CHM129 Gibbs Free Energy

1. Use ΔG°_{Rxn} to determine whether the process is spontaneous. Calculate the value of the equilibrium constant, K.

2
$$NO_{(g)} + O_{2(g)} \rightarrow 2 NO_{2(g)}$$

	$\Delta ext{H}^{\circ}$ (kJ/mol)	S° (J/mol.K)
NO	+90.29	+210.65
02	0	+205.0
NO ₂	+32.2	+239.9

$$\Delta G_{R}^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$= -116.2 \text{ kJ} - (298 \text{ K})(-0.1465 \text{ kJ/K})$$

$$\Delta G_{R}^{\circ} = -72.5 \text{ kJ}$$

$$\Delta S^{\circ}_{R} = -146.5 \text{ J}_{K} = -0.1465 \text{ kJ/K}$$

$$\Delta G^{\circ}_{R} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$= -116.2 \text{ kJ} - (298 \text{ K})(-0.1465 \text{ kJ/K})$$

$$\Delta G^{\circ}_{R} = -72.5 \text{ kJ}$$

$$\Delta G^{\circ}_{R} = -72.5 \text{ kJ}$$

$$\Delta G = -72.5 \text{ kJ}$$

2. (a) Calculate the standard free energy (ΔG°) and the equilibrium constant (K) at 298K for the following reaction:

$$H_{2(g)} + Br_{2(g)} \leftrightarrow 2 HBr_{(g)}$$

Is the process spontaneous as written?

HBr:
$$\Delta G^{\circ}_{f} = -53.22 \text{ kJ/mol}$$

$$H_2$$
: $\Delta G^{\circ}_f = 0 \text{ kJ/mol}$

H₂:
$$\Delta G^{\circ}_{f} = 0 \text{ kJ/mol}$$
 Br₂: $\Delta G^{\circ}_{f} = 0 \text{ kJ/mol}$

If you have a reaction mixture with initial concentrations $[H_2] = 0.200M$ and $[Br_2]=0.200M$, what are the equilibrium concentrations of H_2 , Br_2 , and HBr?

(a)
$$\Delta G_{R}^{\circ} = \sum_{n} \Delta G_{r}^{\circ}$$
 and $-\sum_{n} \Delta G_{r}^{\circ}$ react
$$= (2 \text{ mol } \times -53.22 \text{ kJ/mol}) - [(1 \text{ mol } \times 0 \text{ kJ/mol}) + (1 \text{ mol } \times 0 \text{ kJ/mol})]$$

$$\Delta G_{R}^{\circ} = -106.4 \text{ kJ}$$

△G <0 ⇒ R is sportaneous.

$$K = e^{-(-42.9)} = 4 \times 10^{18}$$

$$K = e^{-\Delta G/RT}$$

$$K = e^{-(-42.9)} = \frac{4 \times 10^{18}}{10^{18}} = \frac{-166.4}{(8.314 \times 10^{3})(298)} = -42.9$$

$$K = e^{-(-42.9)} = \frac{4 \times 10^{18}}{10^{18}} = \frac{166.4}{(8.314 \times 10^{3})(298)} = -42.9$$

$$K > 1 \quad \text{Products (forward R.) favored}$$

(b)
$$K = \frac{[HBr]^2}{[Ha][Br_2]} = 4 \times 10^{18}$$

$$\frac{(2x)^2}{(6.200-x)(0.200-x)} = 4 \times 10^{18}$$

$$\frac{2x}{0.200-x} = \sqrt{4 \times 10^{18}}$$

$$2x = \sqrt{4 \times 10^{18}} (0.200-x)$$

$$x = 0.2M$$