### PRACTICAL CRYPTOGRAPHY

### **Objectives**

- Compare symmetric and asymmetric cryptography
- Learn about encryption levels as in full disk, partition, file, volume, database, and record
- Examine hashing, salting, HMACs, and key exchange
- Explore digital signatures, certificates, and PKI
- Observe various cryptographic tools
- Understand blockchain technology

```
Xorg.0.log
       ch-dispatcher Xorg.0.log.old
     wthority=local): Registered Authentication Agent
   -goone/polkit-gnome-authentication-agent-1], object
    -logind[589]: Removed session c1.
      pan_unix(systemd-user:session): session closed for
     skr-pan: unlocked login keyring
  [2230]: pan_unix(cron:session): session opened for user
  [2230]: pan_unix(cron:session): session closed for user
mpiz: gkr-pan: unlocked login keyring
     paolo : TTY=pts/5 ; PWD=/home/paolo ; USER=root ;
when punix(sudo:session): session opened for user root
men pan unix(sudo:session): session closed for user root
tworksunager[584]: <info> (wlp12s0): supplicant interface
g.gnone.Terninal[1356]: Gtk-Message: Chips---
```

### CRYPTOGRAPHIC SERVICES

#### Confidentiality

- Hiding the data at rest, in transit, and/or in use from unauthorized principals
- It typically involves a system or algorithm that converts plaintext data into ciphertext

#### Integrity

 Ensures the data has not been altered while at rest or in transit

#### Non-repudiation

 Ensures the original sender cannot deny sending data or engaging in a digital transaction

### SYMMETRIC KEY CRYPTOSYSTEMS

- This historic form uses the same key to encrypt and decrypt
- Efficient, fast, and handles high data rates of throughput
- Computationally inexpensive
- Deploys shorter key lengths (40 to 512 bits)
- Primarily used to protect data at rest



### SYMMETRIC KEY CRYPTOSYSTEMS

- Key management is more complex unless using hardware security modules (HSMs) or cloud key management services
- There is no built-in origin authentication
- Symmetric systems do not scale well unless a cloud key management service is used
- Most popular algorithms are AES-CBC-128/256 and AES-GCM-128/256



#### **BLOCK CIPHERS**

- Operates on fixed blocks of data (bits) based on key size
- 64, 128, and 256-bit keyspaces are common
- Messages bigger than the key size are broken into blocks the size of the key and must include padding
- Common block ciphers:
  - DES
  - 3DES-EDE
  - AES-CBC
  - AES-GCM
  - Blowfish



#### STREAM CIPHERS



- Operate on a continuous stream of plaintext data by encrypting one bit or byte at a time
- Plaintext bits are typically XORed with keystream bits
- Keystream = random bits, bytes, numbers, characters
- Faster and less complex than block ciphers
- Modern ciphers can work in a block or stream mode or both:
  - FISH
  - CryptMT
  - Scream
  - Cryptographic hashing

#### STREAM CIPHER EXAMPLE

- Alice wants to use a stream cipher to encrypt the letter "A"
- In ASCII, the letter "A" has the value of 65 = 1000001
- The first cipher stream bits are 0101100
- We perform an XOR function (Modulo 2 addition)

```
1000001 = A

XOR

0101100

1101101 is the result
```

The letter "A" becomes ciphertext "m" (ASCII value 109)





### ASYMMETRIC KEY CRYPTOSYSTEMS

- Uses a mathematically related pair of a public and private key
  - If one is used to encrypt, the other is used to decrypt
- Public key infrastructure (PKI) enables efficient key management and scalability
- Often used for digital signatures and key exchange
- Employs longer key lengths than symmetric (up to 4096)
- Slower and more computationally expensive

### **ASYMMETRIC KEY CRYPTOSYSTEMS**

- Confidentiality
  - Encrypt with public key
  - Decrypt with private key



- Origin authentication
  - Encrypt with private key
  - Decrypt with public key



## POPULAR ASYMMETRIC (PUBLIC KEY) ALGORITHMS

- RSA (Rivest–Shamir–Adleman) the most widely used algorithm for securing communication and data encryption
- Diffie-Hellman key exchange a protocol for securely exchanging cryptographic keys over an untrusted network
- Elliptic curve cryptography (ECC) an algorithm based on the algebraic structure of elliptic curves over finite fields
- Digital signature algorithm (DSA) a standard based on the mathematical concept of modular exponentiation and discrete logarithm problem





### **FULL DISK ENCRYPTION**

- Full disk encryption (FDE) is the process of encoding all user data on a device using an encrypted key
- Also called whole disk encryption the master boot record (MBR) (or comparable) that includes code that loads the operating system is not encrypted
- Once a device is encrypted, all user-created data is automatically encrypted before committing it to disk

### PARTITION ENCRYPTION

- Encrypted partitions are disk partitions that are protected with encryption keys to prevent unauthorized access to the data on the drive
- One advantage of encrypting only a partition instead of the whole drive is that you can encrypt/decrypt the partition while using the system for other tasks
- If one only encrypts a data partition, however, sensitive data can remain in temporary files or swap files in a non-encrypted partition





### **FILE ENCRYPTION**

- File-level encryption enables the protection of individual files by encrypting them
- This technique is often utilized when there are specific files that need an extra degree of security or contain very sensitive information
- Encrypting individual files offers more control over access and assures that even if one file is cracked, the others will still be safe

### VOLUME (BLOCK) ENCRYPTION

- Volume encryption targets a section of the physical drive, which is defined as a separate partition or "volume"
- It provides a choice to encrypt different volumes, whereas with disk encryption, you can only encrypt everything
  - Volume encryption can help save time and provide greater flexibility
- If a single volume occupies the entire hard drive, then volume encryption will function the same way as full disk encryption





### DATABASE AND RECORD ENCRYPTION

- Database encryption is the process of using an algorithm to transform data stored in a database into unreadable cipher text
- The purpose is to protect the data stored in various platforms from being accessed by external attackers or even compromised privileged insiders
- When using a cloud database service, key management services are often used
- Record encryption will encrypt and decrypt the individual records in a database systems

#### **CRYPTOGRAPHIC HASHING**



- A one-way mathematical function that produces a digest of 128 to 512 bit
- Converts data of any input size to a fixed-length string called a hash value, message digest, or fingerprint
- An advanced version of a simple checksum
- Birthday paradox, avalanche effect
- Used in authentication, data integrity, non-repudiation, fingerprinting, password storage, database indexing
- Must be collision resistant (no MD5)

### **COMMON HASH FUNCTIONS**

RIPEMD (128, 160, 256, and 320-bit versions)

SHA-1 (160-bit digest is produced)

**SHA-2 (SHA256 or SHA512)** 

SHA-3 (224-512)

Whirlpool (a modification of AES algorithm)

### **SALTING**

- Salting is the technique of adding pseudorandom data to a cryptographic hash function
- The goal is to make it less deterministic for cracking tools
  - When an attacker can access a database of password hashes, they can use either hash tables or rainbow tables to look up matching hashes, which they can use to discover the passwords or other hashed data
- Two weaknesses are salts that are too short or if they aren't unique for each password



### HASH-BASED MESSAGE AUTHENTICATION CODES (HMACS) FOR INTEGRITY AND ORIGIN AUTHENTICATION



### **KEY EXCHANGE**

- There are several ways for parties to exchange keys:
  - Phone or text
  - Secured email
  - Couriers
  - Diplomatic bags
- Alternatively, a more effective method is using an asymmetric key exchange algorithm, such as:
  - RSA key exchange
  - Diffie-Hellman key exchange
  - Elliptic Curve Diffie-Hellman
  - Elliptic Curve Diffie-Hellman Ephemeral





### DIFFIE-HELMAN KEY EXCHANGE

- Diffie-Hellman key exchange (DHKE) and RSA key transport are original protocols created for establishing secret keys between two parties over an unsecure channel
- Diffie-Helman is a widely used asymmetric cryptosystem found in SSH2, TLS, and IPsec
- It represents an impressive application of the discrete logarithm problem
- The RSA algorithm can sign public-key certificates,
   whereas the Diffie-Hellman key exchange cannot

### **BASIC CONCEPT OF DHKE**



### DIFFIE-HELMAN MODES

- DH (Diffie-Hellman)
  - The same shared secret is used all the time between parties
- DHE/EDH (Ephemeral Diffie-Hellman)
  - A different shared secret is used each time between parties
- ECDH (Elliptic Curve Diffie-Hellman)
  - Uses EC public/private key pair
  - The same shared secret is used all the time between parties
- ECDHE/ECEDH (Elliptic Curve Ephemeral Diffie-Hellman)
  - Uses EC public/private key pair
  - A different shared secret is used each time



### ECDHE/ECEDH (ELLIPTIC CURVE DIFFIE-HELLMAN EPHEMERAL)



- Based on rich math functions of values plotted on an elliptic curve
- Uses smaller keyspaces while offering superior strength
- 256-bit elliptic key = 3072-bit standard key
- Excellent for mobile devices and IoT with limited memory and processing power
- Common use cases:
  - Key exchange
  - IPsec and TLS
  - Digital signatures

### **DIGITAL SIGNATURES**

- These are a scalable mechanism for providing authenticity, integrity, and non-repudiation using random public/private key pairs
  - Does not offer confidentiality
- Digital signatures are legally equivalent to a handwritten signature in many countries
- SHA1/2/3 hash algorithms are commonly used
- Signing algorithms:
  - Rivest-Shamir-Adelman (RSA)
  - Digital Signature Algorithm (DSA)
  - Elliptic Curve Digital Signature Algorithm (ECDSA)



#### DIGITALLY SIGNING AN API CALL





### DIGITAL CERTIFICATES

- A digital certificate is a form of file used to bind cryptographic key pairs to entities such as individuals, websites, devices, or organizations
- If validity affirmation and/or public trust is needed, then a trusted certificate authority (CA) will assume the role of a third party to validate, identify, and associate them with cryptographic pairs using the digital certificates

### DIGITAL CERTIFICATES

- The key pair consists of a public key and a private key
- The public key is included in the certificate, while the private key is stored in a secure fashion
- The owner of the private key can then use it to sign documents, and the public key can be used to verify the validity of those signatures
- A common format for digital certificates is based on the X.509 standard



### X.509V3 DIGITAL CERTIFICATES

- Version number
- Serial number
- Signature algorithm ID
- Issuer name
- Validity period
- Not before
- Not after
- Subject name\*
- Subject alternative name (SAN)

- Subject public key info
- Public key algorithm
- Subject public key
- Issuer unique identifier
- Subject unique identifier
- Extensions
- Certificate signature algorithm
- Certificate signature



### TRUSTED THIRD PARTIES



### **PUBLIC KEY INFRASTRUCTURE (PKI)**

- PKI is a scalable binding of a public key with an entity identity
  - A person, system, or organization
- Digital certificates are registered and issued by a certificate authority (CA)
  - Can be automated or manual
- The CA may also generate the key pair (usually RSA) for the requesting party





### **PUBLIC KEY INFRASTRUCTURE (PKI)**



### **CA** TRUST MODELS

- Single CA:
  - Responsible for directly providing certificates to everyone (enterprise PKI)
  - Must always be online
- Hierarchical CA:
  - Combination of root CA and intermediate CAs
  - Root sends certificates to intermediates
  - Intermediate CAs provide certificates and the "chain" to users or other intermediate CAs
  - Root can be online or offline
- Online connected to the network and issues certificates over the network
- Offline not connected to the network and issues certificates on removable media







### CERTIFICATE REVOCATION AND SUSPENSION



- Certificates are stamped with nondeterministic serial numbers and validity dates
- For security reasons, all keys must have a finite life due to brute-force attacks
- Certificate can be
  - Revoked (permanent) never used again
  - Suspended/held (temporary) can be reactivated
- The certificate revocation list (CRL) is the original method for revoking certificates
- Online Certificate Status Protocol (OCSP) is an Internet-enabled transactional database that CA's and web servers utilize for suspension and revocation



### TRUSTED PLATFORM MODULES (TPM)

- A TPM is used to improve the security of various systems, such as servers and PCs
- Microsoft uses services like BitLocker Drive Encryption, Windows Hello, and others to securely create and store cryptographic keys
- It is often a separate chip on the motherboard (TPM 2.0) that allows manufacturers to build the capability into their chipsets rather than requiring a separate chip
- Google employees store X.509v3 certificates in TPMs in devices as part of zero trust

# HARDWARE SECURITY MODULES (HSMs)



- These are hardened, tamper-resistant dedicated appliances or integrated modules in a PC/server
  - HSMs can be physical or virtualized
- A SmartCard-HSM is a lightweight hardware security module in a smart card,
   MicroSD, or USB form factor providing a remotely manageable secure RSA and
   ECC keys
- Responsibilities include:
  - Managing, processing, generating, and storing keys
  - Verifying digital certificates
  - SSL connection accelerator
  - Encrypting sensitive data
  - Verifying the integrity of stored data

### KEY MANAGEMENT SERVICES

- A cloud-based key management service (such as AWS KMS) is a managed service that enables the creation and control of customer-managed symmetric and asymmetric cryptographic keys to protect various types of data at rest
- These key services integrate with many other cloud services, such as block storage, object (blob) storage, applications, and databases to facilitate the encryption of critical data





### **KEY STRETCHING**

- Tools such as PBKDF2 apply a pseudorandom function, such as an HMAC, to the input password or passphrase along with a salt value
- PBKDF2 then repeats the process many times (1000 iterations) to produce a derived key, which can then be used as a cryptographic key in further operations
- The stretching process makes password cracking much more difficult
- Today, programs will use hundreds of thousands of iterations due to fast processors

### **SECURE ENCLAVES**

- A secure enclave delivers CPU hardware-level isolation and memory encryption on a server, workstation, or mobile device by isolating application code and data from anyone with privileges and encrypting its memory
- With additional software, Secure Enclaves enable the encryption of both storage and network data for simple full-stack security
- Secure enclave hardware support is built into all new CPUs from Intel and AMD
- The Secure Enclave is a hardware feature of most versions of iPhone, iPad, Mac, Apple TV, and Apple Watch





#### **STEGANOGRAPHY**

- Steganography is the process of hiding a secret message inside of (or even on top of) something that is not secret
- Tools like Steghide often involve embedding a secret piece of text inside of a picture or hiding a secret message or script inside of a Word, Excel, or PDF document
- It is a form of covert communication but not a form of cryptography because it doesn't involve scrambling data or using a key
- Steganography is a practice that enables secrecy and deceit

### **DATA MASKING**

- Masking often involves using characters like "X" to hide some or all data
- For example, only displaying the last four digits of:
  - Social Security numbers
  - Credit card numbers
  - National ID numbers
  - Bank account numbers
  - Usernames or email addresses
- Methods to obfuscate data should prevent inference, and therefore, masking is suboptimal when compared to other methods like tokenization





### **TOKENIZATION**

- Tokenization involves sending sensitive data through an API call (or batch file) to a provider that replaces the data with nonsensitive placeholders called tokens
- The practice involves two distinct databases:
  - One with the actual sensitive data
  - One with tokens mapped to each chunk of data
- Unlike encrypted data, tokenized data is irreversible and unintelligible

#### **TOKENIZATION EXAMPLE**

#### Sensitive data held by government **Enriched individualized insights** Substance use in Child welfare families Child welfare Treatment cost agencies agencies and effectiveness Arrest and parole information Corrections Law Geographical enforcement department Integrated crime data data set Non-sensitive publicly available data **Enriched aggregated insights** (tokenized) Aggregated treatments data Hospitals Hospitals Aggregated prescriptions data Marketing data Third-party Third-party Spending and data data insurance information

### BLOCKCHAIN TECHNOLOGY

- A blockchain is a distributed database that leverages a constantly growing list of ordered records called blocks
- These blocks are linked using cryptographic mechanisms
- Each block stores a cryptographic hash of the previous block, a timestamp, and transaction data
- Blockchain may be deployed as a public ledger (or private smart contract) consisting of a digital "chain of blocks" storing information





### **BLOCKCHAIN TECHNOLOGY**

- Data can be read or written to the chain but not modified (immutability) – changes must be made to a subsequent block in the chain
- Transaction data such as date, time, and amount is verified with a consensus mechanism (proof of work [PoW], proof of stake [PoS], etc.)
- The transaction participant's identities are based on digital signatures
- Unique cryptographic hashes are used to distinguish the blocks from each other

#### **BLOCKCHAIN USE CASES**



Cybercurrencies and tokens



Government services



Money and asset transfer ledgers



Insurance claims (fraud prevention)



**Smart contracts** 



Securities (stocks, bonds)



Non-fungible tokens (NFTs)



Healthcare