Research outline

Krishna Balaji S

Summer 2024: Rydberg Array Quantum Simulation

Lab

Institute for Quantum Computing, Waterloo

Summer 2024 - IQC Waterloo

Locking the Raman Lasers at 6.83GHz using Optical PLL

Phase Noise spectrum (reveals vibrational sources in the lab)

2. Generating Raman tweezer arrays

Aligned the array with respect to laboratory reference using a real-time Python script.

AOD Diffraction efficiency curve

Final result:

- Lasers phase-locked at 6.83GHz.
- $\frac{1}{2}$ inch board set up to co-propagate the beams (necessary for Λ -Raman transition) and stabilize intensity.
- 2D AODs setup near the main experiment to operate in site-selective configuration.

Final Traps (tweezer and Raman)(credit - Soroush)

Summer 2023: Radio Astronomy Lab

Raman Research Institute, Bangalore

CST Microwave - Antenna Simulations

Fairfield results for a Generalized horn

At 7.5GHz

Optimized performed for a general frequency range

(in my case, 1 to 10 GHz)

LPDA Response simulated (pic credit: Likhit)

- "Phased Array"
 dipole antennas
- Response simulated by Likhit in CST

Beamwidth calculation

Simulated beamwidth:

20.0 deg

Observed beamwidth:

~22.5 deg beamwidth

Correlation fringes from Phased array LPDA

Filter design

IF filter for Superhet receiver

(Keysight Genesys)

In essence:

- Developed a tunable filter to scan across 150 to 350 MHz
- Enabled high speed acq (125Msps 8 bit data) link

Proposed Analog front-end for Redpitaya system

@ IITM

Quantum Imaging

Single-Photon LiDAR Imaging:

- Femtosecond Laser pulses illuminate the scene
- Collect pulse arrival times with respect to a source reference
- Construct a histogram of pulse arrival times

Setup Schematic

Comparing Histogram fits:

$$f(x) = a \exp \Biggl(-rac{(x-b)^2}{2c^2} \Biggr)$$
 (Gaussian)

$$f(x;\mu,\sigma,\lambda) = rac{\lambda}{2} e^{rac{\lambda}{2}(2\mu + \lambda \sigma^2 - 2x)} \operatorname{erfc}igg(rac{\mu + \lambda \sigma^2 - x}{\sqrt{2}\sigma}igg)$$

(Exponentially modified Gaussian)

Limitations and Next steps:

 Analytical estimation doesn't work well in presence of excess background light

To tackle this, we are exploring two approaches:

- Multi-step denoising (use reflectivity, depth correlations in scene)
- Deep-learning based estimation (inspired from Sensor-fusion)

Figure: Reconstructed LiDAR image (RMSE: 9mm)

Present: Optical GKP states for Quantum Error correction

(September 2024 -)

Quasi-Phase matching using PPKPT

- By tuning χ(2) as a function of z, we can control the Phase Matching Function (PMF)
- Achieved using discrete optimization.

Ref: Ady et al, 2020

Fig. 1. Illustration of the 2-dimensional control over the JSI. Top - Gaussian-shaped pump spectrum and PMF resulting a round JSI. Bottom - double-Gaussian-shaped pump spectrum and PMF resulting a 4 lobe JSI.

Quasi-Phase matching using PPKPT

- It is possible to modulate both Pump spectrum and PMF to achieve a require JSI at the output.

Ref: Ady 2020

We are aiming to use these two degrees of freedom to generate time-frequency GKP state.

Complex pump modulation to achieve higher order Hermite-Gaussian modes. (results from MATLAB simulation)