

www.nagpurstudents.org

B.E. (Information Technology) Sixth Semester (C.B.S.)

Operating Systems

P. Pages: 2

Time: Three Hours

** 0.7 6.8 *

Max. Marks: 80

- Notes: 1. All questions carry marks as indicated.
 - 2. Solve Question 1 OR Questions No. 2.
 - 3. Solve Question 3 OR Questions No. 4.
 - 4. Solve Question 5 OR Questions No. 6.
 - 5. Solve Question 7 OR Questions No. 8.
 - 6. Solve Question 9 OR Questions No. 10.
 - 7. Solve Question 11 OR Questions No. 12.
 - 8. Due credit will be given to neatness and adequate dimensions.
 - 9. Assume suitable data whenever necessary.
 - 10. Illustrate your answers whenever necessary with the help of neat sketches.
- 1. a) What is an operating system? List out different types of O. S.
 - b) What is meant by system call? How it is used by application during execution.

OR

- **2.** a) What are different services provided by O. S.?
 - b) Write a short note on spooling.
 - c) What is user & system view of O. S.?
 - a) What are the various file allocation methods? Explain each with their merits & demerits 7
- **3.** a) What are the various file allocation methods? Explain each with their merits & demerits.
 - b) What are different file access techniques?

OR

- 4. a) Suppose the head of moving disk with 200 cylinders and is currently at track 60ft the queue of a request is kept in order as 65, 170, 35, 120, 10, 140. What are the total head movements to satisfy the request for the scheme?
 - i) FCFS

ii) SSTF

iii) SCAN

iv) C-SCAN

v) LOOK

5.

a)

- vi) C-LOOK
- b) Explain various operations associated with file.
- b) Consider the following set & processes.

Explain CPU scheduling criteria.

Process	CPU Burst Time	Arrival Time	Priority
P_1	3ms	0	3
P_2	5ms	1	1
P ₃	2ms	2	2
P ₄	5ms	3	5
P ₅	5ms	4	4

Calculate the average waiting time & turn around time for each.

i) FCFS

ii) SJF

iii) Priority

iv) RR (time slice = 2)

OR

1

7

6

6

3

6

9

4

5

NagpurStudents

6	a)	What are threads. Ex	kolain '	variou	s mu	ltithre	ading	mod	lels.					
	b)	What are threads. Explain various multithreading models. Differentiate between process & thread.												
		•												
	c)	What are different types of schedulers present in the system? Explain in detail.												
7.	a)	Consider the following page reference string 8 2 4 1 8 2 5 8 2 1 5 3 4 6 7. Assume frame size = 3 calculate page fault for: i) FIFO ii) LRU iii) Optimal												
	b)	Explain the concept	of pag	ing &	segn		on.)R							
3.	a)	Explain:i) Thrashingii) Swappingiii) Internal & Externaliv) Demand Paging		agmei	ntatio	n								
).	a)	What is critical section? Explain in detail.												
	b)	Explain Dining Philosophers Problem?												
	U)	OR												
0.	a)	Explain Readers – Writers problem.												
	b)	Explain Semaphore & Monitor												
1.	a)	-			of sv	stem								
1.	u)	Allocation						Max				Available		
		Process	A	В	C	D	A	В	C	D	A	В	C	D
		P_0	0	0	1	2	0	0	1	2	1	5	2	0
		P_1	1	0	0	0	1	7	5	0				
		P_2	1	3	5	4	2	3	5	6				
		P ₃	0	6	3	2	0	6	5	2				
		P_4	0	0	1	4	0	6	5	6				
		Answer the following Bankers algorithms i) What is the cortiii) Is the system in iii) If a request from immediately? V	itent of safe s n proc	f need tate ?	matr	ix?	r (0, 4	4, 2, 0	0) cai	n the re	equest	be gr	anted	
	b)	What is deadlock? What are necessary conditions for a deadlock to arise.												

What is deadlock? What are necessary conditions for a deadlock to arise. b)

OR

12. a) What is an Access matrix? Describe various methods to implement an Access matrix.

b) Explain Capability list in detail.

7

6

The best time to plant a tree was 20 years ago. The second best time is now.

~ Chinese Proverb

