WORKING WITH FCC BROADBAND AVAILABILITY DATA IN

ARIZONA USING R.

THE FOLLOWING CODE USES FCC BROADBAND AVAILABILITY DATA TO DETERMINE

THE STATUS (I.E., UNSERVED, UNDERSERVED, SERVED) OF BROADBAND

SERVICABLE LOCATION'S (BSL). ARIZONA IS THE PRIMARY STATE OF ANLAYSIS,

HOWEVER, THIS CODE CAN BE USED FOR ANY STATE WITH CENSUS AND BDC DATA!

SECTIONS OF THE CODE WHERE THESE CHANGES CAN BE MADE HAVE BEEN ANNOTATED.

THE 'DYPLR' AND 'TIDYR' PACKAGES ARE USED TO SUMMARIZE THE TOTAL NUMBER
OF UNSERVED, UNDERSERVED, AND SERVED LOCATIONS WITHIN A PARTICULAR
GEOMETRY. BDC DATA DOES NOT INCLUDE LATITUDE/LONGITUDE LOCATION
INFORMATION. INSTEAD, IT USES CENSUS BLOCK AND H3 HEXAGONAL GRID LOCATION
INFORMATION. THE 'TIGRIS' PACKAGE IS USED TO DIRECTLY DOWNLOAD U.S. CENSUS
BUREAU TIGER/LINE SPATIAL FEATURES (I.E., BLOCKS, BLOCK GROUPS, AND COUNTY)
FROM R. THE 'H3JSR' PACKAGE IS USED TO CREATE H3 HEXAGONAL GRIDS COVERING
THE ENTIRE STATE.

THE 'GGPLOT2' PACKAGE IS USED TO MAP THE PERCENTAGE OF SERVED LOCATIONS.

A SERVED LOCATIONS IS A BROADBAND SERVICABLE LOCATION SERVED BY RELIABLE

BROADBAND TECHNOLOGIES RECEIVING BROADBAND SPEEDS GREATER THAN OR EQUAL TO

100 MBPS DOWNLOAD AND 20 MBPS UPLOAD SPEEDS WITH LATENCY LESS THAN 100 MS

(See BEAD NOFO, pages 16-17).

THE CODE IS BROKEN INTO THE FOLLOWING SECTIONS:

- # 1. IMPORT THE FCC BROADBAND AVAILABILITY DATA
- # 2. COMBINE FCC TECHNOLOGY FILES

4. DETERMINE LOCATION STATUS (I.E., UNSERVED, UNDERSERVED, SERVED)
5. COUNT LOCATIONS AND STATUS PER CENSUS GEOMETRY
6. OPTIONAL: EXPORT TABLE DATA
7. CREATE CHOROPLETH MAPS USING 'GGPLOT2'
8. COUNT LOCATIONS AND STATUS PER HEX BIN
9. CREATE CHOROPLETH MAPS OF HEX STATUS USING 'GGPLOT2'
10. MAP PERCENTAGE OF SERVED LOCATIONS IN H3 FOR ALL COUNTIES
#######################################
1. IMPORT THE FCC BROADBAND AVAILABILITY DATA
#######################################
INSTALL PACKAGES
install.packages("dplyr", "tidyr", "readr")
LOAD PACKAGES
library(dplyr)
library(tidyr)
library(readr)
VIEW PACKAGE HELP
?readr
?dplyr
?tidyr
DOWNLOAD FCC BDC DATA. STEPS BELOW:

#3. EXPLORE DATASET

STEP 1: IMPORT DATA FROM THE FCC NATIONAL BROADBAND MAP HERE: https://broadbandmap.fcc.gov/data-download

STEP 2: IN FCC PORTAL, GO TO: SELECT STATE > DOWNLOAD ALL FIXED TECHNOLOGY > UNZIP FILES

PRINT CURRENT WORKING DIRECTORY getwd()

UPDATE WORKING DIRECTORY TO FOLDER LOCATION WHERE FCC CSV FILES ARE SAVED setwd("C:/") # CODE: INSERT FILE PATH IN PARENTHESES

OPTIONAL: # MANUALLY SET WORKING DIRECTORY

STEPS: IN R, GO TO: SESSION > SET WORKING DIRECTORY > CHOOSE DIRECTORY > SELECT LOCATION WHERE FCC FILES ARE SAVED

IMPORT FCC CSV FILES

cable <- read_csv("bdc_04_Cable_fixed_broadband_D23_14may2024.csv")

copper <- read_csv("bdc_04_Copper_fixed_broadband_D23_14may2024.csv")

fiber <- read_csv("bdc_04_FibertothePremises_fixed_broadband_D23_14may2024.csv")

GSO_sat <- read_csv("bdc_04_GSOSatellite_fixed_broadband_D23_14may2024.csv")

LBR_FW <- read_csv("bdc_04_LBRFixedWireless_fixed_broadband_D23_14may2024.csv")

L_FW <- read_csv("bdc_04_LicensedFixedWireless_fixed_broadband_D23_14may2024.csv")

NGSO_sat <- read_csv("bdc_04_NGSOSatellite_fixed_broadband_D23_14may2024.csv")

other <- read_csv("bdc_04_Other_fixed_broadband_D23_14may2024.csv")

Un_FW <- read_csv("bdc_04_UnlicensedFixedWireless_fixed_broadband_D23_14may2024.csv")

2. COMBINE FCC TECHNOLOGY FILES

```
# BIND ALL ROWS
fcc <- bind_rows(cable, copper, fiber, GSO_sat, LBR_FW,
      L_FW, NGSO_sat, other, Un_FW)
# OPTIONAL: CLEAN UP ENVIRONMENT
rm(cable, copper, fiber, GSO_sat, LBR_FW,
 L_FW, NGSO_sat, other, Un_FW)
#3. EXPLORE DATASET
# NOTE: DATA SPECS FOUND HERE: https://us-fcc.box.com/v/bdc-data-downloads-output
# VIEW THE DATA OR VIEW THE TRANSPOSED DATA
fcc
glimpse(fcc)
# VIEW COLUMN HEADERS (I.E., NAMES)
names(fcc)
# RETURNS THE NUMBER OF UNIQUE LOCATION IDS
length(unique(fcc$location_id))
# RETURNS ALL UNIQUE ELEMENTS IN A COLUMN
unique(fcc$business_residential_code)
```

4. DETERMINE LOCATION STATUS (I.E., UNSERVED, UNDERSERVED, SERVED) (See BEAD NOFO, pages 16-17)

```
# DETERMINE LOCATION STATUS
```

```
fcc_bsl_status <- fcc %>%
mutate(num_status = if_else(low_latency == 0 |
            max_advertised_download_speed < 25 |
            max_advertised_upload_speed < 3 |
            technology %in% c(0, 60, 61, 70), 0, # UNSERVED
           if_else(low_latency == 1 &
                (between(max_advertised_download_speed, 25, 99) |
                between(max_advertised_upload_speed, 3, 19)) &
                technology %in% c(10, 40, 50, 71, 72), 1, # UNDERSERVED
           if_else(low_latency == 1 &
                max_advertised_download_speed >= 100 &
                max_advertised_upload_speed >= 20 &
                technology %in% c(10, 40, 50, 71, 72), 2, NA)))) %>% # SERVED
group_by(location_id, block_geoid, h3_res8_id) %>%
summarise(status = as.character(max(num_status))) %>%
ungroup() %>%
mutate(status = if_else(status == 0, "unserved",
           if_else(status == 1, "underserved",
               if_else(status == 2, "served", NA))))
```

COUNT TOTAL LOCATIONS AND STATUS

fcc_bsl_status %>%

```
group_by(status) %>%
summarise(count = n())
# 5. COUNT LOCATIONS AND STATUS PER GEOMETRY
# USE TIGER/LINE DATA FROM US CENSUS BUREAU IN R USING 'TIGRIS'
# INSTALL PACKAGE
install.packages("tigris")
# LOAD PACKAGE
library(tigris)
# VIEW PACKAGE HELP
?tigris
# NOTE: DEFAULT CRS FOR ALL TIGRIS GEOMETRIES IS NAD 1983 (EPSG: 4269)
# DOWNLOAD TIGER/LINE GEOMETRIES (COUNTIES, BLOCK GROUPS, BLOCKS)
counties <- counties(state = "AZ", # USE TWO-DIGIT FIPS CODE OR TWO-CHAR STRING FOR STATE
         cb = FALSE,
         year = 2023)
block_groups <- block_groups(state = "AZ", # USE TWO-DIGIT FIPS CODE OR TWO-CHAR STRING
FOR STATE
          county = counties$COUNTYFP,
```

cb = FALSE,

```
blocks <- blocks(state = "AZ", # USE TWO-DIGIT FIPS CODE OR TWO-CHAR STRING FOR STATE
       county = counties$COUNTYFP,
       year = 2023)
# VERIFY CLASS OF R OBJECTS
class(counties)
# COUNT LOCATION AND STATUS PER COUNTY
counties_summary <- fcc_bsl_status %>%
mutate(geoid = substr(block_geoid, start = 1, stop = 5)) %>%
left_join(counties, join_by(geoid == GEOID)) %>%
group_by(NAME, status) %>%
summarise(count = n()) %>%
pivot_wider(names_from = status, names_prefix = "count_", values_from = count, values_fill = 0)
%>%
mutate(perc_unserved = round(count_unserved/(count_unserved + count_underserved +
count_served) *100),
    perc_underserved = round(count_underserved/(count_unserved + count_underserved +
count_served) *100),
    perc_not_served = round((count_unserved + count_underserved) / (count_unserved +
count_underserved + count_served) *100),
    perc_served = round(count_served/(count_unserved + count_underserved + count_served)
*100))
```

year = 2023)

COUNT LOCATION AND STATUS PER BLOCK GROUP

left_join(block_groups, join_by(geoid == GEOID)) %>%

mutate(geoid = substr(block_geoid, start = 1, stop = 12)) %>%

block_groups_summary <- fcc_bsl_status %>%

```
group_by(geoid, status) %>%
summarise(count = n()) %>%
pivot wider(names from = status, names prefix = "count", values from = count, values fill = 0)
%>%
mutate(perc_unserved = round(count_unserved/(count_unserved + count_underserved +
count_served) *100),
    perc_underserved = round(count_underserved/(count_unserved + count_underserved +
count_served) *100),
    perc_not_served = round((count_unserved + count_underserved) / (count_unserved +
count_underserved + count_served) *100),
    perc_served = round(count_served/(count_unserved + count_underserved + count_served)
*100))
# COUNT LOCATION AND STATUS PER BLOCK
blocks_summary <- fcc_bsl_status %>%
left_join(blocks, join_by(block_geoid == GEOID20), multiple = "all") %>%
group_by(block_geoid, status) %>%
summarise(count = n()) %>%
pivot_wider(names_from = status, names_prefix = "count_", values_from = count, values_fill = 0)
%>%
mutate(perc_unserved = round(count_unserved/(count_unserved + count_underserved +
count_served) *100),
    perc underserved = round(count underserved/(count unserved + count underserved +
count_served) *100),
    perc_not_served = round((count_unserved + count_underserved) / (count_unserved +
count_underserved + count_served) *100),
    perc_served = round(count_served/(count_unserved + count_underserved + count_served)
*100))
# VERIFY CLASS OF R OBJECTS
class(counties_summary)
```

6. OPTIONAL: EXPORT DATA # GET THE WORKING DIRECTORY getwd() # THIS IS THE LOCATION FILES WILL BE SAVED # EXPORT TABLES TO CSV write_csv(fcc, "bdc_fixed_broadband_Dec23_updated14may2024_out05302024.csv") write csv(fcc bsl status, "bsl_status_from_bdc_fixed_broadband_Dec23_updated14may2024_out05302024.csv") write_csv(counties_summary, "county_summary_from_bdc_fixed_broadband_Dec23_updated14may2024_out05302024.csv") write_csv(block_groups_summary, "block_group_summary_bdc_fixed_broadband_Dec23_updated14may2024_out05302024.csv") write_csv(blocks_summary, "block_summary_from_bdc_fixed_broadband_Dec23_updated14may2024_out05302024.csv") #7. CREATE CHOROPLETH MAPS USING GGPLOT2 # INSTALL GGPLOT2 PACKAGE install.packages("ggplot2") # LOAD PACKAGE library(ggplot2)

```
# VIEW PACKAGE HELP
?ggplot2
# MAP PERCENTAGE OF SERVED LOCATIONS BY COUNTY
left_join(counties, counties_summary, join_by(NAME)) %>%
ggplot() +
geom_sf(mapping = aes(geometry = geometry, fill = perc_served)) +
scale_fill_distiller(type = "seq",
          palette = "Blues",
          direction = 1,
          na.value = "grey") +
labs(title = "Percentage of Served Locations by County",
   caption = "Note to reader: NA values shown in grey \nData Source: FCC Broadband Data
Collection (31 Dec 2023)",
   fill = "Percentage") +
theme_void() +
theme(plot.background = element_rect(fill = "white", color = NA),
   plot.margin = margin(0.5, 0.5, 0.5, 0.5, "in"),
   plot.title = element_text(hjust = 0.5, vjust = 0.5),
   plot.caption = element_text(hjust = 0.5, vjust = 0.5))
# OPTIONAL: SAVE MAP AS PNG
ggsave("Map_of_Percentage_of_Served_Locations_by_County.png",
   plot = last_plot(),
   width = 6,
```

height = 6,

units = "in",

dpi = 600)

```
# MAP PERCENTAGE OF SERVED LOCATIONS BY BLOCK GROUP
left_join(block_groups, block_groups_summary, join_by(GEOID == geoid)) %>%
ggplot() +
geom_sf(mapping = aes(geometry = geometry, fill = perc_served), color = NA) +
#geom_sf(data = counties, mapping = aes(geometry = geometry), fill = NA, linewidth = 0.5) + #
OPTIONAL: ADD COUNTY BOUNDARIES
scale_fill_distiller(type = "seq",
          palette = "Blues",
          direction = 1,
          na.value = "grey") +
labs(title = "Percentage of Served Locations by Census Block Group",
   caption = "Note to reader: NA values shown in grey \nData Source: FCC Broadband Data
Collection (31 Dec 2023), U.S. Census Bureau",
   fill = "Percentage") +
theme_void() +
theme(plot.background = element_rect(fill = "white", color = NA),
   plot.margin = margin(0.5, 0.5, 0.5, 0.5, "in"),
   plot.title = element_text(hjust = 0.5, vjust = 0.5),
   plot.caption = element_text(hjust = 0.5, vjust = 0.5))
# OPTIONAL: SAVE MAP AS PNG
ggsave("Map_of_Percentage_of_Served_Locations_by_BlockGroup.png",
   plot = last_plot(),
   width = 6,
   height = 6,
   units = "in",
   dpi = 600)
```

MAP PERCENTAGE OF SERVED LOCATIONS BY BLOCK

```
left_join(blocks, blocks_summary, join_by(GEOID20 == block_geoid)) %>%
ggplot() +
geom_sf(mapping = aes(geometry = geometry, fill = perc_served), color = NA) +
#geom_sf(data = counties, mapping = aes(geometry = geometry), fill = NA, linewidth = 0.5) + #
OPTIONAL: ADD COUNTY BOUNDARIES
scale_fill_distiller(type = "seq",
          palette = "Blues",
          direction = 1,
          na.value = "grey") +
labs(title = "Percentage of Served Locations by Census Block",
   caption = "Note to reader: NA values shown in grey \nData Source: FCC Broadband Data
Collection (31 Dec 2023), U.S. Census Bureau",
   fill = "Percentage") +
theme_void() +
theme(plot.background = element_rect(fill = "white", color = NA),
   plot.margin = margin(0.5, 0.5, 0.5, 0.5, "in"),
   plot.title = element_text(hjust = 0.5, vjust = 0.5),
   plot.caption = element_text(hjust = 0.5, vjust = 0.5))
# OPTIONAL: SAVE MAP AS PNG
ggsave("Map_of_Percentage_of_Served_Locations_by_Block.png",
   plot = last_plot(),
   width = 6,
   height = 6,
   units = "in",
   dpi = 600)
```

#8. COUNT LOCATIONS AND STATUS PER HEX BIN


```
# INSTALL PACKAGE
install.packages("h3jsr", "sf")
# LOAD PACKAGE
library(h3jsr)
library(sf)
# VIEW PACKAGE HELP
?h3jsr
?sf
# GET STATE GEOMETRY (DEFAULT CRS IS EPSG: 4269)
state <- states(year = 2023) %>%
filter(NAME == "Arizona")
# GET LIST OF H3 CELLS IN STATE (DEFAULT CRS TAKEN FROM INPUT SF GEOMETRY)
h3_ids <- polygon_to_cells(geometry = state, res = 8, simple = FALSE) # CREATES A SINGLE
POLYGON OF ALL CELLS
# CONVERT LIST OF CELLS TO POLYGONS (DEFAULT IS EPSG:4326)
h3 <- cell_to_polygon(unlist(h3_ids$h3_addresses), simple = FALSE) # CREATES MULTIPLE
POLYGONS OF ALL CELLS
# CONVERT COORDINATE REFRENCE SYSTEM TO EPSG: 4269
h3 <- st_transform(h3, 4269)
st_crs(h3)
```

```
# COUNT LOCATIONS AND STATUS PER HEX BIN
h3_summary <- fcc_bsl_status %>%
left_join(h3, join_by(h3_res8_id == h3_address), multiple = "all") %>%
group_by(h3_res8_id, status) %>%
summarise(count = n()) %>%
pivot_wider(names_from = status, names_prefix = "count_", values_from = count, values_fill = 0)
%>%
mutate(perc_unserved = round(count_unserved/(count_unserved + count_underserved +
count_served) *100),
   perc_underserved = round(count_underserved/(count_unserved + count_underserved +
count_served) *100),
   perc_not_served = round((count_unserved + count_underserved) / (count_unserved +
count_underserved + count_served) *100),
   perc_served = round(count_served/(count_unserved + count_underserved + count_served)
*100))
# OPTIONAL: EXPORT TABLE TO CSV
write_csv(h3_summary,
"h3_summary_bdc_fixed_broadband_Dec23_updated14may2024_out05302024.csv")
# 9. CREATE CHOROPLETH MAPS OF HEX STATUS USING 'GGPLOT2'
# MAP PERCENTAGE OF SERVED LOCATIONS BY H3
left_join(h3, h3_summary, join_by(h3_address == h3_res8_id)) %>%
ggplot() +
```

geom_sf(mapping = aes(geometry = geometry, fill = perc_served), color = NA) +

```
#geom_sf(data = counties, mapping = aes(geometry = geometry), fill = NA, linewidth = 0.5) + #
OPTIONAL: ADD COUNTY BOUNDARIES
scale_fill_distiller(type = "seq",
          palette = "Blues",
          direction = 1,
          na.value = "grey") +
labs(title = "Percentage of Served Locations by H3 Hexagonal Grid",
   caption = "Note to reader: NA values shown in grey \nData Source: FCC Broadband Data
Collection (31 Dec 2023)",
   fill = "Percentage") +
theme_void() +
theme(plot.background = element_rect(fill = "white", color = NA),
   plot.margin = margin(0.5, 0.5, 0.5, 0.5, "in"),
   plot.title = element_text(hjust = 0.5, vjust = 0.5),
   plot.caption = element_text(hjust = 0.5, vjust = 0.5))
# OPTIONAL: SAVE MAP AS PNG
ggsave("Map_of_Percentage_of_Served_Locations_by_H3_Hexagonal_Grid.png",
   plot = last_plot(),
   width = 6,
   height = 6,
   units = "in",
   dpi = 600)
# NOTE: NOTICE THE OUTPUT IS DIFFICULT TO INTERPRET. ALTERNATIVELY, WE
# CAN MAP THE PERCENTAGE OF SERVED LOCATIONS BY H3 HEXAGONAL GRIDS AT
# THE COUNTY LEVEL FOR EASIER VIEWING.
```

FILTER COUNTY OF INTEREST

```
county_of_interest <- counties %>%
filter(NAME == "Maricopa") # ENTER COUNTY NAME HERE
# GET LIST OF H3 CELLS IN STATE (DEFAULT IS EPSG:4326)
county_h3_ids <- polygon_to_cells(geometry = county_of_interest, res = 8, simple = FALSE)
# CONVERT LIST OF CELLS TO POLYGONS
county_h3 <- cell_to_polygon(unlist(county_h3_ids$h3_addresses), simple = FALSE)</pre>
# CONVERT COORDINATE REFRENCE SYSTEM TO EPSG: 4269
county_h3 <- st_transform(county_h3, 4269)
# COUNT LOCATIONS AND STATUS PER HEX BIN
left_join(county_h3, h3_summary, join_by(h3_address == h3_res8_id)) %>%
ggplot() +
geom_sf(mapping = aes(geometry = geometry, fill = perc_served), color = NA) +
scale_fill_distiller(type = "seq",
          palette = "Blues",
          direction = 1,
          na.value = "grey") +
labs(title = paste("Percentage of Served Locations by H3 Hexagonal Grid \n",
county_of_interest$NAME, "County"),
   caption = "Note to reader: NA values shown in grey \nData Source: FCC Broadband Data
Collection (Dec 2023)",
   fill = "Percentage") +
theme_void() +
theme(plot.background = element_rect(fill = "white", color = NA),
   plot.margin = margin(0.5, 0.5, 0.5, 0.5, "in"),
   plot.title = element_text(hjust = 0.5, vjust = 0.5),
```

```
plot.caption = element_text(hjust = 0.5, vjust = 0.5))
```

NOTE: CREATING A MAP OF EACH COUNTY WOULD BE VERY TIME CONSUMING.
INSTEAD WE CAN USE A FOR LOOP TO CREATE MAPS FOR EACH COUNTY.

```
# 10. MAP PERCENTAGE OF SERVED LOCATIONS IN H3 FOR ALL COUNTIES
# CREATE EMPTY VECTORS
county_of_interest <- 1
county_h3_ids <- 1
county_h3 <- 1
# FOR LOOP ITERATES FOR EACH COUNTY
for (i in 1:nrow(counties)) {
county_of_interest <- counties[i,]</pre>
county_h3_ids <- polygon_to_cells(geometry = county_of_interest, res = 8, simple = FALSE)</pre>
county_h3 <- cell_to_polygon(unlist(county_h3_ids$h3_addresses), simple = FALSE)
county_h3 <- st_transform(county_h3, 4269)</pre>
left_join(county_h3, h3_summary, join_by(h3_address == h3_res8_id)) %>%
 ggplot() +
 geom_sf(mapping = aes(geometry = geometry, fill = perc_served), color = NA) +
 scale_fill_distiller(type = "seq",
         palette = "Blues",
         direction = 1,
         na.value = "grey") +
```

```
labs(title = paste("Percentage of Served Locations by H3 Hexagonal Grid \n",
county_of_interest$NAME, "County"),
    caption = "Note to reader: NA values shown in grey \nData Source: FCC Broadband Data
Collection (31 Dec 2023)",
    fill = "Percentage") +
 theme_void() +
 theme(plot.background = element_rect(fill = "white", color = NA),
    plot.margin = margin(0.5, 0.5, 0.5, 0.5, "in"),
    plot.title = element_text(hjust = 0.5, vjust = 0.5),
    plot.caption = element_text(hjust = 0.5, vjust = 0.5))
ggsave(paste("Map_of_Percentage_of_Served_Locations_by_H3_Hexagonal_Grid_",
county_of_interest$NAME, "_County.png", sep = ""),
    plot = last_plot(),
    width = 6,
    height = 6,
    units = "in",
    dpi = 600)
}
# CHECK WORKING DIRECTORY FOLDER FOR SAVED COUNTY PLOTS
getwd()
```