Week 3: references and exercises

- Efficiency of an algorithm: best case, worst case, average case
- Asymptotic expansion, O-Theta, O-O
- Complexity classes: constant, logarithmic, linear, linearithmic, quadratic, exponential
- Empirical performance tests
- Analysis of iterative and recursive algorithms
- Proof by induction

References

(in non-exclusive disjunction)

• [Sedgewick & Wayne 2011] §1.4

• [Sedgewick 2003] Chapter 2

[Cormen, Leiserson, Rivest & Stein 2009] Chapter 3

• Wikipedia: harmonic number, Landau notation (grand-O)

1 Exercises: asymptotic notation

1.1 Growth Comparison

Fill in the following table. For each pair f, g, write "=" if $f = \Theta(g)$, "" "if f = o(g)," "" if g = o(f), and "??? If none of the three apply. There is no need to justify your answers. $\lg n$ denotes the binary logarithm of n.

1.2 Evidence

- Show that $2015^{O(\log n)} = n^{O(1)}$. Show that $2^{O(n)} = (O(1))^n$.

1.3 Sub-exponential growth

In this exercise, we study the notions of " **sub-exponential** " and " **super-polynomial** ", defined thus for a function f(n) on n = 0, 1, 2, ...

- **(SE)** f is sub-exponential $ssif(n) = 2^{o(n)}$
- **(SP)** f is super-polynomial $\sin^{O(1)} = o(f(n))$

i. Give definitions equivalent to (SE) and (SP), without asymptotic notation (O, o, ...) **Hint:** Discover the relation between f and the functions hidden by the asymptotic terms and express the imposed constraint either as an inequality that is worth almost everywhere, or as a limit $\lim_{n\to\infty}$

ii. Show that the function $g(n) = (n+1)^{n/\log_{2015}(n+1)}$ is super-polynomial but not sub-exponential.

iii. Is there a function that is super-polynomial and sub-exponential at the same time? (Give an example, or show that it's impossible.)

1.4 Harmonic number

This exercise shows that the harmonic number is at least logarithmic.

Give a recursive definition of the harmonic number $H(n) = 1 + 1/2 + 1/3 + \cdots + 1/n$. Demonstrate by induction that $H(2^n) \leq 1 + n/2$. Motrez as result $H(n) = \Omega(\log n)$. **Hint:** Use the terminal $x_1 + x_2 + \cdots + x_N \ge N \cdot \min\{x_1, \dots, x_N\}$ in the inductive case.

2. Analysis of algorithms

2.1 Eratosthenes screening

The Eratosthenes algorithm finds the prime numbers less than or equal to n by elimination. It is a question of marking all the multiples 2 k, 3 k, ... \leq n for all integer values k = 2,3,4, ..., n in ascending order. If on arriving at k, it is unmarked, then it is a prime number.

	2	3	\times	5	X	7	X	X	\nearrow	Pri	ime	nun
11	32	13	\times) 5	\times	17)8(19	×	2	!	3
\nearrow	X	23	>	25	>)ZZ	>	29	30			
31	32	33	\triangleright	35	36	37	> <	39	X			
41	92	43	\triangleright	95	36	47	98	49	\triangleright			
\times	32	53	54	55	> <	57	56	59	60			
61	92	63	\triangleright	65	66	67	356	69	×			
71	72	73	\times) (\nearrow	77	76	79	×			
\triangleright	32	83	94	85	>)s(>	89	90			
91	92	93	\triangleright	95	96	97	96	99	1000			
101	102	103	184	105	1006	107	108	109	110			
111	142	113	114	115	116	117	118	119	120			

mbers

- i. Give the algorithm sieve(n) in pseudocode or Java to perform the calculation of the screen up to a n > 1. Use a Boolean array to mark integers.
- ii. Analyze the calculation time of sieve.
- iii. Theorem of Prime Numbers (NPT) characterizes the growth in the number $\pi(n)$ of primes less than or equal to $n : \pi(n) \sim \frac{n}{\ln n}$. Characterize the asymptotic growth of the damped time (by prime

number) of sieve.

- **iv.** Prove that it suffices to mark the multiples of k while k $^2 \le n$. Analyze how the acceleration involved (that one executes the loop for $k=2,3,\ldots,\lfloor \sqrt{n} \rfloor$) changes the computation time.
- v. Empirically check the result of iii. or iv.

2.2 Finding the Peak

The *peak* in an array $x = [0 \dots n-1]$ is an element x = [i-1] $\leq x = [i+1]$. Give an algorithm to find the peak. Analyze its calculation time.

Hint: Divide-to-reign with nesting (*bracketing*).