Redes Bayesianas: Independencia condicional

Aritz Pérez¹ Borja Calvo²

Basque Center for Applied Mathematics ${\sf UPV/EHU}$

Donostia, Febrero de 2015

Bibliografía

Castillo97: E. Castillo, J.M. Gutiérrez y A.S. Hadi (1997). Sistemas Expertos y Modelos de Redes Probabilísticas. Academia de Ingeniería.

Qué es?

Independencia condicionada

Sean A, B, C conjuntos disjuntos de $V = \{1, ..., n\}$. Decimos que \mathbf{X}_A es independiente de \mathbf{X}_B condicionada a \mathbf{X}_C si y solo si para todo $(\mathbf{x}_A, \mathbf{x}_B, \mathbf{x}_C)$ se verifica que $p(\mathbf{x}_A | \mathbf{x}_B, \mathbf{x}_C) = p(\mathbf{x}_A, |\mathbf{x}_C)$ y lo denotamos como i(A; B|C).

Interpretaciones

- Describe una relación cualitativa entre variables aleatorias
- Sabiendo \mathbf{x}_C el valor \mathbf{x}_B no modifica la probabilidad de \mathbf{X}_A
- Regularidades en la distribución: reducción del número de parámetros

Regularidades: sin independencia

Regularidades: sin independencia

Regularidades: con independencia

Regularidades: con independencia

Reducción de parámetros

Independencias condicionadas reducen los parámetros

- (A; B|∅)
 - $p(\mathbf{X}_A, \mathbf{X}_B) = p(\mathbf{X}_A)p(\mathbf{X}_B)$
 - de $r_A \cdot r_B 1$ a $r_A 1 + r_B 1$
- (A; B|C)
 - Para todo \mathbf{x}_C : $p(\mathbf{X}_A, \mathbf{X}_B | \mathbf{x}_C) = p(\mathbf{X}_A | \mathbf{x}_C) p(\mathbf{X}_B | \mathbf{x}_C)$
 - de $((r_A \cdot r_B) 1) \cdot r_C$ a $(r_A 1 + r_B 1) \cdot r_C$

Independencias en probabilidad empírica

- Los datos rara vez muestran independencias condicionales
- Perdida de información frente a estimaciones más robustas
- Test hipótesis de la independencia condicionada

Redes Bayesianas: Independencia condicional

Aritz Pérez¹ Borja Calvo²

Basque Center for Applied Mathematics ${\sf UPV/EHU}$

Donostia, Febrero de 2015