Linear Regression

Univariate linear regression and gradient descent

Khiem Nguyen

Email	khiem.nguyen@glasgow.ac.uk			
MS Teams	khiem.nguyen@glasgow.ac.uk			
Whatsapp	+44 7729 532071 (Emergency only)			

May 18, 2025

- > Supervised learning model data has "right answers".
- > Regression model predicts numbers.
- Classification model predicts categories.

Linear regression: Data table

BMI	RI
32.1	151
21.6	75
30.5	141
25.3	206
23	135

Training		ing	Data used to train the model
		x	y
		BMI	RI
	(1)	32.1	151
	(2)	21.6	75
	(3)	30.5	141
	(4)	25.3	206
	(m)	23	135

Training		Data used to train the model
	x	y
	BMI	RI
(1)	32.1	151
(2)	21.6	75
(3)	30.5	141
(4)	25.3	206
(m)	23	135

Notation

 $\begin{aligned} \mathbf{x} &= \mathbf{input} \ \mathbf{variable} \\ &\quad \mathbf{feature} \\ \mathbf{y} &= \mathbf{output} \ \mathbf{variable} \\ &\quad \mathbf{target} \ \mathbf{variable} \end{aligned}$

Training		Data used to train the model
	x	y
	BMI	RI
(1)	32.1	151
(2)	21.6	75
(3)	30.5	141
(4)	25.3	206
(m)	23	135

Notation

x =input variable feature y =output variable target variable

(x,y) = single training example

 $(x^{(i)}, y^{(i)}) = i^{\text{th}}$ training example

We have $(1^{\text{st}}, 2^{\text{nd}}, 3^{\text{rd}}, \dots, N^{\text{th}})$

Training		Dat	a used to train the model	
		x	y	
		BMI	RI	
	(1)	32.1	151	-
	(2)	21.6	75	
	(3)	30.5	141	
	(4)	25.3	206	
	(m)	23	135	
	(1)	20.1	. (1)	171

$$x^{(1)} = 32.1, \quad y^{(1)} = 151$$

 $x^{(2)} = 21.6, \quad y^{(2)} = 75$

$$(x^{(1)}, y^{(1)}) = (32.1, 151)$$

Note: $x^{(2)} \neq x^2 \rightarrow \text{not exponent, just indexing}$

Notation

x =input variable feature y =output variable target variable

$$(x,y) = \text{single training example}$$

 $(x^{(i)}, y^{(i)}) = i^{\text{th}} \text{ training example}$

We have
$$(1^{\text{st}}, 2^{\text{nd}}, 3^{\text{rd}}, \dots, N^{\text{th}})$$

4/31

Learning a hypothesis/function model

Learning a hypothesis/function model

- \triangleright Linear regression with one variable (single feature x)
- <u>Univariate</u> linear regression one variable

Interpretation of linear model

x	y
32.1	151
21.6	75
30.5	141
25.3	206
23	135

Interpretation of linear model

Model

$$f_{w,b}(x) = \mathbf{w}x + \mathbf{b}, \qquad \mathbf{w}, \mathbf{b} - \text{parameters}$$

x	y
32.1	151
21.6	75
30.5	141
25.3	206
23	135

Interpretation of linear model

x	y
32.1	151
21.6	75
30.5	141
25.3	206
23	135

Model

$$f_{w,b}(x) = \mathbf{w}x + \mathbf{b}, \qquad \mathbf{w}, \mathbf{b} - \text{parameters}$$

What do the beasts w, b do, and Where (how) to find them?

Minimize the total distance
$$[d_1(w,b)+d_2(w,b)]$$
 with respect to w,b
$$\min_{w,b}[d_1(w,b)+d_2(w,b)]$$

Many more data points $\quad \rightarrow \quad$ many more distances $d_j = d_j(w,b), \, j = 1, \ldots, m$

Many more data points \rightarrow many more distances $d_j = d_j(w,b), j = 1, \dots, m$

$$\min_{w,b} \left\{ \quad \left[d_1(w,b) + \dots + d_m(w,b) \right] \right\}$$

Many more data points \rightarrow many more distances $d_j = d_j(w, b), j = 1, \dots, m$

$$\min_{w,b} \left\{ \frac{1}{{\color{red} m}} \Big[d_1(w,b) + \cdots + d_m(w,b) \Big] \right\}$$

Many more data points \rightarrow many more distances $d_j = d_j(w, b), j = 1, \dots, m$

$$\min_{w,b} \left\{ \frac{1}{{\color{red} m}} \Big[d_1(w,b) + \cdots + d_m(w,b) \Big] \right\}$$

Many more data points \rightarrow many more distances $d_j = d_j(w, b), j = 1, \dots, m$

$$\min_{w,b} \left\{ \frac{1}{\mathbf{m}} \sum_{i=1}^m d_i(w,b) \right] \right\}$$

But ... life is always more complicated than it looks \odot

But ... life is always more complicated than it looks \odot

Let us look at three data points
$$\{\mathbf{p}^{(1)}=(1,3),\,\mathbf{p}^{(2)}=(2,4),\,\mathbf{p}^{(3)}=(3,5)\}$$
:

$$\min_{w,b} G(w,b) = \min_{w,b} \frac{1}{3} \left(|w \times 1 + b - 3| + |w \times 2 + b - 4| + |w \times 3 - 5| \right)$$

But ... life is always more complicated than it looks \odot

Let us look at three data points $\{\mathbf{p}^{(1)}=(1,3),\,\mathbf{p}^{(2)}=(2,4),\,\mathbf{p}^{(3)}=(3,5)\}:$

$$\min_{w,b} G(w,b) = \min_{w,b} \frac{1}{3} \left(|w \times 1 + b - 3| + |w \times 2 + b - 4| + |w \times 3 - 5| \right)$$

- $\succ G(w,b)$ is just linear in both w and b depending on the different regions
- ➤ We have to consider different regions to remove absolutes

But ... life is always more complicated than it looks \odot

Let us look at three data points $\{\mathbf{p}^{(1)} = (1,3), \, \mathbf{p}^{(2)} = (2,4), \, \mathbf{p}^{(3)} = (3,5)\}$:

$$\min_{w,b} G(w,b) = \min_{w,b} \frac{1}{3} \Big(|w \times 1 + b - 3| + |w \times 2 + b - 4| + |w \times 3 - 5| \Big)$$

- $\succ G(w,b)$ is just linear in both w and b depending on the different regions
- > We have to consider different regions to remove absolutes

But ... but how about this?

$$\min_{w,b} \mathcal{L}(w,b) = \frac{1}{3} \left[(w \cdot 1 + b - 3)^2 + (w \cdot 2 + b - 4)^2 + (w \cdot 3 + b - 5)^2 \right] \tag{2}$$

- \triangleright $\mathcal{L}(w,b)$ is a quadratic function in both w and b
- > Finding the minimum of quadratic function is easy.

$$\begin{aligned} \hat{y}^{(i)} &= f_{w,b}(x^{(i)}) \\ &= wx^{(i)} + b \end{aligned} =$$

$$\begin{aligned} \hat{y}^{(i)} &= f_{w,b}(x^{(i)}) \\ &= wx^{(i)} + b \end{aligned} \qquad \qquad \begin{aligned} \mathcal{L}(w,b) &= \qquad \left(\hat{y}^{(i)} - y^{(i)}\right)^2 \\ &= \end{aligned}$$

$$\hat{y}^{(i)} = f_{w,b}(x^{(i)})$$

$$= wx^{(i)} + b$$

$$= \mathcal{L}(w,b) = \frac{1}{2m} \sum_{i=1}^{m} \left(\hat{y}^{(i)} - y^{(i)} \right)^{2}$$

$$= 0$$

$$\begin{split} \hat{y}^{(i)} &= f_{w,b}(x^{(i)}) \\ &= wx^{(i)} + b \end{split}$$

$$\begin{split} \mathcal{L}(w,b) &= \frac{1}{2m} \sum_{i=1}^m \left(\hat{y}^{(i)} - y^{(i)} \right)^2 \\ &= \frac{1}{2m} \sum_{i=1}^m \left(f_{w,b}(x^{(i)}) - y^{(i)} \right)^2 \end{split}$$

$$\begin{split} \hat{y}^{(i)} &= f_{w,b}(x^{(i)}) \\ &= wx^{(i)} + b \end{split} \qquad \qquad \mathcal{L}(w,b) = \frac{1}{2m} \sum_{i=1}^{m} \left(\hat{y}^{(i)} - y^{(i)} \right)^2 \\ &= \frac{1}{2m} \sum_{i}^{m} \left(f_{w,b}(x^{(i)}) - y^{(i)} \right)^2 \end{split}$$

Find w, b so that: $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all data points $(x^{(i)}, y^{(i)})$.

$$\min_{w,b} \mathcal{L}(w,b)$$

Cost function: Intuition (again!)

- ightharpoonup Model: $f_{w,b} = wx + b$
- \triangleright Parameters: w, b
- $\begin{array}{c} {\color{red} {\color{blue} {\color{b} {\color{blue} {\color{b} {\color{blue} {\color{blue} {\color{blue} {\color{blue} {\color{blue} {\color{blue} {\color{blue} {\color{b} {\color{b}$

Simplified case: b = 0

$$f_{w,b=0}(x) := f_w(x) = wx$$

$$\mathcal{L}(w) = \frac{1}{2m} \sum_{i=1}^m \left(f_w(x^{(i)} - y^{(i)} \right)^2$$

$$\longrightarrow \min_{w} \mathcal{L}(w)$$

Cost function: Intuition (again!)

$$\begin{split} \mathcal{L}(w) &= \frac{1}{2m} \sum_{i=1}^m (f_w(x^{(i)}) - y^{(i)})^2 \\ &= \frac{1}{2m} \sum_{i=1}^m (wx^{(i)} - y^{(i)})^2 \\ &= \frac{1}{2 \times 3} (0^2 + 0^2 + 0^2) = 0 \end{split}$$

$$\mathcal{L}(w=1,b=0)=0$$

Cost function: Intuition (again!)

$$\begin{split} \mathcal{L}(w) &= \frac{1}{2m} (wx^{(i)} - y^{(i)})^2 \\ &= \frac{1}{2 \times 3} \big[(0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2 \big] \\ &= 7/12 \end{split}$$

$$\mathcal{L}(w=0.5,b=0)=0.58333$$

Cost function: Intuition (again!)

$$\begin{split} \mathcal{L}(w) &= \frac{1}{2m} (wx^{(i)} - y^{(i)})^2 \\ &= \frac{1}{2\times 3} \big[(0-1)^2 + (0-2)^2 + (0-3)^2 \big] \\ &= 14/6 \end{split}$$

$$\mathcal{L}(w=0,b=0) = 14/3 \approx 2.3333$$

Cost function: Intuition (again!)

$$\begin{split} \mathcal{L}(w) &= \frac{1}{2 \times 3} \big[(w-1)^2 + (2w-2)^2 + (3w-3)^2 \big] \\ &= \frac{1}{6} (1+4+9)(w-1)^2 \\ &= \frac{7}{3} (w-1)^2 \end{split}$$

$$J(b=0) = \frac{7}{3}(w-1)^2$$

Visualize cost function

For our specific example with three data points $\{\mathbf{p}^{(1)} = (1,1), \mathbf{p}^{(2)} = (2,2), \mathbf{p}^{(3)} = (3,3)\}$:

$$\begin{split} \mathcal{L}(w,b) &= \frac{1}{2\times3} \big[(w\times1+b-1)^2 + (w\times2+b-2)^2 + (w\times3+b-3)^2 \big] \\ &= \frac{7}{3} (w-1)^2 + \frac{b^2}{2} + 2(w-1)b \end{split}$$

For general cost function using linear regression model

$$\begin{split} \mathcal{L}(w,b) &= \frac{1}{2m} \sum_{i=1}^m \left(\frac{\mathbf{w}}{\mathbf{x}_{\in \mathbb{R}}^{(i)}} + \frac{\mathbf{b}}{\mathbf{b}} - \underbrace{y_{(i)}^{(i)}} \right)^2 \\ &= \sum_{i=1}^m (A_i w^2 + B_i b^2 + C_i w b + D_i), \qquad \text{where } A_i, B_i, C_i, D_i \text{ are all constants} \end{split}$$

No matter how complicated the data would be, $\mathcal{L}(w,b)$ is a quadratic function of (w,b):

$$\begin{split} \mathcal{L}(w,b) &= \gamma_{11} w^2 + \gamma_{12} w b + \gamma_{21} b w + \gamma_{22} b^2 + \gamma_{00}, \\ & \gamma_{11}, \gamma_{12}, \gamma_{21}, \gamma_{22}, \gamma_{00} \in \mathbb{R} \end{split}$$

Visualize cost function

$$f(x_1, x_2) = x_1^2 + x_2^2$$

(a) Bowl shape quadratic function $x_1^2 + x_2^2$

(b) Contour plot of quadratic function $x_1^2 + x_2^2$

Visualize cost function

$$\mathcal{L}(w,b) = \frac{7}{3}(w-1)^2 + \frac{b^2}{2} + 2(w-1)b$$

(a) Bowl shape cost function $\mathcal{L}(w,b)$

(b) Contour plot of $\mathcal{L}(w, b)$

Find minimization of a function

- \triangleright Have some function $f(x_1, x_2, \dots, x_n)$
- ightharpoonup Want to minimize function f w.r.t. (x_1,x_2,\ldots,x_n) : $\min_{x_1,\ldots,x_n} f(x_1,\ldots x_n)$
- \rightarrow The stationary point $\mathbf{x} = (x_1^*, \dots, x_2^*)$ is the solution of

$$\nabla f(x_1,\dots,x_n) = \mathbf{0} \quad \Longleftrightarrow \quad \begin{cases} \frac{\partial f}{x_1} = 0 \\ \cdots \\ \frac{\partial f}{x_n} = 0 \end{cases}$$

Last example:
$$\mathcal{L}(w,b) = \frac{7}{3}(w-1)^2 + \frac{b^2}{2} + 2(w-1)b$$

$$\begin{cases} 0 = \frac{\partial J}{\partial w} = \frac{2}{3}(-7 + 3b + 7w) \\ 0 = \frac{\partial J}{\partial b} = -2 + b + 2w \end{cases} \Rightarrow \begin{cases} w = 1 \\ b = 0 \end{cases}$$

Find minimization of a function: Stationary point, 1D example

Find minimization of a function: Stationary point, 2D example

Gradient descent

Problem setting

- Have some function $f(\mathbf{x}) = f(x_1, \dots, x_n)$
- Want to minimize function f w.r.t. $\mathbf{x} = (x_1, \dots x_n)$

Simple idea

- Start with some initialization $(x_1^{[0]}, \dots x_n^{[0]})$
- Update $\mathbf{x} = (x_1, \dots, x_n)$ to reduce $f(x_1, \dots, x_n)$
- Until we are already at or near a minimum

Figure: Gradient descent

Contour plot of $f(\boldsymbol{x}_1,\boldsymbol{x}_2) = \boldsymbol{x}_1^2 + \boldsymbol{x}_2^2$

Contour plot of $f(\boldsymbol{x}_1,\boldsymbol{x}_2) = \boldsymbol{x}_1^2 + \boldsymbol{x}_2^2$

Contour plot of $f(x_1, x_2) = x_1^2 + x_2^2$

- ightharpoonup f at $(x_1^{[*]}, x_2^{[*]})$ changes fastest in the direction, called here \mathbf{n} ($|\mathbf{n}| = 1$), orthogonal to the contour line \mathcal{C} going through $(x_1^{[*]}, x_2^{[*]})$
- The gradient of f at $(x_1^{[*]}, x_2^{[*]})$ is also orthogonal to the contour line $\mathcal{C}^{.a}$

Contour plot of $f(x_1, x_2) = x_1^2 + x_2^2$

- f at $(x_1^{[*]}, x_2^{[*]})$ changes fastest in the direction, called here \mathbf{n} ($|\mathbf{n}| = 1$), orthogonal to the contour line \mathcal{C} going through $(x_1^{[*]}, x_2^{[*]})$
- The gradient of f at $(x_1^{[*]}, x_2^{[*]})$ is also orthogonal to the contour line \mathcal{C}^{a} .
- \rightarrow f changes fastest in the direction of the gradient of f:

$$\mathbf{n} = \frac{\nabla f(x_1^{[*]}, x_2^{[*]})}{|\nabla f(x_1^{[*]}, x_2^{[*]})|} = \frac{1}{|\nabla f|} \bigg(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2} \bigg)$$

^aPlease look at the supplementary note if you are interested.

Gradient descent algorithm

Repeat until convergence

$$\begin{cases} x_1^{[t+1]} = x_1^{[t]} - \boldsymbol{\alpha}^{[t]} \frac{\partial}{\partial x_1} f(x_1^{[t]}, \dots, x_n^{[t]}) \\ \dots \\ x_n^{[t+1]} = x_n^{[t]} - \alpha^{[t]} \frac{\partial}{\partial x_n} f(x_1^{[t]}, \dots, x_n^{[t]}) \end{cases} \Leftrightarrow \mathbf{x}^{[t]} = \mathbf{x}^{[t]} - \alpha^{[t]} \nabla f(\mathbf{x}^{[t]}), \quad t = 0, \dots, \infty \quad (3)$$

$\frac{\partial}{\partial x_1} f(x_1, \dots, x_n)$	(partial) derivatives
$lpha^{[t]}$	learning rate

- \triangleright We must simultaneously update $\mathbf{x} = (x_1, \dots, x_n)$.
- \triangleright We can keep or change $\alpha^{[t]}$ at iteration step.

Gradient descent algorithm

Correct: Simultaneous update

$$\begin{split} \operatorname{tmp} x_1 &= x_1 - \alpha \frac{\partial f}{\partial x_1}(x_1, x_2) \\ \operatorname{tmp} x_2 &= x_2 - \alpha \frac{\partial f}{\partial x_2}(x_1, x_2) \\ x_1 &= \operatorname{tmp} x_1 \\ x_2 &= \operatorname{tmp} x_2 \end{split}$$

Python code: Correct df_dx1 = compute_df_dx1(x1, x2) df_dx2 = compute_df_dx2(x1, x2) tmpx1 = x1 - df_dx1 tmpx2 = x2 - df_dx2 x1 = tmpx1 x2 = tmpx2

Incorrect: Update before compute deri.

$$\begin{split} \operatorname{tmp} & x_1 = x_1 - \alpha \frac{\partial}{x_1} \\ & x_1 = \operatorname{tmp} x_1 \\ \operatorname{tmp} & x_2 = x_2 - \alpha \frac{\partial f}{\partial x_2} (\underbrace{x_1}_{\operatorname{tmp} x_1}, x_2) \end{split}$$

Python code: Incorrect

df_dx1 = compute_df_dx1(x1, x2)

tmpx1 = x1 - df_dx1

x1 = tmpx1 # don't do this!
don't do this, x1 holds values tmpx1 now
df_dx2 = compute_df_dx2(x1, x2)

tmpx2 = x2 - df_dx2
x2 = tmpx2

Gradient descent algorithm

Coming back to our cost function $J=\mathcal{L}(w,b)\colon f\to J,\ x_1\to w,\ x_2\to b$

Repeat until convergence:

$$\begin{cases} w = w - \alpha \frac{\partial J}{\partial w}(w, b) \\ b = b - \alpha \frac{\partial J}{\partial b}(w, b) \end{cases}$$
(4)

□ **Python code**: This is not efficient, just for illustration

```
dJ_dw = compute_dJ_dw(w, b)
dJ_db = compute_dJ_db(w, b)
tmp_w = w - dJ_dw
tmp_b = w - dJ_db
w = tmp_w
b = tmp_b
```

Gradient descent: why minus sign in front of α

If
$$\frac{\mathrm{d}f}{\mathrm{d}x}(x_0) > 0$$
, f is \nearrow in a neighbor $(x_0 - \delta, x_0 + \delta)$.

To go in the opposite direction of $f \nearrow$, $x_0 \searrow$

$$x_{\mathrm{next}} = x_0 - \underbrace{\alpha}_{>0} \cdot \underbrace{\mathrm{d}f/\mathrm{d}x}_{>0} < x_0$$

Gradient descent: why minus sign in front of α

 $\text{If } \tfrac{\mathrm{d}f}{\mathrm{d}x}(x_0)>0, \, f \text{ is } \nearrow \text{ in a neighbor } (x_0-\delta,x_0+\delta).$

To go in the opposite direction of $f \nearrow$, $x_0 \searrow$

$$x_{\text{next}} = x_0 - \underbrace{\alpha}_{>0} \cdot \underbrace{\mathrm{d}f/\mathrm{d}x}_{>0} < x_0$$

 $\text{If } \frac{\mathrm{d}f}{\mathrm{d}x}(x_0)<0,\,f\text{ is }\searrow\text{in a neighbor }(x_0-\delta,x_0+\delta).$

To go in the opposite direction of
$$f \searrow, x_0 \nearrow$$

$$x_{\text{next}} = x_0 - \underbrace{\alpha}_{>0} \cdot \underbrace{df/dx}_{<0} > x_0$$

Gradient descent: extra thought

How about we use the plus sign in front of α ?

Where would it lead to?

Gradient descent: extra thought

That's true!

It is the algorithm for solving the maximization problem.

Learning rate α

Let us consider $x = x - \alpha \frac{\mathrm{d}f}{\mathrm{d}x}$ with $f(x) = (x-1)^2$ and $x^{[0]} = 0.1$.

If α is too small, gradient descent may be slow.

Learning rate α

Let us consider $x=x-\alpha \frac{\mathrm{d}f}{\mathrm{d}x}$ with $f(x)=(x-1)^2$ and $x^{[0]}=0.1$. We now increase α as follows

 $\alpha = 0.0000$ $\alpha = 0.00141$ $\alpha = 1.0, x = 0.0000$

Learning rate α

 \blacktriangleright Let us initialize $x^{[0]}=0.95$, much close to the solution $x_{\min}=1$ but then use $\alpha=1.1$

- ightharpoonup If α is too large, gradient descent may
 - > overshoot, never reach minimum
 - ➤ fail to converge, diverge
 - > or be to slow too (see last slide it just shoots over back and forth)

Batch gradient descent

Batch: Each step of gradient descent uses all the training examples.

	x	y
	BMI	RI
(1)	32.1	151
(2)	21.6	75
(3)	30.5	141
(4)	25.3	206
÷	:	:
(m)	23	135

Batch gradient descent uses all the training examples so that we calculate the derivatives of $\mathcal{L}(w,b)$ w.r.t. w and b by summing up over all training examples.

$$\partial J/\partial w = \sum_{\text{all training samples}} \cdots, \quad \partial J/\partial b = \sum_{\text{all training samples}} \cdots$$

'Other' gradient descent: Each step of gradient descent uses just subsets of the training examples. So, we use "approximate" partial derivatives of $\mathcal{L}(w,b)$ by summing up over a portion of training examples. We call this **minibatch gradient descent**.

$$\partial J/\partial w = \sum_{\text{subset of samples}} \cdots, \quad \partial J/\partial b = \sum_{\text{subset of samples}} \cdots$$

Training set versus test set

> Training set:

Set of examples used for fitting/training the regression models

➤ Test set:

Set of examples used for assessing how well the regression models perform or generalize to the unseen data (test data)

- → We will learn in the next lectures some metrics to evaluate how well a regression model performs on a given data set:
 - > R squared score/coefficient of determination
 - ➤ Mean squared error
 - > Accuracy score (for classification problem)