

### **Resources Allocation:**

# Optimizing Bike Rebalancing in NYC's Citi Bike System with Reinforcement Learning

Lyric Li, Hongxin Song, Lia Wang, Maggie Xu

### **Motivation**

 Urban bike-sharing systems (e.g., CitiBike) offer convenient transportation but often face station imbalances (too full or too empty).

### Urban Bike-Sharing Challenges

- Stations often become too full or too empty.
- Leads to user frustration and operational inefficiencies.
- Traditional methods are static and slow to adapt to real-time changes.

#### Our Goal

- Model CitiBike station dynamics using real-world trip data.
- Train a reinforcement learning agent to learn adaptive rebalancing.
- o Optimize bike availability and improve commuter experience.



### Data

#### Citi Bike Dataset

- Trip History Data (March 2025):
- Contains detailed records of ~73,000 rides, including ride ID, rideable type, start/end times and locations, station names and IDs, geolocation (latitude/longitude), and user type (member or casual).
- Curated to exclude staff, test trips, and rides shorter than 60 seconds.



Clear peaks at 17:00 - 18:00, up to 26 trips in an hour at some stations. Consistent daily outflow of 3 - 5 per hour from midday onward. Environment setted based on that.



### Data



Due to the clear variance between stations, some drain bikes consistently, others accumulate, we segmented stations based on the demand level.



### **Environment**

- Time & Steps:
  - Discrete 2-hour decision intervals
  - o 12 steps per 24-hour episode
- Initial Inventory:
  - o [40, 30, 20] bikes at t=0
- Station Capacity:
  - 60 bikes for high-demand stations
  - 50 bikes for medium-demand stations
  - 40 bikes for low-demand stations
- Natural Refill:
  - Starting from 6:00 AM, +10 bikes are injected every 3 hours to simulate casual returns.



- Every 2 hours
- Actions: [-5, -3, 0, +3, +5]
- (Negative = remove bikes, Positive = add bikes)
- State Representation:
  - [bike\_count, hour\_bucket (0-11), demand\_level (one-hot)]
  - Demand levels: High / Medium / Low
- Demand-Level Target Ranges:
  - o High: [20, 50] bikes
  - o Medium: [10, 40] bikes
  - Low: [5, 30] bikes
- Reward:
  - +10 if stock within target range
  - -10 if outside range
  - -20 if empty/full
  - −0.5 per bike moved



- Algorithm: Proximal Policy Optimization (PPO) via Stable-Baselines3
- Policy: MlpPolicy (fully-connected actor-critic network)
- Actor: produces a probability distribution over the 5 discrete rebalance actions
- Critic: predicts the state-value to guide policy updates
- Advantage Estimation: uses Generalized Advantage Estimation for low-variance learning
- Objective: clipped surrogate loss to constrain policy updates within a trust region
- **Training**: 240,000 timesteps for a single policy that generalizes across all stations



**Success Day:** For a given station, if at least 75% of that day's timestamps fall within the target range, the day is counted as a success.

Success Rate: The number of success days for a station / the total number of days (31).





**Success Day:** For a given station, if at least 75% of that day's timestamps fall within the target range, the day is counted as a success.



Success Rate: The number of stations with a success day / the total number of stations (82).







### Target Stocks:

• Low: (5, 30)

Medium: (10, 40)

• High: (20, 50)





Station JC107 Stock Levels (March 1-31) - Low

2025-03-12 - 2025-03-03 - 2025-03-14 — 2025-03-04 — 2025-03-15 — 2025-03-25 2025-03-06 — 2025-03-16 — 2025-03-26 — 2025-03-07 — 2025-03-17 — 2025-03-27 - 2025-03-08 -- 2025-03-18 2025-03-09 — 2025-03-19 — 2025-03-29 - 2025-03-10 - 2025-03-20 - 2025-03-30 2025-03-11 --- 2025-03-21

15

10



## **Q-Learning**

#### Configuration

- Q-table: defaultdict mapping each discretized state to action-value dict
- Hyperparameters:
  - Learning rate  $\alpha = 0.1$
  - Discount factor  $\gamma = 0.95$
  - Episodes = 20 000
- Exploration: ε-greedy, with ε starting at 1.0, decaying by ×0.9995 per episode down to 0.05



#### **Training Loop**

- Reset env → observe initial state s
- While not done:
  - Pick action a via ε-greedy
  - Step, receive reward r and next state s'
  - Update Q(s,a) ← Q(s,a) +  $\alpha$  [r +  $\gamma$ ·max\_a'Q(s',a') Q(s,a)]
  - o S ← S'
- **Decay** ε after each episode

#### **Policy Evaluation**

- For every (station, date) pair:
  - Instantiate fresh single-station
    JCEnvironment
  - Run greedy policy (always pick arg max<sub>a</sub> Q(s,a)) to collect total reward
- Report average episode return

## **Q-Learning**





### **Q-Learning**



#### Target Stocks:

• Low: (5, 30)

Medium: (10, 40)

High: (20, 50)







#### **Method Overview:**

- Training the DQN on fresh new data day-by-day during March 2025, station by station, while simultaneously updating the network weights
  - o "Online": keep updating after each batch of experiences
- Interact with environment (action → step → observe → reward) in a loop until the day ends.

#### **Action Selection:**

 Using an epsilon-greedy policy; Epsilon starts at 0.2 and decays very slightly to encourage gradual exploration → exploitation shift

#### **Experience Collection:**

 Every (state, action, reward, next\_state, done) tuple is <u>immediately</u> stored into a replay buffer.

#### **Training & Updating:**

- The policy network is updated using sampled experiences with slight epsilon decay after each action, update the policy network weights using <u>Adam optimizer</u>
- Every 50 steps, the target network is synced with the policy network to stabilize training.













### Target Stocks:

- Low: (5, 30)
- Medium: (10, 40)
- High: (20, 50)







### **Conclusion**

- Overall, the performances of both PPO and DQN show promising result. PPO achieved the highest station success rate versus Q-Learning and DQN.
- PPO dominates in overall stability without requiring online updates or retraining.
- DQN provides adaptability for dynamic environments but shows more variability (especially for high demand)







### What Can Be Improved

#### Station-specific Modeling

- Current approach assigns simple "High/Medium/Low" demand categories.
- Future: model each station's realistic individual behavior dynamically based on actual flow patterns.

### Natural Demand Variability

- Assumes average hourly net flows.
- Future: introduce stochastic demand (simulate daily randomness and peak events like weekends, weather).

### Policy Generalization

- Agent is trained and evaluated mostly on March 2025 data.
- Future: test generalization to other months, unseen stations, and different seasonal dynamics.

