Finitely Generated Abelian Groups

Ang Yan Sheng

In this note, we present Milne's proof for the fundamental theorem of finitely generated abelian groups.

Lemma. Given integers $a_1, \ldots, a_k \geq 0$ with $gcd(a_1, \ldots, a_k) = 1$, and an abelian group G generated by $\{x_1, \ldots, x_k\}$, there exists a generating set $\{y_1, \ldots, y_k\}$ such that $y_1 = x_1^{a_1} \cdots x_k^{a_k}$.

Proof. Induction on $s = a_1 + \cdots + a_k$. If s = 1 there is nothing to prove.

If s > 1 then we may assume that $a_1 \ge a_2 > 0$. Then $\{x_1, x_2 + x_1, x_3, \dots, x_k\}$ generate G, and $(a_1 - a_2) + a_2 + \dots + a_k < s$. Thus by induction hypothesis there exists a generating set $\{y_1, \dots, y_k\}$ such that

$$y_1 = (a_1 - a_2)x_1 + a_2(x_1 + x_2) + a_3x_3 + \dots + a_kx_k$$

= $a_1x_1 + a_2x_2 + \dots + a_kx_k$,

as desired.

Theorem. Every finitely generated abelian group G is the direct product of cyclic groups.

Proof. Induction on the minimal number of generators for G. If G is generated by one element then it is cyclic by definition.

Otherwise, among all generating sets $\{x_1,\ldots,x_n\}$ of G of minimal size n>1, choose one for which $o(x_1)$ is minimal (possibly ∞). If $x_1^{m_1}x_2^{m_2}\cdots x_n^{m_n}=e$ for some $x_1^{m_1}\neq e$, by division algorithm and replacing some x_i with their inverses, we may choose $0< m_1 < o(x_1)$ and $m_2,\ldots,m_n \geq 0$.

Let $d = \gcd(m_1, \ldots, m_n) \ge 1$, and $a_i = m_i/d$. By the lemma there exists a generating set $\{y_1, \ldots, y_n\}$ with $y_1 = x_1^{a_1} \cdots x_n^{a_n}$. But $y_1^d = e$, so $o(y_1) \le d \le m_1 < o(x_1)$, contradicting our choice of x_i .

Thus $x_1^{m_1}x_2^{m_2}\cdots x_n^{m_n}=e$ implies $x_1^{m_1}=e$. Hence $\langle x_1\rangle\cap\langle x_2,\ldots,x_n\rangle=\{e\}$, so $G=\langle x_1\rangle\times\langle x_2,\ldots,x_n\rangle$. By induction hypothesis, $\langle x_2,\ldots,x_n\rangle$ is a direct product of cyclic groups, so G is also a direct product of cyclic groups. \square