

Universidade do Minho Escola de Ciências

Departamento de Matemática e Aplicações

Folha 4

Exercício 4.1 Uma função g satisfaz as condições indicadas; esboce um gráfico possível de g, em cada um dos seguintes casos:

a)
$$\lim_{x \to -\infty} g(x) = 1$$
, $\lim_{x \to +\infty} g(x) = 1$, $\lim_{x \to -1^{-}} g(x) = +\infty$ e $\lim_{x \to -1^{+}} g(x) = -\infty$;

b)
$$\lim_{x \to 2^{-}} g(x) = 3$$
, $\lim_{x \to 2^{+}} g(x) = 4$, $D_g = [-1, 4]$;

c)
$$\lim_{x \to 2^-} g(x) = 3$$
, $\lim_{x \to 2^+} g(x) = 4$, $D_g =]-1$, $4[$, $\lim_{x \to -1} g(x) = +\infty$ e $\lim_{x \to 4} g(x) = -\infty$.

Exercício 4.2 Calcule os limites que se seguem:

a)
$$\lim_{x \to 0^-} \frac{1}{x}$$

$$h) \quad \lim_{x \to +\infty} \frac{\sin x}{x}$$

o)
$$\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2}$$

b)
$$\lim_{x \to -2^+} \frac{3}{x+2}$$

i)
$$\lim_{x \to \pi/4} \frac{\operatorname{tg} x}{1 - \cos x}$$

$$\lim_{x \to 0^{-}} \frac{1}{x} \qquad \qquad \text{h)} \quad \lim_{x \to +\infty} \frac{\sin x}{x} \qquad \qquad \text{o)} \quad \lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2}$$

$$\lim_{x \to -2^{+}} \frac{3}{x + 2} \qquad \qquad \text{i)} \quad \lim_{x \to \pi/4} \frac{\operatorname{tg} x}{1 - \cos x} \qquad \qquad \text{p)} \quad \lim_{x \to 0} \pi x \cos\left(\frac{1}{3\pi x}\right)$$

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} \qquad \qquad \text{j)} \quad \lim_{x \to 0} \frac{\sqrt{1 - \cos^2 x}}{|\sin x|} \qquad \qquad \text{q)} \quad \lim_{x \to +\infty} (x^2 + x \cos x)$$

$$\lim_{x \to 0^{-}} \frac{\sqrt{x^2}}{x} \qquad \qquad \text{k)} \quad \lim_{x \to 0} \frac{\operatorname{tg} 4x}{\sin 3x} \qquad \qquad \text{r)} \quad \lim_{x \to +\infty} \frac{5x + 3}{2x - 7}$$

c)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

$$j) \quad \lim_{x \to 0} \frac{\sqrt{1 - \cos^2 x}}{|\sin x|}$$

q)
$$\lim_{x \to +\infty} (x^2 + x \cos x)$$

$$d) \quad \lim_{x \to 0^-} \frac{\sqrt{x^2}}{x}$$

k)
$$\lim_{x \to 0} \frac{\operatorname{tg} 4x}{\operatorname{sen} 3x}$$

$$r) \quad \lim_{x \to +\infty} \frac{5x+3}{2x-7}$$

e)
$$\lim_{x \to -3^+} \frac{|x+3|}{x+3}$$

$$\lim_{x \to 0} x^2 \operatorname{sen} \frac{1}{x^2}$$

s)
$$\lim_{x \to 0} (\sec(2x) + x^2 \cos(5x))$$

f)
$$\lim_{x\to 0^-} \frac{|x|}{x}$$

t)
$$\lim_{x \to +\infty} \frac{7x^4 - 2x + 1}{-3x + 1}$$

g)
$$\lim_{x \to 3} \frac{\sqrt{x} - \sqrt{3}}{x - 3}$$

$$n) \lim_{x \to +\infty} \frac{x - \sin x}{x + \sin x}$$

u)
$$\lim_{x \to -\infty} \frac{-3x + 10}{x^4 - 2x + 4}$$

Considere a função $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \begin{cases} |x| & \text{se } x \in \mathbb{Q}, \\ 0 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$ Diga para que valores de $a \in \mathbb{R}$ existe $\lim_{x \to a} f(x)$ e determine o seu valor.

Considere a função $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \begin{cases} 5 & \text{se } x \in \mathbb{Z}, \\ -1 & \text{se } x \in \mathbb{R} \setminus \mathbb{Z}. \end{cases}$ Exercício 4.4

- a) Diga, justificando, se f é contínua em π .
- Indique dois pontos do domínio onde f seja descontínua.

Exercício 4.5 Determine o conjunto dos pontos em que cada uma das seguintes funções é contínua:

a)
$$f(x) = \begin{cases} 0 & \text{se } x \in \mathbb{N} \\ 1 & \text{se } x \in \mathbb{R} \setminus \mathbb{N} \end{cases}$$

c)
$$h(x) = \begin{cases} 0 & \text{se } x \in \mathbb{Q} \\ 1 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

b)
$$g(x) = \begin{cases} x & \text{se } x \in \mathbb{N} \\ 0 & \text{se } x \in \mathbb{R} \setminus \mathbb{N} \end{cases}$$

d)
$$k(x) = \begin{cases} 0 & \text{se } x \in \mathbb{Q} \\ x & \text{se } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Exercício 4.6 Em cada alínea, apresente uma função $f: \mathbb{R} \longrightarrow \mathbb{R}$ cujo conjunto dos pontos de continuidade é:

- a) $\mathbb{R}\setminus\{0\}$;
- c) [0,1];
- e) $\{0\}$;

b) Ø;

d) \mathbb{Z} ;

f)]0,1[.

Exercício 4.7 Estude a continuidade das funções definidas por:

a)
$$f(x) = \begin{cases} \sin\frac{1}{x} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

c)
$$h(x) = \begin{cases} x^2 & \text{se } x \in \mathbb{Q} \\ 0 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

b)
$$g(x) = \begin{cases} 5 - \frac{|x|}{x} & \text{se } x \neq 0 \\ 5 & \text{se } x = 0 \end{cases}$$

d)
$$k(x) = \begin{cases} |x| - 1 & \text{se } x \in \mathbb{Q} \\ 0 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Exercício 4.8 Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ a função definida por $f(x) = \begin{cases} e^{x-1} + a & \text{se } x \leq 1, \\ 1 - ax & \text{se } x > 1. \end{cases}$

Determine o valor de a de modo que f seja contínua.

Exercício 4.9 Defina funções $f,g:\mathbb{R}\longrightarrow\mathbb{R}$ nas condições indicadas:

- a) f contínua, g descontínua, $g \circ f$ contínua;
- b) f descontínua, g contínua, $g \circ f$ contínua;
- c) $f \in g$ descontínuas, $g \circ f \in f \circ g$ contínuas.

Exercício 4.10 Seja, $f,g:\mathbb{R}\longrightarrow\mathbb{R}$ definidas por f(x)=x+1 e $g(x)=\begin{cases} 2 & \text{se }x\neq 1, \\ 0 & \text{se }x=1. \end{cases}$

Verifique que $\lim_{x\to 0} (g\circ f)(x) \neq (g\circ f)(0)$. Haverá alguma contradição com o teorema sobre a continuidade da função composta? Justifique.

Exercício 4.11 Para cada uma das funções polinomiais definidas a seguir, encontre $z \in \mathbb{Z}$ tal que f(x) = 0 para algum $x \in]z, z+1[$:

- a) $f(x) = x^3 x + 3$;
- b) $f(x) = x^5 + x + 1$;
- c) $f(x) = -2x^3 + 10x 1$.

Exercício 4.12 Mostre que as seguintes equações têm soluções nos intervalos indicados:

- a) $x = \cos x$, $x \in [0, \frac{\pi}{2}]$;
- b) $x = -\ln x$, $x \in]0, 1]$;
- c) $2+x=e^x$, $x \in \mathbb{R}$.

Exercício 4.13 Sejam $a,b\in\mathbb{R}$, a< b e $f:[a,b]\longrightarrow\mathbb{R}$ uma função contínua tal que $f([a,b])\subseteq [a,b].$

- a) Mostre que f possui um *ponto fixo*, isto é, $\exists x_0 \in [a,b] : f(x_0) = x_0$.
- b) Dê exemplo de uma função contínua, $f:[0,1[\longrightarrow [0,1[$, sem ponto fixo.

Exercício 4.14 Dê exemplo, justificando, ou mostre porque não existe uma função:

- a) $f:D\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ contínua que nunca se anula e que toma valores negativos e positivos;
- b) $f: \mathbb{R} \longrightarrow \mathbb{R}$ positiva e descontínua tal que f^2 e f^3 sejam contínuas;
- c) $f:\mathbb{R}\longrightarrow\mathbb{R}$ descontínua tal que $g(x)=f(x)+\sin x$ é contínua.

- Exercício 4.15 Considere a função $g:]-1,1[\longrightarrow \mathbb{R}$ definida por g(x)=|x|. Verifique que g possui um mínimo mas não possui máximo. Confronte o resultado com o teorema de Weierstrass.
- Exercício 4.16 Diga, justificando, se cada uma das seguintes proposições é verdadeira ou falsa:
 - a) se $f:\mathbb{R}\longrightarrow\mathbb{R}$ é contínua e $g:\mathbb{R}\longrightarrow\mathbb{R}$ não é contínua então $g\circ f$ não é contínua;
 - b) se $f:[0,1] \longrightarrow \mathbb{R}$ é contínua então f é limitada;
 - c) existe $x \in]1, e[$ tal que $\ln(x^3) = x;$
 - d) se $f:[0,1]\longrightarrow \mathbb{R}$ é contínua e tal que $0\leq f(x)\leq 2$ para todo $x\in [0,1]$, então existe $c\in [0,1]$ tal que f(c)=2c;
 - e) se $f:\mathbb{R}\longrightarrow\mathbb{R}$ é uma função contínua e limitada, então f atinge um máximo e um mínimo;
 - f) uma função $f:[0,2]\longrightarrow \mathbb{R}$ contínua e limitada possui máximo;
 - g) se $f:\mathbb{R}\longrightarrow\mathbb{R}$ é tal que |f| é contínua num ponto a, então f também é contínua em a.
- Exercício 4.17 Em cada uma das alíneas esboce, se possível, o gráfico de uma função f definida em [0,1] e satisfazendo as condições dadas:
 - a) f contínua em [0,1] com valor mínimo 0 e valor máximo 1;
 - b) f contínua em [0,1[com valor mínimo 0 e sem valor máximo;
 - c) f contínua em]0,1[assume os valores 0 e 1 mas não assume o valor $\frac{1}{2}$;
 - d) f contínua em [0,1] assume os valores -1 e 1 mas não assume o valor 0;
 - e) f contínua em [0,1] com valor mínimo 1 e valor máximo 1;
 - f) f contínua em [0,1], não constante, não assume valores inteiros;
 - g) f contínua em [0,1] não assume valores racionais;
 - h) f contínua em [0,1] assume um valor máximo, um valor mínimo e todos os valores intermédios;
 - i) f contínua em $\left[0,1\right]$ assume apenas dois valores distintos;
 - j) f contínua em]0,1[assume apenas três valores distintos;
 - k) f não contínua em]0,1[tem por imagem um intervalo aberto e limitado;
 - l) f não contínua em]0,1[tem por imagem um intervalo fechado e limitado;
 - m) f contínua em]0,1[tem por imagem um intervalo não limitado;
 - n) f não contínua em [0,1] tem por imagem o intervalo $[0,+\infty[$;
 - o) f não contínua em [0,1[tem por imagem um intervalo fechado e limitado.