CHAPITRE 8

Ensemble relations et lois de compo

Table des matières

Ι	Théorie naïve des ensembles	2
II	Applications	8

Première partie Théorie naïve des ensembles

Définition: Un <u>ensemble</u> est une collection finie ou infinie d'objets de même nature ou non. L'ordre de ces objets n'a pas d'importance.

EXEMPLE: 1. $\{1, x \mapsto x^2, \{1\}\}$ est un ensemble : ses éléments dont l'entier 1, la fonction $x \mapsto x^2$ et un ensemble contenant uniquement 1 (un <u>singleton</u>).

2. \mathbb{N} est un ensemble infini

Remarque (Notation):

Soit E un ensemble et x un objet de E.

On écrit $x \in E$ ou bien $x \ni E$.

Remarque (♠ Paradoxe):

On note Ω l'ensemble de tous les ensembles. Alors, $\Omega \in \Omega$.

Ce n'est pas le cas de tous les ensembles :

 $\mathbb{N} \not \in \mathbb{N}$ car \mathbb{N} n'est pas un entier

On distingue donc 2 types d'ensembles :

- ceux qui vérifient $E \notin E$, on dit qu'ils sont <u>ordinaires</u>
- ceux qui vérifient $E \in E$, on dit qu'ils sont <u>extra-ordinaires</u>

On note O l'ensemble de tous les ensembles ordinaires.

- Supposons O ordinaire. Alors, $O \not\in O$
 - Or, O est ordinaire et donc $O \in O$ \mit
- Supposons O extra-ordinaire.

Alors $O \in O$ et donc O ordinaire \mathcal{L}

C'est un paradoxe

Pour éviter ce type de paradoxe, on a donné une définition axiomatique qui explique quelles sont les opérations permettant de combiner des ensembles pour en faire un autre.

Définition: Soit E un ensemble et F un autre ensemble. On dit que E et F sont égaux (noté E=F) si E et F contiennent les mêmes objets.

Exemple: 1. $E = \{1, 2, 3\}$ et $F = \{3, 2, 1, 2\}$ On a bien E = F.

2.
$$\mathbb{N} \neq \mathbb{Z} \operatorname{car} \begin{cases} -1 \in \mathbb{Z} \\ -1 \notin \mathbb{N} \end{cases}$$

3.
$$E = \{0, \{0\}\} \neq \{0\} = F$$

$$\operatorname{car} \begin{cases} \{0\} \in E \\ \{0\} \notin F \\ \text{mais}, F \in E \end{cases}$$

Définition: L'ensemble <u>vide,</u> noté \varnothing est le seul ensemble à n'avoir aucun élément.

Définition: Soient E et F deux ensembles. On dit que F est <u>inclus</u> dans E, noté $F \subset E$ ou $E \supset F$ si tous les éléments de F sont aussi des éléments de E.

$$\forall x \in F, x \in E$$

Proposition: Pour tout ensemble $E, \varnothing \subset E$

Preuve (par l'absurde): Si $\varnothing \not\subset E$ alors $\exists x \in \varnothing, x \not\in E$: une contradiction $\not\subset$

EXEMPLE: 1.
$$E=\{1,2,3\}$$
 et $F=\{1,3\}$
On a $F\subset E$ mais pas $E\subset F$ car $\begin{cases} 2\in E\\ 2\not\in F \end{cases}$

2.
$$F = \{0\}$$
 et $E = \{0, \{0\}\}$

$$\begin{array}{ll} -- & F \in E \text{ car } \{0\} \in E \\ -- & F \subset E \text{ car } 0 \in E \end{array}$$

3.
$$E = \{\{0\}\}; F = \{0\}$$

— $F \not\subset E \text{ car } 0 \not\in E$
— $F \in E$

$$4. \begin{tabular}{ll} $E=\{\{\{0\}\}\}; F=\{0\}$\\ $-F\not\in E$\\ $-F\not\subset E$\\ $-\varnothing\subset F$ \end{tabular}$$

 $--\varnothing\subset E$

Définition: Soit E un ensemble. On peut former <u>l'ensemble de toutes les parties de E</u> (une partie de E est un ensemble F avec $F \subset E$). On le note $\mathscr{P}(E)$

$$A \in \mathscr{P}(E) \iff A \subset E$$

Exemple: 1. $E = \{42\}$

Les sous-ensembles de E sont \varnothing et $\{42\} = E$ donc

$$\mathscr{P}(E) = \{\varnothing, \{42\}\}\$$

- 2. $\mathscr{P}(\varnothing) = \{\varnothing\}$
- 3. $E = \{0, 1\}$ donc $\mathscr{P}(E) = \{\varnothing, \{0\}, \{1\}, \{0, 1\}\}$
- 4. $E = \{\emptyset, \{\emptyset\}\} \text{ donc } \mathscr{P}(E) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}\$
- 5. $E = \{\emptyset, \{\emptyset\}\}$

Définition: Soit E un ensemble et $A, B \in \mathscr{P}(E)$

1. La réunion de A et B est

$$A \cup B = \{x \in E \mid x \in A \text{ ou } x \in B\}$$

2. L'<u>intersection</u> de A et B est

$$A \cap B = \{ x \in E \mid x \in A \text{ et } x \in B \}$$

3. Le complémentaire de A dans E est

$$E \setminus A = \{x \in E \mid x \notin A\} = C_E A$$

4. La différence symétrique de A et B est

$$A\Delta B = \{x \in E \mid (x \in A \text{ et } x \notin B) \text{ ou } (x \notin A \text{ et } x) \}$$

= $(A \cup B) \setminus (A \cap B)$

Proposition: Soit E un ensemble et $A, B, C \in \mathcal{P}(E)$

1.
$$A \cap A = A$$

2.
$$B \cap A = A \cap B$$

3.
$$A \cap (B \cap C) = (A \cap B) \cap C$$

4.
$$A \cap \emptyset = \emptyset$$

5.
$$A \cap E = A$$

6.
$$A \cup A = A$$

7.
$$B \cup A = A \cup B$$

8.
$$A \cup (B \cup C) = (A \cup B) \cup C$$

9.
$$A \cup \emptyset = A$$

10.
$$A \cup E = E$$

11.
$$(E \setminus A) \setminus A = E \setminus A$$

12.
$$E \setminus (E \setminus A) = A$$

13.
$$E \setminus \emptyset = E$$

14.
$$E \setminus E = \emptyset$$

15.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

16.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

17.
$$E \setminus (A \cup B) = (E \setminus A) \cap (E \setminus B)$$

18.
$$E \setminus (A \cap B) = (E \setminus A) \cup (E \setminus B)$$

Preuve: 16. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

— Soit $x \in A \cap (B \cup C)$ donc $x \in A$ et $x \in B \cup C$

$$A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$$

— Soit $x \in (A \cap B) \cup (A \cap C)$

<u>Cas 2</u> $x \in A \cap C$ donc $x \in A$ et $x \in C$ donc $x \in B \cup C$ et donc $x \in A \cap (B \cup C)$

On a prouvé

$$A\cap (B\cup C)\supset (A\cap B)\cup (A\cap C)$$

17.
$$E \setminus (A \cup B) = (E \setminus A) \cap (E \setminus B)$$

— Montrons que $x \in E \setminus (A \cup B) \implies x \in (E \setminus A) \cap (E \setminus B)$ Soit $x \in E \setminus (A \cup B)$ donc $x \notin A \cup B$

— Si $x \in A$, alors $x \in A \cup B \notin A$ donc $x \notin A$ i.e. $x \in E \setminus A$

```
 \begin{array}{l} - \text{ Si } x \in B \text{ alors, } x \in A \cup B \not \\ \text{ Donc } x \not \in B \text{ i.e. } x \in E \setminus B \\ \text{ On en déduit que } x \in (E \setminus A) \cap (E \setminus B) \\ - x \in (E \setminus A) \cap (E \setminus B). \text{ Montrons que } x \in E \setminus (A \cup B) \\ \text{ On suppose que } x \not \in E \setminus (A \cup B) \text{ donc } x \in A \cup B \\ - \text{ Si } x \in A, \text{ on a une contradiction car } x \in E \setminus A \\ - \text{ Si } x \in B, \text{ on a une contradiction car } x \in E \setminus B \\ \text{ donc } x \in E \setminus (A \cup B) \\ \end{array}
```

Deuxième partie Applications

Définition: Une <u>application</u> f est la donnée de

- un ensemble E appelé ensemble de départ
- un ensemble F appelé <u>ensemble d'arrivée</u>
- une fonction qui associe à tout élément x de E un unique élément de F noté f(x)

L'application est notée

$$f: E \longrightarrow F$$

 $x \longmapsto f(x)$

EXEMPLE: 1. Soit \mathscr{P} le plan (affine) et $A \in \mathscr{P}$. Soit \mathscr{D} l'ensemble des droites.

$$f: \mathscr{P} \setminus \{A\} \longrightarrow \mathscr{D}$$

$$B \longmapsto (AB)$$

2. $E=\mathscr{C}^1\left([0,1],\mathbb{R}\right)$ l'ensemble des fonctions à valeurs réelles de classe \mathscr{C}^1 sur [0,1] $F=\mathscr{C}^0([0,1],\mathbb{R})$

$$\varphi: E \longrightarrow F$$
$$f \longmapsto f'$$

3. $E = \mathcal{C}^1([0,1], \mathbb{R})$ et $F = \mathbb{R}$

$$\varphi: E \longrightarrow F$$

$$f \longmapsto f'\left(\frac{1}{2}\right)$$

4. E = [0, 1] et $F = \mathcal{C}^0([0, 1], \mathbb{R})$

$$\varphi: E \longrightarrow F$$

$$x \longmapsto \int_a^x t^2 \ln(t) \ dt$$

5.

$$\varphi:\mathscr{C}\setminus\{N\}\longrightarrow(d)$$

$$M\longmapsto M'$$

6.

Définition: Soit $f: E \to F$ une application. On dit que f est

- <u>injective</u> si tout élément de F a au plus un antécédant par f
- <u>bijective</u> si tout élément de F a un unique antécédant par f
- <u>surjective</u> si tout élément de F a au moins un antécédant par f

EXEMPLE (suite des exemples précédents): 1. L'application n'est ni injective ni surjective

 B_1 et B_2 sont deux antécédants de d_1 d_2 n'a pas d'antécédant par f

- 2. L'application n'est pas injective :

 - $-f: x \mapsto x$ est continue $-x \mapsto \frac{x^2}{2}$ et $x \mapsto \frac{x^2}{2} + 42$ sont deux antécédants de f.

 Mais, l'application est surjective d'après le théorème fondamental de

l'analyse

- 3. L'application n'est pas injective ($x \mapsto 0$ et $x \mapsto 42$ sont deux antécédants de 0) mais elle est surjective $(\forall x \in \mathbb{R}, x \mapsto ax \text{ est un antécédant de } a)$.
- 4. L'application est injective mais pas surjective (les images sont des primitives de $x \mapsto x^2 \ln(x)$
- 5. et 6. sont bijectives

Définition: Soit $f: E \to F$ et $g: F \to G$. L'application notée $g \circ f$ est définie par

$$g \circ f : E \longrightarrow G$$

 $x \longmapsto g(f(x))$

On dit que c'est la composée de f et g.

Proposition: Soient $f: E \to F, g: F \to G, h: G \to G$. Alors, $h \circ (g \circ f) = (h \circ g) \circ f$

Preuve:

Par définition, $g \circ f : E \to F$ donc $h \circ (g \circ f) : E \to H$ et $h \circ g : F \to H$ donc $(h \circ g) \circ f : E \to H$ Soit $x \in E$.

$$h \circ (g \circ f)(x) = h(g \circ f(x))$$
$$= h(g(f(x)))$$

$$(h \circ g) \circ f(x) = h \circ g(f(x))$$
$$= h(g(f(x)))$$

Donc,
$$h \circ (g \circ f)(x) = (h \circ g) \circ f(x)$$

REMARQUE (\bigwedge Attention): En général, $g \circ f \neq f \circ g$

Par exemple, $f: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R}^+ \\ x & \longmapsto & x^2 \end{array}$ et $g: \begin{array}{ccc} \mathbb{R}^+ & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \sqrt{x} \end{array}$

$$\text{Alors, } f \circ g: \begin{array}{ccc} \mathbb{R}^+ & \longrightarrow & \mathbb{R}^+ \\ x & \longmapsto & x \end{array} \text{ et } g \circ f: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & |x| \end{array}$$

donc $f \circ g \neq g \circ f$

Proposition: Soient $f: E \to F$ et $g: F \to G$

- 1. Si $g \circ f$ est injective, alors f est injective
- 2. Si $g \circ f$ est surjective, alors g est surjective
- 3. Si f et g sont surjectives, alors $g \circ f$ est surjective
- 4. Si f et g sont injectives, alors $g \circ f$ est injective

II

Preuve: 1. On suppose $g\circ f$ injective. On veut montrer que f est injective. Soient $(x,y)\in E^2$. On suppose f(x)=f(y). Montrons que x=y.

Comme f(x) = f(y), g(f(x)) = g(f(y)) i.e. $g \circ f(x) = g \circ f(y)$ Or, $g \circ f$ injective donc x = y

- 2. On suppose $g \circ f$ surjective. On veut montrer que g est surjective. Soit $y \in G$. On cherche $x \in F$ tel que g(x) = y. Comme $g \circ f : E \to G$ surjective, y a un antécédant $z \in E$ par $g \circ f$. On pose $x = f(z) \in F$ et on a bien g(x) = y
- 3. On suppose f et g injectives. Montrons que $g \circ f$ injective. Soient $x,y \in E$. On suppose $g \circ f(x) = g \circ f(y)$. Montrons x=y On sait que g(f(x)) = g(f(y)). Comme g est injective, f(x) = f(y) et comme f est injective, x=y
- 4. On suppose f et g surjectives. Soit $y \in G$. On cherche $x \in E$ tel que $g \circ f(x) = y$ Comme g est surjective, g a un antécédant $g \in F$ par g Comme g est surjectives, g a un antécédant $g \in F$ par g On en déduit $g \circ f(x) = g(f(x)) = g(g) = g$

REMARQUE:

 $f: E \longrightarrow F$

$$f$$
 injective \iff $\bigg(\forall (x,y) \in E^2, f(x) = f(y) \implies x = y \bigg)$

Définition: Soit $f: E \to F$ une <u>bijection</u>. L'application $\begin{cases} F & \longrightarrow & E \\ y & \longmapsto & \text{l'unique antécédant de } y \text{ par } f \end{cases}$ est la <u>réciproque</u> de f notée f^{-1}

Définition: L'<u>identité de E</u> est $\mathrm{id}_E: \begin{array}{ccc} E & \longrightarrow & E \\ x & \longmapsto & x \end{array}$

Proposition: Soient $f: E \to F$ et $g: F \to E$

$$\begin{cases}
f \circ g = \mathrm{id}_F \\
g \circ f = \mathrm{id}_E
\end{cases} \iff \begin{cases}
f \text{ bijective} \\
f^{-1} = g
\end{cases}$$

Preuve (déjà faite):

Définition: Soit $f: E \to F$

1. Soit $A\in \mathscr{P}(E).$ L'<u>image directe</u> de A par f est

$$f(A) = \{ f(x) \mid x \in A \}$$

2. Soit $B\in \mathscr{P}(F).$ L'i<u>mage réciproque</u> de B par f est

$$f^{-1}(B) = \{x \in E | f(x) \in B\}$$

