Multimodal Entity Synonym Set Expansion and Visually-Synonyms-Aware Fine-Tuning

Junjie Chen

Intro: Multimodal Deep Learning

From: (LMU Munich, Germany)

Research Direction

Read more about <u>Multimodal Deep</u> Learning

Pı	reface	1/6 v
Foreword		1
1	Introduction	3
	1.1 Introduction to Multimodal Deep Learning	$\frac{3}{4}$
2	Introducing the modalities	7
	2.1 State-of-the-art in NLP	9
	2.2 State-of-the-art in Computer Vision	33
	2.3 Resources and Benchmarks for NLP, CV and multimodal tasks	54
3	Multimodal architectures	83
	3.1 Image2Text	86
	3.2 Text2Image	100
	3.3 Images supporting Language Models	125
	3.4 Text supporting Vision Models	146
	3.5 Models for both modalities	159
4	Further Topics	181
	4.1 Including Further Modalities	181
	4.2 Structured + Unstructured Data	197
	4.3 Multipurpose Models	209
	4.4 Generative Art	226
5	Conclusion	235
6	Epilogue	237
	6.1 New influential architectures	237
	6.2 Creating videos	238
7	Acknowledgements	239

Table of contents

- 1. Intro: Multimodal Deep Learning
- 2. Words In (Non-Symbolic) Contexts
- 3. Vokenization^1
- 4. Code Analysis...

Words In (Non-Symbolic) Contexts

Symbol Grounding Problem [1]:

- It asserts that it is not possible to understand the meaning (semantics) of a word by just looking at other words because words are essentially meaningless symbols.
- It is possible to understand the meaning only if the word is put in a context, a perceptual space, other than that of written language: the word must be grounded in non-symbolic representations, like images, for example.
- ChatGPT大模型技术争议与符号奠基问题
- 1. (Harnad, S. (1990). The symbol grounding problem. 42(1-3):335–346.) <u>←</u>

Vokenization^[1]

Voken:

we assume a text corpus where each token is aligned with a related image. Hence, these images could be considered as visualizations of tokens and we name them as 'vokens'.

FIGURE 3.41: From Tan and Bansal (2020). Visually supervised the language model with token-related images, called Vokens.

FIGURE 3.43: From Tan and Bansal (2020). The Vokenization process. A contextualized image (visual token, Voken) is retrieved for every token in a sentence and with this visual token, visual supervision is performed.

1. Tan, H. and Bansal, M. (2020). Vokenization: Improving language understanding with contextualized, visual-grounded supervision. ←

Code Analysis...