Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 11. Tydzień rozpoczynający się 12. maja

- 1. Zadania 1–4. X_1, X_2 to niezależne zmienne losowe o gęstości $f(x) = \frac{x}{2}$ dla $x \in (0, 2)$ każda. Niech, oprócz tego, $Y_1 = X_1 \cdot X_2, \ Y_2 = \frac{X_1}{X_2}$.
 - (a) Znaleźć wartości oczekiwane $E(X_1)$ oraz $E\left(\frac{1}{X_1}\right)$.
 - (b) Obliczyć $E(Y_1)$ i $E(Y_2)$.
- 2. Obliczyć funkcję gęstości $g(y_1, y_2)$ zmiennej losowej (Y_1, Y_2) .
- 3. Znaleźć gęstości brzegowe zmiennych Y_1, Y_2 .
- 4. Czy zmienne Y_1, Y_2 są niezależne?
- 5. Zadania 5–6. Zmienna losowa X ma rozkład normalny

$$N\left(\left[\begin{array}{c}1\\-1\\3\end{array}\right],\left[\begin{array}{ccc}4&1&2\\1&4&3\\2&3&9\end{array}\right]\right).$$

Obliczyć ρ_{x_1,x_3} (korelacja X_1,X_3).

- 6. Niech $Y_1 = X_1 + 2X_3$, $Y_2 = X_2 X_3$ oraz $Y = [Y_1, Y_2]^T$. Wyznaczyć rozkład zmiennej losowej Y.
- 7. ZADANIA 7–8. Niech $X \sim \text{Exp}(\lambda)$, czyli $f(x) = \lambda \exp(-\lambda x)$, dla $x \in (0, \infty)$. Bezpośrednio (z definicji) obliczyć $\mathcal{E}(X)$.
- 8. Sprawdzić, że $M_X(t) = \frac{\lambda}{\lambda t}$.
- 9. (X, Y) jest dyskretną zmienną losową o prawdopodobieństwach p_{ij} . Udowodnić, że prawdziwa jest równość E(X + Y) = E(X) + E(Y).
- 10. Uzupełnić wzór (oraz uzasadnić)

$$V(X - Y) = V(X) \pm \dots$$

Symbol \pm oznacza iż – być może – następuje przynajmniej jeden składnik, dodawany lub odejmowany.

- 11. **(E1)** Dane (w kolumnach) przedstawiają pomiar wagi przed i po okresie stosowania określonej diety dla 16 osób. Testujemy hipotezę: **dieta ma wpływ na wagę**.
- 12. **(E2)** 10 poletek doświadczalnych podzielono na dwie części, w jednej z nich przeprowadzono dodatkowe czynności agrotechniczne. W wierszu znajduje się wydajność części poddanej dodatkowym zabiegom i części poletka uprawianej tradycyjnie. Testujemy hipotezę: **dodatkowy czynnik ma wpływ na wydajność uprawy**, tzn. podać postać hipotezy zerowej i podać wartość_p.
- 13. **(E2)** Niezależne obserwacje $x_1, \ldots, x_n, y_1, \ldots, y_k$ pochodzą z rozkładu $N(\mu, \sigma^2)$. Znaleźć rozkład zmiennej Z:

$$Z = \frac{\bar{X} - \bar{Y}}{\sigma \sqrt{\frac{n+k}{nk}}}.$$