Wrap-up

Introduction

Machine Learning for Official Statistics & SDGs Random Forest

Trees are methods for classification or regression analysis.

Education

Trees are methods for classification or regression analysis.

► Trees are based on recursive binary splits

Trees are methods for classification or regression analysis.

- ► Trees are based on recursive binary splits
- ► The structure is simple and corresponds to regions in the variable's space

Trees are methods for classification or regression analysis.

- ► Trees are based on recursive binary splits
- ► The structure is simple and corresponds to regions in the variable's space
- ► Each node is based on a the value of one variable and a threshold

Trees are methods for classification or regression analysis.

- ► Trees are based on recursive binary splits
- ► The structure is simple and corresponds to regions in the variable's space
- ► Each node is based on a the value of one variable and a threshold
- ► Trees can be very detailed and prone to **over fitting**

By structure:

► Trees are splitting the variable's space into "rectangles"

By structure:

- ► Trees are splitting the variable's space into "rectangles"
- ► Predictions using a tree may not be very accurate

By structure:

- ► Trees are splitting the variable's space into "rectangles"
- ► Predictions using a tree may not be very accurate
- ► Trees are not robust to changes in the data

By structure:

- ► Trees are splitting the variable's space into "rectangles"
- ▶ Predictions using a tree may not be very accurate
- ► Trees are not robust to changes in the data
- ► Trees are prone to overfiting

The decision trees suffer from *high variance*:

The decision trees suffer from *high variance*:

► Take a sample and build a tree

The decision trees suffer from high variance:

- ► Take a sample and build a tree
- ▶ Divide the sample in two parts and build a tree on each part

[Problems with trees]

The decision trees suffer from high variance:

- ► Take a sample and build a tree
- ➤ Divide the sample in two parts and build a tree on each part
- \hookrightarrow The two trees will likely be very different

[EXAMPLE ON A SIMPLE TREE]

Wrap-up

[EXAMPLE ON A SIMPLE TREE]

Introduction

Which tree do you trust?

Tree with all observations (max depth = 4)

Tree using all observations

[EXAMPLE ON A SIMPLE TREE]

Introduction

Which tree do you trust?

First tree with 50% of observations

Introduction

Which tree do you trust?

Second tree with 50% of observations

Introduction

Which tree do you trust?

Outcomes are different from one tree to another

[How to use trees?]

Alternative to simple tree models:

Wrap-up

[How to use trees?]

Introduction

Alternative to simple tree models:

► Aggregating the results of trees can help

[How to use trees?]

Alternative to simple tree models:

- ► Aggregating the results of trees can help
- \hookrightarrow "Bagging"

[How to use trees?]

Alternative to simple tree models:

- ► Aggregating the results of trees can help
- → "Bagging"

Introduction

► Some trees may be too similar (correlated) and have to be "decorrelated" using random draws of the variable used

[HOW TO USE TREES?]

Alternative to simple tree models:

- ► Aggregating the results of trees can help
- → "Bagging"

- ► Some trees may be too similar (correlated) and have to be "decorrelated" using random draws of the variable used
- \hookrightarrow "Random forest"

[How to use trees?]

Alternative to simple tree models:

- ► Aggregating the results of trees can help
- \hookrightarrow "Bagging"

- ► Some trees may be too similar (correlated) and have to be "decorrelated" using random draws of the variable used
- \hookrightarrow "Random forest"
 - ► Trees can be constructed *sequentially*

[How to use trees?]

Alternative to simple tree models:

- ► Aggregating the results of trees can help
- \hookrightarrow "Bagging"

- ► Some trees may be too similar (correlated) and have to be "decorrelated" using random draws of the variable used
- \hookrightarrow "Random forest"
- ► Trees can be constructed *sequentially*
- \hookrightarrow "Boosting"

Wrap-up

[SOME SIMPLE MATHEMATICAL TRICKS]

Introduction

Aggregating the results of trees can help decrease the variance

Introduction

[SOME SIMPLE MATHEMATICAL TRICKS]

Aggregating the results of trees can help decrease the variance

▶ Intuitively, if U_i , ... U_B are iid with variance σ^2 , then the average of these variables has a lower variance

Introduction

[SOME SIMPLE MATHEMATICAL TRICKS]

Aggregating the results of trees can help decrease the variance

▶ Intuitively, if U_i , ... U_B are iid with variance σ^2 , then the average of these variables has a lower variance

$$Var\left(\frac{1}{B}\sum_{i=1}^{B}U_{i}\right) = \frac{\sigma^{2}}{B}$$

$$< \sigma^{2}$$

Aggregating the results of trees can help decrease the variance

▶ Intuitively, if U_i , . . . U_B are iid with variance σ^2 , then the average of these variables has a lower variance

$$Var\left(\frac{1}{B}\sum_{i=1}^{B}U_{i}\right) = \frac{\sigma^{2}}{B}$$

$$< \sigma^{2}$$

► This is a simple principle that is used here

Bagging stands for Bootstrap Aggregating uses a simple logic:

1. Draw *B* bootstrapped samples from the original sample

- 1. Draw *B* bootstrapped samples from the original sample
- 2. Construct *B* trees, one on each sample

Introduction

- 1. Draw *B* bootstrapped samples from the original sample
- 2. Construct *B* trees, one on each sample
- 3. Average the result to get a prediction with a lower variance

Introduction

- 1. Draw *B* bootstrapped samples from the original sample
- 2. Construct *B* trees, one on each sample
- 3. Average the result to get a prediction with a lower variance

[BAGGING]

Introduction

Bagging stands for Bootstrap Aggregating uses a simple logic:

- 1. Draw *B* bootstrapped samples from the original sample
- 2. Construct *B* trees, one on each sample
- 3. Average the result to get a prediction with a lower variance

In classification, we do not average but take the *majority vote* rule

[Bagging]

Introduction

Bagging scheme:

Image from igem.org

[THE PROBLEM WITH Bagging]

Bootstrapped (Bagging) trees use the same set of variables

Wrap-up

[THE PROBLEM WITH Bagging]

Introduction

Bootstrapped (Bagging) trees use the same set of variables

► Aggregating *correlated* trees will **not** decrease variance

[THE PROBLEM WITH Bagging]

Introduction

Bootstrapped (Bagging) trees use the same set of variables

- ► Aggregating *correlated* trees will **not** decrease variance
- ▶ Intuitively, if $U_i, ..., U_B$ are with variance σ^2 , and cross-correlation ρ , then the average has a variance:

$$Var\left(\frac{1}{B}\sum_{i=1}^{B}U_{i}\right) = \rho \cdot \sigma^{2} + \frac{\sigma^{2}}{B}$$

Introduction

[THE PROBLEM WITH Bagging]

Bootstrapped (*Bagging*) trees use the same set of variables

- ► Aggregating *correlated* trees will **not** decrease variance
- ▶ Intuitively, if $U_i, ..., U_B$ are with variance σ^2 , and **cross-correlation** ρ , then the average has a variance:

$$Var\left(\frac{1}{B}\sum_{i=1}^{B}U_{i}\right) = \rho \cdot \sigma^{2} + \frac{\sigma^{2}}{B}$$

ightharpoonup This could be "high" if ρ is "high"

[THE PROBLEM WITH Bagging]

Bootstrapped (Bagging) trees use the same set of variables

- ► Aggregating *correlated* trees will **not** decrease variance
- ▶ Intuitively, if U_i , . . . U_B are with variance σ^2 , and cross-correlation ρ , then the average has a variance:

$$Var\left(\frac{1}{B}\sum_{i=1}^{B}U_{i}\right) = \rho \cdot \sigma^{2} + \frac{\sigma^{2}}{B}$$

- ▶ This could be "high" if ρ is "high"
- → Random forest use a decorrelation algorithm by adding randomness in the set of variables used

Random forest use two mechanisms:

► Bootstrap aggregating (bagging)

Introduction

- ► Bootstrap aggregating (*bagging*)
- \hookrightarrow Construct *B* trees, on *B* bootstrapped samples

Wrap-up

[RANDOM FOREST]

Introduction

- ► Bootstrap aggregating (*bagging*)
- \hookrightarrow Construct *B* trees, on *B* bootstrapped samples
- ► **Random** selection of variables (*Feature sampling*)

Wrap-up

[RANDOM FOREST]

Introduction

- ► Bootstrap aggregating (*bagging*)
- \hookrightarrow Construct *B* trees, on *B* bootstrapped samples
- ► **Random** selection of variables (*Feature sampling*)
- \hookrightarrow At each node, randomly select only **m** variables

Introduction

- ► Bootstrap aggregating (*bagging*)
- \hookrightarrow Construct *B* trees, on *B* bootstrapped samples
- ► **Random** selection of variables (*Feature sampling*)
- \hookrightarrow At each node, randomly select only **m** variables
- ► The resulting predictor will have a lower variance

$$Var_{Random\ forest} = \rho \cdot \sigma^2 + \frac{\sigma^2}{B}$$

Introduction

Random forest use two mechanisms:

- ► Bootstrap aggregating (*bagging*)
- \hookrightarrow Construct *B* trees, on *B* bootstrapped samples
- ► **Random** selection of variables (*Feature sampling*)
- \hookrightarrow At each node, randomly select only **m** variables
- ► The resulting predictor will have a lower variance

$$Var_{Random\ forest} = \rho \cdot \sigma^2 + \frac{\sigma^2}{B}$$

Common practice (p = nb of variables):

Introduction

Random forest use two mechanisms:

- ► Bootstrap aggregating (*bagging*)
- \hookrightarrow Construct *B* trees, on *B* bootstrapped samples
- ► **Random** selection of variables (*Feature sampling*)
- \hookrightarrow At each node, randomly select only **m** variables
- ► The resulting predictor will have a lower variance

$$Var_{Random\ forest} = \rho \cdot \sigma^2 + \frac{\sigma^2}{B}$$

Common practice (p = nb of variables):

► $m \approx \sqrt{p}$ in classification

Introduction

Random forest use two mechanisms:

- ► Bootstrap aggregating (*bagging*)
- \hookrightarrow Construct *B* trees, on *B* bootstrapped samples
- ► **Random** selection of variables (*Feature sampling*)
- \hookrightarrow At each node, randomly select only **m** variables
- ► The resulting predictor will have a lower variance

$$Var_{Random\ forest} = \rho \cdot \sigma^2 + \frac{\sigma^2}{B}$$

Common practice (p = nb of variables):

- ► $m \approx \sqrt{p}$ in classification
- ► $m \approx p/3$ in regression

Introduction

Random forest scheme:

Image from Venkata Jagannath (wikimedia.org)

Introduction

Random forest are sensitive to several hyperparameters

Wrap-up

[OPTIMIZING RANDOM FOREST]

Introduction

Random forest are sensitive to several *hyperparameters*

► All the parameters used to build a *tree*

Wrap-up

[OPTIMIZING RANDOM FOREST]

Introduction

Random forest are sensitive to several hyperparameters

- ► All the parameters used to build a *tree*
 - ► *Purity* criterion (Gini *vs* Entropy)

Boosting

Wrap-up

[OPTIMIZING RANDOM FOREST]

Random forest are sensitive to several hyperparameters

- ► All the parameters used to build a *tree*
 - ► *Purity* criterion (Gini *vs* Entropy)
 - ► Tree *Depth*

Random forest are sensitive to several *hyperparameters*

- ► All the parameters used to build a *tree*
 - ► *Purity* criterion (Gini *vs* Entropy)
 - ► Tree *Depth*

Introduction

► Complexity parameter Cp

Wrap-up

[OPTIMIZING RANDOM FOREST]

Random forest are sensitive to several hyperparameters

- ► All the parameters used to build a *tree*
 - ► *Purity* criterion (Gini *vs* Entropy)
 - ► Tree *Depth*
 - ► *Complexity* parameter *Cp*
 - **▶** ...

Random forest are sensitive to several hyperparameters

- ► All the parameters used to build a *tree*
 - ► *Purity* criterion (Gini *vs* Entropy)
 - ► Tree *Depth*
 - Complexity parameter Cp
 - ▶ ..

Introduction

▶ Parameters used to construct the *Forest*

Random forest are sensitive to several hyperparameters

- ► All the parameters used to build a *tree*
 - ► *Purity* criterion (Gini *vs* Entropy)
 - ► Tree *Depth*
 - ► *Complexity* parameter *Cp*
 - ▶ ..

- ▶ Parameters used to construct the *Forest*
 - ► Number of variables *m* used in each node

Random forest are sensitive to several hyperparameters

- ► All the parameters used to build a *tree*
 - ► *Purity* criterion (Gini *vs* Entropy)
 - ► Tree *Depth*
 - Complexity parameter Cp
 - ▶ ..

- ▶ Parameters used to construct the *Forest*
 - ► Number of variables *m* used in each node
 - ► Number of trees

Random forest are sensitive to several hyperparameters

- ► All the parameters used to build a *tree*
 - ► *Purity* criterion (Gini *vs* Entropy)
 - ► Tree *Depth*
 - ► *Complexity* parameter *Cp*
 - ▶ ..

- ▶ Parameters used to construct the *Forest*
 - ▶ Number of variables *m* used in each node
 - ► Number of trees
 - ► Minimum number of observations per leaves

Random forest are sensitive to several hyperparameters

- ► All the parameters used to build a *tree*
 - ► *Purity* criterion (Gini *vs* Entropy)
 - ► Tree *Depth*
 - ► *Complexity* parameter *Cp*
 - ▶ ..

- ▶ Parameters used to construct the *Forest*
 - ▶ Number of variables *m* used in each node
 - ► Number of trees
 - ► Minimum number of observations per leaves
 - **>** ...

The impact of the number of variables (m) on accuracy

The impact of the number of variables (m) on kappa

The impact of the number of variables (*m*):

The impact of the number of variables (m):

The impact of the number of variables (m):

Why are the curves decreasing after a threshold?

The impact of the number of variables (m):

Why are the curves decreasing after a threshold?

► The variance depends on $\rho \cdot \sigma^2$

The impact of the number of variables (m):

Why are the curves decreasing after a threshold?

- ► The variance depends on $\rho \cdot \sigma^2$
- $\hookrightarrow \textit{ Trees using similar variables are very similar (same predictions)}$

$$\nearrow m \Longrightarrow \rho \nearrow$$

Introduction

[RANDOM FOREST ON AN EXAMPLE]

The impact of the number of variables (m):

Why are the curves decreasing after a threshold?

- ► The variance depends on $\rho \cdot \sigma^2$
- \hookrightarrow Trees using similar variables are very similar (same predictions) $\nearrow m \Longrightarrow \rho \nearrow$
 - ▶ Optimum for 3 (out of 7) regressors only at each node

Introduction

[RANDOM FOREST ON AN EXAMPLE]

The impact of the number of variables (m):

Why are the curves decreasing after a threshold?

- ► The variance depends on $\rho \cdot \sigma^2$
- \hookrightarrow Trees using similar variables are very similar (same predictions) \nearrow $m \Longrightarrow \rho \nearrow$
 - ▶ Optimum for 3 (out of 7) regressors only at each node
- \hookrightarrow Rule of thumb: $m \approx \sqrt{p}$

The impact of the number of trees on accuracy

The impact of the number of trees on kappa

The impact of the number of trees:

The impact of the number of trees:

The impact of the number of trees:

▶ No clear optimum → Moderate number of trees is OK

Introduction

[RANDOM FOREST ON AN EXAMPLE]

The impact of the number of trees:

- ightharpoonup No clear optimum \hookrightarrow Moderate number of trees is OK
- ► The variance depends on $\frac{\sigma^2}{B}$ $\nearrow B \Longrightarrow \frac{\sigma^2}{B} \searrow$

Introduction

[RANDOM FOREST ON AN EXAMPLE]

The impact of the number of trees:

- ▶ No clear optimum

 Moderate number of trees is OK
- ► The variance depends on $\frac{\sigma^2}{B}$ $\nearrow B \Longrightarrow \frac{\sigma^2}{B} \searrow$
- → More tree reduces variance (up-to a certain point)

[IMPROVEMENTS]

[IMPROVEMENTS]

Trees can also grow differently:

► Random Forest grow *independently*

[IMPROVEMENTS]

- ► Random Forest grow *independently*
- ► "Vote" or average of the outcome from leaves

[IMPROVEMENTS]

- ► Random Forest grow *independently*
- ► "Vote" or average of the outcome from leaves
- ► Trees can be constructed *sequentially*

[IMPROVEMENTS]

- ► Random Forest grow *independently*
- ► "Vote" or average of the outcome from leaves
- ► Trees can be constructed *sequentially*
- \hookrightarrow "Boosting"

Boosting helps construct trees sequentially

Boosting helps construct trees sequentially

► Based on weak learners

Boosting helps construct trees sequentially

- ► Based on weak learners

Boosting helps construct trees sequentially

- ▶ Based on weak learners
- - ightharpoonup "Mistakes" at tree nb t are overweighed for tree nb t+1

Boosting a tree (iterative process)

Two classes of observations: Orange and blue

Boosting a tree (iterative process)

First weak learner

Boosting a tree (iterative process)

Second weak learner. Misclassification overweighed

Boosting a tree (iterative process)

Third weak learner. New misclassification overweighed

Boosting a tree (iterative process)

Combining weak learners.

Boosting a tree (iterative process)

Combining weak learners. Classification tree completed

Boosting has several features

► Extremely powerful

- ► Extremely powerful
- ► Based on simple trees (weak learners)

Introduction

- ► Extremely powerful
- ► Based on simple trees (weak learners)
- ► The "weight" placed on "mistakes" is important

Introduction

- ► Extremely powerful
- ► Based on simple trees (weak learners)
- ► The "weight" placed on "mistakes" is important
- → Several choices gradient boosting

Introduction

- ► Extremely powerful
- ► Based on simple trees (weak learners)
- ► The "weight" placed on "mistakes" is important
- Several choices gradient boosting
- ► Sequential procedure (no parallel computation)

Introduction

- ► Extremely powerful
- ► Based on simple trees (weak learners)
- ► The "weight" placed on "mistakes" is important
- → Several choices gradient boosting
- ► Sequential procedure (no parallel computation)
- \hookrightarrow Xgboosting

► Random forest are simple and easy to interpret

- Random forest are simple and easy to interpret
- Random forest use two mechanisms: bagging + (random) feature selection

- ► Random forest are simple and easy to interpret
- Random forest use two mechanisms: bagging + (random) feature selection
 - ► Bootstrap aggregating (*bagging*)

- ► Random forest are simple and easy to interpret
- ► *Random forest* use two mechanisms: bagging + (random) feature selection
 - ► Bootstrap aggregating (*bagging*)
 - \hookrightarrow Construct *B* trees, on *B* bootstrapped samples

- ► Random forest are simple and easy to interpret
- ► *Random forest* use two mechanisms: bagging + (random) feature selection
 - ► Bootstrap aggregating (*bagging*)
 - \hookrightarrow Construct *B* trees, on *B* bootstrapped samples
 - ► **Random** selection of variables (*Feature sampling*)

- ► Random forest are simple and easy to interpret
- ► *Random forest* use two mechanisms: bagging + (random) feature selection
 - ► Bootstrap aggregating (*bagging*)
 - \hookrightarrow Construct *B* trees, on *B* bootstrapped samples
 - ► **Random** selection of variables (*Feature sampling*)
 - \hookrightarrow At each node, randomly select only **m** variables

- ► Random forest are simple and easy to interpret
- ► *Random forest* use two mechanisms: *bagging* + (random) feature selection
 - Bootstrap aggregating (bagging)
 - \hookrightarrow Construct *B* trees, on *B* bootstrapped samples
 - ► **Random** selection of variables (*Feature sampling*)
 - \hookrightarrow At each node, randomly select only **m** variables
 - ► The resulting predictor will have a lower variance

$$Var_{Random\ forest} = \rho \cdot \sigma^2 + \frac{\sigma^2}{B}$$

Introduction

- ► Random forest are simple and easy to interpret
- Random forest use two mechanisms: bagging + (random) feature selection
 - Bootstrap aggregating (bagging)
 - \hookrightarrow Construct *B* trees, on *B* bootstrapped samples
 - ► **Random** selection of variables (*Feature sampling*)
 - \hookrightarrow At each node, randomly select only **m** variables
 - ► The resulting predictor will have a lower variance

$$Var_{Random forest} = \rho \cdot \sigma^2 + \frac{\sigma^2}{B}$$

► Many variations in random forest exist (boosting, gradient boosting, Xgboosting)

- ► Random forest are simple and easy to interpret
- ► *Random forest* use two mechanisms: bagging + (random) feature selection
 - ► Bootstrap aggregating (*bagging*)
 - \hookrightarrow Construct *B* trees, on *B* bootstrapped samples
 - ► **Random** selection of variables (*Feature sampling*)
 - \hookrightarrow At each node, randomly select only **m** variables
 - ► The resulting predictor will have a lower variance

$$Var_{Random\ forest} = \rho \cdot \sigma^2 + \frac{\sigma^2}{B}$$

- ► Many variations in random forest exist (boosting, gradient boosting, Xgboosting)
- ➤ Several parameters to adjust: Nb of trees, nb of variables in each node, minimum number of obs. in leaves/nodes, tree complexity, stopping rules, etc.

- ► Random forest are simple and easy to interpret
- ► *Random forest* use two mechanisms: *bagging* + (random) feature selection
 - ► Bootstrap aggregating (*bagging*)
 - \hookrightarrow Construct *B* trees, on *B* bootstrapped samples
 - ► **Random** selection of variables (*Feature sampling*)
 - \hookrightarrow At each node, randomly select only **m** variables
 - ► The resulting predictor will have a lower variance

$$Var_{Random\ forest} = \rho \cdot \sigma^2 + \frac{\sigma^2}{B}$$

- ► Many variations in random forest exist (boosting, gradient boosting, Xgboosting)
- ► Several parameters to adjust: Nb of trees, nb of variables in each node, minimum number of obs. in leaves/nodes, tree complexity, stopping rules, etc.
- ► Implemented in many software!