

X/José Ballesta

Overview

- Challenges of current DVI methods
 - Software limitations
 - Families with several missing
- Our solutions
 - Computational DVI pipeline
 - Joint analysis + generalised likelihood ratio (GLR)
- New program for genetic DVI: DIVIANA

Disaster victim identification (DVI)

Computational approaches

➤ Joint / global

Vigeland & Egeland (Scientific Reports, 2021): Joint DNA-based disaster victim identification

Joint analysis of DVI data

Victims and R1 typed with 23 STRs.

Pairwise LR

	M1	M2	M3
V1	[121.3]	398.6	398.6
V2	0.6	36.6	36.6
V3	0.00	1.3	1.3

Joint likelihoods

	V1	V2	V3	loglik
1	M1	M2	M3	-257.7
2	M1	M3	M2	-257.7
3	*	M2	M3	-268.9
4	*	M3	M2	-268.9
5	M2	M1	M3	-272.6
6	M3	M1	M2	-272.6
7	M1	*	M2	-276.5
8	M1	*	M3	-276.5
9	M2	M3	M1	-276.6
:				
32	*	*	*	-286.0
33	*	M1	*	-286.5
34	*	*	M1	-292.2

A tool for interpreting joint results:

Generalised likelihood ratio (GLR)

 H_1 : V1 = M1

 H_2 : V1 \neq M1

Victims and R1 typed with 23 STRs.

GLR =
$$\frac{L_1}{L_3} = \frac{e^{-257.7...}}{e^{-268.9...}} = 70582$$
Strong evidence

$GLR = \frac{\max_{i \in H_1} L_i}{\max_{j \in H_2} L_j}$

Joint likelihoods

					_
	V1	V2	V3	loglik	
1	M1	M2	M3	-257.7	√
2	M1	M3	M2	-257.7	V
3	*	M2	M3	-268.9	×
4	*	M3	M2	-268.9	×
5	M2	M1	M3	-272.6	×
6	M3	M1	M2	-272.6	×
7	M1	*	M2	-276.5	√
8	M1	*	M3	-276.5	\checkmark
9	M2	M3	M1	-276.6	×
:					
32	*	*	*	-286.0	×
33	*	M1	*	-286.5	×
34	*	*	M1	-292.2	×
					_

$GLR = \frac{\max_{i \in H_1} L_i}{\max_{j \in H_2} L_j}$

Interpretation of GLR = x

The best explanation of the data given H1 is \boldsymbol{x} times more likely than the best explanation given H2

Symmetric matches

 H_1 : {V2,V3} = {M2,M3}

 H_2 : {V2,V3} \neq {M2,M3}

$GLR = 2.9 \times 10^6$ Strong evidence!

Joint likelihoods

	V1	V2	V3	loglik
1	M1	M2	M3	-257.7
2	M1	M3	M2	-257.7 ✓
3	*	M2	M3	-268.9 ✓
4	*	M3	M2	-268.9 🗸
5	M2	M1	M3	-272.6 ×
6	M3	M1	M2	-272.6 ×
7	M1	*	M2	-276.5 ×
8	M1	*	M3	-276.5 x
9	M2	M3	M1	-276.6 ×
:				
32	*	*	*	-286.0 x
33	*	M1	*	-286.5 ×
34	*	*	M1	-292.2 x

+

Analysis

+

Labels

Data

3 victims (0M/3F) 3 missing (0M/3F) 1 typed ref 1 ref family

Number of markers, PM and AM: 23

+

+

+

Labels

GLR Conclusion

 $1.21 \times 10^2 \ 7.06 \times 10^4 \ \text{Match (GLR)}$

Identifications AM PM log

V2/V3

V2/V3

LR

Family Missing Sample

M1

M2

M3

Settings

LR threshold

10000

☐ Ignore Sex

esnota	F1
	F1
	4

F1

Comment

2.95 × 10⁶ Symmetric match Full siblings: {M2, M3}

Result plot

Identifications

M1

F1

AM

PM

Family Missing Sample LR GLR Conclusion Comment

log

Settings

LR threshold

1e4

□ Igno

esnota	F1	M2		
	F1	M3		
	F1	M4		
ore Sex	F1	M5		
ore sex	F1	M6		
	F1	M7		
	F1	M8		
	F1	M9		
*	F1	M10		
vnload	F1	M11		
	F1	M12		
	F1	M13		

■ SOLVE

Identifications

AM

PM

log

Settings

LR threshold

1e4

☐ Ignore Sex

Family	Missing	Sample	LR	GLR	Conclusion	Comment
F1	M1				Excluded	5+ inconsistencies
F1	M2	V5	1.70×10^{3}	1.44 × 106	Match (GLR)	Joint analysis (M2,M3,
F1	M3				Inconclusive GLR	
F1	M4				Excluded	3+ inconsistencies
F1	M5				Inconclusive GLR	
F1	M6	V1	1.00	7.72 × 108	Match (GLR)	Joint analysis (M2,M3,
F1	M7				Inconclusive GLR	
F1	M8	V4	2.85 × 10 ⁶		Undisputed	Step 1
F1	M9				Excluded	3+ inconsistencies
F1	M10	V2		2.58 × 10 ⁶	Symmetric match	V2 also matches M11
F1	M11	V2		2.58 × 10 ⁶	Symmetric match	V2 also matches M10
F1	M12	V3	4.78	1.02×10^{7}	Match (GLR)	Joint analysis (M2,M3,
F1	M13				Nonidentifiable	Unrelated to R1, R2, R

Gosh, I'd love to give Diviana a try!

Beta version online

https://magnusdv.shinyapps.io/diviana

GitHub

https://github.com/magnusdv/diviana

GLR paper

Egeland & Vigeland (to be submitted)

Diviana eudoreella