Logik Übungsblatt 3

Übungsaufgaben werden in den Übungen besprochen. Übungszeitraum: Hausaufgaben werden bewertet. Abgabe über Moodle bis:

06.05. - 17.05. 9:00 Uhr am 20.05.2024

Übungsaufgabe 1 Gegeben sind folgende aussagenlogische Formeln:

$$\varphi_1 = (\neg y \land x) \lor x \to y$$

$$\varphi_2 = x \leftrightarrow y$$

$$\varphi_3 = (x \vee y) \wedge z$$

- (a) Geben Sie jeweils eine erfüllbarkeitsäquivalente aussagenlogische Formel in konjunktiver Normalform an. Nutzen Sie dazu die Tseitintransformation aus der Vorlesung. Geben Sie alle Zwischenschritte an.
- (b) Beweisen oder widerlegen Sie jeweils, dass die errechneten aussagenlogischen Formeln äquivalent sind.

Übungsaufgabe 2 Aobii feiert Geburtstag. Kommen könnten Bobii, Cobii, Dobii, Eobii, Fobii, Gobii, Hobii. Aber:

- i) Hobii und Fobii kommen? Dann auch Cobii!
- ii) Aobii kann maximal sechs Gäste haben.
- iii) Hobii kommt genau dann, wenn Fobii kommt.
- iv) Wenn Hobii und Cobii beide kommen, müssen sie Bobii mitbringen.
- v) Fobii muss kommen.
- vi) Gobii und Eobii folgen Dobii immer.
- vii) Aobii darf nicht Eobii und Hobii einladen.
- viii) Eobii kommt nicht, oder Fobii kommt.
- (a) Geben Sie eine Horn-Formel in Implikations-Schreibweise an, um obige Situation zu modellieren.
- (b) Geben Sie (falls möglich) ein minimales Modell für φ an. Nutzen Sie dazu den Markierungsalgorithmus aus der Vorlesung.
- (c) Lässt sich auch die Bedingung "Wenn Bobii nicht kommt, dann kommen Cobii oder Fobii" mithilfe einer Horn-Formel modellieren? Begründen Sie Ihre Antwort in zwei Sätzen.

Übungsaufgabe 3 Gegeben sind folgende aussagenlogische Formeln:

$$\varphi_1 = (x_1 \vee \neg x_3) \wedge (x_2 \vee \neg x_1) \wedge \neg x_2 \wedge (x_1 \vee x_3)$$

$$\varphi_2 = (x_1 \vee \neg x_2 \vee \neg x_3 \vee \neg x_4) \wedge (x_1 \vee x_2) \wedge (x_1 \vee x_3) \wedge (x_1 \vee x_4) \wedge \neg x_1$$

Beweisen Sie, dass die aussagenlogischen Formeln φ_1, φ_2 unerfüllbar sind. Geben Sie dazu jeweils einen Resolutionsbeweis in grafischer Form (wie auf Folie 99 im ersten Foliensatz) an, der die leere Klausel \square ableitet.

Gegeben ist die aussagenlogische Formel

$$(x \wedge y) \wedge (x \wedge y \rightarrow \neg x).$$

Geben Sie eine erfüllbarkeitsäquivalente aussagenlogische Formel in konjunktiver Normalform an. Nutzen Sie dazu die Tseitintransformation aus der Vorlesung. Geben Sie alle Zwischenschritte an.

Hausaufgabe 5
$$(8+8)$$

Gegeben sind folgende Horn-Formeln:

$$\varphi_1 = (\neg x_1 \lor \neg x_2 \lor x_3) \land (\neg x_3 \lor x_4 \lor \neg x_1) \land (x_1 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5) \land x_2,$$

$$\varphi_2 = (\neg x_3 \lor \neg x_1 \lor \neg x_2) \land x_1 \land (\neg x_1 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5 \lor x_3) \land (x_5 \lor \neg x_1 \lor \neg x_4) \land x_2.$$

Bestimmen Sie, ob die Formeln φ_1, φ_2 erfüllbar sind. Nutzen Sie dazu den Markierungsalgorithmus aus der Vorlesung. Geben Sie alle Zwischenschritte und (falls möglich) ein minimales Modell an.

Hausaufgabe 6
$$(6+6)$$

Gegeben sind folgende aussagenlogische Formeln:

$$\varphi_1 = (x_1 \lor x_2 \lor x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_3 \lor x_2) \land (x_1 \lor \neg x_2),$$

$$\varphi_2 = (x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_2 \lor x_3) \land (x_1 \lor x_4) \land (\neg x_2 \lor \neg x_4) \land (\neg x_1 \lor \neg x_3).$$

Beweisen Sie, dass die aussagenlogischen Formeln φ_1, φ_2 unerfüllbar sind. Geben Sie dazu jeweils einen Resolutionsbeweis in grafischer Form (wie auf Folie 99 im ersten Foliensatz) an, der die leere Klausel \square ableitet.

Hausaufgabe 7 (3+3+3)

Geben Sie an welche der folgenden Aussagen wahr oder falsch sind. Begründen Sie ihre Antworten in je einem Satz.

Für alle Belegungen V_1, V_2, V_3 (dargestellt als Mengen von Variablen) und Horn-Formeln φ_1, φ_2 gilt:

- (a) Falls V_1 minimales Modell von φ_1 und φ_2 ist, so ist V_1 minimales Modell von $\varphi_1 \wedge \varphi_2$.
- (b) Falls V_1 minimales Modell von φ_1 ist und $V_2 \subsetneq V_1$, so gilt $V_2 \models \neg \varphi_1$.
- (c) Falls $V_1 \models \varphi_1$, $V_3 \models \varphi_1$ und $V_1 \subseteq V_2 \subseteq V_3$, so gilt $V_2 \models \varphi_1$.

Benötigt ihr Hilfe? Kommt vorbei!

Offener Matheraum Informatik: Mo 11–13 und 15–17 Uhr P401

Di–Do 11–17 Uhr P412 Fr 11–15 Uhr P412