Simple Linear Regression

January 18, 2024

Problem

What is relationship between

- the tar content in the outlet stream in a chemical process is and the inlet temperature
- gas mileage and engine volume
- house price and square footage of living space

- inlet temperature, engine volume, square feet of living space ... are **independent** variable (or regressor), x
- Tar content, gas mileage, house price ... are dependent variable (or response), Y

How to find out relationship between regressor and response

Data observation

i	x_i	y_i	i	x_i	y_i
1	100	45	6	150	68
2	110	52	7	160	75
3	120	54	8	170	76
4	130	63	9	180	92
5	140	62	10	190	88

y: the percent yield of a laboratory experiment x: the temperature at which the experiment

4/70

Plotting

It seems that y is a linear function of x with some noise

Linear relationship

However

- run several experiment with the same inlet temperature, tar content wil not be the same
- several automobiles with the same engine will not all have the same gas mileage.
- Houses with the same square footage are sold with different prices

Then

• Response *Y* is not a determismistic function of regressor *x*

$$Y \neq f(x)$$

But

$$Y = f(x) +$$
noise

Regression Analysis

- Find the best "fit" relationship between Y and x
- Qualify the strength of relationship
- Explain impact of *x* on *Y*
- Predict Y given some specific value of x

(Simple) Linear regression model

Model assumption

- Error $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ are i.i.d
- Given x, response Y is normally distributed $\mathcal{N}(\beta_0 + \beta_1 x, \sigma^2)$
- True regression line $\mu_{Y|x} = \beta_0 + \beta_1 x$

The true regression line go through the means of the response but actually unknown

Fitted regression line

One can use a fitted regression line to estimate predict or forecast y value given observaton x

Fitted regression line

One can use a fitted regression line to estimate predict or forecast *y* value given observaton *x*

Least square and fitted model

Residual - error in fit

- Given
 - Data set $\{(x_i, y_i), i = 1, \dots, n\}$
 - Fitted regression line

$$\hat{y}_i = b_0 + b_1 x_i$$

Residual

$$e_i = y_i - \hat{y}_i$$

Important relationship

$$y_i = b_0 + b_1 x_i + e_i$$
$$= \hat{y}_i + e_i$$

In word actual value = fitted value + residual

Residual vs Error

Residual e_i is observed but error term ϵ_i is unobservable

Remark

- β_0 , β_1 are unknown
- true regression line $\mu_{Y|x} = \beta_0 + \beta_1 x$ is then unknown
- Need to estimate β_0 , β_1 from observed data

Least square method

• Sum of square of residual

$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

- Minimize SSE to get estimates b_0 , b_1 for β_0 and β_1
- Solve the optimization problem

$$\frac{\partial SSE}{\partial b_0} = 0; \quad \frac{\partial SSE}{\partial b_1} = 0$$

Least square estimators

•
$$b_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

or equivalent

• $b_0 = Y - b_1 \bar{x}$

$$b_1 = \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i)}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2}$$

or equivalent
$$b_1 = \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i)}{n + 2}$$

where $\bar{y} = \sum_{i=1}^{n} y_i / n$, $\bar{x} = \sum_{i=1}^{n} x_i / n$

Better formula

$$b_1=rac{S_{xY}}{G}, \qquad b_0=ar{Y}-B_1ar{x}$$

where

 $S_{xY} = \sum (x_i - \bar{x})(Y_i - \bar{Y}) = \sum x_i Y_i - n\bar{x}\bar{Y}$

Example

Estimate regression line for raw material data

Relative humidity	46	53	29	61	36	39	47	49	52	38	55	32	57	54	44
Moisture content		15	7	17	10	11	11	12	14	9	16	8	18	14	12

Solution

- Independent variable x: relative humidity
- Dependent variable y: moisture content

$$n = 1, \quad \sum x_i = 692 \quad \sum y_i = 186$$

$$\sum x_i^2 = 33212 \quad \sum y_i^2 = 2454$$

$$\sum x_i y_i = 8997, \quad \bar{x} = 46.133 \quad \bar{y} = 12.4$$

We have

$$S_{xx} = \sum_{i} x_i^2 - n\bar{x}^2 = 33212 - 15 \times 46.133^2$$

$$\approx 1287.73$$

$$S_{YY} = \sum_{i} y_i^2 - n\bar{y} = 2454 - 15 \times 12.4^2 = 147.6$$

$$S_{XY} = \sum_{i} x_i y_i - n\bar{x}\bar{y} = 8997 - 15 \times 46.13 \times 12.4$$

$$= 416.2$$

So

 $\hat{\mathbf{v}} = 0.32x - 2.51$

 $b_1 = \frac{S_{xY}}{S_{xx}} \approx 0.32$

 $b_0 = \bar{y} - b_1 \bar{x} \approx 12.4 - 0.32 \times 46.13 = -2.51$

and

Comment

- b_0 : the estimated average value of Y when x = 0
- b_1 measures the estimated change in the average value of Y as a result of a one-unit change in x
 - $b_1 = 0.323$: the average value of moisture content increases by 0.323, on average, for each additional one relative humidity

Exercise

Compressive strength *x* and intrinsic permeability y are related according to a simple linear regression model. Summary quantities of a sample data are n = 14, $\sum y_i = 572$, $\sum y_i^2 = 23,530, \sum x_i = 43, \sum x_i^2 = 157.42$ and $\sum x_i y_i = 1697.80.$

- Calculate the least squares estimates b_0 and b_1
- 2 Use the fitted line to predict permeability when the compressive strength x = 4.3
- Suppose that the observed value of permeability at x = 3.7 is y = 46.1.
 Calculate the value of the corresponding residual.

Exercise

The following data are chloride concentration *x* (in milligrams per roadway area in the watershed *y* (in percentage)

X	4.4	6.6	9.7	10.6	10.8	10.9
у	0.19	0.15	0.57	0.70	0.67	0.63

Fit the linear regression model with least square method.

Linear regression with Excel

Input data \rightarrow Choose Data \rightarrow Data Analysis \rightarrow choose Regression and click Ok \rightarrow select range for x and Y and click Ok

	Coefficients	tandard Erroi	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-2.5104577	1.31542339	-1.9084788	0.07865561	-5.3522571	0.33134181	-5.3522571	0.33134181
X Variable 1	0.32320356	0.02795527	11.5614542	3.2619E-08	0.26280988	0.38359725	0.26280988	0.38359725

Figure: Estimate parameter result in report

Practice

Estimate the regression line for pollution data

Solids Reduction,	Oxygen Demand	Solids Reduction,	Oxygen Demand	-
x~(%)	Reduction, y (%)	x~(%)	Reduction, y (%)	
3	5	36	34	_
7	11	37	36	
11	21	38	38	
15	16	39	37	
18	16	39	36	
27	28	39	45	
29	27	40	39	
30	25	41	41	
30	35	42	40	
31	30	42	44	
31	40	43	37	
32	32	44	44	
33	34	45	46	9
33	32	46	46	32/7

Properties of the Least Squares Estimators

Important remarks

- Estimate b_0 , b_1 for β_0 , β_1 depend on selected sample of observation
- Different experiments give different output with the same input *x*
- Estimates for β_0 , β_1 from experiment to experiment
- Estimators are RVs B_0 , B_1 while b_0 , b_1 are specific realizations

Linear regression model

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

Model Assumption

Errors ϵ_i are i.i.d $\mathcal{N}(0, \sigma^2)$

Consequence

Given x_i , $Y_i \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$ and independent

Linear regression model

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

Model Assumption

Errors ϵ_i are i.i.d $\mathcal{N}(0, \sigma^2)$

Consequence

Given x_i , $Y_i \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$ and independent

Linear regression model

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

Model Assumption

Errors ϵ_i are i.i.d $\mathcal{N}(0, \sigma^2)$

Consequence

Given x_i , $Y_i \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$ and independent

Distribution of estimators

$$B_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) Y_i}{\sum_{i=1}^{n} x_i^2 - n(\bar{x})^2} \sim \mathcal{N}\left(\beta_1, \frac{\sigma^2}{\sum_{i=1}^{n} x_i^2 - n(\bar{x})^2}\right)$$

and $B_0 = \sum_{i=1}^{n} \frac{Y_i}{n} - B_1 \bar{x} \sim \mathcal{N} \left(\beta_0, \frac{\sigma^2 \sum_{i=1}^{n} x_i^2}{n \left(\sum_{i=1}^{n} x_i^2 - n(\bar{x})^2 \right)} \right)$

Unbiased estimator of σ^2 as mean square error

$$S^{2} = \frac{\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}}{n-2} \sim \chi^{2}(n-2)$$

 $S = \sqrt{S^2}$ is called the **standard error**

where

- $(x_1, Y_1), \ldots, (x_n, Y_n)$ are observed data
- $\hat{Y}_i = B_0 + B_1 x_i$ is fitted value
- n-2 is degree of freedom

Computational Identity for S^2

$$S^2 = \frac{S_{xx}S_{YY} - S_{xY}^2}{S_{xx}}$$

where

$$S_{xx} = \sum x_i^2 - n\bar{x}^2, \quad S_{xY} = \sum x_i Y_i - n\bar{x}\bar{Y}$$

 $S_{YY} = \sum (Y_i - \bar{Y})^2 = \sum Y_i^2 - n\bar{Y}^2$

Inference about estimator B_1 relies

on

Statistic

$$\frac{B_1 - \beta_1}{\frac{S}{\sqrt{S_{xx}}}} \sim T(n-2)$$

where $S_{xx} = \sum_{i=1}^{2} (x_i - \bar{x})^2$

$100(1-\alpha)\%$ confidence interval for

31

$$b_1 - t_{\frac{\alpha}{2}, n-2} \frac{s}{\sqrt{s_{xx}}} < \beta_1 < b_1 + t_{\frac{\alpha}{2}, n-2} \frac{s}{\sqrt{s_{xx}}}$$

Example

Relative humidity	46	53	29	61	36	39	47	49	52	38	55	32	57	54	44
Moisture content		15	7	17	10	11	11	12	14	9	16	8	18	14	12

Find a 95% confidence interval for β_1 in the regression line $\mu_{Y|x} = \beta_0 + \beta_1 x$

Solution

- $b_1 = 0.323$
- $n = 15, \bar{x} = 46.133, \sum_{i=1}^{n} x_i^2 = 33212$
- $S_{xx} = 1287.73$, $S_{yy} = 147.6$, $S_{xy} = 416.2$
- $s^2 = \frac{S_{xx}S_{YY} S_{xY}^2}{S_{xx}} = 1.013$
- $s = \sqrt{1.013} = 1.006$

- $1 \alpha = 95\% \Rightarrow t_{n-2,\alpha,2} = t_{13,0.025} = 2.16$
- $ME = t_{n-2,\alpha.2} \frac{s}{\sqrt{S_{rr}}} = 0.0606$
- Lower bound $b_1 ME = 0.263$
- Upper bound $b_1 + ME = 0.384$
- 95% CI for β_1

 $0.263 < \beta_1 < 0.384$

Hypothesis testing on the slope β_1

Test $H_0: \beta_1 = \beta_{10}$ versus $H_1: \beta_1 \neq \beta_{10}$

Test statistic (T-test)

$$T = \frac{B_1 - \beta_{10}}{\frac{S}{\sqrt{S_{rr}}}} \sim T(n-2)$$

About conclusion for testing $H_0: \beta_1 = 0 \text{ vs } H_1: \beta_1 \neq 0$

- Failure to reject H_0 suggests that there is no linear relationship between Y and x. It may mean that changing x has little impact on changes in Y
- Reject H_0 : there is an implication that the linear term in x residing in the model explains a significant portion of variability in Y

Example

Test $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ at level of significance $\alpha = 5\%$

Relative humidity	46	53	29	61	36	39	47	49	52	38	55	32	57	54	44
Moisture content	12	15	7	17	10	11	11	12	14	9	16	8	18	14	12

Solution

- $b_1 = 0.323$
- $s = 1.006, s_{xx} = 1287.73$
- $t_{obs} = \frac{b_1 \beta_{10}}{s / \sqrt{s_{xx}}} = \frac{0.323 0}{\frac{1.006}{\sqrt{1287.73}}} = 11.5$
- $t_{\alpha/2,n-2} = ?$
- Conclusion: is there is a significance on impact of relative humidity on moisture content in linear relationship at $\alpha = 5\%$?

Inference about estimator B_0 relies

Statistics

$$\frac{B_0 - \beta_0}{S\sqrt{\frac{\sum_{i=1}^n x_i^2}{nS}}} \sim T(n-2)$$

$100(1-\alpha)\%$ confidence interval for

90

$$b_0 - ME < \beta_0 < b_0 + ME$$

where

$$ME = t_{\frac{\alpha}{2}, n-2} \frac{S}{\sqrt{nS_{xx}}} \sqrt{\sum_{i=1}^{n} x_i^2}$$

Hypothesis testing about the intercept β_0

To test $H_0: \beta_0 = \beta_{00}$ against a suitable alternative H_1 , we use T-test with n-2 degrees of freedom to establish a critical value and make decision base on the value of

$$t_{obs} = \frac{b_0 - \beta_{00}}{s\sqrt{\frac{\sum_{i=1}^{n} x_i^2}{nS_{xx}}}}$$

A Measure of Quality of Fit: Coefficient of Determination

Coefficient of Determination

the proportion of variability explained by the fitted model

$$R^2 = 1 - \frac{SSE}{SSR}$$

- $SSE = \sum_{i=1}^{n} (y_i \hat{y}_i)^2 = (n-2)S^2$: sum of square error
- $SSR = \sum_{i=1}^{n} (y_i \bar{y})^2 = S_{YY}$: sum of squares regression

Good fit vs Poor fit

R^2 as indicator

The value of R^2 is often used as an indicator of how well the regression model fits the data, with a value near 1 indicating a good fit, and one near 0 indicating a poor fit. In other words, if the regression model is able to explain most of the variation in the response data, then it is considered to fit the data well.

Perfect linear relationship between X and Y:

100% of the variation in Y is explained by variation in X

Weaker linear relationships between X and Y:

Some but not all of the variation in Y is explained by variation in X

$$r^2 = 0$$

No linear relationship between X and Y:

The value of Y does not depend on X. (None of the variation in Y is explained by variation in X)

Example

Compute *R* - square

Relative humidity		53	29	61	36	39	47	49	52	38	55	32	57	54	44
Moisture content	l .	15	7	17	10	11	11	12	14	9	16	8	18	14	12

Solution

• Fitted regression line

$$\hat{y} = -2.51 + 0.323x$$

• $\bar{y} = 12.4$

- $SSE = \sum_{i=1}^{n} (y_i \hat{y}_i)^2 = (n-2)S^2 = 0$ $(15-2) \times 1.013 \approx 13.08$
- $SSR = \sum_{i=1}^{n} (y_i \bar{y})^2 = S_{yy} = 147.6$

$$R^2 = 1 - \frac{SSE}{SSR} = 1 - \frac{13.08}{147.8} = 0.911$$

Comment

- The coefficient of determination suggests that the model fit to the data explains 91.1% of the variability observed in the response.
- $R^2 \approx 1$ indicates that linear model is a good fit model
- It is reasonable to use this model to estimate or predict moisture content given a value of relative humidity

Excel Report

SUMMARY C	UTPUT							
Regression	Statistics							
Multiple R	0.95465385							
R Square	0.91136397							
Adjusted R S	0.90454582							
Standard Err	1.00317487							
Observations	15							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	134.517322	134.517322	133.667224	3.26188E-08			
Residual	13	13.0826776	1.00635981					
Total	14	147.6						
	Coefficients	tandard Erroi	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-2.5104577	1.31542339	-1.9084788	0.07865561	-5.352257109	0.33134181	-5.3522571	0.33134181
Relative hum	0.32320356	0.02795527	11.5614542	3.2619E-08	0.262809875	0.38359725	0.26280988	0.38359725

Response and mean of response

Response given $x = x_0$

$$Y = \beta_0 + \beta_1 x_0 + \epsilon \sim \mathcal{N}(\beta_0 + \beta_1 x_0, \sigma^2)$$

Mean of response

$$E(Y|x = x_0) = \mu_{Y|x_0} = \beta_0 + \beta_1 x_0$$

Statistic for mean of response

Estimator for mean of response

Statistic

$$\hat{Y}_0 = B_0 + B_1 x_0 \sim \mathcal{N}(\mu_{Y|x_0}, \sigma^2 \left(1 + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right))$$

$$T = \frac{\hat{Y}_0 - \mu_{Y|x_0}}{S\sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{rr}}}} \sim T(n - 2)$$

CI for mean of response

$$\hat{y}_0 - t_{\frac{\alpha}{2}, n-2} s \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}} < \mu_{Y|x_0} < \hat{y}_0 - t_{\frac{\alpha}{2}, n-2} s \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}$$

Diagnostic Plots of Residuals: Graphical Detection of Violation of Assumptions

Model assumption

Errors ϵ_i are i.i.d $\mathcal{N}(0, \sigma^2)$

- Homogeneous variance
- Independence
- Normality

Ideal Residual plot

Heterogeneous error variance

Ex: Increasing error variance with an increase in the regressor variable

