Problem 1. Доказать неприводимость в Q[x] многочлена

$$x^5 + 2x^3 + 3x^2 - 6x - 5$$

воспользовавшись редукцией по какому-то модулю.

Solutions 1. $f \stackrel{\text{mod } 2}{=} x^5 + x^2 + 1$, $f(0) = 1 \pmod{2}$, $f(1) = 1 \pmod{2}$. Очевидно f не делится на линейный в Z/2. Неприводимый в Z/2, $\deg = 2$: $x^2 + x + 1$, но $x^5 + x^2 + 1 = (x^2 + x + 1)(x^3 + x^2) + 1 \Rightarrow$ f не делится на квадратный \Rightarrow f неприводим в $Z \Leftrightarrow$ неприводим в Q

Problem 2. Доказать неприводимость в Q[x] многочлена

$$x^5 - 6x^3 + 2x^2 - 4x + 5$$

Solutions 2. Докажем, что f можно разложить в Z[2] и Z[3] на произведение многочленов разных степеней. $f \stackrel{\text{mod } 2}{=} x^5 + 1$, $f(0) = 1 \pmod{2}$, $f(1) = 0 \pmod{2}$. $x^5 + 1 = (x-1)(x^4 + x^3 + x^2 + x + 1)$, $(x^4 + x^3 + x^2 + x + 1)(0) = 1 \pmod{2}$, $(x^4 + x^3 + x^2 + x + 1)(1) = 1 \pmod{2}$, $(x^4 + x^3 + x^2 + x + 1)(0) = (x^2 + 1)(x^2 + x) + 1 \pmod{2}$. Значит он неприводим. По модулю Z[3] достаточно предъявить разложение, $x^5 + 1 = (x^2 + 1)(x^3 + 2x + 2)$. Ч.т.д.

 \Rightarrow f неприводим в $Z\Leftrightarrow$ неприводим в Q

Problem 3. Доказать неприводимость в Q[x] многочлена

$$x^5 - 12x^4 + 36x - 12$$

Solutions 3. 1 / 3, 12 \vdots 3, 36 \vdots 3, 12 \vdots 3, 12 / 9 \Rightarrow по признаку Эйзенштейна неприводим.

Problem 4. Доказать неприводимость многочлена $x^5 - x + 1$ над полем F_5

Solutions 4. f(0) = 1, f(1) = 1, f(2) = 1, f(3) = 1, f(4) = 1, f не делится на линейные в F_5 , Неприводимые в F_5 , $\deg = 2$:

- 1) $x^2 + 2$, no $x^5 x + 1 = (x^2 + 2)(x^3 + 3x) 2x + 1$
- 2) $x^2 + 3$, no $x^5 x + 1 = (x^2 + 3)(x^3 + 2x) 2x + 1$
- 3) $x^2 + x + 1$, no $x^5 x + 1 = (x^2 + x + 1)(x^3 + 4x^2 + 1) 2x$
- 4) $x^2 + x + 2$, no $x^5 x + 1 = (x^2 + x + 2)(x^3 + 4x^2 4x + 3) 2x$
- 5) $x^2 + 2x + 3$, no $x^5 x + 1 = (x^2 + 2x + 3)(x^3 + 3x^2 + x + 4) 2x 1$

6)
$$x^2 + 2x + 4$$
, но $x^5 - x + 1 = (x^2 + 2x + 4)(x^3 + 3x^2 + 3) - 2x - 1$
7) $x^2 + 3x + 3$, но $x^5 - x + 1 = (x^2 + 3x + 3)(x^3 + 2x^2 + x + 1) - 2x - 2$
8) $x^2 + 3x + 4$, но $x^5 - x + 1 = (x^2 + 3x + 4)(x^3 + 2x^2 + 2) - 2x - 2$
9) $x^2 + 4x + 1$, но $x^5 - x + 1 = (x^2 + 4x + 1)(x^3 + x^2 + 4) - 2x - 3$
10) $x^2 + 4x + 2$, но $x^5 - x + 1 = (x^2 + 4x + 2)(x^3 + x^2 + 4x + 2) - 2x - 3$
 \Rightarrow f неприводим в $Z \Leftrightarrow$ неприводим в Q

Problem 5. Покажите, что многочлен $f = (x - a_1)...(x - a_n) - 1$ неприводим над Z при различных целых a_i

Solutions 5. От противного, пусть многочлен приводим при всех целых a_i над Z. Тогда он представим в виде f = gh, где $g, h \in Z$. $f(a_i) = -1$, значит $g(a_i) * h(a_i) = -1 \Rightarrow g(a_i) + h(a_i) = 0$, значит $g(a_i) + h(a_i) : f$, но $\deg(g(a_i) + h(a_i)) < n$, противоречие.

Problem 6. Покажите, что многочлен $f = x^{105} - 9$ неприводим над Z

Solutions 6. От противного, пусть многочлен приводим над Z. Тогда он представим в виде f = gh, где $g, h \in Z$. Пусть $\deg g = k < 105$, так как $\deg h > 0$, а $\deg g + \deg h = 105$. $g = (x - a_1 \sqrt[105]{9})...(x - a_k \sqrt[105]{9})$, где $a_i^{105} = 1$ - решения уравнения $x^{105} - 9 = 0$, заметим, что $g(0) = (\sqrt[105]{9})^k \in Z$, но k < 105, противоречие.