Algebra e Geometria - Corso di Laurea in Informatica docente: prof.ssa Marta Morigi 15 luglio 2019

Nota: Le risposte vanno motivate. I calcoli e le motivazioni delle risposte sono parte integrante dello svolgimento dell'esercizio.

Esercizio 1. (6 punti) Sia
$$W = \left\{ \begin{pmatrix} r-t & r-t \\ s-t & r+s-2t \end{pmatrix} \mid r, s, t \in \mathbb{R} \right\}.$$

- a) Si stabilisca se W è un sottospazio vettoriale di $M_2(\mathbb{R})$ e in caso affermativo se ne determini la dimensione.
- b) Si determinino, se possibile, 4 matrici linearmente dipendenti A_1, A_2, A_3, A_4 di $M_2(\mathbb{R})$ che non siano l'una multipla dell'altra e tali che $A_4 \notin \langle A_1, A_2, A_3 \rangle$.

Esercizio 2. (11 punti)

Al variare del parametro reale t sia $F_t: \mathbb{R}^3 \to \mathbb{R}^4$ l'applicazione lineare definita da: $F_t(\mathbf{e}_1) = t\mathbf{e}_1 + 3\mathbf{e}_2 - 2t\mathbf{e}_4$, $F_t(\mathbf{e}_2) = t\mathbf{e}_1 + 3\mathbf{e}_2 + (t+2)\mathbf{e}_3 - 2t\mathbf{e}_4$, $F_t(\mathbf{e}_3) = (t-1)\mathbf{e}_1 - 4\mathbf{e}_3 + (2-2t)\mathbf{e}_4$.

- a) Si stabilisca per quali valori di t si ha che F_t non è iniettiva.
- b) Scelto un valore r tale che F_r non sia iniettiva, si determini una base del nucleo di F_r e la si completi ad una base di \mathcal{B} di \mathbb{R}^3 . Si stabilisca inoltre se esistono due vettori linearmente indipendenti $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^3$ tali che $F_r(\mathbf{v}_1) = F_r(\mathbf{v}_2)$ e due vettori linearmente dipendenti $\mathbf{u}_1, \mathbf{u}_2 \in \mathbb{R}^3$ tali che $F_r(\mathbf{u}_1)$ e $F_r(\mathbf{u}_2)$ siano linearmente indipendenti.
- c) Si determinino le coordinate del vettore (1, 1, -3) rispetto alla base \mathcal{B} trovata al punto b).
- d) Si stabilisca per quali valori di t si ha che $F_t(\mathbf{e}_1), F_t(\mathbf{e}_2), F_t(\mathbf{e}_3)$ generano un sottospazio di \mathbb{R}^4 di dimensione 2.

Esercizio 3. (9 punti) Sia $F: \mathbb{R}^3 \to \mathbb{R}^3$ una funzione lineare con le seguenti proprietà: F(1,0,1)=(4,2,4); il vettore (1,0,-1) è un generatore dell'autospazio relativo all'autovalore 2; il vettore (1,1,0) appartiene al nucleo di F.

- a) Si stabilisca se F è unica.
- b) Si determini la matrice associata ad F rispetto alla base canonica di \mathbb{R}^3 (in dominio e codominio).
- c) Si determini, se possibile, una base di \mathbb{R}^3 rispetto alla quale la matrice di F sia diagonale.

Esercizio 4 (4 punti)

Si determinino tutte le soluzioni della congruenza:

$$47x \equiv_{101} 4.$$