Image Processing and Visual Communications

Statistical Image Modeling

Zhou Wang

Dept. of Electrical and Computer Engineering University of Waterloo

Outline

- Statistical Image Modeling
 - Why statistical image modeling?
 - Pixel intensity models
 - Markov random field models
 - Fourier models
 - Wavelet marginal models
 - Wavelet joint models
 - Advanced statistics: phase and orientation
- Applications of Statistical Image Modeling
 - Image denoising
 - Other applications

Why Statistical Image Modeling?

- Prior Image Probability Distribution
 - Typical (natural) images occupy an extremely tiny (and unknown-shape) space in the space of all images

What's the Benefit of Knowing Image Prior?

Pixel Intensity Statistics: Marginal

- Does not tell much about what is special of natural images
- What if I scramble the order of image pixels?
- What's the problem?
 images are highly "structured",
 or image pixel intensities are highly dependent (correlated),
 which marginal statistics completely ignore

Pixel Intensity Statistics: Joint

joint distributions of image pixel intensities separated by 1, 2, and 4 pixels

autocorrelation function

autocorrelation function

Fourier transform

power spectrum

Q: What's the underlying assumption here?

A: Stationary (good or bad?)

Pixel Intensity Model: Markov Random Field

Random Field x

- A collection of RVs on a lattice
- Difficult to define $p(\mathbf{x})$ for images
- "Implicit" but "easier" models

• Markovianity:

- 1-D: decouple "past" and "future"
- From 1-D to 2-D
- Causal and non-causal neighbors

Variations

- Gaussian MRF: $p(\mathbf{x})$ Gaussian
- Gibbs MRF: $p(\mathbf{x}) \propto \exp[-\beta E(\mathbf{x})]$
- Extensions:Gaussian mixture; multi-scale ...

1st, 2nd, 3rd order neighbors

Fourier Magnitude Statistics

power spectrum of images (in log-log scale)

straight line!!

$$P(f) = 1/f^{\beta}$$

 β : typically around 2

Explanations:

- 1. Scale-invariance
- 2. Edges

Fourier Magnitude + Gaussian

Note: projected Gaussian is still Gaussian

Fourier Magnitude + Gaussian

• Failures of [Fourier Magnitude + Gaussian] Model

A sample drawn from a 1/f Fourier + Gaussian model Doesn't look natural! ☺

Fourier Magnitude + Gaussian

• Explanations of the Failure

- Probability distribution of natural images is not Gaussian
- Image signals are not stationary
- Fourier phase is more important than Fourier magnitude

Wavelet Marginal Model

Generalized Gaussian Density [Mallat '89]:

$$p_m(x) = \frac{\beta}{2\alpha\Gamma(1/\beta)} e^{-(|x|/\alpha)^{\beta}}$$

 α : scale (variance) parameter

 β : peakedness parameter, typically between $0.3 \sim 1.2$

Gaussian: $\beta = 2 \rightarrow$ higher entropy, lower kurtosis

Laplacian: $\beta = 1$

Wavelet + Non-Gaussian Marginal

Limitation

- Still cannot capture the dependency between neighboring coefficients (both intra- and inter-channel dependencies)

Wavelet Joint Statistics

steerable pyramid decomposition [Simoncelli *et al.* '92]

conditional histogram of neighboring coefficients
A "bow-tie" structure [Simoncelli '97]

 Significant (large magnitude) coefficients tend to appear in clusters (neighbors in intrachannel spatial location, and across scales and orientations)

Wavelet Joint Models

Hidden Markov Tree [Crouse, Nowak & Baraniuk '98]

- Hidden states: $S \rightarrow$ small coefficient; $L \rightarrow$ large coefficient
- Hidden state transition matrix

$$A = \begin{bmatrix} p^{\mathsf{S} \to \mathsf{S}} & p^{\mathsf{S} \to \mathsf{L}} \\ p^{\mathsf{L} \to \mathsf{S}} & p^{\mathsf{L} \to \mathsf{L}} \end{bmatrix} \text{ where } p^{\mathsf{S} \to \mathsf{S}} > \frac{1}{2}, \quad p^{\mathsf{L} \to \mathsf{L}} > \frac{1}{2}$$
Why?

$$p^{\mathsf{S} \to \mathsf{S}} > \frac{1}{2}, \quad p^{\mathsf{L} \to \mathsf{L}} > \frac{1}{2}$$

Wavelet Joint Models

Gaussian Scale Mixture

x: A vector of neighboring coefficients

z: multiplier

 $\mathbf{x} \stackrel{d}{=} \sqrt{z}\mathbf{u}$

u: zero-mean Gaussian vector with covariance **C**_u

PDF:
$$p_{\mathbf{x}}(\mathbf{x}) = \int p(\mathbf{x}|z) p_z(z) dz$$

= $\int \frac{\exp(-\mathbf{x}^T (z\mathbf{C}_{\mathbf{u}})^{-1}\mathbf{x}/2)}{(2\pi)^{N/2}|z\mathbf{C}_{\mathbf{u}}|^{1/2}} p_z(z) dz$

real simulated real simulated

[Wainwright, Schwartz & Simoncelli '00], [Portilla, Strela, Wainwright & Simoncelli '03]

Wavelet Phase Statistics

Wavelet Phase Statistics

$$x_0 + \frac{p - x_0}{s} = Const$$

convergent straight line

1000 natural images

phase prediction error

coefficient magnitude

Wavelet Orientation Statistics

- Orientation at the same spatial location but different scale are correlated.

Noisy Image: Observations

DWT of clean "Barbara" image

DWT of noisy "Barbara" image

- More and more noisy from coarser to finer scales (low-pass filtering?)
- More interference with smaller than larger coefficients (thresholding?)
- Signal-to-noise ratio varies over space (locally adaptive filtering?)
- Large coefficients appear in clusters (.....?)
- Large coefficients have correlated orientations and phases (.....?)

Denoising Problem

$$x$$
: original $y = x + w$ w : i.i.d. noise, independent of x (zero-mean Gaussian) y : observed

Goal: given y, estimate x

Estimators

- Maximum likelihood:
$$\hat{x}_{ML} = \underset{\hat{x}}{\text{arg max}} p(y \mid \hat{x})$$

- (Bayes) maximum a posterior:
$$\hat{x}_{MAP} = \arg \max_{\hat{x}} p(\hat{x} | y)$$

- Bayes least square:
$$\hat{x}_{BLS} = \arg\min_{\hat{x}} E[(x - \hat{x})^2 \mid y]$$

$$\hat{x}_{BLS} = E(x \mid y) = \int x \, p(x \mid y) dx = \int x \frac{p(y \mid x) p(x)}{p(y)} dx = \frac{\int x \, p(y \mid x) \, p(x) dx}{\int p(y \mid x) \, p(x) dx}$$

• Signal Model: Gaussian

x: zero-mean Gaussian with variance σ_x^2

w: zero-mean Gaussian with variance σ_w^2

- ML estimator: $\hat{x}_{ML} = y$
- MAP and BLS estimator:

$$\hat{x}_{MAP} = \hat{x}_{BLS} = \frac{\sigma_x^2}{\sigma_x^2 + \sigma_w^2} y$$

equivalent to Weiner filtering when applied in the Fourier domain

- This explains why Weiner filtered images are always blurred
- Note: the low-pass feature comes from the signal and noise models (not assumed)

- Signal Model: Generalized Gaussian
 - ML estimator: $\hat{x}_{ML} = y$
 - MAP estimators:

soft thresholding

linear solution

hard _thresholding

- BLS estimators:

Application to Images

Application to Images

noisy image SNR = 4.8dB

linear filtering SNR = 10.61dB

nonlinear: marginal model + BLS filtering SNR = 11.98dB

nonlinear:
joint (GSM) model
+ BLS filtering
SNR = 13.60dB

[Portilla et al. '03]

Other Applications of Statistical Image Models

Image Compression

- Explicit: [Buccigrossi & Simoncelli '99]
- Implicit: EZW [Shapiro '93], SPIHT [Said & Pearlman '96], JPEG2000 ...

Image Restoration

Image model + blur model + noise model

Image Enhancement

- Moving toward more probable direction in image space

• Image Quality Assessment

- How far an image departs from "natural image clusters"
- Image (Texture) Segmentation and Classification
- Image (Texture) Synthesis

25