

FPV Tutorübung

Woche 4 Loop Invariants and Termination proofs

Manuel Lerchner

15.05.2023

<u>Quiz</u>

Passwort:

T01: Loop Invariants

Find a suitable loop invariant and prove it locally consistent.

Note: We follow the standard practice that the empty sum, where the number of terms is zero, is 0, e.g.: $\sum_{k=0}^{-1} (\dots) = 0$.

T01: Loop Invariants

T02: Termination

In the lecture, you have learned how to prove termination of a MiniJava program. Discuss these questions:

- 1. How can you decide whether a termination proof is required at all?
- 2. What is the basic idea of the termination proof?
- 3. How is the program to be modified?
- 4. What has to be proven?
- 5. How is the loop invariant influenced?

T03: A Wavy Approach

Prove termination of the following program:

Todos:

- Schleife verstehen
- 2. Variable r definieren / finden
 - $r \ge 0$ in jedem Durchgang
 - r wird strikt kleiner
- 3. Neue Variable und Assertions einfügen
 - Am Ende "true" Assertion!
- 4. Local-Consistency zeigen

T03: A Wavy Approach

Tipps für Loop Invarianten

https://ttt.in.tum.de/recordings/Info2 2017 11 24-1/Info2 2017 11 24-1.mp4

Tipp 1

Wir benötigen eine Aussage über den Wert der Variablen, über die wir etwas beweisen wollen (x) in der Schleifeninvariante. Die Aussage muss dabei mindestens so präzise $(\neq,\geq,\leq,=)$ sein, wie die Aussage, die wir beweisen wollen.

Tipp 2

Variablen, die an der Berechnung von x beteiligt sind **und** Werte von einer Schleifeniteration in die nächste transportieren ("loop-carried"), müssen in die Schleifeninvariante aufgenommen werden.

Tipp 3

Die Schleife zu verstehen ist unerlässlich. Eine Tabelle für einige Schleifendurchläufe kann helfen die Zusammenhänge der Variablen (insbesondere mit dem Schleifenzähler i) aufzudecken. Oft lassen sich mit einer Tabelle, in der man die einzelnen Berechnungsschritte notiert, diese Zusammenhänge deutlich leichter erkennen, als mit einer Tabelle, die nur konkrete Werte enthält.

$$I :\equiv x = 5i + 2b \land b \in \{0,1\} \land (i = n \implies b = 0)$$