Weierstrass points on a tropical curve

Harry Richman

University of Michigan hrichman@umich.edu

University of Washington AAG Seminar 29 October 2019

Definition: X a smooth algebraic curve, D_N a divisor of degree N \leadsto projective embedding $\phi: X \to \mathbb{P}^r$.

Definition: X a smooth algebraic curve, D_N a divisor of degree $N \Leftrightarrow \text{projective embedding } \phi: X \to \mathbb{P}^r$.

$$W(D_N) = \{x \in X : \exists H \subset \mathbb{P}^r \text{ s.t. } m_x(H \cap X) \ge r+1\}$$

$$= \left\{x \in X : \text{ "higher-than-expected" tangency with some hyperplane } H \text{ at } x \right\}$$

Definition:

$$W(D_N) = \left\{ x \in X : \begin{array}{c} ext{"higher-than-expected" tangency with} \\ ext{some hyperplane } H \text{ at } x \end{array} \right\}$$

Example:
$$X = \{xyz + x^3 + y^3 + z^3 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$$

N=3

Definition:

$$W(D_N) = \left\{ x \in X : \begin{array}{c} ext{"higher-than-expected" tangency with} \\ ext{some hyperplane } H \text{ at } x \end{array} \right\}$$

Example:
$$X = \{xyz + x^3 + y^3 + z^3 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$$

N=3

Definition:

$$W(D_N) = \left\{ x \in X : \begin{array}{c} ext{"higher-than-expected" tangency with} \\ ext{some hyperplane } H \text{ at } x \end{array} \right\}$$

Example:
$$X = \{xyz + x^3 + y^3 + z^3 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$$

N = 3

Definition:

$$W(D_N) = \left\{ x \in X : \begin{array}{c} ext{"higher-than-expected" tangency with} \\ ext{some hyperplane } H \text{ at } x \end{array} \right\}$$

Example:
$$X = \{xyz + x^3 + y^3 + z^3 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$$

Intution (Mumford):

on an elliptic curve

N-torsion points \leftrightarrow Weierstrass points of D_N on a higher-genus curve

Intution (Mumford):

N-torsion points \leftrightarrow Weierstrass points of D_N on an elliptic curve on a higher-genus curve

Numerical "evidence": as N grows,

 $\#(\text{Weierstrass points of } D_N) = gN^2 + O(N)$

Intution (Mumford):

N-torsion points \leftrightarrow Weierstrass points of D_N on an elliptic curve on a higher-genus curve

Numerical "evidence": as N grows,

$$\#(\text{Weierstrass points of } D_N) = gN^2 + O(N)$$

Problem

How are Weierstrass points distributed on an algebraic curve?

Problem

Problem

Problem

Problem

Problem

How are Weierstrass points distributed on genus 1 curve X/\mathbb{C} ?

 \leadsto Weierstrass points distribute **uniformly**, w.r.t. $\mathbb{C} \to \mathbb{C}/\Lambda$

Problem

Problem

Problem

Problem

Problem

How are Weierstrass points distributed on higher genus curve X/\mathbb{C} ?

Theorem (Neeman, 1984)

Suppose X is a complex algebraic curve of genus $g \ge 2$. Then $W(D_N)$ distributes according to the Bergman measure as $N \to \infty$.

Problem

How are Weierstrass points distributed on X/\mathbb{K} , $val: \mathbb{K}^{\times} \to \mathbb{R}$?

Source: Matt Baker's math blog

Problem

How are Weierstrass points distributed on X/\mathbb{K} X^{an} ?

Source: Matt Baker's math blog

Problem

How are Weierstrass points distributed on X/\mathbb{K} X^{an} ?

Source: Matt Baker's math blog

Theorem (Amini, 2014)

Suppose X^{an} is a Berkovich curve of genus $g \ge 2$. Then $W(D_N)$ distributes according to the Zhang measure as $N \to \infty$.

Problem

How are Weierstrass points distributed on X/\mathbb{K} X^{an} ?

Source: Matt Baker's math blog

Problem (Amini, 2014)

Does the distribution follow from considering only the skeleton $\Gamma \subset X^{an}$?

Problem

How are Weierstrass points distributed on X/\mathbb{K} X^{an} ?

Source: Matt Baker's math blog

Problem (Amini, 2014)

Does the distribution follow from considering only the skeleton $\Gamma \subset X^{an}$?

Tropical curve $(= a \text{ skeleton of } X^{an})$


```
Tropical curve (= a \text{ skeleton of } X^{an})

(combinatorics) = \text{ finite graph with edge lengths}
```



```
Tropical curve (= a \text{ skeleton of } X^{an})

(combinatorics) = finite graph with edge lengths

(alg. geometry) = model for a degenerating algebraic curve
```


Tropical curve $(= a \text{ skeleton of } X^{an})$ (combinatorics) = finite graph with edge lengths (alg. geometry) = model for a degenerating algebraic curve

Example:
$$X_t = \{xyz - tx^3 + t^2y^3 + t^5z^3 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$$

Tropical curve $(= a \text{ skeleton of } X^{an})$

(combinatorics) = finite graph with edge lengths
(alg. geometry) = model for a degenerating algebraic curve

Example:
$$X_t = \{xyz - t^{1}x^3 + t^{2}y^3 + t^{5}z^3 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$$

 $\begin{array}{c} \overset{\leadsto}{\longleftrightarrow} \\ \mathsf{dual} \ \mathsf{graph} \\ \mathsf{of} \ X_0 \end{array}$

Tropical curve $(= a \text{ skeleton of } X^{an})$

(combinatorics) = finite graph with edge lengths metric graph (alg. geometry) = model for a degenerating algebraic curve

Example:
$$X_t = \{xyz - t^{1}x^3 + t^{2}y^3 + t^{5}z^3 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$$

 $\begin{array}{c} \overset{\leadsto}{\longleftrightarrow} \\ \mathsf{dual} \ \mathsf{graph} \\ \mathsf{of} \ X_0 \end{array}$

Tropical curves: divisor theory

Tropical curve = metric graph

alg. curve X		tropical curve Γ
divisors $Div(X)$	~ →	divisors Div(Γ)
meromorphic functions	~→	piecewise \mathbb{Z} -linear functions
linear system $ D $	~→	linear system $ D $
$=\mathbb{P}^r$		= polyhedral complex of dim $\geq r$
$rank\ r = dim D $	~→	rank r = Baker-Norine rank

Tropical curves: divisor theory

Tropical curve = metric graph

```
alg. curve X tropical curve \Gamma

divisors \mathrm{Div}(X) \leadsto divisors \mathrm{Div}(\Gamma)

meromorphic functions \leadsto piecewise \mathbb{Z}-linear functions

linear system |D| \leadsto linear system |D|

= \mathbb{P}^r = polyhedral complex of dim \geq r

rank r = \dim |D| \Longrightarrow rank r = \mathrm{Baker-Norine} rank
```

```
Intuition: linear equivalence on \Gamma= "discrete current flow" |D|=\{E \text{ lin. equiv. to } D,\, E\geq 0\}
```

Tropical curves: divisor theory

Tropical curve = metric graph

```
alg. curve X tropical curve \Gamma

divisors \mathrm{Div}(X) \leadsto divisors \mathrm{Div}(\Gamma)

meromorphic functions \leadsto piecewise \mathbb{Z}-linear functions

linear system |D| \leadsto linear system |D|

= \mathbb{P}^r = polyhedral complex of dim \geq r

rank r = \dim |D| \Longrightarrow rank r = \mathrm{Baker-Norine} rank
```

```
Intuition: linear equivalence on \Gamma= "discrete current flow" |D|=\{E \text{ lin. equiv. to } D, \ E\geq 0\}  \underline{\textit{q}-\text{reduced divisor red}_q[D]=\text{"energy-minimizing" divisor in } |D|
```

Tropical curves: reduced divisors

Tropical curve = metric graph

Intuition: q-reduced divisor $red_q[D] =$ "energy-minimizing" divisor in |D|

Example:

Tropical curves: reduced divisors

Tropical curve = metric graph

Intuition: q-reduced divisor $red_q[D] =$ "energy-minimizing" divisor in |D|

Example:

Tropical curve = metric graph

Intuition: q-reduced divisor $red_q[D] =$ "energy-minimizing" divisor in |D|

Tropical curve = metric graph

Intuition: q-reduced divisor $\operatorname{red}_q[D]=$ "energy-minimizing" divisor in |D|

Tropical curve = metric graph

Intuition: q-reduced divisor $red_q[D] =$ "energy-minimizing" divisor in |D|

Tropical curve = metric graph

Intuition: q-reduced divisor $red_q[D] =$ "energy-minimizing" divisor in |D|

Tropical curve = metric graph

Intuition: q-reduced divisor $red_q[D] =$ "energy-minimizing" divisor in |D|

What happens as q varies?

Tropical curve = metric graph

Intuition: q-reduced divisor $\operatorname{red}_q[D]=$ "energy-minimizing" divisor in |D|

Tropical curve = metric graph

Intuition: q-reduced divisor $red_q[D] =$ "energy-minimizing" divisor in |D|

Tropical curve = metric graph

Intuition: q-reduced divisor $red_q[D] =$ "energy-minimizing" divisor in |D|

Tropical curve = metric graph

Intuition: q-reduced divisor $red_q[D] =$ "energy-minimizing" divisor in |D|

Tropical curve = metric graph

Intuition: q-reduced divisor $red_q[D] =$ "energy-minimizing" divisor in |D|

Problem

How are Weierstrass points distributed on a tropical curve?

Definition:
$$\Gamma = \text{metric graph}$$
, D_N divisor of degree $N \Leftrightarrow \text{Baker-Norine rank } r = r(D_N)$

$$W(D_N) = \{x \in X : \operatorname{red}_x[D_N] \ge (r+1)x\}$$

Problem

How are Weierstrass points distributed on a tropical curve?

Definition:
$$\Gamma =$$
 metric graph, D_N divisor of degree $N \Leftrightarrow Baker-Norine rank $r = N - g$ when $N \gg 0$$

$$W(D_N) = \{x \in X : \operatorname{red}_x[D_N] \ge (r+1)x\}$$

Problem

How are Weierstrass points distributed on a tropical curve?

Definition:
$$\Gamma = \text{metric graph}$$
, D_N divisor of degree $N \Leftrightarrow \text{Baker-Norine rank } r = N - g \text{ when } N \gg 0$

$$W(D_N) = \{x \in X : \operatorname{red}_x[D_N] \ge (r+1)x\}$$

Observation: as N grows,

$$\#(\text{Weierstrass points of } D_N) = gN + O(1) \dots$$

Problem

How are Weierstrass points distributed on a tropical curve?

Definition:
$$\Gamma = \text{metric graph}$$
, D_N divisor of degree $N \Rightarrow \text{Baker-Norine rank } r = N - g \text{ when } N \gg 0$

$$W(D_N) = \{x \in X : \operatorname{red}_x[D_N] \ge (r+1)x\}$$

Observation: as N grows,

$$\#(\text{Weierstrass points of } D_N) = gN + O(1) \dots$$

EXCEPT sometimes $\#(Weierstrass points) = \infty$

Example: Genus $g(\Gamma) = 1$:

degree D = 6,

Example: Genus $g(\Gamma) = 1$:

degree
$$D = 6$$
, \Rightarrow $\#(W(D)) = 6$

Example: Genus $g(\Gamma) = 3$:

degree D = 4,

Example: Genus $g(\Gamma) = 3$:

degree
$$D = 4$$
, \Rightarrow $\#(W(D)) = 8$

Example: Genus $g(\Gamma) = 3$:

degree D = 4,

Example: Genus $g(\Gamma) = 3$:

degree
$$D = 4$$
, \rightsquigarrow $\#(W(D)) = \infty!$

Example: Genus $g(\Gamma) = 3$:

degree
$$D = 4$$
, $\Rightarrow \#(W(D)) = \infty!$

In general, this problem doesn't happen!

Theorem (R)

For a generic divisor class [D], the Weierstrass locus W(D) is finite.

In general, this problem doesn't happen!

Theorem (R)

For a generic divisor class [D], the Weierstrass locus W(D) is finite.

So, we can still ask

Problem

How are Weierstrass points distributed supposing W(D) is finite?

In general, this problem doesn't happen!

Theorem (R)

For a generic divisor class [D], the Weierstrass locus W(D) is finite.

So, we can still ask

Problem

How are Weierstrass points distributed supposing W(D) is finite for **generic** [D]?

In general, this problem doesn't happen!

Theorem (R)

For a generic divisor class [D], the Weierstrass locus W(D) is finite.

So, we can still ask

Problem

How are Weierstrass points distributed supposing W(D) is finite for **generic** [D]?

Theorem (R)

For a sequence of generic divisor classes $[D_N]$ on Γ , the Weierstrass locus $W(D_N)$ distributes according to Zhang's canonical measure μ .

 $\Gamma =$ electrical network by replacing each edge \rightsquigarrow resistor

 $\Gamma=$ electrical network by replacing each edge \leadsto resistor

Given $y, z \in \Gamma$, let

$$j_z^y = \begin{pmatrix} \text{voltage on } \Gamma \text{ when } 1 \text{ unit of } \\ \text{current is sent from } y \text{ to } z \end{pmatrix}$$

By Ohm's law,
$$\mathbf{current} = \frac{\mathsf{voltage}}{\mathsf{resistance}} = \mathbf{slope} \; \mathsf{of} \; j_z^y$$

 $\Gamma=$ electrical network by replacing each edge \leadsto resistor

Given $y, z \in \Gamma$, let

$$j_z^y = \begin{pmatrix} \text{voltage on } \Gamma \text{ when } 1 \text{ unit of } \\ \text{current is sent from } y \text{ to } z \end{pmatrix}$$

By Ohm's law, **current** = $\frac{\text{voltage}}{\text{resistance}}$ = **slope** of j_z^y

Example: current = $(j_z^y)'$

Example: current = $(j_z^y)'$

satisfies Laplacian $\Delta(j_z^y) = z - y$

Electrical networks: Canonical measure

 $\Gamma = metric graph$

Definition ("electrical" version, Chinburg-Rumely-Baker-Faber)

Zhang's canonical measure μ on an edge is the "current defect"

```
\mu(e)= current bypassing e when 1 unit sent from e^- to e^+ =1- (current through e when \dots )
```

Electrical networks: Canonical measure

 $\Gamma = metric graph$

Definition ("electrical" version, Chinburg-Rumely-Baker-Faber)

Zhang's canonical measure μ on an edge is the "current defect"

$$\mu(e)=$$
 current bypassing e when 1 unit sent from e^- to e^+ $=1-$ (current through e when ...)

Electrical networks: Canonical measure

 $\Gamma = \mathsf{metric} \; \mathsf{graph}$

Definition ("electrical" version, Chinburg-Rumely-Baker-Faber)

Zhang's canonical measure μ on an edge is the "current defect"

$$\mu(e)=$$
 current bypassing e when 1 unit sent from e^- to e^+ $=1-$ (current through e when ...)

Generally:

- $0 \le \mu(e) \le 1$
- $\mu(e) = 0 \Leftrightarrow e$ a bridge
- $\mu(e) = 1 \Leftrightarrow e \text{ a loop}$

Foster's Theorem:
$$\mu(\Gamma) = \sum_{e \in E} \mu(e) = g$$

Theorem (R)

For a sequence of generic divisor classes $[D_N]$ on Γ , the Weierstrass locus $W(D_N)$ distributes according to Zhang's canonical measure μ .

Namely, for any edge e

$$rac{\#(W(D_N)\cap e)}{N} o \mu(e)$$
 as $N o \infty$.

Theorem (R)

For a sequence of generic divisor classes $[D_N]$ on Γ , the Weierstrass locus $W(D_N)$ distributes according to Zhang's canonical measure μ .

Namely, for any edge e

$$rac{\#(W(D_N)\cap e)}{N} o \mu(e) \qquad \text{as} \qquad N o \infty.$$

Idea:

(discrete current flow) $\xrightarrow{N\to\infty}$ (continuous current flow)

Theorem (R)

For a sequence of generic divisor classes $[D_N]$ on Γ , the Weierstrass locus $W(D_N)$ distributes according to Zhang's canonical measure μ .

Namely, for any edge e

$$rac{\#(W(D_N)\cap e)}{N} o \mu(e)$$
 as $N o \infty$.

Idea:

Theorem (R)

For a sequence of generic divisor classes $[D_N]$ on Γ , the Weierstrass locus $W(D_N)$ distributes according to Zhang's canonical measure μ .

Namely, for any edge e

$$rac{\#(W(D_N)\cap e)}{N} o \mu(e) \qquad as \qquad N o \infty.$$

Idea:

References

David Mumford (1977)

Curves and their Jacobians

The University of Michigan Press, Ann Arbor, MI.

Amnon Neeman (1984)

The distribution of Weierstrass points on a compact Riemann surface

Ann. of Math. 120 317–328

Shouwu Zhang (1993)

Admissable pairing on a curve

Invent. Math. 112 171-193.

Matt Baker and Xander Faber (2006)

Metrized graphs, Laplacian operators, and eletrical networks

Amer. Math. Soc., Providence, RI.

Omid Amini (2014)

Equidistribution of Weierstrass points on curves over non-Archimedean fields preprint, arXiv:1412.0926v1.

Weierstrass points on a tropical curve

Thank you!