Association Analysis Part 3

Sanjay Ranka
Professor
Computer and Information Science and Engineering
University of Florida

Multi-level Association Rules

Negative Association

- When do infrequent patterns become interesting?
 - Negative correlation:
 - P(A,B) < P(A)P(B)
 - e.g: Windows vs Linux
 - Negative association rules: $(\neg A \rightarrow B)$:
 - $P(\neg A, B) = P(B) P(A,B)$
 - e.g: \neg Regular \rightarrow Diet (s=0.17, c=0.25)

Coke	Diet	¬Diet	
Regular	1	32	33
¬Regular	17	50	67
	18	82	100

Approach 1: Using Negative Items

Tid	A	$\neg A$	В	¬В	С	$\neg C$	D	$\neg D$
1	1	0	0	1	1	0	0	1
2	1	0	0	1	0	1	0	1
3	1	0	0	1	1	0	0	1
4	1	0	1	0	0	1	0	1
5	1	0	0	1	0	1	1	0

Computationally expensive

University of Florida

Tends to produce many uninteresting negative associations

Approach 1: Using Negative Items

Size 2:

	В	¬В
A	10	320
$\neg A$	170	500

Support of $\{A,B\}$, $\{A,\neg B\}$ and $\{\neg A,B\}$ can be large

Size 3:

Approach 2: Using Positive Itemsets

- Boulicaut et al [2000]:
 - Compute support of negative itemsets based on the support of positive itemsets
 - e.g. $X = Y \cup \neg Z$

$$P(X) = \sum_{Y \subseteq I \subseteq (Y \cup Z)} (-1)^{|I| - |Y|} P(I)$$

- e.g.: $P(AB\overline{CD}) = P(AB)-P(ABC)-P(ABD)+P(ABCD)$
- To use this formula:
 - Need to use a very low support threshold, or
 - Use approximation

Approach 3: Using Domain Knowledge

Compute expected support using item taxonomy

Suppose C and G are frequent:

$$Exp (\sup(EJ)) = \frac{\sup(CG) \times \sup(E) \times \sup(J)}{\sup(C) \times \sup(G)}$$

$$Exp (\sup(CJ)) = \frac{\sup(CG) \times \sup(J)}{\sup(G)}$$

$$Exp (\sup(CH)) = \frac{\sup(CG) \times \sup(H)}{\sup(G)}$$

- There could be multiple taxonomies defined (based on type, brand, size, etc.)
- Limited to the nodes that are directly connected to the frequent itemsets

Approach 3: Using Domain Knowledge

- A negative itemset is a set of items whose actual support is significantly lower than its expected support
- Negative association rule: $X \Rightarrow Y$
- Rule interest measure:

$$RI = \frac{Exp(P(X \cup Y)) - P(X \cup Y)}{P(X)}$$

- Approach:
 - Find frequent itemsets at each level of the taxonomy
 - Identify candidate negative itemsets based on the frequent itemsets found and their item taxonomy
 - Count actual support of candidate itemsets and retain only the negative itemsets
 - Generate negative association rules from negative itemsets

Approach 4: Indirect Association

IF: a and M are frequent and highly dependent on each other b and M are frequent and highly dependent on each other

THEN: a and b are expected to be frequent

If a and b are infrequent, there is an interesting negative association

- \Rightarrow a and b are indirectly associated via mediator M
- ⇒ M identifies the context of negative association

Finding Interesting Negative Association

For all pairs of items:

Finding Interesting Negative Associations

- IM/FM is small
- IM/IN is small
- ⇒ Indirect Association is interesting

Finding Interesting Negative Association

Indirect Association is interesting when minimum itempair support threshold is small.

But, if threshold is too low, very few indirect associations are obtained.

Grouping Indirect Association

 Indirect associations can be grouped together into more compact structures if they have same mediator

Mining Indirect Associations

Market-basket Data

Transaction Id	Items
1	{A,B,C,D}
2	{A,B,E}
3	{B,C}
4	$\{A,B,D,E\}$
5	$\{B,C,D\}$

Itempair Support Matrix (Frequent pairs are shaded)

	Α	В	С	D	Е
Α	3	3	1	2	2
В	3	5	3	3	2
С	1	3	3	2	0
D	2	3	2	3	1
E	2	2	0	1	2

Frequent 3-itemset

Pattern	Support
$\{A,B,D\}$	2
$\{A,B,E\}$	2
{B,C,D}	2

Join step

Candidate Indirect Associations

Itempair	Mediato
{D,E}	{A,B}
{A,C}	{B,D}

Prune step

Indirect Association

Data Mining Sanjay Ranka Spring 2011

Applications: LA Times

Application: LA Times

Application: LA Times

Application: Reuter-21758 news

Indirect association can identify different contexts of a word

Application: Reuter-21758 news

Application: Reuter-21758 news

Application: Retail Data

Indirect association can identify competing and (sometimes) complimentary items

Application: Retail Data

Note: There is no checked-flag border wallpaper

Mining Continuous Attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

?

Tid	A	В	С	D	Е
1	1	0	0	1	1
2	1	0	0	1	0
3	1	0	0	1	1
4	1	0	1	0	0
5	1	0	0	1	0

Example:

 $\{\text{Refund} = \text{No}, (60\text{K} \leq \text{Income} \leq 80\text{K})\} \rightarrow \{\text{Cheat} = \text{No}\}\$

Discretize Continuous Attributes

- Unsupervised:
 - Equal-width binning
 - Equal-depth binning
 - Clustering

• Supervised:

Attribute values, v

Class	V_1	V_2	V 3	V_4	V_5	V_6	V 7	\mathbf{V}_8	V 9
Anomalous	0	0	20	10	20	0	0	0	0
Normal	150	100	0	0	0	100	100	150	100
	b	in ₁		bina			bi	n ₃	

Discretization Issues

 Size of the discretized intervals affect support & confidence

```
{Refund = No, (Income = $51,250)} \rightarrow {Cheat = No}
{Refund = No, (60K \le Income \le 80K)} \rightarrow {Cheat = No}
{Refund = No, (0K \le Income \le 1B)} \rightarrow {Cheat = No}
```

- If intervals too small
 - may not have enough support
- If intervals too large
 - may not have enough confidence

Discretization Issues

- Execution time
 - If intervals contain n values, there are on average O(n²) possible ranges

Too many rules

$$\{\text{Refund} = \text{No}, (\text{Income} = \$51,250)\} \rightarrow \{\text{Cheat} = \text{No}\}$$

$$\{\text{Refund} = \text{No}, (51\text{K} \leq \text{Income} \leq 52\text{K})\} \rightarrow \{\text{Cheat} = \text{No}\}$$

$$\{\text{Refund} = \text{No, } (50\text{K} \le \text{Income} \le 60\text{K})\} \rightarrow \{\text{Cheat} = \text{No}\}$$

Approach by Srikant & Agrawal

- Discretize attribute using equi-depth partitioning
 - Use partial completeness measure to determine number of partitions

C: frequent itemsets obtained by considering all ranges of attribute values P: frequent itemsets obtained by considering all ranges over the partitions

P is *K*-complete w.r.t C if $P \subseteq C$, and $\forall X \in C$, $\exists X' \in P$ such that:

- 1. X' is a generalization of X and support $(X') \le K \times \text{support}(X)$ $(K \ge 1)$
- 2. $\forall Y \subseteq X$, $\exists Y' \subseteq X'$ such that support $(Y') \leq K \times \text{support}(Y)$

Given *K* (partial completeness level), can determine number of intervals (N)

- Merge adjacent intervals as long as support is less than max-support
- Apply existing association rule mining algorithms
- Determine interesting rules in the output

Interestingness Measure

```
{Refund = No, (Income = $51,250)} \rightarrow {Cheat = No}
{Refund = No, (51K \le Income \le 52K)} \rightarrow {Cheat = No}
{Refund = No, (50K \le Income \le 60K)} \rightarrow {Cheat = No}
```

• Given an itemset: $Z = \{z_1, z_2, ..., z_k\}$ and its generalization $Z' = \{z_1', z_2', ..., z_k'\}$

P(Z): support of Z

 $E_{Z'}(Z)$: expected support of Z based on Z'

$$E_{z'}(Z) = \frac{P(z_1)}{P(z_1')} \times \frac{P(z_2)}{P(z_2')} \times \cdots \times \frac{P(z_k)}{P(z_k')} \times P(Z')$$

- Z is R-interesting w.r.t. Z' if $P(Z) \ge R \times E_{z'}(Z)$

Interestingness Measure

• For S: $X \to Y$, and its generalization S': $X' \to Y'$

P(Y | X): confidence of $X \rightarrow Y$

P(Y' | X'): confidence of $X' \rightarrow Y'$

 $E_{S'}(Y \mid X)$: expected support of Z based on Z'

$$E(Y \mid X) = \frac{P(y_1)}{P(y_1')} \times \frac{P(y_2)}{P(y_2')} \times \dots \times \frac{P(y_k)}{P(y_k')} \times P(Y' \mid X')$$

- Rule S is R-interesting w.r.t its ancestor rule S' if
 - Support, $P(S) \ge R \times E_{s'}(S)$ or
 - Confidence, $P(Y | X) \ge R \times E_{s'}(Y | X)$

Min-Apriori (Han et al)

Gator Engineering

Document-term matrix:

TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

Example:

University of Florida

W1 and W2 tends to appear together in the same document

Min-Apriori

- Data contains only continuous attributes of the same "type"
 - e.g., frequency of words in a document

TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

Normalize

TID	W1	W2	W3	W4	W5
D1	0.40	0.33	0.00	0.00	0.17
D2	0.00	0.00	0.33	1.00	0.33
D3	0.40	0.50	0.00	0.00	0.00
D4	0.00	0.00	0.33	0.00	0.17
D5	0.20	0.17	0.33	0.00	0.33

 Discretization does not apply as users want association among words not ranges of words

Min-Apriori

Why normalize?

TID	W1	W2
D1	0	10
D2	0	10
D3	0	10
D4	0	10
D5	1	1
D6	1	1
D7	10	0
D8	10	0
D9	10	0
D10	10	0

versus

TID	W3	W	4
D1	0		0
D2	0		0
D3	0		0
D4	0		0
D5	1		1
D6	1		1
D7	0		0
D8	0		0
D9	0		0
D10	0		0

Min-Apriori

New definition of support:

$$\sup(C) = \sum_{i \in T} \min_{j \in C} D(i, j)$$

TID	W1	W2	W3	W4	W5
			0.00		
D2	0.00	0.00	0.33	1.00	0.33
D3	0.40	0.50	0.00	0.00	0.00
D4	0.00	0.00	0.33	0.00	0.17
D5	0.20	0.17	0.33	0.00	0.33

Example:

Sup(W1,W2,W3)

$$= 0 + 0 + 0 + 0 + 0.17$$

= 0.17

Anti-monotone property of Support

TID	W1	W2	W3	W4	W5
D1	0.40	0.33	0.00	0.00	0.17
D2	0.00	0.00	0.33	1.00	0.33
D3	0.40	0.50	0.00	0.00	0.00
D4	0.00	0.00	0.33	0.00	0.17
D5	0.20	0.17	0.33	0.00	0.33

Example:

Sup(W1) =
$$0.4 + 0 + 0.4 + 0 + 0.2 = 1$$

Sup(W1, W2) = $0.33 + 0 + 0.4 + 0 + 0.17 = 0.9$
Sup(W1, W2, W3) = $0 + 0 + 0 + 0 + 0.17 = 0.17$