

Thème Automates à pile.

Grammaire non contextuelle et Automates à pile 1

Exercice 1 Soit la grammaire non-contextuelle suivante pour un langage de Dyck:

$$\begin{array}{ll} 1. & S \rightarrow \{ \ S \ \} \\ 2. & S \rightarrow S \ S \\ 3. & S \rightarrow \Lambda \end{array}$$

- 1. Construire un automate à pile simple indéterministe qui accepte le même langage ;
- 2. Appliquer cet automate sur le mot {{}}};
- 3. Donner un automate à pile déterministe qui accepte le même langage;
- 4. Appliquer cet automate sur le mot {{}}}.

Exercice 2 Soit une grammaire G = (A, V, S, P), la grammaire étendue de G à l'ordre k est la grammaire $G' = (A \cup \{\$\}, V \cup \{S'\}, S', P \cup \{S' \rightarrow S\$^k\})$ avec $\$ \notin A$ et $S' \notin V$ où \$ est le symbole

Les symboles directeurs à l'ordre k d'une règle de production, c'est-à-dire les préfixes de taille k des dérivations commençant par cette règle, sont définis par :

$$SD_k(X \to \gamma) = \{ m_X \in \bigcup_{0 \le i \le k} A^i \, \$^{k-i} \mid m_P \in A^\star, m_S \in A^\star \$^k \cup \bigcup_{0 < i < k} \$^i \}$$

Les premiers à l'ordre k d'une production γ , c'est-à-dire les préfixes de taille k des dérivations de γ , sont définis par :

$$P_k(\gamma) = \{ m \in \bigcup_{0 \le i \le k} A^i \mid \gamma \Rightarrow^* m \}$$

Les suivants à l'ordre k d'un non-terminal X, c'est-à-dire les suffixes de taille k de X dans les dérivations de l'axiome, sont définis par :

$$S_k(X) = \{ m \in \bigcup_{0 \le i \le k} A^i \, \$^{k-i} \mid S' \Rightarrow^\star \alpha X m \beta \Rightarrow^\star m', \alpha \in (A \cup V)^\star, \beta \in (A \cup V \cup \{\$\})^\star, m' \in A^\star \$^k \}$$

Une grammaire G est LL(k) si et seulement si :

- 1. G n'est pas récursive à gauche (directement ou indirectement);
- 2. Les symboles directeurs à l'ordre k des différentes règles de production d'un même non terminal sont distincts deux à deux.

Nous nous limitons par la suite à l'ordre k=1.

Soit une grammaire simplifiée des expressions arithmetiques en langage ADA $G_0 = (A, V, E, P)$ composée des non-terminaux $V = \{E, L\}$, de l'axiome E, des terminaux $A = \{\text{ident }(), \}$ et de l'ensemble P de règles suivantes :

$$\begin{array}{ll} 1. & E \rightarrow \mathtt{ident} \\ 2. & E \rightarrow E \; (L \;) \\ 3. & L \rightarrow E \; , L \\ 5. & L \rightarrow E \end{array}$$

2.
$$E \rightarrow E (L)$$

3.
$$L \to E$$
, L

$$5. \quad L \to E$$

1. Construire G_1 la grammaire augmentée à l'ordre 1 de G_0 ;

- 2. Déterminer les ensembles des symboles directeurs à l'ordre 1 pour les règles de production de G_1 ;
- 3. Proposer une définition inductive selon la structure des productions qui permettent de calculer mécaniquement les premiers, les suivants et mes symboles directeurs en se limitant à l'ordre 1 :
- 4. Est ce que la grammaire G_1 est récursive à gauche ? Si oui, éliminer la récursivité à gauche et construire la grammaire G_2 . Si G_1 n'est pas récursive à gauche, alors G_2 est par la suite égale à G_1 ;
- 5. Calculer les ensembles des premiers et des suivants à l'ordre 1 pour les non-terminaux de G_2 ;
- 6. Calculer les symboles directeurs à l'ordre 1 associés aux différentes règles de production de G_2 ;
- 7. G_2 est-elle LL(1) ? Pourquoi ? Si G_2 n'est pas LL(1), transformer G_2 en G_3 pour la rendre LL(1) et calculer les symboles directeurs à l'ordre 1 de G_3 ;
- 8. Proposer un programme CaML réalisant l'analyse descendante récursive pour la grammaire G_3 .

Exercice 3 Soit une grammaire simplifiée des expressions du langage CaML G = (A, V, E, P) composée des non-terminaux $V = \{E\}$, de l'axiome E, des terminaux $A = \{\text{ident true false number } () = + - */\}$ et de l'ensemble P de règles suivantes :

- 1. $E \rightarrow ER = E$
- 2. $E \rightarrow ER$
- 3. $ER \rightarrow ER + T$
- 4. $ER \rightarrow ER T$
- 5. $ER \rightarrow T$
- 6. $T \rightarrow T * F$
- 7. $T \rightarrow T / F$
- 8. $T \rightarrow F$
- 9. $F \rightarrow -F$
- 10. $F \rightarrow (E)$
- $11. \quad F \ \to \mathtt{ident}$
- $12. \quad F \ \to \mathtt{true}$
- $13. \quad F \ \to \mathtt{false}$
- 14. $F \rightarrow \text{number}$
- 1. Construire une grammaire LL(1) équivalente à G. Calculer les symboles directeurs à l'ordre 1 de ses règles de production.