

Clustering Analysis

Part One

4

Clustering

- What is cluster analysis?
- Types of data in cluster analysis
- A categorization of major clustering methods
 - Partitioning methods
 - Hierarchical methods
 - Model-based clustering methods
- Outlier analysis
- Summary

What Is Cluster Analysis?

- Cluster: a collection of data objects.
 - Similar to one another within the same cluster.
 - Dissimilar to the objects in other clusters.
- Cluster analysis.
 - Grouping a set of data objects into clusters, such that objects within each cluster are similar to each other, objects in different clusters are dissimilar to each other.
- Clustering is unsupervised classification:
 - Objects are not labeled with predefined classes.
- Typical applications.
 - As a stand-alone tool to get insight into data distribution.
 - As a preprocessing step for other algorithms.

General Applications

- Pattern recognition
- (Spatial) data analysis
- Image processing
- Economic science (especially market research)
- WWW
 - Automatic document categorization
 - Web usage mining: cluster web log data to discover groups of similar access patterns
- Business : customer groups
- Biology: animal and plant taxonomy
 Categorize genes by functionality
- And many more ...

What Is Good Clustering?

- A good clustering method will produce high quality clusters with.
 - High <u>intra-class</u> similarity.
 - Low <u>inter-class</u> similarity.
- The <u>quality</u> of a clustering result depends on both the similarity measure used by the method and its clustering approach used.
- The <u>quality</u> of a clustering method is also measured by its ability to discover some or all of the <u>hidden</u> patterns

Requirements of Clustering in Data Mining

- Scalability
- Ability to deal with different types of attributes
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Interpretability and usability

Data Structures

Data matrix

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

Dissimilarity matrix

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Measure the Quality of Clustering

- Dissimilarity/similarity metric: similarity is expressed in terms of a distance function, which is typically metric: d(i, j).
- There is a separate "quality" function that measures the "goodness" of a cluster.
- The definitions of distance functions are usually very different for interval-scaled, boolean, categorical, ordinal variables, and temporal data.
- Weights should be associated with different variables based on applications and data semantics.
- It is hard to define "similar enough" or "good enough."
 - The answer is typically highly subjective

Type of Data in Clustering Analysis

- Interval-scaled variables
- Binary variables
- Nominal, and ordinal variables
- Variables of mixed types:
- Temporal

Interval-valued Variables

- Standardize data
 - Calculate the mean absolute deviation:

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

Where
$$m_f = \frac{1}{n}(x_{1f} + x_{2f} + ... + x_{nf})$$

Calculate the standardized measurement (z-score)

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

 Using mean absolute deviation is more robust than using standard deviation

Similarity and Dissimilarity Between Objects

- <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects
- Some popular ones include: Minkowski distance:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)}$$

Where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two p-dimensional data objects, and q is a positive integer

• If q = 1, d is Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

If q = 2, d is Euclidean distance:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

Properties

•
$$d(i,j) \ge 0$$

•
$$d(i,i) = 0$$

$$\bullet \ d(i,j) = d(j,i)$$

$$d(i,j) \leq d(i,k) + d(k,j)$$

Triangular inequality

Binary Attributes

A contingency table for binary data

		Object j			
		1		sum	
	1	a	b	a+b	
Object i	0	c	d	c+d	
	sum	a+c	b d $b+d$	p	

Simple matching coefficient (if the binary variable is <u>symmetric</u>): $d(i, j) = \frac{b+c}{a+b+c+d}$

Jaccard coefficient (if the binary variable is <u>asymmetric</u>):

$$d(i,j) = \frac{b+c}{a+b+c}$$

Dissimilarity between Binary Variables

Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- gender is a symmetric attribute
- the remaining attributes are asymmetric binary
- let the values Y and P be set to 1, and the value N be set to 0

Jaccard coefficient

$$d (jack , mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d (jack , jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d (jim , mary) = \frac{1+2}{1+1+2} = 0.75$$

Nominal Attributes

- A generalization of the binary attribute in that it can take more than 2 states, e.g., red, yellow, blue, green
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: use a large number of binary attributes
 - creating a new binary variable for each of the M nominal states

Ordinal Attributes

- An ordinal attribute can be discrete or continuous
- order is important, e.g., rank
- Can be treated like interval-scaled
 - replacing x_{if} by their rank $r_{if} \in \{1,...,M_f\}$
 - map the range of each attribute onto [0, 1] by replacing i-th object in the f-th attribute by

$$z_{if} = \frac{r_{if} - 1}{M_{f} - 1}$$

compute the dissimilarity using methods for interval-scaled attributes

Attributes of Mixed Types

- A database may contain different types of attributes
 - symmetric binary, asymmetric binary, nominal, ordinal, and interval.
- One may use a weighted formula to combine their effects. $\sum_{p} P = \delta_{p}(f) d_{p}(f)$

$$d(i, j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

• f is binary or nominal:

$$d_{ij}^{(f)} = 0$$
 if $x_{if} = x_{jf}$, or $d_{ij}^{(f)} = 1$ o.w.

- f is interval-based: use the normalized distance
- f is ordinal
 - compute ranks r_{if} and $z_{if} = \frac{r_{if} 1}{M_{f} 1}$
 - and treat z_{if} as interval-scaled

Major Clustering Approaches

- Partitioning algorithms: Construct various partitions and then evaluate them by some criterion
- Hierarchy algorithms: Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Model-based: A model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other

Partitioning Algorithms: Basic Concept

- Partitioning method: Construct a partition of a database D of n objects into a set of k clusters
- Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - <u>k-means</u> (MacQueen'67): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

- Distance Measure: Euclidean distance between data object and cluster center
- Clustering criterion function:

mean squared error

$$E = \sum_{i=1}^{k} \sum_{p \subseteq C_i} |p - m_i|^2$$

p: a data object C_i: cluster i m_i: center of cluster i k: number of clusters

The K-Means Clustering Method

- Approach: Given k, the k-means algorithm is implemented as the following:
 - arbitrarily choose K objects as the initial cluster centers.
 - Repeat:
 - Compute seed points as the centroids of the clusters of the current partition. The centroid is the center (mean point) of the cluster.
 - Assign each object to the cluster with the nearest seed point.

stop when no more new assignment, or when clustering criterion function (mean squared error) converges.

The K-Means Clustering Method

Example

- Clusters are Represented by the Centers of the clusters
- center of a cluster may not correspond to any object

K-Means

Assign each objects to most similar center

Update the cluster means

Arbitrarily choose K object as initial cluster center

Update the cluster means

Example

Apply K-means clustering algorithm to partition the following data with 9 data objects:

Comments on the K-Means Method

Strength

- Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.</p>
- Often terminates at a local optimum. The global optimum may be found using techniques such as: deterministic annealing and genetic algorithms

Weakness

- Applicable only when *mean* is defined, then what about categorical data?
- Need to specify k, the number of clusters, in advance
- Sensitive to initial seed selection
- Unable to handle noisy data and outliers

Variations of the *K-Means* Method

- A few variants of the k-means which differ in
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: k-modes (Huang'98)
 - Replacing means of clusters with <u>modes</u>
 - Using new dissimilarity measures to deal with categorical objects
 - Using a <u>frequency</u>-based method to update modes of clusters
 - A mixture of categorical and numerical data: kprototype method

The K-Medoids Clustering Method

- Find representative objects, called medoids, in clusters
- PAM (Partitioning Around Medoids, 1987)
 - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - PAM works effectively for small data sets, but does not scale well for large data sets
- CLARA (Kaufmann & Rousseeuw, 1990)
- CLARANS (Ng & Han, 1994): Randomized sampling

1

PAM (Partitioning Around Medoids)

- PAM (Kaufman and Rousseeuw, 1987), built in Splus
- Use real object to represent the cluster
 - Select k representative objects arbitrarily
 - For each pair of non-selected object h and selected object i,
 calculate the total swapping cost TC_{ih}
 - For each pair of *i* and *h*,
 - If $TC_{ih} < 0$, **i** is replaced by **h**
 - Then assign each non-selected object to the most similar representative object
 - repeat steps 2-3 until there is no change

K-Medoids

- Arbitrarily choose K objects as the initial medoids;
- Repeat:
 - Assign each remaining object to the cluster with the nearest medoids;
 - Randomly select a nonmedoid object O_{random};
 - Compute the total cost, S, of swapping O_j with O_{random};
 - If S<0, then swap O_j with O_{random} to form the new set of k medoids;
- Until no change;

k-Medoids Total swapping cost $TC_{ih} = \sum_{p} C_{pih}$

Arbitrary choose k object as initial medoids

Assign each remainin q object to nearest medoids

K=2

Do loop

Until no change

Swapping O and $\mathrm{O}_{\mathrm{ramdom}}$ If quality is improved.

Total Cost = 26

Compute total cost of swapping

Replace o_j with o_r $p \in o_j$

p is now closer to o_i $i \neq j$

Reassign p to O_i

$$Cp,j,r=d(p,o_i)-d(p,o_j)$$

Replace oj with or

$$p \in o_j$$

p closest to or

Reassign p to O_r

$$Cp,j,r=d(p,o_r)-d(p,o_j)$$

Replace oj with or

$$p \in o_i$$
; $i \neq j$;

p still closest to oi

no change

$$C_{p,j,r}=0$$

Replace o_j with o_r $p \in o_i$; $i \neq j$;

p closest to or

Reassign p to O_r

$$Cp,j,r=d(p,o_r)-d(p,o_i)$$

PAM Complexity Analysis

- Total k*(n-k) pairs of (O_i, O_h)
- For each pair of (O_i, O_h):
 - compute Tc_{ih} require the examination of (n-k) nonselected objects.
- Total complexity:

$$O(k * (n-k)^2)$$

Compare K-means and PAM

- K-means is computationally more efficient
- K-means only handles numeric data
- PAM can handle different types of data
- PAM is better in terms of handling outliers in data

1

The CLARA algorithm

- Objective: to improve the computational efficiency of PAM, through sampling
- Basic idea:
 - draw a sample of the original data set, applies PAM on the sample, and finds the medoids of the sample.
 - Repeat the process a fixed number of times and return the medoids that generate the lowest average dissimilarity from the data objects
- Complexity: $O(k^*(40+k)^2 + k^*(n-k))$

The CLARA Algorithm

For I=1 to 5, repeat the following steps:

- Draw a sample of 40+2k objects randomly from the entire data set, and call algorithm PAM to find the k medoids of the sample
- For each object O_j in the entire data set, determine which of the k medoids is the most similar to O_j.
- Calculate the average dissimilarity of the clustering obtained in the previous step. If this value is < current minimum, set current minimum to this value, and retain the current set of k medoids
- Return to step 1 to start the next iteration

CLARANS ("Randomized" CLARA)

- CLARANS (A Clustering Algorithm based on Randomized Search)
- CLARANS draws sample of *neighbors* dynamically
- The clustering process can be presented as searching a graph where every node is a potential solution, that is, a set of k medoids
- If the local optimum is found, CLARANS starts with new randomly selected node in search for a new local optimum
- It is more efficient and scalable than both PAM and CLARA

The CLARANS Algorithm

- Input numlocal and maxneighbor
 i=1, mincost=FLT_MAX, bestnode=NULL
- 2. *current* = an arbitrary *k* modiods
- 3. j=1
- 4. Pick random neighbor *S* of *current*, compute the cost difference between *S* and *current*
- 5. If S has lower cost, set *current* = S, goto 3 else
 j=j+1;
 - if (j <= maxneighbor) goto 4
 else
 if (cost(current) < mincost)
 mincost = cost(current)</pre>
 - bestnode = current

- 6. i = i + 1;
- 7. If (i <= numlocal) goto step 2
 - else

output bestnode and halt