A TEMPLATE FOR THE ARXIV STYLE

A Preprint

Orlandi Franco *

Department of Computer Science Cranberry-Lemon University Pittsburgh, PA 15213 franco.orlandi@hotmail.com

Paura Fabrizio

Department of Electrical Engineering Mount-Sheikh University Santa Narimana, Levand fabri.paura@gmail.com

Negri Alesio

Department of Electrical Engineering Mount-Sheikh University Santa Narimana, Levand alesgamernegri@gmail.com

Barrera Ivan

Department of Electrical Engineering Mount-Sheikh University Santa Narimana, Levand iebarrera111@gmail.com

April 3, 2024

Abstract

Enter the text of your abstract here.

title: "Costos Operativos" author: "Grupo Sierra" date: "2024-03-28"

0.1 output: pdf_document

1 Análisis de Herramientas para emprendimiento

1.1 Computadoras

Característica	Samsung	lenovo
Precio	\$600000	800000
Calidad	Buena	Excelente
Funcionalidades	Limitadas	Variadas

1.2 Servidores

Característica	Servido core i7	Servidor core i5
Precio	\$1210000	\$900000
velocidad	Rápida	media
Memoria	grande	grande

1.3 Sevicios de antivirus

 $^{^*}$ Use footnote for providing further information about author (webpage, alternative address)—not for acknowledging funding agencies. Optional.

Avast	AVG
\$500	\$300
mejor para seguridad en linea	mejor para optimizar sistemas

1.4 Escritorios de trabajo

- Escritorio de madera
 - madera de cedro \$50000
 - madera de pino \$60000
- escritorio de hierro \$90000
- escritorio de melamina \$120000

1.5 Seguros de computadoras

1.5.1 Cobertura por destruccion total

- Seguro "La caja" \$2000/mes
- Seguro "Allians" \$1500/mes
- Seguro "San Cristobal" \$3000/mes

1.6 Servicio de internet

1.6.1 Fibra óptica

- Movistar: \$15000/mesPersonal: \$12000/mes
- Arlink: \$17000/mes keywords:
 - blah
 - blee
 - bloo
 - these are optional and can be removed bibliography: references.bib biblio-style: unsrt output: rticles::arxiv_article —

2 Introduction

Para poner titulos se usa el simbolo # y subtitulos el ## y asi sucesivamente decreciendo el orden de importancia se va agregando # Para hacer un cuadro se usa las barras verticales y se separa los encabezados con guiones medios debajo del encabezado. Para poner viñetas se pone *

3 Headings: first level

You can use directly LaTeX command or Markdown text.

LaTeX command can be used to reference other section. See Section 3. However, you can also use **bookdown** extensions mechanism for this. ##Vectores

Un vector es una estructuar de datos que almacena numeros de doble precision

```
mi_vector_a <- c(12,34,12,54,23,12,65,34,12,56,66)
mi_vector_b <- seq(1:16)
mi_vector_a
```

```
## [1] 12 34 12 54 23 12 65 34 12 56 66
```

```
mi_vector_b
```

```
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
##Matrices Las matrices se parecen a los vectores, pero tienen filas y columnas se alimentan vectores
mi_matriz_c <-matrix(mi_vector_b,nrow=4,byrow=TRUE)</pre>
mi_matriz_c
         [,1] [,2] [,3] [,4]
##
## [1,]
                 2
            1
                       3
## [2,]
                       7
            5
                 6
                             8
                10
## [3,]
            9
                            12
                      11
                           16
## [4,]
           13
                14
                      15
Para acceder a un elemento de la matriz uso las filas y columnas entre corchetes
mi_matriz_c[2,3]
## [1] 7
Como traer la fila 4 completa?
mi_matriz_c[4,]
## [1] 13 14 15 16
Como traer una columna?
mi_matriz_c[,2]
## [1] 2 6 10 14
Que hara este comando?
mi_matriz_c[-2,]
         [,1] [,2] [,3] [,4]
##
## [1,]
                 2
                       3
            1
## [2,]
            9
                            12
                10
                      11
## [3,]
           13
                14
                      15
                            16
mi_vector_i <- seq(1:100)
mi_vector_i
##
     [1]
            1
                2
                     3
                         4
                              5
                                  6
                                       7
                                           8
                                                9
                                                   10
                                                       11
                                                            12
                                                                13
                                                                     14
                                                                         15
                                                                              16
                                                                                  17
                                                                                       18
                   21
                        22
                             23
                                 24
                                     25
                                          26
##
    [19]
           19
               20
                                              27
                                                   28
                                                       29
                                                            30
                                                                31
                                                                     32
                                                                         33
                                                                              34
                                                                                  35
                                                                                       36
##
    [37]
           37
               38
                   39
                        40
                             41
                                 42
                                      43
                                                   46
                                                       47
                                                            48
                                                                49
                                                                     50
                                                                         51
                                                                              52
                                                                                  53
                                                                                       54
                                          44
                                              45
##
    [55]
           55
               56
                   57
                        58
                            59
                                 60
                                      61
                                          62
                                              63
                                                   64
                                                       65
                                                            66
                                                                67
                                                                     68
                                                                         69
                                                                              70
                                                                                  71
                                                                                       72
                            77
##
    [73]
           73
               74
                    75
                        76
                                 78
                                      79
                                          80
                                              81
                                                   82
                                                       83
                                                            84
                                                                85
                                                                     86
                                                                         87
                                                                              88
                                                                                  89
                                                                                       90
    [91] 91
              92
                   93
                        94
                             95
                                 96
                                     97
                                          98
                                              99 100
start_time <- Sys.time()</pre>
mi_matriz_i <-matrix(mi_vector_i,nrow=100,byrow=TRUE)</pre>
mi_matriz_i
           [,1]
##
##
      [1,]
              1
##
      [2,]
              2
##
     [3,]
              3
##
      [4,]
              4
```

##	[5,]	5
##	[6,]	6
##	[6,] [7,]	7
##	[8,]	8
##	[9,]	9
##	[10,] [11,] [12,]	10
##	[11,]	11
##	[12,]	12
##	[13,]	13
##	[14,]	14
##	[15,]	15
##	[16,] [17,] [18,]	16
##	[17,]	17
##	[18,]	18
##	[19,]	19
##	[20,]	20
##	[21,]	21
##	[22,] [23,]	22
##	[23,]	23
##	[24,]	24
##	[25,]	25
##	[26,]	26
##	[27,] [28,] [29,]	27
##	[28,]	28
##	[29,]	29
##	[30,]	30
##	[31,]	31
##	[32,]	32
##	[33,] [34,]	33
##	[34,]	34
##	[35,]	35
##	[36,]	36
## ##	[37,]	37 38
##	[38,]	39
##	[39,] [40,]	40
##	[41,]	41
##	[42,]	42
##	[43,]	43
##	[44,]	44
##	[45,]	45
##	[45,] [46,]	46
##	[47,]	47
##	[48,]	48
##	[49,]	49
##	[50.]	50
##	[50,] [51,]	51
##	[52,]	52
##	[53,]	53
##	[54,]	54
##	[55,]	55
##	[55,] [56,]	56
##	[57,]	57
##	[58,]	58
##	[59,]	59
##	[60,]	60
##	[61,] [62,]	61
##	[62,]	62
##	[63,]	63

```
##
     [64,]
              64
     [65,]
##
              65
##
     [66,]
              66
     [67,]
##
              67
##
              68
     [68,]
##
     [69,]
              69
##
     [70,]
              70
##
     [71,]
              71
##
     [72,]
              72
##
    [73,]
              73
##
    [74,]
              74
##
              75
     [75,]
##
     [76,]
              76
              77
##
     [77,]
##
     [78,]
              78
##
     [79,]
              79
     [80,]
##
              80
##
     [81,]
              81
##
     [82,]
              82
##
     [83,]
              83
##
    [84,]
              84
##
    [85,]
              85
##
    [86,]
              86
##
    [87,]
              87
##
    [88,]
              88
##
    [89,]
              89
##
    [90,]
              90
##
    [91,]
              91
     [92,]
##
              92
##
     [93,]
              93
##
     [94,]
              94
##
     [95,]
              95
##
     [96,]
              96
##
     [97,]
              97
##
    [98,]
              98
##
    [99,]
              99
## [100,]
            100
end_time <- Sys.time()
end_time - start_time
```

Time difference of 0.002015829 secs

3.1 Headings: second level

You can use equation in blocks

$$\xi_{ij}(t) = P(x_t = i, x_{t+1} = j | y, v, w; \theta) = \frac{\alpha_i(t) a_{ij}^{w_t} \beta_j(t+1) b_j^{v_{t+1}}(y_{t+1})}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i(t) a_{ij}^{w_t} \beta_j(t+1) b_j^{v_{t+1}}(y_{t+1})}$$

But also in line i.e z = x + y

3.1.1 Headings: third level

Another paragraph.

4 Examples of citations, figures, tables, references

You can insert references. Here is some text (Kour and Saabne 2014b, 2014a) and see Hadash et al. (2018).

Figure 1: Sample figure caption.

Table 4: Sample table title

Name	Description	Size (μm)
Dendrite Axon	Input terminal Output terminal	~100 ~10
Soma	Cell body	up to 10^6

The documentation for natbib may be found at

You can use custom blocks with LaTeX support from rmarkdown to create environment.

http://mirrors.ctan.org/macros/latex/contrib/natbib/natnotes.pdf%7D

Of note is the command \citet, which produces citations appropriate for use in inline text. You can insert LaTeX environment directly too.

\citet{hasselmo} investigated\dots

produces

Hasselmo, et al. (1995) investigated...

https://www.ctan.org/pkg/booktabs

4.1 Figures

You can insert figure using LaTeX directly.

See Figure 1. Here is how you add footnotes. [^Sample of the first footnote.]

But you can also do that using R.

plot(mtcars\$mpg)

You can use bookdown to allow references for Tables and Figures.

4.2 Tables

Below we can see how to use tables.

See awesome Table~4 which is written directly in LaTeX in source Rmd file.

You can also use R code for that.

Figure 2: Another sample figure

knitr::kable(head(mtcars), caption = "Head of mtcars table")

Table 5: Head of mtcars table

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

4.3 Lists

- Item 1
- Item 2
- Item 3

Hadash, Guy, Einat Kermany, Boaz Carmeli, Ofer Lavi, George Kour, and Alon Jacovi. 2018. "Estimate and Replace: A Novel Approach to Integrating Deep Neural Networks with Existing Applications." arXiv Preprint arXiv:1804.09028.

Kour, George, and Raid Saabne. 2014a. "Fast Classification of Handwritten on-Line Arabic Characters." In Soft Computing and Pattern Recognition (SoCPaR), 2014 6th International Conference of, 312–18. IEEE.
 ——. 2014b. "Real-Time Segmentation of on-Line Handwritten Arabic Script." In Frontiers in Handwriting Recognition (ICFHR), 2014 14th International Conference on, 417–22. IEEE.