Licence 1ere année Mathématiques et calcul 1er semestre

Lionel Moisan

Université Paris Descartes

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

1

- 3. Fonctions d'une variable réelle continuité
- 4. Fonctions d'une variable réelle dérivabilité

Fonctions dérivables

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

122

Fonctions dérivables

- La dérivée
- 2 Introduction
 - Définitions
 - Dérivée à droite et à gauche
 - Autre expression pour la dérivabilité
 - Dérivation et continuité
 - Dérivée et opérations
 - Dérivées des fonctions usuelles
 - Exercices
 - Dérivées successives
- Utilisation de la dérivée
 - Extrema locaux d'une fonction
 - Théorème de Rolle
 - Théorème des accroissements finis
 - Règle de l'Hôpital
 - Limites remarquables

Dérivée :

 approche analytique : vitesse, accélération, taux d'une évolution temporelle :

Princ. fondamental de la dynamique : $\overrightarrow{F} = m \overrightarrow{a} = m \overrightarrow{Position}''$

- ← trajectoires projectiles, satellites, planètes
- approche géométrique : tangente

UNIVERSITÉ PARIS DESCARTES

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

134

Fonctions dérivables

Définitions

Dérivée en un point

Soit *I* un intervalle, $f: I \longrightarrow \mathbb{R}$ et $x_0 \in I$.

On dit que f est dérivable en x_0 si la limite de :

$$\frac{f(x)-f(x_0)}{x-x_0}$$

existe et est finie quand x tend vers x_0

Notation :
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

 $f'(x_0)$ s'appelle le nombre dérivé de f en x_0 .

Fonction dérivée

Soit *I* un intervalle, $f: I \longrightarrow \mathbb{R}$ et $x_0 \in I$.

On dit que f est dérivable sur I si, quel que soit $x_0 \in I$, f est dérivable en x_0 .

Dans ce cas la fonction

$$f': I \longrightarrow \mathbb{R}$$
 $x \longmapsto f'(x)$

s'appelle la dérivée de f

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

137

Fonctions dérivables

Définitions

Proposition : si f est dérivable en x_0 , alors sa courbe admet en $(x_0, f(x_0))$ une tangente d'équation

$$y - f(x_0) = f'(x_0)(x - x_0).$$

Exercice: Trouver l'équation de la tangente à la parabole d'équation $y = x^2$ au point A(1, 1) puis au point B(0, 0).

Exercice: Soit g la fonction dont le graphe est représenté ci dessous. Ordonner les nombres 0, g'(-2), g'(0), g'(2), g'(4).

Interprétation physique : si f(t) désigne la position, sur un axe, d'un mobile à l'instant t, alors f'(t) désigne sa vitesse à l'instant t et f''(t) désigne son accélération à l'instant t.

Exercice: Sur le graphe suivant son représentées, en fonction de l'instant t, la position d'un mobile sur un axe, sa vitesse et son accélération. Identifiez les trois courbes.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

140

Fonctions dérivables

Dérivée à droite et à gauche

Dérivée à droite

Soit *I* un intervalle, $f: I \longrightarrow \mathbb{R}$ et $x_0 \in I$.

On dit que f est dérivable à droite en x_0 si

$$\frac{f(x)-f(x_0)}{x-x_0}$$

a une limite à droite finie quand x tend vers x_0 .

Notation :
$$f'_d(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

Dérivée à gauche

Soit *I* un intervalle, $f: I \longrightarrow \mathbb{R}$ et $x_0 \in I$.

On dit que f est dérivable à gauche en x_0 si

$$\frac{f(x)-f(x_0)}{x-x_0}$$

a une limite à gauche finie quand x tend vers x_0 .

Notation :
$$f'_g(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

142

Fonctions dérivables

Dérivée à droite et à gauche

Proposition : Soit *I* un intervalle, $f: I \longrightarrow \mathbb{R}$ et $x_0 \in I$.

f est dérivable en x_0 si, et seulement si, f est dérivable à droite et à gauche en x_0 et $f'_d(x_0) = f'_g(x_0)$

Exercice: Montrer que la fonction

$$f: x \mapsto \begin{cases} x^2 + x + 3 & \text{si } x \ge 0, \\ e^x + 2 & \text{si } x < 0, \end{cases}$$

est continue et dérivable en 0.

Exercice: La fonction $f: x \mapsto |x|$ est-elle dérivable en 0?

Si on pose : $x - x_0 = h$:

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{f(x_0 + h) - f(x_0)}{h}$$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$\lim_{h \to 0} \left(\frac{f(x_0 + h) - f(x_0)}{h} - f'(x_0)\right) = 0$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

145

Fonctions dérivables

Autre expression pour la dérivabilité

Pour
$$h \in \mathbb{R}$$
, on pose :
$$\begin{cases} \alpha(h) = \frac{f(x_0 + h) - f(x_0)}{h} - f'(x_0) \\ \alpha(0) = 0 \end{cases}$$

$$f(x_0 + h) = f(x_0) + hf'(x_0) + h\alpha(h)$$

Donc si f est dérivable en x_0 , il existe une fonction α , continue en 0, telle que

$$f(x_0 + h) = f(x_0) + hf'(x_0) + h\alpha(h)$$

et $\lim_{h\to 0} \alpha(h) = 0$

Proposition. Si une fonction est dérivable en x_0 , elle est continue en x_0

Si f est dérivable en x_0 , il existe une fonction α , continue en 0, telle que $\alpha(0)=0$ et $f(x_0+h)=f(x_0)+hf'(x_0)+h\alpha(h)$ On a donc $\lim_{x\to x_0}f(x)=f(x_0)$

Attention: Une fonction dérivable est continue; le contraire est faux (la réciproque de cette proposition n'existe pas).

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

147

Fonctions dérivables

Dérivation et continuité

Exercice: Les fonctions suivantes sont-elles dérivables en a?

Dérivée et opérations

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

150

Fonctions dérivables

Dérivée et opérations

Dérivées de la somme et du produit

Soit f et g deux fonctions définies sur un intervalle I et $x_0 \in I$. Si f et g sont dérivables en x_0 , alors :

▶ f + g est dérivable en x_0

et
$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

 $(f+g)' = f'+g'$

▶ f.g est dérivable en x₀

et
$$(f.g)'(x_0) = f'(x_0).g(x_0) + f(x_0).g'(x_0)$$

 $(f.g)' = f'.g + f.g'$

Dérivée de la composée de f et g

Soit f et g deux fonctions :

- ▶ f est définie et dérivable sur l'intervalle I
- ▶ g est définie et dérivable sur l'intervalle J
- ▶ $f(I) \subset J$, de sorte que $g \circ f$ existe
- $\rightarrow x_0 \in I$

Alors $g \circ f$ est dérivable en x_0 , et

$$(g \circ f)'(x_0) = g'(f(x_0)).f'(x_0)$$

$$(g \circ f)' = (g' \circ f).f'$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

153

Fonctions dérivables

Dérivée et opérations

Dérivée d'un quotient

Dérivée de
$$\frac{f}{g}$$

$$\frac{f}{g} = f \frac{1}{g}$$

$$\left(\frac{f}{g}\right)' = \frac{f'.g - f.g'}{g^2}$$

f(x)	f'(x)	f(x)	f'(x)
x^n	$nx^{n-1} (n \in \mathbb{Z})$	$u(x)^n$	$n \cdot u(x)^{n-1} u'(x)$
\sqrt{X}	$\frac{1}{2\sqrt{x}}$	$\sqrt{u(x)}$	$\frac{u'(x)}{2\sqrt{u(x)}}$
e ^x	e ^x	$e^{u(x)}$	$u'(x)e^{u(x)}$
ln(x)	$\frac{1}{x}$	ln(u(x))	$\frac{u'(x)}{u(x)}$
sin(x)	cos(x)	sin(u(x))	$u'(x)\cos(u(x))$
cos(x)	— sin(<i>x</i>)	cos(u(x))	$-u'(x) \sin(u(x))$
tan(x)	$1+tan^2(x)$	tan(u(x))	$u'(x)\Big(1+\tan^2(u(x))\Big)$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

158

Fonctions dérivables

Exercices

Exercice: La trajectoire d'atterrissage d'un avion est soumise aux contraintes apparaissant dans la figure suivante (hauteur h, longueur ℓ , pentes initiale et finale nulles). Donner une fonction altitude $P(x) = ax^3 + bx^2 + cx + d$ qui intègre toutes ces contraintes.

Exercices

Dérivées à l'aide des opérations

Montrer que
$$f: x \mapsto \frac{\sin(1-e^x)}{x^2+1}$$
 est dérivable sur \mathbb{R}

PARIS DESC

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

160

Fonctions dérivables

Exercices

Exercices

Le cas des fonctions prolongées

Soit
$$f: x \mapsto \begin{cases} x^2 \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

- 1. Montrer que f est continue en 0
- 2. Montrer que f est dérivable en 0

Dérivées successives

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

163

Fonctions dérivables

Dérivées successives

Dérivées successives

Soit $f: I \longrightarrow \mathbb{R}$ une fonction dérivable.

Dérivée seconde : Si f' : $I \longrightarrow \mathbb{R}$ est dérivable, on dit que f est deux-fois dérivable sur I.

Notation : (f')' = f''f'' est la dérivée seconde de f sur I

Dérivée d'ordre n: On pose $f^{(0)} = f$ Pour tout p, $1 \le p$, on définit : $f^{(p)} = (f^{(p-1)})'$

 $f^{(p)}$ s'appelle la dérivée p-ième de f.

Dérivées successives

Formule de Leibniz pour le produit de deux fonctions

Théorème (formule de Leibniz). Si f et g sont n-fois dérivables sur un intervalle I, alors :

▶ f.g est n-fois dérivable sur I

$$ightharpoonup \forall x, \quad (f.g)^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x).g^{(n-k)}(x)$$

Noter l'analogie avec la formule du binôme de Newton :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$
 pour $a, b \in \mathbb{C}$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

165

Fonctions dérivables

Extrema locaux d'une fonction

Extrema locaux d'une fonction

Extrema

Soit I un intervalle et f une fonction définie sur I.

Soit $x_0 \in I$, on dit que :

• f a un maximum local en x_0 , si :

$$\exists \alpha > 0 \text{ tel que } \forall x, |x - x_0| \le \alpha \implies f(x) \le f(x_0)$$

• f a un minimum local en x_0 , si :

$$\exists \alpha > 0 \text{ tel que } \forall x, |x - x_0| \le \alpha \implies f(x) \ge f(x_0)$$

extremum = maximum ou minimum

167

Université Paris Descartes

2019-2020

Extrema locaux d'une fonction

Mathématiques et calcul 1

Fonctions dérivables

Extrema

Condition nécessaire pour un extremum

Théorème. Soit f une fonction dérivable sur un intervalle ouvert I.

Si f a un extremum local en $x_0 \in I$, alors $f'(x_0) = 0$

Attention: On peut avoir $f'(x_0) = 0$ sans que la fonction ait un extremum en x_0 (la condition n'est pas suffisante).

Remarque : Une fonction peut avoir un extremum en x_0 sans être dérivable en x_0 .

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

173

Fonctions dérivables

Extrema locaux d'une fonction

Exercice

Quel est, à volume fixé, la forme du cylindre de surface minimale?

motivation : construire une boite de conserve de volume donné (et d'épaisseur donnée) avec le moins de métal possible.

Soit V le volume du cylindre, R le rayon de sa base, et h sa hauteur,

$$V = \pi R^2 h$$
 donc $h = \frac{V}{\pi R^2}$.

La surface du cylindre est

$$f(R) = 2\pi R^2 + 2\pi Rh = 2\pi R^2 + \frac{2V}{R}.$$

Exercice (suite)

$$f(R) = 2\pi R^2 + \frac{2V}{R}$$

La fonction f est continue et dérivable sur $]0, +\infty[$ et

$$\forall R > 0, \quad f'(R) = 4\pi R - 2\frac{V}{R^2} = \frac{2}{R^2}(2\pi R^3 - V)$$

Le seul minimum local de f est atteint quand $2\pi R^3 = V$, soit h = 2R.

C'est le minimum global de f car $\lim_{t\to\infty} f = \lim_{t\to\infty} f = +\infty$ (faire un tableau de variation)

La cylindre solution a donc un diamètre égal à sa hauteur.

UNIVERSITE PARIS

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

176

Fonctions dérivables

Théorème de Rolle

Théorème de Rolle

Théorème des accroissements finis

Théorème de Rolle

Théorème de Rolle. Soit a et b deux nombres réels, a < b, et f une fonction définie sur [a, b].

- ► Si f est continue sur [a, b] (intervalle fermé)
- ► Si f est dérivable sur]a, b[(intervalle ouvert)
- Si f(a) = f(b)

Alors il existe $c \in]a, b[$ tel que f'(c) = 0

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

178

Fonctions dérivables

Théorème de Rolle

Théorème de Rolle

Le théorème de Rolle ne s'applique pas

Si f n'est pas continue sur [a, b]

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

181

Fonctions dérivables

Théorème de Rolle

Le théorème de Rolle ne s'applique pas

Si f n'est pas dérivable sur]a, b[

Exercice

Comment utiliser le théorème de Rolle

Entre deux racines de l'équation : $e^x \sin x = 1$, il existe une racine de l'équation : $e^x \cos x = -1$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

183

Fonctions dérivables

Théorème des accroissements finis

Théorème des accroissements finis

Théorème des accroissements finis. Soient a et b deux nombres réels, a < b, et f une fonction définie sur [a, b].

- ► Si f est continue sur [a, b] (intervalle fermé)
- ► Si f est dérivable sur]a, b[(intervalle ouvert)

Alors il existe $c \in]a, b[$ tel que $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

185

Fonctions dérivables

Théorème des accroissements finis

Théorème des accroissements finis

Corollaires

Soit a et b deux nombres réels, a < b, et f une fonction définie sur [a, b].

- Si f est continue sur [a, b] (intervalle fermé)
- ► Si f est dérivable sur]a, b[(intervalle ouvert)
- ► Corollaire 1 : Si f'(x) = 0, $\forall x \in]a, b[$, f est constante sur [a, b]
- ► Corollaire 2 : Si $f'(x) \ge 0$, $\forall x \in]a, b[$, f est croissante sur [a, b]
- ► Corollaire 3 : Si $f'(x) \le 0$, $\forall x \in]a, b[$, f est décroissante sur [a, b]

Exercice: Associer les courbes représentatives des functions (a)–(d) aux courbes de dérivées correspondantes I–IV.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

188

Fonctions dérivables

Théorème des accroissements finis

Exercice : Les courbes de deux fonctions f et g ont été représentées ci dessous, avec certaines de leurs tangentes. Sauriez-vous donner les signes de f'' et de g''?

Exercice : a) Sur la figure de gauche sont représentées les fonctions f, f', f''. Identifiez-les.

b) Sur la figure de droite sont représentées les fonctions g, g', g'', g'''. Identifiez-les.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

190

Fonctions dérivables

Théorème des accroissements finis

Inégalité des accroissements finis

Théorème (Inégalité des accroissements finis).

Soit f une fonction définie et dérivable sur un intervalle I, et vérifiant

$$\forall t \in I, \quad |f'(t)| \le K$$

pour une certaine constante K > 0. Alors

$$\forall x, y \in I, \quad |f(x) - f(y)| \le K|x - y|$$

Exercice : Prouver que pour tous $x, y \in [-\frac{\pi}{4}, \frac{\pi}{4}],$ $|x-y| \le |\tan x - \tan y| \le 2|x-y|$

Exercice: Prouver que pour tout $x \ge 0$, $|\sin(x)| \le x$.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

Fonctions dérivables

Règle de l'Hôpital

Règle de l'Hôpital

Règle de l'Hôpital

Théorème. Soit f et g deux fonctions définies au voisinage l d'un réel a, et dérivables en a.

Si
$$\begin{cases} f(a) = g(a) = 0 \\ g'(a) \neq 0 \end{cases}$$
, alors $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$.

Preuve : On peut écrire, pour $h \neq 0$ et $a + h \in I$,

$$f(a+h) = f(a) + h.f'(a) + o_{h\to 0}(h) = h.f'(a) + o_{h\to 0}(h)$$

et de même,

$$g(a+h) = h.g'(a) + o_{h\to 0}(h).$$

On a donc

$$\frac{f(a+h)}{g(a+h)} = \frac{h.f'(a) + o(h)}{h.g'(a) + o(h)} = \frac{f'(a) + o(1)}{g'(a) + o(1)} \xrightarrow{h\to 0} \frac{f'(a)}{g'(a)}.$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

195

Fonctions dérivables

Règle de l'Hôpital

Exercice: Calculer

$$\lim_{x\to 1}\frac{\ln(x)}{\sqrt{x}-1}.$$

Exercice: Calculer

$$\lim_{x\to 0} \frac{\sin x - \tan x}{x \cos x - x}.$$

Applications

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

197

Fonctions dérivables

Limites remarquables

Équivalents à connaître

$$ightharpoonup \sin x \sim_{x \to 0} x$$
 car $\frac{\sin x}{x} \underset{x \to 0}{\longrightarrow} 1$ $(\sin'(0) = 1)$

►
$$tan x \underset{x\to 0}{\sim} x$$
 car $\frac{tan x}{x} \underset{x\to 0}{\rightarrow} 1$ $(tan'(0) = 1)$

►
$$ln(1+x) \underset{x\to 0}{\sim} x$$
 car $\frac{ln(1+x)}{x} \underset{x\to 0}{\rightarrow} 1$ $(ln'(1)=1)$

$$e^x - 1 \underset{x \to 0}{\sim} x$$
 car $\frac{e^x - 1}{x} \underset{x \to 0}{\rightarrow} 1$ $(\exp'(0) = 1)$

▶
$$\sqrt{1+x}-1 \underset{x\to 0}{\sim} \frac{x}{2}$$
, c'est-à-dire $\sqrt{1+x}=1+\frac{x}{2}+\underset{x\to 0}{o}(x)$

▶ plus généralement :
$$(1+x)^{\alpha} = 1 + \alpha x + o_{x\to 0}(x)$$
 pour $\alpha \in \mathbb{R}$

En effet
$$\frac{(1+x)^{\alpha}-1}{x} = \frac{f(x)-f(0)}{x}$$
 avec $f(x) = (1+x)^{\alpha}$, $f'(x) = \alpha(1+x)^{\alpha-1}$ et $f'(0) = \alpha$.

Exercice

Exercice: Soit n un entier naturel, et a et b deux nombres réels. Montrer que le polynôme $P = X^n + aX + b$ a au plus 3 racines réelles.

- Si $n \le 3$, P est de degré au plus 3 donc admet au plus 3 racines.
- Si $n \ge 4$, montrons le résultat par l'absurde.

Supposons que P admette 4 racines réelles $x_1 < x_2 < x_3 < x_4$. D'après le théorème de Rolle, comme P est C^{∞} sur \mathbb{R} et $P(x_1) = P(x_2) = 0$, il existe $y_1 \in]x_1, x_2[$ tel que $P'(y_1) = 0$. On montre de même l'existence de $y_2 \in]x_2, x_3[$ et $y_3 \in [x_3, x_4[$,

racines de P'. Avec la même méthode appliquée à P' pour y_1, y_2, y_3 , on obtient l'existence de deux racines z_1 et z_2 de P'' avec $z_1 < z_2$.

Or $P'' = n(n-1)X^{n-2}$ n'admet qu'une racine (0), on a donc une contradiction et le résultat est démontré.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

Fonctions dérivables

Limites remarquables

Exercice

Exercice: Trouver tous les réels t > 0 tels que $4^t - 3^t = 2^t - 1$.

Posons, pour x > 0, $f(x) = x^t$ (c'est-à-dire $f(x) = \exp(t \ln x)$).

f est dérivable sur \mathbb{R}_+^* et $f'(x) = \frac{t}{x}$. $\exp(t \ln x) = tx^{t-1}$.

L'équation de départ se réécrit $\hat{f}(4) - f(3) = f(2) - f(1)$. Appliquons le théorème des accroissements finis entre 3 et 4 (f continue sur [3, 4], dérivable sur [3, 4[) :

$$\exists c \in]3, 4[, \frac{f(4) - f(3)}{4 - 3} = f'(c)$$

soit $f(4) - f(3) = tc^{t-1}$. De même (entre 1 et 2) on obtient l'existence de $d \in]1$, 2[tel que $f(2) - f(1) = td^{t-1}$. On a donc $c^{t-1} = d^{t-1}$, soit $(t-1) \ln c = (t-1) \ln d$.

Conclusion: I'unique solution est t = 1.