CS & IT

ENGINERING

Database Management System

Query Language

DPP - 03 Discussion Notes

By- Vijay Agarwal sir

TOPICS TO BE COVERED

01 Question

02 Discussion

Consider the following relational algebra query on relations (W

A (p, q, r) and B (q, r):

$$\pi_p(A) - \pi_p((\pi_p(A) \times \pi_{q,r}(B) - \pi_{p,q,r}(A))$$

The above query is equivalent to?

[MCQ]

A.
$$A \cap B$$

$$T_{AB}(R)/T_{B}(S)$$
 \Rightarrow $T_{A}(R) - T_{A}(R) \times T_{B}(S) - T_{AB}(R)$

$$B.$$
 $A \cup B$

$$A \div B \qquad A \oplus (D)$$

Consider the following SQL query.

Which of the following relational algebra query is equivalent to above

$$\pi_{P1, P2, P3...Pn}((R_1 \times R_2 \times R_3 \times \times R_m) \rightarrow \bigcirc is missing$$

 $\sigma_{P1, P2, P3...Pn}(\pi_0)(R_1 \bowtie R_2 \bowtie R_3 \bowtie \bowtie R_m)) \Rightarrow Condition Applied on selection$

 $\pi_{P1, P2, P3...Pn}(\sigma_Q (R_1 \times R_2 \times R_3 \times \times R_m))$

[MCQ]

Consider the following equivalencies between expressions of relational algebra, each involving relations A(P, Q) and B (R, S). Assume that there is no foreign key, A attribute to table can be NULL, all attributes are of integer types which of the following equivalencies is/are TRUE? [MCQ]

$$\pi_{P,Q}(A \times B) = A$$

8.
$$A - \rho_{T(P,Q)}(B) = \rho_{T(P,Q)}(B - (\rho_{T(R,S)}(A)))$$

A-R is Different Answeg

$$\pi_{P,Q,S} (A \bowtie_{Q=R} B) = (A \bowtie (\rho_{T(Q,S)} (B)))$$
None of the above
$$A \bowtie_{Q=R} B \Rightarrow A \bowtie_{Q=R} B \Rightarrow A$$

Stame of

B-A ix Different Anguer.

Now & Recome Common Attribute

Notival Join select the tuple Which Satisfy equality andition on common Attorbut

Here B is non-empty, its Not Mentioned)

Here B is empty. $A \times b = \phi$ $A \times B = Empty$. $Tree (A \times B) \pm A$ $Tree (A \times B) \pm A$

Consider the table which contains the data shown below.

Reserves (SailID, BoatID, Date)

Boats(BoatID, BoatName, Color)

SailID	SailName	Rating	Age
1	Ram	5	35
2	Shaym	9	22
3	Ramesh	10	19
4	Suresh	3	NULL
5	Akhil	NULL	35

SailID	BoatID	Date
1	4	2017-03-15
1	5	2017-04-15
3	2	2014-04-15
4	4	2018-01-01
5	1 .	2017-12-25

Avg (1

Boats

Sailors

BoatID	BoatName	Color Red Yellow	
1	Lake		
2	Fish		
3	Clipper	Green	
4	Yatch	Green	
5	Fish	Yellow	
6	Clipper	red	

and the following relational algebra query.

$$\pi_{BoatlD}$$
 ($\sigma_{Age} = 35$ and $\tau_{ating} \ge 5$ (sailors) \bowtie Reserves) $\cap \pi_{BoatlD}$ ($\sigma_{Rating} < 5$ (Sailors) \bowtie Reserves)

The number of rows returned by the above query is 169

Soilors M Regerve.

Ram 5 35 Root id Date s.age sleating 2017-03-15 Thosal Sailer M Regerve) 35 2017-04-15 sname s. Rating Care Suseth NULL 3 2018-01-01 # Query: Routist C5 snown Roding Age Sureth 3 Null Boatid

What will be the result set if we write this query using only the basic operators of relational algebra? [MCQ]

- Result set of the basic operator's query will be greater than the result set of given query.
- B. Result set will only consist of attributes P and Q.
- Some of the operations in query cannot be performed due to incompatible relation schemas
 - D. Query cannot be written by only using basic operations.

w(par) $\chi(SPT)$ y(parst) z(rst) $((w*n) ny) \rightarrow z$

W(PQR) X (SPT)

NITUBLE N2 TUPLE

3 Attribute

3 Attribute

WE TI NIXM2 Tuble
CITC2 Attaibute

GAHOBUR SAHOBUR WN(PARSPT) NY (PARST)

Not Possible

Recover Arity (# ob Attoibute) Not Some

Not compitable.

Consider the following relational table A

A				
P	Q	R	S	T
p_1	q_1	r_1	s ₁	t ₁
p_2	q_2	r ₂	S ₂	t ₂

Also, consider the decomposition of the relation A into relations $\underline{A_1} = (P, Q, R)$ and $\underline{A_2} = (R, S, T)$ which of the following is/are correct based on the above relations?

$$\pi_{A1}(A) \bowtie \pi_{A2}(A) = A$$

$$\pi_{A1}(A) \bowtie \pi_{A2}(A) \neq A$$

 $PQ \rightarrow T$ is true in the table $\pi_{A1}(A) \bowtie \pi_{A2}(A)$

D.

None of the above

Alpha)
$$P$$
 Q S S T P_1 Q_1 S_1 S_1 S_1 S_1 S_2 S_2 S_2 S_2 S_2 S_2 S_2 S_2 S_3 S_4 S_4 S_4 S_5 S_4 S_5 S_4 S_5 S_5 S_6 S

Which of the following relational algebra expression is/are always holds correct?

$$(X \bowtie Y) \bowtie Z = (Z \bowtie X) \bowtie Y$$

A: CCPA>8

B. Branch = cs'

$$\sigma_{A}(\sigma_{B}(X)) = \sigma_{B}(\sigma_{A}(X))$$

$$\underline{\pi_{A}(\underline{\pi_{B}(X)})} = \underline{\pi_{B}(\underline{\pi_{A}(X)})}$$

None of the above

B: Sid Sname

A: Sid

MIA) & (B)

Consider the following Database

Tool (ToolD, Brand, Price)

Jobsite (Location, compensation, Task)

ToolBox(ToolBoxID, location)→location is a foreign key to jobsite.

Holds(ToolBoxID, ToolID) →ToolBoxID is a foreign key to ToolBox.

ToolID is a foreign key to Tool.

And consider the following SQL query.

SELECT DISTINCT T. ToolID

FROM Tool T, Holds H, ToolBox B, Jobsite J

WHERE T. ToolID = H.ToolId AND H.ToolBoxID = B. ToolBoxID AND B.

location = J. location AND J. Task = 'welding'

Which of the following would be an equivalent relational algebra query? (Foreign key is NOT NULL attributes).

 π_{ToolID} (Tool \bowtie Holds \bowtie ToolBox \bowtie $\sigma_{\text{task = 'welding'}}$ (jobsite))

 π_{ToolID} ($\sigma_{\text{task = 'welding'}}$ (Tool \bowtie (Holds \bowtie Tool Box) \bowtie Jobsite)

 $\sigma_{\text{task = 'welding'}}(\pi_{\text{ToolID}}(\text{Tool})) \bowtie \text{Holds} \bowtie \text{Tool Box} \bowtie \text{Jobsite})$

None of the above

Ang(A) R(B)

Toolid then Not Possible to Apply the

Condition Teak: welding

Consider the following two relations A(P, Q) and B(R, S). Which of the following statement is/are TRUE?

A(PQ)

B(RS)

P=R = A.P=B.R

The cardinality of $(A\bowtie_{P=R} B)$ is always larger than or equal to the size of $(A\bowtie_{P=R \text{ and } 0=S} B)$.

The cardinality of $(A\bowtie_{P=R \text{ and } Q\neq S} B)$ is always larger than or equal to the size of $(A\bowtie_{P=R \text{ and } Q=S} B)$.

These two-expression $(\sigma_{P=5}(A\bowtie_{Q=R}B))$ and $(\sigma_{P=5}(A)\bowtie_{Q=R}B)$ are always equivalent.

These two expressions $(A \times B) - (A \bowtie_{Q=R} B)$ and $(A \bowtie_{Q \neq R} B)$ are always equivalent.

AMP-RB we getting the tibles in Which Only (P=R). (legs Restrictions) gives more tiples

A M P.R AND R=S B

We are getting the tuples
in which P-R and R=S

Roth Condition Satisfy.

(More Restoiction)

$$\begin{array}{c|c}
\hline
B & A \\
\hline
P & Q \\
\hline
1 & 2 \\
\hline
3 & 5
\end{array}$$

$$\begin{array}{c|c}
\hline
P = R \text{ and } Q + S
\end{array}$$

