CS 70 Discrete Mathematics and Probability Theory Spring 2015 Vazirani Discussion 1W

1. Truth tables

Use truth tables to show the following identities (note that the first two are known as *De Morgan's Laws*):

- 1. $\neg (A \lor B) \equiv \neg A \land \neg B$.
- 2. $\neg (A \land B) \equiv \neg A \lor \neg B$.
- 3. $A \iff B \equiv (A \land B) \lor (\neg A \land \neg B)$.
- 4. $(A \Rightarrow (B \Rightarrow C)) \lor (B \Rightarrow (A \land C)) \equiv \neg A \lor \neg B \lor C$.

Answer:

Here is the truth table for part 4. The two columns in bold are the two original statements. Note that both columns have equal entries, which demonstrates the identity.

\boldsymbol{A}	B	C	$\neg A \lor \neg B \lor C$	$B \Rightarrow C$	$A \Rightarrow (B \Rightarrow C)$	$A \wedge C$	$B \Rightarrow (A \land C)$	$ \mid (\mathbf{A} \Rightarrow (\mathbf{B} \Rightarrow \mathbf{C})) \lor (\mathbf{B} \Rightarrow (\mathbf{A} \land \mathbf{C})) $
T	T	T	T	T	T	T	T	T
T	T	F	F	F	F	F	F	\mathbf{F}
T	F	T	T	T	T	T	T	Т
T	F	F	T	T	T	F	T	Т
F	T	T	T	T	T	F	F	Т
F	T	F	T	F	T	F	F	Т
F	F	T	T	T	T	F	T	Т
F	F	F	T	T	T	F	T	T

2. Writing in propositional logic

For each of the following sentences, translate the sentence into propositional logic using the notation introduced in class, and write its negation.

- 1. The square of a nonzero integer is positive.
- 2. There are no integer solutions to the equation $x^2 y^2 = 10$.
- 3. There is one and only one real solution to the equation $x^3 + x + 1 = 0$.
- 4. For any two distinct real numbers, we can find a rational number in between them.

Answer:

1. We can rephrase the sentence as "if n is a nonzero integer, then $n^2 > 0$," which we can write as

$$\forall n \in \mathbb{Z}, (n \neq 0) \Rightarrow (n^2 > 0).$$

An equivalent way to write this (using the fact that $A \Rightarrow B$ is equivalent to $\neg A \lor B$) is

$$\forall n \in \mathbb{Z}, (n=0) \lor (n^2 > 0).$$

The latter is easier to negate, and its negation is given by

$$\exists n \in \mathbb{Z}, (n \neq 0) \land (n^2 \leq 0).$$

1

2. We can write the sentence as

$$\forall x, y \in \mathbb{Z}, x^2 - y^2 \neq 10.$$

The negation is

$$\exists x, y \in \mathbb{Z}, \, x^2 - y^2 = 10.$$

3. For simplicity, let p(x) denote the polynomial $p(x) = x^3 + x + 1$. We can rephrase the sentence as "there is a solution x to the equation p(x) = 0, and any other solution y is equal to x." In symbols:

$$\exists x \in \mathbb{R}, (p(x) = 0) \land (\forall y \in \mathbb{R}, (p(y) = 0) \Rightarrow (x = y)).$$

Its negation is given by

$$\forall x \in \mathbb{R}, (p(x) \neq 0) \lor (\exists y \in \mathbb{R}, (p(y) = 0) \land (x \neq y)).$$

4. We can rephrase the sentence as "if x and y are distinct real numbers, then there is a rational number z between x and y." In symbols:

$$\forall x, y \in \mathbb{R}, (x \neq y) \Rightarrow (\exists z \in \mathbb{Q}, (x < z < y) \lor (y < z < x)).$$

Equivalently,

$$\forall x, y \in \mathbb{R}, (x = y) \lor (\exists z \in \mathbb{Q}, (x < z < y) \lor (y < z < x)).$$

The negation is

$$\exists x, y \in \mathbb{R}, (x \neq y) \land (\forall z \in \mathbb{Q}, ((x \geq z) \lor (y \leq z)) \land ((y \geq z) \lor (x \leq z))).$$

3. Implication

Which of the following implications are true? Give a counterexample for each false assertion.

- 1. $\forall x \forall y P(x, y)$ implies $\forall y \forall x P(x, y)$.
- 2. $\exists x \exists y P(x, y)$ implies $\exists y \exists x P(x, y)$.
- 3. $\forall x \exists y P(x, y)$ implies $\exists y \forall x P(x, y)$.
- 4. $\exists x \forall y P(x, y)$ implies $\forall y \exists x P(x, y)$.

Answer:

- 1. True. The first statement " $\forall x \forall y \ P(x,y)$ " means for all x and y in our universe, the proposition P(x,y) holds. The second statement " $\forall y \forall x \ P(x,y)$ " has the same meaning, so they are in fact equivalent (the implication goes both ways). In general, you can interchange the order of any *consecutive* sequence of \forall .
- 2. True. Both statements mean there exist x and y in our universe that make P(x,y) true, so both statements are equivalent. In general, you can interchange the order of any *consecutive* sequence of \exists .
- 3. False. Take the universe to be \mathbb{R} (or any set with at least 2 elements), and take P(x,y) to be the statement "x = y." Then the first statement "x = y" claims for all $x \in \mathbb{R}$ we can find $y \in \mathbb{R}$ such that x = y, which is true because we can take y to be x. However, the second statement " $y \neq x P(x,y)$ " claims there exists $y \in \mathbb{R}$ such that x = y for all $x \in \mathbb{R}$, which is false because a real number y cannot simultaneously be equal to all other real numbers x. Thus, the implication is false.

4. True. Suppose the first statement " $\exists x \forall y \, P(x,y)$ " is true, which means there is a special element $x^* \in \mathbb{R}$ such that $P(x^*,y)$ is true for all $y \in \mathbb{R}$. The second statement claims that for all $y \in \mathbb{R}$ we can find an element $x \in \mathbb{R}$ (which may depend on y) such that P(x,y) is true. But from our first statement we know that we can choose the same value $x = x^*$ for all y. We conclude that the implication holds. However, the implication is only one way. In particular, note that part 4 is the converse to part 3, which we have seen is false.

For Problems 4 and 5, see Discussion 2M handout.