мэи	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 16	Утверждаю:
	Кафедра ВМСС	Зав.кафедрой
	Дисциплина МСПИ II часть	00.01.22.5
	Институт ИВТ	09.01.22 г.

- Интегральные и дифференциальные параметры, характеризующие процессы в длинной линии. Их связь.
- Витая пара частный случай двухпроводной длинной линии.
 Преимущества витой пары.

1. Интегральные и дифференциальные параметры, характеризующие процессы в длинной линии. Их связь.

Идеальный резистор — элемент электрической схемы. В идеальном резисторе связь между током і и напряжением и определена прямой пропорциональностью u=Ri, постоянный коэффициент пропорциональности которой — Ri назван сопротивлением резистора. Размерность — Om.

Заметим, что идеальный резистор не имеет практического представления, тем не менее, понятие применяется в модели длинной линии.

Понятие индуктивность отражает эффект электромагнитной индукции,

$$u = \frac{\partial \Psi}{\partial t}$$
 (где Ψ - потокосцепление), который для идеальной (и линейной) катушки во

временной области запишется в виде: $u = L \frac{\partial \mathbf{i}}{\partial t}$, а в частотной области имеет вид:

$$\underline{U} = j\omega L\underline{I}.$$

Конденсатором называют элемент электрической цепи, функциональное назначение которого определяется соотношением между током и напряжением вида:

$$i = \frac{\partial \mathbf{q}}{\partial t} = \frac{\partial (\mathbf{C}\mathbf{u})}{\partial t}$$

где q – заряд; C– коэффициент пропорциональности между напряжением и зарядом, называемый емкостью.

Линейные конденсаторы характеризуются линейной зависимостью (C=const (u)) между током и напряжением вида: $i=C\frac{\partial \mathbf{u}}{\partial t}$.

Идеальный линейный конденсатор – элемент эквивалентной электрической схемы, который характеризуется величиной емкости C=const (u).

В частотной области идеальный линейный конденсатор определяет коэффициент пропорциональности между током и напряжением: $\underline{Z} = \frac{\underline{U}}{I} = \frac{1}{j\omega C}$

Так, для описания электростатического поля, исходя из его потенциального характера, вводится понятие **скалярный потенциал** (в инженерной практике его называют просто — потенциал) ϕ , связанный с вектором напряженности электрического поля E формулой $E = -\operatorname{grad} \phi$,

При этом разность потенциалов U между любыми двумя точками 1 и 2 в электростатическом поле равна: $U=\varphi_1-\varphi_2=\int_{l_1}^{l_2} Edl$,

где l — путь перемещения 4 из точки l1 в точку l2, a dl — вектор — касательная к кривой в каждой точке кривой линии l.

Понятие «ток» связано с понятием вектора напряженности магнитного поля Н известным соотношением, которое называют «закон полного тока», и которое в интегральной форме

(т.е. для макромоделей) имеет вид:
$$\oint_l Hdl = I$$
,

где l – замкнутый контур, охватывающий ток I.

Связь характеристик, в конечном итоге, определится структурой электромагнитного поля (электрической и магнитной составляющих) в линии. Структура поля в линии связана с интегральными параметрами, которые, в свою очередь, определят интересующие нас первичные параметры r_0 , g_0 , L_0 , C_0 линии передачи.

2. Витая пара — частный случай двухпроводной длинной линии. Преимущества витой пары.

Витая пара - вид двухпроводной линии связи, образованный с помощью скрутки проводов линии, которая применяется для уменьшения индуктивных помех при возникновении в проводниках источников напряжения помех е = Mdi/dt в соответствии с законом Фарадея, определяемых величиной взаимной индуктивности.

Напряжения помех в системе проводов витой пары:

Преимуществом витой пары является эффект компенсации ЭДС на соседних витках скрутки (теоритически суммарная ЭДС равна 0), а также сохранение этого эффекта на всю витую пару при четном числе скруток и при условии постоянства индукции внешнего поля (хотя бы в пределах

соседних скруток). Данный эффект возникает за счет действия индукции В внешнего поля напряжения на скрутки. На практике этот эффект не достижим.