CS-210 Homework 5

M.Shozab Hussain Student ID: 23100174 November 15, 2020

- 1. Lemma 1: The product of two positive or two negative numbers is always positive.
 - Lemma 2: The sum of positive integers is greater than any of the individual integers being added.

Proof:

If n is an integer then, it can be safely assumed that n can only exist in three states. Either n = 0 or n > 0 or n < 0.

- case 1: n = 0, then $n^2 = (0)^2 = 0$. Hence, $n = n^2$ satisfies the theorem.
- case 2: n > 0We can also write $n^2 = (n \times n)$ as $n^2 = n + n + n + n$...(where number of n's = n. Now since n > 0 then, by lemma 2, $n^2 \ge n$. Hence, theorem is satisfied.
- case 2: n < 0We can also write $(-n)^2 = (-1)^2(n \times n)$ as, $(-n)^2 = (-1 \times -1)(n + n + n + n \dots)$ (where number of n's = n. By Lemma 1, $(-n)^2 = (1)(n + n + n + n \dots)^2 = n^2$. Now since n < 0 and $(n)^2 > 0$ therefore, $(-n)^2 > -n$. Hence, theorem is satisfied.

All cases are satisfied therefore, the theorem is proved. QED

4. Lemma 1: If n is even then, n^3 is even. Lemma 2: If n is odd then, n^3 is odd.

Proof:

Let's assume that $\sqrt[3]{2}$ is rational.

This implies that $\sqrt[3]{2} = \frac{p}{q}$ $p,q \in \mathbb{Z}, q \neq 0$

Suppose p and q have no common factors.

After taking cube on both sides, we get $2 = \frac{p^3}{q^3} \rightarrow p^3 = 2q^3$.

Now by the definition of even numbers $2q^3$ is even.

As a result, by equality p^3 is even and therefore, by lemma 1, p is even.

By definition of even numbers p=2k then, $p^3=8k^3$.

Since, $p^3=2q^3$ hence, $8k^3=2q^3\rightarrow 4k^3=q^3$

 $2(2k^3) = q^3$ now by the definition of even numbers $2(2k^3)$ is even so by equality q^3 is also even and then, finally by lemma 1 q is also even.

So if p and q both are even then this indicates that they have 2 as a common factor. This is a contradiction to our assumption that p and q have no common factors. Due to this contradiction it is proved that $\sqrt[3]{2}$ is not rational. QED

7.
$$n^2 = n \times n$$

Theorem: if $n \times n$ is even then n is even.

Proof:

Assume that for an even n^2 , n is odd

Then by the definition of odd numbers n = 2k + 1

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2) + 1$$

Let
$$2k^2 + 2 = a$$
 then, $n^2 = 2a + 1$

So, by the definition of odd numbers n^2 is an odd number whereas according to our assumption it should be even. Hence, there is a contradiction which proves that if n^2 is even then n cannot be odd and should be even. QED

11. Lemma 1: If n is an integer then, $n^2 \ge n$

Lemma 2: Sum of two or more positive integers is always greater than 1.

Proof: Assume that there are positive integer solutions to the equation.

Let x = a and y = b $a, b \in \mathbb{Z}^+$

Now by Lemma 1, we get, $x^2 \ge a$ and $y^2 \ge b$ therefore,

$$x^2 + y^2 \ge a + b$$

By Lemma 2: a + b > 1 which implies that $x^2 + y^2 > 1$.

As a result $x^2 + y^2 \neq 1$

This is a contradiction to our assumption that there are some positive integers for which $x^2 + y^2 = 1$

Hence, proved that no positive integers solution exist for this equation QED.

12. Lemma 1: If x is rational and y is irrational then, xy must by irrational. Lemma 2: If x and y are rational numbers then x+y must be also a rational.

Proof:

If a is a rational number then by the definition of rational numbers, $a = \frac{p}{q}$, $q \in \mathbb{Z}$, $q \neq 0$. Given that p and q do not have a common factor.

Now $a+b=\frac{p}{q}+b=\frac{p+bq}{q}$.

By Lemma 1, bq is an irrational number therefore, Lemma 2 is false so, p + bq is also an irrational number.

Now p+bq (numerator) is not an integer hence, the definition of rational numbers is not satisfied making $\frac{p+bq}{q}$ an irrational number. Since, $a+b=\frac{p+bq}{q}$, so by equality, a+b must be an irrational number as well. QED