МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №4а

по дисциплине: Основы программирования тема: «Введение в функции»

Выполнил: ст. группы ПВ-211 Чувилко Илья Романович

Проверили: Притчин Иван Сергеевич Черников Сергей Викторович

Лабораторная работа №4а «Введение в функции»

Цель работы: получение навыков написания функций при решении простых задач. Закрепление навыков разработки алгоритмов разветвляющейся и циклической структуры. Получение навыков формулирования спецификаций к разрабатываемым функциям.

Содержание отчета:

- Тема лабораторной работы.
- Цель лабораторной работы.
- Решения задач.
- Для каждой задачи указать:
 - Условие задачи.
 - Тестовые данные.
 - Исходный код функции и её спецификацию.
- Задачи с двумя звездочками допускается не решать.
- Вывод

Выполнение работы:

№1. Напишите функцию abs для вычисления модуля вещественного числа х Спецификация для функции abs:

Заголовок: double abs(double a)

Назначение: возвращает модуль вещественного числа а

Тестовые задания для задачи

сторис задания для задач	···	
Входные данные	Ожидаемый результат	Пояснение
a = 1.23	1.23	Положительное число
a = -1.23	1.23	Модуль отрицательного числа — Положительное число
a = -0.0000001	0.000001	Модуль отрицательного числа — Положительное число
a = 0	0	Модуль нуля - 0

Код программы:

```
// Возвращает модуль вещественного числа a
double dabs(const double a) {
return a >= 0 ? a : -a;
}
```

№2. Напишите функцию max2, которая возвращает максимальное значение из двух целочисленных переменных типа int.

Спецификация для функции max2:

- 1. Заголовок: int max2(int a, int b)
- **2. Назначение:** возвращает наибольшее значение из двух введенных целочисленных переменных а и b.

Входные данные	Ожидаемый результат	Пояснение
a = 1 b = 3	3	Максимальная переменная: b = 3
a = -1 b = -8	-1	Максимальная переменная: a = -1
a = 0 b = 0	0	Значения равны, поэтому будет возвращено значение 0
a = -5 b = 5	5	Максимальная переменная: b = 5

```
// Возвращает наибольшее число из двух введенных целочисленных
// переменных а и b
int max2(const int a, const int b) {
return a > b ? a : b;
}
```

№3. Напишите функцию max3, которая возвращает максимальное значение из двух целочисленных переменных типа int. Используйте при решении функцию max2.

Спецификация для функции тах3:

- 1. Заголовок: int max3(int a, int b, int c)
- **2. Назначение:** возвращает наибольшее значение из трех введенных целочисленных переменных а, b, c

Тестовые задания для задачи

тосторые оприним рим оприни		
Входные данные	Ожидаемый результат	Пояснение
a = 1 b = 3 c = 0	3	Максимальная переменная: b = 3
a = -1 b = -8 c = 4	4	Максимальная переменная: c = 4
a = 0 b = 0 c = 0	0	Значения равны, поэтому будет возвращено значение 0
a = -1 b = -8 c = -4	-1	Максимальная переменная: a = -1

Код программы:

```
// Возвращает наибольшее значение из трех введенных целочисленных переменных
// a, b и c
int max3(const int a, const int b, const int c) {
return max2(max2(a, b), c);
}
```

№4. Напишите функцию getDistance, которая вычисляет расстояние между двумя точками, заданными целочисленными координатами (х1, у1) и (х2, у2).

Спецификация для функции getDistance:

Заголовок: double getDistance(int x1, int y1, int x2, int y2)

Назначение: возвращает расстояние между двумя точками с координатами (x1, y1) и (x2, y2)

Bходные данные	Ожидаемый результат	Пояснение
x1 = 0, y1 = 0, x2 = 3, y2 = 4	5	Египетский треугольник со сторонами 3 4 5
x1 = 0, y1 = 0, x2 = 1, y2 = 1	1.414214	По т. Пифагора, гипотенуза треугольника, с катетами 1 и 1, будет равна квадратному корню из двух
X1 = 0, y1 = 0, x2 = -3, y2 = -4	5	С отрицательными координатами результат будет тот же

```
x1 = 12, y1 = -5, 
 <math>x2 = 8, y2 = 7
```

12.649111

По т. Пифагора, гипотенуза треугольника, с катетами 4 и 12, будет равна квадратному корню из 160

Код программы:

№5. Напишите функцию solveX2, которая выводит корни квадратного уравнения: $ax^2 + bx + c = 0$

Найденные корни должны быть выведены в теле функции. Если действительных корней нет - вывести соответствующее сообщение.

Спецификация для функции solveX2:

Заголовок: double solveX2(int a, int b, int c)

Назначение: Выводит корни квадратного уравнения, где a, b, c – коэффициенты.

Тестовые задания для задачи

Входные данные	Ожидаемый результат	Пояснение
a = 1 b = 2 c = 1	-1 -1	Квадрат суммы
a = 1 b = -8 c = 12	6 2	Корни найденные через дискриминант
a = 10 b = -30 c = 20	2 1	Корни найденные через дискриминант
a = 0 b = 25 c = 5	Not quadratic	Не является квадратичной функцией, так как коэффициент перед квадратом = 0
a = 10 b = 30 c = 50	No solutions	Нет решений, так как дискриминант < 0

Код программы:

```
// Выводит корни квадратного уравнения, где a, b, c — коэффициенты.

void solveX2(const int a, const int b, const int c) {
  if (a == 0)
    printf("not quadratic");
  double D = pow(b, 2) - 4 * a * c;
  if (D < -EPS)
    printf("No solutions");
  else if (dabs(D) <= EPS)
    printf("x = %d", -b / (2 * a));
  else {
    double sqrtD = sqrt(D);
    double x1 = (-b + sqrtD) / (2 * a);
    double x2 = (-b - sqrtD) / (2 * a);
    printf("x1 = %lf\nx2 = %lf", x1, x2);
  }
}
```

№6. Написать функцию isDigit, которая возвращает значение 'истина', если символ х является цифрой, 'ложь' - в противном случае.

Спецификация для функции isDigit:

Заголовок: int isDigit(char a)

Назначение: Возвращает значение 1 ('истина'), если символ х является цифрой, 0 ('ложь') - в противном случае.

Тестовые задания для задачи

Входные данные	Ожидаемый результат	Пояснение
`a`	0	Это буква
`7`	1	Это цифра
`! <i>`</i>	0	Это знак
	0	Это пробел

Код программы:

```
// Возвращает значение 1 ('истина'), если символ x - является цифрой,
// 0 ('ложь') - в противном случае.
int isDigit(const char x) {
  return x >= '0' && x <= '9';
}
```

№7. Напишите функцию swap, которая принимает две переменные а и b типа float и обменивает их значения.

Спецификация для функции swap:

Заголовок: void swap(float *a, float *b)

Назначение: Обменивает значения двух переменных а и b типа float

Тестовые задания для задачи

Входные данные	Ожидаемый результат	Пояснение
a = 5.0	a = 7.8	Обменивает значения двух
b = 7.8	b = 5.0	переменных
a = 2.33	a = 7.67	Обменивает значения двух
b = 7.67	b = 2.33	переменных
a = -7.123	a = 7.123	Обменивает значения двух
b = 7.123	b = -7.123	переменных
a = 0	a = 0	Обменивает значения двух
b = 0	b = 0	переменных

Код программы:

```
// Обменивает значения двух переменных а и b типа float
void swap(float *a, float *b) {
  float t = *a;
  *a = *b;
  *b = t;
}
```

№8. Напишите функцию sort2, которая упорядочивает значения а и b типа float. Т.е. если a > b, то после выполнения функции значение переменной а должно быть меньше значения переменной b (при решении используйте функцию swap из прошлой задачи).

Спецификация для функции sort2:

Заголовок: void sort2(float *a, float *b)

Назначение: Сортирует значения а и b по возрастанию.

Тестовые задания для задачи

Входные данные	Ожидаемый результат	Пояснение
a = 5.0 b = 7.8	a = 5.0 b = 7.8	Изначально значения в порядке возрастания
a = 7.67 b = 2.33	a = 2.33 b = 7.67	a > b, поэтому меняем их местами
a = 7.123 b = -7.123	a = -7.123 b = 7.123	a > b, поэтому меняем их местами
a = 0 b = 0	a = 0 b = 0	Значения равны

Код программы:

```
// Сортирует значения а и b по возрастанию.
void sort2(float *a, float *b) {
  if (*a > *b)
   swap(a, b);
}
```

№9. Напишите функцию sort3, которая упорядочивает значения переменных a, b, c типа float таким образом, чтобы: $a \le b \le c$ (при решении используйте функцию sort2 из прошлой задачи).

Спецификация для функции sort3:

Заголовок: void sort3(float *a, float *b, float *c)

Назначение: Сортирует значения а, b и с по неубыванию.

Тестовые задания для задачи

Bходные данные	Ожидаемый результат	Пояснение
a = 5.0 b = 7.8 c = 9.0	a = 5.0 b = 7.8 c = 9.0	Изначально значения в порядке возрастания
a = 7.67 b = 2.33 c = 1.0	a = 1.0 b = 2.33 c = 7.67	Применяем сортировку
a = 7.123 b = -7.123 c = 0	a = -7.123 b = 0 c = 7.123	Применяем сортировку
a = 42 b = 42 c = 42	a = 42 b = 42 c = 42	Значения равны

Код программы:

```
// Сортирует значения a, b и c по возрастанию.

void sort3(float *a, float *b, float *c) {
  sort2(a, b);
  sort2(b, c);
  sort2(a, b);
}
```

№10. Написать функцию, которая возвращает значение 'истина', если можно составить треугольник с целочисленными сторонами a, b, c, 'ложь' - в противном случае (при решении используйте функцию из прошлой задачи).

Спецификация для функции isTriangleExist:

Заголовок: int isTriangleExist(float *a, float *b, float *c)

Назначение: Возвращает 1 (`Истина`), если треугольник со сторонами a, b и c существует. 0 (`Ложь`) - в обратном случае

Тестовые задания для задачи

тесторые радания для рада		
Входные данные	Ожидаемый результат	Пояснение
a = 5.0 b = 7.8 c = 9.0	0	Треугольник с такими сторонами не существует
a = 7.67 b = 2.33 c = 10	1	Треугольник с такими сторонами существует
a = 7.123 b = 7.123 c = 15	1	Треугольник с такими сторонами существует
a = 42 b = 42 c = 42	0	Треугольник с такими сторонами не существует

Код программы:

```
// Возвращает 1 (`Истина`), если треугольник со сторонами а, b и с существует.
// 0 (`Ложь`) - в обратном случае
int isTriangleExist(float a, float b, float c) {
  sort3(&a, &b, &c);
```

№11. Напишите функцию getTriangleTypeLength, которая возвращает значение 0, если треугольнык со сторонами a, b, c - является остроугольным, 1 - если прямоугольным, 2 - тупоугольным, -1 - если треугольник с такими сторонами не

Спецификация для функции getTriangleTypeLength:

Заголовок: int getTriangleTypeLength(float *a, float *b, float *c)

Назначение: Возвращает 0, если треугольник со сторонами а, b, с является остроугольным, 1 — если прямоугольный, 2 — тупоугольным, -1 — если треугольник с такими сторонами не существует

Bходные данные	Ожидаемый результат	Пояснение
a = 3 b = 3 c = 7	-1	Треугольник с такими сторонами не существует
a = 4 b = 4 c = 5	0	Остроугольный треугольник
a = 3 b = 4 c = 5	1	Прямоугольный треугольник
a = 3 b = 3 c = 5	2	Тупоугольный треугольник

```
#define EPS 0.00001

// Возвращает 0, если треугольник со сторонами а, b, c - является остроугольным,
// 1 — если прямоугольный, 2 — тупоугольным, -1 — если треугольник
// с такими сторонами не существует
int getTriangleTypeLength(float a, float b, float c) {
    sort3(&a, &b, &c);
    if (isTriangleExist(a, b, c) == 0)
        return -1;
    float pythagoreanTheorem = a * a + b * b - c * c;
    if (pythagoreanTheorem > EPS)
        return 0;
    else if (dabs(pythagoreanTheorem) <= EPS)
        return 1;
    else
        return 2;
}
```

№12. Напишите функцию isPrime, которая возвращает значение 1, если число является простым, иначе – 0. Приложите 3 вариации:

- (а) Без оптимизаций
- (b) С оптимизацией перебора до \sqrt{N} .
- (c) С оптимизацией перебора до √ N и шагом 2.

Тестовые задания для задачи

Ожидаемый результат
0
1
0
1
1
0
0
0
1
1
1
0

Спецификация для функции isPrime:

Заголовок: int isPrimeA(const int a)

Назначение: Возвращает 1, если число а простое, 0 - в обратном случае.

(а) Код программы:

(b) Код программы:

```
// Возвращает 1, если число а простое, 0 в обратном случае. С оптимизацией
// перебора до √ N.
int isPrime(const int a) {
  if (a == 1)
    return 0;
  int sqrtA = (int) sqrt(a);
  for (int divider = 2; divider <= sqrtA; divider++)
    if (a % divider == 0)
    return 0;
  return 1;
}
```

(с) Код программы:

```
// Возвращает 1, если число а простое, 0 - в обратном случае. С оптимизацией // перебора до √ N с шагом 2.
int isPrime(const int a) {
  if ((a % 2 == 0 || a == 1) && a != 2)
    return 0;
  int sqrtA = (int) sqrt(a);
  for (int divider = 3; divider <= sqrtA; divider += 2)
    if (a % divider == 0)
    return 0;
  return 0;
  return 1;
}
```

№13. Напишите функцию deleteOctNumber, которая удаляет цифру digit в записи данного восьмеричного числа а:

Спецификация для функции deleteOctNumber:

Заголовок: int deleteOctNumber(int a, const int digit)

Назначение: Возвращает число, которое будет получено, после удаления цифр digit из восьмеричной записи числа а

Тестовые задания для задачи

Входные данные	Ожидаемый результат
3179 ₁₀ = 110' <u>001</u> '101'011 ₂ = 6 <u>1</u> 53 ₈	653 ₈ = 110'101'011 ₂ = 427 ₁₀
9 ₁₀ = 1'001 ₂ = 11 ₈	0 ₁₀
37 ₁₀ = 100'101 ₂ = 45 ₈	45 ₈ = 100'101 ₂ = 37 ₁₀

Код программы:

```
// Возвращает число, которое будет получено, после удаление цифр digit из
// восьмеричной записи числа
int deleteOctNumber(int a, const int digit) {
  int afterProcessA = 0, octIndex = 0;
  while (a > 0) {
    int iDigit = a & 7;
    if (iDigit != digit)
        afterProcessA += iDigit << (3 * octIndex++);
    a >>= 3;
  }
  return afterProcessA;
}
```

№14. Напишите функцию swapPairBites, которая меняет местами соседние цифры пар в двоичной записи данного натурального числа. Обмен начинается с младших разрядов. Непарная старшая цифра остается без изменения

Спецификация для функции swapPairBites:

Заголовок: int swapPairBites(int a)

Назначение: Возвращает число, которое будет получено, после того, как соседние цифры в двоичной записи числа а , начиная с младших разрядов, поменяются местами.

Тестовые задания для задачи

Входные данные	Ожидаемый результат
77 ₁₀ = 1`00`11`01 ₂	1`00`11`10 ₂ = 78 ₁₀
165 ₁₀ = 10`10`01`01 ₂	1`01`10`10 ₂ = 90 ₁₀

Код программы:

```
// Возвращает число, которое будет получено, после того, как соседние цифры
// в двоичной записи числа а, начиная с младших разрядов, поменяются местами
int swapPairBites(int a) {
  int afterProcessA = 0, quaIndex = 0;
  while (a > 0) {
    if (a == 1)
      afterProcessA += 1 << (2 * quaIndex++);
    else {
      int iDigit = a & 3;
      if (iDigit == 1 || iDigit == 2)
         iDigit = 3 - iDigit;

      afterProcessA += iDigit << (2 * quaIndex++);
    }
    a >>= 2;
  }
  return afterProcessA;
}
```

№15. Напишите функцию invertHex, которая преобразует число х, переставляя в обратном порядке цифры в шестнадцатеричном представлении данного натурального числа.

Спецификация для функции lengthN:

Заголовок: int lengthN(int a, const int n)

Назначение: Возвращает длину числа а, записанного в (2^n)-ой системе счисления.

Спецификация для функции invertHex:

Заголовок: int invertHex(int a)

Назначение: Возвращает число, которое будет получено, после того, как цифры в шестнадцатеричном представлении числа а будут записаны в обратном порядке.

Входные данные	Ожидаемый результат
$77_{10} = 100'1101_2 = 4D_{16}$	$D4_{16} = 1101'0100_2 = 212_{10}$
$2732_{10} = 1010'1010'1100_2 = AAC_{16}$	$CAA_{16} = 1100'1010'1010_2 = 3242_{10}$

```
Возвращает длину числа а, записанного в (2^n)-ой системе счисления
int lengthN(int a, const int n) {
 int lengthHex = 0;
 while (a > 0) {
   lengthHex++;
   a >>= n;
 return lengthHex;
/ Возвращает число, которое будет получено, после того, как цифры в
/ шестнадцатеричном представлении числа а будут записаны в обратном порядке
int invertHex(int a) {
 int afterProcessA = 0;
 for (int i = lengthN(a, 4) - 1; i >= 0; i--) {
   int iDigit = a & 15;
   afterProcessA += iDigit << (4 * i);</pre>
   a >>= 4;
 return afterProcessA;
```

№16. Напишите функцию isBinPoly, которая возвращает значение 1, если число х является палиндромом в двоичном представлении, иначе - 0.

Спецификация для функции isBinPoly:

Заголовок: int isBinPoly(int x)

Назначение: Возвращает значение 1, если число х является палиндромом в двоичном представлении, иначе - 0.

Тестовые задания для задачи

Входные данные	Ожидаемый результат
27 ₁₀ = 11011 ₂	1
454 ₁₀ = 111000110 ₂	0

Код программы:

```
// Возвращает значение 1, если число х является палиндромом в
// двоичном представлении, иначе - 0.
int isBinPoly(const int x) {
  int isPoly = 0, tmp = x, afterProcessX = 0;
  while (tmp > 0) {
    if (afterProcessX != 0)
        afterProcessX <<= 1;
    afterProcessX += tmp & 1;
    tmp >>= 1;
  }
  if (x == afterProcessX)
    isPoly = 1;
  return isPoly;
}
```

№17. Даны два двухбайтовых целых sh1 и sh2. Получить целое число, последовательность нечетных битов которого представляет собой значение sh1, а последовательность четных – значение sh2.

Спецификация для функции twoBitHybrid:

Заголовок: long long twoBitHybrid(long long sh1, long long sh2)

Назначение: Возвращает целое число, последовательность нечетных битов которого представляет собой значение sh1, а последовательность четных – значение sh2. 1 000 100

Тестовые задания для задачи

Входные данные	Ожидаемый результат
$sh1 = 00000000001100_2 = 12_{10}$ $sh2 = 000000000010010_2 = 18_{10}$	0000000000000000000000110100100 ₂ = 420 ₁₀
$sh1 = 01111111100000000_2 = 32512_{10}$ $sh2 = 000000000000000_2 = 0$	0001010101010101000000000000000000000

Код программы:

```
// Возвращает целое число, последовательность нечетных битов которого
// представляет собой значение sh1, а последовательность четных – значение
sh2.
int twoBitHybrid(short sh1, short sh2) {
  int result = 0;
  char shift = 0;
  while(sh1 > 0 || sh2 > 0) {
    result += (sh2 & 1) << shift;
    result += (sh1 & 1) << (shift + 1);
    shift += 2;
    sh2 >>= 1;
    sh1 >>= 1;
}
return result;
}
```

№18. Вывести восьмеричное представление записи числа x

Спецификация для функции twoBitHybrid:

Заголовок: int octNum(int x)

Назначение: Выводит восьмеричное представление числа х.

52
102
144
200
1234
2471
5442
1234567

```
// Возвращает длину числа а, записанного в (2^n)-ой системе счисления int lengthN(int a, const int n) {
  int lengthHex = 0;
  while (a > 0) {
    lengthHex++;
    a >>= n;
  }
  return lengthHex;
}

// Выводит восьмеричное представление числа х
void octNum(int x) {
  int l = lengthN(x, 3);
  for (int i = 0; i < l; i++)
    printf("%d", (x >> 3 * (l - i - 1)) & 7);
}
```

№19. Определить максимальную длину последовательности подряд идущих битов, равных единице в двоичном представлении данного целого числа.

Спецификация для функции twoBitHybrid:

Заголовок: int binSequence(int x)

Назначение: Возвращает максимальную длину последовательности подряд идущих битов равных единице, в представлении числа х.

Тестовые задания для задачи

Входные данные	Ожидаемый результат
$x = 61454_{10} = 1111000000001110_2$	4
$x = 11_{10} = 1011_2$	2

Код программы:

```
// Возвращает максимальную длину последовательности подряд идущих битов
// равных единице в двоичном представлении числа x.
int binSequence(int x) {
  int maxSequence = 0, lastSequence = 0;
  while (x > 0) {
   if (x & 1) {
     lastSequence++;
     maxSequence = max2(lastSequence, maxSequence);
  } else
     lastSequence = 0;
     x >>= 1;
  }
  return maxSequence;
}
```

Вывод: Получил навыки написания функций при решении простых задач. Закрепил навыки разработки алгоритмов разветвляющейся и циклической структуры. Получил навыки формулирования спецификаций к разрабатываемым функциям.