Credit Card Fraud Detection

Lin Jiahong

Nanjing University of Science and Technology

2023-07-29

Overview

Problem Definition

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

Conclusion

Problem Definition

Credit Card Fraud Detection

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Credit Card Fraud Detection

Model Train and Result

Credit Card Fraud Detection

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

Conclusion

Problem Definition

Credit Card Fraud Detection

Problem Definition

Credit Card Fraud Detection

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

Conclusion

Credit Card Fraud Detection aims to identify the presence of fraudulent credit card use through the characteristics of credit card use.

- Data covers Preprocessing features, Time and Amount.
- The data comes with a label of behavior category.

Credit Card Fraud Detection

Class	row_num		
All	284807		
Normal	284315		
Fraud	492		

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

Conclusion

Data Analysis and Preprocessing

Overall data

Problem Definition

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

- Time- Transaction time of day in seconds.
- 28 Features- ['V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11','V12', 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20', 'V21', 'V22', 'V23', 'V24', 'V25', 'V26', 'V27', 'V28']
- Amount Real transaction amount
- Class 0 for normal behavior, 1 for abnormal behavior
- This anomaly detection task dataset is imbalanced datasets.

Amount and Time Distribution

Problem Definition

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

Conclusion

■ Fraud is smaller in amount and more evenly distributed over time.

Figure 1: Amount and Time Distribution Scatterplot

Correlation Matrices

Problem Definition

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

Conclusion

■ Negative Correlations: V17, V14, V12 and V10 are negatively correlated. Positive Correlations: V2, V4, V11, and V19 are positively correlated.

Figure 2: Correlation Matrices

PCA and t-SNE visualization

Problem Definition

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

Conclusion

■ There is an overlap between outliers and normal in PCA, while outliers are more independent in t-SNE.

Figure 3: PCA

Figure 4: t-SNE

Data Preprocessing

Problem Definition

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

- Normalize the Amount and Time columns in the data.
- Divide the train set and test set.
- 30 Features- ['Time','Amount','V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11','V12', 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20', 'V21', 'V22', 'V23', 'V24', 'V25', 'V26', 'V27', 'V28'].

Data	row_num	Normal	Fraud
train	227845	227468	377
test	57339	56847	115

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

Conclusion

Unsupervised and Supervised Anomaly Detection Methods

Unsupervised - Isolation Forest

Problem Definition

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

- Isolation Forest(IF) is build based on decision trees. No pre-defined labels here. An unsupervised learning algorithm.
 - 1. Two quantitative properties of anomalous data points:Outliers are few and their features are very different from normal points.
 - 2. Not assume normal distribution and Detect outliers at a multi-dimensional level.
 - 3. Isolation Forest is computationally efficient: a low constant and a low memory requirement.
 - 4. Parameters Number of estimators, Max samples, Contamination, Max features

Unsupervised - DBSCAN

Problem Definition

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

- DBSCAN is a powerful density-based data clustering algorithm.
 - 1. DBSCAN algorithm separates the high-density regions of the data from the low-density areas.
 - 2. Detect outliers by identifying noise.
 - 3. Parameters Epsilon, minPoints

Supervised - Random Forest

Problem Definition

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

- Random Forests perform classification by constructing multiple decision trees and combining their predictions.
 - 1. Constructing a decision tree from the train set.
 - 2. Prediction of test sets and feature importance exploration
 - 3. Parameters n_estimators, max_depth, min_samples_leaf, min_samples_split

Supervised - XGBoost

Problem Definition

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

- XGBoost (eXtreme Gradient Boosting) is a gradient boosting tree algorithm.
 - 1. The core principle is to combine multiple weak learners (decision trees) into one strong learner
 - 2. Decision trees are trained in an iterative manner to train new trees based on the residuals between the predictions and the actual labels of all the previous trees in order to gradually reduce the error.
 - 3. Parameters n_estimators, max_depth, learning_rate, subsample, colsample_bytree

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

Conclusion

Model Train and Result

Model Train

Problem Definition

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

Conclusion

■ Each method has been subjected to a parameter network search and parameter tuning.Parameters not mentioned use default values.

Method	Type	Train	Test	
$Isolation\ Forest$	Unsupervised	$all\ data$	$all\ data$	
DBSCAN	Unsupervised all data		$all\ data$	
$Random\ Forest$	Supervised	train	test	
XGBoost	Supervised	train	test	

Method	Parameters		
$Isolation\ Forest$	$n_estimators = 1000, contamination = 0.00172, max_features = 1.0$		
DBSCAN	$eps = 3.0, min_samples = 10$		
$Random\ Forest$	$n_estimators = 100$		
XGBoost	$n_estimators = 100, learning_rate = 0.3, max_depth = 5$		

Evaluation Method

Problem Definition

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

Conclusion

Use Accuracy, Precision, Recall, and F1 value to evaluate the model.

- TP True Fraud TN True Normal FP False Normal FN False Fraud
- (1) Accuracy = $\frac{TP + TN}{TP + TN + FP + FN}$

(2) Precision =
$$\frac{TP}{TP + FP}$$

(3) Recall =
$$\frac{TP}{TP + FN}$$

(4) F1-score = $2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$

Result

Problem Definition

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

Method	Accuracy	Precision	Recall	F1	Time(s)
$Isolation\ Forest$	0.998	0.314	0.313	0.314	344
DBSCAN	0.946	0.027	0.865	0.053	182
$Random\ Forest$	0.999	0.948	0.791	0.863	314
XGBoost	0.999	0.949	0.817	0.874	56

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

Conclusion

Conclusion

Problem Definition

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

- Supervised methods are superior to unsupervised methods.
- The performance of decision tree related methods is related to the number of decision trees and max depth.
- Based on correlation analysis and feature importance analysis, identifying credit card fraud is mainly related to features V4, V10, V11, V12, V14, and V17.

Questions?

Problem Definition

Data Analysis and Preprocessing

Unsupervised and Supervised Anomaly Detection Methods

Model Train and Result

Contact Information

Jiahong Lin School of Economics and Management Nanjing University of Science and Technology, China

KKSMI18@163.COM