imdb_movie

July 20, 2019

Author: Shashi Bala Table of contents

```
<01>
   <a href="#about_dataset">About the dataset</a>
   <a href="#exploring_the_data">Data Exploration</a>
   <a href="#cleaning_the_data">Data Cleaning</a>
   <a href="#transforming_the_data">Data Transformation</a>
   <a href="#using_parameteric_and_non_parametric_models">Modeling</a>
   <a href="#recommendations">Recommendation</a>
Import the Following Libraries:
\langle li \rangle \langle b \rangle numpy (as np) \langle b \rangle \langle /li \rangle
<b>pandas (as pd)</b> 
<b>pandas_profiling</b> 
<b>matplotlib.pyplot (as plt)</b> 
<b>seaborn (as sns)</b> 
<b>warnings</b> 
<b>os</b> 
<b>series, DataFrame</b> from <b>pandas</b> 
<b>stats</b> from <b>scipy.stats</b> 
<b>train_test_split</b> from <b>sklearn.model_selection</b> 
<b>LinearRegression</b> from <b>sklearn.linear_model</b> 
<b>r2 score</b> from <b>sklearn.metrics</b> 
<b>statsmodels.api (as sm)</b> 
<b>KNeighborsRegressor</b> from <b>sklearn.neighbors</b> 
<b>mean_squared_error</b> from <b>sklearn.metrics</b> 
<b>neighbors</b> from <b>sklearn</b> 
<b>sqrt</b> from <b>math</b> 
<b>RandomForestRegressor</b> from <b>sklearn.ensemble</b> 
In [2]: import pandas as pd
       import pandas_profiling
       from pandas import Series, DataFrame
       import numpy as np
       %matplotlib inline
       import matplotlib.pyplot as plt
```

```
import warnings
        warnings.filterwarnings('ignore')
        from sklearn.preprocessing import LabelEncoder
        import scipy.stats as stats
        import os
        from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LinearRegression
        from sklearn.metrics import r2_score
        import statsmodels.api as sm
        from sklearn.neighbors import KNeighborsRegressor
        from sklearn.metrics import mean_squared_error
        from math import sqrt
        from sklearn.ensemble import RandomForestRegressor
<h2>1. About the dataset</h2>
The dataset is imdb_data_v2 which is in csv file. It contains 38 variables for 5787 movies, sp
 <h2>2. Data Exploration</h2>
  2.1. Data Load
In [3]: print(os.listdir("C:\Data Science_Interview\Dataset"))
['Data Scientist imdb_data_v2.csv']
  We read in the data we've saved, passing the column names
In [4]: df = pd.read_csv('C:\Data Science_Interview\Dataset\Data Scientist imdb_data_v2.csv')
In [5]: print('Training data shape: ', df.shape)
Training data shape: (5787, 38)
  Let's check out the first few rows of data
In [6]: df.head()
Out[6]:
           id stock_market_idx days_since_last_tweet pre_screen_viewers
        0
                           1102
                                                     67
            1
                                                                          18
           2
                                                     70
        1
                           1117
                                                                          18
          3
                           1000
                                                     90
                                                                          11
        3
          4
                           1007
                                                     35
                                                                          10
                           1128
                                                     85
                                                                          20
           characters_per_longest_review priority \
        0
                                    1181
        1
                                     1196
                                                  4
        2
                                     1125
```

```
3
                              1127
                                            4
4
                              1072
                                            4
                                                        director_name
   longest_facebook_comment_review_char
                                            color
                                                        James Cameron
0
                                            Color
                                       250
1
                                       740
                                            Color
                                                       Gore Verbinski
2
                                      1779
                                            Color
                                                           Sam Mendes
3
                                      1074
                                            Color
                                                    Christopher Nolan
4
                                       813
                                              NaN
                                                          Doug Walker
   num_critic_for_reviews
                                                    content_rating
                                                                    website_score
                                          country
0
                     723.0
                                              USA
                                                              PG-13
                                                                                7.9
1
                     302.0
                                              USA
                                                              PG-13
                                                                                7.1
2
                     602.0
                                               UK
                                                              PG-13
                                                                                6.8
3
                     813.0
                                              USA
                                                              PG-13
                                                                                8.5
4
                       NaN
                                              NaN
                                                                NaN
                                                                                7.1
                                . . .
                 weighted_budget
                                   title_year actor_2_facebook_likes
        budget
  237000000.0
                       236999000
                                        2009.0
                                                                  936.0
0
  30000000.0
1
                       299999000
                                        2007.0
                                                                 5000.0
2
  245000000.0
                       244999000
                                        2015.0
                                                                  393.0
   250000000.0
                                        2012.0
                                                                23000.0
                       249999000
4
           NaN
                            -1000
                                           NaN
                                                                   12.0
  aspect_ratio movie_facebook_likes
                                        imdb_score
0
          1.78
                                33000
                                               7.9
1
          2.35
                                               7.1
                                    0
2
          2.35
                                85000
                                               6.8
3
          2.35
                               164000
                                               8.5
4
           NaN
                                     0
                                               7.1
```

[5 rows x 38 columns]

0.0.1 Data Profiling

```
In [7]: df.profile_report()
```

<IPython.lib.display.IFrame at 0x1fa28223cf8>

Out[7]:

We have 5787 observations of 38 variables in which 21 variables are numeric and 11 variables are categorical. The response variable "imdb_score" is numerical, and the predictors are mixed with numerical and categorical variables.

2.2. Remove Duplicates

In the IMDB dataset, There is 744 (12.9%) duplicate rows. I want to remove the 744 duplicated rows and keep the unique ones.

```
In [8]: df1 = df
In [9]: #drop the duplicates
        df1.drop_duplicates(inplace=True)
        # Check if done
        df1.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 5043 entries, 0 to 5042
Data columns (total 38 columns):
                                         5043 non-null int64
id
                                         5043 non-null int64
stock_market_idx
days_since_last_tweet
                                         5043 non-null int64
pre_screen_viewers
                                         5043 non-null int64
characters_per_longest_review
                                         5043 non-null int64
                                         5043 non-null int64
priority
longest_facebook_comment_review_char
                                         5043 non-null int64
color
                                         5024 non-null object
                                         4939 non-null object
director_name
num_critic_for_reviews
                                         4993 non-null float64
                                         5028 non-null float64
duration
director_facebook_likes
                                         4939 non-null float64
actor_3_facebook_likes
                                         5020 non-null float64
actor_2_name
                                         5030 non-null object
                                         5036 non-null float64
actor_1_facebook_likes
                                         4159 non-null float64
gross
                                         5043 non-null object
genres
actor_1_name
                                         5036 non-null object
                                         5043 non-null object
movie_title
                                         5043 non-null int64
num_voted_users
cast_total_facebook_likes
                                         5043 non-null int64
                                         5043 non-null float64
made_up_column
actor_3_name
                                         5020 non-null object
                                         5030 non-null float64
facenumber_in_poster
plot_keywords
                                         4890 non-null object
movie_imdb_link
                                         5043 non-null object
num_user_for_reviews
                                         5022 non-null float64
language
                                         5031 non-null object
country
                                         5038 non-null object
                                         4740 non-null object
content_rating
website_score
                                         5043 non-null float64
                                         4551 non-null float64
budget
                                         5043 non-null int64
weighted_budget
                                         4935 non-null float64
title_year
actor_2_facebook_likes
                                         5030 non-null float64
aspect_ratio
                                         4714 non-null float64
movie_facebook_likes
                                         5043 non-null int64
                                         5043 non-null float64
imdb_score
```

```
dtypes: float64(15), int64(11), object(12)
memory usage: 1.5+ MB
```

<h2>3. Data Cleaning</h2>

3.1 Missing Values

We can quickly check if we have any null values in our data

```
In [10]: def mis_values(df1):
    mis_value = df1.isnull().sum()
    mis_value_per = 100 * df1.isnull().sum() / len(df1)
    mis_value_column = pd.concat([mis_value, mis_value_per], axis=1)
    mis_val_tab_rename_cols = mis_value_column.rename(columns = {0 : 'Missing Values'
    mis_val_tab_rename_cols = mis_val_tab_rename_cols[mis_val_tab_rename_cols.iloc[:,
        print ("Your selected dataframe has " + str(df.shape[1]) + " columns.\n"

        "There are " + str(mis_val_tab_rename_cols.shape[0]) +
        " cols that have missing values.")
    return mis_val_tab_rename_cols
```

In [11]: missing_values = mis_values(df1)

Your selected dataframe has 38 columns. There are 21 cols that have missing values.

In [12]: print(missing_values)

	Missing Values	% of Total	Missing Values
gross	884		17.5
budget	492		9.8
aspect_ratio	329		6.5
content_rating	303		6.0
plot_keywords	153		3.0
title_year	108		2.1
director_name	104		2.1
director_facebook_likes	104		2.1
num_critic_for_reviews	50		1.0
actor_3_name	23		0.5
actor_3_facebook_likes	23		0.5
num_user_for_reviews	21		0.4
color	19		0.4
duration	15		0.3
facenumber_in_poster	13		0.3
actor_2_name	13		0.3
actor_2_facebook_likes	13		0.3
language	12		0.2
actor_1_name	7		0.1

```
actor_1_facebook_likes 7 0.1 country 5 0.1
```

Instead of dropping the rows, I used the median imputation because it's maintain the distribution of the variable.

In [14]: df1

Out[14]:	id	stock_market_idx	days_since_last_tweet	pre_screen_viewers	\
0	1	1102	67	18	
1	2	1117	70	18	
2	3	1000	90	11	
3	4	1007	35	10	
4	5	1128	85	20	
5	6	1037	75	20	
6	7	1021	80	12	
7	8	1133	30	16	
8	9	1186	14	11	
9	10	1016	3	10	
10	11	1142	99	13	
11	12	1197	35	17	
12	13	1105	17	12	
13	14	1145	8	10	
14	15	1010	14	15	
15	16	1146	89	14	
16	17	1188	12	18	
17	18	1156	17	12	
18	19	1185	59	12	
19	20	1127	77	11	
20	21	1051	36	19	
21	22	1015	61	19	
22	23	1200	75	14	
23	24	1163	45	10	
24	25	1042	73	19	
25	26	1142	96	16	
26	27	1086	28	19	
27	28	1114	41	13	
28	29	1197	66	16	
29	30	1196	23	19	
• • •			•••	• • •	
5013	5014	1081	57	10	
5014	5015	1174	77	12	
5015	5016	1186	15	19	
5016	5017	1136	59	11	
5017	5018	1110	19	10	

5018	5019	1040	66	19
5019	5020	1183	43	19
5020	5021	1155	61	11
5021	5022	1027	96	11
5022	5023	1190	13	13
5023	5024	1138	77	12
5024	5025	1055	13	16
5025	5026	1125	97	12
5026	5027	1170	58	10
5027	5028	1157	98	16
5028	5029	1122	69	19
5029	5030	1056	49	20
5030	5031	1193	97	18
5031	5032	1196	31	15
5032	5033	1026	76	20
5033	5034	1177	84	11
5034	5035	1060	59	16
5035	5036	1167	2	10
5036	5037	1062	45	12
5037	5038	1013	57	13
5038	5039	1131	42	19
5039	5040	1016	26	11
5040	5041	1146	33	18
5041	5042	1015	31	11
5042	5043	1048	9	19
	characters per lo	ngest_review prior	ity \	
0		1181	4	
1		1196	4	
2		1125	4	
3		1127	4	
4		1072	4	
5		1121	4	
6		1129	4	
7		1164	4	
8		1076	4	
9		1040	4	
10		1191	4	
11		1154	4	
12		1019	4	
13		1045	4	
14		1135	4	
15		1163	4	
16		1066	4	
17		1020	4	
18		1165	4	
19		1142	4	
20		1057	4	

2	21	1147	4		
2	22	1103	4		
2	23	1092	4		
	24	1005	4		
	25	1134	4		
	26	1035	4		
	20 27	1125	4		
	28	1158	4		
	29	1022	4		
			• •		
	5013	1171	4		
	5014	1091	4		
	5015	1101	4		
	5016	1172	4		
	5017	1012	4		
į	5018	1170	4		
į	5019	1074	4		
į	5020	1140	4		
į	5021	1002	4		
į	5022	1105	4		
	5023	1064	4		
	5024	1097	4		
	5025	1086	4		
	5026	1003	4		
	5020	1095	4		
	5028	1108	4		
	5029	1146	4		
	5030	1027	4		
	5031	1036	4		
	5032	1177	4		
į	5033	1159	4		
į	5034	1133	4		
į	5035	1152	4		
į	5036	1059	4		
į	5037	1187	4		
į	5038	1073	4		
	5039	1002	4		
	5040	1021	4		
	5041	1020	4		
	5042	1081	4		
•	JU42	1001	-		
		longest_facebook_comment_review_char		color	\
,)	250		Color	
	1	740		Color	
	2	1779		Color	
	3	1074		Color	
	4	813		NaN	
į	5	508		Color	

6	1189			Color
7	842			Color
8	1860			Color
9	832			Color
10	637			Color
11	1083			Color
12	429			Color
13	1506			Color
14	1389			Color
15	87			Color
16	829			Color
17	1256			Color
18	729			Color
19	737			Color
20	557			Color
21	659			Color
22	1742			Color
23	1770			Color
24	1028			Color
25	590			Color
26	390			Color
27	760			Color
28	1413			Color
29	91			Color
5013	1530			Color
5014	1897			Color
5015	999	Black	and	${\tt White}$
5016	1724			${\tt Color}$
5017	1022			${\tt Color}$
5018	1434			${\tt Color}$
5019	675			${\tt Color}$
5020	625			NaN
5021	1479			Color
5022	221	Black	and	${\tt White}$
5023	923			${\tt Color}$
5024	1828			${\tt Color}$
5025	1342			${\tt Color}$
5026	971			${\tt Color}$
5027	1145			${\tt Color}$
5028	311	Black	and	${\tt White}$
5029	1489			Color
5030	684			Color
5031	1121			Color
5032	1091			Color
5033	1365			Color
5034	181			Color
5035	1497			Color

5036		373	Color		
5037		766	Color		
5038		10	Color		
5039		539	Color		
5040		1558	Color		
5041		1152	Color		
5042		1587	Color		
	director_name	num_critic_for_review	ws	country	\
0	James Cameron	723.		USA	`
1	Gore Verbinski	302.		USA	
2	Sam Mendes	602.		UK	
3				USA	
	Christopher Nolan	813.			
4	Doug Walker	110.		NaN	
5	Andrew Stanton	462.		USA	
6	Sam Raimi	392.		USA	
7	Nathan Greno	324.		USA	
8	Joss Whedon	635.		USA	
9	David Yates	375.		UK	
10	Zack Snyder	673.		USA	
11	Bryan Singer	434.		USA	
12	Marc Forster	403.	.0	UK	
13	Gore Verbinski	313.	.0	USA	
14	Gore Verbinski	450.	.0	USA	
15	Zack Snyder	733.	.0	USA	
16	Andrew Adamson	258.	.0	USA	
17	Joss Whedon	703.	.0	USA	
18	Rob Marshall	448.	.0	USA	
19	Barry Sonnenfeld	451.	.0	USA	
20	Peter Jackson	422.	.0	New Zealand	
21	Marc Webb	599.	.0	USA	
22	Ridley Scott	343.		USA	
23	Peter Jackson	509.		USA	
24	Chris Weitz	251.		USA	
25	Peter Jackson	446.		New Zealand	
26	James Cameron	315.		USA	
27	Anthony Russo	516.		USA	
28	Peter Berg	377.		USA	
29	Colin Trevorrow	644.		USA	
	• • •		• • • • •	•••	
5013	Eric Eason	28.	.0	USA	
5014	Uwe Boll	58.		Canada	
5015	Richard Linklater	61.		USA	
5016	Joseph Mazzella	110.		USA	
5017	Travis Legge		.0	USA	
5018	Alex Kendrick	5.		USA	
5019	Marcus Nispel	43.		USA	
5020	Brandon Landers	110.		USA	

5021	Jay Duplass		51.0		USA	
5022	Jim Chuchu		6.0		Kenya	
5023	Daryl Wein		22.0		USA	
5024	Jason Trost		42.0		USA	
5025	John Waters		73.0		USA	
5026	Olivier Assayas		81.0	• • •	France	
5027	Jafar Panahi		64.0	• • •	Iran	
5028	Ivan Kavanagh		12.0	• • •	Ireland	
5029	Kiyoshi Kurosawa		78.0		Japan	
5030	Tadeo Garcia		110.0		USA	
5031	Thomas L. Phillips		13.0		USA	
5032	Ash Baron-Cohen		10.0	• • •	USA	
5033	Shane Carruth		143.0	• • •	USA	
5034	Neill Dela Llana		35.0		lippines	
5035	Robert Rodriguez		56.0		USA	
5036	Anthony Vallone		110.0		USA	
5037	Edward Burns		14.0	•••	USA	
5038	Scott Smith		1.0	• • •	Canada	
5039	NaN		43.0	• • •	USA	
5040	Benjamin Roberds		13.0	• • •	USA	
5040	Daniel Hsia		14.0	• • •	USA	
5041			43.0	• • •	USA	
5042	Jon Gunn		43.0	• • •	AGU	
	content_rating webs	site_score	budget	weighted_budget	title_year '	١
0	PG-13	7.9	237000000.0	236999000	2009.0	
1	PG-13	7.1	300000000.0	299999000	2007.0	
2	PG-13	6.8	245000000.0	244999000	2015.0	
3	PG-13	8.5	250000000.0	249999000	2012.0	
4	NaN	7.1	20000000.0	-1000	2005.0	
5	PG-13	6.6	263700000.0	263699000	2012.0	
6	PG-13	6.2	258000000.0	257999000	2007.0	
7	PG	7.8	260000000.0	259999000	2010.0	
8	PG-13	7.5	250000000.0	249999000	2015.0	
9	PG	7.5	2500000000.0	249999000	2009.0	
10	PG-13	6.9	2500000000.0	249999000	2016.0	
11	PG-13	6.1	209000000.0	208999000	2016.0	
12	PG-13	6.7	200000000.0	199999000	2008.0	
13	PG-13		2250000000.0		2006.0	
		7.3	215000000.0	224999000		
14	PG-13	6.5		214999000	2013.0	
15	PG-13	7.2	225000000.0	224999000	2013.0	
16	PG	6.6	225000000.0	224999000	2008.0	
17	PG-13	8.1	220000000.0	219999000	2012.0	
18	PG-13	6.7	250000000.0	249999000	2011.0	
19	PG-13	6.8	225000000.0	224999000	2012.0	
20	PG-13	7.5	250000000.0	249999000	2014.0	
21	PG-13	7.0	230000000.0	229999000	2012.0	
22	PG-13	6.7	200000000.0	199999000	2010.0	
23	PG-13	7.9	225000000.0	224999000	2013.0	

24	1 0 10	0.1	100000000.0	119999	2001.0
25	PG-13	7.2	207000000.0	2069990	2005.0
26	PG-13	7.7	200000000.0	1999990	1997.0
27	PG-13	8.2	250000000.0	249999	2016.0
28	PG-13	5.9	209000000.0	2089990	2012.0
29	PG-13	7.0	150000000.0	149999	
	• • •				
5013		7.0	24000.0		2002.0
5014		6.3	20000000.0		2009.0
5015		7.1	23000.0		000 1991.0
5016		4.8	25000.0		2015.0
5017		3.3	22000.0		2013.0
5018		6.9	20000.0		2003.0
5019		4.6	20000000.0		2015.0
5020		3.0	17350.0		350 2011.0
5021		6.6	15000.0		2011.0
5021		7.4	15000.0		2003.0
5023		6.2	15000.0		2014.0
		4.0	20000.0		2009.0
5024					
5025		6.1	10000.0		
5026		6.9	4500.0		500 2004.0
5027		7.5	10000.0		2000.0
5028		6.7	10000.0		2007.0
5029		7.4	1000000.0	9990	
5030		6.1	20000000.0		2004.0
5031		5.4	200000.0	1990	
5032		6.4	20000000.0		000 1995.0
5033		7.0	7000.0		2004.0
5034		6.3	7000.0		2005.0
5035		6.9	7000.0		000 1992.0
5036		7.8	3250.0		250 2005.0
5037		6.4	9000.0		2011.0
5038	NaN	7.7	20000000.0	-10	2013.0
5039	TV-14	7.5	20000000.0	-10	2005.0
5040	NaN	6.3	1400.0	4	2013.0
5041	PG-13	6.3	20000000.0	-10	2012.0
5042	PG	6.6	1100.0	:	100 2004.0
	actor_2_facebook_likes	-			imdb_score
0	936.0		1.78	33000	7.9
1	5000.0		2.35	0	7.1
2	393.0		2.35	85000	6.8
3	23000.0		2.35	164000	8.5
4	12.0		2.35	0	7.1
5	632.0		2.35	24000	6.6
6	11000.0		2.35	0	6.2
7	553.0		1.85	29000	7.8
8	21000.0		2.35	118000	7.5

6.1 180000000.0

179999000

2007.0

24

PG-13

9	11000.0	2.35	10000	7.5
10	4000.0	2.35	197000	6.9
11	10000.0	2.35	0	6.1
12	412.0	2.35	0	6.7
13	5000.0	2.35	5000	7.3
14	2000.0	2.35	48000	6.5
15	3000.0	2.35	118000	7.2
16	216.0	2.35	0	6.6
17	21000.0	1.85	123000	8.1
18	11000.0	2.35	58000	6.7
19	816.0	1.85	40000	6.8
20	972.0	2.35	65000	7.5
21	10000.0	2.35	56000	7.0
22	882.0	2.35	17000	6.7
23	972.0	2.35	83000	7.9
	6000.0	2.35	0	
24				6.1
25	919.0	2.35	0	7.2
26	14000.0	2.35	26000	7.7
27	19000.0	2.35	72000	8.2
28	10000.0	2.35	44000	5.9
29 	2000.0	2.00	150000	7.0
5013	46.0	1.78	61	7.0
5014	918.0	2.35	0	6.3
5015	0.0	1.37	2000	7.1
5016	25.0	2.35	33	4.8
5017	184.0	1.78	200	3.3
5017	49.0	1.85	725	6.9
5019	512.0	1.85	0	4.6
5020	19.0	2.35	33	3.0
5021	224.0	2.35	297	6.6
5022	19.0	2.35	45	7.4
5023	212.0	2.35	324	6.2
5024	91.0	2.35	835	4.0
5025	143.0	1.37	0	6.1
5026	133.0	2.35	171	6.9
5027	0.0	1.85	697	7.5
5028	5.0	1.33	105	6.7
5029	13.0	1.85	817	7.4
5030	20.0	2.35	22	6.1
5031	98.0	16.00	424	5.4
5032	194.0	2.35	20	6.4
5033	45.0	1.85	19000	7.0
5034	0.0	2.35	74	6.3
5035	20.0	1.37	0	6.9
5036	44.0	2.35	4	7.8
5037	205.0	2.35	413	6.4
5038	470.0	2.35	84	7.7

5039	593.0	16.00	32000	7.5
5040	0.0	2.35	16	6.3
5041	719.0	2.35	660	6.3
5042	23.0	1.85	456	6.6

[5043 rows x 38 columns]

In [15]: df1.dtypes.value_counts()

We do! Let's use the "describe" method to find them, amongst other interesting information

```
In [16]: df1.describe()
```

Out[16]:		id	stock_market_idx	days_since_last_tweet	\
	count	5043.000000	5043.00000	5043.000000	
	mean	2522.000000	1101.16042	49.908190	
	std	1455.933034	58.48476	28.432368	
	min	1.000000	1000.00000	1.000000	
	25%	1261.500000	1051.00000	26.000000	
	50%	2522.000000	1101.00000	49.000000	
	75%	3782.500000	1153.00000	74.000000	
	max	5043.000000	1200.00000	99.000000	

	<pre>pre_screen_viewers</pre>	<pre>characters_per_longest_review</pre>	priority	\
count	5043.000000	5043.000000	5043.0	
mean	14.979576	1100.040849	4.0	
std	3.163246	57.299452	0.0	
min	10.000000	1000.000000	4.0	
25%	12.000000	1051.000000	4.0	
50%	15.000000	1099.000000	4.0	
75%	18.000000	1149.000000	4.0	
max	20.000000	1200.000000	4.0	

	<pre>longest_facebook_comment_review_char</pre>	<pre>num_critic_for_reviews</pre>	\
count	5043.000000	5043.000000	
mean	962.646242	139.894904	
std	541.710282	121.034214	
min	6.000000	1.000000	
25%	511.000000	50.000000	
50%	962.000000	110.000000	
75%	1424.000000	194.000000	
max	1900.000000	813.000000	

duration director_facebook_likes ... \

```
5043.000000
                                  5043.000000
count
        107.188578
                                   673.362086
mean
std
         25.160972
                                  2785.636586
min
          7.000000
                                     0.000000
25%
         93.000000
                                     7.000000
50%
        103.000000
                                    49.000000
75%
        118.000000
                                   189.000000
max
        511.000000
                                 23000.000000
       facenumber_in_poster
                              num_user_for_reviews
                                                      website_score
                 5043.000000
                                                        5043.000000
                                        5043.000000
count
mean
                    1.370216
                                         272.284553
                                                            6.559925
std
                    2.011066
                                         377.269873
                                                            8.433695
                    0.000000
                                           1.000000
                                                            1.600000
min
25%
                    0.00000
                                           65.000000
                                                            5.800000
50%
                    1.000000
                                         156.000000
                                                            6.600000
75%
                    2.000000
                                         324.000000
                                                            7.200000
                   43.000000
                                                         600.000000
max
                                        5060.000000
                      weighted_budget
                                                      actor_2_facebook_likes
             budget
                                         title_year
       5.043000e+03
                         5.043000e+03
                                        5043.000000
                                                                  5043.000000
       3.782554e+07
                         3.587332e+07
                                        2002.531033
                                                                  1649.030339
mean
std
       1.958882e+08
                         1.961555e+08
                                           12.359307
                                                                  4037.579765
min
       2.180000e+02
                        -1.000000e+03
                                        1916.000000
                                                                     0.000000
25%
                                        1999.000000
       7.000000e+06
                         2.999000e+06
                                                                   281.000000
50%
       2.000000e+07
                         1.499900e+07
                                        2005.000000
                                                                   595.000000
75%
       4.000000e+07
                         3.999900e+07
                                        2011.000000
                                                                   918.000000
max
       1.221550e+10
                         1.221550e+10
                                        2045.000000
                                                                137000.000000
       aspect_ratio
                      movie_facebook_likes
                                               imdb_score
        5043.000000
                                5043.000000
count
                                              5043.000000
           2.228858
                                7525.964505
                                                 6.559925
mean
std
           1.339542
                               19320.445110
                                                 8.433695
           1.180000
                                   0.000000
                                                 1.600000
min
25%
           1.850000
                                   0.000000
                                                 5.800000
50%
           2.350000
                                 166.000000
                                                 6.600000
75%
           2.350000
                                3000.000000
                                                 7.200000
          16.000000
                              349000.000000
max
                                               600.000000
```

[8 rows x 26 columns]

I dropped the columns because these columns had high cardinality or many levels and also many zero values.

```
'aspect_ratio', 'website_score', 'genres', 'actor_1_facebook_likes']
         df1.drop(col, axis=1, inplace=True)
In [18]: df1.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 5043 entries, 0 to 5042
Data columns (total 13 columns):
stock_market_idx
                                        5043 non-null int64
days_since_last_tweet
                                        5043 non-null int64
pre_screen_viewers
                                        5043 non-null int64
characters_per_longest_review
                                        5043 non-null int64
longest_facebook_comment_review_char
                                        5043 non-null int64
num_critic_for_reviews
                                        5043 non-null float64
                                        5043 non-null float64
duration
                                        5043 non-null float64
gross
num_voted_users
                                        5043 non-null int64
made_up_column
                                        5043 non-null float64
num_user_for_reviews
                                        5043 non-null float64
                                        5043 non-null float64
budget
                                        5043 non-null float64
imdb_score
dtypes: float64(7), int64(6)
memory usage: 551.6 KB
 <h2>4. Data Transformation</h2>
  To normalize the above variables, I used log transformation.
In [19]: df1['budget'] = np.log(df1.budget)
         df1['imdb_score'] = np.log(df1.imdb_score)
         df1['made_up_column'] = np.log(df1.imdb_score)
         df1['stock_market_idx'] = np.log(df1.stock_market_idx)
         df1['days_since_last_tweet'] = np.log(df1.days_since_last_tweet)
         df1['pre_screen_viewers'] = np.log(df1.pre_screen_viewers)
         df1['characters_per_longest_review'] = np.log(df1.characters_per_longest_review)
         df1['longest_facebook_comment_review_char'] = np.log(df1.longest_facebook_comment_review_char')
         df1['num_critic_for_reviews'] = np.log(df1.num_critic_for_reviews)
         df1['duration'] = np.log(df1.duration)
         df1['gross'] = np.log(df1.gross)
         df1['num_voted_users'] = np.log(df1.num_voted_users)
         df1['num_user_for_reviews'] = np.log(df1.num_user_for_reviews)
In [20]: df1.describe()
Out[20]:
                stock_market_idx days_since_last_tweet pre_screen_viewers \
                  5043.000000
                                            5043.000000
                                                                 5043.000000
         count
```

'director_facebook_likes', 'actor_2_facebook_likes', 'actor_3_facebook_likes',

3.630552

2.683450

7.002705

mean

std	0.053234	0.913		0.218117	
min	6.907755	0.000		2.302585	
25%	6.957497	3.258		2.484907	
50%	7.003974	3.891		2.708050	
75%	7.050123	4.304		2.890372	
max	7.090077	4.595	120	2.995732	
	characters_per_longest_n	•	st_facebook_c	omment_review_char	\
count		000000		5043.000000	
mean		001743		6.583890	
std		052173		0.944422	
min	6.9	907755		1.791759	
25%	6.9	957497		6.236370	
50%	7.0	002156		6.869014	
75%	7.0	046647		7.261225	
max	7.0	090077		7.549609	
	<pre>num_critic_for_reviews</pre>	duration	gross	num_voted_users \	\
count	5043.000000	5043.000000	5043.000000	5043.000000	
mean	4.467420	4.647760	16.501699	10.096277	
std	1.163810	0.242031	2.125449	1.990129	
min	0.000000	1.945910	5.087596	1.609438	
25%	3.912023	4.532599	15.950977	9.058761	
50%	4.700480	4.634729	17.054875	10.444619	
75%	5.267858	4.770685	17.754313	11.475317	
max	6.700731	6.236370	20.449494	14.340099	
	made_up_column num_use	r_for_reviews	budget	imdb_score	
count	5043.000000	5043.000000	5043.000000	5043.000000	
mean	0.605564	4.871133	16.478166	1.845742	
std	0.126912	1.392721	1.635744	0.210021	
min	-0.755015	0.000000	5.384495	0.470004	
25%	0.564096	4.174387	15.761421	1.757858	
50%	0.635025	5.049856	16.811243	1.887070	
75%	0.680103	5.780744	17.504390	1.974081	
max	1.855818	8.529122	23.225971	6.396930	

In [21]: df1.profile_report()

<IPython.lib.display.IFrame at 0x1fa2e8a0080>

Out[21]:

Some of the columns have missing values. We can deal with this in a few different ways. The simpliest solution is to remove them, though we lose many examples in doing so. Alternatively, we could impute the values, replacing the NaN values with an average (mean or median).

For the purpose of this simple notebook, the variable num_user_for_reviews has 51 zeros which was replaced by median and also remaining numerical variable are imputed by median imputation.

```
In [22]: nonzero_median = df1[ df1.num_user_for_reviews != 0 ].median()
In [23]: df1.loc[ df1.num_user_for_reviews == 0, "num_user_for_reviews" ] = nonzero_median
In [24]: # fill missing values with median column values
         df1 = df1.fillna(df1.median())
In [25]: df1.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 5043 entries, 0 to 5042
Data columns (total 13 columns):
stock_market_idx
                                         5043 non-null float64
days_since_last_tweet
                                         5043 non-null float64
pre_screen_viewers
                                         5043 non-null float64
characters_per_longest_review
                                         5043 non-null float64
longest_facebook_comment_review_char
                                         5043 non-null float64
num_critic_for_reviews
                                         5043 non-null float64
                                         5043 non-null float64
duration
                                         5043 non-null float64
gross
num voted users
                                         5043 non-null float64
made_up_column
                                         5043 non-null float64
num_user_for_reviews
                                         5043 non-null float64
budget
                                         5043 non-null float64
                                         5043 non-null float64
imdb_score
dtypes: float64(13)
memory usage: 551.6 KB
 <h2>5. Data Modeling</h2>
  5.1. Data Splitting
```

0.0.2 Test & Train Split

The purpose of splitting the data is to be able to assess the quality of a predictive model when it is used on unseen data. When training, you will try to build a model that fits to the data as closely as possible, to be able to most accurately make a prediction. However, without a test set you run the risk of overfitting - the model works very well for the data it has seen but not for new data.

The split ratio is often debated and in practice you might split your data into three sets: train, validation and test. You would use the training data to understand which classifier you wish to use; the validation set to test on whilst tweaking parameters; and the test set to get an understanding of how your final model would work in practice. Furthermore, there are techniques such as K-Fold cross validation that also help to reduce bias.

For the purpose of this demonstration, we will only be randomly splitting our data into test and train, with a 80/20 split.

We import the required library from scikit-learn, train_test_split

```
In [27]: X_trainset, X_testset, y_trainset, y_testset = train_test_split(X, y, test_size=0.20,
In [28]: print(X_trainset.shape)
         print(y_trainset.shape)
(4034, 12)
(4034, 1)
In [29]: print(X_testset.shape)
         print(y_testset.shape)
(1009, 12)
(1009, 1)
 <h2> Parametric Machine Learning Algorithm</h2>
   5.2. Using Linear Regression
   Linear regression attempts to fit a straight hyperplane to your dataset that is closest to all data
points. It is most suitable when there are linear relationships between the variables in the dataset.
In [30]: reg = LinearRegression()
         reg.fit(X, y)
Out[30]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
In [31]: y_pred1 = reg.predict(X_testset)
   5.2.1. Performance Metrics of Linear Regression
   We wish to understand how good our model is; there are a few different metrics we can use.
We will evaluate mean squared error (MSE) and mean absolute error (MAE)
   We import scikit-learn's mean squared error and sckit-learn's mean absolute error
In [32]: from sklearn import metrics
         print('Mean Absolute Error:', metrics.mean_absolute_error(y_testset, y_pred1))
         print('Mean Squared Error:', metrics.mean_squared_error(y_testset, y_pred1))
         print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_testset, y_pre-
Mean Absolute Error: 0.01813151995508253
Mean Squared Error: 0.0014731432685910185
Root Mean Squared Error: 0.03838154854342147
   5.3. Using Ridge Regression
In [33]: from sklearn.model_selection import GridSearchCV
         from sklearn.linear_model import Ridge
```

```
In [34]: ridge = Ridge()
         parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3, 1e-2, 1, 5, 10, 20]}
         ridge_regressor = GridSearchCV(ridge, parameters, scoring='mean squared error')
         ridge_regressor.fit(X, y)
Out[34]: GridSearchCV(cv=None, error_score='raise',
                estimator=Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
            normalize=False, random_state=None, solver='auto', tol=0.001),
                fit_params=None, iid=True, n_jobs=1,
                param_grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1, 5, 10, 20]}
                pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
                scoring='mean_squared_error', verbose=0)
In [35]: print(ridge_regressor.best_params_)
         print(ridge_regressor.best_score_)
{'alpha': 1}
-0.00248930108763342
  In this case, the optimal value for alpha is 1, and the negative MSE is -0.0024893.
  5.4. Using LASSO Regression
In [36]: from sklearn.linear_model import Lasso
In [37]: lasso = Lasso()
         parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3, 1e-2, 1, 5, 10, 20]}
         lasso_regressor = GridSearchCV(lasso, parameters, scoring='mean_squared_error')
         lasso_regressor.fit(X, y)
Out[37]: GridSearchCV(cv=None, error_score='raise',
                estimator=Lasso(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=1000,
            normalize=False, positive=False, precompute=False, random_state=None,
            selection='cyclic', tol=0.0001, warm_start=False),
                fit_params=None, iid=True, n_jobs=1,
                param_grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1, 5, 10, 20]}
                pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
                scoring='mean_squared_error', verbose=0)
In [38]: print(lasso_regressor.best_params_)
         print(lasso_regressor.best_score_)
{'alpha': 0.0001}
-0.0024895672740462694
```

In this case, the optimal value for alpha is 0.0001, and the negative MSE is -0.0024895.

Note: After use linear, lasso, and ridge regression. We have seen that ridge is the best fitting method, with a regularization value of 1.

```
<h2>Nonparametric ML Algorithms</h2>
  5.5. Using KNRegressor
In [39]: clf=KNeighborsRegressor(5)
         clf.fit(X_trainset,y_trainset)
        y_pred=clf.predict(X_testset)
        print(mean_squared_error(y_testset,y_pred))
0.031100714262353453
In [42]: from sklearn import neighbors
        rmse_val = [] #to store rmse values for different k
        for K in range(20):
            K = K+1
             model = neighbors.KNeighborsRegressor(n neighbors = K)
             model.fit(X_trainset, y_trainset) #fit the model
             pred=model.predict(X_testset) #make prediction on test set
             error = sqrt(mean_squared_error(y_testset,pred)) #calculate rmse
             rmse_val.append(error) #store rmse values
             print('RMSE value for k= ' , K , 'is:', error)
RMSE value for k= 1 is: 0.21315240080835277
RMSE value for k= 2 is: 0.1908013268343305
RMSE value for k= 3 is: 0.18098856364713534
RMSE value for k = 4 is: 0.17803795746340828
RMSE value for k= 5 is: 0.17635394597896994
RMSE value for k= 6 is: 0.17416175135818351
RMSE value for k = 7 is: 0.1731860406522612
RMSE value for k= 8 is: 0.17230452241536612
RMSE value for k= 9 is: 0.17302494104578212
RMSE value for k= 10 is: 0.17256339138196394
RMSE value for k= 11 is: 0.17266004948251795
RMSE value for k= 12 is: 0.1728858069932387
RMSE value for k= 13 is: 0.17274587714990983
RMSE value for k= 14 is: 0.1730896798547398
RMSE value for k= 15 is: 0.17308010745515268
RMSE value for k = 16 is: 0.1730563602443598
RMSE value for k= 17 is: 0.17335005398973438
RMSE value for k= 18 is: 0.17323566744883404
RMSE value for k= 19 is: 0.1736963168112529
RMSE value for k= 20 is: 0.17340505276908819
In [43]: #plotting the rmse values against k values
         curve = pd.DataFrame(rmse_val) #elbow curve
         curve.plot()
```

Out[43]: <matplotlib.axes._subplots.AxesSubplot at 0x1fa2e148588>

Comparing with other Number of clusters, k=8 and RMSE is 0.172 is better. 5.6. Using of Random Forest

```
In [44]: regressor = RandomForestRegressor(n_estimators=20, random_state=0)
    regressor.fit(X_trainset, y_trainset)
    y_pred = regressor.predict(X_testset)
```

Mean Absolute Error: 0.00044979607149377013 Mean Squared Error: 4.4625280188515924e-05 Root Mean Squared Error: 0.006680215579494117

When estimator is 20 then RMSE is 0.007 and MSE is 4.46.

Note:

After comparing non-parametric models RMSE, Random forest performed better.

0.0.3 Stepwise Selection

Used backward selection method for multiple regression to find better R-square and all p-value of variable should be significantly significant (less than 0.05)

```
In [46]: X = np.column_stack((df1['budget'], df1['stock_market_idx'], df1['days_since_last_tweedf1['characters_per_longest_review'], df1['longest_facebook_common df1['num_critic_for_reviews'], df1['duration'], df1['gross'], df df1['made_up_column'], df1['num_user_for_reviews']))

y = df1['imdb_score']

X2 = sm.add_constant(X)
est = sm.OLS(y, X2)
est2 = est.fit()
print(est2.summary())
```

OLS Regression Results

Dep. Variable: imdb_score R-squared: 0.948 Model: OLS Adj. R-squared: 0.948 Method: Least Squares F-statistic: 7691. Date: Sat, 20 Jul 2019 Prob (F-statistic): 0.00 Time: 17:39:57 Log-Likelihood: 8184.7 No. Observations: 5043 AIC: -1.634e+04 BIC: Df Residuals: 5030 -1.626e+04

Df Model: 12 Covariance Type: nonrobust

	coef	std err		t	P> t	[0.025	0.975]
const	1.0315	0.129	7.	 993	0.000	0.778	1.284
x1	-0.0032	0.001	-6.	456	0.000	-0.004	-0.002
x2	-0.0086	0.013	-0.	678	0.498	-0.033	0.016
x3	-0.0001	0.001	-0.	139	0.890	-0.002	0.001
x4	-0.0003	0.003	-0.	106	0.915	-0.006	0.006
x5	-0.0137	0.013	-1.	059	0.290	-0.039	0.012
x6	-0.0008	0.001	-1.	065	0.287	-0.002	0.001
x7	-0.0059	0.001	-5.	906	0.000	-0.008	-0.004
x8	0.0068	0.003	2.	282	0.023	0.001	0.013
x9	-5.332e-05	0.000	-0.	143	0.886	-0.001	0.001
x10	0.0041	0.001	5.	531	0.000	0.003	0.006
x11	1.5940	0.006	279.	342	0.000	1.583	1.605
x12	0.0037	0.001	3.	635	0.000	0.002	0.006
Omnibus:		13727.	176	 Durbin	 -Watson:		1.984
Prob(Omni	bus):	0.	000	Jarque	-Bera (JB):	583187610.018	
Skew:		33.	242	Prob(J	B):		0.00
Kurtosis:		1667.	636	Cond.	No.		5.72e+03

Warnings:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 5.72e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [47]: col = ['pre_screen_viewers']
                   df1.drop(col, axis=1, inplace=True)
In [48]: X = np.column stack((df1['budget'], df1['stock market idx'], df1['days since last tween twe tween tween tween tween tween tween tween twe tween tween tween tween tween tween twe
                                                                 df1['characters_per_longest_review'], df1['longest_facebook_comm
                                                                 df1['num_critic_for_reviews'], df1['duration'], df1['gross'], df
                                                                 df1['made_up_column'], df1['num_user_for_reviews']))
                   y = df1['imdb_score']
                   X2 = sm.add_constant(X)
                   est = sm.OLS(y, X2)
                   est2 = est.fit()
                   print(est2.summary())
                                                            OLS Regression Results
______
Dep. Variable:
                                                          imdb_score
                                                                                      R-squared:
                                                                                                                                                              0.948
Model:
                                                                                      Adj. R-squared:
                                                                                                                                                              0.948
                                                                         OLS
Method:
                                                                                      F-statistic:
                                                   Least Squares
                                                                                                                                                              8391.
Date:
                                             Sat, 20 Jul 2019
                                                                                      Prob (F-statistic):
                                                                                                                                                                0.00
Time:
                                                               17:39:59
                                                                                    Log-Likelihood:
                                                                                                                                                            8184.7
No. Observations:
                                                                       5043
                                                                                      AIC:
                                                                                                                                                   -1.635e+04
Df Residuals:
                                                                       5031
                                                                                      BIC:
                                                                                                                                                   -1.627e+04
Df Model:
                                                                            11
Covariance Type:
                                                            nonrobust
                                                                                                          P>|t|
                                                                                                                                  [0.025
                                     coef
                                                      std err
const
                                1.0307
                                                          0.129
                                                                                  8.001
                                                                                                          0.000
                                                                                                                                   0.778
                                                                                                                                                              1.283
x1
                              -0.0032
                                                          0.001
                                                                                -6.456
                                                                                                          0.000
                                                                                                                                  -0.004
                                                                                                                                                            -0.002
x2
                              -0.0086
                                                          0.013
                                                                               -0.678
                                                                                                          0.498
                                                                                                                                  -0.033
                                                                                                                                                              0.016
x3
                              -0.0001
                                                          0.001
                                                                               -0.140
                                                                                                          0.889
                                                                                                                                 -0.002
                                                                                                                                                              0.001
                              -0.0137
                                                          0.013
                                                                                -1.060
                                                                                                          0.289
                                                                                                                                  -0.039
                                                                                                                                                              0.012
x4
x5
                              -0.0008
                                                          0.001
                                                                               -1.066
                                                                                                          0.287
                                                                                                                                  -0.002
                                                                                                                                                              0.001
x6
                              -0.0059
                                                          0.001
                                                                               -5.906
                                                                                                          0.000
                                                                                                                                  -0.008
                                                                                                                                                            -0.004
                                                          0.003
                                                                                2.282
                                                                                                          0.023
                                                                                                                                                              0.013
x7
                                0.0068
                                                                                                                                  0.001
8x
                          -5.33e-05
                                                          0.000
                                                                                -0.143
                                                                                                          0.886
                                                                                                                                  -0.001
                                                                                                                                                              0.001
x9
                                0.0041
                                                          0.001
                                                                                  5.533
                                                                                                          0.000
                                                                                                                                   0.003
                                                                                                                                                              0.006
x10
                                1.5940
                                                          0.006
                                                                              279.385
                                                                                                          0.000
                                                                                                                                    1.583
                                                                                                                                                              1.605
x11
                                0.0037
                                                          0.001
                                                                                  3.634
                                                                                                          0.000
                                                                                                                                    0.002
                                                                                                                                                              0.006
Omnibus:
                                                             13727.412
                                                                                      Durbin-Watson:
                                                                                                                                                              1.984
Prob(Omnibus):
                                                                     0.000
                                                                                      Jarque-Bera (JB):
                                                                                                                                            583262636.992
Skew:
                                                                   33.244
                                                                                      Prob(JB):
                                                                                                                                                                0.00
Kurtosis:
                                                               1667.743
                                                                                      Cond. No.
                                                                                                                                                       5.69e+03
______
```

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.69e+03. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

=========		========				========
Dep. Variabl	Le:	imdb_sc	ore R-sc	R-squared: 0.		0.948
Model:		(DLS Adj.	R-squared:		0.948
Method:		Least Squa	res F-st	atistic:		9232.
Date:	Sa	t, 20 Jul 20	019 Prob	(F-statistic)):	0.00
Time:		17:40	:00 Log-	Likelihood:		8184.7
No. Observat	tions:	50	043 AIC:			-1.635e+04
Df Residuals	3:	50	032 BIC:			-1.628e+04
Df Model:			10			
Covariance 7	Гуре:	nonrob	ust			
=========		=======				=======
	coef	std err	t	P> t	[0.025	0.975]
const	1.0306	0.129	8.002	0.000	0.778	1.283
x1	-0.0033	0.000	-6.673	0.000	-0.004	-0.002
x2	-0.0086	0.013	-0.681	0.496	-0.033	0.016
x3	-0.0001	0.001	-0.138	0.890	-0.002	0.001
x4	-0.0137	0.013	-1.063	0.288	-0.039	0.012
x5	-0.0008	0.001	-1.067	0.286	-0.002	0.001
x6	-0.0058	0.001	-5.953	0.000	-0.008	-0.004
x7	0.0069	0.003	2.291	0.022	0.001	0.013
x8	0.0041	0.001	5.572	0.000	0.003	0.006
x9	1.5940	0.006	280.066	0.000	1.583	1.605
x10	0.0037	0.001	3.667	0.000	0.002	0.006
Omnibus:		13726.	======= 670 Durb	========= oin-Watson:		1.984
Prob(Omnibus	z)·			ue-Bera (JB):	58	2997176.363
Skew:	<i>5</i> / •	33.5		•	50	0.00
prem.		33	203 FIOL	Prob(JB):		0.00

Kurtosis: 1667.364 Cond. No. 4.71e+03

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.71e+03. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

Dep. Variable:	imdb_score	R-squared:	0.949
Model:	OLS	Adj. R-squared:	0.949
Method:	Least Squares	F-statistic:	1.043e+04
Date:	Sat, 20 Jul 2019	Prob (F-statistic):	0.00
Time:	17:40:01	Log-Likelihood:	8223.5
No. Observations:	5043	AIC:	-1.643e+04
Df Residuals:	5033	BIC:	-1.636e+04
Df Modol:	Ω		

Df Model: 9
Covariance Type: nonrobust

========	=========			.=======		
	coef	std err	t	P> t	[0.025	0.975]
const	1.0974	0.128	8.583	0.000	0.847	1.348
x1	-0.0028	0.000	-6.085	0.000	-0.004	-0.002
x2	-0.0113	0.013	-0.897	0.370	-0.036	0.013
x3	-0.0151	0.013	-1.177	0.239	-0.040	0.010
x4	-0.0007	0.001	-1.023	0.307	-0.002	0.001
x5	-0.0035	0.001	-4.009	0.000	-0.005	-0.002
x6	0.0036	0.003	1.209	0.227	-0.002	0.009
x7	6.57e-08	6.27e-09	10.472	0.000	5.34e-08	7.8e-08
x8	1.5878	0.006	279.653	0.000	1.577	1.599
x9	0.0033	0.001	3.751	0.000	0.002	0.005
========						

Omnibus: 13897.771 Durbin-Watson: 1.989

```
      Prob(Omnibus):
      0.000
      Jarque-Bera (JB):
      640334751.739

      Skew:
      34.339
      Prob(JB):
      0.00

      Kurtosis:
      1747.329
      Cond. No.
      3.11e+07
```

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.11e+07. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

______ Dep. Variable: imdb score R-squared: 0.948 Model: OLS Adj. R-squared: 0.948 Method: Least Squares F-statistic: 1.154e+04 Sat, 20 Jul 2019 Prob (F-statistic): Date: 0.00 Time: 17:40:01 Log-Likelihood: 8184.5 No. Observations: 5043 AIC: -1.635e+04 Df Residuals: 5034 BIC: -1.629e+04 Df Model:

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	0.9687	0.091	10.589	0.000	0.789	1.148
x1	-0.0033	0.000	-6.688	0.000	-0.004	-0.002
x2	-0.0136	0.013	-1.049	0.294	-0.039	0.012
x3	-0.0008	0.001	-1.076	0.282	-0.002	0.001
x4	-0.0059	0.001	-5.975	0.000	-0.008	-0.004
x5	0.0068	0.003	2.284	0.022	0.001	0.013
x6	0.0041	0.001	5.605	0.000	0.003	0.006
x7	1.5940	0.006	280.140	0.000	1.583	1.605
x8	0.0037	0.001	3.668	0.000	0.002	0.006

```
      Omnibus:
      13728.449
      Durbin-Watson:
      1.985

      Prob(Omnibus):
      0.000
      Jarque-Bera (JB):
      583620066.860

      Skew:
      33.250
      Prob(JB):
      0.00

      Kurtosis:
      1668.253
      Cond. No.
      3.18e+03
```

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.18e+03. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

Dep. Variable: imdb_score R-squared: 0.948 Model: OLS Adj. R-squared: 0.948 Method: Least Squares F-statistic: 1.319e+04 Date: Sat, 20 Jul 2019 Prob (F-statistic): 0.00 Time: 17:40:02 Log-Likelihood: 8183.9 No. Observations: AIC: 5043 -1.635e+04 Df Residuals: 5035 BIC: -1.630e+04 Df Model: 7

Covariance Type: nonrobust

=======	coef	std err	 t	P> t	[0.025	0.975]
const	0.8740	0.015	59.630	0.000	0.845	0.903
x1	-0.0032	0.000	-6.657	0.000	-0.004	-0.002
x2	-0.0008	0.001	-1.110	0.267	-0.002	0.001
x3	-0.0058	0.001	-5.962	0.000	-0.008	-0.004
x4	0.0068	0.003	2.268	0.023	0.001	0.013
x5	0.0041	0.001	5.598	0.000	0.003	0.006
x6	1.5938	0.006	280.199	0.000	1.583	1.605
x7	0.0037	0.001	3.666	0.000	0.002	0.006

```
Omnibus:
                          13731.611 Durbin-Watson:
                                                                      1.985
Prob(Omnibus):
                              0.000 Jarque-Bera (JB):
                                                             584547592.701
                             33.270 Prob(JB):
                                                                      0.00
Skew:
Kurtosis:
                           1669.576 Cond. No.
                                                                      489.
```

Skew:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [57]: col = ['longest_facebook_comment_review_char']
         df1.drop(col, axis=1, inplace=True)
In [58]: X = np.column_stack((df1['budget'], df1['num_critic_for_reviews'], df1['duration'], df
                              df1['made_up_column'], df1['num_user_for_reviews']))
         y = df1['imdb_score']
         X2 = sm.add_constant(X)
         est = sm.OLS(y, X2)
         est2 = est.fit()
```

OLS Regression Results

print(est2.summary())

=======================================			
Dep. Variable:	imdb_score	R-squared:	0.948
Model:	OLS	Adj. R-squared:	0.948
Method:	Least Squares	F-statistic:	1.539e+04
Date:	Sat, 20 Jul 2019	Prob (F-statistic):	0.00
Time:	17:40:04	Log-Likelihood:	8183.3
No. Observations:	5043	AIC:	-1.635e+04
Df Residuals:	5036	BIC:	-1.631e+04
Df Model:	6		
Covariance Type:	nonrobust		

	J1 -					
	coef	std err	t	P> t	[0.025	0.975]
const	0.8689	0.014	62.356	0.000	0.842	0.896
x1	-0.0032	0.000	-6.660	0.000	-0.004	-0.002
x2	-0.0058	0.001	-5.964	0.000	-0.008	-0.004
x3	0.0068	0.003	2.263	0.024	0.001	0.013
x4	0.0042	0.001	5.614	0.000	0.003	0.006
x5	1.5937	0.006	280.208	0.000	1.583	1.605
х6	0.0036	0.001	3.643	0.000	0.002	0.006
Omnibus: 13733.185 Durbin-Watson: 1.			1.985			
Prob(Omnib	ous):	0	.000 Jarqu	e-Bera (JB):	5851	52979.355

Kurtosis: Cond. No. ______

1670.440

33.280 Prob(JB):

0.00

445.

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Note: The target variable or dependent variable and independent variables were continuous. I used lof transformation to normalize the variables. After verifing Linear Regression assumptions, I move forward with predictive modeling and got adjusted R-square of 95%. After using backward selection technique, the remaining independent variables p-value is < 0.05 which shows that variables are significant. RMSE is also less which is 0.04.

After checking RMSE of the other algorithm, Random Forset root mean squared error is less which is 0.007. It shows that random forset perform better comparing with other models.

```
<h2> Modules</h2>
In [59]: from sklearn import preprocessing
         from sklearn.metrics import precision_recall_fscore_support
         from sklearn.metrics import accuracy_score
         from sklearn.metrics import confusion_matrix
 <h2>Creating new dataframe as df2</h2>
In [60]: df2 = df
<h2> Clean & Transform</h2>
The target variable is numeric and have duplicates. My goal is to build a model, which can help
In [61]: ### data clean up/ transformation
         # 1 = Good and O = when Bad
         df2.loc[df.imdb_score < 8.0, 'imdb_score'] = 0</pre>
         df2.loc[df.imdb_score >= 8.0, 'imdb_score'] = 1
In [62]: df2.imdb_score.unique()
Out[62]: array([0., 1.])
  Now, imdb_score is dichotomous now.
In [63]: #create dummy variables
         df2 = pd.get_dummies(df2, columns = ['color', 'director_name',
                'actor_2_name', 'genres', 'actor_1_name', 'movie_title', 'actor_3_name',
                'plot_keywords', 'language', 'country', 'content_rating'], drop_first = True)
```

Some of the columns have missing values. We can deal with this in a few different ways. The simpliest solution is to remove them, though we lose many examples in doing so. Alternatively, we could impute the values, replacing the NaN values with an average (mean or median). For the purpose of this simple notebook, we will simply remove them.

```
In [65]: def calculate_metrics(y_true,y_pred):
             print(precision_recall_fscore_support(y_true, y_pred,average='macro'))
             print(accuracy_score(y_true, y_pred))
             print(confusion_matrix(y_true, y_pred,labels=[1,0]))
         #df = pd.read_excel("../data/dataset_exercise.xlsx",header=0)
         #df = df.drop("id",axis=1)
         target = df2["imdb_score"]
         df2_x = df2.drop("imdb_score",axis=1)
         df2_x = df2_x.dropna(thresh=int(len(df2_x)*0.5), axis=1)
         print(df2_x.shape)
         df2_x = df2_x.fillna(df2_x.mean())
         x = df2_x.values #returns a numpy array
         min_max_scaler = preprocessing.MinMaxScaler()
         # stand = preprocessing.StandardScaler()
         x_scaled = min_max_scaler.fit_transform(x)
         df2_x_pre = pd.DataFrame(x_scaled)
(5043, 21780)
In [66]: from sklearn.feature_selection import SelectKBest
         from sklearn.feature_selection import chi2
         bestfeatures = SelectKBest(score_func=chi2, k=10)
         fit = bestfeatures.fit(df2_x_pre,target)
         df2scores = pd.DataFrame(fit.scores_)
         df2columns = pd.DataFrame(df2_x_pre.columns)
         #concat two dataframes for better visualization
         featureScores = pd.concat([df2columns,df2scores],axis=1)
         df2_x_backup = df2_x_pre.copy()
In [67]: df2_x_pre = df2_x_backup.copy()
         \# df_new =
         conf sum = 0
         index = 0
         for i in df2scores.values:
             if i[0]<0.05:
                 conf_sum+=i[0]
                 df2_x_pre = df2_x_pre.drop(df2_x_pre.columns[index], axis=1)
                 index=1
             index+=1
         df2_x_pre.shape
Out[67]: (5043, 21745)
 <h2>2. Split Data on df2 dataset</h2>
```

```
In [68]: x_train, x_test, y_train, y_test = train_test_split(df2_x_pre, target, test_size=0.20
        print(x_train.shape)
         print(x_test.shape)
         print(y_train.shape)
         print(y_test.shape)
         print("testing data=")
         print("1=",np.sum(y_test))
         print("0=",len(y_test)-np.sum(y_test))
(4034, 21745)
(1009, 21745)
(4034,)
(1009,)
testing data=
1= 72.0
0= 937.0
 <h2> Logistic Regression</h2> (Parametric Model)
In [69]: from sklearn.linear_model import LogisticRegression
         clf1 = LogisticRegression(random_state=0, solver='lbfgs').fit(x_train, y_train)
         y_pred= clf1.predict(x_test)
         calculate_metrics(y_test,y_pred)
(0.8927698032961191, 0.6095102573224238, 0.6605154057151981, None)
0.9415262636273538
[[ 16 56]
 [ 3 934]]
<h2> Performance Matrix of Logistic Regression </h2>
In [70]: from sklearn.metrics import classification_report
         predictions = clf1.predict(x_test)
         print(classification_report(y_test,predictions))
             precision
                          recall f1-score
                                             support
        0.0
                  0.94
                            1.00
                                      0.97
                                                 937
        1.0
                  0.84
                            0.22
                                      0.35
                                                  72
avg / total
                  0.94
                            0.94
                                      0.93
                                                1009
```

```
In [71]: from sklearn.metrics import accuracy_score
         accuracy_score(y_test,predictions)
Out [71]: 0.9415262636273538
 <h2> K Nearest Neighbor</h2> (Nonparametric Model)
In [72]: from sklearn.neighbors import KNeighborsClassifier
        clf2 = KNeighborsClassifier(n_neighbors=3).fit(x_train, y_train)
        y_pred= clf2.predict(x_test)
         calculate_metrics(y_test,y_pred)
(0.7628676470588236, 0.5657091189375074, 0.594474636098345, None)
0.931615460852329
[[ 10 62]
[ 7 930]]
 <h2> Performance Matrix of KNN </h2>
In [73]: predict2 = clf2.predict(x_test)
        print(classification_report(y_test,predict2))
            precision
                        recall f1-score
                                             support
        0.0
                  0.94
                           0.99
                                      0.96
                                                 937
                 0.59
        1.0
                           0.14
                                      0.22
                                                  72
                                                1009
avg / total
             0.91
                           0.93
                                      0.91
In [74]: from sklearn.metrics import accuracy_score
         accuracy_score(y_test,predict2)
Out [74]: 0.931615460852329
 <h2> Gaussian Process Classifier</h2> (Nonparametric Model)
In [75]: from sklearn.gaussian_process import GaussianProcessClassifier
         clf3 = GaussianProcessClassifier(random_state=0).fit(x_train, y_train)
        y pred= clf3.predict(x test)
         calculate_metrics(y_test,y_pred)
(0.9652432969215492, 0.51388888888888, 0.5090229118006895, None)
0.9306243805748265
[[ 2 70]
 [ 0 937]]
```

<h2> Performance Matrix of Gaussian </h2>

	precision	recall	f1-score	support
0.0	0.93	1.00	0.96	937
1.0	1.00	0.03	0.05	72
avg / total	0.94	0.93	0.90	1009

Out[77]: 0.9306243805748265

<h2> Multinominal Naive Bayes</h2> (Parametric Model)

(0.4643211100099108, 0.5, 0.4815005138746146, None) 0.9286422200198216

[[0 72] [0 937]]

<h2> Performance Matrix of MNB </h2>

support	f1-score	recall	precision	
937 72	0.96 0.00	1.00	0.93 0.00	0.0 1.0
1009	0.89	0.93	0.86	avg / total

Out[80]: 0.9286422200198216

```
<h2> Decision Tree</h2> (Nonparametric Model)
In [81]: from sklearn import tree
         clf5 = tree.DecisionTreeClassifier().fit(x_train, y_train)
         y_pred= clf5.predict(x_test)
         calculate_metrics(y_test,y_pred)
(0.7666868015705225, 0.7355923159018143, 0.7499380421313506, None)
0.9375619425173439
[[ 36 36]
 [ 27 910]]
 <h2> Performance Matrix of Decision Tree </h2>
In [82]: predict5 = clf5.predict(x_test)
         print(classification_report(y_test,predict5))
                         recall f1-score
             precision
                                              support
        0.0
                  0.96
                           0.97
                                       0.97
                                                  937
        1.0
                  0.57
                            0.50
                                       0.53
                                                   72
avg / total
                  0.93
                            0.94
                                       0.94
                                                 1009
In [83]: from sklearn.metrics import accuracy_score
         accuracy_score(y_test,predict5)
Out [83]: 0.9375619425173439
 <h2> Random_Forest</h2> (Nonparametric Model)
In [84]: from sklearn.ensemble import RandomForestClassifier
         clf6 = RandomForestClassifier(n_estimators=10, max_depth=None,min_samples_split=2, randomForestClassifier(n_estimators=10)
         y_pred= clf6.predict(x_test)
         calculate_metrics(y_test,y_pred)
(0.9703815261044177, 0.59027777777778, 0.6376799245305985, None)
0.9415262636273538
[[ 13 59]
 [ 0 937]]
 <h2> Performance Matrix of Random Forest </h2>
In [85]: predict6 = clf6.predict(x_test)
         print(classification_report(y_test,predict6))
```

```
0.0
                  0.94
                            1.00
                                       0.97
                                                  937
        1.0
                  1.00
                            0.18
                                       0.31
                                                   72
avg / total
                  0.94
                            0.94
                                       0.92
                                                 1009
In [86]: from sklearn.metrics import accuracy_score
         accuracy_score(y_test,predict6)
Out[86]: 0.9415262636273538
 <h2> Gradient Boosting</h2> (Nonparametric Model)
In [87]: from sklearn.ensemble import GradientBoostingClassifier
         clf7 = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1, re
         y_pred= clf7.predict(x_test)
         calculate_metrics(y_test,y_pred)
(0.6842335224688165, 0.728129076248073, 0.7030046467018339, None)
0.9117938553022795
[[ 37 35]
 [ 54 883]]
<h2> Performance Matrix of GB </h2>
In [88]: predict7 = clf7.predict(x_test)
         print(classification_report(y_test,predict7))
             precision
                          recall f1-score
                                              support
        0.0
                  0.96
                            0.94
                                       0.95
                                                  937
                  0.41
                            0.51
                                       0.45
                                                   72
        1.0
```

support

recall f1-score

precision

0.91

0.92

Out[89]: 0.9117938553022795

avg / total

Note: After seeing confusion matrix of parametric model, I found that Logistic Regression performed better where accuray is 94% and F1-score is 0.93.

0.92

1009

After seeing confusion matrix of nonparametric model, I found that Random Forest performed better where accuracy was 94% and F1-score is 0.92.

<h2>Recommendation</h2> Findings

- 1. Based on continuous dependent and independent variable, random forest (Regressor) performed better.
- 2. After leveling the continuous dependent variable and creating dummies of independent variables, random forest performed better.