Logique - Contrôle 1 durée: 15 min

Nom:

Prénom:

Numéro étudiant:

Les réponses sont à donner sur la feuille.

1. Soit n_V le nombre de variables d'une formule et n_C le nombre de connecteurs utilisés pour la construire (chaque connecteur est compté autant de fois qu'il apparait dans la formule, \top et \bot sont considérés comme des connecteurs). Montrer par induction sur les formules que $n_V \le n_C + 1$

Par induction sure to formule A

• (as
$$A = P$$
 $n_{V}(A) = 1$
 $n_{V}(A) = 0$

• (as $A = T$ on $A = I$
 $n_{V}(A) = 0$

• (as $A = TB$
 $n_{V}(A) = n_{V}(B)$
 $n_{C}(A) = 1$

• (as $A = B B C$

• (b) + (c) +1

• (c) +1

• (c) +1

• (d) +1

• (d) +1

• (e) +1

• (f) +1

•

2. Soit A_1, \ldots, A_n, B des formules. Donner une condition nécessaire et suffisante sur B pour que, quelque soient les formules A_1, \ldots, A_n , on aie $\{A_1, \ldots, A_n\} \models B$.

Sien particulir les Ai ent des teutologie, alors B doit en êtres ume aussi: B => T

3. Une formule valide est-elle satisfiable? Justifier brièvement, éventuellement à l'aide d'un contre-exemple.

Oui, si elle strai Vinterprotel, alors elle et vraie pour au moins une, e.g. I=7p. Vrai

 $n_{\mathcal{O}}(R) \leq n_{\mathcal{O}}(R)$ (2) $n_{\mathcal{O}}(R) \leq n_{\mathcal{O}}(R) + 1/\sqrt{2}$ (2) $n_{\mathcal{O}}(R) \leq n_{\mathcal{O}}(R) + 1/\sqrt{2}$ (3) $n_{\mathcal{O}}(R) \leq n_{\mathcal{O}}(R) + 1/\sqrt{2}$ (3) $n_{\mathcal{O}}(R) \leq n_{\mathcal{O}}(R) + 1/\sqrt{2}$ (4) $n_{\mathcal{O}}(R) \leq n_{\mathcal{O}}(R) + 1/\sqrt{2}$ (4) $n_{\mathcal{O}}(R) \leq n_{\mathcal{O}}(R) + 1/\sqrt{2}$ (4) $n_{\mathcal{O}}(R) \leq n_{\mathcal{O}}(R) + 1/\sqrt{2}$ (5) $n_{\mathcal{O}}(R) \leq n_{\mathcal{O}}(R) + 1/\sqrt{2}$

(HI) + 12 (0) + 1+1 (HI) / HI)

1+(0) 54 (0) 50 = (10) 50 0

1 7+(4) 24