

Zirkelzettel vom 21. Dezember 2013

Konventionen

Die Menge der natürlichen Zahlen ist $\mathbb{N} := \{0, 1, 2, 3, \ldots\}.$

Die leere Menge $\{\} = \emptyset$ enthält kein einziges Element.

Alle Elemente der Menge der Elefanten in diesem Raum können π auswendig.

Regeln für surreale Zahlen

- 1. Konstruktionsprinzip. Sind L und R Mengen surrealer Zahlen und ist kein Element von $L \geq$ irgendeinem Element von R, so ist $\{L \mid R\}$ ebenfalls eine surreale Zahl. Alle surrealen Zahlen entstehen auf diese Art.
- 2. Notation. Für $x=\{L\mid R\}$ bezeichnen wir ein typisches Element von L mit " x^{L} ", ein typisches Element von R mit " x^{R} ". Wenn wir " $\{a,b,c,\dots\mid d,e,f,\dots\}$ " schreiben, meinen wir die Zahl $\{L\mid R\}$, sodass a,b,c,\dots die typischen Elemente von L und d,e,f,\dots die typischen Elemente von R sind.
- 3. Anordnung.

Wir sagen genau dann $x \geq y$, falls kein $x^R \leq y$ und $x \leq$ keinem y^L .

Wir sagen genau dann $x \not\leq y$, wenn $x \leq y$ nicht gilt.

Wir sagen genau dann x < y, wenn $x \le y$ und $y \not\le x$.

Wir sagen genau dann $x \leq y$, wenn $y \geq x$.

Wir sagen genau dann x > y, wenn y < x.

- 4. Gleichheit. Wir sagen genau dann x = y, wenn $x \le y$ und $y \le x$.
- 5. Addition. $x + y := \{x^L + y, x + y^L \mid x^R + y, x + y^R\}.$
- 6. Negation. $-x := \{-x^R \mid -x^L\}.$
- 7. Multiplikation. $xy = \{x^Ly + xy^L x^Ly^L, x^Ry + xy^R x^Ry^R \mid x^Ly + xy^R x^Ly^R, x^Ry + xy^L x^Ry^L\}.$

Aufgabe 1. Erste Beispiele für surreale Zahlen

Zu Beginn ist uns keine einzige surreale Zahl bekannt. Trotzdem kennen wir eine *Menge* surrealer Zahlen: nämlich die leere Menge. So können wir nach dem Konstruktionsprinzip eine erste surreale Zahl bauen:

$$0 := \{ | \} \quad (also \ L = R = \emptyset)$$

Wir haben diese Zahl "0" genannt, weil sie die Rolle der Null einnehmen wird. Mit dieser Zahl an der Hand können wir eine weitere surreale Zahl bauen:

$$1 := \{0 \mid \} \text{ (also } L = \{0\}, R = \emptyset)$$

- a) Überzeuge dich davon, dass die so definierten Zahlen 0 und 1 wirklich surreale Zahlen sind, dass also die Voraussetzung in der Konstruktionsvorschrift jeweils erfüllt war.
- b) Überprüfe, dass gemäß der Definitionen tatsächlich $0 \le 1$ gilt.
- c) Mit der bereits konstruierten Zahl 0 kann man insgesamt drei Ausdrücke angeben:

$$\{0 \mid \}, \{\mid 0\}, \{0 \mid 0\}.$$

Welche der beiden hinteren Ausdrücke sind Zahlen?

- d) Sortiere alle bis jetzt gefundenen Zahlen und überlege dir so geeignete Bezeichnungen für die neuen Zahlen aus c).
- e) Konstruiere ein paar weitere Zahlen, sortiere sie in die bereits gefundenen Zahlen ein und überlege dir geeignete Namen für sie.

Aufgabe 2. Erste Rechnungen mit surrealen Zahlen (benötigt Aufgabe 1)

- a) Überprüfe, dass gemäß der Definitionen gilt: 0 + 1 = 1.
- b) Berechne (-1) + 1 und vergleiche das Ergebnis mit 0.

Aufgabe 3. Mex-Operation

Ist S eine endliche Menge natürlicher Zahlen, so ist mex S die *kleinste* natürliche Zahl, die *nicht* in S liegt (minimum excludant).

a) Überzeuge dich von der Richtigkeit folgender Beispiele:

$$\max\{0, 1, 4, 7\} = 2$$
, $\max\{1, 4, 7\} = 0$, $\max \emptyset = 0$.

b) Berechne das Mex von deiner Lieblingsteilmenge natürlicher Zahlen.

Aufgabe 4. Nimber-Addition (benötigt Aufgabe 3)

Die Nimber-Addition ist in mengentheoretischer Notation wie folgt rekursiv definiert:

$$n \oplus m := \max(\{n' \oplus m \mid n' < n\} \cup \{n \oplus m' \mid m' < m\}).$$

Wenn man also den Wert von $n \oplus m$ herausfinden möchte, muss man zunächst die Werte von $n' \oplus m$ für alle kleineren Zahlen n' < n und die Werte von $n \oplus m'$ für alle kleineren Zahlen m' < m bestimmen. Der Wert von $n \oplus m$ ergibt sich dann als Mex dieser Zahlen.

a) Ergänze unten stehende Tabelle für die Nim-Addition.

 \star b) Wenn du schon die Beweistechnik der Induktion kennst, kannst du dich an folgenden Behauptungen für alle $n\in\mathbb{N}$ versuchen:

$$0 \oplus n = n$$
$$n \oplus n = 0$$

$n \setminus m$	0	1	2	3	4	5	6	7	
0	0	1	2						
1		0	3						
2									
3							4		
4			6						
5									
6									
7						2			
:									

Aufgabe 5. Falsche binomische Formel

 \ldots wäre schön, benötigt aber Multiplikation; hat daher hohen technischen Aufwand.