Obfuscated Human Faces Reconstruction

Massimo Andreetta massimo.andreetta@studenti.unipd.it

Introduction

Human Face Reconstruction using Convolutional Neural Networks

Aim is to recover a more accurate representation of a human face from distorted or obfuscated images

Potential applications in the recovery of lost or damaged facial features and the identification of individuals in obscured photos or videos

Lack of attention to Loss Function in Image Processing

L2 loss is the default option in image reconstruction

Pixel Loss

Pixel Loss used in Image Generation & Reconstruction

Goal is to minimize the difference between the generated and target image by comparing the values of their individual pixels

Mean Squared Error/L2 norm most commonly used method for calculating the difference

L2 Loss Limitations

L2 loss fails to accurately predict human perception of image quality

Assumes that noise is independent of local image characteristics

Assumes white Gaussian noise, which is not always the case

These assumptions limit the effectiveness of L2 loss for predicting image quality

Objective

Investigating alternative error metric (L1, PSNR, SSIM)

Define a new metric that combines PSNR and SSIM

Using PSNR and SSIM as evaluation metrics of the quality of image reconstruction

Analyzes the results obtained by three CNN models in detail

Convolutional Neural Networks in Image Reconstruction

Success in computer vision tasks and effective use for denoising, deblurring, and demosaicking

Project inspired by prior work on image reconstruction tasks and Single Image Super-Resolution, including:

Hang Zhao et al. - "Loss Functions for Image Restoration with Neural Networks" (2018)

Jacob Conrad Trinidad. - "Reconstructing Obfuscated Human Faces" (2017)

Ledig, et al. - "Photo-realistic single image super-resolution using a generative adversarial network." (2017)

Related Work

Hang Zhao et al. propose alternatives to L2 for the loss layer

Emphasized the importance of perceptually motivated losses

Introduced novel differentiable loss function based on MS-SSIM and L1

Demonstrated significant improvement in results quality with better loss functions, regardless of the network architecture

Related Work

Trinidad examines CNNs to reconstruct obfuscated images of human faces Investigates pixel loss and perceptual loss to improve image quality

Uses CNN with residual autoencoder architecture and 3 residual blocks between decoder and encoder

Ledig, et al. proposed SRResNet as the generator network for SRGAN SRGAN can produce photo-realistic natural images for 4x upscaling factors

Dataset

Labeled Faces in the Wild dataset

Dataset contains 13,233 images of 5,749 people, with faces already fully captured and centered

Input images 62x47 pixels, resized to 112x112 using OpenCV

Two obfuscation methods: pixelation and Gaussian blurs

Example

Pre-processing

2500 images randomly split into 2000 training and 500 testing samples

Min-Max Scaling applied to scale the pixel values to the range [0,1]

Scaling helps improve model performance

Three CNN architectures used to reconstruct obfuscated human faces

Tested 5 different loss functions used in image reconstruction to asses the best ones

L2 Loss Function

The Mean Squared Error/L2, is the most common error measure.

Loss obtained using the squared Euclidean distance between the pixels of the predicted output (x) and the ground truth (y)

$$L_{L2} = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - y^{(i)})^2$$

n = 112x112x3 number of pixels in our images.

L1 Loss Function

Loss obtained using the absolute Euclidean distance between the pixels of the network's predictions (x) and the ground truth (y).

$$L_{L1} = \frac{1}{n} \sum_{i=1}^{n} \left| x^{(i)} - y^{(i)} \right|$$

Networks trained with the Mean Absolute Error/L1, perform better than L2 because it doesn't overly penalize larger errors like L2.

PSNR Loss Function

Measure of image quality that compares the predicted image to the ground truth image

Calculates the difference between the two images as a logarithmic ratio of the MSE to the highest pixel value possible.

$$PSNR = 10 \log_{10} \frac{MAX^2}{MSE}$$

$$L_{PSNR} = 1/PSNR$$

SSIM Loss Function

Based on the idea that the perceived quality of an image is related to the structural information present in the image

Output ranges between [-1,1]

$$SSIM = \frac{(2\mu_x \mu_y + c_1)(2\sigma_{x,y} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

$$L_{SSIM} = 1 - SSIM$$

PSNR + SSIM Loss Function

PSNR and SSIM have poor relationship with how people perceive image quality

If used as loss functions for reconstruction tasks they can achieve even better results than L2 and L1

$$L_{PSNR+SSIM} = L_{SSIM} + 0.5 * L_{PSNR}$$

The SSIM loss is weighted twice as much as the PSNR loss in order to prioritize the quality of the restored images

Training

Adam with learning rate = 0.0001 as optimizer

Trained with a batch size of 16 and early stopping with patience = 5

The input image of shape (112, 112, 3) undergoes a Min-Max scaling step before being fed into the model

The output image is then scaled back to the original scale using the min-max scaling values obtained previously from the input images

Evaluation methods

PSNR measure of how much the restored image differs from the original image, in terms of MSE

SSIM compares the luminance, contrast, and structure of both images to determine how similar the two images are in terms of perceptual structure

Limitations

Models unable to include small face details like wrinkles Better performance when reconstructing blurred images instead of pixelated ones

Simple CNN

5 Convolutional layers:

First Convolutional layer: 128 filters 9x9

2-4 Convolutional layers: 128 filters 4x4

Each layers followed by:

- Batch Normalization layer
- Uses ReLU and zero padding

Output layer: 3 filters 4x4, sigmoid activation function

L2 Loss

Blurred Image Reconstruction Train Set: 26.5861 / 0.7900 Test Set: 26.5198 / 0.7868 Pixelated Image Reconstruction Train Set: 23.9009 / 0.7562 Test Set: 23.8404 / 0.7529

L1 Loss

Blurred Image Reconstruction Train Set: 26.7774 / 0.7948 Test Set: 26.7322 / 0.7918 Pixelated Image Reconstruction Train Set: 23.7566 / 0.7513 Test Set: 23.7075 / 0.7481

PSNR Loss

Blurred Image Reconstruction Train Set: 27.5200 / 0.7966 Test Set: 27.4431 / 0.7934 Pixelated Image Reconstruction Train Set: 24.2428 / 0.7623 Test Set: 24.1503 / 0.7588

SSIM Loss

Blurred Image Reconstruction Train Set: 27.4119 / 0.8369 Test Set: 27.3281 / 0.8326 Pixelated Image Reconstruction Train Set: 24.1874 / 0.7766 Test Set: 24.0753 / 0.7715

PSNR + SSIM Loss

Blurred Image Reconstruction Train Set: 27.8359 / 0.8336 Test Set: 27.7357 / 0.8290 Pixelated Image Reconstruction Train Set: 23.9799 / 0.7763 Test Set: 23.9083 / 0.7715

Training and Evaluation

Pixelated Images

SRResNet

Removed 2 upsampling block at the end of the network

First Convolutional layer: 64 filters 9x9 + PReLU

5 Residual blocks, where the output of each block is added to its input

Each residual block consists:

- Convolutional layer: 64 filters 3x3
- Batch Normalization layer
- PReLU
- Convolutional layer: 64 filters 3x3
- Batch Normalization layer

SRResNet

1 Convolutional layer: 64 filters 9x9

1 Batch Normalization layer

Output of this layer added to the output of the initial Convolutional layer

Output layer: 3 filters 9x9 + sigmoid activation function

L2 Loss

Blurred Image Reconstruction Train Set: 27.9575 / 0.8101 Test Set: 27.7065 / 0.8000 Pixelated Image Reconstruction Train Set: 24.3446 / 0.7650 Test Set: 24.1000 / 0.7555

L1 Loss

Blurred Image Reconstruction Train Set: 27.3167 / 0.8171 Test Set: 27.1332 / 0.8076 Pixelated Image Reconstruction Train Set: 24.1818 / 0.7813 Test Set: 24.0060 / 0.7729

PSNR Loss

Blurred Image Reconstruction Train Set: 28.1864 / 0.8380 Test Set: 27.9722 / 0.8301 Pixelated Image Reconstruction Train Set: 24.4730 / 0.7748 Test Set: 24.2071 / 0.7652

SSIM Loss

Blurred Image Reconstruction Train Set: 28.5495 / 0.8878 Test Set: 28.4434 / 0.8806 Pixelated Image Reconstruction Train Set: 24.5532 / 0.8052 Test Set: 24.2078 / 0.7841

PSNR + SSIM Loss

Blurred Image Reconstruction Train Set: 29.2775 / 0.8892 Test Set: 29.1476 / 0.8817 Pixelated Image Reconstruction Train Set: 24.9042 / 0.8109 Test Set: 24.5279 / 0.7905

Training and Evaluation

Pixelated Images

Residual Autoencoder

Multiple Convolutional and Transpose Convolutional layers, each followed by Batch Normalization layer and ReLu

Residual Autoencoder

First Convolutional layer: 64 filters 9x9

2-4 Convolutional layers: 64-128-256 filters 4x4, stride=2

3 Residual blocks followed by an element-wise addition with input tensor

Each residual block consists:

- Convolutional layer: 64 filters 3x3
- Batch Normalization layer
- ReLU
- Convolutional layer: 64 filters 3x3
- Batch Normalization layer

Residual Autoencoder

4 Transpose Convolutional layers:

- 1-3 layers: 256-128-64 filters 4x4, stride = 2
- Last: 3 filters 9x9, stride = 1 and sigmoid activation function

Changed from tanh to sigmoid to account for the use of Min-Max Scaling

L2 Loss

Blurred Image Reconstruction Train Set: 27.5846 / 0.8301 Test Set: 27.3430 / 0.8224 Pixelated Image Reconstruction Train Set: 26.1573 / 0.7866 Test Set: 24.3998 / 0.7492

L1 Loss

Blurred Image Reconstruction Train Set: 28.0884 / 0.8368 Test Set: 27.9211 / 0.8301 Pixelated Image Reconstruction Train Set: 24.2364 / 0.7689 Test Set: 23.9235 / 0.7541

PSNR Loss

Blurred Image Reconstruction Train Set: 29.3583 / 0.8544 Test Set: 29.0591 / 0.8459 Pixelated Image Reconstruction Train Set: 25.5830 / 0.7902 Test Set: 24.5705 / 0.7664

SSIM Loss

Blurred Image Reconstruction Train Set: 28.3404 / 0.9127 Test Set: 28.0636 / 0.8967 Pixelated Image Reconstruction Train Set: 25.3908 / 0.8612 Test Set: 23.9914 / 0.7876

PSNR + SSIM Loss

Blurred Image Reconstruction Train Set: 28.6523 / 0.9155 Test Set: 28.3727 / 0.8990 Pixelated Image Reconstruction Train Set: 25.2175 / 0.8464 Test Set: 24.0194 / 0.7857

Training and Evaluation

Pixelated Images

Results Comparison

L2 Loss	Blurred Images			
Architecture	Train set PSNR / SSIM		Test set PSNR / SSIM	
Simple CNN	26.5861	0.7900	26.5198	0.7868
SRResNet	27.9575	0.8101	27.7065	0.8000
Original Residual Autoencoder	26.56	0.700	25.96	0.696
Residual Autoencoder	27.5846	0.8301	27.3430	0.8224
	Pixelated images			
Architecture	Train set PSNR / SSIM		Test set PSNR / SSIM	
Simple CNN	23.9009	0.7562	23.8404	0.7529
SRResNet	24.3446	0.7650	24.1000	0.7555
Original Residual Autoencoder	23.94	0.600	23.52	0.585
Residual Autoencoder	26.1573	0.7866	24.3998	0.7492

L1 Loss	Blurred Images			
Architecture	Train set PSNR / SSIM		Test set PSNR / SSIM	
Simple CNN	26.7774 0.7948		26.7322	0.7918
SRResNet	27.3167	0.8171	27.1332	0.8076
Residual Autoencoder	28.0884	0.8368	27.9211	0.8301
-				
Architecture	Train set PSNR / SSIM		Test set PSNR / SSIM	
Simple CNN	23.7566	0.7513	23.7075	0.7481
SRResNet	24.1818	0.7813	24.0060	0.7729
Residual Autoencoder	24.2364	0.7689	23.9235	0.7541

Results Comparison

PSNR	Blurred Images			
Architecture	Train set PSNR / SSIM		Test set PSNR / SSIM	
Simple CNN	27.5200 0.7966		27.4431	0.7934
SRResNet	28.1864	0.8380	27.9722	0.8301
Residual Autoencoder	29.3583	0.8544	29.0591	0.8459
		images		
Architecture	Train set PSNR / SSIM		Test set PSNR / SSIM	
Simple CNN	24.2428	0.7623	24.1503	0.7588
SRResNet	24.4730	0.7748	24.2071	0.7652
Residual Autoencoder	25.5830	0.7902	24.5705	0.7664

SSIM	Blurred Images			
Architecture	Train set PSNR / SSIM		Test set PSNR / SSIM	
Simple CNN	27.4119	0.8369	27.3281	0.8326
SRResNet	28.5495	0.8878	28.4434	0.8806
Residual	27.0003	0.9108	26.8274	0.8946
Autoencoder				
	Pixelated images			
Architecture	Train set		Test set	
	PSNR / SSIM		PSNR / SSIM	
Simple CNN	24.1874	0.7766	24.0753	0.7715
SRResNet	24.5532	0.8052	24.2078	0.7841
Residual	25.3908	0.8612	23.9914	0.7876
Autoencoder				

Results Comparison

PSNR+SSIM	Blurred Images			
Architecture	Train set PSNR / SSIM		Test set PSNR / SSIM	
Simple CNN	27.8359	0.8336	27.7357	0.8290
SRResNet	29.2775	0.8892	29.1476	0.8817
Residual Autoencoder	28.6523	0.9155	28.3727	0.8990
		200		
Architecture	Train set PSNR / SSIM		Test set PSNR / SSIM	
Simple CNN	23.9799	0.7763	23.9083	0.7715
SRResNet	24.9042	0.8109	24.5279	0.7905
Residual Autoencoder	25.2175	0.8464	24.0194	0.7857

Conclusion and future works

Focus of the project was on loss functions, which are often overlooked when exploring image restoration using neural networks

Proposed several alternative loss functions: L1, PSNR, and SSIM

Analyzed their effects on 3 different CNN architectures to show their improved performance on the networks

Improved performance when using SSIM loss compared to L2

Introduced novel loss combining SSIM and PSNR

Future work: investigating impact of state-of-the-art architectures like SRGAN, and exploring use of perceptual loss and Facial Attention Loss

Thank you for the attention