

10.2 梯度下降法求解线性回归

中国大学MOOC

10.2.1 梯度下降法求解线性回归

中国大学MOOC

梯度下降法求解一元线性回归问题

$$Loss = \frac{1}{2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{2} \sum_{i=1}^{n} (y_i - (wx_i + b))^2$$

$$= \frac{1}{2} \sum_{i=1}^{n} (x_i^2 w^2 + b^2 + 2x_i wb - 2y_i b - 2x_i y_i w + y_i^2)$$

$$= \underline{Aw^2 + Bb^2 + Cwb + Dw + Eb + F}$$
心逐数

$$w^{(k+1)} = w^{(k)} - \eta \frac{\partial Loss(w,b)}{\partial w}$$
$$b^{(k+1)} = b^{(k)} - \eta \frac{\partial Loss(w,b)}{\partial b}$$

$$w^{(k+1)} = w^{(k)} - \eta \frac{\partial Loss(w,b)}{\partial w}$$

$$b^{(k+1)} = b^{(k)} - \eta \frac{\partial Loss(w,b)}{\partial b}$$

$$\frac{\partial Loss(w,b)}{\partial b}$$

$$\frac{\partial Loss}{\partial b} = \sum_{i=1}^{n} (y_i - b - wx_i)(-x_i)$$

$$w^{(k+1)} = w^{(k)} - \eta \sum_{i=1}^{n} x_i (wx_i + b - y_i)$$
$$b^{(k+1)} = b^{(k)} - \eta \sum_{i=1}^{n} (wx_i + b - y_i)$$

一元线性回归问题

$$y = w\underline{x} + b$$

二元求极值问题

 $arg min Loss(\underline{w}, \underline{b})$

$$Loss = \frac{1}{2} \sum_{i=1}^{n} (y_i - (wx_i + b))^2$$

$$w^{(k+1)} = w^{(k)} - \eta \frac{\partial Loss(w,b)}{\partial w}$$

$$b^{(k+1)} = b^{(k)} - \eta \frac{\partial Loss(w,b)}{\partial b}$$

平方损失函数

$$Loss = \frac{1}{2} \sum_{i=1}^{n} (y_i - (wx_i + b))^2$$

模型参数更新算法:

$$w^{(k+1)} = w^{(k)} - \eta \sum_{i=1}^{n} x_i (wx_i + b - y_i)$$
$$b^{(k+1)} = b^{(k)} - \eta \sum_{i=1}^{n} (wx_i + b - y_i)$$

均方差损失函数

$$Loss = \frac{1}{2n} \sum_{i=1}^{n} (y_i - (wx_i + b))^2$$

模型参数更新算法:

$$w^{(k+1)} = w^{(k)} - \frac{\eta}{\underline{n}} \sum_{i=1}^{n} x_i (wx_i + b - y_i)$$
$$b^{(k+1)} = b^{(k)} - \frac{\eta}{\underline{n}} \sum_{i=1}^{n} (wx_i + b - y_i)$$

■ 梯度下降法求解多元线性回归问题

$$\hat{Y} = XW$$

$$Loss = \frac{1}{2}(Y - \hat{Y})^2 = \frac{1}{2}(Y - XW)^2$$

$$W = (w_0, w_1, ..., w_m)^T$$

$$X = (x^0, x^1, ..., x^m)^T$$

权值更新算法:

$$W^{(k+1)} = W^{(k)} - \eta \frac{\partial Loss(W)}{\partial W}$$

$$\frac{\partial Loss}{\partial W} = X^{T}(XW - Y)$$

$$W^{(k+1)} = W^{(k)} - \eta X^{T} (XW - Y)$$

■ 学习率

 $w_i^{(k+1)} = w_i^{(k)} - \eta$ 之 ∂w_i 对于**凸函数**,只要学习率设置的足够小,可以保证**一定收敛**

超参数:在开始学习之前设置,不是通过训练得到的

10.2.2 梯度下降法求解一元线性回归 ——NumPy实现

中国大学MOOC

■ 梯度下降法求解一元线性回归

平方损失函数:

$$Loss = \frac{1}{2} \sum_{i=1}^{n} (y_i - (wx_i + b))^2$$

模型参数更新算法:

$$w^{(k+1)} = w^{(k)} - \eta \sum_{i=1}^{n} x_i (wx_i + b - y_i)$$

$$b^{(k+1)} = b^{(k)} - \eta \sum_{i=1}^{n} (wx_i + b - y_i)$$

均方差损失函数:

$$Loss = \frac{1}{2n} \sum_{i=1}^{n} (y_i - (wx_i + b))^2$$

模型参数更新算法:

$$w^{(k+1)} = w^{(k)} - \frac{\eta}{n} \sum_{i=1}^{n} x_i (wx_i + b - y_i)$$

$$b^{(k+1)} = b^{(k)} - \frac{\eta}{n} \sum_{i=1}^{n} (wx_i + b - y_i)$$

商品房销售记录

序号	面积 (平方米)	销售价格 (万元)	序号	面积 (平方米)	销售价格 (万元)
1	137.97	145.00	9	106.69	62.00
2	104.50	110.00	10	138.05	133.00
3	100.00	93.00	11	53.75	51.00
4	124.32	116.00	12	46.91	45.00
5	79.20	65.32	13	68.00	78.50
6	99.00	104.00	14	63.02	69.65
7	124.00	118.00	15	81.26	75.69
8	114.00	91.00	16	86.21	95.30

- □ 加载样本数据 x, y
- □ 设置超参数 学习率, 迭代次数
- □ 设置模型参数初值 w₀, b₀
- □ 训练模型 w, b
- □ 结果可视化

■ 加载数据

■ 设置超参数

In [3]: learn_rate=0.00001
liter=100
display_step=10

■ 设置模型参数初值

■ 训练模型

```
\frac{\partial Loss}{\partial w} = \frac{1}{n} \sum_{i=1}^{n} x_i (wx_i + b - y_i)
                                                                                          \frac{\partial Loss}{\partial b} = \frac{1}{n} \sum_{i=1}^{n} (wx_i + b - y_i)
In [5]: mse=[]
             for i in range (0, iter+1):
                                                                                         w^{(k+1)} = w^{(k)} - \eta \frac{\partial Loss}{\partial w}
                   dL dw=np. mean(x*(w*x+b-y))
                   dL db=np. mean (w*x+b-y)
                                                                                           b^{(k+1)} = b^{(k)} - \eta \frac{\partial Loss}{\partial t}
                   w=w-learn rate*dL dw
                   b=b-learn rate*dL db
                   pred=w*x+b
                                                                                         Loss = \frac{1}{2n} \sum_{i=1}^{n} (y_i - (wx_i + b))^2
                   Loss= np. mean(np. square(y-pred))/2
                   mse, append (Loss)
                   if i % display_step == 0:
                         print("i: %i, Loss:%f, w: %f, b: %f" % (i, mse[i], w, b))
```

i: 0, Loss: 3874, 243711 w: 0, 082565, b: -1, 161967

■ 训练模型

```
i: 10, Loss: 562, 072704 w: 0, 648552, b: -1, 156446
                                               i: 20, Loss: 148. 244254 w: 0. 848612, b: -1. 154462
                                               i: 30, Loss: 96, 539782, w: 0, 919327, b: -1, 153728
In [5]: mse=[]
                                               i: 40, Loss: 90, 079712, w: 0, 944323, b: -1, 153435
                                               i: 50, Loss: 89, 272557, w: 0, 953157, b: -1, 153299
         for i in range (0, iter+1):
                                               i: 60, Loss: 89, 171687, w: 0, 956280, b: -1, 153217
                                               i: 70, Loss: 89, 159061, w: 0, 957383, b: -1, 153156
             dL dw=np. mean(x*(w*x+b-y))
                                               i: 80, Loss: 89, 157460, w: 0, 957773, b: -1, 153101
             dL db=np. mean (w*x+b-y)
                                               i: 90, Loss: 89, 157238, w: 0, 957910, b: -1, 153048
                                               i: 100, Loss: 89. 157187 w: 0. 957959, b: -1. 152997
             w=w-learn rate*dL dw
             b=b-learn rate*dL db
             pred=w*x+b
             Loss= np. mean(np. square(y-pred))/2
             mse, append (Loss)
             if i % display_step == 0:
                  print("i: %i, Loss:%f, w: %f, b: %f" % (i, mse[i], w, b))
```

■ **结果可视化**——数据和模型

```
In [6]: plt.rcParams['font.sans-serif'] = ['SimHei']
         plt. figure()
         plt. scatter(x, y, color="red", label="销售记录")
         plt. scatter(x, pred, color="blue", label="梯度
         plt. plot (x, pred, color="blue")
         plt. xlabel ("Area", fontsize=14)
         plt. ylabel ("Price", fontsize=14)
                                                         Price
100
         plt. legend(loc="upper left")
         plt. show()
```



```
In [7]:
         plt.figure()
         plt. scatter(x, y, color="red", label="销售记录")
         plt. plot (x, pred, color="blue", label="梯度下降法")
         plt. plot (x, 0. 89*x+5. 41, color="green", label="解析法")
         plt. xlabel ("Area", fontsize=14)
         plt. ylabel ("Price", fontsize=14)
         plt. legend (loc="upper left")
         plt. show()
```

```
In [5]: mse=[]
                                            for i in range(0, iter+1):
                                                dL_dw=np. mean(x*(w*x+b-y))
                                                dL db=np. mean (w*x+b-y)
120
                                                w=w-learn rate*dL dw
                                                b=b-learn_rate*dL_db
100
                                                pred=w*x+b
80
                                                Loss= np. mean(np. square(y-pred))/2
                                                mse. append (Loss)
                                                plt.plot(x, pred)
20
                                                if i % display_step == 0:
                                                     print("i: %i, Loss:%f, w: %f, b: %f" % (i, mse[i], w, b))
```

■ **结果可视化**——损失变化


```
In [8]:

plt.figure()

plt.plot(mse)

plt.xlabel("Iteration", fontsize=14)

plt.ylabel("Loss", fontsize=14)

plt.show()
```


89.2

■ 结果可视化——估计值 & 标签值


```
In [11]:

plt.plot(y,color="red",marker="o",label="销售记录")
plt.plot(pred,color="blue",marker="o",label="梯度下降法")

plt.legend()
plt.xlabel("Sample",fontsize=14)
plt.ylabel("PRICE",fontsize=14)
plt.show()
```


In [12]: plt. plot(y, color="red", marker="o", label="销售记录") plt. plot(pred, color="blue", marker="o", label="梯度下降法") plt. plot(0.89*x+5.41, color="green", marker="o", label="解析法") plt. legend() plt. xlabel("Sample", fontsize=14) plt. ylabel("PRICE", fontsize=14) plt. show()

```
In [13]: plt.rcParams['font.sans-serif'] = ['SimHei']
          plt. figure (figsize=(20, 4))
          plt. subplot (1, 3, 1)
          plt. scatter(x, y, color="red", label="销售记录")
          plt. plot (x, pred, color="blue", label="预测模型")
          plt. xlabel ("Area", fontsize=14)
          plt. ylabel ("PRICE", fontsize=14)
          plt. legend (loc="upper left")
          plt. subplot (1, 3, 2)
          plt. plot (mse)
          plt. xlabel ("Iteration", fontsize=14)
          plt. vlabel ("Loss", fontsize=14)
          plt. subplot (1, 3, 3)
          plt. plot(v, color="red", marker="o", label="销售记录")
          plt. plot (pred, color="blue", marker="o", label="预测房价")
          plt. legend()
          plt. xlabel("Sample", fontsize=14)
          plt.ylabel("PRICE", fontsize=14)
          plt. legend (loc="upper left")
          plt. show()
```


10.2.3 梯度下降法求解多元线性回归 ——NumPy实现

中国大学MOOC

商品房销售记录

序号	面积 (平方米)	房间数	销售价格 (万元)	序号	面积 (平方米)	房间数	销售价格 (万元)
1	137.97	3	145.00	9	106.69	2	62.00
2	104.50	2	110.00	10	138.05	3	133.00
3	100.00	2	93.00	11	53.75	1	51.00
4	124.32	3	116.00	12	46.91	1	45.00
5	79.20	1	65.32	13	68.00	1	78.50
6	99.00	2	104.00	14	63.02	1	69.65
7	124.00	3	118.00	15	81.26	2	75.69
8	114.00	2	91.00	16	86.21	2	95.30

■ **归一化 / 标准化**:将数据的值限制在一定的范围之内

使所有属性处于同一个范围、同一个数量级下 更快收敛到最优解 提高学习器的精度

线性归一化,标准差归一化,非线性映射归一化

□ 线性归一化: 对原始数据的线性变换

$$x^* = \frac{x - \min}{\max - \min}$$

等比例缩放

所有的数据都被映射到[0,1]之间

□ 标准差归一化:将数据集归一化为均值为0,方差为1的标准正态分布

$$x^* = \frac{x - \mu}{\sigma}$$

□ 非线性映射归一化: 对原始数据的非线性变换

指数、对数、正切

□ 线性归一化

```
In [1]: import numpy as np
In [2]: area=np. array ([137.97, 104.50, 100.00, 124.32, 79.20, 99.00, 124.00, 114.00,
                       106. 69, 138. 05, 53. 75, 46. 91, 68. 00, 63. 02, 81. 26, 86. 21])
        room=np. array([3, 2, 2, 3, 1, 2, 3, 2, 2, 3, 1, 1, 1, 1, 2, 2])
In [3]: x1=(area - area. min())/(area. max() - area. min())
        x2=(room - room. min())/(room. max()-room. min())
In [4]: x1, x2
        (array([0.99912223, 0.63188501, 0.58251042, 0.84935264, 0.3542901,
                 0. 57153829, 0. 84584156, 0. 73612025, 0. 65591398, 1.
                 0. 07504937, 0. , 0. 23140224, 0. 17676103, 0. 37689269,
                 0.43120474]).
         array([1., 0.5, 0.5, 1., 0., 0.5, 1., 0.5, 0.5, 1., 0., 0., 0., 0.,
                 0., 0.5, 0.5]))
```


■ 使用梯度下降法求解多元线性回归

- □ 加载样本数据 area, room, price
- □ 数据处理 归一化, X, Y
- □ 设置超参数 学习率, 迭代次数
- □ 设置模型参数初值 W₀ (w₀,w₁,w₂)
- □ 训练模型 W

$$W^{(k+1)} = W^{(k)} - \eta X^{T} (XW - Y) - \eta X^{T}$$

□ 结果可视化

$$\frac{\partial Loss}{\partial W} = X^{T}(XW - Y)$$

$$W^{(k+1)} = W^{(k)} - \eta \frac{\partial Loss(W)}{\partial W}$$

■ 加载样本数据

■ 数据处理

```
In [3]: x0 = np.ones(num)
x1=(area -area.min())/(area.max()-area.min())
x2=(room -room.min())/(room.max()-room.min())

X =np.stack((x0, x1, x2), axis = 1)
Y= price.reshape(-1, 1)

In [4]: X. shape, Y. shape
Out[4]: ((16, 3), (16, 1))
```


■ 设置超参数

In [5]: learn_rate=0.001
 iter=500
 display_step=50

设置模型参数初识值

In [6]: np. random. seed (612)

W = np. random. randn (3, 1)


```
In [7]: mse=[]
         for i in range (0, iter+1):
             dL dW = np. matmul (np. transpose (X), np. matmul (X, W) - Y)
             W=W-learn rate*dL dW
             PRED=np. matmul(X, W)
             Loss= np. mean(np. square(Y-PRED))/2
             mse. append (Loss)
             if i % display_step == 0:
                  print("i: %i, Loss:%f" % (i, mse[i]))
```

$$W^{(k+1)} = W^{(k)} - \eta \frac{\partial Loss(W)}{\partial W}$$

$$Loss = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- i: 0, Loss:4368.213908
- i: 50, Loss:413.185263 i: 100, Loss:108.845176
- i: 150, Loss:84.920786
- i: 200, Loss:82.638199
- i: 250, Loss:82.107310
- i: 300, Loss:81.782545
- i: 350, Loss:81.530512
- i: 400, Loss:81.329266
- i: 450, Loss:81.167833
- i: 500, Loss:81.037990

■ 结果可视化

```
In [8]:
         plt. figure (figsize=(12, 4))
         plt. subplot (1, 2, 1)
         plt. plot (mse)
         plt. xlabel ("Iteration", fontsize=14)
         plt. vlabel ("Loss", fontsize=14)
         plt. subplot (1, 2, 2)
         PRED=PRED. reshape
         plt. plot (price, color="red", marker="o", label="销售记录
         plt. plot (PRED, color="blue", marker=".", label="预测房价
         plt. xlabel ("Sample", fontsize=14)
         plt. ylabel ("Price", fontsize=14)
         plt.legend()
         plt. show()
```


