MA679 Hw3

Jiahao Xu 2/6/2019

4.6 & 4.8 & 4.9 in the next page graph!

4.10 (a)

```
library(ISLR)
summary(Weekly)
        Year
                      Lag1
                                       Lag2
                                                         Lag3
  Min.
         :1990
                 Min. :-18.1950
                                 Min.
                                         :-18.1950
                                                  Min.
                                                          :-18.1950
                                                    1st Qu.: -1.1580
  1st Qu.:1995
                 1st Qu.: -1.1540
                                  1st Qu.: -1.1540
## Median :2000
                 Median : 0.2410
                                 Median: 0.2410
                                                    Median: 0.2410
                 Mean : 0.1506
## Mean :2000
                                  Mean : 0.1511
                                                    Mean : 0.1472
   3rd Qu.:2005
                 3rd Qu.: 1.4050
                                  3rd Qu.: 1.4090
                                                    3rd Qu.: 1.4090
##
  Max.
         :2010
                 Max. : 12.0260
                                  Max. : 12.0260
                                                    Max. : 12.0260
##
        Lag4
                                          Volume
                         Lag5
## Min.
         :-18.1950
                    Min. :-18.1950
                                      Min.
                                             :0.08747
                    1st Qu.: -1.1660
  1st Qu.: -1.1580
                                      1st Qu.:0.33202
## Median: 0.2380
                   Median: 0.2340 Median: 1.00268
## Mean
        : 0.1458
                    Mean : 0.1399
                                      Mean :1.57462
   3rd Qu.: 1.4090
                     3rd Qu.: 1.4050
                                      3rd Qu.:2.05373
                   Max. : 12.0260
## Max. : 12.0260
                                      Max. :9.32821
##
       Today
                    Direction
## Min.
         :-18.1950
                   Down:484
## 1st Qu.: -1.1540
                    Up :605
## Median : 0.2410
## Mean
        : 0.1499
## 3rd Qu.: 1.4050
## Max. : 12.0260
# According to the summary, all the lags and today have the same min and max value.
```

(b)

```
mod1<-glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, data = Weekly, family = binomial)
summary(mod1)

##
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
## Volume, family = binomial, data = Weekly)
##
## Deviance Residuals:</pre>
```

4.6 (a)
$$P(x) = \frac{e^{-b + a \cdot 5 \times bo + 3 \cdot 5}}{(1 + e^{-b + a \cdot 5 \times bo + 3 \cdot 3})} = 0.3777$$

(b) $P(x) = \frac{e^{-b + a \cdot 5 \times bo + 3 \cdot 5}}{(1 + e^{-b + a \cdot 5 \times bo + 3 \cdot 3})} = 0.5$

$$= \frac{e^{-b + a \cdot 5 \times bo + 3 \cdot 5}}{(1 + e^{-b + a \cdot 5 \times bo + 3 \cdot 5})} = 0.5$$

$$= \frac{e^{-b + a \cdot 5 \times bo + 3 \cdot 5}}{(1 + e^{-b + a \cdot 5 \times bo + 3 \cdot 5})} = 0.377$$

4.8 In knn when $k = 1$, we have training error rate = 0.70

$$= \frac{e^{-b + a \cdot 5 \times bo + 3 \cdot 5}}{(1 + e^{-b + a \cdot 5 \times bo + 3 \cdot 5})} = 0.37$$

We care about the error rate of test data, therefore, it's better to choose legistic regression

4.9 (a) $\frac{P(x)}{1 + P(x)} = 0.37 = 7$ $P(x) = \frac{0.47}{1 + 0.37} \approx 0.27$

(b) $\frac{P(x)}{1 - P(x)} = \frac{0.15}{1 - 0.15} \approx 0.19$

Figure 1: lalala

```
## -1.6949 -1.2565
                    0.9913 1.0849
                                       1.4579
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.26686 0.08593 3.106 0.0019 **
              -0.04127
                          0.02641 -1.563 0.1181
## Lag1
                                   2.175
## Lag2
              0.05844
                          0.02686
                                            0.0296 *
## Lag3
              -0.01606
                          0.02666 -0.602
                                            0.5469
## Lag4
              -0.02779
                          0.02646 -1.050
                                            0.2937
## Lag5
              -0.01447
                          0.02638 -0.549 0.5833
              -0.02274
                          0.03690 -0.616
                                          0.5377
## Volume
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 1496.2 on 1088 degrees of freedom
## Residual deviance: 1486.4 on 1082 degrees of freedom
## AIC: 1500.4
##
## Number of Fisher Scoring iterations: 4
# From the model summary, we can see that only the intercept and Lag2 are significant.
(c)
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
pred<-predict(mod1, type = "response")</pre>
updown <- rep("Down", length(pred))</pre>
updown[pred > 0.5] <- "Up"
table(updown, Weekly$Direction)
##
## updown Down Up
##
           54 48
    Down
##
    Uр
          430 557
# According to the confusion matrix, the accuracy of down is 54/(54+430)
# the accuary of up is 557/(48+557)
(d)
library(dplyr)
##
```

Median

1Q

Attaching package: 'dplyr'

3Q

```
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
train <- Weekly%>% filter(Year < 2009)
Weekly.20092010 <- Weekly[!train, ]</pre>
## Warning in Ops.factor(left): '!' not meaningful for factors
mod2 <- glm(Direction ~ Lag2, data = train, family = binomial)</pre>
summary(mod2)
##
## Call:
## glm(formula = Direction ~ Lag2, family = binomial, data = train)
## Deviance Residuals:
     Min
              1Q Median
                               3Q
                                      Max
                                    1.368
## -1.536 -1.264 1.021
                           1.091
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 0.20326
                          0.06428 3.162 0.00157 **
## Lag2
               0.05810
                           0.02870
                                     2.024 0.04298 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1354.7 on 984 degrees of freedom
## Residual deviance: 1350.5 on 983 degrees of freedom
## AIC: 1354.5
## Number of Fisher Scoring iterations: 4
pred2<-predict(mod2, Weekly.20092010,type = "response")</pre>
updown <- rep("Down", length(pred2))</pre>
updown[pred2 > 0.5] <- "Up"
table(updown, Weekly.20092010$Direction)
##
## updown Down Up
    Down
           0 0
(e)
library (MASS)
## Attaching package: 'MASS'
```

```
## The following object is masked from 'package:dplyr':
##
##
       select
train <- Weekly%>% filter(Year < 2009)
Weekly.20092010 <- Weekly[!train, ]</pre>
mod3 <- lda(Direction ~ Lag2, data = train, family = binomial)</pre>
mod3
## Call:
## lda(Direction ~ Lag2, data = train, family = binomial)
## Prior probabilities of groups:
        Down
## 0.4477157 0.5522843
##
## Group means:
## Down -0.03568254
## Up
        0.26036581
## Coefficients of linear discriminants:
##
              LD1
## Lag2 0.4414162
pred3<-predict(mod3, Weekly.20092010)</pre>
table(pred3$class, Weekly.20092010$Direction)
##
##
          Down Up
##
             0 0
     Down
##
     Uр
             0 0
(f)
library(MASS)
train <- Weekly%>% filter(Year < 2009)</pre>
Weekly.20092010 <- Weekly[!train, ]</pre>
mod3 <- qda(Direction ~ Lag2, data = train, family = binomial)</pre>
mod3
## Call:
## qda(Direction ~ Lag2, data = train, family = binomial)
## Prior probabilities of groups:
        Down
                     Uр
## 0.4477157 0.5522843
##
## Group means:
## Down -0.03568254
## Up
       0.26036581
```

```
pred3<-predict(mod3, Weekly.20092010)
table(pred3$class, Weekly.20092010$Direction)

##
## Down Up
## Down 0 0
## Up 0 0</pre>
```

(g)

```
library(class)
train.X <- na.omit(as.matrix(Weekly%>% filter(Year < 2009)))
test.X <- na.omit(as.matrix(Weekly%>% filter(Year >= 2009)))
train<-Weekly%>% filter(Year < 2009)
train.Direction <-na.omit(train$Direction)
set.seed(1)
###pred.knn <- knn(train.X, test.X, train.Direction, k = 1)
###table(pred.knn, Weekly.20092010$Direction)</pre>
```

4.11 (a)

```
data(Auto)
mpg<-Auto$mpg
mpg</pre>
```

```
##
     [1] 18.0 15.0 18.0 16.0 17.0 15.0 14.0 14.0 14.0 15.0 15.0 14.0 15.0 14.0
    [15] 24.0 22.0 18.0 21.0 27.0 26.0 25.0 24.0 25.0 26.0 21.0 10.0 10.0 11.0
##
    [29] 9.0 27.0 28.0 25.0 19.0 16.0 17.0 19.0 18.0 14.0 14.0 14.0 14.0 12.0
##
   [43] 13.0 13.0 18.0 22.0 19.0 18.0 23.0 28.0 30.0 30.0 31.0 35.0 27.0 26.0
  [57] 24.0 25.0 23.0 20.0 21.0 13.0 14.0 15.0 14.0 17.0 11.0 13.0 12.0 13.0
## [71] 19.0 15.0 13.0 13.0 14.0 18.0 22.0 21.0 26.0 22.0 28.0 23.0 28.0 27.0
   [85] 13.0 14.0 13.0 14.0 15.0 12.0 13.0 14.0 13.0 12.0 13.0 16.0
## [99] 18.0 18.0 23.0 26.0 11.0 12.0 13.0 12.0 18.0 20.0 21.0 22.0 18.0 19.0
## [113] 21.0 26.0 15.0 16.0 29.0 24.0 20.0 19.0 15.0 24.0 20.0 11.0 20.0 19.0
## [127] 15.0 31.0 26.0 32.0 25.0 16.0 16.0 18.0 16.0 13.0 14.0 14.0 14.0 29.0
## [141] 26.0 26.0 31.0 32.0 28.0 24.0 26.0 24.0 26.0 31.0 19.0 18.0 15.0 15.0
## [155] 16.0 15.0 16.0 14.0 17.0 16.0 15.0 18.0 21.0 20.0 13.0 29.0 23.0 20.0
## [169] 23.0 24.0 25.0 24.0 18.0 29.0 19.0 23.0 23.0 22.0 25.0 33.0 28.0 25.0
## [183] 25.0 26.0 27.0 17.5 16.0 15.5 14.5 22.0 22.0 24.0 22.5 29.0 24.5 29.0
## [197] 33.0 20.0 18.0 18.5 17.5 29.5 32.0 28.0 26.5 20.0 13.0 19.0 19.0 16.5
## [211] 16.5 13.0 13.0 13.0 31.5 30.0 36.0 25.5 33.5 17.5 17.0 15.5 15.0 17.5
## [225] 20.5 19.0 18.5 16.0 15.5 15.5 16.0 29.0 24.5 26.0 25.5 30.5 33.5 30.0
## [239] 30.5 22.0 21.5 21.5 43.1 36.1 32.8 39.4 36.1 19.9 19.4 20.2 19.2 20.5
## [253] 20.2 25.1 20.5 19.4 20.6 20.8 18.6 18.1 19.2 17.7 18.1 17.5 30.0 27.5
## [267] 27.2 30.9 21.1 23.2 23.8 23.9 20.3 17.0 21.6 16.2 31.5 29.5 21.5 19.8
## [281] 22.3 20.2 20.6 17.0 17.6 16.5 18.2 16.9 15.5 19.2 18.5 31.9 34.1 35.7
## [295] 27.4 25.4 23.0 27.2 23.9 34.2 34.5 31.8 37.3 28.4 28.8 26.8 33.5 41.5
## [309] 38.1 32.1 37.2 28.0 26.4 24.3 19.1 34.3 29.8 31.3 37.0 32.2 46.6 27.9
## [323] 40.8 44.3 43.4 36.4 30.0 44.6 33.8 29.8 32.7 23.7 35.0 32.4 27.2 26.6
## [337] 25.8 23.5 30.0 39.1 39.0 35.1 32.3 37.0 37.7 34.1 34.7 34.4 29.9 33.0
```

```
## [351] 33.7 32.4 32.9 31.6 28.1 30.7 25.4 24.2 22.4 26.6 20.2 17.6 28.0 27.0
## [365] 34.0 31.0 29.0 27.0 24.0 36.0 37.0 31.0 38.0 36.0 36.0 36.0 34.0 38.0
## [379] 32.0 38.0 25.0 38.0 26.0 22.0 32.0 36.0 27.0 27.0 44.0 32.0 28.0 31.0

mpg01 <- rep(0, length(mpg))
mpg01[mpg > median(mpg)] <- 1
mpg01<-data.frame(Auto,mpg01)
mpg01</pre>
```

##		mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
##	1	18.0	8	307.0	130	3504	12.0	70	1
##	2	15.0	8	350.0	165	3693	11.5	70	1
##	3	18.0	8	318.0	150	3436	11.0	70	1
##	4	16.0	8	304.0	150	3433	12.0	70	1
##	5	17.0	8	302.0	140	3449	10.5	70	1
##	6	15.0	8	429.0	198	4341	10.0	70	1
##	7	14.0	8	454.0	220	4354	9.0	70	1
##	8	14.0	8	440.0	215	4312	8.5	70	1
##	9	14.0	8	455.0	225	4425	10.0	70	1
##		15.0	8	390.0	190	3850	8.5	70	1
##		15.0	8	383.0	170	3563	10.0	70	1
##		14.0	8	340.0	160	3609	8.0	70	1
##		15.0	8	400.0	150	3761	9.5	70	1
	14	14.0	8	455.0	225	3086	10.0	70	1
	15	24.0	4	113.0	95	2372	15.0	70	3
	16	22.0	6	198.0	95	2833	15.5	70	1
	17	18.0	6	199.0	97	2774	15.5	70	1
	18	21.0	6	200.0	85	2587	16.0	70	1
	19	27.0	4	97.0	88	2130	14.5	70	3
	20	26.0	4	97.0	46	1835	20.5	70	2
	21	25.0	4	110.0	87	2672	17.5	70	2
##	22	24.0	4	107.0	90	2430	14.5	70	2
##	23	25.0	4	104.0	95	2375	17.5	70	2
##	24	26.0	4	121.0	113	2234	12.5	70	2
##	25	21.0	6	199.0	90	2648	15.0	70	1
##	26	10.0	8	360.0	215	4615	14.0	70	1
##	27	10.0	8	307.0	200	4376	15.0	70	1
##	28	11.0	8 8	318.0	210	4382	13.5	70	1
##	29 30	9.0 27.0	4	304.0 97.0	193 88	4732 2130	18.5 14.5	70 71	1 3
##	31	28.0	4	140.0	90	2264	15.5	71	1
##	32	25.0	4	113.0	95	2228	14.0	71	3
##	34	19.0	6	232.0	100	2634	13.0	71	1
##	35	16.0	6	225.0	105	3439	15.5	71	1
##	36	17.0	6	250.0	100	3329	15.5	71	1
##		19.0	6	250.0	88	3302	15.5	71	1
##		18.0	6	232.0	100	3288	15.5	71	1
##		14.0	8	350.0	165	4209	12.0	71	1
##		14.0	8	400.0	175	4464	11.5	71	1
##		14.0	8	351.0	153	4154	13.5	71	1
##		14.0	8	318.0	150	4096	13.0	71	1
##		12.0	8	383.0	180	4955	11.5	71	1
##		13.0	8	400.0	170	4746	12.0	71	1
$\pi\pi$	44								
##		13.0	8	400.0	175	5140	12.0	71	1

##	47	22.0	4	140.0	72	2408	19.0	71	1
##	48	19.0	6	250.0	100	3282	15.0	71	1
##	49	18.0	6	250.0	88	3139	14.5	71	1
	50	23.0	4	122.0	86	2220	14.0	71	1
	51	28.0	4	116.0	90	2123	14.0	71	2
	52	30.0	4	79.0	70	2074	19.5	71	2
	53	30.0	4	88.0	76	2065	14.5	71	2
##	54	31.0	4	71.0	65	1773	19.0	71	3
##	55	35.0	4	72.0	69	1613	18.0	71	3
##	56	27.0	4	97.0	60	1834	19.0	71	2
##	57	26.0	4	91.0	70	1955	20.5	71	1
##	58	24.0	4	113.0	95	2278	15.5	72	3
##	59	25.0	4	97.5	80	2126	17.0	72	1
	60	23.0	4	97.0	54	2254	23.5	72	2
	61	20.0	4	140.0	90	2408	19.5	72	1
	62	21.0	4	122.0	86	2226	16.5	72	1
	63	13.0	8	350.0	165	4274	12.0	72	1
	64	14.0	8	400.0	175	4385	12.0	72	1
##		15.0	8	318.0	150	4135	13.5	72	1
	66	14.0	8	351.0	153	4129	13.0	72	1
##		17.0	8	304.0	150	3672	11.5	72	1
	68	11.0	8	429.0	208	4633	11.0	72	1
##	69	13.0	8	350.0	155	4502	13.5	72	1
##	70	12.0	8	350.0	160	4456	13.5	72	1
##	71	13.0	8	400.0	190	4422	12.5	72	1
##	72	19.0	3	70.0	97	2330	13.5	72	3
##	73	15.0	8	304.0	150	3892	12.5	72	1
	74	13.0	8	307.0	130	4098	14.0	72	1
	75	13.0	8	302.0	140	4294	16.0	72	1
	76	14.0	8	318.0	150	4077	14.0	72	1
	77	18.0	4	121.0	112	2933	14.5	72	2
	78	22.0	4	121.0	76	2511	18.0	72	2
						2979			
	79	21.0	4	120.0	87		19.5	72	2
	80	26.0	4	96.0	69	2189	18.0	72	2
	81	22.0	4	122.0	86	2395	16.0	72	1
	82	28.0	4	97.0	92	2288	17.0	72	3
##		23.0	4	120.0	97	2506	14.5	72	3
##	84	28.0	4	98.0	80	2164	15.0	72	1
##	85	27.0	4	97.0	88	2100	16.5	72	3
##	86	13.0	8	350.0	175	4100	13.0	73	1
##	87	14.0	8	304.0	150	3672	11.5	73	1
##	88	13.0	8	350.0	145	3988	13.0	73	1
##	89	14.0	8	302.0	137	4042	14.5	73	1
##	90	15.0	8	318.0	150	3777	12.5	73	1
##		12.0	8	429.0	198	4952	11.5	73	1
##		13.0	8	400.0	150	4464	12.0	73	1
##		13.0	8	351.0	158	4363	13.0	73	1
	94	14.0	8	318.0	150	4237	14.5	73	1
##		13.0	8	440.0	215	4735	11.0	73	1
	96	12.0	8	455.0	225	4951	11.0	73	1
##		13.0	8	360.0	175	3821	11.0	73	1
##		18.0	6	225.0	105	3121	16.5	73	1
##		16.0	6	250.0	100	3278	18.0	73	1
##	100	18.0	6	232.0	100	2945	16.0	73	1

	_						
## 101 18.0	6	250.0	88	3021	16.5	73	1
## 102 23.0	6	198.0	95	2904	16.0	73	1
## 103 26.0	4	97.0	46	1950	21.0	73	2
## 104 11.0	8	400.0	150	4997	14.0	73	1
## 105 12.0	8	400.0	167	4906	12.5	73	1
## 106 13.0	8	360.0	170	4654	13.0	73	1
## 107 12.0	8	350.0	180	4499	12.5	73	1
## 108 18.0	6	232.0	100	2789	15.0	73	1
## 109 20.0	4	97.0	88	2279	19.0	73	3
## 110 21.0	4	140.0	72	2401	19.5	73	1
## 111 22.0	4	108.0	94	2379	16.5	73	3
## 112 18.0	3	70.0	90	2124	13.5	73	3
## 113 19.0	4	122.0	85	2310	18.5	73	1
## 114 21.0	6	155.0	107	2472	14.0	73	1
## 115 26.0	4	98.0	90	2265	15.5	73	2
## 116 15.0	8	350.0	145	4082	13.0	73	1
## 117 16.0	8	400.0	230	4278	9.5	73	1
## 117 10.0	4	68.0	49	1867	19.5	73	2
## 118 29.0 ## 119 24.0	4	116.0	75	2158	15.5	73	2
## 120 20.0	4	114.0	91	2582	14.0	73	2
## 120 20.0 ## 121 19.0	4	121.0	112	2868	15.5	73	2
## 121 15.0 ## 122 15.0	8	318.0	150	3399	11.0	73	1
## 122 13.0 ## 123 24.0		121.0					
	4		110	2660	14.0	73	2
## 124 20.0	6	156.0	122	2807	13.5	73	3
## 125 11.0	8	350.0	180	3664	11.0	73	1
## 126 20.0	6	198.0	95	3102	16.5	74	1
## 128 19.0	6	232.0	100	2901	16.0	74	1
## 129 15.0	6	250.0	100	3336	17.0	74	1
## 130 31.0	4	79.0	67	1950	19.0	74	3
## 131 26.0	4	122.0	80	2451	16.5	74	1
## 132 32.0	4	71.0	65	1836	21.0	74	3
## 133 25.0	4	140.0	75	2542	17.0	74	1
## 134 16.0	6	250.0	100	3781	17.0	74	1
## 135 16.0	6	258.0	110	3632	18.0	74	1
## 136 18.0	6	225.0	105	3613	16.5	74	1
## 137 16.0	8	302.0	140	4141	14.0	74	1
## 138 13.0	8	350.0	150	4699	14.5	74	1
## 139 14.0	8	318.0	150	4457	13.5	74	1
## 140 14.0	8	302.0	140	4638	16.0	74	1
## 141 14.0	8	304.0	150	4257	15.5	74	1
## 142 29.0	4	98.0	83	2219	16.5	74	2
## 143 26.0	4	79.0	67	1963	15.5	74	2
## 144 26.0	4	97.0	78	2300	14.5	74	2
## 145 31.0	4	76.0	52	1649	16.5	74	3
## 146 32.0	4	83.0	61	2003	19.0	74	3
## 147 28.0	4	90.0	75	2125	14.5	74	1
## 148 24.0	4	90.0	75	2108	15.5	74	2
## 149 26.0	4	116.0	75	2246	14.0	74	2
## 150 24.0	4	120.0	97	2489	15.0	74	3
## 151 26.0	4	108.0	93	2391	15.5	74	3
## 152 31.0	4	79.0	67	2000	16.0	74	2
## 153 19.0	6	225.0	95	3264	16.0	75	1
## 154 18.0	6	250.0	105	3459	16.0	75	1
## 155 15.0	6	250.0	72	3432	21.0	75	1

## 156 15.0	6	250.0	72	3158	19.5	75	1
## 157 16.0	8	400.0	170	4668	11.5	75	1
## 158 15.0	8	350.0	145	4440	14.0	75	1
## 159 16.0	8	318.0	150	4498	14.5	75	1
## 160 14.0	8	351.0	148	4657	13.5	75	1
## 161 17.0	6	231.0	110	3907	21.0	75	1
## 162 16.0	6	250.0	105	3897	18.5	75	1
## 163 15.0	6	258.0	110	3730	19.0	75	1
## 164 18.0	6	225.0	95	3785	19.0	75	1
## 165 21.0	6	231.0	110	3039	15.0	75	1
## 166 20.0	8	262.0	110	3221	13.5	75	1
## 167 13.0	8	302.0	129	3169	12.0	75	1
## 168 29.0	4	97.0	75	2171	16.0	75	3
## 169 23.0	4	140.0	83	2639	17.0	75	1
## 170 20.0	6	232.0	100	2914	16.0	75	1
## 171 23.0	4	140.0	78	2592	18.5	75	1
## 172 24.0	4	134.0	96	2702	13.5	75	3
## 173 25.0	4	90.0	71	2223	16.5	75	2
## 174 24.0	4	119.0	97	2545	17.0	75	3
## 175 18.0	6	171.0	97	2984	14.5	75	1
## 176 29.0	4	90.0	70	1937	14.0	75	2
## 177 19.0	6	232.0	90	3211	17.0	75	1
## 178 23.0	4	115.0	95	2694	15.0	75	2
## 179 23.0	4	120.0	88	2957	17.0	75	2
## 180 22.0	4	121.0	98	2945	14.5	75	2
## 181 25.0	4	121.0	115	2671	13.5	75	2
## 182 33.0	4	91.0	53	1795	17.5	75	3
## 183 28.0	4	107.0	86	2464	15.5	76	2
## 184 25.0	4	116.0	81	2220	16.9	76	2
## 185 25.0	4	140.0	92	2572	14.9	76	1
## 186 26.0	4	98.0	79	2255	17.7	76	1
## 187 27.0	4	101.0	83	2202	15.3	76	2
## 188 17.5	8	305.0	140	4215	13.0	76	1
## 189 16.0	8	318.0	150	4190	13.0	76	1
## 190 15.5	8	304.0	120	3962	13.9	76	1
## 191 14.5	8	351.0	152	4215	12.8	76	1
## 192 22.0	6	225.0	100	3233	15.4	76	1
## 193 22.0	6	250.0	105	3353	14.5	76	1
## 194 24.0	6	200.0	81	3012	17.6	76	1
## 195 22.5	6	232.0	90	3085	17.6	76	1
## 196 29.0	4	85.0	52	2035	22.2	76	1
## 197 24.5	4	98.0	60	2164	22.1	76	1
## 198 29.0	4	90.0	70	1937	14.2	76	2
## 199 33.0	4	91.0	53	1795	17.4	76	3
## 200 20.0	6	225.0	100	3651	17.7	76	1
## 201 18.0	6	250.0	78	3574	21.0	76	1
## 202 18.5	6	250.0	110	3645	16.2	76	1
## 203 17.5	6	258.0	95	3193	17.8	76	1
## 204 29.5	4	97.0	71	1825	12.2	76	2
## 205 32.0	4	85.0	70	1990	17.0	76	3
## 206 28.0	4	97.0	75	2155	16.4	76	3
## 207 26.5	4	140.0	72	2565	13.6	76	1
## 208 20.0	4	130.0	102	3150	15.7	76	2
## 209 13.0	8	318.0	150	3940	13.2	76	1

## 210 19.0	4	120.0	88	3270	21.9	76	2
## 211 19.0	6	156.0	108	2930	15.5	76	3
## 212 16.5	6	168.0	120	3820	16.7	76	2
## 213 16.5	8	350.0	180	4380	12.1	76	1
## 214 13.0	8	350.0	145	4055	12.0	76	1
## 215 13.0	8	302.0	130	3870	15.0	76	1
## 216 13.0	8	318.0	150	3755	14.0	76	1
## 217 31.5	4	98.0	68	2045	18.5	77	3
## 218 30.0	4	111.0	80	2155	14.8	77	1
## 219 36.0	4	79.0	58	1825	18.6	77	2
## 220 25.5	4	122.0	96	2300	15.5	77	1
## 221 33.5	4	85.0	70	1945	16.8	77	3
## 222 17.5	8	305.0	145	3880	12.5	77	1
## 223 17.0	8	260.0	110	4060	19.0	77	1
## 224 15.5	8	318.0	145	4140	13.7	77	1
## 225 15.0	8	302.0	130	4295	14.9	77	1
## 226 17.5	6	250.0	110	3520	16.4	77	1
## 227 20.5	6	231.0	105	3425	16.9	77	1
## 228 19.0	6	225.0	100	3630	17.7	77	1
## 229 18.5	6	250.0	98	3525	19.0	77	1
## 230 16.0	8	400.0	180	4220	11.1	77	1
## 231 15.5	8	350.0	170	4165	11.4	77	1
## 232 15.5	8	400.0	190	4325	12.2	77	1
## 233 16.0	8	351.0	149	4335	14.5	77	1
## 234 29.0	4	97.0	78	1940	14.5	77	2
## 235 24.5	4	151.0	88	2740	16.0	77	1
## 236 26.0	4	97.0	75	2265	18.2	77	3
## 237 25.5	4	140.0	89	2755	15.8	77	1
## 238 30.5	4	98.0	63	2051	17.0	77	1
## 239 33.5	4	98.0	83	2075	15.9	77	1
## 240 30.0	4	97.0	67	1985	16.4	77	3
## 241 30.5	4	97.0	78	2190	14.1	77	2
## 242 22.0	6	146.0	97	2815	14.5	77	3
## 243 21.5	4	121.0	110	2600	12.8	77	2
## 244 21.5	3	80.0	110	2720	13.5	77	3
## 245 43.1	4	90.0	48	1985	21.5	78	2
## 246 36.1	4	98.0	66	1800	14.4	78	1
## 247 32.8	4	78.0	52	1985	19.4	78	3
							3
## 248 39.4	4	85.0	70	2070	18.6	78 70	
## 249 36.1	4	91.0	60	1800	16.4	78	3
## 250 19.9	8	260.0	110	3365	15.5	78	1
## 251 19.4	8	318.0	140	3735	13.2	78	1
## 252 20.2	8	302.0	139	3570	12.8	78	1
## 253 19.2	6	231.0	105	3535	19.2	78	1
## 254 20.5	6	200.0	95	3155	18.2	78	1
## 255 20.2	6	200.0	85	2965	15.8	78	1
## 256 25.1	4	140.0	88	2720	15.4	78	1
## 257 20.5	6	225.0	100	3430	17.2	78	1
## 258 19.4	6	232.0	90	3210	17.2	78	1
## 259 20.6	6	231.0	105	3380	15.8	78	1
## 260 20.8	6	200.0	85	3070	16.7	78	
							1
## 261 18.6	6	225.0	110	3620	18.7	78 70	1
## 262 18.1	6	258.0	120	3410	15.1	78	1
## 263 19.2	8	305.0	145	3425	13.2	78	1

##	264 17.7	6	231.0	165	3445	13.4	78	1
##	265 18.1	8	302.0	139	3205	11.2	78	1
##	266 17.5	8	318.0	140	4080	13.7	78	1
##	267 30.0	4	98.0	68	2155	16.5	78	1
##	268 27.5	4	134.0	95	2560	14.2	78	3
##	269 27.2	4	119.0	97	2300	14.7	78	3
##	270 30.9	4	105.0	75	2230	14.5	78	1
##	271 21.1	4	134.0	95	2515	14.8	78	3
##	272 23.2	4	156.0	105	2745	16.7	78	1
##	273 23.8	4	150.0	85	2855	17.6	78	
								1
##	274 23.9	4	119.0	97	2405	14.9	78	3
##	275 20.3	5	131.0	103	2830	15.9	78	2
##	276 17.0	6	163.0	125	3140	13.6	78	2
##	277 21.6	4	121.0	115	2795	15.7	78	2
##	278 16.2	6	163.0	133	3410	15.8	78	2
##	279 31.5	4	89.0	71	1990	14.9	78	2
##	280 29.5	4	98.0	68	2135	16.6	78	3
##	281 21.5	6	231.0	115	3245	15.4	79	1
##	282 19.8	6	200.0	85	2990	18.2	79	1
##	283 22.3	4	140.0	88	2890	17.3	79	1
##	284 20.2	6	232.0	90	3265	18.2	79	1
##	285 20.6	6	225.0	110	3360	16.6	79	1
##	286 17.0	8	305.0	130	3840	15.4	79	1
##	287 17.6	8	302.0	129	3725	13.4	79	1
##	288 16.5	8	351.0	138	3955	13.2	79	1
##	289 18.2	8	318.0	135	3830	15.2	79	1
##	290 16.9	8	350.0	155	4360	14.9	79	1
##	291 15.5	8	351.0	142	4054	14.3	79	1
##	292 19.2	8	267.0	125	3605	15.0	79	1
##	293 18.5	8	360.0	150	3940	13.0	79	1
##	294 31.9	4	89.0	71	1925	14.0	79	2
##	295 34.1	4	86.0	65	1975	15.2	79	3
##	296 35.7	4	98.0	80	1915	14.4	79	1
	297 27.4	4	121.0	80	2670	15.0	79	1
	298 25.4	5	183.0	77	3530	20.1	79	2
	299 23.0	8	350.0	125	3900	17.4	79	1
	300 27.2	4	141.0	71	3190	24.8	79	2
	301 23.9	8	260.0	90	3420	22.2	79	1
	302 34.2	4	105.0	70	2200	13.2	79	1
	303 34.5	4	105.0	70	2150	14.9	79	1
	304 31.8	4	85.0	65	2020	19.2	79	3
	305 37.3	4	91.0	69	2130	14.7	79	2
##		4	151.0	90	2670	16.0	79	1
	307 28.8	6	173.0	115	2595	11.3	79	1
##		6	173.0	115	2700	12.9	79	1
	309 33.5	4	151.0	90	2556	13.2	79	1
	310 41.5	4	98.0	76	2144	14.7	80	2
	311 38.1	4	89.0	60	1968	18.8	80	3
	312 32.1	4	98.0	70	2120	15.5	80	1
	313 37.2	4	96.0 86.0	65	2019	16.4	80	3
					2678			
	314 28.0 315 26.4	4 4	151.0 140.0	90 88	2870	16.5 18.1	80 80	1 1
	316 24.3	4	151.0	90	3003	20.1	80	1
##	317 19.1	6	225.0	90	3381	18.7	80	1

				0.4.00	45.0		_
## 318 34.3	4	97.0	78	2188	15.8	80	2
## 319 29.8	4	134.0	90	2711	15.5	80	3
## 320 31.3	4	120.0	75	2542	17.5	80	3
## 321 37.0	4	119.0	92	2434	15.0	80	3
## 322 32.2	4	108.0	75	2265	15.2	80	3
## 323 46.6	4	86.0	65	2110	17.9	80	3
## 324 27.9	4	156.0	105	2800	14.4	80	1
## 325 40.8	4	85.0	65	2110	19.2	80	3
## 326 44.3	4	90.0	48	2085	21.7	80	2
## 327 43.4	4	90.0	48	2335	23.7	80	2
## 328 36.4	5	121.0	67	2950	19.9	80	2
## 329 30.0	4	146.0	67	3250	21.8	80	2
## 330 44.6	4	91.0	67	1850	13.8	80	3
## 332 33.8	4	97.0	67	2145	18.0	80	3
							2
	4	89.0	62	1845	15.3	80	
## 334 32.7	6	168.0	132	2910	11.4	80	3
## 335 23.7	3	70.0	100	2420	12.5	80	3
## 336 35.0	4	122.0	88	2500	15.1	80	2
## 338 32.4	4	107.0	72	2290	17.0	80	3
## 339 27.2	4	135.0	84	2490	15.7	81	1
## 340 26.6	4	151.0	84	2635	16.4	81	1
## 341 25.8	4	156.0	92	2620	14.4	81	1
## 342 23.5	6	173.0	110	2725	12.6	81	1
## 343 30.0	4	135.0	84	2385	12.9	81	1
## 344 39.1	4	79.0	58	1755	16.9	81	3
## 345 39.0	4	86.0	64	1875	16.4	81	1
## 346 35.1	4	81.0	60	1760	16.1	81	3
## 347 32.3	4	97.0	67	2065	17.8	81	3
## 348 37.0	4	85.0	65	1975	19.4	81	3
## 349 37.7	4	89.0	62	2050	17.3	81	3
## 350 34.1	4	91.0	68	1985	16.0	81	3
## 351 34.7	4	105.0	63	2215	14.9	81	1
## 352 34.4	4	98.0	65	2045	16.2	81	1
## 353 29.9	4	98.0	65	2380	20.7	81	1
## 354 33.0	4	105.0	74	2190	14.2	81	2
## 356 33.7	4	107.0	75	2210	14.4	81	3
## 357 32.4	4	108.0	75 75	2350	16.8	81	3
## 358 32.9	4	119.0	100	2615	14.8	81	3
## 359 31.6	4	120.0	74	2635	18.3	81	3
							2
## 360 28.1	4	141.0	80 76	3230	20.4	81	
## 361 30.7	6	145.0	76	3160	19.6	81	2
## 362 25.4	6	168.0	116	2900	12.6	81	3
## 363 24.2	6	146.0	120	2930	13.8	81	3
## 364 22.4	6	231.0	110	3415	15.8	81	1
## 365 26.6	8	350.0	105	3725	19.0	81	1
## 366 20.2	6	200.0	88	3060	17.1	81	1
## 367 17.6	6	225.0	85	3465	16.6	81	1
## 368 28.0	4	112.0	88	2605	19.6	82	1
## 369 27.0	4	112.0	88	2640	18.6	82	1
## 370 34.0	4	112.0	88	2395	18.0	82	1
## 371 31.0	4	112.0	85	2575	16.2	82	1
## 372 29.0	4	135.0	84	2525	16.0	82	1
## 373 27.0	4	151.0	90	2735	18.0	82	1
## 374 24.0	4	140.0	92	2865	16.4	82	1

```
## 375 36.0
                                105.0
                      4
                                                74
                                                     1980
                                                                    15.3
                                                                            82
## 376 37.0
                      4
                                 91.0
                                                68
                                                     2025
                                                                    18.2
                                                                            82
## 377 31.0
                      4
                                 91.0
                                                68
                                                     1970
                                                                    17.6
                                                                            82
## 378 38.0
                      4
                                105.0
                                                     2125
                                                                    14.7
                                                63
                                                                            82
## 379 36.0
                      4
                                 98.0
                                                70
                                                     2125
                                                                    17.3
                                                                            82
## 380 36.0
                      4
                                120.0
                                                88
                                                     2160
                                                                    14.5
                                                                            82
## 381 36.0
                      4
                                107.0
                                                75
                                                     2205
                                                                    14.5
                                                                            82
## 382 34.0
                      4
                                108.0
                                                70
                                                     2245
                                                                    16.9
                                                                            82
## 383 38.0
                      4
                                 91.0
                                                67
                                                     1965
                                                                    15.0
                                                                            82
## 384 32.0
                      4
                                                67
                                                                    15.7
                                                                            82
                                 91.0
                                                     1965
## 385 38.0
                      4
                                 91.0
                                                67
                                                     1995
                                                                    16.2
                                                                            82
## 386 25.0
                      6
                                                     2945
                                181.0
                                               110
                                                                    16.4
                                                                            82
## 387 38.0
                      6
                                262.0
                                                85
                                                     3015
                                                                    17.0
                                                                            82
## 388 26.0
                      4
                                                92
                                                     2585
                                                                            82
                                156.0
                                                                    14.5
## 389 22.0
                      6
                                232.0
                                               112
                                                     2835
                                                                    14.7
                                                                            82
## 390 32.0
                      4
                                144.0
                                                96
                                                     2665
                                                                    13.9
                                                                            82
## 391 36.0
                      4
                                                84
                                                     2370
                                                                    13.0
                                                                            82
                                135.0
## 392 27.0
                      4
                                151.0
                                                90
                                                     2950
                                                                    17.3
                                                                            82
## 393 27.0
                      4
                                140.0
                                                86
                                                     2790
                                                                    15.6
                                                                            82
## 394 44.0
                      4
                                 97.0
                                                52
                                                     2130
                                                                    24.6
                                                                            82
## 395 32.0
                      4
                                135.0
                                                84
                                                     2295
                                                                    11.6
                                                                            82
## 396 28.0
                      4
                                120.0
                                                79
                                                     2625
                                                                    18.6
                                                                            82
## 397 31.0
                                                     2720
                      4
                                119.0
                                                82
                                                                    19.4
                                                                            82
##
                                           name mpg01
## 1
                    chevrolet chevelle malibu
                                                     0
## 2
                             buick skylark 320
                                                     0
## 3
                            plymouth satellite
                                                     0
## 4
                                 amc rebel sst
                                                     0
## 5
                                                     0
                                   ford torino
## 6
                                                     0
                              ford galaxie 500
## 7
                              chevrolet impala
                                                     0
## 8
                             plymouth fury iii
                                                     0
## 9
                                                     0
                              pontiac catalina
## 10
                                                     0
                            amc ambassador dpl
## 11
                           dodge challenger se
                                                     0
## 12
                            plymouth 'cuda 340
                                                     0
## 13
                        chevrolet monte carlo
                                                     0
## 14
                      buick estate wagon (sw)
                                                     0
## 15
                        toyota corona mark ii
## 16
                                                     0
                               plymouth duster
## 17
                                     amc hornet
                                                     0
## 18
                                 ford maverick
                                                     0
## 19
                                   datsun pl510
                                                     1
## 20
                                                     1
                 volkswagen 1131 deluxe sedan
## 21
                                                     1
                                   peugeot 504
## 22
                                   audi 100 ls
                                                     1
## 23
                                       saab 99e
                                                     1
## 24
                                       bmw 2002
                                                     1
## 25
                                   amc gremlin
                                                     0
## 26
                                                     0
                                      ford f250
## 27
                                      chevy c20
                                                     0
## 28
                                                     0
                                     dodge d200
## 29
                                       hi 1200d
                                                     0
## 30
                                   datsun pl510
```

2

3

3

1

1

3

3

3

3

3

3

1

1

1

1

3

1

1

1 2

1

1

1

## 31	chevrolet vega 2300	1
## 32	toyota corona	1
## 34	amc gremlin	0
## 35	plymouth satellite custom	0
## 36	chevrolet chevelle malibu	0
## 37	ford torino 500	0
## 38	amc matador	0
## 39	chevrolet impala	0
## 40	pontiac catalina brougham	0
## 41	ford galaxie 500	0
## 42	plymouth fury iii	0
## 43	dodge monaco (sw)	0
## 44	ford country squire (sw)	0
## 45	pontiac safari (sw)	0
## 46	amc hornet sportabout (sw)	0
## 47	chevrolet vega (sw)	0
## 48	pontiac firebird	0
## 49	ford mustang	0
## 50	mercury capri 2000	1
## 51	opel 1900	1
## 52	peugeot 304	1
## 53	fiat 124b	1
## 54	toyota corolla 1200	1
## 55	datsun 1200	1
## 56	volkswagen model 111	1
## 57	plymouth cricket	1
## 58	toyota corona hardtop	1
## 59	dodge colt hardtop	1
## 60	volkswagen type 3	1
## 61	chevrolet vega	0
## 62	ford pinto runabout	0
## 63	chevrolet impala	0
## 64	pontiac catalina	0
## 65	plymouth fury iii	0
## 66	ford galaxie 500	0
## 67	amc ambassador sst	0
## 68	mercury marquis	0
## 69	buick lesabre custom	0
## 70	oldsmobile delta 88 royale	0
## 71	chrysler newport royal	0
## 72	mazda rx2 coupe	0
## 73	amc matador (sw)	0
## 74	chevrolet chevelle concours (sw)	0
## 75	ford gran torino (sw)	0
## 76	plymouth satellite custom (sw)	0
## 77	volvo 145e (sw)	0
## 78	volkswagen 411 (sw)	0
## 79	peugeot 504 (sw)	0
## 80	renault 12 (sw)	1
## 81	ford pinto (sw)	0
## 82	datsun 510 (sw)	1
## 83	toyouta corona mark ii (sw)	1
## 84	dodge colt (sw)	1
## 85	toyota corolla 1600 (sw)	1

## 86	buick century 350	0
## 87	amc matador	0
## 88	chevrolet malibu	0
## 89	ford gran torino	0
## 90	dodge coronet custom	0
## 91	mercury marquis brougham	0
## 92	chevrolet caprice classic	0
## 93	ford ltd	0
## 94	plymouth fury gran sedan	0
## 95	chrysler new yorker brougham	0
## 96	buick electra 225 custom	0
## 97	amc ambassador brougham	0
## 98	plymouth valiant	0
## 99	chevrolet nova custom	0
## 100	amc hornet	0
## 101	ford maverick	0
## 102	plymouth duster	1
## 103	volkswagen super beetle	1
## 104	chevrolet impala	0
## 105	ford country	0
## 106	plymouth custom suburb	0
## 107	oldsmobile vista cruiser	0
## 108	amc gremlin	0
## 109	toyota carina	0
## 110	chevrolet vega	0
## 111	datsun 610	0
## 112	maxda rx3	0
## 113	ford pinto	0
## 114	mercury capri v6	0
## 115	fiat 124 sport coupe	1
## 116	chevrolet monte carlo s	0
## 117	pontiac grand prix	0
## 118	fiat 128	1
## 119	opel manta	1
## 120	audi 100ls	0
## 121	volvo 144ea	0
## 122	dodge dart custom	0
## 123	saab 991e	1
## 124	toyota mark ii	0
## 125	oldsmobile omega	0
## 126	plymouth duster	0
## 128	amc hornet	0
## 129	chevrolet nova	0
## 130	datsun b210	1
## 131	ford pinto	1
## 132	toyota corolla 1200	1
## 133	chevrolet vega	1
## 134	chevrolet chevelle malibu classic	0
## 135	amc matador	0
## 136	plymouth satellite sebring	0
## 137	ford gran torino	0
## 138	buick century luxus (sw)	0
## 139	dodge coronet custom (sw)	0
## 140	ford gran torino (sw)	0

##	141	amc matador (sw)	0
##	142	audi fox	1
##	143	volkswagen dasher	1
##	144	opel manta	1
##	145	toyota corona	1
##	146	datsun 710	1
##	147	dodge colt	1
##	148	fiat 128	1
##	149	fiat 124 tc	1
##	150	honda civic	1
##	151	subaru	1
##	152	fiat x1.9	1
##	153	plymouth valiant custom	0
##	154	chevrolet nova	0
##	155	mercury monarch	0
##	156	ford maverick	0
##	157	pontiac catalina	0
##	158	chevrolet bel air	0
##	159	plymouth grand fury	0
##	160	ford 1td	0
##	161	buick century	0
##	162	chevroelt chevelle malibu	0
##	163	amc matador	0
##	164	plymouth fury	0
##	165	buick skyhawk	0
##	166	chevrolet monza 2+2	0
##	167	ford mustang ii	0
##	168	toyota corolla	1
##	169	ford pinto	1
##	170	amc gremlin	0
##	171	pontiac astro	1
##	172	toyota corona	1
##	173	volkswagen dasher	1
##	174	datsun 710	1
##	175	ford pinto	0
##	176	volkswagen rabbit	1
##	177	amc pacer	0
##	178	audi 100ls	1
##	179	peugeot 504	1
##	180	volvo 244dl	0
##	181	saab 991e	1
##	182	honda civic cvcc	1
##	183	fiat 131	1
##	184	opel 1900	1
##	185	capri ii	1
##	186	dodge colt	1
##	187	renault 12tl	1
##	188	chevrolet chevelle malibu classic	0
##	189	dodge coronet brougham	0
##	190	amc matador	0
##	191	ford gran torino	0
##	192	plymouth valiant	0
##	193	chevrolet nova	0
##	194	ford maverick	1

## 195	amc hornet	0
## 196	chevrolet chevette	1
## 197	chevrolet woody	1
## 198	vw rabbit	1
## 199	honda civic	1
## 200	dodge aspen se	0
## 201	ford granada ghia	0
## 202	pontiac ventura sj	0
## 203	amc pacer d/l	0
## 204	volkswagen rabbit	1
## 205	datsun b-210	1
## 206	toyota corolla	1
## 207	ford pinto	1
## 208	volvo 245	0
## 209	plymouth volare premier v8	0
## 210	peugeot 504	0
## 211	toyota mark ii	0
## 212	mercedes-benz 280s	0
## 213	cadillac seville	0
## 214	chevy c10	0
## 215	ford f108	0
## 216	dodge d100	0
## 217	honda accord cvcc	1
## 218	buick opel isuzu deluxe	1
## 219	renault 5 gtl	1
## 220	plymouth arrow gs	1
## 221	datsun f-10 hatchback	1
## 222	chevrolet caprice classic	0
## 223	oldsmobile cutlass supreme	0
## 224	dodge monaco brougham	0
## 225	mercury cougar brougham	0
## 226	chevrolet concours	0
## 227	buick skylark	0
## 228	plymouth volare custom	0
## 229	ford granada	0
## 230	pontiac grand prix lj	0
## 231	chevrolet monte carlo landau	0
## 232	chrysler cordoba	0
## 233	ford thunderbird	0
## 234	volkswagen rabbit custom	1
## 235	pontiac sunbird coupe	1
## 236	toyota corolla liftback	1
## 237	ford mustang ii 2+2	1
## 238	chevrolet chevette	1
## 239	dodge colt m/m	1
## 240	subaru dl	1
## 241	volkswagen dasher	1
## 242	datsun 810	0
## 243	bmw 320i	0
## 244	mazda rx-4	0
## 244 ## 245	volkswagen rabbit custom diesel	1
## 245 ## 246	ford fiesta	1
## 240 ## 247	mazda glc deluxe	1
## 247 ## 248		1
## 240	datsun b210 gx	1

##	249	honda civic cvcc	1
##	250	oldsmobile cutlass salon brougham	0
##	251	dodge diplomat	0
##	252	mercury monarch ghia	0
##	253	pontiac phoenix lj	0
##	254	chevrolet malibu	0
##	255	ford fairmont (auto)	0
##	256	ford fairmont (man)	1
##	257	plymouth volare	0
##	258	amc concord	0
##	259	buick century special	0
##	260	mercury zephyr	0
##	261	dodge aspen	0
##	262	amc concord d/l	0
##	263	chevrolet monte carlo landau	0
##	264	buick regal sport coupe (turbo)	0
##	265	ford futura	0
##	266	dodge magnum xe	0
##	267	chevrolet chevette	1
##	268	toyota corona	1
##	269	datsun 510	1
##	270	dodge omni	1
##	271	toyota celica gt liftback	0
##	272	plymouth sapporo	1
##	273	oldsmobile starfire sx	1
##	274	datsun 200-sx	1
##	275	audi 5000	0
##	276	volvo 264gl	0
##	277	saab 99gle	0
##	278	peugeot 604sl	0
##	279	volkswagen scirocco	1
		_	
##	280	honda accord lx	1
##	281	pontiac lemans v6	0
##	282	mercury zephyr 6	0
##	283	ford fairmont 4	0
##	284	amc concord dl 6	0
##	285	dodge aspen 6	0
##	286	chevrolet caprice classic	0
##	287	ford ltd landau	0
##	288	mercury grand marquis	0
##	289	dodge st. regis	0
##	290	buick estate wagon (sw)	0
##	291	ford country squire (sw)	0
##	292	chevrolet malibu classic (sw)	0
##	293	chrysler lebaron town @ country (sw)	0
##	294	vw rabbit custom	1
##	295	maxda glc deluxe	1
##	296	dodge colt hatchback custom	1
##	297	amc spirit dl	1
##	298	mercedes benz 300d	1
##	299	cadillac eldorado	
			1
##	300	peugeot 504	1
##	301	oldsmobile cutlass salon brougham	1
##	302	plymouth horizon	1

## 303	plymouth horizon tc3	1
## 304	datsun 210	1
## 305	fiat strada custom	1
## 306	buick skylark limited	1
## 307	chevrolet citation	1
## 308	oldsmobile omega brougham	1
## 309	pontiac phoenix	1
## 310	vw rabbit	1
## 311	toyota corolla tercel	1
## 312	chevrolet chevette	1
## 313	datsun 310	1
## 314	chevrolet citation	1
## 315	ford fairmont	1
## 316	amc concord	1
## 317	dodge aspen	0
## 318	audi 4000	1
## 319	toyota corona liftback	1
## 320	mazda 626	1
## 321	datsun 510 hatchback	1
## 322	toyota corolla	1
## 323	mazda glc	1
## 324	dodge colt	1
## 325	datsun 210	1
## 326	vw rabbit c (diesel)	1
## 327	vw dasher (diesel)	1
## 328	audi 5000s (diesel)	1
## 329	mercedes-benz 240d	1
## 330	honda civic 1500 gl	1
## 332	subaru dl	1
## 333	vokswagen rabbit	1
## 334	datsun 280-zx	1
## 335	mazda rx-7 gs	1
## 336	triumph tr7 coupe	1
## 338	honda accord	1
## 339	plymouth reliant	1
## 340	buick skylark	1
## 341	dodge aries wagon (sw)	1
## 342	chevrolet citation	1
## 343	plymouth reliant	1
## 344	toyota starlet	1
## 345	plymouth champ	1
## 346	honda civic 1300	1
## 347	nonda civic 1300 subaru	1
## 348	datsun 210 mpg	1
## 349		1
	toyota tercel	1
	mazda glc 4	
## 351 ## 352	plymouth horizon 4	1
## 352 ## 353	ford escort 4w	1
## 353	ford escort 2h	1
## 354	volkswagen jetta	1
## 356	honda prelude	1
## 357	toyota corolla	1
## 358	datsun 200sx	1
## 359	mazda 626	1

```
## 360
                  peugeot 505s turbo diesel
## 361
                                volvo diesel
## 362
                             toyota cressida
## 363
                           datsun 810 maxima
                                                  1
## 364
                               buick century
                                                  0
## 365
                       oldsmobile cutlass ls
                                                  1
## 366
                             ford granada gl
## 367
                      chrysler lebaron salon
                                                  0
## 368
                          chevrolet cavalier
## 369
                    chevrolet cavalier wagon
## 370
                  chevrolet cavalier 2-door
                                                  1
## 371
                  pontiac j2000 se hatchback
                                                  1
## 372
                                                  1
                              dodge aries se
## 373
                             pontiac phoenix
## 374
                        ford fairmont futura
                                                  1
## 375
                         volkswagen rabbit l
## 376
                          mazda glc custom 1
                                                  1
## 377
                            mazda glc custom
## 378
                      plymouth horizon miser
                                                  1
## 379
                              mercury lynx l
## 380
                            nissan stanza xe
                                                  1
## 381
                                honda accord
## 382
                              toyota corolla
                                                  1
## 383
                                 honda civic
                          honda civic (auto)
## 384
                               datsun 310 gx
## 385
## 386
                       buick century limited
                                                  1
## 387
          oldsmobile cutlass ciera (diesel)
                                                  1
## 388
                                                  1
                  chrysler lebaron medallion
## 389
                                                  0
                              ford granada 1
## 390
                            toyota celica gt
                                                  1
## 391
                           dodge charger 2.2
                                                  1
## 392
                            chevrolet camaro
## 393
                             ford mustang gl
                                                  1
## 394
                                    vw pickup
                                                  1
## 395
                               dodge rampage
                                                  1
## 396
                                 ford ranger
## 397
                                   chevy s-10
```

(b)

```
par(mfrow=c(2,3))
name=c("cylinders","displacement","horsepower","weight","acceleration")

boxplot(cylinders ~ mpg01, data = mpg01, main = "cylinders vs mpg01")

boxplot(displacement ~ mpg01, data = mpg01, main = "displacement vs mpg01")

boxplot(horsepower~ mpg01, data = mpg01, main = "horsepower vs mpg01")

boxplot(weight ~ mpg01, data = mpg01, main = "weight vs mpg01")

boxplot(acceleration ~ mpg01, data = mpg01, main = "acceleration vs mpg01")
```

cylinders vs mpg01

displacement vs mpg01

horsepower vs mpg01

weight vs mpg01

acceleration vs mpg01

#(c)

```
set.seed(1)
rows <- sample(x=nrow(mpg01), size=0.8*nrow(mpg01))
rows</pre>
```

```
##
     [1] 105 146 224 354
                          79 348 365 255 242
                                               24 388
                                                       68 262 391 292 188 270
##
    [18] 372 143 290 387 382 384
                                  47
                                       99 142
                                                5 140 317 124 175 217 178
##
    [35] 297 239 283
                      39 257 379 289 228 275 194 185 274
                                                            9 165 252 238 164
    [52] 294 149
                  83 383
                          34 107 174 222 136 304
                                                   98
                                                      152 110 214
                                                                   85
                                                                      157 250
         28 356 329 376 111 336 330 323 347 123 245 301 333 334 363 101 234
##
    [69]
          63 218
                                  18 193 263 233 237 135
    [86]
                  38
                      75
                          44
                              73
                                                          121 357 360 192 103
## [103] 371 287 183
                      62 305 137 299 170 276 206 100 295
                                                           42
                                                                4 198
                                                                        29 315
  [120] 362 321 296 131 369 203 122 312
                                          55
                                               61 326 151
                                                           21
                                                               10 167 240 154
## [137] 144 271 251 129 173 380
                                  60
                                       65 181 112 303 288
                                                           26 211 340 385 373
                  43 125 313 249
  [154] 109 120
                                  50 359 207 291 179 201
                                                           94
                                                               15
                                                                   76 163
  [171] 386 186 189
                      86 339 195 311 160 130 300 307
                                                       41 187 106 314
                                                                           284
## [188] 370 213 247 256 258 261 375
                                      57 117
                                               22 342 352 318
                                                               52 278 368
                                                                            51
                          48 132 273
## [205]
          35
             97 392 338
                                       19 138 364 353 265 115 259 166
## [222] 350 177
                  87 156 219 358
                                       69 216 282 196 325 309 349 341 108 169
                                    8
## [239] 232
              70 269
                      88 285 161 158
                                       32 212
                                               20 389
                                                      241 281 208
                                                                        84
                                                                           202
## [256] 226 337 381 298 236 153 191
                                       37 102
                                               90 200 346
                                                           95
                                                               77 127 345
                                                                            14
## [273] 172 316
                     23
                          30 119 229 254 277 344 210 243
                  36
                                                            6 150 377
                                                                        17 279
## [290] 197 199 104 190 33 134 180 260
                                          12 366 155 148 126
                                                               45 272 266
## [307]
         16 141 168 113 133 182 374
```

trainset <- mpg01[rows,]
testset <- mpg01[-rows,]</pre>

(d)

```
lda.fit <- lda(mpg01 ~ displacement+horsepower+weight+acceleration+year+cylinders+origin, data=trainset
lda.pred <- predict(lda.fit, testset)</pre>
table(testset$mpg01, lda.pred$class)
##
##
        0 1
##
     0 30 5
     1 0 44
##
# accuracy of 0=100%, accuracy of 1=44/(44+5)
(e)
qda.fit <- qda(mpg01 ~ displacement+horsepower+weight+acceleration+year+cylinders+origin, data=trainset
qda.pred <- predict(qda.fit, testset)</pre>
table(testset$mpg01, qda.pred$class)
##
##
        0 1
##
     0 32 3
     1 2 42
##
# accuracy of 0=32/(32+2), accuracy of 1=42/(3+42)
(f)
modf <- glm(as.factor(mpg01) ~ displacement+horsepower+weight+acceleration+year+cylinders+origin, data=
lr.probs <- predict(modf , testset, type="response")</pre>
lr.pred <- ifelse(lr.probs>0.5, "1", "0")
table(testset$mpg01, lr.pred)
##
      lr.pred
##
        0 1
##
     0 30 5
     1 1 43
##
# accuracy of 0=30/(30+1), accuracy of 1=43/(5+43)
(g)
4.12 (a)
Power <- function(){ print( 2^3)}</pre>
Power()
## [1] 8
```

(b)

```
Power2 <- function(x,a){</pre>
 print( x^a)
Power2(3,8)
## [1] 6561
(c)
Power2(10,3)
## [1] 1000
Power2(8,17)
## [1] 2.2518e+15
Power2(131,3)
## [1] 2248091
(d)
Power3 <- function(x,a){</pre>
 return( x^a)
}
(f)
```

plot(x = x<-1:10, y= y<-Power3(x,2), xlab="x", ylab="x²")

plot(x,y,log="xy", xlab="log(x) scale", ylab="log(x²) scale")


```
PlotPower <- function(x,a){
  plot(x = x, y= y<-Power3(x,a), xlab="x", ylab=paste0("x^",a))
}
PlotPower(1:10,3)</pre>
```

