Equivalence on Set of Functional Dependencies

(a)
$$F \subseteq G$$

(b) $G \subseteq F$
(c) $F = G$
(d) $F \neq G$

R (ABCDEFG)

F:
$$A \rightarrow C$$
 $AC \rightarrow D$
 $E \rightarrow AD$
 $E \rightarrow AD$
 $C \rightarrow CD$
 $C \rightarrow CD$
 $E \rightarrow AH$
 $C \rightarrow CD$
 C

BLANK BOX

Minimal Set(Canonical Cover)

$$X^{+} = \{X\}$$

$$\{WZ\}^{+} = \{WZYX\}$$

$$\{WZ\}^{+} = \{WZ\}$$

$$Y^{+} = \{YXZW\}$$

$$Y^{+} = \{YZ\}$$

 $Y^+ = \{YXW\}$

For the following functional dependencies, find the correct Minimal Cover.

$$\{A \Longrightarrow B, C \Longrightarrow B, D \Longrightarrow ABC, AC \Longrightarrow D\}$$

BLANK

Example) For the following functional dependencies, find the correct Minimal Cover.

$$\{A \Longrightarrow B, C \Longrightarrow B, D \Longrightarrow ABC, AC \Longrightarrow D\}$$
Step 1:
 $\{A \Longrightarrow B, C \Longrightarrow B, D \Longrightarrow A, D \Longrightarrow B, D \Longrightarrow C, AC \Longrightarrow D\}$
Step 2:
 $\{A \Longrightarrow B, C \Longrightarrow B, D \Longrightarrow A, D \Longrightarrow B, D \Longrightarrow C, AC \Longrightarrow D\}$
Step 3:
 $\{A \Longrightarrow B, C \Longrightarrow B, D \Longrightarrow A, D \Longrightarrow C, AC \Longrightarrow D\}$
Step 4:
 $AC \Longrightarrow D$
 $A^+= \{AB\}$
 $C^+= \{CB\}$

 $\{A\Longrightarrow B, C\Longrightarrow B, D\Longrightarrow AC, AC\Longrightarrow D\}$

Step 5:

 $A^{+}=A$ C+=C D*={DBC} $D^{+}=\{DAB\}$ $\{AC\}^+=\{ACB\}$ Example

A R(ABE)

 $BC \rightarrow ADE$ $D \rightarrow B$

EC is not having incoming edge EC3+ - ECZ not a candidate Key

ECA3+- ZAC3 X

ECB3+-EBCADE3~Ky

ECD3+-ECDBAE3~ Ky

-ECE3+-ECE3X

FACE3+- ZACE3X

we have two candidate Key (BC) & (CD)

(1/+8)

Dr Ratest Russ