Prepoznavanje znakovnog jezika pomoću tenzora

Petra Sočo, Jelena Zaninović

8. ožujka 2021.

Prepoznavanje gesti rukama

- Računalno prepoznavanje gesti rukama može zamijeniti direktni kontakt s ekranima u javnosti ili u prostorima koji se pokušavaju držati sterilnima (npr. operacijske sale)
- To bi omogućilo sigurniju, ali i intuitivniju interakciju ljudi s računalima (smart uređaji, AR, VR).

 Jedna od zanimljivijih i korisnijih primjena je kod prepoznavanja znakovnog jezika; naime, računala bi mogla automatski transkribirati znakove u tekst ili govor, što bi moglo olakšati i ubrzati komunikaciju s osobama koje ga koriste.

Motivacija

 Kad bi računalo (kamera) radilo izvan ambijenta s konzistentnim, umjetnim osvjetljenjem, bilo bi poželjno da mu točnost ne ovisi o dobu dana.

Fotografije

 Fotografije su slikane iz 5 različitih kuteva - od 45° slijeva do 45° zdesna. Fotoaparat je bio u razini prsa osobe i paralelan s podom.

Slika: Slovo P iz 5 različitih kuteva

- Od 26 znakova uspješno samo slikale 24 (nedostaju nam slova 'M' i 'N') te smo u konačnici dobile 120 slika.
- Rezolucija svake slike je 25×25 piksela.

- Piksele dijelimo na 2 klastera: "boja kože" i "ostalo"
- YCbCr model boja osmišljen je tako da Y prati svjetlinu slike, a Cb i Cr informacije o bojama (konkretno, plavoj i crvenoj)
- Sliku iz češće korištenog RGB-a konvertiramo u YCbCr preko sljedeće formule

$$\begin{bmatrix} Y \\ C_b \\ C_r \end{bmatrix} = \begin{bmatrix} 16 \\ 128 \\ 128 \end{bmatrix} + \begin{bmatrix} 65.481 & 128.553 & 24.966 \\ -37.797 & -74.203 & 112 \\ 112 & -93.786 & -18.214 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

- U ovom smo koraku koristile Octave Forge 'Image' paket: konkretno, funkcije rgb2gray i im2bw.
- Napomena: im2bw koristi određeni "threshold" nad kojim nemamo kontrlou, što može utjecati na konačnu sliku.

Motivacija

Slika: Slovo A u različitim modelima boja

Definicija

Ako je polje A određeno s N indeksa, kažemo da je $\mathcal{A} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ tenzor reda N *nad* \mathbb{R} , $\mathcal{A} = (x_{i_1 i_2 \dots i_{n-1} i_n i_{n+1} \dots i_N})$, $i_1 = 1, \ldots, i_1; \ldots; i_N = 1, \ldots, i_N.$

Definicija

Neka je $A \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ tenzor. I_n -dimenzionalni vektor dobiven t.d. fiksiramo svaki indeks osim indeksa in zovemo nit u modu n.

Definicija

Neka je $A \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ i neka je $\mathbf{U} \in \mathbb{R}^{J_n \times I_n}$. Produkt u modu n tenzora \mathcal{A} i matrice \mathbf{U} , s oznakom $\mathcal{A} \times_n \mathbf{U}$, je $(I_1 \times I_2 \times \dots I_{n-1} \times J_n \times I_{n+1} \times \dots \times I_N)$ -dimenzionalni tenzor zadan s

$$(\mathcal{A} \times_n \mathbf{U})_{i_1 i_2 \dots i_{n-1} j_n i_{n+1} \dots i_N} := \sum_{i_n} a_{i_1 i_2 \dots i_{n-1} i_n i_{n+1} \dots i_N} u_{j_n i_n}.$$

Produkt u modu n možemo izraziti i na sljedeći način

$$(\mathcal{A} \times_n \mathbf{U})_{(n)} = \mathbf{U} \cdot \mathbf{A}_{(n)},$$

gdje smo s $\mathbf{A}_{(n)}$ označili matricizaciju od \mathcal{A} u n-tom modu

Tenzorski model

Teorem

Neka je $A \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$. Za $A \in \mathbb{R}^{I_m \times J_m}$, $B \in \mathbb{R}^{I_n \times J_n}$, $m \neq n$ vrijedi

$$A \times_m A \times_n B = (A \times_m A) \times_n B = (A \times_n B) \times_m A.$$

Teorem

Neka je $\mathcal{A} \in \mathbb{R}^{l \times m \times n}$. Tenzor \mathcal{A} možemo zapisati kao

$$\mathcal{A} = \mathcal{S} \times_1 \boldsymbol{U}^{(1)} \times_2 \boldsymbol{U}^{(2)} \times_3 \boldsymbol{U}^{(3)}$$

gdje su $U_1 \in \mathbb{R}^{l \times l}, U_2 \in \mathbb{R}^{m \times m}, U_3 \in \mathbb{R}^{n \times n}$ ortonormalne matrice, a jezgreni tenzor \mathcal{S} je istih dimenzija kao \mathcal{A} te ima svojstvo potpune ortogonalnosti. Vrijedi i da je

$$\mathcal{S} = \mathcal{A} \times_1 (\boldsymbol{\mathsf{U}}^{(1)})^{\mathcal{T}} \times_2 (\boldsymbol{\mathsf{U}}^{(2)})^{\mathcal{T}} \times_3 (\boldsymbol{\mathsf{U}}^{(3)})^{\mathcal{T}}.$$

Tenzorski model 0000000000

Neka je $A \in \mathbb{R}^{m \times n}$. Kažemo da je matrica $A^+ \in \mathbb{R}^{n \times m}$ Moore-Penroseov pseudoinverz matrice A ako zadovoljava sljedeće uvjete:

- $AA^{+}A = A$
- $A^{+}AA^{+} = A^{+}$
- $(AA^+)^* = AA^+$
- $(A^+A)^* = A^+A$

Reprezentacija podataka tenzorom

- I_I , I_V i I_{pix} ... broj slova, perspektiva i piksela.
- Ulazni podaci ... tenzor oblika $\mathcal{A} \in \mathbb{R}^{I_l \times I_v \times I_{pix}}$.
- Informacije o slovima i perspektivama faktoriziramo pomoću HOSVD-a

$$\mathcal{A} = \mathcal{S} \times_1 \mathbf{U}_I \times_2 \mathbf{U}_V \times_3 \mathbf{U}_{pix}, \tag{1}$$

gdje su \mathbf{U}_{l} , \mathbf{U}_{v} i \mathbf{U}_{pix} ortogonalne matrice reda I_{l} , I_{v} i I_{pix} , a $S \in \mathbb{R}^{I_{l} \times I_{v} \times I_{pix}}$ jezgreni tenzor.

• Za sliku slova i u pogledu j $(i=1,\ldots,l_l,\ j=1,\ldots,l_v)$ imamo

$$\mathcal{A}^{(i,j)} = \mathcal{S} \times_1 \mathbf{u}_i \times_2 \mathbf{u}_j \times_3 \mathbf{U}_{pix}$$

gdje su \mathbf{u}_i i \mathbf{u}_j redom retci matrica \mathbf{U}_l i \mathbf{U}_v , $\mathcal{A}^{(i,j)} \in \mathbb{R}^{1 \times 1 \times I_{pix}}$.

Prepoznavanje znakovnog jezika tenzorom

- Naći najbolju aproksimaciju među već dostupnim podacima
- Testna slika $\mathcal{A}_{test} \in \mathbb{R}^{1 \times 1 \times I_{pix}}$ ima rastav

$$\mathcal{A}_{\textit{test}} = \mathcal{S} \times_1 \textbf{u}_i \times_2 \textbf{u}_j \times_3 \textbf{U}_{\textit{pix}}$$

za neke nepoznate \mathbf{u}_i i \mathbf{u}_j .

Problem glasi

$$\underset{\mathbf{u}_{i},\mathbf{u}_{i}}{\arg} \ \min \ \|\mathcal{A}_{\textit{test}} - \mathcal{S} \times_{1} \mathbf{u}_{i} \times_{2} \mathbf{u}_{j} \times_{3} \mathbf{U}_{\textit{pix}}\|_{2}.$$

- Rezultat: aproksimacije vektora **u**_i i **u**_i
- Računamo tako da **u**_i budu generirani iz konačnog skupa.

Konkretno, neka je $\mathbf{u}_j \in \{\mathbf{U}_v(k,1:I_v): k=1,\ldots,I_v\}$. Problem sada glasi:

$$\underset{\mathbf{u}_{i}}{\operatorname{arg min}} \|\mathcal{A}_{test} - \mathcal{S} \times_{1} \mathbf{u}_{i} \times_{2} \mathbf{u}_{j} \times_{3} \mathbf{U}_{pix}\|_{2}$$
 (2)

Korištenjem svojstava množenja tenzora i matrice u modu 1:

$$\underset{\mathbf{u}_{i}}{\operatorname{arg min}} \|\mathcal{A}_{test} - \mathbf{u}_{i} \times (\mathcal{S} \times_{2} \mathbf{u}_{j} \times_{3} \mathbf{U}_{pix})_{(1)}\|_{2}$$
(3)

pa imamo kandidata za aproksimaciju:

$$\mathbf{u}_{i} = \mathcal{A}_{test} \times (\mathcal{S} \times_{2} \mathbf{u}_{j} \times_{3} \mathbf{U}_{pix})_{(1)}^{+}$$
 (4)

gdje s '+' označavamo Moore-Penroseov pseudoinverz.

• I_v kandidata za aproksimaciju $\{\mathbf{u}_i : i = 1, \dots, I_v\}$ koje uspoređujemo sa retcima matrice $\mathbf{U}_I \longrightarrow \mathsf{tra}\check{\mathsf{z}}\mathsf{imo}$ $k \in \{1, \dots, I_l\}$ koji minimizira sljedeći izraz

$$\|\mathbf{u}_{i} - \mathbf{U}_{l}(k, 1 : I_{l})\|_{2}.$$

• Pomoću kosinusa kuta 2 vektora \mathbf{u}_i i $\mathbf{U}_l(k, 1:l_l)$ možemo računati:

$$\underset{i,k}{\operatorname{arg max}} \frac{\langle \mathbf{u}_i, \mathbf{U}_l(k, 1:I_l) \rangle}{\|\mathbf{u}_i\| \|\mathbf{U}_l(k, 1:I_l)\|}$$
 (5)

ALGORITAM

 $\mathsf{IN}: \mathcal{A}_{\mathit{test}}$

• Za svaki $\mathbf{u}_i \in \{\mathbf{U}_v(k,1:l_v): k=1,\ldots,l_v\}$ izračunaj

$$\mathbf{u}_i = \mathcal{A}_{test} \times (\mathcal{S} \times_2 \mathbf{u}_j \times_3 \mathbf{U}_{pix})_{(1)}^+$$

• Nađi $k \in \{1, \dots, I_I\}$ koji minimizira sljedeći izraz

$$\|\mathbf{u}_{l}-\mathbf{U}_{l}(k,1:I_{l})\|_{2}.$$

OUT:
$$k \in \{1, ..., I_I\}, i \in \{1, ..., I_V\}$$

R JEŠEN JE: slovo = k

......

Testiranje

• Za svaki $j=1,\ldots,5$ iz tenzora izoliramo j-tu perspektivu

$$\mathcal{A}(:,j,:)$$

- \longrightarrow slova $\mathcal{A}(i,j,:), i=1,\ldots,24$ su testni primjeri.
- Ostatak tenzora $(A(:, k, :), k \neq j)$ je tretiran kao *training set*.
- 7 slova (A, L, H, P, R, U i Y), kojima se siluete međusobno značajno razlikuju

7 slova

Perspektiva	Grey-scale	Binary
Kut 1	6	5
Kut 2	7	7
Kut 3	7	7
Kut 4	7	7
Kut 5	7	5
Prosjek	6.8	6.2

Tablica: Točnost po perspektivi (7 slova)

Perspektiva	Grey-scale	Binary
A, L, R, U	5	5
Н	3	3
Р	5	4
Υ	5	4

Tablica: Broj pogodaka po slovu (7 slova)

24 slova

Perspektiva	Grey-scale	Binary
Kut 1	10	11
Kut 2	14	13
Kut 3	17	16
Kut 4	13	11
Kut 5	13	14
Prosjek	13.4	13

Tablica: Točnost po perspektivi (sva slova)

Perspektiva	Grey-scale	Binary
A, J, P	5	5
R, W, Y	4	4
D, K, S, Z	3	3
C, E, O, T, U	2	2
B, Q	1	1
Н	0	0
F, I	2	1
G	5	4
V	0	1
X	3	4

Tablica: Broj pogodaka po slovu (sva slova)