

Optimization for Deep Learning

Prof. Seungchul Lee Industrial AI Lab.

Optimization

- An important tool in
 - 1) Engineering problem solving and
 - 2) Decision science

Optimization

- 3 key components
 - 1) Objective function
 - 2) Decision variable or unknown
 - 3) Constraints

Procedures

- 1) The process of identifying objective, variables, and constraints for a given problem (known as "modeling")
- 2) Once the model has been formulated, optimization algorithm can be used to find its solutions

Optimization: Mathematical Model

In mathematical expression

$$\min_{x} f(x)$$

subject to $g_i(x) \le 0$, $i = 1, \dots, m$

$$-x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n \text{ is the decision variable}$$

- $-f:\mathbb{R}^n\to\mathbb{R}$ is objective function
- Feasible region: $C = \{x: g_i(x) \le 0, i = 1, \dots, m\}$
- $-x^* \in \mathbb{R}^n$ is an optimal solution if $x^* \in C$ and $f(x^*) \leq f(x), \forall x \in C$

Optimization: Mathematical Model

• In mathematical expression

$$\min_{x} f(x)$$

subject to $g_i(x) \le 0$, $i = 1, \dots, m$

• Remarks: equivalent

$$\min_{x} f(x) \quad \leftrightarrow \quad \max_{x} -f(x)$$

$$g_{i}(x) \leq 0 \quad \leftrightarrow \quad -g_{i}(x) \geq 0$$

$$h(x) = 0 \quad \leftrightarrow \quad \begin{cases} h(x) \leq 0 & \text{and} \\ h(x) \geq 0 \end{cases}$$

Solving Optimization Problems

Solving Optimization Problems

• Starting with the unconstrained, one dimensional case

- To find minimum point x^* , we can look at the derivative of the function f'(x)
- Any location where f'(x) = 0 will be a "flat" point in the function
- For convex problems, this is guaranteed to be a minimum

Solving Optimization Problems

- Generalization for multivariate function $f: \mathbb{R}^n \to \mathbb{R}$
 - the gradient of f must be zero

$$\nabla_x f(x) = 0$$

• For defined as above, *gradient* is a *n*-dimensional vector containing partial derivatives with respect to each dimension

$$\nabla_x f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

ullet For continuously differentiable f and unconstrained optimization, optimal point must have

$$\nabla_{x}f(x^{*})=0$$

How do we Find $\nabla_x f(x) = 0$

- Direct solution
 - In some cases, it is possible to analytically compute x^* such that $\nabla_x f(x^*) = 0$

$$f(x) = 2x_1^2 + x_2^2 + x_1x_2 - 6x_1 - 5x_2$$

$$\implies \nabla_x f(x) = \begin{bmatrix} 4x_1 + x_2 - 6 \\ 2x_2 + x_1 - 5 \end{bmatrix}$$

$$\implies x^* = \begin{bmatrix} 4 & 1 \\ 1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

How do we Find $\nabla_x f(x) = 0$

- Iterative methods
 - More commonly the condition that the gradient equal zero will not have an analytical solution, require iterative methods

- The gradient points in the direction of "steepest ascent" for function f

Descent Direction (1D)

• It motivates the *gradient descent* algorithm, which repeatedly takes steps in the direction of the negative gradient

$$x \leftarrow x - \alpha \nabla_x f(x)$$

for some step size $\alpha > 0$

Gradient Descent

Repeat: $x \leftarrow x - \alpha \nabla_x f(x)$ for some step size $\alpha > 0$

Gradient Descent in Higher Dimension

Repeat: $x \leftarrow x - \alpha \nabla_x f(x)$ for some step size $\alpha > 0$

Gradient Descent

$$egin{aligned} &\min & (x_1-3)^2+(x_2-3)^2 \ &= \min & rac{1}{2}[\,x_1 \quad x_2] \left[egin{aligned} 2 & 0 \ 0 & 2 \end{matrix}
ight] \left[egin{aligned} x_1 \ x_2 \end{matrix}
ight] - \left[\,6 \quad 6\,
ight] \left[egin{aligned} x_1 \ x_2 \end{matrix}
ight] + 18 \end{aligned}$$

• Update rule: $X_{i+1} = X_i - \alpha_i \nabla f(X_i)$

$f = rac{1}{2} X^T H X + g^T X$
abla f = HX + g

у	$\frac{\partial y}{\partial x}$
Ax	A^T
$x^T A$	Α
x^Tx	2 <i>x</i>
$x^T A x$	$Ax + A^Tx$

Choosing Step Size lpha

• Learning rate

very slowly

even diverge

Reduce size over time

Where will We Converge?

Any local minimum is a global minimum

Multiple local minima may exist

- Random initialization
- Multiple trials

Practically Solving Optimization Problems

- The good news: for many classes of optimization problems, people have already done all the "hard work" of developing numerical algorithms
 - A wide range of tools that can take optimization problems in "natural" forms and compute a solution
- Gradient descent
 - Easy to implement
 - Very general, can be applied to any differentiable loss functions
 - Requires less memory and computations (for stochastic methods)
 - Neural networks/deep learning
 - TensorFlow