MCQ: 8C, 9B,10B

Question	Answer		Mark
Number			
2(a)	Use of $C=Q/V$	(1)	
	V=15 V	(1)	
	Use of $W = QV/2$ Or $W = CV^2/2$ Or $W = Q^2/2C$	(1)	
	$W = 2.5 \times 10^{-5} \text{ J}$	(1)	4
	(candidates who use 6.6×10^{-6} C can only score MP1 and MP3)		
	Example of calculation		
	$V = Q/C = 3.3 \times 10^{-6} \mathrm{C} / 220 \times 10^{-9} \mathrm{F}$		
	V= 15 V		
	$W = QV/2 = (3.3 \times 10^{-6} \text{ C} \times 15 \text{ V})/2$ $W = 2.5 \times 10^{-5} \text{ J}$		
	$W = 2.5 \times 10^{-5} \text{ J}$		
2(b)	$Q = 0.2 Q_0 \text{ Or } Q = 6.6 \times 10^{-7} \text{ C}$	(1)	
_(~)	Use of $Q = Q_0 e^{-t/RC}$	(1)	
	t = 7.1 s	(1)	3
	(candidates who use $Q = 0.8 Q_0$ can only score MP2)		
	Example of calculation		
	$Q = 0.2 Q_0$		
	$O = O_0 e^{-t/RC}$		
	$0.2 Q_0 = Q_0 e^{-t/RC}$		
	$\ln (0.2) = - t/(20 \times 10^6 \Omega \times 220 \times 10^{-9} \mathrm{F})$		
	t = 7.1 s		
2(c)	Either	(1)	
	refers to $W = Q^2/2C$ Or $W \propto Q^2$ If Q halves, $W \rightarrow Q^2/8C$ Or halving Q quarters W	(1)	
	(Since W becomes a quarter in the time for Q to half) it takes less time for the	(1)	
	energy to halve than the charge to halve. (dependent mark on either MP1 or	(1)	
	MP2)	(-)	
	Or Refers to $W = QV/2$	(1)	
	Q and V both decrease over time	(1) (1)	
	W will decrease faster so takes less time to half in value. (dependent mark on	(1)	
	either MP1 or MP2)	(1)	3
2(1)			
2(d)	Synchronous readings Or data logger records readings at exact time	(1)	
	Or voltmeter and stop watch need 2 people and data logger only one	(1)	
	More readings can be taken in a shorter time Or higher sampling rate		
		(1)	2
	(treat as neutral any reference to graph plotting automatically, human reaction		
	time or accuracy)		
_	Total for question 15		12
	Tour for question to		14

Question Number	Answer		Mark
3(a)(i)	Use of $Q = CV$ Q = 3900 (C)	(1) (1)	2
	Example of answer $Q = 1500 \text{ F} \times 2.6 \text{ V}$ $Q = 3900 \text{ C}$		
3(a)(ii)	Straight line through the origin	(1)	
	Passing through 2.6 V and answer to (a)(i) or 4000 C	(1)	2
3(a)(iii)	Use of $W = QV/2$ Or $W = CV^2/2$ Or use of area under graph	(1)	1
	W = 5.1 kJ (use of 4000 C gives W = 5.2 kJ (allow ecf from (a)(i))	(1)	2
	Example of answer		
	$W = 3900 \text{ C} \times 2.6 \text{ V} / 2$		
	W = 5070 J		
3(b)(i)	Fun	(1)	
	Exponential decay Current decreases by equal fractions in equal time intervals	(1)	2
	Current decreases by equal fractions in equal time intervals	(1)	
3(b)(ii)	See attempt of I_0/e	(1)	
	Finds time (accept 0.75-0.80s)	(1)	
	Use of $\tau = RC$	(1)	
	$R = 0.0005 \Omega$	(1)	
	Or	(1)	
	Finds the time for I_0 to half Uses $t_{1/2} = \tau \ln 2$	(1)	
	Use of $\tau = RC$	(1)	
	$R = 0.00050 - 0.00053 \Omega$	(1)	
	Or		
	See attempt of 37% of 5400 A	(1)	
	Finds time (accept 0.75 to 0.80 s)	(1)	
	Use of $\tau = RC R = 0.0005 - 0.00053\Omega$	(1)	
	Or	(1)	
	Draws tangent at $t = 0$ to meet time axis.		
	Records intercept of tangent with axis (accept 0.6 s - 0.9 s)	(1)	4
	Use of $\tau = RC$	(1)	
	$R=0.0004~\Omega-0.0006~\Omega$ Or	(1)	
	reads a value off the y-axis and corresponding time	(1)	
	Subs into formula using 5400 (A) to find RC	(1)	
	Substitutes for C to find R	(1)	
	$R = 0.00050 \ \Omega - 0.00058 \ \Omega$	(1)	
		(1)	
	Example of calculation		
	37% of 5400 A is 1998 A	(1)	
	Time to fall to this value is 0.75 s	(1)	
	RC = 0.75 s	(1)	
	$R = 0.75 \text{ s} / 1500 \text{ F} = 0.0005 \Omega$	(1)	1

3(c)	Max 3 Ultracapacitor used for: overtaking Or going up a hill Or starting (from rest) Or accelerating. Because this requires a large <u>current/power</u> . Batteries used for travelling at constant speed Because this requires a small <u>current/power</u> for a longer time	(1) (1) (1) (1)	3
	Total for question 17		15