Arquitetura de Computadores

Aula 1

Prof. André Roberto Guerra

Organização da Disciplina

Aula 1 – Fundamentação

- Histórico e Evolução
- Máquina de Turing
- Arquitetura de Von Neumann

Aula 2 – Visão Geral

- Visão Geral dos Computadores
- Processadores (CPU)
- Memórias
- Entrada e Saída

Aula Prática 1 – Exercícios de Sistema

- Lista 1
- Lista 2

Aula 3 – Lógica Digital

Lógica Digital (circuitos)

Aula Prática 2 – Exercícios de Lógica Digital

Lista 1

Aula 4 – Microprocessadores

- Microprocessadores
- Microprogramação

Aula Prática 3 – Exercícios de Microprocessadores

Lista 1

Aula 5 – Sistemas Operacionais

- Sistema Operacional
- ISA

Aula 6 – Arquiteturas Paralelas

Arquiteturas Paralelas

Aula Prática 4 – Exercícios de Sistemas Operacionais e Arquiteturas Paralelas

- Lista 1
- Lista 2
- Revisão (ENADE)

Organização da Aula

Fundamentação

- Definições
- Histórico e evolução
- Máquina de Turing
- Arquitetura de Von Neumann

Contextualização

Definições: Computador

Segundo Tanenbaum

- Computador: máquina para solucionar problemas através da execução de instruções
- Programa: transmite as instruções. É definido como uma sequência de instruções descritivas de execução

Definições: Linguagem de Máquina

• Circuitos eletrônicos reconhecem e executam diretamente um conjunto limitado de instruções simples

- Para escolher instruções:
 - simplicidade
 - consistência
 - desempenho

- Sua utilização é tediosa/ complexa
- Outra linguagem de uso mais simples e agradável através de 2 métodos:
 - tradução
 - interpretação

Definições: Máquinas Multinível Contemporâneas

Instrumentalização

Histórico e Evolução dos Computadores

Gerações de Computadores

- •0 Mecânicos (1642 1945)
- •1 Válvulas (1945 1955)
- •2 Transistores (1955 1965)
- •3 Integração (1965 1980)
- •4 Muita Integração (1980 ?)
- •5 Computadores Invisíveis (Atuais)

Geração 0 – Mecânicos

- Mecânicos (1642 1945)
 - Surgiram no século XVII
 - Compostos exclusivamente por elementos mecânicos
 - Grande rigidez nos programas a executar hoje máquina dedicada

Calculadora de Pascal (1642)

Máquina Diferencial Babbage (1823)

Máquina Hollerith (1886)

Máquina de Turing

■ A Turing Machine – Overview. Disponível em:

https://www.youtube.com/watch?v=E3keLeMwfHY.

Máquina de Turing

- Colossus (1946) Allan Turing
- Semelhante a um autômato finito, com memória ilimitada e irrestrita
- Semelhante ao computador real

- Não resolve problemas
- Usa fita infinita (memória)
- Cabeça que se move
- Lê, armazena e gera informação

Geração 1 – Válvulas

- Válvulas a primeira geração de computadores modernos
- Muito tempo para aquecer e alto consumo de energia elétrica
- Grandes, porém frágeis
- Manutenção cara e a programação feita com a ligação de fios ou cartões

- Circuitos interligados por quilômetros de fios instalados manualmente
- Atingiram velocidades na ordem de milissegundos (1/1.000)
- Colossus (1943)
 - Projeto militar
 - O 1^e computador digital

- John Mauchley (1907 1980) e Presper Eckert (1919 – 1995) construíram o ENIAC em 1946
 - •O 1^e computador eletrônico

- 18.000 válvulas e 1.500 relés
- 30 toneladas / 20 registradores
- Consumia 140 quilowatts
- Programação em 6.000 chaves

Arquitetura de Von Neumann

■ ENIAC e a Arquitetura de von Neumann. Disponível em:

https://www.youtube.com/watch?v=egPA39zBDys.

- Colaborador do projeto ENIAC, matemático John von Neumann (1903 – 1957)
- Aperfeiçoamento do ENIAC, o IAS

 É creditada a von Neumann a definição de uma arquitetura de computadores com programa armazenado, utilizado até hoje

- Considerado o "pai" do computador:
 - •utilização de aritmética binária
 - •organização em quatro unidades
 - •memória
 - •unidade aritmética e lógica
 - •unidade de controle
 - •parte de E/S

- Características básicas do IAS:
 - fundamental no estudo, as especificações continuam válidas
 - memória 1.000 posições (palavras) com 40 bits
 - dados e instruções representados em binários
 - armazenados (memória)

- 21 instruções de 20 bits,
 2 campos 8 bits (cod. de operação); 1 campo de 12 bits (endereços de 000 a 999)
- Modo repetitivo, cada ciclo com dois subciclos:
 - ciclo de busca
 - ciclo de execução

Geração 2 – Transistores

 Eletrônica moderna: surgiu em 1947, John Bardeen (1908-1991), Walter Brattain (1902-1987), e William Shockley (1910-1989), Bell e (AT&T) criaram o transistor

- A DEC lançou PDP-1
- Unidades aritméticas e lógicas e de controle mais complexas
- Linguagens de programação de nível superior
- CDC (1964) o CDC 6600 voltado para o processamento científico

Geração 3 – Circuitos Integrados

- •Família de computadores
- Unidade de controle com microprogramação
- Multiprogramação
- Processamento 32 bits
- Memória principal (16KB)
- Sistema operacional

■ Robert Noyce e Gordon Moore fundaram em 1968 a Intel Corporation —

Lei de Moore

■ Marcian E. Hoff Jr. criou

o Intel 4004 – 4 bits e

108 KHz, 2.300 transistores, 60.000 operações/s

Geração 4 – Muita Integração

- Escala de Integração
- •Desde 1980
- Miniaturização dos componentes internos e avanços relacionados com a integração
- Quantos transistores podem integrar um único chip?

Aplicação

Arquitetura e Organização de Computadores

IAS – Máquina de Von Neumann

Descreva seus componentes

Síntese

Arquitetura e Organização de Computadores

Aula 1 – Fundamentação

- Definições
- Histórico e evolução
- Arquitetura de Von Neumann
- Máquina de Turing

Referências de Apoio

• TANENBAUM, A. S. **Organização Estruturada de Computadores**. 5. ed. São Paulo: Prentice-Hall, 2007.