1. Definition of stochastic processes: [Kolmogoro Extension Theorem]

Civen a random function $F: X \to Y$ For any finite sequence $x_{1:n} = (x_1, ..., x_n)$, $\forall n \in \mathbb{N}$ $y_1: n = (F(x_1), ..., F(x_n))$ ① Exchangea bility: for any permutation $\mathcal{T}(X_1:n)$ and $\mathcal{T}(y_1:n)$ (permutation invariance) $P_{X_1:n}(y_1:n) = P_{\mathcal{T}(X_1:n)}(\mathcal{T}(y_1:n)) \leftarrow Marginals$ remain as the same

② Consistency: for $1 \leq m \leq n$ $P_{X_1:m}(y_1:m) = \int P_{X_1:n}(y_1:n) dy_{m+1:n}$

An instantiation: $P_{Xi:n}(y_{i:n}) = \int P(f) P(y_{i:n}|f, x_{i:n}) df$ CD

More specifically: $P_{Xi:n}(y_{i:n}) = \int P(f) \frac{n}{i=1} N(y_i|f(x_i), z^2) df$

Caussian Process (GP); f ~ GPLU(X), K(X, X'))

2. Neural Processes:

Introduce an auxiliary variable \mathbb{Z} :

Rewrite $F(x) = g(x, \mathbb{Z})$, g is a NN, g is stochastic NN

We get a generative model: [latent \mathbb{Z}) $P(\mathbb{Z}, y_{1:n}|x_{i:n}) = P(\mathbb{Z}) \prod_{i=1}^{n} N(y_i / g(x_i, \mathbb{Z}), \mathbb{Z}^2) \qquad (2)$ yields $P(\mathbb{Z}|x_{1:n}, y_{1:n})$

3. Variational Auto-Encoder:

 $\log P(y_{1:n}|x_{1:n}) > E_{Q(z|x_{i:n},y_{i:n})} \left[\sum_{i=1}^{n} \log P(y_{i}|z,x_{i}) + \log \frac{P(z)}{Q(z|x_{i:n},y_{i:n})} \right]$

o po-ining alms -

log evidence

Encoder $9.(2|X_{1:n}, y_{1:n})$ $\begin{array}{c} X_{1:n} > M_2 \\ y_{1:n} > \delta_2^2 \end{array} \rightarrow 2$ Decoder $P(y_1 \mid 2, X_1)$

Spilt data set: Context set {X1:m, Y1:m} target set {Xmm:n, Ymm:n}

log PCymfin | XI:n, yI:m) >

 $E_{q(\mathbf{Z}/\mathbf{X}_{1:n}, \mathbf{y}_{1:n})} \left[\sum_{i=m+1}^{n} \log P(\mathbf{y}_{i}/\mathbf{z}, \mathbf{x}_{i}) + \log \frac{P(\mathbf{Z}/\mathbf{X}_{1:m}, \mathbf{y}_{1:m})}{\mathcal{U}^{\mathbf{Z}/\mathbf{X}_{1:n}, \mathbf{y}_{1:n})} \right]$

Encoder $9(2/X_1:n, y_1:n)$, using both Context and target sets Decoder $P(y_i/2, X_i)$, only decodes target set

Replace P(Z/XI:m, YI:m) With a data driven prior 9(Z/XI:m, YI:m)

At testing, all observations $\{X_1:n, y_1:n\}$ are utilized to construct $9(2|X_1:n, y_1:n)$

Make prediction at x^* by $P(y^*/x^*, y_{1:n}, \lambda_{1:n}) = \int g(z/x_{1:n}, y_{1:n}) \cdot N(y^*/g(x^*, z), z^2) dz$

Meta learning, learn task level information amplitude sinusoid Regression: $y = f(x) = \alpha \sin(x)$

a function class (f & M)

For example: 1. a NUE-2, 2]

2 - Sample (Xi, Yi)s from curve y=asin(x) 3. At each training iteration, spilit (Xi, Yi)s into context and target sets to do optimization

