GAN-BERT

accepted by ACL Danilo Croce, Giuseppe Castellicucci, Roberto Basili

채형주

목차

- 제안 배경
- GAN
- SS-GAN
- GAN-BERT
- Result
- Conclusion

제안 배경

- 항상 annotated data는 부족하고, unlabeled data를 직접 labeling하기에는 상당한 비용이 들어간다.
- BERT는 좋은 성능을 내지만 fine-tuning을 위한 많은 양의 labeled data 필요
- BERT를 fine-tuning 할때 200개 이하의 annotated data instances로 학습시킨다면 성능의 상당한 저하가 온다.

GAN

GAN: to find Nash Equilibrium

	Real Data	Fake Data
D == 1(진짜라고 판단)		Descriminator update
D == 0(가짜라고 판단)	Descriminator update	Generator update

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))]. \tag{1}$$

4.1 Global Optimality of $p_q = p_{data}$

We first consider the optimal discriminator ${\cal D}$ for any given generator ${\cal G}$.

Proposition 1. For G fixed, the optimal discriminator D is

$$D_G^*(oldsymbol{x}) = rac{p_{data}(oldsymbol{x})}{p_{data}(oldsymbol{x}) + p_g(oldsymbol{x})}$$

SS-GAN: semi supervised GAN

- 기존 GAN은 내쉬 균형으로 수렴이 잘 안되는 문제가 있음 (non-convex, large parameters)
- feature matching $||\mathbb{E}_{m{x}\sim p_{\mathrm{data}}}\mathbf{f}(m{x}) \mathbb{E}_{m{z}\sim p_{m{z}}(m{z})}\mathbf{f}(G(m{z}))||_2^2$
- semi-supervised learning

$$\begin{split} L &= -\mathbb{E}_{\boldsymbol{x},y \sim p_{\text{data}}(\boldsymbol{x},y)}[\log p_{\text{model}}(y|\boldsymbol{x})] - \mathbb{E}_{\boldsymbol{x} \sim G}[\log p_{\text{model}}(y=K+1|\boldsymbol{x})] \\ &= L_{\text{supervised}} + L_{\text{unsupervised}}, \text{ where} \\ L_{\text{supervised}} &= -\mathbb{E}_{\boldsymbol{x},y \sim p_{\text{data}}(\boldsymbol{x},y)} \log p_{\text{model}}(y|\boldsymbol{x},y < K+1) \\ L_{\text{unsupervised}} &= -\{\mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} \log[1-p_{\text{model}}(y=K+1|\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim G} \log[p_{\text{model}}(y=K+1|\boldsymbol{x})]\}, \end{split}$$

SS-GAN: semi supervised GAN

5	8	9	8	9	5	G	2	B	1
4	6	6	6	0	7	1	d	ス	8
2	0	1	0	7	4	4	9	5	9
			8						
			0						
									5
			6						
			7						
			0						
2	6	8	3	0	9	7		4	1

Figure 3: (*Left*) samples generated by model during semi-supervised training. Samples can be clearly distinguished from images coming from MNIST dataset. (*Right*) Samples generated with minibatch discrimination. Samples are completely indistinguishable from dataset images.

Model	Number of incorrectly predicted test examples for a given number of labeled samples					
	20	50	100	200		
DGN [21]			333 ± 14			
Virtual Adversarial [22]			212			
CatGAN [14]			191 ± 10			
Skip Deep Generative Model [23]			132 ± 7			
Ladder network [24]			106 ± 37			
Auxiliary Deep Generative Model [23]			96 ± 2			
Our model	1677 ± 452	221 ± 136	93 ± 6.5	90 ± 4.2		
Ensemble of 10 of our models	1134 ± 445	142 ± 96	86 ± 5.6	81 ± 4.3		

GAN-BERT

- sentence classification task
- Generator
 - input: 100-d noise vector
 - MLP
 - output : h_fake (768-d)
- Descriminator
 - input : h* = hCLS
 - MLP
 - output: k+1 vector of logit(trough softmax layer)
- BERT is updated when D is updated

$$L_{D_{\text{supervised}}} = -\mathbb{E}_{x,\ y\ \sim\ p_{\text{data}}} \log\left[p_{\text{model}}(y\ =\ i|x,\ i < k+1)\right]$$

$$L_{D_{\text{unsupervised}}} = -\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \log \left[1 - p_{\text{model}} \left(y = k + 1 | x\right)\right] - \mathbb{E}_{\mathbf{x} \sim G} \log \left[p_{\text{model}} \left(y = k + 1 | x\right)\right]$$

$$L_{G_{\text{feature matching}} = \left\| \mathbb{E}_x \, {\scriptstyle \sim \, p_d} f(x) \, - \, \mathbb{E}_x \, {\scriptstyle \sim \, \mathcal{G}} f(x) \right\|_2^2}$$

$$L_{\mathcal{G}_{unsup}} = -\mathbb{E}_{x \sim \mathcal{G}} \log[1 - p_m(\hat{y} = y | x, y = k+1)]$$

GAN-BERT

model specification
 noise vector : from N(0, 1)
 h : 768-d
 activation function G, D : leaky relu
 dropout : 0.1
 annotated data 를 0.1% 또는 1%부터 사용하기 시작하고, 점점 늘려가
면서 BERT와 차이를비교
 가능하면 사용한 annotated data의 100배에 해당하는 unlabeled data를
제공

Results

- Dataset
 - 20 NEWS Group(20N)
 - Question Classification(QC) [fine grained / coarse grained]
 - Sentiment Analysis(SST-5)
 - MNLI

Conclusion

- 안좋은 훈련환경에서 BERT를 능가하였다!
- labeled data개수가 적을 때에 GAN을 이용하여 성능을 비약적으로 향상시켰다.
- GPT-2, DistilBERT같은 다른 모델에도 적용가능하고, 다양한 task에도 적용할 수 있는 가능성을 열어주었다.
- BERT의 pre-training단계에도 직접적으로 적용해보고 싶다.