《深度学习:基础与概念》勘误表

2025 年 6 月第 2 次印刷勘误

序号	章	页	行	误	正	备注
1	前言	4	7	f(x)/g(x)	g(x)/f(x)	所记取取出来日记证 $N(t)$, 明社思典与简斯分布或正态分布
2	2	27				p(T-1 C-0)=3/100=0.03 p(T=0 C=0)=97/100=0.97 (2.16) 率是归一化的、因此
3	2	32	式 2.47	$\mathbb{E}_{x,y}[xy]\mathbb{E}[x]\mathbb{E}[y]$	$\mathbb{E}_{x,y}[xy] - \mathbb{E}[x]\mathbb{E}[y]$	$cov[x,y] = \mathbb{E}_{x,y}[\{x - \mathbb{E}[x]\}\{y - \mathbb{E}[y]\}]$ $y = \mathbb{E}_{x,y}[x]\mathbb{E}[x]\mathbb{E}[y]$ 如果 x 和 y 是独立的。那么它们的执去的意思(日本1985)
4	2	32	式 2.48	$\mathbb{E}_{x,y}[xy^{T}]\mathbb{E}[x]\mathbb{E}[y^{T}]$	$\mathbb{E}_{x,y}[xy^{\mathrm{T}}] - \mathbb{E}[x]\mathbb{E}[y^{\mathrm{T}}]$	$\operatorname{Cov}[x,y] = \mathbb{E}_{x,y} \left[\{x - \mathbb{E}[x]\} \{y^{T} - \mathbb{E}[y^{T}]\} \right]$ $= \mathbb{E}_{x,y} \left[xy^{T} \right] \mathbb{E}[x] \mathbb{E}[y^{T}] $ 考虑向量 x 的分量彼此之间的协方 \mathbb{E} 则可以他用\$
5	3	60	2	$\det(\mathcal{\Sigma})$	$ \varSigma $	$\mathcal{N}(x \mu,\Sigma) = \frac{1}{(2\pi)^{0/2}} \frac{1}{ \Sigma ^{0/2}} \exp\left\{-\frac{1}{2}(x-\mu)^{T} \Sigma^{T}(x-\mu)\right\}$ (3.26) 其中 μ 是 D 维均值向量, Σ 是 $D \times D$ 的协方差矩阵,(det) Σ 0表示 Σ 0的行列式。在很多不同的场景中都可以看到高斯分布,因此可以从各种不同的角度来理解它作用(叁回 2.5 共) D 0 km (1975年 2015年 20

6	3	60	†4	高斯分布在 x 空间的曲面上是常数,因为该二次型为常数。	在 x 空间中,令二次型是常数的曲面上,高斯分布的数值是常数。	ガー(x-μ) ^T Σ [*] (x-μ) 其中、量⊿称为μ到x的马哈拉诺比斯距离(Mahalanobis distance)。当 Σ 为单位 矩阵时,它退化为欧氏距离。 電所分面在 x空间附而面 下昆電敷。 四方该三六型ガー マン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
序号	章	页	行	误	正	备注
7	3	61	↑9	由于式(3.33)为常数,因此二次型(即高斯密度)在曲面上也为常数。	在满足式(3.33)取同一常数值的 曲面上,二次型(即对应的高斯密 度)在曲面上处处相同。	求(3.29) 可知 U是正交矩阵、满是 UV=U'=U'U=1、其中是单位矩阵(参见)
8	3	69				$P(\mathbf{x}_{a} \mathbf{x}_{b}) = \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{ab}, \boldsymbol{\Lambda}_{aa}\right) $ $\mu_{ab} = \boldsymbol{\mu}_{a} - \boldsymbol{\Lambda}_{aa}^{-1} \boldsymbol{\Lambda}_{ab} \left(\mathbf{x}_{b} - \boldsymbol{\mu}_{b}\right) $ (3.81)
9	4	98	13	参数 w_0 代表数据中一个任意的固定偏移量,有时称为偏置参数(bias)(注意不要与统计学意义上的偏差弄混淆)。通过定义一个额外的虚拟基函数 $\phi_0(x)=1$,式(4.2)可以统一为(参见 4.3 节)	参数 w_0 代表数据中一个任意的固定偏移量,有时称为偏置参数(bias)(注意不要与统计学意义上的偏差弄混淆,参见 4.3 节)。通过定义一个额外的虚拟基函数 $\phi_0(x)=1$,式(4.2)可以统一为	为 M 。
10	4	102	↑10	在实践中,当 Φ ^T Φ 接近奇异值时	在实践中,当 • • • • • • 接近奇异时	空间中的正交投影得到的,其中每个基面数都很为一个长度为 N 的向量 φ_j ,元素为 $\phi(\mathbf{x}_i)$ 很容易地验证在实践中,当 $\mathbf{\sigma}^{T}\mathbf{\sigma}$ 接近奇异 时,直接求解正特别是当两个或两个以上的基向量 $\mathbf{\sigma}_j$ 共线或近似共
11	4	110	8	高斯基函数和一个常数"偏差"基 函数的模型	高斯基函数和一个常数"偏置参数" 基函数的模型	产生。数据集的索引是 $l=1,\cdots,L$,其中 $L=100$ 。对于每个数据集 D^{i0} ,报合 $c=10$ 0 为一个数据集 $c=10$ 0 对于每个数据集 $c=10$ 0 为 $c=10$ 0 为 $c=10$ 0 和 $c=10$ 0 为 $c=10$ 0 和

12	5	111	14	可以看到,较小的λ值会使模型过度 拟合每个单独数据集上的噪声,从 而导致较大的方差。	以中,由分布 p(x) 加权的对本的积分。可通过该分布产生的数据点的有限和来近 其中,由分布 p(x) 加权的对本的积分。可通过该分布产生的数据点的有限和来近 似 图 48 给出了这些推在不同 ln 2 取值时的曲线。可以看到,较小的 2 值金资模型 战争个单级数据集上的噪声运行运动。从前导致较大的方差。相反,较大的 2 值金使 权重参数问 0 豪近,从前导致较大的偏差。