Kristian Pekkanen NTIS 2016
[toisesta paasta Kinni oleva Rutki = \ = 4L
$\int \frac{1}{12\pi} = \frac{1}{12\pi} = \frac{343 \text{ m/s}}{12\pi} = \frac{1}{12\pi} = \frac{1}$
$\frac{\lambda_{z} = \frac{4L}{3} = \frac{4 \cdot 3}{3} = 4m}{f_{z} = \frac{\lambda_{z}}{2} = \frac{3 \cdot 343 \text{m/s}}{4 \cdot 4m} = 64.312 \text{Hz}$
$1 = \frac{3\lambda_{1}}{4}$ Yta taajuus = 64.312 Hz
$\lambda_{3} = \frac{4L}{5} = \frac{4 \cdot 3m}{5} = 2.4m$ Aalon pitus = 2.4m
$f = \frac{1}{\sqrt{3}} = \frac{5 \cdot 343 \text{m/s}}{4 \cdot 3 \text{m}} = \frac{142.916 \text{Hz}}{4 \cdot 3 \text{m}}$ $L = \frac{5 \text{m}}{4}$
4 tawous = 142 196Hz
4 p

 $f = f_{0} \frac{V + V_{K}}{V - V_{i}}$ $f = 260H_{2}$ $\frac{3}{43} \frac{3}{43} \frac{1}{45} \frac{1}{45} \frac{1}{42}$ $\frac{2}{5} \frac{9}{4} \frac{1}{12} \frac{2}{5} \frac{1}{9} \frac{1}{12} \frac{1}{9} \frac{1}{9} \frac{1}{12} \frac{1}{9} \frac{1}{12} \frac{1}{9} \frac{1}{9} \frac{1}{12} \frac{1}{9}$

$$I = I_{0}(0)^{\frac{B_{2}-B_{1}}{10}}$$

$$\log \left(\frac{r_{1}^{2}}{I_{2}^{2}}\right) - \log 10^{\frac{B_{2}-B_{1}}{10}}$$

$$log\left(\frac{r_{1}}{r_{2}}\right)^{2} - \frac{B_{2}-D_{1}}{10}log 10$$

$$B_{2} = 20 \log \left(\frac{r_{1}}{r_{2}}\right) + B_{1} = 88 JB$$

$$B_{2} = 20 \log \left(\frac{r_{1}}{r_{2}}\right) + B_{1} \qquad r_{1} = 1 m$$

$$B_{2} = 20 \log \left(\frac{r_{1}}{r_{2}}\right) + 88 JB \qquad r_{2} = 120 m$$

testava	5.		
	aallon pituus, Ka aallon pituus	Oh hopeus taajuus.	peus on eri.
	B Vastanelukuu Ympiriston ääh tuottanalla m Vastalllaisessa	P116 JUIN	hijta 2P
		16/20	
		//20	