

Emissivity review:

Most objects are not blackbodies!

At a given wavelength, a real object emits / absorbs a fraction $\varepsilon_{\lambda}/a_{\lambda}$ of the radiation a blackbody would emit at a given temperature.

$$\varepsilon_{\lambda}$$
 = emissivity
 a_{λ} = absorptivity

$$\mathbf{a}_{\lambda} = \mathbf{\epsilon}_{\lambda}$$

For most solids and liquids ε_{λ} and a_{λ} are fairly constant with wavelength, and usually ε_{λ} and $a_{\lambda} \sim 1$

Emissivity of the land surface in different areas of China

Greenhouse gases:

Only particular frequencies/wavelengths of light can be absorbed/emitted by a particular gas.

A gas emits and absorbs at the same frequencies/wavelengths

Greenhouse gases:

Only particular frequencies/wavelengths of light can be absorbed/emitted by a particular gas.

A gas emits and absorbs at the same frequencies/wavelengths

<u>Important greenhouse gases:</u>

Earth emits a lot of infrared light between 5–30 um.

For a gas to be an important greenhouse gas on Earth, it has to:

(a) absorb strongly in some band

(b) not have other gases absorbing strongly there (otherwise nothing happens when you add it to the atmosphere)

(c) Earth has to be emitting a lot of electromagnetic radiation in that band for the gas to block