Homework 1

Chu Hai Nam MSSV: 2370189

September 11, 2023

Section 3.2

Let $m: \mathcal{A} \to [0, \infty)$ be a set function where \mathcal{A} is a σ -algebra. Assume m is countably additive over countable disjoint collections of sets in \mathcal{A} .

Problem 1

Given sets A, B, and C, if $A \subset B$ and $B \subset C$, then $A \subset C$.

Proof. Other symbols you can use for set notation are

- $A \supset B \supseteq C \subset D \subseteq E$. Also $\emptyset vs \emptyset$
- \cup and $\cup_{k=1}^{\infty} E_k$
- \cap and $\cap_{x \in \mathbb{N}} \{ \frac{1}{\sqrt[3]{x}} \}$
- \bigcup and $\bigcap_{k=0}^{n}$ and \bigcap
- most Greek letters $\sigma \pi \theta \lambda_i e^{i\pi}$
- $\int_0^2 ln(2)x^2 sin(x)dx$
- ≤<≥>=≠

If you want centered math on its own line, you can use a slash and square bracket.

$$\left\{\sum_{k=1}^{\infty}l(I_k): A\subseteq \bigcup_{k=1}^{\infty}\{I_k\}\right\}$$

The left and right commands make the brackets get as big as we need them to be. $\hfill\Box$

Problem 2

Prove equation (3.19) states:

$$\lg(n!) = \Theta(n \lg n) \tag{1}$$

Proof.

We use Stirling's approximation for this proof With large values of n, $\Theta(\frac{1}{n})$ is very smaller than 1. So we can write n! as follows:

$$\lg(n!) \approx \lg\left(\sqrt{2\pi n} \left(\frac{n}{e}\right)^n\right)
= \lg(\sqrt{2\pi n}) + \lg\left(\frac{n}{e}\right)^n
= \lg\sqrt{2\pi} + \lg\sqrt{n} + n\lg\left(\frac{n}{e}\right)
= \lg\sqrt{2\pi} + \frac{1}{2}\lg n + n\lg n - n\lg e
= \Theta(1) + \Theta(\lg n) + \Theta(n\lg n) - \Theta(n)
= \Theta(n\lg n)$$
(2)

Problem 3

Proof.

Section 2.2

Problem 6

Blah

Problem 7

Blah

Problem 10

Blah