GOLDi Axis Portal V1 - FPGA Control Unit

Document version:

Hardware Version V4.00.00 Release date: 30.09.2023

Overview:

The GOLDi Axis Portal V1 FPGA Control Unit is the main digital processing unit used in the GOLDi Axis Portal V1 to gather and control the sensor and actuator signals used in the physical model. The control unit uses a Lattice MachX02 FPGA to operate the system and provides a standardized SPI interface for the microcontroller unit to access the model's peripheral elements through a set of registers implemented in the FPGA.

Calibration procedure:

The GOLDi Axis Portal V1 does not require a specific calibration process to properly operate the motors or the internal protection system that limits the crane movement. However, the incremental encoder DSP units are recommended to be zeroed at a known point every time the Axis Portal is initialized. This does not affect the operation of the system but ensures a stable reference point. A good approach is to drive the crane to the negative limits of each axis and reset the encoders once the physical limit switches have been pressed.

Operation:

The GOLDI Axis Portal V1 is operated by writing the corresponding values into the FPGA registers (See Register Table)

SPI Communication Protocol

The FPGA Control Unit is configured through an SPI interface. The SPI interface allows the independent reading and writing of values from and into the registers of the model.

SPI Signals

The GOLDI Axis Portal V1 has four implemented signals:

SPI0_SCLK	SPI serial clock
SPI0_MOSI	SPI serial data input
SPI0_MISO	SPI serial data output
SPI0 nCE0	SPI chip select input (active low)

The FPGA Control Unit is enabled for communication when a logic low is presented on the chip select input nCE0. The data transfered between a falling and rising edge of nCE0 is defined as a SPI transaction. The data bit transfer during a transaction is synchronous to the bus clock SCLK. The peripheral FPGA Control Unit registers data from MOSI on the rising edge of SCLK and drives data to MISO on the falling edge. The most significant bit is sent first. The SCLK signal is expected to remain high when the module is idle.

A valid SPI transaction consists of a 16-bit *configuration word* and one or more 8-bit *data words*, meaning a minimum of 24 SCLK clock cycles is required for a single valid transaction. If the nCE0 is driven high before the minimum 24 data bits have been registered or before an additional data word has been transferred the current data is discarded.

GOLDi SPI Protocol

The communication with the FPGA is controlled by the *configuration word* at the begining of each SPI transaction. This input data configures the type of transaction in progress, the registers to be accessed during the data transfer and additional tag modifiers that change the behavior of the stored data.

The configuration word starts with the write enable "WE" tag which selects, if the operation is read-only (WE='0') or read-write (WE='1').

The next bit, the stream enable "SE" bit, selects the behavior of the SPI communication module when multiple *data words* are transfered in a single SPI transaction. When the multi-register mode is selected (SE='0'), the provided address acts as the inital register to be accessed. After the first operation has been performed, meaning the first data word has been transfered, the internal BUS address is drecreased by one and the next register is accessed. This data transfer mode simplifies the data transfer to a sub-module with multiple registers and data formats. In contrast, when the stream mode is selected (SE='1'), only the addressed register is accessed and the stored data is overwriten/read after every *data word* has been transfered. This data transfer mode is used primarly to transfer large data vectors to secondary communication sub-modules that configure ICs or other electronics. The sub-modules often have queue structures that prevent data loses.

The stream-enable bit is followed by a 4-bit tag word that is applied to all data words in the transaction and the 10-bit address word. Up to V4.00.00, the tag word remains unused by any sub-module in the GOLDi Axis Portal V1.

The GOLDi SPI Protocol is used by multiple GOLDi Model Units, therefore, the exact widths of the address, tag, and data words can be modified in the GOLDI_COMM_STANDARD package. A change to the "BUS_ADDRESS_WIDTH", "BUS_TAG_BITS", or "SYSTEM_DATA_WIDTH" automatically resizes the entire system.

Default configuration for the GOLDI Axis Portal V1 model

BUS_ADDRESS_WIDTH	10
BUS_TAG_BITS	4
SYSTEM_DATA_WIDTH	8

Configuration Word [15:0]			15:0]	Data Word[7:0]
Bit 15	Bit [14]	Bit [13:10]	Bit [9:0]	Bit [7:0]
WE	SE	TAG	ADDRESS	DATA[MSBF]
0	0	-	READ_START[9:0]	[MOSI: dc] [MISO: Register data]
0	1	-	READ_ONLY[9:0]	[MOSI: dc] [MISO: Register data]
1	0	-	WRITE_START[9:0]	[MOSI: New data] [MISO: Register data]
1	1	-	WRITE_ONLY[9:0]	[MOSI: New data] [MISO: Register data]

GOLDI Axis Portal V1 hardware pinout

Control Unit Pinout							
Hardware Pinout FPGA System							
Signal Name	Schematic Name	Pin Type	Pin Number	Pin Mode	Entity name		
External FPGA Clock	ClockFPGA	in	128	LVCMOS33	ClockFPGA		
Reset	FPGA_nReset	in	126	LVCMOS33	FPGA_nReset		
SCLK	SPI0_SCLK	in	138	LVCMOS33	SPI0_SCLK		
MOSI	SPI0_MOSI	in	133	LVCMOS33	SPI0_MOSI		
MISO	SPI0_MISO	out	139	LVCMOS33	SPI0_MISO		
nCE	SPI0_nCE0	in	127	LVCMOS33	SPI0_nCE0		
Multi-purpose GPIO0	GPIO0	inout	125	LVCMOS33	IO_DATA[0]		
Multi-purpose GPIO1	GPIO1	inout	122	LVCMOS33	IO_DATA[1]		
X-axis sensor left	InXLeft	inout	83	LVCMOS33	IO_DATA[2]		
X-axis sensor right	InXRight	inout	84	LVCMOS33	IO_DATA[3]		
X-axis sensor reference	InXRef	inout	85	LVCMOS33	IO_DATA[4]		
Y-axis sensor back	InYBack	inout	87	LVCMOS33	IO_DATA[5]		
Y-axis sensor front	InYFront	inout	86	LVCMOS33	IO_DATA[6]		
Y-axis sensor reference	InYRef	inout	89	LVCMOS33	IO_DATA[7]		
Z-axis sensor bottom	InZBottom	inout	92	LVCMOS33	IO_DATA[8]		
Z-axis sensor top	InZTop	inout	91	LVCMOS33	IO_DATA[9]		
Z-axis sensor proximity	InProximity	inout	99	LVCMOS33	IO_DATA[10]		
Encoder X channel A	InIncX_A	inout	93	LVCMOS33	IO_DATA[11]		
Encoder X channel B	InIncX_B	inout	94	LVCMOS33	IO_DATA[12]		
Encoder X channel I	InIncX_I	inout	95	LVCMOS33	IO_DATA[13]		
Encoder Y channel A	InIncY_A	inout	96	LVCMOS33	IO_DATA[14]		
Encoder Y channel B	InIncY_B	inout	97	LVCMOS33	IO_DATA[15]		
Encoder Y channel I	InIncY_I	inout	98	LVCMOS33	IO_DATA[16]		
X-axis motor enable	EnableDCX	inout	100	LVCMOS33	IO_DATA[17]		
X-axis motor out 1	OutDCX_A	inout	103	LVCMOS33	IO_DATA[18]		
X-axis motor out 2	OutDCX_B	inout	104	LVCMOS33	IO_DATA[19]		
Y-axis motor enable	EnableDCY	inout	112	LVCMOS33	IO_DATA[20]		
Y-axis motor out 1	OutDCY_A	inout	111	LVCMOS33	IO_DATA[21]		
Y-axis motor out 2	OutDCY_B	inout	113	LVCMOS33	IO_DATA[22]		
Z-axis motor enable	EnableDCZ	inout	105	LVCMOS33	IO_DATA[23]		
Z-axis motor out 1	OutDCZ_A	inout	106	LVCMOS33	IO_DATA[24]		
Z-axis motor out 2	OutDCZ_B	inout	107	LVCMOS33	IO_DATA[25]		
E-Magnet power on/off	EnableMagnet	inout	109	LVCMOS33	IO_DATA[26]		
E-Magnet out 1	OutMagnet	inout	110	LVCMOS33	IO_DATA[27]		
Power LED Red	LEDPowerR	inout	141	LVCMOS33	IO_DATA[28]		
Power LED Green	LEDPowerG	inout	140	LVCMOS33	IO_DATA[29]		
Environment LED Red	LightRed	inout	10	LVCMOS33	IO_DATA[30]		
Environment LED White	LightWhite	inout	11	LVCMOS33	IO_DATA[31]		
Environment LED Green	LightGreen	inout	12	LVCMOS33	IO_DATA[32]		
Multi-purpose pin 0	External 0	inout	73	LVCMOS33	IO_DATA[33]		

Multi-purpose pin 1	External 1	inout	74	LVCMOS33	IO_DATA[34]
Multi-purpose pin 2	External 2	inout	75	LVCMOS33	IO_DATA[35]
Multi-purpose pin 3	External 3	inout	76	LVCMOS33	IO_DATA[36]
Multi-purpose pin 4	External 4	inout	77	LVCMOS33	IO_DATA[37]
Multi-purpose pin 5	External 5	inout	78	LVCMOS33	IO_DATA[38]
Multi-purpose pin 6	External 6	inout	81	LVCMOS33	IO_DATA[39]
Multi-purpose pin 7	External 7	inout	82	LVCMOS33	IO_DATA[40]

Register Map

Document Version3Hardware VersionV4.00.00Date30.09.2023

All registers have a base address located on the package GOLDI_MODULE_CONFIG. This can be changed to move the modules in case the configuration word width is changed.

Register Name	Address (Dec)	Address (Hex)	Default	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
System Configuration	1	0x01	0x00		ID=00	01 (rst)				enc_y_rst	enc_x_rst
Sensor IO high	2	0x02	0x00	InZFront	InZBottom	InYRef	InYFront	InYBack	InXRef	InXRight	InXLeft
Sensor IO low	3	0x03	0x00								InProximity
Error list 1	4	0x04	0x00	error_7	error_6	error_5	error_4	error_3	error_2	error_1	error_0
Error list 2	5	0x05	0x00	error_15	error_14	error_13	error_12	error_11	error_10	error_9	error_8
Error list 3	6	0x06	0x00		error_22	error_21	error_20	error_19	error_18	error_17	error_16
GPIO0 Driver	7	0x07	0x00							Out_enb	Data
GPIO1 Driver	8	0x08	0x00							Out_enb	Data
X Encoder low	9	0x09	0x00	X VAL[7:0]				•			
X Encoder high	10	0x0A	0x00		X VAL[15:8]						
Z Encoder low	11	0x0B	0x00		Y_VAL[7:0]						
Z Encoder high	12	0x0C	0x00		Y_VAL[15:8]						
X Motor Direction	13	0x0D	0x00							Out1/Right	Out2/Left
X Motor Speed	14	0x0E	0x00			•	PV	VM[7:0]	•	•	•
Y Motor Direction	15	0x0F	0x00							Out1/Front	Out2/Back
Y Motor Speed	16	0x10	0x07		-	-	PV	VM[7:0]	-	-	
Z Motor Direction	17	0x11	0x00							Out1/Top	Out2/Bottom
Z Motor Speed	18	0x12	0x00				PV	VM[7:0]		•	
Electromagnet Power	19	0x13	0x00								mag_pow
Power LED Red	20	0x14	0x00	on/off	Blink_enb		Delay_on	•		Delay_off	:
Power LED Green	21	0x15	0x00	on/off	Blink_enb		Delay_on			Delay_off	
Light Red	22	0x16	0x00	on/off	Blink_enb		Delay_on			Delay_off	:
Light White	23	0x17	0x00	on/off	Blink_enb		Delay_on			Delay_off	
Light Green	24	0x18	0x00	on/off	Blink_enb		Delay_on			Delay_off	

Error List

Error code	Error definition	
error_0	Sensors X_left and X_right triggered	
error_1	Sensors X_left and X_ref triggered	
error_2	Sensors X_right and X_ref triggered	
error_3	Sensors Y_back and Y_front triggered	
error_4	Sensors Y_back and Y_ref triggered	
error_5	Sensors Y_front and Y_ref triggered	
error_6	Sensors Z_bottom and Z_top	
error_7	X_right and X_left simultaneously on	
error_8	Y_back and Y_front simultaneously on	
error_9	Z_bottom and Z_top simultaneously on	
error_10	X motor actuated left while crane not in top position	
error_11	X motor actuated right while crane not in top position	
error_12	Y motor actuated back while crane not in top position	
error_13	Y motor actuated front while crane not in top position	
error_14	Portal at outermost position and X_left	
error_15	Portal at outermost position and X_right	
error_16	Portal at outermost position and Y_back	
error_17	Portal at outermost position and Y_front	
error_18	Portal at outermost position and Z_bottom	
error_19	Portal at outermost position and Z_top	
error_20	X DC motor out channels inverted	
error_21	Y DC motor out channels inverted	
error_22	Z DC motor out channels inverted	

Physical model reference map

Actuation Map				
Direction	Condition			
x_neg left	X Motor -> Out2/Left			
x_pos right	X Motor -> Out1/Right			
y_neg back	Y Motor -> Out2/Back			
y_pos front	Y Motor -> Out1/Front			
z_neg bottom	Z Motor -> Out2/Bottom			
z_pos top	Z Motor -> Out1/Top			