# **US Traffic Accident**

Project by Amirreza Eshraghi - A20451901 Anneke Soraya Hidayat - A20406957 (Team Leader) Namitha Venkataramanan - A20453185 Souray Yaday - A20450418

## **Outline**

- 1. Overview
- 2. Data Preprocessing
- 3. Data Exploration
- 4. Model Implementation
- 5. Results
- 6. Discussion
- 7. Conclusion

# **OVERVIEW**



- Traffic Accident in the United States
- What factors does influence the severity of the traffic?
  - O Weather?
  - o POI?
  - o Location?
- Total accident VS Accident Rate
- How accurate the model represent the general population?



# **DATA PREPROCESSING**



- Consistency across similar features Civil\_Twilight, Nautical\_Twilight,
   Astronomical Twilight, Sunrise/Sunset
- No significant influence when these values are different to each other
- Drop variables that have unique values Source, Country, ID
- Drop variables that have granular attributes that may share similar attributes with other variables -Airport\_Code, Side, Number, Weather\_Timestamp, Timezone, Precipitation(in)
- Drop values that only has one value, or NaN End Lat, End Lng, Turning Loop



# **DATA EXPLORATORY ANALYSIS**

## **Accident Distribution**



High concentration regions - West coast (SW),

East coast (NE)

# **Traffic Accident Rate**

- Identifying states with high number of accidents
- US Population by State
- US total car number by State

|    |           |          |               |               | Accident Ra     |        |  |
|----|-----------|----------|---------------|---------------|-----------------|--------|--|
|    |           |          | Accident Rate |               | by Total number |        |  |
|    | Traffic A | Accident | by Pop        | by Population |                 | of car |  |
| 1  | CA        | 816804   | SC            | 0.034         | SC              | 0.095  |  |
| 2  | TX        | 329284   | OR            | 0.021         | OR              | 0.061  |  |
| 3  | FL        | 257974   | CA            | 0.021         | UT              | 0.055  |  |
| 4  | SC        | 173277   | UT            | 0.016         | CA              | 0.054  |  |
| 5  | NC        | 165955   | NC            | 0.016         | NC              | 0.049  |  |
| 6  | NY        | 160787   | OK            | 0.015         | OK              | 0.046  |  |
| 7  | PA        | 106787   | MN            | 0.015         | LA              | 0.044  |  |
| 8  | IL        | 99691    | LA            | 0.013         | MN              | 0.041  |  |
| 9  | VA        | 96075    | NE            | 0.012         | TX              | 0.040  |  |
| 10 | MI        | 95983    | FL            | 0.012         | NE              | 0.035  |  |

# Severity by Region





Highest number of accidents - South region

# Accident by Highway vs Non-Highway

- Highest accidents in Highways - West
- Highest accidents in Non-Highways - South







Mapping the severity classes of "1 and 2" as 0 and "3 and 4" as 1

68% of data belongs to 0 class and 32% belongs to 1 class



#### **Weather Features**



# **Weather Condition**



• Describes weather in phrases



| Overcast      |
|---------------|
| Light Snow    |
| Light Snow    |
| Scattered     |
| Clouds        |
| Overcast      |
| Overcast      |
| Partly Cloudy |
| Clear         |
| Light Snow    |
| Overcast      |

# Weather Condition - Preprocessing

Bucketed values into smaller categories



- 7 values that can treated as factors
- Most accidents occurrence clear or cloud weather
- Extreme severity of traffic accident by separating data on this feature



# Point of Interest (POI)





- Not good predictors
- Can be used for grouping variables for further analysis

#### **TMC**

- "Traffic Message Code"
- 201: accidents
- 241:(Q) accident(s). Right lane blocked
- 245:(Q) accident(s). Two lanes blocked
- 229:(Q) accident(s). Slow traffic
- 203:multi-vehicle accident (involving Q vehicles)

...

- Code of communication between traffic department and police
- TMC is so important and related to Severity!!!
- But too many null values(more than 1 million)
- Transfer to categorical variable (Even NAs!)

# **Traffic Features**

- The traffic features cover TMC, Distance (mi) and Time Elapsed
- 33% of data points that have missing value on TMC
- Move to next traffic feature due to large proportion of missing values

| TMC Code | Description                         | Freq    |
|----------|-------------------------------------|---------|
| 201:     | accidents                           | 2080341 |
| 241:     | (Q) accident(s). Right lane blocked | 249852  |
| 245:     | (Q) accident(s). Two lanes blocked  | 40338   |





# Feature Selection and Analysis

- Severity as the target variable located at center
- Followed by traffic features, weather features, POI, and description
- The text description
   is grouped as independent
   - does not carry
   information to predict
   severity, but only as
   additional variables that
   explain the severity.





- Correlation between numerical features
- First principal component -30% variation explained
- Positive correlation -Temperature and Wind chill
- Negative correlation -Humidity and Visibility



# **MODEL IMPLEMENTATION**



- Sample size computation by (N\*p) where N is the total samples and p is the number of predictors
- 50,000 records from each region across US
- Final sample size 200,000 records
- PCA similar feature response as whole dataset



#### **Model Details**

- Target classify severity of traffic accident mapped as a binary response
- Our approach feature selection from different models' perspective
- Predictors Importance by dimensionality reduction to see each features interaction with how much of data explained in the lower dimension
- GLM with binomial family
- GLMNET for feature selection in Lasso
- Decision Tree to interpret rule path
- SVM for performance comparison

#### Performance Metric - Confusion Matrix

|   | Models | # Param | Param                                                                                                  | Accuracy                                                                               |          |         |
|---|--------|---------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------|---------|
|   | Models | # Param | Param                                                                                                  |                                                                                        | Training | Testing |
| 1 | GLM    | 12      | "Temperature.F.", "Wind_Chill.F.", "Humidity", "Pressure.in.", "Visibility.mi.", "Wind_Direction",     | "Wind_Speed.mph.", "Sunrise_Sunset", "is_highway", "region", "Time_Elapsed", "Weather" | 0.6939   | 0.6917  |
| 2 |        | 12      | "Temperature.F.", "Wind_Chill.F.", "Humidity", "Pressure.in.", "Visibility.mi.", "Wind_Speed.mph.",    | "Sunrise_Sunset", "is_highway", "region", "Weather" "Traffic_Signal", "Junction"       | 0.6974   | 0.6994  |
| 3 |        | 11      | "Temperature.F.", "Wind_Chill.F.", "Humidity", "Pressure.in.", "Visibility.mi.", "Wind_Speed.mph.",    | "Sunrise_Sunset", "is_highway", "region", "Weather" "Traffic_Signal", "Junction"       | 0.6971   | 0.699   |
| 4 |        | 11      | "Temperature.F.", "Pressure.in.", "Wind_Direction", "Wind_Speed.mph.", "Sunrise_Sunset", "Distance.mi" | "is_highway", "region", "weather" "Traffic_Signal" "TMC."                              | 0.7334   | 0.7338  |
| 5 |        | 10      | "Temperature.F.", "Wind_Chill.F.", "Humidity", "Pressure.in.", "Visibility.mi.",                       | "Wind_Speed.mph.", "Sunrise_Sunset", "is_highway", "region", "Weather"                 | 0.6923   | 0.6915  |

| _ |    |                                                                                          |                                                                   |        |        |
|---|----|------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------|--------|
| 6 | 10 | "Temperature.F.", "Pressure.in.", "Wind_Direction", "Wind_Speed.mph.", "Sunrise_Sunset", | "is_highway", "region", "weather" "Traffic_Signal" "Distance.mi." | 0.6979 | 0.6991 |
| 7 | 8  | "Temperature.F.", "Wind_Chill.F.", "Humidity", "Pressure.in.",                           | "Wind_Speed.mph.", "Sunrise_Sunset", "is_highway", "region",      | 0.6954 | 0.6964 |
| 8 | 9  | "Temperature.F.", "Humidity", "Pressure.in.", "Wind_Speed.mph.", "Sunrise_Sunset",       | "is_highway", "region", "weather" "Traffic_Signal" "Distance.mi." | 0.6977 | 0.6979 |
| 9 | 8  | "Temperature.F.", "Pressure.in.", "Wind_Speed.mph.", "Sunrise_Sunset",                   | "is_highway", "region", "weather" "Traffic_Signal                 | 0.6962 | 0.6971 |

For **GLM** - Best Model

Features - Temperature.F., Pressure.in., Wind\_Direction, Wind\_Speed.mph., Sunrise\_Sunset, Distance.mi, is\_highway, region, weather, Traffic\_Signal, TMC

# of Parameters - 11

Prediction Accuracy
Training - 73.34%
Testing - 73.38%



- GLM 4th is the best performance among GLM models.
- GLM model's features forms basis of features that we are applying on other models
- GLM with Lasso for feature selection obtain best lambda
- Five important features Pressure.in.,
   Wind\_Speed.mph., Distance.mi,
   is highway, Traffic Signal

(Intercept) -3.869037259

Temperature.F. .

Wind\_Chill.F. .

Humidity... .

Pressure.in. 0.081668916

Visibility.mi. .

Wind\_Speed.mph. 0.008904345

Distance.mi. 0.111850245

is\_highway 0.969244253

Traffic Signal -0.743849349



## Performance Metric - Confusion Matrix

| Decision Tree | "Temperature.F.", "Pressure.in.", "Wind_Direction", "Wind_Speed.mph.", "Sunrise_Sunset", "Distance.mi" |                                                                                                        | "is_highway", "region", "weather" "Traffic_Signal" "TMC." | 0.7351 | 0.7344 |
|---------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------|--------|
|               | 3                                                                                                      | "Traffic_Signal" "is_highway", "TMC"                                                                   |                                                           | 0.7351 | 0.7344 |
| SVM*          | 11                                                                                                     | "Temperature.F.", "Pressure.in.", "Wind_Direction", "Wind_Speed.mph.", "Sunrise_Sunset", "Distance.mi" | "is_highway", "region", "weather" "Traffic_Signal" "TMC." | 0.7259 | 0.5721 |

For **Decision Tree** - Best Model

Features - Temperature.F., Pressure.in., Wind\_Direction, Wind\_Speed.mph., Sunrise\_Sunset, Distance.mi, is\_highway, region, weather, Traffic\_Signal, TMC

# of Parameters - 11

Prediction Accuracy
Training - 73.51%
Testing - 73.44%

## Performance Metric - Confusion Matrix

| Decision Tree | "Temperature.F.", "Pressure.in.", "Wind_Direction", "Wind_Speed.mph.", "Sunrise_Sunset", "Distance.mi" |                                                                                                        | "is_highway", "region", "weather" "Traffic_Signal" "TMC." | 0.7351 | 0.7344 |
|---------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------|--------|
|               | 3                                                                                                      | "Traffic_Signal" "is_highway", "TMC"                                                                   | - 0                                                       | 0.7351 | 0.7344 |
| SVM*          | 11                                                                                                     | "Temperature.F.", "Pressure.in.", "Wind_Direction", "Wind_Speed.mph.", "Sunrise_Sunset", "Distance.mi" | "is_highway", "region", "weather" "Traffic_Signal" "TMC." | 0.7259 | 0.5721 |

For **SVM** - Best Model \*\*\*\*

Features - Temperature.F., Pressure.in., Wind\_Direction, Wind\_Speed.mph., Sunrise\_Sunset, Distance.mi, is\_highway, region, weather, Traffic\_Signal, TMC

# of Parameters - 11

Prediction Accuracy
Training - 72.59%
Testing - 57.21%

# Decision Tree

- Input 11 features
- Output 3 major features on its split
- Three important features is\_highway, TMC,
   Traffic Signal
- Decision tree model provides both performance and the interpretability of rule based visualization of the model, with accuracy of 73%



#### **SVM**

- Sample 10,000 data points from both training and testing dataset
- Only applicable as model comparison but cannot take into account since the comparison is not an apple-to-apple comparison
- With minimum number of data, it can classify the training dataset up to 72% accuracy only with 10,000 samples
- This approach overfits the training data, since the testing performance dropped to 57% accuracy
- Reason for constraint due to computational limit

# DISCUSSION, LIMITATION AND CONCLUSION

#### **Discussion**

- Our objective to perform inference analysis to which predictors that explain data the best
- Model analysis output small number of important features separates the severity the best

Is highway: boolean

TMC: factors, including NA as factor.

Traffic Signal: boolean

- Biggest Discovery Decision Tree!
- 63% chance that the traffic accident is more severe

#### **Limitation and Conclusion**

#### Limitation:

Computational resources

- Large dataset, 49 feature columns and various types of features (numerical, unique, categories, boolean, timestamp),
- requires more time on data exploration compared to modeling

#### **Conclusion:**

Under the assumption of random sampling that represents the general population, we conducted analysis through a classification model. Our final result indicates that among default features from the dataset, top-3 features are enough to separate the severity into two categories with a significant performance.

# **THANK YOU!**

Questions?