MATH 321 DAY 9 - THE AXIOM OF COMPLETENESS

Exercise 1. Present claimed Week 2 HW. Class: participate by offering suggestions when mistakes are made or if you have a different idea of how to do the proof.

- (1) Abbott Exercise 1.2.3
- (2) Abbott Exercise 1.2.5
- (3) Abbott Exercise 1.2.12
- (4) Abbott Exercise 1.3.8

Set	sup	inf
$\boxed{\{m/n: m, n \in \mathbb{N}, m < n\}}$	1	0
$\{(-1)^m/n: m, n \in \mathbb{N}\}$	1	-1
$n/(3n+1): n \in \mathbb{N}$	1/3	1/4
$[m/(m+n):m,n\in\mathbb{N}\}$	1	0

1. Completeness

- Two weeks ago, we discussed the need to rigorously address questions about the real numbers in the "Why Be So Critical?" module.
- Before we can ask such questions, we need a definition of the real numbers to start from.
- If we assume we know what rational numbers are, can we define the real numbers without resorting to unproven axioms?

Question 2. What is a real number?

- ullet An extension of the rational numbers $\mathbb Q$ in which there are no holes or gaps
- But what kind of extension?
- How do we define \mathbb{R} as a set (if we assume \mathbb{Q} is already defined)?

Definition 3. \mathbb{R} is an ordered field which satisfies the Axiom of Completeness and contains \mathbb{Q} as a subfield.

- (1) \mathbb{R} is a set containing \mathbb{Q} .
- (2) $+, \times$ extend from \mathbb{Q} in such a way that every element of \mathbb{R} has an additive inverse and every nonzero element of \mathbb{R} has a multiplicative inverse.
- (3) \mathbb{R} is a **field**: $+, \times$ are commutative, associative, and distributive.
- (4) The ordering < on \mathbb{Q} extends to \mathbb{R} in such a way that the familiar properties of the ordering still hold
- (5) **Axiom of Completeness:** every nonempty set of real numbers that is bounded above has a least upper bound.

[start here 9/12]

- (1) An **axiom** in mathematics is a statement that's accepted, to be used without proof.
- (2) Why should we accept the Axiom of Completeness?
 - (a) It's actually impossible to do calculus without accepting an axiom like this.
 - (b) It's impossible to prove this statement with the existing axioms; we have to assume it.

Definition: For a set $A \subset \mathbb{R}$, we say

- A is bounded above if there exists a number b ∈ R such that a ≤ b for all a ∈ A. The number b is called an upper bound for A.
- a₀ = max(A) if a₀ ∈ A and a₀ ≥ a for all a ∈ A We might also say a₀ is the maximum of A.
- A real number s is the least upper bound (or sometimes, we use the Latin word supremum)
 for a set A ⊂ R if s is an upper bound for A and if for every upper bound b of A, we have
 s ≤ b. If s exists, we use the notation s = sup(A).

Exercise 4. Let

$$A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \dots \right\}.$$

The set A is bounded above and below.

- (1) Show that $\sup A = 1$ by showing:
 - (a) 1 is an upper bound for A.
 - $n \ge 1 \forall n \in \mathbb{N} \implies \frac{1}{n} \le 1 \text{ for all } n \in \mathbb{N}.$
 - (b) If b is an upper bound for A, we have $b \ge 1$.
 - Since $1 \in A$ and b is an upper bound for $A, b \ge 1$.
- (2) Does the Axiom of Completeness hold for \mathbb{Q} ?
 - The set $S = \{r \in \mathbb{Q} : r^2 < 2\}$. Since $\sqrt{2}^2 = 2$, $\sqrt{2} = \sup S \in \mathbb{R}$. Since $\sqrt{2} \notin \mathbb{Q}$, the Axiom of Completeness fails for \mathbb{Q} .
- How does the Axiom of Completeness mean that \mathbb{Q} has "holes" which are filled in in \mathbb{R} ?

Exercise 5. (Reading Question) TPS Exercises 1.3.1, 1.3.2

Lemma 1.3.8. Assume $s \in \mathbf{R}$ is an upper bound for a set $A \subseteq \mathbf{R}$. Then, $s = \sup A$ if and only if, for every choice of $\epsilon > 0$, there exists an element $a \in A$ satisfying $s - \epsilon < a$.

Exercise 1.3.1. (a) Write a formal definition in the style of Definition 1.3.2 for the infimum or greatest lower bound of a set.

(b) Now, state and prove a version of Lemma 1.3.8 for greatest lower bounds.

Exercise 1.3.2. Give an example of each of the following, or state that the request is impossible.

- (a) A set B with inf B ≥ sup B.
- (b) A finite set that contains its infimum but not its supremum.
- (c) A bounded subset of Q that contains its supremum but not its infimum.
- 1.3.1(b): Consider $-A = \{-a : a \in A\}$. Then, by Lemma 1.3.8, $-s = \sup(-A)$ if and only if, for every $\epsilon > 0$, there exists an $a \in A$ satisfying $-s \epsilon < -a$. But $-s = \sup(-A) \iff s = \inf A$ (*). Thus,

$$s = \inf A \iff -s = \sup(-A) \iff \forall \epsilon > 0 \exists -a \in -A \text{ s.t. } -s - \epsilon < -a \iff \forall \epsilon > 0 \exists a \in A \text{ s.t. } a - \epsilon < s.$$

Now, prove (*).

- Suppose $-s = \sup(-A)$. Then $-s \ge -a$ for all $-a \in -A$ and, if α is another upper bound for -A, then $-s \le \alpha$. This means that $s \le a$ for all $a \in A$, so that s is a lower bound for A. Suppose that L is another lower bound for A; then -L is an upper bound for -A, meaning that $-s \le -L$, implying that $s \ge L$. Thus, $s = \inf A$.

- 1.3.2
 - (1) $B = \{0\}$
 - (2) Impossible; all finite sets contain their suprema. For if $A = \{x_1, \ldots, x_n\}$ is finite and $s = \sup(A)$, then $M := \max\{x_1, \dots, x_n\}$ is an upper bound for A, so $s \leq M$. But since s is an upper bound for A and $M \in A$, $s \geq M$. Hence $s = M \in A$.
 - $(3) C = \{ \frac{1}{n} : n \in \mathbb{N} \}$

Exercise 6. [slide] If false, give a counterexample. If true, prove it.

For some of the problems below (e.g. the ones involving ϵ), it may help to draw a number line.

- 1. If $A = \{\frac{n}{n+1} \mid n \in \mathbb{N}\}$, then which if any of these numbers are an upper bound for $A: \frac{1}{2}, 1, 5$?
- When does max(A) ≠ sup(A)?
- [T/F] An upper bound for A ⊂ R is necessarily an element of A.
- [T/F] A least upper bound for A ⊂ R is necessarily an element of A.
- [T/F] A set A ⊂ R has at least one maximum.
- [T/F] A set A ⊂ R has at most one maximum.
- [T/F] A set A ⊂ R has at least one upper bound.
- [T/F] A set A ⊂ R has at most one upper bound.
- [T/F] A set A ⊂ R has at least one least upper bound.
- [T/F] A set A ⊂ R has at most one least upper bound.

In the problems below, assume s is an upper bound for A and that $A \neq \emptyset$.

- [T/F] Then s = sup(A) if for every ε > 0, there exists a ∈ A such that s − ε < a.
- [T/F] Then s = sup(A) only if for every ε > 0, there exists a ∈ A such that s − ε < a.
- [T/F] Then s = sup(A) if for every ε > 0, there exists a ∈ A such that s − ε > a.
- [T/F] Then s = sup(A) only if for every ε > 0, there exists a ∈ A such that s − ε > a.
- 15. [T/F] Then $s = \sup(A)$ if for every $\epsilon > 0$, there exists $a \in A$ such that $s + \epsilon > a$.
- [T/F] Then s = sup(A) only if for every ε > 0, there exists a ∈ A such that s + ε > a.
- (1) 1, 5
- (2) When A is an infinite set which is bounded above, $\max(A)$ may not exist, (e.g. $A = \{1 \frac{1}{n} : n \in \mathbb{N}\}$ has no maximum) while $\sup(A)$ always does by the Axiom of Completeness. When A is a finite set which is bounded above, $\max(A)$ exists and equals $\sup(A)$ by the above reasoning.
- (3) False; consider the set A from #1 and the upper bound 5.
- (4) False; consider the set A from #1 and its least upper bound 1.
- (5) False; let A = {1 1/n : n ∈ N} as above.
 (6) True; suppose that M and N are both maxima of A. Then M ∈ A and M ≥ a for all a ∈ A, and similarly for N. But since $N \in A$, $M \ge N$, and since $M \in A$, $N \ge M$. Hence N = M.
- (7) False; let $A = \mathbb{N}$.
- (8) False; the set A from #1 has infinitely many upper bounds.
- (9) False; let $A = \mathbb{N}$.
- (10) True; suppose that s and t are suprema of A and suppose for contradiction (WLOG) that s > t. Define $\epsilon := s - t > 0$. Then by Lemma 1.3.8 there exists an element $a \in A$ satisfying $s - \epsilon < a$. But

this implies that

$$t = s - (s - t) = s - \epsilon < a$$

contradicting that t is an upper bound for A.

- (11) True; this is the forward direction of Lemma 1.3.8.
- (12) True; this is the backward direction of Lemma 1.3.8.
- (13)