Analyse

Olivier Roques

2016-2017

Table des matières

1	Conventions, notations, rappels	2
2	Topologie des espaces vectoriels normés	3
	2.1 Espaces métriques	3
	2.2 Topologie	3
	2.3 Espaces normés	3
	2.4 Densité et séparabilité	4
	2.5 Complétude	4
3	Espaces \mathcal{L}^p	4
	3.1 Définitions et résultats	5
	3.2 Inégalités	5
	3.3 Théorèmes de convergence	6
	3.4 Produit de convolution	7
4	Espaces de Hilbert	7
	4.1 Définitions et premiers résultats	7
	4.2 Projection et orthogonalité	7
	4.3 Bases hilbertiennes	8
	4.4 Séries de Fourier	8
5	Transformée de Fourier	9
6	Régularité et transformation de Fourier, classe de Schwartz	9
7	Règles de calcul dans les espaces $\mathcal{L}^p([0,1[)$ et l^p	10
8	Le noyau de Fejér	11

Dans ce document, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1 Conventions, notations, rappels

Définition 1.1. Soit $(x_i)_{i\in I}$ une famille d'éléments de \mathbb{R} indexée par un ensemble I quelconque. Si I est de cardinal fini, $\sum_{i\in I} x_i$ est bien définie. Si I est quelconque, on définit :

$$\sum_{i \in I} x_i = \sup \left\{ \sum_{i \in J} x_i \mid J \subset I \text{ de cardinal fini } \right\} \in \overline{\mathbb{R}}$$

On note les parties positives et négatives de $x \in \mathbb{R}$ respectivement x_+ et x_- , i.e. $x_+ = \max(x,0)$ et $x_- = \max(-x,0)$. Si $\sum_{i \in I} x_{i+} < +\infty$ et $\sum_{i \in I} x_{i-} < +\infty$, on dit que la famille $(x_i)_{i \in I}$ est absolument sommable et on définit $\sum_{i \in I} x_i = \sum_{i \in I} x_{i+} - \sum_{i \in I} x_{i-}$.

Définition 1.2. Soit (A_n) une famille de sous-ensembles d'un ensemble X. On note

$$\lim_{n \to +\infty} \inf A_n = \bigcup_{n \in \mathbb{N}} \bigcap_{p \ge n} A_p \quad \text{ et } \quad \lim_{n \to +\infty} \sup A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{p \ge n} A_p$$

Définition 1.3. Soit $f: \Omega \longrightarrow \mathbb{R}^q$ où Ω est un ouvert de \mathbb{R}^p . On dit que f est différentiable en $x \in \Omega$ s'il existe une fonction $D_x(f): \mathbb{R}^p \longrightarrow \mathbb{R}^q$ linéaire telle que, lorsque $y \longrightarrow x$,

$$f(y) = f(x) + D_x(f)(y - x) + o(||y - x||)$$

Si f est différentiable en tout x et que l'application $x \mapsto D_x(f)$ est continue sur Ω , on dit que f est continûment différentiable sur Ω .

Définition 1.4. Soit $\alpha = (\alpha_1, \dots, \alpha_p) \in \mathbb{N}^p$. On note, pour $x = (x_1, \dots, x_p) \in \mathbb{R}^p$, $x^{\alpha} = x_1^{\alpha_1} \dots x_p^{\alpha_p}$. On note ∂_i la dérivée partielle par rapport à la *i*-ème coordonnées et $\partial = (\partial_1, \dots, \partial_p)$. Enfin, on note

$$\partial^{\alpha} f(x_1, \dots, x_p) = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \dots \left(\frac{\partial}{\partial x_p}\right)^{\alpha_p} f(x_1, \dots, x_p)$$

.

Théorème 1.1. Soit $f: \Omega \longrightarrow \mathbb{R}^q$. Les propositions suivantes sont équivalentes :

- (i) f est continûment dérivable par rapport à chacune de ses variables, *i.e.* les dérivées partielles $\partial_i f$ existent et sont continues sur Ω .
- (ii) f est continûment différentiable sur Ω .

Théorème 1.2 (Théorème de Schwarz). Soit Ω un ouvert de \mathbb{R}^p et $f:\Omega \longrightarrow \mathbb{R}^q$ une application de classe \mathcal{C}^2 . Alors pour tout i, j distincts, $\frac{\partial^2 f}{\partial i \partial j} = \frac{\partial^2 f}{\partial j \partial i}$.

2 Topologie des espaces vectoriels normés

2.1 Espaces métriques

Définition 2.1. Soient X un ensemble et $d: X \times X \longrightarrow \mathbb{R}_+$. Alors d est une distance et (X, d) est un espace métrique si d vérifie les propriétés suivantes :

- (i) (Propriété de séparation) $\forall x, y \in X, d(x, y) = 0$ ssi x = y.
- (ii) (Propriété de symétrie) $\forall x, y \in X, d(x,y) = d(y,x)$.
- (iii) (Inégalité triangulaire) $\forall x, y, z \in X, d(x,y) \leq d(x,y) + d(y,z)$.

2.2 Topologie

Définition 2.2. Soit (X, d) un espace métrique. Alors $A \subset X$ est un *ouvert* ssi pour tout $x \in A$, il existe r > 0 tq $\mathcal{B}(x, r) \subset A$. On a les propriétés suivantes :

- L'union dénombrable d'ouverts est un ouvert.
- L'intersection finie d'ouverts est un ouvert.

Définition 2.3. Soit (X, d) un espace métrique. Alors $A \subset X$ est un fermé ssi A^c est un ouvert. On a les propriétés suivantes :

- L'union finie de fermés est un fermé;
- L'intersection dénombrable de fermés est un fermé;
- Il est équivalent de dire que pour toute suite $(x_n) \in F^{\mathbb{N}}$ convergeant vers x, on a $x \in F$.

Propriété 2.1. Soient X et Y des espaces métriques et $f: X \longrightarrow Y$. Il y a équivalence entre :

- f est continue;
- Pour tout ouvert $O \in Y$, $f^{-1}(O)$ est un ouvert de X;
- Pour tout fermé $F \in Y$, $f^{-1}(F)$ est un fermé de X.

Définition 2.4. On définit l'*intérieur* de $A \subset X$, notée $\overset{\circ}{A}$, comme étant le plus grand ouvert contenu dans A. De même, on définit la *fermeture* de $A \subset X$, notée \overline{A} , comme étant le plus petit fermé contenant A. On a donc :

$$\overset{\circ}{A} = \bigcup_{O \text{ ouvert et } O \subset A} O \quad \text{ et } \quad \overline{A} = \bigcap_{F \text{ ferm\'e et } A \subset F} F$$

2.3 Espaces normés

Définition 2.5. Soit E un espace vectoriel sur un \mathbb{K} . Une application $\|\cdot\|: x \in E \longrightarrow \|x\| \in \mathbb{R}_+$ est une norme sur E si:

- (i) Pour tout $x \in E$, $\lambda \in \mathbb{K}$, $\|\lambda x\| = |\lambda| \|x\|$;
- (ii) Pour tout $(x, y) \in E^2$, $||x + y|| \le ||x|| + ||y||$.
- (iii) ||x|| = 0 si et seulement si x = 0.

Alors on dit que $(E, \|\cdot\|)$ est un espace normé.

Définition 2.6. Deux normes $\|\cdot\|_1$ et $\|\cdot\|_2$ sur E sont dites équivalentes s'il existe $A, B \in K^*$ tels que pour tout $x \in E, |A| \|x\|_1 \le \|x\|_2 \le |B| \|x\|_1$.

Théorème 2.1. En dimension finie, toutes les normes sont équivalentes.

Théorème 2.2. $f \in \mathcal{L}(E, F)$ est continue si et seulement s'il existe une constante $C \in \mathbb{K}$ telle que pour tout $x \in E$, $||f(x)||_F \leq |C| ||x||_E$.

Définition 2.7. On définit la norme opérateur de $f \in \mathcal{L}(E, F)$ par :

$$||f||_{(E,F)} = \inf \{ C \mid ||f(x)||_F \le |C| \, ||x||_E \}$$

Pour $f \in \mathcal{L}(E, F)$, $g \in \mathcal{L}(F, G)$, on a alors $||g \circ f||_{(E,G)} \le ||f||_{(E,F)} \cdot ||g||_{(F,G)}$.

2.4 Densité et séparabilité

Définition 2.8. Soit E un evn et $A \in E$. On dit que A est dense dans E si pour tout $x \in E$ et $\varepsilon > 0$, il existe $y \in A$ tel que $||x - y|| \le \varepsilon$.

Définition 2.9. Soit E un evn. On dit que E est *séparable* lorsqu'il existe un ensemble dénombrables de boules (B_i) tel que tout ouvert de E s'écrit comme une union de boules prises dans cet ensemble.

2.5 Complétude

Définition 2.10. Une suite $(x_n) \in E^{\mathbb{N}}$ est dite de Cauchy si :

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall p, \ q \ge N, \ \|x_p - x_q\| \le \varepsilon$$

Définition 2.11. Un evn E est dit complet (ou $espace\ de\ Banach$) si toute suite de Cauchy converge vers un élément de E.

Théorème 2.3. Un evn E est complet si et seulement si :

$$\forall (x_n) \in E^{\mathbb{N}}, \ \sum_{k=0}^{+\infty} ||x_k|| < +\infty \implies \sum_{k=0}^{+\infty} x_k < +\infty$$

Théorème 2.4 (Complétude). Soit E un evn. Alors il existe un evn F tel que :

- F est complet;
- Il existe $I \in \mathcal{L}(E, F)$ telle que I soit isométrique et I(E) soit dense dans F.

3 Espaces \mathcal{L}^p

Voir aussi cours de probabilités, section Mesures et intégration.

3.1 Définitions et résultats

Définition 3.1. Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}$. On dit que f est une fonction borélienne si elle est mesurable de $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Définition 3.2. On dit qu'une fonction borélienne $f: \mathbb{R}^n \longrightarrow \mathbb{K}$ est intégrable si :

$$\int |f| = \int f^+ + \int f^- < +\infty$$

On note $\mathcal{L}^1(\mathbb{R}^n)$ l'espace vectoriel des fonctions intégrables définies sur \mathbb{R}^n .

Théorème 3.1. L'espace $C_c(\mathbb{R}^n)$ des fonctions continues à support compact est dense dans $\mathcal{L}^1(\mathbb{R}^n)$.

Définition 3.3. On définit $\mathcal{L}^p(\mathbb{R}^n)$ comme l'espace vectoriel des fonctions boréliennes $f: \mathbb{R}^n \longrightarrow \mathbb{K}$ vérifiant $|f|^p \in \mathcal{L}^1(\mathbb{R}^n)$. On appelle alors $\mathcal{L}^{\infty}(\mathbb{R}^n)$ l'espace des fonctions boréliennes f pour lesquelles il existe une fonction g bornée telle que $g \stackrel{\text{p.p.}}{=} f$.

Définition 3.4. Soit $p \in \mathbb{N}^*$. On appelle désormais $(\mathcal{L}^p(\mathbb{R}^n), \|\cdot\|_p)$ l'evn des classes d'équivalence des fonctions de \mathcal{L}^p pour la relation $f \sim g \iff f \stackrel{\text{p.p.}}{=} g$, où $\|f\|_p = \left(\int |f|^p\right)^{\frac{1}{p}}$. Dans cet espace, $\|\cdot\|_p$ est bien une norme.

Théorème 3.2. Soit $p \in \mathbb{N}^*$. Alors l'espace vectoriel normé $(\mathcal{L}^p, \|\cdot\|_p)$ est complet, c'est donc un espace de Banach.

Théorème 3.3 (Théorème de Fubini - Tonelli). Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ une fonction borélienne. On suppose que l'une des conditions suivantes est réalisée :

- (i) $f \ge 0$ (Critère de Fubini)
- (ii) $\int |f| < +\infty$ (Critère de Tonelli)

Alors on a:

$$\int_{\mathbb{R}^n} = \int_{\mathbb{R}^{n_1}} \left(\int_{\mathbb{R}^{n_2}} f(x, y) \, \mathrm{d}x \right) \mathrm{d}y = \int_{\mathbb{R}^{n_2}} \left(\int_{\mathbb{R}^{n_1}} f(x, y) \, \mathrm{d}y \right) \mathrm{d}x$$

Théorème 3.4 (Formule du changement de variable). Soient U et V deux ouverts de \mathbb{R}^d et $\phi: U \longrightarrow V$ un difféomorphisme. Alors si f est une fonction définie sur V à valeurs positives, $\int_U f \circ \phi = \int_V \frac{f}{|\det J_\phi \circ \phi^{-1}|} = \int_V f |\det J_{\phi^{-1}}|.$

3.2 Inégalités

Théorème 3.5 (Inégalité de Hölder). Soient p, q tels que $\frac{1}{p} + \frac{1}{q} = 1$. Si $f \in \mathcal{L}^p(\mathbb{R}^n)$ et $g \in \mathcal{L}^q(\mathbb{R}^n)$, alors $fg \in \mathcal{L}^1(\mathbb{R}^n)$ et $\|fg\|_1 \le \|f\|_p \cdot \|g\|_q$.

Théorème 3.6 (Inégalité de Minkowski). Soit $p \in \mathbb{N}^*$. Si $f, g \in \mathcal{L}^p(\mathbb{R}^n)$, alors $f + g \in \mathcal{L}^p(\mathbb{R}^n)$ et $||f + g||_p \le ||f||_p + ||g||_p$.

Théorème 3.7 (Inégalité de Jensen). Soient $a, b \in \mathbb{R}$ tels que $a < b, \varphi :]a, b[\longrightarrow \mathbb{R}$ convexe, $\lambda : \mathbb{R}^n \longrightarrow \mathbb{R}_+$ borélienne telle que $\int_{\mathbb{R}^n} \lambda = 1$ et enfin $g : \mathbb{R}^n \longrightarrow]a, b[$ borélienne telle que $g \cdot \lambda$ soit intégrable. Alors on a :

$$\varphi\left(\int g\lambda\right) \le \int (\varphi \circ g)\lambda$$

3.3 Théorèmes de convergence

Théorème 3.8 (Convergence monotone). Soit (f_n) une suite croissante de fonctions boréliennes positives de $\mathbb{R}^n \longrightarrow \mathbb{R}$ telle que $f_n \xrightarrow{\text{p.p.}} f$. Alors f est borélienne et $f_n \xrightarrow{\mathcal{L}^p} f$.

Théorème 3.9 (Convergence dominée). Soit (f_n) une suite de fonctions boréliennes de $\mathbb{R}^n \longrightarrow \mathbb{R}$ telle que :

- (i) $f_n \xrightarrow{\text{p.p.}} f$;
- (ii) il existe une fonction borélienne intégrable g telle que $\forall n, |f_n| \leq g$ p.p.

Alors f est borélienne intégrable et $\lim_{n\to+\infty}\int |f_n-f|=0$ (ce qui implique $\lim_{n\to+\infty}\int f_n=\int f$).

Théorème 3.10 (Lemme de Fatou). Soit (f_n) une suite de fonctions boréliennes de $\mathbb{R}^n \longrightarrow \mathbb{R}$ et positives presque partout. Alors $\liminf_n f_n$ est borélienne et on a :

$$\int \liminf_{n} f_n \le \lim \inf_{n} \int f_n$$

Théorème 3.11 (Théorème de dérivation sous le signe intégral). Soit X, T des intervalles de \mathbb{R} et $h:(x,t)\in X\times T\longmapsto \mathbb{K}$ telle que :

- (i) Pour tout $x \in X$, $t \mapsto h(x,t)$ est intégrable.
- (ii) Pour presque tout $t \in T$, $x \mapsto h(x,t)$ est dérivable sur X, de dérive $\partial_x h$.
- (iii) Il existe une fonction intégrable $\varphi : \mathbb{R} \longrightarrow \mathbb{R}^+$, telle que pour presque tout $x \in X$, $|\partial_x h(x)| \le \varphi(x)$.

Alors $x \longmapsto \int_T h(x,t) \, \mathrm{d}t$ est dérivable sur X, de dérivée $x \longmapsto \int_T \partial_x h(x,t) \, \mathrm{d}t$.

Théorème 3.12 (Permutation série-intégrale). Soit (f_n) une suite de fonctions boréliennes de $\mathbb{R}^n \longrightarrow \mathbb{R}$ telle que $\forall n, f_n$ soit positive ou que $\int \sum_{n \in \mathbb{N}} |f_n| < +\infty$. Alors on a l'égalité :

$$\int \sum_{n \in \mathbb{N}} f_n = \sum_{n \in \mathbb{N}} \int f_n$$

Théorème 3.13 (Absolue convergence). Soit $(f_n) \in \mathcal{L}^p(\mathbb{R}^n)^{\mathbb{N}}$. On suppose que $\sum_{n \in \mathbb{N}} \|f_n\|_p < +\infty$. On a alors :

- (i) $\sum_{n=0}^{+\infty} |f_n(x)| < +\infty$ presque partout. On pose alors $f(x) \stackrel{\text{p.p.}}{=} \sum_{n=0}^{+\infty} f_n(x)$;
- (ii) $f \in \mathcal{L}^p(\mathbb{R}^n)$;

(iii) On a $\sum_{k=0}^{n} f_k \xrightarrow[n \to +\infty]{} f$. De plus, pour tout $n \in \mathbb{N}$, il existe $h \in \mathcal{L}^p(\mathbb{R}^n)$ telle que $|\sum_{k=0}^{n} f_k| \leq h$ p.p.

3.4 Produit de convolution

Définition 3.5. Pour f, g boréliennes, on appelle produit de convolution de f et g, qu'on note f * g, la fonction définit par :

$$(f * g)(x) = \int f(x - t)g(t) dt$$

Ce produit est associatif et commutatif, et on a de plus $(f*g) \in \mathcal{L}^1(\mathbb{R}^n)$, $||f*g||_1 \leq ||f||_1 \cdot ||g||_1$ et $\int f*g = \int f \times \int g$.

Théorème 3.14. Soient p, q tels que $\frac{1}{p} + \frac{1}{q} = 1$. Alors on a :

- (i) Si $f \in \mathcal{L}^p(\mathbb{R}^n)$ et $g \in \mathcal{L}^q(\mathbb{R}^n)$, (f * g) est une fonction continue bornée par $||f||_p \cdot ||g||_q$.
- (ii) $(f,g) \in \mathcal{L}^p(\mathbb{R}^n) \times \mathcal{L}^q(\mathbb{R}^n) \longmapsto f * g \in \mathcal{L}^\infty(\mathbb{R}^n)$ est bilinéaire continue.

Théorème 3.15. Soit $f \in \mathcal{L}^1$ et $g \in \mathcal{L}^p$ avec $p \in \mathbb{N}^*$. Alors f * g est défini et fini presque partout. De plus, $(f,g) \in \mathcal{L}^1 \times \mathcal{L}^p \longmapsto f * g \in \mathcal{L}^p$ est bilinéaire continue et $\|f * g\|_p \le \|f\|_1 \cdot \|g\|_p$.

4 Espaces de Hilbert

Ici, H désigne un espace de Hilbert.

4.1 Définitions et premiers résultats

Définition 4.1. Soit E un \mathbb{K} -ev.L'application $\langle \cdot, \cdot \rangle : E \times E \longrightarrow \mathbb{K}$ est appelé produit scalaire (si $\mathbb{K} = \mathbb{R}$) ou produit hermitien (si $\mathbb{K} = \mathbb{C}$) si :

- (i) $\langle \cdot, \cdot \rangle$ est linéaire par rapport à son premier argument
- (ii) $\forall x, y \in E, \langle x, y \rangle = \overline{\langle y, x \rangle}$
- (iii) $\langle x, x \rangle \geq 0$, avec égalité si et seulement si x = 0.

Propriété 4.1 (Inégalité de Cauchy-Schwarz). Pour tout $x, y \in E, |\langle x, y \rangle| \leq ||x|| \cdot ||y||$ avec égalité si et seulement si x et y sont colinéaires.

Définition 4.2. Un espace pré-hilbertien est un espace de Hilbert s'il est complet pour la norme $x \longmapsto \sqrt{\langle x, x \rangle}$.

4.2 Projection et orthogonalité

Théorème 4.1 (Théorème de projection). Soit C un convexe fermé non vide de H. Pour $f \in H$, on note $d(f,C) = \inf_{c \in C} d(f,c)$. Alors pour tout $f \in H$, il existe un unique point $g \in C$, appelé projection de f sur C tel que : $\forall h \in H$, $d(f,C) \leq d(h,C)$. On a alors que :

$$\forall h \in H, \ \Re(\langle f - g, f - h \rangle) \leq 0$$

.

Théorème 4.2. Si F est un sous-espace vectoriel fermé de H, alors tout élément f de H se décompose de manière unique sous la forme f = g + h avec $g \in F$, $h \in F^{\perp}$. On a donc $H = F + F^{\perp}$ et $(F^{\perp})^{\perp} = F$.

Théorème 4.3 (Théorème de Riesz). Pour tout $f \in H$, l'application $h \in H \longmapsto \langle h, f \rangle$ est une forme linéaire continue. Réciproquement, si φ est une application linéaire continue sur H, il existe un unique élément $f \in H$ tel que $\forall h \in H$, $\varphi(h) = \langle h, f \rangle$.

Définition 4.3. Soient f une fonction sur \mathbb{R}^n et $x \in \mathbb{R}^n$. On note $T_x(f): y \in \mathbb{R}^n \longmapsto f(y-x)$ la translatée de f par x. On dit qu'un opérateur T est invariant par translation lorsque $T(T_x(f)) = T_x(T(f))$.

Théorème 4.4 (Universalité de la convolution). Soit $T: \mathcal{L}^2(\mathbb{R}^n) \longrightarrow \mathcal{C}_b(\mathbb{R}^n)$ un opérateur linéaire, invariant par translation et continu. Alors il existe $g \in \mathcal{L}^2(\mathbb{R}^n)$ telle que T(f) = g * f.

4.3 Bases hilbertiennes

Définition 4.4. On dit qu'un sous-ensemble $A \subset H$ est total si Vect(A) est dense dans H. A est total dans H si et seulement $A^{\perp} = \{0\}$. On appelle alors base hilbertienne de H un système orthonormé fini ou infini (e_n) qui est total.

Théorème 4.5. Tout espace de Hilbert séparable admet une base hilbertienne.

Théorème 4.6 (Égalité de Parseval). Soit H un espace de Hilbert séparable et (e_n) une base hilbertienne. Alors tout élément f de H peut s'écrire comme la somme d'une série convergente :

$$f = \sum_{n} \langle f, e_n \rangle e_n = \sum_{n} c_n(f) e_n$$
 avec $c_n(f) = \langle f, e_n \rangle$

Les coordonnées $c_n(f)$ vérifient l'égalité de Parseval : $||f||^2 = \sum_n |c_n(f)|^2$.

4.4 Séries de Fourier

On considère dans ce paragraphe l'espace hilbertien $\mathcal{L}^2(0,1)$ des fonctions définies sur \mathbb{R} à valeurs dans \mathbb{K} et 1-périodique. On munit cet espace du produit scalaire $\langle f,g\rangle=\int_0^1 f\overline{g}$.

Théorème 4.7. La famille $(e_k)_{k\in\mathbb{Z}}$ avec $e_k(x)=\mathrm{e}^{2i\pi kx}$ est une base hilbertienne de $\mathcal{L}^2(0,1)$. Les $c_k(f)=\langle f,e_k\rangle$ sont alors appelés *coefficients de Fourier* de f.

Définition 4.5. On définit, pour tout $f, g \in \mathcal{L}^2(0,1), (f *_c g)(x) = \int_0^1 f(x)g(x-t) dt$ qui est aussi 1-périodique.

Propriété 4.2. Pour tout $f, g \in \mathcal{L}^2(0,1)$:

(i)
$$c_n(f *_c g) = c_n(f)c_n(g)$$

(ii)
$$c_n(f.g) = \sum_k c_k(f)c_{n-k}(g)$$

5 Transformée de Fourier

On peut étendre les résultats de cette section à \mathcal{L}^2 .

Définition 5.1. Soit $f \in \mathcal{L}^1$. On appelle transformée de Fourier de f, que l'on note \widehat{f} ou $\mathcal{F}(f)$, la fonction définie par :

$$\forall x \in \mathbb{R}, \ \widehat{f}(x) = \int f(t) e^{-2i\pi xt} dt$$

Propriété 5.1. Soient $f, g \in \mathcal{L}^1$ et $\alpha, \lambda \in \mathbb{R}$.

- (i) \widehat{f} est bornée par $||f||_1$ et donc \widehat{f} est linéaire continue de \mathcal{L}^1 dans \mathcal{L}^{∞}
- (ii) \hat{f} est injective
- (iii) \hat{f} tend vers 0 lorsque |x| tend vers $+\infty$
- (iv) $\widehat{(f*g)} = \widehat{f} \cdot \widehat{g}$
- (v) $\int \widehat{f}g = \int f\widehat{g}$
- (vi) Si $g(x) = f(x \alpha)$, alors $\widehat{g}(x) = \widehat{f}(x) e^{-2i\pi\alpha x}$
- (vii) Si $g(x) = \overline{f(-x)}$, alors $\widehat{g}(x) = \overline{\widehat{f}(x)}$
- (viii) Si $g(x) = f(\frac{x}{\lambda})$ avec $\lambda > 0$, alors $\widehat{g}(x) = \lambda \widehat{f}(x)$
- (ix) Si $f \in \mathcal{L}_1 \cap \mathcal{L}_2$, alors $\widehat{f} \in \mathcal{L}_2$ et $\|\widehat{f}\|_2 = \|f\|_2$.
- (x) \mathcal{F} est bijective de \mathcal{L}_2 dans lui-même.

Définition 5.2. Si $f \in \mathcal{L}^1$. On appelle transformée de Fourier inverse, que l'on note $\overline{\mathcal{F}}(f)$, la fonction (continue) définie par :

$$\forall x \in \mathbb{R}, \ \overline{\mathcal{F}}(f)(x) = \int f(t) e^{2i\pi xt} dt$$

Théorème 5.1 (Théorème d'inversion). Si $f \in \mathcal{L}^1$ et $\widehat{f} \in \mathcal{L}^1$, alors pour presque tout $x \in \mathbb{R}$, $\overline{\mathcal{F}}(\widehat{f}) = f(x)$. L'égalité ayant lieu presque partout, on peut écrire $\overline{\mathcal{F}}(\widehat{f}) = f$

6 Régularité et transformation de Fourier, classe de Schwartz

Définition 6.1. On définit l'ensemble \mathcal{C}_c^{∞} comme l'ensemble des fonctions infiniment dérivables à support compact. C'est un espace vectoriel.

Théorème 6.1. Soit $p \in \mathbb{N}^*$. On a les résultats suivants :

- (i) Si $g \in \mathcal{C}_c^0$ et $h \in \mathcal{C}_c^\infty$, alors $g * h \in \mathcal{C}_c^\infty$ et $(g * h)^{(n)} = g * h^{(n)}$.
- (ii) Les fonctions C_c^{∞} sont denses dans \mathcal{L}^p .

Théorème 6.2. On a les résultats suivants :

- (i) Si $f \in \mathcal{C}^1 \cap \mathcal{L}^1$ et $f' \in \mathcal{L}^1$, alors $\mathcal{F}(f')(x) = 2i\pi x \widehat{f}(x)$
- (ii) Si $f \in \mathcal{L}^1$ et $x \longmapsto x f(x) \in \mathcal{L}^1$, alors $\widehat{f} \in \mathcal{C}^1$ et $\mathcal{F}(f)' = \mathcal{F}(x \longmapsto -2i\pi x f(x))$

- (iii) Si $f \in \mathcal{C}^n \cap \mathcal{L}^1$ et que $f^{(k)} \in \mathcal{L}^1$ pour tout $k \in [0, n]$, alors $\mathcal{F}(f^{(n)})(x) = (2i\pi x)^n \widehat{f}(x)$
- (iv) Si $f \in \mathcal{L}^1$ et $x \longmapsto x^k f(x) \in \mathcal{L}^1$ pour tout $k \in [0, n]$, alors $\widehat{f} \in \mathcal{C}^n$ et

$$\mathcal{F}(f)^{(n)} = \mathcal{F}(x \longmapsto (-2i\pi x)^n f(x))$$

Définition 6.2. On dit qu'une fonction f est dans la classe de Schwartz, notée S, si :

- (i) $f \in \mathcal{C}^{\infty}$
- (ii) $\forall n, k \in \mathbb{N}, x^k f^{(n)}(x) \underset{|x| \to +\infty}{\longrightarrow} 0.$

Propriété 6.1. Soient $f, g \in \mathcal{S}$ et P un polynôme à une variable. On a alors :

- (i) $f^{(n)} \in \mathcal{S}$
- (ii) $f \cdot g \in \mathcal{S}$
- (iii) $P \cdot f \in \mathcal{S}$
- (iv) $\forall p \in \mathbb{N}^*, f \in \mathcal{L}^p$
- (v) $C_c^{\infty} \subset S$

Théorème 6.3. La tranformée de Fourier est une bijection de \mathcal{S} dans lui-même, d'inverse $\overline{\mathcal{F}}$.

7 Règles de calcul dans les espaces $\mathcal{L}^p([0,1])$ et l^p

Définition 7.1. l^p pour $p \in \mathbb{N}^*$ est l'espace des suites $(u_k)_{k \in \mathbb{Z}}$ qui vérifient : $\sum_{k \in \mathbb{Z}} |u_k|^p < +\infty$. On munit cette espace de la norme :

$$\|u\|_p = \left(\sum_{k\in\mathbb{Z}} |u_k|^p\right)^{\frac{1}{p}}$$
 ou si $p = +\infty, \ \|u\|_\infty = \lim_{k\in\mathbb{Z}} |u_k|$

Propriété 7.1. Soient $p, q \in \mathbb{N}^*$. On a les résultats suivants :

- (i) Si p < q, alors $\mathcal{L}^q([0,1] \subset \mathcal{L}^p([0,1])$.
- (ii) Si p < q, alors $l^p \subset l^q$.
- (iii) Les fonctions continues sont denses dans $\mathcal{L}^p([0,1])$ pour p fini.
- (iv) Les suites à support fini sont denses dans l^p pour p fini.

Définition 7.2. Si u et v sont deux suites, on appelle *produit de convolution* et on note (u*v) la suite définie par $(u*v)_n = \sum_k u_k v_{n-k}$.

Si f et g sont deux fonctions définies sur [0,1[, on définit leur produit de convolution par :

$$(f * g)(x) = \int_0^x f(t)g(x-t) dt \cdot \int_x^1 f(t)g(1+x-t) dt$$

Propriété 7.2. Soient p, q tels que $\frac{1}{p} + \frac{1}{q} = 1$.

- (i) Si $f \in \mathcal{L}^p([0,1])$ et $g \in \mathcal{L}^q([0,1])$, alors f * g est continue sur [0,1[et est bornée.
- (ii) Si $u \in l^p$ et $v \in l^q$, alors u * v est une suite bornée.
- (iii) Si $f \in \mathcal{L}^p([0,1])$ et $g \in \mathcal{L}^1([0,1])$, alors $f * g \in \mathcal{L}^p([0,1])$.
- (iv) Si $u \in l^p$ et $v \in l^1$, alors $u * v \in l^p$.

Le noyau de Fejér 8

Définition 8.1. On appelle noyau de Fejér numéro $n \in \mathbb{N}^*$ et on note g_n la fonction définie sur [0,1] par:

$$g_n(t) = \frac{1}{n} \sum_{k=0}^{n-1} \sum_{l=-k}^{k} e^{2i\pi lt} = \sum_{m=-n+1}^{n-1} \frac{n-|m|}{n} e^{2i\pi mt}$$

On note G_n la fonction définie sur $\mathbb Z$ par :

$$G_n = \begin{cases} 0 & \text{si } |m| \ge n \\ \frac{n-|m|}{n} & \text{si } |m| \le n-1 \end{cases}$$

Propriété 8.1. Le noyau de Fejér a les propriétés suivantes :

(i)
$$\forall n \in \mathbb{N}^*, \forall t \in]0, 1[, g_n(t) = \frac{1}{n} \left(\frac{\sin(n\pi t)}{\sin(\pi t)}\right)^2 \leq 0$$

(ii) $\forall n, p \in \mathbb{N}^*, g_n \in \mathcal{L}^p \text{ et } G_n \in l^p$

(ii)
$$\forall n, p \in \mathbb{N}^*, g_n \in \mathcal{L}^p \text{ et } G_n \in l^p$$

(iii)
$$\forall n \in \mathbb{N}^*, \int_0^1 g_n(t) dt = 1$$

(iv)
$$\forall \nu, \varepsilon \in \mathbb{R}^*, \exists N \in \mathbb{N}, \forall n \leq N, \int_{\nu}^{1-\nu} g_n(t) dt < \varepsilon$$

(v) Si
$$f \in \mathcal{L}^p$$
, $p \in \mathbb{N}^*$, alors $g_n * f$ tend vers f dans \mathcal{L}^p

(vi) Si
$$f \in \mathcal{L}^1$$
, alors $\forall x \in [0, 1[, (f * g_n)(x) = \sum_{k \in \mathbb{Z}} \widehat{f}(k)G_n(k) e^{2i\pi xk}$

(vii) Si f est une fonction bornée et qu'elle est continue en un point x, alors $(f * g_n)(x)$ tend vers f(x) quand n tend vers $+\infty$.