

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008

QUÍMICA

TEMA 5: EQUILIBRIO QUÍMICO

- Reserva 1, Ejercicio 6, Opción A
- Reserva 2, Ejercicio 3, Opción A
- Reserva 2, Ejercicio 6, Opción B
- Reserva 3, Ejercicio 3, Opción A
- Reserva 3, Ejercicio 5, Opción B
- Reserva 4, Ejercicio 3, Opción A
- Reserva 4, Ejercicio 5, Opción B
- Septiembre, Ejercicio 3, Opción B
- Septiembre, Ejercicio 6, Opción B

Para el proceso Haber:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

el valor de K_p es $1'45 \cdot 10^{-5}$, a 500°C. En una mezcla en equilibrio de los tres gases, a esa temperatura, la presión parcial de H_2 es 0'928 atmósferas y la de N_2 es 0'432 atmósferas. Calcule:

a) La presión total en el equilibrio.

b) El valor de la constante K_c .

Datos: $R = 0'082 \text{ atm} \cdot L \cdot K^{-1} \cdot \text{mol}^{-1}$.

QUÍMICA. 2008. RESERVA 1 EJERCICIO 6 OPCIÓN A

RESOLUCIÓN

a)
$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

$$K_{p} = \frac{P_{NH_{3}}^{2}}{P_{N_{2}} \cdot P_{H_{2}}^{3}} \Longrightarrow P_{NH_{3}} = \sqrt{1'45 \cdot 10^{-5} \cdot 0'432 \cdot (0'928)^{3}} = 2'23 \cdot 10^{-3} \text{ atm}$$

$$P_{T} = P_{NH_{3}} + P_{N_{2}} + P_{H_{2}} = 2'23 \cdot 10^{-3} + 0'432 + 0'928 = 1'362 \text{ atm}$$

b)
$$K_c = K_p \cdot (RT)^{-\Delta n} = 1'45 \cdot 10^{-5} \cdot (0'082 \cdot 773)^2 = 0'058 \text{ mol}^{-2} \cdot L^2$$

Al calentar cloruro de amonio en un recipiente cerrado se establece el siguiente equilibrio:

 $NH_4Cl(s) \rightleftharpoons HCl(g) + NH_3(g)$

Justifique cómo afectará a la posición del equilibrio:

- a) Una disminución de la presión total.
- b) La extracción de amoniaco del recipiente.
- c) La adición de NH 4Cl sólido.

QUÍMICA. 2008. RESERVA 2 EJERCICIO 3. OPCIÓN A

RESOLUCIÓN

El principio de Le Chatelier establece que si un sistema en equilibrio es perturbado mediante una acción exterior, este sistema evoluciona para contrarrestar dicha perturbación, llegando a un nuevo estado de equilibrio.

- a) Si se disminuye la presión total, el volumen debe aumentar, luego el equilibrio se desplaza hacia la derecha.
- b) Si se extrae amoniaco, el equilibrio se desplaza hacia la derecha.
- c) No ocurre nada, ya que el cloruro amónico es sólido y no altera el cociente de reacción.

El óxido de mercurio (II) contenido en un recipiente cerrado se descompone a $380\,^{\circ}\mathrm{C}$ según:

$$2 \text{HgO}(s) \rightleftharpoons 2 \text{Hg}(g) + O_2(g)$$

Sabiendo que a esa temperatura el valor de $\,{\rm K}_{\,{\rm p}}\,$ es 0'186, calcule:

- a) Las presiones parciales de O_2 y de Hg en el equilibrio.
- b) La presión total en el equilibrio y el valor de K_c a esa temperatura.

Dato: $R = 0'082 \text{ atm} \cdot L \cdot K^{-1} \cdot \text{mol}^{-1}$.

QUÍMICA. 2008. RESERVA 2 EJERCICIO 6. OPCIÓN B

RESOLUCIÓN

a) Como el óxido de mercurio se encuentra en estado sólido, entonces: $K_p = P_{Hg}^2 \cdot P_{O_2}$

Como en el equilibrio hay doble número de moles de mercurio que de oxigeno, la presión del mercurio será el doble, luego:

$$K_p = (2P_{O_2})^2 \cdot P_{O_2} = 4P_{O_2}^3 \Rightarrow P_{O_2} = \sqrt[3]{\frac{K_p}{4}} = \sqrt[3]{\frac{0'186}{4}} = 0'36 \text{ atm}$$

$$P_{Hg} = 2 \cdot P_{O_2} = 2 \cdot 0'36 = 0'72 \text{ atm}$$

b)
$$P_{T} = P_{Hg} + P_{O_{2}} = 0'72 + 0'36 = 1'08 \text{ atm}$$

$$K_c = K_p \cdot (RT)^{-\Delta n} = 0'186 \cdot (0'082 \cdot 653)^{-3} = 1'21 \cdot 10^{-6} \text{ mol}^3 \cdot L^{-3}$$

Escriba las expresiones de las constantes \mathbf{K}_{c} y \mathbf{K}_{p} y establezca la relación entre ambas para los siguientes equilibrios:

a) $CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$

b) $2\text{HgO}(s) \rightleftharpoons 2\text{Hg}(l) + O_2(g)$

QUÍMICA. 2008. RESERVA 3 EJERCICIO 3. OPCIÓN A

RESOLUCIÓN

a) Para el equilibrio: $CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$

$$\mathbf{K}_{c} = \frac{\left[\mathbf{COCl}_{2} \right]}{\left[\mathbf{CO} \right] \cdot \left[\mathbf{Cl}_{2} \right]}$$

$$\mathbf{K}_{p} = \frac{\mathbf{P}_{\text{COCl}_{2}}}{\mathbf{P}_{\text{CO}} \cdot \mathbf{P}_{\text{Cl}_{2}}}$$

$$K_c = K_p \cdot (RT)^{-\Delta n} = K_p \cdot (RT)^1$$

b) Para el equilibrio: $2 \text{HgO}(s) \rightleftharpoons 2 \text{Hg}(l) + \text{O}_2(g)$

$$\mathbf{K}_{\mathbf{c}} = \left[\mathbf{O}_{2}\right]$$

$$\mathbf{K}_{\mathbf{p}} = \mathbf{P}_{\mathbf{O}_2}$$

$$K_c = K_p \cdot (RT)^{-\Delta n} = K_p \cdot (RT)^{-1}$$

En un matraz de 7'5 litros, en el que se ha practicado previamente el vacío, se introducen 0'50 moles de H₂ y 0'50 moles de I₂ y se calienta a 448°C, estableciéndose el siguiente equilibrio:

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

Sabiendo que el valor de K_c es 50, calcule:

- a) La constante K_p a esa temperatura.
- b) La presión total y el número de moles de cada sustancia presente en el equilibrio. QUÍMICA. 2008. RESERVA 3 EJERCICIO 5. OPCIÓN B

RESOLUCIÓN

- a) Como $\Delta n = 0 \Longrightarrow K_c = K_p = 50$.
- b) El valor de la presión se puede calcular con el número total de moles (que será el mismo que inicialmente por ser $\Delta n = 0$), con la ecuación de los gases ideales:

$$P_{T} \cdot 7'5 = 1 \cdot 0'082 \cdot 721 \Longrightarrow P_{T} = 7'88 \text{ atm}$$

$$K_{c} = \frac{\left[HI\right]^{2}}{\left[H_{2}\right] \cdot \left[I_{2}\right]} = \frac{\left(\frac{2x}{7'5}\right)^{2}}{\left(\frac{0'5 - x}{7'5}\right) \cdot \left(\frac{0'5 - x}{7'5}\right)} = \frac{4x^{2}}{\left(0'5 - x\right)^{2}} = 50 \Rightarrow x = 0'39$$

moles de H_2 = moles de I_2 = 0'5 - 0'39 = 0'11

moles de HI = 2.0'39 = 0'78

Dado el equilibrio: $4HCl(g) + O_2(g) \rightleftharpoons 2H_2O(g) + 2Cl_2(g) \Delta H^0 = -115kJ$

Razone el efecto que tendrá sobre éste cada uno de los siguientes cambios:

- a) Aumentar la temperatura.
- b) Aumentar la presión total.
- c) Añadir un catalizador.

QUÍMICA. 2008. RESERVA 4. EJERCICIO 3. OPCIÓN A

RESOLUCIÓN

El principio de Le Chatelier dice: "Si un sistema en equilibrio es perturbado mediante una acción exterior, este sistema evoluciona para contrarrestar dicha perturbación, llegando a un nuevo estado de equilibrio".

- a) Un aumento de la temperatura desplazará la reacción en el sentido en que se consuma calor, es decir, en sentido endotérmico. Luego, se desplazará hacia la izquierda produciéndose más cloruro de hidrógeno y oxígeno.
- b) Si se aumenta la presión total, el equilibrio tratara de compensar este aumento desplazándose hacia donde menos moles de sustancias gaseosas existan. Es decir, hacia la derecha.
- c) Si se realiza la reacción en presencia de un catalizador se conseguirá que ésta transcurra más rápidamente pero no desplazará el equilibrio en ningún sentido.

Dado el equilibrio: $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$

Si la concentración inicial de HI es 0'1 M y cuando se alcanza el equilibrio, a 520° C, la concentración de H $_2$ es 0'01 M, calcule:

- a) La concentración de I $_{\rm 2}\,$ y de HI en el equilibrio.
- b) El valor de las constantes $\, {\bf K}_{\, {\bf c}} \, \, {\bf y} \, \, {\bf K}_{\, {\bf p}} \, \, {\bf a}$ esa temperatura.

QUÍMICA. 2008. RESERVA 4. EJERCICIO 5. OPCIÓN B

RESOLUCIÓN

a)

La concentración en el equilibrio de $\left[H_{2}\right] = x = 0'01$, luego:

[HI]=
$$0'1-2\cdot0'01=0'08$$

$$\left[\mathbf{H}_{2}\right] = \left[\mathbf{I}_{2}\right] = 0'01$$

b)

$$K_c = \frac{\left[H_2\right] \cdot \left[I_2\right]}{\left[HI\right]^2} = \frac{\left(0'01\right) \cdot \left(0'01\right)}{\left(0'08\right)^2} = 0'0156$$

Como $\Delta n = 0 \Longrightarrow K_c = K_p = 0'0156$.

A una hipotética reacción química, $A+B\to C$, le corresponde la siguiente ecuación de velocidad: $v=k\cdot \lceil A \rceil \cdot \lceil B \rceil$. Indique:

- a) El orden de la reacción respecto de A.
- b) El orden total de la reacción.
- c) Las unidades de la constante de velocidad.

QUÍMICA. 2008. SEPTIEMBRE. EJERCICIO 3. OPCIÓN B

RESOLUCIÓN

- a) El orden de la reacción respecto al reactivo A es el exponente al que está elevado la concentración del reactivo A en la ecuación de velocidad, es decir, 1.
- b) El orden total de la reacción es la suma de los exponentes a los que están elevadas las concentraciones de los reactivos en la ecuación de velocidad, es decir, 2.

c)
$$k = \frac{v}{\left[A\right] \cdot \left[B\right]} = \frac{mol \cdot L^{-1} \cdot s^{-1}}{mol \cdot L^{-1} \cdot mol \cdot L^{-1}} = mol^{-1} \cdot L \cdot s^{-1}$$

En un recipiente de 200 mL de capacidad, en el que previamente se ha hecho el vacío, se introducen 0'40 g de N_2O_4 . Se cierra el recipiente, se calienta a 45°C y se establece el siguiente equilibrio:

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

Sabiendo que a esa temperatura el N_2O_4 se ha disociado un 41'6%, calcule:

- a) El valor de la constante K.
- b) El valor de la constante K_n.

Dato: R = 0'082 atm $\cdot L \cdot K^{-1} \cdot mol^{-1}$. Masas atómicas: N = 14; O = 16

QUÍMICA. 2008. SEPTIEMBRE. EJERCICIO 6. OPCIÓN B

RESOLUCIÓN

moles totales en el equilibrio: $n(1+\alpha)$

$$K_{c} = \frac{\left[NO_{2}\right]^{2}}{\left[N_{2}O_{4}\right]} = \frac{\left(\frac{2n\alpha}{v}\right)^{2}}{\underline{n(1-\alpha)}} = \frac{4n\alpha^{2}}{v(1-\alpha)} = \frac{4 \cdot \frac{0'40}{92}(0'416)^{2}}{0'2(1-0'416)} = 0'025 \text{ mol/L}$$

b)
$$K_{p} = K_{c}(RT)^{\Delta n} = 0'025 \cdot (0'082 \cdot 318)^{1} = 0'65 \text{ atm}$$