AMENDMENTS TO THE CLAIMS

The following listing of claims will replace all prior versions and listings of claims in the application.

Claims 1-9 (canceled)

Claim 10 (currently amended) A pyrroline of formula (I)

$$R^3$$
 R^4
 R^5
 R^7
 R^8
 R^8
 R^6
 R^6
 R^8
 R^8
 R^8
 R^8

in which

 R^1 represents halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -haloalkyl,

R² represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl,

R³ represents hydrogen, halogen, or methyl,

R⁴ represents hydrogen, C_1 - C_6 -alkyl, $(C_1$ - C_6 -alkoxy)carbonyl, $(C_3$ - C_6 -cycloalkyl)-oxycarbonyl, or $(C_1$ - C_6 -haloalkoxy)carbonyl; or represents aryl that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen, cyano, nitro, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, and C_1 - C_4 -haloalkylthio,

A¹ represents N or CH,

A² represents N or CR⁹,

represents hydrogen, halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₆-haloalkoxy, C₁-C₆-haloalkylsulphonyl, or C₁-C₆-haloalkylsulphonyl,

 $\mathsf{R}^6,\,\mathsf{R}^7,\,\mathsf{R}^8,\,\mathsf{and}\,\mathsf{R}^9$ independently of one another represent hydrogen, halogen, cyano, formyl, nitro, tri(C_1 - C_6 -alkyl)silyl, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylsulphinyl, C_1 - C_6 -alkylsulphonyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkenyloxy, (C_1 - C_6 -alkyl)carbonyl, (C_1 - C_6 -alkoxy)carbonyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkylsulphinyl, C_1 - C_6 -haloalkenyl, C_2 - C_6 -haloalkenyl, C_2 - C_6 -haloalkenyl, C_2 - C_6 -haloalkenyl, C_3 - C_6 -haloalkyl)- C_3 - C_6 -haloalkyl

- carbonyl, (C₁-C₆-haloalkoxy)carbonyl, pentafluorothio, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², or -OSO₂NR¹²R¹³.
- R^{10} represents hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_1 - C_6 -haloalkyl, C_2 - C_6 -haloalkyl, alkenyl, or C_3 - C_6 -cycloalkyl,
- R¹¹ represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkyl, or C₃-C₆-cycloalkyl-C₁-C₄-alkyl; or represents aryl-C₁-C₄-alkyl that is optionally mono- or polysubstituted by identical or different radicals R⁵,
- R¹² and R¹³ independently of one another represent hydrogen, C₁-C₆-alkyl, or C₁-C₆-haloalkyl; represent C₃-C₆-cycloalkyl which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₆-alkyl; represents C₃-C₆-cycloalkyl-C₁-C₄-alkyl; or represents aryl-C₁-C₄-alkyl that is optionally mono- or polysubstituted by identical or different radicals R⁵, or
- R^{12} and R^{13} together represent C_2 - C_6 -alkylene, (C_1 - C_3 -alkoxy)- C_1 - C_3 -alkylene, or (C_1 - C_3 -alkylthio)- C_1 - C_3 -alkylene, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_6 -alkyl,
- p represents 0, 1, or 2,
- q represents a completely unsaturated 5-membered heterocycle that has 1 to 3 identical or different heteroatoms selected from the group consisting of nitrogen, oxygen, and sulphur and that is mono- or polysubstituted by identical or different radicals selected from W¹,
- W¹ represents halogen, cyano, C₁-C₁6-alkyl, C₁-C₁6-alkoxy, C₁-C₁6-alkylthio, C₁-C₁6-alkylsulphinyl, C₁-C₁6-alkylsulphonyl, C₁-C₁6-haloalkyl, C₁-C₁6-haloalkylsulphinyl, C₁-C₁6-haloalkylsulphinyl, C₁-C₁6-haloalkylsulphinyl, C₁-C₁6-haloalkylsulphonyl, or C₃-C₁₂-cycloalkyl; or represents aryl or aryl-C₁-C₄-alkyl, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen, cyano, formyl, nitro, tri(C₁-C₆-alkyl)silyl, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₂-C₆-alkenyl, C₂-C₆-alkenyloxy, (C₁-C₆-alkyl)carbonyl, (C₁-C₆-alkoxy)carbonyl, C₁-C₆-haloalkyl, C₁-C₆-haloalkylsulphonyl, C₂-C₆-haloalkylsulphonyl, C₂-C₆-haloalky

haloalkenyl, C_2 - C_6 -haloalkenyloxy, $-C(R^{10})$ =N- OR^{11} , $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$,

the symbol * denotes a stereogenic center and the symbol • denotes a further stereogenic center when R⁴ does not represent hydrogen, wherein the substituents at the two stereogenic centers are located at cis- or trans-positions relative to each other.

Claim 11 (currently amended): A pyrroline of formula (I) according to Claim 10 in which

- R¹ represents fluorine, chlorine, bromine, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R² represents hydrogen, fluorine, chlorine, bromine, C₁-C₄-alkyl, or C₁-C₄-halo-alkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R³ represents hydrogen, fluorine, chlorine, bromine, or methyl,
- represents hydrogen, C₁-C₄-alkyl, (C₁-C₆-alkoxy)carbonyl, (C₃-C₆-cycloalkyl)-oxycarbonyl, or (C₁-C₄-haloalkoxy)carbonyl having 1 to 9 fluorine and/or chlorine atoms; or represents phenyl that is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, iodine, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, and C₁-C₄-haloalkylthio having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,
- A¹ represents N or CH,
- A² represents N-or CR⁹,
- R⁵ represents hydrogen, fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl; C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, or C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R⁶, R⁷, R⁸, and R⁹ independently of one another represent hydrogen, fluorine, chlorine, bromine, cyano, formyl, nitro, tri(C₁-C₄-alkyl)silyl, C₁-C₄-alkyl, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-

alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, $(C_1$ - C_4 -alkoxy)carbonyl; C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represent C_2 - C_4 -haloalkenyl or C_2 - C_4 -haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms; represent $(C_1$ - C_4 -haloalkyl)carbonyl or $(C_1$ - C_4 -haloalkoxy)carbonyl, having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represent pentafluorothio, $-C(R^{10})$ =N- OR^{11} , $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, or $-OSO_2NR^{12}R^{13}$,

- R¹⁰ represents hydrogen, C₁-C₄-alkyl, C₂-C₄-alkenyl, C₁-C₄-haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl having 1 to 7 fluorine, chlorine, and/or bromine atoms, cyclopropyl, cyclopentyl, or cyclohexyl,
- R¹¹ represents hydrogen, C₁-C₄-alkyl, C₂-C₄-alkenyl, C₁-C₄-haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl having 1 to 7 fluorine, chlorine, and/or bromine atoms, or C₃-C₆-cycloalkyl-C₁-C₂-alkyl; or represents benzyl or phenylethyl, each of which is optionally mono- to tetrasubstituted by identical or different radicals R⁵,
- R^{12} and R^{13} independently of one another represent hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms, C_3 - C_6 -cycloalkyl, or C_3 - C_6 -cycloalkyl- C_1 - C_2 -alkyl; or represents benzyl or phenylethyl, each of which is optionally mono- to tetrasubstituted by identical or different radicals R^5 , or
- R^{12} and R^{13} together represent C_3 - C_5 -alkylene, -(CH_2)₂-O-(CH_2)₂-, or -(CH_2)₂-S-(CH_2)₂-,
- p represents 0 or 1,
- q represents a completely unsaturated 5-membered heterocycle that has 1 to 3 identical or different heteroatoms selected from the group consisting of nitrogen, oxygen, and sulphur and that is mono- or polysubstituted by identical or different radicals selected from W¹, and
- W¹ represents fluorine, chlorine, bromine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy,
 C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl,
 C₁-C₁₂-haloalkoxy, C₁-C₁₂-haloalkylthio, C₁-C₁₂-haloalkylsulphinyl, C₁-C₁₂ CS8473

haloalkylsulphonyl, or C_3 - C_{12} -cycloalkyl; or represents phenyl or aryl- C_1 - C_2 -alkyl, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, cyano, formyl, nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, (C_1 - C_4 -alkyl)carbonyl, (C_1 - C_4 -alkoxy)carbonyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C_2 - C_4 -haloalkenyl, C_2 - C_4 -haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, - $C(R^{10})$ =N-OR 11 , -SO $_2$ NR 12 R 13 , -(CH $_2$) $_p$ NR 12 R 13 , -(CH $_2$) $_p$ N(R^{12})COR 13 , -(CH $_2$) $_p$ N(R^{12})SO $_2$ R 13 , -OSO $_2$ R 12 , and -OSO $_2$ NR 12 R 13 .

Claim 12 (previously presented): A pyrroline of formula (I) according to Claim 10 in which

Q represents a completely unsaturated 5-membered heterocycle selected from the group consisting of

in which

R¹⁴ and R¹⁵ independently of one another represent hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally monoto tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl,

C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, $(C_1-C_4-alkoxy)$ carbonyl, $C_1-C_4-haloalkyl$, $C_1-C_4-haloalkoxy$, $C_1-C_4-haloalkoxy$ alkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C2-C4-haloalkenyl. C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine. chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, R^{16} represents hydrogen, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, $(C_1-C_4-alkyl)$ carbonyl, $(C_1-C_4-alkoxy)$ carbonyl, $C_1-C_4-haloalkyl$, $C_1-C_4-alkyl$ haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10.

with the proviso that R¹⁴, R¹⁵, and R¹⁶ do not simultaneously represent hydrogen,

 R^{17} and R^{19} independently of one another represent hydrogen, cyano, C_1 - C_{12} -alkyl, C_1 - C_{12} -alkoxy, C_1 - C_{12} -alkylthio, C_1 - C_{12} -alkylsulphinyl, C_1 - C_{12} -alkylsulphonyl, C_1 - C_{12} -haloalkyl, or C_3 - C_{12} -cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkyl-

sulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, represents hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine,

substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-alkoxy)carbonyl, C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-alkoxy)carbonyl, C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, (C₁-C₄-alkoxy)carbonyl, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkyl)ca

haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine

atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and

-OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

with the proviso that R¹⁷, R¹⁸, and R¹⁹ do not simultaneously represent hydrogen,

 R^{20} and R^{23} independently of one another represent hydrogen, $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}\mathsf{alkyl}$, $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}\mathsf{alkyl}\mathsf{sulphinyl}$, $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}\mathsf{alkyl}\mathsf{sulphinyl}$, $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}\mathsf{alkyl}\mathsf{sulphinyl}$, $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}\mathsf{alkyl}\mathsf{sulphinyl}$, or $\mathsf{C}_3\text{-}\mathsf{C}_{12}\text{-}\mathsf{cycloalkyl}$; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkyl}$, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkyl}$, intro, trimethylsilyl, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkyl}$, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkyl}$, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkyl}$, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkyl}$, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkyl}$, $\mathsf{C}_2\text{-}\mathsf{C}_4\text{-}\mathsf{alkenyl}$, $\mathsf{C}_2\text{-}\mathsf{C}_4\text{-}\mathsf{alkenyl}$, $\mathsf{C}_2\text{-}\mathsf{C}_4\text{-}\mathsf{alkenyl}$, $\mathsf{C}_2\text{-}\mathsf{C}_4\text{-}\mathsf{alkenyl}$, $\mathsf{C}_2\text{-}\mathsf{C}_4\text{-}\mathsf{alkyl}$) carbonyl,

 R^{18}

 $(C_1-C_4-alkoxy) carbonyl, \ C_1-C_4-haloalkyl, \ C_1-C_4-haloalkoxy, \ C_1-C_4-haloalkylsulphinyl, \ C_1-C_4-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, \ C_2-C_4-haloalkenyl, \ C_2-C_4-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, <math>-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10,

 R^{21} and R^{22} independently of one another represent hydrogen, chlorine, cyano, $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}\mathsf{alkyl},\,\,\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}\mathsf{alkoxy},\,\,\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}\mathsf{alkylthio},\,\,\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}\mathsf{alkyl}$ sulphinyl, $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}\mathsf{alkylsulphonyl},\,\,\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}\mathsf{haloalkyl},\,\,\mathsf{or}\,\,\mathsf{C}_3\text{-}\mathsf{C}_{12}\text{-}\mathsf{cycloalkyl};$ or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkyl},\,\,\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkoxy},\,\,\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkylthio},\,\,\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkylsulphinyl},\,\,\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkylsulphinyl},\,\,\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkylsulphinyl},\,\,\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkenyloxy},\,\,(\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkyl})\text{carbonyl},\,\,(\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkoxy})\text{carbonyl},\,\,\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{haloalkyl},\,\,\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{haloalkoxy},\,\,\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{haloalkyl},\,\,\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{haloalkoxy},\,\,\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{haloalkyl},\,\,\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{haloalkoxy},\,\,\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{haloalkyl},\,\,\mathsf{C}_1\text{-}\mathsf{C}_1\text{-}\mathsf{C}_1\text{-}\mathsf{c}_1\text{-}\mathsf{c}_1\text{-}\mathsf{c}_1\text{-}\mathsf{c}_1\text{-}\mathsf{c}_1\text{-}\mathsf{c}_1\text{-$

with the proviso that R²⁰, R²¹, R²², and R²³ do not simultaneously represent hydrogen,

R²⁴ represents hydrogen, C₁-C₆-alkyl, or C₃-C₆-cycloalkyl,

R²⁵ and R²⁶ independently of one another represent hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally monoto tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)-carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy,

 C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C_2 - C_4 -haloalkenyl, C_2 - C_4 -haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})$ =N- OR^{11} , $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10,

represents hydrogen, C_1 - C_{12} -alkyl, C_1 - C_{12} -alkoxy, C_1 - C_{12} -haloalkyl, or C_3 - C_{12} -cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, $(C_1$ - C_4 -alkoxy)carbonyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C_2 - C_4 -haloalkenyl, C_2 - C_4 -haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})$ =N- OR^{11} , $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10,

with the proviso that R²⁴, R²⁵, R²⁶, and R²⁷ do not simultaneously represent hydrogen,

R²⁸ and R³⁰ independently of one another represent hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkylsulphonyl

alkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, R²⁹ represents hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, $(C_1$ - C_4 -alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, R^{31} represents hydrogen, C₁-C₆-alkyl, or C₃-C₆-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C2-C4-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$,

and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, with the proviso that R²⁸, R²⁹, R³⁰, and R³¹ do not simultaneously represent hydrogen,

 R^{32} and R^{34} independently of one another represent hydrogen, C_1 - C_{12} -alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, $(C_1$ - C_4 -alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10. R^{33} represents hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine. chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms. $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10. with the proviso that R³², R³³, and R³⁴ do not simultaneously represent hydrogen,

R³⁵ and R³⁶ independently of one another represent hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-alkylsulphonyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkylsulphonyl, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkylthio, C₁-C₄-alkylylocarbonyl, (C₁-C₄-alkoxy)-carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

with the proviso that R^{31} , R^{35} , and R^{36} do not simultaneously represent hydrogen,

R³⁷ represents hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally monoto to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)-carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pNR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

 R^{38} represents hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C_2 - C_4 -alkenyloxy, (C_1 - C_4 -alkyl)carbonyl, (C_1 - C_4 -alkoxy)carbonyl, C_1 - C_4 haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO $_2$ NR 12 R 13 , where R 10 to R 13 are as defined in Claim 10, with the proviso that R²⁴, R³⁷, and R³⁸ or R³¹, R³⁷, and R³⁸ do not simultaneously represent hydrogen,

R³⁹, R⁴⁰ and R⁴¹ independently of one another represent hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

- with the proviso that R³⁹, R⁴⁰, and R⁴¹ do not simultaneously represent hydrogen,
- R⁴² and R⁴³ independently of one another represent hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)-carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,
- with the proviso that R²⁴, R⁴², and R⁴³ do not simultaneously represent hydrogen,
- R⁴⁴ and R⁴⁵ independently of one another represent hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)-carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkylsulphinyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³,

-(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, with the proviso that R²⁴, R⁴⁴, and R⁴⁵ or R³¹, R⁴⁴, and R⁴⁵ do not simultaneously represent hydrogen,

R⁴⁶ and R⁴⁷ independently of one another represent hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)-carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

with the proviso that R^{46} and R^{47} do not simultaneously represent hydrogen, R^{48} and R^{49} independently of one another represent hydrogen, C_1 - C_{12} -alkyl,

 C_1 - C_{12} -alkoxy, C_1 - C_{12} -alkylthio, C_1 - C_{12} -alkylsulphinyl, C_1 - C_{12} -alkylsulphonyl, C_1 - C_{12} -haloalkyl, or C_3 - C_{12} -cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, $(C_1$ - C_4 -alkoxy)-carbonyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C_2 - C_4 -haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, - $C(R^{10})$ =N-OR 11 , -SO $_2$ NR 12 R 13 , - $(CH_2)_p$ NR 12 R 13 ,

 $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10. with the proviso that R⁴⁸ and R⁴⁹ do not simultaneously represent hydrogen, R⁵⁰ and R⁵¹ independently of one another represent hydrogen, C₁-C₁₂-alkyl,

C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, $(C_1$ - C_4 -alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C2-C4-haloalkenyl, C2-C4haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_nN(R^{12})COR^{13}$, $-(CH_2)_nN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

with the proviso that R⁵⁰ and R⁵¹ do not simultaneously represent hydrogen. represents hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$,

CS8473 18

 R^{52}

-(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

 R^{53} represents hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C_2 - C_4 -alkenyloxy, (C_1 - C_4 -alkyl)carbonyl, (C_1 - C_4 -alkoxy)carbonyl, C_1 - C_4 haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10.

with the proviso that R^{52} and R^{53} do not simultaneously represent hydrogen, represents hydrogen, chlorine, cyano, C_1 - C_{12} -alkyl, C_1 - C_{12} -alkoxy,

 C_1 - C_{12} -alkylthio, C_1 - C_{12} -alkylsulphinyl, C_1 - C_{12} -alkylsulphonyl, C_1 - C_{12} -haloalkyl, or C_3 - C_{12} -cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, $(C_1$ - C_4 -alkoxy)carbonyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C_2 - C_4 -haloalkenyl, C_2 - C_4 -haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})$ =N- $-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10,

 R^{55} represents hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10,

with the proviso that R⁵⁴ and R⁵⁵ do not simultaneously represent hydrogen, R⁵⁶ and R⁵⁷ independently of one another represent hydrogen, C₁-C₁₂-alkyl,

 C_1 - C_{12} -alkoxy, C_1 - C_{12} -alkylthio, C_1 - C_{12} -alkylsulphinyl, C_1 - C_{12} -alkylsulphonyl, C_1 - C_{12} -haloalkyl, or C_3 - C_{12} -cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, $(C_1$ - C_4 -alkoxy)-carbonyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C_2 - C_4 -haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})$ =N- $-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and

-OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, with the proviso that R⁵⁶ and R⁵⁷ do not simultaneously represent hydrogen,

R⁵⁸ and R⁵⁹ independently of one another represent hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, $(C_1$ - C_4 -alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_0NR^{12}R^{13}$. $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10. with the proviso that R⁵⁸ and R⁵⁹ do not simultaneously represent hydrogen, R^{60} represents hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10,

with the proviso that R²⁴ and R⁶⁰ or R³¹ and R⁶⁰ do not simultaneously represent hydrogen,

 R^{61} represents C_1 - C_{12} -alkyl, C_1 - C_{12} -alkoxy, C_1 - C_{12} -alkylthio, C_1 - C_{12} alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally monoto tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10,

 R^{62} represents cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally monoto tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10,

R⁶³ represents C₁-C₁₂-alkyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the

group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, $(C_1-C_4-alkoxy)$ carbonyl, $C_1-C_4-haloalkyl$, $C_1-C_4-haloalkoxy$, $C_1-C_4-haloalkoxy$ alkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C2-C4-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, represents C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, $(C_1-C_4-alkoxy)$ carbonyl, $C_1-C_4-haloalkyl$, $C_1-C_4-haloalkoxy$, $C_1-C_4-haloalkoxy$ alkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C2-C4-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, represents C₁-C₁₂-alkyl, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-halo-

alkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in

23

CS8473

 R^{64}

 R^{65}

each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C2-C4-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$. and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, R^{66} represents C₁-C₁₂-alkyl, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, $(C_1-C_4-alkoxy)$ carbonyl, $C_1-C_4-haloalkyl$, $C_1-C_4-haloalkoxy$, $C_1-C_4-haloalkoxy$ alkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C2-C4-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, $-(CH_2)_DNR^{12}R^{13}$, $-(CH_2)_DN(R^{12})COR^{13}$, $-(CH_2)_DN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, R^{67} represents C₁-C₁₂-alkyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, $-(CH_2)_{D}NR^{12}R^{13}$, $-(CH_2)_{D}N(R^{12})COR^{13}$, $-(CH_2)_{D}N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$,

and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, and

represents C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10.

Claim 13 (previously presented): A pyrroline of formula (I) according to Claim 10 in which A¹ and A² each represent CH.

Claim 14 (previously presented): A pyrroline of formula (I-b) according to Claim 10 in which

$$R^3$$
 R^4
 R^5
 R^7
 R^8
 R^8
 R^6
 R^4
 R^6
 R^7
 R^8
 R^8
 R^8

in which

A¹, A², R¹, R², R³, R⁵, R⁶, R⁷, R⁸, and Q are as defined for formula (I) in Claim 10, R⁴ is as defined for formula (I) in Claim 10 but does not represent hydrogen, the carbon atom in the 2-position of the pyrrole ring has the R configuration, and the two substituents in the 2- and 3-positions of the pyrrole ring are located *cis* to each other.

Claim 15 (previously presented): A pyrroline of formula (I-a) according to Claim 10 in which

$$R^3$$
 R^4
 R^5
 R^5
 R^7
 R^8
 R^8
 R^2
 R^3
 R^4
 R^8
 R^8
 R^8
 R^8

in which

A¹, A², R¹, R², R³, R⁵, R⁶, R⁷, R⁸, and Q are as defined for formula (I) in Claim 10, and

the carbon atom in the 2-position of the pyrrole ring has the R configuration.

Claim 16 (previously presented): A pyrroline of formula (I-f) according to Claim 10 in which

$$R^{1}$$
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{2}
 R^{2}
 R^{3}

in which

(1) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is

(2) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is

- R¹ is F, R² is F, R³ is H, R⁴ is H, R⁵ is H, and Q is (3)
- R^1 is CH_3 , R^2 is H, R^3 is H, R^4 is H, R^5 is H, and Q is (4)
- R¹ is F, R² is F, R³ is H, R⁴ is H, R⁵ is F, and Q is (5)
- R¹ is F, R² is F, R³ is H, R⁴ is H, R⁵ is H, and Q is (6)
- R¹ is F, R² is F, R³ is H, R⁴ is H, R⁵ is F, and Q is (7)
- R¹ is F, R² is F, R³ is H, R⁴ is CO₂Et, R⁵ is H, and Q is (8)
- R¹ is F, R² is F, R³ is H, R⁴ is CO₂Et, R⁵ is H, and Q is (9)
- R¹ is F, R² is F, R³ is H, R⁴ is CO₂Et, R⁵ is H, and Q is
- R^1 is CH_3 , R^2 is H, R^3 is H, R^4 is H, R^5 is H, and Q is

- (12) R^1 is CH_3 , R^2 is H, R^3 is H, R^4 is H, R^5 is H, and Q is $\underbrace{ N \prod_{Q \in N} t\text{-Bu} }_{}$
- (13) R^1 is F, R^2 is F, R^3 is H, R^4 is C_2H_5 , R^5 is H, and Q is OC_3H_7 -i
- (14) R^1 is CH_3 , R^2 is H, R^3 is H, R^4 is H, R^5 is F, and Q is CF_3
- (15) R^1 is CH_3 , R^2 is H, R^3 is H, R^4 is H, R^5 is F, and Q is $\underbrace{ N }_{N O}$
- (16) R^1 is CH_3 , R^2 is H, R^3 is H, R^4 is H, R^5 is F, and Q is N
- (17) R^1 is CH_3 , R^2 is H, R^3 is H, R^4 is H, R^5 is F, and Q is OMe
- (18) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is -N = CN
- (19) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is $C(CH_3)_3$
- (20) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is OCH_3 ,

- (21) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is $C(CH_3)_3$
- (22) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is CH_3
- (23) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is $C(CH_3)_3$
- (25) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is $CH(CH_3)_2$
- (26) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is
- (27) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is $\underbrace{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} }^{C_4H_9-n}$
- (28) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is $\frac{N}{S}$

(29) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is

$$- \sqrt{\underset{S}{\bigvee}^{\text{OC}_3\text{H}_7\text{-i}}}$$

(30) R¹ is F, R² is F, R³ is H, R⁴ is H, R⁵ is H, and Q is

(31) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is

Claim 17 (currently amended): A process for preparing compounds of formula (I) according to Claim 10

$$R^3$$
 R^4
 R^5
 R^7
 R^8
 R^8
 R^9
 R^9

in which

R¹ represents halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl,

R² represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl,

R³ represents hydrogen, halogen, or methyl,

represents hydrogen, C₁-C₆-alkyl, (C₁-C₆-alkoxy)carbonyl, (C₃-C₆-cycloalkyl)oxycarbonyl, or (C₁-C₆-haloalkoxy)carbonyl; or represents aryl that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio,

A¹ represents N or CH,

A² represents CR⁹,

- $\underline{C_1}$ - $\underline{C_6}$ -haloalkylthio, $\underline{C_1}$ - $\underline{C_6}$ -haloalkylsulphinyl, or $\underline{C_1}$ - $\underline{C_6}$ -haloalkylsulphinyl, or $\underline{C_1}$ - $\underline{C_6}$ -haloalkylsulphinyl,
- $\frac{R^6,\,R^7,\,R^8,\,\text{and}\,R^9\,\,\text{independently of one another represent hydrogen, halogen,}}{\text{cyano, formyl, nitro, tri}(C_1\text{-}C_6\text{-alkyl})\text{silyl,}\,C_1\text{-}C_6\text{-alkyl,}\,C_1\text{-}C_6\text{-alkoxy,}\,C_1\text{-}}{C_6\text{-alkylsulphinyl,}\,C_1\text{-}C_6\text{-alkylsulphonyl,}\,C_2\text{-}C_6\text{-alkenyl,}},\\ \frac{C_2\text{-}C_6\text{-alkenyloxy,}\,(C_1\text{-}C_6\text{-alkyl})\text{carbonyl,}\,(C_1\text{-}C_6\text{-alkoxy})\text{carbonyl,}\,C_2\text{-}C_6\text{-alkoxy}}{C_2\text{-}C_6\text{-haloalkoxy,}\,(C_1\text{-}C_6\text{-alkyl})\text{carbonyl,}\,(C_1\text{-}C_6\text{-alkoxy})\text{carbonyl,}\,C_1\text{-}C_6\text{-haloalkyl-sulphinyl,}\,C_2\text{-}C_6\text{-haloalkyl-sulphinyl,}\,C_2\text{-}C_6\text{-haloalkyl-sulphinyl,}\,C_2\text{-}C_6\text{-haloalkyl-sulphinyl,}\,C_2\text{-}C_6\text{-haloalkoxy})\text{carbonyl,}\\ \frac{\text{alkenyloxy,}\,(C_1\text{-}C_6\text{-haloalkyl})\text{carbonyl,}\,(C_1\text{-}C_6\text{-haloalkoxy})\text{carbonyl,}\\ \frac{\text{pentafluorothio,}\,-\text{C}(R^{10})\text{=}\text{N-OR}^{11},\,-\text{SO}_2\text{NR}^{12}\text{R}^{13},\,-\text{(CH}_2)_p\text{NR}^{12}\text{R}^{13},\\ \frac{-(\text{CH}_2)_p\text{N}(R^{12})\text{COR}^{13},\,-(\text{CH}_2)_p\text{N}(R^{12})\text{SO}_2\text{R}^{13},\,-\text{OSO}_2\text{R}^{12},\,\text{or}\\ -\text{OSO}_2\text{NR}^{12}\text{R}^{13},\\ \end{array}}$
- R¹⁰ represents hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_1 - C_6 -haloalkyl, C_2 - C_6 -haloalkenyl, or C_3 - C_6 -cycloalkyl,
- R¹¹ represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₁-C₆-haloalkyl,

 C₂-C₆-haloalkenyl, or C₃-C₆-cycloalkyl-C₁-C₄-alkyl; or represents aryl
 C₁-C₄-alkyl that is optionally mono- or polysubstituted by identical or different radicals R⁵,
- R^{12} and R^{13} independently of one another represent hydrogen, C_1 - C_6 -alkyl, or C_1 - C_6 -haloalkyl; represent C_3 - C_6 -cycloalkyl which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_6 -alkyl; represents C_3 - C_6 -cycloalkyl- C_1 - C_4 -alkyl; or represents aryl- C_1 - C_4 -alkyl that is optionally mono- or polysubstituted by identical or different radicals R^5 , or
- R^{12} and R^{13} together represent C_2 - C_6 -alkylene, $(C_1$ - C_3 -alkoxy)- C_1 - C_3 -alkylene, or $(C_1$ - C_3 -alkylthio)- C_1 - C_3 -alkylene, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_6 -alkyl,
- p represents 0, 1, or 2,
- <u>q</u> represents a completely unsaturated 5-membered heterocycle that has 1 to 3 identical or different heteroatoms selected from the group consisting of nitrogen, oxygen, and sulphur and that is mono- or polysubstituted by identical or different radicals selected from W¹,

W¹ represents halogen, cyano, C₁-C₁₆-alkyl, C₁-C₁₆-alkoxy, C₁-C₁₆-alkylsulphinyl, C₁-C₁₆-alkylsulphonyl, C₁-C₁₆-haloalkyl, C₁-C₁₆-haloalkylsulphinyl, C₁-C₁₆-haloalkylsulphinyl, C₁-C₁₆-haloalkylsulphonyl, or C₃-C₁₂-cycloalkyl; or represents aryl or aryl-C₁-C₄-alkyl, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen, cyano, formyl, nitro, tri(C₁-C₆-alkyl)silyl, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₂-C₆-alkenyl, C₂-C₆-alkenyloxy, (C₁-C₆-alkyl)carbonyl, (C₁-C₆-alkoxy)-carbonyl, C₁-C₆-haloalkyl, C₁-C₆-haloalkyl, C₁-C₆-haloalkylsulphinyl, C₂-C₆-haloalkylsulphinyl, C₂-C₆-haloalkylsulphinyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkenyl, C₃-C₆-haloalkenyl, C₄-C₆-haloalkenyloxy, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³.

the symbol * denotes a stereogenic center and the symbol • denotes a further stereogenic center when R⁴ does not represent hydrogen, wherein the substituents at the two stereogenic centers are located at cis- or transpositions relative to each other,

comprising reacting a Δ^1 -pyrroline of formula (II)

$$R^3$$
 R^4
 R^5
 R^5
 R^5
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^7
 R^8
 R^8

in which R¹, R², R³, R⁴, A¹, and R⁵ are as defined <u>above</u> for formula (I) in Claim 10,

with a benzene derivative of formula (III)

$$R^6$$
 R^7
 R^8
 R^6
 R^9
 R^8
 R^8

in which

 A^2 , R^6 , R^7 , R^8 , and Q are as defined <u>above</u> for formula (I) in Claim 10, and X^1 represents bromine, iodine, or $-OSO_2CF_3$,

in the presence of a catalyst and in the presence of a diluent.

Claim 18 (previously presented): A pesticide comprising one or more compounds of formula (I) according to Claim 10 and one or more extenders and/or surfactants.

Claim 19 (currently amended): A method for controlling pests comprising allowing applying an effective amount of one or more compounds of formula (I) according to Claim 10 to act on pests and/or their habitat.

Claim 20 (previously presented): A process for preparing pesticides comprising mixing one or more compounds of formula (I) according to Claim 10 with one or more extenders and/or surfactants.

-- Claim 21 (new): A method for controlling pests comprising applying to the pests and/or their habitat an effective amount of a pyrroline of formula (I-b) in which

$$R^3$$
 R^4
 R^5
 R^7
 R^8
 R^8
 R^6
 R^4
 R^6
 R^8
 R^8
 R^8
 R^8

in which

A¹ represents N or CH,

A² represents CR⁹,

R¹ represents halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl,

R² represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl,

R³ represents hydrogen, halogen, or methyl,

represents C₁-C₆-alkyl, (C₁-C₆-alkoxy)carbonyl, (C₃-C₆-cycloalkyl)oxycarbonyl, or (C₁-C₆-haloalkoxy)carbonyl; or represents aryl that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, and C₁-C₄-haloalkylthio,

- R⁵ represents hydrogen, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylsulphinyl, C_1 - C_6 -alkylsulphonyl, C_1 - C_6 -haloalkoxy, C_1 - C_6 -haloalkylsulphinyl, or C_1 - C_6 -haloalkylsulphonyl,
- $\mathsf{R}^6,\,\mathsf{R}^7,\,\mathsf{R}^8,\,\mathsf{and}\,\,\mathsf{R}^9$ independently of one another represent hydrogen, halogen, cyano, formyl, nitro, tri(C1-C6-alkyl)silyl, C1-C6-alkyl, C1-C6-alkoxy, C1-C6-alkylthio, C1-C6-alkylsulphinyl, C1-C6-alkylsulphonyl, C2-C6-alkenyl, C2-C6-alkenyloxy, (C1-C6-alkyl)carbonyl, (C1-C6-alkoxy)carbonyl, C1-C6-haloalkyl, C1-C6-haloalkoxy, C1-C6-haloalkylthio, C1-C6-haloalkylsulphinyl, C1-C6-haloalkylsulphonyl, C2-C6-haloalkenyl, C2-C6-haloalkenyloxy, (C1-C6-haloalkyl)carbonyl, (C1-C6-haloalkoxy)carbonyl, pentafluorothio, -C(R^{10})=N-OR^{11}, -SO_2NR^{12}R^{13}, -(CH_2)_pNR^{12}R^{13}, -(CH_2)_pN(R^{12})COR^{13}, -(CH_2)_pN(R^{12})SO_2R^{13}, -OSO_2R^{12}, or -OSO_2NR^{12}R^{13},
- R^{10} represents hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_1 - C_6 -haloalkyl, C_2 - C_6 -haloalkyl, alkenyl, or C_3 - C_6 -cycloalkyl,
- R¹¹ represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkyl, or C₃-C₆-cycloalkyl-C₁-C₄-alkyl; or represents aryl-C₁-C₄-alkyl that is optionally mono- or polysubstituted by identical or different radicals R⁵,
- R¹² and R¹³ independently of one another represent hydrogen, C₁-C₆-alkyl, or C₁-C₆-haloalkyl; represent C₃-C₆-cycloalkyl which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₆-alkyl; represents C₃-C₆-cycloalkyl-C₁-C₄-alkyl; or represents aryl-C₁-C₄-alkyl that is optionally mono- or polysubstituted by identical or different radicals R⁵, or
- R¹² and R¹³ together represent C₂-C₆-alkylene, (C₁-C₃-alkoxy)-C₁-C₃-alkylene, or (C₁-C₃-alkylthio)-C₁-C₃-alkylene, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₆-alkyl,
- p represents 0, 1, or 2,
- q represents a completely unsaturated 5-membered heterocycle that has 1 to 3 identical or different heteroatoms selected from the group consisting of nitrogen, oxygen, and sulphur and that is mono- or polysubstituted by identical or different radicals selected from W¹,

W¹ represents halogen, cyano, C₁-C₁₆-alkyl, C₁-C₁₆-alkoxy, C₁-C₁₆-alkylthio, C₁-C₁₆-alkylsulphinyl, C₁-C₁₆-alkylsulphonyl, C₁-C₁₆-haloalkyl, C₁-C₁₆-haloalkylsulphinyl, C₁-C₁₆-haloalkylsulphinyl, C₁-C₁₆-haloalkylsulphinyl, C₁-C₁₆-haloalkylsulphonyl, or C₃-C₁₂-cycloalkyl; or represents aryl or aryl-C₁-C₄-alkyl, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen, cyano, formyl, nitro, tri(C₁-C₆-alkyl)silyl, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁-C₆-alkylsulphinyl, C₂-C₆-alkenyloxy, (C₁-C₆-alkylsulphinyl, C₂-C₆-alkenyloxy, (C₁-C₆-alkyl)carbonyl, (C₁-C₆-alkoxy)carbonyl, C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, C₁-C₆-haloalkylthio, C₁-C₆-haloalkylsulphinyl, C₁-C₆-haloalkylsulphonyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkenyloxy, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³.

the carbon atom in the 2-position of the pyrrole ring has the R configuration, and the two substituents in the 2- and 3-positions of the pyrrole ring are located *cis* to each other. --