

Ejercicio 3.7

[71.14] Modelos y Optimización I Curso 4 $2 \hbox{C 2021}$

Alumno:	Grassano, Bruno
Número de padrón:	103855
Email:	bgrassano@fi.uba.ar

$\mathbf{\acute{I}ndice}$

1.	Enunciado	2
2.	Análisis de la situación problemática	3
3.	Objetivo	3
4.	Hipótesis y supuestos	3
5.	Definición de variables	3
6.	Modelo de programación lineal6.1. Funcional6.2. Restricciones	4 4
7.	Resolución por software	5
8.	Informe de la solución óptima	8

1. Enunciado

Una empresa mayorista compra y vende 3 productos A, B y C. En este momento tiene en stock 50, 100 y 300 unidades respectivamente. El precio de venta de A varía con la cantidad vendida: si vende hasta 500 unidades, \$20 c/u, de 500 a 1000, \$18 y más de 1000, \$15.

Los precios de venta de B y C son de \$ 35 y \$ 40 respectivamente.

La cantidad a entregar de A debe ser la menor de las tres pero si la cantidad entregada de B es menor que la de C esta limitación no se toma en cuenta.

Los precios de compra son los siguientes:

- producto A: \$ 3 c/u
- producto B: \$ 4 c/u si la compra de producto C es menor de 2500 un. y \$ 3. si la compra de C es mayor de 2500 unidades.
- producto C: \$ 6 c/u si se compran hasta 1000 un., \$ 5 si se compran menos de 3000 un. y \$ 4 para compras mayores de 3000 unidades.

Las demandas máximas son de 2000, 3000, y 4000 unidades respectivamente

2. Análisis de la situación problemática

■ El precio de venta de A varia según la cantidad vendida, es similar al 3.6 con las maquinas. (Algo similar se ve con la compra del producto B y C) (La diferencia esta que en este caso este precio no se paga una vez, se paga por cada unidad)

- Se tienen restricciones bivalentes.
- No se especifica el periodo.

3. Objetivo

Determinar la cantidad de cada tipo de producto a vender para maximizar las ganancias durante un periodo.

4. Hipótesis y supuestos

- 1. Todo lo puesto a la venta se vende. (Certeza)
- 2. Los precios son estables y exactos. (Certeza)
- 3. Se pueden hacer encargos y ventas de unidades (no es necesario que sea de a 10/20/...) (Certeza)
- 4. Los productos de un mismo tipo son indistinguibles. (Certeza)
- 5. Los productos no vienen con fallas. (Certeza)
- 6. No hay stock final. (Certeza)
- 7. El stock inicial esta en buenas condiciones. (Certeza)
- 8. Los productos en stock son indistinguibles de los comprados. (Certeza)
- 9. Los productos en stock no tienen costos, estos ya fueron pagados en otro periodo. (Certeza)
- 10. No hay otros costos asociados al proceso. (Certeza)

5. Definición de variables

*Con tipos y unidades

- PA_i : Indica la cantidad a vender de A dentro del rango de precio i. i = 1, 2, 3 (unidad/periodo)(Entera)
- Pj: Indica la cantidad a vender de j. j = B, C (unidad/periodo)(Entera)
- $\,\blacksquare\,$ CA: Indica la cantidad a comprar de A. (unidad/periodo)(Entera)
- Cj_i : Indica la cantidad a comprar de j dentro del rango de precio i. i = 1, 2, 3, j = B, C (unidad/periodo)(Entera)
- YA_i : Indica si se usa el rango i de venta del producto A.i = 1, 2, 3 (Bivalente) (Vale 1 si esta en el rango)
- Yj_i : Indica si se usa el rango i de compra del producto j . i = 1, 2, 3, j = B, C (Bivalente) (Vale 1 si esta en el rango) (El 3 de la i solo para C)
- YBC: Indica si la cantidad de B es menor que C. (Bivalente) (Vale 1 si es menor)

6. Modelo de programación lineal

*Indicando en cada restricción o grupo de restricciones la función que cumplen.

6.1. Funcional

Buscamos maximizar la ganancia.

$$max(20PA_1 + 18PA_2 + 15PA_3 + 35PB + 40PC - 3CA - 4CB_1 - 3CB_2 - 6CC_1 - 5CC_2 - 4CC_3)$$

6.2. Restricciones

Empezamos planteando las demandas máximas que tenemos.

- $PA_i \le 2000 \text{ Con } i = 1, 2, 3$
- *PB* ≤ 3000
- $PC \le 4000$

Planteamos las relaciones entre lo que se compra y lo que se vende.

- $CA + 50 = \sum_{i=1}^{3} PA_i$

Planteamos el precio de venta de A.

- $1YA_1 \le PA_1 \le 499YA_1$
- $500YA_2 \le PA_2 \le 1000YA_2$
- $\blacksquare 1001YA_3 < PA_3 < MYA_3$
- $\sum_{i=1}^{3} YA_i = 1$

Varia el precio de compra de B.

- $1YB_1 \le CC_1 + CC_2 + CC_3 \le 2499YB_1 + MYB_2$
- $2500YB_2 \le CC_1 + CC_2 + CC_3 \le MYB_2 + MYB_1$
- $CB_1 \leq MYB_1$
- $\blacksquare CB_2 \le MYB_2$
- $\sum_{i=1}^{2} YB_i = 1$

Varia el precio de compra de C.

- $1YC_1 \le CC_1 \le 1000YC_1$
- $1001YC_2 \le CC_2 \le 2999YC_2$
- $3000YC_3 \le CC_3 \le MYC_3$
- $\sum_{i=1}^{3} YC_i = 1$

Nos queda que la cantidad entregada de A debe ser menor que las 3, pero que si B es menor que C no se tiene en cuenta.

- $PA_1 + PA_2 + PA_3 \le PB + MYBC$
- $PA_1 + PA_2 + PA_3 \le PC + MYBC$
- $PC MYBC \le PB \le PC + M(1 YBC)$

7. Resolución por software

```
El modelo:
set Rango3;
set Rango2;
param M;
param preciosVentaA{i in Rango3};
param preciosCompraB{i in Rango2};
param preciosCompraC{i in Rango3};
var PA{i in Rango3} >=0 integer;
var PB >= 0 integer;
var PC >= 0 integer;
var CA >= 0 integer;
var CB{i in Rango2} >=0 integer;
var CC{i in Rango3} >=0 integer;
var YA{i in Rango3} >=0 binary;
var YB{i in Rango2} >=0 binary;
var YC{i in Rango3} >=0 binary;
var YBC >=0 binary;
maximize z: sum{i in Rango3} PA[i] * preciosVentaA[i] + 35 * PB + 40 * PC
- 3 * CA - (sum{i in Rango2} CB[i] * preciosCompraB[i])
- (sum{i in Rango3} CC[i] * preciosCompraC[i]);
s.t. limA1: PA[1] <= 2000;
s.t. limA2: PA[2] <= 2000;
s.t. limA3: PA[3] <= 2000;
s.t. limB: PB <= 3000;
s.t. limC: PC <= 4000;
s.t. compVentA: CA + 50 = sum{i in Rango3} PA[i];
s.t. compVentB: sum{i in Rango2} CB[i] + 100 = PB;
s.t. compVentC: sum{i in Rango3} CC[i] + 300 = PC;
s.t. rango1A1: YA[1] <= PA[1];</pre>
s.t. rango1A2: PA[1] \le 499 * YA[1];
s.t. rango2A1: 500 * YA[2] <= PA[2];
s.t. rango2A2: PA[2] \le 1000 * YA[2];
s.t. rango3A1: 1001 * YA[3] \le PA[3];
s.t. rango3A2: PA[3] \leftarrow M * YA[3];
s.t. limRangosA: sum{i in Rango3} YA[i] = 1;
s.t. rango1B1: YB[1] <= sum{i in Rango3} CC[i];</pre>
s.t. rango1B2: sum{i in Rango3} CC[i] <= 2499 * YB[1] + M * YB[2];
s.t. rango2B1: 2500 * YB[1] <= sum{i in Rango3} CC[i];
s.t. rango2B2: sum{i in Rango3} CC[i] \le M * YB[1] + M * YB[2];
s.t. opcionB1: CB[1] \leftarrow M * YB[1];
s.t. opcionB2: CB[2] \leftarrow M * YB[2];
s.t. limRangosB: sum{i in Rango2} YB[i] = 1;
```

```
s.t. rango1C1: YC[1] <= CC[1];</pre>
s.t. rango1C2: CC[1] \le 1000 * YC[1];
s.t. rango2C1: 1001 * YC[2] \leftarrow CC[2];
s.t. rango2C2: CC[2] <= 2999 * YC[2];
s.t. rango3C1: 3000 * YC[3] <= CC[3];
s.t. rango3C2: CC[3] \leftarrow M * YC[3];
s.t. limRangosC: sum{i in Rango3} YC[i] = 1;
s.t. limCantAB: sum{i in Rango3} PA[i] <= PB + M * YBC;</pre>
s.t. limCantAC: sum{i in Rango3} PA[i] <= PC + M * YBC;</pre>
s.t. menor1: PC - M * YBC <= PB;</pre>
s.t. menor2: PB \leftarrow PC + M * (1 - YBC);
data;
param M := 10000;
set Rango3 := 1 2 3;
set Rango2 := 1 2;
param preciosVentaA :=
1 20
2 18
3 15;
param preciosCompraB :=
1 4
2 3;
param preciosCompraC :=
1 6
2 5
3 4;
end;
```

Los resultados:

Problem: 3 Rows: 34

Columns: 20 (20 integer, 9 binary) Non-zeros: 97

Status: INTEGER OPTIMAL
Objective: z = 265650 (MAXimum)

No.	Row name		Activity	Lower	bound	Upper	bound
1	z		265650				
	limA1		0				2000
	limA2		0				2000
	limA3		2000				2000
	limB		3000				3000
	limC		4000				4000
	compVentA		-50		-50		=
	compVentB		-100		-100		=
9	compVentC		-300		-300		=
10	rango1A1		0				-0
11	rango1A2		0				-0
12	rango2A1		0				-0
13	rango2A2		0				-0
14	rango3A1		-999				-0
15	rango3A2		-8000				-0
16	limRangosA		1		1		=
	rango1B1		-3700				-0
	rango1B2		-6300				-0
	rango2B1		-3700				-0
	rango2B2		-6300				-0
	opcionB1		0				-0
	opcionB2		-7100				-0
	limRangosB		1		1		=
	rango1C1		0				-0
	rango1C2		0				-0
	rango2C1		0				-0
	rango2C2		0				-0
	rango3C1		-700				-0
	rango3C2		-6300		4		-0
	limRangosC		11000		1		=
	limCantAB limCantAC		-11000 -12000				-0 -0
	menor1		-12000 -9000				-0 -0
	menor1 menor2		9000				10000
34	menor z		9000				10000
No.	Column name		Activity	Lower	bound	Upper	bound
1	PA[1]	*	0		0		
	PA[2]	*	0		0		
	PA[3]	*	2000		0		
	РВ	*	3000		0		
5	PC	*	4000		0		
6	CA	*	1950		0		

7	CB[1]	*	0	0	
8	CB[2]	*	2900	0	
9	CC[1]	*	0	0	
10	CC[2]	*	0	0	
11	CC[3]	*	3700	0	
12	YA[1]	*	0	0	1
13	YA[2]	*	0	0	1
14	YA[3]	*	1	0	1
15	YB[1]	*	0	0	1
16	YB[2]	*	1	0	1
17	YC[1]	*	0	0	1
18	YC[2]	*	0	0	1
19	YC[3]	*	1	0	1
20	YBC	*	1	0	1

Integer feasibility conditions:

```
KKT.PE: max.abs.err = 0.00e+00 on row 0
    max.rel.err = 0.00e+00 on row 0
    High quality
```

```
KKT.PB: max.abs.err = 0.00e+00 on row 0
    max.rel.err = 0.00e+00 on row 0
    High quality
```

End of output

8. Informe de la solución óptima

La forma para maximizar las ganancias es:

- \blacksquare vender 2000 (\$15 c/u) unidades de A comprando 1950 (\$3 c/u).
- \blacksquare vender 3000 (\$35 c/u) unidades de B comprando 2900 (\$3 c/u).
- \blacksquare vender 4000 (\$40 c/u) unidades de C comprando 3700 (\$4 c/u).

De esta forma se obtiene una ganancia de \$265.650.