

Thème: suites

Une spirale est formée par une succession de demi-cercles dont le rayon de l'un est égal aux deux tiers du rayon précédent. On suppose que le rayon du premier demi-cercle est $2 \,\mathrm{cm}$. Soit n un entier naturel non nul. On note L_n la longueur de la spirale obtenue par la succession de n demi-cercles.

- 1. Exprimer la longueur L_n en fonction de l'entier n.
- 2. Existe-t-il un entier n_0 à partir duquel $L_n \geqslant 5\pi$?
- 3. On augmente le nombre de demi-cercles. Que devient la longueur totale de la spirale obtenue ?

Les réponses de deux élèves de terminale S à la question 2.

Élève	1

	A	В
1	n	L_n
2	1	6,283 185 307 2
3	2	10,4719755120
4	3	13,2645023152
5	4	15,1261868506
6	5	16,3673098743
7	6	17,1947252234
8	7	17,7463354561
9	8	18,1140756112
10	9	18,3592357147
11	10	18,5226757836

À l'aide d'un tableur, j'ai déterminé la valeur de l'entier n. J'en déduis qu'à partir de n=5, $L_n\geqslant 5\pi$.

Élève 2

Je résous l'équation :

$$6\pi \left(1 - \left(\frac{2}{3}\right)^{n+1}\right) = 5\pi \iff 1 - \left(\frac{2}{3}\right)^{n+1} = \frac{5}{6}$$
$$\iff \frac{1}{6} = \left(\frac{2}{3}\right)^{n+1}$$
$$\iff n = \frac{-2\ln 2}{\ln 2 - \ln 3}$$

J'en déduis qu'à partir de n = 4, $L_n \geqslant 5\pi$.

Le travail à exposer devant le jury

- 1 Analysez la production de chaque élève en mettant en évidence les acquis et les erreurs éventuelles.
- 2 Présentez une correction de l'exercice telle que vous l'exposeriez devant une classe de terminale S.
- 3 Proposez deux ou trois exercices sur le thème *suites* en explicitant pour chacun d'eux les différents objectifs pédagogiques visés.