Math 395

Homework 2

Due: 9/12/2024

Name: Gianluca Crescenzo

Collaborators: Avinash Iyer, Noah Smith, Carly Venenciano, Clarissa Ly

For these problems F is assumed to be a field.

Exercise 1. Let $T \in \operatorname{Hom}_F(V, W)$. We get an induced map $T^{\vee} \in \operatorname{Hom}_F(W^{\vee}, V^{\vee})$ such that $T^{\vee}(\varphi) = \varphi \circ T$ for some $\varphi \in W^{\vee}$. The following diagram commutes:

$$V \xrightarrow{T} W \qquad \downarrow \varphi \qquad \downarrow \varphi \qquad \downarrow F$$

Prove that $T^{\vee} \in \operatorname{Hom}_F(W^{\vee}, V^{\vee})$.

Proof. Let $\varphi_1, \varphi_2 \in W^{\vee}$ and $\alpha \in F$. Then

$$T^{\vee}(\varphi_1 + \alpha \varphi_2)(v) = (\varphi_1 + \alpha \varphi_2)(T(v))$$

$$= \varphi_1(T(v)) + \alpha(\varphi_2(T(v)))$$

$$= T^{\vee}(\varphi_1)(v) + \alpha T^{\vee}(\varphi_2)(v)$$

$$= (T^{\vee}(\varphi_1) + \alpha T^{\vee}(\varphi_2))(v).$$

Thus T^{\vee} is a linear map.

Exercise 11. Let $T \in \text{Hom}_F(P_7(F), P_7(F))$ be defined by T(f(x)) = f'(x), where f'(x) denotes the usual derivative of a polynomial $f(x) \in P_7(F)$. For each of the fields below, determine a basis for the image and kernel of T:

- (a) $F = \mathbf{R}$.
- (b) $F = \mathbf{F}_3$.

Proof. Let $F = \mathbf{R}$. Observe that:

$$T(a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6 + a_7x^7) = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + 5a_5x^4 + 6a_6x^5 + 7a_7x^6$$
$$T(a_0) = 0.$$

So a basis for im (T) is $\{1, x, x^2, x^3, x^4, x^5, x^6\}$ and a basis for ker (T) is $\{1\}$. Now let $F = \mathbf{F}_3$. Observe that:

$$T(\overline{a_0} + \overline{a_1}x + \overline{a_2}x^2 + \overline{a_3}x^3 + \overline{a_4}x^4 + \overline{a_5}x^5 + \overline{a_6}x^6 + \overline{a_7}x^7) = \overline{a_1} + \overline{2a_2}x + \overline{a_4}x^3 + \overline{2a_5}x^4 + \overline{a_7}x^6$$
$$T(\overline{a_0} + \overline{a_1}x^3 + \overline{a_2}x^6) = \overline{0}.$$

So a basis for im (T) is $\{1, x, x^3, x^4, x^6\}$ and a basis for ker (T) is $\{1, x^3, x^6\}$.

Exercise 12. Let $T \in \text{Hom}_F(V, F)$. Prove that if $v \in V$ is not in $\ker(T)$, then

$$V = \ker(T) \oplus \{cv \mid c \in F\}.$$

Proof. Let $I = \{cv \mid c \in F\}$, we must first show that it is a subspace of V. Let $av, bv \in I$ and $c \in F$. Note that I is nonempty because $0v = 0 \in I$. Let $av, bv \in I$ and $c \in F$. Then $av + c(bv) = av + (cb)v = (a + cb)v \in I$.

Let $x+y\in\ker(T)+I$. Since $\ker(T)$ and I are subspaces, $x+y\in V$. Now let $w\in V$. If $w\in\ker(T)$, then we are done (because $w=w+0v\in\ker(T)+I$). Suppose $w\not\in\ker(T)$. Then $T(w)=\alpha$ for some $\alpha\in F, \alpha\neq 0$, which is equivalent to $\alpha^{-1}T(w)=1$. Since $v\not\in\ker(T)$, suppose $T(v)=\beta$ for some $\beta\in F, \beta\neq 0$. It follows that $\alpha^{-1}T(w)=\beta^{-1}T(v)$. Simplifying yields $T(w-\alpha\beta^{-1}v)=0$, giving $w-\alpha\beta^{-1}v=k$ for some $k\in\ker(T)$. Thus $w=k+\alpha\beta^{-1}v\in\ker(T)+I$, establishing $V=\ker(T)+I$.

We now need to show that $\ker(T)$ and I are independent. Let $k + \alpha \beta^{-1}v = k + cv = 0$. Then T(k + cv) = T(cv) = cT(v) = 0. But since $v \notin \ker(T)$, we must have that c = 0; i.e., cv = 0. Then k + cv = k = 0. Since $\ker(T)$ and I are independent, $V = \ker(T) \oplus I$.

Exercise 19. Let W be a subspace of a finite dimensional vector space V. Let $T \in \operatorname{Hom}_F(V,V)$ so that $T(W) \subset W$. Show that T induces a linear transformation $\overline{T} \in \operatorname{Hom}_F(V/W,V/W)$. Prove that T is nonsingular (i.e., injective) on V if and only if T is restricted to W and \overline{T} on V/W are both nonsingular.

Proof. Define $\overline{T}: V/W \to V/W$ by $v+W \mapsto T(v)+W$. We must first show that \overline{T} is well-defined. Suppose $v_1+W=v_2+W$, then $v_1=v_2+w$ for some $w\in W$. Observe that:

$$\begin{split} \overline{T}(v_1+W) &= T(v_1) + W \\ &= T(v_2+w) + W \\ &= T(v_2) + T(w) + W \qquad \text{Since } T \in \operatorname{Hom}_F(V,V) \\ &= T(v_2) + W \qquad \qquad \text{Since } T(W) \subset W \\ &= \overline{T}(v_2+W). \end{split}$$

Let $v_1 + W, v_2 + W \in V/W$, and $\alpha \in F$. Then:

$$\begin{split} \overline{T}((v_1 + W) + \alpha(v_2 + W)) &= \overline{T}((v_1 + W) + (\alpha v_2 + W)) \\ &= \overline{T}((v_1 + \alpha v_2) + W) \\ &= T(v_1 + \alpha v_2) + W \\ &= T(v_1) + \alpha T(v_2) + W \\ &= (T(v_1) + W) + \alpha(T(v_2) + W) \\ &= \overline{T}(v_1 + W) + \alpha \overline{T}(v_2 + W), \end{split}$$

hence $\overline{T} \in \operatorname{Hom}_F(V/W,V/W)$. Now consider the maps $V \xrightarrow{T} V \xrightarrow{\pi} V/W$, where $\pi: V \to V/W$ is the canonical projection map. It can be proved that $\pi \circ T = \overline{T} \circ \pi$ as follows: let $v \in V$ and observe that $\pi(T(v)) = T(v) + W$, which is equivalent to $\overline{T}(\pi(v)) = \overline{T}(v + W) = T(v) + W$. We've established that the following diagram commutes:

$$\begin{array}{ccc} V & \stackrel{T}{\longrightarrow} V \\ \downarrow^{\pi} & \downarrow^{\pi} \\ V/W & \stackrel{\overline{T}}{\longrightarrow} V/W \end{array}.$$

Let T be injective. Since T is finite dimensional, it must be bijective. Clearly $T\mid_W:W\to V$ is injective by inclusion. Let $v+W\in\ker(\overline{T})$. Then $\overline{T}(v+W)=T(v)+W=0+W$. This gives that $T(v)\in W$, and from the fact that T is bijective, T(W)=W, giving $v\in W$. Hence v+W=0+W.

Conversely, suppose $T\mid_W$ and \overline{T} are injective. Let $v\in\ker(T)$. Then T(v)=0 is equivalent to $\pi(T(v))=0+W$. Using the fact that the above diagram commutes, we can write $\overline{T}(\pi(v))=0+W$. Since \overline{T} is injective, its kernel is trivial, hence it must be the case that $\pi(v)=0+W$. Thus $v\in W$, hence $T(v)=T\mid_W(v)=0$, establishing that v=0. Thus T is injective.