1 Definition of regular function

定義 1.1 (regular function on quasi-affine variety Y).

 $f:Y\to k$ が regular functiona at a point $P\in Y$ とは、以下の論理式が成り立つ事.

$$\exists U \in \mathcal{O}_Y, (P \in U) \land (\exists g, h \in A, (h|_U \neq 0) \land (f|_U = g/h))$$

定義 1.2 (regular function on quasi-projective variety Y).

 $f:Y\to k$ が regular functiona at a point $P\in Y$ とは、以下の論理式が成り立つ事.

 $\exists U \in \mathcal{O}_Y, \ (P \in U) \land (\exists g, h \in S^h, \ (\deg g = \deg h) \land (h|_U \neq 0) \land (f|_U = g/h))$

多様体の間の写像として regular map が後に定義される.

2 About Remark 3.1.1

補題 **2.1.** $Y(\subset \mathbb{P}^n)$:: quasi-projective variety, $f: Y \to \mathbb{P}^1_k$:: regular function on quasi-projective variety $Y \Longrightarrow f$:: continus

(証明). そのために Lemma 3.1 と同じ方針で証明をする. 閉集合が閉集合へ写ることを示す. \mathbb{P}^1_k の閉集合は有限集合だから,一点集合が閉集合に写ることだけ見れば良い. ある開集合 U で f が

$$f|_{U} = q/h \ (q, h \in S^{h}, \deg q = \deg h, q|_{U} \neq 0)$$

とあらわせたとしよう. $a \in f(U) \subseteq \mathbb{P}^1_k$ を任意にとると,

$$f^{-1}(a) \cap U = \{ P \in U \mid g(P)/h(P) = a \} = \mathcal{Z}_p(g - ah)$$

となる. g-ah は g,h が斉次かつ $\deg g=\deg h$ かつ a が定数だから斉次である. $^{(1)}$ よって $f^{(-1)}(a)\cap U$ は closed set.

補題 **2.2.** X :: variety, U:: open in X, f, g : $X \to k$:: regular on U とする. このとき f = g on U ならば f = g on X.

(証明). 今,U において f,g が $f=f_0/f_1,g=g_0/g_1$ とあらわせたとしよう。(U より大きい集合で $f=f_0/f_1$ となっていれば単に制限する。)すると $h=f-g=\frac{f_0g_1-g_0f_1}{f_1g_1}$ もまた U 上の regular function.したがって h は連続である。 $k=\mathbb{A}^1_k$ は T1 空間だから $\{0\}$ は閉集合で,h は連続.よって $A:=h^{-1}(\{0\})=\{P\in X\mid f(P)=g(P)\}$ は閉集合.明らかに $U\subseteq A\subseteq X$ となっている.U は X:: irreducible set の開部分集合なので,Exsercise 1.6 より,U は dense.したがって $\operatorname{cl}_X(U)=X$.A は閉集合であるから, $X\subseteq A\subseteq X$ すなわち A=X が得られる.

 $[\]overline{}$ $^{(1)}$ この一文だけが $^{(1)}$ $^{(2)}$ affine の場合と異なる.他の部分は $^{(3)}$ $^{(3)}$ $^{(4)}$ $^{(5)}$

3 p.16 Definition

3.1 ring of regular functions on $Y : \mathcal{O}(Y)$

 $\mathcal{O}(Y)$ は Y 全体で regular な関数全体である。つまり、任意の点 $P \in Y$ について、ある P の開近傍 U が存在し、 $f = g_U/h_U$ on $U, h_U \neq 0$ であるような $g_U, h_U \in S$ を見つけられるもの。 g_U, h_U は点 P と開近傍 U に依存することに注意。Y 全体で正則な有理関数を全て含むが、それよりも大きな集合になりうる。

 $\mathcal{O}(Y)$ が ring であることをみる. まず 0,1 は明らかにこの集合に属す. $f,g\in \mathcal{O}(Y)$ をとると、適当な点 P とその開近傍 U について $f=\frac{f_0}{f_1},g=\frac{g_0}{g_1}$ という表示がある. 以下の計算から、fg,f+g も U で regular.

$$fg = \frac{f_0 g_0}{f_1 g_1}, f + g = \frac{f_0 g_1 + g_0 f_1}{f_1 g_1}$$
 on U

点 $P \in Y$ は任意に取ったので、fg, f + g は Y で regular.

3.2 local ring of $P: \mathcal{O}_P$

Definition \mathcal{O}_P は P で regular な関数全体で作られる ring. 中身は P の開近傍 $U \subset Y$ と, quasi-variety U の各点で regular な関数 f の組で,

$$\langle U, f \rangle \equiv \langle V, g \rangle \iff f = g \text{ on } U \cap V \iff (f - g)|_{U \cap V} = 0$$

という関係で割っている. f から U が定まるのではなく、その逆である. $Q \in U$ に対する f の有理関数表示が変わるかも知れない.

check to be equivalence relation. \equiv が同値関係であることは次のように分かる. まず反射律と対称律は明らか. 推移律は Remark 3.1.1 の

$$\langle U, f \rangle \equiv \langle V, g \rangle \implies f = g \text{ on } Y$$

より直ちに分かる. $U \cap V \neq \emptyset$ は $P \in U, V$ より直ちに分かる. この同値関係で割らなければ、 $\langle U, f \rangle$ と $\langle V, f \rangle$ は異なるものになる.

check to be ring この集合が ring であることを示す.

$$a=\langle U,f\rangle, b=\langle V,g\rangle$$

とすると、ab, a+b の計算は次のようになる。まず $Q \in U \cap V$ を適当にとると、開近傍 $(Q \in)W, (Q \in)Z$ において f,g はそれぞれ $f=f_0/f_1, g=g_0/g_1$ と書ける。W,Z は irreducible set Y の開部分集合だから $W \cap Z \neq \emptyset$.

$$fg = \frac{f_0 g_0}{f_1 g_1}, f + g = \frac{f_0 g_1 + g_0 f_1}{f_1 g_1}$$
 on $W \cap Z$

点 $Q \in U \cap V$ 毎に開近傍 $W \cap Z$ がとれ,そこで fg, f+g が regular なので ring になっている.

check for well-definedness 演算が well-defined であることを示す.二つ の同値類 A, B をとる.それぞれの代表元を任意に 2 つずつとり,

$$a = \langle U, f \rangle, a' = \langle U', f' \rangle \in A; \ b = \langle V, g \rangle, b' = \langle V', g' \rangle \in B$$

としよう. 例えば ab, a'b' を計算すると,

$$ab = \langle U \cap V, fg \rangle, a'b' = \langle (U' \cap V'), f'g' \rangle$$

だが、f=f' on $U\cap U'$, g=g' on ' より fg=f'g' on $U\cap U'\cap V\cap V=(U\cap V)\cap (U'\cap V')$. よって ab=a'b'. $a+b\equiv a'+b'$ なども同様である.

check to be a local ring \mathcal{O}_P は $\mathfrak{m} = \{\langle U, f \rangle \mid f(P) = 0\}$ を唯一の極大イデアルとする局所環. 実際, \mathcal{O}_P の非単元はすべて \mathfrak{m} に属す. これは $f(P) \neq 0$ ならば適当な P の近傍の中で 1/f が定義出来ること(対偶)から示される..

check to be a integral domain また, \mathcal{O}_P は整域である.実際,fg=0 on $U\cap V$ であるような $\langle U,f\rangle, \langle V,g\rangle\in\mathcal{O}_P$ をとる. $P\in U,V$ より $U\cap V\neq\emptyset$. すると, $f=f_0/f_1,g=g_0/g_1$ on $U\cap V$ となるような $f_0,f_1,g_0,g_1\in S$ が存在する. f_1,g_1 は $U\cap V$ で 0 とならないから,結局 f_0g_0 on $U\cap V$ となっている.

 $\forall P \in U \cap V, \ (f_0 g_0)(P) = 0 \in k \iff \forall P \in U \cap V, \ f_0(P) = 0 \lor g_0(P) = 0$

よって f=0 on $U\cap V$ または g=0 on $U\cap V$ が成立. Remark3.1.1 より,これは, f=0 on U または g=0 on V, と書き換えられる.

3.3 function field : K(Y)

K(Y) は Y 内のいずれかの点で regular な関数全体である。中身は \mathcal{O}_P のものと同様である。これは任意の $\langle U,f\rangle(f|_U\neq 0)$ に対して逆元を持つ。すなわち体である。実際, $U'=U\setminus (U\cap\mathcal{Z}(f))^{2}$ と置けば, $(f|_U\neq 0$ より)これは空でないので, $\langle U',1/f\rangle$ と逆元を作れる。

3.4 $\mathcal{O}(Y) \subset \mathcal{O}_P \subset K(Y)$

この包含関係は殆ど自明である. 正確には, injection map が作れることは 自明である. $\mathcal{O}(Y)$ の元は Y 全体で regular だから, \mathcal{O}_P に属す. \mathcal{O}_P の元は $P \in Y$ で regular だから,必ず K(Y) に属す.

 $^{^{2)}}f$ が 0 にならない U の開部分集合である

4 Theorem 3.2

4.1 About $\alpha: A(Y) \to \mathcal{O}(Y)$

多項式 $f \in A$ は Y 全体で定義されるから,これは $\langle Y, f|_Y \rangle \in \mathcal{O}(Y)$ のように $\mathcal{O}(Y)$ へ埋め込める. $f \mapsto f|_Y$ という写像によって 0 となるのは $\mathcal{I}(Y)$ の元のみであるから, $A \to \mathcal{O}(Y)$ から $\alpha: A(Y) \to \mathcal{O}(Y)$ が得られる.

4.2 About proof of (b)

点 $P \in Y$ に対応する A(Y) の極大イデアルは次のように作られる.

$$P\mapsto \mathcal{I}(P)\mapsto \mathcal{I}(P)/\mathcal{I}(Y)$$

さらに $\mathcal{I}(P)/\mathcal{I}(Y)$ の元 $\bar{f}=f+\mathcal{I}(Y)$ を α によって Y 上の regular function とみなすことでこの極大イデアルを $\mathfrak{m}_P:=\{f\in A(Y)|f(P)=0\}$ と書くことが出来る.

4.3 About proof of (c)

 $S=A\backslash\mathfrak{m}_P$ としよう。すると $s\in S$ について $\alpha(s)=\langle Y,s|_Y\rangle$ は \mathcal{O}_P の単元である。実際 $s(P)\neq 0$ だから, $s|_U\neq 0$ であるような P の近傍 U が存在して, $\langle U,1/(s|_Y)\rangle\in\mathcal{O}_P$ 。このことから Ati-Mac の Prop3.1(商環の普遍性)が使える。すなわち, $\beta:A(Y)_{\mathfrak{m}_P}=S^{-1}A(Y)\to\mathcal{O}_P$ であって $\alpha(f)=\beta(f/1)$ となるものが存在する。 $f\mapsto f/1$ と α は単射だから β は単射。さらに Prop3.1 の証明から $\beta(a/s)=\alpha(a)/\alpha(s)$.

この対応 β が全射であることは \mathcal{O}_P の定義から直ちに分かる. つまり, \mathcal{O}_P の元はこのようにして得られるものしか無い. よって $A(Y)_{\mathfrak{m}_P} \cong \mathcal{O}_P$.

以上の段落から、 $\dim \mathcal{O}_P = \dim A(Y)_{\mathfrak{m}_P} = \operatorname{height} \mathfrak{m}_P$ が得られる。さらに A(Y) の元に点 P を代入する準同型に準同型定理を用いれば、 $A(Y)/\mathfrak{m}_P \cong k$ が得られる。(1.7) と (1.8A) より

 $\dim A(Y)/\mathfrak{m}_P + \operatorname{height} \mathfrak{m}_P = \dim A(Y) \iff 0 + \dim \mathcal{O}_P = \dim Y.$

4.4 About proof of (d)

 $\operatorname{Quot}(A(Y))\cong\operatorname{Quot}(\mathcal{O}_P)$ 本文中の quotinet field は整域の全商環 3) の事、今,環 R の全商環を $\operatorname{Quot}(R)$ と書くことにしよう、すると (c) の結果より,以下が得られる.

$$\mathcal{O}_P \cong A(Y)_{\mathfrak{m}_P} \implies \operatorname{Quot}(\mathcal{O}_P) \cong \operatorname{Quot}(A(Y)_{\mathfrak{m}_P}) \cong \operatorname{Quot}(A(Y))$$

 $^{^{3)}}$ すなわち整域 R に対する $S=R\setminus (0)$ による局所化

 $Quot(A(Y)_{\mathfrak{m}_P}) \cong Quot(A(Y))$ は以下のように示される. まず,

$$S_0 = A(Y) \setminus \mathfrak{m}_P, S_1 = A(Y) \setminus \{0 + \mathcal{I}(Y)\}\$$

と置くと $\mathrm{Quot}(A(Y))=S_1^{-1}A(Y), \mathrm{Quot}(A(Y)_{\mathfrak{m}_P})=\tau(S_1^{-1})(S_0^{-1}A(Y))$ である. ただし τ は $x\mapsto x/1$ という単射写像である. Ati-Mac Ch.3 Ex3 より, これは $(S_1S_0)^{-1}A(Y)$ と同型. $^{4)}$ さらに

$$S_1S_0 = \{ xy \mid x, y \in A(Y) \land \neg (x \in \mathfrak{m}_P \lor y \in (\bar{0})) \}$$

であるので、 \mathfrak{m}_{P} , $(\bar{0})$ がイデアルであることから

$$S_1S_0 = A(Y) \setminus (\mathfrak{m}_P \times (\bar{0})) = A(Y) \setminus (\bar{0}) = S_1$$

よって $\operatorname{Quot}(A(Y)_{\mathfrak{m}_P}) \cong S_1^{-1}A(Y) = \operatorname{Quot}(A(Y)).$

 $\mathrm{Quot}(A(Y))\cong K(Y) \quad \langle U,f\rangle \in \mathrm{Quot}(\mathcal{O}_P)\cong \mathrm{Quot}(A(Y))$ を任意にとる. すると $\langle U,f\rangle$ は $f|_U\neq 0$ を満たすから,K(Y) の元として逆元 $\langle \tilde{U},1/f\rangle$ を持つ. したがって

$$\langle U, f \rangle^{-1} \mapsto \langle \tilde{U}, 1/f \rangle$$

という対応が作れた. 逆写像も作れる. それは単純に以下のように定まる.

$$(0 \neq) \langle \tilde{U}, 1/f \rangle \mapsto \langle \tilde{U}, f \rangle$$

 $\tilde{U}\subset U$ より $\langle U,f\rangle\equiv\langle \tilde{U},f\rangle$ なのでこれは全単射. この写像が同型写像であることを見よう. つまり演算を保つことを見る.

$$\frac{\langle U,f\rangle}{\langle V,g\rangle}\frac{\langle U',f'\rangle}{\langle V',g'\rangle} \mapsto \quad \langle U\cap \tilde{V},f/g\rangle \langle U'\cap \tilde{V'},f'/g'\rangle \quad = \langle U\cap U'\cap \tilde{V}\cap \tilde{V'},ff'/gg'\rangle$$

$$\frac{\langle U,f\rangle\langle U',f'\rangle}{\langle V,g\rangle\langle V',g'\rangle} = \frac{\langle U\cap U',ff'\rangle}{\langle V\cap V',gg'\rangle} \\ \mapsto \langle U\cap U'\cap \widetilde{V\cap V'},ff'/gg'\rangle$$

あとは $\tilde{V} \cap \tilde{V'} = V \cap V'$ を見れば良い.

$$\tilde{V} \cap \tilde{V'} = \{ P \in V \mid g(P) \neq 0 \} \cap \{ P \in V' \mid g'(P) \neq 0 \}$$

$$= \{ P \in V \cap V' \mid g(P) \neq 0 \land g'(P) \neq 0 \}$$

$$= \{ P \in V \cap V' \mid \neg (g(P) = 0 \lor g'(P) = 0) \}$$

$$= \{ P \in V \cap V' \mid g(P)g'(P) \neq 0 \}$$

$$= \widetilde{V \cap V'}$$

+ についても同様である. (有理関数の積と和では分子のみ異なるが、以上の議論では分子の零点は関係なかった.)

 $^{^{4)}}$ Ati-Mac Ch.3 Ex3 の証明は, $(a/st)\mapsto ((a/s)/(t/1))$ が同型でもあることを示せば良い。 st を (s,t) に因子分解するところに任意性があるので,どのように分解しても良いことまで示す必要が有る.

4.5 About proof of (a)

 \mathcal{O}_P は点 P で定義される regular function 全体だから, $\mathcal{O}(Y)\subseteq\bigcap_{P\in Y}\mathcal{O}_P$ は自明.(b),(c) を用いると $\mathcal{O}_P\cong A(Y)_{\mathfrak{m}_P}=A(Y)_{\mathfrak{m}}$ となる.単射 $\alpha:A(Y)\to\mathcal{O}(Y)$ の存在から $A(Y)\subseteq\mathcal{O}(Y)$ とみなせる.よって

$$A(Y)\subseteq \mathcal{O}(Y)\subseteq \bigcap_{\mathfrak{m}\in \operatorname{Max}(A(Y))} A(Y)_{\mathfrak{m}}.$$

この最左辺と最右辺が一致することを示そう. すると直ちに3つが全て等しいことが分かる.

整域 B について、その極大イデアルを 2 つとり、 $\mathfrak{m},\mathfrak{m}'$ とする. すると $B_{\mathfrak{m}}\cap B_{\mathfrak{m}'}$ の元は、分母が \mathfrak{m} にも \mathfrak{m}' にも属さない元であるような分数である. よって $B_{\mathfrak{m}}\cap B_{\mathfrak{m}'}=B_{\mathfrak{m}\cup\mathfrak{m}'}$. このように考えることで、以下が得られる.

$$\bigcap_{\mathfrak{m}\in \operatorname{Max}(B)} B_{\mathfrak{m}} = B_M \quad \left(M := \bigcup_{\mathfrak{m}\in \operatorname{Max}(B)} \mathfrak{m}\right)$$

 $B\setminus M$ に非単元があればそれを含む極大イデアルが存在し、したがってその非単元は M に属す.よって $B\setminus M$ は単元のみの集合(単元群)である. B_M の元は分母が単元であるような分数だから、 $a/s\mapsto a\cdot s^{-1}$ という対応で直ちに B と同型になる.以上より $B\cong B_M$.

5 Proposition 3.3

命題 **5.1.** $U_i = \mathbb{P}^n \setminus \mathcal{Z}_p(x_i)$ と置く. この時 (2.2) の写像 $\phi_i : U_i \to \mathbb{A}^n$ は isomorphism of variety となっている.

(証明). isomorphism of variety の定義からまず ϕ_i が連続であることが必要だが、すでに同相写像であることがわかっている。 あとは regular function f/g について $(f/g) \circ \phi_i$ も regular であることを示せば良い.

regular function の定義より、 $f,g \in k[x_0,...,x_n]$ は斉次である.これらを (2.2) の α_i,β_i で写し合うことで証明を行う. α,β の添字 i は以降省略する.

$$\left(\frac{f}{g} \circ \phi_i\right)(x_0, \dots, x_n)$$

$$= \frac{f}{g}\left(\frac{x_0}{x_i}, \dots, \frac{x_n}{x_i}\right)$$

$$= \frac{\alpha(f)}{\alpha(g)}(x_0, \dots, x_n)$$

 $\alpha(g)(P)=0$ ならば $\beta\alpha(g)(P)=g(P)=0$ が得られる. よって $g(P)\neq 0 \Longrightarrow \alpha(g)(P)\neq 0$ なので, $\frac{\alpha(f)}{\alpha(g)}$ は regular.

6 About $S_{(\mathfrak{p})}, S_{(f)}$

 $S_{(\mathfrak{p})}$ が local ring で,その極大イデアルが $\mathfrak{m}:=(\mathfrak{p}\cdot T^{-1}S)\cap S_{(\mathfrak{p})}$ であることを見よう。 $S_{(\mathfrak{p})}$ が ring であることは明らか.まず \mathfrak{m} がイデアルとなっていることだが,これは実際に計算して分子分母の次数を見れば良い.あとは $S_{(\mathfrak{p})}\setminus \mathfrak{m}$ が単元のみからなることを見れば良いが,これは $E:=T^{-1}S\setminus \mathfrak{p}\cdot T^{-1}S$ が単元のみからなることを元に直ちに分かる.E の元は f/g $(g\not\in \mathfrak{p})$ と表されるような $S_{\mathfrak{p}}$ の単元全体であり, $S_{(\mathfrak{p})}\setminus \mathfrak{m}$ は E の内次数 0 のものである. $S_{(f)}$ が ring であることも容易.

7 Theorem 3.4

7.1 About ϕ_i^*

多項式 $f(y_1,\ldots,y_n)\in A(Y)$ を取る. これを代入写像 Φ

$$\Phi: y_1 \mapsto x_0/x_i, \dots, y_n \mapsto x_n/x_i$$

 $(x_i/x_i$ は ommited) で写して通分すると, $\bar{f}(x_0,\ldots,x_n)/x_i^{\deg f}$ という $S(Y)_{(x_i)}$ の元が出来る.例えば i=1 とすると

$$y_1^3 + y_1 y_2 + 1 \mapsto \frac{x_0^3}{x_1^3} + \frac{x_0}{x_1} \frac{x_2}{x_1} + 1 = \frac{x_0^3 + x_0^2 x_1 + x_1^3}{x_1^3}$$

逆に任意に $S(Y)_{(x_i)}$ の元を取るとそれは $F(x_0,\ldots,x_n)/x_i^{\deg F}$ という形をしているが,

$$x_0 \mapsto y_1, \dots, x_i \mapsto 1, \dots, x_n \mapsto y_n$$

とすれば、この写像 Φ で F に写ってくるようなものが作れる. よって Φ は 全射である.

構成した Φ の逆写像を観察すると、これはY上で消える斉次多項式 $F(x_0,\ldots,x_n)$ を $F(x_0,\ldots,1,\ldots,x_n)$ に写す。このようにして出来る多項式はまさしく $\mathcal{I}_a(Y_i)$ の元である。よって $\ker \Phi = \mathcal{I}_a(Y_i)$.正確には $\ker \Phi = \mathcal{I}_a(Y_i)/\mathcal{I}_a(Y)$ である。 $(Y_i \subset Y$ より $\mathcal{I}_a(Y_i) \supset \mathcal{I}_a(Y)$ が成り立つことに注意。) $(A/\mathcal{I}_a(Y))/(\mathcal{I}_a(Y_i)/\mathcal{I}_a(Y)) \cong A/\mathcal{I}_a(Y_i)$ だから, $\Phi: A(Y) \to S(Y)_{(x_i)}$ から同型写像 $\phi_i^*: A(Y_i) \to S(Y)_{(x_i)}$ が作れた。

7.2 About (b)

affine の \mathcal{O}_P は \mathcal{O}_P^a と書くことにする. projective も同様.

 $\mathcal{O}_P^p \cong A(Y_i)_{\mathfrak{m}_P'}$ 最初に $\mathcal{O}_P^p \cong A(Y_i)_{\mathfrak{m}_P'}$ とある. Theorem 3.2 は $\mathcal{O}_P^a \cong A(Y)_{\mathfrak{m}_P}$ しか言っていないので、これを導く、まず $\mathbb{A}^n \cong \sqcup_i$ を用いると、

$$\phi_i^*(\mathfrak{m}_P') = \mathfrak{m}_P \cdot S(Y)_{(x_i)}$$
 pass

$$S(Y)_{(x_i)} \cong A(Y_i)_{\mathfrak{m}'_P}$$
 pass

7.3 About (c)

$$\forall i, K^p(Y) = K(Y_i)$$
 pass

$$K^p(Y) \cong S(Y)_{((0))}$$
 pass

7.4 About (a)

 $f\in A(Y_i), x_0^q f^q\in S(Y)$ $f\in A(Y_i)$ をとると、 $A(Y_i)\cong S(Y)_{(x_i)}$ より f は $g_i/x_i^{N_i}$ $(g_i\in S(Y)_{N_i})$ と書ける.したがって各 i について $g_i=f\cdot x_i^{N_i}\in S(Y)_{N_i}$.

今, $N \geq \sum N_i$ とすると,N 次単項式 $M = \prod_{i=1}^n x_i^{e_i}$ について少なくともひとつの e_i は N_i より大きい.なので $f \cdot M$ は $f \cdot x_i^{N_i} (\in S(Y)_{N_i})$ の倍数である. $S(Y)_N$ はこのような単項式で張られる k-vector space だから $S(Y)_N \cdot f \subset S(Y)_N$ が分かる.

$$g_i^q = f^q \cdot x_i^{qN_i} = (f \cdot x_i^{N_i})(f^{q-1} \cdot x_i^{(q-1)N_i}) \in S(Y)_{N_i}$$

だから、 $g_i^q \in S(Y)_{N_i}$. あとは q=1 の時と同様にして $S(Y)_N \cdot f^q \subset S(Y)_N$.

"we can replace the a_i by …" 式の左辺を観る. $a_j \in S(Y)$ である. a_j を斉次分解してみる.

$$f^m + a_1 f^{m-1} + \dots + a_m = f^m + (a_0^{(1)} + a_1^{(1)} + \dots) f^{m-1} + \dots + (a_0^{(m)} + a_1^{(m)} + \dots)$$

すると f は 0 次式だから、この多項式の 0 次斉次部分は以下のようになる。

$$f^m + a_0^{(1)} f^{m-1} + \dots + a_0^{(m)}$$

これは斉次多項式だから projective variety の点を入れた時に値が0かどうかということは意味を持つ.

8 Proposition 3.5

A morphism $\mathcal{O}(Y) \to \mathcal{O}(X)$ which induced by ϕ is a homomorphism of k-algebras. $\phi: X \to Y$ から誘導される写像 $\phi^*: \mathcal{O}(Y) \to \mathcal{O}(X)$ は次のようなものである.

$$\phi^*: (f: Y \to k) \mapsto (f \circ \phi: X \to k).$$

これは $(af + bg) \circ \phi = a(f \circ \phi) + b(g \circ \phi)$ より、k-加群としての写像でもある。よってこれは k-代数の写像。また、 $f \circ \phi \circ \phi^{-1} = f$ より、以下が ϕ^{*-1} .

$$\phi^{*-1}: (g: X \to k) \mapsto (g \circ \phi^{-1}: Y \to k).$$

Naturallity of α 多分. 単に「標準的な」という意味で natural と言っている.

9 Lemma 3.6

 $x_i\circ\psi$ とあるが、これは x_i を $(x_0,\ldots,x_n)\mapsto x_i$ という関数だと考えれば単に $\operatorname{pr}_i\circ\psi$ のことである.この解釈は $f(x_0,\ldots,x_n)\circ\psi=f(x_0\circ\psi,\ldots,x_n\circ\psi)$ を考えれば自然である.

If $x_i \circ \psi$ is regular, then for all $f \in k[x_0, \dots, x_n]$, $f \circ \psi$ is also regular on X.

$$f \circ \psi = f(x_0, \dots, x_n) \circ \phi = f(x_0 \circ \phi, \dots, x_n \circ \phi)$$

 $\mathcal{O}(X)$ は任意の variety について環を成すから, $\mathcal{O}(X)$ の元の積と和で表示される $f(x_0 \circ \phi, \ldots, x_n \circ \phi)$ は $\mathcal{O}(X)$ の元.よって $f \circ \psi$ は X で regular.

 ψ is continuous. Y の閉集合 $\mathcal{Z}_a(E)$ $(E \subset k[x_0,\ldots,x_n])$ をとると,

$$\psi^{-1}(\mathcal{Z}_a(E)) = \{ \psi^{-1}(P) \in X \mid \forall f \in E, \ P \in f^{-1}(0) \} = \bigcap_{f \in E} \psi^{-1} \circ f^{-1}(0)$$

任意の多項式 f について $f\circ\psi:X\to k$ が regular. regular なら continuous なので $(f\circ\psi)^{-1}=\psi^{-1}\circ f^{-1}$ は閉集合を閉集合に写す. よってこの最右辺 は閉集合.

10 Corollary 3.8

k 上の affine variety と morphism of varieties が成す圏を **Aff** と書くこと にし、k 上の有限生成整域とその間の準同型写像が成す圏を k – **FinDom** と 書くことにしよう。 関手 A(-): **Aff** \rightarrow k – **FinDom** は対象 X を A(X) に 写し、射 ϕ を $\alpha(\phi)$ にうつす.これが圏同値をつくることを示そう.

A(-) が圏同値をつくることと A(-) が忠実充満関手かつ本質的全射であることは同値である.忠実充満関手であることは Prop 3.5 で示されている.この系では一般の variety としている X を affine としているので $\mathcal{O}(X)\cong A(X)$ が使えることに注意せよ.

本質的全射であることは,Ex1.5 から得られる.Ex1.5 ではべき零元を持たない k 上の有限生成代数は必ず何らかの代数的集合の affine coordinate ring

と同型であることを示す.しかしその証明から,任意の k 上の有限生成整域 B は素イデアル $\mathfrak p$ を用いて $k[x_0,\dots,x_n]/\mathfrak p$ と表せることがわかるから,任意 の k 上の有限生成整域 B はある affine variety X を用いて A(X) と表せる.