

8.1	Arc Length
	- We are going to define the length of a general curve by first approximating it by a polygon and then
	taking a limit as the number of segments of the polygon is increased
	$= \sum_{n \to \infty} \sum_{i=1}^{n} P_{i-1}P_{i} \qquad P_{i-1}P_{i} = \sqrt{(X_{i-1})^{2} + (Y_{i-1})^{2}} = \sqrt{(\Delta X_{i})^{2} + (\Delta Y_{i})^{2}}$
	$\approx \int_{n\to\infty}^{\infty} \sum_{i=1}^{n} \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2} \qquad \Delta y_i = f(x_i) - f(x_{i-1}) = f'(x_i^*)(x_i - x_{i-1}) = f'(x_i^*) \Delta x$
	$= \sum_{N \to \infty} \sum_{i=1}^{N} \int (\Delta X_{i})^{2} + (f'(X_{i}^{*}) \Delta X)^{2} = \sum_{N \to \infty} \sum_{i=1}^{N} \int (\Delta X_{i})^{2} (1 + f'(X_{i}^{*})^{2}) = \sum_{N \to \infty} \sum_{i=1}^{N} \left[(1 + f'(X_{i}^{*})^{2}) \Delta X_{i} \right]$
	$\approx L = \int_{a}^{b} \sqrt{1 + (f(x^*))^2} dx = \int_{a}^{b} \sqrt{1 + (\frac{dy}{dx})^2} dx$
	- Becouse of the presence of the square root sign, the calculation of an arc length often leads to an integral
	that is very difficult or even impossible to evaluate explicitly. Thus we sometimes have to be content with
	finding an approximation to the length of a curve
	Endpoints, Midpoints, Simpson's etc
	- Suppose $S(x)$ is arc length function $S(x) = \int_{a}^{x} \int 1 + [f'(t)]^{2} dt$, then the differential of $S(x)$ is the
	rate of change of S with respect to X ,
	$=> \frac{ds}{dx} = \sqrt{1 + (\frac{dy}{dx})^2}$, and it is always at least 1
	\Rightarrow ds = $\int 1 + \left(\frac{dy}{dx}\right)^2 dx$
	$\Rightarrow (dS)^{2} = \left[1 + \left(\frac{dy}{dx}\right)^{2}\right](dx)^{2} = (dx)^{2} + (dy)^{2}$
8.2	Area of a Surface of Revolution
	Surface Area of a circular cylinder;
	$A = 2\pi r h$
	Surface Area of a cone:
	$A = \frac{1}{2} l^2 \theta = \frac{1}{2} l^2 \left(\frac{2\pi s}{l} \right) = \pi r l$
	Surface Area of Bands:
	$A = \pi r_2 (l_1 + l_2) - \pi r_1 l_1 = \pi [(r_2 - r_3)l_1 + r_3 l_2]$
	= $2\pi rl$, where $r = \frac{1}{2}(r_1 + r_2)$
	· PIGURE 5
	=> Surface Area
	$S = \int_{\alpha}^{b} \lambda \mathcal{I} \cdot f(x) \cdot \sqrt{1 + [f(x)]^{2}} dx$

	- remember $ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$, then
	$S = \int 2\pi f(x) ds$
	this can be thought as the circumference of a circle fraced out by the point (X,Y) on the
	curve as it is rotated
8.3	Applications to Physics and Engineering
	Hydrostatic I sure and Force:
	$\Rightarrow F = ma$
	Force Mass Acceleration
	$\approx F = mg$
	acceleration due to gravity
	= $pgAd$, p = $rolume$, A = $area$, d = $depth$ of water
	$= P = \frac{F}{A} = pgd$
	Pressure
	F=