PATENT

DOCKET NO.: CARP-0107 Application No.: 10/630,551

Office Action Dated: August 1, 2005

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1-36. (Cancelled)

- 37. (Newly added) A method for selectively catalyzing gas phase exothermic reactions comprising employing in said feaction a catalyst pellet comprising:
 - a uniform cross-section or, if not uniform, a cross section having a
 deviation from the average cross-section area of less than 30%,
 wherein the cross-section is substantially parallelogram-shaped; and
 - b. one or more through-bores, having:
 - axes which are parallel to each other and to the axis of the pellet or, if not parallel, axes having a deviation from a parallel line of less than 20%; and
 - uniform cross-sections, or, if not uniform, cross-sections having a deviation from the average cross-section of less than 30%; and wherein said one or more through-bores further comprise:
 - i. one bore having the same shape as the cross-section of the pellet or two or more bores obtained by introducing internal reinforcing vanes in said one bore; or
 - ii. two or more bores having a circular or elliptical shape and, if four or more bores are present, having different distances between the centres of the non-adjacent couples of bores.
- 38. (Newly added) A method according to claim 37 wherein the catalyst pellet has the following size: 4 mm < P_1 < 15 mm, 4 mm < P_2 < 15 mm, 0.5 mm < P_3 < 4 mm, 3 mm < P_4 < 15 mm; wherein P_1 is the main diagonal of the parallelogram, P_2 is the secondary diagonal of the parallelogram, P_3 is the maximum wall thickness, and P_4 is the length of the parallelogram.

Application No.: 10/630,551

Office Action Dated: August 1, 2005

39. (Newly added) A method according to claim 38 wherein the catalyst pellet has the following size: 4 mm < P_1 < 9 mm, 4 mm < P_2 < 9 mm, 0.7 mm < P_3 < 2 mm, 4 mm P_4 < 8 mm.

- 40. (Newly added) A method according to claim 37 wherein the catalyst pellet has a rhomboidal cross-section with at least one reinforcing vane connecting two opposite edges and at least two bores.
- 41. (Newly added) A method according to claim 40 wherein the catalyst pellet has the following size: 4 mm < R_1 < 15 mm, 4 mm < R_2 < 15 mm, 0.5 mm < R_3 < 3 mm, 3 mm < R_4 < 15 mm; wherein R_1 is the longest size of the cross-section, R_2 is the shortest size of the cross-section, R_3 is the largest wall thickness of the bores, and R_4 is the length.
- 42. (Newly added) A method according to claim 41 wherein the catalyst pellet has the following size: 4 mm < R_1 < 9 mm, 4 mm < R_2 < 9 mm, 0.7 mm < R_3 < 2 mm, 4 mm < R_4 < 8 mm.
- 43. (Newly added) A method according to claim 37 wherein the catalyst pellet has a rhomboidal cross-section with at least one reinforcing vane connecting two opposite sides and at least two bores.
- 44. (Newly added) A method according to claim 43 wherein the catalyst pellet has the following size: 4 mm < R_1 < 15 mm, 4 mm < R_2 < 15 mm, 0.5 mm < R_3 < 3 mm, 3 mm < R_4 < 15 mm; wherein R_1 is the longest size of the cross-section, R_2 is the shortest size of the cross-section, R_3 is the largest wall thickness of the bores, and R_4 is the length.

DOCKET NO.: CARP-0107

Application No.: 10/630,551

Office Action Dated: August 1, 2005

45. (Newly added) A method according to claim 44 wherein the catalyst pellet has the following size: 4 mm < R_1 < 9 mm, 4 mm < R_2 < 9 mm, 0.7 mm < R_3 < 2 mm, 4 mm < R_4 < 8 mm.

PATENT

- 46. (Newly added) A method according to claim 43 wherein the catalyst pellet has a square cross-section with at least two reinforcing vanes and four bores.
- 47. (Newly added) A method according to claim 46 wherein the catalyst pellet has the following size: $3 \text{ mm} < Q_1 < 10.5 \text{ mm}$, $0.5 \text{ mm} < Q_3 < 3 \text{ mm}$, $3 \text{ mm} < Q_4 < 15 \text{ mm}$; wherein Q_1 is the side of the square, Q_3 is the wall thickness, and Q_4 is the length.
- 48. (Newly added) A method according to claim 47 wherein the catalyst pellet has the following size: 4 mm < Q_1 < 9 mm, 0.7 mm < Q_3 < 2 mm, 3 mm < Q_4 < 8 mm.
- 49. (Newly added) A method according to claim 37 wherein the catalyst pellet has a rhomboidal cross-section with at least four circular bores.
- 50. (Newly added) A method according to claim 49 wherein the catalyst pellet has the following size: 4 mm < T_1 < 15 mm, 4 mm < T_2 < 15 mm, 0.5 mm < T_3 < 3 mm, 3 mm < T_4 < 15 mm; wherein T_1 is the longest size of the cross-section, T_2 is the shortest size of the cross-section, T_3 is the largest wall thickness of the bores, and T_4 is the length; and wherein the diameter of the bores is between 0.7 and 3 mm.
- 51. (Newly added) A method according to claim 50 wherein the catalyst pellet has the following size: 4 mm < T_1 < 9 mm, 4 mm < T_2 < 9 mm, 0.7 mm < T_3 < 2 mm, 3 mm < T_4 < 8 mm.

Application No.: 10/630,551

Office Action Dated: August 1, 2005

52. (Newly added) A method according to claim 37 wherein the sides and/or the corners of the external contour of the catalyst pellet cross-section are rounded in such a way that the ratio between the area of the cross-section of the pellets, including the cross-section of the bores, and the area of the parallelogram circumscribing the external contour of the pellet cross-section is greater than 0.75.

- 53. (Newly added) A method according to claim 52 wherein said ratio is greater than 0.85.
- 54. (Newly added) A method according to claim 37 wherein the sides of the external contour of the catalyst pellet cross-section are curved, the curve being convex or concave or both.
- 55. (Newly added) A method according to claim 54 wherein the curve is convex.
- 56. (Newly added) A method according to claim 37 wherein the sides and/or the edges of the external contour of the catalyst pellet cross-section are curved, and the curves corresponding to the sides of the external contour of the cross-section are concave and the curves corresponding to the edges of the external contour of the cross-section are convex.
- 57. (Newly added) A method according to claim 37 with one bore having the same shape as the cross-section of the catalyst pellet or, optionally, with two or more bores obtained by introducing internal reinforcing vanes in said one bore, wherein the sides and/or the corners of the contour of the bores cross-section are rounded in such a way that the ratio between the area of the cross-section of the bores and the area of the cross-section of the parallelogram circumscribing the external contour of the bores is higher than 0.75.

Application No.: 10/630,551

Office Action Dated: August 1, 2005

58. (Newly added) A method according to claim 57 wherein said ratio is

higher than 0.85.

59. (Newly added) A method according to claim 37 wherein the catalyst

pellet has two or more bores obtained by introducing internal reinforcing vanes in

one bore having the same shape of the cross-section of the pellet, wherein said

reinforcing vanes are disposed to connect the opposite edges or the opposite sides

of the external contour of the bore cross-section.

60. (Newly added) The method of claim 37, wherein the gas phase

exothermic reactions are selected from the selective chlorination and/or

oxychlorination of alkenes or alkanes and the selective oxidation of alkenes.

61. (Newly added) The method of claim 60, wherein the reactions are

further selected from: the conversion of ethylene with chlorine to 1,2-dichloroethane;

the conversion of ethylene with hydrogen chloride with air or oxygen to give 1,2-

dichloroethane; the conversion of ethane with hydrogen chloride with air or oxygen to

give saturated and unsaturated chlorinated hydrocarbons; and the reaction of

methane with chlorine.

62. (Newly added) The method of claim 61, wherein the catalyst for the

oxychlorination reaction of ethylene contains copper in an amount of 1-12 wt%.

63. (Newly added) The method of claim 62, wherein the catalyst for the

oxychlorination reaction of ethylene further comprises at least one of the alkali

metals, alkaline earth metals, group IIB metals or lanthanides in a total amount up to

15 wt%.

64. (Newly added) The method of claim 63, wherein the alkali metal is

lithium, potassium or cesium or a combination thereof.

Page 6 of 9

DOCKET NO.: CARP-0107

Application No.: 10/630,551

Office Action Dated: August 1, 2005

65. (Newly added) The method of claim 63, wherein the alkali earth metal

PATENT

is magnesium.

66. (Newly added) The method of claim 63, wherein the lanthanide is

cerium or lanthanum or a combination thereof.

67. (Newly added) The method of claim 61, wherein the catalyst for the

oxychlorination reaction of ethane contains copper and/or nickel and an alkali metal.

68. (Newly added) The method of claim 67, wherein the catalyst for the

oxychlorination reaction of ethane further comprises at least one of the alkaline earth

metals, group IIB metals or lanthanides.

69. (Newly added) The method of claim 61, wherein the catalyst for the

selective oxidation reaction of ethylene further comprises silver and at least one of

the alkali or alkaline earth metals.

70. (Newly added) A method for selectively catalyzing gas phase

endothermic reactions comprising employing in said reaction a catalyst pellet

comprising:

a. a uniform cross-section or, if not uniform, a cross section having a

deviation from the average cross-section area of less than 30%,

wherein the cross-section is substantially parallelogram-shaped; and

b. one or more through-bores, having:

1. axes which are parallel to each other and to the axis of the pellet

or, if not parallel, axes having a deviation from a parallel line of

less than 20%; and

2. uniform cross-sections, or, if not uniform, cross-sections having

a deviation from the average cross-section of less than 30%;

and wherein said one or more through-bores further comprise:

Page 7 of 9

Application No.: 10/630,551

Office Action Dated: August 1, 2005

 i. one bore having the same shape as the cross-section of the pellet or two or more bores obtained by introducing internal reinforcing vanes in said one bore; or

ii. two or more bores having a circular or elliptical shape and, if four or more bores are present, having different distances between the centres of the non-adjacent couples of bores.