피드백과 플립플롭

오실레이터 Oscillator, 진동자

오실레이터 Oscillator, 진동자

Flip back

오실레이터 Oscillator, 진동자 ^{인버터}

오실레이터 Oscillator, 진동자 Clock, Period - Hz

플립 플롭 flip-flop

Feedback

Nor	0	1
0	1	0
1	0	0

플립 플롭 flip-flop 위쪽이 닫힌 상태

플립 플롭 flip-flop 아래쪽이 닫힌 상태

플립 플롭 flip-flop 요약

- 위쪽 스위치를 닫으면 전구가 켜지며,
 그 이후에는 스위치가 열리더라도 그 상태(전구가 켜진 상태)를 유지하게 된다.
- 아래쪽 스위치를 닫으면 전구가 꺼지며,
 그 이후에는 스위치가 열리더라도 그 상태(전구가 꺼진 상태)를 유지하게 된다.

R-S 플립플롭

R-S 플립플롭

Inputs		Outputs	
S	R	Q	$\overline{\mathbf{Q}}$
1	0	1	0
0	1	0	1
0	0	Q	$\overline{\mathbf{Q}}$
1	1	Disallowed	

R-S 플립플롭

Inputs		Outputs	
S	R	Q	$\overline{\mathbf{Q}}$
1	0	1	0
0	1	0	1
0	0	Q	$\overline{\mathbf{Q}}$
1	1	Disallowed	

값 보존(Hold that Bit) 신호 0

Inputs		Outputs
Data	Hold That Bit	Q
0	1	0
1	1	1
X	0	Q

값 보존(Hold that Bit) 신호 1

Inputs		Outputs
Data	Hold That Bit	Q
0	1	0
1	1	1
X	0	Q

Set 값을 invert - 두 입력 값 0

_			
Inputs		Outputs	
Data Hold That Bit		Q	
0	1	0	
1	1	1	
X	0	Q	

Set 값을 invert - 값 보존 신호 1

Inputs		Outputs
Data	Hold That Bit	Q
0	1	0
1	1	1
X	0	Q

Set 값을 invert - 값 보존 신호를 다시 0으로

Inputs		Outputs
Data	Hold That Bit	Q
0	1	0
1	1	1
X	0	Q

• D: Data

• Level-triggered: 값 보존 입력이 특정 값인 경우에 이 플립플롭이 데이터 입력 값을 저장한다

Level-triggered D-type 래치(Latch)

Inputs		Outputs	
D	Clk	Q	Q
0	1	0	1
1	1	1	0
X	0	Q	$\overline{\mathbf{Q}}$

To be continue...

- 엣지 트리거
- 엣지 트리거 D-타입 플립플롭
- Frequency divider
- Ripple counter
- 그래서 오실레이터의 주파수를 알아낼 수 있는 방법은?