```
import numpy as np
In [399...
          import pandas as pd
          import matplotlib.pyplot as plt
In [416...
          # alg for tasks with boundary conditions without derivatives
          def alg(y0, yn):
              df = pd.DataFrame(data=np.zeros((3, N + 1)), columns=[i for i in range(N + 1)],
              df[N]['y'] = yn
              df[0]['y'] = y0
              for i in range(1, N+1):
                  x = ax + i*h
                  # V1
                  n = (1 - p(x)/2*h)/(1 + p(x)/2*h)
                  m = -(2-q(x)*h**2)/(1+p(x)/2*h)
                  df[i]['c'] = 1/(m-n*df[i-1]['c'])
                  df[i]['d'] = (f(x)/(1+p(x)/2*h))*h**2 - n*df[i-1]['c']*df[i-1]['d']
                  # V2; shortened expression
                  # df[i]['c']=1/(-2-h**2-df[i-1]['c'])
                  # df[i]['d']=i*h**3-df[i-1]['c']*df[i-1]['d']
              for i in range(N-1, -1, -1):
                  df[i]['y'] = df[i]['c']*(df[i]['d']-df[i+1]['y'])
              return df
          def plot(x: list, y: list, name=None):
              for x_, y_in zip(x, y):
                  plt.plot(x_, y_, linewidth=1)
                  plt.plot(x_, y_, marker='.')
              if name != False:
                  plt.title(name)
                  plt.savefig(f'{name}.png')
              plt.show()
```

Example from book

df_ex

y_ex = [[df_ex[i]['y']] for i in range(N+1)]

```
In [417... # y'' - y = x

def f(x):
    return x # np.exp(-2*x)*np.log(x)

def p(x):
    return 0 # 4

def q(x):
    return -1 # 4

ax = 0
bx = 1

In [418... N = 10
h = (bx - ax) / N
df_ex = alg(0, 0)
```

```
Out[418...
                                     2
                                               3
                                                                               6
                                                                                         7
              0.0 -0.497512
                             -0.661162
                                        -0.741379
                                                  -0.788258
                                                             -0.818503
                                                                       -0.839280
                                                                                  -0.854176
                                                                                            -0.865183
                                                                                                       -0.8735
                   0.001000
                              0.002498
                                        0.004651
                                                   0.007448
                                                             0.010871
                                                                        0.014898
                                                                                   0.019504
                                                                                             0.024660
                                                                                                        0.0303
              0.0 -0.014755 -0.028658 -0.040848 -0.050446 -0.056548
                                                                       -0.058216 -0.054466
                                                                                            -0.044260
                                                                                                       -0.0264
In [419...
            def target_y(x):
                return 2*np.e / (np.e**2 - 1) * np.sinh(x) - x
            arr = []
            for i in range(N+1):
                x = ax + i*h
                arr += [[target_y(x)]]
            pd.DataFrame(np.concatenate((y_ex, arr), axis=1), columns=['Method', 'Target'], inde
In [420...
Out[420...
                 Method
                             Target
                0.000000
                           0.000000
           0.0
                -0.014755
                          -0.014766
                -0.028658
                          -0.028680
               -0.040848
                         -0.040878
           0.3
               -0.050446
                          -0.050483
               -0.056548
                          -0.056591
                -0.058216
                          -0.058260
               -0.054466
           0.7
                          -0.054507
                -0.044260
                          -0.044295
           0.9
                -0.026498
                          -0.026518
           1.0
                0.000000
                           0.000000
In [421...
            x = [ax + i*h for i in range(0, N + 1)]
            plot([x, x], [y_ex, arr], 'Example')
                                        Example
            0.00
           -0.01
           -0.02
           -0.03
           -0.04
           -0.05
```

My task (10 option)

0.2

0.4

0.8

1.0

0.6

-0.06

0.0

```
\# y'' + 4y' + 4y = e-2x \ln(x); y(1) = 0, y(2) = -1
In [422...
           def f(x):
               return np.exp(-2*x)*np.log(x)
           def p(x):
               return 4
           def q(x):
               return 4
           ax = 1
           bx = 2
In [423...
           N = 10
           h = (bx - ax) / N
           df1 = alg(0, -1)
           y1 = [[df1[i]['y']] for i in range(N+1)]
           N = 2*N
           h = (bx - ax) / N
           df2 = alg(0, -1)
           y2 = [[df2[i]['y']] for i in range(N+1)]
           df1
In [424...
Out[424...
                                   2
                                             3
                                                       4
                                                                 5
                                                                           6
                                                                                     7
                                                                                                8
           c 0.0 -0.612245 -0.816213 -0.918112 -0.979184 -1.019842
                                                                    -1.048835 -1.070538 -1.087380 -1.1008
             0.0
                  0.000088
                            0.000174
                                      0.000257
                                                 0.000328
                                                           0.000382
                                                                     0.000420
                                                                               0.000441
                                                                                         0.000449
                                                                                                   0.0004
             0.0 -0.617320 -1.008201 -1.235044 -1.344942 -1.373205 -1.346106 -1.283010 -1.198031
                                                                                                  -1.1013
In [425...
           df2
                                                                 5
               0
                         1
                                   2
                                             3
                                                       4
                                                                           6
                                                                                     7
                                                                                                8
Out[425...
           c 0.0 -0.552764 -0.737012 -0.829132 -0.884400 -0.921242
                                                                   -0.947555 -0.967288 -0.982633 -0.9949
                 0.000014 0.000030
                                       0.000050
                                                 0.000072
                                                           0.000093
                                                                     0.000115
                                                                               0.000135
                                                                                         0.000153
                                                                                                   0.0001
          y 0.0 -0.336705 -0.609117 -0.826438 -0.996701 -1.126908 -1.223155 -1.290739 -1.334255 -1.3576
         3 rows × 21 columns
           pd.DataFrame(np.concatenate((y1, y2[::2]), axis=1), columns=['First', 'Second'], ind
In [426...
Out[426...
                   First
                           Second
               0.000000
                          0.000000
           1.0
           1.1 -0.617320 -0.609117
           1.2 -1.008201 -0.996701
           1.3 -1.235044 -1.223155
```

```
        First
        Second

        1.4
        -1.344942
        -1.334255

        1.5
        -1.373205
        -1.364462

        1.6
        -1.346106
        -1.339524

        1.7
        -1.283010
        -1.278502

        1.8
        -1.198031
        -1.195348

        1.9
        -1.101310
        -1.100134

        2.0
        -1.000000
        -1.000000
```

```
In [430... x = [ax + i*h for i in range(0, N + 1, 2)]
plot([x, x], [y1, y2[::2]], 'Task1')
```


Addition task *

```
In [431... # y'' + y = 1; y(θ) = θ, y(π) = θ

def f(x):
    return 1

def p(x):
    return θ

def q(x):
    return 1

ax = θ
bx = np.pi
```

```
In [432... N = 10
h = (bx - ax) / N

df1 = alg(0, 0)
y1 = [[df1[i]['y']] for i in range(N+1)]

N = 2*N
h = (bx - ax) / N

df2 = alg(0, 0)
y2 = [[df2[i]['y']] for i in range(N+1)]
```

```
df1
In [433...
Out[433...
                0
                           1
                                     2
                                                 3
                                                                        5
                   -0.525955
                                          -0.851632
                                                     -0.952679
               0.0
                              -0.727088
                                                                 -1.054157
                                                                             -1.180433
                                                                                        -1.387211
                                                                                                  -1.945172
              0.0
                    0.098696
                               0.150606
                                          0.208200
                                                      0.276006
                                                                  0.361641
                                                                             0.479922
                                                                                         0.665212
                                                                                                   1.021485
              -0.0 47.543862 90.494029 124.611489 146.528984 154.083344 146.528984
                                                                                      124.611489
                                                                                                  90.494029
In [434...
           df2
Out[434...
                0
                           1
                                      2
                                                  3
                                                              4
                                                                         5
                                                                                     6
                                                                                                7
               0.0
                   -0.506246
                               -0.680698
                                           -0.772423
                                                      -0.831322
                                                                  -0.874123
                                                                              -0.908098
                                                                                         -0.937007
                                                                                                     -0.9630
               0.0
                   0.024674
                                0.037165
                                           0.049972
                                                       0.063274
                                                                   0.077275
                                                                              0.092222
                                                                                          0.108420
                                                                                                      0.1262
             -0.0 96.710717 191.059866 280.719477 363.477286 437.291326 500.340309 551.068564 588.2244
          3 rows × 21 columns
          4
           pd.DataFrame(np.concatenate((y1, y2[::2]), axis=1), columns=['First', 'Second'], ind
In [435...
Out[435...
                           First
                                   Second
           0.000000
                      -0.000000
                                  -0.000000
           0.314159
                      47.543862 191.059866
           0.628319
                      90.494029 363.477286
           0.942478
                     124.611489 500.340309
           1.256637
                     146.528984 588.224422
           1.570796
                     154.083344 618.509313
           1.884956
                     146.528984
                                588.224422
           2.199115 124.611489 500.340309
           2.513274
                      90.494029 363.477286
           2.827433
                      47.543862 191.059866
           3.141593
                       0.000000
                                   0.000000
In [436...
           x = [ax + i*h for i in range(0, N + 1, 2)]
           plot([x, x], [y1, y2[::2]], 'Task2.1')
```


Еще сильнее уменьшим шаг и сравним результат

```
In [437...
          N = 10
          h = (bx - ax) / N
          df1 = alg(0, 0)
          y1 = [[df1[i]['y']] for i in range(N+1)]
          N = 2*N
          h = (bx - ax) / N
          df2 = alg(0, 0)
          y2 = [[df2[i]['y']] for i in range(N+1)]
          N = 2*N
          h = (bx - ax) / N
          df3 = alg(0, 0)
          y3 = [[df3[i]['y']] for i in range(N+1)]
          N = 2*N
          h = (bx - ax) / N
          df4 = alg(0, 0)
          y4 = [[df4[i]['y']] for i in range(N+1)]
          N = 2*N
          h = (bx - ax) / N
          df5 = alg(0, 0)
          y5 = [[df5[i]['y']] for i in range(N+1)]
          pd.DataFrame(np.concatenate((y1, y2[::2], y3[::4], y4[::8], y5[::16]), axis=1),
In [438...
```

	N=10	N=20	N=40	N=80	N=160
0.000000	-0.000000	-0.000000	-0.000000	-0.000000	-0.000000
0.314159	47.543862	191.059866	765.117563	3061.346790	12246.263204
0.628319	90.494029	363.477286	1455.399812	5823.087325	23293.836533
0.942478	124.611489	500.340309	2003.242635	8014.848737	32061.272078
1.256637	146.528984	588.224422	2354.991997	9422.058799	37690.324815

Out[438...

	N=10	N=20	N=40	N=80	N=160
1.570796	154.083344	618.509313	2476.198653	9906.952425	39629.966285
1.884956	146.528984	588.224422	2354.991997	9422.058799	37690.324815
2.199115	124.611489	500.340309	2003.242635	8014.848737	32061.272078
2.513274	90.494029	363.477286	1455.399812	5823.087325	23293.836533
2.827433	47.543862	191.059866	765.117563	3061.346790	12246.263204
3.141593	0.000000	0.000000	0.000000	0.000000	0.000000

In [439... x = [ax + i*h for i in range(0, N + 1, 16)]plot([x, x, x, x, x], [y1, y2[::2], y3[::4], y4[::8], y5[::16]], 'Task2.2')

