# 必可赛前公益众筹赛

# 第四试

时间: 2024 年 10 月 5 日 07:40 ~ 12:10

| 题目名称    | 平衡的白鸽    | 你也在这里    | 卜卦           | 都是假的     |
|---------|----------|----------|--------------|----------|
| 题目类型    | 传统型      | 传统型      | 传统型          | 交互型      |
| 目录      | dove     | meet     | divining     | fake     |
| 可执行文件名  | dove     | meet     | divining     | fake     |
| 输入文件名   | dove.in  | meet.in  | divining.in  | fake.in  |
| 输出文件名   | dove.out | meet.out | divining.out | fake.out |
| 每个测试点时限 | 4.0 秒    | 5.0 秒    | 6.0 秒        | 6.0 秒    |
| 内存限制    | 512 MiB  | 1024 MiB | 1024 MiB     | 512 MiB  |
| 测试点数目   | 50       | 20       | 12           | 6        |
| 测试点是否等分 | 是        | 是        | 否            | 否        |

#### 提交源程序文件名

| 对于 C++ 语言 | dove.cpp | meet.cpp | divining.cpp | fake.cpp |
|-----------|----------|----------|--------------|----------|
|-----------|----------|----------|--------------|----------|

#### 编译选项

| 对于 C++ 语言 | -02 -std=c++14 |
|-----------|----------------|
|-----------|----------------|

#### 注意事项

- 1. 选手请直接提交源程序至 becoder.com.cn 上的对应比赛。
- 2. 输入输出文件名必须使用英文小写。
- 3. C++ 中函数 main() 的返回值类型必须是 int, 值必须为 0。
- 4. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
- 5. 程序可使用的栈空间大小与该题内存空间限制一致。
- 6. 若无特殊说明,每道题的代码大小限制为 100KB。
- 7. 若无特殊说明,输入与输出中同一行的相邻整数、字符串等均使用一个空格分隔。
- 8. 输入文件中可能存在行末空格,请选手使用更完善的读入方式(例如 scanf 函数)避免出错。
- 9. 直接复制 PDF 题面中的跨页样例,数据将带有行序号和页眉页脚,建议选手直接使用对应目录下的样例文件进行测试。
- 10. 使用 std::deque 等 STL 容器时,请注意其内存空间消耗。
- 11. 若发现有原题,请**保持静默状态直至比赛结束**,否则作违反考试纪律处理,**禁赛 3 年**。

# 平衡的白鸽(dove)

#### 【题目背景】

- 看机械的白鸽 从空中飞过
- 2 要如何点睛 它才堪称鲜活
- 3 数字的晨昏 是否更缤纷
- 4 仿生的情人 是否更忠贞
- 5 推开一扇门 还有万千重门

6

7 ——《蜃楼》

## 【题目描述】

小范有 n 只机械白鸽和 2n 个翅膀,翅膀的重量为  $w_i$ 。经过研究,他得出了两个参数 A,B:

- 若白鸽两个翅膀的重量差大于 A, 它将自行湮灭;
- 若白鸽两个翅膀的重量差大于 B 且小于等于 A, 它是一只普通的白鸽;
- 若白鸽两个翅膀的重量差小于等于 B, 它是一只鲜活的白鸽。

现在,小范已经制成了所有的翅膀,并将它们的重量尽数告知你,希望你能合理地分配,使得不存在湮灭的白鸽,且鲜活的白鸽尽量多。若无法做到,输出 -1。

在不同的平行世界, 你需要解决不同的询问。

#### 【输入格式】

从文件 dove.in 中读入数据。

为了减少读入量,请注意此题特殊的输入格式。

第一行两个正整数 T, n,分别表示数据组数和该测试点中机械白鸽的数量。

第二行 2n 个正整数  $w_i$ ,表示翅膀的重量。

每组数据的 w 均由上组经过一些修改得到。

对于每组数据:

第一行一个整数 p, 表示修改的数量。

接下来 p 行,每行两个正整数 x,v,表示将  $w_x$  修改为 v。

最后一行两个正整数 A, B,表示题中的参数。

询问不是独立的。

#### 【输出格式】

输出到文件 dove.out 中。

对于每组数据,如果存在合法方案,输出一个正整数,表示"鲜活的白鸽"的最大数量。否则,输出-1。

## 【样例1输入】

```
      1
      2
      2

      2
      1
      2
      3
      4

      3
      0
      4
      3
      1
      5
      2
      6
      1
      6
      7
      2
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1</td
```

## 【样例1输出】

```
1 2 2 1
```

### 【样例1解释】

初始,有  $w = \{1, 2, 3, 4\}$ 。

对于第一组数据,不存在修改, $w=\{1,2,3,4\}, A=3, B=1$ 。其中 (1,2) 配对,(3,4) 配对。

对于第二组数据, $w_1 \leftarrow 6$ , $w_2 \leftarrow 1$ , $w = \{6, 1, 3, 4\}, A = 5, B = 1$ ,其中 (6, 1) 配对,(3, 4) 配对。

## 【样例 2】

见选手目录下的 dove/dove2.in 与 dove/dove2.ans。 该样例符合测试点  $1 \sim 5$  的限制。

# 【样例 3】

见选手目录下的 dove/dove3.in 与 dove/dove3.ans。 该样例符合测试点  $21 \sim 30$  的限制。

# 【样例 4】

见选手目录下的 dove/dove4.in 与 dove/dove4.ans。 该样例符合测试点  $31\sim 40$  的限制。

## 【子任务】

对于 100% 的数据, $1 \le n \le 5 \times 10^5$ , $1 \le T \le 20$ , $1 \le x \le 2n$ , $0 \le p \le 2 \times 10^4$ , $1 \le w_i, v \le 10^{18}$ , $1 \le B \le A \le 10^{18}$ 。

每个测试点的具体限制见下表:

| 测试点          | $T \leq$ | $n \leq$        | $w_i \leq$ | 特殊性质 |
|--------------|----------|-----------------|------------|------|
| $1 \sim 5$   | 5        | 5               |            | 否    |
| $6 \sim 10$  | 1        | 10              | $10^{18}$  | 否    |
| $11 \sim 15$ |          | $5 \times 10^5$ |            | 是    |
| $16 \sim 20$ |          |                 | $10^{5}$   | 否    |
| $21 \sim 30$ | 20       | 2,000           |            | 否    |
| $31 \sim 40$ |          | $10^{5}$        | $10^{18}$  | 否    |
| $41 \sim 50$ |          | $5 \times 10^5$ |            | 否    |

特殊性质: A = B。

# 你也在这里 (meet)

## 【题目背景】

啊 那一个人 是不是只存在梦境里 为什么我用尽全身力气 却换来半生回忆

3

1

2

若不是你渴望眼睛 若不是我救赎心情 在千山万水人海相遇 喔 原来你也在这里

5

——刘若英《原来你也在这里》

## 【题目描述】

如何在梦里找寻他的踪迹?小烟有一个可以任意变化大小的正方形梦境搜索仪,他希望利用这个科技实现一场相遇。

小烟的梦境是一个 n 行 m 列的方格平面,仪器可以在这个平面上沿水平或竖直方向移动。仪器移动过程中覆盖过的地方,即可被认为是**搜索过的**。

为了保证梦境的完整性,小烟选择了 k 个方格作为**禁行区**,仪器移动过程中,不能覆盖到这 k 个方格。

小烟可以任意选择一个 1 到  $10^{100}$  内的正整数 x,让这个仪器变形为一个占地 x 行 x 列的正方体。然后他会选择一个位置放置这个仪器,并按照他喜欢的方式操纵这个仪器**沿水平或竖直方向**移动。

小烟认为,仪器的尺寸越大,搜索的效率就越高。因此,请你帮他找到一个最大的 正整数 x,使得存在一种操纵仪器的方式,满足下列两个条件:

- 仪器移动的过程中,它不会覆盖到禁行区内任意一个方格的任意一个部分;
- 仪器移动有限时间后,所有非禁行区的方格均是被搜索过的。

下面四张图展示了一个 3 行 3 列的梦境,其中 (3,3) 是唯一的一个禁行区(用橙色表示)。有一个占地 2 行 2 列的仪器放置在梦境中(用浅蓝色表示)。



• 仪器可以从图一的位置向左移动至图二的位置,再向下移动至图三的位置。在移动结束后,所有非禁行区的方格均是被**搜索过的**。

• 仪器不能从图一的位置向下移动至图四的位置,因为这样移动会导致仪器覆盖 (3,3) 这个禁行区。

由于梦境总是在变化, 所以你需要处理多组数据。

## 【输入格式】

从文件 meet.in 中读入数据。

本题的单个测试点中有多组测试数据。

第一行两个正整数 id,T,表示测试点编号和数据组数。

接下来是 T 组测试数据。

每组的第一行三个正整数 n, m, k,表示梦境的尺寸以及禁行区的数量。

接下来的 k 行每行两个正整数  $a_i, b_i$ ,表示  $(a_i, b_i)$  代表的方格是一个禁行区。

#### 【输出格式】

输出到文件 meet.out 中。

对于每组数据,输出一行一个整数,表示最大的、满足条件的正整数 x。若不存在满足条件的正整数,请输出 **-1**。

## 【样例1输入】

```
1 1 4
2 3 3 1
3 3 3
4 3 5 4
5 1 1
6 1 2
7 1 5
8 3 3
9 3 5 5
10 1 1
11 1 2
12 1 5
13 2 4
14 3 3
15 6 6 6
16 1 1
17 1 2
18 2 1
```

19 5 6

20

21 6 6

6 5

# 【样例1输出】

- 1 2
- 2 1
- 3 **-1**
- 4 3

## 【样例1解释】

- 第一组数据描述的梦境和题目描述部分的图例一致。x=2 时,可以按照题目描述部分描述的方式移动。
- 第二组数据描述的梦境如下图所示。



• 第三组数据描述的梦境如下图所示。(3,1) 和 (3,5) 所在的两个连通块互相不能到达,故不存在一个合法的正整数 x。



• 第四组数据描述的梦境如下图所示。



## 【样例 2】

见选手目录下的 *meet/meet2.in* 与 *meet/meet2.ans*。

### 【样例2解释】

该样例满足测试点 9,10 的限制。

### 【样例 3】

见选手目录下的 *meet/meet3.in* 与 *meet/meet3.ans*。

### 【样例3解释】

该样例满足测试点 1~3 的限制。

#### 【样例 4】

见选手目录下的 *meet/meet4.in* 与 *meet/meet4.ans*。

## 【样例4解释】

该样例满足测试点8的限制。

#### 【样例 5】

见选手目录下的 *meet/meet5.in* 与 *meet/meet5.ans*。

## 【样例5解释】

该样例满足测试点 12 的限制。

### 【样例 6】

见选手目录下的 meet/meet6.in 与 meet/meet6.ans。

## 【样例6解释】

该样例满足测试点 18~20 的限制。

## 【子任务】

下面设  $S = \sum (n \times m)$ 。

对于 100% 的数据,保证  $1 \le n, m \le 3 \times 10^6$ ,  $0 \le k < n \times m \le 3 \times 10^6$ ,  $1 \le T \le S \le 10^7$ ,  $\sum k \le 3 \times 10^6$ 。

| 测试点编号        | S                    | 特殊性质 |
|--------------|----------------------|------|
| $1 \sim 3$   | ≤ 500                | /    |
| $4 \sim 6$   | $\leq 3,000$         | /    |
| 7            |                      | A    |
| 8            | $\leq 2 \times 10^5$ | В    |
| 9,10         |                      | /    |
| 11           | $\leq 10^{6}$        | A    |
| 12           |                      | C    |
| 13, 14       |                      | /    |
| 15, 16       |                      | В    |
| 17           | $\leq 10^7$          | C    |
| $18 \sim 20$ |                      | /    |

特殊性质 A: 保证  $k \le 1$ 。

特殊性质 B: 保证  $n \leq 3$ 。

特殊性质C:保证在同一个测试点中, $a_i$ 全部相等。

### 【提示】

1

2

该隐瞒的事总清晰 千言万语只能无语

爱是天时地利的迷信 喔 原来你也在这里

请注意常数因子对程序效率的影响。

# **卜卦** (divining)

## 【题目背景】

那年仲夏 你背上行囊离开家 1 古道旁 我欲语泪先下 2 田里庄稼 收获了一茬又一茬 3 而 我们何时发芽 4 不停的猜 猜 猜 又卜了一卦 6 吉凶祸福 还是担惊受怕 7 对你的爱 爱 爱 望断了天涯 造化弄人 缘分阴错阳差 9 ——崔子格《卜卦》 10

#### 【题目描述】

"合卦"是一种双人卦,由一个标有  $1 \sim n$  的盘面和编号为  $1 \sim n$  的 n 根卦签组成。卜卦时,两人会按顺序依次执行下列操作:

- 1. 将 n 根卦签均匀打乱并随机分成两堆。假设两堆中的卦签根数分别为 x 和 n-x,其中  $x \in [0, n]$ 。
- 2. 第一个人选择卦签数量为 x 的一堆,并将这一堆中的所有卦签按任意顺序放置在 盘面的  $1 \sim x$  号位置上。
- 3. 第二个人将剩的那一堆中的所有卦签按任意顺序放置在盘面的  $x + 1 \sim n$  号位置上。
- 4. 卦象可以用一个数 B 来表示。具体地,B 是盘面的所有位置上,卦签编号与位置编号的差的绝对值之和。形式化地,设盘面上位置 i 处放置的卦签编号为  $p_i$ ,有  $B = \sum_{i=1}^{n} |i p_i|$ 。

小烟和小嘉正在卜卦。小烟先将签数为 x 的那一堆卦签摆在了盘面上  $1 \sim x$  的位置上,其中第 i 个位置放置的卦签编号为  $p_i$ 。

通过阅读古书,小嘉认为卦象为 b 是最好的。小嘉希望知道,是否存在一种放置剩下的 n-x 根卦签的方式,使得最终的卦象为 b。

小烟有一个幸运数字 s。下面的问题中将会用到这个数字。

#### 本题有两类测试点。

- 在第一类测试点中,sid = 1。此时你只需要**判断是否存在**至少 s 种放置剩下的 n x 根卦签的方式,使得最终的卦象为 b 即可。
- 在第二类测试点中,sid = 2。你需要判断是否存在至少 s 种放置剩下的 n x 根 卦签的方式,使得最终的卦象为 b。若存在,你需要找到放置结束后,满足卦象

为 b 的所有盘面 p 中,字典序第 s 小的盘面。

由于小烟和小嘉占卜了很多次,所以你需要处理多组不同的数据。

## 【输入格式】

从文件 divining.in 中读入数据。

本题的单个测试点中有多组测试数据。

第一行三个整数 id, sid, T, 表示测试点编号、测试点种类和数据组数。

接下来是 T 组测试数据。

每组的第一行四个非负整数 n, b, s, x,表示盘面大小、目标卦象、小烟的幸运数字和小烟放置的卦签数量。

第二行 x 个正整数, 第 i 个正整数  $p_i$  表示小烟在盘面上位置 i 处放置的卦签编号。

#### 【输出格式】

输出到文件 divining.out 中。

对于每组数据,按照下面的要求进行输出:

- sid = 1 时:输出一行一个整数。若存在,则输出 1;否则输出 -1。
- sid = 2 时: 若存在,则输出两行,第一行一个整数 **1**,第二行一个长度为 n 的排列 q,表示字典序第 s 小的合法最终盘面。若不存在,输出一行一个整数 **-1** 即可。

## 【样例1输入】

```
1 12 2 5
2 3 2 3 0
3 3 2 1 1
4 2
5 3 2 1 2
6 2 3
7 3 4 2 0
8 3 4 2 1
9 3
```

### 【样例1输出】

```
1 -1 2 1
```

```
3 2 1 3 4 -1 5 1 6 3 1 2 7 1 8 3 2 1
```

## 【样例1解释】

当 n=3 时,所有可能的最终盘面有以下的、按字典序从小到大排序的 6 种:

- (1,2,3), B=0.
- (1,3,2), B=2.
- (2,1,3), B=2.
- (2,3,1), B=4.
- (3,1,2), B=4.
- (3,2,1), B=4.

下面给出每组数据的解释:

- 对第一组数据,B=2 的最终盘面只有 2 个,不足 3 个。
- 对第二组数据,满足  $p_1 = 2$  且 B = 2 的最终盘面共有 1 个,字典序第 1 小的为 (2,1,3)。
- 对第三组数据,没有满足  $p_1 = 2$ ,  $p_2 = 3$  且 B = 2 的最终盘面。
- 对第四组数据,满足 B = 4 的最终盘面共有 3 个,字典序第 2 小的为 (3,1,2)。
- 对第五组数据,满足  $p_1 = 3$  且 B = 4 的最终盘面共有 2 个,字典序第 2 小的为 (3,2,1)。

#### 【样例 2】

见选手目录下的 *divining/divining2.in* 与 *divining/divining2.ans*。

## 【样例2解释】

该样例满足测试点 12,13 的限制。

## 【样例 3】

见选手目录下的 *divining/divining3.in* 与 *divining/divining3.ans*。

## 【样例3解释】

该样例满足测试点4的限制。

## 【样例 4】

见选手目录下的 *divining/divining4.in* 与 *divining/divining4.ans*。

### 【样例4解释】

该样例满足测试点 9~11 的限制。

## 【样例 5】

见选手目录下的 *divining/divining5.in* 与 *divining/divining5.ans*。

## 【样例5解释】

该样例满足测试点14,15的限制。

#### 【样例 6】

见选手目录下的 *divining/divining6.in* 与 *divining/divining6.ans*。

### 【样例6解释】

该样例满足测试点 16,17 的限制。

#### 【样例 7】

见选手目录下的 *divining/divining7.in* 与 *divining/divining7.ans*。

#### 【样例7解释】

该样例满足测试点 20~23 的限制。

#### 【样例 8】

见选手目录下的 *divining/divining8.in* 与 *divining/divining8.ans*。

### 【样例8解释】

该样例满足测试点 24~27 的限制。

# 【子任务】

下面设  $S = \sum n$ 。

对于 100% 的数据,保证  $1 \le n \le 28$ ,  $1 \le S \le 100$ ,  $0 \le b \le n^2$ ,  $1 \le s \le 10^{18}$ ,  $0 \le x \le n$ 。保证  $1 \le p_i \le n$  且  $p_i$  互不相同。

# 本题的各个测试点不等分。

| 测试点          | sid | n             | S                | 特殊性质 | 单个测试点分值 | 总分值 |
|--------------|-----|---------------|------------------|------|---------|-----|
| 1            |     | <b>&lt;</b> 9 |                  | /    | 3       | 3   |
| 2,3          |     | ≤ 14          |                  | /    |         | 8   |
| 4            | =1  | ≤ 28          | $\frac{1}{10^2}$ | A, B | 4       | 4   |
| 5, 6         | _ 1 |               |                  | A    |         | 8   |
| 7,8          |     |               |                  | В    | 7       | 14  |
| $9 \sim 11$  |     |               |                  | /    | 5       | 15  |
| 12, 13       |     | $\leq 9$      | $ \ge 10 $       |      | 4       | 8   |
| 14, 15       | =2  | $\leq 14$     |                  |      | 4       | 0   |
| 16, 17       |     | $\leq 17$     |                  |      | 2       | 4   |
| 18, 19       |     | $\leq 22$     |                  |      | 2       | 4   |
| $20 \sim 23$ |     | $\leq 25$     |                  |      | 3       | 12  |
| $24 \sim 27$ |     | $\leq 28$     |                  |      | 3       | 12  |

特殊性质 A: 保证 s = 1。 特殊性质 B: 保证 x = 0。

### 【提示】

4

1 猜猜猜又卜了一卦

2 是上上签 可还是放不下

3 对你的爱 爱 挨过几个冬夏

日夜思念 祈求别再变卦

请注意常数因子对程序效率的影响。

# 都是假的(fake)

这是一道交互题。

#### 【题目背景】



图 1: "六年的感情比不过比赛的规则"

## 【题目描述】

Simons 有一个 n 行 m 列的矩阵 a,其中每个元素都是  $[1, n \times m]$  的整数。矩阵的下标从 1 开始,坐标 (x,y) 表示矩阵第 x 行第 y 列的元素。

若将矩阵 a 分割成若干个 r 行 c 列的子矩阵(分割需满足 r|n,c|m,每个元素恰好属于一个子矩阵),这些矩阵全部相等,则 Simons 称数对 (r,c) 不是假的。

你需要猜出 Simons 手中的矩阵 a 有多少对 (r,c) 不是假的。

你只能询问 Simons 原矩阵两个不相交的子矩阵是否完全相同。两个子矩阵不相交, 当且仅当它们没有覆盖到位置相同的元素。

你最多只能询问  $3 \times |\log_2(n+m)|$  次。

因为 Simons 的朋友们也想玩矩阵,而他们的感情不是假的,所以你需要解决多组数据。

#### 【交互方式】

你不需要也不应该直接读入或输出任何数据。你不需要也不应该实现主函数。 交互开始前,交互库会得到测试数据组数 T。

接着进行 T 次交互。每次交互库会从输入文件中读取 n,m 和矩阵 a。这也说明了交互库不是自适应的: 矩阵 a 在交互开始前就已确定。

你需要实现一个函数 int truth(int n, int m, int  $\lim$ ), n, m 为矩阵的大小,  $\lim$  为该测试数据中你的询问次数上限,返回值是你得出的答案。

在每个测试点中,交互库都会调用恰好 T 次 truth 函数解决每组测试数据。因此请注意你的程序清空问题。

你的实现可以调用函数 int simons(int h, int w, int px1, int py1, int px2, int py2)。函数会返回 a 矩阵的以坐标 (px1,py1) 和坐标 (px2,py2) 为左上角的两个 h 行 w 列子矩阵是否完全相等(是则返回 1,不是则返回 0)。特别地,请注意你的调用需要满足:

- 不能超出矩阵的边界
- 两个子矩阵不能相交
- 调用不能超过限制次数
- $h > 0 \land w > 0$

违背这些条件的调用会使函数返回 -1。交互库将在发生这样的调用后对该测试数据判定为错误,但需要注意返回 -1 后继续运行程序仍然可能导致意外的后果。

每次调用 truth 函数时, 你最多只能调用 lim 次 simons 函数。

#### 【测试细节】

#### 提交时你的程序应当附带 fake.h 头文件。

题目保证在各函数规定的调用次数限制下,交互库运行的时间不超过 1.5 秒,交互库使用的内存大小不超过 20MiB。本地测试时请注意交互库对你的程序效率表现产生的影响。

我们在下发文件中下发了交互库 grader.cpp, 本题需要的头文件 fake.h, 编译程序 compile\_cpp.sh/.bat 和示例代码 sample.cpp。你可以在示例代码的基础上编写程序。

下面介绍本地测试方法。

#### 对于 Windows 系统:

- 将下发文件中的程序全部移动到你的工作文件夹,并将你的代码命名为 fake.cpp, 然后运行 compile\_cpp.bat。
- 若通过编译,此时你的工作文件夹下会出现 fake.exe。运行后向通过标准输入输入样例输入,正常情况下,交互库会向屏幕上打印你的程序交互后返回的答案,若出现 —1 意味着你的程序进行了不合法调用。将此输出与样例输出比较即可。

#### 对于 Linux 系统:

- 将你的栈空间手动调至 512MiB。
- 将下发文件中的程序全部移动到你的工作文件夹,并将你的代码命名为 fake.cpp, 然后运行 compile\_cpp.sh。
- 若通过编译,此时你的工作文件夹下会出现可执行文件 fake。运行后向通过标准输入输入样例输入,正常情况下,交互库会向屏幕上打印你的程序交互后返回

的答案,若出现 -1 意味着你的程序进行了不合法调用。将此输出与样例输出比较即可。

你也可以通过修改 grader.cpp 的方式改为文件输入输出。 注意:

- 修改下发文件对最终测试是无效操作。最终测试只会收取你编写的 fake.cpp。
- 你不应通过非法方式获取交互库的内部信息,如试图直接读取矩阵 *a* 的值,或直接与标准输入、输出流进行交互。**此类行为将被视为作弊**。
- 最终测试的交互库与下发交互库有所不同,你的解法不应该依赖交互库实现。

## 【输入格式】

你不需要直接从输入文件中读入任何数据。这里描述的是交互库读入的数据格式。第一行一个整数 T,表示数据组数。

对于每组数据,第一行三个整数 n, m, lim,表示矩阵大小和 simons 函数调用限制。接下来 n 行 m 列描述矩阵 a。

### 【输出格式】

你不需要直接向输出文件中输出任何数据。这里描述的是交互库输出的数据格式。 T 行整数,表示你的程序得出的答案。特别地,如果你的程序发生不合法调用,交 互库将输出 -1。

## 【样例1输入】

```
      1
      2

      2
      3 4 360

      3
      1 2 1 2

      4
      3 3 3 3

      5
      2 1 2 1

      6
      1 3 90

      7
      1 1 1
```

#### 【样例1输出】

```
1 2 2 2
```

### 【样例1解释】

本题的输入输出样例为对交互库的样例输入与其对应的期望输出。

对于第一组数据的矩阵 a, (3,4) 和 (3,2) 不是假的, 共 2 对。

对于第二组数据的矩阵 a, (1,1) 和 (1,3) 不是假的, 共 2 对。下面是 truth 函数中一个可能的能确定答案且合法的交互流程:

| 次数 | 调用                  | 返回值 |
|----|---------------------|-----|
| 1  | simons(1,1,1,1,1,2) | 1   |
| 2  | simons(1,1,1,1,1,3) | 1   |

#### 【样例 2】

见选手目录下的 fake/fake2.in 与 fake/fake2.ans。 这组样例满足了子任务 2 的数据范围。

#### 【样例 3】

见选手目录下的 fake/fake3.in 与 fake/fake3.ans。 这组样例满足了子任务 3 的数据范围。

## 【样例 4】

见选手目录下的 fake/fake4.in 与 fake/fake4.ans。 这组样例满足了子任务 6 的数据范围。

## 【部分分设置】

本题开启子任务捆绑和子任务依赖。

对于 100% 的数据,保证  $1 \le n, m \le 1000, 1 \le a_{ij} \le n \times m$ , $1 \le T \le 10$ 。lim 的限制较为特殊,如下表所示。

| 子任务 | n                  | m             | 特殊性质  | lim                                      | 得分 | 子任务依赖     |
|-----|--------------------|---------------|-------|------------------------------------------|----|-----------|
| 1   | ≤ 30               | ≤ 30          | 无特殊限制 | =30nm                                    | 10 | 无         |
| 2   | ≤ 1                |               | 无特殊限制 | $= 3 \times \lfloor \log_2(n+m) \rfloor$ | 20 | 无         |
| 3   | $< 10^{3}$         | $\leq 10^3$   | A     |                                          | 5  | 无         |
| 4   | $ \leq 10^{\circ}$ |               | В     |                                          | 5  | 无         |
| 5   | $\leq 729$         | $\leq 729$    | С     |                                          | 20 | 无         |
| 6   | $\leq 10^3$        | $\leq 10^{3}$ | 无特殊限制 |                                          | 40 | 1,2,3,4,5 |

特殊性质 A: a 中所有元素相同。

特殊性质 B: 所有  $a_{ij}$  都独立地在数据范围内等概率随机。

特殊性质 C: n, m 均为 3 的正整数幂。