Séries

Maria Joana Torres

2021/22

Considere-se uma sucessão $(u_n)_n$ de números reais. À expressão

$$u_1 + u_2 + \cdots + u_n + \cdots$$

que representa uma soma com um número infinito de parcelas, chamamos série numérica de termo geral u_n ou série numérica gerada por u_n . Usamos as notações:

$$\sum_{n=1}^{+\infty} u_n, \quad \sum_{n\geq 1} u_n, \quad \sum_{n\in\mathbb{N}} u_n, \quad \sum_n u_n$$

A sucessão $(u_n)_n$ diz-se a sucessão geradora da série.

Dada a série gerada por $(u_n)_n$, construa-se uma nova sucessão $(s_n)_n$ pondo

$$\begin{array}{rcl} s_1 & = & u_1 \\ s_2 & = & u_1 + u_2 \\ s_3 & = & u_1 + u_2 + u_3 \\ & \cdots \\ s_n & = & u_1 + u_2 + u_3 + \cdots + u_n \\ & \cdots \end{array}$$

a que chamamos sucessão das somas parciais da série.

Definição:

Dizemos que a série $\sum_{n\geq 1}u_n$ é convergente quando a correspondente sucessão

das somas parciais é convergente, ou seja, quando

$$\exists s \in \mathbb{R} : \ s = \lim_{n} s_n.$$

Escrevemos

$$s = \sum_{n \ge 1} u_n$$

e dizemos que s é a soma da série $\sum_{n\geq 1}u_n$. Por outro lado, se a série $\sum_{n\geq 1}u_n$ não é convergente, dizemos que ela é divergente.

Nota:

Por abuso de notação, escreveremos $\sum_{n\geq 1}u_n$ para designar a série gerada por $(u_n)_n$, quer se trate de uma série convergente ou de uma série divergente.

Nota:

Frequentemente, por conveniência, consideramos séries em que a sucessão geradora tem domínio \mathbb{N}_0 ou domínio $\{n \in \mathbb{N} : n \geq n_0\}$, sendo $n_0 \in \mathbb{N}$.

$$\text{Escrevemos ent\~ao} \quad \sum_{n=0}^{+\infty} u_n \ \text{ ou } \sum_{n\in\mathbb{N}_0} u_n \quad \text{e} \quad \sum_{n=n_0}^{+\infty} u_n \ \text{ ou } \sum_{n\geq n_0} u_n.$$

Consequências da definição

Consequência 1:

Sejam $\sum_{n\geq 1}u_n$ e $\sum_{n\geq 1}v_n$ duas séries convergentes de somas s e t , respetivamente. Então:

- a série $\sum_{n\geq 1} \left(u_n+v_n\right)$ converge e tem soma s+t;
- a série $\sum_{n\geq 1} \alpha\,u_n$ converge e tem soma αs , $\forall \alpha\in\mathbb{R}.$

Consequências da definição

Consequência 2:

Se a série $\sum_{n\geq 1}u_n$ é divergente então, dado $\alpha\in\mathbb{R}\backslash\{0\}$, a série $\sum_{n\geq 1}\alpha\,u_n$ também é divergente.

Consequência 3:

Sejam $\sum_{n\geq 1}u_n$ convergente e $\sum_{n\geq 1}v_n$ divergente. Então $\sum_{n\geq 1}\left(u_n+v_n\right)$ é divergente.

Séries da mesma natureza

Definição:

Duas séries $\sum_{n\in\mathbb{N}}u_n$ e $\sum_{n\in\mathbb{N}}v_n$ dizem-se da mesma natureza se forem ambas convergentes ou ambas divergentes.

Teorema:

Sejam $(u_n)_n$ e $(v_n)_n$ duas sucessões que diferem, quando muito, num número finito de termos. Então as séries $\sum_{n\in\mathbb{N}}u_n$ e $\sum_{n\in\mathbb{N}}v_n$ geradas por $(u_n)_n$ e $(v_n)_n$ são da mesma natureza.

Séries Geométricas

Definição:

Chama-se série geométrica de razão r, com $r \in \mathbb{R}$, a uma série do tipo

$$\sum_{n\geq 1} r^{n-1}$$

- ullet sucessão geradora $(u_n)_n$ com $u_n=r^{n-1}$, $n\in\mathbb{N}$
- sucessão das somas parciais $(s_n)_n$ com $s_n = 1 + r + r^2 + \cdots + r^{n-1}$

Tem-se

$$s_n = \begin{cases} n & \text{se} \quad r = 1 \\ \\ \frac{1-r^n}{1-r} & \text{se} \quad r \neq 1 \end{cases}$$

Teorema:

A série geométrica de razão r, $\sum_{n\geq 1} r^{n-1}$, converge se e só se |r|<1.

Quando convergente a sua soma é $s = \frac{1}{1-r}$.

Série Harmónica

Definição:

A série $\sum_{n\in\mathbb{N}}\frac{1}{n}$ é chamada série harmónica.

Proposição:

A série harmónica $\sum_{n\in\mathbb{N}}\frac{1}{n}$ é uma série divergente.

Séries de Riemann

Definição:

Chama-se série de Riemann (de expoente $\alpha \in \mathbb{R}^+$), a uma série do tipo $\sum_{n \in \mathbb{N}} \frac{1}{n^{\alpha}}$.

Proposição:

As séries de Riemann $\sum_{n\in\mathbb{N}}\frac{1}{n^\alpha}$ são divergentes se $0<\alpha\le 1$ e são convergentes se $\alpha>1.$

Condição necessária de convergência

Teorema [Condição necessária de convergência]:

Se a série $\sum_{n\in\mathbb{N}}u_n$ é convergente então $\lim_nu_n=0.$

Teste de divergência

Em geral, pretendemos estudar a natureza da série $\sum_{n\in\mathbb{N}}u_n$, pelo que o teorema é útil quando o passamos à forma equivalente:

Teorema [condição suficiente de divergência (ou teste de divergência)]:

Se a sucessão $(u_n)_n$ não tem limite ou se $\lim_n u_n=\ell$, com $\ell\neq 0$, então a série $\sum_{n\in\mathbb{N}}u_n$ é divergente.

Nota:

O recíproco do teorema é obviamente falso. Isto é,

$$\lim_n u_n = 0 \implies \sum_{n \in \mathbb{N}} u_n$$
 converge.

Basta pensar no exemplo da série harmónica.

Séries Alternadas

Definição:

A uma série do tipo $\sum_{n\in\mathbb{N}}(-1)^na_n$ ou $\sum_{n\in\mathbb{N}}(-1)^{n+1}a_n$, em que $(a_n)_n$ é uma sucessão de termos positivos, chamamos **série alternada**.

Teorema [Critério de Leibniz]:

Seja $\sum_{n\in\mathbb{N}}(-1)^na_n$ uma série alternada tal que:

- $(a_n)_{n\in\mathbb{N}}$ é decrescente;
- $(a_n)_{n\in\mathbb{N}}$ converge para zero.

Então a série $\sum_{n\in\mathbb{N}} (-1)^n a_n$ é convergente.

Convergência absoluta

Consideremos uma série $\sum_{n\in\mathbb{N}}u_n$ cujos termos têm sinal arbitrário. Formemos a correspondente série dos módulos, $\sum_{n\in\mathbb{N}}|u_n|$, que é obviamente uma série de termos não negativos.

Teorema:

Se a série $\sum_{n\in\mathbb{N}}|u_n|$ é convergente então a série $\sum_{n\in\mathbb{N}}u_n$ também é convergente.

Além disso,

$$\Big|\sum_{n\in\mathbb{N}}u_n\Big|\leq\sum_{n\in\mathbb{N}}|u_n|.$$

Convergência absoluta e convergência simples

Observações: do teorema anterior conclui-se que:

- 1. Nunca se tem $\sum_{n\in\mathbb{N}}|u_n|$ convergente e $\sum_{n\in\mathbb{N}}u_n$ divergente!
- 2. Podemos ter
 - $(a) \sum_{n \in \mathbb{N}} |u_n| \text{ e} \sum_{n \in \mathbb{N}} u_n \text{ convergentes, e dizemos que a série } \sum_{n \in \mathbb{N}} u_n \text{ \'e absolutamente convergente.}$
 - $\begin{array}{ll} (b) & \displaystyle \sum_{n \in \mathbb{N}} |u_n| \text{ divergente e } \displaystyle \sum_{n \in \mathbb{N}} u_n \text{ convergente, e dizemos que a} \\ & \text{série } \displaystyle \sum_{n \in \mathbb{N}} u_n \text{ é simplesmente convergente.} \end{array}$
 - (c) $\sum_{n\in\mathbb{N}} |u_n|$ e $\sum_{n\in\mathbb{N}} u_n$ divergentes.

Teorema [Primeiro Critério de Comparação]:

Sejam $\sum_{n\in\mathbb{N}}u_n$ e $\sum_{n\in\mathbb{N}}v_n$ séries de termos não negativos tais que

$$\exists p \in \mathbb{N} : n \ge p \implies u_n \le v_n.$$

- Se $\sum_{n\in\mathbb{N}}v_n$ converge então $\sum_{n\in\mathbb{N}}u_n$ também converge.
- Equivalentemente, se $\sum_{n\in\mathbb{N}}u_n$ diverge então $\sum_{n\in\mathbb{N}}v_n$ também diverge.

Teorema [Segundo Critério de Comparação]:

Sejam $(u_n)_n$ uma sucessão de termos não negativos e $(v_n)_n$ uma sucessão de termos positivos tais que existe

$$\lim_n \frac{u_n}{v_n} = \ell.$$

- Se $\ell \in \mathbb{R}^+$, $\sum_{n \in \mathbb{N}} u_n$ e $\sum_{n \in \mathbb{N}} v_n$ são séries da mesma natureza.
- Se $\ell=0$, a convergência de $\sum_{n\in\mathbb{N}}v_n$ implica a convergência de $\sum_{n\in\mathbb{N}}u_n.$
- Se $\ell=+\infty$, a convergência de $\sum_{n\in\mathbb{N}}u_n$ implica a convergência de $\sum_{n\in\mathbb{N}}v_n$.

Teorema [Critério de Cauchy]:

Seja $(u_n)_n$ uma sucessão de termos não negativos tal que

$$\lim_{n} \sqrt[n]{u_n} = \ell.$$

- Se $\ell < 1$, então $\displaystyle \sum_{n \in \mathbb{N}} u_n$ é convergente.
- Se $\ell > 1$, então $\sum_{n \in \mathbb{N}} u_n$ é divergente.
- Se $\ell=1$ nada se pode concluir quanto à natureza da série $\sum_{n\in\mathbb{N}}u_n.$

Teorema [Critério de d'Alembert]:

Seja $(u_n)_n$ uma sucessão de termos positivos tal que

$$\lim_{n} \frac{u_{n+1}}{u_n} = \ell.$$

- Se $\ell < 1$, então $\displaystyle \sum_{n \in \mathbb{N}} u_n$ é convergente.
- Se $\ell>1$, então $\displaystyle\sum_{n\in\mathbb{N}}u_n$ é divergente.
- Se $\ell=1$ nada se pode concluir quanto à natureza da série $\sum_{n\in\mathbb{N}}u_n.$

Séries de Mengoli (ou telescópica)

Chama-se série de Mengoli a uma série do tipo

$$\sum_{n\in\mathbb{N}} (a_n - a_{n+p}), \quad p \ge 1,$$

onde (a_n) é uma sucessão qualquer.

$$\underline{\text{Exemplo}} \colon \quad \sum_{n \in \mathbb{N}} \left(\frac{1}{n} - \frac{1}{n+2} \right) \, .$$

Tem-se que

$$s_n = \left(1 - \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \left(\frac{1}{4} - \frac{1}{6}\right) + \dots + \left(\frac{1}{n-2} - \frac{1}{n}\right) + \left(\frac{1}{n-1} - \frac{1}{n+1}\right) + \left(\frac{1}{n} - \frac{1}{n+2}\right),$$

ou seja

$$s_n = 1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2}$$

donde $\lim_n s_n = 3/2$ e conclui-se que a série de Mengoli dada é convergente e tem soma s = 3/2.

Séries de Mengoli (ou telescópica)

Para a série com a expressão geral

$$\sum_{n \in \mathbb{N}} (a_n - a_{n+p}), \quad p \ge 1, \quad (*)$$

onde (a_n) é uma sucessão qualquer, vem

$$\begin{split} s_n &= (a_1 - a_{p+1}) + \left(a_2 - a_{p+2}\right) + \left(a_3 - a_{p+3}\right) + \dots \\ &+ \left(a_p - a_{2p}\right) + \left(a_{p+1} - a_{2p+1}\right) + \left(a_{p+2} - a_{2p+2}\right) + \dots \\ &+ \left(a_{n-2} - a_{n+p-2}\right) + \left(a_{n-1} - a_{n+p-1}\right) + \left(a_n - a_{n+p}\right) \,, \end{split}$$

ou seia

$$s_n = a_1 + a_2 + \ldots + a_p - (a_{n+1} + a_{n+2} + \ldots + a_{n+p}),$$

pelo que existe $\lim_n s_n$ se e só se existe $\lim_n (a_{n+1} + a_{n+2} + \cdots + a_{n+p})$, ou seja, se e só se existe $\lim_n a_n$.

<u>Conclusão</u>: A série de Mengoli definida pela expressão (*) é convergente se e só se a correspondente sucessão $(a_n)_n$ é convergente. Em caso de convergência, a soma da série é

$$s = a_1 + a_2 + \ldots + a_p - p \lim_n a_n.$$