TRENDE SAHİP ZAMAN SERİSİ ANALİZİ;

ZAMAN SERİSİ GRAFİĞİ

Zaman serisi grafiği belli bir dönemde doğrusal bir artış, daha sonra ani bir sıçrama gözlenmiştir. Bu zaman serisi grafiğinin trende sahip olduğunu düşünülmektedir. Kesin bilgiye ulaşmak için ACF-PACF grafiklerine bakılır.

ACF- PACF GRAFİĞİ

- ACF grafiğinde ilk dört gecikme ve daha fazlası aynı anda sınırlar dışında olduğu için seri trende sahiptir. Baskın bir periyot görülmediği için mevsimsellikten şüphe edilmemektedir.
- PACF grafiğinde ilk gecikme sınırlar dışında olduğu için seri trende sahiptir.

Analiz yapılabilmesi için trend ortadan kaldırılmalıdır. Birinci dereceden fark işlemi uygulanılarak seri durağan hale getirilmelidir.

TRENDİ YOK ETMEK İÇİN 1.DERECEDEN FARK İŞLEMİ;

• ACF grafiğinde ilk dört gecikme sınırlar dışında olduğu için ve PACF grafiğinde de ilk gecikme sınırlar dışında olduğu için zaman serisi hala trende sahiptir.

Trendi yok etmek için ikinci dereceden fark işlemi uygulanmalıdır.

TRENDİ YOK ETMEK İÇİN 2.DERECEN FARK İŞLEMİ;

- Seriye ikinci dereceden fark işlemi uygulandığında ACF grafiğinde ilk gecikme sınırlar dışında olduğu ve PACF grafiğinde de ilk 3 gecikme sınırlar dışında olduğu için trend ortadan kalkmıştır.
- Seri ikinci dereceden fark alınmış durağan bir seridir.

REGRESYON ANALIZI

Zaman serisi grafiğine bakılarak uygun olan lojistik, kübik ve logaritmik regresyon modelleri denenmiştir.

LOGISTIC REGRESYON MODELI

1. Varsayım: Model ve Katsayı Anlamlılığı

Model Summary							
Adjusted R Std. Error of t							
R	R Square	Square	Estimate				
,552	,305	,291	,258				

• R² değerinin %30.5 olması lojistik regresyon model uyumunun iyi olmadığını gösterir.

ANOVA						
	Sum of Squares	df	Mean Square	F	Sig.	
Regression	1,489	1	1,489	22,340	,000	
Residual	3,400	51	,067			
Total	4,889	52				

Ho: Model istatistiksel olarak anlamlı değildir.

Hs: Model istatistiksel olarak anlamlıdır.

• Tablo değerine bakıldığında sig. = 0.00 değeri α = 0.05 değerinden küçük olduğu için Ho hipotezi reddedilmiştir. Modelin anlamlı olduğu %95 güven düzeyinde söylenebilir.

Coefficients						
			Standardized			
	Unstandardized Coefficients		Coefficients			
	В	Std. Error	Beta	t	Sig.	
Case Sequence	,989	,002	,576	431,325	,000	
(Constant)	,005	,000		13,899	,000	

The dependent variable is ln(1/v1 - 1/5000,000).

Ho: Katsayılar istatistiksel olarak anlamlı değildir.

Hs: Katsayılar istatistiksel olarak anlamlıdır.

Tablo değerlerine bakıldığında sig = 0.00 değeri α = 0.05 değerinden küçük olduğu için Ho hipotezi reddedilir. Katsayıların anlamlı olduğu %95 güven düzeyinde söylenebilir.

2. Varsayım: Orijinal Seri ile Tahmin Serisi Arasındaki Zaman Serisi Grafik Uyumu

• Orijinal seri ile tahmin serisi arasındaki zaman serisi grafiği uyumlu değildir.

3. Varsayım: Tahmin Serisinin Alt ve Üst Sınırları ile Orijinal Seri Arasındaki Zaman Serisi Uyumu

• Orijinal seri, tahmin serisinin alt ve üst sınırları içerisinde yer almaktadır.

4. Varsayım: Hata Serisinin Akgürültü Olup Olmaması

• ACF grafiğine bakıldığında gecikmeler güven sınırları dışında olduğu için hata serisi akgürültü değildir.

Autocorrelations

Series: Error for v1 from CURVEFIT, MOD_5 LGSTIC

			Box-Ljung Statistic		tic
Lag	Autocorrelation	Std. Error ^a	Value	df	Sig.b
1	,847	,134	40,227	1	,000
2	,670	,132	65,900	2	,000
3	,537	,131	82,719	3	,000
4	,412	,130	92,806	4	,000
5	,275	,128	97,405	5	,000
6	,132	,127	98,483	6	,000
7	,029	,126	98,535	7	,000
8	-,046	,124	98,672	8	,000
9	-,122	,123	99,666	9	,000
10	-,180	,121	101,854	10	,000
11	-,228	,120	105,453	11	,000
12	-,244	,119	109,697	12	,000
13	-,244	,117	114,042	13	,000
14	-,250	,116	118,719	14	,000
15	-,226	,114	122,628	15	,000
16	-,174	,113	125,019	16	,000
17	-,115	,111	126,093	17	,000

18	-,056	,110	126,353	18	,000
19	-,020	,108	126,386	19	,000
20	,026	,106	126,445	20	,000
21	,050	,105	126,673	21	,000
22	,041	,103	126,829	22	,000
23	,025	,101	126,891	23	,000
24	,015	,100	126,915	24	,000
25	-,002	,098	126,915	25	,000
26	-,017	,096	126,945	26	,000
27	-,056	,094	127,295	27	,000
28	-,080	,093	128,049	28	,000
29	-,116	,091	129,671	29	,000
30	-,156	,089	132,735	30	,000
31	-,218	,087	139,011	31	,000
32	-,278	,085	149,777	32	,000
33	-,313	,083	164,024	33	,000
34	-,330	,081	180,711	34	,000
35	-,350	,079	200,600	35	,000
36	-,336	,076	219,967	36	,000
37	-,305	,074	236,875	37	,000
38	-,259	,072	249,887	38	,000
39	-,218	,069	259,776	39	,000
40	-,180	,067	267,053	40	,000
41	-,116	,064	270,323	41	,000
42	-,052	,061	271,039	42	,000

Ho: Hata serisi akgürültüdür.

Hs: Hata serisi akgürültü değildir.

• Otokorelasyon tablosundaki sig. değerlerin hepsi $\alpha = 0.05$ değerinden küçük olduğu için Ho hipotezi reddedilir. Hata serisi akgürültü değildir. Hatalar arasında ilişki vardır.

Genel Yorum:

%95 güvenle bu veri seti için lojistik regresyon modelini uygulamak istatistiksel olarak anlamlı değildir.

KÜBİK REGRESYON MODELİ

1. Varsayım: Model ve Katsayı Anlamlılığı

Model Summary							
		Adjusted R	Std. Error of the				
R	R Square	Square	Estimate				
,880	,775	,761	26,769				

• R² değerinin %77.5 olması kübik regresyon model uyumunun iyi olduğunu gösterir.

ANOVA						
m of Squares	df	Mean Square	F	Sig.		
121072,924	3	40357,641	56,320	,000		
35112,057	49	716,573				
156184,981	52					
	35112,057	121072,924 3 35112,057 49	um of Squares df Mean Square 121072,924 3 40357,641 35112,057 49 716,573	tm of Squares df Mean Square F 121072,924 3 40357,641 56,320 35112,057 49 716,573		

Ho: Model istatistiksel olarak anlamlı değildir.

Hs: Model istatistiksel olarak anlamlıdır.

Tabloya bakıldığında sig = 0.00 değeri α = 0.05 değerinden küçük olduğu için Ho hipotezi reddedilir. Modelin anlamlı olduğu %95 güven düzeyinde söylenebilir.

Coefficients							
			Standardized				
	Unstandardize	d Coefficients	Coefficients				
	В	Std. Error	Beta	t	Sig.		
Case Sequence	13,274	2,512	3,741	5,283	,000		
Case Sequence ** 2	-,259	,108	-4,065	-2,407	,020		
Case Sequence ** 3	,001	,001	,833	,795	,430		
(Constant)	97,761	15,813		6,182	,000		

Ho: Katsayılar istatistiksel olarak anlamlı değildir.

Hs: Katsayılar istatistiksel olarak anlamlıdır.

• Tablo değerlerine bakıldığında ilk iki sig. değeri α = 0.05 değerinden küçük olduğu için Ho hipotezi reddedilir. İlk iki katsayının anlamlı olduğu %95 güvenle söylenebilir. 3. katsayı anlamsız ve negatif olmadığı için analiz burada sona erer.

Genel Yorum:

%95 güvenle bu veri seti için kübik regresyon modelini uygulamak istatistiksel olarak anlamlı değildir.

LOGARITMIK

1. Varsayım: Model ve Katsayı Anlamlılığı

Model	Summary

		Adjusted R Std. Error of	
R	R Square	Square	Estimate
,796	,634	,626	33,499

• R² değerinin %63.4 olması logaritmik regresyon model uyumunun iyi olduğunu gösterir.

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Regression	98954,664	1	98954,664	88,182	,000
Residual	57230,317	51	1122,163		
Total	156184,981	52			

Ho: Model istatistiksel olarak anlamlı değildir.

Hs: Model istatistiksel olarak anlamlıdır.

• Tabloya bakıldığında sig = 0.00 değeri α = 0.05 değerinden küçük olduğu için Ho hipotezi reddedilir. Modelin anlamlı olduğu %95 güven düzeyinde söylenebilir.

Coefficients

			Standardized		
	Unstandardize	d Coefficients	Coefficients		
	В	Std. Error	Beta	t	Sig.
In(Case Sequence)	48,850	5,202	,796	9,391	,000
(Constant)	99,241	16,396		6,053	,000

Ho: Katsayılar istatistiksel olarak anlamlı değildir.

Hs: Katsayılar istatistiksel olarak anlamlıdır.

• Tablo değerlerine bakıldığında sig. değeri α = 0.05 değerinden küçük olduğu için Ho hipotezi reddedilir. Katsayıların anlamlı olduğu %95 güven düzeyinde söylenebilir.

2. Varsayım: Orijinal Seri ile Tahmin Serisi Arasındaki Zaman Serisi Grafik Uyumu

• Orijinal seri ile tahmin serisi arasındaki zaman serisi grafiği uyumlu değildir.

3. Varsayım: Tahmin Serisinin Alt ve Üst Sınırları ile Orijinal Seri Arasındaki Zaman Serisi Uyumu

• Orijinal seri, tahmin serisinin alt ve üst sınırları içerisinde yer almaktadır.

4. Varsayım: Hata Serisinin Akgürültü Olup Olmaması

• ACF grafiğine bakıldığında gecikmeler güven sınırları dışında olduğu için hata serisi akgürültü değildir.

Autocorrelations

Series: Error for v1 from CURVEFIT, MOD_10 LOGARITHMIC

			Во	x-Ljung Statis	tic
Lag	Autocorrelation	Std. Error ^a	Value	df	Sig.b
1	,855	,134	40,997	1	,000
2	,674	,132	66,932	2	,000
3	,528	,131	83,210	3	,000
4	,372	,130	91,428	4	,000
5	,197	,128	93,783	5	,000
6	,022	,127	93,813	6	,000
7	-,103	,126	94,489	7	,000
8	-,193	,124	96,891	8	,000
9	-,285	,123	102,266	9	,000
10	-,360	,121	111,073	10	,000
11	-,410	,120	122,733	11	,000
12	-,396	,119	133,887	12	,000
13	-,370	,117	143,857	13	,000
14	-,348	,116	152,914	14	,000

15 16 17	-,283 -,180 -,066 ,040	,114 ,113 ,111	159,056 161,612	15 16	,000,
17	-,066		161,612	16	000
		,111			,000
	,040		161,965	17	,000
18		,110	162,101	18	,000
19	,117	,108	163,283	19	,000
20	,206	,106	167,020	20	,000
21	,254	,105	172,888	21	,000
22	,241	,103	178,365	22	,000
23	,218	,101	183,000	23	,000
24	,199	,100	186,974	24	,000
25	,175	,098	190,162	25	,000
26	,140	,096	192,279	26	,000
27	,077	,094	192,948	27	,000
28	,032	,093	193,066	28	,000
29	-,022	,091	193,126	29	,000
30	-,086	,089	194,062	30	,000
31	-,163	,087	197,592	31	,000
32	-,230	,085	204,934	32	,000
33	-,270	,083	215,598	33	,000
34	-,305	,081	229,909	34	,000
35	-,335	,079	248,073	35	,000
36	-,324	,076	266,092	36	,000
37	-,292	,074	281,679	37	,000
38	-,247	,072	293,522	38	,000
39	-,214	,069	303,016	39	,000
40	-,183	,067	310,489	40	,000
41	-,122	,064	314,087	41	,000
42	-,077	,061	315,654	42	,000

Ho: Hata serisi akgürültüdür.

Hs: Hata serisi akgürültü değildir.

• Otokorelasyon tablosundaki sig. değerlerin hepsi $\alpha = 0.05$ değerinden küçük olduğu için Ho hipotezi reddedilir. Hata serisi akgürültü değildir. Hatalar arasında ilişki vardır.

Genel Yorum:

%95 güvenle bu veri seti için logaritmik regresyon modelini uygulamak istatistiksel olarak anlamlı değildir.

• 3 farklı regresyon modelinde de hata serisi akgürültü çıkmadığı için bu seri regresyon modeliyle çözümlenemez. Bu nedenle serinin deterministik bir trende değil de stokastik bir trende sahip olduğu düşünülmektedir. Böylelikle seriye üstel düzleştirme ya da box-jenkins modelleri uygulanmalıdır.

ÜSTEL DÜZLEŞTİRME YÖNTEMLERİ BASİT ÜSTEL DÜZLEŞTİRME YÖNTEMİ

Model Description

			Model Type
Model ID	v1	Model_1	Simple

Model Summary

					N	lodel Fit						
									Percentile			
	Fit Statistic	Mean	SE	Minimum	Maximum	5	10	25	50	75	90	95
	Stationary R-squared	-,035		-,035	-,035	-,035	-,035	-,035	-,035	-,035	-,035	-,035
	R-squared	,942		,942	,942	,942	,942	,942	,942	,942	,942	,942
+	RMSE	13,158		13,158	13,158	13,158	13,158	13,158	13,158	13,158	13,158	13,158
	MAPE	4,411		4,411	4,411	4,411	4,411	4,411	4,411	4,411	4,411	4,411
	MaxAPE	34,375		34,375	34,375	34,375	34,375	34,375	34,375	34,375	34,375	34,375
	MAE	9,359		9,359	9,359	9,359	9,359	9,359	9,359	9,359	9,359	9,359
	MaxAE	44,001		44,001	44,001	44,001	44,001	44,001	44,001	44,001	44,001	44,001
	Normalized BIC	5,229		5,229	5,229	5,229	5,229	5,229	5,229	5,229	5,229	5,229

• Basit üstel düzleştirme yönteminin Normalized BIC değeri 5.229 çıkmıştır.

HOLT DÜZLEŞTİRME YÖNTEMİ

Model Description

			Model Type
Model ID	v1	Model_1	Holt

Model Summary

					N	/lodel Fit						
									Percentile			
	Fit Statistic	Mean	SE	Minimum	Maximum	5	10	25	50	75	90	95
	Stationary R-squared	,340		,340	,340	,340	,340	,340	,340	,340	,340	,340
	R-squared	,961		,961	,961	,961	,961	,961	,961	,961	,961	,961
→	RMSE	10,875		10,875	10,875	10,875	10,875	10,875	10,875	10,875	10,875	10,875
	MAPE	3,727		3,727	3,727	3,727	3,727	3,727	3,727	3,727	3,727	3,727
	MaxAPE	20,064		20,064	20,064	20,064	20,064	20,064	20,064	20,064	20,064	20,064
	MAE	8,266		8,266	8,266	8,266	8,266	8,266	8,266	8,266	8,266	8,266
	MaxAE	28,125		28,125	28,125	28,125	28,125	28,125	28,125	28,125	28,125	28,125
	Normalized BIC	4,923		4,923	4,923	4,923	4,923	4,923	4,923	4,923	4,923	4,923

• Holt düzleştirme yönteminin Normalized BIC değeri 4.923 çıkmıştır.

Exponential Smoothing Model Parameters

Model			Estimate	SE	t	Sig.
v1-Model_1	No Transformation	Alpha (Level)	,967	,134	7,206	,000
		Gamma (Trend)	,304	,123	2,469	,017

Genel Yorum:

En uygun model, Normalized BIC değeri en küçük olan Holt Üstel Düzleştirme yöntemidir. Bu nedenle Holt Üstel Düzleştirme yönteminin model geçerlilik varsayımlarına bakılır.

MODEL GEÇERLİLİK VARSAYIMLARI

1. Varsayım: Orijinal Seri ile Tahmin Serisi Arasındaki Zaman Serisi Grafik Uyumu

• Orijinal seri ile tahmin serisi arasındaki zaman serisi grafik uyumu oldukça iyidir.

2. Varsayım: Tahmin Serisinin Alt ve Üst Sınırları ile Orijinal Seri Arasındaki Zaman Serisi Uyumu

• Orijinal seri, tahmin serisinin alt ve üst sınırları içerisinde yer almaktadır.

3. Varsayım: Hata Serisinin Akgürültü Olup Olmaması

• ACF grafiğine bakıldığında gecikmeler güven sınırları içinde olduğu için hata serisi akgürültüdür.

Autocorrelations

Series: Noise residual from v1-Model_1

			Во	x-Ljung Statis	tic
Lag	Autocorrelation	Std. Error ^a	Value	df	Sig.b
1	-,035	,134	,068	1	,794
2	-,170	,132	1,729	2	,421
3	-,034	,131	1,796	3	,616
4	,187	,130	3,869	4	,424
5	,048	,128	4,006	5	,549
6	-,073	,127	4,340	6	,631
7	-,114	,126	5,164	7	,640
8	,107	,124	5,910	8	,657
9	-,048	,123	6,063	9	,734
10	-,105	,121	6,816	10	,743
11	-,182	,120	9,104	11	,612
12	,095	,119	9,750	12	,638
13	,115	,117	10,710	13	,635
14	-,194	,116	13,524	14	,486
15	-,196	,114	16,461	15	,352
16	-,080	,113	16,969	16	,388

Ho: Hata serisi akgürültüdür.

Hs: Hata serisi akgürültü değildir.

• Otokorelasyon tablo değerlerine bakıldığında sig. değerlerinin hepsi $\alpha = 0.05$ değerinden büyük olduğu için hata serisi akgürültüdür.

Genel Yorum:

%95 güvenle Holt Üstel Düzleştirme yöntemini bu zaman serisi için uygulamak istatistiksel olarak anlamlıdır.

Öngörü değerleri;

187,42

177,30

167,17

157,05

146,92

• Varsayımlar sağlandığı için Holt Üstel Düzleştirme yöntemine ait 5 öngörü değeri yukarıda verilmiştir.

ARIMA MODELİ

MEVSİMSEL OLMAYAN BOX-JENKİNS MODEL

Autocorrelations

Series:	v1		Do	x-Ljung Statisti	0
Lag	Autocorrelation	Std. Error ^a	Value	df	Sig. ^b
1	-,378	,136	7,710	1	,005
2	-,160	,135	9,120	2	,010
3	-,045	,133	9,234	3	,026
4	,176	,132	11,015	4	,026
5	,030	,130	11,067	5	,050
6	-,061	,129	11,289	6	,080
7	-,154	,128	12,752	7	,078
8	,199	,126	15,252	8	,054
9	-,068	,125	15,551	9	,077
10	,037	,123	15,641	10	,110
11	-,191	,122	18,099	11	,079
12	,097	,120	18,748	12	,095
13	,186	,119	21,211	13	,069
14	-,161	,117	23,112	14	,058
15	-,072	,115	23,497	15	,074
16	-,019	,114	23,525	16	,100
17	,073	,112	23,954	17	,121
18	,019	,110	23,984	18	,156
19	-,079	,109	24,513	19	,177
20	,014	,107	24,530	20	,220
21	,179	,105	27,430	21	,157
22	-,230	,104	32,373	22	,071
23	,175	,102	35,338	23	,048
24	-,175	,100	38,391	24	,032
25	,124	,098	39,979	25	,029
26	,052	,096	40,276	26	,037
27	-,030	,094	40,380	27	,047
28	-,203	,092	45,208	28	,021

29	,179	,090	49,158	29	,011
30	,030	,088	49,271	30	,015
31	,032	,086	49,408	31	,019
32	-,141	,084	52,252	32	,013
33	,112	,082	54,149	33	,012
34	,022	,079	54,223	34	,015
35	-,033	,077	54,405	35	,019
36	-,070	,074	55,284	36	,021
37	-,029	,072	55,449	37	,026
38	,158	,069	60,663	38	,011
39	-,020	,067	60,754	39	,014
40	-,137	,064	65,387	40	,007
41	,049	,061	66,034	41	,008
42	,002	,058	66,035	42	,010

a. The underlying process assumed is independence (white noise).

b. Based on the asymptotic chi-square approximation.

Partial Autocorrelations

Series: v1

	Partial	
Lag	Autocorrelation	Std. Error
1	-,378	,140
2	-,353	,140
3	-,346	,140
4	-,103	,140
5	,025	,140

6	,058	,140
7	-,127	,140
8	,062	,140
9	-,059	,140
10	,031	,140
11	-,185	,140
12	-,144	,140
13	,113	,140
14	-,044	,140
15	-,017	,140
16	-,170	,140
17	-,168	,140
18	-,194	,140
19	-,160	,140
20	-,093	,140
21	,162	,140
22	-,102	,140
23	,140	,140
24	-,106	,140
25	-,124	,140
26	-,041	,140
27	,006	,140
28	-,205	,140
29	-,078	,140
30	,003	,140
31	-,025	,140
32	,040	,140
33	-,010	,140
34	,070	,140
35	,029	,140
36	-,021	,140
37	-,088	,140
38	,072	,140
39	-,006	,140
40	-,014	,140
41	,090	,140
42	-,104	,140

Kısmi otokorelasyon tablosuna bakılıp fark işlemi uygulandığında PACF grafiği daha ani bir şekilde azalmaktadır. Otokorelasyon tablosuna göre de ACF grafiği yavaş bir şekilde azalma göstermektedir.

- ACF grafiğine göre ilk dört gecikmeden sadece ilki sınırlar dışında olduğu için q maksimum 1 olabilir.
- PACF grafiğine göre ilk dört gecikmeden üçü aynı anda sınırlar dışında olduğu için p maksimum 3 olabilir.

OLABİLECEK ARIMA MODELLERİ

ARIMA(0, 2, 1)

M	odel	Desci	rip	tio	n

			Model Type
Model ID	v1	Model_1	ARIMA(0,2,1)

ARIMA Model Parameters

				Estimate	SE	t	Sig.
v1-Model_1	v1	No Transformation	Constant	-,643	,372	-1,727	,090
			Difference	2			
			MA Lag 1	,771	,096	8,026	,000

• Katsayı anlamlı olduğu için modelin Normalized BIC değeri: 4,995'tir.

ARIMA(1, 2, 0)

Model Description

			Model Type
Model ID	v1	Model_1	ARIMA(1,2,0)

ARIMA Model Parameters

				Estimate	SE	t	Sig.
v1-Model_1	v1	No Transformation	Constant	-,584	1,196	-,489	,627
			AR Lag 1	-,453	,132	-3,427	,001
			Difference	2			

• Katsayı anlamlı olduğu için modelin Normalized BIC değeri: 5,207'dir.

ARIMA(2, 2, 0)

Model Description

			Model Type
Model ID	v1	Model_1	ARIMA(2,2,0)

ARIMA Model Parameters

					Estimate	SE	t	Sig.
v1-Model_1	v1	No Transformation	Consta	ınt	-,660	,814	-,810	,422
			AR	Lag 1	-,595	,140	-4,257	,000
				Lag 2	-,412	,137	-3,016	,004
			Differe	ence	2			

• Katsayılar anlamlı olduğu için modelin Normalized BIC değeri: 5,167'dir.

ARIMA(3, 2, 0)

Model Description

			Model Type
Model ID	v1	Model_1	ARIMA(3,2,0)

ARIMA Model Parameters

					Estimate	SE	t	Sig.
v1-Model_1	v1	No Transformation	Consta	ant	-,660	,553	-1,194	,238
			AR	Lag 1	-,728	,140	-5,191	,000
				Lag 2	-,628	,144	-4,350	,000
				Lag 3	-,422	,138	-3,060	,004
			Differe	ence	2			

• Katsayılar anlamlı olduğu için modelin Normalized BIC değeri: 5,137'dir.

ARIMA(1, 2, 1)

Model Description

			Model Type
Model ID	v1	Model_1	ARIMA(1,2,1)

ARIMA Model Parameters

					Estimate	SE	t	Sig.
v1-Model_1	v1	No Transformation	Consta	nt	-,498	,132	-3,771	,000
			AR	Lag 1	,226	,158	1,432	,159
			Differe	nce	2			
			MA	Lag 1	,994	,573	1,736	,089

• Katsayılar anlamsız çıktığı için model kullanılamaz.

ARIMA(2, 2, 1)

Model Description

			Model Type
Model ID	v1	Model_1	ARIMA(2,2,1)

ARIMA Model Parameters

					Estimate	SE	t	Sig.
v1-Model_1	v1	No Transformation	Consta	ınt	-,500	,139	-3,604	,001
			AR	Lag 1	,222	,161	1,378	,175
				Lag 2	,045	,161	,281	,780
			Differe	ence	2			

MA	Lag 1	,999	3,120	,320	,750

• Katsayılar anlamsız çıktığı için model kullanılmaz. Bu model anlamsız çıktığı için ARIMA(3,2,1) modeli de anlamsız çıkacaktır ve denenmemiştir.

Katsayıları anlamlı olan modellerin Normalized BIC değerleri aşağıdaki tabloda verilmiştir

MODELLER	NORMALİZED BIC		
	DEĞERLERİ		
ARIMA(0, 2, 1)	4,995		
ARIMA(1, 2, 0)	5,207		
ARIMA(2, 2, 0)	5,167		
ARIMA(3, 2, 0)	5,137		

• Normalized BIC değerlerinden en küçük olan (4,995), ARIMA(0,2,1) bu seri için en uygun modeldir. Tüm varsayımlar bu model üzerinden yapılır.

MODEL GEÇERLİLİK VARSAYIMLARI

1. Varsayım: Orijinal Seri ile Tahmin Serisi Arasındaki Zaman Serisi Grafik Uyumu

• Orijinal seri ile tahmin serisi arasındaki zaman serisi grafik uyumu oldukça iyidir.

2. Varsayım: Tahmin Serisinin Alt ve Üst Sınırları ile Orijinal Seri Arasındaki Zaman Serisi Uyumu

• Orijinal seri, tahmin serisinin alt ve üst sınırları içerisinde yer almaktadır.

3. Varsayım: Hata Serisinin Akgürültü Olup Olmaması

• ACF grafiğine bakıldığında gecikmeler güven sınırları içinde olduğu için hata serisi akgürültüdür.

Autocorrelations

Series:	Noise residual	from v	I-Model_I

			Box-Ljung Statistic			
Lag	Autocorrelation	Std. Error ^a	Value	df	Sig.b	
1	,028	,136	,043	1	,837	
2	-,139	,135	1,104	2	,576	

4 ,193 ,132 3,343 4 ,5 5 ,079 ,130 3,713 5 ,6 6 -,060 ,129 3,926 6 ,4 7 -,093 ,128 4,458 7 ,7 8 ,088 ,126 4,945 8 ,7 9 -,082 ,125 5,378 9 ,3 10 -,091 ,123 5,927 10 ,3 11 -,176 ,122 8,026 11 ,1 12 ,062 ,120 8,294 12 ,1 13 ,102 ,119 9,035 13 ,1 14 -,187 ,117 11,588 14 ,9 15 -,186 ,115 14,185 15 ,1 16 -,100 ,114 14,959 16 ,7 17 ,032 ,112 15,042 17 ,7	2	0.41	122	1 100	2	752
5 ,079 ,130 3,713 5 ,6 -,060 ,129 3,926 6 ,6 7 -,093 ,128 4,458 7 ,7 8 ,088 ,126 4,945 8 ,7 9 -,082 ,125 5,378 9 ,3 10 -,091 ,123 5,927 10 ,3 11 -,176 ,122 8,026 11 ,7 12 ,062 ,120 8,294 12 ,1 13 ,102 ,119 9,035 13 ,1 14 -,187 ,117 11,588 14 ,9 15 -,186 ,115 14,185 15 ,1 16 -,100 ,114 14,959 16 ,1 17 ,032 ,112 15,042 17 ,1 18 -,003 ,110 15,043 18 ,4	3	-,041	,133	1,199	3	,753
6 -,060 ,129 3,926 6 ,9 7 -,093 ,128 4,458 7 ,7 8 ,088 ,126 4,945 8 ,7 9 -,082 ,125 5,378 9 ,3 10 -,091 ,123 5,927 10 ,3 11 -,176 ,122 8,026 11 ,1 12 ,062 ,120 8,294 12 ,1 13 ,102 ,119 9,035 13 ,7 14 -,187 ,117 11,588 14 ,4 15 -,186 ,115 14,185 15 ,,1 16 -,100 ,114 14,959 16 ,,1 17 ,032 ,112 15,042 17 ,,2 18 -,003 ,110 15,043 18 ,,0 19 -,023 ,109 15,086 19 ,,0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>,502</td>						,502
7 -,093 ,128 4,458 7 , , , , , , , , , , , , , , , , , , ,						,591
8 .088 .126 4,945 8 9 .082 .125 5,378 9 10 .091 .123 5,927 10 11 .176 .122 8,026 11 12 .062 .120 8,294 12 13 .102 .119 9,035 13 14 187 .117 11,588 14 15 186 .115 14,185 15 16 100 .114 14,959 16 17 .032 .112 15,042 17 18 03 .110 15,043 18 19 023 .109 15,086 19 20 .047 .107 15,275 20 21 .078 .105 15,825 21 <				3,926		,687
9 -,082 ,125 5,378 9 ,3 10 -,091 ,123 5,927 10 ,3 11 -,176 ,122 8,026 11 ,3 12 ,062 ,120 8,294 12 ,3 13 ,102 ,119 9,035 13 ,4 14 -,187 ,117 11,588 14 ,4 15 -,186 ,115 14,185 15 ,5 16 -,100 ,114 14,959 16 ,5 17 ,032 ,112 15,042 17 ,5 18 -,003 ,110 15,043 18 ,6 19 -,023 ,109 15,086 19 ,7 20 ,047 ,107 15,275 20 ,7 21 ,078 ,105 15,825 21 ,6 22 -,187 ,104 19,087 22 ,6	7	-,093	,128	4,458	7	,726
10 -,091 ,123 5,927 10 ,3 11 -,176 ,122 8,026 11 ,7 12 ,062 ,120 8,294 12 ,7 13 ,102 ,119 9,035 13 ,7 14 -,187 ,117 11,588 14 ,9 15 -,186 ,115 14,185 15 ,9 16 -,100 ,114 14,959 16 ,9 17 ,032 ,112 15,042 17 ,9 18 -,003 ,110 15,043 18 ,9 19 -,023 ,109 15,086 19 ,7 20 ,047 ,107 15,275 20 ,7 21 ,078 ,105 15,825 21 ,7 22 -,187 ,104 19,087 22 ,6 23 ,041 ,102 19,253 23	8	,088	,126	4,945	8	,763
11 -,176 ,122 8,026 11 , 12 ,062 ,120 8,294 12 , 13 ,102 ,119 9,035 13 , 14 -,187 ,117 11,588 14 , 15 -,186 ,115 14,185 15 , 16 -,100 ,114 14,959 16 , 17 ,032 ,112 15,042 17 , 18 -,003 ,110 15,043 18 , 19 -,023 ,109 15,086 19 , 20 ,047 ,107 15,275 20 , 21 ,078 ,105 15,825 21 , 22 -,187 ,104 19,087 22 , 23 ,041 ,102 19,253 23 , 24 -,119 ,100 20,661 24 , <	9	-,082	,125	5,378	9	,800
12 ,062 ,120 8,294 12 , 13 ,102 ,119 9,035 13 , 14 -,187 ,117 11,588 14 , 15 -,186 ,115 14,185 15 , 16 -,100 ,114 14,959 16 , 17 ,032 ,112 15,042 17 , 18 -,003 ,110 15,043 18 , 19 -,023 ,109 15,043 18 , 19 -,023 ,109 15,043 18 , 19 -,023 ,109 15,043 18 , 19 -,023 ,109 15,043 18 , 19 -,023 ,109 15,086 19 , 20 ,047 ,107 15,275 20 , 21 ,078 ,105 15,825 21 ,	10	-,091	,123	5,927	10	,821
13 ,102 ,119 9,035 13 , 11 14 -,187 ,117 11,588 14 , 15 15 -,186 ,115 14,185 15 , 16 16 -,100 ,114 14,959 16 , 17 , 18 17 ,032 ,112 15,042 17 , 18 , 19 , 11 15,042 17 , 18 , 19 <	11	-,176	,122	8,026	11	,711
14 -,187 ,117 11,588 14 ,, 15 -,186 ,115 14,185 15 ; 16 -,100 ,114 14,959 16 ; 17 ,032 ,112 15,042 17 ; 18 -,003 ,110 15,043 18 , 19 -,023 ,109 15,086 19 ; 20 ,047 ,107 15,275 20 ; 21 ,078 ,105 15,825 21 ; 22 -,187 ,104 19,087 22 ; 23 ,041 ,102 19,253 23 ; 24 -,119 ,100 20,661 24 ; 25 ,092 ,098 21,547 25 ; 26 ,035 ,096 21,680 26 ; 27 -,073 ,094 22,279 27 ;	12	,062	,120	8,294	12	,762
15 -,186 ,115 14,185 15 ,; 16 -,100 ,114 14,959 16 ,; 17 ,032 ,112 15,042 17 ,; 18 -,003 ,110 15,043 18 ,; 19 -,023 ,109 15,086 19 ,; 20 ,047 ,107 15,275 20 ,; 21 ,078 ,105 15,825 21 ,; 22 -,187 ,104 19,087 22 ,; 23 ,041 ,102 19,253 23 ,; 24 -,119 ,100 20,661 24 ,; 25 ,092 ,098 21,547 25 ,; 26 ,035 ,096 21,680 26 ,; 27 -,073 ,094 22,279 27 ,; 28 -,201 ,092 27,039 28	13	,102	,119	9,035	13	,770
16 -,100 ,114 14,959 16 ,; 17 ,032 ,112 15,042 17 ,; 18 -,003 ,110 15,043 18 ,; 19 -,023 ,109 15,086 19 ,; 20 ,047 ,107 15,275 20 ,; 21 ,078 ,105 15,825 21 ,; 22 -,187 ,104 19,087 22 ,; 23 ,041 ,102 19,253 23 ,; 24 -,119 ,100 20,661 24 ,; 25 ,092 ,098 21,547 25 ,; 26 ,035 ,096 21,680 26 ,; 27 -,073 ,094 22,279 27 ,; 28 -,201 ,092 27,039 28 ,; 30 ,130 ,088 30,879 30 <	14	-,187	,117	11,588	14	,639
17 ,032 ,112 15,042 17 ; 18 -,003 ,110 15,043 18 ; 19 -,023 ,109 15,086 19 ; 20 ,047 ,107 15,275 20 ; 21 ,078 ,105 15,825 21 ; 22 -,187 ,104 19,087 22 ; 23 ,041 ,102 19,253 23 ; 24 -,119 ,100 20,661 24 ; 25 ,092 ,098 21,547 25 ; 26 ,035 ,096 21,680 26 ; 27 -,073 ,094 22,279 27 ; 28 -,201 ,092 27,039 28 ; 29 ,117 ,090 28,710 29 ; 30 ,130 ,088 30,879 30 ;	15	-,186	,115	14,185	15	,512
18 -,003 ,110 15,043 18 , 19 -,023 ,109 15,086 19 , 20 ,047 ,107 15,275 20 , 21 ,078 ,105 15,825 21 , 22 -,187 ,104 19,087 22 , 23 ,041 ,102 19,253 23 , 24 -,119 ,100 20,661 24 , 25 ,092 ,098 21,547 25 , 26 ,035 ,096 21,680 26 , 27 -,073 ,094 22,279 27 , 28 -,201 ,092 27,039 28 , 29 ,117 ,090 28,710 29 , 30 ,130 ,088 30,879 30 , 31 ,085 ,086 31,855 31 ,	16	-,100	,114	14,959	16	,528
19 -,023 ,109 15,086 19 , 20 ,047 ,107 15,275 20 , 21 ,078 ,105 15,825 21 , 22 -,187 ,104 19,087 22 , 23 ,041 ,102 19,253 23 , 24 -,119 ,100 20,661 24 , 25 ,092 ,098 21,547 25 , 26 ,035 ,096 21,680 26 , 27 -,073 ,094 22,279 27 , 28 -,201 ,092 27,039 28 , 29 ,117 ,090 28,710 29 , 30 ,130 ,088 30,879 30 , 31 ,085 ,086 31,855 31 , 32 -,055 ,084 32,291 32 ,	17	,032	,112	15,042	17	,592
20 ,047 ,107 15,275 20 , 21 ,078 ,105 15,825 21 , 22 -,187 ,104 19,087 22 , 23 ,041 ,102 19,253 23 , 24 -,119 ,100 20,661 24 , 25 ,092 ,098 21,547 25 , 26 ,035 ,096 21,680 26 , 27 -,073 ,094 22,279 27 , 28 -,201 ,092 27,039 28 , 29 ,117 ,090 28,710 29 , 30 ,130 ,088 30,879 30 , 31 ,085 ,086 31,855 31 , 32 -,055 ,084 32,291 32 , 33 ,111 ,082 34,157 33 , <	18	-,003	,110	15,043	18	,659
21 ,078 ,105 15,825 21 ,7 22 -,187 ,104 19,087 22 ,4 23 ,041 ,102 19,253 23 ,4 24 -,119 ,100 20,661 24 ,4 25 ,092 ,098 21,547 25 ,4 26 ,035 ,096 21,680 26 ,7 27 -,073 ,094 22,279 27 ,7 28 -,201 ,092 27,039 28 ,5 29 ,117 ,090 28,710 29 ,4 30 ,130 ,088 30,879 30 ,4 31 ,085 ,086 31,855 31 ,4 32 -,055 ,084 32,291 32 ,4 33 ,111 ,082 34,157 33 ,4 35 -,017 ,077 34,649 35 ,4 35 -,017 ,077 34,649 35 ,5	19	-,023	,109	15,086	19	,717
22 -,187 ,104 19,087 22 ,3 23 ,041 ,102 19,253 23 ,4 24 -,119 ,100 20,661 24 ,4 25 ,092 ,098 21,547 25 ,3 26 ,035 ,096 21,680 26 ,7 27 -,073 ,094 22,279 27 ,7 28 -,201 ,092 27,039 28 ,2 29 ,117 ,090 28,710 29 ,3 30 ,130 ,088 30,879 30 ,4 31 ,085 ,086 31,855 31 ,4 32 -,055 ,084 32,291 32 ,4 33 ,111 ,082 34,157 33 ,4 34 ,053 ,079 34,602 34 ,4 35 -,017 ,077 34,649 35 <t< td=""><td>20</td><td>,047</td><td>,107</td><td>15,275</td><td>20</td><td>,760</td></t<>	20	,047	,107	15,275	20	,760
23 ,041 ,102 19,253 23 , 24 -,119 ,100 20,661 24 , 25 ,092 ,098 21,547 25 , 26 ,035 ,096 21,680 26 , 27 -,073 ,094 22,279 27 , 28 -,201 ,092 27,039 28 , 29 ,117 ,090 28,710 29 , 30 ,130 ,088 30,879 30 , 31 ,085 ,086 31,855 31 , 32 -,055 ,084 32,291 32 , 33 ,111 ,082 34,157 33 , 34 ,053 ,079 34,602 34 , 35 -,017 ,077 34,649 35 , 36 -,068 ,074 35,477 36 ,	21	,078	,105	15,825	21	,779
24 -,119 ,100 20,661 24 , 25 ,092 ,098 21,547 25 , 26 ,035 ,096 21,680 26 , 27 -,073 ,094 22,279 27 , 28 -,201 ,092 27,039 28 , 29 ,117 ,090 28,710 29 , 30 ,130 ,088 30,879 30 , 31 ,085 ,086 31,855 31 , 32 -,055 ,084 32,291 32 , 33 ,111 ,082 34,157 33 , 34 ,053 ,079 34,602 34 , 35 -,017 ,077 34,649 35 , 36 -,068 ,074 35,477 36 , 37 ,016 ,072 35,529 37 ,	22	-,187	,104	19,087	22	,640
25 ,092 ,098 21,547 25 ,0 26 ,035 ,096 21,680 26 ,7 27 -,073 ,094 22,279 27 ,7 28 -,201 ,092 27,039 28 ,9 29 ,117 ,090 28,710 29 ,4 30 ,130 ,088 30,879 30 ,6 31 ,085 ,086 31,855 31 ,4 32 -,055 ,084 32,291 32 ,6 33 ,111 ,082 34,157 33 ,4 34 ,053 ,079 34,602 34 ,4 35 -,017 ,077 34,649 35 ,4 36 -,068 ,074 35,477 36 ,4 37 ,016 ,072 35,529 37 ,5 38 ,167 ,069 41,296 38 <td< td=""><td>23</td><td>,041</td><td>,102</td><td>19,253</td><td>23</td><td>,686</td></td<>	23	,041	,102	19,253	23	,686
26 ,035 ,096 21,680 26 , 27 -,073 ,094 22,279 27 , 28 -,201 ,092 27,039 28 , 29 ,117 ,090 28,710 29 , 30 ,130 ,088 30,879 30 , 31 ,085 ,086 31,855 31 , 32 -,055 ,084 32,291 32 , 33 ,111 ,082 34,157 33 , 34 ,053 ,079 34,602 34 , 35 -,017 ,077 34,649 35 , 36 -,068 ,074 35,477 36 , 37 ,016 ,072 35,529 37 , 38 ,167 ,069 41,296 38 ,	24	-,119	,100	20,661	24	,659
27 -,073 ,094 22,279 27 , 28 -,201 ,092 27,039 28 , 29 ,117 ,090 28,710 29 , 30 ,130 ,088 30,879 30 , 31 ,085 ,086 31,855 31 , 32 -,055 ,084 32,291 32 , 33 ,111 ,082 34,157 33 , 34 ,053 ,079 34,602 34 , 35 -,017 ,077 34,649 35 , 36 -,068 ,074 35,477 36 , 37 ,016 ,072 35,529 37 , 38 ,167 ,069 41,296 38 ,	25	,092	,098	21,547	25	,662
28 -,201 ,092 27,039 28 , 29 ,117 ,090 28,710 29 , 30 ,130 ,088 30,879 30 , 31 ,085 ,086 31,855 31 , 32 -,055 ,084 32,291 32 , 33 ,111 ,082 34,157 33 , 34 ,053 ,079 34,602 34 , 35 -,017 ,077 34,649 35 , 36 -,068 ,074 35,477 36 , 37 ,016 ,072 35,529 37 , 38 ,167 ,069 41,296 38 ,	26	,035	,096	21,680	26	,706
28 -,201 ,092 27,039 28 , 29 ,117 ,090 28,710 29 , 30 ,130 ,088 30,879 30 , 31 ,085 ,086 31,855 31 , 32 -,055 ,084 32,291 32 , 33 ,111 ,082 34,157 33 , 34 ,053 ,079 34,602 34 , 35 -,017 ,077 34,649 35 , 36 -,068 ,074 35,477 36 , 37 ,016 ,072 35,529 37 , 38 ,167 ,069 41,296 38 ,	27	-,073	,094	22,279	27	,723
29 ,117 ,090 28,710 29 ,4 30 ,130 ,088 30,879 30 ,4 31 ,085 ,086 31,855 31 ,5 32 -,055 ,084 32,291 32 ,5 33 ,111 ,082 34,157 33 ,4 34 ,053 ,079 34,602 34 ,6 35 -,017 ,077 34,649 35 ,6 36 -,068 ,074 35,477 36 ,6 37 ,016 ,072 35,529 37 ,5 38 ,167 ,069 41,296 38 ,5	28	-,201	,092	27,039	28	,516
30 ,130 ,088 30,879 30 ,4 31 ,085 ,086 31,855 31 ,4 32 -,055 ,084 32,291 32 ,4 33 ,111 ,082 34,157 33 ,4 34 ,053 ,079 34,602 34 ,4 35 -,017 ,077 34,649 35 ,4 36 -,068 ,074 35,477 36 ,4 37 ,016 ,072 35,529 37 ,5 38 ,167 ,069 41,296 38 ,5	29				29	,480
31 ,085 ,086 31,855 31 ,4 32 -,055 ,084 32,291 32 ,4 33 ,111 ,082 34,157 33 ,4 34 ,053 ,079 34,602 34 ,4 35 -,017 ,077 34,649 35 ,4 36 -,068 ,074 35,477 36 ,4 37 ,016 ,072 35,529 37 ,5 38 ,167 ,069 41,296 38 ,5	30				30	,421
32 -,055 ,084 32,291 32 ,4 33 ,111 ,082 34,157 33 ,4 34 ,053 ,079 34,602 34 ,4 35 -,017 ,077 34,649 35 ,4 36 -,068 ,074 35,477 36 ,4 37 ,016 ,072 35,529 37 ,5 38 ,167 ,069 41,296 38 ,5	31				31	,424
33 ,111 ,082 34,157 33 ,4 34 ,053 ,079 34,602 34 ,4 35 -,017 ,077 34,649 35 ,4 36 -,068 ,074 35,477 36 ,4 37 ,016 ,072 35,529 37 ,5 38 ,167 ,069 41,296 38 ,5						,452
34 ,053 ,079 34,602 34 ,4 35 -,017 ,077 34,649 35 ,4 36 -,068 ,074 35,477 36 ,4 37 ,016 ,072 35,529 37 ,5 38 ,167 ,069 41,296 38 ,5						,412
35 -,017 ,077 34,649 35 ,4 36 -,068 ,074 35,477 36 ,4 37 ,016 ,072 35,529 37 ,4 38 ,167 ,069 41,296 38 ,5						,439
36 -,068 ,074 35,477 36 ,4 37 ,016 ,072 35,529 37 ,5 38 ,167 ,069 41,296 38 ,5						,485
37 ,016 ,072 35,529 37 , 38 ,167 ,069 41,296 38 ,						,493
38 ,167 ,069 41,296 38 ,3						,538
						,329
19 UUD Ub/ AT30A 3U	39	,006	,067	41,304	39	,370
						,258

41	-,029	,061	45,609	41	,286
42	,028	,058	45,837	42	,316

Ho: Hata serisi akgürültüdür.

Hs: Hata serisi akgürültü değildir.

Otokorelasyon tablosundaki sig. değerlerinin hepsi α = 0.05 değerinden büyük olduğu için Ho hipotezi reddedilemez. Hata serisi akgürültüdür.

Genel Yorum:

ARIMA (0,2,1) modelini bu veri seti için uygulamak istatistiksel olarak anlamlıdır.

ÖNGÖRÜ DEĞERLERİ

185,39

172,14

158,24

143,71

128,53

• Varsayımlar sağlandığı için ARIMA(0,2,1) modeline ait 5 öngörü değeri yukarıda verilmiştir.

EN İYİ ÜSTEL DÜZLEŞTİRME YÖNTEMİ İLE EN İYİ ARIMA MODELİNİN KARŞILAŞTIRILMASI

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
HOLT_HATA_KARE	53	,02	791,04	113,8103	166,13149
ARIMA_HATA_KARE	51	,00	1065,56	121,6128	210,22205
Valid N (listwise)	51				

• Hata kareler ortalaması en küçük olan Holt Üstel Düzleştirme yöntemi en iyi model olarak tercih edilir.

Öngörü değerleri;

187,42

177,30

167,17

157,05

146,92

• En iyi model olan Holt Üstel Düzleştirme yöntemi ile yapılacak öngörüler daha güvenilirdir. Bu yönteme ait 5 öngörü değeri yukarıda verilmiştir.