컴퓨터과학기초

1<u>주차</u> 디지털과 아날로그

인하공업전문대학 컴퓨터정보과

이수정 교수

과목 개요

2022학년도 1학기

교과목명	컴퓨터과학기초(Fiundamentals of Computer Science)			이수-	구분	전공이	론(선택)	교과구분	NCS
대상학과	컴퓨터정보과	학년	1	학점	3	시수	3	담당교수	이수정

교 과 목	컴퓨터 소프트웨어 전공자에게 기초 과목인 디지털 논리회로를 학습하여 컴퓨터 기술과 다양한 디지털 기기 개발에 빌요한 소양을 갖춘다.
개 요	<u>더불어 디지털 시스템의 기초워리를 숙지시킴으로써 하드웨어를 접근하고 분석하는 능력을 배양한다.</u>
교 육	컴퓨터 하드웨어의 원리를 이해한다.
목 표	디지털시스템의 이해와 분석, 설계에 필요한 개념들을 학습한다.

	구분	배점	평가 개요
평가개요	진단평가	-	교과목의 학습성과를 달성하는데 필요한 사전지식을 평가한다.
	출석평가	20%	우리대학 출석 관련 규정 및 지침에 따른 평가
	직무수행능력평가1	40%	7주차까지의 직무수행능력을 평가한다.
	직무수행능력평가2	40%	14주차까지의 직무수행능력을 평가한다.

1000100100110001001100

과목 개요

-교재

- 디지털 논리회로(4판)
- 임석구, 홍경호 저
- 한빛아카데미, 2022.

차례

1. 디지털과 아날로그

- 2. 디지털 정보의 표현
- 3. 논리 레벨과 펄스파형
- 4. 디지털 집적회로
- 5. ADC와 DAC

1. 디지털 신호와 아날로그 신호

아날로그신호(Analog Signal)

- 자연계에서 일어나는 물리적인 양은 시간에 따라 연속적으로 변화
- 온도, 습도, 소리, 빛 등은 시간에 따라 연속적인 값을 갖는다.

VS 디지털신호(Digital Signal)

• 분명히 구별되는 두 레벨의 신호값 만을 갖는다.

디지털 테스터기

디지털시스템

이산적인 정보를 가공하고 처리해서 최종 목적으로 하는 정보를 출력하는 모든 형태의 장치

아날로그시스템

연속적인 정보를 입력 받아 처리해서 연속적인 형태의 정보를 출력하는 시스템

2. 디지털 시스템과 아날로그 시스템

■ 디지털 시스템의 장점

- 내·외부 잡음에 강함
- 설계하기가 용이
- 프로그래밍으로 전체 시스템을 제어할 수 있어서 규격이나 사양의 변경에 쉽게 대응 가능. 기능 구현의 유연성을 높일 수 있고 개발기간을 단축시킬 수 있음
- 정보를 저장하거나 가공하기가 용이
- 정보처리의 정확성과 정밀도를 높일 수 있음. 아날로그 시스템으로는 다루기 어려운 비 선형 처리나 다중화 처리 등도 가능
- 전체 시스템 구성을 소형화. 저렴한 가격으로 구성 가능
- ▶ 디지털 시스템의 많은 장점으로 인해 기존 아날로그 시스템이나 새로운 시스템의 대부분은 디지털 시스템으로 구성

2. 디지털 시스템과 아날로그 시스템

■ 아날로그 회로와 디지털 회로의 상호 연결

차례

1. 디지털과아날로그

2. 디지털 정보의 표현

- 3. 논리 레벨과 펄스파형
- 4. 디지털 집적회로
- 5. ADC와 DAC

1. 디지털 정보의 전압레벨

- 디지털 정보를 표현하기 위해 2진수 체계(binary system)를 사용
- '0'과 '1'만의 2종류의 디지트(digit)를 사용

2. 디지털 정보의 표현 단위

- 1 nibble = 4bit
- 1byte = 8bit
- 1byte = 1character
- 영어는 1byte로 1 문자 표현, 한글은 2byte가 필요
- 1word: 특정 CPU에서 취급하는 명령어나 데이터의 길이에 해당하는 비트 수

MSB(most significant bit) : 최상위비트 LSB(least significant bit) : 최하위비트

SI 단위와 IEC 단위 비교

SI(10진 단위)			IEC(2진 단위)			
값	기호	이름	값	기호	이름	10진 변환 크기
$(10^3)^1 = 10^3$	k, K	kilo-	$(2^{10})^1 = 2^{10} \simeq 10^{3.01}$	Ki	kibi-	1,024
$(10^3)^2 = 10^6$	M	mega-	$(2^{10})^2 = 2^{20} \simeq 10^{6.02}$	Mi	mebi-	1,048,576
$(10^3)^3 = 10^9$	G	giga-	$(2^{10})^3 = 2^{30} \approx 10^{9.03}$	Gi	gibi-	1,073,741,824
$(10^3)^4 = 10^{12}$	T	tera-	$(2^{10})^4 = 2^{40} \approx 10^{12.04}$	Ti	tebi-	1,099,511,627,776
$(10^3)^5 = 10^{15}$	P	peta-	$(2^{10})^5 = 2^{50} \approx 10^{15.05}$	Pi	pebi-	1,125,899,906,842,624
$(10^3)^6 = 10^{18}$	Е	exa-	$(2^{10})^6 = 2^{60} \approx 10^{18.06}$	Ei	exbi-	1,152,921,504,606,846,976
$(10^3)^7 = 10^{21}$	Z	zetta-	$(2^{10})^7 = 2^{70} \approx 10^{21.07}$	Zi	zebi-	1,180,591,620,717,411,303,424
$(10^3)^8 = 10^{24}$	Y	yotta-	$(2^{10})^8 = 2^{80} \approx 10^{24.08}$	Yi	yobi-	1,208,925,819,614,629,174,706,176

(예) 4Mib=4Mebibit, 4MiB=4Mebibyte

차례

- 1. 디지털과 아날로그
- 2. 디지털 정보의 표현
- 3. 논리 레벨과 펄스파형
- 4. 디지털 집적회로
- 5. ADC와 DAC

1. 정논리와 부논리

- 양논리 또는 정논리(positive logic)
- 음논리 또는 부논리(negative logic)
- 정논리와 부논리는 모두 디지털 논리 시스템에서 이용
- 일반적으로 정논리를 많이 사용

진단레벨	정논리	부논리
+5V	High=1	High=0
OV	Low=0	Low=1

2. 펄스파형

- 펄스파형은 Low 상태와 High 상태를 반복하는 전압레벨로 구성
- 주기 펄스(periodic pulse) & 비주기 펄스(non-periodic pulse)로 분류
- 이상적인 펄스파형
 - 이상적인 주기 펄스는 두 개의 에지(edge)로 구성
 - 리딩 에지(leading edge) = 상승에지(rising edge)
 - 트레일링 에지(trailing edge) = 하강에지(falling edge)

2. 펄스파형

■ 실제적인 펄스파형

- 상승시간(rising time) : t_r
- 하강시간(falling time) : t_f
- 펄스 폭(pulse width) : t_w

3. 주기, 주파수 및 듀티 사이클

주파수(frequency)

- 주기적인 파형이 1초 동안에 진동한 횟수
- 단위 : 헤르츠(Hz)

주기(Period)

• 주기적인 파형이 1 회 반복하는데 걸리는 시간

논리 레벨과 펄스파형

■ 주파수와 주기와의 관계

$$T = \frac{1}{f} \qquad f = \frac{1}{T}$$
 주 가: T

■ 듀티 사이클(Duty Cycle)

Duty
$$Cycle = \frac{t_w}{T} \times 100[\%]$$

☞ 듀티 사이클을 충격계수라고도 함

차례

- 1. 디지털과아날로그
- 2. 디지털 정보의 표현
- 3. 논리 레벨과 펄스파형
- 4. 디지털 집적회로
- 5. ADC와 DAC

디지털 집적회로

■ 디지털 회로

- 디지털 정보를 처리하는 디지털 시스템의 하드웨어
- 2진 상태와 회로를 구성하는 논리에 따라 반응하여 2진 상태의 출력 신호 를 발생시킴
- 내부 회로 구성의 논리에 의존 → 논리회로

디지털 집적회로

조합논리회로 (combinational logic circuit)

• 기본 게이트의 조합으로 구성되는 논리회로 순서논리회로 (sequential logic circuit)

• 조합논리회로에 플립플롭(flip-flop) 또는 메모리를 부가한 논리회로

1. IC 패키지

- IC(Integrated circuit, 집적회로)
- PCB(Printed Circuit Board)에 장착하는 방법에 따라 삽입 장착(through-hole mounted)형과 표면 실장(surface-mounted)형으로 구분
- 삽입 장착형 IC는 PCB 보드의 구멍에 끼우는 핀을 가지고 있어 뒷면의 도체 에 납땜으로 연결할 수 있으며, DIP 형태를 갖는다.
- 표면 실장형 IC는 PCB 표면의 금속 처리된 곳에 직접 납땜 처리
- SMD는 DIP 형태의 논리회로의 크기를 70% 가량 줄이고, 무게를 90%만큼 감소. 또 SMD는 PCB의 제조 가격을 크게 하락시킴
- 마이크로프로세서(microprocessor): 초대규모 집적 회로(VLSI). 디지털 컴 퓨터의 기본적인 요소

DIP SOIC

QFP

PLCC

<제작 형태에 따른 IC 패키지의 종류>

1. IC 패키지

■디지털 시스템의 장점

- 디지털 시스템의 소형화 및 경량화
- 생산가격의 저렴화
- 소비전력의 감소
- 동작속도의 고속화
- 디지털 시스템의 신뢰도 향상

2. 집적회로의 분류

■ 소자 수에 따른 집적회로의 분류

SSI(Small Scale IC)	100개 이하
MSI(Medium Scale IC)	100 ~ 1,000개
LSI(Large Scale IC)	1,000 ~ 10,000개
VLSI(Very Large Scale IC)	10,000 ~ 1,000,000개
ULSI(Ultra Large Scale IC)	1,000,000 개 이상

차례

- 1. 디지털과아날로그
- 2. 디지털 정보의 표현
- 3. 논리 레벨과 펄스파형
- 4. 디지털 집적회로
- 5. ADC와 DAC

ADC와 DAC

■ 아날로그-디지털 변환과정의 블록도

• 샤논(Shannon)의 표본화 정리(sampling theorem): 신호의 최고 주파수의 2배 표본화 이상의 빈도로 샘플링하면 샘플링된 데이터로부터 본래 데이터를 재현 가능 (sampling) • 사람의 음성인 경우, 1초 동안에 8000번 샘플링 필요 (2×4KHz=8KHz) • 펄스의 진폭의 크기를 디지털 양으로 변환

- 양자화 (quantization)
- 이 과정에서 불가피한 양자화 잡음이 발생
- 양자화 잡음은 미리 정한 신호레벨의 수를 늘리거나 줄일 수 있으나, 데이터의 양이 많아지는 단점이 있다.

- 부호화 (coding)
- 부호화는 양자화한 값을 2진 디지털 부호로 변환
- 일반적으로 전화 음성에서는 8비트로 부호화 수행

2. 양자화

■ 아날로그-디지털 변환과정의 예

4. ADC와 DAC 과정의 예

ADC: Analog-to-Digital Converter

DAC: Digital-to-Analog Converter

<CD 오디오 시스템에서의 신호처리과정>

