S. Christensen

P. Le Borne, B. Schroeter, B. Schultz

Sheet QF08P

Mathematical Finance: QF

In-Tutorial exercises (for discussion on Tuesday, 19/12/2023)

In-Tutorial Exercise 1. Consider the process $X = (X_0, X_1, X_2)$ given by the following tree:

Further, define the random variables

$$\tau_1 = 1$$
 and $\tau_2(\omega) = \begin{cases}
1, & \omega = \omega_1 \\
2, & \omega = \omega_2 \\
0, & \omega = \omega_3 \\
1, & \omega = \omega_4
\end{cases}$

- a) Determine the natural filtration $\mathcal{F} = (\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2)$ of the process X.
- b) Are τ_1 and τ_2 stopping times w.r.t. to \mathcal{F} ? Prove your claims.
- c) Determine the values of X_{τ_1} and X_{τ_2} .
- d) Calculate the stopped processes X^{τ_1} and X^{τ_2} and represent each in a separate tree.
- e) Calculate the Snell envelope of the process X.
- f) Determine the random variables τ_f and τ_s from Thm. 6.2. for n=0. Further, calculate the condition expectations $E(T_{\tau_f}|\mathcal{F}_i)$ and $E(X_{\tau_s}|\mathcal{F}_i)$ for i=1,2.