### PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-322079

(43)Date of publication of application: 20.11.2001

(51)Int.Cl.

B25J 9/22 B25J 5/00

(21)Application number : 2000-141798

(71)Applicant : SONY CORP

(22)Date of filing:

15.05.2000

(72)Inventor: SAIJO HIROKI

**KUROKI YOSHIHIRO** 

### (54) LEG TYPE MOBILE ROBOT AND ITS ACTION TEACHING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To teach specified action while making the most of a robot's intelligence.

SOLUTION: This leg type mobile robot is previously provided with a plurality of basic action programs. A teaching action program that manifests a series of significant action can be generated by recognizing voice input instructions from a user to perform language processing and taking out one or more requested basic action and combining them in time series. The generated teaching action program is data-base-controlled; and the teaching action program and the basic action program are combined to edit a higher degree of complicated teaching action program.



#### **LEGAL STATUS**

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

#### (19)日本国特許庁(JP)

# (12)公開特許公報 (A)

### (11)特許出願公開番号

## 特開2001-322079

(P2001-322079A) (43)公開日 平成13年11月20日(2001.11.20)

| (51) | Int.Cl. | 7   |
|------|---------|-----|
|      | B25 I   | 9/2 |

識別記号

FΙ

テーマコート・

(参考)

B25J 9/22 5/00 B25J 9/22 5/00

A 3F059

F

#### 審査請求 未請求 請求項の数16 OL (全14頁)

| (21)出顧番号 | 特願2000-141798(P2000-141798) | (71)出願人 | 000002185            |
|----------|-----------------------------|---------|----------------------|
|          |                             |         | ソニー株式会社              |
| (22)出顧日  | 平成12年5月15日(2000.5.15)       |         | 東京都品川区北品川6丁目7番35号    |
|          |                             | (72)発明者 | 西條 弘樹                |
|          |                             |         | 東京都品川区北品川6丁目7番35号 ソニ |
|          |                             |         | 一株式会社内               |
|          |                             | (72)発明者 | 黒木 義博                |
|          |                             |         | 東京都品川区北品川6丁目7番35号 ソニ |
|          |                             |         | 一株式会社内               |
|          |                             | (74)代理人 | 100101801            |
|          |                             |         | 弁理士 山田 英治 (外2名)      |
|          |                             |         |                      |
|          |                             |         |                      |

最終頁に続く

#### (54) 【発明の名称】脚式移動ロボット及びその動作教示方法

### (57)【要約】

【課題】 ロボットのインテリジェンスを活用しながら 所定動作を教示する。

【解決手段】 脚式移動ロボットは、あらかじめ複数の基本動作プログラムを備えている。そして、ユーザからの音声入力指示を認識して言語処理を行い、要求された1以上の基本動作を取り出して時系列的に組み合わせることで、一連の意味のある行動を発現する教示動作プログラムを生成することができる。さらに、生成した教示動作プログラムをデータベース管理するとともに、教示動作プログラムと基本動作プログラムを組み合わせることによって、より高度で複雑な教示動作プログラムを編集することができる。



1

#### 【特許請求の範囲】

【請求項1】少なくとも1以上の可動脚ユニットを含ん だ駆動部ユニットと、

前記駆動部ユニットによる動作表出処理を行う実機動作 処理部と、

ユーザからの指示を入力するユーザ入力部と、

前記ユーザ入力部を介したユーザ入力を言語解釈する言語処理部と、

ユーザ入力の言語処理結果に基づいて行動を管理する行動管理部と、を具備することを特徴とする脚式移動ロボ 10ット。

【請求項2】さらに前記駆動部ユニットによる基本的な表出動作を記述した基本動作プログラムを保管する基本動作データベースと、1以上の動作プログラムの時系列的な組み合わせで構成される教示動作プログラムを登録する教示動作データベースとを備え、

前記行動管理部は、ユーザ入力の言語処理結果に基づいて該当する動作プログラムを前記基本動作データベース及び/又は前記教示動作データベースから取り出して、実機動作処理部に投入して前記駆動部ユニットによる動 20 作表出を実行することを特徴とする請求項1に記載の脚式移動ロボット。

【請求項3】さらに、実機動作処理部に投入される動作 プログラムのシミュレーションを行って動作安定性を確 認する動作シミュレーション部を備えることを特徴とす る請求項1に記載の脚式移動ロボット。

【請求項4】さらに、前記動作シミュレーション部によるシミュレーション結果をユーザに警告する警告部を備えることを特徴とする請求項3に記載の脚式移動ロボット。

【請求項5】さらに前記駆動部ユニットによる基本的な表出動作を記述した基本動作プログラムを保管する基本動作データベースと、1以上の動作プログラムの時系列的な組み合わせで構成される教示動作プログラムを登録する教示動作データベースとを備え、

前記行動管理部は、ユーザ入力の言語処理結果に基づいて該当する動作プログラムを前記基本動作データベース及び/又は前記教示動作データベースから取り出すとともに、各動作プログラムを時系列的に組み合わせて新たな教示動作プログラムを編集することを特徴とする請求 40項1に記載の脚式移動ロボット。

【請求項6】前記行動管理部は、新たに編集した教示動作プログラムに対して、ユーザ入力の言語処理結果に基づいて得た名前を付与することを特徴とする請求項5に記載の脚式移動ロボット。

【請求項7】前記行動管理部は、新たに編集した教示動作プログラムに対して、ユーザ入力の言語処理結果に基づいて得た名前を付与して前記教示動作データベースに登録するとともに、該名前がユーザ入力されたことが言語解釈されたことに応答して該教示動作プログラムを取 50

り出し、実機動作処理部に投入して前記駆動部ユニット による動作表出を実行することを特徴とする請求項5に 記載の脚式移動ロボット。

【請求項8】前記ユーザ入力部は、音声入力装置、接触 /感圧センサ、画像入力装置、姿勢センサのうち少なく とも1つで構成され、

接触/感圧センサ、画像入力装置、姿勢センサの各々による入力内容を意味変換する意味変換部をさらに備えることを特徴とする請求項1に記載の脚式移動ロボット。

【請求項9】少なくとも1以上の可動脚ユニットを含ん だ駆動部ユニットと、前記駆動部ユニットによる動作表 出処理を行う実機動作処理部とを備えた脚式移動ロボッ トのための動作教示方法であって、

ユーザ入力を受容するユーザ入力ステップと、

ユーザ入力を言語解釈する言語処理ステップと、

ユーザ入力の言語処理結果に基づいて教示動作を生成・ 編集する教示動作編集ステップと、を具備することを特 徴とする脚式移動ロボットの動作教示方法。

【請求項10】前記脚式移動ロボットは、さらに、前記駆動部ユニットによる基本的な表出動作を記述した基本動作プログラムを保管する基本動作データベースと、1以上の動作プログラムの時系列的な組み合わせで構成される教示動作プログラムを登録する教示動作データベースとを備え、

前記教示動作編集ステップでは、ユーザ入力の言語処理 結果に基づいて該当する動作プログラムを前記基本動作 データベース及び/又は前記教示動作データベースから 取り出すとともに、各動作プログラムを時系列的に組み 合わせて新たな教示動作プログラムを編集する、ことを 特徴とする請求項9に記載の脚式移動ロボットの動作教 示方法。

【請求項11】さらに、ユーザ入力の言語処理結果に基づいて該当する動作プログラムを前記基本動作データベース及び/又は前記教示動作データベースから取り出して実機動作処理部に投入して前記駆動部ユニットによる動作表出を実行する実機動作処理ステップを備えることを特徴とする請求項9に記載の脚式移動ロボットの動作教示方法。

【請求項12】さらに、前記実機動作処理ステップにおいて動作表出される動作プログラムのシミュレーションを行って動作安定性を確認する動作シミュレーション・ステップを備えることを特徴とする請求項11に記載の脚式移動ロボットの動作教示方法。

【請求項13】さらに、前記動作シミュレーション・ステップによるシミュレーション結果をユーザに警告する警告ステップを備えることを特徴とする請求項12に記載の脚式移動ロボットの動作制御方法。

【請求項14】前記教示動作編集ステップでは、新たに編集した教示動作プログラムに対して、ユーザ入力の言語処理結果に基づいて得た名前を付与することを特徴と

する請求項9に記載の脚式移動ロボットの動作制御方

【請求項15】前記教示動作編集ステップでは、新たに 編集した教示動作プログラムに対して、ユーザ入力の言 語処理結果に基づいて得た名前を付与して前記教示動作 データベースに登録するとともに、

該名前がユーザ入力されたことが言語解釈されたことに 応答して該教示動作プログラムを取り出して前記実機動 作処理部に投入して動作表出処理するステップをさらに 備えることを特徴とする請求項10に記載の脚式移動口 10 ボットの動作制御方法。

【請求項16】前記ユーザ入力ステップでは、音声、接 触/感圧、画像、姿勢のうち少なくとも1つを受容し、 接触/感圧、画像、姿勢の各々による入力内容を意味変 換する意味変換ステップをさらに備えることを特徴とす る請求項9に記載の脚式移動ロボットの動作制御方法。

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は、少なくとも肢体と 体幹部を有する脚式ロボットのような多関節型のロボッ 20 ト及び脚式ロボットに対する動作教示方法に係り、特 に、肢体及び/又は体幹部を利用した各種の動作パター ンを実行する脚式ロボット及び脚式ロボットに対する動 作教示方法に関する。

【0002】更に詳しくは、本発明は、肢体及び/又は 体幹部を利用した各種の動作パターンを実行する脚式ロ ボットに対してユーザが所定動作を教示する教示方式に 係り、特に、脚式ロボットの操作環境を理解し習熟する ことなく所定動作を教示する教示方式に関する。

#### [0003]

【従来の技術】電気的若しくは磁気的な作用を用いて人 間の動作に似せた運動を行う機械装置のことを「ロボッ ト」という。ロボットの語源は、スラブ語のROBOT A(奴隷機械)に由来すると言われている。わが国では、 ロボットが普及し始めたのは1960年代末からである が、その多くは、工場における生産作業の自動化・無人 化などを目的としたマニピュレータや搬送ロボットなど の産業用ロボット (industrial robot) であった。

【0004】アーム式ロボットのように、ある特定の場 所に植設して用いるような据置きタイプのロボットは、 部品の組立・選別作業など固定的・局所的な作業空間で のみ活動する。これに対し、移動式のロボットは、作業 空間は非限定的であり、所定の経路上または無経路上を 自在に移動して、所定の若しくは任意の人的作業を代行 したり、ヒトやイヌあるいはその他の生命体に置き換わ る種々の幅広いサービスを提供することができる。なか でも脚式の移動ロボットは、クローラ式やタイヤ式のロ ボットに比し不安定で姿勢制御や歩行制御が難しくなる が、階段や梯子の昇降や障害物の乗り越えや、整地・不 整地の区別を問わない柔軟な歩行・走行動作を実現でき 50 るという点で優れている。

【0005】最近では、イヌやネコのように4足歩行の 動物の身体メカニズムやその動作を模したペット型ロボ ット、あるいは、ヒトのような2足直立歩行を行う動物 の身体メカニズムや動作をモデルにしてデザインされた 「人間形」若しくは「人間型」のロボット(humanoid r obot)など、脚式移動ロボットに関する研究開発が進展 し、実用化への期待も高まってきている。

【0006】人間形若しくは人間型と呼ばれる脚式移動 ロボットを研究・開発する意義を、例えば以下の2つの 視点から把握することができよう。

【0007】1つは、人間科学的な視点である。すなわ ち、人間の下肢及び/又は上肢に似た構造のロボットを 作り、その制御方法を考案して、人間の歩行動作をシミ ュレートするというプロセスを通じて、歩行を始めとす る人間の自然な動作のメカニズムを工学的に解明するこ とができる。このような研究成果は、人間工学、リハビ リテーション工学、あるいはスポーツ科学など、人間の 運動メカニズムを扱う他のさまざまな研究分野の進展に 大いに還元することができるであろう。

【0008】もう1つは、人間のパートナーとして生活 を支援する、すなわち住環境その他の日常生活上の様々 な場面における人的活動の支援を行う実用ロボットの開 発である。この種のロボットは、人間の生活環境のさま ざまな局面において、人間から教わりながら個々に個性 の相違する人間又は環境への適応方法を学習し、機能面 でさらに成長していく必要がある。このとき、ロボット が「人間形」すなわち人間と同じ形又は同じ構造をして いる方が、人間とロボットとのスムースなコミュニケー 30 ションを行う上で有効に機能するものと考えられる。

【0009】例えば、踏んではならない障害物を避けな がら部屋を通り抜ける方法を実地においてロボットに教 示するような場合、クローラ式や4足式ロボットのよう に教える相手が自分と全く違う構造をしているよりも、 同じような格好をしている2足歩行ロボットの方が、ユ ーザ(作業員)ははるかに教え易く、またロボットにと っても教わり易い筈である(例えば、高西著「2足歩行 ロボットのコントロール」(自動車技術会関東支部<高 塑>No. 25, 1996APRIL) を参照のこ と)。

【0010】ロボットに対して所定動作を教え込むこと を、「教示」若しくは「ティーチング」と呼ぶ。動作教 示には、例えば、作業現場においてオペレータ又はユー ザが手取り足取り教える教示方式や、計算機などロボッ ト外部のエディタ上で動作パターンの入力・作成・編集 を行う教示方式などが挙げられる。

【0011】しかしながら、従来のロボットにおいて は、動作教示を行うために、その操作環境を相当程度理 解し習熟する必要があり、ユーザの負担が過大であっ た。

40

30

5

【0012】また、最近では、ロボットがスタンドアロン状態(すなわちユーザからのコマンド入力がない状態)で、自ら行動計画を立案・修正して自律的に動作するインテリジェントなロボットの研究開発が進められているが、このようなインテリジェンスは、動作教示において充分に活かされているとは言い難い状況である。

#### [0013]

【発明が解決しようとする課題】本発明の目的は、肢体及び/又は体幹部を利用した各種の動作パターンを実行することができる、優れた脚式ロボット及びその動作教 10 示方法を提供することにある。

【0014】本発明の更なる目的は、肢体及び/又は体幹部を利用した各種の動作パターンを実行する脚式ロボットに対して、ロボットのインテリジェンスを活用しながらユーザが所定動作を教示することができる、優れた教示方式を提供することにある。

【0015】本発明の更なる目的は、ユーザが脚式ロボットの操作環境を理解し習熟することなく所定動作を容易に教示することができる、優れた教示方式を提供することにある。

#### [0016]

【課題を解決するための手段】本発明は、上記課題を参酌してなされたものであり、その第1の側面は、少なくとも1以上の可動脚ユニットを含んだ駆動部ユニットと、前記駆動部ユニットによる動作表出処理を行う実機動作処理部と、ユーザからの指示を入力するユーザ入力部と、前記ユーザ入力部を介したユーザ入力を言語解釈する言語処理部と、ユーザ入力の言語処理結果に基づいて行動を管理する行動管理部と、を具備することを特徴とする脚式移動ロボットである。

【0017】本発明の第1の側面に係る脚式移動ロボットは、さらに、前記駆動部ユニットによる基本的な表出動作を記述した基本動作プログラムを保管する基本動作データベースと、1以上の動作プログラムの時系列的な組み合わせで構成される教示動作プログラムを登録する教示動作データベースとを備えていてもよい。このような場合、前記行動管理部は、ユーザ入力の言語処理結果に基づいて該当する動作プログラムを前記基本動作データベース及び/又は前記教示動作データベースから取り出して、実機動作処理部に投入して前記駆動部ユニット40による動作表出を実行することができる。

【0018】また、脚式移動ロボットは、実機動作処理 部に投入される動作プログラムのシミュレーションを行 って動作安定性を確認する動作シミュレーション部を備 えていてもよい。また、前記動作シミュレーション部に よるシミュレーション結果をユーザに警告する警告部を さらに備えていてもよい。

【0019】また、前記行動管理部は、ユーザ入力の言語処理結果に基づいて該当する動作プログラムを前記基本動作データベース及び/又は前記教示動作データベー 50

スから取り出すとともに、各動作プログラムを時系列的 に組み合わせて新たな教示動作プログラムを編集するよ うにしてもよい。

【0020】また、前記行動管理部は、新たに編集した教示動作プログラムに対して、ユーザ入力の言語処理結果に基づいて得た名前を付与するようにしてもよい。また、付与された名前とともに編集した教示動作プログラムを教示動作データベースに登録するようにしてもよい。このような場合、該名前がユーザ入力されたことが言語解釈されたことに応答して該教示動作プログラムを取り出し、実機動作処理部に投入して、前記駆動部ユニットによって該動作を表出することができる。

【0021】また、前記ユーザ入力部は、音声入力装置、接触/感圧センサ、画像入力装置、姿勢センサのうち少なくとも1つで構成することができる。このような場合、接触/感圧センサ、画像入力装置、姿勢センサの各々による入力内容を意味変換する意味変換部をさらに備えることで、これら入力を言語処理することが可能となる。

【0022】また、本発明の第2の側面は、少なくとも 1以上の可動脚ユニットを含んだ駆動部ユニットと、前 記駆動部ユニットによる動作表出処理を行う実機動作処 理部とを備えた脚式移動ロボットのための動作教示方法 であって、ユーザ入力を受容するユーザ入力ステップ と、ユーザ入力を言語解釈する言語処理ステップと、ユ ーザ入力の言語処理結果に基づいて教示動作を生成・編 集する教示動作編集ステップと、を具備することを特徴 とする脚式移動ロボットの動作教示方法である。

【0023】ここで、前記脚式移動ロボットは、さらに、前記駆動部ユニットによる基本的な表出動作を記述した基本動作プログラムを保管する基本動作データベースと、1以上の動作プログラムの時系列的な組み合わせで構成される教示動作プログラムを登録する教示動作データベースとを備えていてもよい。このような場合、前記教示動作編集ステップでは、ユーザ入力の言語処理結果に基づいて該当する動作プログラムを前記基本動作データベース及び/又は前記教示動作データベースから取り出すとともに、各動作プログラムを時系列的に組み合わせて新たな教示動作プログラムを編集することができる

【0024】また、ユーザ入力の言語処理結果に基づいて該当する動作プログラムを前記基本動作データベース及び/又は前記教示動作データベースから取り出して前記実機動作処理部に投入して前記駆動部ユニットによる動作表出を実行する実機動作処理ステップをさらに備えていてもよい。

【0025】また、前記実機動作処理ステップにおいて動作表出される動作プログラムのシミュレーションを行って動作安定性を確認する動作シミュレーション・ステップを備えていてもよいし、さらに、前記動作シミュレ

ーション・ステップによるシミュレーション結果をユー ザに警告する警告ステップを備えていてもよい。

【0026】また、前記教示動作編集ステップでは、新たに編集した教示動作プログラムに対して、ユーザ入力の言語処理結果に基づいて得た名前を付与するようにしてもよい。このような場合、付与された名前とともに教示動作プログラムをデータベース登録することによって、該名前がユーザ入力されたことが言語解釈されたことに応答して該教示動作プログラムを取り出して前記実機動作処理部に投入して動作表出処理するステップを実 10 現することができる。

【0027】また、前記ユーザ入力ステップでは、音声、接触/感圧、画像、姿勢のうち少なくとも1つを受容するようにしてもよい。このような場合、接触/感圧、画像、姿勢の各々による入力内容を意味変換する意味変換ステップをさらに備えることで、これら入力内容を言語処理することが可能となる。

#### [0028]

【作用】本発明に係る脚式移動ロボットは、あらかじめ 複数の基本動作プログラムを備えている。また、ユーザ 20 からの音声入力指示を認識して言語処理を行ったり、あ るいは、画像入力やその他のセンサ入力を意味解釈して 言語処理を行うことでユーザの要求を特定することがで きる。

【0029】そして、要求された1以上の基本動作を取り出して時系列的に組み合わせることで、一連の意味のある行動を発現する教示動作プログラムを生成することができる。

【0030】さらに、生成した教示動作プログラムをデータベース管理するとともに、教示動作プログラムと基 30本動作プログラムを組み合わせることによって、より高度で複雑な教示動作プログラムを編集することができる。

【0031】したがって、ユーザはロボットに関する複雑な操作様式を理解し習熟する必要がなく、ロボットが持つインテリジェンスを利用することで、例えば子供に踊りを教えるような感覚でロボットに対して動作を教示することができる。

【0032】本発明のさらに他の目的、特徴や利点は、 後述する本発明の実施例や添付する図面に基づくより詳 40 細な説明によって明らかになるであろう。

#### [0033]

【発明の実施の形態】以下、図面を参照しながら本発明 の実施例を詳解する。

【0034】図1及び図2には、本発明の実施に供される「人間形」又は「人間型」の脚式移動ロボット100が直立している様子を前方及び後方の各々から眺望した様子を示している。図示の通り、脚式移動ロボット100は、脚式移動を行う左右2足の下肢と、体幹部と、左右の上肢と、頭部とで構成される。

【0035】左右各々の下肢は、大腿部と、膝関節と、脛部と、足首と、足平とで構成され、股関節によって体幹部の略最下端にて連結されている。また、左右各々の上肢は、上腕と、肘関節と、前腕とで構成され、肩関節によって体幹部上方の左右各側縁にて連結されている。また、頭部は、首関節によって体幹部の略最上端中央に連結されている。

【0036】体幹部ユニット内には、図1及び図2上では見えていない制御部が配備されている。この制御部は、脚式移動ロボット100を構成する各関節アクチュエータの駆動制御や各センサ(後述)などからの外部入力を処理するコントローラ(主制御部)や、電源回路その他の周辺機器類を搭載した筺体である。制御部は、その他、遠隔操作用の通信インターフェースや通信装置を含んでいてもよい。

【0037】図3には、本実施例に係る脚式移動ロボット100が具備する関節自由度構成を模式的に示している。図示の通り、脚式移動ロボット100は、2本の腕部と頭部1を含む上体と、移動動作を実現する2本の脚部からなる下肢と、上肢と下肢とを連結する体幹部とで構成される。

【0038】頭部1を支持する首関節は、首関節ヨー軸2と、首関節ピッチ軸3と、首関節ロール軸4という3自由度を有している。

【0039】また、各腕部は、肩関節ピッチ軸8と、肩関節ロール軸9と、上腕ヨー軸10と、肘関節ピッチ軸11と、前腕ヨー軸12と、手首関節ピッチ軸13と、手首関節ロール軸14と、手部15とで構成される。手部15は、実際には、複数本の指を含む多関節・多自由度構造体である。但し、手部15の動作自体は、ロボット100の姿勢安定制御や歩行動作制御に対する寄与や影響が少ないので、本明細書ではゼロ自由度と仮定する。したがって、左右の各腕部は7自由度を有するとする。

【0040】また、体幹部は、体幹ピッチ軸5と、体幹ロール軸6と、体幹ヨー軸7という3自由度を有する。【0041】また、下肢を構成する左右各々の脚部は、股関節ヨー軸16と、股関節ピッチ軸17と、股関節ロール軸18と、膝関節ピッチ軸19と、足首関節ピッチ軸20と、関節ロール軸21と、足部(足底又は足平)22とで構成される。股関節ピッチ軸17と股関節ロール軸18の交点は、本実施例に係るロボット100の股関節位置を定義するものとする。人体の足部(足底)22は、実際には多関節・多自由度の足底を含んだ構造体であるが、本実施例に係る脚式移動ロボット100の足底はゼロ自由度とする。したがって、左右の各脚部は6

【0042】以上を総括すれば、本実施例に係る脚式移動ロボット100全体としては、合計で3+7×2+3 50 +6×2=32自由度を有することになる。但し、脚式

自由度で構成される。

移動ロボット100が必ずしも32自由度に限定される 訳ではない。設計・製作上の制約条件や要求仕様等に応 じて、自由度すなわち関節数を適宜増減することができ ることは言うまでもない。

【0043】脚式移動ロボット100が持つ上述の各関節自由度は、実際にはアクチュエータによる能動的な動作として実現される。装置の外観上で余分な膨らみを排してヒトの自然体形状に近似させることや、2足歩行という不安定構造体に対して姿勢制御を行うことなどの種々の要請から、関節アクチュエータは小型且つ軽量であることが好ましい。本実施例では、ギア直結型で且つサーボ制御系をワンチップ化してモータ・ユニットに内蔵したタイプの小型ACサーボ・アクチュエータを搭載することとした。なお、脚式ロボットに適用可能な小型ACサーボ・アクチュエータに関しては、例えば本出願人に既に譲渡されている特願平11-33386号明細書に開示されている。

【0044】図4には、本実施例に係る脚式移動ロボット100の制御システム構成を模式的に示している。

【0045】脚式移動ロボット100は、ユーザからの 20 コマンド入力あるいは外部環境の変化を入力する入力部として、センサ部51と、音声入力部53と、画像入力部55と、姿勢センサ57とを備えている。

【0046】センサ部51は、例えばロボット100の全身に分散して配置された接触センサや感圧センサで構成される。例えば、ユーザがロボット100に対して「なでる」や「叩く」などの外力を印加したときには、そのセンサ入力信号が意味変換部52に供給される。意味変換部52では、「なでる」や「叩く」などのユーザ操作が包含する意味内容を解釈又は推定して、テキスト 30形式の意味変換データとして言語処理部60に出力す

【0047】音声入力部53は、例えばマイクロフォンなどで構成され、頭部に搭載されている。音声認識処理部54は、音声入力部53を介して入力されるユーザの音声をテキストとして認識されて、言語処理部60に出力する。

【0048】画像入力部55は、例えばCCD (Charge Coupled Device) などの撮像装置で構成されている。例えば、ユーザの動作・挙動(ジェスチャなど)を捕捉 40 した画像は、意味変換処理部56に供給される。意味変換処理部56では、ユーザの動作・挙動が包含する意味内容を解釈又は推定して、テキスト形式の意味変換データとして言語処理部60に出力する。また、言語形式の意味があらかじめ定義されている視認性識別情報(例えば「サイバーコード」など)を画像入力する場合には、画像認識結果と一義の意味変換処理を行うことができる。

【0049】姿勢センサ57は、ロボット100の体幹 部などに搭載されたジャイロ・センサや加速度センサ、 各関節アクチュエータの近隣に配設されたエンコーダなどで構成される。例えば、ユーザがロボットに対して手取り足取り教え込んでいる動作や挙動は、意味変換処理部58に供給される。意味変換処理部56では、ユーザがロボット100に対して印加する動作・挙動が包含する意味内容を解釈又は推定して、言語形式の意味変換で一夕として言語処理部60に出力する。また、姿勢センサ57を介して入力された手取り足取り教え込まれた動作パターンが教示動作そのものである場合には、行動・姿勢管理部64に出力される。ユーザ入力が同じであっても、ロボット100に対して教示する動作や、ロボット100が表出する動作は、ロボット100の姿勢に応じて相違する。

【0050】言語処理部60は、言語データベース61 を利用しながら、テキスト形式に変換されたユーザ入力 の解析処理を行う。より具体的には、形態素解析などに よってテキストを単語単位に区分して、統語・意味談話 解析によって統語情報・談話情報などの言語情報を取得 して、行動・姿勢管理部64に出力する。

【0051】基本動作データベース63は、脚式移動ロボット100が当然備えておくべき基本動作プログラムをあらかじめ(例えば出荷時に)格納しておく場所である。基本動作プログラムは、例えば、「右手を挙げる」、「左手を挙げる」などの区分不能な最小且つ基本的な動作単位で構成される。

【0052】また、本実施例に係る脚式移動ロボット100では、1以上の基本動作プログラムを時系列的に組み合わせることで、一連の意味のある行動を発現する教示動作プログラムを生成することが許容されている。教示動作プログラムは、教示動作データベース62に保管される。また、教示動作プログラムと基本動作プログラムを組み合わせることによって、より高度で複雑な教示動作プログラムを編集することができる。

【0053】行動・姿勢管理部64は、音声などのユーザ入力から得た言語情報に基づいて、脚式移動ロボット100が発現するべき行動・姿勢を統括的に管理する機能モジュールである。行動・姿勢管理部64の主な機能を以下に挙げる。

- (1) ユーザ入力から得た言語情報に基づいて、該当する基本動作プログラムを基本動作データベース63から取り出す。
- (2) ユーザ入力から得た言語情報に基づいて取り出した基本動作プログラムを時系列的に組み合わせて教示動作プログラムを生成して、教示動作データベース62に登録する。
- (3) ユーザ入力から得た言語情報に基づいて、該当する教示動作プログラムを教示動作データベース62から取り出す。
- (4) ユーザ入力から得た言語情報に基づいて取り出し 50 た基本動作プログラム及び教示動作プログラムを時系列

的に組み合わせて、教示動作プログラムを編集して、教 示動作データベース62に登録する。

【0054】行動・姿勢管理部64が教示動作データベ ース62や基本動作データベース63から取り出した動 作プログラムは、実機動作処理部68に転送される。実 機動作処理部63は、動作プログラムを発現するための 各関節アクチュエータの回転量や回転速度などを演算処 理して、各関節アクチュエータの駆動制御部に対して制 御指令並びに制御パラメータを送出する。

【0055】動作シミュレーション部65は、動作プロ 10 グラムをシミュレーションする機能モジュールである。 行動・姿勢管理部64は、作成・編集された教示動作プ ログラムを発現するに際して、動作シミュレーション部 65によってシミュレーションを行うことで、ロボット 100の機械的・電気的仕様の限度内で動作を発現可能 か否か、あるいは動作表出中における転倒や各駆動部ユ ニットどうしの干渉の発生など、動作の安全性を確認す ることができる。

【0056】対話履歴データベース66は、音声入力部 5 3 などのユーザ入力部を介したユーザとの対話内容 (例えば対話の中で出現する固有名詞や目的語) を時間 シーケンス上で管理するための機能モジュールである。 行動・姿勢管理部64は、対話履歴を参酌して、取り出 すべき動作プログラムを決定するようにしてもよい。

【0057】さらに、行動・姿勢管理部64は、上記以 外の入力データ67に基づいて、取り出すべき動作プロ グラムを決定するようにしてもよい。その他の入力デー タ67には、ネットワーク経由で外部の計算機システム から送信されるコマンドや、ロボット100上に搭載さ れた操作パネルやリモコン経由で入力されるコマンドな 30 どが含まれる。

【0058】図5には、本実施例に係る脚式移動ロボッ ト100の動作特性を状態遷移図の形式で示している。

【0059】電源投入後、自己診断並びに初期化処理が 終了後、脚式移動ロボット100は、ニュートラル状態 に遷移する。

【0060】また、脚式移動ロボット100は、感情モ デルなどに従う自律的な判断や、音声入力などによるユ ーザ指示に従って、動作表出実行状態や、その他の行動 を発現する。

【0061】また、「動作編集」などの特定のテキスト からなる音声入力が行われたときや、特定の操作ボタン (図示しない) が押下されたりしたときには、動作教示 状態に遷移する。

【0062】この動作教示状態は、ユーザからの次の教 示を待つ「教示待ち」状態と、教示された動作をシミュ レートする「シミュレート」状態と、シミュレート後に 基本動作プログラムや教示動作プログラムの時系列的な 組み合わせからなる一連の動作を再生する「動作再生」 状態と、複数の動作プログラムの時系列的な組み合わせ 50 合には、次いで、該指示が動作登録指示であるか否かを

からなる教示動作をデータベース登録する「教示動作登 録」状態と、音声などのユーザ指示に応答して教示動作 をデータベースから取り出して実行する「教示動作実 施」状態とで構成される。

12

【0063】図6及び図7には、本実施例に係る脚式移 動ロボット100において実行される処理手順をフロー チャートの形式で示している。以下、フローチャートに 従って説明する。

【0064】脚式移動ロボット100の電源を投入し て、初期化を終了すると(ステップS1)、ユーザから 指示があるまではニュートラル状態で待機する(ステッ プS2, S3)。

【0065】そして、音声入力やその他の形式でユーザ の指示が発生すると (ステップS4)、該指示が動作教 示の開始であるか否かを判別する(ステップS5, S

【0066】ユーザからの指示が動作教示の開始でなけ れば、次いで、該指示が動作表出実行であるか否かを判 別する(ステップS7, S8)。

【0067】また、ユーザからの指示が動作表出実行で なければ、次いで、該指示がその他の動作指示であるか 否かを判別する(ステップS9、S10)。

【0068】上記のいずれにも該当しなかった場合に は、ユーザからの指示を正しく解釈できなかった旨のエ ラー表出処理を実行する (ステップS11)。エラー表 出処理の発現形式は特に限定されない。例えば、スピー カを介した音声出力により行ってもよいし、エラー表示 インジケータを転倒させてもよいし、ネットワークや無 線通信を介して外部の計算機システムにエラー・メッセ ージを送信するようにしてもよい。

【0069】そして、ステップS2に復帰して、次のユ ーザ指示が発生するまで待機する。

【0070】判断ブロックS6において、動作教示開始 の指示があったと判断された場合、ユーザからの指示が あるまで教示待ちすなわち待機する (ステップS12, S13, S14)。ユーザからの指示は、音声入力やそ の他の形式で行われる。

【0071】ユーザからの教示指示が発生すると、該指 示が動作指示か否かを判別する(ステップS15, S1 6).

【0072】動作指示が発生した場合には、指示された 動作を表出して(ステップS28)、その実行を完了し てから(ステップS29)、ステップS12に戻って次 の動作教示まで待機する。なお、動作表出は、ユーザ指 示に該当する動作プログラムを基本動作データベース 6 3又は教示動作データベース62から取り出して、これ を実機動作処理部68に投入して、動作表出処理するこ とによって行われる。

【0073】ユーザからの教示指示が動作指示でない場

判別する(ステップS17、S18)。

【0074】動作登録が発生した場合には、これまでに動作指示された複数の基本動作プログラム及び/又は教示動作プログラムの時系列的な組み合わせを、新たに生成・編集された教示動作プログラムとして教示動作データベース62に登録する(ステップS30)。そして、ステップS12に戻って、次の動作教示まで待機する。【0075】また、ユーザからの教示指示が動作登録でない場合には、次いで、該指示が動作の連続再生指示で

あるか否かを判別する(ステップS19, S20)。 【0076】連続再生指示である場合には、まず、指示された教示動作プログラムを教示動作データベース62から取り出して、これを動作シミュレーション部65にかけて(S31)、ロボットの仕様に適合するか否か、すなわち該動作プログラムを安定動作することができるか否かを判別する(ステップS32, S33)。

【0077】シミュレーションの結果、動作プログラムを安定動作できないことが判明した場合には、エラー表出処理を実行する(ステップS37)。そして、ステップS12に戻って、次の動作教示まで待機する。エラー 20表出処理は、例えばスピーカを介した音声出力や、エラー・インジケータによる表示、ネットワークや無線通信を介した外部計算機システムへのエラー・メッセージの送信などで実現される。

【0078】また、シミュレーションの結果、動作プログラムを安定動作できることが判明した場合には、今度は動作プログラムを実機動作処理部68に投入して、動作プログラムの再生を実行する(ステップS34)。

【0079】動作プログラムの再生が完了すると(ステップS35,S36)、ステップS12に戻って、次の 30動作教示まで待機する。

【0080】また、ユーザからの教示指示が連続再生でない場合には、次いで、ユーザの教示指示が終了したか否かを判別する(ステップS21,S22)。

【0081】教示指示が終了した場合には、ステップS2に復帰して、上記と同様の処理を繰り返し実行する。また、教示指示が終了していない場合には、エラー表出処理を実行する(ステップS37)。

【0082】図8及び図9には、ユーザからの音声入力に従って、複数の基本動作プログラムの時系列的な組み 40合わせで構成される動作プログラムを教示する動作編集と、動作編集した動作プログラムをユーザからの音声入力に従った再生などの、ユーザとロボット100間のトランザクションを模式的に描いている。ここで編集・再生の対象となる動作は、ロボットが両手を挙げた「ワーイ」という動作である。以下、各図を参照しながら説明する。

【0083】まず、ユーザは、「動作編集」という言葉を発することにより、教示開始を指示する。ロボット側では、音声入力結果を音声認識して「動作編集」という 50

テキストに変換して、さらに言語処理することによりユーザ指示を解釈する。そして、ユーザ指示に対する応答として、「お願いします」という言葉を発するとともに、教示が行われるまで待機する。

【0084】次いで、ユーザが「右手を挙げて」という 言葉を発すると、ロボット側では音声入力結果を音声認識して「右手を挙げて」というテキストに変換して、さらに言語処理することによりユーザ指示を解釈する。そして、ユーザ指示に対する応答として、該当する基本動作プログラムを基本動作データベース63から取り出し、これを実機動作処理部68に投入して、右手を挙げる動作を発現する。

【0085】ユーザは、ロボット100の動作表出を観察して、右手の挙げ方が不充分である場合には、「もっと挙げて」という言葉を発してもよい。ロボット側では音声入力結果を音声認識して「もっと挙げて」というテキストに変換して、さらに言語処理することによりユーザ指示を解釈する。そして、ユーザ指示に対する応答として、右手をさらに挙げる動作を発現する。

【0086】ここで、ユーザが「もう少し」という言葉を発すると、ロボット側では音声入力結果を音声認識して「もう少し」というテキストに変換して、さらに言語処理することによりユーザ指示を解釈する。ユーザとの対話履歴は対話履歴データベース66に保管されており、行動・姿勢管理部64では、時間シーケンス上での固有名詞と目的語の同一性を維持した対話処理を行うことで、右手をもう少し挙げるというユーザ指示を理解することができる。そして、ユーザ・フィードバックとして、右手をもう少しだけ上昇させる。

【0087】また、ユーザが「左手も挙げて」という言葉を発すると、ロボット側では音声入力結果を音声認識して「左手も挙げて」というテキストに変換して、さらに言語処理することによりユーザ指示を解釈する。そして、ユーザ指示に対する応答として、該当する基本動作プログラムを基本動作データベース63から取り出し、これを実機動作処理部68に投入して、左手を挙げる動作を発現する。ユーザとの対話履歴は対話履歴データベース66に保管されており、行動・姿勢管理部64では、時間シーケンス上での固有名詞と目的語の同一性を維持した対話処理を行うことで、既に挙げた右手と同じだけの高さまで左手を挙げることができる。

【0088】次いで、ユーザは、「1番に登録」という言葉を発することにより、既に教示した一連の動作からなる動作プログラムの一時記録を指示する。ロボット側では、音声入力結果を音声認識して「1番に登録」というテキストに変換して、さらに言語処理することによりユーザ指示を解釈する。そして、ユーザ指示に対する応答として、いま教示した動作プログラムをシーケンス番号1番の動作プログラムとして一時記録するとともに、「1番に記録しました」という言葉を発してユーザ・フ

ィードバックとする。

【0089】次いで、ユーザが「両手を挙げて」という 言葉を発すると、ロボット側では音声入力結果を音声認 識して「両手を挙げて」というテキストに変換して、さ らに言語処理することによりユーザ指示を解釈する。そ して、ユーザ指示に対する応答として、該当する基本動 作プログラムを基本動作データベース63から取り出 し、これを実機動作処理部68に投入して、両手を挙げ る動作を発現する。

【0090】次いで、ユーザは、「2番に登録」という 10 言葉を発することにより、いま動作表出したばかりの両 手を挙げるための動作プログラムの一時記録を指示す る。ロボット側では、音声入力結果を音声認識して「2 番に登録」というテキストに変換して、さらに言語処理 することによりユーザ指示を解釈する。そして、ユーザ 指示に対する応答として、いま教示した動作プログラム をシーケンス番号2番の動作プログラムとして一時記録 するとともに、「2番に記録しました」という言葉を発 してユーザ・フィードバックとする。

【0091】ユーザは、「記録終了」という言葉を発す 20 ることにより、教示動作の記録作業の完了を指示する。 ロボット側では、音声入力結果を音声認識して「記録終 了」というテキストに変換して、さらに言語処理するこ とにより、ユーザ指示を解釈する。

【0092】記録の終了に際し、ロボット側は「再生速 度を教えてください」という言葉を発して、いま編集・ 記録した動作プログラムの再生速度の指定をユーザに対 して問い合わせる。これに対して、ユーザは「1コマ3 秒」のような速度を表現する言葉を発して応答すればよ い。ロボット側では、音声入力結果を音声認識して「1 30 コマ3秒」というテキストに変換して、さらに言語処理 することによりユーザ指示を解釈する。編集・記録され た動作プログラムと再生速度とを動作シミュレーション 部65に投入してシミュレーションにかけて、安定動作 を行うことが可能か否かを演算処理する。そして、ロボ ットは、「シミュレーションの結果問題ありません」な どの言葉を発して、シミュレーション結果をユーザにフ ィードバックする。

【0093】ユーザは、「もとの姿勢に」という言葉を 発することにより、ロボットがもとの直立姿勢(待機状 40 態) に復帰することを指示する。ロボット側では、音声 入力結果を音声認識して「もとの姿勢に」というテキス トに変換して、さらに言語処理することによりユーザ指 示を解釈する。

【0094】また、ユーザは、「再生して」という言葉 を発することにより、ロボットに対していま記録したば かりの動作プログラムの表出を指示する。ロボット側で は、音声入力結果を音声認識して「再生して」というテ キストに変換して、さらに言語処理することによりユー ザ指示を解釈する。そして、ユーザ指示に対する応答と 50 る教示動作プログラムを生成することができる。さら

して、いま記録した動作プログラムを実機動作処理部6 8に投入して、両手を挙げる動作を3秒で発現する。

【0095】さらに、ユーザは、「名前『ワーイ』登 録」という言葉を発することにより、いま再生した動作 を「ワーイ」と命名して教示動作データベース62に登 録することを指示する。ロボット側では、音声入力結果 を音声認識して「名前『ワーイ』登録」というテキスト に変換して、さらに言語処理することによりユーザ指示 を解釈する。そして、ユーザ指示に対する応答として、 いま再生した動作プログラムを名前「ワーイ」としてデ ータベース登録する。

【0096】最後に、ユーザは、「動作編集おわり」と いう言葉を発することにより、教示動作の編集処理の完 了を指示する。ロボット側では、音声入力結果を音声認 識して「動作編集おわり」というテキストに変換して、 さらに言語処理することによりユーザ指示を解釈する。 そして、ロボットは、もとの直立姿勢(待機状態)に復 帰する。以後、上述のような作業により登録された教示 動作プログラムは、ユーザが「ワーイ」と言うだけで、 教示動作データベース62から取り出されてロボット1 00において動作表出される。

【0097】[追補]以上、特定の実施例を参照しなが ら、本発明について詳解してきた。しかしながら、本発 明の要旨を逸脱しない範囲で当業者が該実施例の修正や 代用を成し得ることは自明である。すなわち、例示とい う形態で本発明を開示してきたのであり、限定的に解釈 されるべきではない。本発明の要旨を判断するために は、冒頭に記載した特許請求の範囲の欄を参酌すべきで ある。

[0098]

【発明の効果】以上詳記したように、本発明によれば、 肢体及び/又は体幹部を利用した各種の動作パターンを 実行することができる、優れた脚式ロボット及びその動 作教示方法を提供することができる。

【0099】また、本発明によれば、肢体及び/又は体 幹部を利用した各種の動作パターンを実行する脚式ロボ ットに対して、ロボットのインテリジェンスを活用しな がらユーザが所定動作を教示することができる、優れた 教示方式を提供することができる。

【0100】また、本発明によれば、ユーザが脚式ロボ ットの操作環境を理解し習熟することなく所定動作を容 易に教示することができる、優れた教示方式を提供する ことができる。

【0101】本発明に係る脚式移動ロボットは、あらか じめ複数の基本動作プログラムを備えている。そして、 ユーザからの音声入力指示を認識して(あるいは画像入 力やその他のセンサ入力を意味解釈して) 言語処理を行 い、要求された1以上の基本動作を取り出して時系列的 に組み合わせることで、一連の意味のある行動を発現す

に、生成した教示動作プログラムをデータベース管理するとともに、教示動作プログラムと基本動作プログラム を組み合わせることによって、より高度で複雑な教示動 作プログラムを編集することができる。

【0102】したがって、ユーザはロボットに関する複雑な操作様式を理解し習熟する必要がなく、ロボットが持つインテリジェンスを利用することで、例えば子供に踊りを教えるような感覚でロボットに動作を教示することができる。

#### 【図面の簡単な説明】

【図1】本発明の実施に供される脚式移動ロボット10 0を前方から眺望した様子を示た図である。

【図2】本発明の実施に供される脚式移動ロボット10 0を後方から眺望した様子を示た図である。

【図3】本実施例に係る脚式移動ロボット100が具備 する自由度構成モデルを模式的に示した図である。

【図4】本実施例に係る脚式移動ロボット100の制御システム構成を模式的に示した図である。

【図5】本実施例に係る脚式移動ロボット100の動作 特性を示した状態遷移図である。

【図6】本実施例に係る脚式移動ロボット100において実行される処理手順を示したフローチャートである。

【図7】本実施例に係る脚式移動ロボット100において実行される処理手順を示したフローチャートである。

【図8】ユーザからの音声入力に従って、複数の基本動作プログラムの時系列的な組み合わせで構成される動作プログラムを教示する動作編集と、動作編集した動作プログラムをユーザからの音声入力に従って再生するトランザクションを模式的に描いた図である。

【図9】ユーザからの音声入力に従って、複数の基本動作プログラムの時系列的な組み合わせで構成される動作プログラムを教示する動作編集と、動作編集した動作プログラムをユーザからの音声入力に従って再生するトランザクションを模式的に描いた図である。

#### 【符号の説明】

1…頭部, 2…首関節ヨー軸

3…首関節ピッチ軸、4…首関節ロール軸

5…体幹ピッチ軸, 6…体幹ロール軸

10 7…体幹ヨー軸, 8…肩関節ピッチ軸

9…肩関節ロール軸, 10…上腕ヨー軸

11…肘関節ピッチ軸, 12…前腕ヨー軸

13…手首関節ピッチ軸、14…手首関節ロール軸

15…手部, 16…股関節ヨー軸

17…股関節ピッチ軸、18…股関節ロール軸

19…膝関節ピッチ軸,20…足首関節ピッチ軸

21…足首関節ロール軸, 22…足部(足底)

51…センサ部, 52…意味変換部

53…音声入力部, 54…音声認識処理部

0 55…画像入力部,56…意味変換処理部

57…姿勢センサ,58…意味変換処理部

60…言語処理部, 61…言語データベース

62…教示動作データベース,63…基本動作データベース

6 4 …行動・姿勢管理部, 6 5 …動作シミュレーション 部

66…対話履歴データベース,68…実機動作処理部

100…脚式移動ロボット

### 【図3】







【図5】



【図6】



【図7】



【図8】



【図9】



### フロントページの続き

Fターム(参考) 3F059 AA00 BA02 BB06 BC07 CA06 DA08 DB02 DB09 DC01 DD01 DD06 DD18 FA03 FA05 FA07

FC02 FC07 FC13 FC14 FC15