PONTIFÍCIA UNIVERSIDADE CATÓLICA DE CAMPINAS

GUILHERME HENRIQUE MOREIRA KAIQUE SOARES PEREIRA MARCELO ZARPELON MURILLO IAMARINO CARAVITA RAFAEL HENRIQUE DOS SANTOS INÁCIO

RELATÓRIO DE PROJETO: <SISTEMA DE SUSTENTABILIDADE>

> CAMPINAS - SP 2025

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE CAMPINAS ESCOLA POLITÉCNICA ENGENHARIA DE SOFTWARE

GUILHERME HENRIQUE MOREIRA

KAIQUE SOARES PEREIRA

MARCELO ZARPELON

MURILLO IAMARINO CARAVITA

RAFAEL HENRIQUE DOS SANTOS INÁCIO

RELATÓRIO DE PROJETO: <SISTEMA DE SUSTENTABILIDADE>

Relatório de projeto de sistema, apresentado no componente curricular Projeto Integrador I, do Curso de Engenharia de Software, da Escola Politécnica da Pontifícia Universidade Católica de Campinas.

Orientador: Prof. Dr. André Mendeleck

CAMPINAS 2025

SUMÁRIO

1. INTRODUÇÃO	1
2. JUSTIFICATIVA	1
3. OBJETIVOS	2
4. ESCOPO	3
5. NÃO ESCOPO	3
6. DIAGRAMA GERAL	4
7. REQUISITOS FUNCIONAIS	5
8. REQUISITOS NÃO FUNCIONAIS	8
9. PONDERAÇÃO	8
10. CRONOGRAMA	9
11. METODOLOGIA APLICADA	9
12. ACOMPANHAMENTO DA GESTÃO DO PROJETO	10
13. PREMISSAS	10
14. RESTRIÇÕES	11

1. INTRODUÇÃO

Diante os impactos ambientais que vêm sido alertados nos últimos anos por diversas instituições voltadas para a preservação ambiental, a preocupação com a sustentabilidade tem ganhado bastante destaque na mídia e no cotidiano das pessoas. No entanto, diversas pessoas enfrentam dificuldades para entender o impacto de seus hábitos diários no meio ambiente, seja por meio do consumo de água e energia de forma exagerada, na geração de resíduos não recicláveis, descarte incorreto ou na escolha do meio de transporte.

O cenário apresentado acima ressalta a necessidade de uma ferramenta acessível que permita aos usuários monitorar e visualizar seu desempenho sustentável de maneira prática e intuitiva surge na sociedade. Tal ferramenta, se torna uma demanda importante para a compreensão e conscientização social sobre os impactos causados.

Este trabalho apresenta, visando conscientizar e mitigar os impactos causados ao meio ambiente, o desenvolvimento de uma aplicação prática que coleta dados inseridos pelo usuário, analisando seu consumo diário e fornecendo um resumo detalhado por meio de gráficos e indicadores do nível de sustentabilidade. O principal objetivo desse projeto é proporcionar uma experiência informativa que incentive mudanças positivas, permitindo que cada indivíduo compreenda melhor seu impacto ambiental e tome decisões mais conscientes para um futuro sustentável.

2. JUSTIFICATIVA

Grande parte das pessoas desconhece o impacto ambiental gerado por seus hábitos diários, dificultando com que muitos indivíduos façam mudanças conscientes em seu comportamento. De acordo com uma pesquisa da G1, o Índice de Desempenho Ambiental leva em conta 40 indicadores que mostram como os países estão melhorando a saúde de seu meio ambiente, progredindo na proteção de seus ecossistemas e tornando menos intensas as mudanças climáticas.

O Brasil ficou na posição de número 81. O que pesou na nota baixa foram alguns indicadores que tiveram os desempenhos mais baixos do planeta. Entre eles, o quarto pior do mundo em reciclagem e o nono pior em emissão de gases do efeito estufa.

Portanto, nossa equipe tomou a iniciativa de criar este projeto para ajudar as pessoas a adotarem hábitos mais sustentáveis, oferecendo um sistema que monitora o consumo diário e gera relatórios interativos, para conscientizar os usuários e incentivá-los a adotar hábitos mais responsáveis para um futuro sustentável.

3. OBJETIVOS

Objetivo geral:

Criar uma aplicação que possa compilar dados e parâmetros inseridos pelo usuário para verificar e concluir nível de sustentabilidade por meio da linguagem de programação Python e, possivelmente, com a framework front-end React Native.

Objetivos específicos:

- Cadastrar os dados inseridos pelo usuário em um banco de dados via Python e a MySQL;
- Criação de uma interface intuitiva para o usuário com a framework React Native;
- Apresentar gráficos das relações dos dados em comparação com os dados enviados pelo usuário;
- Auxiliar o usuário em decisões com base nos relatórios e gráficos para que as decisões sejam efetivadas de forma sustentáveis e financeiramente eficientes.
- Permitir a exportação dos dados via PDF

4. ESCOPO

O objetivo do projeto é desenvolver uma aplicação prática que coleta dados inseridos pelo usuário como a quantidade diária de água consumida, kWh (quilowatt-hora) consumidos, resíduos recicláveis e não recicláveis gerados e qual meio de transporte usado no dia. Após coletar todos os dados relevantes para o apontamento do status de sustentabilidade por item individual, aparecerá na tela uma conta geral de todos os itens, gráficos e um resumo do status de sustentabilidade do usuário.

Requisitos como data e hora não serão inseridos pelo usuário, fornecido diretamente pelo sistema, além disso, o sistema poderá salvar os dados inseridos pelo usuário e dados importantes para a identificação e separação de informações, como data, hora, cada item individual calculado e inserido e conta geral para fim de consulta por parte do usuário. Para acessar o banco de dados, será necessário um sistema de cadastro com login e senha, visando garantir a segurança e privacidade dos dados.

5. NÃO ESCOPO

- Anexo de arquivos
- Exclusão de dados já cadastrados.
- Integração com dispositivos IoT.
- Monitoramento em tempo real.
- Comparação com outros modelos ou usuários.
- Suporte de múltiplos perfis no mesmo login.
- Integração com Redes Sociais e Gamificação.
- Marketplace

6. DIAGRAMA GERAL

7. REQUISITOS FUNCIONAIS

RF_F1 - Cadastro de Usuários

Descrição:

Quando o usuário acessar o sistema, ele poderá se cadastrar ou fazer login. Uma vez autenticado, ele poderá escolher entre consultar dados já coletados sobre sustentabilidade ou inserir novos dados.

Ator principal:

Cliente.

Pré-condições:

O usuário precisa ter acesso a um computador, notebook ou celular com internet.

Validações:

- Números positivos e sem letras nos campos numéricos.
- E-mail válido para cadastro.
- Senha com critérios mínimos de segurança.

Fluxo principal:

Ações do Ator	Ações do Sistema
Acessa a tela inicial do sistema	Exibir tela de cadastro/login
Insere dados de cadastro ou login	Validar credenciais do usuário
Se novo usuário, insere dados para cadastro	Criar conta e armazenar no banco de dados
Se usuário já cadastrado, insere login e senha	Autenticar e redirecionar para o menu principal
Escolhe ação no menu principal	Exibir opções: consultar dados ou inserir novos dados

RF_F2 – Registro de Consumo (Coleta de Dados)

Descrição:

O sistema deve permitir que os usuários registrem seus consumos de água (L), energia (kWh), quantidade de lixo reciclável e uso de transporte (tipo de transporte e km percorridos).

Fluxo principal:

Ações do Ator	Ações do Sistema
Acessa a tela de registro de consumo	Exibir formulário para inserção de dados
Insere valores de consumo	Validar os dados informados
Confirma envio dos dados	Armazenar no banco de dados

RF_F3 - Armazenamento e Gestão dos Dados

Descrição:

O sistema deve validar os dados inseridos pelo usuário e armazená-los em um banco de dados, permitindo edição e exclusão posteriormente.

Fluxo principal:

Ações do Ator	Ações do Sistema
Insere novos dados	Validar e armazenar os dados
Edita informações registradas	Atualizar os dados e salvar a versão editada
Exclui um dado específico	Remover do banco de dados e reorganizar

RF_F4 - Gerar Estatísticas

Descrição:

O sistema deve gerar relatórios e gráficos para visualização das informações coletadas, fornecendo insights sobre os dados registrados.

Fluxo principal:

Ações do Ator	Ações do Sistema		
Acessa a área de estatísticas	Consultar os dados armazenados		
Solicita visualização de relatórios	Gerar tabelas e gráficos		
Analisa métricas de consumo	Exibir médias e comparações		

CASO DE USO: RF_F5 – Incentivo à Sustentabilidade / Alertas

Descrição:

O sistema deve incentivar hábitos sustentáveis através de metas e alertas. Se o usuário alcançar metas de sustentabilidade, poderá receber recompensas (como selos virtuais). Também serão enviados lembretes para ajudar a manter bons hábitos.

Fluxo principal:

Ações do Ator	Ações do Sistema			
Consulta situação de sustentabilidade	Exibir progresso e metas atingidas			
Atinge metas de consumo consciente	Gerar recompensas e registrar no perfil			
Fica abaixo da meta estabelecida	Enviar alertas e sugestões de melhoria			

8. REQUISITOS NÃO FUNCIONAIS

RN_01 - Desempenho

O sistema deve ser capaz de processar e exibir dados em tempo real, com o tempo de resposta possível, sendo menor que 2 segundos.

RN_02 - Compatibilidade

O software deve ser compatível com os principais sistemas operacionais (Windows, macOS, Linux, iOS, Android).

RN 03 - Segurança

O sistema deve garantir aos usuários a segurança de seus dados cadastrados através de criptografia.

RN 04 - Manutenibilidade

O código-fonte deve ser modular, bem documentado e com comentários para facilitar a manutenção e atualizações futuras.

9. PONDERAÇÃO

O projeto será produzido na linguagem de programação Python, prototipado na plataforma de design gráfico Canva e seu front-end será gerado com a biblioteca Tkinter (a interface padrão da linguagem de programação Python baseada em Tcl/Tk).

O usuário introduzirá no sistema valores como o consumo de água, energia elétrica e peso de lixo não-recicláveis e o tipo de transporte primariamente usado pelo cliente. O utilizador há de obter esses dados para inserir no sistema através de registros de água, verificações da conta de luz, e separação do lixo não-reciclável com pesagens para advir o peso.

Tendo esses dados, o sistema, com uma série de cálculos e testes com os dados providos, definirá o nível de sustentabilidade do usuário e retornará um relatório, junto com gráficos e estatísticas para comparação.

10. CRONOGRAMA

2025	10/02 - 16/02	17/02 - 23/02	24/02 - 02/03	03/03 - 09/03	10/03 - 18/03	19/03 - 25/03	26/03 - 01/04	02/04 - 08/04
ITENS								
Requisitos Apresentar Problema	mor	WW						
Proposta do protótipo		WW						
Detalhar Funcionalidades			WW					
Análise do modelo				WW				
Relatórios					WW	WW		WW
Programação FrontEnd						WW		
Programação BackEnd							WW	
Testes							WW	
Banco de dados								WW
Revisão								WW
Entrega Projeto								MNV

11. METODOLOGIA APLICADA AO PROJETO

O grupo 8 aplicou uma metodologia por etapas no processo de desenvolvimento do presente projeto, como por exemplo: Pesquisa, Prototipação, Documentação, Desenvolvimento, Revisão e Finalização. Através desses passos, o projeto foi refinado e adequado às instruções do professor, a seguir, o detalhamento dos passos seguidos:

Pesquisa - durante a pesquisa, o time se encarregou de buscar dados para se informar das necessidades para o funcionamento do projeto de forma consistente.

Prototipação - através da plataforma de design gráfico Canva, o grupo criou uma série de telas para exemplificar, prototipar e preparar o desenvolvimento da parte gráfica do projeto (front-end).

Documentação - já tendo em mente o que seria necessário para a produção do sistema, o time, através do presente relatório descreveu a produção do projeto, de forma extremamente detalhada.

Desenvolvimento - após a produção de todos os passos citados até agora, o time seguiu em frente com o projeto, com o desenvolvimento em Python e MySQL

Revisão - durante as reuniões com o professor, foi informado as necessidades de melhorias, tanto no relatório, quanto na programação do sistema. Tendo esses feedbacks, o time levou-os em conta e alterou o projeto de acordo.

Finalização - com tudo praticamente pronto, o grupo tomou o tempo de polir o projeto para que a experiência do usuário seja ideal.

12. ACOMPANHAMENTO DA GESTÃO DO PROJETO

https://trello.com/b/g7kftRdf/projeto-sustentabilidade

13. PREMISSAS

- O usuário conseguirá os dados de quantidade diária de água consumida, kWh consumidos, resíduos não recicláveis e meio de transporte utilizado no dia para a inserção no sistema.
- A aplicação irá automaticamente registrar a data e hora em que os dados foram inseridos, sem intervenção do usuário.
- A aplicação calculará individualmente o status de sustentabilidade para cada item coletado.

 Para acessar e armazenar os dados, será necessário um sistema de cadastro com login e senha para garantir a segurança e privacidade das informações do usuário.

14. RESTRIÇÕES

- O usuário deve cadastrar os dados dentro de faixas pré-definidas, um valor plausível para cada categoria
- Para utilização do sistema o usuário precisará possuir um computador ou celular para baixar o aplicativo e ter acesso a todas as funcionalidades disponíveis
- O projeto será executado com prazo até a data de 08/06/2024