Projektdokumentation Optikerkette SchönesGlas

Projektarbeit

Ausbildung Fachinformatik

Fachrichtung Anwendungsentwicklung
Elektronikschule Tettnang

von

Malte Blumenthal, Benjamin Schick

Abgabedatum: 24.04.2023

Bearbeitungszeitraum: 24.03.2023 - 24.04.2023

Klasse: EFI222

Inhaltsverzeichnis

1	Projektplanung					
	1.1	nssituation	1			
		1.1.1	Projektziele	1		
		1.1.2	Teilaufgaben	3		
		1.1.3	Projektumfeld, Projektschnittstellen	4		
	1.2	Resso	urcen- und Ablaufplanung	4		
		1.2.1	Terminplanung	4		
		1.2.2	Personalplanung	5		
		1.2.3	Sachmittelplanung	6		
		1.2.4	Kostenplanung	7		
		1.2.5	Qualitätsplanung	8		
2	Dur	chführ	ung- und Auftragsbearbeitung	9		
	2.1	ESP82	266	9		
		2.1.1	Anschließen der Sensorik	9		
		2.1.2	Sensordaten auslesen	9		
		2.1.3	WLAN Verbindung	11		
		2.1.4	Verbinden zu und publishen auf MQTT Broker	11		
	2.2 Raspberry Pi					
		2.2.1	Installation benötigter Software	11		
			9			
		2.2.2	Einrichtung der Datenbank	11		
		2.2.2 2.2.3				

In halts verzeichn is

3	Projektergebnisse					
	3.1	Projek	tergebnisse	12		
		3.1.1	Abnahme	12		
		3.1.2	Soll-Ist-Vergleich	13		
		3.1.3	Bewertung (Fazit, Ausblick)	13		

1 Projektplanung

1.1 Ausganssituation

1.1.1 Projektziele

1. Mobiles ESP8622

Als Station für die Aufzeichnung der Daten soll ein Microcontroller verwendet werden. Vorgabe der Stadt Tettnang war ein ESP 8266, welches über eine mobile Stromversorgung betrieben werden soll. Als Sensoren für das Aufzeichnen der Daten sollen ein DHT22 und ein BMP 180 verwendet werden.

2. DHT22

Der DHT22 Sensor wird für die Aufzeichnung von Luftfeuchtigkeit und Temperatur verwendet.

3. BMP 180

Für die Aufzeichnung der Höhe über Normal Null und Luftdruck wird ein BMP180 Sensor verwendet.

4. Raspberry Pi 4

Der Webserver braucht Hardware um betrieben zu werden. Da das Verkehrsvolumen auf dem Server als relativ gering eingeschätzt wird, sollte ein Raspberry Pi 4 als Hardwareinfrastruktur ausreichen.

5. Webserver

Für das Bereitstellen von Visualisierungen der Daten und Aufzeichnung der Daten in einem Datenbank System wird ein Webserver als Interface benötigt. Dafür wird in diesem Projekt NodeJS verwendet.

6. Frontend

Für die Darstellung der Daten soll eine Website zur Verfügung bereitgestellt werden. Diese soll vorerst eine einzelne Seite sein, die nur eine Tabelle die die Höhe über Normal Null auf einer Horizontalen Zeitachse darstellt.

7. Backend

Das Backend soll das Topic im MQTT-Broker abonnieren, und dann alle Updates in die Datenbank speichern. Außerdem soll das Backend die Daten aus der Datenbank auslesen und für die Frontendimplementierung bereitstellen.

8. Datenbankserver

Der Datenbankserver soll auch auf dem Raspberry Pi laufen und die Daten, die von den Sensoren ausgeliefert wurden, permanent abspeichern. Als Datenbanksystem soll MariaDB, eine SQL -Implementierung, verwendet werden.

9. Kommunikation mit MQTT-Broker

Die Daten müssen zwischen den verschiedenen Geräten ausgetauscht werden. Für die Kommunikation wird im Vorfeld ein öffentlicher MQTT-Broker verwendet. In diesem Projekt wird voraussichtlich mit HiveMQ gearbeitet. Optimal wäre das Hosten eines privaten MQTT-Brokers, aber dies liegt außerhalb des Projekterahmens.

10. Webserver und Broker

Der Webserver soll sich als Abonnent am entsprechenden Topic des MQTT-Brokers anmelden, um die regelmäßigen Updates des Topics und somit neue Daten zu erhalten.

1.1.2 Teilaufgaben

- 1. Festlegung Projektziele
- 2. Festlegung Teilaufgaben
- 3. Beschreibung Projektumfeld
- 4. Beschreibung Projektschnittstellen
- 5. Personalplanung
- 6. Sachmittelplanung
- 7. Terminplanung
- 8. Ablaufplan
- 9. Kostenplanung
- 10. Definition Technologiestack
- 11. Estellen Netzwerkplan
- 12. Einrichten Raspberry Pi
- 13. Programmierung ESP
- 14. Programmierung Backend
- 15. Programmierung Frontend
- 16. Testen der Infrastruktur mittels Testfahrt

17. Dokumentation des Pilotprojekts

1.1.3 Projektumfeld, Projektschnittstellen

Tabelle 1.1: Projektumfeld

Auftraggeber	Elektronikschule Tettnang im Auftrag der Stadt Tettnang		
Auftragnehmer	Schüler der Klasses EFI222		
Räumliches Umfeld	Klassenzimmer an der Elektronikschule Tettnang		
Ansprechpartner	Herr Rauschmaier		
	Frau Wattenbach		
	Klassenkameraden		
Einstieg	Anfrage der Stadt Tettnang		
Ausstieg	Übergabe des Prototypen		

1.2 Ressourcen- und Ablaufplanung

1.2.1 Terminplanung

Abbildung 1.1: Terminplanung Tabellarische Ansicht

In dieser Zeitplanung sind keine Puffer berücksichtigt worden, da die gesamte Projektzeit sehr knapp bemessen ist.

Abbildung 1.2: Terminplanung Gantt-Diagramm

1.2.2 Personalplanung

In dieser Zeitplanung sind keine Puffer berücksichtigt worden, da die gesamte Projektzeit sehr knapp bemessen ist.

1.2.3 Sachmittelplanung

 ${\bf Tabelle~1.2:~Sachmittel panung~Hardware}$

Hardware	Menge	Beschreibung	Verfügbarkeit
Entwickler PC	2x	Hardware benötigt	Ist Vorhanden
		für die Entwicklung	
		der Software und	
		Dokumentation des	
		Projekts	
MQTT-Broker (öffentlich)	1x	MQTT-Server der	Muss beschafft werden
		öffentlich zugänglich	
		ist	
Raspberry Pi 4	1x	Hardware, welche	Muss beschafft werden
		die Rolle des Servers	
		übernimmt. Ist Host	
		des Webservers und	
		der Datenbank	
ESP8266	1x	Microcontroller, wel-	Muss beschafft werden
		cher die Messungen	
		durchführen soll	
DHT22	1x	Modul für ESP,	Muss beschafft werden
		Zeichnet Temperatur	
		und Luftfeuchtigkeit	
		auf	
BMP180	1x	Modul für ESP,	Muss beschafft werden
		Zeichnet Höhe über	
		NN und Luftdruck	
		auf	

Tabelle 1.3: Sachmittelplanung Software

Software	Beschreibung	Verfügbarkeit
Visual Studio Code	Entwicklungsumgebung für alle Softwarean-	Freeware
	wendungen, die benötigt werden	
MariaDB	Datenbanksystem, das für das Speichern der	Freeware
	Messdaten verwendet wird	
MySQL	Datenbanksprache auf der MariaDB aufbaut	Freeware
PlatformIO-Tools	Tools und Bibliotheken für das Programmie-	Freeware
	ren verschiedener Microcontroller	
NodeJS	Webserver für das Hosten von Webanwen-	Freeware
	dungen	
UbuntuServer 22.04	Betriebssystem für den Server	Freeware
C++	Programmiersprache für ESP8266	Freeware
MQTT	IoT Netzwerkprotokoll	Freeware

1.2.4 Kostenplanung

Tabelle 1.4: text

Netzteil ESP8622 1x $5,00 \in$ Raspberry Pi 4 1x $50,00 \in$ Netzteil Raspberry Pi 4 1x $5,00 \in$ DHT22 Sensor 1x $10,00 \in$ BMP180 Sensor 1x $5,00 \in$ Mobile Stromquelle 1x $15,00 \in$ Lohn Entwickler 48x $6,00 \in$ Betriebskosten PC 2x $10,00 \in$ 308,00 \in	${f Artikel}$	Menge	\mathbf{Preis}
Raspberry Pi 4 1x 50,00 € Netzteil Raspberry Pi 4 1x 5,00 € DHT22 Sensor 1x 10,00 € BMP180 Sensor 1x 5,00 € Mobile Stromquelle 1x 15,00 € Lohn Entwickler 48x 6,00 € Betriebskosten PC 2x 10,00 € 308,00 € 308,00 €	ESP8622	1x	8,00 €
Netzteil Raspberry Pi 4 1x 5,00 € DHT22 Sensor 1x 10,00 € BMP180 Sensor 1x 5,00 € Mobile Stromquelle 1x 15,00 € Lohn Entwickler 48x 6,00 € Betriebskosten PC 2x 10,00 € 308,00 € 308,00 €	Netzteil ESP8622	1x	5,00 €
DHT22 Sensor $1x$ $10,00 \in$ BMP180 Sensor $1x$ $5,00 \in$ Mobile Stromquelle $1x$ $15,00 \in$ Lohn Entwickler $48x$ $6,00 \in$ Betriebskosten PC $2x$ $10,00 \in$ $308,00 \in$ $308,00 \in$	Raspberry Pi 4	1x	50,00 €
BMP180 Sensor $1x$ $5,00 \in$ Mobile Stromquelle $1x$ $15,00 \in$ Lohn Entwickler $48x$ $6,00 \in$ Betriebskosten PC $2x$ $10,00 \in$ $308,00 \in$	Netzteil Raspberry Pi 4	1x	5,00 €
Mobile Stromquelle $1x$ $15,00 \\ \hline $	DHT22 Sensor	1x	10,00 €
Lohn Entwickler 48x 6,00 $\stackrel{\longleftarrow}{\bullet}$ Betriebskosten PC 2x 10,00 $\stackrel{\longleftarrow}{\bullet}$ 308,00 $\stackrel{\longleftarrow}{\bullet}$	BMP180 Sensor	1x	5,00 €
Lohn Entwickler $48x$ $6,00 \\in \\end{tabular}$ Betriebskosten PC $2x$ $10,00 \\in \\end{tabular}$	Mobile Stromquelle	1x	15,00 €
Betriebskosten PC 2x 10,00 € 308,00 €			98,00 €
308,00 €	Lohn Entwickler	48x	6,00 €
	Betriebskosten PC	2x	10,00 €
Gesamtpreis 416.00 €			308,00 €
2.523	Gesamtpreis		416,00 €

Somit belaufen sich die geplanten gesamten Projektkosten auf 416,00€.

1.2.5 Qualitätsplanung

- Qualitätssicherung des Codes mithilfe von GitHub und Versionierung
- $\bullet\,$ Regelmäßiger Self-Test der Hardware
- Fehlermanagement im Code
- \bullet SCRUM

2 Durchführung- und Auftragsbearbeitung

2.1 ESP8266

2.1.1 Anschließen der Sensorik

Für die Aufgabe wird grundsätzlich nur ein BMP benötigt. Da wir uns jedoch entschieden haben, die Messdaten um Temperatur und Luftfeuchtigkeit zu erweitern, wird ein entsprechender zusätzlicher DHT mit eingebunden.

Da es die Sensoren für den ESP bereits auf entsprechenden Daughterboards angebracht gibt, war es nur noch nötig diese aufzustecken:

2.1.2 Sensordaten auslesen

Weil MicroPython auf dem ESP in Kombination mit einem MQTT-Broker schon zuvor im Unterricht Probleme bereitet hat, haben wir uns dazu entschieden, den ESP mit C++ zu programmieren.

Für sowohl den DHT als auch den BMP wurde die "Adafruit_Sensor" Bibliothek verwendet.

Abbildung 2.1: DHT an ESP8266 angesteckt

Auslesen DHT

Beim DHT war es noch zusätzlich notwendig, die

Auslesen BMP

Erzeugung Timestamp

- 2.1.3 WLAN Verbindung
- 2.1.4 Verbinden zu und publishen auf MQTT Broker
- 2.2 Raspberry Pi
- 2.2.1 Installation benötigter Software
- 2.2.2 Einrichtung der Datenbank
- 2.2.3 Programmierung des NodeJS-Servers
- 2.2.4 Programierung der Website zur Datenvisualisierung

3 Projektergebnisse

3.1 Projektergebnisse

3.1.1 Abnahme

Mit der Abnahme des Projektes sind die Ziele des Kunden für den Rahmen des Projektes vollständig erfüllt worden. Es bestehen trotzdem noch Möglichkeiten das System zu erweitern. Ein Punkt wäre das Layout der Website. Die Website beinhaltet zwar das Impressum, aber dies ist aber auf der "About"- oder "Über Uns"-Seite doch sehr versteckt. Man könnte das Impressum beispielsweise in einen Footer verschieben den man auf allen Seiten sehen kann. Ein weiterer Punkt wäre ein Shopsystem. Dafür müssten die nötigen Anpassungen auf den relevanten Seiten getroffen werden, aber auch die Datenbank müsste für diesen Schritt sehr erweitert werden. Noch dazu kommt, dass das Usermanagement momentan sehr rudimentär implementiert ist, was in einer zukünftigen Version etwa aussehen könnte wie in Abbildung 3.1.

Der dritte Punkt wäre die Verschlüsselung der Kundendaten. Aktuell wird lediglich das Passwort mit der Methode md5 im Backend, also von Nodejs, gehashed. Das Ziel war ursprünglich alle vom Nutzer eingegebenen Daten im Frontend, also Clientside, zu hashen und zu salten, damit ein potentieller Man-in-the-middle-Angriff sehr viel weniger gefährlich für die Nutzer des Systems und die Optikerkette sind. Man würde durch diese Maßnahme außerdem die Privatsphäre der Nutzer schützen, da keiner der Administratoren die Daten der Nutzer dann willkürlich aus der Datenbank auslesen kann.

Abbildung 3.1: Benutzerspeicherung in der Datenbank

3.1.2 Soll-Ist-Vergleich

3.1.3 Bewertung (Fazit, Ausblick)

Erklärung

Wir versichern hiermit, dass wir unsere Dokumentation zur Projektarbeit Projektarbeit mit dem Thema:

 $Projekt dokumentation\ Optikerkette\ Sch\"{o}nesGlas$

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben. Wir versichern zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

Tettnang, den 13. Mai 2024

Malte Blumenthal, Benjamin Schick