3/30/2021 us stock market 3

U.S. Stock Market III: Industries

```
In [1]:
         import pandas as pd
         import numpy as np
         import requests, zipfile, io
         import os
         from pathlib import Path
         from tiingo import TiingoClient
         tiingo = TiingoClient({'api key':'XXXX'})
         import matplotlib.pyplot as plt
                                                                  # Basic plot library.
         plt.style.use('ggplot')
                                                                  # Make plots look nice.
In [2]:
         def ffill values(item, dates):
             data = item.unstack('cik')
             data = data.reindex(dates.union(data.index)).sort_index()
                                                                                    # Add sp
             filing_dates = pd.read_csv('data/sec/dates/filing_dates.csv', index_col='cik
             last_filing_date_all_firms = filing_dates.max()
                                                                                    # Most r
             for cik in data.columns:
                                                                                    # Loop o
                 last filing date
                                        = pd.Series(filing_dates[cik]).iloc[-1]
                                                                                    # Last d
                 days since last filed = (last filing date all firms - last filing date).
                 last_date_this_firm = dates[-1] if days_since_last_filed < 120 else la</pre>
                 data.loc[:last date this firm, cik].ffill(inplace=True)
                                                                                    # Forwar
             return data.loc[dates]
                                                                                    # Return
In [3]:
         # Read files that we previously created
                          = pd.read csv('data/sec/items/Sales.csv',
                                                                                parse dates=
                          = pd.read csv('data/sec/items/Earnings.csv',
                                                                                parse dates=
         earnings
         operatingIncome = pd.read csv('data/sec/items/OperatingIncome.csv', parse dates=
         earnings[:5]
                             valueQ
                                         valueA
Out[3]:
          cik
                    filed
        1750 2010-09-23 13674000.0
                                           NaN
               2010-12-21 16814000.0
                                           NaN
              2011-03-22 17918000.0
                                           NaN
               2011-07-13 21420000.0 69826000.0
              2011-09-23 16053000.0 72205000.0
        Forward fill table for annual earnings:
```

trading days = tiingo.get dataframe('SPY','2009-04-15').index.tz convert(None)

earningsA = ffill values(earnings.valueA, trading days) / 10**9

In [4]:

In USD bi

We want to get th industry codes from the merged files. Example:

```
In [5]:
    directory = 'data/sec/merged/'
    filename = '2021_01.csv'
    data = pd.read_csv(directory+filename, parse_dates=['filed','ddate'])
    data[:5]
```

Out[5]:		cik	sic	countryinc	tag	filed	ddate	qtrs	
	0	1517389	7371.0	US	AccountsPayableAndAccruedLiabilitiesCurrent	2021- 01-06	2020- 11-30	0	
	1	1517389	7371.0	US	AccountsPayableAndAccruedLiabilitiesCurrent	2021- 01-06	2020- 02-29	0	
	2	1517389	7371.0	US	AccountsReceivableNetCurrent	2021- 01-06	2020- 11-30	0	
	3	1517389	7371.0	US	AccountsReceivableNetCurrent	2021- 01-06	2020- 02-29	0	
	4	1517389	7371.0	US	AdditionalPaidInCapital	2021- 01-06	2020- 11-30	0	24,

For every firms and every filing (groupby(['cik','filed'])) select 1 row (we pick the first but this doesn't matter):

```
In [6]: data.groupby(['cik','filed']).first()
```

Out[6]:			sic	countryinc	tag	ddate	qtrs	value	
	cik	filed							
	2488	2021-01- 29	3674.0	US	NetIncomeLoss	2018-12- 31	4	337000000.0	
	4127	2021-01- 29	3674.0	US	AccountsPayableCurrent	2020-09- 30	0	226900000.0	
	6845	2021-01- 07	3231.0	US	NetIncomeLoss	2020-11- 30	3	57807000.0	
	6955	2021-01- 05	3590.0	US	NetIncomeLoss	2020-11- 30	1	4598000.0	
	8858	2021-01- 29	5065.0	US	NetIncomeLoss	2020-12- 31	2	274000.0	
	•••	•••	•••						
	1823854	2021-01- 25	6770.0	US	NetIncomeLoss	2020-09- 30	0	-19680.0	
	1823896	2021-01- 27	6770.0	US	NetIncomeLoss	2020-09- 30	0	-422.0	
	1824301	2021-01- 19	6770.0	US	NetIncomeLoss	2020-09- 30	0	-479.0	
	1824734	2021-01- 21	6770.0	US	NetIncomeLoss	2020-09- 30	0	-1000.0	

 cik
 filed

 1825079
 2021-01-15
 6770.0
 KY
 NetIncomeLoss 30
 2020-09-30
 0
 -5000.0

356 rows × 6 columns

Now put this into a funtion so we can apply this selection for every file:

```
In [7]:
         def get_attributes_from_SEC_files(attributes, filename=None):
                                                                                 # Function
             directory = 'data/sec/merged/'
                                                                                 # Read dat
             filenames = [filename] if filename else os.listdir(directory)
                                                                                 # Supplied
             filenames = [f for f in filenames if not f.startswith(".")]
                                                                                 # Exclude
             results = {a:pd.DataFrame() for a in attributes}
                                                                                 # Dictiona
             for filename in filenames:
                                                                                 # Loop ove
                 print(filename)
                 data = pd.read_csv(directory+filename, parse_dates=['filed','ddate'])
                 for a in attributes:
                                                                                 # Loop ove
                     item = data.groupby(['cik','filed'])[[a]].first()
                                                                                 # Get attr
                     results[a] = results[a].append( item )
             for a in attributes:
                 results[a] = results[a].sort index(level='filed')
                                                                                 # Sort eac
             return results
In [8]:
         attributes = get attributes from SEC files(['countryinc','sic'])
        2018q4.csv
        2018q3.csv
        2018q2.csv
        2021 01.csv
        2018q1.csv
        2020q2.csv
        2020q3.csv
        2020q1.csv
        2019q4.csv
        2019q1.csv
        2019q3.csv
        2019q2.csv
        2013q4.csv
        2015q2.csv
        2015q3.csv
        2017q1.csv
        2020 12.csv
        2020_10.csv
        2017q3.csv
        2015q1.csv
        2017q2.csv
        2011q4.csv
        2020 11.csv
        2013q2.csv
        2015q4.csv
        2011q1.csv
```

```
2013q3.csv
2013q1.csv
2011q3.csv
2017q4.csv
2011q2.csv
2009q4.csv
2014q1.csv
2016q3.csv
2010q4.csv
2016q2.csv
2014q2.csv
2012q4.csv
2016q1.csv
2014q3.csv
2009q2.csv
2010q3.csv
2012q1.csv
2010q2.csv
2016q4.csv
2009q3.csv
2009q1.csv
2014q4.csv
2012q2.csv
2012q3.csv
2010q1.csv
Result looks like this:
```

```
In [9]:
         attributes['sic']
```

sic Out[9]:

cik	filed	
277948	2009-04-15	4011.0
883984	2009-04-23	3841.0
1070412	2009-04-27	1221.0
1335793	2009-04-27	1311.0
884905	2009-04-29	2810.0
•••	•••	
1550603	2021-01-29	6035.0
1551887	2021-01-29	7372.0
1580149	2021-01-29	2834.0
1593812	2021-01-29	6221.0
1807707	2021-01-29	100.0

250426 rows × 1 columns

```
In [10]:
          # Save data
          Path('data/sec/attributes/').mkdir(parents=True, exist ok=True) # Generate the
                                  .to csv('data/sec/attributes/sic.csv')
          attributes['sic']
          attributes['countryinc'].to_csv('data/sec/attributes/countryinc.csv')
```

And now we can read the sic file like this:

```
In [11]:
           # Read data
           sic = pd.read_csv('data/sec/attributes/sic.csv', parse_dates=['filed'], index_co
           sic[:2]
                                  sic
Out[11]:
                 filed
                          cik
          2009-04-15 277948 4011.0
          2009-04-23 883984 3841.0
In [12]:
           # Forward fill the table:
           sic = ffill values(sic.sic, trading days) # sic.sic: we select column sic from
         Let's select the most recent sic codes for each firm (the last row of the sic table):
In [13]:
           sic_current = sic.iloc[-1].to_frame('sic')
           sic_current
                      sic
Out[13]:
               cik
             1750 3720.0
             1800 2834.0
             1961 7372.0
             2034
                     NaN
             2098 3420.0
          1824920 6770.0
          1824963 6770.0
          1825024 6770.0
          1825042 6770.0
          1825079 6770.0
         12126 rows × 1 columns
In [14]:
           # Read the ticker symbols
           symbols = pd.read csv('data/ticker symbols/symbols.csv',index col=0)
           symbols[:3]
                ticker
                                     title exchange assetType priceCurrency startDate endDate
Out[14]:
            cik
```

	ticker	title	exchange	assetType	priceCurrency	startDate	endDate
cik							
1750	AIR	AAR CORP	NYSE	Stock	USD	1984-07- 19	2021-03- 01
1800	ABT	ABBOTT LABORATORIES	NYSE	Stock	USD	1983-04- 06	2021-03- 01
1961	WDDD	WORLDS INC	OTCQB	Stock	USD	1998-10- 20	2021-03- 01

Top 10 Earnings with title and SIC:

```
In [15]:
           earningsA.iloc[-1].nlargest(10).to_frame('Earnings').join(symbols[['ticker','tit
                    Earnings
                               ticker
                                                              title
                                                                       sic
Out[15]:
                cik
            320193
                      63.930
                                AAPL
                                                          Apple Inc.
                                                                    3571.0
            789019
                       51.310
                               MSFT
                                                  MICROSOFT CORP
                                                                    7372.0
          1067983
                      35.845
                               BRK-A
                                           BERKSHIRE HATHAWAY INC
                                                                    6331.0
          1652044
                      35.713
                              GOOGL
                                                       Alphabet Inc.
                                                                    7370.0
                      29.146
                                                       Facebook Inc 7370.0
           1326801
                                  FΒ
             19617
                      23.803
                                 JPM
                                             JPMORGAN CHASE & CO
                                                                   6021.0
             50863
                      20.899
                                INTC
                                                        INTEL CORP
                                                                    3674.0
                      19.742
            104169
                                WMT
                                                        Walmart Inc. 5331.0
            732712
                      18.308
                                  VΖ
                                      VERIZON COMMUNICATIONS INC 4813.0
             70858
                       18.013
                                 BAC
                                         BANK OF AMERICA CORP /DE/ 6021.0
```

All codes: https://www.osha.gov/data/sic-manual

How to select a specific SIC:

t[t==7372]

In [17]:

```
Out[17]: A B

0 7372.0 NaN

1 NaN NaN

2 NaN 7372.0
```

```
In [18]: t[t==7372].notnull()
```

 Out[18]:
 A
 B

 0
 True
 False

 1
 False
 False

False

And now we can use the True/False table to select from another table with the same rows/columns.

Apply this to our data:

True

In [20]:	codes		sic s == 737	2] # \$	Select	all v	alues	that	equal	7372				
Out[20]:	cik	1750	1800	1961	2034	2098	2178	2186	2488	2491	2969	•••	1824013	182430
	date													
	2009- 04-15	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	Na
	2009- 04-16	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	Na
	2009- 04-17	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	Na
	2009- 04-20	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	•••	NaN	Na
	2009- 04-21	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	•••	NaN	Na
	•••			•••	•••		•••		•••	•••	•••			
	2021- 03-03	NaN	NaN	7372.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	Na
	2021- 03-04	NaN	NaN	7372.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	Na
	2021- 03-05	NaN	NaN	7372.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	Na
	2021- 03-08	NaN	NaN	7372.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	Na
	2021- 03-09	NaN	NaN	7372.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	Na

In [21]:

2996 rows × 12126 columns

codes

2021-

03-04

2021-

03-05

2021-

03-08

2021-

03-09

False

False

False

False

False

False

False

False

True

True

True

True

False

	<pre>industry = codes[codes==7372].notnull() # Generate True/False table industry</pre>													
Out[21]:	cik	1750	1800	1961	2034	2098	2178	2186	2488	2491	2969	•••	1824013	1824301
	date													
,	2009- 04-15	False	•••	False	False									
	2009- 04-16	False		False	False									
	2009- 04-17	False		False	False									
	2009- 04-20	False		False	False									
	2009- 04-21	False	•••	False	False									
	•••	•••	•••	•••	•••		•••	•••		•••	•••			
	2021- 03-03	False	False	True	False		False	False						

2996 rows × 12126 columns

Use this True/False table to select specific cells from Earnings table:

[22]:	earni	ngsA[:	industr	у]										
22]:	cik	1750	1800	1961	2034	2098	2178	2186	2488	2491	2969	•••	1824013	1824
	date													
	2009- 04-15	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	•••	NaN	
	2009- 04-16	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	
	2009- 04-17	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	

cik	1750	1800	1961	2034	2098	2178	2186	2488	2491	2969	•••	1824013	1824
date													
2009- 04-20	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	
2009- 04-21	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	•••	NaN	
•••				•••	•••	•••	•••	•••	•••	•••			
2021- 03-03	NaN	NaN	-0.001425	NaN	•••	NaN							
2021- 03-04	NaN	NaN	-0.001425	NaN		NaN							
2021- 03-05	NaN	NaN	-0.001425	NaN		NaN							
2021- 03-08	NaN	NaN	-0.001425	NaN		NaN							
2021- 03-09	NaN	NaN	-0.001425	NaN		NaN							

2996 rows × 12051 columns

Most recent top 10 in this industry:

```
In [23]: earningsA[industry].iloc[-1].nlargest(10).to_frame('Earnings').join(symbols.titl
```

Out[23]:	Earnings		title	sic
	cik			
	789019	51.310000	MICROSOFT CORP	7372.0
	1341439	10.380000	ORACLE CORP	7372.0
	796343	5.260000	ADOBE INC.	7372.0
	1108524	3.557000	SALESFORCE.COM, INC.	7372.0
	849399	3.258000	NortonLifeLock Inc.	7372.0
	718877	2.213000	Activision Blizzard, Inc.	7372.0
	896878	1.967000	INTUIT INC	7372.0
	1124610	1.588000	VMWARE, INC.	7372.0
	712515	1.314000	ELECTRONIC ARTS INC.	7372.0
	813672	1.076581	CADENCE DESIGN SYSTEMS INC	7372.0

Another example: get all 4-digit sic codes that start with 73:

```
In [24]: t # Our example table

Out[24]: A B
```

```
Α
                     В
          0 7372 8000
                   2200
             6000
             7385 7372
In [25]:
          codes = t.div(100).apply(np.floor) # divide by 100 to get the first 2 digits an
           codes
               Α
                    В
Out[25]:
          0 73.0 80.0
             60.0 22.0
            73.0 73.0
In [26]:
           codes[codes==73] # Select 73
                    В
               Α
Out[26]:
          0 73.0 NaN
             NaN NaN
            73.0 73.0
In [27]:
           codes[codes==73].notnull() # True/False table
                Α
                     В
Out[27]:
             True False
             False False
             True
                   True
         Now apply this to our earnings table:
In [28]:
           # get all 5800 sic ("Eating And Drinking Places"):
                    = sic.div(100).apply(np.floor)
           industry = codes[codes==58].notnull()
           earningsA[industry].iloc[-1].nlargest(10).to frame('Earnings').join(symbols.titl
                    Earnings
                                                     title
                                                             sic
Out[28]:
               cik
            63908 4.925500
                                        MCDONALDS CORP 5812.0
          1704720
                   1.261400
                                       Cannae Holdings, Inc. 5810.0
           1041061 1.060000
                                          YUM BRANDS INC 5812.0
```

	Earnings	title	sic
cik			
1618755	0.865000	NaN	5812.0
1673358	0.723000	Yum China Holdings, Inc.	5812.0
829224	0.664800	STARBUCKS CORP	5810.0
1618756	0.560000	Restaurant Brands International Inc.	5812.0
1058090	0.237223	CHIPOTLE MEXICAN GRILL INC	5812.0
1357204	0.220245	NaN	5810.0
30697	0.105631	Wendy's Co	5810.0