1. Balun

Un balun es un dispositivo que une una línea balanceada (una que tiene dos conductores, con corrientes iguales en direcciones opuestas, como un cable de par trenzado) a una línea no balanceada (una que tiene sólo un conductor y una tierra, como un cable coaxial). Un balun es un tipo de transformador: se utiliza para convertir una señal no balanceada en balanceada o viceversa. Los baluns aíslan una línea de transmisión y proporcionan una salida balanceada. Un uso típico para un balun es en una antena de televisión. El término se deriva de la combinación de equilibrado y desequilibrado.

En un balun, un par de terminales está equilibrado, es decir, las corrientes son iguales en magnitud y opuestas en fase. El otro par de terminales está desequilibrado; un lado está conectado a tierra eléctrica y el otro lleva la señal.

Hay dos variaciones de este dispositivo:

- El unun, que transfiere la señal de una línea desequilibrada a otra.
- El balbal, que transfiere la señal de una línea balanceada a otra.

Para funcionar con una eficiencia óptima, un balun debe utilizarse con cargas cuyas impedancias presentan poca o ninguna reactancia. Tales impedancias son llamadas "puramente resistivas". Como regla general, las antenas de comunicaciones bien diseñadas presentan cargas puramente resistivas de 50, 75 o 300 Ω , aunque unas pocas antenas tienen impedancias resistivas más altas.

Algunos baluns pueden funcionar como un transformador de impedancia entre dos sistemas desequilibrados si hay poca o ninguna reactancia.

2. Aplicaciones

Los transformadores de balun se pueden utilizar entre varias partes de un sistema de comunicaciones por cable o inalámbrico. La siguiente tabla denota algunas aplicaciones comunes.

Equilibrado	Desequilibrado
Receptor de televisión	Red de cable coaxial
Receptor de televisión	Sistema de antena coaxial
Receptor de radiodifusión FM	Sistema de antena coaxial
Antena dipolo	Línea de transmisión coaxial
Línea de transmisión de cable paralelo	Salida del transmisor coaxial
Línea de transmisión de cable paralelo	Entrada para receptor coaxial
Línea de transmisión de cable paralelo	Línea de transmisión coaxial

Tabla 1: Aplicaciones.

3. Cálculos

Impedancia característica de la línea.

$$Z_0 = 200 \ \Omega \tag{1}$$

Coeficiente de reflexión.

$$\Gamma(0) = \frac{Z_L - Z_0}{Z_0 + Z_L} \tag{2}$$

Potencia promedio.

$$P_{prom} = ||\Gamma(0)||^2 \tag{3}$$

Perdida de retorno.

$$RL = -10\log_{10}(|\Gamma(0)|^2) \tag{4}$$

3.1. $Z_L = 47\Omega$

$$\hat{Z} = \frac{Z_L}{Z_0} = \frac{47}{200} = 2.35 \tag{5}$$

$$\Gamma(0) = \frac{47 - 200}{47 + 200} = -0.6194\tag{6}$$

$$|\Gamma(0)|^2 = 0.836\tag{7}$$

$$RL = -10\log_{10}(-0.6194^2) = 4.1605 \tag{8}$$

3.2. $Z_L = 220\Omega$

$$\hat{Z} = \frac{Z_L}{Z_0} = \frac{220}{200} = 2.35 \tag{9}$$

$$\Gamma(0) = \frac{220 - 200}{220 + 200} = 0.0476 \tag{10}$$

$$|\Gamma(0)|^2 = 0.0022\tag{11}$$

$$RL = -10\log_{10}(0.0476^2) = 26.4478 \tag{12}$$

3.3. $Z_L = 270\Omega$

$$\hat{Z} = \frac{Z_L}{Z_0} = \frac{270}{200} = 1.35 \tag{13}$$

$$\Gamma(0) = \frac{270 - 200}{270 + 200} = 0.1489 \tag{14}$$

$$|\Gamma(0)|^2 = 0.0221\tag{15}$$

$$RL = -10\log_{10}(0.1489^2) = 16.5421 \tag{16}$$

4. Resultados

$Z_L [\Omega]$	$Z_0 [\Omega]$	\hat{Z}	\hat{Y}	$l [\lambda]$	$s[\lambda]$	$\Gamma(0)$	RL	
47	200	0.235	0.7407			0.6194	4.1605	
200	200	1.1	0.909			0.0476	26.4478	
200	200	1.35	4.255			0.1489	16.5421	

Tabla 2: My caption