Instrumentação 1

Sensores de Temperatura, Deslocamento Pressão e Nível

Professor Cicero Martelli DAELN/CPGEI

profmartelli.instrumentacao@gmail.com

Introdução

Sensores

Temperatura

Deslocamento

Pressão

Nível

Os tipos de sensores industriais podem

ser: Sensores de Pressão, Sensores de

Temperatura, **Sensores** de

Nível, **Sensores** de Vazão e ainda os mais

comuns: indutivo, capacitivo, fotoelétrico,

magnético e ultrassônico.

Calibração

TABLE 32.7 Defining Fixed Points of the ITS-90

		Assigned val	ue of temperature
Material ^a	Equilibrium Stateb	T_{90} (K)	t ₉₀ (°C)
Не	VP	3–5	-270.15 to -268.15
e-H ₂	TP	13.8033	-259.3467
e-H ₂ (or He)	VP (or GT)	≈17	≈-256.16
e-H2 (or He)	VP (or GT)	≈20.3	≈-252.85
Ne	TP	24.5561	-248.5939
O ₂	TP	54.3584	-218.7916
Ar	TP	83.8058	-189.3442
Hg	TP	234.3156	-38.8344
H ₂ O	TP	273.16	0.01
Ga	MP	302.9146	29.7646
In	FP	429.7485	156.5985
Sn	FP	505.078	231.928
Zn	FP	692.677	419.527
Al	FP	933.473	660.323
Ag	FP	1234.93	961.78
Au	FP	1337.33	1064.18
Cu	FP	1357.77	1084.62

^a e-H₂ indicates equilibrium hydrogen; that is, hydrogen with the equilibrium distribution of its *ortho* and *para* forms at the corresponding temperatures. Normal hydrogen at room temperature contains 25% *para* and 75% *ortho* hydrogen. The isotopic composition of all materials is that naturally occurring.

FIGURE 32.15 An isothermal bath permits calibration of industrial RTDs compared with a secondary standard.

^b VP indicates vapor pressure point or equation; GT indicates gas thermometer point; TP indicates triple point; FP indicates freezing point; MP indicates melting point.

Par bimetálico - termostato

- Materiais diferentes têm diferentes coeficientes de diatação
- Aplicados como sensores e também como atuadores

Par bimetálico - termostato

TABLE 32.1 Properties for Selected Materials Used in Bimaterial Elements

Material	Density (ρ) (kg m ⁻³)	Young's Modulus (E) (GPa)	Heat capacity (C) (J kg ⁻¹ K ⁻¹)	Thermal expansion (10-6 K-1)	Thermal conductivity (W m ⁻¹ K ⁻¹)
Al	2700°	61-71 ^b	896ª	24 ^b	237°
	2707ª	70.6°	900°	23.5°	204 ^a
Cu	89542	129.8c	383.12	17.0°	386ª
	8960c		385°		401°
Cr	7100c	279°	518c	6.5°	94c
Au	19300b,c	78.5b,c	129b,c	14.1b,c	318b,c
Fe	7870 ^c	211.4°	444c	12.1c	80.4°
Ni	8906 ^a	199.5°	446 ^a	13.3c	90 ²
	8900°		444c		90.9c
Ag	10524	82.7c	234.0 ^a	19.1°	419a
50	10500°		237°		429c
Sn	73042	49.9c	226.5ª	23.5c	64 ^a
	7280 ^c		213°		66.8c
Ti	4500°	120.2°	523°	8.9c	21.9°
W	19350°	411c	134.42	4.5°	163 ^a
	19300c		133¢		173c
Invar (Fe64/Ni36)	8000c	140-150°	===81	1.7-2.0°	13c
Si	2340°	113c	703c	4.7-7.6c	80-150°
n-Si	2328b	130-190b	700 ^b	2.6b	150 ^b
p-Si	2300b	150-170b	770 ^b		30 ^b
Si ₃ N ₄	3100 ^a	304b	600-800b	3.0b	9-30b
SiO ₂	2200b	57-85 ^b	730 ^b	0.50b	1.4 ^b

Par bimetálico - termostato

TABLE 32.2 Table of Selected Industrially Available ASTM Thermostatic Elements

Type (ASTM)	Flexivity 10-6 (°C-1)	Max. sensitivity temp. range (°C)	Max. operating temp. (°C)	Young's Modulus (GPa)
TM1	27.0 ± 5% ^a	-18-149	538	17.2
	$26.3 \pm 5\%^{b}$			
TM2	38.7 ± 5% ²	-18-204	260	13.8
	38.0 ± 5% ^b			
TM5	11.3 ± 6% ²	149-454	538	17.6
	$11.5 \pm 6\%^{b}$			
TM10	23.6 ± 6%3	-18-149	482	17.9
	22.9 ± 6%b			
TM15	26.6 ± 5.5% ²	-18-149	482	17.2
	25.9 ± 5.5%b			
TM20	25.0 ± 5% ²	-18-149	482	17.2
	25.0 ± 5%b			

Termômetros resistivos

Resistive Temperature Detectors (RTDs)

Termômetros resistivos

FIGURE 32.8 The Standard Platinum Resistance Thermometer is fragile and used only in laboratory environments.

Probe	Basic application	Temperature	Cost	Probe style ^a	Handling
SPRT	Calibration of Secondary SPRT	−200 to 1000°C	\$5000	1	Very fragile
		(-328 to 1832°F)			
Secondary SPRT	Lab use	-200 to 500°C	\$700	I, A	Fragile
		(-328 to 932°F)			
Wirewound IPRT	Industrial field use	-200 to 648°C	\$60-\$180	I, S, A	Rugged
		(-328 to 1200°F)			70.70
Thin-film IPRT	Industrial field use	-50 to 260°C	\$40-\$140	1, S, A	Rugged
		(-200 to 500°F)			

^a I = immersion; A = air; S = surface.

Termômetros resistivos

FIGURE 32.9 The Secondary Standard Platinum Resistance Thermometer is intended for laboratory environments.

FIGURE 32.10 Industrial Platinum Resistance Thermometers are almost as durable as thermocouples.

Termômetros resistivos

FIGURE 32.13 Thin-film elements have a thin film of platinum deposited onto a ceramic substrate.

Termopar

Efeito Seebeck

FIGURE 32.25 The basic thermocouple circuit with a *single* temperature reference junction, \mathbf{e} . The Seebeck voltage measured in open-circuit mode at terminals \mathbf{a} and \mathbf{f} is proportional to the temperature difference between thermocouple measuring junction \mathbf{b} and the necessary temperature reference junction \mathbf{e} . For convenience, T_r is usually made to be 0°C. For thermometry, the zones at temperatures T_r and T_1 must be isothermal.

Termopar

FIGURE 32.27 Preferred grounding and shielding for several thermometry situations. Electromagnetic (EM) and electrostatic (ES) noise must be controlled by different means. The design of the thermocouple monitoring instrument may dictate the grounding and shielding scheme that can be used.

Termopar

Туре	Common	Color code	M.P. (°C)	Recommended range, (°C) ^d	emf at 400°C, (mV)	Uncertainty, +/- Special tolerance Normal tolerance	ρ (μΩ-cm)
В	3 <u>25</u>	Brown*	1810	870 to 1700	0.787	0.25%	34.4
BX	-	Gray*	_	Art Competition Control	-	0.50%	-
BP	Pt30Rh	Gray	1910		-	100	18.6
BN	Pt6Rh	Red	1810	-	_	1000	15.8
E	-	Brown*	1270	-200 to 870	28.946	1,0°C or 0.40%	127
EX	C-17	Purplea	-	_	17.	1.7°C or 0.50%	
EP	Chromelb	Purple	1430	_			80
EN	Constantan	Red	1270		_		46
J	923	Brown*	1270	0 to 760	21.848	1.1°C or 0.40%	56
JX	-	White		10000000000000000000000000000000000000	(GEAR) (S.) (2.2°C or 0.75%	-
JP	Iron	White	1536	2		2.5	10
IN	Constantan	Red	1270	-	_	1000	46
K	-	Brown*	1400	-200 to 1260	16.397	1.1°C or 0.40%	112
KX		Yellow ^a			-	2.2°C or 0.75%	
KP	Chromel	Yellow	1430	_	-	AUROMATICAL STREET	80
KN	Alumelh	Red	1400		_	322	31
N	3 <u>23</u>	Brown ^a	220	0 to 1260	12.974	1.1°C or 0.40%	
NX	-	Orange ^a	-			2.2°C or 0.75%	-
NP	Nisil	Orange			_	5 244	_
NN	Nicrosil	Red					
R	-	Brown*	1769	0 to 1480	3.408	0.6°C or 0.10%	29
RX		Greena		_		1.5°C or 0.25%	-
RP	Pt13Rh	Green	1840	_	-		19
RN	Pt	Red	1769			20	10
S	323	Brown*	1769	0 to 1480	3.259	0.6°C or 0.10%	30
SX	-	Green ^a	-	10000000000000000000000000000000000000		1.5°C or 0.25%	-
SP	PtioRh	Green	1830	200	_		20
SN	Pt	Red	1769	-		1000	10
Т	-	Brown*	1083	-200 to 370	20.810	0.5°C or 0.40%	48
TX		Blue	_			1.0°C or 0.75%	
TP	Copper	Blue	1083	-			2
TN	Constantan	Red	1270	_		_	46

Termopar

TABLE 32.15 Temperature Upper Limits For Different Wire Diameters

11111111111111111		- I HELLI						
Dia., mm	0.025	0.127	0.254	0.406	0.813	1.600	3.175	
Dia., in.	0.001	0.005	0.010	0.016	0.032	0.063	0.125	
Dia., AWG	50	35	30	26	20	14	8	
Туре			Temp	erature lir	mit,°C			Туре
E	290	325	370	400	510	775	855	E
J	230	275	305	350	460	600	750	1
K, N	690	730	790	840	950	1095	1250	K, N
T	90	110	150	185	270	370	375	T

Note: Recommended limits are guidelines for continual use of bead-insulated thermocouples in closed-end protection tubes in compatible environments. Mineral insulated metal-sheathed thermocouples can have slightly higher limits and tolerate longer exposure.

From References [1, 9, 13].

TABLE 32.16 Environmental Tolerance of Letter Designated Thermocouples

				Environ	ment			
Туре	Oxygen rich	Oxygen poor	Reducing	Vacuum	Humid	Below 0°C	Sulfur traces	Neutron radiation
В	Good	Good	Poor	Fair	Good	Poor	Poor	Fair
E	Good	Poor	Poor	Poor	Good	Good	Poor	Poor
J	Fair	Good	Good	Good	Poor	Poor	Fair	Poor
K	Good	Poor	Poor	Poor	Good	Fair	Poor	Good
N	Good	Fair	Poor	Poor	Good	Good	Fair	Good
R,S	Good	Good	Poor	Poor	Good	Pair	Poor	Poor
T	Fair	Fair	Good	Good	Good	Good	Fair	Poor

Junções semicondutoras

FIGURE 32.33 Base-emitter voltage vs. ambient temperature for a silicon temperature sensor.

Termômetros de infravermelho

Termômetros de infravermelho

TABLE 32.17 Typical Emissivities of Different Materials (from 0 to 100°C)

Material	Emissivity	Material	Emissivity
Blackbody (ideal)	1.00	Green leaves	0.88
Cavity radiator	0.99-1.00	Ice	0.96
Aluminum (anodized)	0.70	Iron or steel (rusted)	0.70
Aluminum (oxidized)	0.11	Nickel (oxidized)	0.40
Aluminum (polished)	0.05	Nickel (unoxidized)	0.04
Aluminum (rough surface)	0.06-0.07	Nichrome (80Ni-20Cr) (oxidized)	0.97
Asbestos	0.96	Nichrome (80Ni-20Cr) (polished)	0.87
Brass (dull tarnished)	0.61	Oil	0.80
Brass (polished)	0.05	Silicon	0.64
Brick	0.90	Silicone rubber	0.94
Bronze (polished)	0.10	Silver (polished)	0.02
Carbon-filled latex paint	0.96	Skin (human)	0.93-0.96
Carbon lamp black	0.96	Snow	0.85
Chromium (polished)	0.10	Soil	0.90
Copper (oxidized)	0.6-0.7	Stainless steel (buffed)	0.20
Copper (polished)	0.02	Steel (flat rough surface)	0.95-0.98
Cotton cloth	0.80	Steel (ground)	0.56
Epoxy resin	0.95	Tin plate	0.10
Glass	0.95	Water	0.96
Gold	0.02	White paper	0.92
Gold-black	0.98-0.99	Wood	0.93
Graphite	0.7 - 0.8	Zinc (polished)	0.04

Termômetros de infravermelho

FIGURE 32.55 Thermopile sensor. "Hot" junctions are deposited on a membrane and "cold" junctions on the supporting ring.

Termômetros piroelétricos

Materiais piroelétricos são substâncias cristalinas capazes de gerar cargas elétricas em respostas ao fluxo de calor.

TABLE 32.19 Physical Properties of Pyroelectric Materials

Material	Curie temperature °C	Thermal conductivity W mK ⁻¹	Relative permittivity ε,	Pyroelectric charge coeff. C (m ² K) ⁻¹	Pyroelectric voltage coeff. V (mK)-1	Coupling $k_p^2(\%)$
Single Crystals						
TGS	49	0.4	30	3.5×10^{-4}	1.3×10^{6}	7.5
LiTaO ₃	618	4.2	45	2.0×10^{-4}	0.5×10^{6}	1.0
Ceramics						
BaTiO ₃	120	3.0	1000	4.0×10^{-4}	0.05×10^{6}	0.2
PZT	340	1.2	1600	4.2×10^{-4}	0.03×10^{6}	0.14
Polymers						
PVDF polycrystalline layers	205	0.13	12	0.4×10^{-4}	0.40×10^{6}	0.2
PbTiO ₃	470	2 (monocrystal)	200	2.3×10^{-4}	0.13×10^{6}	0.39

Termômetros piroelétricos

FIGURE 32.67 Pyroelectric sensor has two electrodes at the opposite sides of the crystalline material. Thermal radiation is applied along axis 3.

Termômetros piroelétricos

FIGURE 32.67 Pyroelectric sensor has two electrodes at the opposite sides of the crystalline material. Thermal

FIGURE 32.68 Response of a pyroelectric sensor to a thermal step function. The magnitudes of charge Q_0 and voltage v_0 are exaggerated for clarity.

Termômetros piroelétricos

FIGURE 32.67 Pyroelectric sensor has two electrodes at the opposite sides of the crystalline material. Thermal radiation is applied along axis 3.

FIGURE 32.69 Interface circuits for pyroelectric sensors operating in voltage (A) and current (B) modes.

Indicadores de temperatura

TABLE 32.26a Approximate Touch-Down Temperatures of Pyrometric Cones (DIN 51063)

no.	(°C)	no.	(°C)	no.	(°C)	no.	(°C)
022	600	07a	960	9	1280	29	1650
021	650	06a	980	10	1300	30	1670
020	670	05a	1000	11	1320	31	1690
019	690	04a	1020	12	1350	32	1710
018	710	03a	1040	13	1380	33	1730
017	730	02a	1060	14	1410	34	1750
016	750	01a	1080	15	1435	35	1770
015a	790	la	1100	16	1460	36	1790
014a	815	2a	1120	17	1480	37	1825
013a	835	3a	1140	18	1500	38	1850
012a	855	4a	1160	19	1520	39	1880
011a	880	5a	1180	20	1530	40	1920
010a	900	6a	1200	26	1580	41	1960
09a	920	7	1230	27	1610	42	2000
08a	940	8	1250	28	1630		

FIGURE 32.77 Pyrometric cones (a) in cross-sections; (b) on a plaque during firing.

TABLE 32.26b Approximate Touch-Down Temperatures of Pyrometric Cones (BS 1041)

Cone no.	Temperature (°C)	Cone no.	Temperature (°C)	Cone no.	Temperature (°C)	Cone no.	Temperature (°C)
022	600	011	880	1	1135	11	1310
021	615	010	900	2	1150	12	1330
020	630	09	925	3	1165	13	1350
019	665	08	950	4	1180	14	1380
018	700	07	975	5	1195	15	1410
017	730	06	1000	6	1210	16	1435
016	760	05	1030	7	1230	17	1460
015	790	04	1060	8	1250	18	1485
014	810	03	1085	9	1270	19	1510
013	830	02	1105	10	1290	20	1535
012	860	01	1120				

Medição de Deslocamento

Representação em corte de potenciômetros de precisão

TABLE 6.1 Fundamental Potentiometer Characteristics

Advantages	Disadvantages
Easy to use	Limited bandwidth
Low cost	Frictional loading
Nonelectronic	Inertial loading
High-amplitude output signal	Wear
Proven technology	

TABLE 6.2 Characteristics of Conductive Plastic, Wirewound, and Hybrid Resistive Elements

	Conductive plastic	Wirewound	Hybrid
Resolution	Infinitesimal	Quantized	Infinitesimal
Power rating	Low	High	Low
Temperature stability	Poor	Excellent	Very good
Noise	Very low	Low, but degrades with time	Low
Life	106-108 cycles	105-106 cycles	106-107 cycles

Função de saída linear ideal

Linearidade da função de saída

Função de saída em relação a carga

SENSOR DE DESLOCAMENTO CAPACITIVO

30/60

SENSOR DE DESLOCAMENTO PIEZOELÉTRICO

- a) Campo elétrico V aplicado ao material gera deformação
- b) Deformação do material produz uma carga Q

SENSOR DE DESLOCAMENTO ÓPTICO

Fabry Perot

Interferometria

$$I = I_0 \cos\left(\frac{4\pi}{\lambda}d\right)$$

DISPLACEMENT

FIGURE 6.100 A typical EFPI transfer function curve.

EXEMPLO DE APLICAÇÃO

V. Bhatia. Wavelength-tracked white light interferometry for highly sensitive strain and temperature measurements, 1996.

Fig. 1 Extrinsic Fabry-Perot interferometric (EFPI) system with a magnified view of sensing head

d = cavity lengthL = gauge-length of sensor

Fig. 3 Theoretical and experimental shifts in resonance bands of sensor with $d = 2 \mu m$ and L = 1 cm in the 1.3 μm region

SENSOR DE DESLOCAMENTO ÓPTICO

Reflexão de feixe óptico

EXEMPLO DE APLICAÇÃO

Fig. 1 principle setup of triangulation sensor

Fig. 6 fast distance measurement on moving target at different displacements

SENSOR DE DESLOCAMENTO ÓPTICO

Redes de Bragg em Fibra Óptica

Sensores de Pressão

Introdução - Pressão

$$Pressure = \frac{Force}{Area} = \frac{F}{A}$$

$$A = 0.01 \text{ m}^2$$

$$P = 10,000 \text{ Pascals}$$

$$A = 0.01 \text{ m}^2$$

$$P = 10,000 \text{ Pascals}$$
Same force, different area, different pressure

$$P = \frac{Force}{Area} = \frac{F}{A} = \frac{F \cdot d}{A \cdot d} = \frac{W}{V} = \frac{Energy}{Volume}$$

Pressure Units								
	pascal (Pa)	bar (bar)	atmosphere (atm)	torr (torr)	pound-force per square inch (psi)	kilogram-force per square centimeter (kgf/cm ²)		
1 Pa	≡ 1 N/m ²	10 ⁻⁵	9.8692×10 ⁻⁶	7.5006×10 ⁻³	145.04×10 ⁻⁶	1.01972×10 ⁻⁵		
1 bar	100,000	≡ 10 ⁶ dyn/cm ²	0.98692	750.06	14.504	1.01972		
1 atm	101,325	1.01325	≡ 1 atm	760	14.696	1.03323		
1 torr	133.322	1.3332×10 ⁻³	1.3158×10 ⁻³	≡1 torr ≈1 mmHg	19.337×10 ⁻³	1.35951×10 ⁻³		
1 psi	6,894.76	68.948×10 ⁻³	68.046×10 ⁻³	51.715	≡ 1 lbf/in ²	7.03059×10 ⁻²		
1 kgf/cm ²	98,066.5	0.980665	0.967838	735.5576	14.22357	≡ 1 kgf/cm ²		

Example reading: 1 Pa = 1 N/m² = 10^{-6} bar = 9.8692×10^{-6} atm = 7.5006×10^{-3} torr, etc.

Note: mmHg is an abbreviation for millimetre of mercury

Pressão

As medições de pressão podem ter duas referências: 1) a pressão atmosférica e nesse caso os sensors e os resultados obtidos são chamadas de "pressão parcial"; 2) o zero absoluto, nesse caso a referência é o vácuo absoluto e as medições são chamdas de "pressão absoluta".

Dispositivos para medição de pressão:

Dispositivos capacitivos para medição de pressão:

Sensor unitário Sensor diferencial

Sensor com isolamento para ambiente corrosivo:

Dispositivos piezoresistivo para medição de pressão:

Exemplos de sensores com encapsulamento padrão industrial baseados em pastilhas semicondutoras

Dispositivos piezoresistivo para medição de pressão:

Figure 4. Fabrication processes for (a) polysilicon strain sensors (b) ZnO strain sensors on steel substrate.

200 un

Strain gage

Vin

Vin

R

R

R

R

Bonded piezoresistor (γ_{ij} , v_f ...)

Trace

h h_b Substrate (v_s ...)

Piezoresistor (γ_{ij} , v_f ...)

Substrate (v_s ...)

Dispositivos piezoresistivo para medição de pressão:

https://www.youtube.com/watch?v=bQJHxF4-qzE

Dispositivos para medição de vácuo:

- A medição de vácuo é mais complexa que do que a de pressão parcial positiva.

A faixa de operação dos dispositivos sensores deve normalmente ser muito grande, variando a partir da pressão atmosférica até superior a 11 ordem de magnitude, por exemplo na fabricação/processamento de semicondutores vácuos de até 7x10-9 Torr são necessários, ou seja:

Na maioria dos casos são necessários mais de um elemento sensor para atender a toda a faixa de operação requerida.

Dispositivos para medição de vácuo:

Dispositivos para medição de vácuo:

Dispositivos para medição de vácuo:

Faixa de operação das distintas tecnologias de medição

Dispositivos para medição de vácuo:

CAPACITANCE DIAPHRAGM GAUGE

STRAIN GAUGE DIAPHRAGM GAUGE

Dispositivos para medição de vácuo:

Gauge Pirani:

Sensor de vácuo baseado na condutividade térmica dos gases. A partir da medição da corrente passando por um condutor e da dissipação do calor gerado, que implica na resistividade do condutor, é possível definir a pressão de vácuo de um gás.

FIGURE 26.14 Heat transfer regime in othermal conductivity gage.

FIGURB 26.15 Aroni gage.

Dispositivos para medição de vácuo:

Dispositivos para medição de vácuo:

Gauge de Ionização de Catodos Quentes

* Medição UHV (ultra high vacum)

Sensores de Nível

Dispositivos para medição de nível:

- Normalmente se refere à medição de nível de líquido em um tanque. Existem basicamente dois tipos distintos de medição, um é a medição contínua do nível e a outra é medição discreta com o indicativo do líquido, por exemplo, ter ou não atingido determinado nível, são as

chaves de nível.

Dispositivos para medição de nível:

- Sensores baseados na flutuação sobre a superfície do fluido

(b)

Dispositivos para medição de nível:

- Sensores baseados na pressão exercida pelo fluido

Dispositivos para medição de nível:

- Sensores baseados em medições por tempo de voo (ultrassônicos e ópticos)

https://www.youtube.com/w
atch?v=tvPRriWINIE

(a)

Transmitted signal:

Dispositivos para medição de nível:

- Sensores baseados em medições por tempo de vôo (ultrassônicos e ópticos)

TABLE 11.1 Properties of the wave types for time-of-flight measuring.

Principle	Wave Velocity	Avg. Carrier Frequency	Wavelength	Avg. Burst Time
Ultrasonic	340 m s ⁻¹	50 kHz	7 mm	1 ms
Radar	300,000 km s ⁻¹	10 GHz	3 cm	1 ns
<u>Laser</u>	300,000 km s ⁻¹	300 THz	1 μm	1 ns

Dispositivos para medição de nível:

59/60

Dispositivos para medição de nível:

- Sensores baseados em radiação eletromagnética

Dispositivos para medição de nível:

TABLE 11.2 Priority Level Measurement Techniques and Prices for Industrial Applications

Technique	Application Range	Attainable Accuracy	Avg. Price
Displacer/filoat	Continuous, liquids	1 mm	\$ 2,000
Float	Switch, liquids	10 mm	\$ 500
Pressure	Continuous, liquids	10 mm	\$2,000
Ultrasonic	Continuous, liquids, solids	5 mm	\$2,500
Radar	Continuous, liquids, solids	1 mm	\$3,000
TDR	Continuous, liquids, solids	3 mm	\$2,500
Laser	Continuous, liquids, solids	0.1 mm	\$10,000
Radiometric	Continuous, liquids, solids	10 mm	\$5,000
Capacitive	Switch, liquids	10 mm	\$500
Viscosity	Switch, liquids	10 mm	\$500

