Chapter 4:

Interest Rates & Fixed Rate Mortgage Loans

Interest Rates

- There is a Cost to borrow money
- There is an Required Return to invest

 Investors must be compensated for lending their funds – even if there are no risks

- Real Rate of Interest
 - Excludes any adjustment for inflation

Interest Rates - Inflation

Inflation Adjustment

If investors expect inflation, it must be added to rate they require.

Components of the Mortgage Interest Rate

$$i_t = r_1 + f_1 + p_1$$

 r_1 = **R**eal Rate (risk free)

 $f_1 = Inflation Rate (expected)$

 p_1 = Risk **P**remiums

Interest Rate & Risk Premiums

• Default Risk

- Interest Rate Risk
 - Prepayment Risk
- Liquidity Risk

- Legislative Risk
 - Taxes & other

Note on Terminology

CAUTION

- Real Rate
 - Basic required return for lending money
 - No inflation; no risk
- Nominal Rate (Multiple definitions)
 - Nominal versus Real (difference being inflation factor)
 - Nominal versus Effective (difference is compounding)
 - Industry terminology: bond coupon rate (nominal) can differ from current yield, yield to maturity
- Normally, Nominal rate = "quoted rate".
- Effective Rate (Multiple definitions)
 - Conceptually; adjusted to be more accurate

Mortgage Loan Terms

- Loan amount
- Loan maturity date
- Interest rate
 - Nominal annual rate quoted (vs effective)
- Accrual rate (vs. pay rate) (accrual is actual interest accrued & owed)
- Fixed versus Variable rate
- Periodic payments
- Amortization
- Constant Payment Mortgage (CPM)

Fixed vs. Adjustable & i only vs amortization

- Fixed rate lender has interest rate risk
- Adjustable rate* borrower has i rate risk
 - Amortization (pay-down concepts)
 - Fully amortizing
 - Partial am
 - No amortization (i only)
 - Negative am
 - Reverse am (special case)

^{*} Adjustable rate = Variable rate

Loan Amortization

- Accrued Interest and Loan Payments
 - Accrual rate (i) vs. pay rate (ratio of payment/loan)

Type of CPM Loan	Pay Rate (ratio of payment/loan)	Loan Balance at Maturity
Fully Amortizing Regular "fixed rate"	> Accrual rate	Fully repaid; zero bal.
Partially Amortizing	> Accrual rate	Not fully repaid
Interest Only	= Accrual rate	= Amount Borrowed
Negative Amortizing	< Accrual rate	> Amount Borrowed

Typical Mortgage Payment Example 4-1

- Calculate the payment for a fixed rate, fully amortizing mortgage
 - **\$100,000** Mortgage
 - 7% Interest (annual quoted rate)
 - 30 Years
 - Monthly Payments
 - (implies monthly compounding)

Mortgage Payment

Mortgage Payment Patterns

- Interest paid in the <u>first month</u>
 - $(.07/12) \times $100,000 = 583.33
- Principal paid in the first month
 - **>**\$665.30 \$583.33 = \$81.96
- Every month, interest portion declines
- Every month, principal portion increases
- Amortization Schedule would show all.

Loan Amortization Table Example 4-1

Month	Beg Bal	Payment	Interest	Principal	Ending Bal
1	100,000	665.30	583.33	81.97	99,918.03
2	99,918.03	665.30	582.86	82.45	99,835.58
3	99,835.58	665.30	582.37	82.93	99,752.66
4	99,752.66	665.30	581.89	83.41	99,669.24
359	1,319.05	665.30	7.69	657.61	661.44
360	661.44	665.30	3.86	661.44	0.00

Loan Amortization Example 4-1

Text Example

- Calculate the payment
 - \$60,000 Mortgage
 - 12% Interest
 - 30 Year "Am"
 - Monthly Payments

\$617.17

Exhibit 4-3

Increase in monthly payments can shorten maturity OR Shorter maturities result in higher payments

Mortgage "Constant" (Concept box 4.1)

- Industry term still used
 - Originated with tables used before calculators
- This "factor" can be used to determine monthly payments on a loan or max loan amount
- = Monthly Payment / Loan Amount

```
= $617.17 / 60,000 "Constant" considers:
- term (30 yrs; mthly)
- rate (12% or 1%mth)
```

 Often used to calculate loan amounts given a max monthly payment (Pymt / factor)

Mortgage "Constant" (example)

Suppose you can afford more than \$617.17?

If you can afford \$800 /month; how much of a mortgage can you afford? (30 year amortization loan)

Use "Mortgage Constant" factor

\$800 / .010286

Result: \$77,776

Computing Loan Payoff

Amortized Loan Balance at a future date

- Two mathematical methods (use either)
 - Compute the present value of the remaining payments.
 - Compute the future value of the amortizing loan amount.

Computing a Loan Balance

(return to original \$100,000 loan example)

- From Example 4-1:
 - \$100,000 30 year loan @ 7%
 - We calculated mthly payments of \$665.30

- What is the outstanding (remaining) loan balance after 8 years (96 months)?
 - See chart on next slide.

Loan Amortization Example 4-1

Computing a Loan Balance

Present Value Method*

Years remaining

$$=$$
 22 x 12 = 264

^{*}Present value (as if we were at end of year 8) of the remaining contracted payments

Computing a Loan Balance

Future Value Method – Another approach

$$= 8 \times 12 = 96$$

Summary – so far

- We've covered typical mortgage scenarios
- Focus on "fixed rate" (but alternatives)
- Amortization
 - Solving for payment
 - Solving for principal amount
 - Solving for interest rate (yield)
 - Solving for "balance due" at future time
- Now we take it up to the next level

Loan Closing Costs

- Loan Closing Costs
- Additional Finance Charges
 - Loan Origination Fees
 - Cover origination expenses
 - Loan Discount Fees "Points"
 - Used to raise the yield on the loan
 - 1 Point = 1% of the loan amount
 - Lender may offer a lower rate
 - Borrower trade-off: points vs. contract rate
 - "Buying down your rate" with points
- Loan Fees increase the *effective* interest rate

Loan Closing Costs

- Why Points?
 - Lender can increase yield
 - Lender quotes rate based on 30 year amortization of points
 - Lender can increase true yield based on "expected" payoff date
 - Lender can quote "Lower rate" (to appear more competitive)
 - Thus, this will reduce amount of "payments"
 - Allow borrower to "qualify" for larger loan
 - Lender can provide alternatives (rate buy-downs)

- Calculating the *effective* interest cost on an 8% loan
- Multiple steps

- Example 4-2:
 - \$250,000 home
 - 80% LTV (loan to value) Loan (thus loan of \$200,000)
 - 8% Interest
 - 4 Points
 - 30 Years
 - What is the "effective" interest rate?

• Step 1: Compute <u>payment</u> using the face value (contract value) of the loan (ignoring points for now¹).

But, with points paid up front, the borrower actually receives less than the face value.

¹ The loan contract itself calculates payment on gross loan amount.

Step 2: Actual loan "proceeds"

Loan Amount: \$200,000

- Points Paid (.04 x \$200,000) (8,000)

Amount Received (net) \$192,000

• Step 3: Compute *effective* interest cost:

Multiply Monthly i rate result X 12 = 8.435%

Legal: This is APR and requires disclosure for home loans.

- Above example assumes full 30 year payout
- But, what is the effective rate if we think this loan might be repaid after 8 years (as most are- on average)?
 - Step 1: Compute PMT = \$1,467.53 (already done)
 - Step 2: Compute Future Loan Balance (payoff)

^{* 22} years remaining in loan structure

• Step 3: Compute effective interest cost.

Summary

- Nominal quoted rate on which payments are based
 - 8.00%.

- Disclosure rate including points
 - 8.435% (assumes full 30 year amortization and loan outstanding)

- More likely rate (yield) given typical prepayment
 - 8.72%

Truth-in-Lending

- Truth-in-Lending Act
 - Law requiring disclosure of:
 - Annual Percentage Rate ("APR")
 - APR on prior example is 8.435%

Example – Try these

- \$100,000 30 year loan @ 12%; 3points
- Compute monthly payment
 - \$1,028.61
- Compute "net proceeds" from loan
 - \$97,000
- Re-compute interest rate (assume 30 year life)
 - 12.41% (This is APR disclosure rate)
- Re-compute interest rate (assume 5 year life. Must calculate "payoff")
 - 12.82%

Exhibit 4-8

Orig. fees, Mortgage Yields and Maturity Text Example 12% & 3 points

This chart simply illustrates that the effective interest rate on a loan structure (with points) varies depending on how long the loan is outstanding.

1 year payoff	15.26%
5 year payoff	12.82%
30 years	12.41%

Pricing Fixed Rate Mortgages

- Lender's can adjust yields by altering the combinations of:
 - Quoted rates
 - Points
 - Other fees charged
 - Their assumption (or experience) with expected payoff timeframe
 - Prepayment fees
 - Compounding frequency (ie. Credit card loans)