MATH 162: Calculus II

Framework for Thurs., Feb. 15

Geometric Series and Series Introduction

Geometric Series

• Form of series under this classification

$$a + ar + ar^{2} + \dots + ar^{n} + \dots = \sum_{n=0}^{\infty} ar^{n},$$

a, r nonzero constants

- Zeno's paradox about crossing a room
 - If L is length of room, then he is looking at adding up distances

$$L \cdot \left(\frac{1}{2}\right) + L \cdot \left(\frac{1}{2}\right)^2 L \cdot \left(\frac{1}{2}\right)^3 + \dots = \sum_{n=0}^{\infty} ar^n,$$

with a = L/2, r = 1/2.

- Evidence that (some) geometric series converge
- Partial sums s_n
 - Define in customary way:

$$s_1 = a$$
, $s_2 = a + ar$, $s_3 = a + ar + ar^2$, etc.

- nth partial sum has nice closed-form formula:

$$s_n = \begin{cases} \frac{a(1-r^n)}{1-r}, & \text{when } r \neq 1, \\ na, & \text{when } r = 1. \end{cases}$$

- Main Result: Geometric series $\sum_{n=0}^{\infty} ar^n$ converges to $\frac{a}{1-r}$ when |r| < 1, and diverges otherwise.
- Note the divergence when |r| = 1:

$$r = 1$$
: $\sum_{n=0}^{\infty} a = a + a + \dots + a + \dots$ (divergent)

$$r = -1$$
:
$$\sum_{n=0}^{\infty} a = a - a + a - a + a - a + \cdots$$
 (divergent)

Remarks concerning infinite series (general, not just geometric ones) $\sum_{n=1}^{\infty} a_n$:

- 1. Convergence relies on the partial sums $s_n := a_1 + \cdots + a_n$ approaching a limit as $n \to \infty$
- 2. Assessing the limit of partial sums directly requires a nice closed-form expression for s_n . Such an expression exists only in rare cases, such as the following examples we've already done

Geometric series:
$$\sum_{n=0}^{\infty} ar^n$$
 "Telescoping series":
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

3. When no closed-form expression for s_n is available, determining if limit exists is usually more difficult.

Example:
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p}, \ p \ge 0$$

- 4. Systematic tests can help
 - Some of the tests that have been developed ('*' indicate ones we will study)
 - *nth-term test for divergence (p. 519)
 - integral test (p. 525): formalization of the approach we used to determine which p-series $\sum_{n=1}^{\infty} n^{-p}$ converge/diverge
 - direct comparison test (p. 529): practically a restatement of the one of the same name for improper integrals
 - **limit comparison test** (p. 530): did not do comparable result for improper integrals
 - *ratio test (p. 533)
 - **root test** (p. 535)
 - alternating series test (p. 538): formalization of the approach we used to show $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p}$ converges for $p \ge 0$
 - *absolute convergence test (p. 540)
 - Must be cognizant of
 - the situations in which a test may be applied
 - what conclusions may and may not be drawn from such tests