Reella funktioner av en reell variabel

1. Linjära funktioner

Följande linjära funktioner är givna:

$$f_1: R \to R, f_1(x) = -1,$$

 $f_2: R \to R, f_2(x) = -\frac{1}{3}x,$
 $f_3: R \to R, f_3(x) = 3x + 1,$
 $f_4: R \to R, f_4(x) = 3(x + 1)$

- a) Bestäm definitionsmängd (domän), målmängd (kodomän) och värdemängd för dessa funktioner.
- b) Bestäm funktionernas nollställen.
- c) Rita grafer till dessa funktioner.
- d) Vilken är relation mellan grafen till f_2 och grafen till f_3 ? Varför?
- e) Vilken är relation mellan grafen till f_3 och grafen till f_4 ? Varför?

2. Linjära funktioner

Linjära funktioner f, g och h är givna.

Grafen till f är en rät linje som går genom punkterna (-1, -3) och (2, 3).

Grafen till g är en rät linje som går genom punkten (2,0)och är ortogonal till grafen till f.

Grafen till h är en rät linje som går genom punkten (2,0)och har riktningskoefficient 2.

- a) Rita grafer till funktionerna f, g och h.
- b) Bestäm funktionerna f, g och h.
- c) Bestäm den punkt på grafen till h vars avstånd från punkten (2,0) är $\sqrt{5}$.

3. Andragradsfunktioner

Följande andragradsfunktioner är givna:

$$f_1: R \to R, f_1(x) = x^2 - 1,$$

 $f_2: R \to R, f_2(x) = -x^2 + 1,$
 $f_3: R \to R, f_3(x) = 2(x + 1)^2,$
 $f_4: R \to R, f_4(x) = 2x^2 + 2x - 1$

- a) Bestäm definitionsmängd (domän), målmängd (kodomän) och värdemängd för dessa funktioner.
- b) Bestäm funktionernas nollställen.
- c) Rita grafer till dessa funktioner.
- d) Bestäm skärningspunkter mellan grafen till f_1 och grafen till f_2 .
- e) Bestäm ekvation till symmetrilinjen till grafen av f_4 och grafens vertex.

4. Linjära och andragradsfunktioner

Funktionen *f* är definierad på följande vis:

$$f: R \setminus \{x \in R \mid x > -1 \land x < 1\} \to R,$$

$$f(x) = \begin{cases} x + 2, & x \le -1 \\ 1 - (x - 1)^2, & x \ge 1 \end{cases}$$

- a) Bestäm funktionens definitionsmängd, målmängd och värdemängd.
- b) Bestäm f(-3), f(-1), f(1) och f(3).
- c) Bestäm funktionens nollställen.
- d) Rita grafen till f.

5. En ekvation och en funktion

Följande ekvation har två reella variabler x och y:

$$(x-1)^2 + y^2 = 1$$

Lösningsmängden till ekvationen är *G*.

- a) Formulera mängden *G* och rita dess graf.
- b) Formulera en funktion vars graf delvis sammanfaller med grafen till *G*. Rita grafen till den funktionen.
- c) Hur många funktioner, vars graf delvis sammanfaller med grafen G, finns?

6. Jämna och udda funktioner

Funktioner f, g och h är definierade på följande vis:

f:
$$R \to R$$
, $f(x) = x^2 - 10x + 9$
g: $R \to R$, $g(x) = x^4 - 10x^2 + 9$
h: $R \to R$, $h(x) = x^3 - 4x$

För var och en av dessa funktioner:

- a) Bestäm skärningspunkter mellan grafen till funktionen och koordinataxlar.
- b) Skissa grafen till funktionen. Är grafen symmetrisk kring någon rät linje eller i någon punkt?
- c) Bestäm om funktionen är jämn, udda, eller varken jämn eller udda.

7. Flytta en graf

a) Rita grafer till följande funktioner:

$$f_1: R \to R, f_1(x) = 2x$$

 $f_2: R \to R, f_2(x) = 2(x-1)$
 $f_3: R \to R, f_3(x) = 2(x+1) - 1$

Vilken är relation mellan graferna?

b) Rita grafer till följande funktioner:

$$g_1: R \to R, g_1(x) = 2x^2$$

 $g_2: R \to R, g_2(x) = 2(x-1)^2$
 $g_3: R \to R, g_3(x) = 2(x+1)^2 - 1$

Vilken är relation mellan graferna?

c) Rita grafer till följande funktioner:

$$h_1: R \to R, h_1(x) = 2\sqrt[3]{x}$$
 $h_2: R \to R, h_2(x) = 2\sqrt[3]{x-1}$
 $h_3: R \to R, h_3(x) = 2\sqrt[3]{x+1} - 1$

Vilken är relation mellan graferna?

8. Spegla grafer i räta linjer

b) Rita grafer till följande funktioner:

$$f_1: R^+ \cup \{0\} \to R, f_1(x) = \sqrt{x}$$

 $f_2: R^+ \cup \{0\} \to R, f_2(x) = -\sqrt{x}$

Vilken är relation mellan graferna?

b) Rita grafer till följande funktioner:

$$g_1: R^+ \cup \{0\} \to R, g_1(x) = \sqrt{x}$$

 $g_2: R^- \cup \{0\} \to R, g_2(x) = \sqrt{-x}$

Vilken är relation mellan graferna?

c) Rita grafer till följande funktioner:

$$h_1: R^+ \cup \{0\} \to R, h_1(x) = \sqrt{x}$$
 $h_2: \{x \in R \mid x \ge 1\} \to R, h_2(x) = \sqrt{x-1}$
 $h_3: \{x \in R \mid x \le 1\} \to R, h_3(x) = \sqrt{1-x}$

Vilken är relation mellan graferna?

9. Golv- och takfunktionerna

Rita grafer till följande funktioner:

$$f_1: R \to R, f_1(x) = \lfloor x \rfloor + 1$$

 $f_2: R \to R, f_2(x) = 2\lfloor x \rfloor$
 $f_3: R \to R, f_3(x) = \lfloor x \rfloor + \lceil x \rceil$
 $f_4: R \to R, f_4(x) = \lceil x \rceil - \lfloor x \rfloor$

10. Polynom

Tre polynom p, q och r är definierade på följande vis:

$$p: R \to R, p(x) = 8x^2 - 2x - 1,$$

$$q: R \to R, q(x) = 2x^3 + 3x^2 - 2x - 3,$$

$$r: R \to R, r(x) = x^4 - 2x^3 + 2x^2 - 2x + 1$$

- a) Bestäm polynomens nollställen och multipliciteten till dessa nollställen.
- b) Representera polynomen som produkt av reella faktorer.

11. Rationella funktioner - representation

Funktioner f och g är definierade på följande vis:

$$D = \{x \in R \mid x \neq -1 \land x \neq 1\},\$$

$$f: D \to R, f(x) = \frac{4x^3 + x^2 - 4x - 1}{x^2 - 1},\$$

$$g: D \to R, g(x) = \frac{2x^3 + 3x^2 - x + 2}{x^2 - 1}$$

Representera funktioner på formen

$$p(x) + \frac{q(x)}{x^2 - 1},$$

där p år en förstagradspolynom, och q är antingen 0 eller ett polynom vars grad är högst 1.

12. Rationella funktioner - representation

Rationella funktioner f_1 , f_2 , f_3 och f_4 är representerade på två olika sätt:

$$f_1(x) = \frac{3x+5}{x^2+2x-3} = \frac{a}{x-1} + \frac{b}{x+3},$$

$$f_2(x) = \frac{2x^2+5x-1}{(x^2-1)(x+2)} = \frac{a}{x-1} + \frac{b}{x+1} + \frac{c}{x+2},$$

$$f_3(x) = \frac{x^2+2x-1}{x^2+x-2} = a + \frac{b}{x-1} + \frac{c}{x+2},$$

$$f_4(x) = \frac{2x^2+x-1}{x^3-x^2+x-1} = \frac{a}{x-1} + \frac{bx+c}{x^2+1}$$

- a) För var och en av funktionerna: bestäm konstanterna i den högra representationen, så att likheten gäller i hela (underförstådda) definitionsmängden.
- b) Representera även följande funktion som summa av bråk:

$$f_5(x) = \frac{x+1}{(x-1)(x^2+4)}$$

13. Rationella funktioner - representation

Rationella funktioner f_1 , f_2 och f_3 är representerade på två olika sätt:

$$f_1(x) = \frac{1}{x(x+1)^2} = \frac{a}{x} + \frac{b}{x+1} + \frac{c}{(x+1)^2},$$

$$f_2(x) = \frac{x-1}{x^2(x+2)} = \frac{a}{x} + \frac{b}{x^2} + \frac{c}{x+2},$$

$$f_3(x) = \frac{x^2-2}{x(x^2+2)^2} = \frac{a}{x} + \frac{bx+c}{x^2+2} + \frac{dx+e}{(x^2+2)^2}$$

- a) För var och en av funktionerna: bestäm konstanterna i den högra representationen, så att likheten gäller i hela (underförstådda) definitionsmängden.
- b) Representera även följande funktion som summa av bråk:

$$f_4(x) = \frac{2x - 1}{(x + 1)^2(x^2 + 4)}$$

14. Trigonometriska funktioner - sinus

Följande funktioner är givna:

$$f_1: R \to R, f_1(x) = \sin x$$

 $f_2: R \to R, f_2(x) = \sin(-x)$
 $f_3: R \to R, f_3(x) = 4\sin(x - \frac{\pi}{2})$
 $f_4: R \to R, f_4(x) = 4\sin(\frac{\pi}{2} - x)$

Rita grafer till f_1 och f_2 i ett koordinatsystem, och grafer till f_3 och f_4 i ett annat koordinatsystem.

15. Trigonometriska funktioner - cosinus

Följande funktioner är givna:

$$f_1: R \to R, f_1(x) = \cos x$$

 $f_2: R \to R, f_2(x) = \cos(2x)$
 $f_3: R \to R, f_3(x) = 4\cos(2(x - \frac{\pi}{2}))$
 $f_4: R \to R, f_4(x) = 4\cos(2x - \frac{\pi}{2})$

Rita grafer till f_1 och f_2 i ett koordinatsystem, och grafer till f_3 och f_4 i ett annat koordinatsystem.

16. Trigonometriska funktioner – secans och cosecans

Följande funktioner är givna:

$$f_1: R \to R, f_1(x) = \cos x$$

 $f_2: \{x \in R \mid \cos x \neq 0\} \to R, f_2(x) = \sec x$
 $f_3: R \to R, f_3(x) = \sin x$
 $f_4: \{x \in R \mid \sin x \neq 0\} \to R, f_4(x) = \csc x$

- a) Rita grafer till f_1 och f_2 i ett koordinatsystem, och grafer till f_3 och f_4 i ett annat koordinatsystem.
- b) Vilken är relation mellan f_1 och f_2 där de båda två funktionerna är definierade?
- c) Vilken är relation mellan f_3 och f_4 där de båda två funktionerna är definierade?

17. Trigonometriska funktioner – tangens och cotangens

Följande funktioner är givna:

$$f_1: \{x \in R \mid x > -\frac{\pi}{2} \land x < \frac{\pi}{2}\} \to R, f_1(x) = \tan x$$

 $f_2: \{x \in R \mid x > 0 \land x < \pi\} \to R, f_2(x) = \cot x$

- a) Rita grafer till f_1 och f_2 i samma koordinatsystem.
- b) Vilken är relation mellan f_1 och f_2 där de båda två funktionerna är definierade?