LATEX e TikZ workshop

Ficha de exercícios

Preparação para o Exame de Matemática A

12º Ano de Escolaridade 5 Páginas

1. (José Carlos Pereira)

Na figura 1 está representado, em referencial o.n. xOy, parte do gráfico de uma função f, de domínio \mathbb{R} , definida por $f(x) = 1 + 2\cos(2x)$ e um triângulo [OAB].

Sabe-se que:

- o gráfico de f intersecta o eixo Ox no ponto B e o eixo Oy no ponto C;
- o ponto A desloca-se sobre o gráfico de f, no primeiro quadrante, nunca coincidindo com B nem com C.

Figura 1

Qual é a abcissa do ponto A de modo que a área do triângulo [OAB] seja igual a $\frac{\pi}{6}$?

(A)
$$\frac{\pi}{4}$$

(B)
$$\frac{\pi}{6}$$

(C)
$$\frac{\pi}{8}$$

(D)
$$\frac{\pi}{12}$$

2. (José Carlos Pereira)

Na figura 2 estão representados três planos, α , β e γ , definidos respetivamente por: $a^2x+y+z=ax$, 2x+y=-2-z e x+a (y+z) = 0, com $a \in \mathbb{R} \setminus \{0\}$.

Sabe-se que:

- os planos α e β são estritamente paralelos;
- o plano γ intersecta os planos α e β sobre duas retas paralelas, r e s (α e γ intersectam-se sobre r e β e γ intersectam-se sobre s);
- γ não é perpendicular nem a α nem a β .

Figura 2

Qual $\acute{\rm e}$ o valor de a?

(A) -1

(B) 1

(C) 2

(D) 3

3. (Francisco Cabral)

Na figura 3 está representada uma pirâmide quadrangular regular reta [ABCDV].

Sabe-se que:

- a base [ABCD] é um quadrado de lado l, com l > 0;
- o ponto U é o centro da base da pirâmide;
- T é o ponto médio da aresta [BC];
- \bullet x é a amplitude, em radianos, do ângulo
- $x \in \left]0, \frac{\pi}{2}\right[.$

Figura 3

Em qual das opções seguintes está, uma expressão, em função de x e de l, que representa a área da superfície da pirâmide [ABCDV]?

$$(\mathbf{A}) \ l + \frac{l}{\cos\left(x\right)}$$

(B)
$$l^2 + \frac{l^2}{\sin{(x)}}$$

(C)
$$l + \frac{l^2}{\cos(x)}$$

(A)
$$l + \frac{l}{\cos(x)}$$
 (B) $l^2 + \frac{l^2}{\sin(x)}$ (C) $l + \frac{l^2}{\cos(x)}$ (D) $l^2 + \frac{l^2}{4\cos(x)}$

4. (José Carlos Pereira)

Na figura 4 está representado, num referencial o.n. Oxyz, o prisma [ABCDEFGH] em que as bases são paralelogramos.

Sabe-se que:

- a base [OABC] está contida no plano xOy;
- a aresta [OE] está contida no eixo Oz;
- \bullet o ponto A tem ordenada -2
- uma equação do plano $ABG \in 5x-2y=24$
- \bullet uma equação da reta CG é: $(x, y, z) = (-2, 7, -4) + k(4, -2, 4), k \in \mathbb{R}$

Figura 4

- **4.1.** Escreva uma equação cartesiana do plano ACG.
- **4.2.** Considere um prisma, semelhante ao prisma [ABCDEFGH], em que a medida da sua altura é três meios de \overline{BG} . Qual é o seu volume?

5. (José Carlos Pereira)

Na figura 5 está representado num referencial o.n. Oxyz o sólido [ABCDEFGHPQ] constituído por duas pirâmides octogonais regulares tais que o polígono [ACDEFGH] é paralelo ao plano xOz.

Escolhem-se, simultaneamente e ao acaso, três vértices do sólido. Qual é a probabilidade de definirem um plano perpendicular ao plano xOz?

- (A) $\frac{1}{15}$
- (C) $\frac{4}{15}$
- **(B)** $\frac{2}{15}$
- **(D)** $\frac{14}{15}$

Figura 5

6. (José Carlos Pereira)

Na figura 6 estão representados num referencial o.n. xOy os gráficos das funções f e g, de domínio \mathbb{R}^+ , definidas por $f(x) = \log_3 x$ e $g(x) = f\left(\frac{1}{x}\right)$ e o trapézio [ABCD].

Sabe-se que:

- ullet Os pontos A e D pertencem ao gráfico de f e os pontos B e Cpertencem ao gráfico de g.
- \bullet Os pontos A e B têm abcissa a e os pontos C e D têm abcissa 3a.

Qual é a expressão que dá a área do trapézio [ABCD] em função de a?

Figura 6

- (A) $a \log_3 (3a^2)$ (B) $2a \log_3 (9a^2)$ (C) $2a \log_3 (3a^2)$
- **(D)** $a \log_3 (9a^2)$

7. (Carlos Frias)

Na figura 7, está representada, num referencial o.n. xOy, uma circunferência ζ , um setor circular a sombreado e uma reta t.

Sabe-se que:

- O é a origem do referencial e pertence à circunferência ζ;
- C é o centro da circunferência ζ ;
- o ponto A pertence à circunferência ζ e tem ordenada 1;
- a reta t é tangente à circunferência ζ no ponto A:
- o setor circular CAB tem área igual a $\frac{25\pi}{6}$;
- a circunferência ζ é definida por: $x^2 + y^2 6x 2ay = 16 a^2, \text{ com } a \in \mathbb{R}^+$

Figura 7

- **7.1.** Mostre que a=4 e indique as coordenadas do ponto C.
- **7.2.** Determine o valor do produto escalar $\overrightarrow{DA} \cdot \overrightarrow{DB}$. **Nota:** Se não resolveu o iten anterior, considere que C(3,4).
- **7.3.** Escreva uma equação vetorial que defina a reta t.

8. (José Carlos Pereira)

Na figura 8 estão representados, num referencial o.n. xOy, parte do gráfico da função f, de domínio \mathbb{R}^+ , definida por $f(x) = \ln x$, parte do gráfico da função f^{-1} , função inversa de f, o triângulo [ABC] e o triângulo [CDE].

Sabe-se que:

- A é o ponto de interseção do gráfico de f com o eixo Ox;
- C é o ponto de interseção do gráfico de f^{-1} com o eixo Oy;
- o ponto B pertence ao gráfico de f e tem abcissa a:
- o ponto D pertence ao gráfico de f^{-1} e tem ordenada a;
- o ponto E pertence ao eixo Oy e tem a mesma ordenada que o ponto D;
- a é um número real maior que 2.

Figura 8

8.1. Mostre que a área do triângulo [ABC] é igual à área do triângulo [CDE] se e só se:

$$\ln a = \frac{a-1}{a-2}$$

8.2. Recorrendo à calculadora gráfica determine as coordenadas do ponto B de modo que a área do triângulo [ABC] é igual à área do triângulo [CDE].

Na sua resposta deve:

- escrever a condição que permite resolver o problema.
- reproduzir o(s) gráfico(s) (devidamente identificado(s)) que achar necessário(s) para a resolução do problema.
- ullet indicar as coordenadas do ponto B, arredondadas às centésimas.
- 9. (Carlos Frias)

No plano complexo da figura 9 está representado um quadrado [ABCD] e um triângulo equilátero [BEF], ambos centrados na origem.

Sabe-se que:

- o perímetro de [ABCD] é $4\sqrt{2}$;
- $\frac{7\pi}{18}$ rad é um argumento do número complexo cuja imagem geométrica é o ponto A;
- A, B, C e D são as imagens geométricas das raízes quartas de um número complexo z:
- B, E e F são as imagens geométricas das raízes cúbicas de um número complexo w.

Determine $z^9 + w$, sem utilizar a calculadora.

Apresente o resultado na forma trigonométrica.

Figura 9

\mathbf{FIM}

Soluções

1. (A)

5. (B)

7.3. $(x,y) = (7,1) + k(3,4), k \in \mathbb{R}$

(C)
 (C)

6. (D)

7.

8.

4.

8.1.

- **4.1.** 7x + 2y 6z 24 = 0
- **7.1.** C(3,4)

8.2. B(4, 24; 1, 45)

4.2. 324

7.2. 75

9. $e^{i\frac{\pi}{3}}$