ESI 4606 Analytics I - Foundations of Data Science Homework 3

Due: September 28st (11:00AM), 2022

Problem 1 (2.5 points)

Consider the following data on the propagation velocity of an ultrasonic stress wave through a substance, y (km/s), and the tensile strength of substance, x (MPa).

Table 1: Hypothetical data on the propagation velocity

x, MPa	12	30	36	40	45	57	62	67	71	78	93	94	100	105
y, km/s	3.3	3.2	3.4	3.0	2.8	2.9	2.7	2.6	2.5	2.6	2.2	2.0	2.3	2.1

Suppose a simple linear regression, i.e., $y = \beta_0 + \beta_1 x + \varepsilon$, is used to fit the data, where $E(\varepsilon) = 0$ and $Var(\varepsilon) = \sigma^2$. Least squares estimation is employed to estimate the model parameters. Compute the following through **hand calculation**.

- (a) What are estimated values for $\hat{\beta}_0$ and $\hat{\beta}_1$? What are their corresponding interpretations.
- (b) For a two-sided hypothesis test: $H_0: \beta_1 = 0$ v.s. $H_1: \beta_1 \neq 0$, use *t*-test approach and a significance level of $\alpha = 0.05$ to perform the hypothesis testing and draw the conclusion.
- (c) What is the 95% confidence interval for β_1 ? What is the corresponding interpretation?
- (d) What are values for R^2 and $\hat{\sigma}$? If tensile strength of substance is 50 MPa, what is the predicted propagation velocity of an ultrasonic stress wave through the substance based on this model?

Note: (i) Use R only when computing the t critical value. Do not use R for the rest of calculation.

(ii) To get full points, include intermediate steps.

Problem 2 (1 point)

Prove that the fitted least squares line, $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$, will always pass through the point (\bar{x}, \bar{y}) , where \bar{x} and \bar{y} are sample averages.

Problem 3 (1.5 points)

This question involves **using R** to perform the multiple linear regression using the "Carseats" datain from R library of "ISLR".

- (a) Fit a multiple regression model to predict "Sales" using "Price", "Urban", and "US". Use the summary() function to print the results.
- (b) Provide an interpretation of each coefficient in the model. It is noted that some of the input variables in the model are qualitative.
- (c) Based on significant level of $\alpha = 0.05$, for which of the predictors can you reject the null hypothesis $H_0: \beta_i = 0$?
- (d) On the basis of your response to question (c), fit a smaller model that only uses the predictors for which there is evidence of association with the outcome.
- (e) How well do the models in (a) and (d) fit the data?
- (f) Using the model from (d), obtain 95% confidence intervals for the coefficient(s).

Note: To get full points, include R codes in the appendix sections