

CSE 541 Computer Vision

Progress Report:

Distracted Driver Detection

Group Details:

Abraca-data

Sr. No.	Name	Enrollment Number
1	Vinay Kakkad	AU1940012
2	Bhavya Peshavaria	AU1940204
3	Nandini Bhatt	AU1940283
4	Mananshi Vyas	AU1940289

Tasks performed this week

- Studied concepts of Transfer learning.
- Studied properties of existing neural nets that are generalized by training on very large datasets.
- Studied about:
 - Layers of CNN
 - Convolution to get more information about the high level features of the data
 - Pooling to avoid overfitting and improve efficiency
 - Fully connected reduce the parameters further and further aid the classification after the initial layers provide feature extraction
 - Dropouts to avoid overfitting
 - Different activation functions

Outcomes of the task performed this week

- Were able to better understand which model to use for our dataset.
- Tried implementing transfer learning on a sample data.
- Prepared the data for feeding into the neural networks.
 - Flattened the images
 - Normalize the images to improve efficiency
 - Categorically encoding the output variables

Tasks to be performed in the upcoming week

- Change and interpret different layers of the neural network
- Implement concepts of transfer learning on our dataset

Important Links

- https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfe
 r-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
- https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace61
 4d
- https://cs231n.github.io/convolutional-networks/