Artificial Intelligence

Search

[These slides adapted from Dan Klein, Pieter Abbeel, and Nikita Kitaev]

Search Problems

- A search problem consists of:
 - A state space

A successor function (with actions, costs)

- A start state and a goal test
- A solution is a sequence of actions (a plan) which transforms the start state to a goal state

Different state representation

Search Problems Are Models

Example: Traveling in Romania

- State space:
 - Cities
- Successor function:
 - Roads: Go to adjacent city with cost = distance
- Start state:
 - Arad
- Goal test:
 - Is state == Bucharest?
- Solution?

Cleaner

Puzzles

What's in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

- Problem: Pathing
 - States: (x,y) location
 - Actions: NSEW
 - Successor: update location only
 - Goal test: is (x,y)=END

- Problem: Eat-All-Dots
 - States: {(x,y), dot booleans}
 - Actions: NSEW
 - Successor: update location and possibly a dot boolean
 - Goal test: dots all false

State Space Sizes?

World state:

Agent positions: 120

Food count: 30

Ghost positions: 12

Agent facing: NSEW

How many

- World states?
 120x(2³⁰)x(12²)x4
- States for pathing?120
- States for eat-all-dots?
 120x(2³⁰)

Quiz: Safe Passage

- Problem: eat all dots while keeping the ghosts perma-scared
- What does the state space have to specify?
 - (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only one)
- In a state space graph, each state occurs only once!
- We can rarely build this full graph in memory (it's too big), but it's a useful idea

State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only one)
- In a state space graph, each state occurs only once!
- We can rarely build this full graph in memory (it's too big), but it's a useful idea

Tiny state space graph for a tiny search problem

Search Trees

A search tree:

- A "what if" tree of plans and their outcomes
- The start state is the root node
- Children correspond to successors
- Nodes show states, but correspond to PLANS that achieve those states
- For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

Each NODE in in the search tree is an entire PATH in the state space graph.

We construct both on demand – and we construct as little as possible.

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph:

How big is its search tree (from S)?

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph:

How big is its search tree (from S)?

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

Searching with a Search Tree

Search:

- Expand out potential plans (tree nodes)
- Maintain a fringe of partial plans under consideration
- Try to expand as few tree nodes as possible

General Tree Search

```
function TREE-SEARCH( problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree end
```

- Important ideas:
 - Fringe
 - Expansion
 - Exploration strategy
- Main question: which fringe nodes to explore?

Fringes and expansions

Example: Tree Search

Example: Tree Search


```
s \rightarrow d

s \rightarrow e

s \rightarrow p

s \rightarrow d \rightarrow b

s \rightarrow d \rightarrow c

s \rightarrow d \rightarrow e

s \rightarrow d \rightarrow e \rightarrow h

s \rightarrow d \rightarrow e \rightarrow r

s \rightarrow d \rightarrow e \rightarrow r \rightarrow f

s \rightarrow d \rightarrow e \rightarrow r \rightarrow f \rightarrow c

s \rightarrow d \rightarrow e \rightarrow r \rightarrow f \rightarrow c
```

Depth-First Search

Depth-First Search

Strategy: expand a deepest node first

Implementation: Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

- Complete: Guaranteed to find a solution if one exists?
- Optimal: Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?
- Cartoon of search tree:
 - b is the branching factor
 - m is the maximum depth
 - solutions at various depths

- Number of nodes in entire tree?
 - $1 + b + b^2 + b^m = O(b^m)$

Depth-First Search (DFS) Properties

What nodes DFS expand?

- Some left prefix of the tree.
- Could process the whole tree!
- If m is finite, takes time O(b^m)

• How much space does the fringe take?

Only has siblings on path to root, so O(bm)

Is it complete?

 m could be infinite, so only if we prevent cycles (more later)

Is it optimal?

 No, it finds the "leftmost" solution, regardless of depth or cost

Breadth-First Search

Breadth-First Search

Strategy: expand a shallowest node first

Implementation: Fringe

is a FIFO queue

Breadth-First Search (BFS) Properties

- What nodes does BFS expand?
 - Processes all nodes above shallowest solution
 - Let depth of shallowest solution be s
 - Search takes time O(b^s)
- How much space does the fringe take?
 - Has roughly the last tier, so O(b^s)
- Is it complete?
 - s must be finite if a solution exists, so yes!
- Is it optimal?
 - Only if costs are all 1 (more on costs later)

Quiz: DFS vs BFS

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

Quiz: DFS vs BFS

When will BFS outperform DFS?

When will DFS outperform BFS?

Iterative Deepening

- Idea: get DFS's space advantage with BFS's time / shallow-solution advantages
 - Run a DFS with depth limit 1. If no solution...
 - Run a DFS with depth limit 2. If no solution...
 - Run a DFS with depth limit 3.
- Isn't that wastefully redundant?
 - Generally most work happens in the lowest level searched, so not so bad!

Iterative Deepining Search (naive)

```
function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution node or failure
  for depth = 0 to \infty do
     result \leftarrow DEPTH-LIMITED-SEARCH(problem, depth)
    if result \neq cutoff then return result
function DEPTH-LIMITED-SEARCH(problem, \ell) returns a node or failure or cutoff
  frontier \leftarrow a LIFO queue (stack) with NODE(problem.INITIAL) as an element
  result \leftarrow failure
  while not IS-EMPTY(frontier) do
     node \leftarrow Pop(frontier)
     if problem.Is-Goal(node.State) then return node
    if Depth(node) > \ell then
       result \leftarrow cutoff
     else if not IS-CYCLE(node) do
       for each child in EXPAND(problem, node) do
          add child to frontier
  return result
```

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions. It does not find the least-cost path. We will now cover a similar algorithm which does find the least-cost path.

Bi-directional Best-first

```
function BIBF-SEARCH(problem_F, f_F, problem_B, f_B) returns a solution node, or failure
  node_F \leftarrow Node(problem_F.INITIAL)
                                                               // Node for a start state
   node_B \leftarrow Node(problem_B.INITIAL)
                                                               // Node for a goal state
   frontier_F \leftarrow a priority queue ordered by f_F, with node_F as an element
  frontier_B \leftarrow a priority queue ordered by f_B, with node_B as an element
   reached_F \leftarrow a lookup table, with one key node_F. STATE and value node_F
   reached_B \leftarrow a lookup table, with one key node_B. STATE and value node_B
   solution \leftarrow failure
   while not TERMINATED(solution, frontier<sub>F</sub>, frontier<sub>B</sub>) do
     if f_F(\text{ToP}(frontier_F)) < f_B(\text{ToP}(frontier_B)) then
        solution \leftarrow PROCEED(F, problem_F, frontier_F, reached_F, reached_B, solution)
     else solution \leftarrow PROCEED(B, problem_B, frontier_B, reached_B, reached_E, solution)
   return solution
function PROCEED(dir, problem, frontier, reached, reached<sub>2</sub>, solution) returns a solution
          // Expand node on frontier; check against the other frontier in reached 2.
          // The variable "dir" is the direction: either F for forward or B for backward.
  node \leftarrow Pop(frontier)
  for each child in EXPAND(problem, node) do
     s \leftarrow child.STATE
     if s not in reached or PATH-COST(child) < PATH-COST(reached[s]) then
        reached[s] \leftarrow child
        add child to frontier
        if s is in reached_2 then
           solution_2 \leftarrow \text{JOIN-NODES}(dir, child, reached_2[s]))
          if PATH-COST(solution_2) < PATH-COST(solution) then
             solution \leftarrow solution_2
  return solution
```

Uniform Cost Search

Uniform Cost Search

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority: cumulative cost)

Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
 - Processes all nodes with cost less than cheapest solution!
 - If that solution costs C^* and arcs cost at least ε , then the "effective depth" is roughly C^*/ε
 - Takes time $O(b^{C*/\varepsilon})$ (exponential in effective depth)
- How much space does the fringe take?
 - Has roughly the last tier, so $O(b^{C*/\varepsilon})$
- Is it complete?
 - Assuming best solution has a finite cost and minimum arc cost is positive, yes!
- Is it optimal?
 - Yes! (Proof next lecture via A*)

Uniform Cost Issues

 Remember: UCS explores increasing cost contours

The good: UCS is complete and optimal!

- The bad:
 - Explores options in every "direction"
 - No information about goal location

We'll fix that soon!

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

The One Queue

- All these search algorithms are the same except for fringe strategies
 - Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
 - Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
 - Can even code one implementation that takes a variable queuing object

Comparison

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete? Optimal cost? Time Space	$egin{array}{l} { m Yes}^1 \ { m Yes}^3 \ O(b^d) \ O(b^d) \end{array}$	$egin{array}{c} \operatorname{Yes}^{1,2} \ \operatorname{Yes} \ O(b^{1+\lfloor C^*/\epsilon floor}) \ O(b^{1+\lfloor C^*/\epsilon floor}) \end{array}$	$egin{array}{c} ext{No} & \ ext{No} & \ O(b^m) & \ O(bm) & \end{array}$	No No $O(b^\ell)$ $O(b\ell)$	$egin{array}{l} { m Yes}^1 \ { m Yes}^3 \ O(b^d) \ O(bd) \end{array}$	$egin{array}{l} { m Yes}^{1,4} \ { m Yes}^{3,4} \ O(b^{d/2}) \ O(b^{d/2}) \end{array}$

- b branching factor;
- m maximum depth of the search tree;
- d depth of the shallowest solution, or is m when there is no solution;
- ℓ depth limit

Superscripts:

- 1. complete if b is finite, and the state space either has a solution or is finite.
- 2. complete if all action costs are $\geq \epsilon > 0$;
- 3. cost-optimal if action costs are all identical;
- 4. if both directions are breadth-first or uniform-cost.

Search and Models

- Search operates over models of the world
 - The agent doesn't actually try all the plans out in the real world!
 - Planning is all "in simulation"
 - Your search is only as good as your models...

Search Gone Wrong?

