

Pattern Recognition and Machine Learning

Exercises Week 1

Lecturer: Matthias Seeger

Assistants: Abdallah Elguindy, Mathias Humbert, Young Jun Ko, Xinchao Wang

Exercise 1

Suppose that inputs into a binary linear classifier are $\boldsymbol{x} = [x_1, x_2]^T \in \mathbb{R}^2$. The decision boundary goes through $\boldsymbol{p}_1 = [1, 0]^T$ and $\boldsymbol{p}_2 = [5, 8]^T$.

- 1. Derive the slope a and offset b in the equation $x_2 = ax_1 + b$ which describes the decision boundary. Does the line go through the origin?
- 2. Determine a weight vector $\boldsymbol{w} = [w_1, w_2]^T$ so that the decision boundary is given by

$$\mathbf{w}^T \mathbf{x} + b = w_1 x_1 + w_2 x_2 + b = 0.$$

What is the relationship between \boldsymbol{w} and $\boldsymbol{p}_2 - \boldsymbol{p}_1$?

- 3. Give a formula for the linear binary classifier $f(\boldsymbol{x})$, mapping \mathbb{R}^2 to $\{-1, +1\}$, which has this decision boundary and classifies the origin $\mathbf{0} = [0, 0]^T$ as +1. For each of the following points, determine whether $f(\boldsymbol{x})$ (a) classifies it as +1, (b) classifies it as -1, or (c) it lies on the decision boundary. $[5, 9]^T$, $[10, 18]^T$, $[0, -3]^T$.
- 4. **Bonus**: How would you construct the equation $\tilde{\boldsymbol{w}}^T\boldsymbol{x} + \tilde{b}$ for a line, so that the distance between the new line and each of \boldsymbol{p}_1 , \boldsymbol{p}_2 is 1? The answer is not unique, choose whatever is simplest for you.

Exercise 2

This question is about the perceptron algorithm, applied to the data given in the table and figure below. Use discriminant functions of the form

$$y(\boldsymbol{x}) = w_1 x + w_2 y,$$

without a bias term (all of them go through the origin), and (in constrast to the course notes) do not normalize the input vectors.

X	У	class
4	3	1
3	4	1
2	3	1
-2	-3	2
-4	-2	2
-4	-3	2
-2	5	2

- 1. Run the perceptron algorithm for at least 3 updates (unless it converges with less than 3 updates). Start with $\boldsymbol{w} = [1, -1]^T$. You may pick points in any order you like.
- 2. How would the algorithm behave if the point $[-2,5]^T$ belonged to class 1?
- 3. What would happen if the point $[-4, -3]^T$ was labeled as 1?

Exercise 3

This exercise is about a linear discriminant based on a feature map $\phi(x)$. Recall from the course notes that "linear" means linear with respect to the weights: the function can be nonlinear in the input $x = [x_1, x_2]^T \in \mathbb{R}^2$. Consider the following discriminant function:

$$y(\mathbf{x}) = \frac{1}{4}x_1^2 + \frac{1}{4}x_2^2 - \frac{1}{2}x_1 - \frac{3}{2}x_2 + \frac{3}{2}.$$

- 1. Bring this function into the standard form $y(x) = w^T \phi(x) + b$. What is w, $\phi(x)$, and b?
- 2. Draw the decision boundary and shade the decision regions \mathcal{H}_{+1} and \mathcal{H}_{-1} in your drawing.

Hint: Try to bring $y(\mathbf{x})$ into the form $a\|\mathbf{x} - \boldsymbol{\mu}\|^2 + b$, where $\boldsymbol{\mu} = [\mu_1, \mu_2]^T$ is a vector.