ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ Минисеместр 1

Содержание разделов и тем лекционного курса

Раздел I: метрические пространства (14 ч. лекций)

Лекция 1.

1.1. Введение. (1 ч.)

Об истории функционального анализа, его цели и месте в математике. Основные даты и имена. Связь с другими разделами математики: алгебра, математический анализ, комплексный анализ, обыкновенные дифференциальные уравнения, дифференциальные уравнения в частных производных, интегральные уравнения.

1.2. Метрические пространства. (1.ч)

Основные понятия, определения и примеры: метрика, неравенство Коши-Буняковского-Шварца, Примеры: пространства \mathbb{R}_p^n ($1 \leq p \leq \infty$, $n \geq 1$), l_p ($1 \leq p \leq \infty$), другие пространства последовательностей, пространства непрерывных функций, дискретное пространство.

Лекция 2.

1.3. Непрерывные отображения метрических пространств. (1.ч)

Непрерывность. Изометрия. Гомеоморфизм. Примеры.

1.4. Последовательности точек метрических пространств. (1 ч.)

Сходимость, свойства сходящихся последовательностей.

- 1.5*. Сходимость (в метрическом пространстве) на языке окрестностей. Эквивалентность сходимости и сходимости на языке окрестностей.
- 1.6*. Непрерывность (в метрическом пространстве) по Гейне (секвенциальная непрерывность). Эквивалентность непрерывности и непрерывности по Гейне.

Лекция 3.

1.7. Замкнутые множества. (1 ч.)

Шары в метрическом пространстве, окрестность, точка прикосновения, предельная точка, изолированная точка, замыкание. Свойства замкнутых множеств.

1.8. Открытые множества. (1 ч.)

Примеры. Связь между открытыми и замкнутыми множествами. Теоремы о пересечении и объединении открытых (замкнутых) множеств.

Лекция 4.

1.9. Плотные подмножества, сепарабельные пространства. (1 ч.)

Примеры сепарабельных (\mathbb{R}_p^n, l_p) и не сепарабельных (\mathcal{M}) пространств.

1.10. Полнота. (1 ч.)

Фундаментальные последовательности. Примеры полных (\mathbb{R}_p^n , l_p , C[a,b]) и неполных пространств ($C_2[a,b]$).

Лекция 5.

1.11. Характеризация полных пространств. (1 ч.)

Теорема о вложенных шарах.

1.12. Теорема Бэра. (1 ч.)

Лекция 6.

- 1.13. Полнота и разрешимость уравнений в метрических пространствах. (1 ч.)
- 1.14. Пополнение пространства. (1 ч.)

Примеры: пополнение \mathbb{Q} суть \mathbb{R} , пополнение $C_2([a,b])$.

Лекция 7.

- 1.15. Принцип сжимающих отображений. (1 ч.)
- 1.16. Его применение к доказательству теоремы о существовании и единственности решения интегральных уравнений. (1 ч.)
- 1.17. Применение принципа сжимающих отображений к доказательству теоремы о существовании и единственности решения обыкновенных дифференциальных уравнений и интегральных уравнений.

Практические (семинарские) занятия

Раздел І. Метрические пространства (14 ч. практических занятий)

Семинары 1-2. Метрические пространства. Определение и примеры (4 ч.)

<u>Семинар 3.</u> Метрические пространства. Сходимость, открытые и замкнутые множества. (2 ч.)

Семинар 4. Полнота (2 ч.)

Семинар 5. Пополнение пространства (2 ч.)

Семинары 6-7. Принцип сжимающих отображений (4 ч.)

Список литературы

- [1] Колмогоров А.Н. Элементы теории функций и функционального анализа/А.Н. Колмогоров, С.В. Фомин. М.: Физматлит, 2004.
- [2] Треногин В.А. Функциональный анализ/ В.А. Треногин. М.: Наука, 1980.
- [3] Треногин В.А. Задачи и упраженения по функциональному анализу/ В.А. Треногин, Б.М. Писаревский, Т.С. Соболева. М.: Физматлит, 2002.

Функциональный анализ, типовой билет на минисессии 1.

- 1. Дайте определение точки прикосновения множества (2 балла).
- 2. Сформулируйте и докажите теорему о сжимающем отображении (2+3=5 баллов)
 - 3. Пусть $X = C[-\pi, \pi]$ множество непрерывных функций на отрезке $[-\pi, \pi]$.
 - а) докажите, что функция

$$\rho(x,y) = \max_{t \in [-\pi,\pi]} |x(t) - y(t)| + 2 \int_{-\pi}^{\pi} |x(t) - y(t)| dt$$

является метрикой на X (3 балла);

- б) выясните, является ли метрическое пространство (X, ρ) полным и постройте его пополнение (5 баллов);
- в) укажите для каких функций $z(t) \in C[-\pi,\pi]$ и сколько решений имеет интегральное уравнение

$$Ax - x = 0$$

в пространстве X, если

$$(Ax)(t) = \frac{1}{33} \int_{-\pi}^{\pi} (\cos(\tau)\sin(2t) + \sin(2\tau)\cos(t)) x(\tau) d\tau + z(t).$$

(5 баллов)