Automated Tag Classification and Question Routing on AI Stack Exchange Using Classical NLP Techniques

Bojan Dimovski¹, Tomi Nikoloski¹

¹Faculty of electrical engineering and information technologies

Outline

Outline
Introduction 3
Initial raw text cleaning 4
Multilabel classification - performance
metrics
Tag selection 6
Number of tags
Exploratory data analysis
Max features & Zipf's law
Base loss
Vectorization and different feature
vectors
Models - Binary relevance method 19
Models - classifier chain method 20

Models - χ^2 feature selection on top of
binary relevance 22
Use-case scenario (Routing our own
sample post)
Concluding remarks (why classical NLP
techniques fall short) 25

Introduction

Definition

Natural Language Processing (NLP) is a branch of artificial intelligence that enables machines to understand, interpret, and generate human language. In the context of specific applications, NLP is used for automatic translation, recommendation systems, and text data classification.

The goal of this project is to create a model that accurately predicts tags for AI-related questions on the AI Stack Exchange platform using classical NLP techniques, using vectorization.

Initial raw text cleaning

- XML files (https://dn720201.ca.archive.org/0/items/stackexchange)
- Parsing XML files using xml.etree.ElementTree
- Cleaning Posts.xml with BeautifulSoup, html, regexes

Multilabel classification - performance metrics

$$\text{hamming_loss} = \frac{\sum_{l} \sum_{i} P_{i} \oplus T_{i}}{|L| \cdot |I|}$$

$$recall_per_instance = \frac{CPPL}{CPPL + IPAL}$$

$$precision_per_instance = \frac{CPPL}{CPPL + IPPL}$$

$$F_1 = \frac{2}{\frac{1}{\text{RPI}} + \frac{1}{\text{PPI}}}$$

- Macro, micro
- Subset accuracy

Tag frequency decreases exponentially

Let's see how many posts are covered only by, say, 10 tags:

Let's see how many posts are covered only by, say, 10 tags:

```
NUM_TAGS_STOP = 10

top_ten_tags = set(df_tag_counts['Tag'].head(NUM_TAGS_STOP).to_numpy())
count = 0
for instance in df_raw['Tags']:
    if set(instance) & top_ten_tags:
        count+=1

print(f"Vkupno {count} postovi sodrzat barem eden od top {NUM_TAGS_STOP} tagovite :)")
        /[17] 17ms
        Vkupno 8981 postovi sodrzat barem eden od top 10 tagovite :)
```

II Elbow method (?)

Number of tags

■ Cut-off at 7? 10? 13?

- \blacksquare Top 10 tags: covers ≈9000 out of 12000 posts.
- Intersect: set1 & set2

Exploratory data analysis

- **Basic statistics:**
- ▶ 684,383 words across 8,981 posts
- ▶ Appearances of top 10 tags:

▶ Disbalance with multilabel classification problems

Exploratory data analysis

N Post length analysis

Cosine-similarity as a measure.

Exploratory data analysis

Most frequent words

Word cloud

Max features & Zipf's law

II Lemmatization > stemming

```
for token in doc:
      if not token.is_stop and token.is_alpha: #ako ne e stopword i e so bukvi
          processed_tokens.append(token.lemma_)
df_raw['LemmatizedContent'] = df_raw['Content'].apply(preprocess_text)
corpus = df_raw['LemmatizedContent']
 0 backprop backprop mean backprop term basically backpropagati...
   1 noise affect generalization increase noise datum help improv...
```

Max features & Zipf's law

We opt for 2000 features (unigrams+bigrams)

Base loss

 $lose_loss = 0.15$

Onto our models

Vectorization and different feature vectors

- **II** Bag of words representation
- CountVectorizer()
- ► StandardScaler()

- **■** TF-IDF representation
- ► TfidfVectorizer()

- **II** SVD representation
- on TF-IDF
- ▶ Dimensionality reduction technique, better for sparse matrices
- ▶ RobustScaler() dividing by IQR preserves outliers which sometimes contain info

Models - Binary relevance method

ii Binary relevance method - assumes independence of labels.

	f1_macro	f1_micro	avg_recall	avg_prec	hamming	subset_acc
NB_BoW	0.3968	0.5288	0.3308	0.5452	0.1149	0.2955
NB_TFIDF	0.3326	0.5114	0.2721	0.5905	0.1087	0.3200
NB_SVD	0.4221	0.4626	0.5566	0.3521	0.2026	0.1124
RF_BoW	0.4016	0.5906	0.3417	0.7510	0.0960	0.3756
RF_TFIDF	0.3978	0.5866	0.3367	0.7224	0.0959	0.3806
RF_SVD	0.2002	0.3723	0.1499	0.5395	0.1176	0.2270
KNN_BoW	0.2776	0.3936	0.2130	0.4960	0.1391	0.2176
KNN_TFIDF	0.3878	0.5008	0.3283	0.5432	0.1243	0.3116
KNN_SVD	0.1957	0.3217	0.1709	0.4149	0.1544	0.2020

Models - classifier chain method

- **Keep NB_SVD**, drop other SVD's
- Binary relevance assumes independence of labels, which may be faulty if codependence exists $\Rightarrow \varphi$ coefficient heatmap

Models - classifier chain method

	f1_macro	f1_micro	avg_recall	avg_prec	hamming	subset_acc
NB_BoW	0.4170	0.5448	0.3605	0.5348	0.1147	0.3038
NB_TFIDF	0.3547	0.5331	0.3009	0.5882	0.1087	0.3383
NB_SVD	0.3797	0.4149	0.5539	0.3932	0.2304	0.0484
RF_BoW	0.4091	0.5987	0.3478	0.7388	0.0948	0.3845
RF_TFIDF	0.3934	0.5868	0.3373	0.6973	0.0963	0.3784
KNN_BoW	0.2797	0.4140	0.2380	0.4675	0.1452	0.2732
KNN_TFIDF	0.3849	0.5116	0.3456	0.5036	0.1275	0.3400

 \blacksquare No significant improvements - slightly lesser hamming loss, sacrificing 1-2% precision

Models - χ^2 feature selection on top of binary relevance

Instead of Vectorizer(max_features=500), employ feature selection from top 2000 features with χ^2 criterion on validation subset of training set.

 $1 \times 2 \times 2$ contingency tables word (present/absent) vs. tag(present/absent) - $\chi^2 \uparrow \uparrow$ relevance & will generate 500 features that differ slightly and perform slightly better

	f1_macro	f1_micro	avg_recall	avg_prec	hamming	$subset_acc$
NB_BoW	0.3588	0.5011	0.2873	0.5504	0.1126	0.2844
NB_TFIDF	0.3080	0.4817	0.2415	0.5725	0.1087	0.2866
NB_SVD	0.4682	0.5103	0.5786	0.4038	0.1718	0.1664
RF_BoW	0.4448	0.6127	0.3860	0.6251	0.0959	0.3990
RF_TFIDF	0.4333	0.6068	0.3766	0.6411	0.0958	0.3918
KNN_BoW	0.3940	0.5092	0.3262	0.5445	0.1220	0.3072
KNN_TFIDF	0.4084	0.5222	0.3502	0.5489	0.1208	0.3261

[📊] Sacrifices precision - slightly improves subset accuracy - most rigid metric

Use-case scenario (Routing our own sample post)

11 The struggle was real

3. Use-case scenario example_post = "My model is performing poorly. I want to train it better but training it makes me so tired. Perhaps deep learning models could perform better for example_vec = bow_vectorizer.transform([example_post]) rf_bow = OneVsRestClassifier(RandomForestClassifier(n_estimators=100, random_state=42, n_jobs=-1)) X_train, X_test, Y_train, Y_test = train_test_split(X_bow.drop(columns=['UserId']), Y, test_size=0.2, random_state=42) rf_bow.fit(X_train, Y_train) predicted_tags_binary = rf_bow.predict(example_vec) predicted_tags_array = predicted_tags_binary.toarray()[0] if hasattr(predicted_tags_binary, "toarray") else predicted_tags_binary[0] predicted_tags = [label_names[i] for i, val in enumerate(predicted_tags_array) if val == 1] print("Predicted tags: ", predicted_tags) Predicted tags: ['deep-learning']

A pleasant surprise

- The models actually predict the presence of the 'train' tag really well (to the right: RF-TFIDF)
- Also has good predictions for 'computer-vision' and some other tags
- Disbalance and inability to oversample or stratify make it underperform.

TN	FP
1293	28
FN	TP
35	441

Concluding remarks (why classical NLP techniques fall short)

No Context

Bag-of-Words & TF-IDF ignore word order and meaning.

Sparse Features High-dimensional vectors = hard to generalize, especially with imbalanced data.

Surface-Level Semantics

Can't handle polysemy, rare tags, or deeper understanding of questions.

ightharpoonup Dimensionality Reduction \neq Magic

SVD improved recall, but sacrificed other metrics and loses important interpretability.

✓ Works as a baseline

But struggles to capture the complexity of real multilabel problems

Link to project

Link to GitHub repository:

https://github.com/andWeirdFishes/ Automated-Tag-Classification-on-AI-Stack-Exchange-Using-Classical-NLP-Techniques Any questions?