Definitions et props

Définition 1: Commutatif les variables peuvent etre inverses

Définition 2: L'arbre de Derivation C'est un format de pour representer une proposition

Figure 1: $(P \Rightarrow Q) \land (P \lor \neg R)$

Définition 3: Loi de De Morgan Soit P et Q deux assertions, alors

$$\neg(P \lor Q) \equiv \neg P \land \neg Q$$

$$\neg(P \land Q) \equiv \neg P \lor \neg Q$$

Tables de verite

il est assume qu'un connecteur
est commutatif sauf mentione
autrement

table de ∧: q binaire

上	1	T
\top	Т	上
\perp	Т	1
Т	Т	Т

table de ∨: q binaire

Τ	1	Τ
\dashv	\vdash	\vdash
Η	1	Η
H	H	\vdash

table de ⊕: q binaire

Т	Т	Т
Т	\dashv	\dashv
Τ	Т	Τ
Т	Т	Т

table de ⇒: q binaire dit non commutatif

Т	Т	Т
Т	Τ	Τ
H	Т	\perp
Т	Τ	\dashv

autrement dit, vrai sauf si p est vrai et q est faux

table de ⇔: q binaire

\perp	Τ	上
Τ	Т	Τ
Τ	Τ	Т

vrai si les deux variables ont la meme valeur

Proprietes

• comutativite de ∧ et ∨

$$(p \land q) \equiv (q \land p)$$

$$(p \lor q) \equiv (q \lor p)$$

• associativite de ∧ et ∨

$$((P \land Q) \land R) \equiv ((q \land R) \land P)$$

$$((P \lor Q) \lor R) \equiv ((Q \lor R) \lor P)$$

• idempotence de \land et \lor

$$(p \wedge p) \equiv p$$

$$(p \lor p) \equiv p$$

Predicats

Définition 4: Predicat enonce contenant des variables tel qu'en substituant chaque variables par une valeure choisi, on obtient une proposition

exemple: x|P(x) (se lit x tel que P(x)) est un predicat dans lesquelles la proposition P(x) est vraie pour x

Quantificateurs

Axiomes

٦

TPs

Question 1: Ecrire une fonction interpretations(nbVar) qui renvoie le tuple constitue de toutes les interpretations possible de nbvar variables propositionnelles

ici la strategie est d'imiter ce
tableau en python

	٧	f	٧
f	f	f	٧
٧	٧	٧	٧
f	٧	f	٧

qui, rempli, donne toutes les possibilites des variables

def interpretations(nbvar):
pass