Chapter 4: Network Layer

- □ 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- ☐ 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- □ 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- ☐ 4.6 Routing in the Internet
 - o RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

IP Addressing: introduction /

- ☐ IP address: 32-bit identifier for host, router interface
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one interface
 - IP addresses
 associated with each
 interface

Subnets

☐ IP address:

- subnet part (high order bits)
- host part (low order bits)

□ What's a subnet?

- device interfaces with same subnet part of IP address
- can physically reach each other without intervening router

<u>Recipe</u>

■ To determine the subnets, detach each interface from its host or router, creating islands of isolated networks. Each isolated network is called a subnet.

IP addressing: CIDR 223.16.10. C

CIDR: Classless InterDomain Routing

- o subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

IP addresses: how to get one?

Q: How does host get IP address?

- hard-coded by system admin in a file
 - Wintel: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- □ DHCP: Dynamic Host Configuration Protocol: dynamically get address from server
 - "plug-and-play"(more in next chapter)

IP addresses: how to get one?

Q: How does *network* get subnet part of IP addr?

A: gets allocated portion of its provider ISP's address space

	20 bits su	abnet		
ISP's block	11001000 00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
»c	w 73	-		
Organization 0	11001000 00010111	0001000	00000000	200.23.16.0/23
Organization 0 Organization 2	11001000 00010111	00010010	00000000	200.23.18.0/23
Organization 2	11001000 00010111	0001010	00000000	200.23.20.0/23
Organization 7	11001000 00010111	00011110	00000000	200.23.30.0/23

Question

- □ Alice's IP Add:
- □ Bob's IP Add:

00000110 00000111 1 21.36.6.13

121.36.7.18

True or False?

Alice and Bob are in different subnets.

Depends on subnet mask.

Hierarchical addressing: route aggregation

Hierarchical addressing allows efficient advertisement of routing information:

<u>Hierarchical addressing: more specific</u> routes

ISPs-R-Us has a more specific route to Organization 1

IP addressing: the last word...

Q: How does an ISP get block of addresses?

A: ICANN: Internet Corporation for Assigned

Names and Numbers

- allocates addresses
- o manages DNS
- o assigns domain names, resolves disputes

All datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers

Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

- Motivation: local network uses just one IP address as far as outside world is concerned:
 - range of addresses not needed from ISP: just one IP address for all devices
 - can change addresses of devices in local network without notifying outside world
 - can change ISP without changing addresses of devices in local network
 - devices inside local net NOT explicitly addressable, visible by outside world (a security plus).

Implementation: NAT router must:

- o outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
 - ... remote clients/servers will respond using (NAT IP address, new port #) as destination addr.
- o remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- o incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

NAT: Network Address Translation Net L3 Lik L2 PHY L1

- □ 16-bit port-number field:
 - 60,000 simultaneous connections with a single LAN-side address!
- □ NAT is controversial:
 - o routers should only process up to layer 3
 - o violates end-to-end argument
 - NAT possibility must be taken into account by app designers, eg, P2P applications
 - address shortage should instead be solved by IPv6

Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- ☐ 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - o ICMP
 - o IPv6

- □ 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- ☐ 4.6 Routing in the Internet
 - o RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

ICMP: Internet Control Message Protocol

- used by hosts & routers to communicate network-level information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- □ network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

_		
<u>Type</u>	<u>Code</u>	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Traceroute and ICMP

Traceroute

- Source sends series of UDP segments to dest
 - First has TTL =1
 - Second has TTL=2, etc.
- When nth datagram arrives to nth router:
 - Router discards datagram
 - And sends to source an ICMP message (type 11, code 0)
 - Message includes name of router& IP address

- When ICMP message arrives, source calculates RTT
- Traceroute does this 3 times

Stopping criterion

- UDP segment eventually arrives at destination host
- Destination returns ICMP "host unreachable" packet (type 3, code 3)
- When source gets this ICMP, stops.

Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- ☐ 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- □ 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- ☐ 4.6 Routing in the Internet
 - o RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

IPv6

- □ Initial motivation: 32-bit address space soon to be completely allocated.
- Additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:

- o fixed-length 40 byte header
- ono fragmentation allowed

IPv6 Header (Cont)

Priority: identify priority among datagrams in flow Flow Label: identify datagrams in same "flow." (concept of flow" not well defined).

Next header: identify upper layer protocol for data

ver pri flow label
payload len next hdr hop limit
source address
(128 bits)
destination address
(128 bits)

data

32 bits

Other Changes from IPv4

- □ *Checksum*: removed entirely to reduce processing time at each hop
- Options: allowed, but outside of header, indicated by "Next Header" field
- □ ICMPv6: new version of ICMP
 - o additional message types, e.g. "Packet Too Big"
 - multicast group management functions

Transition From IPv4 To IPv6

- Not all routers can be upgraded simultaneous
 - o no "flag days"
 - O How will the network operate with mixed IPv4 and IPv6 routers?
- Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers

Tunneling

Tunneling

Chapter 4: Network Layer

- □ 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- □ 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- ☐ 4.6 Routing in the Internet
 - o RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing