Этапы развития СУБД.

Подготовил студент 2-го курса Сибилев Антон Игоревич, ИВТ, гр 1, п.гр 1.

Системы управления базами данных (СУБД) используются для хранения, обработки и управлении данными, играя ключевую роль, в современных информационных системах.

Нулевой этап — До-СУБД (1950-60-е гг.)

На этом этапе не существовало специализированных систем для управления данными. Информация хранилась в отдельных текстовых файлах или перфокартах. Работа с данными выполнялась вручную или с помощью простейших вычислительных машин.

Ключевые проблемы:

- 1. Дублирование данных (избыточность)
- 2. Сложность доступа и поиска
- 3. Отсутствие защиты и целостности

Ключевые события:

- 1. Использование ленточных накопителей
- 2. Первые попытки автоматизировать обработку данных в военных и научных проектах

Первый этап — Иерархические и сетевые СУБД (1960–70-е гг.)

Базы данных стали структурированными. В иерархических СУБД данные представлялись в виде дерева, где каждая запись имела родителя. В сетевых СУБД реализовывались более сложные связи между элементами.

Ключевые события:

- 1. Разработка СУБД IMS (Information Management System) от IBM (1968)
- 2. Введение сетевой модели CODASYL (1969)
- 3. Появление первых системных интерфейсов для доступа к данным

Недостатки:

- 1. Сложность изменения структуры базы
- 2. Жесткая привязка программ к структуре данных

Второй этап — Реляционные СУБД (1970–80-е гг.)

Этот этап был ознаменован переходом от сетевых к реляционным моделям, основанным на таблицах и математических принципах реляционной алгебры. Это позволило упростить универсальность структуры хранения и повысить простоту доступа.

Ключевые события:

- 1. 1970 публикация Эдгаром Коддом работы о реляционной модели данных
- 2. Разработка языка SQL (Structured Query Language)
- 3. Создание СУБД System R (IBM), Ingres (University of California)

Преимущества:

- 1. Простота моделирования
- 2. Независимость прикладной логики от структуры хранения
- 3. Возможность стандартизации запросов

Третий этап — Объектно-ориентированные и объектно-реляционные СУБД (1980-90-е гг.)

С ростом сложности данных появилась потребность в хранении объектов, включающих как данные, так и методы. Это привело к появлению объектно-ориентированных СУБД (ООСУБД) и расширению реляционных СУБД объектными возможностями.

Ключевые события:

- 1. Появление СУБД ObjectStore, Versant
- 2. Pасширения PostgreSQL с поддержкой пользовательских типов и наследования

Плюсы:

- 1. Работа со сложными структурами
- 2. Поддержка инкапсуляции и наследования

Минусы:

- 1. Сложность интеграции с существующими системами
- 2. Слабая поддержка стандартизации

Четвёртый этап — Распределённые и клиент-серверные СУБД (1990–2000-е гг.)

Клиентские компьютеры

Развитие сетей и увеличение объёмов данных привели к распространению клиент-серверной архитектуры и распределённых СУБД.

Сервер отвечает за хранение данных, а клиент — за интерфейс взаимодействия с пользователем.

Ключевые события:

- 1. Массовое распространение ключевых игроков на рынке СУБД: Oracle, Microsoft SQL Server, MySQL
- 2. Поддержка транзакций, репликации, резервного копирования
- 3. Внедрение стандартов безопасности и разграничения доступа

Результаты:

- 1. Повышение масштабируемости и отказоустойчивости
- 2. Расширение возможностей администрирования и настройки

Пятый этап — NoSQL и Big Data СУБД (2000— 2010-е гг.)

Появление и рост объёмов неструктурированных данных (веб, социальные сети, IoT) потребовали новых подходов к хранению.

NoSQL-СУБД предложили гибкие модели данных и горизонтальное масштабирование.

Ключевые события:

- 1. Разработка MongoDB (документно-ориентированная модель)
- 2. Cassandra и HBase (колоночные базы)
- 3. Redis (ключ-значение), Neo4j (графовые базы)
- 4. Распространение парадигмы MapReduce, Hadoop

Шестой этап — **NewSQL**, облачные и встроенные СУБД (2010-е — по настоящее время)

Современные СУБД стремятся объединить надёжность SQL с гибкостью NoSQL. Развиваются облачные решения и СУБД, встроенные в приложения и устройства.

Характеристика СУБД	SQL	NbSQL	NewSQL
Реляционная	Да	Нет	Да
Поддерживает SQL	Да	Нет	Да
Распределённые	Нет	Да	Да
ACID транзакции	Да	Нет	Да
		(АР по САР)	(СР по САР)

Сравнительная таблица этапов

Этап	Период	Характеристика	Примеры СУБД	Ключевые события
До-СУБД	1950–60-e	Файлы, без управления	_	Ручная обработка данных
Иерархические/сете вые	1960–70-e	Жесткая структура, связи	IMS, CODASYL	Появление первых моделей данных
Реляционные	1970–80-е	Таблицы, SQL, математика	System R, Ingres	Работа Кодда, появление SQL
Объектные	1980–90-е	Объекты, наследование	ObjectStore, PostgreSQL	Появление ООСУБД
Клиент-серверные	1990–2000-e	Распределённость, транзакции	Oracle, MySQL	Массовое внедрение
NoSQL и Big Data	2000–2010-e	Масштабируемость , гибкие модели	MongoDB, Cassandra	Обработка больших объёмов данных
NewSQL и облачные	2010-н.в.	Облачность, объединение SQL+NoSQL	Spanner, Firebase	Автоматизация, глобальное хранение