Дискретный анализ, 3 семестр

ИВАЩЕНКО ДМИТРИЙ

DISCLAIMER: THESE PAGES COME WITH ABSOLUTELY NO WARRANTY, USE AT YOUR OWN RISK;) THIS WORK IS LICENSED BY WTFPL, YOU CAN REDISRIBUTE IT AND/OR IT UNDER THE TERM OF DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE, VERSION 2

Багрепорты, комментарии, предложения и прочее приветствуются посредством vk.com/skird, а также e-mail

Последние изменения: 17 декабря 2014 г. 18:22

Содержание

Лекц	ция 1. Оценки и асимптотики комбинаторных величин	3
1.	Сперва примеры	3
2.	Некоторые важные формулы и оценки	3
Лекц	ция 2. Графы, деревья. Формула Кэли и коды Прюфера	5
3.	Базовые определения	5
4.	Количество остовных деревьев полного графа	5
5.	Количество унициклических графов	6
Лекц	6	
6.	Асимптотическая оценка $C(n,n)$	6
Лекция 4. Обходы графов		9
7.	Эйлеровы графы	9
8.	Гамильтоновы графы	10
Лекц	ция 5. Введение в вероятностный метод в комбинаторике	11
9.	Гамильтоновы цепи в турнирах	11
10.	Теоремы турановского типа	12
Лекция 6. Турановские оценки в дистанционных графах		12
11.	Дистанционный граф	12
12.	Обобщение в произвольной размерности	13
Лекц	ция 7. Случайные графы и их связность	13
13.	Неравенства Маркова и Чебышева	13

Дискретный анализ, 3 семестр		ИВАЩЕНКО ДМИТРИЙ
14.	Задача об уклонении	14
15.	Связность случайного графа	15
Лекция 8. Хроматическое число случайного графа		16
16.	Несвязность случайного графа	16
17.	Хроматическое число графа	17
18.	Хроматическое число случайного графа	18
Лекции 9-п.		19
Лекция $n+1$.		20
Лекция $n+2$.		21
Лекция $n+3$.		21
19.	Нижняя оценка $m(n,k,t)$	21
20.	Хроматическое число пространства	22
21.	Проблема Борсука	23

Лекция 1. Оценки и асимптотики комбинаторных величин

1. Сперва примеры

Пример. Пусть $n=4\cdot k,\ k\in\mathbb{N}$. Рассмотрим граф

$$G = (V, E) : V = \{A \subset \{1, \dots, n\}, |A| = 2k\}, E = \{(A, B) | |A \cap B| = k\}$$

Вопрос. Сколько вершин у этого графа?

$$|V| = C_n^{n/2}$$

Вопрос. Сколько ребер у этого графа?

$$|E| = \frac{1}{2} \cdot C_n^{n/2} \cdot \left(C_{n/2}^{n/4}\right)^2$$

Вопрос. Сколько треугольников в этом графе?

$$T = \frac{1}{6} \cdot C_n^{n/2} \cdot \left(C_{n/2}^{n/4}\right)^2 \cdot \sum_{i=0}^{n/4} \left(C_{n/4}^i\right)^2 \cdot \left(C_{n/4}^{n/4-i}\right)^2 = \frac{1}{6} \cdot C_n^{n/2} \cdot \left(C_{n/2}^{n/4}\right) \cdot \sum_{i=0}^{n/4} \left(C_{n/4}^i\right)^4$$

2. НЕКОТОРЫЕ ВАЖНЫЕ ФОРМУЛЫ И ОЦЕНКИ

3амечание. Очевидно $C_n^0 < C_n^1 < \ldots < C_n^{\left[\frac{n}{2}\right]}$. Более интересно оценить степень роста. Рассмотрим C_{2n}^n . $\sum C_{2n}^i = 2^{2n} \Longrightarrow C_{2n}^n < 2^{2n}$ и $C_{2n}^n > \frac{2^{2n}}{2n+1}$.

Утверждение. $n! \sim \sqrt{2\pi \cdot n} \left(\frac{n}{e}\right)^n$ или $n! = (1+o(1)) \cdot \sqrt{2\pi \cdot n} \left(\frac{n}{e}\right)^n$ (Формула Стирлинга). Отсюда немедленно следует, что $C_{2n}^n \sim \frac{2^{2n}}{\sqrt{\pi \cdot n}}$.

Замечание. Пусть $a>1, \ f(n)=(a+o(1))^n$. Можно ли утверждать, что $f(n)\sim a^n$? Нет, это неверно. Например

$$\left(2 + \frac{2}{\sqrt{n}}\right)^n = 2^n \cdot \left(1 + \frac{1}{\sqrt{n}}\right)^{\sqrt{n} \cdot \sqrt{n}} = 2^n \cdot e^{(1+o(1)) \cdot \sqrt{n}}$$

Однако это значит, что $\ln(f(n)) = n \cdot \ln(a + o(1)) \sim n \cdot \ln a$. Под такой записью мы будем понимать оценку не самой функции, но ее логарифма.

Тогда $2n \cdot \ln 2 - \ln (2n+1) < \ln C_{2n}^n < 2n \cdot \ln n$, значит $\ln C_{2n}^n \sim 2n \cdot \ln n \Rightarrow C_{2n}^n = (2+o(1))^{2n}$

Теорема. Пусть
$$a \in (0;1)$$
. Тогда $C_n^{[a\cdot n]} = \left(\frac{1}{a^a\cdot (1-a)^{1-a}} + o(1)\right)^n$.

3амечание. $\frac{1}{a^a\cdot (1-a)^{1-a}}=e^{-a\cdot \ln a-(1-a)\ln (1-a)}$. Запись в показателе степени называется энтропией, а оценки подобного рода называются энтропийными.

Замечание. При $a=\frac{1}{2}$ получаем, что $C_n^{n/2}=\left(\frac{1}{0.5}+o(1)\right)^n=(2+o(1))^n$.

Доказательство.

$$C_n^{[an]} = \frac{n!}{[an]! \cdot (n-[an])!} \sim \frac{\sqrt{2\pi \cdot n} \cdot \left(\frac{n}{e}\right)^n}{\sqrt{2\pi \cdot [an]} \cdot \left(\frac{[an]}{e}\right)^{[an]} \cdot \sqrt{2\pi \cdot (n-[an])} \cdot \left(\frac{n-[an]}{e}\right)^{n-[an]}}$$

Допустим пока, что целых частей нет, тогда получаем

$$C_n^{[an]} = \frac{\sqrt{2\pi \cdot n}}{\sqrt{2\pi \cdot n} \cdot \sqrt{2\pi \cdot (n-an)}} \cdot \frac{\left(\frac{n}{e}\right)^n}{\left(\frac{an}{e}\right)^{an} \cdot \left(\frac{n-an}{e}\right)^{n-an}} = P(n) \cdot \frac{1}{a^{an} \cdot (1-a)^{n-an}} = P(n) \cdot \left(\frac{1}{a^a \cdot (1-a)^{(1-a)}}\right)^n = \left(\frac{1}{a^a \cdot (1-a)^{(1-a)}} + o(1)\right)^n$$

Homauuя. Выкидывание «пакетика» P(n) в «мусоропровод» o(1) возможно, так как его порядок роста сильно меньше, чем у основной части.

Осталось понять, насколько дробные части могут повлиять на вывод.

$$[an]^{[an]}=(an-arepsilon)^{an-arepsilon}=(an)^{an-arepsilon}\cdot \left(1-rac{arepsilon}{an}
ight)^{an-arepsilon}\sim (an)^{an}\cdot (an)^{-arepsilon}\cdot e^{-arepsilon}$$
. Значит эту поправку можно вынести за скобку и отправить в $P(n)$.

Упражнение. Доказать, что остальные дробные части также сравнимы по порядку роста с P(n)

Упражнение. Пусть $a_i \in (0,1)$, $i \leq k$. Доказать, что

$$P([a_1 \cdot n], \dots, [a_k \cdot n]) = \left(\frac{(a_1 + \dots + a_k)^{a_1 + \dots + a_k}}{a_1^{a_1} \cdot \dots \cdot a_k^{a_k}} + o(1)\right)^n$$

Упражнение. Пусть $f(n) \sim a \cdot n, \ a \in (0;1)$. Тогда $C_n^{f(n)} = \left(\frac{1}{a^a \cdot (1-a)^{(1-a)}} + o(1)\right)^n$.

Теорема.

(1)
$$C_n^k \leq \frac{n^k}{k!}$$

(2)
$$C_n^k \sim \frac{n^k}{k!}$$
, echu $k^2 = o(n)$

(3)
$$C_n^k = \frac{n^k}{k!} \cdot e^{-\frac{k(k-1)}{2n} + O(\frac{k^3}{n^2})}$$

 \mathcal{L} оказательство. $C_n^k = \frac{n!}{k!\cdot (n-k)!} = \frac{n\cdot \dots \cdot (n-k+1)}{k!} \leq \frac{n^k}{k!},$ что доказывает (1). Теперь

$$C_n^k = \frac{n^k}{k!} \left(1 - \frac{1}{n} \right) \cdot \ldots \cdot \left(1 - \frac{k-1}{n} \right) = \frac{n^k}{k!} \cdot \exp\left(\ln(1 - \frac{1}{n}) + \ldots + \ln\left(1 - \frac{k-1}{n}\right) \right) =$$

$$= \frac{n^k}{k!} \cdot \exp\left(-\frac{1}{n} + O(\frac{1}{n^2}) + \ldots - \frac{k-1}{n} + O(\frac{(k-1)^2}{n^2}) \right) = \frac{n^k}{k!} \cdot e^{-\frac{k \cdot (k-1)}{2n} + O(\frac{k^3}{n^2})}$$

Что доказывает (2) и (3). □

Теорема. $\frac{C_n^{n/2-x}}{C_n^{n/2}} \sim e^{-\frac{2x^2}{n}}$, если $x=o(n^{\frac{2}{3}})$.

Доказательство.

$$\frac{n! \cdot \left(\frac{n}{2}\right)! \cdot \left(\frac{n}{2}\right)!}{\left(\frac{n}{2} - x\right)! \cdot \left(\frac{n}{2} + x\right)! \cdot n!} = \frac{\frac{n}{2} \cdot \left(\frac{n}{2} - 1\right) \cdot \dots \cdot \left(\frac{n}{2} - x + 1\right)}{\left(\frac{n}{2} + 1\right) \cdot \dots \cdot \left(\frac{n}{2} + x\right)} = \frac{\left(1 - \frac{2}{n}\right) \cdot \left(1 - \frac{4}{n}\right) \cdot \dots \cdot \left(1 - \frac{2(x - 1)}{n}\right)}{\left(1 + \frac{2}{n}\right) \cdot \left(1 + \frac{4}{n}\right) \cdot \dots \cdot \left(1 + \frac{2x}{n}\right)} = \exp\left(\ln\left(1 - \frac{2}{n}\right) + \dots + \ln\left(1 - \frac{2(x - 1)}{n}\right) - \ln\left(1 + \frac{2}{n}\right) - \dots - \ln\left(1 + \frac{2x}{n}\right)\right) = \exp\left(-\frac{2}{n} - \dots - \frac{2(x - 1)}{n} - \frac{2}{n} - \dots - \frac{2x}{n} + O\left(\frac{x^3}{n^2}\right)\right) \sim e^{-\frac{2}{n} \cdot \left(\frac{x(x - 1)}{2} + \frac{x(x + 1)}{2}\right)} = e^{-\frac{2x^2}{n}}$$

Лекция 2. Графы, деревья. Формула Кэли и коды Прюфера

3. Базовые определения

Определение. Графом G = (V, E) называют пару из множества вершин и множества ребер, $E \subset C_V^2$ (неориентированный граф).

Замечание. Кроме того, говоря граф, будем подразумевать, что кратных ребер и петель нет. Граф с кратными ребрами будем называть мультиграфом, граф с петлями будем псевдографом, ориентированный граф будем называть орграфом.

Определение. Маршрутом в графе назовем последовательность ребер e_1, \ldots, e_k , такую, что конец каждого ребра есть начало следующего ребра в пути.

Замечание. Если все ребра различны, то такой маршрут будем называть *цепью*. Если конец последнего ребра совпадает с началом первого, то такой маршрут будем называть *циклом*. Дополнительно, если вершины в маршруте не повторяются, то будем называть его простым.

Определение. Дерево — это связный граф без циклов.

Замечание. Равносильно

- (1) Существует единственная простая цепь, соединяющая любую пару вершин
- (2) Граф связен и число ребер на 1 меньше числа вершин
- (3) Граф ацикличен и число ребер не 1 меньше числа вершин

4. Количество остовных деревьев полного графа

Замечание. Обозначим за t_n число помеченных деревьев на n вершинах. $t_1=1,\ t_2=1,\ t_3=3,\ t_4=16,\ldots,\ t_n=n^{n-2}$

Теорема. (Формула Кэли) $t_n = n^{n-2}$

Доказательство. Установим биекцию между множеством T_n всех деревьев и множеством всех последовательностей длины n-2, состоящих из чисел $\{1,\ldots,n\}$.

В любом нетривиальном дереве (n > 1) есть хотя бы одна вершина степени 1 (лист). Это легко видеть, так как суммарная степень вершин в дереве 2n - 2.

Зададимся некоторым деревом T и построим его так называемый код Прюфера. Занумеруем вершины числами от 1 до n и возьмем лист с наименьшим номером b_1 , пусть $e_1 = \{a_1, b_1\}$ — ребро, на котором висит этот лист. Вершина a_1 будет первым элементом кода. Далее, выкинем

из дерева вершину b_1 и ребро e_1 и продолжим процесс дальше до тех пор, пока не останется единственное ребро. В итоге мы получим последовательность (a_1,\ldots,a_{n-2}) . Это и будем кодом Прюфера данного дерева.

Упражнение. Показать, что разным деревьям отвечают разные коды

Опишем декодирование. Выпишем две последовательности — первая $A=(1,\ldots,n)$ и код Прюфера P. Выберем из A минимальное число a, не входящее в P и проведем ребро $\{a,P_1\}$. Далее, вычеркиваем число a и P_1 и продолжаем. Ясно, что эта операция является обратной к удалению листа, поэтому по коду Прюфера восстановится граф. Это будет дерево, так как каждая вершина имеет инцидентное ребро по построению и всего ребер n-1.

5. Количество унишиклических графов

Замечание. Обозначим за C(n, n+k) — количество связных графов на n вершинах с n+k ребрами. Если k < -1, то C(n, n+k) = 0. По формуле Кэли при $k = -1 \to C(n, n+k) = n^{n-2}$.

При k=0 получается унициклический граф. Наша задача — найти C(n,n)

Теорема.
$$C(n,n) = \frac{1}{2}n^{n-1}\sum_{r=3}^{n}\prod_{j=1}^{r-1}\left(1-\frac{j}{n}\right)$$

Доказательство. Обозначим длину простого цикла в унициклическом графе G за $3 \le r \le n$. Тогда посчитаем количество унициклических графов с фиксированной длиной цикла r.

Зафиксируем вершины цикла C_n^r способами. Цикл по ним можно проложить $\frac{(r-1)!}{2}$ способами. Посчитаем число лесов на n вершинах из r деревьев, таких что вершина $1 \leq i \leq r$ принадлежит дереву r-F(n,r).

Лемма.
$$F(n,r) = r \cdot n^{n-r-1}$$

Упражнение. Доказать это, используя кодирование Прюфера.

$$C(n,n) = \sum_{r=3}^n C_n^r \cdot \frac{(r-1)!}{2} \cdot r \cdot n^{n-r-1} = \frac{1}{2} \sum_{r=3}^n n^{n-1} \left(1 - \frac{1}{n}\right) \cdot \ldots \cdot \left(1 - \frac{r-1}{n}\right) = \frac{1}{2} n^{n-1} \sum_{r=3}^n \prod_{j=1}^{r-1} \left(1 - \frac{j}{n}\right),$$
что и требовалось доказать.

Лекция 3. Оценки количества графов

6. Асимптотическая оценка C(n, n)

Утверждение. Асимптотически $C(n,n) \sim \sqrt{\frac{\pi}{8}} \cdot n^{n-\frac{1}{2}}$

Доказательство. $C(n,n)=\frac{1}{2}\cdot n^{n-1}\sum\limits_{r=3}^{n}\prod\limits_{j=1}^{r-1}\left(1-\frac{j}{n}\right)$. Применим уже использованный ранее прием и оценим сумму двумя способами:

$$\sum_{r=3}^{n} \prod_{j=1}^{r-1} \left(1 - \frac{j}{n} \right) = \sum_{r=3}^{n} \exp \left[\sum_{j=1}^{r-1} \ln \left(1 - \frac{r-1}{n} \right) \right]$$

$$\exp \left[\sum_{j=1}^{r-1} \ln \left(1 - \frac{r-1}{n} \right) \right] \le \exp \left[\sum_{j=1}^{r-1} - \frac{r-1}{n} \right] = \exp \left[-\frac{r \cdot (r-1)}{2n} \right]$$

$$\exp \left[\sum_{j=1}^{r-1} \ln \left(1 - \frac{r-1}{n} \right) \right] = \exp \left[-\frac{r \cdot (r-1)}{2n} + O\left(\frac{r^3}{n^2}\right) \right]$$

Наблюдение: если $r\gg \sqrt{n}$, то $\frac{r\cdot (r-1)}{2n}\to +\infty\Rightarrow \exp\left[-\frac{r\cdot (r-1)}{2n}\right]\to 0$.

С другой стороны, если $r \ll n^{\frac{2}{3}}$, то $O\left(\frac{r^3}{n^2}\right) = o(1)$, тогда

$$\exp\left[-\frac{r\cdot(r-1)}{2n} + O\left(\frac{r^3}{n^2}\right)\right] \sim \exp\left[-\frac{r\cdot(r-1)}{2n}\right] = \exp\left[-\frac{r^2}{2n} + \frac{r}{n}\right] \sim \exp\left[-\frac{r^2}{2n}\right]$$

Теперь видно, что сумму можно разбить на две части:

$$\sum_{r=3}^{n} \exp \left[\sum_{j=1}^{r-1} \ln \left(1 - \frac{r-1}{n} \right) \right] = \underbrace{\sum_{r=3}^{\left[n^{0.6} \right]} \exp \left[\sum_{j=1}^{r-1} \ln \left(1 - \frac{r-1}{n} \right) \right]}_{S_1} + \underbrace{\sum_{r=\left[n^{0.6} \right]+1}^{n} \exp \left[\sum_{j=1}^{r-1} \ln \left(1 - \frac{r-1}{n} \right) \right]}_{S_2}$$

Оценим суммы

$$S_2 = \sum_{r=[n^{0.6}]+1}^n \exp\left[\sum_{j=1}^{r-1} \ln\left(1 - \frac{r-1}{n}\right)\right] \le \sum_{r=[n^{0.6}]+1}^n \exp\left[-\frac{r\cdot(r-1)}{2n}\right] \le$$

$$\le \sum_{r=[n^{0.6}]+1}^n \exp\left[-\frac{n^{0.6}\cdot\left(n^{0.6}-1\right)}{2n}\right] = \sum_{r=[n^{0.6}]+1}^n \exp\left[-\frac{n^{0.2}\cdot(1+o(1))}{2}\right] \le$$

$$\le n\cdot\exp\left[-\frac{n^{0.2}\cdot(1+o(1))}{2}\right] \to 0, \text{ при } n \to \infty$$

При $r \leq n^{0.6}$ равномерно по всем $r \in \left\{3,\dots,\left[n^{0.6}\right]\right\}$ оцениваем $\exp\left[O\left(\frac{r^3}{n^2}\right)\right] = 1 + o(1)$, где o(1) от r не зависит. Поэтому

$$S_1 = \sum_{r=3}^{\left[n^{0.6}\right]} \exp\left[-\frac{r^2}{2n} + O(\frac{r^3}{n^2})\right] \sim \sum_{r=3}^{\left[n^{0.6}\right]} \exp\left[-\frac{r^2}{2n}\right] = S_3$$

Осталось найти S_3 . Для этого будем пытаться оценить эту сумму суммой от 0 до $+\infty$.

Покажем, что
$$S_3 \sim \sum\limits_{r=2}^{\infty} \exp\left[-\frac{r^2}{2n}\right]$$

$$\sum_{r=[n^{0.6}]+1}^{\infty} \exp\left[-\frac{r^2}{2n}\right] = \sum_{r=[n^{0.6}]+1}^{n^2} \exp\left[-\frac{r^2}{2n}\right] + \sum_{r=n^2+1}^{\infty} \exp\left[-\frac{r^2}{2n}\right] \le$$

$$\le n^2 \cdot \exp\left[-\frac{n^{0.2}}{2}\right] + \sum_{r=n^2+1}^{\infty} \exp\left[-\frac{r^2}{2n}\right]$$

Оценим частное соседних слагаемых в остатке нашей суммы:

$$\exp\left[-\frac{r^2}{2n} + \frac{r^2}{2n}\right] = \exp\left[\frac{-2r - 1}{2n}\right] < \exp\left[-\frac{r}{n}\right] < e^{-n}$$

Тогда, обозначая $a_r = \exp\left[-\frac{r^2}{2n}\right]$, оценим всю сумму

$$a_{n^2+1}\left(1+\frac{a_{n^2+2}}{a_{n^2}+1}+\frac{a_{n^2+3}}{a_{n^2+2}}\cdot\frac{a_{n^2+2}}{a_{n^2+1}}+\ldots\right) < a_{n^2+1}\left(1+e^{-n}+e^{-2n}+\ldots\right) < a_{n^2+1}\cdot\frac{1}{1-e^{-n}}$$

Учитывая, что $a_{n^2+1} \to 0$, а $\frac{1}{1-e^{-n}} \to 1$, получаем, что

$$\sum_{r=[n^{0.6}]+1}^{\infty} \exp\left[-\frac{r^2}{2n}\right] \le \left(n^2 \cdot \exp\left[-\frac{n^{0.2}}{2}\right] + a_{n^2+1} \cdot \frac{1}{1 - e^{-n}}\right) \to 0$$

Значит $S_3 \sim \sum_{r=3}^{\infty} \exp\left[-\frac{r^2}{2n}\right]$.

Утверждение.
$$\int\limits_0^\infty \exp\left[-\frac{r^2}{2n}\right] \cdot dr$$

Доказатель ство.
$$\int\limits_0^\infty \exp\left[-\frac{r^2}{2n}\right]\cdot dr = \sqrt{n}\cdot \int\limits_0^\infty e^{-\frac{x^2}{2}}\cdot dx = \sqrt{n}\cdot \frac{\sqrt{2\cdot\pi}}{2} = \sqrt{\frac{\pi n}{2}}$$

Теперь оценим асимптотику S_3 интегралом

$$S_3 = \sum_{r=3}^{\infty} \exp\left[-\frac{r^2}{2n}\right] \sim \int_{2}^{\infty} \exp\left[-\frac{r^2}{2n}\right] \cdot dr \sim \int_{2}^{\infty} \exp\left[-\frac{r^2}{2n}\right] \cdot dr = \sqrt{\frac{\pi n}{2}}$$

Итого $C(n,n)=\frac{1}{2}\cdot n^{n-1}\left(S_1+S_2\right)\sim \frac{1}{2}\cdot n^{n-1}\cdot S_3\sim \sqrt{\frac{\pi}{8}}\cdot n^{n-\frac{1}{2}},$ что и требовалось показать. \square

Замечание. Известно, что $C(n,n+1) \sim \frac{5}{24} \cdot n^{n+1}$. Также известно, что при $2 \leq k = o(\sqrt[3]{n})$ верна асимптотика

$$C(n, n+k) = \gamma_k \cdot n^{n+\frac{3k-1}{2}} \cdot \left(1 + O(k^{1.5} \cdot n^{-\frac{1}{2}})\right)$$

$$\gamma_k = \frac{\sqrt{\pi} \cdot 3^k \cdot (k-1) \cdot \delta_k}{2^{\frac{5k-1}{2}} \cdot \Gamma\left(\frac{k}{2}\right)}$$

$$\delta_1 = \delta_2 = 1, \ \delta_{k+1} = \delta_k + \sum_{h=1}^{k-1} \frac{\delta_n \cdot \delta_{k-h}}{k+1} \cdot \frac{1}{C_k^n}$$

Если $k=o(\sqrt[3]{n})$ и $k\to\infty$, то верно более простое соотношение

$$C(n, n+k) \sim \sqrt{\frac{3}{4\pi}} \cdot \left(\frac{e}{12k}\right)^{\frac{k}{2}} \cdot n^{n+\frac{3k-1}{2}}$$

Лекция 4. Обходы графов

7. Эйлеровы графы

Определение. Эйлеров граф — граф, содержащий цикл, проходящий по всем ребрам этого графа.

Теорема. Для связного графа следующие три свойства эквивалентны

- (1) Граф является эйлеровым
- (2) Все степени вершин четны
- (3) Множество ребер графа распадается в дизъюнктное объединение простых циклов

Доказательство.

- $(1) \Rightarrow (3)$. Очевидно, что в цикле у каждой вершин степень четная.
- $(2) \Rightarrow (3)$. Зафиксируем вершину x_1 , $\deg x_1 > 0$. Выберем любое ребро (x_1, x_2) . $\deg x_2 > 0$ и четна. Будем идти по произвольному ребру, пока не вернемся в какую-то вершину из предыдущих. Тогда мы найдем некоторый простой цикл Z_1 . Тогда удалив все ребра из Z_1 , мы получим несколько компонент связности, причем величина V + E уменьшается. Значит, продолжая процесс в каждой компоненте, мы разобьем E в требуемое объединение.
- $(3) \Rightarrow (1)$. Удалив последний цикл, мы получим несколько меньших компонент связности. Каждую из них обойдем по индукции. Далее, проходя в первый раз вершину из некоторой компоненты связности обойдем по циклу всю эту компоненту.

Теорема. Для связного орграфа следующие утверждение эквивалентны

- (1) Граф является эйлеровым
- (2) Входящая степень для каждой вершины равна исходящей
- (3) Множество ребер графа распадается в дизъюнктное объединение простых циклов

Доказательство. Доказывается эта теорема, естественно, также.

Пример. Пусть есть $\Sigma = \{0,1\}$, $n \in \mathbb{N}$. Будем рассматривать Σ^n . Последовательностью де Брёйна назовем последовательность a_1, \ldots, a_N , такую, что $(a_1 \ldots a_n)$, $(a_2 \ldots a_{n+1})$, \ldots , $(a_{N-n+1} \ldots a_N)$ — все различные числа, исчерпывающие Σ^n .

Понятно, что $N = 2^n + n - 1$. Выясним, что такая последовательность существует.

Упражнение. Доказать, что правило «ноль лучше единицы»: $\underbrace{1\dots 10\dots 0}_{n}\underbrace{1\dots 0}_{n-1}\underbrace{1\dots 0}_{n-1}$... — генерирует последовательность де Брёйна.

Теорема. Последовательности де Брёйна существуют.

Доказательство. Построим псевдоорграф де Брёйна. Вершинами будут слова длины n-1. Ребро проведем между словами $a_1 \ldots a_{n-1}$ и $a_2 \ldots a_{n-1} 0$, а также между $a_1 \ldots a_{n-1}$ и $a_2 \ldots a_{n-1} 1$. Очевидно, что каждое ребро соответствует слову длины n. Очевидно, что входящая степень равна исходящей и равна 2. Тогда, пройдя в этом графе по эйлерову циклу, мы получим требуемую последовательность де Брёйна.

8. Гамильтоновы графы

Определение. *Гамильтонов граф* — граф, содержащий простой цикл, проходящий по всем вершинам.

Теорема. (признак Дирака) Если степень каждой вершины графа $\deg v \geq \frac{|V|}{2}$, то граф является гамильтоновым.

Упражнение. Доказать это.

Определение. Определим *число независимости* графа $\alpha(G) = \max\{k : \exists w \subset V : |w| = k, \ \forall x, y \in w \ (x,y) \notin E\}$. Иными словами, размер наибольшего подмножества вершин, не содержащего ребер между друг другом (независимого множества).

Определение. $\kappa(G)$ — вершинная связность графа G, то есть min количество вершин, которые нужно удалить, чтобы нарушить связность графа.

Теорема. Пусть $|V| \geq 3$ и $\kappa(G) \geq \alpha(G)$, тогда G — гамильтонов.

Доказательство.

- 1) В G есть циклы, так как если их нет, то граф дерево и $\kappa(G) = 1, \ \alpha(G) > 1$, что невозможно.
- 2) Удалим из графа любой самый длинный цикл $C = (x_1, ..., x_n)$ (вместе с вершинами), получив граф $(G \setminus C)$. Рассмотрим любую его компоненту связности W. Обозначим через $N_G(W)$ множество соседей вершин из W в графе G, которые не лежат в W. $N_G(W) \subset C$.

Предположим, что существуют соседние вершины x_i и x_{i+1} в C, которые принадлежат $N_G(W)$. Пусть они связны с вершинами $w,w'\in W$, тогда можно добавить в цикл путь $x_i\to w\to w'\to x_{i+1}$ (так как w и w' соединены путем) и увеличить в цикл, что невозможно.

Значит в $N_G(W)$ нет соседних вершин цикла C. Тогда рассмотрим $M = \{x_{i+1} \mid x_i \in N_G(W)\}$, $M \cap N_G(W) = \varnothing$. По построению $|M| = |N_G(W)|$, $|N_G(W)| \ge \kappa(G)$, так как иначе можно удалить все вершины из $|N_G(W)|$ и сделать граф несвязным. Тогда рассмотрим $x_{i+1}, x_{j+1} \in M$, $x_i \in N_G(W)$, $x_j \in N_G(W)$, $(x_i, w) \in E$, $(x_j, w') \in E$.

Пусть x_{i+1} и x_{j+1} смежны в G. Тогда можно выкинуть ребра (x_i, x_{i+1}) и (x_j, x_{j+1}) и добавить ребра $(x_{i+1}, x_{j+1}), (x_i, w), (x_j, w')$, а также путь $w \to w'$, увеличив цикл.

Тогда M — независимое множество, причем можно добавить любую вершину из $N_G(W)$ (так как они не пересекаются) и новых ребер не появится. Тогда мы нашли независимое множество размера $\kappa(G)+1$, что невозможно, значит исходный цикл был гамильтонов.

Пример. G(n,r,s)=(V(n,r),E(n,r,s)), где $V(n,r)=\{\overline{x}=(x_1,\ldots,x_n),\ x_i\in\{0,1\},\ x_1+\ldots+x_n=r\},$ а $E(n,r,s)=\{\{\overline{x},\overline{y}\}:\ (\overline{x},\overline{y})=s\}$ (Вспомним граф $G(n,\frac{n}{2},\frac{n}{4})$ с первой лекции). Рассмотрим граф G(n,3,1).

 $|V(n,3)|=C_n^3\sim \frac{n^3}{6},\, \deg v=C_3^1\cdot C_{n-3}^2\sim \frac{3n^2}{2}.$ Критерий Дирака не работает.

Оценим $\kappa(G)$. Оценим, сколько общих соседей у любых двух вершин.

- Если $v_1=1110\dots 0,\ v_2=0001110\dots 0\Rightarrow 9\,(n-6)\sim 9n$
- Если $v_1 = 1110...0, \ v_2 = 001110...0 \Rightarrow \sim n^2$
- Если $v_1 = 1110...0, v_2 = 01110...0 \Rightarrow \sim n^2$

Таким образом $\kappa(G) \ge (1 + o(1)) \cdot 9n$

Теорема. $\alpha(G(n,3,1)) \leq n$.

Доказательство. Рассмотрим произвольное независимое множество вершин $w = \{\overline{x_1}, \dots, \overline{x_s}\}: \forall i, j \to (x_i, x_j) \neq 1.$

Составим линейную комбинацию $\sum\limits_{i=1}^n c_i\overline{x_i}=0,\ c_i\in\mathbb{Z}_2,\ x_i\in\mathbb{Z}_2^n$ и умножим левую и правую

часть скалярно на $x_1:\sum_{i=1}^n c_i\cdot (x_1,x_i)=0.$ $(x_1,x_1)=3\mod 2,$ а $(x_1,x_i)=0,$ так как это не 1 и не 3. Тогда получается, что $c_1=0.$ Аналогично, $\forall i\to c_i=0.$ Значит вектора линейно независимы и $s\le n.$

Тогда G(n,3,1) — гамильтонов.

Лекция 5. Введение в вероятностный метод в комбинаторике

9. Гамильтоновы цепи в турнирах

Определение. *Турниром* будем называть орграф при произвольной ориентации ребер полного графа.

Замечание. Для наших целей введем некоторые частные случаи определений из теории вероятностей.

Нас будет интересовать конечное вероятностное пространство $\left(\Omega,2^{\Omega},P(w)\right),\ \sum_{w\in\Omega}P(w)=1.$

Случайной величиной будем называть отображение $\xi: \Omega \mapsto \mathbb{R}$, в нашем случае даже $\xi: \Omega \mapsto M = \{y_1, \dots, y_n\}$, так как Ω — конечно.

Математическим ожиданием случайной величины назовем $E\xi \stackrel{def}{=} \sum_{w \in \Omega} \xi(w) \cdot P(w) = \sum_{i=1}^k y_i \cdot P(\xi = y_i)$

Необходимо отметить, что $E(c_1\xi_1+c_2\xi_2)=c_1E\xi_1+c_2E\xi_2$

Здесь и далее вероятностные пространства будут конечными.

Теорема. (Селе, 1943) Существует турнир на n вершинах, в котором не меньше $\frac{n!}{2^{n-1}}$ различных гамильтоновых цепей.

Доказательство. Рассмотрим случайный турнир на n вершинах $\left(\Omega = \{T \text{ на } n \text{ вершинах}\}, P(T) = \frac{1}{|\Omega|}\right)$. Введем случайную величину ξ , равную числу гамильтоновых цепей в T. Тогда $\xi = \xi_1 + \ldots + \xi_{n!} \Rightarrow E\xi = n! \cdot E\xi_i = \frac{n!}{2^{n-1}}$, где

$$\xi_i = \begin{cases} 1, & \text{если i-я перестановка является гамильтоновой цепью в } T \\ 0, & \text{иначе} \end{cases}$$

А это значит, что найдется какой-то турнир с количеством гамильтоновых путей не меньше $\frac{n!}{2^{n-1}}$ (иначе совершенно точно $E\xi < \frac{n!}{2^{n-1}}$).

Теорема. (Алона) Для любого турнира количество гамильтоновых цепей в нем есть $\xi(T) = O(n^{\frac{3}{2}} \cdot \frac{n!}{2^n})$.

Доказательство. Доказательство можно найти в книге Алона и Спенсера «Вероятностный метод». □

10. ТЕОРЕМЫ ТУРАНОВСКОГО ТИПА

Теорема. Рассмотрим произвольный граф G=(V,E), |V|=n, $\alpha=\alpha(G)$. Тогда $|E|\geq \left[\frac{n}{\alpha}\right]\cdot n-\alpha\left(\frac{\left[\frac{n}{\alpha}\right]+1}{2}\cdot\left[\frac{n}{\alpha}\right]\right)$

Доказательство. Пусть A_1 — независимое множество $|A_1| = \alpha$. $\forall x \in (V \setminus A_1) \to \exists y \in A_1 : (x,y) \in E$. У нас уже есть хотя бы $n-\alpha$ ребер.

Удалим A_1 из M. В нем найдется максимальное независимое множество $|A_2| \leq \alpha$. Так мы получим еще хотя бы $n-2\alpha$ ребер.

Продолжая, добудем в сумме
$$(n-\alpha)+(n-2\alpha)+\ldots+\left(n-\left[\frac{n}{\alpha}\right]\cdot\alpha\right)=\left[\frac{n}{\alpha}\right]\cdot n-\alpha\left(\frac{\left[\frac{n}{\alpha}\right]+1}{2}\cdot\left[\frac{n}{\alpha}\right]\right)$$
 ребер.

Замечание. Пусть $G_n = (V_n, E_n)$ — последовательность графов, у которых $|V_n| = n, \ \alpha(G_n) = \alpha_n$, причем $\alpha_n = o(n)$ при $n \to \infty$. Тогда количество ребер в этом графе оценивается асимптотически снизу как $|E_n| \ge (1+o(1)) \cdot \left(\frac{n^2}{\alpha} - \frac{\alpha \cdot \frac{n^2}{\alpha^2}}{2}\right) = (1+o(1)) \cdot \frac{n^2}{2\alpha}$.

Лекция 6. Турановские оценки в дистанционных графах

11. Дистанционный граф

Определение. $G=(V,E):\ V\subset\mathbb{R}^n,\ E=\{\{\overline{x},\overline{y}\}:\ |\overline{x}-\overline{y}|=a\}\,,\ a>0$ — дистанционный граф.

При a=1 дистанционный граф называется графом единичных расстояний.

Замечание. Заметим, что G(n,3,1), G(n,r,s) является дистанционным графом.

Проблема. Рассмотрим произвольный дистанционный граф в \mathbb{R}^2 с 4n вершинами и $\alpha \leq n$. По теореме Турана у такого графа число ребер $|E| \geq 6n$.

Теорема. Верна нижняя оценка $|E| \ge 7n$.

Доказательство. Выделим максимальное независимое множество A мощности не более 4n. Тогда каждая вершина $V \setminus A$ связна с независимым множеством. Выделим отделать множество V_1 тех вершин, которые связны с A ровно по одному ребру и положим $V_2 = V \setminus A \setminus V_1$. Если мы покажем теперь, что $|V_1| \leq 2n$, то теорема будет доказана.

Положим $|V_1| \ge 2n+1$. Тогда по принципу Дирихле $\exists x \in A$: такая, что у нее не менее 3 соседей в V_1 . Обозначим соседей x через y_1, y_2, y_3 .

Если нет ребра между какими-то y_i и y_j , то можно увеличить независимое множество, удалив x и добавив y_i и y_j . Значит $\{x, y_1, y_2, y_3\}$ представляет собой клику. То есть мы имеем полный граф на плоскости с одинаковыми длинами ребер, что невозможно.

Замечание. Верна оценка $|E| \geq 8n$. Она неулучшаема, если пользоваться только тем, что в графе нет K_4

12. Обобщение в произвольной размерности

Определение. Правильный симплекс в \mathbb{R}^n это $S = conv(x_1, ..., x_{n+1})$ таких что $\forall i, j \to |x_i - x_j| = a$.

Утверждение. Правильный d-мерный симплекс не вложим в \mathbb{R}^{d-1}

Теорема. В дистанционном графе $G = (V, E) \subset \mathbb{R}^d$, |V| = n, $\alpha(G) = \alpha$ хотя бы $|E| \geq ?$ ребер.

Доказательство. Рассуждаем аналогично. Выделим максимальное независимое множество A и множества V_1, V_2 аналогично прошлому доказательству. Тогда если $|V_1| > \alpha d$. Тогда есть вершина x с хотя бы d+1 соседями. По тем же рассуждениям мы получаем S_{d+2} в \mathbb{R}^d .

Итак $|V_1| \leq \alpha d$. Тогда мы получаем хотя бы $\alpha \cdot d + 2(n - \alpha(d+1))$ ребер, если $n \geq \alpha(d+1)$. Далее рассуждаем аналогично в $V' = V \setminus A$ и так далее.

Мы можем сделать так k раз $n - \alpha(k+1) \ge \alpha(d+1) \Rightarrow k+1 = \left[\frac{n-\alpha(d+1)}{\alpha}\right] = \left[\frac{n}{\alpha}\right] - (d+1)$. Каждый раз мы берем на 2α меньше ребер, значит всего возьмем хотя бы

$$|E| \ge \frac{\alpha d + 2(n - \alpha(d+1)) + \alpha d + 2(n - k \cdot \alpha - \alpha(d+1))}{2} \cdot (k+1) =$$

$$= (\alpha d + n - \alpha(d+1) + n - k \cdot \alpha - \alpha(d+1)) \cdot (k+1) = ((2n - \alpha(d+2)) - k \cdot \alpha)(k+1)$$

Утверждение. Аналогично можно сформулировать следствие. Если дана последовательность $G_n = (V_n, E_n) \subset \mathbb{R}^{d_n}$ — дистанционных, где $|V_n| \to \infty$, $|d_n| \to \infty$ при $n \to \infty$, причем $\alpha_n \cdot d_n = o(n)$, тогда $|E_n| \ge (1 + o(1)) \frac{n^2}{\alpha_n}$

Доказательство. $\alpha_n \cdot d_n(k+1) \sim \frac{n}{\alpha_n} \cdot \alpha_n \cdot d_n = n \cdot d_n$. Нужно показать, что это $o(\frac{n^2}{\alpha_n})$, то есть $d_n = o(\frac{n}{\alpha_n})$, то есть что $\alpha_n \cdot d_n = o(n)$, что верно по условию. Тогда

$$2n(k+1) \sim 2n \cdot \frac{n}{\alpha_n} = \frac{2n^2}{\alpha_n}$$

$$\alpha_n(d_n+2)(k+1) \sim 2\alpha_n \cdot d_n \cdot \frac{n}{\alpha_n} = o(\frac{n^2}{\alpha_n})$$

$$k(k+1)\alpha_n \sim k^2 \cdot \alpha_n \sim \frac{n^2}{\alpha_n^2} \cdot \alpha_n = \frac{n^2}{\alpha_n}$$

Что дает нам требуемую асимптотику.

Лекция 7. Случайные графы и их связность

13. НЕРАВЕНСТВА МАРКОВА И ЧЕБЫШЕВА

Определение. Дисперсия случайной величины $D\xi = E(\xi - E\xi)^2 = E(\xi^2) - (E\xi)^2$.

3амечание. $E(\xi^2)$ — второй момент случайной величины.

Теорема. (неравенство Маркова) Пусть $\xi: \ \Omega \mapsto \mathbb{R}_+ \ u \ a > 0$. Тогда $P(\xi \geq a) \leq \frac{E\xi}{a}$

Доказательство.

$$E\xi = \sum_{i=1}^{n} y_i \cdot P(\xi = y_i) = \sum_{i: y_i \ge a} y_i \cdot P(\xi = y_i) + \underbrace{\sum_{i: y_i < a} y_i \cdot P(\xi = y_i)}_{\ge 0} \ge 2$$

$$\ge a \sum_{i: y_i \ge a} P(\xi = y_i) = a \cdot P(\xi \ge a)$$

Теорема. (неравенство Чебышёва)

$$P(|\xi - E\xi| \ge a) \le \frac{D\xi}{a^2}$$

 \mathcal{A} оказательство. $\eta = (\xi - E\xi)^2 \mapsto \mathbb{R}_+$. Тогда по неравенству Маркова

$$P(\eta \ge a^2) \le \frac{E\eta}{a^2} = \frac{D\xi}{a^2}$$

Утверждение. Если случайные величины ξ_1,\ldots,ξ_n попарно независимы, то $D(\xi_1+\ldots+\xi_n)=\sum_{i=1}^n D\xi_i$

14. Задача об уклонении

Вопрос. Пьяница идет из дома кабак по прямой и в каждую из п минут равноверотно идет в одну или в другую сторону. С какой вероятностью он дойдет до дома на расстоянии а? Есть последовательность случайных величин $\xi_1, \ldots, \xi_n : \forall i \to \xi_i : \Omega \mapsto \{-1, 1\}$ с вероятностью $\frac{1}{2}$.

$$P(\xi_1 + \ldots + \xi_n \ge a) \le \frac{D\eta}{a^2} = n \frac{nD\xi_1}{a^2} = \frac{n}{a^2}$$

Если, к примеру, $a=n^{\frac{2}{3}}$, то $P(\xi_1+\ldots+\xi_n\geq a)\leq \frac{n}{n^{4/3}}=\frac{1}{n^{1/3}}$, то есть вероятность стремится к θ .

Однако оценку можно сильно усилить.

Теорема.
$$P(\xi_1 + ... + \xi_n \ge a) \le \exp\left(-\frac{a^2}{2n}\right)$$

Доказательство.

$$P(\xi_1 + \ldots + \xi_n \ge a) \stackrel{\lambda \ge 0}{=} P(\lambda(\xi_1 + \ldots + \xi_n) \ge \lambda a) = P(\exp(\lambda(\xi_1 + \ldots + \xi_n)) \ge e^{\lambda a})$$

По неравенству Маркова имеем

$$= E\left(\exp\left(\lambda\left(\xi_1 + \dots + \xi_n\right)\right)\right) \cdot e^{-\lambda a} = \left(\prod_{i=1}^n \left(Ee^{\lambda \xi_i}\right)\right) \cdot e^{-\lambda a} = \left(\cosh\lambda\right)^n \cdot e^{-\lambda a}$$

Напишем ряд Тейлора:

П

$$\cosh \lambda = \frac{e^{\lambda} + e^{-\lambda}}{2} = \sum_{k=0}^{\infty} \frac{\lambda^{2k}}{(2k)!}$$

Так как $(2k)! \ge 2^k \cdot k!$, то

$$\cosh \lambda \le \sum_{k=0}^{\infty} \frac{\lambda^{2k}}{2^k \cdot k!} = \sum_{k=0}^{\infty} \frac{\left(\frac{\lambda}{2}\right)^k}{k!} = e^{\frac{\lambda^2}{2}}$$

Теперь нужно выбрать $\lambda > 0$, так чтобы минимизировать $\exp\left(\frac{\lambda^2 \cdot n}{2} - \lambda a\right)$. При $\lambda = \frac{a}{n}$ получаем требуемое.

15. Связность случайного графа

Определение. (Эрдеш, Реньи, 1959) Пусть $n \in \mathbb{N}, p \in [0;1]$. G(n,p) = ([n],E) — случайный граф на n вершинах, где каждое из C_n^2 ребер проведено независимо с вероятностью p.

Вероятность появления конкретного графа G определена как $P(G) = p^{|E|} \cdot (1-p)^{C_n^2 - |E|}$

Теорема. Пусть $p(n) = \frac{c \cdot \ln n}{n}$. Тогда

(1) если
$$c>1,$$
 то $P(G(n,p)-c$ вязен) $\underset{n\to\infty}{\rightarrow} 1$

(2) если
$$c < 1$$
, то $P(G(n,p) - \text{не связен}) \underset{n \to \infty}{\rightarrow} 1$

Замечание. Более того:

(3) если
$$c=1$$
, то $P(G(n,p)-\text{связен}) \underset{n\to\infty}{\to} e^{-1}$.

(4) если
$$c=\frac{\ln n+c+o(1)}{n}$$
, то $P(G(n,p)-\text{связен})\underset{n\to\infty}{\to}\exp\left(-e^{-c}\right)$

Последние два утверждения мы не будем доказывать

Доказательство. Докажем сперва второй пункт:

Введем $\xi(G)$ =число изолированных вершин графа G. Покажем, что $P(\xi \ge 1) \to 1$.

$$P(\xi \ge 1) = 1 - P(\xi = 0) = 1 - P(-\xi \ge 0) = 1 - P(E\xi - \xi \ge E\xi) \ge 1 - P(|E\xi - \xi| \ge E\xi) \ge 1 - \frac{D\xi}{(E\xi)^2}$$

Этот вывод справедлив для произвольной целочисленной неотрицательной случайной величины в графе. Теперь оценим $\frac{D\xi}{(E\xi)^2}$. По линейности мат. ожидания имеем:

$$E\xi = n \cdot E\xi_1 = n \cdot (1-p)^{n-1} = n \cdot \exp((n-1)\ln(1-p)) = n \cdot \exp(-np(1+o(1))) = n \cdot \exp(-np(1+o(1$$

Так как c < 1, то c(1 + o(1)) < 1 при $n \ge n_0$. Тогда $E\xi \underset{n \to \infty}{\to} \infty$.

$$D\xi = E\xi^2 - (E\xi)^2$$

$$E\xi^2 = E\left((\xi_1 + \ldots + \xi_n)^2\right) = E\left(\xi_1^2 + \ldots + \xi_n^2 + \sum_{i \neq j} \xi_i \xi_j\right) = E\xi_1 + \ldots + E\xi_n + \sum_{i \neq j} E\left(\xi_i \xi_j\right) =$$

$$= E\xi + \sum_{i \neq j} P\left(i, j - \text{изолированныe}\right) = E\xi + n(n-1)\left(1-p\right)^{2n-3}$$

$$\frac{D\xi}{\left(E\xi\right)^2} = \frac{E\xi + n(n-1)(1-p)^{2n-3} - \left(E\xi\right)^2}{\left(E\xi\right)^2} = \frac{1}{E\xi} + \frac{n(n-1)(1-p)^{2n-3}}{\left(E\xi\right)^2} - 1$$

Оценим $\frac{n(n-1)(1-p)^{2n-3}}{n^2(1-p)^{2n-2}} = \frac{n(n-1)}{n^2}(1-p) \sim 1.$

Тогда $\frac{D\xi}{(E\xi)^2} \to 0$ при $n \to \infty$, что и требовалось доказать.

Лекция 8. Хроматическое число случайного графа

16. НЕСВЯЗНОСТЬ СЛУЧАЙНОГО ГРАФА

Теорема. Пусть $p(n) = \frac{c \cdot \ln n}{n}$. Тогда

(1) если
$$c>1$$
, то $P(G(n,p)-c$ вязен) $\underset{n\to\infty}{\to} 1$

(2) если
$$c<1,\ mo\ P(G(n,p)-$$
 не связен) $\underset{n\to\infty}{\rightarrow} 1$

Доказательство. Доказываем теперь пункт (1)

Пусть
$$X = \begin{cases}$$
число компонент, если граф не связен $0,$ иначе

 $P\left($ случайный граф связен $ule{} = P\left(X=0
ule{} = 1 - P(X\geq1)\geq1 - EX
ule{}$

$$EX = E(X_1 + \ldots + X_{n-1}) = \sum_{i=1}^{n-1} EX_i$$
, где $X_i(G)$ — число компонент на i в вершинах.

 $EX = \sum_{i=1}^{n-1} E\left(X_{i,1} + \ldots + X_{i,C_n^i}\right)$, где $X_{i,k}(G)$ — индикатор связности k-го из C_n^i i-элементных подмножеств V.

 $X_{i,k} = P(ext{конкретное}\ i$ — вершинное множество является компонентой) \leq

$$\leq P$$
(из этого множества нет ребер наружу) = $(1-p)^{i\cdot(n-i)}$

Так,

(16.1)
$$EX \le \sum_{i=1}^{n-1} \sum_{k=1}^{C_n^i} (1-p)^{i(n-i)} = \sum_{i=1}^{n-1} C_n^i (1-p)^{i(n-i)}$$

Первое слагаемое этой суммы есть:

$$n\left(1-p\right)^{n-1} = n \cdot \exp\left(-pn\left(1+o(1)\right)\right) = n \cdot \exp\left(-c\ln n\left(1+o(1)\right)\right) = \frac{n}{n^{c(1+o(1))}} \to 0$$

(15.1) стремится к 0 тогда и только тогда, когда $\sum_{i=1}^{n/2} C_n^i \left(1-p\right)^{i(n-i)} \to 0$. Обозначим i член сумм $a_i(n)$.

Идея в том, что если
$$\frac{a_{i+1}(n)}{a_i(n)} \le q(n) \underset{n\to\infty}{\to} 0$$
, то $\sum_{i=1}^{n/2} a_i(n) = a_1(n) \left(1 + \frac{a_2(n)}{a_1(n)} + \frac{a_3(n) \cdot a_2(n)}{a_2(n) \cdot a_1(n)} + \ldots\right) = a_1(n) \cdot \frac{1}{1-q(n)} \sim a_1(n) \to 0$.

В нашем случае это будет выполнено не всегда, но можно отдельно оценить две части суммы:

$$S = \underbrace{\sum_{i=1}^{\left[\frac{n}{\ln \ln n}\right]} a_i(n)}_{S_1} + \underbrace{\sum_{i=\left[\frac{n}{\ln \ln n}\right]+1}^{n} a_i(n)}_{S_2}$$

$$S_2: C_n^i \cdot (1-p)^{i(n-i)} < 2^n \cdot \exp\left(-pi\left(n-i\right)\right) \le 2^n \exp\left(-p\frac{n}{\ln\ln n} \cdot \frac{n}{2}\right) =$$

$$= \exp\left(n\ln 2 - \frac{c\ln n}{n} \cdot \frac{n^2}{2\ln\ln n}\right) = \exp\left(n\left(\ln 2 - \frac{c\ln n}{2\ln\ln n}\right)\right)$$

$$S_2 \le n \cdot \exp\left(n\ln 2 - \frac{c\ln n}{2\ln\ln n}\right) \to 0$$

$$S_{1}: \frac{a_{i+1}(n)}{a_{i}} = \frac{C_{n}^{i+1} (1-p)^{(i+1)(n-i-1)}}{C_{n}^{i} (1-p)^{i(n-i)}} = \frac{n-i}{i+1} \cdot (1-p)^{-i+n-i-1} \sim \frac{n-i}{i+1} \cdot (1-p)^{n-2i} \leq \sum_{q(n)} \frac{a_{i+1}(n)}{a_{i}} = \underbrace{n \cdot \exp\left(-pn\left(1+o(1)\right)\right)}_{q(n)} \to 0$$

Это завершает доказательство.

Теорема. (о гигантской компоненте) Пусть $p = \frac{c}{n}$. Тогда если c < 1, то асимптотически почти наверное (далее а. п. н.) все связные компоненты имеют размер $O(\log n)$. Если же c > 1, то $\exists \gamma = \gamma(c) \in (0;1)$: а. п. н. в случайном графе есть ровно одна компонента на не меньше, чем γn вершинах, притом, что все остальные компоненты имеют размер $O(\log n)$.

17. ХРОМАТИЧЕСКОЕ ЧИСЛО ГРАФА

Определение. Хроматическим числом $\chi(G)$ графа G называется

$$\min \left\{ \chi: \ V = V_1 \sqcup \ldots \sqcup V_{\chi}, \ \forall i \to \forall x, y \in V_i \to (x, y) \notin E \right\}$$

3амечание. Каждое из V_i — независимое множество.

Утверждение. $\chi(G) \geq \frac{|V|}{\alpha(G)}, \ \alpha(G)$ — число независимости.

 $Утверждение. \ \chi(G) \ge \omega(G)$, где $\omega(G)$ — кликовое число графа (размер максимальной клики).

Теорема. Для случайного графа $G(n, \frac{1}{2})$ а. п. н. $\alpha(G) \leq 2 \cdot \log_2 n$.

Замечание. Тогда $\chi(G) \geq \frac{n}{2\log_2 n}$ по первому утверждению. Однако $\omega(G)$ и $\alpha(G)$ одинаково распределены. По второму утверждению получится лишь $\chi(G) \geq 2\log_2 n$.

Доказательство. Пусть $X_k(G)$ — число независимых множеств на k вершинах графа G. Тогда $P(\alpha(G) < k) = P(X_k(G) = 0)$

$$k = [2\log_2 n] \Rightarrow P(\alpha(G) < [2\log_2 n]) = P(X_k = 0) = 1 - P(X_k \ge 1) \ge 1 - EX_k$$

Итак, как обычно

$$EX_k = \sum_{i=1}^{C_n^k} EX_{k,i} = \sum_{i=1}^{C_n^k} \left(\frac{1}{2}\right)^{C_k^2} = C_n^k \cdot 2^{-C_k^2} \le \frac{n^k}{k!} \cdot 2^{-\frac{k^2}{2} + \frac{k}{2}} = \frac{1}{k!} \cdot 2^{k \log_2 n - \frac{k^2}{2} + \frac{k}{2}} \le$$

$$\le \frac{1}{k!} \cdot 2^{2 \log_2^2 n - \frac{(2 \log_2 n - 1)^2}{2} + \log_2 n} = \frac{2^{3 \cdot \log_2 n}}{k!} = \frac{n^3}{k!} \le \frac{2^{3 \log_2 n}}{(2 \log_2 n)^{2 \log_2 n}} \to 0$$

18. ХРОМАТИЧЕСКОЕ ЧИСЛО СЛУЧАЙНОГО ГРАФА

1) Пусть $p=o(\frac{1}{n^2})$, тогда а. п. н. $\chi(G)=1$, так как если X(G)=E(G), то $EX\to 0$.

$$P(X > 1) < EX \Rightarrow P(X = 0) \rightarrow 1$$

2) Пусть $p = o(\frac{1}{n})$, тогда а. п. н. $\chi(G) \le 2$. Докажем, что а. п. н. в G нет циклов. X(G) — число циклов. Покажем, что $EX \to 0$, то циклов почти наверное нет.

$$EX = \sum_{k=3}^{n} C_n^k \frac{(k-1)!}{2} \cdot p^k \le \sum_{k=3}^{n} \frac{n^k}{k!} \cdot \frac{(k-1)!}{2} \cdot p^k < \sum_{k=3}^{n} (np)^k < \sum_{k=3}^{\infty} (np)^k = \frac{(np)^3}{1 - np} \to 0$$

(3) (без доказательства) Пусть $p = \frac{c}{n}, \ c < 1 \Rightarrow$ а. п. н. случайный граф состоит из деревьев и унициклических графов, то есть $\chi(G) \leq 3$.

Теорема. (Баллобаш) Пусть $p=n^{-\alpha}$, где $\alpha>\frac{5}{6}$, тогда $\exists u=u(n,\alpha)$:

$$P(u \le \chi(G) \le u+3) \underset{n \to \infty}{\longrightarrow} 1$$

Упражнение. Доказать, что при некоторых $\alpha > \frac{5}{6}$ функция u = u(n) стремится к бесконечности.

3амечание. Можно заменить $\frac{5}{6}$ на $\frac{2}{3},$ а также u+3 на u+1.

Теорема. (Баллобаш) Пусть $p=\frac{1}{2},\ mor\partial a\ \exists \varphi(n):\ \varphi(n)=o(\frac{n}{\ln n})\ u$

$$P\left(\left|\chi(G) - \frac{n}{2\log_2 n}\right| \le \varphi(n)\right) \underset{n \to \infty}{\to} 1$$

Теорема. (Эрдеш, 1959). $\forall k \forall l \rightarrow \exists G: \chi(G) > k, g(G) > l, где g(G) - обхват (длина кратчайшего цикла в графе).$

Замечание. Существует конструктивное доказательство этой теоремы (Ловас).

Доказательство. Пусть даны числа k,l. Возьмем любое $\theta \in (0; \frac{1}{l})$. Возьмем $p = n^{\theta-1} \in (0; 1)$ и рассмотрим G(n,p).

 $X_l(G)$ положим числом циклов длины $\leq l$ в G.

$$EX_{l} = \sum_{k=3}^{l} EX_{l,k} = \sum_{k=3}^{l} C_{n}^{k} \frac{(k-1)!}{2} \cdot p^{k} \le \sum_{k=3}^{l} (np)^{k} < l \cdot (np)^{l} = ln^{\theta l} = o(n)$$

Рассмотрим вероятность события $P\left(X_l > \frac{n}{2}\right)$. Применим неравенство Маркова:

$$P\left(X_l > \frac{n}{2}\right) \le \frac{EX_l}{n/2} \underset{n \to \infty}{\to} 0$$

Возьмем $n_1: \forall n \geq n_1 \ P\left(X_l \leq \frac{n}{2}\right) > \frac{1}{2}$. Пусть $x = \left[\frac{3 \ln n}{p}\right]$, и $Y_x(G)$ — количество независимых множеств на x вершинах в G. Применяем неравенство Маркова:

$$P(Y_x \ge 1) \le EY_x = C_n^x (1-p)^{C_x^2} \le n^x \cdot \exp\left(-p \cdot C_x^2\right) = \exp\left(x \ln n - p\frac{x^2}{2} (1+o(1))\right)$$
$$\frac{px}{2} = (1+o(1))\frac{p}{2} \cdot \frac{3\ln n}{n} = 1.5 (1+o(1)) \ln n$$
$$x\left(\ln n - \frac{px}{2} (1+o(1))\right) = -\frac{1}{2}x \ln n (1+o(1)) \to -\infty$$

Это значит $\exists n_2: \forall n \geq n_2 \to P(Y_x=0) > \frac{1}{2}$. Тогда, так как два описанных события происходят с вероятностью больше $\frac{1}{2}$, то их пересечение не пусто. То есть существует граф на n вершинах, который удовлетворяет обоим свойствам.

В G не больше $\frac{n}{2}$ коротких циклов. Тогда можно удалить по одной вершине из каждого короткого цикла. В худшем случае останется граф G' с $\frac{n}{2}$ вершинами. При этом, g(G') > l. При этом очевидно, что $\alpha(G') \leq \alpha(G) \leq x$. Следовательно $\chi(G') \geq \frac{|V(G')|}{\alpha(G')} > \frac{n/2}{x} = \frac{n}{2\left[\frac{3\ln n}{p}\right]} \sim \frac{np}{6\ln n} = \frac{n^{\theta}}{6\ln n} > k$ при $n \geq n_3$.

Если
$$n \ge \max\{n_1, n_2, n_3\}$$
, то $\exists G': g(G') > l$, $\chi(G') > k$, что нам и нужно.

Замечание. Представим себе жадный алгоритм раскраски графа. Пусть $\alpha'(G)$ — наибольшее одноцветное множество, найденное жадным алгоритмом.

Теорема. Пусть
$$p = \frac{1}{2}$$
. Тогда $\forall \varepsilon > 0 \to P\left(\alpha'(G) > (1-\varepsilon)\log_2 n\right) \to 1$

Теорема. Пусть
$$p=\frac{1}{2}$$
. Тогда $\forall \varepsilon>0 \to P\left(\chi'(G)>\frac{n(1+\varepsilon)}{\log_2 n}\right)\underset{n\to\infty}{\to} 1$

 $\mathbf{Л}$ екции 9-n.

Потрачены

 Π екция n+1.

Определение.

$$f(n,k,t) = \max\{|E|: H = (V,E) - k$$
-однородный, $|V| = n: \forall A,B \in E \to |A \cap B| \ge t\}$

Определение.

$$m(n,k,t) = \max\{|E|: H = (V,E) - k$$
-однородный, $|V| = n: \forall A,B \in E \to |A \cap B| \neq t\}$

Определение.

$$h(n,k,t) = \max\{|E|: H = (V,E) - k$$
-однородный, $|V| = n: \forall A,B \in E \to |A \cap B| \le t\}$

Пример. Рассмотрим дистанционный граф G(n, k, t). Можно поставить ему в соответствие k-однородный гиперграф H, все ребра которого пересекаются по t элементом. Тогда $m(n, k, t) = \alpha(G(n, k, t))$.

Замечание. Показывая гамильтоновость G(n,3,1), мы получали, что $\alpha(G(n,3,1)) < n \Rightarrow m(n,3,1) \leq n$.

Теорема. (Франкл, Уилсон, 1981) Пусть k-t=p-nростое число, а также k-2p<0, тогда $m(n,k,t)\leq \sum\limits_{i=0}^{p-1}C_n^i$

3амечание. В теореме можно заменить p на p^{α} , $\alpha \geq 1$.

Доказательство. Рассмотрим m(n,k,t) как $\alpha(G(n,k,t))$. Тогда нам нужно доказать, что если $W = \{x_1, \dots, x_s\} \subset V(n,k)$ независима в G(n,k,t), то $s \leq \sum_{i=0}^{p-1} C_n^i$.

Сопоставим $x_i \to F_{x_i}(y) \in \mathbb{Z}_p\left[y_1,\ldots,y_n\right]$ — многочлен над \mathbb{Z}_p от n переменных по правилу

$$F_{x_i}(y) = \prod_{j=1, \ j \not\equiv k \pmod{p}}^{p} (j - (x_i, y))$$

Степень многочлена, сопоставленного каждому вектору есть $\deg F_{x_i} = p-1$. Преобразуем его следующим образом (приводя подобные):

$$F_{x_i}(y) = \sum \dots y_{i_1}^{\alpha_1} \dots y_{i_q}^{\alpha_{i_q}} \to \widetilde{F_{x_i}}(y) = \sum \dots y_{i_1} \dots y_{i_q}$$

(1) dim
$$\langle F_{x_i} \rangle \leq \sum_{i=1}^{p-1} C_n^i$$

(2)
$$\forall y \in \{0,1\}^n \to F_{x_i}(y) = \widetilde{F_{x_i}}(y)$$

(3)
$$\forall y \in \{0,1\}^n \to F_{x_i}(y) \equiv 0 \pmod{p} \Leftrightarrow (x_i,y) \not\equiv k \pmod{p}$$
, tak kak:

$$(x_i, y) \not\equiv k \pmod{p} \Rightarrow (x_i, y) \equiv j \pmod{p} \Rightarrow F_{x_i}(y) \equiv 0 \pmod{p}$$

$$(x_i, y) \equiv k \pmod{p} \Rightarrow (x_i, y) \not\equiv 0 \pmod{p}$$

Теперь, поймем, что есть независимое множество G(n, k, t):

$$\forall i \neq j \to (x_i, x_j) \neq t, \ (x_i, x_j) \neq k, \ (x_i, x_j) \neq k - 2p \Rightarrow$$

$$\forall i \neq j \to (x_i, x_j) \neq k, \ (x_i, x_j) \neq k - p, \ (x_i, x_j) \neq k - 2p, \dots \Rightarrow$$

$$\forall i \neq j \to (x_i, x_j) \not\equiv k \pmod{p}$$

Покажем теперь, что многочлены $\widetilde{F_{x_i}}$ линейно независимы по модулю p. Составим линейную комбинацию

$$c_1\widetilde{F_{x_1}} + \ldots + c_s\widetilde{F_{x_s}} = 0 \Rightarrow \forall y \in \{0,1\}^n \to c_1\widetilde{F_{x_1}}(y) + \ldots + c_s\widetilde{F_{x_s}}(y) \equiv 0 \pmod{p}$$

Возьмем
$$y=x_1$$
. Тогда $\widetilde{F_{x_1}}(x_1)=\prod_j \left(j-\underbrace{(x_1,x_i)}_{\equiv 0\pmod p}\right)\not\equiv 0\pmod p$. При $i>1$: $\widetilde{F_{x_i}}(x_1)\equiv 0$

(mod p), так как $(x_i, x_1) \not\equiv k \pmod{p}$.

Отсюда $c_1 F_{x_1}(x_1) \equiv 0 \pmod{p} \Rightarrow c_1 \equiv 0 \pmod{p}$. Аналогично $c_i \equiv 0 \pmod{p}$.

Из того, что многочлены линейно независимы, явствует утверждение теоремы.

Замечание. В случае $G(n,3,1),\ k=3,t=1,$ то есть p=2, причем k-2p=3-4<0.

Замечание. Пусть k,t — фиксированные числа. $m(n,k,t) \leq \sum_{i=0}^{p-1} C_n^i, \ p=k-t, \ k-2p < 0, \ m(n,k,t) \sim \frac{n^{k-t-1}}{(k-t-1)!}$

С другой стороны $m(n,k,t) \geq f(n,k,t+1) \geq C_{n-t-1}^{k-t-1} \sim \frac{n^{k-t-1}}{(k-t-1)!}$. То есть наша оценка сверху асимптотически точна.

Π екция n+2.

Потрачено

$\mathbf{\Pi}$ екция n+3.

19. Нижняя оценка m(n, k, t)

Асимптотически:

$$m(n, k, t) \le \frac{(2k - 2t - 1)! \cdot n^t}{k! (k - t - 1)!} (1 + o(1))$$

Будем строить следующую конструкцию. Возьмем n-элементное множество и выберем такое $A_1 = \{1, \ldots, a\}$, что любые два k-элементных подмножества вида A пересекались хотя бы по t+1 элементам.

$$a = 2k - 2t - 2 + t + 1 = 2k - t - 1$$

Внутри множества A_1 C_{2k-t-1}^k k-подмножеств. Возьмем еще множеств вида $A_i \subset \{1,\ldots,n\}$ вместе с их k-элементными подмножествами. Будем брать их так, чтобы они пересекались меньше, чем по t элементов. Их можно взять h(n,a,t-1).

Утверждение. $h\left(n,k,t\right) \leq \frac{C_{n}^{t+1}}{C_{k}^{t+1}}$

Доказательство. Возьмем (t+1)-элементные подмножества. Их C(n,t+1). Каждое из них может быть подмножеством только одно множества из нашего семейства. Но в каждом из них не больше C(k,t+1) таких подмножеств, откуда следует наша оценка.

Теорема.
$$(P\ddot{e}dnb) \ h(n,k,t) \sim \frac{C_n^{t+1}}{C_t^{t+1}}$$

Тогда, используя теорему Рёдля, получаем, что

$$m(n,k,t) \geq (1+o(1)) C_{2k-t-1}^k \cdot h\left(n,2k-t-1,t-1\right) \sim (1+o(1)) \frac{(2k-t-1)!}{k! \left(k-t-1\right)!} \cdot \frac{C_n^t}{C_{2k-t-1}^t} \sim \\ \sim (1+o(1)) \frac{(2k-t-1)!}{k! \left(k-t-1\right)!} \cdot \frac{n! \cdot t! \left(2k-2t-1\right)!}{t! \cdot \left(2k-t-1\right)!} \sim (1+o(1)) \frac{n^t \left(2k-2t-1\right)!}{k! \left(k-t-1\right)!}$$

20. ХРОМАТИЧЕСКОЕ ЧИСЛО ПРОСТРАНСТВА

Определение. $\chi(\mathbb{R}^n) = \min \left\{ \chi: \ \exists V_1 \sqcup \ldots \sqcup V_\chi = \mathbb{R}^n: \ \forall i, \overline{x}, \overline{y} \in V_i \to |\overline{x} - \overline{y}| \neq 1 \right\}$

3амечание. Очевидно, $\chi(\mathbb{R}^1) = 2$. $\chi(\mathbb{R}^2)$ никто не знает.

Легко привести дистанционный граф с хроматическим числом 4 (мозеровское веретено).

Раскраска шестиугольниками дает верхнюю оценку в 7 цветов.

Измеримыми по Лебегу множествами нельзя получит меньше 5 цветов.

Замечание. $6 \le \chi(\mathbb{R}^3) \le 15$. В асимптотике тривиально $\chi(\mathbb{R}^n) \le (2\sqrt{n})^n$

Теорема. (Ларман, Роджерс, 1972) $\chi(\mathbb{R}^n) \leq (3 + o(1))^n$.

3амечание. Очевидно, что $\chi(\mathbb{R}^n) \geq \chi(G)$, если G — дистанционный. Тогда

$$\chi(\mathbb{R}^n) \ge \chi(G(n,k,t)) \ge \frac{|V|}{\alpha(G(n,k,t))} = \frac{C_n^k}{m(n,k,t)} \ge \max_{k,t} \frac{C_n^k}{m(n,k,t)}$$

Теорема.
$$\chi(\mathbb{R}^n) \ge \left(\frac{1+\sqrt{2}}{2} + o(1)\right)^n = (1.207... + o(1))^n$$

Доказательство. Возьмем $k = k(n) = [k' \cdot n], \ k' = \frac{2-\sqrt{2}}{2}$.

Возьмем наименьшее простое p, такое, что k-2p<0. $p\sim \frac{k'n}{2}$, так как на $\left[x,x+O(x^{0.525})\right]$ есть простое число.

Возьмем t=k-p. Теорема Франкла-Уилсона говорит нам, что $\chi(\mathbb{R}^n)\geq \frac{C_n^k}{\sum\limits_{i=0}^{p-1}C_n^i}$

$$C_n^k = \left(\frac{1}{(k')^{k'}(1-k')^{1-k'}} + o(1)\right)^n$$
. $\sum_{i=0}^{p-1} > p \cdot C_n^{p-1} = (c+o(1))^n$, где c : $C_n^p = (c+o(1))^n$, то есть $c = \frac{1}{\left(\frac{k'}{2}\right)^{\frac{k'}{2}}\left(1-\frac{k'}{2}\right)^{1-\frac{k'}{2}}}$.

Итак

$$\chi(\mathbb{R}^n) \ge \left(\frac{\left(\frac{k'}{2}\right)^{\frac{k'}{2}} \left(1 - \frac{k'}{2}\right)^{1 - \frac{k'}{2}}}{\left(k'\right)^{k'} \left(1 - k'\right)^{1 - k'}} + o(1)\right)^n = \left(\frac{1 + \sqrt{2}}{2} + o(1)\right)^n$$

Замечание. $\chi(\mathbb{R}^n) \ge (1.239... + o(1))^n$

21. ПРОБЛЕМА БОРСУКА

Пусть $\Omega \subset \mathbb{R}^n$, $diam\ \Omega = \sup_{\overline{x},\overline{y} \in \Omega} |\overline{x} - \overline{y}| = 1$. Требуется найти минимальное k, такое, что $\exists \Omega_1 \sqcup \ldots \sqcup \Omega_k = \Omega$, $diam\ \Omega_i < 1$. Обозначим это через $f(\Omega)$. Положим $f(n) = \max_{\Omega} f(\Omega)$

Вопрос. (Гипотеза Борсука, 1933) верно ли, что f(n) = n + 1?

Замечание. Теорема Борсука-Улама говорит, что $f(S^{n-1}) \ge n+1$.

Теорема. (Кан, Калаи) $f(n) \ge (1.203... + o(1))^{\sqrt{n}}$

3амечание. Лучший результат: $f(n) \geq (1.2255\ldots + (1))^{\sqrt{n}}.$ Лучшая верхняя оценка $f(n) \geq \left(\sqrt{\frac{3}{2}} + o(1)\right)^n$

Замечание. Кан, Калаи показали, что гипотеза неверна, начиная с $n \geq 2015 = C_{64}^2 - 1$.

1994, Алон (Нилли) — $n \geq 946 = C_{44}^2$

1997, Вайссбах, Грей — $n \geq 903 = C_{43}^2$

1997, Райгородский $n \geq 561 = C_{34}^2$

2000, Вайссбах — $n \ge 560$

2000, Хинрихс — $n \ge 324 = C_{24}^2$

2001, Пихурко — $n \ge 321$

2003, Хинрихс, Рихтер, $n \ge 298$

2013, Бондаренко, $n \ge 65$ (двухдистанционное множество)

2013, Йенрих, $n \ge 64$

Гипотеза верна при $n \le 3$. Ничего не известно при $4 \le n \le 63$.