mas.s62 lecture 14 lightning network and cross chain swaps

2018-04-02 Tadge Dryja

schedule stuff post spring break general questions office hours tomorrow, 5-6 pset4 out Wednesday next class: discreet log contracts

today payment channels recap optimizations: key addition, hash trees cross chain swaps

revokable tx

Commit Tx (held by Alice)	
input	output
fund txid Bob's signature	Alice key & 100 blocks or AliceR & Bob key 2 coins
	Bob address 8 coins

revokable tx

Commit Tx (held by Bob)	
input	output
fund txid Alice's signature	Alice address 2 coins
	Bob key & 100 blocks or Alice & BobR key 8 coins

reveal to revoke Either party broadcasts & has to wait Alice gives Bob the AliceR privKey Bob gives Alice the BobR privKey

Now if they broadcast the counterparty can take all funds while they wait!

preimage or private key KeyA && time || (KeyB && KeyC)

optimizations here?

preimage or private key KeyA && time

|| (KeyB && KeyC)

KeyC could be a hash/preimage pair,
20 bytes instead of ~70

Even smaller?

Adding keys Add KeyB and KeyC

B + C = R

what's the private key for R?

Adding keys Add KeyB and KeyC B + C = Rwhat's the private key for D? bG + cG = rG(b + c)G = rG

sum of private keys works

```
reduced script
KeyD | KeyA && time
opcodes:
OP_IF KeyR OP_ELSE
<delay> OP_CHECKSEQUENCEVERIFY
OP_DROP KeyA OP_ENDIF OP_CHECKSIG
```

reduced script

stack: 1 SigR

OP_IF KeyR OP_ELSE

<delay> OP_CHECKSEQUENCEVERIFY

OP_DROP KeyA OP_ENDIF OP_CHECKSIG

reduced script
stack: 0 SigA

OP_IF KeyR OP_ELSE

 reveal key, revoke state need to keep track of old secrets one for each state

32 bytes each... not great for scaling

hash tree
reveal secrets 1 at a time
store only log(n) secrets
recompute any received secret

left child: append 0, hash

intermission 0x7f sec to stretch

cross chain there are altcoins most of them (used to) work like Bitcoin, as they just copied the whole codebase on github (see e.g. coingen.io)

some recent coins very different

cross chain
people trade altcoins for bitcoins
they even trade altcoins for altcoins
how to trade? use "exchanges"

coin exchanges exchange model: give us all your coins post orders on our site to swap ask for your coins back

coin exchanges exchange model:

give us all your coins

(this part works fine)

post orders on our site to swap ask for your coins back

coin exchanges exchange model: give us all your coins post orders on our site to swap ask for your coins back (here's where the model tends to fail)

cross-chain swaps no custody

you get coinA iff I get coinB use HTLCs just like in lightning network

channels are on different networks

Preimage determines who spends

Commit Tx (held by Bob)	
input	output
fund txid Alice's signature	Alice address: 2 coins
	Bob key && 100 blocks Alice && BobR key 7 coins
	HTLC Alice && R Bob && height 500000 1 coin

cross chain

cross chain

HTLC construction

HTLC construction

HTLC forwarding

HTLC forwarding

cross chain swaps

H can be revealed on either chain, so both parties need to watch both blockchains

They have channels on each chain so that makes sense

Receiver doesn't need to be initiator, but probably will be

how to trade good for trade execution, but what about discovery?

how to trade good for trade execution, but what about discovery?

post orders on blockchain?

how to trade good for trade execution, but what about discovery?

post orders on blockchain?

non-binding, frontrunning, non-scalable

how to trade multiple models:

central orderbook & counterparty

exchange is one side of every trade and keeps the spread

similar centralization to current custodial model, but less risk

how to trade multiple models:

central orderbook, multiple counterparties

connecting to many counterparties is costly

how to enforce trade execution?

how to trade multiple models:

distributed orderbook

how to ensure fairness?

how to enforce trade execution?

scalability of orders?

cross-chain swaps

basic idea works, but still many unsolved questions

further research required

people working on this here! (ask)