

REMARKS

Claims 1-27 are pending. Claims 1, 11-13 are independent claims. No new matter has been added. Claims 1, 7, 11-13, 19 and 23-27 are rejected under 35 U.S.C. § 102(b) as allegedly being anticipated by Yamamoto et al. (USP 4,883,834). Claims 2, 4-6, 14, and 16-18 are rejected under 35 U.S.C. § 103(a) as allegedly being unpatentable over Yamamoto in view of Wycech (USP 5,755,486). Claims 3 and 15 are rejected under 35 U.S.C. § 103(a) as allegedly being unpatentable over Yamamoto in view of Wycech and further in view of Kawasaki et al. (USP 5,782,730). Claims 8-9 and 20-21 were rejected under 35 U.S.C. § 103(a) as allegedly being unpatentable over Yamamoto in view of Wycech and further in view of Rowland et al. (USP 4,692,513). Finally, Claims 10 and 22 were rejected under 35 U.S.C. § 103(a) as allegedly being unpatentable over Yamamoto in view of Wycech and Kawasaki and Rowland and Bagga (USP 5,021,513).
Applicants respectfully traverse these rejections.

Interview Summary

Applicants thank Examiner Patterson for granting their counsel an in-person interview on Wednesday, January 21, 2009, to discuss the merits of the pending application. The participants of the interview, including Examiner Patterson, and attorneys Kennedy and Ciesliga, discussed the claimed invention and the cited references, along with proposed amendments. Counsel for Applicants brought supporting materials to the interview for their arguments in favor of patentability. Applicants file this summary, at least in part, to make those materials evidence of record.

It was noted in the interview that this application has been on appeal twice. The first appeal was dated 12/1/06. No Examiner's Answer was filed. The second appeal was dated 3/6/08. No Examiner's Answer was filed. This extensive procedural history has been a great expense to Applicants. This is why Applicants expressed a desire to have their claims reviewed by a third party other than the instant Examiner. Accordingly, Applicants requested that a Supervisory Examiner be present for the interview and that if a third appeal is necessary, then the Examiner file

an Examiner's Answer to such third appeal so that the Board of Patent Appeals and Interferences could review the pending application. The Examiner denied Applicants access to a Supervisory Examiner during the interview that he granted, as was his right. The Examiner also indicated his belief that he would file an Examiner's Answer if the pending claims would be finally rejected and appealed for a third time.

Finally, no agreement with respect to the claims was reached by the participants.

35 U.S.C. § 102 Rejections

Independent claims 1 and 11-13 require, among other things, “*from about 20-30% by weight of an SBS block co-polymer; from about 5-20% by weight polystyrene; from about 0.5-5% by weight of a rubber; and from about 30-45% by weight of an epoxy resin.*” Yamamoto does not disclose the claimed ingredients in combination with one another as “arranged in the claim” as required by *Net MoneyIN, Inc v. Verisign, Inc.*, 545 F.3d 1359, 1369-1370 (Fed. Cir. 2008). As such, Yamamoto does not anticipate the pending claims.

Yamamoto discloses a primer composition essentially consisting of three components; including a resin obtained by graft-polymerizing a SBS block co-polymer, an epoxy compound, and a cross-linking agent. (Yamamoto Abstract). Yamamoto does not disclose polystyrene as a separate ingredient anywhere in the four corners of the patent, so it certainly does not disclose it in an amount of about 5-20% by weight. Accordingly, Yamamoto simply does not and cannot anticipate claims 1-27.

Furthermore, it is factually incorrect to say that because a composition is made up of *X* and *Y* that *X* and *Y* are also independently present along with that composition. This is because when *X* and *Y* form covalent bonds to one another, the resultant composition *X—Y* has properties that are different from *X* alone and *Y* alone. In simplified terms, in the pending claims, *X* is polystyrene, *Y* is polybutadiene and *(X—Y)_n* is SBS block co-polymer. Polystyrene is different from SBS block co-polymer. For example, see the materials attached to this Response as Exhibit 1: excerpts from *Plastics Technology, Processing Handbook & Buyer's Guide 2005/2006*. In Exhibit 1, throughout

the catalog, various physical properties are listed for each of the polymers presented. Such properties include *melt flow rate*, *tensile strength*, and *flex modulus*. (Exhibit 1, e.g., pg. G-202). The properties of polystyrene are very different from those of SBS block co-polymer. For example, the melt flow rate of polystyrene listed under the “Blow Molding, Extrusion and Injection Molding” section ranges from 1.4-4 g/10 min. (Exhibit 1, pg. G-202). The melt flow rate of SBS block co-polymer listed under the “Blow Molding, Extrusion and Injection Molding” section ranges from 7.5-11 g/10 min. (Exhibit 1, pg. G-211). As one of skill in the art understands, this is a substantial difference in range for this property. In another example, the tensile strength for polystyrene ranges from 7-7.6 yield at 1000 psi (Exhibit 1, pg. G-202), and from 3-3.7 yield at 1000 psi for SBS block co-polymer (Exhibit 1, pg. G-211). These substantial differences in ranges demonstrate that just because SBS block co-polymer may have polystyrene as a building block, this does not mean that SBS will exhibit similar properties that polystyrene exhibits on its own.

The pending application claims polystyrene, as a separate ingredient, in combination with the SBS block co-polymer and other ingredients. As illustrated in the examples, the polystyrene is a homopolymer that is combined with SBS block co-polymer and other ingredients. Since Yamamoto does not disclose these ingredients as claimed, then Yamamoto does not anticipate these claims.

With regard to claims 11-13 and 23-27, the compositions are required to have certain compression strengths and certain percent expansions. These physical traits are not inherent in the disclosure of Yamamoto because Yamamoto does not disclose a composition identical to the claimed composition, for at least the reasons described above.

Withdrawal of the 35 U.S.C. § 102 rejection of claims 1, 7, 11-13, 19 and 23-27 is respectfully requested.

35 U.S.C. § 103 Rejections

A. No *Prima Facie* Case Made Because The Combination Of Yamamoto And Wycech Does Not Teach Or Suggest All Of The Elements Of Applicants' Claims

The Examiner has failed to present a *prime facie* case of obviousness because the cited references, Yamamoto and Wycech, fail to teach or suggest all of the claimed limitations, as required under *KSR v. Teleflex*. The Examiner makes the argument that Yamamoto teaches SBS block co-polymer together with polystyrene and rubber and epoxy resin in the claimed ranges of weight percent. This is inaccurate. Yamamoto does not teach or disclose polystyrene as a separate ingredient as described above. Wycech does not cure this defect as it also does not teach or disclose or even mention the term “polystyrene” in the patent.

B. Even If *Prima Facie* Case Made, Applicant Has Rebuted The *Prima Facie* Case

It is not obvious to combine these ingredients together in the particular weight percentages found in the claims. Indeed, Applicants have found that the relative weight percentages of SBS block co-polymer with polystyrene and epoxy resin are important, and when used in an expandable composition, bring about an unexpected result.

In particular, polystyrene acts a sponge for both SBS and epoxy resin. In other words, SBS and epoxy resin compete with one another for solubility in polystyrene. If too much SBS is included in the formulation, it displaces the epoxy resin from the polystyrene, and the resulting formulation does not have the desired traits for an expandable reinforcer composition that can adhere to the surface of a structural member. Similarly, if too little SBS is included, the expandable reinforcer composition does not have the desired mechanical properties, such as compressive strength. Thus, a specific balance is required among the claimed ingredients. The claimed weight percentages are balanced to prevent too much leaking of epoxy resin out of the formulation by controlling the amount of SBS in the formulation relative to the epoxy resin. None of the specific weight percentages among the distinctly claimed ingredients, or the ratio of weight percentages of the claimed ingredients, are taught or suggested by the combination of Yamamoto and Wycech.

Moreover, when the claimed formulation is expanded, Applicants achieved the surprising result that the particular combination of ingredients, in their relative amounts, led to a composition that both expanded to a high degree (80-220%) while maintaining such an unexpectedly high degree of compressive strength (at least about 1400 psi). (Specification, pg. 8, lines 9-19). As explained in earlier amendments and appeal briefs, this is surprising because one of skill in the art would expect that the more the composition expands, the less likely it would be able to maintain such a compressive strength. Applicants respectfully request withdrawal of the obviousness rejections of claims 2, 4-6, 14, 16-18.

C. The Combination Of Yamamoto, Wycech, Kawasaki, Rowland And Bagga Does Not Teach Or Suggest All Of The Elements Of Applicants' Claims

The Examiner rejected claims 3, 8-10, 15 and 20-22 under 35 U.S.C. §103 as allegedly being obvious over Yamamoto and Wycech, and in various combinations with Kawasaki, Rowland and Bagga. These rejections are respectfully traversed. For the reasons discussed above, which are hereby incorporated, Yamamoto and Wycech do not disclose all elements of independent claims 1 and 11-13, from which claims 3, 8-10, 15 and 20-22 ultimately depend. Combination with Kawasaki, Rowland and Bagga, alone or in combination, do not cure the deficiencies of Yamamoto, even if used in combination with Wycech. Thus, the combination of five independent references does not render obvious these claims. Accordingly, and for at least these reasons, Applicants respectfully request withdrawal of the obviousness rejections of claims 3, 8-10, 15 and 20-22.

CONCLUSION

In view of the above amendment, Applicants believe the pending application is in condition for allowance. Applicants believe no fee is due with this response. However, if a fee is due, please charge our Deposit Account No. 18-0013, under Order No. 65765-0085 from which the undersigned is authorized to draw.

Dated: February 23, 2009

Respectfully submitted,

Electronic signature: /Linda D. Kennedy/
Linda D. Kennedy
Registration No.: 44,183
RADER, FISHMAN & GRAUER PLLC
Correspondence Customer Number: 10291
Attorney for Applicant

Enc. – Exhibit I

EXHIBIT 1

Plastics Technology

SUPPLEMENT TO
PLASTICS TECHNOLOGY MAGAZINE
NOVEMBER 2005

THE ONLY MAGAZINE FOR PLASTICS PROCESSORS

A GARDNER PUBLICATION

PROCESSING HANDBOOK

& Buyers' Guide
2005/2006

PP/PE ALLOY (Continued)

INJECTION MOLDING (Continued)

Manufacturer	Trade Name and/or Grade	Features and Applications	Filler/Reinforcement	Type	Melt Flow Rate g/10 min	Tensile Strength at Yield 1000 psi	Elongational Yield	Flex Modulus 100°C 1000 psi	Notched Impact Temp. °F (17.8°C)	Durability
Schulman, A.	Polytropic TPP 504-31	CDL,MDL	-	-	-	0.92	2.5	-	0.5	
	Polytropic TPP 508	PMT,HFL,AUT	-	-	6	0.91	2.5	-	0.8	
	Polytropic TPP 510	CDL,MDL	-	-	6.6	0.91	3	-	1	14.2
	Polytropic TPP 512	CDL,MDL	-	-	-	0.91	3.5	-	1.2	26.4

PP/PS ALLOY

BLOW MOLDING AND INJECTION MOLDING

Basell N.A.	Hivalloy G7066	HI	-	35% GF	10	1.2	12.7	-	9.8	2.5	315/285
-------------	----------------	----	---	--------	----	-----	------	---	-----	-----	---------

INJECTION MOLDING

Basell N.A.	Hivalloy G-120	GPH,ST	-	-	5	0.94	4.8	9	2.2	2.5	200/40
	Hivalloy G-130 ^a	GPH	-	-	25	0.93	3.7	7	1.7	2.5	180/30
	Hivalloy G-170	GPH	-	-	5	0.92	3.9	10	1.7	-	190/30
	Hivalloy G170	GPH	-	-	5	0.93	4.1	9	1.8	-	190/30
	Hivalloy G3058	IM,GPH	-	-	2	0.93	3	25	1.1	-	190/30
	Hivalloy G3067	GP,HI	-	-	5	0.91	3.6	7	1.7	-	170/15
	Hivalloy G3068	GP,HI	-	-	5	0.91	3.4	9	1.5	-	190/10
	Hivalloy G5054	GP	-	-	5	1.2	3.1	3	2.8	2.7	180/20
	Hivalloy G7055	IM,GP,HI	-	35% GF	11	1.18	9.5	4	6.3	5	205/40
	Hivalloy G7052	IM,GP	-	20% GF	9	1.05	6.8	-	6.7	5	210/20
	Hivalloy G7072	GP	-	35% GF	7	1.2	16.4	-	11	2	220/20

POLYSTYRENE—GENERAL PURPOSE

BLOW MOLDING, EXTRUSION AND INJECTION MOLDING

Manufacturer	Trade Name and/or Grade	Features and Applications	Filler/Reinforcement	Type	Melt Flow Rate g/10 min	Tensile Strength at Yield 1000 psi	Elongational Yield	Flex Modulus 100°C 1000 psi	Notched Impact Temp. °F (17.8°C)	Durability
Ameri Polymers	AP1-270-21	GP,TR,PR,HR	-	2	1.05	-	-	-	0.4	120/10
Chevron Phillips	EA-3030	TE,TR,PR,HR	-	3	1.05	7	-	4.4	-	180
Dow Plastics	Styron 613	MED,TEN,TR,PR,HR	-	14	1.04	7.5	-	4.5	0.41	205/195
	Styron 623	MED,TR,PR,HR	-	4	1.04	7.3	-	4.5	0.4	205/195
	Styron 685	GP,MED,TR,PR,HR	-	2.2	1.04	7.6	-	4.7	0.3	205/195
	Styron 685D	GP,MED,TR,PR,HR	-	1.5	1.04	7.7	-	4.8	0.4	205/183
Ineos Styrenics	Polystyrene 160H	GP,TR,PKG	-	3.6	1.04	-	2	4.4	0.3	170
Total Petrochem	Atofina 535	HR,HT	-	4	-	7.4	-	4.5	-	170

BLOW MOLDING AND INJECTION MOLDING

Dow Plastics	Styron 666D	GP,MED,TR,PR,HR	-	8	1.04	6.5	-	4.8	0.3	185/170
--------------	-------------	-----------------	---	---	------	-----	---	-----	-----	---------

EXTRUSION

Chevron Phillips	EA-3000	THR	-	1.8	1.04	8	-	4.4	0.4	195
	EA-3100	THR	-	3	1.05	7.8	-	4.4	0.4	195
	EA-3200	FCY,HR	-	7	1.04	7.4	-	4.3	0.4	195
Eastman Chemical	GPPS PS-102	DS,HGL,TR,PR,HR	-	2.5	1.05	7	-	-	-	210/20
Huntsman Chemical	1983	GP,HI,CST	-	3.5	1.04	3.5	-	0.3	4	185/195
	201	GP,RMW,HT,PKG	-	1.4	1.04	7.4	-	4.7	0.4	200
LG Chemical	20HR-E	HR,HT	-	6	1.05	6.8	-	4.7	0.3	203/205

POLYSTYRENE—GENERAL PURPOSE (Continued)

EXTRUSION (Continued)

Manufacturer and/or Grade	Trade Name	Features	Filler Type	Stiffness Modulus in/in	Density lb/cc	Tensile Strength 1000 psi	Elongation at Yield, %	Flex Modulus 100 psi	Notched Izod Impact ft-lb/in (@ in)	Deflection Temp., F. (65 psi)	UL 94 Rating
16 Chemical	25SP-E	HI	—	2.8	1.05	71	—	4.7	0.3	206;207	HB
Nova, Chemicals.	2114	HPLPKG	—	2.3	1.03	4.9	—	8	6.0	—	HB
Total Petrochem.	Atofina 523	HFL	—	—	—	11.5	—	6.5	—	4.8	—
	Atofina 5248	GP,HGL	—	—	—	9.0	—	6.7	—	4.5	—
	Atofina 585	GP	—	—	—	1.8	—	7.6	—	4.3	—

EXTRUSION, SHEET

Dow Plastics	Styron 697	TRP	—	1.8	1.04	6.5	—	—	—	218	—
Huntsman Chemical	1101LR	HMW,PKG	—	—	1.4	1.04	7.4	—	4.8	0.4	200
Imex Styrenics	Polystyrene 168MD	GP,LO,TE,HR	—	—	1.5	1.04	—	—	8	4.8	0.3
Total Petrochem.	Atofina 819E	GP	—	—	2.6	—	5	66	3.4	2.2	—

EXTRUSION AND INJECTION MOLDING

Chevron Phillips	MC-3590	GP	—	8	1.05	7.6	—	4.6	0.4	190	—
Dow Plastics	Styron 615APR	GP,TRP	—	14	1.04	6.4	—	4.5	0.3	191;168	HB
Huntsman Chemical	210	GPHFL,BLN	—	38	1.04	4.9	—	0.4	0.4	—	154
Imex Styrenics	Polystyrene 1460	GP,MFL	—	14	1.04	—	2	4.4	0.3	—	173
	Polystyrene 147F	GP,MFL	—	9	1.04	—	2	4.5	0.3	—	185
	Polystyrene 148G	GP,MOL,PKG	—	6	1.04	—	2	4.5	0.3	—	191
	Polystyrene 168M	MEO,TRP,HR	—	1.5	1.04	7.5	—	4.8	0.3	—	201
Nova Chemicals	1200/1204	MOL,TEN	—	1.6	1.04	7.6	—	5	0.4	—	203
	1210	HR,HW	—	1.6	1.04	7.4	—	4.7	0.4	—	200
	1220/1230	MOL	—	1.9	1.04	7.4	—	4.7	0.4	—	200
	1280/1290	MOL	—	1.6	1.04	7.6	—	5	0.4	—	203
	1300/1301	MOL,HR,PKG	—	3.5	1.04	7	—	4.4	0.4	—	200
	1600	HR,MFL	—	5.5	1.04	6.8	—	5	0.4	—	202
	2100	ESC,HR,PKG	—	3.5	1.04	6.6	—	4.4	0.4	—	180
	2110	MOL,HR,PKG	—	3.4	1.04	6.2	—	5	0.4	—	195
	2500/2504/2590	HR,BLN	—	7	1.04	5.5	—	5	0.4	—	185
	FX110	MOL,MLS	—	1.3	1.04	—	—	4.7	0.4	—	205

INJECTION MOLDING

Amer. Polymers	API 390	GP,TRP	—	8	1.05	—	—	0.3	—	190	—
	API 392	GP,TRP,HFL	—	12	1.05	7.8	—	4.5	0.3	—	180
	API 395	GP,THR,HFL	—	18	1.05	14.6	—	3.6	0.3	—	180
Chevron Phillips	MC-3100	THR	—	3	1.05	7.8	—	4.5	0.4	—	193
	MC-3600	HFL	—	13	1.05	7	—	4.5	0.4	—	179
	MC-3700	FR	—	19	1.05	6	—	4.5	0.4	—	173
Dart Polymers	GPPS PS-108	HSL,TRP,MFL,OP	—	9	1.05	6.5	—	—	—	—	190
	GPPS PS-118	FCY,TRP,HFL	—	18	1.05	5.5	—	—	—	—	162
Delta Polymers	GPPS-105	GP	—	6	1.04	—	—	4.5	0.4	—	—
Dow Plastics	Retain PS-4000	RM,PKG,PCR	—	5.5	—	3.8	—	3.3	1	—	188
	Styron 612	GP	—	9	1.04	6.7	—	4.6	0.3	—	203;196
	Styron 666APR	GP	—	8.5	1.04	7	—	4.7	0.3	—	200;179
	Styron 695	GP,TRP,HR	—	1.5	1.04	7.5	—	4.5	0.4	—	210;184
Federal Plastics	FPC 2	GP	—	3	1.05	—	—	0.3	—	—	—
	FPC 3	GP	—	11	1.05	—	—	0.3	—	—	—
	FPC 4	GP,THR	—	4	1.05	—	—	0.3	—	—	—
	FPC 5	GP,TRP,MFL	—	12	1.05	7.5	—	—	0.3	—	—
	FPC 6	GP,HFL	—	22.5	1.05	6	—	—	—	—	—
	FPC 7	GP,TRP	—	7.5	1.05	—	—	0.3	—	—	168

POLYSTYRENE—IMPACT (Continued)

INJECTION MOLDING (Continued)

Lanza Group

BASF

Mold & Die

Tempco

Novatec

Manufacturer	Trade Name and/or Grade	Features, Applications	Filament Type	Melt Flow Rate g/10 min	Oscillating Shear Modulus 1000 psi	Impact Strength Charpy 1000 psi	Flex Modulus 10.5 psi	Notched Izod Impact Value in. 160 psi (254 psi)	Deformation Temp., F. (60 psi (254 psi))
Huntsman Chemical	870	GP,CST	—	3.5	1.04	7.2	—	4.4	—200
	880	COL,GP,HI	—	3.5	1.04	3	50	2.4	3.2
Ineos Styrenics	PolyStyrene 446 C	ML,GP	—	14	1.04	3.1	—	2.4	12
LATI USA	LASTROL RV0	FR,HI,HIFL	—	0.5-0.6	1.18	4.4	2	2.9	15
	LASTROL RV2	DS,FR,HI,HIFL	—	0.2-0.4	1.09	5.8	2	4	13
LG Chem/leaf	403AF	FR,WTR	—	9.5	1.06	3.8	4	3.3	2.2
	404AF	FR	—	14	1.16	3.7	4	3.3	1.6
	407AF	FR,GP	—	9	1.1	3.7	4	3.4	194,192
	408AF	FR	—	10	1.16	3.7	4	3.1	2
	478EF	FR	—	12	1.04	3.7	4	3.4	2.2
	501S	GP	—	7.5	1.03	3.6	5	3.1	1.9
	501S-L	GP	—	7.5	1.03	4	5	3.2	1.9
	601HR	HR	—	4	1.03	4.1	5	3.1	196,194
	601HR-G	HR,HFL	—	5.5	1.03	3.8	5	2.4	196,194
	SF-510	HI,HFL	—	12	1.04	3.8	5	3.3	2.6
	SG-910	HGL,HI	—	3.7	1.04	4.8	5	3.3	1.1
	SG-960	HGL,HI	—	5.5	1.04	5.1	5	3.6	207,199
	SG-970	HGL,HI	—	6.5	1.04	5.3	5	3.7	2
	SI-810	HI,HFL	—	6.5	1.04	3.8	5	3.1	196,194
Novelis Polymers	NPS90-0304	—	—	2.4	1.04	4.1	—	3.3	3.6
	NPS90-0645	—	—	3	—	—	—	2.1	4
	NPS90-0802	—	—	8	1.04	—	—	2.8	172
	NPS90-0820	HI	—	8	1.04	—	—	2.8	1.9
	NPS90-0827	—	—	8	1.04	—	—	2.8	1.9
Nova Chemicals	4210/4214	—	—	3.5	1.04	5.2	—	2.9	2.7
	4211	—	—	4	1.04	5.8	—	4	1.92
	4501	HI	—	6.5	1.04	4.2	—	3.5	1.2
	5100/5104	HI,ST	—	2.7	1.04	3.9	—	3.4	1.8
	5124	HGL,HI	—	4.3	1.04	3.2	—	3.2	1.9
	5190	HGL,HI	—	5.5	1.04	4.6	—	3.2	1.8
	5511	—	—	8	1.04	3.8	—	2.6	1.90
	5620	ST,HR	—	2.7	1.04	2.9	—	3	2.4
	5711	HI,MED,HFL	—	15.5	1.04	4.2	—	3.1	1.8
	5751	MI,MEO,HFL	—	18	1.04	3.2	—	3.5	1.5
	731G	HI,ST	—	4	1.04	3.6	—	2.5	1.70
PlastiX World	Dalec/Styrol GH10	FR,HR	—	8	1.15	3.1	—	3	1.8
	Dalec/Styrol GW20	FR,UVR	—	10	1.16	4.3	—	3	1.2
	Dalec/Styrol GW50	FR,UVR	—	5	1.16	3.5	—	2.6	1.3
	Dalec/Styrol SK50H	FR	—	4	1.12	5.5	—	3.7	0.6
	Dalec/Styrol SK60	FR,UVR	—	4	1.06	4.4	—	3.6	1.5
RTP	400HH-FR	BLK,FR,HI,NAT	—	—	1.17	3.3	—	4	1.7
	400HH-SI2	BLK,HI,LUB,NAT	—	—	1.03	3.1	—	3.2	2
	401HI	—	10%	—	1.11	5	—	5	1.1
	403HH	BLK,HI,NAT	20% GF	—	1.16	6	—	8	1.2
	405HH	BLK,HI,NAT	30% GF	—	1.25	11.5	—	14	1
	ESD A400 HI	AST,BLK,IM	CB	—	1.1	3.2	2	3.3	1.2
	ESD A400 HI	AST,COL,HI	OF	—	1.06	6.6	0.6	9.5	1.1
	ESD C400 HI	AST,BLK,EC,IM	CB	—	1.1	2.6	2	2.8	1.2
	ESD C400 HI	AST,COL,EC,HI	CF	—	1.08	7	0.6	10	1
Shurman	610	BLK	—	4-16	1.05	4.4	—	1.8-2	120,180
	611	BLK,MI	—	4-15.9	1.05	—	—	—	167
	611/681	BLK,ML,MGL,MOL	—	4-15.9	1.1	5.2	—	0.9	190
	SP610/880	BLK,HI,MOL	—	6-10	1.1	4.4	—	1.8	167

POLYSTYRENE—IMPACT (Continued)

INJECTION MOLDING (Continued).

Manufacturer	Trade Name and/or Grade	Features, Applications	Filament Type	Melt Flow Rate g/10 min.	Density g/cc	Tensile Strat. Yield 1000 psi	Elongation at Yield 100% psi	Flex Modulus 100% psi	Notched Izod Impact ft-lbm. (1/8 in.)	Deflection Temp. HDT (62.5 psi) °F	UL 94 Rating
StarTech	SC2-1090U	GP,HST,LUB,UVR	—	2.7	—	4.2	—	3.7	2	—	HB
	SC2-1093	GP,HST,LUB	—	8.4	—	9	—	3.6	0.7	—	—
	SC2-1099	GP,HST,LUB	—	6.6	—	7	—	3.4	1.5	—	—
	SC2-1220	GP,HST,LUB	20% GF	—	1.19	10.5	—	9.5	1.1	—	—
	SC2-1230	GP,HST,LUB	30% GF	—	1.28	12	—	12	1.2	—	—
	SC2-1230	CCR,GP,HST,LUB	30% GF	—	1.28	12	—	12	1.2	—	—
TP Composites	HIPS AS	AST	—	—	—	1.06	3	—	0.6	1.5	200,170 HB
	HIPS FR	FR	—	—	—	1.15	2.9	—	2.5	1.6	205,190 V-0
Total Petrochem.	Atofina 825	FCY,HI	—	8	—	3.6	50	3.4	2	—	—

INJECTION MOLDING AND STRUCTURAL FOAM

Nova Chemicals	5500/5504	BLD	—	7	1.04	3	—	3	2	185	HB
----------------	-----------	-----	---	---	------	---	---	---	---	-----	----

STRUCTURAL FOAM

Dow Plastics	Styron 425	GP,HI,MOL	—	—	12	1.04	4.5	—	—	1.2	199	—
	Styron 437	GP,HI,MOL	—	2.5	—	1.04	2.3	—	2.4	1.8	182,167	—
	Styron 455C	GP,HI,MOL	—	10	—	1.04	2.8	—	—	2.7	—	180
	Styron 484C	GP,HI,MOL	—	3	—	1.04	3.3	—	—	2.7	—	162
	Styron 6087SF	GP,HI,FM	—	—	—	0.99	—	—	2.8	—	183,185	V-O/5V
	Styron 6515	GP,HI,MOL	—	—	7.5	1.55	—	—	2.5	1.5	—	185
	Styron 657	GP,MED,HR,HFL	—	—	8	1.04	5.2	—	—	0.3	—	202
	Styron 683	GP,MED,HR,HFL	—	—	2	1.04	6.2	—	—	0.8	—	216
Nova Chemicals	5540	HGL,HI	—	—	10	1.04	3.8	—	2.9	1.7	—	185 HB
	5510	MGL,ST	—	—	3.5	1.04	4	—	2.6	2.3	—	185 HB

SAN COPOLYMER

EXTRUSION

EniChem	Kostil B265	CHR	—	18	1.07	9.7	—	5.2	—	183	—
	Kostil S365	CHR,HFL	—	30	1.07	9.6	—	5.1	—	183	HB
	Kostil PD-C265	CHR	—	20	1.08	10.9	—	5.2	—	187	HB
	Kostil PD-C365	CHR,HFL	—	30	1.08	10.6	—	5.2	—	187	HB

EXTRUSION AND INJECTION MOLDING

BASF/Styrenics	Luran 36BR	GP,TRP	—	12	1.08	10.9	—	—	0.6	216,208	HB
	Luran 36BS	GP,TRP	—	8	1.08	12.2	—	—	0.6	217,210	HB
Dow Plastics	Tyrell 1000B	CHR,GP,TRP,HR	—	8	1.08	10	—	5.4	0.3	—	218
	Tyrell 860	CHR,GP,TEN,TRP	—	3.5	1.08	11.9	—	5.9	0.5	—	216
	Tyrell 880B	CHR,GP,TEN,HR	—	3.5	1.08	11.9	—	5.8	0.5	—	216 HB

INJECTION MOLDING

Acto	SAN90E	—	—	6	1.07	9.9	3	5.9	0.2	196,174	—
BASF/Styrenics	Luran 35BN	GP,HGL,TRP,HFL	—	27	1.08	10.4	—	—	0.5	216,208	HB
Dow Plastics	DowSan 100	—	—	8	1.07	—	—	5.5	—	—	214
	DowSan 111	—	—	13	1.07	—	—	5.6	—	—	213
	Tyrell 1011	CHR,MOL,UVR,AUT	—	7	1.08	9.3	—	5.2	0.3	215	HB
	Tyrell 125	GP,BLN	—	25	1.07	6	—	5.9	0.2	—	212
	Tyrell 990	CHR,GP,MOL,TRP	—	6.7	1.07	9.7	—	6.1	0.4	—	212 HB
EniChem	Kostil B266	CHR	—	18	1.07	9.7	—	5.2	—	183	HB

SAN COPOLYMER (Continued)

INJECTION MOLDING (Continued)

Manufacturer	Trade Name and/or Grade	Feature/ Reinforcement	Tensile Reinf. Type	Melt Flow Rate g/10 min.	Density, lb/in. ³	Tensile Strat. Yield 100% ext.	Elongation at Break %	Frac. Modulus 100% ext. psi	Notched Izod Impact ft-lb/in. (1.67 mm.)	Deflection Temp., F. (66 psi, 264 psi)	UL 94 Rating (1 mm.)
ITP	500TFS	BLK,LUB,NAT	-	-	1.1	10	-	5	0.5	210,200	HB
	501	COL	10% CG	-	1.15	11.5	2	8	0.7	215,205	HB
	501 FR	COL,FR,MST,MDL	10% CG	-	1.39	10	1.5	8	1.1	215,205	V-O
	501 HB	COL,MST,MDL,FLX	10% CG	-	1.15	11.5	2	8	0.7	215,205	HB
	503	COL	20% CG	-	1.22	15	1.5	10	1	220,210	HB
	503 FR	COL,OS,FR,ST	20% CG	-	1.46	14	1.5	12	1	220,210	V-O
	503 HB	COL,OS,MOL,LLW	20% CG	-	1.22	15	1.5	1	1	220,210	HB
	503TFE10	BLK,LUB,NAT	20% GF	-	1.3	14	-	10	1	215,205	HB
	505	COL	30% CG	-	1.31	15.5	1.2	14	1	225,212	HB
	505 FR	COL,OS,FR,ST	30% CG	-	1.53	15	1	16	1	225,212	V-O
	505 HB	COL,OS,MST,ST	30% CG	-	1.31	15.5	1.2	14	1	225,212	HB
	506	COL	35% CG	-	1.35	16	1.1	14	1	230,214	HB
	506 HB	COL,OS,ST,TTEN	35% CG	-	1.35	16	1.1	14	1	230,214	HB
	507	COL	40% CG	-	1.4	17	1.1	16	1	230,217	HB
	507 HB	COL,DS,ST,TTEN	40% CG	-	1.4	17	1.1	16	1	230,217	HB
Schlumberger	ComAlloy 240-3020	DS,ST,TTEN	20% CG	5-15	1.22	15.2	-	12.2	1	220,210	HB
	ComAlloy 240-3030	DS,ST,TTEN	30% CG	5-15	1.3	17	-	15	1.1	225,216	HB
	ComAlloy 240-3040	DS,ST,TTEN	40% CG	5-15	1.4	18.4	-	18.7	1.1	230,220	HB
	ComAlloy E-13040B	GP	30% GF	2.8	1.3	-	-	14.5	0.7	217,212	-
Santitech	SC6-1090	GP,HGL,HST,LUB	-	-	1.07	9	-	5.1	0.4	-	-
	SC6-1096	GP,HGL,HST,LUB	-	-	1.07	10.5	-	5	0.6	-	-
	SC6-6090	GP,HGL,HST,LUB	-	-	1.07	9	-	5.1	0.4	-	-

STYRENE BUTADIENE BLOCK COPOLYMER

BLOW MOLDING AND EXTRUSION

Chevron Phillips	K-Resin KR06NW	MED,PRN,TRP,DP	-	7.5	1.01	3.7	-	2.1	0.8	-163	HB
------------------	----------------	----------------	---	-----	------	-----	---	-----	-----	------	----

BLOW MOLDING, EXTRUSION AND INJECTION MOLDING

Chevron Phillips	K-Resin KR05	MLGP,ST,TRP	-	7.5	1.01	3.7	-	2.1	0.8	-163	HB
Total Petroleum	Finaclear 520	HITF,PKG	-	7.5	1.01	3	200	1.5	15	-	-
	Finaclear 530	LGE,MOL	-	11	1.02	3.6	200	1.9	0.3	149	-

EXTRUSION, BLOWN FILM

Chevron Phillips	K-Resin KR10	M1,GP,MEO,ST	-	7.5	1.01	3.7	-	2.1	0.8	-163	HB
------------------	--------------	--------------	---	-----	------	-----	---	-----	-----	------	----

EXTRUSION, SHEET

Chevron Phillips	K-Resin KK38	GP,HI,ST,TRP	-	9	1	1.9	-	1.5	-	-143	HB
------------------	--------------	--------------	---	---	---	-----	---	-----	---	------	----

EXTRUSION AND INJECTION MOLDING

Chevron Phillips	K-Resin BK10	GP,HI,ST,TF	-	15	1.01	3.1	-	2.2	-	-144	-
	Stereon 840A-842A	GP,TRP,BLN	-	8-15	0.96	2	800	-	-	-	-

INJECTION MOLDING

Chevron Phillips	K-Resin KR01	MLGP,MEO,PRN	-	B	1.01	4.4	-	2.2	-	-170	HB
	K-Resin KR03	MLGP, MED, ST	-	7.5	1.01	3.7	-	2.1	0.8	-163	HB
	K-Resin KR03NW	GP,MED,PRN,TRP	-	7.5	1.01	3.7	-	2.1	0.8	-	HB
	K-Resin KR62	GP,HGL,HI	-	6	1.02	4.1	-	2.7	3.5	-168	-