Определение вязкости жидкости по скорости истечения через капилляр

Каспаров Николай, Б01-304

April 3, 2024

Цель работы: Определение вязкости воды по измерению объёма жидкости, протекшей через капилляр. Определение вязкости других жидкостей путём сравнения скоростей перетекания с водой.

В работе используются: Сосуд Мариотта, мензурка, секундомер, микроскоп с линейкой, исследуемые жидкости

1 Теоретическое введение

Рассмотрим стационарный поток жидкости, ламинарно текущей через капилляр круглого сечения. Мысленно выделим ток радиуса r и длины l. По формуле Ньютона получим:

$$F_{\rm TP} = S\eta \frac{dv}{dr},\tag{1}$$

где S - площадь поверхности цилиндра, η - вязкость, $\frac{dv}{dr}$ - градиент скорости. Теперь учтем нулевое ускорение тока, а также подставим $S=2\pi rl$

$$(P_1 - P_2)\pi r^2 + 2\pi r l \eta \frac{dv}{dr} = 0$$
 (2)

Проинтегрируем:

$$v = -\frac{P_1 - P_2}{4\eta l}r^2 + C, (3)$$

где C - константа интегрирования, которая должна быть найдена из граничных условий. Воспользуемся фактом того, что жидкость у стенок сосуда обращается в нуль из-за трения:

$$v = \frac{P_1 - P_2}{4\eta l} (R^2 - r^2) \tag{4}$$

Теперь найдем расход жидкости, проинтегрировав сечение трубки по обручам:

Рисунок 1: К выводу формулы Пуазейля

$$Q = \frac{V}{t} = \int_0^R 2\pi r v dr = \pi \frac{P_1 - P_2}{8\eta l} R^4$$
 (5)

Мы получили формулу Пуазейля. Но прежде чем её применять, надо убедиться в ламинарности течения. Ламинарное течение при переходе жидкости из широкого сосуда в капилляр устанавливается не сразу, а после того, как она пройдет расстояние a:

$$a \approx 0.2R \cdot Re,$$
 (6)

где R - радиус трубке, а Re - число Рейнольдса Формула (5) работает, когда длина стержня много больше a.

2 Измерение вязкости воды

2.1 Экспериментальная установка

Рисунок 2: Установка для определения вязкости воды

Для определения вязкости воды будем пользоваться формулой Пуазейля (5). Воспользуемся сосудом Мариотта, чтобы поддерживать постоянную разность давлений. С помощью микроскопа на стенде с линейкой будем определять разность давлений.

2.2 Обработка экспериментальных данных

Экспериментально было выявлено влияния поверхностного натяжения на резутаты. Выражается оно в том, что вода перестает вытекать при h меньше некоторого Δh Тогда и для давлений нужно сделать поправку $\Delta P = \rho g \Delta H$

До начала эксперимента также убедимся, что a из формулы (6) много меньше длины стержня.

Нанесем измерения на график, используя МНК, получим:

$$\Delta h = (5.7 \pm 1.7) \text{ MM}$$
 (7)

Непосредственное измерение дало результат:

$$\Delta h_{ref} = (4.7 \pm 0.1) \text{ MM}$$
 (8)

Рисунок 3: Зависимость расхода жидкости от разницы давления

$$\frac{dQ}{dh} = \frac{\rho g R^4}{8l} \cdot \frac{1}{\eta} = (1.66 \pm 0.09) \cdot 10^{-3} \text{ M}\pi/c$$
 (9)

Отсюда легко получить значения вязкости:

$$\eta = (0.0093 \pm 0.0012)\Pi \tag{10}$$

При температуре $23^{\circ}C$ табличное значение вязкости:

$$\eta_{ref} = 0.00936\Pi \tag{11}$$

3 Измерение вязкости водного раствора глицерина вискозиметром Оствальда

3.1 Установка

Вискозиметр Оствальда представляет собой U-образную стеклянную трубку. Одно колено прибора в верхней части имеет расширение - шарик III_1 с метками "0" и "1", и капилляр K. Другое колено представляет собой широкую трубку Д с резервуаром - шариком III_2

В широкую трубку вискозиметра вливают определенное количество воды, вязкость которой известна. С помощью резиновой груши подсоединённой к узкой трубке Т, в шарик засасывают воду. Затем, сняв грушу, засекают сколько воде требуется времени чтобы пройти от метки "0" до "1"

Для расчета процесса течения жидкости через капилляр воспользуемся формулой (5). Разность давлений $P_1 - P_2$ постоянно меняется: значит, придется интегрировать:

$$-\frac{dV}{dt} = \frac{\pi R^4}{8l} \frac{h(V)\rho g}{\eta},\tag{12}$$

или иначе:

$$-\frac{8l}{\pi R^4}\frac{dV}{h(V)} = \frac{\rho g}{\eta}dt \tag{13}$$

Рисунок 4: Вискозиметр Оствальда

Теперь проинтегрируем за время протекания воды отметок:

$$\frac{8l}{\pi R^4} \int_{V_0}^{V_1} \frac{dV}{h(V)} = -\int_{t_0}^{t_1} \frac{\rho g}{\eta} dt \tag{14}$$

Заметим, что стоящая слева величина полностью зависит от параметров установки, а значит можно получить:

$$\frac{\rho t}{\eta} = const,\tag{15}$$

или выразив вязкость искомой жидкости:

$$\eta_x = \eta_0 \frac{\rho_x}{\rho_0} \frac{t_x}{t_0} \tag{16}$$

Этой формулой мы и будем пользоваться на определения вязкости 10-, 20-, 30-процентых растворов глицерина.

3.2 Обработка экспериментальных данных

$ ho=997.1~{ m kg/m}^3$	$ ho=1019.2~{ m kr/m}^3$	$ ho=1041.5~{ m kr/m}^3$	$ ho=1064.6~{ m kr/m}^3$
Вода, t, с	Глицерин 10%, t, с	Глицерин 20%. t, с	Глицерин 30%, t, с
5.78	8.39	10.91	13.10
5.85	8.46	10.87	13.04
5.85	8.46	11.01	13.05
5.90	8.29	10.80	13.00
5.85	8.33	10.87	13.05
$\bar{t} = 5.85 \text{ c}$	$\bar{t} = 8.39 \text{ c}$	$\bar{t} = 10.89 \text{ c}$	$\bar{t} = 13.40 \text{ c}$
$\sigma_t = 0.03 \text{ c}$	$\sigma_t = 0.01 \text{ c}$	$\sigma_t = 0.01 \text{ c}$	$\sigma_t = 0.03 \text{ c}$

Таблица 1: Время протекания жидкостей между метками

$$\eta_0 = (9.3 \pm 1.2) \text{ к\Pi} \quad \eta_0^{ref} = 9.36 \text{ к\Pi}$$
(17)

$$\eta_{10} = (13.6 \pm 1.7) \text{ } \kappa\Pi \quad \eta_{10}^r ef = 13.1 \text{ } \kappa\Pi$$
(18)

$$\eta_{20} = (18 \pm 2) \text{ кП} \quad \eta_{20}^r ef = 17.7 \text{ кП}$$
(19)

$$\eta_{30} = (23 \pm 3) \text{ к}\Pi \quad \eta_{10}^r ef = 25.0 \text{ к}\Pi$$
(20)

4 Итоги

Используя первую установку с сосудом Мариотта, мы смоги вычислить вязкость воды при комнатной температуре. Благодаря второй установке с визкозиметром Оствальда мы смогли вычислить вязкость 10-, 20-, 30-процентных растворов глицерина при комнатной температуре.

Все результаты совпали с табличными в пределах погрешности. Однако погрешность получилась в районе 10%-15%. Все потому что мы не можем измерить радиус трубки с большой точностью, а в формуле Пуазейля он стоит в 4 степени.