Case Study

Rifa

12/6/2020

```
Importing various libraries
```

```
library(data.table)
library(magrittr)
library(ggplot2)
```

Load all the tables

```
tables = list.files("data/", full.names = T)
tables
```

Read individual csv files

```
case_dt = fread(tables[1])
pinfo_dt = fread(tables[2])
policy_dt = fread(tables[3])
region_dt = fread(tables[4])
search_dt = fread(tables[5])
seoul_dt = fread(tables[6])
time_dt = fread(tables[7])
tage_dt = fread(tables[8])
tgender_dt = fread(tables[9])
tprovince_dt = fread(tables[10])
weather_dt = fread(tables[11])
```

WORKING WITH TIME_PROVINCE FILE

```
head(tprovince_dt,n=5)
```

```
date time province confirmed released deceased
## 1: 2020-01-20
                        Seoul
                  16
## 2: 2020-01-20
                                      0
                                              0
                                                       0
                  16
                        Busan
## 3: 2020-01-20
                 16
                        Daegu
                                      0
                                              0
                                                       0
                                              0
                                                       0
## 4: 2020-01-20 16 Incheon
                                      1
                 16 Gwangju
## 5: 2020-01-20
                                                       0
```

```
confirmed
##
         date
                              time
                                             province
##
           :2020-01-20
                               : 0.000
                                          Length:2771
   Min.
                         Min.
                                                                         0.0
   1st Qu.:2020-02-29
                         1st Qu.: 0.000
                                           Class : character
                                                              1st Qu.:
                                                                         9.0
## Median :2020-04-10
                         Median : 0.000
                                          Mode :character
                                                              Median :
                                                                        42.0
## Mean
           :2020-04-10
                         Mean
                               : 4.123
                                                              Mean
                                                                     : 444.3
  3rd Qu.:2020-05-21
                         3rd Qu.:16.000
                                                              3rd Qu.: 133.0
##
                         Max.
##
  Max.
           :2020-06-30
                                :16.000
                                                              Max.
                                                                     :6906.0
##
       released
                        deceased
## Min.
               0.0
                     Min.
                            : 0.00
  1st Qu.:
               1.0
                     1st Qu.: 0.00
## Median : 21.0
                     Median :
                               0.00
   Mean : 320.7
                     Mean : 9.24
##
   3rd Qu.: 92.0
                     3rd Qu.: 1.00
## Max.
           :6700.0
                     Max.
                            :189.00
#Printing the name of the various provinces
tprovince_dt[, unique(province)]
    [1] "Seoul"
                            "Busan"
                                                 "Daegu"
##
   [4] "Incheon"
                            "Gwangju"
                                                 "Daejeon"
  [7] "Ulsan"
                            "Sejong"
                                                 "Gyeonggi-do"
## [10] "Gangwon-do"
                            "Chungcheongbuk-do"
                                                 "Chungcheongnam-do"
## [13] "Jeollabuk-do"
                            "Jeollanam-do"
                                                 "Gyeongsangbuk-do"
## [16] "Gyeongsangnam-do"
                            "Jeju-do"
# Making a new table with province and the corresponding total number of cases
province_cases<-tprovince_dt[, .(number_of_cases=max(confirmed)), by='province']</pre>
province_cases
##
                province number_of_cases
##
   1:
                   Seoul
                                     1312
  2:
                   Busan
                                     154
## 3:
                                     6906
                   Daegu
##
  4:
                 Incheon
                                     341
##
  5:
                 Gwangju
                                      44
##
  6:
                                     117
                 Daejeon
## 7:
                   Ulsan
                                      55
## 8:
                                      50
                  Sejong
## 9:
             Gyeonggi-do
                                     1207
              Gangwon-do
## 10:
                                      65
## 11: Chungcheongbuk-do
                                      65
## 12: Chungcheongnam-do
                                     167
## 13:
            Jeollabuk-do
                                      27
## 14:
            Jeollanam-do
                                      24
## 15:
       Gyeongsangbuk-do
                                     1389
## 16:
       Gyeongsangnam-do
                                     134
## 17:
                 Jeju-do
                                      19
# Plotting a bar graph for number of total cases for various provinces
ggplot(province_cases, aes(x=province, y=number_of_cases , fill=province)) + geom_bar(stat='identity')
labs(x='Province', y='Total number of confirmed cases') + ggtitle("Number of COVID cases in various pro
```

summary(tprovince_dt)


```
# Plotting growth in the total number of cases for various provinces
ggplot(tprovince_dt, aes(x=date, y=confirmed, color=province)) + geom_line() + geom_point() +
theme(axis.text.x = element_text(angle = 90, vjust = 1.5, hjust=1)) +
labs(x='Date', y='Number of confirmed cases') + ggtitle("Growth in number of COVID cases for various pr
```


The number of cases is quite high (in thousands) for some provinces and comparatively smaller (in hundreds or less) for other provinces.

Growth in total number of cases for various provinces

```
tprovince_Seoul=tprovince_dt[province=="Seoul"]
#Busan
#Daequ
#Incheon
#Gwangju
#Daejeon
#Ulsan
#Sejong
\#Gyeonggi-do
\#Gangwon-do
\#Chungcheongbuk-do
\#Chungcheongnam-do
#Jeollabuk-do
#Jeollanam-do
\#Gyeongsangbuk-do
#Gyeongsangnam-do
#Jeju-do
```

We look at various provinces individually

```
# Plotting total number of cases for Seoul
ggplot(tprovince_Seoul, aes(x=date, y=confirmed)) + geom_line() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
labs(x="Date", y="Number of total confirmed cases")+ ggtitle("Plot of total number of cases for Seoul property.")
```

Plot of total number of cases for Seoul province

Seoul

The same could be done for other provinces.

Visualizing the number of new cases and new deaths per day for various provinces Seoul

```
#Adding column of daily new cases and daily new deaths
tprovince_Seoul[,daily_new_case:=confirmed-shift(confirmed,fill=first(confirmed))]
tprovince_Seoul[, daily_new_deaths:= deceased-shift(deceased,fill=first(deceased))]

#Plotting daily new cases for Seoul
ggplot(tprovince_Seoul, aes(x=date, y=daily_new_case)) + geom_line() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
labs(x="Date", y="Number of new confirmed cases") + ggtitle("Plot of new cases for Seoul province")
```

Plot of new cases for Seoul province


```
#Plotting daily new deaths for Seoul
ggplot(tprovince_Seoul, aes(x=date, y=daily_new_deaths)) + geom_line() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
labs(x="Date", y="Number of new deaths") + ggtitle("Plot of daily new deaths for Seoul province")
```

Plot of daily new deaths for Seoul province

Analyzing effect of temp on number of covid cases

Weather file

```
head(weather_dt, n=5)
##
       code province
                            date avg_temp min_temp max_temp precipitation
## 1: 10000
               Seoul 2016-01-01
                                       1.2
                                               -3.3
                                                          4.0
## 2: 11000
               Busan 2016-01-01
                                                         10.9
                                                                           0
                                       5.3
                                                1.1
## 3: 12000
               Daegu 2016-01-01
                                       1.7
                                               -4.0
                                                          8.0
                                                                           0
## 4: 13000 Gwangju 2016-01-01
                                       3.2
                                               -1.5
                                                          8.1
                                                                           0
## 5: 14000 Incheon 2016-01-01
                                       3.1
                                               -0.4
                                                          5.7
##
      max_wind_speed most_wind_direction avg_relative_humidity
                 3.5
                                                             73.0
## 1:
                                        90
## 2:
                 7.4
                                       340
                                                             52.1
## 3:
                                       270
                 3.7
                                                             70.5
                 2.7
                                       230
                                                             73.1
## 4:
## 5:
                 5.3
                                       180
                                                             83.9
summary(weather_dt)
##
```

```
## Mean :32125
                                 Mean :2018-03-31 Mean : 13.86
##
   3rd Qu.:50500
                                 3rd Qu.:2019-05-16 3rd Qu.: 21.90
##
  Max. :70000
                                 Max. :2020-06-29 Max. : 33.90
##
                                                   NA's
                                                         :15
                                 precipitation
##
     min_temp
                    max\_temp
                                                 max_wind_speed
##
  Min. :-19.200 Min. :-11.90
                                 Min. : 0.000 Min. : 1.000
   1st Qu.: 1.400
                 1st Qu.: 10.90
                                 1st Qu.: 0.000 1st Qu.: 3.800
  Median: 9.900 Median: 19.80
                                 Median: 0.000 Median: 4.700
##
   Mean : 9.665
##
                  Mean : 18.78
                                 Mean : 1.487 Mean : 5.109
## 3rd Qu.: 18.200
                   3rd Qu.: 26.70
                                 3rd Qu.: 0.000
                                                 3rd Qu.: 6.000
## Max. : 30.300
                  Max. : 40.00
                                 Max. :266.000 Max. :29.400
                   NA's :3
        :5
## NA's
                                                 NA's :9
## most_wind_direction avg_relative_humidity
## Min. : 20.0 Min. : 10.4
## 1st Qu.: 90.0
                    1st Qu.: 53.6
## Median :200.0
                    Median : 66.9
## Mean :195.9
                    Mean : 65.7
## 3rd Qu.:290.0
                    3rd Qu.: 78.6
## Max. :360.0
                    Max. :100.0
## NA's :29
                    NA's :20
```

```
weather_Seoul=weather_dt[province == "Seoul"]
weather_Seoul
```

Getting weather tables for various provinces (Currently only for Seoul province)

##		code	province	date	avg temp	min temp	max temp	precipitation	
##	1:	10000	-	2016-01-01	-			0.0	
##		10000		2016-01-02			9.5	0.0	
##		10000		2016-01-03				0.0	
##		10000		2016-01-04					
##		10000		2016-01-05				0.0	
##									
##	1638:	10000	Seoul	2020-06-25	21.6	20.1	23.4	13.3	
##	1639:	10000	Seoul	2020-06-26	21.8	19.2	25.7	2.1	
##	1640:	10000	Seoul	2020-06-27	24.1	20.4	29.6	0.0	
##	1641:	10000	Seoul	2020-06-28	25.2	21.5	30.1	0.0	
##	1642:	10000	Seoul	2020-06-29	23.8	20.6	26.5	11.9	
##		max_w	ind_speed	most_wind_o	direction	avg_relat	tive_humid	lity	
##	1:		3.5		90		7	73.0	
##	2:	4.5		320		76.9			
##	3:	4.0		320		80.6			
##	4:	5.1		320			54.4		
##	5:	4.6		20		39.4			
##									
##	1638:	4.3		180		91.0			
##	1639:	5.3		230		82.1			
##	1640:	40: 5.4		250			70.4		
##	1641:		4.7		270		7	70.5	
##	1642:		5.9		50		7	7.0	

```
#Listing various columns of both tables
colnames(tprovince Seoul)
Combining Weather and time info for Seoul province
                           "time"
## [1] "date"
                                              "province"
                                                                  "confirmed"
## [5] "released"
                           "deceased"
                                              "daily_new_case"
                                                                  "daily_new_deaths"
colnames(weather_Seoul)
## [1] "code"
                                 "province"
                                                          "date"
## [4] "avg_temp"
                                 "min_temp"
                                                          "max_temp"
## [7] "precipitation"
                                 "max_wind_speed"
                                                          "most wind direction"
## [10] "avg_relative_humidity"
# Deleting the columns not required for this analysis from both tables and creating new tables
Seoul_time<-tprovince_Seoul[,c("province","time"):=NULL]</pre>
Seoul_weather<-weather_Seoul[,c("province", "code"):=NULL]</pre>
# Merging the two tables (weather and time)
Seoul_weather_time <- merge(Seoul_weather, Seoul_time, by = "date", all = FALSE)
Seoul_weather_time[,.(avg_temp,daily_new_case)]
##
        avg_temp daily_new_case
##
     1:
             0.7
##
     2:
            -0.4
                               0
##
    3:
             3.0
                               0
##
    4:
             4.6
                               0
##
    5:
             2.8
                               0
## ---
## 158:
            21.6
                               9
## 159:
            21.8
                              17
## 160:
            24.1
                             17
## 161:
            25.2
                              14
## 162:
            23.8
                              7
#Plotting daily new cases against temp
ggplot(Seoul_weather_time, aes(x=avg_temp, y=daily_new_case)) + geom_point() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
```

labs(x="temp", y="Number of new cases") + ggtitle("Plot of new cases vs temperature for Seoul province"

Plot of new cases vs temperature for Seoul province

As temperature values repeat, we take average number of cases corresponding to a particular temperature. Seoul_weather_time[, avg_no_of_new_cases:=as.integer(mean(daily_new_case)), by=avg_temp] Seoul_weather_time[,.(avg_temp,avg_no_of_new_cases)][order(-avg_no_of_new_cases)]

```
##
         avg_temp avg_no_of_new_cases
##
     1:
              3.8
                                      52
     2:
             26.9
                                      28
##
     3:
             22.7
                                      27
##
             23.4
                                      25
##
     4:
             11.3
##
     5:
                                      24
##
             14.9
                                       0
## 158:
             20.2
                                       0
## 159:
             20.2
## 160:
                                       0
## 161:
             19.4
                                       0
## 162:
             19.9
```

```
#Plotting average number of new cases against temp
ggplot(Seoul_weather_time, aes(x=avg_temp, y=avg_no_of_new_cases)) + geom_line() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
labs(x="Temperature", y="Average number of new cases") + ggtitle("Plot of average number of new cases v
```

Plot of average number of new cases vs temperature for Seoul province

From the above graph we infer that the average number of cases is generally higher for a temperature above 3.8 and comaparatively lower for lower temperature ranges.

```
#Plotting daily new cases against precipitation
ggplot(Seoul_weather_time, aes(x=precipitation, y=daily_new_case)) + geom_point() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
labs(x="Precipitation", y="Number of new cases") + ggtitle("Plot of new cases vs precipitation for Seou
```

Plot of new cases vs precipitation for Seoul province

Here also, we need to look at average number of cases for a particular precipitation value, as precipitation value is same for multiple days.

Seoul_weather_time[, avg_no_of_new_cases_prep:=as.integer(mean(daily_new_case), na.rm=TRUE), by=precipi
Seoul_weather_time[, .(precipitation, avg_no_of_new_cases_prep)]

```
precipitation avg_no_of_new_cases_prep
##
##
                    0.0
     1:
     2:
                    0.0
                                                   7
##
                                                   7
                    0.0
##
     3:
                    0.0
                                                   7
##
     4:
                                                   7
                    0.0
##
     5:
##
## 158:
                   13.3
                                                   9
                    2.1
                                                  17
## 159:
                                                   7
## 160:
                    0.0
                                                   7
## 161:
                    0.0
                   11.9
## 162:
```

```
#Plotting average number of new cases against precipitation
ggplot(Seoul_weather_time, aes(x=precipitation, y=avg_no_of_new_cases_prep)) + geom_line() + geom_point
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
labs(x="Precipitation", y="Average number of new cases") + ggtitle("Plot of average number of new cases")
```

Plot of average number of new cases vs precipitation for Seoul province

Precipitation changes seem to have no effect on the number of COVID cases.