Computational Mathematics Taylor Series Representation

Let we consider an ordinary differential equation of first order and first degree like:

With initial condition $y(x_0) = y_0$. This represents $x = x_0$ when $y = y_0$

Differentiating w.r.t. x we get from (1)

Differentiating successively, we get:

$$y^{\prime\prime\prime}, y^{iv}, \dots \dots \dots$$

• Putting the initial condition at $x = x_0$ then

$$y = y_0$$
, We get $y_0', y_0'', y_0''', \dots \dots \dots \dots \dots$

Now the Taylor's series of y(x) at $x = x_0$ is [the Taylor series]

Putting $x = x_1$ and hence $x_1 - x_0 = h \Rightarrow$ we get from (3)

At
$$x = x_0 \Rightarrow y(x_1) = y_0 + hy_0' + \frac{h^2}{2!}y_0'' + \dots \dots \dots$$

Where, $y(x_0) = y_0 \ then \ y(x_1) = y_1$

If the values of $y_0, y_0', y_0'', y_0''', \dots \dots \dots$ are known, then (4) gives a series for y_1 .

Once y_1 is known, we can compute y', y'', y''',from (1), (2) and so on.

 \therefore Now if y be expanded in a Taylor's series at $x = x_1$ then:

At
$$x = x_1 \Rightarrow y(x_2) = y_1 + hy_1' + \frac{h^2}{2!}y_1'' + \dots \dots \dots \dots$$

$$\therefore y_2 = y_1 + hy_1' + \frac{h^2}{2!}y_1'' + \dots \dots \dots \dots$$

Similarly,
$$y_3 = y_2 + hy_2' + \frac{h^2}{2!}y_2'' + \cdots \dots at x = x_2$$

.....

.....

$$y_{n+1} = y_n + hy_n' + \frac{h^2}{2!}y_n'' \dots \dots \dots \dots at \ x = x_n$$

Which are the required Taylor series representation of Differential equation.

Ex-1: Using Taylor's series method, find y(0.1) and y(0.2) by solving $\frac{dy}{dx} = x^2 + y^2$ with the initial condition y(0)=1.

Solution:

(i) We know the Taylor series for ordinary differential equation is:

here,
$$x_0 = 0, y_0 = 1, h = 0.1; y(0) = 1 \text{ for } x.$$

Now we have given:

$$\frac{dy}{dx} = x^2 + y^2$$

$$\Rightarrow y' = x^2 + y^2$$

$$[\because x_0 = 0, y_0 = 1, h = 0.1 \ \because y_0' = x_0^2 + y_0^2 = 0 + 1 = 1]$$

$$\Rightarrow y'' = 2x + 2yy' \Rightarrow : y_0'' = 2x_0 + 2y_0y_0' = 2(0) + 2(1)(1) = 2$$

$$\Rightarrow y''' = 2 + 2(y')^2 + 2y'' \rightarrow \therefore y_0''' = 2 + 2(1)^2 + 2(2) = 8$$

$$\Rightarrow y^{iv} = 0 + 2[2y'y'' + 2\{y'y'' + yy'''\}] = 6y'y'' + 2yy'''$$

$$\rightarrow : y_0^{iv} = 6 * 1 * 2 + 2 * 1 * 8 = 28$$

Now from (1)
$$y_1 = 1 + \frac{0.1}{1!} * 1 + \frac{0.1^2}{2!} * 2 + \frac{0.1^3}{3!} * 8 + \frac{0.1^4}{4!} * 28 = 1.11145$$

$$y(0.1) = 1.11145$$

$$[y(0.1) \rightarrow means\ initial\ value\ of\ h=0.1; y(0.2) \rightarrow next\ initial\ value\ of\ h=0.2-0.1$$

= 0.1\ interval\ size; y(0.1) = 1.11145 \rightarrow x = 0.1]

(ii) By Taylor's series method, we have

Now we have given:

$$\frac{dy}{dx} = x^2 + y^2$$

$$\Rightarrow$$
 $v' = x^2 + v^2$

$$[\because x_1 = 0.1, y_1 = 1.1115, h = 0.1 \because y_1' = x_1^2 + y_1^2 = 1.24543]$$

$$\Rightarrow y'' = 2x + 2yy' \Rightarrow \therefore y_1'' = 2x_1 + 2y_1y_1' = 2(0.1) + 2(1.1115)(1.24543) = 2.96859$$

$$\Rightarrow y''' = 2 + 2(y')^2 + 2y'' \rightarrow :: y_1''' = 11.70137$$

$$\Rightarrow y^{iv} = 0 + 2[2y'y'' + 2\{y'y'' + yy'''\}] = 6y'y'' + 2yy''' \Rightarrow \therefore y_0^{iv} = 48.19517$$

Now from (2) $y_2 = 1.1115 + \frac{0.1}{1!} * 1.24543 + \frac{0.1^2}{2!} * 2.96859 + \frac{0.1^3}{3!} * 11.70137 + \frac{0.1^4}{4!} * 48.19517 = 1.25304$

$$y(0.2) = 1.25304$$

[Try for the interval (0.04) using two subintervals of size 0.2. with y(0)=0]

Ex-2: Using Taylor series method, find y(0.2) and y(0.4) correct to four decimal places by solving $\frac{dy}{dx} = 1 - 2xy$; With initial condition y(0) = 0.

Hints:
$$x_0 = 0$$
, $y_0 = 0$, $h = 0.2$; $next h = 0.4 - 0.2 = 0.2$

Ex-3: Evaluate y(0.2) correct to six decimal places by Taylor's series method if y(x) satisfies: $y' = y^2 + x$ with y(0) = 0.

Hints:
$$y_0 = 0$$
; $x_0 = 0$; $h = 0.2$

Ex-4: Solve:
$$\frac{dy}{dx} = 1 + xy$$
 with $y(0)=2$. [x₀=0; y₀=2]

Find

(i) y (0.1)
$$\rightarrow$$
h=0.1

(ii) y (0.2)
$$\rightarrow$$
h=0.2-0.1=0.1

(iii) y
$$(0.3) \rightarrow h=0.3-0.1=0.2$$