Міністерство освіти та науки України Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет прикладної математики Кафедра системного програмування і спеціалізованих комп'ютерних систем

Лабораторна робота №1 з дисципліни "Бази даних та засоби управління"

Виконав:

студент 3-го курсу, групи КВ-23 Литвин Станіслав Романович

Постановка задачі

- 1. Розробити модель «сутність-зв'язок» предметної галузі, обраної студентом самостійно, відповідно до пункту «Вимоги до ER-моделі».
- 2. Перетворити розроблену модель у схему бази даних (таблиці) PostgreSQL.
- 3. Виконати нормалізацію схеми бази даних до третьої нормальної форми (3HФ).
- 4. Ознайомитись із інструментарієм PostgreSQL та pgAdmin 4 та внести декілька рядків даних у кожну з таблиць засобами pgAdmin 4.

Вимоги до ЕК-моделі

- 1. Сутності моделі предметної галузі мають містити зв'язки типу 1:N або N:M.
- 2. Кількість сутностей у моделі 3-4. Кількість атрибутів у кожній сутності: від двох до п'яти.
- 3. Передбачити наявність зв'язку з атрибутом.
- 4. Для побудови ER-діаграм використовувати одну із нотацій: Чена, "Пташиної лапки (Crow's foot)", UML.

Предметна галузь

Система управління замовленнями їжі.

Посилання на репозиторій Github

https://github.com/lynph4/Database.git

Контакт

@lynph4

Вимоги до оформлення лабораторної роботи

У звіті щодо пункту №1 завдання має бути:

- перелік сутностей з описом їх призначення;
- графічний файл розробленої моделі «сутність-зв'язок»;
- назва нотації.

У звіті щодо пункту №2 завдання має бути:

- опис процесу перетворення (наприклад, "сутність A було перетворено у таблицю A, а зв'язок R (M:N) зумовив появу додаткової таблиці R1 тощо);
- схему бази даних у графічному вигляді з назвами таблиць (!) та зв'язками між ними, а також необхідно намалювати перетворену ER-діаграму у ТАБЛИЦІ БД! Це означає, що тут не може бути зв'язку N:M, мають бути позначені первинні та зовнішні ключі, обмеження NOT NULL та UNIQUE і внести типи даних атрибутів.

У звіті щодо пункту №3 завдання має бути:

- пояснення (обгрунтування!) щодо відповідності схеми бази даних нормальним формам НФ1, НФ2 та НФ3. Пояснення полягає у наведенні функціональних залежностей, що демонструють висновки. У випадку невідповідності надати опис необхідних змін у схемі;
- У випадку проведення змін у схемі бази даних надати оновлену версію схеми, інакше не наводити схему.

У звіті щодо пункту №4 завдання має бути:

- навести копії екрану з pgAdmin4, що відображають назви, типи та обмеження на стовпці (доступне у закладці "Columns" та "Constraints" властивостей "Properties" таблиць дерева об'єктів у pgAdmin4);
- навести копії екрану з pgAdmin4, що відображають вміст таблиць бази даних у PostgreSQL. Таблиці на зображенні обов'язково повинні мати назву!

Хід роботи

1. Розробка моделі «сутність-зв'язок» обраної предметної галузі

Перелік основних сутностей предметної галузі та опис їх призначення:

1. Client (клієнт)

Призначення: сутність відображає інформацію про людей, які здійснюють замовлення. Сутність має такі атрибути:

- **First Name** це текстове поле, що містить ім'я особи.
- Last Name прізвище клієнта, що дає можливість ідентифікувати особу.
- **Email** контактна електронна адреса клієнта. Використовується для надсилання підтверджень замовлення чи іншої інформації.
- **Phone** номер телефону клієнта, який може бути використаний для зв'язку (наприклад для підтвердження замовлення тощо).

2. Order (замовлення)

Призначення: сутність відображає транзакцію, зроблену клієнтом, що містить інформацію про те, які страви замовлені, коли і куди їх треба доставити. Сутність має такі атрибути:

- Order ID унікальний ідентифікатор для кожного замовлення.
- Order Date дата і час, коли замовлення було зроблено клієнтом.
- Delivery Address адреса, куди повинно бути доставлено замовлення.
- **Delivery Date** дата і час, коли замовлення має бути доставлено.
- **Courier Phone** номер телефону кур'єра, який буде доставляти замовлення. Може використовуватися для координації доставки.
- **Rating** оцінка, яку клієнт може залишити після отримання замовлення. Використовується для моніторингу якості доставки.
- Client Email електронна адреса клієнта для відправлення повідомлень, підтверджень та іншої інформації.

3. Meal (страва)

Призначення: сутність описує кожну страву, яка є доступною для замовлення. Вона містить такі атрибути:

- Meal ID унікальний ідентифікатор для кожної страви.
- Order ID унікальний ідентифікатор для кожного замовлення.
- Name назва страви (наприклад, піца, бургер, тощо).

- **Price** вартість однієї порції страви.
- Weight вага страви в грамах або інших одиницях виміру.
- **Serving Size** описує, яка кількість страви відповідає одній порції (наприклад, 1 штука, 250 грам тощо).

4. Courier (κyp'єp)

Призначення: сутність описує осіб, які відповідають за доставку замовлень клієнтам. Кур'єри є працівниками служби доставки і тому мають атрибути, що характеризують їх роботу:

- Name ім'я кур'єра, що доставляє замовлення.
- **Phone** номер телефону кур'єра, який використовується для координації з клієнтом або диспетчером.
- **Transport** опис транспортного засобу, яким користується кур'єр для доставки замовлень (наприклад, велосипед, мотоцикл, скутер).

Опис зв'язків між сутностями:

Зв'язок	Вид зв'язку	Опис
Order Contains Meals	1 : N	Одне замовлення в ресторані може включати кілька різних страв: суп, салат, напій тощо. Кожна страва прив'язана тільки до одного конкретного замовлення, але одне замовлення може містити кілька страв.
Client Makes Orders	1 : N	Один клієнт може зробити декілька замовлень. Одне замовлення може бути оформлене тільки одним клієнтом. Це логічно, оскільки кожне замовлення прив'язане до конкретної людини або облікового запису, який його оформив.
Courier Delivers Orders	1 : N	Один кур'єр може доставляти багато замовлень одночасно. Одне замовлення може бути доставлене тільки одним кур'єром, оскільки коли клієнт оформлює замовлення, його доставляє конкретний кур'єр.

ER діаграма виконана за нотацією "Пітера Чена"

2. Перетворення розробленої моделі у схему бази даних PostgreSQL

Створення таблиці Client

Створення таблиці Courier

Створення таблиці **Meal**

Створення таблиці **Order**

Встановлення зв'язку 1 : N між таблицями Client та Order

Встановлення зв'язку 1 : N між таблицями Courier та Order

Встановлення зв'язку 1 : N між таблицями Order та Meal

ER-діаграма, згенерована утилітою pgAdmin4 на основі створених таблиць та зв'язків

3. Нормалізація схеми бази даних до третьої нормальної форми (ЗНФ)

Перша нормальна форма:

- о В таблиці не повинно бути дублюючих рядків;
- о В кожній комірці таблиці зберігається атомарне значення;
- о В стовпчику зберігаються дані одного типу;
- о Відсутні масиви і списки в будь-якому вигляді.

Друга нормальна форма:

- о Таблиця має знаходитись у 1НФ;
- о Таблиця має містити ключ;
- о Всі неключові стовпці таблиці мають залежати від повного ключа.

Третя нормальна форма:

- о В таблицях не повинна бути транзитивна залежність;
- о Неключові стовпці не мають намагатись грати роль ключа в таблиці.

Кожна з чотирьох основних таблиць відповідає вимогам першої нормальної форми (НФ1). Усі значення є атомарними, включно зі значеннями складених атрибутів, які також можна вважати атомарними. Це пояснюється тим, що відповідно до вимог предметної області, не виникатиме необхідності звертатися до кожного простого атрибуту окремо, якщо він є частиною складеного атрибуту.

Кожна з основних таблиць бази даних відповідає вимогам першої нормальної форми (НФ1), і в кожній присутній первинний ключ. Крім того, всі таблиці також відповідають вимогам другої нормальної форми (НФ2), оскільки всі атрибути, які не ε частиною первинного ключа, залежать від нього повністю, а не від окремих його частин. Це гарантовано, оскільки у всіх таблицях бази даних використовуються лише прості ключі, що складаються з одного атрибуту.

Кожна з основних таблиць відповідає вимогам НФ2. Перевіримо, чи кожний неключовий атрибут нетранзитивно залежить лише від первинного ключа:

Функціональні залежності таблиці Courier:

Phone \rightarrow Name

Phone \rightarrow Transport

Phone → Name, Transport

Функціональні залежності таблиці Client:

Email → Phone

Email → Name

Email → Phone, Name

Функціональні залежності таблиці **Meal**:

Meal ID → Weight

Meal ID \rightarrow Name

Meal ID \rightarrow Price

Meal ID \rightarrow Serving Size

Meal ID \rightarrow Order ID

Meal ID → Weight, Name, Price, Serving Size, Order ID

Функціональні залежності таблиці Order:

Order ID → Courier Phone

Order ID → Delivery Date

Order ID → Client Email

Order ID \rightarrow Rating

Order ID \rightarrow Delivery Address

Order ID \rightarrow Order Date

Order ID → Courier Phone, Delivery Date, Client Email, Rating, Delivery Address, Order Date

Усі зазначені таблиці (Client, Meal, Order, Courier) **належать до третьої нормальної форми (ЗНФ)**, оскільки відповідають її вимогам і нетранзитивно залежать лише від її первинного ключа.

4. Внесення рядків даних у кожну з таблиць засобами pgAdmin 4

