

Central European Institute of Technology BRNO | CZECH REPUBLIC

Data Science Practicum

(Lecture 10, 20.11.)

Denisa Šrámková

Data Preparation

Exercise:

https://github.com/simecek/dspracticum2023/blob/main/lesson10/ds practicum ex ml pipeline final.ipynb

Dataset

 $(0.01, 0.48, \dots 1.0) \rightarrow$

https://www.kaggle.com/competitions/titanic/data https://www.kaggle.com/competitions/spaceship-titanic/data

- PassengerId A unique Id for each passenger. Each Id takes the form gggg_pp where gggg indicates a group the passenger is travelling with and pp is their number within the group. People in a group are often family members, but not always.
- HomePlanet The planet the passenger departed from, typically their planet of permanent residence.
- CryoSleep Indicates whether the passenger elected to be put into suspended animation for
- the duration of the voyage. Passengers in cryosleep are confined to their cabins. Cabin - The cabin number where the passenger is staying. Takes the form deck/num/side,
- where side can be either P for Port or S for Starboard. Destination - The planet the passenger will be debarking to.
- Age The age of the passenger.
- VIP Whether the passenger has paid for special VIP service during the voyage.
- RoomService, FoodCourt, ShoppingMall, Spa, VRDeck Amount the passenger has billed at each of the Spaceship Titanic's many luxury amenities.
- Name The first and last names of the passenger.
- Transported Whether the passenger was transported to another dimension. This is the target, the column you are trying to predict.

Data Dictionary

Variable	Definition	Key
survival	Survival	0 = No, 1 = Yes
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd
sex	Sex	
Age	Age in years	
sibsp	# of siblings / spouses aboard the Titanic	
parch	# of parents / children aboard the Titanic	
ticket	Ticket number	
fare	Passenger fare	
cabin	Cabin number	
embarke d	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton

Variable Notes

pclass: A proxy for socio-economic status (SES) 1st = Upper

2nd = Middle

3rd = Lower

sibsp: The dataset defines family relations in this way... Sibling = brother, sister, stepbrother, stepsister

Spouse = husband, wife (mistresses and fiancés were ignored)

age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5

parch: The dataset defines family relations in this way... Parent = mother, father

Child = daughter, son, stepdaughter, stepson

Some children travelled only with a nanny, therefore parch=0 for them.

o. Data exploration

- get to know your data
- make visualization to get more insights

1. Data cleaning

Handle:

- **missing** values
 - skip
 - eliminate row/ column,
 - interpolate
- **inconsistent** values (age in *Birth* column, value of String type in otherwise Int column, ...)
- duplicate values

2. Feature manipulation

- encoding categorical features
 - One-Hot encoding
 - Binning
- scaling numerical features
 - normalization
 - standardization

3. Dataset splitting

Train: used to build the model

Validation: to improve hyperparameters

Test: to test the hypothesis of the model (not used until the model is trained and its hyperparameters are decided)

4. Choosing the right solution + Training the model (switch to exercise)

Classification metrics:

		Predicted cond	ition	Sources: [22][23][24][25][26][27][28][29][30] view·talk·edit		
	Total population = P + N	Predicted Positive (PP)	Predicted Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) $= \frac{\sqrt{TPR \times FPR} - FPR}{TPR - FPR}$	
Actual condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$	False negative rate (FNR), miss rate = FN P = 1 - TPR	
Actua	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out $= \frac{FP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity = $\frac{TN}{N}$ = 1 - FPR	
	Prevalence = P/P+N	Positive predictive value (PPV), precision = TP = 1 - FDR	False omission rate (FOR) $= \frac{FN}{PN} = 1 - NPV$	Positive likelihood ratio (LR+) = TPR FPR	Negative likelihood ratio (LR-) = FNR TNR	
	Accuracy (ACC) = TP + TN P + N	False discovery rate (FDR) = FP = 1 - PPV	Negative predictive value (NPV) = TN PN = 1 - FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) = LR+ LR-	
	Balanced accuracy (BA) = TPR + TNR 2	$F_{1} \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes–Mallows index (FM) = $\sqrt{PPV \times TPR}$	Matthews correlation coefficient (MCC) =√TPR×TNR×PPV×NPV -√FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = TP TP + FN + FP	

Classification metrics:

Classification metrics:

		Predicted cond	Sources: [22][23][24][25][26][27][28][29][30] view talk edit			
	Total population = P + N	Predicted Positive (PP)	Predicted Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) $= \frac{\sqrt{TPR \times FPR} - FPR}{TPR - FPR}$	
Actual condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$	False negative rate (FNR miss rate = FN = 1 - TPR	
Actua	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out = $\frac{FP}{N}$ = 1 - TNR	True negative rate (TNR), specificity (SPC), selectivity = $\frac{TN}{N}$ = 1 - FPR	
	Prevalence = P P+N	Positive predictive value (PPV), precision = TP = 1 - FDR	False omission rate (FOR) = FN = 1 - NPV	Positive likelihood ratio (LR+) = TPR FPR	Negative likelihood ratio (LR-) = FNR TNR	
	Accuracy (ACC) = TP + TN P + N	False discovery rate (FDR) = FP = 1 - PPV	Negative predictive value (NPV) = $\frac{TN}{PN}$ = 1 - FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) = LR+ LR-	
	Balanced accuracy (BA) = TPR + TNR 2	$F_{1} \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes–Mallows index (FM) = √PPV×TPR	Matthews correlation coefficient (MCC) =√TPR×TNR×PPV×NPV -√FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = TP TP + FN + FP	

Classification metrics:

Classification metrics:

Perceived vowel Vowel produced	i	e	а	0	u
i,	15		1		
е	1		1		
a			79	5	
0			4	15	3
u				2	2

		Predicted condition		Sources: [22][23][24][25][26][27][28][29][30] view·talk·edit	
	Total population = P + N	Predicted Positive (PP)	Predicted Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) $= \frac{\sqrt{TPR \times FPR} - FPR}{TPR - FPR}$
Actual condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power = TP/P = 1 - FNR	False negative rate (FNR), miss rate = FN P = 1 - TPR
Actua	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out = $\frac{FP}{N}$ = 1 - TNR	True negative rate (TNR), specificity (SPC), selectivity = $\frac{TN}{N}$ = 1 - FPR
	Prevalence = P/P+N	Positive predictive value (PPV), precision = TP = 1 - FDR	False omission rate (FOR) = FN = 1 - NPV	Positive likelihood ratio (LR+) = TPR FPR	Negative likelihood ratio (LR-) = FNR TNR
	Accuracy (ACC) $= \frac{FP + TN}{P + N}$ False discovery rate (FDR) $= \frac{FP}{PP} = 1 - PPV$		Negative predictive value (NPV) = TN PN = 1 - FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) = LR+ LR-
	Balanced accuracy (BA) = TPR + TNR 2	$F_{1} \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes–Mallows index (FM) = √PPV×TPR	Matthews correlation coefficient (MCC) =√TPR×TNR×PPV×NPV -√FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = TP TP + FN + FP

Classification metrics:

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

		Predicted cond	ition	Sources: [22][23][24][25][26][27][28][29][30] view·talk·edi		
	Total population = P + N	Predicted Positive (PP)	Predicted Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) $= \frac{\sqrt{TPR \times FPR} - FPR}{TPR - FPR}$	
	Positive (P) True positive (TP), (FN), type II error, mis		False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$	False negative rate (FNR), miss rate = FN = 1 - TPR	
Actual collution	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out = $\frac{FP}{N}$ = 1 - TNR	True negative rate (TNR), specificity (SPC), selectivity = $\frac{TN}{N}$ = 1 - FPR	
	Prevalence = P/P+N	Positive predictive value (PPV), precision = TP PP = 1 - FDR	False omission rate (FOR) = $\frac{FN}{PN}$ = 1 - NPV	Positive likelihood ratio (LR+) = TPR FPR	Negative likelihood ratio (LR-) = FNR TNR	
	Accuracy (ACC) = TP + TN P + N	False discovery rate (FDR) = FP PP = 1 - PPV	Negative predictive value (NPV) = TN PN = 1 - FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio $(DOR) = \frac{LR+}{LR-}$	
	Balanced accuracy (BA) = TPR + TNR 2	$F_{1} \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes–Mallows index (FM) = √PPV×TPR	Matthews correlation coefficient (MCC) =√TPR×TNR×PPV×NPV -√FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = TP TP + FN + FP	

Classification metrics:

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

		Predicted cond	ition	Sources: [22][23][24][25][26][27][28][29][30] view-talk-edi		
	Total population = P + N	Predicted Positive (PP)		Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) $= \frac{\sqrt{\text{TPR} \times \text{FPR}} - \text{FPR}}{\text{TPR} - \text{FPR}}$	
Positive (P)		True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$	False negative rate (FNR), miss rate = FN = 1 - TPR	
	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out = $\frac{FP}{N}$ = 1 - TNR	True negative rate (TNR), specificity (SPC), selectivity = $\frac{TN}{N}$ = 1 - FPR	
	Prevalence $= \frac{P}{P+N}$	Positive predictive value (PPV), precision = TP PP = 1 - FDR	False omission rate (FOR) = FN = 1 - NPV	Positive likelihood ratio (LR+) = TPR FPR	Negative likelihood ratio (LR-) = FNR TNR	
	Accuracy (ACC) = TP + TN P + N	False discovery rate (FDR) = FP = 1 - PPV	Negative predictive value (NPV) = TN PN = 1 - FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio $(DOR) = \frac{LR+}{LR-}$	
	Balanced accuracy (BA) = TPR + TNR 2	$F_{1} \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes–Mallows index (FM) = √PPV×TPR	Matthews correlation coefficient (MCC) =√TPR×TNR×PPV×NPV -√FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = TP TP + FN + FP	

6. Interpretability (optional)

Homework

1) Finish the Exercise (reach at least 80% accuracy) and send the link to your solution on GitHub through https://forms.gle/S4XVncJbSqwXtYJ36