№ 56 Вычисление количества интегральной по спектру энергии, поступающей на верхнюю границу атмосферы Земли от Солнца

1 Полная мощность излучения Солнца

Используем закон Стефана-Больцмана для определения полной мощности излучения Солнца:

$$P = \sigma T_s^4 \cdot 4\pi R_s^2$$

где: - σ — постоянная Стефана-Больцмана ($\sigma \approx 5.67e-8W\cdot m^{-2}\cdot K^{-4}$), - T_s — температура поверхности Солнца ($T_s\approx 5770K$), - R_s — радиус Солнца ($R_s\approx 7e8m$).

2 Плотность потока энергии на Земле

Плотность потока энергии на Земле можно рассчитать, зная, что энергия распределяется по сфере с радиусом, равным расстоянию от Солнца до Земли $(a_{\odot \oplus})$:

$$E = \frac{P}{4\pi a_{\odot \oplus}^2}$$

где: - $a_{\odot\oplus}$ — расстояние от Солнца до Земли (1 астрономическая единица, $a_{\odot\oplus} \approx 1.5e11m$).

3 Количество энергии, поступающей на верхнюю границу атмосферы Земли

Количество энергии, поступающей на верхнюю границу атмосферы Земли, можно рассчитать, зная площадь диска Земли:

$$E_{\text{Земля}} = E \cdot \pi R_{\oplus}^2$$

где: - R_{\oplus} — радиус Земли ($R_{\oplus} \approx 6.4e6m$).

4 Вычисления

1. **Полная мощность излучения Солнца**:

$$P = \sigma T_s^4 \cdot 4\pi R_s^2$$

$$P = 5.67e - 8W \cdot m^{-2} \cdot K^{-4} \times (5770K)^4 \times 4\pi \times (7e8m)^2$$

$$P \approx 3.8e26W$$

2. **Плотность потока энергии на Земле**:

$$E = \frac{P}{4\pi a_{\odot\oplus}^2}$$

$$E = \frac{3.8e26W}{4\pi\times(1.5e11m)^2}$$

$$E \approx 1360W \cdot m^{-2}$$

3. **Количество энергии, поступающей на верхнюю границу атмосферы Земли**:

$$E_{\text{Земля}} = E \cdot \pi R_{\oplus}^2$$

$$E_{\text{Земля}} = 1360W \cdot m^{-2} \times \pi \times (6.4e6m)^2$$

$$E_{3\text{емля}} \approx 1.7e17W$$