Why & How Does Few-Shot Learning Work?

Transformers as Learning Algorithms

Jörn Stöhler (MSc Student) Claude (Research Assistant)

University of Augsburg

What is Few-Shot Learning?

Live Demonstration

Demo in ChatGPT.com

- 1. Pattern completion: "The cat sat on the mat. The dog sat on the..."
- 2. Zero-shot fails, few-shot succeeds
- 3. Learning notation from examples

Key Question: Examples transform behavior – but how?

Quantifying the Effect

Benchmarks from GPT-3 Paper

Click: GPT-3 Paper (Brown et al. 2020)

Show:

► Figure 1.2: Performance vs parameters

► Figure 3.1: Zero/one/few-shot visual

Figure 3.8: LAMBADA (76% \rightarrow 86.4%)

Model	Year	Zero-Shot	Few-Shot Gain
GPT-3	2020	\sim 50%	+10-20pp
GPT-4	2023	\sim 80%	+2-8pp
Current	2024	\sim 85%	+1-5pp

SuperGLUE Results

Few-Shot vs Fine-Tuning

Click: GPT-3 Paper - SuperGLUE

Key Result:

- ► GPT-3 (32-shot): 71.8%
- ► Fine-tuned BERT++: 69.8%
- ► No gradient updates needed!

Transition: The effect is real. Now let's understand the mechanism.

Transformer Architecture

Information Flow

Tokens — Embeddings — Layer 1
$$\underbrace{a_0 \in \mathbb{R}^d}$$
 — Output $\underbrace{a_1 = f_1(a_0)}$

Attention(a) =
$$\sum_t \text{softmax}(Q_t K_t^T) \cdot V_t$$

Key Points:

- Residual stream: Information highway
- ► Each layer reads ALL previous tokens
- ► Autoregressive: One token at a time

The Key Discovery

Attention = Gradient Descent

Click: von Oswald et al. 2022

Main Result

Linear Self-Attention =
$$a + \eta \cdot \nabla \mathcal{L}$$

Attention literally computes gradients!

- ► Single layer = one gradient step (exact!)
- ► Multi-layer = preconditioned gradient descent
- ► Not approximation mathematically exact

What We've Found Inside

Mechanistic Interpretability

1. Induction Heads (Anthropic)

- ► Pattern completion circuits
- ► Emerge at ~2.5B tokens
- ► See visualization

2. Function Vectors

- ► Tasks = directions in activation space
- ► Todd et al. 2024
- ightharpoonup Arithmetic: $v_{\text{translate}} + v_{\text{formal}} = v_{\text{formal translation}}$

3. Superposition

- ► Many "programs" in same weights
- Examples select which program
- ► Anthropic 2024

Layer-Wise Processing

Information Flow Through Depth

Click: Akyürek et al. 2022

Phase transitions with depth!

What Can Transformers Provably Do?

Mathematical Limits

Proven Capabilities:

- 1. **Gradient Descent** Exact implementation
- 2. Ridge Regression Medium depth
- 3. Bayesian Inference Deep networks
- 4. **Universal Computation** Turing complete!

Recent Result (2024):

- ► Prompting itself is Turing-complete
- Click for paper

Memory Bounds:

- $ightharpoonup \Theta(n)$ capacity for n examples
- ► Tian et al. 2024

Mesa-Optimization

Two Optimization Loops

Click: Hubinger et al. 2019 — von Oswald et al. 2023

	OUTER (Training)	INNER (Inference)
Optimizer	SGD on parameters $ heta$	Attention implements GD
Objective	Training loss	In-context loss
Updates	Weights	Activations
Time	Months	Single forward pass

Critical insight: Model learns HOW to learn, not just WHAT to predict

Emerges without design! Never explicitly trained for optimization

Mesa-Optimization Evidence

Internal Optimizer Discovery

Click: Uncovering Mesa-Optimization

Two-stage process discovered:

1. Early layers: Preconditioning

2. Later layers: Optimization on preconditioned problem

Key findings:

- ightharpoonup Autoregressive training ightarrow internal optimizers
- Generalizes to unseen tasks
- ► Can extract the learned algorithm

Why Few-Shot Works

The Grad Student Analogy

Few-shot learning \approx Supervising grad students

- 1. Examples provide new information
 - ► Your specific notation
 - Not in training data
- 2. Computable format
 - ► Examples > descriptions
 - Model runs gradient descent on them
- 3. Disambiguate task
 - "Prove like Bourbaki, not Arnold"
- 4. Knowledge loading (push system)
 - Examples activate circuits
 - ▶ Weights → activations

Examples are training data for the internal optimizer!

Conclusion

The Key Insight

Few-shot learning works because transformers are computers that run learning algorithms

- ► Your examples are the **program**
- ► The forward pass is the **execution**
- ► The output is the result of **internal optimization**

This isn't metaphorical – it's mathematically proven

Questions?

Appendix Topics Available:

- ► A1: Detailed mechanistic interpretability
- ► A2: Statistical learning theory connection
- ► A3: Test-time training advances
- ► A4: Prompt engineering theory
- ► A5: Failure modes and limitations

Key Papers:

- ▶ von Oswald 2022 Gradient descent proof
- ▶ von Oswald 2023 Mesa-optimization
- ► Akyürek 2022 Algorithm identification
- ► Hubinger 2019 Original mesa concept

A1: Mechanistic Interpretability Details

Circuit Discovery

Induction Heads:

- ▶ Previous token head + induction head
- ▶ Implements $[A][B] \dots [A] \rightarrow [B]$
- ► Anthropic analysis

Sparse Autoencoders:

- Extract monosemantic features
- Reveals superposition
- ► Scaling study

Knowledge Circuits:

- ► Early: Query formation
- ► Middle: Knowledge retrieval
- ► Late: Answer formatting

A2: Statistical Learning Theory

Generalization Guarantees

PAC Bounds via Stability:

- Excess risk: $|R(T) \hat{R}(T)| \le 2L\sqrt{\frac{\log(2/\delta)}{2M}}$
- ► Li et al. 2023

Rademacher Complexity:

- ► Sequence-length independent bounds
- Explains why models don't overfit to examples
- Classical theory connection

Minimax Optimality:

- ▶ Rate: $O(n^{-\beta/(2\beta+d)})$ for β -smooth functions
- ► 2024 result

A3: Test-Time Training

Explicit Optimization at Inference

Click: Test-Time Training (2025)

Idea: Gradient updates on context examples during inference

Benefits:

- ► Combines parametric + non-parametric learning
- Better sample complexity
- Provable improvements

Connection: Makes mesa-optimization explicit!

A4: Prompt Engineering Theory

Optimal Example Selection

Determinantal Point Processes:

- ▶ $P(S) \propto \det(K_S)$
- ► Balances similarity and diversity
- ► Coverage-based selection

Order Effects:

- Entropy ordering works best
- ▶ 17-point improvement on compositional tasks
- Survey paper

OPRO (LLMs as Optimizers):

- ► Natural language optimization
- ▶ 50% improvement on reasoning
- ► Yang et al. 2023

A5: Failure Modes

When Few-Shot Doesn't Help

Limitations:

- 1. Context window constraints
 - ightharpoonup Memory: $\Theta(n)$ for n examples
- 2. Task misalignment
 - ► Mesa-objective ≠ your objective
- 3. Distribution shift
 - Examples not representative
- 4. Adversarial examples
 - Can hijack internal optimizer

When it fails:

- ► Novel capabilities not in training
- Contradictory examples
- ► Tasks requiring true reasoning (not pattern matching)

Additional Resources

For Further Reading

Core Papers:

- ► GPT-3 Original few-shot benchmarks
- ► GPT-4 Modern performance
- ► GPT-Fathom Model comparisons

Theory Papers:

- Universal approximation
- ► Turing completeness
- ► Transformers as statisticians

Practical Guides:

- ► Few-shot prompting guide
- ► Zero vs few-shot comparison