Statistical Learning and Scalability of Additive Models with Total Variation Regularization

Shin Matsushima
The University of Tokyo

New In ML 2019

Motivation

- Given dataset $(\mathbf{x}_i, y_i)_{i=1..m}, \mathbf{x}_i \in \mathbb{R}^p$
- Linear models

$$f(\mathbf{x}) = \sum_{j} w_{j} x_{j}$$

Additive models

$$f(\mathbf{x}) = \sum_{j} f_{j}(x_{j})$$

Deep knowledge discovery with more accurate predictors!

Existing methods

Based on regularized empirical risk minimization

minimize
$$L(f) + \lambda \sum_{j} R(f_j)$$

where L is data- and task-dependent and R(f_i) is wiggleness of f_i:

$$R(f_j) = \int \left(\frac{d^2}{d\xi^2} f_j(\xi)\right)^2 d\xi$$

Boils down to multiple kernel learning (MKL)

R(f_i) is counter-intuitive Training costs O(m²)

Our Focus: TVAM

- Total variation-regularized additive models (TVAM)
- Learning additive models

minimize
$$L(f) + \lambda \sum_{j} R(f_j)$$

where R(f_i) is total variation of f_i

$$R(f_j) = \|f_j\|_{\mathsf{TV}}$$

More intuitive and more efficiently solvable

Total Variation

represents how much function value varies in total

- We assume support of each function is bounded, and function is cadlag
- Definition

$$||f_j||_{\mathsf{TV}} \triangleq \sup \left\{ |f_j(\xi_1)| + \sum_{i=1..n-1} |f_j(\xi_{i+1}) - f_j(\xi_i)| + |f_j(\xi_n)| \, \middle| \, \xi_1 < \xi_2 < \dots < \xi_n, \text{ for some } n \right\}$$

Example

Main Questions

We study on learning additive models based on

minimize
$$L(f) + \lambda \sum_{j} ||f_j||_{TV}$$

- Algorithm
 - How to find the solution efficiently?
- Theory
 - Guarantee on the performance of the solution?

Algorithm

Parameterization

Minimization problem

minimize
$$L(f) + \lambda \sum_{j} ||f_j||_{TV}$$

is boiled down to

minimize
$$L\left(\sum_{j,s,t} w_{jst}\phi_{j,s,t}\right) + \lambda \sum_{j,s,t} |w_{jst}|$$

where

$$\phi_{j,s,t}(\mathbf{x}) = 1 \text{ if } x_{sj} \leq x_j \leq x_{tj} \text{ else } 0$$

Problem

Minimizing

$$J(\mathbf{w}) = L\left(\sum_{j,s,t} \mathbf{w}_{jst} \phi_{j,s,t}\right) + \lambda \sum_{j,s,t} |\mathbf{w}_{jst}|$$

is an L1-regularized risk minimization of linear model with a design matrix induced by $(\phi_{i,s,t})_{i,s,t}$

Data
$$(\phi_{j,s,t})_{j,s,t}$$
 Design matrix $j = 1..p$ $(j,s,t) = (1,1,1)..(p,m,m)$

- Design matrix is too big to fit in memory in a standard machine
 - We can not generate design matrix and then run standard algorithm

Greedy Coordinate Descent (GCD)

• Repeat until the maximum value is less than λ :

• Find
$$(j, s, t) = \underset{j, s, t = (1,1,1)..(p,m,m)}{\operatorname{argmax}} \left| \frac{\partial L}{\partial w_{jst}} \right|$$

Done by O(mp)!

• Minimize $J(\mathbf{w})$ w.r.t. w_{jst}

Done by O(m)!

Each step does not require the information of the entire design matrix

Cached Loops

Run two types of threads asynchronously

- Repeat
- Find $(j, s, t) = \underset{j, s, t = (1,1,1)..(p,m,m)}{\operatorname{argmax}} \left| \frac{\partial L}{\partial w_{jst}} \right|$
- Push it in Feature Cache
- If small enough then break

- Repeat
- Randomly choose (j,s,t) in Feature Cache
- Minimize $J(\mathbf{w})$ w.r.t. w_{jst}
- If w_{jst} stayed at 0, then delete it from Feature Cache

Theory

Solution of TVAM

minimize
$$\sum_{i} \ell(f(\mathbf{x}_i), y_i) + \lambda \sum_{j} ||f_j||_{\mathsf{TV}}$$

can be expressed as

$$\hat{f} = \underset{f \in \text{TVAM}(C)}{\operatorname{argmin}} \frac{1}{m} \sum_{i} \ell\left(f(\mathbf{x}_{i}), y_{i}\right)$$

$$\text{TVAM}(C) = \left\{f \middle| \sum_{i} \|f_{i}\|_{\text{TV}} \leq C\right\}$$

where

Main Results

- Gap between ideal and reality
 - Ideal

$$f^* = \underset{f \in \mathsf{TVAM}(C)}{\operatorname{argmin}} \mathbb{E}_{x,y} \ell(f(x), y)$$

Reality

$$\hat{f} = \underset{f \in \mathsf{TVAM}(C)}{\operatorname{argmin}} \frac{1}{m} \sum_{i} \ell(f(x_i), y_i)$$

• Is the gap smaller when m is large?

$$\mathbb{E}_{\mathbf{x},y}\ell(\hat{f}(\mathbf{x}),y) - \mathbb{E}_{\mathbf{x},y}\ell(f^*(\mathbf{x}),y)$$

• We show the gap converges to 0 at rate $O(\sqrt{\log p/m})$ with high probability

Why?

- Complexity of TVAM is as much as complexity of linear models!
 - Rademacher complexity for $(\mathbf{X}_i, \mathbf{y}_i)_{i=1..m}, \mathbf{X}_i \in \mathbb{R}^p$

$$Rad(TVAM(C)) \sim \sqrt{\frac{\log p}{m}}$$
 $Rad(Linear model) \sim \sqrt{\frac{\log p}{m}}$

Experimental Results

Scalability

 Log loss for binary classification

• Exhibits linear scalability in experiments

 TVAM is only a few times slower than learning linear models

Predictive Performance (AUC)

• TVAM achieves **best AUC** among all additive predictors!

			Ш	additive predictors							
Dataset	n	d	Ш		linear						
Dataset				TVAM	ET	MKL	FB	NB	LR		
SUSY	4,500,000	17	П	87.4	/	87.2	82.9	78.6	85.4		
covtype.binary	500,000	54	Ш	73.8	55.7	67.6	70.3	70.3	68.5		
skin-nonskin	200,000	3	Ш	98.9	63.6	94.4	67.4	91.2	93.3		
cod-rna	59,535	8	Ш	99.3	99.1	93.6	79.3	81.4	98.8		
ijcnn1	49,990	22	Ш	96.2	96.6	91.5	79.7	90.5	91.3		
wilt	4,339	5	Ш	92.3	85.0	83.6	45.2	50.0	78.8		
madelon	2,000	500	Ш	71.3	68.2	60.9	64.7	62.1	62.2		
german.numer	1,000	24		80.8	81.3	83.0	80.6	82.6	82.9		

Summary of Our Paper

We learn interpretable additive models based on

minimize
$$L(f) + \lambda \sum_{j} ||f_j||_{TV}$$

- Algorithm
 - Establish an efficient algorithm
- Theory
 - Statistical learning rate of $O(\sqrt{\log p/m})$
- Experiments
 - Scalability and predictive performance

END

Predictive Performance (AUC)

TVAM achieves best AUC among all additive predictors!

			additive predictors						non-additive predictors		
Dataset	n	d		nonlin	ear		linear		(Kernel SVM)		
Dataset			TVAM	ET	MKL	FB	NB	LR	RBF	poly	XGB
SUSY	4,500,000	17	87.4	/	87.2	82.9	78.6	85.4	/	/	87.5
covtype.binary	500,000	54	73.8	55.7	67.6	70.3	70.3	68.5	/	/	78.4
skin-nonskin	200,000	3	98.9	63.6	94.4	67.4	91.2	93.3	/	/	100.0
cod-rna	59,535	8	99.3	99.1	93.6	79.3	81.4	98.8	99.6	98.1	99.3
ijcnn1	49,990	22	96.2	96.6	91.5	79.7	90.5	91.3	98.2	97.5	99.6
wilt	4,339	5	92.3	85.0	83.6	45.2	50.0	78.8	70.4	89.2	94.4
madelon	2,000	500	71.3	68.2	60.9	64.7	62.1	62.2	50.0	69.0	86.5
german.numer	1,000	24	80.8	81.3	83.0	80.6	82.6	82.9	81.7	80.0	79.3

END

https://ttsreader.com/

Design matrix

With probability more than 1- δ :

$$\mathbb{E}_{x,y}\ell(\hat{f}(x),y) - \ell^* \leq \rho C \sqrt{\frac{5\lceil \log d \rceil}{m}} + \frac{5C}{2} \sqrt{\frac{2\log(2/\delta)}{m}}$$

 ℓ : ρ -Lipschitz

Form of $\phi_{j,s,t}(\cdot)$

Total variation

We assume support of each function is bounded, and function is cadlag

- Total variation represents how much function value varies in total
- Definition

They all have total variation of 2

Total variation

Small total variation

• Definition

• Large total variation

