Stat 435 Lecture Notes 4

Xiongzhi Chen Washington State University

Contents

Sootstrap: motivation	1
Overview	1
Illustration I: problem	2
Illustration I: solution	2
Illustration I: estimate	2
Illustration I: estimate	2
Illustration I: simulated samples	3
Illustration I: simulated samples	3
Illustration I: truth and estimate	3
Bootstrap: definition and applications	4
Simulation and double-dipping	4
Bootstrap: definition	4
Bootstrap: procedure	4
Bootstrap: graphical illustration	5
Bootstrap: statistics	5
Illustration of bootstrap	5
Boostrapping linear regression	6
Linear regression	6
Bootstrapping from sample	6
Bootstrapping residuals	6
Bootstrapping samples or residuals	7
Boostrap: failures	7
Boostrap failures	7
License and session Information	7

Bootstrap: motivation

Overview

- The bootsrtap is mainly used to estimate and quantify the uncertainty associated with a given estimate or statistical learning method
- For example, it can be used to estimate the standard error of an estimate (such as an estimated coefficient in a regression model)

• The bootstrap may not work well when sample size is small or when sample comes from a relatively small region of the distribution of an unknown data generating process

Illustration I: problem

Problem formulation:

- suppose we wish to invest a fixed sum of money into two financial assets that yield (random) returns of X and Y, respectively
- we will invest a fraction α of our money in X, and the rest $1-\alpha$ in Y
- we need to choose α that minimizes the risk, or variance, of our investment.

Namely, we need to find α that minimizes

$$Var(\alpha X + (1 - \alpha)Y)$$

Illustration I: solution

• By calculus, we know that

$$\alpha = \frac{\sigma_Y^2 - \sigma_{XY}}{\sigma_X^2 + \sigma_Y^2 - 2\sigma_{XY}}$$

minimizes

$$Var(\alpha X + (1 - \alpha)Y),$$

where $\sigma_X^2 = \text{Var}(X)$, $\sigma_Y^2 = \text{Var}(Y)$ and $\sigma_{XY} = \text{Cov}(X, Y)$

• However, in reality, the quantities σ_X^2 , σ_Y^2 and σ_{XY} are unknown, and need to be estimated

Illustration I: estimate

• With estimates $\hat{\sigma}_X^2$, $\hat{\sigma}_Y^2$ and $\hat{\sigma}_{XY}$ for σ_X^2 , σ_Y^2 and σ_{XY} , respectively, we have the *plug-in estimate*

$$\hat{\alpha} = \frac{\hat{\sigma}_Y^2 - \hat{\sigma}_{XY}}{\hat{\sigma}_Y^2 + \hat{\sigma}_Y^2 - 2\hat{\sigma}_{XY}}$$

for the optimal but unknown solution

$$\alpha = \frac{\sigma_Y^2 - \sigma_{XY}}{\sigma_X^2 + \sigma_Y^2 - 2\sigma_{XY}}$$

• How accurate is $\hat{\alpha}$? Can we estimate the standard error of $\hat{\alpha}$?

Illustration I: estimate

- If $\hat{\sigma}_X^2$, $\hat{\sigma}_Y^2$ and $\hat{\sigma}_{XY}$ are accurate, then so should be $\hat{\alpha}$
- How to assess the accuracy of $\hat{\alpha}$ (via the accuracy of $\hat{\sigma}_X^2$, $\hat{\sigma}_Y^2$ and $\hat{\sigma}_{XY}$) if we have only a sample of size n at hand?
- Mini discussion on the question above: Case 1 "n small", Case 2 "n moderate", and case 3 "n large"

Illustration I: simulated samples

If we know the population distribution, we can simulate samples:

FIGURE 5.9. Each panel displays 100 simulated returns for investments X and Y. From left to right and top to bottom, the resulting estimates for α are 0.576, 0.532, 0.657, and 0.651.

Illustration I: simulated samples

- Suppose we simulate B = 1000 independent samples for (X, Y) (if we knew the truth), we will have B estimates $\hat{\alpha}_j, j = 1, \dots, B$ of α
- The sample mean $\bar{\alpha} = \frac{1}{B} \sum_{j=1}^{B} \hat{\alpha}_j$ (of $\hat{\alpha}_j$'s) should be close to α
- The sample standard deviation

$$s\left(\hat{\alpha}\right) = \sqrt{\frac{1}{B-1} \sum_{j=1}^{B} \left(\hat{\alpha}_{j} - \bar{\alpha}\right)^{2}}$$

(of of $\hat{\alpha}_j$'s) should be close to $\sigma_{\hat{\alpha}} = \sqrt{\operatorname{Var}(\hat{\alpha})}$

Illustration I: truth and estimate

- Truth: $\sigma_X^2=1,\,\sigma_Y^2=1.25,\,\sigma_{XY}=0.5$ and $\alpha=0.6$
- Estimates based on B=1000 simulated, independent samples: $\bar{\alpha}=0.5996$ and $s\left(\hat{\alpha}\right)=0.083$
- Interpretation: for a random sample from the population, we would expect $\hat{\alpha}$ to differ from α by approximately 0.08 on average

Note: is the "1 standard deviation" rule sensible?

Bootstrap: definition and applications

Simulation and double-dipping

- Simulated from the truth: when we know a data generating process, we can simulate samples to estimate a statistic on the process. However, if we know the truth, why do we need to estimate the statistic?
- Simulated from the estimate: with a sample from a data generating process, we can estimate the process, use the estimated process to generate samples, and use the generated samples to estimate a statistic
- Resampling from the sample: sample randomly from a sample from a data generating process, regard the sampled observations as a new data set, and use them to estimate a statistic

Bootstrap: definition

In order to assess the distributional properties of an estimate of a statistic, the bootstrap

- takes a subset of a given data set as if it is a set of new observations independent of the given data set
- uses the subset to obtain an estimate of the statistic
- does so repeatedly and independently using different subests of the given data set
- take the empirical distribution of estimates obtained from these subsets as an estimate of the distribution of the estimate of the statistic

Bootstrap: procedure

- Given a sample of size n, let $\hat{\alpha}$ be an estimate of a statistic α obtained from the sample
- Sample randomly with replacement from the sample to obtain n observations, and do this independently B times to obtain B bootstrap samples $S_j, j = 1, ..., B$
- Let $\hat{\alpha}_j$ be the estimate of α obtained from S_j . Then the empirical distribution G of $\hat{\alpha}_j$, $j = 1, \ldots, B$ is used as the (true) distribution of $\hat{\alpha}$, and statistics about $\hat{\alpha}$ are obtained from G

Bootstrap: graphical illustration

Bootstrap: statistics

- The (bootstrap) estimated mean of $\hat{\alpha}$ is $\bar{\alpha} = \frac{1}{B} \sum_{j=1}^{B} \hat{\alpha}_j$ The (bootstrap) estimated variance of $\hat{\alpha}$ is

$$SE^{2}(\hat{\alpha}) = (B-1)^{-1} \sum_{j=1}^{B} (\hat{\alpha}_{j} - \bar{\alpha})^{2}$$

• For $\alpha \in (0,1)$, the (bootstrap) $(1-\alpha) \times 100$ percent confidence interval for $\hat{\alpha}$ is (c_L, c_U) , where c_L is the $\{0.5\alpha \times 100\}$ th percentile of G, and c_L is the $\{(100 - 0.5\alpha) \times 100\}$ th percentile of G

Illustration of bootstrap

Bootstrap applied to a sample; $SE^2(\hat{\alpha}) = 0.087$: illusion or excellence?

FIGURE 5.10. Left: A histogram of the estimates of α obtained by generating 1,000 simulated data sets from the true population. Center: A histogram of the estimates of α obtained from 1,000 bootstrap samples from a single data set. Right: The estimates of α displayed in the left and center panels are shown as boxplots. In each panel, the pink line indicates the true value of α .

Boostrapping linear regression

Linear regression

• Model: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p + \varepsilon$ with $E(\varepsilon) = 0$ and $Var(\varepsilon) = \sigma^2$

• Observations: $(y_i, x_{1i}, x_{2i}, \dots, x_{pi}), i = 1, \dots, n$, where x_{ji} is the *i*th observation for X_j

• Estimate: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \ldots + \hat{\beta}_p X_p$

• Fit: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i} + \ldots + \hat{\beta}_p x_{pi} + \varepsilon_i$

• Residuals: $e_i = y_i - \hat{y}_i$

Bootstrapping from sample

Set $\beta = (\beta_0, \beta_1, \dots, \beta_p)$ and $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p)$

• Sample from data generating process:

$$S = \{ \mathbf{z}_i = (y_i, x_{1i}, x_{2i}, \dots, x_{pi}), i = 1, \dots, n \}$$

• Sample with replacement n observations from S and repeat this independently to obtain B subsets $S_j, j = 1, \ldots, B$

• Obtain $\hat{\boldsymbol{\beta}}_j$ from S_j for each $j = 1, \dots, B$

- Use the empirical distribution of $\hat{\pmb{\beta}}_j, j=1,\dots,B$ as the distribution of $\hat{\pmb{\beta}}$

Bootstrapping residuals

• Residuals: $R = \{e_i = y_i - \hat{y}_i, i = 1, ..., n\}$

• Sample with replacement n observations from R to obtain B sets of residuals $R_j = \{e_i^{(j)}, i = 1, \dots, n\}$

• For each j, set $y_i^{(j)} = \hat{y}_i + e_i^{(j)}$ and fit the model with observations

$$S_j = \{ \mathbf{z}_i^{(j)} = (y_i^{(j)}, x_{1i}, x_{2i}, \dots, x_{pi}), i = 1, \dots, n \}$$

and obtain estimate $\hat{\boldsymbol{\beta}}_j$

• Use the empirical distribution of $\hat{\boldsymbol{\beta}}_i, j = 1, \dots, B$ as the distribution of $\hat{\boldsymbol{\beta}}$

Bootstrapping samples or residuals

- Asymptotically (and under some conditions), bootstrapping samples and bootstrapping residuals are equivalent
- Bootstrapping samples is less sensitive to model misspecification
- Bootstrapping samples may be less sensitive to the assumptions concerning independence or exchangeability of the error terms

Boostrap: failures

Boostrap failures

Bootstrap can fail

- when sample size is too small
- for estimating extremal statistics
- when observations are dependent
- for survey sampling

Note: the book "Bootstrap methods: a guide for practitioners and researchers" by Michael R. Chernick contains more information on this.

License and session Information

License

```
> sessionInfo()
R version 3.5.0 (2018-04-23)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19041)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats
              graphics grDevices utils
                                             datasets methods
[7] base
other attached packages:
[1] knitr_1.21
```

```
loaded via a namespace (and not attached):

[1] compiler_3.5.0 magrittr_1.5 tools_3.5.0

[4] htmltools_0.3.6 yaml_2.2.0 Rcpp_1.0.3

[7] stringi_1.2.4 rmarkdown_1.11 stringr_1.3.1

[10] xfun_0.4 digest_0.6.18 evaluate_0.12
```