Advanced Topics in Parallel Molecular Dynamics

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Chemical Engineering & Materials Science
Department of Quantitative & Computational Biology
University of Southern California

Email: anakano@usc.edu

Load Balancing

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Chemical Engineering & Materials Science
Department of Quantitative & Computational Biology
University of Southern California

Email: anakano@usc.edu

Load Balancing

• Goal: Keep all processors equally busy while minimizing interprocessor communication for irregular parallel computations

• Issues:

- Spatial data vs. generic graph
- Static vs. adaptive
- Incremental vs. non-incremental
- Load-balancing schemes:
 - Recursive bisection
 - Spectral method
 - Spacefilling curve
 - Curved space
 - Load diffusion

Data Locality in Parallelization

Challenge: Load balancing for irregular data structures

Irregular data-structures/ processor-speed

Parallel computer

Optimization problem:

- Minimize the load-imbalance cost
- Minimize the communication cost
- 1 2 3 4 5 6
- Topology-preserving spatial decomposition
 - → structured 6-step message passing minimizes latency

$$\begin{split} E &= t_{\text{comp}} \Big(\max_{p} \left| \{i \mid \mathbf{r}_{i} \in p\} \right| \Big) + t_{\text{comm}} \Big(\max_{p} \left| \{i \mid \left\| \mathbf{r}_{i} - \partial p \right\| < r_{c} \} \right| \Big) \\ &+ t_{\text{latency}} \Big(\max_{p} \Big[N_{\text{message}}(p) \Big] \Big) \end{split}$$

Computational-Space Decomposition

Topology-preserving "computational-space" decomposition in curved space (cf. general relativity)

Curvilinear coordinate transformation $\xi = x + u(x)$

Particle-processor mapping: regular 3D mesh topology

$$\begin{cases} p(\xi_i) = p_x(\xi_{ix})P_yP_z + p_y(\xi_{iy})P_z + p_z(\xi_{iz}) \\ p_\alpha(\xi_{i\alpha}) = \lfloor \xi_{i\alpha}P_\alpha/L_\alpha \rfloor & (\alpha = x, y, z) \end{cases}$$

A. Nakano & T. J. Campbell, *Parallel Comput.* 23, 1461 ('97)

Wavelet-based Adaptive Load Balancing

- Simulated annealing to minimize the load-imbalance & communication costs, $E[\xi(x)]$
- Wavelet representation speeds up the optimization

A. Nakano, Concurrency: Practice and Experience 11, 343 ('99)

Load Balancing as Graph Partitioning

- Need: Decompose tasks without spatial indices
- Graph partitioning: Given a graph $G = (N, E, W_N, W_E)$
 - -N: node set = $\{j \mid \text{tasks}\}$
 - W_N : node weights = $\{w_N(j): \text{task costs}\}$
 - E: edge set = {(j,k) | messages from j to k}
 - $-W_E$: edge weights = { $w_E(j,k)$: message sizes} choose a partition $N = N_1 \cup N_2 \cup ... \cup N_P$ to minimize
 - $-\max_{p}\{\sum_{j\in Np}w_{N}(j)\}$
 - $-\max_{(p,q)}\{\sum_{j\in Np,k\in Nq}w_E(j,k)\}$
- Graph bisection: Special case of $N = N_1 \cup N_2$
- Choosing optimal partitioning is known to be NP-complete → need heuristics

58 cut edges

Prof. James Demmel (UC Berkeley)

Spectral Bisection: Motivation

- 1. Graph as point masses connected *via* harmonic springs
- 2. The node of the eigenvector of the Hessian matrix, $\partial^2 V/\partial x^2$, corresponding to the 2nd smallest eigenvalue separates the graph into 2

Spectral Bisection

Laplacian matrix:

L(G) of a graph G(N,E) is an |N| by |N| symmetric matrix:

- -L(G)(i,i) = degree of node i (number of incident edges)
- L(G)(i,j) = -1 if $i \neq j$ and there is an edge (i,j)
- -L(G)(i,j) = 0 otherwise

Theorems:

1. The eigenvalues of L(G) are nonnegative:

$$\lambda_1 = 0 \le \lambda_2 \le \cdots \le \lambda_N$$

2. $\lambda_2(L(G)) \neq 0$ if and only if G is connected

Spectral bisection algorithm:

- **1.** Compute eigenvector v_2 corresponding to $\lambda_2(L(G))$
- 2. For each node *i* of *G*
 - **a.** if $v_2(i) < 0$, put node *i* in partition N_-
 - **b.** else put node i in partition N_+

O(N) λ_2 Computation

Lanczos algorithm:

- Given an $N \times N$ symmetric matrix A (e.g., L(G)), compute a $K \times K$ "approximation" T by performing K matrix-vector products, where $K \ll N$
- Approximate A's eigenvalues & eigenvectors using T's

Multilevel Partitioning

Recursively apply:

1. Replace G(N,E) by a coarse approximation $G_c(N_c,E_c)$, & partition G_c

2. Use partition of G_c to obtain a rough partitioning of G, then uncoarsen &

```
iteratively improve it
          Coarsening
                                                 Multilevel
                                     (2,3)
                                                  V-cycle
                                                                  (4)
                                          (2,3)
(N+,N-) = Multilevel Partition(N,E)
// returns N+ and N- where N = N+ \cup N-
  if |N| is small
    Partition G = (N,E) directly to get N = N+ \cup N-
    Return (N+,N-)
  else
    Coarsen G to get an approximation G_c = (N_c, E_c)
    (N_c+,N_c-) = Multilevel Partition(N_c,E_c)
3
                                                        cf. Multigrid method
4
    Expand (N_c+,N_c-) to a partition (N+,N-) of N
    Improve the partition (N+,N-)
    Return (N+,N-)
  endif
```

Hypergraph-based Load Balancing

1. Hypergraph = ({node}, {hyperedge = a group of nodes})

2. More expressive power for computation-communication relation compared with graphs . Communication

U. V. Catalyurek *et al.*, "Hypergraph-based dynamic load balancing for adaptive scientific computations," in *Proc. IPDPS* (IEEE, '07)

M. Kunaseth *et al.*, "A scalable parallel algorithm for dynamic range-limited *n*-tuple computation in many-body molecular dynamics simulation," in *Proc. SC* (ACM/IEEE, '13)

Hybrid Decomposition

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Chemical Engineering & Materials Science
Quantitative & Computational Biology
University of Southern California

Email: anakano@usc.edu

Who does what?

Fine-Grained Parallel MD

Pathways to a Protein Folding Intermediate Observed in a 1-Microsecond Simulation in Aqueous Solution

Yong Duan and Peter A. Kollman*

An implementation of classical molecular dynamics on parallel computers of increased efficiency has enabled a simulation of protein folding with explicit representation of water for 1 microsecond, about two orders of magnitude longer than the longest simulation of a protein in water reported to date. Starting with an unfolded state of villin headpiece subdomain, hydrophobic collapse and helix formation occur in an initial phase, followed by conformational readjustments. A marginally stable state, which has a lifetime of about 150 nanoseconds, a favorable solvation free energy, and shows significant resemblance to the native structure, is observed; two pathways to this state have been found.

Science 282, 740 ('98)

Processors		Time/step		Speedup		GFLOPS	
Total	Per Node	MPI	Elan	MPI	Elan	MPI	Elan
1	1	28.08 s	28.08 s	1	1	0.480	0.480
128	4	$248.3\mathrm{ms}$	$234.6\mathrm{ms}$	113	119	54	57
256	4	$135.2\mathrm{ms}$	$121.9\mathrm{ms}$	207	230	99	110
512	4	$65.8\mathrm{ms}$	$63.8\mathrm{ms}$	426	440	204	211
510	3	$65.7\mathrm{ms}$	$63.0\mathrm{ms}$	427	445	205	213
1024	4	$41.9\mathrm{ms}$	$36.1\mathrm{ms}$	670	778	322	373
1023	3	$35.1\mathrm{ms}$	$33.9\mathrm{ms}$	799	829	383	397
1536	4	$35.4\mathrm{ms}$	$32.9\mathrm{ms}$	792	854	380	410
1536	3	$26.7\mathrm{ms}$	$24.7\mathrm{ms}$	1050	1137	504	545
2048	4	$31.8\mathrm{ms}$	$25.9\mathrm{ms}$	883	1083	423	520
1800	3	$25.8\mathrm{ms}$	$22.3\mathrm{ms}$	1087	1261	521	605
2250	3	$19.7\mathrm{ms}$	18.4 ms	1425	1527	684	733
2400	4	$32.4\mathrm{ms}$	$27.2\mathrm{ms}$	866	1032	416	495
2800	4	$32.3\mathrm{ms}$	$32.1\mathrm{ms}$	869	873	417	419
3000	4	$32.5\mathrm{ms}$	28.8 ms	862	973	414	467

J.C. Phillips, G. Zheng, S. Kumar, & L.V. Kale, in *Proc. of IEEE/ACM SC2002*

Table 1: NAMD performance on 327K atom ATPase benchmark system with and multiple timestepping with PME every four steps for Charm++ based on MPI and Elan.

Force Decomposition for Parallel MD

Runtime on 1,024-processor Intel Paragon

FIG. 5. The division of the permuted force matrix F' among 16 processors in the force-decomposition algorithm. Processor P_b is assigned a sub-block F'_b of size N/\sqrt{P} by N/\sqrt{P} . To compute its matrix elements it must know the corresponding N/\sqrt{P} -length pieces x_a and x'_b of the position vector x and permuted position vector x'.

S. Plimpton, J. Comput. Phys. 117, 1 ('95)

7. Timpton, 3. Compac. Tiny 3. Tin, 1 (33)

Neutral Territory Decomposition

D. E. Shaw,
"A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions,"

J. Comput. Chem. 26, 1318 ('05)

cf. Lecture note on "Shaw's NT algorithm"

Hybrid Spatial+Force Decomposition

- Spatial decomposition of patches (localized spatial regions & atoms within)
- Inter-patch force computation objects assigned to any processor
- Message-driven object execution: computation-communication overlap

Kale et al., J. Comput. Phys. **151**, 283 ('99); Phillips et al., SC02 (IEEE/ACM); Acun et al., SC14 (IEEE/ACM), Phillips et al., J. Chem. Phys. 153, 044130 ('20)