Short Paper

true true true true

2024-09-16

Abstract

This is the abstract. It consists of two paragraphs.

Contents

1	Bibliography styles	1
	1.1 Using CSL	2
2	Equations	2
3	Figures and tables	2
4	Tables coming from R	2
D.	oforongos	9

Please make sure that your manuscript follows the guidelines in the Guide for Authors of the relevant journal. It is not necessary to typeset your manuscript in exactly the same way as an article, unless you are submitting to a camera-ready copy (CRC) journal.

For detailed instructions regarding the elsevier article class, see https://www.elsevier.com/authors/policies-and-guidelines/latex-instructions

1 Bibliography styles

Here are two sample references: Feynman and Vernon Jr. (1963; Dirac 1953).

By default, natbib will be used with the authoryear style, set in classoption variable in YAML and with elsearticle-harv.bst which is among provided style by elsarticle documentclass. Other available style are elsarticle-num.bst and elsarticle-num-names.bst — the first one can be used for the numbered scheme, second one for numbered with new options of natbib.sty.

You can sets extra options with natbiboptions variable in YAML header. Example

natbiboptions: longnamesfirst,angle,semicolon

There are various more specific bibliography styles available at https://support.stmdocs.in/wiki/index.php? title=Model-wise_bibliographic_style_files. To use one of these, add it in the header using, for example, biblio-style: model1-num-names.

1.1 Using CSL

If citation_package is set to default in elsevier_article(), then pandoc is used for citations instead of natbib. In this case, the csl option is used to format the references. Alternative csl files are available from https://www.zotero.org/styles?q=elsevier. These can be downloaded and stored locally, or the url can be used as in the example header.

2 Equations

Here is an equation:

$$f_X(x) = \left(\frac{\alpha}{\beta}\right) \left(\frac{x}{\beta}\right)^{\alpha-1} e^{-\left(\frac{x}{\beta}\right)^{\alpha}}; \alpha, \beta, x > 0.$$

Here is another:

$$a^2 + b^2 = c^2. (1)$$

In line equations: $\sum_{i=2}^{\infty}\{\alpha_i^{\beta}\}$

3 Figures and tables

Figure 1 is generated using an R chunk.

Figure 1: A meaningless scatterplot.

4 Tables coming from R

Tables can also be generated using R chunks, as shown in Table 1 for example.

Table 1: Caption centered above table

	mpg	cyl	disp	hp
Mazda RX4	21.0	6	160	110
Mazda RX4 Wag	21.0	6	160	110
Datsun 710	22.8	4	108	93
Hornet 4 Drive	21.4	6	258	110
Hornet Sportabout	18.7	8	360	175
Valiant	18.1	6	225	105

```
knitr::kable(head(mtcars)[,1:4],
        caption = "\\label{tab1}Caption centered above table"
)
```

References

Dirac, P. A. M. 1953. "The Lorentz Transformation and Absolute Time." *Physica* 19 (1--12): 888-96. https://doi.org/10.1016/S0031-8914(53)80099-6.

Feynman, R. P, and F. L Vernon Jr. 1963. "The Theory of a General Quantum System Interacting with a Linear Dissipative System." *Annals of Physics* 24: 118–73. https://doi.org/10.1016/0003-4916(63)90068-X.