

RF Exposure Evaluation Declaration

Product Name: LED lamp

Model No. : 9290012575B

FCC ID : 2AGBW 9290012575BX

IC : 20812-2575BX

Applicant: Philips Lighting (China) Investment Co., Ltd.

Address: Building 9, Lane 888, Tianlin Road, Minhang

district, Shanghai, China

Date of Receipt: Aug. 30, 2017

Issued Date : Feb. 06, 2018

Report No. : 1782158R-RF-US-P20V01

Report Version: V 1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by A2LA, TAF or any agency of the government. The test report shall not be reproduced without the written approval of DEKRA Testing & Certification (Suzhou) Co., Ltd.

Test Report Certification

Issued Date: Feb. 06, 2018

Report No.: 1782158R-RF-US-P20V01

Product Name : LED lamp

Applicant : Philips Lighting (China) Investment Co., Ltd.

Address : Building 9, Lane 888, Tianlin Road, Minhang district,

Shanghai, China

Manufacturer : Philips Lighting (China) Investment Co., Ltd.

Address : Building 9, Lane 888, Tianlin Road, Minhang district,

Shanghai, China

Model No. : 9290012575B

FCC ID : 2AGBW 9290012575BX

IC : 20812-2575BX

Brand Name : Philips

EUT Voltage : 110 ~ 130Vac, 9.5W, 50-60Hz

Test Voltage : AC 120V/60Hz

Applicable Standard : KDB 447498D01V06

FCC Part1.1310

RSS-102: Issue 5, 2015

Test Result : Complied

Performed Location : DEKRA Testing & Certification (Suzhou) Co., Ltd.

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006,

Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 FCC Registration Number: CN1199; IC Lab Code: 4075B

Documented By : Kathy Feng

(Project Assistant: Kathy Feng)

Reviewed By :

(Senior Project Manager: Frank He)

Approved By : Harry The

(Engineering Manager: Harry Zhao)

1. RF Exposure Evaluation

1.1. Limits

For FCC:

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

	Electric	Magnetic	Power	Avorago			
Frequency	Field	Field		Average			
Range (MHz)	Strength	Strength	Density (m) (m) (m)	Time			
	(V/m)	(A/m)	(mW/cm2)	(Minutes)			
(A) Limits for C	(A) Limits for Occupational/ Control Exposures						
300-1500			F/300	6			
1500-100,000			5	6			
(B) Limits for C	(B) Limits for General Population/ Uncontrolled Exposures						
300-1500			F/1500	6			
1500-100,000			1	30			

F= Frequency in MHz

Friis Formula

Friis transmission formula: Pd = (Pout*G)/(4*pi*r2)

Where

Pd = power density in mW/ cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

For ISED:

According to RSS 102 Issue 5: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in RSS 102 Clause 4

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m²)	Reference Period (minutes)
$0.003 - 10^{21}$	83	90	17/	Instantaneous*
0.1-10	-	0.73/ f	2	6**
1.1-10	$87/f^{0.5}$		(2)	6**
10-20	27.46	0.0728	2	6
20-48	$58.07/f^{0.25}$	$0.1540/f^{0.25}$	$8.944/f^{0.5}$	6
48-300	22.06	0.05852	1.291	6
300-6000	$3.142 f^{0.3417}$	$0.008335 f^{0.3417}$	$0.02619f^{0.6834}$	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	616000/ f 1.2
150000-300000	$0.158 f^{0.5}$	$4.21 \times 10^{-4} f^{0.5}$	6.67 x 10 ⁻⁵ f	616000/ f 1.2

Note: f is frequency in MHz.

F= Frequency in MHz

Friis Formula

Friis transmission formula: Pd = (Pout*G)/(4*pi*r2)

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 0.540 mW/cm² for 2.4GHz. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

^{*}Based on nerve stimulation (NS).

^{**} Based on specific absorption rate (SAR).

Report No: 1782158R-RF-US-P20V01

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18°C and 78% RH.

1.3. Test Result of RF Exposure Evaluation

Product	:	LED Lamp
Test Item	:	RF Exposure Evaluation
Test Site	:	AC-6

Antenna Information:

Antenna manufacturer	N/A						
Antenna Delivery	\boxtimes	1*TX+1*RX					
Antenna technology	\boxtimes	SISO					
		MIMO		Basic			
				CDD			
				Beam-forming			
Antenna Type		External] Dipole			
		Internal		PIFA			
			\boxtimes	PCB			
				Ceramic Chip Antenna			
				Metal plate type F antenna			
Antenna Gain	-1.22	2dBi					

• Power Density:

The tune-up power is $\pm 0.5 dB$, so the maximum conducted power we used to calculate RF exposure is 9.06dBm.

Test Mode			Limit of Power		Daniel Daniel Land	
	Frequency Band	EIRP	Density		Power Density at $R = 20 \text{ cm}$ (mW/cm^2)	
	(MHz)	(dBm)	S(mW/cm ²)			
			FCC	IC	(mvv/cm)	
Zigbee	2400 ~ 2483.5	7.84	1	0.54	0.00121	

		_		_	
ľ	N١	n	١Т	Δ	•

1. The power density is 0.00121mW/cm ² for LED Lamp without any other radio equipment	nt.
The End	