# Box Plot, Skewness, Kurtosis





Ansar Shahzadi School of Electrical Engineering & Computer Science National University of Science and Technology(NUST)

#### Box Plot

We use a box plot to graphically summarize a data set.

To construct a box plot, first obtain a 5 number summary

Minimum value

Lower quartile

Median



## **Box Plot**





## Skewness

Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A distribution, or data set, is symmetric if it looks the same to the left and right of the center point.



## Measures of Skewness

$$b_1 = \frac{(m_3)^2}{(m_2)^3}$$

Where 
$$m_2 = \frac{\sum (x_i - \bar{x})^2}{n}$$
 and  $m_3 = \frac{\sum (x_i - \bar{x})^3}{n}$ 

- $\sqrt[8]{b_1}=0$  the distribution is symmetrical
- $\sqrt[8]{b_1} < 0$  the distribution is Negatively Skewed
- ${
  m II} \sqrt{b_1} > 0$  the distribution is Positively Skewed

#### Kurtosis

Kurtosis characterizes the relative peakedness or flatness of a distribution compared to the normal distribution



## Measures of Kurtosis

$$b_2 = \frac{m_4}{(m_2)^2}$$

Where 
$$m_2 = \frac{\sum (x_i - \bar{x})^2}{n}$$
 and  $m_4 = \frac{\sum (x_i - \bar{x})^4}{n}$ 

- $b_2$ =3 the distribution is meso-kurtic or normal
- $b_2 < 3$  the distribution is platy-Kurtic
- $b_2 > 3$  the distribution is Lepto-kurtic