## ASHRAE - Great Energy Predictor III

How much energy will a building consume?

## **Project Goals**

- Minimize the number of false predictions
  - o Get the most accurate prediction algorithm
  - Minimize deviation
- Define the most influential features



### Situation

Our data - open data on energy consumption of buildings.

Our goal - create a Great Energy Predictor III to predict a rating of energy consumption of a building and to understand what signs have the strongest impact on it.

### Problem statement

The task belongs to the class of <u>machine learning tasks with a teacher</u>, and is a regression construction:

<u>Training with a teacher</u>: we have all the necessary features, based on which the prediction is made, and the target feature itself.

Regression: we assume that the energy consumption rating is a continuous value.

### Files

#### train.csv

- building\_id
- meter (Read as {0: electricity,
  - 1: chilledwater,
  - 2: steam,
  - 3: hotwater})
- timestamp
- meter\_reading

#### building\_meta.csv

- site id
- building\_id
- primary\_use
- square\_feet
- year\_built
- floor\_count

#### weather\_[train/test].csv

- site\_id
- air\_temperature
- cloud\_coverage
- dew\_temperature
- precip\_depth\_1\_hr
- sea\_level\_pressure
- wind\_direction
- wind\_speed

#### test.csv

- row\_id
- building\_id
- meter
- timestamp

sample\_submission.csv

## Clearing and formatting data

### Missing value

| building_id   | 0.00000 | 0.00000 |
|---------------|---------|---------|
| meter         | 0.00000 | 0.00000 |
| timestamp     | 0.00000 | 0.00000 |
| meter_reading | 0.00000 | nan     |

No Missing values in 'train' and 'test' datasets

'floor\_count' and 'year\_built' variables has large percentage of missing data

### Reducing memory usage

for col in <all\_data\_cols>:
 max, min = <max, min>
 \*choosing optimal type for such min and max\*

int(8/16/32/64) float(16/32/64) category

#### Results:

Train data 57%

Building data 73%

Weather data 72%

## Prior data analysis

- Train Data contains records from 1st Jan to 31st Dec of 2016-2018
- Data has information about 1448 buildings
- Data has 4 meter types

### Meter readings are unstable



Sharp changes are observed from March to June.

And there's a strange jump in November









# The record with a data outlier has been identified. #1099

| 1095 | 17567 | 0.00000   | 93.37930       | 38.85189      | 56.69200  | 29.97182      |
|------|-------|-----------|----------------|---------------|-----------|---------------|
| 1096 | 8783  | 0.00000   | 84.23500       | 28.51193      | 26.45800  | 11.73106      |
| 1097 | 26351 | 0.00000   | 3117.18994     | 301.03577     | 149.06900 | 481.29950     |
| 1098 | 26352 | 0.00000   | 3042.96997     | 198.31371     | 31.98350  | 374.66580     |
| 1099 | 17566 | 144.00000 | 21904700.00000 | 1907446.00000 | 985.69702 | 4834351.00000 |
| 1100 | 17567 | 0.00000   | 12656.20020    | 1605.92932    | 281.25000 | 2584.48804    |
| 1101 | 17568 | 0.00000   | 139.55800      | 37.55941      | 37.34600  | 33.89618      |
| 1102 | 17567 | 0.00000   | 7296.87988     | 918.08575     | 77.23500  | 1394.88428    |
| 1103 | 8784  | 8.83300   | 76.70000       | 40.44089      | 40.22500  | 13.01057      |
| 1104 | 26352 | 0.00000   | 29853.50000    | 3579.35181    | 271.57251 | 5548.45703    |
| 1105 | 17568 | 11.71870  | 3011.71997     | 450.47348     | 94.98200  | 674.85461     |
|      |       |           |                |               |           |               |

# Some 'dirty' data. Missing values, outliers, negative values...

|       | air_temperature | cloud_coverage | dew_temperature | precip_depth_1_hr | sea_level_pressure | wind_speed   |
|-------|-----------------|----------------|-----------------|-------------------|--------------------|--------------|
| count | 139718.00000    | 70600.00000    | 139660.00000    | 89484.00000       | 129155.00000       | 139469.00000 |
| mean  | 14.41811        | 2.14931        | 7.35016         | 0.98305           | 1016.15804         | 3.56053      |
| std   | 10.62660        | 2.59915        | 9.79023         | 8.46368           | 7.62968            | 2.33587      |
| min   | -28.90000       | 0.00000        | -35.00000       | -1.00000          | 968.20000          | 0.00000      |
| 25%   | 7.20000         | 0.00000        | 0.60000         | 0.00000           | 1011.80000         | 2.10000      |
| 50%   | 15.00000        | 2.00000        | 8.30000         | 0.00000           | 1016.40000         | 3.10000      |
| 75%   | 22.20000        | 4.00000        | 14.40000        | 0.00000           | 1020.80000         | 5.00000      |
| max   | 47.20000        | 9.00000        | 26.10000        | 343.00000         | 1045.50000         | 19.00000     |









# The biggest part of 'Primary Use' is Education, Lodging/Residential and Office



## Some theory

### KFold + Stacking Regression

- 1) KFlod
- 2) Stack Regression
- 3) Prediction



### KFold + Stacking regression



```
lightgbm = LGBMRegressor(
       objective='regression',
       num leaves=1024, feature fraction=0.8)
ridge = Ridge(alpha=0.3)
lasso = Lasso(alpha=0.3)
model = StackingRegressor(
       regressors=(lightgbm, ridge, lasso),
       meta_regressor=lightgbm,
       use features in secondary=True)
model.fit(
       np.array(train_features),
       np.array(train_target))
```

### Linear Regression (Ridge + Lasso)

Ridge and Lasso regression are the techniques to reduce model complexity and prevent over-fitting which may result from linear regression.

Ridge: 
$$\sum_{i=1}^{M} (y_i - \hat{y_i})^2 = \sum_{i=1}^{M} \left( y_i - \sum_{j=0}^{p} w_j \times x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} w_j^2$$

Lasso: 
$$\sum_{i=1}^{M} (y_i - \hat{y_i})^2 = \sum_{i=1}^{M} \left( y_i - \sum_{j=0}^{p} w_j \times x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} |w_j|$$



# Merging Data & Determination of the correlation

### Merging our data and make it 'clean'

# Correlation of values has a significant impact on the data (*multicollinearity*)

Delete data that has a correlation coefficient greater than 0.9

```
corr_matrix = train.corr().abs()
```

# Final steps

### The most influential values



### Laureates!



### Data Leak & Results Leak

Models trained with data leaks and submissions from open kernels show (unexpected!) better results It seems, everyone is using the same pattern. They use similar algorithms

| • | reducing | memory | usage |
|---|----------|--------|-------|
|---|----------|--------|-------|

- clearing data
- adding leaked data for validation
- adjusting weights using other submissions

| 423 | stdy          | -   | 0.979 |
|-----|---------------|-----|-------|
| 424 | takashi       | -   | 0.979 |
| 425 | KagKor_newbie | 9 9 | 0.979 |
| 426 | westpole      | -   | 0.979 |
| 427 | Sasha         | 4   | 0.979 |