

It states that any linear circuit between two points A and B can be replaced by an equivalent circuit consisting of a current source *in parallel* with a single impedance.

Norton's Equivalent Circuit

 I_N - Norton's current, equals to the short-circuit current across terminals A & B when they are shorted in the original linear network.

Norton's Equivalent Circuit

 $Z_{\rm N}$ - Norton's impedance, equals to the impedance across terminals A & B in the original linear network, with all the voltage and current sources reduced to zero.

Norton's Equivalent Circuit

A load impedance Z_L will experience the same current by connecting across AB in the original circuit and in the Norton's equivalent circuit.

Given this original circuit, find the Norton's equivalent circuit across terminals A & B.

Step 1 - Disconnect the load Z_L from the circuit such that terminals A & B are now open-circuit.

Step 2 - put a short-circuit across terminals A & B and then calculate the short-circuit current. This is the Norton's current I_N .

For computing you can only use either the application of Ohm's Law or Mesh/Loop Analysis method.

In this example,
$$Z_T = Z_1 + (Z_2 /\!/ Z_3)$$

 $I_T = V/Z_T$

$$I_N = I_T \times Z_2 / (Z_2 + Z_3)$$

Step 3 - Replace the voltage source by a short circuit (current source by open circuit) and calculate the impedance across A & B by looking into the source free circuit. This is the Z_N .

For this example,
$$Z_N = (Z_1 // Z_2) + Z_3$$

Norton's Equivalent Circuit

Step 4 - Knowing I_N and Z_N , the Norton's equivalent circuit can now be formed.

$$I = I_N \times Z_N / (Z_N + Z_L)$$

This value of I will have the same value when Z_L is connected in the original linear circuit.

If it is the current through Z_L you want to find, then Z_L should be reconnected across A & B.

NOTE:

Source Conversion is not allowed.

Apply Norton's theorem to find the current in the 4 Ω resistor.

To find the Norton's equivalent circuit across AB, the first thing to do is to remove R_L such that terminals A & B are now open-circuit.

To find the Norton's current sources I_N , put a short circuit across terminals AB. The current I_N flows through the short circuit is the Norton's current source.

$$R_{//} = 10\Omega$$

$$R_T = 10 + 20 = 30 \Omega$$

$$I_{T} = \frac{30}{30} = 1 A$$

$$I_{N} = \frac{1}{2} = 0.5 A$$

Norton's equivalent resistance R_N is the resistance measured between A & B with all voltage sources replaced by short circuits, and current sources by open circuits.

$$R_{\parallel} = 10\Omega$$

$$R_N = R_{AB} = (10 + 20)//30 = 15\Omega$$

So $I_N = 0.5$ A and $R_N = 15 \Omega$, the Norton's equivalent circuit can now be drawn.

Norton's equivalent circuit with load (R_L)

Load current I =
$$\frac{I_N R_N}{R_N + R_L} = \frac{0.5 \times 15}{19} = 0.395 A$$

Apply Norton's theorem and calculate the current in the 10 ohm resistor.

To find the Norton's equivalent circuit across AB, remove R_L such that terminals A & B are now opencircuit.

Put a short circuit across terminals AB. The current I_N flows through the short circuit is the Norton's current source.

Norton's equivalent impedance Z_N is the impedance measured between A & B with all voltage sources replaced by short circuits, and current sources by open circuits. $Z_{AB} = Z_N = \frac{(2+j3)(2-j4)}{(2+j3)+(2-j4)} = (3.88+j0.47)\Omega$

Norton's equivalent circuit with load (R_I)

Load current I =
$$\frac{I_N Z_N}{Z_N + R_L}$$

= $\frac{5.84 \angle -50.81^0 \times (3.88 + j0.47)}{13.88 + j0.47}$
= $1.64 \angle -45.84^0 A$

Thevenin's Equivalent Circuit

Norton's Equivalent Circuit

Thevenin's Equivalent Circuit

Norton's Equivalent Circuit

Thevenin's Equivalent Circuit

Norton's Equivalent Circuit

Example 1.10 & 1.12 (same circuit)

 $\begin{array}{|c|c|c|}\hline & A \\ \hline & I_N \\ \hline & Z_N \\ \hline & Example 1.12 \\ \hline \end{array}$

The load current for both circuits is the same.

...next topic

Three Phase Supply Generation

Nurturing Curious Minds, Producing Passionate Engineers

Lee M L

Office: T12A522

School of EEE

Tel: 6879-0657