Congruences, petit théorème de Fermat

Exercice 1:

Compléter : $a \equiv b[n] \Leftrightarrow \exists k \in \mathbb{Z} \ tel \ que : \dots$

- 1) Montrer que si $a \equiv a'[n]$ et $b \equiv b'[n]$ alors $a + b \equiv a' + b'[n]$
- 2) Montrer que si $a \equiv a'[n]$ et $b \equiv b'[n]$ alors $a \times b \equiv a' \times b'[n]$

Exercice 2:

- 1) Déterminer pour $k \in \mathbb{N}$, à quoi est congru 10^k modulo 3.
- 2) En déduire une condition suffisante pour que $N=a_n\times 10^n+a_{n-1}\times 10^{n-1}+...+a_1\times 10+a_0 \text{ soit divisible par 3}.$

Exercice 3:

- 1) Montrer que pour tout $n \in \mathbb{Z}$, $5n^3 + n$ est divisible par 6
- 2) Montrer que pour tout $n \in \mathbb{Z}$, (n-1)n(n+1) est divisible par 3 et est divisible par 2. Peut-on en déduire que (n-1)n(n+1) est divisible par 6 ?
- 3) Montrer que pour tout $n \in \mathbb{N}, 8^{2n} \equiv 1$ [21]

Exercice 4:

- 1) Déterminer $u \in \mathbb{Z}$ tel que $12u \equiv 1[137]$
- 2) Déterminer les entiers vérifiant : $12x + 5 \equiv 0$ [137]
- 3) Résoudre $18x 31 \equiv 0[7]$

 $\underline{\textit{Exercice 5}}$: Résoudre dans \mathbb{Z} le système suivant :

$$\begin{cases} x \equiv 2[7] \\ x \equiv 5[9] \end{cases}$$

Exercice 6:

- 1) Décomposer 143 en facteur premiers
- 2) Trouver a $\in \mathbb{Z}$ tel que $27^{103} \equiv a$ [13].
- 3) Trouver $b \in \mathbb{Z}$ tel que $27^{103} \equiv b$ [11]
- 4) En déduire le reste de la division euclidienne de 27^{103} par 143.

Exercice 7 : Petit théorème de Fermat

Soit $p \in \mathbb{P}$ et $1 \le k \le p-1$

- 1) Montrer que $\binom{p}{k}$ est divisible par p. On pourra remarquer une relation entre $\binom{p}{k}$ et $\binom{p-1}{k-1}$
- 2) Montrer par récurrence sur $a \in \mathbb{N}^*$, $a^p \equiv a[p]$

Exercice 8 : Soit $n \in \mathbb{Z}$, on pose $A = n^7 - n$

- 1) Montrer que $A \equiv 0$ [7]
- 2) Montrer que $A \equiv 0$ [2]
- 3) En déduire que $A \equiv 0$ [14]

Exercice 9:

- 1) Décomposer 546 en produit de facteurs premiers
- 2) Montrer que l'on a :

$$x^{13} \equiv x \ [13]; \ x^{13} \equiv x \ [7]; \ x^{13} \equiv x \ [3]; \ x^{13} \equiv x \ [2] \quad x \in \mathbb{N}$$

3) En déduire que pour tout entier x, on a $x^{13} \equiv x$ [546]

Exercice 10 : On considère l'équation (E): $11x^2 - 7y^2 = 5$ où $x, y \in \mathbb{Z}$

- 1) Montrer que si (x, y)est solution de (E) alors $x^2 \equiv 2y^2$ [5]
- 2) Utiliser un tableau de congruence pour calculer les restes possibles de $x^2et\ 2y^2$ modulo 5.
- 3) En déduire que si (x, y) est solution de (E) alors x, y sont des multiples de 5.
- 4) Etudier la réciproque. Que penser de (E) ?