

2024 IEEE Students Conference on Engineering and Systems (SCES-2024)

(Interdisciplinary Technologies for Sustainable Future)

Organized by

**Department of Electrical Engineering** 



Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India

# Implementation of Video-dehazing based on AOD-Net using Docker on Jetson Nano

Challa Gopala Krishna Reddy
Electronics and Communication Department
National Institute of Technology Warangal
Warangal, India
cg21ecb0b09@student.nitw.ac.in

Shrikar Kaveti
Electronics and Communication Department
National Institute of Technology Warangal
Warangal, India
ks21ecb0b21@student.nitw.ac.in

Dr. Ravi Kumar Jatoth
Electronics and Communication Department
National Institute of Technology Warangal
Warangal, India
ravikumar@nitw.ac.in

#### **ABSTRACT**

- Haze and Fog are weather conditions which are highly prevalent in many regions across the world.
- Haze lead to degradation of human vision as well as visual quality in images and videos.



Fig. 1. Robotic Arm



Fig. 2. Drones



Fig. 3. Self Driving Car

$$I(x) = J(x) t(x) + A(1 - t(x))$$
 (1)

Where I(x) is observed hazy image, J(x) is scene radiance, A is global atmospheric light and, t(x) is transmission matrix is defined as

$$t(x) = e^{-\beta d(x)} \quad (2)$$

where, beta is scattering coefficient of atmosphere and d(x) denotes distance between camera and object

$$J(x) = \frac{1}{t(x)} I(x) - A \frac{1}{t(x)} + A \quad (3)$$

$$J(x) = K(x) I(x) - K(x) + b, where$$

$$K(x) = \frac{\frac{1}{t(x)}(I(x) - A) + (A - b)}{I(x) - 1}$$
 (4)



Fig. 4. Atmospheric Light Scattering Model

## **DOCKER**

- Docker is an platform which is used for developing, shipping and running applications. It packages the application with everything the application needs such as code, libraries, etc into a container.
- Containers are independent and can run on any computer, making it easy to share and deploy software quickly.



Fig. 5. Deploying Software using Docker Image

#### NETWORK DESIGN



Fig. 6. Network Design

Date: 22/06/2024 Computer Network & Machine Learning – VI (CS S6)

## **NETWORK DESIGN**

#### Necessity of K factor Module

- Most Machine learning models used for generating the dehazed image require very high computational power.
- These model use Up and Down sampling or Image denoising to generate the dehazed image because of the requirement for high computation it is difficult for the model to run in real time and can be run on portable devices.
- The K Factor is calculated using the image atmospheric light and depth of the Image as given the Atmospheric Scattering Model which makes it easy to model and computationally light weight.

#### Necessity of Light Weight Model

- Running the Machine learning model in real time is necessary for certain critical applications such as Self Driving Cars.
- Hence, for reducing computational cost or limiting computational cost CNN model is chosen instead of GAN models or Transformers which can produce a better output Image quality compared to CNN models.

## NETWORK DESIGN

| Layer<br>Name | Layer             | No. of<br>Filters | Kernal<br>Size | Stride |
|---------------|-------------------|-------------------|----------------|--------|
| Conv 1        | Convolution<br>2D | 3                 | 1 x 1          | 1      |
| Conv 2        | Convolution<br>2D | 3                 | 1 x 1          | 1      |
| Conv 3        | Convolution<br>2D | 3                 | 5 x 5          | 1      |
| Conv 4        | Convolution 2D    | 3                 | 7 x 7          | 1      |
| Conv 5        | Convolution<br>2D | 3                 | 3 x 3          | 1      |

**Table I.** CNN Hyperparameters

| Hyperparameters        | Value                              |  |
|------------------------|------------------------------------|--|
| Stride                 | 1                                  |  |
| Padding                | same                               |  |
| Activation             | ReLU                               |  |
| Neural Network<br>Bias | True                               |  |
| Kernal Initializer     | Random<br>(Normal Distribution)    |  |
| Kernal<br>Regularizes  | L2 (Ridge Regression)              |  |
| Batch Size             | 1                                  |  |
| Epochs                 | 25                                 |  |
| Callback               | Reduce Learning Rate on<br>Plateau |  |
| Optimizer              | Adams                              |  |
| Loss Function          | MSE                                |  |
| Model Loss             | 0.030715337023139                  |  |
| Model Accuracy         | 89.92100358009338~%                |  |

**Table II.** Network Hyperparameters

**Presented by Shrikar Kaveti** 

#### **EVALUATION**



Fig. 7. Training Curve

#### **EVALUATION**

#### Haze Image Datasets



Fig. 8. REVIDE Dataset



Fig. 9. HazeRD Dataset



Fig. 10. NYU2 Dataset



Fig. 11. Dehazing of Synthetically generated Haze Images (A, B) Input Haze Images (Top Row), Output Dehazed Image (Below Row) Dehazing of Real Haze Images (C, D) Input Images (Top Row), Output Dehazed Image (Below Row)

**Computer Network & Machine** 

**SCES-2024** 

#### **EVALUATION**



Fig. 12. Real Video Dehazing

| Visibility                          | 50m     | 100m    | 200m    | 500m     | 1000m  |
|-------------------------------------|---------|---------|---------|----------|--------|
| Weather<br>Condition                | Dense   | Thick   | Thick   | Moderate | Light  |
| Scattering<br>Coefficient<br>(Beta) | 78.2    | 39.1    | 19.6    | 7.82     | 3.91   |
| PSNR                                | 12.8007 | 17.5181 | 21.1731 | 21.4665  | 20.909 |
| SNR                                 | 7.5038  | 12.2212 | 15.8762 | 16.1692  | 15.612 |

Table III. Visual range and corresponding scattering coefficient, PSNR, SNR and Weather Condition

| AOD-Net | Average | Max    | Min     |
|---------|---------|--------|---------|
| PSNR    | 15.8819 | 21.839 | 13.5945 |
| SSIM    | 0.51909 | 0.89   | 0.43    |
| RMS     | 0.2835  | 0.3621 | 0.1401  |

**Table IV.** AOD-Net Statistics (PSNR, SSIM, RMS)

| Metrics   | On-Device | Docker  |
|-----------|-----------|---------|
| Avg. Time | 0.357 ms  | 0.48 ms |

**Table V.** Comparison of Average Prediction time for AOD-Net running on Device and Docker

## **HARDWARE IMPLEMENTATION**

- CPU Quad-core ARM Cortex-A57
   MPCore processor
- GPU 128-core NVIDIA Maxwell architecture GPU
- RAM 4 GB
- Power Usage 10 Watts



**Fig. 13.** Nvidia Jetson Nano Developer Kit

## **RESULT**



**Fig. 14.** Model Running in the Docker (Displaying the Prediction time for Each Frame)



**Fig. 15.** GPU Utilization and Memory Consumption while running in docker

Date: 22/06/2024

# Thank You