Tutorial 9: Taxonomic Classification of Sequences using DIAMOND

Christopher Uzokwe and Willow Livengood

Taxonomic Classification Background

- Goal of taxonomic classification is to analyze sequences to determine the functional or taxonomic content of microbial samples from the environment
- Aligning translated DNA sequences against a reference database of protein sequences, NCBI non-redundant or KEGG
- Millions of sequence reads available
- Alignment of sequencing reads against a protein reference database is a major bottleneck in metagenomics and data-intensive evolutionary projects
- Gold standard is BLASTX, alternate tools USEARCH, BLAT, RAPSearch2 offer only modest speedup or low sensitivity

DIAMOND Background

- DIAMOND (double index alignment of next-generation sequencing data) [1]
- Benjamin Buchfink, Chao Xie & Daniel H. Huson in 2015
- Goal to replace BLASTX in a high-throughput setting
 - 4 orders of magnitude faster on short DNA reads against the NCBI-nr database
 - \circ Comparable level of sensitivity on alignments with an e-value $< 10^{-3}$
- Open source software, implemented in C++
- Designed to run on modern computer architectures that have large memory capacity and many cores
 - High memory server for maximum performance, but can be efficiently handled by a machine with 16GB of memory at about half the speed
 - 16GB RAM is readily available at a price of \$160 on a standard desktop computer

DIAMOND Steps

Seed and Extend

- a. Exact occurrences of short words of fixed length located within reference sequence
- b. Seed matches extended to full alignments
- c. Substantial impact on performance (short seeds increase sensitivity, long increase speed)

2. Reduced Alphabet

- a. Increase speed, without losing sensitivity
- b. Published reductions of 4, 8, 10 letters
- c. Developed alphabet size 11 for best sensitivity: [KREDQN] [C] [G] [H] [ILV] [M] [F] [Y] [W] [P] [STA]

3. Spaced Seeds

- a. Longer seeds with only subset positions used equals better performance, increased sensitivity
- b. 4 shapes of length 15-24, weight 12

4. Seed Index

- a. Decompose the problem
- b. Leverage cache hierarchy

DIAMOND Steps

1. Double Indexing

- a. Index both the queries and the references
- b. Ability to run in parallel to get all matched seeds
- c. Linear approach for memory access, good for performance
- d. Well-known database sort-merge join algorithm

2. Memory Efficiency

- a. Multiple spaced seeds typically take up to 1.6TB of energy for 16 shapes
- b. Indexes shapes one at a time, sensitive config 16-shape takes maximum energy of 1 shape
- c. Radix cluster technique, seed space is decomposed into 1,024 disjoint partitions
- d. Build and process indexes for only a subset, memory usage limited to size of subset index

3. Seed Extension

- a. Determine if seed match can be extended into 10+ amino acids, Smith-Waterman alignment
- b. Extension only if left-most seed match in corresponding ungapped alignment

Memory calls for Standard Index / Double Index vs. Query Size

DIAMOND vs BLAST

DIAMOND	BLASTX					
Aligns short sequence reads up to 20,000x faster	Baseline for short sequence reads					
Similar Sensitivity	Slightly higher sensitivity					
All-mapper	All-mapper					
Seed-and-Extend + Double indexing	Seed-and-Extend paradigm					
Spaced Seeds	Single Consecutive Seeds					
2011 study on 12 permafrost samples against KEGG reference database [2]						
246 million reads	176 million reads					
2.3 h on a single workstation	800,000 CPU hours, supercomputing center					

Dataset

Diamond creates databases in reference to the input fasta files. We need to use convert the fastq mappings used on Kraken2 to make the database:

With the correct fasta files we can make the database for each.

[cnu25@node009 eces450650Grp]\$ singularity run --bind /ifs/groups/eces450650Grp/ containers/diamond_latest.sif makedb --in ./ECES450650_SP21/Tutorial9/R1.fasta -d ./ECES450650_SP21/Tutorial9/R1db.dmnd

Need picotte permissions -- or do locally. See text tutorial

DIAMOND with Picotte/Singularity

Reserve a node from picotte --

```
[cnu25@node009 eces450650Grp]$ srun --nodes=1 --ntasks=20 --cpus-per-task=1 --mem=120GB --time=48:00:00 --pty /bin/bash
```

Run diamond docker on singularity --

```
biobakery_workflows.sif diamond_latest.sif kraken2_latest.sif metaspades_latest.sif modulefiles nfcore-magbusco-1.2.0.img qiime2_latest.sif conda-qiime2_latest.sif edirect_latest.sif metabat_latest.sif miniconda3 nextflow qiime README

[cnu25@node009 containers]$ pwd

/ifs/groups/eces450650Grp/containers
```

No parameter run brings up usage notes

```
Online documentation at http://www.diamondsearch.org
[cnu25@node009 eces450650Grp]$ singularity run --bind /ifs/groups/eces450650Grp/ containers/diamond_latest.sif_
```

DIAMOND with Picotte/Singularity - R1

[cnu25@node009 eces450650Grp]\$ singularity run --bind /ifs/groups/eces450650Grp/ containers/diamond_latest.sif blastp -q ./ECES450650_SP21/Tutorial9/R1.fasta -d ./ECES450650_SP21/Tutorial9/R1.fasta -d ./ECES450650_SP21/Tutorial9/outR2.tsv --very-sensitive_

singularity run --bind /ifs/groups/eces450650Grp/ containers/diamond_latest.sif blastp -q ./ECES450650_SP21/Tutorial9/R1.fasta -d ./ECES450650_SP21/Tutorial9/R1db.dmnd -o ./ECES450650_SP21/Tutorial9/out.tsv

head out.tsv

https://github.com/bbuchfink/diamond/wiki/1.-Tutorial <- field descriptions available

NS500207:12:H04WYAFXX:2:11209:25191:12566 NS500207:12:H04WYAFXX:2:11209:25191:12566 100.0 18 0 0	1	18	1	18	6.5e-06 32.3
NS500207:12:H04WYAFXX:4:21510:17309:16845 NS500207:12:H04WYAFXX:4:21510:17309:16845 100.0 23 0 0	1	23	1	23	3.6e-07 35.8
NS500207:12:H04WYAFXX:3:21502:15852:7106 NS500207:12:H04WYAFXX:3:21502:15852:7106 100.0 15 0 0	1	15	1	15	3.3e-05 30.4
NS500207:12:H04WYAFXX:2:21203:4549:13503 NS500207:12:H04WYAFXX:2:21203:4549:13503 100.0 15 0 0	1	15	1	15	5.7e-06 32.3
NS500207:12:H04WYAFXX:1:21309:5037:19218 NS500207:12:H04WYAFXX:1:21309:5037:19218 100.0 17 0 0	1	17	1	17	1.1e-06 34.3
NS500207:12:H04WYAFXX:2:11301:10362:4540 NS500207:12:H04WYAFXX:2:11301:10362:4540 100.0 17 0 0	1	17	1	17	2.2e-06 33.5
NS500207:12:H04WYAFXX:2:11110:17918:5260 NS500207:12:H04WYAFXX:2:11110:17918:5260 100.0 15 0 0	1	15	1	15	2.8e-06 33.1
NS500207:12:H04WYAFXX:2:11110:17918:5260 NS500207:12:H04WYAFXX:3:11411:20707:13587 80.0 15 3 0	1	15	3	17	5.2e-04 27.3
NS500207:12:H04WYAFXX:4:11501:4052:3384 NS500207:12:H04WYAFXX:4:11501:4052:3384 100.0 17 0 0 1 17	1	17	1.1e	-06 34.3	
NS500207:12:H04WYAFXX:3:11505:2023:4796 NS500207:12:H04WYAFXX:3:11505:2023:4796 100.0 19 0 0 1 19	1	19	3.4e	-06 33.1	
NS500207:12:H04WYAFXX:1:21101:25252:12389 NS500207:12:H04WYAFXX:1:21101:25252:12389 100.0 18 0 0	1	18	1	18	6.9e-08 37.4
NS500207:12:H04WYAFXX:4:11512:19612:10619 NS500207:12:H04WYAFXX:4:11512:19612:10619 100.0 16 0 0	1	16	1	16	7.3e-07 34.7
NS500207:12:H04WYAFXX:4:11512:19612:10619 NS500207:12:H04WYAFXX:3:11601:23999:14913 85.7 14 2 0	3	16	4	17	7.7e-04 26.9
NS500207:12:H04WYAFXX:4:21608:23571:16090 NS500207:12:H04WYAFXX:4:21608:23571:16090 100.0 39 0 0	1	39	1	39	3.5e-11 47.0
NS500207:12:H04WYAFXX:3:11404:6524:14416 NS500207:12:H04WYAFXX:3:11404:6524:14416 100.0 16 0 0	1	16	1	16	1.2e-05 31.6
NS500207:12:H04WYAFXX:2:21110:13416:3566 NS500207:12:H04WYAFXX:2:21110:13416:3566 100.0 22 0 0	1	22	1	22	8.4e-08 37.4
NS500207:12:H04WYAFXX:2:21205:15790:2428 NS500207:12:H04WYAFXX:2:21205:15790:2428 100.0 17 0 0	1	17	1	17	3.1e-06 33.1

DIAMOND with Picotte/Singularity - R2

[cnu25@node001 eces450650Grp]\$ singularity run --bind /ifs/groups/eces450650Grp/ containers/diamond_latest.sif blastp -q ./ECES450650_SP21/Tutorial9/R2.fasta -d ./ECE

singularity run --bind /ifs/groups/eces450650Grp/ containers/diamond_latest.sif blastp -q ./ECES450650_SP21/Tutorial9/R2.fasta -d ./ECES450650_SP21/Tutorial9/R2out.tsv

https://github.com/bbuchfink/diamond/wiki/1.-Tutorial <- field descriptions available

[cnu25@node001 Tutorial9]\$ head R2out.tsv										
NS500207:12:H04WYAFXX:4:21604:20798:5389	NS500207:12:H04WYAFXX:4:21604:20798:5389	100.0	25	0	0	1	25	1	25	4.0e-09 40.8
NS500207:12:H04WYAFXX:4:21404:17427:17699	NS500207:12:H04WYAFXX:4:21404:17427:17699	100.0	18	0	0	1	18	1	18	1.1e-06 34.3
NS500207:12:H04WYAFXX:3:11602:24840:19766	NS500207:12:H04WYAFXX:3:11602:24840:19766	100.0	16	0	0	1	16	1	16	1.6e-05 31.2
NS500207:12:H04WYAFXX:3:11505:24990:12808	NS500207:12:H04WYAFXX:3:11505:24990:12808	100.0	15	0	0	1	15	1	15	5.4e-06 32.3
NS500207:12:H04WYAFXX:1:21101:21945:8146	NS500207:12:H04WYAFXX:1:21101:21945:8146	100.0	17	0	0	1	17	1	17	5.1e-07 35.0
NS500207:12:H04WYAFXX:3:11612:15415:11197	NS500207:12:H04WYAFXX:3:11612:15415:11197	100.0	17	0	0	1	17	1	17	1.7e-05 31.2
NS500207:12:H04WYAFXX:3:11402:16135:10210	NS500207:12:H04WYAFXX:3:11402:16135:10210	100.0	18	0	0	1	18	1	18	2.2e-06 33.5
NS500207:12:H04WYAFXX:4:11410:13187:13268	NS500207:12:H04WYAFXX:4:11410:13187:13268	100.0	19	0	0	1	19	1	19	6.8e-08 37.4
NS500207:12:H04WYAFXX:1:11109:23245:5947	NS500207:12:H04WYAFXX:1:11109:23245:5947	100.0	16	0	0	1	16	1	16	2.0e-06 33.5
NS500207:12:H04WYAFXX:3:21408:12189:14108	NS500207:12:H04WYAFXX:3:21408:12189:14108	100.0	16	0	0	1	16	1	16	4.0e-06 32.7

DIAMOND vs Kraken2 Results

	DIAMOND	Kraken2
Unclassified (%)	15.41%	95.04%
Classified (%)	84.59%	4.96%
Runtime	~2.56s	~0.039s

Total time = 2.557s
Reported 12573 pairwise alignments, 12573 HSPs.
10635 queries aligned.

Q&A

[1] Buchfink, Benjamin, Chao Xie, and Daniel H Huson. "Fast and sensitive protein alignment using DIAMOND." *Nature Methods* 12 (2015): 59-60. https://doi.org/10.1038/nmeth.3176

[2] Mackelprang, Rachel, Mark P. Waldrop, Kristen M. DeAngelis, Maude M. David, Krystle L. Chavarria, Steven J. Blazewicz, Edward M. Rubin, and Janet K. Jansson. "Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw." *Nature* 480 (2011): 368-371. https://doi.org/10.1038/nature10576

[3] Altschul, Stephen F., Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman. "Basic local alignment search tool." *Journal of Molecular Biology* 215, is. 3 (1990): 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2