Calculating Likelihoods on Trees

Revisiting a Single Branch

 $\mathscr{L}(G)$

Revisiting a Single Branch

$$\mathcal{L}(A) = G$$

$$\mathcal{L}(A) + G$$

Chapman-Kolmogorov Equation

$$\mathcal{L}(A) = G)$$

$$= \mathcal{L}(A) + G) + G$$

$$\mathcal{L}(A) + G$$

$$P_{AA}(0.15)$$

Probability of starting with an A and ending with an A on a branch of length 0.15.

$$P_{AA}(0.15)$$
 $P_{AG}(0.30)$

Probability of starting with an A and ending with a G on a branch of length 0.30.

$$\mathscr{L}(A) \xrightarrow{v_1 = 0.15} A \xrightarrow{v_2 = 0.30} G)$$

$$P_{AA}(0.15)$$
 * $P_{AG}(0.30)$

$$\mathcal{L}(A) \xrightarrow{v_1 = 0.15} A \xrightarrow{v_2 = 0.30} G) + \\ \mathcal{L}(A) \xrightarrow{C} G G) + \\ \mathcal{L}(A) \xrightarrow{G} G) + \\ \mathcal{L}(A) \xrightarrow{G} G) + \\ \mathcal{L}(A) \xrightarrow{G} G) + \\ \mathcal{L}(A) \xrightarrow{C} G G) + \\ \mathcal{L$$

Three-Taxon Unrooted Tree

Three-Taxon Unrooted Tree

