Disaster Classification

Network Summary

Model: "sequential_2"

Layer (type)	Output	Shape	Param #
conv2d_5 (Conv2D)	(None,	148, 148, 32)	896
max_pooling2d_5 (MaxPooling2	(None,	74, 74, 32)	0
conv2d_6 (Conv2D)	(None,	72, 72, 64)	18496
max_pooling2d_6 (MaxPooling2	(None,	36, 36, 64)	0
conv2d_7 (Conv2D)	(None,	34, 34, 128)	73856
max_pooling2d_7 (MaxPooling2	(None,	17, 17, 128)	0
conv2d_8 (Conv2D)	(None,	15, 15, 128)	147584
max_pooling2d_8 (MaxPooling2	(None,	7, 7, 128)	0
flatten_2 (Flatten)	(None,	6272)	0
dense_3 (Dense)	(None,	512)	3211776
dense_4 (Dense)	(None,	4)	2052
activation_2 (Activation)	(None,	4)	0

Total params: 3,454,660 Trainable params: 3,454,660 Non-trainable params: 0

Data Generator Settings

- o Batch Size for Data Generators = 20
- o Target Size = 150 x 150

Data Info

- Training Samples = 2800
 - o 700 Training Images for Each Class
- Validation Samples = 600
 - o 150 Validation Images for Each Class
- Test Samples = 528
 - o 150 Images Each for Flood, Earthquake, Wildfire
 - o 78 Images for Cyclone Class

Training Settings

Loss = Categorical_Crossentropy
Optimizer = RMSprop

Optimizer = RMSprop Learning Rate = 1e-4 Metrics = Accuracy Epochs = 50

steps_per_epoch = Training Samples/Batch Size = 140
validation_steps = Validation Samples/BatchSize = 30

Trained Model Notes

During training, the best model was being saved through callback and at the end of the training the model from the last epoch was also saved. It turned out that the last model had better scores on the Test Set (87%) than the best model (86%) saved during training therefore the final model was selected.

The selected (last) model had 86% accuracy on the validation set and 87% accuracy on the test set.

Drop out and Data Augmentation were tried and tested but then were not used in the final training of the model because the model was giving better accuracy performance without the use of dropout and data augmentation.

Validation Accuracy = 86% Test Accuracy = 87%

Confusion Matrix for the Test Set

	Cyclone	Earthquake	Flood	Wildfire
Cyclone	69	3	1	5
Earthquake	2	134	10	4
Flood	5	17	124	4
Wildfire	5	9	3	133

Classification Report for the Test Set

	precision	recall	f1-score	support
Cyclone	0.85	0.88	0.87	78
Earthquake	0.82	0.89	0.86	150
Flood	0.90	0.83	0.86	150
Wildfire	0.91	0.89	0.90	150
accuracy			0.87	528
macro avg	0.87	0.87	0.87	528
weighted avg	0.87	0.87	0.87	528

Accuracy Graph

Loss Graph

