POLITECNICO DI MILANO SCUOLA DI INGEGNERIA DELL'INFORMAZIONE CORSO DI LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA

Progetto di Ingegneria del Software 2 Travel Dream Project Report

Responsabile:

Prof. Luca Mottola

Progetto di:

Giorgio Conte Matricola n. 815641 Lorenzo Di Tucci Matricola n. 814275 Leonardo Cavagnis Matricola n. 816646

1.	Introduzione	.3
	1.1 Obiettivo del documento	.3
	1.2 Panoramica del prodotto	
	1.3 Struttura del documento	.3
2.	Report ore di lavoro	.3
	Modello COCOMO	
	Functional Points	

1. Introduzione

1.1 Obiettivo del documento

Il presente documento contiene il report finale del prodotto software Travel Dream, assegnato come progetto da sviluppare nell'ambito del corso di laurea magistrale di Ingegneria del software 2, implementato dal nostro gruppo.

Tale documento racchiude l'analisi sulla stima dell'effort e dei costi.

1.2 Panoramica del prodotto

Il prodotto da analizzare, in accordo con quanto definito nel documento di specifica e analisi dei requisiti e in quello di design, è un applicativo web, realizzato utilizzando la tecnologia Java Enterprise Edition (JEE) così come richiesto dai committenti. Le sue funzionalità sono state identificate e approfondite nel RASD.

1.3 Struttura del documento

Il presente documento è organizzato nelle seguenti 4 sezioni:

1) Introduzione

Questa sezione fornisce un quadro di insieme del documento. Essa contiene anche un breve riepilogo sul prodotto.

2) Report ore di lavoro

Questa sezione racchiude le ore di lavoro che sono state necessarie per la realizzazione dell'intero progetto

3) Modello COCOMO

Questa sezione fornisce una stima dell'effort effettuata attraverso il modello COCOMO.

4) Functional points

Questa sezione fornisce una stima dell'effort effettuata attraverso la tecnica dei Functional Points.

2. Report ore di lavoro

Di seguito viene riportata una tabella riepilogativa riportante le ore di lavoro impiegate per la realizzazione delle singole fasi del progetto.

Attività	Conte	Di Tucci	Cavagnis	Totale
RASD	29	28	31	88
DD	17	14	18	49
Implementazione, test	78	77	79	234

e manuali				
Test progetto parallelo	8	8	7	23
Project report	1	1	1	3
TOTALE	133	128	136	397

3. Modello COCOMO

Di seguito viene riportata l'analisi dell'effort sviluppata secondo il modello COCOMO, versione intermediate. Tale analisi mira alla valutazione delle ore di lavoro e □ettivamente svolte rispetto ad una stima teorica basata sulle dimensioni del progetto.

Prima di procedere con il calcolo della stima, si ricorda che l'applicazione da sviluppare in rapporto con l'esperienza del team è di tipo Organic. Nella tabella seguente riportiamo i valori dei coefficienti COCOMO delle applicazioni del tipo sopra specificato.

Apllication Type	a _b	b _b	C _b	d _b
Organic	2,4	1,05	2,5	0,38

Considerate le formule del metodo COCOMO, riportate di seguito per maggiore chiarezza, otteniamo i seguenti valori per durata in mesi (T) e mesi-uomo(M), considerando che il numero di linee di codice (S) è circa pari a 11,3K

$$T = c_b S^{db} = 6,29 \text{ Mesi}$$

 $M = a_b S^{bb} = 30,62$

Data la stima delle ore uomo richieste e del tempo nel quale dovrebbe essere svolto il progetto si ottiene una stima di persone richieste di

$$N = M / T = 4,86 => 5 persone$$

Questi valori ottenuti con la modalità Basic del COCOMO, sono stati modificati applicando le correzioni indicate compilando la seguente tabella.

PRODUCT ATTRIBUTES		
RELY	NOMINAL	1
DATA	LOW	0,94

CPLX	LOW	0,85
HARDWARE ATTRIBUTES		
TIME	NOMINAL	1
STOR	NOMINAL	1
VIRT	LOW	0,87
TURN	LOW	0,87
PERSONAL ATTRIBUTES		
ACAP	NOMINAL	1,19
AEXP	NOMINAL	1,13
PCAP	NOMINAL	1,17
VEXP	HIGH	1
LEXP	NOMINAL	1,07
PROJECT ATTRIBUTES		
MODP	HIGH	1
TOOL	VERY HIGH	0,91
SCED	HIGH	1
Valore Totale (c)		0,92644943582062

Sfruttando il coefficiente correttivo (c) otteniamo i seguenti valori:

M = 28,36 mesi-uomoN = 4,85 => 5

Come si può notare da tali stime, i valori ottenuto sono maggiori rispetto a quelli e ettivamente impiegati per la realizzazione del progetto. Tale discrepanza è giustificata dalla natura semplificata del progetto e dalla struttura del team di sviluppo. Nel nostro caso non è stato considerato il tempo richiesto per il confronto con il cliente, per la gestione aziendale e per un'approfondita analisi del codice solitamente svolta in ambito aziendale, al fine di garantire l'a dabilità ottimale.

4. Functional Points

Di seguito viene presentato il calcolo dei Functional Points.

FP è una tecnica per stimare le risorse necessarie in fase di progettazione e sviluppo di applicazioni software.

In particolare, il calcolo dei functional points permette di stabilire la complessità di un prodotto software a partire da un'analisi delle funzionalità che dovranno essere fornite.

La tabella presenta le funzionalità suddivise per tipologia e la relativa stima di complessità.

External Input	Complessità	FP
Dati di registrazione al sito	SIMPLE	3
Inserimento dati di Prodotti Base	SIMPLE	3
Inserimento dati di Pacchetto	MEDIUM	4
Inserimento dati condivisione pacchetto	SIMPLE	3
Inserimento comunicazione clienti	SIMPLE	3
Acquisto prodotti base in gift list	SIMPLE	3
External Output		
Visualizzazione dettaglio pacchetto	MEDIUM	5
Visualizzazione dettaglio prodotto base	SIMPLE	4
Visualizzazione stato giftlist personale	SIMPLE	4

External Inquiry		
Ricerca Pacchetto	MEDIUM	4
Ricerca Prodotto Base	SIMPLE	3
Ricerca GiftList	SIMPLE	3
Modifica/Personalizza Pacchetto	MEDIUM	4
Modifica Prodotto Base	MEDIUM	4
Internal Logic Files		
Pacchetto	MEDIUM	10
Cliente/Dipendente	SIMPLE	7
GiftList	MEDIUM	10
Hotel	SIMPLE	7
Voli	SIMPLE	7
Escursione	SIMPLE	7
Citta	SIMPLE	7
Pernottamento	MEDIUM	10
Voli Pacchetto	SIMPLE	7
Escursioni Pacchetto	SIMPLE	7
Hotel Acquistati	MEDIUM	10
Voli Acquistati	MEDIUM	10
Escursioni Acquistate	MEDIUM	10
Acquista	MEDIUM	10
External Interface File		
Invio Mail	NI	0

Pagamento	NI	0
TOTALE		169

Nell'assegnamento dei pesi, è stato assegnato valore nullo alle funzionalità relative all'interazione con altri sistemi, in quanto queste non sono state implementate. Considerando che un mese uomo corrisponde a circa 10 functional points, per la terminazione del progetto si stimano circa 17 mesi uomo. Questo risultato si discosta di molto con le valutazioni fatte con il metodo COCOMO, infatti questa stima è poco più della metà dell'altra. Noi spieghiamo questa differenza con il fatto che il metodo COCOMO applica delle correzioni della stima in base agli attributi personali del team. Gli FP, al contrario, si concentrano solo sulle funzionalità dell'applicativo web tralasciando completamente gli aspetti legati al team che li hanno sviluppati.