Задачи по теория — реални числа, числови редици и редове KH, 1 к., I п.

Някои задачи от посочените тук или подобни на тях се падат на изпита по теория или на контролните. Задачите обозначени със * са по-сложни или имат по-дълги решения. Такива не се падат на изпит или контролно.

1. Нека A и B са две множества от реални числа. Сумата и разликата им се определя чрез

$$A + B := \{a + b : a \in A, b \in B\}$$

И

$$A - B := \{a - b : a \in A, b \in B\}.$$

При предположение, че A и B са ограничени и непразни, покажете, че A+B и A-B са също ограничени и непразни и изразете техните точни горни и долни граници чрез точните горни и долни граници на A и B.

2. Нека A е множество от реални числа. Определяме множеството

$$-A:=\{-a:a\in A\}.$$

При предположение, че A е ограничено и непразно, покажете, че и -A е ограничено и непразно и изразете неговата точна горна граница и неговата точна долна граница чрез тези характеристики на множеството A.

- 3. Докажете, че ако $\lim a_n = \ell$, то $\lim |a_n| = |\ell|$.
- 4. Докажете, че ако $\lim a_n = 0$ и $a_n > 0$, $n \in \mathbb{N}$, то $\lim \frac{1}{a_n} = +\infty$.
- 5. Докажете, че ако $\lim a_n = +\infty$ и $a_n > 0$, $n \in \mathbb{N}$, то $\lim \frac{1}{a_n} = 0$.
- 6. Докажете, че ако $\lim a_n = \ell$ и $a > \ell$, то съществува $\nu \in \mathbb{R}$ такова, че $a_n < a$ при $n > \nu$.
- 7. Нека редът $\sum_{n=1}^{\infty} a_n$ е абсолютно сходящ, а редицата $\{b_n\}_{n=1}^{\infty}$ е ограни-

чена. Докажете, че редът $\sum_{n=1}^{\infty} a_n b_n$ е също абсолютно сходящ.

8. * Докажете, че редът $\sum_{n=1}^{\infty} \frac{1}{n}$ е разходящ.

9. * (Коши) Нека $\{a_n\}$ е намаляваща редица от неотрицателни числа. Докажете, че редът $\sum_{n=1}^{\infty}a_n$ е сходящ тогава и само тогава, когато е сходящ редът $\sum_{n=0}^{\infty}2^na_{2^n}$. С помощта на това твърдение, покажете, че $\sum_{n=1}^{\infty}\frac{1}{n^{\alpha}}$ е сходящ тогава и само тогава, когато $\alpha>1$.