

Aula 05 - Simplificação de Funções Através de Diagramas de Veitch-Karnaugh

Circuitos Digitais - CRT 0384Prof. Rennan Dantas
Ciência da Computação

2020.1

Na Aula Anterior ...

- Simplificação de funções via manipulação algébrica;
- Formas canônicas de funções lógicas
 - Soma de Produtos
 - Produto de Somas
- Obtenção de formas canônicas via manipulação algébrica;
- Obtenção de formas canônicas via tabela da verdade

Nesta Aula

- Mapas de Veitch-Karnaugh para 2,3,4 e 5 variáveis;
- Agrupamento de elementos;
- Processo sistemático de simplificação.

Mapas de Veitch-Karnaugh

- Mapa-K;
- Forma sistemática para simplificação de funções lógicas;
- Entrada função no formato SdP ou TV.

Mapa-K₍₂₎

Região onde A = 0

Região onde B = 0

Região onde A = 1

Região onde B = 1

Мара-К₍₃₎

Região onde

$$B = 1$$

Região onde

Região onde

Região onde

Região onde

Mapa-K₍₄₎

Exemplo Mapa-K₂

• $F(A,B) = A \cdot B + A \cdot \bar{B}$

Α	В	A·B	A·B	S						
0	0	0	0	0						
0	1	0	0	0				_ 1		
1	0	0	1	1	\Rightarrow A			BB	1	
1	1	1	0	1	\Rightarrow B	>	<u>A</u>			Α
				-	A	·)	Α	1 1		
_	_				В					

- $F(A,B) = \bar{A} \cdot \bar{B} + A \cdot B$
- $F(A,B) = \bar{A} \cdot B + A \cdot \bar{B}$

Exemplo Mapa-K₃

 $F(A,B,C) = (\bar{A}\cdot C) + (A\cdot \bar{B}\cdot C) + (A\cdot B\cdot C)$

Α	В	С	Ā·C	A·B·C	A·B·C	S			
0	0	0	0	0	0	0			
0	0	1	1	0	0	1	⇒ Ā·B)	
0	1	0	0	0	0	0	·C		BC F
0	1	1	1	0	0	1	⇒ Ā·B	A ⁻	1 1
1	0	0	0	0	0	0	·c	\succ	
1	0	1	0	1	0	1	⇒ _A ·B	Α	1 1
1	1	0	0	0	0	0	·c		C c
1	1	1	0	0	1	1	$\Rightarrow A \cdot B \cdot C$		\triangle
									С

Passos para Simplificação Usando Mapa-K

- Passo 1: Colocar a função na forma de SdP
- Passo 2: Desenhar o mapa-K apropriado para o nº de variáveis;
- Passo 3: Mapear os termos da SdP que possuem saída "1" para o mapa-k
- Passo 4: Agrupar os "1"s do mapa de modo a utilizar todos eles;
- Passo 5: Para cada grupo, manter apenas as variáveis que não variam para nenhum dos "1"

Pegar o maior número de "1"s no mesmo grupo;

- Na realidade, agrupa-se, segundo a geometria acima visando juntar termos que possuem variáveis em comum.
- Note, no entanto, que os mapas-K se curvam sobre si mesmos. Desta forma é possível aplicar a mesma geometria considerando os mapas-K como espaços hiper curvos.

• Exemplo - Três Variáveis

Α	В	C	f(A,B,C)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

$$f(A, B, C) = A \cdot \overline{B} + A \cdot C$$

= $A \cdot (\overline{B} + C)$

• Exemplo - Quatro Variáveis

$$f(A, B, C, D) = \overline{D} + B \cdot C + \overline{A} \cdot B$$

		_	_	
Α	В	C	D	f(A,B,C,D)
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

- Don't Care X
 - Quando a saída pode assumir valores de 0 ou 1
 - Escolhe-se o valor que simplifique melhor a expressão

Α	В	C	D	Ab
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	X
0	1	0	0	1
0	1	0	1	X
0	1	1	0	X
0	1	1	1	X
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	X
1	1	0	0	0
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

- Don't Care X
 - Representação do circuito:

Mapa-K₍₅₎

Mapa-K₍₄₎ "dobrado"

Representação Alternativa

Há uma forma alternativa para representação;

- Mais fácil de mapear a partir da tabela verdade;
- Não requer a forma em soma de produto.

Α	В	С	Ā·C	A·B·C	A·B·C	S	
0	0	0	0	0	0	0	
0	0	1	1	0	0	1	⇒ Ā·B)
0	1	0	0	0	0	0	BC BC A 00 01 10 11
0	1	1	1	0	0	1	ightharpoonup $ ightharpoonup$ $ ightharpoonup$
1	0	0	0	0	0	0	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ \end{array}$
1	0	1	0	1	0	1	⇒ A·B 1
1	1	0	0	0	0	0	·c
1	1	1	0	0	1	1	$\Rightarrow A \cdot B \cdot C$

Exercícios

 Representar a expressão lógica referente à tabela verdade a seguir e simplificar a expressão usando o mapa de Veitch-Karnaugh:

A	В	С	X
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Exercícios

 Usar a simplificação por mapa de Veitch-Karnaugh para os circuito digital a seguir:

Ferramentas para Simplificação

Ferramentas online

http://electronics-course.com/karnaugh-map

http://www.32x8.com/

https://simulator.io/board

Aula 05 - Simplificação de Funções Através de Diagramas de Veitch-Karnaugh

Circuitos Digitais - CRT 0384Prof. Rennan Dantas
Ciência da Computação

2020.1