# Parallel and Distributed Computing CS3006

Lecture 13

**Basic Communication Operations-III** 

27th March 2024

Dr. Rana Asif Rehman

## All-Reduce

## Basic Communication Operations (All-Reduce)

- Precondition: Every process i has a single message  $M_i$  of size m words.
- Post condition: All processes have a reduced message M of size m words.

#### **Strategies:**

- 1. Use all-to-one reduction followed by one-to-all broadcast  $(2*(t_s+mt_w)\log p)$
- 2. Use modified All-to-All comm. algorithm for hypercube  $((t_s+mt_w)\log p)$ 
  - Replace Union with associative operator

## Basic Communication Operations (Prefix-Sums)

- Prefix-sums are also known as scan operations
- Given p numbers no, n1, ..., np-1 (one on each node), the problem is to compute the sums such that: -
  - $\mathbf{S}_k = \sum_{i=0}^K (n_i)$ 
    - There  $S_k$  is the prefix-sum computed at kth node after the operation.

#### **Example:**

- Original sequence: <3, 1, 4, 0, 2>
- Sequence of prefix sums: <3, 4, 8, 8, 10>

(Prefix-Sums)



(a) Initial distribution of values



(b) Distribution of sums before second step



Paralle (and Distribution ports posses before third step



(d) Final distribution of prefix sums

Figure 4.40 — Communica musika suma sa sa sisiba meda bumananda . Az sesta meda samuna busabaa

## (Prefix-Sums)

```
procedure PREFIX_SUMS_HCUBE(my_id, my_number, d, result)
1.
     begin
3.
         result := my\_number;
         msg := result;
5.
         for i := 0 to d - 1 do
6.
            partner := my\_id \text{ XOR } 2^i;
            send msg to partner;
7.
8.
            receive number from partner;
9.
            msg := msg + number;
10.
            if (partner < my\_id) then result := result + number;
11.
         endfor;
12.
     end PREFIX_SUMS_HCUBE
```

**Algorithm 4.9** Prefix sums on a *d*-dimensional hypercube.

## Scatter and Gather

# Basic Communication Operations (Scatter and Gather)

 Gather is different than reduction as it doesn't reduce the results with associative operator



**Figure 4.14** Scatter and gather operations.



(a) Initial distribution of messages



(b) Distribution before the second step



(c) Distribution before the third step



(d) Final distribution of messages

**Figure 4.15** The scatter operation on an eight-node hypercube.

# All-to-All personalized Communication

#### (All-to-All personalized)

- Each node sends a distinct message of size m to every other node.
- Also known total exchange



**Figure 4.16** All-to-all personalized communication.

(All-to-All personalized)



All-to-all personalized communication in transposing a 4 x 4 matrix using four processes.

#### (All-to-All personalized [Ring])



**Figure 4.18** All-to-all personalized communication on a six-node ring. The label of each message is of the form  $\{x, y\}$ , where x is the label of the node that originally owned the message, and y is the label of the node that is the final destination of the message. The label  $(\{x_1, y_1\}, \{x_2, y_2\}, \dots, \{x_n, y_n\})$  indicates a message that is formed by concatenating n individual messages.

(All-to-All personalized [Ring])

#### **Cost Analysis**

■ 
$$T = \sum_{i=1}^{(p-1)} (t_s + (p-i)mt_w)$$
  
■  $= \sum_{i=1}^{(p-1)} (t_s) + mt_w \sum_{i=1}^{(p-1)} (p-i)$   
⇒  $(\mathbf{p} - \mathbf{1})(t_s) + mt_w \sum_{i=1}^{(p-1)} (\mathbf{i})$   
⇒  $\left((t_s + \left(\frac{1}{2}\right) \mathbf{p} m t_w\right) (p-1)$ 

#### (All-to-All personalized [Mesh])



(All-to-All personalized [Mesh])

#### **Cost Analysis**

- Time for the first phase is identical to that in a ring with  $\sqrt{p}$  processors, i.e.,  $(t_s + t_w mp/2)(\sqrt{p} 1)$ .
  - Here  $\mathbf{m}t_{\mathbf{w}}$  becomes  $\sqrt{p}$   $\mathbf{m}t_{\mathbf{w}}$  and  $\mathbf{P}$  becomes  $\sqrt{p}$
- Time in the second phase is identical to the first phase. Therefore, total time is twice of this time, i.e.,

#### (All-to-All personalized [Hyper Cube])



- (a) Initial distribution of messages
- (b) Distribution before the second step



(c) Distribution before the third step

(d) Final distribution of messages

## Questions



#### References

1. Kumar, V., Grama, A., Gupta, A., & Karypis, G. (2017). *Introduction to parallel computing*. Redwood City, CA: Benjamin/Cummings.