Homework 10

陈淇奥 21210160025

2021年12月14日

Exercise 1. 对任意 α 上的滤 F,如果 $X \notin F$,则 $\alpha - X$ 有正测度

证明. 如果存在 $Y \in F$ 使得 $(\alpha - X) \cap Y = \emptyset$,于是 $Y \subseteq X$,因此 $X \in F$,矛盾

Exercise 2. 令 κ 为不可数正则基数,U 为 κ 上 κ 完全的正则非主超滤,则 κ 的所有无界闭集都属于 U

证明. 对于任意无界闭集 C , $C \cup \{0\}$ 也是无界闭集,且如果证明所有不包含 $\{0\}$ 的无界闭集属于 U , 则所有的无界闭集属于 U 。因此假设不包含 0 的无界闭集 $C \notin U$,于是 $\kappa - C \in U$ 具有正测度。

考虑函数 $f: \kappa - C \to \kappa$, $f(\alpha) = \sup(C \cap \alpha)$, 于是 f 在 $\kappa - C$ 上是退缩的,于是存在 $\gamma < \kappa$ 使得 $X = \{\alpha \in \kappa - C \mid f(\alpha) = \gamma\}$ 有正测度。因为 C 是无界闭集,所有 C 有极限点 $\gamma' > \gamma$ 。若 $X \notin U$,则 $\kappa - X$ 也有正测度但是 $(\kappa - X) \cap (\kappa - C) = \emptyset$,矛盾。因此 $X \in U$,由于 $|X| \leq |\{\alpha \in \kappa \mid \sup(C \cap \alpha) = \gamma\}| \subseteq \gamma' < \kappa$,因此 U 不是主超滤,矛盾。

Exercise 3. 对任意不可数正则基数 κ ,任意连续共尾函数 $f:\kappa\to\kappa$,它的不动点集 $\{\epsilon\mid f(\epsilon)=\epsilon\}$ 是 κ 的无界闭集

证明. $\diamondsuit S = \{\epsilon \mid f(\epsilon) = \epsilon\}$

无界: 对任意 $\alpha \in \kappa$, 令 $\epsilon_0 = f(\alpha)$, $\epsilon_{n+1} = f(\epsilon_n)$, $\epsilon = \bigcup_{n \in \omega} \epsilon_n$ 。于是 ϵ 是不动点且 $\epsilon > \alpha$

闭: 对任意 η 使得 $\sup(S\cap\eta)=\eta$,于是 $f(\eta)=\bigcup\{f(\beta):\beta\in S\cap\eta\}=\bigcup\{\beta:\beta\in S\cap\eta\}=\eta$,因此 $\eta\in S$

Exercise 4. κ 是马洛基数当且仅当集合 $S = \{\lambda < \kappa \mid \lambda$ 是不可达基数} 是 κ 上的平稳集

证明. ⇒。对任意无界闭集 C,都存在一个严格递增且连续的函数 $f:\kappa \to \kappa$ 使得 $C=\operatorname{im}(f)$ 。于是 f 有一个不动点 ϵ 且 ϵ 是不可达基数,因此 $C\cap S \neq \emptyset$ \in 。对于任意 κ 上的连续共尾函数 $f:\kappa \to \kappa$,它的不动点集 $A=\{\epsilon\mid f(\epsilon)=\epsilon\}$ 是无界闭集,因此存在 $\lambda\in A\cap S$

Exercise 5. 令 $T \subseteq \mathbb{N}^{<\omega}$,满足对任意 $s \in T$,任意 $n \in \text{dom}(s)$,s(n+1) < s(n)。 (T, \subset) 是一棵树,证明 T 没有无穷枝

证明. 若 T 有无穷枝 $(s_i:i\in\omega)$,令 $s=\bigcup_{i\in\omega}s_i$,于是 $dom(s)=\omega$,而对于任意 $n\in\omega$,s(n+1)< s(n),于是得到一条无穷下降链,矛盾

Exercise 6. 3.4.9 中 F 是 \aleph_1 完全的非主超滤

证明. $X_0 = \emptyset$, 因为 U 是超滤, $\emptyset \in F$ 。

 $X_{\gamma} = \bigcup_{\beta \in \gamma} X_{\gamma} \in U$,因此 $\gamma \in F$ 。

若 $M\subseteq N$ 且 $M\in F$,于是 $X_M\subseteq X_N$,而 $X_M\in U$,于是 $X_N\in U$, $N\in F$ 。

若 $M,N\in F$, $X_{M\cap N}=X_M\cap X_N\in U$,于是 $M\cap N\in F$ 。

对任意 $M\subseteq\gamma,X_M\in U$ 或 $X_M^c\in U$,而 $X_M^c=X_{\gamma\backslash M}$,因此 $M\in F$ 或 $\gamma\backslash M\in F$ 。于是 F 是超滤。

由于每个 $X_{\beta} \notin U$, 所以 $\{\beta\} \notin F$, F 是非主超滤。

对于任意 $\{Y_i:i\in\omega\}$,因为 U 是 \aleph_1 完全的滤, $\bigcap_{i\in\omega}X_{Y_i}\in U$,于是 $\bigcap_{i\in\omega}Y_i\in U$ 。