

Termodinámica (FIS1523)

Estados, procesos y Ley 0

Felipe Isaule felipe.isaule@uc.cl

Lunes 10 de Marzo de 2025

Resumen clase anterior

- Revisamos la definición e historia de la Termodinámica como rama de la física.
- Definimos los sistemas cerrados (pueden intercambiar energía) y abiertos (pueden intercambiar masa y energía).
- Definimos las propiedades intensivas y extensivas.

Clase 2: Estados, procesos, y Ley cero

- Estado y equilibrio
- Procesos y ciclos termodinámicos
- Temperatura y Ley 0

- Bibliografía recomendada:
- → Cengel (1.6, 1.7, 1.8).

Clase 2: Estados, procesos, y Ley cero

- Estado y equilibrio
- Procesos y ciclos termodinámicos
- Temperatura y Ley 0

Estado termodinámico

- Corresponde a la condición de un sistema termodinámico, la que está descrita por un conjunto de propiedades.
- Es decir, un estado está descrito por las **magnitudes** de distintas propiedades termodinámicas.
- Cuando algunas de las propiedades cambia, entonces el estado del sistema cambia.

Estado termodinámico

- En el caso de un **gas**, las propiedades (magnitudes) de interés son:
 - Masa (m) o mol: Corresponde a la cantidad de sustencia. En el SI la masa se expresa en kg, mientras que los moles en... mol.
 - <u>Volumen (V)</u>: Espacio tridimensional ocupado. En SI se expresa en m³, aunque el litro (I) es ampliamente utilizado.
 - <u>Presión (P):</u> Fuerza por unidad de área aplicada perpendicularmente a una superficie. En el SI se expresa en Pascales (Pa). La átmosfera (atm) es ampliamente utilizada.
 - <u>Temperatura (*T*):</u> Macroscópicamente determina el <u>sentido en</u> que fluye el calor. Microscópicamente corresponde a la <u>energía</u> cinética de las partículas. En el SI se expresa en <u>Kelvins (K)</u>, pero los <u>Celsius (C)</u> también se utilizan con frecuencia.

Postulado de estado

- A pesar que un gas es descrito por varias magnitudes, sólo es necesario conocer dos propiedades intensivas para determinar su estado.
- Esto es válido para sistemas compresibles simples. En estos no hay efectos electromagnéticos, gravitacionales o de tensión superficial.

El estado del nitrógeno se fija mediante dos propiedades intensivas independientes.

Postulado de estado

• Ejemplo de una tabla termodinámica:

Vapor de agua sobrecalentado												
T	v	и	h	s	v	и	h	s	v	и	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg ⋅ K
	$P = 0.01 \text{ MPa } (45.81 \text{ °C})^*$				P = 0.05 MPa (81.32 °C)				P = 0.10 MPa (99.61 °C)			
Sat.†	14.670	2437.2	2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6	2675.0	7.3589
50	14.867	2443.3	2592.0	8.1741								
100	17.196	2515.5	2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959	2506.2	2675.8	7.3611
150	19.513	2587.9	2783.0	8.6893	3.8897	2585.7	2780.2	7.9413	1.9367	2582.9	2776.6	7.6148
200	21.826	2661.4	2879.6	8.9049	4.3562	2660.0	2877.8	8.1592	2.1724	2658.2	2875.5	7.8356
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062	2733.9	2974.5	8.0346
300	26.446	2812.3	3076.7	9.2827	5.2841	2811.6	3075.8	8.5387	2.6389	2810.7	3074.5	8.2172
400	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3	8.8659	3.1027	2968.3	3278.6	8.5452
500	35.680	3132.9	3489.7	9.8998	7.1338	3132.6	3489.3	9.1566	3.5655	3132.2	3488.7	8.8362
600	40.296	3303.3	3706.3	10.1631	8.0577	3303.1	3706.0	9.4201	4.0279	3302.8	3705.6	9.0999
700	44.911	3480.8	3929.9	10.4056	8.9813	3480.6	3929.7	9.6626	4.4900	3480.4	3929.4	9.3424
800	49.527	3665.4	4160.6	10.6312	9.9047	3665.2	4160.4	9.8883	4.9519	3665.0	4160.2	9.5682
900	54.143	3856.9	4398.3	10.8429	10.8280	3856.8	4398.2	10.1000	5.4137	3856.7	4398.0	9.7800
1000	58.758	4055.3	4642.8	11.0429	11.7513	4055.2	4642.7	10.3000	5.8755	4055.0	4642.6	9.9800
1100	63.373	4260.0	4893.8	11.2326	12.6745	4259.9	4893.7	10.4897	6.3372	4259.8	4893.6	10.1698
1200	67.989	4470.9	5150.8	11.4132	13.5977	4470.8	5150.7	10.6704	6.7988	4470.7	5150.6	10.3504
1300	72.604	4687.4	5413.4	11.5857	14.5209	4687.3	5413.3	10.8429	7.2605	4687.2	5413.3	10.5229

Equilibrio termodinámico

 Un sistema se encuentra en equilibrio termodinámico si sus propiedades permanecen constantes en el tiempo y en cada punto del sistema.

a) Antes

b) Después

- Tipos de equilibrio:
 - Térmico: Misma temperatura.
 - Mecánico: Misma presión.
 - Químico: Misma composición.
 - Fase: Misma fase.

Equilibrio termodinámico

- En este curso "sólo consideramos" sistemas en equilibrio termodinámico.
- Sin embargo, sí estudiamos sistemas que cambian en el tiempo en el límite cuasiestático o de cuasiequilibrio.
- Esta aproximación significa que los cambios en el tiempo son lo suficientemente lentos de tal manera que todas las propiedades cambien uniformemente en el sistema.
- Es decir, el sistema siempre permanece cerca del equilibrio.

Clase 2: Estados, procesos, y Ley cero

- Estado y equilibrio
- Procesos y ciclos termodinámicos
- Temperatura y Ley 0

Procesos termodinámicos

 Un proceso termodinámico corresponde al cambio de un sistema de un estado a otro.

- Estos procesos se realizan en el límite de cuasiequilibrio.
 - → Son más faciles de analizar.
 - → También son más eficientes.

Procesos termodinámicos

• <u>Ejemplo</u>:

Ciclos termodinámicos

 Un ciclo corresponde a una serie de procesos donde los estados iniciales y finales son idénticos.

Procesos termodinámicos

- Tipos de procesos:
 - Isotérmico: La temperatura se mantiene constante.
 - Isobárico: La presión se mantiene constante.
 - Isocórico / isométrico: El volumen se mantiene constante.
 - Adiabático: No permite el flujo de calor.

Ejemplo:

Proceso de flujo estacionario

- Un proceso de **flujo estacionario** es aquel donde un fluido **fluye de manera estacionaria** en un **sistema abierto**.
- Es decir, la **masa**, **volumen** y **energía total** se mantienen **constantes en el tiempo**.

Clase 2: Estados, procesos, y Ley cero

- Estado y equilibrio
- Procesos y ciclos termodinámicos
- Temperatura y Ley 0

Temperatura

- Intuitivamente, la temperatura se asocia a qué tan frío o caliente se encuentra un sistema.
- Como se mencionó anteriormente, macroscópicamente determina el sentido en que fluye el calor.
- Cuando un cuerpo caliente se pone en contacto con un cuerpo frío, el cuerpo caliente se enfriará.

 Eventualmente los cuerpos alcanzarán el equilibrio térmico, deteniendo el intercambio de calor y ambos alcanzando la misma temperatura.

Ley cero de la Termodinámica

Si dos cuerpos A y B se encuentran por separado en equilibrio térmico con un tercer cuerpo C, entonces A y B también están en equilibrio térmico.

- Es decir, la **temperatura determina** si dos cuerpos se encuentran en **equilibrio térmico**.
- Una diferencia en temperatura nos indica qué tan lejos del equilibro térmico se encuentran dos cuerpos.
- A mayor diferencia de temperatura, mayor intercambio de calor.

Termómetros

- Si el tercer cuerpo C es un **termómetro**, entonces A y B tienen la temperatura indicada por el termómetro.
- Entonces, la Ley cero escencialmente define la temperatura.

 Para construir un termómetro se necesitan conocer bien sus propiedades en función de la temperatura.

Ejemplos:

- → Volumen del mercurio.
- → Resistencia de un metal.

Escalas de temperatura

- Para construir un termómetro y medir temperaturas es también necesario definir una escala.
- Para definir una escala se deben definir dos puntos de referencia y luego realizar una graduación.

Temperatura inferior 0 °C
Temperatura superior 100 °C
100 grados entre puntos fijos

Escalas de temperatura

 A presiones bajas, la temperatura de un gas a volumen constante depende linealmente de la presión:

$$T = a + bP$$

donde a y b dependen del sistema (tipo y cantidad de gas).

 Un termómetro que funciona de esta manera corresponde a un termómetro de gas ideal basado en la diferencia de presión.

Escalas de temperatura

 Se encontró experimentalmente que los termómetros de gases ideales predicen una presión nula a una misma temperatura.

Cero absoluto y escala de Kelvin

 Esta temperatura mínima que se puede encontrar con un termómetro de gas ideal es

$$T = -273.15$$
 °C.

- Esta temperatura corresponde al **cero absoluto** (se revisará en mayor detalle más adelante en el curso).
- La escala de Kelvin fija el cero en el cero absoluto y utiliza la misma graduación que la escala de Celsius.
- Los grados Kelvin (K) y Celsius (C) se relacionan mediante:

$$T(^{\circ}K) = T(^{\circ}C) + 273.15.$$

Algunas temperaturas

Congelación del agua a 1 atm (273.15 °K = 0 °C)

Ebullición del agua a 1 atm (373.15 °K = 100 °C)

Helio líquido (T < 4 °K = -269 °C)

Nitrógeno líquido (63 °K < T < 77 °K = -196 °C) (-38.83 °C < T < 356.73 °C)

Mercurio líquido

Algunas temperaturas

Espacio exterior (~2.7 °K)

Superficie de Marte (~209°K=-60°C)

Superficie y centro del Sol (~5x10³ y 15x10⁶ °K)

Superficie de estrellas de neutrones (~10⁶ °K)

Átomos Ultrafríos (<10⁻⁶ °K)

Condensado de Bose-Einstein

Bomba de Hidrógeno (~10⁸ °K)

Resumen

- Hemos definido el concepto de estado y equilibrio termodinámico.
- Revisamos los procesos termodinámicos cuasiestáticos.
- Definimos la Ley cero de la Termodinámica, la que nos permitió definir la temperatura.
- Próxima clase:
 - → Dilatación térmica.