INTRODUCTION TO STATISTICAL INFERENCE

Sangita Das, notes by Ramdas Singh

Third Semester

List of Symbols

Placeholder

Contents

1	SUFFICIENCY			
			uction to Sufficient Statistics	
	1.2	Factor	ization Theorems	
			al Sufficiency	
	1.4	Locati	on Scale Family	
2	POINT ESTIMATION 2.1 Estimators			
			Method of Moments	
		2.1.2	Maximum Likelihood Estimators	
		2.1.3	One Parameter Exponential Family in Natural Form	
In	dex			

Chapter 1

SUFFICIENCY

1.1 Introduction to Sufficient Statistics

We start by defining terms for the sake of completion, whilst assuming the most basic definitions.

Definition 1.1. An *estimator* is any function of the random sample which is used to estimate the unknown value of the given parameteric function $g(\theta)$.

If $\underline{X} = (X_1, \dots, X_n)$ is a random sample from a population with a probability distribution P_{θ} , a function d(X) used for estimating $g(\theta)$ is known as an estimator. Let $\underline{x} = (x_1, \dots, x_n)$ be a realization of $\underline{X} = (X_1, \dots, X_n)$. Then $d(\underline{x})$ is called an *estimate*.

Definition 1.2. The parameter space is the set of all possible values of a parameter.

For example, the normal distribution $N(\mu, \sigma^2)$ has the parameter space $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Similarly, the binomial distribution Bin(n, p) has the constraints $n \in \mathbb{N}$ and $p \in [0, 1]$.

Throughout this course, we will assume any data, otherwise stated, will be *independent and identically distributed*; the are separate datapoints that follow the same probability distribution and are independent.

Definition 1.3. Let X_1, \ldots, X_n be a random sample from a population P_{θ} , where $\theta \in \Theta$. A statistic $T = T(X_1, \ldots, X_n) = T(\underline{X})$ is said to be a *sufficient statistic* for the family $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ if the conditional distribution of X_1, \ldots, X_n given T = t is independent of θ .

We shall look at some examples.

Example 1.4. Let X_1, \ldots, X_n be a random sample from the Bernoulli distribution with parameter $p \in (0,1)$. We claim that $T = \sum_{i=1}^{n} X_i$ is sufficient for $\{Ber(p) \mid 0 . To show this, we simply have$

$$P(X_{i} = x_{i} \text{ for all } i | T = t) = \frac{P(X_{1} = x_{1}, \dots, X_{n-1} = x_{n-1}, X_{n} = t - \sum_{i=1}^{n-1} x_{i})}{P(\sum_{i=1}^{n} X_{i} = t)}$$

$$= \frac{P(X_{1} = x_{1}) \cdots P(X_{n-1} = x_{n-1}) \cdot P(X_{n} = t - \sum_{i=1}^{n-1} x_{i})}{\binom{n}{t} p^{t} (1 - p)^{n-t}}$$

$$= \frac{p^{x_{1}} (1 - p)^{1 - x_{1}} \cdots p^{x_{n-1}} (1 - p)^{1 - x_{n-1}} p^{t - \sum x_{i}} (1 - p)^{1 - t + \sum x_{i}}}{\binom{n}{t} p^{t} (1 - p)^{n-t}}$$

$$= \frac{1}{\binom{n}{t}}.$$

$$(1.2)$$

Thus, the statistic T is sufficient. The above expression is valid when $\sum_{i=1}^{n} x_i = t$, and the probability

SUFFICIENCY Factorization Theorems

evaluates to 0 if $\sum_{i=1}^{n} x_i \neq t$.

Example 1.5. Let X_1, \ldots, X_n be a random sample from Poisson(λ) for $\lambda > 0$. We claim that the statistic $T = \sum_{i=1}^n X_i$ is sufficient. Recall that the probability mass function is $f(x, \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}$ where x is a non-negative integer, and $\lambda > 0$. We have

$$P(X_{i} = x_{i} \mid T = t) = \frac{P(X_{1} = x_{1}) \cdots P(X_{n-1} = x_{n-1}) \cdot P(X_{n} = t - \sum_{i=1}^{n-1} x_{i})}{P(\sum_{i=1}^{n} X_{i} = t)}$$

$$= \frac{\frac{e^{-\lambda} \lambda^{x_{1}}}{x_{1}!} \cdots \frac{e^{-\lambda} \lambda^{x_{n-1}}}{x_{n-1}!} \cdot \frac{e^{-\lambda} \lambda^{t-\sum x_{i}}}{(t-\sum x_{i})!}}{\frac{e^{-n\lambda} (n\lambda)^{t}}{t!}}$$

$$= \frac{e^{-n\lambda} \lambda^{t}}{x_{1}! \cdots x_{n-1}! (t - \sum_{i=1}^{n-1} x_{i})!} \cdot \frac{t!}{e^{-n\lambda} (n\lambda)^{t}}$$

$$= \frac{t!}{x_{1}! \cdots x_{n-1}!} \frac{1}{t}$$

$$= \left(\frac{t}{x_{1}, x_{2}, \dots, x_{n}}\right) \cdot \frac{1}{n^{t}}.$$
(1.3)

This shows that the conditional distribution of (X_1, \ldots, X_n) given T = t does not depend on λ , so by the definition of sufficiency, T is a sufficient statistic for λ .

Definition 1.6. A regular model may be one of two things.

- 1. All P_{θ} are continuous with probability density function $f(x \mid \theta)$.
- 2. All P_{θ} are discrete with prbability mass function $p(x \mid \theta)$, and there exists a countable set $S = \{x_1, x_2, \ldots\}$ independent of θ such that $\sum_{i=1}^{\alpha} p(x_i \mid \theta) = 1$.

1.2 Factorization Theorems

The following theorem proves to be useful for finding sufficiency.

Theorem 1.7 (The Neyman-Fisher factorization theorem). Let $f(\underline{x} \mid \theta)$ be the density of \underline{X} under the probability model P_{θ} for $\theta \in \Theta$. Then if the model is regular, a statistic $T(\underline{X})$ is sufficient for θ if and only if there exist functions g and h such that

$$f(\underline{x} \mid \theta) = g(T(\underline{x}), \theta)h(\underline{x}). \tag{1.5}$$

Note that the functions are defined with $T: \mathbb{R}^n \to I \subseteq \mathbb{R}^k$ (for $k \leq n$), $g: I \times \Theta \to \mathbb{R}_{\geq 0}$, and $h: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$. The functions g and h need not be unique.

A little less formally, the theorem basically states this: let X be a random variable with probability mass/density function $f(x,\theta)$ for $\theta \in \Theta$. Then T(X) is sufficient if and only if $f(x,\theta) = g(T(x),\theta)h(x)$ for all $\theta \in \Theta$. We now provide a proof.

Proof. We show only for the discrete case. Let us first assume such a faztorization exists. With

$$P_{\theta}(X = x' \mid T(X) = t) = \begin{cases} \frac{P_{\theta}(X = x', T(X) = t)}{P_{\theta}(T(X) = t)} & \text{if } T(x') = t, \\ 0 & \text{if } T(x') \neq t, \end{cases}$$
(1.6)

we then have

$$P_{\theta}(T(x) = t) = \sum_{\{x \mid T(x) = t\}} f_{\theta}(x \mid \theta) = g(T(x), \theta) \sum_{\{x \mid T(x) = t\}} h(x). \tag{1.7}$$

SUFFICIENCY Factorization Theorems

Thus, using the above, and the fact that $\{X = x\} \subseteq \{T(X) = T(x)\}$, gives us

$$\frac{P_{\theta}(X = x', T(X) = t)}{P_{\theta}(T(X) = t)} = \frac{P_{\theta}(X = x')}{g(T(x), \theta) \sum_{\{x \mid T(x) = t\}} h(x)} = \frac{g(t, \theta)h(x')}{g(T(x), \theta) \sum_{\{x \mid T(x) = t\}} h(x)} = \frac{h(x')}{\sum_{\{x \mid T(x) = t\}} h(x)}.$$
(1.8)

We now suppose that T(X) is sufficient for θ . Let $g(t,\theta) = P_{\theta}(T=t)$. Then,

$$g(t,\theta) = P_{\theta}(T=t) = P_{\theta}(T(X) = T(x')) \text{ where } T(x') = t.$$
 (1.9)

Also set $h(x) = P_{\theta}(X = x' \mid T(X) = T(x'))$, which is independent of θ since T is sufficient. Therefore, we have

$$f_X(x' \mid \theta) = P_{\theta}(X = x') = P_{\theta}(T(X) = T(x')) \cdot P_{\theta}(X = x' \mid T(X) = T(x')) = g(T(x), \theta)h(x). \tag{1.10}$$

Example 1.8. Let X_1, \ldots, X_n be independent and identically distributed $N(\mu, \sigma^2)$ random variables, with $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Let us find a sufficient test statistic. We look at cases; the first case being when σ^2 is known ($\sigma^2 = 1$). Since these are independent, we have the joint probability density function of these random variables as

$$f(x_1, \dots, x_n \mid \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} = \frac{1}{(2\pi)^{n/2}} e^{-\sum_{i=1}^n (x_i - \mu)^2}$$

$$= \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2} \left(\sum_{i=1}^n x_i^2 - 2\mu \sum_{i=1}^n x_i + n\mu^2\right)\right)$$

$$= \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2} \sum_{i=1}^n x_i^2} \times e^{-\frac{1}{2} (-2\mu \sum_{i=1}^n x_i + n\mu^2)}.$$
(1.11)

Make the former term h(x) and the latter term $g(\sum_{i=1}^n x_i, \mu)$ with $T(x) = \sum_{i=1}^n x_i$. The second case now involves μ being known, and we set it to $\mu = 0$ to get $T(x) = \sum_{i=1}^n x_i^2$, $h(x) = 1/(2\pi)^{n/2}$, and $g(T(x), \sigma^2) = \sigma^{-n} e^{-T(x)/2\sigma^2}$.

We move on to another factorization theorem.

Definition 1.9. The family of distributions $\{P_{\theta} \mid \theta \in \Theta\}$ is said of be a *single parameter exponential family* if there eixst real valued functions $c(\theta), d(\theta)$ on Θ and T(x), S(x) on \mathbb{R}^n and a set $A \subset \mathbb{R}^n$ such that

$$f(x \mid \theta) = \exp(c(\theta)T(x) + d(\theta) + S(x))\mathbf{1}_{A}(x) \tag{1.13}$$

where A must not depend on θ .

Example 1.10. Suppose $X \sim \text{Poisson}(\lambda)$ for $\lambda > 0$. With $A = \{0, 1, 2, \ldots\}$, we have

$$f(x \mid \lambda) = \exp(x \log(\lambda) - \lambda - \log(x!)) \mathbf{1}_A(x)$$
(1.14)

with T(x) = x, $c(\lambda) = \log(\lambda)$, $d(\lambda) = -\lambda$, and $S(x) = -\log(x!)$.

Consider X_1, \ldots, X_n independent and identically distributed random variables following the distribution P_{θ} , and suppose that $\{P_{\theta} \mid \theta \in \Theta\}$ is an exponential family, that is, $f(x \mid \theta) = \exp(c(\theta)T(x_i) + \theta)$

SUFFICIENCY Minimal Sufficiency

 $d(\theta) + S(x))\mathbf{1}_A(x)$. Then,

$$f_{x_1,\dots,x_n}(x_1,\dots,x_n \mid \theta) = \prod_{i=1}^n \exp(c(\theta)T(x_i) + d(\theta) + S(x_i))\mathbf{1}_A(x_i)$$
(1.15)

$$= \exp(c(\theta) \sum_{i=1}^{n} T(x_i) + md(\theta) + \sum_{i=1}^{n} S(x_i)) \mathbf{1}_{A^n}(x_1, \dots, x_n).$$
 (1.16)

 (x_1, \ldots, x_n) has distribution belonging to a single parameter exponential family. Thus, if $\{P_\theta \mid \theta \in \Theta\}$ is a single parameter family with density $f(x, \theta) = \exp(c(\theta)T(x) + d(\theta) + S(x))\mathbf{1}_A(x)$, then T(x) is sufficient for θ .

Corollary 1.11. If x_1, \ldots, x_n are independent and indentically distributed random variables following the distribution P_{θ} with density $f(x \mid \theta) = \exp(c(\theta)T(x) + d(\theta) + S(x))\mathbf{1}_A(x)$, then $\sum_{i=1}^n T(X_i)$ is sufficient for θ .

The exponential family is expanded.

Definition 1.12. A family of distributions $\{P_{\theta}: \theta \in \Theta\}$ with density $f(x \mid \theta)$ is called a k-parameter exponential family if there exists real valued functions $c_1(\theta), \ldots, c_k(\theta), d(\theta)$ on Θ and $T_1(\underline{x}), \ldots, T_k(\underline{x}), S(x)$ on \mathbb{R}^n , and a set $A \subset \mathbb{R}^n$ such that

$$f(\underline{x} \mid \theta) = \left(\exp(\sum_{j=1}^{n} c_j(\theta) T_j(\underline{x}) + d(\theta) + S(\underline{x})) \right) \mathbf{1}_A(\underline{x}). \tag{1.17}$$

Here, (T_1, \ldots, T_k) is a k-dimensional sufficient statistic for θ . Note that the parameter here is θ and not $(c_1(\theta), \ldots, c_k(\theta))$.

We look at more examples.

Example 1.13. For a normal distribution with $\sigma^2 = 1$, we have

$$f(x \mid \theta) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\theta)^2}{2}} \mathbf{1}_A(x) = \exp\left(-\frac{1}{2}\log(2\pi) - \frac{x^2}{2} + x\theta - \frac{\theta^2}{2}\right) \mathbf{1}_A(x). \tag{1.18}$$

Here, $c(\theta) = \theta$, T(x) = x, $S(x) = -\frac{x^2}{2} - \frac{1}{2}\log(2\pi)$, and $d(\theta) = -\frac{\theta^2}{2}$.

August 1st.

- **Remark 1.14.** 1. The Neyman-Fisher factorization theorem holds if $\underline{\theta}$ and \underline{T} are vectors. Their dimensions need not be equal.
 - 2. If T is sufficient and T is a function of U, then U is also sufficient.
 - 3. If V is a function of T, then V need not be sufficient. But if V is one-to-one with T, then V is also sufficient. V = B(T) and $T = B^{-1}(V)$ shows that $g(T, \theta) = g(B^{-1}(V), \theta) = g^*(V, \theta)$. Note that the inverse exists since it is defined on the image of the original function only.

1.3 Minimal Sufficiency

Again, we being with a few definitions.

SUFFICIENCY Minimal Sufficiency

Definition 1.15. A partition of a space \mathcal{X} is a collection $\{E_i\}$ of subsets of \mathcal{X} such that

$$\bigcup_{n\geq 1} E_i = \mathcal{X} \text{ and } E_i \cap E_j = \emptyset \text{ for } i \neq j.$$
(1.19)

The E_i 's are called *partition sets*. Let $T: \mathcal{X} \to \mathcal{Y}$. The partition of \mathcal{X} induced by the function T is the collection of the sets $T_y = \{x \mid T(x) = y\}$ for $y \in \mathcal{Y}$.

We say that \mathcal{P}_2 is a reduction of \mathcal{P}_1 if each partition set of \mathcal{P}_2 is the union of the same members of \mathcal{P}_1 .

Definition 1.16. A sufficient statistic T(X) is called a *minimal sufficient statistic* if for any other sufficient statistic T'(X), $T(\underline{X})$ is a function of T'(X). That is,

$$T(\underline{X}) = U(T'(X)) \implies \text{if } T'(\underline{x}) = T'(y) \text{ then } T(\underline{x}) = T(y).$$
 (1.20)

In terms of partition sets, if $\{B_{t'} \mid t' \in T'\}$ are partition sets for T'(x) and $\{A_t : t \in T\}$ are partition sets for T(x), then the definition states that every $B_{t'}$ is a subset of some A_t . Thus the partition associated with a minimal sufficient statistic is the coarsest possible partition for a sufficient statistic, and a minimal sufficient statistic achieves the greatest possible data reduction.

Theorem 1.17. Let $f(x \mid \theta)$ be the probability mass/density function of a sample \underline{X} . Suppose there exists a function $T(\underline{x})$ such that for every two sample points \underline{x} and \underline{y} , the ratio $f(\underline{x} \mid \theta)/f(\underline{y} \mid \theta)$ is constant as a function of θ if and only if $T(\underline{x}) = T(\underline{y})$. Then $T(\underline{X})$ is a minimal sufficient statistic for θ .

We look at an example first before proving the theorem.

Example 1.18. Let X_1, \ldots, X_n be independent and identically distributed $\text{Exp}(\theta)$ for $\theta > 0$. Recall that the probability density function is $f(x \mid \theta) = \theta \exp(-\theta x)$. We show that $T(\underline{X}) = \sum_{i=1}^{n} X_i$ is minimal sufficient for θ . The joint density in this case is

$$f(\underline{X} = \underline{x} \mid \theta) = \prod_{i=1}^{n} \theta \exp(-\theta x_i) = \theta^n \exp\left(-\theta \cdot \sum_{i=1}^{n} x_i\right). \tag{1.21}$$

The ratio is now

$$\frac{f(\underline{x} \mid \theta)}{f(\underline{y} \mid \theta)} = \exp\left(-\theta \sum_{i=1}^{n} (x_i - y_i)\right) = \exp(-\theta (T(\underline{x}) - T(\underline{y}))). \tag{1.22}$$

This expression is constant as a function of θ if and only if $T(\underline{x}) = T(\underline{y})$. Thus, T is minimal sufficient statistic for θ .

Proof. We shall assume that $f(x \mid \theta) > 0$ for all $x \in X, \theta \in \Theta$. Suppose there exists T(X) such that $f(x \mid \theta)/f(y \mid \theta)$ is constant as a function of θ if and only if T(x) = T(y). We first show that T is sufficient. The map is really $T: \mathcal{X} \to \mathcal{T} = \{t \mid T(x) = t \text{ for some } x \in \mathcal{X}\}$. Let $A_t = \{x \in \mathcal{X} \mid T(x) = t\}$. Then the collection of sets $\{A_t\}_{t \in \mathcal{T}}$ is a partition of \mathcal{X} .

For each A_t , fix an element $x_t \in A_t$. For any $x \in \mathcal{X}$, we have $x \in A_{T(x)}$ and hence $x_{T(x)}$ is the fixed element which belongs to the same partitioning set as x does. Thus, $T(x) = T(x_{T(x)})$ since x and $x_{T(x)}$ belong to $A_{T(x)}$. $\frac{f(x|\theta)}{f(x_{T(x)}|\theta)}$ is a constant function of θ , so $h(x) = \frac{f(x|\theta)}{f(x_{T(x)}|\theta)}$ independent of θ and $h: \mathcal{X} \to \mathbb{R}_{\geq 0}$. Define $g: \mathcal{T} \times \Theta \to \mathbb{R}_{\geq 0}$ by $g(t, \theta) = f(x_t \mid \theta)$. Then

$$f(x \mid \theta) = \frac{f(x \mid \theta)}{f(x_{T(x)} \mid \theta)} f(x_t \mid \theta) = h(x)g(t, \theta).$$
 (1.23)

Now that we have shown T is sufficient, we show its minimality. Let T'(X) be any other sufficient statistic. Then there exist functions g' and h' such that

$$f(x \mid \theta) = g'(T'(x), \theta)h'(x). \tag{1.24}$$

Let x and y be any two sample points such that T'(x) = T'(y). Then

$$\frac{f(x\mid\theta)}{f(y\mid\theta)} = \frac{g'(T'(x),\theta)h'(x)}{g'(T'(y),\theta)h'(y)} = \frac{h'(x)}{h'(y)} \text{ is independent of } \theta. \tag{1.25}$$

We already know that T(x) = T(y) whenever the above ratio is a constant function of θ . Hence, $T'(x) = T'(y) \implies T(x) = T(y)$. This means that T is coarser.

Theorem 1.19. Suppose \mathcal{P} is a family of probability models with common support and $\mathcal{P}_0 \subset \mathcal{P}$. If T is minimal sufficient for \mathcal{P}_0 and sufficient for \mathcal{P} , then it is minimal sufficient for \mathcal{P} also.

Proof. Let U be any sufficient statistic for \mathcal{P} . Then it is sufficient for \mathcal{P}_0 . But T is minimal for \mathcal{P}_0 . Therefore, T = H(U). Now consider \mathcal{P} . T is sufficient for \mathcal{P} and for any other sufficient statistic U, T = H(U). Thus, T is minimal sufficient.

Example 1.20. Let X_1, \ldots, X_n be independent and identically distributed Poisson(λ) random variables. The probability mass function in this case is

$$f(x_1, \dots, x_n \mid \lambda) = e^{-n\lambda} \frac{\lambda^{x_1 + \dots + x_n}}{x_1! \cdots x_n!}.$$
(1.26)

We find whether $\sum_{i=1}^{n} X_i$ is sufficient for λ . We have

$$\frac{f(\underline{x} \mid \theta)}{f(y \mid \theta)} = \theta^{-\left(\sum_{i=1}^{n} x_i - \sum_{j=1}^{n} y_j\right)} \frac{y_1! \cdots y_n!}{x_1! \cdots x_n!}$$
(1.27)

which is a constant with respect to θ if and only if T(x) = T(y).

Definition 1.21. Two statistics S_1 and S_2 are said to be *equivalent statistics* if $S_1(x) = S_1(y)$ if and only if $S_2(x) = S_2(y)$. Note that if S_1 and S_2 are equivalent, then then provide the same

- 1. partition of the sample space,
- 2. reduction, and
- 3. information.

Definition 1.22. A statistic $S(\underline{X})$ whose distribution does not depend on the parameter θ is called an *ancillary statistic*. An example is the chi-squared distribution.

1.4 Location Scale Family

With examples as context, we define the following families.

Example 1.23. Consider $U \sim \text{Unif}(-1,1)$. Then $f_U(u) = \frac{1}{2}I_{(-1,1)}(u)$. Let $X = \mu + U$. Then $X \sim \text{Unif}(\mu - 1, \mu + 1)$. Thus,

$$f_X(x) = \frac{1}{2}I_{(\mu-1,\mu+1)}(x) = \frac{1}{2}I_{(-1,1)}(x-\mu) = f_U(x-\mu). \tag{1.28}$$

The family of distributions for X indexed by μ is called a location family with location parameter μ . Note that μ is the location for X if $X - \mu$ has a distribution which is free of μ . **Example 1.24.** Suppose $Z_1 \sim N(0,1)$ with density $f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$. If we set $X = \sigma Z$ with $\sigma > 0$, then $X \sim (0, \sigma^2)$. Thus,

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}} = \frac{1}{\sigma}f_Z(\frac{x}{\sigma}).$$
 (1.29)

Here, σ is called the *scale parameter* for the family of distributions X indexed by it, which is called a *scale family*. Together, we have the changed distribution as

$$f_X(x) = \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right).$$
 (1.30)

Chapter 2

POINT ESTIMATION

We begin with a definition.

Definition 2.1. A point estimator is a function W of the sample, mapping into the parameter space Θ of the parameter θ of interest. The value W(X) is called a point estimate of θ .

Various methods of point estimation are discussed in this chapter, including the method of moments, maximum likelihood estimation, and Bayes estimation.

2.1 Estimators

2.1.1 Method of Moments

Let X_1, \ldots, X_n be a sample from a population with a probability distribution function and probability density function. The *method of moments* estimators are found by equating the first k sample moments to the corresponding k population moments and solving the resulting system of simultaneous equations. Here, the k^{th} sample moment and the k^{th} population moment are given as

$$m_k = \frac{1}{n} \sum_{j=1}^n X_j^k$$
 and $\mu'_k = E[X^k]$ (2.1)

respectively. For $\mu'_j = \mu'_j(\theta_1, \dots, \theta_i)$, with $1 \le j \le k$, the estimators are obtained by solving the equations

$$m_j = \mu'_j(\theta_1, \dots, \theta_i)$$
 for $1 \le j \le k$. (2.2)

2.1.2 Maximum Likelihood Estimators

Let X_1, \ldots, X_n be an independent and identically distributed sample from a population with a probability distribution/mass function $f(\underline{x} \mid \theta_1, \ldots, \theta_k)$. The *likelihood function* is defin as

$$L(\underline{\theta} \mid \underline{x}) = L(\theta_1, \dots, \theta_k \mid x_1, \dots, x_n) := \prod_{j=1}^n f(x_j \mid \theta_1, \dots, \theta_k).$$
 (2.3)

Definition 2.2. For each sample points, let $\overline{\theta}(\underline{x})$ be a parameter value at which $L(\underline{\theta} \mid \underline{x})$ attains its maxima as a function of $\underline{\theta}$, with \underline{x} held fixed. A maximum likelihood estimator (MLE) of the parameter θ based on a sample X is $\hat{\theta}(X)$.

Remark 2.3. 1. By its contraction, the ranges of the MLE concludes with the range of the parameter.

POINT ESTIMATION Estimators

2. The MLE is the parameter points for which the observation sample is most likely.

If the likelihood function is differentiable in θ_i , then possible candidates for the MLE are the values of $(\theta_1, \ldots, \theta_k)$ that solve $\frac{\partial}{\partial \theta_i} L(\underline{\theta} \mid \underline{x}) = 0$ for $1 \le i \le k$. Moreover, we must have $\frac{\partial^2}{\partial^2 \theta_i} L(\underline{\theta} \mid \underline{x}) < 0$ for the solution to be a maximum.

Remark 2.4. 1. The solutions to the above equation are the only possible candidates for the MLE since the first derivative being zero is only a necessary condition for the maximum and not sufficient.

- 2. The zeroes of the first derivatives only locate extreme points in the interior of the domain of the function.
- 3. If the extrema occurs on te boundary of the domain, then the first derivative may not be zero. Thus the boundary must be checked separately.
- 4. The points where the first derivatives are zero may be local/global maxima or minima.

Example 2.5. Let us take the example of the binomial distribution, $X \sim \text{Bin}(n, p)$. The likelihood function is given by $L(p \mid x) = \binom{n}{x} p^x (1-p)^{n-x}$, where 0 . We have

$$\frac{\partial}{\partial p}L(p\mid x) = \frac{dL}{dp}(p\mid x) = 0. \tag{2.4}$$

This derivative is hard to compute directly. So we take the logarithm (an increasing function) of the likelihood function, and then differentiate.

$$\implies \frac{d}{dp}\log L(p\mid x) = \frac{x}{p} - \frac{n-x}{1-p} = 0. \tag{2.5}$$

This gives us $p = \frac{x}{n}$, with the second derivative less than zero, confirming that this is a maximum. Thus, the MLE of p is $\hat{p} = \frac{X}{n}$.

The method in this example is known as *log likelihood estimation*. It is often easier to work with the log likelihood function, especially when dealing with products.

Remark 2.6. 1. The MLE may not exist at all or may not be unique.

2. If $\hat{\theta}$ is the MLE of θ , then $\rho(\hat{\theta})$ is the MLE of $\rho(\theta)$ for any function ρ .

The following is a vital and important result.

Theorem 2.7. The MLE depends on \underline{x} only through the sufficient statistic $T(\underline{x})$.

Proof. We have $L(\theta \mid \underline{x}) = f(\underline{x} \mid \theta) = g(T(\underline{x}), \theta)h(\underline{x})$. Therefore, we have

$$L(\hat{\theta}(\underline{x}) \mid \underline{x}) = \max_{\theta} g(T(\underline{x}), \theta) h(\underline{x}). \tag{2.6}$$

Since $h(\underline{x}) > 0$, and does not depend on θ , we must have

$$L(\hat{\theta}(\underline{x}) \mid \underline{x}) = h(\underline{x}) \max_{\theta} g(T(\underline{x}), \theta)$$
(2.7)

where the maximization is on the part that involves \underline{x} through $T(\underline{x})$ only.

2.1.3 One Parameter Exponential Family in Natural Form

Recall that the usual density form of the exponential family was given as

$$f(x \mid \theta) = \exp(c(\theta)T(x) + d(\theta) + s(x))\mathbf{1}_A(x). \tag{2.8}$$

POINT ESTIMATION Estimators

Define $\eta = c(\theta)$ for $\theta \in \Theta$, and let $\Gamma = {\eta \mid \eta = c(\theta), \theta \in \Theta}$. We then have

$$f^*(x \mid \eta) = \exp(\eta T(x) + d_0(\eta) + s(x)) \mathbf{1}_A(x)$$
 (2.9)

where $d_0(\eta) = d(c^{-1}(\eta))$ if c is one-one. Moreover,

$$1 = \int_{A} f^{*}(x \mid \eta) dx = \int_{A} \exp(\eta T(x) + d_{0}(\eta) + s(x)) dx = \exp(d_{0}(\eta)) \int_{A} \exp(\eta T(x) + s(x)) dx$$
(2.10)

$$\implies d_0(\eta) = -\log\left(\int_A \exp(\eta T(x) + s(x))dx\right). \tag{2.11}$$

Theorem 2.8. If X has density of the form $f(x \mid \eta) = \exp(\eta T(x) + d_0(\eta) + s(x)) \mathbf{1}_A(x)$ and η is an interior points of $H := \{\eta \mid |d_0(\eta)| < \infty\}$, then the moment generating function of T(X) exists and is given by

$$\varphi(s) = E[\exp(sT(X))]. \tag{2.12}$$

Also,

$$E[T(X)] = -\frac{d}{d\eta}d_0(\eta), \quad and \quad Var(T(X)) = -\frac{d^2}{d\eta^2}d_0(\eta).$$
 (2.13)

Theorem 2.9. Let $\{P_{\theta} \mid \theta \in \Theta\}$ be a one parameter exponential family with density $f(x \mid \theta) = \exp(c(\theta)T(x) + d(\theta) + s(x))\mathbf{1}_A(x)$ and let c be the interior of $C = \{c(\theta) \mid \theta \in \Theta\}$. Also suppose $\theta \mapsto c(\theta)$ is one-one. If the equation

$$E_{\theta}[T(X)] = T(x) \tag{2.14}$$

has a solution $\hat{\theta}(x)$ for which $c(\hat{\theta}(x)) \in C$, then $\hat{\theta}(x)$ is the unique MLE of θ .

Proof. Since $\theta \mapsto c(\theta)$ is one-one, maximizing the likelihood over θ is maximizing over $\eta = c(\theta)$. Hence, consider the natural parametrization

$$f(x \mid \eta) = \exp(\eta T(x) + d_0(\eta) + s(x)) \mathbf{1}_A(x) \text{ for } \eta \in H.$$
 (2.15)

 $L(\eta \mid x) = \eta T(x) + d_0(\eta) + s(x)$, if $x \in A$, is the log likelihood function. Also,

$$\frac{\partial}{\partial \eta} L(\eta \mid x) = T(x) + d_0'(\eta) \text{ and } \frac{\partial^2}{\partial \eta^2} L(n \mid x) = d_0''(\eta). \tag{2.16}$$

Therefore, we get $\frac{\partial}{\partial \eta} L(\eta \mid x) = T(x) - E_{\eta}[T(x)] = 0$ implying that $E_{\eta}[T(X)] = T(x)$. Now, $\frac{\partial^2}{\partial \eta^2} L(\eta \mid x) < 0$ so that L is strictly concave. Then we get a unique maxima at $\hat{\eta}(x)$ for which $E_{\eta}[T(X)]_{\eta = \hat{\eta}(x)} = T(x)$.

POINT ESTIMATION Estimators

Index

k-parameter exponential family, 4

ancillary statistic, 6

equivalent statistics, 6 estimate, 1 estimator, 1

independent and identically distributed, 1

likelihood function, 9 location family, 6 location parameter, 6 log likelihood estimation, 10

maximum likelihood estimator, 9 method of moments, 9

 $\ minimal\ sufficient\ statistic,\ 5$

Neyman-Fisher factorization theorem, 2

parameter space, 1 partition, 5 partition set, 5 point estimate, 9 point estimator, 9

 $\begin{array}{c} \text{reduction, 5} \\ \text{regular model, 2} \end{array}$

scale family, 7 scale parameter, 7 single parameter exponential family, 3 sufficient statistic, 1