Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

MA 1024 Conference 4

- 1. Directional Derivatives
- 2. Tangent Lines to Level Curves
- 3. Critical Points and the Second Derivative Test

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com Example 1 (Directional Derivatives)

Find the derivative of $f(x,y) = \frac{x-y}{xy+2}$ at $P_0 = (1,-1)$ in the direction of $\mathbf{v} = \langle 12, 5 \rangle.$

- 1. Find $\nabla f = \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle$.
- 2. Calculate $(\nabla f)_{P_0}$.
 3. The directional derivative is $D_{\mathbf{u}}f = (\nabla f)_{P_0} \cdot \mathbf{u}$, where $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|}$.

$$\frac{\partial f}{\partial y} = -\frac{(xy+2) - (x-y)x}{(xy+2)^2}$$

$$(\nabla f)_{(1,-1)} = \langle \frac{2f}{2x}(1,-1), \frac{2f}{2y}(1,-1) \rangle$$

$$\vec{U} = \vec{V} + (12, 5) + (12/3, 5/13)$$

$$(7f)$$
 $(1-1)$
 $(3, -3)$
 $(2, 5)$
 $(3, 13)$
 $(3, 13)$
 $(3, 13)$

Р	Produced with a	Trial Version	n of PDF Annota	ator - www.PD	FAnnotator.com		
		Example	ple 2 (Directional Derivatives)				
	Find the direction in which $f(x,y) = \frac{x-y}{xy+2}$ increases most rapidly at the point $P_0 = (1,-1)$. What is this maximum rate of change?						
			-		= 1 or when $\theta = 0$ and u domain, f increases most		
	rapidly in the direction of the gradient vector ∇f at P . The derivative in this direction is						
			$D_{\mathbf{u}}f = \nabla$	$ f \cos(0) = \nabla f $			
	The	dv	a Aien t	vector	at Po	WAS	
	1-	7 6		43	- 3 >	S. L	
	(V	J) (1-1)	, ,	5 / ,	00 9	
	i M	crease	5 m05	st rap	idly in t	he direction	
	of	the	vector	< 3	, -3>,	The Standard	
	CON	ventii	on is t	0 9	se a un	it vector	
	Ĺn	this	direc	tion:			
		(3	-3	>	(3,-3)		
					118		
		\ <	3, - 3,	7 1	VID		
	That	ز ۶ ر	\ \frac{1}{\infty} 1	一点 >	is K U	uit vector	
	Dain	ting	112 Iha			Sterpest	
						sterpest.	
	a>1	rn+	most	Vapidi	ncreuse	· · J J ,	
	The m	W.A.	a Le sl	(, 0 , 0 ,	2 ic Maa	da ci a Line	
	in th		tion of	11/1-	LIC VIA	derivative this 17fl=118=35	
		~ /\ \ \	- 011010 07	(/12 /	/V2 / CVh1	[1] > \ J [- 118 = 30	

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com Example 3 (Directional Derivatives)

Use the contour diagram to estimate the directional derivative of f(x, y) at the point $P_0 = (2, 2)$ in the direction of $\mathbf{v} = \hat{i}$. (Note that $\hat{i} = \langle 1, 0 \rangle$) is already a unit length vector).

We want to approximate
$$(7f)_{(2,2)}$$
Use tangent line slopes:
$$f(x) + \Delta x, y_{o} - f(x_{o}, y_{o})$$

$$f_{\chi}(x_0, y_0) \sim 0$$

$$f_y(x_0,y_0) \approx f(x_0,y_0+by) - f(x_0,y_0)$$

$$f(2,2) \approx f(2+1,2) - f(2,2) - 6 - 4 = 2$$

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com instend to apprx. fx like this: $f_{\chi}(2,2) \approx f(2-1,2)-f(2,2)-2-4-2$ Twe found fx (2,2) & 2 using two different data points. You shouldn't expect this to always happen. Using the data point (2,3): $f_{y}(2,2) \approx f(2,2+1) - f(2,2) = 6-4$ Alternatively, we could have picked (2,1): $f_y(2,2) \approx f(2,2-1) - f(2,2) = 2-y = 2$ Again, it is just a coincidence that different data pts produced the same apprx of fy, It is also just an artifact of the contour map that $f_{\chi} = f_{y}$ (totally coincidental us far as we know) Comment any aside, the directional derivative is: $(\nabla_{x}^{2})_{(2,2)}^{2}$ (1,0) = (1,0) = (2,2)

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com Example 4 (Tangent Lines to Level Curves) Let $f(x,y) = x^2 + y^2$. Sketch the level curve f(x,y) = 4 together with ∇f at the point $P_0 = (\sqrt{2}, \sqrt{2})$. Then write an equation for the tangent line. gradient ve ctor Graphing. Note J. tayent line V2 ≈ 1.4 - level curve The level curve when f(x,y) = 4 is the circle of radius 2 with center at the origin: $\chi^2 + y^2 = 4$ $f = \langle f_x, f_y \rangle = \langle a_x, a_y \rangle$ $|\langle 2\sqrt{2}, 2\sqrt{2} \rangle| = \sqrt{(2\sqrt{2})^2 + (2\sqrt{2})^2} =$ So the gradient vector is oft a 450 and (x-comp = y-comp) and length **Tangent Line to a Level Curve** $f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) = 0$ (6) $f_{x}(x,y,)=2\sqrt{2}$ $f_{y}(x_{o},y_{o})=2\sqrt{2}$

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com Example 5 (Tangent Lines to Level Curves)

Determine if the level curves of f(x,y) = 2x + 4y and g(x,y) = 4x - 2y intersect at right angles.

At every point (x_0, y_0) in the domain of a differentiable function f(x, y), the gradient of f is normal to the level curve through (x_0, y_0) (Figure 14.31).

Strategy: Since gradient vectors are Normal (here read normal = perpendicular) to level curves, the level curves are Perpendicular if ∇f and ∇g are Per pendicular. Recall that the dot product of 2 vectors is 0 when the vectors are perpendicular, so, 1) Find ∇f , ∇g 2) Level curves intersect at right angles - f 7f · 7g = 0 (no matter our choice of level curve

Vf. Vy = <2,4> 0 <4,-2> = 8-8=0 Yes, the level curves of f and g intersect at right angles. Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com Example 6 (Critical Points and the Second Derivative Test) Find the local maxima, minima, and saddle points of the function f(x,y) = $x^2 + xy + y^2 + 3x - 3y + 4.$ THEOREM 11—Second Derivative Test for Local Extreme Values Suppose that f(x, y) and its first and second partial derivatives are continuous throughout a disk centered at (a, b) and that $f_x(a, b) = f_y(a, b) = 0$. Then i) f has a local maximum at (a, b) if $f_{xx} < 0$ and $f_{xx}f_{yy} - f_{xy}^2 > 0$ at (a, b). ii) f has a local minimum at (a, b) if $f_{xx} > 0$ and $f_{xx}f_{yy} - f_{xy}^2 > 0$ at (a, b). iii) f has a saddle point at (a, b) if $f_{xx}f_{yy} - f_{xy}^2 < 0$ at (a, b). iv) the test is inconclusive at (a, b) if $f_{xx}f_{yy} - f_{xy}^2 = 0$ at (a, b). In this case, we must find some other way to determine the behavior of f at (a, b). = 2x + y + 3 $= x + \lambda y$ $f_{xx}(x,y) = 2$, $f_{yy}(x,y) = 2$, $f_{xy}(x,y) =$ Since f, the first derivatives of f, and the se cond derivatives of f are all continuous, the theorem applies (also fx & fy ave defined everywhere so (-3,3) is the only critical point). $f_{\chi\chi}(-3,3) = 2 > 0$ and $f_{\chi\chi}f_{\chi\chi}(-3,3) = (-3,3)$ is a local min. of

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

How to start HW 3 Question 30

(1 point) A company operates two plants which manufacture the same item and whose total cost functions are

$$C_1 = 10 + 0.04q_1^2$$
 and $C_2 = 3 + 0.05q_2^2$,

where q_1 and q_2 are the quantities produced by each plant. The total quantity demanded, $q=q_1+q_2$, is related to the price, p , by

$$p = 60 - 0.05q$$
.

How much should each plant produce in order to maximize the company's profit?

Profit = Revenue - Costs

Revenue = (Unit Price) x (Quantity of Units Sold)

So, in brief use the general formula

Profit = Price x Quantity - Costs

$$P(a_1,a_2) = pq - (c_1 + c_2)$$

$$P(q_1, q_2) = (60 - 0.05q)q - (10 + 0.04q^2 + 3 + 0.05q^2)$$

$$P(q_1, q_2) = [60 - 0.05(q_1 + q_2)][q_1 + q_2]$$

$$-\left(10+0.04q_{1}^{2}+3+0.05q_{2}^{2}\right)$$

· To find critical points, simplify and set

$$P_{q_1} = 0$$
 and $P_{q_2} = 0$

· Test for a max using the Se cond derivative test