Implementacija Dijkstrinog algoritma pomoću Fibonaccijeve hrpe

Jurica Horvat

Prirodoslovno-matematički fakultet, Zagreb

Siječanj, 2022.

Sadržaj

- Uvod i motivacija
- Fibonaccijeva hrpa
- Analiza složenosti
- Testiranje

Uvod i motivacija

- Bavimo se problemom pronalaženja najkraćeg puta u grafu od jednog (fiksnog) čvora do svih ostalih
- Jedina pretpostavka na graf je da su svi bridovi nenegativnih težina
- Ponovimo kako Dijkstrin algoritam rješava ovaj problem

Uvod i motivacija

- Bavimo se problemom pronalaženja najkraćeg puta u grafu od jednog (fiksnog) čvora do svih ostalih
- Jedina pretpostavka na graf je da su svi bridovi nenegativnih težina
- Ponovimo kako Dijkstrin algoritam rješava ovaj problem
- ② dist[], $dist[x] = \infty$, $\forall x \in V \setminus \{s_0\}$, $dist[s_0] = 0$
- Skup dostupnih čvorova X postepeno gradimo:
- **1** Uzmi element $y \in V \setminus X$ t.d. $dist[y] = \min_{z \in V \setminus X} dist[z]$
- Izbaci y iz V i stavi ga u X
- **⊙** Za sve z t.d. je $\{y, z\} \in E$ popravljamo: $dist[z] = min\{dist[z], dist[y] + l(y, z)\}$ pri čemu je l(y, z) duljina brida od y do z

Uvod i motivacija

- Složenost Dijkstrinog algoritma s prioritetnim redom (binarna hrpa): $\mathcal{O}(|E| \lg |V| + |V| \lg |V|)$
- Za grafove s velikim brojem bridova imamo |g|V| faktor uz |E| kojeg želimo izbjeći
- S ovim će nam pomoći Fibonaccijeva hrpa
- Uvedimo najprije definiciju min-hrpe

Min-hrpa (eng. Min-heap)

Neka je H stablo. Kažemo da je H min-hrpa ako za svaki čvor $x \in H$ vrijedi $key(x) \leq key(y)$, $\forall y \in S(x)$, pri čemu je S(x) podstablo čvora x. Na skupu iz kojeg dolaze key vrijednosti čvorova mora biti definiran totalni uređaj.

 U nastavku poistovjećujemo hrpu i min-hrpu zbog prirode problema kojim se bavimo

Fibonaccijeva hrpa

Spojiva hrpa (eng. Mergeable heap)

Spojiva hrpa je struktura koja se sastoji od više usklađenih (min ili max) hrpi koje u parovima imaju prazan presjek s obzirom na nazive čvorova.

Spojiva hrpa podržava sljedeće operacije:

- MakeHeap()
- Insert (H, x)
- Minimum(H)
- ExtractMin(H)
- \odot Union (H_1, H_2)

Fibonaccijeva hrpa

Fibonaccijeva hrpa je poseban slučaj spojivih hrpi.

Ona podržava još i sljedeće operacije:

- **1** DecreaseKey(H, x, k)
- \bigcirc Delete(H, x)

Usporedba složenosti s binarnom hrpom:

Procedure	Binary heap (worst-case)	Fibonacci heap (amortized)
MAKE-HEAP	Θ(1)	Θ(1)
INSERT	$\Theta(\lg n)$	$\Theta(1)$
MINIMUM	$\Theta(1)$	$\Theta(1)$
EXTRACT-MIN	$\Theta(\lg n)$	$O(\lg n)$
Union	$\Theta(n)$	$\Theta(1)$
DECREASE-KEY	$\Theta(\lg n)$	$\Theta(1)$
DELETE	$\Theta(\lg n)$	$O(\lg n)$

Fibonaccijeva hrpa - Insert

```
FIB-HEAP-INSERT(H, x)
    x.degree = 0
 2 \quad x.p = NIL
 3 \quad x.child = NIL
 4 \quad x.mark = FALSE
 5 if H.min == NIL
         create a root list for H containing just x
        H.min = x
   else insert x into H's root list
        if x. key < H. min. key
10
            H.min = x
11 H.n = H.n + 1
```

Složenost: $\mathcal{O}(1)$ - lazy pristup

Fibonaccijeva hrpa - ExtractMin

```
FIB-HEAP-EXTRACT-MIN(H)
    z = H.min
    if z \neq NIL
        for each child x of z
            add x to the root list of H
            x.p = NIL
        remove z from the root list of H
        if z == z, right
 8
            H.min = NIL
        else H.min = z.right
            Consolidate(H)
10
        H.n = H.n - 1
11
12
    return z
```

Složenost: $\mathcal{O}(D(n))$

Fibonaccijeva hrpa - ExtractMin

```
FIB-HEAP-EXTRACT-MIN(H)
    z = H.min
    if z \neq NIL
        for each child x of z
            add x to the root list of H
            x.p = NIL
        remove z from the root list of H
        if z == z. right
 8
            H.min = NII.
        else H.min = z.right
10
            Consolidate(H)
        H.n = H.n - 1
11
12
    return z
```

Složenost: $\mathcal{O}(D(n))$ - kasnije dokazujemo $D(n) \in \mathcal{O}(\lg n)$

Fibonaccijeva hrpa - DecreaseKey

```
FIB-HEAP-DECREASE-KEY (H, x, k)
   if k > x. key
       error "new key is greater than current key"
3 \quad x. key = k
4 \quad y = x.p
5 if y \neq NIL and x.key < y.key
       Cut(H, x, y)
       CASCADING-CUT (H, v)
8 if x.key < H.min.key
       H.min = x
```

Složenost: $\mathcal{O}(1)$

Fibonaccijeva hrpa

Važni detalji implementacije:

- Struktura drži head pointer (H.min na slici dolje) na čvor s najmanjom key vrijednosti (u našem slučaju najmanja udaljenost do nekog čvora)
- Čvorovi u root listi su povezani cirkularnom dvostruko povezanom listom
- Sva djeca nekog čvora su također povezana cirkularnom dvostruko povezanom listom, a jedno dijete je povezano i s roditeljom

Fibonaccijeva hrpa

• Trebamo dokazati složenost $\mathcal{O}(|g|V|)$ operacija *ExtractMin* i *Delete*. Ovi rezultati će objasniti i ime strukture.

Lema 1

Neka je x proizvoljan čvor u Fibonaccijevoj hrpi i pretpostavimo da je deg(x) = k. Neka su $y_1, y_2, ..., y_k$ oznake djece čvora x poredane kronološki s obzirom na trenutak povezivanja s x: y_1 je najranije povezan s x, a y_k posljednji.

Tada je $deg(y_1) \ge 0$, $deg(y_i) \ge i - 2$, $\forall i \in \{2, 3, ..., k\}$.

• Trebamo dokazati složenost $\mathcal{O}(|g|V|)$ operacija *ExtractMin* i *Delete*. Ovi rezultati će objasniti i ime strukture.

Lema 1

Neka je x proizvoljan čvor u Fibonaccijevoj hrpi i pretpostavimo da je deg(x)=k. Neka su $y_1,y_2,...,y_k$ oznake djece čvora x poredane kronološki s obzirom na trenutak povezivanja s x: y_1 je najranije povezan s x, a y_k posljednji.

Tada je $deg(y_1) \ge 0$, $deg(y_i) \ge i - 2$, $\forall i \in \{2, 3, ..., k\}$.

• Dokaz: Očito je $deg(y_1) \geq 0$. Za $i \geq 2$ uočimo: u trenutku spajanja y_i na x imali smo $deg(x) \geq i-1$ jer su tada $y_1,...,y_{i-1}$ već spojeni sx. No, $deg(y_i) = deg(x)$ jer ih spajamo. Slijedi $deg(y_i) \geq i-1$, a nakon spajanja je čvoru y_i odrezano najviše jedno dijete jer bi u protivnom odrezali i njega od čvora x. (vidjeti funkcije Consolidate i Cut)

Lema 2

Za sve $k \in \mathbb{N}_0$ vrijedi $F_{k+2} = 1 + \sum_{i=0}^k F_i$, pri čemu je F_k k-ti Fibonaccijev broj.

Lema 2

Za sve $k \in \mathbb{N}_0$ vrijedi $F_{k+2} = 1 + \sum_{i=0}^k F_i$, pri čemu je F_k k-ti Fibonaccijev broj.

Dokaz: Indukcijom po k.

Lema 2

Za sve $k \in \mathbb{N}_0$ vrijedi $F_{k+2} = 1 + \sum_{i=0}^k F_i$, pri čemu je F_k k-ti Fibonaccijev broj.

Dokaz: Indukcijom po k.

Lema 3

Za sve $k\in\mathbb{N}_0$ vrijedi: $F_{k+2}\geq\phi^k$, pri čemu je $\phi=(1+\sqrt{5})/2$.

Lema 2

Za sve $k \in \mathbb{N}_0$ vrijedi $F_{k+2} = 1 + \sum_{i=0}^k F_i$, pri čemu je F_k k-ti Fibonaccijev broj.

Dokaz: Indukcijom po k.

Lema 3

Za sve $k\in\mathbb{N}_0$ vrijedi: $F_{k+2}\geq\phi^k$, pri čemu je $\phi=(1+\sqrt{5})/2$.

• Dokaz: Indukcijom po k. U koraku samo iskoristimo da je ϕ pozitivni korijen jednadžbe $x^2=x+1$.

Lema 4

Neka je x čvor u Fibonaccijevoj hrpi te k=deg(x). Tada je $size(x) \geq F_{k+2} \geq \phi^k$, za $\phi=(1+\sqrt{5})/2$, pri čemu je size(x) veličina podstabla čvora x.

Lema 4

Neka je x čvor u Fibonaccijevoj hrpi te k=deg(x). Tada je $size(x) \geq F_{k+2} \geq \phi^k$, za $\phi=(1+\sqrt{5})/2$, pri čemu je size(x) veličina podstabla čvora x.

- Označimo sa s_k najmanju moguću veličinu podstabla nekog čvora x u proizvoljnoj Fibonaccijevoj hrpi, za kojeg vrijedi deg(x) = k.
- Jasno, $size(x) \ge s_k$ pa donju ogradu za size(x) tražimo kao donju ogradu za s_k .
- Slijedi $size(x) \ge s_k \ge 2 + \sum_{i=2}^k s_{deg(y_i)}$, pri čemu su $y_1,...,y_k$ djeca čvora x.
- Indukcijom pokazujemo $s_k \geq F_{k+2}$ te na kraju primijenimo Lemu 3.

Korolar 5

Za maksimalni stupanj nekog čvora u Fibonaccijevoj hrpi vrijedi: $D(n) \in \mathcal{O}(\lg n)$, pri čemu je n broj čvorova u hrpi.

Korolar 5

Za maksimalni stupanj nekog čvora u Fibonaccijevoj hrpi vrijedi: $D(n) \in \mathcal{O}(\lg n)$, pri čemu je n broj čvorova u hrpi.

- Neka je x proizvoljan čvor u Fibonaccijevoj hrpi s n čvorova te k = deg(x).
- Lema 4 povlači $n \ge size(x) \ge \phi^k$.
- Slijedi $k \leq log_{\phi}n$ i to dokazuje tvrdnju.

Korolar 5

Za maksimalni stupanj nekog čvora u Fibonaccijevoj hrpi vrijedi: $D(n) \in \mathcal{O}(\lg n)$, pri čemu je n broj čvorova u hrpi.

Dokaz:

- Neka je x proizvoljan čvor u Fibonaccijevoj hrpi s n čvorova te k = deg(x).
- Lema 4 povlači $n \ge size(x) \ge \phi^k$.
- Slijedi $k \leq log_{\phi}n$ i to dokazuje tvrdnju.

Ovim korolarom dokazali smo upitne složenosti izražene s $\mathcal{O}(D(n))$

Sada je ukupna složenost Dijkstrinog algoritma $\mathcal{O}(|E| + |V|\lg|V|)$

Testiranje

- Uspoređujemo efikasnosti Dijkstrinog algoritma s prioritetnim redom implementiranim pomoću Fibonaccijeve hrpe odnosno binarne hrpe.
- Primjeri in4, in5 su primjeri sa $|V|=10^4$, $|E|=10^6$, a in7 je primjer potpunog grafa sa |V|=4000.

```
jurica@jurica:~/Desktop/oaaproj$ time ./fibodijk < in4 > out4

real    0m0,455s
user    0m0,439s
sys    0m0,016s
jurica@jurica:~/Desktop/oaaproj$ time ./dijkstra < in4 > out4

real    0m0,890s
user    0m0,854s
sys    0m0,037s
```

Testiranje

<u>Literatura</u>

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Intrdouction to algorithms, Third Edition, The MIT Press, 2009.