

Current Advances in Deep and Recurrent Neural Networks SS 2018

Dr. Sebastian Otte

Cognitive Modeling University of Tübingen

Seminar Current Advances in Deep Learning SS 2018 Contact

Responsible contact:
 Dr. Sebastian Otte

Cognitive Modeling Group
Computer Science Department
University of Tübingen

Room C 420 Sand 14 72076 Tübingen, Germany

Phone: +49 7071 29 70481 Fax: +49 7071 29 5719

Email: <u>sebastian.otte@uni-tuebingen.de</u>

WWW: http://cm.inf.uni-tuebingen.de/staff/otte

Seminar Current Advances in Deep Learning SS 2018 **About this Seminar**

- This seminar is about Deep and Recurrent Neural Networks
 - Discussing the pros and cons of some
 - (more or less) recent key papers in the field of Deep Learning
 - very recent advances
 - ... and some exotic stuff
 - Covering methodological aspects as well as applications

 Recommended requirements: a certain amount of background knowledge...

Seminar Current Advances in Deep Learning SS 2018 Important terms (things you should know)

- Back-Propagation (BP)
- Back-Propagation Through Time (BPTT)
- Multi-Layer Perceptrons
- Gradient-Descent (with momentum or Nesterov momentum), RMSprop, Adam
- Autoencoder
- Evolutionary Optimization
- Recurrent Neural Networks (RNNs)
- Vanishing gradient problem
- Long Short-Term Memorys (LSTMs)
- Gated Recurrent Units (GRUs)
- Bidirectional RNNS (BRNNs)
- Multi-Dimensional Multi-Directional (MDMDRNNs)
- Convolutional Neural Networks (CNNs)

- Rectified Linear Units (ReLU), dead ReLUs,
 ELUs ...
- Pooling techniques (max pooling etc.)
- Stochastic vs. batch vs. mini-batch learning
- Over-fitting vs generalization
- Training set vs. test set vs. validation set
- Regularization
- L1, L2, regularization
- Dropout/Dropconnect
- Batch-Normalization (BN)
- (Residual Networks)
- (Deconvolution)

• ..

Seminar Current Advances in Deep Learning SS 2018 **Learning Goals**

- Learning about recent advances in the field of DNNs and RNNs
- Training your skills
 - Reading scientific literature
 - Understanding complex coherencies
 - Excerpting and condensing essential information
 - Scientific writing
 - Clear formulations
 - Correct citing
 - •
 - Talking freely and explaining complex things to others
- Learning to obtain a critical perspective
- Having fun!

Seminar Current Advances in Deep Learning SS 2018 Modalities

- Critical and analytical confrontation with state-of-the-art research topics in the field of DNNs and RNNs
- Writing an extended summary paper
 - Summary of one scientific paper (or multiple papers on a specific topic)
 - 3 pages including references and figures
 - Two-column, IEEE template (LaTeX)
 - Texts in English!
- Writing reviews for two other students' papers
 - At least 1 000 (maximal 1 500) non-whitespace characters per review
 - Should contain a brief summary as well as strengths and weaknesses of the paper
- Preparing and holding a 25 min talk with an additional 15 min discussion
 - Talks can be in English as well (optional, voting)

Seminar Current Advances in Deep Learning SS 2018 Modalities

- Registration for this seminar
 - Via Ilias platform (you need your campus login)
 https://ovidius.uni-tuebingen.de/ilias3/goto.php?target=crs_1667722
 - Course password: cogmod18
- Assignment of the topics
 - 20+ pre-selected topics (later slides)
 - Random assignment biased by priority and "earliness" of request
 - Indication of priorities for three topics (1 highest, 3 lowest priority)
 - Please select three different topics with three different priorities (1, 2, and 3)
 - Additionally: Proposal of another, unlisted paper (selecting three of the listed topics is still mandatory)

Seminar Current Advances in Deep Learning SS 2018 Modalities

- Priority submission
 - Submission deadline: April 23, 2017, 23:59 CEST
 - Via email: sebastian.otte@uni-tuebingen.de
 - Please use "[Seminar Adv. Deep Learning :: Topic]" as subject
- Paper submission (PDF + BibTeX file)
 - Via Ilias exercise (will be online soon)
 - Paper submission deadline: June 17, 2018, 23:59 CEST
 - Reviewers will be assigned soon afterwards
 - Review submission deadline: July 15, 2018, 23:59 CEST
- Grading
 - \approx 45% paper, 45% talk, and 10% reviews
- Attending all talks and participating the discussions is mandatory!
 - We reserve the right for a grade penalty (-0.3) in case of unexcused absence

- Deep Residual Networks, CVPR 2016 https://arxiv.org/abs/1512.03385
- Deep Residual Networks, ECCV 2016 https://arxiv.org/abs/1603.05027
- Deep Networks with Stochastic Depth, ECCV 2016 https://arxiv.org/abs/1603.09382
- Densely Connected Convolutional Networks (B)
 - CVPR 2017
 https://arxiv.org/abs/1608.06993
- Generative Adversarial Networks I
 - NIPS 2014
 https://papers.nips.cc/paper/5423-generative-adversarial-nets
- Generative Adversarial Networks II+ (M)
 - Wasserstein Generative Adversarial Networks, ICML 2017 http://proceedings.mlr.press/v70/arjovsky17a.html
 - Synthesizing Audio with Generative Adversarial Networks, ???
 https://arxiv.org/abs/1802.04208

- B Early topics, already assigned!
- M Multiple assignments possible

Single Shot MultiBox Detector

ECCV 2016
 https://arxiv.org/abs/1512.02325

Capsule Networks

• NIPS 2017 http://papers.nips.cc/paper/6975-dynamic-routing-between-capsules

Recurrent Weighted Average Networks

https://arxiv.org/abs/1703.01253

Recurrent Highway Networks

 ICML 2017 https://arxiv.org/abs/1607.03474

Nested LSTMs

ACML 2017
 https://arxiv.org/abs/1801.10308

B Early topics, already assigned!

Multiple assignments possible

Optimization and Regularization (M)

- SGD vs. Adam and Co., NIPS 2017 https://arxiv.org/abs/1705.08292
- Recurrent Batch Normalization, ICLR 2017
 https://arxiv.org/abs/1603.09025
- Batch Kalman Normalization, ???
 https://arxiv.org/abs/1802.03133

Spherical CNNs

ICLR 2018
 https://arxiv.org/abs/1801.10130

Variational Autoencoders I

- ICLR 2014
 https://arxiv.org/abs/1312.6114
- ICML 2015
 https://arxiv.org/abs/1410.6460

Variational Autoencoders II

A hierarchical recurrent variational autoencoder for music, ???
 https://arxiv.org/abs/1803.05428

- B Early topics, already assigned!
- M Multiple assignments possible

ICLR 2018
 https://arxiv.org/abs/1711.01558

Bayesian Deep Learning

NIPS 2017
 https://arxiv.org/abs/1703.04977

Efficient Deep Learning (M)

- ShuffleNet, ??? https://arxiv.org/abs/1707.01083
- Multi-Scale Dense Networks, ICLR 2018 https://arxiv.org/abs/1703.09844
- Training and Inference with Integers in Deep Networks, ICLR 2018 https://arxiv.org/abs/1802.04680

Fooling Deep Networks

- Literature research
- Ethics in artificial intelligence/deep learning
 - Literature research

B Early topics, already assigned!

M Multiple assignments possible