Chapter-8 Introduction to Trigonometry

WORKSHEET

MCQs

1. If $tan\theta = \frac{5}{2}$ then $\frac{4\sin\theta + \cos\theta}{4\sin\theta - \cos\theta}$ is equal to

a)
$$\frac{11}{9}$$
 b) $\frac{3}{2}$ c) $\frac{9}{11}$ d) 4

2. If $\cos(\alpha + \beta) = 0$, then the value of $\cos(\frac{\alpha + \beta}{2})$ is equal to

a)
$$\frac{1}{\sqrt{2}}$$
 b) $\frac{1}{2}$ c) 0 d) $\sqrt{2}$

3. If $\theta = 30^{\circ}$, then $4\cos^{3}\theta - 3\cos\theta$ is

4. If $tan\theta = \sqrt{3} - 1$, then $sin\theta =$

a)
$$\sqrt{3} + 1$$
 b) $\sqrt{5 - 2\sqrt{3}}$ c) $\frac{\sqrt{3} - 1}{\sqrt{5 - 2\sqrt{3}}}$ d) $\frac{\sqrt{3} - 1}{\sqrt{5 + 2\sqrt{3}}}$

5. If $3\sin\theta = 2$, then value of $5\tan^2\theta + 2$ is

6. If $cot\theta = \frac{1}{\sqrt{3}}$, then the value of $\frac{1-cos^2\theta}{2-sin^2\theta}$ is

a) 1 b)
$$\frac{5}{3}$$
 c) $\frac{3}{5}$ d) $-\frac{3}{5}$

7. Given $sin\theta = \frac{4}{a}$, then $tan\theta$ is

a)
$$\frac{4}{\sqrt{a^2-16}}$$
 b) $\frac{4}{a-2}$ c) $\frac{\sqrt{a^2-4}}{4}$ d) $\frac{a-2}{4}$

8. If x = 3secA, y = tanA, then $x^2 - 9y^2$ is

9. If $(sec^2\theta - 1)(cosec^2\theta - 1) = k$, then value of k is

a) 1 b) -1 c) 3 d) -3
Given
$$\sin \theta = \frac{a}{a}$$
 then $\cot \theta$ is

10. Given $sin\theta = \frac{a}{b}$, then $cot\theta$ is

a)
$$\frac{a}{\sqrt{b^2 - a^2}}$$
 b) $\frac{\sqrt{b^2 - a^2}}{a}$ c) $\frac{\sqrt{b^2 - a^2}}{b}$ d) $\frac{b}{\sqrt{b^2 - a^2}}$

11. If $x = asec\theta$, $y = btan\theta$, then $\frac{x^2}{a^2} - \frac{y^2}{b^2}$ is equal to

12. If $x = a\cos\theta$, $y = b\sin\theta$, then $b^2x^2 + a^2y^2$ equals

a)
$$a^2b^2$$
 b) ab c) a^4b^4 d) $a^2 + b^2$

13.If sin2A = 2sinA is true when A equals

$$14. \text{If } \sin(A+B) = 1 \text{ and } \cos(A-B) = 1 \text{ then}$$

a)
$$A = B = 90^{\circ}$$
 b) $A = B = 0^{\circ}$ c) $A = B = 45^{\circ}$ d) $A = 2B$

15. If $tan\theta + cot\theta = \frac{4}{\sqrt{3}}$, then the value of θ is

a)
$$\theta = 60^{\circ} \text{ or } 30^{\circ}$$

b)
$$\theta = 0^{\circ} or 45^{\circ}$$

c)
$$\theta = 45^{\circ} \text{ or } 30^{\circ}$$

d)
$$\theta = 60^{\circ} \text{ or } 90^{\circ}$$

16. For what value of θ , $2\sin^2\theta - \cos^2\theta = 2$

17. If
$$sec\theta - tan\theta = a + b$$
, then $sec\theta + tan\theta$ is

a)
$$a - b$$
 b) $\frac{1}{a+b}$ c) $a^2 - b^2$ d) $a^2 + b^2$

2marks questions

1. Evaluate: $\frac{2sin^260-tan^230}{sec^245}$

2. Find the value of θ , if $\frac{1}{\sec \theta - 1} - \frac{1}{\sec \theta + 1} = \frac{2}{3}$, where $0 \le \theta \le 90$ (Ans:60)

3. Simplify:
$$\frac{(1-\cos e^2\theta)(1-\cos\theta)(1+\cos\theta)}{1-\sin^2\theta}$$
 (Ans: -1)

4. Prove that $sin^2\theta cot^2\theta = 1 - cos^2\theta tan^2\theta$

5. Given that $tan\theta = \frac{a}{b}$, then find the value of $\frac{2tan\theta}{1+tan^2\theta}$ (Ans: $\frac{2ab}{a^2+b^2}$)

6. Find
$$\frac{3-\sin^2 60}{\sin^2 30 + \cos^2 30} - 2\tan^2 30 + \sec 30 \csc 60$$
 (Ans: $\frac{35}{12}$)

7. In an acute angled triangle ABC, if $sin(A + B - c) = \frac{1}{2}$ and $cos(B + C - A) = \frac{1}{\sqrt{2}}$, then find A, B and C.

8. In a triangle ABC, right angled at B, the ratio AB:AC=1: $\sqrt{2}$. Find the value of $\frac{2tan\theta}{1+tan^2\theta}$

9. If $3x = \csc\theta$ and $\frac{3}{x} = \cot\theta$, find the value of $3(x^2 - \frac{1}{x^2})$

10. If $x = asec\theta + btan\theta$ and $y = bsec\theta + atan\theta$, then prove that $x^2 - y^2 = a^2 - b^2$

- 11. If $tan(A + B) = \sqrt{3}$ and $tan(A B) = \frac{1}{\sqrt{3}}$; $0 < A + B \le 90$, A > 0B, find A and B.
- 12. Evaluate: $\frac{5\cos^2 60 + 4\sec^2 30 \tan^2 45}{\sin^2 30 + \cos^2 30}$

3 marks questions

1. Prove that:

i)
$$\frac{\tan\theta}{1-\cot\theta} + \frac{\cot\theta}{1-\tan\theta} = 1 + \sec\theta \csc\theta$$
ii)
$$\frac{\sin\theta}{\cot\theta + \csc\theta} - \frac{\sin\theta}{\cot\theta - \csc\theta} = 2$$

ii)
$$\frac{\sin\theta}{\cot\theta + \csc\theta} - \frac{\sin\theta}{\cot\theta - \csc\theta} = 2$$

iii)
$$\frac{\cos\theta - \sin\theta + 1}{\cos\theta + \sin\theta - 1} = \frac{1}{\csc\theta - \cot\theta}$$

iv)
$$\frac{1}{cosec\theta - cot\theta} - \frac{1}{sin\theta} = \frac{1}{sin\theta} - \frac{1}{cosec\theta + cot\theta}$$

v)
$$\left(1 + \frac{1}{\tan^2 \theta}\right) \left(1 + \frac{1}{\cot^2 \theta}\right) = \frac{1}{\sin^2 \theta - \sin^4 \theta}$$

vi)
$$\frac{\sin A}{\cot A + \csc A} = 2 + \frac{\sin A}{\cot A - \csc A}$$

vii)
$$\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \csc\theta + \cot\theta$$

viii)
$$\frac{\sin A}{1-\cos A} + \frac{\tan A}{1+\cos A} = \sec A \csc A + \cot A$$

ix)
$$\frac{\sin A}{1 + \cos A} + \frac{1 + \cos A}{\sin A} = 2 \cos e c A$$

$$x) \qquad \frac{\cos\theta - \sin\theta + 1}{\cos\theta + \sin\theta - 1} = \frac{\sin\theta}{1 - \cos\theta}$$

- 2. If $\cos\theta + \sin\theta = 1$, then prove that $\cos\theta \sin\theta = \pm 1$
- 3. In a right angled triangle, right angled at C. If tan(C B A) = 0 and $tan(B + C - A) = \sqrt{3}$, find the value of A and B.
- 4. If $15cot^2\theta + 4cosec^2\theta = 23$, then find the value of $\frac{1-tan^2\theta}{1+tan^2\theta}$
- 5. If $7\sin^2\theta + 3\cos^2\theta = 4$, then show that $\theta = 30$
- 6. If $tan\theta + sin\theta = m$ and $tan\theta sin\theta = n$, show that $m^2 n^2 = n$ $4\sqrt{mn}$.