Plan-Based Reward Shaping for Multi-Agent **Reinforcement Learning** INFO-F-409 – Learning dynamics

Jérome Bastogne, Maxime Desclefs, Simon Picard

Université Libre de Bruxelles, Boulevard du Triomphe - CP 212, 1050 Brussels, Belgium

ibastogn@ulb.ac.be, mdesclef@ulb.ac.be, spicard@ulb.ac.be

January 15 2016

Introduction

Introduction

Content

- 1 Introduction
- 2 Materials and Methods
- 3 Results and Discussion
- 4 Conclusion

Field

- Reinforcement learning
- Multi-agent
- Reward shaping
- Plan

Aim of the work

- Is reward shaping efficient?
- Which heuristic is good?
- What happens when combining them?
- Is there a gap between individual-plan and joint-plan based reward shaping?
- Why is there a gap and how to reduce it?

- Machine learning
- Goal directed
- Environment
- Agent

Introduction

- Given actions
- Reward
- Repeated experiences
- Exploration $\rightarrow \epsilon$ -Greedy

MDP and Algorithm

- MDP = $\langle S, A, T, R \rangle$ Markov Property
- Temporal Difference Algorithm : $Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma Q(s', a') Q(s, a)]$
- r : reward

 α : learning rate

 γ : discount factor

Eligibility traces

- For current (s, a): $\sigma = r + \gamma Q(s', a') - Q(s, a)$
- For all (s, a) in path : $Q(s, a) \leftarrow Q(s, a) + \alpha * \sigma * (\gamma * \lambda)^t$
- λ : decay rate

Action values increased by Sarsa(λ) with λ=0.9

Université Libre de Bruxelles

Reward Shaping

Basic

Introduction

- Prior knowledge
- Better results
- $Q(s,a) \leftarrow Q(s,a) + \alpha[r + F(s,s') + \gamma Q(s',a') Q(s,a)]$
- \blacksquare $F(s,s') = \gamma \phi(s') \phi(s)$
- Potential function over a state

$SARSA(\lambda)$ with reward shaping

- For current (s, a): $\sigma = r + F(s, s') + \gamma Q(s', a') Q(s, a)$
- For all (s, a) in path : $Q(s, a) \leftarrow Q(s, a) + \alpha * \sigma * (\gamma * \lambda)^t$

Plan Based Reward Shaping

Main idea

- Plan: set of subgoals
- Subgoals : state of the agent → domain specific
 - To be followed
- Reward proportional to the distance of the step in the plan

Potential Function

- $\phi(s) = \omega * CurrentStepInPlan$
- $\blacksquare \omega$: scaling factor
- $\omega = MaxReward/NumStepsInPlan$
- Max shaping reward = max domain reward

Multi-Agent Planning

Introduction

Centralized Planning

- Generate global plan
- Decompose it
- Assign task to multiple agents
- Divulge plans and goals
- \rightarrow Joint-plan

Decentralized Planning

- Each agent set its own plan
- Do not divulge plans and goals
- → Individual-plan

Problem

RoomA		Į.	Α	Ro	on	ıВ			Re	on	ıΕ		٦
				1	В						F		_
HallA		S1		На	llE	3				S2			
RoomD	_												
	ט			Ro	on	ıC		С					_
6 ₀₈								U				П	E

Materials and Methods 0000000

Figure - Multi-Agent, Flag-Collecting Problem Domain.

Description

- Two agents
- Six flags
- Seven rooms
- One goal
- Reward $\begin{cases} on goal = Flags * 100 \\ not on goal = 0 \end{cases}$
- Agent knows its position
- Agent knows the flags it collected
- Episode: start to goal

Plan Handling

```
robot-in-hallA
robot-in room A
robot-in_roomA taken_flagA
robot-in_hallA taken_flagA
 robot-in_hallB taken_flagA
 robot-in_roomB taken_flagA
 robot-in_roomB taken_flagA taken_flagB
```


- robot-in_hallA taken_flagA taken_flagB
- robot-in_roomD taken_flagA taken_flagB

Figure - Joint-plan

- Action based to state based
- Each agent has an individual-plan and a joint-plan

Flag-Based

- \bullet $\phi(s) = NumFlagsCollected * <math>\omega$
- lacksquare $\omega = MaxReward/MaxFlagsInWorld$

Plan-Based

- $\phi(s) = CurrentStepInPlan * \omega$
- $\omega = MaxReward/NumStepsInPlan$
- Not in plan \rightarrow last step in plan

Flag-Based and Plan-Based

- $\phi(s) = \omega * (CurrentStepInPlan + NumFlagsCollected)$
- lacksquare $\omega = MaxReward/(NumStepsInPlan + NumFlagsInWorld)$

Experiments

Introduction

Modus operandi

- SARSA(λ)
- ε-Greedy
- $\alpha = 0.1$
- $\epsilon = 0.1$
- $\lambda = 0.4$
- Q-values initialized to 0
- 2000 episodes
- Average over 30 simulations
- Discounted total reward over episodes
- Discounted total reward = $reward * \gamma^{steps}$
- Value averaged over 100 previous episodes

Initial Results

Analysis

- Lower bound : no shaping
- Upper bound : joint-plan
- Individual-plan: poor results
- Flag-based: inefficient path
 - Plan-based and flag-based : add knowledge

Conflicted Knowledge

Materials and Methods

- Poor behaviour with individual plans
- Conflict knowledge
- How to avoid it?
- Make individual-plan based reward shaping as efficient as the joint-plan one

Results and Discussion

00000

Partial Knowledge

Explanation and Analysis

- Delayed conflict
- Removed conflict
- Significant improvement
 - Need global knowledge

Improved Cooperation

Explanation and Analysis

- Agents share collected flags
- Minimal communication
- Clear improvement
- Does not reach joint-plan
 - Individual-plan remains non optimal

Conclusion

- Knowledge improves results
- Joint-plan is optimal
- Individual-plans leads to conflicted knowledge
- Posterior cooperation is not sufficient to overcome it
- lacktriangle Transforming the plan to avoid conflict works o Is it possible to automate it?

Other and Future Work

Other work

- Exploration can overcome conflict knowledge but needs more episodes
- Abstract-MDP reward shaping

Future Work

- Use specific MARL algorithms
- Modify potential function according to domain

Knowledge revision

Interpret conflict knowledge as bad or incomplete knowledge and use knowledge revision

- \rightarrow Two steps :
 - Implement knowledge revision for multi-agent
 - Experiment it with individual-plans

