TITLE: Goal Scoring Rate Prediction in the 2019-20 England Football Premier League

CRISP-DM

BUSINESS QUESTION

"Data and statistics of the game can be used to raise the win rate of the bets "

DATA COLLECTION

WEB SCAPPING TOOLS

Selenium Package

BeautifulSoup Package

DATA

- Collect the player value with the last 4 seasons
- Collect the statistic on the each game with the last 4 seasons
- Collect the score rate on the each game with the last 4 seasons
- Collect (11+7) players and line up on the game with the last 4 seasons

WEB SCAPPING

Player ↑	Date of birth / Age 🗅	<u>Market value</u>
Mohamed Salah Right Winger	Jun 15, 1992 (27)	150,00 mil. €
Sadio Mané Left Winger	Apr 10, 1992 (27)	120,00 mil. € 👚
Virgil van Dijk Centre-Back	Jul 8, 1991 (28)	100,00 mil. € 🛧
Alisson Goalkeeper	Oct 2, 1992 (27)	80,00 mil. € ↑

ทีมเหย้า		พิมเยือน	เกมสูงต่ำ	
MARKET	ควนนน ทีมเยือน		ทั้งรอบ	ครึ่งรอบ
อาร์เซน่อล[3]	4-0	แอสตัน วิลล่า ^[20]	3.5	1.5
สวอนซี ซีตี้ $^{[11]}$	1-1	แมนเซสเตอร์ ซีดี ^[4]	3	1/1.5
เวสต์ บรอมมิช อัลเบียน[15]	1-1	ลิเวอร์พูล[8]	2.5/3	1/1.5
เซาแธมป์ตัน ^[7]	4-1	คริสตัล พาเลช ^[14]	2.5/3	1/1.5

WEB SCAPPING

DATA PREPARATION

DATA MAPPING

MAPPING

DATA AGGREGATION

Result_PlayHigh _	Result_PlayLow	Team_Home	Team_Away	Rate 🕌
Yes	No	Aston Villa	Sunderland	2.25
No	Yes	AFC Bournemouth	Leicester	2.5
Yes	No	Chelsea	Crystal Palace	2.75
Yes	No	Liverpool	West Ham	2.75
No	Yes	Man City	Watford	3.25
No	Yes	Newcastle	Arsenal	2.5
No	Yes	Stoke	West Brom	2.25

DATA MAPPING

А	В	L	U			Γ
match_▼	DescriptionMatch	Seaso -	Ord(▼	<u>HomePla</u> yer	ĵΤ	AwayPlayer 🔻
12167	Chelsea v Arsenal	2015/16	15	John Obi Mikel		Calum Chambers
12256	Chelsea v AFC Bournemouth	2015/16	14	John Obi Mikel		Baily Cargill
12368	Everton v West Brom	2015/16	4	Séamus Coleman		Jonny Evans
12394	Everton v West Ham	2015/16	8	Séamus Coleman		Michail Antonio

Name: John Obi Mikel

Name: John Mikel Obi

Name 🗷	Numb∈▼	Positic ▼	Age ▼)ate_Bi ▼	ate_Bir▼	′alue_E ▼	alue_pc▼	ontract 🔻	Team▼
John Mikel Obi	12	Defensive	28	220487	22-04-87	13	9.477	-	fc-chelsea
Seamus Coleman	23	Right-Back	26	111088	11-10-88	18	13.122	30.06.2022	fc-everton

Solution: Text Similarity (fuzzy string matching)

```
In [3]: ##fuzzy home####
        list_result =[]
        list_home = []
        print(len(line_home))
        for i in range(0,len(line_home)) :
            test_fuzzy = process.extractOne(str(line_home[i]),name_v)
            name, score = test_fuzzy
            if score != 100:
                print(i)
                print(line_home[i])
                print( f"{name} : {score}" )
                line_home[i]=name
                print(line_home[i])
                list home.append(line home[i])
                 list_home.append(line_home[i])
        6840
        Max-Alain Gradel
        Max Gradel: 86
        Max Gradel
        John Obi Mikel
        John Mikel Obi : (95)
        John Mikel Obi
        Radamel Falcao
        Falcao: 90
        Falcao
        39
```

Séamus Coleman Seamus Coleman : 96

DATA AGGREGATION

MA_Score_Home	MA_GoalConceded_Home	MA_Posses_Home	MA_Shots	- MOVING AVERAGE
0.67	1	45.77		- MOVING AVERAGE
1.33	1.67	52.57	1	
1.67	2.33	52.97	<u> </u>	
0.67	0	47.4		
2.67	0	57.53		
0.67	1.33	40.4		
1	1.33	50.4		

DATA AGGREGATION

• We can't know about the statistics in matchs, so that we used moving average 3 matchs before for each team replace the statistics in matchs

MA_RCard_Away	MA_Score_Total	MA_GoalConceded_Total
0	2	3.67
0	3.66	3
0	3.67	3.66
0.67	2.67	2
0	3.34	0.67
0	1.34	2.33
0	1.67	3.33

Exploratory Data Analysis (EDA)

0.01

0.02

0.03

Importance

0.05

Exploratory Data Analysis (EDA)

- Top ratio of success when Bid High rate
 - 1. AFC Bournemouth
 - 2. Chelsea
 - 3. West Ham
- Importance Variables
 - 1. MA_Touches_Away
 - 2. MA_ShtOnTar_Home
 - 3. H_Defender

SEGMENTATION

- Clustering by Match Statistics
- K-Means Clustering

model = KMeans(n_clusters=3,random_state=123) KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300, n_clusters=3, n_init=10, n_jobs=1, precompute_distances='auto', random state=123, tol=0.0001, verbose=0) model.fit(X) KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300, n_clusters=3, n_init=10, n_jobs=1, precompute_distances='auto', random_state=123, tol=0.0001, verbose=0) array([[2.41896145e+01, 5.45003934e+00, 1.08678206e+01, 2.00786782e+00, 4.63010228e+02, 5,29837923e+01, 6,05822187e-02, 1,30055075e+01, 4.28166798e+00, 1.76601101e+01, 6.66194335e+02, 1.66640441e+00], [1.85601926e+01, 6.87961477e+00, 9.23434992e+00, 1.95505618e+00, 6.44894061e+02, 6.61542536e+01, 2.08667737e-02, 1.70754414e+01, 5.95345104e+00, 1.60914928e+01, 8.41399679e+02, 1.25842697e+00], [2.98542757e+01, 4.07504363e+00, 1.12705061e+01, 2.02094241e+00, 3.22916230e+02, 3.79088133e+01, 8.37696335e-02, 9.83856894e+00, 3.37870855e+00, 1.81317627e+01, 5.19765271e+02, 1.79930192e+00]]

array([0, 0, 0, ..., 2, 2, 0])

burney	4.6	(A)	2.8
Cardiff	1	0	37
Chelsea	63	79	10
Crystal Palace	60	5	87
Everton	91	18	43
Fulham	15	9	14
Huddersfield	33	4	39
Hull	20	1	17
Leicester	65	8	79
Liverpool	46	97	9
Man City	41	110	1
Man Utd	67	65	20

Team_Home	Team_Away 🔻	Style_Home 🔽	Style_Away 🔽
AFC Bournemouth	Aston Villa	DEF	DEF
Chelsea	Swansea	DEF	DEF
Everton	Watford	DEF	DEF
Leicester	Sunderland	DEF	DEF
Man Utd	Spurs	DEF	DEF
Norwich	Crystal Palace	DEF	DEF
Arsenal	West Ham	DEF	DEF
Newcastle	Southampton	DEF	DEF

MODELING

- Random Forest
- Split Train/Test data
- Transform data
 e.g. One-Hot Encoding
- 3. Split Feature and Label data
- Train Model
- 5. Make Prediction on the testset
- 6. Tune Model
- 7. Result

```
model = RandomForestClassifier(n_estimators=200,max_depth =5
,max_features="log2",criterion='entropy' ,random_state=123)
model.fit(x_train,y_train)
```

Sample Tree in Forest

MODELING

```
labelencoder = LabelEncoder()
 check = data_use.select_dtypes(include=['object']).columns
 for kk in check:
     data_use[kk] = labelencoder.fit_transform(data_use[kk])
 y = data_use['Result_PlayHigh']
 data_use.drop(['Result_PlayHigh'], axis=1, inplace=True)
 # x are the others
 x = data_use
x train, x test, y train, y test = train_test_split(x, y, test_size = 0.2, random_state = 0)
model = RandomForestClassifier(random_state=123)
model.fit(x_train,y_train)
from sklearn.ensemble import RandomForestClassifier
                                                        CV_rfc.best_params_
from sklearn.metrics import accuracy_score
import numpy as np
rfc=RandomForestClassifier(random_state=123)
param_grid = {
                                                        {'criterion': 'entropy',
'n_estimators': [100,200,300,400,500,600,700,800,900,1000],
'max_features': ['auto', 'sqrt', 'log2'],
                                                         'max_depth': 5,
'max_depth': [2,3,4,5,6,7,8,9,10],
'criterion' : ['qini', 'entropy']
                                                         'max_features': 'log2',
CV_rfc = GridSearchCV(estimator=rfc, param_grid=param_grid, cv= 5)
                                                         'n_estimators': 600}
CV_rfc.fit(x_train, y_train)
```

RESULT OF Random Forest

BEFORE TUNING

AFTER TUNING

Confusion Matrix					
	1 0				
1	54	52			
•	90	102			

Classification Report					
	Precision	Recall	F1_score	Support	
1	0.51	0.38	0.43	144	
•	0.53	0.66	0.59	154	
avg/total	0.52	0.52	0.51	298	
2					

Accuracy Rate: 0.524

Confusion Matrix					
	1 0				
1	81	66			
•	63	88			

Classification Report						
	Precision	Recall	F1_score	\$upport		
1	0.55	0.56	0.56	144		
•	0.58	0.57	0.58	154		
avg/total	0.57	0.57	0.57	298		

Accuracy Rate: 0.567

RESULT OF XGboost

Confusion Matrix						
	1	•				
1	85	62				
•	67	84				

Accuracy Rate: 0.570

Classification Report							
	Precision	Recali	F1_\$core	Support			
1	0.56	0.58	0.57	147			
•	0.58	0.56	0.57	151			
ang/total	0.57	0.57	0.57	298			

Classification Donort

Validation Result (YES/NO)

Data: 2019-20 England Football Premier League

GURU VS Real Score

Acc Rate : 0.591

RF VS Real Score

Acc Rate: 0.492

XGboost VS Real Score

Acc Rate: 0.5202

Conclusion:

GURU prediction return accuracy rate better than XGboost Model and Random Forest Model but can't defind whether return the best profit

Validation Result (Cont)

Insight of Result: Check whether which model return the maximum profit

YES:WIN

NO: LOSS

DRAW

GURU VS Real Score

Rate Result

Win Rate: 0.57

Draw Rate: 0.02

Loss Rate: 0.41

RF VS Real Score

Rate Result

Win Rate: 0.47

Draw Rate: 0.05

Loss Rate: 0.48

XG VS Real Score

Rate Result

Win Rate: 0.47

Draw Rate: 0.05

Loss Rate: 0.48

Conclusion: Guru Prediction return the best profit

Problem

- Leak some Feature ex : preview game inside of guru
- The result of models are not satisfied because our features not enough for model prediction.
- Many external factors

Conclusion

- Althought our model was not satisfied performance but we got many experience.
 - 1. practical experience -> Webscraping , Build model and use python in others.
 - 2. Found real problem
 - 3. Found some hidden somethings.

