MACHINE LEARNING-BASED TELECOM CUSTOMER CHURN PREDICTION AND SEGMENTATION

A PREDICTIVE APPROACH TO ENHANCE CUSTOMER LOYALTY AND REDUCE CHURN

INTRODUCTION:

What is Customer Churn?

Customer churn refers to when customers stop using a company's services. In the telecom industry, churn means losing subscribers who switch to competitors.

Why is it important for telecom companies?

High churn rates lead to revenue loss and increased marketing costs to acquire new customers. Retaining customers is more cost-effective and critical for sustained growth.

Project objective:

Build a machine learning model to predict which customers are likely to churn, enabling proactive retention strategies.

DATASET OVERVIEW:

□ Dataset description:

Source: Telecom customer churn dataset

Records: Approximately [1.] customers

Features: Demographics, account info, services, payment methods, tenure, charges, etc.

□Target variable:

'Customer Status' column with values such as 'Active', 'Churned', 'Exited', and 'Inactive'. Mapped to binary labels: 0 for active, 1 for churned.

DATA PREPROCESSING:

- ➤ <u>Mapping churn labels:</u> Converted categorical statuses into binary format for classification.
- ➤ <u>Handling missing values:</u> Converted 'Total Charges' to numeric and filled missing values with median.
- Encoding categorical variables: Used Label Encoding for binary categories and One-Hot Encoding for multi-class categorical features.
- Removed 'Customer ID' as it does not contribute to prediction. **Dropping irrelevant** columns:

EXPLORATORY DATA ANALYSIS (EDA) HIGHLIGHTS:

- ➤ Visualized distribution of churned vs active customers.
- > Identified key factors influencing churn such as contract type, payment
- method, tenure, and monthly charges.
- >Used seaborn plots and heatmaps to understand feature correlations.

MODEL SELECTION AND TRAINING:

- ➤ Model used: Random Forest Classifier
- ➤ Train-test split: 80% training, 20% testing with stratification to maintain
- class distribution
- **▶** Why Random Forest?

Robust to overfitting, handles non-linear relationships well, and performs

well with mixed data types.

MODEL EVALUATION:

- >Accuracy: Achieved [1.] on test data
- Classification report: Precision, recall, and F1-score showed balanced performance
- Confusion matrix: Heatmap visualization of true vs predicted labels confirmed model effectiveness

CUSTOMER SEGMENTATION:

- > Created three segments based on predicted churn and tenure:
- ➤ At Risk: Predicted to churn
- ► **Loyal:** Active customers with tenure > 30 months
- **Dormant:** Active customers with shorter tenure
- ➤ Pie chart showed distribution of these segments, helping target retention efforts.

CHALLENGES AND LIMITATIONS:

- Class imbalance: Majority of customers were active, causing model bias toward the dominant class.
- ➤ Missing values: Required cleaning, especially in numeric columns.
- Limited hyperparameter tuning: Used default Random Forest parameters; further tuning may improve performance.

FUTURE WORK:

- Implement oversampling techniques like SMOTE or class weights to address imbalance.
- Experiment with other ML models like XGBoost, Logistic Regression, or Neural Networks.
- ➤ Use model explainability tools like SHAP or ELI5 to interpret predictions.
- ➤ Develop a real-time prediction API for deployment.
- > Improve feature engineering with SQL queries to derive new insights.

CONCLUSION:

- > Successfully built a predictive model to identify customers likely to churn.
- > Created meaningful customer segments to guide retention strategies.
- > Business impact: Enable telecom companies to proactively reduce churn and increase customer loyalty.
- ➤ Open to questions.