

Supplementary Lecture at 10th Chemical Crystallography Group School, Trevelyan College, University of Durham, April 2005

An Introduction to Neutrons & Neutron Diffraction Experiments

(with a slight bias towards powder diffraction ©)

Jeremy Karl Cockcroft

Industrial Materials Group

Department of Chemistry, University College London and School of Crystallography, Birkbeck College, University of London

Overview

- Properties of the Neutron
- Reactors Neutron Sources
 - ➤ Generation of Neutrons
 - ➤ Neutron Instrumentation
- Pulsed Neutron Sources
 - ➤ Generation of Neutrons
 - ➤ Neutron Instrumentation
- Neutron Experiments

Properties of the Neutron

Particle with:

- ➤ Mass 1, Charge 0, Spin ½
 - Strong interaction with nucleus
 - Weaker interaction with unpaired electrons
 - » Magnetic crystallography
- \triangleright Kinetic Energy given by $E = \frac{1}{2}mv^2 = k_BT$
 - $-k_{\rm B}$ is Boltzmann constant = 1.381×10⁻²³ JK⁻¹
 - -RT = 20°C (293 K) $\rightarrow v = 2200 \text{ ms}^{-1}$
 - de Broglie relationship $\lambda = h / mv$ → $\lambda = 1.8$ Å
 - » Thermal neutrons
 - » Properties often quoted for this wavelength

Scattering Processes

- Coherent Scattering Cross-Section, σ_c
 - ➤ Diffraction
 - Scattering length, b, where $\sigma_c = 4\pi b^2$
 - ➤ Units: b in fm (10⁻¹³ cm), σ in barns (10⁻²⁴ cm²)
- Incoherent Scattering, σ_i
 - ➤ Background
- Absorption, σ_a
 - ➤ Loss of intensity
 - Radioactive samples & γ background

Neutron Scattering-Lengths

Dependant on the Nucleus Type

Neutron Scattering-Lengths

Element	Н	D	U	Fe	Co
X -ray $f(0^\circ)(Z)$	1	1	92	26	27
Neutron b (fm)	-3.74	6.67	8.42	9.45	2.78
Element	Ва	0	V	Ti	Zr
Element X-ray $f(0^\circ)(Z)$	Ba 56	O 8	V 23	Ti 22	Zr 40

Absolute comparison: $f(0^{\circ}) \times r_{e}$

where $r_{\rm e}$ classical electron radius = 2.818 fm

Scattering as a Function of 2θ

- X-ray interacts with electron cloud
 - ➤ Similar size to wavelength
 - ➤ Fourier transform of the electron cloud is the X-ray form factor (F.T. Gaussian → Gaussian)
- Neutron interacts with nucleus
 - \triangleright Very small (point scatterer) compared to λ
 - ➤ Fourier transform of a delta function is a horizontal line → no neutron form factor
 - Interaction with unpaired electron(s)
 - Magnetic form factor

Scattering as a Function of 20

Absorption Cross-Section

Relevant for Li, B, Cd plus some Lanthanides

Neutron Shielding

- X-rays
 - ➤ Use Pb or thick Steel
- Neutrons
 - ➤ Use B₄C doped rubber or plastics
 - Use Cd sheet metal
 - Pliable at 1mm thickness
 - ➤ Use Gd₂O₃ paints (Soller collimators)
 - >6Li now rarely used
 - Atomic strategic material required for military use

Incoherent Cross-Section

Highly relevant for H plus some Lanthanides

Effect of Incoherent X-Section

σ Comparisons

Element	$\sigma_{ m c}$	$\sigma_{\rm i}$	$\sigma_{\rm a}$
Н	1.76	80.3	0.333
D	5.59	2.05	0.000519
V	0.0184	5.08	2.80*
Gd	29.3	150	49700
Al	1.495	0.0082	0.231

No need for special windows as aluminium can be used

Neutron Detectors

- Neutrons have no charge & non-ionizing
 - Less easy to detect than X-rays
- Detection relies on absorption by atom nucleus with simultaneous emission of γ-ray
 - \triangleright Referred to as (n, γ) reaction
- Most common are proportional gas type
 - Absorbing material must absorb neutrons and be capable of existing in gaseous form
 - Limited choice of materials

Neutron Detectors

Most common material is ³He gas

3
He + 1 n \rightarrow 4 He + γ

- ➤ Very expensive gas!
- Alternative is BF₃

$$^{10}BF_3 + ^{1}n \rightarrow ^{11}BF_3 + \gamma$$

- ➤ Better (lower background)
- ➤ Toxic and disliked by physicists
- ➤ Now rarely used
- Gas pressurised (5-10 bar)
 - → improves efficiency

Neutron Detectors

- Solid State Detectors
 - ➤ Use (n,γ) reaction, but γ -ray converted to visible photon
 - Measure with photomultiplier tube
 - Early versions very sensitive to γ background
 - ➤ Use lithium salts or rare-earth glasses
 - -e.g. Gd_2O_3 . Gd_2S_3
 - ➤ Advantage is high efficiency
 - Very thin
 - → important for Time-of-Flight measurements

Neutron Monitors

- Required to Monitor Incident Flux
 - ➤ No X-ray laboratory equivalent
 - X-ray tube assumed to produce constant flux
- Inefficient Detectors
 - >e.g. 99.9% ⁴He with 0.1% ³He
 - Dilution optimised for particular wavelength & flux

Reactor Neutron Sources

- ILL, Grenoble
 - ➤ Still World's Highest Flux Neutron Source
 - ➤ Other European sources are much lower flux

Centre of the Reactor

10 kg of ²³⁵U heavy water cooled at 35°C

Light Water Biological Shield

Cerenkov Radiation

(Photo supplied by ILL Publicity Office)

Hot and Cold Neutrons

Cold Source

- ➤ Liquid H₂ fridge
- \triangleright Long λ neutrons
 - -SAS

Hot Source

- ➤ Solid graphite
 - Self-heated
- \triangleright Short λ neutrons
 - Small d spacings

Neutron Guide Halls

- Limited Space around Reactor Core
- Transmit Neutrons along curved Guides
 - \triangleright Total internal reflection (especially long λ)
 - \triangleright Removes γ -radiation (straight lines)

Neutron Guides

- Nickel coated glass
 - ► Isotopic ⁵⁸Ni (b = 14.4 fm) improves reflectivity
 - ➤OK for thermal neutrons
 - > Excellent for cold neutrons
 - ➤ Unsuitable for hot neutrons

BCA Chemical Crystallography School - Durham 2005

Monochromators

- White Beam with no Time Structure
 - \triangleright Require monochromators (Ge, C, Cu) for single λ
 - ➤ Single bounce Rotate to obtain different *d* spacings

Focussing

- Relatively Low Flux at Sample
 - ➤ Use vertically-focussing monochromators
 - ➤ Increase angular divergence
 - Lower resolution

Instrumentation

- Single Crystal Diffraction at ILL
 - > D9 (Hot)
 - ➤D19 & Vivaldi (Thermal)
 - ➤D10 & D15 (Thermal, plus additional features)
 - ➤D16 (Cold, plus powder diffraction)
- Powder Diffraction at ILL
 - ➤D2B, D1A (Thermal, high resolution)
 - ➤D20, D1B (Thermal, high flux)

Single-Crystal Neutron

- Comparison with X-rays
 - ➤ Relative large crystals (10s mm³ 1 mm³)
 - **>**Use χ-circles
 - Modernised instruments have big detectors
 - PSD or image plate
 - Older ones have point detectors
 - Some experiments require manual setting crystal orientation
 - Understanding UB orientation matrices helps
 - Some data sets still collected one reflection at a time
 - ➤ Data acquisition times are long

Powder Diffraction

Improving Statistics

- 1st Generation
 - (1960s to early 1970s)
 - ➤ Single Point Detectors
- 2nd Generation
 - (Late 1970s to early 1990s)
 - ➤ Multiple Detectors
- 3rd Generation
 - (Late 1990s to present day)
 - ➤ Sophisticated PSDs
 - Delay line ³He tubes

Powder Diffraction

View of Old High Flux P.D.

- Instrument with the ILL's best publication record these last 5 years!
 - ➤ Now a CRG instrument

Sample Holders

- Vandium Cans or Quartz (not Glass) Tubes
- Relatively Large Quantities of Powder

Pulsed Neutron Sources

- Pulsed Neutron Sources share some similarities to Synchrotron Sources
 - Both accelerate particles in a ring
- Use Charged Heavy Particles e.g. H⁻ ions
 - > Accelerate in a linear accelerator (linac)
- Strip Electrons to produce H⁺ beam
- Accelerate to High Energy in Storage Ring
- Collide with Heavy Metal Target (water cooled)
 - ➤ Ta, U, W
 - > Produce smaller nuclei plus neutrons

Pulsed Neutron Sources

• ISIS World's Most Intense PNS

TOF Concepts

- Essential to Use Time Structure of Pulsed Neutrons
 - ➤ Time-averaged flux is relatively low
- de Broglie equation $\lambda = h / mv$
 - Planck's constant $h = 6.626 \times 10^{-34}$ Js
 - Neutron mass $m = 1.675 \times 10^{-27} \text{ kg}$
 - \triangleright Velocity, ν , is inversely proportional to λ
 - ➤In 1 ms a neutron will travel a few metres
 - Time over a fixed path length, L, to obtain λ

TOF Concepts

Combine de Broglie and Bragg Equations:

$$\lambda = ht / mL = 2d \sin\theta$$

- d spacing is proportional to time, t
- Timing is between start of the pulse and arrival time on the detector
 - ➤ "Time-of-Flight" (TOF)
 - Need thin detectors to reduce uncertainty in path length

TOF Single Crystal

SXD

- ➤ Measure all of reciprocal space
- ➤ Bragg peaks *plus* space between peaks
 - Useful for some experiments
 - e.g. incommensurate phase transitions

TOF Powder Instruments

Inside ISIS Instrument Hall

Require Heavy Shielding – Less to See

Instrument Design

- Resolution versus Flux
 - ➤ Flight Path & Detector Angle
 - ➤ Massive Solid Area Coverage GEM
- Resolution determined by errors in t, L, 2θ

Typical TOF Powder Data

Typical Experiments

- Single-crystal
 - ➤ Precise location of H
 - Especially in organometallics
 - Hydrogen-bonding studies
 - ➤ Precise location of nucleus
 - Needed for X N electron density difference maps
 - ➤ High-accuracy thermal motion studies
 - No form factors
 - ➤ High-accuracy disorder studies
 - No form factors
 - ➤ Magnetic Crystal Structures

Typical Experiments

Powders

- ➤ Precise location of atoms including anisotropic B-values by Rietveld refinement
 - Metal oxides, e.g. ceramics, high-temperature superconductors
 - Hydrogen bonding (but with deuterated samples)
- ➤ Solid-state phase transition studies
 - Non-magnetic and magnetic
- ➤ Solid-state reactions
- ➤ Texture measurements (bulk)

Typical Experiments

- Historically
 - Many experiments requiring non-ambient conditions
 - Expensive
 - Often developed by physicists
- Non-ambient now available in many chemistry laboratories
- Better done with hard synchrotron X-rays?

Question Time / Dinner

