Assignment #5 Numerical Computing (COMP 350)

Guillaume Labranche (260585371)

due on 16 November 2015

1. • Vandermonde form (using vander_coef.m):

$$p(x) = 2 - x + 2x^2 - x^3$$

• Lagrange form (by hand):

$$p(x) = (x-1)(x-2)(x-3)(x-4) \left(\frac{\frac{2}{(1-2)(1-3)(1-4)}}{(x-1)} + \frac{\frac{0}{(2-1)(2-3)(2-4)}}{(x-2)} + \frac{\frac{-10}{(3-1)(3-2)(3-4)}}{(x-3)} + \frac{\frac{-34}{(4-1)(4-2)(4-3)}}{(x-4)} \right)$$

$$= (x-1)(x-2)(x-3)(x-4) \left(\frac{\frac{2}{(-1)(-2)(-3)}}{(x-1)} + \frac{\frac{-10}{(2)(1)(-1)}}{(x-3)} + \frac{\frac{-34}{(3)(2)(1)}}{(x-4)} \right)$$

$$= (x-1)(x-2)(x-3)(x-4) \left(\frac{\frac{2}{-6}}{(x-1)} + \frac{\frac{-10}{-2}}{(x-3)} + \frac{\frac{-34}{6}}{(x-4)} \right)$$

$$= \frac{-1}{3} \cdot (x-2)(x-3)(x-4) + 5 \cdot (x-1)(x-2)(x-4) + \frac{-17}{3} \cdot (x-1)(x-2)(x-3)$$

$$= \frac{-1}{3} \cdot (x^3 - 9x^2 + 26x - 24) + 5 \cdot (x^3 - 7x^2 + 14x - 8) + \frac{-17}{3} \cdot (x^3 - 6x^2 + 11x - 6)$$

$$p(x) = -x^3 + 2x^2 - x + 2$$

• Newton form (by hand using newton_coef.m for a_1, a_2, a_3, a_4):

$$p_0(x) = 2$$

$$p_1(x) = 2 - 2(x - 1)$$

$$p_2(x) = 2 - 2(x - 1) - 4(x - 1)(x - 2)$$

$$p_n(x) = p_3(x) = 2 - 2(x - 1) - 4(x - 1)(x - 2) - (x - 1)(x - 2)(x - 3)$$

$$p_n(x) = -x^3 + 2x^2 - x + 2$$

See vander_coef.m, vander_pval.m and gepp.m for the code used in (a).

See newton_coef.m and newton_pval.m (retrieved from Professor Chang's website) for the code used in (c). See q1.m for the code using all these functions.

2.

$$p(x) = 0.0385 + 0.1323x + 0.6211x^{2} + 1.8681x^{3} - 8.2312x^{4} + 13.1349x^{5} - 13.1349x^{6}$$
$$q(x) = 0.7192 - 2.3862x^{2} + 1.7195x^{4}$$

See Table 1 for the values at the 13 equally spaced points.

See Figure 1 for the graph of f(x), p(x), S(x) and g(x).

See newton_coef.m and newton_pval.m for the code used to calculate p(x).

See splinecubic_coef.m and splinecubic_pval.m for the code used to calculate S(x).

See leastsquares_coef.m and leastsquares_pval.m for the code used to calculate q(x).

See q2.m for the code generating the functions, tables and graph. .

x	f(x)	f(x) - p(x)	f(x) - S(x)	f(x) - g(x)
-1	0.0384615	0	0	-0.0140397
-0.833333	0.0544629	-0.553416	-0.0186871	0.163105
-0.666667	0.0825688	-1.38778e - 17	-1.38778e - 17	0.0842385
-0.5	0.137931	0.229347	0.0539594	-0.0921964
-0.333333	0.264706	0	5.55112e - 17	-0.210596
-0.166667	0.590164	-0.181723	-0.129022	-0.0640851
0	1	0	2.22045e - 16	0.280795
0.166667	0.590164	-0.181723	-0.128559	-0.0640851
0.333333	0.264706	-2.22045e - 16	-1.66533e - 16	-0.210596
0.5	0.137931	0.229347	0.0525706	-0.0921964
0.666667	0.0825688	-2.91434e - 16	1.38778e - 17	0.0842385
0.833333	0.0544629	-0.553416	-0.0135945	0.163105
1	0.0384615	2.498e - 15	-6.93889e - 18	-0.0140397

Table 1: f(x), f(x) - p(x), f(x) - S(x), and f(x) - g(x) at 13 equally spaced points on the interval [-1, 1].

Figure 1: p(x) is the interpolating polynomial of degree 6 for f(x) by the Newton approach. S(x) is the natural cubic spline function interpolating f(x) and $g(x) = a + bx^2 + cx^4$ approximates f(x) by the least squares.