Выбранный ген

TUBB tubulin beta class I

Параметры поиска:

Таблица гомологичных видов:

Description	Scientific Name	Russian Name
Gekko japonicus GekBS060P mRNA, complete cds	Gekko japonicus	Гекко японский
Hypanus sabinus tubulin beta chain (LOC132394635), transcript variant X1, mRNA	Hypanus sabinus	Гипанус сабинус
Mobula hypostoma tubulin beta-4B chain (LOC134346586), mRNA	Mobula hypostoma	Мобула гипостома
Pelecanus crispus tubulin beta chain-like (LOC104025031), mRNA	Pelecanus crispus	Пеликан хохлатый
Pristis pectinata tubulin beta-4B chain (LOC127586015), mRNA	Pristis pectinata	Пристис гребенчатый
Pleurodeles waltl tubulin beta class I (TUBB), mRNA	Pleurodeles waltl	Плеуроделес Вальта

Narcine bancroftii tubulin beta-4B chain-like (LOC138754752), mRNA	Narcine bancroftii	Нарцин Банкрафти
Rhinatrema bivittatum tubulin beta-7 chain (LOC115080200), mRNA	Rhinatrema bivittatum	Ринатрема двуцветная
Sylvia atricapilla tubulin beta chain (LOC136373108), mRNA	Sylvia atricapilla	Сильвия черноголовая
Stegostoma tigrinum tubulin beta-4B chain (LOC125467668), mRNA	Stegostoma tigrinum	Стегостома тигровая

Анализ консервативности полученного выравнивания

Анализируя выравнивание, видно, что консервативность последовательностей довольно высокая: многие участки состоят из одинаковых или схожих нуклеотидов у большинства образцов, что отмечено символами «*» и другими знаками под выравниванием. Это говорит, что эти регионы, скорее всего, важны для функции или структуры гена, так как сохраняются в процессе эволюции. Однако встречаются и участки с большим количеством пропусков (дефисов) и различий, что указывает на вариабельные, менее консервативные области, которые могут быть менее значимы функционально или подвергаться видоспецифическим изменениям. В целом, выравнивание демонстрирует чередование консервативных и вариабельных блоков, что типично для гомологичных генов у разных видов.

Объединяющий таксон:

Название таксона на латыни: Gnathostomata

Название на русском: Челюстноротые

Челюстноротые (Gnathostomata) - это крупная группа позвоночных животных, отличительной чертой которых является наличие челюстей, сформированных из передних жаберных дуг. Этот таксон объединяет подавляющее большинство современных позвоночных: все костные и хрящевые рыбы, а также наземных позвоночных — амфибий, рептилий, птиц и млекопитающих. Помимо челюстей, для челюстноротых характерны парные конечности (плавники, лапы, крылья), развитая иммунная система и миелинизированные нервные волокна. Современные челюстноротые

насчитывают около 60 000 видов, что составляет примерно 99% всех ныне живущих позвоночных, и включают три основные группы: хрящевые рыбы (Chondrichthyes), костные рыбы (Osteichthyes) и четвероногие (Tetrapoda). К группе также относят вымерших плакодерм и акантодий. Возникновение челюстей стало одним из ключевых эволюционных событий, позволивших этим животным занять господствующее положение в водных и наземных экосистемах