

Hardware redundancy

Techniques for fault tolerance

- Fault masking "hides" faults that occur. Do not require detecting faults, but require containment of faults (the effect of all faults should be local)
- Another approach is to first to detect, locate and contain faults, and then to recover from faults using reconfiguration

p. 2 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Redundancy

- hardware redundancy
 - 2nd CPU, 2nd ALU, ...
- software redundancy
 - validation test...
- information redundancy
 - error-detecting and correcting codes, ...
- time redundancy
 - repeating tasks several times, ...

p. 3 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Example

- FT digital filter
 - acceptance test [0 255]
 - SW: detect overflow
 - HW: memory for test
 - time: to execute test
 - transients: via re-execution
 - time to re-execute

p. 4 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Redundancy (5)

- NOTHING FOR FREE!
- costs
 - HW: components, area, power, ...
 - SW: development costs, ...
 - information: extra HW to code / decode
 - time: faster CPUs, components
- trade-off against increase in dependability

p. 5 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Types of redundancy

- hardware redundancy
- information redundancy
- software redundancy
- time redundancy

p. 6 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

HW redundancy: overview

- passive redundancy techniques
 - fault masking
- active redundancy techniques
 - detection, localisation, containment, recovery
- hybrid redundancy techniques
 - static + dynamic
 - fault masking + reconfiguration

p. 7 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Passive HW redundancy

Triple Modular Redundancy (TMR)

p. 8 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Passive HW redundancy

- Triple Modular Redundancy (TMR)
 - -3 active components
 - fault masking by voter
- Problem: voter is a single point of failure

p. 9 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Passive HW redundancy

- N-modular redundancy (NMR)
 - N active components (N A)
 - N odd, for majority voting
 - tolerates N/2 faults
- example Apollo
 - -N=5
 - 2 faults can be tolerated (masked)

p. 11 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

HW voting

hardware realisation of 1-bit majority voter

$$f = ab + ac + bc$$

n-bit majority voter: n times 1-bit requires 2 gate delays

p. 12 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

SW voting

- Voting can be performed using software
- voter is software implemented by a microprocessor
- voting program can be as simple as a sequence of three comparisons, with the outcome of the vote being the value that agrees with at least on on the other two

p. 13 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

HW vs. SW Voting

- HW: fast, but expensive
 - 32-bit voter: 128 gates and 256 flip-flops
 - -1 TMR level = 3 voters
- SW: slow, but more flexible
 - use existing CPUs

p. 14 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Problem with voting

- Major problem with practical application of voting is that the three results may not completely agree
 - sensors, used in many control systems, can seldom be manufactured so that their values agree exactly
 - analog-to-digital converter can produce quantities that disagree in the least significant bits

p. 15 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Problems with voting

- (1) When values that disagree slightly are processed, the disagreement can grow larger
 - small difference in inputs can produce large differences in outputs
- (2) A single result must ultimately be produced
 - potential point where one failure can cause a system failure

p. 16 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

How to cure problem 1

- Mid-value select technique
 - choose a value from the three which lies between the other two

p. 17 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

How to cure problem 1

- Ignore the least-significant bits of data
 - disagreement which occurs only in the leastsignificant bits is acceptable
 - disagreement which affects the most-significant bits is not acceptable and must be corrected

p. 18 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Types of HW redundancy

- static techniques (passive)
 - fault masking
- dynamic techniques (active)
 - detection, localisation, containment and recovery
- hybrid techniques
 - static + dynamic
 - fault masking + reconfiguration

p. 19 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Active HW redundancy

- dynamic redundancy
 - actions required for correct result
 - detection, localization, containment, recovery
 - no fault masking
 - does not attempt to prevent faults from producing errors within the system

p. 20 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Active HW redundancy

- most common in applications that can tolerate temporary erroneous results
 - satellite systems preferable to have temporary failures that high degree of redundancy
- types of active redundancy:
 - duplication with comparison
 - standby sparing
 - pair-and-a-spare
 - watchdog timer

p. 21 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Duplication with comparison

 Two identical modules perform the same computation in parallel and their results are compared

p. 22 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Duplication with comparison

- The duplication concept can only detect faults, not tolerate them
 - there is no way to determine which module is faulty

p. 23 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Duplication with comparison

- Problems:
 - if there is a fault on input line, both modules will receive the same erroneous signal and produce the erroneous result
 - comparator may not be able to perform an exact comparison
 - synchronisation
 - no exact matching
 - comparator is a single point of failure

p. 24 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Implementation of comparator

- In hardware, a bit-by-bit comparison can be done using two-input exclusive-or gates
- In software, a comparison can be implemented a a COMPARE instruction
 - commonly found in instruction sets of almost all microprocessors

p. 25 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Standby sparing

- One module is operational and one or more serve as stand-bys, or spares
- error detection is used to determine when a module has become faulty
- error location is used to determine which module is faulty
- faulty module is removed from operation and replaced with a spare

p. 26 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Switch

- The switch examines error reports from the error detection circuitry associated with each module
 - if all modules are error-free, the selection is made using a fixed priority
 - any module with errors is eliminated from consideration
 - momentary disruption in operation occur while the reconfiguration is performed

p. 28 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Hot standby sparing

 In hot standby sparing spares operate in synchrony with on-line module and are prepared to take over any time

p. 29 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Cold standby sparing

 In cold standby sparing spares are unpowered until needed to replace a faulty module

p. 30 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

+ and - of cold standby sparing

- (-) time is required to bring the module to operational state
 - time to apply power to spare and to initialize it
 - not desirable in applications requiring minimal reconfiguration time (control of chemical reactions)
- (+) spares do not consume power
 - desirable in applications where power consumption is critical (satellite)

p. 31 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Pair-and-a-spare technique

- Combines standby sparing and dublication with comparison
- like standby sparing, but two instead of one modules are operated in parallel at all times
 - their results are compared to provide error detection
 - error signal initiates reconfiguration

p. 32 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Pair-and-a-spare technique

- As long as two selected outputs agree, the spares are not used
- If they disagree, the switch uses error reports to locate the faulty module and to select the replacement module

Watchdog timer

- watchdog timer
 - must be reset an on a repetitive basic
 - if not reset system is turned off (or reset)
 - detection of
 - crash
 - overload
 - infinite loop
 - frequency depends on application
 - aircraft control system 100 msec
 - banking 1 sec

p. 35 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

HW redundancy: overview

- static techniques (passive)
 - fault masking
- dynamic techniques (active)
 - detection, localisation, containment, recovery
- hybrid techniques
 - static + dynamic
 - fault masking + reconfiguration

p. 36 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Hybrid HW redundancy

- combines
 - static redundancy
 - fault masking
 - dynamic redundancy
 - detection, location, containment and recovery
- very expensive but more FT

p. 37 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Types of hybrid redundancy

- Self-purging redundancy
- N-modular redundancy with spares
- Triple-duplex architecture

p. 38 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Self-purging redundancy

- All units are actively participate in the system
- each module has a capability to remove itself from the system if its faulty
 - very attractive feature: maintenance personnel can disable individual modules and replace them without interrupting the system

p. 39 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Self-purging redundancy

p. 40 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Basic structure of a switch

 Is output of a module disagrees with the output of the system, its contribution to the voter is forced to be 0 (threshold voter)

p. 41 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

N-modular redundancy with spares

p. 42 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

NMR with spares

- System remains in the basic NMR configuration until the disagreement vector determines a fault
- the output of the voter is compared to the individual outputs of the modules
- module which disagrees is labeled as faulty and removed from the NMR core
- spare is switched to replace it

p. 43 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

NMR with spares

- The reliability is maintained as long as the pool of spares is not exhausted
- 3-modular redundancy with 1 spare can tolerate 2 faults
- to do it in a passive approach, we would need to have 5 modules

p. 44 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Sift-out modular redundancy

- Using N active modules
- each module's output is compared (pairwise) to the remaining modules' outputs
- the module which is identified as faulty is not allowed to to influence the output

p. 45 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Triple-duplex architecture

 Combines duplication with comparison and triple modular redundancy

p. 46 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

p. 47 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab

Triple-duplex architecture

- TMR allows faults to be masked
 - performance without interruption
- duplication with comparison allows faults to be detected and faulty module removed from voting
 - removal of faulty module allows to tolerate future faults
- two module faults can be tolerated

Summary

- application-dependent choice
 - critical-computation momentary erroneous results are not acceptable
 - passive or hybrid
 - long-life, high-availability system should be restored quickly
 - active
 - very critical applications highest reliability
 - hybrid

p. 49 - Design of Fault Tolerant Systems - Elena Dubrova, ESDlab