

3D Manipulation of 2D Images*

Alexandru Vasile (alexv@ll.mit.edu) & Peter Cho (cho@ll.mit.edu)

MIT Lincoln Laboratory

MIT IAP Course January 2012

Class 3 notes

^{*}This work was sponsored by the Department of the Air Force under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

Course Outline

- Class 1: Single-view geometry
 - Pinhole camera model
 - 2D image insertion into 3D map
 - Camera calibration
- Class 2: Panorama formation
 - Homographies
 - 2D & 3D mosaics
 - Geometric propagation of knowledge
- Class 3: Two-view geometry
 - Feature matching & RANSAC
 - Epipolar geometry
 - Fundamental matrix
- Class 4: 3D reconstruction
 - Structure from motion
 - Bundle adjustment
 - Photo tourism

Feature Matching

 Problem: Given two images with partial overlap, find interesting points in each image and determine pair-wise point correspondences.

Challenges:

- Need to find features that are robust to camera pose changes (rotation, translation, scaling).
- Need method to reject bad correspondences / outliers.

• Importance:

Allows for higher level scene understanding (object tracking, camera pose estimation, 3D triangulation for scene reconstruction).

Feature Matching Example

• First, find interesting features in each image using some feature detector.

MITLeft image

MITMiddle image

Feature Matching Example

 First, find interesting features in each image using some feature detector.

MITLeft image

MITMiddle image

Feature Matching Example

- First, find interesting features in each image using some feature detector.
- Second, do feature matching.
 - For each feature in image 1, find top N best matches in image 2

MITLeft image MITMiddle image

Local Feature Detectors

- Key properties of a good local feature descriptor:
 - Selects interesting points that are highly distinctive.
 - Easy to extract and match against a large database of features.
 - Compact representation of local pixel neighborhood.
 - Invariance to :
 - Image noise.
 - Changes in illumination.
 - Camera pose (scaling, rotation, translation).

- Will talk about one that has become a standard in computer vision, named Scale Invariant Feature Transform (SIFT).
 - Others exist, such as SURF, RIFT ...

Scale Invariant Feature Transform (SIFT)

- Detection stage for SIFT features:
 - Scale-space extrema detection.
 - Convolve image with template at 4 different scales.
 - Difference of Gaussians template picks out location with lots of gradient changes.
 - > Get both scale invariance and u-v locations of points.
 - Keypoint localization.
 - Do sub-pixel u-v localization of points.
 - Orientation Assignment.
 - > Find major gradient direction(s).
 - > Get rotation invariance.
 - Generation of keypoint descriptors.
 - Based on scale, orientation assignment, pick out size and rotation of local support region.
 - Divide into 4x4 sub-regions and compute 8-bin histogram per region.
 - Concatenate histograms to form 128 element keypoint descriptor.

SIFT Matching Method

- For each SIFT feature found in image 1, match against all features in image 2.
 - Compute dot-products of 128 element descriptor.
 - Higher dot-product indicates better match.
 - Decide to keep a match if it is unique.
 - Use ratio of second best dot product to best.
 - Keep if ratio below 0.6 (heuristic value, can be changed).
- Advantages of SIFT descriptor
 - Selects interesting points that are highly distinctive.
- Easy to extract and match against a large database of features.
- Invariant/tolerant to noise, scale, rotation, illumination.

- Practical limitations.
 - Can handle about 30 degrees out-of-image plane pose change before breaking down.

Have some matches: now what?

- Might still have bad correspondences, outliers.
- Need method to score quality of match.
 - Can score match quality individually or by its consensus with other matches.
 - Consensus typically works better, more statistics used.
- How to measure consensus between matches?
 - Can fit a model to the data points.
- Two widely used techniques:
 - RANdom SAmple Consensus (RANSAC).
 - Hough Transform.

RANdom SAmple Consensus (RANSAC)

• Idea:

- 1. Randomly select small number of data points and use to generate instance of model.
- 2. Check number of data points consistent with this fit
- 3. Repeat Step 1+2 until "good enough" consistent set found or hit some max iteration number.
- 4. Generate new fit from this consistent set.
- Toy-problem to motivate algorithm:
 - 2D line fitting in presence of noise/outliers.

Geometric Fitting Models

- Use RANSAC with an geometric fitting model.
- Homography Model
 - For general 3D scene, holds for only small pose changes.
 - In case of dominant planar region in image, holds for most pose changes.
 - In case of pure rotation, holds for all 3D scenes.
- Epipolar Geometry Model
 - For general 3D scene, holds for most pose changes.
 - Degenerate cases if scene is planar or camera motion is pure rotation.
- Models are complimentary ...
 - Choose one based on prior knowledge of camera motion.

Choose 2 overlapping images.

- Choose 2 overlapping images.
- Find SIFT features for each image.

- Choose 2 overlapping images.
- Find SIFT features for each image.
- Match SIFT features to get initial point correspondences.

- Choose 2 overlapping images.
- Find SIFT features for each image.
- Match SIFT features to get initial point correspondences.
- Run RANSAC:
 - 1. Select minimal number of points (4), find homography.

- Choose 2 overlapping images.
- Find SIFT features for each image.
- Match SIFT features to get initial point correspondences.
- Run RANSAC:
 - 1. Select minimal number of points (4), find homography.
 - 2. Check number of data points consistent with this fit.

3. Good enough? ➡ Find homography using all inliers.

Outliers

MIT Lincoln Laboratory

 Point in camera 1 has a corresponding point that lies somewhere along an epipolar line in camera 2.

- Corresponding points:
 - Lie on conjugate epipolar lines.

Corresponding points:

Lie on conjugate epipolar lines.

- Corresponding points:
 - Lie on conjugate epipolar lines.

 Define an epipolar plane containing the cameras' baseline.

Epipolar Geometry Recap

- Every plane through the baseline is an epipolar plane.
- It determines a pair of epipolar lines (one in each image).
- Two systems of epipolar lines are obtained.
- Each system intersects in a point, the *epipole*.
- The epipole is the projection of the center of the other camera.

Epipolar Geometry Model & Correspondence Matching

Question:

– How do we use this epipolar geometry to constrain/filter some prior computed correspondence matches?

• Answer:

- Given a correspondence point in one image, need to determine method to find the epipolar line in the second image.
- If prior corresponding point in second image is close to the line, then it fits the epipolar geometry model.

What is missing:

Method to determine how to go from point to epipolar line.

Fundamental Matrix

• Fundamental matrix allows us to go from point p_R in right image to epipolar line L_L in the left image.

$$[u_R, v_R, 1] F_{3x3} = L_L$$
 Eqn 3.1

 Dot product of line L₁ and left image point p_L, which should be on the line should equal zero.

MIT Lincoln Laboratory

Properties of Fundamental Matrix

- F is homogeneous
- Has rank 2.
- Its (right and left) null spaces are the two epipoles.
- 9 parameters
- F can be recovered up to scale using 8 points.

- Assume that we have m correspondences.
- Each correspondence i [p_R, p_L], satisfies:

$$p_{Ri}^T F_{3x3} p_{Li} = 0$$
 Eqn 3.3

- F is a 3x3 matrix (9 entries), but rank 2.
- Homogenous linear system with 9 unknowns.
- Need $m \ge 8$; solution will be up to a constant.

• Let
$$p_{Ri} = [u'_i, v'_i, 1], \text{ and } p_{Li} = [u_i, v'_i, 1]$$

 $p_{Ri}^T F p_{Li} = 0 \quad i = 1...m$

• Then:

$$\begin{bmatrix} u'_i, v'_i, 1 \end{bmatrix} F_{3x3} \begin{vmatrix} u_i \\ v_i \\ 1 \end{vmatrix} = 0$$

Eqn 3.4

$$\begin{bmatrix} u'_{i}, v'_{i}, 1 \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} u_{i} \\ v_{i} \\ 1 \end{bmatrix} = 0$$

Eqn 3.5

- Need to find non-trivial solution to Ax = 0, rank (A) = m-1
- Solve $\min_{x} ||Ax||^2$ such that $||x||^2 = 1$

- Construct the m x 9 matrix A
- Find the SVD entries of A = U D V'

Eqn 3.8

- The entries of F are the components of the last column of V corresponding to the least singular value.
- F must be singular (3x3 matrix of rank 2). Due to noise in correspondences, will not be singular. To enforce it:
 - Find SVD of $F = U_f D_f V_f$.

Eqn 3.9

- Set smallest singular value of D_f to 0 to create D_f'.
- Recompute $F = U_f D_f' V_f'$.

Eqn 3.10

SIFT + RANSAC for computing the Fundamental Matrix

Choose 2 overlapping images.

SIFT + RANSAC for computing the Fundamental Matrix

- Choose 2 overlapping images.
- Find SIFT features for each image.

- Choose 2 overlapping images.
- Find SIFT features for each image.
- Match SIFT features to get initial point correspondences.

SIFT + RANSAC for computing the Fundamental Matrix

- Choose 2 overlapping images.
- Find SIFT features for each image.
- Match SIFT features to get initial point correspondences.
- Run RANSAC:
 - 1. Select minimal number of points (8), find fundamental matrix.

SIFT + RANSAC for computing the Fundamental Matrix

- Choose 2 overlapping images.
- Find SIFT features for each image.
- Match SIFT features to get initial point correspondences.
- Run RANSAC:
 - 1. Select minimal number of points (8), find fundamental matrix.
 - 2. Check number of data points consistent with this fit.

Lab 3A: SIFT + RANSAC for Fundamental Matrix Estimation

- Compute the fundamental matrix and estimate best F matrix using RANSAC.
- Go to web.mit.edu/alexv/Public/IAP_2012/class03/Lab03A/
 - Download code for SIFT/RANSAC (Set path with subfolders).
 - Complete code for 8-point algorithm under function fundmatrix.m (See Equations 3.8 to 3.10).
- Provided two example images from which to compute the fundamental matrix:
 - image01.bmp, image02.bmp
- Main function is testFund.m

Lab 3B: SIFT + RANSAC for Homography Estimation

- Redo Lab 2B using SIFT+ RANSAC to automatically compute the homographies.
- Go to web.mit.edu/alexv/Public/IAP_2012/class03/Lab03B/
 - Download code ransac, 4 point homography.
- Provided same 3 images as in Lab 2, down-sampled to reduce computation time:
 - MITLeft_downsampled.jpg, MITMiddle_downsampled.jpg
 MITRight_downsampled.jpg
- Main function is testHomographies.m

Preparation for Lab 04 Structure from Motion

- Find a place / static object that you would like to reconstruct in 3D.
 - Could be inside or outside a building.
 - Objects that reconstruct well typically have lots of textures, not a lot of symmetry, no shiny surfaces.
- Take a bunch of pictures (~20-30) of the place of interest from various camera poses (say in a 45-90° frustrum).
- Try to keep the object in the center of the image.
 - Move around on the ground to see object from various perspectives.
 - Try higher/lower vantage points.
- Install Visual SFM:
 - http://www.cs.washington.edu/homes/ccwu/vsfm/

References

- Lowe, D. G., "Distinctive Image Features from Scale-Invariant Keypoints", International Journal of Computer Vision, 60, 2, pp. 91-110, 2004
- Martin A. Fischler and Robert C. Bolles (June 1981). "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography". Comm. of the ACM 24 (6): 381–395
- R. I. Hartley. In defence of the 8-point algorithm. In Proceedings of the IEEE International Conference on Computer Vision, 1995.
- R. Hartley and A. Zisserman, "Multiple view geometry in computer vision (2nd edition)", Cambridge University Press, 2003.
 - Pedagogical material for today's class was drawn from chapters
 9, 10 and 11.
 - Excerpts of book can be found online here: http://www.robots.ox.ac.uk/~vgg/hzbook/