

Федеральное государственное образовательное бюджетное учреждение высшего образования

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

(Финансовый университет)

Факультет информационных технологий и анализа больших данных Департамент анализа данных и машинного обучения

Е.С. Волкова, М.В. Петрова

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ЧИСЛОВЫЕ РЯДЫ

Практикум по дисциплине «Математический анализ» 2 семестр

Для студентов, обучающихся по направлению 01.03.02 «Прикладная математика и информатика», (программа подготовки бакалавра)

Москва 2021

Федеральное государственное образовательное бюджетное учреждение высшего образования «ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (Финансовый университет)

Факультет информационных технологий и анализа больших данных Департамент анализа данных и машинного обучения

Е.С. Волкова, М.В. Петрова

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ЧИСЛОВЫЕ РЯДЫ

Практикум по дисциплине «Математический анализ» 2 семестр

Для студентов, обучающихся по направлению 01.03.02 «Прикладная математика и информатика», (программа подготовки бакалавра)

Одобрено Советом Департамента анализа данных и машинного обучения (протокол № 07 от 27.01.2021)

Москва 2021

УДК 517(075.8) ББК 22.161я73 B 67

Авторы:

Волкова Е.С., канд. физ.-мат. наук, доцент Департамента анализа данных и машинного обучения факультета информационных технологий и анализа больших данных Финансового университета при Правительстве РФ

Петрова М.В., ассистент Департамента анализа данных и машинного обучения факультета информационных технологий и анализа больших данных Финансового университета при Правительстве РФ

Рецензенты:

Каверина В.В., канд. физ.-мат. наук, доцент Департамента анализа данных и машинного обучения факультета информационных технологий и анализа больших данных Финансового университета при Правительстве РФ

В 67 Волкова Е.С., Петрова М.В.

Интегральное исчисление. Числовые ряды. Практикум по дисциплине «Математический анализ», 2 семестр. Для студентов, обучающихся по направлению 01.03.02 «Прикладная математика и информатика», (программа подготовки бакалавра) - М.: Финансовый университет, департамент анализа данных и машинного обучения, 2021. 111 с.

В практикум включены задачи, относящиеся к следующим разделам математического анализа: неопределенный интеграл, определенный интеграл, несобственные интегралы, кратные интегралы, криволинейные интегралы, числовые ряды. Каждый параграф содержит необходимый справочный материал, типовые упражнения с решениями и задачи для самостоятельной работы с ответами.

Пособие предназначено для проведения практических занятий и организации самостоятельной работы студентов-бакалавров по направлению подготовки 01.03.02 «Прикладная математика и информатика» по курсу «Математический анализ».

> УДК 517(075.8) ББК 22.161₉73

Учебное излание

Волкова Елена Сергеевна, Петрова Мария Владимировна

Интегральное исчисление. Числовые ряды. Практикум по дисциплине «Математический анализ», 2 семестр

Для студентов, обучающихся по направлению 01.03.02 «Прикладная математика и информатика», (программа подготовки бакалавра)

Компьютерный набор, верстка Е.С. Волкова, М.В. Петрова

Электронное издание

© ФГОБУ ВО «Финансовый университет при Правительстве Российской Федерации», 2021 © Волкова Елена Сергеевна, 2021.

© Петрова Мария Владимировна, 2021.

СОДЕРЖАНИЕ

І. Приемы и методы интегрирования	5
1. Непосредственное интегрирование	5
2. Метод замены переменной	7
3. Интегрирование по частям	13
II. Интегрирование рациональных функций	17
III. Интегрирование иррациональных функций	24
IV. Интегрирование тригонометрических функций	29
1. Основные формулы	29
2. Интегралы вида $\int R(\sin x, \cos x) dx$, где R —рациональная функция	30
3. Интегралы $\int \sin ax \cdot \cos bx dx$, $\int \sin bx dx$, $\int \cos ax \cdot \cos bx dx$	34
V. Определенный интеграл	36
1. Формула Ньютона-Лейбница	36
2. Метод замены переменной	37
3. Интегрирование по частям	38
4. Приложения определенного интеграла	42
VI. Несобственные интегралы	49
1. Несобственные интегралы с бесконечными пределами	
интегрирования	49
2. Несобственные интегралы от неограниченных функций	51
3. Несобственные интегралы от неотрицательных функций	53
VII. Кратные интегралы	56
1. Сведение кратного интеграла к повторному	56
2. Замена переменных в кратном интеграле	59
3. Несобственные кратные интегралы	61
4. Приложения кратных интегралов	62
VIII. Криволинейные интегралы	67
1. Криволинейные интегралы 1 рода	67
2. Криволинейные интегралы 2 рода	70

3. Формула Грина76
4. Вычисление площадей плоских фигур77
5. Условия независимости криволинейного интеграла от пути
интегрирования
IX. Числовые ряды
1. Сумма сходящегося ряда85
2. Необходимый признак сходящегося ряда. Критерий Коши сходимости
ряда87
3. Ряды с неотрицательными членами. Признаки сходимости
положительных рядов
4. Знакопеременные ряды. Знакочередующиеся ряды. Абсолютно и условно
сходящиеся ряды92
Х. ОТВЕТЫ
ХІ. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА 110

І. Приемы и методы интегрирования

1. Непосредственное интегрирование

Непосредственное интегрирование — это метод интегрирования, основанный на использовании таблицы неопределенных интегралов и их свойств.

Таблица основных интегралов

I.
$$\int 0 \cdot dx = C$$
; $C = const$

II.
$$\int dx = x + C;$$

III.
$$\int x^p dx = \frac{x^{p+1}}{p+1} + C, p \neq -1;$$

IV.
$$\int \frac{dx}{x} = \ln|x| + C;$$

V.
$$\int a^x dx = \frac{a^x}{\ln a} + C$$
. В частности, $\int e^x dx = e^x + C$;

VI.
$$\int \cos x dx = \sin x + C;$$

VII.
$$\int \sin x dx = -\cos x + C$$
;

VIII.
$$\int \frac{dx}{\cos^2 x} = tgx + C$$
;

IX.
$$\int \frac{dx}{\sin^2 x} = -ctgx + C;$$

$$X. \qquad \int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C;$$

XI.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \operatorname{arct} g \frac{x}{a} + C;$$

XII.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{x + a}{x - a} \right| + C, \quad \alpha \neq 0;$$

XIII.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C, a \neq 0$$

XIV.
$$\int \frac{dx}{\sqrt{x^2+k}} = \ln |x + \sqrt{x^2 + k}| + C, k \neq 0.$$

Основные свойства неопределенного интеграла:

1)
$$\int f(x)dx = F(x) + C$$
, если $F'(x) = f(x)$;

2)
$$\int (f(x) \pm g(x))dx = \int f(x)dx \pm \int g(x)dx$$
;

3) $\int kf(x)dx = k \int f(x)dx$, k – константа.

<u>Пример 1.1.</u> Найти неопределенный интеграл $\int \frac{(2x-3)^2}{x} dx$.

Раскроем квадрат в числителе подынтегральной функции, поделим почленно на x. Воспользовавшись свойствами интеграла и табличными формулами, получим:

$$\int \frac{(2x-3)^2}{x} dx = \int \frac{4x^2 - 12x + 9}{x} dx =$$

$$= \int \left(4x - 12 + \frac{9}{x}\right) dx = 4 \int x dx - 12 \int dx + 9 \int \frac{dx}{x} =$$

$$= \frac{4x^2}{2} - 12x + 9 \ln|x| + C = 2x^2 - 12x + 9 \ln|x| + C.$$

Otbet: $2x^2 - 12x + 9\ln|x| + C$.

<u>Пример 1.2.</u> Найти неопределенный интеграл $\int 7^{2x-1} dx$.

Воспользуемся свойствами степени и интеграла, чтобы привести данный интеграл к табличному виду:

$$\int 7^{2x-1} dx = \int 7^{2x} \cdot 7^{-1} dx = 7^{-1} \int (7^2)^x dx = \frac{1}{7} \int 49^x dx = \frac{49^x}{7ln49} + C.$$
Other: $\frac{49^x}{7ln49} + C$.

<u>Пример 1.3.</u> Найти неопределенный интеграл $\int tg^2xdx$.

Воспользуемся тригонометрическими формулами, чтобы упростить подынтегральную функцию. Затем приведем интеграл к табличному виду с помощью свойств:

$$\int tg^{2}xdx = \int \frac{\sin^{2}x}{\cos^{2}x} dx = \int \frac{1 - \cos^{2}x}{\cos^{2}x} dx = \int \left(\frac{1}{\cos^{2}x} - 1\right) dx =$$

$$= \int \frac{dx}{\cos^{2}x} - \int dx = tgx - x + C.$$

Ответ: tgx - x + C.

Упражнения:

Найти неопределенные интегралы:

$$1. \int \frac{(x+2)^2}{3x} dx$$

2.
$$\int \frac{6(1+\cos^2 x)}{1+\cos 2x} dx$$

$$3. \int 9\sin^2(\frac{x}{2}) \, dx$$

4.
$$\int (2x^2 + \frac{\cos x}{3} + 4^x - \frac{4}{\sqrt{1 - x^2}}) dx$$

5.
$$\int (a + bx^3)^2 dx$$

$$6.\int (nx)^{\frac{1-n}{n}} dx$$

$$7. \int \frac{(x^2+1)(x^2-2)dx}{\sqrt[3]{x^2}}$$

$$8. \int ctg^2xdx$$

$$9. \int 3^x e^x \, dx$$

$$10. \int \frac{\sqrt{2+x^2} - \sqrt{2-x^2}}{\sqrt{4-x^4}} dx$$

2. Метод замены переменной

В некоторых случаях нахождение неопределенного интеграла упрощается при переходе к другой переменной интегрирования. Если исходная переменная x и новая переменная t связаны соотношением $x = \phi(t)$, где $\phi(t)$ – обратимая и дифференцируемая функция, то

$$\int f(x)dx = \begin{cases} x = \phi(t) \\ dx = d\phi(t) = \phi'(t)dt \end{cases} = \int f(\phi(t))\phi'(t)dt$$

Если теперь вернуться к старой переменной, то получим равенство (формула замены переменной):

$$\int f(x)dx = \int f(\phi(t))\phi'(t)dt \Big|_{t=\phi^{-1}(x)}$$

В правой части этого равенства после вычисления интеграла по переменной tпроизводится обратная замена новой переменной t на исходную переменную x по формуле $t = \phi^{-1}(x)$.

Рассмотрим, например, линейную замену. Пусть требуется вычислить интеграл $\int f(ax+b)dx$, где $a \neq 0$ и b некоторые числа, а f(x) - функция, для которой известен интеграл $\int f(x)dx$.

$$\int f(ax+b)dx = \begin{cases} t = ax+b; & x = \frac{t-b}{a} \\ dx = \frac{dt}{a} \end{cases}$$

$$= \int f(t)\frac{dt}{a} = \frac{1}{a}\int f(t)dt|_{t=ax+b}$$

Мы получили формулу линейной замены:

$$\int f(ax+b)dx = \frac{1}{a} \int f(t)dt |_{t=ax+b}$$

Применяя эту формулу к табличным интегралам, получим новые формулы:

1.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \qquad \Rightarrow \qquad \int (ax+b)^n dx = \frac{1}{a} \cdot \frac{(ax+b)^{n+1}}{n+1} + C;$$
2.
$$\int \frac{dx}{x} = \ln|x| + C \qquad \Rightarrow \qquad \int \frac{dx}{ax+b} = \frac{1}{a} \cdot \ln|ax+b| + C;$$
3.
$$\int e^x dx = e^x + C \qquad \Rightarrow \qquad \int e^{ax+b} dx = \frac{1}{a} \cdot e^{ax+b} + C;$$

2.
$$\int \frac{dx}{x} = \ln|x| + C \qquad \Rightarrow \qquad \int \frac{dx}{ax+b} = \frac{1}{a} \cdot \ln|ax+b| + C$$

3.
$$\int e^x dx = e^x + C \qquad \Rightarrow \qquad \int e^{ax+b} dx = \frac{1}{a} \cdot e^{ax+b} + C;$$

4.
$$\int \cos x dx = \sin x + C \qquad \Rightarrow \qquad \int \cos(ax+b) dx = \frac{1}{a} \sin(ax+b) + C;$$

5.
$$\int \sin x dx = -\cos x + C \qquad \Rightarrow \qquad \int \sin(ax+b) dx = -\frac{1}{a} \cos(ax+b) + C$$

и так далее для всех известных интегралов.

Аналогично методу замены переменной, в подобных заданиях можно использовать внесение под знак дифференциала. В общем виде, справедлива формула:

$$\int f(g(x))g'(x)dx = \int f(g(x))d(g(x)).$$

<u>Пример 1.4.</u> Найти неопределенный интеграл $\int \frac{dx}{3-5x}$.

Внесем 3 - 5x под знак дифференциала, получим табличный интеграл:

$$\int \frac{dx}{3-5x} = \begin{cases} d(3-5x) = \\ (3-5x)'dx = -5dx \\ dx = -\frac{1}{5}d(3-5x) \end{cases} = \int \frac{-\frac{1}{5}d(3-5x)}{3-5x} =$$
$$= -\frac{1}{5}\int \frac{d(3-5x)}{3-5x} = -\frac{1}{5}\ln|3-5x| + C.$$

Otbet: $-\frac{1}{5}\ln|3 - 5x| + C$.

<u>Пример 1.5.</u> Найти неопределенный интеграл $\int \frac{dx}{\sqrt{-x^2-8x-7}}$.

В подкоренном выражении выделим полный квадрат и приведем интеграл к табличному виду с помощью замены. В конце решения не забываем сделать обратную замену:

$$\int \frac{dx}{\sqrt{-x^2 - 8x - 7}} = \int \frac{dx}{\sqrt{-(x^2 + 8x + 7)}} = \int \frac{dx}{\sqrt{-(x^2 + 2 \cdot x \cdot 4 + 16 - 9)}} =$$

$$= \int \frac{dx}{\sqrt{-((x + 4)^2 - 9)}} = \int \frac{dx}{\sqrt{9 - (x + 4)^2}} = \begin{cases} t = x + 4 \\ x = t - 4 \\ dt = dx \end{cases} = \int \frac{dt}{\sqrt{3^2 - t^2}} =$$

$$= \arcsin\left(\frac{t}{3}\right) + C = \arcsin\left(\frac{x + 4}{3}\right) + C.$$
Other: $\arcsin\left(\frac{x + 4}{3}\right) + C.$

<u>Пример 1.6.</u> Найти неопределенный интеграл $\int \frac{x^7 dx}{(2x^8+5)^{\frac{3}{2}}}$

Заметим, что производная основания степени связана с выражением в числителе: $(2x^8 + 5)' = 16x^7$. Исходя из этого введем новую переменную интегрирования, после чего интеграл примет табличный вид:

$$\int \frac{x^7 dx}{(2x^8 + 5)^{\frac{3}{2}}} = \int x^7 (2x^8 + 5)^{-\frac{3}{2}} dx = \begin{cases} t = 2x^8 + 5 \\ dt = 16x^7 dx \\ x^7 dx = \frac{dt}{16} \end{cases} = \int t^{-\frac{3}{2}} \frac{dt}{16} = \frac{1}{16} \cdot \frac{t^{-\frac{1}{2}}}{-\frac{1}{2}} + C = -\frac{1}{8} t^{-\frac{1}{2}} + C = -\frac{1}{8} (2x^8 + 5)^{-\frac{1}{2}} + C.$$

Otbet: $-\frac{1}{8}(2x^8+5)^{-\frac{1}{2}}+C$.

<u>Пример 1.7.</u> Найти неопределенный интеграл $\int e^{4x} \sin(e^{4x} + 3) dx$.

Так как $(e^{4x} + 3)' = 4e^{4x}$, можем сделать замену $t = e^{4x} + 3$ и свести интеграл к табличному:

$$\int e^{4x} \sin(e^{4x} + 3) dx = \begin{cases} t = e^{4x} + 3 \\ dt = 4e^{4x} dx \\ e^{4x} dx = \frac{dt}{4} \end{cases} = \int \sin t \frac{dt}{4} = \frac{1}{4} \cos(e^{4x} + 3) + C.$$

Otbet: $\frac{1}{4}\cos(e^{4x}+3)+C.$

Пример 1.7(1). Найти неопределенный интеграл $\int e^{4x} \sin(e^{4x} + 3) dx$.

Оформим для сравнения решение предыдущего примера вторым способом – с помощью внесения под знак дифференциала:

$$\int e^{4x} \sin(e^{4x} + 3) \, dx = \begin{cases} d(e^{4x} + 3) = 4e^{4x} dx \\ dx = \frac{d(e^{4x} + 3)}{4e^{4x}} \end{cases} =$$

$$= \int e^{4x} \sin(e^{4x} + 3) \frac{d(e^{4x} + 3)}{4e^{4x}} = \frac{1}{4} \int \sin(e^{4x} + 3) \, d(e^{4x} + 3) =$$

$$= \frac{1}{4}\cos(e^{4x} + 3) + C.$$

Otbet: $\frac{1}{4}\cos(e^{4x} + 3) + C$.

<u>Пример 1.8.</u> Найти неопределенный интеграл $\int \frac{dx}{1+\sqrt{x}}$

Сделаем замену, обозначив за новую переменную квадратный корень, затем выразим обратно x и найдем dx:

$$\int \frac{dx}{1+\sqrt{x}} = \left\{ t = \sqrt{x} \to x = t^2 \right\} = \int \frac{2tdt}{1+t} = 2\int \frac{(t+1)-1}{1+t} dt =$$

$$= 2\int \left(1 - \frac{1}{1+t} \right) dt = 2\left(\int dt - \int \frac{1}{1+t} dt \right) = 2t - 2\ln(1+t) + C =$$

$$= 2\sqrt{x} - 2\ln(1+\sqrt{x}) + C.$$

Otbet: $2\sqrt{x} - 2\ln(1 + \sqrt{x}) + C$.

Упражнения:

Найти неопределенные интегралы:

11.
$$\int (2+3x)^{23} dx$$

12.
$$\int \frac{dx}{(5x-4)^{46}}$$

$$13. \int \frac{dx}{x^2 + 4x + 8}$$

$$14. \int \frac{dx}{\sqrt{x^2 - 4x + 1}}$$

15.
$$\int \frac{x^5 dx}{\sqrt[4]{-3x^6 + 4}}$$

16.
$$\int \operatorname{ctg}(4x) dx$$

17.
$$\int 5^{-5\sin 2x - 6} \cos 2x \, dx$$

$$18. \int \frac{1}{(4-ctg5x)\sin^2 5x} dx$$

19.
$$\int \frac{dx}{x(\log_5^2 5x - 64)}$$

20.
$$\int \frac{(3x+1)}{\sqrt{5x^2+1}} dx$$

$$21. \int \frac{ax+b}{a^2x^2+b^2} dx$$

$$22. \int \frac{x - \sqrt{arctg2x}}{4x^2 + 1} dx$$

23.
$$\int \frac{e^{-bx}}{1 - e^{-2bx}} dx$$

24.
$$\int \frac{\sin x \cos x}{\sqrt{\cos^2 x - \sin^2 x}} dx$$

$$25. \int \frac{5^{\sqrt{x}} dx}{\sqrt{x}}$$

26.
$$\int \frac{\sin x - \cos x}{\sin x + \cos x} dx$$

27.
$$\int xe^{-x^2}dx$$

28.
$$\int \frac{\sqrt{tgx}}{\cos^2 x} dx$$

29.
$$\int \frac{a^x}{a^{2x}+1} dx$$

$$30. \int \frac{x}{\sqrt{a^4 - x^4}} dx$$

31.
$$\int 2xe^{x^2}dx$$

32.
$$\int (\sin x)^n \cos x dx$$

$$33. \int \frac{x}{\sqrt{1+x^2}} dx$$

3. Интегрирование по частям

Пусть u = u(x) и v = v(x) – дифференцируемые функции на промежутке X. Формула *интегрирования по частям* имеет вид:

$$\int u \cdot dv = uv - \int v \cdot du$$

Ее следует применять, если интеграл $\int v \cdot du$ проще, чем искомый интеграл $\int f(x) \cdot dx = \int u \cdot dv$.

<u>Пример 1.9.</u> Найти неопределенный интеграл $\int lnx dx$.

Применим формулу интегрирования по частям, так как производная логарифма – табличная формула, в отличие от первообразной:

$$\int \ln x dx = \begin{cases} u = \ln x; & du = \frac{dx}{x} \\ dv = dx; & v = \int dx = x \end{cases} = uv - \int v du = x$$
$$= x \ln x - \int x \frac{dx}{x} = x \ln x - x + C.$$

Otbet: x ln x - x + C.

Некоторые основные типы интегралов, которые берутся по частям:

- 1. Интеграл $\int P(x)\phi(x)dx$, где P(x) многочлен, а $\phi(x)$ одна из функций вида $\sin ax$, $\cos ax$, p^{ax} , берется по частям, если обозначить: $\begin{cases} u = P(x) \\ dv = \phi(x)dx \end{cases}$
- 2. Интеграл $\int P(x)\phi(x)dx$, где P(x) многочлен, а $\phi(x)$ обратная тригонометрическая функция или логарифмическая функция, берется по частям, если обозначить: $\begin{cases} u = \phi(x) \\ dv = P(x)dx \end{cases}$
- 3. Интеграл $\int \varphi(x) \phi(x) dx$, где $\varphi(x)$ одна из функций вида $\sin ax$, $\cos ax$, $\phi(x)$ одна из функций вида p^{ax} , берется по частям. В интеграле такого вида

неважно, что обозначить за функцию $u = \phi(x)$ или $u = \phi(x)$. Единственным условием является то, что при дальнейшем применении формулы та же функция снова берется в качестве u.

Пример 1.10. Найти неопределенный интеграл $\int x \sin x dx$.

Применим метод интегрирования по частям, выбрав u и dv согласно первому пункту описанного выше правила:

$$\int x \sin x dx = \begin{cases} u = x; & du = dx \\ dv = \sin x dx; & v = \int \sin x dx = -\cos x \end{cases} =$$

$$= uv - \int v du = -x \cos x + \int \cos dx = -x \cos x + \sin x + C.$$

Otbet: $-x\cos x + \sin x + C$.

<u>Пример 1.11.</u> Найти неопределенный интеграл $\int arssinx dx$.

Выделим функции u и v, придерживаясь второго пункта правила, и выполним интегрирование по частям. Затем для получившегося интеграла введем замену:

$$\int arssinx dx = \begin{cases} u = arssinx; & du = \frac{dx}{\sqrt{1 - x^2}} \end{cases} = xarssinx - \int \frac{xdx}{\sqrt{1 - x^2}} = \\ dv = dx & v = x \end{cases}$$

$$= \begin{cases} t = 1 - x^2 \\ dt = -2xdx \\ xdx = \frac{dt}{-2} \end{cases} = xarssinx - \int \frac{dt}{-2} = xarssinx + \frac{1}{2} \int t^{-\frac{1}{2}} dt = \\ = xarssinx + t^{\frac{1}{2}} + C = xarssinx + \sqrt{1 - x^2} + C.$$

Other: $xarssinx + \sqrt{1 - x^2} + C$.

Иногда формулу интегрирования по частям применяют многократно.

Пример 1.12. Найти неопределенный интеграл $\int e^x \sin x dx$.

Обозначим исходный интеграл через I и применим метод интегрирования по частям дважды, каждый раз обозначая за u, например, многочлены:

$$I = \int e^x \sin x dx = \begin{cases} u = \sin x; & du = \cos x dx \\ dv = e^x dx; & v = \int e^x dx = e^x \end{cases} =$$

$$= e^x \sin x - \int e^x \cos x dx = \begin{cases} u = \cos x; & du = -\sin x dx \\ dv = e^x dx; & v = \int e^x dx = e^x \end{cases} =$$

$$= e^x \sin x - \left(e^x \cos x + \int e^x \sin x dx \right) = e^x \sin x - e^x \cos x - I + C_0.$$

Решаем уравнение относительно I:

$$I = e^x sinx - e^x cosx - I + C_0,$$

$$I = \frac{1}{2}(e^x sinx - e^x cosx) + \frac{C_0}{2}.$$

Пусть $\frac{C_0}{2}$ = C, тогда $I = \frac{1}{2}(e^x sinx - e^x cosx) + C$.

Otbet: $\frac{1}{2}(e^x \sin x - e^x \cos x) + C$.

<u>Пример 1.13.</u> Найти неопределенный интеграл $\int \sqrt{x^2 + k} \ dx$.

Обозначим исходный интеграл через I и применим формулу интегрирования по частям:

$$I = \int \sqrt{x^2 + k} \, dx = \begin{cases} u = \sqrt{x^2 + k}; & du = \frac{x}{\sqrt{x^2 + k}} \, dx \\ dv = dx; & v = x \end{cases}$$

$$= x\sqrt{x^2 + k} - \int \frac{x^2}{\sqrt{x^2 + k}} \, dx = x\sqrt{x^2 + k} - \int \frac{x^2 + k - k}{\sqrt{x^2 + k}} \, dx =$$

$$= x\sqrt{x^2 + k} - \int \sqrt{x^2 + k} \, dx + k \int \frac{dx}{\sqrt{x^2 + k}} =$$

$$= x\sqrt{x^2 + k} - I + k \ln |x + \sqrt{x^2 + k}| + C_0.$$

Имеем:

$$I = x\sqrt{x^2 + k} - I + k \ln \left| x + \sqrt{x^2 + k} \right| + C_0;$$

$$2I = x\sqrt{x^2 + k} + k \ln \left| x + \sqrt{x^2 + k} \right| + C_0;$$

$$I = \frac{1}{2} \left(x \sqrt{x^2 + k} + k \ln |x + \sqrt{x^2 + k}| \right) + \frac{c_0}{2}.$$

Обозначим: $C = \frac{C_0}{2}$, получим формулу:

$$I = \frac{1}{2} \left(x \sqrt{x^2 + k} + k \ln |x + \sqrt{x^2 + k}| \right) + C.$$

Otbet:
$$\frac{1}{2} \left(x \sqrt{x^2 + k} + k \ln \left| x + \sqrt{x^2 + k} \right| \right) + C.$$

Упражнения:

Найти неопределенные интегралы:

34.
$$\int xe^{2x}dx$$

35.
$$\int (4x - 5)\cos 4x dx$$

36.
$$\int arctg(x+3)dx$$

37.
$$\int x^{-\frac{5}{8}} \ln x dx$$

38.
$$\int (-5x+6)(\sin 3x - 3\cos 3x)dx$$

39.
$$\int (x^2 - x + 4) \sin 3x dx$$

40.
$$\int (x-6)arctg4xdx$$

41.
$$\int \lg(x-6)dx$$

42.
$$\int (6x+2)(\ln^2 x + 4\ln x + 5) dx$$

43.
$$\int (x^2 - x - 8)e^{2x} dx$$

44.
$$\int e^x \sin 5x dx$$

45.
$$\int \sin(\ln 7x) dx$$

II. Интегрирование рациональных функций

Рациональной функцией называется функция вида $f(x) = \frac{P(x)}{Q(x)}$, где P(x) и Q(x) — многочлены. Дробь $\frac{P(x)}{Q(x)}$ называется правильной, если степень числителя меньше степени знаменателя. Так, например, $\frac{x+5}{2x^2-1}$ правильная дробь, а $\frac{x^3+x-4}{x^2+x}$ — неправильная дробь. Осуществляя деление с остатком, любую неправильную дробь можно представить в виде суммы многочлена и правильной дроби. Например, $\frac{x^3+x-4}{x^2+x} = (x-1) + \frac{2x-4}{x^2+x}$.

Интеграл от многочлена является суммой табличных интегралов. Любая правильная дробь однозначно разлагается в сумму элементарных дробей вида:

$$\frac{A_1}{x-a}, \dots, \frac{A_n}{(x-a)^n}, \frac{M_1x+N_1}{x^2+px+q}, \dots, \frac{M_nx+N_n}{(x^2+px+q)^n}$$

где n — натуральное число n > 1, а $p^2 - 4q < 0$.

Алгоритм представления правильной дроби в виде суммы элементарных дробей основан на методе неопределенных коэффициентов.

<u>Пример 2.1.</u> Разложить дробь $\frac{3x^3+5x^2+4x+1}{(x^2+2x+1)(x^2+x+1)}$ на элементарные дроби.

$$\frac{3x^3 + 5x^2 + 4x + 1}{(x^2 + 2x + 1)(x^2 + x + 1)} = \frac{3x^3 + 5x^2 + 4x + 1}{(x + 1)^2(x^2 + x + 1)} =$$

$$= \frac{A_1}{x + 1} + \frac{A_2}{(x + 1)^2} + \frac{Mx + N}{x^2 + x + 1} =$$

$$= \frac{A_1(x + 1)(x^2 + x + 1) + A_2(x^2 + x + 1) + (Mx + N)(x + 1)^2}{(x + 1)^2(x^2 + x + 1)};$$

$$3x^{3} + 5x^{2} + 4x + 1 =$$

$$= A_{1}(x+1)(x^{2} + x + 1) + A_{2}(x^{2} + x + 1) + (Mx + N)(x+1)^{2};$$

$$3x^{3} + 5x^{2} + 4x + 1 = (M + A_{1})x^{3} +$$

$$+ (A_{2} + 2M + 2A_{1} + N)x^{2} + (A_{2} + M + 2A_{1} + 2N)x + (A_{2} + A_{1} + N);$$

$$\begin{cases} A_1 + M = 3 \\ A_2 + 2M + 2A_1 + N = 5 \\ A_2 + M + 2A_1 + 2N = 4 \end{cases} \to \begin{cases} A_1 = 2 \\ A_2 = -1 \\ M = 1 \\ N = 0 \end{cases}$$

$$\frac{3x^3 + 5x^2 + 4x + 1}{(x^2 + 2x + 1)(x^2 + x + 1)} = \frac{A_1}{x + 1} + \frac{A_2}{(x + 1)^2} + \frac{Mx + N}{x^2 + x + 1} = \frac{2}{x + 1} - \frac{1}{(x + 1)^2} + \frac{x}{x^2 + x + 1}.$$
Other:
$$\frac{3x^3 + 5x^2 + 4x + 1}{(x^2 + 2x + 1)(x^2 + x + 1)} = \frac{2}{x + 1} - \frac{1}{(x + 1)^2} + \frac{x}{x^2 + x + 1}.$$

Вычисление интегралов четырех типов:

1 mun.
$$\int \frac{A}{x-a} dx = A \int \frac{d(x-a)}{x-a} = A \cdot \ln|x-a| + C$$
.
2 mun. $\int \frac{A}{(x-a)^n} dx = A \int (x-a)^{-n} d(x-a) = \frac{(x-a)^{1-n}}{1-n} + C, n > 1$.

Пример 2.2. Найти неопределенный интеграл
$$\int \frac{6x+1}{x^2-16} dx$$

Разложим знаменатель дроби на множители и представим дробь в виде суммы простейших:

$$\frac{6x+1}{x^2-16} = \frac{6x+1}{(x-4)(x+4)} = \frac{A}{x-4} + \frac{B}{x+4} = \frac{A(x+4)+B(x-4)}{(x-4)(x+4)} =$$

$$= \frac{(A+B)x+(4A-4B)}{(x-4)(x+4)},$$

$$(A+B)x+(4A-4B) = 6x+1,$$

$$\begin{cases} A+B=6\\ 4A-4B=1 \end{cases} = > \begin{cases} A = \frac{25}{8}\\ B = \frac{23}{8} \end{cases}$$

Вернувшись к интегралу, получим:

$$\int \frac{6x+1}{x^2-16} dx = \frac{25}{8} \int \frac{dx}{x-4} + \frac{23}{8} \int \frac{dx}{x+4} = \frac{25}{8} \int \frac{d(x-4)}{x-4} + \frac{23}{8} \int \frac{d(x+4)}{x+4} = \frac{25}{8} \ln|x-4| + \frac{23}{8} \ln|x+4| + C.$$

Otbet:
$$\frac{25}{8}\ln|x-4| + \frac{23}{8}\ln|x+4| + C$$
.

 $3 \ mun. \int \frac{Mx+N}{x^2+px+q} dx, p^2-4q < 0.$ Эти интегралы сводятся к табличным интегралам.

Пример 2.3. Найти неопределенный интеграл
$$\int \frac{8+x}{x^2+12x+100} dx$$

Так как трехчлен, находящийся в знаменателе, не раскладывается на множители (дискриминант отрицателен), выделим в числителе дроби производную знаменателя и разобьем исходный интеграл на сумму двух. Каждый из них вычислим методом замены или подведением под дифференциал:

$$\int \frac{8+x}{x^2+12x+100} dx = \frac{1}{2} \int \frac{(2x+12)+4}{x^2+12x+100} dx = \frac{1}{2} \int \frac{2x+12}{x^2+12x+100} dx + \frac{1}{2} \int \frac{dx}{x^2+12x+100} dx = \frac{1}{2} \int \frac{d(x^2+12x+100)}{x^2+12x+100} dx + 2 \int \frac{dx}{(x+6)^2+64} dx = \frac{1}{2} \ln|x^2+12x+100| + 2 \int \frac{d(x+6)}{(x+6)^2+8^2} dx = \frac{1}{2} \ln|x^2+12x+100| + 2 \int \frac{d(x+6)}{(x+6)^2+8^2} dx = \frac{1}{2} \ln|x^2+12x+100| + \frac{1}{4} \arctan \frac{x+6}{8} + C.$$

Other: $\frac{1}{2} \ln|x^2+12x+100| + \frac{1}{4} \arctan \frac{x+6}{8} + C.$

4 mun.
$$\int \frac{Mx+N}{(x^2+px+q)^n} dx$$
, $p^2 - 4q < 0$, $n > 1$.

Интегралы 4 типа сводятся к интегралам вида: $I_{n+1} = \int \frac{dx}{\left(t^2+1\right)^{n+1}}$. Для их вычисления применяют рекуррентную формулу:

$$\int \frac{dx}{(t^2+1)^{n+1}} = \frac{2n-1}{2n} \int \frac{dx}{(t^2+1)^n} + \frac{1}{2n} \frac{t}{(t^2+1)^n}$$
или

$$I_{n+1} = \frac{2n-1}{2n} I_n + \frac{1}{2n} \frac{t}{(t^2+1)^n}.$$

<u>Пример 2.4.</u> Найти неопределенный интеграл $\int \frac{4x+3}{(x^2+2x+2)^2} dx$.

$$\int \frac{4x+3}{(x^2+2x+2)^2} dx = 2\int \frac{(2x+2)-2+\frac{3}{2}}{(x^2+2x+2)^2} dx =$$

$$= 2\int \frac{2x+2}{(x^2+2x+2)^2} dx - \int \frac{dx}{(x^2+2x+2)^2} =$$

$$= 2\int (x^2+2x+2)^{-2} d(x^2+2x+2) - \int \frac{dx}{(x^2+2x+1+1)^2} =$$

$$= -\frac{2}{x^2+2x+2} - \int \frac{d(x+1)}{((x+1)^2+1)^2} = \begin{cases} t=x+1\\ x=t-1 \end{cases} =$$

$$= -\frac{2}{x^2+2x+2} - \int \frac{dt}{(t^2+1)^2} = -\frac{2}{x^2+2x+2} - I_2 =$$

$$= -\frac{2}{x^2+2x+2} - \frac{t}{2(t^2+1)} - \frac{1}{2}I_1 =$$

$$= -\frac{2}{x^2+2x+2} - \frac{t}{2((x+1)^2+1)} - \frac{1}{2}(arctgt+C) =$$

$$= -\frac{2}{x^2+2x+2} - \frac{x+1}{2((x+1)^2+1)} - \frac{1}{2}(arctg(x+1)+C) =$$

$$= -\frac{2}{x^2+2x+2} - \frac{x+1}{2(x^2+2x+2)} - \frac{1}{2}arctg(x+1) - C' =$$

$$= -\frac{x+5}{2(x^2+2x+2)} - \frac{1}{2}arctg(x+1) - C'.$$

Рассмотрим еще несколько примеров.

<u>Пример 2.5.</u> Найти неопределенный интеграл $\int \frac{x+3}{x^2+9} dx$

Преобразуем подынтегральное выражение. Второй из полученных интегралов является табличным, а первый вычислим с помощью замены:

$$\int \frac{x+3}{x^2+9} dx = \int \left(\frac{x}{x^2+9} + \frac{3}{x^2+9}\right) dx = \int \frac{x}{x^2+9} dx + 3\int \frac{1}{x^2+9} dx = 0$$

$$= \begin{cases} t = x^2 + 9 \\ dt = 2x dx \\ x dx = \frac{dt}{2} \end{cases} = \frac{1}{2} \int \frac{dt}{t} + \frac{3}{3} \operatorname{arctg}\left(\frac{x}{3}\right) + C = \frac{1}{2} \ln|t| + \operatorname{arctg}\left(\frac{x}{3}\right) + C = \frac{1}{2} \ln|x^2 + 9| + \operatorname{arctg}\left(\frac{x}{3}\right) + C.$$

$$= \frac{1}{2} \ln(x^2 + 9) + \operatorname{arctg}\left(\frac{x}{3}\right) + C.$$
Other: $\frac{1}{2} \ln(x^2 + 9) + \operatorname{arctg}\left(\frac{x}{3}\right) + C.$

Пример 2.6. Найти неопределенный интеграл
$$\int \frac{-6x^3 + x^2 - 6x - 7}{x + 2} dx$$

Дробь под знаком интеграла – неправильная, выделим ее целую часть делением числителя на знаменатель «уголком», затем вычислим табличные интегралы:

$$\int \frac{-6x^3 + x^2 - 6x - 7}{x + 2} dx = \int \left(-6x^2 + 13x - 32 + \frac{57}{x + 2} \right) dx =$$

$$= -2x^3 + \frac{13}{2}x^2 - 32x + 57\ln|x + 2| + C.$$
Other: $-2x^3 + \frac{13}{2}x^2 - 32x + 57\ln|x + 2| + C.$

Пример 2.7. Найти неопределенный интеграл
$$\int \frac{2x^5+4x^3+x^2+12}{x^4+4x^2} dx$$
.

Выделим целую часть, разложим знаменатель на множители, представим в виде трех простейших дробь (кратный множитель x^2 дает две дроби – со знаменателями x и x^2):

$$\frac{2x^{5} + 4x^{3} + x^{2} + 12}{x^{4} + 4x^{2}} = 2x + \frac{-4x^{3} + x^{2} + 12}{x^{2}(x^{2} + 4)};$$

$$\frac{-4x^{3} + x^{2} + 12}{x^{2}(x^{2} + 4)} = \frac{A}{x} + \frac{B}{x^{2}} + \frac{Cx + D}{x^{2} + 4} = \frac{(A + C)x^{3} + (B + D)x^{2} + 4Ax + 4B}{x^{2}(x^{2} + 4)};$$

$$\begin{cases} A + C = -4 \\ B + D = 1 \\ 4A = 0 \\ 4B = 12 \end{cases} \xrightarrow{A = 0} \begin{cases} A = 0 \\ B = 3 \\ C = -4 \end{cases};$$

Вернувшись к интегралу, получим:

$$\int \left(2x + \frac{-4x^3 + x^2 + 12}{x^2(x^2 + 4)}\right) dx = \int \frac{0}{x} dx + \int \frac{3}{x^2} dx + \int \frac{(-4x - 2)dx}{x^2 + 4} =$$

$$= 0 + 3\frac{x^{-1}}{-1} - 2\int \frac{2xdx}{x^2 + 4} - 2\int \frac{dx}{x^2 + 4} = -\frac{3}{x} - 2\int \frac{d(x^2 + 4)}{x^2 + 4} - 2\int \frac{dx}{x^2 + 2^2} =$$

$$= -\frac{3}{x} - 2\ln|x^2 + 4| - arctg\frac{x}{2} + C.$$

Otbet: $-\frac{3}{x} - 2\ln|x^2 + 4| - arctg\frac{x}{2} + C$.

Упражнения:

Найти неопределенные интегралы:

46.
$$\int \frac{4x+7}{x^2-16} dx$$

47.
$$\int \frac{2x^3 - 5x^2 - 5x - 9}{x - 2} dx$$

48.
$$\int \frac{x-4}{x^2+10x+9} dx$$

49.
$$\int \frac{x+2}{x^2+16x+80} dx$$

$$50. \int \frac{3x^2 + 16x + 7}{(x+2)(x^2 + 4x + 4)} dx$$

$$51. \int \frac{x^2 + 5x - 3}{(x+1)(x^2 + 4x + 4)} dx$$

$$52. \int \frac{8(x^2 + 3x - 1)}{x^3 - 4x^2 + 8x} dx$$

53.
$$\int \frac{5x^4 + 11x^3 + 16x^2 - 10x - 5}{x^3 + 2x^2 + 5x} dx$$

$$54. \int \frac{(x-1)^2}{x^2 + 3x + 4} dx$$

$$55. \int \frac{x^4}{x^4 - 1} dx$$

$$56. \int \frac{dx}{(x^2 - 4x + 3)(x^2 + 4x + 5)}$$

57.
$$\int \frac{x^3 + 6x^2 + 13x + 6}{(x - 2)(x + 2)^3} dx$$

ІІІ. Интегрирование иррациональных функций

1. Интегралы вида $\int R\left(x,x^{\frac{m}{n}},\dots,x^{\frac{p}{q}}\right)dx$, где R — рациональная функция от x и дробных степеней x могут быть сведены к интегралам от рациональной функции. Если k —общий знаменатель дробей $\frac{m}{n},\dots,\frac{p}{q}$, то сделать замену:

$$x = t^k \to dx = kt^{k-1}dt.$$

<u>Пример 3.1.</u> Найти неопределенный интеграл $\int \frac{x+\sqrt[3]{x^2}+\sqrt[6]{x}}{x(1+\sqrt[3]{x})} dx$.

Так как в подынтегральной функции участвуют дробные степени $\frac{2}{3}$, $\frac{1}{6}$, $\frac{1}{3}$ переменной x, то выберем в качестве замены $t=x^{\frac{1}{6}}$, то есть $x=t^6$:

Otbet: $\frac{3}{2}\sqrt[3]{x^2} + 6arctg\sqrt[6]{x} + C.$

2. Тригонометрические подстановки применяются в интегралах следующего вида:

1)
$$\int R(\sqrt{a^2 - x^2}, x) dx = \begin{cases} x = a \sin t \ (\text{или } x = a \cos t) \\ \sqrt{a^2 - x^2} = a \cos t \\ dx = a \cos t dt \end{cases}$$
;

2)
$$\int R(\sqrt{a^2 + x^2}, x) dx = \begin{cases} x = a \cdot tgt \text{ (или } x = a \cdot ctgt) \\ \sqrt{a^2 + x^2} = \frac{a}{\cos t} \\ dx = \frac{adt}{\cos^2 t} \end{cases}$$
;

3)
$$\int R(\sqrt{x^2 - a^2}, x) dx = \begin{cases} x = \frac{a}{\cos t} \left(\text{или } x = \frac{a}{\sin t} \right) \\ \sqrt{x^2 - a^2} = a \cdot tgt \\ dx = \frac{a \sin t dt}{\cos^2 t} \end{cases}.$$

<u>Пример 3.2.</u> Найти неопределенный интеграл $\int \sqrt{a^2 - x^2} dx$.

Сделаем замену $x = a \sin t$, согласно указанному выше правилу, затем применим формулу понижения степени. Вычислим табличный интеграл и произведем обратную замену:

$$\int \sqrt{a^2 - x^2} dx = \begin{cases} x = a \sin t, \, dx = a \cos t dt \\ \sqrt{a^2 - x^2} = a \cos t \end{cases} = \int a^2 \cos^2 t dt =$$

$$= \frac{a^2}{2} \int (1 + \cos 2t) dt = \frac{a^2}{2} \left(t + \frac{1}{2} \sin 2t \right) + C = \frac{a^2}{2} (t + \sin t \cos t) + C =$$

$$= \left\{ t = \arcsin \frac{x}{a} \right\} = \frac{a^2}{2} \left(\arcsin \frac{x}{a} + \sin \left(\arcsin \frac{x}{a} \right) \cos \left(\arcsin \frac{x}{a} \right) \right) + C =$$

$$= \left\{ \cos(\arcsin b) = \sqrt{1 - b^2} \right\} = \frac{a^2}{2} \left(\arcsin \frac{x}{a} + \frac{x}{a} \sqrt{1 - \frac{x^2}{a^2}} \right) + C =$$

$$= \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + C.$$
Other: \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + C.

3. Интегралы вида $\int R(x, \sqrt{Ax^2 + Bx + C}) dx$, $A \neq 0$

1)
$$\int \frac{dx}{\sqrt{Ax^2 + Bx + C}}$$
 или $\int \sqrt{Ax^2 + Bx + C} dx$

Если A>0, то выделяя квадрат суммы или разности под знаком квадратного корня, интегралы сводятся к виду $\int \frac{dt}{\sqrt{t^2+a}}$ или $\int \sqrt{t^2+a} dt$ соответственно.

Если A < 0, то выделяя квадрат суммы или разности под знаком квадратного корня, интегралы сводятся к виду $\int \frac{dt}{\sqrt{a^2-t^2}}$ или $\int \sqrt{a^2-t^2} dt$ соответственно.

2)
$$\int \frac{dx}{(x-\alpha)\sqrt{Ax^2+Bx+C}} = \begin{cases} x-\alpha = \frac{1}{t} \\ dx = -\frac{dt}{t^2} \end{cases}.$$

3)
$$\int \frac{Mx+N}{\sqrt{Ax^2+Bx+C}} dx$$
 или $\int (Mx+N)\sqrt{Ax^2+Bx+C} dx$ сводим к типу 1).

<u>Пример 3.3.</u> Найти $\int \frac{2x+3}{\sqrt{x^2+4x+5}} dx$.

Выделяем в числителе дифференциал знаменателя и разбиваем исходный интеграл на сумму двух табличных интегралов:

$$\int \frac{2x+3}{\sqrt{x^2+4x+5}} dx = \{d(x^2+4x+5) = (2x+4)dx\} = \int \frac{(2x+4)-1}{\sqrt{x^2+4x+5}} dx =$$

$$= \int \frac{d(x^2+4x+5)}{\sqrt{x^2+4x+5}} - \int \frac{dx}{\sqrt{x^2+4x+5}} = 2\sqrt{x^2+4x+5} - \int \frac{dx}{\sqrt{(x+2)^2+1}} =$$

$$= 2\sqrt{x^2+4x+5} - \int \frac{d(x+2)}{\sqrt{(x+2)^2+1}} =$$

$$= 2\sqrt{x^2+4x+5} - \ln|x+2+\sqrt{x^2+4x+5}| + C.$$
Other: $2\sqrt{x^2+4x+5} - \ln|x+2+\sqrt{x^2+4x+5}| + C.$

4. Интегралы вида
$$\int R\left(x, \sqrt[n]{\frac{ax+b}{cx+d}}\right) dx$$
, $a, b, c, d = const, n \in N$

Для вычисления интегралов данного типа нужно сделать замену

$$t = \sqrt[n]{\frac{ax+b}{cx+d}}.$$

<u>Пример 3.4.</u> Найти неопределенный интеграл $\int \frac{8-\sqrt{x+6}}{\sqrt{x+6}+9} dx$.

Сделаем замену переменной, выбрав за t квадратный корень, затем выразив x, найдем dx. Подставим полученные выражения в исходный интеграл и применим метод интегрирования дробно-рациональных функций:

$$\int \frac{8 - \sqrt{x+6}}{\sqrt{x+6} + 9} dx = \begin{cases} t = \sqrt{x+6} \\ t^2 = x+6 \\ x = t^2 - 6 \\ dx = 2tdt \end{cases} = \int \frac{8 - t}{t+9} 2t dt = 2\int \frac{8t - t^2}{t+9} dt =$$

$$= 2\int \left(-t + 17 - \frac{153}{t+9} \right) dt = -t^2 + 34t - 306 \ln|t+9| + C =$$

$$= -x - 6 + 34\sqrt{x+6} - 306 \ln|\sqrt{x+6} + 9| + C.$$

Otbet:
$$-x - 6 + 34\sqrt{x+6} - 306 \ln |\sqrt{x+6} + 9| + C$$
.

5. Интегрирование биномиальных дифференциалов $\int x^m (a + bx^n)^p dx$.

Биномиальным дифференциалом называется выражение вида $x^m(a + bx^n)^p$, где a, b – действительные числа, m, n, p – рациональные числа.

Интеграл от биномиального дифференциала выражается в конечном виде через элементарные функции в следующих случаях:

- 1) если p целое, $m = \frac{r_1}{s_1}$, $n = \frac{r_2}{s_2}$, тогда сделать замену: $x = t^s$, где $s = HOK(s_1, s_2)$.
- 2) если $p = \frac{r}{s}$ несократимая дробь и $\frac{m+1}{n}$ целое число, то сделать замену $a + bx^n = t^s$.
- 3) если $p = \frac{r}{s}$ дробное число, $\frac{m+1}{n}$ дробное число и $\frac{m+1}{n}$ + p целое число, то сделать замену $a + bx^n = x^n t^s$.

Никакие другие случаи не дают интегрируемости в конечном виде.

<u>Пример 3.5.</u> Найти неопределенный интеграл $\int \frac{\sqrt[3]{1+\sqrt[4]{x}}}{\sqrt{x}} dx$.

$$\int \frac{\sqrt[3]{1+\sqrt[4]{x}}}{\sqrt{x}} dx = \int x^{-\frac{1}{2}} \cdot \left(1+x^{\frac{1}{4}}\right)^{\frac{1}{3}} dx =$$

$$= \left\{ \begin{aligned} m &= -\frac{1}{2}, n = \frac{1}{4}, p = \frac{1}{3}, \frac{m+1}{n} = 2 \in \mathbb{Z} \\ \text{замена: } t^3 &= 1+x^{\frac{1}{4}}, dx = 12(t^3-1)^3 t^2 dt \end{aligned} \right\} =$$

$$= 12\int (t^6-t^3) dt = \frac{12}{7}t^7 - 3t^4 + C = \frac{12}{7}\sqrt[3]{\left(1+\sqrt[4]{x}\right)^7} - 3\sqrt[3]{\left(1+\sqrt[4]{x}\right)^4} + C.$$
Ответ: $\frac{12}{7}\sqrt[3]{\left(1+\sqrt[4]{x}\right)^7} - 3\sqrt[3]{\left(1+\sqrt[4]{x}\right)^4} + C.$

Упражнения:

Найти неопределенные интегралы:

$$58. \int \frac{5 - \sqrt{x+2}}{\sqrt{x+2} - 2} dx$$

$$59. \int \frac{\sqrt{x-3}-7}{x-28} dx$$

$$60. \int \frac{8\sqrt[3]{x}}{9 - 7\sqrt[3]{x^2}} dx$$

$$61. \int \sqrt{x^2 + 5} \, dx$$

$$62. \int \sqrt{64 - x^2} \, dx$$

63.
$$\int \frac{4-x}{\sqrt{x^2+14x+56}} dx$$

$$64. \int \frac{7+x}{\sqrt{45-x^2-4x}} dx$$

65.
$$\int \frac{1 + \sqrt[4]{x}}{x + \sqrt{x}} dx$$

$$66. \int \sqrt{\frac{1-x}{1+x}} \cdot \frac{dx}{1+x}$$

67.
$$\int \frac{dx}{\sqrt[3]{x^2}(1+\sqrt[3]{x^2})}$$

68.
$$\int \frac{dx}{x^2 \sqrt{(1+x^2)^3}}$$

69.
$$\int \frac{1}{(x-1)\sqrt{x^2-2}} dx$$

IV. Интегрирование тригонометрических функций

1. Основные формулы

$$1. \int \sin x dx = -\cos x + C;$$

2.
$$\int \cos x dx = \sin x + C;$$

$$3. \int \frac{dx}{\cos^2 x} = tgx + C;$$

$$4. \int \frac{dx}{\sin^2 x} = -ctgx + C;$$

$$5. \int tgx dx = -\ln|\cos x| + C;$$

$$6. \int ctgx dx = \ln|\sin x| + C;$$

7.
$$\int \frac{dx}{\sin x} = \ln \left| tg \frac{x}{2} \right| + C; \int \frac{dx}{\sin x} = \ln \left| \frac{\cos x - 1}{\cos x + 1} \right| + C;$$

8.
$$\int \frac{dx}{\cos x} = \ln \left| tg\left(\frac{x}{2} + \frac{\pi}{4}\right) \right| + C; \int \frac{dx}{\cos x} = \ln \left| \frac{\sin x + 1}{\sin x - 1} \right| + C.$$

Докажем некоторые формулы.

Доказательство 5:

$$\int tgxdx = \int \frac{\sin xdx}{\cos x} = -\int \frac{d(\cos x)}{\cos x} = -\ln|\cos x| + C.$$

Доказательство 6:

$$\int ctgxdx = \int \frac{\cos dx}{\sin x} = \int \frac{d(\sin x)}{\sin x} = \ln|\sin x| + C.$$

Доказательство 7:

$$\int \frac{dx}{\sin x} = \int \frac{dx}{2\sin\frac{x}{2}\cos\frac{x}{2}} = \int \frac{dx}{2tg\frac{x}{2}\cos^2\frac{x}{2}} = \left\{ d\left(tg\frac{x}{2}\right) = \frac{dx}{2\cos^2\frac{x}{2}} \right\} =$$

$$= \int \frac{d\left(tg\frac{x}{2}\right)}{tg\frac{x}{2}} = \ln\left|tg\frac{x}{2}\right| + C,$$

или

$$\int \frac{dx}{\sin x} = \int \frac{\sin x dx}{\sin^2 x} = \int \frac{\sin x dx}{1 - \cos^2 x} = \int \frac{-d(\cos x)}{1 - \cos^2 x} = \ln \left| \frac{\cos x - 1}{\cos x + 1} \right| + C.$$

Доказательство 8:

$$\int \frac{dx}{\cos x} = \int \frac{dx}{\sin\left(\frac{\pi}{2} + x\right)} = \int \frac{d\left(\frac{\pi}{2} + x\right)}{\sin\left(\frac{\pi}{2} + x\right)} = \ln\left|tg\left(\frac{\pi}{4} + \frac{x}{2}\right)\right| + C,$$

ИЛИ

$$\int \frac{dx}{\cos x} = \int \frac{\cos x dx}{\cos^2 x} = \int \frac{\cos x dx}{1 - \sin^2 x} = \int \frac{d(\sin x)}{1 - \sin^2 x} = \ln \left| \frac{\sin x + 1}{\sin x - 1} \right| + C.$$

<u>Пример 4.1.</u> Найти неопределенный интеграл $\int sin(8x - 9)dx$.

Воспользуемся методом замены переменной:

$$\int \sin(8x - 9) \, dx = \begin{cases} t = 8x - 9 \\ dt = 8dx \\ dx = \frac{dt}{8} \end{cases} = \frac{1}{8} \int \sin t \, dt = -\frac{\cos t}{8} + C =$$
$$= -\frac{\cos(8x - 9)}{8} + C.$$

Otbet:
$$-\frac{\cos(8x-9)}{8} + C.$$

<u>Пример 4.2.</u> Найти неопределенный интеграл $\int 4\cos^2(\frac{x}{2}) dx$.

Преобразуем подынтегральную функцию по формуле двойного угла, получим:

$$\int 4\cos^2\left(\frac{x}{2}\right)dx = 4\int \frac{1-\cos x}{2}dx = 2\int dx - 2\int \cos x dx = 2x - 2\sin x + C.$$
Other: $2x - 2\sin x + C$.

2. Интегралы вида $\int R(\sin x,\cos x)dx$, где R —рациональная функция.

1) Применить универсальную подстановку, т.е. сделать замену: $z=tg\frac{x}{2}$, тогда

$$\sin x = \frac{2z}{1+z^2}, \cos x = \frac{1-z^2}{1+z^2}, tgx = \frac{2z}{1-z^2}.$$

$$x = 2arctgz \implies dx = \frac{2dz}{1 + z^2}.$$

<u>Пример 4.3.</u> Найти неопределенный интеграл $\int \frac{1}{3\cos x + \sin x + 5} dx$.

Воспользуемся универсальной тригонометрической подстановкой, затем в получившейся дроби выделим полный квадрат в знаменателе и подведем под знак дифференциала:

$$\int \frac{1}{3\cos x + \sin x + 5} dx = \begin{cases} t = tg\frac{x}{2} \Rightarrow x = 2arctgt \Rightarrow dx = \frac{2dt}{1 + t^2} \\ \sin x = \frac{2t}{1 + t^2}, \cos x = \frac{1 - t^2}{1 + t^2} \end{cases} =$$

$$= \int \frac{\frac{2dt}{1 + t^2}}{\frac{3(1 - t^2)}{1 + t^2} + \frac{2t}{1 + t^2} + 5} = \int \frac{2dt}{3(1 - t^2) + 2t + 5(1 + t^2)} =$$

$$= \int \frac{dt}{t^2 + t + 4} = \int \frac{dt}{(t^2 + t + \frac{1}{4}) + \frac{15}{4}} = \int \frac{d\left(t + \frac{1}{2}\right)}{\left(t + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{15}}{2}\right)^2} =$$

$$= \frac{2}{\sqrt{15}} arctg\left(\frac{t + \frac{1}{2}}{\frac{\sqrt{15}}{2}}\right) + C = \frac{2}{\sqrt{15}} arctg\left(\frac{2tg\left(\frac{x}{2}\right) + 1}{\sqrt{15}}\right) + C.$$
Other: $\frac{2}{\sqrt{15}} arctg\left(\frac{2tg\left(\frac{x}{2}\right) + 1}{\sqrt{15}}\right) + C.$

2) Если *R* — такая рациональная функция, что

$$R(\sin x, -\cos) = -R(\sin x, \cos x),$$

то сделать замену $t = \sin x$.

3) Если R-такая рациональная функция, что

$$R(-\sin x,\cos) = -R(\sin x,\cos x),$$

то сделать замену $t = \cos x$.

4) Если *R* — такая рациональная функция, что

$$R(-\sin x, -\cos) = R(\sin x, \cos x),$$

то сделать замену t = tgx.

<u>Пример 4.4.</u> Найти неопределенный интеграл $\int \frac{\sin x dx}{\sin^2 x + 1}$.

$$\int \frac{\sin x dx}{\sin^2 x + 1} = \left\{ \frac{t = \cos x}{dt = -\sin x dx} \right\} = -\int \frac{dt}{1 - t^2 + 1} = -\int \frac{dt}{2 - t^2} = \frac{1}{2\sqrt{2}} \ln \left| \frac{t - \sqrt{2}}{t + \sqrt{2}} \right| + C = \frac{\sqrt{2}}{4} \ln \left| \frac{\cos x - \sqrt{2}}{\cos x + \sqrt{2}} \right| + C.$$

Otbet:
$$\frac{\sqrt{2}}{4} \ln \left| \frac{\cos x - \sqrt{2}}{\cos x + \sqrt{2}} \right| + C.$$

- 5) Частные случаи:
 - A) Интегралы вида $\int \sin^p x \cdot \cos^q x dx$, $p, q \in Z$.
- 1) если p или q нечетное число, то случай «легкой интегрируемости».

<u>Пример 4.5.</u> Найти неопределенный интеграл $\int \sin^2 x \cdot \cos^3 x dx$.

Первую степень косинуса подведем под дифференциал синуса, а оставшуюся четную степень преобразуем с помощью основного тригонометрического тождества:

$$\int \sin^2 x \cdot \cos^3 x dx = \int \sin^2 x \cdot \cos^2 x \cdot \underbrace{\cos x dx}_{d(sinx)} = \int \sin^2 x \cdot (1 - \sin^2 x) d(\sin x) =$$

$$=\{\text{замена }t=\sin x\}=\int t^2(1-t^2)dt=\int (t^2-t^4)dt=\frac{t^3}{3}-\frac{t^5}{5}+C=$$

$$=\frac{\sin^3 x}{3}-\frac{\sin^5 x}{5}+C.$$

OTBET:
$$\frac{\sin^3 x}{3} - \frac{\sin^5 x}{5} + C.$$

- 2) если (p+q) —нечетное число, $p \ge 0$, $q \ge 0$, то случай «легкой интегрируемости».
- 3) если p, q —четные числа, то применить формулы понижения степени

$$\cos^2 x = \frac{1}{2}(1 + \cos 2x), \sin^2 x = \frac{1}{2}(1 - \cos 2x).$$

- B) Интегралы вида $\int \frac{\sin^p x}{\cos^q x} dx$
- 1) p нечетное, то случай «легкой интегрируемости» или универсальная подстановка.
- 2) p, q —четные числа, то выразить через tgx, ctgx:

$$\frac{1}{\cos^2 x} = 1 + tg^2 x; \ \frac{1}{\sin^2 x} = 1 + ctg^2 x; \ d(tgx) = \frac{dx}{\cos^2 x}; \ d(ctgx) = -\frac{dx}{\sin^2 x}.$$

- C) Интегралы вида $\int \frac{dx}{\sin^p x \cdot \cos^q x}$
- 1) (p+q) —четное число, то выразить через tgx, ctgx и формулы универсальной подстановки.
- 2) (p+q) —нечетное число, то применить основное тригонометрическое тождество.

<u>Пример 4.6.</u> Найти неопределенный интеграл $\int \frac{dx}{\sin x \cdot \cos^2 x}$.

Заменим в числителе единицу по основному тригонометрическому тождеству, поделим почленно и получим табличные интегралы:

$$\int \frac{dx}{\sin x \cdot \cos^2 x} = \int \frac{(\cos^2 x + \sin^2 x) dx}{\sin x \cdot \cos^2 x} = \int \left(\frac{\sin x}{\cos^2 x} + \frac{1}{\sin x}\right) dx =$$

$$= -\int \frac{d(\cos x)}{\cos^2 x} + \int \frac{dx}{\sin x} = \frac{1}{\cos x} + \ln\left|tg\frac{x}{2}\right| + C.$$
Other: $\frac{1}{\cos x} + \ln\left|tg\frac{x}{2}\right| + C.$

 \mathcal{A}) Интегралы вида $\int tg^nxdx; \int ctg^nxdx$ Использовать формулы:

$$tg^2x = \frac{1}{\cos^2x} - 1$$
; $ctg^2x = \frac{1}{\sin^2x} - 1$; $d(tgx) = \frac{dx}{\cos^2x}$; $d(ctgx) = -\frac{dx}{\sin^2x}$.

<u>Пример 4.7.</u> Найти неопределенный интеграл $\int tg^5xdx$.

$$\int tg^5 x dx = \int tg^3 x \cdot tg^2 x dx = \int tg^3 x \left(\frac{1}{\cos^2 x} - 1\right) dx =$$

$$= \int tg^3 x \frac{dx}{\cos^2 x} - \int tg^3 x dx = \int tg^3 x d(tgx) - \int tgx \left(\frac{1}{\cos^2 x} - 1\right) dx =$$

$$= \frac{tg^4 x}{4} - \int tgx \frac{dx}{\cos^2 x} + \int tgx dx = \frac{tg^4 x}{4} - \int tgx d(tgx) - \ln|\cos x| =$$

$$= \frac{tg^4 x}{4} - \frac{tg^2 x}{2} - \ln|\cos x| + C.$$

Otbet: $\frac{tg^4x}{4} - \frac{tg^2x}{2} - \ln|\cos x| + C.$

3. Интегралы $\int \sin ax \cdot \cos bx dx$, $\int \sin ax \cdot \sin bx dx$, $\int \cos ax \cdot \cos bx dx$

При вычислении интегралов данного вида необходимо использовать тригонометрические формулы:

$$\sin ax \cdot \cos bx = \frac{1}{2}(\sin(ax+bx) + \sin(ax-bx)),$$

$$\sin ax \cdot \sin bx = \frac{1}{2}(\cos(ax-bx) - \cos(ax+bx)),$$

$$\cos ax \cdot \cos bx = \frac{1}{2}(\cos(ax+bx) + \cos(ax-bx)).$$

Пример 4.8. Найти $\int sin(5x+2) \cdot cos(x-4) dx$.

Применим указанную выше формулу, получим сумму интегралов:

$$\int \sin(5x+2) \cdot \cos(x-4) \, dx = \frac{1}{2} \int (\sin(6x-2) + \sin(4x+6)) dx =$$

$$= \frac{1}{2} \int \sin(6x-2) \, dx + \frac{1}{2} \int \sin(4x+6) \, dx =$$

$$= -\frac{1}{12} \cos(6x-2) - \frac{1}{8} \cos(4x+6) + C.$$

Other: $-\frac{1}{12}\cos(6x-2) - \frac{1}{8}\cos(4x+6) + C$.

Упражнения:

Найти неопределенные интегралы:

$$70. \int \frac{1}{\sin^2(5x-3)} dx$$

71.
$$\int tg^2 4x \, dx$$

$$72. \int \cos^3(4x-5)\,dx$$

73.
$$\int \sin 4x \cos 5x \, dx$$

$$74. \int \sin^3 2x \cos^6 2x \, dx$$

75.
$$\int ctg^3 5x \, dx$$

76.
$$\int 6\sin^4 7x \, dx$$

77.
$$\int \frac{1}{35 - 10\sin 3x + 22\cos 3x} dx$$

78.
$$\int \cos 0.2x \cos 0.5x \, dx$$

79.
$$\int \sin^4 x \cos^2 x \, dx$$

80.
$$\int \frac{dx}{3 - 2sinx}$$

$$81. \int \frac{2 - \sin x}{2 + \cos x} dx$$

$$82. \int \cos 7x \cdot \sqrt[8]{6 - \sin 7x} \, dx$$

83.
$$\int 12 \sin^2 3x \cos^2 3x \, dx$$

$$84. \int \frac{1}{\sin^2(6x+5)} dx$$

V. Определенный интеграл

1. Формула Ньютона-Лейбница

Если функция f(x) непрерывна на [a; b] и F(x) – любая первообразная для f(x), то справедлива формула (Ньютона-Лейбница):

$$\int_{a}^{b} f(x) dx = F(b) - F(a) \equiv F(x)|_{a}^{b}$$

<u>Пример 5.1.</u> Вычислить определенный интеграл $\int_{-\frac{3}{5}}^{\frac{2}{5}} \frac{dx}{5x-6}$.

Подведением под знак дифференциала получим табличный интеграл, затем подставим пределы интегрирования по формуле Ньютона-Лейбница:

$$\int_{-\frac{3}{5}}^{\frac{2}{5}} \frac{dx}{5x - 6} = \frac{1}{5} \int_{-\frac{3}{5}}^{\frac{2}{5}} \frac{d(5x - 6)}{5x - 6} = \frac{1}{5} \ln|5x - 6| \Big|_{-\frac{3}{5}}^{\frac{2}{5}} =$$

$$= \frac{1}{5} (\ln|5 \cdot \frac{2}{5} - 6| - \ln|5 \cdot (-\frac{3}{5}) - 6|) = \frac{1}{5} \ln\frac{4}{9}.$$

Otbet: $\frac{1}{5} \ln \frac{4}{9}$.

<u>Пример 5.2.</u> Вычислить определенный интеграл $\int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx$, если $m \neq n$.

$$\int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx = \frac{1}{2} \int_{-\pi}^{\pi} (\cos(m-n)x - \cos(m+n)x) dx =$$

$$= \frac{1}{2} \left(\frac{\sin(m-n)x}{m-n} - \frac{\sin(m+n)x}{m+n} \right) \Big|_{-\pi}^{\pi} = \{\sin(\pi k) = 0, k \in Z\} = 0.$$
Other: 0.

2. Метод замены переменной

Пусть функция f(x) непрерывна на отрезке [a; b], а функция $x = \phi(t)$ дифференцируема на отрезке $[\alpha; \beta]$, и ее производная $\phi'(t)$ непрерывна на отрезке $[\alpha; \beta]$. Тогда, если множеством значений функции $x = \phi(t)$ является отрезок [a; b] и $\phi(\alpha) = a$, $\phi(\beta) = b$, то справедлива формула:

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\phi(t))\phi'(t)dt$$

<u>Пример 5.3.</u> Вычислить определенный интеграл $\int_0^{\frac{\pi}{12}} \frac{sn6x \ dx}{\cos^2 6x - 16}$.

Сделаем замену и воспользуемся свойством $\int_{a}^{b} f(x) \, dx = - \int_{b}^{a} f(x) \, dx$:

$$\int_{0}^{\frac{\pi}{12}} \frac{sn6x \, dx}{\cos^{2} 6x - 16} = \begin{cases} t = \cos 6x, & -6\sin 6x \, dx = dt \\ x = 0 \to t = 1, & x = \frac{\pi}{12} \to t = 0 \end{cases} = -\frac{1}{6} \int_{1}^{0} \frac{dt}{t^{2} - 16} = \frac{1}{6} \int_{0}^{1} \frac{dt}{t^{2} - 16} = \frac{1}{48} \ln \left| \frac{t - 4}{t + 4} \right| \Big|_{0}^{1} = \frac{1}{48} \ln \frac{3}{5}.$$

Otbet: $\frac{1}{48} \ln \frac{3}{5}$.

<u>Пример 5.4.</u> Вычислить определенный интеграл $\int_0^3 x \sqrt{1+x} \, dx$.

$$\int_{0}^{5} x\sqrt{1+x} \, dx = \begin{cases} t = \sqrt{1+x}, & x = t^{2} - 1, dx = 2tdt \\ x = 0 \to t = 1, & x = 3 \to t = 2 \end{cases} =$$

$$= 2 \int_{1}^{2} (t^{2} - 1)t^{2} \, dt = 2 \int_{1}^{2} (t^{4} - t^{2}) \, dt = 2 \left(\frac{t^{5}}{5} - \frac{t^{3}}{3} \right) \Big|_{1}^{2} =$$

$$= 2 \left(\frac{32}{5} - \frac{8}{3} - \frac{1}{5} + \frac{1}{3} \right) = 3 \frac{13}{15}.$$

Ответ: $3\frac{13}{15}$.

3. Интегрирование по частям

Если функции u = u(x) и v = v(x) имеют непрерывные производные на отрезке $[a;\ b]$, то

$$\int_{a}^{b} u dv = uv|_{a}^{b} - \int_{a}^{b} v du$$

<u>Пример 5.5.</u> Вычислить определенный интеграл $\int_1^e x \ln x \, dx$.

$$\int_{1}^{e} x \ln x \, dx = \begin{cases} u = \ln x & du = \frac{dx}{x} \\ dv = x dx & v = \frac{x^{2}}{2} \end{cases} = \frac{x^{2}}{2} \ln x \Big|_{1}^{e} - \int_{1}^{e} \frac{x}{2} \, dx = \frac{e^{2}}{2} - \frac{x^{2}}{4} \Big|_{1}^{e} = \frac{e^{2}}{2} - \frac{e^{2}}{4} + \frac{1}{4} = \frac{e^{2} + 1}{4}.$$

Otbet: $\frac{e^2+1}{4}$.

<u>Пример 5.6.</u> Вычислить определенный интеграл $\int_0^{\frac{\pi}{10}} (5x+1) \sin 5x \, dx$.

$$\int_{0}^{\frac{\pi}{10}} (5x+1)\sin 5x \, dx = \begin{cases} u = 5x+1 & du = 5dx \\ dv = \sin 5x \, dx & v = -\frac{1}{5}\cos 5x \end{cases} =$$

$$= -\frac{1}{5}(5x+1)\cos 5x \Big|_{0}^{\frac{\pi}{10}} + \frac{1}{5} \cdot 5 \int_{0}^{\frac{\pi}{10}} \cos 5x \, dx =$$

$$= -\frac{1}{5}(\frac{\pi}{2} + 1)\cos \frac{\pi}{2} + \frac{1}{5}\cos 0 + \frac{1}{5}\sin 5x \Big|_{0}^{\frac{\pi}{10}} = \frac{1}{5} + \frac{1}{5}\sin \frac{\pi}{2} = \frac{2}{5}.$$
Other: $\frac{2}{5}$.

Упражнения:

Вычислить определенные интегралы:

85.
$$\int_{-12}^{-\frac{4}{5}} \frac{dx}{(4-5x)^{\frac{4}{3}}}$$
86.
$$\int_{8}^{10} \frac{dx}{x^2-2x-15}$$

$$87. \int_{4}^{5} \frac{x dx}{(4x^2 - 63)^{\frac{7}{8}}}$$

$$88. \int_{-\frac{1}{8}\pi}^{-\frac{1}{16}\pi} ctg4x \, dx$$

$$89. \int_{-\frac{1}{54}\pi}^{\frac{1}{54}\pi} \frac{\cos 9x}{\sin^2 9x - 4} dx$$

$$90. \int_{\frac{1}{20}\pi}^{\frac{1}{10}\pi} \frac{1}{\sqrt[4]{7 - 5ctg5x} \cdot \sin^2 5x} dx$$

91.
$$\int_{-\frac{1}{6}\pi}^{-\frac{1}{8}\pi} \frac{3tg^36x + 3tg6x + 4}{\cos^2 6x} dx$$

92.
$$\int_{\ln 3}^{\ln 5} \frac{e^{3x}}{e^{6x} - 9} dx$$

$$93. \int_{\frac{e^5}{4}}^{\frac{e^6}{4}} \frac{dx}{x\sqrt{\ln^2 4x - 9}}$$

$$94. \int_{\frac{10^{-2}}{3}}^{\frac{10^{8}}{3}} \frac{\lg 3x}{x} dx$$

$$95. \int_{0}^{\sqrt{3}} \frac{5arctg^3x + 3arctgx - 3}{1 + x^2} dx$$

$$96. \int_{0}^{2} x e^{6x} dx$$

$$97. \int_{0}^{\frac{1}{10}\pi} (x+2) \cos 5x \, dx$$

$$98. \int_{0}^{\frac{\pi}{12}} (x^2 + 3x - 5) \sin 6x \, dx$$

99.
$$\int_{-\frac{1}{4}\pi}^{\frac{1}{3}\pi} (6x+1)(-5\sin x + 3\cos x) \, dx$$

$$100. \int_{-\frac{1}{\sqrt{3}}}^{0} arctgx \, dx$$

100.
$$\int_{-\frac{1}{\sqrt{3}}}^{0} arctgx \, dx$$

$$-\frac{1}{\sqrt{3}}$$

$$e^{4}$$
101.
$$\int_{1}^{e^{4}} (3x^{2} + 2) \ln x \, dx$$

$$102. \int_{\frac{1}{24}\pi}^{\frac{1}{6}\pi} e^{-3x} \sin 4x \ dx$$

$$103. \int\limits_{2}^{8} \frac{2x+7}{x^2+16x+63} \, dx$$

$$104. \int_{-4}^{-3} \frac{5x^2 + 7x + 6}{(x+1)^3}$$

105.
$$\int_{-1}^{4} \frac{29(x^2 + x + 5)}{(x+6)(x^2 + 2x + 5)} dx$$

$$106. \int_{0}^{\frac{\pi}{9}} \sin^2 3x \, dx$$

$$107. \int_{0}^{\frac{\pi}{2}} \cos 7x \sin 6x \, dx$$

$$108. \int_{7}^{47} \frac{7x+1}{\sqrt{x+2}} dx$$

$$109. \int_{-2}^{0} \sqrt{16 - x^2} dx$$

$$110. \int_{-1}^{1} \frac{3x+8}{\sqrt{48-x^2+2x}} dx$$

4. Приложения определенного интеграла

Вычисление площадей. Пусть y = f(x) – непрерывная и положительная функция на отрезке [a;b]. Тогда интеграл $\int_a^b f(x) dx$ равен площади криволинейной трапеции Φ , ограниченной сверху графиком функции y = f(x), снизу – остью Ox, слева – прямой x = a, справа – прямой x = b:

$$S_{\Phi} = \int_{a}^{b} f(x) dx.$$

Пример 5.7. Вычислить площадь фигуры, ограниченной эллипсом

Фигура центрально симметрична, поэтому ее площадь в четыре раза больше площади фигуры, лежащей в первой координатной четверти, ограниченной сверху дугой эллипса $y=\frac{b}{a}\sqrt{a^2-x^2}$, снизу осью Ox, слева осью Oy. Следовательно, площадь фигуры, ограниченной эллипсом, равна $S=4\int_0^a \frac{b}{a}\sqrt{a^2-x^2}dx$, используя формулу $\int \sqrt{a^2-x^2}dx=\frac{a^2}{2}\arcsin\frac{x}{a}+\frac{x}{2}\sqrt{a^2-x^2}+C$, полученную выше, найдем

$$S = 4 \int_{0}^{a} \frac{b}{a} \sqrt{a^{2} - x^{2}} dx = 4 \frac{b}{a} \left(\frac{a^{2}}{2} \arcsin \frac{x}{a} + \frac{x}{2} \sqrt{a^{2} - x^{2}} \right) \Big|_{0}^{a} = \pi a b.$$

Ответ: πab .

Если функция y = f(x) задана параметрически системой уравнений $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ $t \in [\alpha, \beta]$, где функция x(t) имеет непрерывную неотрицательную производную на отрезке $[\alpha, \beta]$, $x(\alpha) = a$, $x(\beta) = b$, а функция y(t) непрерывна и неотрицательна на отрезке $[\alpha, \beta]$, то площадь фигуры Φ равна

$$S_{\Phi} = \int_{\alpha}^{\beta} y(t)x'(t)dt.$$

<u>Пример 5.7(1).</u> Вычислить площадь фигуры, ограниченной эллипсом $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$

Запишем параметрические уравнения эллипса: $\begin{cases} x = acost \\ y = bsint \end{cases}$, $t \in [0,2\pi]$. Заметим, что x = 0 соответствует $t = \frac{\pi}{2}$, а x = a соответствует t = 0. Аналогично примеру выше,

$$S = 4 \int_{\frac{\pi}{2}}^{0} b sint(-a sint) dt = 4ab \int_{0}^{\frac{\pi}{2}} sin^{2} t dt =$$

$$= 2ab \int_{0}^{\frac{\pi}{2}} (1 - cos2t) dt = 2ab \left(t - \frac{sin2t}{2} \right) \Big|_{0}^{\frac{\pi}{2}} = \pi ab.$$

Ответ: πab .

Пусть функции $y = f_1(x)$ и $y = f_2(x)$ непрерывны на отрезке [a; b] и $f_2(x) \ge f_1(x)$, $x \in [a, b]$. Площадь фигуры Φ , ограниченной графиками функции $y = f_1(x)$ и $y = f_2(x)$ и соответственно слева – прямой x = a, справа – прямой x = b, равна

$$S_{\Phi} = \int_{a}^{b} \left(f_2(x) - f_1(x) \right) dx.$$

<u>Пример 5.8.</u> Вычислить площадь фигуры Φ , ограниченной прямой y = x - 1 и параболой $y = -x^2 + 2x + 1$.

Найдем абсциссы точек пересечения графиков функций: x=2, x=-1. Вычислим площадь фигуры

$$S_{\Phi} = \int_{-1}^{2} (-x^2 + 2x + 1 - x + 1) dx =$$

$$= \int_{-1}^{2} (-x^2 + x + 2) dx = -\frac{x^3}{3} \Big|_{-1}^{2} + \frac{x^2}{2} \Big|_{-1}^{2} + 2x \Big|_{-1}^{2} = 4,5.$$

Ответ: 4,5.

Если непрерывная кривая задана в полярных координатах уравнением $\rho = f(\varphi)$, то площадь сектора, ограниченного дугой кривой и двумя полярными радиусами, соответствующими значениям $\varphi_1 = \alpha$ и $\varphi_2 = \beta$, равна

$$S = \frac{1}{2} \int_{\alpha}^{\beta} (f(\varphi))^2 d\varphi.$$

<u>Пример 5.9.</u> Вычислить площадь круга радиуса r.

Окружность радиуса r в полярной системе координат можно задать уравнением $\rho=r$, тогда площадь круга, ограниченного этой окружностью, в четыре раза больше площади сектора, ограниченного дугой кривой $\rho=r$ и двумя полярными радиусами, соответствующими значениям $\varphi_1=0$ и $\varphi_2=\frac{\pi}{2}$:

$$S = 4 \cdot \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (r)^{2} d\varphi = 2r^{2} \varphi \Big|_{0}^{\frac{\pi}{2}} = \pi r^{2}.$$

Ответ: πr^2 .

Вычисление объема тела. Если S = S(x) — площадь сечения тела плоскостью, перпендикулярной к прямой Ox, в точке с абсциссой x, где x = a и x = b — абсциссы крайних сечений тела, то объем этого тела равен

$$V = \int_{a}^{b} S(x) \, dx.$$

Объем тела вращения. Объем тела, образованного вращением криволинейной трапеции, ограниченной сверху графиком функции y = f(x), снизу – остью 0x, слева – прямой x = a, справа – прямой x = b, вокруг оси 0x и оси 0y, выражаются соответственно формулами:

$$V_x = \pi \int_a^b (f(x))^2 dx; V_y = 2\pi \int_a^b x f(x) dx.$$

<u>Пример 5.10.</u> Найти объем эллипсоида, образованного вращением эллипса $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ вокруг оси 0x.

Объем эллипсоида равен удвоенному объему тела, полученного вращением вокруг оси 0x криволинейной трапеции Φ : $\begin{cases} 0 \le x \le a \\ 0 \le y \le \frac{b}{a} \sqrt{a^2 - x^2}. \end{cases}$

$$V = 2\pi \int_{0}^{a} \left(\frac{b}{a}\sqrt{a^{2} - x^{2}}\right)^{2} dx = \frac{2\pi b^{2}}{a^{2}} \int_{0}^{a} (a^{2} - x^{2}) dx =$$
$$= \frac{2\pi b^{2}}{a^{2}} \left(a^{2}x - \frac{x^{3}}{3}\right) \Big|_{0}^{a} = \frac{4}{3}\pi a b^{2}.$$

Otbet: $\frac{4}{3}\pi ab^2$.

Вычисление длины кривой. Длина l дуги кривой y=f(x), содержащейся между двумя точками с абсциссами x=a и x=b, равна

$$l = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx.$$

Длина дуги кривой, заданной параметрически. Если кривая задана уравнениями в параметрической форме $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$, $t \in [\alpha, \beta]$, где x(t), y(t) — непрерывно дифференцируемые функции, то длина дуги s кривой равна

$$l = \int_{\alpha}^{\beta} \sqrt{(x'(t))^2 + (y'(t))^2} dt.$$

<u>Пример 5.11.</u> Найти длину дуги кривой AB: y = lnx, где $A(\sqrt{3}; ln\sqrt{3})$ и $B(\sqrt{8}; ln\sqrt{8})$.

$$\begin{split} l_{AB} &= \int\limits_{\sqrt{3}}^{\sqrt{8}} \sqrt{1 + \left(\frac{1}{x}\right)^2} \, dx = \int\limits_{\sqrt{3}}^{\sqrt{8}} \frac{\sqrt{x^2 + 1}}{x} \, dx = \begin{cases} t = \sqrt{x^2 + 1}, dx = \frac{tdt}{\sqrt{t^2 - 1}} \\ & x = \sqrt{t^2 - 1} \end{cases} = \\ &= \int\limits_{2}^{3} \frac{t}{\sqrt{t^2 - 1}} \frac{tdt}{\sqrt{t^2 - 1}} = \int\limits_{2}^{3} \frac{t^2 dt}{t^2 - 1} = \int\limits_{2}^{3} \frac{t^2 - 1 + 1}{t^2 - 1} \, dt = \\ &= \int\limits_{2}^{3} \left(1 + \frac{1}{t^2 - 1}\right) dt = t|_{2}^{3} + \frac{1}{2} \ln \left|\frac{t - 1}{t + 1}\right|_{2}^{3} = 1 + \frac{1}{2} \left(\ln \frac{1}{2} - \ln \frac{1}{3}\right) = 1 + \ln \sqrt{\frac{3}{2}}. \end{split}$$
 Other: $1 + \ln \sqrt{\frac{3}{2}}$.

Вычисление площади поверхности вращения. Если функция f(x) имеет непрерывную производную на отрезке [a,b], то площадь поверхности, образованной вращением вокруг оси Ox гладкой кривой f(x) между точками x=a и x=b, равна

$$S = 2\pi \int_{a}^{b} f(x)\sqrt{1 + (f'(x))^{2}}dx.$$

<u>Пример 5.12.</u> Найти площадь поверхности, полученной вращением дуги AB: y = sinx вокруг оси Ox, где A(0;0) и $B(\frac{\pi}{2};1)$.

$$S = 2\pi \int_{0}^{\frac{\pi}{2}} \sin x \sqrt{1 + (\cos x)^{2}} dx = -2\pi \int_{0}^{\frac{\pi}{2}} \sqrt{1 + (\cos x)^{2}} d(\cos x) =$$

$$= -2\pi \left(\frac{\cos x}{2} \sqrt{1 + (\cos x)^{2}} + \frac{1}{2} \ln \left| \cos x + \sqrt{1 + (\cos x)^{2}} \right| \right) \Big|_{0}^{\frac{\pi}{2}} =$$

$$= \pi \left(\sqrt{2} + \ln(1 + \sqrt{2}) \right).$$

Ответ: $\pi(\sqrt{2} + \ln(1 + \sqrt{2}).$

Упражнения:

111. Вычислить площадь фигуры, ограниченной линиями

$$y = -x^2 - x + 10$$
, $y = x + 2$.

112. Вычислить площадь фигуры, ограниченной линиями

$$xy = 28$$
, $x + y = 11$.

113. Вычислить площадь фигуры, ограниченной линиями

$$y = 3 - \frac{3}{x - 6}$$
, $y = -x^2 + 6x - 9$, $x = 5$, $x = 3$.

114. Вычислить площадь фигуры, ограниченной линиями

$$y = -5x + 11$$
, $y = 6^x$, $x = 3$.

115. Вычислить объем тела, образованного вращением вокруг оси Ox области, ограниченной линиями

$$y = -x^2 - 3x$$
 и $y = 0$ при $x \in [-1; 0]$.

116. Вычислить объем тела, образованного вращением вокруг оси Ox области, ограниченной линиями

$$y = -\frac{2}{x-8}$$
, $x = -4$, $x = 5$, $y = 0$.

117. Вычислить объем тела, образованного вращением вокруг оси Ox области, ограниченной линиями

$$y = \sqrt{49 - x^2}$$
, $y = 7 - x$.

118. Вычислить длину дуги графика функции

$$y = \frac{2}{3}x\sqrt{x}$$
, $8 < x < 15$.

119. Вычислить длину дуги графика функции

$$y = \ln \sin x$$
, $x \in \left[\frac{\pi}{4}; \frac{\pi}{2}\right]$.

120. Вычислить длину одной арки циклоиды, заданной параметрически

$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases} t \in [0; 2\pi].$$

121. Вычислить длину дуги кривой, заключенной между точками t_1 , t_2 :

$$\begin{cases} x = a \cos^3 t \\ y = a \sin^3 t \end{cases} \qquad t_1 = 0, \qquad t_2 = 2\pi.$$

- 122. Найти площадь поверхности шара радиуса *R*.
- 123. Найти площадь поверхности, образованной вращением циклоиды

$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases} t \in [0; 2\pi].$$

вокруг оси Ox.

VI. Несобственные интегралы

1. Несобственные интегралы с бесконечными пределами интегрирования

Пусть y = f(x) определена и непрерывна на полуинтервале $[a; +\infty)$. Тогда функция y = f(x) будет интегрируемой на любом отрезке [a; b], где b > a. Пусть $b \to +\infty$. Если существует конечный предел $\lim_{b \to +\infty} \int_a^b f(x) dx$, то этот предел называется *несобственным интегралом* от f(x) на интервале $[a; +\infty)$ и обозначают через $\int_a^{+\infty} f(x) dx$. При этом говорят, что интеграл $\int_a^{+\infty} f(x) dx$ сходится. Если же конечный предел $\lim_{b \to +\infty} \int_a^b f(x) dx$ не существует, то говорят, что интеграл $\int_a^{+\infty} f(x) dx$ расходится.

Итак, по определению,

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx$$

- интеграл с бесконечным верхним пределом;

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$$

– интеграл с бесконечным нижним пределом.

Бесконечными могут быть оба предела интегрирования:

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx = \lim_{a \to -\infty} \int_{a}^{c} f(x)dx + \lim_{b \to +\infty} \int_{c}^{b} f(x)dx$$

- сходится, если существуют и конечны оба предела.

<u>Пример 6.1.</u> Вычислите несобственный интеграл $\int_3^{+\infty} \frac{2x+5}{x^2+3x-10} dx$ или установите его расходимость.

Перейдем к пределу, применим в получившемся интеграле метод разложения на простейшие дроби:

$$\int_{3}^{+\infty} \frac{2x+5}{x^2+3x-10} dx = \lim_{b \to +\infty} \int_{3}^{b} \frac{2x+5}{(x+5)(x-2)} dx =$$

$$= \frac{1}{7} \lim_{b \to +\infty} \int_{3}^{b} \left(\frac{5}{x+5} + \frac{9}{x-2} \right) dx = \frac{1}{7} \lim_{b \to +\infty} (5ln|x+5| + 9ln|x-2|) \Big|_{3}^{b} =$$

$$= \frac{1}{7} \lim_{b \to +\infty} (5ln|b+5| - 5ln8 + +9ln|b-2|) = +\infty.$$

Ответ: интеграл расходится.

Пример 6.2. Исследовать на сходимость интеграл $\int_{e}^{+\infty} \frac{dx}{x \ln^2 x}$

$$\int_{e}^{+\infty} \frac{dx}{x \ln^2 x} = \lim_{b \to +\infty} \int_{e}^{b} \frac{d(\ln x)}{\ln^2 x} = \lim_{b \to +\infty} \left(-\frac{1}{\ln x} \right) \Big|_{e}^{b} = \lim_{b \to +\infty} \left(1 - \frac{1}{\ln b} \right) = 1.$$

Ответ: интеграл сходится.

<u>Пример 6.3.</u> Исследовать на сходимость интеграл $\int_0^{+\infty} x \cdot 2^{-x} dx$.

Перейдем к пределу и проинтегрируем по частям:

$$\int_{0}^{+\infty} x \cdot 2^{-x} dx = \lim_{b \to +\infty} \int_{0}^{b} x \cdot 2^{-x} dx = \begin{cases} u = x, du = dx \\ dv = 2^{-x} dx, v = -\frac{2^{-x}}{\ln 2} \end{cases} =$$

$$= \lim_{b \to +\infty} \left(-\frac{x \cdot 2^{-x}}{\ln 2} \Big|_{0}^{b} + \frac{1}{\ln 2} \int_{0}^{b} 2^{-x} dx \right) = \lim_{b \to +\infty} \left(-\frac{b \cdot 2^{-b}}{\ln 2} - \frac{1}{\ln 2} \frac{2^{-x}}{\ln 2} \Big|_{0}^{b} \right) = \frac{1}{\ln^{2} 2}.$$

Ответ: интеграл сходится.

<u>Пример 6.4.</u> Вычислите несобственный интеграл $\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 2}$ или установите его расходимость.

Разобьем исходный интеграл на сумму двух интегралов произвольной точкой, например, x=0:

$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 2} = \int_{-\infty}^{0} \frac{dx}{x^2 + 2x + 2} + \int_{0}^{+\infty} \frac{dx}{x^2 + 2x + 2} =$$

$$= \lim_{a \to -\infty} \int_{a}^{0} \frac{dx}{x^2 + 2x + 2} + \lim_{b \to +\infty} \int_{0}^{b} \frac{dx}{x^2 + 2x + 2} = \lim_{a \to -\infty} \int_{a}^{0} \frac{d(x+1)}{(x+1)^2 + 1} +$$

$$+ \lim_{b \to +\infty} \int_{0}^{b} \frac{d(x+1)}{(x+1)^2 + 1} = \lim_{a \to -\infty} arctg(x+1)|_{a}^{0} + \lim_{b \to +\infty} arctg(x+1)|_{0}^{b} =$$

$$= \lim_{a \to -\infty} \left(\frac{\pi}{4} - arctg(a+1) \right) + \lim_{b \to +\infty} \left(arctg(b+1) - \frac{\pi}{4} \right) = \pi.$$

Ответ: π .

2. Несобственные интегралы от неограниченных функций

Пусть y = f(x) определена и непрерывна на[a; b), а на правом конце интервала имеет бесконечный предел, то есть y = f(x) не ограничена в любой окрестности точки b (b— особая точка интегрирования). Так как для любого $\varepsilon > 0$, функция f(x) непрерывна на отрезке $[a; b - \varepsilon]$, то существует интеграл $\int_a^{b-\varepsilon} f(x) dx$. Если существует конечный предел $\lim_{\varepsilon \to 0} \int_a^{b-\varepsilon} f(x) dx$, то этот предел называется несобственным интегралом от f(x) в пределах от a до b:

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a}^{b-\varepsilon} f(x)dx,$$

b — особая точка интегрирования. Если этот предел существует и конечен, то говорят, что несобственный интеграл *сходится*, в противном случае говорят, что интеграл *расходится*.

Особая точка интегрирования может совпадать с левой границей интегрирования, или находиться внутри отрезка интегрирования. В этих случаях несобственные интегралы II рода определяются следующим образом:

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} f(x)dx,$$

a – особая точка интегрирования;

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx,$$

с- особая точка интегрирования.

<u>Пример 6.5.</u> Вычислите несобственный интеграл $\int_0^1 \frac{dx}{\sqrt{x}}$ или установите его расходимость.

В данном случае $f(x) = \frac{1}{\sqrt{x}}$ определена при $x \in (0; +\infty)$, следовательно, x = 0 – особая точка.

$$\int_{0}^{1} \frac{dx}{\sqrt{x}} = \lim_{\varepsilon \to 0+0} \int_{\varepsilon}^{1} \frac{dx}{\sqrt{x}} = \lim_{\varepsilon \to 0+0} 2\sqrt{x} \Big|_{\varepsilon}^{1} = 2 \lim_{\varepsilon \to 0+0} \left(1 - \sqrt{\varepsilon}\right) = 2.$$

Ответ: 2.

<u>Пример 6.6.</u> Исследовать на сходимость интеграл $\int_0^3 \frac{dx}{(x-2)^2}$.

Подынтегральная функция $f(x) = \frac{1}{(x-2)^2}$ определена при $x \in (-\infty; 2) \cup (2; +\infty)$, особая точка - x = 2:

$$\int_{0}^{3} \frac{dx}{(x-2)^{2}} = \int_{0}^{2} \frac{dx}{(x-2)^{2}} + \int_{2}^{3} \frac{dx}{(x-2)^{2}} =$$

$$= \lim_{\varepsilon \to 0+0} \int_{0}^{2-\varepsilon} \frac{dx}{(x-2)^{2}} + \lim_{\varepsilon \to 0+0} \int_{2+\varepsilon}^{3} \frac{dx}{(x-2)^{2}} = \lim_{\varepsilon \to 0+0} \left(-\frac{1}{x-2} \right) \Big|_{0}^{2-\varepsilon} +$$

$$+ \lim_{\varepsilon \to 0+0} \left(-\frac{1}{x-2} \right) \Big|_{2+\varepsilon}^{3} = \lim_{\varepsilon \to 0+0} \left(\frac{1}{\varepsilon} - \frac{1}{2} \right) + \lim_{\varepsilon \to 0+0} \left(-1 + \frac{1}{\varepsilon} \right) = +\infty.$$

Ответ: интеграл расходится.

3. Несобственные интегралы от неотрицательных функций

Пусть задан несобственный интеграл $\int_a^b f(x)dx$, в котором функция y = f(x) определена на [a; b), где a — конечная точка, а b — либо конечная точка, либо $b = +\infty$; функция f(x) интегрируема по Риману на отрезке [a; c], $c \in [a; b)$.

Критерий сходимости. Если $f(x) \ge 0$, $\forall x \in [a; b)$, то для сходимости несобственного интеграла $\int_a^b f(x) dx$ необходимо и достаточно, чтобы функция $\int_a^t f(x) dx$ была ограничена сверху, то есть

$$\exists M > 0 \colon \forall t \in [a; \ b) \to \int_{a}^{t} f(x) dx \le M.$$

Теорема сравнения. Если для всех $x \in [a; b)$ выполняется неравенство $0 \le f(x) \le g(x)$, то:

- 1) из сходимости интеграла $I_2 = \int_a^b g(x) dx$ следует сходимость интеграла $I_1 = \int_a^b f(x) dx;$
- 2) из расходимости интеграла I_1 следует расходимость интеграла I_2 .

Следствие. Если для всех $x \in [a;b)$ выполняется условие $f(x)>0, \ g(x)>0$ и $\lim_{x\to b-0}\frac{f(x)}{g(x)}=1,$ то интегралы $I_1=\int_a^b f(x)dx$ и $I_2=\int_a^b g(x)dx$ сходятся или расходятся одновременно.

Пример 6.7. Исследовать на сходимость интеграл $\int_1^{+\infty} \frac{\cos^2 x dx}{x^2}$.

Оценим возможные значения подынтегральной функции:

$$0 \le \frac{\cos^2 x}{x^2} \le \frac{1}{x^2}, \forall x \ge 1.$$

Исследуем на сходимость интеграл

$$\int_{1}^{+\infty} \frac{dx}{x^{2}} = \lim_{b \to +\infty} \int_{1}^{b} \frac{dx}{x^{2}} = \lim_{b \to +\infty} \left(-\frac{1}{x} \right) \Big|_{1}^{b} = \lim_{b \to +\infty} \left(1 - \frac{1}{b} \right) = 1.$$

Следовательно, интеграл $\int_1^{+\infty} \frac{\cos^2 x dx}{x^2}$ сходится по теореме сравнения.

Ответ: интеграл сходится.

Упражнения:

Вычислите несобственные интегралы или установите их расходимость:

124.
$$\int_{0}^{3} \frac{dx}{x^{\frac{1}{3}}}$$

125.
$$\int_{-\frac{\sqrt{3}}{2}}^{1} \frac{dx}{\sqrt{1-x^2}}$$

126.
$$\int_{1}^{5} \frac{(x+4)dx}{\sqrt{5-x}}$$

127.
$$\int_{\frac{e^3}{8}}^{\frac{e^8}{8}} \frac{dx}{x(-3 + \ln 8x)^{\frac{1}{2}}}$$

128.
$$\int_{7}^{9} \frac{dx}{(x-6)\ln(x-6)}$$

129.
$$\int_{-5}^{-2} \frac{dx}{(x+5)\ln(x+5)}$$

130.
$$\int_{-1}^{8} (x+1) \ln(x+1) \, dx$$

131.
$$\int_{1}^{2} \frac{2dx}{\sqrt{(x-1)(2-x)}}$$

$$132. \int_{5}^{+\infty} \frac{dx}{x^6}$$

$$133. \int_{-\frac{\pi}{8}}^{+\infty} \cos 4x dx$$

134.
$$\int_{-\infty}^{-7} (x-6)e^{x+7} dx$$

135.
$$\int_{-2}^{+\infty} \frac{dx}{x^2 + 12x + 35}$$

136.
$$\int_{-\infty}^{1} \frac{arctg^3x}{1+x^2} dx$$

$$137. \int_{e^2}^{+\infty} \frac{dx}{x\sqrt[8]{\ln^3 x}}$$

$$138. \int\limits_{0}^{+\infty} e^{-7x} \sin 5x \, dx$$

139.
$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 - 8x + 17}$$

140.
$$\int_{0}^{2} \frac{dx}{(x-1)^{2}}$$

$$141. \int_{2}^{+\infty} \frac{dx}{(x-2)^3}$$

$$142. \int_{1}^{+\infty} \frac{\sin^4 3x}{\sqrt[5]{1+x^6}} dx$$

$$143. \int_{1}^{+\infty} \frac{\operatorname{arct} g^2 x}{x^7} dx$$

VII. Кратные интегралы

1. Сведение кратного интеграла к повторному

Пусть область G ограничена слева прямой x=a, справа прямой x=b, снизу графиком функции $y=g_1(x)$, сверху графиком $y=g_2(x)$. Такая область называется *правильной в направлении оси Ox*.

Если функция f(x;y) интегрируема в области G и при любом фиксированном $x \in [a;b]$ существует интеграл $\int_{g_1(x)}^{g_2(x)} g(x;y) dy$, то справедлива формула

$$\iint\limits_{G} f(x;y)dxdy = \int\limits_{a}^{b} \left(\int\limits_{g_{1}(x)}^{g_{2}(x)} f(x;y)dy \right) dx.$$

Выражение

$$\int_{a}^{b} \left(\int_{g_{1}(x)}^{g_{2}(x)} f(x; y) dy \right) dx$$

называют повторным интегралом и часто записывают в виде

$$\int_{a}^{b} dx \int_{g_{1}(x)}^{g_{2}(x)} f(x; y) dy.$$

<u>Пример 7.1.</u> Вычислить кратный интеграл $\iint_G (9y + 4x - 5) dx dy$ по области, ограниченной прямыми x = -3, x = 9, y = -4, y = -1.

Сведем двойной интеграл к повторному, учитывая, что $-3 \le x \le 9$, $-4 \le y \le -1$. Найдем внутренний интеграл по переменной y, считая x постоянной, затем вычислим внешний интеграл по переменной x:

$$\iint_{G} (9y + 4x - 5) dx dy = \int_{-3}^{9} dx \int_{-4}^{-1} (9y + 4x - 5) dy =$$

$$= \int_{-3}^{9} (9\frac{y^{2}}{2} + 4xy - 5y) \Big|_{-4}^{-1} dx = \int_{-3}^{9} \left(\frac{9}{2} - 4x + 5 - \frac{9 \cdot 16}{2} + 16x - 20\right) dx =$$

$$= \int_{-3}^{9} \left(12x - \frac{165}{2}\right) dx = \left(12\frac{x^{2}}{2} - \frac{165}{2}x\right) \Big|_{-3}^{9} =$$

$$= \left(6 \cdot 81 - \frac{165}{2} \cdot 9\right) - \left(6 \cdot 9 - \frac{165}{2} \cdot (-3)\right) = -558.$$

Ответ: = -558.

<u>Пример 7.2.</u> Вычислить двойной интеграл $\iint_G (x+y) dx dy$, если область G ограничена линиями: x=0, y=1, y=x.

Область G определяется системой неравенств: $\begin{cases} 0 \le x \le 1 \\ x \le y \le 1 \end{cases}$, следовательно,

$$\iint_{G} (x+y)dxdy = \int_{0}^{1} dx \int_{x}^{1} (x+y)dy = \int_{0}^{1} \left(\int_{x}^{1} (x+y)dy \right) dx =$$

$$= \int_{0}^{1} \left(\left(xy + \frac{y^{2}}{2} \right) \Big|_{x}^{1} \right) dx = \int_{0}^{1} \left(x + \frac{1}{2} - x^{2} - \frac{x^{2}}{2} \right) dx = \int_{0}^{1} \left(\frac{1}{2} + x - \frac{3x^{2}}{2} \right) dx =$$

$$= \left(\frac{1}{2}x + \frac{x^{2}}{2} - \frac{x^{3}}{2} \right) \Big|_{0}^{1} = \frac{1}{2} + \frac{1}{2} - \frac{1}{2} = \frac{1}{2}.$$
Other: \frac{1}{-}.

Otbet: $\frac{1}{2}$

Если область G является npaвильной в на<math>npaвлении оси Oy, то двойной интеграл по этой области так же можно свести к повторному. Пусть область Gограничена снизу прямой y = c, сверху прямой y = d, слева графиком функции $x = \phi_1(y)$, справа графиком $x = \phi_2(y)$.

Тогда

$$\iint\limits_{G} f(x;y)dxdy = \int\limits_{a}^{d} \left(\int\limits_{\phi_{1}(y)}^{\phi_{2}(y)} f(x;y)dx \right) dy.$$

Если область G имеет более сложную форму, то при вычислении $\iint_G f(x;y) dx dy$ область G предварительно следует разбить на области, правильные в направлении той или иной оси, затем разбить интеграл на сумму интегралов и свести интегралы к повторным.

<u>Пример 7.3.</u> Поменять порядок интегрирования в интеграле $\int_0^4 dx \int_{3x^2}^{12x} f(x,y) dy.$

Область G определена системой неравенств $\begin{cases} 0 \le x \le 4, \\ 3x^2 \le y \le 12x \end{cases}$. Выразим x

через
$$y$$
, получим $G = \begin{cases} 0 \le y \le 48, \\ \frac{y}{12} \le x \le \sqrt{\frac{y}{3}}. \end{cases}$ Итак,

$$\int_{0}^{4} dx \int_{3x^{2}}^{12x} f(x,y)dy = \int_{0}^{48} dy \int_{\frac{y}{12}}^{\sqrt{\frac{y}{3}}} f(x,y)dx.$$

Otbet:
$$\int_0^{48} dy \int_{\frac{y}{12}}^{\frac{y}{3}} f(x, y) dx$$
.

2. Замена переменных в кратном интеграле

Пусть функция f(x;y) непрерывна в замкнутой ограниченной области G. Тогда существует интеграл $\iint_G f(x;y) dx dy$. Сделаем замену переменных: $\begin{cases} x = x(u;v) \\ y = y(u;v) \end{cases}$, где x(u;v), у(u;v) - непрерывные и непрерывно дифференцируемые функции в области G. Предположим, что данные формулы позволяют однозначно выразить u и v через старые переменные x и y:

 $\begin{cases} u = u(x;y) \\ v = v(x;y) \end{cases}$. Тогда эти соотношения устанавливают взаимно однозначное непрерывное соответствие между точками области G в плоскости Oxy и точками некоторой области \tilde{G} в плоскости Ouv.

Определитель
$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$
, называется функциональным определителем

(или *определителем Якоби*). Если всюду внутри области \tilde{G} определитель Якоби не равен нулю, то справедлива следующая формула замены переменных в двойном интеграле:

$$\iint\limits_{G} f(x;y)dxdy = \iint\limits_{\tilde{G}} f(x(u;v);y(u;v)) \cdot |J| \, dudv.$$

<u>Пример 7.4.</u> Вычислить интеграл $\iint_G e^{x^2+y^2} dx dy$, где G — часть круга $x^2+y^2 \le 4$, расположенная в первой координатной четверти.

Перейдем к полярным координатам ρ и ϕ по формулам: $\begin{cases} x = \rho \cos \phi \\ y = \rho \sin \phi \end{cases}$

тогда область примет вид \tilde{G} : $\begin{cases} 0 \le \rho \le 2 \\ 0 \le \phi \le \frac{\pi}{4} \end{cases}$

Тогда

$$J = \begin{vmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \phi} \end{vmatrix} = \begin{vmatrix} \cos\phi & -\rho\sin\phi \\ \sin\phi & \rho\cos\phi \end{vmatrix} = \rho\cos^2\phi + \rho\sin^2\phi = \rho \neq 0$$

внутри области \widetilde{G} . Применим формулу замены переменных:

$$\iint_{G} e^{x^{2}+y^{2}} dx dy = \iint_{\tilde{G}} e^{(\rho\cos\phi)^{2}+(\rho\sin\phi)^{2}} \cdot \rho \, d\rho \, d\phi = \iint_{\tilde{G}} e^{\rho^{2}} \cdot \rho \, d\rho \, d\phi =$$

$$= \iint_{\tilde{G}} e^{\rho^{2}} \cdot d\rho \, d\phi = \int_{0}^{\pi/2} \left(\int_{0}^{2} e^{\rho^{2}} \cdot \rho \, d\rho\right) d\phi = \int_{0}^{\pi/2} \left(\frac{1}{2}\int_{0}^{2} e^{\rho^{2}} d(\rho^{2})\right) d\phi =$$

$$= \int_{0}^{\pi/2} \left(\frac{1}{2}e^{\rho^{2}}\Big|_{0}^{2}\right) d\phi = \int_{0}^{\pi/2} \left(\frac{1}{2}e^{4} - \frac{1}{2}\right) d\phi = \left(\frac{e^{4}}{2} - \frac{1}{2}\right)\phi\Big|_{0}^{\pi/2} =$$

$$= \left(\frac{e^{4}}{2} - \frac{1}{2}\right)\frac{\pi}{2} = \frac{\pi}{4}(e^{4} - 1).$$

Otbet: $\frac{\pi}{4}(e^4 - 1)$.

3. Несобственные кратные интегралы

Как и для определенного интеграла, можно ввести в рассмотрение несобственные кратные интегралы по неограниченной области и от неограниченной функции по ограниченной области. В основе этой теории лежит идея предельного перехода.

Пример 7.5. Вычислить интеграл
$$\int_0^{+\infty} dx \int_0^{+\infty} e^{-(x+y)} dy$$
.

Вычислим сначала неопределенный интеграл 2 рода по переменной y, считая x постоянной, затем найдем интеграл по x:

$$\int_{0}^{+\infty} dx \int_{0}^{+\infty} e^{-(x+y)} dy = \left\{ \int_{0}^{+\infty} e^{-(x+y)} dy = \lim_{b \to +\infty} \int_{0}^{b} e^{-(x+y)} dy = \lim_{b \to +\infty} \int_{0}^{b} e^{-(x+y)} dy = \lim_{b \to +\infty} \int_{0}^{b} e^{-x} \cdot e^{-y} dy = -e^{-x} \lim_{b \to +\infty} e^{-y} \Big|_{0}^{b} = -e^{-x} \lim_{b \to +\infty} \left(\frac{1}{e^{b}} - 1 \right) = e^{-x} \right\} = 0$$

$$= \int_{0}^{+\infty} e^{-x} dx = \lim_{d \to +\infty} \int_{0}^{d} e^{-x} dx = -\lim_{d \to +\infty} e^{-x} \Big|_{0}^{d} = 1.$$

Ответ: 1.

4. Приложения кратных интегралов

Пусть в пространстве R^3 дано тело P, ограниченное сверху графиком непрерывной и неотрицательной функции z = f(x; y), определенной в области G, с боков - цилиндрической поверхностью, направляющей которой является граница области G, снизу областью G, лежащей в плоскости Oxy. Тело такого вида называют *криволинейным цилиндром*. Объем V(P) этого криволинейного цилиндра равен двойному интегралу от f(x; y) по области G:

$$V(P) = \iint_{G} f(x; y) dx dy.$$

В этом состоит геометрический смысл двойного интеграла.

Если $f(x;y)\equiv 1$ всюду в области G, то $V(G)=S(G)\cdot 1=\iint_G 1\cdot dxdy$, то есть

$$S(G) = \iint_G dx dy.$$

<u>Пример 7.6.</u> Вычислить площадь фигуры Φ , лежащей над осью Ox и ограниченной этой осью, параболой $y^2 = 4ax$ и прямой x + y = 3a.

Пусть a>0, фигура Φ определена системой неравенств $\begin{cases} 0 \leq y \leq 2a \\ \frac{y^2}{4a} \leq x \leq 3a-y \end{cases} .$ Тогда площадь фигуры Φ вычисляется по формуле:

$$S(\Phi) = \iint_{\substack{0 \le y \le 2a \\ \frac{y^2}{4a} \le x \le 3a - y}} dx dy = \int_0^{2a} dy \int_{\frac{y^2}{4a}}^{3a - y} dx = \int_0^{2a} \left(3a - y - \frac{y^2}{4a}\right) dy =$$
$$= \left(3ay - \frac{y^2}{2} - \frac{y^3}{12a}\right)\Big|_0^{2a} = 6a^2 - 2a^2 - \frac{2a^2}{3} = \frac{10a^2}{3}.$$

OTBET: $\frac{10a^2}{3}$.

Упражнения:

144. Вычислите кратный интеграл

$$\iint\limits_{G} (9y + 4x - 5) \, dx \, dy$$

по области, ограниченной прямыми x = -5, x = -3, y = -7, y = 4.

145. Вычислите кратный интеграл

$$\iint\limits_G \left(2x^3 - 2xy\right) \, dx \, dy$$

по области $G = \{(x, y) \in \mathbb{R}^2 | -1 \le x \le 1; -2 \le y \le x\}.$

146. Вычислите кратный интеграл

$$\iint\limits_{G} \frac{x \, 5^y \, dx \, dy}{25 + x^2}$$

по области, ограниченной прямыми x = 2, x = 3, y = 2, y = 3.

147. Вычислите кратный интеграл

$$\iint\limits_{G} \frac{2y}{x+6} \, dx \, dy$$

по области $G = \{(x, y) \in \mathbb{R}^2 | 7 \le x \le 8; \ x + 1 \le y \le -5 \}.$

148. Вычислите двойной интеграл

$$\iint\limits_G (xy-2)\ dx\ dy$$

по области, ограниченной прямыми x = 4, y = -2x, y = 4x.

149. Вычислите кратный интеграл

$$\iint\limits_C (2x - y - 5) \, dx \, dy$$

по области, ограниченной линиями $y = -x^2 + 4x$, y = x - 4.

150. Вычислите кратный интеграл

$$\iint\limits_G (7x^2(y-6)+2)\ dx\ dy$$

по области, ограниченной линиями x = 2, y = 5, y - x = 5.

151. Вычислите кратный интеграл

$$\iint\limits_G 26x \, e^{7x^2 - 6y} \, dx \, dy$$

по области $G = \{(x, y) \in \mathbb{R}^2 | -4 \le x \le 0; \ 3 \le y \le 19 - x^2 \}.$

152. Вычислите кратный интеграл

$$\iint\limits_G \left(7\cos 2x - 3y\right) \, dx \, dy$$

по области, ограниченной линиями $x = \frac{1}{6}\pi$, y = 0, y = tg2x.

153. Вычислите двойной интеграл

$$\int_{0}^{1} dx \int_{0}^{\sqrt{3}} \frac{9x^2}{1 + y^2} dy.$$

154. Вычислите двойной интеграл

$$\iint\limits_G 18x\ dx\ dy,$$

где G – треугольник ABC с вершинами A(2;2), B(2;3), C(3;3).

155. Вычислите кратный интеграл

$$\iint\limits_G (2x - 5y) \, dx \, dy$$

по области $G = \{(x, y) \in R^2 | x^2 + y^2 \le 1; x \le 0; y \le 0\}$, заменив декартовые координаты на полярные.

156. Вычислите кратный интеграл

$$\iint\limits_C 6\ dx\ dy$$

по области $G = \{(x, y) \in R^2 | x^2 + y^2 \le 25; \ x \ge 0; \ y \ge 0\}.$

157. Вычислите двойной интеграл

$$\iint\limits_{G} 60y\ dx\ dy,$$

где G — область интегрирования, ограниченная окружностью $x^2 + y^2 = 2x$ и лежащая в первой координатной четверти.

158. Вычислите двойной интеграл

$$\iint\limits_G (x+y)^3 (x-y)^2 \, dx \, dy,$$

если G – квадрат, ограниченный прямыми x+y=2, x+y=6, -x+y=2, x-y=2. (Указание: сделайте замену u=x+y, v=x-y).

159. Вычислите несобственный кратный интеграл

$$\iint\limits_G (y^2 - 2y - 1)e^{-7x} \, dx \, dy$$

по области $G = \{(x, y) \in \mathbb{R}^2 | x \ge 0; -1 \le y \le 4\}.$

160. Вычислите двойной интеграл

$$\int_{0}^{+\infty} dx \int_{0}^{+\infty} \frac{dy}{(x^2 + y^2 + 9)^2}.$$

161. Вычислите кратный интеграл

$$\iint\limits_{G} \frac{dxdy}{(x^2+y^2+1)^4},$$

где G – вся плоскость xOy.

- 162. С помощью двойного интеграла вычислить площадь треугольника ABC с вершинами A(1;8), B(2;12), C(4;4).
- 163. С помощью кратного интеграла вычислить площадь области, ограниченной гиперболами

$$y = \frac{9}{x}, \qquad y = \frac{18}{x}$$

и вертикальными прямыми x = 1, x = 2.

- 164. С помощью кратного интеграла вычислить площадь области, ограниченной линиями $y^2 = 4 2x$, y = 2 + x.
- 165. Вычислить объем тела, расположенного между параболической поверхностью $z = x^2 + y^2$ и треугольной областью плоскости x0y, ограниченной координатными осями 0x, 0y и прямой y = 1 x.
- 166. Вычислить объем тела, ограниченного поверхностями z = xy, x + y = 3, z = 0.

VIII. Криволинейные интегралы

1. Криволинейные интегралы 1 рода

Пусть кривая L = AB задана параметрическими уравнениями: $\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}$, $a \le t \le b$. Будем предполагать, что кривая L гладкая, то есть функции $\phi(t)$ и $\psi(t)$ непрерывны и имеют на промежутке [a;b] непрерывные производные, одновременно не равные нулю, то есть $(\phi'(t))^2 + (\psi'(t))^2 > 0$, где $A(\phi(a);\psi(a))$ и $B(\phi(b);\psi(b))$. Если функция f(x,y) непрерывна вдоль гладкой кривой L, то существует криволинейный интеграл первого рода $\int_L f(x,y) dl$ от функции f(x,y) вдоль кривой L, который вычисляется по формуле

$$\int_{L} f(x,y)dl = \int_{a}^{b} f(\phi(t),\psi(t))\sqrt{(\phi'(t))^{2} + (\psi'(t))^{2}} dt.$$

Если кривая L задана явным уравнением y = g(x), $a \le x \le b$, причем функция g(x) имеет непрерывную производную на отрезке [a;b] и функция f(x,y) непрерывна вдоль кривой L, то криволинейный интеграл первого рода $\int_L f(x,y) dl$ от функции f(x,y) вдоль кривой L вычисляется по формуле

$$\int_{L} f(x,y)dl = \int_{a}^{b} f(x,g(x))\sqrt{1 + (g'(x))^{2}} dx.$$

Если кривая L задана в полярных координатах уравнением $\rho = \rho(\varphi)$, $\varphi_1 \leq \varphi \leq \varphi_2$, и $\rho(\varphi)$ имеет непрерывную производную на $[\varphi_1; \varphi_2]$, то существует криволинейный интеграл первого рода $\int_L f(x,y) dl$ от функции f(x,y) вдоль кривой и имеет место равенство

$$\int_{L} f(x,y)dl = \int_{\varphi_{1}}^{\varphi_{2}} f(\rho(\varphi)\cos\varphi, \rho(\varphi)\sin\varphi) \sqrt{\rho^{2}(\varphi) + (\rho'(\varphi))^{2}} d\varphi.$$

<u>Пример 8.1.</u> Вычислить криволинейный интеграл $\int_L (x+y) dl$, где L- контур треугольника с вершинами в точках O(0;0), A(a;0), B(0;b), a>0, b>0.

По свойству аддитивности имеем:

$$\int_{L} (x+y)dl = \int_{QA} (x+y)dl + \int_{AB} (x+y)dl + \int_{BQ} (x+y)dl.$$

Вычислим каждый из интегралов в отдельности. На отрезке OA функция f(x,y)=x+y непрерывна, имеем: $y=0,\,0\leq x\leq 3,\,dl=dx$, тогда

$$\int_{OA} (x+y)dl = \int_{0}^{a} x dx = \frac{x^{2}}{2} \Big|_{0}^{a} = \frac{a^{2}}{2}.$$

На отрезке AB функция f(x,y) = x + y непрерывна, имеем: $y = b - \frac{b}{a}x$,

$$0 \leq x \leq a, dl = \sqrt{1 + \left(-rac{b}{a}
ight)^2} \, dx = rac{\sqrt{a^2 + b^2}}{a} dx$$
, тогда

$$\int_{AB} (x+y)dl = \int_{0}^{a} \left(b - \frac{(b-a)x}{a}\right) \cdot \frac{\sqrt{a^2 + b^2}}{a} dx =$$

$$= \frac{\sqrt{a^2 + b^2}}{a} \left(bx - \frac{(b-a)x^2}{2a} \right) \Big|_0^a = \frac{\sqrt{a^2 + b^2}(a+b)}{2}.$$

На отрезке BO функция f(x,y)=x+y непрерывна, имеем: $x=0,\,0\leq y\leq b,$ dl=dy, тогда

$$\int_{BO} (x+y)dl = \int_{OB} (x+y)dl = \int_{0}^{b} ydy = \frac{y^{2}}{2} \Big|_{0}^{b} = \frac{b^{2}}{2}.$$

Следовательно,

$$\int_{L} (x+y)dl = \int_{OA} (x+y)dl + \int_{AB} (x+y)dl + \int_{BO} (x+y)dl =$$

$$= \frac{a^{2}}{2} + \frac{\sqrt{a^{2} + b^{2}}(a+b)}{2} + \frac{b^{2}}{2} = \frac{a^{2} + b^{2} + \sqrt{a^{2} + b^{2}}(a+b)}{2}.$$

Otbet:
$$\frac{a^2+b^2+\sqrt{a^2+b^2}(a+b)}{2}$$

<u>Пример 8.2.</u> Вычислить криволинейный интеграл $\int_L x dl$, где L- дуга параболы $y=2x^2, x\in [0;a].$

Функция f(x,y)=x непрерывна вдоль параболы $y=2x^2,$ имеем: $y=g(x)=2x^2, x\in [0;a], \, dl=\sqrt{1+16x^2}dx,$ тогда

$$\int_{L} x dl = \int_{0}^{a} x \sqrt{1 + 16x^{2}} dx = \frac{1}{32} \int_{0}^{a} \sqrt{1 + 16x^{2}} d(1 + 16x^{2}) =$$

$$= \frac{1}{32} \cdot \frac{2}{3} \sqrt{(1 + 16x^{2})^{3}} \Big|_{0}^{a} = \frac{\sqrt{(1 + 16a^{2})^{3}} - 1}{48}.$$

Otbet: $\frac{\sqrt{(1+16a^2)^3}-1}{48}$.

<u>Пример 8.3.</u> Вычислить криволинейный интеграл $\int_L xy dl$, где L- четверть эллипса $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, лежащая в первой координатной четверти.

Функция f(x,y)=x непрерывна вдоль эллипса $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$. Запишем параметрические уравнения эллипса: $\begin{cases} x=a\cos t \\ y=b\sin t \end{cases}, 0 \le t \le \frac{\pi}{2}$. Вычислим дифференциал дуги кривой

$$dl = \sqrt{a^2 \sin^2 t + b^2 \cos^2 t} dt = \sqrt{a^2 + (b^2 - a^2)\cos^2 t} dt.$$

В силу формулы вычисления криволинейного интеграла первого рода имеем:

$$\int_{L} xydl = \int_{0}^{\pi/2} ab \operatorname{costsint} \sqrt{a^{2} + (b^{2} - a^{2}) \operatorname{cos}^{2} t} dt =$$

$$= \int_{0}^{\pi/2} \frac{ab}{2} \sin 2t \sqrt{\frac{a^{2} + b^{2}}{2} + \frac{b^{2} - a^{2}}{2} \cos 2t} dt =$$

$$= \frac{ab}{2(a^2 - b^2)} \int_0^{\pi/2} \sqrt{\frac{a^2 + b^2}{2} + \frac{b^2 - a^2}{2} \cos 2t} \, d\left(\frac{a^2 + b^2}{2} + \frac{b^2 - a^2}{2} \cos 2t\right) =$$

$$= \frac{ab}{2(a^2 - b^2)} \sqrt{\left(\frac{a^2 + b^2}{2} + \frac{b^2 - a^2}{2} \cos 2t\right)^3} \Big|_0^{\pi/2} = \frac{ab(a^3 - b^3)}{2(a^2 - b^2)}.$$
Other: $\frac{ab(a^3 - b^3)}{2(a^2 - b^2)}$.

Замечание. Определение криволинейного интеграла первого рода, сформулированное для плоской кривой, почти дословно переносится на случай, когда функция f(x,y,z) задана вдоль некоторой пространственной

Пусть гладкая кривая AB задана параметрическими уравнениями: $\begin{cases} x = \phi(t), \\ y = \psi(t), \ a \leq t \leq b. \end{cases}$ Тогда криволинейный интеграл первого рода от $z = \varsigma(t)$

непрерывной функции f(x, y, z), взятый вдоль гладкой кривой, сводится к определенному интегралу формулой:

$$\int_{AB} f(x,y,z)dl = \int_{a}^{b} f(\phi(t),\psi(t),\varsigma(t))\sqrt{(\phi'(t))^{2} + (\psi'(t))^{2} + (\varsigma'(t))^{2}} dt.$$

2. Криволинейные интегралы 2 рода

кривой AB.

Криволинейный интеграл второго рода так же, как и криволинейный интегралы первого рода, сводится к определенным интегралам.

Пусть кривая AB задана параметрически уравнениями: $\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}$ $a \le t \le b$, где $\phi(t)$ и $\psi(t)$ непрерывны и имеют на промежутке [a;b] непрерывные производные, одновременно не равные нулю

 $((\phi'(t))^2 + (\psi'(t))^2 > 0)$, то есть кривая AB гладкая, причем точке A кривой соответствует значение t = a, а точке B — значение t = b. Пусть функции P(x,y) и Q(x,y) непрерывны вдоль кривой AB. Тогда справедливы следующие формулы:

$$\int_{AB} P(x,y)dx = \int_{a}^{b} P(\phi(t); \psi(t)) \phi'(t)dt;$$

$$\int_{AB} Q(x,y)dy = \int_{a}^{b} Q(\phi(t); \psi(t)) \psi'(t) dt;$$

$$\int\limits_{AB}P(x,y)dx+Q(x,y)dy=\int\limits_{a}^{b}(P(\phi(t);\psi(t))\phi'(t)+Q(\phi(t);\psi(t))\psi'(t))\,dt,$$

сводящие криволинейные интегралы к определенным интегралам.

При вычислении интегралов второго рода необходимо учитывать направление интегрирования. В случае, когда кривая L = AB замкнутая, то есть когда точка A совпадает с точкой B, из двух возможных направлений обхода замкнутого контура L положительным называется то, при котором область, лежащая внутри этого контура, остается слева по отношению к точке, совершающей обход. Противоположное направление обхода контура L называется отрицательным. Криволинейный интеграл по замкнутому контуру L, проходящему в положительном направлении, обозначают символом $\oint_{\Gamma} P(x,y) dx + Q(x,y) dy$.

Если кривая AB задана уравнением $y=f(x),\ a\leq x\leq b,\$ где f(x) — непрерывно дифференцируемая функция, то, принимая x за параметр, $\begin{cases} x=t \\ y=f(t),\ a\leq t\leq b, \end{cases}$ мы можем записать формулы выше в виде:

$$\int_{AB} P(x,y)dx = \int_{a}^{b} P(x;f(x)) dx;$$

$$\int_{AB} Q(x,y)dy = \int_{a}^{b} Q(x;f(x))f'(x) dx;$$

$$\int_{AB} P(x,y)dx + Q(x,y)dy = \int_{a}^{b} \left(P(x;f(x)) + Q(x;f(x))f'(x)\right) dx.$$

<u>Пример 8.4.</u> Вычислить криволинейный интеграл $\int_{AB} y dx - x dy$ по а) отрезку AB с концами A(0;1), B(1;0);

- б) по дуге окружности $x^2 + y^2 = 1$ с концами A(0; 1), B(1; 0).
- а) Функции P(x,y)=y и Q(x,y)=-x непрерывны вдоль отрезка AB прямой $y=1-x,\ 0\leq x\leq 1$, следовательно, интегрируемы вдоль этого отрезка, как по переменной x, так и по переменной y. Зададим отрезок AB параметрическими уравнениями $x=t,\ y=1-t,\ 0\leq t\leq 1$:

$$\int_{AB} y dx - x dy = \begin{cases} x = t, & y = 1 - t \\ dx = dt, & dy = -dt \end{cases} = \int_{0}^{1} (1 - t) dt - t(-dt) =$$

$$= \int_{0}^{1} (1 - t + t) dt = \int_{0}^{1} dt = t|_{0}^{1} = 1.$$

б) Функции P(x,y) = y и Q(x,y) = -x непрерывны и вдоль дуги AB окружности $x^2 + y^2 = 1$, следовательно, интегрируемы вдоль этой дуги по переменным x и y. Зададим дугу окружности параметрически и вычислим интеграл:

$$\int_{AB} y dx - x dy = \begin{cases} x = \sin t, & y = \cos t \\ dx = \cos t dt, & dy = -\sin t dt \\ 0 \le t \le \frac{\pi}{2} \end{cases} = \int_{0}^{\frac{\pi}{2}} (\cos t \cdot \cos t - \sin t \cdot (-\sin t)) dt = \int_{0}^{\frac{\pi}{2}} (\sin^{2} t + \cos^{2} t) dt = \int_{0}^{\frac{\pi}{2}} dt = t \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi}{2}.$$
Other: a) 1; 6) \frac{\pi}{2}.

<u>Пример 8.5.</u> Вычислить криволинейный интеграл второго рода $\int_{AB} (4x-y) dx + 5x^2 y dy$ вдоль параболы $y=3x^2, A(0;0), B(1;3).$

Функции P(x,y) = 4x - y и $Q(x,y) = 5x^2y$ непрерывны вдоль параболы $y = 3x^2$, $0 \le x \le 1$, следовательно, интегрируемы вдоль этой кривой, как по переменной x, так и по переменной y.

$$\int_{AB} (4x - y)dx + 5x^2ydy = \int_{0}^{1} (4x - 3x^2 + 5x^2 \cdot 3x^2 \cdot 6x)dx =$$

$$= \int_{0}^{1} (90x^5 - 3x^2 + 4x)dx = (15x^6 - x^3 + 2x^2)|_{0}^{1} = 16.$$

Ответ: 16.

<u>Пример 8.6.</u> Вычислить криволинейный интеграл второго рода $\int_L y^2 dx + x^2 dy, \ \text{где } L - \text{верхняя половина эллипса } \begin{cases} x = 2 \cos t, \\ y = \sin t \end{cases}, \ \text{пробегаемая}$ по ходу часовой стрелки.

Функции $P(x,y) = y^2$ и $Q(x,y) = x^2$ непрерывны вдоль эллипса $\begin{cases} x = 2 \cos t, \\ y = \sin t \end{cases}$, $0 \le t \le \pi$, следовательно, интегрируемы вдоль этой кривой. Обход вдоль кривой совершается по ходу часовой стрелки, следовательно, в отрицательном направлении. В силу формул вычисления криволинейного интеграла второго рода имеем:

$$\int_{L} y^{2} dx + x^{2} dy = -\int_{0}^{\pi} (\sin^{2}t \cdot (-2\sin t) + 4\cos^{2}t \cdot \cos t) dt =$$

$$= -2 \int_{0}^{\pi} (1 - \cos^{2}t) d(\cos t) dt - 4 \int_{0}^{\pi} (1 - \sin^{2}t) d(\sin t) =$$

$$= -2 \left(\cos t - \frac{\cos^{3}t}{3} \right) \Big|_{0}^{\pi} - 4 \left(\sin t - \frac{\sin^{3}t}{3} \right) \Big|_{0}^{\pi} = -2 \left(-1 + \frac{1}{3} - 1 + \frac{1}{3} \right) = \frac{8}{3}.$$
Other: \frac{8}{3}.

<u>Пример 8.7.</u> Вычислить криволинейный интеграл второго рода по замкнутому контуру $\oint_L \frac{(x+y)dx-(x-y)dy}{x^2+y^2}$, где L – окружность $x^2+y^2=a^2$, пробегаемая против хода часовой стрелки.

Функции $P(x,y) = \frac{x+y}{x^2+y^2}$ и $Q(x,y) = \frac{-x+y}{x^2+y^2}$ непрерывны вдоль окружности $x^2+y^2=a^2$, параметрические уравнения которой имеют вид: $\begin{cases} x=a\cos t, \\ y=a\sin t \end{cases}, 0 \le t \le 2\pi$, следовательно, интегрируемы вдоль этой кривой, как по переменной x, так и по переменной y. Обход вдоль кривой совершается против хода часовой стрелки, следовательно, в положительном направлении.

$$\oint_L \frac{(x+y)dx - (x-y)dy}{x^2 + y^2} =$$

$$= \int_0^{2\pi} \frac{(a\cos t + a\sin t) \cdot (-a\sin t) - (a\cos t - a\sin t) \cdot a\cos t}{a^2} dt =$$

$$= \int_0^{2\pi} (-\cos t \sin t - \sin^2 t - \cos^2 t + \sin t \cos t) dt = -t|_0^{2\pi} = -2\pi.$$
Otbet: -2π .

Вычисление криволинейных интегралов второго рода по отрезкам, параллельным осям координат.

Пусть AB — отрезок прямой, параллельной оси Ox, задан уравнениями: $\begin{cases} x = t \\ y = c = const, \end{cases} \ a \le t \le b, \text{ тогда формулы для вычисления криволинейного}$ интеграла второго рода примут вид:

$$\int_{AB} P(x,y)dx = \int_{a}^{b} P(x;c) dx; \int_{AB} Q(x,y)dy = 0;$$

$$\int_{AB} P(x,y)dx + Q(x,y)dy = \int_{a}^{b} P(x;c) dx.$$

Аналогично, если AB — отрезок прямой, параллельной оси Oy, задан уравнениями: $\begin{cases} x=c=const \\ y=t \end{cases}$, $a \leq t \leq b$, тогда формулы для вычисления криволинейного интеграла второго рода примут вид:

$$\int_{AB} P(x,y)dx = 0; \int_{AB} Q(x,y)dy = \int_{a}^{b} Q(c,y)dy;$$

$$\int_{AB} P(x,y)dx + Q(x,y)dy = \int_{a}^{b} Q(c,y)dy.$$

<u>Пример 8.8.</u> Вычислить криволинейный интеграл второго рода по замкнутому контуру $\oint_L (x+y) dy$, где L – контур прямоугольника, образованного прямыми: x=0, y=0, x=2, y=-3.

Обозначим вершины полученного прямоугольника точками O(0;0), A(0;-3), B(2;-3), C(2;0). Тогда OABC соответствует положительному направлению обхода контура. Функции P(x,y)=0 и Q(x,y)=x+y непрерывны вдоль контура прямоугольника OABC. Разбивая весь промежуток интегрирования на части в силу аддитивности криволинейного интеграла второго рода, можно записать

$$\oint_L (x+y)dy = \int_{QA} (x+y)dy + \int_{AB} (x+y)dy + \int_{BC} (x+y)dy + \int_{CQ} (x+y)dy.$$

Интегралы вдоль участков AB и CO равны нулю, так как на них переменная y постоянная, следовательно, dy = 0:

$$\int_{AB} (x+y)dy = 0, \int_{CO} (x+y)dy = 0.$$

Находим:

$$\int_{OA} (x+y)dy = \int_{0}^{-3} ydy = \frac{y^{2}}{2} \Big|_{0}^{-3} = \frac{9}{2};$$

$$\int_{BC} (x+y)dy = \int_{-3}^{0} (2+y)dy = \left(2y + \frac{y^2}{2}\right)\Big|_{-3}^{0} = 6 - \frac{9}{2} = \frac{3}{2}.$$

Таким образом, окончательно получаем

$$\oint_{L} (x+y)dy = \int_{QA} (x+y)dy + \int_{RC} (x+y)dy = \frac{9}{2} + \frac{3}{2} = 6.$$

Ответ: 6.

3. Формула Грина

Формула Грина устанавливает связь между криволинейными интегралами и двойными интегралами. Пусть D — некоторая область с границей ∂D , причем граница проходит так, что область D остается слева.

Граница ∂D плоской области D может состоять из одной внешней границы L, ориентированной против часовой стрелки, и нескольких простых замкнутых внутренних границ L_1, L_2, \ldots, L_n , ориентированных по часовой стрелке. Если внутренние границы отсутствуют, то область называется односвязной; в противном случае область называется многосвязной.

Если функции P(x,y) и Q(x,y) непрерывны и имеют непрерывные частные производные первого порядка в некоторой ограниченной замкнутой области D, то имеет место формула

$$\oint_{L} P(x,y)dx + Q(x,y)dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy,$$

где L — замкнутый контур, ограничивающий область D и ориентированный в положительном направлении.

Формула Грина распространяется и на многосвязные области. В общем случае:

$$\oint_{\partial D} P(x,y)dx + Q(x,y)dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy,$$

где
$$\oint_{\partial D} = \oint_{L} + \oint_{L_{1}} + \dots + \oint_{L_{n}}$$
 .

<u>Пример 8.9.</u> Используя формулу Грина, вычислить интеграл $\oint_L (x-y) \, dx + (x+y) dy$, где кривая L — окружность, заданная уравнением $x^2 + y^2 = 16$, обход которой осуществляется против хода часовой стрелки.

Обозначим P(x,y) = x - y, Q(x,y) = x + y. Функции P(x,y) и Q(x,y) непрерывны и имеют непрерывные частные производные первого порядка в замкнутой области D, ограниченной замкнутым контуром L. Находим:

$$\frac{\partial Q}{\partial x} = 1, \frac{\partial P}{\partial y} = -1.$$

Применим формулу Грина:

$$\oint_L (x-y) dx + (x+y) dy = \iint_D (1-(-1)) dx dy = \iint_D 2dx dy.$$

Для вычисления двойного интеграла перейдем к полярным координатам и, применяя формулу замены переменных в двойном интеграле, найдем:

$$\iint_{D} 2dxdy = \begin{cases} x = \rho \cos\varphi \\ y = \rho \sin\varphi \end{cases} \qquad 0 \le \varphi \le 2\pi \\ 0 \le \rho \le 4 \end{cases} = \iint_{\widetilde{D}} 2\rho d\rho d\varphi = \int_{0}^{2\pi} d\varphi \int_{0}^{4} 2\rho d\rho = \int_{0}^{2\pi} d\varphi \int_{0}^{4} 2\rho d\rho = \int_{0}^{2\pi} d\varphi \int_{0}^{4} 2\rho d\rho = \int_{0}^{2\pi} d\varphi \int_{0}^{4\pi} d\varphi \int_{0}^{4\pi} d\varphi \int_{0}^{4\pi} d\varphi \int_{0}^{4\pi} d\varphi = \int_{0}^{2\pi} d\varphi \int_{0}^{4\pi} d\varphi \int_{0}^{4\pi}$$

Ответ: 32π .

4. Вычисление площадей плоских фигур

Пусть область D ограничена контуром L, ориентированным против хода часовой стрелки. Пусть S(D) — площадь области D. Формула для вычисления площади фигуры с помощью криволинейного интеграла второго рода имеет вид

$$S(D) = \frac{1}{2} \oint_{L} (xdy - ydx).$$

<u>Пример 8.10</u>. Найти площадь фигуры, ограниченной эллипсом $\begin{cases} x = a \cos t, \\ y = b \sin t \end{cases}$, $0 \le t \le 2\pi$, с помощью криволинейного интеграла.

Из формулы выше и формул вычисления криволинейных интегралов имеем:

$$S(D) = \iint\limits_{D} dxdy = \frac{1}{2} \oint\limits_{L} (xdy - ydx) = \frac{1}{2} \int\limits_{0}^{2\pi} (a\cos t \cdot b\cos t + b\sin t \cdot a\sin t)dt =$$
$$= \frac{1}{2} \int\limits_{0}^{2\pi} abdt = \frac{ab}{2} t \Big|_{0}^{2\pi} = ab\pi.$$

Ответ: $ab\pi$.

5. Условия независимости криволинейного интеграла от пути интегрирования

Пусть область D ограничена контуром L, функции P(x,y) и Q(x,y) определены на области D. Пусть контуры, соединяющие точки A и B: L_1, L_2, \ldots , имеют одни и те же начало и конец. Если равенство

$$\int_{L_1} P dx + Q dy = \int_{L_2} P dx + Q dy = \int_{L_3} P dx + Q dy = \dots = \int_{L_n} P dx + Q dy$$

справедливо для любых кривых, расположенных в области D, то говорят, что криволинейный интеграл *не зависит от пути интегрирования*, только от концов пути. В таких случаях будем записывать криволинейный интеграл как $\int_A^B P dx + Q dy$.

Для того чтобы интеграл $\int_L P dx + Q dy$ в односвязной области не зависел от пути интегрирования, необходимо и достаточно, чтобы по любому

замкнутому контуру, целиком принадлежащему области D, этот интеграл был равен нулю, то есть

$$\int\limits_{L} Pdx + Qdy = 0.$$

Выражение P(x,y)dx + Q(x,y)dy является *полным дифференциалом* в области D, если существует такая функция F(x,y), что

$$dF(x,y) = P(x,y)dx + Q(x,y)dy.$$

Учитывая, что $dF(x,y) = \frac{\partial F(x,y)}{\partial x} dx + \frac{\partial F(x,y)}{\partial y} dy$, получаем:

$$\frac{\partial F(x,y)}{\partial x} = P(x,y), \qquad \frac{\partial F(x,y)}{\partial y} = Q(x,y).$$

В односвязной области при гладких функциях следующие утверждения равносильны:

(1) dF(x,y) = P(x,y)dx + Q(x,y)dy – полный дифференциал;

$$(2) \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x};$$

- (3) $\oint_L Pdx + Qdy = 0$ по любому замкнутому контуру L;
- (4) Для любых точек A, B области D криволинейный интеграл $\int_A^B P dx + Q dy$ не зависит от пути интегрирования.

<u>Пример 8.11</u>. Доказать, что подынтегральное выражение является полным дифференциалом, и вычислить криволинейный интеграл

$$\int_{AB} (3x^2 + 6xy - y^2 + y)dx + (3x^2 - 2xy + x + 2y)dy,$$

где A(1;2), B(3;4).

В нашем случае $P(x,y) = 3x^2 + 6xy - y^2 + y$, $Q(x,y) = 3x^2 - 2xy + x + 2y$. Вычислим частные производные:

$$\frac{\partial P}{\partial y} = 6x - 2y + 1, \qquad \frac{\partial Q}{\partial x} = 6x - 2y + 1.$$

Таким образом, $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. Следовательно, выражение P(x,y)dx + Q(x,y)dy является полным дифференциалом, а криволинейный интеграл $\int_{AB} P(x,y)dx + Q(x,y)dy$ не зависит от пути интегрирования. Возьмем в качестве пути интегрирования ломаную ACB, где C(3;2). Тогда $AC = \{(x,y): y=2, 1 \le x \le 3\}, CB = \{(x,y): x=3, 2 \le y \le 4\}.$

Вдоль отрезка AC имеем y=2, dy=0, $1 \le x \le 3$. Вдоль отрезка CB имеем x=3, dx=0, $2 \le y \le 4$, поэтому

$$\int_{AB} (3x^2 + 6xy - y^2 + y)dx + (3x^2 - 2xy + x + 2y)dy =$$

$$= \int_{1}^{3} (3x^2 + 12x - 2)dx + \int_{2}^{4} (30 - 4y)dy =$$

$$= (x^3 + 6x^2 - 2x)|_{1}^{3} + (30y - 2y^2)|_{2}^{4} = 106.$$

Ответ: 106.

Пример 8.11(1).

Рассмотрим другой способ решения примера. Если выражение dF(x,y) = P(x,y)dx + Q(x,y)dy является полным дифференциалом некоторой функции F(x,y), то можно найти эту функцию. Имеем:

$$P(x,y) = \frac{\partial F}{\partial x}, \qquad Q(x,y) = \frac{\partial F}{\partial y}.$$

Интегрируя первое равенство по переменной x, получим

$$F(x,y) = \int Pdx + f(y).$$

Далее, дифференцируем найденную функцию по переменной y, приравниваем к функции Q(x,y), находим функцию F(x,y). Находим:

$$F(x,y) = \int (3x^2 + 6xy - y^2 + y)dx + f(y) = x^3 + 3x^2y - y^2x + yx + f(y).$$
$$\frac{\partial F}{\partial y} = 3x^2 - 2xy + x + \frac{df}{dy} = 3x^2 - 2xy + x + 2y,$$

откуда находим $\frac{df}{dy}=2y$, следовательно, $f(y)=\int 2ydy=y^2+C$, C=const. Таким образом,

$$F(x,y) = x^3 + 3x^2y - y^2x + yx + y^2 + C.$$

Теперь вычислим криволинейный интеграл:

$$\int_{(1,2)}^{(3,4)} (3x^2 + 6xy - y^2 + y)dx + (3x^2 - 2xy + x + 2y)dy =$$

$$= (x^3 + 3x^2y - y^2x + yx + y^2)|_{(1,2)}^{(3,4)} = 106.$$

Ответ: 106.

Упражнения:

- 167. Найти криволинейный интеграл $\int_L x^2 y \, dl$ вдоль отрезка прямой y = x от начала координат до точки (2; 2).
- 168. Найти криволинейный интеграл $\int_L \frac{dl}{y-x}$, где L является отрезком прямой от точки A(0;-2) до точки B(4;0).
- 169. Найти криволинейный интеграл $\int_L x^2 \, dl$, где L кривая, заданная уравнением $y = \ln x$, $1 \le x \le e$.
- 170. Вычислить криволинейный интеграл $\int_{AB} 12y \ dl$ по параболе $y^2 = 3x$ от точки A(0;0) до точки B(3;3).

- 171. Вычислить криволинейный интеграл $\int_{AB} 32x \ dl$ по параболе $y = \frac{1}{4}x^2$ от точки A(8;16) до точки B(4;4).
- 172. Найти криволинейный интеграл $\int_L xy \, dl$, где L дуга эллипса $\begin{cases} x = 7\cos t \\ y = 5\sin t \end{cases}$, $0 \le t \le \frac{\pi}{2}$.
- 173. Найти криволинейный интеграл $\int_L z(x^2+y^2) \, dl$, где L кривая, заданная параметрически в виде $\begin{cases} x=\sin 3t \\ y=\cos 3t \,, \ 0 \leq t \leq \pi. \\ z=4t \end{cases}$
- 174. Вычислить криволинейный интеграл $\int_L xy \ dl$, где L четверть эллипса $\frac{x^2}{25} + \frac{y^2}{9} = 1$, лежащая в первой координатной четверти.
- 175. Найти криволинейный интеграл $\int_L x dy y dx$ вдоль кривой L, заданной уравнением $y = x^3$, от точки O(0:0) до точки B(2;8).
- 176. Найти криволинейный интеграл $\int_L \sqrt{x} dx + \sqrt{y} dy$ вдоль кривой L, заданной уравнением $y = x^2$, от точки O(0;0) до точки A(1;1).
- 177. Найти криволинейный интеграл $\int_L y^2 dx + xy dy$, где L дуга эллипса $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, лежащая в первой координатной четверти, обход осуществляется против хода часовой стрелки.
- 178. Вычислить криволинейный интеграл $\int_{AB} (x+y-4) dx + (x-y-4) dy$, где AB- дуга окружности $x^2-8x+y^2+12=0$, обход совершается по часовой стрелке, $\pi \leq t \leq \frac{\pi}{2}$.
- 179. Найти криволинейный интеграл $\int_L x dx + y dy + (x + y 1) dz$ вдоль линии L, представляющей собой отрезок прямой от точки A(1;1;1) до точки B(2;3;4). (Указание: запишите уравнение отрезка AB параметрически).

- 180. Вычислить криволинейный интеграл $\int_L x^2 y dx + y^2 x dy$, взятый вдоль кривой L: $\begin{cases} x = t \\ y = t^3 \end{cases}$, $0 \le t \le 1$ в направлении возрастания параметра.
- 181. Вычислить криволинейный интеграл $\oint_L 2xdy$, где L контур треугольника ABC (обход совершается в положительном направлении) с вершинами A(1;1), B(4;4), C(4;1).
- 182. Вычислить криволинейный интеграл $\oint_L \sqrt{x^2 + y^2} dl$, где L окружность $x^2 + y^2 = -10x$.
- 183. Вычислить криволинейный интеграл $\oint_L (x+y)dx + (x-y)dy$, где L- эллипс $\frac{x^2}{49} + \frac{y^2}{64} = 1$.
- 184. Используя формулу Грина, вычислить криволинейный интеграл $\oint_L (x-y)dx + (x+y)dy$, где кривая L окружность, заданная уравнением $x^2 + y^2 = a^2$, обход которой осуществляется против хода часовой стрелки.
- 185. Используя формулу Грина, вычислить интеграл $\oint_L y^2 dx + (x+y)^2 dy$, где контур L представляет собой треугольник ABC с вершинами A(a;0), B(a;a), C(0;a).
- 186. Вычислить с помощью формулы Грина криволинейный интеграл $\oint_L (y^2 x^2) dx + (x^2 + y^2) dy$ по контуру L, который ограничивает круговой сектор $x^2 + y^2 = 9$ с центральным углом φ : $\frac{\pi}{2} \le \varphi \le \frac{3\pi}{4}$.
- 187. Используя формулу Грина, вычислить криволинейный интеграл $\oint_L (x+y) dx (x-y) dy, \quad \text{где кривая } L \quad \text{представляет собой эллипс}$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \text{ обход которого осуществляется против хода часовой стрелки.}$

- 188. С помощью криволинейного интеграла вычислить площадь плоской фигуры, ограниченной осью Ox, гиперболой $y = \frac{2}{x}$ и прямыми x = 1, x = 2.
- 189. Доказать, что подынтегральное выражение является полным дифференциалом, и вычислить криволинейный интеграл $\oint_{AB} (2x+3y) dx + (3x+8y) dy, \, \text{где } A(0;2), B(3;7).$
- 190. Доказать, что подынтегральное выражение является полным дифференциалом, и вычислить криволинейный интеграл $\oint_{AB}(x^4+4xy^3)dx+(6x^2y^2-5y^4)dy, \, \text{где }A(-2;-1), B(3;0).$

ІХ. Числовые ряды

1. Сумма сходящегося ряда

Сумма n первых членов ряда $a_1+a_2+\ldots+a_n+\ldots=\sum_{n=1}^\infty a_n$ называется n-ой частичной суммой ряда и обозначается S_n . Если существует конечный предел $S=\lim_{n\to\infty}S_n$, то говорят, что ряд сходится. При этом число S называется суммой ряда. Пишут $S=a_1+a_2+\ldots+a_n+\ldots$ или $S=\sum_{n=1}^\infty a_n$. Итак,

$$S = \sum_{n=1}^{\infty} a_n \iff S = \lim_{n \to \infty} S_n.$$

Если $\lim_{n\to\infty} S_n$ не существует или равен $\pm\infty$, то говорят, что ряд расходится.

<u>Пример 9.1</u>. Найти сумму ряда $\sum_{n=1}^{\infty} \frac{n+3}{n(n+1)(n+2)}$.

Представим дробь $\frac{n+3}{n(n+1)(n+2)}$ методом неопределенных коэффициентов как сумму простейших дробей:

$$\frac{n+3}{n(n+1)(n+2)} = \frac{1}{2} \left(\frac{3}{n} - \frac{4}{n+1} + \frac{1}{n+2} \right).$$

Найдем выражение для S_n :

$$S_{n} = \frac{1}{2} \left(3 \cdot \frac{1}{1} - 4 \cdot \frac{1}{2} + \frac{1}{3} + 3 \cdot \frac{1}{2} - 4 \cdot \frac{1}{3} + \frac{1}{4} + \dots + 3 \cdot \frac{1}{n-2} - 4 \cdot \frac{1}{n-1} + \frac{1}{n} + 3 \cdot \frac{1}{n-1} - 4 \cdot \frac{1}{n} + \frac{1}{n+1} + 3 \cdot \frac{1}{n} - 4 \cdot \frac{1}{n+1} + \frac{1}{n+2} \right) =$$

$$= \frac{1}{2} \left(3 \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) - 4 \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \frac{1}{n+1} \right) + \left(\frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} \right) \right).$$

Обозначим $A = \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$, тогда S_n принимает вид:

$$S_n = \frac{1}{2} \left(3 \left(1 + \frac{1}{2} + A \right) - 4 \left(\frac{1}{2} + A + \frac{1}{n+1} \right) + \left(A + \frac{1}{n+1} + \frac{1}{n+2} \right) \right) = \frac{1}{2} \left(3 \left(1 + \frac{1}{2} + A \right) - 4 \left(\frac{1}{2} + A + \frac{1}{n+1} \right) + \left(A + \frac{1}{n+1} + \frac{1}{n+2} \right) \right) = \frac{1}{2} \left(3 \left(1 + \frac{1}{2} + A \right) - 4 \left(\frac{1}{2} + A + \frac{1}{n+1} \right) + \left(A + \frac{1}{n+1} + \frac{1}{n+2} \right) \right)$$

$$=\frac{1}{2}\left(\frac{5}{2}-\frac{3}{n+1}+\frac{1}{n+2}\right).$$

Найдем сумму ряда:

$$S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1}{2} \left(\frac{5}{2} - \frac{3}{n+1} + \frac{1}{n+2} \right) = \frac{5}{4}.$$

OTBET: $\frac{5}{4}$.

<u>Пример 9.2</u>. Исследовать на сходимость ряд арифметической прогрессии.

Ряд арифметической прогрессии $\{a_n\}$:

$$\sum_{n=1}^{\infty} (a_1 + d(n-1)).$$

Запишем формулу n-ой частичной суммы ряда и найдем предел:

$$S_n = \sum_{n=1}^n a_n = \frac{2a_1 + d(n-1)}{2} \cdot n,$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \left(\frac{d}{2}n^2 + \left(a_1 - \frac{d}{2}\right)n\right) = \begin{cases} +\infty, & \text{при } d > 0 \\ -\infty, & \text{при } d < 0 \end{cases}$$

Следовательно, ряд расходится.

Ответ: расходится.

Пример 9.3. Исследовать на сходимость ряд геометрической прогрессии.

Ряд геометрической прогрессии $\{b_n\}$ имеет вид:

$$\sum_{n=1}^{\infty} b_1 q^{n-1}.$$

Запишем формулу n-ой частичной суммы и исследуем сумму ряда:

$$S_n = \sum_{n=1}^n b_n = \frac{b_1(q^n - 1)}{q - 1}.$$

1 случай: если |q| < 1, то

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{b_1(q^n - 1)}{q - 1} = \frac{b_1}{1 - q'}$$

значит, ряд сходится.

2 случай: если |q| > 1:

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \frac{b_1(q^n-1)}{q-1} = \infty,$$

следовательно, ряд расходится.

3 случай: при q = 1:

$$\sum_{n=1}^{\infty} b_1 q^{n-1} = b_1 + b_1 + \dots + b_1 + \dots$$

$$\lim_{n\to\infty} S_n = b_1 n = \begin{cases} +\infty, & \text{если } b_1 > 0 \\ -\infty, & \text{если } b_1 < 0 \end{cases}$$

ряд расходится.

4 случай: при q = -1:

$$\sum_{n=1}^{\infty} b_1 q^{n-1} = b_1 - b_1 + b_1 - b_1 + \dots, \quad S_n = \begin{cases} b_1, & \text{при нечетном } n \\ 0, & \text{при четном } n \end{cases};$$

 $\lim_{n\to\infty} S_n$ - не существует, ряд расходится.

Ответ: сходится при |q| < 1, расходится в остальных случаях.

2. Необходимый признак сходящегося ряда. Критерий Коши сходимости ряда

Heoбxoдимый признак сходящегося ряда. Если ряд $\sum_{n=1}^{\infty} a_n$ сходится, то его общий член стремится к нулю: $\lim_{n\to\infty} a_n=0$.

Используя необходимое условие сходимости, можно доказывать расходимость рядов. Если $\lim_{n\to\infty} a_n \neq 0$, то по необходимому условию сходимости можно заключить, что ряд $\sum_{n=1}^{\infty} a_n$ расходится.

Пример 9.4. Исследовать на сходимость ряд
$$\sum_{n=1}^{\infty} \sqrt{\frac{3n+4}{5n+1}}$$
.

Проверим выполнимость необходимого условия сходимости:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \sqrt{\frac{3n+4}{5n+1}} = \sqrt{\frac{3}{5}} \neq 0.$$

Необходимое условие не выполняется, следовательно, исходный ряд не может сходиться, значит, расходится.

Ответ: расходится.

Критерий Коши сходимости ряда. Ряд $\sum_{n=1}^{\infty} a_n$ сходится тогда и только тогда, когда для него выполняется условие Коши:

$$\forall \varepsilon > 0 \; \exists \; k_{\varepsilon} \in \mathbb{N} : \forall n \geq k_{\varepsilon}, \forall p \in \mathbb{N} \; \Rightarrow \left| a_{n+1} + a_{n+2} + \cdots + a_{n+p} \right| < \varepsilon.$$

<u>Пример 9.5</u>. Доказать с помощью критерия Коши, что гармонический ряд $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}+\ldots=\sum_{n=1}^{\infty}\frac{1}{n}$ расходится.

Для любого $k \in \mathbb{N}$ возьмем n=k, p=k. Тогда

$$\begin{aligned} \left| a_{n+1} + a_{n+2} + \cdots a_{n+p} \right| &= \frac{1}{k+1} + \frac{1}{k+2} + \cdots + \frac{1}{2k} > \frac{1}{2k} + \frac{1}{2k} + \cdots + \frac{1}{2k} = \\ &= k \frac{1}{2k} = \frac{1}{2}, \end{aligned}$$

то есть условие Коши не выполняется при $\varepsilon = \frac{1}{2}$, так как

$$\left| a_{n+1} + a_{n+2} + \cdots a_{n+p} \right| > \frac{1}{2}.$$

Значит, гармонический ряд расходится. Что и требовалось доказать.

3. Ряды с неотрицательными членами. Признаки сходимости положительных рядов

Критерий сходимости. Для того чтобы ряд $\sum_{n=1}^{\infty} a_n$ с неотрицательными членами сходился, необходимо и достаточно, чтобы последовательность его частичных сумм была ограничена.

1 признак сравнения. Рассмотрим два ряда с неотрицательными членами: $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$. Пусть для всех n выполняется неравенство $a_n \leq b_n$. Тогда из сходимости ряда $\sum_{n=1}^{\infty} b_n$ следует сходимость ряда $\sum_{n=1}^{\infty} a_n$, а из расходимости ряда $\sum_{n=1}^{\infty} a_n$ следует расходимость ряда $\sum_{n=1}^{\infty} b_n$.

2 признак сравнения. Пусть $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ – ряды с положительными членами. Если существует конечный, отличный от нуля, предел $\lim_{n\to\infty} \frac{a_n}{b_n}$, то ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ сходятся и расходятся одновременно. Если $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$, то из сходимости ряда $\sum_{n=1}^{\infty} b_n$ следует сходимость ряда $\sum_{n=1}^{\infty} a_n$. Если же $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$, то из расходимости ряда $\sum_{n=1}^{\infty} b_n$ следует расходимость ряда $\sum_{n=1}^{\infty} a_n$.

3 признак сравнения. Если для рядов $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ с положительными членами выполняется при любом n условие $\frac{a_n}{b_n} \in [p;q]$, где p и q — некоторые постоянные, то ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ сходятся и расходятся одновременно.

<u>Пример 9.6</u>. Доказать, что при $\alpha < 1$ ряд $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ расходится.

Пусть

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = 1 + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \dots + \frac{1}{n^{\alpha}} + \dots$$

Рассмотрим гармонический ряд

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots,$$

так как $a_n = \frac{1}{n} \le \frac{1}{n^\alpha} = b_n$ и гармонический ряд $\sum_{n=1}^\infty a_n$ расходится, то, по первому признаку сравнения, ряд $\sum_{n=1}^\infty b_n$ тоже расходится. Что и требовалось доказать.

Пример 9.7. Исследовать сходимость ряда

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{2^n + 3n}{5^n - 2}.$$

Это ряд с положительными членами. Рассмотрим сходящийся ряд

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{2^n}{5^n} = \sum_{n=1}^{\infty} \left(\frac{2}{5}\right)^n -$$

- ряд геометрической прогрессии, $q = \frac{2}{5}$. Так как

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{2^n + 3n}{5^n - 2}}{\frac{2^n}{5^n}} = \lim_{n \to \infty} \frac{10^n + 3n \cdot 5^n}{10^n - 2 \cdot 2^n} = 1 \neq 0,$$

то ряд $\sum_{n=1}^{\infty} a_n$ также сходится, по второму признаку сравнения.

Ответ: сходится.

Признак Даламбера (в предельной форме). Если для ряда $\sum_{n=1}^{\infty} a_n$ с положительными членами существует предел $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = d$, то ряд сходится при d<1 и расходится при d>1. При d=1 признак Даламбера не применим.

Пример 9.8. Исследовать сходимость ряда

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n!}.$$

Вычислим предел:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{1}{(n+1)!}}{\frac{1}{n!}} = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{n+1} = 0 < 1,$$

значит, по признаку Даламбера, ряд сходится.

Ответ: сходится.

Признак Коши (в предельной форме). Если для ряда $\sum_{n=1}^{\infty} a_n$ с положительными членами существует предел $\lim_{n\to\infty} \sqrt[n]{a_n} = k$, то ряд сходится при k < 1 и расходится при k > 1. При k = 1 признак Коши не применим.

Пример 9.9. Исследовать сходимость ряда

$$\sum_{n=2}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{\ln^n n}.$$

Вычислим предел:

$$\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \sqrt[n]{\frac{1}{\ln^n n}} = \lim_{n\to\infty} \frac{1}{\ln n} = 0 < 1,$$

следовательно, ряд сходится по признаку Коши.

Ответ: сходится.

Интегральный признак. Пусть $\sum_{n=1}^{\infty} a_n$ — ряд с положительными членами, а f(x) — функция, удовлетворяющая условиям: 1) $f(n) = a_n$; 2) f(x) определена и непрерывна на $[1; +\infty)$; 3) f(x) положительна на $[1; +\infty)$; 4) f(x) убывает на $[1; +\infty)$. Тогда ряд $\sum_{n=1}^{\infty} a_n$ и несобственный интеграл первого рода $\int_{1}^{+\infty} f(x) dx$ сходятся и расходятся одновременно.

<u>Пример 9.10.</u> Используя интегральный признак, доказать, что гармонический ряд $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n}$ расходится.

Рассмотрим функцию $f(x) = \frac{1}{x}$. Эта функция удовлетворяет всем условиям интегрального признака. Значит, гармонический ряд и интеграл $\int_{1}^{+\infty} \frac{1}{x} dx$ сходятся и расходятся одновременно. Имеем:

$$\int_{1}^{+\infty} \frac{1}{x} dx = \lim_{b \to +\infty} \int_{1}^{b} \frac{1}{x} dx = \lim_{b \to +\infty} \left(\ln|x| \Big|_{1}^{b} \right) = \lim_{b \to +\infty} (\ln b - \ln 1) = +\infty,$$

несобственный интеграл расходится. Следовательно, расходится и гармонический ряд. Что и требовалось доказать.

4. Знакопеременные ряды. Знакочередующиеся ряды. Абсолютно и условно сходящиеся ряды.

Ряд $\sum_{n=1}^{\infty} a_n$ (*A*) называется *знакопеременным*, если его члены могут принимать как положительные, так и отрицательные значения. Составим ряд из абсолютных членов ряда (*A*): $\sum_{n=1}^{\infty} |a_n| |A|$. Из сходимости ряда |*A*| следует сходимость ряда (*A*).

Ряд (A) называется абсолютно сходящимся, если сходится ряд |A|. Если ряд |A| расходится, а ряд (A) сходится, то ряд (A) называется условно сходящимся.

Частным случаем знакопеременных рядов являются знакопостоянные ряды (положительные и отрицательные ряды) и *знакочередующиеся ряды*, то есть ряды, знаки членов которых чередуются.

Признак Дирихле-Абеля. Пусть для числового ряда вида $\sum_{n=1}^{\infty} a_n b_n$ выполняются следующие условия: 1) последовательность $\{b_n\}$ бесконечно малая и невозрастающая; 2) последовательность частичных сумм $\{S_n = a_1 + a_2 + \dots + a_n\}$ ограничена. Тогда ряд $\sum_{n=1}^{\infty} a_n b_n$ сходится.

Признак Абеля. Пусть для числового ряда вида $\sum_{n=1}^{\infty} a_n b_n$ выполняются следующие условия: 1) ряд $\sum_{n=1}^{\infty} b_n$ сходится; 2) последовательность $\{a_n\}$ монотонная и ограниченная. Тогда ряд $\sum_{n=1}^{\infty} a_n b_n$ сходится.

Признак Лейбница. Пусть для знакочередующегося ряда $\sum_{n=1}^{\infty} (-1)^n a_n$, $a_n > 0$ выполняются следующие условия: 1) последовательность $\{a_n\}$ убывает; 2) $\lim_{n \to \infty} a_n = 0$. Тогда ряд $\sum_{n=1}^{\infty} (-1)^n a_n$ сходится.

Пример 9.11. Исследовать на сходимость ряд

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3}.$$

Рассмотрим ряд из абсолютных величин заданного ряда $\sum_{n=1}^{\infty} \frac{1}{n^3}$. Этот ряд является сходящимся (как обобщенный гармонический с $\alpha=3$). Тогда заданный ряд абсолютно сходится, следовательно, сходится.

Ответ: сходится.

Пример 9.12. Исследовать на сходимость ряд

$$\sum_{n=1}^{\infty} \frac{\cos(nx)}{n^{\alpha}}, \alpha > 0, x \in R, x \neq 2\pi m.$$

Обозначим $b_n = \frac{1}{n^{\alpha}}$, $a_n = \cos(nx)$. Последовательность $\left\{b_n = \frac{1}{n^{\alpha}}\right\}$ бесконечно малая и убывающая. Рассмотрим последовательность частичных сумм $\left\{S_n = a_1 + a_2 + \dots + a_n\right\}$. Можно показать, что

$$S_n = cosx + cos2x + \dots + cosnx = \frac{sin\frac{nx}{2}cos\frac{(n+1)x}{2}}{sin\frac{x}{2}} \le \frac{1}{\left|sin\frac{x}{2}\right|'}$$

значит, последовательность $\{S_n\}$ ограничена. Тогда по признаку Дирихле-Абеля ряд сходится.

Ответ: сходится.

<u>Пример 9.13</u>. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} lnn}{\sqrt{n}}$ (A). Установить характер сходимости.

Составим ряд из абсолютных величин ряда (A): $\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{n}} |A|$. Ясно, что начиная с некоторого натурального числа k выполняется неравенство: $\frac{\ln n}{\sqrt{n}} \geq \frac{1}{\sqrt{n}}, \ n \geq k$. Ряд $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ расходится, тогда по признаку сравнения положительных рядов ряд |A| расходится. Следовательно, ряд (A) не сходится абсолютно.

Ряд (A) знакочередующийся. Проверим условия признака Лейбница: 1) $\left\{a_n = \frac{lnn}{\sqrt{n}}\right\}$ убывает при n > 3, 2) $\lim_{n \to \infty} \frac{lnn}{\sqrt{n}} = 0$. Тогда по признаку Лейбница ряд (A) сходится. В силу расходимости ряда |A|, получаем, что ряд (A) сходится условно.

Ответ: сходится условно.

Упражнения:

Вычислить сумму ряда:

191.
$$\sum_{n=1}^{\infty} \left(\frac{1}{2^n} - \frac{1}{2^{n+9}} \right)$$

192.
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$

Исследовать ряд на сходимость:

193.
$$\sum_{n=1}^{\infty} \frac{n+3}{n+9}$$

194.
$$\sum_{n=1}^{\infty} \frac{9^n + 9}{7^n - 7n}$$

195.
$$\sum_{n=1}^{\infty} \frac{4}{(4n-3)^2}$$

196.
$$\sum_{n=1}^{\infty} \frac{5n^2 - 4n}{2n^3 - 3}$$

197.
$$\sum_{n=1}^{\infty} \frac{\sqrt{7n+5}}{\sqrt{3n^3+3n+2}}$$

198.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+6} + (-1)^n}{(n+6)\sqrt{n^3}}$$

199.
$$\sum_{n=1}^{\infty} \frac{9^n + 9}{7^n - 7n}$$

200.
$$\sum_{n=1}^{\infty} \frac{6^n}{(n+7) \cdot 10^n}$$

201.
$$\sum_{n=1}^{\infty} \frac{(n-8) \cdot 2^{n+3}}{(n^2+5n+2) \cdot 9^{n+7}}$$

202.
$$\sum_{n=1}^{\infty} \frac{n!}{5^n}$$

$$203. \sum_{n=0}^{\infty} \frac{\ln 5n}{4n-1}$$

204.
$$\sum_{n=1}^{\infty} \frac{1}{n \ln^2 n}$$

$$205. \sum_{n=1}^{\infty} \arcsin \frac{1}{n^3}$$

206.
$$\sum_{n=0}^{\infty} \frac{2n+4}{(n+1)!}$$

207.
$$\sum_{n=1}^{\infty} \left(\frac{4n^2 + 8n - 3}{5n^2 - 2n + 6} \right)^n$$

$$208. \sum_{n=1}^{\infty} \frac{1 - \cos n}{n^2 + 1}$$

Исследовать на абсолютную и условную сходимость ряд:

209.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{7^n}$$

210.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(3n+7)^2}$$

211.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{4n^2 - 7n + 4}}$$

212.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+4} \cdot (7n^3 + 3)}{3n^3 - 4}$$

213.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot 6^{n+3}}{n^9}$$

214.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot (n^6 + 6n^3 + 4)}{6n^7 - 4n^3 + 7}$$

215.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot (3n+4)}{\sqrt{3n^8 - 5n^4 + 2}}$$

216.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(7n+2)\ln(7n+2)}$$

217.
$$\sum_{n=1}^{\infty} (-1)^n \left(1 - \frac{1}{n^2 - 2}\right)^n$$

218.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+4)}{10^n}$$

219.
$$\sum_{n=1}^{\infty} \frac{\sin(\frac{1}{8}\pi n)}{\ln^n 5}$$

$$220. \sum_{n=1}^{\infty} \frac{\cos 4n}{n\sqrt{n}}$$

221.
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{2n}{9n+2} \right)^n$$

222.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \sin\left(\frac{4}{n^{\frac{3}{7}}}\right)$$

х. ответы

1.
$$\frac{x^2}{6} + \frac{4}{3}x + \frac{4}{3}\ln|x| + C$$
;

2.
$$3tgx + 3x + C$$
;

3.
$$\frac{9}{2}x - \frac{9}{2}sinx + C$$
;

4.
$$\frac{2}{3}x^3 + \frac{\sin x}{3} + \frac{4^x}{\ln 4} - 4\arcsin x + C$$
;

5.
$$a^2x + \frac{1}{2}abx^4 + \frac{1}{7}b^2x^7 + C$$
;

6.
$$n^{\frac{1}{n}}x^{\frac{1}{n}} + C$$
;

7.
$$\frac{3}{13}x^{\frac{13}{3}} - \frac{3}{7}x^{\frac{7}{3}} - 6x^{\frac{1}{3}} + C$$
;

8.
$$ctgx - x + C$$
;

9.
$$\frac{(3e)^x}{\ln 3 + 1} + C$$
;

10.
$$\arcsin\left(\frac{x}{\sqrt{2}}\right) - \ln|x + \sqrt{2 + x^2}| + C;$$

11.
$$\frac{1}{72}(3x+2)^{24} + C$$
;

12.
$$-\frac{1}{225(5x-4)^{45}}+C$$
;

13.
$$\frac{1}{2}arctg(\frac{x+2}{2}) + C;$$

14.
$$\ln |x-2+\sqrt{x^2-4x+1}|+C$$
;

15.
$$-\frac{2}{27}(-3x^6+4)^{\frac{3}{4}}+C$$
;

16.
$$\frac{1}{4} \ln |\sin(4x)| + C$$
;

17.
$$-\frac{1}{10ln5}5^{-5sin2x-6} + C$$
;

18.
$$\frac{1}{5}\ln|4-ctg5x|+C$$
;

19.
$$\frac{1}{16}ln\left|\frac{\log_5 5x - 8}{\log_5 5x + 8}\right| \cdot ln5 + C;$$

20.
$$\frac{3}{5}\sqrt{5x^2+1} + \frac{1}{\sqrt{5}}\ln|\sqrt{5x} + \sqrt{5x^2+1}| + C;$$

21.
$$\frac{1}{2a}\ln|a^2x^2+b^2|+\frac{1}{a}arctg\left(\frac{ax}{b}\right)+C;$$

22.
$$\frac{1}{8}\ln|4x^2+1|-\frac{1}{3}arctg^{\frac{3}{2}}2x+C$$
;

23.
$$-\frac{1}{2b}\ln\left|\frac{1+e^{-bx}}{1-e^{-bx}}\right|+C;$$

24.
$$-\frac{1}{2}\sqrt{\cos 2x} + C$$
;

25.
$$\frac{2 \cdot 5^{\sqrt{x}}}{\ln 5} + C$$
;

26.
$$-\ln|\sin x + \cos x| + C$$
;

27.
$$-\frac{1}{2}e^{-x^2} + C$$
;

28.
$$\frac{2}{3}tg^{\frac{3}{2}}x + C$$
;

29.
$$\frac{1}{\ln a} \operatorname{arctg}(a^x) + C$$
;

30.
$$\frac{1}{2}\arcsin\frac{x^2}{a^2} + C$$
;

31.
$$e^{x^2} + C$$
;

32.
$$\frac{(sinx)^{n+1}}{n+1} + C$$
;

33.
$$\sqrt{1+x^2}+C$$
;

34.
$$\frac{1}{4}(2x-1)e^{2x} + C$$
;

35.
$$\frac{1}{4}(4x-5)\sin 4x + \frac{1}{4}\cos 4x + C$$
;

36.
$$(x+3)arctg(x+3) - \frac{1}{2}\ln(1+(x+3)^2) + C$$
;

37.
$$\frac{8}{3}x^{\frac{3}{8}}lnx - \frac{64}{9}x^{\frac{3}{8}} + C;$$

38.
$$\left(\frac{5}{3}x - \frac{1}{3}\right)\cos 3x + \left(5x - \frac{59}{9}\right)\sin 3x + C;$$

39.
$$\left(-\frac{1}{3}x^2 + \frac{1}{3}x - \frac{34}{27}\right)\cos 3x + \left(\frac{2}{9}x - \frac{1}{9}\right)\sin 3x + C;$$

40.
$$\left(\frac{1}{2}x^2 - 6x + \frac{1}{32}\right) arctg4x + \frac{3}{4}\ln(1 + 16x^2) - \frac{1}{8}x + C;$$

41.
$$\frac{(x-6)\ln(x-6)-x}{\ln 10}+C$$
;

42.
$$(3x^2 + 2x) \ln^2 x + (9x^2 + 4x) \ln x + \frac{21}{2}x^2 + 6x + C$$
;

43.
$$\left(\frac{1}{2}x^2 - x - \frac{7}{2}\right)e^{2x} + C$$
;

44.
$$\left(-\frac{5}{26}\cos 5x + \frac{1}{26}\sin 5x\right)e^x + C$$
;

45.
$$\frac{x}{2}(\sin(\ln 7x) - \cos(\ln 7x)) + C$$
;

46.
$$\frac{23}{8}\ln|x-4| + \frac{9}{8}\ln|x+4| + C$$
;

47.
$$\frac{2}{3}x^3 - \frac{1}{2}x^2 - 7x - 23 \ln|x - 2| + C$$
;

48.
$$-\frac{5}{8}\ln|x+1+\frac{13}{8}\ln|x+9|+C$$
;

49.
$$\frac{1}{2}\ln(x^2+16x+80)-\frac{3}{2}arctg\left(\frac{x+8}{4}\right)+C;$$

50.
$$\frac{13}{2(x+2)^2} - \frac{4}{x+2} + 3\ln|x+2| + C$$
;

51.
$$-7 \ln|x+1| + 8 \ln|x+2| - \frac{9}{x+2} + C$$
;

52.
$$-\ln|x| + \frac{9}{2}\ln(x^2 - 4x + 8) + 19arctg\left(\frac{x-2}{2}\right) + C;$$

53.
$$\frac{5}{2}x^2 + x - \ln|x| + 3\ln(x^2 + 2x + 5) - \frac{19}{2}arctg\left(\frac{x+1}{2}\right) + C$$
;

54.
$$x - \frac{5}{2} \ln|x^2 + 3x + 4| + \frac{9\sqrt{7}}{7} arctg \frac{(2x+3)\sqrt{7}}{7} + C;$$

55.
$$x - \frac{1}{2} \operatorname{arctg} x - \frac{1}{4} \ln|x+1| + \frac{1}{4} \ln|x-1| + C$$
;

56.
$$-\frac{1}{20}\ln|x-1| + \frac{1}{52}\ln|x-3| + \frac{1}{65}\ln|x^2 + 4x + 5| + \frac{7}{130}arctg(x+2) + C;$$

57.
$$\ln|x-2| - \frac{1}{2(x+2)^2} + C$$
;

58.
$$-x + 6\sqrt{x+2} + 12 \ln|-2 + \sqrt{x+2}| + C$$
;

59.
$$2\sqrt{x-3} + 5 \ln \left| \frac{\sqrt{x-3} - 5}{\sqrt{x-3} + 5} \right| - 7 \ln |x-28| + C;$$

60.
$$-\frac{12}{7}\sqrt[3]{x^2} - \frac{108}{49}\ln|9 - 7\sqrt[3]{x^2}| + C;$$

61.
$$\frac{1}{2}x\sqrt{x^2+5} + \frac{5}{2}\ln|x+\sqrt{x^2+5}| + C$$
;

62.
$$\frac{1}{2}x\sqrt{64-x^2} + 32\arcsin\left(\frac{x}{8}\right) + C$$
;

63.
$$-\sqrt{x^2+14x+56}+11\ln|x+7+\sqrt{x^2+14x+56}|+C$$
;

64.
$$-\sqrt{45-x^2-4x} + 5\arcsin\left(\frac{x+2}{7}\right) + C$$
;

65.
$$\sqrt[4]{x} + 2 \ln |\sqrt{x} + 1| - 4 \arctan \frac{4}{\sqrt{x}} + C$$
;

66.
$$-2\sqrt{\frac{1-x}{1+x}} + 2arctg\sqrt{\frac{1-x}{1+x}} + C;$$

67.
$$3arctg\sqrt[3]{x} + C$$
;

68.
$$-\frac{\sqrt{1+x^2}}{x} - \frac{x}{\sqrt{1+x^2}} + C$$
;

69.
$$-\arcsin\left(\frac{-x}{(x-1)\sqrt{2}}\right) + C$$

70.
$$-\frac{1}{5}ctg(5x-3)+C$$

71.
$$\frac{1}{4}tg(4x) - x + C$$

72.
$$\frac{1}{4}sin(4x-5) - \frac{1}{12}sin^3(4x-5) + C$$

73.
$$\frac{1}{2}\cos x - \frac{1}{18}\cos 9x + C$$

74.
$$-\frac{1}{14}\cos^7 2x + \frac{1}{18}\cos^9 2x + C$$

75.
$$-\frac{1}{10}ctg^25x - \frac{1}{5}\ln|\sin 5x| + C$$

76.
$$\frac{9}{4}x - \frac{3}{14}\sin 14x + \frac{3}{112}\sin 28x + C$$

77.
$$\frac{1}{9} \arctan\left(\frac{tg\frac{3}{2}x-5}{3}\right) + C$$

78.
$$\frac{5}{3}sin0,3x + \frac{5}{7}sin0,7x + C$$

79.
$$\frac{1}{16}x - \frac{1}{64}\sin 4x - \frac{1}{48}\sin^3 2x + C$$

80.
$$\frac{2}{\sqrt{5}} arctg \frac{3tg \frac{x}{2} - 2}{\sqrt{5}} + C$$

81.
$$\ln \left| 1 + \frac{2}{tg^2\left(\frac{x}{2}\right) + 1} \right| + \frac{4\sqrt{3}}{3} \operatorname{arctg} \frac{tg\left(\frac{x}{2}\right)}{\sqrt{3}} + C$$

82.
$$-\frac{8\sqrt[8]{(6-\sin 7x)^9}}{63}+C$$

83.
$$\frac{3}{2}x - \frac{1}{8}sin12x + C$$

84.
$$-\frac{1}{6}ctg(6x+5)+C$$

85.
$$\frac{3}{20}$$

86.
$$\frac{1}{8}\ln(\frac{55}{39})$$

87.
$$\sqrt[8]{37} - 1$$

88.
$$\frac{1}{4}\ln(\frac{1}{2}\sqrt{2})$$

89.
$$\frac{1}{36}\ln(\frac{9}{25})$$

90.
$$\frac{4}{75}(7^{\frac{3}{4}}-2^{\frac{3}{4}})$$

91.
$$-\frac{3}{8}$$

92.
$$\frac{2}{3}(11^{\frac{3}{2}}-9^{\frac{3}{2}})$$

93.
$$\ln(\frac{6+\sqrt{27}}{9})$$

94.
$$\frac{30}{\ln 10}$$

95.
$$\frac{5}{324}\pi^4 + \frac{1}{6}\pi^2 - \pi$$

96.
$$\frac{11}{36}e^{12} + \frac{1}{36}$$

97.
$$\frac{9}{25} + \frac{1}{50}\pi$$

98.
$$-\frac{41}{54} + \frac{1}{216}\pi$$

99.
$$5\pi + \frac{23}{2} + \frac{3}{2}\pi\sqrt{2} - 25\sqrt{2} + 3\pi\sqrt{3} - \frac{27}{2}\sqrt{3}$$

100.
$$-\frac{\pi}{6\sqrt{3}} + \frac{1}{2}\ln(\frac{4}{3})$$

101.
$$\frac{11}{3}e^{12} + 6e^4 + \frac{7}{3}$$

102.
$$\left(\frac{2}{25} - \frac{3\sqrt{3}}{50}\right)e^{-\frac{1}{2}\pi} + \left(\frac{3}{50} + \frac{2\sqrt{3}}{25}\right)e^{-\frac{1}{8}\pi}$$

103.
$$\frac{11}{2} \ln \left(\frac{17}{11} \right) - \frac{7}{2} \ln \left(\frac{15}{9} \right)$$

104.
$$-\frac{7}{9} + 5 \ln(\frac{2}{3})$$

105.
$$35 \ln 2 - 3 \ln \left(\frac{29}{4}\right) + \frac{1}{2} \operatorname{arctg}\left(\frac{5}{2}\right)$$

106.
$$\frac{\pi}{18} - \frac{\sqrt{3}}{24}$$

107.
$$-\frac{6}{13}$$

108.
$$\frac{4112}{3}$$

109.
$$\frac{4\pi}{3} - 2\sqrt{3}$$

110.
$$3\sqrt{45} + 11\arcsin\left(\frac{2}{7}\right) - 21$$

112.
$$\frac{33}{2} + 28 \ln \left(\frac{4}{7} \right)$$

113.
$$\frac{26}{3}$$
 + 3 ln 3

114.
$$\frac{210}{\ln 6} - 2$$

115.
$$\frac{17}{10}\pi$$

117.
$$\frac{343}{3}\pi$$

118.
$$\frac{74}{3}$$

119.
$$-\ln|tg\frac{\pi}{8}|$$

- 122. $4\pi R^2$
- 123. $\frac{64}{3}\pi a^2$
- 124. $\frac{3}{2} \cdot 3^{\frac{2}{3}}$
- 125. $\frac{5}{6}\pi$
- 126. $\frac{92}{3}$
- 127. $2\sqrt{5}$
- 128. интеграл расходится $(+\infty)$
- 129. интеграл расходится (-∞)
- 130. $\frac{81}{2} \ln 9 \frac{81}{4}$
- 131.2π
- 132. $\frac{1}{15625}$
- 133. интеграл расходится
- 134. 14
- 135. $\frac{1}{2} \ln \frac{5}{3}$
- 136. $-\frac{15}{1024}\pi^4$
- 137. интеграл расходится $(+\infty)$
- 138. $\frac{5}{74}$
- 139. π
- 140. интеграл расходится $(+\infty)$
- 141. интеграл расходится
- 142. интеграл сходится
- 143. интеграл сходится

- 144. 77
- 145. $\frac{4}{5}$
- 146. $\frac{50}{\ln 5} \ln \frac{34}{29}$
- 147. $\frac{1}{2}$ 24 ln $\frac{14}{13}$
- 148. 288
- 149. $-\frac{125}{3}$
- 150. $-\frac{8}{5}$
- 151. $\frac{13}{42}e^{-18} \frac{1}{6}e^{-114}$
- 152. $\frac{7}{4} \frac{3}{4}\sqrt{3} + \frac{1}{4}\pi$
- 153. π
- 154. 21
- 155. 1
- 156. $\frac{75}{2}\pi$
- 157. 40
- 158. $\frac{2560}{3}$
- 159. $\frac{5}{21}$
- 160. $\frac{\pi}{36}$
- 161. $\frac{\pi}{3}$
- 162. 8

- 163. 9 ln 2
- 164. 18
- 165. $\frac{1}{6}$
- 166. $\frac{81}{24}$
- 167. $4\sqrt{2}$
- 168. $-\sqrt{5} \ln 2$
- 169. $\frac{\sqrt{(1+e^2)^3}-\sqrt{8}}{3}$
- 170. $9(5\sqrt{5}-1)$
- 171. $\frac{128}{3} (17\sqrt{17} 5\sqrt{5})$
- 172. $238\frac{7}{16}$
- 173. $10\pi^2$
- 174. $\frac{245}{8}$
- 175. 8
- 176. $\frac{4}{3}$
- 177. $-\frac{ab^2}{3}$
- 178. -4
- 179. 13
- 180. 0,5
- 181. 9
- 182. 200
- 183. 0
- 184. $2\pi a^2$

- 185. $\frac{2a^3}{3}$
- 186. 18
- 187. $-2\pi ab$
- 188. 2 ln 2
- 189. 252
- 190. 62
- 191. $\frac{511}{512}$
- 192. $\frac{1}{2}$
- 193. ряд расходится
- 194. ряд расходится
- 195. ряд сходится
- 196. ряд расходится
- 197. ряд расходится
- 198. ряд сходится
- 199. ряд расходится
- 200. ряд сходится
- 201. ряд сходится
- 202. ряд расходится
- 203. ряд расходится
- 204. ряд сходится
- 205. ряд сходится
- 206. ряд сходится
- 207. ряд сходится
- 208. ряд сходится
- 209. ряд сходится абсолютно
- 210. ряд сходится абсолютно
- 211. ряд сходится условно

- 212. ряд расходится
- 213. ряд расходится
- 214. ряд сходится условно
- 215. ряд сходится абсолютно
- 216. ряд сходится условно
- 217. ряд расходится
- 218. ряд сходится абсолютно
- 219. ряд сходится абсолютно
- 220. ряд сходится абсолютно
- 221. ряд сходится абсолютно
- 222. ряд сходится абсолютно

ХІ. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

а) основная

- 1. Фихтенгольц, Г.М. Курс дифференциального и интегрального исчисления. В 3-х тт. Том 1 [Электронный ресурс]: учебник / Г.М. Фихтенгольц. Электрон. дан. Санкт-Петербург: Лань, 2019. 608 с. Режим доступа: https://e.lanbook.com/book/113948
- 2. Фихтенгольц, Г.М. Курс дифференциального и интегрального исчисления. В 3-х тт. Том 2 [Электронный ресурс]: учебник / Г.М. Фихтенгольц. Электрон. дан. Санкт-Петербург: Лань, 2019. 800 с. Режим доступа: https://e.lanbook.com/book/113949
- 3. Фихтенгольц, Г.М. Курс дифференциального и интегрального исчисления. В 3-х тт. Том 3 [Электронный ресурс]: учебник / Г.М. Фихтенгольц. Электрон. дан. Санкт-Петербург: Лань, 2019. 656 с. Режим доступа: https://e.lanbook.com/book/113950
- 4. Математика в экономике. Ч. 2: Математический анализ: Учебник для студ. экономич. спец. вузов / А.С. Солодовников, В.А. Бабайцев, А.В. Браилов, И.Г. Шандра. 3-е изд., перераб. и доп. М.: Финансы и статистика; ИНФРА-М, 2011.
- 5. Сборник задач по курсу «Математика в экономике». В 3 ч. Ч. 2: Математический анализ: учебное пособие/под ред. В.А. Бабайцева, В.Б. Гисина.— Москва: Финансы и статистика, 2017
- 6. Демидович, Б.П. Сборник задач и упражнений по математическому анализу [Электронный ресурс]: учебное пособие / Б.П. Демидович. Электрон.дан. Санкт-Петербург: Лань, 2019. 624 с. Режим доступа: https://e.lanbook.com/book/113942

7. Курс математического анализа: учебное пособие для вузов. — :учебное пособие / Тер-А.М. Крикоров, М.И. Шабунин. — 6-е издание. — Москва: Лаборатория знаний, 2015. — 675 с. — ISBN 978-5-9963-2987-8.(Электронно-библиотечная система BOOK.RU https://www.book.ru/book/923864)

б) дополнительная:

8. Основы математического анализа. В 2 ч.: учебник для студ. физических спец. и спец. «Прикладная математика» / В.А.Ильин, Э.Г.Позняк.— 7-е изд., стер. — М.: Физматлит, 2014. То же [Электронный ресурс]. — Режим доступа: http://biblioclub.ru/index.php?page=book_red&id=76686&sr=1