Chapter: Linear Algebra

Topic: Special Types of Matrices

- 1. If $A^T = A^{-1}$, where A is a real matrix, then A is
 - (a) Normal
- (b) Symmetric
- (c) Hermitian
- (d) Orthogonal
- 2. Match the items in columns I and II.

	Column I		Column II
P.	Singular Matrix	1.	Determinant is not
			defined
Q.	Non-square	2.	Determinant is
	matrix		always one
R.	Real symmetric	3.	Determinant is zero
S.	Orthogonal matrix	4.	Eigenvalues are
			always real
		5.	Eigenvalue are not
			defined

- (a) P-3, Q-1, R-4, S-2
- (b) P-2, Q-3, R-4, S-1
- (c) P-3, Q-2, R-5, S-4
- (d) P-3, Q-4, R-2, S-1
- 3. [A] is a square matrix which is neither symmetric nor skew-symmetric and [A]^T is its transpose. The sum and difference of these matrices are defined as [S] = [A] + [A]^T and [D] = [A] [A]^T, respectively. Which of the following statements is true?
 - (a) Both [S] and [D] are symmetric
 - (b) Both [S] and [D] are skew-symmetric
 - (c) [S] is skew-symmetric and [D] is symmetric
 - (d) [S] is symmetric and [D] is skew-symmetric

- **4.** If A and B are square matrices of the same order such that AB = A and BA = B, then A and B are both
 - (a) Singular
- (b) Idempotent
- (c) Involutory
- (d) None of these
- 5. The matrix, $A = \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{bmatrix}$ is
 - (a) Idempotent
- (b) Involutory
- (c) Singular
- (d) None of these
- **6.** Every diagonal element of a Skew- Hermitian matrix is
 - (a) purely real
- (b) 0
- (c) purely imaginary (d) 1
- 7. If A is Hermitian, then iA is
 - (a) symmetric
- (b) Skew-symmetric
- (c) Hermitian
- (d) Skew-Hermitian
- **8.** Every diagonal element of a Skew-symmetric matrix is
 - (a) 1
 - (b) 0
 - (c) Purely real
 - (d) None of these
- 9. The matrix, $A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ -\frac{i}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$ is
 - (a) Orthogonal
- (b) Idempotent
- (c) Unitary
- (d) None of these
- **10.** If A and B are non zero square matrices, then AB = 0 implies
 - (a) A and B are orthogonal
 - (b) A and B are singular
 - (c) B is singular
 - (d) A is singular

Answer Key

1. (d)

2. (a)

3. (d)

4. (b)

5. (b)

6. (c)

7. (d)

8. (b)

9. (c)

10. (d)

Any issue with DPP, please report by clicking here: $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{https://smart.link/sdfez8ejd80if}$ For more questions, kindly visit the library section: Link for web: $\frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

PW Mobile APP: https://smart.link/7wwosivoicgd4