Hydroxides

$$M^+OH^-_{(s)} + nH_2O \rightarrow M^+_{(aq)} + OH^-_{(aq)}$$

for metals with more ionic bonds \rightarrow Base

$$MOH + nH_2O \longrightarrow MO_{(aq)}^- + H_3O_{(aq)}^+$$

for more covalent M-O bonds of the non-metals → Acid

Amphoteric Hydroxides also exist

<u>Alkoxides</u>

The basic formula of an alkoxide is OR where R is an organic group such as an alkyl group.

They are very reactive in water and hydrolyze quickly...

$$OR^{-} + H_{2}O \longrightarrow OH^{-} + ROH$$
 (forms an alcohol)

 $M(OR)_4$ is a common metal alkoxide type of compound (or we also say "complex"). *e.g.*, $Ti(OR)_4$

It has an interesting molecular structure that stabilizes the molecule.

the more bulky R groups on OR ligands lead to compounds with low coordination numbers

$$M(OR)_4$$
 when $R = Me$, Et " $M(OR)_2$ " when $R = 2,3,5$ -tritetrabutylphenoxide

Polynuclear or Polymeric Oxides/Hydroxides

- dimers, trimers, cages, etc.
- cyclic structures
- chains
- sheets

Polynuclear Oxo Anions

oxygen atoms shared between various polyhedra

Ex #1 dichromate

(two tetrahedra sharing one atom)

(tetrahedra sharing an edge)

Chain SiO₃²⁻

Ex #3

$$\frac{\text{tetramer}}{\text{B}_4\text{O}_5(\text{OH})_4}^{2\text{-}}$$

Common anion in borates

Basic Idea:

- Silicates are minerals composed of different types of shared SiO₄ units
- Borates are minerals in the same vein, but
 with BO₄ units shared in various ways

The structure that results is based on a complicated interplay of concentrations, pH, temperature and pressure (which affect solubilities).

- Eventually, if all oxygens are shared in a SiO₄ⁿ, solid, it becomes silica, SiO₂
- replace some Si⁴⁺ ions with Al³⁺, and it is possible to make structures like the silicates, except the anion charge is retained:
 - "SiO₂" neutral
 - "SiAlO₂" is negatively charged SiAlO₂

allow molecules to pass through

→ <u>Aluminosilicates</u>
Minerals with open frameworks that can

Ion exchangers (solution) Molecular sieves (gas)

 $\underline{\text{Zeolites}}$ [(Al,Si)O₂]_n framework

Basic composition of Zeolites is:

z – degree of hydrationlots of water can fill void space

$Si_2O_5^{2-}$ sheets

Si atoms are in a plane connected by 3 oxygen atoms to give a hexagonal motif one oxygen on each Si is not used to bridge

Model of a zeolite showing the channels in the structure. The spheres are O atoms. The Si and Al atoms lie at the centers of the O₄ tetrahedra and cannot be seen

Polynuclear Oxo Anions continued

"Polyoxoanions" of Transition Metals

form anions with shared MO₆ octahedra where corners and edges are shared

Excellent example is $[CrMo_6O_{24}H_6]^{3-}$

Figure 5-5 The structure of [CrMo₆O₂₄H₆]³⁻. The hydrogen atoms are probably bound to oxygen atoms of the central octahedron.

Miscellaneous oxo anions that are worth mentioning specifically because they are ubiquitious are as follows:

coordination modes:

$$M = C = C$$
 $M = C$
 $M = C$

Nitrogen-based
NO₂ nitrite
NO₃ nitrate

Various binding modes are depicted on page 152-153 of textbook

Sulfur-based

SO₃² sulfite; HSO₃ bisulfite

SO₄²- sulfate; HSO₄ bisulfate

Phosphates

Also important in chemistry as discrete anions and in condensed (polymeric) phases as minerals

binds as a middle unit binds as a branching unit

These "Building Blocks" can assemble into linear or cyclic structures

$$P_{3}O_{9}^{3-}$$
metaphosphates
$$P_{3}O_{10}^{5-}$$
polyphosphates

widely used as water softeners due to their ability to stabilize Ca²⁺, Mg²⁺ and other ions that make water "hard" (MgCO₃, CaCO₃ scum)

Other types of Oxo Anions

- Halogen-Containing Anions Halogen-Oxides
 - (1) XO_3^- halates (X formal ox. state = ?) e.g. ClO_3^- chlorate
 - (2) XO_4^- perhalates (X formal ox. state = ?) ClO_4^- perchlorate is most well-known

XO₄ not particularly stable, especially as in the perchlorate anion, ClO₄

- → these are strong oxidizing agents stabilized in water, dangerous when dry and especially with organic compounds around
- Transition Metal Oxides (Discrete)
 Tetrahedral MO₄ⁿ⁻ is very common for the highest oxidation state of the metal (or next to highest)

e.g.
$$OsO_4$$
 Os ? What is formal ReO_4 Re ? Ox. state? MnO_4 Mn ? CrO_4 Cr ?

Halides and "Pseudohalides"

• Pseudohalides such as CN⁻ act like halides OCN⁻, SCN⁻ (all are good ligands)

Most important one is cyanide CN

Binds through C atom first

 Halides - ionic versus covalent – ionic are discussed in Chapter 5 (covalent analogs are in Chapter 20) ionic halides are with metals in +1, +2, +3 oxidation states

Sulfide and Hydrosulfide

- S²⁻ Ionic sulfide compounds are formed with alkali and alkaline earth (they are not stable in H₂O)
- S_n^{2-} polysulfides very important ligands for transition metals

Complex Anions

Complex Halides

AlCl₃ + Cl⁻
$$\longrightarrow$$
 AlCl₄

Lewis Lewis
Acid Base

PF₅ + F \longrightarrow PF₆

general stability is F > Cl > Br > I
due to strength of A-F

vs A-Cl interactions
vs A-Br

vs A-I

Complex Transition Metal Anion s

CN⁻ forms many complex anions in a variety of oxidation states from low to high

$$[Fe^{II}(CN)_6]^{4-}$$
 versus $[Mo^{V}(CN)_8]^{3-}$

Most of these anions are quite stable in H_2O , and indeed the acid form of some of them can be made, without releasing HCN.

For example $H_4[Fe(CN)_6]$ exists

H⁺ is stabilized by H-bonding between molecules