$\mathbf{\acute{U}vod}$

Zadání

- 1. Banka nabízí dva investiční produkty. Očekávaný měsíční výnos prvního investičního produktu (v tis. Kč) při investici x (v tis. Kč) je $\frac{2x}{4x+25}$ a očekávaný měsíční výnos druhého investičního produktu (v tis. Kč) při investici x (v tis. Kč) je $\frac{x}{x+50}$. Jakým způsobem má investor rozdělit částku c=100000Kč mezi uvedené dva investiční produkty tak, aby celkový očekávaný měsíční výnos byl co největší?
- 2. Ve firmě potřebují nalézt rozměry otevřené krabice (tj. krabice bez horní stěny) se čtvercovou podstavou o objemu $10\,\mathrm{dm}^3$ tak, aby obsah plochy jejího pláště byl co nejmenší. Formulujte odpovídající optimalizační úlohu za předpokladu, že krabice je vyrobena z materiálu, jehož tloušťka je zanedbatelná. Tuto úlohu poté vyřešte.
- 3. V továrně vyrábějí zboží různých druhů. Označme je X_1, \ldots, X_n . Na jejich výrobu potřebují materiály Y_1, \ldots, Y_m . Na skladě mají k dispozici množství b_i materiálu Y_i a na trhu ho nakupují za cenu γ_i . Na výrobu jednotkového množství zboží X_j potřebují množství a_{ij} materiálu Y_i . Jednotkové množství výrobku X_j prodávají za cenu σ_j . Formulujte optimalizační úlohu problému nastavení množství výroby jednotlivých druhů produktů (předpokládejte, že hledaná množství nemusí být celočíselná) tak, aby celkový zisk z jejich prodeje byl co největší.
- 4. V \mathbb{R}^n jsou dány množiny bodů $A = \{a_1, \dots, a_k\}$ a $B = \{b_1, \dots, b_l\}$. Ař $w \in \mathbb{R}^n$ a $\lambda \in \mathbb{R}$. Předpokládejme, že H je nadrovina o rovnici $\langle x, w \rangle + \lambda = 0$, H_1 je nadrovina o rovnici $\langle x, w \rangle + \lambda = 1$ a H_2 je nadrovina o rovnici $\langle x, w \rangle + \lambda = -1$.
 - (a) Ukažte, že vzdálenost mezi nadrovinami H_1 a H_2 je $\frac{2}{\|w\|}$. Dále ukažte, že $\frac{1}{\|w\|}$ je vzdálenost H od H_1 a také vzdálenost H od H_2 .
 - (b) Interpretujte optimalizační úlohu

maximalizujte
$$g(w, \lambda) = \frac{2}{\|w\|}$$
 za podmínek $\langle a_i, w \rangle + \lambda \geq 1$ pro všechna $i = 1, \dots, k$, $\langle b_j, w \rangle + \lambda \leq -1$ pro všechna $j = 1, \dots, l$.

(c) Ukažte, že $(\hat{w}, \hat{\lambda})$ je řešením úlohy z předchozího bodu právě tehdy, když je řešením úlohy (kvadratického programování) ve tvaru

minimalizujte
$$h(w, \lambda) = \frac{1}{2} \|w\|^2$$

za podmínek $\langle a_i, w \rangle + \lambda \geq 1$ pro všechna $i = 1, \dots, k$, $\langle b_i, w \rangle + \lambda \leq -1$ pro všechna $j = 1, \dots, l$.

5. V rovině jsou dány body $P = (0,0)^T$ a $Q = (1,1)^T$.

- (a) Formulujte optimalizační úlohu problému nalezení nejkratší spojnice bodů P a Q. Spojnicí rozumíme křivku danou grafem spojitě diferencovatelné funkce $f:[0,1] \to \mathbb{R}$.
- (b) Nalezněte řešení úlohy z předchozího bodu. ¹
- 6. V rovině jsou dány body $P = (-1,0)^T$ a $Q = (1,0)^T$. Ať L je úsečka s krajními body P a Q.
 - (a) Formulujte optimalizační úlohu problému nalezení spojitě diferencovatelné funkce $y:[-1,1]\to\mathbb{R}$, jejíž graf má koncové body P a Q, délku l=3, leží v horní polorovině a spolu s úsečkou L ohraničuje část roviny o největším obsahu.
 - (b) Ať (x_0, x_1, \ldots, x_k) je ekvidistantní dělení intervalu [-1, 1] (tj. $x_l = l\delta$, kde $\delta = \frac{2}{k}$). Využitím tohoto dělení k aproximaci integrálu pomocí konečné sumy a derivace pomocí diferencí nalezněte optimalizační úlohu v \mathbb{R}^{k+1} , jejíž řešení aproximuje řešení úlohy z předchozího bodu.
- 7. Ať $\varphi: X \to Y$ je bijekce, $D_f \subseteq X$, $D_g \subseteq Y$, $\varphi(D_f) \subseteq D_g$, $M \subseteq D_f$ a $\hat{x} \in M$. Předpokládejme, že funkce $f: D_f \to \mathbb{R}$ a $g: D_g \to \mathbb{R}$ splňují $f = g \circ \varphi$. Ukažte, že $\hat{x} \in \operatorname{argmin}_{x \in M} f(x)$ právě tehdy, když $\varphi(\hat{x}) \in \operatorname{argmin}_{y \in \varphi(M)} g(y)$.
- 8. Uvažme lineární prostor $\mathbb{S}^n = \{A \in \mathbb{M}_n(\mathbb{R}) \mid A^T = A\}$ reálných symetrických $n \times n$ matic se skalárním součinem $\langle A, B \rangle_{\mathbb{S}^n} = \text{Tr}(AB)$.
 - (a) Ukažte, že $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ je ortonormální báze na \mathbb{S}^2 .
 - (b) Ukažte, že zobrazení

$$\varphi: \begin{pmatrix} a & b \\ b & c \end{pmatrix} \in \mathbb{S}^2 \mapsto \begin{pmatrix} a \\ \sqrt{2}b \\ c \end{pmatrix} \in \mathbb{R}^3$$

je izomorfizmus lineárního prostoru \mathbb{S}^2 na \mathbb{R}^3 zachovávající skalární součin (tj. $\langle A,B\rangle_{\mathbb{S}_2}=\langle \varphi(A),\varphi(B)\rangle$ pro všechna $A,B\in\mathbb{S}^2$, kde $\langle.,.\rangle$ je standardní skalární součin na \mathbb{R}^3).

- (c) Zobecněte výsledky bodů (a) a (b) do prostoru \mathbb{S}^n . Tj. nalezněte ortonormální bázi prostoru \mathbb{S}^n a izomorfizmus lineárního prostoru \mathbb{S}^n na \mathbb{R}^k (pro vhodné $k \in \mathbb{N}$) zachovávající skalární součin.
- (d) Ať \mathbb{S}^2_+ je množina všech reálných symetrických 2×2 matic, které jsou navíc pozitivně semidefinitní. Ukažte, že jestliže φ je zobrazení z bodu (b), pak $\varphi(\mathbb{S}^2_+) = \{(x,y,z)^T \in \mathbb{R}^3 \mid x \geq 0, z \geq 0, 2xz y^2 \geq 0\}.$

Nápověda: Ukažte, že g(t) = t, $t \in [0,1]$, je řešením úlohy. Využijte přitom toho, že pro dvě spojité funkce f_1 a f_2 na intervalu [0,1] je $\int_0^1 (f_1(t), f_2(t))^T dt := \left(\int_0^1 f_1(t) dt, \int_a^b f_2(t) dt\right)^T$ a platí $\left\|\int_0^1 (f_1(t), f_2(t))^T dt\right\| \le \int_0^1 \left\|(f_1(t), f_2(t))^T\right\| dt$. K důkazu jednoznačnosti pak lze využít tvrzení, že rovnost v uvedené "trojúhelníkové nerovnosti pro integrály" nastává právě tehdy, když existuje spojitá funkce $\lambda : [0,1] \to \mathbb{R}$ taková, že $(f_1(t), f_2(t))^T = \lambda(t) \int_0^1 (f_1(t), f_2(t))^T dt$.

9. Je dána úloha

minimalizujte
$$\langle X, A \rangle_{\mathbb{S}^2}$$

za podmínek $\langle X, \mathbf{1} \rangle_{\mathbb{S}^2} = 2$,
 $X \in \mathbb{S}^2_+$,

kde $A=\begin{pmatrix}3&1\\1&1\end{pmatrix}$ a $\mathbf{1}=\begin{pmatrix}1&0\\0&1\end{pmatrix}$. Ukažte², že existuje bikejce mezi množinou všech jejích řešení a množinou všech řešení úlohy

minimalizujte
$$3x_1 + 2x_2 + x_3$$

za podmínek $x_1 + x_3 = 2$,
 $x_1x_3 - x_2^2 \ge 0$,
 $x_1, x_3 > 0$.

10. Je dána úloha

minimalizujte
$$\langle X,A\rangle_{\mathbb{S}^2}$$
 za podmínek $\langle X,B\rangle_{\mathbb{S}^2}=0,$
$$\langle X,\mathbf{1}\rangle_{\mathbb{S}^2}=1,$$
 $X\in\mathbb{S}^2_+,$

kde $A = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ a $\mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Ukažte³, že existuje bikejce mezi množinou všech jejích řešení a množinou všech řešení úlohy

minimalizujte
$$2x - y$$

za podmínek $x + y = 1$,
 $x, y \ge 0$.

11. Určete definitnost matice A, jestliže

(a)
$$A = \begin{pmatrix} 9 & 6 \\ 6 & 4 \end{pmatrix};$$

(b) $A = \begin{pmatrix} 15 & 3 & 2 \\ 3 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix};$
(c) $A = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 1 & 1 \\ 2 & 1 & 0 \end{pmatrix};$
(d) $A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix};$

²Nápověda: využijte výsledků 7. a 8. příkladu.

³Nápověda: využijte výsledků 7. a 8. příkladu.

(e)
$$A = \begin{pmatrix} -1 & 0 & 1\\ 0 & -2 & 2\\ 1 & 2 & -3 \end{pmatrix};$$

(f)
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 5 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
.

- 12. At $A \in \mathbb{M}_n(\mathbb{R})$.
 - (a) Ukažte, že $\langle Ax,y\rangle=\left\langle x,A^Ty\right\rangle$ pro všechna $x,y\in\mathbb{R}^n.$
 - (b) Ukažte, že existují matice $B, C \in \mathbb{M}_n(\mathbb{R})$ takové, že $B^T = B, C^T = -C$ a A = B + C. Jsou matice B a C určeny jednoznačně?
 - (c) Ukažte, že existuje symetrická matice $B \in \mathbb{M}_n(\mathbb{R})$ taková, že $\langle Ax, x \rangle = \langle Bx, x \rangle$.
- 13. Nalezněte $\nabla f(x)$ a $\nabla^2 f(x)$, jestliže
 - (a) $f(x) = \langle x, c \rangle$, kde $c \in \mathbb{R}^n$;
 - (b) $f(x) = \langle Ax, x \rangle$, kde $A \in \mathbb{M}_n(\mathbb{R})$. Určete také $\nabla f(x)$ a $\nabla^2 f(x)$ za dodatečného předpokladu, že A je symetrická matice.

Výsledky

1.

$$\begin{aligned} \text{maximalizujte} \ \ \frac{2x}{4x+25} + \frac{y}{y+50} \\ \text{za podmínek} \quad x+y = 100, \\ x,y \geq 0. \end{aligned}$$

Jediné řešení úlohy je x = 25 a y = 75.

2.

minimalizujte
$$x^2 + 4xy$$

za podmínek $x^2y = 10$,
 $x, y \ge 0$.

Jediné řešení úlohy je $x=\sqrt[3]{20}$ a $y=\sqrt[3]{\frac{5}{2}}$

3.

maximalizujte
$$\sum_{j=1}^n \left(\sigma_j - \sum_{i=1}^m a_{ij} \gamma_i\right) x_j$$
za podmínek
$$\sum_{j=1}^n a_{ij} x_j \leq b_i \text{ pro každé } i=1,\dots,m,$$

$$x_j \geq 0 \text{ pro každé } j=1,\dots,n.$$

- 4. (b) Jedná se o úlohu nalezení w a λ tak, aby byla vzdálenost mezi H_1 a H_2 byla co největší za podmínky, že poloprostor určený nadrovinou H_1 a obsahující množinu A je disjunktní s poloprostorem určeným nadrovinou H_2 a obsahujícím množinu B.
- 5. (a)

minimalizujte
$$\int_0^1 \sqrt{1+(f'(t))^2}\,\mathrm{d}t$$
za podmínek
$$f(0)=0,$$

$$f(1)=1,$$

$$f:[0,1]\to\mathbb{R} \text{ je spojitě diferencovatelná}.$$

(b) Jediné řešení úlohy je $g(t) = t, t \in [0, 1].$

6. (a)

maximalizujte
$$\int_{-1}^{1} y(x) \, \mathrm{d}x$$
za podmínek
$$\int_{-1}^{1} \sqrt{1 + y'(x)^2} \, \mathrm{d}x = 3,$$
$$y(x) \geq 0 \text{ pro všechna } x \in [-1, 1],$$
$$y(-1) = y(1) = 0,$$
$$y: [-1, 1] \to \mathbb{R} \text{ je spojitě diferencovatelná.}$$

(b) Ať $y_l = f(x_l)$ pro všechna $l = 0, 1, \dots, n$. Pak hledaná úloha je

maximalizujte
$$\sum_{l=1}^n y_l \delta$$
za podmínek
$$\sum_{l=1}^n \sqrt{\delta^2 + (y_l - y_{l-1})^2} = 3,$$

$$y_0 = y_n = 0,$$

$$y_l \geq 0 \quad \text{pro všechna } l = 0, 1, \dots, n.$$

8. (c) Ať E_{ij} je matice, jejíž koeficient v i-tém řádku a j-tém sloupci je 1 a všechny ostatní koeficienty jsou nulové. Ortonormální báze je například posloupnost $(B_{11}, B_{12}, B_{22}, B_{13}, B_{23}, B_{33}, \ldots, B_{1n}, \ldots, B_{nn})$, kde $B_{ii} = E_{ii}$ pro $1 \le i \le n$ a $B_{ij} = \frac{1}{\sqrt{2}}(E_{ij} + E_{ji})$, kde $1 \le i < j \le n$. Hledaný izomorfismus mezi \mathbb{S}^n a \mathbb{R}^k , kde $k = \frac{n^2 + n}{2}$ je například

$$\varphi: (s_{ij})_{i,j=1,\dots,n} \in \mathbb{S}^n \mapsto (s_{11}, \sqrt{2}s_{12}, s_{22}, \sqrt{2}s_{13}, \sqrt{2}s_{23}, s_{33}, \dots, \sqrt{2}s_{1n}, \dots, s_{nn}).$$

- 11. Určete definitnost matice A, jestliže
 - (a) pozitivně semidefinitní;
 - (b) pozitivně definitní;
 - (c) indefinitní;
 - (d) indefinitní;
 - (e) negativně semidefinitní;
 - (f) pozitivně semidefinitní.
- 13. (a) $\nabla f(x) = c \text{ a } \nabla^2 f(x) = 0.$
 - (b) $\nabla f(x) = (A + A^T)x$ a $\nabla^2 f(x) = A + A^T$. Pokud je navíc A symetrická, pak $\nabla f(x) = 2Ax$ a $\nabla^2 f(x) = 2A$.