Lsg Vorschlag Maximilian Maag DS Übung 003

Aufgabe A

a)

1. Absorptions gesetz $A \wedge (A \vee B) \equiv A$

$A \wedge$	$A \vee B$	A
w	f	w
w	w	w
f	f	f
\mathbf{f}	w	f

b)

2. Distributivgesetz A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \vee C)

$A \wedge$	$(B \vee C)$	$(A \wedge B) \vee (A \vee C)$
W	w	W
W	f	f
\mathbf{f}	W	f
\mathbf{f}	f	f

c)

$$\begin{array}{l} A \rightarrow B \equiv (\cancel{B}) \rightarrow (\cancel{A}) \\ A \rightarrow B \equiv \cancel{L}(\cancel{B}) \rightarrow (\cancel{A})) \\ A \rightarrow B \equiv A \rightarrow B \end{array}$$

Aufgabe B

$$f(x, y, z) = (\cancel{x} \land y \land z) \lor (\cancel{x} \land y \land \cancel{z}) \lor (x \land y \land z)$$

Aufgabe C

$$\begin{split} A \to B &\equiv \not A \vee B \\ A \leftrightarrow B &\equiv (A \to B) \wedge (B \to A) \\ A \leftrightarrow B &\equiv (\not A \vee B) \wedge (\not B \vee A) \\ A \oplus B &\equiv (A \vee B) \wedge (\not A \vee \not B) \end{split}$$

Aufgabe 1

a)

w w w
wwf
f w w
wfw
f f f
f w f

b)

$$\begin{split} A \to B &\equiv (A \vee B) \wedge (A \vee B) \vee B \\ A \to B &\equiv (A \wedge B) \wedge (A \vee B) \vee B) \\ A \to B &\equiv (A \wedge B) \vee (A \wedge B) \wedge B \\ A \to B &\equiv (A \wedge B) \wedge B \\ A \to B \rightarrow (A \wedge B) \wedge B \\ A \to B \rightarrow (A \wedge B) \wedge B \\ A \to B \rightarrow (A \wedge B) \wedge B \\ A \to B \rightarrow (A \wedge B) \wedge B \\ A \to B \rightarrow (A \wedge B) \wedge B \\ A \to B \rightarrow (A \wedge B) \wedge B \\ A \to B \rightarrow (A \wedge B) \wedge B \\ A \to B \rightarrow (A \wedge B) \wedge B \\ A \to B \rightarrow (A \wedge B) \wedge B \\ A \to B \rightarrow (A \wedge B) \wedge B \\ A \to B \rightarrow (A \wedge B) \wedge B \\ A \to B \rightarrow (A \wedge B) \wedge B$$

Aufgabe 2

a)

0= Schalter ist geöffnet; 1= Schalter ist geschlossen

X	У	Z	f(x, y, z)
0	0	1	0
0	1	1	1
1	1	1	0
1	1	0	1
1	0	1	1

b)

$$f(x,y,z) = (\cancel{x} \wedge y \wedge z) \vee (x \wedge y \wedge \cancel{z}) \vee (x \wedge \cancel{y} \wedge z)$$

c)

 $(\cancel{x} \land y \land z) \lor (x \land y \land \cancel{z}) \lor (x \land \cancel{y} \land z) \equiv \cancel{x} \land y \land z$ Angaben von Wolram Alpha ohne Gewähr.

Aufgabe 3

Def.: $Nand(A, B) \equiv A \lor B$

a)

$$NAND(A, w) \equiv A$$

 $A \lor w \equiv A$
 $A \equiv A$

b)

$$\begin{split} A \wedge B &\equiv NAND(NADN(A,B),w) \\ A \wedge B &\equiv NAND(\not A \lor \not B,w) \\ A \wedge B &\equiv \not (\not A \lor \not B) \lor f \\ A \wedge B &\equiv (A \wedge B) \lor f \\ A \wedge B &\equiv A \wedge B \end{split}$$

c)

$$\begin{split} A \lor B &\equiv NAND(NAND(A,w), NAND(B,w)) \\ A \lor B &\equiv (NAND(A,w) \land NAND(B,w)) \\ A \lor B &\equiv ((A \land w) \land (B \land w)) \\ A \lor B &\equiv ((A \lor f) \lor (B \lor f)) \\ A \lor B &\equiv A \lor B \end{split}$$