1 CP model

N_bins: the number of bins given N_items: the number of items given

 W_j, H_j, C_j : the width, height, and cost of bin j, respectively

 w_i, h_i : the width, height of item i, respectively

1.1 Decision Variables

* $X_{ij} = 1$: item i packed in bin j

$$\Rightarrow \sum_{i=1}^{\text{N.items}} X_{ij} \geq 1 \Longleftrightarrow Z_j = 1$$
: bin j has been used

* $R_i = 1$: item i rotated 90 degree

Item's Coordinate:

 l_i, r_i, b_i, t_i : left, right, bottom and top coordinates of item i

* First way to approach:

- if item i not rotated: $R_i = 0$

$$\Rightarrow \begin{cases} r_i = l_i + w_i \\ t_i = b_i + h_i \end{cases}$$

- if item i rotated: $R_i = 1$

$$\Rightarrow \begin{cases} r_i = l_i + h_i \\ t_i = b_i + w_i \end{cases}$$

* Another way to approach:

- if item i not rotated: $R_i = 0$

$$\Rightarrow \begin{cases} w_i = w_i \\ h_i = h_i \end{cases}$$

- if item i rotated: $R_i = 1$

$$\Rightarrow \begin{cases} w_i = h_i \\ h_i = w_i \end{cases}$$

1.2 Constraints

1.2.1 Each item has to be packed in exactly 1 bin:

$$\sum_{j=1}^{\text{N_bins}} X_{ij} = 1 \text{ for } i \text{ in N_items}$$

1.2.2 No two items overlap:

if
$$X_{i_1j} = X_{i_2j} = 1$$

$$r_{i_1} \leq l_{i_2}$$
 or $r_{i_2} \leq l_{i_1}$ or $t_{i_1} \leq b_{i_2}$ or $t_{i_2} \leq b_{i_1}$

1.2.3 Items cannot exceed the bin:

if
$$X_{ij} = 1$$

$$\Rightarrow \begin{cases} w_i \le r_i \le W_j \\ h_i \le t_i \le H_j \end{cases}$$

1

1.3 Objective Function

$$\mathbf{minimize} \sum_{j=1}^{\mathrm{N_bins}} Z_j * C_j$$