实验九: D 触发器和累加器实验报告

- 一、 实验目的
- 1. 掌握 D 触发器 74LS175 的引脚排列及功能
- 2. 尝试将 74LS175 和 74LS181 组合成一个累加器
- 二、 实验原理
- 1. 74LS175 引脚排列图及内部结构图

74ls175管脚功能和内部结构图

我们可以知道其中包含了四个 D 型触发器

2. 74LS175 的真值表

输入						输 出			
R_D	СР	1 <i>D</i>	2 <i>D</i>	3 <i>D</i>	4 <i>D</i>	10	2.0	3 <i>Q</i>	40
L	×	×	×	×	×	L	L	L	L
Н	T T	1.0	2 <i>D</i>	3 <i>D</i>	4D	1.0	2 <i>D</i>	3 <i>D</i>	4 <i>D</i>
Н	Н	×	×	×	×	保持			
Н	L	×	×	×	×	A STATE OF THE STA			

我们可以知道在时钟信号的上升沿部分,输出的次态与输入一致

即: Qn+1 = D

3. 74LS181 S3-S0 对应功能

方式	M=1 逻辑运算	M=0 算术运	算术运算		
S3 S2 S1 S0	逻辑运算	CN=1(无进位)	CN=0(有进位)		
0 0 0 0	F=/A	F=A	F=A 加1		
0 0 0 1	F=/(A+B)	F=A+B	F=(A+B) 加1		
0 0 1 0	F=(/A)B	F=A+/B	F=(A+/B) 加1		
0 0 1 1	F=0	F=负1(补码形式)	F=0		
0 1 0 0	F=/(AB)	F=A 加 A (/B)	F=A 加 A/B 加1		
0 1 0 1	F=/B	F=(A+B) 加 A/B	F=(A+B) 加 A/B 加1		
0 1 1 0	$F {=} A \oplus B$	F=A 减 B 减1	F=A 减 B		
0 1 1 1	F=A/B	F=A(/B)减1	F=A(/B)		
1 0 0 0	F=/A+B	F=A 加 AB	F=A 加 AB 加1		
1 0 0 1	$F=/(A \oplus B)$	F=A 加 B	F=A 加 A 加1		
1 0 1 0	F=B	F=(A+/B) 加 AB	F=(A+/B)加 AB加1		
1 0 1 1	F=AB	F=AB 减1	F=AB		
1 1 0 0	F=1	F=A 加 A	F=A 加 A 加1		
1 1 0 1	F=A+/B	F=(A+B) 加 A	F=(A+B) 加 A 加1		
1 1 1 0	F=A+B	F=(A+/B) 加 A	F=(A+/B)加A加1		
1 1 1 1	F=A	F=A 减1	F=A		

4. 74LS181 引脚图及对应功能

三、 实验仪器

实验箱, 74LS181 芯片, 74LS175 芯片, 导线若干

四、 实验内容

- 1. 静态测试 D 触发器 74LS175 的功能, 要求四位同时测试
- 2. 按第 38 页图 3-7 连接累加器电路,验证功能(使用74LS175,74LS181)。首先认真阅读题目,仔细理解题目要求和意义。实验时,手动控制器运算累加速度,使其累加结果从零开始,每次+1,知道累加结果溢出。

图 3-7 加法器逻辑框图

五、 实验结果

- 1. 74LS175 功能验证
- 2. 74LS175 和 74LS181 组合为累加器(使用单脉冲作为时钟信号) 具体的实现思路:

根据图 3-7 加法器的逻辑框图, 我们使用 74LS175 作为累加器和数据寄存器, 使用 74LS181 的加法运算单元来实现加法器。

我们将 74LS175 的 CP 端(也就是时钟信号输入端)接在单脉冲实现手动累加。将 74LS175 的输出端 Q3-Q0 分别接入 74LS181 的 A3-A0 (B3-B0 也可),然后 B3-B0 (A3-A0)接入 0001 表示从 1 开始累加。由于累加的前一个状态对其下一个状态有影响,所以将 74LS181 输出

的 F3-F0 接回 74LS175 的 D3-D0,同时将 Q3/-Q0/接入实验箱上方的显示灯观察累加的状态。其余端口按照 74LS175 和 74LS181 的要求连接好,即可实现手动按单脉冲来实现累加器的每次+1 的功能。

六、 实验收获

- 1. 了解了 74LS175, 74LS181 的管脚图和功能实现
- 2. 提高了尝试通过分析逻辑框图,将几种芯片组合实现具体功能的分析能力
- 3. 提高了数字逻辑实验的动手能力和思考能力