

Claudio Arbib Università di L'Aquila

Ricerca Operativa

Esercitazione IV

Acquistare l'auto ideale

– la soluzione –

Il problema

- Come distanza di una retta da un insieme di punti abbiamo assunto la somma delle distanze di ciascun punto dalla retta
- Abbiamo inoltre scelto di definire la distanza di un punto (x_i, y_i) da una retta come la differenza tra l'ordinata y_i del punto e quella della retta nel punto x_i .

Problema:

Qual è la retta di regressione associata alla nuvola di punti?

- Una retta nel piano può essere descritta da un'equazione del tipo $y = a_1x + a_0$.
- Ad esempio la retta R disegnata qui sotto, che passa per i punti (0, 3) e (4, 0), ha equazione $y = -\frac{3}{4}x + 3$.

- Il punto $P = (3, \frac{3}{4})$ ha distanza da R pari a 0
- Il punto P' = (1, 2) ha distanza da R pari a $(-\frac{3}{4} \cdot 1 + 3) 2 = \frac{1}{4}$
- Il punto P'' = (5, 1) ha distanza da R pari a 1 (-3/4.5 + 3) = 1 + 3/4 = 7/4

In generale, il punto (x_i, y_i) avrà distanza $d_i = |y_i - (a_1x_i + a_0)|$

Come calcolare la retta di minima distanza

- In sostanza, la distanza d_i del punto (x_i, y_i) da R dipende da a_0 e a_1 : infatti $d_i = |y_i (a_1x_i + a_0)|$
- Da questi due parametri dipende anche la scelta della retta: infatti noti a_0 e a_1 la retta è completamente definita
- Perciò la retta di minima distanza dalla nuvola di punti (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) sarà quella retta definita da due parametri a_0 e a_1 tali da minimizzare la somma $d_1 + d_2 + ... + d_n$ delle distanze dei punti.

Come calcolare la retta di minima distanza

Il problema da risolvere è dunque

min
$$d_1 + d_2 + \dots + d_n =$$

= $|y_1 - (a_1x_1 + a_0)| + |y_2 - (a_1x_2 + a_0)| + \dots + |y_n - (a_1x_n + a_0)|$

Questo è un problema di programmazione non lineare

Ma si può rimediare: il problema che risolveremo sarà

min
$$d_1 + d_2 + ... + d_n$$

con $d_1 \ge y_1 - (a_1x_1 + a_0)$ $d_1 \ge (a_1x_1 + a_0) - y_1$
 $d_2 \ge y_2 - (a_1x_2 + a_0)$ $d_2 \ge (a_1x_2 + a_0) - y_2$
... $d_n \ge y_n - (a_1x_n + a_0)$ $d_n \ge (a_1x_n + a_0) - y_n$
 $d_1, d_2, ..., d_n \ge 0$ in rosso sono indicate le variabili

Tornando a noi ...

• Impostiamo il problema in modo da calcolare la retta di regressione relativa al grafico prezzo vs. peso/potenza, e capire così come si posiziona la *Rover 45*

Possiamo farlo a partire dai dati del foglio Excel <u>Auto.xls</u>

Altre curve di tendenza

- Finora abbiamo adottato come distanza di un punto $P = (x_1, y_1)$ da una retta R la differenza tra l'ordinata y_1 di P e l'ordinata del punto di R di ascissa x_1 , in valore assoluto (questo corrisponde a immaginare la x_1 non affetta da errore). Altre distanze, come quella euclidea, danno luogo a rette diverse.
- In generale una curva di tendenza può avere forme diverse da una retta. Excel offre la possibilità di calcolare curve di tendenza lineari, polinomiali, logaritmiche, etc.
- Per far ciò, dopo aver prodotto il grafico a partire da un insieme di dati rappresentanti coppie di punti, occorre:
 - a) selezionare il grafico usando il tasto destro
 - b) applicare dal menu a tendina il comando "Aggiungi linea di tendenza"
 - c) scegliere il tipo di curva di tendenza desiderato

Altre curve di tendenza

• Qui sotto è evidenziata una linea di tendenza polinomiale del secondo ordine

Quando le qualità sono molteplici

- Se vogliamo riferire il prezzo a più d'una qualità (ad es., rapporto peso/potenza e consumi) non possiamo più ricorrere ad Excel: si può infatti rappresentare la nuvola di punti per 2 qualità, ma non per 3 o più.
- Inoltre non potremo più parlare di curva di regressione. Ad es., per 3 parametri (2 qualità + il prezzo) avremo a che fare con una superficie di regressione.
- Se questa superficie esprime una dipendenza lineare, sarà un piano. In geometria analitica, un piano è rappresentato da una equazione della forma $z = a_0 + a_1 x + a_2 y$.
- La distanza del punto (x_i, y_i, z_i) dal piano sarà ora pari a $d_i = |z_i (a_0 + a_1 x_i + a_2 y_i)|$ e il modello di PL descritto può facilmente essere esteso.