Непараметрическая регрессия

Цели работы:

- 1) практика первичных навыков обработки данных: нормализация, One-Hot преобразование;
- 2) сведение задачи классификации к задаче непараметрической регрессии;
- 3) реализация решения задачи непараметрической регрессии ядерным сглаживанием Надарая Ватсона;
- 4) практика наивного способа настройки и анализа гиперпараметров модели, решающей задачу непараметрической регрессии.

Набор данных

Выберите любой понравившийся набор данных для задачи классификации из следующего списка:

- 1. car https://www.openml.org/d/40975
- 2. vehicle https://www.openml.org/d/54
- 3. wine https://www.openml.org/d/187
- 4. bridges https://www.openml.org/d/327

Сведение к задаче регрессии и обработка данных

Перейдите от задачи классификации к задаче регрессии, используя <u>OneHot</u> преобразование. Вместо одного целевого признака в выбранный набор данных добавляется столько новых числовых переменных, сколько в нём содержится классов. Помимо этого, если выбранный Вами набор данных содержит нечисловые признаки, эти признаки необходимо векторизовать (перейти от категорий к числам), заполнить пропуски (если есть) и нормализовать. В наборе данных bridges также необходимо избавиться от столбца IDENTIF, поскольку он является идентификатором записи.

Реализация алгоритма и настройка гиперпараметров, анализ результатов

Реализуйте алгоритм решения задачи непареметрической регрессии при помощи ядерного сглаживания Надарая-Ватсона.

Найдите лучшую комбинацию гиперпараметров алгоритма непараметрической регрессии:

- функция расстояния:
 - расстояние Евклида,
 - о расстояние Манхэттена,
 - о расстояние Чебышева;
- функция ядра

$$\circ$$
 uniform: $K(u)=rac{1}{2}$

$$\circ$$
 triangular: $K(u)=(1-|u|)$

$$\circ$$
 epanechnikov: $K(u)=rac{3}{4}(1-u^2)$

$$\circ$$
 quartic: $K(u)=rac{15}{16}(1-u^2)^2$

- тип окна (окно, зависящее от количества соседей и фиксированное)
- параметр окна:
 - \circ количество ближайших соседей от 1 до $\sqrt{|D|}$, |D| размер набора данных, $\sqrt{|D|}$ является эвристикой на число ближайших соседей для метрических алгоритмов **ИЛИ**
 - \circ размер окна, его необходимо выбирать исходя из "размеров" набора данных; хорошей практикой является настройка ширины окна на отрезке $\left[\frac{R(D)}{\sqrt{|D|}};R(D)\right]$ с шагом R(D) / $\sqrt{|D|}$, где R(D) самое большое расстояния между элементами в наборе данных.

Таким образом требуется перебрать $24\sqrt{|D|}$ комбинаций гиперпараметров и <u>найти</u> лучшую.

Используйте Leave-One-Out перекрёстную проверку для настройки алгоритма.

Критерием качества является F-мера. Для её подсчёта потребуется определить максимальную компоненту результирующего вектора целевых признаков, полученных из One-Hot преобразования, после применения очередной конфигурации алгоритма непараметрической регрессии (алгоритм с одной из комбинаций гиперпараметров).

Для лучшей найденной комбинации гиперпараметров постройте графики зависимости F-меры от числа <u>ближайших соседей</u> **или** <u>ширины окна</u> (при фиксированных лучших значениях прочих гиперпараметров).

Схема работы

