

TANAMI EXPANSION 2 (TE 2)

PE16D - WALL THICKNESS

CALCULATION

DOCUMENT NO: TE2-00000-50CA-S4081-000003

VENDOR DOCUMENT NO:

PACKAGE NO:

Rev	Date	Description	Initiated	Checked	Approved
Α	13/02/2020	Issued for Internal Review	L Scott	R Kanyika	K Wiehl
0	21/02/2020	Issued for Use	L Scott	R Kanyika	K Wiehl
1	06/05/2020	Re-issued for Use	L Scott	R Kanyika	K Wiehl

TANAMI EXPANSION 2 (TE 2) PE16D - WALL THICKNESS CALCULATION

REVISION CONTROL

Revision Number	Purpose / Change	Author	Date
Α	Issued for Internal Review	L Scott	13/02/2020
0	Update Internal Review Comments and Issued for Use	L Scott	21/02/2020
1	Alignment Change PE16M to PE16D and Re-issued for Use	L Scott	06/05/2020

TANAMI EXPANSION 2 (TE 2) PE16D - WALL THICKNESS CALCULATION

						CALCUI	Allon												
					PE16D - \	WALL THICK	NESS CALCULAT	ION											
	ressure in System																		
formula:																			
Pr =	ρgh		ize 20	25	32	40				110	125	140	400	180	200	225	050		315
		Line S	lize 20	25	32	40	63	75	90	110	125	140	160	180	200	225	250	280	315
where:		unit:	Inputs:																
ρ =	Rho - Density of Fluid (fluid density as determined by Process Eng		1000.00	1000.00	1000.00	1000.00	1000.00 1000.0	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.0
g =	Gravitational Force	m/s²	9.81	9.81	9.81	9.81	9.81 9.8	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.8
h =	Total Vertical length of Pipe Line	m	100.00	100.00	100.00	100.00	100.00 100.0	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.0
Pr =	Internal design static pressure	Pa	Outputs: 981000	981000	981000	981000	981000 98100	981000	981000	981000	981000	981000	981000	981000	981000	981000	981000	981000	98100
Pr =		MPa	0.98	0.98	0.98	0.98	0.98 0.9		0.98	0.98	0.98	0.98	0.98	0.98	0.98		0.98	0.98	0.9
	•			•					-										
Wall Thickness re	equired for Static Pressure Only																		
formula:																			
Pressure design	wall thickness PDm / (2S + P)																		
T =	PDIII / (2S + P)																		
Design Stress																			
S =	MRS / C																		
		Line S	ize 20	25	32	40	50 63	75	90	110	125	140	160	180	200	225	250	280	315
where:			Inputs:					-	-		•	•	-	·			-	-	
P =	Mariana dariar arratira arratira	<i>unit:</i> MPa	Inputs: 0.98	0.98	0.98	0.98	0.98 0.9	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.9
Dm =		MPa mm	20.00	25.00	32.00	40.00	50.00 63.0		90.00	110.00	125.00	140.00	160.00	180.00	200.00			280.00	315.0
MRS =	milliman required stronger in Ending (i.e. in Endo in initial)	MPa	10.0	10.0	10.0	10.0	10.0 10.		10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	10
C = s =		MPa	1.25 8.0	1.25 8.0	1.25 8.0	1.25 8.0	1.25 1.2 8.0 8.	1.25	1.25 8.0		1.25 8.0	1.25 8.0	1.1						
S =	Design Stress	мРа	8.0	6.0	0.0	0.0	8.0 6.	0.0	0.0	0.0	8.0	8.0	0.0	8.0	0.0	0.0	0.0	0.0	•
	Pressure de-rating factor (to temperature 20°C - 25°C)		0.80	0.80	0.80	0.80	0.80 0.8	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.0
			Outputs:																
т =	Minimum required wall thickness	mm	1.155	1.444	1.849	2.311	2.889 3.64	4.333	5.199	6.355	7.221	8.088	9.243	10.399	11.554	12.998	14.443	16.176	18.19
•	Minimum required wall thickness to temperature de-rating factor	mm	1.424	1.780	2.278	2.847	3.559 4.48		6.407	7.830	8.898	9.966	11.390	12.813	14.237		17.796	19.932	22.42
	Next minimum standard manufacturers wall thickness available	mm	1.800	2.300	2.900	3.600	4.500 5.70	6.800	8.200	10.000	11.400	12.700	14.500	16.400	18.200	20.500	22.700	25.500	28.60
		Material Grade Selected	PE100 SDR 11				N16 PN16 R 11 SDR 11	PN16 SDR 11											
		Selected SDR Pressure Rating	PN16				N16 PN16	PN16	PN16	PN16	PN16	PN16	PN16	PN16	PN16	PN16	PN16	PN16	PN16
		Flessure Rating	FNIO	FINIO	FINIO F	NIO FI	110 FINIO	FINIO	FNIO	FNIO	FINIO	FINIO	FNIO	FNIO	FINIO	FINIO	FNIO	FNIO	FINIO