Topics to discuss

Potential Method Example 2: Incrementing a binary Number

Potential Method:

We again look at incrementing a binary counter. This time, we define the potential of the counter after ith INCREMENT operation, the number of 1s in the counter after the ith operation.

The amostized cost \hat{c}_i of the i^{th} operation with respect to potential function \emptyset is defined by, $\hat{c}_i = c_i + \emptyset(D_i) - \emptyset(D_{i-1})$

Incrementing a binary number

Considered the problem of implementing a k-bit binary counter that counts upward from 0.

Pseudo code:

INCREMENT (A)

Incrementing a binary num ber

Counter	A[3]	A[2]	A [I]	A [0]	Actual	$\emptyset(D_i)$	Ø (Di-1)	Potential Difference	Amortized
O	0	O	0	\bigcirc	\bigcirc	O	O	0	
1	0	0	O	1			O	1	2
2	0	0	1	0	2		1	O	2.
3	0	0	1	- 1	1	2	1	1	2
4	0	l	O	0	3	l	2	-1	2
5	8	1	O	l		2	1	1	2
6	ව	1	l	7	2	2	2	Ö	2
7	0	1	1	1	1	3	2	1	2
8	l	0	0	0	4	1	3	-2	2

Total amostized cost of 8 operations is, (0+2+2+2+2+2+2+2+2) $= 2 \times 8$

So, for 'n' no. of increment operations, $= 2 \times n$ $\approx 0 (n)$

As, $\emptyset(Di) \neq \emptyset(Do)$ it implies, total amostized cost of n operations is an upper bound on the total actual cost.

Follow Now

Start Practicing

i._am._arfir

Arfin Parweer