Device Modeling Report

COMPONENTS: CMOS OPERATIONAL AMPLIFIER

PART NUMBER: NJU7029

MANUFACTURER: NEW JAPAN RADIO

Bee Technologies Inc.

Pin Configuration

Spice Model (1/2)

```
*PART NUMBER: NJU7029
*MANUFACTURER: NEW JAPAN RADIO
*CMOS OPAMP
*All Rights Reserved Copyright (C) Bee Technologies Corporation 2009
.SUBCKT NJU7029 1 2 3 4 5 6 7 8
X U1 34218
                NJU7029 SUB
X U2 54678
                NJU7029 SUB
.ENDS
.SUBCKT NJU7029 SUB INPUT+ VSS INPUT- OUTPUT VDD
        3 INPUT- 2 VDD
                         MbreakPD3
                                      L=6u W=2.5m
M M1
                                      L=6u W=2.5m
M M2
        4 INPUT+ 2 VDD
                         MbreakPD2
        2 1 VDD VDD
                         MbreakPD
M M3
M M4
        5 1 VDD VDD
                         MbreakPD
        6 1 VDD VDD
                         MbreakPD
M M5
M M6
        1 1 VDD VDD
                         MbreakPD
M M7
        5 5 VSS VSS
                         MbreakND
M M8
        5 4 VSS VSS
                         MbreakND
        3 3 8 VSS
                                      L=6u W=65m
M M9
                         MbreakND1
M M10
        4 3 9 VSS
                         MbreakND1
                                      L=6u W=85m
M M11
        1 6 10 10
                         MbreakND
M M12
        6 6 VSS VSS
                         MbreakND
                         MbreakND1
M M13
        7 5 VSS VSS
M M14
        7 7 VDD VDD
                         MbreakPD
        OUTPUT 7 12 12
                                      L=2u W=50m
M M15
                         MbreakPD1
                                      L=2u W=15m
M M16
        11 4 VSS VSS
                         MbreakND2
V_V1
                         0.089
         OUTPUT 11
V_V2
        VDD 12
                         0.099
RR1
         10 VSS
                         200k
R R2
         8 VSS
                         200
R_R3
         9 VSS
                         200
R R4
         INPUT+ VSS
                         1.0E+12
R R5
         INPUT- VSS
                         3.0E+12
R_R6
                         10.123E+3
         VDD VSS
         OUTPUT 4
C_C1
                         0.415p
```

Spice Model (2/2)

- .model MbreakND NMOS (LEVEL=3 L=6u W=128u VTO=0 RS=10.000E-3
- + RD=10.000E-3 RDS=10E6 TOX=2.0E-6 RG=5 RB=1.0000E-3
- + KP=10E-6)
- .model MbreakND1 NMOS (LEVEL=3 L=6u W=200u VTO=0 RS=10.000E-3
- + RD=10.000E-3 RDS=2.4E6 TOX=2.0000E-6 RG=5 RB=1.0000E-3
- + KP=10E-6)
- .model MbreakND2 NMOS (LEVEL=3 VTO=0 RS=10.000E-3 RD=10.000E-3
- + RDS=1.0000E6 TOX=2.0000E-6 RG=5 RB=1.0000E-3
- + KP=10E-6)
- .model MbreakPD PMOS (LEVEL=3 L=6u W=27u VTO=0 RS=10.000E-3
- + RD=10.00E-3 RDS=1.00E9 TOX=2.0000E-6 RG=5 RB=1.0000E-3
- + KP=10E-6)
- .MODEL MbreakPD1 PMOS (LEVEL=3 VTO=-0.1 RS=10.000E-3 RD=10.000E-3
- + RDS=1.00E6 TOX=2.0000E-6 RG=5 RB=1.0000E-3 KP=50E-6)
- .MODEL MbreakPD2 PMOS (LEVEL=3 VTO=0 RS=10.000E-3 RD=10.00E-3
- + RDS=5E9 TOX=2.0000E-6 RG=5 RB=1.000E-3 KP=1E-6)
- .MODEL MbreakPD3 PMOS (LEVEL=3 VTO=-5.25m RS=10.000E-3 RD=10.00E-3
- + RDS=5E9 TOX=2.000E-6 RG=5 RB=1.000E-3 KP=1E-6)
- .ENDS NJU7029 SUB

*\$

Equivalent Circuit

MOSFET MODEL

PSpice model parameter	Model description		
LEVEL			
L	Channel Length		
W	Channel Width		
KP	Transconductance		
RS	Source Ohmic Resistance		
RD	Ohmic Drain Resistance		
VTO	Zero-bias Threshold Voltage		
RDS	Drain-Source Shunt Resistance		
TOX	Gate Oxide Thickness		
CGSO	Zero-bias Gate-Source Capacitance		
CGDO	Zero-bias Gate-Drain Capacitance		
CBD	Zero-bias Bulk-Drain Junction Capacitance		
MJ	Bulk Junction Grading Coefficient		
PB	Bulk Junction Potential		
FC	Bulk Junction Forward-bias Capacitance Coefficient		
RG	Gate Ohmic Resistance		
IS	Bulk Junction Saturation Current		
N	Bulk Junction Emission Coefficient		
RB	Bulk Series Resistance		
PHI	Surface Inversion Potential		
GAMMA	Body-effect Parameter		
DELTA	Width effect on Threshold Voltage		
ETA	Static Feedback on Threshold Voltage		
THETA	Mobility Modulation		
KAPPA	Saturation Field Factor		
VMAX	Maximum Drift Velocity of Carriers		
XJ	Metallurgical Junction Depth		
UO	Surface Mobility		

Output Voltage Swing - Voн, Vol

Simulation result

Evaluation circuit

Comparison table

(Condition: $RL=50k\Omega$ to 1.5V)

Parameter	Measurement	Simulation	%Error
V он[V]	2.900	2.901	0.03
Vol[V]	0.100	0.099	1.00

Input Offset Voltage - Vio

Simulation result

Evaluation circuit

Comparison table

Parameter	Measurement	Simulation	%Error
V ıo [mV]	2.000	2.0074	0.37

Input Current - Ib, Ibos

Simulation result

Evaluation circuit

Comparison table

Parameter	Measurement	Simulation	%Error
I _b [pA]	1.000	1.000	0
Ibos[pA]	1.000	1.000	0

Slew Rate - SR

Simulation result

Evaluation circuit

Comparison table

(Condition: Gv=0dB, CL=15pF, RL=50k Ω to 1.5V)

Parameter	Measurement	Simulation	%Error
SR[V/us]	1.000	0.992	0.8

Large Signal Voltage Gain - Av

Simulation result

Evaluation Circuit

Comparison Table

(Condition: RL= $50k\Omega$ to 1.5V, Vo=1.5V)

Parameter	Measurement	Simulation	%Error
Av[dB]	80.000	82.846	3.56

Unity Gain Frequency - $f\tau$

Simulation result

Frequency

Evaluation Circuit

Comparison Table

(RL=50k Ω to 1.5V, CL=10pF)

Gv=40[dB]	Measurement	Simulation	%Error
f⊤ [MHz]	3.000	3.086	2.87

Common Mode Rejection Ratio – CMR

Simulation result

Evaluation circuit

Comparison Table

(Condition: Vicm=0V~2.1V)

Parameter	Measurement	Simulation	%Error
CMR[dB]	80.000	82.214	-3.54

 \times Common Mode Rejection Ratio =20*log(Av/Avcm) =20*log(13877/1.0755) =82.214dB