

中华人民共和国国家标准

GB 31629—2014

食品安全国家标准 食品添加剂 聚丙烯酰胺

2014-12-24 发布 2015-05-24 实施

中 华 人 民 共 和 国 _{发 布} 国家卫生和计划生育委员会

食品安全国家标准 食品添加剂 聚丙烯酰胺

1 范围

本标准适用于以丙烯酰胺为主要原料生产的食品添加剂聚丙烯酰胺。

2 技术要求

2.1 感官要求

应符合表1的规定。

表 1 感官要求

项目	要求	检验方法
色泽	白色或微黄色	取适量试样置于 50 mL 烧杯中,在自然光下观
状态	颗粒或粉末	察色泽和状态

2.2 理化指标

应符合表 2 的规定。

表 2 理化指标

项 目		指 标	检验方法
固含量(w)/%	\vee	90.0	附录 A 中 A.4
丙烯酰胺单体(以干基计,w)/%	\parallel	0.025	A.5
铝(Pb)/(mg/kg)	\leq	3	GB 5009.12
总砷(以 As 计)/(mg/kg)	\leq	3	GB/T 5009.11 或 GB/T 5009.76
溶解时间/min	\leq	90	A.6
不溶物(w)/%	\leq	0.3	A.7

附 录 A

检验方法

A.1 警示

本标准的检验方法中使用的部分试剂具有毒性或腐蚀性,操作时应采取适当的安全和防护措施。

A.2 一般规定

本标准所用试剂和水,在没有注明其他要求时,均指分析纯试剂和 GB/T 6682 中规定的三级水。试验中所用杂质测定用标准溶液、制剂及制品,在没有注明其他要求时,均按 GB/T 602 和GB/T 603的规定制备。所用溶液在未注明用何种溶剂配制时,均指水溶液。

A.3 鉴别试验

用红外吸收光谱法,将试样谱图与标准谱图(见图 B.1)比较,两者应基本一致,且在波数 $3~380~{\rm cm}^{-1}$ 、 $1~660~{\rm cm}^{-1}$ (酰胺)、 $1~610~{\rm cm}^{-1}$ 、 $1~460~{\rm cm}^{-1}$ 和 $1~130~{\rm cm}^{-1}$ 附近有特征吸收峰。

A.4 固含量的测定

A.4.1 方法提要

在一定温度下,将试样置于电热干燥箱内烘干至质量恒定。

A.4.2 仪器和设备

- **A.4.2.1** 电热干燥箱:温度能控制为 120 ℃±2 ℃。
- A.4.2.2 称量瓶(\$\phi\$ 40 mm×30 mm)或铝盘。

A.4.3 分析步骤

用预先于 $120 \% \pm 2 \%$ 下干燥至质量恒定的称量瓶称取约 1 g 试样,精确至 0.000 2 g,置于电热干燥箱中,在 $120 \% \pm 2 \%$ 下干燥至质量恒定。

A.4.4 结果计算

固含量以质量分数 w_1 计,按式(A.1)计算:

$$w_1 = \frac{m_1 - m_0}{m} \times 100\%$$
 (A.1)

式中:

 m_1 ——干燥后试样与称量瓶质量的数值,单位为克(g);

 m_0 ——称量瓶质量的数值,单位为克(g);

m ——试样的质量的数值,单位为克(g)。

试验结果以平行测定结果的算术平均值为准。在重复性条件下获得的两次独立测定结果的绝对差

值不大于 0.3%。

A.5 丙烯酰胺单体含量(以干基计)的测定

A.5.1 方法提要

试样中丙烯酰胺经溶剂提取净化后,用高效液相色谱仪(紫外检测器)检测,外标法定量。

A.5.2 试剂和材料

- A.5.2.1 水:符合 GB/T 6682 规定的一级水。
- **A.5.2.2** 丙烯酰胺标准样品:纯度≥99.5%。
- A.5.2.3 乙醇:色谱纯。
- A.5.2.4 甲醇:色谱纯。
- **A.5.2.5** 磷酸二氢钾溶液: 20 mmoL/L。称取 2.72 g 磷酸二氢钾,溶于水,当完全溶解后,用磷酸调节 pH 到 3.8。全部转移至 1000 mL 容量瓶中,稀释至刻度,摇匀。
- **A.5.2.6** 游离单体萃取液:量取 540 mL 异丙醇、450 mL 水和 10 mL 乙醇混合,置于 1 000 mL 试剂瓶中保存。此溶液为溶液 A。量取 740 mL 异丙醇、250 mL 水和 10 mL 乙醇混合,置于 1 000 mL 试剂瓶中保存。此溶液为溶液 B。
- A.5.2.7 微孔滤膜:0.45 μm。

A.5.3 仪器和设备

- A.5.3.1 高效液相色谱仪:配备紫外检测器。
- A.5.3.2 机械振荡器。

A.5.4 参考色谱条件

- **A.5.4.1** 流动相:磷酸二氢钾溶液+甲醇=85+15(体积比)。
- **A.5.4.2** 色谱柱:反相 C_{18} 柱,150 mm×4.6 mm,填充颗粒直径 3 μ m。
- **A.5.4.3** 流速:1.0 mL/min。
- A.5.4.4 柱温:20℃。
- A.5.4.5 进样量:10 μL。
- A.5.4.6 波长:205 nm。

A.5.5 分析步骤

A.5.5.1 标准溶液的制备

称取 1 g 丙烯酰胺标准样品,精确至 0.000 2 g,置于 10 mL 烧杯中,加入水使其完全溶解,定量转移至 100 mL 容量瓶中,再用水稀释至刻度,摇匀。该溶液为 10 mg/mL 丙烯酰胺溶液。

用移液管移取 10 mg/mL 的丙烯酰胺溶液 $0.1 \text{ mL}, 0.2 \text{ mL}, 0.4 \text{ mL}, 0.5 \text{ mL}, 1.0 \text{ mL}, 分别置于 <math>100 \text{ mL容量 瓶 中用水稀释至刻度, 该溶液分别为 } 0.01 \text{ mg/mL}, 0.02 \text{ mg/mL}, 0.04 \text{ mg/mL}, 0.05 \text{ mg/mL}, 0.05 \text{ mg/mL}, 0.05 \text{ mg/mL}, 0.06 \text{ mg/mL}, 0.07 \text{ mg/mL}, 0.08 \text{ mg/mL}, 0.09 \text{ mg$

A.5.5.2 试样溶液的制备

称取约 2 g 试样,精确至 0.000 2 g,置于已干燥的 50 mL 磨口锥形瓶中。用移液管移取 10 mL 的溶液 A 浸泡试样,振荡 40 min,然后加入 10 mL 的溶液 B,继续振荡 40 min。色谱分析前用微孔滤膜

过滤。

A.5.5.3 测定

在规定色谱条件下,取标准溶液和试样溶液各 10 μL 分别注入液相色谱仪,以丙烯酰胺保留时间定性,外标法峰面积定量。标准液相色谱图见图 B.2。

A.5.5.4 结果计算

丙烯酰胺含量以质量分数 ω_2 ,按式(A.2)计算:

$$w_2 = \frac{c \times V}{m \times w_1 \times 1000} \times 100\% \qquad \qquad \cdots \qquad (A.2)$$

式中:

c ——外标法得出的试液中丙烯酰胺实际浓度,单位为毫克每毫升(mg/mL);

V ——试样定容体积,单位为毫升(mL);

m ——试样质量,单位为克(g);

 w_1 ——固含量的质量分数,%;

1000 — 换算因子。

试验结果以平行测定结果的算术平均值为准。在重复性条件下获得的两次独立测定结果的绝对差值不大于 5%。

A.6 溶解时间的测定

A.6.1 方法提要

随着试样的不断溶解,溶液的电导值不断增大。全部溶解后,电导值恒定。一定量的试样在一定量 水中溶解时,电导值达到恒定所需时间,为试样的溶解时间。

A.6.2 仪器和设备

- **A.6.2.1** 电导仪:测量范围 $0.01 \,\mu\text{S/cm} \sim 10^6 \,\mu\text{S/cm}$ 。
- **A.6.2.2** 恒温槽:温度能控制为 30 ℃±1 ℃。
- A.6.2.3 电磁搅拌器:具有加热和控温装置,配有长度为 3cm 的搅拌子。

A.6.3 分析步骤

将盛有 100 mL 水和搅拌子的 200 mL 烧杯放入电磁搅拌器上的恒温槽中。将电导仪的电极插入烧杯,与烧杯壁距离 $5 \text{ mm} \sim 10 \text{ mm}$,与搅拌子距离约 5 mm。开动电磁搅拌,调节液面漩涡深度约 20 mm。打开加热装置,使恒温槽温度升至 $30 \text{ \mathbb{C}} \pm 1 \text{ \mathbb{C}}$,恒温 $10 \text{ min} \sim 15 \text{ min}$ 。

称取 $0.040~g\pm0.002~g$ 试样,由漩涡上部加入至烧杯中。当溶液电导值 3~min 内无变化时,停止试验。

A.6.4 结果计算

从加入试样至电导值开始恒定的时间为溶解时间。

试验结果以平行测定结果的算术平均值为准。在重复性条件下获得的两次独立测定结果的绝对差值不大于 5 min。

A.7 不溶物含量的测定

A.7.1 仪器和设备

A.7.1.1 试验筛: ♦200×50—0.125/0.09 GB/T 6003.1—2012。

A.7.1.2 电磁搅拌器。

A.7.2 分析步骤

称取约 1.0 g 试样,精确至 0.01 g,将其缓缓加入盛有 200 mL 水并已开动搅拌的 200 mL 烧杯中。保持漩涡深度约 4 cm,常温下溶解 2 h。用事先经丙酮洗涤两次并干燥恒量的不锈钢网过滤该溶液,过滤后,将不锈钢网连同不溶物在 $120 \text{ ℃} \pm 2 \text{ ℃下干燥至恒量}$ 。

A.7.3 结果计算

不溶物含量以质量分数 w_3 计,按式(A.3)计算:

式中:

 m_2 —不锈钢网加不溶物总质量的数值,单位为克(g);

 m_1 —不锈钢网质量的数值,单位为克(g);

 m_0 ——试样的质量的数值,单位为克(g)。

试验结果以平行测定结果的算术平均值为准。在重复性条件下获得的两次独立测定结果的绝对差值不大于 0.02%。

附 录 B

聚丙烯酰胺标准红外光谱图和丙烯酰胺标准液相色谱图

聚丙烯酰胺标准红外光谱图见图 B.1。

图 B.1 聚丙烯酰胺标准红外光谱图

丙烯酰胺标准液相色谱图见图 B.2。

图 B.2 丙烯酰胺标准液相色谱图

7