

Fig. 1

Fig. 2A

Fig. 2B

Fig. 3

Fig. 4

Fig. 5

Fig. 6A

Fig. 6B

Expression of P501S by the Baculovirus Expression System

0.6 million high 5 cells in 6-well plate were infected with an unrelated control virus BV/ECD_PD (lane 2), without virus (lane 3), or with recombinant baculovirus for P501 at different MOIs (lane 4 – 8). Cell lysates were run on SDS-PAGE under the reducing conditions and analyzed by Western blot with a monoclonal antibody against P501S (P501S-10E3-G4D3). Lane 1 is the biotinylated protein molecular weight marker (BioLabs).

Fig. 7

Figure 8. Mapping of the epitope recognized by 10E3-G4-D3

Fig. 8

7

Figure 1. Schematic of p501S with predicted transmembrane, cytoplasmic, and extracellular regions

Transmembrane domain: **AQHLYNLITLQYVCLAVGIVYVPPPLTLEEVVVEKEMTAVIVLGICPVLGLYCYPLQLAS**
Extracellular domain: **DWYKCRVIRRRL** **EYWALSIQQLSLQIPIRAGWL** **AGLACCTPPIPE** **TAALIIGVGLDCCGVCFTPL**
FATLSLTFRDPDHCWQ **A YSYVVALMISLGICQVNLPAI** **DWYTSVLAQVTCQEE**
CHPGLATLPLTLYVANILLY **AKFCAATCIPPTTAAATGSSAATSPHICPPIRARTAFRNIGAIJPRL**
WTCVCAATPRTTAA **LTVYALCFCSSWMAI** **MFLTTIYVTTIP** **VGIGIYQVYVTPAPECETLARMLYDGYR**
MGSIGLHQCASLVSFLYVN **DRIVVQRCRTRAVVIAAS** **VAMMPYAAQATCLSISYAYVIA** **SAA**
LGQGIVSALQDLYPLASLY **HREKQVFLPKYRGDCASSEDSI** **MTSYFJPGPKPAPFNCIVGAGCSGL**
IPPPPPPACGASSACDVSVRVAVVAHPTTCAEARVVPKRC **I.L.L.H.MAHSVPLLSQVAPSLL** **MGSIVQLSQS**
VPAVMMVSAAGLGLVALYFAT **QVVFDRKSDLA** **YSA**

Underlined sequence: Predicted transmembrane domain; **Bold sequence:** Predicted extracellular domain;
Italic sequence: Predicted intracellular domain. Sequence in bold/underlined used to generate polyclonal rabbit serum

Localization of domains predicted using TMNTOP (C.I.B. Chisnallay and I. Simon (1998) Principles Governing Amino Acid Composition of Integral Membrane Proteins: Applications to topology Prediction. *J. Mol. Biol.*, 283, 489-506).

Genomic Map of (5) Corixa Candidate Genes

Fig. 10

FIGURE 4. Elisa assay of rabbit polyclonal antibody specificity

Fig. 11

10 20 30 40 50 60 70
 GTCACTTAGGAAAAGGTGTCTTCGGGCAGCCGGGCTCAGCATGAGGAACAGAAGGAATGACACTCTGG 70
 ACAGCACCCGGACCCCTGTACTCCAGCGCGTCTGGAGCACAGACTTGTCTTACACTGAAAGCGACTTGGT 140
 GAATTTATTCAAGCAAATTAAAGAAACGAGAATGTGTCTTACCAAAAGATTCCAAGGCCACGGAG 210
 AATGTGTGCAAGTGTGGCTATGCCAGAGCCAGCACATGGAAGGCACCCAGATCAACCAAAGTGAGAAAT 280
 GGAACATACAAGAAACACACCAAGGAATTCTACCGACGCCCTTGGGGATATTAGTTGAGACACTGGG 350
 360 370 380 390 400 410 420
 GAAGAAAGGGAAAGTATATACTGTCTGTCTGCACACGGACCGGGAAATCCTTACGAGCTGCTGACCCAG 420
 CACTGGCACCTGAAAAACACCAACCTGGTCATTTCTGTGACCGGGGGCGCCAAGAACCTTCGCCCTGAAGC 490
 CGCGCATGCCAAGATCTCAGCCGGCTCATCTACATCGCGCAGTCCAAAGGTGCTTGGATTCTCACGGG 560
 AGGCACCCATTATGGCCTGACGAAGTACATCGGGAGGTGGTGGAGAGATAACACCATCAGCAGGAGTTCA 630
 GAGGAGAATATTGTGGCATTGGCATAGCAGCTTGGGCATGGTCTCCAAACCGGGAAJACCCCTCATCAGGA 700
 710 720 730 740 750 760 770
 ATTGGCGATGCTGAGGGCTATTTTTAGCCCCAGTACCTTATGGATGACTTCACAAGGGATCCACTGTATAT 770
 CCTGGACACACACACACACACATTTGCTGCTGGTGGACAAATGGCTGCTGAGACATCCCACTGCTGAAAGCA 840
 AAGCTCCGGAAATCAGCTAGAGAAGCATACTCTGAGGCACTATTCAAGATTCACACTATGGTGGCAAGA 910
 TCCCCATTGTGTGTTTGCCCCAGGAGGTGGAAAGAGAGACTTGAAGAGCCATCAATACCTECATCAAAAAA 980
 TAAAATTCCTTGTGTGGTGGTGGAGGGCTCGGGCGGATCGCTGATGTGATGCTAGCCTGGTGGAGGTG 1050
 1060 1070 1080 1090 1100 1110 1120
 GAGGATGCCCGACATCTTCTGCCGTCAAGGAGAAGCTGGTGGCTTTTACCCCGCACGGTGTCCC 1120
 TGTCTGAGGGAGGAGACTGAGAGTTGGATCAAATGGCTAAAGAAATTCTGCAATGTTCTCACCTATTAAAC 1190
 AGTTATTAAATGAGAAGAGCTGGGATGAAATTGTGAGCAATGCCATCTCTACGCTCTATACAAAGC 1260
 TTCAGCACCAGTGAGCAAGACAAGGATAACTGGAACTGGCAGCTGAGCTTCTGAGTGGAGCTGGAGCTGG 1330
 TGGACTTAGCCAATGATGAGATTTACCCATGACCGGAGTGGAGTCTGCTGACCTTCAGAAGTCAT 1400
 1410 1420 1430 1440 1450 1460 1470
 GTTTACGGCTCTCATAAAGGAGAGACCCAAAGTTCTGGCTCTTCTGGAGAACATGGCTTGAAACCTACGG 1470
 AAAGTTCTCACCCATGATGCTCACTGAACTTCTCCAAACCCACTTCAGCACGCTTGTGACCGGAATC 1540
 TGCGAGATGCCAAGAAATTCTATAATGATGCGCTCTGAGCTTGTGGAAACTGGTTGCGAACTTCCG 1610
 AAGAGGCTTCCGGAAAGGAAGGAGAGAAATGGCCGGGAGAGAGATGGAGACATAGAAGCTCCACGACSTGCTCT 1680
 ATTACTCGGCACCCCTGCAAGCTCTTCACTGCGCATTCTCAGAAATAGAAGGAAGTCTCCAAAG 1750
 1760 1770 1780 1790 1800 1810 1820
 TCATTTGGGAGGAGAACAGGGGCTGCACTCTGGCAGCCCTGCGACCCAGCAAGCTTCTGAAGACTCTGGC 1820
 CAAAGTGGAGAACAGACATCAATGCTGCTGGGGAGTCTGGAGGAGCTGGCTAATGAGTACGAGACCCGGCT 1890
 GTTGAGCTGTTCACTGAGTGTACAGCAGCGATGAGACTTGGCAGAACAGCTGGTCTATTCTGTG 1960
 AAGCTTGGGCTGGAAAGCAACTGCTGGAGCTGGCGGGTGGAGGGAGAGACCCAGTTCACCGCCAGCC 2030
 TGGGGCTCAGPATTTCTTCAAGCAATGGTACGGAGAGATTCTGGAGAGACCCAGAACAGAACTGGAGATT 2100

Fig. 12A (1)

2110 2120 2130 2140 2150 2160 2170
 TCCGTGCTGTTATTATACCGTGGTGGCTGTGGCTTGTATCATTAGGA 2170
 AGCACAAAGAAGCTGCTTGGTACTATGTGGCTTCTCACCTCCCCCTTCGTGGCTCTCTGGAAATGT 2240
 GGTCTTCTACATGCCCTCTCTGCTGTTGCCTACGTCTGCTCATGGATTCCATTGGTGCACAC 2310
 CCCCCCGAGCTGCTCTGTACTCCCTGGCTTGTGATGAAGTCAGACAGTGGTACCTAA 2380
 ATGGGGTGAATTATTTACTGACCTGTGGAATGTGATGGACACGCTGGGCTTTTACTTCATAGCAGG 2450
 2460 2470 2480 2490 2500 2510 2520
 AATTGTATTTCGGCTCCACTCTTCTAATAAAAGCTTTGTATTCTGGACAGTCATTCTGTCTGGAC 2520
 TACATTATTTCACTCTAACGATTGATCCACATTCTTACTGTAAGCAGAAACTTAGGACCCAAGATTATAA 2590
 TGCTGCAGAGAGAIGCTGATCGATGTGTCTCTCTCTTGCGGTGTGGATGGTGGCCTTGG 2660
 CGTGGCCAGGCAAGGGATCTTAGGCAGAATGAGCAGGCTGGAGGTGGATATTCCGTTGGTCATCTAC 2730
 GAGCCCTACCTGGCCATGTTGCCAGGTGCCAGTGACGTGGATGGTACACSTATGACTTGCCCAC 2800
 2810 2820 2830 2840 2850 2860 2870
 GCACCTTCACTGGGAATGAGTCCAAGCCACTGTGTGGAGCTGGATGAGCACACCTGCCCGGTTCCC 2870
 CGAGTGGATCACCATCCCCCTGGTGTGCATCTACATGTTATCCACCAACATCTGCTGGTCAACCTGCTG 2940
 GTGGCATGTTGGCTACACGGTGGCACCGTCCAGGAGAACATGACCAGGTGTGGAAAGTTCAGAGGT 3010
 ACTTCTGGTGCAGBAGTACTGCAGCCCTCAATATCCCCCTCATCGTCTTGGCTTACTTCTA 3080
 CATGGTGGTGAAGAAGTGTCTAACGTTGCAAGGAGAAAAACATGGAGTCTCTGTCTGTTTC 3150
 3160 3170 3180 3190 3200 3210 3220
 AAAAGAAAGACAAATGAGACTCTGGCATGGGAGGTTCTGAAAGGAAACACTACCTGTGCPAGATCAACA 3220
 CAAAAGCCAAAGAACCTGAGAGGAAATGAGGCATGATTAGAGCAACTGGATACAAAGCTTAATGATCT 3290
 CAAGGGCTTCTGAAAGAGATTGCTTAATAAATCAAATGAAACTGATGGAGAACATGGAGAAAATC 3360
 TAATTATAGGAGATCATATAAGGAATGCTGATGAAACATTGGCTATCGACTACTAAATGAGAGATT 3430
 TCAGACCCCTGGCTACATGGGATGATTAAATCACCTTAGTGTGCTGAGACCTTGAGAATAAGTGT 3500
 3510 3520 3530 3540 3550 3560 3570
 GTGATTGGTTCAACTGAAAGACGGATATAAGGAAGAATATTTCTTATGTGTTCTCCAGAATGGT 3570
 GOCTGTTCTCTGTGTCTCAATGGCTGGGACTGGAGGTTGATAGTTAAGTGTGTTCTAACGGCTCC 3640
 TTTTCTTCTAATCTTATTTGATGAACACATAATAGGAGAACATGATCTGAAATAAGAACCTGG 3710
 TCATGCTTACTCTGTATTGTTATTGCTATTCCAAATTGATTCTCTACTTTCCCTTTTGTT 3780
 ATGTGACTAATTAGTGGCATATTGTTAAAGCTCTCAAAATTAGGCCAGATTCTAAACATGTCAGC 3850
 3860 3870 3880 3890 3900 3910 3920
 AAGAGGACCCCGCTCTTCAAGGAAAGTGTCTTCACTGCTTCAGGATGCTTACCTGTCAAGGGAGGT 3920
 GACAGGGAGTCTCTTGTCTCTGGACTGACGAGGCTCTATTGAGGAACCAACCCCTTCTAAATA 3990
 TGTGAAAAGTCGCCAAATGCAACCTGAAAGGCACCTGACTCTTCTTATGGATACTCTCTT 4060
 TTTATTATTTCTGATTAATGAGCTGGCTATTATAGAAAATTAGACCATACAGAGATGTAGAAA 4130
 GAACATAAAATTGTCGCCATTACCTTAAGGTACTGCTAACAAATTCTGGATGGTTTCAAGTCTAT 4200
 4210 4220 4230 4240 4250 4260 4270
 TTTTTCTATGATGTCATTTCTTCAAAATTACAGAATGTTATCATACTACATATACTTT 4270
 TTATGTAAGCTTTCTACTTAGTATTCTCAAAATTGTTATTATATTCTAGGCTCTAAACATT 4340
 ATATCAATAATTGCAATTAAGGCAACCTGAGGATTAACATAATTGCTCATGAGGCTATCTCCAG 4410
 TTGATCATGGGATGAGCATTGTCGATGAAATGCTATTGCTGTATTGGGAAATTCTCAAGGTTAG 4480
 ATTGCAATAAAATTGTTATTATTAATGAAATTGAGGTTATTGTTAAACCAATTATGAGGT 4550

Fig. 12A(2)

4560 4570 4580 4590 4600 4610 4620

TTTCTATAAATGTATAGCAAATAATTATTAACCTGAGCATAAGATATGAGATTGAAACCTGAACT 4620
ATTAATAAATAAAATTATATTTCTAGTTAAGAAGAAGTCATAATATGCTTAAATATTATGGAT 4690
GGTGGGCAGATCACTTGAGGTCAGGAGTCAGGCCAACATGGCAAAACCACATCTCTACT 4760
AAAAATAAAAAAAATTAGCTGGGTGTGGTGCACCTGTAAATCCCAGCTACTCAGAAGGCTGAGGTAC 4830
AAGAATTGCTGGAACCTGGGAGGGCGGAGGTTGCAGTGAACCAAGATTGCACCACTGCACCTCCAGCCGGGG 4900

4910 4920 4930 4940 4950 4960 4970

TGACAGAGTGGAGACTCCGACTGAAAATAAAATAAAATAAAATAAAATAAAATAAAATAATTTATGG 4970
ATGGTGAGGGAATGGTATAGAATTGGAGAGATTATCTTACTGAACACCTGTAGTCCCAGCTTCTCTGG 5040
AAGTGGTGGTATTGAGCACAGGATGTGCACAAGGCATTGAAATGCCATAATTAGTTCTCAGCTTGAA 5110
TACACTATAAACTCAGTGGCTGAAGGGAGGAATTTTAGAAGGAAGCTACTAAAAGATCTAATTGAAAAA 5180
CTACAAAAGCATTAACAAAAAAAGTTATTTCTTTGTCTGGCAGTAGTGAAGATAAACTACTCACAA 5250

5260 5270 5280 5290 5300 5310 5320

CATTCACTATGTTGCAAGGAATTAACACAAATAAAAGATGCCTTTACTTAAACGCCAAGACAGAAAA 5320
CTTGCCTAAACTGAGAACGAAACTTGCAATTAGAGAGGGAACTGTAAATGTTCAACCCAGTTCATCTG 5390
GTGGATTTTSCAGGTACTCTGAGAATTGCTTATGAAAAATCATTATTTTAGTGTAGTTACAA 5460
TAATGTATTGAACATACTCTAATCAAAGGTGCTATGCTTGTATGGTACTAAATGTGTCTGTGT 5530
CTTTGCAACACTGAGAACCTGCGGCTTGGTTATGAGTGTGTATGAAATAAAATAATGGAGGAAT 5600

5610 5620 5630 5640 5650 5660 5670

GTCAAAAAAAAAATAAAAAAATAAAAAATAAAAAATAAAAAATAAAAAATAAAAAATAAAAAATAAAAAAT 5668

Fig. 12A(3)

10 20 30 40 50 60 70
 MRNRRNDTLDOSTRTLYSSASRST [REDACTED] SESDLVNF IOANFKKRECYFFT KDSKAT [REDACTED] CKCGYAQSQHME 70
 GTQINOSEKWNYKKHTKEFTPDAF [REDACTED] QFETLGKGKYIRLSCDADAEILYELLTWHLKTPNLVISVT 140
 GGAKNFAALKPRMRKIFSRLIYIAOSKGAWILTGGTHYGLTKYIGEVVRONTISRSSEENIVAIIGIAAWGM 210
 VSNRDTLIRNCDAEGYFLAOYLMDDFTRDPLYCLDNHHHLVVNGCHGHTVEAKLRNQLEKHISERT 280
 IODSNYGGKIPIVCFAQGGGKETLKAINTSIKIKIPCYVVEGSGRIADVIASLVEVEDAPTSSAVKEKLV 350
 360 370 380 390 400 410 420
 RFLPRTVSRLSEEETESWIKWLKEILECSHLLTVKMEAGDEIYSNAISYALYKAFSTSEQDKDNWNGO 420
 LKLLLEWNOLDLANCIFTNDRRWESADLOEVMFTALIKDRPKFYRLFLENGLNLRKFLTHOVLTEFSN 490
 HFSTLVYRNGLIAKNSYNODALLTFVWKLVANFRRGFRKEDRNGRDEMELHGVSPITRHPLQALFIWAI 560
 LONKKELSKVIWECTRGCTLAALGASKLLKTLAKYKNODINAAGSEELANEYETRAVELFTECYSSDEDL 630
 AEQLLVYSCEAWGESNCLEAYEATDOHFTAOPGVONFLSKQWYGEISRDTKNWKIIICLFIIPLYVGCF 700
 710 720 730 740 750 760 770
 VSFRKKPVCKHKLLWYYVAFFTSPFVVFWSNWVYFYIAFLLLFAYVLLMDFHSVPHPPELVLYSLVLF 770
 CDEYROWYVNGVNYFTDLWNVMOTLGLFYFAGIVFRHSSNKSSLYSGRYFCLOYIFTLRLITHIFTV 840
 SRNLGPKIIMLORMLIDVFFFIFLFAVWMVAFGVARCGILRONEGRWRWIFRSVIYEPEYLAMFGQVPSDV 910
 DGTTYDFAHCTFTGNESKPLCVELDEHNLPRFPEWITIPLVCIYMLSTNILLVNLLVAMFGYTVGTGEN 980
 NDCVWKFCRYFLVDEYCSRLNIPFPFTVFLYFMYVKKCFKCCCKEKNMESSVCCFKNEDNETLAWEGVM 1050
 1060 1070 1080 1090 1100 1110 1120
 [REDACTED]
 KENYLVKINTKANDTSEEMRHRFROLDTKUNDLXGLKEIANKIK. 1096

Fig. 12B