Lösungsskizze Serie 13

1. a) Gepaarte Stichprobe: Zu jeder Blutplättchenmenge vor dem Rauchen gehört die Blutplättchenmenge der selben Person nach dem Rauchen.

Einseitiger Test: Wir wollen nicht wissen, ob sich die Bluplättchenmenge verändert hat, sondern ob sie sich erhöht hat.

 H_0 : Rauchen hat keinen Einfluss auf die Anhäufung der Blutplättchen. ($\mu_R = \mu_{NR}$)

 H_A : Durch Rauchen erhöht sich die Anhäufung der Blutplättchen. ($\mu_R > \mu_{NR}$)

b) Gepaarte Stichprobe: Zu jeder Höhe eines selbstbefruchteten Setzlings gehört die Höhe des fremdbefruchteten "Partners".

Einseitiger Test: Wir wollen nicht wissen, ob sich die Höhen unterscheiden, sondern ob die fremdbefruchteten Setzlinge grösser werden als die selbstbefruchteten.

 H_0 : Die Höhen unterscheiden sich nicht. ($\mu_f = \mu_s$)

 H_A : Fremdbefruchtete Setzlinge werden grösser als selbstbefruchtete. $(\mu_f > \mu_s)$

c) Ungepaarte Stichprobe: Ungleiche Anzahl in den Gruppen. Zu einem Blutdruck aus der Versuchsgruppe gehört nicht ein spezifischer aus der Kontrollgruppe.

Zweiseitiger Test: Wir wollen nur wissen, ob das Kalzium einen Einfluss hat auf den Blutdruck, egal ob nach oben oder unten.

 H_0 : Kalzium hat keinen Einfluss auf den Blutdruck. ($\mu_{Kalz} = \mu_{Kontr}$)

 H_A : Kalzium hat einen Einfluss auf den Blutdruck. ($\mu_{Kalz} \neq \mu_{Kontr}$)

d) Ungepaarte Stichprobe: Die Anzahlen in den beiden Gruppen brauchen nicht gleich zu sein. Zur Eisenmessung einer "Fe²⁺-Maus" gehört nicht eine bestimmte Messung einer "Fe³⁺-Maus".

Zweiseitiger Test: Wir wollen nur wissen, ob die Mäuse die verschiedenen Eisenformen unterschiedlich gut aufnehmen.

 H_0 : Die Eisenaufnahme ist von der Form unabhängig. ($\mu_2 = \mu_3$)

 H_A : Die Eisenaufnahme ist von der Form abhängig. ($\mu_2 \neq \mu_3$)

2. a) Gepaart, denn man soll Paare von Typ (A_i, N_i) , $i = 1, \ldots, n = 10$ betrachten.

b) Der t-Test wird folgendermassen formal durchgeführt:

Modellannahmen : D_i : i-te Differenz, i = 1, ..., 10.

$$D_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$$
 mit σ unbekannt.

Nullhypothese H_0 : $\mu = \mu_0 = 0$

Alternative H_A : $\mu < 0$ (einseitig)

Teststatistik : $T = \frac{\overline{D} - \mu_0}{S_D / \sqrt{n}}$

Verwerfungsbereich : V.B. = $\{T < t_{n-1,\alpha} = t_{9,0.05} = -1.833\}$.

Beobachtung : $T(w) = \sqrt{10} \cdot (-4)/19.80 = -0.6388.$

Testentscheid : $T(w) = -0.6388 \notin V.B.$: die Nullhypothese wird beibehalten.

3. a) Seien X_1, \ldots, X_n iid $\sim \mathcal{N}(\mu, \sigma^2)$. Null- und Alternativhypothese lauten:

 $H_0: \mu = 146,$

 $H_A: \mu \neq 146.$

Die Teststatistik

$$T = \frac{\overline{X}_n - 146}{S_X / \sqrt{n}}$$

ist unter H_0 t-verteilt mit n-1 Freiheitsgraden. Auf dem Signifikanzniveau $\alpha=5\%$ wird die Nullhypothese verworfen, falls $|T|>t_{n-1,1-\alpha/2}$, wobei $t_{n-1,1-\alpha/2}$ das $1-\alpha/2$ -Quantil der t-Verteilung mit (n-1) Freiheitsgraden ist. Für die obigen Daten haben wir

$$|T(w)| = \left| \frac{143.33 - 146}{\sqrt{24.25}/3} \right| = 1.63 < t_{8,0.975} = 2.306.$$

Die Nullhypothese kann somit nicht verworfen werden.

b) Das Vertrauensintervall zum Niveau $1-\alpha$ besteht aus allen Parameterwerten μ , bei denen der Test zum Niveau α nicht verwirft. Gesucht sind also alle Werte von μ so dass:

$$-t_{n-1,1-\alpha/2} \le \frac{\overline{X}_n - \mu}{S_X/\sqrt{n}} \le t_{n-1,1-\alpha/2}.$$

Also

$$C(X_1,\ldots,X_n) = \left[\overline{X}_n - t_{n-1,1-\alpha/2} \frac{S_X}{\sqrt{n}}, \overline{X}_n + t_{n-1,1-\alpha/2} \frac{S_X}{\sqrt{n}} \right],$$

und aus den Daten erhalten wir $C(x_1, ..., x_n) = [139.54, 147.12].$

c) Ungepaarte Stichproben. Zur Messung eines neuen Zugs gehört nicht die Messung eines bestimmten alten Zugs.

d) Da die Stichproben ungepaart sind, muss man einen 2-Stichproben-t-Test durchführen. Die zwei Stichproben seien durch $X_1, \ldots, X_n \sim \mathcal{N}(\mu_X, \sigma^2)$ und $Y_1, \ldots, Y_n \sim \mathcal{N}(\mu_Y, \sigma^2)$ gegeben. Null- und Alternativhypothese lauten:

$$H_0: \quad \mu_X = \mu_Y,$$

 $H_A: \quad \mu_X \neq \mu_Y.$

Die Teststatistik

$$T = \frac{\overline{X}_n - \overline{Y}_n}{S_{pool}\sqrt{\frac{2}{n}}},$$

mit $S^2_{Pool}=\frac{1}{2n-2}\left((n-1)S^2_X+(n-1)S^2_Y\right)=\frac{1}{2}(S^2_X+S^2_Y)$, ist unter H_0 t-verteilt mit 2n-2 Freiheitsgraden. Auf dem Signifikanzniveau $\alpha=5\%$ wird die Nullhypothese verworfen, falls $|T|>t_{2n-2,1-\alpha/2}$, wobei $t_{2n-2,1-\alpha/2}$ das $1-\alpha/2$ -Quantil der t-Verteilung mit 2n-2 Freiheitsgraden ist. In diesem Fall haben wir

$$|T(w)| = 0.57 < t_{16,0.975} = 2.12.$$

Die Nullhypothese kann somit nicht verworfen werden.

4. Modell: X_i = Gewicht von Brot i, i = 1, ..., 7 = n, unabhängig und normalverteilt $\mathcal{N}(\mu, \sigma^2)$.

$$\Longrightarrow \sqrt{n} \frac{\overline{X}_n - \mu}{\sigma} \sim \mathcal{N}(0, 1),$$

mit $\overline{x}_n = 989$.

a) $\sigma = 15$.

Für ein 90 %-Vertrauensintervall für μ muss gelten:

$$P\left[\left|\sqrt{n}\frac{\overline{X}_n - \mu}{\sigma}\right| \le q_{0.95}\right] = 0.90 \text{ mit } q_{0.95} = 1.645$$

$$\implies \sqrt{n}\left|\frac{\overline{X}_n - \mu}{\sigma}\right| \le 1.645$$

$$\implies \overline{X}_n - 1.645 \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X}_n + 1.645 \cdot \frac{\sigma}{\sqrt{n}}.$$

Also erhalten wir das Konfidenzintervall: [979.7; 998.3].

b) Ersetze σ durch $s_X = 17.01$. Dann

$$\sqrt{n}\frac{\overline{X}_n - \mu}{S_X} \sim t_{n-1,0.95}, \text{ mit } n = 7.$$

Aus der Tabelle für die t-Verteilung lesen wir ab, dass $t_{n-1,0.95}=1.943$. Daher finden wir das Konfidenzintervall

$$[\overline{X}_n - 1.943 \cdot \frac{S_X}{\sqrt{n}}, \overline{X}_n + 1.943 \cdot \frac{S_X}{\sqrt{n}}].$$

Mit den Daten erhalten wir [976.5; 1001.5].