

Introduction to basic R

Abu Bakar Siddique

Bioinformatician, SLUBI

Contents

- About R
- R vs Rstudio
- Timeline
- Setting a project or working directory
- Interacting with R
- Packages
- Assign values or objects

- Data types
- Data structures
- How to import and export data or results
- Handle large data
- Housekeeping
- Outliers

Basic about R

R is ...

- a programming language
- a programming platform (= environment + interpreter)
- a software project driven by the core team and the community
- a very powerful tool for statistical computing
- a very powerful computational tool in general

Yet ...

- it is very elegant
- it becomes more and more feature-rich

R is not ...

- a tool to replace a statistician
- the very best programming language
- the most elegant programming solution
- the most efficient programming language

R: Engine

R

RStudio

- Programming language
- For data analysis and graphics
- Refers to both the language and the software that interprets it's scripts
- Free and open source

- User interface for working with R
- Wrapper around the R language
- Extends what R can do and facilitates writing R code
- Free and open source

- ca. 1992 conceived by <u>Robert Gentleman</u> and <u>Ross</u> <u>Ihaka</u> (R&R) at the University of Auckland, NZ as a tool for **teaching statistics**
- 1994 initial version
- 2000 stable version
- 2011 RStudio, first release by J.J. Allaire
- ca. 2017 <u>Tidyverse</u> by Hadley Wickham

The working directory

- Where R will look for and save files
- Check working directory with the getwd(), setwd() functions

```
> getwd()
[1] "C:/Users/auue0001/OneDrive - Sveriges lantbruksuniversitet/Dokument"
```

> setwd("C:/Users/auue0001/OneDrive - Sveriges lantbruksuniversitet/Dokument")

Suggested subdirectories

data/ for raw data and intermediate datasets

data_output/ modified versions of raw data

documents/ outlines, drafts, other text

fig_output/ graphics generated by scripts

scripts/
 R scripts for different analyses or plotting

create subdirectory
dir.create(path = "path to working directory/data output")

Folder Blank File 🕶 Delete 📑 Rename

A_W _ABS Biplob_15_10_2023.pptx

bvg00190.pathview.png

bvg01200.pathview.png

bva00190.pna

bvg00190.xml

Application management ABS Biplob....

A W ABS Biplob 16 06 2023 final for... 17.8 MB

Modified

Nov 4, 2023, 12:10 AM

Nov 4, 2023, 12:09 AM

Oct 17, 2023, 9:46 AM

Oct 14, 2023, 10:32 PM

Nov 27, 2022, 5:30 PM

Feb 28, 2023, 2:22 PM

Feb 28, 2023, 2:22 PM

Feb 28, 2023, 2:22 PM

Feb 13, 2023, 4:34 PM

7.2 MB

38.8 KB

18.5 MB

4.3 MB

133.5 KB

143.6 KB

64.5 KB

5 KB

▲ Name

Packages

- developed by the community
- cover several very diverse areas of science/life
- uniformly structured and documented
- organized in repositories:
 - CRAN

Packages

developed by the community

cover several very diverse areas

uniformly structured and docume

organized in repositories:

CRAN

Packages

- developed by the community
- cover several very diverse areas of science/life
- uniformly structured and documented
- organized in repositories:
 - CRAN
 - Bioconductor
 - R-Forge
 - GitHub

```
if (!require("BiocManager", quietly = TRUE))
   install.packages("BiocManager")
BiocManager::install(version = "3.18")
```


Assign values to objects

```
p <- 3
```

$$x <- c(1, 6, 8)$$

Types of vectors and objects

• Scalar (0 dimention):

```
p <- 3
```

• Vector (arrays -1 dimention):

```
x <- c(1, 6, 8)
y <- ("car", "truck")
```

• Matrix (2 dimension):

Types of vectors and objects

- character: y <- ("car", "truck")
- numeric: x <- c(1.1, 6.2, 8.4)
- integer: z <- 2
- logical: TRUE, FALSE
- complex: 1+4i (complex numbers with real and imaginary parts)

R has many functions to examine features of vectors and other objects:,

- •class() what kind of object is it (high-level)?
- •typeof() what is the object's data type (low-level)?
- •length() how long is it? What about two dimensional objects?
- •attributes() does it have any metadata?

Data structures

- Matrix
- Data frames
- Factors (r assign a level for each values)
- Arrays
- Lists

```
> x <- 1:12

> # Create a 3 x 4 array from the vector
> my_array <- array(values, dim = c(3, 4))

> # Print the array
> print(my_array)
    [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
> values
[1] 1 2 3 4 5 6 7 8 9 10 11 12
```

```
mat=matrix(data=c(9,2,3,4,5,6),ncol=3)

matrix
```

```
1 > t = data.frame(x = c(11,12,14),
2          y = c(19,20,21), z = c(10,9,7))
3 > t
4          x y z
5          1 11 19 10
6          2 12 20 9
7          3 14 21 7
```

```
1 > L = list(one=1, two=c(1,2),
2  five=seq(0, 1, length=5))
3 > L
4  $one
5  [1]  1
6  $two
7  [1]  1  2
```


Ways to get data in R or in RStudio

Manually:

- data.frame() function in Base R,
- or the tibble() function in the tidyverse.

Import it from a file:

- Fasta: VCF (vcfR package)
- Text: TXT (readLines() function)
- Tabular data: CSV, TSV (read.table() or read_delim() fureadr package which contains read_csv())
- Excel: XLSX (xlsx package)
- Google sheets: (googlesheets package)
- Statistics program: SPSS, SAS (haven package)
- Databases: MySQL (RMySQL package)

Data import with the tidyverse :: CHEAT SHEET

Student ID, Full Name, favourite. food, mealPlan, AGE 1, Sunil Huffmann, Strawberry yoghurt, Lunch only, 4 2, Barclay Lynn, French fries, Lunch only, 5 3, Jayendra Lyne, N/A, Breakfast and lunch, 7 4, Leon Rossini, Anchovies, Lunch only, 5, Chidiegwu Dunkel, Pizza, Breakfast and lunch, five 6, Güvenç Attila, Ice cream, Lunch only, 6

Table 7.1 shows a representation of the same data as a table.

Table 7.1: Data from the students.csv file as a table.

Student ID Full Name	favourite.food	mealPlan	AGE
1 Sunil Huffmann	Strawberry yoghurt	Lunch only	4
2 Barclay Lynn	French fries	Lunch only	5
3 Jayendra Lyne	N/A	Breakfast and lunch	7
4 Leon Rossini	Anchovies	Lunch only	NA
5 Chidiegwu Dunkel	Pizza	Breakfast and lunch	five
6 Güvenç Attila	Ice cream	Lunch only	6

country	year	cases	population		
Afglaanstan	100	45	18:57071		
Afghanistan	2000	2666	20! 95360		
Brazil	1999	37737	172006362		
Brazi	2000	80488	174904898		
China	1999	212258	1272915272		
Chin	20	21 66	1280 28583		
variables					

Processes

Program

How to export or save as results or data

write.csv(df , file = "path/to/your/saving/folder/df.csv")

writexl::write_xlsx (test_df, path = "C:/Users/your_username/test_df.xlsx",
col_names = TRUE, format_headers = TRUE)

How to export or save as plot

```
dev.print (device=jpeg, file="path/to/your/saving/plots/figure_1a.jpg", width=par("din")[1]*300, res=300, quality=100)
```

ggsave("path/to/your/saving/plots/figure_1a.png", plot = p1, bg ="white")

Seeking help

- RStudio help interface
 - ?sum
 - help.search(), with term in "" inside parentheses
- Google or chatgpt "R <task>"
- When asking others
 - Use correct words
 - Reduce to reproducible example
 - Always include output of sessionInfo() function

Name

ata data

fig_1a.png test_df.xlsx

tst0.txt

tst1.txt

tst2.txt

Start by looking at the file names and sizes:

```
fhvhv csv files <- list.files("original csv", recursive=TRUE, full.names = TRUE)</pre>
                       data.frame(file = fhvhv csv files, size Mb = file.size(fhvhv csv files) / 1024^2)
data.table in R - The Complet
                       ##
                                                                            file
                                                                                    size Mb
data_handling_part_2_v1_files
                             original csv/2020/01/fhvhv tripdata 2020-01.csv 1243.4975
A (very) short introduction to
                             original csv/2020/02/fhvhv_tripdata_2020-02.csv 1313.2442
🧿 data.table in R - The Complet
                             original csv/2020/03/fhvhv tripdata 2020-03.csv 808.5597
data_handling_part_1.qmd
                             original csv/2020/04/fhvhv tripdata 2020-04.csv 259.5806
🧿 data_handling_part_2_v1.htm
                             original csv/2020/05/fhvhv tripdata 2020-05.csv
                                                                                  366.5430
data handling part 2 v1.gmc
                             original csv/2020/06/fhvhv tripdata 2020-06.csv
                                                                                  454.5977
                       ## 7
                             original_csv/2020/07/fhvhv_tripdata_2020-07.csv
                                                                                   599,2560
                             original_csv/2020/08/fhvhv_tripdata_2020-08.csv
                                                                                  667,6880
                             original csv/2020/09/fhvhv tripdata 2020-09.csv
                                                                                  728.5463
                       ## 10 original csv/2020/10/fhvhv_tripdata_2020-10.csv
                                                                                  798.4743
                       ## 11 original csv/2020/11/fhvhv tripdata 2020-11.csv
                                                                                  698,0638
                       ## 12 original csv/2020/12/fhvhv tripdata 2020-12.csv
                                                                                   700.6804
```

We can already guess based on these file sizes that with only 4 Gb of RAM available we're going to have a problem.

Handle large datasets

- Good management strategies for large files
 - if you work with 10 to100 GB regularly!?
 - <u>r-datatable.com</u>
 - library(data.table)
 - R script: firstscript.R

install.packages("arrow")

Good housekeeping strategies for scripts

Comments, Structure:

- Use #
- Outline

Consistent Naming Conventions:

- Use consistent naming conventions for variables, functions, and objects
- Avoid duplicating code. create a function or use a loop

Version Control:

Git. Platforms like GitHub or GitLab repositories.

Imports and Dependencies:

- List all package imports at the top of your script
- call rhistory: sessionInfo()

File Organization

 Separate your R scripts, data, documentation, and output files into logical folders.

Reproducibility:

- Use Quarto, R Markdown Documents:
- Documentation Files:
- Create README files

Filtering of genotype data

- · Subset data, metadata
 - Based on "rows (observations)", "variable" or "values"
 - Filter
- Missing data ("NA", stat, summary)

height_sub_12 <- subset(data, height<12)

data_filter_na <- data[!is.na(data\$height).]

- mutate() adds new variables that are functions of existing variables
- <u>select()</u> picks variables based on their names.
- <u>filter()</u> picks cases based on their values.
- <u>summarise()</u> reduces multiple values down to a single summary.
- <u>arrange()</u> changes the ordering of the rows.

Conversion of different genotype file formats

Common programs used to handle the file formats:

- Hapmap: library(plink), library(VariantAnnotation)
- Numeric: library(readxl, writexl), library(jsonlite)
- Haploid format one letter code (readLines function)

Outliers in genotype and phenotype datasets

- Histogram, scatterplot, and boxplot, Q-Q plot, chi square test

x = c(10,4,6,8,9,8,7,6,12,14,11,9,8,4,5,10,14,12,15,7,10,14,24,28)

Histogram

Boxplot

Outliers in genotype and phenotype datasets

- Histogram, scatterplot, and boxplot, Q-Q plot, chi square test
- IQR


```
x = c(10,4,6,8,9,8,7,6,12,14,11,9,8,4,5,10,14,12,15,7,10,14,24,28)
# get values of Q1, Q3, and IQR
summary(x)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 4.00 7.00 9.50 10.62 12.50 28.00
# get IQR
IQR(x)
[1] 5.5
# get threshold values for outliers
Tmin = 7-(1.5*5.5)
Tmax = 12.50 + (1.5*5.5)
# find outlier
x[which(x < Tmin \mid x > Tmax)]
[1] 24 28
# remove outlier
x[which(x > Tmin & x < Tmax)]
[1] 10 4 6 8 9 8 7 6 12 14 11 9 8 4 5 10 14 12 15 7 10 14
```


Questions?!

Acknowledgements

NBIS