

How Simulation Accelerates Development of Self-Driving Technology

Laszló Kishonti May 2X, 2018

Overview

Simulation and Development

- Development Pipeline
- Simulation Testing and Real-world Testing
- Precommit Tests
- Simulated Datasets

Simulation and Testing

- Types of Simulation
- Development Tests and Nightly Tests
- Mutual Benchmarking

Technical challenges and Human Limitations

- Technical Challenges
- Metrics
- The Human Touch

Simulation and Development

Development Pipeline

Real-world Solutions in Simulated Environments

Road tests

- Sensors
- Software
- Processing platform
- Vehicle actuation
- Run-time

Simulation testing

- Simulated image
- Sensor simulation
 - cameras, radar, LiDAR
- Software
- Processing platform
- Actuation of simulated vehicle

Precommit Tests

- All new commits must pass pre-commit test to reach code review
- Earlier software versions have always passed pre-commit scenarios
 - New versions must pass all scenarios
 - Tests serve as basic safety limit
 - Accelerate bug fixing by limiting area to be reviewed
- Supports regression free development

Simulated Datasets

Simulated datasets generated for neural network (NN) training

- NNs trained on simulated data used for prototype algorithm development
- Data created overnight accelerates initial training data generation
- Sensor setup can be changed easily
- At a later stage real world data is needed

Real world data collection is slow

- Images have to be annotated and checked
- If sensor setup is changed images become obsolete

Simulation and Testing

Real Time and Fixed Time Simulation

Real Time		Fixed Time Step
Same as real world environment	RUNTIME	Optimized to hardware capabilities
Not completely	DETERMINISTIC	Yes
Real time performance of algorithms on the same hardware as in AVs	GOAL OF TESTS	Evaluates logic of algorithms and accelerates development
Algorithm runtimes, visual information about vehicle behavior	PROVIDES DATA ON	Algorithm logic, numerical data on physical characteristics
High-end hardware	PROCESSING REQUIREMENTS	Wide range of compatible hardware
Variable	HARDWARE UTILIZATION	Maximized

Daytime Tests and Nightly Tests

Daytime tests		Nightly tests
Test new features and the effects of changes to the code	GOAL	Guarantee quality of the self-driving solution; identify problems not seen in daytime tests
Development branches	BRANCH	Master
Defined and selected by developer	NUMBER OF SCENARIOS	Fixed set (2000+)
Test features under development or effects of changes to the code	SCOPE	Full range of self-driving tasks, situations and scenarios
Requested by developer from workstation	REQUEST	Run nightly on new software versions

Modular Testing

- Modules are solutions to certain algorithmic problems, e.g.:
 - Lane detection
 - Object detection
 - Free space detection
 - Sensor fusion
- Modular design allows testing of specific software components
 - Running one module (algorithm) in real time
 - Other components replaced by ground truth data
 - Accelerates identification of non-optimal algorithms

Mutual Benchmarking

Development Version

of Self-Driving-Solution

Development

Version of Simulator

New Scenarios

Stable Self-Driving Solution

Stable Simulator

Technical Challenges and Human Limitations

Technical Challenges 1

- Correlating vehicle physics in simulator with real-world
 - Actuation commands must be within limits to ensure safe control
 - Limits must be the same in simulator and real-world
 - Vehicle physics and world physics have to be recreated precisely
- Getting the timing right
 - Real-world: sensor delays and latency
 - Simulation: images created instantly
 - Delays and latencies created artificially based on real world data

Technical Challenges 2

- Original idea: build in game engine
 - Requirements for self-driving testing are significantly different
 - Game engines are limited by:
 - GPU usage
 - Lack of multiple points of view
 - Physical realism
 - Precision rendering
- Testing for autonomous vehicle technology requires purpose-built engine
- Simulation is a growing industry trend: NVIDIA, AirSim (Microsoft), Carla

Metrics

- Fixed time step simulation provides huge amounts of numeric data
 - Used to create detailed graphs and metrics
 - Scenario pass/fail rates
 - Deviations from planned trajectory
- Deterministic tests
 - Results are always the same
 - Exact numerical data based on algorithm logic
 - Physical characteristics (speed, brake distance etc.) can be measured precisely

The Human Touch

- Videos from real time simulation tests are processed by humans
 - Large amount of data is needed
 - Processing is a problem

- Possible solutions:
 - Concentrate efforts on one functionality or development branch
 - 2. Tag known bugs and errors to reduce number of repeated reviews
 - 3. Automate preliminary review and flag data for human review
 - Is a system in which a computer is responsible for both testing and review desired?

Summary

- Simulation technology is a safe, economical and quick development tool
 - Implementation in development process must be thought-out and safety conscious
 - Real-time and fixed time step simulation serve different purposes
 - Developers should have direct access to simulator
- Physics model correlation and latency recreation are challenges
 - Realism is often limited by engine choice
- Processing extreme amount of data is difficult

Almotive at a Glance

COMPANY	 Founded in 2015 by CEO Laszlo Kishonti Incorporated in Germany, headquartered in Budapest
GLOBAL GROWTH	 4 Offices across 3 continents: Budapest (HU), Helsinki (FIN), Mountain View (USA) and Tokyo (JP) 4 Licensed testing locations: Hungary, Finland, California, Nevada 3 self-driving test car models: Toyota, Volvo, Citroen
TEAM & EXPERTISE	 180+ passionate team, including 120+ highly skilled engineers In-house developed AI algorithms and framework 10+ years in High Performance Embedded Programming
SELF-DRIVING ECOSYSTEM	 Developing full self-driving ecosystem aiDrive: Vision-first self-driving artificial intelligence Advanced development tools to accelerate development aiWare: efficient, scalable host offload for NN processing

Resources

- More about simulation:
 - Vanessa Bates Ramirez, <u>This Self-Driving AI is Learning to Drive Almost Entirely in a Virtual World</u>
 - William Wong, Will Automotive Simulation Catch Up with Self-Driving Cars?
 - Devindra Hardawar, NVIDIA aims to make self-driving safer with virtual simulations
 - Sean O'Kane, <u>How Tesla And Waymo Are Tackling A Major Problem For Self-driving Cars: Data</u>
- Further videos:
 - aiDrive in Simulator
 - Microsoft AirSim

