

Ethernet

Modern Ethernet

- Switched
- Full Duplex

Example: Ethernet Frame Sent from A to B

Modern Ethernet

Source MAC: A Dest MAC: B

Layer 2 Switching - 4

Step 1: Forward the Frame

Since the Switch MAC Address table contains PC-A's MAC Address, it sends the frame out only port 1.

How Many Destination MAC Addresses

Half and Full Duplex

Ethernet Encapsulation

IEEE 802.3 Standard / Ethernet II

Preamble: sequence of 10101 for bit synchronization

Destination and Source MAC Address:

EtherType: Identifies upper layer Protocol, see table below for examples

Frame Check Sequence: Redundant information for error detection

EtherType for some notable protocols

EtherType		Protocol
0x0800	Internet Protocol version 4 (IPv4)	
0x0806	Address Resolution Protocol (ARP)	
0x0842	Wake-on-LAN ^[0]	
0x22F3	IETF TRILL Protocol	
0x6003	DECnet Phase IV	
0.0005	Davarea Address Desolution Drotocol	

Protocol Data Units

- Segmentation partition of application data into blocks of data
- A data block with its header is called a Protocol Data Unit (PDU)

Devices on the Same Network

Network Layer Protocols

Responsible for:

Routing:

- Determine the path to reach relevant destination networks
- Dynamic and Static methods

Forwarding (Layer 3)

- Move an incoming Packet to the next hop Router interface based on the Destination IP Address.
 - · Internet Protocol version 4 (IPv4)
 - Internet Protocol version 6 (IPv6)

Time-to-Live TTL

- TTL value ranges from 0 255.
- TTL value is set by sending device
- TTL value is decremented at each Router.
- Packet is dropped if TTL = 0 before it reaches its destination.
- ICMP message is returned to the source device if TTL=0.
- Prevents packets from getting "stuck" in infinite forwarding loop

Router2

Collision Domain:

- Ethernet Switches break up collision domains into point-to-point links.
- Each Switch port forms a separate collision domain
- This is due to the switching function

Broadcast Domain:

- Routers break up broadcast domains and collision domains
- Each Router port forms a separate broadcast domain
- Routers do not forward broadcasts
- The switch prevents collisions in the broadcast domain.

This is important for capacity planning

The Default Route

