Latent Space Approaches to Social Network Analysis by Peter D. Hoff, Adrian E. Raftery, and Mark S. Handcock

Soubhik Barari, Jelena Bauer, Shusei Eshima, and Sun Young Park

GOV 2003: Topics in Quantitative Methods Harvard University

April 8, 2019

Introduction

Motivation

Stochastic Block Model

Motivation

Introduction

Stochastic Block Model

Introduction 0000000

Stochastic Block Model

Motivation

Stochastic Block Model

Estimation

Introduction 00000000

Stochastic Block Model

Motivation

Introduction 000000000

Latent Space Network Model

Estimation 0000

Motivation

Latent Space Network Model

Introduction 000000000

Latent Space Network Model

Introduction 00000000

Latent Space Network Model

Distance vs Projection Model

- Goal of the model
 - We want to map actors on a latent space
 - If two actors are close in the space, they are more likely to have a tie
 - ⇒ Distance model
- Incorporating how active actors are (asymmetric relation)
 - → Projection model

Set Up for a Latent Space Network Model

Social network data set up

- n: number of actors
- i, j = 1, ..., n: actors
- y_{ij} : relational ties
- Y: $n \times n$ matrix representing these ties
- Direction of the path
 - Undirected: $i \sim j$, $y_{ij} = y_{ji}$
 - Directed: $i \rightarrow j$

Distance Models

- i and j has a relationship $Y_{ij} \in \{0, \dots, K-1\}$, typically K=2
- We model $\pi_{ij} = p(Y_{ij} = 1|z, x, \alpha, \beta)$
 - z: position in the latent space
 - x: covariates
 - α , β : parameters
- Same as the Logistic regression

$$\log \operatorname{it}(\pi_{ij}) = \log \left(\frac{\pi_{ij}}{1 - \pi_{ij}}\right)$$

$$= \alpha + \beta^{\mathsf{T}} x_{ij} - |z_i - z_j|$$
distance in a latent space

 All else equal, i and j are more likely to have a relationship if they are close in a latent space.

Projection Model

- We want to model asymmetric relationship
 - $|z_i z_j|$ assumes symmetry
 - ullet i and j have a tie but i is socially active
 - j is only a one of i's many ties
- Active level parameter $a_i > 0$
- A low-dimensional Euclidean space, e.g., $\vec{z} \in \mathbb{R}^2$
- Redefine: $\vec{z}_i = a_i \vec{e}_i$: $\vec{z}_i = 1.5 \vec{e}_i$

Projection Model

• Replace the distance term: $\operatorname{logit}(\pi_{ij}) = \alpha + \beta^{\mathsf{T}} x_{ij} + \frac{\bar{z}_i^{\mathsf{T}} \bar{z}_j}{|\bar{z}_j|}$

$$\frac{\vec{z}_i^{\mathsf{T}} \vec{z}_j}{|\vec{z}_i|} = \frac{|a_i \vec{e}_i| |a_j \vec{e}_j| \cos \theta}{|a_i \vec{e}_j|} = a_i \cos \theta, \quad -a_i \le a_i \cos \theta \le a_i$$

- This is the model of homophily
- Given a_i , the smaller the angle between two vectors are, there more likely they have a tie

Prone to having a tie, $\vec{e}_i^{\mathsf{T}} \vec{e}_j = \cos \theta > 0$

Averse to having a tie, $\vec{e}_i^{\mathsf{T}} \vec{e}_i = \cos \theta < 0$

Great news: likelihood-based estimation methods are feasible...

Likelihood function:

$$\prod_{i\neq j} p(y_{ij}|z_i,z_j,x_{ij},\alpha,\beta) = \prod_{i\neq j} (\pi_{ij})^{\mathrm{I}(y_{ij}=1)} (1-\pi_{ij})^{\mathrm{I}(y_{ij}=0)}, \ \pi_{ij} = p(Y_{ij}=1|\cdot)$$

We define

$$\eta_{ij} = \log \frac{\pi_{ij}}{1 - \pi_{ij}} \iff \pi_{ij} = \frac{e^{\eta_{ij}}}{1 + e^{\eta_{ij}}}$$

By taking log,

$$\sum_{i\neq j} y_{ij} (\eta_{ij} - \log(1 + e^{\eta_{ij}})) + (1 - y_{ij}) (-\log(1 + e^{\eta_{ij}}))$$

$$= \sum_{i\neq j} y_{ij} \eta_{ij} - \log(1 + e^{\eta_{ij}})$$

Great news!

but there is an identification problem

Estimation

but there is an identification problem

Estimation

Distances between a set of points in Euclidean space are invariant under rotation, reflection, and translation

How to solve this

Idea:

- Define a class of positions equivalent to latent position Z under rotation, reflection, and translation ("configuration")
- Make inference on configurations via inference of particular elements of configurations that are comparable across configurations

Estimation

Estimation

Procedure for sampling from posterior distribution:

- 0. Use prior information on α , β , and Z
- 1. Identify an MLE \hat{Z} of Z, centered at origin, by direct maximization of likelihood

Estimation

2. Construct Markov chain over model parameters:

Start
$$Z_0 = \hat{Z}$$

- a. Sample a proposal Z from a symmetric proposal distribution
- b. Accept that proposal for Z_{k+1} with some probability; otherwise, set $Z_{k+1} = Z_k$
- c. Store $Z_{k+1}^{\sim} = \arg\min_{TZ_{k+1}} tr(\hat{Z} TZ_{k+1})' tr(\hat{Z} TZ_{k+1})$
- 3. Update α and β with a Metropolis-Hastings algorithm

Applications

Actors	Tie (Y_{ij})	Distribution	Model
Monks	Affinity		$\pi_{ij} = \operatorname{logit}^{-1}(\alpha - Z_i - Z_j)$
Women	Contacts	$Y_{ij} \sim Bern(\pi_{ij})$	$\pi_{ij} = \operatorname{logit}^{-1}(\alpha + \frac{Z_i Z_j}{\ Z_i\ })$
Senators	Bills co-sponsored	$Y_{ij} \sim Pois(\lambda_{ij})$	$\lambda_{ij} = \log^{-1}(\alpha - \ Z_i - Z_j\)$

R package:

latentnet

Code repo:

http://github.com/soubhikbarari/Gov2003-LatentNet

Political Preference and Social Relations between Novice Monks in New England

Actors Tie
$$(Y_{ij})$$
 Distribution Model

Monks Affinity $Y_{ij} \sim \text{Bern}(\pi_{ij})$ $\pi_{ij} = \text{logit}^{-1}(\alpha - \|Z_i - Z_j\|)$

distance model

Code:

```
ergmm(samplike ~euclidean(d = 2))
```

Two-dimensional Z

latent social position (LSNM)

posterior mixed membership in a simplex (MMSBM)

Original distance model without clusters:

$$Y_{ij} \sim \operatorname{Bern}(\pi_{ij})$$
 $\pi_{ij} = \operatorname{logit}^{-1}(\underline{\alpha - \|Z_i - Z_j\|})$

Extension of distance model to allow clustering:

$$\begin{split} Z_i &\sim & \sum_{g=1}^G \lambda_g \mathsf{MVN}_d(\mu_g, \sigma_g^2 I_d) \quad i=1,...,n, \\ \mu_g &\sim & \mathsf{MVN}_d(0, \omega^2 I_d) \quad g=1,...,G, \\ \sigma_g^2 &\sim & \sigma_0^2 \mathsf{Inv} \chi_\alpha^2 \quad g=1,...,G, \\ (\lambda_1,...,\lambda_G) &\sim & \mathsf{Dirichlet}(\nu_1,...,\nu_G) \end{split}$$

Code:

ergmm(samplike \sim euclidean(d = 2, G=3))

Application 2: Women (Davis, Gardner, Gardner, 1941)

Social Stratification among Women in Mississippi

Actors	Tie (Y_{ij})	Distribution	Model
Women	Contacts	$Y_{ij} \sim Bern(\pi_{ij})$	$\pi_{ij} = \operatorname{logit}^{-1} \left(\underbrace{\alpha + Z_i Z_j} \right)$
			projection model

Code:

$$ergmm(davis \sim bilinear(d = 2, G = 2))$$

Application 2: Women (Davis, Gardner, Gardner, 1941)

Social Stratification among Women in Mississippi

Actors Tie
$$(Y_{ij})$$
 Distribution Model

Women Contacts $Y_{ij} \sim \operatorname{Bern}(\pi_{ij})$ $\pi_{ij} = \operatorname{logit}^{-1}(\underbrace{\alpha + Z_i Z_j}_{\text{projection model}} + \underbrace{\xi_i + \xi_j}_{\text{sociality effect}})$

Code:

 $ergmm(davis \sim bilinear(d = 2, G = 2) + rsociality)$

Application 2: Women (Davis, Gardner, Gardner, 1941)

Projection Model

Hidden Social Network between U.S. Senators → Bill **Co-sponsorship**. Can we discover the former using the latter?

	\ 'J'		Model
Senators	Bills co-sponsored	$Y_{ij} \sim Pois(\lambda_{ij})$	$\lambda_{ij} = \log^{-1}(\alpha - \ Z_i - Z_j\)$

Code:

cospons.latent <- ergmm(cospons.net ~ euclidean(d=2), family="Poisson")

Fowler, James H. 'Legislative Cosponsorship Networks in the US House and Senate,' Social Networks 28.4 (2006):

Application 3: Legislator Co-sponsorship (Fowler 2005)

Diagnostic tools

Diagnostic tools

- MCMC Convergence
 - Trace plot, autocorrelation plot, posterior density
 - mcmc.diagnostics(cospons.latent)

Application 3: Legislator Co-sponsorship (Fowler 2005)

Estimation

Diagnostic tools

- MCMC Convergence
 - Trace plot, autocorrelation plot, posterior density
 - mcmc.diagnostics(cospons.latent)
- Posterior predictive checks
 - Do posterior-simulated networks resemble observed Y?
 - plot(qof(cospons.latent))

Estimation

Diagnostic tools

Introduction

- MCMC Convergence
 - Trace plot, autocorrelation plot, posterior density
 - mcmc.diagnostics(cospons.latent)
- Posterior predictive checks
 - Do posterior-simulated networks resemble observed Y?
 - plot(qof(cospons.latent))
- Bayesian Information Criteria
 - $k \log(n) + 2 \log\left(\frac{1}{L(\hat{Z}|Y)}\right)$ for n data points and k parameters
 - Model complexity additionally penalized by inverse likelihood
 - Can use for model comparison (pick lowest)
 - summary(cospons.latent)

Application 3: Legislator Co-sponsorship (Fowler 2005)

MCMC Convergence – trace plot

Application 3: Legislator Co-sponsorship (Fowler 2005)

MCMC Convergence - autocorrelation plot

Posterior predictive checks

network summary statistic: in-degree count

in degree

Posterior predictive checks

network summary statistic: out-degree count

Posterior predictive checks

network summary statistic: geodesic distance (min dist. b/t any node pair)

Model comparison

Model	Overall BIC	Log lik.	Number of parameters
cospons.net ~ euclidean(d=2)	17325	-8640	(102 × 2) - 3 + 1
cospons.net ~ euclidean(d=3)	11507	-5356	$(102 \times 3) - 5 + 1$
cospons.net ~ euclidean(d=2) + rsociality	11021	-5227	(102 × 3) - 3 + 1
cospons.net ~ euclidean(d=2, G=2)	11486	-5531	(102 × 2) - 3 + 3

2003-2005:

Latent Legislative Positions in 108th Congress

1999-2000:

Latent Legislative Positions in 106th Congress

1995-1997:

1989-1991:

1985-1987:

1973-1975:

Future extension: Connect **co-sponsorship** to **ideology**.

latent social position (LSNM)

latent ideological position (DW-nominate)

Concluding thoughts

- LSNM articulates an explicitly spatial model for network formation.
- Bayesian (e.g. posterior mean) and Frequentist methods (e.g. MLE) for estimating parameters.
- LSNM imposes fewer assumptions than MMSBM (conditionally independent ties).
 - freedom to specify the tie distribution, link function and priors.
- Choosing a larger $d \rightsquigarrow$ better fit (to a certain extent) but adds more parameters + exponentially increases run-time.
- Captures properties like transitivity² and reciprocity³ in observed network.

²If $i \rightarrow j$ and $j \rightarrow k$ then probably $i \rightarrow k$.

³If $i \rightarrow j$ then probably ji.

Fun Fact

Even fictional researchers are using ergmm these days (from *The Wire*):

We hope you (real researchers) will too! ©

Appendix

Comparing random graph models for validation

Scaling politicians and interest groups based on observed lobbying and sponsorship (Kim and Kunisky 2017)⁴:

⁴ Kim, In Song, and Dmitriy Kunisky. 'Mapping Political Communities: A Statistical Analysis of Lobbying Networks in Legislative Politics'. Working Paper. http://web.mit.edu/insong/www/pdf/network.pdf, 2017.

LSNM vs. MMSBM

Supposing ties follow a Bernoulli distribution:

	Canonical LSNM	Canonical MMSBM
tie	$Y_{ij} \sim Bern(logit^{-1}(\alpha - \ Z_i - Z_j\))$	$Y_{ij} \sim Bern(Z_{i \to j}^T \mathbf{B} W_{j \to i})$
structure	$Z_i \sim \underbrace{MVN_d([0],[100])}$	$Z_{i o j} \sim Mult(1, \pi_i) \ W_{j o i} \sim Mult(1, \pi_j) \ B_{sr} \sim Beta(eta_{sr}, \gamma_{sr})$
	diffuse prior	
estimation	Metropolis-Hastings algorithm	Collapsed Gibbs sampling Variational Inference
process	position	community

Application: Tribes (Read, 1954)

Political Relationships between Tribes in New Guinea

		Distribution	Model
Tribes	alliance neutral hostile	$Y_{ij} \sim Mult(1, \pi_{ij})$?

Code:

Application: Tribes (Read, 1954)

