

ME 471/571

Point-to-point communication

COLLECTIVE COMMUNICATION PATTERNS

SUM REDUCTION

PARALLEL ADDITION IMPROVED

MPI_SEND - SEND A MESSAGE

```
which data? how much data? what kind of data? where?

MPI_Send(void* data, int count, MPI_Datatype datatype, int destination,...
int tag, MPI_Comm communicator)
```


MPI_RECV - RECEIVE A MESSAGE

where to put it? how much data? what kind of data? where from?

MPI_Recv(void* data, int count, MPI_Datatype datatype, int source,...

int tag, MPI_Comm communicator, MPI_Status status)

Consider the finite difference scheme we discussed at the beginning of the course:

$$\frac{\partial u}{\partial x} \approx \frac{u_{i+1} - u_{i-1}}{2\Delta x}$$

Let's say we have data u which is distributed across processes:

$$\frac{\partial u}{\partial x} \approx \frac{u_{i+1} - u_{i-1}}{2\Delta x}$$

$$\frac{\partial u}{\partial x} \approx \frac{u_{i+1} - u_{i-1}}{2\Delta x}$$

$$\frac{\partial u}{\partial x} \approx \frac{u_{i+1} - u_{i-1}}{2 \wedge x}$$

$$\frac{\partial u}{\partial x} \approx \frac{u_{i+1} - u_{i-1}}{2\Delta x}$$

$$\frac{\partial u}{\partial x} \approx \frac{u_{i+1} - u_{i-1}}{2\Delta x}$$

$$\frac{\partial u}{\partial x}\big|_{x_0} \approx \frac{-3u_0 + 4u_1 - u_2}{2\Delta x}$$

