

This Page Is Inserted by IFW Operations  
and is not a part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning documents *will not* correct images,  
please do not report the images to the  
Image Problem Mailbox.**

1459



FIGURE 1



FIGURE 2

3/59



FIGURE 3

4/59



FIGURE 4

5/59

## Anti-E1 levels in NON-responders to IFN treatment

Series 1



FIGURE 5

# Anti-E1 levels in RESPONDERS to IFN treatment

SERIES 1

S/N

12

10

8

6

4

2

0

6/59



weeks after start of treatment

0 10 20 30 40 50 60 70 80



## Anti-E1 levels in patients with COMPLETE response to IFN

SERIES 2

S/N



FIGURE 7

8/59

# Anti-E1 levels in INCOMPLETE responders to IFN treatment

SERIES 2



months after start of treatment

## Anti-E2 levels in NON-RESPONDERS to IFN treatment

SERIES 1



# Anti-E2 levels in RESPONDERS to IFN treatment

SERIES 1



weeks after start of treatment

# Anti-E2 levels in INCOMPLETE responders to IFN treatment

SERIES 2



WO 96/04385

PCT/EP95/03031

## Anti-E2 levels in COMPLETE responders to IFN treatment

SERIES 2



FIGURE 1

# FIGURE 13

## Human anti-E1 reactivity competed with peptides



# FIGURE 14.

Competition of reactivity of anti-E1 Mabs with peptides



15/59

# Anti-E1 (epitope 1) levels in NON-RESPONDERS to IFN treatment

## SERIES 1



FIGURE 15

# Anti-E1 (epitope 1) levels in RESPONDERS to IFN treatment

SERIES 1

S/N

10

8

6

4

2

0

16/59



weeks after start of treatment



**anti-E1 (epitope 2) levels in NON-RESPONDERS to IFN treatment**

**SERIES 1**



18/59

## Anti-E1 (epitope 2) levels in RESPONDERS to IFN treatment

SERIES 1



# FIGURE 19

Competition of reactivity of anti-E2 Mabs with peptides



**FIGURE 20**  
Human anti-E2 reactivity competed with peptides



Figure 21

5' GGCATGCAAGCTTAATTAAATT3' (SEQ ID NO 1)  
3'ACGTCCGTACGTTCGAATTAAATTAAATCGA5' (SEQ ID NO 94)

5'CCGGGGAGGCCTGCACGTGATCGAGGGCAGACACCACCAACCATCACTAATAGT  
TAATTAACTGCA 3' (SEQ ID NO 2)  
3'CCTCCGGACGTGCACTAGCTCCCGTCTGGTAGTGGTAGTGATTATCAATTAAATTG  
5' (SEQ ID NO 95)

## SEQ ID NO 3 (HCCI9A)

ATGCCCGGTTGCTCTTCTCTATCTTCCTCTGGCTTACTGTCTGTCTGACCATTCCA  
GCTTCCGCTTATGAGGTGCCAACGTCGGATGTACCATGTCACGAACGACTGCT  
CCAACCTCAAGCATTGTGTATGAGGCAGCGGACATGATCATGCACACCCCCGGTGCCT  
GCCCTGCGTTCGGAGAACAACTCTCCCGCTGCTGGTAGCGCTCACCCCCACGCTC  
GCAGCTAGGAACGCCAGCGTCCCCACCGACAATACGACGCCACGTCGATTTGCTCG  
TTGGGGCGGCTGCTCTGTTCCGCTATGTACGTGGGGATCTGCGGATCTGTCTTC  
CTCGTCTCCCAGCTGTTACCATCTCGCCTGCCGGCATGAGACGGTGCAGGACTGCA  
ATTGCTCAATCTATCCCGGCCACATAACAGGTCAACCGTATGGCTTGGGATATGATGAT  
GAACTGGTCGCCTACAACGGCCCTGGTGGTATCGCAGCTGCTCCGGATCCCACAAGCT  
GTCGTGGACATGGTGGCGGGGGCCATTGGGAGTCCTGGCGGGCCTGCCCTACTATT  
CCATGGTGGGAACTGGCTAAGGTTTGATTGTGATGCTACTCTTGCTCTTAATAG

## SEQ ID NO 5 (HCCI10A)

ATGTTGGTAAGGTACGATACCCCTACATGCGGCTCGCCGACCTCGTGGGTACA  
TTCCGCTCGTCGGCGCCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG  
GGTTCTGGAGGAACGGCGTGAACATGCAACAGGGATTGCCCCGGTTGCTCTTCTCT  
ATCTTCTCTGGCTTGCTGCTCTGTCTGACCGTTCCAGCTCCGCTTATGAAGTGC  
CAACGTGTCCGGATGTACCATGTCACGAACGACTGCTCCAACTAAGCATTGTGTAT  
GAGGCAGCGGACATGATCATGCACACCCCCGGTGCCTGCCCTGCAGCTGGAGAAC  
AACTCTTCCCGCTGCTGGTAGCGCTACCCCCACGCTCGCAGCTAGGAACGCCAGCG  
TCCCCACGACAATACGACGCCACGTCGATTTGCTCGTTGGGGCGGCTGCTTCTG

TTCCGCTATGTACGTGGGGACCTCTCGGGATCTGCTTCCCTCGTCTCCCAGCTGTTCA  
CCATCTCGCCTGCCGGCATGAGACGGTGAGGACTGCAATTGCTCAATCTATCCCGG  
CCACATAACGGGTACCGTATGGCTGGATATGATGATGAACGGTCGCCTACAACG  
GCCCTGGTGGTATCGCAGCTGCTCCGGATCCCACAAGCTGTCGGACATGGTGGCGG  
GGGCCATTGGGAGTCCTGGCGGGCTCGCCTACTATTCCATGGTGGGAACTGGC  
TAAGGTTTGATTGTGATGCTACTCTTGCTCCCTAATAG

## SEQ ID NO 7 (HCCI11A)

ATGTTGGTAAGGTACGATACCCTTACGTGGCTTCGCCACCTCATGGGTACA  
TTCCGCTCGCGCCCCCTAGGGGTGCTGCCAGAGCCCTGGCGATGGCGTCCG  
GGTTCTGGAAGACGGCGTGAACATATGCAACAGGGATTGCTGGTTGCTTTCTTA  
TCTTCCCTTGGCTTACTGTCCTGTCGACCATCCAGCTCCGCTTATGAGGTGCGC  
AACGTGTCGGGATGTACCATGTCACGAACGACTGCTCCAACCTCAAGCATTGTTATG  
AGGCAGCGGACATGATCATGCACACCCCCGGTGCCTGCCTCGTCCGGAGAAC  
ACTCTTCCGCTGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCCAGCGT  
CCCCACTACGACAATACGACGCCACGTCGATTGCTCGTGGGCGGCTGCTTCTGTT  
CCGCTATGTACGTGGGATCTCTGCGGATCTGCTTCCCTCGTCTCCAGCTGTTCA  
ATCTGCCCTGCCGGCATGAGACGGCAGGACTGCAATTGCTCAATCTATCCCGGCC  
ACATAACAGGTACCGTATGGCTGGATATGATGAACGGTAATAG

## SEQ ID NO 9 (HCCI12A)

ATGCCCGGTTGCTCTTCTATCTTCCCTTGGCCCTGCTGTCCTGTCGACCATACCA  
GCTTCCGCTTATGAAGTGCACGCAACGTGTCGGGGTGTACCATGTCACGAACGACTGCT  
CCAACCTCAAGCATAGTGTATGAGGCAGCGGACATGATCATGCACACCCCCGGTGC  
GCCCTGCGTTGGGAGGGCAACTCCTCCGTTGCTGGTGGCGCTCACTCCCACGCTC  
GCGGCCAGGAACGCCAGCGTCCCCACAACGACAATACGACGCCACGTCGATTGCTC  
GTTGGGCTGCTGCTTCTGTTCCGCTATGACGTGGGGATCTCTGCGGATCTGTTT  
CCTTGTTCCAGCTGTTACCTTCTCACCTGCCGGCATCAAACAGTACAGGACTGCA  
ACTGCTCAATCTATCCCGGCCATGTATCAGGTACCGCATGGCTGGATATGATGAT  
GAACTGGTCTTAATAG

## SEQ ID NO 11 (HCCI13A)

ATGTCGGTTGCTCTTCTATCTTCCCTTGGCCCTGCTGTCCTGTCGACCATACCA  
GCTTCCGCTTATGAAGTGCACGCAACGTGTCGGGGTGTACCATGTCACGAACGACTGCT  
CCAACCTCAAGCATAGTGTATGAGGCAGCGGACATGATCATGCACACCCCCGGTGC

GCCCTGCAGTCGGGAGGGCAACTCCTCCCGTTGCTGGGTGGCGCTCACTCCCACGCTC  
GCGGCCAGGAACGCCAGCGTCCCCACAACGACAATACGACGCCACGTCGATTGCTC  
GTTGGGGCTGCTGCTTCTGTTCCGCTATGTACGTGGGGATCTCTGCGGATCTGTTT  
CCTTGTTCCCAGCTGTTACCTCTCACCTCGCCGGCATCAAACAGTACAGGACTGCA  
ACTGCTCAATCTATCCCGGCCATGTATCAGGTACCCGATGGCTTGGGATATGATGAT  
GAACCTGGTAATAG

## SEQ ID NO 13 (HCC117A)

ATGCTGGGTAAAGGCCATCGATAACCCTTACGTGCGGCTTCGCCGACCTCGTGGGTACA  
TTCCGCTCGTCGGGCCCGCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG  
GGTTCTGGAAGACGGCGTGAACATATGCAACAGGGAAATTGCTGGTTGCTCTTCTCTA  
TCTTCCTCTGGCTTACTGTCCCTGCTAACCAATTCCAGCTTCCGCTTACGAGGTGCGC  
AACGTGTCCGGATGTACCATGTCACGAACGACTGCTCCAACCTCAAGCATTGTGTATG  
AGGCAGCGGACATGATCATGCACACCCCCGGTGCCTGCCCTGCCTGGGAGAAÇA  
ACTCTTCCCGCTGCTGGTAGCGCTCACCCCCACGCTCGCGCTAGGAACGCCAGCAT  
CCCCACTACAACAATACGACGCCACGTCGATTGCTCGTTGGGGCGGCTGCTTCTGTT  
CCGCTATGTACGTGGGGATCTCTGCCGATCTGCTTCCCTGCTCCAGCTGTTCAACC  
ATCTCGCCTCGCCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCCGCC  
ACATAACGGGTACCGTATGGCTTGGGATATGATGATGAACCTGGTACTAATAG

## SEQ ID NO 15 (HCPr51)

ATGCCCGGTTGCTCTTCTCTATCTT

## SEQ ID NO 16 (HCPr52)

ATGTTGGGTAAAGGTATCGATAACCCT

## SEQ ID NO 17 (HCPr53)

CTATTAGGACCAAGTTCATCATCATATCCCA

## SEQ ID NO 18 (HCPr54)

CTATTACCAAGTTCATCATCATATCCCA

## SEQ ID NO 19 (HCPr107)

ATACGACGCCACGTCGATTCCCAGCTGTTACCCATC

SEQ ID NO 20 (HCP103)

GATGGTGAACAGCTGGGAATCGACGTGGCGTCGTAT

SEQ ID NO 21 (HCC137)

ATGTTGGTAAGGTATCGATAACCTTACATGCGGCTTCGCCGACCTCGTGGGTACA  
TTCCGCTCGTCGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG  
GGTTCTGGAGGACGGCGTGAACATATGCAACAGGGATTGCCC GGTTGCTCTTCTCT  
ATCTTCTCTGGCTTGCTGTCCTGTCTGACCGTTCCAGCTCCGCTTATGAAGTGCG  
AACCGTGTCCGGATGTACCATGTCACGAACGACTGCTCCAACCTAAGCATTGTAT  
GAGGCAGCGGACATGATCATGCACACCCCCGGTGCCTGCCCTGCCTCGGGAGAAC  
AACTCTTCCCCTGCTGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCCAGCG  
TCCCCACCACGACAATACGACGCCACGTCGATTCCAGCTGTTACCATCTCGCCTCG  
CCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCGGCACATAACGGGT  
CACCGTATGGCTTGGATATGATGATGAACTGGTGCCTACAAACGGCCCTGGTGGTAT  
CGCAGCTGCTCCGGATCCCACAAGCTGTCGGACATGGTGGCGGGGGCCATTGGGG  
AGTCCTGGGGGTCTGCCCTACTATTCCATGGTGGGAACGGCTAAGGTTTGATTG  
TGATGCTACTCTTGCTCCCTAATAG

SEQ ID NO 23 (HCC138)

ATGTTGGTAAGGTATCGATAACCTTACATGCGGCTTCGCCGACCTCGTGGGTACA  
TTCCGCTCGTCGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG  
GGTTCTGGAGGACGGCGTGAACATATGCAACAGGGATTGCCC GGTTGCTCTTCTCT  
ATCTTCTCTGGCTTGCTGTCCTGTCTGACCGTTCCAGCTCCGCTTATGAAGTGCG  
AACCGTGTCCGGATGTACCATGTCACGAACGACTGCTCCAACCTAAGCATTGTAT  
GAGGCAGCGGACATGATCATGCACACCCCCGGTGCCTGCCCTGCCTCGGGAGAAC  
AACTCTTCCCCTGCTGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCCAGCG  
TCCCCACCACGACAATACGACGCCACGTCGATTCCAGCTGTTACCATCTCGCCTCG  
CCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCGGCACATAACGGGT  
CACCGTATGGCTTGGATATGATGATGAACTGGTAA  
TAG

SEQ ID NO 25 (HCC139)

ATGTTGGTAAGGTATCGATAACCTTACATGCGGCTTCGCCGACCTCGTGGGTACA  
TTCCGCTCGTCGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG  
GGTTCTGGAGGACGGCGTGAACATATGCAACAGGGATTGCCC GGTTGCTCTTCTCT

ATCTTCCTCTGGCTTGCTGTCCTGTCTGACCGTTCCAGCTTCCGCTTATGAAGTGC  
CAACGTGTCCGGGATGTACCATGTCACGAACGACTGCTCCAACCTCAAGCATTGTGTAT  
GAGGCAGCGGACATGATCATGCACACCCCCGGTGCCTGCCCTGCGTCGGAGAAC  
AACTCTTCCCCTGCTGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCCAGCG  
TCCCCACCACGACAATACGACGCCACGTCGATTCCCAGCTGTTACCATCTCGCCTCG  
CCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCCGGCCACATAACGGGT  
CACCGTATGGCTTGGATATGATGATGAACGGTCGCTACAACGGCCCTGGTGGTAT  
CGCAGCTGCTCCGGATCCTCTAATAG

## SEQ ID NO 27 (HCCI40)

ATGTTGGTAAGGTACGATAACCTTACATGCGGTTGCCGACCTCGTGGGTACA  
TTCCGCTCGTCGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG  
GGTTCTGGAGGAACGGCGTGAACATGCAACAGGAATTGCCCGTTGCTCTTCTCT  
ATCTTCCTCTGGCTTGCTGTCCTGTCGACCGTTCCAGCTCGCTTATGAAGTGC  
CAACGTGTCCGGATGTACCATGTCACGAACGACTGCTCCAACCTCAAGCATTGTGTAT  
GAGGCAGCGGACATGATCATGCACACCCCCGGTGCCTGCCCTGCGTCGGAGAAC  
AACTCTTCCCCTGCTGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCCAGCG  
TCCCCACCACGACAATACGACGCCACGTCGATTCCCAGCTGTTACCATCTCGCCTCG  
CCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCCGGCCACATAACGGGT  
CACCGTATGGCTTGGATATGATGATGAACGGTCGCTACAACGGCCCTGGTGGTAT  
CGCAGCTGCTCCGGATCGTACGAGGGCAGACACCACCACTCACTAATAG

## SEQ ID NO 29 (HCCI62)

ATGGGTAAGGTACGATAACCTTACGTGCGGATTGCCGATCTCATGGGTACATCC  
CGCTCGTCGGCGCTCCCGTAGGAGGCGTCGCAAGAGGCCCTGCCATGGCGTAGGGC  
CCTTGAAGACGGATAAAATTGCAACAGGAATTGCCCGTTGCTCCCTTCTATT  
TCCTTCTCGCTCTGTTCTTGTCTTAATTCCAGCAGCTAGTCTAGAGTGGCGGAAT  
ACGTCTGGCCTCTATGTCCTTACCAACGACTGTTCCAATAGCAGTATTGTGTACGAGGC  
CGATGACGTTATTCTGCACACACCCGGCTGCATAACCTTGTCCAGGACGGCAATACA  
TCCACGTGCTGGACCCCAGTGACACCTACAGTGGCAGTCAGTACGTCGGAGCAACCA  
CCGCTTCGATAACGCAGTCATGTGGACCTATTAGTGGCGGGCCACGATGTGCTCTGC  
GCTCTACGTGGGTGACATGTGTGGGGCTGTCTTCCCTCGTGGACAAGCCTCACGTTCA  
GACCTCGTCGCCATCAAACGGTCCAGACCTGTAACGTGCTCGCTGTACCCAGGCCATCT  
TTCAGGACATCGAATGGCTTGGATATGATGATGAACGGTAATAG

## SEQ ID NO 31 (HCC163)

ATGGGTAAGGTATCGATAACCTAACGTGCGGATTGCCGATCTCATGGGTATATCC  
CGCTCGTAGGCAGCCCCATTGGGGCGTCGAAGGGCTCTGCACACGGTGTGAGGGT  
CCTTGAGGACGGGTAAACTATGCAACAGGAAATTACCCGGTTGCTCTTCTATCT  
TTATTCTTGCCTCTCTCGTGTCTGACCGTTCCGGCCTCTGCAGTTCCCTACCGAAATG  
CCTCTGGATTATCATGTTACCAATGATTGCCAAACTCTTCCATAGTCTATGAGGCA  
GATAACCTGATCCTACACGCACCTGGTTGCGTGCCTGTATGACAGGTAATGTGA  
GTAGATGCTGGGTCAAATTACCCCTACACTGTCAGCCCCGAGCCTCGGAGCAGTCAC  
GGCTCCTCTCGGAGAGCCGTTGACTACCTAGCGGGAGGGCTGCCCTTGCTCCGCG  
TTATACGTAGGAGACGCGTGTGGGCACTATTCTTGGTAGGCCAAATGTTACCTATA  
GGCCTGCCAGCACGCTACGGTGCAGAACTGCAACTGTTCCATTTACAGTGGCCATGT  
TACCGGCCACCGGATGGCATGGATATGATGATGAACTGGTAATAG

## SEQ ID NO 33 (HCPr109)

TGGGATATGATGATGAACTGGTC

## SEQ ID NO 34 (HCPr72)

CTATTATGGTGGTAAKGCCARCARAGAGCAGGAG

## SEQ ID NO 35 (HCCL22A)

TGGGATATGATGAACTGGTCGCCTACAACGGCCCTGGTGGTATCGCAGCTGCTCC  
GGATCCCACAAGCTGTCGTGGACATGGTGGCGGGGCCATTGGGAGTCCTGGCG  
GCCTCGCCTACTATTCCATGGTGGGAACTGGCTAAGGTTTGGTTGTATGCTACTC  
TTGCCGGCGTCACGGGATACCCCGTGTCAAGGAGGGCAGCAGCCTCCGATAACCA  
GGGCCTTGTGTCCTCTTACGGCTCAGAAAATCCAGCTCGTAAACAC  
CAACGGCAGTTGGCACATCAACAGGACTGCCCTGAAC TGCAACGACTCCCTCAAAC  
AGGGTTCTTGCCTGCACTATTCTACAAACACAAATTCAACTCGTCTGGATGCCAGAG  
CGCTTGGCCAGCTGTCGCTCCATCGACAAGTTGCTCAGGGTGGGTCCACTT  
ACACTGAGCCTAACAGCTGGACCAGAGGCCACTGCTGGCACTACGCCCTCGACC  
GTGTGGTATTGTACCCCGTCTCAGGTGTGCGGTCCAGTGTATTGCTTACCCCGAGCC  
CTGTTGTGGTGGGACGACCGATCGGTTGGTGTCCCCACGTATAACTGGGGCGAA  
CGACTCGGATGTGCTGATTCTCAACAAACACGCCGCCGCGAGGCAACTGGTTCGGC  
TGTACATGGATGAATGGCACTGGTTACCAAGACGTGTGGGGCCCCCGTGCACACA  
TCGGGGGGCCGGCAACAAACACCTTGACCTGCCCACTGACTTTCGGAAGCACCC  
CGAGGCCACCTACGCCAGATGCGGTTCTGGCCCTGGCTGACAACCTAGGTATGGTT

CATTACCCATATAAGGCTCTGGCACTACCCCTGCACTGTCAACTTCACCATCTTCAAGGT  
TAGGATGTACGTGGGGGGCGTGGAGCACAGGTTCGAAGCCGCATGCAATTGGACTCG  
AGGAGAGCGTTGTGACTTGGAGGCAGGGATAGATCAGAGCTTAGCCCCGCTGCTGCTG  
TCTACAACAGAGTGGCAGATACTGCCCTGTTCTTCAACCACCCCTGCCGGCCCTATCCA  
CCGGCCTGATCCACCTCCATCAGAACATCGTGGACGTGCAATACCTGTACGGTGTAGG  
GTCGGCGGTTGTCTCCCTTGTCAAAATGGGAGTATGTCCTGTTGCTCTTCTTCTCCT  
GGCAGACGCGCGCATCTGCGCCTGCTTATGGATGATGCTGCTGATAGCTAAGCTGAG  
GCCGCCTTAGAGAACCTGGTGGCCTCAATGCGCGGCCGTGGCCGGGGCGATGGC  
ACTCTTCCTTCCTTGTGTTCTCTGCTGCCTGGTACATCAAGGGCAGGCTGGTCCC  
TGGTGCAGCATAACGCCCTCATGGCGTGCCCCGCTGCTCCTGCTTCTGCTGGCCTTAC  
CACACAGAGCTTATGCCTAGTAA

## SEQ ID NO 37 (HCCI41)

GATCCCACAAAGCTGTCGTGGACATGGTGGGGGGCCATTGGGGAGTCCCTGGCGGG  
CCTCGCCTACTATTCCATGGTGGGAACCTGGCTAACGGTTTGGTTGTGATGCTACTCT  
TTGCCGGCGTCGACGGGATAACCGGGGTGTCAAGGAGGGCAGCAGCCTCCGATACCA  
GGGGCCTTGTGTCCCTCTTAAAGCCCCGGTCGGCTCAGAAAATCCAGCTCGTAAACAC  
CAACGGCAGTTGGCACATCAACAGGACTGCCCTGAAC TGCAACGACTCCCTCCAAAC  
AGGGTTCTTGCCGCACTATTCTACAAACACAAATTCAACTCGTCTGGATGCCAGAG  
CGCTTGGCCAGCTGTCGCTCCATGACAAGTTGCTCAGGGTGGGTCCCCCTCACTT  
ACACTGAGCCTAACAGCTGGACCAGAGGCCCTACTGCTGGCACTACGCGCCTCGACC  
GTGTGGTATTGTACCCCGTCTCAGGTGTGGTCCAGTGTATTGCTTCACCCCGAGCC  
CTGTTGGTGGGGACGACCGATCGGTTGGTGTCCCCACGTATAACTGGGGGGCGAA  
CGACTCGGATGTGCTGATTCTCAACAAACACGCGGCCGCCGCGAGGCAACTGGTTGGC  
TGTACATGGATGAATGGCACTGGGTTACCAAGACGTGTGGGGCCCCCGTGCAACA  
TCGGGGGGCCGGCAACAAACACCTTGACCTGCCCCACTGACTGTTTGGAAAGCACCC  
CGAGGCCACCTACGCCAGATGCGGTTCTGGGCCCTGGCTGACACCTAGGTGTGGTT  
CATTACCCATATAAGGCTCTGGCACTACCCCTGCACTGTCAACTTCACCATCTTCAAGGT  
TAGGATGTACGTGGGGGGCGTGGAGCACAGGTTCGAAGCCGCATGCAATTGGACTCG  
AGGAGAGCGTTGTGACTTGGAGGCAGGGATAGATCAGAGCTTAGCCCCGCTGCTGCTG  
TCTACAACAGAGTGGCAGAGTGGCAGAGCTTAATTAAATTAG

## SEQ ID NO 39 (HCCI42)

GATCCCACAAAGCTGTCGTGGACATGGTGGGGGGCCATTGGGGAGTCCCTGGCGGG  
CCTCGCCTACTATTCCATGGTGGGAACCTGGCTAACGGTTTGGTTGTGATGCTACTCT

TTGCCGGCGTCGACGGGCATACCCGCGTGTCAAGGAGGGCAGCAGCCTCCGATACCA  
GGGGCCTTGTGTCCCTCTTAGCCCCGGGTCGGCTCAGAAAATCCAGCTCGTAAACAC  
CAACGGCAGTTGGCACATCAACAGGACTGCCCTGAAGTCAACGACTCCCTCCAAAC  
AGGGTTCTTGCCGCACTATTCTACAAACACAAATTCAACTCGTCTGGATGCCAGAG  
CGCTTGGCCAGCTGCGCTCCATCGACAAGTTGCTCAGGGTGGGTCCCCTCACTT  
ACACTGAGCCTAACAGCTCGGACCAGAGGCCCTACTGCTGGCACTACGCGCTCGACC  
GTGTGGTATTGTACCCGCGTCTCAGGTGTGCGGTCCAGTGTATTGCTTCACCCCGAGCC  
CTGTTGTGGTGGGACGACCGATCGGTTGGTGTCCCCACGTATAACTGGGGGGCGAA  
CGACTCGGATGTGCTGATTCTAACAAACACGCGGCCGCCGAGGCAACTGGTCGGC  
TGTACATGGATGAATGGCACTGGTACCAAGACGTGTGGGGCCCCCGTGCACACA  
TCGGGGGGGCCGGCAACAAACACCTTGACCTGCCCCACTGACTGTTTCGGAAGCACCC  
CGAGGCCACCTACGCCAGATCGGTTCTGGCCCTGGCTGACACCTAGGTGTATGGTT  
CATTACCCATATAGGCTCTGGCACTACCCCTGCACTGTCAACTTCAACCATCTTCAAGGT  
TAGGATGTACGTGGGGGGCGTGGACACAGGTTGAAAGCCGATGCAATTGGACTCG  
AGGAGAGCGTTGTACTTGGAGGACAGGGATAGATCAGAGCTTAGCCCGCTGCTGCTG  
TCTACAAACAGGTGATCGAGGGCAGACACCACCATCACTAATAG

SEQ ID NO 41 (HCCI43)

ATGGTGGGAACTGGCTAAGGTTGGTTGTATGCTACTCTTGCCGGCGTCGACG  
GGCATACCCGCGTGTCAAGGAGGGCAGCAGCCTCCGATACCAGGGCCTTGTGCCCC  
CTTAGCCCCGGGTCGGCTCAGAAAATCCAGCTCGTAAACACCAACGGCAGTTGGCAC  
ATCAACAGGACTGCCCTGAAGTCAACGACTCCCTCCAAACAGGGTTCTTGCCGCAC  
TATTCTACAAACACAAATTCAACTCGTCTGGATGCCAGAGCGCTTGGCCAGCTGTCG  
CTCCATCGACAAGTTGCTCAGGGTGGGTCCCCACTTACACTGAGCCTAACAGC  
TCGGACCAGAGGCCCTACTGCTGGCACTACGCGCTCGACCGTGTGGTATTGACCCG  
CGTCTCAGGTGTGCGGTCCAGTGTATTGCTTACCCCGAGCCCTGTTGTGGTGGGAC  
GACCGATCGGTTGGTGTCCCCACGTATAACTGGGGGCGAACGACTCGGATGTGCTG  
ATTCTCAACAAACACGCGGCCGCCGAGGCAACTGGTTGGCTGTACATGGATGAATG  
GCACTGGTTACCAAGACGTGTGGGGCCCCCGTGCACACATGGGGGGCCGGCA  
ACAACACCTTGACCTGCCCACTGACTGTTTCGGAAGCACCCCGAGGCCACCTACGC  
CAGATCGGGTTCTGGGCCCTGGCTGACACCTAGGTGTATGGTTATTACCCATATAGG  
CTCTGGCACTACCCCTGCACTGTCAACTTCAACCATCTCAAGGTTAGGATGTACGTGG  
GGCGTGGAGCACAGGTTGAAAGCCGATGCAATTGGACTCGAGGAGAGCGTTGTGA  
CTTGGAGGACAGGGATAGATCAGAGCTTAGCCCGCTGCTGCTTACAACAGAGTGG  
CAGAGCTTAATTAAATTAG

## SEQ ID NO 43 (HCCI44)

ATGGTGGGAACTGGCTAAGGTTGGTGTGATGCTACTCTTGCCGGCGTCGACCG  
GGCATACCCCGCGTGTCAAGGAGGGCAGCAGCCTCCGATAACCAGGGCCTGTGTCCT  
CTTAGCCCCGGGTCGGCTCAGAAAATCCAGCTCGTAAACACCAACGGCAGTTGGCAC  
ATCAACAGGACTGCCCTGAAC TGCAACGACTCCCTCAAACAGGGTTCTTGCCGCAC  
TATTCTACAAACACAAATTCAACTCGTCTGGATGCCAGAGCGCTTGCCAGCTGTCG  
CTCCATCGACAAGTCGCTCAGGGTGGGCTCCACTTACACTGAGCCTAACAGC  
TCGGACCAGAGGCCCTACTGCTGGCACTACGCCCTCGACC GTGTGGTATTGTACCCG  
CGTCTCAGGTGTGCGGTCCAGTGTATTGCTTCACCCCGAGGCCCTGTTGTGGTGGGAC  
GACCGATCGGTTGGTGTCCCCACGTATAACTGGGGGCGAACGACTCGGATGTGCTG  
ATTCTCAACAAACACCGGGCCCGCGAGGCAACTGGTTCGGCTGTACATGGATGAATG  
GCACTGGTTCAACAGACGTGTGGGGGCCCCCGTCAACATCGGGGGGGCGCA  
ACAACACCTTGACCTGCCCACTGACTGTTT CGGAAGCACCCGAGGCCACCTACGC  
CAGATGCCGTTCTGGCCCTGGCTGACACCTAGGTGTATGGTTCAACATACCGATATAGG  
CTCTGGCACTACCCCTGCACTGTCAACTTCAACATCTTCAAGGTTAGGATGTACGTGGG  
GGCGTGGAGCACAGGTTCGAAGCCGATGCAATTGGACTCGAGGAGAGCGTTGTGA  
CTTGGAGGACAGGGATAGATCAGAGCTTAGCCGCTGCTGTCTACAACAGGTGAT  
CGAGGGCAGACACCATCACCAACCATCACTAATAG

## SEQ ID NO 45 (HCCL64)

ATGGTGGCGGGGGCCCATTGGGAGTCCTGGCGGGCTCGCCTACTATTCCATGGTGG  
GGAAC TGGCTAAGGTTGGTGTGATGCTACTCTTGCCGGCGTCGACGGGCATAC  
CCCGCGTGTCAAGGAGGGCAGCAGCCTCCGATAACCAGGGCCTGTGTCCTCTTAGC  
CCCGGGTGGCTCAGAAAATCCAGCTCGTAAACACCAACGGCAGTTGGCACATCAAC  
AGGACTGCCCTGAAC TGCAACGACTCCCTCAAACAGGGTTCTTGCCGCACTATTCT  
ACAAACACAAATTCAACTCGTCTGGATGCCAGAGCGCTTGCCAGCTGTCGCTCCAT  
CGACAAGTTCGCTCAGGGTGGGCTCCACTTACACTGAGCCTAACAGCTCGGAC  
CAGAGGCCCTACTGCTGGCACTACGCCCTCGACC GTGTGGTATTGTACCCGCGTCTC  
AGGTGTGCGGTCCAGTGTATTGCTTCACCCCGAGGCCCTGTTGTGGTGGGACGACCGA  
TCGGTTGGTGTCCCCACGTATAACTGGGGGCGAACGACTCGGATGTGCTGATTCTC  
ACAAACACCGGGCCCGCGAGGCAACTGGTTCGGCTGTACATGGATGAATGGCACT  
GGGTTACCAAGACGTGTGGGGCCCCCGTCAACATCGGGGGGGCGCAACAAAC  
ACCTTGACCTGCCCACTGACTGTTT CGGAAGCACCCGAGGCCACCTACGCCAGAT  
GCGGTTCTGGCCCTGGCTGACACCTAGGTGTATGGTTCAACATAGGCTCTGG  
CACTACCCCTGCACTGTCAACTTCAACCATCTTCAAGGTTAGGATGTACGTGGGGCG

TGGAGCACAGGTTCGAAGCCGCATGCAATTGGACTCGAGGAGAGCCTGTGACTTGGA  
GGACAGGGATAGATCAGAGCTTAGCCCGCTGCTGCTGTACAACAGAGTGGCAGATA  
CTGCCCTGTTCTTCACCACCCCTGCCGGCCCTATCCACCGGCCTGATCCACCTCCATCA  
GAACATCGTGGACGTGCAATACTGTACGGTGTAGGGTCGGCGGTGTCCTCCCTGTC  
ATCAAATGGGAGTATGTCCTGTTGCTCTTCCTCTCCTGGCAGACGCGCGCATCTGCGC  
CTGCTTATGGATGATGCTGCTGATAGCTCAAGCTGAGGCCGCCCTAGAGAACCTGGT  
GTCCTCAATGCGGCGGCCGTGGCCGGGGCGCATGGCACTCTTCCTCCTGTGTTCTT  
CTGTGCTGCCTGGTACATCAAGGGCAGGCTGGTCCCTGGTGGGCATACGCCCTCAT  
GGCGTGTGGCCGCTGCTCCTGCTGGCCTTACCAACCACGAGCTTATGCCTAGTAA

## SEQ ID NO 47 (HCCI65)

AATTTGGGTAAGGTATCGATACCCCTACATGCCGCTTCGCCACCTCGTGGGTACA  
TTCCGCTCGTCGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG  
GGTTCTGGAGGACGGCGTAACTATGCAACAGGGATTGCCCCTGGCTCTTCTCT  
ATCTTCCTCTGGCTTGCTGTCTGACCGTTCCAGCTCCGCTTATGAAGTGCG  
CAACGTGTCCGGATGTACCATGTCACGAACGACTGCTCCAACCTCAAGCATTGTAT  
GAGGCAGCGGACATGATCATGACACACCCCCGGTGGTGCCTGCCCTGCGTGGAGAAC  
AACTCTTCCCGCTGCTGGTAGGGCTACCCCCACGCTCGCACCTAGGAACGCCAGCG  
TCCCCACCACGACAATACGACGCCACGTCGATTGCTCGTTGGGCGGCTGCTTCTG  
TTCCGCTATGTACGTGGGGGACCTCTGCGGATCTGCTCTCCCTGCTCCAGCTGTTCA  
CCATCTCGCCTGCCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCCG  
CCACATAACGGGTACCGTATGGCTGGATATGATGATGAACTGGTGCCTACAACG  
GCCCTGGTGGTATCGCAGCTGCTCCGGATCCCACAAGCTGTCGGACATGGTGGCGG  
GGGCCATTGGGAGTCCTGGCGGGCTGCCTACTATTCCATGGTGGGAACTGGG  
TAAGGTTTGGTTGTGATGCTACTCTTGCCGGCGTCGACGGCATACCCGCGTGTCA  
GAGGGGAGCAGCCTCCGATACCAAGGGCCTTGTGTCCTCTTAGCCCCGGTCGG  
TCAGAAAATCCAGCTGTAACACCAACGGCAGTTGGCACATCAACAGGACTGCCCT  
GAAC TGCAACGACTCCCTCCAAACAGGGTTCTTGCCGACTATTCTACAAACACAAA  
TTCAACTCGTCTGGATGCCAGAGCGCTTGGCCAGCTGTCGCTCCATCGACAAGTCG  
CTCAGGGGTGGGGTCCCTCACTTACACTGAGCCTAACAGCTCGGACCGAGGGCCTA  
CTGCTGGCACTACGCGCCTCGACCGTGTGGTATTGTACCCGCGTCTCAGGTGTGCGGT  
CCAGTGTATTGCTTACCCCGAGCCCTGTTGTGGTGGGACGACCGATGGTTGGTGT  
CCCCACGTATAACTGGGGGGGAACGACTCGGATGTGCTGATTCTCAACAAACACGCGG  
CCGCCGCGAGGCAACTGGTTCGGCTGTACATGGATGAATGGCACTGGTTACCAAGA  
CGTGTGGGGCCCCCGTGCACATCGGGGGGGCGCAACAAACACCTTGACCTGCC

CCACTGACTGTTTCGGAAGCACCCCGAGGCCACCTACGCCAGATGCCGTTCTGGGCC  
CTGGCTGACACCTAGGTGTATGGTTCATTACCCATATAGGCTCTGGCACTACCCCTGCA  
CTGTCAACTCACCATCTTCAAGGTTAGGATGTACGTGGGGGGCGTGGAGCACAGGTT  
CGAAGCCGCATGCAATTGGACTCGAGGAGAGCGTTGTGACTTGGAGGACAGGGATAG  
ATCAGAGCTTAGCCCCGCTGCTGTCTACAACAGAGTGGCAGATACTGCCCTGTTCC  
TTCACCACCCCTGCCGGCCCTATCCACCGGCCTGATCCACCTCCATCAGAACATCGTGG  
ACGTGCAATACCTGTACGGTGTAGGGTGGCGGTTGTCTCCCTGTCAAAATGGGA  
GTATGTCCTGTTGCTCTCCTCTCCTGGCAGACGCGCGCATCTGCGCCTGCTTATGGA  
TGATGCTGCTGATAGCTCAAGCTGAGGCGCCCTAGAGAACCTGGTGGTCTCAATGC  
GGCGGCCGTGGCCGGGGCGCATGGCACTCTTCTTGTGTTCTCTGTGCTGCCT  
GGTACATCAAGGGCAGGCTGGTCCCTGGTGGCGATACGCCTTCTATGGCGTGTGGCC  
GCTGCTCCTGCTTGCTGGCCTTACCAACCACGAGCTTATGCCTAGTAAGCTT

## SEQ ID NO 49 (HCCI66)

ATGAGCACGAATCCTAAACCTCAAAGAAAAACCAAAACGTAACACCAACCGCCGCCA  
CAGGACGTCAAGTCCCAGGGCGGTGGTCAGATCGTTGGTGGAGTTACCTGTTGCCGC  
GCAGGGGCCCCAGGTTGGGTGTGCGCGCGACTAGGAAGACTTCCGAGCGGTGCAAC  
CTCGTGGGAGGCAGAACCTATCCCCAAGGCTGCCGACCCGAGGGTAGGGCCTGGG  
CTCAGCCCCGGTACCCCTGGCCCTCTATGGCAATGAGGGCATGGGTGGCAGGATG  
GCTCCTGTCACCCCGGGCTCTGGCCTAGTTGGGCCCTACAGACCCCCGGCTAGG  
TCGGCTAATTGGTAAGGTACGATACCCCTACATGCGGCTTGCCGACCTCGTGG  
GGTACATTCCGCTCGTCGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGG  
CGTCCGGTTCTGGAGGACGGCGTGAACATGCAACAGGAATTGCCCCGGTTGCTCT  
TTCTCTATCTCCTCTGGCTTGCTGCTGTCTGACCGTTCCAGCTCCGCTTATGAA  
GTGCGAACGTGTCCGGATGTACCATGTCACGAACGACTGCTCCAACGCAAGCATTG  
TGTATGAGGCAGCGGACATGATCATGCACACCCCCGGTGCCTGCCCTGCGTTGGGA  
GAACAACTCTTCCGCTGCTGGTAGCGCTACCCCCACGCTCGCAGCTAGGAACGCC  
AGCGTCCCCACCAACGACAATACGACGCCACGTCGATTGCTCGTTGGGGCGGCTGCTT  
TCTGTTCCGCTATGTACGTGGGGACCTCTGCGGATCTGTCTTCCCTGCTCCAGCTG  
TTCACCATCTCGCCTGCCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATC  
CCGGCCACATAACGGGTACCGTATGGCTGGGATATGATGATGAACTGGTCGCCCTAC  
AACGGCCCTGGTGGTACGCAAGCTGCTCCGGATCCCACAAGCTGCGTGGACATGGTG  
GCGGGGGCCATTGGGGAGTCCTGGCGGGCCTCGCCTACTATTCCATGGTGGGAACCT  
GGGCTAAGGTTTGGTTGTGATGCTACTCTTGCCGGCGTGCACGGGCATACCCCGT  
GTCAGGAGGGGCAGCAGCCTCCGATACCAGGGCCTTGTGTCCTCTTAGCCCCGGG

TCGGCTCAGAAAATCCAGCTCGTAAACACCAACGGCAGTTGGCACATCAACAGGACT  
GCCCTGAAC TGCAACGACTCCCTCCAAACAGGGTTCTTGCCGCAC TATTCTACAAAC  
ACAAATTCAACTCGTCTGGATGCCAGAGCGCTGGCCAGCTGTCGCTCCATCGACAA  
GTTCGCTCAGGGGTGGGTCCCCTCACTTACACTGAGCCTAACAGCTCGGACCAGAGG  
CCCTACTGCTGGCACTACGCCCTGACCGTGTGGTATTGTACCCGCGTCTCAGGTGT  
GCGGTCCAGTGTATTGCTTCACCCCCAGCCCTGTTGTTGGGACGACCGATCGGTT  
TGGTGTCCCCACGTATAACTGGGGGGCGAACGACTCGGATGTGCTGATTCTAACAAAC  
ACGCGGCCGCCGAGGCAACTGGTCGGCTGTACATGGATGAATGGCACTGGTTCA  
CCAAGACGTGTGGGGGCCCCCGTCAACATGGGGGGCCGGCAACAAACACCTTGA  
CCTGCCCCACTGACTGTTTGGAAAGCACCCGAGGCCACCTACGCCAGATCGGTTTC  
TGGGCCCTGGCTGACACCTAGGTGTATGGTTCAATTACCCATATAGGCTCTGGCACTAC  
CCCTGCACTGTCAACTTCACCATCTCAAGGTTAGGATGTACGTGGGGGGCTGGAGC  
ACAGGTTCGAAGCCGCATGCAATTGGACTCGAGGAGAGCGTTGTGACTGGAGGACA  
GGGATAGATCAGAGCTTAGCCCGCTGCTGCTGTCTACAACAGACTGGCAGATACTGCC  
CTGTTCTTCAACCACCCCTGCCGCCCTATCCACCGGCTGATCCACCTCCATCAGAAC  
ATCGTGGACGTGCAATACCTGTACGGTGTAGGGTGGCGTTGTCTCCCTGTCA  
AATGGGAGTATGTCCTGTTGCTCTCCTCTGGCAGACCCGCGCATCTGGCCTG  
TTATGGATGATGCTGCTGATAGCTCAAGCTGAGGCCGCTTAGAGAACCTGGTGGTCC  
TCAATGCCGGGGCCGTGGCCGGCGCATGGCACTCTTCCTTGTGTTCTTCTGT  
GCTGCCTGGTACATCAAGGGCAGGCTGGCCCTGGTGC GGCAACGCGCTTCTATGGCG  
TGTGGCCGCTGCTCTGCTGGCCTTACCAACCACGAGCTTATGCCTAGTAA

33/59

Figure 22

OD measured at 450 nm  
construct

| Fraction     | volume | dilution | 39<br>Type<br>1b | 40<br>Type<br>1b | 62<br>Type<br>3a | 63<br>Type<br>5a |
|--------------|--------|----------|------------------|------------------|------------------|------------------|
| START        | 23 ml  | 1/20     | 2.517            | 1.954            | 1.426            | 1.142            |
| FLOW THROUGH | 23 ml  | 1/20     | 0.087            | 0.085            | 0.176            | 0.120            |
| 1            | 0.4 ml | 1/200    | 0.102            | 0.051            | 0.048            | 0.050            |
| 2            |        |          | 0.395            | 0.550            | 0.090            | 0.067            |
| 3            |        |          | 2.627            | 2.603            | 2.481            | 2.372            |
| 4            |        |          | 3                | 2.967            | 3                | 2.694            |
| 5            |        |          | 3                | 2.810            | 2.640            | 2.154            |
| 6            |        |          | 2.694            | 2.499            | 1.359            | 1.561            |
| 7            |        |          | 2.403            | 2.481            | 0.347            | 1.390            |
| 8            |        |          | 2.176            | 1.970            | 1.624            | 0.865            |
| 9            |        |          | 1.461            | 1.422            | 0.887            | 0.604            |
| 10           |        |          | 1.286            | 0.926            | 0.543            | 0.519            |
| 11           |        |          | 0.981            | 0.781            | 0.294            | 0.294            |
| 12           |        |          | 0.812            | 0.650            | 0.249            | 0.199            |
| 13           |        |          | 0.373            | 0.432            | 0.239            | 0.209            |
| 14           |        |          | 0.653            | 0.371            | 0.145            | 0.184            |
| 15           |        |          | 0.441            | 0.348            | 0.151            | 0.151            |
| 16           |        |          | 0.321            | 0.374            | 0.098            | 0.106            |
| 17           |        |          | 0.525            | 0.186            | 0.099            | 0.108            |
| 18           |        |          | 0.351            | 0.171            | 0.083            | 0.090            |
| 19           |        |          | 0.192            | 0.164            | 0.084            | 0.087            |

34/59



## 35/59 Figure 24

| Fraction | volume      | dilution | OD measured at 450 nm |                  |                  |                  |
|----------|-------------|----------|-----------------------|------------------|------------------|------------------|
|          |             |          | construct             |                  |                  |                  |
|          |             |          | 39<br>Type<br>1b      | 40<br>Type<br>1b | 62<br>Type<br>3a | 63<br>Type<br>5a |
| 20       | 250 $\mu$ l | 1/200    | 0.072                 | 0.130            | 0.096            | 0.051            |
| 21       |             |          | 0.109                 | 0.293            | 0.084            | 0.052            |
| 22       |             |          | 0.279                 | 0.249            | 0.172            | 0.052            |
| 23       |             |          | 0.093                 | 0.151            | 0.297            | 0.054            |
| 24       |             |          | 0.080                 | 0.266            | 0.438            | 0.056            |
| 25       |             |          | 0.251                 | 0.100            | 0.457            | 0.048            |
| 26       |             |          | 3                     | 1.649            | 0.722            | 0.066            |
| 27       |             |          | 3                     | 3                | 2.528            | 0.889            |
| 28       |             |          | 3                     | 3                | 3                | 2.345            |
| 29       |             |          | 3                     | 3                | 2.849            | 2.580            |
| 30       |             |          | 2.227                 | 1.921            | 1.424            | 1.333            |
| 31       |             |          | 0.263                 | 0.415            | 0.356            | 0.162            |
| 32       |             |          | 0.071                 | 0.172            | 0.154            | 0.064            |
| 33       |             |          | 0.103                 | 0.054            | 0.096            | 0.057            |
| 34       |             |          | 0.045                 | 0.045            | 0.044            | 0.051            |
| 35       |             |          | 0.043                 | 0.047            | 0.045            | 0.046            |
| 36       |             |          | 0.045                 | 0.045            | 0.049            | 0.040            |
| 37       |             |          | 0.045                 | 0.047            | 0.046            | 0.048            |
| 38       |             |          | 0.046                 | 0.048            | 0.047            | 0.057            |
| 39       |             |          | 0.045                 | 0.048            | 0.050            | 0.057            |
| 40       |             |          | 0.046                 | 0.049            | 0.048            | 0.049            |

36/59



FIGURE 25



Figure 26



Figure 27



Figure 28



Figure 29: Western Blot Analysis with anti-E1 mouse monoclonal 5E1A10

41/59



FIGURE 30

## A: NON - REDUCED



## B : REDUCED



FIGURE 31

43/59



FIGURE 32

**FIGURE 33:**  
**SILVER STAIN OF PURIFIED E2**



1. 30 mM IMIDAZOLE WASH Ni-IMAC
2. 0.5  $\mu$ g E2

45 159 Figure 34



| No. | Ret.<br>(ml) | Peak start<br>(ml) | Peak end<br>(ml) | Dur<br>(ml) | Area<br>(ml <sup>2</sup> ·mAU) | Height<br>(mAU) |
|-----|--------------|--------------------|------------------|-------------|--------------------------------|-----------------|
| 1   | -0.45        | -0.46              | -0.46            | 0.04        | 0.0976                         | 4.579           |
| 2   | 1.55         | 0.75               | 3.26             | 2.51        | 796.4167                       | 889.377         |
| 3   | 3.27         | 3.26               | 3.31             | 0.05        | 0.0067                         | 0.224           |
| 4   | 3.33         | 3.32               | 3.33             | 0.02        | 0.0002                         | 0.018           |

Total number of detected peaks = 4

Total Area above baseline = 0.796522 ml<sup>2</sup>·AU

Total area in evaluated peaks = 0.796521 ml<sup>2</sup>·AU

Ratio peak area / total area = 0.999999

Total peak duration = 2.613583 ml

46/59  
**FIGURE 35A**



47/59

**FIGURE 35B**

<sup>48/59</sup>  
Figure 36**E1 Ab****E2 Ab**

**FIGURE 37****Non Responders****Long Term Responders****Type 1b****Type 3a**

# Figure 38

## Relative Map Positions of anti-E2 monoclonal antibodies



## PARTIAL DEGLYCOSYLATION OF HCV E1 ENVELOPE PROTEIN

## Endoglycosidase H (Endo H)

Lysopeptidase F  
(PNGase F)



Figure 39

# PARTIAL TREATMENT OF HCV E2\E2s ENVELOPE PROTEINS BY PNGase F



**Figure 40**

**Fig. 41**

*In Vitro* Mutagenesis of IICV EI glycoprotein

WO 96/043

PCT/EP95/03031



**Fig. 42A      *In Vitro* Mutagenesis of HCV E1 glycoprotein**



**1. First step of PCR amplification (Gly-#1 and Ovr-#1 primers)**



## 2. Overlap extension and nested PCR

### a. Overlap extension



**Fig. 42B**

### b. Nested PCR amplification (GPT-2 and TKr-2 primers)



**Fig. 43 In Vitro Mutagenesis of HCV E1 glycoprotein**



|      |   | HeLa cells |   |   |   |   |   | RK 13 cells |   |      |   |   |   |   |   |      |
|------|---|------------|---|---|---|---|---|-------------|---|------|---|---|---|---|---|------|
|      |   | 1          | 2 | 3 | 4 | 5 | 6 | 7           | 2 | 1    | 3 | 4 | 5 | 6 | 7 |      |
| 80.0 | — |            |   |   |   |   |   |             | — | 80.0 |   |   |   |   | — | 80.0 |
| 49.5 | — |            |   |   |   |   |   |             | — | 49.5 |   |   |   |   | — | 49.5 |
| 32.5 | — |            |   |   |   |   |   |             | — | 32.5 |   |   |   |   | — | 32.5 |
| 27.5 | — |            |   |   |   |   |   |             | — | 27.5 |   |   |   |   | — | 27.5 |
| 18.5 | — |            |   |   |   |   |   |             | — | 18.5 |   |   |   |   | — | 18.5 |

Figure 44A

00000000000000000000000000000000



Figure 418



Figure 45

kDa

— 119

— 67

— 43

— 29

— 18



Figure 46