Příklad 1

Podíl polynomů je vždy na definičním oboru spojitý, tedy i $\frac{2x^2y}{x^4+y^2}$ je na celém definičním oboru spojitý. Definiční obor funkce je $R^2 \setminus \{(0,0)\}$

Ukážeme, že v bodě (0,0) nelze funkci spojitě dodefinovat. Pokud se například k tomuto bodu budeme blížit po přímce y=x, dostaneme

$$\lim_{x \to 0} \frac{2x^3}{x^4 + x^2} = \lim_{x \to 0} \frac{12x}{12x^2 + 2} = \frac{0}{2} = 0 \text{ (z L'Hospitalova pravidla)}$$

Pokud se ovšem budeme pohybovat na křivce $y = x^2$, dojdeme k limitě

$$\lim_{x \to 0} \frac{2x^4}{2x^4} = 1$$

Jelikož pro spojitost se musí funkční hodnota rovnat limitě, nemůžeme tuto funkci dodefinovat tak, aby byla spojitá na celém \mathbb{R}^n .

Příklad 2

 $\sin x$ je spojitá funkce a podíl spojitých funkcí je spojitý, tedy i funkce $\frac{\sin x + \sin y}{x + y}$ je na definičním oboru spojitá. Definiční obor této funkce je $D_f = R^2 \setminus \{(x, -x) | x \in R\}$

Příklad 3

Chceme dokázat, že množina M je otevřená, tedy pro všechny body množiny existuje nenulové δ -okolí, jehož body všechny náleží M.

Zároveň ze spojitosti víme, že $\forall \epsilon>0 \exists \delta>0$ takové, že pro body vzdálené nejvýše o δ se funkční hodnoty změní nejvýše o ϵ .

Pokud pro každý bod $x \in M$ zvolíme δ -okolí splňující podmínku spojitosti pro $\epsilon < -f(x)$, budou se funkční hodnoty všech bodů y v tomto okolí lišit o méně než -f(x), tedy dostaneme

$$|f(x) - f(y)| < -f(x)$$

$$f(x) - f(y) > f(x) \qquad \land \qquad f(x) - f(y) < -f(x)$$

$$f(y) < 0$$

$$y \in M,$$

tedy M je otevřená množina.