· 54 ·

[文章编号] 1005-6661(2012)01-0054-05

·论著·

HIV合并隐孢子虫感染及影响因素分析

田利光1,汪天平2,程国金3,汪峰峰2,童小妹1,郭俭1,蔡玉春1,陈家旭1,周晓农1*

[摘要] 目的 了解 HIV 合并隐孢子虫感染情况及其影响因素。**方法** 对安徽省阜阳市 309名 HIV 感染者粪便样本进行检测,以确定其隐孢子虫感染情况,并对研究对象进行问卷调查和血清学检测。采用单因素分析和多因素 Logistic 回归模型对合并感染的影响因素进行分析。**结果** 共粪检 302人,隐孢子虫感染率为 8.28%,男性(13.49%)显著高于女性(2.92%),差异有统计学意义(P < 0.05)。多因素分析表明,男性(OR = 6.700, 95% CI: 2.030,22.114),年龄 < 42岁(OR = 4.148, 95% CI: 1.348,12.761),体内 IL-2 水平 < 77 pg/ml (OR = 0.226, 95% CI: 0.076,0.674),个人卫生习惯与合并隐孢子虫感染有关(OR = 0.324, 95% CI: 0.105,0.994)。**结论** HIV 合并隐孢子虫感染率高,男性、年龄 < 42岁、体内 IL-2 水平较高以及个人卫生习惯较差的 HIV 感染者应作为隐孢子虫感染的重点防治对象。

[关键词] HIV; 隐孢子虫; 合并感染; 影响因素

[中图分类号] R373;R382.5 [文献标识码] A

Cross-section study on co-infection of HIV and Cryptosporidium

Tian Li-guang¹, Wang Tian-ping², Cheng Guo-jin³, Wang Feng-feng², Tong Xiao-mei¹, Guo Jian¹, Cai Yu-chun¹, Chen Jia-xu¹, Zhou Xiao-nong^{1*}

1 National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, China; 2 Anhui Institute of Parasitic Disease, China; 3 Fuyang Center for Disease Control and Prevention, Anhui Province, China

* Corresponding author

[Abstract] Objective To investigate the co-infection status of HIV and *Cryptosporidium*, and explore the influencing factors associated with the co-infection. **Methods** A total of 309 people with HIV positive in Fuyang City of Anhui Province were recruited and their fecal and blood samples were collected for examinations of *Cryptosporidium* spp. infection and the levels of hemoglobin, cytokines and CD4 $^+$ /CD8 $^+$ T-lymphocytes. Meanwhile, the questionnaire survey was conducted. **Results** Among 302 people involved in fecal examinations, the infection rate of *Cryptosporidium* spp. was 8.28%, and the difference between infection rates of the male (13.49%) and the female (2.92%) was statistically significant (P < 0.05). The multivariate logistic regression model showed that 4 factors were significantly associated with the coinfection of HIV and *Cryptosporidium* spp, including male (OR = 6.700, 95% CI: 2.030, 22.114), younger than 42 years old (OR = 4.148, 95% CI: 1.348, 12.761), level of IL-2 below 77 pg/ml (OR = 0.226, 95% CI: 0.076, 0.674) and personal hygiene habits (OR = 0.324, 95% CI: 0.105, 0.994). **Conclusion** The co-infection rate of *Cryptosporidium* spp. and HIV is high, the key targets of control are the people who are male, younger than 42 years old, with high level of IL2 and poor personal hygiene habits.

[Key words] HIV; Cryptosporidium; Co-infection; Influencing factor

隐孢子虫(*Cryptosporidium* Tyzzer) 为体积微小的 孢子虫类寄生虫,广泛寄生于人和动物体内。1976

[基金项目] 国家传染病重大专项(2008ZX10004-011)

[作者单位] 1 中国疾病预防控制中心寄生虫病预防控制所,世界卫生组织疟疾、血吸虫病和丝虫病合作中心,卫生部寄生虫病原与媒介生物学重点实验室(上海200025);2 安徽省血吸虫病防治研究所;3 安徽省阜阳市疾病预防控制中心

[作者简介] 田利光,男,博士。研究方向:HIV和寄生虫合并感染 *通信作者 E-mail: ipdzhouxn@sh163.net 年Nime等^[1]、Meisel等^[2]首次在美国报告了2例人体隐孢子虫病(Cryptosporidiosis)。人群对该病原体普遍易感,常产生无症状感染或自限性腹泻,婴幼儿、AIDS病人及免疫功能低下人群更易感染,是AIDS患者常见的机会性感染病原体之一^[3]。世界卫生组织于1986年将隐孢子虫病列为AIDS患者的常规检查项目。我国目前有关HIV阳性人群合并隐孢子虫感染的研究报道较少^[4]。为了解我国HIV合并隐孢子虫感染的研究报道较少^[4]。为了解我国HIV合并隐孢子虫感染情况,为预防和控制合并感染提供依据,我们于2008年6-7月在安徽省阜阳市开展了相关调查。

对象与方法

1 对象与方法

2008年6-7月,采用问卷调查对安徽省阜阳市开发区艾滋病治疗点登记在册的 HIV 阳性感染者进行调查。所有 HIV 阳性感染者均由当地省级以上卫生部门确诊,且愿意提供书面知情同意书。调查者均为当地卫生机构艾滋病防治工作人员并经专业技术培训。收集研究对象血液和粪便样本,其中血液样本主要用于 HIV、血红蛋白、细胞因子和 CD4+/CD8+T淋巴细胞检测,粪便样本用于隐孢子虫检测。

2 问卷调查内容

包括研究对象性别、年龄、职业、受教育情况、首次感染HIV时间、是否接受抗病毒治疗、家庭人口数、家庭经济收入、日常生活习惯、家庭居住条件和厕所类型、家庭饲养牲畜和宠物情况、近期有无腹泻、日常就医情况以及对常见寄生虫病预防知识知晓情况等。

3 实验室检测

- 3.1 隐孢子虫检测 采用改良抗酸染色法,具体步骤为:①以竹签挑取粪便少许,于载玻片上涂制成2分硬币大小的粪膜,自然干燥;②滴加甲醇固定,自然干燥;③置玻片于染色架上,滴加石炭酸复红染液盖满粪膜,染色8 min;④用水冲洗2 min。⑤用10%硫酸溶液褪色约4 min;⑥用水冲洗2 min;⑦用1:10孔雀绿工作液复染1 min;⑧用水冲洗2 min,自然干燥,置显微镜下观察。
- 3.2 CD4+/CD8+T淋巴细胞检测 采用EDTA 真空采血管进行静脉采血,采集当天送实验室检测,检测所用TruCount管、免洗四色抗体CD3/8/45/4及溶血素均购于BD Bioscience公司。测定方法为:取50 μl 全血,加入20 μl 免洗四色抗体充分混匀,室温避光孵育15 min,再加入450 μl BD 溶血素,室温避光孵育10 min。采用BD公司生产的FACSCalibur流式细胞仪进行检测。
- 3.3 细胞因子检测 采用美国 R&D 公司生产的细胞因子定量酶联检测试剂盒,均严格按照试剂盒说明书进行操作,检测内容包括 IL-2、IL-4、IL-10和 IFN-γ。3.4 血红蛋白检测 采用全自动生化分析仪进行检测,贫血诊断标准为: 男性血红蛋白 < 130 g/L, 女性血红蛋白 < 120 g/L^[5]。

4 统计分析

采用 EpiData 3.1 建立数据库,由两人双录入后核查。采用 Student's t 检验比较两样本均数,采用 χ^2 检验进行单因素分析,选择单因素分析中 P < 0.3 的变

量进行Logistic 回归分析,结局变量分别定义为1和0,分别表示隐孢子虫感染的发生与否。采用SAS 9.1软件包进行统计分析。

结 果

1 一般情况

共调查 HIV 阳性感染者 309 人, 302 人参与粪样 检测,其中男性 143 人(47.4%),女性 159 人(52.6%); 平均年龄 42.8 岁。共收到有效问卷 286 份,其中 284 名(99.3%)调查对象为汉族;农村户口 258 人 (90.2%),城镇户口 28 人(9.8%);已婚 237 人 (82.9%);小学以下文化程度 239 人(83.6%),初中文 化程度 45 人(15.7%),高中及以上文化程度 2 人 (0.7%);学生 2 人(0.7%),农民 283 人(98.9%),工人1 人(0.4%)。

2 粪样及血样实验室检测

302名 HIV 感染者中,合并隐孢子虫感染 21人,感染率为 8.28%。参与问卷调查者 263人,其中男性 126人,女性 137人,男性和女性隐孢子虫感染率分别为 13.49%(17/126)和 2.92%(4/137),差异有统计学意义(P < 0.05)。血红蛋白检测的 295人中,贫血 64人,贫血患病率为 21.69%,其中女性为 33.11%(50/151),男性为 9.72%(14/144),差异有统计学意义(P < 0.01)。302名 HIV 阳性感染者中,301人进行了 CD4⁺ T淋巴细胞检测,细胞计数 \leq 400 \uparrow / \downarrow / \downarrow 是感染率为 7.60%(13/171),细胞计数 \leq 400 \uparrow / \downarrow / \downarrow

3 合并隐孢子虫感染的情况及影响因素分析

在同时参与粪检、问卷调查和血检的 263 人中,共有 21 人感染隐孢子虫,感染率为 7.98%,其中男性 17 人,女性 4 人; < 42 岁者 15 人, \geq 42 岁者 6 人;初中以下文化程度 19 人,初中以上文化程度 2 人(表 1)。单因素分析显示,性别、年龄与隐孢子虫感染有关(P均 < 0.05)。选择性别、年龄、CD4⁺T淋巴细胞水平和饮用水卫生 4 个变量以及单因素分析中 P < 0.3的变量(体内 IL-2 水平、是否接受抗病毒治疗、家庭人口数、近 1 年家庭是否饲养家畜、近 1 个月有无腹泻和个人卫生习惯)进行多因素 Logistic 回归模型分析,最终进入模型的变量为:男性(OR = 6.700, 95% CI: 2.030, 22.114)、年龄 < 42 岁以下(OR = 4.148, 95% CI: 1.348, 12.761)、IL - 2 水平 < 77 pg/ml(OR = 0.226, 95% CI: 0.076,0.674) 和个人卫生习惯(OR = 0.324, 95% CI: 0.105,0.994)(表 1、2)。

表1 HIV合并隐孢子虫感染单因素分析结果

Table 1	Results of single factor analysis of co-infection of HIV and Crystosporidium
Table I	Results of single factor analysis of co-infection of the value Crystosportation

Table 1	Results of single factor	or analysis	of co-infection of H	IIV and Crystosporidium		
-		HIV 阳性	隐孢子虫感染率			
因素		人数	Infection rate of	OR(95%CI)	χ^2	P值
Factors		No. HIV-	Crystosporidium	011(93/061)	χ	P value
		posotives	(%)(n)			
性别 Gender	男 Male 女 Female	126 137	13.49(17) 2.92(4)	5.185 8 (1.695,15.866) 1.0	9.985 2	0.001 6
年龄 Age (Years)	< 42	121	12.40(15)	3.207 5 (1.204, 8.548)		
The Age (Teals)		142	4.23(6)	1.0	5.937 2	0.014 8
	初中以下	112	1.23(0)	1.0		
	Below					
	junior high					
教育程度	school	220	8.64(19)	1.937 8 (0.435, 8.643)		-(1)
Education level	初中及以上		4.57(2)	4.0	_	$0.543 \ 6^{\scriptscriptstyle (1)}$
	Above	43	4.65(2)	1.0		
	junior high					
	school					
体内IL-2水平	<77	153	5.23(8)	0.411 7 (0.165,1.030)		(1)
IL-2 level (pg/ml)	≥77	110	11.82(13)	1.0	_	$0.065\ 2^{\scriptscriptstyle (1)}$
体内IL-4水平	<23	153	9.15(14)	1.482 0 (0.578, 3.803)		
IL-4 level (pg/ml)	≥23	110	6.36(7)	1.02 0 (0.376, 3.663)	0.676 4	0.410 8
体内IL-10水平	<29	207	7.73(16)	0.854 5 (0.299,2.443)		
IL-10 level (pg/ml)	<29 ≥29	56	8.93(5)	1.0	_	$0.782~4^{\scriptscriptstyle (1)}$
a c ,			` '			
体内IFN-γ水平 IFN a level (ng/ml)	<14 ≥14	181 82	8.84(16)	1.493 3(0.528,4.225) 1.0	0.5776	0.447 3
IFN-γ level (pg/ml)			6.10(5)			
CD4 ⁺ T淋巴细胞(个/μl)	<400	152	6.58(10)	0.640 2 (0.262,1.565)	0.968 8	0.332 5
CD4 ⁺ T lymphocyte (No./µl)	≥400	111	9.91(11)	1.0		*****
CD8 ⁺ T淋巴细胞(个/μl)	<1 014	170	7.65(13)	0.879 8 (0.351,2.206)	0.074.6	0.704.7
CD4 ⁺ T lymphocyte (No./µl)	≥1 014	93	8.60(8)	1.0	0.074 6	0.784 7
抗病毒治疗	是 Yes	202	6.93(14)	0.574 5(0.221,1.495)		
HAART	否 No	61	11.48(7)	1.0	_	0.281 5 (1)
营养状况	好 Good	42	4.76(2)	0.531 6 (0.119, 2.373)		
Nutrition condition	差 Poor	221	8.60(19)	1.0	_	$0.544\ 2^{\scriptscriptstyle{(1)}}$
家庭人口数	<5	187	9.09(17)	1.800 0 (0.585, 5.536)		
水庭八口奴 No. family members	≥5 ≥5	76	5.26(4)	1.00 0 (0.383, 3.330)	1.077 6	0.299 2
			` '			
家庭人均住房面积	<20	72 191	9.72(7)	1.361 5 (0.526, 3.523)	0.407 3	0.523 3
Average housing area per capita(n	*		7.33(14)	1.0		
家庭年收入	<10 000	188	7.45(14)	0.781 6 (0.302,2.020)	0.2597	0.6103
Annual income of family(Yuan)	≥10 000	75	9.33(7)	1.0		
近1年家庭饲养家畜	是 Yes	64	3.13(2)	0.305 6 (0.069, 1.350)	2.718 9	0.099 2
Raising livestock in recent one year		199	9.55(19)	1.0		
个人卫生习惯	好 Good	195	6.67(13)	0.535 7 (0.212,1.355)	1.783 5	0.187 1
Personal hygiene habit	差 Poor	68	11.76(8)	1.0	11.000	
最近1个月有无腹泻症状	是 Yes	228	8.77(20)	3.269 2(0.4247, 5.1632)	_	$0.237~1^{\tiny{(1)}}$
Diarrhea symptom in the	否 No	35	2.87(1)	1.0		
recent one month						
饮用水是否卫生	是 Yes	208	7.69(16)	0.833 3 (0.291, 2.385)		
Whether or not	在 No	55	9.09(5)	1.0	_	0.780 0 (1)
drinking health water						
经常在田间劳动	是 Yes	120	6.67(8)	0.714 3 (0.286, 1.786)	0.521 9	0.470 0
Often working in field	否 No	143	9.09(13)	1.0	0.521 9	0.7700
寄生虫病防治知识知晓情况	好 Good	1	0	0.010 8 (0.888 0.052)		
Awareness of knowledge	好 Good 差 Poor	262	8.02(21)	0.919 8 (0.888, 0.953) 1.0	_	$1.000 \ 0^{\scriptscriptstyle (1)}$
on parasitic diseases prevention	左 1001	202	0.02(21)	1.0		
是否使用过驱虫药	是 Yes	136	8.82(12)	1.268 8 (0.516, 3.122)	0.269 7	0.603 6
Whether or not useing antiscolic	否 No	127	7.09(9)	1.0	0.209 /	0.003 0

⁽¹⁾ 采用 Fisher 精确概率法。(1) Tested by Fisher exact test.

	表 2 HIV 和隐孢子虫合并感染多因素 Logistic 分析结果
Table 2	Multivariate Logistic regression analysis on co-infection of HIV and Cryptosporidium spp.

因素 Factors	回归系数 Regression coefficient	标准误 Standard error	OR(95%CI)	χ^2	P值 Pvalue
男性(1=是,0=否) Male(1=Yes,0=Not)	1.902 2	0.609 2	6.700(2.030, 22.114)	9.749 6	0.001 8
<42岁(1=是,0=否) Below 42 years old (1=Yes,0=Not)	1.422 5	0.573 4	4.148(1.348, 12.761)	6.155 1	0.013 1
IL-2水平<77 pg/ml (1=是,0=否) Level of IL-2 below 77 pg/ml (1=Yes,0=Not)	-1.487 2	0.557 3	0.226(0.076, 0.674)	7.120 8	0.007 6
卫生习惯良好(1=是,0=否) Good hygiene habits (1=Yes,0=Not)	-1.127 5	0.572 4	0.324(0.105, 0.994)	3.880 3	0.048 9

讨 论

国外有关报道显示,AIDS患者中约有45%~50%混合感染隐孢子虫[11]。本调查显示,当地HIV阳性人群隐孢子虫感染率为8.28%,明显高于正常人隐孢子虫感染率^[6],提示HIV感染者对隐孢子虫的易感染性增加,与诸多研究结果一致^[7-10]。隐孢子虫引起的腹泻在美国AIDS患者中占15%左右,在非洲和海地AIDS患者中高达50%,且可从一些无症状的AIDS患者中分离到隐孢子虫^[12-15]。因此在HIV感染者寄生虫原虫监测中,应对隐孢子虫进行重点监测^[10,16]。

感染隐孢子虫后是否出现临床症状以及病情轻 重程度如何主要取决于宿主的免疫状态。正常宿主 感染隐饱子虫一般呈自限性,并产生稳固免疫力,主 要临床表现为水泻,部分患者伴恶心、呕吐、腹痛或不 适、发热。先天性或获得性免疫缺陷患者一旦感染隐 孢子虫则病情多较严重,且病程迁延,甚至致命。由 于隐孢子虫感染目前尚无特效治疗药物,因此预防感 染是其重点。HIV感染者由于免疫力低下,一旦感染 隐孢子虫,常引起进行性腹泻,且病程迁延,导致营养 不良甚至死亡。因此,如何预防HIV合并隐孢子虫感 染是目前疾病预防工作面临的难题。本研究显示,隐 孢子虫感染与性别、年龄、营养状况、近1年饲养家畜 和个人卫生习惯存在相关性,多因素分析结果提示, 在同等条件下男性、<42岁以及个人卫生习惯差更易 感染隐孢子虫,与Hunter等[17]报道结果一致,提示在 HIV 合并隐孢子虫感染控制工作中,应将以上人群作 为重点监测对象。

目前已知的隐孢子虫有20余种[18],各种虫体在形态、宿主来源与感染性等方面有所不同。有关研究

显示,感染人的隐孢子虫主要有小隐孢子虫(Cryptosporidium parvum)、人隐孢子虫(C. homini)、鼠隐孢子虫(C. muri)和火鸡隐孢子虫(C. meleagridis)等[19-23]。本次调查未对感染隐孢子虫的基因型进行检测。因此,今后应开展进一步研究,了解当地 HIV 合并感染隐孢子虫的基因型,为进一步开展监测、提高诊断和治疗效果提供依据。

本研究为横断面调查,对于隐孢子虫感染对HIV 易感性和AIDS病程进展的影响,以及感染HIV病毒 后机体对隐孢子虫易感性增高及导致临床症状加重 等,需进一步开展队列研究。另外,由于本研究对象 中HIV阳性感染者大多为既往发现病例,而非新发病 例,且很多感染者接受过国家提供的免费抗病毒治 疗,HIV感染者的行为以及生活习惯等已经发生改 变,可能致本研究结果存在一定偏倚。

[参考文献]

- [1] Nime FA, Burek JD, Page DL, et al. Acute enterocolitis in a human being infected with the protozoan *Cryptosporidium* [J]. Gastroenterology, 1976, 70(4): 592-598.
- [2] Meisel JL, Perera DR, Meligro C, et al. Overwhelming watery diarrhea associated with a *Cryptosporidium* in an immunosuppressed patient [J]. Gastroenterology, 1976, 70(6): 1156-1160.
- [3] 田利光, 周晓农. 艾滋病患者几种易被忽视的肠道寄生虫感染[J]. 中国寄生虫学与寄生虫病杂志, 2008, 26(5): 376-381.
- [4] Tian LG, Steinmann P, Chen JX, et al. HIV/AIDS, parasites and co-infections: publication patterns in China [J]. Parasit Vectors, 2009, 2: 31
- [5] Unicef UNU, WHO. Iron deficiency anaemia: assessment, prevention, and control. A guide for programme managers [M]. Geneva: WHO, 2001.
- [6] Tian LG, Wang TP, Chen JX, et al. Co-infection of HIV and parasites in China: results from an epidemiological survey in rural areas of Fuy-

(下转第61页)

- 2003, 63(3): 253-268.
- [6] Miman O, Mutlu EA, Ozcan O, et al. Is there any role of *Toxoplasma gondii* in the etiology of obsessive-compulsive disorder? [J]. Psychiatry Res, 2010, 177(1/2): 263-265.
- [7]周永华, 胡玉红, 顾向明, 等. 弓形虫感染对大鼠记忆力影响及其机制的实验研究[J]. 中国人兽共患病学报, 2009, 25(2): 152-155.
- [8] Henriquez SA, Brett R, Alexander J, et al. Neuropsychiatric disease and *Toxoplasma gondii* infection [J]. Neuroimmunomodulation, 2009, 16(2): 122-133.
- [9]周永华,朱虎平,范红结,等. 弓形虫感染对大鼠学习记忆与脑单胺类神经递质含量的影响[J]. 江苏农业学报, 2010, 26(2): 5-10.
- [10]李冬娜, 梁幼生, 周永华, 等. 刚地弓形虫速殖子与鼠星形胶质细胞体外共培养的实验观察[J]. 中国寄生虫学与寄生虫病杂志, 2010, 28(4): 318-320.
- [11] Li C, Ha T, Kelley J, et al. Modulating Toll-like receptor mediated signaling by (1→3) beta D glucan rapidly induces cardioprotection [J]. Cardiovasc Res, 2004, 61(3): 538-547.
- [12] Cao CX, Yang QW, LV FL, et al. Reduced cerebral ischemia reperfusion injury in Toll like receptor 4 deficient mice [J]. Biochem Biophys Res Commun, 2007, 353 (2): 509-514.
- [13]周永华, 胡玉红, 顾向明, 等. 弓形虫感染对大鼠脑组织神经丝mRNA表达和细胞免疫水平的影响[J].中国地方病学杂志, 2009, 28(6): 601-603.
- [14]周永华, 胡玉红, 顾向明, 等. 弓形虫感染对大鼠海马 BDNF 和 MN-DA 表达的影响[J]. 中国人兽共患病学报. 2009, 25(12):1166-1169.
- [15] 周永华, 范红结, 许永良, 等. 慢性弓形虫感染对大鼠海马神经元

- 细胞凋亡周期及 caspase-3 与细胞色素 c蛋白表达的影响[J]. 中国血吸虫病防治杂志, 2010, 22(3): 264-267.
- [16]周永华, 黄洪波, 陶永辉, 等. 弓形虫慢性感染对小鼠脑内葡萄糖 代谢影响的研究[J]. 中国血吸虫病防治杂志, 2011, 23(3): 307-310.
- [17] Tammy K. Toll like receptors in central nervous system glial inflammation and homeostasis [J]. J Neurosci Res, 2006, 83(5): 711-730.
- [18] Beg AA. Endogenous ligands of toll like receptors: implications for regulating inflammatory and responses [J]. Trends Immunol, 2002, 23(11): 509-512.
- [19] Laflamme N, Echchannaoui H, Landmann R, et al. Cooperation between toll-like receptor 2 and 4 in the brain of mice challenged with cell wall components derived from gram-negative and gram-positive bacteria [J]. Eur J Immunol, 2003, 33(8): 1127-1138.
- [20] van Noort JM. Toll-like receptors as targets for inflammation, development and repair in the central nervous system [J]. Curr Opin Investig Drugs, 2007, 8(1): 60-65.
- [21] Aosai F, Chen M, Kang HK, et al. *Toxoplasma gondii*-derived heat shock protein HSP70 functions as a B cell mitogen [J]. Cell Stress Chaperones, 2002, 7(4): 357-364.
- [22] Scanga CA, Aliberti J, Jankovic D, et al. Cutting edge: MyD88 is required for resistance to *Toxoplasma gondii* infection and regulates parasite induced IL-12 production by dendritic cells [J]. J Immunol, 2002, 168(12): 5997-6001.

[收稿日期] 2011-07-04 [编辑] 邓瑶

(上接第57页)

ang city, Anhui province, China [J]. Front Med China, 2010, 4(2): 192-198.

- [7] Tzipori S ,Widmer G. A hundred-year retrospective on cryptosporidiosis [J]. Trend Parasitol, 2008, 24(4): 184-189.
- [8] Arikan S, Ergüven S, Akyön Y, et al. Cryptosporidiosis in immunocompromised patients in a Turkish university hospital [J]. Acta Microbiol Immunol Hung, 1999, 46(1): 33-40.
- [9] Deodhar L, Maniar JK, Saple DG. Cyclospora infection in acquired immunodeficiency syndrome [J]. J Asso Physicians India, 2000, 48(4): 404-406
- [10] Pinlaor S, Mootsikapun P, Pinlaor P, et al. Detection of opportunistic and non-opportunistic intestinal parasites and liver flukes in HIVpositive and HIV-negative subjects [J]. Southeast Asian J Trop Med Public Health, 2005, 36(4): 841-845.
- [11] Tumwine JK, Kekitiinwa A, Bakeera-Kitaka S, et al. Cryptosporidiosis and microsporidiosis in Ugandan children with persistent diarrhea with and without concurrent infection with the human immunodeficiency virus [J]. Am J Trop Med Hyg, 2005, 73(5): 921-925.
- [12] Smith PD, Lane HC, Gill VJ, et al. Intestinal infections in patients with the acquired immunodeficiency syndrome (AIDS). Etiology and response to therapy [J]. Ann Intern Med, 1988, 108(3): 328-333.
- [13] Greenberg PD, Cello JP. Treatment of severe diarrhea caused by Cryptosporidium parvum with oral bovine immunoglobulin concentrate in patients with AIDS [J]. J Acquir Immune Defic Syndr Hum Retrovirol, 1996, 13(4): 348-354.
- [14] Janoff EN, Smith PD. Perspectives on gastrointestinal infections in

- AIDS [J]. Gastroenterol Clin North Am, 1988, 17(3): 451-463.
- [15] Widmer G, Tzipori S, Fichtenbaum CJ, et al. Genotypic and phenotypic characterization of *Cryptosporidium parvum* isolates from people with AIDS [J]. J Infect Dis, 1998, 178(3): 834-840.
- [16] Mohandas K, Sehgal R, Sud A, et al. Prevalence of intestinal parasitic pathogens in HIV-seropositive individuals in Northern India [J]. Jpn J Infect Dis, 2002, 55(3): 83-84.
- [17] Hunter PR, Hughes S, Woodhouse S, et al. Sporadic cryptosporidiosis case-control study with genotyping [J]. Emerg Infect Dis, 2004, 10(7):1241-1249.
- [18] Current WL, Bick PH. Immunobiology of *Cryptosporidium* spp. [J]. Pathol Immunopathol Res, 1989, 8(3/4): 141-160.
- [19] 薛燕萍. 新出现的寄生虫病——隐孢子虫病[J]. 临床和实验医学杂志, 2006, 9(9):1427-1429.
- [20] Cama V, Gilman RH, Vivar A, et al. Mixed *Cryptosporidium* infections and HIV [J]. Emerg Infect Dis, 2006, 12(6): 1025-1028.
- [21] Tanriverdi S, Arslan M, Akiyoshi DE, et al. Identification of genotypically mixed *Cryptosporidium parvum* populations in humans and calves [J]. Mol Biochem Parasitol, 2003, 130(1): 13-22.
- [22] Xiao L, Ryan UM. Cryptosporidiosis: an update in molecular epidemiology [J]. Curr Opin Infect Dis, 2004, 17(5): 483-490.
- [23] Llorente MT, Clavel A, Goñi MP, et al. Genetic characterization of *Cryptosporidium* species from humans in Spain [J]. Parasitol Int, 2007, 56(3): 201-205.

[收稿日期] 2011-06-14 [编辑] 邓瑶