Further Pure Mathematics FP2 (6668)

Mock paper mark scheme

Question number	Scheme	Marks
1. (a)		
	Line correct	B1
	V shape correct	B1
	$\frac{1}{3}$ and $-\frac{3}{4}$	B1 (3)
(b)	Point of intersection when $4x + 3 = 1 - 3x$, and so $x = -\frac{2}{7}$	M1 A1
	Solution is $x > -\frac{2}{7}$	A1 (3)
		(6 marks)
2. (a)	$\frac{1}{2r+1} - \frac{1}{2r+3}$	M1 A1 (2)
(b)	$\sum = \frac{1}{3} - \frac{1}{5} + \frac{1}{5} - \frac{1}{7} + \dots + \frac{1}{2n+1} - \frac{1}{2n+3}$	M1 A1
	$= \frac{1}{3} - \frac{1}{2n+3} = \frac{2n+3-3}{3(2n+3)} = \frac{2n}{3(2n+3)} $ (*)	A1 cso (3)
		(5 marks)

Question number	Scheme	Marks
3. (a)	$\frac{dy}{dx} = \frac{5}{1+5x}$, $\frac{d^2y}{dx^2} = -\frac{25}{(1+5x)^2}$, $\frac{d^3y}{dx^3} = \frac{250}{(1+5x)^3}$	M1 A1,
	$\frac{dx}{dx} = \frac{1+5x}{1+5x} + \frac{dx^2}{1+5x} + \frac{(1+5x)^2}{1+5x}$	A1 A1 (4)
(b)	$\ln(1+5x) = 5x - \frac{25}{2}x^2 + \frac{125}{3}x^3 + \dots$	M1 A1 A1
	2 3	(3)
		(7 marks)
4.	$\frac{d^2 y}{dx^2} + 1 + 1 = 4 \text{at } x = 0, \qquad \therefore \frac{d^2 y}{dx^2} = 2$	B1
	Differentiate to give) M1
	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} + \left[\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + y\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right] + 2y\frac{\mathrm{d}y}{\mathrm{d}x} = 3$	M1 [M1 A1]
	$\int dx^{3} dx dx = \int dx^{2} dx dx$	A1
	At $x = 0$, $\frac{d^3 y}{dx^3} + [1^2 + 1 \times 2] + 2 = 3$ and $\frac{d^3 y}{dx^3} = -2$	B1
	$y = 1 + x + \frac{2x^2}{2} - \frac{2x^3}{6} + \dots$	M1 A1
		(8 marks)
5.	Area = $\frac{1}{2} \int_0^{\frac{\pi}{2}} (4 + 4\sin 3\theta + \sin^2 3\theta) d\theta$	M1
	$=\frac{1}{2}\left[4\theta-\frac{4\cos 3\theta}{3}+\frac{\theta}{2}-\frac{\sin 6\theta}{12}\right]_{0}^{\frac{\pi}{2}}$	M1 A1 M1
	$\left[-\frac{1}{2} \left[\frac{4\nu - \frac{1}{3}}{3} + \frac{1}{2} - \frac{1}{12} \right]_{0} \right]$	A1
	$=\frac{1}{2}\left(2\pi+\frac{\pi}{4}\right)-\frac{1}{2}\left(-\frac{4}{3}\right)$	M1
	$=\frac{9\pi}{8}+\frac{2}{3}$	A1 (7)
		(7 marks)

Question number	Scheme	Marks
6. (a)	$i\sin 5\theta = \operatorname{Im}(\cos\theta + i\sin\theta)^5$	M1
	$= i(5\cos^4\theta\sin\theta - 10\cos^2\theta\sin^3\theta + \sin^5\theta)$	M1 A1
	$= i(5(1 - \sin^2 \theta)^2 \sin \theta - 10(1 - \sin^2 \theta) \sin^3 \theta + \sin^5 \theta)$	
	$\therefore \sin 5\theta = 16\sin^5\theta - 20\sin^3\theta + 5\sin\theta$	(5)
(b)	Put $5\sin\theta = 16\sin^5\theta - 20\sin^3\theta + 5\sin\theta$	
	$\therefore 16\sin^5\theta - 20\sin^3\theta = 0$	M1
	$\therefore \sin \theta = 0 \text{or} \sin \theta = \pm \sqrt{\frac{5}{4}} \text{(no solution as } \sin \theta > 1\text{)}$	A1 A1
	So only solutions are $\theta = n\pi$.	A1 (4)
		(9 marks)
7. (a)	Integrating factor is $e^{-\int 0.1 dt} = e^{-0.1t}$	B1
	Use to obtain $Pe^{-0.1t} = \int 0.05te^{-0.1t} dt$	M1
	$= \frac{-0.05te^{-0.1t}}{0.1} + \int \frac{0.05e^{-0.1t}}{0.1} dt$	M1
	$= -0.5te^{-0.1t} - 5e^{-0.1t} + c$	A1
	$\therefore P = -\frac{1}{2}t - 5 + ce^{0.1t}$	A1
	But at $t = 0$, $P = 10000$	
	So $c = 10005$ and $\therefore P = -\frac{1}{2}t - 5 + 10005e^{0.1t}$	M1 A1 (7)
(b)	When $t = 6$, $P = 18222 < 20000$	
	When $t = 7$, $P = 20139 > 20000$	M1
	So <i>P</i> reaches 20 000 during the seventh year	A1 (2)
		(9 marks)

Question number	Scheme	Marks
8. (a)	10 x x x x x x x x x x x x x x x x x x x	
	Locus is a circle	B1
	Centre is at (5, 12)	B1
	Radius is 3	B1 (3)
(b)	Finds distance from centre to origin is 13	M1
	Maximum modulus is $13 + 3 = 16$	M1 A1
	Minimum modulus is $13 - 3 = 10$	A1(4)
(c)	Finds $\frac{12}{5}$	M1
	Uses $\arctan \frac{12}{5} \pm \arcsin \frac{3}{13}$	M1
	Obtains 0.94 and 1.41 radians	A1 A1 (4)
		(11 marks)

Question number	Scheme	Marks
9. (a)	$V = \lambda t \sin 8t$, $\frac{\mathrm{d}V}{\mathrm{d}t} = \lambda \sin 8t + 8\lambda t \cos 8t$	M1, A1
	Substitute to give $\frac{d^2V}{dt^2} = 16\lambda \cos 8t + 64\lambda t \sin 8t$	A1
	$16\lambda\cos 8t = \cos 8t$, and $\therefore \lambda = \frac{1}{16}$	M1, A1 (5)
(b)	Auxiliary equation is $m^2 + 64 = 0$ and so $m = \pm 8i$	B1
	Complementary function is $A \cos 8t + B \sin 8t$	M1 A1
	General solution is $A \cos 8t + B \sin 8t + \frac{1}{16}t \sin 8t$	B1 (4)
(c)	V = 0, when $t = 0$ implies $A = 0$	
	$8B\cos 8t + \frac{1}{16}\sin 8t + \frac{1}{2}t\cos 8t = 0 \text{ when } t = 0$	
	So $8B = 0$ and $V = \frac{1}{16}t \sin 8t$ is particular solution.	(3)
(d)	As <i>t</i> becomes large the amplitude of the oscillations of <i>V</i> become large also.	
	As $t \to \infty$, $V \to \infty$ also.	B1 (1)
		(13 marks)