages IST1110I, IST1246I, and IST1280I received during CP-CP session activation failure" on page 27
Sense code 80130000 issued during a session activation failure	"Sense code 80130000 received with session activation failure" on page 31
Sense code 80130104 and path problems	"Example: Solving path problems" on page 138
Sense code 80140001 issued during a session activation failure	"Sense code 80140001 received with session activation failure" on page 31
Sense code 80140002 issued during a session activation failure	"Sense code 80140002 received with session activation failure" on page 32
Sense code 80140005 issued during a session activation failure	"Sense code 80140005 received with session activation failure" on page 32
Session did not take the best path	"Session did not take the best path" on page 33
Session established with nonlocal instead of local application program	"Session established with nonlocal instead of local application program" on page 33
Session lost with sense code 083B0001	"Sense Code 087D000A or 083B0001 received and session lost during takeover" on page 30
Session lost with sense code 087D000A	"Sense Code 087D000A or 083B0001 received and session lost during takeover" on page 30

Table 2. Index of common problems in APPN networks (continued)

Problem	See page	
Storage problem	"Storage problem procedure" on page 85	

Descriptions of common problems in APPN networks

This information includes examples of common problems in APPN networks. See <u>Table 2 on page 21</u> for an index of these problems.

Message IST489I or IST1272I received during session takeover

Problem statement

Message IST489I or IST1272I is received, indicating that VTAM cannot define a resource.

Common symptoms

Message IST489I or IST1272I is received for a resource during takeover processing. The resource can be a dependent LU.

Probable cause

A scenario similar to the following condition can cause this problem:

- Boundary function CP-CP sessions exist between SSCP1 and SSCP2. There is also an FID4 connection between SSCP2 and NCP1.
- There is an SSCP-SSCP session between SSCP2 and SSCP3.
- Dependent LU1, connected from NCP1, is owned by SSCP1.
- An LU-LU session is between LU1 and LU2. LU1 is known to SSCP2 as an APPN LU through the APPN connection between SSCP1 and SSCP2 through NCP1.
- The command VARY INACT TYPE=G was entered from SSCP1, which caused session takeover of the line from SSCP1 to SSCP2. SSCP2 owns LU2, the independent LU.

The failure, triggering message IST489I or message IST1272I, occurred because LU1 is known to the SSCP2 host as an independent APPN LU. SSCP2 cannot own the independent LU and the dependent LU at the same time.

User response

The independent LU is freed when the last session ends. After this occurs, you must activate the dependent LU before it can be enabled.

Message IST663I (sense code 08610000) and IST264I received for undefined CoS entry

Problem statement

A required CoS entry is UNDEFINED.

Common symptoms

The following messages are received:

```
IST663I request REQUEST FAILED, SENSE=08610000
IST264I REQUIRED COS luname UNDEFINED
HASP208 LOSTTERM SCHEDULED SNA, VTAM, 14
JSX026 J003, RTNCD 1012 REQSESS/TERMSESS OPEN OPNSEC FAILED
SENSE 08570002
```

Message IST891I may be issued with the IST663I message group and provides information about the identity of the nodes involved.

Probable cause

An incorrect CoS table is referenced. The NetView program also has a CoS table, and the NetView program library was concatenated in front of the VTAM library, causing the wrong table selection.

User response mode-to-Class-of-Service (CoS)

To ensure that you are using the correct table, enter:

```
D NET,ID=resourcename
```

Check the library search order to ensure that there are no duplicate table names. Reassemble the table, and check the condition codes. If the condition code received is what you expected, relink it to the table.

Messages IST1097I and IST1280I (sense code 08A00005) received with CP-CP session failure

Problem statement

CP-CP session failure occurs with sense code 08A00005.

Common symptoms

The following message group is received:

```
IST1097I CP-CP SESSION WITH partner_cpname TERMINATED
IST1280I SESSION TYPE = CONLOSER - SENSE = 08A00005
IST314II END
```

Probable cause:

If CP-CP sessions have been deactivated with this sense code, it is likely that the topology database update (TDU) flowing between the two nodes has been lost because of a storage depletion condition on either the sending or receiving end of the TDU flow.

User response

If the CP-CP sessions do not come backup automatically, enter:

```
V ACT,ID=partner_cpname,IDTYPE=CP
```

If VTAM is experiencing temporary storage allocation problems, you might want to wait for the condition to clear before attempting to restart the session.

When the CP-CP session is restarted, TDUs will be exchanged so that the missing information in the lost flow will be recovered.

Messages IST1110I, IST1112I, IST1765I, and IST1766I received during CP-CP session activation failure

Problem statement

End node operator's attempt to activate CP-CP session pair by activating adjacent network node fails and messages IST1110I, IST1112I, IST1765I, IST1766I, and IST314I are issued at the end node.

Common symptoms

Activation of new CP-CP session pair with adjacent CP specified in message IST1110I is terminated. Messages IST1110I, IST1112I, IST1765I, IST1766I, and IST314I are displayed.

Probable cause

While attempting to activate a contention winner CP-CP session with the network node specified in message IST1110I, the end node determined that it already had an active CP-CP session pair with a different network node. If an end node already has a network node server, it does not accept a new CP-CP session with another network node.

User response

Before attempting to activate a CP-CP session pair between an end node and a network node, enter the D NET, NETSRVR, SCOPE=ONLY command at the end node to verify that no CP-CP sessions with a network node exist.

Messages IST1110I and IST1113I received during CP-CP session activation failure

Problem statement

Attempt by operator of end node to activate CP-CP session pair with adjacent network node by activating adjacent network node fails with issuance of messages IST1110I, IST1113I, and IST314I.

Common symptoms

Activation of new CP-CP session pair with adjacent CP specified in message IST1110I is terminated. Messages IST1110I, IST1113I, and IST314I are displayed at the end node.

Probable cause

The operator entered from an end node a V NET,ACT,ID=cpname command, where cpname is also an end node. CP-CP sessions are not permitted between end nodes.

User response

Make sure that the start lists for the two nodes do not both specify end node as the type of node being started.

Messages IST1110I and IST1246I received during CP-CP session activation failure

Problem statement

Attempt to activate CP-CP session pair between end node and network node fails after activation of CP-capable link.

Common symptoms

Activation of new CP-CP session pair with network node specified in message IST1110I is terminated. Message IST1110I is displayed along with message IST1246I at the end node.

Probable cause

While in the process of bringing up the contention winner CP-CP session, the end node determined that the network node named in IST1110I is not explicitly named in the end node's network node server list and that there is no nameless entry in the network node server list.

User response

Either perform an operator activation of the CP-CP session by entering

V NET,ACT,ID=adjacent_cpname at the end node or modify the network node server list to include either an explicit entry for the required network node or a nameless entry.

Messages IST1110I, IST1246I, and IST1280I received during CP-CP session activation failure

Problem statement

Attempt to activate CP-CP session pair between end node and network node fails.

Common symptoms

Activation of new CP-CP session pair with network node specified in message IST1110I is terminated. Message IST1110I is displayed along with message IST1246I at the end node. Message IST1280I displays a sense code of 80050000.

Probable cause

While in the process of bringing up the conloser CP-CP session, the end node determined that the network node named in IST1110I is not explicitly named in the end node's network node server list and that there is no nameless entry in the network node server list.

User response

Either perform an operator-activation of the CP-CP session by entering V NET,ACT,ID=adjacent_cp_name at the end node or modify the network node server list to include either an explicit entry for the required network node or a nameless entry.

Messages IST1110I, IST1356I, and IST1280I (sense code 101E000A) received during CP-CP session activation failure

Problem statement

Attempt to activate CP-CP session pair between end node and network node fails.

Common symptoms

Activation of new CP-CP session pair with network node specified in message IST1110I is terminated. The operator at the end node sees messages IST1110I, IST1356I, IST1280I, and IST314I. IST1280I displays the sense code 101E000A.

Probable cause

The end node's network node server list entry for the network node failed to specify SLUINIT=OPT or, in the absence of an explicit entry for that node, the nameless entry failed to specify SLUINIT=OPT. The network node is probably an AS/400, NS/2, or Personal System/2 computer, none of which provides the network node server capabilities provided by VTAM network nodes. CP-CP sessions between VTAM end nodes and such network nodes are allowed only if the end node's network node server list specifies SLUINIT=OPT.

User response

Modify the network node server list to specify SLUINIT=OPT on either the explicit entry for the required network node server or on the nameless entry. Activate the modified network node server list definition deck, and then reactivate the session.

Messages IST1110I and IST1280I (sense code 08910006) received during CP-CP session activation failure

Problem statement

Attempt to activate CP-CP session pair between network nodes in two different networks fails.

Common symptoms

Activation of new CP-CP session pair between this network node and adjacent network node specified in message IST1110I is terminated.

Probable cause

A CP-CP session pair is not permitted between network nodes located in different networks unless you have specified BN=YES to enable the VTAM border node function. The messages indicate that CP-CP sessions were attempted between two network nodes in different networks.

User response

If you want a nonnative relationship, ensure that BN=YES is coded to enable border node support. Also, ensure that NATIVE=YES is not coded on a PU or ADJCP statement that represents the partner

node. If you want a native relationship, modify the VTAM start lists for the specific nodes so that both start lists specify the same network.

Messages IST1110I and IST1280I (sense code of 08B50000) received during CP-CP session activation failure

Problem statement

Attempt to activate CP-CP session pair between end node and network node fails with sense code 08B50000, as indicated by message IST1280I.

Common symptoms

Activation of new CP-CP session pair with adjacent CP specified in message IST1110I is terminated. Message IST1110I is displayed along with message IST1280I, which displays a sense code of 08B50000.

Probable cause

The sense code indicates that the end node bringing up the contention-loser session does not require a CP-CP session pair with the network node specified in message IST1110I. The end node determined that it has an active CP-CP session with a different network node. If an end node already has a server, it will not accept a new CP-CP session with another network node.

User response

Before attempting to activate a CP-CP session pair between an end node and a network node, enter the D NET, NETSRVR, SCOPE=ONLY command at the end node to verify that no CP-CP sessions with a network node already exist.

Messages IST1774I and IST1775I received during LU-LU session activation

Problem statement

LU-LU session activation completes successfully with the issuance of messages IST1774I, IST1775I, IST664I, IST889I, and IST314I at the composite network node (CNN).

Common symptoms

The following messages are received:

```
IST1774I OPTIMAL CNN ROUTE NOT CHOSEN - ENTRY/EXIT SUBAREA MISMATCH
IST1775I CNN ENTRY SUBAREA = subarea
CNN EXIT SUBAREA = subarea
IST664I REAL OLU=luname
REAL DLU=luname
IST889I SID = sessid
IST314I END
```

Probable cause

An optimal CNN route exists and was not chosen during session activation. Non-optimal routes might result because the topology of the CNN is not known by the APPN topology and route selection process, or because the route was calculated by a non-VTAM node that does not support the use of subarea numbers in route calculation.

User response

Change the APPN TG characteristics. For more information about APPN TG characteristics, See the z/OS Communications Server: SNA Network Implementation Guide.

To suppress message group IST1774I, CNNRTMSG=SUPPRESS can be specified as the start option value or modified with the MODIFY VTAMOPTS command.

Resource not found but resource exists in network

Problem statement

A resource exists in the network but is not found by a search.

Common symptoms

The directory services management exit routine either rejects or limits the search scope.

Probable cause

The resource was not registered to its network node server.

User response

Register the resource to the network node server. For more information on the directory services management exit routine, see z/OS Communications Server: SNA Customization.

Sense code 08210002 received with session activation failure

Problem statement

Session activation failed with the sense code 08210002.

Common symptoms

An attempt to establish a session failed with the sense code 08210002 (mode name not valid).

Probable cause

The sense code indicates that the logon mode name associated with the session request was not found in the table or in the default logon mode table (ISTINCLM).

User response

Verify that the requested logon mode name is defined as follows:

- In a subarea-only environment, the mode name must be defined in the SSCP associated with the SLU.
- In an APPN-only environment, the mode name must be defined in the origin and destination nodes, as well as the origin and destination node servers if the origin or the destination is owned by an end node.
- In a combined APPN and subarea environment, the mode name must be defined at the APPN node that owns the origin or destination, at the node server if it is an end node, and at the interchange nodes that represent the subarea entry point. If the SLU is owned by a subarea node other than the interchange node representing the subarea entry point, the mode name must also be defined on the owning subarea.

Note: Because mode table names are not carried on APPN line flows, a user-defined mode table is used only at the SSCP for the SLU. Other nodes defining the mode must define the SLU in the default logon mode table.

Refer to z/OS Communications Server: SNA Network Implementation Guide for details on mode to CoS resolution in an APPN or in a combined subarea and APPN environment.

Sense code 0821000A received with session activation failure

Problem statement

Session activation failed with the sense code 0821000A.

Common symptoms

An attempt to establish a session failed and the sense code 0821000A (mode table not found) was returned.

Probable cause

The sense code indicates that the mode table associated with the LU was not found.

User response

Verify that the specified table exists, and activate it.

Sense code 087D0001 received with session activation failure

Problem statement

Session activation failed with the sense code 087D0001.

Common symptoms

An attempt to establish a session failed and the sense code 087D0001 (routing exhausted) was returned. Messages IST894 and IST895 indicate that one of the adjacent SSCPs tried is ISTAPNCP with a failure sense code of 087F0001 (resubmit requested for a request that was already resubmitted).

Probable cause

Possibly one of the following conditions:

- If messages IST894I and IST895I are issued, one of the adjacent SSCPs was ISTAPNCP with a failure sense code of 087F0001. This indicates that VTAM knows which node owns the LU but is not able to route a directed search to that node to verify the availability of the LU.
- There is no SSCP-SSCP session.
- The half-session control block (HSCB) count is too low in the NCP to handle the number of sessions. A possible solution to this problem is to code a larger value on the ADDSESS keyword of the BUILD definition statement and regen.
- Both sides are using the same SSCP name.

User response

Verify that a valid search path exists. This includes CP-CP sessions, a subarea path, or both. One possible source of the problem is the absence of a CP-CP session between two nodes that share an active link that is CP-CP capable. If this situation occurs, take one of the following actions:

- Reactivate the CP-CP session.
- Deactivate the link, and reactivate it as a link that is not CP-CP capable. This notifies topology and routing services that the link is no longer available for use in directed search routing.

Sense Code 087D000A or 083B0001 received and session lost during takeover

Problem statement

Session lost during takeover with sense code 087D000A or 083B0001.

Common symptoms

An attempt to take over a switched connection that is defined with ANS=CONTINUE results in a session or sessions being lost. A message states that a BFSESSINFO request failed with the sense code 087D000A (routed through same SSCP twice) or with the sense code 083B0001 (duplicate PCID).

Probable cause

The problem might be that a connection-network-capable control point (CP) on the connection network does not have a complete system definition.

User response

If you have a connection network, check the resource definitions on each CP connected to the network. Any connection-network-capable CP must define both of the following connections:

- Its own connection to the connection network
- · Connections to any CPs on the connection network that are not connection-network-capable

Sense code 10145046 received with session activation failure

Problem statement

Session activation failed with the AS/400 sense code 10145046.

Common symptoms

An attempt was made to establish a session from one AS/400 to another AS/400 across a VTAM network. The session failed to complete, and route selection errors occurred on the initiating AS/400.

Probable cause

The AS/400 (NETC) is sending VTAM (NETA) a CDINIT that specifies a session in a third network that is not supported in this release of VTAM. VTAM rejects the session, and the AS/400 returns the sense code 10145046 to VTAM.

User response

Verify that APPN sessions across three networks are not present in your system. Sessions across three networks using APPN links are not supported by VTAM unless you have specified BN=YES to enable the VTAM border node function.

Sense code 80130000 received with session activation failure

Problem statement

Session activation failed with the sense code 80130000.

Common symptoms

An attempt to establish a session failed, and the sense code 80130000 (Class of Service not available) was returned.

Probable cause

This sense code indicates that the subarea Class of Service (CoS) is not known. (In contrast, sense code 80140002 is issued by topology and routing services and indicates that the APPN CoS is not known.)

User response

Verify that the node issuing the sense code has a usable subarea Class of Service for the mode associated with the session request. This node is usually the primary logical unit (PLU) host, an intermediate gateway VTAM, or a gateway VTAM.

Message IST891I may be issued and provides the name of the failing node. See the description of message IST891I in z/OS Communications Server: SNA Messages for additional information.

This problem can occur when a mode table is copied from one node to another, and the subarea classes of service specified by the table no longer map to valid CoS names defined at that node.

Sense code 80140001 received with session activation failure

Problem statement

Session activation failed with the sense code 80140001.

Common symptoms

An attempt to establish a session failed, and the sense code 80140001 (no route exists) was returned. This sense code indicates that no APPN route was found from the origin node to the destination node that meets the requirements of the requested Class of Service.

This can be due to any of several possible causes.

Probable cause 1

There is not an active APPN route between the origin and destination.

User response 1

Examine your network configuration to determine whether a valid path does exist. Use the DISPLAY TOPO command to verify that the topology database currently shows the links in the path as operational.

Probable cause 2

Although a valid APPN path exists, the characteristics of the nodes and links in the operational paths do not meet the requirements of the specified Class of Service.

User response 2

Check the following items:

- 1. Verify that the mode name specified on the request maps to the intended Class of Service.
- 2. Examine the LINEROW and NODEROW operands in the Class of Service definition to determine the allowable ranges for the link and node characteristics.

- 3. Use the DISPLAY TOPO command to view the characteristics of the nodes and TGs in the likely paths. Look for problems such as:
 - a. Nodes in the path are congested or have route resistance values outside the limits set by the Class of Service.
 - b. The CoS definition required secure links, but no path exists consisting exclusively of secure TGs.
 - c. High capacity (speed) was required by the CoS definition, but no path exists in which all of the links are fast enough to meet the specified minimum capacity.

Probable cause 3

The destination exists in a subarea network, or in another APPN network that is accessed through a subarea network, but paths acceptable to the specified Class of Service definition do not exist to all interchange nodes representing subarea entry points that can be used to reach the destination.

User response 3:

As specified in z/OS Communications Server: SNA Network Implementation Guide, if a destination can be reached by exiting one APPN network through two or more different interchange nodes, paths acceptable for the Class of Service to be used must be available to all of those possible exit interchange nodes. Verify this by examining the CoS definition and the characteristics of the paths to the possible exit interchange nodes.

Sense code 80140002 received with session activation failure

Problem statement

Session activation failed with the sense code 80140002.

Common symptoms

An attempt to establish a session failed, and the sense code 80140002 (not valid APPN CoS name received) was returned.

Probable cause

The sense code indicates that the APPN CoS definition was not found. The definition might not exist at a node that is performing mode-to-CoS resolution, or the mode-to-CoS mapping specified in the mode table might not be mapping to the intended CoS name.

User response

Examine the mode definition to determine the APPN CoS name. Verify that this definition exists in the VTAMLST members at the nodes that resolve the mode to an APPN Class of Service. Activate the member to be sure that the definition is active. If APPN CoS substitution is enabled (by specifying the APPN CoS start option), verify that the CoS it specifies has been activated.

Sense code 80140005 received with session activation failure

Problem statement

Session activation failed with the sense code 80140005.

Common symptoms

An attempt to establish a session failed, and the sense code 80140005 (RSCV exceeds the maximum length) was returned.

Probable cause

The sense code indicates that the number of hops between the origin and destination nodes was too large, so the attempt to build the Route Selection control vector failed.

User response

Examine your network configuration to determine how many hops would be expected in the best route for the requested APPN Class of Service. If the number of hops within a single APPN network is greater than six, you may need to provide a more direct origin to the destination path.

Session established with nonlocal instead of local application program

Problem statement

The session was intended to be established with a local application program; however, it was established with a nonlocal application program.

Probable cause

The local application program is not yet active, and a local application program served by another node is registered to the nonlocal application program network node server.

User response

Be sure that the local application program is active before you attempt to log on to it.

Session did not take the best path

Problem statement

A session took one of the following paths:

- The session took a path through the subarea network even though a better path existed through the APPN network, or the session took a path through the APPN network even though a better path existed through the subarea network.
- After a rapid transport protocol (RTP) connection switches to a new path, a session takes a path that
 requires it to visit the same node twice. For example, an LU-LU session between HOSTA and HOSTC
 goes from HOSTA through HOSTC to HOSTB and back to HOSTC.

Probable cause

- In the first situation described above, the SORDER operand or SSEARCH operand is coded with a value that indicates that the subarea network is to be searched before the APPN network is searched or that the APPN network is to be searched before the subarea network is searched.
- In the second situation described, HOSTA and HOSTB support rapid-transport protocol (RTP), but HOSTC supports only automatic network routing (ANR). Because one of the LUs resides on an ANR node (which cannot be the endpoint of an RTP connection), at least one hop of the session is not using high performance routing (HPR). During an RTP path switch, the non-HPR hops cannot change, but the RTP hops can. In some configurations, it is possible that the new path for the RTP connection will traverse some of the same nodes as the non-HPR portion of the original session route.

User response

- In the first situation, adjust the values on the SORDER and SSEARCH operands to suit your network.
- In the second situation, the session should continue, so no user action is necessary. If a temporary loss of connectivity forced RTP to switch paths, after restoring the connectivity, you can use the MODIFY RTP command to force VTAM to search for a better route for the RTP.

MNPS session recovery error

Problem statement

One or more MNPS sessions were terminated unexpectedly and were not recovered. This can be due to any of several possible causes.

Probable cause 1

Pathswitcher time set by HPRPST expired on other end of HPR pipe.

User response 1

Restart the application using automatic restart manager (ARM). Set HPRPST to allow more time (if possible) or recover more quickly the next time.

Probable cause 2

HPR connectivity is not consistent throughout the sysplex.

User response 2

Update network definitions to make sure that connectivity is consistent among all the MNPS nodes.

Probable cause 3

The VTAM is not in a sysplex, or the VTAM nodes are not in the same subplex, if subplexing is being used. Subplexing is being used if the XCFGRPID start option has been used to specify an XCF group ID suffix.

User response 3

Implement the recovery in a sysplex environment. If subplexing is being used, ensure that all nodes involved in MNPS sessions and session recovery are in the same subplex. VTAM nodes are in the same subplex if each node specifies the same 2-digit value on the XCFGRPID start option.

Probable cause 4

VTAM is not connected to the MNPS structure.

User response 4

Check the value of the STRMNPS start option. To determine the status of VTAMs connection, issue the command:

D NET, STATS, type=CFS, ID=MNPSstructurename

Probable cause 5

Pathswitcher time set by PSTIMER has expired.

User response 5

Restart the application using automatic restart manager (ARM). You can set the timer to allow more time using the application start definitions or else recover more quickly the next time.

Probable cause 6

The PERSIST=MULTI operand is not defined for the application. This sets the application for MNPS; if it is not defined, MNPS is not allowed.

User response 6

Terminate the application. Define PERSIST=MULTI on the APPL definition statement. Restart the application.

Probable cause 7

Session traverses a subarea path not on an RTP connection.

User response 7

Change the network configuration to ensure that the session is established over valid network routes. Ensure that SORDER is set to search APPN first.

Common problems in HPR networks

<u>Table 3 on page 34</u> includes a brief description of several common problems that occur in HPR networks. For additional information, go to the page indicated.

Table 3. Index of common problems in HPR networks

Problem	See page
LU-LU session initiation fails	"LU-LU session initiation fails" on page 35
LU-LU session initiation does not complete	"LU-LU session initiation does not complete" on page 35
No RTP connection established for CP-CP session	"No RTP connection established for CP-CP session pair" on page 35
LU-LU session established through ISR routing	"LU-LU session established using ISR routing" on page 36
RTP connection for LU-LU session does not include entire session	"RTP connection for LU-LU session does not include entire session path" on page 36

Table 3. Index of common problems in HPR networks (continued)

Problem	See page
RTP connection experiences a path switch	"RTP connection experiences a path switch" on page 36
RTP path switch fails	"RTP path switch fails" on page 37
deactivate or MODIFY RTP for Route_Setup RTP ALS fails	"Deactivate or MODIFY RTP for Route_Setup RTP ALS fails" on page 37
Sense code 08770026	"Sense code 08770026 received on dial-out or dial-in for Enterprise Extender" on page 37
Sense code FFC80004	"Sense code FFC80004 received with dial-out for Enterprise Extender" on page 38

Descriptions of common problems in HPR networks

This information includes examples of common problems in HPR networks. See $\underline{\text{Table 3 on page 34}}$ for an index of these problems.

LU-LU session initiation fails

Problem statement

A severe error that prevents session initiation has occurred.

Common symptoms

Message IST663I is issued and contains a sense code describing the reason for the session initiation failure.

Probable cause

The RTP connection manager (RCM) experienced a severe error.

User response

Determine which node in the session path has experienced the error; obtain a VTAM dump, including a VTAM internal trace (VIT) with the HPR options.

LU-LU session initiation does not complete

Problem statement

The LU-LU session activation begins but does not complete, and the session status is PRTPSTR.

Common symptoms

The LU-LU session activation begins, but message IST874I indicates that the session status is PRTPSTR.

Probable cause

The RTP connection between the session partner nodes has not fully activated.

User response

Specify the IOPURGE VTAM start option to clear waiting signals.

No RTP connection established for CP-CP session pair

Problem statement

The CP-CP session pair is activated, but no RTP connections are established.

Common symptoms

No message IST1488I received before CP-CP session activation.

Probable cause

Connection between CP-CP capable nodes does not support the HPR Control Flows tower.

User response

Reconfigure the network to connect CP-CP capable adjacent nodes with resources supporting the HPR Control Flows tower.

LU-LU session established using ISR routing

Problem statement

The LU-LU session activates, but no RTP connections are established.

Common symptoms

No message IST1488I was received before LU-LU session activation.

Probable cause

VTAM determined that the session path is not HPR capable:

- One or more connections between nodes in the session path are not HPR capable.
- The session path does not terminate with an HPR tower node. (If the terminating node is VTAM, it must specify the start option HPR=RTP or take the default).

User response

Reconfigure the session path to include HPR capable links and terminate with an HPR tower node.

RTP connection for LU-LU session does not include entire session path

Problem statement

The LU-LU session activates and an RTP connection is established but includes only part of the session path.

Common symptoms

Message IST1487I contains a destination CPNAME that is not the name of the session partner node.

Probable cause

VTAM determined that part of the session path is not HPR capable:

- One or more connections between nodes in the session path are not HPR capable.
- The session path does not terminate with an HPR tower node. (If the terminating node is VTAM, it must specify the start option HPR=RTP or take the default).
- One or more nodes along the path were unable to perform HPR tower function.
- The session path enters the subarea and the HPR capable portion of the path ends in an interchange node at the subarea boundary.

User response

Reconfigure the session path to include HPR capable links and terminate with an HPR tower node. Ensure that all nodes in the path are able to perform HPR tower function.

RTP connection experiences a path switch

Problem statement

A path switch operation is begun for an RTP connection.

Common symptoms

Message IST1494I indicates that path switch has been started for the RTP.

Probable cause

A resource in the RTP path has become inoperative.

User response

Determine which resource in the RTP path has become inoperative and restore that resource to operational status.

RTP path switch fails

Problem statement

Message IST1494I indicates RTP path switch starts. Message IST1494I is reissued, indicating RTP path switch has failed.

Common symptoms

Message IST1495I indicates that no alternate route is available.

Probable cause

No alternate HPR route exists between the RTP edge nodes.

User response

Reconfigure the network to include an alternate HPR route.

Deactivate or MODIFY RTP for Route_Setup RTP ALS fails

Problem statement

A command has been issued for an RTP resource that has either an invalid node type or an invalid state for the command.

Common symptoms

Message IST607I indicates the command that failed for the specified RTP resource.

Probable cause

The command specified in message IST607I is not applicable for the RTP resource specified in message IST607I because the node type or state of the RTP resource is invalid for the operation that was requested.

User response

Issue a DISPLAY command for the RTP major node (ISTRTPMN) to verify RTP resource types and states. Reenter the command for a resource that is either the valid node type or in the valid state for the command.

Sense code 08770026 received on dial-out or dial-in for Enterprise Extender

Problem statement

Dial-out or dial-in failed with a sense code of 08770026.

Common symptoms

An attempt to dial out or dial in to establish a session failed and the sense code 08770026 was received.

Probable cause

The sense code indicates that the link station selected does not have HPR=RTP capability.

User response

Specify one of the following options:

- Start option HPR=RTP.
- Start option HPR=(RTP,ANR). Specify HPR=YES either on the PU or by the operation command activating the PU.

Sense code 1016000B received on dial-in for Enterprise Extender

Problem statement

Dial-in failed with a sense code of 1016000B.

Common symptoms

An attempt to dial-in or establish a session failed, and the sense code 1016000B was returned. Message IST1085I was issued on the host that rejected the dial-in.

Probable cause

The sense code indicates that a connection through TCP/IP has been established with identical TG number and CP name values. A duplicate CP name might be in the network.

User response

From the host where the 1016000B sense code was received, issue a DISPLAY EE,CPNAME= command, where CPNAME specifies the name of resource from the IST1085I message. Information about the CP with the active EE connection is displayed.

Sense code FFC80004 received with dial-out for Enterprise Extender

Problem statement

Dial-out failed with a sense code of FFC80004.

Common symptoms

An attempt to dial out or establish a session failed and the sense code FFC80004 was returned.

Probable cause

The sense code indicates that a connection through TCP/IP has already been established with identical local SAP, remote SAP, and IP address values.

User response

Verify that the remote SAP values specified on the PATH statements within the switched major nodes are unique.

Note: For a dial-through-a-connection network, the remote SAP value is the local SAP value of the node that is being dialed.

Common symptoms and associated VTAM problem types

If your problem was not described in <u>"Common problems in subarea networks" on page 4 or <u>"Common problems in APPN networks" on page 20</u>, find the symptom you are experiencing in <u>Table 4 on page 38</u>. The symptoms are listed alphabetically. Match your symptom to the appropriate VTAM problem type and go to the page indicated.</u>

Table 4. Index of problem symptoms and associated VTAM problem types

Symptom	Problem type	See page
Abend message.	Abend	"Abnormal end (abend)" on page 53
Activating network nodes takes too long.	Performance	"Performance problem" on page 83
Application program cannot terminate.	Wait	"Wait" on page 57
Application programs and terminals cannot communicate.	Wait or Loop	"Wait" on page 57, "Loop" on page 73
Application program reports an unexpected return or sense code.	Incorrect Output or Message	"Incorrect output" on page 80, "Message problem" on page 78
Batch application program fails to complete.	Wait	"Wait" on page 57
Document is missing information or has wrong or ambiguous information.	Documentation	"Documentation problem" on page 88
Documents contradict each other.	Documentation	"Documentation problem" on page 88

Table 4. Index of problem symptoms and associated VTAM problem types (continued)

Symptom	Problem type	See page
Command is not completed.	Wait or Incorrect Output	"Wait" on page 57, "Incorrect output" on page 80
Commands cannot be entered on system console.	Loop	"Loop" on page 73
Commands take too long to complete.	Performance	"Performance problem" on page 83
Cursor is in the wrong position. This is probably an application program or VTAM definition error, such as using an incorrect logmode definition.	Incorrect Output	"Incorrect output" on page 80
Deactivating network nodes takes too long.	Performance	"Performance problem" on page 83
Error message.	Message	"Message problem" on page 78
Hung session, LU, or terminal.	Incorrect Output	"Incorrect output" on page 80
Hung system.	Wait	"Wait" on page 57
IKT error message.	Message	"Message problem" on page 78
IKT message is wrong or formatted improperly.	Message or Incorrect Output	"Message problem" on page 78, "Incorrect output" on page 80
IST error message.	Message	"Message problem" on page 78
IST message is wrong or formatted improperly.	Message or Incorrect Output	"Message problem" on page 78, "Incorrect output" on page 80
Keyboard locks unexpectedly.	Incorrect Output	"Incorrect output" on page 80
LOGON takes too long to complete.	Performance	"Performance problem" on page 83
LOGREC entries indicate an abend.	Abend	"Abnormal end (abend)" on page 53
LOGREC fills with repeated entries.	Loop or hardware	"Loop" on page 73
Message is wrong or formatted incorrectly.	Message or Incorrect Output	"Message problem" on page 78, "Incorrect output" on page 80
Message from application program.	Incorrect Output or Message	"Incorrect output" on page 80, "Message problem" on page 78
Message is sent to the wrong console.	Incorrect Output	"Incorrect output" on page 80
Message repeats continuously.	Loop	"Loop" on page 73

Table 4. Index of problem symptoms and associated VTAM problem types (continued)

Symptom	Problem type	See page
Message text does not explain a condition.	Message	"Message problem" on page 78
Message is missing text.	Message or Incorrect Output	"Message problem" on page 78, "Incorrect output" on page 80
Output data is formatted incorrectly. This is probably an application program or VTAM definition error, such as using an incorrect logmode definition.	Incorrect Output	"Incorrect output" on page 80
Path problem.	Performance	"Example: Solving path problems" on page 138
Performance is degraded after a network outage.	Performance	"Performance problem" on page 83
Printers stop.	Loop	"Loop" on page 73
PSWs point to a VTAM address.	Loop	"Loop" on page 73
Response time is slow.	Performance	"Performance problem" on page 83
Routing information is wrong.	Incorrect Output	"Incorrect output" on page 80
Storage message IST154I, IST562I, or IST561I-IST833I.	Storage	"Procedure steps" on page 85
System functions stop.	Loop	"Loop" on page 73
System light is on; Wait light is off.	Loop	"Loop" on page 73
Tapes stop.	Loop	"Loop" on page 73
Terminal user cannot log on, enter data, or log off.	Incorrect Output	"Incorrect output" on page 80
Terminal user gets unexpected response. This is probably an application program or VTAM definition error, such as using an incorrect logmode definition.	Incorrect Output	"Incorrect output" on page 80
Terminal user reports incorrect or missing data. This is probably an application program or VTAM definition error, such as using an incorrect logmode definition.	Incorrect Output	"Incorrect output" on page 80
Traffic ceases through a network component (BSC link, SDLC link, communication controller, control unit).	Wait	"Wait" on page 57
VTAM does not work as described in a document.	Documentation	"Documentation problem" on page 88
VTAM is not communicating with system console.	Wait or Loop	"Wait" on page 57, "Loop" on page 73
VTAM process issues an error message.	Message	"Message problem" on page 78

VTAM internal trace (VIT) analysis tool problems

This information describes how to diagnose problems that might occur while running the VIT analysis tool and includes the following topics:

- "Checklist for isolating the problem" on page 41
- "Common symptoms and actions" on page 41
- "Documenting an APAR for VIT analysis tool problems" on page 43

If you are having problems during installation of the tool, see the <u>z/OS Communications Server: New</u> Function Summary for additional information.

Checklist for isolating the problem

- 1. Does the problem exist with an ISPF panel or with the VIT analysis tool? The ISPF panel process creates the parameter data set, which is the input to the VIT analysis tool.
- 2. Are any errors noted in the JCL output?IBM publishes sample JCL, as described under <u>"Step 2. Set up to run the tool" on page 316</u>. However, you can change it to suit your environment. The JCL output indicates whether the tools entry module, ISTRAFT1, is found. The JCL output contains an error message if the SUMMARY data set cannot be written to (for example, if the wrong DCB information was specified for the SUMMARY data set). Also check the JCL to verify that the right trace tapes or DASD data sets are specified and that multiple tapes are specified in the correct order.
- 3. Check the SUMMARY data set to determine whether any errors were noticed, such as the wrong DCB information being supplied for the LOG data set. The SUMMARY data set shows the input parameters and defaults used. The SUMMARY data set reports time stamps and types of records and VIT entry occurrences found on the trace. The SUMMARY data set should always be created, unless there was a problem with the SUMMARY data set itself, in which case the JCL or REXX output shows what happened.
- 4. Check the input parameters in the parameter data set with the syntax diagrams. The parameter data set is created by either the ISPF panel process or by coding the parameters directly using an editor. For more information on checking syntax diagrams, see Chapter 8, "Using the VIT analysis tool," on page 315.
- 5. Check the following output data sets:
 - LOG

The LOG data set shows whether counters overflowed, whether the trace wrapped, and so on. The LOG data set is always used unless an unrecoverable error prevents the tool from initializing completely. The LOG data set might contain only the title line and description (if a description exists).

VITEXT

The VITEXT data set is used only if the VIT extraction function is chosen. It is not used for storage analysis or RU-counting.

• DETAILS

The DETAILS data set is used only if the storage analysis or RU-counting function is chosen. It is not used for VIT extraction.

OUTSTAN

The OUTSTAN data set is used only if storage-analysis-counting function is chosen and only if the outstanding option (to list unmatched allocate entries) is chosen. It is not used for RU counting or VIT extraction.

Common symptoms and actions

Use Table 5 on page 42 to diagnose and correct problems.

Table 5. VIT anal	ysis tool problems: Common symptoms and actions						
Symptom	Action						
Runs too long	If the tool is taking a long time to run (several hours):						
	If the MATCH option was specified for storage analysis:						
	 Remove the MATCH option. 						
	- Specify only the few pools you are interested in when using the MATCH option.						
	• Check to see if the tool is waiting on a tape to be mounted or to access a data set in use b some other job.						
No output	If no output is displayed (for example, no matching VIT entries are found, no RUs are counted, no storage VIT entries are found):						
	 Verify that the trace has VIT records (see the SUMMARY data set). 						
	 Verify that the entries required for the job are on the VIT. (All occurrences of VIT entries are listed at the bottom of the SUMMARY data set.) 						
	 Storage analysis requires the SMS VIT entries. 						
	 RU counting requires the PIU VIT entries. 						
	 VIT extraction origin and destination options work only on PIU VIT entries. 						
	• Check to see whether the VIT is a different level from the VIT analysis tool. For example, the DISP entry is now called DSP. Therefore, if you are extracting all occurrences of VIT option PSS with entry name e'DI*', no matches are found.						
	 Do not specify a start or stop time. An event reported on the console can be off several seconds from the GTF time stamp. 						
	 Use the INTERVAL option to ensure that some output is seen before the job abends or is canceled. 						
Same output from a previous date	If the job runs but the output data sets contain data from a previous job, check the DISP parameter. When DISP is NEW and the data set exists, the batch job runs anyway and then deletes the new data set. A message in the JCL log indicates whether this has happened.						
ABEND 80A	If you are running the storage analysis function with MATCH and LENGTH options, try one o more of the following methods:						
	• Increase storage on the job.						
	 Reduce storage pools to one storage type (GBLK, REQS, or VTAL). 						
	 Match only a few pools rather than all GBLK or all VTAL or all REQS pools. 						
	 Run the LENGTH option without the MATCH option, and save the output for future reference. The LENGTH option is independent of the MATCH option, so the same LENGTH output is shown, regardless of whether the MATCH option is specified. 						
	Remove MATCH and LENGTH options.						
	 Specify a start and stop time to limit the amount of data being processed. 						

process (BLP), verify that the LABEL parameter on the TRACE DD statement is coded correctly. See <u>Table 48 on page 577</u> to determine what document describes job control language (JCL).

If you are attempting to process multiple standard label (SL) tapes using the bypass label

In addition to the actions suggested in <u>Table 5 on page 42</u>, try the following actions to help you diagnose the problem:

CANNOT READ FILE WITH DD NAME TRACE and the return code is 10.

CANNOT READ

FILE WITH DD

NAME TRACE

received

- Use the DEBUG option (add it as a keyword in the parameter data set), which produces large quantities of data showing what the tool is doing. Run this on a small portion of the trace to prevent the output from being too large to be useful.
- Run another tool, such as the IPCS GTFTRACE subcommand, or ACF/TAP to see whether they work on this trace data set and to compare output such as time stamps.
- Run a short job to see what is on the tape. A simple way to run a short job is to run VIT extraction with an expression that is never true. Use the NOFORMAT option to avoid the overhead of loading the format routine. You can use the following parameter data set as a short job:

```
Desc Tell what's in this trace data set by running without extracting
Desc any entries.
NOWRAP NOFORMAT
VITEXT e'zzzz'
```

This data set extracts all VIT entries with the name ZZZZ. (Presumably, no entries start with ZZZZ.) The SUMMARY data set shows whether the data set wrapped, which types of records are traced, which VIT entries and options are traced, and the first and last time stamps.

Documenting an APAR for VIT analysis tool problems

If an APAR is submitted, the following information is required:

- · Input data
 - Format load module (AMDUSRFD)
 - JCL or REXX EXEC or CLIST
 - PARM data set
 - TRACE data set
 - VIT analysis tool load module (ISTRAFT1)
- · Output data
 - JCL log
 - Data sets produced by the VIT analysis tool
 - DETAILS
 - LOG
 - OUTSTAN
 - SUMMARY
 - VITEXT

VTAM dump analysis tool problems

This information describes how to diagnose problems that might occur while running the VTAM dump analysis tools and includes the following topics:

- "Checklist for isolating the problem" on page 43
- "Documenting an APAR for dump analysis tool problems" on page 44

If you are having problems during installation of the tool, see <u>z/OS Communications Server: New Function Summary</u> for additional information.

Checklist for isolating the problem

1. Determine whether the error occurred as a result of an ISPF panel or a module. ISPF handles its own error conditions and displays them directly on the panel. If the error message appears in your IPCS output, it is probably issued from a formatted dump module.

- 2. If you submit your job using JCL, verify that no JCL errors are issued. If a bad return code is issued, determine whether it is a result of the JCL job or a formatted dump module.
- 3. If you receive the message Storage access failed for xxxxxxxx, browse the dump to determine whether the actual location exists in the dump. Storage requests are usually in terms of the length of the control block. For example, if control block BB is X'20' bytes long, the storage service will be trying to retrieve X'20' bytes of data.
- 4. View the output to determine whether any error messages were issued during execution. Messages may indicate the cause of the termination.
 - If the VTAM formatted dump routine cannot access a field (either in the control block or in the chain of pointers to the control block), an abend will occur and a note of the condition is made on the dump output.
- 5. Check whether the required ISPF and IPCS maintenance has been applied as documented in the program directory. Check whether maintenance has been applied to IPCS, ISPF, or VTAM. If any of these are down-level, unpredictable results might occur.
- 6. If your ISPF prompt lists or PF keys are not working properly, see <u>z/OS</u> Communications Server: New Function Summary to ensure that everything is installed and concatenated properly.

Documenting an APAR for dump analysis tool problems

If an APAR is submitted for the problem, the following information is required:

- · Dump used when error occurred
- IPCSPRNT output data set

IPCSPRNT is the output data set allocated by you to store all data generated during an IPCS session. See Table 48 on page 577 to determine what document describes IPCSPRNT.

- JCL if submitted through batch
- Maintenance levels of the following items:
 - FFST
 - IPCS
 - ISPF
 - TSO/E REXX
 - VTAM

Knowing the level of IPCS, ISPF, and VTAM can help determine whether you are running back-level on these products.

Recommended documentation for VTAM problems

Symptoms are often related to a particular device, command, or update to the system. If you suspect this is so, tell the IBM Support Center of this relationship. The following information describes some possible relationships and the documentation you should have for each one.

APAR or PTF number

If the problem appears after you apply an authorized programming analysis report (APAR) fix, supply the APAR number. If the fix is a PTF (program temporary fix), supply the PTF number. The following table shows the format for APAR numbers and PTF numbers.

APAR	PTF
OAnnnn	UAnnnnn
OWnnnn	UWnnnnn
OYnnnn	UYnnnnn

Device type

If the problem is associated with the use of a particular type of terminal or other hardware unit, supply that device type (such as 3278 Model 2). If the problem is associated with a particular type of communication link, supply appropriate link characteristics, such as SDLC, BSC, SNA, or non-SNA. Also, identify any recent microcode activity on the control units involved.

Operator command

If the problem is associated with a particular VTAM operator command, supply the full command name (such as VARY). Also, note any command operand (such as INACT) or a network node type (such as CDRM) that has been associated with the problem.

Terminal action

If the problem is associated with a particular terminal action, such as IBMECHO, USS LOGON, or pressing the CLEAR key, describe the action (or sequence of actions).

VTAM application program

If the problem is associated with a VTAM application program that is an IBM licensed program (such as CICS or TSO), supply the name of the licensed program.

Hardware error condition

Sometimes it is immediately apparent that a problem is related to a specific hardware error condition. The hardware error might have been detected and reported in several ways:

- By an operating system message
- By a VTAM or application program message
- · By the system operator
- By a VTAM buffer filling up with information from one device
- Through LOGREC
- By a terminal user (an indicator of the error status is displayed in the operator information area, at the bottom of the terminal screen)

If a hardware error occurred, note the failure condition that accompanied it, such as UNIT CHECK or TIMEOUT.

If you think your problem is related to a hardware failure, use the following tools to collect information about the hardware failure:

- The NetView program, if you use it in your system.
- LOGREC (or similar operating system facilities).
- The VARY TCPIP,,OSAENTA command if you think your problem is related to an OSA-Express2 or later failure; see <u>z/OS Communications Server: IP Diagnosis Guide</u> for more information about the OSAENTA command.

Note: For help with hardware problems, use the NetView program if you have it installed, or use the system console messages to identify the affected part of the network. If you need further assistance, contact your IBM branch office.

Coding change

A problem can occur after you make coding changes to the following things:

- · VTAM network definitions
- Macro usage
- · Start options
- · User-coded exit routines
- · Job control statements
- · User applications

Supply information about the coding change.

Use <u>Table 6 on page 46</u> to determine the type of documentation you need to either solve your problem or supply to the IBM Support Center.

Note: Documentation for the NetView program is included in Table 6 on page 46.

Table 6. Recommended documentation for VTAM p	problems
---	----------

Documentation	Description
Alias names	If your configuration is using SNA network interconnection and you are using alias names, keep a list of the alias names defined to each name translation program.
Application program log (if appropriate)	Some user-written operator application programs produce an application program log.
Exit routines	Keep a list of VTAM exit routines.
Link-edit map	If a VTAM load module is involved in a problem, an XREF map of the load module is needed to show the location of other VTAM modules within that load module. To get an XREF map, use the service aid LIST (AMBLIST) with the control statement LISTLOAD and the parameter OUTPUT=XREF. This produces a listing showing the module (CSECT) names and their location within the load module. See Table 48 on page 577 to determine what document describes how to use the LIST service aid.
Link Pack Area (LPA) map	Contains names and starting addresses of modules in SYS1.LPALIB. To get an LPA map, use the IBM service aid LIST (AMBLIST) with the control statement LISTLPA. See Table 48 on page 577 to determine what document describes the LIST service aid. When it is used with a link-edit map and a dump, an LPA map enables you to identify a module that is found at a specific address within the link pack area.
LOGREC	Contains records of various types of system failures, both hardware and software. For hardware failures, LOGREC entries contain sense and status information about the device causing the failure. For software failures, LOGREC entries contain information such as the program status word (PSW), the abend code, the failing module name (when possible), a symptom string, and the general registers at the time of failure. LOGREC entries are written each time VTAM produces a supervisor call (SVC) dump.
NetView hardcopy log (if using the NetView program)	Contains messages routed to the NetView program that are associated with an operator terminal.

Table 6. Recommended documentation for VTAM proble Documentation	Description		
NetView file (if using the NetView program)	Contains session awareness data for all active sessions and session trace data for sessions with a resource for which a session monitor trace has been started.		
	Session awareness data includes:		
	Session type		
	Names of session partners		
	Session activation status		
	 IDs of subarea physical units contained in the explicit route assigned to the session 		
	 Transmission group numbers 		
	 Addresses and network IDs of SSCPs that own links in the transmission groups 		
	Session trace data includes:		
	Session activation parameters		
	VTAM PIU data		
Network configuration	List any application programs, new devices, or new levels of the operating system you have added to you network.		
	Save the System Modification Program (SMP) configuration data set (CDS) for VTAM and TSO/VTAM components. See <u>Table 48 on page 577</u> to determine what document describes SMP.		
Program Update Tape (PUT) and Program Temporary Fix (PTF)	Supply a list of any PUTs and PTFs that have been applied to your system. Also, supply a list of changes that have been applied to the hardware, such as requests for engineering activity (REAs) and engineering changes (ECs).		
	If you have identified a module as the source of the problem, supply the PTF eye-catcher if the module has one. (The PTF eye-catcher is the latest PTF number that has been applied to a module. It follows the module ID in a dump.)		
Routing data	Keep a table of destination subareas, explicit route numbers, virtual route numbers, paths, and transmission groups as well as a table associating session types, Class of Service (CoS) names, and CoS tables.		

Table 6. Recommended documentation for	Table 6. Recommended documentation for VTAM problems (continued)						
Documentation	Description						
Symptom string	Some VTAM routines provide a symptom string after a failure. After an abend, you will receive message IST931I, which contains the symptom string text. Refer to z/OS Communications Server: SNA Messages for a description of message IST931I.						
	The symptom string is put in the system diagnostic work area (SDWA), which is printed by the Environmental Recording, Editing, and Printing (EREP) program as part of the LOGREC entries. See Table 48 on page 577 to determine what document contains more information on LOGREC.						
	If a first failure support technology (FFST) probe produced the symptom string, EPW messages will appear in the console listing to describe the symptom string. See <u>Table 48 on page 577</u> to determine what document contains more information on FFST messages.						
System-console hardcopy Log	Shows all messages sent to or commands received from the operator. May help indicate when the system began to have problems. (VTAM problems may not be apparent at the time they occur.)						
	If your installation has written its own version of a VTAM message, supply the original VTAM message when you report the problem.						
Tables	Keep a list of the VTAM tables your installation has defined, such as USS and logmode.						
Version and Release number	CSV1R9						
Component ID	Component ID						
	VTAM 5695-11701 Release 190						
	At VTAM startup when VTAM initialization is completed, messages IST020I and IST1349I are issued with this information. Message IST020I displays the version and release number, and message IST1349I displays the component ID.						
	In addition, information about the release level of each component is contained in an access-method-support vector list pointed to by the access method control block (ACB). See <u>z/OS Communications Server: SNA Programming</u> for more information about the ACB.						

Table 6. Recommended documentation for VTAM problems (continued)				
Documentation	Description			
VTAM definition library	This is a set of definition statements for resources in the VTAM network, such as the application programs and network nodes. The VTAM definition library also contains the start options used to initialize VTAM, unless they were entered by the system operator. Include configuration lists and user installation exits with the definition library. Detailed information about the VTAM definition library is in z/OS Communications Server: New Function Summary.			

Methods for submitting documentation

You can send documentation to IBM using the following methods:

- File Transfer Protocol (FTP)
- Email
- Tape

Submitting documentation using FTP

Tip: If you use FTP, compress all dumps and traces with the TRSMAIN (MVS terse) program, and send the data in BINARY mode.

Requirement: TRSMAIN is a prerequisite for PUTDOC.

To obtain PUTDOC and detailed instruction on its use, follow these steps in "Obtaining PUTDOC" on page 49:

Obtaining PUTDOC

These steps provide the minimum information that you need to obtain PUTDOC.

Procedure

Perform the following steps to obtain PUTDOC:

- 1. FTP to the website at ftp://service.software.ibm.com.
- 2. Log in using **anonymous** as the user ID and your email address as the password.
- 3. Change directories (cd) to the /s390/mvs/tools/putdoc/ directory, where you find three files: PUTDOC.BIN, PUTDOC.HTML and PUTDOC.SRC.
- 4. Read the PUTDOC.HTML file for detailed instructions.

Obtaining TRSMAIN

These steps provide the minimum information that you need to obtain TRSMAIN.

Procedure

Perform the following steps to obtain TRSMAIN and detailed instructions on its use:

- 1. FTP to the website at ftp://service.software.ibm.com.
- 2. Log in using **anonymous** as the user ID and your email address as the password.
- 3. Change directories (cd) to the /s390/mvs/tools/packlib/ directory, where you find two files: README.TXT and TRSMAIN.
- 4. Read the README file for detailed instructions.

Results

If you require any additional directions, call the IBM Support Center.

Using electronic transfer through email attachments

Smaller documents can be sent as attachments to an email message. This can include cutting and pasting user output or downloading the file to a workstation for inclusion. Displayable text can be downloaded using ASCII transfer; all others should be processed by the TRSMAIN utility (see "Obtaining TRSMAIN" on page 49) and transferred in BINARY. Email systems usually have limits on how much data can be included, so FTP transfers should be used for any significant amounts (the IBM mail system limit is 10M).

Submitting documentation on tape

Whenever possible, submit documentation electronically. If, after talking to the IBM Support Center representative about a problem, you need to submit documentation to the VTAM service team and electronic submission is not possible, you can submit documentation on a tape. Documentation on tape can be handled most efficiently by the IBM Support Center if it conforms to the following guidelines.

Tapes that are submitted to the VTAM service team can be standard label (SL) or nonlabel (NL) cartridge (3480). Improved data recording capability (a feature on 3480, standard on 3490) (IDRC) can be used. Each tape should contain an external label to identify the tape and its contents in some way. If an APAR has been taken, put the APAR number on the label. Otherwise, put the PMR number on the label. If you use multiple tapes or multiple files on one tape, include a separate explanation itemizing the contents of each tape.

With each tape, include the output from the job used to create the tape. To verify that the tape was created correctly and that the job completed normally, the VTAM service team must have the output from the job that created the tape (not just the job control statements that were used).

Note: The information in this topic is from APAR OY17061. See that APAR for additional information.

To submit dumps, traces, and other information to the VTAM service team, take the following steps:

For dumps

Do not format data in any way before or during the transfer of the dump to tape. Dumps can be transferred to tape using IPCS or IEBGENER. See <u>Table 48 on page 577</u> to determine the document that describes how to use the IPCS and IEBGENER utilities.

Do not change the data control block (DCB) parameters of the dump data set. Define the DCB parameters as follows:

```
LRECL=4160, BLKSIZE=4160, RECFM=F
```

· For GTF traces

Move the GTF trace data from the trace data set (which is usually SYS1.TRACE) to tape using IEBGENER only. The DCB parameters for a GTF trace should be one of the following values:

```
LRECL=4092, BLKSIZE=4096, RECFM=VBA
LRECL=4092, BLKSIZE=32760, RECFM=VBA
```

For both traces and dumps, do not reblock the data (that is, use a different BLKSIZE) when moving it to tape. Use only the DCB parameters shown in the preceding example.

Restriction: Using any other utility (IBM or non-IBM) to transfer dump or trace data to tape might result in a processing delay and result in the APAR being returned to you (closed "RET") because the IBM service team is unable to process the tape.

For other types of information

Other types of information (for example, VTAM definitions, NCP stage one input, and console logs) can be submitted on paper or tape. If you submit the data on tape, it should be written to tape using

IEBGENER only. The DCB parameters used when writing this type of data to tape should be the same as the input data set (that is, the same DCB parameters as the source of the data).

Necessary documentation

Before you call the IBM Support Center, have the following information available:

Customer number

The authorization code that allows you to use the IBM Support Center. Your account name, your VTAM license number, and other customer identification should also be available.

Problem number

The problem number previously assigned to the problem. If this is your first call about the problem, the support center representative assigns a number to the problem.

If you have a complex problem, you might need to talk to several people when you report your problem to the IBM Support Center. Therefore, keep all the information that you have gathered readily available. You might want to keep the items that are constantly required, such as the VTAM component ID, in a file for easy access.

Chapter 2. Collecting documentation for specific types of problems

After you have classified your problem as a specific type using information in <u>Chapter 1</u>, "<u>Diagnosing VTAM problems</u>: Where to begin," on page 3, this topic shows you how to collect the additional information you need before contacting the IBM Support Center.

This topic includes the following information:

- "Common problem determination procedures" on page 53 describes procedures for specific problem types.
- <u>"Failing module" on page 89</u> tells what to do when you have isolated the problem to a specific module of the VTAM program. You might be sent to this information from within the procedure for the problem type you have chosen.
- "Symptom string structure" on page 90 describes the meaning of the fields found in a symptom string.
- <u>"Reporting the problem to IBM" on page 91</u> describes how to report the problem to your local branch office or the IBM Support Center.

Common problem determination procedures

This information includes a description of the following procedures:

- "Abnormal end (abend)" on page 53
- "Wait" on page 57
 - "VTAM locks" on page 68
 - "Using the VARY INACT, FORCE command" on page 71
- "Loop" on page 73
- "Message problem" on page 78
- "Incorrect output" on page 80
- "Performance problem" on page 83
- "Storage problem procedure" on page 85
- "Documentation problem" on page 88

Abnormal end (abend)

If the problem is an abend, use the procedure in <u>Figure 1 on page 54</u> to collect the following documentation:

- Chapter 5, "Using dumps," on page 159
- LOGREC
- Symptom string
- Abend or system completion code
- Contents of the general registers (at the time of the abend)
- · Module ID and PTF eve-catcher
- PSW (at the time of the abend)
- "Formatting and printing trace records" on page 282

Figure 1. Overview of the abend procedure

The following procedure describe each step shown in Figure 1 on page 54.

Get dump output.VTAM usually produces a dump for an abend. If no dump was taken, the dump files
or spools might be full. Check for a message that an error occurred while VTAM was trying to produce
the dump. If VTAM is not able to complete the dump, you have to re-create the abend or wait for it to
occur again.

Note: To extract abend information from a VTAM dump, invoke the CLIST <u>"ISTVABND" on page 210</u> or continue with the following steps.

2. Find the symptom string.

A symptom string is a structured database search argument. The symptom string gives information about what was happening at the time of the abend. Message IST931I, which contains the symptom string text, is issued when a symptom string is produced. A record is written to the LOGREC data set whenever VTAM takes a supervisor call (SVC) dump. For about 85% of all abends, recovery routines produce a symptom string subset, which you can get by printing LOGREC. The symptom string subset, if it occurs, is located in control block SDWA in LOGREC.

The SDWA address should be listed in the beginning of the dump, in the dump abstract information. It is also printed out in LOGREC, labeled "Hex Dump of Record" at the end of each software entry.

The symptom string begins at X'194' in the SDWA. Field SDWAURAL gives the length of the symptom string, which can be up to 256 bytes.

3. Find the abend, system completion, or user completion code.

You can find the abend (or completion) code in the output of several different service aids. The system control block RTM2 work area (RTM2WA), the SYS1.LOGREC software record, and the task control block (field TCBCMPC) contain the completion code. The RTM2WA is pointed to by the TCB of the failing task (field TCBRTWA), and is listed after the abnormally ending TCB.

For more information on the abend codes issued by VTAM, see <u>z/OS Communications Server: IP and SNA Codes.</u>

- 4. Determine whether the abend code is OCx.If the completion code is of the form 0Cx (where x = the program interruption code from the PSW), continue with this step. If the abend code is not 0Cx, go to step "5" on page 56.
 - a. Find the program status word (PSW) at the time of the abend.

The PSW is found in the LOGREC output, the SDWA, or the RTM2WA.

The location of the PSW in the dump output varies depending on the type of dump taken. For assistance in locating the PSW in dump output, see the diagnostic books for your operating system.

b. Find the failing address or the failing instruction.

The PSW contains either the address of the next instruction to be executed at the time of the abend or the instruction that failed at the time of the abend, depending on the interruption code.

If the interruption code is X'10' or X'11', the PSW address points to the failing instruction. Otherwise, back up the PSW by the instruction length, and *that* is the failing instruction. Scan the dump output to find the address given in the PSW.

If you cannot find the address, the dump might not contain the relevant portion of main storage.

c. Find the module ID for the module that contains the failing address.

VTAM identifies modules with the module name, Julian date, and PTF or APAR eye-catcher at or near the beginning of each module. This module identifier is in the form:

ISTxxxxx yy.ddd nnnnnnn

where xxxxx is the last five characters of the module name, yy.ddd is the Julian date the module was assembled, and nnnnnn is the latest PTF or APAR fix (if any) that has been applied to this module.

Sometimes VTAM puts the module name of the failing module in LOGREC. If it is not there, you can find it in a dump. To find the module ID in a dump, start at the failing address and scan in descending address order along the right side of the listing. The module ID is printed in EBCDIC.

You can also scan the LPA map for the name of the load module and then go to the AMB list in the load module to find the CSECT that contains the failing address.

d. Find the general registers.

The general registers in use at the time of the abend are found in the LOGREC output, the SDWA, or the RTM2WA.

Use the diagnostic books for your operating system to help find the registers.

e. Determine which register has information that is not valid.

The failing instruction often uses a register with an address that is not valid in one of the general registers, or points to a location that is not valid (for example, low-address storage). Use *Principles of Operation* for your operating system, the program interruption code from the SDWA and the

general registers used in the failing instruction, to determine (if possible) which register contains or points to incorrect data.

Note: When determining the validity of the register's contents, be careful to consider the address mode used by your operating system. Depending on the address mode being used, values used in 31-bit addressing might be interpreted differently than those used in 24-bit addressing.

Next go to step "9" on page 56.

- 5. Determine whether the abend code is OAB, OAC, OAD, or 15D.These abend codes indicate a TSO/VTAM abend. For diagnosis information, see "TSO/VTAM abends" on page 96.
- 6. Determine whether the abend code is OAx. If the abend code is in the form OAx, continue with this step. If not, go to step "7" on page 56.
 - a. Find the abend code explanation in z/OS Communications Server: IP and SNA Codes.

An abend code of 0Ax indicates a problem within the VTAM network. The problem could have originated in VTAM, the NCP, an application program, or the hardware of some other network component. Look up the code in the information about Abend Codes in <u>z/OS Communications</u>

Server: IP and SNA Codes. Most 0Ax abends place a return or reason code in register 15 at the time of failure. You can find the return code in register 15 by using the set of general registers from the LOGREC output, the SDWA, or the RMT2WA.

- b. Find the address of the module that issued the abend, using the PSW, which points to the next instruction after SVC 13.
- c. Find the module ID.

From the address determined in the previous step, scan in descending address order through the dump to find the module ID (see step 4c).

Go to step "9" on page 56.

7. Determine whether the abend code is 80A, 40D, or 202.

If the abend code is one of these, continue with this step. Otherwise, continue with step <u>"8" on page</u> 56.

These abend codes indicate storage problems. Collect the following documentation:

- A dump of the VTAM address space
- A dump of the VTAM common storage area (CSA)
- LOGREC output
- · VIT output at the time of the abend

After obtaining this documentation, go to "Reporting the problem to IBM" on page 91.

8. If the abend code is none of the above, see your operating system documentation.

To determine the publication that describes the abend codes for your operating system, see <u>Table 48</u> on page 577.

Each code has an explanation of the documentation required and the problem determination steps to follow. For example, many abends occur during execution of SVC instructions. Parameter lists and register contents passed to SVC routines are in the diagnostic books for your operating system. These books might suggest that you obtain additional information such as a module name, a return code, a register containing information that is not valid, or the name of a system control block containing parameters that are not valid. After making a complete check of these sources, you are ready to report the problem.

9. Report or go to the failing module procedure. If you determined the module ID, go to "Failing module" on page 89. Otherwise, see "Reporting the problem to IBM" on page 91.

Wait

If the problem is a wait, use the procedure in <u>Figure 2 on page 58</u> to collect the following documentation:

- "I/O trace" on page 295
- "Buffer contents trace output" on page 288
- Session trace data (if using the NetView program)
- Session awareness data (if using the NetView program)
- Dump of the VTAM primary address space including CSA
- · List of:
 - Waiting process anchor blocks (PABs)
 - Waiting request elements (WREs) and associated event IDs (EIDs)
 - Waiting request parameter headers (RPHs)
- For problems associated with an application program:
 - "Formatting and printing trace records" on page 282
 - RPLs or FMCBs queued to the ACDEB
- For problems associated with the network:
 - Reports from NetView, IMR, or EREP (if available)

Note: Use the documentation you have available to isolate or resolve the problem. If you have to recreate the problem, make sure the traces listed above are active.

Figure 2. Overview of the wait procedure

The following procedure describes each step shown in Figure 2 on page 58.

1. Determine the extent of the wait state.

Determine how extensive the wait state is in the operation of the VTAM network. Determine whether all VTAM processing stopped or only processing with respect to a single device, application, or

something in between. Also determine what, if any, recovery action was taken at the time the wait was encountered by the operator or user. Some information about the activity that immediately preceded the wait might be available on the system log or in application program transaction logs.

2. Did a logon, logoff, or command fail to complete?

If so, continue with this step; otherwise, go to step "3" on page 59.

- If the wait state was actually the failure of a VTAM procedure to complete, use the DISPLAY ID command to identify the status of VTAM resources at the time of the problem. Note any status codes that are abnormal.
- Use the VTAM DISPLAY PENDING, DISPLAY SESSIONS, or MODIFY IOPD commands to identify I/O
 requests for which VTAM is awaiting a response from a network node. Sometimes a network node
 appears in a pending state awaiting the completion of activity at a higher- or lower-level node (for
 example, PSUB1, PTRM2). The pending status on the other node is needed in such a case.
- Use the VTAM DISPLAY BFRUSE command to get information about VTAM buffer pools. Save the output for use later in this procedure.
- A VTAM operator might have attempted a recovery action (such as issuing a VARY INACT, FORCE command). "Using the VARY INACT, FORCE command" on page 71 shows how to determine whether this command completed. Check the node status to determine whether the recovery action reset the state of the node for which the original command was issued.
- If VTAM is waiting for an I/O response, look at the output of the VTAM buffer contents trace (assuming it is active when the problem occurs). If the trace shows that VTAM did send a request and is expecting a response, the problem is probably in another network node.
- You can get additional information about the status of a command from the VTAM internal trace (VIT). With the SSCP and PIU options, you can match requests and responses and determine any requests that are outstanding (that is, for which responses have not been received). The SMS option supplies information about resource usage, and the PSS option provides information about VTAM scheduling of the dispatching process. (See z/OS Communications Server: SNA Diagnosis Vol 2, FFST Dumps and the VIT for a description of the internal trace entries.)

At this point you might have enough documentation to report the problem to the Support Center. If so, go to "Reporting the problem to IBM" on page 91. Otherwise, go to step "5" on page 61.

3. Is network traffic stopped through a specific node?

If so, continue with this step. Otherwise, go to step "4" on page 60.

- Add the specific node type to your problem documentation. For example, the node could be a
 3705, 3720, 3725, 3745, 3790, or a 3274. NetView and EREP facilities show whether errors have
 been recorded for the node in question. Session trace data (collected by the NetView program)
 shows whether the node is not responding to VTAM, or whether VTAM is discarding the responses.
 Consider using NCP intensive mode recording (IMR) for recurrent problems of this type.
- Note any messages on the system or NetView command facility log reporting ER-INOP outages or other failures. Use the VIT trace, or use the I/O trace with the EVERY operand, to trace the network flow up to the point of failure. NetView and LOGREC show the reason for the INOP.
- For NCP-related problems, use the line trace or generalized PIU trace if the affected node is in an adjacent subarea. Use the transmission group trace to record intermediate node flows up to the point where the problem occurred.
- If the problem might be in NCP software or communication controller hardware, obtain a dump of NCP storage. If the wait affects only part of the network, use the dynamic NCP dump facility. It allows the rest of the network to continue operating while the dump is taken. If the failure requires reactivating the NCP, use the MODIFY DUMP command. See *Network control program (NCP) dump* for more information on NCP dumps.

If the NCP is hung or if the hung resource is attached to an NCP, see <u>Table 48 on page 577</u> to determine what NCP diagnostic document describes troubleshooting the NCP.

- If the problem is in a channel-attached device or a channel-to-channel attachment, examine one of the following traces, if available, to determine the sequence of events preceding the wait. (If no trace output is available, you have to re-create the problem to get it.)
 - VIT trace with the CIO option
 - CCWTRACE

To determine what document describes I/O control blocks for your operating system, see <u>Table 48</u> on page 577.

If enough information is available, go to <u>"Reporting the problem to IBM" on page 91</u>. Otherwise, go to step "5" on page 61.

4. Is it a session or application program wait?

If the wait state appears to be related to a particular VTAM application program, continue with this step. Otherwise, go to step "5" on page 61.

- Enter the DISPLAY ID command for the application program, using the EVERY or SCOPE=ALL operand. If there are any nodes with status ACT/U, reenter the DISPLAY command. If you are again informed that the status of a node is ACT/U, issue VARY INACT, FORCE for that node. If you still have a wait state, continue with the next step.
- If only one application program is waiting while others continue to communicate with VTAM, that application program probably contains an error. To determine what caused the problem, obtain a dump of the application program and the operating system supervisor at the time of the problem.
 - Make sure that the error is not an operating system error. (Use the diagnostic books for your operating system.)
 - If possible, use the dump to determine the reason the application program is waiting. If the
 application program is not waiting for VTAM, use the documentation for the application program
 to determine the reason for the wait. If the problem is in TSO/VTAM, see Chapter 3, "Collecting
 documentation for TSO/VTAM problems," on page 93.
- If VTAM still seems to be the cause of the problem, you need output from the VIT to obtain a record of activity on the failing session. Because large amounts of data will wrap around in the internal trace table, you might want to specify MODE=EXT.
 - See z/OS Communications Server: SNA Diagnosis Vol 2, FFST Dumps and the VIT for more information on using the internal trace. You can also use the I/O or buffer contents traces to get information about all sessions with that application; specify ID=application program name.
- Using a dump of the problem, find the address of the VTAM ACDEB for the application program.

You can find an ACDEB associated with an application by using the VTAMMAP SES formatted dump tool. If VTAMMAP cannot be run, then find the ACDEB chain pointer in the ATCACDA field of the ATCVT.

a. Use the ACDEB address to find it in the dump.

On the FMCB RECEIVE ANY queue, ACDRAFQH points to the first FMCB.

On the RPL RECEIVE ANY queue, ACDRARQ points to the first RPL.

Note:

- i) If there are FMCBs (ACDRAFQH is not equal to 0), but no RPLs (ACDRARQ = 0), a problem has prevented the application program from issuing RECEIVEs.
- ii) If there are RPLs (ACDRARQ is not equal to 0), but no FMCBs (ACDRAFQH = 0), there might be a problem involving the continue any/continue specific (CA/CS) state of the session.
- b. Check for blocked PABs in the process scheduling table (PST). ACDTSKID points to the PST.

Look at the following PABs in the PST. To determine the offset locations for these PABs, see z/OS Communications Server: SNA Data Areas Volume 1.

PSTROPAB

Request PAB

PSTRSPAB

Response PAB

PSTUEPAB

User exit PAB

See steps "6" on page 61 and "9" on page 67 for additional recommended actions.

- c. Get the LUCB address (field ACDLUCBA in the ACDEB).
- d. Get the address of a chain of FMCB extensions (field LUCFMCBA in the LUCB). Each FMCB extension represents one LU-LU session.
- e. Each FMCB extension contains a pointer (field TSPFMCBA) to the address of an associated FMCB. Find the FMCBs associated with hung sessions.

In those FMCBs, look for:

- The CA/CS indicator (in TSPPSFL1 and TSPPSFL2)
- The data queues (in TSPACCUM, TSPEWAIT, TSPNWAIT, TSPEDATA, TSPNDATA, TSPTSOP, and TSPTSIP)
- Session state flags (in TSPSESSR, TSPDTSR, TSPCRVSR, and TSPRQRSR)
- f. Determine whether there are any indications of unusual conditions. See <u>z/OS Communications</u> Server: SNA Data Areas Volume 1.
- g. Make a cross-reference listing of network addresses and node names to correlate the VIT PIU and I/O trace entries with VTAM session control blocks, such as the LUCB and FMCB.

See <u>Table 48 on page 577</u> to determine what NCP document contains information on hung sessions.

If enough information is available, go to <u>"Reporting the problem to IBM" on page 91</u>. Otherwise, go to step "5" on page 61.

5. Dump and examine the system data areas.

If you have not already done so, obtain a dump of the VTAM address space, CSA, LSQA, and SQA.

Find and analyze the task control blocks. Use the VTAMMAP PABSCAN dump tool to format the output. See <u>"PABSCAN" on page 223</u> for information on using PABSCAN. See <u>Table 48 on page 577</u> to determine what document contains more information on using dumps and finding and analyzing task control blocks.

6. Check for waiting PABs.

Note: You can use the VTAMMAP VTCVTPAB formatted dump tool as an alternative to step 6.

Look at the following PABs in the ATCVT. To determine the offset locations for these PABs, see z/OS Communications Server: SNA Data Areas Volume 1.

ATCCSPAB

Configuration services PAB

ATCVDPAB

VARY definition DYPAB

ATCPXPAB

Buffer pool expansion DYPAB

ATCPUPAB

Physical unit services DYPAB

ATCPUIOP

Physical unit services I/O DYPAB

ATCLUSRT

Logical unit services router DYPAB

ATCNSPAB

TSC no sessions DYPAB

ATCSSPAB

Session serialization PAB

ATCSOPAB

Session outage notification PAB

ATCCNSPB

CNS logon PAB

ATCTPMPB

Message DYPAB

ATCTRMPB

Termination subtask DYPAB

Check the contents of the PABWEQP (or the PABVERYA for very extended PABs) and PABRPHA fields. The field PABWEQP in each PAB contains the address of a chain of work elements that have not yet been processed by VTAM. The field PABVERYA is defined at the same location as PABWEQA and contains a pointer to an array of WKE gueues.

The array pointed to by the PABVERYA field contains the following information:

- A four-word header containing some control information about the very extended PAB.
- An array of work element queues in descending priority. For example, queue 1 is the first queue in the array, and it has the highest priority; queue 2 is the next queue in the array, and it has the next highest priority, and so on. Each queue has the following structure:
 - (Field PABVFRST) A pointer to the first WKE (head, or oldest) on this level queue
 - (Field PABVLAST) A pointer to the last WKE (tail, or youngest) on this level queue
 - (Field PABVSRVL) Service level
 - (Field PABVSRVC) Service count

The field PABRPHA in each PAB contains the address of an RPH that is either running or waiting.

Note: In some PABs, PABRPHA might contain the address of an RPH, even though the RPH is not running or waiting.

Note the contents of these fields in each of the PABs, and have this information available when you contact IBM.

<u>Figure 3 on page 63</u> shows how to find each PAB. <u>Figure 4 on page 63</u> shows the relative location of fields in a normal, extended, and slightly extended PAB. <u>Figure 5 on page 64</u> shows the layout for a very extended PAB. The DYPAB begins X'10' bytes before the PAB.

Note: The PAB pointers shown in <u>Figure 3 on page 63</u> are not contiguous in the ATCVT, but are shown that way for demonstration purposes only.

Figure 3. PAB locations

Figure 4. Normal PABs, extended PABs, and slightly extended PABs

Figure 5. Very extended PAB

7. Is the wait caused by pending I/O?

Use the Input/Output Problem Determination (IOPD) facility to detect and report to the operator I/O operations that have been pending longer than a user-defined time limit.

When a VTAM process is waiting for a response, the process is represented by a waiting request element (WRE) queued to one or more LQABs within a single I/O LQAB group.

The WRE points to an event ID (EID), which indicates the reason for the wait.

Look for the WREs and corresponding EIDs in a dump by using Figure 6 on page 66 and Figure 7 on page 67 and the following steps.

Note: You can use the VTAMMAP VTWRE formatted dump tool to count or help analyze WREs. See "VTWRE" on page 265 for information on using VTWRE.

a. Find the address of the ATCVT at low-storage address X'408'.

If this low-address location is not available in a dump, use the pointer in the MVS control block CVT (CVTATCVT) to find the VTAM control block AVT. Location X'00' in the AVT points to the ATCVT.

The ATCVT is identified by release level at offset X'00' in the ATCVT. For z/OS Communications Server, the ATCVT is:

VE619(X'E5C5F6F1F9404040').

- b. Get the address of the I/O LQAB-group hash table from field ATCIOLQB. This hash table contains a number-of-entries field (LQHENTNM) followed by an array of table entries numbered starting with 0
- c. Use the hash table to find the I/O LQAB groups for active subareas.

Each entry in the hash table is 4 bytes long and contains either 0, indicating an empty chain, or the address of the first LQAB group in a chain of I/O LQAB groups.

Within each I/O LQAB group, the LQGLINK field (offset X'10') contains the address of the next LQAB group in the chain. An LQGLINK value of 0 indicates the end of the chain.

- To find the I/O LQAB group for a specific subarea:
 - Calculate the hash table entry number, *N*, by dividing the subarea number by LQHENTNM and taking the remainder.
 - Search the chain for hash table entry N to find the LQAB group whose LQGSUBA field (offset X'OC') equals the subarea number.

Note: I/O LQAB groups are allocated only when needed. Therefore, you do not find an LQAB group for a subarea that has had no I/O traffic.

- To find all I/O LQAB groups, search the chain for each entry in the hash table.
- d. Find all the WREs chained off of a given I/O LQAB group.
 - Each I/O LQAB group contains several different LQABs. Use the global LQAB (LQGGLOBL) to analyze wait states, because its chain contains all of the group's WREs. (Chains off of the other LQABs in the group usually do not contain all of the group's WREs.) You can locate LQGGLOBL at the beginning of the LQAB group (offset 0).
 - The LQAB starts with the LQABFRST field, which contains either 0, indicating an empty chain, or the address of the first (oldest) WRE for this subarea.
 - Within each WRE, the WREGFWD field (offset 4) contains the address of the next WRE in the chain. The end of the chain is indicated by a WREGFWD value equal to the LQAB address minus 4
- e. Find the waiting event. Each WRE contains a WREIDCD field (offset X'32') that identifies the waiting event. The address and length of the waiting event ID are in the fields WREIDP (offset X'24') and WREIDL (offset X'30'), respectively.

For additional information, check the WREDTA field (offset X'2C'). In most cases, this field contains a CPCB operation code. If so, look in <u>Appendix D, "Control point/control block (CPCB)</u> operation codes," on page 549 to determine what function the operation code represents.

8. Is the wait caused by a non-I/O CPWAIT?

When a VTAM process has suspended itself using a CPWAIT and is waiting for a matching CPPOST or CPPURGE, the process is represented by a WRE queued to one or more LQABs within a single non-I/O LQAB group.

Analyze non-I/O CPWAITs using the steps described for pending I/O in step <u>"7" on page 64</u>, with the following exceptions:

- The IOPD facility does not detect and report these non-I/O events.
- No arrays or hash tables are used. Instead, each of the six LQAB groups is pointed to directly by its own address field in the ATCVT. These address fields are as follows:

ATCLUSMQ – logical unit services

ATCMCQAB - miscellaneous command

ATCPULQB – physical unit services

ATCNOSQ – network operator services

ATCSSLOB - SSCP session services 1

ATCSSMQB - SSCP session services 2

• WREs for non-I/O events do not contain a CPCB operation code value in the WREDTA field.

Figure 6. Finding LQAB groups

Figure 7. Finding waiting request elements for an LQAB group

9. Find waiting RPHs.

The following steps give instructions for examining two kinds of wait states: (1) a process waiting for a buffer, and (2) a process waiting for some other resource. Both kinds of waiting processes are represented by *request parameter header* (RPH) control blocks, but the RPH is found in different locations for each type of wait state.

- Step <u>"10" on page 67</u> explains how to find RPHs queued from a buffer pool control block. These RPHs show that the buffer pool cannot supply the required buffers, and as a result, the process is waiting. Note which buffer pool cannot supply the required buffers.
- Step "11" on page 67 explains how to find RPHs that indicate a waiting process.

10. Find RPHs queued from buffer pool control blocks.

A buffer pool that has no available buffers can cause a wait state. There are many reasons for running out of buffers (for example, incorrect allocation in the VTAM start options, a VTAM programming problem, or an application programming problem). Use the DISPLAY BFRUSE output obtained in step "2" on page 59, if you were able to get it, to analyze buffer pool usage. Or use the VTAMMAP VTBUF and STORAGE formatted dump tools. See "VTBUF" on page 253 and "STORAGE" on page 246.

Also, follow the chain at offset X'04' into the RPH to obtain the addresses of other RPHs waiting for the same pool.

11. Find other waiting RPHs.

Waiting RPHs indicate a VTAM process that has not been completed. To locate the waiting RPHs, search the large pageable buffer pool (LPBUF) by hand or use the VTAMMAP VTRPH formatted dump tool. For more information, see "VTRPH" on page 262. Look at the formatted dump output.

Use the VTAMMAP VTBASIC formatted dump tool to analyze the request parameter headers (RPH) in the component recovery area (CRA). This function formats CRAs which contain RPHs. For more information, see "VTBASIC" on page 252.

12. Find RPHs waiting for locks.

- a. For each waiting RPH, look at the CRALXPTR fields. If any pointer (PTR) fields are nonzero, check the corresponding bit in CRALKACT. For example:
 - If CRAL1PTR is nonzero, look at the last bit in CRALKACT.
 - If CRAL2PTR is nonzero, look at the next-to-last bit in CRALKACT.
 - If CRAL3PTR is nonzero, look at the third-from-last bit in CRALKACT.

- If the corresponding bit in CRALKACT is off (0), the RPH is waiting for this lock. If the bit is on (nonzero), the RPH is holding the lock and might be waiting for another lock. On your list of waiting RPHs, add the name of the lock being held or waited for. (See Table 7 on page 68.)
- b. If you cannot find any locks waiting or being held using step "12.a" on page 67, scan the LPBUF buffer pool again, and list all allocated buffers that contain a nonzero value in field CRALKACT. These buffers indicate which RPHs own locks, if any, and which locks are held. A CRA can hold several locks. For example, a value of X'06' indicates two locks being held: the RDTLOCK (X'04') and the VOCLOCK (X'02'). (See Table 7 on page 68.)

For each allocated buffer with a nonzero CRALKACT field, look at the CRALxPTR fields. (The buffer might contain a resume address.) A nonzero pointer field contains a lockword address. Find the lockword. The first word of the lockword shows a queue of RPHs waiting for that lock. Add these RPHs to your documentation list.

13. Report the problem.Go to "Reporting the problem to IBM" on page 91.

VTAM locks

<u>Table 7 on page 68</u> includes a description of each VTAM lock, and <u>Figure 8 on page 71</u> provides information on VTAM lock pointers.

Table 7. VTAM l	Table 7. VTAM locks							
Name	Lock ID	Lvl	Hex value	Control block	Field name	Quantity	Function	
8SLOCK	1	3	04	MPNCB	MPN8SLK	One per multipath channel (MPC) line represented by an MPNCB	Serializes MPC outbound scheduling in a VTAM operating under MVS with multiple CPUs and System/390° or System z° hardware. Ensures single remover for TPREMEL macros.	
ADJLOCK	4	5	10	ADJSA	ATCADJLK	One per VTAM	Protects users of CIDCTL when adding or deleting an adjacent node.	
AHHCLOCK	71	11	400	ISTTSEXT	TSEXT_LK	One per VTAM	Serializes access to the AHNCB queue in the TSEXT.	
AHNCBLOK	31	5	10	AHNCB	AHNLOCK	One per active APPN host-to-host channel PU	Serializes AHNCB PU PAB with AHNCB PC PAB.	
ASBREG	53	7	40	MNPS	MNPS_ALK	One per MNPS application	Serializes use of the pending registered CFS user's queue.	
AULINLOK	63	8	80	AULIN	AULINLOK	One per VTAM	Serialize updates and references to list of Enterprise Extender lines.	
AUVTLOCK	68	7	40	ISTAUVT	AUVTLOK	One per VTAM	Serializes access to two Enterprise Extender resources. One is a control block which represents a local IPADDR and the other is a control block which represents a resolved HostName.	
BPBLOCK	38	3	04	ВРВ	BPBLOCK	One BPB per boundary function NCB	Protects BSB PCID and BSBSA tree for SNA/IP and rapid-transport protocol (RTP).	
BSBLOCK	39	4	08	BSB	BSBLOCK	One per session using VTAM boundary	Protects updates and references of the BSB.	
CIDLOCK	32	8	80	CIT	CITLOCK	One per session	Serializes changes to or deletion of FMCB.	
CLKLOCK	69	9	100	ISTCLK	CLK_LOCK	One per VTAM	Serializes ISTRPCTM with HPRTIMER invokers.	
CLWLOCK	70	9	100	ISTCLW	CLW_LOCK	One per VTAM	Serializes ISTAUCTM with IPTTIMER invokers.	
CONVLOCK	33	9	100	CONVT	CONVTLOK	One per APPC conversation	Serializes deletions of RAB.	
CRYTOKLK	26	8	80	ATCVT	ATCRYKLW	One per VTAM	Serializes use of the session key token chain.	
DEBX2LOK	27	6	20	DEBX	DEBX2_LK	One per ACB index table entry	Serializes queuing of an application API requests with the closing of an ACB.	

Name	Lock ID	Lvl	Hex value	Control block	Field name	Quantity	Function
DEBLOCK	6	5	10	ACDEB	ACDLOCK	One per OPEN application program	Protects FMCB queue off ACDEB. Held by TSC and by OPEN or CLOSE.
DESCQLOK	62	7	40	INSTANC EDATA	DESCQ_LOCK	One per VTAM	Synchronizes removing of list descriptors from the list descriptor queue.
DWALOCK	15	8	80	DWA	DWALOCK	One per VTAM	Used by certain disabled TSC modules to serialize use of the disabled work area (DWA).
FSEXTPLK	66	11	400	ISTFSEXT	FSEXTPLK	One per VTAM	Serializes queuing and dequeuing of the CFUSR block to PSTCFUSR queue. Serializes release of PST storage.
GENRSDEF	61	7	40	ISTGENRS	GENRS_LK	One per VTAM	Synchronizes queueing to the defer queue from RVM and the processing of the defer queue.
HITLOCK	41	3	04	НІТ	HITLOCK	One per FID5 session address	Protects users of HPRCTL when assigning or deleting a FID5 address or when acquiring a BSB address through FID5 address lookup.
HNTELOCK	5	7	40	HNTE	HNTELOCK	One per minor node (per host element address)	Serializes updates and references to control blocks based off the HNTE (RDTE, NCB, LUCB, FMCB).
HNTERBLK	23	8	80	HNT	HNTERBLK	One per minor node	Serializes APPC conversion data in the RAB.
HNTLOCK	7	6	20	HNT	ATCHNTLK	One	Protects updates and references to HNT during most CIDCTL functions.
HPRPSLOK	74	9	100	HPRPS	HPRPS_LOK	One per VTAM	Serialize access of the HPRPS control block.
HSQCHAIN	19	5	08	ATCVT	ATCHSQLK	One per VTAM	Serializes usage of the HSQH queues. One lock is used to protect all of the queues.
IAPTREE	40	2	02	SAACB	SAAIAPLK	One per VTAM	Serializes modifications and references to the IAP tree.
INNLOCK	17	9	100	ATCVT	ATCINNLK	One per VTAM	Ensures that PIUs that are going to a node that is in slowdown mode are sent in FIFO order.
IPNCBDIA	64	5	10	IPNCB	IPNCBDIA	One per VTAM	Serialize access to the list of dial-in lines for Enterprise Extender.
IUSAPLOK	57	11	10	ISTPST	IUSAPLOK	One per PST	Serializes APSINIT/APSTERM.
LMELLOCK	21	6	20	LME	LMELLOCK	One for every partner LU entry for every APPC application	Used to serialize access to partner LU information in the APPC logical unit mode (LM) Table.
LMHTLOCK	22	5	10	LMHDR	LMHTLOCK	One per APPC application	Used to serialize access to the APPC logical unit mode (LM) Table.
LSNLOCK	24	3	04	LSNCB	LSNLOCKW	One per PU connection to an IBM 3172 Interconnect Nways Controller	Serializes the LSNCB PU PAB with the LSNCB PC PAB.
LSVQLOCK	65	9	100	LSVT	LSVQLOCK	One per VTAM	Serialize access of LSNCBs pending deallocation queue.
LUTABLOK	43	8	80	LUTAB	LUTABLOK	One per slot in the LU/NCE hash table	Protects HPRCTL users when adding, deleting, updating, or finding LU entries in the LU/NCE table.
NCBQ	25	9	100	ATCVT	ATCLNLOK	One per VTAM	Serializes access to the queue of LSA NCBs anchored at ATCLNNCB.
NODATLOK	72	9	100	NODAT	NODAT_LOK	One per VTAM	Serializes adding/deleting NODAT_EEDisplay control blocks on the NODAT_EEDisplayQ.
PDBUFLK	18	9	100	ATCVT	ATCBUFLK	One per VTAM	Allows the user to move in problem diagnosis trace data before the data is processed.

	Lock		Hex	Control			
Name	ID	Lvl	value	block	Field name	Quantity	Function
PSTIMERQ	59	7	40	CFSMNP	PSTQ_LOK	One per MNPS coupling facility structure represented by an MNPS structure object	Serializes use the outstanding PSTimer queue.
PSTLOCK	8	8	80	ATCVT	ATCPSTLK	One per VTAM	Serializes queuing and dequeuing of FMCB to PSTFMCB queue. Serializes release of PST storage.
QDCBLOCK	28	5	10	APNVT	APNQDCBL	One per VTAM	Serializes access to the queue of QDCBs attached to the APNVT.
QUEUE	16	9	100	PAB	PABLOCK	One per extended PAB	Serializes queuing and dequeuing of work elements to an extended PAB.
RDTLOCK	2	2	04	ATCVT	ATCRDTLK	One per VTAM	Protects users of CIDCTL (PAFIND). Obtained by PUNS when a network- addressable unit is to be added or deleted, or a use count decremented.
RMCBLOK	58	5	10	IUTRMCB	RMCSAPLK	One per VTAM	Serializes access to RM global IUSAP queue.
RMLCBLOK	56	7	40	RMLCB	RMLCBLOK	One per HPDT DLC	Serializes NCBCMPAB work queues.
RPDCBLOK	55	7	40	ISTRPDCB	RPDCBLOK	One per RTP connection that a Performance Monitor (PMI) is monitoring	Serializes the adding and deleting from the unsolicited data queue for RTP path switch and RTP deactivation.
RPNPMILC	54	5	10	ISTRPNCB	RPNPMILK	One per RTP connection that a Performance Monitor (PMI) is monitoring	Serializes the collection of RTP data with the stop collection of data.
RTPHSQUE	49	5	10	RPNCB	RPN_HSLK	One per RPNCB	Serializes access to each rapid-transport protocol (RTP) NCB's (RPNCB) half-session queue.
RTPTBLOK	47	8	80	RTPTB	RTPTBLOK	One per slot in the rapid transport protocol (RTP) hash table	Protects HPRCTL users when adding, deleting, or finding RTPs in the RTP table.
RTPTBNLK	73	6	20	RTPTB	RTPTBNLK	One per VTAM	Serializes access to all ISTRTPNIs and their ISTFRTPs. Protects HPRCTL find with wildcard against HPRCTL add and delete.
SKTASGN	37	6	20	SAACB	SAA_ASGN	One per VTAM	Serializes assignment of sessions to the socket tasks.
SKTLOCK	36	8	80	SOTCB	SOT_LOCK	One per socket task (SOTCB)	Protects SOCCB chain off the SOTCB.
SLENTLOK	29	5	10	SLENT	SLE_LOCK	One per session list entry	Protects updates and references to the session list entry state indicators and to the sequential list of the TP work queue.
SSVCBLCK	67	11	400	ISTSSVCB	CFSSSVLK	1024 per Sysplexports structure	Serializes access to a list in the coupling facility Sysplexports structure.
TASKLOCK	35	7	40	SAACB	SAA_TASK	One per VTAM	Protects SOTCB chain off the SAACB.
TCEXTLOK	60	7	40	ISTTCEXT	TCEXTLOK	One per VTAM	Serializes access to TLNCB list.
TOKENCOL	52	7	40	TOKENCOL	COL_LOCK	One per collection object	Serializes access to the collection object.
TREELOCK	34	6	20	SAACB	SAA_TREE	One per VTAM	Protects the SOCCB tree.
VDLOCK	13	9	100	ATCVT	ATCVDLOK	One per VTAM	Serializes directed load processor.
VOCLOCK	1	2	02	ATCVT	ATCVOCLK	One per VTAM	Serializes OPEN/CLOSE with VARY. Serializes VARY Activate, VARY Deactivate, and VARY ERP.

Table 7. VTAM locks (continued)								
Name	Lock ID	Lvl	Hex value	Control block	Field name	Quantity	Function	
VRLOCK	20	3	04	VRBLK	VRBLOK	One per virtual route	Serializes usage of the VRBLK.	
XCFCBLOK	50	9	100	XCFCB	XCFCBLOK	One (per VTAM)	Serializes access to the XCF NCB AVL tree.	
XFNCBLOK	51	5	10	XFNCB	XFNCBLOK	One per other VTAM node in the sysplex	Serializes access to the XFNCB outbound data queues.	
XHOTLOCK	44	9	100	CMPVT	XHOTLPTR	One per VTAM	Serializes calls to a nonreentrant module that allocates autodata for C PABs.	

Figure 8. Pointers to VTAM locks

Using the VARY INACT, FORCE command

If the operator attempted a VARY INACT,FORCE command, check whether the command can be completed or whether there is a VTAM problem. Determine this using the following steps according to the resource specified on the VARY INACT command.

Note: Except for channel-attached SNA devices, if this command is issued to a resource with outstanding I/O, the command will not complete and VTAM must be recycled.

1. Channel-attached physical unit or logical unit, SNA, or non-SNA:

- a. Display the resource status. If it is PHLIN, PHLAC, PDLUC, or PSUB1, the channel is hung or a required interrupt is missing.
- b. If the status is PNFYx, go to step "11" on page 73.

2. Link-attached SNA logical unit, switched logical unit:

- a. Display the resource status. If it is PNFYx, go to step "11" on page 73.
- b. If it is anything else, there is a VTAM problem.

3. Link-attached BSC 3270 logical unit:

- a. Display the resource status. You should see PDACL or PFDLU.
- b. Issue VARY INACT, FORCE for the NCP or CA major node that defines the device.
- c. Message IST105I indicates whether the deactivation succeeded and all lower-level nodes are inactive.
- d. If the deactivation failed, display the status of all the resources in the NCP or CA major node.
- e. If the status is PNFYx, go to step "11" on page 73.
- f. If it is anything else, there could be a VTAM or NCP problem. Go to "Reporting the problem to IBM" on page 91.

4. Link-attached SNA physical unit, switched physical unit:

- a. Display the resource status. You should see PDISC or PFDSC.
- b. Issue VARY INACT, FORCE for either the physical unit to which the device is attached, or for the NCP or CA major node that defines the device.
- c. Message IST105I indicates whether the deactivation succeeded and all lower-level nodes are inactive.
- d. If the deactivation failed, display the status of all the resources attached to the NCP.
- e. If the status is PSUBx, go to step "10" on page 73.
- f. If the status is PNFYx, go to step "11" on page 73.
- g. If it is anything else, there is a VTAM problem.

5. Link-attached BSC 3270 physical unit:

- a. Display the resource status. You should see PDACP or PFDCP.
- b. Issue VARY INACT, FORCE for the NCP.
- c. Message IST105I indicates if the deactivation succeeded and all lower-level nodes are inactive.
- d. If deactivation failed, display the status of all the resources in the NCP or CA major node.
- e. If the status is PSUBx, go to step "10" on page 73.
- f. If the status is PNFYx, go to step "11" on page 73.
- g. If it is anything else, there is a VTAM problem.

6. Local SNA or non-SNA major node, switched major node:

- a. Display the resource status. You should see PSUBx.
- b. Issue VARY INACT, FORCE for any minor nodes that are not inactive. This should allow deactivation to be completed.

7. **Link**:

- a. Display the resource status. You should see PDLNK.
- b. Issue VARY INACT, FORCE for the NCP to which the link is attached. This should allow deactivation to be completed.

8. Channel-attached NCP:

- a. Display the resource status. You should see PDISC.
- b. Press the RESET LOAD button on the communication controller. This should allow deactivation to be completed.

9. Link-attached NCP:

a. Display the resource status. You should see PSUBx.

- b. Display the status of the lower-level nodes.
- c. If the status is PNFYx, go to step "11" on page 73.
- d. If the status is anything else, there is a VTAM problem.

10. PSUBx status:

- a. Display the status of the lower-level nodes to find any pending states.
- b. Deactivate any active or pending nodes. This should allow deactivation to be completed.

11. PNFYx status:

a. For application programs with an NSEXIT exit routine:

If the VARY INACT, FORCE command is unable to complete, there is a VTAM problem. Otherwise, deactivation should complete.

b. For application programs with only a LOSTERM exit routine:

- i) If the application program has issued a CLSDST macroinstruction, deactivation should complete.
- ii) If the application program has not issued a CLSDST macroinstruction for the logical unit, issue a second VARY INACT, FORCE for the logical unit in question. If that does not correct the problem, you might need to cancel the application program to allow the deactivation to complete. (Canceling the application program terminates all of the LU-LU sessions with the application program.)

Coding the LOSTERM parameter on the APPL definition statement allows you to recover this type of hung resource without having to cancel the application.

c. For application programs with neither exit:

Deactivation does not complete until the application program issues CLSDST, the application program closes its ACB, or the operator cancels the application program.

Return to step 2 on page "Wait" on page 57.

Loop

If the problem is a loop, use the procedure in <u>Figure 9 on page 74</u> to collect the following documentation.

Note: If you are using TSO/VTAM, use this procedure. You do not need to go to <u>Chapter 3</u>, "Collecting documentation for TSO/VTAM problems," on page 93.

- System console log
- Messages associated with the loop (if any)
- Failing module ID
- Dump of the VTAM address space that is looping
- Error file output (LOGREC)
- For a problem associated with a specific device:
 - "Formatting and printing trace records" on page 282
 - "I/O trace" on page 295
 - Session trace data (if using the NetView program)
 - Session awareness data (if using the NetView program)
 - NetView report (if using the NetView program)
 - "Activating network traces" on page 270

Figure 9. Overview of the loop procedure (part 1 of 2)

Figure 10. Overview of the loop procedure (part 2 of 2)

The following procedure describes each step shown in Figure 9 on page 74.

1. Trace the loop.

Loop problems might involve many modules or a single module. If possible, trace the looping instructions. Using the operator's reference for your host processor, instruction-step through the looping addresses. Save these addresses for use in diagnosing the problem.

Take a dump and determine which module is looping by checking the PSW addresses in the CLKC entries for a repeating pattern.

If the VIT was running when the loop started, look for any exception conditions that might have led to the loop. If the internal trace was not running, you might have to re-create the problem to get the trace at the time of the loop. Set the internal trace to MODE=EXT to record the trace entries in an external file.

2. Get dump output.

To get a dump of VTAM, issue the DUMP command, or press the Program Restart key.

If the loop is disabled, the system console is not available for input, so take a stand-alone dump. (See "Stand-alone dump" on page 160.)

3. Get the system console log and LOGREC output.

The system console log might contain information, such as error messages, that can help you diagnose the problem. Also, print the LOGREC file.

Use the LOGDATA option to print the in-core LOGREC buffers. See <u>Table 48 on page 577</u> to determine what document has information on LOGDATA.

4. Is a message involved?

Determine whether there are any messages associated with the loop, such as a particular message always preceding the problem, or the same message being issued repeatedly. If so, add the message numbers to your problem documentation and go to the message procedure, step "4" on page 80.

5. Is it a device error?

For any device error, first check the NetView report (if you have the NetView program) and then the LOGREC output.

Does the LOGREC output show repetitive entries for the same error on a particular device? If so, VTAM is receiving several different errors from that device.

a. If the LOGREC error records are for a link or link station attached to a communication controller, get VIT PIU records and an I/O trace of the NCP. If you have the NetView program, get session trace data or session awareness data for the NCP. If the error records are for a link or device attached to a communication adapter, get VIT PIU records or a dynamic trace of the communication adapter.

If the trace shows continual arrival of RECMS PIUs, then the repetitive entries in LOGREC are caused by a device error.

Note: For information on counting PIUs see <u>"Counting request/response units (RUs)" on page</u> 326.

- b. For channel-attached devices, use one or more of the following traces for the device to determine whether VTAM is receiving many errors:
 - VTAM internal trace with CIO option
 - Session trace data (if using the NetView program)
 - Session awareness data (if using the NetView program)
 - CCWTRACE (if available)
- 6. Many errors received?

If VTAM is receiving many errors, the problem is probably in the device. Run a CIO VIT trace to trace execution of the VTAM ERP routines. Then continue with step "7" on page 76.

7. Is the loop traced?

If you were able to instruction-step through the loop, go to step <u>"15" on page 78</u>; otherwise, continue with step "8" on page 76.

8. Find the failing module.

Use the PSW to find the failing module.

• The PSW is found in LOGREC output, the SDWA, or the RTM2WA.

When you use PSW RESTART to terminate a looping task, a LOGREC entry is created with a completion code of X'071' for the task. An RTM2WA is also created for the task. Use the LOGREC record and the RTM work area to locate the failing module. See the diagnostic books listed in "Bibliography" for your operating system for help in locating the PSW in dump output.

Depending on the PSW bit 32, the last 3 bytes (24-bit mode) or 4 bytes (31-bit mode) of the PSW contain the address being executed at the time of the dump. Scan the dump output to find the address given in the PSW. See <u>Table 48 on page 577</u> to determine which document contains more information on PSWs.

Note: Addresses might not always be in numeric order because the dump does not always generate output in sequential order.

If you cannot find the address, the dump might not contain the relevant portion of main storage. For example, the address might be in LPA storage. Have this portion of storage dumped, or use output from LPAMAP to identify the module, and proceed as above.

Note: The VTAMMAP VTFNDMOD formatted dump tool can be used to gather the module information described in steps "9" on page 77, "10" on page 77 and "11" on page 77.

9. Find the module name that contains the failing address.

VTAM identifies modules with an EBCDIC module name and the Julian date (and, if appropriate, the latest PTF applied) at or near the beginning of most modules. This module identifier is usually in the form:

ISTxxxxx yy.ddd [nnnnnnn]

where xxxxx is the last five characters of the module name, yy.ddd is the Julian date the module was assembled, and nnnnnnn is the latest PTF (if any) that has been applied to this module.

To find the module ID, start at the failing address and scan upward (in descending address order) along the right side of the dump listing. The module ID is printed in EBCDIC. Add the module name to your documentation list.

10. Find the module pointed to by register 12.

General register 12 (X'0C') is normally the base register for VTAM modules. In a VTAM loop, register 12 should point to the same module found in step <u>"11" on page 77</u>. If not, add this module name to your documentation list.

11. Find the module pointed to by register 14.

General register 14 (X'0E') might point to a module that called the routine that is looping. Add this module name to your documentation list.

Add the module names from steps <u>"9" on page 77</u>, <u>"10" on page 77</u>, and <u>"11" on page 77</u> to your documentation list. You can report the problem next, but you might need to continue with step <u>"12"</u> on page 77.

12. Get the system trace output.

The system trace might show many external and I/O interrupts. The PSW addresses in system trace entries will be part of the loop.

13. Get the VIT output.

The VIT is useful in determining the reason for a loop, such as a process being continually redispatched for the same request. Get the VIT output. If you require VIT options in addition to the default options (API, CIO, MSG, NRM, PIU, PSS, and SSCP), start a VIT in addition to the default and specify MODE=EXT. If VTAM does not accept the command, it might be necessary to re-create the problem. For more information about using the VIT, see z/OS Communications Server: SNA Diagnosis Vol 2, FFST Dumps and the VIT.

14. Examine the trace entries.

By examining all of the trace entries, you might be able to determine whether there is a loop. The most obvious loops would be a module or modules getting continual control of the VTAM system, or a control block chaining to itself. Check the output of the PSS option to see which VTAM routines are getting control. If you see a pattern of repetition in the trace entries, it does not necessarily mean that VTAM is looping. Some VTAM processes are timer-driven and repeat periodically.

Note:

- a. Get the trace information and examine the clock comparative entries for repeating PSW addresses. For short loops, the repeating PSWs show the extent of the loop.
- b. The absence of any apparent loop does not necessarily mean that VTAM is *not* looping. The loop might not contain a VTAM trace point.

If a module or modules are looping, get their addresses from the trace entries. Step <u>"15" on page 78</u> explains how to find the module name.

If you find a control block chained to itself, or if a queue of control blocks is in a cycle, try to identify the control block. Most control blocks have a 1-byte ID at offset X'00'. See the control block ID codes in Appendix E, "Storage and control block ID codes," on page 565 to identify the control block name.

15. Find the module names.

Note: You can also use the VTAMMAP VTFNDMOD formatted dump tool to find the module ID. See "VTFNDMOD" on page 257.

Use the addresses found in step "14" on page 77 to find the module names involved in the loop.

To find the module ID, start at the failing address and scan upward (in descending address order) along the right side of the dump listing. The module ID is printed in EBCDIC. Add this module ID to your documentation list. Continue with step "16" on page 78.

16. Report or go to the failing module procedure.

If you determined the module names, go to <u>"Failing module" on page 89</u>. Otherwise, you are ready to contact IBM. Go to "Reporting the problem to IBM" on page 91.

Message problem

If the problem is a message, use the procedure in $\underline{\text{Figure 11}}$ on page 79 to collect the following documentation:

- · Issuing module
- · Message number
- System console log
- Chapter 5, "Using dumps," on page 159
- "Formatting and printing trace records" on page 282

Note: If your installation changed the text of the message, the message ID might not be included, or might not match the ID of the message as it appears in z/OS Communications Server: SNA Messages. Therefore, it is recommended that you re-create the problem using the VTAM-supplied message text. Otherwise, determine what VTAM-supplied message text corresponds to the message text your installation is using.

Figure 11. Overview of the message procedure

The following procedure describes each step shown in Figure 11 on page 79.

1. Report if the problem is in the message itself.

If the content of the message is incorrect or the meaning of the message is not clear, go to <u>"Reporting</u> the problem to IBM" on page 91.

2. Follow the recommended action.

For all other messages, see <u>z/OS Communications Server: SNA Messages</u> for recommended operator and programmer actions. (See the list of VTAM books in "Bibliography" for the appropriate form number.) In addition:

- · Identify the issuing component.
- If the message indicates a storage problem, go to step "3" on page 80.
- If the message indicates a TSO/VTAM problem, see <u>Chapter 3</u>, "Collecting documentation for TSO/VTAM problems," on page 93.

The following list shows message prefixes and the components that issue those messages.

Prefix

Issuing component

ELM

Logon Manager

IKT

TSO/VTAM

IST

VTAM

IUT

Connection Manager

IVT

CSM

Note:

- a. If the message starts with any other characters, it is issued from another network component or the operating system.
- b. Messages that begin with the prefix **ISTF** are issued by the VTAM dump analysis tools and the VTAM internal trace (VIT) analysis tool.

Help information for **ISTF** messages is available as a part of each tool by pressing F1. Therefore, these messages are not documented in z/OS Communications Server: SNA Messages.

See Chapter 6, "Using VTAM dump analysis tools," on page 163 and Chapter 8, "Using the VIT analysis tool," on page 315 for additional information about the dump and trace analysis tools.

3. Is there a storage problem?

If there is a storage problem, see "Storage problem procedure" on page 85 for additional information.

If there is not a storage problem, continue with step "4" on page 80.

4. Identify the issuing module.

Try to identify the module issuing the message. If the MSGMOD start option is active or the MODIFY MSGMOD command is issued before the problem occurs, the message text contains the last five characters of the issuing module name. Add the message prefix to the module name, and add this name to your problem documentation. (To modify the module identifier in messages, see "Modifying message module identification" on page 157.)

The VTAM internal trace MSG entries contain the message number, the save area address, and the module ID (the 4th, 5th, 6th, 7th, and 8th characters of the module name). Use these to identify the issuing module. If the trace entry contains no module identifier, use the caller's address from the trace entry.

5. Report or go to the failing module procedure.

If you know the name of the issuing module, go to <u>"Failing module" on page 89</u>. If you are unable to determine the issuing module or resolve the problem, go to <u>"Reporting the problem to IBM" on page 91</u>.

Incorrect output

If the problem is *incorrect output*, use the procedure in <u>Figure 12 on page 81</u> to collect the following documentation:

- Specific output that is incorrect
- Device type (if appropriate)
- "Buffer contents trace output" on page 288
- "Formatting and printing trace records" on page 282
- Session trace data (if using the NetView program)
- Session awareness data (if using the NetView program)
- "Activating network traces" on page 270

80 z/OS Communications Server: z/OS V2R5.0 Communications Server: SNA Diagnosis Vol 1, Techniques and Procedures

- "TGET/TPUT trace for TSO/VTAM" on page 306
- · Network problem:
 - OSA-Express network traffic analyzer trace in <u>z/OS Communications Server: SNA Network</u>
 Implementation Guide

Figure 12. Overview of the incorrect output procedure

The following procedure describes each step shown in Figure 12 on page 81.

1. Document the incorrect data.

Most incorrect output problems pertain to data contained in a PIU. This can be incorrectly formatted user data, routing information that is not valid, or other types of missing or incorrect data. These types of problems are generally difficult to diagnose, as they show up only at the user locations. From the following list, choose all the symptoms that apply to your problem and add them to your problem documentation:

· Cursor is in the wrong place or missing.

- Format of data is incorrect.
- Data is truncated.
- Data is incorrect.
- · Data is missing.
- Problem is related to an application program macroinstruction.
- · Screen is improperly formatted.
- · Session is hung.
- · Terminal is hung.

Note: The term hung terminal means that the user is prevented by the system from entering data.

2. Determine the device type.

If the problem is associated with a specific device type, add the device type (for example, 3277, 3278, or 3279 terminal) to your problem documentation.

3. Is it a TSO/VTAM user problem?

If the incorrect output problem involves TSO/VTAM, go to <u>"Screen management problems" on page</u> 100.

4. Get network trace and dump output.

Re-create the problem with the following service aids active:

- Start the VTAM buffer contents trace for the failing application program and terminal logical units.
- Start the VIT with MODE=EXT. Unless APPC is involved, do not specify the APPC option. Unless you suspect that a lock is not working, do not specify the LOCK option. Do not specify the MSG option. This shows the type of requests being processed between the application program and the user or terminal, and the control information for routing, pacing, and so on, in each PIU sent in the network.
- If you have the NetView program, you can use the session trace data to determine the requests and responses received and sent by VTAM and the other network nodes.
- If it is available, you can use GTF CCWTRACE to trace the CCWs, I/O interruptions, and all CCW data for each Start I/O issued by the system. For more information about these traces, see the diagnostic books for your operating system.

Note: CCW trace will not capture data for a data device for the following devices:

- OSA-Express
- HiperSockets

I/O trace must be used for these devices. CCW trace can be used for the control devices for the above devices.

- If it is available, you can use the VARY TCPIP,,OSAENTA command to trace the packets sent to the network or received from the network by an OSA-Express2 or later adapter. The I/O trace captures the data as it is sent between VTAM and the OSA, but the OSAENTA trace captures the packets sent to and from the PCI bus on the adapter. For more information about the OSAENTA trace, see z/OS Communications Server: IP Diagnosis Guide.
- As soon after the problem occurs as possible, take a dump of the application program, VTAM, and TSO/TCAS. Stop all traces, and format the dump and trace output for online viewing.

The dump is used to reference storage addresses, such as control blocks and module entry points. The trace data shows at what point the data was modified, and what PABs the data was on as it was processed by VTAM. Take the dump during the re-create, when the traces are running. A dump taken earlier might not be accurate because the terminal device might have been deactivated and reactivated. This would allocate a different set of control blocks.

For more information on dumps and traces, see <u>Chapter 5</u>, "Using dumps," on page 159 and <u>Chapter 7</u>, "Using traces," on page 269. Operating system service aids are documented in operating system publications.

5. Examine the trace output.

Examine the individual trace entries to find the failure. If the problem concerns user data format, and the buffer contents trace or PIU trace does not show the incorrect data, use the output from the VIT trace with the SSCP option.

Use GTF CCWTRACE (if available) to see whether data is correct when it is sent to the logical unit.

Use the full buffer contents option for this trace. To use the full buffer contents option, specify AMOUNT=FULL on the buffer contents trace START option or on the MODIFY TRACE command. The VTAM internal trace records CC2, CI2, and CO2 contain the first 24 bytes of this data.

When output data is correct:

If the traces show that the data or the control information in the RH/TH as it leaves VTAM is correct, the problem is not in VTAM or the application program; go to step "9" on page 83. If the data going to the network is not valid, continue with step "7" on page 83.

When input data is incorrect:

If the traces show that VTAM is receiving data that is not valid from a source external to VTAM, the problem is in the network; go to step <u>"9" on page 83</u>. If the data from the network is valid, the problem is in VTAM or an application program; continue with step "7" on page 83.

6. Is it VTAM or an application program?

The problem has been narrowed down to VTAM or the application program. Examine each trace entry to determine whether the information from the application program was incorrect. If VTAM seems to be responsible, go to "Reporting the problem to IBM" on page 91; otherwise, continue with step "8" on page 83.

7. Is more application program help needed?

For IBM application programs such as CICS or IMS, you can find additional diagnostic help in the IBM application program documentation. If you decide that the problem is with an IBM application program, contact the appropriate IBM representative for that product.

8. Is the problem with an external network device?

The problem has been narrowed down to the VTAM network, but not to VTAM itself. Try to identify the device or program responsible. For OSA devices, you can use CCW or I/O trace to trace data flow between VTAM and the OSA, and you can use the OSAENTA trace to trace data flow between an OSA-Express2 or later adapter and the network.

<u>Chapter 5, "Using dumps," on page 159</u> explains how to use system dumps. Contact the appropriate IBM representative for the device or program identified as the cause of the problem.

9. Report the problem.

Go to "Reporting the problem to IBM" on page 91.

Performance problem

If the problem is performance, use the procedure in <u>Figure 13 on page 84</u> to collect the following documentation:

- System console log
- Error file output in LOGREC
- "Modifying tuning statistics" on page 158
- "SMS (buffer use) trace" on page 303

Note: Performance problems do not generally indicate a VTAM problem.

Figure 13. Overview of the performance procedure

The following procedure describes each step shown in Figure 13 on page 84.

1. Get LOGREC output.

Performance problems are often caused by hardware errors. These hardware errors cause software error recovery processing to occur, which degrades system performance. For this reason, you should get the LOGREC output. LOGREC might show many hardware errors for a particular device or group of devices. If the errors are limited to a single device, a hardware error is probably the cause. If the errors are displayed on many or all terminals of one type, software is more likely to be the problem, although hardware might still be at fault. If you suspect a particular device type, add it to your documentation list.

2. Examine the system console log.

The system console log might contain messages that help diagnose a problem. Add the message ID to your documentation list. The message prefix is IST, IUT, IVT, ELM, or IKT.

The system console log might also contain information about command problems. For example, operator commands might be taking too long to complete. Add the command name (for example, VARY ACT) to your documentation list.

3. For TSO/VTAM, see Chapter 3, "Collecting documentation for TSO/VTAM problems," on page 93.

If you are using TSO/VTAM, go to <u>"Performance problems" on page 106</u>. If you cannot resolve the problem with that procedure, return to this procedure.

4. Get tuning statistics.

If the performance problem is associated with traffic through a channel-attached host, a channel-attached communication controller, a channel-attached SNA physical unit, or multipath-channel-attached resources, it might be helpful to get tuning statistics for VTAM. (For more information about tuning statistics, see "Modifying tuning statistics" on page 158.)

5. Get output from the SMS (buffer use) trace.

You might have enough information to identify the problem. If so, go to "Reporting the problem to IBM" on page 91. If you do not, continue with this step.

- a. Buffer pool expansion can cause performance problems. During VTAM initialization, error recovery, and VARY command processing, buffer usage is higher than normal. If buffer expansion is used, buffer pools should not expand except during such peak periods. Thus, what appears to be high buffer usage could be normal depending on the level of system activity.
 - Run the buffer use trace (TYPE=SMS). For information on how to start the trace and examine the output, see <u>"SMS (buffer use) trace" on page 303</u>. Coding the SNAPREQ start option causes trace entries to be written more often, providing a more comprehensive picture of buffer usage.
- b. Using the time stamps in the system console and buffer use trace, correlate an excessive number of buffer pool expansions or large number of buffers used from a single pool with network activity recorded on the console. Constant high usage of a buffer pool might show that not enough buffers were allocated at VTAM initialization to properly support the level of network activity. Also look for a buffer pool that continually grows; buffers might not be released by some VTAM routines. Add the name of an active buffer pool (for example, LPBUF or IOBUF) to your documentation list.
- 6. Get additional documentation.

If no solid indication of a problem is apparent, run the VIT with OPT=(PSS,API,SSCP,PIU) and MODE=EXT. This creates a history of VTAM activity. At the time of performance degradation, stop VIT and take a console dump of VTAM. (See your operating system manuals for information about how to take a dump.) Load the dump and trace output for future reference.

7. Report the problem.

Go to "Reporting the problem to IBM" on page 91.

Storage problem procedure

This procedure focuses on storage problems that occur in the common service area (CSA) or private storage area.

Procedure steps

The information in this topic is taken from the following VTAM storage diagnosis information APARs:

II06752

An Introduction/Overview

¹ If you are running an LU 6.2 application, include the APPC VIT option in this list.

II04548

Documentation Requirements

II07563

Private Storage Problems

II07564

CSA Storage Problems

1. Check for common CSA and private storage messages.

Use the following messages to determine if the storage shortage is occurring in CSA or private storage. If the message is issued frequently or continuously, this indicates that a dump is needed to provide additional information.

Table 8 on page 86 lists the messages that are associated with CSA storage problems.

Table 8. IST messages associated with CSA storage problems

Message number	Description
IST154I	Indicates that expansion failed for one of the fixed- length buffer pools in ECSA subpool 231. The error code displayed in the message provides additional information.
IST561I	Indicates that SLOWPT has occurred in one of the fixed-length buffer pools in ECSA subpool 231.
	 If this message occurs only occasionally, you might need to do some tuning in this area.
	 If the console is flooded with this message, you might have a CSA problem.
IST562I	Indicates that a storage request has failed because of one of the following reasons:
	 CSALIMIT start option or MODIFY CSALIMIT is not specified and total CSA plus ECSA allocations have reached 90% of the total CSA plus ECSA defined in the system.
	 CSALIMIT start option or MODIFY CSALIMIT is specified and total CSA plus ECSA allocations have reached 75% of the total amount of CSA plus ECSA defined in the system.
	 CSALIMIT start option or MODIFY CSALIMIT is specified with the ,F command modifier and the total CSA plus ECSA VTAM usage has reached this value.
IST564I	Indicates that a GETMAIN failed for the CSA subpool specified in the message. The specified subpool might be the sources of the CSA problem or the problem might be caused by another CSA subpool that is affecting the subpool displayed in the message. Further investigation into the contents of storage is required.

Table 8. IST messages associated with CSA storage problems (continued)

Message number	Description
IST1832I	Indicates that the value coded on the CSALIMIT start option or a MODIFY CSALIMIT command is less than 25 megabytes, which may be too small. This might result in IST562I messages (only if the ,F command modifier is specified). Use the DISPLAY BFRUSE command output to monitor CSA usage and modify the CSALIMIT value if maximum CSA usage approaches the CSALIMIT value (this is necessary only if the ,F command modifier is specified).
IST1833I	This message will be issued only if the CSALIMIT start option or MODIFY CSALIMIT command is issued without the ,F modifier. Issue a DISPLAY BFRUSE,SUMMARY=* command and compare the MAXIMUM value in the first IST449I message to the value in IST1667I. If the first value is close to 75% of the second value, it means that VTAM is using a large proportion of system CSA storage. If so, an analysis of VTAM's storage use is indicated. If VTAM is not a large user of system storage but message IST1831I indicates close to only 25% of system CSA plus ECSA storage remains available for use, allocation of additional CSA or ECSA storage, or both, may be needed. A determination of which process is potentially using an inordinate amount of CSA or ECSA storage, or both, may also be needed.

See the description of the message in z/OS Communications Server: SNA Messages for additional information.

Table 9 on page 87 lists the messages that are associated with private storage problems. See the description of the message in z/OS Communications Server: SNA Messages for additional information.

Table 9. IST messages associated with private storage problems

Message number	Description
IST563I	Indicates that the MAXPVT value has been reached. This value specifies how much private area subpool 229 storage VTAM can use within the address space of the application program displayed in the message. This indicates a problem with the application, not a VTAM problem.
IST565I	Indicates that a GETMAIN failed for the VTAM private area subpool displayed in the message. The specified subpool might be the source of the problem or the problem might be caused by another subpool that is affecting the subpool displayed in the message. Further investigation into the contents of storage will be required.
IST566I	This message is the same as IST563I except that MAXPVT was not specified on the APPL definition statement. This message does not indicate a VTAM problem.

2. Request a full dump.

If storage-related messages are issued frequently or continuously, dump VTAM common and private storage areas. The dump can help you determine the location of the storage problem.

- See "Formatting and printing dump output" on page 160 for information on the VTAM interactive problem control system (IPCS).
- Several storage-related dump analysis tools are available. See "STORAGE" on page 246, "VTAM" on page 251, and "VTBUF" on page 253 for descriptions of these tools.
- If external trace is active, see <u>"Analyzing storage" on page 319</u> for information about analyzing storage using the VIT analysis tool. see information on internal and external trace recording in <u>z/OS</u> Communications Server: SNA Diagnosis Vol 2, FFST Dumps and the VIT for additional information.

Note:

a. The best dump for diagnosing VTAM storage problems is a full dump.

If the dump is partial, examine the reason text of MVS message IEA911E to correct the problem so that you can obtain a full dump. The most common reason for a partial dump is that the dump data set is not large enough. In this situation, calculate the DASD space requirements and reallocate the dump data set.

For a complete description of the required documentation for storage problems, see information APAR II04548.

- b. Although VTAM detects storage shortages in the common storage area, VTAM might not be causing the shortage because this area is shared by all address spaces.
- 3. Use IBMLink to find additional problem determination information.

If you have access to IBMLink, take the following actions:

- Review the appropriate VTAM storage diagnosis information APARs. See <u>"Procedure steps" on page</u> 85 for a list of these APARs.
- Use your error messages and dump to determine key words for searching IBMLink for additional information and known problems.

If you do not have access to IBMLink and need additional assistance, go to step "4" on page 88.

4. If you need additional assistance, contact the IBM support center at 1-800-IBM-SERV.

Documentation problem

Note: Before using this procedure, be sure that documentation is the problem. A VTAM problem might cause the documentation to appear wrong.

If the problem is documentation, use the procedure in <u>Figure 14 on page 88</u> to collect the following documentation:

- Incorrect information
- · Form number of document

Figure 14. Overview of the documentation procedure

The following procedure describes each step shown in Figure 14 on page 88.

1. Identify the incorrect information.

Add to your documentation list the name of the macro, operand, or procedure that is incorrectly defined or explained in the documentation (for example, *line trace*).

2. Record the form number.

Add the form number of the VTAM document to your documentation list in the form *ccnnnnnrr* (omit the dashes in the number; *rr* is the revision level). For example, report the form number of this document as GC31-6850.

3. Report the problem.

See "Reporting the problem to IBM" on page 91.

Note: Report a documentation problem only when it causes a VTAM problem. For suggestions, comments, or questions about z/OS Communications Server books, use the Reader's Comment Form at the back of the document.

Failing module

Use this procedure if you have identified a failing VTAM module in one of the other procedures (abnormal end, message, or loop). Figure 15 on page 89 shows an overview of the failing module procedure.

Use this procedure to get the following documentation:

- · Module ID and PTF eye-catcher
- · Caller of module
- "Formatting and printing trace records" on page 282

Figure 15. Overview of the failing module procedure

The following procedure describes each step shown in Figure 15 on page 89.

1. Determine the caller of the service routine.

The failure might have occurred in a VTAM service routine used for many purposes. Determine the caller of the service routine. Use the save area conventions in <u>"Using save-area module linkage</u> conventions—Subarea" on page 349, or if you know the save area address, use the ISTVSAVE CLIST.

2. Examine the work element structure.

If your problem type is an abnormal end or loop, and the module is dispatched under control of VTAM PSS, find the CRA/RPH associated with the process. (See step "10" on page 67 in the wait procedure.) The RPHWEA field (at offset X'1C') usually points to the work element associated with the process at the time it was dispatched. To identify the work element, see "Using save-area module linkage conventions—Subarea" on page 349.

From the work element, it might be possible to identify an SNA request/response type, an operator command, or an application program request that ultimately caused the process to receive control. Add this request or command name to your documentation list.

If the RPHWEA field does not point to the work element, continue with step "3" on page 90.

3. Have VIT information available.

Use the VIT options PSS and SMS to get more information about how the failing module received control or where the relevant control blocks are found. To obtain the address of the work element and the module name of the process entry point, use the last dispatch (DSP) entry for the failing process.

Continue with "Reporting the problem to IBM" on page 91.

Symptom string structure

A symptom string is included in the dump for an abend, the dump for a program check, and the dump for a first failure support technology (FFST) probe point.

Message IST931I is issued for abend messages, and messages beginning with EPW are issued for FFST. Both the IST and the EPW messages contain the symptom text string. Figure 16 on page 90 shows an example of a symptom text string for an abend dump. For information about FFST symptom strings, see z/OS Communications Server: SNA Diagnosis Vol 2, FFST Dumps and the VIT.

```
AB/S00C4 PIDS/5695-11701 LVLS/301 LVLS/91.025 RIDS/ISTCFCWM
RIDS/ISTAPCES#R RIDS/ISTCFCR2#L FLDS/PSW ADRS/000006C4
VALU/HB0044770 FLDS/POWPSSQ ADRS/00000F1C REGS/0C6A2 REGS/0A018
VALU/HE0044770 PIDS/568508501 PTFS/0000000 PRCS/00000010
```

Figure 16. Example of a symptom text string in output

The meanings of the fields are given:

AΒ

Abend interrupt code, such as 0C4.

ADRS

Offset into the failing VTAM module.

DEVS

Device type and model related to the problem or generic device class.

FLDS

Fields, control blocks, and DSECTs labels.

LVLS

VTAM version and release level, or Julian date when the failing module was compiled. If LVLS appears twice in the symptom string, then it shows each of these values separately.

MS

Program or device message.

OPCS

Operation codes.

OVS

Storage or core that was overlaid.

PCSS

Statements, commands, JCL.

PIDS

VTAM component ID.

PRCS

Return code, status code, condition, feedback.

PTFS

VTAM service level.

REGS

The first two hexadecimal digits show the register number, and the next three hexadecimal digits show the displacement. The displacement value is the difference between the value of the PSW Instruction Address and the content of the register. Each REGS field is shown only if the value is less than the PSW, and if the difference is less than 4K.

If the REGS field has a value of X'FFFFF', then no register contents are less than the value of the PSW Instruction Address and within 4K of the PSW Instruction Address.

If the REGS field has a value of X'FF000', the failing CSECT used relative branching support, so no register contents are less than the value of the PSW Instruction Address and within 4K of the PSW Instruction Address. CSECTs that use relative branching support have no base registers, so this symptom string can be expected.

If the REGS field has a value of X'FE000', then the value of the PSW Instruction Address is less than decimal 512.

RIDS

One of three kinds of modules:

- · Recovery module, if followed by #R
- · Load module, if followed by #L
- CSECT name of the failing VTAM module, if not followed by anything

SIG

System or device issued operator warning signal.

VALU

Field value or overlay length.

WS

Wait state.

Reporting the problem to IBM

For non-VTAM problems, call your IBM branch office. For suspected VTAM problems, do either of the following steps:

- If you have access to IBMLink, search for known problems in this area. If no applicable matches are found, report the problem to IBM by using the electronic technical report (ETR) option on IBMLink.
- Contact the IBM Support Center at 1-800-IBM-SERV.

After asking for your account name and other customer identification, the service representative will ask for a brief description of the problem. Your documentation list should contain the answers to all questions related to the problem.

Chapter 3. Collecting documentation for TSO/VTAM problems

This chapter shows you what documentation to collect for each type of common problem with the TSO/VTAM program. Use this chapter with Chapter 2, "Collecting documentation for specific types of problems," on page 53.

Note: Most traces discussed in this chapter are described in <u>Chapter 7</u>, "Using traces," on page 269. The exceptions are SVC 93 and SVC 94 entries. See <u>Table 48 on page 577</u> to determine what document describes the SVC 93 and SVC 94 entries. For VTAM and TSO/VTAM command syntax, see <u>z/OS</u> Communications Server: SNA Operation.

Initial TSO/VTAM problem analysis

To use this chapter, start below and follow the steps.

- 1. Are you receiving one or more of the following messages?
 - USS message 7 'LU-name UNABLE TO ESTABLISH SESSION RU-name FAILED WITH SENSE sense', or similar USS message
 - USS message 10 (the user-defined logon message)
 - Message IKT029I or IKT028I at the operator's console
 - Message IKJ608I at the operator's console. See <u>Table 48 on page 577</u> to determine what document describes message IKJ608I.

If so, go to "Logon problems" on page 94.

- 2. Have you encountered one of the following abends?
 - ABENDOAB
 - ABENDOAC
 - ABENDOAD
 - ABEND15D

If so, go to "TSO/VTAM abends" on page 96.

- 3. Are you having parameter initialization problems?
 - Message IKT013I or IKT014I at the operator's console.
 - Initialization parameters have not been used.

If so, go to "Parameter initialization problems" on page 98.

- 4. Do you have a hung terminal?
 - The terminal does not respond to any keys you press.
 - You must enter data from the terminal before processing will continue (in a situation where output is expected).

If so, go to "Hung terminal problems" on page 98.

- 5. Are you having one or more of the following screen management problems?
 - Data is in the wrong place on the screen.
 - Data stream errors occur (such as operation checks, commands are rejected, PROGxxx).
 - Function errors occur (such as incorrect full-screen processing or incorrect line prompting in input mode of TSO EDIT).
 - Data length is incorrect.

· Data content is incorrect.

If so, go to "Screen management problems" on page 100.

- 6. Are you having one or more of the following screen size problems?
 - The terminal does not operate in the expected screen size after logon.
 - The screen is not always the expected size during a TSO session.

If so, go to "Screen size problems" on page 104.

- 7. Are you having one or more of the following performance problems?
 - Slow response time
 - An increase in the number of detected waits
 - An increase in the number of swap-outs

If so, go to "Performance problems" on page 106.

If your problem is not listed in the steps above, it is probably not a TSO/VTAM problem. Go back to Chapter 2, "Collecting documentation for specific types of problems," on page 53 and look for a more likely problem symptom. If you cannot find a more likely symptom, go to "Reporting the problem to IBM" on page 91.

Logon problems

This information provides documentation requirements and diagnosis procedures for logon problems.

The recommended documentation is:

• VTAM full buffer contents trace.

To see the data in the buffer contents trace, set CONFTXT=NO in the TSOKEY00 member of SYS1.PARMLIB before starting TSO/VTAM.

VTAM internal trace with MODE=EXT and OPTION=(API, MSG, NRM, PIU, SSCP, PSS).

The VTAM internal trace may not be required. Review the diagnosis procedure for your problem to see whether it is required.

Note: API, MSG, NRM, PIU, and SSCP are always running internally.

1. Did your first logon using USS commands fail?

If so, continue with the next step.

Otherwise, go to step "5" on page 95.

- 2. Under the information about unformatted system services (USS) tables in the <u>z/OS Communications</u>
 <u>Server: SNA Resource Definition Reference</u>, review the process for setting up the USS table and using USS commands. Check for the following errors:
 - Is your logon command syntax incorrect?

If so, try to log on using the correct command syntax.

Otherwise, continue with the next step.

Is the logmode name incorrect?

If the logmode name is specified incorrectly, or if a default logmode entry that is inappropriate for the device type is used, you will get USSMSG7. Look up the accompanying sense code in z/OS Communications Server: IP and SNA Codes and correct the logmode name.

3. Can you log on to TSO without using USS commands?

If you cannot log on at all, go to step "4" on page 95.

If you can log on, start the VTAM buffer contents trace and log on again. Look at the trace output to see what session parameters are contained in the BIND, and compare those parameters to the ones in your logmode table.

If the session parameters in your logmode table are incorrect, make the necessary corrections. Also, make sure that the DLOGMOD operand specifies the correct logmode table entry. (For more information about defining TSO/VTAM session parameters, see z/OS Communications Server: SNA Network Implementation Guide.)

If you still cannot identify the problem, go to "Reporting the problem to IBM" on page 91.

4. Are you unable to log on at all?

- If this is your first logon attempt from the device as well as your first logon attempt using USS commands, go to step "5" on page 95.
- If this is not your first logon attempt from the device, go to <u>"Reporting the problem to IBM" on page</u> 91.

5. Did your first logon from a particular device fail?

If so, continue with the next step.

Otherwise, go to step "7" on page 95.

6. Check for an error in the logmode table, or the MODEENT macro.

(These are described in z/OS Communications Server: SNA Resource Definition Reference.)

- a. If you receive message IKT029I with return code X'210000' or X'220000', the BIND has been rejected. The following steps can help you find the portion of the BIND that is not valid:
 - i) Locate the BINFM in the BIND. BINFM must be X'02' or X'03'. (For more information on coding the BIND, see z/OS Communications Server: SNA Programming.)
 - ii) If a PSERVIC is coded, see <u>z/OS</u> Communications Server: SNA Resource Definition Reference to make sure that all fields are coded correctly.
- b. Check to see whether the DLOGMOD name on the terminal definition statement is a valid logmode table entry.

If it does not match an entry in the logmode table, the first entry in the logmode table is used as the default. The parameters on the default logmode table entry may not be appropriate for your device type, and as a result, the wrong BIND image may be passed to the logon exit and a CLSDST PASS failure may occur.

Note: You can see this failure in the VTAM internal trace using the API option. For more information on the VTAM internal trace, see z/OS Communications Server: SNA Diagnosis Vol 2, FFST Dumps and the VIT.

c. Check the logmode table entry to see whether the parameters are specified correctly for your device type.

If not, the wrong BIND image may be passed to the logon exit and a CLSDST PASS failure may occur.

d. Check to see whether the MODEENT macro is defined correctly.

If it is not, the terminal may reject the BIND, or the terminal may indicate to the logon exit that the terminal is not supported by TSO/VTAM.

- e. If you have not identified the problem, and if users can log on to TSO from other terminals, start the VTAM buffer contents trace and check the BIND.
- f. If logon attempts fail for all terminals, or if the BIND in the buffer contents trace is what you expected, run the VTAM internal trace with options API, PIU, SSCP, and MSG.
- g. If you still have not resolved the problem, go to "Reporting the problem to IBM" on page 91.

7. Did previous logons succeed, but now you cannot log on?

If so, continue with the next step.

8. Did you get message IKJ608I?

If not, go to step "12" on page 96.

If so, continue with the next step.

9. Is message IKJ608I followed by messages IST804I, IST400I, and IST805I?

If so, the CLSDST PASS or OPEN ACB may have failed. Continue with the next step.

10. Is this a cross-domain logon?

If not, go to step "11" on page 96.

If this is a cross-domain logon, you may have a VTAM definition problem. For more information on defining TSO/VTAM and logical units that must access TSO/VTAM in a cross-domain environment, see z/OS Communications Server: SNA Network Implementation Guide.

11. **Is there a TSO/VTAM APPLID that is not valid?** (For more information on defining APPLIDs, see z/OS Communications Server: SNA Network Implementation Guide .)

If so, correct the APPLID. After you have corrected the APPLID, you must deactivate the application and reactivate it to cause VTAM to reload the correct APPLID. This should fix the problem.

If not, continue with step "12" on page 96.

12. Did you get message IKT111I?

If not, go to step "13" on page 96.

If so, check the message text to determine the reason for the logon failure. See <u>z/OS Communications</u> Server: SNA Messages for additional diagnostic information for particular messages.

13. Is an ABENDOAB with return code X'0105' or X'0203' associated with the logon attempt?

If not, go to step "14" on page 96.

If so, check the LOGREC entry for the additional information shown in Table 10 on page 96.

Table 10. ABENDOAB information in LOGREC

Reason		
code	Register	Contents
X'0105'	6	RPLRTNCD, RPLFDB2, and RPLDAF
	7	RPLFDBK2 (the word of sense)
X'0201'	8	ACBERFLG (for OPEN ACB failure)
	9, 10	TVWA ACB Name (TSOnnnn)
X'0202'	8	ACBERFLG (for OPEN ACB failure)
	9, 10	TVWA ACB Name (TSOnnnn)
X'0203'	5	ACBERFLG (for CLOSE ACB failure)
	6, 7	TVWA ACB Name (TSOnnnn)

Then go to "Reporting the problem to IBM" on page 91.

14. **If none of the previous situations apply**, start the VTAM buffer contents trace and the VTAM internal trace, and trace the logon attempt. Then go to "Reporting the problem to IBM" on page 91.

TSO/VTAM abends

TSO/VTAM issues several unique abends. This information briefly describes the causes and documentation requirements for each one. Use the information provided here and in z/OS

Communications Server: IP and SNA Codes to try to resolve the problem. If you are not able to do so, go to "Reporting the problem to IBM" on page 91.

ABENDOAB

ABENDOAB occurs when a VTIOC module issues a VTAM macroinstruction that fails. Depending on the values of the RPLRTNCD and RPLFDB2 fields, the macro may be retried. If the retry fails, ABENDOAB is issued.

Table 11. ABENDOAB information in a dump of SDWA

Offset	Length (bytes)	Description
X'280'	8	Terminal name
X'289'	1	RPL request type: X'22' = SEND; X'23' = RECEIVE
X'28A'	1	RPLRTNCD
X'28B'	1	RPLFDB2
X'28C'	4	RPLFDBK2 (Sense code)

If this happens during the execution of a SEND or RECEIVE, the session is placed in reconnect status.

The recommended documentation is:

• Contents of register 15.

This contains the reason code, which is explained in z/OS Communications Server: IP and SNA Codes.

- Message text for message IKT116I.
- · The software LOGREC entry.

If you have a LOGREC entry, look at an unformatted dump of the SDWA. <u>Table 11 on page 97</u> describes the pertinent data you should look for in the dump.

• The dump that is created automatically for this abend.

For abends associated with I/O errors, a dump is not generated automatically unless the RCFBDUMP parameter of the TSOKEY00 member of SYS1.PARMLIB is set for it.

• For errors that occur during session initialization or termination, run the VTAM internal trace with the options API, PIU, MSG, SSCP, and PSS.

Note: The options API, MSG, PIU, and SSCP are always running internally, but you may want to run the VIT with MODE=EXT to be certain that you get the expected output.

ABENDOAC

ABENDOAC occurs when an error halts TCAS processing.

The recommended documentation is:

• Contents of register 15.

This contains the reason code, which is explained in z/OS Communications Server: IP and SNA Codes.

• TWARSON (IKTCASWA + X'02').

This also contains a reason code. See <u>z/OS Communications Server: IP and SNA Codes</u> or see <u>Table 48</u> on page 577 to determine what document contains the MVS system codes.

ABENDOAD

ABENDOAD occurs when the TSO/VTAM queue manager has a problem manipulating storage for the input and output queues.

The recommended documentation is:

· Contents of register 15.

This contains the reason code, which is explained in z/OS Communications Server: IP and SNA Codes.

• The dump that is created automatically for this abend.

ABEND15D

ABEND15D occurs when the issuer of a TGET, TPUT, or TPG macro passes a data area that is not valid to the SVC 93 modules. A TPUT or TPG request requires read access to the area, and a TGET requires write access. An ABEND0C4 occurs when IKTVTPUT or IKTVTGET tries to validate the data areas passed from the application program, and IKT93EST changes the ABEND0C4 to an ABEND15D.

The recommended documentation is:

- SLIP dump of the ABENDOC4. To determine what document describes the SLIP dump, see <u>Table 48 on</u> page 577.
- · GTF trace of SVC 93 entries.

Note: Either of these will show the address that is not valid.

Parameter initialization problems

This topic provides information on finding the parameter member containing the TSO/VTAM initialization parameters.

To find the member name for the initialization parameters:

- Check the system log for the TSO start command issued. The MEMBER or MBR option may have been used to specify the member name. The MEMBER option overrides any other methods of specifying the member name.
- Check the TSO start procedure for any variables used, such as MBR, for the member name.
- The default member name is TSOKEY00.

The parameter member can be found in:

- The data set defined by the PARMLIB DD statement in the TSO start procedure.
- A data set in the logical parmlib concatenation (for z/OS). Refer to z/OS MVS System Commands for information on using the MVS DISPLAY PARMLIB command to display information about the logical parmlib setup for a system.
- SYS1.PARMLIB.

Hung terminal problems

This information provides documentation requirements and diagnosis procedures for problems with hung terminals. Use this information if this problem occurs while you are using TSO/VTAM. This procedure helps you determine when the hang occurred and what was happening at that time.

1. If the problem occurs during logon or logoff, get the recommended documentation and go to "Reporting the problem to IBM" on page 91.

The recommended documentation is:

• VTAM full buffer contents trace.

To see the data in the buffer contents trace, set CONFTXT=NO in the TSOKEY00 member of SYS1.PARMLIB before starting TSO/VTAM.

- GTF trace of SVC 93 and SVC 94 entries. See <u>Table 48 on page 577</u> to determine what document describes the SVC 93 and SVC 94 entries.
- TGET/TPUT trace.

The TGET/TPUT trace creates trace entries for all TGET/TPUT/TPG data except address space ID TPUTs.

You can get the TGET/TPUT trace by issuing the MODIFY TRACE command with TYPE=TSO. The MODIFY command is described in z/OS Communications Server: SNA Operation.

• Dump of the nucleus, CSA, and user's address space.

If you think you might not be able to re-create the problem, take a dump *before* you try to clear the hang.

If input (such as ATTN, RESET, or ENTER) clears the hang, both a dump and traces may be necessary. You may want to start the traces, take a dump with the terminal hung, clear the hang, and then stop the traces.

- Collect additional general information:
 - Try to determine whether the error is related to a certain type of hardware or a certain protocol (SNA or non-SNA).
 - Try to determine whether the hang is related to a particular application program or type of application program (full-screen, graphics, and so on).

If so, do other similar types of applications also hang?

2. Was the last data that was sent from the application program to VTAM sent to the terminal before the hang occurred?

To determine this, look for a VTAM buffer contents trace entry that corresponds to the last TPUT trace entry.

If you see these corresponding entries, the output was sent to the terminal.

- 3. If the keyboard locked after data was sent to the terminal, check the outbound buffer contents trace entry for:
 - Bracketing indicators in RH byte 2
 - Change direction indicator in RH byte 2
 - Write control character to unlock the keyboard in byte 2 of the output request unit

If an end bracket was sent, the keyboard should be available.

If a change direction was sent and the keyboard has been unlocked, the keyboard should be available.

If a TGET is issued after a full-screen TPUT, TSO/VTAM should unlock the keyboard.

- 4. If the keyboard has not been unlocked, see what TPUT was issued last. (The option flag bytes in the TPUT entry show what TPUT it is.)
 - For a NOEDIT or TPG TPUT, TSO/VTAM will not unlock the keyboard. The application program is supposed to send a write control character to unlock the keyboard.
 - For other TPUT options, determine whether a TGET is outstanding.

If a TGET is outstanding, TSO/VTAM should unlock the keyboard.

If no TGETs are outstanding, contact the group responsible for the application program.

- 5. If the last activity before the hang was input from the terminal, was the data passed to the application program?(If it was, the TGET trace entry corresponds to the inbound VTAM buffer contents trace entry.)
 - If so, determine whether the application program ever issued another TPUT.

- If the application program never issued another TPUT, contact the group responsible for the application program.
- If data has been received by TSO/VTAM, but it has not been sent to the terminal, go to <u>"Reporting the problem to IBM"</u> on page 91.
- 6. If you have not identified the problem, go to "Reporting the problem to IBM" on page 91.

Incorrect output problems

Two main types of incorrect output problems are discussed in this information: "Screen management problems" on page 100 and "Screen size problems" on page 104. Screen management problems involve mode errors, exception responses, and problems with the data on the screen. Screen size problems involve an incorrect or unexpected screen size, either in a particular mode or all the time. Choose the one that is most like your symptoms, and follow the procedure for that problem.

Screen management problems

This information provides the documentation requirements and diagnostic procedures for problems displaying data on the screen. This information deals with five types of screen management problems:

- Function error (incorrect screen management for mode).
- · Exception responses.
- Extra or missing data.
- Data is not placed correctly on the screen.
- · Data appears to be translated incorrectly.

Choose the one that most closely matches your symptoms and follow the procedure for that problem.

Note: Problems with incorrect screen sizes are addressed in "Screen size problems" on page 104.

The recommended documentation is:

VTAM full buffer contents trace.

To see the data in the buffer contents trace, set CONFTXT=NO in the TSOKEY00 member of SYS1.PARMLIB before starting TSO/VTAM.

- GTF trace of SVC 93 and SVC 94 entries. See <u>Table 48 on page 577</u> to determine what document describes the SVC 93 and SVC 94 entries.
- TGET/TPUT trace.

The TGET/TPUT trace creates trace entries for all TGET/TPUT/TPG data except address space ID TPUTs.

You can get the TGET/TPUT trace by issuing the MODIFY TRACE command with TYPE=TSO. The MODIFY command is described in z/OS Communications Server: SNA Operation.

• Dump of CSA storage and the user's address space.

This is required only for address space ID TPUT errors.

• May require a full PIU trace or CCW trace with data option.

Function error

If the screen does not function properly for the current mode of operation, do the following steps:

- 1. Review the SVC 94 entries to determine the mode. The STFSMODE and STLINENO macros set full-screen mode on and off.
 - Full-screen mode.

In full-screen mode, the application handles screen management.

If the problem relates to full-screen processing, review the information on full-screen mode. See <u>Table 48 on page 577</u> to determine what document describes full-screen mode. If this does not describe the full-screen processing that you are experiencing, note the differences.

· Line mode.

In line mode, TSO/VTAM handles screen management.

In line mode, the data generated by the application program is placed line by line down the screen. READY appears on the line below the data, and the cursor appears on the line below that. When the screen is full, TSO/VTAM sends a page prompt to the screen. When you press the ENTER key, TSO/VTAM clears the screen and sends any remaining data to the screen.

If you enter data on the next to the last line of the screen, no page prompt is sent. Instead, TSO/VTAM clears the screen and reshows the data (or command) at the top of the screen.

If this does not describe the line mode processing that you are experiencing, note the differences.

- 2. Report to the group (TSO/VTAM or the application program) that appears to be responsible for the incorrect screen management.
 - If you have access to IBMLink, search for known problems in this area. If no applicable matches are found, report the problem to IBM by using the electronic technical report (ETR) option on IBMLink.
 - If you do not have access to IBMLink, call the IBM Support Center at 1-800-IBM-SERV.

Exception responses

Follow these steps for exception responses.

1. Determine if the error indicator reflects an error in the RU portion of the PIU (sense = 1003 or 1005).

If so, continue with this step.

Otherwise, go to step "2" on page 101.

- a. See what TPUT was issued. (This is shown in the flag byte of the TPUT trace entry.)
- b. For a NOEDIT TPUT, TSO/VTAM should not change the data provided by the application program. Compare the data in the TPUT trace, which starts at X'2C' into the trace record, with the VTAM buffer contents trace.
 - If TSO/VTAM has not changed the data, contact the group responsible for the application program that issued the TPUT.
- c. For a full-screen TPUT, determine whether the data that is causing the error was generated by the application program. (Data generated by the application program is present in the TPUT trace entry.)

If so, contact the group responsible for the application program that issued the TPUT.

If not, go to "Reporting the problem to IBM" on page 91.

2. Look at the error sense code.

If it is X'800A', the PIU is too long. This is probably a definition error. In this case:

- a. Look in the TH portion of the buffer contents trace entry to find out the length of the PIU that caused the error.
- b. See how MAXDATA is defined on the PCCU definition statement in the NCP definition deck. The MAXDATA value that you code should be as large as the largest PIU that is sent to the terminal by an application program.

Note: If you increase the value of MAXDATA, this value should not exceed the product of the MAXBFRU and UNITSZ operands. See <u>z/OS Communications Server: SNA Network Implementation</u> Guide for more information about defining the MAXDATA, MAXBFRU, and UNITSZ operands.

If you have more than one PCCU definition statement, check to see that the right one is being used.

- 3. If there are other error indicators, get the documentation shown in step <u>"5" on page 83</u> and continue with that procedure.
- 4. If you have not resolved the problem, go to "Reporting the problem to IBM" on page 91.

Extra or missing data

Follow these steps if you have an extra or missing data condition.

- 1. Is the problem with input (data received by the application)? Is too much data being passed to the application?
 - If previous input is added to the end of the current input, the modified data tags may have been set improperly in previous TPUTs. Go to "Reporting the problem to IBM" on page 91.
 - If the backspace key, character delete key, or line delete key is not functioning properly, look for SVC 94 entries that may have changed the default in the STCC macro.

If this does not account for the problem, get a dump of the nucleus, the CSA, and the user's address space. Then go to "Reporting the problem to IBM" on page 91.

Is insufficient data being sent to the application program?

- Find out which TGET option was used. TSO/VTAM edits data sent from the terminal before it passes it to the application program. The type of editing that TSO/VTAM does depends on the TGET option. Certain characters may be deleted, such as control characters, aid characters, and set buffer address (SBA) sequences. Look at the flag bytes in the TGET trace entry to see which TGET option was specified. See Table 48 on page 577 to determine what document describes TGET options.
- Find out whether any user edit exits are involved. User edit exits are listed in <u>z/OS Communications</u> Server: SNA Customization.
- 2. Is the problem with output (data sent by the application)? Was extra data sent to the screen?

TSO/VTAM should not generate any printable data. Compare the data portion of the TGET/TPUT trace with the data in the VTAM buffer contents trace.

If you see printable data in the buffer contents trace that is not in the TGET/TPUT trace, go to "Reporting the problem to IBM" on page 91.

If you see the same data in both traces, contact the group responsible for the application program that issued the TPUT.

Was data from the application lost?

TSO/VTAM does not generally delete data sent by the application program unless it is doing reshow processing. In reshow processing, TSO/VTAM deletes the full-screen TPUT and sends a reshow character (X'6E') to the full-screen application program. This is shown in the TGET trace entry. Compare the data portion of the TPUT trace entry with the data in the VTAM buffer contents trace entry to see whether any data has been deleted. Determine whether this is a TSO/VTAM problem or an application program error and contact the appropriate group.

See <u>Table 48 on page 577</u> to determine what document contains more information on reshow processing.

3. If you have not resolved the problem, go to "Reporting the problem to IBM" on page 91.

Data is misplaced on the screen or page

Follow these steps if data is misplaced on your screen or page.

1. Does data wrap around the screen?(Wrapping means that data fills the line and splits inappropriately between lines.)

If it does, continue with this step.

Otherwise, go to step "2" on page 103.

- a. Find out which TPUT option was issued. Bytes X'12' and X'13' of the TPUT trace entry contain the option flags.
- b. For a NOEDIT TPUT, TSO/VTAM does not edit data, and therefore does not change any SBA sequences that may be issued by the application program. Contact the group responsible for the application program that issued the TPUT.
- c. For a full-screen TPUT, TSO/VTAM does not generate SBA sequences to place the data on the screen.
 - If the symptom is incorrect screen size, go to <u>"Screen size problems" on page 104</u>. Otherwise, contact the group responsible for the application program that issued the TPUT.
- d. If the data was sent without a full-screen or NOEDIT option, go to "Reporting the problem to IBM" on page 91.
- 2. If the problem is not on a display terminal, go to "Reporting the problem to IBM" on page 91.
- 3. Are SBA sequences correct? Check the type of TPUT that was issued. Bytes X'12' and X'13' of the TPUT trace entry contain the option flags. For full-screen and NOEDIT TPUTs, the application program usually generates the SBA sequences that determine where data is placed on the screen.
- 4. Is the buffer address incorrect?
 - If the buffer address is not valid for the screen size, contact the group responsible for the application program.
 - If the buffer address is valid for the terminal in its present screen size, go to "Reporting the problem to IBM" on page 91.
- 5. If this is the first nonfull-screen TPUT following a full-screen TPUT, look for an SVC 94 trace entry for STLINENO. This macro may be issued by a full-screen application to indicate which line the next nonfull-screen data should appear on.
 - If the data was placed by the STLINENO macro, contact the support group for the application program that issued the macro.
- 6. If you have not resolved the problem, go to "Reporting the problem to IBM" on page 91.

Data appears to be translated incorrectly

Incorrect output is the main symptom of this problem. Sometimes the incorrect output is colons. The problem is probably related to the TPUT option that was specified.

- 1. Look at the option flag bytes (X'12' and X'13') in the TPUT trace entry to determine what options were used.
- 2. Determine what editing occurs for each type of TPUT option. See <u>Table 48 on page 577</u> to determine what document describes editing done by TPUT options.
- 3. If the incorrect output consists of colons, determine what data from the TPUT trace entry is being edited into the printable character X'7A', a colon.
- 4. See whether TSO/VTAM is editing correctly.
 - **Note:** Many applications use TPUT options that do extensive editing and translation. This allows many different hardware devices to communicate with the application program without causing I/O errors. You may need to write your own user edit exits to make sure that all characters that are valid for your terminals appear on the screen, especially if you are using type 1 logical unit devices.
- 5. If the editing does not appear to conform to the options specified, check for user edit exits or translation tables. (See <u>z/OS Communications Server: SNA Customization</u> for more information on these exits.)
 - If you have exits or translation tables, verify that they are not causing the problem.
- 6. Did the application program send incorrect data to VTAM?The data is shown in the data portion of the TPUT trace entry.
 - If so, the problem is in the application program.

7. If you have not resolved the problem, go to "Reporting the problem to IBM" on page 91.

Screen size problems

This information provides documentation requirements and diagnostic procedures for screen size problems. Two major types of errors occur:

- The screen never operates in the expected size.
- The screen is not always the expected size when you change modes.

Choose the one that most closely matches your symptoms and follow the procedure for that problem.

Recommended documentation includes the following list.

Note: All of the traces may not be required. Read the diagnostic procedure before you get them.

• VTAM buffer contents trace.

To see the data in the buffer contents trace, set CONFTXT=NO in the TSOKEY00 member of SYS1.PARMLIB before starting TSO/VTAM.

- GTF trace of SVC 93 and SVC 94 entries. See <u>Table 48 on page 577</u> to determine what document describes the SVC 93 and SVC 94 entries.
- TGET/TPUT trace.

The TGET/TPUT trace records all TGET/TPUT/TPG data except address space ID TPUTs.

You can get the TGET/TPUT trace by issuing the MODIFY TRACE command with TYPE=TSO. The MODIFY command is described in z/OS Communications Server: SNA Operation.

• May require a full PIU trace or CCW trace with data option.

Screen is never the expected size

This is probably a definition problem.

1. If you are using a USS command to log on, try logging on without it.

If this corrects the problem, review the use of the USS command in z/OS Communications Server: SNA Resource Definition Reference and check the following items:

• Is the terminal a non-SNA 3270?

If it is, does the USS command include a USSPARM macro for the logmode?

If so, VTAM ignores the logmode name from the terminal definition statements and uses its own default BIND image instead.

• Does the USS command establish a default logmode name?

If so, the default name overrides the name in the terminal definition statement.

- 2. If this is not a USS command problem, check to see whether the PSERVIC operand of the MODEENT macro is coded correctly. z/OS Communications Server: SNA Resource Definition Reference explains how to do this.
 - Are primary and alternate sizes coded correctly?
 - For screen switching, is BINPRESZ coded correctly as X'7F'?
- 3. If you have not identified the problem, look at the BIND that is sent. This is shown in a VTAM buffer contents trace of the logon.
 - If the BIND image is not what you expected, check the LU definition statement for an incorrect MODETAB or DLOGMOD parameter.
 - If no logmode table or DLOGMOD operand is specified, no PSERVIC is passed to the TSO/VTAM logon exit routine. In this case, TSO/VTAM issues an INQUIRE DEVCHAR macro and VTAM indicates that the terminal is a logical unit. TSO/VTAM then uses the SCRSIZE operand found in TSOKEY00. The default value for SCRSIZE is 480 (12 rows and 40 columns).

4. If you have not resolved the problem, go to "Reporting the problem to IBM" on page 91.

The screen is not the expected size for the mode

Full-screen mode

The application program controls screen management in full-screen mode. The primary (small) screen size is considered by TSO/VTAM as the default size. The application program can control screen size by sending write commands in TPUTs that it issues. The write commands are X'F5', erase write, and X'7E', erase write alternate. The application program issues X'F5', erase write, to set the primary screen size, or X'7E', erase write alternate, to set the alternate (large) screen size.

If neither command is issued, the screen remains the size it is when the application program enters full-screen mode.

Line mode

TSO/VTAM controls screen management in line mode. It generally uses the large (alternate) screen size when processing TPUTs in line mode. You can use the TSO TERMINAL command STSIZE macro during a session to change the screen size for nonfull-screen processing.

Using output from the VTAM full buffer contents trace, the TGET/TPUT trace for TSO/VTAM, and the GTF trace of the SVC 93 and SVC 94 entries, try to locate the source of the problem.

1. Check the SVC 94 trace entries to see whether the processing is in full-screen mode or line mode. The STFSMODE and STLINENO macros set these modes on and off.

If the processing is in line mode, go to step <u>"6" on page 105</u>. For full-screen mode, continue with step "2" on page 105.

- 2. Note if the incorrect screen size is related to entering or exiting full-screen mode.
- 3. Locate the TPUT trace entry for the data that appears on the screen when the screen is the wrong size. Determine the TPUT options for this TPUT and the one that precedes it by looking at the option flag bytes.

If either is a full-screen TPUT, look at the first data byte.

If the first data byte is an escape character (X'27'), the write command that follows has been specified by the application program. This write command should determine the screen size.

If the write command is different in the buffer contents trace, go to "Reporting the problem to IBM" on page 91.

4. If the first data byte is not an escape character, determine whether a write command (X'F1', X'7E', or X'F5') is provided.

If one of these write commands exists, continue with this step.

If not, go to the next step.

If this write command is different in the VTAM buffer contents trace, go to <u>"Reporting the problem to IBM"</u> on page 91.

If the same write command is displayed in both traces, contact the group responsible for the application program.

5. If a write command is not provided in the TPUT data, and processing is in full-screen mode, determine if the write command generated by TSO/VTAM set the same screen size as the last write command provided by the full-screen application program. To determine this, compare the write command in the buffer contents trace entry with the last one provided in a TPUT trace entry. The write command is located in the data portion of the TPUT trace, at X'2C' into the entry.

If the write commands are the same, go to "Reporting the problem to IBM" on page 91.

If the write commands are different, contact the group responsible for the application program.

6. If processing is not in full-screen mode, determine whether the STSIZE macro set the screen size. To determine this, look in the SVC 94 trace entries. An entry code of X'OA' in the high-order byte of register 0 indicates that the STSIZE macro set the screen size.

If the screen size was set by the application program, contact the group responsible for the application program.

7. If you have not resolved the problem, go to "Reporting the problem to IBM" on page 91.

Performance problems

This information provides documentation requirements and diagnosis procedures for performance problems. Use this information along with the information in "Performance problem" on page 83. In addition to the documentation required in "Performance problem" on page 83, you will need a GTF trace of SVC 93 and SVC 94 entries. See <u>Table 48 on page 577</u> to determine what document describes the SVC 93 and SVC 94 entries.

1. Are wait and hold options slowing response time?

The application program may be issuing TPUTs and TGETs with the wait or hold options. The wait option indicates that the application program should not regain control until output data has been placed on the output queue (TPUT) or input is available (TGET). A TPUT with a hold option indicates that control should not be returned to the application until the data has reached the terminal. These options may be necessary for screen management, but they prolong response time and increase the number of times the address space is swapped.

2. Is an external system resource slowing response time?

If all users must access the same resource, such as a system catalog, performance deteriorates. This problem is especially severe when exclusive ENQs are used to control access to the resource. To improve performance, redistribute resources.

3. Are high and low buffer extents set at inappropriate values?

If the high and low buffer extents are too close together, output wait states occur.Buffer extents are specified in TSOKEY00, a member of SYS1.PARMLIB. Tune the values of the high and low buffer extents to get optimum performance.

4. Are APPL definition statements coded correctly?

Code the AUTH=NVPACE operand on all APPL definition statements for TSO/VTAM.

If you do not set NVPACE, VTAM indicates that it has already received input data, instead of queuing the response until it receives the input data. Also, the swap count is incremented by two every time the ENTER key is pressed.

5. Are pacing values set correctly for local SNA terminals?

VTAM ignores the NVPACE operand for sessions with logical units in a local major node. Therefore, you must set nonzero pacing values for these logical units.

6. Is the MVS performance group specified correctly?

Set the application program's performance group approximately five to ten percent lower than the VTAM performance group. To see the application program's performance group specification, look at the dispatching priority in the task's TCB.

7. If you have not resolved the performance problem, go to "Performance problem" on page 83.

Part 2. Diagnostic procedures

Chapter 4. Using DISPLAY and MODIFY operator commands

You can control and monitor the VTAM program network with the following start options and operator commands:

- DISPLAY commands
 - "Using VTAM DISPLAY commands for problem determination" on page 110
 - "Display buffer pool use" on page 112
 - "DISPLAY CSDUMP" on page 113
 - "DISPLAY CSMUSE" on page 113
 - "DISPLAY EE" on page 114
 - "DISPLAY EEDIAG" on page 116
 - "Display Enterprise Extender connection network unreachable partner information" on page 132
 - "Display HPR route test" on page 133
 - "Display ID for an RTP connection" on page 134
 - "Display ID for an RTP PU with HPRDIAG=YES" on page 135
 - "Display ID for an RTP PU with HPRDIAG=YES and CLEAR=ALL" on page 136
 - "Display path tables" on page 137
 - "Display resource status" on page 137
 - "Display resources in a pending state" on page 137
 - "Display route status" on page 138
 - "Display route test" on page 144
 - "Display RTPS options" on page 147
 - "Display TDU information" on page 147
 - "Display traces" on page 154
 - "Display VTAM storage" on page 154
 - "Display workload information for a device" on page 155
- · MODIFY commands
 - "Using VTAM MODIFY commands for problem determination" on page 156
 - "Issuing the MODIFY CSDUMP command" on page 156
 - "Modifying input/output problem determination" on page 156
 - "Modifying message module identification" on page 157
 - "Issuing the MODIFY TOPO command to clear EE connection network unreachable partner information" on page 157
 - "Modifying tuning statistics" on page 158
 - "Issuing the MODIFY VTAMOPTS command to change start option values" on page 158

For information about VTAM start options, see z/OS Communications Server: SNA Resource Definition Reference.

Note: You can also use the NetView program to monitor and collect error statistics from the VTAM network.

Using VTAM DISPLAY commands for problem determination

VTAM provides DISPLAY (D) commands to show status and other information about network resources. The following list shows what information is displayed for each of the VTAM DISPLAY commands. For more information about the syntax and output of these commands, see <u>z/OS Communications Server:</u> SNA Operation.

Command

Information Displayed

D ADJCLUST

Adjacent cluster table definitions in the current ADJCLUST table

DADJCP

Status of adjacent CP major nodes

D ADJSSCPS

Adjacent SSCP tables

DAPING

Existence of route to LU 6.2 resource; route information; throughput statistics for conversation on route

DAPINGDTP

Number of APINGD transaction programs to run concurrently

D APINGTP

The number of APING command transaction programs permitted to run concurrently for sending APING requests to other nodes

DAPPLS

Status of application program major and minor nodes

D APPNTOSA

APPN to subarea CoS mapping table

D AUTOLOG

Information about controlling applications that have pending autologon requests

D BFRUSE

VTAM buffer usage

D BNCOSMAP

Native and nonnative CoS mapping defined for a border node

D CDRMS

Status of cross-domain resource manager major and minor nodes

D CDRSCS

Status of cross-domain resources (including independent LUs)

D CLSTRS

Status of clusters (PUs in NCP, local SNA, and switched major nodes)

D CNOS

Change-number-of-sessions characteristics for LU 6.2 application programs

D CONVID

Conversations with LU 6.2 application programs

D COS

Class of Service table information

D CPCP

CP-CP session status

D CSDUMP

Current dump triggers that are set by the MODIFY CSDUMP command or by the CSDUMP start option

D CSM

Information on the use of storage managed by the communications storage manager (CSM)

D CSMUSE

Displays the detail usage of storage managed by the communications storage manager (CSM) for one or more storage pools.

D DIRECTRY

Information maintained by central directory server

D DLURS

All dependent LU requesters for which this host acts as Dependent LU Server

D EE

Information about Enterprise Extender connections

DEEDIAG

Display various diagnostic information about one or more EE connections.

DEXIT

Status of user-written exit routines

D GRAFFIN

Affinity information for generic resources

D GROUPS

Status of line groups

D GRPREFS

The contents of the generic resource preference table

DID

Individual major or minor nodes

DINOPCODE

The attributes for every INOPCODE defined to VTAM or for every INOPCODE defined within a single VTAM module

D INOPDUMP

The global status for INOPDUMP

D LINES

Status of lines and channel links

D LMTBL

LU-mode table for LU 6.2 application programs

D LUGROUPS

LUGROUP major nodes, model LU groups, and model LUs

D MAJNODES

Status of major nodes

D MODELS

Model PUs and LUs

D NETSRVR

Network node server information

D PATHS

Dial-out path information

D PATHTAB

Status of explicit routes and virtual routes

D PENDING

Resources in a pending state

D ROUTE

Status of explicit routes and virtual routes; existence of routes; whether a route is operational; whether a route is blocked

D RSCLIST

Resources whose names match a particular pattern

DRTPS

Information concerning HPR RTP connections

D SAMAP

Status of subarea mapping

D SATOAPPN

Subarea-to-APPN Class of Service mapping table

D SESSIONS

Session status information

D SNSFILTR

Current active SAW sense filter

D SRCHINFO

Information about outstanding subarea and APPN search requests

D STATIONS

Status of cross-subarea link stations

D STATS

Storage information for use with the storage estimate worksheets appendix of $\underline{z/OS}$ Communications Server: New Function Summary.

D STORUSE

Storage usage for storage pools and data spaces

D TABLE

Table type, use count, and users

D TERMS

Status of device-type LUs (terminals)

D TGPS

Transmission group profiles

D TNSTAT

Tuning statistics information

D TOPO

Topology of APPN network (information about nodes and transmission groups)

D TRACES

Status of VTAM and NCP traces

D TRL

Information about the TRL major node or about a single TRLE definition statement

D TSOUSER

Status of a TSO user ID

D USERVAR

USERVARs and the application programs associated with them

D VTAMOPTS

Start options

D VTAMSTOR

Display storage contents associated with a storage address

Display buffer pool use

You can use the DISPLAY BFRUSE command to display information about buffer use. In response to this command, VTAM indicates that the display is for buffer use and issues a series of messages that contain monitoring information. For each buffer pool, this information includes:

- Buffer pool ID
- Flags (Q or F): Q shows that a request is queued for this pool; F shows that dynamic buffering has failed for this pool

- Size of each buffer in this pool
- Current total number of buffers in this pool
- Current count of buffers available (the number not in use)
- · Largest number of buffers this pool has expanded to at any time
- Largest number of buffers in use at any time
- Cumulative count of the number of times each buffer pool has expanded
- Expansion and contraction thresholds
- The expansion increment (the number of buffers to be added to a buffer pool during dynamic expansion)
- VTAM intermediate routing node buffer use limit (IRNLIMIT), current buffer use, and maximum buffer use
- VTAM CSA buffer use limit (CSALIMIT), current buffer use, and maximum buffer use
- Maximum amount of CSA in use since VTAM was started
- Current amount of VTAM private storage and maximum amount of VTAM private storage

If the DISPLAY BFRUSE command is used while an SMS (buffer use) trace is running, the fields MAX TOTAL, MAX USED, and TIMES EXP reflect buffer usage only since the last trace record was written, because the SMS trace resets these fields. For more information about the syntax and output of the DISPLAY BFRUSE command, see z/OS Communications Server: SNA Operation.

DISPLAY BFRUSE output can help you identify possible sources of problems. The following chart shows some problem symptoms and the corresponding buffers to check in SMS trace output:

For this symptom:	Check this buffer pool:
I/O hang	IOBUF
Session failure	CRPLBUF and LPBUF
VTAM hang	LPBUF

Storage problems can also be related to an I/O device. For further information, see <u>"Display workload"</u> information for a device" on page 155.

DISPLAY CSDUMP

You can use the DISPLAY CSDUMP command to display the current dump triggers set by the MODIFY CSDUMP command or by the CSDUMP start option. The display shows the current CSDUMP message and sense code triggers that will initiate a dump. If either the message or the sense code trigger does not exist, then NONE is indicated.

See the <u>DISPLAY CSDUMP</u> and <u>MODIFY CSDUMP</u> commands in z/OS Communications Server: <u>SNA</u> Operation for more information.

DISPLAY CSMUSE

You can use the DISPLAY CSMUSE command to determine the CSM (communications storage manager) managed storage growth used by the components of z/OS Communications Server. The DISPLAY CSMUSE command allows IBM service to evaluate the use of storage managed by the CSM. Although the command is similar to DISPLAY CSM command, it provides a lower level of detail regarding storage usage. Therefore, the output of this command is different from that of DISPLAY CSM.

See the <u>DISPLAY CSMUSE command</u> in <u>z/OS Communications Server: SNA Operation</u> for more information.

See the description of monitor IDs in z/OS Communications Server: IP and SNA Codes for more information.

DISPLAY EE

You can use the DISPLAY EE command to obtain information about Enterprise Extender. This command has various formats providing general Enterprise Extender information as well as detailed connection throughput statistics. A few of the display command formats will be shown along with some of the important messages.

• To display general Enterprise Extender information in summary format, use the following command:

D NET, EE

- Message IST1685I identifies the job name of the TCP/IP stack which Enterprise Extender is using.
- Message IST2004I displays the Enterprise Extender Logical Data Link Control (LDLC) timer and disconnect timer values associated with the PORT definition statement.
- Message IST2005I shows the number of seconds VTAM waits for name-to-address resolution requests to complete before canceling the request. The value displayed is associated with the Enterprise Extender port and affects only local HOSTNAME name-to-address resolution requests. When an EE line is in the process of being activated, and VTAM is performing name-to-address resolution for the local HOSTNAME, a display of the line (D NET,ID=linename) will show a state of PGAIN (Pending GetAddrInfo). If an EE line is hung in PGAIN state, you can perform the following steps to identify why the local HOSTNAME name-to-address resolution is not completing:
 - 1. Verify that the TCP/IP stack identified in message IST1685I is active.
 - 2. Verify that the TCP/IP resolver is active.

Result: If IPRESOLV displays the value of 0, VTAM will wait infinitely for the name-to-address resolution to complete. In this situation, VTAM relies on the TCP/IP resolver to time out the resolution. For more information, see z/OS Communications Server: IP Configuration Guide.

- IST2008I displays the IP Type of Service (ToS) values associated with each of the Enterprise Extender port priorities.
- IST2021I displays the total number of active Enterprise Extender connections.
- To display general Enterprise Extender information in detail, use the following command:

D NET, EE, DET

 The detailed format of the general Enterprise Extender display provides detailed information for each local IP address. Message IST1680I is the first message of a message group. The information for each local IP address is displayed between the IST924I messages.

For each local IP address active to Enterprise Extender, the following information is displayed:

- Message IST2004I displays the Enterprise Extender Logical Data Link Control (LDLC) timer and disconnect timer values used by this local static VIPA.
- Message IST1910I/IST1911I displays the local HostName (if applicable).
- Message IST2009I displays the total number of RTP pipes traversing EE connections associated with this local IP address. This message also displays the total number of LU-LU sessions associated with these RTP pipes.
- IST2010I displays the number of Enterprise Extender lines which have been INOPed because of SRQRETRY exhaustion. This count is maintained from the time the first EE line (associated with this specific local IP address) is activated, until the last line (associated with this specific local IP address) is deactivated. When the last line is deactivated for this local IP address, this counter will be cleared.
- For each VRN, the following information will be displayed:
 - Message IST1324I displays the VNNAME and VNGROUP, along with a LOCAL or GLOBAL VRN indicator.
 - Message IST2011I displays the number of available lines associated with this VRN.

Guideline: Verify that IST2011I displays enough lines to support the number of VRN connections that can exist. If the number of available lines drops to zero, new EE connections associated with this connection network will fail to connect.

- IST2012I displays the number of active EE connections associated with this VRN.
- Message IST2013I displays the number of available lines for predefined EE connections associated with this local IP address.

Guideline: Verify that IST2013I displays enough lines to support the number of predefined connections that can exist for this local IP address. If the number of lines is not large enough, new EE connections will fail to connect. If the number of available lines displays as zero, this might mean that all Enterprise Extender lines are associated with the Connection Network (CN) groups. For this case, all available lines that are associated with CN groups are available for predefined connections as well. Lines will be selected from the local CN groups first. If no local CN lines are available, then lines will be selected from the global CN groups.

• To display Enterprise Extender connection information in detail, use the following command:

D NET, EE, ID=puname or linename, DET

Tip: The DISPLAY EE commands have various formats in which the connection information can be displayed. The example here uses the ID=operand. The DISPLAY EE command with the HOSTNAME/IPADDR operands provides essentially the same information.

- Message IST2022I displays the date and time of the Enterprise Extender connection activation.
- Message IST2114I displays the initial, maximum, and current LIVTIME values for an EE connection.
- Message IST2025I displays the number of LDLC signals over this EE connection which did not receive
 a response on the first try. The signal required at least one retransmission before a response was
 received from the EE partner.
- Message IST2026I is closely associated with message IST2025I. The value displayed here indicates
 the number of LDLC signals over this EE connection which did not receive a response up to
 SRQRETRY times. It required the signal to be retransmitted SRQRETRY times, at which time a
 response was received from the EE partner.

Tip: If this display is issued repeatedly over a period of time, and the values displayed in messages IST2025I or IST2026I continue to grow, this indicates that there is most likely a problem in the network. Network congestion is a possible problem which might lead to Enterprise Extender failure. Increasing the LIVTIME, SRQRETRY, and SRQTIME values on the EE XCA PORT macro will allow Enterprise Extender connections to tolerate longer network delays. However, if severe network delays are encountered, it is most likely Enterprise Extender connections will INOP due to timeout conditions.

- Message IST2029I displays the largest MTU size that Enterprise Extender will send over the IP network for this connection. When policy-based routing is in effect, the MTU size might be different for each of the ports, depending on the routes chosen for EE traffic. This message is issued for each of the five EE ports regardless of whether policy-based routing is in effect and regardless of whether the display is for an IPv4 or IPv6 connection. The MTU size (both IPv4 and IPv6) might change during the life of the EE connection. The displayed value is obtained in the following manner: Message IST2029I displays the largest MTU size that Enterprise Extender will send over the IP network for this connection. When policy-based routing is in effect, the MTU size might be different for each of the ports, depending on the routes chosen for EE traffic. This message is issued for each of the five EE ports regardless of whether policy-based routing is in effect and regardless of whether the display is for an IPv4 or IPv6 connection. The MTU size (both IPv4 and IPv6) might change during the life of the EE connection. The displayed value is obtained in the following manner:
 - Initially, VTAM queries the TCP/IP stack for its MTU size and sets the EE connection to use this value. This MTU size has already been reduced to account for various header lengths such as the IP, UDP, and LLC headers necessary for EE traffic.
 - VTAM also takes into account the VTAM MTU operand value, if specified. The MTU operand may be specified on three types of VTAM major nodes:

- For EE connection networks, this parameter may be defined on the connection network GROUP definition statements in the EE XCA major node.
- For dial-in Enterprise Extender connections which have their associated PUs dynamically created, this parameter may be defined on the model major node (DYNTYPE=EE) PU definition statement.
- For predefined Enterprise Extender connections, this parameter may be defined on the PU definition statement in the switched major node.
- VTAM then takes the lesser of the TCP/IP stack's computed MTU size and the VTAM defined MTU operand value (if specified). If the TCP/IP stack presents a value less than 768 bytes, VTAM sets the MTU to 768 because this is the smallest packet size allowed by the HPR architecture.
- Generally the MTU size for an EE connection is fairly constant when the EE connection is
 established. However, in the event the TCP/IP stack's MTU size changes, RTP pipes with endpoints
 on the same node as the TCP/IP stack dynamically detect these changes when their outbound
 packets are being transmitted. The MTU size changes because of the following reasons:
 - New IP routes come available with different local MTU sizes
 - Existing IP routes become unavailable.
 - Path MTU discovery is enabled for IPv4 or IPv6 EE connections (See the PMTUD start option for details, z/OS Communications Server: SNA Resource Definition Reference), and path MTU changes are discovered in the IP network.
- Message IST2038I and IST2039I display the number of packets and the number of bytes that have been retransmitted. These counts are displayed for each port priority level. If the values displayed in these two messages increase over time, this indicates problems within the transport network. Large numbers of retransmissions due to network congestions will result in poor RTP performance. If excessive retransmissions occur, RTP path switching might occur.

DISPLAY EEDIAG

The DISPLAY EEDIAG command is used to display diagnostic information about one or more Enterprise Extender connections.

The REXMIT format lists Enterprise Extender connections whose retransmission rate, calculated at each port priority, meet, or exceed a specified threshold. The SRQRETRY format lists Enterprise Extender connections that are experiencing LDLC signal retries that meet or exceed a specified threshold. A CLEAR function enables the diagnostic counters used by these commands to be cleared for the next measurement interval. A few of the display command formats are shown in this information along with some of the important messages.

Using the REXMIT option on D EEDIAG

Find all Enterprise Extender connections whose retransmission rates meet or exceed 5%, display the output in summary format, and clear all diagnostic counters after command processing is complete:

D NET, EEDIAG, REXMIT=5, CLEAR, LIST=SUMMARY

See z/OS Communications Server: SNA Operation for the display output.

Tip: The DISPLAY EEDIAG command has various formats in which the connection information can be displayed. This sample command does not use any command filters. The DISPLAY EEDIAG command can be specified with the ID, HOSTNAME, or IPADDR filters to limit the scope of the search.

- Message IST2067I displays the date and time the DISPLAY EEDIAG command was issued.
- Message IST2069I displays the date and time when the REXMIT counters were last cleared. The date and time provided in the message combined with the date and time taken from message IST2067I, provides the time interval in which the retransmission metrics were collected.
- Message IST2036I displays the total number of network layer packets (NLP) that have been sent across this EE connection for this specific priority. This value is maintained from the time and date specified in message IST2069I. Message IST2036I is associated with a specific port priority represented by

a subgroup of messages; the subgroup begins with either message IST2030I, IST2031I, IST2032I, IST2033I, IST2034I, or IST2035I.

Message IST2038I displays the retransmission rate for this EE connection. The retransmission rate is valid from the time and date specified in message IST2069I. If the retransmission rate is excessive, this indicates problems within the IP transport network. Large numbers of retransmissions because of network congestions result in poor RTP performance. If excessive retransmissions occur, RTP path switching might occur. Message IST2038I is associated with a specific port priority represented by a subgroup of messages that begins with either message IST2030I, IST2031I, IST2032I, IST2033I, IST2034I, or IST2035I.

Rule: If you specify REXMIT=xx with the LIST=SUMMARY option, the display provides an overall retransmission rate for all port priorities. It is possible the retransmission rate displayed in message IST2068I, associated with all port priorities, is smaller than the specified REXMIT=xx rate. This means that at least one of the EE port priorities for this EE connection is experiencing a retransmission rate that meets or exceeds the specified rate. In this case, the LIST=SUMMARY option displays the message groups for the specific port priorities that meet or exceed the specified rate, along with the summary of all port priorities.

Messages IST2071I, IST2072I, and IST2073I all display the number of EE connections that had either
the REXMIT counter, SRQRETRY counter, or both counters cleared as part of command processing. The
number of EE connections cleared might be larger than the number of EE connections displayed in
message IST2042I. For example, a local IPADDR that is used by 500 EE connections might be specified
on the command. The CLEAR=REXMIT option will clear the REXMIT counters for all 500 EE connections.
However, only one of these EE connections might be experiencing retransmission problems. In this
case, message IST2042I lists only one connection displayed.

Using the SRQRETRY option on D EEDIAG

To locate all Enterprise Extender connections that are experiencing LDLC retries of three or more attempts before receiving a response from the partner EE node, use the command:

D NET, EEDIAG, SRORETRY=3

Tip: The DISPLAY EEDIAG command has various formats in which the connection information can be displayed. This sample command does not use any command filters. The DISPLAY EEDIAG command can be specified with the ID, HOSTNAME, or IPADDR filters to limit the scope of the search.

- Message IST2004I displays the Enterprise Extender Logical Data Link Control (LDLC) timer and disconnect timer values used by the local static VIPA.
- Message IST2074I displays the number of times an LDLC TEST command (SRQRETRY attempt) had to be retried before receiving a response from the EE partner. It also displays the number of instances in which this number of retry attempts was required to receive a response from the EE partner.

Tip: The information displayed in the various IST2074I messages can be useful in tuning EE timer operands such as LIVTIME, SROTIME, and SRORETRY.

See <u>z/OS</u> Communications Server: SNA Operation for a sample display of <u>DISPLAY EEDIAG using the SRQRETRY option</u>.

How Enterprise Extender times out an inactive connection

During periods of inactivity, no inbound HPR traffic is detected by this EE endpoint for a period of time equal to the LIVTIME value, and an LDLC test request is sent to the EE partner. If no response is received from the EE partner within the SRQTIME interval, another LDLC TEST request is sent. This process is repeated for the number of times specified by SRQRETRY. If no TEST response is received from the EE partner after the last SRQRETRY attempt, the EE connection is disconnected. The format of the IST1430I message that is issued for this scenario is as follows:

IST1430I REASON FOR INOP IS XID OR LDLC COMMAND TIMEOUT

Enterprise Extender inactivity example

Assume the following values:

LIVTIME=15 SRQTIME=15 SRQRETRY=3

If an EE connection is not receiving data from the partner for 15 seconds (LIVTIME), VTAM sends a test frame to test the connection. If the test does not receive a response within 15 seconds (SRQTIME), VTAM repeats this up to three more times (SRQRETRY). If after the third retry attempt no response has been received, the EE connection is disconnected. VTAM uses the following formula: LIVTIME + (SRQTIME* (SRQRETRY+1)). In this example, it would take roughly 75 seconds to disconnect the EE connection. Figure 17 on page 118 shows the Enterprise Extender inactivity flows.

Figure 17. Enterprise Extender inactivity flows

- a. Initial LIVTIME interval expires and no inbound HPR traffic is detected by this EE endpoint during this 15-second interval.
- b. The Logical Data Link Control (LDLC) layer sends a TEST request to the EE partner to determine whether the partner is still there. This is the initial TEST, which is not considered a retry. The LIST=DETAIL output for the D EEDIAG,SRQRETRY command will display the initial test as attempt number zero in message IST2074I.
- c. After each TEST request is sent, VTAM waits a period of time equal to the SRQTIME value (15 seconds in this example).
- d. No response is received from the partner within the SRQTIME interval. The LDLC layer sends another TEST. This is considered the second retry attempt up to a maximum of SRQRETRY value (three retries for this example).
- e. After each TEST request is sent, VTAM waits a period of time equal to the SRQTIME value (15 seconds in this example).
- f. No response is received from the partner within the SRQTIME interval. The LDLC layer sends another TEST request. This is considered the third retry attempt, which is the final retry in this example.
- g. After each TEST request is sent, VTAM waits a period of time equal to the SRQTIME value (15 seconds in this example).
- h. No response is received from the partner within the SRQTIME interval. The LDLC layer sends another TEST request. This is considered the third retry attempt, which is the final retry in this example.
- i. After the final TEST request is sent, VTAM waits a period of time equal to the SRQTIME value (15 seconds in this example). Because this was the final retry attempt, and no response was received from the partner EE node, the EE connection is terminated with message IST1430I.

Using the DISPLAY EEDIAG output to tune your Enterprise Extender timers

The following sample display uses the same EE timer values as in Figure 17 on page 118.

```
D NET, EEDIAG, SRQRETRY=3, LIST=DETAIL, CLEAR=SRQRETRY
IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = EEDIAG
IST2066I ENTERPRISE EXTENDER CONNECTION SRQRETRY INFORMATION

.

IST2074I SUCCESSFUL SRQRETRY ATTEMPT = 0 OCCURRENCES = 98
IST2074I SUCCESSFUL SRQRETRY ATTEMPT = 1 OCCURRENCES = 5
IST2074I SUCCESSFUL SRQRETRY ATTEMPT = 2 OCCURRENCES = 2
IST2074I SUCCESSFUL SRQRETRY ATTEMPT = 3 OCCURRENCES = 1

.
IST314I END
```

The first IST2074I message displays attempt number 0 with 98 occurrences. To relate this to Figure 17 on page 118, this means the LIVTIME interval (a) expired without receiving any inbound HPR data, and a TEST request (b) was sent. The partner EE node responded to this TEST within the SRQTIME interval (c). Receiving a response is considered a successful attempt. Because this TEST is not considered a retry, it is denoted by SUCCESSFUL SRQRETRY ATTEMPT = 0. This scenario increments the number of occurrences for attempt number 0 by one. This display indicates that 98 times, when the initial TEST was sent out to the EE partner, VTAM received a reply from the partner within the first SRQTIME interval.

The second IST2074I message displays the attempt number of 1 with 5 occurrences. To relate this to Figure 17 on page 118, this means that the LIVTIME interval (a) expired without receiving any inbound HPR data, and a TEST request (b) was sent. No response was received from the partner EE node within the first SRQTIME interval (c). VTAM then sends out the first SRQRETRY attempt (d) for the TEST request. The partner EE node responded to this TEST within the SRQTIME interval (e). Receiving a response is considered a successful attempt. Because this TEST is considered a retry, it is denoted by SUCCESSFUL SRQRETRY ATTEMPT = 1. This scenario increments the number of occurrences for attempt number by one. This display indicates that five times when the first SRQRETRY attempt for the TEST was sent out to the EE partner, VTAM received a reply from the partner within this SRQTIME interval.

The remaining IST2074I messages indicate the same information, but the attempt number and number of occurrences indicates on which SRQRETRY VTAM received a response. Generally, the number of nonzero occurrences in the high numbered SRQRETRY attempts should be minimal, if not zero. If there are any SRQRETRY attempts in the last or next-to-last retry, this indicates that there are conditions in your IP network that are causing long network delays. In these situations, VTAM is very close to an inoperative condition on these EE connections.

The defaults for the LDLC parameters are probably sufficient for most networks, but tuning the parameters might be appropriate depending on the design of the underlying IP network and the technologies being used there. For example, if RIP is being used as the dynamic routing update protocol, then longer convergence times are to be expected (as compared to OSPF), and therefore the LDLC parameters could be adjusted (for example, by bumping the number of SRQRETRY attempts, or increasing the SRQTIME interval value to lengthen the time EE LDLC waits before inoping the connections).

Tuning your HPRPST values for your EE network

If an EE connection is suffering connectivity problems and is in the process of timing out (see "How Enterprise Extender times out an inactive connection" on page 117), the VTAM topology still thinks that EE is a viable route and might select it as the best route to that partner. If the EE link is truly experiencing problems (no inbound data in this case), RTP pipes eventually suffer problems as well. The RTP pipes will go into a path switch state fairly quickly. HPR path switch timers should be set long enough for the APPN topology to be updated to reflect the fact that the EE connection is no longer usable. This means that the HPRPST must be set longer than the time it takes for the EE connection to timeout. In Figure 17 on page 118, all the HPRPST values should be coded larger than 75S (75 seconds) to outlast the time it takes for an EE connection to time out because of inactivity.

Alternatively, you can specify HPRPSDLY=EEDELAY on the appropriate major node for your EE configuration. The HPRPSDLY parameter is available on the PU definition statement in the switched and

model (DYNTYPE=EE) major nodes, and also on the connection network GROUP definition statements in the EE XCA major node. For more information about the HPRPSDLY parameter, see z/OS Communications Server: SNA Resource Definition Reference.

DISPLAY EEDIAG, TEST=YES

The DISPLAY EEDIAG, TEST=YES command, or Enterprise Extender connectivity test command, is useful for debugging network problems. Use this command to test an existing Enterprise Extender connection, or to assist in diagnosing why an EE connection cannot be established.

The EE connectivity test verifies EE line availability, address resolution capability, and ultimately partner reachability. Specify the DISPLAY EEDIAG, TEST=YES, LIST=DETAIL command to validate partner reachability. UDP requests with varying TTL (time-to-live) or hop count values are sent to the EE partner host. The command then waits for the routers between the local and remote hosts to send ICMP messages that indicate that the TTL value has been exceeded. If these messages are not received, the command provides the maximum number of retry attempts for that particular hop in the route. The DISPLAY EEDIAG, TEST=YES, LIST=SUMMARY connectivity test makes up to three attempts to reach the remote partner after VTAM sets the TTL count to 255. Because VTAM sets the TTL count to 255, the hop count is not determined for the LIST=SUMMARY output. Message IST2137I or IST2138I displays the hop count of *NA.

The output generated for the DISPLAY EEDIAG, TEST=YES, LIST=SUMMARY command lists the remote partner reachability information quickly.

The output generated from this request shows the reachability of the remote EE endpoint over all five UDP ports reserved for EE. When multipath routing or policy-based routing is being used, all available routes to the remote EE endpoint that are calculated by the local TCP/IP stack are tested.

New EE connection will not activate

Firewalls between the Enterprise Extender nodes must permit UDP traffic on all five EE ports for the IP address associated with each EE endpoint. If they do not, Enterprise Extender is not able to communicate. Figure 18 on page 120 depicts a simple configuration that shows that the firewall protecting HostA is correctly configured to allow UDP traffic to pass through. The firewall guarding HostB has incorrectly left the firewall blocking UDP traffic. In this example, the firewalls are configured so that ICMP messages can pass through.

Figure 18. Enterprise Extender configuration with firewalls

You can use the EE connectivity test to assist you when a new EE connection will not activate. In <u>Figure 18</u> on page 120, the operator on HostA tries to dial a predefined switched PU to establish an EE connection

to HostB. After the initial VARY ACCEPTED message, there is a pause, then an INOP occurs on the EE connection with reason XID OR LDLC COMMAND TIMEOUT. The INOP occurs in this case because the XIDs sent from HostA are not receiving responses back from HostB; the HostB firewall is discarding the XID packets. HostA will attempt to contact the partner up to the number of times specified by SRQRETRY. If no response is received for any XID, the connection fails.

Sample console log of the dial failure

```
V NET, DIAL, ID=SWPA2B

IST097I VARY ACCEPTED

.
IST1411I INOP GENERATED FOR LNIP1
IST1430I REASON FOR INOP IS XID OR LDLC COMMAND TIMEOUT
IST314I END
```

Analyzing the problem

There are several reasons why the EE connection will not activate. The IPADDR or HOSTNAME value coded on the switched PU's PATH statement might not be coded correctly. There might be connectivity issues within the IP network that do not allow the EE connection to be established. If you have reviewed your Enterprise Extender definitions for accuracy, and you think that everything you have coded is correct, the problem might be within the IP network.

Performing an EE connectivity test

In the example shown in Figure 19 on page 122, the operator on host HostA performs an EE connectivity test to assist in diagnosing the problem. In this example, there is no policy-based routing rule that matches the EE connection that is attempting to be established.

```
D NET, EEDIAG, TEST=YES, ID=SWPA2B, LIST=DETAIL
IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = EEDIAG
IST2119I ENTERPRISE EXTENDER DISPLAY CORRELATOR: EE000001
IST2067I EEDIAG DISPLAY ISSUED ON 08/21/05 AT 21:07:01
IST1680I LOCAL IP ADDRESS 9.67.1.1
IST1680I REMOTE IP ADDRESS 129.67.1.5
IST2023I CONNECTED TO LINE LN11
IST2126I CONNECTIVITY TEST IN PROGRESS
IST314I END
IST350I DISPLAY TYPE = EEDIAG
IST2130I ENTERPRISE EXTENDER CONNECTIVITY TEST INFORMATION IST2119I ENTERPRISE EXTENDER DISPLAY CORRELATOR: EE000001
IST2131I EEDIAG DISPLAY COMPLETED ON 08/21/05 AT 21:08:02
                                                              PARTNER = UNKNOWN
IST2132I LDLC PROBE VERSIONS: VTAM = V1
IST1680I LOCAL IP ADDRESS 9.67.1.1
IST1680I REMOTE IP ADDRESS 129.67.1.5
IST924I -
IST2133I INTFNAME: LTRLE1A
                                                     INTFTYPE: MPCPTP
             CONNECTIVITY UNSUCCESSFUL SENSE: ***NA*** PORT: CONNECTIVITY TEST ENDED - MAXIMUM TIME LIMIT EXCEEDED
IST2135I
                                                                        PORT: 12000
TST2136T
                                                      RTT:
IST2137I
               1 1.2.3.4
IST2137I
                2 *
                                            (3)
                                                      RTT: *N/A*
IST2137I
                                            (2)
                                                       RTT: *N/A*
             CONNECTIVITY UNSUCCESSFUL SENSE: ***NA*** PORT: CONNECTIVITY TEST ENDED - MAXIMUM TIME LIMIT EXCEEDED
IST2135I
                                                                        PORT: 12001
IST2136I
                                                      RTT:
               1 1.2.3.4
2 *
IST2137I
IST2137I
                                            (3)
                                                      RTT: *N/A*
                                                      RTT: *N/A*
IST2137I
                                            (2)
             CONNECTIVITY UNSUCCESSFUL SENSE: ***NA*** PORT: CONNECTIVITY TEST ENDED - MAXIMUM TIME LIMIT EXCEEDED
IST2135I
                                                                        PORT: 12002
IST2136I
IST2137I
               1 1.2.3.4
                                                      RTT:
IST2137I
                                                       RTT: *N/A*
                                                       RTT: *N/A*
IST2137I
                                            (2)
             CONNECTIVITY UNSUCCESSFUL SENSE: ***NA*** PORT: CONNECTIVITY TEST ENDED - MAXIMUM TIME LIMIT EXCEEDED
IST2135I
                                                                        PORT: 12003
IST2136I
IST2137I
               1 1.2.3.4
                                                      RTT:
IST2137I
                                            (3)
                                                       RTT: *N/A*
                                                      RTT: *N/A*
IST2137I
                                            (2)
             CONNECTIVITY UNSUCCESSFUL SENSE: ***NA*** PORT: CONNECTIVITY TEST ENDED - MAXIMUM TIME LIMIT EXCEEDED
TST2135T
                                                                        PORT: 12004
IST2136I
IST2137I
               1 1.2.3.4
                                                      RTT:
                                                       RTT: *N/A*
IST2137I
IST2137I
                                            (2)
                                                      RTT: *N/A*
IST924I -
IST2139I CONNECTIVITY TEST INFORMATION DISPLAYED FOR 1 OF 1 ROUTES
IST314I END
```

Figure 19. Connectivity test without policy-based routing enabled

The example shown in Figure 20 on page 123 is identical to the example in Figure 19 on page 122 except that a single policy-based routing rule (EEROUTINGRULE1) is being used for all EE traffic between the endpoints being tested. The policy-based routing rule has indicated that there is a route table defined for EE traffic (the route table name is EETABLE1).

```
D NET, EEDIAG, TEST=YES, ID=SWPA2B, LIST=DETAIL
IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = EEDIAG
IST2119I ENTERPRISE EXTENDER DISPLAY CORRELATOR: EE000001
IST2067I EEDIAG DISPLAY ISSUED ON 03/13/05 AT 21:07:01
IST1680I LOCAL IP ADDRESS 9.67.1.1
IST1680I REMOTE IP ADDRESS 129.67.1.5
IST2023I CONNECTED TO LINE LN11
IST2126I CONNECTIVITY TEST IN PROGRESS
IST314I END
IST350I DISPLAY TYPE = EEDIAG
IST2130I ENTERPRISE EXTENDER CONNECTIVITY TEST INFORMATION
IST2119I ENTERPRISE EXTENDER DISPLAY CORRELATOR: EE000001
IST2131I EEDIAG DISPLAY COMPLETED ON 03/13/05 AT 21:07:46
IST2132I LDLC PROBE VERSIONS: VTAM = V1 PARTNER = UNKNOWN
IST1680I LOCAL IP ADDRESS 9.67.1.1
IST1680I REMOTE IP ADDRESS 129.67.1.5
IST2224I ENTERPRISE EXTENDER ROUTING POLICY INFORMATION
IST2225I
                   ROUTE TABLE
                                 ROUTING RULE
          PORT
IST2205I
IST2226I
          12000
                   EETABLE1
                                  EEROUTINGRULE1
IST2226I
          12001
                   EETABLE1
                                  EEROUTINGRULE1
IST2226I
          12002
                   EETABLE1
                                  EEROUTINGRULE1
IST2226I
          12003
                   EETABLE1
                                  EEROUTINGRULE1
IST2226I
          12004
                  EETABLE1
                                  EEROUTINGRULE1
IST924I ·
IST2133I INTFNAME: TRLE1A
                                         INTFTYPE: MPCPTP
IST2135I
           CONNECTIVITY UNSUCCESSFUL
                                          SENSE: ***NA***
           CONNECTIVITY TEST ENDED - MAXIMUM TIME LIMIT EXCEEDED
IST2136I
                                             RTT: 22
RTT: *N/A*
TST2137T
             1 1.2.3.4
                                    * (3)
IST2137I
IST2137I
                                    * (3)
                                              RTT: *N/A*
           CONNECTIVITY UNSUCCESSFUL
IST2135I
                                          SENSE: ***NA***
                                                              PORT: 12001
           CONNECTIVITY TEST ENDED - MAXIMUM TIME LIMIT EXCEEDED
IST2136I
IST2137I
             1 1.2.3.4
                                              RTT:
                                              RTT: *N/A*
                                    * (3)
IST2137I
IST2137I
                                    * (3)
                                              RTT: *N/A*
           CONNECTIVITY UNSUCCESSFUL
                                          SENSE: ***NA***
IST2135I
                                                              PORT: 12002
           CONNECTIVITY TEST ENDED - MAXIMUM TIME LIMIT EXCEEDED
IST2136I
                                              RTT:
TST2137T
             1 1.2.3.4
                                                      23
                                              RTT: *N/A*
                                    * (3)
IST2137I
IST2137I
                                    * (3)
                                              RTT: *N/A*
           CONNECTIVITY UNSUCCESSFUL
                                          SENSE: ***NA***
IST2135I
                                                              PORT: 12003
           CONNECTIVITY TEST ENDED - MAXIMUM TIME LIMIT EXCEEDED
IST2136I
IST2137I
             1 1.2.3.4
                                              RTT:
                                              RTT: *N/A*
IST2137I
                                    * (3)
IST2137I
                                    * (3)
                                              RTT: *N/A*
           CONNECTIVITY UNSUCCESSFUL SENSE: ***NA*** PORT: CONNECTIVITY TEST ENDED - MAXIMUM TIME LIMIT EXCEEDED
IST2135I
                                                              PORT: 12004
IST2136I
             1
TST2137T
                1.2.3.4
                                              RTT:
                                                      22
IST2137I
                                    * (3)
                                              RTT: *N/A*
IST2137I
                                    * (3)
                                              RTT: *N/A*
IST924I -
IST2139I CONNECTIVITY TEST INFORMATION DISPLAYED FOR 1 OF 1 ROUTES
IST314I END
```

Figure 20. EE connectivity test with a single policy-based routing rule enabled

Performing a basic EE connectivity test

In the example shown in Figure 21 on page 124, the operator on host HostA performs a basic EE connectivity test to determine the connectivity to the remote host quickly. This example shows successful connectivity over all EE ports.

```
d net, eediag, id=swpa2b, test=yes, list=summary
ISTO97I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = EEDIAG
IST2119I ENTERPRISE EXTENDER DISPLAY CORRELATOR: EE000001
IST2067I EEDIAG DISPLAY ISSUED ON 06/30/10 AT 10:16:59
IST1680I LOCAL IP ADDRESS 9.67.1.1
IST1680I REMOTE IP ADDRESS 129.67.1.5
IST2023I CONNECTED TO LINE LNIP8
IST2126I CONNECTIVITY TEST IN PROGRESS
IST314I END
IST350I DISPLAY TYPE = EEDIAG
IST2130I ENTERPRISE EXTENDER CONNECTIVITY TEST INFORMATION
IST2119I ENTERPRISE EXTENDER DISPLAY CORRELATOR: EE000001
IST2131I EEDIAG DISPLAY COMPLETED ON 06/30/10 AT 10:17:00
IST2132I LDLC PROBE VERSIONS: VTAM = V1
                                                    PARTNER = V1
IST1680I LOCAL IP ADDRESS 9.67.1.1
IST1680I REMOTE IP ADDRESS 129.67.1.5
TST924T
                                          INTFTYPE: CTC
IST2133I INTFNAME: LCTC400
IST2134I CONNECTIVITY SUCCESSFUL
                                                            PORT: 12000
IST2137I
          *NA 129.67.1.5
                                                RTT: 1
         CONNECTIVITY SUCCESSFUL
TST2134T
                                                            PORT: 12001
IST2137I *NA 129.67.1.5
IST2134I CONNECTIVITY SUCCESSFUL
                                                RTT:
                                                            PORT: 12002
IST2137I
          *NA 129.67.1.5
          CONNECTIVITY SUCCESSFUL *NA 129.67.1.5
IST2134I
                                                            PORT: 12003
                                               RTT: 1
IST2137I
          CONNECTIVITY SUCCESSFUL
                                                            PORT: 12004
IST2134I
IST2137I
          *NA 129.67.1.5
                                                RTT:
                                                        1
IST924I --
IST2139I CONNECTIVITY TEST RESULTS DISPLAYED FOR 1 OF 1 ROUTES
IST314I END
```

Figure 21. Basic EE connectivity test (successful connection)

In the example shown in Figure 22 on page 124, the operator on host HostA performs a basic EE connectivity test to determine the connectivity to the remote host quickly. This example shows unsuccessful connectivity over EE ports 12003 and 12004.

```
d net,eediag,id=swpa2b,test=yes,list=summary
IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = EEDIAG
IST2119I ENTERPRISE EXTENDER DISPLAY CORRELATOR: EE000002
IST2067I EEDIAG DISPLAY ISSUED ON 06/30/10 AT 10:31:24
IST1680I LOCAL IP ADDRESS 9.67.1.1
IST1680I REMOTE IP ADDRESS 129.67.1.5
IST2023I CONNECTED TO LINE LNIP8
IST2126I CONNECTIVITY TEST IN PROGRESS
IST314I END
IST350I DISPLAY TYPE = EEDIAG
IST2130I ENTERPRISE EXTENDER CONNECTIVITY TEST INFORMATION IST2119I ENTERPRISE EXTENDER DISPLAY CORRELATOR: EE000002
IST2131I EEDIAG DISPLAY COMPLETED ON 06/30/10 AT 10:31:35
IST2132I LDLC PROBE VERSIONS: VTAM = V1
                                                         PARTNER = UNKNOWN
IST1680I LOCAL IP ADDRESS 9.67.1.1
IST1680I REMOTE IP ADDRESS 129.67.1.5
IST924T
          INTFTYPE: CTC
CONNECTIVITY SUCCESSFUL
*NA 129 67 1 F
IST2133I INTFNAME: LCTC400
IST2134I
                                                                  PORT: 12000
IST2137I
           *NA 129.67.1.5
          CONNECTIVITY SUCCESSFUL *NA 129.67.1.5
IST2134I
                                                                  PORT: 12001
                                                 RTT: 1
          *NA 129.67.1.5
CONNECTIVITY SUCCESSFUL
IST2137I
IST2134I
                                                                  PORT: 12002
IST2137I
           CONNECTIVITY UNSUCCESSFUL SENSE: ***NA***
IST2135I
                                                                  PORT: 12003
IST2137I
                                                  RTT: *N/A*
            ∗NA
            *NA * RII: *N/A*
CONNECTIVITY UNSUCCESSFUL SENSE: ***NA***
IST2135I
                                                                  PORT: 12004
IST2137I
                                              RTT: *N/A*
IST924I ---
IST2139I CONNECTIVITY TEST RESULTS DISPLAYED FOR 1 OF 1 ROUTES
IST314I END
```

Figure 22. Basic EE connectivity test (unsuccessful connection)

Figure 22 on page 124 shows that ports 12003 and 12004 are blocked because of a firewall or some other reason. Issue the command D NET, EEDIAG, ID=puname, TEST=YES, LIST=DETAIL to diagnose the problem further.

Understanding the EE connectivity test output

Because the EE connectivity test is a potentially long-running command, the display output is broken into multiple sections. Some of the key messages in the first message group follow:

- Message IST2119I displays a unique display correlator that can be used to coordinate the various message groups of the DISPLAY EEDIAG command.
- Message IST2067I displays the date and time when the DISPLAY EEDIAG command was issued.
- Message IST1680I displays the local and remote IP addresses of the EE connection that is being tested.
- Message IST2023I displays the EE line that was selected to perform the EE connectivity test.
- Message IST2126I is an informational message that indicates that the connectivity test has been initiated.

Some of the key messages in the second message group follow:

- Message IST2130I is the header message in the EE connectivity test information message group.
- Message IST2119I displays a unique display correlator that can be used to coordinate the various message groups of the DISPLAY EEDIAG command.
- Message IST2131I displays the date and time when the EE connectivity test completed.
- Message IST2132I displays the version of the LDLC probe that VTAM is using to perform the connectivity test. If the connectivity test is successful across at least one port, this message also contains the EE partner's LDLC probe version.
- Message IST1680I displays the local and remote IP addresses of the EE connection that is being tested.
- If a policy-based routing rule is defined for any EE traffic between the EE endpoints, then you will also receive the following messages:
 - Message IST2224I is a header message displayed when a policy-based routing rule applies to EE traffic between the EE endpoints that are being tested for connectivity.
 - Message IST2225I is a header for the display of EE UDP ports, route tables, and the policy routing rules when a policy-based routing rule applies to EE traffic.
 - Message IST2226I displays the EE UDP ports and their associated route tables and policy routing rules when a policy-based routing rule applies to EE traffic. If a policy-based routing rule is not defined for an EE UDP port, then the policy routing rule NONE is specified. When the main routing table is being used (either a policy routing rule does not exist or the routing action indicates that the main routing table is being used), then the EZBMAIN route table is specified.
- Message IST2133I displays the TCP/IP interface; when multipath routing or policy-based routing is being used, the EE connectivity test is performed over each TCP/IP interface that can be used to route EE traffic to the requested destination.
- Message IST2135I indicates that the EE connectivity test was unsuccessful over this specific EE port.
- Message IST2136I indicates that the EE connectivity test ended for this port because the limit specified by the MAXTIME value was exceeded.

The LIST=DETAIL connectivity test makes up to three attempts at contacting each hop in the route. The test for each specific hop (or TTL value) stops when a response is received from the hop. After a response is received, or after the third attempt, the TTL value is increased by 1 to test the next hop and the test continues. Message IST2137I displays the results of each hop test. To reduce redundant output, VTAM prints only the first hop that did not receive a response, and the last hop that did not receive a response.

The LIST=SUMMARY connectivity test makes up to three attempts to reach the remote partner after VTAM sets the TTL count to 255. Because VTAM sets the TTL count to 255, the hop count is not determined for the LIST=SUMMARY output. Message IST2137I displays the hop count of *NA.

The output in "Performing an EE connectivity test" on page 121 shows that the LDLC probe used to test the connection did not receive any responses after the TTL reached a value of 2. The TTL was incremented by a value of 1 and retested. This was repeated until the TTL reached a value of 6. At this time, the maximum time limit allowed for the EE connectivity test (MAXTIME) was exceeded and the test ended. See the <u>DISPLAY EEDIAG</u> command in <u>z/OS Communications Server: SNA Operation</u> for more information.

Solving EE connectivity problems

In the previous EE connectivity test example, the EE connectivity test indicates that the EE traffic (UDP datagrams) cannot make it past the first hop in the route. The results are consistent for all five EE ports that were tested. At this point in the problem diagnosis, focus on the first hop in the EE route. Examine this hop for connectivity problems. Next, verify the routing tables for accuracy, check the logs for dropped packets, and verify that any firewall in the EE route allows UDP traffic for all five EE ports. If network address translation (NAT) is being used for Enterprise Extender connections, verify that the routers or nodes performing the NAT functions are translating the IP addresses to the correct addresses.

RTP performance problems over EE with multipath routing enabled

If multipath routing is enabled on the TCP/IP stack, and multiple equal-cost routes exist to the partner EE node, then TCP/IP sends batches of EE packets across each of these routes using a round-robin schedule. If one of these routes cannot reach the partner EE node, then EE might not activate, or if it does, there is likely to be significant performance impacts.

Figure 23. Enterprise Extender with multipath routing enabled

The following configuration information applies to Figure 23 on page 126.

• Multipath routing is enabled in HostA

- · Two QDIO OSA interfaces are defined and active in HostA
- Two static and equally weighted IP routes to destination HostB are defined in HostA
 - The IP route through IP Cloud1 has a router in the path; the router has incorrect routing definitions to HostB. A router in IP Cloud1 with IP address 9.67.1.21 is the router that is unable to route to 9.67.1.6 (HostB).
 - The IP route through IP Cloud2 has correct routing definitions to 9.67.1.6 (HostB).

In Figure 23 on page 126, an RTP pipe is successfully established from HostA over EE to HostB. However, the sessions using this RTP pipe are experiencing poor performance. The operator issues a D NET, EEDIAG, REXMIT command, which reveals that this EE connection is experiencing a high percentage of retransmissions. In this example, when the HPR traffic is routed over the path that uses the router with IP address 9.67.1.3, the HPR packet is correctly routed to HostB. When the HPR packets are transmitted over the route that uses the router with IP address 9.67.1.2, the packet is incorrectly routed and is subsequently discarded. The high percentage of lost packets causes the RTP endpoints to report lost packets, which causes subsequent retransmissions. Excessive retransmissions significantly degrade HPR throughput, and can lead to HPR path switches, or in some cases HPR connection deactivation.

To disable multipath for EE without affecting other IP applications, code the VTAM start option MULTPATH=NO or allow it to default. This will disable the multipath function in the stack for EE connections only. The multipath behavior for other IP applications will remain unchanged.

Using the EE connectivity test to verify multipath routing

In "EE connectivity test with multipath routing enabled", the operator on HostA verifies the Enterprise Extender multipath routing environment by performing the following EE connectivity test:

```
D NET, EEDIAG, TEST=YES, IPADDR=(9.67.1.1,9.67.1.6), LIST=DETAIL

IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = EEDIAG
IST2119I ENTERPRISE EXTENDER DISPLAY CORRELATOR: EE00000E
IST2067I EEDIAG DISPLAY ISSUED ON 10/04/05 AT 11:05:50
IST1680I LOCAL IP ADDRESS 9.67.1.1
IST1680I REMOTE IP ADDRESS 9.67.1.6
IST2023I CONNECTED TO LINE LN11
IST2126I CONNECTIVITY TEST IN PROGRESS
IST314I END
```

Figure 24. EE connectivity test with multipath routing enabled (part 1 of 2)

TST3EGT I	DISPLAY TYPE = EEDIAG				
	ENTERPRISE EXTENDER CONNECTIVI	TTV TEST T	NEORMATTO	M	
	ENTERPRISE EXTENDER DISPLAY CO				
	EEDIAG DISPLAY COMPLETED ON 10				
	LDLC PROBE VERSIONS: VTAM = V			<u>-</u>	
	LOCAL IP ADDRESS 9.67.1.1	L PARINER	= VI		
	REMOTE IP ADDRESS 9.67.1.6				
	ADDRESS 9.07.1.0				
		TNTETVDE	OCAEDDI		
		INTFTYPE:	OSALDOT	DODT.	12000
IST2135I	CONNECTIVITY UNSUCCESSFUL	SENSE: *	**NA***	PURI:	12000
IST2137I	1 9.67.1.2	RTT:			
IST2137I	2 9.67.1.21 D-1	RTT:		DODT	40004
IST2135I	CONNECTIVITY UNSUCCESSFUL	SENSE: *		PURI:	12001
IST2137I	1 9.67.1.2	RTT:			
IST2137I	2 9.67.1.21 D-1			DODT	40000
IST2135I	CONNECTIVITY UNSUCCESSFUL			PURI:	12002
IST2137I	1 9.67.1.2	RTT:			
IST2137I	2 9.67.1.21 D-1			DODT	40000
IST2135I	CONNECTIVITY UNSUCCESSFUL	SENSE: *		PORT:	12003
IST2137I	1 9.67.1.2	RTT:			
IST2137I	2 9.67.1.21 D-1			DODT	40001
IST2135I	CONNECTIVITY UNSUCCESSFUL	SENSE: *		PORI:	12004
IST2137I	1 9.67.1.2	RTT:			
IST2137I	2 9.67.1.21 D-1				
	INTFNAME: OSA2	INTFTYPE:	OSAFDDI		
IST2134I	CONNECTIVITY SUCCESSFUL		_	PORT:	12000
IST2137I	1 9.67.1.3	RTT:	9		
IST2137I	2 9.67.1.11	RTT:	14		
IST2137I	3 9.67.1.12	RTT:	19		
IST2137I	4 9.67.1.4	RTT:	23		
IST2137I	5 9.67.1.6	RTT:	27		
IST2134I	CONNECTIVITY SUCCESSFUL			PORT:	12001
IST2137I	1 9.67.1.3	RTT:	8		
IST2137I	2 9.67.1.11	RTT:	14		
IST2137I	3 9.67.1.12	RTT:	17		
IST2137I	4 9.67.1.5	RTT:	21		
IST2137I	5 9.67.1.6	RTT:	25		
IST2134I	CONNECTIVITY SUCCESSFUL			PORT:	12002
IST2137I	1 9.67.1.3	RTT:	8		
IST2137I	2 9.67.1.11	RTT:	13		
IST2137I	3 9.67.1.12	RTT:	18		
IST2137I	4 9.67.1.5	RTT:	22		
IST2137I	5 9.67.1.6	RTT:	27		
IST2134I	CONNECTIVITY SUCCESSFUL			PORT:	12003
IST2137I	1 9.67.1.3	RTT:	9		
IST2137I	2 9.67.1.11	RTT:	19		
IST2137I	3 9.67.1.12	RTT:	22		
IST2137I	4 9.67.1.4	RTT:	24		
IST2137I	5 9.67.1.6	RTT:	27		
IST2134I	CONNECTIVITY SUCCESSFUL			PORT:	12004
IST2137I	1 9.67.1.3	RTT:	7		
IST2137I	2 9.67.1.11	RTT:	11		
IST2137I	3 9.67.1.12	RTT:	12		
IST2137I	4 9.67.1.4	RTT:	17		
IST2137I	5 9.67.1.6	RTT:	23		
	CONNECTIVITY TEST INFORMATION			2 ROU	TES
IST314I E			-		

Figure 25. EE connectivity test with multipath routing enabled (part 2 of 2)

This example clearly shows that connectivity from HostA to HostB over the OSA1 interface does not exist. The router with IP address 9.67.1.21 is returning an ICMP message to the LDLC probe, which indicates the destination host is unreachable. For this case, investigate this router to determine why it returned this type of ICMP message.

The output also indicates that connectivity from HostA to HostB over the OSA2 interface does exist. Message IST2137I indicates that the route is a 5-hop configuration to the partner host. The display also shows that there are different routes through the IP network to the EE partner. When routing over the OSA2 interface, all five EE ports have successfully contacted the partner HostB with excellent round-trip times (RTT.)

EE connection or RTP pipe fails to activate when using policy-based routing for EE traffic

When policy-based routing is defined with multiple policy routing rules to separate traffic, then multiple routes can be used between the EE endpoints (even when multipath routing is not being used). If one of these routes cannot reach the partner EE node, then the EE connection might not activate; if it does activate, then one or more RTP pipes might not activate.

Figure 26. Enterprise Extender with policy-based routing

The following configuration information applies to Figure 26 on page 129:

- Policy-based routing is being used with the following definitions:
 - A routing rule with the name EEROUTINGRULE1 is defined for EE traffic using EE UDP ports 12003 and 12004 (medium and low traffic priority data). This routing rule is associated with a routing action that points to route table EETABLE1. This route table has a statically defined IP route that uses the OSA1 interface and transmits all data to a next-hop IPv4 address 9.67.1.2 (into IP Cloud1).
 - A routing rule with the name EEROUTINGRULE2 is defined for EE traffic that uses EE UDP ports 12000, 12001, and 12002 (LDLC signal; network and high traffic priority data). This routing rule is associated with a routing action that points to route table EETABLE2. This route table has a statically defined IP route using the OSA2 interface and transmits all data to a next-hop IPv4 address 9.67.1.3 (into IP Cloud2).
- Multipath routing is disabled in host HostA.
- Two QDIO OSA interfaces are defined and active in host HostA.
 - Two static routes are defined between host HostA and host HostB.

The IP route through IP Cloud1 has a router in the path that has incorrect routing definitions to host HostB. A router in IP Cloud1 with IP address 9.67.1.21 is the router that is unable to route to IP address 9.67.1.6 (HostB).

- The IP route through IP Cloud2 has correct routing definitions to IP address 9.67.1.6 (HostB).

In this example, an EE connection is successfully established from host HostA to host HostB. RTP pipes can be established using a transmission priority of high or network (CP-CP and RSETUP RTP pipes can be established). However, RTP pipes for low and medium transmission priorities fail to establish. When HPR traffic is routed over the path that uses the router with IP address 9.67.1.3, the HPR packet is correctly routed to host HostB. When HPR traffic is routed over the path that uses the router with IP address 9.67.1.2, the packet is incorrectly routed and is subsequently discarded. Therefore, a user can never establish an RTP pipe for low and medium transmission priorities.

Using the EE connectivity test to verify policy-based routing

In <u>Figure 27 on page 131</u>, the operator on host HostA verifies the EE policy-based routing environment by performing the following EE connectivity test:

```
D NET, EEDIAG, TEST=YES, IPADDR=(9.67.1.1,9.67.1.6), LIST=DETAIL
IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = EEDIAG
IST2119I ENTERPRISE EXTENDER DISPLAY CORRELATOR: EE00000E
IST2067I EEDIAG DISPLAY ISSUED ON 04/04/05 AT 11:05:50
IST1680I LOCAL IP ADDRESS 9.67.1.1
IST1680I REMOTE IP ADDRESS 9.67.1.6
IST2023I CONNECTED TO LINE LN11
IST2126I CONNECTIVITY TEST IN PROGRESS
IST314I END
IST350I DISPLAY TYPE = EEDIAG
IST2130I ENTERPRISE EXTENDER CONNECTIVITY TEST INFORMATION
IST2119I ENTERPRISE EXTENDER DISPLAY CORRELATOR: EE00000E
IST2131I EEDIAG DISPLAY COMPLETED ON 04/04/05 AT 11:05:52
IST2132I LDLC PROBE VERSIONS: VTAM = V1 PARTNER = V1
IST1680I LOCAL IP ADDRESS 9.67.1.1
IST1680I REMOTE IP ADDRESS 9.67.1.6
IST2224I ENTERPRISE EXTENDER ROUTING POLICY INFORMATION
IST2225I
                  ROUTE TABLE
          PORT
                                ROUTING RULE
IST2205I
IST2226I
          12000
                  EETABLE2
                                 EEROUTINGRULE2
IST2226I
          12001
                  EETABLE2
                                 EEROUTINGRULE2
IST2226I
          12002
                  EETABLE2
                                 EEROUTINGRULE2
IST2226I
          12003
                  EETABLE1
                                 EEROUTINGRULE1
         12004
                  EETABLE1
                               EEROUTINGRULE1
IST2226I
IST924I ·
IST2133I INTFNAME: OSA1
                                        INTFTYPE: OSAFDDI
IST2227I
           CONNECTIVITY NOT TESTED DUE TO ROUTING POLICY
                                                            PORT: 12000
IST2227I
           CONNECTIVITY NOT TESTED DUE TO ROUTING POLICY
                                                            PORT: 12001
           CONNECTIVITY NOT TESTED DUE TO ROUTING POLICY
                                                            PORT: 12002
PORT: 12003
IST2227I
          CONNECTIVITY UNSUCCESSFUL
IST2135I
                                         SENSE: 00000000
IST2137I
           1 9.67.1.2
                                             RTT:
IST2137I
             2 9.67.1.21
                                              RTT:
                                                      18
          CONNECTIVITY UNSUCCESSFUL
                                         SENSE: 00000000
                                                            PORT: 12004
IST2135I
IST2137I
             1 9.67.1.2
                                             RTT:
                                                     11
             2 9.67.1.21
                                    D-1
                                                      18
IST2137I
                                              RTT:
IST924I ----
IST2133I INTFNAME: OSA2
                                        INTFTYPE: OSAFDDI
          CONNECTIVITY SUCCESSFUL
IST2134I
                                                         PORT: 12000
             1 9.67.1.3
                                           RTT:
                                                      9
TST2137T
             2 9.67.1.11
TST2137T
                                            RTT:
                                                     14
IST2137I
             3 9.67.1.12
                                                     19
                                            RTT:
             4 9.67.1.5
IST2137I
                                            RTT:
IST2137I
             5 9.67.1.6
                                                     27
                                           RTT:
          CONNECTIVITY SUCCESSFUL
IST2134I
                                                         PORT: 12001
                                                      8
IST2137I
             1 9.67.1.3
                                            RTT:
IST2137I
             2 9.67.1.11
                                            RTT:
                                                     14
IST2137I
             3 9.67.1.12
                                                     17
                                            RTT:
            4 9.67.1.5
                                                     21
IST2137I
                                            RTT:
TST2137T
             5 9.67.1.6
                                            RTT:
                                                     25
IST2134I
           CONNECTIVITY SUCCESSFUL
                                                         PORT: 12002
IST2137I
            1 9.67.1.3
                                            RTT:
             2 9.67.1.11
IST2137I
                                                     13
                                            RTT:
TST2137T
             3 9.67.1.12
                                                     18
                                            RTT:
IST2137I
             4 9.67.1.5
                                            RTT:
                                                     22
IST2137I
             5 9.67.1.6
IST2227I
           CONNECTIVITY NOT TESTED DUE TO ROUTING POLICY
                                                            PORT: 12003
IST2227I
           CONNECTIVITY NOT TESTED DUE TO ROUTING POLICY PORT: 12004
IST924I -
IST2139I CONNECTIVITY TEST INFORMATION DISPLAYED FOR 2 OF 2 ROUTES
IST314I END
```

Figure 27. EE connectivity test with multiple policy-based routing rules enabled

The example shown in Figure 27 on page 131 indicates that policy-based routing is being used (as indicated by messages IST2224I, IST2225I, IST2226I, and IST2227I). The displayed output indicates that EE traffic was defined to be routed over the two OSA interfaces by the EE UDP port that is being used for data transmission. Message IST2227I indicates when a test is not performed for a specific route as a result of the policy-based routing definitions. In the example, all traffic routed over EE UDP ports 12003 and 12004 is routed through the OSA1 interface, and all traffic routed over EE UDP ports 12000, 12001, and 12002 is routed through the OSA2 interface.

DISPLAY EEDIAG.TEST=PENDING

The DISPLAY EEDIAG, TEST=PENDING command lists outstanding Enterprise Extender displays that are pending host name resolution (DISPLAY EE or DISPLAY EEDIAG) or pending EE connectivity test results. Both host name resolution and the EE connectivity tests are potentially long-running functions. Use the D EEDIAG command format to query the outstanding displays to obtain the status. Each pending display has a unique EE display correlator assigned when the display command was issued. Message IST2119I identifies this correlator value, which can be used to identify the outstanding display request. A description of some of the key messages in the display output follow:

- Message IST2145I is the first message in the message group of the pending EE display commands output.
- Message IST2067I displays the date and time when the DISPLAY EEDIAG command was issued.
- Message IST2147I displays a unique display correlator that can be used to coordinate the various
 message groups of the DISPLAY EEDIAG command. When the original DISPLAY EE or DISPLAY EEDIAG
 command was issued, the correlator was assigned in message IST2119I. Message IST2147I also
 displays the current state of command processing. For EE connectivity tests, this message also displays
 the Enterprise Extender line being used to conduct this test.

Display Enterprise Extender connection network unreachable partner information

You can use the DISPLAY TOPO,LIST=UNRCHTIM command on a network node to obtain Enterprise Extender connection network unreachable partner information. The following information is displayed for each Enterprise Extender virtual node that has unreachable partner information:

- The network-qualified name of the Enterprise Extender virtual node
- The total number of unreachable partner paths associated with the virtual node
- If the unreachable partner limit is exceeded for the virtual node, an indication that it is exceeded, along with the lower unreachable partner threshold that must be reached before the virtual node will again be used
- The network-qualified name of the origin node on the unreachable paths through the connection network
- The network-qualified name of the unreachable partner (destination) on the unreachable paths through the connection network
- The unreachable time value specified for the Enterprise Extender connection network
- The time the unreachable timer expires for the unreachable paths through the connection network

The following commands provide information about EE connection network unreachable partners:

- To display all Enterprise Extender connection network unreachable partner information, use the following command: D NET,TOPO,LIST=UNRCHTIM
- To display Enterprise Extender connection network unreachable partner information associated with a specific virtual node, use the following command: D NET,TOPO,LIST=UNRCHTIM,VRN=cp_name
- To display Enterprise Extender connection network unreachable partner information associated with a specific origin node, use the following command: D NET,TOPO,LIST=UNRCHTIM,ORIG=cp_name
- To display Enterprise Extender connection network unreachable partner information associated with a specific partner node, use the following command: D NET,TOPO,LIST=UNRCHTIM,DEST=cp_name

The ORIG, VRN, and DEST operands can be used in any combination to control the scope of the unreachable partner information that is displayed. Depending on the value of the DSPLYWLD start option, you can use wildcard values for the ORIG, VRN, and DEST operands.

Display HPR route test

You can use the DISPLAY RTPS command with the ID or TCID operand and the TEST operand to test the performance characteristics of an RTP connection that has an endpoint in this VTAM node. When an HPR route test is performed, the results are displayed asynchronously at the console. These results show how long it took a route test packet (a diagnostic type of data packet) to traverse each link in the RTP path, as well as how long it took such a packet to travel from this end of the RTP connection to the other end. Thus, you can identify if any links are congested. A sample sequence of how you might go about diagnosing such a problem is shown:

• To display all RTP connections with an endpoint in this VTAM, issue the command:

D NET, RTPS

 Message group IST1695I is displayed, containing one instance of message IST1960I for each RTP connection with an endpoint in this VTAM. IST1960I gives the following information about each connection:

PU NAME

Name of the RTP PU used in this VTAM host as the ALS for this RTP connection

CP NAME

CP name of the host at the other end of the RTP connection

COS NAME

Class of Service (CoS) name for the sessions using this connection

SWITCH

Indicates whether a path switch is in progress (YES or NO)

CONGEST

Indicates that the connection is congested (YES or NO)

STALL

Indicates that the connection is stalled (YES or NO)

SESS

Number of sessions using this connection

• Issue the DISPLAY RTP command again with the TEST=YES operand and specify a particular RTP connection (by PU name or local TCID) to request an HPR route test for that RTP connection:

```
D NET, RTPS, ID=puname, TEST=YES
```

or

```
{\tt D} \ {\tt NET}, {\tt RTPS}, {\tt TCID} = local\_tcid, {\tt TEST=YES}
```

Tip: The TCID operand can be used to correlate a local RTP PU name to the RTP PU name used by the remote partner RTP node to represent the same RTP connection. To determine the RTP PU name used by the remote partner RTP node, first issue the DISPLAY NET, ID=*puname* command on the local node and remember the REMOTE TCID value shown on the end of message IST1476I. Then from the remote partner RTP node (shown on the IST1481I message of the prior display), issue the DISPLAY RTPS, TCID=*tcid* command using the REMOTE TCID value obtained from the prior display. The TEST=YES operand can also be included on this command.

- Message group IST1695I is again displayed, but this time with only one instance of message IST1960I that describes the identified RTP connection. Additionally, message IST1786I is issued confirming that an HPR route test is being initiated.
- When the HPR route test completes, message group IST1787I is displayed. It contains an instance of message IST1790I for each hop (link) in the RTP connection. IST1790I contains the following information for the link:

CP NAME

CP name of the node on the near side of the link

TG NUMBER

Transmission group number

PARTNER CP NAME

CP name on the far side of the link

INTERNODAL TIME

Time, in milliseconds, needed by a route test packet to traverse this link

 Also in message group IST1787I, message IST1792I provides the total time, in milliseconds, required for a route test packet to travel from this end of the RTP connection to the other end.

If a particular link or some of the links in the RTP connection appear to be slower than the others, you might want to take corrective action to alleviate the congestion problem on that link or links. For example, the following conditions might reveal a problem in routing at an intermediate node.

- The internodal time between an intermediate node in an RTP connection and the next node further from the origin is derived by subtracting the round-trip traversal time recorded for the packet sent to the intermediate node from the round-trip traversal time recorded for the packet sent to the next node. If the packet sent to the further node returned sooner, a minimum internodal time of 1 millisecond is set for the hop between the intermediate node and the further node, because it must be assumed that the packet did take a positive amount of time to travel from the intermediate node to the further node.
- The total RTP connection traversal time in message IST1792I is calculated by dividing by 2 the end-toend traversal time recorded for the packet sent to the node at the other end of the RTP connection. In a case where this packet returned sooner than a packet to an intermediate node, the total RTP connection traversal time shown in IST1792I will be less than the sum of the internodal times displayed in the IST1790I messages.

Display ID for an RTP connection

You can use the DISPLAY ID command to get information about an RTP connection. The resources that can be displayed and the most useful output messages are as follows:

• To display the RTP major node, use the command:

D NET, ID=ISTRTPMN

 Message IST1487I displays information about RTP ALS resources subordinate to the RTP major node:

RTP NAME

The RTP ALS name.

STATE

The connection state of the RTP ALS. Two states are presented: CONNECTED and CONNECTED/ PSWITCH.

DESTINATION CP

The CPNAME of the adjacent RTP edge node.

TYPE

The RTP connection type: LULU for RTPs with LU-LU sessions, RSTP for Route_Setup RTPs, and CPCP for RTPs with CP-CP sessions.

• To display an RTP ALS, use the command:

D NET, ID=rtp_als_name

- Message IST1479I displays the RTP connection state.
- Message IST1461I displays the portion of the session path managed by the RTP connection.
- Message IST875I displays the adjacent link station for the RTP connection.
- Messages IST1738I and IST1739I display the automatic network routing (ANR) labels and corresponding transmission priorities and explicit route numbers for the RTP connection.

• To display an ADJCP, use the command:

D NET, ID=adjcp_name, ADJCP

- Message IST1487I displays the RTP connections related to this ADJCP.

Note: A DISPLAY for an ADJCP representing a physically adjacent node also issues messages IST1106I presenting information on DLC-level PUs. A DISPLAY for a logically adjacent ADJCP, representing a distant RTP end-point, issues only messages IST1487I.

Display ID for an RTP PU with HPRDIAG=YES

You can use the DISPLAY ID command to get information about an RTP connection. To display the HPR diagnostic information for the RTP physical unit, specify the HPRDIAG=YES option.

Message IST2244I displays the date and time the DISPLAY ID command with HPRDIAG=YES was issued. Several messages display the information about the RTP pipe.

ARB information:

- Message IST1844I displays the ARB mode.
- Messages IST1477I, IST1516I, IST1697I, IST1841I, IST1846I, IST1862I, IST2267I, and IST2395I display ARB information.
- Message IST1969I displays the maximum actual data flow rate since the last time counters were cleared.
- Message IST1970I displays the rate reductions because of retransmission since the last time counters were cleared.

Timer information:

• Messages IST1852I, IST1851I, IST1972I, and IST2229I display the timer information.

Outbound transmission information:

- Messages IST1974I, IST1975I, and IST1980I display the information about the outbound transmission since the last time the counters were cleared.
- Message IST1980I displays the sequence number of the last received byte.
- Message IST1842I displays the number of NLPS retransmitted since the last time the counters were cleared.
- Message IST2249I displays the NLP retransmit rate since the last time the counters were cleared.
- Message IST2236I displays the time the last NLP was retransmitted.
- Message IST1976I displays the number of bytes retransmitted since the last time the counters were cleared.
- Message IST1478I displays the number of unacknowledged buffers.
- Message IST1958I displays the number of orphaned buffers since the last time the counters were cleared.
- Messages IST1843I, IST1847I, IST2085I, and IST1511I display additional information about the outbound transmission.
- Messages IST1977I, IST1978I, IST2086I, and IST2087I display additional information about the outbound transmission since the last time the counters were cleared.

Inbound transmission information:

- Message IST2059I displays the number of NLPS received since the last time the counters were cleared.
- Message IST1981I displays the total number of bytes received since the last time the counters were cleared.
- Message IST1850I displays the largest NLP received since the last time the counters were cleared.

- Message IST2230I displays the maximum number of NLPS on the out of sequence queue since the last time it was reset to the current number of NLPs on the out of sequence queue.
- Messages IST1980I, IST1853I, IST1854I, and IST1982I display additional information about the inbound transmission.
- Message IST1983I displays the maximum number of NLPS on inbound work queue since the last time it was reset to the current number of NLPs on inbound work queue.

Path switch information:

• Messages IST1856I, IST1937I, IST1985I, IST1986I, IST1987I, and IST1988I display information about the path switch since the last time the counters were cleared. These messages are not displayed if there was no path switch since the last time the counters were cleared.

Back pressure reason counts:

 Messages IST1858I, IST1859I, IST2211I, IST2212I, IST2213I, and IST2215I display information about the back pressure since the last time the counters were cleared. These messages will not be displayed if there was no back pressure since the last time the counters were cleared.

Last time diagnostic counters cleared message:

• Message IST2250I displays the date and time when the diagnostic counters were last cleared.

Display ID for an RTP PU with HPRDIAG=YES and CLEAR=ALL

The following diagnostic counters are cleared or reset after the DISPLAY command output. They are displayed before being cleared by the message shown on DISPLAY ID of the RTP PU with HPRDIAG=YES command:

- The high water mark of the smooth sending rate is reset to the current smooth sending rate. It is displayed by the message IST1969I.
- The number of rate reductions due to retransmission is cleared. It is displayed by the message IST1970I.
- The count of NLPs sent is cleared. It is displayed by the message IST1974I.
- Total number of bytes sent is cleared. It is displayed by the message IST1975I.
- Largest NLP sent is cleared and it is displayed by the message IST1849I.
- Number of NLPs retransmitted is cleared and it is displayed by the message IST1842I.
- Number of retransmitted bytes is cleared and it is displayed by the message IST1976I.
- Number of orphaned buffers is cleared and it is displayed by the message IST1958I.
- The high water mark for the number of NLPs waiting on the acknowledgment queue is reset to the current number of NLPs waiting on the acknowledgment queue. It is displayed by the message IST1977I.
- TOD clock of high water mark for the number of NLPs waiting on acknowledgment queue is cleared. It is displayed by the message IST1978I.
- The high water mark for the number of NLPs on the outbound work queue is reset to the current number of NLPs on the outbound work queue. It is displayed by the message IST2086I.
- TOD clock of high water mark for the number of NLPs on the outbound work queue is cleared. It is displayed by the message IST2087I.
- The number of NLPs received is cleared and it is displayed by the message IST2059I.
- The total number of bytes received is cleared and it is displayed by the message IST1981I.
- Largest NLP received is cleared and it is displayed by the message IST1850I.
- The maximum number of NLPs on the out of sequence queue is reset to the number of NLPs on the out of sequence queue. It is displayed by the message IST2230I.
- The maximum number of NLPs on the inbound work queue is reset to the number of NLPs on the inbound work queue. It is displayed by the message IST1983I.

- Path switches initiated from remote RTP is cleared. It is displayed by the message IST1985I.
- Path switches initiated from local RTP is cleared. It is displayed by the message IST1986I.
- Path switches initiated due to local failure is cleared. It is displayed by the message IST1987I.
- Path switches initiated due to local PSRETRY is cleared. It is displayed by the message IST1988I.
- Back pressure pathswitch count, back pressure sendq max count, back pressure storage failure count and back pressure stall count are cleared. They are displayed by the message IST1859I.
- Back pressure waiting for the acknowledgment maximum counter is cleared. It is displayed by the message IST2212I.
- TOD of the last back pressure applied is cleared and it is displayed by the message IST2213I.
- Last back pressure reason is cleared. It is displayed by the message IST2215I.

Display path tables

This is the place to start when route problems are detected. This display provides information about the route status known by this host VTAM.

You can use the DISPLAY PATHTAB command to display the status of explicit routes and their associated virtual routes for a local host. You can display information about all routes or you can limit the information using the ADJSUB and DESTSUB operands. The resulting display shows the host path table contents.

Display resource status

You can use the DISPLAY ID command to display status information about any major or minor node. For example, a request to display a physical unit or a logical unit indicates whether that node has been added by dynamic reconfiguration. DISPLAY ID also indicates whether a logical unit, a physical unit, or a link is supported by the Network Terminal Option (NTO).

Note: From a data host, you cannot display the status of either an NCP or the NCP subordinate resources, because a data host does not own any NCPs.

Two types of node status are displayed when you use the DISPLAY ID command:

- The STATUS field shows the current state of the node
- The DESIRED STATE field shows the desired state

The desired state is the condition that VTAM processing is attempting to establish for the node. Previously entered operator commands or recovery processing can establish the desired state for a node. When processing is completed, the desired state and the current state should be the same.

If SNA network interconnection is in use, the DISPLAY command shows:

- The network ID associated with a resource (if any)
- For a cross-network CDRSC, the real resource name
- For a cross-network CDRM, the real name of the gateway node through which the SSCP-SSCP session passes, and the network address as known in the requesting host's network

Display resources in a pending state

You can use the DISPLAY PENDING command to display information about resources in the domain that are in one of the following pending states:

- Transient state to or from a fully active state.
- State of "recovery pending" or "recovery in progress" for application programs suspended because of the failure or takeover of an application program enabled for persistence. You *must* enter the DISPLAY PENDING command on the system in which the application program resides.

The resource can be a major node, a minor node, an application program, a physical unit, or a logical unit.

Display route status

The DISPLAY ROUTE command shows the status and availability of virtual and explicit routes. VTAM displays the status of selected routes and, if TEST=YES is specified, does a route test on the routes selected in the DISPLAY command. (See "Display route test" on page 144) The VTAM operator can select the origin of the routes to be displayed or tested. The origin can be either a host processor or an NCP.

For a sample path problem, see "Example: Solving path problems" on page 138.

The display of status for the routes selected is formatted as shown in Figure 28 on page 138.

```
Displaying one explicit route to a destination subarea:
d net,route,destsub=01,netid=netc,origin=a03n43a,er=5
IST097I DISPLAY ACCEPTED
IST535I ROUTE DISPLAY 7 FROM SA 4 TO SA 1
IST808I ORIGIN PU = C0453LE DEST PU = C01NPU NETID = NETC
IST536I VR TP STATUS ER ADJSUB TGN STATUS CUR MIN MAX
IST537I 0 0 ACTIV 5 1 1 ACTIV3
IST537I 0 1 INACT 5 1 1 ACTIV3
IST537I 0 2 INACT 5 1 1 ACTIV3
IST537I 0 2 INACT 5 1 1 ACTIV3
IST5314I END
```

Figure 28. Example of DISPLAY route status output

If you are using SNA network interconnection, the DISPLAY ROUTE command can be used to show the status and availability of adjacent VTAM networks. The resulting display is the same as shown in the previous example, except that message IST808I contains an additional field, NETID=netid, to show the ID of the adjacent network.

See z/OS Communications Server: SNA Messages for a complete description of the variable data contained in the messages that result from the DISPLAY ROUTE command.

It is possible for the test results for an explicit route to be lost before they are displayed. For example, if a node or a link along the explicit route fails between the time the test request flows outbound and the time the test results flow inbound, the results will be lost. If this occurs, reenter the DISPLAY ROUTE command for that explicit route.

Note: You can use the NetView session monitor to collect more information about routes. If all the required session monitors along the route are in session, you can test the entire route, from one session end to the other. See <u>Table 48 on page 577</u> to determine what document has more information about the NetView session monitor.

Example: Solving path problems

This example takes you through a sample path problem and shows you how to diagnose and solve the problem. It includes the following topics:

- "Rules for routing" on page 138
- "Configuration and situation" on page 139
- "Analyzing the problem" on page 139
- "Finding the problem" on page 139
- "Steps for displaying routes" on page 140
- "Fixing the problem" on page 142
- "Dynamic path update" on page 143
- "Coding the path in the NCP" on page 143

Rules for routing

The rules that you need to keep in mind when working with routes are:

Virtual routes must end in the subareas where the session end points reside.

- Virtual route numbers must be defined the same in both directions but only at each end point. A virtual route definition does not need to be specified in every node in the path.
- Explicit routes do not have to flow in both directions, but must be the same in one direction from endpoint subarea to endpoint subarea.
- Explicit and virtual route rules apply in each network, not across SNI network boundaries.
- Transmission group numbers on the VR that you are using must be the same in both directions, but only between two nodes, not along the entire path.

Configuration and situation

The following figure describes the configuration:

Figure 29. Path problem example network configuration

The situation is:

- Host01 is a network node and has a CP-CP session with Host02.
- Host15 and Host500 are subarea data hosts.
- You need a session from APPL1 to APPL15.
- The session is failing with a path problem sense code (8013xxxx).

Analyzing the problem

Because Host01 is an APPN node, the route does not end in Host01; it ends in subarea 4 (A04NCP). The route must follow the path: subarea 4 (A04NCP) to 310 (A310NCP) to 500 (Host500) to 15 (Host15) and back.

To follow the rules for routing, you need the following information for this session:

- One virtual route number going from Host500 to A04NCP
- One explicit route number going from Host15 to A04NCP
- One explicit route number going from A04NCP to Host15

Finding the problem

To find the problem, you must first display the routes across your session path. Then, you need to map the information that you received from the displays to locate the problem.

Steps for displaying routes

You can display the routes between the subareas in your routes to identify the problem area.

Note: Displays shown are abbreviated. If you run this display on your system, it will list information for all explicit routes from 0 to 15.

1. Display the route from Host15 to Host500 with A04NCP as the destination subarea. From Host15, issue the following command:

D NET, ROUTE, DESTSUB=4 IST097I DISPLAY ACCEPTED IST535I ROUTE DISPLAY 1 FROM SA 15 TO SA 4 225 IST808I ORIGIN PU = ISTPUS DEST PU = A04NCP NETID = NETA IST536I VR TP STATUS ADJSUB TGN STATUS CUR MIN MAX IST537I INOP IST537I **ACTIV** 500 2 ACTIV3 7 5 15 0 1 500 2 INACT 1 ACTIV3 IST537I 1 1 IST537I **ACTIV** 500 2 ACTIV3 12 5 15 IST537I 0 INACT 500 INOP 3 IST537I 0 INACT 30 INOP IST537I 1 3 30 1 INOP 5 INACT IST537I 5 2 ACTIV 3 30 1 INOP IST537I 0 INACT 6 500 1 ACTIV3 IST537I INACT 6 500 ACTIV3 6 IST537I 2 6 500 ACTIV3 23 15 45 ACTIV 6 IST537I 15 UNDEF IST314I END

From subarea 15 to subarea 500, you have ER1, ER2, and ER6 defined.

2. Display the route from Host500 to A310NCP with A04NCP as the destination subarea. From Host500, issue the following command:

From subarea 500 to subarea 310, you have ER1, ER2, ER6, and ER7 defined.

4

2

ER1,VR1

2

ER2,VR2

ER2,VR2

1

ER6,VR6

3. Display the route from A310NCP to A04NCP. From Host500, issue the following command:

D NET, ROUTE, ORIGIN=A310NCP, DESTSUB=04

```
IST097I DISPLAY ACCEPTED IST535I ROUTE DISPLAY 1 FROM SA 310 TO SA 4 225
IST808I ORIGIN PU = A310NCP DEST PU = A04NCP NETID = NETA
IST536I VR TP
                    STATUS ER
                                      ADJSUB TGN STATUS CUR MIN MAX
IST537I
                                                        INOP
                                              2
IST537I 1 0
IST537I 6 0
IST537I 6 1
                                                    1 INOP
1 ACTIV3
                                               4
                    TNACT
                                1
                    INACT
                                6
                                               4
                    INACT
                                6
                                               4
                                                     1 ACTIV3
IST537I 6
                    ACTIV
                                6
                                                        ACTIV3
                                                                       2
                                                                             6
IST537I
                               15
                                                        UNDEF
IST314I END
```

From subarea 310 to subarea 4, you have ER1 and ER6 defined.

So, you can use either ER1 or ER6 to go from subarea 15 to subarea 4.

4. Display the route from A04NCP to A310NCP with Host15 as the destination subarea. From Host02, issue the following command:

D NET, ROUTE, ORIGIN=A04NCP, DESTSUB=15

```
IST097I DISPLAY ACCEPTED
IST535I ROUTE DISPLAY 1 FROM SA 4 TO SA 15 225
IST808I ORIGIN PU = A04NCP DEST PU = A15PU NETID = NETA
IST536I VR TP
                STATUS ER
                                 ADJSUB TGN STATUS CUR MIN MAX
IST537I
                           0
                                       2
                                              1
                                                 INOP
IST537I
                                                 UNDEF
IST537I 7
IST537I 7
                  INACT
                                       310
                                                 ACTIV3
            1
                  INACT
                            7
                                       310
                                              1 ACTIV3
IST537I 7
             2
                            7
                                       310
                                                 ACTIV3
                                                           3
                                                             2
                  ACTIV
                                                                   6
IST537I
                           15
                                                 UNDEF
IST314I END
```

From subarea 4 to subarea 310, you have ER7 defined.

5. Display the route from A310NCP to Host500 with Host15 as the destination subarea. From Host500, issue the following command:

D NET, ROUTE, ORIGIN=A310NCP, DESTSUB=15

```
IST097I DISPLAY ACCEPTED
IST535I ROUTE DISPLAY 1 FROM SA 310 TO SA 15 225
IST808I ORIGIN PU = A310NCP DEST PU = A15PU NETID = NETA
IST536I VR TP
                                    ADJSUB TGN STATUS CUR MIN MAX
                 STATUS
                           ER
IST537I
                            0
                                                 INOP
IST537I
                  INACT
                            2
                                       500
                                               2
                                                 INOP
IST537I 2
                  INACT
                            1
                                       500
                                               1 ACTIV3
                                                           20 15 45
IST537I 7
IST537I 7
             0
                            7
                                       500
                                               1 ACTIV3
                                                           29 20 60
                  ACTIV
                            7
                  ACTIV
             1
                                       500
                                               1 ACTIV3
IST537I 7
                  ACTIV
                            7
                                       500
                                               1 ACTIV3
                                                           40 20 60
IST537I
                           15
                                                  UNDEF
IST314I END
```

From subarea 310 to subarea 500, you have ER1, ER2, and ER7 defined.

6. Display the route from Host500 to Host15. From Host500, issue the following command:

From subarea 500 to subarea 15, you have ER2 and ER7 defined.

Fixing the problem

Here is what your routing looks like now:

From these examples, you can see that the easiest way to fix the problem is to define ER2 from subarea 4 to subarea 310 and map VR1 to ER2. You can do this dynamically using dynamic path update, or you can change the NCP generation.

Dynamic path update

To fix this problem using dynamic path update, define ER2 and map VR1 to ER2.

Guideline: Whenever you change paths, make sure that you are not deleting a path that you need for another route. The following example is the NCPPATH statement that defines the new path.

```
A04NCP NCPPATH NETID=NETA
P002 PATH DESTSA=310,ER2=(310,1),VR1=2
```

To change the path, use the VARY ACT command to activate your dynamic path update member.

Note: If this was a problem from a host to another subarea, you would use a VPATH definition to fix the problem

Coding the path in the NCP

In the NCP generation, find the path for destination subarea 310:

```
PATH DESTSA=310,
      ER0=(2,1), ER1=(71,80)
      ER3=(2,1), ER4=(3,80), ER5=(310,80)
      ER6=(310,80), ER7=(310,1), ER8=(71,80),
      ER9=(2,1), ER10=(1,1), ER11=(400,80),
      ER12=(1,1),
      VR0=6,
      VRPWS00=(1,3), VRPWS01=(1,3), VRPWS02=(1,3),
      VR1=9
      VRPWS10=(2,6), VRPWS11=(2,6), VRPWS12=(2,6),
      VR2=3
      VRPWS20=(2,6), VRPWS21=(2,6), VRPWS22=(2,6),
      VRPWS30=(2,6), VRPWS31=(2,6), VRPWS32=(2,6),
      VR4=4
      VRPWS40=(2,6), VRPWS41=(2,6), VRPWS42=(2,6),
      VRPWS50=(2,6), VRPWS51=(2,6), VRPWS52=(2,6),
      VR6=10
      VRPWS60=(3,9), VRPWS61=(3,9), VRPWS62=(3,9),
      VR7=7,
      VRPWS70=(3,9), VRPWS71=(3,9), VRPWS72=(3,9)
```

Change the definition for ER2 to destination subarea 310 and TGN1 and map VR1 to ER2:

```
PATH DESTSA=310,
      ER0=(2,1), ER1=(71,80), ER2=(310,1),
      ER3=(2,1), ER4=(3,80), ER5=(310,80)
      ER6=(310,80), ER7=(310,1), ER8=(71,80),
      ER9=(2,1), ER10=(1,1), ER11=(400,80),
      ER12=(1,1),
      VR0=6
      VRPWS00=(1,3), VRPWS01=(1,3), VRPWS02=(1,3),
      VR1=2
      VRPWS10=(2,6), VRPWS11=(2,6), VRPWS12=(2,6),
      VR2=3
      VRPWS20=(2,6), VRPWS21=(2,6), VRPWS22=(2,6),
      VRPWS30=(2,6), VRPWS31=(2,6), VRPWS32=(2,6),
      VR4=4
      VRPWS40=(2,6), VRPWS41=(2,6), VRPWS42=(2,6),
      VR5=11
      VRPWS50=(2,6), VRPWS51=(2,6), VRPWS52=(2,6),
      VR6=10
      VRPWS60=(3,9), VRPWS61=(3,9), VRPWS62=(3,9),
      VR7=7
      VRPWS70=(3,9), VRPWS71=(3,9), VRPWS72=(3,9)
```


Attention: Whenever you change paths, make sure that you are not deleting a path that you need for another route.

Display route test

If a route test was requested, results of the test are sent asynchronously to the console of the operator requesting the display. If the route test failed, the results are also sent to the console of the host that owns the rejecting subarea node. If the host owning the rejecting subarea is the same host that initiated the route test, that host will receive the test results twice.

To be tested, the explicit route must be known to VTAM. This means that the explicit route must be defined to VTAM, or at some time must have been operative.

Successful route test

If TEST=YES is set and the route test is successful, the following asynchronous messages follow the route status display messages previously described.

The test results are formatted as shown in Figure 30 on page 144.

```
IST538I
          ROUTE TEST ### IN PROGRESS
         ER n SUCCEEDED IN ROUTE TEST ####
IST533I
                     FROM VIA
fffff TG
TST797T
                                    ADJACENT
                                                           ER LENGTH
                                                    DEST
                ffffffff
                                    aaaaaaaa dddddddd
IST644I
IST534I
                              t
                                                                   1
                      SSS
                                                     ууу
IST798I
                     nnnn
```

Figure 30. Output of a successful route test

In this example,

- The name of the origin physical unit is ffffffff
- The adjacent node is aaaaaaaa.
- The name of the destination physical unit is dddddddd.
- The subarea number of ffffffff is sss.
- The transmission group number is t.
- The subarea number of aaaaaaaa is xxx.
- The subarea of dddddddd is yyy.
- The explicit route length is 1.
- The network ID of the node being displayed is nnnn.

Failed route test

If the explicit route test fails because VTAM is unable to send the Explicit Route Test RU into the network, a message tells why the test cannot be performed. This message is shown in the following example.

```
IST510I ROUTE TEST ### FAILED - reason
```

If the explicit route test is initiated by VTAM but fails, the messages in <u>Figure 31 on page 145</u> show the reason for the test failure.

```
ER 0 FAILED IN ROUTE TEST 8
IST533I
                        FROM VIA ADJACENT
fffff TG aaaaaaaa
sss t ×××
IST797I
                                                           DEST
                                                                    ER LENGTH
IST644I
                   ffffffff
                                         aaaaaaaa dddddddd
IST534I
                         SSS
                                               XXX
                                                            ууу
IST798I
                        nnnn
                  REJECTING
                                 TG
IST572I
                                         ADJACENT
                                                                    ER MASK
IST816I
                         rrr
                                  g
                                                                       mmmm
             <ER NOT DEFINED>
<A REQUIRED TG IS INACTIVE>
IST523I
              <ER NOT REVERSIBLE>
              <ER EXCEEDS MAXIMUM LENGTH>
              <MIGRATION ER NOT SUPPORTED>
              <MIGRATION NODE DOES NOT SUPPORT THIS ER>
<MIGRATION NODE ENCOUNTERED>
              <UNEXPECTED TYPE BYTE X'##'>
```

Figure 31. Output of a failed route test

In this example,

- The name of the physical unit which originated the ER_TEST is ffffffff.
- The adjacent physical unit is aaaaaaaa.
- The name of the destination physical unit is dddddddd.
- The subarea number of fffffff is sss.
- The transmission group number is t.
- The subarea number of aaaaaaaa is xxx.
- The subarea of dddddddd is yyy.
- The explicit route length is 1.
- The network ID of the node being displayed is *nnnn*.
- The rejecting subarea is rrr.
- The transmission group number is g.
- The adjacent subarea is zzz.
- The explicit route mask is mmmm.

Location of failure in a route test

The variable text in message IST523I can help you determine which direction the route test was going when it failed. There are three possibilities. Either the failure is in the adjacent subarea or in the link from the adjacent subarea to the rejecting subarea; or the failure is in the rejecting subarea; or the location of the failure could not be determined. If the reason is "UNEXPECTED TYPE BYTE X'##'", then the location of the failure could not be determined. This condition should not occur.

If the reason is:

- "A REQUIRED TG IS INACTIVE"
- "MIGRATION ER NOT SUPPORTED"
- "MIGRATION NODE DOES NOT SUPPORT THIS ER"
- "MIGRATION NODE ENCOUNTERED"

the adjacent subarea *follows* the rejecting subarea in the route being tested. Therefore, the problem is in the adjacent subarea or the link to the adjacent subarea from the rejecting subarea. (See <u>Figure 32 on page 146</u>)

Figure 32. Route test failure (TG inactive or migration)

If the reason is "ER NOT REVERSIBLE," "ER EXCEEDS MAXIMUM LENGTH," or "ER NOT DEFINED," the adjacent subarea *precedes* the rejecting node in the route being tested. (See <u>Figure 33 on page 146</u>.)

Check to see whether the problem is a path definition error. If not, it might be a VTAM error.

Figure 33. Route test failure (ER not reversible, exceeds maximum length, or not defined)

The ER MASK field indicates which ER numbers the rejecting subarea can use to send data back to the host that requested the test. (These explicit routes are called *reverse explicit routes*.) For example, an ER MASK field of hex 88 (binary 10001000) means that the 0 and 4 bits of the mask are turned on, so ER numbers 0 and 4 can be used to send data back to the host that requested the test. If message IST523I says an explicit route is "NOT REVERSIBLE," that means the rejecting subarea does not have the reverse explicit routes in its path definitions.

It is possible for the test results for an explicit route to be lost before they are displayed. For example, if a node or link along the explicit route fails between the time VTAM sends the test request and the time VTAM receives the test results, the results will be lost. If this occurs, reenter the DISPLAY ROUTE command for that explicit route.

See z/OS Communications Server: SNA Messages for complete explanations of the messages resulting from the DISPLAY ROUTE command.

Display RTPS options

To find all RTP pipes whose retransmission rate meet or exceed 0.05%, and clear all diagnostic counters after command processing is complete:

```
D NET,RTPS,REXMIT=0.05,CLEAR=ALL
```

See z/OS Communications Server: SNA Operation for the display output.

Tip: The DISPLAY RTPS,REXMIT command has various formats for displaying the RTP pipes information. This sample command does not use any command filters. The DISPLAY RTPS command can be specified with the CPNAME filter to limit the scope of the search.

- Message IST1960I displays information about the RTP pipe with the PU name and the status of the PU.
- Message IST2084I displays the number of pipes displayed that meet or exceed the specified retransmission rate.
- Message IST2248I displays the number of RTP pipes for which all diagnostic counters have been cleared.

Rule: CPNAME is the only command filter allowed with the REXMIT operand.

Using the CLEAR option on D RTPS

To clear all diagnostic counters for all RTPs issue the following command:

```
D NET, RTPS, CLEAR=ALL
```

Message IST2248I displays the number of RTP pipes for which all diagnostic counters have been cleared.

To clear all diagnostic counters for all RTPs destined to *cpname1*:

```
D NET, RTPS, CLEAR=ALL, CPNAME=cpname1
```

Message IST2248I displays all diagnostic counters cleared for all RTP pipes destined to cpname1.

To clear all diagnostic counters for a specific RTP pipe:

```
D NET, RTPS, CLEAR=ALL, ID=rtppuname
```

Message IST2248I displays all diagnostic counters cleared for the specified RTP pipe.

See Display ID for an RTP PU with HPRDIAG=YES and CLEAR=ALL for more information about cleared diagnostic counters and messages of the cleared diagnostic counters.

Display TDU information

You can use the DISPLAY TOPO command with the LIST=TDUINFO and SCOPE operands to display VTAM topology database update (TDU) processing information that could be used to detect a TDU war in the network. A TDU war is the endless exchange of TDUs in contention over the same topology resource, resulting in continuous performance degradation of the APPN network. The topology resources (nodes and TGs) in contention can be identified and, depending on the nature of the problem, the origin of the TDU war may be isolated. If the TDUDIAG start option is set in all network nodes in the network, you can then use the DISPLAY TOPO command with LIST=TDUDIAG to determine which network nodes are updating the resource sequence numbers (RSNs) of the resources in contention. See DISPLAY TOPO in z/OS Communications Server: SNA Operation for additional information about these commands.

Tip: It is not required that every network node in the network append TDU diagnostic information in TDUs (through the TDUDIAG start option). However, it might not be possible to diagnose the problem if one of the network nodes updating the RSN of the resources in contention during a TDU war has TDUDIAG=NEVER specified or does not have support for TDU diagnostic information in TDUs.

Use the following diagnostic steps when a TDU war is suspected:

1. DISPLAY NET, TOPO, LIST=TDUINFO, SCOPE=ACTIVITY

Use this command to identify the topology resources that are reported in TDUs received and TDUs sent by this node most frequently. In addition, SCOPE=ACTIVITY identifies the topology resources that have had RSNs updated by the host node most frequently, which can indicate whether this node is one of the network nodes involved in a TDU war.

2. DISPLAY NET, TOPO, LIST=TDUINFO, SCOPE=RECENT

This command displays the topology resources reported in TDUs received and TDUs sent by this node most recently. If the resources obtained in the previous step are also in the output generated by this command, observe the following items:

- Resource sequence numbers (RSNs)
- TDU accepted counts (ACC) and TDU rejected counts (REJ) of the resources reported in TDUs received
- TDU sent counts (SENT) and TDU received counts (REC) of the resources reported in TDUs sent

If these displays show repeated receive and send TDUs for the same resource with one of the following symptoms, you might have detected a TDU war:

- Continuous rejection of TDUs received for a resource (TDU rejected count for the resource is rising), with the RSN in the TDUs rising or unchanged
- Continuous acceptance of TDUs received for a resource (TDU accepted count for the resource is rising), with the RSN in the TDUs rising

Note:

- a. There are times that TDUs will flood the network when network nodes propagate topology information to other nodes. For example, when two portions of the same APPN network are connected by CP-CP sessions for the first time, topology information is broadcast in TDUs. The TDU traffic eventually subsides and this is not a TDU war.
- b. When TDUs are continuously sent and the RSN updated for the same resource, but TDUs are never received for that resource with higher RSNs, this might not be a TDU war, but a problem with TGs. You can review the system logs to see whether many error messages have been received for TGs that originate in the node that is sending the TDUs.

3. DISPLAY NET, TOPO, LIST=TDUDIAG

Use this summary command to identify the resources with the most frequent TDU activity (displayed with the DISPLAY NET, TOPO, LIST=TDUINFO,SCOPE=ACTIVITY command) that also contain detailed diagnostic information about RSN updates for that resource.

4. DISPLAY NET,TOPO,LIST=TDUDIAG with the ORIG, DEST, and TGN operands for a TG or with the ID operand for a node

Use these commands to display the detailed diagnostic information about TDUs describing the resources identified with the previous LIST=TDUDIAG summary command. The detailed TDU diagnostic information identifies the network nodes that are updating the RSN of the resource in contention, thus causing the possible TDU war.

Tip: If the TDUDIAG start option is not set in all network nodes in the network that are involved in a TDU war, this information may not be complete and could be misleading. However, the RSN before the RSN update and the RSN after the RSN update are displayed in each TDU diagnostic record, so it is still possible to determine at least one of the nodes involved.

5. DISPLAY NET, TOPO, LIST=TDUINFO, CLEAR or DISPLAY NET, TOPO, LIST=TDUDIAG, CLEAR

Use the CLEAR=YES operand to clear all TDU statistics data and all the TDU diagnostic information collected so far. Subsequent displays can be used to show that TDU activities since the last CLEAR command was issued. In a true TDU war, a large amount of TDU traffic is generated within seconds. Thus, the CLEAR operand is useful to confirm whether a TDU war has started.

Tip: When a TDU war is in progress, the RSN value and TDU counter values for a resource can increase rapidly. An RSN value of ******* or TDU counter values of ***** in the output from the DISPLAY

NET,TOPO,LIST=TDUINFO command or the DISPLAY NET,TOPO,LIST=TDUDIAG summary command indicates that the values are greater than the available space for those values to be displayed. You can reenter the command with the FORMAT=LONG operand to display these values in a format that includes two lines of output for each resource.

Figure 34 on page 149 and the sample displays that follow show one example of how a TDU war can occur.

Figure 34. One example of how a TDU war might occur

In Figure 34 on page 149,

- CP-CP sessions are active between the following nodes:
 - NETA.SSCPBA and NETA.SSCP1A (in the upper right corner)
 - NETA.SSCPBA and NETA.SSCPAA
 - NETA.SSCPBA and NETA.SSCP2A
 - NETA.SSCP2A and NETA.SSCP1A (in the upper right corner)
 - NETA.SSCP2A and NETA.SSCPAA
- No CP-CP sessions are active between NETA.SSCPAA and NETA.SSCP1A (in the lower left corner)

Tip: The default value for the NUM operand is used in the following DISPLAY NET,TOPO,LIST=TDUINFO and DISPLAY NET,TOPO,LIST=TDUDIAG commands to limit the amount of output displayed. You can specify a larger value, up to the maximum value of 50, on the NUM operand if an obvious pattern cannot be detected with the default value when you are diagnosing a possible TDU war.

Initially, from NETA.SSCPBA, the DISPLAY NET,TOPO,LIST=TDUINFO command with the SCOPE operand set to ACTIVITY, or allowed to default, produces the following output:

```
D NET, TOPO, LIST=TDUINFO, SCOPE=ACTIVITY

IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = TDU INFORMATION
IST1780I TOPOLOGY RESOURCES WITH MOST FREQUENT TDU ACTIVITY
IST2275I TDU INFORMATION SINCE LAST RESET ON 02/11/10 AT 10:48:52
IST2290I TDUDIAG START OPTION = 1000
```

```
IST2276I NO CORRUPTION OF TOPOLOGY CONTROL VECTORS DETECTED
IST924I
                     RSN
4
10
4
4
4
2
12
8
8
8
IST2286I TDUS RECEIVED:
IST1777I CP NAME
                                   DESTINATION CP
                                                     TGN ACC
IST1778I NETA.SSCP2A
                                   NETA.SSCPBA
IST1778I NETA.SSCPAA
                                   NETA.SSCPBA
                                                                0
IST1778I NETA.SSCPBA
                                   NETA.SSCP2A
                                                     21 0
21 1
IST1778I NETA.SSCPBA
                                   NETA.SSCPAA
IST1778I NETA.SSCP2A
                                   NETA.SSCPAA
                                                     21 1
NA 1
IST1778I NETA.SSCP2A
                                   NETA.SSCP1A
IST1778I NETA.SSCP2A
                                    ***NA***
IST1778I NETA.SSCPAA
                                    NETA.SSCP2A
                                                     21 1
NA 1
IST1778I NETA.SSCPAA
                                   NETA.SSCP1A
IST1778I NETA.SSCPAA
                                   ***NA***
IST2301I 10 OF 13 TOPOLOGY RESOURCES DISPLAYED
IST924I -
IST2287I TDUS SENT:
                          RSN
IST2288I CP NAME
                                   DESTINATION CP
                                                     TGN SENT
                                                               REC
IST1778I NETA.SSCPBA
                                   NETA.SSCPAA
                                                     21 5
IST1778I NETA.SSCPBA
                                   NETA.SSCP2A
IST1778I NETA.SSCPAA
                                    NETA.SSCPBA
IST1778I NETA.SSCP2A
                                   NETA.SSCPBA
                                   NETA.SSCPAA
                                                     21 3
21 3
IST1778I NETA.SSCP2A
IST1778I NETA.SSCP2A
                                   NETA.SSCP1A
IST1778I NETA.SSCP2A
                                   ***NA***
                                                     NA 3
                                                      21 3
NA 3
IST1778I NETA.SSCPBA
                                   NETA.SSCP1A
                          2
IST1778I NETA.SSCPBA
                                   ***NA***
IST1778I NETA.SSCPAA
                          12
                                   NETA.SSCP2A
IST2301I 10 OF 15 TOPOLOGY RESOURCES DISPLAYED
IST924I
IST2289I RESOURCE SEQUENCE NUMBERS UPDATED BY THIS NODE:
IST2292I CP NAME
                          RSN DESTINATION CP
                                                  TGN UPDATED
                          4
                                                     21
IST2293I NETA.SSCPBA
                                    NETA.SSCP2A
                       4
4
IST2293I NETA.SSCPBA
                                   NETA.SSCPAA
                                                      21
IST2293I NETA.SSCPBA
                                    NETA.SSCP1A
                                                           2
IST2301I 3 OF 3 TOPOLOGY RESOURCES DISPLAYED
IST314I END
```

The DISPLAY NET,TOPO,LIST=TDUINFO command with the SCOPE=RECENT operand specified produces the following output:

```
D NET, TOPO, LIST=TDUINFO, SCOPE=RECENT
IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = TDU INFORMATION
IST1776I TOPOLOGY RESOURCES WITH MOST RECENT TDU ACTIVITY
IST2275I TDU INFORMATION SINCE LAST RESET ON 02/11/10 AT 10:48:52
IST2290I TDUDIAG START OPTION = 1000
IST2276I NO CORRUPTION OF TOPOLOGY CONTROL VECTORS DETECTED
IST1779I TDUS RECEIVED BETWEEN 02/11/10 10:49:17 - 02/11/10 10:49:23
                     RSN 2 4 2 2 10 8 4 4
IST1777I CP NAME
                                    DESTINATION CP
                                                       TGN ACC REJ
IST1778I NETA.SSCPBA
                                     NETA.SSCP2A
IST1778I NETA.SSCP2A
                                     NETA.SSCPBA
                                                       21 2
21 1
                                     NETA.SSCPBA
IST1778I NETA.SSCP2A
IST1778I NETA.SSCPBA
                                     NETA.SSCPAA
                                                       21 0
IST1778I NETA.SSCPAA
                                     NETA.SSCPBA
IST1778I NETA.SSCPAA
                                     NETA.SSCPBA
                                                      21 1
21 1
IST1778I NETA.SSCP2A
                                     NETA.SSCPAA
IST1778I NETA.SSCP2A
                                     NETA.SSCP1A
IST1778I NETA.SSCP2A
                                     ***NA***
                                                        NA 1
                                     NETA.SSCP2A
IST1778I NETA.SSCPAA
IST2301I 10 OF 15 TOPOLOGY RESOURCES DISPLAYED
TST924T
IST2285I TDUS SENT BETWEEN 02/11/10 10:49:17 - 02/11/10 10:49:23
                    RSN DESTINATION CP
4 NETA.SSCP2A
IST2288I CP NAME
                                                        TGN SENT REC
IST1778I NETA.SSCPBA
                                                        21 4
IST1778I NETA.SSCP2A
                                     NETA.SSCPBA
IST1778I NETA.SSCP2A
                                     NETA.SSCPBA
IST1778I NETA.SSCP2A
                                     NETA.SSCPAA
                                     NETA.SSCP1A
IST1778I NETA.SSCP2A
                                                       NA 3
21 3
IST1778I NETA.SSCP2A
                                     ***NA***
                                     NETA.SSCP2A
IST1778I NETA.SSCPBA
IST1778I NETA.SSCPBA
                                                       21 5
                                     NETA.SSCPAA
IST1778I NETA.SSCPBA
                           4
                                     NETA.SSCP1A
                                                        21
IST1778I NETA.SSCPBA
IST2301I 10 OF 49 TOPOLOGY RESOURCES DISPLAYED
IST314I END
```

At this point, CP-CP sessions are activated between SSCPAA and a second network node with the CP name of NETA.SSCP1A (pictured in the lower left corner of Figure 34 on page 149). Because there is an existing network node with this same CP name in the network, this configuration error results in a TDU war. Again from SSCPBA, shortly after CP-CP sessions are activated between SSCPAA and the second NETA.SSCP1A, the DISPLAY NET,TOPO,LIST=TDUINFO,SCOPE=ACTIVITY command produces the following output:

```
D NET, TOPO, LIST=TDUINFO, SCOPE=ACTIVITY
IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = TDU INFORMATION
IST1780I TOPOLOGY RESOURCES WITH MOST FREQUENT TDU ACTIVITY
IST2275I TDU INFORMATION SINCE LAST RESET ON 02/11/10 AT 10:48:52
IST2290I TDUDIAG START OPTION = 1000
IST2276I NO CORRUPTION OF TOPOLOGY CONTROL VECTORS DETECTED
IST924I
IST2286I TDUS RECEIVED:
IST1777I CP NAME
                            RSN
                                      DESTINATION CP
                                                          TGN ACC
IST1778I NETA.SSCP1A
                                      NETA.SSCPAA
                                                         21 793
21 793
                            3126
                                                                    4288
                       3128
16
4
10
4
4
4
4
73Y RESC
                                      NETA.SSCPBA
IST1778I NETA.SSCP1A
                            3128
                                                                    4260
IST1778I NETA.SSCP1A
                                      NETA.SSCP2A
                                                         21 793
                                                                    4257
                                                          21 5
21 2
IST1778I NETA.SSCPAA
                                      NETA.SSCP1A
IST1778I NETA.SSCP2A
                                      NETA.SSCPBA
IST1778I NETA.SSCPAA
                                                         21 2
21 0
                                      NETA.SSCPBA
                                                                    0
IST1778I NETA.SSCPBA
                                      NETA.SSCP2A
                                                                    1
IST1778I NETA.SSCPBA
                                      NETA.SSCPAA
                                                          21 0
                                                                    1
IST1778I NETA.SSCP2A
                                      NETA.SSCPAA
IST1778I NETA.SSCP2A
                                      NETA.SSCP1A
IST2301I 10 OF 14 TOPOLOGY RESOURCES DISPLAYED
IST924I
IST2287I TDUS SENT:
IST2288I CP NAME
                                      DESTINATION CP
                                                          TGN SENT
                                                                    REC
                                                              5257
IST1778I NETA.SSCP1A
                                                                    5119
                            3126
                                      NETA.SSCPAA
                                                         21
                                                         21 5231 5101
21 5228 5098
21 9 11
21 5 1
21 4 1
                                      NETA.SSCPBA
IST1778I NETA.SSCP1A
                            3128
IST1778I NETA.SSCP1A
                            3128
                                      NETA.SSCP2A
IST1778I NETA.SSCPAA
                                      NETA.SSCP1A
IST1778I NETA.SSCPBA
                                      NETA.SSCPAA
IST1778I NETA.SSCPBA
                                      NETA.SSCP2A
                           10
4
4
                                      NETA.SSCPBA
                                                          21 4
IST1778I NETA.SSCPAA
IST1778I NETA.SSCP2A
                                      NETA.SSCPBA
                                                          21 3
IST1778I NETA.SSCP2A
                                      NETA.SSCPAA
                                                          21 3
IST1778I NETA.SSCP2A
                                      NETA.SSCP1A
IST2301I 10 OF 16 TOPOLOGY RESOURCES DISPLAYED
IST924I
IST2289I RESOURCE SEQUENCE NUMBERS UPDATED BY THIS NODE:
                                                      TGN UPDATED
IST2292I CP NAME
                            RSN
                                      DESTINATION CP
IST2293I NETA.SSCPBA
                            4
                                      NETA.SSCP2A
                                                         21
                                                               2
                                                               2
IST2293I NETA.SSCPBA
                                      NETA.SSCPAA
                                                          21
IST2293I NETA.SSCPBA
                            4
                                      NETA.SSCP1A
                                                               2
IST2301I 3 OF 3 TOPOLOGY RESOURCES DISPLAYED
```

The DISPLAY NET, TOPO, LIST=TDUINFO, SCOPE=RECENT command produces the following output:

```
D NET, TOPO, LIST=TDUINFO, SCOPE=RECENT
IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = TDU INFORMATION
IST1776I TOPOLOGY RESOURCES WITH MOST RECENT TDU ACTIVITY
IST2275I TDU INFORMATION SINCE LAST RESET ON 02/11/10 AT 10:48:52
IST2290I TDUDIAG START OPTION = 1000
IST2276I NO CORRUPTION OF TOPOLOGY CONTROL VECTORS DETECTED
IST924I
IST1779I TDUS RECEIVED BETWEEN 02/11/10 13:40:14 - 02/11/10 13:40:14
IST1777I CP NAME
                            RSN
                                     DESTINATION CP
                                                        TGN ACC
                                                        21 793
21 793
21 792
21 791
21 793
IST1778I NETA.SSCP1A
                            3126
                                      NETA.SSCPAA
                                                                   4288
IST1778I NETA.SSCP1A
                            3128
                                      NETA.SSCP2A
                                                                   4257
IST1778I NETA.SSCP1A
                            3124
                                      NETA.SSCPAA
                                                                   4288
                            3122
                                      NETA.SSCPAA
IST1778I NETA.SSCP1A
                                                                   4288
IST1778I NETA.SSCP1A
                                      NETA.SSCPBA
                            3128
                                                                   4260
                                                        21 792
21 792
IST1778I NETA.SSCP1A
                            3126
                                      NETA.SSCP2A
                                                                   4257
IST1778I NETA.SSCP1A
                            3126
                                      NETA.SSCPBA
                                                                   4260
IST1778I NETA.SSCP1A
                            3124
                                      NETA.SSCPBA
                                                         21 791
                                                                   4260
IST1778I NETA.SSCP1A
                            3124
                                      NETA.SSCP2A
                                                         21
                                                             791
                                                                   4257
IST1778I NETA.SSCP1A
                                     NETA.SSCP2A
                            3122
                                                            790
                                                                   4257
IST2301I 10 OF 50 TOPOLOGY RESOURCES DISPLAYED
IST924I
IST2285I TDUS SENT BETWEEN 02/11/10 13:40:14 - 02/11/10 13:40:20
```

IST2288I CP NAME	RSN	DESTINATION CP	TGN	SENT	REC			
IST1778I NETA.SSCP1A	3126	NETA.SSCPAA	21	5257	5119			
IST1778I NETA.SSCP1A	3128	NETA.SSCP2A	21	5228	5098			
IST1778I NETA.SSCP1A	3124	NETA.SSCPAA	21	5256	5118			
IST1778I NETA.SSCP1A	3122	NETA.SSCPAA	21	5255	5117			
IST1778I NETA.SSCP1A	3128	NETA.SSCPBA	21	5231	5101			
IST1778I NETA.SSCP1A	3126	NETA.SSCP2A	21	5227	5097			
IST1778I NETA.SSCP1A	3126	NETA.SSCPBA	21	5230	5100			
IST1778I NETA.SSCP1A	3124	NETA.SSCPBA	21	5229	5099			
IST1778I NETA.SSCP1A	3124	NETA.SSCP2A	21	5226	5096			
IST1778I NETA.SSCP1A	3122	NETA.SSCP2A	21	5225	5095			
IST2301I 10 OF 50 TOPOLOGY RESOURCES DISPLAYED								
IST314I END								

These last two commands display the following symptoms of a TDU war:

- There are many inbound and outbound TDUs describing the same resources.
- The resource sequence number (RSN) and TDU rejection count (REJ) in message IST1778I for the following resources increase continuously:
 - TG oriented from NETA.SSCP1A to NETA.SSCPBA with TG number 21
 - TG oriented from NETA.SSCP1A to NETA.SSCP2A with TG number 21
 - TG oriented from NETA.SSCP1A to NETA.SSCPAA with TG number 21
- Because NETA.SSCPBA continuously receives TDUs about the above three resources, they
 become the most active resources (in terms of TDUs received) reported by DISPLAY
 NET,TOPO,LIST=TDUINFO,SCOPE=ACTIVITY command.

If the TDUDIAG start option is set in one or more of the network nodes involved in the TDU war, additional TDU diagnostic information will be collected about the network nodes that are updating the RSNs of these resources. The DISPLAY NET,TOPO,LIST=TDUDIAG command produces the following output:

```
D NET, TOPO, LIST=TDUDIAG
IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = TDU DIAGNOSTICS
IST2274I TDU DIAGNOSTIC SUMMARY:
IST1780I TOPOLOGY RESOURCES WITH MOST FREQUENT TDU ACTIVITY
IST2308I
            THAT HAVE SAVED TDUDIAG RSN UPDATES
IST2275I TDU INFORMATION SINCE LAST RESET ON 02/11/10 AT 13:11:32
IST2290I TDUDIAG START OPTION = 1000
IST2276I NO CORRUPTION OF TOPOLOGY CONTROL VECTORS DETECTED
IST924I
IST2286I TDUS RECEIVED:
IST1777I CP NAME

        DESTINATION CP
        TGN ACC

        NETA.SSCPAA
        21 793

        NETA.SSCP2A
        21 793

        NETA.SSCPBA
        21 793

                                             DESTINATION CP
                                                                   TGN ACC
IST17771 CP NAME
IST1778I NETA.SSCP1A
IST1778I NETA.SSCP1A
                                 3126
                                                                              4288
                                 3128
                                                                                4257
IST1778I NETA.SSCP1A
                                 3128
                                                                                4260
IST2301I 3 OF 3 TOPOLOGY RESOURCES DISPLAYED
IST924I -
IST2287I TDUS SENT:
                                 RSN
                                             DESTINATION CP
IST2288I CP NAME
                                                                   TGN SENT
                                                                                REC
                                             NETA.SSCPAA 21 5257 5119
NETA.SSCP2A 21 5228 5098
IST1778I NETA.SSCP1A
                                 3126
IST1778I NETA.SSCP1A
                                 3128
IST1778I NETA.SSCP1A
                                 3128
                                             NETA.SSCPBA
                                                                   21 5231 5101
IST2301I 3 OF 3 TOPOLOGY RESOURCES DISPLAYED
IST924I
IST2289I RESOURCE SEQUENCE NUMBERS UPDATED BY THIS NODE:
IST2301I 0 OF 0 TOPOLOGY RESOURCES DISPLAYED
IST314I END
```

Additional detailed TDU diagnostic information about the network nodes that are updating the RSNs of each TG can be displayed with LIST=TDUDIAG. The DISPLAY NET,TOPO,LIST=TDUDIAG,ORIG=SSCP1A,DEST=SSCPBA,TGN=21 command produces the following output:

```
D NET, TOPO, LIST=TDUDIAG, ORIG=SSCP1A, DEST=SSCPBA, TGN=21

IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = TDU DIAGNOSTICS
IST2311I TDU DIAGNOSTIC INFORMATION FOR TG: TGN = 21
IST2256I ORIG = NETA.SSCP1A - DEST = NETA.SSPCBA
IST2312I CURRENT RSN = 3128 - HEX RSN = 000000C38
```

```
IST924I --
IST2275I TDU INFORMATION SINCE LAST RESET ON 02/11/10 AT 10:48:52
IST1769I LAST TDU RECEIVED - 02/11/10 13:40:14 FROM NETA.SSCP1A IST2281I LAST TDU SENT - 02/11/10 13:40:20
IST2282I TDU COUNTS:
IST2352I
           SENT
                     = 3890
                                    RECEIVED = 5101
           ACCEPTED = 793
IST2353I
                                    REJECTED = 4260
IST2354I
           IGNORED = 48
IST2313I RSN UPDATE COUNT = 4260
IST924I
IST2294I TDUDIAG RSN UPDATES:
IST2295I
                             TIME
                                       HEX RSN
                                                  HEX RSN
IST2296I CP NAME
                             UPDATED
                                       BEFORE
                                                            REASON
                                                  AFTER
IST2297I NETA.SSCP1A
                                                 00000C38
                                                            TDU GREATER
                             13:40:20
                                       00000C36
           RECEIVED FROM: NETA.SSCP1A
IST2300I
IST2297I NETA.SSCP1A
                             13:40:20
                                       00000C34
                                                 00000C36
                                                            TDU GREATER
           RECEIVED FROM: NETA.SSCP2A
IST2300I
IST2297I NETA.SSCP1A
                            13:40:19
                                       00000C32 00000C34
                                                           TDU GREATER
           RECEIVED FROM: NETA.SSCP1A
TST2300T
IST2297I NETA.SSCP1A
                            13:40:19
                                       00000C30 00000C32
                                                           TDU GREATER
IST2300I
           RECEIVED FROM: NETA.SSCPAA
IST2297I NETA.SSCP1A
                            13:40:19
                                       00000C2E 00000C30
                                                            TDU GREATER
          RECEIVED FROM: NETA.SSCP1A
IST2300I
IST2297I NETA.SSCP1A
                                       00000C2C
                                                00000C2E
                                                           TDU GREATER
                             13:40:19
           RECEIVED FROM: NETA.SSCPAA
IST2300I
IST2297I NETA.SSCP1A
                            13:40:19
                                       00000C2A 00000C2C
                                                            TDU GREATER
IST2300I
           RECEIVED FROM: NETA.SSCP1A
IST2297I NETA.SSCP1A
                            13:40:19
                                       00000C28 00000C2A
                                                           TDU GREATER
           RECEIVED FROM: NETA.SSCP2A
TST2300T
IST2297I NETA.SSCP1A
                            13:40:19
                                       00000C26 00000C28
                                                           TDU GREATER
IST2300I
           RECEIVED FROM: NETA.SSCP1A
IST2297I NETA.SSCP1A
                            13:40:18
                                       00000C24
                                                 00000C26
                                                           TDU GREATER
           RECEIVED FROM: NETA.SSCPAA
TST2300T
IST2314I 10 OF 50 RSN UPDATES DISPLAYED
IST314I END
```

Because the previous command was entered on SSCPBA, which is not the origin (owner) of the TG, all of the RSN updates are inbound to SSCPBA. Therefore, you cannot tell if the RSN for the resource is being updated by one network node with a CP name of NETA.SSCP1A, or two. When the RSN increased by two and all of the TDUDIAG RSN updates display the same CP name in message IST2297I, it is usually an indication of two network nodes with the same CP name. To determine whether this is the case, you can enter the same command on the NETA.SSCP1A known to you, which produces the following output:

```
D NET, TOPO, LIST=TDUDIAG, ORIG=SSCP1A, DEST=SSCPBA, TGN=21
IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = TDU DIAGNOSTICS
IST2311I TDU DIAGNOSTIC INFORMATION FOR TG: TGN = 21
IST2256I ORIG = NETA.SSCP1A - DEST = NETA.SSCPBA
IST2312I CURRENT RSN = 3128 - HEX RSN = 00000C38
IST2355I TDUDIAG THRESHOLD REACHED ON 02/11/10 AT 13.39.00
IST924I
IST2275I TDU INFORMATION SINCE LAST RESET ON 02/11/10 AT 10:48:52
IST1769I LAST TDU RECEIVED - 02/11/10 13:40:14 FROM NETA.SSCP1A
IST2281I LAST TDU SENT - 02/11/10 13:40:20
IST2282I TDU COUNTS:
IST2352I
           SENT
                     = 793
                                     RECEIVED = 793
IST2353I
           ACCEPTED = 0
                                     REJECTED = 793
IST2354I
           IGNORED = 0
IST2313I RSN UPDATE COUNT = 793
TST924T
IST2294I TDUDIAG RSN UPDATES:
IST2295I
                              TIME
                                         HEX RSN
                                                   HEX RSN
IST2296I CP NAME
                              UPDATED
                                         BEFORE
                                                    AFTER
                                                              REASON
IST2297I NETA.SSCP1A
                                                   00000C38
                              13:40:20
                                        000000036
                                                              TDU GREATER
IST2297I NETA.SSCP1A
                              13:40:20
                                        00000C34
                                                   00000C36
                                                              TDU GREATER
IST2300I
           RECEIVED FROM: NETA.SSCP2A
IST2297I NETA.SSCP1A
                                        00000C32
                             13:40:19
                                                   000000034
                                                              TDU GREATER
IST2297I NETA.SSCP1A
                              13:40:19
                                         00000C30
                                                   00000C32
                                                              TDU GREATER
           RECEIVED FROM: NETA.SSCPBA
TST2300T
IST2297I NETA.SSCP1A
                              13:40:19
                                         00000C2E
                                                   00000C30
                                                              TDU GREATER
IST2297I NETA.SSCP1A
                                                   00000C2E
                              13:40:19
                                         00000C2C
                                                              TDU GREATER
IST2300I
           RECEIVED FROM: NETA.SSCPBA
IST2297I NETA.SSCP1A
                             13:40:19
                                         00000C2A
                                                   000000020
                                                              TDU GREATER
IST2297I NETA.SSCP1A
                              13:40:19
                                         00000C28
                                                   00000C2A
                                                              TDU GREATER
           RECEIVED FROM: NETA.SSCP2A
IST2300I
IST2297I NETA.SSCP1A
                              13:40:19
                                         00000C26
                                                    00000C28
                                                              TDU GREATER
IST2297I NETA.SSCP1A
                        13:40:18
                                        00000C24
                                                   00000C26
                                                              TDU GREATER
```

IST2300I RECEIVED FROM: NETA.SSCPBA IST2314I 10 OF 50 RSN UPDATES DISPLAYED IST314I END

Messages IST2297I and IST2300I are displayed for inbound TDUs. For outbound TDUs, only message IST2297I is displayed. From this display, you can see that TDUs with RSN updates are both inbound to and outbound from this node. If the TDU is inbound, the RSN was not updated by this node. If the TDU is outbound, the RSN was updated by this node. This pattern indicates that there is another network node with a CP name of NETA.SSCP1A in the network.

Display traces

Use the DISPLAY TRACES command to display the status of a trace for a resource and its subordinate nodes. DISPLAY TRACES applies to the following types of traces:

BUF

Buffer contents trace

CNM

Communication network management trace

EXIT

Session management exit (SME) buffer trace

GPT

Generalized PIU trace

IO

Input/output trace

LINE

NCP line trace

MODULE

Module trace

NETCTLR

3710 network controller trace

ODIOSYNC

Queued Direct I/O Diagnostic Synchronization

ROUTE

APPN route selection trace

SIT

Scanner interface trace

SMS

Storage management services buffer use trace

STATE

Resource state trace

TG

Transmission group trace

TSO

TSO user ID trace

VTAM

VTAM internal trace (VIT)

Display VTAM storage

Use the DISPLAY VTAMSTOR command to display storage contents associated with:

- Storage address
- VTAM module

154 z/OS Communications Server: z/OS V2R5.0 Communications Server: SNA Diagnosis Vol 1, Techniques and Procedures

- · Network address
- VTAM resource

Display workload information for a device

Storage problems can be related to a specific I/O device. Because outbound data cannot be transmitted to an I/O device until it is accepted by that device (that is, until write processing completes), there are scenarios in which this storage associated with this data can accumulate at the DLC (data link control) layer. For all I/O devices that perform real I/O that are represented by a TRLE (predefined or dynamically built), VTAM tracks the outbound workload (units of work) for each device. This tracking mechanism allows console operators to isolate this type of problem to a specific device.

The console operator can quickly isolate a storage problem to a specific device using the DISPLAY TRL command. If a device has exceeded internal thresholds, message IST1800I is issued with the text ** CONGESTED **. Additional details regarding the workload for a specific device are displayed with the DISPLAY TRL,TRLE=trlename command. VTAM displays the current, average, and the maximum workload for each device. When the current workload is excessive, the I/O activity for this device might be associated with system storage shortages.

If the counts for a device reveal an excessive current workload, additional steps are required to isolate the problem.

· Steps for a console operator

When a device is marked as congested, further action is required to determine whether the congestion is related to a system storage problem. If the following steps indicate that a system storage shortage is present, it might be necessary to obtain documentation (such as a console log and a dump) to diagnose the congestion related to this device. This condition might be relieved by deactivating the PU (or stopping the device for TCP/IP).

- 1. Review the system console for any messages related to current storage shortage conditions.
- 2. Issue the following VTAM display commands:
 - D NET,CSM
 - D NET, BFRUSE
 - D NET, STORUSE, POOL=*

Note: If applicable, also issue the TCP/IP DISPLAY command D TCPIP, STOR.

- 3. Issue D NET,TRL,TRLE=*trlename* to obtain more details about the device congestion. Message IST1802I displays detailed counts of units of work for the device measured at the Data Link Control (DLC) layer.
- 4. Activate VTAM tuning statistics (TNSTAT), RMF, or other monitoring tools to monitor this specific device.
- 5. Display the active jobs in the system to determine whether new work was recently started.

• Steps for a system programmer

The following steps might be required to isolate a system storage problem that is related to an I/O device:

- 1. Review the network configuration related to this device or any recent configuration changes for this system.
- 2. Review or monitor (using the output from VTAM TNSTAT or RMF) the network traffic related to this device. Compare the actual workload to the I/O capacity of the hardware device.
- 3. Determine if the congestion is related to a specific time of day, job, application, or type of workload.
- 4. Verify that missing interrupt handler (MIH) is enabled for the write devices.
- 5. Review or verify that the maintenance level for the hardware device is current.
- 6. Consider automating the necessary storage displays to monitor system conditions.

Using VTAM MODIFY commands for problem determination

This topic includes the following tasks:

- "Issuing the MODIFY CSDUMP command" on page 156
- "Modifying input/output problem determination" on page 156
- "Modifying message module identification" on page 157

•

- Modifying SDLC link level 2 test
- "Issuing the MODIFY TOPO command to clear EE connection network unreachable partner information" on page 157
- "Modifying tuning statistics" on page 158
- "Issuing the MODIFY VTAMOPTS command to change start option values" on page 158

See z/OS Communications Server: SNA Operation for additional information about the VTAM commands.

Issuing the MODIFY CSDUMP command

Issue the MODIFY CSDUMP command to do the following tasks:

- · Immediately dump the current address space
- Set up a trigger that starts a dump of the current address space when a particular sense code is issued
- Set up a trigger that starts a dump of the current address space when a particular message is issued
- Delete active message or sense code triggers

Tip: You can also use the CSDUMP start option to set the CSDUMP message and sense code trigger.

Modifying input/output problem determination

Use the input/output problem determination (IOPD) facility to detect pending I/O requests when VTAM sends a request to another part of the network and no response is received after a certain period of time. The IOINT start option determines the length of time during which a response must be received.

You can perform the following tasks with the IOPD facility:

- Enable the IOPD facility
- Change the value of the IOINT start option
- Instruct the IOPD facility to write just one message group for each type of pending I/O operation, rather than one group for each operation

To enable the IOPD facility, issue the MODIFY IOPD command or the MODIFY VTAMOPTS command, or set the IOINT start option.

To change the value of the IOINT start option, issue the MODIFY VTAMOPTS command.

- For more information about the MODIFY VTAMOPTS command, see "Issuing the MODIFY VTAMOPTS command to change start option values" on page 158.
- For more information about the MODIFY IOPD command, see <u>z/OS Communications Server: SNA</u> Operation.

During the initialization of a large VTAM network, you might see more pending I/O operations than usual. If you use the IOPD facility to track I/O problems during initialization, the number of message groups issued can degrade your network's performance.

To instruct the IOPD facility to write just one message group for each type of pending I/O operation, rather than one group for each operation, use the IOMSGLIM start option. The resulting reduction in the number of messages issued can improve your network's performance during initialization.

The IOPD facility issues messages IST530I or IST1278I, IST1051I, and IST1062I for each operation that is pending longer than the specified time interval. See z/OS Communications Server: SNA Messages for a description of these messages. For more information about event codes and event IDs, see z/OS Communications Server: IP and SNA Codes.

These messages are only an indication that a problem might exist. The longer an operation remains pending (for example, the more messages issued for the same request unit), the more likely it is that a problem exists. See "Wait" on page 57 for more information about identifying pending I/O problems.

Modifying message module identification

You can choose to include in VTAM messages the last 5 characters of the VTAM module that issued the message. The module name abbreviation is displayed between the message ID and the message text.

To insert or delete module name abbreviations, use one of the following methods, where YES indicates to insert the abbreviations and NO indicates to not include them:

- Specify MSGMOD=YES|NO in the start option
- Issue the F net, MSGMOD=YES | NO command
- Issue the F net, VTAMOPTS, MSGMOD=YES|NO command

MSGMOD=NO is the default value. For more information about the MODIFY MSGMOD and MODIFY VTAMOPTS commands, see z/OS Communications Server: SNA Operation.

Examples:

• If you specify MSGMOD=YES, VTAM message xxxxx, where xxxxx is an operating system unique message number, is displayed as:

```
xxxxx INFXI DUMP OF ncpname COMPLETE
```

• If you specify MSGMOD=NO, the message is displayed as:

```
xxxxx DUMP OF ncpname COMPLETE
```

Note:

- 1. Any message that exceeds the maximum message length after the insertion of the module ID is truncated.
- 2. If your installation has changed the message text and omitted the message ID, the module name is the first item in the message.

Issuing the MODIFY TOPO command to clear EE connection network unreachable partner information

To manually clear Enterprise Extender (EE) connection network unreachable partner information, issue the MODIFY TOPO command. This action can make the unreachable paths available for route selection after underlying connection problems are corrected.

To indicate from which network nodes the unreachable partner paths are to be cleared, use the SCOPE operand.

- The default value, SCOPE=LOCAL, indicates that the unreachable partner paths are to be cleared from only the network node on which the command is entered.
- A value of SCOPE=NETWORK indicates that the unreachable partner paths are to be cleared from all network nodes in the network.

To clear EE connection network unreachable partner information under different conditions, issue the following commands:

• To clear EE connection network unreachable partner information that is associated with a specific virtual node from all network nodes in the network, issue the following command:

F procname, TOPO, FUNCTION=CLRUNRCH, VRN=cp_name, SCOPE=NETWORK

• To clear EE connection network unreachable partner information that is associated with a specific origin node from only the network node on which the command is entered, issue the following command:

F procname, TOPO, FUNCTION = CLRUNRCH, ORIG = cp_name

• To clear EE connection network unreachable partner information that is associated with a specific partner node from only the network node on which the command is entered, issue the following command:

F procname, TOPO, FUNCTION=CLRUNRCH, DEST=cp_name

To control the scope of the unreachable partner information that is cleared, use the ORIG, VRN, and DEST operands in any combination.

Modifying tuning statistics

You can perform the following tasks to modify tuning statistics:

- To initiate recording of tuning statistics, use the TNSTAT start option or issue the MODIFY TNSTAT operator command.
- To stop or start the recording of tuning statistics, or to adjust the tuning statistics controls at any time, issue the MODIFY NOTNSTAT or MODIFY TNSTAT command.
- To initiate recording for all devices (global TNSTATs), specify the VTAM TNSTAT start option.
- To initiate global TNSTATs, issue the MODIFY TNSTAT command with the ACTION=ACTIVATE operand (or allow it to have default settings) and without the TRLE operand.
- To stop global TNSTATs, issue the MODIFY NOTNSTAT command without the TRLE operand.
- To determine which devices are recording or what the tuning statistics controls are set to, issue the DISPLAY TNSTAT command.
- If you do not want to modify recording on all devices, specify the TRLE operand on both MODIFY commands to initiate and stop recording on a TRLE basis.

By specifying the TRLE operand, recording is modified for only those devices managed by the TRLEs that you specify. If you do not specify the TRLE operand, all devices are modified.

The CNSL and TIME values apply to all devices that are actively recording. These values are unaffected by the presence or lack of the TRLE operand.

Summary records can be written to SMF and the system console. If SMF is available, records are written to SMF. If the CNSL TNSTAT parameter is set to YES, summary records are sent to the system console.

Issuing the MODIFY VTAMOPTS command to change start option values

Issue the MODIFY VTAMOPTS command to change certain values that are specified on VTAM start options.

For a description of start options that you can change by issuing this command, see z/OS Communications Server: SNA Operation.

Chapter 5. Using dumps

This topic covers the dumps that you can use for problem determination for the VTAM program. The included dumps are:

- MVS Dumps
 - "Abend dump" on page 159
 - "Coupling facility structures dump" on page 159
 - "FFST dump" on page 159
 - "Stand-alone dump" on page 160
 - "SVC dump" on page 160

"Formatting and printing dump output" on page 160 describes the service aids available for formatting and printing dump output.

For information on dumps generated by First Failure Support Technology (FFST), see z/OS Communications Server: SNA Diagnosis Vol 2, FFST Dumps and the VIT.

Dumps on MVS operating system

Several kinds of dumps can be produced in an MVS system, depending on the type of failure and operator action:

- "Abend dump" on page 159
- "Coupling facility structures dump" on page 159
- "FFST dump" on page 159
- "Stand-alone dump" on page 160
- "SVC dump" on page 160

Abend dump

If the appropriate DD card exists, an abend dump is produced when one of the following conditions occurs:

- The operator enters a CANCEL command.
- · An abend macroinstruction is issued.
- · A job abnormally ends.

To get an abend dump, the input stream for VTAM must contain a DD statement with the ddname SYSUDUMP or SYSABEND. The resulting dump is written to the data set specified on the SYSUDUMP or SYSABEND DD card. The contents of the dump depend on user specifications. See <u>Table 48 on page 577</u> to determine what document has more information on the abend dump.

Coupling facility structures dump

When using GR, MNPS, TSO/GR, TCP/IP Sysplexports, or TCP/IP Sysplex Wide Security Associations, you should also dump the coupling facility structures involved when documenting problems with those functions. See <u>Table 48 on page 577</u> to determine what document has more information on the coupling facility structures dump.

FFST dump

For information on dumps generated by First Failure Support Technology (FFST), see z/OS Communications Server: SNA Diagnosis Vol 2, FFST Dumps and the VIT.

Stand-alone dump

The stand-alone dump is produced when the operator invokes the stand-alone dump program. This program can be invoked when the operating system is in a disabled wait state or looping. The stand-alone dump may be a high-speed dump, which is not formatted, or a low-speed dump, which is formatted. The dump output is written to the tape or printer (low-speed only) specified on the output operands. The output for a high-speed dump can be formatted for viewing by IPCS. See <u>z/OS Information Roadmap</u> to determine what document contains more information on the stand-alone dump.

SVC dump

SVC dumps are produced under these conditions:

- VTAM produces an SVC dump automatically when a program exception occurs. VTAM might be terminated as part of this process. The system log indicates the location of the dump output and whether the dump was successful.
- An operator issues the MODIFY CSDUMP command without specifying any triggers, which causes an immediate dump. This action does not cause VTAM to stop.
- An operator uses the CSDUMP start option or the MODIFY CSDUMP command to set the dump triggers, and an event occurs that matches one of the triggers to take the dump. This action does not cause VTAM to stop.
- An operator can request a dump with the operating system DUMP command. This will not cause VTAM to stop.
- An operator uses a SLIP command with ACTION=SVCD specified, and an event occurs that matches the trap indicated in the SLIP.
- A macroinstruction issues an abend, and there is a DD statement with ddname=SYSMDUMP.
- · An SDUMP macroinstruction is issued.
- System recovery routines produce an SVC dump if VTAM causes an error, such as a program exception or abend.

An SVC dump is written to a SYS1.DUMPnn data set (if allocated), the SYSMDUMP output data set, or the data set specified on the DCB operand of the SDUMP macroinstruction. An SVC dump can be formatted for viewing by IPCS. To determine what document contains more information on SVC dump, see <u>z/OS</u> Information Roadmap.

Formatting and printing dump output

The service aids described in this information are available for formatting and printing dump output.

IPCS service aids

IPCS processes SVC dumps and high-speed stand-alone dumps for online viewing. For information on using IPCS with VTAM, see Chapter 6, "Using VTAM dump analysis tools," on page 163.

To determine what document further describes IPCS commands, see z/OS Information Roadmap.

ABDUMP service aid

ABDUMP operates as part of the operating system abnormal termination (abend) procedure. It automatically formats and prints abend dumps. (See "Abend dump" on page 159.)

During ABDUMP processing, VTAM formats control blocks related to the abnormally ending task and prints them as part of the dump created by ABDUMP.

The following information shows ABDUMP formats the control blocks.

Note: This is an alphabetical list of the control blocks that might be in a dump. They might be in a different order in the dump.

Control block

Description

ACDEB

VTAM data extent block for the abnormally ending task

APPCB

LU 6.2 control block

COPR

Control operator control block associated with the abnormally ending task

CRA

Component recovery area for the abnormally ending task

FMCB

Function management control block and extensions for the abnormally ending task

HSICB

Half-session information control block for the abnormally ending task

LUCB

Logical unit control block associated with the abnormally ending task

MPST

Memory-process scheduling table for the abnormally ending task

NSICB

Logical-network-services information control block for the abnormally ending task

NSSCB

Logical-network-services storage control block for the abnormally ending task

PST

Process scheduling table for the abnormally ending task

RAB

LU 6.2 resource allocation block for the abnormally ending task

RDTE

Resource-definition-table application program entry for the abnormally ending task

SAB

LU 6.2 logical-resource manager-session allocation block for the abnormally ending task

The following information shows formatted data areas described in :

ACDEB

CRA

FMCB

LUCB

MPST

PST

RDTE

The following information appears for each control block:

- A header line with the name and hexadecimal address of the beginning of the control block
- Under the header, the name of each selected field (as it appears in that control block's mapping DSECT) and the contents of the field (listed sequentially)
- After the formatted printout, a hexadecimal dump of the entire control block

SADMP service aid

SADMP formats and prints low-speed stand-alone dumps. During SADMP processing, VTAM formats selected control blocks and prints them as part of the dump created by SADMP.

See the diagnostic manuals for your operating system for more information on SADMP. See <u>"Stand-alone dump"</u> on page 160 for more information on this dump.

Chapter 6. Using VTAM dump analysis tools

This topic covers the following information:

- "Enhanced VTAM dump analysis tools" on page 163
- "Using VTAM interactive problem control system (IPCS) CLISTs" on page 164
- "Sample VTAM dump analysis functions" on page 165
- "VTAM formatted dump procedures" on page 168

Enhanced VTAM dump analysis tools

The VTAM dump analysis tools are enhancements to the IPCS subcommand VERBEXIT VTAMMAP. To use VERBEXIT VTAMMAP you can:

- Use the interactive panel interface.
- Enter VERBEXIT VTAMMAP subcommands from the IPCS command line.
- Create a batch job to issue the VERBEXIT VTAMMAP subcommands.

VTAMMAP will process SVC dumps, high-speed stand-alone dumps, or abend dumps.

"Sample VTAM dump analysis functions" on page 165 shows how you can access the VTAM dump analysis tools.

If you experience problems that you suspect to be related to the VTAM dump analysis tools, see "VTAM dump analysis tool problems" on page 43 for help.

Operating environment

The following rules apply:

- You cannot invoke multiple functions simultaneously using the IPCS command-line interface to formatted dump. Batch jobs do allow this with multiple calls to VTAMMAP, but only one command can be entered on a line.
- The VTAM-supplied IPCS CLISTs must be used with VTAM Version 4 Release 2 or higher.
- · Multicultural support is not provided.
- · IPCS is required for VTAM formatted dump.
- Many of the dump analysis tools described in this topic analyze control blocks that reside in VTAM private storage. If the tool cannot access VTAM private storage, the tool will not run correctly.
- The CLISTs described in this topic do *not* verify the accuracy of hexadecimal values such as storage addresses unless invoked from the ISPF panel.
- If you enter hexadecimal data either on the IPCS command line or using the batch option, you must enclose it in two sets of single quotation marks. (Do not use two sets if you are using the panel interface.)

IPCS strips off the first set of quotation marks, and the second set identifies hexadecimal data. For example, to be processed correctly, the string '02C72020' must be entered as "02C72020". The following example shows how to enter hexadecimal data in a command on the IPCS command line or in a batch job:

```
VERBEXIT VTAMMAP 'SIBCHECK ADDR(X''01267B8'')'
```

• The VTAM internal trace (VIT) table has moved from ECSA storage to HVCOMMON storage in z/OS V1R13 Communications Server. To move the table, internal modifications were necessary, which

resulted in an incompatibility with previous releases. You can still use the VTAM dump analysis tools VITAL, VTBASIC, VTVIT, and ALL on dumps from z/OS V1R12 Communications Server or earlier releases. However, these tools from z/OS V1R12 Communications Server or earlier releases will not operate correctly on dumps from z/OS V1R13 Communications Server or later releases.

Using VTAM interactive problem control system (IPCS) CLISTs

For the VTAM dump analysis functions that are not part of the enhanced dump analysis tools, you can use IPCS CLISTs to issue commands to analyze dumps of VTAM storage. To start the CLIST, type the CLIST name on the IPCS command line.

For example, to start ISTVABND, on the command line, type

ISTVABND

You can also use the CLIST command interface provided by IPCS to group TSO and IPCS commands together if you want to automate dump analysis procedures. See <u>Table 48 on page 577</u> for a list of books that describe how to use IPCS.

Although these CLISTs are normally used online with IPCS, you can also issue them from the panel interface or run them in the background as batch jobs.

The IPCS CLISTs included in VTAM and described in this topic are:

- "ISTVABND" on page 210
- "ISTVDUMP" on page 212
- "ISTVMAP" on page 214
- "ISTVSAVE" on page 216
- "ISTVSLIP" on page 218

Obtaining online help for CLISTs

Note: This help operand applies only to the CLISTs; online help is invoked differently in the panel interface.

Each CLIST has online help information. To display it, enter the CLIST name followed by the HELP operand. Use no other operands, required or optional. For example, the following entry would display information on the ISTVDUMP CLIST.

ISTVDUMP HELP

After HELP information is displayed, you are prompted to either run the CLIST or exit the program. If you run the CLIST, you are prompted for each required operand.

Debugging CLIST errors

Note: This DEBUG option does not apply to the panel interface.

When you suspect an error in the execution of a CLIST, use the DEBUG option to list each command within the CLIST before and after execution. Specify the DEBUG option after any required parameters when the CLIST is invoked, as shown in the following example.

ISTVSLIP DEBUG

Printing CLIST output

The output from each CLIST is put into IPCSPRNT, the IPCS PRINT file. See <u>Table 48 on page 577</u> to determine the document that contains information on IPCSPRNT.

Sample VTAM dump analysis functions

The following sample procedures provide examples of the ways in which you may access the VTAM dump analysis tools.

Using the panel interface

You can access the VTAM dump analysis tools by using the panel interface. These steps provide the minimum information that you need to use the panel interface.

Before you begin

You need to set the IPCS default dump to the data set name of the dump to be analyzed. You also need to set the IPCS options to direct the output either to print, or to the terminal, or both. See <u>z/OS MVS IPCS</u> User's Guide for more information.

Procedure

Perform the following steps to access VTAM formatted dump using the panel interface:

1. Log on to TSO

2. Access IPCS

3. Select option 7 from the option list.

```
OPTION ===> _

O DEFAULTS - Specify default dump and options

BROWSE - Browse dump data set

ANALYSIS - Analyze dump contents

SUBMIT - Submit problem analysis job to batch

COMMAND - Enter IPCS subcommand or CLIST

UTILITY - Perform utility functions

DUMPS - Manage dump inventory

VTAM - VTAM dump analysis

T TUTORIAL - Learn how to use the IPCS dialog

X EXIT - Terminate using log and list defaults

Enter END command to terminate IPCS dialog
```

If you want a customized interface to be active to select VTAM, see <u>z/OS</u> Communications Server: New Function Summary for information on how to customize IPCS panel BLSPPRIM.

4. Select an option from the VTAMMAP Analysis Menu.

```
Select one of the following items. Then press Enter.

-- 1. APPC . . - APPLCONV, PARTNRLU, APPLMODE, APPMODAL
2. APPN . . - APPNBASE, FNDADJCP, FNDANDCB, FNDCOS, FNDDECB, etc
3. General . HOST, VTAM, VTBASIC, VTFNDMOD, VTMODS, VITAL, etc
4. Queues . PABSCAN, VTCVTPAB, VTREADVQ
5. Resource . RDTCHECK, RDTFULL, RDTHIER, RDTSUM, VTNODE
6. Session . ATMDATA, FINDDSIB, FINDSIB, MNPS, SES, SIBCHECK
7. Search . SRTFIND
8. Storage . SPANC, STORAGE, VTBUF, VTRPH
9. CSM . . . CSMALL, CSMBUF, CSMCMPID, CSMOWNER, CSMPOOL
10. Waits . . VTWRE
11. ERS/VRS . ROUTES, VTVRBLK
12. CLISTS . . ISTVABND, ISTVDUMP, ISTVMAP, ISTVSAVE, ISTVSLIP
13. APPN2 . . TRSTRACE

(C) Copyright IBM Corporation 1993,2006. All rights reserved.

Command ===>
F1=Help F2=Split F3=Exit F9=Swap F12=Cancel
```

5. Follow the screen prompts to process your dump.

Results

You know that you are done when a function is selected and the function executes. The output will go to the destination set in IPCS.

Using the IPCS command line

You can access the VTAM dump analysis tools by using the IPCS command line. These steps provide the minimum information that you need to use the IPCS command line.

Before you begin

You need to set the IPCS default dump to the data set name of the dump to be analyzed. You also need to set the IPCS options to direct the output either to print, or to the terminal, or both. See <u>z/OS MVS IPCS</u> User's Guide for more information.

Procedure

Perform the following steps to access VTAM formatted dump using the IPCS command-line interface.

1. Log on to TSO

2. Access IPCS

3. Select option 4 from the option list.

```
OPTION ===> _

0 DEFAULTS - Specify default dump and options
1 BROWSE - Browse dump data set
2 ANALYSIS - Analyze dump contents
3 SUBMIT - Submit problem analysis job to batch
4 COMMAND - Enter IPCS subcommand or CLIST
5 UTILITY - Perform utility functions
6 DUMPS - Manage dump inventory
7 VTAM - VTAM dump analysis
T TUTORIAL - Learn how to use the IPCS dialog
X EXIT - Terminate using log and list defaults

Enter END command to terminate IPCS dialog
```

4. Enter a VTAMMAP command on the IPCS command line.

For example:

```
VERBEXIT VTAMMAP 'SIBCHECK ADDR(X''01267B8'')'
```

Results

You know that you are done when you type a command and the function executes. The output will go to the destination set in IPCS.

Using the batch option

You can access the VTAM dump analysis tools by using the batch option. These steps provide the minimum information that you need to use the batch option.

Before you begin

You need to find the data set name of the dump to be analyzed. (This name must be specified in the JCL.)

Procedure

Perform the following step to access VTAM formatted dump using the batch processing interface.

1. Prepare the JCL data set.

See Table 48 on page 577 to determine what document describes IPCS.

Examples: Sample command (single command):

```
VERBEXIT VTAMMAP 'RDTFULL'

Sample command (multiple commands):

VERBEXIT VTAMMAP 'RDTFULL'
VERBEXIT VTAMMAP 'SIBCHECK ADDR(X''01267B8'')'
```

2. Submit the JCL so the job will execute.

Results

You know that you are done when the job completes.

VTAM formatted dump procedures

This topic contains an alphabetical list of the VTAM formatted dump analysis tools and IPCS CLISTs available with VTAM.

The descriptions for each tool include:

- · Procedure name
- · Description
- · Operands
- Syntax
- · Sample output

ALL

Use ALL to invoke the following functions:

RDTFULL ROUTES SES STORAGE VTAM

VTBASIC

Note: The ALL function is not displayed on the main formatted dump panel with other General functions, but is available on the General panel.

Operands

Trace output

Enter Format to format the VIT and No format to display the VIT in hexadecimal format. Format is the default.

Use the following syntax as an alternative to the panel interface.

Syntax


```
ALL
                              ALL Analysis
VTAM INTERNAL TRACE TABLE
                               000001EF_81000000
PRESENT WRAP C728E7D3 D61C13C4 LAST WRAP
                                              00000000 00000000
CURRENT ENTRY 000001EF_83503020 LAST ENTRY 000001EF_841FFFE0
    C4E2D740 12582410 02915E88 00CC4908
                                            02A275F8 02A275F8 E3E2E6E4 02929010
    D3D2E2C8 12000100 00CC4C70 00000000
                                            82A95442 00000000 00000000 02929010
    E4D5D3D2 12000100 00CC4C70 00000100 D8E4C558 12482810 02915E88 00CC4248
                                            82A9546C 00000000 01000000 02929010
                                            82A954F8 02A275F8 C9D5E3D4 02929010
 ATCVT: 00CC41F8
    ATCRDT... 02955740 ATCSRT... 02C35008 ATCCONFT. 00CC18E8
    ATCBPDA.. 02953000 ATCACTRM. 0000 GWSSCP = YES
                                              ATCVTLOD. 02A27650
DATA: 00CC41F8
    +0000 E5C5F4F3
                      40404040 FFF900C8
                                           02825000
                                                       VE43
                                                                 .9.H.b&.
    +0010 00000000
                      0000FFF9 11280000
                                           00000000
```

```
+0020 02915E88 00000000 00000000
                                         00000000 | .j;h.....
    +0030 00CC4524
                     00000000 13201000
                                         00000010
                                                       " . . . . . . . . . . . . . . .
                                         00000000 | .....j;h....|
   +0040 11280000 00000000
                               02915E88
RDTE: 02CE0CEC
   RPRNAME.. APPCAP09 RPRENTRY. 55
                                            RPRBITAN. 09000810 01
   RPRDEVCH. C06D0000 00800000
DATA: 02CE0CEC
                                         00550200 | APPCAP09.....
02CE0DE8 | .....n...".Y
02000200 | ."...
   +0000 C1D7D7C3 C1D7F0F9 80000000 00550200
                     00010095
   +0010 00000000
                               000A0000
   +0030
          02CE0008
                     0000000
                               00000000
   +0040 00090008
                    10010010
                               00000000
                                         00000000 | .....
No SIBs on the ATCSIBQ chain
```

APPLCONV

Use APPLCONV to display all conversations for an APPC application. APPLCONV formats and displays the APPCB control block, and the COPR control block if present. It will also format and display the APPC resource allocation block (RAB) and each session control block (SAB) associated with the RAB.

Operands

APPC application name

The APPC application name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, it is padded on the right with blanks.

The APPC application name is required.

Syntax

```
► APPLCONV — APPLNAME — ( — APPC_application_name — ) →
```

```
APPLCONV APPLNAME (APPCAPO5)
                        APPLCONV Analysis
 APPCB: 0290E6B8
    APPLUCB.. 0291A100 APPTSKID. 02818588 APPACB... 00CB4820
    APPLUN... APPCAP05
APPSPTAE 02906530 0290D898 02906620 029065D0 02906580
 DATA: 0290E6B8
    +0000 62C1D7D7
                     0291A100
                               02818588 00000000
                                                      .APP.j~..aeh....
    +0010 00000000
                     00000000
                               024100B0
                                         00000000
                                                     31094000
                     00000010
                               0000000
                                         00000000
    +0020
                                                    .. ...........
    +0030
           0101001B
                     00000000
                               00CB4820
                                         0290R088
    +0040 00000000
                     00000000
                               00000000
                                         00000000
 No session limit negotiations were in progress
                  Current conversation(s) for APPCAP05
 RAB: 02804028
    RABCONID. 01000003 RABCRPLA. 00000000 RABPSFSM. 01000000 04800000
     RABSABPT. 028030C0 RABNETID. NETA
                                            RABLUNAM. APPCAP06
    RABMODEN. BATCH
    Conversation State SEND
 DATA: 02804028
    +0000 62D9C1C2
                     00000000
                               02818588 00000000
                                                     .RAB....aeh....
                               01000004 D5C5E3C1 | .....NETA
    +0010 00000000
                     01000003
                                         C2C1E3C3 | APPCAP06BATC 000000000 | H v.n}...{...
    +0020 40404040 C1D7D7C3
                               C1D7F0F6
028030C0
    +0030
          C8404040 A50F95D0
    +0040 00000000 00000000 024100B4 00000000 | ..........
 SAB: 028030C0
    SABSHARE. CO SABLRMFL. 00
SABSENSE. 00000000 SABNSFG1. 03
                        SABLRMFL. 00
                                            SABFSM... 30
SABNSFG2. 60
 DATA: 028030C0
                                                     .SAB..... APPC
    +0000 62E2C1C2
                     00000000
                               00000000
                                         01000004
    +0010 02804028 D5C5E3C1
                               40404040 C1D7D7C3
           C1D7F0F6
                                                     AP06BATCH {...
    +0020
                     C2C1F3C3
                               C8404040
                                         0.0003000
     +0030 00000000
                     00000000
                               02803028
                                         00000000
```

```
+0040 00000000
                  00ABEEC3
                             CE09D9CC
                                        00000000
                                                   | .....¿.Có.R"....
+0050 08000360
                  00000000
                             00000000
                                        00000000
                                                     ...-.........
+0060 00000000
                  00000000
                             00000000
                                        0000000
                                                     . . . . . . . . . . . . . . . . . .
+0070 00000000
                  00000000
                             00000000
                                        00000000
                                                     . . . . . . . . . . . . . . . . . . .
+0080 00000000
                  00000000
                             00000000
```

APPLMODE

Use APPLMODE to display all logon modes in the logon mode table for conversations between an application program and a particular partner LU. APPLMODE will process the LU entries searching for all LU entries that match the specified partner LU name and the optional partner LU network identifier. If entries are found, APPLMODE processes the chain of modes and determines the settings for:

• Current session limits(x,y,z), where:

```
x - Session limity - Minimum number of contention winner sessions for local LUz - Minimum number of contention winner sessions for remote LU
```

• Current session count(x,y,z), where:

```
x - Active session county - Active contention winners at local LUz - Active contention winners at remote LU
```

Pending session counts(x,y,z), where:

```
x - Count of pending sessionsy - Count of pending contention winnersz - Count of pending contention losers
```

Pending session termination counts(x,y,z), where:

```
x - Pending termination contention winners
+ Pending termination contention losers
y - Pending termination contention winners
z - Pending termination contention losers
```

• Defined session limits(x,y,z), where:

```
x - Defined session limity - Defined minimum number of contention winner sessions for local LUz - Defined minimum number of contention winner sessions for remote LU
```

APPLMODE formats and displays the APPCB control block, and the COPR control block if present.

Operands

APPC application name

The APPC application name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, it is padded on the right with blanks.

The APPC application name is required.

Partner LU name

The partner LU name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, it is padded on the right with blanks.

The partner LU name is required.

Partner LU NetID

The partner LU NetID should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, it is padded on the right with blanks.

Use the following syntax as an alternative to the panel interface.

Syntax

```
► APPLMODE — APPLNAME — ( — APPC_application_name — ) — LU — ( → partner_LU_name — ) — NETID — ( — partner_LU_netid — )
```

Sample output

```
APPLMODE APPLNAME(APPCAPO5) LU(APPCAPO6)
                          APPLMODE Analysis
 APPCB: 0290E6B8
APPLUCB.. 0291A100 APPTSKID. 02818588 APPACB... 00CB4820
     APPLUN... APPCAP05
APPSPTAE 02906530
               02906530 0290D898 02906620 029065D0 02906580
 DATA: 0290E6B8
     +0000 62C1D7D7
                      0291A100
                                 02818588
                                            00000000
                                                        .APP.j~..aeh....
     +0010 00000000
                      00000000
                                 024100B0
                                            00000000
                                                        . . . . . . . . . . . [ . . . .
     +0020 31094000
                      00000010
                                 00000000
                                            00000000
     +0030 0101001B
                      00000000
                                 00CB4820
                                            0290B088
                                                        ....[h
     +0040 00000000
                      00000000
                                 00000000
                                            00000000
     +0050 00000000
                      00000000
                                 00000000
                                            00000000
     +0060
            C1D7D7C3
                      C1D7F0F5
                                 0000000
                                            00000000
                                                        APPCAP05....
                      00000000
     +0070 00000000
                                 028030C0
                                            02804028
                                                        +0080
            00000000
                      0292A2FC
                                 00000000
                                            00000000
                                                        .....ks......
     +0090 00000000
                      0290DA98
                                 00000000
                                            00000000
                                                        .....q.....
     +00A0
            00000000
                      00000000
                                 023FA0A8
                                            0000000
                                                        ....μy....
     +00B0
            36200000
                      000000A0
                                 02906530
                                            0290D898
                                                        ......µ......Qq
     +00C0
            02906620
                      029065D0
                                 02906580
                                            00000000
                                                        0000000
     +00D0
            00000000
                      00000000
                                 00000000
     +00E0
            00000000
                      00000000
                                 00000000
                                            00000000
     +00F0
            00000000
                      00000000
                                 00000000
                                            0000000
                                                        . . . . . . . . . . . . . . . .
            0000000
                      0000000
     +0100
 No session limit negotiations were in progress
     Modes between application APPCAP05 and partner LU APPCAP06
Mode name SNASVCMG
                                      (X'0002',X'0001',X'0001')
(X'0001',X'0001',X'0000')
(X'0000',X'0000',X'0000')
Current session limits
Current session counts
Pending session counts
Pending session termination counts (X'00000000',X'0000',X'0000')
                                       (X'0004',X'0002',X'0002')
Define session counts
Mode name BATCH
                                      (X'0004',X'0002',X'0002')
(X'0001',X'0001',X'0000')
(X'0000',X'0000',X'0000')
Current session limits
Current session counts
Pending session counts
Pending session termination counts (X'00000000',X'0000',X'0000')
Define session counts
                                       (X'0004',X'0002',X'0002')
```

APPMODAL

Use APPMODAL to display all information about a particular logon mode for a conversation between an application and a partner LU. APPMODAL will process the LU entries searching for all LU entries that match the specified partner LU name and the optional partner LU NetID. If LU entries are found, the chain of modes is searched for a match to the specified logon mode name. If a matching logon mode is found, APPMODAL determines the settings for:

Current session limits(x,y,z), where:

```
x - Session limity - Minimum number of contention winner sessions for local LUz - Minimum number of contention winner sessions for remote LU
```

Current session count(x,y,z), where:

```
x - Active session county - Active contention winners at local LUz - Active contention winners at remote LU
```

• Pending session counts(x,y,z), where:

```
x - Count of pending sessionsy - Count of pending contention winnersz - Count of pending contention losers
```

• Pending session termination counts(x,y,z), where:

```
x - Pending termination contention winners + losersy - Pending termination contention winnersz - Pending termination contention losers
```

Defined session limits(x,y,z), where:

```
x - Defined session limity - Defined minimum number of contention winner sessions for local LUz - Defined minimum number of contention winner sessions for remote LU
```

APPMODAL displays:

- Active conversations between the two applications on the logon mode by running the chain of RABs
- Waiting requests off the logon mode (requests for conversations that have not been serviced)
- Free sessions on the logon mode (SABs that represent sessions that are not currently assigned to a conversation)
- Pending active sessions on the logon mode (SABs that represent sessions that are in the process of being activated on the logon mode)

APPMODAL formats and displays the APPCB, COPR, LME (selected fields), RAB, and SAB control blocks.

Operands

APPC application name

The APPC application name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, it is padded on the right with blanks.

The APPC application name is required.

Partner LU name

The partner LU name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, it is padded on the right with blanks.

The partner LU name is required.

Partner LU NetID

The partner LU NetID should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, it is padded on the right with blanks.

Logon mode name

The logon mode name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, it is padded on the right with blanks.

The logon mode name is required.

Use the following syntax as an alternative to the panel interface.

Syntax

Sample output

```
APPMODAL APPLNAME(APPCAPO5) LU(APPCAPO6) LOGMODE(BATCH)
                         APPMODAL Analysis
 APPCB: 0290E6B8
    APPLUCB.. 0291A100 APPTSKID. 02818588 APPACB... 00CB4820
    APPLUN... APPCAP05
APPSPTAE 02906530 0290D898 02906620 029065D0 02906580
 DATA: 0290E6B8
    +0000 62C1D7D7
                      0291A100
                                02818588
                                          0000000
    +0010 00000000
                      00000000
                                024100B0
                                          00000000
                                                     | .....[....
    +0020 31094000
                      00000010
                                00000000 00000000
    +0030 0101001B
                      00000000
                                00CB4820
                                          0290B088
    +0040 00000000
                      00000000
                                00000000
                                          00000000
 No session limit negotiations were in progress
 LME: 0290B148
     LMENETID. NETA
                         LMENM.... APPCAP06 LMEFSM... C2
Mode name BATCH
                                     (X'0004',X'0002',X'0002')
(X'0001',X'0001',X'0000')
(X'0000',X'0000',X'0000')
Current session limits
Current session counts
Pending session counts
Pending session termination counts (X'000000000',X'0000',X'0000')
                                     (X'0004',X'0002',X'0002')
Define session counts
                         Current conversation(s)
 RAB: 02804028
    RABCONID. 01000003 RABCRPLA. 00000000 RABPSFSM. 01000000 04800000
    RABSABPT. 028030C0 RABNETID. NETA
RABMODEN. BATCH
                                             RABLUNAM. APPCAP06
    Conversation State SEND
 DATA: 02804028
    +0000 62D9C1C2 00000000 02818588 00000000
                                                       .RAB....aeh....
    +0010 00000000
                      01000003
                                01000004 D5C5E3C1
                                                      .....NETA
           40404040
                      C1D7D7C3
                                          C2C1E3C3
                                                          APPCAP06BATC
    +0020
                                C1D7F0F6
                     A50F95D0 028030C0 000000000 | H v.n}...{....
    +0030
           C8404040
    +0040 00000000 00000000 024100B4 00000000 | .....+....
 No conversations found awaiting BID response
 No free sessions found
 No pending active sessions found
```

APPNBASE

Use APPNBASE to format the global APPN control blocks:

- ACMDT
- APNVT
- DRDAT
- MTDAT
- SCDAT

APPNBASE

- SLGDT
- TRDAT

The control block addresses and the hexadecimal data from each control block are provided to help you diagnose APPN problems.

Use the following syntax as an alternative to the panel interface.

Syntax

► APPNBASE →

-	inpic outp								
A	PPNBASE								
	APPNBASE Analysis								
	APNVT: 00 +0000 +0010 +0020 +0030 +0040 +0050	C1BD40 C1D7D7D5 0652A948 00000000 00000000 00000000 062EBE68	00000000 00000000 00000000 00000000 0000	062FEE88 00000000 00000000 00000000 068D8E08 00C1BDC4	00C1C118 00000000 00000000 00000000 00000000 0000	APPNh.AA. z 			
:	ACMDT: 00 +0000 +0010 +0020 +0030 +0040 +0050	C1C118 C1C3D4C4 D5C5E3C1 F1D54040 00000000 000A8C00 00000064	0004C1F0 00000000 40404040 00000000 00000000 000000	F1D50000 09D5C5E3 40408080 80380100 00000024 000000000	00000004 C14BC1F0 00000000 00000000 00006C60 00000000	ACMDA01N NETANETA.A0 1N %-			
	DRDAT: 06 +0000 +0010 +0020 +0030 +0040 +0050	2EB1A0 C4D9C4E3 069EF110 069EF098 8000002C 000000000	0000C800 069EF2F0 069EF098 069EF110 00000000 824B5D76	C0000018 00041000 069EF098 00480400 00000000 8686D5D0	069EF200 C0000018 00041000 00000000 00000000 824B4E9A	DRDTH.{2. 120{ 0q0q0q 1			
:	MTDAT: 06 +0000 +0010 +0020 +0030 +0040 +0050	2EBD70 D4E3C4E3 00000000 067EDE70 00000000 00000000 10300000	00000000 068DFFA8 067EFFD0 0000000 00000000 00000000	00000000 068DFF48 067EFF98 00000000 0000003C 00000000	00000000 067EDEF8 068DE008 0000000 00000000 80000004	MTDT			
	SCDAT: 06 +0000 +0010 +0020 +0030 +0040 +0050	2D1B88 E2C3C4E3 069C6138 00000000 068E9C18 00000000 40000000	00000000 069C67C8 00000000 00000000 069C6480 00000000	C0000088 00041100 00000000 00000000 60C3D7E2 000C12C1	069C6B10 00000000 00000000 00000000 E5C3D4C7 00000000	SCDT{h.,. /H CPSVCMG			
	SLGDT: 06 +0000 +0010 +0020 +0030 +0040 +0050	2EB080 E2D3C4E3 00082400 06ACBAA0 00000000 824B5D76 00C1BED0	00000000 00000000 06C10020 00000000 868BDC10 06B6A100	8000002C 00000000 40000004 00000000 824B4E9A 062FEE88	06CCBA20 40000024 00000000 00000000 06318010 00000C60	SLDT			
	TRDAT: 06 +0000 +0010 +0020 +0030 +0040 +0050	2D1848 E3D9C4E3 00000000 00000000 10000000 00000000	068F0008 00000000 00000000 4000008 00000000 00000000	067ACF90 40000000 4000001C 00000000 4000008 00000000	40000000 00000000 00000000 00000000 00000	TRDT			

ATMDATA

Use ATMDATA to format control blocks associated with ATM support.

Operands

Line name

The line name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, it is padded on the right with blanks.

Major node name

The major node name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, it is padded on the right with blanks.

Port name

The port name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, it is padded on the right with blanks.

You can specify one or more operands. If you specify more than one operand, the associations among the operands must be correct, or you will not get any control blocks. For example, if you specify line name and major node name, the line name must be the name of a LINE definition statement in the major node you specify for major node name.

You can also specify ATMDATA without any of the operands. If you do, you will get the control blocks associated with all of the lines and ports defined in all of the XCA major nodes.

Syntax


```
ALNCB: 08372018
   +0000
         2FD000E8
                   08FE83B8
                             0847F048
                                       00050000
                                                    .}.Y..c...0....
   +0010
         00000004
                   0000000
                             0000000
                                       0000000
   +0020
         00000000
                   00000000
                             00000000
                                       0900A010
   +0030
         00000000
                   00000000
                             00000000
                                       00000000
   +0040
         0000000
                   0000000
                             0839C06C
                                       0000000
   +0050
         B1090000
                   0FF00040
                             0000000
                                       00000000
   +0060
         0000000
                   0000000
                             0000000
                                       0000000
   +0070
         00000000
                   00000000
                             00000000
                                       00000000
   +0080
         0000000
                   0000000
                             0839C048
                                       00000000
   +0090
         B0090000
                   1FF00080
                             0000000
                                        0000000
   +00A0
         0000000
                   0000000
                             0000000
                                       0000000
   +00B0
         0000000
                   0000000
                             0000000
                                       0000000
   +00C0
         00000000
                   00000000
                             00000000
                                       00000000
   +00D0
         0000000
                   0000000
                             0000000
                                       0000000
   +00E0
         00000000
                   0000000
                             0000000
                                       0000000
   +00F0
         0000000
                   3000C000
                             0000000
                                       0837210C
   +0100
         0000000
                   00000000
                             08368080
                                       00000000
   +0110
                   0000000
         0000000
                             0000000
                                       00000000
   +0120
         0000000
                   0000000
                             0000000
                                       0000000
   +0130
         0000000
                   0000000
                             0000000
                                        0000000
   +0140
         0000000
                   00000000
                             0000000
                                       0000000
   +0150
         00000000
                   00000000
                             00000000
                                       00000000
   +0160
         08353018
                   00000000
                             00000000
                                       00000000
   +0170
         00000000
                   0000000
                             0000000
                                       0000000
   +0180
         1B100000
                   08372018
                             0000000
                                       0000000
   +0190
         58588000
                   0000000
                             0000000
                                       0000000
   +01A0
         00000000
                   05000000
                             00000000
                                       00000000
   +01B0
         00000000
                   00000000
                             00000000
                                       00000000
   +01C0
         0000000
                   0000000
                             0000000
                                       0000000
   +01D0
         0000000
                   00000000
                             0000000
                                       00000000
   +01E0
         ACA9B06C
                   E45A8806
                             0000000
                                       0000000
                                                    .z.%U!h....
                   08374018
                                                    ......hI.UhI.U
         00000000
                             88C923E4
   +01F0
                                       88C923F4
   +0200
         88C923E4
                   08371018
                             0000000
                                       0000000
                                                   hI.U.....
   +0210
         88C7E014
                   08371810
                             0000000
                                       0000000
                                                   hG\....
   +0220
         0000000
                   0006000D
                             000A0501
                                       0200470E
                                                   +0230
         0000000
                   00C0470E
                             470E470E
                                       00E90000
                                       9999999
   +0240
         C8000002
                   00143999
                             99999999
                                                   H....rrrrrrrr
   +0250
         98010131
                   50455354
                             34070000
                                       0000000
                                                   q...&......
   +0260
         0000000
                   0000000
                             0000000
                                       00000000
   +0270
         0000000
                   0000000
                             0000000
                                       0000000
   +0280
                             00000000
         00000000
                   00000000
                                       00000000
   +0290
         00000000
                   00000000
                             00000000
                                       00000000
   +02A0
         0000000
                   00010102
                             00010108
                                       00010108
                                                   OSA2PVC1.....
   +02B0
                   D7E5C3F1
         D6E2C1F2
                             00000004
                                       01000101
   +02C0
         00000000
                   FF808021
                             01000000
```

CSMALL

CSMALL displays the major control block, a summary of all CSM pools, and each pool control block and its associated extent control blocks. In the following pool summary, only the pools which have been created are displayed.

Use the following syntax as an alternative to the panel interface.

Syntax

➤ CSMALL **→**

Equated symbol

Symbol

Description

IVTDSPACE

The last CSM data space buffer processed

Sample output

CSMALL

CSMALL Analysis

```
IVTSMCST: 03E1B000
    +0000
           C3E2D440
                      434C0000
                                83D75A78
                                           83D7CE58
                                                       CSM .<..cP!.cP..
           03EC1120
                      00640000
                                000067AC
                                           00640000
    +0010
                                           83D82AB8
                                                        ....cP.ycP_.cQ..
    +0020
           0000643D
                      83D7B0A8
                                83D76DC0
    +0030
           0080000
                      03EC1198
                                0000000
                                           00025F88
                                                        .....h
                                                       .S.....0
    +0040
           0000000
                      0002A190
                                03EC1128
                                           03ED8000
    +0050
           03E20000
                      00000039
                                0000000
                                           00000002
    +0060
           00000002
                      00000018
                                F0000800
                                           032F8000
                                           03338000
                                                       +0070
           80000000
                      0000000
                                01C432F8
    +0080
           F0000800
                      02AF3000
                                0000000
                                           0000000
    +0090
           01C42AF3
                      02B33000
                                0000000
                                           0000000
                                                       .D.3......
    +00A0
           0000000
                      0000000
                                0000000
                                           0000000
    +00B0
           00000000
                      00000000
                                00000000
                                           00000000
    +00C0
           0000000
                      0000000
                                0000000
                                           00000000
    +00D0
           0000000
                      0000000
                                0000000
                                           0000000
           C3E2D46D
                      C7D9E26D
                                D3C1E3C3
                                                        CSM_GRS_LATCHSET
    +00E0
                                           C8E2C5E3
    +00F0
           40404040
                      40404040
                                40404040
                                           40404040
           40404040
    +0100
                      40404040
                                40404040
                                           40404040
                                                       ....F.j....cQ).cQ..cPJ.cPb.cPr.
    +0110
           00E11038
                      C6559180
                                00000010
                                           83D85D58
    +0120
           83D86568
                      83D7D1E0
                                83D78278
                                           83D79930
                                                       cQ!YcP.....c.Qq
cQ.....0....
    +0130
                      83D73348
                                0000000
                                           83ECD898
           83D85AE8
    +0140
           83D83658
                      03EC1080
                                03EC10F0
                                           03EC1104
    +0150
                                           03B47D68
           03EC1106
                      83ECC5B0
                                83ED6F78
    +0160
           83ECD520
                      03EC36C8
                                0000000
                                           0000000
                                                        c.N....H.....
    +0170
                      83ECC5B0
                                80EC1120
           0000000
                                           0000000
                                                        ....c.E......
                      03EC3768
    +0180
           0000000
                                0000000
                                           000067A0
                                                        . . . . . . . . . . . . . . . .
    +0190
           0000643D
                                00000000
                                           00000000
                                                       .....VE612
06125695-11701-1
                      00E065AC
    +01A0
           00E05830
                      0000000
                                E5C5F6F1
                                           F2404040
    +01B0
           F0F6F1F2
                      F5F6F9F5
                                60F1F1F7
                                           F0F160F1
                                                       20....P....cQ_.
    +01C0
           F2F00000
                      0000000
                                80E05730
                                           0000000
    +01D0
           0000000
                      03D731DC
                                0000001C
                                           83D86DE0
                                                        .P.8cP68cP..cQ..
                                83D7CA28
                                           83D80290
    +01E0
           03D716F8
                      83D7F6F8
                                                       cPt.cQ..cQ..cQ.
cQ..cQ(.cQ.YcQ.8
    +01F0
           83D7A390
                      83D82518
                                83D85868
                                           83D854D0
    +0200
           83D82D80
                      83D84D68
                                83D84BE8
                                           83D848F8
                                                       .....8....
    +0210
           00550000
                      005A0000
                                00000B00
                                           0000000
    +0220
           0000000B
                      0000000
                                03EC3DF8
                                           00000000
                                                       .....!....!
    +0230
           0000000
                      00550000
                                005A0000
                                           00001B00
    +0240
           00004500
                      0000000
                                0000001B
                                           0000000
    +0250
           0000000
                      0000000
                                0000000
                                           0000000
                                                       .....&.....
    +0260
           0000000
                      0000000
                                03E18C00
                                           80000008
    +0270
                                03B45000
           07333333
                      00000000
                                           03B01000
                                0000000
                                                       .....&...0....
    +0280
           03AFE000
                      03AFB000
                                           032F3000
    +0290
           02AEB000
                      02AE5000
                                02ADF000
                                           02ADC000
    +02A0
           03AF8000
                      02AEE000
                                02AE8000
                                           02AE2000
    +02B0
           0000000
                      20000000
                                0000000
                                           0000000
                      00000000
    +02C0
           00000000
                                00000000
                                           00000000
    +02D0
           0000000
                      0000000
                                0000000
                                           00000000
    +02E0
           0000000
                      0000000
                                0000000
                                           0000000
    +02F0
           0000000
                      0000000
                                0000000
                                           0000000
    +0300
           0000000
                      00000000
                                0000000
                                           0000000
    +0310
           00000000
                      00000000
                                00000000
                                           00000000
    +0320
           00000000
                      00000000
                                0000000
                                           00000000
    +0330
           0000000
                      0000000
                                0000000
                                           0000000
                                                        . . . . . . . . . . . . . . . .
    +0340
           00000000
                      0000000
                                0000000
                                                        . . . . . . . . . . . .
CSM Pool Summary
                       P00L 03B45000
    CSM
          4K ECSA
    CSM
         16K ECSA
                       POOL 03B01000
    CSM
         32K ECSA
                       POOL 03AFE000
    CSM
         60K ECSA
                       POOL 03AFB000
    CSM
       180K ECSA
                       POOL 00000000
          4K DSPACE31 POOL 032F3000
    CSM
    CSM
         16K DSPACE31 POOL 02AEB000
    CSM
         32K DSPACE31 POOL 02AE5000
    CSM
         60K DSPACE31 POOL 02ADF000
    CSM
        180K DSPACE31 POOL 02ADC000
          4K DSPACE64 POOL 03AF8000
    CSM
    CSM
         16K DSPACE64 POOL 02AEE000
         32K DSPACE64 POOL 02AE8000
    CSM
    CSM
         60K DSPACE64 POOL 02AE2000
    CSM 180K DSPACE64 POOL 00000000
                                                 P<sub>0</sub>0L
                              CSM
                                    4K ECSA
CSMP00L: 03B45000
                                           00000002
                                                        P00L.-....
    +0000
           D7D6D6D3
                      20608000
                                00001000
                                           00000010
    +0010
           00000040
                      00000035
                                80000008
                                                        03E20630
    +0020
                      03B14A80
                                00000002
                                           02196010
                                                        .S...-.
    +0030
           0000000
                      00000040
                                0000000
                                           00000000
                                                        ...... .......
    +0040
           0000000
                      03E1B278
                                03EC3D58
                                           00000100
                                                       . . . . . . . . . . . . . . . .
```

```
+0050 00000040 01100001 03E20630
                                            00000000 | ... ....S..... |
 CSMEXT: 03E20630
    +0000
            C5E7E340
                       05800000
                                 03E1AA80
                                                          EXT .....
                                            00000000
    +0010
            03B45000
                       0000000
                                 0000000
                                            0000000
            0000000
                                             00000010
    +0020
                       03B35000
                                 03B44FFF
    +0030
            00000005
                       0000000
                                 00010000
                                            00000010
    +0040
            00000000
                       00000000
                                 00000000
                                            00000000
                       0000000
    +0050
            00000000
                                 00000000
                                            FFE00000
    +0060
            0000000
                       0000000
                                  0000000
                                            0000000
    +0070
            0000000
                       0000000
                                 0000000
                                            0000000
                                                          . . . . . . . . . . . . . . . .
÷
                               CSM 16K ECSA
                                                   P<sub>00</sub>L
 CSMP00L: 03B01000
                                 00004000
                                            00000001
                       20608000
                                                          P00L.-...
    +0000
           D7D6D6D3
    +0010
            0000000
                       0000000
                                 00000004
                                            0000000
    +0020
            0000000
                       0000000
                                  0000001
                                            03EDA020
    +0030
            0000000
                       00000004
                                 0000000
                                            0000000
    +0040
                                            00000400
                                                          ....Q...Q
            00000000
                       03E1B27C
                                 03EC31D8
    +0050
            00000000
                       02200004
                                 00000000
                                            00000000
Ė
                               CSM
                                      4K DSPACE31 POOL
 CSMP00L: 032F3000
                                                          P00L.- .....
    +0000
           D7D6D6D3
                       20604000
                                 00001000
                                            00000001
    +0010
           00000040
                       00000040
                                 80000008
                                            00000010
                                                          ... ... .......
    +0020
                       02AF1A80
                                 00000001
            032F6500
                                            03FD0000
    +0030
            0000000
                       00000040
                                 0000000
                                            0000000
                                                          . . . . . . . . . . . . . . . .
    +0040
            0000000
                       03E1B28C
                                 03EC0000
                                            00000100
                                                          . . . . . . . . . . . . . . . .
    +0050
            00000040
                       06900001
                                 032F6500
                                            0000000
 CSMEXT: 032F6500
                                                          EXT .....
    +0000
            C5E7E340
                       05800000
                                 02AF2A80
                                            0000000
                                                          .....D.30.....
    +0010
            032F3000
                       01C42AF3
                                  F0000800
                                            02AF3000
            00000002
                                 02B02FFF
    +0020
                       02AF3000
                                            00000010
                                                          . . . . . . . . . . . . . . . .
    +0030
            00000010
                       0000000
                                 00010000
                                            00000010
                                                          CSM31002.....
    +0040
            F0C1C1C1
                       C3C3E2D4
                                  0000000
                                            0000000
    +0050
            0000000
                       0000000
                                  0000000
                                            0000000
                                                         . . . . . . . . . . . . . . . .
    +0060
            0000000
                       0000000
                                 0000000
                                            0000000
                                                          . . . . . . . . . . . . . . . .
    +0070
            00000000
                       00000000
                                  00000000
                                            00000000
                                                          . . . . . . . . . . . . . . . .
ŧ
                               CSM 16K DSPACE31 POOL
 CSMPOOL: 02AEB000
                                                          P00L.- ... ....
    +0000
            D7D6D6D3
                       20604000
                                 00004000
                                            0000001
    +0010
            0000000
                       0000000
                                 00000004
                                            00000000
                                                          . . . . . . . . . . . . . . . . .
    +0020
            0000000
                       0000000
                                 00000001
                                            03ECA010
    +0030
            00000000
                       00000004
                                 00000000
                                            0000000
    +0040
            0000000
                       03E1B290
                                 03E20EC0
                                            00000400
                                                          .....S.....
    +0050
            0000000
                       07A00004
                                 0000000
                                            0000000
                               CSM
                                      4K DSPACE64 POOL
 CSMP00L: 03AF8000
    +0000
           D7D6D6D3
                       20604020
                                 00001000
                                            00000001
                                                          P00L.- .....
    +0010
            00000040
                       00000030
                                 00000008
                                            00000010
                                                          . . . . . . . . . . . . . . . .
    +0020
            03B14500
                       032F6A80
                                  0000001
                                            03ED0020
    +0030
            0000000
                       00000040
                                  0000000
                                            0000000
                                                          . . . . . . . . . . . . . . . .
    +0040
            00000000
                       03F1B2A0
                                 03EC2F60
                                            00000100
                                                          . . . . . . . . . . - . . . .
    +0050
            00000040
                       0B980001
                                 03B14500
                                            0000000
                                                          ... .q......
 CSMEXT: 03B14500
                                                         EXT .....D.80.....
    +0000
            C5E7E340
                                 032F7A80
                       05800000
                                            0000000
                       01C432F8
                                  F0000800
    +0010
            03AF8000
                                            032F8000
    +0020
            0000001
                       032F8000
                                  03307FFF
                                            00000010
                                                          . . . . . . . . . . " . . . . .
    +0030
            0000000
                       0000000
                                  00010000
                                            00000010
                                                          CSM64001.....
            F0C1C1C1
                       C2C3E2D4
    +0040
                                  0000000
                                            0000000
    +0050
            00000000
                       00000000
                                 00000000
                                            FFFF0000
                                                          . . . . . . . . . . . . . . . .
    +0060
            0000000
                       0000000
                                 0000000
                                            0000000
    +0070
            0000000
                       0000000
                                 0000000
                                            0000000
```

```
ŧ
                                CSM 16K DSPACE64 POOL
 CSMPOOL: 02AEE000
                       20604020 00004000
                                                          P00L.- ... .....
    +0000 D7D6D6D3
                                             00000001
    +0010 00000000
+0020 00000000
                       0000000
                                  00000004
                                             00000000
                                                          . . . . . . . . . . . . . . . .
                       00000000 00000001
                                             03FCC010
    +0030 00000000
+0040 00000000
                       00000004 00000000
03E1B2A4 03E20F60
                                             00000000
                                             00000400
                                                          ....u.S.-...
                                             00000000 | ....y....
    +0050 00000000 0CA80004 00000000
÷
```

CSMBUF

Use CSMBUF to display the following information about a CSM buffer with a specified token:

- Pool control block
- Extent
- Header
- Primary header (if the header in the buffer token is an image header)
- Contents of the buffer (if the buffer itself is dumped)

Operands

CSMTOKEN(buffer_token)

Specifies the token representing the buffer to be displayed. This operand is required. The buffer token can be obtained from the following VIT records:

XBUF VIT option:

- XBA2
- XBI2

CSM trace option:

- ASN2
- CHG2
- CPY3
- CPY4
- FIX2
- FRB2
- GTB3
- PAG2

Use the following syntax as an alternative to the panel interface.

Syntax

```
► CSMBUF — CSMTOKEN — ( — buffer_token — ) →
```

Equated symbol

Symbol

Description

IVTDSPACE

The last CSM data space buffer processed

Sample output

```
CSMBUF CSMTOKEN (03E2063003E206B000000000)
                            CSMBUF Analysis
     4K ECSA
                 P00L
CSMP00L: 03B45000
                    20608000
         D7D6D6D3
                              00001000
                                         00000002
                                                     P00L.-....
   +0000
   +0010
          00000040
                    00000035
                              80000008
                                         00000010
                                                     ... ..........
   +0020
          03E20630
                    03B14A80
                              00000002
                                         02196010
                                                     .S....-.
   +0030
          00000000
                    00000040
                              0000000
                                         00000000
                                                     ...... .......
                    03E1B278
                              03EC3D58
   +0040
          00000000
                                         00000100
   +0050
          00000040
                    01100001
                              03E20630
                                         00000000
                                                     ... ....S.....
CSMEXT: 03E20630
   +0000
          C5E7E340
                    05800000
                              03F1AA80
                                         00000000
                                                     EXT .....
   +0010
          03B45000
                    0000000
                              0000000
                                         0000000
   +0020
          00000000
                    03B35000
                              03B44FFF
                                         00000010
                                                     ......&......
   +0030
          00000005
                    00000000
                              00010000
                                         00000010
   +0040
                    00000000
                                         00000000
          00000000
                              00000000
   +0050
          00000000
                    00000000
                              00000000
                                         FFE00000
   +0060
          0000000
                    0000000
                              0000000
                                         0000000
   +0070
          0000000
                    0000000
                              0000000
                                         0000000
                                                     . . . . . . . . . . . . . . . . .
CSMHDR: 03E206B0
   +0000
          C8C4D940
                    00502080
                              00020000
                                         0000000
                                                     HDR .&....
          0000000
                                                    .....&..S.....
   +0010
                    03B35000
                              03E206B0
                                         00000000
   +0020
          00000000
                    00000000
                              00000000
                                         00000000
   +0030
          B5568781
                    8255488A
                              00000001
                                         00000001
                                                     ..gab......
   +0040
          00000000
                    0000000
                              01000100
                                         0000000
DATA: 03B35000
   +0000
                    00E00000
          00000000
                              00000015
                                         00000014
                                                     . . . . . . . . . . . . . . . . . . .
   +0010
          00000080
                    0FFC0001
                              00000000
                                         81010001
                                                    ....a...a...
   +0020
          0000000
                    0000000
                              00240040
                                         00004005
                                                     . . . . . . . . . . . . . . .
   +0030
          0001010A
                    0000000
                              0000000
                                         01000040
                                                     ... F.M.....
   +0040
                    C608D400
                              00000000
                                         0000FF00
          00000040
   +0050
          168765E5
                    0000013
                              0004000D
                                         0000000
                                                     .g.V.....
   +0060
          00000173
                    03225902
                              0000000
                                         0000000
   +0070
                                         00000000
          050E0000
                    00010001
                              000000CC
                                                     ....NETA.SSCP1A.
   +0080
          00000000
                    D5C5E3C1
                              4BE2E2C3
                                         D7F1C100
                                                     .....B....
   +0090
          00000000
                    00000000
                              6012C20A
                                         80000000
   +00A0
          03000000
                    0010440B
                              D5C5E3C1
                                         4BE2E2C3
                                                      ....NETA.SSC
                                                     P1A....
   +00B0
          D7F1C100
                    000C450A
                              80000000
                                         0201083B
   +00C0
                                                     .....NETA
          18054803
                    800F1646
                              1480150B
                                         D5C5E3C1
   +00D0
          4BE2E2C3
                    D7F2C121
                              8000001
                                         16470000
                                         014C0080
   +00E0
          0002888D
                    00000000
                              00000000
                                                     ..h...........
   +00F0
          80800548
                    03800F01
                              0000000
                                         81010001
                                                     ....a...a...
                              00240052
   +0100
          0000000
                    0000000
                                         00005205
                                                     . . . . . . . . . . . . . . . . . . .
   +0110
          0001010A
                    0000000
                              0000000
                                         01000052
                                                     . . . . . . . . . . . . . . . .
   +0120
                    C608D400
                                                     ....F.M.....
          00000120
                              00000000
                                         0000FF00
                                                     .g.U....
   +0130
          168765E4
                    00000011
                              3C04000D
                                         00000012
   +0140
          000000B9
                    03228520
                              00047520
                                         0000000
                                                     ....e....
   +0150
                    00010001
                              00000173
                                         0000000
          050E0000
                                                     . . . . . . . . . . . . . . . .
   +0160
          0000000
                    5D000000
                              0000000
                                         0000001
                                                     . . . . ) . . . . . . . . . . . . . .
                                         00000000
   +0170
          83010000
                    00070000
                              00000000
                                                     c.....
   +0180
          0000000
                    0000000
                              0000000
                                         0000000
          00000000
                    0000000
                              0000000
                                         0000000
                                                   | ......
```

CSMCMPID

Use CSMCMPID to display the addresses of all CSM buffers currently used by a specific component ID or by all component IDs.

This command summarizes each buffer currently owned by the specified component ID for each pool size and type combination and lists the following information:

- The pool
- One line for each extent (with data space name)
- One line for each buffer (both the primary and image headers are searched)

• The total number of buffers in each pool with that component ID

Only the pools that have been created are displayed.

Note: This command does not use the old component IDs of the buffers to list them.

In the extent line, if the buffers are in a data space pool, the data space name is shown in the **DSPNAME** field. If the buffers reside in ECSA, then the **DSPNAME** field is labeled N/A.

In the buffer line, if the buffer address is in an image header, the primary header address is shown in the **PHDR** field.

Operands

CSMCOMP(component_identifier)

Specifies the component identifier (compid). The component ID must be two hexadecimal characters in the form X'nn'. If not specified, defaults to all component IDs.

CSMOWNID(owner_identifier)

Specifies the owner identifier of the buffer. The owner ID is the address space identifier (ASID). The owner ID must be two to four hexadecimal characters in the form X'nn'. If less than four characters, the owner ID is padded on the left with zeros.

ALLCMPID

When ALLCMPID is specified with the DETAIL operand, all component IDs with buffers are displayed. When ALLCMPID is specified without the DETAIL operand, the summary of all component IDs with the buffers is displayed for all CSM pools.

The default is ALLCMPID without DETAIL.

Syntax

Equated symbol

Symbol

Description

IVTDSPACE

The last CSM data space buffer processed

```
CSMCMPID CSMCOMP(01)

CSMCMPID Analysis

CSM 4K ECSA Pool 0CD03000 for Component ID 01

EXT 0DC6C4B8 DSPNAME N/A
HDR 0DC6C588 PHDR N/A COMPID 00000001 USER 00000000 BUF 0CCF4000
HDR 0DC6C628 PHDR N/A COMPID 00000001 USER 00000000 BUF 0CCF5000
HDR 0DC6C678 PHDR N/A COMPID 00000001 USER 000000000 BUF 0CCF6000
```

```
Number of primary buffers owned by compid 03 in 4K ECSA pool: 263
Number of _image_ buffers owned by compid 02 in 4K ECSA pool: 84
```

This output is repeated for all buffer pools with buffers.

```
CSMCMPID ALLCMPID

CSMCMPID Analysis

CSM ALL COMPID Summary

CSM 4K ECSA Pool 2B4E6000 for Component ID ALL

Number of primary buffers owned by COMPID 20 in 4K ECSA pool: 1

Number of _image_ buffers owned by COMPID 20 in 4K ECSA pool: 0

Number of primary buffers owned by COMPID 94 in 4K ECSA pool: 15

Number of _image_ buffers owned by COMPID 94 in 4K ECSA pool: 51

Number of primary buffers owned by COMPID B1 in 4K ECSA pool: 121

Number of _image_ buffers owned by COMPID B1 in 4K ECSA pool: 560
```

This output is repeated for all buffer pools with buffers.

CSMOWNER

Use CSMOWNER to display the addresses of all CSM buffers owned by a specific user.

This command summarizes each buffer owned by the specified owner ID for each pool size and type combination. First, the pool is listed, then one line for each buffer (both the primary and image headers are searched), then a total showing how many buffers the owner owns in each pool. Only the pools which have been created are displayed.

In the buffer line, if the buffer address is in an image header, the primary header address is shown in the **PHDR** field. Otherwise, the **PHDR** field is labeled N/A. If the buffer is in a data space pool, the data space name is shown in the **DSPNAME** field. If the buffer resides in ECSA, then the **DSPNAME** field is labeled N/A.

Operands

CSMOWNID(owner_identifier)

Specifies the owner ID of the storage pool. The owner ID is the address space identifier (ASID). This is a required operand. The owner ID must be 2 - 4 hexadecimal characters in the form X'nn'. If less than 4 characters, the owner ID is padded on the left with zeros.

Use the following syntax as an alternative to the panel interface.

Syntax

```
► CSMOWNER — — CSMOWNID — ( — owner_identifier — ) →
```

Equated symbol

Symbol

Description

IVTDSPACE

The last CSM data space buffer processed

```
CSMOWNER CSMOWNID(0002)
                                      CSMOWNER Analysis
CSM 4K ECSA Pool 03B45000 for Owner ID 0002
EXT 03E20630 HDR 03E206B0 PHDR N/A BUF 03B350
                                                BUF 03B35000 DSPNAME N/A
EXT 03E20630 HDR 03E20700 PHDR N/A
                                                   BUF 03B36000 DSPNAME N/A
                                              BUF 03B37000 DSPNAME N/A
BUF 03B38000 DSPNAME N/A
BUF 03B39000 DSPNAME N/A
BUF 03B3A000 DSPNAME N/A
EXT 03E20630 HDR 03E20750 PHDR N/A
EXT 03E20630 HDR 03E207A0 PHDR N/A
EXT 03E20630 HDR 03E207F0 PHDR N/A
EXT 03E20630 HDR 03E20840 PHDR N/A
                                                  BUF 03B3B000 DSPNAME N/A
EXT 03E20630 HDR 03E20890 PHDR N/A
                                              BUF 03B3C000 DSPNAME N/A
BUF 03B3D000 DSPNAME N/A
BUF 03B3E000 DSPNAME N/A
BUF 03B3F000 DSPNAME N/A
EXT 03E20630 HDR 03E208E0 PHDR N/A EXT 03E20630 HDR 03E20930 PHDR N/A
EXT 03E20630 HDR 03E20980 PHDR N/A
EXT 03E20630 HDR 03E209D0 PHDR N/A
Number of primary buffers owned by 0002 in CSM
Number of _image_ buffers owned by 0002 in CSM
                                                                4K ECSA
                                                                                pool:
                                                                                                   11
                                                                4K ECSA
                                                                                pool:
CSM 16K ECSA Pool 03B01000 for Owner ID 0002
Number of primary buffers owned by 0002 in CSM 16K ECSA
                                                                                pool:
                                                                                                    0
Number of _image_ buffers owned by 0002 in CSM 16K ECSA
                                                                                pool:
                       Pool 03AFE000 for Owner ID 0002
CSM 32K ECSA
Number of primary buffers owned by 0002 in CSM 32K ECSA
                                                                                                    0
                                                                                pool:
Number of _image_ buffers owned by 0002 in CSM 32K ECSA
                                                                                pool:
                                                                                                    0
CSM 60K ECSA Pool 03AFB000 for Owner ID 0002
Number of primary buffers owned by 0002 in CSM 60K ECSA
                                                                                                    0
                                                                                 :loog
Number of _image_ buffers owned by 0002 in CSM 60K ECSA
                                                                                                    0
                                                                                pool:
      4K DSPACE31 Pool 032F3000 for Owner ID 0002
Number of primary buffers owned by 0002 in CSM 4K DSPACE31 pool:
Number of _image_ buffers owned by 0002 in CSM 4K DSPACE31 pool:
                                                                                                    0
                                                                                                    0
      16K DSPACE31 Pool 02AEB000 for Owner ID 0002
Number of primary buffers owned by 0002 in CSM 16K DSPACE31 pool:
                                                                                                    0
Number of _image_ buffers owned by 0002 in CSM 16K DSPACE31 pool:
                                                                                                    0
CSM 32K DSPACE31 Pool 02AE5000 for Owner ID 0002
Number of primary buffers owned by 0002 in CSM 32K DSPACE31 pool: Number of _image_ buffers owned by 0002 in CSM 32K DSPACE31 pool:
                                                                                                    0
                                                                                                    0
CSM 60K DSPACE31 Pool 02ADF000 for Owner ID 0002
Number of primary buffers owned by 0002 in CSM 60K DSPACE31 pool:
                                                                                                    0
Number of _image_ buffers owned by 0002 in CSM 60K DSPACE31 pool:
                                                                                                    0
CSM 180K DSPACE31 Pool 02ADC000 for Owner ID 0002
Number of primary buffers owned by 0002 in CSM 180K DSPACE31 pool:
                                                                                                    0
Number of _image_ buffers owned by 0002 in CSM 180K DSPACE31 pool:
       4K DSPACE64 Pool 03AF8000 for Owner ID 0002
EXT 03B14500 HDR 03B14580 PHDR N/A BUF 032F8000 DSPNAME CSM64001 EXT 03B14500 HDR 03B145D0 PHDR N/A BUF 032F9000 DSPNAME CSM64001
EXT 03B14500 HDR 03B14620 PHDR N/A
                                                  BUF 032FA000 DSPNAME CSM64001
                                                  BUF 032FB000 DSPNAME CSM64001
BUF 032FC000 DSPNAME CSM64001
EXT 03B14500 HDR 03B14670 PHDR N/A
EXT 03B14500 HDR 03B146C0 PHDR N/A
                                                  BUF 032F0000 DSPNAME CSM64001
BUF 032F0000 DSPNAME CSM64001
BUF 032FF000 DSPNAME CSM64001
EXT 03B14500 HDR 03B14710 PHDR N/A
EXT 03B14500 HDR 03B14760 PHDR N/A
EXT 03B14500 HDR 03B147B0 PHDR N/A
                                                  BUF 03300000 DSPNAME CSM64001
BUF 03301000 DSPNAME CSM64001
BUF 03302000 DSPNAME CSM64001
BUF 03303000 DSPNAME CSM64001
EXT 03B14500 HDR 03B14800 PHDR N/A
EXT 03B14500 HDR 03B14850 PHDR N/A
EXT 03B14500 HDR 03B148A0 PHDR N/A
EXT 03B14500 HDR 03B148F0 PHDR N/A
EXT 03B14500 HDR 03B14940 PHDR N/A
                                                  BUF 03304000 DSPNAME CSM64001
                                                   BUF 03305000 DSPNAME CSM64001
EXT 03B14500 HDR 03B14990 PHDR N/A
                                                   BUF 03306000 DSPNAME CSM64001
EXT 03B14500 HDR 03B149E0 PHDR N/A
EXT 03B14500 HDR 03B14A30 PHDR N/A
                                                   BUF 03307000 DSPNAME CSM64001
Number of primary buffers owned by 0002 in CSM
Number of _image_ buffers owned by 0002 in CSM
                                                               4K DSPACE64 pool:
                                                                                                   16
                                                                4K DSPACE64 pool:
CSM 16K DSPACE64 Pool 02AEE000 for Owner ID 0002
Number of primary buffers owned by 0002 in CSM 16K DSPACE64 pool:
Number of _image_ buffers owned by 0002 in CSM 16K DSPACE64 pool:
                                                                                                    0
CSM 32K DSPACE64 Pool 02AE8000 for Owner ID 0002
Number of primary buffers owned by 0002 in CSM 32K DSPACE64 pool: Number of _image_ buffers owned by 0002 in CSM 32K DSPACE64 pool:
                                                                                                    0
```

```
CSM 60K DSPACE64 Pool 02AE2000 for Owner ID 0002

Number of primary buffers owned by 0002 in CSM 60K DSPACE64 pool: 0

Number of _image_ buffers owned by 0002 in CSM 60K DSPACE64 pool: 0
```

CSMPOOL

Use CSMPOOL to display the CSM control blocks for a specific size and type of CSM storage pool.

This command shows the pool control block, extents, and the list of ASIDs of the registered users of this pool. You can optionally request the primary headers of the registered users of the pool.

Operands

CSMTYPE(DSPACE|ECSA|HVCOMM)

Specifies the type of storage to be displayed. The DSPACE option displays storage from 31-bit backed and 64-bit backed CSM data space. The ECSA option displays storage from CSM extended common service area (ECSA). The HVCOMM option displays storage from the high virtual common (HVCOMM) storage above the bar. CSMTYPE is a required operand.

CSMSIZE(4K|16K|32K|60K|180K)

Specifies the size of the storage pool to be displayed. This is a required operand.

DETAIL | NODETAIL

Specifies the level of detail to be displayed for the CSM storage pool. Enter DETAIL to display the entire contents of the CSM storage pool. If the DETAIL option is selected, the primary headers are also shown. The default is NODETAIL.

Use the following syntax as an alternative to the panel interface.

Syntax

Equated symbol

Symbol

Description

IVTDSPACE

The last CSM data space buffer processed

```
CSMPOOL CSMSIZE(4K) CSMTYPE(DSPACE) DETAIL

CSMPOOL Analysis

CSM 4K DSPACE31 POOL

CSMPOOL: 16E3D000
```

```
+0000
            D7D6D6D3
                       20684000
                                  00001000
                                             00000001
                                                         P00L.. .....
     +0010
             00000040
                       00000040
                                  80000008
                                             00000010
                       16E3B2F0
     +0020
             16E3C978
                                  0000001
                                             173BA790
                                                          .TI..T.0....x.
             0000000
                       00000040
     +0030
                                  00000000
                                             00000000
                                                         . . . . . . . . . . . . . . . . . . .
     +0040
             00000000
                       173B62DC
                                  173D1B78
                                             00000100
                                                          .... TI.....
     +0050
             00000040
                       06900001
                                  16E3C978
                                             0000000
     +0060
            00000000
                       0000000
                                                         . . . . . . . .
  CSMEXT: 16E3C978
     +0000
                       06800000
            C5E7E340
                                  16E3C2F0
                                             0000000
                                                         EXT .....TB0....
     +0010
             16E3D000
                       01FF0016
                                  80006200
                                             000000B2
                                                          .T}.....
     +0020
            00000002
                       00001000
                                  00010FFF
                                             00000010
                                                          . . . . . . . . . . . . . . . .
     +0030
             00000010
                       00000000
                                  00010000
                                             00000010
                                                          CSM31002.....
                       F1F0F0F2
     +0040
             C3E2D4F3
                                  00000000
                                             00000000
                       00000000
     +0050
            0000000
                                  0000000
                                             0000000
     +0060
             00000000
                       0000000
                                  0000000
                                             0000000
                                                          . . . . . . . . . . . . . . . .
                       0000000
     +0070
            00000000
                                  0000000
                                             0000000
                                                         . . . . . . . . . . . . . . . .
  CSMHDR: 16E3C9F8
     +0000 C8C4D940
                       00600080
                                  00000000
                                             00000000
                                                         HDR .-...
     +0010
             0000000
                       0000000
                                  0000000
                                             00001000
                                                          . . . . . . . . . . . . . . . .
                                                          .TI8.....
     +0020
            16E3C9F8
                       00000000
                                  0000000
                                             00000000
     +0030
            00000000
                       00000000
                                  00000000
                                             00000000
     +0040
            00000000
                       00000000
                                  00000000
                                             00000000
     +0050
            0000000
                       0000000
                                  01000100
                                             0000000
                                                         . . . . . . . . . . . . . . . .
÷
  CSMEXT: 16E3B978
     +0000 C5E7E340
                       06800000
                                  16E3B2F0
                                             16E3C2F0
                                                         EXT .....T.0.TB0
     +0010
             16E3D000
                       01FF0016
                                  80006200
                                             000000B2
                                                         .T}.....
     +0020
            00000002
                       00021000
                                  00030FFF
                                             00000010
                                                          . . . . . . . . . . . . . . . .
            00000010
                       00000000
                                  00010000
     +0030
                                             00000010
     +0040
             C3E2D4F3
                       F1F0F0F2
                                  0000000
                                             0000000
                                                         CSM31002.....
     +0050
            00000000
                       00000000
                                  0000000
                                             0000000
     +0060
            0000000
                       0000000
                                  0000000
                                             0000000
                                                         . . . . . . . . . . . . . . . .
     +0070
            00000000
                       00000000
                                  0000000
                                             00000000
                                                         . . . . . . . . . . . . . . . .
  CSMHDR: 16E3B9F8
     +0000 C8C4D940
                       00600080
                                  0000000
                                             0000000
                                                         HDR .-...
     +0010
            00000000
                       0000000
                                  0000000
                                             00021000
                                                          . . . . . . . . . . . . . . . .
                                                          .T.8.....
     +0020
            16F3B9F8
                       00000000
                                  00000000
                                             00000000
                       00000000
                                  00000000
                                             00000000
     +0030
            00000000
     +0040
             0000000
                       0000000
                                  0000000
                                             0000000
                                                          . . . . . . . . . . . . . . . .
            00000000
     +0050
                       0000000
                                  01000100
                                             0000000
                                                         . . . . . . . . . . . . . . . .
Ė
 Users of CSM
                4K DSPACE31 Pool:
     002E
                                      4K DSPACE64 POOL
                                CSM
  CSMP00L: 16E42000
     +0000 D7D6D6D3
                       20684020
                                  00001000
                                            00000003
                                                         P00L.. .....
            00000460
                       00000025
                                  80000008
     +0010
                                             00000020
                                                          .U...........\
     +0020
            16F41978
                       15ED3378
                                  00000003
                                             1711B0F0
     +0030
            00000000
                       00000048
                                  160CC43C
                                             00000010
     +0040
             160CC000
                       173B62F0
                                  173D1C20
                                             00000100
                                                         ......0......
                                                         .....U....p.
     +0050
            00000040
                       0B980001
                                  16E41978
                                             00000029
            00000000
                       00000000
     +0060
  CSMEXT: 16E41978
     +0000 C5E7E340
                       06800000
                                             0000000
                                  16E412F0
                                                         EXT .....U.0....
            16E42000
     +0010
                       01FF0015
                                  80006300
                                             000000B1
                                                          .U....
     +0020
            00000001
                       00001000
                                  00010FFF
                                             00000010
     +0030
             00000002
                       0000000
                                  00010000
                                             00000010
                                                         CSM64001.....
     +0040
             C3E2D4F6
                       F4F0F0F1
                                  0000000
                                             0000000
             0000000
                       0000000
                                  0000000
     +0050
                                             FFFC0000
                                                          . . . . . . . . . . . . . . . .
             00000000
                       00000000
                                  00000000
                                             00000000
     +0060
                                                          . . . . . . . . . . . . . . . .
     +0070
            0000000
                       0000000
                                  0000000
                                             0000000
÷
  CSMEXT: 16E412F0
                       06800000
                                                         EXT .....U...U...
     +0000
            C5E7E340
                                  16E40978
                                             16E41978
     +0010
            16E42000
                       01FF0015
                                  80006300
                                             000000B1
            00000001
     +0020
                       00011000
                                  00020FFF
                                             00000010
                                                          . . . . . . . . . . . . . . . . .
                                             00000010
     +0030
             00000010
                       0000000
                                  00010000
                                                         CSM64001.....
     +0040
            C3F2D4F6
                       F4F0F0F1
                                  00000000
                                             00000000
     +0050
            0000000
                       00000000
                                  0000000
                                             0000000
     +0060
            0000000
                       00000000
                                  00000000
                                             00000000
```

```
CSMHDR: 16E41370
                                  00000000 | HDR .-...
    +0000 C8C4D940
                  00600080
                          00000000
                  00000000
                                   00011000
    +0010
         00000000
                          00000000
                                   00000000
    +0020
         16E41370
                  A008000
                          0000000A
                                             .U....
    +0030
         00000000
                  00000000
                          C9F45F27
                                   964C38C6 | .....I4^.o<.F
                          00000000 00000000 | ...2E02.....
01000100 00000000 | ....2E02.....
    +0040
         00000023
                  F2C5F0F2
         00000000
                  0000000
    +0050
ŧ
Users of CSM
            4K DSPACE64 Pool:
   0030 002E
```

Sample output of HVCOMM pool:

```
CSMPOOL CSMSIZE(4K) CSMTYPE(HVCOMM) DETAIL
                             CSMPOOL Analysis
                             CSM
                                  4K HVCOMM
                                                P00L
CSMP00L: 44788000
   +0000 D7D6D6D3 10690800 00001000
                                        00000006
          00000600 000000A8 00000004 00000100 | .....y.....
   +0010
  +0060
          00000400 00000117
CSMEXT: 44781F78
   +0000 C5E7E340 60800000 42A6FF78 00000000 | EXT -...w.....
   +0010
          44788000
                    0000000
                               00000000
                                         0000000
   +0020
          00000000 FFFFFFF
                               00000000 00000100
                               00100000 00000100
000001EF 852FFFF
   +0030
          00000000
                    00000000
   +0040
                    85200000
          000001EF
   +0050
          00000000 00000000 00000000 FFFFFFF | .......
   +0060
          FFFFFFF
                    FFFFFFF
                               FFFFFFF
                                         FFFFFFF
                                                     . . . . . . . . . . . . . . . .
   +0070 FFFFFFF FFFFFFF FFFFFFF 00000000 | ......
CSMHDR: 44781FF8
   +0000 C8C4D940 006020A0 00120000 000000000 | HDR .-....
   +0010
          00000000
                    00000000
                               000001EF
                                         85200000
                                                    | ....e..e.
   +0020 44781FF8 00000001 00000001 4494C2D4
                                                     ...8.....mBM

        00000000
        00000000
        CD88D3DB
        4320E456
        | .....hL..U.

        00002190
        7F10B010
        0000000A
        0000000A
        | .........

        00000000
        00000000
        01000100
        00000009
        | ........

   +0030
   +0040
   +0050
          Users of CSM
               4K HVCOMM Pool:
    0020 0012
```

FINDDSIB

Use FINDDSIB to scan the ATCVT DSSIB queue for DSSIBs that meet specified selection criteria. The following information are displayed for each DSSIB selected:

- DSSIB address
- Procedure correlation identifier (PCID) of the request
- Owning SSCP name
- Real name of the destination logical unit
- · Real network ID of the destination logical unit
- Alias name of the destination logical unit
- Alias network ID of the destination logical unit

· Adjacent SSCP in the originating direction

FINDDSIB has no required selection operands. If you enter no value for all selection operands, all DSSIBs are eligible for selection.

To select specific DSSIBs, you may enter a value for any of the selection operands below. All entered values must be present in the correct position within a DSSIB for it to be selected. For example, if you specify both a real name and an alias name, only DSSIBs with the specified real name in the RNAME position and the specified alias name in the ALIAS position are eligible for selection.

If you enter no value for a selection operand, DSSIBs with any value in that position are eligible for selection.

Use the Process positional operand to set the number of eligible DSSIBs that will actually be selected and displayed (all of them or just the first one encountered).

Operands

PCID

Specify 2–16 hexadecimal digits in the form X'x...' for the PCID associated with the DSRLST request. Specify an even number of digits, otherwise the high-order 4 bits are assumed to be 0. If the PCID entered is fewer than 16 digits, then it is right-aligned, and a match occurs with all DSSIBs with PCIDs whose rightmost digits match the specified digits. The specified PCID is not padded with any characters.

Owning SSCP

The owning SSCP name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Real name

The real name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Real network ID

The real network ID should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Alias name

The alias name of the DLU resource should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Alias network ID

The alias network ID of the DLU resource should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Adjacent SSCP

The adjacent SSCP in the originating direction should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Process

Use First to display the first DSSIB that meets the selection criteria. Otherwise, all DSSIBs that meet the selection criteria are displayed.

Routing in progress

Use Check RTIP to display only DSSIBs that indicate "routing in progress" ("routing in progress" is indicated when bit DSSRTIP is on). Otherwise, FINDDSIB does not check for "routing in progress" (that is, the DSSRTIP bit is ignored).

Use the following syntax as an alternative to the panel interface.

Syntax

Sample output

FINDDSIB							
DSSIB	PCID	FINDDSIB A OSSCP	nalysis RNAME	NRNID	ALIAS	ALNID	ASSCP
DSSIBs pr	F0871BD0A7E3DF8 cocessed: atching search c		TS0105	XYZNET 1 1	TS0105	XYZNET	ABCNET

FINDSIB

Use FINDSIB to scan a queue of SIBs for those that meet specified selection criteria. The following items are displayed for each SIB selected:

- SIB address
- Initiation finite state machine (SIBFSMIN)
- Termination finite state machine (SIBFSMTM)
- PLU NetID name
- PLU name
- · SLU NetID name
- · SLU name
- · PLU network address
- · SLU network address
- Procedure correlation identifier (PCID)

FINDSIB has no required operands. If you enter no values for all selection operands, all SIBs on the ATCVT SIB queue are eligible for selection.

To scan an SIB queue other than the ATCVT SIB queue (such as the primary or secondary SIB queue off of an RDTE), you must specify a primary or secondary SIB queue. Specify only one queue. If both a primary queue and a secondary queue are specified, only the secondary queue will be used.

To select specific SIBs, enter a value for any of the selection operands below. All values entered must be present in the correct position within the SIB for it to be selected. If you select both PLU Name and PCID, only SIBs with the specified PLU Name in the PLUNAME position and the specified PCID in the PCID position are eligible for selection.

Note: You might need to find SIBs for a resource but do not know whether the resource is the PLU or SLU. In this special case, you can specify the resource name for both the PLU name and the SLU name, and if the resource name is found in either one, a match occurs. The SES function can also be used to find all sessions for a specified resource name.

If you enter no value for a selection operand, SIBs with any value in that position are eligible for selection from the specified SIB queue.

Use the Process operand to set the number of eligible SIBs that will actually be selected and displayed (all of them or just the first one encountered).

Operands

PLU name

The PLU name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

PLU NetID

The PLU network ID should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

SLU name

The SLU name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

SLU NetID

The SLU network ID should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

PCID

Specify 2–16 hexadecimal digits in the form X'x...' for the PCID. Specify an even number of digits, otherwise the high-order 4 bits are assumed to be 0. If the PCID entered is fewer than 16 digits, then it is right-aligned, and a match occurs with all SIBs with PCIDs whose rightmost digits match the specified digits. The specified PCID is not padded with any characters.

PLU network address

Specify 1–12 hexadecimal digits in the form X'x...' for the network address of the PLU. If you specify fewer than 12 digits, FINDSIB selects a network address whose rightmost digits match the specified digits.

```
Example: Subarea 12 Input = 1204BC Dump Data = 0000001204BC Element 04BC
```

SLU network address

Specify 1–12 hexadecimal digits in the form X'x...' for the network address of the SLU. If you specify fewer than 12 digits, FINDSIB selects a network address whose rightmost digits match the specified digits.

```
Example: Subarea A Input = A1123 Dump Data = 00000000A0123 Element 0123
```

Note: The following three operands, Displacement 1, Value 1, and Value 1 Type, must be specified together. They allow any field in an SIB to be checked for a user-specified value.

Displacement 1

Enter the displacement into the SIB where Value 1 is to be found. The maximum decimal displacement is 4095, and the maximum hexadecimal displacement is X'FFF'.

Value 1

Only SIBs containing this character, hex, or binary value at the displacement specified in Displacement 1 are selected.

Value may contain character or hexadecimal data of 1–8 bytes in length. Hexadecimal data should contain an even number of up to 16 hexadecimal digits in the form X'xx...', otherwise the high order 4 bits are assumed to be 0.

Binary data can be used to look at a particular bit within a byte. You may specify 1 byte of binary data in the form X'xx'. Only 1 bit within the byte may be selected. Therefore, you can specify only the following hexadecimal values: 01, 02, 04, 08, 10, 20, 40, and 80. A value with more than 1 bit set (for example, 82) will not be accepted. If you want to test 2 bits within the same byte, you must use Displacement 2, Value 2, and Value 2 Type, as well as Displacement 1, Value 1, and Value 1 Type.

Value 1 Type

Enter B for binary, C for character, or X for hexadecimal to indicate the type of data entered for Value 1.

Note: The following three operands, Displacement 2, Value 2, and Value 2 Type, are used together.

Displacement 2

Same as **Displacement 1**.

Value 2

Same as Value 1.

Value 2 Type

Same as Value 1 Type.

Note: If both (Displacement 1, Value 1, Value 1 Type) and (Displacement 2, Value 2, Value 2 Type) are specified, both sets of conditions must be met for a SIB to be selected.

You may specify only one queue, Primary SIB, or Secondary SIB.

Primary SIB

Enter the address of an SIB on the primary SIB queue off of an RDTE. The address must be 1–8 hexadecimal digits in the form X'x...'. If the address specified is fewer than eight digits, it is padded on the left with zeros.

Secondary SIB

Enter the address of an SIB on the secondary SIB queue off of an RDTE. The address must be 1–8 hexadecimal digits in the form X'x...'. If the address specified is fewer than eight digits, it is padded on the left with zeros.

Note: If All is specified for Primary SIB or Secondary SIB, all elements from the first match are considered regardless of the address.

Process

Use First to display the first SIB that meets the selection criteria. Otherwise, all SIBs that meet the selection criteria are displayed.

Note: Scanning the entire SIB queue can take a long time.

Use the following syntax as an alternative to the panel interface.

Syntax

FNDADJCP

FNDADJCP scans all of the partner nodes that have CP-CP sessions with this host for the given resource. If a resource is not provided, all partner nodes are displayed.

FNDADJCP has no required operands. If you do not enter a resource name, all ACPCB control blocks are formatted.

Operands

Network ID

The network ID should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Resource name

The resource name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Use the following syntax as an alternative to the panel interface.

Syntax

FNDADJCP					
		F	NDADJCP An	alysis	
ACPCB: 06' +0000 +0010 +0020 +0030 +0040 +0050 +0060	9EF200 40C1C3D7 F8F8F3C1 00000000 00000000 00000000 00000000 0000	D5C5E3E9 00040008 00000000 00000000 00000000 00000000	40404040 00000000 00000000 00000000 4000000	C1F0F4D7 069EF4D0 00000000 00000000 4000000C 000000000	ACPNETZ A04P 883A4}
ACPCB: 06' +0000 +0010 +0020 +0030 +0040 +0050 +0060	9EF4D0 40C1C3D7 F8F8F7C1 00000000 00000000 00000000 00000000 0000	D5C5E3C1 00040008 00000000 00000000 00000000 00000000	40404040 069EF200 00000000 00000000 00000000 4000000 10000000	C1F0F4D7 069EF458 00000000 00000000 4000000C 000000000	ACPNETA A04P 887A24.

FNDANDCB

Use FNDANDCB to help diagnose problems with CP-CP sessions between this host and adjacent nodes. For a particular resource, FNDANDCB finds and formats the ISTANDCB and ISTCPCAP control blocks.

Operands

Resource name

The resource name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

The resource name is required.

Network ID

The network ID should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Use the following syntax as an alternative to the panel interface.

Syntax

Sample output

FNDCOS

Use FNDCOS to format mode tables, mode table entries, and Class of Service entries found in those mode table entries

FNDCOS formats and displays the following control blocks:

- ISTCSTRU
- ISTMCOSS
- ISTMDTAB
- ISTNDWED
- ISTTGWGT

In order to reduce repetitious output, the control blocks ISTCSTRU, ISTNDWED, and ISTTGWGT will not display for consecutive, identical Class of Service names.

FNDCOS has no required operands.

Operands

Mode table

The name of the mode table should be 1–8 alphanumeric characters.

Mode name

The name of the entry in the mode table should be 1–8 alphanumeric characters.

Class of Service name

The name of the entry in the APPN Class of Service table should be 1–8 alphanumeric characters.

Use the following syntax as an alternative to the panel interface.

Syntax

FNDDECB

Use FNDDECB to format a directory entry and its parent directory entries.

FNDDECB formats and displays the ISTDECB control block.

Operands

Network ID

The network ID should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Note: If you do not specify a network ID, the host network ID will be used to form a fully qualified network name.

Resource name

The resource name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

The resource name is required.

Use the following syntax as an alternative to the panel interface.

Syntax

Sample output

```
FNDDECB RESNAME(A44N)
                            DECB Analysis
  DECB: 068E9158
     +0000 C4C5C3C2 44000004 06BCB7D8 068E9498
                                                   DECB.....Q..mq
     +0010 00010000 C1F4F4D5 40404040
                                        D5C5E3C1
                                                  ....A44N
                                                              NETA
                                                      ...4.....'`.
           40404040 000400F4 07041548
     +0020
                                       067D7968
     +0030 06A4CFC0 A682A447
                              068E90F0
                                                   .u.{wbu....0 ..
                                       40000048
     +0040 06A38BE8 06A63978 06A38B80 06A62D88
                                                  .t.Y.w...t...w.h |
 Parent DECB chain
  DECB: 068E90F0
     +0000
           C4C5C3C2 44000004 06A64E58
                                        06A63B80
                                                   DECB....w+..w..
           00000000 C1F0F2D5 40404040
                                                  ....A02N NETA
     +0010
                                        D5C5E3C1
     +0020
           40404040 000400F6
                              00000000
                                        06CEE788
                                                     ...6....Xh
     +0030
           06A49890 A682A461
                              00000000
                                        40000048
                                                   .uq.wbu/....
           06A38B80 06EE8B80
                                                   .t.....
     +0040
                              00000000
                                        00000000
     +0050
           06C908A8 06C90AB0
                              0000000
                                                  .I.y.I.....
```

FNDENDEL

Use FNDENDEL to help diagnose problems with adjacent end nodes. For a particular resource, FNDENDEL provides the associated ENDEL control block.

FNDENDEL has no required operands. If you do not enter a resource name, all ENDEL control blocks are formatted.

Operands

Network ID

The network ID should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Resource name

The resource name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Use the following syntax as an alternative to the panel interface.

Syntax

Sample output

```
FNDENDEL RESNAME(A04P208A)

FNDENDEL Analysis

ENDEL: 06A41020
+0000 C5D5C4D3 00000000 06A41048 000DD5C5 | ENDL....u...NE |
+0010 E3C14BC1 F0F4D7F2 F0F8C140 40404000 | TA.A04P208A . |
```

FNDLCB

Use FNDLCB to help diagnose problems with directory search requests. For a particular procedure correlation identifier (PCID), FNDLCB finds and formats the following control blocks:

- LCB
- LCB extension
- OSCB
- Original and best reply PLOCBs from the queue of LCB control blocks

FNDLCB has no required operands. If you do not enter a PCID, all control blocks from the previous list are formatted.

Operands

PCID

Specify 1–16 hexadecimal digits in the form X'x...' for the PCID. Specify an even number of digits, otherwise the high-order 4 bits are assumed to be 0. If the PCID entered is fewer than 16 digits, then it is right-aligned, and a match occurs with all LCBs with PCIDs whose rightmost digits match the specified digits. The specified PCID is not padded with any characters.

Use the following syntax as an alternative to the panel interface.

196 z/OS Communications Server: z/OS V2R5.0 Communications Server: SNA Diagnosis Vol 1, Techniques and Procedures

Syntax

Sample output

	FNDLCB	Analysis		
4E90 40D3C3C2 00000000 D3A3D286 F0F4D7F2 00000002 21110000	00000000 00000000 D58FA88F F0F8C100 11100000 00000002	06BE4170 00000000 000DD5C5 00000000 00000000 11000000	00000000 00000000 E3C34BC3 0000000 0000000 0000000	LCB LtKfN.yNETC.C 04P208A
CE3B00 40D7D3D6 00000000 00000000 00000000 00000000	00000000 00000000 00808000 00000000 A4000040	00000000 00000000 00000000 00000000	00000000 00000000 00000000 00000000 D3A3D286	PLO uLtKf
BBC2D8 40D7D3D6 00000000 00000000 0004C1F0 00000000 D58FA88F	00000000 00000000 40C4A000 F1D50000 A0000080 000DD5C5	00000000 00000000 000008B6 00000004 00002110 E3C34BC3	00000000 0000000 0000000 D5C5E3C1 D3A3D286 F0F4D7F2	PLO D A01NNETA Ltkf N.yNETC.CO4P2
06C6E178 D3C3C2C5 00000000 0004D5C5 F1D7F4F8 00000000 00000000	10000000 0008C1F3 E3C10000 F9C10000 0004C1F0 00C00000	0004D5C5 F1C9F4F8 00000000 0004D5C5 F2D50000 068F8A38	E3C10000 F9F20000 0008C1F3 E3C10000 00000000 00000000	LCBENETA A3114892 NETAA3 1P489ANETA A02N
4170 40D3C3C2 00000000 CFA9CD86 F0F4D7F1 00000002 20110000	06BE4E90 00000000 D295A38D F6F5C100 01100000 00000002	06BE4560 00000000 000DD5C5 0000000 0000000 01000000	00000000 00000000 E3C34BC3 0000000 0000000 00000000	LCB+ fKntNETC.C 04P165A
	40D3C3C2 00000000 D3A3D286 F0F4D7F2 00000002 21110000 CE3B00 40D7D3D6 00000000 00000000 00000000 eply BBC2D8 40D7D3D6 00000000 00000000 00000000 D58FA88F 6C6E178 D3C3C2C5 00000000 0004D5C5 F1D7F4F8 00000000 0004D5C5 F1D7F4F8 00000000 0004D5C5 F1D7F4F8 000000000 0004D5C5 F1D7F4F8 00000000000000000000000000000000000	4E90 40D3C3C2 00000000 00000000 00000000 D3A3D286 D58FA88F F0F4D7F2 F0F8C100 00000002 11100000 21110000 000000002 CE3B00 40D7D3D6 00000000 0000000 00000000 00000000 000000	40D3C3C2 00000000 06BE4170 00000000 00000000 00000000 D3A3D286 D58FA88F 000DD5C5 F0F4D7F2 F0F8C100 00000000 00000002 11100000 00000000 21110000 00000002 11000000 CE3B00 40D7D3D6 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 40C4A000 00000004 00000004 00000000 40000000 00000000 00000004 00000000 40000000 00000000 00000000 000000000 40C4A000 0004D5C5 E3C3ABC3 <td>4E90 40D3C3C2 00000000 06BE4170 00000000 000000000 00000000 00000000</td>	4E90 40D3C3C2 00000000 06BE4170 00000000 000000000 00000000 00000000

FNDNDREC

Use FNDNDREC to help diagnose topology and routing problems.

FNDNDREC scans the topology and route selection database for node records matching the given resource for the SINGLE NODE option and formats the NDREC control block.

FNDNDREC also provides summary information output of user-selected criteria.

Operands

Resource name

The resource name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Network ID

The network ID should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

ALLNODES

Displays a summary of all node records.

ALLNN

Displays a summary of all network nodes.

ALLEN

Displays a summary of all end nodes.

ALLCN

Displays a summary of all connection network nodes.

ALI RN

Displays a summary of all border nodes.

ALLICN

Displays a summary of all interchange nodes.

ALLGCI

Displays a summary of all nodes with GCI on.

ALLQUIES

Displays a summary of all nodes with quiescing on.

ALLHPR

Displays a summary of all nodes with base HPR on.

ALLHPRTT

Displays a summary of all nodes with HPRTT on.

Use the following syntax as an alternative to the panel interface.

Syntax

► FNDNDREC →


```
FNDNDREC RESNAME(A04P883A) NETID(NETZ)

FNDNDREC Analysis

NDREC: 068F3A48
+0000 D5C4D9C3 0000002B 000DD5C5 E3E94BC1 | NDRC.....NETZ.A |
+0010 F0F4D7F8 F8F3C140 40404000 40000004 | 04P883A .... |
```

+0020 +0030 +0040 +0050 +0060 +0070 +0080	0000000 0000000 0000000 0000000 0000000	00000000 00000000 00000001 00000000 000000	40000004 00000000 00000000 00000000 12440DD5 00000000	00000000 00000000 00000000 00000000 C5E3E94B 00000000 00000045	NETZ.
+0070	00000000	00000000	12440DD5	C5E3E94B	NETZ.
+0080	C1F0F4D7	F8F8F3C1	00000000	00000000	A04P883A
+00A0	0A800000	0000FF60	13000000	0000000	
+00B0	00000000	00000000	00000000	0000	

FNDNDREC ALLNODES							
Node Name NET000A.M001G NET000A.E502CDRM NET000A.CIESB049 NET000A.CIESB050 NET000A.M802P NET000A.M8020 Total Number of Node	NDRECAddr 1486F2B0 1486F010 1486F470 1486F550 1486F1D0 1486F390 rs found:	NodeType EN EN NN NN NN NN	Time 5 15 5 5 5	SeqNo 00000000 0000000C 00000000 00000000 000000	GCI N N N N N	QUIES N N N N N	HPR NO CONTR NO NO NO

FNDNDWGT

Use FNDNDWGT to help diagnose topology and routing problems.

FNDNDWGT scans the topology and route selection database for node records matching the given resource name. It will go through the node weight control blocks to determine the node weight.

Operands

Origin resource name

The origin resource name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

The origin resource name is required.

Network ID

The network ID should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Class of Service name

The name of the entry in the APPN Class of Service table should be 1–8 alphanumeric characters. If cosname is not specified, the default cosname is #CONNECT.

Use the following syntax as an alternative to the panel interface.

Syntax

Sample output

FNDNDWGT NETID(NET000A) ORESNAME(E502CDRM) COSNAME(#CONNECT)

FNDNDWGT Analysis

NodeName	NDRECAddr	WEIGHT
NET000A.E502CDRM	14B6F010	60

FNDNODE

Use FNDNODE to format one or more APPN adjacent end nodes or adjacent network nodes, or both.

FNDNODE formats and displays the ISTAENCB and ISTANNCB control blocks.

FNDNODE has no required operands.

Operands

Network ID

The network ID should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Note: If you specify a resource name but do not specify a network ID, the host network ID will be used to form a fully qualified network name.

Resource name

The resource name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Type

Enter BOTH to format both end nodes and network nodes. BOTH is the default. Enter EN to format only end nodes. Enter NN to format only network nodes.

Use the following syntax as an alternative to the panel interface.

Syntax


```
ANNCB: 06A4A020
  +0000 D5D5C3C2
                   0000000
                              06A4A2F8
                                       0000000
                                                   NNCB....us8....
                                                   ....NETA.A
  +0010 00000000
                   00000000
                              0009D5C5
                                       E3C14BC1
         F8F1D540
                   40404040
  +0020
                              40404040
                                       05000005
   +0030
         03000006
                    40000000
                              0000000
                                        0000000
         0000000
                              00000027
   +0040
                   00000000
                                        000000A0
   +0050
         068F30E8
                   00000000
                              0000000
                                        0000000
                                                   . . . Y . . . . . . . . . . . .
ANNCB: 06A4A2F8
  +0000 D5D5C3C2
                                                  | NNCB.u....
                   06A4A020
                              0000000
                                        00000000
                                                   .u....NETA.A
   +0010 06A4A020
                   FFFF0000
                              0009D5C5
                                       E3C14BC1
   +0020
         F0F2D540
                   40404040
                              40404040
                                       01000011
                                                  02N
         01000012
                   40000000
                             00000000
  +0030
                                       00000000
   +0040
         00000000
                   00000000
                             00000095
                                       0000009C
   +0050
         068F3278
                   00000000
                              00000000
                                       00000000
```

FNDREREC

Use FNDREREC to format one or more routing node entries including siblings and children.

FNDREREC formats and displays the ISTREREC control block.

FNDREREC has no required operands.

Operands

Network ID

The network ID should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Note: If you specify a resource name but do not specify a network ID, the host network ID will be used to form a fully qualified network name.

Resource name

The resource name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Class of Service name

The name of the entry in the APPN Class of Service table should be 1–8 alphanumeric characters.

Use the following syntax as an alternative to the panel interface.

Syntax


```
Sibling chain
NAME: NETA.A500N
REREC: 06A4F440
                  06A4F5F8
00000000
                                             | TREC.u58....u}&
   +0000 E3D9C5C3
                           068F3020
                                    06A4D050
                                   00D20005 | .....tD..K..
00000000 | ...P.....
   +0010 00000000
                           06A3C480
                  00020000
   +0020 000000D7
                           00000000
   +0030
         00000000
                  00000000
                           00000000
                                    00000000
                                              . . . . . . . . . . . . . . . . . . .
   +0040 00000000
                  00000000
                           00000000
                                    00000000
                                            .....
No children
```

FNDSCCB

Use FNDSCCB to format all ISTLCBs for a specific search concentration control block.

FNDSCCB formats and displays the ISTLCB control block.

Operands

Network ID

The network ID should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Note: If you do not specify a network ID, the host network ID will be used to form a fully qualified network name.

Resource name

The resource name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

The resource name is required.

Use the following syntax as an alternative to the panel interface.

Syntax


```
FNDSCCB RESNAME(B01N)
                             FNDSCCB Analysis
 LCB: 075E2D40
    +0000 40D3C3C2 075BB6B0
                               075E22C0 07258020
                                                   | LCB.$...;.{....
                                                    .;.{....F....
X3x...j...NETB.B
    +0010
           075E22C0
                     00000000
                               0751C640
                                         07521000
    +0020 E7F3A765
                     0E1691B0
                               0009D5C5 E3C24BC2
                                                     01N....
    +0030 F0F1D500
                     00000000
                               00000000
                                         00000000
    +0040 00020001
                     20000000
                               00000000
                                         00000000
    +0050
           00020002
                     00020000
                               20000000
                                         00000000
    +0060
           00000000
                     00020000
                               00020001
                                         20000000
                                                     . . . . . . . . . . . . . .
    +0070
           00000000
                     00000000
                               01000067
                                         0004C2F0
                                                     .....B0
                     00000004
                               D5C5E3C2
                                                     1N.....NETB....
    +0080
           F1D50000
                                         00000000
    +0090
                                                     ....OSCB.....
           80000000
                     D6F2C3C2
                               00000000
                                         00000000
    +00A0
           00000000
                     00000000
                               075E2D40
                                         1000000
    +00B0
           0005C1F5
                     F0F0D500
                               00000004
                                         D5C5E3C1
                                                     ..A500N....NETA
    +00C0
           0000000
                     00000000
                               0000000
                                         00000000
    +0000
           13280000
                     00000000
                               071BAB00
                                         00000000
    +00E0
           00000000
                     00000000
                               00000000
                                         0000000
    +00F0
           00000000
                     00000000
                               00000000
                                         0000000
```

FNDSITCB

Use FNDSITCB to help diagnose problems with the session services for LU-LU sessions. For a particular procedure correlation identifier (PCID), PLU name or network identifier, or SLU name or network identifier, FNDSITCB provides the associated SITCB control block.

FNDSITCB has no required operands. If you enter no values for all selection operands, all SITCB control blocks on the queue are eligible for selection.

Operands

PLU name

The PLU name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

PLU network ID

The name representing the network ID of another network outside the host network where a resource resides should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

SLU name

The SLU name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

SLU network ID

The name representing the network ID of another network outside the host network where a resource resides. SLU Network ID should be 1–8 alphanumeric characters. If it contains fewer than eight characters, the leftmost characters are compared.

PCID

Specify 1–16 hexadecimal digits in the form X'x...' for the PCID. Specify an even number of digits, otherwise the high-order 4 bits are assumed to be 0. If the PCID entered is fewer than 16 digits, then it is right-aligned, and a match occurs with all SITCBs with PCIDs whose rightmost digits match the specified digits. The specified PCID is not padded with any characters.

Note: You might need to find SITCBs for a resource but do not know whether the resource is the PLU or SLU. In this case, you can specify the resource name for both the PLU name and the SLU name, and if the resource name is found in either one, a match occurs.

Use the following syntax as an alternative to the panel interface.

Syntax

Sample output

FNDSITCB

FNDSITCB Analysis

SITCB: 06ACBAA0

```
+0000 E2C9C3C2
                   00000000
                             00D7D5E2
                                      04000000 | SICB.....PNS....
   +0010 00000000
                   00000000
                             86881220
                                      00000000
                                                 .....fh.....
   +0020 00000000
                   00000000
                                                   .....RCF
                             06ACB020
                                      FCD9C3C6
  +0030 FCE2D9D8 FCE2D9D8
                                                  .SRQ.SRQ....SRQ
                             00000000
                                      FCE2D9D8
   +0040 00000000
                   00000000
                             00000000
                                      00000000
   +0050 00000000
                   00000000
                             00000000
                                      00000000
SITCB: 06ACB020
  +0000 E2C9C3C2
                  00000000
                             00D7D5E2
                                      04000000
                                                | SICB.....PNS....
                                                 .....fh.....
......B+..RCF
  +0010 00000000
                   00000000
                                      00000000
                             86881220
   +0020
         00000000
                   06ACBAA0
                             06C24AA0
                                      FCD9C3C6
                                                 .SRQ.SRQ....SRQ
  +0030 FCE2D9D8
                  FCE2D9D8
                             0000000
                                      FCE2D9D8
  +0040
         00000000
                   00000000
                             00000000
                                      0000000
                                                  . . . . . . . . . . . . . . . .
                   00000000
  +0050 00000000
                             00000000
                                      00000000
```

FNDTGREC

Use FNDTGREC to help diagnose topology and routing problems. For an origin control point (CP), FNDTGREC with the DETAIL option formats the NDREC and TGREC control blocks linked between it and the destination control point.

The name of the destination CP is in the TGREC control block. The name of the origin CP is in the NDREC control block and is a required operand for FNDTGREC. The CP name is in the form of a network identifier and a resource name.

FNDTGREC, with the different summary options, provides the formatted origin NDREC control block and the TG records summary.

Operands

Origin resource name

The origin resource name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

The origin resource name is required.

Origin network ID

The origin network ID should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Destination network ID

The destination network ID should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Destination resource name

The destination resource name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

ALLOPER

Displays a summary of all TGs with OPER status.

ALLINOP

Displays a summary of all TGs with INOP status.

ALLGCITG

Displays a summary of all TGs with GCI on.

ALLQUITG

Displays a summary of all TGs with quiescing on.

ALLICTG

Displays a summary of all interchange TGs.

ALLENTG

Displays a summary of all endpoint TGs.

ALLBNTG

Displays a summary of all TGs with the border node indicator on.

ALLICLTG

Displays a summary of all ICL TGs.

ALLIRTG

Displays a summary of all intermediate routing TGs.

ALLBEXTG

Displays a summary of all branch extender TGs.

ALLHPRTG

Displays a summary of all TGs with base HPR only.

ALLHPTTG

Displays a summary of all TGs with HPR Tower.

ALLODDTG

Displays a summary of all TGs with ODD sequence number.

ALLUSATG

Displays a summary of all usable TGs.

ALLTG

Displays a summary of all TGs.

Use the following syntax as an alternative to the panel interface.

Syntax

TG Summary

FNDTGREC ORE	SNAME(N31	7408) ONET	ID(NETA)		
		F	NDTGREC An	alysis	
+0010 +0020 +0030 +0040 +0050 +0060 +0070 +0080 +0090 +0040 +0010 +0020 +0030 +0040 +0050 +0060 +0070 +0080 +0090 +0080 +0080 +0080 +0080 +0080	D5C4D9C3 F3F1F7F4 06A08560 00000000 00000000 00000F40 00000000 D5F3F1F7 0000000 0A800000 00000000	00000024 F0F84040 06A08800 00000000 00000000 00000000 0000000	000CD5C5 40404000 40000000 00000000 00000000 000000	E3C14BD5 40000004 00000000 00000000 00000000 000000	NDRCNETA.N 317408
+0010 +0020 +0030 +0040 +0050 +0060 +0070 +0080	08640 E3C7D9C3 40000004 068F37F0 00000000 00000000 00000000 00000000 0000	06A08560 00000000 068F30E8 00000000 00000000 00000000 00000000 0000	06A08720 00000000 06A07020 00000000 00000000 16470000 204C0000 00000000 12800109 01360000	0F700000 00000024 00000001 00000000 00000000 00260076 00000000 00000000 05C5E3C1 00000000	TGRCeg 0Y

ENDPT

ENDPT

ENDPT

ENDPT

ENDPT

ENDPT

ENDPT

ENDPT

N N N N

```
+00A0
            00000000
                      00000000
                                00000000
                                           00000000
     +00B0
            0000000
                      0000000
                                 0000000
                                           0000000
                                                       . . . . . . . . . . . . . . . .
     +00C0
            0000000
                      0000000
                                 00000000
                                           0000000
                                                       . . . . . . . . . . . . . . . . .
     +00D0
            00000000
                      00000000
FNDTGREC ORESNAME(E502CDRM) ALLOPER
                               FNDTGREC Analysis
  NDREC: 14B6F010
     +0000 D5C4D9C3
                      00000149
                                0010D5C5
                                           E3F0F0F0
                                                       NDRC....N
                                                       A.E502CDRM
     +0010 C14BC5F5
                      F0F2C3C4
                                D9D44000
                                           40000004
           14CF8010
                      14CF8E10
                                40000004
     +0020
                                           14B76038
     +0030 14B76038
                      00000000
                                 00000000
                                           00000000
     +0040 00000000
                      00000000
                                0000000
                                           00000000
     +0050
            00000F08
                      00000001
                                 00000000
                                           00000000
           00000000
     +0060
                      00000000
                                00000000
                                           00000000
     +0070
            00000005
                      00000000
                                 40000004
                                           14B6F0F0
                                                       ..00..0..
     +0080
            14B6F0F0
                      14B6F0FE
                                 00000000
                                           0000000
     +0090 154410D5
                      C5E3F0F0
                                                        ...NET000A.
                                 F0C14BC5
                                           F5F0F2C3
                                                       DRM....
     +00A0
            C4D9D400
                      00000000
                                 00000000
                                           00000000
     +00B0
            00000000
                      00000C45
                                 00000840
                                           000008068
     +00C0
           13180000
                      00000000
                                 00000000
                                           00000000
                                                       . . . . . . . . . . .
     +00D0
            00000000
                      0000
                                                       . . . . . .
                               TG Records Summary
  Dest CPNAME
                    TGRECAdr TGN
                                    STAT
                                          Time
                                                GCI
                                                     QUI
                                                          HPR/T
                                                                 BEX ICL
                                                                            BN
                                                                                TGTYPE
```

FNDTGWGT

Use FNDTGWGT to help diagnose topology and routing problems.

14CF8010

14CF81D0

14CF8550

14CF8710

14CF88D0

14CF8A90

14CF8C50

14CF8E10

OPER

OPER

OPER

OPER

OPER

OPER

OPER

OPER

15

15

15

15

15

15

15

15

N

N

Ν

N

N

N

N

N

N/N

N/N

N/N

N/N

Y/Y

Y/Y

22

21

21

22

22

21

21

22

Operands

Origin resource name

NET000A.M802P

NET000A.M802P

NET000A.M8020

NET000A.M8020

NET000A.CIESB049

NET000A.CIESB050

NET000A.CIESB050

NET000A.CIESB049

Total Number of TG Records found:

The origin resource name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

The origin resource name is required.

Origin network ID

The origin network ID should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Destination network ID

The destination network ID should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Destination resource name

The destination resource name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

Class of Service name

The name of the entry in the APPN Class of Service table should be 1–8 alphanumeric characters.

If cosname is not specified, the default cosname is #CONNECT.

TG_number

The TG number must be a decimal number from 0 - 255. If the TG number is not supplied, it displays all TGs.

Use the following syntax as an alternative to the panel interface.

Syntax

Sample output

```
FNDTGWGT ORESNAME(SSCP1A)

FNDTGWGT Analysis

Note - Reason will be present only if TG weight is 32767 (infinite).
The infinite weight TG can not be used in route calculation.

Dest CPNAME TG Addr TGN TG Weight Reason
NETA.SSCP2A 16B5E2D0 21 32767 INOP
NETA.SSCP2A 16B5E850 22 30
```

HOST

Use HOST to determine the following items for the VTAM host from which a dump was taken:

- Address space ID (ASID)
- CP name
- · CP network address
- Host CDRM name
- Network ID
- Node type
- · SSCP network address
- Whether the CDRM supports CDRSCs
- Whether the SSCP is gateway-capable

This information can provide a valuable point of reference for network problem diagnosis.

Use the following syntax as an alternative to the panel interface.

Syntax

→ HOST →

Equated symbol

Symbol

Description

ATCVT

VTAM ATCVT.

ISTSRTDcdrmname

Derived from the CDRM RDTE for the host. (For example, for cdrmname SSCP1A, the ISTSRTDcdrmname symbol would be ISTSRTDSSCP1A.)

Sample output

```
HOST
                                    HOST Analysis
  NetID
                          NETA
  ASID (Hex)
ASID (Dec)
                          001D
  Subarea (Hex)
                     000000D
                                  Element 0001
  Subarea (Dec)
                            13
                                  Element
  CDRM Name
                          A13N
 This SSCP is gateway capable
This CDRM supports dynamic CDRSCs
  CP Network address 0000000D 0006
                          NETA.A13N
  This is a pure network node
```

HPRIP

Use HPRIP to format control blocks associated with Enterprise Extender support.

Operands

Line name

The line name should be 1–8 alphanumeric characters. If it contains fewer than eight characters, it is padded on the right with blanks.

You can also specify HPRIP without the operand. If you do, you will get the control blocks associated with all of the lines defined in the Enterprise Extender XCA major node.

Use the following syntax as an alternative to the panel interface.

Syntax


```
HPRIP LINEN(LN1A2A)

HPR/IP Analysis

AUVT: 02556018

+0000 C1E4E5E3 025869F0 8253E014 00000000 | AUVT...0b...... |
+0010 82538014 00000000 8258CD34 8258C46C | b.....b...b.D% |
+0020 825894A4 83FB56F8 8258A43C 025C8DF0 | b.muc..8b.u..*.0
```

```
IPNCB: 025869F0
   +0000 16400000 0258BA08 03C9F088 00050000
                                                     | . ......I0h....
   +0010 00000001 00000000 00000000
                                           00000000
   +0170 0256E340 0256E340 00000001 00000001 | ..T ..T
   +0180 10000400 09F94BF1 F84BF5F2 4BF10000 | .....9.18.52.1..
   +0190 00000000 83DAA2BC 83DAA2BC 83DAA2BC ...c.s.c.s.c.
+01A0 83DAA2BC 8258A43C 00000008 0001010E c.s.b.u....
                                                      | ....c.s.c.s.c.s.
   +01B0 00010112 00010112 00000000 E7C3C1F1 .....XCA1
+01C0 C1404040 00000000 00000000 00000000 A .......
+01D0 D7D6D9E3 F1C14040 025555018 204080C0 PORT1A .&...
+01E0 00000000 00004040 2EE42EE3 2EE22EE1 .....U.T.S..
   +01F0 2EE00000 00000000 00000000
UDATA: 02555018
   +0000 01A00000 09123401 E3C3D7C3 E2F64040 | ......TCPCS6
   +0010 2EE00005 82AFC530 00000000 00000000 ....b.E.......
AUNCB FOR LN1A2A
AUNCB: 0256E340
   +0000 15640061 0258BBB8 03C9F088 00050000 | .../.....I0h....
   +0010
          00000001 00000000
                                00000000
                                           00000000
                                                      | ...............
   +0020
          00000000 00000000
                                00000000
                                           02529010
   +0040
          00000000
                     00000000
                                02556040
                                           00000000
                                                      | ....-
   +0050 BA090000 1FF00040 00000000 00000000
                                                     .....0.
```

ISTVABND

ISTVABND determines the following in an MVS dump of a VTAM abend:

- System completion code
- · Program interrupt code
- · Instruction length code
- · Translation exception address
- PSW
- Abnormally ending module name, displacement, PTF level
- · Failing instruction
- · Registers at time of abend
- VTAM save area chain (forward and backward)
- · Symptom string information

IPCS symbols for each register and the PSW address are created. After ISTVABND executes, storage pointed to by the registers and PSW can be accessed by using these IPCS symbols.

The ISTVABND command can also be issued from the panel interface.

Syntax

► ISTVABND →

Equated symbol

Symbols Description

RO, REGO

Register 0

R1, REG1

Register 1

R2, REG2

Register 2

R3, REG3

Register 3

R4, REG4

Register 4

R5, REG5

Register 5

R6, REG6

Register 6

R7, REG7

Register 7

R8, REG8

Register 8

R9, REG9

Register 9

R10, REG10, RA, REGA

Register 10

R11, REG11, RB, REGB

Register 11

R12, REG12, RC, REGC

Register 12

R13, REG13, RD, REGD

Register 13

R14, REG14, RE, REGE

Register 14

R15, REG15, RF, REGF

Register 15

PSW

PSW address

MODULE NAME

Module that called ISTSSCZZ

Note: If the abend was the result of an ABENDOA9 issued by module ISTSSCZZ, the registers at the time of the call to ISTSSCZZ (rather than the registers when ISTSSCZZ issued the ABENDOA9) are used to create the symbols listed above. Also, the module name, displacement, and PTF level of the module that called ISTSSCZZ are displayed.

Additional information

An abend can occur in SRB mode or in TCB mode.

For an MVS dump of an abend in TCB mode, ISTVABND locates the abnormally ending TCB and the RTM2WA. The completion code (system or user) in the TCB is analyzed and displayed. From the RTM2WA, the program interrupt code (PIC), instruction length code (ILC), and translation exception address (TEA) if valid, are analyzed and displayed.

For an abend in SRB mode, there is no RTM2WA. The PIC, ILC, TEA, registers, and PSW are taken from the SDWA, which is found in the MVS FRR stack.

The PSW address is used to determine the abnormally ending module name, displacement, and PTF level. Register 13 (which usually contains a pointer to the abnormally ending module's save area) is used to trace the save area chain forward and backward (by calling ISTVSAVE) to show module linkage.

Symptom string information is obtained from the variable recording area (VRA) of the SDWA.

Sample output

The following information shows a sample of the output from ISTVABND for an ABENDOC4 in module ISTTRTLR.

```
CLIST ISTVABND STARTED AT 09:06:51.
(ISTVABND) THIS DUMP WAS THE RESULT OF AN ABEND IN SRB MODE
SYSTEM COMPLETION CODE = 0C4
PROGRAM INTERRUPT CODE = 0010
                                    INSTRUCTION LENGTH CODE = 0004
PSW AT TIME OF ABEND: 076C2000 82DE96FA
TRANSLATION EXCEPTION ADDRESS = 30580038
THE FAILING INSTRUCTION IS: 43603001
ISTAPCFR-VTAM FRR DUMP
 VTAMMAP input data
 VTFNDMOD SYMBOL(PSW) NNTERNAL
                              ISTTRTLR
Module name:
Compile date:
                              92.224
Compile date:
Address entered:
Module entry point:
                             02DE96FA
                             02DE9558
Displacement into module:
                                   1A2
First '40'X bytes of module: DATA: 02DE9558
    +0000 47F0F014 0FC9E2E3 E3D9E3D3 D940F9F2 | .00..ISTTRTLR 92
    +0010 4BF2F2F4 90ECD00C 05C018FD 5860F000 | .224.Ö}..ξ...-0.
+0020 58D06000 1F99BF97 C40F58A0 C40A187D | .}-..rPpD..μD..'
    +0030 1E791E7A 50706000 5880C3CE 18B714B8 | .`.:&.-...Có.¼.½ |
Storage around address entered:
 DATA: 02DE96E6
    +0000 5840806C 41500002 1E544130 50304190 | . .%.&.....&...
    +0010 00021F66 43603001 1E69D200 30013000 | .....-...K.....
    +0020 42603000 4130504F 1F664360 30011E69 | .-...&|...-...
+0030 D2003001 30004260 30004110 D0681E94 | K.....-...}.m
REGISTERS AT TIME OF ABEND:
REG0 = 82D9FE00 REG1 = 028F8010
                                      REG2 = 000000000 REG3 = 3058003A
                                       REG6 = 00000000
REGA = 00000008
REG4 = B0580008
                    REG5 = B058000A
                                                            REG7 = 00C49D40
                                                            REGB = 00000110
REG8 = 000000002
                   REG9 = 000000002
REGC = 82DE9572
                   REGD = 02EC9EA0
                                      REGE = 82DE974C
                                                            REGF = 000000000
SAVE AREA CHAIN (STARTING WITH SAVE AREA AT 02EC9EA0):
ACRT -> SSTM -> ISTT -> CPNQ
CURRENT SAVE AREA = ACRT
SYMPTOM STRING:
AB/S00C4 LVLS/410 RIDS/ISTAPCFR#R PIDS/5695-11701 ADRS/000001A2
RIDS/ISTTRTLR
LVLS/92.224 REGS/0C188
CLIST ISTVABND ENDED AT 09:07:16. RETURN CODE = 0.
```

ISTVDUMP

ISTVDUMP determines the SDATA options in effect when an MVS dump occurs. The SDATA options determine which MVS storage areas are requested to be dumped when the dump is taken by VTAM (SDUMP) or requested by the operator (console dump). ISTVDUMP can thus help you determine why a specific address is not in an MVS dump.

Note: ISTVDUMP shows what areas were requested for a dump. However, because the area was requested does not guarantee that information is in the dump. If an area is missing from your dump,

it can be due to other reasons (for example, data is lost transferring the dump from the dump data set to tape, or the dump data set is too small, causing a partial dump to be taken).

The ISTVDUMP command can also be issued from the panel interface.

Syntax

```
▶ ISTVDUMP ▶
```

Additional information

When you are working with an MVS dump of VTAM, the following information may be useful:

- The PSA must have been dumped to access low-core address hexadecimal 408.
- CSA must have been dumped to access the ATCVT.
- VTAM private storage must have been dumped (RGN parameter specified when the dump is taken) to access most VTAM modules and control blocks.

If neither CSA nor RGN is requested for a dump, ISTVDUMP issues a message. See the sample output in <u>"Sample output"</u> on page 213 for an example. To resolve most VTAM problems, you must have the VTAM private region and CSA.

When the dump is taken, ISTVDUMP analyzes the RTM recovery termination control table (RTCT) and the SDUMP parameter list (SDUMP) to determine what was requested on the SDATA operand.

For a stand-alone dump obtained by AMDSADMP, the pointer to the RTCT is 0. If you run ISTVDUMP against a stand-alone dump, a message is issued indicating that the RTCT pointer is 0, and the CLIST stops processing. See <u>Table 48 on page 577</u> to determine the document that contains information on SDATA options, RTCT, and SDUMP.

The following list shows all of the possible settings of the SDATA flags in the SDUMP parameter list. There is no specific indication for extended areas (above 16 MB). When an area is requested (for example, RGN), it is dumped, as is the extended area if present.

Sample output

In this sample, note that CSA and RGN (SDATA option SDURGN) were both requested.

ISTVDUMP:

```
CLIST ISTVDUMP STARTED AT 13:36:44.

SDATA OPTIONS REQUESTED FOR THIS DUMP:

SDUALPSA - DUMP ALL PSA'S IN THE SYSTEM
SDUPSA - DUMP THE CURRENT PSA
SDUNUC - DUMP THE NUCLEUS
SDUSQA - DUMP SQA
SDULSQA - DUMP LSQA
SDULSQA - DUMP LSQA
SDURGN - DUMP REGION (PRIVATE AREA)
SDULPA - DUMP ACTIVE LPA MODULE FOR RGN
SDUTRT - DUMP TRACE TABLE / GTF BUFFERS
SDUCSA - DUMP CSA
SDUSWA - DUMP SWA FOR REGION
SDUSMA - DUMP SWA FOR REGION
SDUSMDMP - SUMMARY DUMP REQUESTED
SDUALNUC - DUMP ALL NUCLEUS AREAS

CLIST ISTVDUMP ENDED AT 13:36:44. RETURN CODE = 0.
```

In this sample, RGN and CSA were not requested when the dump was taken.

ISTVDUMP:

```
CLIST ISTVDUMP STARTED AT 15:32:17.

SDATA OPTIONS REQUESTED FOR THIS DUMP:

SDUALPSA - DUMP ALL PSA'S IN THE SYSTEM
```

SDUMP parameter list

Flag

Description

SDUALPSA

Dump all PSAs in the system.

SDUPSA

Dump the current PSA.

SDUNUC

Dump the nucleus.

SDUSQA

Dump SQA.

SDULSQA

Dump LSQA.

SDURGN

Dump region (private area).

SDULPA

Dump active LPA module for RGN.

SDUTRT

Dump trace table and GTF buffers.

SDUCSA

Dump CSA.

SDUSWA

Dump SWA for region.

SDUSMDMP

Summary dump requested.

SDUNSMDP

Do not dump summary dump.

SDUNSPSA

Do not dump all PSA.

SDUNASQA

Do not dump SQA.

SDUALNUC

Dump all nucleus areas.

ISTVMAP

Use ISTVMAP to determine the starting and ending addresses and area size of the following major MVS storage areas in a dump:

- CSA
- Extended CSA
- Extended FLPA
- · Extended maximum possible region
- Extended MLPA
- Extended PLPA
- · Extended private region
- Extended read/only nucleus
- Extended read/write nucleus
- · Extended SQA
- FLPA
- · Low storage
- Maximum possible region
- MLPA
- PLPA
- · Private region
- · Read/only nucleus
- Read/write nucleus
- SQA

When you cannot find an address in a dump, the starting and ending addresses of major MVS storage areas in the dump will help you determine whether and where that address is in the dump.

Also use ISTVMAP when areas of storage needed to diagnose a VTAM problem do not appear to be in the dump. Knowing which storage area a given address represents and what was dumped can be helpful in determining why a specific storage address is not in a dump. See <u>"ISTVDUMP" on page 212</u> to determine which storage areas were requested to be dumped when the dump was taken.

The ISTVMAP command can also be issued from the panel interface.

Operands

ASID (asid)

The ASID of the address space can be specified to be mapped. ASID may be specified in decimal or hexadecimal format. Enter hexadecimal values in the form X'xx'. ASID should be in the range of 1 to the maximum number of address spaces in the dump.

Syntax

Additional information

The storage in an MVS system is mapped by the CVT virtual storage address extension, the global data area (GDA), and the local data area (LDA). ISTVMAP uses these areas to produce a map of storage that is unique to the dump being processed. The map does not apply to any other dump.

Some of the ranges in the ISTVMAP output will not be complete if the private region (RGN) of the address space being mapped is not accessible in the dump.

If the ASID parameter is not specified, the ISTVMAP CLIST will use the current ASID (that is, the ASID specified on the IPCS SETDEF command). If that ASID cannot be determined, the ASID from the dump

header will be used (the ASID that was current when the dump was taken). If that ASID cannot be determined, VTAM's ASID will be used. If the ASID of VTAM cannot be determined, ASID 0001 will be used.

Sample output

ISTVMAP:

```
CLIST ISTVMAP STARTED AT 17:34:03.
 (ISTVMAP) MAP OF MAJOR MVS STORAGE AREAS FOR ASID X'29', JOBNAME VTAMCS
   START
                  END
                                 SIZE
                                                       VIRTUAL STORAGE AREA
  0AB00000 7FFFFFF
                               75500000 EXTENDED MAXIMUM POSSIBLE REGION
  0AB00000 7FFFFFF 75500000 EXTENDED PRIVATE REGION

        06A2D000
        0AAFFFF
        040D3000
        EXTENDED CSA

        06A2C000
        06A2CFFF
        00001000
        EXTENDED MLPA

        06A29000
        06A2BFFF
        00003000
        EXTENDED FLPA

        02C44000
        06A28FFF
        03DE5000
        EXTENDED PLPA

        01AFB000
        02C43FFF
        01149000
        EXTENDED SQA

  01774000 01AFAFFF 00387000 EXTENDED READ/WRITE NUCLEUS 01000000 01773C4F 00773C50 EXTENDED READ/ONLY NUCLEUS
                                  -----16M LINE-
  00FCF000 00FFFFFF 00031000 READ/ONLY NUCLEUS
  00FC0000 00FCEE8F 0000EE90
                                               READ/WRITE NUCLEUS
  00E42000 00FBFFFF 0017E000
                                               SOA
  00BB9000 00E41FFF
                               00289000
                                               PLPA
  00BB8000 00BB8FFF 00001000 FLPA
  00BAB000 00BB7FFF
                               0000D000
                                               MLPA
  00800000 00BAAFFF
                               003AB000
                                               CSA
                               007FA000
007FA000
  00006000 007FFFF
                                               MAXIMUM POSSIBLE REGION
  00006000 007FFFF
                                               PRIVATE REGION
  00000000 00005FFF 00006000 LOW STORAGE
 CLIST ISTVMAP ENDED AT 17:34:43. RETURN CODE = 0.
```

ISTVSAVE

ISTVSAVE follows a VTAM save-area (VWA) chain forward and backward, starting from the specified save-area address.

Using the save-area address that was entered, ISTVSAVE follows the forward save-area chain until it encounters a 0 or a forward chain pointer that is not valid. Then, starting again at the original save-area address that was entered when ISTVSAVE was invoked, ISTVSAVE follows the backward save-area chain until it encounters a 0 or a backward chain pointer that is not valid. If an error occurs during the attempt to access storage, the save-area chain in that direction (forward or backward) is assumed to end.

The VWA eye-catchers are displayed, separated by arrows (->) indicating the order of VTAM module linkage. If ISTVSAVE encounters a save-area with no (or a not valid) eye-catcher, the output for that eye-catcher may contain unprintable characters or periods (for example, SSUW -> SSZZ ->). The (....) means that the first word of the save-area does not contain a standard VTAM save-area eye-catcher.

Operands

You can specify an address or symbol pointing to any valid VWA. You must enter at least one of the following items when you invoke ISTVSAVE:

address

The address of a VTAM module save-area should be 1–8 hexadecimal digits.

symbol .

A previously equated IPCS symbol that points to a VTAM save-area.

X

If the current address being displayed points to a VTAM save-area, the IPCS symbol **X** can be used to represent it.

Optionally, you can specify:

ALL

To list the register save-area for each save-area on the chain.

The ISTVSAVE command can also be issued from the panel interface.

Syntax

Additional information

Most VTAM modules use standard-register save-area linkage. The first word of a register save-area is optional, and some VTAM modules store a 4-character identifier there. These identifiers are the VWA eye-catchers, which are displayed by ISTVSAVE. In most cases, VTAM MVS module names have the form ISTxxCxx, and the identifier consists of the 4th, 5th, 7th, and 8th characters of the name of the VTAM module that owns the save-area.

```
Example: VTAM Module Name = ISTACCRT VWA eye-catcher = C'ACRT'
VTAM Module Name = ISTSSCTM VWA eye-catcher = C'SSTM'
```

If the save area does not follow these rules, it should follow the enhanced save-area chaining convention. If it does not follow the rules or the convention, the results of this CLIST are unpredictable. For the enhanced save-area chaining convention, the first 3 characters are IST followed by the module name. The address pointed to by register 13 always points back to the save-area chain. For a description of both methods, see "Using save-area module linkage conventions—Subarea" on page 349.

Sample output

The following information shows a sample of the output from ISTVSAVE for an ABENDOA9 in module ISTSSCZZ.

ISTSSCZZ is the SSABEND macro processor. The purpose of this module is to issue the ABENDOA9. It is necessary to know the caller of ISTSSCZZ to diagnose the ABENDOA9 properly. In this example, the caller of ISTSSCZZ was ISTSSCUW.

The *current save area* is the save-area pointed to by the address entered when ISTVSAVE was invoked (that is, the save-area for module ISTSSCUW is at address 0B2B0480, which is the address where IPCS was positioned when ISTVSAVE was invoked using the symbol X).

ISTVSAVE R13 ALL:

```
SAVE AREA CHAIN (STARTING WITH SAVE AREA AT 0B2B0480):

ACRT -> SSTM -> SSTP -> SSKT -> SSU3 -> SSUW -> SSZZ -> ....

CURRENT SAVE AREA = SSUW
```

The following information shows a sample of the output from ISTVSAVE for an ABENDOC4 in module ISTDECH2. This is a long save-area chain.

ISTVSAVE 981DE88:

```
SAVE AREA CHAIN (STARTING WITH SAVE AREA AT 0981DE88):

ACRT -> ACRR -> DEST -> DESD -> DEIS -> DEP2 -> DESA -> DESF -> DEQR ->
DESF -> DESJ -> DEP2 -> DEVP -> DEK2 -> DESG -> DESB -> DESC -> DEIS ->
DEK2 -> DEVP -> DEG2 -> DEVP -> DER3 -> DEH2 -> . J. -> .00.
```

```
CURRENT SAVE AREA = DEH2
```

The following information shows sample output from ISTVSAVE with R13 specified as the *symbol* operand. R13 represents address 04FB53C8.

ISTVSAVE R13 ALL:

```
(ISTVSAVE) CLIST WAS INVOKED WITH ADDRESS/SYMBOL 'R13'
(ISTVSAVE) SYMBOL 'R13' REPRESENTS ADDRESS 04FB53C8
CURRENT SAVEAREA:
SAVE AREA FOR SSNP
                           E2E2D5D7 04FB5360 |
04FB53C8.
                                                      SSNP...-I
04FB53D0. 04FB5448 00000000 00000000 00000000 |.....
04FB53E0 LENGTH(48)==>All bytes contain X'00'
04FB5410. 84A3968E
                                             ldto.
SAVEAREA(S) ENCOUNTERED FOLLOWING THE FORWARD SAVEAREA CHAIN:
SAVE AREA FOR
04FB5448 LENGTH(76)==>All bytes contain X'00'
SAVEAREA(S) ENCOUNTERED FOLLOWING THE BACKWARD SAVEAREA CHAIN:
SAVE AREA FOR SSTD
04FB5360. E2E2E3C4 04FB52F0 04FB53C8 84A75C4C |SSTD...0...Hdx*<
04FB5370. FFA395C8 00000000 04A99CD8 04FB5224 |.tnH....z.Q....
04FB5380. 04AACF30 04A521F8 00000015 04A395C8 |....v.8....tnH|
04FB5390. 04A521F8 04FB5348 04AACF30 04A99CD8 |.v.8....z.Q|
04FB53A0. 04AACF08 84A759FA 84A75AAE
                                              |....dx..dx!.
SAVE AREA FOR SSTV
04FB52F0. E2E2E3E5 04FB5288 04FB5360 84A76856 |SSTV...h...-dx...|
04FB5300. FFA759E0 00000000 04A99CD8 04FB5224 |.x.\....z.Q....
04FB5310. 04FB5224 04AACF30 04FB520C 04FB5348 |......
04FB5320. 05003EEE 04FB5360 04A51598 04A99CD8
                                              |.........v.q.z.Q|
04FB5330. 04AACF08 84A766F2 84A767AE
                                              |....dx.2dx..
SAVE AREA FOR SSTD
04FB5288.
                                                      SSTD....
                           E2E2E3C4 04FB5170 |
04FB5290. 04FB52F0 84A75D6A FFA766D8 00000000
                                              |...0dx)|.x.Q....
04FB52A0. 04A99CD8 04FB5224 04AACF30 04FB520C
                                             |.z.Q.....
04FB52B0. 00000015 04AACF30 04FB520C 00000015
04FB52C0. 04A51598 04A99CD8 04AACF48 84A759FA |.v.q.z.Q....dx..
04FB52D0. 00000000
SAVE AREA FOR SSTM
04FB5170. E2E2E3D4 04FB5010 04FB5288 84A41A8A | SSTM..&...hdu..|
04FB5180. FFA759E0 04AACF48 04A99CD8 04A51598 |.x.\....z.Q.v.q
04FB5190. 00000000 04A51598 0000001D 04A51598 |....v.q....v.q
04FB51A0. 04AACF30 05003EE6 04FB5224 04A99CD8
                                              |....z.Q|
                                              |....du.kdu.:
04FB51B0. 04AACF48 84A41192 84A4127A
SAVE AREA FOR ACRT
04FB5010. C1C3D9E3 00000000 04FB5170 8498E214 | ACRT......dqS.
04FB5020. FFA41170 04A99CD8 04A99CD8 00C35558 |.u...z.Q.z.Q.c...|
04FB5030. 84A0D988 04FB5010 00000000 84FB5008 |d.Rh..&....d.&;
04FB5040. 04A99228 04A99228 04A99228 04A99CD8 |.zk..zk..zk..z.Q
04FB5050. 8498CD9E 0498DD9D 04A99228
                                              |dq...q...zk.
SAVE AREA CHAIN (STARTING WITH SAVE AREA AT 04FB53C8):
ACRT - SSTM - SSTD - SSTV - SSTD - SSNP - ....
CURRENT SAVE AREA = SSNP
```

ISTVSLIP

Use ISTVSLIP to display the registers and PSW that were current at the time of an SLIP dump. The registers and PSW are extracted from the SDUMP buffer pointed to by the CVT.

All 16 general registers and the PSW are displayed, along with the module name and displacement that the address portion of the PSW represents (the module in control at the time the SLIP trap occurred). The module name and displacement that register 14 represents (usually the calling module or within the

current module) are also displayed. If the dump was not taken as a result of an SLIP trap, a message to that effect is displayed.

IPCS symbols are created for each register and the address portion of the PSW. After ISTVSLIP has executed, storage locations pointed to by these registers (or PSW) can be displayed using these symbols in the IPCS LIST command. For example, **L R4** will display the storage pointed to by register 4 at the time the SLIP trap occurred.

Note: ISTVSLIP does not support stand-alone dumps taken after the SLIP ACTION=WAIT MVS system command is issued.

The ISTVSLIP command can also be issued from the panel interface.

Syntax

▶ ISTVSLIP **→**

Equated symbol

Symbol or symbols Description

RO, REGO

Register 0

R1, REG1

Register 1

R2, REG2

Register 2

R3, REG3

Register 3

R4, REG4

Register 4

R5, REG5

Register 5

R6, REG6

Register 6

R7, REG7

Register 7

R8, REG8

Register 8

R9, REG9

Register 9

R10, REG10, RA, REGA

Register 10

R11, REG11, RB, REGB

Register 11

R12, REG12, RC, REGC

Register 12

R13, REG13, RD, REGD

Register 13

R14, REG14, RE, REGE

Register 14

R15, REG15, RF, REGF

Register 15

PSW

PSW address

Additional information

The dump data set name is displayed to verify that the correct dump is being processed. The title of the dump is displayed for additional verification that the dump being processed is, in fact, an ISTVSLIP dump.

To determine the module name, displacement, and PTF level for the PSW and register 14, VTFNDMOD is called. The PSW address and register 14 are used as input to VTFNDMOD.

```
ISTVSLIP
CLIST ISTVSLIP STARTED AT 17:42:19.
DUMP DATASET NAME: IPCS.P620527.DUMPA
TITLE FROM DUMP: SLIP DUMP ID=0001
THE ADDRESS OF THE SDUMP BUFFER IN THE CVT IS 00C95000.
PRIMARY ASID AT THE TIME OF ENTRY TO SLIP IS X'000A'
PSW AT ENTRY TO RTM: 00000000 01D03790
REGISTERS WHEN SLIP TRAP MATCHED:
                                                         REG3 = 00000012
REG0 = 08000000 REG1 = 080A9000
                                      REG2 = 00000012
(ISTVSLIP) PROCESSING OF PSW FOLLOWS:
 VTAMMAP input data
 VTFNDMOD ADDR(X'01D03790') NNTERNAL
Module name:
Compile date:
                            92.318
Address entered:
                           01D03790
Module entry point:
                            01D03462
Displacement into module:
First '40'X bytes of module: DATA: 01D03462
    +0030 0008BFFD C0121B11 0A7818A1 18161807 | ..P.{.....~....
Storage around address entered:
 DATA: 01D0377C
    +0000 89000018 16101823 58F00010 58F0F034 | i.....0...00.
+0010 58F0F020 05EF47F0 C5445850 04081255 | .00...0E..&...
+0020 4780C34A 91405488 4780C34A 58205B50 | ..C+j .h..C+..$&
     +0030 12224780 C34A9102 54884710 C34A5850 | ....C+j..h..C+.& |
Address is in extended pageable LPA (above the 16M line).
Extended pageable LPA starting address: 01C13000
Extended pageable LPA ending address: 025F8FFF
(ISTVSLIP) PROCESSING OF REG 14 FOLLOWS:
VTAMMAP input data
VTFNDMOD ADDR(X'1F2A714')
Module name:
                            ISTDSCGD
Compile date:
                            92.256
                            01F2A714
Module entry point:
Address entered:
                            01F2A6A0
Displacement into module:
```

```
First '40'X bytes of module:
DATA: 01F2A6A0
    +0000 47F0F014 0FC9E2E3 C4E2C3C7 C440F9F2 | .00..ISTDSCGD 92 |
+0010 4BF2F5F6 90ECD00C 18BF41F0 00005800 | .256..}...0.... |
+0020 B95C0700 47F0B02C 00000200 89F00008 | .*..0....i0... |
+0030 BFFDB028 1B110A78 18C150D0 C00450C0 | ......A&}{; & {
Storage around address entered:
 DATA: 01F2A700
     +0000 B93E58A0 ACE45630 B8E858F0 A0005820
                                                                    | .....U...Y.O....
     +0010 B8F805EF 980E1028 58201020 12FF4770 | .8.q......
+0020 B094D203 2000B92C 58E04000 50E02024 | .mK....\ .&\..
     +0030 47F0B098 41F00008 12FF4770 B52041A0 | .0.q.0......
Address is in extended pageable LPA (above the 16M line).
Extended pageable LPA starting address: 01C13000
Extended pageable LPA ending address:
                                                     025F8FFF
(ISTVSLIP) THE REGISTER SAVE AREA CHAIN COULD NOT BE ANALYZED.
              REG 13 IS NOT VALID OR STORAGE IS NOT AVAILABLE.
CLIST ISTVSLIP ENDED AT 17:43:30. RETURN CODE = 0.
```

MNPSC, MNPSD, MNPSF

There are three Multi-Node Persistent Session (MNPS) functions: MNPSD, MNPSC, and MNPSF. They provide two important capabilities:

- Comparing session control blocks from a dump created at the time of a VTAM failure (Z NET,CANCEL or ABEND) with a dump created after the recovery has completed. The MNPSD function creates a dump of the MNPS-related control blocks of the MNPS sessions when there is a VTAM failure. The MNPSC function compares the control blocks of that dump with the ones in a dump created after the recovery to determine whether session characteristics are the same.
- Formatting MNPS session control blocks using the **MNPSF** function.

Operands

For MNPSD, only DDNAME is valid.

For MNPSC, DDNAME is valid. You can also specify the network ID *and* the resource name *or* the resource name only *or* the procedure-correlation identifier (PCID) only.

For MNPSF, DDNAME is *not* valid. You can specify the network ID and the resource name or the resource name only or the procedure-correlation identifier (PCID) only.

DDNAME

The DDNAME is a 1–8 character name identifying the data set to place or retrieve session data. The data set must exist and must be cataloged before use.

Be sure the data set characteristics match the following conditions.

- Record format must be equal to V or VB.
- Record length must be equal to 456 or greater.
- Data set organization must be equal to PS.

Network ID

The network ID should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, the leftmost characters are compared.

NetID is the name defined to NCPs and hosts to indicate the network where they reside. NetID is unique across all communicating SNA networks. It is assumed to be the host unless otherwise specified.

Resource name

The resource name should be 1–8 alphanumeric characters. The first character must be a-z, A-Z, @, #, or \$. If it contains fewer than 8 characters, it is left-aligned before comparing.

PCID

The procedure-correlation identifier (PCID) must be 2 - 16 hexadecimal digits entered in the form X'nnnn'.

If the PCID is fewer than 16 digits, it is right-aligned and compared to the rightmost positions of the PCID from the dump.

The value entered must be an even number of digits.

Syntax

The syntax for MNPSD follows:

```
\longrightarrow MNPSD — DDN — (— DD_name — ) \longrightarrow
```

The syntax for MNPSC follows:

The syntax for MNPSF follows:

Sample output

MNPSD DDNAME(MNPSDUMP) MNPS Dump Process 00000004 Record(s) were dumped successfully

MNDCC DDNAME/MND	CDUMD) DECOU	DCE (MADDCO	A4.)							
MNPSC DDNAME (MNP	MNPSC DDNAME(MNPSDUMP) RESOURCE(MAPPC2A1) MNPS Compare Process									
			xtension							
Field	Current	Dataset		Current	Dataset					
EXLEN	84		FMPRO	03	03					
NAME	TCPM1011	TCPM1011		NETA	NETA					
BRQS			BRQR							
BRPS	0	0	BRPR	0 1	0 1					
SSS	1 0 1	1 0 1	RNAMS	0	0					
:	_	_	MANIS	O	ŭ					
•		тст	FMCB							
Field	Current		Field	Current	Dataset					
TYPE	03		LNGTH	0286	0286					
MXRUI	00000400	00000400		00000F00	00000F00					
AVAIL	1	1	OCFLG	0	0					
ICFLG			LU6							
SESTY	0 0	0 0	ASPI	0 1	0 1					
		IST	RPNCB							
Field	Current	Dataset	Field	Current	Dataset					
REMOTE_CONN_ID	14274317000	00076		14274317000	00076					
CONN_STATE -	32	32	MAX_DATA_SIZ	0000E01D	0000E01D					
PATHSWITCH_T	000000F0	000000F0	LOCĀL_MNĒS	1	1					
ALS_CPNETID	NETA	NETA	ALS_CPNAME	SSCP2A	SSCP2A					
RELĪABLE	1	1	CONN_TYPE	11	11					

```
ISTBSB
Field
                  Current
                               Dataset
                                         Field
                                                           Current
                                                                        Dataset
BSBID
                  BC
                               BC
MAXSL
                               87
                                         MAXPL
                                                                        F8
                 *00
                                                          *00
F5SA_MSG
                  000000000000000500000000000000000
                  00000000000000050000000000000003
                                                                        1
                                      ISTSIB
Field
                  Current
                               Dataset
                                         Field
                                                           Current
                                                                        Dataset
CBID
                  98
                               98
PCID
                  EAABEEC39E9C6EA5
                                                           EAABEEC39E9C6EA5
BDUVN
                  00000000000000000
                                                           0000000000000000
                                          BXRFS
BCKUP
                  0
                               0
                                                           0
                                                                        0
BSCI
                               1
                                          BDLUT
                                                          *0
                                                                        1
End of file reached
00000004 Record(s) were scanned successfully
```

```
MNPSF RESOURCE(MAPPC2A1)
                              MNPS Format Process
FMCBX: 08B12138
    +0000
           00000001
                     001D8402
                                02000004
                                          08B0B018
                                                       . . . . . . d . . . . . . . . .
                                                      +0010
           0000001
                     001B0000
                                0001001D
                                          08B120A8
                                                       .....MP8.....
    +0020
           0000000
                     08D4D7F8
                                0000000
                                          0000000
                                                       ....L7211A NETA
    +0030
           0000000
                     D3F7F2F1
                                F1C14040
                                          D5C5E3C1
    +0040
           40404040
                     0000000
                                0000000
                                          0000000
                                                          . . . . . . . . . . . .
                                          00100000
    +0050
           00000000
                     00009080
                                00000000
                                                      .....{....c..>~
    +0060
           0000000
                     0A05C034
                                EAABEEC3
                                          9E9C6EA1
                     0000000
                                                      .....L7211A
    +0070
           0000000
                                D3F7F2F1
                                          F1C14040
    +0080
           0000000
FMCB: 08B0B018
    +0000
           03008000
                     08B12138
                                08B59B90
                                          0000000
                                                      .Fb.............
    +0010
           08C68210
                     0000000
                                0000000
                                          0000000
           08C67260
                     0000000
    +0020
                                1C016800
                                          1FF00018
    +0030
                                                      0000000
                     00000000
                                0101001C
                                          01010021
    +0040
           0000000
                     0000000
                                08C67030
                                          0000000
    +0050
           1D096800
                     0FF00040
                                0000000
                                          0000000
                                                      .....0. .......
    +0060
           0101001C
                     01010021
                                0000000
                                          0000000
                                                       . . . . . . . . . . . . . . . .
    +0070
           00000000
                     00000000
                                00000000
                                          02000004
                                                      . . . . . . . . . . . . . . . .
RPNCB: 08B2B800
    +0000
           FABF001C
                     09F8B628
                                08C95048
                                          00050000
    +0010
           0000000B
                     0000000
                                0000000
                                          00000000
           00000000
                     00000000
                                00000000
                                          00000000
    +0020
    +0030
           00000000
                     00000000
                                00000000
                                          00000000
    +0040
           0000000
                     0000000
                                090468B4
                                          0000000
                                                       . . . . . . . . . . . . . . . .
                                                      n....0. ......
    +0050
           95001200
                     1FF00040
                                0000000
                                          0000000
    +0060
           0000000
                     0000000
                                89C584E0
                                          0000000
                                                       ....iEd\....
                                                       .....0.-....
    +0070
           37010000
                     0FF00060
                                0000000
                                          00000000
BSB: 08B14228
    +0000
           BC0000C0
                     00800080
                                00040080
                                          00800001
                                                      ...{........
    +0010
           0000000
                     0000000
                                0000000
                                          0000000
                     00000000
    +0020
           00000000
                                00000000
                                          00004000
    +0030
           0000000
                     0000003
                                0000000
                                          00000001
    +0040
           0000001
                     001B0000
                                000001D
                                          0000001
                                                      ....J. {.."....
    +0050
           001C3C16
                     D10040C0
                                00017FFF
                                          00010007
                     00000000
    +0060
           00070001
                                00000000
                                          00000000
                                                       . . . . . . . . . . . . . . . .
    +0070
           0000260D
                     00000000
                                00000000
                                          00000000
SIB: 09FE9300
    +0000
           9800FC00
                     0000000
                                EAABEEC3
                                          9E9C6EA1
                                                      +0010
           00000000
                     00000000
                                40404040
                                          40404040
                                                      .....T1.
    +0020
           00000000
                     00000000
                                B3942810
                                          BDE39308
    +0030
           09FE9188
                     09FE9478
                                0000000
                                          0000000
                                                      ..jh..m......
                     09FE9410
                                09FE93B0
    +0040
           0000000
                                          0A05C034
                                                       .....m...1...{.
    +0050
           10311000
                     80000008
                                09FE9478
                                          0000000
                                                      .........m.....
    +0060
                     00000000
                                A0000000
                                          08B18018
           00000000
                                                      . . . . . . . . . . . . . . . .
    +0070
           00000090
                     00000000
                                0000000
                                          0000000
```

PABSCAN

A request/response unit processing element (RUPE) represents the unit of work VTAM must perform for a given request or response received from the network. VTAM queues RUPEs to a process anchor

block (PAB). Knowing what type of work is queued to a PAB may be important in resolving storage and performance problems. Use PABSCAN to scan a chain of RUPEs queued to a PAB and obtain a summary of the RUPEs by RU type.

You may scan all work elements on the PAB, or limit the search to RUPEs containing a specific value in one or more of the following fields:

- Destination address field (DAF)
- Origin address field (OAF)
- Request/Response unit (RUPERQD,RUPERSD)
- A user-specified location within the RUPE

For each work element that is selected, the RU is extracted and counted. After all of the selected work elements have been counted, a summary showing the number of work elements containing each RU type is displayed.

Operands

You must specify one address or one symbol to represent the first RUPE in the chain of RUPEs to be analyzed.

Address

Enter 1–8 hexadecimal digits in the form X'x...' for the address of the chain of RUPEs to be analyzed. If the address is fewer than 8 digits, it is padded on the left with zeros.

IPCS symbol

Enter an IPCS symbol name that is 1–31 alphanumeric characters. The symbol name represents the beginning of a chain of RUPEs. Do not include a period.

Under IPCS, the symbol X represents the address currently being displayed. If the current address is pointing to a chain of RUPEs, this symbol may be used.

If you specify no other selection operands, the first 100 RUPEs are analyzed and a summary of the RUPEs by RU type is displayed.

If you use more than one of the following operands, all of the selection criteria must be met for a RUPE to be selected.

Destination address field

Only RUPEs containing this destination address field (RUPEDAF) are eligible for selection. Specify 1–12 hexadecimal digits in the form X'x...'. If the address is fewer than 12 digits, the rightmost digits are compared.

Origin address field

Only RUPEs containing this origin address field (RUPEOAF) are eligible for selection. Specify 1–12 hexadecimal digits in the form X'x...'. If the address is fewer than 12 digits, the rightmost digits are compared.

Control op code

Only RUPEs containing this CPCB op code are eligible for selection. The control op code must be 1–8 hexadecimal digits in the form X'x...'. If the op code is fewer than 8 digits, it is left-aligned and compared with the leftmost digits in the dump.

Request/response unit

Only RUPEs that contain this RU are eligible for selection. The leftmost digits of field RUPERSD are compared (if RUPERSP is nonzero) to the value entered; otherwise, the leftmost digits of RUPERQD (if RUPERQP is nonzero) are compared to the value entered. The length used for the comparison is the length of the value entered.

Detail

The default is N. Specify Y to have the following fields extracted and displayed for each RUPE meeting the selection criteria:

· Position of RUPE on the PAB

- RUPE address
- Origin address field (RUPEOAF)
- Destination address field (RUPEDAF)
- First 4 bytes of request/response unit (if present)
- User-data at a specified displacement (if Displacement and Value are specified)

One line of output per RUPE is produced.

Max

Specify the maximum number of RUPEs to be processed. The default for MAX is 100. If MAX is not specified, only the first 100 RUPEs on the PAB are analyzed. The maximum value for MAX is 99999. If the maximum number of RUPEs are processed and more remain on the PAB, PABSCAN will report the number of unprocessed elements remaining on the PAB.

Displacement

Enter the displacement into the RUPE where Value is to be found. The maximum decimal displacement is 4095 and the maximum hexadecimal displacement is X'FFF'.

Length

Enter a value of 1–8 for the number of bytes you want displayed, starting at the displacement specified in Displacement.

Length must be used with the Displacement operand. Together, they display any portion of a RUPE. The Length operand cannot be used with the Value and Value Type operands.

Note: The following two operands, Value and Value Type, must be used together with the Displacement operand. They allow any field in a RUPE to be checked for a user-specified value. The Value and Value Type operands cannot be used with the Length operand.

Value

Only RUPEs containing this data at the displacement specified in Displacement are eligible for selection.

Value may contain character or hexadecimal data of 1–8 bytes in length. Character data should consist of alphanumeric characters. Hexadecimal data should contain an even number of up to 16 hexadecimal digits in the form X'xx...'; otherwise, the high-order half-byte is assumed to be 0.

Binary data can be used to look at a particular bit within a byte. You may specify 1 byte of binary data in the form X'xx'. Only 1 bit within the byte may be selected. Therefore, you can specify only the following hexadecimal values: 01, 02, 04, 08, 10, 20, 40, and 80. A value with more than 1 bit set (for example, 82) will not be processed.

Value type

Enter B for binary, C for character, or X for hexadecimal to indicate the type of data entered for Value.

Additional information

To determine whether an RU is a request or a response, PABSCAN first checks field RUPERSP.

If RUPERSP is nonzero, the RU is considered to be a response. The designation RSP, along with the contents of field RUPERSD, are used to represent the response.

If RUPERSP is 0, field RUPERQP is then checked.

If RUPERQP is nonzero, the RU is considered to be a request. The designation REQ, along with the first 4 bytes of the RU from field RUPERQD, are used to represent the request (using 4 bytes allows for the largest of the RU headers and also picks up the format byte for RU headers which are 3 bytes long).

If both RUPERQP and RUPERSP are 0, the designation NORU, along with the contents of field CPCBOPC, are used to represent the RU. The designation NORU notes the fact that no RU (neither request nor response) pointer existed in the RUPE or the length of the RU was 0.

Use the following syntax as an alternative to the panel interface.

Sample output

```
PABSCAN SYMBOL(X)

PABSCAN Analysis

ELEM# RUPEADDR CPCBOPC RUPEOAF RUPEDAF RU USERDATA

1 062E3028 00000000 000000010003 000000010003 **NORU**

000000000 REQ occurred 1

RUPEs left on the chain 0

Elements processed 1
```

PARTNRLU

Use PARTNRLU to display all partner LUs for an APPC application. PARTNRLU formats and displays the APPCB control block, the COPR control block if present, and the LME.

Operands

APPC application name

The APPC application name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, it is padded on the right with blanks.

The APPC application name is required.

Use the following syntax as an alternative to the panel interface.

Syntax

```
► PARTNRLU — APPLNAME — ( — APPC_application_name — ) →
```

```
PARTNRLU APPLNAME (APPCAPO5)
                       PARTNRLU Analysis
 APPCB: 0290E6B8
    APPLUCB.. 0291A100 APPTSKID. 02818588 APPACB... 00CB4820
    APPLUN... APPCAP05
APPSPTAE 02906530 0290D898 02906620 029065D0 02906580
 DATA: 0290E6B8
    +0000 62C1D7D7 0291A100 02818588 000000000 | .APP.j~..aeh....
                    0000000
                                        00000000
    +0010 00000000
                              024100B0
                                                  +0020 31094000
                    00000010
                              00000000
                                        00000000
    +0030 0101001B
                    00000000
                              00CB4820
                                        0290B088
    +0040 00000000
                    0000000
                              0000000
                                        00000000
                                                  00000000
    +0050 00000000 00000000
                              00000000
                                                  APPCAP05.....
    +0060 C1D7D7C3
                    C1D7F0F5
                              00000000
                                        00000000
    +0070 00000000
                    00000000
                              028030C0
                                        02804028
    +0080 00000000
                    0292A2FC
                              00000000
                                        00000000
                                                   .....p.....
    +0090
           00000000
                    0290DA98
                              00000000
                                        00000000
    +00A0 00000000
                    00000000
                              023FA0A8
                                        0000000
                                                   ....μy....
    +00B0
           36200000
                    000000A0
                                        02900898
                              02906530
    +00C0
           02906620
                    029065D0
                              02906580
                                        0000000
    +00D0 00000000
                    0000000
                              00000000
                                        00000000
           00000000
                    00000000
    +00E0
                              00000000
                                        00000000
    +00F0
           00000000
                    00000000
                              00000000
                                        00000000
                                                   . . . . . . . . . . . . . . . . . . .
    +0100 00000000
                    00000000
 No session limit negotiations were in progress
                   Current Partner LU(s) for APPCAP05
 LME: 0290B148
                       LMENM.... APPCAP06 LMEFSM... C2
    LMENETID. NETA
```

RDTCHECK

RDTCHECK displays the RDTE name, RDTE address, RDTE entry type, RDTE header type, network address, and the current and desired state of an RDTE. In addition, RDTCHECK displays pertinent flag bits from the following control blocks if available:

- Resource definition table application entry (RAP)
- Resource definition table physical unit entry (RCC)
- Resource definition table cross-domain resource manager (RCDRM)
- Resource definition table cross-domain resource entry (RCDRS)
- Resource definition table allocation entry prefix (RCPRE)
- · Resource definition table line entry (RLN)
- Resource definition table logical unit entry (RLU)
- Common physical unit prefix (RPU)
- Resource definition table NCP entry (RRN)

Operands

You must specify one address or one symbol.

Address

Enter 1–8 hexadecimal digits in the form X'x...' for the address of the RDTE to be analyzed. If the address is fewer than 8 digits, it is padded on the left with zeros.

IPCS symbol

Enter 1–31 alphanumeric characters for an IPCS symbol name that has been previously equated with the address of the RDTE to be analyzed. Do not include a period.

Under IPCS, the symbol X represents the address currently being displayed. If the current address is an RDTE, this symbol may be used to refer to it.

Use the following syntax as an alternative to the panel interface.

Syntax


```
RDTCHECK ADDR(X'02CE0776')
                             RDTCHECK Analysis
RDTE: 02CE077C
    RPRNAME.. APPCAP05 RPRENTRY. 55
RPRDEVCH. C06D0000 00800000
                                             RPRBITAN. 01000910 01
DATA: 02CE077C
    +0000 C1D7D7C3 C1D7F0F5 80000000 00550200
                                                     APPCAP05.....
    +0010 40040000 0001008D 00060000 02CE0878
                                                   .....
                     0000015C
                               0000015C
    +0020 02CE07E4
                                         00000000
                                                        .U...*...*
    +0030
          02CE0008
                     00000000
                               00000000
                                          05050505
    +0040
          00010009
                     10010010
                               0000000
                                          00000000
                                                     +0050
           00000001
                     00000000
                               C06D0000
                                          00800000
    +0060 00000000
                     00000000
                               02CF11A8
                                         00000000
    +0070
          02CE1020
                     00000000
                                          00000000
                               00000000
    +0080
           00000000
                     0000000
                               0000000
                                          00000002
                                                      . . . . . . . . . . . . . . . . . . .
    +0090
          00000000
                     00000000
                               00700033
                                          38E40000
                                                      .....U...
    +00A0
           00000000 00000000
RPRENTRY X'55' indicates an application RPRHDTYP X'02' indicates an application header
Network address
                        X'0000001008D
Current state of RDTE
                        X'0505
Desired state of RDTE X'0505
```

```
----- RPRE STATUS BIT FLAGS ------
RPRAOPN = 1 Supports LU to LU sessions
RPRDOM = 1 LU is in this domain
RPRDINUS = 1 This node has been activated at least once
RPRGIST = 1 Initial status from system definition
RPRDAFAD = 1 RDT added by config services
                             ------ RCPRE STATUS BIT FLAGS ------
Non-Backup Session Count X'00000002
Session Limit (Zero Means No Limit) X'0000'
Backup Session Count
                                     X'0000
LOGAPPL
RCPRRECD = 1 Record ok
RCPCROSS = 1 Supports cross domain sessions
RCPPRIM = 1 LU is primary capable
RCPCYMOD = 00 Operator modifiable feature -None
RCPCYSET = 00 SYSDEF defined feature -None
RCPCSM = 0001 Unstable
RCPSEC = 1 LU is secondary capable
RCPLVL = 1 Level of VTAM >= 4.1 for an LU in an NCP segment
RCPUNRCV = 1 Receipt of unrecognized control vector on CINIT supported RCPSLUSS = 1 Session started is sent by resource when acting as SLU RCPT21NS = 1 T2.1 nodes and extended BIND supported
                ----- RAP STATUS BIT FLAGS
RAPASLGI = 1 Application first time logon issued
RAPPARS = 1 Parsess(yes) was coded
RAPAPASS = 1 CLSDST pass authorized
RAPAPACQ = 1 Acquire authorized
RAPAPPC = 1 APPC=yes was coded
RAPSRBX = 1 Schedule exits in SRB mode (OS/VS only)
```

RDTFULL

Use RDTFULL to display all resource definition table entries (RDTEs) and node control blocks (NCBs) or a selected RDTE.

Operands

RDTE name

The RDTE name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, it is padded on the right with blanks.

Use the following syntax as an alternative to the panel interface.

Syntax

Note: Using this function without specifying a name may produce large amounts of data.

```
RDTFULL
                         RDTFULL Analysis
 QAB: 02955740
    +0000 D9C4E340 000D0000 00CC1AB0 02CE0008
                                                      RDT .....".[.".. |
          00100000 00700074
    +0010
RDT: 00CC1AB0
    RPRNAME.. VTAMSEG
                         RPRENTRY. 02
                                             RPRBITAN. 02000100 00
    RPRDEVCH. 00000000 00000000
DATA: 00CC1AB0
                                                     | VTAMSEG .....
           E5E3C1D4
                     E2C5C740
                                80000000
                                          00020200
    +0000
    +0010
           00000000
                     00000000
                                00000000
                                          00CC1B18
    +0020
           00000000
                     000000B0
                                00000000
                                          00000000
                                                       ......[......
    +0030
           00000000
                     00000000
                                00000000
                                          05050505
                                                       . . . . . . . . . . . . . . . .
                     00000000
                                          00000000
    +0040
          00020001
                                00000000
 RDTE: 00CC1B60
    RPRNAME.. SSCP1A RPRENTRY RPRDEVCH. C06D0000 00800000
                         RPRENTRY. 11
                                             RPRBITAN. 00000940 00
```

```
DATA: 00CC1B60
                                                    SSCP1A .....
   +0000 E2E2C3D7
                   F1C14040 80000000
                                        00110200
                                                  +0010
          0000000
                    00010001
                              00020006
                                        00CC1C5C
                                        00000000
   +0020
         00CC1BC8
                    00000210
                              000000B0
   +0030
          00CC1AB0
                    00000000
                              00000000
                                        05050505
   +0040
          00000009
                    40000100
                              0000000
                                        0000000
RDTE: 02CE0CEC
   RPRNAME.. APPCAP09 RPRENTRY. 55
                                           RPRBITAN. 09000810 01
   RPRDEVCH. C06D0000 00800000
DATA: 02CE0CEC
                                                  | APPCAP09.....
  +0000
        C1D7D7C3
                    C1D7F0F9
                              80000000
                                        00550200
                                                  | .....n...".Y
   +0010
         00000000
                    00010095
                              000A000
                                        02CE0DE8
   +0020
         02CE0D54
                    0000015C
                              0000015C
                                        00000000
   +0030
          02CF0008
                    0000000
                              00000000
                                        02000200
   +0040
          00090008
                    10010010
                              0000000
                                        00000000
   +0130
          00000000
                    00000000
                              00000000
                                        00000000
   +0140
          00000000
                    00020001
                              00010000
                                        00130000
                                                    . . . . . . . . . . . . . . . .
   +0150
         00000000
                   00000000
                             00000000
                                                   . . . . . . . . . . . .
```

RDTHIER

If an RDTE name is specified, the specified RDTE and all RDTEs below it in the RDTE hierarchy are displayed. If no RDTE name is specified, RDTHIER is identical to RDTFULL.

Operands

RDTE name

The RDTE name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, it is padded on the right with blanks.

If the specified RDTE occurs more than once in a dump, the hierarchies for each RDTE are displayed. Use the following syntax as an alternative to the panel interface.

Syntax


```
RDTHIER RDTE(VTAMSEG)
                         RDTHIER Analysis
RDT: 00CC1AB0
    RPRNAME.. VTAMSEG
                         RPRENTRY. 02
                                               RPRBITAN. 02000100 00
    RPRDEVCH. 00000000
                         00000000
DATA: 00CC1AB0
                                                       | VTAMSEG .....
                      E2C5C740
                                 80000000
    +0000 E5E3C1D4
                                           00020200
    +0010 00000000
                      00000000
                                 00000000
                                           00CC1B18
    +0020
           0000000
                      000000B0
                                 0000000
                                           0000000
                                                        . . . . . . . [ . . . . . . . .
    +0030
           00000000
                      0000000
                                 0000000
                                           05050505
                                                        . . . . . . . . . . . . . . . .
    +0040
           00020001
                      00000000
                                 00000000
                                           00000000
RDTE: 00CC1B60
   RPRNAME.. SSCP1A RPRENTRY RPRDEVCH. C06D0000 00800000
                         RPRENTRY. 11
                                               RPRBITAN. 00000940 00
DATA: 00CC1B60
                                                       SSCP1A .....*
.".H.....[...
           E2E2C3D7
                      F1C14040
                                80000000
                                           00110200
    +0000
    +0010
           00000000
                      00010001
                                 00020006
                                           00CC1C5C
           00CC1BC8
                      00000210
                                 000000B0
    +0020
                                           0000000
                                                        .".[.....
    +0030
           00CC1AB0
                      00000000
                                 0000000
                                           05050505
    +0040
           00000009
                      40000100
                                           0000000
                                 0000000
 RDTE: 02CE0CEC
    RPRNAME.. APPCAP09
RPRDEVCH. C06D0000
                         RPRENTRY, 55
                                               RPRBITAN. 09000810 01
                         00800000
DATA: 02CE0CEC
    +0000 C1D7D7C3 C1D7F0F9 80000000 00550200 | APPCAP09...... |
```

```
0000000
                  00010095
                            000A000
                                       02CE0DE8
+0010
                                                      ....n....".Y
+0020
       02CE0D54
                  0000015C
                            0000015C
                                       0000000
                                                      ....*...*...
+0030
       02CE0008
                  0000000
                            0000000
                                       02000200
+0040
       00090008
                  10010010
                            00000000
                                       00000000
       0000000
                  0000000
                            0000000
                                       0000000
+0130
                                                    . . . . . . . . . . . . . . . .
+0140
       0000000
                  00020001
                            00010000
                                       00130000
+0150
       0000000
                  0000000
                            0000000
```

RDTSUM

Use RDTSUM to display a summary for all RDTEs or for a selected RDTE.

Operands

RDTE name

The RDTE name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, it is padded on the right with blanks.

Syntax

Sample output

ROUTES

Use ROUTES to display explicit route table entries (ERTEs) and virtual route blocks (VRBLKs).

Use the following syntax as an alternative to the panel interface.

Syntax

➤ ROUTES →

```
ROUTES
                             ROUTES Analysis
ERTE: 067C7020
   ERTPTR... 00000000 ERTERN... 00
                                           ERTFLG... 00
                                                               ERTTGN... 01
   ERTADJSA. 00000001 ERTDSA... 00000001
 DATA: 067C7020
                    00000000 00C70000 00008000
   +0000 14280000
                                                  | .........G.......|
    +0010 00000000
                    00000001
                              00000001 00000001
                                                   +0020 00000000
                    00000000
 ERTE: 067C70E0
   ERTPTR... 067C70B0 ERTERN... 05
ERTADJSA. 00000004 ERTDSA... 00000002
                                           ERTFLG... 00 ERTTGN... 01
 DATA: 067C70E0
                    067C70B0 05830000
00000001 00000004
          14280000
                                        00004000
    +0000
                                                  | .....@.[.c....
                                                  .....
          00000000
                              00000004 00000002
    +0010
    +0020
          00000000
                    00000000
ERTE: 067C70B0
   ERTPTR... 067C7080 ERTERN... 02
ERTADJSA. 00000004 ERTDSA... 000000002
                                           ERTFLG... 00
                                                               ERTTGN... 01
DATA: 067C70B0
    +0000 14280000
                    067C7080 02830000
                                        0008000
                                                   | .....@...c....
    +0010
          00000000
                    00000001
                              00000004
                                        00000002
                                                   ......
    +0020 00000000
                    0000000
 VRB: 062FE580
   VRBADJSA. 00000001 VRBFXCHN. 000000000 VRBDSTSA. 00000001 VRBVRN... 00
 DATA: 062FE580
    +0000 05E80000
                    0000000
                              0000001
                                        0000000
    +0010
          11280000
                    0000000
                                        0000000
                              062FEE88
                                                    ....h....h
    +0020
          0000000
                    0000000
                              0000000
                                        0000000
   +0030
          00C1C610
                    00000000
                              1B081000
                                        00000018
    +0040
          00000000
                    00000000
                              00000000
                                        00000000
    +0050
          0000000
                    0000000
                              05000000
                                        062E7100
    +0060
          0000000
                    0000000
                              00360000
                                        0000000
    +0070
          00040000
                    00000000
                              00000000
                                        00000000
    +0080
          05000100
                    0000000
                              00000000
                                        00000000
    +0090
          0000000
                    0000000
                              0000000
                                        0000000
    +00A0
          0000000
                    0000000
                              05000200
                                        0000000
    +00B0
          0000000
                    0000000
                              0000000
                                        0000000
                    00000000
    +0000
          00000000
                              00000000
                                        00000000
          00000000
                    0000001
    +00D0
                              0000000
                                        0000000
    +00E0
          00000000
                    0000001
 VRB: 062EE268
   VRBADJSA. 00000004 VRBFXCHN. 062EE360 VRBDSTSA. 00000002 VRBVRN... 03
 DATA: 062EE268
                                                    .Y....T-....
    +0000 05E80300
                    062EE360 00000004
                                        0000000
    +0010
          11280000
                    00000000
                              062FEE88
                                        0000000
                                                   | ....h....h....
    +0020
          00000000
                    00000000
                              0000000
                                        0000000
    +0030
          00C1C610
                    00000000
                              1B081000
                                        00000018
    +0040
          0000000
                    0000000
                              0000000
                                        0000000
    +0050
           0000000
                    0000000
                              01000000
                                        0000000
    +0060
          0000000
                    0000000
                              0000000
                                        0000000
    +0070
          00000000
                    00000C18
                              00000000
                                        00000000
                              0000000
    +0080
                    0000000
                                        00000000
          01000100
    +0090
           0000000
                    00000000
                              0000000
                                        00000C18
    +00A0
           0000000
                    0000000
                              01000200
                                        0000000
    +00B0
          0000000
                    0000000
                              0000000
                                        0000000
    +0000
           00000000
                    000000018
                              00000000
                                        00000000
    +00D0
          03000000
                    00000002
                              0000000
                                        0000000
    +00E0
          0000000
                    00000001
                                                    . . . . . . . .
```

RTPINFO

Use RTPINFO to display information about RTP pipes.

RTPINFO displays the following information:

- · A specific RTP pipe
- All RTP pipes to a particular destination
- All RTP pipes with an exception condition
- All RTP pipes in the system

Operands

ADDRESS

Enter 1–8 hexadecimal digits in the form X'x......' for the address used to find the RTP pipe. If the address is fewer than 8 digits, it is padded on the left with zeros.

Tip: Use double quotation marks for the address in IPCS for VERBX:

```
VERBX VTAMMAP 'RTPINFO ADDR(X''00000450'')'
```

SYMBOL

Enter 1–31 alphanumeric characters for an IPCS symbol name that has been previously equated to a location of the RTP pipe. Do not include a period.

Under IPCS, the symbol X represents the address currently being displayed. If the current address points to a location of the RTP pipe, this symbol X may be used to refer to it.

PUNAME

The PUNAME should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, leftmost characters are compared. PUNAME is the name of the RTP pipe.

CPNAME

The CPNAME should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, leftmost characters are compared. CPNAME is the name of the destination CP of the RTP pipe.

NETID

The NETID should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, leftmost characters are compared. NETID is valid only with the CPNAME option. NETID is the network ID of the destination CP of the RTP pipe.

Guideline: If you specify a CPNAME but do not specify a NETID, the host network ID will be used to form a fully qualified network name.

ALLRTPS

ALLRTPS indicates all RTPs in the system are displayed.

EXCEPTN

EXCEPTN indicates all RTPs with the predefined exception condition in the system are displayed. This is the default option when the RTPINFO command is issued without any option.

COUNT

COUNT specifies the minimum number of work elements in one of the RTP queues to display the detail information for the EXCEPTN operand. This operand is valid with the EXCEPTN operand. The valid range is 1–999.

DETAIL

DETAIL indicates that the detail information for each RTP will be displayed. This operand is valid with the CPNAME, ALLRTPS, or EXCEPTN operand. If this operand is not specified, the summary (not detail) is the default value.

Use the following syntax as an alternative to the panel interface.

Syntax

▶ RTPINFO →

Additional information

- When CPNAME or ALLRTPS option is specified, summary information is displayed for each RTP.
- EXCEPTN is the default option with the count value of 50 work elements. The exception conditions are as follows:
 - RPNCB PABs running with or without queued work elements.
 - The RPN_CONN_STATE is not equal to RPN_CONNECTED (normal state).
 - The RPN_BACKPRESSURE indicator is on.
 - The RPN_NABS value is greater than one.
 - The RPN_NABS_RCV value is greater than one.
 - If the number of work elements in one of the following queues is equal to or greater than the user specified value (or the default value of 50):
 - RPNIBWKQ
 - RPN_PENDING_SENDS_Q
 - RPN_WAIT_FOR_ACK_Q
 - RPN_RCV_MESSAGES_Q
 - RPN_RCV_SEGMENTS_Q
 - RPN_OUTOFSEQ_MSG_Q
 - RPN_PENDING_ALLOC_Q
 - NCBWORKQ

```
RTPINFO PUNAME(CNR00003)

RTPINFO Analysis

Start of CNR00003 Detail information:

RTPTB Slot: 000000E6
RPNCB Address: 15147800
RPN_ALS_NAME: CNR00003
COS Name: #CONNECT
Destination CPName: SSCP2A
Destination NetID: NETA
RPN_Activation_TOD: 10/16/03 22:01:06.960654
```

```
Connection Information:
RPN_CONN_STATE: X'32' RPN_CONNECTED - Normal State
RPN_LOCAL_CONN_ID: 2E4E0F2A0001000D
RPN_REMOTE_CONN_ID: 2E5289960001000B
RPN_CONN_TYPE: X'30' - RPN_LULU
                            Not a limited Resource
                            Active End of Pipe
RPN LOCAL NCB PTR: 151F2340
Local NCB Type:
                            X'2E
BackPressure Fields:
RPN_BACK_PRESSURE:
                                0FF
RPN_BP_APPLIED:
                                0000
BackPressure Reason Counts:
RPN_Backpress_PS_Count:
RPN_Backpress_SendQ_Count: 00
RPN_Backpress_Store_Count: 00
RPN_Backpress_Stall_Count: 00
Path Switch Information:
RPN_PSWCH_STATE:
RPN_Cnt_PS_Initiated_Rem:
                                      0FF
                                      0000
RPN_Cnt_PS_Initiated_Loc:
                                      0000
RPN_Cnt_PS_Due_To_Failure: 0000
RPN_Cnt_PS_Due_To_PSRETRY: 0000
RPNCB PAB Information:
NCBPCPAB: 00000000 00000000 15EF2F34 00000000
NCBBSPAB: 00000000 00000000 969920C8 00000000
NCBPUPAB: 00000000 00000000 15EF2FA4 00000000
Queue Information:
NCBWORKQ Queue Count:
RPNIBWKQ Queue Count:
RPN_Pending_Sends_Q_Cnt:
                                        0000000
                                        0000000
                                        0000000
RPN_Wait_For_Ack_Q_Cnt:
                                        00000013
RPN_RCV_Messages_Q Count: 000000000 RPN_OutOfSeq_Msg_Q_Cnt: 000000000 RPN_PENDING_ALLOC_Q Count: 000000000 RPN_RCV_Segments NLP Count: 000000000
Transmission Sequence Numbers:
RPN_NEXT_BYTE_XMIT:
                               004C4EFF
RPN_LAST_ACK_TRANS:
RPN_LAST_SREQ_SEQ:
RPN_LAST_BYTE_RCV:
                               004C3CD1
                               004C4D3C
                               004C3BF9
RPN_LAST_REXMIT_SEQ:
RPN_LAST_STATUS_XMIT:
                               00000000
                                     0001
RPN_LAST_ECHO:
RPN_LAST_STATUS_RCV:
                                     0001
                                     0002
RPNCB NAB Information:
RPN NABS:
                               0000000
RPN_NABS_RCV:
                               00000000
RPNCB ARB Information:
ARB_ALLOW_SEND_RATE:
ARB_MAX_SEND_RATE:
                                   00000C1E
                                   00007D00
ARB2_CURRENT_RTT:
                                   00000001
ARB2_SMOOTH_ACTUAL_RATE: 0000034A
ARB_ACCUM_QTIME: 00000B55
ARB2_RCVR_THRESHOLD: 000177AB
ARB2_RCVR_THRESHOLD_MIN: 00004268
ARB2_RCVR_THRESHOLD_MAX: 00009088
End of CNR00003 information -----
Number of RTPs displayed:
                                                                    1
Number of RTPs found and processed:
                                                                    1
```

RTPINFO EXCEPTN COUNT(012)

RTPINFO Analysis

Start of CNR00003 Summary information:

RTPTB Slot: 000000E6 RPNCB Address: 15147800

```
RPN_ALS_NAME:
                          CNR00003
COS Name:
                          #CONNECT
Destination CPName: SSCP2A
Destination NetID: NETA
RPN_Activation_TOD: 10/16/03 22:01:06.960654
Connection Information:
RPN_CONN_STATE: X'32' RPN_CONNEC
RPN_LOCAL_CONN_ID: 2E4E0F2A0001000D
                          X'32' RPN CONNECTED - Normal Stat
RPN_REMOTE_CONN_ID: 2E5289960001000B
RPN_CONN_TYPE: X'30' - RPN_LULU
                          Not a limited Resource
                          Active End of Pipe
RPN_LOCAL_NCB_PTR: 151F2340
Local NCB Type:
                          X'2E'
BackPressure Fields:
RPN BACK PRESSURE:
                              0FF
RPN_BP_APPLIED:
                              0000
BackPressure Reason Counts:
RPN_Backpress_PS_Count:
RPN_Backpress_SendQ_Count: 00
RPN_Backpress_Store_Count: 00
RPN_Backpress_Stall_Count: 00
Path Switch Information:
RPN_PSWCH_STATE:
RPN_Cnt_PS_Initiated_Rem:
                                   0FF
                                   0000
RPN_Cnt_PS_Initiated_Loc: 0000
RPN_Cnt_PS_Due_To_Failure: 0000
RPN_Cnt_PS_Due_To_PSRETRY: 0000
End of CNR00003 information -----
Number of RTPs displayed:
Number of RTPs found and processed:
                                                               3
```

SES

Use SES to format the RDTE specified by *name*, and all SIBs and RDTEs in session with *name*. The specified *name* can be any session endpoint, such as a logical unit, terminal, or application program. It also formats:

- ACDEBs
- APPCBs
- COPRs
- FMCBs
- FMCBEXTs
- HSICBs
- LUCBs
- NSICBs
- NSSCBs
- RABs
- SABs
- SIBDXs
- SIBIXs
- SIBRXs
- SIBXs

If *name* is not specified, SES formats all SIBs, RDTEs, ACDEBs, APPCBs, COPRs, FMCBs, FMCBEXTs, HSICBs, LUCBs, MPSTs, NSICBs, NSSCBs, PSTs, RABs, SABs, SIBDXs, SIBIXs, SIBRXs, and SIBXs.

Operands

RDTE name

The RDTE name should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, it is padded on the right with blanks. The specified RDTE can be any session endpoint, such as a logical unit, terminal, or application program.

Use the following syntax as an alternative to the panel interface.

Syntax


```
SES Analysis
MPST: 009E8838
  MPSCHAIN. 009E88C0 MPSPSTQ.. 086D2A60
DATA: 009E8838
                                                    MPST.....h{...6
  +0000 D4D7E2E3
                    00000000
                             009E88C0
                                        007801F6
                                                    ..D.._.-...?..
AUTHh.k...`..6..
   +0010
         00FBC400
                    086D2A60
                              00000007
   +0020
         C1E4E3C8
                    88DF92DA
                              00FD7976
                                        01F60002
   +0030
         00000000
                    000001F6
                              00000000
                                        086D2A60
                                                    .....6...._.-
                                                    ...-...h.
   +0040
         000000060
                              02B70001
                    00000000
                                        009F8838
   +0050
         00000C60
                    80000000
                             00000C60
                                        88DF8930
   +0060
         00000000
                    0000000
                              00000000
                                        0000000
                                                    . . . . . . . . . . . . . . . .
   +0070
        000007D8
                    0000003
                                                    ...Q....
PST: 086D2A60
   +0000
         61000480
                             086D2A60
                    00000000
                                        009E8838
         00000000
                    00000000
                              00000000
                                        00000000
   +0010
                                                    .....g.?.0....
         00000000
                    00000087
                              006F8FF0
                                        0000000
   +0020
   +0030
          0000000
                    0000000
                              009F8654
                                        0000000
                                                    ....f....f....f
   +0040
         01011000
                    07F00030
                              00000000
                                        00000000
                                                    .....0.......
   +0050 00000000
                    00000000
                             009F8658
                                        00000000
ACDEB: 08B9BBE8
   ACDTCB... 006FDE48 ACDCHN... 00000000 ACDRDTE.. 09FA1100
DATA: 08B9BBE8
   +0000 0F480000
                    00000000 086D2A60
                                        00000000
         00000000
                    00000000
                              009F83A0
                                        00000000
                                                    .....c...c....
   +0010
   +0020
          2D010000
                    0FF00010
                              00000000
                                        00000000
                              00000000
                                                    .?~....q......
   +0030
         006FA108
                    08B9BA98
                                        00000007
                                                    .....h
   +0040
         00000000
                    0000000
                              0000000
                                        0870B188
   +0050
         006FDE48
                    08B9BA98
                              00000000
                                        00000000
   +0060
         00000000
                    00000000
                              08C3B1A8
                                        00000000
                                                    00000002
   +0070
         08B9BD38
                    00000000
                                        00000000
LUCB: 08C3B1A8
                    00000000
   +0000
         52780076
                             086D2A60
                                        00000000
                                                    00000000
   +0010
                    00000000
                              08C3B218
                                        00010000
   +0020
         00010000
                    00010000
                              08000000
                                        09FA1100
   +0030
         08B72258
                    08B722E8
                             08B9BBE8
                                        0000000
                                                    .....Y...Y...
   +0040
         00000004
                    08B72258
                              00000000
                                        00000000
                                                    . . . . . . . . . . . . . . . .
         00000000
   +0050
                    00000000
                              009F8398
                                        00000000
   +0060
         19011000
                    0FF00050
                             00000000
                                        00000000
                                                    FMCBX: 08B72258
   +0000 00000001
                    00388402
                             04000002
                                        08B73748
                                                    .....Y
   +0010
         00010001
                    00760000
                              00010038
                                        08B722E8
   +0020
         00000000
                    08B735D8
                              0000000
                                        0000000
                                                    .....Q......
....L7201A NETA
   +0030
         20000000
                    D3F7F2F0
                              F1C14040
                                        D5C5F3C1
                    00000000
   +0040
         40404040
                              00000000
                                        00000000
   +0050
         00000000
                             00000000
                                        00000000
                    00009080
                                                    +0060
         00000000
                    0000000
                             EAABEEC3
                                        946C4B7A
                                                    .....L7201A
   +0070
         00000000
                    00000000 D3F7F2F0
                                        F1C14040
   +0080
         00000000
FMCB: 08B73748
+0000 03008040
                    08B72258
                             086D2A60
                                        00000000
   +0010
         08B7B210
                    0000000
                              00000000
                                        0000000
                                                    . . . . . . . . . . . . .
   +0020
         08B7A260
                    0000000
                              10016200
                                        0FF00018
                                                    ..s-....0..
   +0030
         00000000
                    00000000
                              01FF000D
                                        01FF000D
                                                    +0040
         00000000
                    00000000
                              08B7A030
                                        00000000
                                                    .....0............
   +0050
         10096200
                    0FF00040
                             00000000
                                        00000000
                                                    ....Q....
          01FF000D
                    01FF000D
                              08B735D8
                                        00000000
   +0060
          0000000
                              0000000
   +0070
                    00000000
                                        04000002
APPCB 08B9B7F8
APPLUCB 08B5D110 APPTSKID 08C965B0 APPACB 009E6ED8
APPSPTAE 08B9ABD0 08B9AA68 08B9A888 08B9AAE0 08B9AB58
000000 62C1D7D7 08B5D110 08C965B0 00000000 000020 31094000 07F00010 00000000 00000000
```

```
*....*
*APPC1A02.....*
*.....9...*
                                        000060 C1D7D7C3 F1C1F0F2 00000000 00000000
              00000000
9999A9 99999999 99999999 98FC86F9 999999999
                                         36200000 07F000A0 08B9ABD0 08B9AA68
                                        08B9A888 08B9AAE0 08B9AB58
00000000 00000000 00000077 00000077
00000000 00000000 00000000 00000000
FMCBX: 08B725B8
                                   086BE218
                                             .....4d.....,S.
.....4....
  +0000 00010001
                 00F48403 01000002
        00000001
08B72918
                          000100F4
08B74438
                                   08B72408
00000000
  +0010
                 00490001
                 086BE018
                                              ....,\......
....TCPM1011NETA
  +0030
        20000000
                 E3C3D7D4
                          F1F0F1F1
                                   D5C5E3C1
                                   00000000
00100000
   +0040
        40404040
                                                . . . . . . . . . . . .
                                              .....9-....Cm%.=
  +0050
        00000000
                 00009080
                          00000000
  +0060
        00000000
00000000
                 09F96014
                          FAARFEC3
                                   946C4B7F
                 00000000
  +0070
                          E3C3D7D4
                                   F1F0F1F1
  +0080
        00000000
       03C08000
                 08B725B8 08C965B0
  +0000
                                   00000000
        08B7B210
08B7A260
                 00000000
                          00000000
1C016200
                                   00000000
0FF00018
  +0010
                                              ...s-.....0..
   +0020
  +0030
        00000000
                 00000000
                          0101001C
                                   00000000
  +0050
        1D096200
                 0FF00040
                          00000000
                                   00000000
                                              .....0. .......
        0101001C
                 00000000
                          00000000
                                   00000000
  +0070
        00000000
                 00000000
                         00000000
                                   01000002
HSICB 086B5258
HSISENSE 00000000
HSIHLDPS 000000000
00000000 00000000 00000000 800E0000
00050000 00002000 00000000 00000000
000060 000BC003 00000000 00000000 00000000
                                        00000000 00000000 00000000 00000000
00000000 00000000
QAB: 08B57060
         D9C4E340
                    00100000 08B57948 09F80280
                                                   | RDT .....`..8..
         00100000 00700074
RDT: 08B57948
  RPRNAME.. VTAMSEG RPRENTRY. 02
                                            RPRBITAN. 02000100 00
                                                                                     RPRDEVCH. 00000000
0000000
DATA: 08B57948
                                                     VTAMSEG .....
   +0000 E5E3C1D4
                   E2C5C740
                              80000000
                                         00020200
   +0010
          00000000
                    00000000
                              00000000
                                         08B579B0
          00000000
                    000000B0
                              00000000
                                         00000000
   +0020
          00000000
                    00000000
   +0040
          00020001
                    0000000
                              00000000
                                         0000000
   +0050
          00000000
                    00000000
                              00000000
                                         00000000
          00000000
                              20000000
                                         00000000
   +0060
                    00000000
          08B58418
                    08B57060
   +0070
                              00000000
                                         00000000
                    00000000
   +0080
          00000000
                              00000000
                                         0000000
   +0090
          0000000
                    0000000
                               00000000
   +00A0
          00000000
                    00000000
RDTE: 08B579F8
  RPRNAME.. SSCP1A
                     RPRENTRY. 40
                                            RPRBITAN. 00000940 00
                                                                                     RPRDEVCH. C06D0000
00800000
DATA: 08B579F8
         E2E2C3D7
                    F1C14040 80000000 00010001 00000008
   +0000
                                         00400200
          00000000
                                         08B57AA8
   +0010
          08B57A60
                    000001D8
                              000000B0
                                         0000000
   +0020
          08B57948
                    0000000
                              0000000
                                         05050505
          00000009
                    40000100
                               0000000
                                         0000000
   +0040
                                         00800000
00000000
   +0050
          0000000
                    0000000
                               C06D0000
          00000000
   +0060
                    00000000
                              00000000
   +0070
          00000000
                    00000000
                              00000000
                                         00000000
          3F013F01
                    00040000
                              00080000
                                         00000000
   +0090
         00000000
                    00000000
                              00000000
                                         00000000
SIB: 0A07CA58
  SIBFSMIN. FC
                      SIBFSMTM. 00
                                         SIBFSENS. 00000000 SIBBPRIO. 0A07C300 SIBBSECO. 00000000
SIBTTMFL. 00
  SIBTREAS. 00 SIBTSESE. 00
SIBPCID = EAABEEC3946C4B88 QUALIFIER = NETA.SSCP1A
DATA: 0A07CA58
   +0000 9800FC00 00000000 EAABEEC3
                                         946C4B88
   +0010
         40404040
                    40404040 C9D5E3C5
                                         D9C1C3E3
          C9D5E3C5
                    D9C1C3E3
                                                     INTERACT..w4.i6.
                              B342A6F4
   +0030
          0A07C768
                    00000000
                              0A07C300
                                         0000000
   +0040
          0000000
                    0A07CB08
                              0A07CB68
                                         09F96014
   +0050
          70311000
                    00060408
                              00000000
                                         00000000
   +0060
          00000000
                    00000000
                              A0000000
                                         00000000
          80000000
   +0070
                    0000000
                              00000000
                                         0000000
   +0080
          09CAE2B0
                    00000000
                               00000000
                                         00000000
   +0090
         00000000
                    00000000
                              00000000
                                         00000000
         00000000
                   00000000
   +00A0
                              00000000
                                         00000000
      PLU (OLU) RESOURCE
SIBRX: 0A07CB08
  SIBRADJN. . . . . . SIBRALNM. APPC1A02
SIBRNETC = 10 = SIBRNTS - Same domain
                       SIBRALNM. APPC1A02 SIBRNID.. NETA
                                                                SIBRNETA. 00000001 0049
DATA: 0A07CB08
+0000 00000000 00000000 C1D7D7C3 F1C1F0F2
         00000000 00000000 C1D7D7C3 F1C1F0F2 | ......APPC1A02
D5C5E3C1 40404040 00000000 09F93BD0 | NETA .....9.}
```

```
+0020 00000000 001073C0 78048100
                                           00000004
                                                       | ........{..a....
   +0030
          01000007
                     00000000
                                00000000
                                            00000000
   +0040
          00000000
                     00010049
                                 00000000
                                            0000000
                                                         . . . . . . . . . . . . . . . .
   +0050
         00000000
                      0000000
                                 00000000
                                            0000000
        SLU (DLU) RESOURCE
SIBRX: 0A07CB68
   SIBRADJN. ..... SIBRALNM. AA2LUA1
SIBRNETC = 10 = SIBRNTS - Same domain
                                              SIBRNID.. NETA
                                                                     SIBRNETA. 00000003 00EB
DATA: 0A07CB68
                                                             ....AA2LUA1
   +0000 00000000 00000000 C1C1F2D3
                                            E4C1F140
                                                         NETA ....8..
   +0010
          D5C5F3C1
                     40404040
                                00000000
                                            09F803B8
   +0020
          02020400
                     001073C0
                                 68008122
                                            10000000
          00000000
                                 C5D94040
                                                         ....#INTER
   +0030
                      7BC9D5E3
                                            02800000
                                                         .....U...G.
                      000300EB
                                 0A0A70E4
   +0040
           00000000
                                            0A07C768
   +0050
          00000000
                     09CAE278
                                00000000
                                            00000000
        DLUR SAW DATA
DATA: 09CAE2B0
+0000 09CAE160 02000000 7BC9D5E3 C5D94040
+0010 0A09B010
                                                       | ...-...#INTER
SIB: 0A07C768
   SIBFSMIN. FC
                         STRESMIM. 00
                                               SIBFSENS. 00000000 SIBBPRIQ. 0A07C5F0 SIBBSECQ. 0A07C5F0
STRTTMFI 00
   SIBTREAS. 00
                         SIBTSESE. 00
   SIBPCID = EAABEEC3946C4B83 QUALIFIER = NETA.SSCP1A
DATA: 0A07C768
   +0000 9800FC00
                     00000000 EAABEEC3
                                            946C4B83
                                                                     .Cm%.c
                                                         q......ISTVTCOSCPSVRMGR
                                C3D7E2E5
B342A6EA
   +0010
          C9E2E3E5
                     E3C3D6E2
                                            D9D4C7D9
                                                         CPSVRMGR..w...d.
           C3D7E2E5
                     D9D4C7D9
   +0020
                                            9A0C8403
          0A07C5F0
                                                         ..E0.....E0..E0
   +0030
                     0A07CA58
                                0A07C5F0
                                            0A07C5F0
   +0040
           00000000
                     0A07C818
                                 0A07C878
                                            09F96014
                                                          .....H...H...9-.
   +0050
          50311000
                     00060408
                                00000000
                                            00000000
                     00000000
   +0060
          00000000
                                 A0000000
                                            00000000
          80000000
                     00000000
                                 00000000
                                            00000000
   +0070
                                                         . . . . . . . . . . . . . . . .
   +0080
          00000000
                     00000000
                                0000000
                                            0000000
                                                         . . . . . . . . . . . . . . . .
                                 00000000
         00000000
                     00000000
                                            00000000
   +0090
                                                         . . . . . . . . . . . . . . . .
   +00A0 00000000 0000000
PLU (OLU) RESOURCE
                     00000000
                                00000000
                                            0000000
SIBRX: 0A07C818
   SIBRADJN. ..... SIBRALNM. SSCP1/
SIBRNETC = 20 = SIBRNTEP - Endpoint
                         SIBRALNM. SSCP1A
                                               SIBRNID.. NETA
                                                                     SIBRNETA. 00000001 0075
DATA: 0A07C818
   +0000 00000000
                                                             ....SSCP1A
                     00000000
                                E2E2C3D7
                                            F1C14040
                                                         NETA .....b.
   +0010
                     40404040
                                00000000
          D5C5E3C1
                                            08B58208
          00000000
                     002073E0
                                 78008100
                                            00000000
   +0020
   +0030
          01000005
                     00000000
                                 00000000
                                            0000000
                                                         . . . . . . . . . . . . . . . .
          00000000
                     00010075
                                 0000000
                                            0000000
                                                         . . . . . . . . . . . . . . . .
   +0050 00000000 0000000
SLU (DLU) RESOURCE
                     00000000
                                 00000000
                                            00000000
SIBRX: 0A07C878
   SIBRADJN. ISTAPNCP SIBRALNM. NNCPA2
SIBRNETC = 30 = SIBRNTXD - Cross domain
                                               SIBRNID.. NETA
                                                                     SIBRNETA. 00000003 00E9
DATA: 0A07C878
   +0000 C9E2E3C1 D7D5C3D7
                                                         TSTAPNCPNNCPA2
                                D5D5C3D7
                                            C1F24040
   +0010
          D5C5E3C1 40404040
                                00000000
                                            0A0B5190
                                                         NETA
                                                                 .......
.{..a....
          02020200
                     003063C0
                                68808122
                                            10000000
   +0020
                                                         . . . . .
           00000000
                     E2D5C1E2
                                E5C3D4C7
                                            07000000
                                                         ....SNAŠVCMG...
   +0040
          00000000
                     000300E9
                                0A0A70E4
                                            0A07C5F0
                                                         .....Z...U..E0
   +0050
          0A07CA58 09CAE1D0 00000000
                                            00000000
```

SIBCHECK

SIBCHECK analyzes important fields and relevant status flags in an SIB and related control blocks. The following control blocks are analyzed:

- DLU cross-network extension (SIBX)
- OLU cross-network extension (SIBX)
- PLU resource extension (SIBRX)
- · SIB base
- SIB initiation extension (SIBIX)
- SLU resource extension (SIBRX)
- · SIB termination extension

SIBCHECK determines:

- · Alias resource names and network IDs
- Configuration (cross-domain, cross-network, back-to-back, and so on)

- · Destination logical unit
- GWNCP names
- Initiating logical unit
- · Network addresses
- Originating logical unit
- Primary logical unit
- RDTE address
- · Real resource names and network IDs
- Resource type (APPL, LU, CDRSC, and so on)
- · Secondary logical unit

For each status bit in the SIB and related control blocks, the bit name, its value, and its meaning are listed.

Fields in the SIB that contain addresses are checked (such as SIBTV35P, the CV35 pointer, or SIBTNOTP, the pointer to NOTIFY RU). If these fields contain a nonzero address, the address and description of the field are also displayed.

Note: The SIBBTIME value is displayed in the format of coordinated universal time (formerly known as Greenwich Mean Time).

Operands

You must specify one address or one symbol.

Address

Enter 1–8 hexadecimal digits in the form X'x...' for the address of the SIB to be analyzed. If the address is fewer than 8 digits, it is padded on the left with zeros.

IPCS symbol

Enter 1–31 alphanumeric characters for an IPCS symbol name that has been previously equated with the address of the SIB to be analyzed. Do not include a period.

Under IPCS, the symbol X represents the address currently being displayed. If the current address is an SIB, this symbol may be used to refer to it.

Use the following syntax as an alternative to the panel interface.

Syntax


```
SIBCHECK ADDR(X'02CCA020')
                             SIBCHECK Analysis
                                      CDRM: VTAM
NetID: NETA
                          Network address: 00000001 0001
                             SIB address: 02CCA020
                                                         DLU|SLU
            OLU|PLU
Name (from RDTE): APPCAP05 Name (from RDTE): APPCAP06
RDTE address: 02CC7B7C RDTE address: 02CC7CD8
      RDTE type: APPL
Owning CDRM: VTAM
                                                    RDTE type: APPL
Owning CDRM: VTAM
             NetID: NETA
                                                           NetID: NETA
      Alias name: APPCAP05
Alias netid: NETA
                                                    Alias name: APPCAP06
Alias netid: NETA
   Adjacent SSCP:
                                                 Adjacent SSCP:
 Network address: 00000001 000F Network address: 00000001 0012
```

```
SIBFSMIN: F4 = SIBIFSST - Pending generic session start state
SIBFSMTM: 00 = SIBTFSIS - Initial state
                           Analyze SIB Base
               Original PCID for session: D5376DF4EA88AAB0
           Timestamp from SIB (SIBBTIME): A94FBAF5FD484FF1
          Converted Timestamp (SIBBTIME): 08/13/92 12:36:29.816279
Primary SIB queue (SIBBPRIQ) elements: 0
Secondary SIB queue (SIBBSECQ) elements: 0
SIBBAUTO = 0 - This is not an AUTOLOGON (LOGAPPL) session SIBBIOLU = 1 - OLU is the initiating LU
Analysis of resource extension for DLU|SLU APPCAP06 at address 02CCA140
SIBRNETC = 10 = SIBRNTS
                            - Network configuration: Same domain
SIBRCDTC = 0 - Session has not been associated with the CDTAKEDOWN complete
                 RU for the CDRM specified in SIBRADJN
Analysis of SIB Initiation Extension at address 02C6D020 Routing FSM (SIBIRFSM): 20
Failing RU (SIBIFRU): 00000000
Failing reason (SIBIFRSN): 00
Failure status (SIBIFST): 00
SIBICDR = 0 - \hat{C}DINIT \hat{D}Q is not waiting on any I/O SIBIDLUA = 0 - The DLU network ID is not assumed
Analysis of SIB Termination Extension
    RID for session takedown (SIBTTRID): 000000000000000000
                   SIBTDSUS = 0 - Session was not suspended for duplicate session
SIBTORIG = 0 - SIBUSER - Termination originator is network user
Cross-network extension does not exist for OLU|PLU APPCAP05
Cross-network extension does not exist for DLU|SLU APPCAP06
```

SPANC

SPANC analyzes any or all of the VTAM storage pool anchors (SPANCS). If you use no operands, the number of pages in use, the page size, and where the storage is allocated (common, private, or high virtual common) for every SPANC pool are displayed. Options are available to:

- Designate a specific SPANC pool to be analyzed
- Limit the output to CSA, PRIVATE, or HVCOMM SPANCs
- Determine the number of FBQEs on each page
- Determine the size of each FBQE on each page
- Display a sample of storage from each page
- Determine the page addresses associated with pools
- Process data in a specific pool through the use of an exit

Operands

Pool

Specify the name of a specific SPANC pool to be analyzed. If the pool operand is not used, all SPANCs are processed. If a pool name other than one from the list of valid pool names is specified, no output will be produced.

Note:

- 1. Pools named 'AVAIL' are not valid and are used only as placeholders. They are displayed in the event storage overlays occur.
- 2. The FBQE Count, FBQE List, Process, and Exit operands are mutually exclusive; use only one of them.

Pooltype

Specifies to format ALL, CSA, PRIVATE, or HVCOMM SPANCS. The default value is ALL. This is valid only when POOL value ALL is specified.

FBQE count

Specify Y to have the number of FBQEs on each page of the selected pool (or all pools if no pool was selected) listed. The FBQE contains the length of the free storage it describes. Use this option for performance or storage fragmentation problems. Long chains of FBQEs can cause VTAM performance problems.

FBQE list

Specify Y to have each FBQE on each page of the selected pool (or all pools if no pool was selected) listed. The FBQE contains the length of the free storage it describes. Use this option for storage fragmentation problems.

Length

Specify the number of bytes of storage you want displayed from the beginning of each page of the selected pool (or all pools if no pool was selected). Any hexadecimal number from X'001' to X'FF8' or any decimal number from 1 to 4088 may be specified. Use this option to get a sample of storage from each page of a specific SPANC pool.

Process

Specify Map to display the address of each page that is associated with the selected pool (or all pools if no pool was selected). Use this option with VSMDATA to determine the SPANC pages mapped by each MVS subpool.

Exit

Use Exit to have one of the four exit functions process information on each page of selected SPANC pools. Specify exit FMCB, RU, RUPE, or SIB.

- The FMCB exit searches SPANC pools FMCB, PLUSFMCB, or SSCPFMCB for FMCBs and formats those found.
- The RU exit searches SPANC pools UTILCSAS, UTILCSAL, UTILPVTL, or UTILPVTS for all RUs or a specific RU on a page of storage and displays the address and data for those found.

Note: These pools may contain data that is not an RU. To locate a specific RU, specify the actual RU in the Value field, a Type of X, and a displacement of X'06'.

- The RUPE exit searches SPANC pools RUPECOMM or RUPEPRIV for all RUPEs in the pool. SPANC displays the RUPE address, CPCBOPC, RUPEOAF, RUPEDAF, and RU data for those found.
- The SIB exit searches SPANC pool SIB for all SIBs in the pool. SPANC displays the SIB address, FSMs, sensecode, PLU NetID, PLU name, SLU NetID, SLU name, and procedure correlation identifier (PCID) for SIBs that are found.

Note: For all EXIT routines, an address followed by an asterisk (*) indicates that the buffer pool is allocated.

Note: The following three operands, Displacement, Value, and Value Type, must be used together with the Exit operand. The Exit operand may be used alone.

Displacement

Enter the displacement into the data portion of a page where Value is to be found. The maximum decimal displacement is 4095, and the maximum hexadecimal displacement is X'FFF'.

Value

Enter a character, hex, or binary value to be searched for at the displacement specified by Displacement.

Value may contain character or hexadecimal data of 1–8 bytes in length. Character data should consist of alphanumeric characters. Hexadecimal data should contain an even number of hexadecimal digits in the form X'xx..', otherwise, the high-order half-byte is assumed to be 0.

Binary data can be used to look at a particular bit within a byte. You may specify 1 byte of binary data in the form X'xx'. Only 1 bit within the byte may be selected. Therefore, you can specify only the

following hexadecimal values: 01, 02, 04, 08, 10, 20, 40, and 80. A value with more than 1 bit set (for example, 82) will not be accepted.

Value type

Enter B for binary, C for character, or X for hexadecimal to indicate the type of data entered for Value. Use the following syntax as an alternative to the panel interface.

Syntax

SPANC			
SPANC Ar Page addresses for pool: RUPEPRIV 08D18008	nalysis		
Pages in use for pool RUPEPRIV = Page addresses for pool: RUPECOMM 080D4010	1	Page size = 00001000	PRIVATE
Pages in use for pool RUPECOMM = Page addresses for pool: SIB 091ED008	1	Page size = 00001000	COMMON
Pages in use for pool SIB = Page addresses for pool: SSCPFMCB 08D65008 0915E008	1	Page size = 00001000	PRIVATE
Pages in use for pool SSCPFMCB = Page addresses for pool: NQDAT	2	Page size = 00001000	PRIVATE

```
09123008
Pages in use for pool NQDAT
                                          Page size = 00001000 PRIVATE
Page addresses for pool: EPTDVT
08388010 08389010
Pages in use for pool EPTDVT
                                      2
                                          Page size = 00001000 COMMON
Page addresses for pool: CDRSC
090F4008 091F5008
Pages in use for pool CDRSC
                                      2
                                           Page size = 00001000 PRIVATE
Page addresses for pool: ACDEB
080D0010
Pages in use for pool ACDEB
                                      1
                                           Page size = 00001000 COMMON
Page addresses for pool: HSOH
08474010
                                           Page size = 00001000
Pages in use for pool HSQH
                                      1
                                                               COMMON
Page addresses for pool: ERTE
08D2C008
Pages in use for pool ERTE
                                           Page size = 00001000
                                                               PRIVATE
Page addresses for pool: WREEID 08D60008 08D62008
Pages in use for pool WREEID
                                          Page size = 00001000 PRIVATE
Page addresses for pool: FMCBEXT
0837E010
                                          Page size = 00001000
Pages in use for pool FMCBEXT
                                      1
                                                               COMMON
Pages in use for pool SIBEXT
                                          Page size = 00001000
                                                               PRIVATE
Pages in use for pool AVAIL
                                          Page size = 00001000
                                                               PRIVATE
Pages in use for pool HPRINFO =
                                          Page size = 00001000
                                                               PRIVATE
SPANC POOL(SIB) EXIT(SIB)
                            SPANC Analysis
STB ADDR
           FSMs Sensecode PLUNETID PLUNAME SLUNETID
                                                      SLUNAME
                                                                    PCID
 02CCA020* F400 00000000 NETA
                                   APPCAP05 NETC
                                                      APPCAP06 D5376DF4EA88AAB
 Matches found in exit =
                                    1
 Pages in use for pool SIB
                                       1
                                           Page size = 00010000 PRIVATE
SPANC POOL(FMCB) EXIT(FMCB)
                            SPANC Analysis
 02908028*
 TSPLNGTH
                 TSPEPTA
                           0291A1F0
                                      TSPDEBA
                                                02923140
 TSPTCFL1
           DC.
                 TSPPSFL1
                           00
                                      TSPSTAT1
                                                8000
 FMCB: 02908028
    +0000
           032C8000
                    02907028
                              0292A3D8
                                                     .....ktQ....
                                       00000000
                                                   .j~0.....
    +0010
           0291A1F0
                    0000000
                              0000000
                                        0000000
           02919270
                    00000000
                              1C016000
                                        0000018
                                                   .j̃k.....
    +0020
    +0030
           00000000
                    0000000
                              0000000
                                       0000000
    +0040
           00000000
                    00000000
                              02919040
                                       00000000
                                                   .....j. ....j
 02908160*
TSPLNGTH
                TSPEPTA
                           0291A1F0
                                      TSPDFBA
                                                02923370
 TSPTCFL1
           DC
                TSPPSFL1
                           00
                                      TSPSTAT1
 FMCB: 02908160
    +0000
                    029070B0
                                                     .....[.k_h....
           032C0000
                              0292AE88
                                       0000000
           0291A1F0
    +0010
                    00000000
                              00000000
                                        0000000
                                                   .j~0.....
                                                   .jk.....
    +0020
           02919270
                    0000000
                              1C016000
                                       0000018
           00000000
                    00000000
    +0030
                              0101001D
                                       0101001D
    +0040
           00000000
                    00000000
                              02919040
                                       00000000
                                                   ....j. ....j
 Matches found in exit =
Pages in use for pool FMCB
                                           Page size = 00010000 COMMON
SPANC POOL(UTILPVTS) EXIT(RU)
                            SPANC Analysis
 RU ADDR
                                 RU Data
02C72020
           0E000000000100
           02C64020*
 02C64048
           0000001F0019D4D6C4C9C6E840C9C47EC4C1E5C56BE3C1C2D3C54040404040
           0000003D0037810680104002020000E2D5C1E2E5C3D4C7F308C1D7D7C3C1D7F0
 02CBB020
 02C74020
           0000005F00598106200302D5376DF4EA88AAB000000000006F308C1D7D7C3C1
 02C740A8*
 Matches found in exit =
 Pages in use for pool UTILPVTS =
                                           Page size = 00001000 PRIVATE
SPANC POOL(RUPEPRIV) EXIT(RUPE)
                            SPANC Analysis
                      RUPEOAF
                                  RUPÉDAF
                                                         RU Data
 RUPE ADDR Op code
```

```
02C53020* 08810620
                    000000010001
                                  000000010010
                                                  REQ=8106200302D5376DF4EA
02C530C0* 0F310000
                    00000001000F
                                   000000010012
                                                  RE0=31001307B0B050B30080
02C53160* 0F310000
                    00000001000F
                                                  REO=31001307B0B050B30080
                                   000000010012
                    000000010003
                                   000000010003
02053200* 04000000
                                                  REQ=C4C9E2D7D3C1E840C9C4
02C532A0
          04000000
                    000000010003
                                   000000010003
02C53340* 0B310000
                    00000001000F
                                   000000010012
                                                  REQ=FF310281A02801880002
Matches found in exit =
                                      6
Pages in use for pool RUPEPRIV =
                                             Page size = 00010000
                                                                 PRIVATE
```

SRTFIND

Use SRTFIND to locate a symbol resolution table entry (SRTE) in a dump.

Note: An attempt is always made to translate a symbol or a string regardless of the quality of the input data stream. The translation may produce unexpected results such as dots, random letters, or other combinations of symbols.

Operands

SRT name

The SRT name is the symbolic name of a symbol resolution table (SRT) entry and can be entered as alphanumeric characters or hexadecimal digits.

• If alphanumeric characters are used, enter 1–8 characters in the form cccc. If fewer than 8 characters are entered, the name is padded on the right with blanks, and the tool will search only for the characters entered.

For example, if APPL1 is entered, and APPL1, APPL1A, and APPL1B exist, the tool will find only APPL1.

• If hexadecimal digits are used, enter an even number of digits 1 - 16 in the form X'xxxx'. If fewer than 16 digits are entered, the name is padded on the right with blanks. If an odd number of digits is entered, the name is padded on the left with a 0.

For example, if X'00000010001' is entered, the tool will search for X'0000000100014040'.

The SRT name is required.

NetID

The NetID name representing the network ID of another network outside the host network where the resource resides should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, it is padded on the right with blanks.

Type

Using the name or hexadecimal value, enter the type of SRTE for which you are searching. The default is RDTE. Enter hexadecimal values in the form of X'xx'.

Chain

Use Display SRT Chain to display all SRTEs on the chain, regardless of other search criteria. This option may help locate an SRTE whose storage has been corrupted. The default displays only the SRTEs that match all specified search criteria.

Note: Chain overrides the setting for Process.

Format

Use Format to have selected data formatted using the SRT control block. Noformat, the default, displays the SRT's name, address, and type.

Process

Use All or First to find the SRTs that match the search criteria. The default is All. First displays only the first SRTE that matches the search criteria.

Equated symbol

Symbol

Description

ISTSRTsrtname

SRTE

ISTSRTDsrtname

SRTDATA (if present)

Use the following syntax as an alternative to the panel interface.

Syntax

Sample output

STORAGE

Use STORAGE to format BPCBs, BPDTYs, PXBs, SPANCs, and SPTAEs.

Use the following syntax as an alternative to the panel interface.

Syntax

► STORAGE →

```
+0020 029521A8 00CC41F8 00000000 000003E8 | .n.y.".8......Y
                               0281E000 02957000 | ....n...a\..n..
     +0030
           013400FD
                     02952054
     +0040 00000000 00000000
                               00000000 00000000 | ......
Buffer pool ID SMS1
BPCB: 02952390
    BPCBRPHA. 00000000 BPCBRPHB. 00000000 BPCBRPH1. 00000000
    BPCBRPH2. 00000000 BPCBAVNO. 00000000
  DATA: 02952390
    +0000 00000000
                     00000000
                                         02953FF8
                               600000E7
     +0010
           00000000
                     00000000
                               0000000
                                         0000000
     +0020
           00000000
                     00000000
                               02952000
                                         0000000
     +0030
           00000000
                     00000000
                               0000000
                                         00000000
    +0040
           00000000
                     00000000
                               00000000
                                         00000000
 SPANC 02957204
 POOLNUM 0000
                   POOLNAME RUPEPRIV ASSOCID N/A
 DATA: 02957204
    +0000 D9E4D7C5 D7D9C9E5 000C0002 00000000
                                                  | RUPEPRIV.....
    +0010 00000000 00000000
 SPTAE: 0295721C
    SPTFLAGS. 10 SPTALLOC. 00000000 SPTFREE.. 02C53008
SPTSIDEQ. 00000000 SPTUSECT. 00000320 SPTHIUSE. 000003C0
    SPTNBRPG. 00000001 SPTLNGTH. 000000A0
  DATA: 0295721C
    +0000 02957204 0295725C
+0010 00000000 00100000
                               00000000 00000000
                               00000000
                                         02C53008
     +0020 00000000
                     00000320
                               +0030 00000000
                     000000A0
                               00000199
                                         00000001
 SPTAE: 0295725C
    SPTFLAGS. 00
                        SPTALLOC. 00000000 SPTFREE.. 00000000
    SPTSIDEQ. 00000000 SPTUSECT. 00000000 SPTHIUSE. 00000000
    SPTNBRPG. 00000000 SPTLNGTH. 00000178
 DATA: 0295725C
    +0000 02957204
                     00000000
                               0000000
                                         00000000
           0000000
                     0000000
                               00000000
                                         0000000
     +0020
           00000000
                     00000000
                               00000000
                                         00000000
                                                   | ......
     +0030 00000000
                               A000000A
                                         00000000
                     00000178
SPANC 18450568
P00LNUM 0086
                  POOLNAME SM3270
                                   ASSOCID N/A
DATA: 18450568
                                                 | SM3270 f.....|
    +0000 E2D4F3F2 F7F04040 86190007 00000000
    +0010 00000000 00000000
SPTAE: 18450580
    SPTFLAGS. 02
                       SPTNBRPG. 00000001 SPTLNGTH. 000007F0
    SPTNBRCS. 00000000
                                           SPTFREE6. 000001EF 8580EFC0
    SPTALLOC. 00000000
                       00000000
    SPTSIDEQ. 00000000
                       00000000
                                           SPTUSECT. 00000000 00000000
    SPTHIUSE. 00000000
                       000007F0
 DATA: 18450580
                    18450618
    +0000 18450568
                             00000000 00000000
    +0010
          00000000
                    00020000
                              00000000
                                        00000000
    +0020
          000001EF
                    8580EFC0
                              00000000
                                        00000000
                                                   ....e..{......
    +0030
          0000000
                    00000000
                              00000000
                                        000007F0
          00000001
                    00000001
                              00000000
                                        00000000
    +0040
                                                   +0050
          CFD2DEC8
                    69632953
                              00000000
                                        0000F000
                                                   .....0..K.H....
    +0060
          0000000
                    0000F000
                              CFD2DEC8
                                        69632A53
    +0070
          00000000
                    000007F0
                              001E001E
                                                   . . . . . . . . 0 . . . . . . . .
                                        00000000
    +0080
                    00000000
                                        0000F000
          00000000
                              00000000
                                                   ..0....
    +0090
          0000F000
                    00000000
 SPTAE: 18450910
                        SPTNBRPG. 00000000 SPTLNGTH. 0002CFC0
    SPTFLAGS. 00
    SPTNBRCS. 00000001
                                            SPTFREE6. 00000000 00000000 SPTUSECT. 00000000 000000000
    SPTALLOC. 00000000
                        00000000
    SPTSIDEQ. 00000000
                        0000000
    SPTHIUSE. 00000000
                        0002CFC0
  DATA: 18450910
    +0000 18450568
                               0000000
                     0000000
                                         00000000
    +0010
           00000000
                     00000000
                               00000000
                                         00000000
     +0020
           00000000
                     0000000
                               00000000
                                         0000000
     +0030
           0000000
                     0000000
                               0000000
                                         0002CFC0
                     0000001
     +0040
           0000000
                               0000000
                                         0000000
     +0050
           00000000
                     00000000
                               00000000
                                         00000000
     +0060
           00000000
                     00000000
                               0000000
                                         00000000
     +0070
           0000000
                     0002CFC0
                               00010001
                                         00000000
```

TOPOLOGY

Use TOPOLOGY to help diagnose topology and routing problems. The TOPOLOGY provides the summary information output of user-selected criteria for the control blocks representing node records and TG records.

Operands

COSNAME

The name of the entry in the APPN Class of Service table should be 1-8 alphanumeric characters. If a *cosname* value is not specified, the default class of service name is #CONNECT.

ALLTOPO

Displays a summary of all node records and a summary of all TGs that originate at each node. Displays the weights of all node records and TG records.

This is the default value.

ANNTOPO

Displays a summary of all network node records and a summary of all TGs that originate at each network node. Displays the weights of all network node records and TG records.

AENTOPO

Displays a summary of all end node records and a summary of all TGs that originate at each end node. Displays the weights of all end node records and TG records.

ACNTOPO

Displays a summary of all connection network node records and a summary of all TGs that originate at each connection network node. Displays the weights of all connection network node records and TG records.

Use the following syntax as an alternative to the panel interface.

Syntax

TOPOLOGY ALLTOPO									
NodeName NETSOUTH.GERMANY Total Number of TG	NDRECAdr Typ 3EC2B4D8 Records Found	EN 00	qNo G(000000 0	CI N	QUIES N	HPR NO	Weight 160		
	3EC2B670	NN 00	~	N	N	NO	60		
NETMAP3.LVRN6E Total Number of TG	3EC2BCD0 Records Found		000000 0	N	N	NO	0		
NETSOUTH.SPAIN Total Number of TG	3EC2B340 Records Found		000000 0	N	N	NO	160		
NETSOUTH.FRANCE Total Number of TG	3EC2B9A0 Records Found		000000 0	N	N	NO	160		
NETMAP3.GVRN4A Total Number of TG	3EFF81A8 Records Found		000000 0	N	N	NO	0		
NETSOUTH.BOTSWANA Dest CPNAME	3EC2B010 M TGRECAdr T			N	N GCI QUI	CONTR HPR/TT	60 TGTYPE	Weight	

```
NETSOUTH.SPAIN
                       3F031010
                                 21 INOP 00000002
                                                                    ENDPT 32767
    NETSOUTH.GERMANY 3F0312D0
                                 21 INOP 00000002
                                                            Y/Y
                                                                    ENDPT 32767
                                                            Y/Y
Y/Y
                                                                   ENDPT 32767
    NETSOUTH.RUSSIA
                       3F031590
                                 21 INOP
                                         00000006
                                                        N
                                                                   ENDPT 32767
    NETSOUTH.ITALY
                       3F031850
                                 21 INOP 00000006
                                                        N
    NETSOUTH.ITALY
                       3F031B10
                                                                    FNDPT
                                 22 OPER 00000002
                                                    N
                                                        N
                                                                             30
    NETSOUTH.FRANCE
                       3E8EA010
                                 21 INOP 00000002
                                                    N
                                                        N
                                                                    ENDPT 32767
                                 21 OPER 00000000
    NETMAP3.LVRN4D
                       3E8EA2D0
                                                            Y/Y
                                                                    ENDPT
    NETMAP3.LVRN6E
                                                        N
                       3E8EA590
                                 21 OPER 00000000
                                                    Ν
                                                            Y/Y
                                                                    ENDPT
                                                                             30
    NETMAP3.GVRN4B
                       3F8FA850
                                 21 OPER 00000000
                                                    N
                                                        N
                                                                    ENDPT
                                                                             30
    NETMAP3.GVRN4A
                                 21 OPER 00000000
                                                                    ENDPT
                       3E8EAB10
                                                                             30
Total Number of TG Records Found:
NETSOUTH.ITALY
                   3EC2B808
                                      00000000
                                                              NO
                                                                      60
Total Number of TG Records Found:
NETMAP3.LVRN4D
                   3EC2BB38
                                      0000000
                                 CN
                                                              NO
                                                                      0
                                                      N
Total Number of TG Records Found:
                                        Θ
NETMAP3.GVRN4B
                   3EFF8010
                                CN
                                      00000000
                                                      N
                                                              NO
                                                                      0
Total Number of TG Records Found:
                                        0
Total Number of Nodes found:
```

TRSTRACE

Use TRSTRACE to display TRS topology and route traces.

Operands

TOPOTRC

Displays the TRS topology traces.

This is the default value.

ROUTE

Displays the TRS route selection trace.

Use the following syntax as an alternative to the panel interface.

Syntax

+0FA0	F5C10000	00000000	E3C7E400	00000000		5ATGU
+0FB0	000000A	BD61BF07	BD61BF1D	16B0D850		Q&
+0FC0	D5E30710	2120D5C5	E3C14BE2	E2C3D7F1		NTNETA.SSCP1
+0FD0	C1000000	000000D5	C5E3C14B	E2E2C3D7		ANETA.SSCP
+0FE0	F5C10000	00000000	E3C7E400	00000000		5ATGU
+0FF0	0000000A	BD61BF07	BD61BF1D	16B122D0		}
TRACPAGE:	16A7B020					
+0000	D5E30810	2120D5C5	E3C14BE2	E2C3D7F1		NTNETA.SSCP1
+0010	C1000000	00000D5	C5E3C14B	E2E2C3D7	- .	ANETA.SSCP
+0020	F5C10000	00000000	E3C7E400	00000000		5ATGU

VITAL

Use the VITAL function to extract an internal VIT from a dump for use with the VIT analysis tool. See Chapter 8, "Using the VIT analysis tool," on page 315.

Before using VITAL, allocate a data set for the specified DD name. The data set, when VITAL is invoked, must have these attributes.

RECFM=VB LRECL=284 DSORG=PS

Note:

- 1. The VIT extracted by VITAL can be used as input to the VIT analysis tool, but not to the IPCS GTFTRACE subcommand.
- 2. Time stamps are provided with each entry in the VITAL output, but it should be understood that these are approximated time stamps generated during the extraction process.
- 3. It is possible for the extracted VIT to contain one or more entries that begin with one or more words of hexadecimal zeros.
 - While VTAM does not create such VIT entries, it is possible for user programs to create these non-standard VIT entries. These entries are processed as is by the VITAL function.
 - It is possible for the end of the VIT table to contain some trace entries which are all zeros. These entries are extracted by the VITAL function as non-standard trace entries.

Operands

DD name

Specify the name of the DD statement allocated to receive the extracted VIT. The DD name should be a 1–8 alphanumeric character name. If it contains fewer than 8 characters, it is padded on the right with blanks.

The DD name is required.

You must allocate the specified data set before VITAL is invoked. VITAL will not allocate the data set for you.

Note: The jobname field in the GTF header is set to VFDTRACE. The ASCB address field is set to 0.

Use the following syntax as an alternative to the panel interface.

Syntax

$$\longrightarrow$$
 VITAL — DDN — (— DD_name —) \longrightarrow

Sample output

VITAL DD(VITDATA)

```
VITAL Analysis

VITAL processing completed successfully
```

VTAM

Use VTAM to format and display the following information:

- · RDT and RDTEs
- Memory process scheduling table (MPST) and process scheduling table (PST)
- ACDEBs, APPCBs, COPRs, FMCBs, FMCBEXTs, HSICBs, LUCBs, NSICBs, NSSCBs, RABs, and SABs
- NCBs
- Buffer pool control blocks (BPCBs), buffer pool directory (BPDTY), pool extension blocks (PXBs), storage pool anchor block (SPANC), SPANC task-associated element (SPTAE), storage pool page table (PAGTB), and storage pool page table entries (PTEs)
- Locked queue anchor block (LQAB)
- Waiting request elements (WREs) and event identifiers (EIDs)
- Modules from the ATCVT, in the form *module name* and *module address*, sorted by module name

Use the following syntax as an alternative to the panel interface.

Syntax

▶ VTAM →

```
VTAM
                       VTAM Analysis
BPD
DATA: 02953000
   +0000 000C000C 00000000 02953508 00000000
                                                  | .....n....|
| ....."...n...|
| .n.y.".8.....Y|
   +0010 00000000
                    00002000 7FFFFFF
                                        02953390
   +0020 029531A8 00CC41F8 00000000
                                        000003E8
Buffer pool ID SMS1
BPCB: 02953390
   BPCBRPHA. 00000000 BPCBRPHB. 00000000
                                           BPCBRPH1. 00000000
   BPCBRPH2. 00000000 BPCBAVNO. 00000000
DATA: 02953390
   +0000 00000000
                    00000000
                              600000E7
                                        02954FF8
                                                    ........X.n|8
          00000000
                    00000000
                              0000000
   +0010
                                        00000000
   +0020 00000000
                    00000000
                              02953000
                                        0000000
SPANC 02958204
POOLNUM 0000
                  POOLNAME RUPEPRIV ASSOCID N/A
DATA: 02958204
   +0000 D9E4D7C5 D7D9C9E5
                                                    RUPEPRIV.....
                              000C0002
                                        0000000
   +0010 00000000 00000000
SPTAE: 0295821C
   SPTFLAGS. 10
                       SPTALLOC. 00000000
                                           SPTFREE.. 02C4F008
   SPTSIDEQ. 00000000 SPTUSECT. 000000A0 SPTNBRPG. 00000001 SPTLNGTH. 000000A0
                       SPTUSECT. 000000A0
                                           SPTHIUSE. 00000500
DATA: 0295821C
   +0000 02958204
                    0295825C
                              0000000
                                        00000000
                                                    .nb..nb*....
    +0010
          00000000
                    00100000
                              0000000
                                        02C4F008
                                                  +0020 00000000 000000A0
                              00000500
                                        00000001
                                                  | .....μ....μ......
MPST: 00CBED38
   MPSCHAIN. 00CBEDB8 MPSPSTQ.. 02818328
DATA: 00CBED38
   +0000 D4D7E2E3
                    80000000
                              00CBEDB8
                                        00700016
                                                   | MPST.....⅓.....
          00F74180
   +0010
                              0290EB18
                                        00AFB040
                                                    .7...ac..._[
                    02818328
                    823BA7CA 00FDD6F6
                                                    AUTHb.x...06....
   +0020 C1E4E3C8
                                        00160002
PST: 02818328
```

```
61000480
                     00000000
                                02818328
    +0000
                                          00CBED38
                                                     | /....ac....
    +0010
           00000000
                     0000000
                                0000000
                                          0000000
                                                      . . . . . . . . . . . . . . . .
                                                     | ...._±0....|
    +0020 00000000
                     00000051
                                00AF8FF0
                                          0000000
QAB: 02955740
    +0000 D9C4E340
                     000D0000
                                00CC1AB0
                                          02CE0008
                                                      RDT .....".[."..
    +0010 00100000
                     00700074
 RDT: 00CC1AB0
    RPRNAME.. VTAMSEG
                        RPRENTRY, 02
                                             RPRBITAN. 02000100 00
    RPRDEVCH. 00000000
                        00000000
DATA: 00CC1AB0
                                                      VTAMSEG .....
    +0000 E5E3C1D4
                     E2C5C740
                                80000000
                                          00020200
    +0010
           00000000
                     00000000
                                00000000
                                          00CC1B18
                                                       +0020
           00000000
                     000000B0
                                00000000
                                          00000000
                                                      . . . . . . . [ . . . . . . . .
RDTE: 00CC1B60
   RPRNAME.. SSCP1A
RPRDEVCH. C06D0000
                         RPRENTRY. 11
                                             RPRBITAN. 00000940 00
                        00800000
DATA: 00CC1B60
 ATCVT: 00CC41F8
    ISTACC00. 82A957A0 ISTACC01. 82ACD8B8 ISTAICIR. 80DD9000
   ISTAICPT. 823B7014 ISTAPCAD. 823B8298 ISTAPCES. 823BC560 ISTAPCGT. 823C5078 ISTAPCIE. 822E29F0 ISTAPCIN. 823BD990
    ISTAPCKU. 80DDA5A0 ISTAPCPC. 823BCE58 ISTAPCPD. 823B8920
                        ISTAPCRP. 822E2934
    ISTAPCPS. 823C0580
                                             ISTAPCRS. 823B8F84
ATCIOLQB
LQAB: 02C6DF30
    LQABFRST. 00000000 LQABLAST. 00000000 LQGSUBA.. 00000001
 DATA: 02C6DF30
   +0000 00000000
                     00000000
                               02D3D8C7
                                          00000001
                                                     | .....LQG....
    +0010 00000000
                     00000000
ATCLUSMQ
 LQAB: 02A3BC14
LQABFRST. 00000000 LQABLAST. 00000000
DATA: 02A3BC14
    +0000 00000000 00000000 03D3D8C7
                                                     | ....LQG
ATCMCQAB
 LQAB: 02A3BC08
    LQABFRST. 00000000 LQABLAST. 00000000
 DATA: 02A3BC08
    +0000 00000000
                     00000000 01D3D8C7
                                                     | ....LQG
ATCPULQB
 LQAB: 02A3BCB4
LQABERST. 00000000 LQABLAST. 00000000
DATA: 02A3BCB4
    +0000 00000000 00000000 04D3D8C7
                                                     | ....LQG
NODAT_CPWAIT_QUEUE
LQAB: 02A3BCC0
   LQABFRST. 00000000 LQABLAST. 00000000
 DATA: 02A3BCC0
    +0000 00000000
                     00000000 05D3D8C7
                                                     | ....LQG
ATCSSLQB
 LQAB: 02A3BCCC
LQABFRST. 00000000 LQABLAST. 00000000
DATA: 02A3BCCC
    +0000 00000000
                     00000000 06D3D8C7
                                                     | ....LQG
ATCSSMQB
 LQAB: 02A3BD6C
   LQABFRST. 00000000 LQABLAST. 00000000
 DATA: 02A3BD6C
    +0000 00000000
                     00000000 07D3D8C7
                                                     | ....LQG
```

VTBASIC

Use the VTBASIC function to display the ATCVT, the configuration table (CONFT), the component recovery areas (CRAs), and the VTAM internal trace (VIT).

Operands

Trace output

Enter Format to format the VIT and No format to display the VIT in hexadecimal format. Format is the default.

Use the following syntax as an alternative to the panel interface.

252 z/OS Communications Server: z/OS V2R5.0 Communications Server: SNA Diagnosis Vol 1, Techniques and Procedures

Syntax

Sample output

```
VTBASIC NOFORMAT
                             VTBASIC Analysis
                              000001EF 81000000
VTAM INTERNAL TRACE TABLE
               C728E7D3 D61C13C4 LAST WRAP
                                             00000000 00000000
CURRENT ENTRY 000001EF 83503020 LAST ENTRY 000001EF 841FFFE0
    C4E2D740 12582410 02915E88 00CC4908
                                           02A275F8 02A275F8 E3E2E6E4 02929010
    D3D2E2C8 12000100 00CC4C70 00000000
                                           82A95442 00000000 00000000 02929010
    E4D5D3D2 12000100 00CC4C70 00000100
                                           82A9546C 00000000 01000000 02929010
    D8E4C558 12482810 02915E88 00CC4248
                                           82A954F8 02A275F8 C9D5E3D4 02929010
    C5E7C9E3 12000010 02915E88 00CC4908
                                           82A95668 80000000 E3E2E6E4 02929010
                                           822E2E16 00010000 0290DDA0 00000000
    D9C5D8E2 12170000 02915E88 02928810
                                           02A275F8 02A275F8 C9D5E3D4 02928810
    C4E2D740 12582810 02915E88 00CC4248
    C5E7C9E3 12000010 02915E88 00CC4248
                                           82A22B1C 80000000 C9D5E3D4 029 28810
    D9C5D3E2 12170000 02915E88 02928810
                                           822E2CB6 00000000 0290DDA0 00000000
ATCVT: 00CC41F8
    ATCRDT... 02955740 ATCSRT... 02C35008
                                             ATCCONFT. 00CC18E8
    ATCBPDA.. 02953000
                        ATCACTRM. 0000
                                             ATCVTLOD. 02A27650
    GWSSCP = YES
DATA: 00CC41F8
                     40404040
                               FFF900C8
    +0000
           E5C5F4F3
                                          02825000
                                                      VE43
                                                              .9.H.b&.
    +0010
           0000000
                     0000FFF9
                               11280000
                                          0000000
                                                      ......9......
                                                      .j;h....
    +0020
           02915E88
                     0000000
                                0000000
                                          0000000
    +0030
           00CC4524
                     0000000
                               13201000
                                          00000010
                                                         . . . . . . . . . . . . . . . .
           11280000
                     0000000
                                          0000000
    +0040
                               02915E88
                                                      ....j;h....
    +07B0
           0000000
                     0000000
                               0000000
                                          0000000
    +07C0
           0000000
                     00000000
                               00000000
                                          0000000
                                                      . . . . . . . . . . . . . . . .
    +07D0
                     0000000
           0000000
                               0000000
                                          0000000
                                                      . . . . . . . . . . . . . . . .
           0000000
                     0000000
                               0000000
                                          0000000
    +07E0
```

VTBUF

Use VTBUF to analyze buffer pool control blocks (BPCBs) and obtain a status summary for all buffer pools or a specific buffer pool. For each buffer pool, the following information is displayed:

- Starting and ending address of buffer pools
- · Buffer pool address (BPCB)
- Buffer type (fixed or pageable)
- · Buffer size
- · Number of buffers allocated
- · Slowdown threshold
- · Number of buffers available
- Expansion threshold
- · Contraction threshold
- Number of times expanded
- · Maximum number of buffers
- · Expansion increment
- · Expansion size
- · Percentage of buffers in use
- · Total number of buffers

- · Bytes in static and expanded areas
- · Buffers in other pools
- · Buffers in static area
- Total queued request parameter headers (RPHs)

If any expansions have occurred, the pool extension block (PXB) address, number of buffers available, totals buffers, beginning of the extent, and the first available extent are also presented.

Operands

Buffer name

Enter a 2–7 character buffer name in the form cc or ccccBUF where cccc is the buffer name. Counts and totals information will be displayed in decimal form.

The default is ALL.

Equated symbol

Symbol

Description

buffername BSTART

Each starting buffer address

buffername BEND

Each ending buffer address

Note: For information on the DISPLAY BFRUSE (buffer use) command, which displays information about VTAM buffer use, see z/OS Communications Server: SNA Operation.

Use the following syntax as an alternative to the panel interface.

Syntax

VTBUF BUFFER(IO)				
IO				
Size of Buffers(bytes)	345	Buffer maximum	110	
Total buffers available Total number of buffers	94 110	Static buffers allocated	110	
Buffers in use (%) Bytes in static &	15	Available static buffers	94	
expanded areas	37950		,	
Slowdown threshold Contraction threshold	5 32767	Expansion threshold	6	
Number of expansions Expansion size Total queued RPHs	9 4096 0	Expansion increment	11	
	XED			
Buffer pool address Beginning address of pool Ending address of pool Buffer pool has no extensio	X ' 0290:	9000'		

VTCVTPAB

Use VTCVTPAB to obtain a list of the PABs and DYPABs in the ATCVT. The PAB control block for each PAB is formatted. For the very extended PABs, the address of the first element on the PAB is displayed. The following PABs and DYPABs are processed:

- ATCCSPAB Configuration services DYPAB
- · ATCITPAB Internal trace DYPAB
- ATCLUSRT LU services router PAB
- ATCNSPAB TSC no session PAB
- · ATCPDPAB Problem determination trace PAB
- ATCPUIOP SSCP/PU services I/O PAB
- ATCPUPAB PU services PAB
- ATCPXPAB Dynamic buffer pool expansion PAB
- ATCRYPAB Definition for CRYPTO task
- ATCSOPAB Session outage notify PAB
- · ATCSSPAB Session serialization PAB
- ATCTMRPB Timer services DYPAB
- ATCTPMPB CPMSG PAB
- ATCTRMPB Termination task
- ATCVDPAB SSCP VARY definition PAB
- ATCWUPAB Wake up PAB
- NODAT_NOSPAB Network operator services PAB

Use the following syntax as an alternative to the panel interface.

Syntax

▶ VTCVTPAB →

```
VTCVTPAB
                         VTCVTPAB Analysis
Configuration Services elements
 PAB: 00C17278
    +0000 86385C68
                   80000000
                            065E4100
                                     0000000
                                               | f.*....;....
    +0010 10321000
                   00000010
                            0000000
                                     0000000
                                               +0020 00000000 00000000
                            00000000
                                     00000000
          level elements
          level elements
          level elements
        4 level elements
                                0
        5 level elements
                                     07524DE0
                                4
          level elements
                               55
                                     073BAA60
        7 level elements
                                     0751FAC0
```

```
Definition for Crypto Task elements
                                               0
PAB: 00C17CC8
   +0000 00000000
                   00000000
                             00C17CA4 00000000
                                                  .....A@u....
   +0010 60001000 00000010
                                               0
Dynamic Buffer Pool Expansion elements
 PAB: 00C172E8
                                                | .....A'd.... |
   +0000 00000000
                   0000000
                             00C17D84 06312010
   +0010 0E0C1000
                   00000010
```

```
VTAM Termination Task elements
PAB: 00C17D30
   +0000 00000000 00000000 00C17DAC 00000000
   +0010 0D201000 00000010
Internal Trace elements
PAB: 00C17220
   +0000 00000000 00000000 00C17524 00000000
                                              | ...... |
   +0010 13201000 00000010
LU Services Router elements
PAB: 00C17380
   1 level elements
                               0
        2 level elements
                              0
1 06204708
9 06204CA8
9 073BA920
        3 level elements
4 level elements
        5 level elements
6 level elements
7 level elements
        7 level elements
Network Operator Services elements
PAB: 00C17408
   +0000 00000000 00000000 00C174B4 00000000
   +0010 14201000 00000010
PD Trace elements
PAB: 00C17B18
   +0000 00000000 00000000 00C17B04 00000000 | ......A#.... |
+0010 12201000 00000010 | ......
PU Services elements
PAB: 00C17310
   1 level elements
2 level elements
                               0
Session Outage Notify elements
PAB: 00C17458
   +0000 00000000 00000000 00C17650 000000000 | ......A.&.... |
+0010 28201000 00000158 | ......
Session Serialization elements
PAB: 00C17440
   +0000 00000000 00000000 00C1764C 00000000 +0010 27001000 00000140
                                              | .....A.<....|
VARY Definition elements
PAB: 00C172B8
   +0000 00000000 00000000 065A18D4 00000000 |
+0010 0B211000 00000010 00000000 000000000 |
                                              | .......!.M.....
SSCP/PU Services I/O elements
PAB: 00C17350
   Timer Services elements
PAB: 00C17248
   +0000 00000000 00000000 00C174CC 00000000 +0010 0C281000 00000010
                                             | .....A.....|
TPMSG elements
PAB: 00C179C8
   TSC No Session elements
PAB: 00C173C0
   +0000 00000000 00000000 00C17548 00000000
+0010 26001000 00000010
                                             | ...... |
                                              . . . . . . . .
Wakeup PAB elements
PAB: 00C17908
```

+0000 00000000 00000000 00C1792C 06313010 |A`.... | +0010 29241000 00000010 | |

VTFNDMOD

Use VTFNDMOD to determine the VTAM module name and displacement for a given address.

VTFNDMOD is useful for converting the issuer address (ISSR) in a VIT into a module name and displacement. It searches up to 5000 bytes before the specified address.

In addition to the module name and displacement into the module that the specified address represents, the following information is displayed:

- · Date module compiled
- · PTF level, if any
- · Address entered
- · Module entry point address
- · Address displacement into module
- · First hexadecimal 40 bytes of the module
- · Hexadecimal 40 bytes around the entered address
- The beginning and ending address of a region, if the address is in FLPA, MLPA, PLPA, extended PLPA, extended FLPA, or extended MLPA

Operands

You must specify one address or one symbol.

Address

Enter 1–8 hexadecimal digits in the form X'x...' for the address used to determine the VTAM module name and displacement. If the address is fewer than 8 digits, it is padded on the left with zeros.

Note: The address must be located after the module name at the start of the module.

IPCS symbol

Enter 1–31 alphanumeric characters for an IPCS symbol name that has been previously equated to a location within a VTAM module. Do not include a period.

Under IPCS, the symbol X represents the address currently being displayed. If the current address points to a location within a VTAM module, X may be used to refer to it.

Equated symbol

After the module name is determined, an IPCS symbol (the module name) is equated to the beginning of the CSECT.

Symbol

Description

module eye-catcher

Module entry point

Use the following syntax as an alternative to the panel interface.

Syntax

Sample output

```
VTFNDMOD ADDR(X'2B023C0')
                                    VTFNDMOD Analysis
                                 TSTORCET.
Module name:
Compile date:
                               92.262
Module entry point: 02B023C0
Address entered:
                               02B023C0
Displacement into module:
                                      100
First '40'X bytes of module:
 DATA: 02B022C0
    Storage around address entered:
 DATA: 02B023AC
    +0000 C54A5860 04085800 65701860 D203602C | E+.-....K.-. |
+0010 C61CD203 6028C618 5800C630 18204100 | F.K.-.F...F.... |
+0020 00585830 20005030 60001E06 8B300002 | ....&.-.... |
+0030 1E035000 C7085820 C7145020 60485020 | .&;G...G.&.-.&. |
```

VTMODS

Use VTMODS to find the entry point of the VTAM modules that reside in the VTAM private region. VTMODS reports the number of modules found and equates the entry point of each module found to its module name in the IPCS symbol table. After VTMODS executes, the VTAM modules found can be located using the module name in the IPCS LIST command.

VTMODS is useful when you are checking the PTF level of several modules or when you want to quickly verify the PTF or APAR level of a module in a dump.

Note: For VTMODS to execute successfully, the VTAM private region must have been dumped (that is, the RGN parameter must have been specified when the dump was taken). If fewer than 10 modules are found, VTAM private storage is missing from the dump.

If the dump does contain the VTAM private region but is a partial dump, VTMODS attempts to find as many VTAM modules as possible.

Operands

List

The default is N. Specify Y to receive a list of each module found, its entry point address, compile date, and PTF level, if present. The modules are in the order that they were found in storage (that is, by storage address, lowest to highest), followed by a list of the modules in alphanumeric order.

Equated symbol

For each VTAM module that is found, an IPCS symbol (the name of the module as it appears in the module eye-catcher) is equated to the entry point of the module.

Symbol

Description

module eye-catcher

Module entry point

Use the following syntax as an alternative to the panel interface.

Syntax

Additional information

The symbols created remain in the IPCS dump directory until the dump directory is deleted or until an IPCS DROPDUMP command is issued for the dump.

VTMODS scans VTAM private storage for the character string IST. When IST is found, a check is made to determine whether this occurrence of IST represents a VTAM module eye-catcher. Most VTAM modules have a branch instruction hexadecimal 47F0F0xx at the entry point to the module to branch around the eye-catcher. If hexadecimal 47F0F0xx appears 5, 7, or 9 bytes before the module eye-catcher, the location is considered in most cases to be a VTAM module entry point.

Storage is scanned starting at the lowest address of private storage to the top of the private region (below the 16 MB line). The scan then continues starting at the lowest address of extended private storage (above the 16 MB line) and continues for about hexadecimal 400 000 bytes.

VTNODE

Use VTNODE to determine:

- If an SIB exists on the secondary chain where the RDTE is the SLU
- If an RDTE application exists, and if the ACDEB, LUCB, FMCB, and FMCB extension associated with the session exist

If any SIBs exist on the secondary chain, only the first SIB is processed. To process the PLU, use the SES function. Excerpts of the SIB, LU RDTE, APPL RDTE, ACDEB, LUCB, FMCB, and FMCB extension are displayed if present.

Operands

RDTE name

The RDTE name of a CDRSC or LU RDTE should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, it is padded on the right with blanks. The entered RDTE name must be the SLU, and the PLU must be an application. For CDRSC independent LUs, VTNODE will process only the first entry.

The RDTE name is required.

NetID

The NetID name representing the network ID of another network outside the host network where a resource resides should be 1–8 alphanumeric characters. If it contains fewer than 8 characters, it is padded on the right with blanks.

Use the following syntax as an alternative to the panel interface.

Syntax

```
► VTNODE — RDTE — (— name — ) — NETID — (— netid — )
```

```
VTNODE RDTE(TCPM1010)
                                VTNODE Analysis
RDTE: 09F90590
   RPRNAME.. TCPM1010 RPRENTRY. 83
                                                 RPRBITAN. 01000110 00
                                                                                                RPRDEVCH. C06D0000
0080000
DATA: 09F90590
   +0000 E3C3D7D4 F1F0F1F0 80000000 00830700
+0010 00000000 00000000 00200000 09F90640
                                                          | TCPM1010....c.. |
   +0020 09F905F8 FFFFFEC0 FFFFFEC0 00000000 | .9.8...{....
SIB: 0A061300
   SIBFSMIN. FC
                         SIBFSMTM. 00
                                                 SIBFSENS. 00000000 SIBBPRIQ. 00000000 SIBBSECQ. 00000000
SIBTTMFL. 00
   SIBTREAS. 00
                        SIBTSESE. 00
DATA: 0A061300
   +0000 9800FC00 00000000 EAABEEC3 939BA822 | q......Cl.y.
+0010 40404040 40404040 D5E2E7F3 F2F7F0F2 | NSX32702
+0020 D5E2E7F3 F2F7F0F2 B33C21C8 C81A1B07 | NSX32702...HH...
RDTE: 09F97BD0
   RPRNAME.. APPC2A02 RPRENTRY. 55
                                               RPRBITAN. 01000910 01
                                                                                                RPRDEVCH. C06D0000
00800000
DATA: 09F97BD0
   +0000 C1D7D7C3 F2C1F0F2 80000000 00550200
+0010 40040000 00020049 00200000 09F97C80
                                                          | APPC2A02.....
                                                              .....9@.
   +0020 09F97C38 00000120 00000120 00000000 | .9@.....
ACDEB: 08C8C6A8
   ACDTCB... 006E5A70 ACDCHN... 00000000 ACDRDTE.. 09F97BD0
DATA: 08C8C6A8
   +0000 0F480000 00000000 08B587C8 00000000
+0010 00000000 00000000 009F83A0 00000000
                                                          | .....0......
   +0020 2D010000 0FF00010 00000000 00000000
```

```
LUCB: 08D24110
   +0000 52700049
                     00000000 08B587C8
                                          00000000
                                                      | ....gH....
          00000000
                     80000000
                               08B47018
                                           01FD0000
                                                      +0010
                     00000000 00000000
   +0020 00040000
                                          09F97BD0
No TSCB elements queued to LUCB PAB
FMCBX: 08C63378
   +0000 00000002
+0010 00000002
                                                      | .....d.....}.
| ....j......F..
| .F...F.Q.F.....
                     001F8402 01000003
                                           08B2D018
                     00910000 0002001F
                                           08C63258
   +0020 08C63408
                     08C645D8 08C648B8
                                           0000000
FMCB: 08B2D018
   +0000 03408002 08C63378 08B587C8
+0010 08C6C210 00000000 000000000
                                          00000000
                                                         _...F....gH....
                                                     FB...........
                                          00000000
   +0020 08C6B260
                     00000000 10016200
                                          0FF00018
```

VTREADYQ

Use VTREADYQ to analyze some of the major control blocks associated with an application. For each memory process schedule table (MPST) chain, the VTAM data extent control blocks (ACDEBs), process scheduling tables (PSTs), logical unit control blocks (LUCBs), and function management control blocks (FMCBs) are checked for PABs, DYPABs, and ready queues that contain queued elements. VTREADYQ lists the first elements on those queues and PABs.

Note: For a large network, this could take several minutes to run.

Use the following syntax as an alternative to the panel interface.

Syntax

▶ VTREADYQ →

```
VTREADYQ
                              VTREADYQ Analysis
Processing begins on FMCB extension for LU TS00001
Processing begins on FMCB extension for LU TSO
MPST
Processing begins on FMCB extension for LU APPCAP06
Processing begins on FMCB extension for LU APPCAP05
MPST
Processing begins on FMCB extension for LU ISTATA00
There are no FMCB extensions off of LUCB 02924090
Processing begins on FMCB extension for LU ISTPDCLU
Synchronous TPPOSTed RPH count
ELEMENT: 8295B500
                                                      .D.....j;h.".-
bt.u%....".½....
                               02915E88
    +0000 01C40020
                     80000000
                                          00CC45AC
    +0010
           82A332A4
                     6C000010
                                00CC49B8
                                          0000000
                                                      ....n_....n_.
    +0020
           0000000
                     0295B500
                                0000000
                                          0295B500
    +0030
           80000000
                     0000000
                                00CC41F8
                                          00000041
    +0040
           00000000
                     00000300
                                00000000
                                          80000000
                                                       .....bt...t.[
.".8.....
    +0050
           00000000
                     00000000
                                82A32800
                                          02A334B0
    +0060
           00CC41F8
                     0000000
                                0000000
                                          0000000
                     0000000
    +0070
           0000000
                                0000000
                                          0000000
                                                       . . . . . . . . . . . . . . . .
    +0080
           0000000
                     0000000
                                0000000
                                          0000000
                                          00000000
    +0090
           00000000
                     00000000
                                00000000
    +00A0
           00000000
                     0000000
                                0000000
                                          00000000
                                                       . . . . . . . . . . . . . . . .
    +00B0
           00000000
                     00000000
                                0000000
                                          0000000
                                                      . . . . . . . . . . . . . . . .
    +00C0 00000000
Synchronous normal PAB
 ELEMENT: 00CC4248
    +0000 80000000
                     80000000
                                00CC44CC
                                          0000000
                                                      +0010 0CA81000
                     00000010
                                                     .y....
Processing begins on FMCB extension for LU SSCP1A
Processing begins on FMCB extension for LU VTAM
```

VTRPH

Use VTRPH to analyze the entire LP buffer pool of request parameter headers (RPHs) and display those that are waiting, running, holding locks, or are in error.

If an RPH is waiting at an address other than X'0' or X'FFFFFFFF, the major control block and the current process anchor block (PAB) are listed. In addition, the resume addresses are shown with the number of RPHs that were waiting at those addresses.

Use the following syntax as an alternative to the panel interface.

Syntax

▶ VTRPH **→**

Sample output

```
VTRPH
                                VTRPH Analysis
                          LP Buffer Analysis
Buffers available
                           56
Total number of buffers 64
Number of expansions
Buffer found does not contain an RPH at address X'02928010' RPH at buffer address X'02929010' is running, RPHRESUM = 0
Module was not found
RPH Major control block: DATA: 00CC48F8
    +0000 11280000
                       00000000 02915E88 00000000
                                                         | ....k..
    +0010 00000000
                       0000000
                                  00CC492C 02929010
    +0020 29241000
                       00000010
Work elements found
RPH work element address X'02A275F8'
RPH at buffer address X'0292B010' is running, RPHRESUM = 0
Module was not found
RPH Major control block:
DATA: 00CC43F8
+0000 11280000
                                                        | ....j;h....
| .....".+.k[.
                       00000000 02915E88
                                             00000000
    +0010 80000000
                       80000000
                                  00CC44B4
                                             0292B010
    +0020
           14201000
                       00000010
Work elements found
                        1
RPH work element address X'02C4F340'
Error buffers found
                                           1
Unallocated buffers found
                                          61
                                          64
Total number of buffers processed
No allocated CRAs were found
```

VTVIT

Use VTVIT to determine which VIT options were in effect at the time of a dump, and whether the trace was running internally (MODE=INT), externally (MODE=EXT), or internally and externally.

If the VIT was running externally, no further processing occurs. IPCS symbols are created for the beginning and end of the internal VIT table, and for the current, oldest, and last VIT entries.

An option is available to produce an unformatted listing of the entire VIT table. Use VTBASIC to format the VIT table.

To extract a VIT from a dump for use with the VIT analysis tool, use VITAL.

Operands

Search argument

Scan displays the VIT entries containing a specified search argument. Enter 1–8 alphanumeric characters or 1–16 hexadecimal digits in the form X'x...' for the search argument.

If the hexadecimal data string is not an even number of digits, the high-order half-byte is set to 0.

262 z/OS Communications Server: z/OS V2R5.0 Communications Server: SNA Diagnosis Vol 1, Techniques and Procedures

List VIT

The default is N. Specify Y to list the entire VIT table. The internal VIT table is processed in the following order:

- 1. From the oldest trace entry in the trace table in 64-bit common (HVCOMMON) storage to the end of the trace table.
- 2. From the beginning of the trace table in 64-bit common (HVCOMMON) storage to the current entry.

This results in "unwrapping" the trace table so the trace entries are processed and listed in chronological order (that is, the oldest trace entry is listed first at the top of the output, and the newest trace entry is listed last at the bottom of the output). A message is included in the output to indicate where the physical end of the trace table was encountered.

Equated symbol

Symbol

Description

VIT

The beginning of the VIT table

VITC

The current VIT entry

VITO

The oldest VIT entry

VITE

The end of the VIT table.

Use the following syntax as an alternative to the panel interface.

Syntax

Additional information

The beginning of the trace table is mapped by ITTRC in z/OS Communications Server: SNA Data Areas Volume 1. It contains the present-wrap time stamp, last-wrap time stamp, current-entry address, and last-entry address. The current entry is the most recent entry (that is, the last entry to be written before the dump was taken). The last entry is the one that was written in the last position of the in-storage trace table before wrapping to the beginning of the trace table.

```
VTVIT Analysis

VTAM external trace options active at the time of this dump

API LOCK PSS SMS PIU MSG SSCP CIO NRM APPC VCNS LCS

VTAM internal trace options active at the time of this dump

API PIU MSG SSCP NRM

Pages in VTAM internal trace table (Decimal) = 12800

VIT - Start of VTAM internal trace table: 000001EF_810000000

VITC - Current VTAM internal trace table entry: 000001EF_83503020

VITO - Oldest VTAM internal trace table entry: 0000001EF_810000040
```

```
VITE - End of VTAM internal trace table:
                                              000001EF_84200000
VTAM internal trace table (oldest to newest entry)
VITPAGE: 000001EF_81000040
  +0000 D8E4C500
                   1F480110
                             06337250
                                       063372A0
                                                  QUE.....&....
                                                   b<.....&APRP..-
  +0010
         824C3110
                   062CDB50
                             C1D7D9D7
                                       06366010
  +0020
         C5E7C9E3
                   1F000018
                             06337250
                                       063552D8
                                                  EXIT.....Q
         825BC9F6
                                       06366010
  +0030
                   80000000
                             E3E2C9D9
                                                   b$16....TSIR..-.
   +0040
         C4E2D740
                   1F000110
                             06337250
                                       063372A0
                                                  DSP
                                                   DSP .....&....
...&...&APRP..-.
  +0050
         062CDB50
                   062CDB50
                             C1D7D9D7
                                       06366010
                                                  +0060
         D8E4C500
                   1F4B2110
                             06337250
                                       063372C0
  +0070
         81EAC990
                   062CDB50
                             C1D7E4C5
                                       06366010
                                                   ā.I....&APUE..-.
  +0080
         C5E7C9E3
                   1F000050
                             06337250
                                       063372A0
                                                  EXIT...&...&...
  +0090
         81EAC9E8
                   80000000
                             C1D7D9D7
                                                  a.IY....APRP..-.
                                       06366010
         D9C5D3E2
                             06337250
                                                  +00A0
                   1F170000
                                       06366010
                                                   b<Kw.....
  +00B0
         824CD2A6
                   00000000
                             06366010
                                       0000000
   +00C0
         E2D9C2E7
                   1F000000
                             06337250
                                       80000000
                                                  SRBX.........
  +00D0
         00000000
                   00F05500
                             00F05500
                                       824C5BD8
                                                   .....0...0..b<$Q
                                                  SRBD.....&....
  +00E0
         E2D9C2C4
                   1F000000
                            06337250
                                       80000000
  +00F0
         00000000
                   00000000
                             007F0D18
                                       00800000
                                                  INTX....0BF0....
  +0100
         C9D5E3E7
                   1D050000 F0C2C6F0
                                      060B0818
```

VTVRBLK

VTVRBLK looks at VRs for all subareas and displays the following information:

- · Number of subareas supported
- · Number of VRBLKs processed
- · Number of subareas containing virtual routes
- Number of subareas with no virtual routes
- · Number of blocked routes found
- · Number of held routes found

For each blocked or held route found, the status areas for each transmission priority (TP0, TP1, and TP2) are analyzed and the following information is displayed if present:

- VR number
- Adjacent subarea
- Destination subarea
- · Window sizes
- · Pacing limit
- · Inbound and outbound sequence numbers
- Selected flags
- VR FSM
- Flow control FSM
- Count of TSCBs on VR hold queue (if any)
- · Last pacing request number

Operands

Subarea

Specify a 1–8 hexadecimal digit number in the form X'x...' or a number in the range of 1–2 147 483 647. This represents the number of the subarea. See field ATCSASUP in the ATCVT for the maximum number of subareas available in a dump. Subarea 0 is not valid.

If you are not sure which subarea, if any, is having a problem, specify no subarea to analyze all VRs for all destination subareas.

Report data

Use Detail to display further information on every VR found, similar to the information described above for blocked and held routes. Scan is the default and provides count information based on the search criteria.

Use the following syntax as an alternative to the panel interface.

Syntax

Additional information

See <u>z/OS Communications Server</u>: <u>SNA Data Areas Volume 1</u> for more information on the VRBLK and its contents.

Sample output

```
VTVRBLK
                             VTVRBLK Analysis
                             Route Blocked
                               1
Subarea (Decimal) =
  VR block 00690F18
                        VR number 02
                                        ADJSUBA 00000003
                                                             DESTSUBA 00000001
    Transmission priority 0
                              VRFSM
                                         05 FCFSM
                                                       00
    Window sizes:
          Current
                  (VRBPALIM)
                                         06
          Minimum (VRBMINWS)
                                         02
          Maximum (VRBMAXWS)
                                         06
          Pacing request send count
                                         0000
          Inbound sequence number
                                         0218
          Outbound sequence number
                                         020E
          Last pacing for request number 0212
   Status flags:
  VRBCWRI = 0
               Route change window response NOT required
               Route RESET window NOT required
  VRBRWI
          = 0
           = 1
               Half session held NOT required
  VRBSCNHQ = 0 All HSQHs have been checked for held sessions
                              2
Host subarea skipped
VRBLKs processed
                             32
                            511
Subareas supported
Subareas with VRs
Subareas without VRs
                            503
Blocked routes
                              1
                              0
Held routes
```

VTWRE

Use VTWRE to count or help analyze waiting request elements (WREs). A WRE represents a VTAM process that is waiting for the completion of some event. A WRE contains a pointer to an event ID that indicates the reason for the wait state. WREs are queued to locked queue anchor blocks (LQABs). The LQABs to be looked at might be:

- All LQABs
- An SSCP I/O LQAB for a specific subarea
- · Another specific LQAB

If you invoke VTWRE without operands, the number of WREs queued to all LQABs are counted and the counts are displayed.

Use the DETAIL option to get additional information on each WRE. Also, several operands are available to limit processing to a specific LQAB or to specific WREs.

Operands

Event ID

Enter a 1–100 hexadecimal digit value to be used in matching a WRE event ID found in the dump. The specified event ID is left-aligned when comparing with the contents of the dump. For example, if X'1234' is specified and the dump contained X'F1F0F41234', this would not be a match.

Event ID code

Enter a 4 hexadecimal digit value. If the entered code is fewer than 4 digits, results are unpredictable. Only WREs containing this event ID code are processed. The event ID code identifies the reason for the wait state.

LQAB

Enter a specific LQAB name from the following list to limit processing to a single LQAB. The following LQABs, which are pointed to by the ATCVT, can be examined. The default is ALL.

LQAB name

Description

IOLQB

SSCP I/O LQABs (one per attached subarea)

LUSMQ

Service manager LQAB

MCQAB

Miscellaneous command LQAB

PULQB

Physical unit services LQAB

NODAT_CPWAIT_QUEUE

Network operator services LQAB

SSLQB

Miscellaneous LQAB for session services

SSMQB

Second miscellaneous LQAB for session services

All

All of the above LQABs

If a subarea is specified, the LQAB must be entered as IOLQB. If ALL is specified, all subareas defined to IOLQB by ATCSASUP will be processed.

Subarea

Use this operand to limit processing to the SSCP I/O LQAB for a specific subarea. When a subarea is specified, IOLQB must be specified for the Queue, and Subarea is used as an index into the SSCP I/O LQABs. Specify a 1–8 hexadecimal digit number in the form X'x...' or a number in the range of 1–2 147 483 647. This represents the number of the subarea. See field ATCSASUP in the ATCVT for the maximum number of subareas available in a dump. Subarea 0 is not valid.

Mack

Enter a 1–100 hexadecimal digit mask. The mask is left-aligned and ANDed with the event identifier in the dump to determine whether the specified event identifier was found.

Note: Mask must be used with Event ID.

Max

Enter a number in the range of 1–99 999 (1–5 decimal digits or 1–4 hexadecimal digits) for the maximum number of WREs to be processed for the selected LQABs. The default is 100.

266 z/OS Communications Server: z/OS V2R5.0 Communications Server: SNA Diagnosis Vol 1, Techniques and Procedures

Control op code

Only WREs containing this CPCB op code are eligible for selection. The control op code must be 1–8 hexadecimal digits in the form X'x...'. If the op code is fewer than eight digits, it is left-aligned and compared with the leftmost digits in the dump.

User correlator

Enter a 1–8 character value. Only WREs containing this user request correlator (URC) are processed. The URC is typically the resource name of the target of a request.

Format

Use Format to format the WRE and the EID, if present. With Noformat, which is the default, the WRE and EID are not formatted.

Note: Do not specify Format if you use Detail for Report Data. Format is valid only for Scan.

Report data

Scan, which is the default, counts and displays the number of WREs meeting the specified search criteria. Use Detail to have the following fields extracted and displayed from each selected WRE:

- · WRE address
- · Control block (RUPE) address
- CPCBOPC
- URC
- Event ID
- Event ID Code

Use the following syntax as an alternative to the panel interface.

Syntax

VTWRE LQAB(IOLQB) DETAIL					
ATCIOLOB		VTWRE	Analy	sis	
WRE ADDR RUPEADDR C	СРСВОРС	URC	CODE	EVENT ID	
0666D200 0664B840 0 Elements found: Elements processed:		ECH050Z 1 1	0201	00000010071000000010001020108810680	

Chapter 7. Using traces

This topic describes when to use traces and shows where in the network you can use each trace to collect data (see Figure 35 on page 270). Examples are included to help you interpret trace output.

This topic includes the following information:

- "Traces provided by VTAM" on page 269
- "Traces provided by TCP/IP" on page 312

Traces provided by VTAM

The VTAM program provides several kinds of traces to record the flow of network events. Each trace occurs at a different point in the network (see Figure 35 on page 270). This difference allows you to narrow down the problem by following a request/response unit (RU) through the network and determining where in the network the RU is incorrect. (The RU could be out of sequence or lost, the data in the RU could have been changed, and so on.)

This topic includes the following information:

- · "Activating network traces" on page 270
- "Starting the generalized trace facility (GTF)" on page 282
- "Formatting and printing trace records" on page 282
- "Trace output" on page 284
- The APPN route selection trace shows the flow of information throughout the APPN session setup route selection process. See "APPN route selection trace" on page 284 for more information
- · VTAM traces and their results:
 - The buffer contents trace shows the contents of inbound and outbound message buffers. See <u>"Buffer contents trace"</u> on page 286 for more information.
 - The I/O trace shows (in order) all I/O sent between VTAM and a particular network resource. See <u>"I/O trace"</u> on page 295 for more information.
 - The QDIOSYNC trace is used to synchronize host and OSA-Express2 or later diagnostic data. See "QDIOSYNC trace" on page 297 for more information.
 - The resource state trace creates VTAM internal trace (VIT) entries when the current state or desired state, or both, of a resource for which tracing has been requested changes. See <u>"Resource state</u> trace" on page 301 for more information.
 - The session management exit (SME) buffer trace shows the input and output of the session management exit (SME) ISTEXCAA. See "Session management exit (SME) buffer trace" on page 301 for more information.
 - The SMS (buffer use) trace shows information about the use of buffers, including how often a buffer pool has expanded, how many buffers are currently being used, and what was the maximum number of buffers used since the last trace record was written. See "SMS (buffer use) trace" on page 303 for more information.
 - The TGET/TPUT trace shows each message as it passes between a TSO command processor and TSO/VTAM. See "TGET/TPUT trace for TSO/VTAM" on page 306 for more information.
 - The IDS 3270 trace shows the content of inbound and outbound messages buffers that might be involved in a possible 3270 data stream error. See "Buffer contents trace for 3270 IDS incidents" on page 289 for more information.
 - A specialized Generalized Trace Facility (GTF) formatting exit to format 3270 data streams. See
 "3270 data stream formatting" on page 308 for more information.

The VTAM internal trace (VIT) is discussed in <u>z/OS Communications Server: SNA Diagnosis Vol 2, FFST Dumps and the VIT.</u>

Figure 35. Network traces provided by VTAM

Activating network traces

You can activate VTAM traces when you start VTAM, using the TRACE option on the START command, or you can activate them when VTAM is already running, using the MODIFY TRACE command. This information shows the format of both commands for each type of trace.

Rules:

- The TRACE start option and its qualifiers must be coded on one line.
- The GTF *must* be active to record VTAM traces externally.

Note: VTAM Internal Traces wrap. VTAM External Traces may or may not wrap, depending on the media and GTF specifications.

For more information on activating these traces and optional operands not shown in this table, see z/OS Communications Server: SNA Resource Definition Reference and z/OS Communications Server: SNA Operation.

APPN route selection trace

Cannot be activated with the TRACE start option.

Buffer contents trace

Notes:

- ¹ Do not use NOTRACE when starting VTAM, except to override a TRACE start option coded in a predefined list.
- ² Code TRACE and its qualifiers on one line. Code the TYPE qualifier immediately following TRACE.

CCW trace

See your operating system books for more information on the CCW trace.

Note: If you have an HPDT MPC connection, you must specify the PCI option when running the CCW trace.

Note: CCW trace will not capture data for a data device for the following devices:

- OSA-Express QDIO
- HiperSockets

I/O trace must be used for these devices. CCW trace can be used for the control devices for the above devices.

CNM trace (communication network management)

Cannot be activated with the TRACE start option.

I/O trace

Options

- $^{
 m 1}$ Do not use NOTRACE when starting VTAM, except to override a TRACE start option coded in a predefined list.
- ² Code TRACE and its qualifiers on one line. Code the TYPE qualifier immediately following TRACE.
- ³ SAVE=YES is the default if issued on the START command, and SAVE=NO is the default if issued via MODIFY TRACE.

Module Trace

$$\blacktriangleright$$
 START — procname — , — , — (— Options —) \blacktriangleright

Options

- ¹ Do not use NOTRACE when starting VTAM, except to override a TRACE start option coded in a predefined list.
- ² Code TRACE and its qualifiers on one line. Code the TYPE qualifier immediately following TRACE.

NetView session trace

ightharpoonup Startcnm — — NLDM — — Trace ightharpoonup

For more information on the NetView session trace, see *Tivoli NetView for z/OS Version 5.2 Command Reference Volumes 1 & 2*.

QDIOSYNC trace

Resource state trace

Options

STATE trace operands

Notes:

- ¹ Do not use NOTRACE when starting VTAM, except to override a TRACE start option coded in a predefined list.
- ² Code TRACE and its qualifiers on one line. Code the TYPE qualifier immediately following TRACE.

Resource state trace (continued)

Operands used with OPTION

SME Buffer trace (Session Management Exit)

Cannot be activated with the TRACE start option.

SMS (buffer use) trace

 \longrightarrow START — procname — , — , — (Options —) \longrightarrow

Options

- ¹ Do not use NOTRACE when starting VTAM, except to override a TRACE start option coded in a predefined list.
- ² Code TRACE and its qualifiers on one line. Code the TYPE qualifier immediately following TRACE.

TSO/VTAM TGET/TPUT trace

Cannot be activated with the TRACE start option.

$$\blacktriangleright$$
 MODIFY — procname — , — TRACE \blacktriangleright
 \blacktriangleright , — TYPE — = — TSO \blacktriangleright
 \blacktriangleright , — ID — = — tso_user_id \blacktriangleright

VTAM internal trace (VIT)

$$\longrightarrow$$
 START — procname — , — , — (— Options —) \longrightarrow

Note:

- 1. Precede the option list with three commas and enclose the group of options in parentheses.
- 2. Start options that are entered on the START command must be separated by commas. Do not leave any blanks between options.

Options

Notes:

- ¹ Code TRACE and its qualifiers on one line.
- ² NOTRACE,TYPE=VTAM is accepted but ignored. Tracing is started with the default trace table size and the default options.

VIT operands

- 1 The default options apply only to MODE=INT.
- ² You can turn off PSS.

- ³ When SUBTRACE=ARBP is specified, if a single OPTION value is coded, it must be HPR, ALL, or one of the group options (*hprgrpopt*) that include HPR as an individual option equivalent. The applicable group options are DLUROPTS, EEOPTS, HPDTOPTS, HPROPTS, QDIOOPTS, and XCFOPTS.
- ⁴ If multiple trace options are coded in parentheses, either HPR or one of the group options (*hprgrpopt*) that include HPR as an individual option equivalent must be coded inside the parentheses when SUBTRACE=ARBP is coded.
- ⁵ When SUBTRACE=TGVC or SUBTRACE=TREE is coded, if a single OPTION value is coded, it must be SSCP, ALL, or one of the group options (*groupopt*), all of which include SSCP as an individual option equivalent. The group options are APIOPTS, APPCOPTS, CPCPOPTS, CSMOPTS, DLUROPTS, EEOPTS, HPDTOPTS, HPROPTS, LCSOPTS, QDIOOPTS, STDOPTS, TCPOPTS, and XCFOPTS.
- ⁶ If multiple trace options are coded in parentheses, either SSCP or one of the group options (*groupopt*) must be coded inside the parentheses when SUBTRACE=TGVC or SUBTRACE=TREE is coded.

¹ When SUBTRACE=ARBP is specified, if a single OPTION value is coded, it must be HPR, ALL, or one of the group options (*hprgrpopt*) that include HPR as an individual option equivalent. The applicable group options are DLUROPTS, EEOPTS, HPDTOPTS, HPROPTS, QDIOOPTS, and XCFOPTS.

- ² If multiple trace options are coded in parentheses and SUBTRACE=ARBP is coded, then either HPR or one of the group options (*hprgrpopt*) that include HPR as an individual option equivalent must be coded inside the parentheses.
- ³ When SUBTRACE=TGVC or SUBTRACE=TREE is coded, if a single OPTION value is coded, it must be either SSCP, ALL, or one of the group options (*groupopt*), all of which include SSCP as an individual option equivalent. The group options are APIOPTS, APPCOPTS, CPCPOPTS, CSMOPTS, DLUROPTS, EEOPTS, HPDTOPTS, HPROPTS, LCSOPTS, QDIOOPTS, STDOPTS, TCPOPTS, and XCFOPTS.
- ⁴ If multiple trace options are coded in parentheses, either SSCP or one of the group options (*groupopt*) must be coded inside the parentheses when SUBTRACE=TGVC or SUBTRACE=TREE is coded.

Starting the generalized trace facility (GTF)

Because VTAM passes all external trace data to the generalized trace facility (GTF), the GTF must be active to use VTAM traces. Specify TRACE=USRP to receive a prompt for all VTAM traces. You will then be able to select the specific event identifier (EID) to be traced. See APAR II03922 for additional information.

Note: If you do not limit the GTF trace output using the USRP option, the GTF collects all USR events issued in the MVS system, often resulting in a large amount of unwanted information.

I/O trace entries: The external VIT is now used to record the I/O trace entries. PIU, NLPI, NLPO, LSNA, and MPTNFMT entries may be written for a specific I/O trace invocation. For more information, see MODIFY TRACE or MODIFY NOTRACE in z/OS Communications Server: SNA Operation.

```
NC0000000 V535M433 93306 14:25:10.06 STC00017 00000090 SFVGTF.B
N 4020000 V535M433 93306 14:25:10.36 STC00017 00000090 SY35M433 93306 14:25:10.38 STC00017 00000090 MV35M433 93306 14:25:10.38 STC00017 00000090 MV35M433 93306 14:25:19.47 01 00000090 MV35M433 93306 14:25:19.57 N 0020000 V535M433 93306 14:25:35.88 STC00017 00000990 MV35M433 93306 14:25:35.94 STC00017 00000990 MV35M433 93306 14:25:35.94 STC00017 00000990 MV35M433 93306 14:25:41.09 N 0020000 V535M433 93306 14:25:41.09 N 0020000 V535M433 93306 14:25:41.09 N 0020000 V535M433 93306 14:25:41.25 STC00017 00000990 MV35M433 93306 14:25:41.25 STC00017 00000990 MV35M430 93306 14:25:41.25 STC00017 00000990 MV35M430 93306 MV35M430 93306 14:25:41.25 STC00017 00000990 MV35M430 93306 MV35M430 93
```

Figure 36. Starting GTF for the VTAM buffer contents trace

See Table 48 on page 577 to determine which document contains more information on the GTF.

Formatting and printing trace records

<u>Table 12 on page 283</u> indicates which traces can be formatted and printed by each of the formatting programs.² Descriptions of the programs appear later in the topic. In this table:

- FP indicates that the trace is both formatted and printed (for VTAM records only).
- UP indicates that the trace is printed but not formatted.
- A blank entry indicates that the trace is not formatted or printed.

² This is not a complete list of programs that process external trace data.

Table 12. Processing externally recorded trace data			
Trace	ACF/TAP	IPCS	
Buffer contents trace	FP	FP	
I/O trace	UP	FP	
SME buffer trace		FP	
SMS (buffer use) trace	UP	FP	
TGET/TPUT trace	UP	UP	
VTAM internal trace ³	UP	FP	
3270 IDS trace		FP	
3270 data stream formatting		FP	

- 1. Only scanner type 1, 2, and 3 records are processed. All others must be processed using ACF/TAP.
- 2. ACF/TAP allows you to specify some formatting parameters if the VIT is running in external mode.

Using ACF/TAP

Use the trace analysis program (ACF/TAP) to print all VTAM external trace entries or up to ten entry types. Table 13 on page 283 lists the options to use on the INPUT operand for formatting and printing traces. See z/OS Communications Server: ACF/TAP Trace Analysis Handbookfor more information.

Table 13. Printing external trace entries		
Specify: To format and print:		
BUFFER Buffer contents trace		

Notes on using ACF/TAP:

- 1. You can use ACF/TAP to format the VTAM full buffer contents trace. Only the first 256 bytes are traced.
- 2. ACF/TAP does not print a buffer contents trace that is traced at the API. Use IPCS GTFTRACE to print API (FF1) traces.

Using IPCS with the GTF trace option

To format and print VTAM traces, set *USR*(symnum 1[,symnum2]...[,symnum6]| ALL) on the GTFTRACE option.

For symnum, use either a symbolic name or a number representing the trace that you want formatted and printed. If you specify USR(ALL), IPCS formats and prints all user and subsystem traces recorded by the GRF. For information on starting the GRF, see "Starting the generalized trace facility (GTF)" on page 282.

Table 14 on page 283 lists the valid symbols and numbers for the VTAM traces.

Table 14. Symbols and numbers for formatting and printing VTAM traces

Symbol	Number	Trace
INT1 ³	FE1	VTAM internal trace, I/O trace
TPIO	FEF	VTAM buffer contents trace (TSC component) Trace output says "VTAM."
CL01	FF1	SME buffer trace

Table 14. Symbols and numbers for formatting and printing VTAM traces (continued)

Symbol	Number	Trace
CL01	FF1	VTAM buffer contents trace (API component) Trace output says "USER."
CL02	FF0	SMS (buffer use) trace
LINE	FF2	NCP 37xx line or TG trace
APTH	FE2	TSO/VTAM TGET/TPUT trace
APTD	FE4	Line PIU, generalized PIU, or network controller line trace
	F90	IDS 3270 buffer trace

Note: The symbol and the number can be used interchangeably, for example, USR(LINE) or USR(FF2); however, when starting the GTF, use the number.

See Table 48 on page 577 to determine what document describes how to use the GTF and IPCS.

Trace output

In addition to the fields produced by VTAM, <u>Table 15 on page 284</u> contains generic fields that might appear in VTAM trace output.

Table 15. Fields in VTAM trace output			
Field header	eader Meaning		
ASCB nnnnnnn	The address of the ASCB for the address space that created the record.		
CPU nnnn	The ID of the host processor in which the trace was run (applies only in a multiprocessor configuration).		
JOBN ccccccc	The name of the job associated with the I/O operation (for an I/O trace).		

VTAM trace record formats

This information shows the trace record formats for the following traces:

- APPN route selection trace
- Buffer contents trace for the VTAM application programming interface (API) and the transmission subsystem component (TSC)
- Line trace
- Buffer contents trace for 3270 IDS incidents

APPN route selection trace

The APPN route selection trace can impact VTAM performance during session setup route selection; it should be activated only when attempting to document a route selection problem, usually when requested by the z/OS Communications Server service organization.

³ I/O trace is now done using VIT.

APPN route selection trace operation

Start the APPN route selection trace with the MODIFY TRACE, TYPE=ROUTE command and stop the trace with the MODIFY NOTRACE, TYPE=ROUTE command. The status of the APPN route selection trace and the amount of storage allocated to the trace table can be displayed with the DISPLAY TRACES, TYPE=ROUTE command. For more information about the MODIFY TRACE, the MODIFY NOTRACE, and the DISPLAY TRACES commands, see z/OS Communications Server: SNA Operation.

Gathering documentation

Because the purpose of the APPN route selection trace is to capture documentation to solve APPN routing problems, use the following procedure to gather the documentation.

Procedure

Perform the following procedure to gather the documentation:

- 1. Start the APPN route selection trace with the MODIFY TRACE, TYPE=ROUTE command.
- 2. Re-create the problem of the incorrect APPN route being taken.
- 3. Stop the APPN route selection trace with the MODIFY NOTRACE, TYPE=ROUTE command.
- 4. Dump VTAM to capture the information in the APPN route selection trace.
- 5. Free the route selection trace table storage with the MODIFY NOTRACE, TYPE=ROUTE, FREE=YES.

APPN route selection trace output

The APPN route selection trace is an internal trace table and the trace output is not documented.

Buffer contents trace for VTAM API and TSC

<u>Figure 37 on page 285</u> shows the trace record format for the buffer contents trace for the VTAM application programming interface (API) and the transmission subsystem component (TSC).

Figure 37. Format for buffer contents trace records for VTAM API and TSC

Line trace

Figure 38 on page 286 shows the trace record format for line traces.

LegendRLEN = Total record length
TOD clock = Time-of-day clock timestamp

Figure 38. Format for line trace records

Buffer contents trace

You can run a buffer contents trace for the VTAM API and TSC.

Buffer contents trace for the VTAM API and TSC

The buffer contents trace shows the contents of message buffers in the application programming interface (API) and the transmission subsystem component (TSC). When data is sent by an application program (outbound), API is the first component of VTAM to process it, and TSC is the last component of VTAM to process it. When data is received from the network (inbound), TSC is the first component of VTAM to process it, and API is the last. To enable you to distinguish where in VTAM the trace data was recorded, the output specifies:

- Either USER (for data recorded in API) or VTAM (for data recorded in TSC)
- If the recorded data is inbound or outbound

The API writes user buffer contents trace records while user data is still in the application program's buffers, before it is copied into VTAM buffers. Only user data is recorded.

TSC writes VTAM buffer contents trace records while the data is in VTAM fixed I/O buffers. The PIU (the transmission header - TH, request/response header - RH, and user data) is recorded.

For a list of the resources for which you may request a buffer contents trace, see <u>z/OS Communications</u> Server: SNA Operation.

Note:

- 1. VTAM can start a buffer contents trace only for the resources that it owns. A data host, which does not own any NCPs, cannot start a buffer contents trace for an NCP or any of the NCP's subordinate resources.
- 2. If you want to trace a session between an LU and an application program, you must start the trace at the host where the application program resides.
- 3. If the buffer contents trace is active for a specific APPC application, the FMH5 is always traced at the user (API) level.

4. The VTAM TSC component is bypassed for conversation level data exchanged between two VTAM/ APPC applications residing on the same host and using the APPCCMD macroinstruction interface to communicate. Thus VTAM buffer contents records are not to be recorded for this data. USER buffer contents records will continue to be recorded.

When to use the buffer contents trace for the VTAM API and TSC

The buffer contents trace can help you determine whether a problem is in the host (VTAM or an application program) or in the network. For example, if an application program sends a message to a terminal, and the message is correct in VTAM buffer contents trace output, but the message does not appear correctly at the terminal, then the problem is probably in a system resource other than VTAM or the application program.

The buffer contents trace cannot always be used to distinguish an application program problem from a VTAM problem. However, it can confirm the order in which data is passed between an application program and a logical unit. It can also record all the data passing to and from an application program.

If you do not need to trace user data, use the I/O trace.

Choosing between partial and full buffer contents trace

You can request a partial buffer contents trace or a full buffer contents trace. For a partial buffer contents trace, VTAM writes trace records with a maximum size of 256 bytes. The partial buffer contents trace is the default.

Because of the possible effect on storage and performance, use the full buffer trace only when you need complete buffer data for problem determination. The full buffer contents trace can increase storage use due to the larger size of trace records and the possible need to increase the size of the trace data set. Performance may be degraded due to the additional time needed to write the complete buffer trace records.

For a full buffer contents trace, VTAM records all of the data transmitted in message buffers. The full buffer trace record has a maximum length of 8K bytes including trace field headers, transmission headers, request/response headers, and data. If storage is not available to record a trace record in an 8K block, VTAM will record the trace record in 256-byte blocks until the complete trace record is recorded.

Buffer contents trace operation

Make sure that the GTF with the TRACE=USR option is active before starting this trace. See <u>"Starting the</u> generalized trace facility (GTF)" on page 282.

Note: If the GTF does not have enough storage to record all the segments, it might record only the last segment. The GTF will report the number of lost records. You might want to increase the storage available to the GTF to avoid losing records.

Start the buffer contents trace with the MODIFY TRACE command or the TRACE start option.

Specify:	To trace:	
ID=nodename	Requests and responses flowing between VTAM and nodename.	
ID=ISTPUS	Request and response units (RUs) for sessions between the host physical unit and another physical unit type 4 or 5. (These RUs include ER-ACT, ER-OP, and ER-TEST RUs.)	
ID=VTAM	Request and response units (RUs) for SSCP sessions.	

If you use the SCOPE=ALL or EVERY operand when you start the trace, VTAM records messages to and from the specified node and all its valid subnodes.

Note: You cannot use the SCOPE=ALL or EVERY operands with ID=ISTPUS.

For more information on the MODIFY TRACE command, see z/OS Communications Server: SNA Operation. For more information on the TRACE start option, see z/OS Communications Server: SNA Resource Definition Reference.

To format and print buffer contents trace output, use ACF/TAP or IPCS.

For more information, see "Formatting and printing trace records" on page 282.

Buffer contents trace output

Figure 39 on page 288 shows an example of partial buffer contents trace output. Figure 40 on page 288 shows an example of full buffer contents trace output.

```
BUFF TERM200 / APPL12 LRC(000,000) INBOUND  
USER C5D5E3D9 40C4C1E3 C140E3D6 40C5C8D6  
C5D3D6E6 4B5CF04B D7D9C5E2 E240C5D5  

*C000005 0028004 0040 RH=030080  
T000005 0028004 0040 RH=030080  
T000005 0028004 0040 RH=030080  
*'QV.P1THIS DATA IS C*  
*OMING IN ON THE USE *

**ENTER DATA TO ECHO B*  
**ELOW.**O.PRESS ENTER *
```

Figure 39. Example of partial buffer contents trace output

Figure 40. Example of full buffer contents trace output

Fields in the buffer contents trace

Table 16 on page 289 explains the trace fields. In addition to these fields, operating-system-dependent fields may appear. For a description of these fields, see Table 15 on page 284.

Table 16. Fields in the buffer contents trace				
Field header	Meaning			
BUFF destname/origname	The destination (<i>destname</i>) and origin (<i>origname</i>) node name. In Figure 39 on page 288, the destination is APPL12 and the origin is TERM200.			
LRC(xxx,yyy)	The number of records lost since the last trace record was written because the trace facility could not get a VTAM buffer. xxx is the destination's lost record count, and yyy is the source's lost record count.			
INBOUND or OUTBOUND	The direction of the traced data (inbound or outbound) with respect to this host subarea. By use of this field and the PIU sequence number in the TH, requests and corresponding responses can be matched.			
position SEGMENT (full buffer trace only)	Indicates whether this trace record is FIRST, MIDDLE, or LAST in a series of trace records generated for one trace invocation. If only one trace record is needed, the value is COMPLETE. The segment indicator field appears only when full buffer contents tracing is in effect.			
SEQ(xxx) (full buffer trace only)	A sequence number indicating the sequence in which trace records were generated. The sequence number appears only when a series of trace records is generated for a single trace invocation. The sequence number does not appear when one trace record shows a complete buffer. The sequence number starts at 1, and upon reaching 255, wraps to 0. A gap in sequence numbers could indicate lost trace records. The sequence number field applies only when full buffer contents tracing is in effect.			
VTAM or USER	Indicates where the message buffers were traced. VTAM means that the buffers were traced in TSC (in which case the TH and the RH are included in the trace record). USER means that the buffers were traced in API (in which case the TH and the RH are not included).			
TH	The transmission header portion of the path information unit (PIU).			
RH	The request/response header portion of the PIU.			

Note: The rest of the trace record shows the contents of the buffer as displayed in Figure 39 on page 288.

Notes:

- 1. If the buffer trace information is out of sequence, your trace could have wrapped.
- 2. User entries are not printed by ACF/TAP.
- 3. Confidential data is *not* recorded in trace records. When the trace facility detects confidential data (CONFTXT=YES is specified on the application program's NIB macroinstruction), the user data is replaced with the marker in the trace output.

The marker is **CONFIDENTIAL AND SUPPRESSED**.

If you are using the VTAM encryption facility, data on a cryptographic session is handled in the same way as confidential data.

Buffer contents trace for 3270 IDS incidents

The 3270 intrusion detection system (IDS) writes GTF trace records for the saved outbound messages and the inbound message that caused the incident to be detected. The maximum number of saved outbound messages is determined by the DSCOUNT parameter specified on the VTAM start options or on

the GROUP or APPL resource definition statements. Up to DSCOUNT outbound trace records are written followed by an inbound trace record for each incident.

3270 IDS trace operation

The traces are collected if the DSMONITR option is YES or APPL and the inbound 3270 data steam contains data that might cause a VTAM application to behave in unanticipated ways. The DSMONITR and DSCOUNT parameters are described in z/OS Communications Server: SNA Resource Definition Reference.

Make sure that the GTF with the TRACE=USR option and USR(F90) is active. See "Starting the generalized trace facility (GTF)" on page 282. To print these trace records, use IPCS and specify USR(F90) on the GTFTRACE option. For more information on printing trace output, see "Formatting and printing trace records" on page 282.

3270 IDS trace output

The trace records that the 3270 IDS trace creates contain a 12-byte GTF header and a 192-byte trace header that is followed by the data portion of the PIU in unformatted hexadecimal. The entire RU is traced. If the RU is longer than 7796 bytes, it spans several trace entries. Figure 41 on page 290 shows an example of 3270 IDS trace output. The trace fields are explained in Table 17 on page 290.

	3270 Time Event	7B200 JOBN USER1 **** 3270 Data Stream Error **** NETA.L7201A /NETA.TS00001 LRC(000,000) OUTBOUNG UTC 2015/12/18 15:28:22.092304 LOC 2015/12/18 10:28:22.092304 Token 00000000022 SID EAABEEC3 2C910672 Buffer 10 of 11 Row 001 Col 001 Offset	COMPLETE SEGMENT	
00000	OUT IN	SEQ X'000B' Offset 00005 Length 00001 SEQ X'0006' Offset 00002 Length 00001 00	*. *.	*
	VTAM	UTC 2015/12/18 15:28:16.950696 LOC 2015/12/18 10:28:16.950696 TH=40000000 00000000 00000001 00010001 1300/003A 076000A 000F SEQ 000A-000A F3000640 00F1C300 0501FF02 12/18/2015 15:28:22.092346 LOC-12/18/2015 10:28:22.092346	RH=038000 *31C	*
USRFD F90	3270 Time Event	78200 JOBN USER1 **** 3270 Data Stream Error *** NETA.TS00001 /NETA.L7201A LRC(000,000) INBOUND UTC 2015/12/18 15:28:22.092304 LOC 2015/12/18 10:28:22.092304 Token 0000000022 SID EAABEEC3 2C910672 Row 001 Col 001 Offset	COMPLETE SEGMENT	
	OUT	SEQ X'000B' Offset 00005 Length 00001 1D SEQ X'0006' Offset 22660 Length 00001	*.	*
	VTAM	00 UTC 2015/12/18 15:28:22.092306 LOC 2015/12/18 10:28:22.092306 TH=40000000 000000000 00010001 000000001 1C000076 003A00006 0006 SEQ 0006-0006 F100AE 12/18/2015 15:28:22.092350 LOC-12/18/2015 10:28:22.092350	*. RH=030000 *1	*

Figure 41. Example of 3270 IDS trace output

Table 17 on page 290 describes the trace fields. In addition to the 3270 IDS trace fields, operating system dependent fields might appear. For a description of those fields, see Table 15 on page 284.

Table 17. Fields in the 3270 IDS trace			
Field header	Meaning		
3270 destname/ origname	The destination (<i>destname</i>) and origin (<i>origname</i>) node name. In Figure 41 on page 290, the destination is L7202A and the origin is TSO0001.		
LRC(xxx,yyy)	The number of records that are lost since the last trace record was written because the trace facility could not get a VTAM buffer. xxx is the destination's lost record count, and yyy is the source's lost record count.		
INBOUND or OUTBOUND	The direction of the inbound or outbound traced data of the host subarea.		

Table 17. Fields in the 3270 IDS trace (continued)			
Field header	Meaning		
position SEGMENT	Indicates whether this trace record is FIRST, MIDDLE, or LAST in a series of trace records that are generated for a trace invocation. If only one trace record is needed, the value is COMPLETE.		
SEQ(xxx)	A sequence number indicating the sequence in which trace records were generated. The sequence number appears only when a series of trace records is generated for a single trace invocation. The sequence number does not appear when one trace record shows a complete buffer. The sequence number starts at 1 and wraps to 0 when the number reaches 255. A gap in sequence numbers could indicate lost trace records.		
Time UTC, LOC	Indicates the time when the incident was discovered with UTC and local time offsets.		
Event Token	A unique number that is assigned to the incident. All trace records for this incident have the same token value.		
Event SID	Session identifier.		
Buffer nn of tt	The sequence of saved DSCOUNT buffers. This field is for outbound buffers only.		
Overlap Row Col Offset	The row and column numbers where a problem was detected in the 3270 data stream. The offset is an alternate method to express the location of the problem.		
OUT SEQ	The sequence number of the outbound RU that wrote to the field.		
OUT Offset	The offset in the outbound RU that wrote to the field.		
OUT Length	The length of the data in the outbound RU that wrote the field. Up to 32 bytes of the data from the outbound field are displayed below this line.		
IN SEQ	The sequence number of the inbound RU that wrote to the field.		
IN Offset	The offset in the inbound RU that wrote to the field.		
IN Length	The length of the data in the inbound RU that wrote the field. Up to 32 bytes of the data from the outbound field are displayed below this line.		
Buffer	Indicates the time of the buffer when it was first processed with UTC and local time offsets.		
VTAM	Indicates where the message buffers were traced. VTAM means that the buffers were traced in TSC, and therefore the TH and the RH are included in the trace record.		
TH	The transmission header portion of the path information unit (PIU).		
RH	The request header portion of the PIU.		
SEQ	The sequence numbers of the chain of PIUs that were combined for this buffer.		
Note: The rest of the trace record shows the contents of the buffer as displayed in Figure 41 on page 290.			

Configuration services XID exit (CSX) buffer trace

The configuration services XID exit (CSX) buffer trace shows the input and output of the CSX ISTEXCCS.

Trace points are invoked before and after CSX execution, and the following exit call functions can be traced:

- Begin
- XIDs for DYNAMIC PUs
- XIDs for PREDEFINED PUs
- Connection Status
- Failure

• End

See z/OS Communications Server: SNA Customization for more information on configuration services exit.

When to use the configuration services XID exit (CSX) buffer trace

To avoid impacts to performance from the amount of data generated by this trace, use the CSX buffer trace to diagnose suspected problems with your CSX code.

Configuration services XID exit (CSX) buffer trace operation

Start the CSX buffer trace with the MODIFY TRACE command. For more information about the MODIFY TRACE command, see z/OS Communications Server: SNA Operation.

Make sure that the GTF with the TRACE=USR or TRACE=USRP option is active before starting this trace. See <u>"Starting the generalized trace facility (GTF)" on page 282</u>. To format and print the data recorded by the GTF, use IPCS and set USR(FF1) on the GTFTRACE option.

For more information on printing trace output, see "Formatting and printing trace records" on page 282.

Configuration services XID exit (CSX) trace record output

Output is formatted into three or four sections:

- The first section is the register save area (ISTRSA). It is formatted using displacements instead of its virtual storage address.
- The second section is the parmlist. It is also formatted using displacements instead of the virtual storage address.
- The third section is the area of storage that contains most of the input data to the exit, which is used by most of the CSX functions.
- The fourth section is optional, and can contain the PARMS=<string> that was entered on the MODIFY EXIT operator command.

Figure 42 on page 293 shows an example of CSX buffer trace output.

```
EXIT
             TO: ISTEXCCS
                                FROM: SSCP1A
                                                    TYPE: EXITCALL
SAVEAREA
00000020 03C38810 83BEE528 00000080 03C702A8 *.Ch.c.V......G.y* 00000030 0000007F FFFFFFFF 844C0E80 00A6F0F8 *..."..."d<....w08*
00000040 044C1E29 844C0E2A
                                               *.<..d<..
PARMLIST
00000000 00025CB8 00025CBA 00025CBB 00025C98 *..*..*..*q*
STORAGE
00025CC8 40404040 4040
PARMS=
007D9290 0013C689 99A2A340 8183A389 A581A389 *..First activati* 007D92A0 96955A *on.
FXTT
             TO: SSCP1A
                              FROM: ISTEXCCS TYPE: EXITRETN
SAVEAREA
00000000 C9C5C3E2 03C38C58 03C702A8 844C1A2C *IECS.C...G.yd<..*
00000010 00000000 00000000 00A65C54 03BEE858 *.....w*...Y.*
00000020 00A65C54 83BEE528 00000080 03C702A8 *.w*.c.V......G.y* 00000030 0000007F FFFFFFFF 844C0E00 00A6F0F8 *..."..."d<...w08* 00000040 044C1E29 844C0E2A *.<..d<...*
PARMLIST
00000000 00025CB8
                                               *..*.
STORAGE
00025CB8 00160080 00D5C5E3 C14BE2E2 C3D7F1C1 *....NETA.SSCP1A*
00025CC8 40404040 4040
```

Figure 42. Example of configuration services XID exit (CSX) buffer trace output

Directory services session management exit (DSME) buffer trace

The directory services session management exit (DSME) buffer trace shows the input and output of the DSME ISTEXCDM.

Trace points are invoked before and after DSME execution, and the following exit call functions can be traced:

- Begin
- Border Node Selection
- Central Directory Server Selection
- · Central Resource Registration Selection
- Interchange Node Selection
- End
- · Initial Authorization
- · Exit Replacement

See z/OS Communications Server: SNA Customization for more information on directory services management exit routines.

When to use the directory services session management exit (DSME) buffer trace

To avoid impacts to performance from the amount of data generated by this trace, use the DSME buffer trace to diagnose suspected problems with your DSME code.

Directory services session management exit (DSME) buffer trace operation

Start the DSME buffer trace with the MODIFY TRACE command. For more information about the MODIFY TRACE command, see z/OS Communications Server: SNA Operation.

Make sure that the GTF with the TRACE=USR or TRACE=USRP option is active before starting this trace. See "Starting the generalized trace facility (GTF)" on page 282. To format and print the data recorded by the GTF, use IPCS and set USR(FF1) on the GTFTRACE option.

For more information on printing trace output, see "Formatting and printing trace records" on page 282.

Directory services session management exit formatted output

Output is formatted into several sections:

- The first section is the register save area (ISTRSA). It is formatted using displacements instead of its virtual storage address.
- The second section is the parmlist. It is also formatted using displacements instead of the virtual storage address.
- The next section is the 8-byte user field.
- The next section is the environment vectors.
- The next section is the function code and related search information.
- The next section is the user data section.
- The next section contains either the exit options (for BEGIN), the OLU information structure, the CDS list (for CRR selection), or the PARMS= <string> (if PARMS= was specified on the VTAM MODIFY EXIT command for OPT=REPL or END).

Note: For functions REPL, END, and CRR, this would be the end of the trace record.

- The next section would contain the border node options (for BEGIN), or the DLU information structure.
- The next section contains either the PARMS= <string> (for BEGIN, if PARMS= was specified on the VTAM MODIFY EXIT command for OPT=ACT), or the network qualified CP name vector.

Note: For the BEGIN function, this would be the end of the trace record.

- The next section would contain the search correlator structure.
- The next section would contain the PCID modifier structure.

Note: For the INITIAL AUTHORIZATION function, this would be the end of the trace record.

• The last section would contain either the subnetwork routing list (for BN selection), interchange node list (for ICN selection), or the CDS list (for CDS or ADS selection).

Figure 43 on page 295 shows an example of DSME buffer trace output.

EXIT	TO: I	STEXCDM	FROM:	SSCP1A	TYPE: EXITCA	۱LL
00000020 00000030 00000040	83A334D8 03C3D810	00000008 0427AF58 FFFFFF7F	03C3DF80 00000080 8450C480	00A700F8 00000080	*IEDM.Cm.d&.5 *ct.QCx.6 *.CQ* *""d&D&M.* *.&.%d&	8* .*
PARMLIST 00000000 00000010 00000020		03C3DFC6			*h	
USER_FLD 03BF2C88	00000000	00000000			*	*
ENV_VECT 03C3DFA4 03C3DFB4		D5C5E3C1 00000000			*NETASSCP1/	
FNCTCODE 03C3DFC0	FE404040	4040			*.	*
USERDATA 03C3DFC6	00000000				*	*
EXITOPTS 03C3DFCA	00000080				*	*
	0016C9E2 81A38996			83A389A5	*ISTEXCDM Activ	
00000010 00000020 00000030 00000040	C9C5C4D4 00000000 03C3DE80	03C3DC58 00000008 0427AF58 FFFFFF7F	03B19438 03C3DF80 00000080 8450C400	8450CE8E 00A700F8 00000080 0450D429	TYPE: EXITRETN *IEDM.Cm.d&. *	.* 8*
PARMLIST 00000000 00000010 00000020		03C3DFC6			*h	
USER_FLD 03BF2C88	01010101	00000001			*	*
ENV_VECT 03C3DFA4 03C3DFB4		D5C5E3C1 00000000		C3D7F1C1	*NETASSCP1/	.A* *
FNCTCODE 03C3DFC0	FE404040	4040			*.	*
USERDATA 03C3DFC6	00000000				*	*
EXITOPTS 03C3DFCA	9F020180				*	*

Figure 43. Example of directory services session management exit (DSME) buffer trace output

I/O trace

The I/O trace shows requests and responses that flow between VTAM and network nodes. You can trace I/O activity for any of the following types of nodes:

- Application program
- Physical unit
- Logical unit
- SNA cluster controller

- NCP
- SSCP
- · Host physical unit
- · Host as an intermediate routing node
- · Channel attachment major node
- · Cross-domain resource
- · Cross-domain resource manager
- RTP pipe
- TRLE

Restriction: I/O trace is not supported for a TRLE that represents:

- 1. A "RoCE Express" feature
- 2. An Internal Shared Memory (ISM) interface
- 3. A z/OS Container Extensions (zCX) TRLE

The maximum I/O trace record length is 272 bytes.

Note:

- 1. If you want to trace a session between an LU and an application program, you must start the trace at the host where the application program resides.
- 2. I/O trace records are not recorded for conversation level data exchanged between two VTAM/APPC applications residing on the same host and using the APPCCMD macroinstruction interface to communicate.
- 3. I/O trace provides packet tracing capability for OSA-Express QDIO and HiperSockets data devices because CCW trace does not exist for these devices. Packet trace for OSA-Express QDIO and HiperSockets will appear as ODPK records in the external VIT. A length field is provided on the MODIFY TRACE command for OSA-Express QDIO and HiperSockets devices to override the existing 272-byte trace limit for I/O trace.
- 4. Do not enable I/O trace for an OSA-Express2 or later data device that is used to capture OSA-Express network traffic analyzer trace data. The VARY TCPIP,,OSAENTA command described in z/OS Communications Server: IP Diagnosis Guide has its own ability to filter, capture, and format this data. If I/O trace is enabled for a data device used for capturing trace data, only the first 28 bytes of each packet are traced.
- 5. You must use a combination of the TCP/IP packet trace facility and VTAM internal trace (VIT) records to analyze Shared Memory Communications RDMA (SMC-R) link traffic. The RPST records in the VIT represent data being sent outbound by using SMC-R communications. The RPLR records in the VIT represent data arriving inbound by using SMC-R communications. For information about the TCP/IP packet trace, see z/OS Communications Server: IP Programmer's Guide and Reference.
- 6. You must use the TCP/IP packet trace facility to analyze Shared Memory Communications Direct Memory Access (SMC-D) link traffic. For information about the <u>TCP/IP packet trace</u>, see <u>z/OS</u> Communications Server: IP Programmer's Guide and Reference.

When to use the I/O trace

Use the I/O trace to record the order that PIUs flow between network nodes and VTAM. For example, you might use this trace to determine whether an application program receives all the responses that it should and whether VTAM forwards all the requests issued by the application program.

The I/O trace is now done using the external VIT. Data items are formatted like VIT external trace entries.

I/O trace operation

Before starting the I/O trace, make sure that the GTF with the TRACE=USR option is active. See <u>"Starting</u> the generalized trace facility (GTF)" on page 282.

Start the I/O trace with the MODIFY TRACE command or the TRACE start option.

Specify:	To trace:
ID=nodename	Requests and responses flowing between VTAM and nodename.
ID=VTAM	Request and response units (RUs) for SSCP sessions.
ID=ISTPUS	Request and response units (RUs) for sessions between the host physical unit and another physical unit type 4 or 5 (these RUs include ER-ACT, ER-OP, and ER-TEST RUs).
ID=ISTIRN	Request and response units (RUs) that flow through this host while this host is acting as an intermediate routing node.

Notes:

- 1. If you use the SCOPE=ALL or EVERY operand when you start the trace, the trace contains I/O activity for the specified node and all its valid subnodes. You *must* specify SCOPE=ALL when tracing a channel-attachment major node or when tracing an APPN PU. You *cannot* use the SCOPE=ALL or EVERY operands with ID=ISTPUS or ID=ISTIRN.
- 2. You may trace a link in a channel-attachment major node but not a link station.

See z/OS Communications Server: SNA Operation for information on the MODIFY command. See z/OS Communications Server: SNA Resource Definition Reference for more information on the TRACE start option.

QDIOSYNC trace

The QDIOSYNC trace is not a traditional trace in which output is generated based on specific events. Instead, the QDIOSYNC trace freezes and captures (logs) OSA-Express2 or later diagnostic data in a timely manner. In addition to or instead of using the hardware management console (HMC) to manually capture the diagnostic data, you can arm the OSA-Express2 or later adapter to automatically capture diagnostic data when one of the following conditions occurs:

- The adapter detects an unexpected loss of host connectivity. Unexpected loss of host connectivity occurs when the adapter receives an unexpected halt signal from the host or when the host is unresponsive to OSA requests. An unexpected halt signal includes VTAM InOp traps (for example, ISTLLCIE InOpCode 101).
- The adapter receives a CAPTURE signal from the host. A CAPTURE signal is sent by the host when one of the following conditions occurs:
 - The VTAM-supplied message processing facility (MPF) exit (IUTLLCMP) is driven.
 - Either the VTAM or TCP/IP functional recovery routine (FRR) is driven with ABEND06F. ABEND06F is the result of a SLIP PER trap that specifies ACTION=RECOVERY.

Restriction: The SLIP must be a SLIP PER trap to specify ACTION=RECOVERY.

When arming an OSA-Express2 or later adapter for QDIOSYNC, you can specify an optional filter that alters what type of diagnostic data that the adapter collects. This filtering reduces the overall amount of diagnostic data collected and therefore decreases the likelihood that pertinent data is lost.

Arming an OSA-Express2 or later adapter has no effect on the host or OSA-Express2 or later performance. However, using a PER-type SLIP trap generally increases host CPU utilization.

When to use the QDIOSYNC trace

Use the QDIOSYNC trace when you are re-creating a problem with an OSA-Express2 or later connection. QDIOSYNC enables automatic capture of OSA-Express2 or later diagnostic data without using the HMC console, reducing the likelihood of overwriting pertinent diagnostic data. QDIOSYNC also uses other system facilities to enable host-initiated capture of OSA-Express2 or later diagnostic data and to initiate a

host dump simultaneously with the host-initiated capture of OSA-Express2 or later diagnostic data. These other system facilities include the z/OS MPF exit facility and the SLIP PER trap command.

Specifying the VTAM-supplied MPF exit routine module name [USEREXIT(IUTLLCMP)] in the MPFLSTxx member of SYS1.PARMLIB and activating that member result in a CAPTURE signal being sent to all armed OSA-Express2 or later adapters when the corresponding message is issued. See z/OS MVS Installation Exits for more information about the use of MPF and the MPF PARMLIB member.

Specifying ACTION=RECOVERY on a SLIP PER trap command drives the executing FRR with an ABEND06F abend when the SLIP trap is triggered. Both the VTAM and TCP/IP FRRs detect the ABEND06F abend and initiate sending a CAPTURE signal to all armed OSA-Express2 or later adapters.

Do not use QDIOSYNC to unconditionally arm an OSA-Express2 or later adapter when it is shared by other operating systems and those operating systems might use this function. In this case, the function should be coordinated between all sharing operating systems.

QDIOSYNC trace operation

The VTAM MODIFY TRACE and NOTRACE start options and commands, with the value TYPE=QDIOSYNC, are used to activate and terminate QDIOSYNC trace. As with most other TRACE commands, you can save a QDIOSYNC command so that if the TRLE defining the OSA-Express2 or later devices to be synchronized is not active, the command is applied when the TRLE is activated. Unlike other TRACE and NOTRACE commands, the value ID=* is supported. When the value ID=* is specified with SAVE=NO, the ID=* value indicates that the QDIOSYNC command is to be applied to all currently active TRLEs that define OSA-Express2 or later adapters. When the value ID=* is specified with SAVE=YES, the ID=* value indicates that the QDIOSYNC command is to be applied to all currently active TRLEs that define OSA-Express2 or later adapters and to those that are activated by this VTAM in the future.

See MODIFY NOTRACE and MODIFY TRACE commands in z/OS Communications Server: SNA Operation and TRACE start option in z/OS Communications Server: SNA Resource Definition Reference for additional details about employing QDIOSYNC using TRACE.

You can use the VTAM DISPLAY TRACES, DISPLAY TRL, and DISPLAY ID commands to determine the current QDIOSYNC usage. See <u>DISPLAY TRACES</u>, <u>DISPLAY TRL</u>, and <u>DISPLAY ID</u> commands in <u>z/OS</u> Communications Server: SNA Operation for additional details.

Using QDIOSYNC to synchronize OSA diagnostic data with host diagnostic data You can use QDIOSYNC to synchronize OSA diagnostic data with host diagnostic data.

Procedure

Perform the following steps to use QDIOSYNC to synchronize OSA diagnostic data with host diagnostic data:

- 1. Determine which OSA-Express2 or later adapters must be armed. You can use the TRACE command or TRACE start option to arm the adapters. The advantage to using the command is that VTAM does not need to be restarted for the command to take effect. The advantage to using the start option is that you must code it only once.
- 2. Determine what value you will use for the OPTION operand on the TRACE command.

Use the OPTION value to filter the OSA trace table records. The OPTION value specifies which data devices (controlled by the adapters that you are arming) will have their activity traced and in what direction. Possible values are:

ALLIN

Directs OSA to collect only inbound diagnostic data for all devices.

ALLOUT

Directs OSA to collect only outbound diagnostic data for all devices.

ALLINOUT

Directs OSA to collect inbound and outbound diagnostic data for all devices.

Tip: Specifying the ALLIN, ALLOUT, or ALLINOUT filters dictates recording of activity from data devices not only controlled by this z/OS Communications Server but also by other operating systems sharing the OSA-Express2 or later adapter.

IN

Directs OSA to collect only inbound diagnostic data for devices defined to this VTAM.

OUT

Directs OSA to collect only outbound diagnostic data for devices defined to this VTAM.

INOUT

Directs OSA to collect inbound and outbound diagnostic for devices defined to this VTAM.

Tip: Specifying the IN, OUT, or INOUT filters dictates recording of activity from data devices controlled by this z/OS Communications Server only. Activity from data devices controlled by other operating systems sharing the OSA-Express2 or later adapter is not recorded.

If you cannot determine the scope and filtering to use, use the default of ALLINOUT.

3. Issue the TRACE command to arm one or more adapters, or to arm all adapters.

Take one of the following steps:

- To individually arm the adapters, issue the TRACE ID=trle_name OPTION=option command for each adapter that you want to arm.
- To arm all adapters using a single command, issue the TRACE ID=* OPTION=option command. If you have several OSAs to arm but you do not want to arm all of them, it might be easier to arm all OSAs and then individually disarm those you do not want armed.
- 4. Issue the DISPLAY TRACES command and optionally the DISPLAY TRL or DISPLAY ID command to check their QDIOSYNC status.
- 5. For message ID traps, activate the MPF parmlib member, which specifies USEREXIT(IUTLLCMP).

```
* This MPFLSTxx identifies the messages which lead to capture of
* armed OSA-Express devices. If any of the following message are
* issued, IUTLLCMP (VTAM provided MPF exit) gains control and
* schedules the capture of all armed OSA-Express devices.

*
* EZZ4343I ERROR xxxx REGISTERING IP ADDRESS<IP_Addr> FOR ...
* EZZ4339I INTERFACE interface_name FAILED - ADAPTER SIGNAL ...
* EZZ4327I ERROR XXXX REGISTERING IP ADDRESS
* EZZ4328I ERROR XXXX SETTING ROUTING FOR DEVICE
EZZ4343I,SUP(NO),USEREXIT(IUTLLCMP)
EZZ4339I,SUP(NO),USEREXIT(IUTLLCMP)
EZZ4327I,SUP(NO),USEREXIT(IUTLLCMP)
EZZ4328I,SUP(NO),USEREXIT(IUTLLCMP)
```

a. To activate this parmlib member, issue SET MPF=(xx,zz) (where xx is a new parmlib member and zz is your current MPFLSTzz parmlib member).

This captures all armed OSA-Express2 or later devices when any of the four TCP/IP messages (EZZ4343I, EZZ4339I, EZZ4327I, or EZZ4328I) are issued.

b. You should also set a corresponding SLIP trap for each message in the parmlib member to initiate a host dump.

Example:

```
SL DEL,ID=MEZ1,END
SL SET,ID=MEZ1,MSGID=EZZ4343I,A=(STOPGTF,SVCD),MATCHLIM=1,
JOBLIST=(TCP*,NET*),
DSPNAME=('TCP*'.*,01.CSM*,'NET*'.IST*),
SDATA=(RGN,ALLNUC,CSA,LSQA,PSA,SQA,SUM,SWA,TRT,LPA),
END
```

This SLIP will be triggered when the EZZ4343I TCP/IP error message is issued. Because the MPF exit is active for EZZ4343I, all armed OSA-Express2 or later adapters will be sent a CAPTURE signal. Each armed adapter freezes the diagnostic data and writes it to the hard disk of the HMC. An SVC dump will also be taken with the title SLIP DUMP=MEZ1. This is a sample. If you choose to use it you must ensure that your job and data space correspond to the parameters in the sample.

Tips:

- The first command in this example deletes any SLIP trap with the name MEZ1.
- The *jobname* value for VTAM is NET and the *jobname* for TCP/IP is TCP (Use your own job name values).
- All data spaces created by TCP/IP are dumped.
- All data spaces created by the master scheduler that contain CSM in the name are dumped.
- All data spaces created by VTAM whose names start with IST are dumped.
- GTF is also stopped if it was running when this SLIP trap is matched.
- 6. For module offset trap problems, you must code a SLIP PER trap on a specific module.

The following example assumes that the abend occurred in module ISTLLCIE. You first have to find the starting address of ISTLLCIE by issuing the following command:

In this example, assuming that you want to gather documentation at +200'x' in ISTLLCIE, code the SLIP as follows:

```
SL DEL,ID=MEZ2,END
SL SET,IF,ID=MEZ2,RA=(3A412EBC),A=(STOPGTF,RECOVERY,SVCD),
MATCHLIM=1,JOBLIST=(TCP*,NET*),
DSPNAME=('TCP*'.*,01.CSM*,'NET*'.IST*),
SDATA=(RGN,ALLNUC,CSA,LSQA,PSA,SQA,SUM,SWA,TRT,LPA),
END
```

Guideline: The MEZ2 trap is an example; you must locate a different module and determine the instruction address by adding a different offset. The example is provided not only to show how to determine the instruction address but also to stress the use of the RECOVERY parameter in the ACTION list. If you choose to use this example you must ensure that your job and data space names correspond to the parameters in the sample.

Tips:

- The first command in this example deletes any SLIP trap with the name MEZ2.
- The SLIP PARM RA=(3A412EBC) is 200'x' bytes into ISTLLCIE. In this example, ISTLLCIE is loaded in common storage, so additional SLIP parameters are not needed (for example, the *jobname* parameter).
- The *jobname* value for VTAM is NET and the *jobname* value for TCP/IP is TCP (Use your own job name values.)
- All data spaces created by TCP/IP are dumped.
- All data spaces created by the master scheduler that contain CSM in the name are dumped.
- All data spaces created by VTAM whose names start with IST are dumped.
- GTF is also stopped if it was running when this SLIP trap is matched.
- 7. Re-create the problem.
- 8. Optionally, disarm any or all adapters using the MODIFY NOTRACE command.
- 9. Use the HMC to locate and copy the OSA-Express2 or later diagnostic data.

Resource state trace

The resource state trace creates VTAM internal traces (VIT) entries when the current state or desired state, or both, of a resource for which tracing has been requested changes. You can choose to trace all resources, specific resources, or all resources of a particular type, for example, all the application programs.

When to use the resource state trace

To avoid impacts to performance from the additional VIT entries that are generated, use resource state tracing for diagnosing specific problems and try to narrow the number of resources being traced.

Resource state trace operation

Start the resource state trace with the MODIFY TRACE command, or use the TRACE start option with TYPE=STATE specified.

Specify:	To Trace:
ID=resourcename	Changes to the current state or desired state, or both, of resourcename.
OPTION=options	Changes to the current state or desired state, or both, of all resources of type <i>option</i> .

Note: If you use the OPTION=ALL operand, the states of all resource types in your network will be traced.

For a description of the VIT entries created by the resource state trace, see the CSx VIT entry in z/OS Communications Server: SNA Diagnosis Vol 2, FFST Dumps and the VIT. For more information about the MODIFY TRACE command, see z/OS Communications Server: SNA Operation. For a description of all the resource states, see z/OS Communications Server: IP and SNA Codes.

Session management exit (SME) buffer trace

The session management exit (SME) buffer trace shows the input and output of the session management exit (SME) ISTEXCAA.

Trace points are invoked before and after SME execution, and the following exit functions can be traced:

- Begin function
- · Adjacent SSCP selection
- · Gateway path list
- · Initial authorization
- · Secondary authorization
- · Initial and final accounting
- Exit replace and replaced
- · Virtual route selection
- · Alias translation
- XRF session switch
- Adjacent link station selection
- End function
- · HPR VR Selection
- HPR RTP Pipe Authorization for the OLU node role
- HPR RTP Pipe Authorization for the DLU node role

• HPR RTP Pipe Authorization for the ANR node role

See z/OS Communications Server: SNA Customization for more information on session management exit routines.

When to use the session management exit (SME) buffer trace

To avoid impacts to performance from the amount of data generated by this trace, use the SME buffer trace to diagnose suspected problems with your SME code.

Session management exit (SME) buffer trace operation

Start the SME buffer trace with the MODIFY TRACE command. For more information about the MODIFY TRACE command, see z/OS Communications Server: SNA Operation.

Make sure that the GTF with the TRACE=USR or TRACE=USRP option is active before starting this trace. See "Starting the generalized trace facility (GTF)" on page 282. To format and print the data recorded by the GTF, use IPCS and set USR(FF1) on the GTFTRACE option.

For more information on printing trace output, see "Formatting and printing trace records" on page 282.

Session management exit trace record output

Output is formatted into three or four sections:

- The first section is the register save area (ISTRSA). It is formatted using displacements instead of its virtual storage address.
- The second section is the parmlist. It is also formatted using displacements instead of the virtual storage address.
- The third section is the area of storage that contains most of the input data to the exit, which is used by most of the SME functions. It is listed in dump-like format by virtual address.
- The fourth section is the list of optional data used only for the GWPATH, ADJSSCP, ALIAS, or ALS selection exit functions.

Figure 44 on page 303 shows an example of SME buffer trace output.

EXIT	TO: ISTEXCAA	FROM: SSCP1A	TYPE: EXITCALL
SAVEAREA 00000000 00000010 00000020 00000030 00000040	83293E30 00000004 00000006 00B4C1F8	00B4663C 00000006 00B465E8 00B4663C 0346A028 00009488	*h* *c* *A8Y* *zmh* *di *
PARMLIST 00000000 00000010 00000020 00000030 00000040 00000050	00B467CC 00B46B4C 00000000 00000000 008DB7A0 00000000	00B468CC 808DB6D0 00000000 008DB6F8 80000000 00000000	*
STORAGE 00B46690 00B466A0 00B466B0 00B466C0 00B466E0 00B466F0 00B46710 00B46710	C3D7F1C1 40400A08 08090000 00010000 40400000 00000000 00000000 192D0AC0 E34008D9 C5C1D3D5 40404040 08D5D6D5 001A00FF 1902D9C5 0000C9E2 E3C3C4D9	C9E2E3D7 E4E24040 0A0AD5C5 E3C14040 00000000 06200000 0008D9C5 C1D3D5C5 C1D4C508 D5C5E3C1 C1D4C540 401A001A C1D3D5C1 D4C51800 C4E80700 0000FE01	*NETASS* *CP1AISTPUS * *NETA * ** *REALNE* *T.REALNAME.NETA* *NONAME* *REALNAME* *REALNAME* *
00B46B30 00B46B40 00B46B50 00B46B60	00000000 00000000	00000000 EAABEEC3 4BE2E2C3 D7F1C140	** *C* *NETA.SSCP1A * **
ADJSSCPS 808DB6D0	000A0001 C9E2E3C1	D7D5C3D7	*ISTAPNCP *

Figure 44. Example of session management exit (SME) buffer trace output

SMS (buffer use) trace

The storage management services (SMS) trace records contain information on the use and availability of VTAM buffer pools. SMS trace records are written after a predetermined number of requests occur for VTAM buffers. An IBM-supplied threshold causes a trace record to be written after every 1000 requests.

Note:

- 1. If the DISPLAY BFRUSE command is issued while this trace is running, the fields MAX TOTAL, MAX USED, and TIMES EXP in the output for DISPLAY BFRUSE reflect buffer usage only since the last trace record was written, because the SMS trace resets these fields.
- 2. The SMS trace is *not* the same thing as the VTAM internal trace with the SMS option specified. The SMS trace *is* similar to the DISPLAY BFRUSE command. The SMS trace displays in trace output the same information that the DISPLAY BFRUSE command displays on the screen.

When to use the SMS trace

Use the SMS trace during VTAM installation to evaluate VTAM use of buffer pools, to help estimate how many buffers VTAM needs for normal operation, and, with dynamic buffering, to limit buffer pool expansions to peak use periods. You can use the SMS trace with tuning statistics.

SMS trace operation

Start the SMS trace with the MODIFY TRACE command, or use the TRACE start option with TYPE=SMS and ID=VTAMBUF specified. For more information about the MODIFY TRACE command, see z/OS Communications Server: SNA Operation. For more information about the TRACE start option, see z/OS Communications Server: SNA Resource Definition Reference.

Make sure that the GTF with the TRACE=USR option is active before starting this trace. See <u>"Starting the generalized trace facility (GTF)" on page 282</u>. To format and print the data recorded by the GTF, use IPCS and set USR(FF0) or USR(CL02) on the GTFTRACE option.

For more information on printing trace output, see "Formatting and printing trace records" on page 282.

SMS trace record output

Figure 45 on page 304 shows an example of SMS trace output. The trace fields are explained in <u>Table 18 on page 305</u>. In addition to the fields described here, other operating-system-dependent fields may appear. These fields are described in Table 15 on page 284.

VTAM BUFFERS	MAXU	MAXQ	AVNO	TEXP	MBUF	TOTL	
IO00	00000015	00000000	00000060	00000000	0000006E	0000006E	
BS00	00000034	00000000	00000014	00000000	00000048	00000048	
LP00	00000007	00000000	0000003D	00000000	00000040	00000040	
XD00	00000004	00000000	0000000B	00000000	0000000F	0000000F	
LF00	00000002	00000000	00000076	00000000	00000078	00000078	
CRPL	0000003A	00000000	00000096	00000000	000000C8	000000C8	
VTAM BUFFERS SF00 SP00 AP00 T100 CRA4 CRA8	MAXU 00000004 00000000 00000000 00000065 00000002	MAXQ 00000000 00000000 00000000 00000000 0000	AVNO 0000003C 0000002A 00000038 00000078 0000000C 0000000B	TEXP 00000000 00000000 00000000 00000000 0000	MBUF 00000040 0000002A 00000038 000000B4 0000000C 0000000C	TOTL 00000040 0000002A 00000038 000000B4 0000000C 0000000C	
VTAM CSAUSE	TOTAL 003	0015B MAX	7FFFFFF %	FREE QUEUE	00000000		

Figure 45. Example of SMS trace output

Two separate records will be printed, and they may be separated by another trace entry.

Table 18. Field	ds in the SMS trace	
Field header	Meaning	
Pool ID	The first field in each record. Pool ID identifies the buffer pool. Pool IDs and their corresponding buffer pool names are:	
	AP (APPLIE)	
	Application program pageable pool (APBUF)	
	BS Boundary session block pool (BSBUF)	
	CR Copied RPL pool (CRPLBUF)	
	CRA4	
	Component recovery area CRA8	
	Component recovery area	
	IO 5: - 17/2 - 1/722115)	
	Fixed I/O pool (IOBUF) LF	
	Large fixed pool (LFBUF)	
	Large pageable pool (LPBUF)	
	SF Small fixed pool (SFBUF)	
	SP	
	Small pageable pool (SPBUF)	
	TI HPDT Services (TIBUF)	
	UE	
	User exit control block (UECB) (obsolete) XD	
	XID pool (XDBUF)	
MAXU	The maximum number of buffers in the pool that are in use at any time since the last trace record is written.	
MAXQ	The maximum number of requests for buffers that are queued waiting for storage at any time since the last trace record is written.	
AVNO	The number of available buffers (those not in use at the time the trace record is written).	
TEXP	The number of times the buffer pool is expanded since the last trace record is written.	
MBUF	The maximum number of buffers that are in the pool at any time since the last trace record is written. This includes both used and unused buffers.	
TOTL	The total number of buffers that are in the pool at the time this record is written. This includes both used and unused buffers.	
TOTAL	The amount of CSA storage in use by VTAM at the time this record is written.	
MAX	The largest amount of CSA storage used by VTAM since the last SMS buffer trace.	
FREE QUEUE	The amount of CSA storage allocated to VTAM that is waiting to be freed.	
TI	Buffer pool supporting HPDT services	
CRA4	Component recovery area (4 KB).	

Table 18. Fields in the SMS trace (continued)			
Field header	Meaning		
CRA8	Component recovery area (8 KB).		

TGET/TPUT trace for TSO/VTAM

The TGET/TPUT trace for TSO/VTAM writes a GTF trace record for each inbound and outbound message that uses the TGET/TPUT/TPG interface (SVC 93) between a TSO command processor and the VTIOC component of TSO/VTAM. Outbound messages are traced before being placed in the VTIOC queue manager output buffer. Inbound messages are traced before the data is sent to the TSO command processor.

Note: The TGET/TPUT trace does not trace address space ID TPUTs.

When to use the TGET/TPUT trace

Use this trace if the failure is restricted to TSO sessions. This trace can help you determine whether TSO/VTAM or your TSO command processor is causing the problem. For example, if outbound data is correct in the TGET/TPUT trace output, but incorrect in the buffer trace output, the problem is probably in TSO/VTAM or VTAM. Use the following tables as guidelines to determine where the error is occurring:

Table 19. Location of TPUT (outbound) error					
Direction of data	If TPUT trace data is:	And buffer trace data is:	Then possible error is in:		
Outbound	Correct	Incorrect	• VTAM		
			TSO/VTAM		
			 TPUT option 		
			 User edit exits 		
Outbound	Incorrect	Trace not required	TSO or the command processor		
Outbound	Correct	Correct	Network		
Table 20. Location	of TGET (inbound) error				
Direction of data	If TGET trace data is:	And buffer trace data is:	Then possible error is in:		
Inbound	Incorrect	Correct	• VTAM		
			• TSO/VTAM		
			 TGET option 		
			 User edit exits 		
Inbound	Correct	Trace not required	TSO or the command processor		
Inbound	Incorrect	Incorrect	Network		

TGET/TPUT trace operation

Start the TGET/TPUT trace with the MODIFY TRACE command and specify TYPE=TSO.

The trace output is a record of inbound and outbound messages for the specified TSO user ID.

Make sure that the GTF with the TRACE=USR option is active before starting this trace. See <u>"Starting the</u> generalized trace facility (GTF)" on page 282.

To print these trace records, use IPCS and specify either USR(FE2) or USR(APTH) on the GTFTRACE option. For more information on printing trace output, see <u>"Formatting and printing trace records" on page</u> 282.

TGET/TPUT trace output

The trace records created by the TGET/TPUT trace have a 12-byte GTF header and a 52-byte trace header followed by the data portion of the RU in unformatted hexadecimal. The entire RU is traced, but will span several trace entries if it is longer than 228 bytes.

<u>Figure 46 on page 307</u> shows an example of TGET/TPUT trace output. The trace fields are explained after the figure.

Figure 46. Example of TGET/TPUT trace output

The following fields appear in the TGET/TPUT trace. The first 2 bytes in each row show the hex offset in storage. The data follows that.

Byte (hex)	Meaning
00-03	ASCB address
04-0B	Job name
0C-0E	C"TSO"
0F-11	C"IN" for inbound data (TGET); C"OUT" for outbound data (TPUT)
12	TGET/TPUT option flags (See the TGET/TPUT option flags entry in <u>Table 48 on page 577</u> to determine what document describes these bit definitions.)

Byte (hex)	Meaning
13	TGET: return code (See <u>Table 48 on page 577</u> to determine what document describes TGET return codes.)
	TPUT:
	X'00' EDIT, ASID, FULLSCREEN, or CONTROL options
	X'01' NOEDIT option
	X'02' TPG macro issued
	X'03' NOEDIT option specified and TGP macro issued
14–17	C"INIT" for the first 228-byte section of a PIU; C"MID" for the middle sections of a PIU; C"LAST" for the last section of a PIU
18-1F	TSO user ID
20	Length of network-qualified name
21-31	Network-qualified name
32-33	Zero
34	Start of user data

3270 data stream formatting

VTAM trace records that contain 3270 data streams can be formatted by using the Generalized Trace Facility (GTF) exit IST32FMT. The IST32FMT exit can format the following types of trace records:

- Buffer trace records, when EID is FEF.
- TGET/TPUT trace records, when EID is FE2.
- 3270 IDS incident trace records, when EID is F90.

To collect the buffer trace records, use the Modify TRACE command with TYPE=BUF and AMOUNT=FULL. For more information about activating these traces and optional operands, see \underline{z}/OS Communications Server: SNA Resource Definition Reference and z/OS Communications Server: SNA Operation.

Example: F <VTAM procedure>, TRACE, TYPE=BUF, ID=resource, AMT=F

3270 IDS incident trace records are written when an incident occurs.

To invoke the IST32FMT exit to display the 3270 data stream, use the following IPCS GTFTRACE command:

```
GTFTRACE USR EXIT(IST32FMT) [E0F]
```

The USR parameter is required and the EOF parameter is optional. Other selection parameters are ignored.

3270 data stream output

Figure 47 on page 309 and Figure 48 on page 310 show an example of 3270 data stream output. The example output are explained in "Explanation of the 3270 data stream" on page 310.

```
3270 NETA.L7201A NETA.TS00001 LRC(00,00) OUTBOUND COMPLETE SEGMENT TIME UTC 2016/03/21 14:49:40.727408 LOC 2016/03/21 10:49:40.727408 EVENT Token 0000000001 SID EAABEEC3 3B586D97 Buffer 03 of 12 Overlap Row 001 Col 001 Offset 000000 OUT SEQ X'000B' Offset 00005 Length 00001

IN SEQ X'0007' Offset 00000 Locations
<1> USRFD EF90 ASCB 00FC9E00
<3>
.B-.Y
     000100 40404040 40404040 115B601D E8D7C6F1 61D7C6F1 F3407E7E 6E40C885 93974040 | .$-.YPF1/PF13 ==> Help | 000120 4040D7C6 F361D7C6 F1F5407E 7E6E40D3 96879686 86404040 40D7C1F1 407E7E6E | PF3/PF15 ==> Logoff PA1 ==> | 000140 40C1A3A3 8595A389 96954040 4040D7C1 F2407E7E 6E40D985 A28896A6 115CF01D | Attention PA2 ==> Reshow.*0.|
                                                                                                                     .0.GB.@_Seclabel
     000420 40404040 1DF011C7 C21D7C40 E2858393 81828593 40404040 407E7E7E 6E11C7D5 | 000440 1D7C4040 40404040 40401DF0 11C9C313 |
                                                                                                                i.@
                                                                                                                              .0.IC.
<6> 3270: 1104
                             Erase/Write F5C3 Restore Reset
     0000 OUT
            3270 Row Col Order Parameters
0 1 1 SBA 4040
0 1 1 RA 404040
                                                                       Col: 1
Col: 1
Col: 1
White
                                                           Row:
                                                                   1
<8> 0002
                                                                 1
1
D
                                                           Row:
                           1 SBA
1 SF
2 080
2 SBA
     0009
                                      4040
                                                           Row:
     000C
                                      E8
<10>000E
005E
                                                                        ----- TSO/E LOGON -----"
                81
                                      C150
                                                                   2 Col:
                                                          Row:
     0061
0063
                80
81
                            1 SF
2 080
                                      E8
                                                                 D
                                                                       White
     00B3
               161
                              SBA
                                                           Row:
     00B6
              160
                      3
                            1 SF
                                      E8
                                                                       White
              161
     00B8
                              080
     0108
010B
             241
1760
                            2 SBA
1 SF
                                      5B60
                                                          Row: 23 Col:
P D White
                     23
                           2 079
1 SBA
              1761
                                       "PF1/PF13 ==> Help
                                                                    PF3/PF15 ==> Logoff PA1 ==> Attention
                                                                                                                              PA2 ==> Reshow"
             1840
                                      5CF0
                                                          Row: 24 Col:
     015C
```

Figure 47. Example of 3270 data stream output - part 1

```
03D4 18 20 080
                                          Blue
        19 20 SF F0
19 21 SBA C7C2
6 51 SF 7C
6 52 018 "Seclabel =
6 70 SBA C7D5
6 70 SF 7C
6 71 008 " "
6 79 SF F0
6 80 SBA C9C3
8 20 IC
5: 95, Size: 229, Data:
                                Row: 6 Col: 51
P S NoDsp
===>"
   0426
   0429
   042B
                                 Row: 6 Col: 70
   043D
   0440
0442
                                 PSH
                                          Blue
                                  Row: 8 Col: 20
   044C
|%-----|
      + Userid ===>%USER1 +
<15>| + Password ===>$_....+
                                               + New Password ===>$.....+
      + Procedure ===>!0S390R5 +
                                                + Group Ident ===>!....+
<16> + Acct Nmbr ===>!007....+
                ===>!156000.+
     + Perform ===>!...+
     + Command ===>!
      %Enter an 'S' before each option desired below:+
%.! +-Nomail+ %.! +-Nonotice+ %.!S+-Reconnect+ %.! +-OIDcard +
                       PF3/PF15 ==> Logoff PA1 ==> Attention
    |%You may request specific help information by entering a '?' in any entry field |
               GTF-UTC 2016/03/21 14:49:40.727464 LOC 2016/03/21 10:49:40.727464
<18>AHL10009I No records of the requested type were found.
End of File
<19> 441 Total records
    62 Selected records
     1 Sessions
   PIII Name
                   SLU Name
                                   First
                                                            Last
                                                                                      Token
                                                                                                  Out
                               First Last 2016/03/21 14:49:39.318593 2016/03/21 14:49:42.039704
                /NETA.L7201A
<20>NETA.TS00001
```

Figure 48. Example of 3270 data stream output - part 2

Explanation of the 3270 data stream

Table 21 on page 310 describes the example output in "3270 data stream output" on page 308.

Table 21. Explanation of the 3270 data stream				
Line indicator	Explanation			
1	A GTF record header that is formatted shows the ASCB address and job name.			
2	For EID=F90 records, the intrusion event data is shown. For more information, see <u>"Buffer contents trace for 3270 IDS incidents"</u> on page 289.			
3	The 3270, BUFF or TS0 line shows the names of the two LU partners and the buffer status.			
4	The VTAM line displays the transmission header and request header.			
5	The contents of the request unit is dumped.			
6	The 3270: line begins the interpretation of the 3270 commands and orders.			

Table 21. Expla	nation of the 3270 data stream (continued)			
Line indicator	Explanation			
7	Each line shows the order or data:			
	BUFF is the offset in the VTAM RU.			
	• 3270 is the screen offset in the display buffer.			
	Row is the row number in the display buffer.			
	Col is the column number in the display buffer.			
	Order is the 3270 order name or the length of data.			
	 Parameters shows the parameters that are associated with the order or the data that is moved to the display buffer. 			
8	Each order line shows the offset in the display buffer, the display offset, the current row and column numbers with the name of the order and its operands.			
9	The field attribute codes are explained below:			
	P Protected			
	U Unprotected			
	A Alphanumeric			
	N Numeric			
	S Automatic skip			
	H Highlighted or Intensified D			
	Selector Pen Detectable M			
	Modified Data Tag set			
	NoDsp The field is not displayed			
	Blue The default color is blue			
	Green			
	The default color is green			
	Red The default color is red			
	White The default color is white			
10	Each data line shows the offset in the display buffer, the current row and column numbers, the length of the data, and the value of the data field.			
11	The Orders: line summaries the number of orders and data fields that are found in the buffer.			
12	The Screen dimensions: line shows the size of the current screen buffer that is used to format the screen. The dimensions might be incorrect if the trace data does not contain information about the actual screen size.			

Table 21. Explanation of the 3270 data stream (continued)	
Line indicator	Explanation
13	The ruler line shows the column offsets of the screen. If the displayed screen was wider than the current page length, each line is truncated.
14	The broken double line indicates the start and end of the screen. The displayed row number is shown on the right.
15	Special characters indicate the start field attributes:
	Percent sign (%) Protected text field, which is in high intensity.
	Plus sign (+) Protected text field, which is in low intensity.
	Exclamation point (!) Input field, which is unprotected and is in high intensity.
	Number sign (#) Input field, which is unprotected and is numeric input.
	Dollar sign (\$) Input field, which is unprotected and non displayable.
	Other 3270 orders are with the following special characters:
	Underscore (_) Input cursor.
	Less than (<) Shift out, which is the start of a DBCS field.
	Greater than (>) Shift in, which is the end of a DBCS field.
	Tip: These characters might appear as part of the 3270 data stream.
16	Non displayable characters in the data stream are shown as periods, which include the null characters.
17	The GTF line shows the UTC and local time when GTF wrote the trace record.
18	Message AHL10009I is normally shown at the end of the report.
19	Summary statistics.
20	A listing of each session that is found in the input file shows the partner names, date and time of the first and last PIU, a token for each session, and the number of input and output records that are found.

Traces provided by TCP/IP

The TCP/IP program provides multiple kinds of traces to trace TCP/IP problems. For SNA Enterprise Extender (EE) traffic, the packet trace and data trace facilities in TCP/IP may prove beneficial, as they allow both the collection and formatting of this type of SNA traffic.

The OSAENTA command facility in TCP/IP might be beneficial for debugging other network problems, including VTAM and SNA problems. The VARY TCPIP,,OSAENTA command provides the ability to trace data flowing over the PCI bus in an OSA-Express2 or later adapter configured in QDIO mode, whether the data is flowing to or from the network, TCP/IP, Enterprise Extender, or Linux. This trace facility enables you to determine whether the data flowing outbound to the adapter reached the network, or whether the data flowing inbound from the network reached the adapter. See z/OS Communications Server: IP Diagnosis Guide for details about how to enable and format the OSAENTA trace.

```
Sample TCP/IP trace of EE data
 Full=240
 Frame: Device ID : N/A
Segment # : 0
                                    Sequence Nr: 1462
                                                            Discard: 0 (OK)
                                   Flags: Tunnel Out Nta L3
                 : ::0
 Source
 Destination
 Source Port
                                  Dest Port: 0
                                                    Asid: 0000 TCB: 00000000
                                   Header Length: 40
Dscp: 00 (CS0)
Flow: 000000
 IpHeader: Version : 6
 Trafcls : 00
Payload Length : 182
                                                           ECN: 00 (Default)
 Hops : 64 P
Source : 2000:197:11:116::1
Destination : 2000:197:11:115::1
                                   Protocol: UDP
 Source Port : 12001 (EE-Network) Destination Port: 12001 (EE-Network) Datagram Length : 182 CheckSum: 15E1 FFFF
 000020 00000000 00000001
                                     Port: 12001, 12001
                                                             Offset: 28
 Protocol Header
 000000 2EE12EE1 00B615E1
 000020 00063603 22853000 1B382000 0000005C 00000900 00000000 0000020B 91812905
 P.T...%0.NETS0|
 000080 E4E3C84B E2D3D6E5 C1D2C9C1 06810000 01131C35 08900040 900212C4 10D5C5E3 |
 UTH.SLOVAKIA.a......D.NET|
0000A0 E2D6E4E3 C84BD9D6 D4C1D5C9 C100
 SOUTH.ROMANIA.
 Padding, FCS : 18 000000 20000197 00110123 00000000 00000003 7C00
 |...p.....@.
                                    Offset: 30
Ssap(C): 04 (SNA)
 Encapsulation LLC: Dsap(I)
                 : 1
: 28 ()
                 : 03 (ÚÍ)
 Unnumbered(P)
 NLH Anr Routé
 Tpf
                 : Network
                                   Flags: No_Delay
                  ANR Label TP ER Number D4000000 00000000 N/A N/A
                  ANR Label
                                                          Address
 Type
NCE
                                                            N/A
 Thdr
 TCID
                 : 12C0C581 00010543
 Element: 0543
                                                           Sequence: 1590
Adaptive RB Pacing
                                                           Reply: 0
 Field1
                : 1783840 Field2: 0
 TH Version : 5 Flags: RHI CMPLI
Session Addr : 00000000 00000002
Rh - FMH Request : FMH-5 (Attach)
RH : 0B9181 (FI BCI ECI DR1 ERI PI BBI CEBI)
                                                            Sequence: 9
 FMH5: Lenth
                 : 41
                                   Type: 02FF
                                                            Flag2: 00 ()
                 : BASIC
: 22F0F0F3
 RscTp
TpNam(4)
                                                            Flag3: 00 ()
                                   'FMH-5 Attach-Locate'
 FONAM(16)
                 : NETSOUTH.ROMANIA
                                                           LUOW: 000000000000.0000
 GDS 12C4: Len
               : 71
                                   Offset: 29
                                                           GDS Locate
 Flags :
Control Vectors:
                : 40
                                  Srch_Num: 4115
 CV60: Len
                 : 28
                                                           Fully Qualified PCID
                                   Offset: 32
 PCID
                : D723E3B459B06CF0 CP: NETSOUTH.SLOVAKIA
 CV81: Len
                                  Offset: 4E
                                                           Context specific
                 : 6
 00 06810000 0113
                                   *.a....
Offset: 54
 CV35: Len : 28
Sense : 08900040
                                                           Extended Sense Data
                                 Flags: 90
```

Offset: 30

Offset: 33

RESOURCE NOT FOUND ON BROADCAST

000000 C608D400 00000000 0000FF00

3 control vectors formatted

PONAME

LLC Header

000000 280403 ANR Header

: 12C4 : NETSOUTH.ROMANIA

: 3

: 12

Chapter 8. Using the VIT analysis tool

This topic includes the following subtopics:

- "Setting up and running the VIT analysis tool" on page 315
- "Analyzing storage" on page 319
- "Counting request/response units (RUs)" on page 326
- "Extracting information from the VIT" on page 333
- "Using the timing options" on page 341
- "Using the I/O options" on page 343
- "Creating your own parameter data set" on page 345

You can use the VIT analysis tool to obtain information about a VTAM internal trace (VIT) that you have recorded on or transferred to an external device. The tool provides the following functions:

- Storage analysis
- · Request and response unit (RU) counting
- · VIT extraction

You can choose to process only the VIT records that fall within a given time range in the trace record. In addition, you can choose to:

- Add a title and a short description to the first page of each report.
- · Format the output.
- · Create a mini report at a specified interval.

For information on required target data sets for the tool, see <u>z/OS Communications Server</u>: New Function <u>Summary</u>. If you want a customized interface to be active to select the trace analysis commands of the <u>VTAM program</u>, see z/OS Communications Server: New Function Summary for information.

If you experience problems that you suspect to be related to the VIT analysis tool, see "VTAM internal trace (VIT) analysis tool problems" on page 41 for help.

Setting up and running the VIT analysis tool

These steps provide the minimum information that you need to set up and run the VIT analysis tool.

Procedure

Complete these steps to set up and run the tool:

- 1. Record a VIT on an external device or transfer a previously recorded VIT to an external device.
- 2. Set up to run the tool.
- 3. Create the parameters for the job.
- 4. Run the job.
- 5. Check the output.

Results

The following topics describe each step:

Step 1. Record a VIT

You must have a VIT on an external device, such as a disk or a tape, before you can use the tool.

A VIT that has been internally recorded can be copied to an external device using the VTAMMAP VITAL function. For instructions on the VTAMMAP VITAL function, see "VITAL" on page 250.

Step 2. Set up to run the tool

Create a data set

Create a data set specifying the input and output data sets and the tool program name. You may use JCL, a CLIST, or an REXX exec to create your data set.

Batch mode

Use the sample JCL shown in Figure 49 on page 316. Lowercase indicates required variable information. The actual JCL is determined by your installation. For example, A has been defined as a printer in the sample installation, and SYSOUT=A directs output to it. Similarly, the sample JCL assumes that all input data sets have been cataloged.

Modify the JCL by including appropriate DD names. Even though all DD names shown are not required for all runs, you might want to list them to avoid changing your JCL when you change parameters. The record format for the output data sets can be variable or variable blocked (RECFM=V or RECFM=VB).

```
//jobname JOB (account), 'user name',etc.
//ISTRAFT1 EXEC PGM=ISTRAFT1,REGION=0K
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SUMMARY DD SYSOUT=A,DCB=(RECFM=V,LRECL=84)
//DETAILS DD SYSOUT=A,DCB=(RECFM=V,LRECL=84)
//LOG DD SYSOUT=A,DCB=(RECFM=V,LRECL=124)
//OUTSTAN DD SYSOUT=A,DCB=(RECFM=V,LRECL=124)
//VITEXT DD SYSOUT=A,DCB=(RECFM=V,LRECL=124)
//PARM DD DSN=userid.run1.parm,DISP=SHR
//TRACE DD DSN=userid.run1.trace,DISP=SHR
```

Figure 49. Sample JCL for VIT analysis

As shown in Figure 49 on page 316, the JCL contains the following DD names:

- SUMMARY is required and specifies where the output summarizing the trace is directed.
- DETAILS is required only for storage analysis and RU counting. It specifies where details of the trace analysis are directed.
- LOG is required. It specifies where VIT entries with possible errors are directed.
- OUTSTAN is required only for storage analysis of outstanding entries. It specifies where the list of outstanding GBLK, VTAL, and REQS entries is directed.
- VITEXT is required only for VIT extraction. It specifies where the VIT entries extracted from the trace are directed.

Note: Only the FORMAT and NOFORMAT output options should be used when directing VITEXT output to a printer as shown in <u>Figure 49 on page 316</u>. VITEXT output using TRACEFORMAT should be directed to disk or tape.

For VITEXT output using TRACEFORMAT, the record length must be the length of the TRACE record or 284, whichever is smaller.

- PARM is required and specifies the parameters to be passed to the VIT analysis tool. Parameters can
 be specified in-stream (in the JCL) or in a data set; do not use the PARM parameter on the EXEC
 statement for this purpose because of size restrictions. The PARM data set must have fixed records (can
 be blocked) with:
 - LRECL=80
 - RECFM=FB
- TRACE is required and specifies the input data set containing the trace to be processed. The TRACE DCB information must match the actual data set characteristics. The record format can be V, VB, or VBA.

Interactive mode

As an alternative to running in batch mode, you may invoke the following routine to run the VIT analysis tool interactively. If you choose this method for processing, your terminal will be unavailable until processing is completed.

Figure 50. Sample VIT analysis tool interactive routine

The lines in Figure 50 on page 317 are:

Line	Description
1	Required for a REXX EXEC.
2-8	Comments.
10-16	Data set allocations. The data sets must be preallocated.
18	Invokes the VIT analysis tool, assuming that it has been installed in the SYS1.MIGLIB load library.
20	Frees the data sets allocated to the DD name statements to allow the exec to run again with different data set names.

Note:

- 1. The DD parameters are required. The DSN parameters are optional and can be varied.
- 2. Return codes are not checked in this example.
- 3. Your user terminal will not be available while the tool is active.
- 4. This example is not shipped with the VTAM code and is included for information only.

Step 3. Create the parameters for the job

To create the parameters needed to analyze your VIT, perform the following steps:

1. Use the panel interface. On the VTAM Internal Trace Analysis panel, specify the form of processing you want to use. Only one function may be used in a session. The panel interface then provides choices and help in specifying values for the parameters, and creates the PARM data set.

Pick option 1, 2, or, 3 from the <u>Figure 51 on page 318</u> ISTT0001 and follow the processing path until you return to the panel ISTT0001. Then choose option 4 to indicate that your input has been completed.

Figure 51. VTAM internal trace analysis option panel

Note: If an incorrect value is entered in a field, the cursor appears on the field where the error was made. For help about that field, press F1.

- 2. Use an editor to either:
 - · Create a parameter data set.
 - Code the parameters in-stream in the JCL created in step 2.

See the parameter syntax for a particular function, and <u>"Creating your own parameter data set" on</u> page 345 for further details.

See "How to read a syntax diagram" for general information on how to code and read syntax diagrams.

Step 4. Run the job

Submit the data set for processing that you created in step 2. You may process it in batch mode or interactively.

Step 5. Check the output

After processing is complete, check the following data sets for your results:

- For RU counting and storage analysis reports, check the DETAILS data set.
- For the extracted VIT entries, check the VITEXT data set.
- For unmatched storage allocation entries, check the OUTSTAN data set.

If you do not get the expected output, check the SUMMARY and LOG data sets for error messages or other information on what might have caused the problem. For example, the SUMMARY data set contains the parameters used for the job, including the parameters specified and the defaults taken.

If the trace has wrapped, indicate this on the I/O Options panel or use the WRAP parameter. If the GTF trace tapes were specified in the wrong order, correct the order of the tapes in the JCL. In either case, submit the job again.

Return codes

If an error has occurred and the SUMMARY data set is available, a message will be written in the data set. The return codes are:

```
0 No errors found
4 Counter overflow - processing continues, if possible
8 Storage unavailable - processing continues, if possible
```

```
10 I/O failure - processing continues, if possible
12 Unrecoverable error - processing stops
```

Environment

Environmental factors are:

- The VTAM formatted trace and the VIT analysis tool cannot process data created by earlier VTAM releases because of changes to output formats.
- Because of the way that GTF handles entries that continue to multiple records, VTAM can only assume
 that the continued records are contiguous, and matching the continuation record to the prior record
 cannot be guaranteed.
- If you get trace information that is out of sequence, the trace may have wrapped. If the trace wrapped when it was recorded, specify WRAP on the VIT analysis tool.
- The existing VTAM formatted trace provides trace record formatting by splitting up all VIT entries into logical pieces and adding labels to indicate what the data represents. This function will not be replaced, and you can still format the VIT using the IPCS subcommands VERBEXIT VTAMMAP or GTFTRACE.

Analyzing storage

Use storage analysis to count storage allocated and freed, match related SMS and CSM entries, and report potential storage concerns found in a VIT. The main panel for storage analysis is shown in <u>Figure 52 on page 319</u>. Select an option and follow the prompts.

```
ISTT006A Storage Analysis - Panel 1 of 3

Select. Then press Enter.

Matching . . . . . 2 1. Match allocates, frees 2. None

Unmatched allocates 2 1. List unmatched entries 2. Do not list entries

Storage lengths . . 2 1. List storage lengths 2. Do not list lengths

Command ===>
```

Figure 52. VTAM storage analysis option panel

Matching

You can choose to match allocate entries with free entries. Depending upon which areas of storage are selected on subsequent panels, some or all of the following VIT entries are matched:

- ASNB and FRBF
- GBLK and FBLK
- GETS and FRES
- · GTBF and FRBF
- · REQS and QREQ
- REQS and RELS
- · REQS and AREL

VTAL and VTFR

The default is no matching.

Unmatched allocates

You can choose to list all unmatched (outstanding) storage allocates found. By default, they are ignored. There may be a large number of unmatched storage allocates and the output may be long. Unmatched allocates can occur if the VIT is not complete. Entries listed are not necessarily error conditions.

Storage lengths

You can choose to list the storage lengths (number of bytes or buffers) requested, allocated, and freed. By default, storage lengths are not listed. This option applies only to SMS entries.

GBLK pools, GETS pools, VTAL pools, REQS buffer pools, and CSM buffers

You can designate which SMS and CSM VIT entries to process. By default, all GBLK pools, GETS pools, VTAL pools, REQS buffer pools, and CSM buffers are processed. Choices are available to process some or none of these pools. If you choose to process some, a panel is displayed from which you can choose the specific pools to process. For GBLK, GETS, and VTAL, your choices include listing only the storage pools allocated from private storage or only the storage pools allocated from CSA (by default, both private and CSA storage pools are listed).

Address space identifiers (ASIDs) and data spaces

You can limit storage analysis to specific ASIDs and data spaces. By default, all ASIDs and data spaces are processed. If one or more ASIDs or data spaces are specified, only SMS entries associated with each of the specified ASIDs or data spaces are processed.

Note: Data spaces apply only to GBLK entries.

Parameter syntax

Use the following syntax only if you are using an editor to write your parameters as an alternative to the panel interface. See "How to read a syntax diagram".

Notes:

- ¹ Coding SMS has the same effect as coding SMS(GBLK) SMS(VTAL) SMS(REQS) SMS(GETS) SMS(CSM).
- ² You can code one or more from each choice group.
- ³ Coding SMS(GBLK) has the same effect as coding SMS(GBLK(PVT)) SMS(GBLK(CSA)).

- ⁴ You can code one or more from each choice group.
- ⁵ Code one or more *pool_numbers* in the range 0 255. Separate each *pool_number* from the next with a comma.
- ⁶ Coding SMS(VTAL) has the same effect as coding SMS(VTAL(PVT)) SMS(VTAL(CSA))
- ⁷ You can code one or more from each choice group.
- ⁸ Code one or more *pool_numbers* in the range 0 255. Separate each *pool_number* from the next with a comma.
- ⁹ Replace the two xs with 2 hex characters. You can code up to five ASIDs (machine IDs and task IDs).
- ¹⁰ Replace the eight cs with eight alphanumeric characters. You can code up to five DSNAMEs.
- ¹¹ Data is not case-sensitive.

Sample output for storage analysis

In this example, the following PARM file was submitted:

```
sms sms(lengths) sms(match) sms(outstanding)
stoptime(02:04:10) noformat
DESC This example shows storage analysis with a stop time.
```

The resulting Summary, Detailed, and Outstanding data sets follow.

Note:

- 1. Ellipses indicate that part of the output has been omitted.
- 2. STOPTIME is described in "Using the timing options" on page 341.
- 3. NOFORMAT and DESC are described in "Using the I/O options" on page 343.
- 4. General parameter coding information is described in <u>"Creating your own parameter data set" on page</u> 345.

The following example shows a Summary report for storage analysis, which is written to the data set name that you specify to receive the report. The DD name for the data set must be SUMMARY. The first line of all reports shows the VTAM level, the 20-character title (the default is Trace Analysis), and the date that the report was processed. The description, if specified, follows the title.

The next several lines of the report are the specified parameters and the defaults. These are followed by observations that are included to highlight important properties of the trace that were encountered during processing. The observations will vary depending on the trace content and the options specified. The option choices are storage analysis, RU counting, and VIT extraction.

The trace statistics section contains the first and last time stamps, the record type count, the VIT entry count, and the VIT option count. For example, there may be 6 PIU VIT entries and 18 PIU2 entries, for a total of 24 PIU VIT option occurrences. Some VIT entries are not associated with a VIT option. If entries of this type are found, the total is listed beside **N/A** in the VIT option counts. If SNAP entries are found, the total is listed beside **?** in the VIT option counts.

```
VTAM V4
                                                        92.325 11/20 11:28:47 LOC
             Trace Analysis
                                    Summarv
This example shows storage analysis with a stop time.
Wrapped:
              No
Formatting:
              No
Interval:
              None
Start time:
             Beginning of trace 91.199 07/18 02:04:10.000 LOC (A43572C3 51A80000)
Stop time:
SMS:
              Yes
   ASIDs:
              A11
   Options: MATCH LENGTHS OUTSTANDING
   GBLK:
   DS Pools: All
   DSNAMEs: All
   GETS:
              All
   VTAL:
              A11
   REOS:
              A11
              A11
   CSM:
RU:
              Nο
VITEXT:
```

```
*********************************
Observations
Only 27 GBLK entries were found in this VIT. The findings should be verified
on a larger trace.
Only 7 VTAL entries were found in this VIT. The findings should be verified on
a larger trace.
The high water mark is 392 bytes allocated by VTAL. This occurred at
02:04:07.715 LOC (record 115).
Only 18 REQS entries were found in this VIT. The findings should be verified
on a larger trace.
********************************
Trace Statistics
First GTF Timestamp: 91.199 07/18 02:03:13.266 LOC (A435728D 36BFAE01)
First VIT Timestamp: 91.199 07/18 02:03:13.266 LOC (A435728D 36BFAE01)
Last VIT Timestamp: 91.199 07/18 02:04:07.716 LOC (A43572C1 240D7002)
Last GTF Timestamp: 91.199 07/18 02:04:10.866 LOC (A43572C4 2529DC02)
Summary of GTF Record Types
                  1 Timestamp control records
                116 VIT records
                117 Total GTF records
Count of VIT Entry and Option Occurrences
    VIT Entry Occurrences
                 33 FBLK
                                      27 GBLK
                 19 RELS
7 VTAL
                                     18 PIU2
                                    18 REQS
                                     5 VTFR
    VIT Option Occurrences
                 24 PTU
                109 SMS
                133 Total
```

The following example shows a Detailed Report for storage analysis, which is written to the data set name that you specify to receive the report. The DD name for the data set must be DETAILS. In this example, the get block (GBLK) pool totals follow the title and description. The totals are listed first for each GBLK pool in the "Home" data space, then for each pool in other data spaces, if any exist. For each pool, the pool number is shown in decimal and hexadecimal, followed by the pool name, an indication of allocation from private storage or CSA, and the data space name.

After the counts of total entries, matches, bytes allocated and freed, and other entries, you will find a summary number for the allocate and freed entries in this pool for each storage size. This section is written only if the LENGTHS option is specified. In this example, there were 9 GBLK entries, each of which allocated 152 bytes and requested 152 bytes. The largest number of GBLK entries not matched to a free block (FBLK) at one time was five. There were 9 FBLK entries, each of which freed 152 bytes.

The totals for all GBLK pools are listed after the GBLK pool counts for each pool. Next, the VTAL pools are listed like the GBLK pools, and finally the REQS are listed.

```
VTAM V4 Trace Analysis Detailed Report 92.194 07/12 18:51:44 LOC

This example shows storage analysis with a stop time.

GBLK Pool Totals:

Home Data Space:

GBLK Pool 0 (X'00'): RUPEPRIV (Private) Data space: Home
9 GBLK entries (including failures, if any)
9 FBLK entries (including failures, if any)
5 GBLK and FBLK matches
5 Largest number of GBLK entries at one time
1,368 Bytes allocated
```

```
1,368 Bytes allocated above the 16M line
                  1,368 Bytes requested
                 1,368 Bytes requested above the 16M line 1,368 Bytes freed
                  1,368 Bytes freed above the 16M line
                    608 Bytes not freed
                    760 Most unfreed bytes
           Bytes
                            Bytes
                                              GBI K
                                                                               FBLK
                                                           Maximum
      Allocated
                       Requested
                                           Entries
                                                         Requested
                                                                           Entries
             152
                              152
GBLK Totals:
                     27 GBLK entries (including failures, if any)
                     33 FBLK entries (including failures, if any)
16 GBLK and FBLK matches
                     13 Largest number of GBLK entries at one time
                      5 Largest number of GBLK entries at one time in one pool was in pool 0 (X'00') in Home data space
                  4,192 Bytes allocated
                  3,696 Bytes allocated in private storage
                    496 Bytes allocated in CSA
                  4,192 Bytes allocated above the 16M line
                 3,375 Bytes requested
                  2,888 Bytes requested in private storage
                    487 Bytes requested in CSA
                  3,375 Bytes requested above the 16M line
                  3,672 Bytes freed
                 3,304 Bytes freed in private storage
                    368 Bytes freed in CSA
                  3,672 Bytes freed above the 16M line
                  2,160 Bytes not freed
                 1,880 Bytes not freed in private storage
                    280 Bytes not freed in CSA
                  2,824 Most unfreed bytes
                        was at 02:04:07.715 LOC at record 116
                 1,536 Most unfreed bytes in one pool
was in pool 32 (X'20') in Home data space
                          ************
VTAL Subpool Totals:
Subpool 13 (X'OD'): Private
                      3 VTAL entries (including failures, if any)
2 VTFR entries (including failures, if any)
                      2 VTAL and VTFR matches
                      1 Largest number of VTAL entries at one time
                    288 Bytes allocated
                    288 Bytes allocated above the 16M line
192 Bytes freed
                    192 Bytes freed above the 16M line
                     96 Bytes not freed
                     96 Most unfreed bytes
                             VTAI
                                        Most VTAL
                                                               VTFR
           Bytes
      Allocated
                         Entries
                                        Entries
                                                           Entries
VTAL Totals:
                      7 VTAL entries (including failures, if any)
                      5 VTFR entries (including failures, if any)
5 VTAL and VTFR matches
                      2 Largest number of VTAL entries at one time
                      1 Largest number of VTAL entries at one time in one pool was in pool 13 (X'OD')
                  1,344 Bytes allocated
                    768 Bytes allocated in private storage 576 Bytes allocated in CSA
                  1,344 Bytes allocated above the 16M line
                    952 Bytes freed
                    672 Bytes freed in private storage
                    280 Bytes freed in CSA
952 Bytes freed above the 16M line
                    392 Bytes not freed
                     96 Bytes not freed in private storage
                    296 Bytes not freed in CSA
                    392 Most unfreed bytes
                        was at 02:04:07.715 LOC at record 115
                    368 Most unfreed bytes in private
                    296 Most unfreed bytes in CSA
```

```
368 Most unfreed bytes in one pool
                         was in pool 47 (X'2F')
                          ***********
REQS Totals by Buffer Pool:
REQS Buffer Pool IOBUF
                      5 REQS entries (including failures, if any)
7 RELS entries (including failures, if any)
                      4 RELS entries were matched
                       5 Buffers allocated
                      5 Buffers allocated above the 16M line
                      4 Buffers freed
                      4 Buffers freed above the 16M line
                      1 Buffers not freed
                      2 Largest number of buffers at one time
    Buffers per
                             REOS
                                        Most REQS
                          Entries
        Request
                                          Entries
REQS Totals:
                     18 REQS entries (including failures, if any)
19 RELS entries (including failures, if any)
                     15 RELS entries were matched
                     18 Buffers allocated
                     18 Buffers allocated above the 16M line
                     15 Buffers freed
                     15 Buffers freed above the 16M line
                      3 Buffers not freed
                      5 Largest number of buffers at one time was at 02:03:44.609 LOC at record 71
                      3 Largest number of buffers at one time in one pool
                         was in the LPBUF pool
CSM Totals:
                      8 GTBF entries (including failures, if any)
                      1 GTBF entries with error return code
                      5 ASNB output entries (including failures, if any)
                      1 ASNB output entries with error return code
                      5 FRBF entries (including failures, if any)
                      1 FRBF entries with error return code
                      3 GTBF entries were matched by FRBF
                      2 ASNB output entries were matched by FRBF
2 GTBF or ASNB buffer tokens duplicated
                     13 Buffers actually allocated by GTBF
                     13 Buffers requested for allocation by GTBF
                      5 Buffers actually assigned by ASNB
                      5 Buffers requested for assignment by ASNB
                      2 Buffers actually released by FRBF
3 Buffers actually freed by FRBF
                      6 Buffers requested to be freed by FRBF
                      9 Buffers not freed
                     12 Largest number of buffers at one time
```

The following example shows an outstanding report for storage analysis, which is written to the data set name that you specify to receive the report. The DD name for the data set must be OUTSTAN. After the title and description, the unmatched GBLK entries are listed by pool number for each data space. Next, the unmatched VTAL entries are listed by subpool number. Then the unmatched REQS and REQ2 entries are listed by buffer name.

Note:

- 1. The REQ2 entries consist of the VIT entry name (REQ2) followed by one to seven addresses. Instead of showing the actual REQ2 entry, which does not contain the data shown on the REQS entry, each buffer address is shown as if it had appeared in a REQS entry.
- 2. The queued REQS entries that have not been matched by a QREQ entry are also listed in the OUTSTAN data set. These REQS have a buffer address of 0.

```
VTAM V4
           Trace Analysis
                              Outstanding Report 92.194 07/12 18:51:44 LOC
This example shows storage analysis with a stop time.
****************************
* List of outstanding GBLK entries
***********************************
Home Data Space:
GBLK Pool 0 (X'00'): RUPEPRIV (Private) Data space: Home
Outstanding GBLK at 02:03:52.888 LOC (record 89) C7C2D3D2 0C000000 06638480 06357218 823D6340 00000098 864EBCF8 00000098
*GBLK.....d....b.. ...qf+.8...q*
Outstanding GBLK at 02:04:01.276 LOC (record 102) C7C2D3D2 0C0000000 066388E0 06357218 823D6340 00000098 864EBCF8 00000098
*GBLK.....h\....b.. ...qf+.8...q*
Outstanding GBLK at 02:04:01.276 LOC (record 105) C7C2D3D2 0C000000 066385C0 06357218 823D6340 00000098 8644B2B8 00000098
*GBLK.....qf.....q*
Outstanding GBLK at 02:04:03.374 LOC (record 108)
C7C2D3D2 0C000000 06638340 06357218 823D6340 00000098 864EBCF8 00000098
*GBLK.....c ....b.. ...qf+.8...q*
***********************************
* List of outstanding VTAL entries
Subpool 13 (X'OD'): Private
Outstanding VTAL at 02:04:05.615 LOC (record 112)
E5E3C1D3 0C000000 067A3FA0 0000000D 82478930 00000060 00000000 00000000
*VTAL.....:. ....b.i....-.
Subpool 15 (X'OF'): Private
Every valid VTAL in this pool was matched by a VTFR.
*********************************
* List of outstanding REQS entries
* (Note: Each buffer from a REQ2 entry is listed as a separate REQS)
*********************************
REQS Buffer Pool IOBUF
REQS waiting for QREQ or RELS at 02:03:25.703 LOC (record 35) D9C5D8E2 0C000000 062EAE88 06321010 823B95F4 00010000 062DD648 000000000
*REQS......
```

Figure 53. Storage analysis with a stop time

Counting request/response units (RUs)

Use RU counting to list the number of each kind of RU found in a PIU. Because there are so many RUs, RU counting lets you specify which RUs you are interested in. The main panel for counting request/response units is shown in Figure 54 on page 327. Select an option and follow the prompts.

```
ISTT010A Request/Response Unit Counting

Select, then press Enter.

Requests/Responses 3 1. Request units only 2. Response units only 3. Both

RUs . . . . . 1 1. All 2. Some - type codes 3. Some - list names 4. Some - list codes

Network addresses . _ All From and/or to one address Between two addresses _ Between two addresses _ From one address to another

Sort order . . . 1 1. Name 2. Frequency
```

Figure 54. VTAM request/response unit counting

Requests/responses

You can choose to process only request units, only response units, or both. Both are processed by default.

RUs

You can choose to process only specific RUs. Subsequent panels allow you to specify particular RUs by typing the codes, by picking the RUs from a list of RUs by name, or by picking the RUs from a list of RUs by code. By default, all RUs are processed.

Network addresses

You can also specify processing of all PIUs found in the VIT regardless of the origin and destination, only PIUs from one network address to another in a single direction, all PIUs between two network addresses in both directions, or all PIUs to and from one network address.

Sorting order

You can sort the RU counts either alphabetically (by RU name) or by frequency (in descending order of counts). The default is sorting by RU name.

Parameter syntax

Use the following syntax only if you are using an editor to write your parameters as an alternative to the panel interface. See "How to read a syntax diagram".

Notes:

- ¹ You can code one or more of these options. Unless otherwise noted, code each option no more than once.
- ² Each *αmru_code* is 4 or 8 hex characters. You can code up to 32 *αmru_codes*.
- ³ Each dfc_code is 2 or 4 hex characters. You can code up to 32 dfc_codes.
- ⁴ Each fmd_code is 6 or 8 hex characters. You can code up to 32 fmd_codes.
- ⁵ Each subarea number is 8 hex characters, and each element number is 4 hex characters.
- ⁶ Each subarea_number is 8 hex characters, and each element number is 4 hex characters.
- ⁷ Each *nc_code* is 2 or 4 hex characters. You can code up to 32 *nc_code*s.
- ⁸ Each *sc_code* is 2 or 4 hex characters. You can code up to 32 *sc_codes*.
- ⁹ Each subarea_number is 8 hex characters, and each element number is 4 hex characters.
- ¹⁰ Each ru_code is 2, 4, 6, or 8 hex characters. You can code up to 32 ru_codes.
- ¹¹ Data is not case-sensitive.

RU parameter coding

RU means count all request/response unit codes.

RU(NC(...)), RU(SC(...)), RU(DFC(...)), RU(FMD(...)), or RU(AMRU(...)) means count only the RUs in categories which have the specified codes as follows:

- NC, SC, and DFC codes are 1 or 2 bytes 4:
 - SNA codes are 1 byte.
 - AMRU codes are 2 bytes. The first byte is X'FF'.
- FMD codes are 3 or 4 bytes 4:
 - SNA codes are 3 bytes.
 - AMRU codes are 4 bytes. The third byte is X'FF'.

You must fully specify all codes (the VIT analysis tool does not pad codes).

RU(...) means process only the RUs with those codes. Each code is 1, 2, 3, or 4 bytes. The VIT Analysis Tool counts these codes in any and all categories. For example, X'OD' is the NC code for NC-ACTVR and the SC code for ACTLU. If you specify **RU(0D)**, the VIT analysis tool will count both of these RU codes.

You can specify up to:

```
32 codes for RU(NC(...)),
32 codes for RU(SC(...)),
32 codes for RU(DFC(...)),
32 codes for RU(FMD(...)),
32 codes for RU(AMRU(...)), and
32 codes for RU(...).
```

You can specify the RU codes individually or in lists. For example,

```
RU(SC)31,32,FF31,FF32))
```

is equivalent to

```
RU(SC(31)) RU(SC(32)) RU(SC(FF31)) RU(SC(FF32))
```

RU(REQ) means process requests. **RU(RESP)** means process responses. By default (if you specify neither **RU(REQ)** nor **RU(RESP)**), the VIT analysis tool counts both requests and responses.

RU(FROM(...)) means count RUs flowing from the specified network address to any network address. **RU(TO(...))** means count RUs flowing to the specified network address from any network address. **RU(FROMTO(...))** means count RUs flowing from the first network address to the second network address. You can specify up to:

```
24 RU(FROM(...)) options
24 RU(TO(...)) options
24 RU(FROMTO(...)) options
```

Each subarea field (*subarea_number*) is exactly 4 bytes ⁴. Each element field (*element_number*) is exactly 2 bytes. The element fields are optional. For the **RU(FROMTO(...))** option, if you omit the first element address, keep its comma as a place-holder.

Note: You must specify the **RU(FROM(...))**, **RU(TO(...))**, and **RU(FROMTO(...))** options individually. (You cannot combine them in lists like RU codes.)

By default [if you specify neither **RU(FROM(...))**, **RU(TO(...))**, nor **RU(FROMTO(...))**], the VIT analysis tool ignores the origin and destination fields in the PIUs.

RU(SORT(NAME)) means sort the request and response counts by RU name (the default). **RU(SORT(FREQ))** means sort the counts by frequency (highest count first).

Combinations of RU options

You can combine any or all of the RU options. When considering combinations of options, you might find it helpful to think of the RU options as two groups, as shown in <u>Figure 55 on page 330</u> and <u>Figure 56 on page 330</u>.

⁴ Two hexadecimal digits represent 1 byte. For example, X'FF' is 1 byte. For RU counting, you must specify all hexadecimal digits and you must omit the X and quotation marks. For example, RU(NC(X'C')) is not valid; RU(NC(0C)) is valid.

```
RU
RU(NC(...))
RU(SC(...))
RU(DFC(...))
RU(FMD(...))
RU(AMRU(...))
RU(...)

Figure 55. RU code options

RU(REQ)
RU(RESP)
RU(FROM(...))
RU(TO(...))
RU(FROMTO(...))
RU(SORT(NAME))
RU(SORT(FREQ))
```

Figure 56. RU modify options

The options in Figure 56 on page 330 modify the options in Figure 55 on page 330. For example, given the following combination of options, the VIT analysis tool will count all requests for all RU codes.

```
RU(REQ) RU
```

If you specify any modify option and no code option, the VIT analysis tool uses the default, which is the **RU** option. In other words, the VIT analysis tool counts all RU codes which match the modify options. The VIT Analysis Tool prints a message in the SUMMARY data set so you will know the **RU** option is in effect.

The **RU** option (which counts all RUs) overrides the other code options (<u>Figure 55 on page 330</u>). The VIT Analysis Tool prints a message in the SUMMARY data set so you will know the override is in effect. For example, given the following combination of options, the VIT analysis tool counts all RUs and does not check whether the specified RU, NC(04) in the example, is found in the VIT.

```
RU RU(NC(04))
```

If any of the **RU(FROM(...))**, **RU(TO(...))**, or **RU(FROMTO(...))** options match the origin or destination of an RU, the VIT analysis tool will count the RU. For example, you can ask for the counts of the following options:

- RUs from subarea X'00000012'
- RUs to subarea X'00000012'
- RUs flowing between subarea X'0000004A' element X'000C' and subarea X'00000002'

by coding:

```
RU(FROM(00000012)) RU(TO(00000012))
RU(FROMTO(0000004A,000C,000000002)) RU(FROMTO(00000002,,00000004A,000C))
```

If you list specific RUs (that is, you specify any options in Figure 55 on page 330 except RU), the VIT analysis tool does not count:

- User RUs
- FMH RUs
- Unknown RUs

(However, the VIT analysis tool reports the first occurrence of an unknown RU in the LOG data set.)

Sample output for RU counting

In this example, the following PARM file was submitted:

```
Desc This example shows request/response unit counting
Desc with a start time and a 30-second interval.
RU STARTIME(02:04:30) interval(00:30)
```

The resulting DETAILS, LOG, and SUMMARY data sets follow.

Note: Ellipses indicate that part of the output has been omitted. The following example shows a summary report for RU counting, which is written to the data set name that you specify to receive the report. The DD name for the data set must be SUMMARY.

This report is similar to the summary report for storage analysis. See <u>"Sample output for storage analysis"</u> on page 322 for details.

```
VTAM V4
           Trace Analysis
                               Summary
                                                 92.325 11/20 11:47:26 LOC
This example shows request/response unit counting
with a start time and a 30-second interval.
Wrapped:
            No
Formatting:
           Yes
            00:30
Interval:
Start time:
            91.199 07/18 02:04:30.000 LOC (A43572D6 64780000)
Stop time:
            End of trace
SMS:
            No
RU:
            Yes
  Options:
            Requests Responses
  Sort:
            Name
  Codes:
            All
  From:
            A11
            A11
  To:
  From/To:
            A11
VITEXT:
            No
********************************
Observations
There are 7 messages in the LOG file.
Only 250 RUs were found in this trace. The findings should be verified on a
larger trace.
7 responses had sense data included. See the LOG data set.
*******************************
Trace Statistics
First GTF Timestamp: 91.199 07/18 02:03:13.266 LOC (A435728D 36BFAE01)
First VIT Timestamp: 91.199 07/18 02:04:32.920 LOC (A43572D9 2D8DDE02)
Last VIT Timestamp: 91.199 07/18 02:06:00.891 LOC (A435732D 12B57F02)
Last GTF Timestamp: 91.199 07/18 02:06:00.891 LOC (A435732D 12B57F02)
Summary of GTF Record Types
                 15 Timestamp control records
              6,930 VIT records
              6,945 Total GTF records
Count of VIT Entry and Option Occurrences
    VIT Entry Occurrences
              1,390 FBLK
                                     6 FBL2
              1,385 GBLK
                                     6 GBL2
                104 MSG
                                    104 MSGS
                217 MSG2
                                    262 PIU
                746 PIU2
                                 1,427 RELS
              1,414 REQS
                                     6 RE02
                                   411 VTFR
                415 VTAL
    VIT Option Occurrences
                425 MSG
              1,008 PIU
              6,460 SMS
              7,893 Total
```

The following example shows a detailed report for RU counting, which is written to the data set name that you specify to receive the report. The DD name for the data set must be DETAILS. The RU counts for each interval are written after the title and description. The total count for all intervals is written at the end of the report.

Under Requests, only the first GDS variable in each RU is counted. Under Responses, all RUs with sense data included are grouped together. Each RU with sense data included is printed in the LOG data set. For example, an UNBIND response with sense data included is counted only as a response with sense data included, not as an UNBIND response.

```
VTAM V4
          Trace Analysis
                             Detailed Report
                                             92.194 07/12 18:51:46 LOC
This example shows request/response unit counting
with a start time and a 30-second interval.
******************************
Interval 1
First VIT timestamp in this interval:
91.199 07/18 02:04:32.920 LOC (A43572D9 2D8DDE02) (record 390)
*******************************
RU Totals for Interval 1:
Requests:
             1 RNAA
                         1 Total requests
Responses:
             1 FNA
                                                1 RNAA
                             -----
                           2 Total responses
********************************
Last VIT timestamp in interval 1
91.199 07/18 02:05:01.277 LOC (A43572F4 3877DE01) (record 429)
********************************
Interval 2
RU Totals:
Requests:
             2 ACTLINK
                                                 7 BFCINIT
              4 BFCLEANUP
                                                 7 BFINIT
              2 BFSESSEND
                                                 5 BFSESSST
             5 BFTERM
                                                18 BIND
             1 BINDF
                                                4 CINIT
                                                2 CONNOUT
              5 CLEANUP
                                                2 CONTACTED
              2 CONTACT
                                               1 DISCONTACT
6 FMH-5 Attach-TDU
4 GBIND BIND
7 GUNBIND
              1 DACTLINK
              5 FMH-5 Attach-CP Capab
              9 FNA
              4 GDS CP Capabilities
              3 INIT-OTHER
                                               1 INOP
             1 NOTIFY (SSCP<-->LU)
2 REQCONT
                                                 3 RECMS
                                               11 RNAA
              5 SESSEND
                                                 5 SESSST
             23 UNBIND
                             _____
                         157 Total requests
Responses:
              2 ACTLINK
                                                 7 BFCINIT
             1 BFCLEANUP
                                                5 BIND
             4 CINIT
                                                1 CLEANUP
             2 CONNOUT
                                                2 CONTACT
                                                1 DISCONTACT
              1 DACTLINK
             10 FNA
                                                 4 INIT-OTHER
                                              11 RNAA
             1 NOTIFY (SSCP<-->LU)
              7 Sense Data Included
                                               13 User
             21 UNBIND
                          93 Total responses
```

The following example shows an RU counting log, which is written to the data set name that you specify to receive the report. The DD name for the data set must be LOG. The Log contains important details found in the VIT during processing. For RU processing, the Log contains all RUs with included sense data.

```
VTAM V4
            Trace Analysis
                                                     92.194 07/12 18:51:46 LOC
                                  Log
This example shows request/response unit counting
with a start time and a 30-second interval.
Sense data included at 02:05:56.653 LOC (record 1,990)
    Origin:
                      00000004 0073
    Destination:
                      00000001 0008
    Response Header: EF9000 Session Control
                    80050000 Path error
    Sense Data:
                               No session
    Rejected RU code: 32
    Rejected Command: UNBIND
Sense data included at 02:05:56.655 LOC (record 2,000)
    Origin:
                      00000004 0073
   Destination: 00000004 0073
    Response Header: EF9000
                               Session Control
    Sense Data:
                      80050000 Path error
                               No session
    Rejected RU code: 32
    Rejected Command: UNBIND
Sense data included at 02:06:00.372 LOC (record 6,706)
                      00000001 0008
   Urigin:
Destination:
                      00000001 0001
    Response Header: 8F9000 Function Management Data
    Sense Data: 08160000 Request reject
                                Function already inactive
    Rejected RU code: 810629
    Rejected Command: CLEANUP
Sense data included at 02:06:00.399 LOC (record 6,725)
   Origin: 000000004 0000
Destination: 00000001 0001
   Response Header: 8F9000 Function Management Data
Sense Data: 081E0001 Request reject
                               Session reference error
    Rejected RU code: 812629
    Rejected Command: BFCLEANUP
Sense data included at 02:06:00.456 LOC (record 6,774)
   Origin: 00000001 0008
Destination: 00000001 0001
    Response Header: 8F9000
                               Function Management Data
    Sense Data: 08160000 Request reject
                                Function already inactive
    Rejected RU code: 810629
    Rejected Command: CLEANUP
```

Extracting information from the VIT

Use VIT extraction to extract entries from a VIT. VIT entries extracted from a VIT can be formatted, displayed in hex with the eye-catcher, or copied in the same format as the input.

Upon selecting VIT Extraction, the VIT Extraction Boolean Expression panel is displayed as shown in Figure 57 on page 334.

Figure 57. VIT extraction Boolean expression panel

The first time VIT extraction is invoked, the VIT extraction Boolean expression panel is blank. After the first time, the panel is displayed with the previously entered Boolean expression.

You may specify the VIT entries you want extracted by entering a Boolean expression on this panel, or by filling in a template (one or more times). See "Using the template" on page 334 for information on how to use the template. Both methods result in a Boolean expression that specifies the criteria used to select VIT entries. VIT entries that contain the data specified by the Boolean expression are extracted. Extracted VIT entries may be formatted, displayed in hex with the eye-catcher, or copied as is. See "Using the I/O options" on page 343 for information on how to code these options.

Note: You cannot use the template to specify a CSM buffer token, origin, or destination for VIT extraction. See "Creating a Boolean expression without the template" on page 336 for more information.

Using the template

To use the template, press F4. The VIT Extraction Template is displayed as shown in <u>Figure 58 on page</u> 335.

All fields are optional. Any explicitly specified VIT entries, and VIT entries created by a specified option, are eligible for extraction if found in the trace. Only those eligible entries that meet all other specified selection criteria are extracted.

ISTT0014	VIT Extraction Template
Type information in one will be appended to the	or more fields, then press Enter. This information full expression.
VIT options/entries	+ +
Address	(Hexadecimal) _ (Decimal or Hexadecimal)
Character string Offset	(Decimal or Hexadecimal)
Hexadecimal string	
Offset	(Decimal or Hexadecimal)
Command ===>	

Figure 58. VIT extraction template

The fields on the template are described below. Fill in the template and press Enter.

The template is checked for proper data type and length of data and saved. The resulting Boolean expression is then added to the VIT Extraction Boolean Expression panel. You can append multiple instances of the template, and a VIT entry that matches any of the templates will be extracted (when VIT extraction is invoked). The length of the resulting expression is limited to the input area on the VIT Extraction Boolean Expression panel.

Press F3 to exit, and you are given the option to save the expression you have created.

The fields on the extraction template are described as follows:

VIT options/entries

You may specify VIT options or entries to limit extraction to particular VIT entries. If you specify a VIT option, VIT entries created when the designated options are active are eligible for extraction if found in the trace. For example, the LOCK option generates the LKEX, LKSH, ULKA, and UNLK trace entries. If you specify LOCK and the LOCK option was used when the VIT was started, any LKEX, LKSH, ULKA, and UNLK entries found in the trace are eligible for extraction.

Note: User-defined (SNAP) entries are allowed. For further information, see <u>z/OS Communications</u> Server: SNA Diagnosis Vol 2, FFST Dumps and the VIT.

You may also specify particular VIT entries (for example, LKEX or LKSH), and an asterisk (*) may be used in a VIT entry name to match any character (for example, LK* matches VIT entries LKEX and LKSH). If an entry with multiple parts is specified, all parts are extracted (for example, if AI2 is specified, AI1, AI2, and AI3 are extracted).

If no VIT options or entries are specified, all VIT entries are eligible for extraction.

Address

Entries with this address are eligible for extraction. Specify up to 8 hex characters for an address. If fewer than eight digits are specified, the address is padded on the left with zeros. The low-order 31 bits of the address are then used to compare on all word boundaries if an offset is not specified. If an offset is specified, then only the offset is checked for a match. Address X'00000000' is allowed only when an offset for the address is also provided.

Address offset

The offset for an address is a word boundary offset into a trace record where a comparison should be made for the address. The offset must be one of the following values:

X'04', 4 X'08', 8 X'0C', 12 X'10', 16 X'14', 20 X'18', 24 X'1C', 28

Character string

Entries containing this character string are eligible for extraction. Enter a search string of 1–30 alphanumeric characters, which includes special characters (except a single quotation mark). Data entered is not converted to uppercase. Data is case-sensitive. By default, a comparison is made at all offsets.

Character string offset

You may include a byte offset into the VIT entries where comparisons should be made. The offset can be decimal or hex. The offset range is 2–31 or X'02'–X'1F'.

Note: The length of the character string determines the offset allowed. For example, if the character string entered consists of 8 characters, the valid offset range is 2-24. The string cannot start after byte 24, because a VIT entry is 32 bytes long (byte 0 through byte 31) and 8 bytes are needed to represent the string (bytes 24 - 31).

Hexadecimal string

Entries containing this hex string are eligible for extraction. Enter a search string of 2–60 hex characters representing 1–30 bytes of data. By default, a comparison is made at all offsets.

If you code an odd number of hex digits, they are padded to the left with a 0 to make 1 byte. For example; X'D' is equivalent to X'OD'.

Hexadecimal string offset

You may include an offset into the VIT entries where comparisons should be made. The offset can be decimal or hex. The offset range is 2–31 or X'02'–X'1F'.

Note:

- 1. The length of the hex string divided by 2 determines the offset allowed, because two hex digits represent one byte. For example, if the hex string entered consists of 8 hex digits, 4 bytes are needed to store the string, and the valid offset range is 2-28. The string cannot start after byte 28, because a VIT entry is 32 bytes long (byte 0 through byte 31) and 4 bytes are needed to represent the string (bytes 28-31).
- 2. Character and hex strings will not be found if they cross VIT entry boundaries. If a PIU is represented in the VIT as a PIU entry plus a series of PIU2 entries, and a string is requested that spans the end of one PIU2 and the beginning of a second PIU2, it will not be found.

Creating a Boolean expression without the template

The template allows you to create many Boolean expressions, but there is no way to do the following actions:

- Negate an operand
- · Group operands
- · Specify AND or OR
- Specify an operand multiple times on one template
- · Specify a range

To do any of this, you will need to enter an expression directly on the VIT Extraction Boolean Expression panel. Blanks are recommended between all operands and operators. Again, the length of the expression is limited to the input area provided. No syntax error checking is performed.

A sample free-form expression follows:

```
AI* | (LOCK | E'PIU' & X'31':15 |
GBL* & A'476C' - A'4800')
```

This example selects each VIT entry that is either AI1, AI2, or AI3, or fulfills at least one of the following criteria:

- LOCK option group (LKEX, LKSH, ULKA, UNLK)
- PIU entry with value hex 31 at offset 15
- GBLK or GBL2 entry with any address from X'0000476C' through X'00004800'

Operands

The following operands are used in creating a Boolean expression. For further information on these operands, see "Using the template" on page 334.

VIT options or entries

VIT entries with names identical to option names must be prefaced with an E and enclosed in single quotation marks (for example, E'MSG'). This distinguishes the name as an entry rather than an option. A VIT option or unique entry name requires no preface.

Address

Preface an address with an A and enclose it in single quotation marks (for example, A'xxxxxxxx', where xxxxxxxx is the hex address).

Address offset

Specify the offset for an address after the address string, and separate the address string and the offset with a colon (for example, A'xxxxxxxxx':nn, where xxxxxxxx is the hex address and nn is the offset).

Note: Only decimal offsets are allowed.

Character string

Preface a character string with a C and enclose it in single quotation marks (for example, C"ccccc...", where ccccc... represents the character string). Data is case-sensitive.

Character string offset

Specify the offset for a character string after the character string, and separate the character string and the offset with a colon (for example, C"cccc...":nn, where ccccc... is the character string and nn is the offset).

Note: Only decimal offsets are allowed.

Hexadecimal string

Preface a hex string with an X and enclose it in single quotation marks (for example, X'xxxxx...', where xxxxx... represents the hex string).

Hex string offset

Specify the offset for a hex string after the hex string, and separate the hex string and the offset with a colon (for example, X'xxxxx...':nn, where xxxxx... is the hex string and nn is the offset).

Note: Only decimal offsets are allowed.

CSM buffer token

Enter 1–12 bytes of hexadecimal digits representing a CSM buffer token. If fewer than 12 bytes are supplied, the buffer token is padded on the left with zeros. In a CSM VIT record, there may be one or two buffer tokens. The following CSM VIT records have one or two buffer tokens:

VIT Record

Number of tokens

ASN2

2

CHG2

2

CPY3

1

CPY4
1
FIX2
2
FRB2
2
GTB3
1
PAG2
2
XBA2
XBA2
XBI2

1

If the buffer token matches a token in a VIT entry, the VIT entry and its related entries are extracted. For example, if a GTB3 entry is matched, the corresponding GTBF, GTB2, and other GTB3 entries are also extracted.

Note: When extracting VIT entries using the CSM buffer token, bit 0 in the token is masked. Therefore, the token fields in the extracted VIT entries may not exactly match the input token.

Origin

To extract PIU entries originating at a designated network address, enter 1–12 hex characters (representing the 6-byte network address) in the form O'xx...'.

Note: The address is right-aligned and padded with zeros on the left. For example, O'3001A' means subarea 3 element 1A.

Destination

To extract PIU entries destined for a particular network address, enter 1–12 hex characters (representing the 6-byte network address) in the form D'xx...'.

Note: The address is right-aligned and padded with zeros on the left. For example, D'4E' means subarea 0 element 4E.

All

Specify ALL to extract all VIT entries. ALL is not valid with any other operand or operator.

Note: You may also extract all VIT entries without entering the ALL operand. For example, 'gblk | \neg gblk' will extract all VIT entries.

Operators

The operators used in creating a Boolean expression are shown in the following table.

Table 22. Boolean expression operators in order of	precedence
Operator	Description
0	Parentheses
٦	Not
-	Through
&	And
	Or
1	<u> </u>

Parentheses have the highest precedence and can be used to change the normal order of evaluation. The maximum nesting level is 15. The *through* operator (a hyphen) specifies a range and can be used for addresses or a hex string in the following combinations:

- · address-address
- · address:offset-address
- · hex string-hex string
- hex string:offset-hex string

If an offset is specified and you are using the *through* operator, the offset on the first operand is used for both operands.

Parameter syntax

Use the following syntax only if you are using an editor to write your parameters as an alternative to the panel interface.

```
▶ VITEXT — Boolean_expression →
```

Note: Up to 15 VITEXT parameters may be coded for longer Boolean expressions.

VITEXT must be the first six characters and must be followed by a blank. The rest of the line is assumed to be the expression.

Sample output for VIT extraction

In this example, the following PARM file was submitted:

```
desc This example shows VIT extraction.
desc All PIU VIT entries to or from network address 000000040073
desc and all MSGs with the string ACTIVE will be extracted.
vitext o'40073' | d'40073' | (MSG & c'ACTIVE')
noformat
```

The resulting VITEXT and SUMMARY data sets follow.

Note: Ellipses indicate that part of the output has been omitted. The following example shows a Summary report for VIT extraction, which is written to the data set name that you specify to receive the report. The DD name for the data set must be SUMMARY.

This report is similar to the Summary report for storage analysis. See <u>"Sample output for storage analysis"</u> on page 322 for details.

```
VTAM V4
           Trace Analysis
                                                   92.325 11/20 11:47:45 LOC
                                Summary
This example shows VIT extraction.
All PIU VIT entries to or from network address 000000040073
and all MSGs with the string ACTIVE will be extracted.
Wrapped:
            No
Formatting:
            Nο
Interval:
            None
Start time:
            Beginning of trace
Stop time:
            End of trace
SMS:
            No
RU:
            No
VITEXT:
            Yes
      o'40073' | d'40073' | (MSG & c'ACTIVE')
*****************************
Observations
25 GTF VIT records were extracted and written to VITEXT.
*****************************
Trace Statistics
First GTF Timestamp: 91.199 07/18 02:03:13.266 LOC (A435728D 36BFAE01)
First VIT Timestamp: 91.199 07/18 02:03:13.266 LOC (A435728D 36BFAE01)
Last VIT Timestamp: 91.199 07/18 02:06:00.891 LOC (A435732D 12B57F02)
Last GTF Timestamp: 91.199 07/18 02:06:00.891 LOC (A435732D 12B57F02)
Summary of GTF Record Types
                 16 Timestamp control records
              7,318 VIT records
              7,334 Total GTF records
Count of VIT Entry and Option Occurrences
    VIT Entry Occurrences
                                       6 FBI 2
              1,504 FBLK
              1,498 GBLK
                                       6 GBL2
                110 MSG
                                     110 MSGS
                                     279 PIU
                230 MSG2
                795 PIU2
                                  1,464 RELS
              1,451 REQS
                                      6 REQ2
                                    439 VTFR
                443 VTĂL
    VIT Option Occurrences
                450 MSG
              1,074 PIU
              6,817 SMS
              8,341 Total
```

Figure 59. Example of VIT extraction

The following example shows a VIT Selections report, which is written to the data set name that you specify to receive the report. The DD name for the data set must be VITEXT. This report contains the VIT entries selected by the Boolean expression.

The date line containing the date, time, and record number for the first record extracted is written after the title and description. The title and description are not written if the TRACEFORMAT option is selected. The date line is written at the beginning of the report and when the date changes. The time is written to the left of each record.

In this example, each VIT entry is written on one line and each line contains the time, the entry in hexadecimal, and the EBCDIC translation of the entry.

```
This example shows VIT extraction.

All PIU VIT entries to or from network address 000000040073 and all MSGs with the string ACTIVE will be extracted.

*** DATE **** 91.199 07/18 02:05:56.137 LOC (A4257328 8A0B8802) (record 881)

*** DATE **** 91.199 07/18 02:05:56.137 LOC (A4257328 8A0B8802) (record 881)

*** DATE **** 91.199 07/18 02:05:56.137 LOC (A4257328 8A0B8802) (record 881)

*** DATE **** 91.199 07/18 02:05:56.137 LOC (A4257328 8A0B8802) (record 881)

*** DATE **** 91.199 07/18 02:05:56.137 LOC (A4257328 8A0B8802) (record 881)

*** DATE **** 91.199 07/18 02:05:56.137 LOC (A4257328 8A0B8802) (record 881)

*** DATE **** 91.199 07/18 02:05:56.137 LOC (A4257328 8A0B8802) (record 881)

*** DATE **** 91.199 07/18 02:05:56.137 LOC (A4257328 8A0B8802) (record 881)

*** DATE **** 91.199 07/18 02:05:56.137 LOC (A4257328 8A0B8802) (record 881)

*** DATE **** 91.199 07/18 02:05:56.137 LOC (A4257328 8A0B8802) (record 881)

*** DATE **** 91.199 07/18 02:05:56.137 LOC (A4257328 8A0B8802) (record 881)

*** DATE **** 91.199 07/18 02:05:56.137 LOC (A4257328 8A0B8802) (record 881)

*** DATE **** 91.199 07/18 02:05:56.137 LOC (A4257328 8A0B8802) (record 881)

*** DATE **** 91.199 07/18 02:05:56.137 LOC (A4257328 8A0B8802) (record 881)

*** DATE **** 91.199 07/18 02:05:56.137 LOC (A4257328 8A0B8802) (record 881)

*** DATE *** 91.199 07/18 02:05:56.137 LOC (A425726) (A425842 6A48624 6A48624 6A486424 A486424 A486444 A4864
```

Using the timing options

After completing storage analysis, RU count, or VIT extraction, the timing options panel is automatically displayed. Use the timing options to report at certain intervals in the VIT or to process only the VIT records within a certain time range. By default, the entire VIT is processed. All time values, including time stamps, are local (LOC) time. The main panel for storage analysis is shown in Figure 60 on page 341. Select an option and follow the prompts.

Figure 60. VTAM timing options panel

Note: Report interval, start times, and stop times might not produce the expected output if the VIT was extracted from a dump using the VITAL option. VIT entries in a dump do not have individual time stamps. The VITAL option adds approximated time stamps to the extracted VIT entries based on the time of the dump and times recorded when the VIT wrapped in storage.

Start and stop time

Start and stop times can be at a time stamp within the trace, at a date and time within the trace, or at the beginning of the trace for start and at the end for stop. If you do not specify a start or stop time, the entire VIT is processed.

If you select **At timestamp**, another panel appears on which you may enter a System 370 time-of-day (TOD) time stamp. To ensure that the time stamp reflects your local time, you must add the time zone value to the high-order word. The time zone can be obtained from a dump, if the trace being used has been extracted from it, or by browsing the first time-stamp record from the trace in hexadecimal format. For example:

You can enter either the high-order 4 bytes of the time stamp, such as X'A90503FE', or all 8 bytes, such as X'A90503FE237491E4'.

Note: All hexadecimal time stamps reported by the VIT analysis tool are local time stamps. (The time zone has already been added.)

If you select **At date and time**, another panel appears on which you can enter both date and time selections.

The time can be:

hh:mm:ss

or

hh:mm:ss.ddd.

The date can be:

Calendar format (mm/dd/yy)

ΩI

Julian format (yy.ddd).

Report interval

If you select report interval, a report is written for each time interval determined from your selection. For example, if you have a storage analysis trace that was recorded for a two-hour period and you specify an interval of five minutes, you get a report of the storage allocated and freed for every 5-minute period of the trace. A total for the whole two hours is printed regardless of the interval specified.

Note: Interval is valid only for storage analysis and RU counting.

Parameter syntax

Use the following syntax only if you are using an editor to write your parameters as an alternative to the panel interface. See "How to read a syntax diagram".

Notes:

- ¹ INTERVAL cannot be used with VIT extraction. INTERVAL can be used with any start or stop time specification. Intervals (*mm:ss*) are interpreted as 00 through 99 for minutes, and 00 through 59 for seconds.
- ² If you do not code a start date, the VIT analysis tool uses the date on the first trace record.
- ³ The calendar date (*mm/dd/yy*) is 01 through 12 for month, 01 through 31 for day, and 00 through 99 for year. For dates, *yy* values 43–99 are interpreted as 1943–1999, and *yy* values 00–42 are interpreted as 2000–2042.
- ⁴ The Julian date (*yy.ddd*) is 00 through 99 for year and 001 through 366 for day. For dates, *yy* values 43–99 are interpreted as 1943–1999, and *yy* values 00–42 are interpreted as 2000–2042.
- ⁵ Calendar time (*hh:mm:ss.ddd*) is 00 through 23 for hour, 00 through 59 for minutes, 00 through 59 for seconds, and 000 through 999 for milliseconds.
- ⁶ If you do not code a stop date, the VIT analysis tool uses the date on the first trace record.
- 7 The calendar date (mm/dd/yy) is 01 through 12 for month, 01 through 31 for day, and 00 through 99 for year. For dates, yy values 43–99 are interpreted as 1943–1999, and yy values 00–42 are interpreted as 2000–2042.
- ⁸ The Julian date (*yy.ddd*) is 00 through 99 for year and 001 through 366 for day. For dates, *yy* values 43–99 are interpreted as 1943–1999, and *yy* values 00–42 are interpreted as 2000–2042.
- ⁹ Calendar time (*hh:mm:ss.ddd*) is 00 through 23 for hour, 00 through 59 for minutes, 00 through 59 for seconds, and 000 through 999 for milliseconds.

Using the I/O options

The I/O Options panel is displayed automatically after the Timing Options panel. Use the I/O options to designate a wrapped trace, whether you want formatted output, or to specify a title or description for the first page of a report. The main panel for the I/O options is shown in Figure 61 on page 344. Select an option and follow the prompts.

```
IstTO022 Input/Output Options

Type, then press Enter.

Trace wrapped? 2 1. Trace wrapped 2. Trace did not wrap

Format output? 1 1. Format the VIT entries 2. Do not format 3. Create trace data set

Title . . . . . Trace Analysis

Description

Command ===>
```

Figure 61. VTAM I/O options panel

Trace wrapped

Select *Trace wrapped* if the trace wrapped when it was recorded. Wrapped means that the trace ran out of space on the specified device and began to write over previously recorded data. A trace recorded on a DASD device is large enough to wrap. A trace recorded on a tape will not wrap. A trace created using VTAMMAP VITAL is not wrapped. (VITAL unwraps the internal VIT when it copies the trace records.)

Format output

VIT entries can be written formatted, unformatted or as a hexadecimal string. Here is a GBLK entry in each format:

• **Do not format** (parameter syntax: **NOFORMAT**). Shows the 32-byte VIT entry as eight words in hexadecimal format, followed by the same 32 bytes as the EBCDIC eye-catcher. For example:

```
C7C2D3D2 0C000000 06638480 06357218 823D6340 00000098 864EBCF8 00000098 *GBLK.....d....b.....g.f+.8...q*
```

• Format the VIT entries (parameter syntax FORMAT). Shows the 32-byte VIT entry with labels for each field. For example:

```
GBLK ASID 0C RC 00 ID 00 VTA 00 AREA 06638480 ANCH 06357218 ISSR 823D6340 LEN 00000098 INIT 864EBCF8 RLEN 00000098
```

• Create trace data set (parameter syntax TRACEFORMAT). The 24-byte GTF header followed by the 32-byte entry in hexadecimal format. This output is not suitable for printing, but is usable as input to the VIT analysis tool or other tools. For example,

```
..u..e5et....7..VTAMTST GBLK......d.....b.. ...qf+.8...q
```

Parameter syntax

Use the following syntax only if you are using an editor to write your parameters as an alternative to the panel interface.

Operands

Note:

- 1. If FORMAT is specified and the VTAM format module is not found or is unusable, a message is issued and the job is stopped. To recover, do either of the following actions and rerun the job:
 - Find the current version of AMDUSRFD and add a STEPLIB DD statement to your application.
 - Specify NOFORMAT to print the VIT entries in hexadecimal with an eye-catcher.
- 2. The TRACEFORMAT option is valid only for VIT extraction, and results in output in the same format as that of the TRACE input data set.
- 3. If you specify the TRACEFORMAT option, the output from the VIT analysis may be processed by:
 - The VIT analysis tool
 - ACF/TAP
 - IPCS GTFTRACE, unless the VIT was recorded internally and was extracted from a dump by the VTAMMAP VITAL function
- 4. The 20 characters that follow the word TITLE are used as the title. The rest of the input line is ignored.
- 5. DESC may contain up to 75 additional characters, and you can code up to 4 DESC parameters. DESC must be the only option on the line and must be the first 4 characters on the line followed by at least one blank.

Creating your own parameter data set

The PARM data set must have fixed records (can be blocked) with:

- LRECL=80
- RECFM=FB

The parameters can be coded in any order, and in lowercase, uppercase, or mixed case. Code only *one* function parameter (SMS, RU, or VITEXT) per job or execution. See the parameter syntax for each trace function for a list of the possible parameters that may be coded.

Restriction: The parameters shown in Figure 62 on page 346 can be coded in parts to avoid exceeding the maximum line length of 80 characters, but a single parameter cannot be continued on the next line.

```
SMS(GBLK(0,1,...255))
SMS(VTAL(0,1,...255))
SMS(REQS(bufname,...))
DESC ccc...
RU(NC(xx,xx,...xx))
RU(SC(xx,xx,...xx))
RU(DFC(xx,xx,...xx))
RU(FMD(xxxxxx,xxxxxx,...xxxxxx))
RU(AMRU(xxxxx,...xxxxxxxx))
RU(xx,...xxxxxxxxx))
VITEXT Boolean expression
```

Figure 62. Parameters coded on multiple lines

For example, SMS(GBLK(0,1,2,3)) can be split onto multiple lines as follows:

```
SMS(GBLK(0))
SMS(GBLK(1))
SMS(GBLK(2))
SMS(GBLK(3))
```

Note:

- 1. If you use an editor, you may include comments in your parameter data set. An asterisk in column one identifies a line as a comment line. If you use the panel interface, you cannot enter comment lines.
- 2. You may use the DEBUG option to gather information to solve problems with the tool itself. To use it, enter DEBUG with one of the VIT analysis options.
- 3. Lines cannot be continued. Each parameter must be fully specified on one line.

The following information shows a sample parameter data set:

```
SMS(VTAL) sms(match) SMS(Lengths)
INTERVAL(00:15) STARTIME(12:42:14) STOPTIME(14:00:00)
DESC This is an analysis of the VTAL and VTFR VIT entries.
DESC This will tell the high-water mark (the most storage used)
DESC from the start time to the stop time.
DESC This job will also report the storage used in 15-second intervals.
```

See "Analyzing storage" on page 319, "Counting request/response units (RUs)" on page 326, or "Extracting information from the VIT" on page 333 for additional explanation of the parameters.

Also see "Using the timing options" on page 341 and "Using the I/O options" on page 343.

Chapter 9. Using other problem-solving tools

Many different service aids are available to help you collect information about SNA network problems. This information describes when to use the following aids:

- "Recording NMVT alerts in LOGREC" on page 347
- "Hardware error recording" on page 347
- "Logical unit connection test (IBMTEST)" on page 348
- "Using save-area module linkage conventions—Subarea" on page 349
- "Using save-area module linkage conventions—APPN" on page 351

Recording NMVT alerts in LOGREC

A network management vector transport (NMVT) is an SNA request unit (RU) that contains solicited or unsolicited data, such as line statistics and generic alerts. LOGREC is a host data set that contains records of various types of system failures, both hardware and software.

VTAM records all *unsolicited* NMVT alerts and *all* NMVT alerts from local area networks in LOGREC as miscellaneous data records (MDRs). If you have the NetView program, VTAM also forwards the NMVT alerts to the NetView hardware monitor for recording. The NetView program interprets the error information for its operator panels. To determine what document contains more information on NetView's presentation of generic alerts, see <u>Table 48 on page 577</u>. For more information on generic alerts generated by First Failure Support Technology (FFST), refer to <u>z/OS Communications Server: SNA Diagnosis Vol 2</u>, FFST Dumps and the VIT.

VTAM identifies and records an NMVT alert as follows:

- Each NMVT has an SNA network services (NS) header of X'41038D'.
- Each NMVT that is an alert has a management services (MS) major vector of X'0000'.
- To determine the type of device that sent the NMVT alert, VTAM checks the product ID subvector (X'11') of the NMVT for the hardware machine type. Each type of device has its own unique machine type; for example, each NMVT alert that comes from a 3745 has a machine type of C'3745'.
- VTAM records the NMVT alert in LOGREC as an MDR (type=X'91') with a device type of NMVT (X'30').

You can format and print NMVT alerts from LOGREC using the Environmental Record Editing and Printing program (EREP). See <u>Table 48 on page 577</u> to determine what document contains information on how to use EREP.

Hardware error recording

During error recovery processing (ERP), VTAM writes outboard recorder (OBR) records and miscellaneous data records (MDRs) to LOGREC. OBR records are written for hardware errors on channel-attached devices. (OBR records are written for communication adapter-attached devices as well.) MDRs or alerts are written for hardware errors on NCP-attached devices. See "Recording NMVT alerts in LOGREC" on page 347 for more information on MDRs.

EREP formats and prints the LOGREC data set.

OBR records contain information about the following items:

- Sense and status data on all channel-attached devices
- Failures on teleprocessing devices
- Temporary or intermittent failures on I/O devices
- End-of-day requests
- Permanent channel and device errors (unrecoverable errors and unit checks)

Permanent error records show the date, time, logical unit name, type of record, contents of counters, failing CCW, channel device name, CSW, sense information, device type, and flags. The time field shows the time at which the permanent error occurred.

Counter overflow and end-of-day records show the date, time, logical unit name, type of record (counter overflow or end-of-day), contents of counters, channel or unit address, and device type. The time field shows the time at which the counter overflow or end-of-day error occurred.

Counter overflow records are written when the temporary error counter or a device statistics table counter is about to overflow. VTAM maintains a counter for each channel-attached device. This counter tracks temporary errors. Counters of unit check errors by error type are also maintained in the device statistics table.

End-of-day records are written whenever a VARY INACT command is entered for a link or channel.

MDRs contain the following information:

- Statistics on the overflow of error counters for communication controllers
- · Record maintenance statistics (RECMS) RUs
- · Permanent errors on NCP-attached devices

See the EREP entry in <u>Table 48 on page 577</u> to determine what document describes how to print and interpret MDR and OBR records.

Logical unit connection test (IBMTEST)

You can enter the IBMTEST command from a terminal to find out whether that terminal can communicate with its owning SSCP. When you use the IBMTEST command, an unformatted RU is sent through the network path supporting the LU-SSCP session. This RU contains the IBMTEST command followed by the number of times the SSCP is to return (echo) the data to the logical unit and optional data (up to 247 bytes) being sent to the SSCP.

You can increase the possibility of repeating an intermittent error that is hard to re-create by using IBMTEST, because you can request up to 255 echoes. You can also use it to determine whether a suspended LU-LU session is caused by either a hardware problem or by a problem with VTAM or an application program.

Start this test with the following command:

IBMTEST [n][,data]

n

Specifies the number of times the test data should be returned to the terminal. Specify n as a decimal number in the range 1–255. If no value is specified, a value of 10 is used by default.

data

Specifies the test data to be returned. Specify a character string of up to 247 characters, or the maximum message length of the terminal, whichever is smaller. If no test data is supplied, VTAM returns the following alphanumeric sequence:

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789

The IBMTEST command is valid only for terminals that use the USS LOGON format. The IBMTEST command must be defined in the USS table for that terminal.

Note: This echo check does not verify that a terminal can establish a session with an application program in the host, because the session request may specify a different network path than the one supporting the terminal's LU-SSCP session. If the requested path is unavailable, the session request is rejected, even though another path is available.

If there are any errors, the VTAM operator receives a message that contains the logical unit name associated with the terminal, the number of echoes that took place before the I/O error, and the error sense code.

VTAM load module list

VTAM has a module list pointed to by ATCMDLST in the ATCVT. Each 16-byte entry in the list contains the following information in the form of:

XXXXXYYYYYYAAAA

where:

- XXXXX is the five significant characters of the module name.
- YYYYYYY is the PTF level (or Julian date if PTF level is not present).
- AAAA is the address of the module in storage.

The following information shows an example of some module list entries:

You can use this module list table to:

- Determine issuer entries in VIT records
- · Search for save-area base registers for modules that reside in LPA
- Verify PTF levels of modules

Using save-area module linkage conventions—Subarea

VTAM traces the flow of the execution of three VTAM components, SSCP, PUS, and LUS, by saving the work areas of modules in these components. The addresses of the module work areas are stored in either of these control blocks:

- Network configuration services parameter list (NCSPL)
- Request/response unit processing element (RUPE)

In the RUPE, the work area address can be found at RUPEDAP. In the NCSPL the work area address can be found at NCSPLWKA. For the hex offsets of these fields, see z/OS Communications Server: SNA Data Areas Volume 1.

The NCSPL or RUPE work area contains the work and save-areas for each module invoked for the command that the NCSPL or RUPE represents. The module work and save-areas provide status information that pertains to both the processing of that command and any interruptions in the processing.

This status information includes a record of which modules were entered, which modules returned to their callers, and which modules returned with a return code. Each module save-area contains the 4th, 5th, 7th, and 8th characters of the module name and the register 15 value that includes a pointer to the last module called by this module. If this address is not in the dump, the module can be obtained by comparing the address to the addresses in the VTAM module list pointed to by ATCMDLST out of the ATCVT. See "VTAM load module list" on page 349.

The high-order byte of the register 15 save-area also indicates the status of the last module called. (In 31-bit mode the address fills register 15, causing the status to overlay the high-order byte of the address in the register 15 save-area.)

Byte value	Status indicated
FE	The called module has returned to this module without a return code.
FF	The called module has not returned to this module.
nn	The called module has returned to this module with a return code of nn.

Figure 63 on page 350 is an example of what the NCSPL or RUPE work area might contain for modules invoked for a VTAM process using save-area module linkage conventions. Using this convention, the save-area contains a 4-byte module identifier, such as ACRT, at the location pointed to by register 13 for each entry in the chain.

Figure 63. Save-area module linkage conventions—subarea

Using save-area module linkage conventions—APPN

Figure 64 on page 352 shows the save-area module linkage convention for APPN used by some VTAM modules. To determine the convention used for your module, find the location pointed to by register 13 and check the 8-byte field preceding this address. If you find an 8-byte module name such as ISTACCRT, your module was coded using the save-area module linkage convention for APPN. The first three characters will always be IST for a VTAM module.

The addresses of the module work areas for modules using the save-area module linkage convention for APPN are stored in process scheduling services (PSS) control blocks. The first word of the save-area, pointed to by register 13, contains the pointer to the VTAM work area (VWA) header in the PSS.

For the save-area module linkage convention for APPN, the following save-area format pointed to by the address in register 13 is used:

Offset

Contents

X'-08'

Module eye-catcher C'XXXXXXXX

X'+00'

Address of ISTVWA

X'+04'

Backward save-area pointer (to previous save-area)

X1+U8

Pointer to next available area

X'+0C'...

Registers 14 - 12

Figure 64. Save-area module linkage conventions—APPN

Appendix A. Channel programs

This appendix describes the normal sequence of I/O channel control words (CCWs) within channel programs for the communication controller and channel-attached devices. If you determine that the problem is in an I/O sequence, you need to know the normal sequence of I/O CCWs within these channel programs. With a dump, the VIT trace with the CIO option, or a CCWTRACE (if available), you can compare the sequence that happened with the expected sequence. When there is a deviation, you can then look at status and sense bytes returned from the communication controller or the cluster controller for information that can help you determine the location of the error condition.

This appendix includes the following topics:

- "Channel programs for channel-attached type 2 and type 4 physical units" on page 353
- "PUNS-related channel programs" on page 358
- "Channel programs for channel-to-channel adapters (CTCA), multipath channel (MPC), and APPN host-to-host channels" on page 359
- "Channel programs for channel-attached non-SNA 3270 devices" on page 379

Channel programs for channel-attached type 2 and type 4 physical units

The ICNCB represents type 2 and type 4 physical units, and contains addresses and CCWs needed for channel programs. Figure 65 on page 354 shows the following information:

- ICNCB
- · Location in storage of various CCWs
- Write buffers required for writing three PIUs, each of which is contained in a single buffer. Write or Write-Break CCWs alternate with transfer-in-channel (TIC) CCWs.

Figure 65. Data areas used by channel programs for PU types 2 and 4

Channel commands for channel-attached type 2 and type 4 physical units

Table 23 on page 354 describes the channel commands used by the VTAM program to write data to and read data from channel-attached type 2 and type 4 physical units.

Table 23. VTAM channel commands for type 2 and type 4 physical units				
Command code (hex)	Command	Description	Contents of address field	
01	Write	Transfers data from storage in the host processor to the I/O device.	Output area	
02	Read	Transfers data from the I/O device to storage in the host processor.	Input area	
03	No-op	Causes the channel to respond with a channel end and device end. It is the last CCW in a read or write chain.	Zero	

Table 23. VTAM channel commands for type 2 and type 4 physical units (continued)

Command code (hex)	Command	Description	Contents of address field
04	Sense	Transfers 1 or 2 bytes of sense data to storage in the host processor.	Address of sense data area
08	TIC (Transfer in Channel)	Causes the channel to fetch an instruction that is not the next sequential instruction within the channel program sequence.	Address of next CCW to be executed
09	Write Break	Transfers data from storage in the host processor to the I/O device and indicates that it is the last or only Write command in a chain of Write CCWs.	Output area
31	Write Start 0	Begins a Write sequence. Alternates with Write Start 1.	Zero
32	Read Start 0	Begins a Read sequence. Alternates with Read Start 1.	Zero
51	Write Start 1	Begins a Write sequence. Alternates with Write Start 0.	Zero
52	Read Start 1	Begins a Read sequence. Alternates with Read Start 0.	Zero
Note: Data tra	ansfer does not occu	ur on Read-Start or Write-Start commands.	
61	Write XID	The host sends the Write XID command to signal the NCP that a channel contact sequence is beginning and to prepare to receive the host's XID.	Zero
62	Read XID	The host sends the Read XID command to signal the NCP that the host expects to read the NCP's XID.	Zero
А3	Discontact	Indicates that the channel is no longer contacted and the attachment to the transmission group should be broken. Releases the PIUs on the channel hold and intermediate queues.	Zero
C3	Contact	Establishes contact between the host and the NCP. Tells the NCP to use XID information for operations with the host.	Zero
93	Restart	Causes the controller to reset its switches to indicate that the last Write-Start and Read-Start commands were Write-Start-1 and Read-Start-1 commands.	Zero

Format of transfer-in-channel (TIC) CCWs

The Format 1 TIC CCW is formatted as follows:

Byte (hex)

Contents

00

X'08' (TIC identifier)

01-03

Zero

04-07

Real address

A doubleword TIC extension immediately follows both the Format 0 TIC and the Format 1 TIC. VTAM uses the last 4 bytes of the TIC extension to contain the virtual address of the next buffer in the chain.

The TIC extension is formatted as follows:

Byte (hex) Contents

08-0B

Reserved

OC-OF

Virtual address

For write buffers, the next to the last physical buffer is handled specially. The real address of the TIC points to the last Write-Break CCW (ICNWBCCW), but the virtual address points to the last write buffer that contains data (see Figure 66 on page 357.) This last buffer is formatted with a Write-Break CCW that is not used but is copied into ICNWBCCW. If only one buffer exists in the channel program, the Write-Start TIC is formatted so that the real address points to ICNWBCCW, but the virtual address points to the only write buffer.

The last write buffer looks unusual because the Write-Break command is chained, but the next CCW is zero. This Write-Break CCW is never physically executed by the channel, but the copied version of the CCW (in the ICNCB) is executed.

<u>Figure 66 on page 357</u> shows the write buffers required for writing two PIUs when each spans three buffers.

Figure 66. Format of Write CCWs with chained data

Channel program sequences

The following information describes the CCWs, in the order that they are executed, in a typical WRITE channel program.

- 1. ICNWSCCW Write Start: Each time a Write sequence (the Write start and all associated write buffers) has completed successfully, the Write-Start CCW is alternated: The first Write-Start operation code is X'31' (Write Start 0), the second Write-Start code is X'51' (Write Start 1), the third Write-Start code is X'31', and so on. There is no data transfer associated with this CCW; it is used to inform the controller that the previous Write has successfully completed.
- 2. ICNWSTIC Write Start TIC: This CCW is used to chain to the first Write CCW. When the WRITE channel program consists of a single write buffer, the real address points to ICNWBCCW (the last Write Break). The virtual address of this CCW always points to the first write buffer on a chain or is zero when no WRITE channel program is pending or active for the device.
- 3. Write or Write-Break CCWs Alternating with TICs: Figure 65 on page 354 shows the write buffers required for writing threeWrite PIUs, each of which is contained in a single buffer. Figure 66 on page 357 shows the write buffers required for writing two PIUs, when each spans three buffers.
- 4. ICNWBCCW CCW(3) Last Write Break: In a channel program this is the last Write CCW that is physically executed by the device. The data address points to the last write buffer that contains data. If a Read is requested, when this operation completes, the controller will signal a status modifier (in addition to channel end and device end). This causes ICNNPCCW to be skipped by the channel.
- 5. *ICNNPCCW No-Op:* If a Write completes and no Read is requested, No-Op is the ending CCW in a channel program. If a Read was requested, this CCW is skipped by the channel. The command chain

- flag will be on in this CCW if a Read was previously requested but was not previously initiated, and read buffers are available.
- 6. ICNSMNOP Status Modifier No-Op: This CCW receives control after the last Write Break if a Read is signaled. This CCW normally command chains to the Read Start so that writing and reading occur without interruption. If no buffers are available, however, the channel program ends here, and VTAM recognizes that a Read is required.
- 7. ICNRSCCW Read Start: Each time a Read sequence_ (the Read Start and at least one Read) has completed successfully, the Read-Start CCW is alternated.

The first Read-Start generation code is X'32' (Read Start 0), the second Read-Start generation code is X'52' (Read Start 1), the third Read-Start generation code is X'32', and so on.

As with the Write-Start CCW, there is no data transfer. The CCW alternation is used to inform the controller that the previous Read has successfully completed.

When a Write is not required, but a Read has been requested by an attention status, Read Start is the first CCW in the channel program.

- 8. *ICNRSTIC Read Start TIC:* This CCW is used to chain to the first Read CCW. The virtual address of this CCW points to the first read buffer on the chain, except:
 - When deblocking PIUs, in which case the virtual address is changed by the channel end appendage
 - When there are not enough read buffers available, in which case it is zero
- 9. Read CCWs Alternating with TICs: Figure 65 on page 354 shows the buffers required for reading three PIUs.
- 10. *Read No-Op:* This CCW should never be executed. If it is, it indicates that the controller and VTAM do not agree on how many read buffers are required.

The normal ending status for a Read is channel end, device end, attention, or unit exception. The unit exception indication is presented on the Read CCW that has completed data transfer and terminates the command chaining. The attention indication is the same as the unit exception indication, but it also means that a Read is requested.

Unit exception may also be presented to the Read-Start CCW. It is used by the controller to release input buffers. If the same Read Start (as opposed to the alternate Read Start) is given to the controller, the data buffers must be resent.

PUNS-related channel programs

During activation of an NCP in a channel-attached communication controller, the SSCP sends a Contact RU to PUNS. PUNS responds by giving control to ISTTSCP4 to schedule one of five channel programs (A–E in Table 24 on page 358). When the SSCP sends a Discontact RU to PUNS, one of two channel programs (F and G in Table 24 on page 358) is executed.

Table 24. PUNS-related channel programs

	ccw	Code (hex)	Flags	Notes
A.	Sense	04	SLI	Determines if the device needs to be loaded.
В.	Write XID No-Op	61 03	SLI,CC SLI	This channel program follows A if the device does not need to be loaded. It is followed by either C or D.

Table 24. PUNS-related channel programs (continued)

	ccw	Code (hex)	Flags	Notes
C.	Write Break Read XID Read No-Op	09 62 02 03	SLI,CC SLI,CC SLI,CC SLI	This channel program follows B if there is no command reject.
D.	Restart/Reset No-Op	93 03	SLI,CC SLI	Executed only if the Write XID in B caused a command reject (implies the NCP is NCP Release 2 or earlier).
E.	Contact Restart/Reset No-Op	C3 [®] 93 03	SLI,CC SLI,CC SLI	Restart/Reset is executed only if a Contacted (error) response is sent to PUNS.
F.	Discontact No-Op	A3 03	SLI,CC SLI	This channel program is executed only if B did not cause a command reject.
G.	No-Op	03	SLI	This channel program is executed if B caused a command reject.

These CCWs are contained in I/O buffers that are allocated from the IOBUF buffer pool when doing PUNS I/O.

The data area pointed to by the address portion of a Read XID or Write XID CCW is described in ISTXID in z/OS Communications Server: SNA Data Areas Volume 1.

Channel programs for channel-to-channel adapters (CTCA), multipath channel (MPC), and APPN host-to-host channels

The VTAM CTC function supports two protocols: blocking and nonblocking. If VTAM is communicating with another VTAM through the CTC adapter and both VTAMs support the blocking protocol, blocking is the chosen protocol. If one VTAM does not support blocking protocols, the nonblocking protocol is used.

You cannot specify the protocol choice during system definition. Because the blocking protocol is the preferred mode, it is used if both VTAMs support it.

Channel programs for activating the CTC connection

Each side of a channel-to-channel adapter (CTCA) is represented by a cross-channel node control block (XCNCB). In addition, each side has a physical unit service I/O (PIO) control block and a station control block (SCB). The PIO is used for exchange ID (XID) channel programs (the physical unit services I/O that occurs before the link is active). The PIO is mapped by ISTPIO. The SCB is a station work area where

CCWs for normal data transfer are built. It is not mapped, and is *not* described in <u>z/OS Communications</u> Server: SNA Data Areas Volume 1 or z/OS Communications Server: SNA Data Areas Volume 2.

A series of channel programs are issued when the operator activates the CTC connection. These I/O exchanges are used by the hosts to communicate various capabilities to the other host. The capabilities are transferred via the XID channel program.

The three primary pieces of information gained through the XID exchange are:

- Choice of protocol blocking or nonblocking
- Determination of who is X-side and who is Y-side
- I/O buffering information to use when the connection is active

Protocol choice

As mentioned earlier, VTAM always chooses the blocking protocol if the partner VTAM can support it. If the XID indicates that it cannot support, the nonblocking protocol is used.

X-side / Y-side

Figure 67 on page 361 shows that how VTAM determines which side will be the X-side and which side will be the Y-side. In this example, the operator in subarea 4 is the first to activate the link. Subarea 4 begins as the X-side and then switches to the Y-side.

I/O buffering

During the XID exchange, each host informs the other about its read buffer capability.

In the blocking protocol, the total size of the single read buffer is communicated. The write buffer in the other host is allocated based on the size of the Read buffer.

In the nonblocking protocol, the total number of read buffers available, as well as the size of each buffer, is communicated. Each host must then allocate the write portion of its channel program to match the read portion of the other host.

Figure 67. Example of an XID exchange

CTCA

Channel-to-channel adapter

PUNS

Physical unit services

SSCP

System services control point

TSC

Transmission subsystem component

Note: (2) and (4) refer to Subarea 2 and Subarea 4.

- 1 PUNS queues a RUPE to NCBPUPAB, causing TSC to get control.
- 2 TSC posts PUNS.
- 3 Subarea 4 assumes X-side protocols because it is initiating the XID exchange.
- **4** The XID exchange times out because the link in subarea 2 has not been activated. The CONTACT is issued in subarea 2, and upon attention, subarea 4 assumes Y-side protocols.
- 5 Assume the operator activates the link in subarea 2. Subarea 2 assumes X-side protocols.

6 The subarea with the lower subarea number (subarea 2) responds first to the XIDO exchange by sending an XID7. (XID7 is an XID Format 2 with the contact option field set to 7.)

7 Subarea 4 checks the XID7 from subarea 2 and responds with its XID7. It also sends a CONTACTED RU to the SSCP.

Channel commands for channel-to-channel (CTC) adapters

Table 25 on page 362 contains the channel commands used for channel programs between two hosts connected by a channel-to-channel adapter.

Note: The Multipath channel (MPC) connection uses these commands only during activation and deactivation. For the channel commands used for data flow, when the MPC is in the CONTACTED-ACTIVE phase, see "Channel programs for multipath channel (MPC)" on page 373.

Table 25. Channel commands for channel-to-channel adapters

Command code				
(hex)	Command	Description		
01	Write	Transfers data from storage in this host processor to the CTC adapter (CTCA). For CTCAs, this CCW is used to transfer status information from XCNOCTL, XID information from PIOPOTXT, validity checking information from XCNOVTXT, and data from buffers.		
		Status information, mapped by XCNOCTL, is transferred in the first 8 bytes of the write buffer, and only one write buffer is used. Figure 70 on page 367 illustrates the buffer usage.		
		For MPC connections this CCW, preceded by a Prepare command, is used to transfer data from the CPNCB transmit buffer. The transmit buffer is defined by YCNOBUF of the YCNCB contained within the CPNCB. The first 8 bytes of the transmit buffer is mapped by ISTBKHDR and contains control information about the current data transfer. Figure 76 on page 377 illustrates the MPC buffers used for normal data transfer.		

Table 25. Channel commands for channel-to-channel adapters (continued)

Command code (hex)	Command	Description
(ilex)	Command	
02	Read	Transfers data from the CTCA to this host processor. For CTCAs, this CCW is used to read status information into XCNICTL, XID information into PIOPITXT, validity checking information into XCNIVTXT, and data into buffers.
		Status information, mapped by XCNICTL, is transferred in the first 8 bytes of the read buffer, and only one read buffer is used. Figure 70 on page 367 illustrates the buffer usage.
		For MPC, this CCW is used to read normal data into the CPNCB transmit buffer. The transmit buffer is defined by YCNIBUF of the YCNCB contained in the CPNCB. Figure 76 on page 377 illustrates the MPC buffers used for normal data transfer.
03	No-Op	Causes the channel to respond with a channel end or device end. It is the last CCW in a read or write chain.
		The No-Op command does not apply to the MPC connection.
08	TIC	Causes the channel program to execute an instruction that is not the next sequential instruction within the channel program sequence.
		The TIC command does not apply to the MPC connection.
14	Sense Command Byte (SCB)	The SCB is normally issued in response to an attention generated when the adapter processes a WCTL from the other side. The SCB clears WCTL from the adapter, allowing the WCTL CCW to complete.
17	Write Control (WCTL)	Causes an attention interruption on the other side of the channel-to-channel adapter. The WCTL is issued to alert the other side that a channel program is active at the adapter.
43	Enable Compatibility Mode (ECM)	Prepares the adapter to operate in System/360 (compatibility) mode. The ECM is issued when VTAM gives up control of the adapter.

Table 25. Channel commands for channel-to-channel adapters (continued)

Command code (hex)	Command	Description
C3	Disable Compatibility Mode (DCM)	Prepares the adapter to operate in System/370 (extended) mode. The DCM is issued when VTAM acquires control of the adapter.
E3	Prepare	Primes the CTC adapter for the next CCW. This CCW does not cause an attention on the other side of the adapter.
		The Prepare command applies only to the MPC connection.

XID channel program (X-side)

Figure 68 on page 365 shows the data areas associated with the following XID channel program.

Sequence	ccw	Command code (hex)	Flags	Address	Byte count
1	Write Control	17	CC,SLI	Zero	1
2	TIC	08	_	WRITE CCW	_
3	Write	01	CC,SLI	XCNOCTL	8
4	Write	01	CC,SLI	PIOPOTXT	Length of XID
5	TIC	08	_	READ CCW	_
6	Read	02	CC,SLI	XCNICTL	8
7	Read	02	CC,SLI	PIOPITXT	Length of XID
8	TIC	08	_	READ CCW	_
9	Read	02	CC,SLI	XCNOVTXT	4

Figure 68. Data areas used for XID channel programs (X-side)

XID channel program (Y-side)

Figure 69 on page 366 shows the data areas associated with the following XID channel program.

Sequence	ccw	Command code (hex)	Flags	Address	Byte count
1	Sense Command Byte	14	CC,SLI	Zero	1
2	TIC	08	_	READ CCW	_
3	Read	02	CC,SLI	XCNICTL	8
4	Read	02	CC,SLI	PIOPITXT	Length of XID
5	TIC	08	_	WRITE CCW	_
6	Write	01	CC,SLI	XCNOCTL	8
7	Write	01	CC,SLI	PIOPOTXT	Length of XID
8	TIC	08	_	WRITE CCW	_
9	Write	01	CC,SLI	SCNOVTXT	4

Figure 69. Data areas used for XID channel programs (Y-side)

Channel programs for CTC data transfer: Blocking protocol

MAXBFRU defines a single read buffer. The write buffer in the other host is allocated to be the same size. PIUs are blocked for transfer, and are written by a single write, and read by a single read.

VTAM uses only three CCWs in its Data Transfer channel program: a Write CCW, a Read CCW, and another that is either a WCTL CCW or an SCB CCW. Output control information is included within the write buffer and input control information is received in the first bytes of the read buffer.

Normal data transfer for channel programs is a Write CCW followed by a Read CCW (on the X-side) or a Read CCW followed by a Write CCW (on the Y-side). VTAM uses the procedure described in "Channel programs for activating the CTC connection" on page 359 to determine which side will be X and which will be Y.

During the XID exchange, each host informs the other host of the size (in pages) of the buffer that will be used in the read portion of its channel programs. Each host then allocates a write buffer to match exactly the read buffer of the other host.

Figure 70. Buffers used for normal data transfer

The numbers 1 and 2 in Figure 70 on page 367 represent:

- (1)
 The first 8 bytes of the read buffer is the control information mapped by XCNICTL.
- (2)
 The first 8 bytes of the write buffer is the control information mapped by XCNOCTL.

Normal data transfer (X-side)

<u>Figure 71 on page 368</u> shows the data areas associated with the X-side of a normal data transfer channel program.

Sequence	ccw	Command code (hex)	Flags	Address	Byte count
1	WCTL	17/ 14	CC,SLI	Zero	1

2	Write	01	CC,SLI	YCNWRIDA	Number of bytes to transfer
3	Read	02	SLI	YCNRDIDA	Total length of Read buffer

Figure 71. Data areas used for normal data transfer (X-side)

Normal data transfer (Y-side)

<u>Figure 72 on page 369</u> shows the data areas associated with the following normal data transfer channel program.

Sequence	ccw	Command code (hex)	Flags	Address	Byte count	
1	WCTL	17/ 14	CC,SLI	Zero	1	

Sequence	ccw	Command code (hex)	Flags	Address	Byte count
2	Read	02	CC,SLI	YCNRDIDA	Total length of Read buffer
3	Write	01	SLI	YCNWRIDA	Number of bytes to transfer

Figure 72. Data areas used for normal data transfer (Y-side)

Channel programs for channel-to-channel adapters: Nonblocking protocol

MAXBFRU defines the total number of IOBUF sized read buffers to use to receive data from the CTC. Consequently, the channel program is a series of writes followed by a series of reads for the X-side. For the Y-side, it is a series of reads followed by a series of writes.

Normal data transfer (X-side) for nonblocking protocols

Figure 73 on page 371 shows the data areas associated with the X-side of a normal data transfer channel program for nonblocking protocols.

Sequence	ccw	Command code (hex)	Flags	Address	Byte count	
1	WCTL	17/ 14	CC,SLI	Zero	1	

2	TIC	08	_	WRITE CCW	_
3	Write	01	CC,SLI	XCNOCTL	8
4	TIC	08	_	WRITE CCW	_
	Write : :	01	CC,SLI (CD)	Buffer	Length of data in this buffer
5	Write :	01	CC,SLI, (CD)	Buffer	Length of data in this buffer
	: Write	01	CC,SLI	Buffer	Length of data in this buffer
6	TIC	08	_	READ CCW	_
7	Read	02	CC,SLI	XCNICTL	8
8	TIC	08	_	READ CCW	_
	Read	02	CC,SLI	Address of Data	Length of data in this buffer
9	TIC .	08	_	READ CCW	
	: : Read	02	CC,SLI	Address of Data	Length of data in this buffer
	TIC	08	_	WRITE CCW	_
10	Write	01	CC,SLI	XCNOVTXT	4

Figure 73. Data areas used for normal data transfer (X-side) nonblocking

Normal data transfer (Y-side) for nonblocking protocols

<u>Figure 74 on page 373</u> shows the data areas associated with the Y-side of the following normal data transfer channel program for nonblocking protocols.

Sequence	ccw	Command code (hex)	Flags	Address	Byte count
1	WCTL	14/ 17	CC,SLI	Zero	1

Sequence	ccw	Command code (hex)	Flags	Address	Byte count
2	TIC	08	_	READ CCW	_
3	Read	02	CC,SLI	XCNICTL	8
4	TIC	08	_	READ CCW	_
	Read	02	CC,SLI	Address of Data	Length of data in this buffer
	TIC	08	_	READ CCW	_
5	:				
	Read	02	CC,SLI	Address of Data	Length of data in this buffer
	TIC	08	_	WRITE CCW	_
6	Write	01	CC,SLI	XCNOCTL	8
7	TIC	08	_	WRITE CCW	_
	Write :	01	CC,SLI, (CD)	Buffer	Length of data in this buffer
8	Write :	01	CC,SLI, (CD)	Buffer	Length of data in this buffer
	Write	01	CC,SLI	Buffer	Length of data in this buffer
9	TIC	08	_	READ CCW	_
10	Read	02	CC,SLI	XCNIVTXT	4

Figure 74. Data areas used for normal data transfer (Y-side) nonblocking

Channel programs for multipath channel (MPC)

The VTAM MPC function is derived from the VTAM channel-to-channel (CTC) function. Both MPC and CTC communicate with the CTC Adapter, but MPC uses its own set of channel programs.

During normal data transfer, MPC uses the never-ending Read channel program. This means that a subchannel defined as a Read device can have an outstanding Read channel program or can be processing the last channel program to complete. On subchannels defined as Write devices, a Write channel program is generated when data is available to be written to the CTC adapter.

For HPDT, a seldom-ending channel program scheme is implemented. For a read subchannel, there are at least four (and possibly up to eight) read CCWs in the channel program, command-chained together. For a write device, there may be as few as one write in the channel program, but there may be up to seven writes command-chained together, depending on the amount of outbound traffic. Program-controlled interrupt (PCI) is used for both the read and write subchannels. Suspend/Resume is used only for write subchannels.

The information that follows describes the multipath channel programs for activating or deactivating an MPC connection as well as for normal data transfer.

Channel programs for activating the MPC connection

A series of channel programs is issued when the operator activates the MPC connection. These I/O exchanges are used by the hosts to communicate various capabilities to the other host. The capabilities are transferred using the XID channel program.

The primary pieces of new information gained through the MPC XID exchange are:

- MPC to CTC connection
- Polarity of the device (Read or Write)
- I/O buffering information for an active connection

Channel program (X-side or Y-side)

Unlike CTCA, X-Side or Y-Side has meaning only during XID exchange for MPC.

Figure 75 on page 375 shows that how VTAM determines which side is the X-side and which side is the Y-side.

In this example, the operator in subarea 1 is the first to activate the link. Because subarea 2 is not active, the XID exchange does not complete. Later, when the operator in subarea 2 activates the link, the XID exchange is completed.

I/O buffering

During the XID exchange, each host informs the other about its read buffer size.

Figure 75. MPC activation flow

CTCA

Channel-to-channel adapter

PUNS

Physical unit services

SSCP

System services control point

TSC

Transmission subsystem component

Note: When MPC is used for an APPN host-to-host channel connection, the flows between the SSCP, PUNS, AND TSC components differ somewhat from those in this figure. The XID flows are the same.

- 1 PUNS queues an ACTLINK RUPE to the MPNCB PUPAB, causing TSC to get control.
- 2 TSC issues a DCM channel program on every device in the MPC group.
- **3** A single ACTLINK response is passed to PUNS and SSCP indicating that the MPC path ACTLINK initialization is completed.
- **4** PUNS XIDO is copied to all MPC subchannels so that they are being written to all MPC subchannels. In this case, subarea 2 XIDOs are timed out and the other side is not ready to read.
- 5 Assume the operator activates the link in subarea 2. Subarea 2 assumes X-side protocols.
- **6** Subarea 1 initiates writing XIDOs at all MPC subchannels and then completes.
- **7** The subarea with the lower number (subarea 1) responds first to the XID0 exchange by sending an XID7.
- **8** Subarea 2 checks the XID7 from subarea 1 and responds with its XID7. It also sends a CONTACTED RU to the SSCP.

Channel commands for activating the MPC connection

See "Channel commands for channel-to-channel (CTC) adapters" on page 362 for the commands used for activation and deactivation of the MPC connection.

The MPC XID channel programs are identical to the CTC packed format XID channel programs. See <u>"XID channel program (X-side)"</u> on page 364 and <u>"XID channel program (Y-side)"</u> on page 365.

Channel programs for MPC data transfer

MAXBFRU defines a single read buffer. The write buffer in the other host has the same size allocation. PIUs are blocked for transfer, and are written by a single write, and read by a single read.

VTAM uses three CCWs in its data transfer channel program:

- Write CCW
- Read CCW
- Prepare CCW

MPC unique output control information is in the write buffer and input control information is received in the first 8 bytes of the read buffer.

Normal data transfer for channel programs is a PREP CCW followed by a Write CCW (Write device) or a Prepare CCW followed by a Read CCW (Read device).

For HPDT, sets of these CCWs are chained together in the channel program.

During the XID exchange, each host passes buffer size information for the read portion of its channel programs to other hosts in the network. Each host allocates a write buffer to match the other host read buffer.

Figure 76. MPC transmit buffers used for normal data transfer

1. The first 8 bytes of the channel buffer is the control information mapped by ISTBKHDR.

Figure 77. Indirect address word structure of multipath channel programs for normal data flow

Channel program for HPDT MPC data transfer

Seldom Ending Channel Programs (SECP) is for HPDT MPC read and write devices. Because the read and write channel programs can contain up to 17 CCWs, including eight read or write CCWs, the CCWs and the IDAWs are moved out of the YCNCB and into the M2IO and ALPH, respectively. See Figure 78 on page 378 for further details.

Figure 78. Basic read Seldom Ending Channel Program structure of HPDT multipath channel

Note:

- 1. M2IO always starts on a page boundary plus X'010' bytes. Offsets shown are from the page boundary.
- 2. The position of the ALPH pointer corresponds to its CCW set (that is, the ALPH pointer at X'020' contains the address of the ALPH for the prepare/read CCW set at offset X'040'; the ALPH pointer at X'24' contains the address of the ALPH for prepare/read CCW set at offset X'050'; and so on).

```
01232010
                     ///////
0129CD98
                                ///////
0129CB20
          012B2800

    ALPH pointers

01232020
                                            0128A6F0
01232030
                                 00000000
           00000000
                     00000000
                                            00000000
01232040
                                                            CCW set 1
          F3600001
                     01253BF1
                                0264FFFC
                                            012B29D4
                     01253BF1
01232050
           E3600001
                                0264FFFC
                                            0129CF6C
                                                            CCW set 2
                     01253BF1
                                                            CCW set 3
01232060
          F3600001
                                0264FFFC
                                            0129CCF4
01232070
           E3600001
                     01253BF1
                                0224FFFC
                                            0128A8B4
                                                           CCW set 4
01232080
           08000000
                     01232040
01232090
                      11111111
                                 11111111
012320A0
           ////////
                      ////////
012320B0
                                 ////////
                                             ////////
012320C0
          08000000 01232040
```

Figure 79. Example of Seldom Ending Channel Program structure of HPDT multipath channel

SECP read channel program

The read channel program is a logical ring of at least four and at most eight read CCW sets, followed by a TIC CCW back to the physical start of the ring. (A CCW set, when prepare CCWs are required, is composed of both the prepare and read CCWs; otherwise, the set is just the read CCW alone.) The field CPNCB_index_word contains indexes of the logical first and last CCW sets in the ring and is used to maintain control over the channel program and read completion processing. All CCWs are command-chained together except for the last logical CCW in the channel program, which must have command chaining off. PCI is on in all the prepare CCWs, except the CCW in the channel address word when the channel program is started. As reads complete, PCI interrupts occur. The inbound data is processed and routed internally, the read buffers are replenished, and the CCW set is prepared to be appended to the logical end of the channel program. Preparation is done by ensuring that PCI is on and command chaining

is off. The CCW set is appended, or *tacked-in*, to the logical end of the channel program (probably while the channel program is running) by setting the command-chaining bit in the current logical last CCW in the channel program and updating the index of the last logical CCW set in the ring.

The term *missed tack-in* is used to describe the condition where the IO processor fetches the logical last CCW before the CPU sets the command-chaining bit to complete the tack-in. In this case the channel program ends with channel end/device end status. It is the responsibility of the interrupt handler to detect a missed tack-in and to restart the channel program.

The suspend/resume function is not implemented in the read channel program because the objective is to keep as many reads outstanding as required to ensure the channel program does not end.

SECP write channel program

The write channel program is a logical ring of eight write CCW sets followed by a TIC CCW back to the physical start of the ring. However, because write channel programs use suspend/resume, there is a CCW set between the logical end of the ring and the logical start of the ring that cannot be used. Therefore, a maximum of seven writes can be active at one time. The field CPNCB_index_word contains indexes of the logical first and last CCW sets in the ring and is used to maintain control over the channel program and write completion processing. All CCWs are command-chained together and the suspend bit is on in CCW following the last active write. PCI is always off with the exception that it is sometimes set halfway through the channel program when the channel program is large. As writes complete, PCI and suspend interrupts occur. The structures representing the written data are processed, and if another set of data is waiting for transmission, it is tacked-in to the end of the channel program and the channel program is resumed if it is suspended.

As with a read SECP, a missed tack can occur and it is the responsibility of the interrupt handler to resume the channel program.

The suspend/resume function is implemented for write devices because, unlike read devices where reads remain outstanding, it is expected that during normal operation there will be times when there is nothing to write.

Note the following differences between the read and write SECPs:

- The read SECP ALPH pointers in the M2IO are set at link activation time and remain there until the link is deactivated. The write SECP ALPH pointers are nonzero only if the corresponding CCW set is active within the channel program. The write ALPHs can be assigned to any CCW set, while the read ALPHs are always assigned to the same set.
- All 17 CCWs in the M2IO will participate in the IO operations, though not all can be active at the same time.

Channel programs for channel-attached non-SNA 3270 devices

The publications for the non-SNA 3270 devices contain diagnostic procedures. For more information, see the documentation for your display type, or for your control unit. See the <u>z/OS Information Roadmap</u> to determine what document contains information on the 3174 controller.

The LDNCB represents local devices and contains addresses and CCWs needed for channel programs. Figure 80 on page 380 shows the LDNCB and the location in storage of various CCWs.

Figure 80. Data areas used by a channel program for channel-attached non-SNA devices

Channel command words

<u>Table 26 on page 380</u> contains the channel commands used by VTAM to send data to and receive data from channel-attached non-SNA 3270 terminals.

_ , , _ , _ , _ ,				
Tahlo 26 Channol	command wo	rde tar channa	l-attached nor	n-SNA 3270 devices
Tuble 20. Challie	Communication vvoi	ius ioi cituitie	i ullucheu noi	1 JNA JZ / U uevices

Command code	Command	Description
(hex)	Command	Description
01	Write	Transfers data from storage in the host processor to the I/O device. Modifies existing buffer data.
02	Read or Read buffer	Transfers the entire buffer contents from the I/O device to storage in the host processor.
05	Erase/Write	Clears the device buffer before starting the write.
06	Read Modified	Transfers data (that was modified since the last read) from the I/O device to storage in the host processor.
ОВ	Select	Transfers data from the I/O device buffer to the controller buffer. Separates the device-to-controller unit buffer transfer from the execution command.

Table 26. Channel command words for channel-attached non-SNA 3270 devices (continued)

Command code		
(hex)	Command	Description
OD	erase/write Alternate	Same as Erase/Write, except that it allows for a larger buffer size required for some devices.
1B	Select Read Buffer	Same as Select, except that it is used only for Read buffer channel programs.
4B	Select Write	Same as Select, except that it is used only for Write channel programs.
0F	Erase All Unprotected	Clears all unprotected buffers
11	Write Structured Field	Writes a structured field

Channel programs

<u>Table 27 on page 381</u> through <u>Table 32 on page 385</u> show the CCWs used in various channel programs. The order of execution is the same as the order in which they appear.

Write data channel program

The following table shows how CCWs are used in a Write data channel program.

Table 27. Write data channel program

ccw	Command code (hex)	Flags	Address	Byte count
Select	0B or 4B ⁵	CC,SLI	Zero	1
TIC	08	_	Write CCW	_
Write 6 (As many as needed)	01	CD,SLI	Output Area	Length of data

⁵ If the UCB indicates that the device will accept the Select Write, code X'4B', it is used until a command reject is received. Then Select, code X'0B', is used.

⁶ The first Write CCW is pointed to by LDNACREQ.

⁷ The first Read Modified CCW is pointed to by LDNACREQ.

Read Modified channel program

The following table shows how CCWs are used in a Read Modified channel program.

Table 28. Read Modified channel program

ccw	Command code (hex)	Flags	Address	Byte count
Select	OB	CC	Zero	1
TIC	08	_	Read Modified CCW	_
Read Modified	06	CD	Input Area	Length of data
(As many as needed)				
TIC	08	_	Read Modified CCW	-
Read Modified 8	06	CD	Input Area	Length of data
Read Modified (Skip)	06	SKIP	Zero	X'7FFF'

Read buffer channel program

The following table shows how CCWs are used in a Read buffer channel program.

Table 29. Read buffer channel program

ccw	Command code (hex)	Flags	Address	Byte count
Select	0B or 1B ⁹	CC,SLI	Zero	1

⁸ The number of bytes transmitted in the previous Read Modified CCW is stored in the LDNRMLEN field in the LDNCB. For this Read Modified, enough buffers are allocated to hold LDNRMLEN bytes of data. If this is not enough buffers for the device to send all of the pending data, the channel program will end on the Read Skip CCW. The Read Skip CCW reads all of the pending data but does not transmit any of it. The new length is stored in LDNRMLEN. (The length is computed by subtracting the residual byte count in the CSW from X'7FFF'.) Then the channel program is executed again with one more buffer than necessary allocated to read and transmit all of the pending data.

Table 29. Read buffer channel program (continued)

ccw	Command code (hex)	Flags	Address	Byte count
TIC	08	_	Read buffer CCW	_
Read Buffer 10 (As many as needed)	02	CD	Input Area	Length of data
TIC	08	_	Read buffer CCW	_
Read Buffer 11	02	CD	Input Area	Length of data
Read Buffer (Skip)	02	SKIP	Zero	X'7FFF'

Erase/Write channel program

The following table shows how CCWs are used in an Erase/Write channel program.

⁹ If the UCB indicates that the device will accept the Select Read, code X'1B', it is used until a command reject is received. Then Select, code X'0B', is used.

¹⁰ The first Read CCW is pointed to by LDNACREQ.

The number of bytes transmitted in the previous Read buffer CCW is stored in the LDNRBLEN field in the LDNCB. For this Read buffer, enough buffers are allocated to hold LDNRBLEN bytes of data. If this is not enough buffers for the device to send all of the pending data, the channel program will end on the Read Skip CCW. The Read Skip CCW reads all of the pending data but does not transmit any of it. The new length is stored in LDNRBLEN. (The length is computed by subtracting the residual byte count in the CSW from X'7FFF'.) Then the channel program is executed again with enough buffers allocated to read and transmit all of the pending data.

Table 30. Erase/Write channel program

ccw	Command code (hex)	Flags	Address	Byte count
Erase/ Write 12 (As many as needed)	05	CD,SLI	Output Area	Length of data
TIC	08	_	Erase/Write CCW	_
Erase/ Write	05	SLI	Output Area	Length of data

Erase/Write Alternate channel program

The following table shows how CCWs are used in an Erase/Write Alternate channel program.

Table 31. Erase/Write Alternate channel program

ccw	Command code (hex)	Flags	Address	Byte count
Erase/ Write 13 Alternate (As many as needed)	OD	CD,SLI	Output Area	Length of data
TIC	08	_	Erase/Write Alternate CCW	_
Erase/ Write Alternate	OD	SLI	Output Area	Length of data

Erase All Unprotected channel program

The following table shows how CCWs are used in an Erase All Unprotected channel program.

¹² LDNACREQ has the address of the first Erase/Write CCW.

¹³ LDNACREQ contains the address of the first Erase/Write Alternate CCW.

¹⁴ LDNACREQ contains the address of the Erase All Unprotected CCW.

Table 32. Erase All Unprotected channel program

ccw	Command code (hex)	Flags	Address	Byte count
Erase All 14 Unprotected	OF	SLI	Zero	1

Appendix B. Network flows

This appendix describes flows of the VTAM program RUs and AMRUs between network addressable units in single and multiple VTAM networks. Use these flows as guidelines to help analyze and isolate network problems caused by unexpected network events, such as protocol violations. The flow diagrams are divided into the following categories:

- "Generic BIND (GBIND) AMRUs" on page 391
- "Resource activation flows" on page 394
- "Session establishment flows" on page 406
- "Deactivation and session termination flows" on page 429
- "Error detection and recovery and SSCP management services" on page 445

For certain session establishment RUs (ACTCDRM, ACTPU, ACTLU, and BIND), additional RUs can flow if the explicit route (ER) or virtual route (VR) selected for a session is not yet active. Because this flow is essentially the same for all four RUs, these RUs are referred to as generic bind (GBIND) AMRUs. To avoid repetition, the flows for these AMRUs are shown once at the beginning of this appendix.

Table 33 on page 387 lists all the network flows illustrated in this appendix.

Table 33. Index of network flows	
Flow	Page
GBIND AMRU flow	Page
ACTLU: Sending an ACTLU request for a logical unit (LU)	Figure 81 on page 392
ACTPU: Sending an ACTPU request for a communication controller or physical unit (PU)	Figure 82 on page 393
BIND: Sending a BIND request to a secondary logical unit (SLU)	Figure 83 on page 393
Virtual and explicit route: Activating a virtual route (VR) and the associated explicit route (ER)	Figure 84 on page 394
Resource activation flow	Page
Activating a CDRM	_
CDRM with COLD response, activating	Figure 99 on page 404
CDRM with ERP response, activating	Figure 98 on page 403
CDRM with a virtual route-based transmission group, activating	Figure 100 on page 404
Activating a cross-network SSCP-SSCP session	
Back-to-back gateway NCPs request sessions	Figure 101 on page 405
Gateway VTAM requests session	Figure 102 on page 406
Non-gateway VTAM requests session	Figure 103 on page 406
Activating an NCP major node	
Channel-attached communication controller, activating	Figure 85 on page 396
Link-attached communication controller, activating	Figure 86 on page 397

Flow	Page
Activating resources controlled by a host or NCP major node	
ink: Activating a link	Figure 87 on page 397
ink station: Activating a cross-subarea link station	Figure 89 on page 398
ogical unit (LU): Activating a logical unit	Figure 96 on page 403
Application program: Activating an application program and processing an OPEN ACB request	Figure 97 on page 403
Physical unit (PU): Activating a physical unit type 2.0	Figure 91 on page 400
Physical unit (PU): Activating a physical unit type 2.0 with load required	Figure 92 on page 400
Physical unit (PU): Moving a dynamically added physical unit	Figure 94 on page 402
Physical unit (PU): Moving a SYSGENed physical unit	Figure 93 on page 401
SSCP takeover of peripheral node logical units (LUs)	Figure 95 on page 402
Switched connection, establishing	Figure 90 on page 399
Switched link with takeover, activating	Figure 88 on page 398
Session establishment flow	Page
Failed session establishment	
Failure (CDINIT rejection) of session initiation by a secondary logical unit (SLU) for single gateway VTAM and single gateway NCP	Figure 129 on page 427
Failure (CINIT rejection) of setup procedure initiated by a secondary ogical unit (SLU) for single gateway VTAM and single gateway NCP	Figure 131 on page 429
Failure (SETCV failure) of session initiation by a secondary logical unit SLU) for single gateway VTAM and single gateway NCP	Figure 130 on page 428
Gateway VTAM	
Default partitioning of gateway VTAM responsibility spanning three networks	Figure 122 on page 421
Multiple gateway VTAMs and back-to-back gateway NCPs	Figure 105 on page 409
PLU availability for autologon, notification of	Figure 128 on page 427
Requests initiated by primary logical units (PLUs)	
Dependent PLU initiating cross-domain session with independent SLU	Figure 111 on page 413
ndependent PLU initiating cross-domain session with independent SLU	Figure 110 on page 413
independent PLU requesting session with independent SLU through a single gateway VTAM and single gateway NCP	Figure 113 on page 415
DPNDST ACQUIRE	Figure 106 on page 410
PLU initiating request for single gateway VTAM and single gateway NCP	Figure 112 on page 414
PLU initiating request setup queued for single gateway VTAM and single gateway NCP	Figure 114 on page 416
SIMLOGON	Figure 107 on page 410

low	Page
IMLOGON(RELREQ)	Figure 108 on page 411
IMLOGON(RELREQ): Session is pending active or already in progress	Figure 109 on page 412
equests initiated by secondary logical units (SLUs)	
Rependent SLU initiating cross-domain session with application logical nit (LU)	Figure 119 on page 419
NIT SELF	Figure 117 on page 418
OGON	Figure 115 on page 417
redesignated control of gateway NCP by middle host	Figure 122 on page 421
EQSESS	Figure 116 on page 417
ending an unformatted request to the SSCP	Figure 118 on page 418
ngle gateway connecting three or more networks	Figure 121 on page 420
ingle gateway VTAM and single gateway NCP	Figure 120 on page 419
equests initiated by third parties	
LSDST PASS	Figure 124 on page 423
SDST PASS with NOTIFY	Figure 125 on page 424
equest spanning three networks	Figure 126 on page 425
ARY LOGON or LOGAPPL processing	Figure 127 on page 426
activation or session termination flow	Page
OSE ACB processing	Figure 147 on page 439
eactivating an application program	Figure 148 on page 440
activating a CDRM	
rced	Figure 151 on page 441
rced, without affecting active sessions	Figure 153 on page 442
rced or immediate, VTAM releases before V3R4.1	Figure 154 on page 443
nmediate	Figure 150 on page 441
nmediate, without affecting active sessions	Figure 152 on page 442
ormal	Figure 149 on page 440
eactivating a logical unit (LU), single network	
rced	Figure 133 on page 431
nmediate	Figure 132 on page 431
ARY NET,TERM Cleanup	Figure 145 on page 438
ARY NET,TERM Unconditional	Figure 144 on page 437
ith Giveback	Figure 134 on page 432

Table 33. Index of network flows (continued)	
Flow	Page
Independent PLU sends BFCLEANUP for independent SLU	Figure 135 on page 432
Independent PLU sends UNBIND for independent SLU	Figure 136 on page 433
PLU sends UNBIND for multiple gateway VTAMs and single gateway NCP	Figure 137 on page 433
PLU sends UNBIND for single gateway VTAM and single gateway NCP	Figure 138 on page 434
SLU requests TERMINATE SELF (CLEANUP) for single gateway VTAM and single gateway NCP	Figure 140 on page 435
SLU requests TERMINATE SELF for multiple gateway VTAMs and back-to-back gateway NCPs	Figure 139 on page 434
SLU requests TERMINATE SELF for single gateway VTAM and single gateway NCP	Figure 141 on page 435
Type 2.1 nodes, active termination	Figure 142 on page 436
Deactivating a physical unit (PU) acting as an adjacent link station for independent logical unit (LU) sessions	Figure 143 on page 436
Queued session, terminating	Figure 146 on page 438
Route failure	
Route failure in intermediate network causes termination of LU-LU sessions	Figure 156 on page 445
Route failure in intermediate network causes termination of SSCP-SSCP sessions	Figure 157 on page 445
SSCP-SSCP session termination causes LU-LU sessions to be broken	Figure 155 on page 444
Error and SSCP management services flow	Page
Error recovery processing (ERP)	
Hard INOP	Figure 159 on page 447
Soft INOP	Figure 158 on page 446
LPDA-2 processing	
Unsolicited LPDA-2 test on permanent link error with two link segments	Figure 163 on page 448
Unsolicited LPDA-2 test on thresholds reached for an LPDA-2 physical unit (PU) with one link segment	Figure 161 on page 447
Unsolicited LPDA-2 test on thresholds reached for an LPDA-2 physical unit (PU) with two link segments	Figure 162 on page 448
SSCP management services processing	
FORWARD and DELIVER Routing	Figure 160 on page 447
XRF processing	
Secondary logical unit (LU) initiate with USERVAR (LOGON)	Figure 166 on page 451
Third-party initiate (CLSDST PASS)	Figure 167 on page 452
XRF primary and backup sessions, establishment of	Figure 164 on page 449

Table 33. Index of netw	ork flows	(continued)
-------------------------	-----------	-------------

Flow	Page
XRF session switch (takeover)	Figure 165 on page 450

Many abbreviations are shown at the top of the network flows. The following list gives the meaning of some of those abbreviations:

APPL

Application

BF

Boundary function

BFSS

Boundary function session services

BNN

Boundary network node

CS

Configuration services

EU

End user

LU

Logical unit

NCP

Network Control Program

NOS

Network operator services

PLU

Primary logical unit

PΝ

Peripheral node

ΡU

Physical unit

PUNS

Physical unit services

SLU

Secondary logical unit

SS

Session services

SSCP

System services control point

TSC

Transmission subsystem component

XRF

Extended recovery facility

Generic BIND (GBIND) AMRUs

Access method RUs (AMRUs) are internal requests that might appear in the PIU trace and are a function of physical unit services (PUNS), configuration services, or session services.

Figure 81 on page 392 through Figure 84 on page 394 show the flow of these requests and responses between the SSCP and logical and physical units when a virtual route (VR) or explicit route (ER) selected for a session is not yet active.

Index of generic BIND (GBIND) AMRU flows

Table 34 on page 392 lists the GBIND AMRU flows illustrated here.

Table 34. Index of generic BIND (GBIND) AMRU flows	
Flow	Page
ACTLU: Sending an ACTLU request for a logical unit (LU)	Figure 81 on page 392
ACTPU: Sending an ACTPU request for a communication controller or physical unit (PU)	Figure 82 on page 393
BIND: Sending a BIND request to a secondary logical unit (SLU)	Figure 83 on page 393
Virtual and explicit route: Activating a virtual route (VR) and the associated explicit route (ER)	Figure 84 on page 394

Figure 81. Sending an ACTLU request for a logical unit (LU)

Figure 82. Sending an ACTPU request for a communication controller or physical unit (PU)

1. The ACTPU can flow either to the communication controller or to a physical unit.

Figure 83. Sending a BIND request to a secondary logical unit (SLU)

Figure 84. Activating a virtual route (VR) and the associated explicit route (ER)

Resource activation flows

Figure 85 on page 396 through Figure 103 on page 406 show the flow of requests and responses between the SSCP and logical and physical units to activate resources.

For channel activation flows, see Appendix A, "Channel programs," on page 353.

Index of resource activation flows

Table 35 on page 394 lists the resource activation flows that are illustrated here.

Table 35. Index of resource activation flows	
Flow	Page
Activating a CDRM	
CDRM with COLD response, activating	Figure 99 on page 404
CDRM with ERP response, activating	Figure 98 on page 403
CDRM with a virtual route-based transmission group, activating	Figure 100 on page 404
Activating a cross-network SSCP-SSCP session	
Back-to-back gateway NCPs request sessions	Figure 101 on page 405
Gateway VTAM requests session	Figure 102 on page 406

Table 35. Index of resource activation flows (continued)	
Flow	Page
Non-gateway VTAM requests session	Figure 103 on page 406
Activating an NCP major node	
Channel-attached communication controller, activating	Figure 85 on page 396
Link-attached communication controller, activating	Figure 86 on page 397
Activating resources controlled by a host or NCP major node	
Link: Activating a link	Figure 87 on page 397
Link station: Activating a cross-subarea link station	Figure 89 on page 398
Logical unit (LU): Activating a logical unit	Figure 96 on page 403
Application program: Activating an application program and processing an OPEN ACB request	Figure 97 on page 403
Physical unit (PU): Activating a physical unit type 2.0	Figure 91 on page 400
Physical unit (PU): Activating a physical unit type 2.0 with load required	Figure 92 on page 400
Physical unit (PU): Moving a dynamically added physical unit	Figure 94 on page 402
Physical unit (PU): Moving a SYSGENed physical unit	Figure 93 on page 401
SSCP takeover of peripheral node logical units (LUs)	Figure 95 on page 402
Switched connection, establishing	Figure 90 on page 399
Switched link with takeover, activating	Figure 88 on page 398

Figure 85. Activating a channel-attached communication controller

- 1. Includes NCP dynamic path definition capability indicator.
- 2. Flows only for dynamic path definition. SETCV and IST929I flow for each dynamic path definition member specified.

Figure 86. Activating a link-attached communication controller

1. Flows only for dynamic path definition. SETCV and IST929I flow for each dynamic path definition member specified.

Figure 87. Activating a link (ACTLINK)

Figure 88. Activating a switched link with takeover

1. SETCV does not flow for NCPs that support peripheral nodes.

Figure 89. Activating a cross-subarea link station

Figure 90. Establishing a switched connection

To establish a switched connection, the SSCP sends an Activate Link request to indicate that the link is active. An Activate Connect In request is sent to enable the communication controller to answer incoming calls. (Instead of Activate Connect In, Dial could be sent to initiate an outbound call.) When a call comes in, the communication controller sends an exchange identification (XID) and the physical unit responds with its ID (station address). The communication controller sends a Request Contact (Offhook) request to the SSCP. The SSCP sends a Set Control Vector request containing address and pacing information to the communication controller. The standard activation sequence then occurs.

Figure 91. Activating a physical unit type 2.0

- 1. An XID, instead of an SNRM, will flow to a switched line.
- 2. Additional RUs flow if the physical unit must be loaded. These RUs are shown in Figure 92 on page 400.

Figure 92. Activating a physical unit type 2.0 with load required

- 1. This figure shows only the RUs that flow when a type 2 physical unit requires loading. For the RUs that flow before and after those in this figure, see Figure 91 on page 400.
- 2. NS_IPL_TEXT and the response might repeat.

For type 2.0 physical units that require loading before they can be activated, the request for load is indicated in the ACTPU response. (During the activation, the physical unit might request loading with an NS_LDREQD RU.)

The SSCP formats the load request into a network services (NS) RU to initiate the load. The management services subcomponent of the SSCP then sends the embedded request to the physical unit load program of the Downstream Load Utility.

If the physical unit load program *is not* available, it sends a negative response to the SSCP's Deliver RU. The SSCP then sends an NS_IPL_ABORT RU to the physical unit for deactivation processing. (If the load was requested with an NS_LDREQD RU, the physical unit is not deactivated; in fact, it might try the load request again.)

If the physical unit load program *is* available, as in <u>Figure 92 on page 400</u>, it sends a positive response to the SSCP's Deliver RU. When the load program is complete, it sends a Forward RU, containing an NS_LOADSTAT RU, to relay the status of the load operation.

Figure 93. Moving a SYSGENed physical unit

1. RNAA flow is as normal. RNAA does not flow for MODIFY DR, TYPE=MOVE, ACT=NO.

Figure 94. Moving a dynamically added physical unit

1. RNAA flow is as normal. RNAA does not flow for MODIFY DR, TYPE=MOVE, ACT=NO.

Figure 95. SSCP takeover of peripheral node logical units

Note: The following conditions are assumed for this example:

- 1. The physical units being taken over are defined with ANS=CONTINUE, specifying that any LU-LU sessions that are active at SSCP-failure time will continue.
- 2. There are some LU-LU sessions active at failure time under the physical unit being taken over.
- 3. Independent logical unit only (possible multiple RUs).
- 4. Dependent logical unit only.

Figure 96. Activating a logical unit

Figure 97. Activating an application program and processing an OPEN ACB request

- 1. These do not flow for OPEN ACB processing.
- 2. PUNS cannot send a response to the OPEN ACB request until LUS receives an ACTLU request for the application program. Therefore, PUNS issues CPWAIT and waits for LUS to post it. After LUS has received the ACTLU, it posts PUNS, which then sends a response to the OPEN ACB request.

For the close ACB flow, see Figure 147 on page 439.

Figure 98. Activating CDRM with ERP response

Figure 99. Activating CDRM with COLD response

Figure 100. Activating a CDRM with a virtual-route-based transmission group

1. If the transmission group is an intermediate routing transmission group (NN–NN), the topology database update (TDU) will be built and broadcast. If the host is a migration data host, the topology database update (TDU) will be built and sent to its server.

Figure 101. Back-to-back gateway NCP request sessions

Figure 102. Gateway VTAM requests session

Figure 103. Non-gateway VTAM requests session

Session establishment flows

<u>Figure 104 on page 408 through Figure 131 on page 429</u> show the flow of requests and responses to establish single network and cross-network LU-LU sessions.

406 z/OS Communications Server: z/OS V2R5.0 Communications Server: SNA Diagnosis Vol 1, Techniques and Procedures

Index of session establishment flows

Table 36 on page 407 lists the session establishment flows that are illustrated here.

Table 36. Index of session establishment flows	
Flow	Page
Failed session establishment	
Failure (CDINIT rejection) of session initiation by a secondary logical unit (SLU) for single gateway VTAM and single gateway NCP	Figure 129 on page 427
Failure (CINIT rejection) of setup procedure initiated by a secondary logical unit (SLU) for single gateway VTAM and single gateway NCP	Figure 131 on page 429
Failure (SETCV failure) of session initiation by a secondary logical unit (SLU) for single gateway VTAM and single gateway NCP	Figure 130 on page 428
Gateway VTAM	
Default partitioning of gateway VTAM responsibility spanning three networks	Figure 122 on page 421
Multiple gateway VTAMs and back-to-back gateway NCPs	Figure 105 on page 409
PLU availability for autologon, notification of	Figure 128 on page 427
Requests initiated by primary logical units (PLUs)	
Dependent PLU initiating cross-domain session with independent SLU	Figure 111 on page 413
Independent PLU initiating cross-domain session with independent SLU	Figure 110 on page 413
Independent PLU requesting session with independent SLU through a single gateway VTAM and single gateway NCP	Figure 113 on page 415
OPNDST ACQUIRE	Figure 106 on page 410
PLU initiating request for single gateway VTAM and single gateway NCP	Figure 112 on page 414
PLU initiating request setup queued for single gateway VTAM and single gateway NCP	Figure 114 on page 416
SIMLOGON	Figure 107 on page 410
SIMLOGON(RELREQ)	Figure 108 on page 411
SIMLOGON(RELREQ): Session is pending active or already in progress	Figure 109 on page 412
Requests initiated by secondary logical units (SLUs)	
Dependent SLU initiating cross-domain session with application logical unit (LU)	Figure 119 on page 419
INIT SELF	Figure 117 on page 418
LOGON	Figure 115 on page 417
Predesignated control of gateway NCP by middle host	Figure 122 on page 421
REQSESS	Figure 116 on page 417
Sending an unformatted request to the SSCP	Figure 118 on page 418
Single gateway connecting three or more networks	Figure 121 on page 420
Single gateway VTAM and single gateway NCP	Figure 120 on page 419

Table 36. Index of session establishment flows (continued	0
Flow	Page
Requests initiated by third parties	
CLSDST PASS	Figure 124 on page 423
CLSDST PASS with NOTIFY	Figure 125 on page 424
Request spanning three networks	Figure 126 on page 425
VARY LOGON or LOGAPPL processing	Figure 127 on page 426

Figure 104. Default partitioning of gateway VTAM responsibility spanning three networks

- 1. Only the SSCP-SSCP session communication is shown. Assume LU1 (a logical unit owned by SSCP1 in Network A) requests a session with DLUX (an alias for LU3 in Network B; LU3 is a logical unit owned by gateway VTAM3). LU1 is the SLU in the request session.
- 2. Session setup proceeds as shown in the basic flows. BIND flows from LU3 to gateway NCP2, to gateway NCP1, and to LU1.

Figure 105. Multiple gateway VTAMs and back-to-back gateway NCPs

Figure 106. Primary logical unit initiate, OPNDST ACQUIRE

Figure 107. Primary logical unit initiate, SIMLOGON

1. LOGON EXIT and OPNDST ACCEPT flow only when the PLU is associated with an application program. It does not appear in the flow if the PLU is a device-type logical unit. This is true for many following flows with LOGON EXIT and OPNDST ACCEPT.

Figure 108. Primary logical unit initiate, SIMLOGON(RELREQ)

Figure 109. Primary logical unit initiate, SIMLOGON(RELREQ): Session is pending active or already in progress

1. If the session is pending active, the NOTIFY request and the RELREQ EXIT request flow after the response to the CDINIT request from the PLU2 SSCP. If the session is already in progress, these requests flow after the response to the OPNDST ACCEPT.

Figure 110. Independent PLU initiating cross-domain session with independent SLU

1. RNAA flows only if the network address is needed.

Figure 111. Dependent PLU initiating cross-domain session with independent SLU

1. RNAA flows only if the network address is needed.

Figure 112. PLU initiating request for single gateway VTAM and single gateway NCP

Note: Session setup continues as in the flow for a SLU-initiated session.

Figure 113. Independent PLU requesting session with independent SLU through single gateway VTAM and single gateway NCP

1. RNAA flows only if the network address is needed.

Figure 114. PLU-initiated request setup queued for single gateway NCP and single gateway VTAM

1. Session setup continues as in the flow for an SLU-initiated session.

Figure 115. Secondary logical unit initiate (LOGON)

Figure 116. Secondary logical unit initiate (REQSESS)

Figure 117. Secondary logical unit initiate (INIT SELF)

Figure 118. Sending an unformatted request to the SSCP

In this example, the logical unit sends a character-coded logon or logoff to the SSCP. The unformatted system services portion of SSCP converts the logon into a field-formatted Initiate Self or Terminate Self request. The request is then passed to the SSCP request processor.

If the return code indicates an unsuccessful transmission, the unformatted system services portion of SSCP converts the request into a form that can be understood by the terminal logical unit.

Figure 119. Dependent SLU initiating a cross-domain session with application LU

Figure 120. SLU initiating request for single gateway VTAM and single gateway NCP

- 1. LU1 is initiating a session with DLUX. Using alias name translation, SSCP1 translates DLUX to LU2 and LU1 to OLUX.
- 2. Names are sent to allow substitution in the BIND.
- 3. The CINIT drives the logon exit.

Figure 121. SLU initiating request for single gateway connecting three or more networks

Figure 122. SLU initiating request for predesignated control of gateway NCP by middle host (part 1 of 2)

Figure 123. SLU initiating request for predesignated control of gateway NCP by middle host (part 2 of 2)

To simplify the flow, the gateway NCP is shown twice in this flow.

Figure 124. Third party initiating CLSDST PASS

Figure 125. Third party initiating CLSDST PASS with NOTIFY

Figure 126. Third party initiating request spanning three networks

Figure 127. Initiating session using VARY NET,LOGON or LOGAPPL

- 1. Optional; occurs only when SLU is a dial device.
- 2. This applies only when the PLU is associated with an application program. It does not appear in the flow if the PLU is a device-type logical unit.

Figure 128. Notification of PLU availability for autologon

1. This applies only when the PLU is associated with an application program. It does not appear in the flow if the PLU is a device-type logical unit.

Figure 129. Failure (CDINIT rejection) of session initiated by an SLU for single gateway VTAM and single gateway NCP

Figure 130. Failure (SETCV failure) of session initiation by an SLU for single gateway VTAM and single gateway NCP

Figure 131. Failure (CINIT rejection) of setup procedure initiated by an SLU for single gateway VTAM and single gateway NCP

Deactivation and session termination flows

Figure 132 on page 431 through Figure 157 on page 445 show the flow of requests and responses between the SSCP and logical and physical units to deactivate resources and end sessions.

Index of deactivation and session termination flows

Table 37 on page 429 lists the deactivation and session termination flows that are illustrated here.

Table 37. Index of deactivation and session termination flows	
Flow	Page
CLOSE ACB processing	Figure 147 on page 439
Deactivating an application program	Figure 148 on page 440
Deactivating a CDRM	
Forced	Figure 151 on page 441
Forced, without affecting active sessions	Figure 153 on page 442
Forced or immediate, VTAM releases before V3R4.1	Figure 154 on page 443

Flow	Page
mmediate	Figure 150 on page 441
mmediate, without affecting active sessions	Figure 152 on page 442
Normal	Figure 149 on page 440
Deactivating a logical unit (LU), single network	
Forced	Figure 133 on page 431
mmediate	Figure 132 on page 431
/ARY NET,TERM Cleanup	Figure 145 on page 438
/ARY NET,TERM Unconditional	Figure 144 on page 437
Vith Giveback	Figure 134 on page 432
Deactivating a logical unit (LU), multiple networks	
ndependent PLU sends BFCLEANUP for independent SLU	Figure 135 on page 432
ndependent PLU sends UNBIND for independent SLU	Figure 136 on page 433
PLU sends UNBIND for multiple gateway VTAMs and single gateway NCP	Figure 137 on page 433
PLU sends UNBIND for single gateway VTAM and single gateway NCP	Figure 138 on page 434
SLU requests TERMINATE SELF (CLEANUP) for single gateway VTAM and single gateway NCP	Figure 140 on page 435
SLU requests TERMINATE SELF for multiple gateway VTAMs and back-to- back gateway NCPs	Figure 139 on page 434
SLU requests TERMINATE SELF for single gateway VTAM and single gateway NCP	Figure 141 on page 435
Type 2.1 nodes, active termination	Figure 142 on page 436
Deactivating a physical unit (PU) acting as an adjacent link station for ndependent logical unit (LU) sessions	Figure 143 on page 436
Queued session, terminating	Figure 146 on page 438
Route failure	
Route failure in intermediate network causes termination of LU-LU sessions	Figure 156 on page 445
Route failure in intermediate network causes termination of SSCP-SSCP sessions	Figure 157 on page 445
SSCP-SSCP session termination causes LU-LU sessions to be broken	Figure 155 on page 444

Figure 132. Deactivating a logical unit: Immediate

1. These flow only when the operator deactivates a specific logical unit. For example, they do not flow during immediate deactivation of a CDRM.

Figure 133. Deactivating a logical unit: Forced

1. These flow only when the operator deactivates a specific logical unit. For example, they do not flow during forced deactivation of a CDRM.

Figure 134. Deactivating a logical unit with giveback

- 1. The DACTLINK X'02' terminates only queued and pending LU-LU sessions. Active LU-LU sessions remain active.
- After session services transfers SIBs of ACTIVE logical units to the CDRSC, configuration services SRTADDs the CDRSCs as real resources, and the logical units are ADDed as shadow resources. If a CDRSC for a particular logical unit does not exist, a dynamic CDRSC is allocated for the logical unit.

Figure 135. Independent primary logical unit (PLU) sends BFCLEANUP for cross-domain LU-LU session with independent secondary logical unit (SLU)

- BFCLEANUP can be sent by the SSCP(PLU) for several reasons, including the following conditions:
 - A network operator at the SSCP(PLU) issues a VARY NET,TERM,UNCOND, generating an internal TERM-OTHER(forced).
 - A network operator at either SSCP issues a VARY NET,INACT,ID=cdrm, deactivating all cross-domain sessions between the SSCPs.

Figure 136. Independent primary logical unit (PLU) sends UNBIND for cross-domain LU-LU session with independent secondary logical unit (SLU)

Figure 137. Primary logical unit (PLU) sends UNBIND for multiple gateway VTAMs and single gateway NCP

Figure 138. Primary logical unit (PLU) sends UNBIND for single gateway VTAM and single gateway NCP

Figure 139. Secondary logical unit (SLU) requests TERMINATE SELF for multiple gateway VTAMs and back-to-back gateway NCPs

Figure 140. Secondary logical unit (SLU) requests TERMINATE SELF (CLEANUP) for single gateway VTAM and single gateway NCP

Note: The UNBIND can flow from the SLU, the PLU, or the gateway NCP.

- 1. A DACTLU does not flow to a binary synchronous communication (BSC) terminal.
- 2. You might receive sense code 081E0003, indicating that cleanup has already occurred.

Figure 141. Secondary logical unit (SLU) requests TERMINATE SELF for single gateway VTAM and single gateway NCP

Note: (a) and (b) are used here to differentiate between similar request units.

Figure 142. Active session termination of type 2.1 nodes

Figure 143. Deactivating a PU acting as an adjacent link station for independent LU sessions

- 1. Examines PLU and SLU chain and sends (BF)CLEANUP for each ILU session found.
- 2. When all Session Ended (or BFSESSEND) signals are received, NOTIFY is sent to CS for PU.

In this example, PU1 is a fictitious adjacent link station. When the PU is deactivated, configuration services sends a TERMINATE containing the PU name to session services. Session services examines the

adjacent link station's SIB chains and sends CLEANUP to terminate the sessions. When all sessions are down, NOTIFY flows to configuration services so the final deactivation can occur.

Figure 144. Deactivating sessions or LUs using VARY NET, TERM unconditional

1. If the LOSTERM exit routine is already scheduled with a reason code 32 caused by a CTERM (orderly) request that was received before, the CTERM (force) request is upgraded to a CLEANUP RU and VTAM drives an NSEXIT exit routine.

PLU for an Application Program

Figure 145. Deactivating sessions or LUs using VARY NET, TERM cleanup

Figure 146. Terminating a queued session

Figure 147. CLOSE ACB processing

1. PUNS cannot send a response to the CLOSE ACB AMRU until DACTLU processing is complete and the LUCB has been deleted. Therefore, after requesting that configuration services deactivate the logical unit, PUNS issues CPWAIT and waits for LUS to post it when the logical unit has been deactivated. After it is posted, PUNS waits to be notified that there are no more active sessions for the application program. PUNS issues CPWAIT and waits for configuration services and TSC to send a request to delete the LUCB. PUNS posts itself when it has processed each of these requests and sends a response to configuration services to notify it that the LUCB has been deleted. After sending this response, PUNS sends a response to the CLOSE ACB AMRU.

For the open ACB flow, see Figure 97 on page 403.

Figure 148. Deactivating an application program

1. PUNS cannot send a response to the CLOSE ACB AMRU until there are no more active sessions for the application program. Therefore, after the SSCP sends a request to delete the LUCB, PUNS waits for OPEN/CLOSE to send it a CLOSE ACB AMRU. When it has received this request, PUNS issues CPWAIT and waits for TSC to send a request to delete the LUCB. PUNS posts itself when it has deleted the LUCB and sends a response to configuration services. After sending this response, PUNS sends a response to the CLOSE ACB AMRU.

Figure 149. Deactivating a CDRM: Normal

1. See Figure 146 on page 438 for the RUs that flow for termination of a queued session.

440 z/OS Communications Server: z/OS V2R5.0 Communications Server: SNA Diagnosis Vol 1, Techniques and Procedures

Note: When the CDRM is deactivated, immediate processing takes place. See <u>Figure 150 on page 441</u> for the RUs that flow for immediate deactivation of a CDRM.

Figure 150. Deactivating a CDRM: Immediate

1. The logical unit will not be deactivated. See Figure 145 on page 438 for the RUs that flow for immediate deactivation of a logical unit.

Figure 151. Deactivating a CDRM: Forced

1. The logical unit will not be deactivated. See Figure 145 on page 438 for the RUs that flow for forced deactivation of a logical unit.

Figure 152. Deactivating a CDRM without affecting active sessions: Immediate

Figure 153. Deactivating a CDRM without affecting active sessions: Forced

Figure 154. Deactivating a CDRM on a VTAM level before V3R4.1: Forced or immediate

1. When automatic recovery is specified on both nodes, a CDRM V3R4.1 responds to ACTCDRM(RECOVERY) by sending a negative ACTCDRM response with sense code 08580001, indicating that it rejects the attempt to restart the session that was terminated using a nondisruptive deactivation request. Active LU-LU sessions remain active. The external CDRM in the migration SSCP becomes inactive with sessions, and the external CDRM in the V3R4.1 SSCP becomes inactive.

See z/OS Communications Server: IP and SNA Codes for information on sense code 08580001.

Figure 155. SSCP-SSCP session termination causes LU-LU sessions to be broken

Note:

- 1. A cross-network LU-LU session exists between LU3 and LU2.
- 2. This flow assumes that the gateway VTAM1 established the network address translation for the gateway VTAM1-to-gateway VTAM2 session with the RNAA RU. The NOTIFY to free the transform is sent only if the RNAA that established the address specified "retain address."
- 3. (a) and (b) are used here to differentiate between similar request units.
 - For details of CDSESSEND processing, see the other flow diagrams listed in <u>"Index of deactivation and session termination flows"</u> on page 429.

Figure 156. Route failure in intermediate network causes termination of LU-LU sessions

Note: An outage occurs on the route in Network C used by the LU1_LU2 session. ER_INOP reports the failure to gateway NCP1 and gateway NCP2.

Figure 157. Route failure in intermediate network causes termination of SSCP-SSCP sessions

1. The NOTIFY to free the transform is sent only if the RNAA that established the address specified "retain address."

Note: An outage occurs on the route in Network C used by the gateway VTAM1-to-gateway VTAM2 session. The failure is reported to gateway NCP1 and gateway NCP2 with an ER INOP RU.

Error detection and recovery and SSCP management services

Figure 158 on page 446 through Figure 160 on page 447 show the flow of requests and responses between the SSCP and logical and physical units to handle error recovery processing (ERP) and route Forward and Deliver RUs. Figure 161 on page 447 through Figure 163 on page 448 show the requests and responses between the NetView program, VTAM, the communications adapter, and the local modem for LPDA-2 processing. Figure 164 on page 449 through Figure 167 on page 452 show the flow of requests and responses between the SSCP and logical and physical units to handle extended recovery facility (XRF) session establishments and takeovers with USERVARs.

Index of error detection and recovery and SSCP management services flows

Table 38 on page 446 lists the error detection and recovery and SSCP management services flows that are illustrated here.

Table 38. Index of error detection and recovery and SSCP management services flows	
Flow	Page
Error recovery processing (ERP)	
Hard INOP	Figure 159 on page 447
Soft INOP	Figure 158 on page 446
LPDA-2 processing	
Unsolicited LPDA-2 test on permanent link error with two link segments	Figure 163 on page 448
Unsolicited LPDA-2 test on thresholds reached for an LPDA-2 physical unit (PU) with one link segment	Figure 161 on page 447
Unsolicited LPDA-2 test on thresholds reached for an LPDA-2 physical unit (PU) with two link segments	Figure 162 on page 448
SSCP management services processing	
FORWARD and DELIVER Routing	Figure 160 on page 447
XRF processing	
Secondary logical unit (LU) initiate with USERVAR (LOGON)	Figure 166 on page 451
Third-party initiate (CLSDST PASS)	Figure 167 on page 452
XRF primary and backup sessions, establishment of	Figure 164 on page 449
XRF session switch (takeover)	Figure 165 on page 450

Figure 158. Error recovery processing: Soft INOP

- 1. If the NSEXIT exit routine is scheduled, LUS cleans up the session and sends a positive response to the cleanup request. If the LOSTERM exit routine is scheduled, LUS *does not* clean up the session, and it sends a negative response to the cleanup request.
- 2. CLSDST flows only if the LOSTERM exit routine is scheduled.

Figure 159. Error recovery processing: Hard INOP

- 1. If the NSEXIT exit routine is scheduled, LUS cleans up the session and sends a positive response to the cleanup request. If the LOSTERM exit routine is scheduled, LUS *does not* clean up the session, and it sends a negative response to the cleanup request.
- 2. CLSDST flows only if the LOSTERM exit routine is scheduled.

Figure 160. FORWARD and DELIVER routing

- 1. RUx is a maintenance service RU.
- 2. Either RUy contains data in reply to RUx, or it is an unsolicited RU.

Figure 161. Unsolicited LPDA-2 test on thresholds reached for an LPDA-2 PU with one link segment

Figure 162. Unsolicited LPDA-2 test on thresholds reached for an LPDA-2 PU with two link segments

- 1. This MLS (modem and link status) command is for the first link segment.
- 2. This MLS command is for the second link segment.

Figure 163. Unsolicited LPDA-2 test on permanent link error with two link segments

- 1. This MLT (modem and link test) command is for the first link segment.
- 2. This MLT command is for the first active LPDA-2 PU on the second link segment.

Figure 164. Establishment of XRF primary and backup sessions

GRepresents a generic USERVAR name

R

Represents a resolved USERVAR name

- 1. These RUs or responses contain control vectors that indicate whether the SLU is eligible for an XRF backup session.
- 2. A LOGON or INIT_SELF to an XRF application will generally use a generic (USERVAR) application name which is translated by VTAM to the real application name of the PLU that is currently the XRF active.
- 3. These RUs are used to translate the generic (USERVAR) name used in the LOGON or INIT_SELF to the real name of the application that is currently the XRF active. They are present only if the SLU's SSCP does not already know the current value of the USERVAR or if the USERVAR's type is VOLATILE.
- 4. The BIND includes a correlator ID which will be used to relate this primary session to the corresponding backup session.
- 5. The XRF Active application communicates information about the newly-established session, including the BIND correlator ID, to the XRF Alternate application. The XRF Alternate application uses this information when establishing the corresponding backup session.
- 6. The BIND includes a correlator ID which will be used to relate this backup session to the corresponding primary session. The BIND for the backup session terminates at the NCP; it is not visible to the actual device.

Figure 165. XRF session switch (takeover)

1. Not present if XRF active PLU is not operational.

Figure 166. Secondary logical unit initiate with USERVAR (LOGON)

GRepresents a generic USERVAR name

R

Represents a resolved USERVAR name

1. These RUs are used to translate the generic (USERVAR) name used in the LOGON or INIT_SELF to the real name of the application that is currently the XRF active. They are present only if the SLU's SSCP does not already know the current value of the USERVAR or if the USERVAR's type is VOLATILE.

Figure 167. Third-party initiate (CLSDST PASS)

1. These RUs are used to translate the generic (USERVAR) name used in the LOGON or INIT_SELF to the real name of the application. They are present only if the SLU's SSCP does not already know the current value of the USERVAR or if the USERVAR's type is VOLATILE.

Appendix C. APPN flows

This appendix describes the flows between APPN end nodes, network nodes, interchange nodes, and the subarea network. The flow diagrams are divided into the following categories:

- "CP-CP session flows" on page 457
- "Directory services flows" on page 464
- "LU-LU session flows" on page 485
- "Dependent LU server flows" on page 515
- "High-Performance Routing flows" on page 539

Table 39 on page 453 lists all the APPN flows illustrated here.

Table 39. Index of APPN flows	
APPN flow	Page
CP-CP session flow	Page
Activating a CP-CP contention loser session	Figure 169 on page 460
Activating a CP-CP contention winner session	Figure 168 on page 458
Activating an APPN Host-to-Host Channel	Figure 173 on page 463
Activating a leased APPN Node type 2.1	Figure 172 on page 462
Host CP initiating deactivation of CP-CP session	Figure 170 on page 461
Remote node initiating deactivation of CP-CP session	Figure 171 on page 461
Dependent LU server flow	Page
Single subnetwork	
Activating resources	
CPSVRMGR pipe activation, DLUR-Initiated	Figure 233 on page 517
CPSVRMGR pipe activation, DLUS-initiated	Figure 234 on page 518
Dependent LUs, dynamic registration and activation of	Figure 236 on page 519
Dependent LUs, activation of pre-defined	Figure 237 on page 520
	Figure 235 on page 519
SSCP-PU session activation race	Figure 238 on page 520
Deactivating resources	
CPSVRMGR pipe deactivation	Figure 239 on page 521
Downstream PU outage	Figure 240 on page 522
REQDISCONT (immediate) received from downstream PU	Figure 242 on page 524
REQDISCONT (normal) received from downstream PU	Figure 241 on page 523
LU-LU sessions	
APPN PLU-initiated to a dependent SLU	Figure 247 on page 529
Session termination, USS flows for	Figure 250 on page 532

APPN flow	Page
USS SLU-initiated to APPN PLU	Figure 248 on page 530
USS SLU-initiated to subarea PLU	Figure 249 on page 531
SSCP-PU, SSCP-LU session deactivation	
Forced	Figure 244 on page 526
Normal	Figure 243 on page 525
With Giveback (ANS=CONT)	Figure 246 on page 528
With Giveback (ANS=STOP)	Figure 245 on page 527
Cross subnetwork	
PLU-Initiated Session with DLUS and DLUR within Different Subnetworks	Figure 251 on page 533
PLU-Initiated Session with DLUS and PLU in one Subnetwork and DLUR in Another	Figure 253 on page 535
SLU-Initiated Session with DLUS and DLUR within Different Subnetworks	Figure 255 on page 537
Directory services flow	Page
Locate resource	
APPN and subarea Network	Figure 187 on page 478
APPN network, complex	Figure 182 on page 472
Complex APPN network using more than one CDS	Figure 183 on page 474
CP-CP session terminates	Figure 192 on page 483
CP network broadcast initiation	Figure 180 on page 470
EN to NN	Figure 176 on page 466
EN to NN to EN	Figure 177 on page 467
EN to NN to NN to NN	Figure 179 on page 469
EN to NN to subarea network	Figure 181 on page 471
EN to NN to two ENs	Figure 178 on page 468
NN receives network broadcast request	Figure 193 on page 484
NNS of the OLU is at pre-V4R2 level	Figure 185 on page 476
Directory search verification reduction	Figure 190 on page 481
SLU-initiated session	Figure 191 on page 482
Register resource	
EN to NN to CDS	Figure 174 on page 465
With error recovery	Figure 175 on page 466
High Performance Routing (HPR) flow	Page
Rapid-transport protocol (RTP) connection over portion of session path	Figure 259 on page 543

APPN flow	Page
Rapid-transport protocol (RTP) across composite nodes with a T2.1 connection through NCP	Figure 260 on page 544
Rapid-transport protocol (RTP) across composite nodes with a T2.1 connection through VTAM	Figure 261 on page 545
Rapid-transport protocol (RTP) across composite nodes with a virtual-route-based transmission group, NCP does ANR routing	Figure 262 on page 546
Rapid-transport protocol (RTP) across composite nodes with a virtual-route-based transmission group, VTAM does ANR routing	Figure 263 on page 547
Two rapid-transport protocol (RTP) nodes with a T2.1 connection	Figure 257 on page 541
Two rapid-transport protocol (RTP) nodes with a virtual-route-based transmission group	Figure 258 on page 542
LU-LU sessions flow	Page
APPN networkNNSEN (PLU)	
SLU-initiated, no queueing	Figure 201 on page 490
SLU-initiated, queued by the PLU	Figure 202 on page 491
APPN networkNNSEN(SLU)	
PLU-initiated, no queueing	Figure 199 on page 489
PLU-initiated, queued by the SLU	Figure 200 on page 490
APPN network (PLU)ICN==SA(SLU), PLU-Initiated	
Directed search without required precomputed RSCV	Figure 225 on page 508
No queueing	Figure 224 on page 507
Queued by SLU	Figure 227 on page 510
Search-only flow transformed into a DSRLST	Figure 223 on page 506
USERVAR resolution required	Figure 226 on page 509
APPN network (PLU)ICN==VR-based TG==ICNAPPN network (SLU)	
PLU-initiated	Figure 232 on page 515
APPN network (SLU)ICN==SA(PLU)	
Autologon, PLU not available initially	Figure 231 on page 514
SLU-initiated, no queueing	Figure 228 on page 511
SLU-initiated, queued by the PLU	Figure 229 on page 512
CLSDST PASS; SLU is single-session capable	
From APPN to subarea	Figure 220 on page 504
Through APPN	Figure 219 on page 503
EN-NN-EN, PLU-initiated, no queueing (including BIND flows for intermediate network node)	Figure 221 on page 505
EN (PLU)NNSAPPN network	

Table 39. Index of APPN flows (continued)	
APPN flow	Page
PLU-initiated, no queueing	Figure 194 on page 487
PLU-initiated, queued by the PLU	Figure 195 on page 487
PLU-initiated, queued by the SLU	Figure 196 on page 488
EN (SLU)NNSAPPN network	
SLU-initiated, no queueing	Figure 197 on page 488
SLU-initiated, queued by the PLU	Figure 198 on page 489
Intermediate Network Node (INN) BIND. The LOCATE did not go through this node.	Figure 222 on page 506
SA (PLU)==ICNAPPN network (SLU)	
DSRLIST transforming into PLU-initiated, search-only	Figure 203 on page 491
PLU-initiated, no queueing	Figure 204 on page 492
PLU-initiated, queued by the SLU	Figure 206 on page 493
PLU-initiated, USERVAR resolution required	Figure 205 on page 493
SA (SLU)==ICNAPPN network (PLU)	
Autologon, PLU not available initially	Figure 210 on page 497
SLU-initiated, no queueing	Figure 208 on page 495
SLU-initiated, queued by the PLU	Figure 209 on page 496
Session release request	
SA(PLU)==ICNAPPN network(SLU)	Figure 217 on page 502
SA(SLU)==ICNAPPN network(PLU)	Figure 218 on page 503
Session termination, forced	
SA(PLU)==ICNAPPN Network(SLU), pending active session. PLU is accessible without going into APPN.	Figure 214 on page 500
SA(PLU)==ICNAPPN Network(SLU), queued session	Figure 215 on page 501
SA(PLU)==ICNAPPN Network(SLU), queued session. PLU is accessible without going into APPN.	Figure 216 on page 502
SA(SLU)==ICNAPPN Network(PLU), pending active session	Figure 213 on page 499
Session termination, orderly	
SA(PLU)==ICNAPPN Network(SLU), active session	Figure 211 on page 498
APPN Network(PLU)ICN==SA(SLU), active session	Figure 212 on page 499

Many abbreviations are shown at the top of the flow diagrams. The following list gives the meaning of those abbreviations:

ANR

Automatic network routing

APPC

Advanced program-to-program communication program

BF

Boundary function

CDS

Central Directory Server

CP

Control point

DLUR

Dependent logical unit requestor

DLUS

Dependent logical unit server

ΕN

End node

ICN

Interchange node

LU

Logical unit

NN

Network node

NNS

Network node server

PLU

Primary logical unit

PU

Physical unit

PUNS

Physical unit services

RTP

Rapid-transport protocol

SLU

Secondary logical unit

SSCP

System services control point

ΤP

Transaction program

TSC

Transmission subsystem component

CP-CP session flows

This information illustrates communication protocols between nodes in a mixed APPN and subarea network. Use these flows as guidelines to help analyze and isolate network problems caused by unexpected network events, such as protocol violations.

Index of CP-CP session flows

Table 40 on page 457 lists the CP-CP session flows illustrated here.

Table 40. Index of CP-CP session flows	
Flow	Page
Activating a CP-CP contention loser session	Figure 169 on page 460

Table 40. Index of CP-CP session flows (continued)	
Flow	Page
Activating a CP-CP contention winner session	Figure 168 on page 458
Activating an APPN Host-to-Host Channel	Figure 173 on page 463
Activating a leased APPN Node type 2.1	Figure 172 on page 462
Host CP initiating deactivation of CP-CP session	Figure 170 on page 461
Remote node initiating deactivation of CP-CP session	Figure 171 on page 461

Activating a CP-CP contention-winner session

Figure 168. CP-CP contention-winner session activation

- 1. Configuration services sends an ADJACENT_CP_CONTACTED signal to the CP when the first link supporting CP-CP sessions is activated with an adjacent CP.
- 2. The CP sends a START_TP signal to the APPC PAB to request initiation of the Request CP Capabilities Transaction Program (TP). An ACT_CP_CP_SESSION request is queued to the START_TP signal for

- processing by the Request CP Capabilities TP. The ACT_CP_CP_SESSION initiates the activation of a contention winner CP-CP session with an adjacent node.
- 3. APPC sends an ATTACH TP AMU for the Request CP Capabilities TP to TP Services.
- 4. The Request CP Capabilities TP issues an APPCCMD CONTROL=ALLOC, QUALIFY=CONWIN macroinstruction to allocate a conversation between the TP and the partner TP and a contention winner session between the local LU and the remote LU.
- 5. APPC issues a VTAM SIMLOGON macroinstruction to initiate a session in which APPC acts as the PLU.
- 6. Subarea session services sends a REQUEST_SINGLE_HOP_ROUTE signal to the CP to request the least-weight single-hop route from the origin to the destination.
- 7. The CP sends to subarea session services the information requested in a REQUEST_SINGLE_HOP_ROUTE_REPLY.
- 8. RNAA flows if the CP-CP session is being set up over a type 2.1 link and a network address is needed. If the CP-CP session is being set up over a VR-based transmission group, CDINIT format 5 is sent to the session partner to get a network address.
- 9. The response is received from the boundary function.
- 10. LUS posts the SIMLOGON complete.
- 11. APPC issues an OPNDST ACCEPT macroinstruction to continue establishment of a session between APPC in this node (acting as the PLU) and APPC in the adjacent node (acting as the SLU).
- 12. The BIND for the contention winner session is transmitted to the adjacent node.
- 13. The BIND response for the contention winner session is received from the adjacent node.
- 14. LUS posts the OPNDST ACCEPT complete.
- 15. APPC posts the APPCCMD CONTROL=ALLOC, QUALIFY=CONWIN complete, supplying the Request CP Capabilities TP a conversation ID and a contention winner conversation group ID (CGID).
- 16. The Request CP Capabilities TP issues an APPCCMD CONTROL=SEND, QUALIFY=DATA macroinstruction to initiate the sending of the CP Capabilities data to the adjacent CP.
- 17. APPC posts the APPCCMD CONTROL=SEND, QUALIFY=DATA instruction complete, indicating that the output buffer has been filled with the CP Capabilities data.
- 18. At the request of the Request CP Capabilities TP, the Receive and Check CP Capabilities TP issues an APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC macroinstruction to cause the transmission of the CP Capabilities data to the adjacent CP, and to initiate the receiving of CP Capabilities data from the adjacent CP.
- 19. APPC sends to the adjacent node a PIU with the CP Capabilities data. The PIU also carries a request that TP services in the adjacent node attach its CP Capabilities TP.
- 20. APPC receives from the adjacent node a PIU containing the CP Capabilities of the adjacent CP.
- 21. APPC posts the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC macroinstruction complete.
- 22. The Request CP Capabilities TP responds to the successful completion of the RECEIVE macroinstruction by sending to the CP an ACT_CP_CP_SESSION_REPLY, which contains both the contention winner CGID and the CP Capabilities data received from the adjacent CP.
- 23. If both the contention winner and contention loser CP-CP sessions are active, the CP sends a CP_STATUS(ACTIVE,BOTH) signal to configuration services.
- 24. If both CPs are network nodes, a topology database update (TDU) will flow when the contention winner session is active. The TDU is used to update the partner regarding changes to network topology that have occurred since the two CPs were last in session.
 - If the network node server is a VTAM, a TDU will also flow over the contention winner session from a VTAM end node to its network node server. This TDU carries information about changes that have occurred to the end node connections since the end node and the network node server were last in session.

Activating a CP-CP contention-loser session

Figure 169. CP-CP contention-loser session activation

- 1. The BIND for the contention loser CP-CP session is received from the adjacent node.
- 2. The BIND drives the SCIP exit routine.
- 3. The SCIP exit causes APPC to issue an OPNSEC macroinstruction to establish a session between APPC (operating as the SLU) and the PLU that sent the BIND.
- 4. The OPNSEC macroinstruction causes a BIND response to be sent to the adjacent node.
- 5. The OPNSEC is posted complete.
- 6. APPC receives from the adjacent node a PIU containing the CP Capabilities of the adjacent CP. The PIU also contains an FMH-5 specifying that the CP Capabilities Transaction Program (TP) is to be attached.
- 7. APPC sends an ATTACH_TP AMU to TP Services to request the attachment of the CP Capabilities TP.
- 8. After attachment, the CP Capabilities TP issues an APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC instruction to receive the CP Capabilities of the adjacent CP.
- 9. APPC posts the APPCCMD CONTROL=RECEIVE, QUALIFY=SPEC macroinstruction complete.
- 10. The CP Capabilities TP builds and sends to the CP a CP_CP_SESSION_ACT signal, containing the contention loser Conversation Group Identifier (CGID) and the CP Capabilities of the adjacent CP.
- 11. The CP sends to the CP Capabilities TP a CP_CP_SESSION_ACT_REPLY. It contains the CP Capabilities of this node and also indicates whether SSC was able to successfully process the CONLOSER activation request.
- 12. After receiving the CP_CP_SESSION_ACT_REPLY, the CP Capabilities TP issues an APPCCMD CONTROL=SEND,QUALIFY=DATA to send the CP Capabilities to the adjacent CP.
- 13. A PIU with the CP Capabilities is transmitted to the adjacent CP.
- 14. When the transmission is complete, the APPCCMD CONTROL=SEND, QUALIFY=DATA macroinstruction is posted complete by APPC.

- 15. The CP Capabilities TP issues an APPCCMD CONTROL=DEALLOC, QUALIFY=FLUSH macroinstruction to flush the local LU send buffer and deallocate the conversation normally.
- 16. APPC posts the APPCCMD CONTROL=DEALLOC, QUALIFY=FLUSH macroinstruction back upon completion.

Host CP initiating deactivation of CP-CP session

Figure 170. Host CP initiating deactivation of CP-CP session

- 1. The CP sends a DEACT_CP_CP_SESSION to the SEND_REJECT_CONVGRP Transaction Program (TP). The CP sends this signal when it must have a particular CP-CP session with an adjacent node unbound.
- 2. The SEND_REJECT_CONVGRP TP issues an APPCCMD CONTROL=REJECT, QUALIFY=CONVGRP macroinstruction to deactivate the specified session.
- 3. APPC, responding to the APPCCMD CONTROL=REJECT, QUALIFY=CONVGRP macroinstruction, issues a CLSDST RELEASE macroinstruction to terminate the session.
- 4. APPC also builds and sends a CP_CP_SESSION_DEACT for the specified session to the CP. This signal is sent by APPC to notify the CP that a CP-CP session outage is detected. It contains the session type and CGID of the CP-CP session to which the outage is detected.
- 5. The CLSDST RELEASE causes SSCP to send an UNBIND for the particular session to the partner LU.
- 6. The CP sends a CP_STATUS(INACTIVE) signal for the specified session to the SSCP.
- 7. A response to the UNBIND is received by the SSCP from the partner LU.
- 8. Having received the UNBIND response, the SSCP posts complete the CLSDST RELEASE.
- 9. APPC posts the TP APPCCMD CONTROL=REJECT, QUALIFY=CONVGRP macroinstruction complete.

Remote node initiating deactivation of CP-CP session

Figure 171. Remote node initiating deactivation of CP-CP session

- 1. An UNBIND is received from the adjacent node for a specific CP-CP session. The UNBIND carries a sense code associated with the session outage.
- 2. The UNBIND drives the SCIP exit routine.
- 3. The SSCP sends an UNBIND response to the adjacent node.
- 4. APPC sends a CP_CP_SESSION_DEACT to the CP for the session specified in the UNBIND. The CP_CP_SESSION_DEACT carries the sense code originally carried by the UNBIND.
- 5. The CP notifies the SSCP that the specified session is now inactive.

Activating a leased APPN node type 2.1

Figure 172. Activating a leased APPN node type 2.1

If this is a network node, a topology database update (TDU) is sent to all CP-CP session partners, informing them that this new APPN connection is available. If this is an end node, and the network node server is a VTAM, a TDU will be sent to the server, informing it of the new connection.

Leased APPN PUs, as opposed to non-APPN PUs, have an additional CONNOUT, XID, and REQCONT flow. This flow allows transmission group (TG) negotiation during prenegotiation XID exchanges.

Activating an APPN host-to-host channel

Figure 173. Activating an APPN host-to-host channel

Note: XID2 Type 0 and Type 7 are sent across each subchannel associated with an APPN host-to-host channel connection. The XID3s are sent by choosing one of the available write subchannels for transmission.

Directory services flows

To understand the following flows, it is helpful to understand the concept of resource registration and the implications of the values coded on the REGISTER operand. For information on resource registration and registering application programs, see z/OS Communications Server: SNA Network Implementation Guide. For information about coding the REGISTER operand, see z/OS Communications Server: SNA Resource Definition Reference.

In these directory services flows, assume the following conditions, unless stated otherwise:

- Sessions are initiated by the primary logical unit (PLU).
- The flows illustrate search-only requests.

Index of directory services flows

Table 41 on page 464 lists the directory services flows illustrated here.

Table 41. Index of directory services flows	
Flow	Page
Locate resource	
APPN and subarea Network	Figure 187 on page 478
APPN network, complex	Figure 182 on page 472
Complex APPN network using more than one CDS	Figure 183 on page 474
CP-CP session terminates	Figure 192 on page 483
CP network broadcast initiation	Figure 180 on page 470
EN to NN	Figure 176 on page 466
EN to NN to EN	Figure 177 on page 467
EN to NN to NN	Figure 179 on page 469
EN to NN to subarea network	Figure 181 on page 471
EN to NN to two ENs	Figure 178 on page 468
NN receives network broadcast request	Figure 193 on page 484
NNS of the OLU is at pre-V4R2 level	Figure 185 on page 476
Directory search verification reduction	Figure 190 on page 481
SLU-initiated session	Figure 191 on page 482
Resource registration flows	
EN to NN to CDS	Figure 174 on page 465
With error recovery	Figure 175 on page 466

Register resource flows

Figure 174 on page 465 and Figure 175 on page 466 show the process of registering resources.

Resource registration: EN to NN to CDS

Figure 174. Resource registration: EN to NN to CDS

Note: In this figure, the end node registers its resources to NN1:

- LUA
- LUB
- LUC

NN1 owns the following resources:

- LUX
- LUY
- LUZ

NN1 registers the following resources to the central directory server (CDS):

- LUA
- LUB
- LUC
- LUX
- LUY
- LUZ
 - 1. The VTAM operator in the end node activates a major node containing LUA, LUB, and LUC. The end node sends a registration request to NN1.
 - 2. NN1 adds entries to the directory database and then sends a registration reply to EN1.
 - 3. NN1 sends a central registration request to CDS1. The registration request travels with a LOCATE GDS variable because the central directory server can be several nodes away.
 - 4. CDS1 returns a reply to NN1.
 - 5. The VTAM operator activates a major node containing applications X, Y, and Z. The subarea SSCP notifies the APPN control point (CP) of resources owned by NN1 that should be centrally registered. (CRR stands for central resource registration.)
 - 6. APPN CP sends an immediate reply to the subarea SSCP.
 - 7. NN1 sends a central registration request to CDS1.

- 8. CDS1 returns a reply to NN1.
- 9. The end node sends a DELETE request to NN1.
- 10. NN1 removes LUB from its directory database and returns a reply to the end node. NN1 does not forward the DELETE request to the central directory server.

Resource registration with error recovery

Figure 175. Resource registration with error recovery

- 1. The VTAM operator in the end node activates a major node containing LUA, LUB, and LUC. The end node sends a registration request to NN1.
- 2. The network node begins adding resources to its directory database. The network node successfully adds LUA. However, it encounters a problem and cannot continue adding resources to the directory database. The network node sends a negative reply to the end node to indicate which resource the network node was trying to add when it encountered the problem. The CV'36' indicates the sense code. The CV'37' indicates where the network node stopped adding to its directory database.
- 3. The end node tries again to register those resources that were not successfully registered before.
- 4. The network node successfully adds to the directory database and returns a reply.

Locate resource flows

Figure 176 on page 466 through Figure 193 on page 484 show the search process.

Locate resource: EN to NN

Figure 176. Locate resource: EN to NN

Locate resource: EN to NN to EN

Figure 177. Locate resource: EN to NN to EN

Note: Nodes are connected by CP-CP sessions only.

- 1. The end node sends a search request for a target resource to the network node server. As the network node server of the originating LU, NN1 looks for the target resource in the directory database. NN1 has knowledge in the directory that the target resource resides on a served end node.
- 2. NN1 sends a search request to the end node.
- 3. The APPN control point (CP) sends a SESS_REQ signal to the SSCP.
- 4. The SSCP sends a SESS_REQ_COMP signal to the APPN CP, indicating that the target resource is located.
- 5. The end node sends a LOCATE reply to the network node server.
- 6. NN1 sends a LOCATE reply to the end node.

Locate resource: EN to NN to two ENs

Figure 178. Locate resource: EN to NN to two ENs

Note: Nodes are connected by CP-CP sessions only.

- 1. The end node sends a search request for a target resource to the network node server. The network node server looks for the target resource in the directory database. The end node that owns the resource did not register its resources.
- 2. The APPN control point (CP) requests that the subarea SSCP check for information about the location of the resource.
- 3. The subarea SSCP replies that the target resource is not known.
- 4. Because NN does not have the target resource in either its APPN or subarea directories, it initiates a resource discovery search. The research discovery search starts at the beginning of the search logic with a generic request, which is not linked to the original OLU. Because the resource discovery search starts at the beginning of the search logic, another CACHE SEARCH is performed.
- 5. The subarea SSCP replies that the target resource is not known.
- 6. The network node server performs a domain broadcast by sending the search request to all served end nodes that indicate on the CP_CAPABILITIES exchange that they are to be searched on domain broadcast.
- 7. Each end node that receives the request replies to the search request. EN1 replies that the resource is not found. EN2 replies that it owns the resource.
- 8. Because the resource discovery search found the resource, the NN sends a search to the target, containing the original session-specific information.
- 9. The target is found.
- 10. The network node server replies to the end node.

468 z/OS Communications Server: z/OS V2R5.0 Communications Server: SNA Diagnosis Vol 1, Techniques and Procedures

Locate resource: EN to NN to NN to NN

CONFIG: EN - NN1 - NN2 - NN3

NN3 ΕN NN1 NN2 APPN CP APPN CP APPN CP APPN CP SA SSCP SA SSCP SA SSCP SA SSCP SESS REQ (1)LOCATE-FIND-CDINIT (2)LOCATE-FIND-CDINIT (3)LOCATE-FIND-CDINIT (4)CACHE_SEARCH (5)CACHE_SEARCH_REPLY (6)SESS REQ (7)SESS_REQ_COMP (8)I OCATE-FOLIND-CDINIT (8)LOCATE-FOUND-CDINIT (9)LOCATE-FOUND-CDINIT

Figure 179. Locate resource: EN to NN to NN to NN

SESS_REQ_COMP

Note: Nodes are connected by CP-CP sessions only.

- 1. The end node sends a search request for a target resource to the network node server. The network node looks for the target resource in the directory database. The network node has knowledge in the directory that the target resource resides on NN3.
- 2. The network node sends a directed search request to NN3. Because NN1 does not have direct CP-CP sessions with NN3, NN1 sends the directed search request to NN3 through NN2.
- 3. NN2 is not the destination of the directed search; therefore, NN2 forwards the request to NN3.
- 4. APPN control point (CP) sends a request for information to the subarea SSCP.
- 5. The subarea SSCP replies that the target resource can be found in the subarea network.
- 6. APPN control point (CP) sends a SESS REQ signal to the subarea SSCP.
- 7. The subarea SSCP sends a SESS_REQ_COMP signal to the APPN CP, indicating that the target resource is located.
- 8. NN3 sends a LOCATE reply to NN2, which forwards the reply to NN1.
- 9. NN1 sends a LOCATE reply to the end node.

Locate resource: CP network broadcast initiation

Figure 180. Locate resource: CP network broadcast initiation

- A resource in NN1 requests a search for a resource on NN4. As network node server of the originating LU, NN1 looks for the target resource in the directory database. NN1 has no knowledge of the location of the target resource. NN1 initiates a resource discovery search for the target, which contains no session-specific information.
- 2. NN1 has no APPN-domain end nodes, therefore no domain broadcast occurs. There is no central directory server in the network; therefore, NN1 sends a broadcast search request to every network node with which NN1 has CP-CP sessions.
- 3. Each network node that receives the network broadcast request forwards the request to every network node with which it has CP-CP sessions. (It does not forward the request to the node from which it received the broadcast request.) Those nodes then begin searching their respective domains for the target resource. (For broadcast-specific flows for those nodes, see Figure 193 on page 484.)
- 4. NN2 searches its domain for the resource. (Flows are not shown; see <u>Figure 193 on page 484</u>.) NN2 does not locate the resource. However, NN2 does not reply to NN1 until it has received a reply from all of the nodes to which it forwarded the request. NN3 does not locate the resource in its own domain and replies to NN2.
- 5. NN2 now returns a negative reply to NN1 because NN2 has exhausted its search logic.
- 6. NN4 owns the resource; therefore, it returns a positive reply to NN1.
- 7. Because the resource discovery search located the resource, NN1 sends a search to the target containing the original session-specific information.
- 8. The target is found.

Locate resource: EN to NN to subarea network

Figure 181. Locate resource: EN to NN to subarea network

- 1. The end node sends a search request for a target resource to the network node server. As network node server of the originating LU, NN1 looks for the target resource in the directory database. NN1 has no knowledge of the target resource in the directory database.
- 2. The APPN control point (CP) requests that the subarea SSCP check for information about the location of the resource.
- 3. The subarea SSCP replies that an entry for the target resource is found.
- 4. The APPN CP requests that the subarea SSCP send the search request to the target resource.
- 5. The request is sent to the owning SSCP.
- 6. The owning SSCP indicates that it owns the target resource.
- 7. The subarea SSCP replies to the APPN CP that the target resource is found.
- 8. NN1 returns a positive reply to EN1.

Locate resource: Complex APPN network

Figure 182. Locate resource: Complex APPN network

- 1. The end node sends a search request for a target resource to the network node server. As network node server of the originating LU, NN1 looks for the target resource in the directory database. NN1 has no knowledge of the target resource in the directory database.
- 2. The APPN control point (CP) requests that the subarea SSCP check for information about the location of the resource.
- 3. The subarea SSCP replies that the target resource is not known.

- 4. Because NN1 does not have the target resource in either its APPN or subarea directories, it initiates a resource discovery search for the resource. Because the resource discovery search starts at the beginning of the search logic, another CACHE_SEARCH is performed. NN1 has no APPN-domain end nodes; therefore, no domain broadcast occurs.
- 5. The subarea SSCP replies that the target resource is not known.
- 6. NN1 does not initiate a network broadcast because there is a central directory server (CDS) in the network; therefore, NN1 sends a request to this CDS.
- 7. CDS1 receives the request and performs origin CDS logic. CDS1 looks in its directory database for the target resource and has an entry that indicates that the target resource resides on NN4. CDS1 sends the request to NN4.
- 8. NN4 owns the resource; therefore, NN4 returns a positive reply.
- 9. CDS1 replies to NN1.
- 10. Because the resource discovery search found the resource, NN1 sends a search to the target, containing the original session-specific information.
- 11. The target is found.
- 12. NN1 replies to the end node.

Locate resource: Complex APPN network using more than one CDS

Figure 183. Locate resource: Complex APPN network using more than one CDS (part 1 of 2)

Figure 184. Locate resource: Complex APPN network using more than one CDS (part 2 of 2)

- 1. The end node sends a search request for a target resource to the network node server. As network node server of the originating LU, NN1 looks for the target resource in the directory database. NN1 has no knowledge of the target resource in the directory database.
- 2. The APPN control point (CP) requests that the subarea SSCP check its resource information for information about the location of the resource.
- 3. The subarea SSCP replies that the target resource is not known.
- 4. Because NN1 does not have the target resource in either its APPN or subarea directories, it initiates a resource discovery search for the resource. Because the resource discovery search starts at the beginning of the search logic, another CACHE_SEARCH is performed.
- 5. The subarea SSCP replies that the target resource is not known.
- 6. NN1 has no APPN-domain end nodes; therefore, no domain broadcast occurs. NN1 does not initiate a network broadcast because there is a central directory server (CDS) in the network. NN1 sends a request to CDS1.
- 7. CDS1 receives the request and performs origin CDS logic. CDS1 looks in its directory database for the target resource and does not have an entry. Therefore, the APPN control point (CP) requests the location of the resource from the subarea SSCP.
- 8. The subarea SSCP replies that the target resource is not known.
- 9. CDS1 has no domain end nodes; therefore, no domain broadcast occurs. CDS1 begins an alternate CDS search by sending a request to CDS2.
- 10. CDS2 looks in its directory database for the target resource and does not have an entry. The APPN CP requests that the subarea SSCP check for information about the location of the resource.
- 11. The subarea SSCP replies that the target resource is not known.
- 12. CDS2 has no domain end nodes to which to send a domain broadcast. Therefore, CDS2 returns a negative reply to CDS1.
- 13. CDS1 continues the alternate CDS search by sending a request to CDS3.

- 14. CDS3 looks in its directory database and finds an entry that indicates that the target resource resides on NN3. CDS3 replies to CDS1 with this information.
- 15. CDS1 sends a request to NN3 to verify that the target actually resides there.
- 16. NN3 replies to CDS1 that it does, indeed, own the target resource.
- 17. CDS1 returns a reply to NN1.
- 18. Because the resource discovery search found the resource, NN1 sends a search to the target, containing the original session-specific information.
- 19. The target is found.
- 20. NN1 returns a reply to the end node.

Locate resource: Network node server, NN1, of the originating logical unit (OLU) is at pre-V4R2 level

CONFIG: EN - NN1 - NN2 - CDS1

Figure 185. Locate resource: Network node server, NN1, of the originating logical unit (OLU) is at pre-V4R2 level (part 1 of 2)

Figure 186. Locate resource: Network node server, NN1, of the originating logical unit (OLU) is at pre-V4R2 level (part 2 of 2)

- 1. The end node sends a search request for a target resource to the network node server. As network node server of the originating LU, NN1 looks for the target resource in the directory database. NN1 has no knowledge of the target resource in the directory database.
- 2. The APPN control point (CP) requests that the subarea SSCP check its resource information for the location of the resource.
- 3. The subarea SSCP replies that the target resource is not known. NN1 has no APPN end nodes; therefore, no domain broadcast occurs.
- 4. Because there is a central directory server (CDS) in the network, NN1 does not initiate a network broadcast. Instead, NN1 sends a request to CDS1.
- 5. The CDS does not know the target resource in its directory. The APPN control point (CP) requests that the subarea SSCP check its resource information for the location of the resource.
- 6. The subarea SSCP replies that the target resource is not known.
- 7. Because CDS1 does not have the target resource in either its APPN or subarea directories, it initiates a resource discovery search. Because the resource discovery search starts at the beginning of the search logic, another CACHE_SEARCH is performed.
- 8. The subarea SSCP replies that the target resource is not known.
- 9. CDS1 has no APPN end nodes; therefore, no domain broadcast occurs. CDS1 initiates a network broadcast for the target resource.
- 10. NN2 forwards the network broadcast request and then begins to search its domain.
- 11. After completing its search logic, NN1 returns a negative reply to the network broadcast request.
- 12. The subarea SSCP on NN2 indicates that the resource is found; therefore, a positive reply is returned.
- 13. Because the broadcast that was initiated by the resource discovery search found the resource, the original search request containing session-specific information is sent to the target location, NN2.
- 14. NN2, the owner of the resource, returns a positive reply.
- 15. CDS1 replies to NN1, and NN1 replies to the end node.

Locate resource: APPN and subarea network

Figure 187. Locate resource: APPN and subarea network (part 1 of 3)

Figure 188. Locate resource: APPN and subarea network (part 2 of 3)

Figure 189. Locate resource: APPN and subarea network (part 3 of 3)

- 1. The end node sends a search request for a target resource to the network node server. As network node server of the originating LU, NN1 looks for the target resource in the directory database. NN1 has no knowledge of the target resource in the directory database.
- 2. The APPN control point (CP) requests that the subarea SSCP check for information about the location of the resource.
- 3. The subarea SSCP replies that the target resource is not known.
- 4. Because NN1 does not have the target resource in either its APPN or subarea directories, it initiates a resource discovery search for the resource. Because the resource discovery search starts at the beginning of the search logic, another CACHE_SEARCH is performed.
- 5. The subarea SSCP replies that the target resource is not known.
- 6. NN1 has no APPN-domain end nodes; therefore, no domain broadcast occurs. NN1 does not initiate a network broadcast because there is a central directory server (CDS) in the network; therefore, NN1 sends a request to CDS1.
- 7. CDS1 receives the request and performs origin CDS logic. CDS1 looks in its directory database for the target resource and does not have an entry. Therefore, the APPN control point (CP) requests the location of the resource from the subarea SSCP.
- 8. The subarea SSCP replies that the target resource is not known.
- 9. CDS1 has no domain end nodes; therefore, no domain broadcast occurs. There are no other CDSs in the network; therefore, no alternate CDS search occurs. CDS1 initiates a network broadcast. CDS1 sends the broadcast request to all nodes with which it has CP-CP sessions.

Note:

- a. CDS1 must send the broadcast request to NN1, even though NN1 originated the request to CDS1, because there can be parts of the APPN network that are reachable only through NN1 (these parts are not shown here).
- b. The network broadcast sent by a CDS indicates that attached subarea networks should not be searched at this time.
- 10. Both NN1 and ICN2 respond that the target is not found.

- 11. After CDS1 has collected all the replies from the network broadcast, CDS1 continues the search with an interchange node search. CDS1 sends the interchange node search request to ICN2. This request indicates that the interchange node is to search its attached subarea network.
- 12. The APPN CP requests that the subarea SSCP initiate subarea routing. ICN2 sends DSRLST to adjacent SSCPs.
- 13. The subarea SSCP requests that the APPN CP initiate APPN searching.
- 14. ICN3 looks for the target resource in the directory database. ICN3 has knowledge in its directory database that the target resource resides in NN4. ICN3 sends a directed search request to NN4.
- 15. The APPN CP sends a SESS_REQ signal to the subarea SSCP.
- 16. The subarea SSCP sends a SESS_REQ_COMP to the APPN CP indicating that the target resource is located.
- 17. NN4 returns a positive reply to NN3.
- 18. The APPN CP replies to the subarea SSCP.
- 19. Positive responses to DSRLSTs are returned.
- 20. The subarea SSCP replies to the APPN CP.
- 21. ICN2 replies to CDS1.
- 22. CDS1 replies to NN1.
- 23. Because the resource discovery search located the resource, NN1 sends a search to the target, containing the original session-specific information.
- 24. A DSRLST, which contains session-specific information, is sent.
- 25. NN1 replies to the end node.

Locate resource: Directory search verification reduction

Figure 190. Locate resource: Directory search verification reduction

- 1. The subarea SSCP requests information about a resource and does not require the APPN CP to verify the location of the resource.
- 2. The end node sends a search request for the target resource to its network node server. Only network node servers, when requested by the origin node, can respond to search requests without first verifying the location of the resource.
- 3. NN1 looks for the target resource in its directory database. NN1 has knowledge in its directory that the target resource resides on NN3. Further, NN1 has information that allows the search to succeed, without verifying the location of the target resource. Therefore, NN1 returns a positive reply on behalf of NN3.
- 4. The APPN CP replies to the subarea SSCP.

Locate resource: SLU-initiated session

CONFIG: SLU EN1 -NN1 -NN2 -NN3 -EN2

Figure 191. Locate resource: SLU-initiated session

- 1. The end node sends a session request for a primary LU (PLU) to its network node server. NN1 looks for the PLU in its directory database. NN1 has knowledge in the directory database that the PLU resides on EN2, which is served by NN3.
- 2. The network node sends a directed search request to NN3. Because NN1 does not have direct CP-CP sessions with NN3, NN1 sends the directed search request to NN3 through NN2.
- 3. NN2 is not the destination of the directed search; therefore, NN2 forwards the request to NN3.
- 4. NN3 receives the request and forwards it to EN2.
- 5. The APPN CP sends a SESS REQ signal to the subarea SSCP.
- 6. The PLU initiates a search for the secondary LU (SLU), indicating that the location of the target does not have to be verified but that an RSCV must be calculated.
- 7. The end node sends a search request for the SLU to its network node server.
- 8. NN3 looks for the SLU in its directory database. NN3 has knowledge in its directory database that the SLU resides on EN1. Further, NN3 has information that allows the search to succeed without verifying the location of the SLU. On behalf of EN1, NN3 returns a positive reply, which includes the RSCV for the session.
- 9. The APPN CP replies to the subarea SSCP for the PLU-initiated request.

- 10. The subarea SSCP replies to the APPN CP for the SLU-initiated request, indicating that the session is already active.
- 11. The end node sends a reply for the SLU-initiated request to NN3.
- 12. NN3 replies to NN2.
- 13. NN2 replies to NN1.
- 14. NN1 replies to EN1.
- 15. The APPN CP replies to the subarea SSCP.

Locate resource: CP-CP session terminates

CONFIG: EN1- NN1- NN2- NN3

Figure 192. Locate resource: CP-CP session terminates

- 1. The subarea SSCP requests a search for a target resource.
- 2. The end node sends a search request for a target resource to the network node server. The network node looks for the target resource in the directory database. The network node has knowledge in the directory that the target resource resides on NN3.
- 3. The network node sends a directed search request to NN3. Because NN1 does not have direct CP-CP sessions with NN3, NN1 sends the directed search request to NN3 through NN2.
- 4. NN2 is not the destination of the directed search; therefore, NN2 forwards the request to NN3.
- 5. The APPN control point (CP) requests that the subarea SSCP check its resource information for information about the location of the resource.
- 6. The subarea SSCP replies that the target resource is found.
- 7. The APPN CP requests that the subarea SSCP initiate a search for the target resource.
- 8. The CP-CP session goes down between NN2 and NN3.
- 9. NN2 sends a negative reply to NN1. NN3 cleans up its control blocks.
- 10. NN1 continues its search logic. If another path to the target exists, the target can be found (for example, through a network broadcast search). Otherwise, the search does not find the target resource.

Locate resource: Network node receives network broadcast request

Figure 193. Locate resource: Network node receives network broadcast request

Note: This figure illustrates only the flows at NN1.

- 1. CDS1 has reached the point in its search logic where a network broadcast is performed. CDS1 sends the network broadcast to all network nodes with which it has CP-CP sessions.
- 2. NN1 recognizes that the request is a network broadcast. Therefore, it forwards the request immediately to all network nodes with which it has CP-CP sessions.
- 3. NN1 then begins to search itself and its domain. NN1 looks for the target resource in its directory database. NN1 does not have an entry for the target resource. The search continues with the APPN CP requesting that the subarea SSCP check its resource information for information about the location of the resource.
- 4. The subarea SSCP replies that the target is not known.
- 5. NN1 sends the domain broadcast request to all served ENs that indicated in the CP_CAPABILITIES exchange that they are to be searched on domain broadcasts.
- 6. The APPN CP forwards the search to the subarea SSCP.
- 7. The subarea SSCP indicates that the target resource was found.
- 8. EN1 returns a positive reply.
- 9. NN1 forwards the positive reply to CDS1 and continues to wait for a reply from NN2. NN1 indicates to CDS1 in its reply that NN1 has not yet received replies to all of its searches. CDS1 forwards the positive reply to the originator of the search and continues to wait for a final reply from NN1.
- 10. NN2 returns a negative reply to NN1. Because NN1 has now completed all of its searches, NN1 returns a Neutral reply to CDS1 to indicate that NN1 has completed its search. A Neutral reply is one that contains neither a CV'35' (to indicate failure) or a FOUND GDS variable (to indicate success). A CDS receiving a neutral reply does not forward the neutral reply to the originator of the search. A CDS returns only one reply to the originator to indicate success or failure.

LU-LU session flows

<u>Figure 194 on page 487</u> through <u>Figure 232 on page 515</u> show the network flows to establish LU-LU sessions.

The figure captions for some of the figures indicate the configuration that the flow applies to and the type of session shown. For example, the caption EN (PLU)—NNS...APPN Network; PLU-Initiated, with No Queueing means A primary logical unit (PLU) on an end node (EN) that is attached to an APPN network through a network node server (NNS). The symbol — indicates a CP-CP session. The symbol == indicates a CDRM-CDRM session. The symbol ... means that part of the network is not shown.

All of these flows assume that the directory services database has accurate information about the location of the destination LU.

The following terms are used in these figures:

Term

Meaning

Endpoint TGVs

A list of control vector pairs: CV X'46' and X'47'

RSCV

Route selection control vector, CV X'2B'

Scout search

Sent to find out the location of the destination LU (DLU) and to precompute the session RSCV, if either the origin LU (OLU) or the DLU is in a subarea network. Because it is necessary only to find the DLU and not to set up the session, it is not necessary to actually verify the location of the DLU or to reserve resources for the session.

Index of LU-LU session flows

Table 42 on page 485 lists the LU-LU session flows illustrated here.

Table 42. Index of LU-LU session flows		
Flow	Page	
APPN networkNNSEN (PLU)		
SLU-initiated, no queueing	Figure 201 on page 490	
SLU-initiated, queued by the PLU	Figure 202 on page 491	
APPN networkNNSEN (SLU)		
PLU-initiated, no queueing	Figure 199 on page 489	
PLU-initiated, queued by the SLU	Figure 200 on page 490	
APPN network (PLU)ICN==SA(SLU), PLU-Initiated		
Directed search without required precomputed RSCV	Figure 225 on page 508	
No queueing	Figure 224 on page 507	
Queued by SLU	Figure 227 on page 510	
Search-only flow transformed into a DSRLST	Figure 223 on page 506	
USERVAR resolution required	Figure 226 on page 509	
APPN network (PLU)ICN==VR-based TG==ICNAPPN network (SLU)		
PLU-initiated	Figure 232 on page 515	

Flow	Page
APPN network (SLU)ICN==PLU	
Autologon, PLU not available initially	Figure 231 on page 514
SLU-initiated, no queueing	Figure 228 on page 511
SLU-initiated, queued by the PLU	Figure 229 on page 512
CLSDST PASS; SLU is single-session capable	-
From APPN to subarea	Figure 220 on page 504
Through APPN	Figure 219 on page 503
EN-NN-EN, PLU-initiated, no queueing (including BIND flows for intermediate network node)	Figure 221 on page 505
EN (PLU)NNSAPPN network	
PLU-initiated, no queueing	Figure 194 on page 487
PLU-initiated, queued by the PLU	Figure 195 on page 487
PLU-initiated, queued by the SLU	Figure 196 on page 488
EN (SLU)NNSAPPN network	
SLU-initiated, no queueing	Figure 197 on page 488
SLU-initiated, queued by the PLU	Figure 198 on page 489
Intermediate Network Node (INN) BIND. The LOCATE did not go through this node.	Figure 222 on page 506
SA (PLU)==ICNAPPN network (SLU)	
DSRLIST transforming into PLU-initiated, search-only	Figure 203 on page 491
PLU-initiated, no queueing	Figure 204 on page 492
PLU-initiated, queued by the SLU	Figure 206 on page 493
PLU-initiated, USERVAR resolution required	Figure 205 on page 493
SA (SLU)==ICNAPPN network (PLU)	
Autologon, PLU not available initially	Figure 210 on page 497
SLU-initiated, no queueing	Figure 208 on page 495
SLU-initiated, queued by the PLU	Figure 209 on page 496
Session release request	
SA(PLU)==ICNAPPN network(SLU)	Figure 217 on page 502
SA(SLU)==ICNAPPN network(PLU)	Figure 218 on page 503
Session termination, forced	
SA(PLU)==ICNAPPN Network(SLU), pending active session. PLU is accessible without going into APPN.	Figure 214 on page 500
SA(PLU)==ICNAPPN Network(SLU), queued session	Figure 215 on page 501
SA(PLU)==ICNAPPN Network(SLU), queued session. PLU is accessible without going into APPN.	Figure 216 on page 502

Table 42. Index of LU-LU session flows (continued)		
Flow	Page	
SA(SLU)==ICNAPPN Network(PLU), pending active session	Figure 213 on page 499	
Session termination, orderly		
SA(PLU)==ICNAPPN Network(SLU), active session	Figure 211 on page 498	
APPN Network(PLU)ICN==SA(SLU), active session	Figure 212 on page 499	

EN (PLU)--NNS...APPN network, PLU-initiated, with no queueing

Figure 194. EN (PLU)—NNS...APPN network, PLU-initiated, with no queueing

Note: The BIND does not have to take the same path as the LOCATE flow.

EN (PLU)--NNS...APPN network, PLU-initiated, queued by the PLU

Figure 195. EN (PLU)—NNS...APPN network, PLU-initiated, queued by the PLU

Note: The BIND does not have to take the same path as the LOCATE flow.

EN (PLU)--NNS...APPN network, PLU-initiated, queued by the SLU

Figure 196. EN (PLU)—NNS...APPN network, PLU-initiated, queued by the SLU

Note: The BIND does not have to take the same path as the LOCATE flow.

EN (SLU)--NNS...APPN network, SLU-initiated, with no queueing

Figure 197. EN (SLU)—NNS...APPN network, SLU-initiated, with no queueing

Note: The BIND does not have to take the same path as the LOCATE flow.

EN (SLU)--NNS...APPN network, SLU-initiated, queued by the PLU

Figure 198. EN (SLU)—NNS...APPN network, SLU-initiated, queued by the PLU

Note: The BIND does not have to take the same path as the LOCATE flows.

APPN network...NNS--EN (SLU), PLU-initiated, no queueing

Figure 199. APPN network...NNS—EN (SLU), PLU-initiated, no queueing

Note: The BIND does not have to follow the same path as the LOCATE flow.

APPN network...NNS--EN (SLU), PLU-initiated, queued by the SLU

Figure 200. APPN network...NNS-EN (SLU), PLU-initiated, queued by the SLU

Note: The BIND does not have to follow the same path as the LOCATE flow.

APPN network...NNS--EN (PLU), SLU-initiated, no queueing

Figure 201. APPN network...NNS—EN (PLU), SLU-initiated, no queueing

- 1. The purpose of this search is to get the NN to compute the session RSCV for the EN.
- 2. The BIND does not have to follow the same path as LOCATE flows.

APPN network...NNS--EN (PLU), SLU-initiated, queued by the PLU

Figure 202. APPN network...NNS-EN (PLU), SLU-initiated, queued by the PLU

- 1. The PLU has become available.
- 2. The BIND does not have to follow the same path as the LOCATE flows.

SA (PLU)==ICN...APPN network (SLU), DSRLIST transforming into PLU-initiated, search-only

Figure 203. SA(PLU)==ICN...APPN network (SLU), DSRLIST transforming into PLU-initiated, search-only

1. Target LU location information.

SA (PLU)==ICN...APPN network (SLU), PLU-initiated, with no queueing

Figure 204. SA (PLU)==ICN...APPN network (SLU), PLU-initiated, with no queueing

1. These BFINIT/BFCINIT flows will not occur if the RSCV is passed on the BIND.

SA (PLU)==ICN...APPN network (SLU), PLU-initiated, USERVAR resolution required

Figure 205. SA (PLU)==ICN...APPN network (SLU), PLU-initiated, USERVAR resolution required

- 1. Generic USERVAR name
- 2. Resolved USERVAR name

Note: For remaining session setup flows, see Figure 204 on page 492.

SA (PLU)==ICN...APPN network (SLU), PLU-initiated, queued by the SLU

Figure 206. SA (PLU)==ICN...APPN network (SLU), PLU-initiated, queued by the SLU (part 1 of 2)

Figure 207. SA (PLU)==ICN...APPN network (SLU), PLU-initiated, queued by the SLU (part 2 of 2)

1. These BFINIT/BFCINIT flows will not occur if the RSCV is passed on the BIND.

SA (SLU)==ICN...APPN network (PLU), SLU-initiated, no queueing

Figure 208. SA (SLU)==ICN...APPN network (PLU), SLU-initiated, no queueing

SA (SLU)==ICN...APPN network (PLU), SLU-initiated, queued by the PLU

Figure 209. SA (SLU)==ICN...APPN network (PLU), SLU-initiated, queued by the PLU

SA (SLU)==ICN...APPN network (PLU), autologon, PLU not available initially

Figure 210. SA (SLU)==ICN...APPN network (PLU), autologon, PLU not available initially

- 1. The controlling PLU becomes available.
- 2. Normal SLU-initiated flows continue from here.

SA(PLU)==ICN...APPN network(SLU), orderly termination of active session

Figure 211. SA(PLU)==ICN...APPN network(SLU), orderly termination of active session

- 1. FQCPID of the session to be terminated.
- 2. The CDTERM type depends on the V NET, TERM type.

V NET,TERM type CDTERM type

COND

ORDERLY

UNCOND

FORCED

FORCE

CLEANUP

APPN network (PLU)...ICN==(SA)SLU, orderly termination of active session

Figure 212. APPN network(PLU)...ICN==(SA)SLU, orderly termination of active session

SA(SLU)==ICN...APPN network(PLU), forced termination of pending active session

Figure 213. SA(SLU)==ICN...APPN network(PLU), forced termination of pending active session

1. The CDTERM type depends on the V NET, TERM type.

V NET,TERM type CDTERM type COND ORDERLY UNCOND FORCED

FORCE

CLEANUP

2. APPN has only orderly and cleanup termination. Therefore, the forced termination is promoted to clean up when it crosses from subarea into APPN.

SA(PLU)==ICN...APPN network(SLU), forced termination of pending active session (PLU accessible without going into APPN)

Figure 214. SA(PLU)==ICN...APPN network(SLU), forced termination of pending active session (PLU accessible without going into APPN)

Note: Whenever a forced termination crosses the boundary from subarea into APPN, it is promoted to clean up. In this case because the PLU is accessible without going into the APPN network, promotion does not occur.

SA(PLU)==ICN...APPN network(SLU), forced termination of queued session

Figure 215. SA(PLU)==ICN...APPN network(SLU), forced termination of queued session

1. The CDTERM type depends on the V NET, TERM type.

V NET,TERM type CDTERM type

COND

ORDERLY

UNCOND

FORCED

FORCE

CLEANUP

2. APPN has only orderly and cleanup termination. Therefore, the forced termination is promoted to clean up when it crosses from subarea into APPN.

SA(PLU)==ICN...APPN network(SLU), forced termination of queued session (PLU accessible without going into APPN)

Figure 216. SA(PLU)==ICN...APPN network(SLU), forced termination of queued session (PLU accessible without going into APPN)

1. Because the session is queued (instead of pending active) and the forced termination is not issued in the primary LU domain, a CLEANUP is sent.

SA (PLU)==ICN...APPN network (SLU), session release request

Figure 217. SA (PLU)==ICN...APPN network (SLU), session release request

SA (SLU)==ICN...APPN network (PLU), session release request

Figure 218. SA (SLU)==ICN...APPN network (PLU), session release request

CLSDST PASS through APPN

Figure 219. CLSDST PASS through APPN. The SLU is single-session capable.

CLSDST PASS from APPN to subarea

Figure 220. CLSDST PASS from APPN to subarea. The SLU is single-session capable.

EN-NN-EN, PLU-initiated, no queueing

Figure 221. EN-NN-EN, PLU-initiated, no queueing (Including BIND flows for intermediate network node)

- 1. For the PLU side of the session
- 2. For the SLU side of the session

Intermediate network node (INN) BIND

Figure 222. Intermediate network node (INN) BIND

- 1. For the PLU side of the session
- 2. For the SLU side of the session

APPN network (PLU)...ICN==SA(SLU), PLU-initiated, search-only flow transformed into a DSRLST

Figure 223. APPN network (PLU)...ICN==SA(SLU), PLU-initiated, search-only flow transformed into a DSRLST

APPN network (PLU)...ICN==SA(SLU), PLU-initiated, no queueing

Figure 224. APPN network (PLU)...ICN==SA(SLU), PLU-initiated, no queueing

1. Because the DLU is in subarea, the NNS(OLU) precomputed the RSCV.

APPN network (PLU)...ICN==SA(SLU), PLU-initiated, directed search without required precomputed RSCV

Figure 225. APPN network (PLU)...ICN==SA(SLU), PLU-initiated, directed search without required precomputed RSCV

- 1. Optional; sent if owning CP is not known.
- 2. Resubdir means "Resubmit Request on a Directed Search."

3. The interchange node returns the fact that the SLU is in a subarea network and requires a precomputed RSCV.

APPN network (PLU)...ICN==SA(SLU), PLU-initiated, USERVAR resolution required

Figure 226. APPN network (PLU)...ICN==SA(SLU), PLU-initiated, USERVAR resolution required

- 1. Generic USERVAR name
- 2. Resolved USERVAR name

For remaining session setup flows, see Figure 224 on page 507.

APPN network (PLU)...ICN==SA(SLU), PLU-initiated, queued by the SLU

Figure 227. APPN network (PLU)...ICN==SA(SLU), PLU-initiated, queued by the SLU

1. Because the DLU is in subarea, the NNS(OLU) precomputed the RSCV.

APPN network (SLU)...ICN==SA(PLU), SLU-initiated, no queueing

Figure 228. APPN network (SLU)...ICN==SA(PLU), SLU-initiated, no queueing

- 1. Because the DLU is in subarea, the NNS(OLU) precomputes the RSCV.
- 2. If the adjacent SSCP toward the PLU is VTAM V4R1 or higher and has the same network identifier, the RSCV is passed on the CDCINIT.
- 3. If the RSCV is passed on the CDCINIT, these flows will not occur.
- 4. The BIND does not have to follow the same path as the LOCATE flows.

APPN network (SLU)...ICN==SA(PLU), SLU-initiated, queued by the PLU

Figure 229. APPN network (SLU)...ICN==SA(PLU), SLU-initiated, queued by the PLU (part 1 of 2)

Figure 230. APPN network (SLU)...ICN==SA(PLU), SLU-initiated, queued by the PLU (part 2 of 2)

- 1. Because the DLU is in subarea, the NNS(OLU) precomputed the RSCV.
- 2. If the adjacent SSCP into the subarea is VTAM V4R1 or higher and has the same network identifier, the RSCV is passed on the CDCINIT.
- 3. If the RSCV is passed on the CDCINIT, these flows will not occur.
- 4. The BIND does not have to follow the same path as the LOCATE flows.

APPN network (SLU)...ICN==SA(PLU), autologon (PLU not available initially)

Figure 231. APPN network (SLU)...ICN==SA(PLU), autologon (PLU not available initially)

- 1. Because the DLU is in subarea, the NNS(OLU) precomputed the session RSCV.
- 2. The PLU is not currently available.
- 3. Some time later, the PLU becomes available.
- 4. Resource enabled.

APPN network (PLU)...ICN==VR-based TG==ICN...APPN network (SLU)

Figure 232. APPN network (PLU)...ICN==VR-based TG==ICN...APPN network (SLU), PLU-initiated

Dependent LU server flows

Figure 233 on page 517 through Figure 255 on page 537 illustrate the flow of requests and responses between dependent logical unit requestors and servers.

Index of dependent LU server flows

Table 43 on page 515 lists the dependent LU server flows illustrated here.

Table 43. Index of dependent LU server flows	
Single subnetwork flow	Page
Activating resources	
CPSVRMGR pipe activation, DLUR-Initiated	Figure 233 on page 517
CPSVRMGR pipe activation, DLUS-initiated	Figure 234 on page 518
Dependent LUs, dynamic registration and activation of	Figure 236 on page 519
Dependent LUs, activation of predefined	Figure 237 on page 520

Table 43. Index of dependent LU server flows (continued)	
Single subnetwork flow	Page
Figure 235 on page 519	
SSCP-PU session activation race	Figure 238 on page 520
Deactivating resources	
CPSVRMGR pipe deactivation	Figure 239 on page 521
Downstream PU outage	Figure 240 on page 522
REQDISCONT (immediate) received from downstream PU	Figure 242 on page 524
REQDISCONT (normal) received from downstream PU	Figure 241 on page 523
LU-LU sessions	
APPN PLU-initiated to a dependent SLU	Figure 247 on page 529
Session termination, USS flows for	Figure 250 on page 532
USS SLU-initiated to APPN PLU	Figure 248 on page 530
USS SLU-initiated to subarea PLU	Figure 249 on page 531
SSCP-PU, SSCP-LU session deactivation	
Forced	Figure 244 on page 526
Normal	Figure 243 on page 525
With Giveback (ANS=CONT)	Figure 246 on page 528
With Giveback (ANS=STOP)	Figure 245 on page 527
Cross Subnetwork Flow	Page
PLU-Initiated Session with DLUS and DLUR within Different Subnetworks	Figure 251 on page 533
PLU-Initiated Session with DLUS and PLU in one Subnetwork and DLUR in Another	Figure 253 on page 535
SLU-Initiated Session with DLUS and DLUR within Different Subnetworks	Figure 255 on page 537

Single subnetwork flows

 $\frac{\text{Figure 233 on page 517 through }\underline{\text{Figure 250 on page 532}}}{\text{between dependent logical unit requestors and servers within a single subnetwork.}}$

DLUR-initiated CPSVRMGR pipe activation

Figure 233. DLUR-initiated CPSVRMGR pipe activation

1. XID flows as a result of a set normal response mode (SNRM) RU, an external command, or an internal activation signal.

DLUS-initiated CPSVRMGR pipe activation

Figure 234. DLUS-initiated CPSVRMGR pipe activation

Dynamic PU activation

Figure 235. Dynamic PU activation

1. XID flows as a result of a set normal response mode (SNRM) RU, an external command, or an internal activation signal.

Dynamic registration and activation of dependent LUs

Figure 236. Dynamic registration and activation of dependent LUs

Activation of predefined dependent LUs

Figure 237. Activation of predefined dependent LUs

SSCP-PU session activation race

Figure 238. SSCP-PU session activation race

1. XID flows as a result of a set normal response mode (SNRM) RU, an external command, or an internal activation signal.

CPSVRMGR pipe deactivation

Figure 239. CPSVRMGR pipe deactivation

Downstream PU outage

Figure 240. Downstream PU outage

Receipt of REQDISCONT (normal) from downstream PU

Figure 241. Receipt of REQDISCONT (normal) from downstream PU

Receipt of REQDISCONT (immediate) from downstream PU

Figure 242. Receipt of REQDISCONT (immediate) from downstream PU

Normal SSCP-PU/SSCP-LU session deactivation

Figure 243. Normal SSCP-PU/SSCP-LU session deactivation

Forced SSCP-PU/SSCP-LU session deactivation

Figure 244. Forced SSCP-PU/SSCP-LU session deactivation

Giveback SSCP-PU/SSCP-LU session deactivation (ANS=STOP)

Figure 245. Giveback SSCP-PU/SSCP-LU session deactivation (ANS=STOP)

Giveback SSCP-PU/SSCP-LU session deactivation (ANS=CONT)

Figure 246. Giveback SSCP-PU/SSCP-LU session deactivation (ANS=CONT)

APPN PLU-initiated LU-LU session to a dependent SLU

Figure 247. APPN PLU-initiated LU-LU session to a dependent SLU

Note: The transmission group (TG) vectors of the end node-dependent LU requestor are provided by previous TG vector registration over the CPSVRMGR pipe.

USS SLU-initiated LU-LU session to APPN PLU

Figure 248. USS SLU-initiated LU-LU session to APPN PLU

Note: The transmission group (TG) vectors of the end node-dependent LU requestor are provided by previous TG vector registration over the CPSVRMGR pipe.

USS SLU-initiated LU-LU session to subarea PLU

Figure 249. USS SLU-initiated LU-LU session to subarea PLU

USS flows for LU-LU session termination

Figure 250. USS flows for LU-LU session termination

Note: The transmission group (TG) vectors of the end node-dependent LU requestor are provided by previous TG vector registration over the CPSVRMGR pipe.

Cross subnetwork flows

<u>Figure 251 on page 533</u> through <u>Figure 255 on page 537</u> show the flow of requests and responses between dependent logical unit requestors and servers across subnetworks.

Several abbreviations are used in these flow diagrams.

DSL

DLUS-served LU

DSR

DLUR search required

ISB

Internet search bit

OCR

Owning CP respond

532 z/OS Communications Server: z/OS V2R5.0 Communications Server: SNA Diagnosis Vol 1, Techniques and Procedures

PLU-initiated session with DLUS and DLUR within different subnetworks, PLU Is through the subarea

Figure 251. PLU-initiated search with DLUS and DLUR within different subnetworks, PLU through the subarea (part 1 of 2)

Figure 252. PLU-initiated search with DLUS and DLUR within different subnetworks, PLU through the subarea (part 2 of 2)

NNb initiates a search to locate the SLU. NNb has the location of the SLU cached, and the hierarchy
indicates that BNd is the NNS(SLU). NNb sends a directed Locate to BNd to verify the location of the
SLU and to obtain the SLU TGVs.

BNd initiates a search to locate the SLU. The search ultimately reaches VTAM1.

Neither the DSL nor DSR indicators will be set within the Find GDS variable on the search sent by NNb.

- 2. The OCR indicator is not set, so VTAM1 responds to the Locate. Because NNa is within a different subnet than VTAM1, and the PLU is also nonnative, VTAM1 will set the DSR indicator on the Locate reply. VTAM1 will also set the DSL indicator on the Locate reply because the SLU is a DLUS-served LU.
- 3. BNa caches the location of the SLU as being on NNa with VTAM1 as the NNS. Because the OCR indicator is not set on the reply, BNa does not set the OCR indicator within the cache entry. BNa then modifies the Found resource hierarchy to indicate itself as the NNS(DLU) and VTAM1 as the Management Services Control Point (MSCP). BNa also adds its own TGVs to the Locate reply.
- 4. BNb caches the location of the SLU as being on NNa with BNa as the NNS. Because the OCR indicator is not set on the reply, BNb does not set the OCR indicator within the cache entry.

Because the DSR and DSL indicators are set on the reply and BNb is returning a reply to a non-Border Node, BNb must obtain the SLU TGs to be included on the Locate reply that will be returned to the NNS(PLU).

To obtain the TGVs, BNb initiates a Locate search to find the SLU. This search will be a PLU-init Search-Only. The OCR indicator is set, requesting that the DLUR node respond to the Locate request. The DSR indicator will not be set, Because BNb is the node that is performing the extra Locate search.

- 5. The OCR indicator is set, so NNa responds to the Locate. Because the SLU is a DLUS-served LU, NNa sets the DSL indicator on the reply. When building the reply, NNa will include a CV X'40' that includes the DLUS node CP name.
- 6. BNb caches the location of the SLU as being on NNa. Because both the DSL and OCR indicators are set on the Locate reply, BNb sets the OCR indicator within the cache entry.

BNb modifies the Found resource hierarchy to indicate itself as the NNS(DLU). BNb removes the BNa TGVs from the reply. Because NNa is a network node, there are no TGVs to add to the Locate reply that is forwarded to ICNa.

7. Because the DSR indicator is not set on the reply, neither BNc nor BNd will submit an extra Locate search to obtain the SLU TGVs even though each is closer to the PLU than BNb.

When NNb receives the Locate reply, NNb calculates an RSCV and sends the BIND to NNa. This establishes the session between the PLU and the SLU.

PLU-initiated session with DLUS and PLU in one subnetwork and DLUR in another

Figure 253. PLU-initiated session with DLUS and PLU in same subnetwork and DLUR in another (part 1 of 2)

Figure 254. PLU-initiated session with DLUS and PLU in same subnetwork and DLUR in another (part 2 of 2)

- 1. ENb initiates a search to locate the SLU. The search is forwarded to the ENb network node server. Neither the DSL, DSR, nor OCR indicators will be set within the Find GDS variable.
- 2. NNb initiates a search to locate the SLU. NNb has the location of the SLU cached, and the hierarchy indicates that VTAM1 is the NNS(SLU). NNb sends a directed Locate to VTAM1 to verify the location of the SLU and to obtain the SLU TGVs.
- 3. The OCR indicator is not set, so VTAM1 responds to the locate. Because ENa is in a different subnet than VTAM1, no endpoint TGVs were reported over the CPSVRMGR pipe. Because NNb is within the same APPN subnet as VTAM1, VTAM1 must obtain the endpoint TGVs to be included in the Locate reply returned to NNb. To obtain the endpoint TGVs, VTAM1 initiates a new Locate search to find the SLU. This search will be a PLU-init Search-Only. The OCR indicator will be set, requesting that the DLUR node respond to the Locate request. The DSR indicator will not be set, because VTAM1 is the node that is performing the extra Locate search. When initiating the Locate search, a new PCID modifier slot will be allocated and the PRN will be incremented. This will allow the Locate search to appear as a new search within both the APPN and subarea networks. When searching their caches for the SLU, VTAM1, BNb, and BNa all look for entries where the OCR indicator is set. These entries will allow the nodes to route the Locate search to the DLUR node instead of the DLUS node.
- 4. The OCR indicator is set, so ENa responds to the Locate. Because the SLU is a DLUS-served LU, ENa sets the DSL indicator. When building the reply, ENa will include a CV X'40' which includes the DLUS node CP name.
- 5. BNa caches the location of the SLU as being on the DLUR with NNa as the network node server. Because both the DSL and OCR indicators are set on the search reply, BNa sets an OCR indicator within the cache entry. BNa then modifies the Found resource hierarchy to indicate itself as the NNS(DLU). BNa also replaces the DLUR TGVs with its own TGVs before forwarding the Found to BNb.
- 6. BNb caches the location of the SLU, with BNa as the NNS. As with BNa, an OCR indicator is saved with the cache entry. BNb then modifies the resource hierarchy so that it appears as the NNS(DLU). The Locate reply is then forwarded to VTAM1.
- 7. VTAM1 caches the location of the SLU. As with BNa and BNb, VTAM1 sets the OCR indicator within the cache entry. VTAM1 then replies to the Locate search request received from NNb. Because the SLU is a DLUS-served LU, VTAM1 alters the Found hierarchy to indicate that VTAM1 is the NNS(DLU) and ENa is the CP(DLU). VTAM1 then removes the TGVs returned on the Locate reply received from BNb and places the TGVs on the Locate reply that it is constructing. Because the SLU is a DLUS-served resource, the DSL indicator is set. However, the DSR indicator is not set because VTAM1 has already obtained the correct DLUR TGVs.
- 8. NNb calculates an RSCV using the endpoint TGVs returned by VTAM1. NNb returns the RSCV to ENb on the Locate reply. ENb then BINDs the session between the PLU and the SLU.

SLU-initiated session with DLUS and DLUR within different subnetworks

Figure 255. SLU-initiated session with DLUS and DLUR within different subnetworks (part 1 of 2)

Figure 256. SLU-initiated session with DLUS and DLUR within different subnetworks (part 2 of 2)

- 1. The SLU initiates a Logon, which ENa encapsulates on the CPSVRMGR pipe and sends to VTAM1. VTAM1 sends a response to the Logon request followed by USS MSG0. Ena sends a response to USS MSG0 to VTAM1.
- 2. before initiating a search to locate the PLU, VTAM1 examines its cache. The PLU is located and is cached as being accessible through BNb. Because ENa is in a different subnet than VTAM1, no endpoint TGVs were reported over the CPSVRMGR pipe. Because the PLU is also within a different APPN subnet, VTAM1 will set the DSR indicator on the Locate request. VTAM1 will also set the DSL indicator on the Locate request because the SLU is a DLUS-served LU.
- 3. BNb caches the location of the SLU as being on ENa with VTAM1 as the NNS. The OCR indicator will not be set in the cache entry. BNb has the PLU cached as being accessible through BNc.
 - BNb modifies the Find resource hierarchy to indicate itself as the NNS(OLU) and adds a CV X'40' with VTAM1 as the MSCP. BNb also adds its endpoint TGs to the Locate search request and forwards the request to BNc.

4. BNc caches the location of the SLU as being on BNb. The OCR indicator is not set within the cache entry.

BNc has the location of the PLU cached as being within the native subnet. Because both the DSL indicator and the DSR indicator are set on the Locate request, BNc must obtain the SLU TGVs to be included on the Locate search request.

To obtain the endpoint TGVs, BNc initiates a Locate search to find the SLU. This search will be a PLU-init Search-Only. The OCR indicator is set, requesting that the DLUR node respond to the Locate request. The DSR indicator will not be set, because BNc is the node which is performing the extra Locate search.

5. BNb receives the new Locate search from BNc. BNb finds a cache entry for the SLU with the OCR indicator set. The entry indicates that BNa is the NNS(SLU), so BNb forwards the Locate search to BNa.

BNa also finds a cache entry for the SLU with the OCR indicator set. The cache entry for BNa indicates that the search should be forwarded to NNb.

- 6. NNb receives the Locate search from BNa. As part of its search logic, NNb will send either a directed Locate search to NNa or will perform a network broadcast that will ultimately reach NNa. Either way, the Locate search will be forwarded to NNa and, ultimately, ENa.
- 7. The OCR indicator is set, so ENa responds to the Locate. Because the SLU is a DLUS-served LU, ENa sets the DSL indicator on the reply. When building the reply, ENa will include a CV X'40' that includes the DLUS node CP name.
- 8. NNb caches the location of the SLU as being on ENa, with NNa as the NNS. NNb then calculates an RSCV for the Bind route between BNa and ENa and returns the RSCV to BNa.
- 9. BNa caches the location of the SLU as being on ENa, with NNb as the NNS. Because both the DSL and OCR indicators are set on the Locate reply, BNa sets the OCR indicator within the cache entry.
 - BNa modifies the Found resource hierarchy to indicate itself as the NNS(DLU). BNa then removes the RSCV from the Locate reply and places the NNb TGVs on the reply. The reply is then returned to BNb.
- 10. BNb caches the location of the SLU as being on ENa with BNa as the NNS. Both the DSL and OCR indicators are on the Locate reply, and BNb sets the OCR indicator on the reply. BNb then modifies the resource hierarchy in the reply to indicate itself as the NNS(DLU). BNb also replaces the NNb TGs with its own TGs and then forwards the reply to BNc.
- 11. BNc caches the location of the SLU as being on ENa with BNb as the NNS. Because both the DSL and OCR indicators are set on the Locate reply, BNc sets the OCR indicator within the cache entry.
 - BNc then takes the endpoint TGVs that were returned on the Locate reply that was just received from BNb and places the TGVs on the Locate request that was received from BNb. BNc then modifies the resource hierarchy on the request to indicate itself as the NNS(OLU). The search request is then sent to NNc.
- 12. NNc forwards the search request to ENb.
- 13. Because this is a SLU-init search request and an RSCV was not present on the Locate request, ENb initiates a PLU-init search with the SLU as the target.
- 14. NNc correlates the PLU-init search request with the outstanding SLU-init search request. Using the information that was provided on the original SLU-init search, NNc calculates an RSCV and returns it to ENb on the Locate reply. ENb then BINDs the session between the PLU and the SLU.

Because NNc creates the Locate reply instead of VTAM1, neither the DSL indicator nor the DSR indicator will be set on the reply. This can be contrasted to the original SLU-init request in which the DSL indicator was set.

High-Performance Routing flows

Figure 257 on page 541 through Figure 262 on page 546 show network flows for the high-performance routing function. For more information, see <u>z/OS Communications Server: SNA Network Implementation</u> Guide.

Index of High-Performance Routing flows

Table 44 on page 540 lists the flows illustrated here.

Table 44. Index of High-Performance Routing flows		
Flow	Page	
Rapid-transport protocol (RTP) connection over portion of session path	Figure 259 on page 543	
Rapid-transport protocol (RTP) across composite nodes with a T2.1 connection through NCP	Figure 260 on page 544	
Rapid-transport protocol (RTP) across composite nodes with a T2.1 connection through VTAM	Figure 261 on page 545	
Rapid-transport protocol (RTP) across composite nodes with a virtual-route-based transmission group, NCP does ANR routing	Figure 262 on page 546	
Rapid-transport protocol (RTP) across composite nodes with a virtual-route-based transmission group, VTAM does ANR routing	Figure 263 on page 547	
Two rapid-transport protocol (RTP) nodes with a T2.1 connection	Figure 257 on page 541	
Two rapid-transport protocol (RTP) nodes with a virtual-route-based transmission group	Figure 258 on page 542	

Two Rapid-Transport Protocol (RTP) nodes with a T2.1 connection

Figure 257. An example of two Rapid-Transport Protocol (RTP) nodes with a T2.1 connection

Two Rapid-Transport Protocol (RTP) nodes with a virtual-route-based transmission group

Figure 258. Two Rapid-Transport Protocol (RTP) nodes with virtual-route-based transmission group

Rapid-Transport Protocol (RTP) connection over portion of session path

Figure 259. Rapid-Transport Protocol (RTP) connection over portion of session path

Rapid-Transport Protocol (RTP) across composite nodes with T2.1 connection through NCP

Figure 260. Rapid-Transport Protocol (RTP) across composite nodes with T2.1 connection through NCP

Rapid-Transport Protocol (RTP) across composite nodes with T2.1 connection through VTAM

Figure 261. Rapid-Transport Protocol (RTP) across composite nodes with T2.1 connection through VTAM

Rapid-Transport Protocol (RTP) across composite nodes with a virtual-route-based transmission group, NCP does ANR routing

Figure 262. Rapid-Transport Protocol (RTP) across composite nodes with a virtual-route-based transmission group, NCP does ANR routing

Rapid-Transport Protocol (RTP) across composite nodes with a virtual-route-based transmission group, VTAM does ANR routing

Figure 263. Rapid-Transport Protocol (RTP) across composite nodes with a virtual-route-based transmission group, VTAM does ANR routing

Appendix D. Control point/control block (CPCB) operation codes

Many processes of the VTAM program are represented by RUPE, NCSPL, DLRPL, CPCB, PPL, NOSPL, MFT, FILTR, or TQE work elements. Each of these work elements contains a prefix called a CPCB at the beginning of the control block. The CPCB prefix contains a field called the CPCB operation code (CPCBOPC), which provides an indication of the type of VTAM process represented by the work element.

The CPCBOPCs are mapped by the ISTCPKCB regarding the data area. The CPCBOPC field is 4 bytes long and contains a category byte (CPCBCAT), followed by a 3-byte specific operation code field (CPCBFMH).

The contents of the CPCB operation code category are summarized in the following table:

Category (hex)	Meaning
00	Operator command
01	Dump/load/restart request
02	I/O purge request
03	Timer management request
04	Unformatted RU
08	Function management data RU
09	Network control RU
0A	Data flow control RU
0B	Session control RU
0C	Function management data access method RU
OD	Network control access method RU
0E	Data flow control access method RU
0F	Session control access method RU
FC	Function management data access method interprocess signal
FD	Network interprocess signal

Table 45 on page 549 summarizes the possible values of the CPCB operation code field.

Note:

- 1. For each CPCB operation code listed, the character string representation that may appear in VTAM operator messages is given, along with the function of the associated work element.
- 2. Internal codes that are used only by the product support organization to assist in internal flow diagnosis are not included in this list.

Table 45. Contro	ı poınt/contro	n biock operation	coaes (CPCBOPC)
------------------	----------------	-------------------	-----------------

СРСВОРС	Message display	Function
00010000	VARY	VARY Command
00010001	VARY ACT	VARY Activate
00010002	VARY INACT	VARY Deactivate
00010004	VARY LOGON	VARY LOGON

СРСВОРС	Message display	Function
00010005	VARY ACT	VARY Activate, LOGON Parameter Specified
00010008	VARY DRDS	VARY DRDS
00010012	VARY INACT	VARY Deactivate Immediate
00010032	VARY INACT	VARY Deactivate Immediate (Internal)
00010040	VARY ANS	VARY ANS
00010041	VARY ACT	VARY Activate, ANS Parameter Specified
00010045	VARY ACT	VARY Activate, ANS and LOGON Parameters Specified
00010080	VARY HGUP	VARY HANGUP
00010100	VARY PATH	VARY PATH=USE
00010200	VARY PATH	VARY PATH=NOUSE
00010400	VARY INOP	VARY INOP
00010802	FORCE DEAC	Force Deactivate
00011002	FORCE REAC	Force Reactivate
00011802	INACT GVBK	VARY Deactivate Giveback
00012000	VARY ACQ	VARY Acquire
00012001	VARY ACQ	VARY Activate, ACQ Parameter Specified
00012002	INACT SON	Deactivate (Session Outage Notification)
00012005	VARY ACQ	VARY Activate, ACQ and LOGON Parameters Specified
00014000	VARY REL	VARY Release
00014010	REL IMMED	VARY Release Immediate
00014012	REL GVBK	VARY Release Giveback
00018000	VARY DIAL	VARY DIAL
00018004	VARY NOLOG	VARY NOLOGON
00020000	F EXIT	MODIFY EXIT CMD
00020001	F DUMP	MODIFY DUMP
00020002	F ENCR	MODIFY ENCR
00020003	F TGP	MODIFY TGP
00020004	F CHANGE	MODIFY CHANGE

Table 45. Control point/control block operation codes (CPCBOPC) (continued)		
СРСВОРС	Message display	Function
00020005	F SECURITY	MODIFY SECURITY
00020010	F TABLE	MODIFY TABLE
000200A0	F ACT NCTR	MODIFY TRACE, TYPE=NETCTLR
000200C0	F DACTNCTR	MODIFY NOTRACE, TYPE=NETCTLR
00020120	F ACT GPT	MODIFY Activate Generalized PIU Trace
00020140	F DACT GPT	MODIFY Deactivate Generalized PIU Trace
00020180	F LOAD ADD	MODIFY LOAD ADD
00020200	F CDRM	MODIFY CDRM
00020240	SETTIME	SETTIME Cancel
00020280	F LOAD REP	MODIFY LOAD REPLACE
00020401	F DUMP TRN	Transfer DUMP (NCP)
00020408	F DR MOVE	MODIFY DR MOVE
00020480	F LOAD PRG	MODIFY LOAD PURGE
00020800	F LINEDEF	MODIFY LINEDEF
00020801	F DUMP PGN	PURGE DUMP (NCP)
00020808	F DR DEL	MODIFY DR DELETE
00020820	F ALTRACE	MODIFY Activate Line Trace
00020840	F DLTRACE	MODIFY Deactivate Line Trace
00020880	F LOAD CAN	MODIFY LOAD CANCEL
00021001	F DUMP CSP	MODIFY DUMP (CSP)
00021080	F LOAD SET	MODIFY LOAD ACTION=SETTIME
00021801	F DUMP PGC	PURGE DUMP (CSP)
00022001	F DUMP MOS	MODIFY DUMP (MOSS)
00022080	F LOAD REN	MODIFY LOAD ACTION=RENAME
00022801	F DUMP PGM	PURGE DUMP (MOSS)
00024001	F DUMP DYN	MODIFY Dump (Dynamic)
00024020	F ACT SIT	MODIFY Activate SIT Trace
00024040	F DACT SIT	MODIFY Deactivate SIT Trace
00025000	F RTP	MODIFY RTP
00028001	F DUMP DYN	MODIFY Dump (Dynamic-CH)
00028820	F ACT TG	MODIFY Activate TG Trace
00028840	F DACT TG	MODIFY Deactivate TG Trace
0002C000	F ALSLIST	MODIFY Adjacent Link Station List
0002D001	F RESOURCE	MODIFY RESOURCE

СРСВОРС	Message display	Function
0002D000	F DEFAULTS	MODIFY DEFAULTS
0002E001	F DIR DEL	MODIFY DIR DELETE
0002E002	F DIR UDP	MODIFY DIR UPDATE
0002E003	F QUERY	MODIFY QUERY
00030001	SOFT INOP	SOFT INOP
00030002	SSCP TKOVR	SSCP TAKEOVER
00030004	HARD INOP	HARD INOP
00040000	DISPLAY	Display Internal Commands
00040001	DISPLAY DLRS	DISPLAY DLURs
00060001	INT SYNCH	Internal Synchronization Function
00060002	IPL INIT	IPL Initial Request
00060004	IPL TEXT	IPL Text Request
00060008	IPL FINAL	IPL Final Request
00060010	DUMP INIT	Dump Initial Request
00060020	DUMP TEXT	Dump Text Request
00060040	DUMP FINAL	Dump Final Request
00060100	HALT CDLNK	Process Cross-Domain Links During HALT
00061001	REQDMP CSP	Request CSP Dump
00062000	RESET LU	Reset LU
00062001	REQDMP MOS	Request MOSS Dump
00063001	F DUMP TRH	Internal Transfer of Dump Header
00063002	F DUMP TRM	Internal Transfer of Dump Main Storage
00064000	REQLOAD	Request Load
00064001	REQDUMP DY	Request Dynamic Dump Data
00068000	REQDUMP	Request Dump
00080001	DIAL START	Dial Start Request
012B0000	CKPTN	Checkpoint Node Status Function
014B0000	СНКРТ	Checkpoint Resource Status Function
01BD0000	CPMSG	Internal WTOR Function
01DD0000	DLR PURGE	Dump/Load/Restart Purge
01EA0000	CPCRYPT	Cryptography Management Function
01EB0000	GETHOSTBNM	Gethostbyname
01ED0000	SELECT VR	Virtual Route Select
02510000	CDRM CLEAR	Clear CDRM-CDRM Session

Table 45. Control point/control block operation codes (CPCBOPC) (continued)		
СРСВОРС	Message display	Function
02520000	CDRM ERP	CDRM ERP Internal Clear
03000000	TIMER REQ	Set Timer Request
04000000	CHAR CODED	Unformatted Request Unit
08010001	CHG TLIMIT	Change Transmission Limit
08010002	CHG NRSPOL	Change Negative Response to Poll Limit
08010003	CHG SESSLM	Change Session Limit
08010004	CHG POLLIM	Change Poll Limit
08010201	CONTACT	Contact
08010202	DISCONTACT	Discontact
08010203	IPL INIT	NC IPL Initial
08010204	IPL TEXT	NC IPL Text
08010205	IPL FINAL	NC IPL Final
08010206	DUMP INIT	Dump Initial
08010207	DUMP TEXT	Dump Text
08010208	DUMP FINAL	Dump Final
08010209	RMPO	Remote Power Off
0801020A	ACTLINK	Activate Link
0801020B	DACTLINK	Deactivate Link
0801020E	CONNOUT	Connect Out
0801020F	ABCONN	Abandon Connection
08010211	SCV	Set Control Vector
08010213	NTNMON RPLY	NTUNEMON Reply
08010214	ENT SLOWDN	Enter Slowdown
08010215	EXT SLOWDN	Exit Slowdown
08010216	ACTCONNIN	Activate Connect In
08010217	DACTCONNIN	Deactivate Connect In
08010218	ABCONNOUT	Abandon Connect Out
08010219	ANA	Assign Network Address
0801021A	FNA	Free Network Address
0801021B	REQDISCONT	Request Discontact
08010280	CONTACTED	Contacted
08010281	INOP	Inoperative
08010284	REQCONT	Request Contact
08010285	NSLSA	Network Services Lost Subarea

РСВОРС	Message display	Function
08010302	ACTTRACE	Activate Trace
08010303	DACTTRACE	Deactivate Trace
08010331	DISP STOR	Display Storage
08010334	RECSTOR	Record Storage
08010381	RECMS	Record Maintenance Statistics
08010382	REC TEST	Record Test Data
08010383	REC TRACE	Record Line Trace Data
08010604	NSPE	Network Services Procedure Error
08010681	INIT SELF	Initiate(Self) Format 0
08010683	TERM SELF	Terminate(Self) Format 0
0812C100	GDS CP_CAP	CP Capabilities
0812C200	GDS TDU	TDU
0812C300	GDS REGSTR	REGISTER Resource
)812C400	GDS LOCATE	LOCATE Resource
)812C500	GDS CDINIT	CDINIT
)812C900	GDS DELETE	DELETE
0812CA00	GDS FIND	FIND
0812CB00	GDS FOUND	FOUND
0812CC00	GDS NOTIFY	NOTIFY
0812CD00	GDS IOCD	IOCD
)83F0233	INIT LOAD	NS Init Load
083F0234	LOAD STAT	NS Load Status
083F0814	TR_INQUIRY	Translate Inquiry
083F0816	TR_REPLY	Translate Reply
08410210	RNAA	Request Network Address Assignment
08410220	NFY SESEND	Notify Sessend
08410237	LOAD REQRD	NS Load Required
08410240	ADDNR	Add Network Resource
08410243	IPL INIT	NS IPL Init
08410244	IPL TEXT	NS IPL Text
08410245	IPL FINAL	NS IPL Final
08410246	IPL ABORT	NS IPL Abort
08410286	RDELETENR	Request Delete Network Resource
8410287	LOST CTLPT	Lost Control Point

Table 45. Control p	point/control block operation c	odes (CPCBOPC) (continued)
СРСВОРС	Message display	Function
08410289	ROUTE_INOP	Network Services Route Inoperative
0841028A	REQACTCDRM	Request ACTCDRM
08410304	REQMS	Request Maintenance Statistics
08410305	LINKLVL2	Enter Test Mode (LL2)
08410307	REQ RTTEST	Request Route Test
08410311	MS SCV	Maintenance Services Set Control Vector
08410384	RECFMS	Record Formatted Maintenance Statistics
08410385	RECTR	Record Test Results
08410386	ER TESTED	Explicit Route Tested
0841038D	NMVT	Network Manager Vector Transport
08810387	REQ ECHO	Request Echo Test
08810389	ECHO TEST	Echo Test
08810601	CINIT	Control Initiate
08810602	CTERM	Control Terminate
08810620	NOTIFY	Notify
08810629	CLEANUP	Cleanup
08810680	INIT OTHER	Initiate(Other)
08810681	INIT SELF	Initiate(Self) Format 1
08810682	TERM OTHER	Terminate(Other)
08810683	TERM SELF	Terminate(Self)
08810685	BIND FAIL	Bind Failure
08810686	SESS START	Session Started
08810687	UBIND FAIL	Unbind Failure
08810688	SESS ENDED	Session Ended
08810810	FORWARD	Forward Request
08810812	DELIVER	Deliver Request
08810814	CNM	CNM Request
08812601	BFCINIT	BF Control Initiate
08812629	BFCLEANUP	BF Cleanup
08812681	BFINIT	BF Initiate
08812683	BFTERM	BF Terminate
08812686	BFSESSST	BF Session Start
08812688	BFSESSEND	BF Session End
0881268C	BFSESSINFO	BF Session Information Request

СРСВОРС	Message display	Function
08818620	CD NOTIFY	Cross-Domain Notify
08818627	CD DSRLST	Cross-Domain Direct Search List
08818640	CDINIT OTH	Cross-Domain Initiate (Other)
08818641	CDINIT	Cross-Domain Initiate
08818643	CDTERM	Cross-Domain Terminate
08818645	CDSSF	Cross-Domain Session Setup Failure
08818646	CDSESSST	Cross-Domain Session Started
08818647	CDSTF	Cross-Domain Session Takedown Failure
08818648	CDSESSEND	Cross-Domain Session Ended
08818649	CDTAKEDOWN	Cross-Domain Takedown
0881864A	CDTD COMP	Cross-Domain Takedown Complete
0881864B	CDCINIT	Cross-Domain Control Initiate
09050000	NCLSA	Network Control Lost Subarea
09060000	ER INOP	Explicit Route Inoperative
09060000	ANS	Auto Network Shutdown Started
09070000	ANSC	Auto Network Shutdown Complete
09080000	LOST PATH	Lost Path
09090000	ER TEST	Explicit Route Test
090A0000	ER TST RPY	Explicit Route Test Reply
090B0000	ER ACT	Explicit Route Activate
090C0000	ER ACT RPY	Explicit Route Activate Reply
090D0000	ACTVR	Activate Virtual Route
090E0000	DACTVR	Deactivate Virtual Route
090F0000	ER OP	Explicit Route Operative
09510000	SW TO NCP	Switch Line to NCP Mode
09520000	SW TO EP	Switch Line to EP Mode
0A040000	LUSTAT	LU Status
0A050000	RTR	Ready to Receive
0A700000	BIS	Bracket Initiation Stopped
0A710000	SBI	Stop Bracket Initiation
000008A0	QEC	Quiesce at End of Chain
0A810000	QC	Quiesce Complete
DA820000	RELQ	Release Quiesce
0A830000	CANCEL	Cancel

Table 45. Control p	ooint/control block operation c	odes (CPCBOPC) (continued)
СРСВОРС	Message display	Function
0A840000	CHASE	Chase
0AC00000	SHUTDOWN	Shutdown
0AC10000	SHUTC	Shutdown Complete
0AC20000	RSHUTD	Request Shutdown
0AC80000	BID	Bid
0AC90000	SIGNAL	Signal
0B0D0000	ACTLU	Activate LU
0B0E0000	DACTLU	Deactivate LU
0B110000	ACTPU	Activate PU
0B120000	DACTPU	Deactivate PU
0B140000	ACTCDRM	Activate CDRM
0B150000	DACTCDRM	Deactivate CDRM
0B310000	BIND	Bind Session
0B320000	UNBIND	Unbind Session
0BA00000	SDT	Start Data Traffic
0BA10000	CLEAR	Clear Session
0BA20000	STSN	Set and Test Sequence Numbers
0BA30000	RQR	Request Recovery
0BC00000	CRV	Cryptography Verify
0C0102A0	AM ALLORSC	Allocate Resource
0C0102A1	AM FREERSC	Free Resource
0C0102A2	AM SETRT	Set Routable State
0C0102A3	AM RESETRT	Reset Routable State
0C0102A4	AM SC EXIT	Configuration Services Exit AMRU
0C0102A5	DDDLU RU	Secondary LU exit AMRU
0C010480	RECMD	Record Measurement Data
0C410201	AM CS	Config SVCS
0C410206	AM GAINGWN	Gained GWN
0C410207	AM LOSTGWN	Lost GWN
0C410208	AM DEACTXF	Deactivate Transforms
0C410210	AM RNAA	Request Network Address Assignment
0C410212	AM CONNECT	Connect
0C410213	AM DISCNCT	Disconnect
0C410214	AM INIT_PU	Initiate PU

СРСВОРС	Message display	Function
0C410266	XID	AM Exchange ID
0C410268	AM XCF	AM XCF
0C4102BD	AM ADDLINK	Add Link
0C4102BE	AM ADDLSTA	Add Link Station
0C4102BF	DELETENR	Delete Network Resource
0C4102CD	AM REQDUMP	Request Dump
0C4102CE	AM CONDLOD	Request Conditional Load
0C4102CF	AM UNCDLOD	Request Unconditional Load
0C410601	AM OPNACB	Open ACB
0C410602	AM CLSACB	Close ACB
0C800700	AM VCNS LREQ	VCNS Logon Request
0C800701	AM VCNS LRSP	VCNS Logon Response
0C810619	AM ADRQCMP	Address Request Complete
0C810620	AM RESUME	Resume
0C810629	AM CLEANUP	Cleanup
0C810643	AM GENTERM	Termination Placeholder
0C810680	AM REALLOC	Reallocate
0C810681	SETUP	Generic Session Initiation
0C810801	AM NOTIFY	Notify
0C810A00	API SETLST	SETLOGON(START)
0C810A01	API SETLSP	SETLOGON(STOP)
0C810A02	API SETLQS	SETLOGON(QUIESCE)
0C810A03	API SETPER	SETLOGON(PERSIST)
0C810A04	API SETNPE	SETLOGON(NPERSIST)
0C810A05	API SETGNA	API SETLOGON(GNAMEADD)
OC810A06	API SETGND	API SETLOGON(GNAMEDEL)
0C810A10	API SIMLOG	SIMLOGON
0C810A20	API OPNACQ	OPNDST(ACQUIRE)
0C810A21	API OPNACC	OPNDST(ACCEPT)
0C810A22	API OPNRES	OPNDST(RESTORE)
0C810A30	API INQLOG	INQUIRE(LOGONMSG)
0C810A31	API INQDVC	INQUIRE(DEVCHAR)
0C810A32	API INQCNT	INQUIRE(COUNTS)
0C810A33	API INQTOP	INQUIRE(TOPLOGON)

Table 45. Control point/control block operation codes (CPCBOPC) (continued)			
СРСВОРС	Message display	Function	
0C810A34	API INQCID	INQUIRE(CIDXLATE)	
0C810A35	API INQTRM	INQUIRE(TERMS)	
0C810A36	API INQAPS	INQUIRE(APPSTAT)	
0C810A37	API INQSPM	INQUIRE(SESSPARMS)	
0C810A38	API INQSKY	INQUIRE(SESSKEY)	
0C810A39	API INQDPY	INQUIRE(DISPLAY)	
0C810A3A	API INQPER	INQUIRE(PERSESS)	
0C810A3B	API INQNQN	INQUIRE(NQN)	
0C810A3C	API INQSNM	INQUIRE(SESSNAME)	
0C810A3D	API INQSTA	INQUIRE(STATUS)	
0C810A40	API INTERP	INTRPRET	
0C810A50	API CLSPAS	CLSDST(PASS)	
0C810A51	API CLSRLS	CLSDST(RELEASE)	
0C810A60	API SESONC	SESSIONC	
0C810A70	API SNDCMD	SENDCMD	
0C810A75	API SEND	SEND	
0C810A80	API RCVCMD	RCVCMD	
0C810A85	API RECEIV	RECEIVE	
0C810A90	API REQSES	REQSESS	
0C810AA0	API OPNSEC	OPNSEC	
0C810AB0	API TRMSES	TERMSESS	
0C810AC0	API RSETSR	RESETSR	
0C810AD0	API CHGEAF	CHANGE (ENDAFFIN)	
0C810AD1	API CHGEF	CHANGE (ENDAFFNF)	
0D010000	AM VR INOP	Virtual Route Inoperative	
0D0B0000	AM REQ ERA	Request Explicit Route Activate	
0D0E0000	AM REQ VRD	Request Virtual Route Deactivate	
0DFF0000	AM VR STAT	Virtual Route Status	
0E010000	AM PCE	Purge Chain Element	
0F010000	AM NFY SLT	Notify (Schedule LOSTERM Exit)	
0F020000	AM SSA	Set Session Address	
0F030000	AM SSADISC	Set Session Address and Disconnect	
0F040000	AM OSA	Override Session Address	
0F050000	AM PWQ	Purge Wait Queue	

PCBOPC	Message display	Function	
F060000	AM FLUSH	Flush Virtual Route	
F310000	AM GBIND	Generic BIND	
F320000	AM GUNBIND	Generic UNBIND	
0400004	AGT SRHCMP	Subarea search for resource complete	
CC1C3D9	IPS ACR	CDINIT RESP AMRU	
CC1C3E2	IPS ACS	ACT_CP_CP_SESS_V	
CC1D3E2	IPS ALS	ALERT_SIGNAL_V	
CC1E2D9	IPS ASR	ACT_CP_SVR_SESS_V	
CC2C3E2	IPS BCS	BEGIN_CP_STATUS_V	
CC2D9C9	IPS BRI	BROADCAST IPS	
CC2D5D7	IPS BNP	BN_SESS_RPY	
CC2D5D8	IPS BNQ	BN_SESS_REQ	
CC3C2D5	IPS CBN	CACHE_BN_INFO	
CC3C3E6	IPS CCW	CONTINUE_CW_V	
CC3C4E8	IPS CDY	CDRSC_DISPLAY	
CC3C8C6	IPS CHF	CHAIN_FLOW_V	
CC3C8D2	IPS CHK	CHKPT_START_V	
CC3C8D9	IPS CHR	CHAIN_FLOW_RPY_V	
CC3D3C5	IPS CLE	CLEANUP_V	
CC3D4C1	IPS CMA	PROCESS_COSMAP_V	
CC3D6E2	IPS COS	DEFINE COS	
CC3E2C1	IPS CSA	CP_CP_SESS_ACT_V	
CC3E2C4	IPS CSD	CP_CP_SESS_DEACT_V	
CC3E2C8	IPS CSH	CACHE_SEARCH	
CC3E2D9	IPS CSR	CACHE_SEARCH_RPY	
CC3E2F0	IPS CS0	CSS_DISCR_INIT_REQ_V	
CC3E2F1	IPS CS1	CSS_DISCR_INIT_RPY_V	
CC3E2F2	IPS CS2	CSS_TOPO_INIT_REQ_V	
CC3E2F3	IPS CS3	CSS_TOPO_INIT_RPY_V	
CC3E2F4	IPS CS4	CSS_IO_REQ_V	
CC3E2F5	IPS CS5	CSS_IO_RPY_V	
CC3E2F6	IPS CS6	CSS_TERM_V	
CC3E2F7	IPS CS7	CSS_API_DATA_V	
CC3E2F8	IPS CS8	CSS_INTER_STACK_DATA_V	

Table 45. Control point/control block operation codes (CPCBOPC) (continued)			
СРСВОРС	Message display	Function	
FCC3E2F9	IPS CS9	CSS_ABEND_START_V	
FCC3E2C1	IPS CSA	CSS_ABEND_V	
FCC3E2C2	IPS CSB	CSS_MDS_DATA_V	
FCC3E2C3	IPS CSC	CSS_MST_INIT_REQ_V	
FCC3E2C6	IPS CSF	CSS_STOP_ONGOING_V	
FCC3E3C6	IPS CTF	CP_CP_TP_FAILURE_V	
FCC4C1D5	IPS DAN	DISPLAY_AJNLT_V	
FCC4C1D7	IPS DAP	DAP_TP_WORK_V	
FCC4C1E4	IPS DAU	DEALLOCATE_ABEND_USER_V	
FCC4C3D6	IPS DCO	DISPLAY_APPNCOS_V	
FCC4C3E2	IPS DCS	DEACTIVATE_CP_CP_SESS_V	
FCC4C3E6	IPS DCW	DRIVE_CONWINNER_V	
FCC4C6C1	IPS DFA	DEFINE_ADJCLUST_V	
FCC4C9C1	IPS DIA	DISPLAY_ADJCLUST_V	
FCC4D3D7	IPS DLP	DLUR_PATH_SWITCH_COMP	
FCC4D3D9	IPS DLR	DLUR_STATUS	
FCC4D4C2	IPS DMB	DSME_BN_SELECT_V	
FCC4D4C3	IPS DMC	DSME_CDS_SELECT_V	
FCC4D4C9	IPS DMI	DSME_ICN_SELECT_V	
FCC4D8C5	IPS DQE	DEQUEUE	
FCC4D9E5	IPS DRV	DATA_RECOVERED_V	
FCC4E2C9	IPS DSI	DISPLAY_SRCHINFO	
FCC4E2D4	IPS DSM	DSME_IAUTH_V	
FCC4E2D9	IPS DSR	DEACT_CP_SVR_SESS_V	
FCC5D9D7	IPS ERP	RTP Exprec Purge IPS	
FCC6E2C4	IPS FSD	FLUSH_CP_SVR_DATA_V	
FCC6E2E3	IPS FST	RTP Free Storage IPS	
FCC7C3D9	IPS GCR	GENERIC CACHE SEARCH REPLY	
FCC7C3E2	IPS GCS	GENERIC CACHE SEARCH	
FCC7E4E2	IPS GUS	GENERIC CACHE SEARCH UPDATE REQUEST	
FCC8C3D9	IPS HCR	RTP_CPNAME Change IPS	
FCC9D5D6	IPS INO	INIT_OTHER	
FCC9D6C3	IPS IOC	INIT_OTHER_COMP	
FCD4D7C9	IPS MPI	MNPS_Pipe_Info IPS	

СРСВОРС	Message display	Function	
FCD4E2C9	IPS MSI	MNPS_SESSINFO	
FCD5E4E3	IPS NUT	NLP with Unknown TCID value	
FCD5E5D9	IPS NVR	NON_VERIFY_REQ	
FCD6E3C3	IPSOTC	ORDERLY_SESSIONS_TERM_C	
FCD6E3C4	IPS OTD	OUTPUT TDU SIGNAL	
FCD6E3D9	IPS OTR	ORDERLY_SESSIONS_TERM_R	
FCD7C3D8	IPS PCQ	PCID_QUERY	
FCD7C3D9	IPS PCR	PCID_QUERY_REPLY	
FCD7D3E3	IPS PLT	PURGE_LOCATE_TIMER	
FCD7D5C4	IPS PND	PEND_SC	
FCD7D5D3	IPS PNL	PROCESS_NNSLIST	
FCD7D9C3	IPS PRC	PROCEED	
FCD7D9E5	IPS PRV	PROV_SC	
FCD8C5C4	IPS QED	QUEUED	
FCD9C1C3	IPS RAC	RESOURCE_AVAILABLE_COMP	
FCD9C1E5	IPS RAV	RESOURCE_AVAILABLE	
FCD9C3E2	IPS RCS	RTP_Connection Setup	
FCD9C9E5	IPS RIV	RTP_Inactivation Request/Reply IPS	
FCD9D3C6	IPS RLF	REQ_LAST_FRSN_V	
FCD9D4D9	IPS RMR	REQUEST_MULTIPLE_ROUTES	
FCD9D5C3	IPS RNC	Req_NonPersistent CLOSE IPS Mapping	
FCD9D9C3	IPS RRC	RELEASE_REQUEST_COMP	
FCD9D9D8	IPS RRQ	RELEASE_REQUEST	
FCD9E2D5	IPS RSN	RSN_NOTIFY	
FCD9E2D9	IPS RSR	RTP Route_Setup Req for PS	
FCD9E2E3	IPS RST	RTP_Setup IPS	
FCD9E2E4	IPS RSU	Route_Setup IPS	
FCD9E3C9	IPS RTI	RTP_TG Inoperative IPS	
FCE2C1C3	IPS SAC	SUBAREA CLEANUP	
FCE2C3D9	IPS SCR	SEARCH_REQ	
FCE2C4E8	IPS SDY	DISPLAY_SESSIONS	
FCE2C8D9	IPS SHR	REQUEST SINGLE HOP ROUTE	
FCE2C9D9	IPS SIR	SESS_INIT_INFO_REQ	
FCE2D9C3	IPS SRC	SESSION_REQUEST_COMP	

Table 45. Control point/control block operation codes (CPCBOPC) (continued)		
СРСВОРС	Message display	Function
FCE2D9D8	IPS SRQ	SESSION_REQUEST
FCE2D9E2	IPS SRS	CP_SVR_SESS_STAT_V
FCE4D4D9	IPS UMR	UPDATE MODES
FDC1C3C3	IPS ACC	ADJACENT_CP_CONTACTED
FDC1C3E4	IPS ACU	ADJACENT_CP_UPDATED
FDC3D7E2	IPS CPS	CP_STATUS
FDC3D9D8	IPS CRQ	CRR_REQUEST
FDC4E2D5	IPS DSN	DIRECTORY SERVER NOTIFY
FDD9C1D3	RAL	RTP_Allocation Request/Reply IPS
FDD9C1E3	RAT	RTP_Attach Request/Reply IPS
FDD9C4D3	RDL	RTP_Deallocation Request/Reply IPS
FDD9C4E3	IPS RDT	RTP_DEATTACH
FDD9C9D6	RIO	RTP_Inoperative IPS
FDD9E2C3	RSC	RSCV Scan IPS
FDD9E2D9	IPS RSR	RES_REGISTRATION
FDE2D9D6	IPS SRO	CPSVRMGR SESS Outage
FDE2D9D7	IPS SRP	CP_SVR_PROT_VIOL_V
FDE2D9E3	IPS SRT	TDU Error from DLUR
FDE2E3D7	IPS STP	START_TP
FDE2E3D9	IPS STR	START_TP_REPLY
FDE3C7E4	IPS TGU	TG UPDATE
FDE3D7C6	IPS TPE	TP_ENDED
FDE3D7D5	IPS TPN	TP_NOTIFY
FDE4D7C4	IPS UPD	UPDATE_DIRECTORY
FF000000	VECTOR	VECTOR FMD Request Units

Appendix E. Storage and control block ID codes

This appendix lists the control block ID codes of the VTAM program.

VTAM control block ID codes

You can identify certain VTAM control block types in a storage dump by examining an identification code in the first byte of the control block (offset 0). The control block identification codes are shown in the following table. If codes are duplicate, use other means (such as the operating environment or the control block's context) to determine the type of control block.

Note: Internal codes that are used only by the product support organization to assist in internal flow diagnosis are not included in Table 46 on page 565.

Table 46. Control block ID codes		
ID	Control block	
00	SONCB	
00	RPL	
01	RPH	
03	FMCB	
05	VRBLK	
06	ICNCB	
07	LDNCB	
09	HALCB	
0A	BSCLB	
0B	VLNCB	
0C	PCLCB	
0D	PRWCB	
0E	TRGCB	
0F	ACDEB	
10	UECB	
11	DYPAB	
13	TRAC	
14	ERT	
15	ISTAUNCB	
16	ISTIPNCB	
17	ISTAUCPL	
19	PDVT	
1A	CHAIN	
1B	TGCB	

Table 46. Conti	ol block ID codes (continued)	
ID	Control block	
1E	RCE	
24	OCW	
26	PICB	
29	LMPCB	
2B	RAQ	
2C	PAQ	
2D	SAT	
2E	AHNCB	
2F	ISTALNCB	
41	PUSCB	
43	PLSCB	
45	POIA	
46	POCB	
47	POMCB	
48	PORCB	
49	POWE	
4C	ERCT	
4D	TGE	
4E	VRWSE	
50	DLRPL	
52	LUCB	
54	RUPE	
54	TUNB	
58	TQE	
5A	PRQAB	
5B	PRBLK	
5C	СРСВ	
5E	IEF	
60	NCSPL	
61	PST	
62	AMU	
62	NSSCB	
62	NSICB	
63	SMP	

ID Control block 64 OCB 65 NACP 66 CAB 67 CANT 68 RSQE 69 RDTPL 6A NOSPL 6B SSIB 6B CAR 6C IOSIB 6D ASRIT 6D RANT 6E GWIT 6F RARB 73 XCB 74 PWK 75 WRE 77 ADJSR 78 ADJSS 7B RIB 81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
65 NACP 66 CAB 67 CANT 68 RSQE 69 RDTPL 6A NOSPL 6B SSIB 6B CAR 6C IOSIB 6D ASRIT 6D RANT 6E GWIT 6F RARB 73 XCB 74 PWK 75 WRE 77 ADJSR 78 ADJSS 78 RIB 81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
66 CAB 67 CANT 68 RSQE 69 RDTPL 6A NOSPL 6B SSIB 6B CAR 6C IOSIB 6D ASRIT 6D RANT 6E GWIT 6F RARB 73 XCB 74 PWK 75 WRE 77 ADJSR 78 ADJSS 78 RIB 81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
67 CANT 68 RSQE 69 RDTPL 6A NOSPL 6B SSIB 6B CAR 6C IOSIB 6D ASRIT 6D RANT 6E GWIT 6F RARB 73 XCB 74 PWK 75 WRE 77 ADJSR 78 ADJSS 78 RIB 81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
68 RSQE 69 RDTPL 6A NOSPL 6B SSIB 6B CAR 6C IOSIB 6D ASRIT 6D RANT 6E GWIT 6F RARB 73 XCB 74 PWK 75 WRE 77 ADJSR 78 ADJSS 78 RIB 81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
69 RDTPL 6A NOSPL 6B SSIB 6B CAR 6C IOSIB 6D ASRIT 6D RANT 6E GWIT 6F RARB 73 XCB 74 PWK 75 WRE 77 ADJSR 78 ADJSS 79 RIB 81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
6A NOSPL 6B SSIB 6B CAR 6C IOSIB 6D ASRIT 6D RANT 6E GWIT 6F RARB 73 XCB 74 PWK 75 WRE 77 ADJSR 78 ADJSS 7B RIB 81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
6B SSIB 6B CAR 6C IOSIB 6D ASRIT 6D RANT 6E GWIT 6F RARB 73 XCB 74 PWK 75 WRE 77 ADJSR 78 ADJSS 78 RIB 81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
6B CAR 6C IOSIB 6D ASRIT 6D RANT 6E GWIT 6F RARB 73 XCB 74 PWK 75 WRE 77 ADJSR 78 ADJSS 78 RIB 81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
6C IOSIB 6D ASRIT 6D RANT 6E GWIT 6F RARB 73 XCB 74 PWK 75 WRE 77 ADJSR 78 ADJSS 78 RIB 81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
6D ASRIT 6D RANT 6E GWIT 6F RARB 73 XCB 74 PWK 75 WRE 77 ADJSR 78 ADJSS 78 RIB 81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
6D RANT 6E GWIT 6F RARB 73 XCB 74 PWK 75 WRE 77 ADJSR 78 ADJSS 78 RIB 81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
6E GWIT 6F RARB 73 XCB 74 PWK 75 WRE 77 ADJSR 78 ADJSS 7B RIB 81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
6F RARB 73 XCB 74 PWK 75 WRE 77 ADJSR 78 ADJSS 7B RIB 81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
73 XCB 74 PWK 75 WRE 77 ADJSR 78 ADJSS 7B RIB 81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
74 PWK 75 WRE 77 ADJSR 78 ADJSS 7B RIB 81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
75 WRE 77 ADJSR 78 ADJSS 7B RIB 81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
77 ADJSR 78 ADJSS 7B RIB 81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
78 ADJSS 7B RIB 81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
7B RIB 81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
81 EXLST 96 SIBXN 97 SIBIX 98 SIB	
96 SIBXN 97 SIBIX 98 SIB	
97 SIBIX 98 SIB	
98 SIB	
TOOR	
99 TSCB	
9A TSPL	
9B LSCB	
9C CNCB	
AO ACB	
A2 RNCA	
A3 ALCA	
BD UDT	
BE INT1	
BF COS	

ID	Control block	
C0	LOGMD	
C1	RPL6X	
CA	GRPCB	
D0	NIB	
EB	AUTOE	
FA	RPNCB	
FC	TLNCB	
FD	RWNCB	
FE	XCNCB	
FF	OCA	
ARB	ARB	
ART	ART	
AUAU	AULIN_ARRAY	
AULN	AULIN	
AUVT	AUVT	
CLK	CLK	
CLWB	HCLW	
DAPT	DAPTR	
FLU	FLU	
FQPT	FQPTB	
FRSR	FRSRC	
FRTP	FRTP	
HIT	HIT	
НТМВ	нтмвк	
LNKT	LNKTB	
LSP	LSPL	
LUTB	LUTAB	
MRPF	MRPFA	
PRT	PRTCB	
None	RCM	
RCOR	RCORS	
RUR	RUR	
RTPT	RTPTB	
SAP	SAPCB	

Table 46. Control block ID codes (continued)	
ID	Control block
SGMN	SGMNT
SND	SND
TIMB	TIMBK

Appendix F. Installing dump analysis and VIT analysis tools

The dump analysis and VIT analysis tools are used for diagnosing software failures.

Concatenating target data sets used in the installation

Table 47 on page 571 shows the target data sets that contain the data necessary to set up the z/OS Communications Server dump analysis and the VIT analysis tool. You need to concatenate the target data sets into the DDNAME statements shown.

Table 47. Target data sets for dump and trace tools			
Target data set	Action	DDNAME	Comment
SYS1.SBLSTBL0	Concatenate	ISPTLIB	Contains compiled tables, keylists, and commands
SYS1.SBLSCLI0	Concatenate	SYSPROC	Contains CLISTs and REXX execs
SYS1.SBLSPNL0	Concatenate	ISPPLIB	Contains compiled panels
SYS1.SBLSMSG0	Concatenate	ISPMLIB	Contains compiled ISPF messages

Use a LOGON PROC to concatenate the data sets. If you create a new LOGON PROC, you need to log off and then log back on for the PROC to take effect.

See z/OS MVS IPCS Customization for an example of a LOGON PROC.

Customizing IPCS interface

If you want a customized interface to be active to select the z/OS Communications Server dump analysis commands, customize the IPCS panel BLSPPRIM by adding the highlighted lines in Figure 264 on page 572 to create and activate option 7 on the IPCS Primary Option Menu as shown in Figure 265 on page 572. This modification allows you to access VTAMMAP directly for dump processing. When this option is selected, control is passed to the ISTDE01 EXEC. This EXEC controls the IPCS panels for the dump formatter.

For information regarding TCP/IP IPCS CLISTs, see z/OS Communications Server: IP Diagnosis Guide.

Note: This sample is not necessarily identical to the one on your system.

```
) ATTR
 /* ========== */
       5685-001 This panel is "Restricted materials of IBM"
(C) Copyright IBM Corporation 1988
 /*
                                                                       */
 /*
 /*
       Licensed materials - property of IBM
                                                                       */
       Refer to copyright instructions, form number G120-2083
                    t TYPE(INPUT) INTENS(HIGH) CAPS(OFF) JUST(LEFT) PAD(NULLS)
 @ TYPE(TEXT) COLOR(GREEN) INTENS(LOW)
) BODY
                ----- IPCS PRIMARY OPTION MENU -----
%OPTION ===>¢ZCMD
                                                             0*****
                   - Specify default dump and options
- Browse dump data set
                                                             @* USERID - &ZUSER
@* DATE - &ZDATE
    0 +DEFAULTS
%
    1 +BROWSE
    2 +ANALYSIS - Analyze dump contents
                                                             @* JULIAN - &ZJDATE
                   %
    3 +SUBMIT
    4 +COMMAND
%
%
    5 +UTILITY
    6 +DUMPS
                   - Manage dump inventory
%
                                                             @* PF KEYS - &ZKEYS
                   - VTAM dump analysis commands
    7 +VTAM
                                                             %*******
                   - Learn how to use the IPCS dialog
%
    T +TUTORIAL
                   - Terminate using log and list defaults
    X +EXIT
+Enter%END+command to terminate IPCS dialog
) INIT
  \&ZPRIM = YES
                        /* Always a primary option menu
/* Tutorial table of contents
  &ZHTOP = BLSPHELP
  .CURSOR = ZCMD
  .HELP = BLSPHELP
  \&ZHINDEX = \&Z
                       /* No tutorial index is supplied */
) PROC
  &PASSLIB = &Z
  IF (\&ZDBCS = YES, NO)
    &PASSLIB = PASSLIB
  &ZSEL = TRANS( TRUNC (&ZCMD,'.')

0,'PGM(BLSGSCMD) PARM(%BLSCSETD)'

1,'PGM(BLSLDISP) NEWAPPL(BLSL) &PASSLIB'

2,'PANEL(BLSPSCRN)'

3,'PANEL(BLSPBKGD)'
                4, 'PANEL(BLSPDSLE)'
5, 'PANEL(BLSPUTIL)'
                                                                   %00A*/
                                                     /*
                   'PGM(BLSGDUIN)
                   'PGM(BLSGSCMD) PARM(%ISTDE01) NEWAPPL(ISTD) &PASSLIB'
'PGM(ISPTUTOR) PARM(BLSPTUTR)'
                T, 'PGM(ISPTUTOR) PARM(BLSPTUTR)'
                x,'EXIT'
                X,'EXIT'
*,'?')
) END
```

Figure 264. Sample IPCS panel BLSPPRIM customization

```
OPTION ===> _
      DEFAULTS
                    - Specify default dump and options
                    - Specify default dump and options
- Browse dump data set
- Analyze dump contents
- Submit problem analysis job to batch
- Enter IPCS subcommand or CLIST
- Perform utility functions
- Manage dump inventory
- VTAM dump analysis commands
       BROWSE
       ANALYSIS
       SUBMIT
   4
       COMMAND
   5
       UTILITY
       DUMPS
       VTAM
                     - Learn how to use the IPCS dialog
   Τ
      TUTORIAL
                      - Terminate using log and list defaults
   X EXIT
Enter END command to terminate IPCS dialog
```

Figure 265. Addition of option 7 to the IPCS primary option menu

Verifying dump formatter panels

To verify that dump formatter panels are set up correctly, choose option 7 on the menu shown in <u>Figure 265</u> on page 572.

The first ISPF panel you should see is shown in Figure 266 on page 573.

```
VTAMMAP Analysis Menu

Select one of the following items. Then press Enter.

-- 1. APPC . - APPLCONV, PARTNRLU, APPLMODE, APPMODAL
2. APPN . - APPNBASE, FNDADJCP, FNDANDCB, FNDCOS, FNDDECB, etc
3. General . HOST, VTAM, VTBASIC, VTFNDMOD, VTMODS, VITAL, etc
4. Queues . PABSCAN, VTCVTPAB, VTREADVQ
5. Resource - RDTCHECK, RDTFULL, RDTHIER, RDTSUM, VTNODE
6. Session . - ATMDATA, FINDDSIB, FINDSIB, MNPS, SES, SIBCHECK
7. Search . SRTFIND
8. Storage . SPANC, STORAGE, VTBUF, VTRPH
9. CSM . - CSMALL, CSMBUF, CSMCMPID, CSMOWNER, CSMPOOL
10. Waits. . - VTWRE
11. ERS/VRS. - ROUTES, VTVRBLK
12. CLISTs . - ISTVABND, ISTVDUMP, ISTVMAP, ISTVSAVE, ISTVSLIP
13. APPN2. . - TRSTRACE

(C) Copyright IBM Corporation 1993,2006. All rights reserved.
Command ===>
F1=Help F2=Split F3=Exit F9=Swap F12=Cancel
```

Figure 266. Main menu for selecting dump options

Press the PF1 key to verify that the appropriate help panel is displayed.

Customizing ISPF interface

If you want a customized interface to be active to select the z/OS Communications Server trace analysis commands, customize the ISPF panel ISR@PRIM by adding the highlighted lines shown in Figure 267 on page 574 to create and activate option V on the ISPF/PDF Primary Option Menu as shown in Figure 268 on page 575. When this option is selected, control is passed to the ISTTE01 EXEC. This EXEC controls the ISPF panels for trace formatter.

Note: The samples shown in Figure 267 on page 574 and Figure 268 on page 575 are not necessarily identical to the ones on your system.

```
+ TYPE(TEXT) COLOR(GREEN) INTENS(LOW)
) BODY
             ------ SAMPLE ISPF/PDF PRIMARY OPTION MENU -------
%OPTION ===>_ZCMD
                                                                                                               +USERID - &ZUSER
      0 +ISPF PARMS - Specify terminal and user parameters +TIME - &ZTIME
1 +BROWSE - Display source data or output listings +TERMINAL - &ZTIME
2 +EDIT - Create or change source data +PF KEYS - &ZKEYS
3 +UTILITIES - Perform utility functions
4 +FOREGROUND - Invoke language processors in foreground
5 +BATCH - Submit job for language processing
6 +COMMAND - Enter TSO command or CLIST
7 +DIALOG TEST - Perform dialog testing
%
%
%
%
%
%
      7 +DIALOG TEST - Perform dialog testing
8 +LM UTILITIES- Perform library administrator utility functions
9 +IBM PRODUCTS- Same as option S (SER PRODUCTS)
%
      10 +SCLM - Software Configuration and Library Manager C +CHANGES - Display summary of changes for this release V +VTAM - VTAM trace analysis commands T +TUTORIAL - Display information about ISPF/PDF S +SER PRODUCTS - Southeast Region product options
%
     10 +SCLM
%
%
%
      I +SER IC TOOLS- Southeast Region Info-Center and Toolkits P +RPM - Regional Problem Management
%
%
      X +EXIT
                                   - Terminate ISPF using log and list defaults
%
+Enter%END+command to terminate ISPF.
) INIT
   .HELP = ISR00003
   &ZPRIM = YES /* ALWAYS A PRIMARY OPTION MENU 
&ZHTOP = ISR00003 /* TUTORIAL TABLE OF CONTENTS
   &ZHINDEX = ISR91000 /* TUTORIAL INDEX - 1ST PAGE
   \&ZSCLMPRJ = \&Z
   VPUT (ZHTOP, ZHINDEX, ZSCLMPRJ) PROFILE
) PROC
\&ZQ = \&Z
   IF (&ZCMD ¬= ' ')
      &ZQ = TRUNC(&ZCMD, '.')
IF (&ZQ = '')
.MSG = ISRU000
   &ZSEL = TRANS( &ZQ
                             0, 'PANEL(ISPOPTA) '
                             1, 'PGM(ISRBRO) PARM(15RBN001)
2, 'PGM(ISREDIT) PARM(P,ISREDM01)'
                             3, 'PANEL(ISRUTIL)
4, 'PANEL(ISRFPA)'
                             5, 'PGM(ISRJB1) PARM(ISRJPA) NOCHECK'
                             6, 'PGM(ISRPTC)'
7, 'PGM(ISPYXDR) PARM(ISR) NOCHECK'
                             8, 'PANEL(ISRLPRIM)'
9, 'PANEL(SERPP000)'
                           9, PANEL(SERPP000)' /* CHANGED HERE? FROM ISRDIIS */
10, 'PGM(ISRSCLM) NOCHECK'
                             C,'PGM(ISPTUTOR) PARM(ISR00005)'
V,'CMD(%ISTTE01) NEWAPPL(ISTT) &PASSLIB'
                             T, 'PGM(ISPTUTOR) PARM(ISR00000) 'S, 'PANEL(SERPP000)'
                            S, 'PANEL(SERPPOUU)
I, 'PANEL(SERICOOO)'
P, 'CMD(%SRRPM)'
                             X, 'EXIT'
   &ZTRAIL = .TRAIĹ
) END
```

Figure 267. Sample ISPF panel ISR@PRIM customization

Note: This sample is not necessarily identical to the one on your system.

```
----- ISPF/PDF PRIMARY OPTION MENU -------
OPTION ===>
                                                                                                                          USERID - USERID
     0 ISPF PARMS - Specify terminal and user parameters TIME - 9:29
1 BROWSE - Display source data or output listings TERMINAL - 3278
2 EDIT - Create or change source data PF KEYS - 12
     2 EDIT - Create or change source data
3 UTILITIES - Perform utility functions
4 FOREGROUND - Invoke language processors in foreground
5 BATCH - Submit job for language processing
6 COMMAND - Enter TSO command or CLIST
7 DIALOG TEST - Perform dialog testing
8 LM UTILITIES - Perform library administrator utility functions
9 IBM PRODUCTS - Same as option S (SER PRODUCTS)
10 SCIM - Software Configuration and Library Manager

    Software Configuration and Library Manager
    Display summary of changes for this release

      10 SCLM
          CHANGES
                                  - VTAM trace analysis commands
- Display information about ISPF/PDF
           VTAM
            TUTORIAL
           SER PRODUCTS- Southeast Region product options
           SER IC TOOLS- Southeast Region Info-Center and Toolkits
RPM - Regional Problem Management
                                    - Terminate ISPF using log and list defaults
      X EXIT
Enter END command to terminate ISPF.
```

Figure 268. Addition of option V to the ISPF/PDF primary option menu

Verifying trace formatter panels

To verify that trace formatter panels are set up correctly, choose option V on the menu shown in <u>Figure</u> 268 on page 575.

The first ISPF panel you should see is shown in Figure 269 on page 575.

```
VTAM Internal Trace Analysis

Select one of the following items. Then press Enter.

1. Storage Analysis
2. Request/response unit counting
3. VIT extraction
4. Input complete

(C) Copyright IBM Corporation 1993,2002. All rights reserved.

Command ===>
F1=Help F2=Split F3=Exit F9=Swap F11=Retrieve F12=Cancel
```

Figure 269. Main menu for selecting trace parameters

Press the PF1 key to verify that the appropriate help panel is displayed.

Note: It is recommended that you position the command line at the bottom of the screen using ISPF PARMS option DISPLAY and changing the 'COMMAND LINE PLACEMENT ===> ASIS' to BOTTOM to improve readability.

Appendix G. Problem topics in other libraries

Topic	See
3174 Controller	3174 Functional Description
Abend codes	z/OS MVS System Codes
Abend dump	z/OS MVS JCL Reference
Alerts	Tivoli NetView for z/OS Version 5.2 Command Reference Volumes 1 & 2
	SNA Network Product Formats
CCW trace	z/OS MVS Diagnosis: Tools and Service Aids
Channel programs	IBM 4361 Processor Communication Adapter
	IBM 9370 Information System: Telecommunications Subsystem Description and Reference
	Principles of Operation manual for your communication controller
	Principles of Operation manual for your operating system
CNOS return codes	z/OS Communications Server: SNA Programmer's LU 6.2 Guide
Communication scanner output	NCP, SSP, and EP Diagnosis
	NCP Reference Summary and Data Areas
	Principles of Operation manual for your communication controller
Coupling facility structures dump	z/OS MVS System Commands
Directory services management exit	z/OS Communications Server: SNA Customization
Dump collecting, formatting, and printing	z/OS MVS Diagnosis: Tools and Service Aids
ERP	SYS1.LOGREC Error Recording
Exception request (EXR)	SNA Network Product Formats
First Failure Support Technology (FFST)	First Failure Support Technology for VM and MVS Operator's Guide
Full-screen mode	z/OS TSO/E Programming Services
Generalized trace facility (GTF)	z/OS MVS Diagnosis: Tools and Service Aids
Generic alerts	See Alerts.
Hung NCP Hung resources attached to an NCP, Hung sessions	NCP, SSP, and EP Diagnosis Guide
IEBGENER utility	MVS Utilities
Intensive mode recording	NCP, SSP, and EP Diagnosis Guide
I/O control blocks	This information is available in the MVS data areas documentation, which is available at the following website: z/OS Internet Library.

Topic	See
I/O traces	This information is available in the MVS data areas documentation, which is available at the following website: z/OS Internet Library.
IPCS, running in batch mode, IPCS commands	z/OS MVS IPCS Commands
	z/OS MVS IPCS User's Guide
IPCSPRNT	z/OS MVS IPCS Customization
Job control language (JCL)	z/OS MVS JCL Reference
	z/OS MVS JCL User's Guide
Line trace records	NCP, SSP, and EP Diagnosis Guide
LIST Service Aid	z/OS MVS Diagnosis: Tools and Service Aids
LOGDATA option	z/OS MVS IPCS Commands
LOGREC	SYS1.LOGREC Error Recording
MVS IKJxxxx system messages	z/OS MVS System Messages, Vol 9 (IGF-IWM)
MVS system codes	z/OS MVS System Codes
NCP data areas, registers, and codes	NCP and EP Reference Summary and Data Areas, Volumes I and II
NCP dumps, NCP service aids	NCP, SSP, and EP Diagnosis Guide
NCP, tuning	NTuneMON User's Guide
NetView Session Monitor	Tivoli NetView for z/OS Version 5.2 Command Reference Volumes 1 & 2
NMVT RUs	SNA Network Product Formats NetView Operation
Program status words (PSWs)	Principles of Operation manuals
RECMS RU formats	NCP and EP Reference Summary and Data Areas, Volumes I and II
Reshow processing	z/OS TSO/E Programming Services
RTCT	This information is available in the MVS data areas documentation, which is available at the following website: z/OS Internet Library.
RU opcodes	SNA Formats
SDATA options	z/OS MVS System Commands
Session monitor	See NetView Session Monitor.
SLIP dump	z/OS MVS Diagnosis: Tools and Service Aids
SMP	System Modification Program Extended User's Guide
SNA sense codes	SNA Formats
Socket API calls	z/OS Communications Server: IP Programmer's Guide and Reference
Stand-alone dump	z/OS MVS Diagnosis: Tools and Service Aids
STATMON	See NetView Session Monitor.
SVC dump	z/OS MVS System Commands
SVC 93 and SVC 94 entries	z/OS MVS Diagnosis: Tools and Service Aids

Table 48. Related information on problem topics in other libraries (continued)	
Topic	See
Task control blocks	This information is available in the MVS data areas documentation, which is available at the following website: z/OS Internet Library.
TCB, map of	This information is available in the MVS data areas documentation, which is available at the following website: z/OS Internet Library.
TGET options, TGET return codes	z/OS TSO/E Programming Services
TGET/TPUT option flags	z/OS MVS Diagnosis: Reference
TPUT options, editing done by	z/OS TSO/E Programming Services

Appendix H. Architectural specifications

This appendix lists documents that provide architectural specifications for the SNA Protocol.

The APPN Implementers' Workshop (AIW) architecture documentation includes the following architectural specifications for SNA APPN and HPR:

- APPN Architecture Reference (SG30-3422-04)
- APPN Branch Extender Architecture Reference Version 1.1
- APPN Dependent LU Requester Architecture Reference Version 1.5
- APPN Extended Border Node Architecture Reference Version 1.0
- APPN High Performance Routing Architecture Reference Version 4.0
- SNA Formats (GA27-3136-20)
- SNA Technical Overview (GC30-3073-04)

The following RFC also contains SNA architectural specifications:

• RFC 2353 APPN/HPR in IP Networks APPN Implementers' Workshop Closed Pages Document RFCs are available at http://www.rfc-editor.org/rfc.html.

Appendix I. Accessibility

Publications for this product are offered in Adobe Portable Document Format (PDF) and should be compliant with accessibility standards. If you experience difficulties when using PDF files, you can view the information through the z/OS Internet Library website http://www.ibm.com/systems/z/os/zos/library/bkserv/ or IBM Documentation https://www.ibm.com/systems/z/os/zos/webqs.html) or write to:

IBM Corporation Attention: MHVRCFS Reader Comments Department H6MA, Building 707 2455 South Road Poughkeepsie, NY 12601-5400 USA

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision, to use software products successfully. The major accessibility features in z/OS enable users to:

- · Use assistive technologies such as screen readers and screen magnifier software
- Operate specific or equivalent features using only the keyboard
- Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user interfaces found in z/OS. Consult the assistive technology documentation for specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. See z/OS TSO/E Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information about accessing TSO/E and ISPF interfaces. These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their functions.

z/OS information

One exception is command syntax that is published in railroad track format, which is accessible using screen readers with IBM Documentation, as described in "Dotted decimal syntax diagrams" on page 583.

Dotted decimal syntax diagrams

Syntax diagrams are provided in dotted decimal format for users accessing IBM Documentation using a screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or more syntax elements are always present together (or always absent together), they can appear on the same line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers correctly, make sure that your screen reader is set to read out punctuation. All the syntax elements that have the same dotted decimal number (for example, all the syntax elements that have the number 3.1) are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the syntax elements. Occasionally, these words and symbols might occur at the beginning of the element itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the backslash (\) character. The * symbol can be used next to a dotted decimal number to indicate that the syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax element *FILE repeats. Format 3* * FILE indicates that syntax element *FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the syntax just before the items they separate. These characters can appear on the same line as each item, or on a separate line with the same dotted decimal number as the relevant items. The line can also show another symbol giving information about the syntax elements. For example, the lines 5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax elements, the elements must be separated by a comma. If no separator is given, assume that you use a blank to separate each syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is defined elsewhere. The string following the % symbol is the name of a syntax fragment rather than a literal. For example, the line 2.1 %OP1 means that you should see separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

- A question mark (?) means an optional syntax element. A dotted decimal number followed by the ? symbol indicates that all the syntax elements with a corresponding dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted decimal number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax elements NOTIFY and UPDATE are optional; that is, you can choose one or none of them. The ? symbol is equivalent to a bypass line in a railroad diagram.
- An exclamation mark (!) means a default syntax element. A dotted decimal number followed by the ! symbol and a syntax element indicate that the syntax element is the default option for all syntax elements that share the same dotted decimal number. Only one of the syntax elements that share the same dotted decimal number can specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword. In this example, if you include the FILE keyword but do not specify an option, default option KEEP will be applied. A default option also applies to the next higher dotted decimal number. In this example, if the FILE keyword is omitted, default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.
- An asterisk (*) means a syntax element that can be repeated 0 or more times. A dotted decimal number followed by the * symbol indicates that this syntax element can be used zero or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data area, you know that you can include one data area, more than one data area, or no data area. If you hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include HOST, STATE, both together, or nothing.

Notes:

- 1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted decimal number, you can repeat that same item more than once.
- 2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal number, you can use more than one item from the list, but you cannot use the items more than once each. In the previous example, you could write HOST STATE, but you could not write HOST HOST.
- 3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.

• + means a syntax element that must be included one or more times. A dotted decimal number followed by the + symbol indicates that this syntax element must be included one or more times; that is, it must be included at least once and can be repeated. For example, if you hear the line 6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the + symbol can only repeat a particular item if it is the only item with that dotted decimal number. The + symbol, like the * symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in only the HTML plug-in output for the IBM Documentation. Use of hyperlinks in other output formats of this information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation Site Counsel 2455 South Road Poughkeepsie, NY 12601-5400 USA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices are preserved. You may not distribute, display or make derivative work of these publications, or any portion thereof, without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that all proprietary notices are preserved. You may not make derivative works of these publications, or reproduce, distribute or display these publications or any portion thereof outside your enterprise, without the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or implied, to the publications or any information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies or other technologies to collect product usage information, to help improve the end user experience, to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable information is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect personally identifiable information. If this Software Offering uses cookies to collect personally identifiable information about this offering's use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect each user's name, email address, phone number, or other personally identifiable information for purposes of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect personally identifiable information from end users via cookies and other technologies, you should seek your own legal advice about any laws applicable to such data collection, including any requirements for notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see IBM's Privacy Policy at ibm.com®/privacy and IBM's Online Privacy Statement at ibm.com/privacy/details in the section entitled "Cookies, Web Beacons and Other Technologies," and the "IBM Software Products and Software-as-a-Service Privacy Statement" at ibm.com/software/info/product-privacy.

Policy for unsupported hardware

Various z/OS elements, such as DFSMS, JES2, JES3, and MVS, contain code that supports specific hardware servers or devices. In some cases, this device-related element support remains in the product even after the hardware devices pass their announced End of Service date. z/OS may continue to service element code; however, it will not provide service related to unsupported hardware devices. Software problems related to these devices will not be accepted for service, and current service activity will cease if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware

The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently change when service for particular servers or devices is withdrawn. Likewise, the levels of other software products supported on a particular release of z/OS are subject to the service support lifecycle of those products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and product documentation) can include references to hardware and software that is no longer supported.

- For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/software/support/systemsz/lifecycle)
- For information about currently-supported IBM hardware, contact your IBM representative.

Programming interface information

This publication documents information NOT intended to be used as Programming Interfaces of z/OS Communications Server.

Policy for unsupported hardware

Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code that supports specific hardware servers or devices. In some cases, this device-related element support remains in the product even after the hardware devices pass their announced End of Service date. z/OS may continue to service element code; however, it will not provide service related to unsupported hardware devices. Software problems related to these devices will not be accepted for service, and current service activity will cease if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be issued.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Bibliography

This bibliography contains descriptions of the documents in the z/OS Communications Server library.

z/OS Communications Server documentation is available online at the z/OS Internet Library web page at http://www.ibm.com/systems/z/os/zos/library/bkserv/.

z/OS Communications Server library updates

Updates to documents are also available on RETAIN and in information APARs (info APARs). Go to https://www.ibm.com/mysupport to view information APARs.

- z/OS Communications Server V2R1 New Function APAR Summary
- z/OS Communications Server V2R2 New Function APAR Summary
- z/OS Communications Server V2R3 New Function APAR Summary
- z/OS Communications Server V2R4 New Function APAR Summary

z/OS Communications Server information

z/OS Communications Server product information is grouped by task in the following tables.

Planning

Title	Number	Description
z/OS Communications Server: New Function Summary	GC27-3664	This document is intended to help you plan for new IP or SNA functions, whether you are migrating from a previous version or installing z/OS for the first time. It summarizes what is new in the release and identifies the suggested and required modifications needed to use the enhanced functions.
z/OS Communications Server: IPv6 Network and Application Design Guide	SC27-3663	This document is a high-level introduction to IPv6. It describes concepts of z/OS Communications Server's support of IPv6, coexistence with IPv4, and migration issues.

Resource definition, configuration, and tuning

Title	Number	Description
z/OS Communications Server: IP Configuration Guide	SC27-3650	This document describes the major concepts involved in understanding and configuring an IP network. Familiarity with the z/OS operating system, IP protocols, z/OS UNIX System Services, and IBM Time Sharing Option (TSO) is recommended. Use this document with the z/OS Communications Server: IP Configuration Reference.

Title	Number	Description
z/OS Communications Server: IP Configuration Reference	SC27-3651	This document presents information for people who want to administer and maintain IP. Use this document with the z/OS Communications Server: IP Configuration Guide. The information in this document includes: TCP/IP configuration data sets Configuration statements Translation tables Protocol number and port assignments
z/OS Communications Server: SNA Network Implementation Guide	SC27-3672	This document presents the major concepts involved in implementing an SNA network. Use this document with the z/OS Communications Server: SNA Resource Definition Reference.
z/OS Communications Server: SNA Resource Definition Reference	SC27-3675	This document describes each SNA definition statement, start option, and macroinstruction for user tables. It also describes NCP definition statements that affect SNA. Use this document with the z/OS Communications Server: SNA Network Implementation Guide.
z/OS Communications Server: SNA Resource Definition Samples	SC27-3676	This document contains sample definitions to help you implement SNA functions in your networks, and includes sample major node definitions.
z/OS Communications Server: IP Network Print Facility	SC27-3658	This document is for systems programmers and network administrators who need to prepare their network to route SNA, JES2, or JES3 printer output to remote printers using TCP/IP Services.

Operation

Title	Number	Description
z/OS Communications Server: IP User's Guide and Commands	SC27-3662	This document describes how to use TCP/IP applications. It contains requests with which a user can log on to a remote host using Telnet, transfer data sets using FTP, send electronic mail, print on remote printers, and authenticate network users.
z/OS Communications Server: IP System Administrator's Commands	SC27-3661	This document describes the functions and commands helpful in configuring or monitoring your system. It contains system administrator's commands, such as TSO NETSTAT, PING, TRACERTE and their UNIX counterparts. It also includes TSO and MVS commands commonly used during the IP configuration process.
z/OS Communications Server: SNA Operation	SC27-3673	This document serves as a reference for programmers and operators requiring detailed information about specific operator commands.
z/OS Communications Server: Quick Reference	SC27-3665	This document contains essential information about SNA and IP commands.

Customization

Title	Number	Description
z/OS Communications Server: SNA Customization	SC27-3666	This document enables you to customize SNA, and includes the following information:
		Communication network management (CNM) routing table
		Logon-interpret routine requirements
		Logon manager installation-wide exit routine for the CLU search exit
		TSO/SNA installation-wide exit routines
		SNA installation-wide exit routines

Writing application programs

Title	Number	Description
z/OS Communications Server: IP Sockets Application Programming Interface Guide and Reference	SC27-3660	This document describes the syntax and semantics of program source code necessary to write your own application programming interface (API) into TCP/IP. You can use this interface as the communication base for writing your own client or server application. You can also use this document to adapt your existing applications to communicate with each other using sockets over TCP/IP.
z/OS Communications Server: IP CICS Sockets Guide	SC27-3649	This document is for programmers who want to set up, write application programs for, and diagnose problems with the socket interface for CICS using z/OS TCP/IP.
z/OS Communications Server: IP IMS Sockets Guide	SC27-3653	This document is for programmers who want application programs that use the IMS TCP/IP application development services provided by the TCP/IP Services of IBM.
z/OS Communications Server: IP Programmer's Guide and Reference	SC27-3659	This document describes the syntax and semantics of a set of high-level application functions that you can use to program your own applications in a TCP/IP environment. These functions provide support for application facilities, such as user authentication, distributed databases, distributed processing, network management, and device sharing. Familiarity with the z/OS operating system, TCP/IP protocols, and IBM Time Sharing Option (TSO) is recommended.
z/OS Communications Server: SNA Programming	SC27-3674	This document describes how to use SNA macroinstructions to send data to and receive data from (1) a terminal in either the same or a different domain, or (2) another application program in either the same or a different domain.
z/OS Communications Server: SNA Programmer's LU 6.2 Guide	SC27-3669	This document describes how to use the SNA LU 6.2 application programming interface for host application programs. This document applies to programs that use only LU 6.2 sessions or that use LU 6.2 sessions along with other session types. (Only LU 6.2 sessions are covered in this document.)
z/OS Communications Server: SNA Programmer's LU 6.2 Reference	SC27-3670	This document provides reference material for the SNA LU 6.2 programming interface for host application programs.

Title	Number	Description
z/OS Communications Server: CSM Guide		This document describes how applications use the communications storage manager.

Diagnosis

Title	Number	Description
z/OS Communications Server: IP Diagnosis Guide	GC27-3652	This document explains how to diagnose TCP/IP problems and how to determine whether a specific problem is in the TCP/IP product code. It explains how to gather information for and describe problems to the IBM Software Support Center.
z/OS Communications Server: ACF/TAP Trace Analysis Handbook	GC27-3645	This document explains how to gather the trace data that is collected and stored in the host processor. It also explains how to use the Advanced Communications Function/Trace Analysis Program (ACF/TAP) service aid to produce reports for analyzing the trace data information.
z/OS Communications Server: SNA Diagnosis Vol 1, Techniques and Procedures and z/OS Communications Server: SNA Diagnosis Vol 2, FFST Dumps and the VIT	GC27-3667 GC27-3668	These documents help you identify an SNA problem, classify it, and collect information about it before you call the IBM Support Center. The information collected includes traces, dumps, and other problem documentation.
z/OS Communications Server: SNA Data Areas Volume 1 and z/OS Communications Server: SNA Data Areas Volume 2	GC31-6852 GC31-6853	These documents describe SNA data areas and can be used to read an SNA dump. They are intended for IBM programming service representatives and customer personnel who are diagnosing problems with SNA.

Messages and codes

Title	Number	Description
z/OS Communications Server: SNA Messages	SC27-3671	This document describes the ELM, IKT, IST, IUT, IVT, and USS messages. Other information in this document includes:
		Command and RU types in SNA messages
		Node and ID types in SNA messages
		Supplemental message-related information
z/OS Communications Server: IP Messages Volume 1 (EZA)	SC27-3654	This volume contains TCP/IP messages beginning with EZA.
z/OS Communications Server: IP Messages Volume 2 (EZB, EZD)	SC27-3655	This volume contains TCP/IP messages beginning with EZB or EZD.
z/OS Communications Server: IP Messages Volume 3 (EZY)	SC27-3656	This volume contains TCP/IP messages beginning with EZY.
z/OS Communications Server: IP Messages Volume 4 (EZZ, SNM)	SC27-3657	This volume contains TCP/IP messages beginning with EZZ and SNM.
z/OS Communications Server: IP and SNA Codes	SC27-3648	This document describes codes and other information that appear in z/OS Communications Server messages.

Index

Numerics	authorized programming analysis report (APAR) $\underline{44}$
3270 data stream	В
explanation <u>310</u>	
GTF exit	backspace key functions improperly 102
IST32FMT <u>308</u>	BIND in logon, detecting incorrect portion of 95
output 308	BIND location 104
3270 IDS incidents	BINFM, coding 95
buffer contents trace 289	bracket in buffer contents trace output 99
3270 IDS trace	buffer contents trace
operation 290	confidential data 289
output 290	description <u>286</u> , <u>289</u>
	full <u>287</u>
A	operation <u>287</u>
	partial <u>287</u>
abend (abnormal end)	when to use 287
codes	buffer extents, effect on performance (TSO/VTAM) 106
0AB <u>96, 97</u>	buffer pool, analyzing usage <u>112</u> , <u>303</u>
0AC 97	buffer use
0AD <u>98</u>	trace 301, 303
0Ax <u>56</u>	trace format, MVS 304
0C4 8	buffer use display <u>112</u>
0Cx <u>55</u>	
15D <u>98</u>	C
diagnosis procedure <u>53</u>	
dump 159	CCW trace <u>82</u> , <u>272</u>
finding the abend code 55	change direction indicator in buffer contents trace output 99
symptoms <u>4, 38</u> TSO/VTAM	changing screen size in non-full-screen processing <u>105</u>
diagnosis procedure 96	channel program
documentation requirements 96	XID
symptoms 93	X-side <u>364</u> , <u>374</u>
VTAM address space 210	Y-side <u>365</u> , <u>374</u>
Abend in user exit ISTEXCCS, ISTEXCSD, ISTEXCAA, or	channel programs
ISTEXCVR 8	APPN host-to-host channels 359
accessibility 583	channel-attached non-SNA 3270 devices 379
ACF/TAP (trace analysis program) 283	channel-attached type 2 and 4 PUs 353
activation	channel-to-channel adapters 359
CDRM 16	command words 380
network traces 270	HPDT MPC data transfer 378
ALL VTAMMAP 168	MPC connection, activating 374, 376
alternate screen size, PSERVIC coding 104	MPC data transfer 376
analysis and trace analysis tools, installing dump 571	multipath channels 359
analyzing dumps with IPCS VTAMMAP 163	PUNS-related 358
APAR (authorized programming analysis report) 44	channel-attachment major node, I/O trace 297
APPLCONV VTAMMAP 169	character delete key functions improperly 102
application program	CICS, logon failure 16
log <u>46</u>	CLISTs
performance group specification (TSO/VTAM) 106	detailed descriptions 168
problems 45	errors, debugging 164
APPLMODE VTAMMAP 170	help, obtaining online 164
APPMODAL VTAMMAP 171	ISTVABND 210
APPN flows 453	ISTVDUMP 212
APPNBASE VTAMMAP 173	ISTVMAP 214
ASCB trace field 284	ISTVSAVE 216
ASKQ item, in problem reporting 4	ISTVSLIP 218
AUTH operand (TSO/VTAM) 106	output, printing 164

CLISTs (continued)	directory services flows <u>464</u>
overview 164	disability <u>583</u>
CLSDST PASS, possible cause for failure 95	dispatching priority, performance group specification 106
codes, CPCB operation 549	DISPLAY command
colons as incorrect output (TSO/VTAM) 103	active traces 154
commands	buffer pool use <u>112</u>
operator, DISPLAY and MODIFY <u>109</u>	communications storage manager <u>113</u>
rejected (TSO/VTAM) 93	device workload information 155
to change screen size in non-full-screen processing	EEDIAG 116
(TSO/VTAM) 105	Enterprise Extender 114
common problems	Enterprise Extender connection network unreachable
	·
APPN 20	partner information 132
description $\underline{4}$	HPR route test <u>133</u>
path and routing <u>138</u>	network ID <u>137</u>
subarea 4	network resource status 137
VIT analysis tool 41	path tables 137
VTAM dump analysis tool 43	pending state 137
common symptoms 38	route status 138
	
Communications Server for z/OS, online information xxviii	route test 144
component ID <u>48</u>	RTPS <u>133</u>
concatenated input 102	topology database update statistics 147
confidential data in buffer contents trace 289	trace status 154
configuration data set 47	TRL 155
console log 48	VTAM storage 154
control blocks	DNS, online information xxix
formatted in a dump 160	documentation problem 88
ID codes, for VTAM <u>565</u>	documenting problems <u>44</u> , <u>51</u>
control operator control block (COPR), finding <u>169</u>	dump analysis and trace analysis tools, installing 571
control point/control block (CPCB) operation codes 549	dumps
coordinated universal time (Greenwich mean time) $\overline{240}$	ABDUMP 160
COPR (control operator control block), finding 169	analysis of VTAM 163, 164
COS	enhanced dump analysis tools 163
undefined entry, (APPN) <u>25</u>	formatted dump procedures 168
undefined entry, (subarea) <u>16</u>	MVS
CP-CP session flows <u>457</u>	abend <u>159</u>
CPCB operation codes 549	analyzing with VTAMMAP 163
CPU trace field 284	formatting and printing 160
CRA 67	stand-alone 160
CRALKACT 67	SVC 160
CRALxPTR fields 67	VTAM control blocks formatted 160
cross-domain logon problem <u>96</u>	tool, dump analysis <u>163</u>
CSM control blocks <u>184</u>	tracing execution sequence of VTAM components in 349
CSM storage pool 184	
CSMPOOL 184	E. Carrier and Car
customer number 51	E
	echo test 348
D	editing done by TPUT options <u>103</u>
	EIDs (event IDs) 64
data	electronic technical report (ETR) 4
display problem (TSO/VTAM) 100	error recording
incorrect content	hardware 347
TSO/VTAM 94	LOGREC 46
	
VTAM <u>80</u>	NMVT alerts 347
incorrect length (TSO/VTAM) <u>93</u>	escape character associated with incorrect screen size <u>105</u>
incorrect translation (TSO/VTAM) 103	event IDs (EIDs) 64
misplaced, TSO/VTAM 102	exception responses 101
default	execution sequence of VTAM components in a dump 349
logmode name in USS command 104	
screen size 104	
	F
dependent LU server flows 515	
detected waits increase <u>94</u>	failing module problem, procedure 89
device workload information, displaying <u>155</u>	FINDDSIB VTAMMAP 186
diagnosing problems in VTAM dump analysis 43	finding the PSW 77
diagnosing problems, where to begin 3	a

FINDSIB VTAMMAP 188	hung (continued)
flows	terminal (TSO/VTAM)
APPN	symptoms <u>93</u>
CP-CP session <u>457</u> dependent LU server 515	
description 453	I
directory services 464	I/O a sa dia a (A
high performance routing 539	I/O pending <u>64</u> I/O trace
index 453	description 295
LU-LU session 485	operation 296
network	when to use 296
deactivation and session termination 429	I/O traces 282
description 387	IBM Software Support Center, contacting xxiii
error detection and recovery and SSCP	IBM Support Center 91
management services <u>445</u>	IBM Support Center, documentation for
generic BIND AMRUs 391	general information 51
index 387	IBMLINK <u>4</u>
resource activation 394	IBMTEST command (logical unit connection test) 348
session establishment <u>406</u> FNDADJCP VTAMMAP 192	IKJ608I message 93
FNDANDCB VTAMMAP 193	IKT028I message 93
FNDCOS VTAMMAP 193	IKT029I message 93
FNDDECB VTAMMAP 195	incorrect data
FNDENDEL VTAMMAP 195	length (TSO/VTAM) 93
FNDLCB VTAMMAP 196	translation (TSO/VTAM) 103
FNDNDREC VTAMMAP 197	line prompting (TSO/VTAM) 93
FNDNDWGT VTAMMAP 199	output
FNDNODE VTAMMAP 200	diagnosis procedure 80
FNDREREC VTAMMAP 201	symptoms 4, 38
FNDSCCB VTAMMAP 202	TSO/VTAM 100
FNDSITCB VTAMMAP 203	processing for a mode (TSO/VTAM) <u>93</u>
FNDTGREC VTAMMAP 207	screen management (TSO/VTAM) 100
formatting and printing dump output <u>160</u> formatting trace output, using ACF/TAP 283	screen size
full-screen	diagnosis procedure (TSO/VTAM) 104
description of mode (TSO/VTAM) 100	documentation requirements (TSO/VTAM) 104
incorrect processing (TSO/VTAM) 93	non-SNA 3270 terminal <u>104</u> increase in
function error (TSO/VTAM) 100	detected waits 94
	swap-outs 94
G	indirect address word structure 377
	Information APARs xxvi
generalized trace facility (GTF) 282	input is concatenated 102
Greenwich mean time (coordinated universal time) 240	input mode processing is incorrect (TSO/VTAM) <u>93</u>
GTF (generalized trace facility) 282	input/output problem determination (IOPD) facility <u>156</u>
GUNBIND pend, cross domain log off <u>13</u>	installing dump analysis and trace analysis tools 571
	intermediate routing node (IRN), I/O trace of 297
H	Internet, finding z/OS information online xxviii interpreting SVC trace entries 93
	IOPD (input/output problem determination) facility 156
hard-copy log <u>46</u> hardware	IRN, trace of (host) 297
error recording 347	IST1774I message 28
error records, LOGREC 46	IST1775I message 28
problem documentation 45	IST1831I 87
High-Perfomance Routing flows 539	IST1832I 87
hold option, effect on performance 106	IST1833I <u>87</u>
host IRN (ISTIRN), I/O trace for 297	IST32FMT 308
host physical unit (ISTPUS)	IST562I 86
buffer contents trace for 287	IST564I 86
I/O trace for 297	ISTEXCAA, Abend 8
HOST VTAMMAP 208, 209	ISTEXCCS, Abend 8 ISTEXCSD, Abend 8
HPR route test 133	ISTEXCSD, Abend 8
hung	ISTPUS (host physical unit)
session <u>60</u>	buffer contents trace for 287

ISTPUS (host physical unit) (continued) I/O trace for 297 ISTPUS in traces buffer trace 287 I/O trace 297	MDR (miscellaneous data record) 347		
ISTPUS in traces buffer trace 287			
ISTPUS in traces buffer trace 287	messages		
buffer trace 287	IST1278I		
I/O trace 297	GUNBIND PENDING 13		
1/0 11400 277	IOPD facility, issued from 157		
ISTTSCPF 8	NMVT PENDING 15		
ISTVABND VTAMMAP 210	IST1774I 28		
ISTVDUMP VTAMMAP 212	IST1775I <u>28</u>		
ISTVMAP VTAMMAP 214	IST1832I 87		
ISTVSAVE VTAMMAP 216	IST1883I 87		
ISTVSLIP VTAMMAP 218	IST259I 10		
131 V3LIF V IAIMIMAF ZIO			
	IST400I <u>96</u>		
J	IST530I 15		
J	IST562I 86		
	IST564I 86		
JOBN trace field <u>284</u>			
	IST718I <u>16</u>		
	IST719I 16		
K	IST804I 96		
	IST805I 96		
keyboard 583			
keyboard, character functions improperly 102	module identification, modify <u>157</u>		
keyboard, character functions improperty 102	problem		
	procedure 78		
L	symptoms 4, 38		
E Company			
	TSO/VTAM logon problems <u>93</u>		
library, VTAM definition <u>49</u>	miscellaneous data record (MDR) 347		
license, patent, and copyright information 587	mode switching errors (TSO/VTAM) 93		
line delete key functions improperly 102	MODEENT macro, description 95		
line mode, description (TSO/VTAM) 101	• —		
	modified data tags <u>102</u>		
link pack area (LPA) map <u>46</u>	MODIFY command		
link-edit (XREF) map 46	clear EE connection network unreachable partner		
local SNA terminals, pacing values for (TSO/VTAM) 106	information 157		
location of BIND 104			
	IOPD		
locked queue anchor block (LQAB) <u>64</u>	enabling the IOPD facility <u>156</u>		
locks, description of 68	IOMSGLIM start option, effect on IOPD facility 156		
log of console 48	message module identification 157		
log of console 48 logical unit (LU) hangs, PNFYx state 9	MSGMOD 157		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348	-		
log of console 48 logical unit (LU) hangs, PNFYx state 9	MSGMOD 157 trace 270		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode	MSGMOD <u>157</u> trace <u>270</u> tuning statistics <u>158</u>		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode default name in USS command 104	MSGMOD <u>157</u> trace <u>270</u> tuning statistics <u>158</u> VTAMOPTS <u>158</u>		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode default name in USS command 104 table entry in DLOGMOD 95	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode default name in USS command 104 table entry in DLOGMOD 95 logon problems	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode default name in USS command 104 table entry in DLOGMOD 95 logon problems CICS 16	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode default name in USS command 104 table entry in DLOGMOD 95 logon problems	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode default name in USS command 104 table entry in DLOGMOD 95 logon problems CICS 16 TSO/VTAM	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode default name in USS command 104 table entry in DLOGMOD 95 logon problems CICS 16 TSO/VTAM ABENDOAB 96	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode default name in USS command 104 table entry in DLOGMOD 95 logon problems CICS 16 TSO/VTAM ABENDOAB 96 cross-domain network 96	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode default name in USS command 104 table entry in DLOGMOD 95 logon problems CICS 16 TSO/VTAM ABENDOAB 96 cross-domain network 96 diagnosis procedure 94	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode default name in USS command 104 table entry in DLOGMOD 95 logon problems CICS 16 TSO/VTAM ABENDOAB 96 cross-domain network 96	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode default name in USS command 104 table entry in DLOGMOD 95 logon problems CICS 16 TSO/VTAM ABENDOAB 96 cross-domain network 96 diagnosis procedure 94 documentation requirements 94, 106	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160 stand-alone 160		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode default name in USS command 104 table entry in DLOGMOD 95 logon problems CICS 16 TSO/VTAM ABENDOAB 96 cross-domain network 96 diagnosis procedure 94 documentation requirements 94, 106 fails for all terminals 95	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160 stand-alone 160 SVC 160		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode default name in USS command 104 table entry in DLOGMOD 95 logon problems CICS 16 TSO/VTAM ABENDOAB 96 cross-domain network 96 diagnosis procedure 94 documentation requirements 94, 106 fails for all terminals 95 symptoms 93	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160 stand-alone 160 SVC 160 VTAM control blocks formatted 160		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode default name in USS command 104 table entry in DLOGMOD 95 logon problems CICS 16 TSO/VTAM ABENDOAB 96 cross-domain network 96 diagnosis procedure 94 documentation requirements 94, 106 fails for all terminals 95 symptoms 93 LOGREC error recording data set 46	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160 stand-alone 160 SVC 160		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode default name in USS command 104 table entry in DLOGMOD 95 logon problems CICS 16 TSO/VTAM ABENDOAB 96 cross-domain network 96 diagnosis procedure 94 documentation requirements 94, 106 fails for all terminals 95 symptoms 93	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160 stand-alone 160 SVC 160 VTAM control blocks formatted 160 performance group specification 106		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode default name in USS command 104 table entry in DLOGMOD 95 logon problems CICS 16 TSO/VTAM ABENDOAB 96 cross-domain network 96 diagnosis procedure 94 documentation requirements 94, 106 fails for all terminals 95 symptoms 93 LOGREC error recording data set 46 loop problems	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160 stand-alone 160 SVC 160 VTAM control blocks formatted 160		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode default name in USS command 104 table entry in DLOGMOD 95 logon problems CICS 16 TSO/VTAM ABENDOAB 96 cross-domain network 96 diagnosis procedure 94 documentation requirements 94, 106 fails for all terminals 95 symptoms 93 LOGREC error recording data set 46 loop problems diagnosis procedure 73	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160 stand-alone 160 SVC 160 VTAM control blocks formatted 160 performance group specification 106 trace fields 284		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode default name in USS command 104 table entry in DLOGMOD 95 logon problems CICS 16 TSO/VTAM ABENDOAB 96 cross-domain network 96 diagnosis procedure 94 documentation requirements 94, 106 fails for all terminals 95 symptoms 93 LOGREC error recording data set 46 loop problems diagnosis procedure 73 symptoms 4, 38	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160 stand-alone 160 SVC 160 VTAM control blocks formatted 160 performance group specification 106		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160 stand-alone 160 SVC 160 VTAM control blocks formatted 160 performance group specification 106 trace fields 284		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160 stand-alone 160 SVC 160 VTAM control blocks formatted 160 performance group specification 106 trace fields 284		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160 stand-alone 160 SVC 160 VTAM control blocks formatted 160 performance group specification 106 trace fields 284 N NetView program		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160 stand-alone 160 SVC 160 VTAM control blocks formatted 160 performance group specification 106 trace fields 284 N NetView program file 47		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160 stand-alone 160 SVC 160 VTAM control blocks formatted 160 performance group specification 106 trace fields 284 N NetView program file 47 for hardware failure 45		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160 stand-alone 160 SVC 160 VTAM control blocks formatted 160 performance group specification 106 trace fields 284 N NetView program file 47		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160 stand-alone 160 SVC 160 VTAM control blocks formatted 160 performance group specification 106 trace fields 284 N NetView program file 47 for hardware failure 45 hard-copy log 46		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160 stand-alone 160 SVC 160 VTAM control blocks formatted 160 performance group specification 106 trace fields 284 N NetView program file 47 for hardware failure 45 hard-copy log 46 NetView session trace 274		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160 stand-alone 160 SVC 160 VTAM control blocks formatted 160 performance group specification 106 trace fields 284 N NetView program file 47 for hardware failure 45 hard-copy log 46 NetView session trace 274 network status, displaying 137		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160 stand-alone 160 SVC 160 VTAM control blocks formatted 160 performance group specification 106 trace fields 284 N NetView program file 47 for hardware failure 45 hard-copy log 46 NetView session trace 274 network status, displaying 137 NMVT alerts, error recording 347		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160 stand-alone 160 SVC 160 VTAM control blocks formatted 160 performance group specification 106 trace fields 284 N NetView program file 47 for hardware failure 45 hard-copy log 46 NetView session trace 274 network status, displaying 137		
log of console 48 logical unit (LU) hangs, PNFYx state 9 logical unit connection test (IBMTEST) 348 logmode	MSGMOD 157 trace 270 tuning statistics 158 VTAMOPTS 158 MODIFY CSDUMP command 156 module name, finding in a dump 55 module trace 273 MVS dumps abend 159 formatting and printing 160 stand-alone 160 SVC 160 VTAM control blocks formatted 160 performance group specification 106 trace fields 284 N NetView program file 47 for hardware failure 45 hard-copy log 46 NetView session trace 274 network status, displaying 137 NMVT alerts, error recording 347		

0	problem types (continued)
ODD (south south as and as a south of as a south of a s	documentation 88
OBR (outboard recorder) record 347	failing module <u>89</u>
operation checks 93	incorrect output <u>80</u>
operation codes, CPCB <u>549</u>	loop <u>73</u>
operator commands DISPLAY 109	message 78
MODIFY 109	path, example solution <u>138</u> performance 83
option, TPUT, location of 103	storage 85
outboard recorder (OBR) record 347	VTAM vs. non-VTAM 3
output	wait, DSRLIST 15
problems, TSO/VTAM 100	problems and symptoms, common
wait state 106	APPN networks
	descriptions 24
P	index of problems 20
r	documentation
PABs (process anchor blocks) 61	submitting <u>50</u>
PABSCAN VTAMMAP 223	documenting
pacing, values for local SNA terminals (TSO/VTAM) 106	recommended <u>44</u>
panel interface, using the 165	HPR networks
PARTNRLU VTAMMAP 227	descriptions 35
path problems, example solution <u>138</u>	index of problems 34
path tables, display of <u>137</u>	subarea network
PDDB, problem determination database 4	description <u>7</u> VIT analysis tool
pending state, display of resources in <u>137</u>	documenting 41
performance group	isolating 41
how to specify 106	VTAM dump analysis tool
location of <u>106</u> performance problem	documenting 44
diagnosis procedure 83, 106	isolating 43
symptoms 4, 38	VTAM, index of problem types 38
TSO/VTAM 94	process anchor blocks (PABs) 61
PIU too long 101	process scheduling table (PST) <u>60</u>
PNFYx state 9	processing is hung (TSO/VTAM) <u>93</u>
prerequisite information xxvi	program
primary screen size, PSERVIC coding for <u>104</u>	temporary fix (PTF) <u>47</u>
printing output	update tape (PUT) <u>47</u> program temporary fix (PTF) eyecatcher <u>47</u>
dumps	PROGxxx message, TSO/VTAM 93
using ABDUMP (MVS) <u>160</u> using SADMP (MVS) 161	PST (process scheduling table) 60
traces	PTF (program temporary fix) eyecatcher 47
using ACF/TAP 283	
problem determination commands	Q
DISPLAY	Y
buffer pool use 112	QDIOSYNC trace 297
device workload information 155	
HPR route test <u>133</u>	R
network status 137	T.
path tables 137	RDTCHECK VTAMMAP 228
pending state <u>137</u>	RDTFULL VTAMMAP 229
route status <u>138</u> route test 144	RDTHIER VTAMMAP <u>230</u>
topology database update information 147	RDTSUM VTAMMAP 231
traces 154	RECMS (record management statistics) 10
VTAM storage 154	record management statistics (RECMS) 10
MODIFY	repeated error record entries, LOGREC 76
IOPD 156	reporting problems procedure 91 request parameter header (RPH)
message module identification 157	finding 67
tuning statistics 158	waiting 67
problem determination database (PDDB) 4	reshow processing, description 101, 102
problem documentation 44	resource state trace 301
problem number 51	response time slow (TSO/VTAM) 94
problem types	REXX exec for VIT analysis tool 317
abend (abnormal end) <u>53</u>	· —

RFC (request for comments)	SMS (buffer use) trace (continued)			
accessing online xxviii	when to use 303			
route	SNA protocol specifications 581			
status, display 138	SNA, terminals, local, pacing values for (TSO/VTAM) 106			
test, display 144	SNAPREQ start option 85			
ROUTES VTAMMAP 231	softcopy information xxvi			
RPH (request parameter header)	solving problems, where to begin 3			
finding 67	SPANC VTAMMAP 241			
waiting 67	SRTFIND VTAMMAP 245			
	stand-alone dump, MVS 160			
RPL request type, location in dump of SDWA 97				
RPLFDB2, location in dump of SDWA 97	START command, using to activate VTAM traces 270			
RPLFDBK2, location in dump of SDWA 97	states of resources, tracing 301			
RPLRTNCD, location in dump of SDWA 97	status, display of 137			
RTPINFO VTAMMAP <u>233</u>	storage and control block ID codes <u>565</u>			
	storage problem <u>17</u> , <u>85</u>			
S	STORAGE VTAMMAP <u>246</u>			
	STSIZE macro, changing screen size with 105			
sample procedures 165	subplex			
save area	MNPS session recovery error 33			
module linkage conventions, APPN 351	VTAM locks 68			
	summary of changes xxxi			
module linkage conventions, subarea 349	Support Center 91			
SAW data, filtering <u>15</u>	SVC dump 160			
screen management problems, TSO/VTAM				
diagnosis procedure <u>100</u>	swap count, incorrect incrementing 106			
documentation 100	swap-outs increase 94			
symptoms 93	symptom string			
types 100	description <u>48</u>			
screen size	MVS <u>54</u>			
changing, in non-full-screen processing 105	structure <u>90</u>			
default value 104	symptoms			
problems, TSO/VTAM 102, 104	abend <u>4, 53</u>			
PSERVIC coding 104	abend, in TSO/VTAM <u>96</u>			
TSO/VTAM problems 94	documentation problem 88			
SCRSIZE operand 104	incorrect output 80			
SDWA (system diagnostic work area) 48	logon problem, in TSO/VTAM 94			
sense codes	loop problem 73			
0801 18	message problem 78			
0821 19	performance problem 83			
	performance problem, in TSO/VTAM 94			
0835 <u>19</u>	screen management problems 93			
800A 19, 37, 38	screen size problems 94			
service aids, diagnosis tools	storage problem 85			
APPN <u>351</u>	syntax diagram, how to read xxv			
hardware error recording <u>347</u>				
IPCS <u>160</u>	syntax diagrams, reading 163			
logical unit connection test (IBMTEST) 348	SYS1.LOGREC error recording data set 46			
recording NMVT alerts in LOGREC 347	system diagnostic work area (SDWA) <u>48</u>			
save area module linkage conventions, subarea 349				
SES VTAMMAP 236	T			
session	•			
awareness (SAW) data 47	TAP (trace analysis program) 283			
ending unexpectedly 11	tasks			
parameters, defining (TSO/VTAM) 95	accessing VTAM formatted dump			
trace data 47	steps for accessing VTAM formatted dump 165			
session awareness data, filtering 15	obtaining PUTDOC			
session management exit (SME) buffer trace 301	steps for 49			
shortcut keys 583	obtaining TRSMAIN			
SIBCHECK VTAMMAP 239	steps for 49			
slow response time	using the batch option			
general procedure <u>83</u>	steps for using the batch option 167			
TSO/VTAM 94	using the IPCS command line			
SMS (buffer use) trace	steps for using the IPCS command line <u>166</u>			
description 303	TCP/IP			
format, MVS <u>304</u>	online information <u>xxviii</u>			
operation 303	Technotes xxvi			

terminal	ISO/VIAM problems (continuea)
cannot log on <u>94</u>	TGET, partial input for <u>18</u>
definition statement 95	translation of data <u>103</u>
device problem 76, 82	TSO/VTAM TGET/TPUT trace
incorrect output problem 104	description 306
name, location in dump of SDWA 97	operation 306
pacing values 106	output 307
user echo test 348	when to use 306
termination, TSO/VTAM	tuning statistics (TNSTAT), modify 158
abend 96	turning statistics (1110 in 11), mounty <u>100</u>
during logon 94	
TNSTAT (tuning statistics), modify 158	U
topology database update statistics, displaying 147	
	user cannot log on TSO/VTAM <u>94</u>
TOPOLOGY VTAMMAP 248	user edit exits, TSO/VTAM
TPUT option	when to use <u>103</u>
editing 103	where to find description of 102
location 103	where to find list of 103
trace analysis tools, installing dump analysis and <u>571</u>	user exit, Abend in 8
traces	USS commands used in logon 94
activating <u>270</u>	USS message 10 93
analysis program (ACF/TAP) <u>283</u>	USS message 7 93
buffer contents 286, 289	utility
buffer use (SMS) 303	IEBGENER 50
CCW 82, 272	IEBOLINEN <u>50</u>
component execution sequence 349	
fields, MVS-only 284	V
I/O 295	
resource state trace 301	VERBEXIT VTAMMAP, IPCS subcommand
session management exit (SME) buffer 301	ALL 168
	APPLCONV 169
SMS (buffer use) 303	APPLMODAL 171
TGET/TPUT, for TSO/VTAM 306	APPLMODE 170
tool, VIT analysis <u>315</u>	APPNBASE 173
using <u>269</u>	FINDDSIB 186
trademark information <u>590</u>	FINDSIB 188
translation	FNDADJCP 192
incorrect (TSO/VTAM) <u>103</u>	FNDANDCB 193
tables (TSO/VTAM) <u>103</u>	
TRSTRACE VTAMMAP 249	FNDCOS 193
TSO EDIT problems 93	FNDDECB 195
TSO TERMINAL command, changing screen size with 105	FNDENDEL 195
TSO/VTAM problems	FNDLCB 196
ABENDOAB 97	FNDNDREC <u>197</u>
ABENDOAC 97	FNDNDWGT 199
ABENDOAD 98	FNDNODE 200
ABEND15D 98	FNDREREC 201
data misplaced on screen 102	FNDSCCB 202
data translated incorrectly 103	FNDSITCB 203
	FNDTGWGT 207
exception responses 101	HOST 208, 209
extra data 102	PABSCAN 223
first logon from a particular device fails <u>95</u>	PARTNRLU 227
first logon using USS commands fails 94	RDTCHECK 228
function error 100	RDTFULL 229
incorrect data translation <u>103</u>	
incorrect screen size 104	RDTHIER 230
initial TSO/VTAM problem analysis 93	RDTSUM 231
logon fails 9, 94	ROUTES 231
misplaced data on screen 102	SES 236
missing data 102	SIBCHECK 239
mode error (incorrect screen management) 100	SPANC <u>241</u>
parameter initialization 98	SRTFIND <u>245</u>
performance 106	STORAGE 246
response time is slow 94	VITAL 250
	VTAM 251
screen is wrong size for mode 105	VTBASIC 252
screen management 100	_

VERBEXIT VTAMMAP, IPCS subcommand (continued)	VTAM internal trace (VIT) (continued)
VTBUF <u>253</u>	extracting information (continued)
VTCVTPAB 255	string, character <u>336</u>
VTFNDMOD <u>257</u>	string, hex <u>336</u>
VTMODS 258	syntax <u>339</u>
VTNODE <u>260</u>	template <u>334</u>
VTREADYQ <u>261</u>	missing trace records <u>17</u>
VTRPH <u>262</u>	RU counting
VTVIT <u>262</u>	network address <u>327</u>
VTVRBLK <u>264</u>	output, sample <u>330</u>
VTWRE 265	parameters, RU 328
VIT analysis tool	request/response units 326
data set, required to run 316	RU <u>327</u>
description 315	syntax <u>327</u>
documenting 43	storage, analyzing
I/O options <u>343</u>	ASID <u>320</u>
interactive VIT analysis 317	buffer pools 320
isolating <u>41</u>	description 319
job parameters 317	matching 319
job submission 318	sample output 322
output, checking 318	storage lengths 320
parameter dataset, creating 345	syntax 320
problems <u>41</u> REXX exec 317	unmatched allocate 320
setting up and running 315	VTAM locks, description of <u>68</u> VTAM VTAMMAP 251
timing options 341	VTAM, online information xxviii
VIT recording 315	VTAMMAP control card 160
VITAL VTAMMAP 250	VTBASIC VTAMMAP 252
VTAM	VTBUF VTAMMAP 253
buffer pool use 303	VTCVTPAB VTAMMAP 255
channel programs 353	VTFNDMOD VTAMMAP 257
commands for problem determination 109	VTMODS VTAMMAP 258
control block ID codes 565	VTNODE VTAMMAP 260
control blocks formatted in a dump, MVS 160	VTREADYQ VTAMMAP 261
definition library 49	VTRPH VTAMMAP 262
dump analysis, using IPCS VTAMMAPs 163, 164	VTVIT VTAMMAP 262
execution sequences 349	VTVRBLK VTAMMAP 264
locks 71	VTWRE VTAMMAP 265
service aids 159, 269, 315	
trace fields, MVS-only fields 284	VA/
traces	W
activating 270	wait
buffer contents 286, 289	application program 60
buffer use (SMS) 303	conditions
I/O 295	process waits for a buffer 67
printing with ACF/TAP 283	process waits for a resource 67
resource state 301	option 106
session management (SME) exit buffer trace 301	session 60
SME buffer 301	waiting
SMS (buffer use) 303	request element (WRE) 64, 66
TGET/TPUT, for TSO/VTAM 306	RPH 67
wait state indications <u>4</u> , <u>38</u>	work areas (to trace execution sequences) 349
VTAM dump analysis, diagnosing problems in <u>43</u>	wrapping of data on screen 102
VTAM internal trace (VIT)	WRE (waiting request element) 64, 66
extracting information	write control character in buffer contents trace output 99
address <u>335</u>	· <u>-</u>
boolean expression freeform 336	X
description <u>333</u>	A
offset, address <u>335</u>	XREF (link-edit) map 46
offset, string, character <u>336</u>	Anti (min car) map 40
offset, string, hex 336	_
operands, boolean freeform 337	Z
options, entries 335	=/OC Pagia Chilla Information Contamini
sample output <u>339</u>	z/OS Basic Skills Information Center xxvi

z/OS, documentation library listing <u>591</u>

Communicating your comments to IBM

Important: If your comment regards a technical question or problem, see instead <u>"If you have a technical</u> problem" on page 605.

Submit your feedback by using the appropriate method for your type of comment or question:

Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the <u>IBM RFE Community</u> (www.ibm.com/developerworks/rfe/).

Feedback on IBM Documentation function

If your comment or question is about the IBMDocumentation functionality, for example search capabilities or how to arrange the browser view, send a detailed email to IBM Documentation Support at ibmdocs@us.ibm.com.

Feedback on the z/OS product documentation and content

If your comment is about the information that is provided in the z/OS product documentation library, send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

- · Your name, company/university/institution name, and email address
- The title and order name of the document, and the version of z/OS Communications Server
- The section title of the specific information to which your comment relates
- The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the issues that you submit.

If you have a technical problem

If you have a technical problem or question, do not use the feedback methods that are provided for sending documentation comments. Instead, take one or more of the following actions:

- Go to the IBM Support Portal (support.ibm.com).
- · Contact your IBM service representative.
- · Call IBM technical support.

IBW.

Product Number: 5650-ZOS

GC27-3667-50

