

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE CIENCIAS QUIMICAS E INGENIERIA (UNIDAD TIJUANA)

CARRERA	PLAN DE ESTUDIO	CLAVE ASIGNATURA	NOMBRE DE LA ASIGNATURA	
Computación	2009-2	11348	Métodos Numéricos	

PRACTICA #	LABORATORIO DE	METODOS NUMERICOS	DURACION (HORA)
1	NOMBRE DE LA PRACTICA	Aplicar los métodos de la Unidad 2	2 horas

1. COMPETENCIA

Se resolverán problemas diversos, para reforzar el concepto de raíz real, utilizando recursos tecnológicos, visualizando los parámetros o datos del problema y la esencia del algoritmo.

2. OBJETIVO (COMPETENCIA)

Aplicar los métodos de Bisecciones sucesivas, falsa posición, Newton-Raphson 1er y 2do orden mediante los recursos tecnológicos a problemas, económicos, químicos o de ingeniería, identificando sus ventajas y desventajas, con creatividad y responsabilidad.

3. FUNDAMENTO

Los métodos cerrados y abiertos son utilizados para encontrar las raíces de funciones dadas, dando como entrada valores iniciales, para los métodos cerrados se requiere un intervalo [a,b] y para los métodos abiertos solo un valor inicial. El alumno deberá utilizar los programas codificados en las pre-practicas resueltas en laboratorio, ejecutarlos con las respectivas funciones para hacer un análisis sobre los métodos, por lo tanto, realizar el reporte de la practica referente a la Unidad 2.

4. PROCEDIMIENTO (DESCRIPCION)

Apartado 1: Agregar el código respectivo de cada método en este apartado. Hacer un pegado especial en Word para que el código se vea como se muestra a continuación

```
#include <conio.h>
#include <stdio.h>
#include <math.h>
int main(){
    float x,y,ru,rd;
    x=1.2345;
    y=5.6;
    ru=ceil(x);
```


UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE CIENCIAS QUIMICAS E INGENIERIA (UNIDAD TIJUANA)

```
rd=floor(y);
printf("redondeo hacia arriba: %f",ru);
printf("redondeo hacia abajo: %f",rd);
getch();
return 0;
}
```

Apartado 2: Ejecutar los códigos respectivos a cada método.

- a) Mostrar una tabla con los resultados de cada método.
- b) Crear un grafica para cada método, graficando las iteraciones y los valores de las aproximaciones.
- c) Hacer un análisis del comportamiento de cada método para la solución de cada función con sus respectivos valores iniciales, errores.

Ejercicio 1. Ejecutar los programas con la siguiente ecuación $f(x) = x^3 + 4x^2 - 10$

- **a)** Valores iniciales [1,2], [-4,-2], [-2,1] con errores de 10%, 1%, 10⁻⁵, 0.
- **b)** Valores iniciales [1], [-2], [2],[0] con errores de 10%, 1%, 10⁻⁵, 0.

Ejercicio 2. Ejecutar los programas con la siguiente ecuación $f(x) = 2x \cos(2x) - (x+1)^2$

- a) Valores iniciales [-3,-2], [-1,0] con errores de 10%, 1%, 10^{-5} , 0.
- **b)** Valores iniciales [-3], [-2], [-1],[0] con errores de 10%, 1%, 10⁻⁵, 0.

Apartado 3. Hacer una discusión y conclusión sobre el comportamiento de los métodos, así como el aprendizaje y dificultades de la programación de métodos.

Nota: El reporte debe contener portada, agregar el escudo de la Universidad, formato tipo reporte técnico. El reporte se deberá enviar junto con los archivos fuentes.