Lecture Note for Topology

Ethan Lu

Guangxi University for Nationalities

Mathematics is the queen of science.

MASTER OF COMAPLEX GEOMETRY MATHEMATICS

Department of Mathematics and Physics Nanning China

June 28, 2023

CHAP Contents

1	Topology	2
	1.1 Topics	2

CH 1 Topology

1.1 Topics

- 1. An important fact is that a topological space is a T_1 -space iff every point is closed.
- 2. The intersection of connected sets may not be connected!

 An illustrative instance is the set of intersection points between two curves, which comprises a finite and discrete space. It is non-connected.
- 3. The key trait of a compact space A is that if $\{\bigcup U_i\}$ is an open cover for A, then there must exist a *finite open subcover* $\{\bigcup_{j\in I} U_j\}$, where I is a finite index set.
- 4. The union and intersection operations of topological spaces remain compact.
- 5. The product space is Hausdorff (T_2) and path-connected, which is consistent with the generators.
- 6. !!! Let C be a closed and bounded subset of a metric space (X, d), where we give X its metric topology. Sometimes C is not always compact.
 - For instance, if X is an infinite set with the metric d where $d(x_1, x_2)$ is 1 if $x_1 \neq x_2$ and 0 if $x_1 = x_2$. Then X is bounded and closed but only finite subsets of X are compact. In particular, X is closed and bounded but not compact.
- 7. Let $f: X \to Y$ be a continuous surjective map of topological spaces such that X is Hausdorff. Then Y is not Hausdorff.
 - Take an instance. Let X = Y be any set with at least two points but give X the discrete topology and give Y the indiscrete topology. Let f(x) = x for all $x \in X$. Then f is continous, X is a T_2 -space but Y is not a T_2 -space.
- 8. When prove the *connectedness* of a space, we use *proof by contradiction* in general. In fact, we can always assume that X is disconnected, then there must exist two non-empty disjoint $(U \cap V = \emptyset)$ open sets U and V such that $U \cup V = X$.
- 9. Every path-connected space is connected space, but the converse is not true.

Problem 1.1.1 Let (X, τ) be a topological space. Then the following statements are equivalent.

- (i) X is T_1 -space,
- (ii) Each singleton subset of *X* is closed,
- (iii) Each subset A of X is the intersection of its open supersets.

Proof. (i) \rightarrow (ii): Let $x \in X$ and X is T_1 -space. Then for any $y \in X$ and $y \neq x$, there exists a neighborhood V of y such that $x \notin V$, i.e. $V \cap \{x\} = \emptyset$. Thus, $y \notin \{x\}$, then $\{x\} = \{x\}$. (Here, we use the fact that $y \notin \{x\}^d$ for $V \cap (\{x\} - \{y\}) = V \cap \{x\}$. It is clear that $y \notin \{x\}$ and $\{x\} = \{x\} \cup \{x\}^d$.) Then $\{x\}$ is closed.

(ii) \rightarrow (i): Let $\{x\}$ be closed for any $x \in X$. Then for any $y \in X$ and $y \neq x$, one abtains that $y \notin \{x\} = \overline{\{x\}}$. It suffices to show that $y \in \{x\}^c$, which means that X is T_1 -space.

 $(ii) \rightarrow (iii)$: Suppose any singleton subset of X is closed and let $A \subseteq X$. We can write

$$A = \bigcup_{x \in A} \{x\}.$$

Let $y \in X$ and $y \notin A$, then $y \neq x$. By assumption, $\{y\}$ is closed. Thus $\{y\}^c$ is open. As $A \subseteq \{y\}^c$ for any $y \notin A$, thus $A = \bigcap_{y \notin A} \{y\}^c$, i.e. A is the intersection of its open supersets.

(iii) \rightarrow (i): According to the above, one has $A = \bigcap_{y \notin A} \{y\}^c$, where $A \subseteq \{y\}^c$. For any $x \in A$, we gain $x \in \{y\}^c$ and $y \notin A$ i.e. $y \neq x$, which suffice to show that X is T_1 -space.

Problem 1.1.2 An infinite set with **co-finite topology** is T_1 but not T_2 .

Proof. Suppose the contrary is true, i.e. X is T_2 . Then for any $a, b \in X$, there are two open subsets U, V such that $a \in U, b \in V$ and $U \cap V = \emptyset$.

$$U^c \cup V^c = (U \cap V)^c = \emptyset^c = X$$

The left hand side is the union of two finite sets, but the right hand side is an infinite set X, which is a contradiction. Thus X is not T_2 .

Figure 1.1: (Regular Space)

Regular Space A regular T_1 -space is T_3 -space.

Problem 1.1.3 Every path-connected space is connected.

Proof. (Proof by contradiction.) Assume that a path-connected space X is disconnected. Then there exist two non-empty disjoint subsets U and V in X such that $U \cup V = X$.

For X is path-connected, there exist a continous function $f:[0,1] \to X$ with $f(0) = a, f(1) = b, \forall a, b \in X$. Then $f^{-1}(U)$ and $f^{-1}(V)$ are two non-empty disjoint open subsets in [0,1] such that

$$[0,1] = f^{-1}(U) \bigcup f^{-1}(V),$$

i.e. [0, 1] is dis-connected. It is contradictive with the fact that [0, 1] is connected. So *X* is connected.

1. Any metrizable space is second-countable.[1]

Take a discrete uncountable space. It's metrizable (for instance, with the metric where all distances d(x, y) = 1 for $x \neq y$) but not second-countabale.

- 2. Countable union of path-connected space is path-connected.
- 3. Is any dense subset of the Cantor set is uncountable? That's wrong, for instance, we take the union of boundary points of all the inetrvals in [0, 1] that we're using to define *C*.
- 4. Be aware of the identity mapping between X equipped with one topology and X equipped with another topology! Because for \mathbb{R} , the *lower limit topology* is finer than the *standard topology*, and for *product space*, the *box topology* is finer than the *product topology*.

- 5. *connectedness*: If topological space *X* admits nontrival partition into open sets. *compact*: If every open cover possesses a finite subcover.
- 6. The diameter of a subset A of a metric space (X, d) is $\sup\{d(x, y) \mid (x, y) \in A \times A\}$.
- 7. The *torus* is an orientable surface and it can be embedded without self-intersection into \mathbb{R}^3 . The Klein bottle is a non-orientable surface which cannot be embedded without self-intersection into \mathbb{R}^3 .
- 8. Given any topological space X, one abtains another topological space $\mathcal{C}(X)$ with complement topology?

That's wrong! For example,

9. There are topological spaces with countably many points, which have uncountably many open sets? $\sqrt{}$

That's true. For example, countable set with the discrete topology.

- 10. The number of points of a finite Hausdorff space is always a *prime power*? That's wrong! For instance, 6 -element set with the discrete topology. (Note that *finite discrete topological space is always Hausdorff.*) This is a Hausdorff space whose number of points is not a prime power.
- 11. \mathbb{R} with the Zariski topology is a compact topological space? $\sqrt{}$ That's true! proof:
- 12. \mathbb{R} with the Zariski topology is a connected topological space? $\sqrt{}$ That's true! *No subset of* \mathbb{R} *is both finite and has a finite complement-so the above holds here.*
- 13. Let \mathbb{Z} be endowed with the topology where the open sets are the unions of residue classes. Then $f: \mathbb{Z} \to \mathbb{Z}$, $n \mapsto n + (-1)^n$ is an homeomorphism? $\sqrt{}$ The function f maps uions of residue classes to unions of residue classes, so it is an homeomorphism.

Problem 1.1.4 If $\{A_i: i \in N\}$ is a collection of path-connected subsets of a space (X,τ) , and $\bigcap_{i\in N}A_i\neq\emptyset$ (There is at least one common point!) then $A=\bigcup_{i\in N}A_i$ is path-connected. In other words, countable union of path-connected sets is path-connected.

Proof. Let $x, y \in A$, where $x \in A_{i_1}, y \in A_{i_2}$. Let $z \in \bigcap_{i \in N} A_i$, then $z \in A_{i_1}, z \in A_{i_2}$. For A_{i_1} is path-connected, there exists a continuous function $f : [0, 1] \to A_{i_1}$ that maps x to z with f(0) = x, f(1) = z. Similarly, there exists another continuous

function $g: [0,1] \to A_{i_2}$ that maps y to z with g(0) = y, g(1) = z. Define function h by

$$h(t) = \begin{cases} f(2t), & 0 \le t < \frac{1}{2}, \\ g(2t-1), & \frac{1}{2} \le t \le 1. \end{cases}$$

Then h is continuous. Thus A is path-connected.

Problem 1.1.5 – $(\star \star \star)$ Let \mathbb{R}^2 be endowed with the usual topology. Either prove or disprove that $[0, 1[\times]0, 1[$ and $[0, 1[\times]0, 1]$ are homeomorphic subspaces of \mathbb{R}^2 .

Proof.

CHAP Bibliography

[1] John L Kelley. General topology. Courier Dover Publications, 2017.