Sustavi linearnih jednadžbi. Gaussov postupak

MATEMATIKA ZA EKONOMISTE 1

Damir Horvat

FOI, Varaždin

Rješenje pomoću inverzne matrice
$$\begin{bmatrix} 2 & -1 & 2 \end{bmatrix} \qquad \begin{bmatrix} x \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & -1 & 2 \\ 1 & -3 & 1 \\ 4 & -2 & 3 \end{bmatrix} \qquad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad B = \begin{bmatrix} 1 \\ 2 \\ -4 \end{bmatrix}$$

$$AX = B$$
$$X = A^{-1}B$$

$$X = A^{-1}B$$

$$X = \frac{1}{5} \begin{bmatrix} -7 & -1 & 5 \\ 1 & -2 & 0 \\ 10 & 0 & -5 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ -4 \end{bmatrix}$$

$$X = \frac{1}{5} \begin{bmatrix} -29 \\ -3 \\ 30 \end{bmatrix}$$

$$X = \begin{bmatrix} -\frac{29}{5} \\ -\frac{3}{5} \\ 6 \end{bmatrix}$$

$$X = \begin{bmatrix} -\frac{3}{5} \\ 6 \end{bmatrix}$$

$$X = -\frac{3}{5}$$

$$Z = 6$$

$$X = \frac{1}{5} \begin{bmatrix} -29 \\ -3 \\ 30 \end{bmatrix}$$

$$\begin{array}{c}
DZ \\
A^{-1} = \frac{1}{5} \begin{bmatrix} -7 & -1 & 5 \\ 1 & -2 & 0 \\ 10 & 0 & -5 \end{bmatrix}
\end{array}$$

$$X = \begin{vmatrix} -\frac{29}{5} \\ -\frac{3}{5} \\ 6 \end{vmatrix} \qquad \begin{aligned} x &= -\frac{29}{5} \\ y &= -\frac{3}{5} \\ z &= 6 \end{aligned}$$

2 / 15

Sustavi linearnih jednadžbi

Zadatak 1

Riješite sustav linearnih jednadžbi

$$2x - y + 2z = 1$$

 $x - 3y + z = 2$.
 $4x - 2y + 3z = -4$

Cramerovo pravilo

$$D = \begin{vmatrix} 2 & -1 & 2 \\ 1 & -3 & 1 \\ 4 & -2 & 3 \end{vmatrix} = 5$$

$$D = \begin{vmatrix} 2 & -1 & 2 \\ 1 & -3 & 1 \\ 4 & -2 & 3 \end{vmatrix} = 5 \qquad D_1 = \begin{vmatrix} 1 & -1 & 2 \\ 2 & -3 & 1 \\ -4 & -2 & 3 \end{vmatrix} = -29$$

$$D_2 = \begin{vmatrix} 2 & 1 & 2 \\ 1 & 2 & 1 \\ 4 & -4 & 3 \end{vmatrix} = -3 \qquad D_3 = \begin{vmatrix} 2 & -1 & 1 \\ 1 & -3 & 2 \\ 4 & -2 & -4 \end{vmatrix} = 30$$

$$D_3 = \begin{vmatrix} 2 & -1 & 1 \\ 1 & -3 & 2 \\ 4 & -2 & -4 \end{vmatrix} = 30$$

$$x = \frac{D_1}{D} = \frac{-29}{5}$$
 $y = \frac{D_2}{D} = \frac{-3}{5}$ $2x - y + 2z = 1$

$$z = \frac{D_3}{D} = \frac{30}{5} = 6$$

$$2x - y + 2z = 1$$
$$x - 3y + z = 2$$
$$4x - 2y + 3z = -4$$

X	у	Z	Gaussov postupak	
2	-1	2	1 +	
1	-3	1	2 / (-2) / (-4) $2x - y + 2z =$	1
4	-2	3	$-4 \leftarrow x - 3y + z =$	2
0	5	0	-3 4x - 2y + 3z =	-4
1	-3	1	2 ←+	
0	10	$\overline{}$	$\frac{-12}{1}$ / $\frac{1}{1}$ x y z	
0	5	0	$\frac{-3}{-10}$ $\left \cdot \frac{1}{5} \right $ 0 $\left \cdot \frac{3}{5} \right \left \cdot (-7) \right $	(_10)
1	7		-10	(-10) /
0	10	-1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
			0 10 -1 -12	
	у	' = -	$ \frac{3}{5} $ $ \frac{29}{5} $ $ 0 $	
	x	′ = -	$\frac{29}{5}$	
	^		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	-z	? = -	$5 \xrightarrow{\epsilon} z = 6$	4 / 15

Zadatak 2

Zadan je sustav linearnih jednadžbi

$$x_1 - 3x_2 + 5x_3 = 1$$

 $4x_1 + 28x_2 - 28x_3 = 0$.
 $4x_1 + 8x_2 - 4x_3 = 2$

- a) Gaussovim postupkom riješite zadani sustav tako da varijabla x_1 bude parametar.
- b) Pronađite sva bazična rješenja.
- c) Odredite ono rješenje sustava čija je suma komponenata jednaka 0.

$$6x_1 + 7x_2 = \frac{7}{2} \longrightarrow 7x_2 = -6x_1 + \frac{7}{2} / \cdot \frac{1}{7} \longrightarrow x_2 = -\frac{6}{7}x_1 + \frac{1}{2}$$
$$-\frac{5}{7}x_1 - x_3 = -\frac{1}{2} \longrightarrow -x_3 = \frac{5}{7}x_1 - \frac{1}{2} / \cdot (-1) \longrightarrow x_3 = -\frac{5}{7}x_1 + \frac{1}{2}$$

Opće rješenje sustava

2. način zapisivanja 1. način zapisivanja

$$x_2 = -\frac{6}{7}x_1 + \frac{1}{2}$$
 $x_1 = p$ $x_2 = -\frac{6}{7}p + \frac{1}{2}$ $x_3 = -\frac{5}{7}x_1 + \frac{1}{2}$ $x_4 = -\frac{6}{7}p + \frac{1}{2}$

$$x_1 \in \mathbb{R}$$

 $x_1 \in \mathbb{R} \qquad \qquad x_3 = -\frac{5}{7}p + \frac{1}{2}$

 $p \in \mathbb{R}$

$$\left(\rho, -\frac{6}{7}\rho + \frac{1}{2}, -\frac{5}{7}\rho + \frac{1}{2}\right)$$

$$\rho \in \mathbb{R}$$

3. način zapisivanja

$$x_1 = p$$

 $x_2 = -\frac{6}{7}p + \frac{1}{2}$
 $x_3 = -\frac{5}{7}p + \frac{1}{2}$

b) Bazična rješenja

$$\begin{array}{c} x_1 = 0 \\ p = 0 \\ \hline \begin{pmatrix} 0 \\ \frac{1}{2}, \frac{1}{2} \end{pmatrix} \end{pmatrix} & \begin{array}{c} x_2 = 0 \\ -\frac{6}{7}p + \frac{1}{2} = 0 / \cdot 14 \\ \hline \begin{pmatrix} 0, \frac{1}{2}, \frac{1}{2} \end{pmatrix} \end{pmatrix} & \begin{array}{c} -\frac{5}{7}p + \frac{1}{2} = 0 / \cdot 14 \\ -12p + 7 = 0 \\ \hline p = \frac{7}{12} \\ \hline \begin{pmatrix} \frac{7}{12}, 0, \frac{1}{12} \end{pmatrix} \end{pmatrix} & \begin{array}{c} \frac{7}{10}, -\frac{1}{10}, 0 \\ \hline \end{pmatrix} \end{array}$$

Rješenje

Gesenje								
x_1	x_2	<i>X</i> ₃						
1	-4	5	6 /· (-2)					
0	-3	2	-12					
2	7	0	35 +					
1	-4	5	6 ←+					
		_	/ -					

$$\begin{bmatrix} 0 & -3 & 2 \\ 0 & 15 & -10 \end{bmatrix} = \begin{bmatrix} -12 & / & \frac{-5}{2} & / & \\ 2 & & & 2 \end{bmatrix}$$

$$1 \quad \frac{7}{2} \quad 0 \quad 36$$

$$0 \quad 0 \quad 0 \quad -37 \longrightarrow 0 = -37$$

sustav je kontradiktoran

Zadatak 3

Riješite sustav linearnih jednadžbi

$$x_1 - 4x_2 + 5x_3 = 6$$

 $-3x_2 + 2x_3 = -12$.
 $2x_1 + 7x_2 = 35$

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & -3 & 2 \\ -2 & 6 & -1 \end{bmatrix}$$

14 / 15

Zadatak 4

Gaussovim postupkom pronađite inverznu matricu matrice

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & -3 & 2 \\ -2 & 6 & -1 \end{bmatrix}.$$

Rješenje

13 / 15