



#### Hash Tables

Hussein Suleman < hussein@cs.uct.ac.za>

Department of Computer Science School of IT University of Cape Town

#### Hash Tables

- Data structure where items are stored in a location determined by their content.
  - Content-based indexvs.
  - Comparison-based index
- Every hash table is fundamentally composed of:
  - Array of items
  - Hash function: item->index



### Trivial Hash Table

- Suppose our data is a subset of unique numbers from 0..n-1.
- Create an array A of integers.
- $\square$  Insert(x) algorithm: A[x] = 1
- $\square$  Delete(x) algorithm: A[x] = 0
- □ Find(x) algorithm: A[x]==1?

| Data to insert |
|----------------|
| 4305           |

| 0 | 1 | 2 | 3 | 4 | 5 | <br>n-1 |
|---|---|---|---|---|---|---------|
| 1 | 0 | 0 | 1 | 1 | 1 |         |



## Trivial Hash Table, with Duplicates

- Suppose our data is a subset of numbers from 0..n-1. Duplicates are allowed.
- Create an array A of integers.
- □ Insert(x) algorithm: A[x]++
- Delete(x) algorithm: A[x]--
- $\square$  Find(x) algorithm: A[x]>0?

| Data to insert |
|----------------|
| 4305030        |

| 0 | 1 | 2 | 3 | 4 | 5 | <br>n-1 |
|---|---|---|---|---|---|---------|
| 3 | 0 | 0 | 2 | 1 | 1 |         |



# Analysis of Trivial Hash Table

□ Insert: O(1)

□ Delete: O(1)

□ Find: O(1)

#### Issues to resolve

- What if there are more keys than slots?
  - overflow

- What if key is not an integer?
  - map
- What if keys are the same, but values are different?
  - collision



#### Hash Function

A hash function is a mapping from an item to an integer.

- Use modulus to solve the integer key size problem:
  - hash(x) = x % tableSize
- One-way function is fine (but may cause collisions).
- Produces values in the range 0..tableSize-1



#### Hash Function 1

Hashing strings - add together Unicode values and mod tablesize.

```
public int hash1 ( String key )
{
  int hashVal = 0;

  for( int i = 0; i < key.length(); i++ )
     hashVal += key.charAt(i);

  return hashVal % tableSize;
}</pre>
```



### Hash Function 1 Analyzed

h("abc") = (97+98+99) % tableSize

| Length | First<br>String | Last<br>String | Range of h(s) (before %) |
|--------|-----------------|----------------|--------------------------|
| 1      | a               | Z              | 97-122                   |
| 2      | aa              | ZZ             | 194-244                  |
| 3      | aaa             | ZZZ            | 291-366                  |
| 4      | aaaa            | ZZZZ           | 388-488                  |

- Poor hash function for large tableSize and small keys.
- Also, h("abc")=h("cab")=h("bac") causes collisions.



### Hash Function 2

Solve the uniqueness problem by multiplying/shifting each character by some value. This also increases hash values.

```
public int hash2 ( String key )
{
  int hashVal = 0;

  for( int i = 0; i < key.length(); i++ )
     hashVal = (37 * hashVal) + key.charAt(i);

  return hashVal % tableSize;
}</pre>
```

## Hash Function 2 Analyzed

h("abc") = (((97)\*37+98)\*37+99) % tableSize

| Length | First<br>String | Last String | Range of h(s) (before %) |
|--------|-----------------|-------------|--------------------------|
| 1      | a               | Z           | 97-122                   |
| 2      | aa              | ZZ          | 3686-4636                |
| 3      | aaa             | ZZZ         | 136479-171654            |
| 4      | aaaa            | ZZZZ        | 5049820-6351320          |

- Larger hash values better spread.
- Also, h("abc")!=h("cab")!=h("bac").
  - h(abc) =136518 % tableSize,
  - h(bac) =137850 % tableSize, etc.



### Requirements of Good Hash Functions

- Fast to compute.
- Deterministic.
- Spread keys evenly in hash table.
- What other hash functions could we use?

#### Perfect Hash Function

- A perfect hash function maps every distinct key onto a distinct integer.
- For example:
  - If keys are 2-letter words (26\*26 combinations),
  - If tableSize=1000,
  - h(x) = (x[0]-'a')\*30+(x[1]-'a')
  - Still some gaps/holes.
- Minimal perfect hash function has no holes in the array.



### Collision Resolution Approaches

- Open Addressing
  - Linear Probing
  - Quadratic Probing

- Closed Addressing
  - Chaining

## Collision Resolution by Linear Probing

- Insertion algorithm:
  - Generate hashcode h=hash(key)
  - While A[h] contains a key
    - $\blacksquare$  h=(h+1) % tableSize
  - A[h] = {key, value}
- Find algorithm:
  - Generate hashcode h=hash(key)
  - While A[h] contains a key
    - if (A[h]{key}==key) return A[h]{value}
    - $\blacksquare$  h=(h+1) % tableSize
  - return Not Found



## Linear Probing Example

- □ Using tableSize=10 and h(x)=x % 10
  - insert: 23, 56, 13, 93, 33, 36, 89, 99

| Α  | Α  | Α  | Α  | Α  | Α  | Α  | Α  |
|----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    | 99 |
|    |    |    |    |    |    |    |    |
|    |    |    |    |    |    |    |    |
| 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 |
|    |    | 13 | 13 | 13 | 13 | 13 | 13 |
|    |    |    | 93 | 93 | 93 | 93 | 93 |
|    | 56 | 56 | 56 | 56 | 56 | 56 | 56 |
|    |    |    |    | 33 | 33 | 33 | 33 |
|    |    |    |    |    | 36 | 36 | 36 |
|    |    |    |    |    |    | 89 | 89 |

### Linear Probing Issues

- Primary Clustering
  - Multiple adjacent items and slow performance.

- Uneven gaps in table.
- □ Table Full
  - What to do when table is full?
    - Throw an error?
    - Create new and larger table?



## Linear Probing Analysis

- □ The load factor λ is the proportion of the table that is full. Proportion of empty table is (1-λ).
- $\square$  Probability of a cell being empty is  $(1-\lambda)$ .
- Ave. number of cells examined for insert (failed find):
  - $T(\lambda) = (1+1/(1-\lambda)^2)/2$
  - $T(0.5) = (1+1/0.5^2)/2 = 2.5$ ;  $T(0.1) = (1+1/0.9^2)/2 = 1.117$
  - $T(0.9) = (1+1/0.1^2)/2 = 50.499$
- Ave. number of cells examined for successful find:
  - $T(\lambda) = (1+1/(1-\lambda)/2$
  - T(0.5) = (1+1/0.5)/2 = 1.5; T(0.1) = (1+1/0.9)/2 = 1.056
  - T(0.9) = (1+1/0.1)/2 = 5.5



## Collision Resolution by Quadratic Probing

- Insertion algorithm:
  - Generate hashcode h=H=hash(key), i=1
  - While A[h] contains a key

```
□ h=(H+i*i) % tableSize
```

- i++
- A[h] = {key, value}
- Find algorithm:
  - Generate hashcode h=H=hash(key), i=1
  - While A[h] contains a key

```
if (A[h]{key}==key) return A[h]{value}
```

- □ h=(H+i\*i) % tableSize
- □ i++
- return Not Found



## Quadratic Probing Example

- □ Using tableSize=10 and h(x)=x % 10
  - insert: 23, 56, 13, 93, 33, 36, 89, 99

| Α  | Α  | Α  | А  | Α  | Α  | А  | Α  |
|----|----|----|----|----|----|----|----|
|    |    |    |    |    | 36 | 36 | 36 |
|    |    |    |    |    |    |    |    |
|    |    |    |    | 33 | 33 | 33 | 33 |
| 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 |
|    |    | 13 | 13 | 13 | 13 | 13 | 13 |
|    |    |    |    |    |    |    |    |
|    | 56 | 56 | 56 | 56 | 56 | 56 | 56 |
|    |    |    | 93 | 93 | 93 | 93 | 93 |
|    |    |    |    |    |    |    | 99 |
|    |    |    |    |    |    | 89 | 89 |

## Quadratic Probing Analysis

- $\blacksquare$  If table size is prime and  $\lambda$ <0.5, then we never check same cell twice and new element can always be inserted.
- Rough proof sketch:
  - Choose a prime M=tableSize
  - Choose 2 distinct i and j values <M/2
  - Suppose  $H+i^2 \equiv H+j^2 \pmod{M}$
  - then,  $(i-j)(i+j) \equiv 0 \pmod{M}$  so M has a factor
  - By contradiction, first M/2 positions checked are distinct



## Collision Resolution by Chaining

- Use a table of pointers/references.
- Each new item must be added to a linked list at that position in the table.
- Insertion algorithm:
  - Generate hashcode h=hash(key), p=new Node
  - p.data = {key, value}; p.next = A[h]
  - A[h] = p
- Find algorithm:
  - Generate hashcode h=hash(key), p=A[h]
  - While p!=null and p{key}!=keyp = p.next
  - return p



### Chaining Example

- □ Using tableSize=10 and h(x)=x % 10
  - insert: 23, 56, 13, 93, 33, 36, 89, 99



## Chaining Analysis

- Assume N items
- Assume tableSize=M
- Assume even distribution of hash values and use of all possible hash values
- Then, on average, each LL is of size N/M
- Average time to search=1/2 N/M
- Worst case O(N); Best case O(N/M)
  - It is all about the choice of M relative to N!



### Handling deletions

- Open addressing:
  - Deletion is not easily possible.
  - Add a flag to an item to mark it as deleted.
    - Skip deleted items during search.
    - Unmark and overwrite deleted items on insert.

- Chaining:
  - Use linked list deletion operations.



### Other Variations

- Double Hashing
  - Secondary clustering is where a key generates the same sequence of locations to check.
  - Maybe use a second hash function when there is a collision.
  - h = H1 + H2, where H2 is the rehashing function
  - A different sequence is checked for each key.
- Chaining using BSTs or other data structures.



### that's all folks!

