# Проектирование человекомашинных интерфейсов

Гаврилов Андрей Владимирович, Доцент каф. ВТ НГТУ

gavrilov@corp.nstu.ru κ. 7-311

http://www.insycom.ru

Лекция 1. Введение

# Человеко-машинное взаимодействие (HMI – Human-Machine Interaction)

- Взаимодействие между машиной (компьютером/программой, роботом, технологическим оборудованием, локальной сетью, самолетом, кораблем и т.п.) и человеком с целью выполнения определенных функций,для которых создавалась машина/программа
- Если в качестве машины выступает компьютер/программа, то говорят о человеко-компьютерном взаимодействии (HCI или CHI) или о пользовательском интерфейсе
- В последнее время стал популярен термин HRI взаимодействие или интерфейс между человеком и роботом

#### Понятие человеко-машинного интерфейса

Interface









Три ракурса (видения) человеко-машинного интерфейса

### «Картина мира» человеко-машинного взаимодействия





**Интерфейс** – совокупность средств и правил, которые обеспечивают взаимодействие устройств, программ и человека.



**Пользовательский интерфейс** — комплекс программ, обеспечивающих взаимодействие пользователя и компьютера.



Знакомясь со средой Windows, вы в первую очередь интересуетесь теми средствами и правилами, которые позволят пользователю управлять работой компьютера.

## Графический интерфейс –

пользовательский интерфейс, в котором для взаимодействия человека и компьютера применяются графические средства.



В среде Windows программы организуют для человека удобный для пользователя интерфейс. Достигается это благодаря широкому применению графических средств: рисунков, специальных значков, дизайна экрана и т.д.

# Альтернативное определение пользовательского интерфейса (из Википедии)

• Разновидность интерфейсов, в котором одна сторона представлена человеком (пользователем), другая — машиной/устройством. Представляет собой совокупность средств и методов, при помощи которых пользователь взаимодействует с различными, чаще всего сложными, машинами, устройствами и аппаратурой.

#### • Примеры:

- меню на экране телевизора + пульт дистанционного управления;
- дисплей электронного аппарата (автомагнитолы, часов) + набор кнопок и переключателей для настройки;
- приборная панель (автомобиля, самолёта) + рычаги управления.
- Весьма часто термин применяется по отношению к компьютерным программам

# Два подхода к проблеме

- Глобальный или более философский (широкий) подход
  - Человек и машина (оборудование) рассматриваются как единая система (ЧМС), создаваемая для выполнения определенных функций
  - Как распределить функции между человеком и машиной?
  - Как обеспечить взаимодействие (ввод и вывод)? (Кнопки, текст, речь, жесты и т.д.? Графика, звук, текст, анимация и т.д.?)
  - Как обеспечить взаимопонимание машины и человека?
  - В идеале (в будущем) киборгизация человека встраивание в него оборудования или «встраивание» его в оборудование
- Локальный или более инженерный подход
  - Рассматривается пользовательский интерфейс (ПИ) между человеком и компьютером (или некоторым программным обеспечением)
  - Это более проработанный подход

#### Подходы к проектированию интерфейсов

- Машиноцентрический подход. Был общепринятым на заре появления технических систем. Пользователями являлись обученные специалисты-программисты. Человек в данной системе рассматривался как ее звено, решающее различные задачи.
- Антропоцентрический подход. Суть подхода заключалась в том, что машина является орудием труда, и ключевым в проектировании подобных систем является анализ деятельности оператора. Однако подход был излишне «психологизирован». Ключевая роль отдавалась инженерным психологам, которые будучи специалистами в своей области не являлись таковыми в сфере технологий.
- Системно-технический подход. Появился практически одновременно с антропоцентрическим. Роли человека и машины в нем уравнивались. Подход практически не получил развития, так как инженеры, которые играли здесь ведущую роль, не были специалистами в психологии и зачастую игнорировали психологическое знание. Возможно, получит развитие в будущем.
- **Человеко-ориентированный подход.** Явился менее радикальной формой антропоцентрического подхода, он постулирует что потребности (а также цели, возможности и пр.) человека необходимо учитывать, особенно на первых этапах проектирования нового продукта.

# Специалисты, участвующие в проектировании ПИ

- Проектировщики (Interaction Designer, User Experience Designer). Проектируют интерфейс на основе имеющихся данных, отрисовывают макеты, создают прототипы, продумывают логику взаимодействия пользователя с продуктом.
- Аналитики (исследователи) (Usability Analyst, Usability Tester). Проводят исследования, юзабилити-тестирования, собирают информацию предваряющую проектирование, осуществляют мониторинг рабочего продукта (напр. веб-аналитика для сайтов).
- Дизайнеры графического интерфейса (Visual Designer, GUldesigner). Отрисовывают конечный вариант графического дизайна интерфейса.
- **Технические писатели.** Обычно не входят в команду, занимающуюся проектированием интерфейса, но чрезвычайно важны в процессе, так как именно они пишут сопроводительную информацию для пользователей (руководства, справки).
- **Менеджеры.** Управляют процессом проектирования интерфейса, ставят задачи, контролируют сроки.

# Взаимосвязь человека с технической системой

Информационная модель:

- Сенсорное поле
- Сенсомоторное поле
- К сенсорному (чувствительному) полю относят комплекс сигналов, которые воспринимаются человеком непосредственно от системы (шум, вибрация, ЭМП и т. д.) и из ряда сигнальных показаний приборов, индикаторов и т. п.
- К сенсомоторному полю относят комплекс сигналов от органов управления рычагов, ручек, кнопок и т. д.

# Виды совместимости человека и технической системы:

- 1. Биофизическая
- 2. Энергетическая совместимость
- 3. Пространственно-антропометрическая
- 4. Технико-эстетическая
- 5. Информационная

# 1. Биофизическая совместимость:

состоит в достижении разумного компромисса между физиологическим состоянием и работоспособностью человека, с одной стороны, и различными факторами, характеризующими систему с учетом объема, качества выполняемых им задач, и продолжительности работы, с другой.

# 2. Энергетическая совместимость

#### Энергетическая совместимость

предусматривает создание органов управления системы и выбор оператора так, чтобы они гармонировали в отношении затрачиваемой мощности, скорости, точности, оптимальной загрузки конечностей оператора.

# 3. Пространственно-антропометрическая совместимость

Пространственно-антропометрическая совместимость человека и системы состоит в учете антропометрических характеристик и некоторых физиологических особенностей человека при создании рабочего места.

# 4. Технико-эстетическая совместимость

#### Технико-эстетическая совместимость

состоит в творческой и эстетической удовлетворенности человека от процесса труда как совокупности физических и интеллектуальных сил с элементами творческой целенаправленности.

# 5. Информационная совместимость

#### Информационная совместимость

означает соответствие возможностям человека по приему и переработке потока закодированной информации и эффективному положению управляющих воздействий в системе.

#### Схема рефлекторной дуги при работе человека-оператора:



- 1 энергия раздражителя Е (сигнал, информация)
- 2 рецептор
- 3 нервные волокна
- 4 центральная нервная система (ЦНС)
- 5 нервные волокна
- 6 исполнительный орган
- 7 путь безусловного рефлекса
- 8 обратная связь

Рецепторы - структурные нервные образования, являющиеся датчиками системы восприятия внешних воздействий (окончания чувствительных нервных волокон, способные возбуждаться при действии раздражителя).

### Классификация рецепторов

### по характеру ощущений:

- Зрительные;
- Слуховые;
- Обонятельные;
- Осязательные рецепторы;
- Рецепторы боли;
- Рецепторы положения тела в пространстве.

## Классификация рецепторов (2)

# По способности к адаптации после длительного воздействия:

- 1. быстро адаптирующиеся (например, барорецепторы);
- 2. медленно адаптирующиеся рецепторы (фоторецепторы).

## Классификация рецепторов (3)

безусловные (врожденные, наследственно передающиеся). Например, сокращение мышц конечностей, раздражаемых электрическим током, теплотой или химическими веществами, вызывает реакцию удаления конечности от раздражителя.

условные рефлексы - формируются на основе приобретенного опыта при длительном воздействии раздражителя.

#### Характеристика органов чувств по скорости передачи информации

| Воспринимаемый<br>сигнал | Характеристика                                             | Максимальная<br>скорость, бит/с |
|--------------------------|------------------------------------------------------------|---------------------------------|
| Зрительный               | Длина линии<br>Цвет<br>Яркость                             | 3,25<br>3,1<br>3,3              |
| Слуховой                 | Громкость<br>Высота тона                                   | 2,3<br>2,5                      |
| Вкусовой                 | Соленость                                                  | 1,3                             |
| Обонятельный             | Интенсивность                                              | 1,53                            |
| Тактильный               | Интенсивность<br>Продолжительность<br>Расположение на теле | 2,0<br>2,3<br>2,8               |

#### Нервная система человека:

центральная нервная система (ЦНС), включающая головной и спинной мозг; периферическая (ПНС), которую составляют нервные волокна и узлы, лежащие вне ЦНС.

Нервная система функционирует при помощи рефлексов.

**Рефлекс** - любая ответная реакция организма на раздражение из окружающей или внутренней среды, осуществляющаяся с участием ЦНС.

# Защитные функции организма (преимущественно двигательные), реализуются:

- 1. через мозг и его память (бессознательное мышление)
- 2. сознательное мышление осуществляется, когда не найдено адекватной программы реакции на сигнал (прежде всего проявляя стереотипность мышления).

#### Память человека:

- долговременная память объем 1021 бит,
- кратковременная память (оперативная) емкость 50 бит.

- Процесс сознательного поиска решения очень медленный, для обычной жизни малопригодный.
- В экстремальных быстроразвивающихся ситуациях вероятность того, что человек найдет нужное решение в процессе мышления, очень мала.
- Основной путь подготовки человека к действиям в конкретных защитных ситуациях состоит в постоянном обучении и тренировке с целью перевода действий на уровень стереотипов.

Стереотит — это устойчиво сформировавшаяся в прежнем осознанном опыте рефлекторная дуга, выводимая в пограничную зону «сознание—подсознание».

Процесс принятия решения является многовариантным, в том числе и содержащим ошибки.

Любая деятельность человека несет в себе потенциальную опасность, так как вероятность неправильного решения всегда существует.

Аксиома о потенциальной опасности деятельности человека:

«Реакция человека на внешние раздражения может быть ошибочной и сопровождаться антропогенно-техногенными опасностями»

# Антропогенно-техногенные опасности могут возникать из-за:

- принятия неправильного решения (непреднамеренно);
- 2. нарушения трудоспособности и здоровья работающего
- 3. сознательных действий человека

# Содержание дисциплины

- Лекции (14)
- Лабораторные работы (4 4-часовых)
  - Сбор информации при проектировании пользовательского интерфейса
  - Прототипирование пользовательского интерфейса
  - Знакомство с пользовательским интерфейсом SCADA-системы
  - Программирование Alice-подобного диалога на естественном языке
- Расчетно-графическое задание

# Основная литература

- **1. Р.М. Ганеев** Проектирование интерфейса пользователя средствами WIN32. Телеком, М. 2007.
- 2. С. Ф. Сергеев, П. И. Падерно Н. А. Назаренко Введение в проектирование интеллектуальных интерфейсов Учебное пособие ИТМО. С-П. 2011. (Эл. версия)
- 3. В. В. Головач Дизайн пользовательского интерфейса. Искусство мыть слона. Эл. книга на сайте <a href="http://uibook2.usethics.ru/">http://uibook2.usethics.ru/</a>. (Эл. версия)
- **4. Дж. Тидвелл** Разработка пользовательских интерфейсов СПб.: Питер, 2008.
- Т. Мандел Разработка пользовательского интерфейса М.: ДМК пресс, 2001.
- 6. А.Купер, Р.Рейман, Д.Кронин. Об интерфейсе. Основы проектирования взаимодействия. С-Петер.-М.: Символ, 2009. (Эл. версия)
- **7. Э.В.Попов.** Общение с ЭВМ на естественном языке. М.: УРСС, 2004. **(Эл. версия)**
- **8. Э.А.Акчурин.** Человеко-машинное взаимодействие. Уч.пос. Самара, ПГАТИ, 2006. **(Эл. версия)**

# Дополнительная литература

- 1. С. Круг Веб-дизайн: книга Стива Круга или «не заставляйте меня думать!» СПб: Символ-Плюс, 2005.
- 2. В. А. Ажеронок, А. В. Островерх, М. Г. Радченко и др. Разработка управляемого интерфейса М.: 1С-Паблишинг, 2010
- 3. Дж. Раскин Интерфейс. Новые направления в проектировании компьютерных систем М,: Символ-Плюс 2007.
- **4. А.А.Абросимов, В.В.Зайвый**. Проектирование человекомашинного интерфейса. Самара: СГТУ, 2006. <a href="http://rutracker.org/forum/viewtopic.php?t=3367014">http://rutracker.org/forum/viewtopic.php?t=3367014</a>
- **5. В.В.Головач.** Дизайн пользоательского интерфейса **(Эл. версия)**
- 6. С.С.Зайдулин. Человеко-машинное взаимодействие. Казань, издво АУ «ТИСБИ», 2006.
- 7. О.Логунова, И.Ячиков, Е.Ильина. Человеко-машинное взаимодействие. Изд-во «Феникс», 2006.
- 8. А.В.Гаврилов. Интеллектуальные системы и основы теории интеллектуального управления. Метод. Указания к лабораторным работам. Новосибирск: НГТУ, 2012. (Эл. версия)