Az integrálszámítás alkalmazásai I.

Területszámítás

1. Számítsa ki a görbe és az x-tengely közé zárt területet a megadott intervallumban:

a)
$$y = x^2 - 3x + 7$$
 $[-1, 2]$

a)
$$y = x^2 - 3x + 7$$
 [-1,2]
 b) $y = \frac{1}{2} + \sin(x)$ [0, π]

c)
$$y = e^x - 1$$
 $[-1, 1]$

d)
$$y = \sin^2(x) - \frac{1}{4}$$
 $[0, \pi]$

2. Számítsa ki az alábbi paraméteres alakban megadott görbe és az x-tengely közötti területet a megadott intervallumban:

a)
$$x = 2\cos(t), \quad y = \sin(t), \quad [0, \pi]$$

b)
$$x = t - \sin(t), \quad y = 1 - \cos(t), \quad [0, 2\pi]$$

c)
$$x = t^2 - 3t$$
, $y = e^t$, $t \in [2, 4]$

d)
$$x = t^2 - 1$$
, $y = \sin(t)$, $t \in [2, 4]$

3. Számítsa ki az adott görbék által határolt korlátos síkrész területét:

a)
$$y = 6x - x^2 - 7$$
, $y = x - 3$

b)
$$y = 2x^2 e^x$$
, $y = -x^3 e^x$

c)
$$y = x^3, y = 4x$$

b)
$$y = 2x^2 e^x$$
, $y = -x^3 e^x$
d) $y = \sin(x)$, $y = \frac{2x}{\pi}$

4. Számítsa ki a paraméteres alakban megadott görbe által határolt síkidom területét:

a)
$$x = t^2 - 1$$
, $y = \sin(t)$, $t \in [-\pi, \pi]$

b)
$$x = \cos^2(t), \quad y = \sin(2t), \quad t \in [0, \pi]$$

c)
$$x = t^2$$
, $y = t^3 - 4t$ $[-2, 2]$

Testek térfogata

- 1. Egy négyzet alapú egyenes gúla alapéle 2 m, magassága 4 m. A gúla térfogata az ismert $V=\frac{a^2m}{3}$ képlet alapján $\frac{16}{3}$ m³. Számítsuk ki a gúla térfogatát integrálással, így ellenőrizve a fenti képlet helyességét!
- 2. Egy hengerből, melynek alaplapja 3 cm sugarú kör, egy éket vágtunk le egy az alaplappal 45°-os szöget bezáró síkkal, ami átmegy az alaplap középpontján. Mekkora az ék térfogata?
- 3. Számítsa ki az adott görbeívnek az x-tengely körüli megforgatásával kapott forgástest térfogatát:

a)
$$y = 4 - x^2$$
, $[-2, 2]$

b)
$$y = \frac{1}{\sqrt{\cos(x)}}$$
, $\left[0, \frac{\pi}{6}\right]$

c)
$$y = \sqrt{x}e^{-x}$$
, [0,1]

4. Forgassuk az $f(x) = \sqrt{x}$ függvény az x = 4 egyenes és az y = 1 egyenes által határolt korlátos síkidomot az y = 1 egyenes körül! Mekkora a keletkezett forgástest térfogata?

- 5. Forgassuk meg az $y = e^x$, $y = e^{-x}$ és az x = 1 egyenletű görbék által határolt véges tartományt az x-tengely körül! Mekkora a keletkezett forgástest térfogata? Mekkora annak a forgástestnek a térfogata, amelyet úgy nyerünk, hogy ugyanezen síkidomot az y-tengely körül forgatjuk meg?
- **6.** Számítsa ki a következő paraméteresen megadott görbeív x-tengely körüli megforgatásával kapott forgástest térfogatát:

a)
$$x = \cos(t), \ y = \sin(2t), \quad t \in \left[0, \frac{\pi}{2}\right]$$

b)
$$x = t^2 + t$$
, $y = e^t$, $t \in [0, 3]$

Ívhossz számítása

1. Számítsa ki a görbeív hosszát a megadott intervallumban:

a)
$$y = 2x^{\frac{3}{2}}$$
, $[0, 11]$

b)
$$y = \frac{1}{3} (x^2 + 2)^{\frac{3}{2}}, \quad [0, 4]$$

c)
$$y = \frac{x}{6}\sqrt{x+12}$$
, $[-11, -3]$

a)
$$y = 2x^{\frac{3}{2}}$$
, $[0, 11]$ **b)** $y = \frac{1}{3}(x^2 + 2)^{\frac{3}{2}}$, $[0, 4]$ c) $y = \frac{x}{6}\sqrt{x + 12}$, $[-11, -3]$ d) $y = \ln\sin(x)$, $\left[\frac{\pi}{3}, \frac{2\pi}{3}\right]$

e)
$$y = \ln x - \frac{x^2}{8}$$
, [1,2]

f)
$$y = \sqrt{1 - x^2}$$
, $\left[-\frac{1}{2}, \frac{1}{2} \right]$

2. Számítsa ki az alábbi paraméteresen megadott görbeív hosszát a megadott intervallum-

a)
$$x = t^2$$
, $y = t\left(\frac{1}{3} - t^2\right)$, $t \in \left[0, \frac{1}{3}\right]$

b)
$$x = e^t \sin(t), \quad y = e^t \cos(t), \quad t \in [0, \ln 2]$$

Felszínszámítás

1. Számítsa ki a görbe x-tengely körüli forgatásával nyert forgástest palástfelszínét:

b)
$$y = \sqrt{9 - x^2}$$
 $x \in [-3, 3]$

c)
$$y = \sqrt{3-2x}$$
 $x \in [0,1]$

d)
$$y = \sqrt{2x - 4}$$
 $x \in [2, 3]$

e)
$$y = \frac{x^3}{9}$$
 [0;2]

f)
$$y = \cosh x$$
 [0; ln 2]

2. Forgassa meg az alábbi paraméteres egyenletrendszerrel felírt görbék megadott darabját az x tengely körül, és számítsa ki a keletkező forgástestek palástjának felszínét:

a)
$$x = t^2$$
, $y = t$, $t \in [0, 1]$

b)
$$x = a\cos^2(t), \quad y = a\sin^2(t), \quad t \in [0, \frac{\pi}{2}]$$

c)
$$x = e^t \cos(t), \quad y = e^t \sin(t), \quad t \in [0, \frac{\pi}{2}]$$

d)
$$x = \cos(t) + \ln\left(\operatorname{tg}\left(\frac{t}{2}\right)\right), \quad y = \sin(t), \quad t \in \left[\frac{\pi}{2}, \frac{3\pi}{4}\right]$$