密级状态: 绝密() 秘密() 内部资料(√)

Rockchip RK3126C EVB 用户使用指南

(福州硬件开发中心)

	当前版本:	V1. 0
文件状态: [] 草稿 [] 修改稿 [] 正式发布	作 者:	LLS
	完成日期:	2022. 5. 12
	审核:	
	审核日期:	

免责声明

本文档按"现状"提供,福州瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯 均为本公司的注册商标,归本公司所有。本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2022 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

地址: 福建省福州市铜盘路软件园A区18号

网址:www.rock-chips.com客户服务电话:+86-591-83991906客户服务传真:+86-591-83951833客户服务邮箱:fae@rock-chips.com

前言

概述

本文档主要介绍RK3126C EVB基本功能和硬件特性、多功能硬件配置、软件调试操作使用方法, 旨在帮助调试人员更快、更准确地使用RK3126C EVB,熟悉RK3126C芯片开发应用方案。

产品版本

本文档对应的产品版本如下:

产品名称	产品版本		
RK3126C EVB	RK_EVB_RK3126C_DDR3P216SD6_V10_20220408		

适用对象

本文档主要适用于以下工程师:

- 技术支持工程师
- 单板硬件开发工程师
- 嵌入式软件开发工程师
- 测试工程师

修订记录

修订记录累积了每次文档更新的说明,最新版本的文档包含以前所有文档版本的更新内容。

版本	修改人	修改日期	修改说明	备注
V1.0	LLS	2022-5-12	初始版本	

缩略语

缩略语包括文档中常用词组的简称。

缩略词	英文描述	中文描述
CPU	Central Processing Unit	中央处理器
DDR	Double Data Rate	双倍速率同步动态随机存储器
eMMC	Embedded Multi Media Card	内嵌式多媒体存储卡
I2C	Inter-Integrated Circuit	内部整合电路(两线式串行通讯总线)
12S	Inter-IC Sound	集成电路内置音频总线
LDO	Low Drop Out Linear Regulator	低压差线性稳压器
DCDC	Direct Current to Direct Current	直流电转直流电
SARADC	Successive Approximation Register Analog to	逐次逼近寄存器型模数转换器
	Digital Converter	
UART	Universal Asynchronous Receiver/ Transmitter	通用异步收发传输器
JTAG	Joint Test Action Group	联合测试行为组织
PWM	Pulse Width Modulation	脉冲宽度调制
MIPI	Mobile Industry Processor Interface	移动产业处理器接口
LVDS	Low-Voltage Differential Signaling	低电压差分信号
PMIC	Power Management IC	电源管理芯片
PMU	Power Management Unit	电源管理单元
RK/Rockchip	Rockchip Electronics Co.,Ltd.	瑞芯微电子股份有限公司
USB	Universal Serial Bus	通用串行总线
RGB	Red,Green,Blue; RGB color mode is a color	红绿蓝, RGB色彩模式, 是工业界的一
	standard in industry	种颜色标准
ADB	Android Debug Bridge	安卓调试桥
IR	Infrared Radiation	红外线
RTC	Real-time clock	实时时钟
WIFI	Wireless Fidelity	无线保真
CIF	Camera Interface	摄像头接口
DVP	Digital Video Parallel	数字视频并行接口
TF Card	Micro SD Card(Trans-flash Card)	外置记忆卡

目录

<u> </u>		
修订记录		
插图目录		VI
表格目录		VIII
1. 系统根	既述	
1.1. R	K3126C 芯片概述	
1.2. R	K3126C 芯片框图	1
1.3. 系	《 统框图	2
1.3.1.	系统框图	2
1.3.2.	功能概述	2
1.3.3.	功能接口	3
1.3.4.	功能模块布局	3
1.4. 组	1件	5
1.5. 开	F关机和待机	5
1.6. 固	1件升级	5
1.6.1.	USB 驱动安装	5
1.6.2.	固件升级方式	6
1.7. 串	3口调试	7
1.7.1.	串口工具	7
1.7.2.	ADB 调试	9
2. 硬件介	↑绍	10
2.1. 实	- 物图	10
2.2. 电	· · · · · · · · · · · · · · · · · · ·	11
2.3. 12	C 地址	11
2.4. 扩	· 展连接座信息	11
2.4.1.	MIPI DSI/LVDS TX FPC 座	12
2.4.2.	RGB/MCU Panel FPC 座	12
2.4.3.	DVP Camera 座	12

	2.5.	参考图	13
3.	. 模块	夬简述	14
	3.1.	电源输入	14
	3.2.	存储器	15
	3.3.	按键输入	16
	3.4.	音频接口	16
	3.5.	IR Receive 红外接收头	17
	3.6.	Sensor 芯片	17
	3.7.	WIFI	17
	3.8.	TF Card 接口	18
	3.9.	USB2.0 OTG/Host 接口	18
	3.10.	MIPI DSI/LVDS TX 输出接口	18
	3.11.	RGB/MCU Panel 输出接口	19
	3.12.	DVP Camera/CIF parallel 接口	21
	3.13.	UART Debug 接口	22
	3.14.	JTAG Debug 接口	23
4.	. 注意	意事项	24

插图目录

图 1-1 RK3126C 芯片框图	1
图 1-2 RK3126C EVB 系统框图	
图 1-3 RK3126C EVB 功能接口分布图(正面)	
图 1-4 RK3126C EVB 功能接口分布图(背面)	
图 1-5 驱动安装成功示意图	
图 1-6 进入 Loader 烧写模式示意图	
图 1-7 进入 MASKROM 烧写模式示意图	
图 1-8 获取当前端口 COM 号	8
图 1-9 串口工具配置界面	8
图 1-10 ADB 连接正常	9
图 2-1 RK3126C EVB 实物图	10
图 2-2 RK3126C EVB 电源框图	11
图 2-3 间距 0.5mm 立式双排 30 PIN PCB 封装	12
图 3-1 电源适配器输入口、前端 Buck、PMIC、POWER SWTICH 和电池座	14
图 3-2 DDR3、NANDFLASH/eMMC 位置	15
图 3-3 预留 SPI Flash 位置	15

表格目录

表 1-1 PCB 功能接口介绍表	3
表 2-1 I2C 通道挂载的外设地址和 IO 电平值对应表	11
表 3-1 MIPI DSI/LVDS TX 接口脚位定义表	19

1. 系统概述

1.1. RK3126C 芯片概述

RK3126C为4核 ARM Cortex-A7高性价比四核应用处理器,可方便为平板、电子相框、游戏机、早教机、广告机等提供低成本整体解决方案。

RK3126C的H.264解码器和解码器支持1080P@30fps,内置Audio IP核。嵌入Mali400 MP2 GPU 最高可支持分辨率(1080P), 可以正常运行主流游戏。具有多种高性能的接口,显示输出方案灵活多样,如 4Lane MIPI-DSI、 LVDS、 parallel RGB。可支持双片选16位DDR存储器接口。

1.2. RK3126C 芯片框图

图1-1 RK3126C芯片框图

1.3. 系统框图

1.3.1. 系统框图

RK3126C EVB系统采用RK3126C为系统核心芯片,采用RK816B-1 PMIC的供电方案;存储采用 2颗16bit DDR3L、NandFlash;有DVP、TF Card、HOST2.0和MIPI DSI/LVDS TX等外设接口,集成了一个稳定的可量产化的方案。详细的系统框图如下:

图1-2 RK3126C EVB系统框图

1.3.2. 功能概述

RK3126C EVB包含的功能如下:

- DC Power: DC 12V 适配器供电接口;
- USB2.0 OTG: 一路 Micro USB2.0 接口,兼容系统固件升级通道和电池充电;
- USB2.0 HOST0/1/2/3: 外接 USB2.0 HUB(GL852)支持四路 USB2.0 standard-A 接口,可以接鼠标、U 盘等设备;
- TF Card: 可以外接 TF 卡,扩展系统存储容量;
- CIF/DVP IN: 预留一组 CIF/DVP 摄像头扩展接口;
- MIPI DSI/LVDS TX: 支持 4LaneMIPI 或者 LVDS 信号输出,通过 FPC 线连接;
- RGB/EBC OUT: 预留一组 18bit RGB 和 EBC 输出接口,管脚复用 MIPI DSI/LVDS TX;
- SDIO WIFI:外接 RK915 WIFI 芯片,外置 SMA 天线,支持无线上网功能;

- Audio Interface:支持喇叭、耳机输出声音、单 MIC 录音;
- IR Receive: IR 遥控器输入;
- G-sensor: 外接 MMA7660 G-sensor 设备;
- UART Debug: 用户调试查看 LOG 信息使用;通过 MINi USB 接口连接;
- JTAG: 系统 JTAG 调试接口;
- System Key: 包含 Reset、MASKROM、PWRON、V+/Recover、V-、MENU、ESC 按键

1.3.3. 功能接口

表 1-1 PCB 功能接口介绍表

功能	是否可用
DDR3(2颗256M*16bit 总容量1GB)	YES
NAND FLASH(容量8GB)	YES
eMMC	Flash三选一,默认未贴
SPI Flash	Flash三选一,默认未贴
DC 12V Input	YES
USB2.0 OTG*1	YES
USB2.0 Host*4	YES
TF card interface	YES
CIF interface	YES
MIPI DSI/LVDS TX(4lane)	YES
RGB/EBC Output	需跳电阻,详见3.11章节
SDIO WIFI (802.11b/g/n)	YES
Audio(SPK, MIC, Earphone)	YES
IR Receive	YES
G-sensor	YES
1cell Battery Connector	YES
UART Debug	YES
JTAG Interface	YES
System Key	YES
MASKROM Key	YES

1.3.4. 功能模块布局

RK3126C EVB功能接口分布图:

图 1-3 RK3126C EVB 功能接口分布图(正面)

图 1-4 RK3126C EVB 功能接口分布图 (背面)

1.4. 组件

RK3126C EVB套件包括以下物品:

- RK3126C EVB
- 电源适配器,默认规格:输入 100V AC~240V AC, 50Hz;输出 12V DC, 2A
- 显示屏,规格: MIPI 屏+TP;尺寸: 5.5寸/竖屏;分辨率: 720*1280
- 一根 2.4G/5G 双频 SMA 公头接口天线
- 一路 3W 4ohm 喇叭

1.5. 开关机和待机

RK3126C EVB开机、关机以及待机方法介绍如下:

● 开机方法:

使用DC 12V供电,打开电源总开关;等待进入安卓界面,表示默认固件启动成功。

● 关机方法:

长按开机键6s,系统关机。

● 待机方法:

按下开机键,系统会进入一级待机状态。在没有接USBOTG情况下,没有其他的任何操作(比如按键操作),软件也没有Wake_Lock源,大约3s后会从一级待机转入二级待机状态。可通过Power按键推出待机模式

1.6. 固件升级

1.6.1. USB驱动安装

EVB驱动升级前需要先安装驱动,以下介绍Windows系统驱动安装流程

在提供的工具文件夹里面找到DriverAssitant,点击 DriverInstall.exe文件跳出如下界面。点击"驱动安装",等待提示安装驱动成功即可。如果已安装旧驱动,请点击"驱动卸载",并重新安装驱动。

图 1-5 驱动安装成功示意图

1.6.2. 固件升级方式

RK3126C EVB固件升级方式有两种:

- 进入 Loader 升级方式:系统上电前需要保持SARADC_IN2为低,系统将进入Loader状态。
 - 具体步骤如下:
 - I) 连接 USB2.0 OTG 口到电脑 PC 端,按住主板的 V+/Recovery 按键不放。
 - 2) EVB 供电 12V, 若已经上电, 按下复位按键。
 - 3) 烧写工具显示发现一个 Loader 设备后,释放 V+/Recovery 按键。
 - 4) 烧写工具对应选择 Loader、Parameter、Uboot、Recovery 等文件。
 - 5) 点击执行,即进入升级状态,工具的右侧为进度显示栏,显示下载进度与校验情况。

图 1-6 进入 Loader 烧写模式示意图

● 进入 MASKROM 升级方式:

系统上电前FLASH_D0对地短路(即按下MASKROM按键),使FLASH引导失败,从而进入 Maskrom状态。

具体步骤如下:

- 1) 连接 USB2.0 OTG 口到电脑 PC 端,按住板子的 MASKROM 按键不放。
- 2) EVB 供电 12V, 若已经上电, 按下复位按键。
- 3) 烧写工具显示发现一个 MASKROM 设备后,释放 MASKROM 按键。需要注意 Maskrom 状态下需要选择对应的 Loader 选项才能完成升级。
- 4) 烧写工具对应选择 Loader、Parameter、Uboot、Recovery 等文件。
- 5) 点击执行,即进入升级状态,工具的右侧为进度显示栏,显示下载进度与校验情况。

图 1-7 进入 MASKROM 烧写模式示意图

1.7. 串口调试

1.7.1. 串口工具

连接开发板的MINI USB Debug调试接口到电脑PC端,在PC端设备管理器中得到当前端口COM号。

图 1-8 获取当前端口 COM 号

打开串口工具,在"快速连接"界面下,先选择串口,再选择对应的串口号,将波特率改为115200 (RK3126C 默认波特率115200),流控RTS/CTS不需勾选。最后点击"打开"按钮,即可进入串口调试界面。

图 1-9 串口工具配置界面

1.7.2. ADB调试

- 1) 确保驱动安装成功,PC 连接与开发板 USB2.0 OTG 口
- 2) 开发板上电,开机进入系统;
- 3) 电脑 PC 端, 打开 adb 工具;
- 4) 输入"adb shell", 进入 adb 调试。

```
Microsoft Windows [版本 10.0.19043.1645]
(c) Microsoft Corporation。保留所有权利。

C:\Users\83563>cd C:\adb

C:\adb>adb shell
* daemon not running; starting now at tcp:5037
* daemon started successfully
/ #
/ #
/ #
/ #
```

图 1-10 ADB 连接正常

2. 硬件介绍

2.1. 实物图

图 2-1 RK3126C EVB 实物图

2.2. 电源框图

图 2-2 RK3126C EVB 电源框图

2.3. I2C地址

开发板预留多种的外围接口,用户调试I2C外设会涉及到I2C通道复用情况,表2-1为现有的开发板器件对应的I2C地址和电平值,避免地址冲突和电平不匹配。

I2C通道	设备	I2C地址	电源域
I2C0	N/A	N/A	N/A
I2C1	N/A	N/A	N/A
I2C2	RK816B-1	0x1A	3.3V
I2C2	MMA7660 (G-sensor)	0x4C	3.3V
I2C2	DVP camera	TBD	3.3V
I2C2	GT917S(TP IC)	TBD	3.3V

表 2-1 I2C 通道挂载的外设地址和 IO 电平值对应表

注意:使用扩展板时,要保证板上I2C地址与开发板上I2C地址不冲突。

2.4. 扩展连接座信息

在实际使用过程中,用户可能会制作扩展板,开发板扩展连接座型号如下:

2.4.1. MIPI DSI/LVDS TX FPC座

MIPI DSI/LVDS TX FPC座J5400为通用引脚0.5mm,间距1mm的立式双排30PIN卡座,型号为FP05SL 030 V,封装尺寸如下:

图 2-3 间距 0.5mm 立式双排 30 PIN PCB 封装

2.4.2. RGB/MCU Panel FPC座

RGB/MCU Panel FPC座J5300为通用引脚0.5mm,间距1mm的立式双排50PIN卡座,型号为FP05SL_050_V,封装尺寸同上。

2.4.3. DVP Camera座

DVP Camera FPC座J4600为通用间距0.5mm卧式 下接触24PIN卡座,型号为 FFC05001-24SBA1X45M,尺寸如下:

图 2-4 间距 0.5mm 卧式单排 24 PIN PCB 封装

2.5. 参考图

EVB对应的参考图、PCB版本信息如下:

- 参考图: RK EVB RK3126C DDR3P216SD6 V10 20220408LLS.DSN
- PCB 设计: RK EVB RK3126C DDR3P216SD6 V10 20220408LXF.pcb

3. 模块简述

3.1. 电源输入

电源适配器输入12V/2A电源,通过前端降压变换器(buck)电源后,得到USB HOST电源 VCC5V0_USB和系统电源VCC4V0_SYS。然后系统电源VCC4V0_SYS提供给PMIC电源管理芯片 RK816B-1 BAT管脚,输出不同电压供系统使用。

RK816B-1支持1cell 电池充放电管理,支持客户外接3.7V 1cell 电池,此时POWER SWTICH 电路会自动切换系统电源为电池供电,可用USB2.0 OTG口给电池充电。

注意:因为RK816B-1是给带电池方案用的,使用时BAT管脚需要挂1cell电池或系统电源输入以保证PMIC输出稳定。POWER SWITCH切换电路是为了兼顾不带电池的情况,方便客户使用,实际设计时可视应用省略。

电源适配器输入口、前端Buck、PMIC、POWER SWTICH和电池座:

图3-1电源适配器输入口、前端Buck、PMIC、POWER SWTICH和电池座

3.2. 存储器

- NANDFLASH: 开发板上存储类型为 NAND FLASH, 默认使用的容量 8GB
- eMMC: 开发板上预留 eMMC FLASH
- SPI Flash: 开发板预留 SPINor/NAND FLASH 器件位置
- DDR: 开发板 DDR 采用两片 512MB DDR3, 总容量 1GB

图 3-2 DDR3、NANDFLASH/eMMC 位置

图 3-3 预留 SPI Flash 位置

3.3. 按键输入

开发板使用SARADC_IN2作为进RECOVERY检测口,支持10位分辨率,可以通过V+/Recovery按键,进入LOADER烧写模式,也通过MASKROM短路FLASH_D0输入MASKROM烧写模式;另外板子还留了RESET按键,方便通过硬件复位,重启机器;以及其它常用的几个按键:V+、V-、ESC、MENU、PWRON。

按键位置如下:

图 3-4 按键位置

3.4. 音频接口

开发板支持1个Speaker接口(配1个3W4ohm喇叭),1个Earphone接口,一个模拟MIC接口。可支持基本的音频输入输出功能。

SPK、MIC、Earphone座位置如下:

图 3-5 SPK、MIC、Earphone 座位置

3.5. IR Receive红外接收头

● 开发板支持 IR Receive 功能, 红外接收头型号 IRM3638,中心频率 38KHz。

图 3-6 IR Receive 红外接收头

3.6. Sensor芯片

开发板支持G-Sensor重力传感器,型号为MMA7660FC,与主控通过I2C通讯。

图 3-7 G-sensor 重力传感器

3.7. WIFI

开发板上WIFI模组采用RK自己的RK915,采用IC Onboard方式,特性如下:

- 支持 2.4G 802.11 b/g/n、1 个 SMA 接口天线。
- WIFI 数据采用 4bit SDIO 数据总线。

RK3126C EVB默认配备一根2.4GHz/5GHz双模天线。

图 3-8 WIFI 与 SMA 天线接口

3.8. TF Card接口

TF Card使用SDMMC0接口,可扩展系统存储容量,数据总线宽度为4bits,支持SD2.0,MMC ver4.41。

图 3-9 TF Card 接口

3.9. USB2.0 OTG/Host接口

开发板带USB2.0 OTG和HOST接口:

- USB2.0 OTG 采用 Micro USB 座,可用于下载烧录固件和电池充电。
- USB2.0 HOST 采用 USB3.0 Standard-A 型接口。RK3126C 有一路 USB2.0 HOST,EVB 上外挂一颗 USB2.0 HUB(GL852),支持 4 路 USB2.0 HOST,可支持连接如鼠标、U 盘等 USB 外设。

图 3-10 USB2.0 OTG/Host 接口

3.10. MIPI DSI/LVDS TX输出接口

开发板支持MIPI DSI/LVDS TX视频输出接口,最大支持分辨率1280*800@60fps,默认连接720P MIPI显示屏。连接座采用引脚0.5mm,间距1mm的立式双排30PIN FPC座,详见章节2.4.1。

图 3-11 MIPI DSI/LVDS TX 接口

MIPI DSI/LVDS TX接口信号顺序如下:

表 3-1 MIPI DSI/LVDS TX 接口脚位定义表

Pin	J5400		Pin
1	GND	MIPI_TX_D0N	2
3	MIPI_TX_D0P	GND	4
5	MIPI_TX_D1N	MIPI_TX_D1P	6
7	GND	MIPI_TX_CLKN	8
9	MIPI_TX_CLKP	GND	10
11	MIPI_TX_D2N	MIPI_TX_D2P	12
13	GND	MIPI_TX_D3N	14
15	MIPI_TX_D3P	GND	16
17	LCD_BL_PWM0 (1.8V/3.3V)	MIPI_TE0 (1.8V)	18
19	VCC3V3_LCD_MIPI	LCD_RESET(3.3V)	20
21	LCD_ID(3.3V)	LCD_PWREN_H(1.8V/3.3V)	22
23	I2C2_SCL_TP(3.3V)	I2C2_SDA_TP(3.3V)	24
25	TP_INT_L(3.3V)	TP_RST_L(3.3V)	26
27	GND	VCC_SYS	28
29	VCC_SYS	VCC_SYS	30

3.11. RGB/MCU Panel输出接口

RK3126C支持18bit RGB/MCU Panel输出接口,最大支持分辨率1280*720@60输出。

注意:因为RK3126C LCDC_D0~D9与MIPI DSI/LVDS TX接口IO复用,默认接MIPI DSI/LVDS TX。若要使用18bit RGB/MCU Panel输出接口需要跳选电阻,将R1716~R1725去掉,R5312~R5315、R5317~R5322补贴。

RGB/MCU Panel 与 MIPI DSI/LVD TX 接口电阻跳选示意如下图:

MIPI DPHY D 100 Ohm +-1	offerential Pair:		MIPI DPHY Diffe	
MIPI DOP/LCD DO	R1716 1	2 OR	R0402 5%	\\MTDT MV DOD
MIPI DON/LCD D1	R1717 1	2 OR	R0402 5%	MIPI_TX_DOP
MIPI D1P/LCD D2	R1718 1	2 OR	R0402 5%	MIPI_TX_DON
MIPI D1N/LCD D3	R1719 1	2 OR	R0402 5%	MIPI_TX_D1P
MIPI D2P/LCD D4	R1720 1	2 OR	R0402 5%	MIPI_TX_D1N
MIPI D2N/LCD D5	R1721 1	2 OR	R0402 5%	—>MIPI_TX_D2P
MIPI D3P/LCD D6	R1722 1	2 OR	R0402 5%	—>MIPI_TX_D2N
MIPI D3N/LCD D7	R1723 1	2 OR	R0402 5%	MIPI_TX_D3P
MIPI CLKP/LCD D8	R1724 1	2 OR	R0402 5%	MIPI_TX_D3N
MIPI CLKN/LCD D9	R1725 1	2 OR	R0402 5%	MIPI_TX_CLKP
MIPI_CLKN/LCD_D9 >>	DNP R5312 01	1	2 R0402 5% 2 R0402 5%	LCDC D13 CON
MIPI D3N/LCD D7	DNP R5314 01		2 R0402 5%	LCDC D11 CON
MIPI D3P/LCD D6	DNP R5315 01		2 R0402 5%	LCDC D10 CON
	TP_1.0		-/	LCDC D9 CON LCDC D8 CON
LCDC_CLK>>	R5316 22	1	2 R0402 5% 2 R0402 5%	LCDC CLK/LCDC M
MIPI D2P/LCD D4	DNP R5318 01	^ ./	2 R0402 5%	LCDC D6 CON
MIPI_D1N/LCD_D3	DNP R5319 01 DNP R5320 01		2 R0402 5% 2 R0402 5%	LCDC D5 CON
MIPI_D1P/LCD_D2 >>	DNP R5320 01		2 R0402 5%	LCDC D4 CON LCDC D3 CON
MIPI_DON/LCD_D1	DNP R5321 01		2 R0402 5%	LCDC D3 CON
MIPI_DOP/LCD_DO	то 1 <i>(</i>			TCDC D1 COM
	े जिल्हा समस्य स्टब्स्ट स्टब्स	1725	5、R5317~R	100 100 100 100 100 100 100 100 100 100

图 3-12 RGB/MCU Panel 与 MIPI DSI/LVD TX 接口电阻跳选示意

连接座采用引脚0.5mm,间距1mm的立式双排50PIN FPC座,封装尺寸详见章节2.4.2。

图 3-13 RGB/MCU Panel 接口

RGB/MCU Panel接口信号顺序如下:

表 3-2 MIPI DSI/LVDS TX 接口脚位定义表

Pin	J53	00	Pin
1	VCC_SYS	VCC_SYS	2
3	GND	VCC1V8	4
5	GND	VCC3V3	6
7	GND	GND	8
9	NC	NC	10
11	NC	NC	12
13	LCD_RESET(3.3V)	VCC_LCDEN_L(1.8/3.3V)	14
15	LCD_BL_PWM0(1.8V/3.3V)	GND	16
17	LCD_D17 (3.3V)	LCD_D16 (3.3V)	18
19	LCD_DEN (3.3V)	NC	20
21	NC	LCD_D15 (3.3V)	22
23	GND	LCD_D14 (3.3V)	24
25	LCD_D13 (3.3V)	LCD_D12 (3.3V)	26
27	NC	NC	28
29	LCD_D11 (3.3V)	LCD_D10 (3.3V)	30
31	GND	LCD_D9 (3.3V)	32
33	GND	LCD_D8 (3.3V)	34
35	LCD_D7 (3.3V)	LCD_D6 (3.3V)	36
37	NC	NC	38
39	GND	LCD_CLK (3.3V)	40
41	GND	LCD_D5 (3.3V)	42
43	LCD_D4 (3.3V)	LCD_D3 (3.3V)	44
45	LCD_D2 (3.3V)	LCD_D1 (3.3V)	46
47	LCD_D0 (3.3V)	NC	48
49	NC	GND	50

3.12. DVP Camera/CIF parallel 接口

开发板支持8bit CIF parallel DVP Camera输入接口。连接座采用通用0.5mm间距1mm卧式单排24PIN FPC座,详见章节2.4.3。

图 3-13 DVP Camera/CIF parallel 接口

DVP Camera/CIF parallel接口信号顺序如下:

表 3-3 MIPI DSI/LVDS TX 接口脚位定义表

Pin	J4600		Pin
1	CIF_PDN1(NC)	NC	24
2	GND	NC	23
3	I2C2_SDA	CIF_D2	22
4	AVDD_2V8	CIF_D1	21
5	I2C2_SCL	CIF_D3	20
6	CIF_RST	CIF_D0	19
7	CIF_VSYNC	CIF_D4	18
8	CIF_PDN0	CIF_CLKIN	17
9	CIF_HREF	CIF_D5	16
10	DVDD_1V8	GND	15
11	AVDD_2V8	CIF_D6	14
12	CIF_D7	CIF_CLKOUT	13

3.13. UART Debug接口

开发板提供串口调试接口,默认使用UART2。因为UART2与TF Card SDMMC0_D0&D1 管脚复用,设计上当插入TF卡时,串口调试接口自动切换成UART1。选用FT232RL实现USRT转USB,支持波特率115200,连接座采用Mini USB座。

图 3-14 UART Debug 接口

3.14. JTAG Debug接口

开发板采用标准的 20pin JTAG 调试接口,方便客户通过 JTAG 进行调试开发。

图 3-15 JTAG Debug 接口

4. 注意事项

RK3126C EVB适用于实验室或者工程环境,开始操作前,请先阅读以下注意事项:

- 任何情况下不可对屏幕接口及扩展板进行热插拔操作。
- 拆封开发板包装和安装前,为避免静电释放(ESD)对开发板硬件造成损伤,请采取必要防静电措施。
- 手持开发板时请拿开发板边沿,不要触碰到开发板上的外露金属部分,以免静电对开发板 元器件造成损坏。

请将开发板放置于干燥的平面上,以保证它们远离热源、电磁干扰源与辐射源、电磁辐射敏感设备(如:医疗设备)等。