CS M51A Logic Design of Digital Systems Winter 2021

Some slides borrowed and modified from:

M.D. Ercegovac, T. Lang and J. Moreno, Introduction to Digital Systems.

D. Patterson and J. Hennessy, Computer Organization and Design

Review

Truth table

Switching Expression and Boolean Algebra

Sum of Minterms and Product of Maxterms

Symbols and Gate level design

Clicker Question

Which one is equal to ABC + A'B + A' + B' + C'

- a) A'
- b) B'
- c) 1
- d) 0
- e) none

Design a 1-bit adder

Truth table \rightarrow Expression \rightarrow Symbols

Design a 1-bit adder

Truth table \rightarrow Expression \rightarrow Symbols

How can we build these gates?

NOT
$$x \xrightarrow{\text{or}} z \qquad z = x'$$

$$x \xrightarrow{\text{or}} z \qquad z = x_1$$
AND
$$z \qquad z \qquad z = x_1$$

OR
$$x_1 = z = x_1 + x_0$$

NOR
$$x_0 = (x_1 + x_0)^2$$

Transistors

complementary metal oxide semiconductor(CMOS)

REPRESENTATION OF BINARY VARIABLES

- REPRESENTATION OF 0 AND 1 BY ELECTRICAL SIGNALS
 - VOLTAGES
 - CURRENTS
 - ELECTRICAL CHARGES
- REALIZATION OF CIRCUITS THAT OPERATE ON THESE SIGNALS TO IMPLEMENT DESIRED SWITCHING FUNCTIONS

TYPICAL VALUES FOR A 3.3V CMOS TECHNOLOGY

 V_{Hmax} 3.3V V_{Lmax} 0.8V

 V_{Hmin} 2.0V V_{Lmin} 0.0V

VOLTAGE REGIONS

STRUCTURE AND OPERATION OF TRANSISTORS

STRUCTURE AND OPERATION OF TRANSISTORS

(a)

CMOS NOT GATE

COMPLEMENTARY MOS CIRCUIT

CMOS NOT GATE

COMPLEMENTARY MOS CIRCUIT

$$egin{array}{c|c} v_{in} & v_{out} \\ \hline v_{H} & v_{L} \\ v_{L} & v_{H} \\ \hline \end{array}$$

COMPLEMENTARY MOS CIRCUIT

Which gate is this?

CMOS NOT GATE

COMPLEMENTARY MOS CIRCUIT

$$egin{array}{c|c} v_{in} & v_{out} \\ \hline v_H & v_L \\ v_L & v_H \\ \hline \end{array}$$

$$x \longrightarrow z \qquad \begin{array}{c|c} x & z \\ \hline 1 & 0 \\ 0 & 1 \end{array}$$

- To analyze CMOS circuit:
 - Make table with inputs, transistors, and output(s)
 - For each row of table (setting of inputs), check whether transistor resistance is High,Low
 - For each row of table, check if output has clean path to power (1)
 ground (0)

A	B	Q_1	Q_2	Q_3	Q_4	Z
0	0	Low	Low	High	High	1
0	1					
1	0					
1	1					

Which Gate is this?

NAND and NOR GATES

Circuit 1: NAND

Circuit 2: NOR

NAND and NOR GATES

Circuit 2: NOR

Clicker Question

a) H, H, H, L, L, L

b) L, H, L, H, L, H

c) L, L, L, H, H, H

d) H, L, H, L, H, L

e) none

Clicker Question

a) H, H, H, L, L, L

b) L, H, L, H, L, H

c) L, L, L, H, H, H

d) H, L, H, L, H, L

e) none

AND and OR GATES

NAND and NOR GATES

Circuit 1: NAND

Circuit 2: NOR

AND-OR-INVERT (AOI)

OR-AND-INVERT (OAI)

TRANSMISSION GATE

\boldsymbol{C}	n-switch	p-switch	z
0	off	off	Z
1	on	on	$\boldsymbol{\mathcal{X}}$

Z - high impedance state