Sprawozdanie 1

Układy elektroniczne - Laboratoria

Temat laboratoriów:

A-1. Linia długa

WFIIS AGH

28.03.2021

Łukasz Wajda

1. Cel ćwiczenia

Celem ćwiczenia było zapoznanie się i zbadanie właściwości linii długiej oraz odcinka kabla koncentrycznego w aspekcie przesyłania sygnałów elektrycznych, a także zastosowanie sztucznej linii opóźniającej do formowania impulsów.

2. Przebieg ćwiczenia

 Zbadanie przesyłanych prostokątnych impulsów przez model linii długiej utworzony z 50 ogniw indukcyjno-pojemnościowych. Do przeprowadzenia doświadczeń wykorzystać sygnał o zadanej częstotliwości f = 10 kHz, czasie trwania t = 2 μs oraz amplitudzie A = 2 V. Pomiary dokonać na początku, środku i końcu linii w trzech charakterystycznych przypadkach:

```
a. R = \infty,
b. R = R_f,
c. R = 0.
```

a uzyskane przebiegi przerysować z oscyloskopu.

2. Zbadanie przejścia przez model linii długiej impulsu prostokątnego o czasie trwania znacznie większym od opóźnienia na początku, środku i końcu linii przy dopasowaniu na wejściu i obciążeniach:

```
a. R = \infty,
b. R = 0.
```

Sygnał wejściowy przyjął następujące parametry: częstotliwość f = $10~\rm kHz$, czas trwania t = $23~\mu s$ oraz amplituda A = $2~\rm V$.

- 3. Zbadanie efektu tłumienia dla układu pomiarowego z podpunktu 1.
- 4. Obserwacja efektu pojemnościowego linii przy odpowiednio dobranej rezystancji wyjściowej znacznie większej rezystancji wejściowej.
- 5. Zbadanie zachowania impulsu prostokątnego w kablu koncentrycznym o długości 33,3 m. Na podstawie wyników pomiarów dobór rezystancji obciążenia w celu zniwelowania odbicia.

3. Wyniki

Model linii długiej użyty w tym ćwiczeniu składał się z 50 ogniw indukcyjno pojemnościowych o parametrach L = $100\mu H$, C = 100pF. Ta linia długa ma 3 możliwości podłączenia rezystora na wejściu: $10k\Omega$, 950Ω , 0Ω i 3 na wyjściu - mogła zawierać rezystor $1k\Omega$, być zwarta ($0k\Omega$) lub rozwarta (inf). Generator, którego używaliśmy miał rezystancję wewnętrzną równą 50Ω .

Rysunke 1. Schemat pogladowy płytek PCB wykorzystywanych w ćwiczeniu Linia długa,

3.1. Badanie zachowania linii sygnału o czasie propagacji krótszym niż opóźnienie linii.

Wszystkie podpunkty wykonywaliśmy z dopasowaniem linii długiej na wejściu. $R = R_f$, czyli R_w (rezystancja wejściowa linii długiej) = 950 Ω . Wtedy rezystancja zastępcza opornika na wejściu linii długiej i generatora równy jest $1k\Omega$. Kolejno policzyliśmy całkowite opóźnienie t_o oraz rezystancję falową R_f . Doświadczenie wykonaliśmy dla trzech charakterystycznych przypadków obciążenia na wyjściu oraz dla każdego z nich sprawdziliśmy przebieg na początku linii, w środku i na końcu. Zmierzyliśmy czas opóźnienia t_o każdego sygnału.

Rezystancja falowa zgodnie ze wzorem $R_f = \sqrt{\frac{L}{c}}$ wynosi odpowiednio: Rf = 1[k Ω], a całkowite opóźnienie $t_0 = 5\mu$ s.

a)
$$R_{out} = R_f$$

Rysunek 2: Jednoczesna obserwacja sygnału na początku linii, w środku i na końcu.(żółty – na wejściu, zielony – w środku, niebieski – na końcu)

Teoretyczny czas opóźnienia linii liczyliśmy za pomocą wzoru: $t_0 = n\sqrt{LC}$.

Tabela 1: Zebrane dane pomiarowe dla $R_{out} = R_f$

	Amplituda [mV]	Zaobserwowane opóźnienie [µs]	Teoretycznie opóźnienie [μs]
Początek linii	990	0	0,10
Środek linii	1000	2,56	2,50
Koniec linii	990	5,18	5,00

Współczynnik odbicia:

$$\rho = \frac{R_{\text{out}} - R_{\text{f}}}{R_{\text{out}} + R_{\text{f}}} = 0 \tag{1}$$

Zmierzone czasy opóźnienia linii są dość zbliżone do wartości teoretycznych. Amplituda zmierzone przez nas są takie same, a współczynnik odbicia jest równy 0, dlatego nie widzimy odbicia fali.

b) $R_{out} = 0$

Rysunek 3: Jednoczesna obserwacja sygnału na początku linii, w środku i na końcu.(żółty – na wejściu, zielony – w środku, niebieski – na końcu)

Tabela 2: Zebrane dane pomiarowe dla początku linii przy R_{out} = 0,

	Amplituda [mV]	Amplituda fali odbitej [mV]	Opóźnienie fali [μs]	Teoretycznie opóźnienie [μs]	Opóźnienie fali odbitej [µs]	Teoretycznie opóźnienie fali odbitej [μs]
Początek linii	995	-995	0	0,10	10,64	10,00

Wyniki pomiarowe są zbliżone do teoretycznych. Amplituda fali odbitej ma znak przeciwny niż amplituda fali pierwotnej, co obrazuje odbicie z fazą przeciwną.

Tabela 3: Zebrane dane pomiarowe dla środka linii przy $R_{out} = 0$,

	Amplituda [mV]	Amplituda fali odbitej [mV]	Opóźnienie fali [µs]	Teoretycznie opóźnienie [μs]	Opóźnienie fali odbitej [μs]	Teoretycznie opóźnienie fali odbitej [µs]
Początek	995	-995	2,62	2,50	8,08	7,50

linii			

Wyniki pomiarowe są zbliżone do teoretycznych. Amplituda fali odbitej ma znak przeciwny niż amplituda fali pierwotnej, co obrazuje odbicie z fazą przeciwną. Dla obciążenia R=0 na końcu linii zaobserwowano brak sygnału. W wyniku superpozycji fali pierwotnej i odbitej nastąpiło wygaszenie sygnału. Na oscyloskopie dostrzeżono sygnał resztkowy spowodowany nieidealnością linii.

Współczynnik odbicia: $\rho = -1$

c) $R_{out} = \infty$

Rysunek 4: Jednoczesna obserwacja sygnału na początku linii, w środku i na końcu.(żółty – na wejściu, zielony – w środku, niebieski – na końcu)

Tabela 4: Zebrane dane pomiarowe dla początku linii przy $R_{out} = \infty$,

	Amplituda [mV]	Amplituda fali odbitej [mV]	Opóźnienie fali [μs]	Teoretycznie opóźnienie [μs]	Opóźnienie fali odbitej [μs]	Teoretycznie opóźnienie fali odbitej [μs]
Początek linii	1000	880	0	0,10	10,62	10,00

Wyniki pomiarowe są zbliżone do teoretycznych. Amplituda fali odbitej ma znak zgodny z amplitudą fali pierwotnej, co obrazuje odbicie z fazą zgodną.

			=		J Out	
	Amplituda [mV]	Amplituda fali odbitej [mV]	Opóźnienie fali [µs]	Teoretycznie opóźnienie [μs]	Opóźnienie fali odbitej [μs]	Teoretycznie opóźnienie fali odbitej [µs]
Środek linii	995	950	2,48	2,50	8,08	7,50

Tabela 5: Zebrane dane pomiarowe dla środka linii przy $R_{out} = \infty$,

Wyniki pomiarowe są zbliżone do teoretycznych. Amplituda fali odbitej ma znak zgodny z amplitudą fali pierwotnej, co obrazuje odbicie z fazą zgodną.

Tabela 6: Zebrane dane pomiarowe dla końca linii przy $R_{out} = \infty$,

	Amplituda [mV]	Zaobserwowane opóźnienie [µs]	Teoretycznie opóźnienie [μs]
Koniec linii	1860	5,28	5,00

Teoretyczny czas opóźnienia jest zbliżony do teoretycznego. Amplituda natomiast wzrosła dwukrotnie w porównaniu z pomiarami na początku i w środku linii. Jest to spodziewany efekt, powstały na skutek superpozycji fali pierwotnej i odbitej, która spowodowała wzmocnienie sygnału.

Współczynnik odbicia: $\rho = 1$

3.2. Badanie zachowania linii sygnału o czasie propagacji dłuższym niż opóźnienie linii.

Zbadaliśmy na modelu linii przechodzenie impulsu prostokątnego o czasie trwania znacznie większym od opóźnienia (Function: Pulse, f=10kHz, Pulse_Width=23μs, Pulse_Leading/Trailing na wartość minimalną, AMP=2Vpp), przy dopasowaniu na wejściu i kolejno przy obciążeniu:

- a) R = 0,
- b) $R \to \infty$.

Zmierzyliśmy czasy opóźnienia t_o . o wszystkich zboczy odpowiedzi napięciowej na początku linii, w środku i na końcu.

a)
$$R_{out} = 0$$

Rysunek 5: Jednoczesna obserwacja sygnału na początku linii, w środku i na końcu.(żółty – na wejściu, zielony – w środku, niebieski – na końcu)

Tabela 7: Zebrane dane pomiarowe dla początku i środka linii przy $R_{out} \, = 0$,

	Amplituda [mV]	Amplituda fali odbitej [mV]	Opóźnienie fali [µs]	Teoretycznie opóźnienie [μs]	Opóźnienie fali odbitej [µs]	Teoretycznie opóźnienie fali odbitej [μs]
Początek linii	1000	980	0	0,10	10,80	10,00
Środek linii	995	960	2,90	2,50	23,50	25,00

W tym przypadku obserwujemy wygaszanie fali na wyjściu linii długiej, jednak nie jest ono całkowite z powodu niedokładności modelu linii długiej oraz z powodu punktu pomiarowego, który nie znajdował się dokładnie w końcu linii.

Amplitudy są przybliżone względem wartości, ponieważ na wyjściu obserwujemy zerowania sygnału. Współczynnik odbicia: $\rho = -1$

Natomiast różne poziomy zer wynikają z tego, iż sygnał nadawany nakłada się z sygnałem odbitym, a nie są sobie równe z powodu efektu tłumienia.

b)
$$R_{out} = \infty$$

Rysunek 6: Jednoczesna obserwacja sygnału na początku linii, w środku i na końcu.(żółty – na wejściu, zielony – w środku, niebieski – na końcu)

Tabela 8: Zebrane dane pomiarowe dla początku, środka i końca linii przy $R_{out} \, = 0$,

	Amplituda [mV]	Amplituda fali odbitej [mV]	Opóźnienie fali [μs]	Teoretycznie opóźnienie [μs]	Opóźnienie fali odbitej [μs]	Teoretycznie opóźnienie fali odbitej [μs]
Początek linii	2000	980	0	0,10	10,60	10,00
Środek linii	2000	960	2,40	2,50	8,00	7,50
Koniec linii	1960		5,40	5,00		

Wartości amplitud są do siebie bardzo zbliżone, każda wynosi $\approx 2 \text{ V}$.

Współczynnik odbicia: $\rho = 1$

Jak widać po powyższych danych amplituda jest superpozycją amplitudy wejściowej oraz odbitej na wyjściu, co jest zgodne z współczynnikiem odbicia, powodując jej zwiększenie o 2 razy.

3.3. Pomiar tłumienia i ocena parametrów częstotliwościowych linii długiej

W warunkach pełnego dopasowania impedancyjnego, przy krótkim impulsie o parametrach:

- Function Pulse
- f = 10kHz
- Pulse Width = $2\mu s$
- Pulse Leading/Trailing wartość min.
- AMP = $2V_{PP}$

obserwowaliśmy amplitudę na wejściu i wyjściu. Otrzymaliśmy następujące wyniki:

Rysunek 7: Jednoczesna obserwacja sygnału na początku linii, w środku i na końcu.(żółty – na wejściu, zielony – w środku, niebieski – na końcu)

Amplitudy sygnałów:

• Na wejściu: 987,50 mV,

• Na wyjściu: 887,50 mV.

Dla naszej linii współczynnik transmisji wynosi $\frac{887,50}{987,50} \approx 0,9$, zaś tłumienie około. 10% lub k = -0,92 $\left[\frac{dB}{dec}\right]$ co wynika ze wzoru:

$$k = -20log\left(\frac{U_{out}}{U_{in}}\right) \tag{2}$$

Rysunek 8: Jednoczesna obserwacja sygnału na początku linii, w środku i na końcu.(żółty – na wejściu, zielony – w środku, niebieski – na końcu)

Własności częstotliwościowe można oszacować mierząc czas narastania t_r impulsu (mierzymy zbocze pomiędzy 10% a 90% wartości jego amplitudy) na dopasowanym wejściu oraz wyjściu linii. Kolejno porównaliśmy wartości teoretyczne czasu narastania t_r , który liczymy ze wzoru:

$$t_r = 1.1 \cdot n^{1/3} \cdot \sqrt{LC} \tag{3}$$

Tabela 9: Zebrane dane pomiarowe dla początku i końca linii,

	pomiary t_r [ns]	wartości teoretyczne t_r [ns]
Początek	218,00	110,00
linii $[t_{ri}]$		
Koniec	300,00	405,24
linii [t_{ro}]		

Amplituda na wyjściu ma mniejszą wartość niż amplituda na wejściu. Możemy z tego wywnioskować, że pojawia się zjawisko tłumienia. Brak zgodności pomiędzy wartością odczytaną t_r , a teoretyczną wynika z faktu występowania efektu pojemnościowego. Dzieje się tak gdy rezystancja falowa jest mniejsza od rezystancji wejścia i obciążenia wyjścia. Odpowiedź jednostkowa jest zbliżona do reakcji przy obciążeniu pojemnościowym. Ze wzoru:

$$t_{ro}^2 = t_{ri}^2 + t_{rw}^2 (4)$$

możemy wyznaczyć czas t_r na czas narastania odpowiedzi jednostkowej. Po obliczeniach otrzymujemy $t_{rw}=206,10$ ns. Wartość tą możemy porównać z wartością teoretyczną, to jest tą obliczoną według wzoru (3) otrzymujemy wówczas wartość równą 405,24 ns. Częstotliwość graniczną możemy wyznaczyć ze wzoru:

$$f_g = \frac{1.1}{\pi \cdot \sqrt{t_{ro}^2 - t_{ri}^2}} \tag{5}$$

Tak wiec otrzymujemy $f_g \approx 1.7 \, MHz$ (ustawiona wartość częstotliwości sygnału na wejściu nie przekracza częstotliwości granicznej).

3.4. Obserwacja efektu pojemnościowego linii.

W dalszej części ćwiczeń ustawiamy linię długą na warunki obustronnego niedopasowania linii. Na wejściu ustawiliśmy rezystancję szeregową R=10k, a na wyjściu wybieraliśmy obciążenie $R\to\infty$. Szerokość impulsu wejściowego na generatorze została ustawiona na

500us, a częstotliwość zmniejszyliśmy do 1kHz. W efekcie na wejściu i wyjściu linii zaobserwowaliśmy eksponencjalny narost sygnału charakteryzujący się pewną stałą czasową.

Rysunek 9: Efekt pojemnościowy obserwowany za pomocą przebiegu napięcia

Teoretyczna długość każdego schodka wynosi $t = 2 \cdot t_0$, co wynika z przejścia sygnału od końca linii i jego powrót.

Poziomy napięć:

- 1. amplituda = 177,5 mV,
- 2. amplituda= 470,25 mV,
- 3. amplituda = 734,25 mV,
- 4. amplituda = 948,75 mV.

Czas trwania , dla każdego zbocza wyniósł około t=9,6 μs. Wartość stałej czasowej wyznacza się ze wzoru:

$$\tau = -\frac{2t_0}{\ln(\rho\rho')} = \frac{-2 \cdot 5\mu s}{\ln(0.82)} = 50.39 \ \mu s \tag{6}$$

Gdzie:

- -wyjście pozostaje rozwarte wiec *Q*=1,
- ρ' liczymy ze wzoru na współczynnik:

$$\rho' = \frac{R - R_f}{R + R_f} \approx \frac{10k - 1k}{10k + 1k} = 0.82 \tag{7}$$

Tak więc po podstawieniu otrzymujemy: τ=50,39 μs.

Obserwujemy tutaj efekt pojemnościowy, ponieważ rezystancja falowa jest mniejsza od rezystancji na wejściu linii i obciążeniu na wyjściu. Kolejne zbocza są coraz mniejsze, a sygnał dąży do nasycenia. Spowodowane jest to niedopasowaniem linii z żadnej strony oraz wielokrotnymi odbiciami, dodatkowo korzystamy z nieidealnego modelu.

3.5. Efekty spowodowane nieidealnymi własnościami przewodu oraz badania kabla koncentrycznego

Naszym zadaniem było zbadanie i określenie niektórych parametrów kabla koncentrycznego, który to może być rozważany jako "naturalna" linia długa. Znaliśmy długość kabla i wyznaczyć mieliśmy jego opóźnienie na metr bieżący. Parametry ustawione na generatorze: amplituda 2v, czas trwania 150 ns.

Rysunek 10: Przebieg napięcia przy rezystancji obciążenia takiej, aby nie występowało odbicie (żółty – na wejściu, zielony – na wyjściu)

Dobrano rezystancję obciążenia tak, aby nie występowało odbicie i zmierzono rezystancję falową wynoszącą $R_f = 47,22 \, [\Omega]$.

Zebrane parametry sygnałów:

Amplituda sygnału wejściowego: Ain = 1,15 [V],

Amplituda sygnału wyjściowego: Aout = 0.70 [V],

Czas narastania sygnału wejściowego: t_r _in = 6,40 [ns],

Czas narastania sygnału wyjściowego: t_{r} out = 10,60 [ns],

Czas opóźnienia: $t_0 = 172$ [ns], Długość przewodu: l = 33.30 [m], Czas opóźnienia na jednostkę długości: $t_{op/m} = \frac{t_o}{l} = 5,17 \left[\frac{ns}{m}\right]$,

Częstotliwość graniczna: $f_g = \frac{1,1}{\pi\sqrt{t_{r-}out^2 - t_{r-}in^2}} = 41,44 \ [MHz]$,

Thumienie: 39,13% lub -4,31 $\left[\frac{dB}{dec}\right]$,

Następnie wyznaczamy parametry L oraz C. Skorzystamy z poniższego układu równań:

$$\begin{cases} R_f = \sqrt{\frac{L}{C}}, \\ \frac{t_0}{2} = l\sqrt{LC}. \end{cases}$$
 (8)

Obranie połowy czasu t_0 bierze się z tego, że zmierzony czas jest przejściem tam i z powrotem przez linię. Po wykonaniu obliczeń uzyskujemy jednostkowe wartości indukcyjności i pojemności:

$$\begin{cases}
L = 0.12 \,\mu\text{H}, \\
C = 54.74 \,p\text{F}.
\end{cases} \tag{9}$$

Obliczając t_r ze wzoru (3) i t_{ro} (4) otrzymujemy, że $t_r > t_{ro}$ (10,48 ns >8,45 ns). Z kolei korzystając ze wzoru (5) możemy obliczyć częstotliwość graniczną $f_g=120,05~MHz$.