

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

РТУ МИРЭА

<u>Институт комплексной безопасности и специального приборостроения</u>

Кафедра КБ-4 «Интеллектуальные системы информационной безопасности»

Лабораторная работа №3

по дисциплине «Алгоритмы численных методов решения математических задач»

Выполнил: студент 2 курса

группы ББСО-01-18

Минопкий Я. А.

Проверила: Антонова И.И.

Москва, 2020 г.

1) Найти аналитическое выражение для неопределённого интеграла $\int \sin(\ln(18x))$.

Проведём замену переменной:

$$\int \frac{1}{18} \sin(t) e^{t} dt = \frac{1}{18} (\sin(t) e^{t} - \int e^{t} \cos(t) dt) = \frac{1}{18} (\sin(t) e^{t} - (e^{t} \cos(t) - \int e^{t} (-\sin(t)) dt))
- \int e^{t} (-\sin(t)) dt)
\int \sin(t) e^{t} dt = \sin(t) e^{t} - (e^{t} \cos(t) + \int \sin(t) e^{t} dt)
\int \sin(t) e^{t} dt = \sin(t) e^{t} - e^{t} \cos(t) - \int \sin(t) e^{t} dt
2 \int \sin(t) e^{t} dt = e^{t} (\sin(t) - \cos(t))
\frac{1}{18} \int \sin(t) e^{t} dt = \frac{1}{18} (\frac{e^{t} \sin t}{2} - \frac{e^{t} \cos t}{2})
= \frac{1}{18} (\frac{\sin(\ln(18x)) e^{\ln(18x)}}{2} - \frac{\cos(\ln(18x)) e^{\ln(18x)}}{2})
= \frac{1}{2} x (\sin(\ln(18x)) - \cos(\ln(18x)))$$

Сравним решение с результатом работы Maple.

```
n := 18
18
f := \sin(\ln(n \cdot x))
\sin(\ln(18 x))
i := int(f, x)
\frac{x \tan(\frac{1}{2}\ln(18 x)) - \frac{1}{2}x + \frac{1}{2}x \tan(\frac{1}{2}\ln(18 x))^2}{1 + \tan(\frac{1}{2}\ln(18 x))^2}
```

Как можно заметить программа выдала ответ в виде записи с тангенсами, но из сравнения графиков в пункте 2 и из подстановки конкретных значений можно понять, что ответ получился тот же, только в другой форме. 2)Построим графики функций:

$$i2 := 0.5 \cdot x \cdot \sin(\ln(18 \cdot x)) - 0.5 \cdot x \cdot \cos(\ln(18 \cdot x))$$

$$0.5 x \sin(\ln(18 x)) - 0.5 x \cos(\ln(18 x))$$

 $plot([f, i], x = 0..5, color = [red, blue])$

plot(i2, x = 0 ...5, color = green)

$$3) \int_{2}^{20} \sin(\ln(18x)) = (\frac{1}{2}x(\sin(\ln(18x)) - \cos(\ln(18x))))|_{2}^{20} = 10\sin(\ln(18x)) - \cos(\ln(18x)))|_{2}^{20} = 10\sin(\ln(18x)) - \cos(\ln(18x)) - \sin(\ln(18x)) - \cos(\ln(18x)) = -13,56546840$$

$$evalf(10\cdot\sin(\ln(18\cdot20)) - 10\cos(\ln(18x)) + \cos(\ln(18x)))$$

-13.56546840

evalf
$$(Int(f, x = 2..2 + n))$$

-13.56546840

4) Найдём численное значение интеграла $\int_2^{20} e^{-x^2} \sin(18x)$ с помощью метода трапеций.

Согласно методу:

$$I = \int_{a}^{b} f(x)dx \approx I_{Tp} = h\left(\frac{f(x_{0} + f(x_{1})) + f(x_{1}) + f(x_{2})}{2} + \dots + \frac{f(x_{n-1}) + f(x_{n})}{2}\right) = \frac{b - a}{n}\left(\frac{f(x_{0}) + f(x_{n})}{2} + \sum_{i=1}^{n-1} f(x_{i})\right)$$

С помощью Microsoft Office Excel получены значения функции в соответствующих точках.

X	f(x)		
2	-0,0181650633		
3	-0,0000689600		
4	0,0000000286		
5	0,0000000000		
6	0,0000000000		
7	0,0000000000		
8	0,0000000000		
9	0,0000000000		
10	0,0000000000		
11	0,0000000000		
12	0,0000000000		
13	0,0000000000		
14	0,0000000000		
15	0,0000000000		
16	0,0000000000		
17	0,0000000000		
18	0,0000000000		
19	0,0000000000		
20	0,0000000000		

 $h = \frac{20-2}{18} = 1$ I=-0,009151463. С помощью этого метода мы не достигли необходимой нам точности. При уменьшении параметра h точность

увеличилась незначительно. В таком случае попробуем рассчитать численное значение интеграла с помощью метода Симпсона. Согласно методу:

$$I = \int_a^b f(x) dx \approx I_C = \frac{h}{6} (f(x_0) + f(x_n) + 4\sum_{i=0}^{n-1} f(x_i') + 2\sum_{i=1}^{n-1} f(x_i)).$$

h=0.1 С помощью Excel я получил таблицу:

Х	f(x)	f(x'i)	li
2	-0,0181650633	-0,0107210489	-0,0009970837
2,1	0,0012242343	0,0082748538	0,0006967304
2,2	0,0074801726	0,0021150819	0,0002210899
2,3	-0,0026751034	-0,0039710325	-0,0003463414
2,4	-0,0022212521	0,0002903562	0,0000097134
2,5	0,0016426302	0,0014103475	0,0001275492
2,6	0,0003689322	-0,0004857101	-0,0000375530
2,7	-0,0006792716	-0,0003600055	-0,0000344416
2,8	0,0000527958	0,0002551218	0,0000213558
2,9	0,0002080653	0,0000502285	0,0000056670
3	-0,0000689600	-0,0000909196	-0,0000079713
3,1	-0,0000456418	0,0000073958	0,0000002491
3,2	0,0000310018	0,0000240176	0,0000022068
3,3	0,0000053359	-0,0000076564	-0,0000005802
3,4	-0,0000095224	-0,0000045264	-0,0000004471
3,5	0,0000008008	0,0000029476	0,0000002460
3,6	0,0000021693	0,0000004421	0,0000000546
3,7	-0,0000006648	-0,0000007804	-0,0000000690
3,8	-0,0000003511	0,0000000672	0,0000000023
3,9	0,0000002193	0,0000001533	0,0000000144
4	0,0000000286	-0,0000000451	-0,0000000034
19,9	0,0000000000	0,0000000000	0,0000000000
20	0,0000000000	0,0000000000	-

I= -0,0003396131. Так, удалось достичь высокой точности расчёта. И теперь полученный результат совпадает с результатом программы Maple.

$$f2 := e^{-x^2} \sin(n \cdot x)$$

$$e^{-x^2} \sin(18x)$$
evalf (Int(f2, x = 2..2 + n))
$$-0.0003420139873$$