

Pràctica 2. Lleis d'Ohm i de Kirchhoff

En aquesta pràctica s'analitzen diversos circuits aplicant les lleis d'Ohm i de Kirchhoff i es comproven posteriorment amb simulacions i experimentalment. Per a les simulacions, s'utilitzarà el programari de simulació de circuits Proteus introduït a la pràctica 1. La pràctica consta d'un estudi previ (qüestions P1 a P3) i d'un un treball experimental (qüestions E1 a E3). Addicionalment, hi ha un treball complementari que inclou tant estudi previ (qüestió TC1) com treball experimental (qüestió TC2).

Estudi previ

P1. Respecte al circuit de la Figura 1

- a. Trobeu les expressions algebraiques de la tensió V i del corrent I respecte als paràmetres del circuit $V_{\rm g}$ i R.
- b. Calculeu numèricament V i I per $V_g = 1$ V a 5 V en passos d'1 V i $R = 150 \Omega$. Dibuixeu en una gràfica V en funció de I. Calculeu el valor del pendent i justifiqueu el resultat.
- c. Calculeu la potència dissipada per *R* en tots els casos. Justifiqueu perquè la potència dissipada no és proporcional a *V* ni a *I*.
- d. Comproveu els resultats numèrics anteriors amb el programari Proteus¹, tot anotant els valors obtinguts.

Figura 1. Circuit amb una resistència.

P2. Respecte al circuit de la Figura 2

- a. Analitzeu-lo i obteniu les expressions algebraiques de les tensions V, V_1 , V_2 , V_3 i del corrent I en funció de V_g i les resistències.
- b. Deduïu l'expressió analítica de la resistència equivalent (R_{eq}) que pot substituir a les resistències del circuit sense alterar el corrent I.
- c. Calculeu els valors numèrics de V, V_1 , V_2 , V_3 , I i R_{eq} per V_g = 5 V, R_1 = 390 Ω , R_2 = 150 Ω i R_3 = 470 Ω . Comproveu que es compleix la llei de tensions de Kirchhoff.
- d. Calculeu la potència dissipada per cada resistència. Comproveu que la seva suma es correspon amb la potència subministrada per la font de tensió.

¹ Una manera molt pràctica d'obtenir les dades de tensió, corrent i potència en un component és executar la simulació, posar-la a continuació en pausa i marcar el component que ens interessa. Ens apareixerà una pantalla amb les dades.

- e. Repetiu els càlculs dels apartats c i d per R₂ igual a infinit (circuit obert).
- f. Repetiu els càlculs dels apartats c i d per R_2 igual a zero (curtcircuit).
- g. Comproveu els resultats numèrics amb el programari Proteus, tot anotant els valors.

Figura 2. Circuit amb connexió sèrie de resistències.

P3. Respecte al circuit de la Figura 3

- a. Analitzeu-lo i obteniu les expressions de la tensió V i dels corrents I, I_1 , I_2 i I_3 en funció de V_g i les resistències.
- b. Deduïu l'expressió analítica de la R_{eq} que pot substituir a les resistències del circuit sense alterar el corrent I.
- c. Calculeu els valors numèrics de V, I, I_1 , I_2 , I_3 i R_{eq} per V_g = 5 V, R_1 = 390 Ω , R_2 = 150 Ω i R_3 = 470 Ω . Comproveu que es compleix la llei de corrents de Kirchhoff.
- d. Calculeu la potència dissipada per cada resistència. Comproveu que la seva suma es correspon amb la potència subministrada per la font de tensió.
- e. Comproveu els resultats numèrics amb el programari Proteus, tot anotant els valors.

Figura 3. Circuit amb connexió paral·lel de resistències.

Busqueu en el vostre material les resistències R_1 , R_2 i R_3 . Esbrineu la seva potència nominal (si les heu adquirit en una bosseta sol estar indicada en aquesta) i comproveu que és major a les obtingudes en els diferents apartats. En cas contrari, la resistència es pot cremar.

Treball experimental

Configureu una de les sortides de la FA amb un valor de V_g = 5 V i un límit de corrent raonable (superior al màxim previst que circularà pels circuits en els diferents casos; per exemple un 50 % més aproximadament).

- E1. Munteu el circuit de la Figura 1 amb els valors esmentats a la qüestió P1.b. A continuació:
 - a. Mesureu amb el MD el valor de *R* i comproveu que està dintre del marge resultant del seu valor nominal i tolerància.
 - b. Utilitzeu la FA per a V_g (només 5 V) i mesureu successivament amb el MD la tensió V i el corrent I (tots dos en DC). Comproveu si concorden amb els valors teòrics. Respecte a la mesura del corrent empreu les escales de 40 mA i 400 mA.
 - c. Calculeu la resistència mitjançant la llei d'Ohm i utilitzant les dues lectures de corrent. Compareu-les amb la lectura de l'apartat a.
 - d. Justifiqueu, en base a l'efecte de càrrega del MD en la mesura de corrent, perquè la lectura a l'escala de 400 mA (apartat b) i el càlcul corresponent de la resistència (apartat c) s'apropen més als valors teòrics. Reviseu a tal fi les qüestions P5 i E5 de la pràctica 1.
- E2. Munteu el circuit de la Figura 2 amb els valors esmentats a la qüestió P2.c. A continuació:
 - a. Mesureu cadascuna de les resistències i comproveu que estan dintre del marge marcat per la seva tolerància. Obteniu el valor experimental de R_{eq} (R_{eqexp1}) a partir de les lectures individuals i comproveu que està dintre del marge resultant del seu valor teòric nominal i la tolerància².
 - b. Mesureu les tensions V, V_1 , V_2 , V_3 i el corrent I. Comproveu que concordin amb els valors teòrics i que es compleix la llei de tensions de Kirchhoff.
 - c. Repetiu l'apartat b extraient R_2 de la placa de proves (circuit obert) i deixant inalterat la resta del circuit.
 - d. Repetiu l'apartat b substituint R_2 per un curtcircuit.
 - e. Reemplaceu el curtcircuit per R_2 . Mesureu la resistència (R_{eqexp2}) entre els extrems de la connexió sèrie (després de desconnectar-los del circuit) i compareu la lectura amb R_{eqexp1} i amb el resultat del quocient V/I (R_{eqexp3}), on V i I són les mesurades a l'apartat b. Justifiqueu els resultat de R_{eqexp3} en base a l'efecte de càrrega del MD en la mesura de corrent.
- E3. Munteu el circuit de la Figura 3 amb els valors esmentats a la qüestió P3.c. A continuació:
 - a. Obteniu el valor experimental de R_{eq} (R_{eqexp1}) a partir de les lectures de l'apartat E2.a i comproveu que està dintre del marge resultant del seu valor teòric nominal i la tolerància.
 - b. Mesureu la tensió V i els corrents I, I₁, I₂ i I₃. Comproveu que concordin amb els valors teòrics i que es compleix la llei de corrents de Kirchhoff.
 - c. Mesureu la resistència (R_{eqexp2}) entre els extrems de la connexió paral·lel (desprès de desconnectar-los del circuit) i compareu la lectura amb R_{eqexp1} i amb el resultat del

² Si totes les resistències tenen la mateixa tolerància, aquesta també es pot assumir per R_{eq}.

quocient V/I (R_{eqexp3}). Justifiqueu els resultat de R_{eqexp3} en base a l'efecte de càrrega del MD en la mesura de corrent.

Treball complementari

TC1. Respecte al circuit de la Figura 4

- a. Calculeu els valors numèrics de V, V_1 , V_2 , I, I_1 , I_2 i R_{eq} per V_g = 5 V, R_1 = 390 Ω , R_2 = 150 Ω i R_3 = 470 Ω . Comproveu que es compleixen les lleis de tensions i corrents de Kirchhoff.
- b. Calculeu la potència dissipada per cada resistència. Comproveu que la seva suma es correspon amb la potència subministrada per la font de tensió.
- c. Comproveu els resultats numèrics amb el programari Proteus, tot anotant els valors.

TC2. Munteu el circuit de la Figura 4 amb els valors esmentats a la qüestió TC1.a. A continuació:

- a. Obteniu el valor experimental de R_{eq} (R_{eqexp1}) a partir de les lectures de l'apartat E2.a i comproveu que està dintre del marge resultant del seu valor teòric nominal i la tolerància.
- b. Mesureu les tensions V, V_1 i V_2 i els corrents I, I_1 i I_2 . Comproveu que concordin amb els valors teòrics i que es compleixen les lleis de tensions i corrents de Kirchhoff.
- c. Mesureu la resistència (R_{eqexp2}) entre els extrems de les resistències (desprès de desconnectar-los del circuit) i compareu la lectura amb R_{eqexp1} i amb el resultat del quocient V/I (R_{eqexp3}). Justifiqueu els resultat de R_{eqexp3} en base a l'efecte de càrrega del MD en la mesura de corrent.

Figura 4. Circuit amb connexió mixta de resistències.