Asistensi Kalkulus 3

Limit dan Kekontinuan, Turunan Parsial, dan Masalah Ekstrem

Yassin Dwi Cahyo 24010122130053

Bidang Riset Asosiasi Matematika Terapan

Kamis, 12 Oktober 2023

Note:

File ini tidak mencakup semua materi yang dipelajari dari pertemuan 1 sampai dengan 7, tetapi telah disesuaikan dengan materi yang akan diujikan pada UTS Kalkulus 3, sesuai dengan kisi-kisi yang diberikan oleh Bu Zani.

Kisi-kisi UTS Kalkulus 3 (Bu Zani)

- Limit dan Kekontinuan;
- Turunan;
- Kasus minimum/maksimum dengan pengali Lagrange.

Mohon maaf jika terdapat banyak kekurangan (*typo*, salah ngitung, dll). Semoga *file* ini bermanfaat dan doakan penulis agar selalu sehat dan sukses. Aamiin YRA

Limit dan Kekontinuan Fungsi Multivariabel

Definisi 1 (Limit Fungsi Satu Variabel)

Diberikan $A \subseteq \mathbb{R}$, x_0 titik kluster himpunan A, dan $f: A \to \mathbb{R}$. Bilangan real L disebut sebagai limit fungsi f di x_0 , jika untuk setiap bilangan $\epsilon > 0$, terdapat bilangan $\delta > 0$, sehingga untuk setiap $x \in A$ dengan $0 < |x - x_0| < \delta$, berlaku $|f(x) - L| < \epsilon$.

Definisi 2 (Limit Fungsi Dua Variabel)

Diberikan $A \subseteq \mathbb{R}^2$, (a,b) titik kluster himpunan A, dan $f:A \to \mathbb{R}$. Bilangan real L disebut sebagai limit fungsi f di (a,b), jika untuk setiap bilangan $\epsilon>0$, terdapat bilangan $\delta>0$, sehingga untuk setiap $(x,y)\in A$ dengan $0 < ||(x,y) - (a,b)|| = \sqrt{(x-a)^2 + (y-b)^2} < \delta$, berlaku $|f(x,y) - L| < \epsilon$.

Definisi 3 (Limit Fungsi Multivariabel)

Diberikan $A \subseteq \mathbb{R}^n$, (a_1, a_2, \cdots, a_n) titik kluster himpunan A, dan $f: A \to \mathbb{R}$. Bilangan real L disebut sebagai limit fungsi f di (a_1, a_2, \dots, a_n) , jika untuk setiap bilangan $\epsilon > 0$, terdapat bilangan $\delta > 0$, sehingga untuk setiap $(x_1, x_2, \cdots, x_n) \in A$ dengan $0 < ||(x_1, x_2, \dots, x_n) - (a_1, a_2, \dots, a_n)|| = \sqrt{(x_1 - a_1)^2 + (x_2 - a_2)^2 + \dots + (x_n - a_n)^2} < \delta$, berlaku

 $|f(x_1, x_2, \cdots, x_n) - L| < \epsilon.$

4/58

Teorema 1 (Sifat-Sifat Limit)

Jika $\lim_{(x,y)\to(a,b)}f(x,y)=L$ dan $\lim_{(x,y)\to(a,b)}g(x,y)=M$, maka

- $\bullet \lim_{(x,y)\to(a,b)} k=k$, di mana $k\in\mathbb{R}$;
- $\lim_{(x,y)\to(a,b)} x = a;$
- $\lim_{(x,y)\to(a,b)} y = b;$

- $\qquad \lim_{(x,y)\to(a,b)}\left[\frac{f(x,y)}{g(x,y)}\right] = \frac{\lim_{(x,y)\to(a,b)}f(x,y)}{\lim_{(x,y)\to(a,b)}g(x,y)} = \frac{L}{M} \text{, asalkan } M\neq 0;$
- $\bigcirc \lim_{(x,y)\to(a,b)}[a\times g(x,y)]=a\times \lim_{(x,y)\to(a,b)}g(x,y)=a\times M \text{, di mana }a\in\mathbb{R}.$

Contoh 1

$$\lim_{(x,y)\to(3,-2)} x^2 \overset{1.1.5}{=} \lim_{(x,y)\to(3,-2)} x \times \lim_{(x,y)\to(3,-2)} x$$

$$\overset{1.1.2}{=} 3 \times 3 = 9$$

Contoh 2

Nilai

$$\lim_{\substack{(x,y)\to (1,2)}} \frac{-4+2x-4x^2+2x^3+y+x^2y-4y^2+2xy^2+y^3}{2x+y-4}$$

Tidak dapat langsung dihitung dengan menggunakan **Teorema 1**, sebab nilai 2x + y - 4 = 0 untuk (x,y)=(1,2). Tetapi bentuk limit tersebut dapat dituliskan menjadi

$$\lim_{(x,y)\to(1,2)} \frac{(1+x^2+y^2)((2x+y-4))}{(2x+y-4)} = \lim_{(x,y)\to(1,2)} 1+x^2+y^2 = 1+1+4=6.$$

Bentuk 2x + y - 4 dapat di-cancel, sebab, pada limit dituntut $(x, y) \neq (1, 2)$ atau $2x + y - 4 \neq 0$.

4 D > 4 B > 4 B > 4 B >

Teorema 2

Jika $\lim_{(x,y) o (a,b)} f(x,y)$ ada, maka nilai limitnya tunggal.

7/58

Teorema 2

Jika $\lim_{(x,y) o (a,b)} f(x,y)$ ada, maka nilai limitnya tunggal.

Akibat 1

Misalkan K_1 dan K_2 dua subhimpunan di daerah domain $D_f\subseteq\mathbb{R}^2$ dengan (a,b) merupakan titik limit dari K_1 dan K_2 . Jika

$$\lim_{(x,y)\to(a,b)} f(x,y) \neq \lim_{(x,y)\to(a,b)} f(x,y)$$
$$(x,y) \in K_1 \qquad (x,y) \in K_2$$

maka $\lim_{(x,y)\to(a,b)} f(x,y)$ tidak ada.

Definisi 4 (Definisi Kekontinuan)

Diberikan fungsi dengan domain $D_f \subseteq \mathbb{R}^2$ dan titik $(a,b) \in D_f$. Fungsi f kontinu di (a,b) jika

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$$

Definisi 5 (Definisi Formal Kekontinuan)

Diberikan fungsi f dengan domain $D_f \subseteq \mathbb{R}^2$ dan titik $(a,b) \in D_f$. Fungsi f dikatakan kontinu di titik (a,b) jika untuk setiap $\epsilon > 0$, terdapat $\delta > 0$ sedemikian sehingga untuk setiap $(x,y) \in D_f$ yang memenuhi

$$\sqrt{(x-a)^2 + (y-b)^2} < \delta,$$

maka

$$|f(x,y) - f(a,b)| < \epsilon.$$

Dengan kata lain, untuk mengecek f(x,y) kontinu di (a,b) haruslah memenuhi ketiga kondisi berikut.

- f(a,b) ada;
- $\lim_{(x,y)\to(a,b)} f(x,y);$

Teorema 3

Diberikan fungsi $f:\mathbb{R}^2 \to \mathbb{R}$ kontinu di (a,b) dan fungsi $g:\mathbb{R}^2 \to \mathbb{R}$ kontinu di (a,b), maka

- \bullet (f+g) kontinu di (a,b);
- (f-g) kontinu di (a,b);
- $\left(\frac{f}{a}\right)$ kontinu di (a,b), asalkan $g(a,b) \neq 0$.

Teorema 4

Diberikan fungsi $f:\mathbb{R}^2 \to \mathbb{R}$ kontinu di (a,b) dan fungsi $g:\mathbb{R} \to \mathbb{R}$ kontinu di f(a,b), maka $g\circ f:\mathbb{R}^2 \to \mathbb{R}$ kontinu di (a,b).

Contoh 3 (UTS TA 2022/2023)

Hitunglah nilai limit

$$\lim_{(x,y)\to(0,0)} \frac{(x-y)^2}{x^2+y^2}.$$

Penyelesaian:

• Dekati sepanjang y = x

• Dekati sepanjang y = -x

$$\lim_{(x,y)\to(0,0)} \frac{(x-y)^2}{x^2 + y^2} = \lim_{x\to 0} \frac{(x-x)^2}{x^2 + x^2} \qquad \lim_{(x,y)\to(0,0)} \frac{(x-(-x)^2}{x^2 + (-x)^2} = \lim_{x\to 0} \frac{(x+x)^2}{x^2 + x^2}$$

$$= \lim_{x\to 0} \frac{0}{2x^2} \qquad = \lim_{x\to 0} \frac{4x^2}{2x^2}$$

$$= 0 \qquad (1) \qquad = 2 \qquad (2)$$

Oleh karena $(1) \neq (2)$, diperoleh kesimpulan bahwa $\lim_{(x,y) \to (0,0)} \frac{(x-y)^2}{x^2+y^2}$ tidak ada.

Contoh 4 (UTS TA 2021/2022)

Hitunglah nilai limit

$$\lim_{(x,y)\to(0,0)} \frac{x+y\sqrt{x^2+y^2}}{\sqrt{x^2+y^2}}.$$

Penyelesaian:

Gunakan transformasi $x = r \cos \theta$ dan $y = r \sin \theta$. Perhatikan bahwa

$$\lim_{(x,y)\to(0,0)} \frac{x+y\sqrt{x^2+y^2}}{\sqrt{x^2+y^2}} = \lim_{r\to 0} \frac{r\cos\theta + r\sin\theta\sqrt{r^2}}{\sqrt{r^2}}$$
$$= \lim_{r\to 0} \frac{p'(\cos\theta + r\sin\theta)}{p'}$$
$$= \lim_{r\to 0} \cos\theta$$

Oleh karena nilai limit bergantung pada besaran sudut θ , akibatnya nilai limit akan berbeda-beda sehingga $\lim_{(x,y)\to(0,0)} \frac{x+y\sqrt{x^2+y^2}}{\sqrt{x^2+y^2}}$ tidak ada.

Contoh 5 (UTS TA 2020/2021)

Hitunglah nilai limit

$$\lim_{(x,y)\to(1,1)} \frac{x^2y^2 - 1}{\sqrt{xy} - 1}.$$

Penyelesaian:

Perhatikan bahwa

$$\lim_{(x,y)\to(1,1)} \frac{x^2y^2 - 1}{\sqrt{xy} - 1} = \lim_{(x,y)\to(1,1)} \frac{x^2y^2 - 1}{\sqrt{xy} - 1} \times \left(\frac{\sqrt{xy} + 1}{\sqrt{xy} + 1}\right)$$

$$= \lim_{(x,y)\to(1,1)} \frac{(xy-1)(xy+1)(\sqrt{xy} + 1)}{xy-1}$$

$$= \lim_{(x,y)\to(1,1)} (xy+1)(\sqrt{xy} + 1)$$

$$= (1 \cdot 1 + 1)(\sqrt{1 \cdot 1} + 1)$$

$$= 4$$

Diperoleh bahwa nilai $\lim_{(x,y) \to (1,1)} \frac{x^2y^2-1}{\sqrt{xy}-1} = 4.$

イロトイプトイミトイミト ミークスペ

Contoh 6 (UTS TA 2020/2021)

Hitunglah nilai limit

$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^4+y^2}.$$

Penyelesaian:

• Dekati sepanjang y = x

• Dekati sepanjang $y = x^2$

$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^4 + y^2} = \lim_{x\to 0} \frac{3x^2x}{x^4 + x^2}$$

$$= \lim_{x\to 0} \frac{\cancel{x}^2 \cdot 3x}{\cancel{x}^2(x^2 + 1)}$$

$$= 0 \tag{3}$$

$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^4 + y^2} = \lim_{x\to 0} \frac{3x^2 \cdot x^2}{x^4 + x^4}$$

$$= \lim_{x\to 0} \frac{3x^4}{2x^4}$$

$$= \frac{3}{2}$$
(4)

Oleh karena $(3) \neq (4)$, diperoleh kesimpulan bahwa $\lim_{(x,y) \to (0,0)} \frac{3x^2y}{x^4+y^2}$ tidak ada.

Contoh 7 (UTS TA 2019/2020)

Hitunglah nilai kimit

$$\lim_{(x,y)\to(1,1)}\frac{(x-1)(y-1)}{(x-1)^2+(y-1)^2}.$$

Penyelesaian:

• Dekati sepanjang y = x

$$\lim_{(x,y)\to(1,1)} \frac{(x-1)(y-1)}{(x-1)^2 + (y-1)^2} = \lim_{x\to 1} \frac{(x-1)(x-1)}{(x-1)^2 + (x-1)^2}$$

$$= \lim_{x\to 1} \frac{\cancel{(x-1)^2}}{\cancel{2\cdot(x-1)^2}}$$

$$= \frac{1}{2}$$
(9)

• Dekati sepanjang $y = x^2$

$$\lim_{(x,y)\to(1,1)} \frac{(x-1)(y-1)}{(x-1)^2 + (y-1)^2} = \lim_{x\to 1} \frac{(x-1)(x^2-1)}{(x-1)^2 + (x^2-1)^2} = \lim_{x\to 1} \frac{\cancel{(x-1)^2}(x+1)}{\cancel{(x-1)^2}(1+(x+1)^2)}$$

$$= \frac{2}{1+4}$$

$$= \frac{2}{5}$$
(6)

Oleh karena $(5) \neq (6)$, diperoleh kesimpulan bahwa

$$\lim_{(x,y)\to(1,1)} \frac{(x-1)(y-1)}{(x-1)^2+(y-1)^2}$$
 tidak ada.

Contoh 8 (UTS TA 2022/2023)

Tentukan nilai k (jika ada) agar fungsi f(x,y) kontinu di (0,0)

$$f(x,y) = \begin{cases} \frac{(x-y)^2}{x^2 + y^2}; & (x,y) \neq (0,0) \\ k; & (x,y) = (0,0) \end{cases}$$

Penyelesaian:

Agar fungsi f(x,y) kontinu di (0,0), maka haruslah dipenuhi semua syarat berikut.

- Nilai f(0,0) ada;
- $lackbox{0}$ Nilai $\lim_{(x,y) o (0,0)} f(x,y)$ ada; dan

Berdasarkan pada kesimpulan **contoh 1**, yaitu $\lim_{(x,y)\to(0,0)} f(x,y)$ tidak ada, akibatnya tidak ada $k\in\mathbb{R}$ sedemikian sehingga f(x,y) kontinu di (0,0)

Latihan Mandiri

Hitunglah nilai limit

$$\lim_{(x,y)\to(0,0)}\frac{\sin\bigl(2024x+2023y\bigr)-2024x-2023y}{\sqrt{2024x^{2023}+2023y^{2024}}}.$$

2 Dengan definisi limit $\epsilon - \delta$, buktikan bahwa

$$\lim_{(x,y)\to(0,0)} \frac{x^5 e^{xy}}{x^2 + e^y} = 0.$$

lacktriangle Tentukan nilai t (jika ada) agar fungsi f(x,y) kontinu di (0,0)

$$f(x,y) := \begin{cases} \frac{xy}{(x^2 + y^2)^{5/2}} \left[1 + \cos(x^2 + y^2) \right]; & (x,y) \neq (0,0) \\ t; & (x,y) = (0,0) \end{cases}$$

• Tentukan nilai u (jika ada) agar fungsi g(x,y) kontinu di (0,0)

$$g(x,y) := \begin{cases} \frac{x^4 + y^4}{x^4 + (x + \sqrt[3]{y})^2 + y^4}; & (x,y) \neq (0,0) \\ u; & (x,y) = (0,0) \end{cases}$$

Turunan Parsial

Definisi 6 (Turunan Parsial Fungsi Dua Variabel)

Diberikan fungsi $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$.

① Jika x berubah-ubah dan y dijaga agar tetap konstan, katakanlah $y=y_0$, maka $f(x,y_0)$ adalah fungsi satu variabel x. Turunan di $x=x_0$ disebut turunan parsial f terhadap x di $(x_0,y_0)\in D$, yaitu

$$\left. \frac{\partial f}{\partial x} \right|_{(x_0, y_0)} \stackrel{def}{=} \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

② Jika y berubah-ubah dan x dijaga agar tetap konstan, katakanlah $x=y_0$, maka $f(x_0,y)$ adalah fungsi satu variabel y. Turunan di $y=y_0$ disebut turunan parsial f terhadap y di $(x_0,y_0)\in D$, yaitu

$$\left. \frac{\partial f}{\partial y} \right|_{(x_0, y_0)} \stackrel{\text{def}}{=} \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$

Note:

Jika z = f(x, y), maka turunan parsial dapat dinyatakan dengan notasi lain sebagai berikut:

$$f_x(x,y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f(x,y) = \frac{\partial z}{\partial x} = f_1 = D_1 f = D_x f;$$

$$f_y(x,y) = f_y = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} f(x,y) = \frac{\partial z}{\partial y} = f_2 = D_2 f = D_y f$$

Contoh 9

Diketahui fungsi
$$f(x,y)=x^2+2y$$
. Tentukan $\frac{\partial f}{\partial x}$ dan $\frac{\partial f}{\partial y}$.

Penyelesaian:

 \bullet Turunan parsial f terhadap x

$$\frac{\partial f}{\partial x} \stackrel{\text{def.}}{=} \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 + 2y - (x^2 + 2y)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x^2 + 2x\Delta x + (\Delta x)^2 + 2y - x^2 - 2y}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{2x\Delta x + (\Delta x)^2}{\Delta x}$$

$$= \lim_{\Delta x \to 0} (2x + \Delta x)$$

$$= 2x$$

• Turunan parsial f terhadap y

$$\frac{\partial f}{\partial y} \stackrel{\text{def.}}{=} \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

$$= \lim_{\Delta y \to 0} \frac{x^2 + 2(y + \Delta y) - (x^2 + 2y)}{\Delta y}$$

$$= \lim_{\Delta y \to 0} \frac{x^2 + 2y + 2\Delta y - x^2 - 2y}{\Delta y}$$

$$= \lim_{\Delta y \to 0} \frac{2\Delta y}{\Delta y}$$

$$= 2$$

Aturan menentukan turunan parsial fungsi z = f(x, y)

- Untuk menentukan f_x , pandang y sebagai konstanta dan turunkan f(x,y) terhadap x;
- **Q** Untuk menentukan f_y , pandang x sebagai konstanta dan turunkan f(x,y) terhadap y.

Contoh 10

Diketahui fungsi $f(x,y) := x^3 + x^2y^3 - 2y^2$. Tentukan $f_x(2,1)$ dan $f_y(2,1)$!

Penyelesaian:

lacktriangle Turunkan parsial f terhadap x

$$f_x(x,y) = 3x^2 + 2xy^3 \Rightarrow f_x(2,1) = 3 \cdot 2^2 + 2 \cdot 2 \cdot 1^3$$

= 16

2 Turunkan parsial f terhadap y

$$f_y(x,y) = 3x^2y^2 - 4y \Rightarrow f_y(2,1) = 3 \cdot 2^2 \cdot 1^2 - 4 \cdot 1$$

= 8

(ロ) (回) (重) (重) (重) のQ()

Contoh 11

Diketahui
$$f(x,y) := \begin{cases} \frac{xy}{x^2+y^2}, & \text{jika } (x,y) \neq (0,0) \\ 0, & \text{jika } (x,y) = (0,0) \end{cases}$$
. Tentukan $f_x(x,y)$ dan $f_y(x,y)$!

Penyelesaian:

- Untuk $(x, y) \neq (0, 0)$
 - Turunan parsial f terhadap x

$$f_x = \frac{y(x^2 + y^2) - 2x(xy)}{(x^2 + y^2)^2} = \frac{y^3 - x^2y}{(x^2 + y^2)^2}$$

• Turunan parsial f terhadap u

$$f_y = \frac{x(x^2 + y^2) - 2y(xy)}{(x^2 + y^2)^2} = \frac{x^3 - xy^2}{(x^2 + y^2)^2}$$

◆□ → ◆□ → ◆ ≥ → ◆ ≥ → □

21/58

- Untuk (x, y) = (0, 0)
 - \bullet Turunan parsial f terhadap x

$$f_x(0,0) \stackrel{\text{def.}}{=} \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h}$$
$$= \lim_{h \to 0} \frac{\frac{0}{h^2} - 0}{h}$$
$$= 0$$

ullet Turunan parsial f terhadap y

$$f_y(0,0) \stackrel{def.}{=} \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k}$$
$$= \lim_{k \to 0} \frac{\frac{0}{k^2} - 0}{k}$$
$$= 0$$

Definisi 7 (Turunan Parsial Fungsi Multivariabel)

Diberikan fungsi n variabel $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$.

Turunan parsial f terhadap x_i (variabel ke -i) adalah

$$\frac{\partial f}{\partial x_i} \stackrel{\text{def.}}{=} \lim_{\Delta x_i \to 0} \frac{f(x_1, \dots, x_{i-1}, x_i + \Delta x_i, x_{i+1}, \dots, x_n) - f(x_1, x_2, \dots, x_n)}{\Delta x_i}$$

Contoh 12

Jika
$$f(x,y,z)=e^{xy}\ln z$$
, maka

$$f_x = ye^{xy} \ln z$$
$$f_y = xe^{xy} \ln z$$

$$f_z = \frac{e^{xy}}{z}$$

Contoh 13

Jika
$$f(x, y, z) = xy + 2yz + 3zx$$
, maka

$$f_x = y + 3z$$

$$f_y = x + 2z$$

$$f_z = 2y + 3x$$

Diketahui fungsi dua variabel z = f(x,y). Jika f dapat diturunkan, maka dapat didefinisikan dua fungsi bernilai real yang nilainya di titik (x, y) masing masing adalah

$$D_1 f(x,y) = \frac{\partial f}{\partial x}(x,y) = f_x(x,y) \text{ dan } D_2 f(x,y) = \frac{\partial f}{\partial y}(x,y) = f_y(x,y)$$

Misalkan pula fungsi ini dapat diturunkan, maka dikenalkan turunan parsial dari $D_1 f(x,y)$ terhadap x dan y, masing-masing ditulis sebagai

$$\frac{\partial}{\partial x}\frac{\partial f}{\partial x}(x,y) = \frac{\partial^2 f}{\partial x^2} = D_{11}^2 f(x,y) = f_{xx}(x,y)$$
$$\frac{\partial}{\partial y}\frac{\partial f}{\partial x}(x,y) = \frac{\partial^2 f}{\partial y \partial x} = D_{12}^2 f(x,y) = f_{xy}(x,y)$$

yang disebut turunan parsial order 2. Turunan parsial order 2 lainnya diperoleh dengan menurun secara parsial $D_2 f(x,y)$ terhadap x dan y yang masing-masing ditulis sebagai

$$\frac{\partial}{\partial x} \frac{\partial f}{\partial y} f(x, y) = \frac{\partial^2 f}{\partial x \partial y} = D_{21}^2 f(x, y) = f_{yx}(x, y)$$
$$\frac{\partial}{\partial y} \frac{\partial f}{\partial y}(x, y) = \frac{\partial^2 f}{\partial y^2} = D_{22}^2 f(x, y) = f_{yy}(x, y)$$

Teorema 5 (Teorema Clairaut)

Diberikan fungsi dua variabel z=f(x,y) dalam domain D yang memuat (a,b). Jika f_{xy} dan f_{yx} keduanya kontinu di D, maka

$$f_{xy}(a,b) = f_{yx}(a,b)$$

Contoh 14

Diberikan fungsi $f(x,y) := x^m y^n$. Turunan parsial pertama fungsi f(x,y) adalah

$$\frac{\partial f}{\partial x} = mx^{m-1}y^n \quad \text{dan} \quad \frac{\partial f}{\partial y} = nx^my^{n-1}.$$

Sedangkan turunan parsial order dua adalah

$$\frac{\partial^2 f}{\partial x^2} = m(m-1)x^{m-1}y^n; \quad \frac{\partial^2 f}{\partial y^2} = n(n-1)x^my^{n-1}; \quad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = mnx^{m-1}y^{n-1}$$

Teorema 6 (Aturan Rantai (1))

Diberikan fungsi dua variabel z=f(x,y) yang terdiferensialkan terhadap variabel x dan y, di mana x=g(t) dan y=h(t) yang keduanya terdiferensialkan terhadap t, maka z fungsi yang terdiferensialkan terhadap t dan

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

Ilustrasi:

Teorema 7 (Aturan Rantai (2))

Diberikan fungsi dua variabel z=f(x,y) yang terdiferensialkan terhadap variabel x dan y, di mana x=g(s,t) dan y=h(s,t) adalah fungsi yang terdiferensialkan terhadap s dan t, maka

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s} \ \text{dan} \ \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t}$$

Ilustrasi:

Yassin Dwi Cahyo (24010122130053)

Contoh 15

Diketahui
$$z=f(x,y)$$
 di mana $x=r^2+s^2$ dan $y=2rs$. Tentukan $\frac{\partial^2 z}{\partial r\partial s}$ dan $\frac{\partial^2 z}{\partial r^2}$...

Penyelesaian:

Dengan aturan rantai, diperoleh bahwa

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} = \frac{\partial z}{\partial x} 2s + \frac{\partial z}{\partial y} 2r$$

Selanjutnya

$$\begin{split} \frac{\partial}{\partial r} \frac{\partial z}{\partial s} &= \frac{\partial}{\partial r} \left(\frac{\partial z}{\partial x} 2s \right) + \frac{\partial}{\partial r} \left(\frac{\partial z}{\partial y} 2r \right) = 2s \cdot \frac{\partial}{\partial r} \frac{\partial z}{\partial x} + 2r \cdot \frac{\partial}{\partial r} \frac{\partial z}{\partial y} + 2 \cdot \frac{\partial z}{\partial y} \\ &= 2s \cdot \left[\frac{\partial}{\partial x} \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial}{\partial y} \frac{\partial z}{\partial x} \frac{\partial y}{\partial r} \right] + 2r \cdot \left[\frac{\partial}{\partial x} \frac{\partial z}{\partial y} \frac{\partial x}{\partial r} + \frac{\partial}{\partial y} \frac{\partial z}{\partial y} \frac{\partial y}{\partial r} \right] + 2 \cdot \frac{\partial z}{\partial y} \\ &= 2s \cdot \left[\frac{\partial^2 z}{\partial x^2} (2r) + \frac{\partial}{\partial y} \frac{\partial z}{\partial x} (2s) \right] + 2r \cdot \left[\frac{\partial}{\partial x} \frac{\partial z}{\partial y} (2r) + \frac{\partial^2 z}{\partial y^2} (2s) \right] + 2 \cdot \frac{\partial z}{\partial y} \\ &\frac{\partial^2 z}{\partial r \partial s} = 4rs \frac{\partial^2 z}{\partial x^2} + (4r^2 + 4s^2) \frac{\partial^2 x}{\partial x \partial y} + 4rs \frac{\partial^2 z}{\partial y^2} + 2 \frac{\partial z}{\partial y} \end{split}$$

Akibat 2 (Turunan Parsial Fungsi Implisit)

Diberikan fungsi dua variabel z=f(x,y) dan memenuhi F(x,y,z)=0 sehingga F(x,y,z)=F(x,y,f(x,y))=0. Turunan parsial F terhadap x adalah

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}$$

Turunan parsial F terhadap y adalah

$$\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}$$

dengan syarat $\frac{\partial F}{\partial z} \neq 0$.

Bukti: Dengan aturan turunan, perhatikan bahwa

$$\frac{\partial F}{\partial x} = \frac{\partial F}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial F}{\partial y} \frac{\partial y}{\partial x} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial x}$$

$$0 = \frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \frac{\partial y}{\partial x} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial x}$$

$$\frac{\partial F}{\partial z} \frac{\partial z}{\partial x} = -\frac{\partial F}{\partial x}$$

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}$$

Dengan cara analog, diperoleh $\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} \blacksquare.$

Diberikan fungsi dua variabel f(x,y). Turunan parsial f_x itu hanya mengukur perubahan suatu nilai dalam sumbu x saja dan f_y itu hanya mengukur perubahan suatu nilai dalam sumbu y saja. Bagaimana

Misalkan $\vec{p}=(x,y), \vec{i}=(1,0),$ dan $\vec{j}=(0,1).$ Turunan parsial dari f(x,y) dapat didefinisikan ulang sebagai

$$f_x(\vec{p}) = \lim_{h \to 0} \frac{f(\vec{p} + h\vec{i}) - f(\vec{p})}{h} \quad \text{dan} \quad f_y(\vec{p}) = \lim_{h \to 0} \frac{f(\vec{p}) + h\vec{j}) - f(\vec{p})}{h}$$

Oleh karena vektor satuan tidak hanya \vec{i} dan \vec{j} , katakanlah $\vec{u}=(u_1,u_2)$, maka turunan berarah f dalam arah \vec{u} dapat didefinisikan.

Definisi 8 (Turunan Berarah)

jika ada perubahan terhadap arah yang lain?

Diberikan fungsi dua variabel f(x,y) dan vektor satuan $\vec{u}=(u_1,u_2)$. Turunan berarah dari f di $\vec{p}=(x_0,y_0)$ dalam arah \vec{u} adalah

$$D_{\vec{u}}f(\vec{p}) \stackrel{\text{def.}}{=} \lim_{h \to 0} \frac{f(\vec{p} + h\vec{u}) - f(\vec{p})}{h}$$

atau

Teorema 8

Jika f terdiferensialkan (linear secara lokal) di \vec{p} , maka f mempunyai turunan berarah di \vec{p} dalam arah vektor $\vec{u}=(u_1,u_2)=u_1\vec{i}+u_2\vec{j}$ dan

$$D_{\vec{u}}f(\vec{p}) = \vec{u} \cdot \nabla f(\vec{p}) = u_1 f_1(\vec{p}) + u_2 f_y(\vec{p}).$$

Lebih lanjut, $\nabla f(\vec{p})$ disebut dengan gradien dari fungsi f.

Contoh 16

Turunan parsial dari $f(x,y) = x^2 + y^2$ di titik (1,2) adalah

$$D_{\vec{i}}f(1,2) = 2x \Big|_{(1,2)} = 2; \quad D_{\vec{j}}f(1,2) = 2y \Big|_{(1,2)} = 4.$$

Turunan berarah dari f di (1,2) dalam vektor $\vec{u}=\left(\frac{3}{5},\frac{4}{5}\right)$ adalah

$$D_{\vec{u}}f(1,2) = (2,4) \cdot \left(\frac{3}{5}, \frac{4}{5}\right) = 1.2 + 3.2 = 4.4$$

Latihan Mandiri

- Seekor lebah berada dalam suatu ruangan dengan suhu pada titik (x,y,z) adalah $T(x,y,z)=\frac{120}{1+x^2+y^2+z^2}$. Jika lebah tersebut berada pada posisi (1,1,1), ke arah mana lebah tersebut harus terbang agar suhunya menurun paling cepat?
- Pasir jatuh ke bawah sedikit demi sedikit dengan laju $2\ cm^3$ per detik dan setiap saat membentuk kerucut. Ketika tinggi pasir $3\ cm$ dan jari-jari $1\ cm$, laju pertambahan tingginya adalah $1\ cm$ per detik. Hitunglah laju pertambahan jari-jari kerucut pasir pada saat tinggi pasir $3\ cm$ dan jari-jari $1\ cm$.

Keterdiferensialan dan Bidang Singgung

Motivasi: Diferensial Fungsi Satu Variabel

Turunan fungsi f terhadap x di titik a ada, notasi $f^{'}(a)$, jika $\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$ ada. Lebih lanjut,

$$\lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x} = f'(a)$$

Dapat diperumum untuk sebarang $x \in \mathbb{R}$,

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = f^{'}(x) = m.$$

Secara intuitif (cek gambar), diperoleh

$$m = \frac{dy}{dx} \Leftrightarrow m \ dx = dy \Leftrightarrow f'(x)dx = dy.$$

Diferensial fungsi f ditulis dengan df didefinisikan sebagai df = f'(x) dx dengan dx sebarang bilangan dan disebut dengan diferensial x.

Definisi 9 (Diferensial Fungsi Dua Variabel)

Diberikan fungsi dua variabel z = f(x, y). Fungsi f dikatakan terdiferensiabel di (x, y) jika

$$dz = f_x(x, y) + f_y(x, y)$$

Lebih lanjut, dz disebut diferensial (diferensial total) z.

Teorema 9

Jika f(x,y) diferensiabel di (x_0,y_0) , maka f(x,y) kontinu di (x_0,y_0) .

Teorema 10

Jika $f_x(x,y)$ dan $f_y(x,y)$ keduanya kontinu di (x_0,y_0) , maka f(x,y) terdiferensialkan di (x_0,y_0)

Note:

Untuk membuktikan bahwa f(x,y) terdiferensiabel di (x_0,y_0) , tunjukkan saja bahwa $f_x(x,y)$ dan $f_{\nu}(x,y)$ kontinu di (x_0,y_0) .

Motivasi: Diferensial Fungsi Satu Variabel

Turunan fungsi f terhadap x di titik a ada, notasi $f^{'}(a)$, jika $\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$ ada. Perhatikan bahwa

$$\lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x} = f'(a)$$

$$\lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x} = \lim_{\Delta x \to 0} f'(a) \frac{\Delta x}{\Delta x}$$

Turunan fungsi f terhadap x di titik a ada, jika $\lim_{\Delta x \to 0} \frac{f(a+\Delta x) - f(a) - f^{'}(a)\Delta x}{\Delta x} = 0$

Yassin Dwi Cahyo (24010122130053)

Motivasi: Hampiran Linear Satu Variabel

Berapakah nilai $f(a+\Delta x)$? Untuk Δx yang kecil, diperoleh $f(a+\Delta x) \approx L(a+\Delta x)$ dengan L(x) merupakan hampiran linear dari f(x) di sekitar a.

Dari ilustrasi tersebut, L(x) merupakan persamaan garis singgung terhadap f(x) di x=a. Dengan kata lain, persamaan garis singgung melalui (a,f(a)) dengan gradien $f^{'}(a)$, yaitu

$$f(x) - f(a) = f'(a)(x - a)$$

$$f(x) = f(a) + f'(a)(x - a)$$

$$L(x) = f(a) + f'(a)(x - a)$$

37 / 58

Definisi 10 (Persamaan Bidang Singgung)

Diberikan fungsi z=f(x,y) dan titik (a,b) berada pada domain fungsi f. Persamaan bidang singgung z=f(x,y) yang melalui (a,b,f(a,b)) adalah

$$z - f(a,b) = f_x(a,b)(x-a) + f_y(a,b)(y-b) \Leftrightarrow z = f_x(a,b)(x-a) + f_y(a,b)(y-b) + f(a,b).$$

Contoh 17

Tentukan persamaan bidang singgung pada fungsi $f(x,y) := x^2 + xy + 3y^2$ yang melalui titik (1,1).

Penyelesaian:

Dari $f(x,y) := x^2 + xy + 3y^2$, diperoleh bahwa

$$f_x(x,y) = 2x + y \stackrel{\text{subs.}(1,1)}{\Longrightarrow} f_x(1,1) = 2 + 1 = 3$$

 $f_y(x,y) = x + 6y \stackrel{\text{subs.}(1,1)}{\Longrightarrow} f_y(1,1) = 1 + 6 = 7$
 $f(1,1) = 1 + 1 + 3 = 5$

Sehingga, persamaan bidang singgungnya adalah

$$z = 3(x-1) + 7(y-1) + 5$$

= $3x + 7y - 5$

< □ > < □ > < Ē > < Ē > Ē ≥ < O < O

Maksimum dan Minimum Tanpa Kendala Fungsi Multivariabel

Definisi 11 (Maksimum dan Minimum Lokal Fungsi Dua Variabel)

Diberikan daerah $D_1 \subseteq \mathbb{R}^2$ dan fungsi $f: D_1 \to \mathbb{R}$.

- Fungsi f dikatakan mencapai maksimum relatif (lokal) di $(a,b) ∈ D_1$ jika terdapat titik persekitaran di (a,b) sedemikian sehingga berlaku f(a,b) ≥ f(x,y). Selanjutnya, bilangan f(a,b) dikatakan sebagai nilai maksimum lokal fungsi f;
- Fungsi f dikatakan mencapai minimum relatif (lokal) di (a, b) ∈ D₁ jika terdapat titik persekitaran di (a, b) sedemikian sehingga berlaku f(a, b) ≤ f(x, y). Selanjutnya, bilangan f(a, b) dikatakan sebagai nilai minimum lokal fungsi f;

Definisi 12 (Maksimum dan Minimum Global Fungsi Dua Variabel)

Diberikan daerah $D_2 \subseteq \mathbb{R}^2$ dan fungsi $f: D_2 \to \mathbb{R}$.

- Fungsi f dikatakan mencapai **maksimum global** di $(a,b) \in D_2$ jika $f(a,b) \ge f(x,y)$ untuk **semua** $(a,b) \in D_2$. Selanjutnya, bilangan f(a,b) dikatakan sebagai nilai maksimum global fungsi f pada D_2 ;
- ② Fungsi f dikatakan mencapai **minimum global** di $(a,b) \in D_2$ jika $f(a,b) \le f(x,y)$ untuk **semua** $(a,b) \in D_2$. Selanjutnya, bilangan f(a,b) dikatakan sebagai nilai minimum global fungsi f pada D_2 ;

Teorema 11 (Syarat Perlu Nilai Ekstrem Relatif Fungsi Dua Variabel)

Diberikan daerah $D\subseteq\mathbb{R}^2$ dan fungsi $f:D\to\mathbb{R}$. Jika fungsi f mencapai ekstrem relatif di (a,b) dan f memiliki turunan parsial pertama di (a,b), maka $\frac{\partial f}{\partial x}(a,b)=0$ dan $\frac{\partial f}{\partial y}(a,b)=0$. Lebih lanjut, titik $(a,b)\in D$ dikatakan titik kritis dari fungsi f.

Teorema 12 (Syarat Cukup Nilai Ekstrem Relatif Fungsi Dua Variabel)

Diberikan fungsi dua variabel f(x,y) yang kotinu dan memiliki turunan parsial pertama dan kedua yang masing-masing juga kontinu. Misalkan (a,b) merupakan titik kritis dari fungsi f dan

$$\Delta = \begin{vmatrix} f_{xx}(a,b) & f_{xy}(a,b) \\ f_{yx}(a,b) & f_{yy}(a,b) \end{vmatrix} = f_{xx}(a,b) \cdot f_{yy}(a,b) - [f_{xy}(a,b)]^2.$$

- Jika $\Delta > 0$ dan
 - $f_{xx}(a,b) < 0$, maka f mencapai maksimum relatif di (a,b):
 - ② $f_{xx}(a,b) > 0$, maka f mencapai minimum relatif di (a,b).

- Jika $\Delta = 0$, maka tidak ada kesimpulan.
- Jika $\Delta < 0$, maka titik (a,b) merupakan titik sadel.

Teorema 13 (Nilai Ekstrem Global Fungsi Dua Variabel)

Jika f kontinu pada himpunan tertutup dan terbatas $D \subseteq \mathbb{R}^2$, maka terdapat $(x_1, y_1), (x_2, y_2) \in D$ sedemikian sehingga f mencapai maksimum global di (x_1, y_1) dan mencapai minimum global di (x_2, y_2) .

Untuk menentukan nilai ekstem global pada fungsi f yang kontinu pada himpunan tertutup dan terbatas $D \subseteq \mathbb{R}^2$ dapat dilakukan prosedur berikut.

- Dicari nilai f di titik-titik kritis di dalam D;
- Dicari nilai ekstrem f pada batas D:
- Nilai terbesar (terkecil) dari langkah 1 dan langkah 2 merupakan nilai maksimum (minimum) global dari fungsi f.

43 / 58

Definisi 13 (Maksimum dan Minimum Lokal Fungsi Multivariabel)

Diberikan daerah $D_1 \subseteq \mathbb{R}^n$ dan fungsi $f: D_1 \to \mathbb{R}$.

- **⑤** Fungsi f dikatakan mencapai **maksimum relatif** (lokal) di $(a_1, a_2, \cdots, a_n) \in D_1$ jika terdapat titik **persekitaran** di (a_1, a_2, \cdots, a_n) sedemikian sehingga berlaku $f(a_1, a_2, \cdots, a_n) \geq f(x_1, x_2, \cdots, x_n)$. Selanjutnya, bilangan $f(a_1, a_2, \cdots, a_n)$ dikatakan sebagai nilai maksimum lokal fungsi f;
- **②** Fungsi f dikatakan mencapai **minimum relatif** (lokal) di $(a_1, a_2, \cdots, a_n) \in D_1$ jika terdapat titik **persekitaran** di (a,b) sedemikian sehingga berlaku $f(a_1, a_2, \cdots, a_n) \leq f(x_1, x_2, \cdots, x_n)$. Selanjutnya, bilangan $f(a_1, a_2, \cdots, a_n)$ dikatakan sebagai nilai minimum lokal fungsi f;

Definisi 14 (Maksimum dan Minimum Global Fungsi Multivariabel)

Diberikan daerah $D_2 \subseteq \mathbb{R}^n$ dan fungsi $f: D_2 \to \mathbb{R}$.

- **⑤** Fungsi f dikatakan mencapai **maksimum global** di $(a_1, a_2, \cdots, a_n) \in D_2$ jika $f(a_1, a_2, \cdots, a_n) \geq f(x_1, x_2, \cdots, x_n)$ untuk **semua** $(a_1, a_2, \cdots, a_n) \in D_2$. Selanjutnya, bilangan $f(a_1, a_2, \cdots, a_n)$ dikatakan sebagai nilai maksimum global fungsi f pada D_2 ;
- ② Fungsi f dikatakan mencapai **minimum global** di $(a_1,a_2,\cdots,a_n)\in D_2$ jika $f(a_1,a_2,\cdots,a_n)\leq f(x_1,x_2,\cdots,x_n)$ untuk **semua** $(a_1,a_2,\cdots,a_n)\in D_2$.Selanjutnya, bilangan $f(a_1,a_2,\cdots,a_n)$ dikatakan sebagai nilai minimum global fungsi f pada D_2 ;

Teorema 14 (Svarat Perlu Nilai Ekstrem Relatif Fungsi Multivariabel)

Diberikan daerah $D \subseteq \mathbb{R}^n$ dan fungsi $f: D \to \mathbb{R}$. Jika fungsi multivariabel f mencapai ekstrem relatif di (a_1,a_2,\cdots,a_n) dan f memiliki turunan parsial pertama di (a_1,a_2,\cdots,a_n) , maka $f_{x_1}(a_1,a_2,\cdots,a_n)=0$, $f_{x_2}(a_1,a_2,\cdots,a_n)=0,\cdots,f_{x_n}(a_1,a_2,\cdots,a_n)=0$. Lebih lanjut, titik $(a_1,a_2,\cdots,a_n)\in D$ dikatakan titik kritis dari fungsi f.

Teorema 15 (Svarat Cukup Nilai Ekstrem Relatif Fungsi Multivariabel)

Diberikan fungsi multivariabel $f(x_1, x_2, \dots, x_n)$ yang kotinu dan memiliki turunan parsial pertama dan kedua yang masing-masing juga kontinu. Misalkan (a_1,a_2,\cdots,a_n) merupakan titik kritis dari fungsi f dan matriks hessian

$$H = \begin{bmatrix} f_{x_1x_1} & f_{x_1x_2} & \cdots & f_{x_1x_n} \\ f_{x_2x_1} & f_{x_2x_2} & \cdots & f_{x_2x_n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1} & f_{x_nx_2} & \cdots & f_{x_nx_n} \end{bmatrix}$$

 $H = \begin{bmatrix} f_{x_1x_1} & f_{x_1x_2} & \cdots & f_{x_1x_n} \\ f_{x_2x_1} & f_{x_2x_2} & \cdots & f_{x_2x_n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1} & f_{x_nx_2} & \cdots & f_{x_nx_n} \end{bmatrix}. \text{ Didefinisikan partisi dari } H, \text{yaitu} \\ H_1 = \begin{bmatrix} f_{x_1x_1} & f_{x_1x_2} \\ f_{x_2x_1} & f_{x_2x_2} \end{bmatrix}, H_2 = \begin{bmatrix} f_{x_1x_1} & f_{x_1x_2} \\ f_{x_2x_1} & f_{x_2x_2} \end{bmatrix}, H_3 = \begin{bmatrix} f_{x_1x_1} & f_{x_1x_2} \\ f_{x_2x_1} & f_{x_2x_2} \end{bmatrix}$

dan seterusnya.

- lacktriangle Jika $|H_1| < 0, |H_2| > 0, |H_3| < 0, |H_4| > 0, \cdots$, maka f mencapai maksimum relatif di (a_1, a_2, \cdots, a_n) ;
- \bigcirc Jika $|H_1| > 0$, $|H_2| > 0$, $|H_3| > 0$, $|H_4| < 0$, \cdots , maka f mencapai minimum relatif di (a_1, a_2, \cdots, a_n) .

10 × 4 = × 4 = × 9 × 9

44 / 58

Yassin Dwi Cahyo (24010122130053)

Contoh 18

Carilah nilai maksimum dan minimum lokal dari fungsi $f(x,y) = 3x^3 + y^2 - 9x + 4y$.

Penyelesaian:

Syarat perlu

$$f_x = 0$$

$$9x^2 - 9 = 0$$

$$9(x+1)(x-1) = 0$$

$$x = \pm 1$$

$$dan$$

$$f_y = 0$$

$$2y + 4 = 0$$

$$2(y+2) = 0$$

$$y = -2$$

Titik kritis, yaitu (-1, -2) dan (1, -2).

Syarat cukup

$$f_{xx} = 18x; \quad f_{xy} = 0; \quad f_{yy} = 2$$

Diperoleh bahwa $\Delta = 18x \cdot 2 = 36x$. Perhatikan bahwa

(x,y)	Δ	$f_{xx}(x,y)$	Kesimpulan
(-1, -2)	-36 < 0	-18 < 0	Titik sadel
(1, -2)	36 > 0	18 > 0	Minimum lokal

Dari uraian di atas, diperoleh bahwa titik (1,-2) merupakan titik minimum lokal dari f, dengan nilai minimum lokal, yaitu f(1,-2)=3+4-9-8=-10.

Contoh 19

Sebuah perusahaan memproduksi barang dengan fungsi keuntungan

$$B(x, y, z) = -2x^{3} + 6xz + 2y - y^{2} - 6z^{2} + 5.$$

Berapakah x, y, dan z agar perusahaan memperoleh keuntugan maksimal?

Penyelesaian:

Syarat perlu

$$f_x = 0$$
 $-6x^2 + 6z = 0$ (7)
 $f_y = 0$
 $2 - 2y = 0$
 $y = 1$ (8)
 $f_z = 0$
 $6x - 12z = 0$
 $z = \frac{x}{2}$ (9)

Titik kritis, yaitu (0,1,0) dan $\left(\frac{1}{2},1,\frac{1}{4}\right)$.

Substitusi (3) ke (1), didapatkan

$$-6x^{2} + 6\left(\frac{x}{2}\right) = 0$$

$$-6x^{2} + 3x = 0$$

$$-3x(2x - 1) = 0$$

$$x = 0 \lor x = \frac{1}{2} \Rightarrow z = 0 \lor z = \frac{1}{4}$$

Syarat cukup

$$f_{xx} = -12x;$$
 $f_{xy} = 0;$ $f_{xz} = 6;$ $f_{yy} = -2;$ $f_{yz} = 0;$ $f_{zz} = -12.$

Dibentuk matriks hessian

$$H = \begin{bmatrix} -12x & 0 & 6\\ 0 & -2 & 0\\ 6 & 0 & -12 \end{bmatrix}$$

di mana

$$H_1 = \begin{bmatrix} -12x \end{bmatrix}, H_2 = \begin{bmatrix} -12x & 0 \\ 0 & -2 \end{bmatrix}, H_3 = \begin{bmatrix} -12x & 0 & 6 \\ 0 & -2 & 0 \\ 6 & 0 & -12 \end{bmatrix}$$

Perhatikan bahwa

(x, y, z)	$ H_1 $	$ H_2 $	$ H_3 $	Kesimpulan
(0, 1, 0)	0	0	72	Tidak bisa ditarik kesimpulan
$\left(\frac{1}{2},1,\frac{1}{4}\right)$	-6 < 0	12 > 0	-72 < 0	Maksimum

Dari uraian di atas, didapatkan bahwa fungsi B akan maksimum saat $(x,y,z)=\left(\frac{1}{2},1,\frac{1}{4}\right)$.

Maksimum dan Minimum dengan Kendala

Diberikan f(x,y) dan g(x,y) merupakan dua fungsi yang mempunyai turunan parsial kontinu. Jika nilai maksimum (atau minimum) dari f dengan kendala g(x,y)=k terjadi pada titik (a,b), maka terdapat bilangan λ sedemikian sehingga

$$\nabla f(a,b) = \lambda \cdot \nabla g(a,b).$$

Prosedur:

Diberikan f(x,y) dan g(x,y) merupakan dua fungsi yang mempunyai turunan parsial kontinu. Jika nilai maksimum (atau minimum) dari f dengan kendala g(x,y)=k terjadi pada titik (a,b), maka terdapat bilangan λ sedemikian sehingga

$$\nabla f(a,b) = \lambda \cdot \nabla g(a,b).$$

Prosedur:

 $\textbf{ 0} \ \ \mathsf{Ubah} \ g(x,y) = k \ \mathsf{menjadi} \ g(x,y) - k = 0;$

Diberikan f(x,y) dan g(x,y) merupakan dua fungsi yang mempunyai turunan parsial kontinu. Jika nilai maksimum (atau minimum) dari f dengan kendala g(x,y)=k terjadi pada titik (a,b), maka terdapat bilangan λ sedemikian sehingga

$$\nabla f(a,b) = \lambda \cdot \nabla g(a,b).$$

Prosedur:

- Dibentuk persamaan lagrange, yaitu

$$L(x, y, \lambda) = f(x, y) - \lambda(g(x, y) - k);$$

Yassin Dwi Cahyo (24010122130053)

Diberikan f(x,y) dan g(x,y) merupakan dua fungsi yang mempunyai turunan parsial kontinu. Jika nilai maksimum (atau minimum) dari f dengan kendala g(x,y)=k terjadi pada titik (a,b), maka terdapat bilangan λ sedemikian sehingga

$$\nabla f(a,b) = \lambda \cdot \nabla g(a,b).$$

Prosedur:

- Oibentuk persamaan lagrange, yaitu

$$L(x, y, \lambda) = f(x, y) - \lambda(g(x, y) - k);$$

Syarat perlu, yaitu

$$L_x = 0, L_y = 0, \text{ dan } L_{\lambda} = 0;$$

Diberikan f(x,y) dan g(x,y) merupakan dua fungsi yang mempunyai turunan parsial kontinu. Jika nilai maksimum (atau minimum) dari f dengan kendala g(x,y)=k terjadi pada titik (a,b), maka terdapat bilangan λ sedemikian sehingga

$$\nabla f(a,b) = \lambda \cdot \nabla g(a,b).$$

Prosedur:

- ① Ubah g(x,y) = k menjadi g(x,y) k = 0;
- Syarat cukup, yaitu untuk matriks hessian terbatasi

Dibentuk persamaan lagrange, yaitu

$$L(x,y,\lambda) = f(x,y) - \lambda (g(x,y) - k);$$

$$H_{B_2} = \begin{bmatrix} 0 & g_x & g_y \\ g_x & L_{xx} & L_{xy} \\ g_y & L_{yx} & L_{yy} \end{bmatrix}$$

Syarat perlu, yaitu

$$L_x = 0, L_y = 0, \text{ dan } L_{\lambda} = 0;$$

yang memenuhi

Diberikan f(x,y) dan g(x,y) merupakan dua fungsi yang mempunyai turunan parsial kontinu. Jika nilai maksimum (atau minimum) dari f dengan kendala g(x,y)=k terjadi pada titik (a,b), maka terdapat bilangan λ sedemikian sehingga

$$\nabla f(a,b) = \lambda \cdot \nabla g(a,b).$$

Prosedur:

- ① Ubah g(x,y) = k menjadi g(x,y) k = 0;
- Dibentuk persamaan lagrange, yaitu

$$L(x,y,\lambda) = f(x,y) - \lambda (g(x,y) - k);$$

Syarat perlu, yaitu

$$L_x = 0, L_y = 0, \text{ dan } L_{\lambda} = 0;$$

Syarat cukup, yaitu untuk matriks hessian terbatasi

$$H_{B_2} = \begin{bmatrix} 0 & g_x & g_y \\ g_x & L_{xx} & L_{xy} \\ g_y & L_{yx} & L_{yy} \end{bmatrix}$$

yang memenuhi

• Jika $|H_{B_2}| > 0$, maka f di (a,b) mencapai maksimum lokal;

Diberikan f(x,y) dan g(x,y) merupakan dua fungsi yang mempunyai turunan parsial kontinu. Jika nilai maksimum (atau minimum) dari f dengan kendala g(x,y)=k terjadi pada titik (a,b), maka terdapat bilangan λ sedemikian sehingga

$$\nabla f(a,b) = \lambda \cdot \nabla g(a,b).$$

Prosedur:

- ① Ubah q(x,y) = k menjadi q(x,y) k = 0:
- Dibentuk persamaan lagrange, yaitu

$$L(x, y, \lambda) = f(x, y) - \lambda(g(x, y) - k);$$

Syarat perlu, yaitu

$$L_x = 0, L_y = 0, \text{ dan } L_\lambda = 0;$$

Svarat cukup, vaitu untuk matriks hessian terbatasi

$$H_{B_2} = \begin{bmatrix} 0 & g_x & g_y \\ g_x & L_{xx} & L_{xy} \\ g_y & L_{yx} & L_{yy} \end{bmatrix}$$

yang memenuhi

- Jika $|H_{B_2}| > 0$, maka f di (a,b) mencapai maksimum lokal:
- Jika $|H_{B_2}| < 0$, maka f di (a, b) mencapai minimum lokal

Kamis, 12 Oktober 2023

Diberikan $f(x_1,x_2,\cdots,x_n)$ dan $g(x_1,x_2,\cdots,x_n)$ merupakan dua fungsi yang mempunyai turunan parsial kontinu. Jika nilai maksimum (atau minimum) dari f dengan kendala $g(x_1,x_2,\cdots,x_n)=k$ terjadi pada titik (a_1,a_2,\cdots,a_n) , maka terdapat bilangan λ sedemikian sehingga

$$\nabla f(a_1, a_2, \cdots, a_n) = \lambda \cdot \nabla g(a_1, a_2, \cdots, a_n).$$

Prosedur:

Yassin Dwi Cahyo (24010122130053)

Diberikan $f(x_1,x_2,\cdots,x_n)$ dan $g(x_1,x_2,\cdots,x_n)$ merupakan dua fungsi yang mempunyai turunan parsial kontinu. Jika nilai maksimum (atau minimum) dari f dengan kendala $g(x_1,x_2,\cdots,x_n)=k$ terjadi pada titik (a_1,a_2,\cdots,a_n) , maka terdapat bilangan λ sedemikian sehingga

$$\nabla f(a_1, a_2, \cdots, a_n) = \lambda \cdot \nabla g(a_1, a_2, \cdots, a_n).$$

Prosedur:

Diberikan $f(x_1,x_2,\cdots,x_n)$ dan $g(x_1,x_2,\cdots,x_n)$ merupakan dua fungsi yang mempunyai turunan parsial kontinu. Jika nilai maksimum (atau minimum) dari f dengan kendala $g(x_1,x_2,\cdots,x_n)=k$ terjadi pada titik (a_1,a_2,\cdots,a_n) , maka terdapat bilangan λ sedemikian sehingga

$$\nabla f(a_1, a_2, \cdots, a_n) = \lambda \cdot \nabla g(a_1, a_2, \cdots, a_n).$$

Prosedur:

- Ubah $g(x_1, x_2, \dots, x_n) = k$ menjadi $g(x_1, x_2, \dots, x_n) k = 0$;
- Oibentuk persamaan lagrange, yaitu

$$L(x_1, x_2, \dots, x_n, \lambda) = f(x_1, x_2, \dots, x_n) - \lambda(g(x_1, x_2, \dots, x_n) - k);$$

Diberikan $f(x_1,x_2,\cdots,x_n)$ dan $g(x_1,x_2,\cdots,x_n)$ merupakan dua fungsi yang mempunyai turunan parsial kontinu. Jika nilai maksimum (atau minimum) dari f dengan kendala $g(x_1,x_2,\cdots,x_n)=k$ terjadi pada titik (a_1,a_2,\cdots,a_n) , maka terdapat bilangan λ sedemikian sehingga

$$\nabla f(a_1, a_2, \cdots, a_n) = \lambda \cdot \nabla g(a_1, a_2, \cdots, a_n).$$

Prosedur:

- **1** Ubah $g(x_1, x_2, \dots, x_n) = k$ menjadi $g(x_1, x_2, \dots, x_n) k = 0$;
- Dibentuk persamaan lagrange, yaitu

$$L(x_1, x_2, \dots, x_n, \lambda) = f(x_1, x_2, \dots, x_n) - \lambda(g(x_1, x_2, \dots, x_n) - k);$$

Syarat perlu, yaitu

$$L_{x_1} = 0, L_{x_2} = 0, \cdots, x_n, \text{ dan } L_{\lambda} = 0;$$

Diberikan $f(x_1,x_2,\cdots,x_n)$ dan $g(x_1,x_2,\cdots,x_n)$ merupakan dua fungsi yang mempunyai turunan parsial kontinu. Jika nilai maksimum (atau minimum) dari f dengan kendala $g(x_1,x_2,\cdots,x_n)=k$ terjadi pada titik (a_1,a_2,\cdots,a_n) , maka terdapat bilangan λ sedemikian sehingga

$$\nabla f(a_1, a_2, \cdots, a_n) = \lambda \cdot \nabla g(a_1, a_2, \cdots, a_n).$$

Prosedur:

- **1** Ubah $g(x_1, x_2, \dots, x_n) = k$ menjadi $g(x_1, x_2, \dots, x_n) k = 0$;
- Dibentuk persamaan lagrange, yaitu

$$L(x_1, x_2, \dots, x_n, \lambda) = f(x_1, x_2, \dots, x_n) - \lambda(g(x_1, x_2, \dots, x_n) - k);$$

Syarat perlu, yaitu

$$L_{x_1} = 0, L_{x_2} = 0, \cdots, x_n, \text{ dan } L_{\lambda} = 0;$$

Syarat cukup, yaitu untuk matriks hessian terbatasi

$$H_B = \begin{bmatrix} 0 & g_{x_1} & g_{x_2} & \cdots & g_{x_n} \\ g_{x_1} & L_{x_1x_1} & L_{x_1x_2} & \cdots & L_{x_1x_n} \\ g_{x_2} & L_{x_2x_1} & L_{x_2x_2} & \cdots & L_{x_2x_n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ g_{x_n} & L_{x_nx_1} & L_{x_nx_2} & \cdots & L_{x_nx_n} \end{bmatrix}$$

yang memenuhi

Syarat cukup, yaitu untuk matriks hessian terbatasi

$$H_B = \begin{bmatrix} 0 & g_{x_1} & g_{x_2} & \cdots & g_{x_n} \\ g_{x_1} & L_{x_1x_1} & L_{x_1x_2} & \cdots & L_{x_1x_n} \\ g_{x_2} & L_{x_2x_1} & L_{x_2x_2} & \cdots & L_{x_2x_n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ g_{x_n} & L_{x_nx_1} & L_{x_nx_2} & \cdots & L_{x_nx_n} \end{bmatrix}$$

yang memenuhi

• Jika $|H_{B_2}|>0, |H_{B_3}|<0, |H_{B_4}|>0, |H_{B_5}|<0,\cdots$, maka f di (a_1,a_2,\cdots,a_n) mencapai maksimum lokal;

Syarat cukup, yaitu untuk matriks hessian terbatasi

$$H_B = \begin{bmatrix} 0 & g_{x_1} & g_{x_2} & \cdots & g_{x_n} \\ g_{x_1} & L_{x_1x_1} & L_{x_1x_2} & \cdots & L_{x_1x_n} \\ g_{x_2} & L_{x_2x_1} & L_{x_2x_2} & \cdots & L_{x_2x_n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ g_{x_n} & L_{x_nx_1} & L_{x_nx_2} & \cdots & L_{x_nx_n} \end{bmatrix}$$

yang memenuhi

- Jika $|H_{B_2}|>0, |H_{B_3}|<0, |H_{B_4}|>0, |H_{B_5}|<0,\cdots$, maka f di (a_1,a_2,\cdots,a_n) mencapai maksimum lokal;
- Jika $|H_{B_2}| < 0, |H_{B_3}| < 0, |H_{B_4}| < 0, |H_{B_5}| < 0, \cdots$, maka f di (a_1, a_2, \cdots, a_n) mencapai minimum lokal.

Contoh 20 (UTS TA 2022/2023)

Tentukan nilai maksimum/minimum lokal dan titik sadel (jika ada) dari fungsi

$$f(x,y) = x^3 + y^3 - 3(x+y) + 6.$$

Penyelesaian:

Syarat perlu

$$f_x = 0$$
 $f_y = 0$
 $3x^2 - 3 = 0$ $3y^2 - 3 = 0$
 $3(x^2 - 1) = 0$ $3(y^2 - 1) = 0$
 $x = \pm 1$ $y = \pm 1$

Titik kritis, yaitu (-1,-1), (-1,1), (1,-1), dan (1,1).

Syarat cukup

$$f_{xx} = 6x; \quad f_{xy} = 0; \quad f_{yy} = 6y$$

Diperoleh bahwa $\nabla = 6x \cdot 6y = 36xy$. Perhatikan bahwa

(x,y)	∇	$f_{xx}(x,y)$	Kesimpulan	f(x,y)
(-1, -1)	36 > 0	-6 < 0	Maksimum lokal	10
(-1,1)	-36 < 0	-6 < 0	Titik sadel	
(1, -1)	-36 < 0	6 > 0	Titik sadel	
(1, 1)	36 > 0	6 > 0	Minimum lokal	2

Jadi, diperoleh nilai maksimum lokal, minimum lokal, dan titik sadel masing-masing yaitu 10, 2, (-1,1), (1,-1).

Contoh 21 (UTS TA 2022/2023)

Sebuah kotak siku-siku tertutup, sisi-sisinya terbuat dari dua bahan berbeda. Alas dan tutup terbuat dari bahan seharga 80 ribu $/m^2$ dan sisi-sisi samping terbuat dari bahan seharga 40 ribu $/m^2$. Jika volume kotak tersebut 16 m^3 , maka tentukan ukuran kotak dan harga bahan dengan harga paling murah.

Penyelesaian:

Misalkan balok berukuran panjang x, lebar y, dan tinggi z. Dari soal, diperoleh

- Harga alas dan tutup, yaitu (xy + xy)80.000 = 160.000xy;
- Harga 4 sisi samping, yaitu (xz + xz + yz + yz)40.000 = 80.000xz + 80.000yz.

Total: L(x, y, z) = 160.000xy + 80.000xz + 80.000yz.

Akan diminimalkan L(x, y, z) = 160.000xy + 80.000xz + 80.000yz dengan kendala V(x, y, z) = xyz = 16. Perhatikan langkah-langkah berikut.

- Ubah xuz = 16 menjadi xuz 16 = 0:
- Dibentuk persamaan lagrange, vaitu

$$L(x, y, z, \lambda) = 160.000xy + 80.000xz + 80.000yz - \lambda(xyz - 16);$$

Syarat perlu

$$L_{x} = 160.000y + 80.000z - \lambda yz = 0 \Leftrightarrow 160.000y + 80.000z = \lambda yz \stackrel{\text{kali } x}{\Rightarrow} 160.000xy + 80.000xz = \lambda xyz;$$

$$L_{y} = 160.000x + 80.000z - \lambda xz = 0; \Leftrightarrow 160.000x + 80.000z = \lambda xz \stackrel{\text{kali } y}{\Rightarrow} 160.000xy + 80.000yz = \lambda xyz;$$

$$L_{z} = 80.000x + 80.000y - \lambda xy = 0; \Leftrightarrow 80.000x + 80.000y = \lambda xy \stackrel{\text{kali } z}{\Rightarrow} 80.000xz + 80.000yz = \lambda xyz;$$

$$L_{\lambda} = -(xyz - 16) = 0.$$

Diperoleh

$$160.000xy + 80.000xz = 160.000xy + 80.000yz \Leftrightarrow x = y$$
$$160.000xy + 80.000xz = 80.000xz + 80.000yz \Leftrightarrow 2x = z$$

Sehingga $xyz=16 \Leftrightarrow 2x^3=16 \Leftrightarrow x=2$. Selanjutnya, y=2, z=4, dan $\lambda=80.000$.

Syarat cukup

$$V_x = yz;$$
 $V_y = xz;$ $V_z = xy;$ $L_{xx} = 0;$ $L_{yy} = 0;$ $L_{zz} = 0;$ $L_{xy} = 160.000 - \lambda z;$ $L_{xz} = 80.000 - \lambda y;$ $L_{yz} = 80.000 - \lambda x$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ りへ○

Dibentuk matriks hessian terbatasi, yaitu

$$H_B = \begin{bmatrix} 0 & V_x & V_y & V_z \\ V_x & L_{xx} & L_{xy} & L_{xz} \\ V_y & L_{yx} & L_{yy} & L_{yz} \\ V_z & L_{zx} & L_{zy} & L_{zz} \end{bmatrix} = \begin{bmatrix} 0 & 8 & 8 & 4 \\ 8 & 0 & -160.000 & -80.000 \\ 8 & -160.000 & 0 & -80.000 \\ 4 & -80.000 & -80.000 & 0 \end{bmatrix}$$

Perhatikan bahwa

$$H_{B_2} = \begin{vmatrix} 0 & 8 & 8 \\ 8 & 0 & -160.000 \\ 8 & -160.000 & 0 \end{vmatrix} = -2.048.000 < 0$$

dan

$$H_{B_3} = \begin{vmatrix} 0 & 8 & 8 & 4 \\ 8 & 0 & -160.000 & -80.000 \\ 8 & -160.000 & 0 & -80.000 \\ 4 & -80.000 & -80.000 & 0 \end{vmatrix} = -1.228.800.000.000 < 0$$

Oleh karena, $H_{B_2}<0$ dan $H_{B_3}<0$, artinya titik (2,2,4) mengakibatkan L(x,y,z) mencapai minimal lokal, dengan L(2,2,4)=1.920.000

Contoh 22 (UTS TA 2020/2021)

Tentukan nilai maksimum lokal, minimum lokal, dan titik sadel (jika ada) dari

$$f(x,y) = x^4 - 2x^2 + y^3 - 3(10 - 1)y.$$

Jika domain fungsi tersebut adalah $D = \{(x,y) \mid -4 \le x \le 4 \land -4 \le y \le 4\}$, maka tentukan maksimum dan minimum global.

Penyelesaian:

Syarat perlu

$$f_x = 0$$
 $f_y = 0$
 $4x^3 - 4x = 0$ $3y^2 - 27 = 0$
 $4x(x^2 - 1) = 0$ $3(y^2 - 9) = 0$
 $x = 0 \lor x = \pm 1$ $y = \pm 3$

Titik kritis, yaitu

$$(-1,-3), (-1,3), \ (0,-3), (0,3), (1,-3), \ {\rm dan} \ (1,3).$$

Syarat cukup

$$f_{xx} = 12x^2 - 4$$
, $f_{xy} = 0$, $f_{yy} = 6y$

Diperoleh bahwa $\nabla = (12x^2 - 4)(6y) = 72x^2y - 24y$.

Perhatikan tabel berikut.

(x,y)	∇	$f_{xx}(x,y)$	Kesimpulan	f(x,y)
(-1, -3)	-144 < 0	8 > 0	Titik sadel	
(-1,3)	144 > 0	8 > 0	Minimum lokal	-55
(0, -3)	72 > 0	-4 < 0	Maksimum lokal	54
(0,3)	-72 < 0	-4 < 0	Titik sadel	
(1, -3)	-144 < 0	8 > 0	Titik sadel	
(1, 3)	144 > 0	8 > 0	Minimum lokal	-55

Akan dicari nilai maksimum/minimum dari titik pada domain D, perhatikan ilustrasi berikut.

• Sepanjang l_1

$$f(4,y) = 4^4 - 2(4)^2 + y^3 - 27y = 224 + y^3 - 27y$$

Akan dicari nilai maksimum/minimum dari f(4,y), perhatikan bahwa.

Titik stasioner

$$f'(y) = 3y^2 - 27 = 0 \Rightarrow y = \pm 3;$$
 $f(4,3) = 170;$ $f(4,-3) = 278$

• Titik batas, yaitu $-4 \le y \le 4$; f(4,4) = 180; f(4,-4) = 268

• Sepanjang l_2

$$f(-4,y) = (-4)^4 - 2(-4)^2 + y^3 - 27y = 224 + y^3 - 27y = f(4,y)$$

Oleh karena nilai f(-4,y)=f(4,y), akibatnya titik stasionernya juga di $y=\pm 3$, sedangkan titik batasnya pada $-4\leq y\leq 4$, maka nilai maksimum dan minimum pada l_2 akan sama dengan nilai maksimum dan minimum pada l_1 .

• Sepanjang l_3

$$f(x,4) = x^4 - 2x^2 + 4^3 - 27(4) = x^4 - 2x^2 - 44$$

Akan dicari nilai maksimum/minimum dari f(x,4), perhatikan bahwa.

Titik stasioner

$$f'(x) = 4x^3 - 4x = 0 \Rightarrow x = 0 \lor x = \pm 1;$$

 $f(0,4) = -44;$ $f(-1,4) = f(1,4) = -45$

• Titik batas, yaitu $-4 \le x \le 4$

$$f(-4,4) = f(4,4) = 180$$

• Sepanjang l_4

$$f(x,-4) = x^4 - 2x^2 + (-4)^3 - 27(-4)$$
$$= x^4 - 2x^2 + 44$$

Akan dicari nilai maksimum/minimum dari f(x,-4), perhatikan bahwa.

Titik stasioner

$$f'(x) = 4x^3 - 4x = 0 \Rightarrow x = 0 \lor x = \pm 1;$$

 $f(0, -4) = 44; \quad vuf(-1, -4) = f(1, 4) = 43$

• Titik batas, yaitu -4 < x < 4

$$f(-4,4) = f(4,4) = 268$$

58 / 58

Diperoleh minimum lokal, maksimum global, maksimum global, dan titik sadel, yaitu -55, 54, 278, -55, (-1,-3), (0,3), (1,-3)