# Harvard CS 121 and CSCI E-207 Lecture 5: NFAs and DFAs Closure Properties

Harry Lewis

September 16 2010

Reading: Sipser, §1.2.

#### **Example of the SUBSET CONSTRUCTION**

NFA N for  $\{x_1x_2\cdots x_k: k\geq 0 \text{ and each } x_i\in \{aab,aaba,aaa\}\}.$ 



N starts in state 0 so we will construct a DFA M starting in state  $\{0\}$ . Here it is:



All other transitions are to the "dead state"  $\emptyset$ . The other states are unreachable, though technically must be defined. Final states are all those containing 0, the final state of M.

#### Formal Construction of DFA ${\cal M}$ from

NFA 
$$N=(Q,\Sigma,\delta,q_0,F)$$

On the assumption that  $\delta(p,\varepsilon)=\emptyset$  for all states p.

(i.e., we assume no  $\varepsilon$ -transitions, just to simplify things a bit)

$$M=(Q',\Sigma,\delta',q_0',F')$$
 where

$$\begin{array}{rcl} Q' &=& P(Q) \\ q_0' &=& \{q_0\} \\ F' &=& \{R \subseteq Q : R \cap F \neq \emptyset\} \text{ (that is, } R \in Q') \\ \delta'(R,\sigma) &=& \{q \in Q : q \in \delta(r,\sigma) \text{ for some } r \in R\} \\ &=& \bigcup_{r \in R} \delta(r,\sigma) \end{array}$$

#### Nondeterminism gives us a new programming tool

• Strings that begin with aaba

#### Nondeterminism gives us a new programming tool

- Strings that begin with aaba
- Strings that end with *aaba*

#### Nondeterminism gives us a new programming tool

- Strings that begin with *aaba*
- Strings that end with *aaba*
- Strings that begin or end with *aaba*

#### Nondeterminism gives us a new programming tool

- Strings that begin with *aaba*
- Strings that end with *aaba*
- Strings that begin or end with *aaba*
- Strings that have aaba as a substring anywhere

## **Closure Properties**

**Theorem:** The class of regular languages is closed under:

- · Union:  $L_1 \cup L_2$
- · Concatenation:  $L_1 \circ L_2 = \{xy : x \in L_1 \text{ and } y \in L_2\}$
- · Kleene \*:  $L_1^* = \{x_1 x_2 \cdots x_k : k \ge 0 \text{ and each } x_i \in L_1\}$
- $\cdot$  Complement:  $\overline{L_1}$
- · Intersection:  $L_1 \cap L_2$

#### **Closure Properties**

**Theorem:** The class of regular languages is closed under:

- · Union:  $L_1 \cup L_2$
- · Concatenation:  $L_1 \circ L_2 = \{xy : x \in L_1 \text{ and } y \in L_2\}$
- · Kleene \*:  $L_1^* = \{x_1 x_2 \cdots x_k : k \ge 0 \text{ and each } x_i \in L_1\}$
- $\cdot$  Complement:  $\overline{L_1}$
- · Intersection:  $L_1 \cap L_2$

<u>Union</u>: If  $L_1$  and  $L_2$  are regular, then  $L_1 \cup L_2$  is regular.



M has the states and transitions of  $M_1$  and  $M_2$  plus a new start state  $\varepsilon$ -transitioning to the old start state

#### Concatenation, Kleene \*, Complementation

#### Concatenation:

$$L(M) = L(M_1) \circ L(M_2)$$

# Kleene \*:

$$L(M) = L(M_1)^*$$

### Complement:

$$\overline{L(M)} = \overline{L(M_1)}$$

#### **Closure under Intersection**

### Intersection

$$\overline{S \cap T = \overline{\overline{S}} \cup \overline{T}}$$





$$= \overline{T}$$

 $= \overline{S}$  Hence closure under union and complement implies closure under intersection

# A more constructive and direct proof of closure under intersection

Better way ("Cross Product Construction"):

From DFAs  $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$  and  $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ , construct  $M=(Q,\Sigma,\delta,q_0,F)$ :

$$Q = Q_1 \times Q_2$$

$$F = F_1 \times F_2$$

$$\delta(\langle r_1, r_2 \rangle, \sigma) = \langle \delta_1(r_1, \sigma), \delta_2(r_2, \sigma) \rangle$$

$$q_0 = \langle q_1, q_2 \rangle$$

Then  $L(M_1) \cap L(M_2) = L(M)$ 

#### **Some Efficiency Considerations**

The subset construction shows that any n-state NFA can be implemented as a  $2^n$ -state DFA.

| NFA States | DFA States                                             |
|------------|--------------------------------------------------------|
| 4          | 16                                                     |
| 10         | 1024                                                   |
| 100        | $2^{100}$                                              |
| 1000       | $2^{1000} \gg$ the number of particles in the universe |

How to implement this construction on ordinary digital computer?

| NFA states   |   | DFA state bit ved |   |   |  |   |  |
|--------------|---|-------------------|---|---|--|---|--|
| $1,\ldots,n$ | 0 | 1                 | 1 | 0 |  | 1 |  |
|              | 1 | 2                 |   |   |  | n |  |

#### Is this construction the best we can do?

Could there be a construction that always produces an  $n^2$  state DFA for example?

**Theorem:** For every  $n \geq 1$ , there is a language  $L_n$  such that

- 1. There is an (n+1)-state NFA recognizing  $L_n$ .
- 2. There is no DFA recognizing  $L_n$  with fewer than  $2^n$  states.

**Conclusion:** For finite automata, nondeterminism provides an *exponential savings* over determinism (in the worst case).

#### Proving that exponential blowup is sometimes unavoidable

(Could there be a construction that always produces an  $n^2$  state DFA for example?)

Consider (for some fixed n=17, say)

$$L_n = \{w \in \{a,b\}^* : \text{the } n \text{th symbol} \}$$
 from the right end of  $w \in \{a,b\}^* : \text{the } n \text{th symbol} \}$ 

- There is an (n+1)-state NFA that accepts  $L_n$ .
- There is no DFA that accepts  $L_n$  and has  $< 2^n$  states

### A "Fooling Argument"

- Suppose a DFA M has  $< 2^n$  states, and  $L(M) = L_n$
- There are  $2^n$  strings of length n.
- By the pigeonhole principle, two such strings  $x \neq y$  must drive M to the same state q.
- Suppose x and y differ at the  $k^{th}$  position from the right end (one has a, the other has b) (k = 1, 2, ..., or n)
- M must treat  $xa^{n-k}$  and  $ya^{n-k}$  identically (accept both or reject both). These strings differ at position n from the right end.
- So  $L(M) \neq L_n$ , contradiction. QED.

#### Illustration of the fooling argument



- x and y are different strings (so there is a position k where one has a and the other has b)
- ullet But both strings drive M from s to the same state q

#### What the argument proves

- This shows that the subset construction is within a factor of 2 of being optimal
- In fact it is optimal, i.e., as good as we can do in the worst case.
- Still, in many cases, the "generate-states-as-needed" method yields a DFA with  $\ll 2^n$  states

(e.g. if the NFA was deterministic to begin with!)