13 19112024-141700

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой $2884~\mathrm{MF}$ ц с внутренним сопротивлением $50~\mathrm{Om}$ и доступной мощностью $10~\mathrm{дБм}$.

Ко входу ПЧ подключён генератор меандра частотой 815 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники -1 дБм. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 1905 МГц до 2245 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

- 1) -77 дБм
- 2) -74 дБм
- 3) -79 дБм
- 4) -83 дБм

Чему равна частота гетеродина при преобразовании частоты вверх с использованием двойного балансного смесителя, если спектр на выходе РЧ таков, как изображён на рисунке 1?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 1 – Экран анализатора спектра

- 240 MΓι
- 2) 200 МГц
- 3) 140 МГц
- 4) 220 MΓ_{II}

Для

- выделения нижней боковой составляющей при преобразовании вверх
- и полного подавления другой боковой

используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная -13 градусов.

Чему равна индуктивность компонента фазовращателя, если частота ПЧ равна 117 МГ $_{\rm H}$?

- 1) 64 нГн
- 2) 66 нГн
- 3) 103 нГн
- 4) 50 нГн

На рисунке 2 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i при положительном смещении. Известно, что $r_1=r_4$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 2 – Двойной балансный смеситель

Частота гетеродина 331 МГц, частота ПЧ 33 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

- 364 MΓι
- 2) 265 MΓι
- 3) 993 МГц
- 4) 1026 MΓ_{II}.

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = 0.254 + 0.251i, \, s_{31} = -0.261 + 0.265i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

- 1) -34 дБн
- 2) -46 дБн
- 3) -28 дБн
- 4) -31 дБн

Ко входу двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью 3.1 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 10 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание мощностью 3.1 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 3.)

Рисунок 3 – Схема измерения потерь в трансформаторе

- 1) 2.4 дБ
- 2) 2.9 дБ
- 3) 3.4 дБ
- 4) 1.2 дБ