Parkomat

Parkirnina stane 1 evro, parkomat pa sprejema kovance za 1 evro in 2 evra. Če stranka vstavi kovanec za 2 evra, parkomat pa ne premore nobenega kovanca za 1 evro, nastanejo težave. Če parkomat na začetku vsebuje, denimo, dva kovanca za 1 evro, se to zgodi pri zaporedju vstavljanj 22122: ko zadnja stranka vstavi kovanec za 2 evra, ji parkomat ostanka ne more vrniti.

Napiši program, ki prebere števili N in k in izpiše število vseh zaporedij vstavljanja N kovancev, pri katerih **ne** pride do težav, če je v parkomatu na začetku k kovancev po 1 evro. Rezultat izpiši po modulu (10⁹+7) (tj. zanima nas ostanek pri deljenju rezultata s tem modulom).

Vhod

Na vhodu sta podani celi števili $n \in [1,100]$ in $k \in [0,n]$, ločeni s presledkom. V 50% testnih primerov velja $n \le [1,20]$.

Izhod

Izpiši iskano število zaporedij po modulu (10⁹+7).

Primer

Vhod: 6 2 Izhod: 50

V tem primeru parkomat "preživi" vsa zaporedja razen 12222x, 21222x, 22122x in 222xxx (X lahko predstavlja enico ali dvojko).