Definiční obor, skupina $Alpha \alpha$ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-4x - 8}{-5x + 1}$$
 ??? $\mathbb{R} \setminus \{1/5\}$

(b)
$$f(x) = \frac{1}{x^3 + 2x^2 - 23x - 60}$$
 ??? $\mathbb{R} \setminus \{3, 5, -2\}$

(c)
$$f(x) = 2\sqrt{-7x+7}$$
 $x \le 1$

(d)
$$f(x) = \sqrt{-x^2 - 7x}$$
 ??? $x \in \langle -7, 0 \rangle$

(e)
$$f(x) = -9 \ln (7x + 8)$$
 ??? $x > -8/7$

(f)
$$f(x) = \ln(x^2 - 3x - 54)$$
 ... ??? ... $x \in (-6, 9)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina Alpha α -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-2x+3}{2x-4}$$
 ??? $\mathbb{R} \setminus \{2\}$

(b)
$$f(x) = \frac{1}{-x^3 - x^2 + 25x + 25}$$
 ??? $\mathbb{R} \setminus \{1, -5, 7\}$

(c)
$$f(x) = -3\sqrt{7x-6}$$
 ??? $x \le 6/7$

(d)
$$f(x) = \sqrt{-x^2 - 4x}$$
 ??? $x \in (0, 4)$

(e)
$$f(x) = 2 \ln(-8x + 4)$$
 ??? $x < 1/2$

(f)
$$f(x) = \ln(x^2 + 4x + 3)$$
 ... ??? ... $x \in (-3, -1)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina Alpha α -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a)
$$f(x) = \frac{2x-3}{6x+6}$$
 ??? $\mathbb{R} \setminus \{-1\}$

(b)
$$f(x) = \frac{1}{x^3 - 5x^2 + 7x - 3}$$
 ??? $\mathbb{R} \setminus \{1, 3\}$

(c)
$$f(x) = 4\sqrt{-3x+5}$$
 ??? $x \le 5/3$

(d)
$$f(x) = \sqrt{-x^2 - 3x}$$
 .. ??? .. $x \in (-3, 0)$

(e)
$$f(x) = -1 \ln(-3x + 8)$$
 .. ??? .. $x > 8/3$

(f)
$$f(x) = \ln(x^2 - 4x + 3)$$
 . ??? . $x \in (1,3)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Alpha \alpha$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{2x-2}{-6x+3}$$
 ??? $\mathbb{R} \setminus \{-1/2\}$

(b)
$$f(x) = \frac{1}{-x^3 - 9x^2 - 14x + 24}$$
 ??? $\mathbb{R} \setminus \{0, -4, 6\}$

(c)
$$f(x) = -5\sqrt{5x - 8}$$
 ??? $x \ge 8/5$

(d)
$$f(x) = \sqrt{-x^2 - 3x}$$
 $x \in (-3, 0)$

(e)
$$f(x) = 4 \ln (9x - 1)$$
 ??? $x < 1/9$

(f)
$$f(x) = \ln(x^2 - 16)$$
 ??? $x \in (-\infty, -4) \cup (4, \infty)$

4.

Definiční obor, skupina $Beta\ \beta$ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{5x+2}{2x-5}$$
 $???$ $\mathbb{R} \setminus \{5/2\}$

(b)
$$f(x) = \frac{1}{-x^3 + 4x^2 + 9x - 36}$$
 ??? $\mathbb{R} \setminus \{3, 4, -3\}$

(c)
$$f(x) = 4\sqrt{x-4}$$
 $x \ge 4$

(d)
$$f(x) = \sqrt{-x^2 + 3x}$$
 ??? $x \in \langle -3, 0 \rangle$

(e)
$$f(x) = -4 \ln (5x - 5)$$
 ???? $x > 1$

(f)
$$f(x) = \ln(x^2 + x - 42)$$
 ... ??? ... $x \in (-7, 6)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina $Beta \beta$ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-7x+1}{5x-3}$$
 ??? $\mathbb{R} \setminus \{3/5\}$

(b)
$$f(x) = \frac{1}{-x^3 + 5x^2 + 2x - 24}$$
 . ??? . $\mathbb{R} \setminus \{1, 2, 4\}$

(c)
$$f(x) = -9\sqrt{-6x-6}$$
 ??? $x \le -1$

(d)
$$f(x) = \sqrt{-x^2 + 2x}$$
 $x \in (0, 2)$

(e)
$$f(x) = 8 \ln(-2x + 2)$$
 ??? $x < 1$

(f)
$$f(x) = \ln(x^2 - 6x + 5)$$
 ??? $x \in (-\infty, 1) \cup (5, \infty)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina Beta β -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a)
$$f(x) = \frac{6x-4}{-x+4}$$
 ??? $\mathbb{R} \setminus \{4\}$

(b)
$$f(x) = \frac{1}{x^3 - 7x^2 + 4x + 12}$$
 ??? $\mathbb{R} \setminus \{2, 6, -1\}$

(c)
$$f(x) = 3\sqrt{2x+4}$$
 ??? $x \le -2$

(d)
$$f(x) = \sqrt{-x^2 - 5x}$$
 ??? $x \in (-5, 0)$

(e)
$$f(x) = 1 \ln(-2x - 3)$$
 ??? $x < 3/2$

(f)
$$f(x) = \ln(x^2 + 2x - 3)$$
 ... ??? ... $x \in (-3, 1)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Beta \beta$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-7x+5}{-x-1}$$
 ??? $\mathbb{R} \setminus \{-1\}$

(b)
$$f(x) = \frac{1}{x^3 - 5x^2 + 2x + 8}$$
 ??? $\mathbb{R} \setminus \{0, -4, -1\}$

(c)
$$f(x) = -1\sqrt{8x-1}$$
 ??? $x \le 1/8$

(d)
$$f(x) = \sqrt{-x^2 + x}$$
 $x \in \langle -1, 0 \rangle$

(e)
$$f(x) = -9 \ln(-5x - 3)$$
 ??? $x > -3/5$

(f)
$$f(x) = \ln(x^2 + 2x - 8)$$
 ... ??? ... $x \in (-4, 2)$

4.

Písmeno Braillovej abecedy

Definiční obor, skupina $Gamma \ \gamma$ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{7x-4}{4x-3}$$
 ??? $\mathbb{R} \setminus \{3/4\}$

(b)
$$f(x) = \frac{1}{-x^3 + 6x^2 + 31x - 36}$$
 ??? $\mathbb{R} \setminus \{-4, -1, 7\}$

(c)
$$f(x) = 2\sqrt{2x+4}$$
 $x \ge 2$

(d)
$$f(x) = \sqrt{-x^2 + x}$$
 $x \in (0,1)$

(e)
$$f(x) = -1 \ln (7x - 5)$$
 ??? $x > -5/7$

(f)
$$f(x) = \ln(x^2 - 5x + 4)$$
 ??? $x \in (-\infty, 1) \cup (4, \infty)$

1.

$$\bigcirc$$
 \bigcirc \bigcirc

Písmeno Braillovej abecedy

Definiční obor, skupina $Gamma \gamma$ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{4x-2}{-7x+7}$$
 $\mathbb{R} \setminus \{1\}$

(b)
$$f(x) = \frac{1}{-x^3 + 5x^2 + 17x - 21}$$
 ??? $\mathbb{R} \setminus \{9, -3, -1\}$

(c)
$$f(x) = -5\sqrt{-2x+3}$$
 ??? $x \le 3/2$

(d)
$$f(x) = \sqrt{-x^2 + 4x}$$
 $x \in (0, 4)$

(e)
$$f(x) = 1 \ln(-6x + 1)$$
 ??? $x < -1/6$

(f)
$$f(x) = \ln(x^2 - 2x + 1)$$
 ??? $x \in (1, 1)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina $Gamma \gamma$ -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a)
$$f(x) = \frac{-6x+3}{-x+1}$$
 ??? $\mathbb{R} \setminus \{1\}$

(b)
$$f(x) = \frac{1}{-8x^3 + 16x^2 + 8x - 16}$$
 ??? $\mathbb{R} \setminus \{0, 2, -1\}$

(c)
$$f(x) = 5\sqrt{3x-2}$$
 ??? ... $x \ge 2/3$

(d)
$$f(x) = \sqrt{-x^2 - 4x}$$
 ??? $x \in (0, 4)$

(e)
$$f(x) = -6 \ln (3x - 1)$$
 ??? $x > -1/3$

(f)
$$f(x) = \ln(x^2 - 7x + 6)$$
 ??? $x \in (1, 6)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Gamma \ \gamma$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-2x+1}{x-5}$$
 ??? $\mathbb{R} \setminus \{5\}$

(b)
$$f(x) = \frac{1}{-x^3 + 6x^2 - 3x - 10}$$
 ??? $\mathbb{R} \setminus \{2, 5, -1\}$

(c)
$$f(x) = 4\sqrt{x+4}$$
 $x \ge -4$

(d)
$$f(x) = \sqrt{-x^2 + x}$$
 $x \in (0,1)$

(e)
$$f(x) = -1 \ln (7x - 3)$$
 ??? $x > 3/7$

(f)
$$f(x) = \ln(x^2 + 7x + 12)$$
 .. ??? .. $x \in (-4, -3)$

4.

Definiční obor, skupina $Delta\ \delta$ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{5x-3}{4x-1}$$
 $???$ $\mathbb{R} \setminus \{1/4\}$

(b)
$$f(x) = \frac{1}{2x^3 + 10x^2 + 16x + 8}$$
 ??? $\mathbb{R} \setminus \{1, -3, -2\}$

(c)
$$f(x) = -2\sqrt{2x-6}$$
 ??? $x \le 3$

(d)
$$f(x) = \sqrt{-x^2 + 4x}$$
 $???$ $x \in \langle -4, 0 \rangle$

(e)
$$f(x) = 1 \ln(-8x - 1)$$
 ??? $x < 1/8$

(f)
$$f(x) = \ln(x^2 - 4)$$
 .. ??? .. $x \in (-\infty, -2) \cup (2, \infty)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina $Delta \delta$ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{5x+2}{-x-2}$$
 $???$ $\mathbb{R} \setminus \{-2\}$

(b)
$$f(x) = \frac{1}{-2x^3 + 16x^2 - 38x + 24}$$
 ??? $\mathbb{R} \setminus \{2, 4, -1\}$

(c)
$$f(x) = -3\sqrt{6x+3}$$
 ??? ... $x \ge 1/2$

(d)
$$f(x) = \sqrt{-x^2 + 3x}$$
 $x \in \langle -3, 0 \rangle$

(e)
$$f(x) = -2\ln(3x+4)$$
 ??? $x > -4/3$

(f)
$$f(x) = \ln(x^2 - 7x + 6)$$
 ??? $x \in (1, 6)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina $Delta~\delta$ -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a)
$$f(x) = \frac{-2x-4}{3x-8}$$
 ??? $\mathbb{R} \setminus \{8/3\}$

(b)
$$f(x) = \frac{1}{2x^3 + 8x^2 + 2x - 12}$$
 ??? $\mathbb{R} \setminus \{-4, -2, -1\}$

(c)
$$f(x) = -3\sqrt{6x+4}$$
 ??? $x \ge -2/3$

(d)
$$f(x) = \sqrt{-x^2 + 3x}$$
 $x \in (0,3)$

(e)
$$f(x) = 3\ln(-7x - 5)$$
 ??? $x < -5/7$

(f)
$$f(x) = \ln(x^2 - 4)$$
 .. ??? .. $x \in (-\infty, -2) \cup (2, \infty)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Delta \delta$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-5x - 7}{2x - 1}$$
 ??? $\mathbb{R} \setminus \{1/2\}$

(b)
$$f(x) = \frac{1}{-x^3 - 2x^2 + 5x + 6}$$
 ??? $\mathbb{R} \setminus \{1, 3, -3\}$

(c)
$$f(x) = 2\sqrt{-3x+7}$$
 ??? $x \ge 7/3$

(d)
$$f(x) = \sqrt{-x^2 + 3x}$$
 ??? $x \in \langle -3, 0 \rangle$

(e)
$$f(x) = 4 \ln(-5x - 7)$$
 ??? $x < 7/5$

(f)
$$f(x) = \ln(x^2 - 13x + 40)$$
 ... ??? ... $x \in (5, 8)$

4.

Definiční obor, skupina $Epsilon \ \epsilon$ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-x+4}{-2x-3}$$
 ??? $\mathbb{R} \setminus \{-3/2\}$

(b)
$$f(x) = \frac{1}{4x^3 + 16x^2 - 44x + 24}$$
 ??? $\mathbb{R} \setminus \{1, -6\}$

(c)
$$f(x) = -2\sqrt{-3x+3}$$
 $???$ $x \le 1$

(d)
$$f(x) = \sqrt{-x^2 + 4x}$$
 ??? $x \in (0, 4)$

(e)
$$f(x) = -4 \ln (3x - 1)$$
 ??? $x > 1/3$

(f)
$$f(x) = \ln(x^2 - 3x + 2)$$
 ... ??? ... $x \in (1, 2)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina $Epsilon \epsilon$ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-5x - 3}{5x - 1}$$
 ??? $\mathbb{R} \setminus \{1/5\}$

(b)
$$f(x) = \frac{1}{-x^3 - 4x^2 + x + 4}$$
 ??? $\mathbb{R} \setminus \{2, 4, -1\}$

(c)
$$f(x) = 1\sqrt{-2x-1}$$
 ??? $x \le 1/2$

(d)
$$f(x) = \sqrt{-x^2 + 5x}$$
 ??? $x \in \langle -5, 0 \rangle$

(e)
$$f(x) = 3 \ln (4x + 2)$$
 ??? $x > -1/2$

(f)
$$f(x) = \ln(x^2 + 3x - 18)$$
 .. ??? .. $x \in (-6,3)$

 $\mathbf{2}.$

Písmeno Braillovej abecedy

Definiční obor, skupina $Epsilon~\epsilon$ -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a)
$$f(x) = \frac{-x+8}{-2x+3}$$
 ??? ... $\mathbb{R} \setminus \{3/2\}$

(b)
$$f(x) = \frac{1}{-x^3 - 13x^2 - 39x - 27}$$
 ??? $\mathbb{R} \setminus \{-3, -1, -9\}$

(c)
$$f(x) = 6\sqrt{-x+5}$$
 ???? $x \le 5$

(d)
$$f(x) = \sqrt{-x^2 + 4x}$$
 ???? $x \in \langle -4, 0 \rangle$

(e)
$$f(x) = -1 \ln(2x+3)$$
 ??? $x > 3/2$

(f)
$$f(x) = \ln(x^2 - 3x - 28)$$
 ??? $x \in (-\infty, -4) \cup (7, \infty)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Epsilon \ \epsilon$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{2x-2}{-5x-5}$$
 ??? ... $\mathbb{R} \setminus \{-1\}$

(b)
$$f(x) = \frac{1}{6x^3 - 12x^2 - 30x + 36}$$
 ??? $\mathbb{R} \setminus \{3, -3, -1\}$

(c)
$$f(x) = 1\sqrt{3x+2}$$
 ???? $x \ge 2/3$

(d)
$$f(x) = \sqrt{-x^2 - 7x}$$
 ??? $x \in (-7, 0)$

(e)
$$f(x) = -2 \ln (9x - 1)$$
 ??? $x < 1/9$

(f)
$$f(x) = \ln(x^2 + 5x - 6)$$
 ??? $x \in (-6, 1)$

4.

Definiční obor, skupina Zeta ζ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{3x-3}{9x+6}$$
 ??? $\mathbb{R} \setminus \{-2/3\}$

(b)
$$f(x) = \frac{1}{x^3 + x^2 - 22x - 40}$$
 ??? $\mathbb{R} \setminus \{-4, 5, -2\}$

(c)
$$f(x) = -7\sqrt{-7x - 1}$$
 ??? $x \le -1/7$

(d)
$$f(x) = \sqrt{-x^2 + 6x}$$
 ??? $x \in \langle -6, 0 \rangle$

(e)
$$f(x) = -4 \ln (2x - 6)$$
 ??? $x > -3$

(f)
$$f(x) = \ln(x^2 - 3x - 4)$$
 ??? $x \in (-1, 4)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina Zeta ζ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-4x - 5}{-2x + 4}$$
 ??? $\mathbb{R} \setminus \{2\}$

(b)
$$f(x) = \frac{1}{x^3 - 5x^2 + 8x - 4}$$
 ??? $\mathbb{R} \setminus \{0, 2, -1\}$

(c)
$$f(x) = 1\sqrt{-x+5}$$
 $x \le -5$

(d)
$$f(x) = \sqrt{-x^2 - 3x}$$
 ??? $x \in (-3, 0)$

(e)
$$f(x) = -3\ln(3x+3)$$
 ??? $x > 1$

(f)
$$f(x) = \ln(x^2 - 2x - 8)$$
 .. ??? .. $x \in (-2, 4)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina Zeta ζ -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a)
$$f(x) = \frac{3x+1}{3x-1}$$
 ??? ... $\mathbb{R} \setminus \{1/3\}$

(b)
$$f(x) = \frac{1}{-2x^3 + 10x^2 - 16x + 8}$$
 ??? $\mathbb{R} \setminus \{1, 3, -2\}$

(c)
$$f(x) = 5\sqrt{5x-1}$$
 $x \ge 1/5$

(d)
$$f(x) = \sqrt{-x^2 + x}$$
 $x \in \langle -1, 0 \rangle$

(e)
$$f(x) = -4\ln(-5x+3)$$
 ??? $x < 3/5$

(f)
$$f(x) = \ln(x^2 - 6x + 5)$$
 ??? $x \in (-\infty, 1) \cup (5, \infty)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina Zeta ζ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-4x - 4}{x + 2}$$
 $\mathbb{R} \setminus \{-2\}$

(b)
$$f(x) = \frac{1}{x^3 - 9x^2 + 24x - 20}$$
 ??? $\mathbb{R} \setminus \{2, -5, 4\}$

(c)
$$f(x) = 4\sqrt{-6x+1}$$
 ??? $x \le 1/6$

(d)
$$f(x) = \sqrt{-x^2 + 5x}$$
 $x \in \langle -5, 0 \rangle$

(e)
$$f(x) = -2\ln(-2x - 6)$$
 ??? $x < -3$

(f)
$$f(x) = \ln(x^2 - 1)$$
 $x \in (-1, 1)$

4.

Definiční obor, skupina $Eta \eta$ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-2x-1}{4x+4}$$
 $???$ $\mathbb{R} \setminus \{-1\}$

(b)
$$f(x) = \frac{1}{-3x^3 + 12x^2 + 45x - 54}$$
 ??? $\mathbb{R} \setminus \{1, -3, 6\}$

(c)
$$f(x) = 4\sqrt{6x+5}$$
 ??? $x \le -5/6$

(d)
$$f(x) = \sqrt{-x^2 + 5x}$$
 ??? $x \in \langle -5, 0 \rangle$

(e)
$$f(x) = 6 \ln (5x - 2)$$
 ??? $x > 2/5$

(f)
$$f(x) = \ln(x^2 + 7x + 6)$$
 ??? $x \in (-6, -1)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina $Eta \eta$ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{3x+5}{2x+2}$$
 $\mathbb{R} \setminus \{-1\}$

(b)
$$f(x) = \frac{1}{3x^3 - 12x^2 - 3x + 12}$$
 ??? $\mathbb{R} \setminus \{1, 4, -1\}$

(c)
$$f(x) = -4\sqrt{-6x+7}$$
 ??? $x \le \frac{7}{6}$

(d)
$$f(x) = \sqrt{-x^2 - 8x}$$
 $x \in (-8, 0)$

(e)
$$f(x) = 5 \ln(-5x - 1)$$
 ??? $x < -1/5$

(f)
$$f(x) = \ln(x^2 + x - 42)$$
 ??? $x \in (-7, 6)$

 $\mathbf{2}$.

Písmeno Braillovej abecedy

Definiční obor, skupina $Eta \eta$ -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a)
$$f(x) = \frac{-2x+3}{x+5}$$
 ??? $\mathbb{R} \setminus \{-5\}$

(b)
$$f(x) = \frac{1}{-x^3 - 9x^2 - 23x - 15}$$
 ??? $\mathbb{R} \setminus \{-5, -3, -1\}$

(c)
$$f(x) = 8\sqrt{3x-3}$$
 $x \ge 1$

(d)
$$f(x) = \sqrt{-x^2 - 3x}$$
 ??? $x \in (0,3)$

(e)
$$f(x) = 2 \ln(-3x + 5)$$
 ??? $x < 5/3$

(f)
$$f(x) = \ln(x^2 + 4x + 3)$$
 ??? $x \in (-3, -1)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Eta \eta$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{x-2}{x-1}$$
 ??? $\mathbb{R} \setminus \{1\}$

(b)
$$f(x) = \frac{1}{4x^3 + 16x^2 + 20x + 8}$$
 ??? $\mathbb{R} \setminus \{0, 2, -1\}$

(c)
$$f(x) = -3\sqrt{-2x+5}$$
 ??? $x \ge 5/2$

(d)
$$f(x) = \sqrt{-x^2 + x}$$
 $x \in (0, 1)$

(e)
$$f(x) = -2 \ln(x-3)$$
 ??? $x > -3$

(f)
$$f(x) = \ln(x^2 + x - 6)$$
 ??? $x \in (-3, 2)$

4.

Definiční obor, skupina $Theta \ \theta$ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{3x-5}{-8x-6}$$
 ??? $\mathbb{R} \setminus \{3/4\}$

(b)
$$f(x) = \frac{1}{2x^3 - 12x^2 + 22x - 12}$$
 . ??? . $\mathbb{R} \setminus \{1, 2, 3\}$

(c)
$$f(x) = -7\sqrt{9x-3}$$
 $x \le 1/3$

(d)
$$f(x) = \sqrt{-x^2 + 2x}$$
 ??? $x \in \langle -2, 0 \rangle$

(e)
$$f(x) = 5 \ln(2x+5)$$
 ??? $x > -5/2$

(f)
$$f(x) = \ln(x^2 - 11x + 18)$$
 ??? $x \in (-\infty, 2) \cup (9, \infty)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina $Theta \theta$ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-9x - 3}{x + 1}$$
 ??? $\mathbb{R} \setminus \{-1\}$

(b)
$$f(x) = \frac{1}{6x^3 - 12x^2 - 24x + 48}$$
 ??? $\mathbb{R} \setminus \{4, -2\}$

(c)
$$f(x) = 2\sqrt{-9x+8}$$
 ??? $x \le 8/9$

(d)
$$f(x) = \sqrt{-x^2 + 8x}$$
 $x \in (0,8)$

(e)
$$f(x) = 7 \ln(-x - 2)$$
 ??? $x < -2$

(f)
$$f(x) = \ln(x^2 + 3x - 4)$$
 ... ??? ... $x \in (-4, 1)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina $Theta \ \theta$ -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a)
$$f(x) = \frac{-8x+5}{x+6}$$
 ??? $\mathbb{R} \setminus \{6\}$

(b)
$$f(x) = \frac{1}{2x^3 - 14x^2 + 28x - 16}$$
 ??? $\mathbb{R} \setminus \{1, 2, 4\}$

(c)
$$f(x) = -4\sqrt{2x+6}$$
 $x \le -3$

(d)
$$f(x) = \sqrt{-x^2 + 2x}$$
 $x \in (0, 2)$

(e)
$$f(x) = -5 \ln(-2x + 3)$$
 ??? $x < 3/2$

(f)
$$f(x) = \ln(x^2 - 2x + 1)$$
 ??? $x \in (-\infty, 1) \cup (1, \infty)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Theta \theta$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{2x-9}{4x-5}$$
 ??? $\mathbb{R} \setminus \{5/4\}$

(b)
$$f(x) = \frac{1}{-x^3 - 3x^2 + 34x - 48}$$
 ??? $\mathbb{R} \setminus \{-8, 0, -3\}$

(c)
$$f(x) = 2\sqrt{3x - 8}$$
 ??? $x \ge 8/3$

(d)
$$f(x) = \sqrt{-x^2 - 7x}$$
 ??? $x \in (-7,0)$

(e)
$$f(x) = -1 \ln(-4x + 4)$$
 ??? $x < 1$

(f)
$$f(x) = \ln(x^2 + 6x - 7)$$
 ??? $x \in (-7, 1)$

4.

Definiční obor, skupina $Iota\ \iota$ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-3x+3}{9x-2}$$
 ??? $\mathbb{R} \setminus \{2/9\}$

(b)
$$f(x) = \frac{1}{x^3 - 7x^2 - 17x - 9}$$
 ??? $\mathbb{R} \setminus \{9, -1\}$

(c)
$$f(x) = -3\sqrt{6x-3}$$
 ??? $x \ge -1/2$

(d)
$$f(x) = \sqrt{-x^2 - x}$$
 ??? $x \in (0, 1)$

(e)
$$f(x) = -7 \ln (7x - 1)$$
 ??? $x < 1/7$

(f)
$$f(x) = \ln(x^2 - 3x - 10)$$
 . ??? . $x \in (-2, 5)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina $Iota \iota$ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-5x+5}{-6x-1}$$
 ... ??? ... $\mathbb{R} \setminus \{-1/6\}$

(b)
$$f(x) = \frac{1}{x^3 - 8x^2 + 4x + 48}$$
 ??? $\mathbb{R} \setminus \{2, 4\}$

(c)
$$f(x) = -2\sqrt{9x-2}$$
 ??? $x \le 2/9$

(d)
$$f(x) = \sqrt{-x^2 + x}$$
 ??? $x \in (0, 1)$

(e)
$$f(x) = -8 \ln(x-1)$$
 ??? $x > -1$

(f)
$$f(x) = \ln(x^2 + 6x - 7)$$
 . ??? . $x \in (-7, 1)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina $Iota~\iota$ -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-4x-5}{x+7}$$
 ??? $\mathbb{R} \setminus \{-7\}$

(b)
$$f(x) = \frac{1}{-x^3 + 6x^2 - 9x + 4}$$
 ??? $\mathbb{R} \setminus \{1, 4\}$

(c)
$$f(x) = 1\sqrt{x-3}$$
 ???? $x \le 3$

(d)
$$f(x) = \sqrt{-x^2 + 3x}$$
 ??? $x \in (0,3)$

(e)
$$f(x) = 2\ln(-9x - 7)$$
 ??? $x < 7/9$

(f)
$$f(x) = \ln(x^2 - 4x + 3)$$
 .. ??? .. $x \in (1,3)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Iota\ \iota$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-5x - 4}{-2x - 3}$$
 .. ??? .. $\mathbb{R} \setminus \{-3/2\}$

(b)
$$f(x) = \frac{1}{-x^3 + 3x + 2}$$
 ??? $\mathbb{R} \setminus \{0, 1, 2\}$

(c)
$$f(x) = -3\sqrt{-6x-5}$$
 .. ??? .. $x \le 5/6$

(d)
$$f(x) = \sqrt{-x^2 + 7x}$$
 . ??? . $x \in \langle -7, 0 \rangle$

(e)
$$f(x) = 6 \ln(-x - 5)$$
 .. ??? .. $x > -5$

(f)
$$f(x) = \ln(x^2 - 5x + 4)$$
 ??? $x \in (1,4)$

4.

Definiční obor, skupina $Kappa \kappa$ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-x+6}{-9x+1}$$
 ??? $\mathbb{R} \setminus \{1/9\}$

(b)
$$f(x) = \frac{1}{-x^3 + 3x^2 + 4x - 12}$$
 ??? $\mathbb{R} \setminus \{2, 3, -2\}$

(c)
$$f(x) = 1\sqrt{-7x - 1}$$
 ??? $x \ge -1/7$

(d)
$$f(x) = \sqrt{-x^2 + 5x}$$
 ??? $x \in \langle -5, 0 \rangle$

(e)
$$f(x) = -3\ln(-x+1)$$
 ??? $x < -1$

(f)
$$f(x) = \ln(x^2 - 1)$$
 ??? $x \in (-\infty, -1) \cup (1, \infty)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina $Kappa \kappa$ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{2x-3}{-5x+9}$$
 ??? $\mathbb{R} \setminus \{9/5\}$

(b)
$$f(x) = \frac{1}{x^3 - 4x^2 - 15x + 18}$$
 ??? $\mathbb{R} \setminus \{1, -6, -1\}$

(c)
$$f(x) = -4\sqrt{-5x+7}$$
 ??? $x \ge \frac{7}{5}$

(d)
$$f(x) = \sqrt{-x^2 - 2x}$$
 $x \in (-2, 0)$

(e)
$$f(x) = 6 \ln (6x - 8)$$
 ??? $x > 4/3$

(f)
$$f(x) = \ln(x^2 - 3x - 18)$$
 ... ??? ... $x \in (-3, 6)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina Kappa κ -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a)
$$f(x) = \frac{-7x - 1}{2x + 3}$$
 ??? ... $\mathbb{R} \setminus \{-3/2\}$

(b)
$$f(x) = \frac{1}{4x^3 + 16x^2 + 20x + 8}$$
 .. ??? .. $\mathbb{R} \setminus \{1, 2, -1\}$

(c)
$$f(x) = -3\sqrt{-3x+5}$$
 ???? $x \le 5/3$

(d)
$$f(x) = \sqrt{-x^2 - 4x}$$
 $x \in (0, 4)$

(e)
$$f(x) = -2\ln(-x-6)$$
 ??? $x < -6$

(f)
$$f(x) = \ln(x^2 + 9x + 8)$$
 ??? $x \in (-\infty, -8) \cup (-1, \infty)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Kappa \kappa$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{2x-6}{-7x+5}$$
 ??? $\mathbb{R} \setminus \{5/7\}$

(b)
$$f(x) = \frac{1}{-4x^3 + 12x^2 + 52x - 60}$$
 ??? $\mathbb{R} \setminus \{-5, 5, -1\}$

(c)
$$f(x) = -6\sqrt{-x+3}$$
 ??? $x \le -3$

(d)
$$f(x) = \sqrt{-x^2 + x}$$
 $x \in (0, 1)$

(e)
$$f(x) = 9 \ln(x+3)$$
 ??? $x < -3$

(f)
$$f(x) = \ln(x^2 + 6x + 5)$$
 ??? $x \in (-5, -1)$

4.

Definiční obor, skupina Lambda λ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-8x+7}{2x-3}$$
 $\mathbb{R} \setminus \{3/2\}$

(b)
$$f(x) = \frac{1}{-3x^3 + 24x^2 + 3x - 24}$$
 ??? $\mathbb{R} \setminus \{0, -8, -1\}$

(c)
$$f(x) = 6\sqrt{-4x+4}$$
 $x \le -1$

(d)
$$f(x) = \sqrt{-x^2 - 6x}$$
 ??? $x \in (-6, 0)$

(e)
$$f(x) = 2 \ln (2x + 1)$$
 ??? $x > -1/2$

(f)
$$f(x) = \ln(x^2 + 2x - 24)$$
 ??? $x \in (-\infty, -6) \cup (4, \infty)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina $Lambda \lambda$ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a)
$$f(x) = \frac{x-1}{-7x-2}$$
 ??? $\mathbb{R} \setminus \{-2/7\}$

(b)
$$f(x) = \frac{1}{-2x^3 + 14x + 12}$$
 ??? $\mathbb{R} \setminus \{1, 5, -2\}$

(c)
$$f(x) = -4\sqrt{-5x+2}$$
 ??? $x \le 2/5$

(d)
$$f(x) = \sqrt{-x^2 + 5x}$$
 ??? $x \in (0, 5)$

(e)
$$f(x) = -8\ln(-2x+5)$$
 ??? $x < 5/2$

(f)
$$f(x) = \ln(x^2 + x - 20)$$
 .. ??? .. $x \in (-5, 4)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina $Lambda \lambda$ -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a)
$$f(x) = \frac{-2x+1}{-8x-5}$$
 ??? $\mathbb{R} \setminus \{-5/8\}$

(b)
$$f(x) = \frac{1}{x^3 - 8x^2 + 21x - 18}$$
 .. ??? .. $\mathbb{R} \setminus \{3, 5, -2\}$

(c)
$$f(x) = 6\sqrt{x-8}$$
 $x \ge 8$

(d)
$$f(x) = \sqrt{-x^2 + 3x}$$
 ??? $x \in \langle -3, 0 \rangle$

(e)
$$f(x) = 1 \ln(x-1)$$
 ???? $x > -1$

(f)
$$f(x) = \ln(x^2 + 5x - 14)$$
 ??? $x \in (-\infty, -7) \cup (2, \infty)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Lambda \lambda$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-2x+8}{-2x-4}$$
 ??? $\mathbb{R} \setminus \{-2\}$

(b)
$$f(x) = \frac{1}{4x^3 + 28x^2 + 56x + 32}$$
 ??? $\mathbb{R} \setminus \{1, -3, -2\}$

(c)
$$f(x) = 6\sqrt{x-1}$$
 $x \le 1$

(d)
$$f(x) = \sqrt{-x^2 - 2x}$$
 ??? $x \in (-2, 0)$

(e)
$$f(x) = -1 \ln (6x + 1)$$
 ??? $x < -1/6$

(f)
$$f(x) = \ln(x^2 + x - 12)$$
 $???$ $x \in (-4,3)$

4.

Definiční obor, skupina Mu μ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{3x+3}{2x+3}$$
 ??? $\mathbb{R} \setminus \{-3/2\}$

(b)
$$f(x) = \frac{1}{-x^3 + 8x^2 - 13x + 6}$$
 ??? $\mathbb{R} \setminus \{1, 6\}$

(c)
$$f(x) = -5\sqrt{-3x+6}$$
 ??? $x \le 2$

(d)
$$f(x) = \sqrt{-x^2 - 2x}$$
 ??? $x \in (0, 2)$

(e)
$$f(x) = 1 \ln(-6x - 1)$$
 ??? $x < -1/6$

(f)
$$f(x) = \ln(x^2 - 4)$$
 ... ??? ... $x \in (-2, 2)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina $Mu \mu$ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{x+4}{2x-4}$$
 ??? $\mathbb{R} \setminus \{2\}$

(b)
$$f(x) = \frac{1}{-3x^3 + 9x^2 - 12}$$
 ??? $\mathbb{R} \setminus \{1, 2\}$

(c)
$$f(x) = 6\sqrt{-6x+1}$$
 ??? $x \le 1/6$

(d)
$$f(x) = \sqrt{-x^2 - x}$$
 ... ??? ... $x \in (0, 1)$

(e)
$$f(x) = 3 \ln(3x + 7)$$
 ... ??? ... $x > -7/3$

(f)
$$f(x) = \ln(x^2 - 15x + 56)$$
 ??? $x \in (7,8)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina Mu μ -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-4x+3}{-6x+6}$$
 ??? $\mathbb{R} \setminus \{1\}$

(b)
$$f(x) = \frac{1}{-x^3 + 3x + 2}$$
 $\mathbb{R} \setminus \{2, -1\}$

(c)
$$f(x) = -2\sqrt{-7x - 2}$$
 ??? ... $x \le -2/7$

(d)
$$f(x) = \sqrt{-x^2 - 7x}$$
 $x \in (-7, 0)$

(e)
$$f(x) = -4\ln(-x+1)$$
 ??? $x < -1$

(f)
$$f(x) = \ln(x^2 + 12x + 27)$$
 ??? $x \in (-\infty, -9) \cup (-3, \infty)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Mu~\mu$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{2x-2}{-8x+6}$$
 ??? ... $\mathbb{R} \setminus \{3/4\}$

(b)
$$f(x) = \frac{1}{-3x^3 - 15x^2 - 21x - 9}$$
 ??? $\mathbb{R} \setminus \{1, -5, -1\}$

(c)
$$f(x) = 5\sqrt{-7x - 6}$$
 ??? ... $x \le 6/7$

(d)
$$f(x) = \sqrt{-x^2 - 3x}$$
 ??? $x \in (-3, 0)$

(e)
$$f(x) = -2\ln(8x+2)$$
 ??? $x > 1/4$

(f)
$$f(x) = \ln(x^2 - 4)$$
 $x \in (-2, 2)$

4.

Definiční obor, skupina $Nu~\nu$ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{x-4}{2x-6}$$
 $\mathbb{R} \setminus \{3\}$

(b)
$$f(x) = \frac{1}{-x^3 - 6x^2 - 11x - 6}$$
 ??? $\mathbb{R} \setminus \{2, -1, -2\}$

(c)
$$f(x) = 3\sqrt{2x+6}$$
 ??? $x \ge -3$

(d)
$$f(x) = \sqrt{-x^2 - 2x}$$
 $???$ $x \in \langle -2, 0 \rangle$

(e)
$$f(x) = -6 \ln (6x + 2)$$
 ??? $x < -1/3$

(f)
$$f(x) = \ln(x^2 + 3x - 18)$$
 ... ??? ... $x \in (-6, 3)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina $Nu \nu$ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{x-2}{x-2}$$
 $\mathbb{R} \setminus \{2\}$

(b)
$$f(x) = \frac{1}{-x^3 + 10x^2 - 23x + 14}$$
 ??? $\mathbb{R} \setminus \{1, 2, 7\}$

(c)
$$f(x) = -4\sqrt{4x-2}$$
 ??? $x \ge 1/2$

(d)
$$f(x) = \sqrt{-x^2 - 6x}$$
 $x \in (-6, 0)$

(e)
$$f(x) = 3\ln(7x - 7)$$
 ??? $x > 1$

(f)
$$f(x) = \ln(x^2 + 3x + 2)$$
 ... ??? ... $x \in (-2, -1)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina $Nu~\nu$ -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{2x-3}{-5x+1}$$
 ??? $\mathbb{R} \setminus \{1/5\}$

(b)
$$f(x) = \frac{1}{-2x^3 - 6x^2 + 12x + 16}$$
 . ??? . $\mathbb{R} \setminus \{0, 1, -4\}$

(c)
$$f(x) = -7\sqrt{x-4}$$
 $x \ge 4$

(d)
$$f(x) = \sqrt{-x^2 + x}$$
 $x \in (0,1)$

(e)
$$f(x) = 5 \ln (4x - 1)$$
 ??? ... $x > 1/4$

(f)
$$f(x) = \ln(x^2 + 2x - 35)$$
 ??? $x \in (-\infty, -7) \cup (5, \infty)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Nu \nu$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{2x-5}{5x-3}$$
 ??? $\mathbb{R} \setminus \{3/5\}$

(b)
$$f(x) = \frac{1}{x^3 - 9x^2 + 15x - 7}$$
 ??? $\mathbb{R} \setminus \{3, -1, 7\}$

(c)
$$f(x) = 6\sqrt{4x+3}$$
 $x \le -3/4$

(d)
$$f(x) = \sqrt{-x^2 + 4x}$$
 ??? $x \in \langle -4, 0 \rangle$

(e)
$$f(x) = -2\ln(6x - 5)$$
 ??? $x < 5/6$

(f)
$$f(x) = \ln(x^2 - 1)$$
 ??? $x \in (-1, 1)$

4.

Definiční obor, skupina $Xi \xi$ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-4x - 2}{3x + 1}$$
 ??? $\mathbb{R} \setminus \{-1/3\}$

(b)
$$f(x) = \frac{1}{-4x^3 + 8x^2 + 20x - 24}$$
 ??? $\mathbb{R} \setminus \{1, 2, 5\}$

(c)
$$f(x) = -4\sqrt{3x+1}$$
 ??? $x \le -1/3$

(d)
$$f(x) = \sqrt{-x^2 + 4x}$$
 ??? $x \in (0,4)$

(e)
$$f(x) = 6 \ln (x-1)$$
 ??? $x > -1$

(f)
$$f(x) = \ln(x^2 + 8x + 12)$$
 .. ??? .. $x \in (-6, -2)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina $Xi \xi$ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-x+3}{-8x-5}$$
 ??? $\mathbb{R} \setminus \{-5/8\}$

(b)
$$f(x) = \frac{1}{-x^3 + 9x^2 + x - 9}$$
 . ??? . $\mathbb{R} \setminus \{0, -1, -9\}$

(c)
$$f(x) = 3\sqrt{-7x - 7}$$
 ??? $x \le -1$

(d)
$$f(x) = \sqrt{-x^2 - 6x}$$
 $x \in (-6, 0)$

(e)
$$f(x) = -5\ln(-2x - 4)$$
 ??? $x < -2$

(f)
$$f(x) = \ln(x^2 - x - 6)$$
 ??? $x \in (-\infty, -2) \cup (3, \infty)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina $Xi \xi$ -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a)
$$f(x) = \frac{-4x+1}{x+3}$$
 ??? ... $\mathbb{R} \setminus \{-3\}$

(b)
$$f(x) = \frac{1}{-6x^3 + 30x^2 - 48x + 24}$$
 . ??? . $\mathbb{R} \setminus \{2, -2\}$

(c)
$$f(x) = -8\sqrt{-6x+2}$$
 ???? $x \le 1/3$

(d)
$$f(x) = \sqrt{-x^2 + 7x}$$
 ??? $x \in \langle -7, 0 \rangle$

(e)
$$f(x) = 7 \ln (6x - 2)$$
 ??? ... $x > 1/3$

(f)
$$f(x) = \ln(x^2 - 3x - 28)$$
 ??? $x \in (-\infty, -4) \cup (7, \infty)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Xi \xi$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{4x+1}{9x+8}$$
 ??? $\mathbb{R} \setminus \{-8/9\}$

(b)
$$f(x) = \frac{1}{-2x^3 - 6x^2 + 8x + 24}$$
 ??? $\mathbb{R} \setminus \{2, -4\}$

(c)
$$f(x) = 1\sqrt{2x+7}$$
 $x \le -7/2$

(d)
$$f(x) = \sqrt{-x^2 + x}$$
 $x \in (0, 1)$

(e)
$$f(x) = -7 \ln(x+3)$$
 ??? $x > 3$

(f)
$$f(x) = \ln(x^2 - 2x + 1)$$
 ... ??? ... $x \in (1, 1)$

4.

Definiční obor, skupina Omicron o-i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-3x+2}{2x+3}$$
 ??? ... $\mathbb{R} \setminus \{-3/2\}$

(b)
$$f(x) = \frac{1}{3x^3 + 18x^2 + 33x + 18}$$
 ??? $\mathbb{R} \setminus \{-3, -1, -2\}$

(c)
$$f(x) = -9\sqrt{9x-1}$$
 ??? $x \ge 1/9$

(d)
$$f(x) = \sqrt{-x^2 - 2x}$$
 $x \in (-2, 0)$

(f)
$$f(x) = \ln(x^2 - 25)$$
 ... ??? ... $x \in (-\infty, -5) \cup (5, \infty)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina Omicron o -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{5x+1}{-x+4}$$
 ??? $\mathbb{R} \setminus \{-4\}$

(b)
$$f(x) = \frac{1}{2x^3 - 4x^2 - 2x + 4}$$
 .. ??? .. $\mathbb{R} \setminus \{1, 2, -1\}$

(c)
$$f(x) = 1\sqrt{-2x+2}$$
 ??? $x \le -1$

(d)
$$f(x) = \sqrt{-x^2 - x}$$
 ??? $x \in (0, 1)$

(e)
$$f(x) = 1 \ln(-5x + 1)$$
 ??? $x < -1/5$

(f)
$$f(x) = \ln(x^2 + 5x - 6)$$
 ??? $x \in (-\infty, -6) \cup (1, \infty)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina *Omicron o* -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a) $f(x) = \frac{-3x+4}{-5x+2}$??? $\mathbb{R} \setminus \{2/5\}$

(b)
$$f(x) = \frac{1}{2x^3 + 8x^2 + 10x + 4}$$
 ??? $\mathbb{R} \setminus \{-1, -2\}$

(c)
$$f(x) = 1\sqrt{2x - 8}$$
 $x \ge 4$

(d)
$$f(x) = \sqrt{-x^2 + x}$$
 $x \in (0, 1)$

(e)
$$f(x) = 5 \ln(x - 5)$$
 ??? $x < 5$

(f)
$$f(x) = \ln(x^2 - 4)$$
 $x \in (-2, 2)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina *Omicron o* -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{x+8}{-4x+3}$$
 ??? ... $\mathbb{R} \setminus \{3/4\}$

(b)
$$f(x) = \frac{1}{-2x^3 + 4x^2 + 10x - 12}$$
 ??? $\mathbb{R} \setminus \{1, -4, -3\}$

(c)
$$f(x) = 5\sqrt{2x-3}$$
 $x \ge 3/2$

(d)
$$f(x) = \sqrt{-x^2 - 7x}$$
 $x \in (0, 7)$

(e)
$$f(x) = 2\ln(5x+3)$$
 ??? $x > -3/5$

(f)
$$f(x) = \ln(x^2 - 9)$$
 ??? $x \in (-3, 3)$

4.

Definiční obor, skupina Pi π -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{3x-6}{x-3}$$
 ??? $\mathbb{R} \setminus \{3\}$

(b)
$$f(x) = \frac{1}{x^3 + 7x^2 - 4x - 28}$$
 ??? $\mathbb{R} \setminus \{-5, -2\}$

(c)
$$f(x) = -5\sqrt{-5x+5}$$
 ??? $x \ge 1$

(d)
$$f(x) = \sqrt{-x^2 + 8x}$$
 ??? $x \in (0, 8)$

(e)
$$f(x) = 9 \ln(-3x - 2)$$
 ??? $x < -2/3$

(f)
$$f(x) = \ln(x^2 + 7x + 12)$$
 . ??? . $x \in (-4, -3)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina Pi π -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-2x-3}{6x-3}$$
 ??? $\mathbb{R} \setminus \{1/2\}$

(b)
$$f(x) = \frac{1}{-4x^3 + 20x^2 - 28x + 12}$$
 ??? $\mathbb{R} \setminus \{1, 5, -1\}$

(c)
$$f(x) = -3\sqrt{-2x+4}$$
 ??? $x \le 2$

(d)
$$f(x) = \sqrt{-x^2 + 8x}$$
 $x \in (0,8)$

(e)
$$f(x) = 9 \ln(-x+7)$$
 ??? $x < 7$

(f)
$$f(x) = \ln(x^2 - 6x + 8)$$
 ??? $x \in (-\infty, 2) \cup (4, \infty)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina Pi π -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-x-3}{2x+1}$$
 ??? $\mathbb{R} \setminus \{-1/2\}$

(b)
$$f(x) = \frac{1}{7x^3 - 35x^2 + 14x + 56}$$
 ??? $\mathbb{R} \setminus \{1, 2, 5\}$

(c)
$$f(x) = -5\sqrt{3x+7}$$
 ??? $x \ge 7/3$

(d)
$$f(x) = \sqrt{-x^2 + x}$$
 $x \in (0, 1)$

(e)
$$f(x) = -3 \ln(x+3)$$
 ??? $x > -3$

(f)
$$f(x) = \ln(x^2 - 2x - 3)$$
 ... ??? ... $x \in (-1, 3)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Pi \pi$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-x+5}{2x-5}$$
 ??? $\mathbb{R} \setminus \{5/2\}$

(b)
$$f(x) = \frac{1}{-4x^3 + 28x + 24}$$
 ??? $\mathbb{R} \setminus \{0, 1, 3\}$

(c)
$$f(x) = 3\sqrt{-5x - 3}$$
 ??? $x \le -3/5$

(d)
$$f(x) = \sqrt{-x^2 + 4x}$$
 ??? $x \in (0,4)$

(e)
$$f(x) = 1 \ln (5x - 5)$$
 ??? $x < 1$

(f)
$$f(x) = \ln(x^2 + 5x + 6)$$
 ??? $x \in (-3, -2)$

4.

Definiční obor, skupina $Rho \rho$ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{9x-4}{x-7}$$
 ??? $\mathbb{R} \setminus \{7\}$

(b)
$$f(x) = \frac{1}{x^3 - 13x^2 + 50x - 56}$$
 ??? $\mathbb{R} \setminus \{2, 4, 7\}$

(c)
$$f(x) = 3\sqrt{-6x - 8}$$
 ??? $x \le 4/3$

(d)
$$f(x) = \sqrt{-x^2 + 2x}$$
 ??? $x \in \langle -2, 0 \rangle$

(e)
$$f(x) = 1 \ln(2x+6)$$
 ??? $x > 3$

(f)
$$f(x) = \ln(x^2 - 3x - 4)$$
 ... ??? ... $x \in (-1, 4)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina $Rho \rho$ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{7x-3}{-7x+3}$$
 ??? ... $\mathbb{R} \setminus \{3/7\}$

(b)
$$f(x) = \frac{1}{-x^3 - 14x^2 - 51x - 54}$$
 ??? $\mathbb{R} \setminus \{2, -3, -10\}$

(c)
$$f(x) = -1\sqrt{-5x-2}$$
 ??? $x < -2/5$

(d)
$$f(x) = \sqrt{-x^2 + 7x}$$
 $x \in \langle -7, 0 \rangle$

(e)
$$f(x) = 2 \ln (6x - 8)$$
 ??? $x > 4/3$

(f)
$$f(x) = \ln(x^2 + 3x + 2)$$
 ??? $x \in (-2, -1)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina $Rho \rho$ -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a)
$$f(x) = \frac{4x+5}{4x+6}$$
 ??? ... $\mathbb{R} \setminus \{3/2\}$

(b)
$$f(x) = \frac{1}{-x^3 + 10x^2 - 23x + 14}$$
 . ??? . $\mathbb{R} \setminus \{1, 2, 7\}$

(c)
$$f(x) = -6\sqrt{3x+6}$$
 ??? $x \ge -2$

(d)
$$f(x) = \sqrt{-x^2 + x}$$
 ???? $x \in \langle -1, 0 \rangle$

(e)
$$f(x) = 8 \ln (7x - 1)$$
 ??? $x > 1/7$

(f)
$$f(x) = \ln(x^2 + 3x - 4)$$
 ??? $x \in (-\infty, -4) \cup (1, \infty)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Rho \rho$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{x+2}{-x-3}$$
 $\mathbb{R} \setminus \{-3\}$

(b)
$$f(x) = \frac{1}{3x^3 + 3x^2 - 12x - 12}$$
 ??? $\mathbb{R} \setminus \{2, -2\}$

(c)
$$f(x) = -2\sqrt{-4x-5}$$
 ??? $x \le 5/4$

(d)
$$f(x) = \sqrt{-x^2 + 3x}$$
 $x \in (0,3)$

(e)
$$f(x) = -3\ln(-8x+3)$$
 ??? $x < -3/8$

(f)
$$f(x) = \ln(x^2 + 12x + 32)$$
 . ??? . $x \in (-8, -4)$

4.

Definiční obor, skupina $Sigma\ \sigma$ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-3x-1}{-x-9}$$
 ??? ... $\mathbb{R} \setminus \{9\}$

(b)
$$f(x) = \frac{1}{2x^3 + 2x^2 - 18x - 18}$$
 . ??? . $\mathbb{R} \setminus \{3, -3, -1\}$

(c)
$$f(x) = 4\sqrt{-x+8}$$
 ??? $x \le 8$

(d)
$$f(x) = \sqrt{-x^2 + 2x}$$
 $x \in (0, 2)$

(e)
$$f(x) = 2 \ln (7x - 4)$$
 ??? $x > -4/7$

(f)
$$f(x) = \ln(x^2 - 5x - 14)$$
 ??? $x \in (-\infty, -2) \cup (7, \infty)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina $Sigma\ \sigma$ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{2x+9}{8x+3}$$
 ??? $\mathbb{R} \setminus \{-3/8\}$

(b)
$$f(x) = \frac{1}{2x^3 - 14x - 12}$$
 ??? $\mathbb{R} \setminus \{1, 3, -1\}$

(c)
$$f(x) = 3\sqrt{-x-2}$$
 ??? $x \le -2$

(d)
$$f(x) = \sqrt{-x^2 - 3x}$$
 ??? $x \in (0, 3)$

(e)
$$f(x) = -4\ln(-x-3)$$
 ... ??? ... $x < -3$

(f)
$$f(x) = \ln(x^2 + 7x + 10)$$
 ??? $x \in (-5, -2)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina $Sigma~\sigma$ -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a)
$$f(x) = \frac{4x-5}{-7x+5}$$
 ??? $\mathbb{R} \setminus \{5/7\}$

(b)
$$f(x) = \frac{1}{3x^3 + 9x^2 - 12}$$
 ??? $\mathbb{R} \setminus \{1, -2\}$

(c)
$$f(x) = 5\sqrt{-2x+1}$$
 ??? $x \le 1/2$

(d)
$$f(x) = \sqrt{-x^2 - 7x}$$
 ... ??? ... $x \in \langle -7, 0 \rangle$

(e)
$$f(x) = 3\ln(-8x - 1)$$
 ... ??? ... $x > -1/8$

(f)
$$f(x) = \ln(x^2 - 7x - 8)$$
 ??? $x \in (-1, 8)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Sigma\ \sigma$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-4x+2}{-4x-1}$$
 ??? $\mathbb{R} \setminus \{-1/4\}$

(b)
$$f(x) = \frac{1}{x^3 + 6x^2 + 3x - 10}$$
 ??? $\mathbb{R} \setminus \{2, 5, -2\}$

(c)
$$f(x) = 3\sqrt{-6x-7}$$
 $x \ge -7/6$

(d)
$$f(x) = \sqrt{-x^2 + 5x}$$
 $x \in \langle -5, 0 \rangle$

(e)
$$f(x) = -3\ln(-7x - 2)$$
 ??? $x > -2/7$

(f)
$$f(x) = \ln(x^2 - 1)$$
 ??? $x \in (-1, 1)$

4.

Definiční obor, skupina $Tau \tau$ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{2x+7}{-x+8}$$
 ??? $\mathbb{R} \setminus \{8\}$

(b)
$$f(x) = \frac{1}{x^3 - 3x - 2}$$
 .. ??? .. $\mathbb{R} \setminus \{1, 2\}$

(c)
$$f(x) = 4\sqrt{2x-1}$$
 ??? $x \ge 1/2$

(d)
$$f(x) = \sqrt{-x^2 - 5x}$$
 .. ??? .. $x \in (-5, 0)$

(e)
$$f(x) = 6 \ln (-7x - 2)$$
 ... ??? ... $x < -2/7$

(f)
$$f(x) = \ln(x^2 - 7x - 18)$$
 ??? $x \in (-2, 9)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina $Tau \tau$ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{9x+9}{x+2}$$
 $\mathbb{R} \setminus \{2\}$

(b)
$$f(x) = \frac{1}{-x^3 + 8x^2 + 4x - 32}$$
 .. ??? .. $\mathbb{R} \setminus \{8, 2, -2\}$

(c)
$$f(x) = -4\sqrt{-2x+5}$$
 ??? $x \le 5/2$

(d)
$$f(x) = \sqrt{-x^2 - 4x}$$
 ??? $x \in (0, 4)$

(e)
$$f(x) = -1 \ln(-5x + 7)$$
 ??? $x > 7/5$

(f)
$$f(x) = \ln(x^2 + 8x + 7)$$
 ??? $x \in (-\infty, -7) \cup (-1, \infty)$

 $\mathbf{2}$.

Písmeno Braillovej abecedy

Definiční obor, skupina $Tau \ au$ -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-3x+8}{-2x+3}$$
 ??? $\mathbb{R} \setminus \{3/2\}$

(b)
$$f(x) = \frac{1}{2x^3 + 4x^2 - 2x - 4}$$
 ??? $\mathbb{R} \setminus \{1, -1\}$

(c)
$$f(x) = 8\sqrt{x-7}$$
 $x \ge -7$

(d)
$$f(x) = \sqrt{-x^2 + 5x}$$
 ??? $x \in \langle -5, 0 \rangle$

(e)
$$f(x) = -5\ln(-7x - 4)$$
 ... ??? ... $x < -4/7$

(f)
$$f(x) = \ln(x^2 + x - 2)$$
 .. ??? .. $x \in (-2, 1)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Tau \ \tau$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-2x-4}{5x-9}$$
 ??? $\mathbb{R} \setminus \{9/5\}$

(b)
$$f(x) = \frac{1}{-x^3 + 3x^2 + 9x + 5}$$
 ??? $\mathbb{R} \setminus \{5, -1\}$

(c)
$$f(x) = -4\sqrt{-7x+4}$$
 ??? $x \le 4/7$

(d)
$$f(x) = \sqrt{-x^2 + 2x}$$
 ??? $x \in (0, 2)$

(e)
$$f(x) = 1 \ln(3x + 2)$$
 ??? $x > 2/3$

(f)
$$f(x) = \ln(x^2 - 5x + 4)$$
 ... ??? ... $x \in (1,4)$

4.

Definiční obor, skupina $Upsilon \ \upsilon$ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{2x-7}{-x+3}$$
 $\mathbb{R} \setminus \{-3\}$

(b)
$$f(x) = \frac{1}{-x^3 - 2x^2 + 16x + 32}$$
 ??? $\mathbb{R} \setminus \{4, -4, -2\}$

(c)
$$f(x) = -6\sqrt{x-8}$$
 ??? $x \ge -8$

(d)
$$f(x) = \sqrt{-x^2 - 3x}$$
 $x \in (-3, 0)$

(e)
$$f(x) = -6 \ln(-x+4)$$
 ??? $x < 4$

(f)
$$f(x) = \ln(x^2 - 9x + 20)$$
 ??? $x \in (-\infty, 4) \cup (5, \infty)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina $Upsilon \ \upsilon$ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-5x+2}{-x-2}$$
 ??? $\mathbb{R} \setminus \{-2\}$

(b)
$$f(x) = \frac{1}{3x^3 - 12x^2 - 12x + 48}$$
 ??? $\mathbb{R} \setminus \{4, -3, -2\}$

(c)
$$f(x) = -2\sqrt{6x+9}$$
 ??? $x < -3/2$

(d)
$$f(x) = \sqrt{-x^2 + 2x}$$
 $???$ $x \in (0, 2)$

(e)
$$f(x) = 4 \ln(-x+4)$$
 ??? $x > 4$

(f)
$$f(x) = \ln(x^2 + 3x + 2)$$
 ??? $x \in (-2, -1)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina $Upsilon \ \upsilon$ -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a) $f(x) = \frac{-x+2}{4x-1}$??? $\mathbb{R} \setminus \{1/4\}$

(b)
$$f(x) = \frac{1}{3x^3 - 6x^2 - 12x + 24}$$
 ??? $\mathbb{R} \setminus \{0, -2\}$

(c)
$$f(x) = 2\sqrt{-2x-3}$$
 ??? $x \le -3/2$

(d)
$$f(x) = \sqrt{-x^2 - 8x}$$
 ??? $x \in (0, 8)$

(e)
$$f(x) = -4\ln(-4x - 3)$$
 ??? $x > -3/4$

(f)
$$f(x) = \ln(x^2 - 4)$$
 ??? $x \in (-\infty, -2) \cup (2, \infty)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Upsilon \ v$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{3x+4}{4x-1}$$
 ??? ... $\mathbb{R} \setminus \{1/4\}$

(b)
$$f(x) = \frac{1}{3x^3 + 18x^2 - 3x - 18}$$
 ??? $\mathbb{R} \setminus \{-5, -1\}$

(c)
$$f(x) = 6\sqrt{8x-5}$$
 ??? $x \ge -5/8$

(d)
$$f(x) = \sqrt{-x^2 + 8x}$$
 $x \in \langle -8, 0 \rangle$

(e)
$$f(x) = -4 \ln(3x - 5)$$
 ??? $x > -5/3$

(f)
$$f(x) = \ln(x^2 - x - 20)$$
 ... ??? ... $x \in (-4, 5)$

4.

Definiční obor, skupina $Phi \phi$ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-2x+2}{-x-1}$$
 ??? $\mathbb{R} \setminus \{1\}$

(b)
$$f(x) = \frac{1}{-5x^3 + 30x^2 - 60x + 40}$$
 .. ??? .. $\mathbb{R} \setminus \{2\}$

(c)
$$f(x) = 3\sqrt{-x+2}$$
 ??? $x \le 2$

(d)
$$f(x) = \sqrt{-x^2 + 8x}$$
 ??? $x \in (0, 8)$

(e)
$$f(x) = 6 \ln(-3x + 2)$$
 ??? $x > 2/3$

(f)
$$f(x) = \ln(x^2 - 5x + 6)$$
 ??? $x \in (-\infty, 2) \cup (3, \infty)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina $Phi \phi$ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{4x-3}{-2x+3}$$
 ??? ... $\mathbb{R} \setminus \{3/2\}$

(b)
$$f(x) = \frac{1}{3x^3 + 21x^2 + 12x - 36}$$
 ??? $\mathbb{R} \setminus \{-6, -3, -1\}$

(c)
$$f(x) = 2\sqrt{2x-7}$$
 ??? ... $x > -7/2$

(d)
$$f(x) = \sqrt{-x^2 - 6x}$$
 $x \in \langle -6, 0 \rangle$

(e)
$$f(x) = 1 \ln(-4x + 4)$$
 $x < -1$

(f)
$$f(x) = \ln(x^2 - 14x + 45)$$
 ??? $x \in (5, 9)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina $Phi~\phi$ -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a)
$$f(x) = \frac{5x - 8}{-2x - 8}$$
 ??? $\mathbb{R} \setminus \{-4\}$

(b)
$$f(x) = \frac{1}{2x^3 - 2x^2 - 18x + 18}$$
 ??? $\mathbb{R} \setminus \{1, 3, -3\}$

(c)
$$f(x) = 8\sqrt{7x-3}$$
 $x \le 3/7$

(d)
$$f(x) = \sqrt{-x^2 - 3x}$$
 ??? $x \in (0,3)$

(e)
$$f(x) = -9 \ln(-8x + 4)$$
 ??? $x > 1/2$

(f)
$$f(x) = \ln(x^2 - 7x + 6)$$
 ??? $x \in (1, 6)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Phi \ \phi$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{3x+4}{-3x+1}$$
 ??? $\mathbb{R} \setminus \{1/3\}$

(b)
$$f(x) = \frac{1}{6x^3 - 6x^2 - 24x + 24}$$
 ??? $\mathbb{R} \setminus \{0, -2\}$

(c)
$$f(x) = -4\sqrt{2x-5}$$
 $x \ge -5/2$

(d)
$$f(x) = \sqrt{-x^2 + 8x}$$
 ??? $x \in \langle -8, 0 \rangle$

(e)
$$f(x) = -2\ln(-3x+5)$$
 ??? $x > 5/3$

(f)
$$f(x) = \ln(x^2 - 9)$$
 $x \in (-3,3)$

4.

Definiční obor, skupina $Chi \chi$ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-3x - 8}{2x - 4}$$
 ??? ... $\mathbb{R} \setminus \{2\}$

(b)
$$f(x) = \frac{1}{-x^3 - 8x^2 - 17x - 10}$$
 .. ??? .. $\mathbb{R} \setminus \{2, -4, -1\}$

(c)
$$f(x) = 6\sqrt{-8x - 1}$$
 ??? $x \ge -1/8$

(d)
$$f(x) = \sqrt{-x^2 - 2x}$$
 $x \in \langle -2, 0 \rangle$

(f)
$$f(x) = \ln(x^2 + 10x + 16)$$
 ??? $x \in (-\infty, -8) \cup (-2, \infty)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina $Chi \chi$ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-2x+8}{-5x-6}$$
 ??? $\mathbb{R} \setminus \{-6/5\}$

(b)
$$f(x) = \frac{1}{-x^3 + 5x^2 + 32x + 36}$$
 ??? $\mathbb{R} \setminus \{9, 2, -3\}$

(c)
$$f(x) = -4\sqrt{-3x-5}$$
 ??? $x \le 5/3$

(d)
$$f(x) = \sqrt{-x^2 - 2x}$$
 $x \in (-2, 0)$

(e)
$$f(x) = 9 \ln(-7x - 4)$$
 ??? $x < -4/7$

(f)
$$f(x) = \ln(x^2 + 5x - 6)$$
 ??? $x \in (-6, 1)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina $Chi \chi$ -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a)
$$f(x) = \frac{5x+2}{6x-9}$$
 ??? ... $\mathbb{R} \setminus \{-3/2\}$

(b)
$$f(x) = \frac{1}{x^3 + x^2 - 50x + 48}$$
 ... ??? ... $\mathbb{R} \setminus \{-8, 1, 6\}$

(c)
$$f(x) = -4\sqrt{2x-2}$$
 ??? ... $x \ge 1$

(d)
$$f(x) = \sqrt{-x^2 - 3x}$$
 ??? $x \in (0,3)$

(e)
$$f(x) = -2\ln(-3x - 4)$$
 ??? $x < 4/3$

(f)
$$f(x) = \ln(x^2 - 3x - 10)$$
 ??? $x \in (-\infty, -2) \cup (5, \infty)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Chi \chi$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-2x-1}{3x-6}$$
 ??? ... $\mathbb{R} \setminus \{-2\}$

(b)
$$f(x) = \frac{1}{4x^3 - 32x^2 + 52x - 24}$$
 ... ??? ... $\mathbb{R} \setminus \{1, 6\}$

(c)
$$f(x) = -9\sqrt{3x+2}$$
 ??? $x \ge -2/3$

(d)
$$f(x) = \sqrt{-x^2 + 2x}$$
 ??? $x \in (0, 2)$

(e)
$$f(x) = -3\ln(-x+3)$$
 ??? $x < 3$

(f)
$$f(x) = \ln(x^2 - 10x + 21)$$
 ??? $x \in (-\infty, 3) \cup (7, \infty)$

4.

Definiční obor, skupina $Psi \ \psi$ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-3x+4}{-3x+2}$$
 ??? ... $\mathbb{R} \setminus \{2/3\}$

(b)
$$f(x) = \frac{1}{-4x^3 - 24x^2 - 36x - 16}$$
 ??? $\mathbb{R} \setminus \{1, -4, -3\}$

(c)
$$f(x) = -1\sqrt{-7x - 8}$$
 ??? $x \le -8/7$

(d)
$$f(x) = \sqrt{-x^2 + x}$$
 $x \in \langle -1, 0 \rangle$

(e)
$$f(x) = 5 \ln(-6x - 1)$$
 ??? $x > -1/6$

(f)
$$f(x) = \ln(x^2 + 5x - 24)$$
 ??? $x \in (-\infty, -8) \cup (3, \infty)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina $Psi \ \psi$ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{3x+3}{x+5}$$
 ??? $\mathbb{R} \setminus \{-5\}$

(b)
$$f(x) = \frac{1}{2x^3 - 22x^2 + 62x - 42}$$
 ??? $\mathbb{R} \setminus \{1, 3, 7\}$

(c)
$$f(x) = 5\sqrt{2x-2}$$
 $x \ge 1$

(d)
$$f(x) = \sqrt{-x^2 - 8x}$$
 $x \in (-8, 0)$

(e)
$$f(x) = -1 \ln(-2x - 3)$$
 ??? $x < -3/2$

(f)
$$f(x) = \ln(x^2 - 4x + 3)$$
 ??? $x \in (1,3)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina $Psi~\psi$ -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a)
$$f(x) = \frac{-4x+3}{-3x-6}$$
 ??? ... $\mathbb{R} \setminus \{-2\}$

(b)
$$f(x) = \frac{1}{-3x^3 - 24x^2 - 57x - 36}$$
 ??? $\mathbb{R} \setminus \{1, 3, -4\}$

(c)
$$f(x) = 1\sqrt{-2x+1}$$
 ??? $x \le -1/2$

(d)
$$f(x) = \sqrt{-x^2 - 7x}$$
 ???? $x \in (0,7)$

(e)
$$f(x) = -6 \ln(3x - 2)$$
 ??? $x > -2/3$

(f)
$$f(x) = \ln(x^2 + x - 6)$$
 ??? $x \in (-3, 2)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Psi \ \psi$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{4x-3}{-2x-1}$$
 ??? $\mathbb{R} \setminus \{-1/2\}$

(b)
$$f(x) = \frac{1}{-x^3 + 3x^2 + 28x - 60}$$
 ??? $\mathbb{R} \setminus \{2, 5, 7\}$

(c)
$$f(x) = -3\sqrt{-7x+1}$$
 ??? $x \le 1/7$

(d)
$$f(x) = \sqrt{-x^2 + 5x}$$
 ??? $x \in (0,5)$

(e)
$$f(x) = 9 \ln(-x+4)$$
 ??? $x < -4$

(f)
$$f(x) = \ln(x^2 + 2x - 15)$$
 ... ??? ... $x \in (-5,3)$

4.

Definiční obor, skupina $Omega \ \omega$ -i

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{8x+2}{x-2}$$
 $\mathbb{R} \setminus \{2\}$

(b)
$$f(x) = \frac{1}{-x^3 - 5x^2 + 8x + 12}$$
 ... ??? ... $\mathbb{R} \setminus \{1, -6\}$

(c)
$$f(x) = -4\sqrt{2x-8}$$
 ??? ... $x \le 4$

(d)
$$f(x) = \sqrt{-x^2 - 6x}$$
 ??? $x \in \langle -6, 0 \rangle$

(e)
$$f(x) = -1 \ln (6x - 3)$$
 ??? $x < 1/2$

(f)
$$f(x) = \ln(x^2 - 4x - 21)$$
 ??? $x \in (-\infty, -3) \cup (7, \infty)$

1.

Písmeno Braillovej abecedy

Definiční obor, skupina $Omega\ \omega$ -ii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{x-6}{x+5}$$
 $???$ $\mathbb{R} \setminus \{-5\}$

(b)
$$f(x) = \frac{1}{x^3 - x^2 - 17x - 15}$$
 ??? $\mathbb{R} \setminus \{3, 4, -1\}$

(c)
$$f(x) = 4\sqrt{-x-4}$$
 ??? $x \ge -4$

(d)
$$f(x) = \sqrt{-x^2 + x}$$
 $x \in \langle -1, 0 \rangle$

(e)
$$f(x) = -4\ln(-2x - 3)$$
 ??? $x < -3/2$

(f)
$$f(x) = \ln(x^2 + 8x + 12)$$
 . ??? . $x \in (-6, -2)$

2.

Písmeno Braillovej abecedy

Definiční obor, skupina $Omega \omega$ -iii

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a)
$$f(x) = \frac{2x+3}{-7x-4}$$
 ??? $\mathbb{R} \setminus \{-4/7\}$

(b)
$$f(x) = \frac{1}{-2x^3 - 8x^2 - 10x - 4}$$
 ??? $\mathbb{R} \setminus \{-2, -1\}$

(c)
$$f(x) = 5\sqrt{-x-3}$$
 ???? $x \le -3$

(d)
$$f(x) = \sqrt{-x^2 - 4x}$$
 $x \in (-4, 0)$

(e)
$$f(x) = -1 \ln(-x+9)$$
 ??? $x > 9$

(f)
$$f(x) = \ln(x^2 - 6x + 8)$$
 ??? $x \in (2, 4)$

3.

Písmeno Braillovej abecedy

Definiční obor, skupina $Omega \omega$ -iv

Meno:

Zjisti definiční obor zadaných funkcí. Pokud se shoduje s tím za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x) = \frac{-6x - 5}{-5x + 4}$$
 ??? $\mathbb{R} \setminus \{4/5\}$

(b)
$$f(x) = \frac{1}{x^3 + 3x^2 - 6x - 8}$$
 ??? $\mathbb{R} \setminus \{-3, -1, -2\}$

(c)
$$f(x) = -9\sqrt{-3x+8}$$
 ??? $x \le 8/3$

(d)
$$f(x) = \sqrt{-x^2 - 7x}$$
 $x \in (0,7)$

(e)
$$f(x) = -8 \ln(-6x + 7)$$
 ??? $x < \frac{7}{6}$

(f)
$$f(x) = \ln(x^2 + 12x + 27)$$
 .. ??? .. $x \in (-9, -3)$

4.

Definiční obor (riešenia)

$ \begin{aligned} \mathbb{R} & \langle \langle \langle \langle \rangle \rangle \\ & (\rangle) & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\rangle) & (\langle \langle \langle \rangle \rangle + 1) X \\ & (\rangle) & (\langle \rangle \rangle + 1) X \\ & (\rangle) & (\langle \rangle \rangle + 1) X \\ & (\rangle) & (\langle \rangle \rangle + 1) X \\ & (\rangle) & (\langle \rangle \rangle + 1) X \\ & (\rangle) & ($	(a)		 (b) ℝ \ {-3, -4, 5} x (b) ℝ \ {-5, 5, -1} x (b) ℝ \ {1, 3} √ (b) ℝ \ {1, -6, -4} x (c) ℝ \ {1, -6, -4} x 	$ \begin{array}{c} x < 1 \\ x > 6/7 \\ x > 6/7 \\ x > 8/5 \\ x > 4 \end{array} $	(d) $x \in \langle -7, 0 \rangle$ (d) $x \in \langle -4, 0 \rangle$ x (d) $x \in \langle -4, 0 \rangle$ x (d) $x \in \langle -3, 0 \rangle$ x (d) $x \in \langle -3, 0 \rangle$ x (d) $x \in \langle -3, 0 \rangle$ x	$\begin{vmatrix} x > -8/7 \checkmark \\ x < 1/2 \checkmark \\ x < 8/3 \times \\ x > 1/9 \times \end{vmatrix}$	(f) $x \in (-\infty, -6) \cup (9, \infty) \mathbf{x}$ (f) $x \in (-\infty, -3) \cup (-1, \infty) \mathbf{x}$ (f) $x \in (-\infty, 1) \cup (3, \infty) \mathbf{x}$ (f) $x \in (-\infty, -4) \cup (4, \infty) \checkmark$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$i: \mathbf{R}$ $ii: \mathbf{Y}$ $ivi: \mathbf{B}$ $iv: \mathbf{A}$	7777	$\mathbb{R} \setminus \{0,4,$ $\mathbb{R} \setminus \{3,4,$ $\mathbb{R} \setminus \{2,6,$ $\mathbb{R} \setminus \{2,4,$	$x \ge 4$ $x \le -1$ $x \ge -2$ $x \ge 1/8$ $x \ge 1/8$	$x \in \langle 0, 3 \rangle \land x \in \langle 0, 2 \rangle \checkmark x \in \langle -5, 0 \rangle \not x x \in \langle -5, 1 \rangle \not x x \in \langle 0, 1 \rangle \not x$	$x > 1$ \checkmark $x < 1$ \checkmark $x < -3/2$ \checkmark $x < -3/5$ \checkmark	$ \begin{array}{ccc} x & \leftarrow (-\infty), \\ x & \leftarrow $
			$\mathbb{R} \setminus \{9, -4, 1\} \times$ $\mathbb{R} \setminus \{1, -3, 7\} \times$ $\mathbb{R} \setminus \{1, 2, -1\} \times$ $\mathbb{R} \setminus \{2, 5, -1\} \checkmark$	$x \ge -2x$ $x \le 3/2 \checkmark$ $x \ge 2/3 \checkmark$ $x \ge 2/3 \checkmark$ $x \ge -4 \checkmark$	$x \in \langle 0, 1 \rangle \mathbf{X}$ $x \in \langle 0, 4 \rangle \checkmark$ $x \in \langle -4, 0 \rangle \mathbf{X}$ $x \in \langle -1, 1 \rangle \mathbf{X}$ $x \in \langle 0, 1 \rangle \mathbf{X}$	$x > 5/7 \mathbf{x}$ $x < 1/6 \mathbf{x}$ $x > 1/3 \mathbf{x}$ $x > 3/7 \mathbf{x}$) $x \in (-\infty, 1) \cup (4, \infty) \checkmark$) $x \in (-\infty, 1) \cup (1, \infty) ×$) $x \in (-\infty, 1) \cup (6, \infty) ×$) $x \in (-\infty, -4) \cup (-3, \infty) ×$
(a) $\mathbb{R} \setminus \{-j_2j_4\}$ (b) $\mathbb{R} \setminus \{1,-6\} \setminus$ (c) $x \le 1/2$ (d) $x \in \{0,4\} \times$ (e) $x > -j_2 \wedge$ (f) $\mathbb{R} \setminus \{-j_2j_4 \wedge$ (b) $\mathbb{R} \setminus \{1,-4,-1\} \wedge$ (c) $x \le -j_2 \wedge$ (d) $x \in \{0,4\} \wedge$ (e) $x > -j_2 \wedge$ (f) $\mathbb{R} \setminus \{-j_2 \wedge$ (b) $\mathbb{R} \setminus \{-j_2 \wedge$ (b) $\mathbb{R} \setminus \{-j_2 \wedge$ (c) $x \le -j_2 \wedge$ (d) $x \in \{-j_3 \wedge$ (e) $x > -j_2 \wedge$ (f) $x \in \{-j_4 \wedge$ (b) $\mathbb{R} \setminus \{-j_2 \wedge$ (b) $\mathbb{R} \setminus \{-j_2 \wedge$ (c) $x \le -j_3 \wedge$ (d) $x \in \{-j_4 \wedge$ (e) $x > -j_3 \wedge$ (f) $x \in \{-j_4 \wedge$ (e) $x \in \{-j_4 \wedge$ (f) $x \in \{-j_4 \wedge$ (f) $x \in \{-j_4 \wedge$ (g)	$i: \mathbf{C}$ $ii: \mathbf{E}$ $iii: \mathbf{E}$ $iv: \mathbf{A}$	$\mathbb{R} \times \{1/4\}$ $\mathbb{R} \times \{-2\}$ $\mathbb{R} \times \{8/3\}$ $\mathbb{R} \times \{1/2\}$	* *	(c) $x \ge 3x$ (c) $x \ge -1/2x$ (c) $x \ge -2/3x$ (c) $x \le 7/3x$		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(f) $x \in (-\infty, -2) \cup (2, \infty)$ (f) $x \in (-\infty, 1) \cup (6, \infty) \times$ (f) $x \in (-\infty, -2) \cup (2, \infty)$ (f) $x \in (-\infty, 5) \cup (8, \infty) \times$
(a) $\mathbb{R} \times \{-9/3\} \checkmark$ (b) $\mathbb{R} \times \{-4, 5, -2\} \checkmark$ (c) $x \le -1/7 \checkmark$ (d) $x \in (0, 6) \mathbf{X}$ (e) $x > 3\mathbf{X}$ (f) x (a) $\mathbb{R} \times \{2\} \checkmark$ (b) $\mathbb{R} \times \{1, 2\} \mathbf{X}$ (c) $x \le 5\mathbf{X}$ (d) $x \in (0, 1) \mathbf{X}$ (e) $x > 9/5 \checkmark$ (f) $x \in (0$	$i: \mathbf{R}$ $ii: \mathbf{E}$ $iii: \mathbf{P}$ $iv: \mathbf{A}$		K K K K K K K K K K K K K K K K K K K		(p) (p) (p) (p)	$(e) x \land x \\ (e) x \land x \\ (e) x \land x $	(f)
(a) $\mathbb{R} \times \{-1\} \checkmark$ (b) $\mathbb{R} \times \{1, -3, 6\} \checkmark$ (c) $x \ge -5/6 \mathbf{X}$ (d) $x \in (-8, 0) \mathbf{X}$ (e) $x > 2/5 \checkmark$ (f) (a) $\mathbb{R} \times \{-1\} \checkmark$ (b) $\mathbb{R} \times \{1, 4, -1\} \mathbf{X}$ (c) $x \le 7/6 \mathbf{X}$ (d) $x \in (-8, 0) \mathbf{X}$ (e) $x < -1/5 \checkmark$ (f) $x \in (-8, 0) \mathbf{X}$ (e) $x < -1/5 \checkmark$ (f) $x \in (-8, 0) \mathbf{X}$ (e) $x < -1/5 \checkmark$ (f) $x \in (-8, 0) \mathbf{X}$ (e) $x > 3/5 \checkmark$ (f) $x \in (-8, 0) \mathbf{X}$ (e) $x > 3/5 \checkmark$ (f) $x \in (-8, 0) \mathbf{X}$ (e) $x > 3/5 \checkmark$ (f) $x \in (-8, 0) \mathbf{X}$ (e) $x > 3/5 \checkmark$ (f) $x \in (-8, 0) \mathbf{X}$ (e) $x > 3/5 \checkmark$ (f) $x \in (-8, 0) \mathbf{X}$ (e) $x > 3/5 \checkmark$ (f) $x \in (-8, 0) \mathbf{X}$ (e) $x > 3/5 \checkmark$ (f) $x \in (-8, 0) \mathbf{X}$ (e) $x > 3/5 \checkmark$ (f) $x \in (-8, 0) \mathbf{X}$ (e) $x > 3/5 \checkmark$ (f) $x \in (-1, 0) \mathbf{X}$ (e) $x > $	$i: \mathbf{L}$ $ii: \mathbf{A}$ $iii: \mathbf{A}$ $iv: \mathbf{O}$		-2}	(c) $x \le -1/7$ (c) $x \le 5$ X (c) $x \ge 1/5$ ((e)	(f) $x \in (-\infty, -1) \cup (4, \infty) \mathbf{x}$ (f) $x \in (-\infty, -2) \cup (4, \infty) \mathbf{x}$ (f) $x \in (-\infty, 1) \cup (5, \infty) \checkmark$ (f) $x \in (-\infty, -1) \cup (1, \infty) \mathbf{x}$
(a) $\mathbb{R} \times \{-3/4\} \mathbf{x}$ (b) $\mathbb{R} \times \{1,2,3\} \mathbf{v}$ (c) $x \ge 1/3\mathbf{x}$ (d) $x \in (0,2) \mathbf{x}$ (e) $x > -5/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{x}$ (a) $\mathbb{R} \times \{-1\} \mathbf{v}$ (b) $\mathbb{R} \times \{2,-2\} \mathbf{x}$ (c) $x \le 8/9\mathbf{v}$ (d) $x \in (0,2) \mathbf{x}$ (e) $x < -2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (0,3) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (-2,0) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (-2,0) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (-2,0) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (-2,0) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (-2,0) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (-2,0) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (-2,0) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (-2,0) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (-2,0) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (-2,0) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (-2,0) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (-2,0) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (-2,0) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (-2,0) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (-2,0) \mathbf{v}$ (e) $x < -3/2\mathbf{v}$ (f) $x \in (-2,0) \mathbf{v}$ (e) $x < -3/2\mathbf$	$i: \mathbf{H}$ $ii: \mathbf{O}$ $iii: \mathbf{R}$ $iv: \mathbf{A}$		$\{1, -3, 6\} \checkmark$ $\{1, 4, -1\} \checkmark$ $\{-5, -3, -1\}$ $\{-1, -2\} \checkmark$		(p) (p) (p) (p)	(e)	(f) (f) (f)
$\mathbb{R} \setminus \{^{2}/_{9}\} \checkmark \text{(b)} \ \mathbb{R} \setminus \{9, -1\} \checkmark \text{(c)} \ x \ge ^{1}/_{2} \varkappa \text{(d)} \ x \in \{-1, 0\} \varkappa \text{(e)} \ x > ^{1}/_{7} \varkappa \text{(f)} \ x \in \mathbb{R} \land \{-1/_{6}\} \checkmark \text{(b)} \ \mathbb{R} \setminus \{4, 6, -2\} \varkappa \text{(c)} \ x \ge ^{2}/_{9} \varkappa \text{(d)} \ x \in \{0, 1\} \checkmark \text{(e)} \ x > ^{1}/_{7} \varkappa \text{(f)} \ x \in \mathbb{R} \land \{-1/_{7}\} \checkmark \text{(b)} \ \mathbb{R} \setminus \{1, 4\} \checkmark \text{(c)} \ x \ge ^{2}/_{9} \varkappa \text{(d)} \ x \in \{0, 1\} \checkmark \text{(e)} \ x > ^{1}/_{9} \varkappa \text{(f)} \ x \in \mathbb{R} \land \{-3/_{2}\} \checkmark \text{(b)} \ \mathbb{R} \land \{-3/_{2}\} \varkappa \text{(d)} \ x \in \{0, 7\} \varkappa \text{(e)} \ x < -7/_{9} \varkappa \text{(f)} \ x \in \mathbb{R} \land \{1/_{9}\} \lor \text{(b)} \ \mathbb{R} \land \{2, 3, -2\} \checkmark \text{(c)} \ x \le ^{-1}/_{7} \varkappa \text{(d)} \ x \in \{0, 7\} \varkappa \text{(e)} \ x < -1 \varkappa \text{(f)} \ x \in \mathbb{R} \land \{9/_{5}\} \lor \text{(b)} \ \mathbb{R} \land \{1, -3, 6\} \varkappa \text{(c)} \ x \le ^{1}/_{5} \varkappa \text{(d)} \ x \in \{-2, 0\} \varkappa \text{(e)} \ x > -1 \varkappa \text{(f)} \ x \in \mathbb{R} \land \{9/_{5}\} \lor \text{(b)} \ \mathbb{R} \land \{-1, -2, 2\} \varkappa \text{(c)} \ x \le ^{1}/_{5} \varkappa \text{(d)} \ x \in \{-2, 0\} \varkappa \text{(e)} \ x > -1/_{5} \varkappa \text{(f)} \ x \in \mathbb{R} \land \{5/_{7}\} \lor \text{(b)} \ \mathbb{R} \land \{-3/_{5}\} \backprime \text{(b)} \ \mathbb{R} \land \{-3/_{5}\} \lor \text{(b)} \ \mathbb{R} \land \{-3/_{5}\} \backprime \text{(b)} \ \mathbb{R} \land \{-3/_{5}\} \nsim \text{(f)} \ \mathbb{R} \land \{-3/_{5}\} \nsim \text{(g)} \ \mathbb{R} \land \{-3/_{5}\} \nsim \text{(g)} \ \mathbb{R} \land \{-3/_{5}\} \nsim \text{(g)} \ \mathbb{R} \land \{-3/_{5}\} \rightsquigarrow \text{(g)} \ \mathbb{R} \land \{-3/_{$	i: j $ii: O$ $iii: j$ $iv: O$			$\begin{array}{c c} x & x \\ x & < 1/3 \times \\$	$x \in \langle 0, 2 \rangle \mathbf{X}$ $x \in \langle 0, 8 \rangle \mathbf{X}$ $x \in \langle 0, 2 \rangle \mathbf{X}$ $x \in \langle -7, 0 \rangle \mathbf{X}$	$x > -5/2 \checkmark$ $x < -2 \checkmark$ $x < 3/2 \checkmark$ $x < 1 \checkmark$	
(a) $\mathbb{R} \setminus \{^{1/9}\}$ (b) $\mathbb{R} \setminus \{2, 3, -2\}$ (c) $x \le ^{-1/7}$ (d) $x \in \langle 0, 5 \rangle$ (e) $x < 1$ (f) $x \in \langle 0, 5 \rangle$ (b) $\mathbb{R} \setminus \{1, -3, 6\}$ (c) $x \le ^{7/5}$ (d) $x \in \langle -2, 0 \rangle$ (e) $x > ^{4/3}$ (f) $x \in \langle -3/2 \rangle$ (a) $\mathbb{R} \setminus \{-1, -2\}$ (c) $x \le ^{5/3}$ (d) $x \in \langle -4, 0 \rangle$ (e) $x < -6$ (f) $x \in \langle -6, 0 \rangle$ (e) $x > -3$ (f) $x \in \langle -3/2 \rangle$ (e) $\mathbb{R} \setminus \{-3, 5, 1\}$ (c) $x \le ^{3/3}$ (d) $x \in \langle -6, 0 \rangle$ (e) $x > -3$ (f) $x \in \langle -2/7 \rangle$ (g) $\mathbb{R} \setminus \{-3, 5, 1\}$ (c) $x \le ^{1/3}$ (d) $x \in \langle -6, 0 \rangle$ (e) $x > -1/2$ (f) (e) $\mathbb{R} \setminus \{-2/7\}$ (f) $\mathbb{R} \setminus \{-2/7\}$ (g) $\mathbb{R} \setminus \{-2/7\}$ (h) $\mathbb{R} \setminus \{-3, 2, -1\}$ (c) $x \le ^{2/5}$ (d) $x \in \langle -6, 0 \rangle$ (e) $x > 1$ (f) $x \in \langle -2/7 \rangle$ (f) $\mathbb{R} \setminus \{-3/2\}$ (h) $\mathbb{R} \setminus \{-3, 3/2\}$ (c) $x \ge ^{1/3}$ (d) $x \in \langle -2, 0 \rangle$ (e) $x > -1/6$ (f) $x \in \langle -3/2 \rangle$ (e) $x > -1/6$ (f) $x \in \langle -3/2 \rangle$ (f) $x \in \langle -3/2 \rangle$ (h) $\mathbb{R} \setminus \{-3, -1\}$ (c) $x \le ^{1/6}$ (d) $x \in \langle -2, 0 \rangle$ (e) $x > -1/6$ (f) $x \in \langle -3/2 \rangle$ (e) $x > -1/4$ (f) $x \in \langle -3/2 \rangle$ (e) $x > -1/4$ (f) $x \in \langle -3/2 \rangle$ (f) $x \in \langle -3/2 \rangle$ (g) $x \in \langle -3/2 \rangle$ (e) $x > -1/4$ (f) $x \in \langle -3/2 \rangle$ (f) $x \in \langle -3/2 \rangle$ (f) $x \in \langle -3/2 \rangle$ (g) $x \in \langle -3/2 \rangle$ (e) $x > -1/4$ (f) $x \in \langle -3/2 \rangle$ (g) $x \in \langle -3/2 \rangle$ (e) $x > -1/4$ (f) $x \in \langle -3/2 \rangle$ (f) $x \in \langle -3/2 \rangle$ (g)	1		$\mathbb{R} \setminus \{9, -1\}$ / $\mathbb{R} \setminus \{4, 6, -2\}$ / $\mathbb{R} \setminus \{1, 4\}$ / $\mathbb{R} \setminus \{1, 4\}$ / $\mathbb{R} \setminus \{2, -1\}$ / $\mathbb{R} \setminus \{2,$	$x \ge 1/2 \times x \ge 1/2 \times x \ge 2/9 \times x \ge 3 \times x \times x \ge 3 \times x \times x \ge -5/6 \times$	$x \in \langle -1, 0 \rangle \mathbf{x}$ $x \in \langle 0, 1 \rangle \checkmark$ $x \in \langle 0, 3 \rangle \mathbf{x}$ $x \in \langle 0, 3 \rangle \mathbf{x}$ $x \in \langle 0, 7 \rangle \mathbf{x}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(f) $x \in (-\infty, -2) \cup (5, \infty) \mathbf{x}$ (f) $x \in (-\infty, -7) \cup (1, \infty) \mathbf{x}$ (f) $x \in (-\infty, 1) \cup (3, \infty) \mathbf{x}$ (f) $x \in (-\infty, 1) \cup (4, \infty) \mathbf{x}$
(a) $\mathbb{R} \setminus \{3/2\} \checkmark$ (b) $\mathbb{R} \setminus \{8,1,-1\} \bigstar$ (c) $x \le 1 \bigstar$ (d) $x \in \langle -6,0 \rangle \bigstar$ (e) $x > ^{-1/2} \checkmark$ (f) (a) $\mathbb{R} \setminus \{-2/7\} \checkmark$ (b) $\mathbb{R} \setminus \{3,-2,-1\} \bigstar$ (c) $x \le 2/5 \checkmark$ (d) $x \in \langle 0,5 \rangle \bigstar$ (e) $x < 5/2 \checkmark$ (f) (a) $\mathbb{R} \setminus \{-2/7\} \checkmark$ (b) $\mathbb{R} \setminus \{2,3\} \bigstar$ (c) $x \ge 8 \checkmark$ (d) $x \in \langle 0,3 \rangle \bigstar$ (e) $x > 1 \bigstar$ (f) $x \in \langle -2,0 \rangle \bigstar$ (e) $x > 1 \bigstar$ (f) $x \in \langle -2,0 \rangle \bigstar$ (e) $x > 1 \bigstar$ (f) $x \in \langle -3/2 \rangle \checkmark$ (f) $x \in \langle -3/2 \rangle \checkmark$ (g) $\mathbb{R} \setminus \{-3,-1\} \bigstar$ (c) $x \le 1/6 \checkmark$ (d) $x \in \langle -2,0 \rangle \bigstar$ (e) $x > ^{-1/6} \bigstar$ (f) $x \in \langle -3/2 \rangle \checkmark$ (b) $\mathbb{R} \setminus \{2,-1\} \bigstar$ (c) $x \le 1/6 \checkmark$ (d) $x \in \langle -1,0 \rangle \bigstar$ (e) $x > ^{-1/6} \bigstar$ (f) $x \in \langle -3/2 \rangle \bigstar$ (b) $\mathbb{R} \setminus \{-3,-1\} \bigstar$ (c) $x \le ^{-2/7} \checkmark$ (d) $x \in \langle -7,0 \rangle \bigstar$ (e) $x > ^{-1/4} \bigstar$ (f) $x \in \langle -3/2 \rangle \bigstar$ (e) $x > ^{-1/4} \bigstar$ (f) $x \in \langle -3/2 \rangle \bigstar$ (e) $x > ^{-1/4} \bigstar$ (f) $x \in \langle -3/2 \rangle \bigstar$ (e) $x > ^{-1/4} \bigstar$ (f) $x \in \langle -3/2 \rangle \bigstar$ (e) $x > ^{-1/4} \bigstar$ (f) $x \in \langle -3/2 \rangle \bigstar$ (e) $x > ^{-1/4} \bigstar$ (f) $x \in \langle -3/2 \rangle \bigstar$ (f) $x \in \langle -3/2 \rangle \bigstar$ (g) $x \in \langle -3/2 \rangle \bigstar$ (e) $x > ^{-1/4} \bigstar$ (f) $x \in \langle -3/2 \rangle \bigstar$ (f) $x \in \langle -3/2 \rangle \bigstar$ (e) $x > ^{-1/4} \bigstar$ (f) $x \in \langle -3/2 \rangle \bigstar$ (e) $x > ^{-1/4} \bigstar$ (f) $x \in \langle -3/2 \rangle \bigstar$ (e) $x > ^{-1/4} \bigstar$ (f) $x \in \langle -3/2 \rangle \bigstar$ (e) $x > ^{-1/4} \bigstar$ (f) $x \in \langle -3/2 \rangle \bigstar$	c 0 7 4			\(\lambda \)	(d) $x \in \langle 0, 5 \rangle X$ (d) $x \in \langle -2, 0 \rangle X$ (d) $x \in \langle -4, 0 \rangle X$ (d) $x \in \langle 0, 1 \rangle X$	(e) $x < 1 \text{x}$ (e) $x > 4/3 \text{\checkmark}$ (e) $x < -6 \text{\checkmark}$ (e) $x > -3 \text{x}$	(f) $x \in (-\infty, -1) \cup (1, \infty)$ (f) $x \in (-\infty, -3) \cup (6, \infty)$ (f) $x \in (-\infty, -8) \cup (-1, \infty)$ (f) $x \in (-\infty, -5) \cup (-1, \infty)$
(a) $\mathbb{R} \times \{-3/2\} \checkmark$ (b) $\mathbb{R} \times \{1,6\} \checkmark$ (c) $x \le 2\checkmark$ (d) $x \in \langle -2,0\rangle x$ (e) $x < ^{-1}/6\checkmark$ (f) $x \in (-\infty, -2) \cup (2,\infty) x$ (a) $\mathbb{R} \times \{2\} \checkmark$ (b) $\mathbb{R} \times \{2, -1\} x$ (c) $x \le ^{1}/6\checkmark$ (d) $x \in \langle -1,0\rangle x$ (e) $x > ^{-7}/3\checkmark$ (f) $x \in (-\infty, 7) \cup (8,\infty) x$ (a) $\mathbb{R} \times \{1\} \checkmark$ (b) $\mathbb{R} \times \{2, -1\} \checkmark$ (c) $x \le ^{-2}/7\checkmark$ (d) $x \in \langle -1,0\rangle x$ (e) $x < 1x$ (f) $x \in (-\infty, -9) \cup (-3,\infty)$ (a) $\mathbb{R} \times \{3/4\} \checkmark$ (b) $\mathbb{R} \times \{-3, -1\} x$ (c) $x \le ^{-6}/7 x$ (d) $x \in \langle -3,0\rangle x$ (e) $x > ^{-1}/4 x$ (f) $x \in (-\infty, -2) \cup (2,\infty) x$		(a) R > { (b) R > { (c) R	(b) R \(\)	(c) x × × (c) x (c) x × (c) x × (c) x × x (c)	(p)	(e) x < x (e) (e) x < x (e)	(f) (f) (f)
	~ ~ ~ ~		$\mathbb{R} \setminus \{1,6$ $\mathbb{R} \setminus \{2, \mathbb{R} \setminus \{2, \mathbb{R} \setminus \{2, \mathbb{R} \setminus \{-3,-$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(d) $x \in \langle -2, 0 \rangle \mathbf{x}$ (d) $x \in \langle -1, 0 \rangle \mathbf{x}$ (d) $x \in \langle -7, 0 \rangle \mathbf{x}$ (d) $x \in \langle -3, 0 \rangle \mathbf{x}$	\vee \wedge \vee \wedge \otimes \otimes \otimes \otimes \otimes	$x \in (-\infty, -2) \cup (2, \infty) \mathbf{x}$ $x \in (-\infty, 7) \cup (8, \infty) \mathbf{x}$ $x \in (-\infty, -9) \cup (-3, \infty)$ $x \in (-\infty, -2) \cup (2, \infty) \mathbf{x}$

Definiční obor (riešenia)

7	$i: \mathbf{U}$ $ii: \mathbf{R}$ $iii: \mathbf{N}$ $iv: \mathbf{A}$	 (a) ℝ \ {3} ✓ (a) ℝ \ {2} ✓ (a) ℝ \ {1/5} ✓ (a) ℝ \ {3/5} ✓ 	 (b) R \ {-3,-1,-2} X (b) R \ {1,2,7} √ (b) R \ {2,-4,-1} X (b) R \ {1,7} X 	(c) $x \ge -3$ (c) $x \ge 1/2$ (c) $x \ge 4$ (c) $x \ge -3/4$ X	(d) $x \in \langle -2, 0 \rangle \checkmark$ (d) $x \in \langle -6, 0 \rangle \nearrow$ (d) $x \in \langle 0, 1 \rangle \nearrow$ (d) $x \in \langle 0, 4 \rangle \nearrow$	(e) $x > -1/3 X$ (e) $x > 1 \checkmark$ (e) $x > 1/4 \checkmark$ (e) $x > 5/6 X$	(f) $x \in (-\infty, -6) \cup (3, \infty) \mathbf{x}$ (f) $x \in (-\infty, -2) \cup (-1, \infty) \mathbf{x}$ (f) $x \in (-\infty, -7) \cup (5, \infty) \checkmark$ (f) $x \in (-\infty, -1) \cup (1, \infty) \mathbf{x}$
w	$i : i : \mathbf{A}$	(a) $\mathbb{R} \setminus \{-1/3\} \checkmark$ (a) $\mathbb{R} \setminus \{-5/8\} \checkmark$ (a) $\mathbb{R} \setminus \{-3\} \checkmark$ (a) $\mathbb{R} \setminus \{-8/9\} \checkmark$	 (b) R \ {1, 3, -2} X (c) R \ {1, -1, 9} X (d) R \ {1, 2} X (e) R \ {2, -3, -2} X 	(c) $x \ge -1/3 X$ (c) $x \le -1 X$ (c) $x \le 1/3 X$ (d) $x \ge -7/2 X$	(d) $x \in \langle 0, 4 \rangle \mathbf{x}$ (d) $x \in \langle -6, 0 \rangle \mathbf{x}$ (d) $x \in \langle 0, 7 \rangle \mathbf{x}$ (d) $x \in \langle 0, 1 \rangle \mathbf{x}$	(e) $x > 1 x$ (e) $x < -2 \checkmark$ (e) $x > 1/3 \checkmark$ (e) $x > -3 x$	(f) $x \in (-\infty, -6) \cup (-2, \infty) \mathbf{x}$ (f) $x \in (-\infty, -2) \cup (3, \infty) \checkmark$ (f) $x \in (-\infty, -4) \cup (7, \infty) \checkmark$ (f) $x \in (-\infty, 1) \cup (1, \infty) \mathbf{x}$
0	$i: \mathbf{P}$ $ii: \mathbf{I}$ $iii: \mathbf{V}$ $iv: \mathbf{V}$ $iv: \mathbf{O}$	 (a) R \ \{-3/2\}\\ (a) R \ \{4\}\x (a) R \ \{2/5\}\\ (a) R \ \{3/4\}\ 	 (b) R \ \{-3, -1, -2\} \\ (b) R \ \{1, 2, -1\} \\ (c) R \ \{-1, -2\} \\ (d) R \ \{-1, -2\} \\ (e) R \ \{-1, 3, -2\} \\ 	(c) $x \ge 1/9 \checkmark$ (c) $x \le 1 / 8 \checkmark$ (c) $x \ge 4 \checkmark$ (c) $x \ge 3/2 \checkmark$	(d) $x \in \langle -2, 0 \rangle X$ (d) $x \in \langle -1, 0 \rangle X$ (d) $x \in \langle 0, 1 \rangle \checkmark$ (d) $x \in \langle -7, 0 \rangle X$	(e) $x > 8x$ (e) $x < 1/5x$ (e) $x > 5x$ (e) $x > -3/5x$	(f) $x \in (-\infty, -5) \cup (5, \infty)$ (f) $x \in (-\infty, -6) \cup (1, \infty)$ (f) $x \in (-\infty, -2) \cup (2, \infty)$ (f) $x \in (-\infty, -3) \cup (3, \infty)$
k	$i : \tilde{\mathbf{S}}$ $ii : \tilde{\mathbf{S}}$ $iii : \tilde{\mathbf{E}}$ $iv : \tilde{\mathbf{K}}$	 (a) R > {3} ✓ (a) R > {1/2} ✓ (a) R > {-1/2} ✓ (a) R > {5/2} ✓ 	 (b) R \ \{-7, 2, -2\} x (b) R \ \{1, 3\} x (c) R \ \{2, 4, -1\} x (d) R \ \{3, -2, -1\} x 	(c) $x \le 1 x$ (c) $x \le 2 \checkmark$ (c) $x \ge -7/3 x$ (c) $x \le -3/5 \checkmark$	(d) $x \in \langle 0, 8 \rangle \checkmark$ (d) $x \in \langle 0, 8 \rangle x$ (d) $x \in \langle 0, 1 \rangle x$ (d) $x \in \langle 0, 1 \rangle x$	(e) $x < -2/3$ (e) $x < 7$ (e) $x > -3$ (e) $x > 1$ $x > 1$	(f) $x \in (-\infty, -4) \cup (-3, \infty) \mathbf{x}$ (f) $x \in (-\infty, 2) \cup (4, \infty) \checkmark$ (f) $x \in (-\infty, -1) \cup (3, \infty) \mathbf{x}$ (f) $x \in (-\infty, -3) \cup (-2, \infty) \mathbf{x}$
Q	$i: \mathbf{B}$ $ii: \mathbf{O}$ $iii: \mathbf{T}$ $iv: \mathbf{A}$	(a) R \ {7} ✓ (a) R \ {3/7} ✓ (a) R \ {-3/2} X (a) R \ {-3} ✓	(b) ℝ \ {2,4,7} ✓ (b) ℝ \ {-3,-2,-9} X (b) ℝ \ {1,2,7} ✓ (b) ℝ \ {2,-1,-2} X	(c) $x \le -4/3 \times$ (c) $x \le -2/5 \checkmark$ (c) $x \ge -2/5 \checkmark$ (c) $x \ge -5/4 \times$	(d) $x \in \langle 0, 2 \rangle \mathbf{x}$ (d) $x \in \langle 0, 7 \rangle \mathbf{x}$ (d) $x \in \langle 0, 1 \rangle \mathbf{x}$ (d) $x \in \langle 0, 3 \rangle \mathbf{x}$	(e) $x > -3x$ (e) $x > 4/3x$ (e) $x > 1/7x$ (e) $x < 3/8x$	(f) $x \in (-\infty, -1) \cup (4, \infty) \times$ (f) $x \in (-\infty, -2) \cup (-1, \infty) \times$ (f) $x \in (-\infty, -4) \cup (1, \infty) \checkmark$ (f) $x \in (-\infty, -8) \cup (-4, \infty) \times$
ь	$i: \mathbf{S}$ $ii: \mathbf{O}$ $iii: \mathbf{V}$ $iv: \mathbf{A}$	(a) R \ \ \{-9} \ \ (a) R \ \\ \{-3/8} \ \\ (a) R \ \\ \{5/7} \ \\ (a) R \ \\ \{-1/4} \ \\	(b) ℝ \ {3, -3, -1} \ (b) ℝ \ {3, -2, -1} x (b) ℝ \ {1, -2} \ (c) ℝ \ {1, -5, -2} x	(c) $x \le 8 \checkmark$ (c) $x \le -2 \checkmark$ (c) $x \le -1/2 \checkmark$ (c) $x \le -7/6 \checkmark$	(d) $x \in \langle 0, 2 \rangle X$ (d) $x \in \langle -3, 0 \rangle X$ (d) $x \in \langle -7, 0 \rangle \checkmark$ (d) $x \in \langle 0, 5 \rangle X$	(e) $x > 4/7 X$ (e) $x < -3 \checkmark$ (e) $x < -1/8 X$ (e) $x < -2/7 X$	(f) $x \in (-\infty, -2) \cup (7, \infty)$ (f) $x \in (-\infty, -5) \cup (-2, \infty)$ (f) $x \in (-\infty, -1) \cup (8, \infty)$ (f) $x \in (-\infty, -1) \cup (1, \infty)$
٢	i: O ii: S iii: E iv: L	 (a) R > {8} ✓ (a) R > {-2} × (a) R > {3/2} ✓ (a) R > {9/5} ✓ 	(b) R \ {2, -1} x (b) R \ {8, 2, -2} ✓ (c) R \ {1, -2, -1} x (d) R \ {1, -2, -1} x (d) R \ {2, -1} ✓ (d) R \ {2, -1} ✓ (d) R \ {3, -1} ✓ (d) R \ {4, -1 ✓	(c) $x \ge 1/2$ (d) (c) $x \le 5/2$ (d) (c) $x \ge 7$ (d) (c) $x \ge 7$ (d) (c) $x \le 4/7$ (d)	$x \in \langle -5, 0 \rangle \mathbf{x}$ $x \in \langle -4, 0 \rangle \mathbf{x}$ $x \in \langle -4, 0 \rangle \mathbf{x}$ $x \in \langle 0, 5 \rangle \mathbf{x}$ $x \in \langle 0, 2 \rangle \mathbf{x}$	(e) $x < -2/7$ (f) (e) $x < 7/5$ (g) $x < 7/5$ (g) $x < -4/7$ (g) $x > -2/3$ % (g)	(f) $x \in (-\infty, -2) \cup (9, \infty) \mathbf{x}$ (f) $x \in (-\infty, -7) \cup (-1, \infty) \mathbf{x}$ (f) $x \in (-\infty, -2) \cup (1, \infty) \mathbf{x}$ (f) $x \in (-\infty, 1) \cup (4, \infty) \mathbf{x}$
6	$i: \mathbf{J}$ $ii: \mathbf{A}$ $iii: \mathbf{M}$ $iv: \mathbf{A}$	 (a) R > {3} X (a) R > {-2} ✓ (a) R > {1/4} ✓ (a) R > {1/4} ✓ 	 (b) R \ {4, -4, -2} \ (c) R \ {2, 4, -2} \ximps (d) R \ {2, -2} \ximps (e) R \ {1, -6, -1} \ximps 	(c) $x \ge 8 x$ (c) $x \ge -3/2 x$ (c) $x \le -3/2 \checkmark$ (c) $x \ge 5/8 x$	(d) $x \in \langle -3, 0 \rangle X$ (d) $x \in \langle 0, 2 \rangle \checkmark$ (d) $x \in \langle -8, 0 \rangle X$ (d) $x \in \langle 0, 8 \rangle X$	(e) $x < 4\checkmark$ (e) $x < 4x$ (e) $x < 4x$ (e) $x < -3/4x$ (e) $x > 5/3x$	(f) $x \in (-\infty, 4) \cup (5, \infty)$ (f) $x \in (-\infty, -2) \cup (-1, \infty)$ X (f) $x \in (-\infty, -2) \cup (2, \infty)$ \((f) $x \in (-\infty, -4) \cup (5, \infty)$ X
$oldsymbol{\phi}$	$i: \tilde{\mathbf{Z}}$ ii: A iii: B iv: A	 (a) R \ {-1} X (a) R \ {3/2} ✓ (a) R \ {-4} ✓ (a) R \ {1/3} ✓ 	 (b) R > {2} ✓ (b) R > {1, -6, -2} × (c) R > {1, 3, -3} ✓ (d) R > {1, 2, -2} × 	(c) $x \le 2\checkmark$ (c) $x \le 7/2x$ (c) $x \ge 7/2x$ (c) $x \ge 3/7x$ (c) $x \ge 5/2x$ (c)	(d) $x \in \langle 0, 8 \rangle \checkmark$ (d) $x \in \langle -6, 0 \rangle \checkmark$ (d) $x \in \langle -3, 0 \rangle \checkmark$ (d) $x \in \langle -3, 0 \rangle \checkmark$	(e) $x < 2/3 \text{K}$ (f) (e) $x < 1 \text{K}$ (f) (e) $x < 1/2 \text{K}$ (f) (e) $x < 5/3 \text{K}$ (f)	(f) $x \in (-\infty, 2) \cup (3, \infty)$ (f) $x \in (-\infty, 5) \cup (9, \infty)$ (f) $x \in (-\infty, 1) \cup (6, \infty)$ (f) $x \in (-\infty, -3) \cup (3, \infty)$
$\boldsymbol{\varkappa}$	$i: \check{\mathbf{C}}$ $ii: \check{\mathbf{E}}$ $iii: \mathbf{E}$ $iv: \mathbf{T}$	(a) ℝ > {2} ✓ (a) ℝ > {-6/5} ✓ (a) ℝ > {3/2} ✗ (a) ℝ > {3/2} ✗	 (b) R \ {-5, -1, -2} X (b) R \ {9, -2} X (b) R \ {-8, 1, 6} ✓ (c) R \ {1, 6} ✓ 	(c) $x \le -1/8 X$ (c) $x \le -5/3 X$ (c) $x \ge 1 \checkmark$ (d) $x \ge 1 \checkmark$ (e) $x \ge -2/3 \checkmark$	(d) $x \in \langle -2, 0 \rangle \checkmark$ (d) $x \in \langle -2, 0 \rangle x$ (d) $x \in \langle -3, 0 \rangle x$ (d) $x \in \langle 0, 2 \rangle x$	(e) $x > 8x$ X (e) $x < -4/7$ X (e) $x < -4/3$ (e) $x < 3\sqrt{3}$	(f) $x \in (-\infty, -8) \cup (-2, \infty)$, (f) $x \in (-\infty, -6) \cup (1, \infty)$, x (f) $x \in (-\infty, -2) \cup (5, \infty)$ (f) $x \in (-\infty, 3) \cup (7, \infty)$
E	$i: \mathbf{M}$ $ii: \mathbf{R}$ $iii: \mathbf{A}$ $iv: \mathbf{K}$	 (a) R \ {2/3} \ (a) R \ {-5} \ (a) R \ {-2} \ (a) R \ {-1/2} \ 	(b) ℝ \ {-4, -1} X (b) ℝ \ {1, 3, 7} ✓ (b) ℝ \ {-4, -3, -1} (b) ℝ \ {2, -5, 6} X	(c) $x \le -8/7$ (c) $x \ge 1$ (d) $x \ge 1/2$ (e) $x \le 1/2$ (f) $x \le 1/7$	(d) $x \in \langle 0, 1 \rangle X$ (d) $x \in \langle -8, 0 \rangle X$ (d) $x \in \langle -7, 0 \rangle X$ (d) $x \in \langle 0, 5 \rangle X$	(e) $x < -1/6 x$ • X (e) $x < -3/2 \checkmark$ • X (e) $x > 2/3 x$ • (e) $x < 4 x$	$(f) x \in (-\infty, -8) \cup (3, \infty) \checkmark$ $(f) x \in (-\infty, 1) \cup (3, \infty) x$ $(f) x \in (-\infty, -3) \cup (2, \infty) x$ $(f) x \in (-\infty, -5) \cup (3, \infty) x$
3	$i: \check{\mathbf{C}}$ $ii: \check{\mathbf{C}}$ $ii: \mathbf{E}$ $iv: \mathbf{C}$ $iv: \mathbf{C}$	 (a) R > {2} ✓ (a) R > {-5} ✓ (a) R > {-4/7} ✓ (a) R > {4/5} ✓ 	(b) ℝ \ {-6, 2, -1} x (b) ℝ \ {-3, 5, -1} x (c) ℝ \ {-2, -1} x (d) ℝ \ {-2, -1} √ (e) ℝ \ {-2, -1} √ (f) ℝ \ {-2, -4, -1} x	(c) $x \ge 4x$ (c) $x \le -4x$ (c) $x \le -3x$ (c) $x \le 8/3x$	(d) $x \in \langle -6, 0 \rangle \checkmark$ (d) $x \in \langle 0, 1 \rangle x$ (d) $x \in \langle -4, 0 \rangle x$ (d) $x \in \langle -7, 0 \rangle x$	(e) $x > 1/2 X$ (e) $x < -3/2 \checkmark$ (e) $x < 9 X$ (e) $x < 7/6 \checkmark$	(f) $x \in (-\infty, -3) \cup (7, \infty)$ (f) $x \in (-\infty, -6) \cup (-2, \infty)$ (f) $x \in (-\infty, 2) \cup (4, \infty)$ (f) $x \in (-\infty, -9) \cup (-3, \infty)$