FCAPS

Network Management

Spring 2013

Bahador Bakhshi

CE & IT Department, Amirkabir University of Technology

Outline

- > Fault management
- Configuration management
- Accounting management
- Performance management
- Security management
- Conclusion

Outline

- > Fault management
- > Configuration management
- > Accounting management
- > Performance management
- > Security management
- > Conclusion

Fault & Root Cause & Symptom

> Fault

An event that causes unintended, or unspecified operating conditions in network

Root Cause

- Is the occurrence of a specific type of fault
 - E.g., Component failure, Misconfiguration, ...
- Is rarely observed directly

Symptom

- > Fault messages generated due to occurrence of root cause
- An indication of fault for management system

Fault Management

- Fault management
 - Monitoring the network to ensure that everything is running smoothly
 - Symptoms collection
 - Reacting when this is not the case
 - Analysis symptoms to determine root causes
- Ultimate objective
 - Ensure that users do not experience disruption
 - ➤ If do → keep it minimum

Fault Management Functionalities

- Network monitoring
 - Basic alarm management
 - Advanced alarm processing functions
- > Fault diagnosis
 - Root cause analysis
 - Troubleshooting
- Trouble ticketing
- Proactive fault management

Fault Management Steps

Fault Management: Monitoring & Detection

Fault Indication: Alarms

- Alarm condition: an unusual and unplanned for condition that needs management attention
 - Alarm message: Indication of an alarm condition
- Examples
 - Equipment alarms: "A line card went out"
 - Environmental alarms: "Temperature too high"
 - Service level alarms: "Excessive noise on a line"
- Not every event message is an alarm, however, there can be grey lines
 - "A line card was pulled": Maintenance or unexpected?

Alarms (cont'd)

- Alarms are associated with specific information
- E.g. X.733: Alarm reporting function
 - Affected system
 - Time of occurrence
 - Correlated alarms
 - Severity
 - Probable cause
 - Recommended repair action
 - Additional information

part of the additional information transmitted as part of the alarm

part of the alarm definition

Alarm Severities

- > There are different standards for severities
 - ITU-T/ X.733 6 levels: critical, major, minor, warning, indeterminate, cleared
 - ➤ IETF syslog 8 levels: emergency, alert, critical, error, warning, notice, informational, debug
 - No category for "cleared"
 - Covers any event, not just alarms

Fault Management: Alarm Management

- Basic functions
 - Collect alarm information from the network
 - Visualize alarm information
- Advanced alarm preprocessing
 - > Filtering
 - Subscription
 - Deduplication
 - Correlation
 - Augmentation

Alarm (event) Collection

- Typically passive approach for monitoring
 - Event messages
 - Agent-initiated communication
- Manager is waiting
 - > Trap server is listening on specified port
- Agent detects failures and sends event message to server; how?
 - Hardware interrupts
 - Local periodic monitoring by agent

(Current) Alarm Visualization

Node	Sev	Time	Event	Info
ruby	cr	16:00:42	sysdn	
jbee	cr	16:00:42	sysdn	
M3660-sjs	mn	16:00:33	qostc	
M3660-sjn	mn	16:00:25	10exc	
Pep-7600	mj	16:00:20	dropn	
txsouth	cr	16:00:05	sysdn	
blubber	cr	16:00:05	sysdn	
Hlee-7569	cr	16:00:04	pwrfl	
snorkel88954	cr	15:59:58	sysdn	

List-based: current alarm conditions

Topology-based: current alarm status

Alarm Visualization (cont'd)

- Distinguish list of alarms from list of currently active alarms
- Current alarm state requires correlating alarm onsets with alarm clears

- (a) Emission of alarms over time
- (b) Corresponding standing alarm conditions (analogous to LED panel)

Alarm Processing

- Alarm collection and visualization are basic required functionalities
- However, in large networks, event information overflows
 - ➤ So many alarms + operator → Missed alarms
- Fortunately
 - Not all alarms are the same (alarm filtering)
 - Different severity
 - Usually, alarm are correlated (alarm preprocessing)

Alarm Filtering vs. Preprocessing

(a) Alarm filtering

(b) Alarm preprocessing

Alarm (+ Event) Filtering

Subscription

- Manager subscribes only for alarm that are really important for him
 - Can be supported as optional features in agent
 - Can be implemented in monitoring software

Deduplication

- ➤ E.g.,
 - Oscillating alarms
 - Link down alarm from two adjacent routers
- Very simple case of correlated alarms

Alarm (+ Event) Correlation

- Identify alarms that are related to the same problem
 - Example: alarms from different interfaces on same port
- ➤ Idea: Instead of reporting many individual alarms, only a few messages are sent that summarize the information from across multiple "raw" events
 - The number of alarm messages is significantly decreased
 - The semantic content of messages is increased
- Closely tied to root cause analysis
 - Alarms are correlated in root cause analysis

Alarm (+ Event) Correlation

- Alarm correlation typically incurs a time delay
 - Need to wait if other alarms that could be correlated arrive
 - Tradeoff: staleness versus quality of alarm information
- Implementation flavors
 - Original alarms do not get modified but additional alarm gets generated (specifying which other alarms it correlates)
 - Original alarms get modified (add information about correlated alarms)
 - Original alarms get replaced with a new, correlated alarm (i.e. correlation coupled with filtering)

Alarm Augmentation

- Alarms do not always have sufficient information
- Alarm augmentation: collect additional information about the alarm context, e.g.
 - Current state
 - Current configuration
 - Self-test / diagnostics
- Anticipate which information a manager would request
 - Save an additional mgmt exchange
 - → optimize management pattern
 - Make sure context information is fresh, not stale

Fault Management: Analysis & Diagnosis

Root Cause Analysis Example

- Techniques to correlate all these events and isolate the root cause of the problem
 - Rule-based systems, Model-based reasoning, Case-based reasoning, State transition graph, ...

Rule-Based Systems

- Typically, heuristics based
- Codify human expertise
 - "If you get a time-out error, see if you can ping the other side"
 - "If that doesn't work, run IP config to see if your IP is configured"
- Can only assess known conditions
- Don't need to fully understand inner workings
 - "If you have a headache, take two aspirins"
- Can be built, modified, expanded over time
- Most pragmatic, most commonly used approach
 - > E.g., HP OpenView Element Manager

Rule-Based Systems (cont'd)

Rule-Based Systems (cont'd)

- Knowledge base
 - Rule-based in the form of if—then or condition—action,
 - Operations are to be performed when the condition occurs
- Inference engine
 - Compares the current state with the rule-base
 - Finds the closest match to output

Model Based System

- Is built on an object-oriented model associated with each managed network
- Each model checks connectivity to its counterpart object (ping it)
- When connectivity lost
 - Check other node connectivity according to the model
- E.g., Hub 1 model cannot ping its counterpart hub 1
 - Uses the model and checks connectivity of router to its counterpart object
 - ▶ If router has lost connectivity → This is router issues, it is not mine

Physical Network

Equivalent Model

Case Based Reasoning

- Case-based reasoning (CBR) overcomes many of the deficiencies of RBR
 - In RBR, the unit of knowledge is a rule
 - > In CBR, the unit of knowledge is a case
- Idea: Situations repeat themselves in the real world
 - What was done in one situation is applicable to others in similar, but not necessarily identical, situations

Case Based Systems

- Input module receives current situation
- Retrieve compares current scenario with past scenarios
 - If there is a match is it applied
 - Otherwise, adapt modules matches closest scenario
- Process module takes actions

State Transition Graph

Example

Fault Management: Trouble Ticketing

- Purpose: Track proper resolution of problems
 - Collect all information about a problem
 - Ensure proper steps are taken
- Typically addresses end user perspective
 - Keep track of current resolution status
- > Alarm vs. Trouble ticket
 - > Alarms: bottom-up, notified from the network
 - Related to problems in the network
 - > Trouble tickets: top-down, notified by end users
 - Related to problems with a service (provided by network)

Fault Management: Trouble Ticketing

- Boundary between perspectives can be blurred
 - Some alarm management systems generate tickets automatically
 - Some analogous problems apply
 - E.g. trouble ticket correlation
- Trouble ticket systems
 - Workflow engines that manage the workflow related to trouble tickets
 - Interface Customer Help Desk, CRM in the "front"
 - Alarm Management & OSS in the "back"

Proactive Fault Management

- Classical fault management: reactive
 - Deals with problems once they occur
- Proactive fault management
 - Deal with problems before they occur
 - Anticipate problems in making and take preemptive action
- Examples
 - Analyze current alarms for precursors of bigger problems
 - Analyze network traffic patterns for impeding problems
 - Trend analysis to recognize deterioration of service levels
 - Inject proactive health tests

Fault Management Life Cycle

- ➤ 1) Detection of faults
 - Reporting of alarms by failure detection mechanism
 - E.g., SNMP Traps
 - Submission of trouble reports by customers
 - Reporting of serious degradation or degradation trend by mgmt functions of PM
- Time to detect fault is an important issue
 - > Ideally, we need (near) real-time fault detection
 - Penalty for service outage time

Fault Management Life Cycle (cont'd)

- >2) Service restoration
 - ➤ E.g., Built-in redundancy (host-swap) or reinitialize procedures (Restored SW faults temporarily)
- > 3) Fault Isolation & Root Cause Analysis
 - Event/Alarm correlation techniques
 - Case-based reasoning, Rule-based reasoning, ...
- >4) Prioritize
 - Not all faults are of the same priority
 - Determine which faults to take immediate action on and which to defer

Fault Management Life Cycle (cont'd)

- >5) Troubleshooting
 - Repair, Restore, Replace
 - Depends on failure & affected entities
- ≥6) Reevaluate
 - Test the operation before service delivery
- >7) Fault Reporting
 - Why? Speed up future fault management
 - What? Cause & Resolution

Fault Management Issues

- > Fault detection: By operator vs. By Customer
 - If customer detected -> Service has been violated
- Time to restore service
 - SLA violation penalty depends on this service outage duration
 - Time horizon
 - Real-time: backup/redundant system
 - Most network devices support automated failover
 - Short-term: Alarm detected by admin in NOC
 - Network reconfiguration, ...
 - Long-term: Trouble ticket by customer
- Disaster recovery plan
 - Must be considered in network design phase
 - Plan and procedures must be developed

Technologies in Fault Management

Automatic fail over

- Vendor specific in system mechanism
 - Redundant Line Cards in a router
- Heart beat signaling to check link or equipment

Alarm notification

- SNMP trap or property protocols
- Alarm/Event processing
 - Correlation and root cause analysis by "expert systems" (artificial intelligence approaches)

Customer care

- Helpdesk systems (24x7 availability)
- Trouble ticket system (submission and monitoring)

Fault Management Summary

Outline

- > Fault management
- Configuration management
- > Accounting management
- > Performance management
- > Security management
- > Conclusion

Configuration Management

- What is configuration?
- ➤ 1) Description of physical/logical components of a system; e.g.,
 - Network logical & physical topology
 - Physical configuration of routers
- ➤ 2) The process of updating parameters of system, e.g., configuring OSPF on routers
- 3) The result of configuration process, e.g., set of management parameters & their values

Configuration Management (cont'd)

- Functions related to dealing with how network, services, devices are configured
 - Physical configuration, e.g.
 - Equipment, line cards, physical connectivity, ...
 - Logical configuration, e.g.
 - Protocol settings, logical interfaces, address assignments, numbering plans, ...
- Challenges
 - Number of devices/software
 - Diversity of devices/software

Logical Configuration Management

- ➤ The process of obtaining functional data from each network device, storing and documenting that data, and subsequently utilizing that data to manage the operations of all network devices
 - Includes the initial configuration of a device to bring it up, as well as ongoing configuration changes
- When to configure
 - System (network & equipment) setup
 - New equipment (hardware)
 - Software upgrades
 - Service provisioning

Configuration Management Functions

- (Auto) Discovery & Auditing
- Configuration setting
 - Provisioning
- > Synchronization
- Image management
- Backup and restore

CM: (Auto)Discovery & Auditing

- FAPS management areas need current network configuration
- We should be able to query the network to find out what actually has been configured
 - It is called auditing (in most cases, it is also called discovery)
- Moreover, we need Auto-discovery
 - Find out the entities in network
 - Inventory on the device (licenses, line cards, ...)
- We have already discussed about discovery techniques and communication patterns for auditing

Configuration Management Inventory

> Deals with the actual assets in a network

- > Equipment
 - Type of device, manufacturer, CPU, memory, disk space
 - Equipment hierarchies: line cards, which slot, etc.
 - Bookkeeping information: when purchased, inventory number, support information, ...

Software

- Software image OS, revision, licenses, ...
- Where & when deployed
- Bookkeeping information: when purchased, inventory number, support information, ...

CMDB (Configuration Management Database)

> CMDB

- Contains information about the configuration of devices in the network
- Relatively static but heterogonous information

Applications examples

- Network configuration cache to be used in FAPS
- Configuration validation
 - Express the constraints the configuration ought to satisfy
 - > E.g., IP address in a subnet
 - Automated tools check configuration in CMDB with respect to the constraints
- What-if analysis
 - To determine the impact of making configuration change
 - E.g., By creating a simulation model of network using the configurations in CMDB
- Configuration cloning, backup, and restore

CM: Configuration Setting

- (almost) All network devices should be configured properly for the specific network
 - The core of network management
- Element management layer
 - Host name, User, Password, Thresholds, ...
- Network management layer
 - > IP address, Netmask, Routing protocol, ...
- Service management layer
 - QoS, VPN, ACLs, ...
 - Called: Provisioning

Configuration Setting Techniques

- Reusing configuration settings
 - ➤ E.g., configuration of OSPF for all routers in the same area → All configurations are the same
- Script-Based configuration
 - Approach 1
 - Prepare template script for configuration in general
 - Customize the template per device
 - Apply the customized template via CLI
 - Approach 2
 - Use a high-level script to create configuration files
 - Apply the config file to device via CLI/FTP/...
- Configuration workflow: A sequence of operations to achieve a goal
 - Maintaining a single complex script for whole configuration is difficult
 - Small easy-to-understand script for each module (similar to datastores in Netconf)
 - ► Invoke the scripts in a specific order → configuration workflow (automated/manual)

CM: Configuration Setting: Provisioning

- Provisioning: The steps required to set up network and system resources to provide, modify, or revoke a network service
 - Bandwidth, Port assignments, Address assignments (IP addresses, phone numbers, ..), ...

Scope:

- Individual systems ("equipment provisioning")
 - E.g. set up a firewall
- Systems across a network ("service provisioning")
 - Coordinated configuration across multiple systems
 - Often required to provide an end-to-end service

CM: Configuration Synchronization

- Management systems (CMDB) keep management databases
 - Cache in the database to avoid repeatedly hitting the network
 - Management database and network need to be "in synch"
- Counterintuitive: why worry about synching
 - Configuration information changes only through management actions
- Network operations has multiple points of control
 - Provisioning systems for different services
 - Network administrators (operators)
- Configuration changes often not reliably indicated
- Synchronization strategy depends on who is the master
 - > The network or the management database
 - Fundamental decision in managing a network

CM: Configuration Synchronization

Network as Golden Store

- Most common approach
- Synchronize mgmt database with network
 - Reconciliation or Discrepancy reporting

Management DB as Golden Store

- Common in some service provider environments
 - Very controlled environments
- Discrepancy between network & mgmt indicates that an error occurred in setting up the network
 - Re-provisioning or Discrepancy reporting

Backup & Restore, Image management

- Backup & restore concerns configuration files
 - Back up working configurations
 - Restoring is quicker, simpler, less error-prone than re-provisioning
- Image management deals with actual software images running on routers
 - Apply upgrades or security patches
- Application challenges mostly related to scale
 - Large deployments can have 10,000's of devices

Patch Management

- Patch Identification
 - Determination of available upgrades to existing devices that may need to be installed
- Patch Assessment
 - Determining the importance and criticality that any new patch be applied
- Patch Testing
 - Checking whether the installation of the new patches will impact system operation
- Patch Installation
 - Installation of the patches and updating the software of existing applications and devices

Configuration Management Issues

- Make sure the inventories be updated
 - Out-of-date inventories (DBs) are useless
 - Autodiscovery mechanism should be used
- Revision control and backup of the inventories
 - Time history of network is needed
 - The configuration management system may fails
- Configuring network equipments
 - Not all configurations are accessible through SNMP
 - Customization needed for each vendor
- Security
 - Configuration process should be secure
 - ➤ Insecure configuration → attack

Configuration Management Technologies

> SNMP

- SNMP "Public" Community:
 - Gather information about the current network environment, Read-Only
- SNMP "Private" Community:
 - Gather information about the current network environment AND make changes, Read-Write
- Netconf
 - New protocol by IETF (XML based)
- Property (vendor specific) commands template to generate appropriate commands for each device

Configuration Management Summary

Outline

- > Fault management
- > Configuration management
- Accounting management
- > Performance management
- > Security management
- > Conclusion

Accounting Management

- Account of the use of network resources
 - Metering: Measure what has been consumed by whom at what time
 - Charging: Have the user pay for what has been consumed
- At the core of the economics of service provider
 - Needs to be highly robust, highest availability and reliability
 - Otherwise, free service!, lost revenue!

Accounting Management Functions (TMN)

- Usage Measurement
 - How much resources are used?
- Pricing
 - Pricing strategy & Rating usage
- Collections and Finance
 - Administration of customer accounts
 - Informing customers of balances
 - Receiving payments

Accounting and Billing

Accounting Data

- Which data should be measured for accounting?
 - Depends on service type and pricing strategy
- > A few examples:
- Call Detail Records (CDRs)
 - Apply to voice service
 - Generated as part of call setup (and teardown) procedures
 - Call statistics upon end of call, or periodically
 - Duration, QoS metrics, etc
- Time based information
 - Duration of IP leases, etc

Accounting Data (cont'd)

- Volume based information
 - Interface statistics
 - Packets sent & received, etc
 - > Flow records
 - Records about end-to-end IP traffic
 - Can apply some service level matching
 - E.g. duration of TCP connection: TCP syn / syn-ack, fin / fin-ack exchange
 - More sophisticated: deep packet inspection + service signatures
 - > Concerns over privacy, maintainability
 - Can't be applied if encrypted traffic e.g. SSH
 - Or, apply at the servers themselves

Billing

- Data Collection
 - Measuring the usage data at the device level
 - Performed by accounting
- Data Aggregation & De-duplication
 - Combining multiple records into a single one
- Data Mediation
 - Converting proprietary records into a well known or standard format
- Assigning usernames to IP addresses
 - Performing a DNS lookup and getting additional accounting records from AAA servers

Billing (cont'd)

- Calculating call (service) duration
 - In some application, real-time duration is needed
- Charging
 - Tariffs and parameters to be applied
- Invoicing
 - Translating charging information into monetary units and printing a final invoice for the customer

Billing vs. Accounting

Billing Models

- Postpaid vs. Prepaid
 - Postpaid: Off-line charging
 - Needs mechanisms for invoice payment assurance
 - Prepaid: On-line charging
 - Complicated, need real time accounting & billing
- Charging criteria
 - Volume based vs. Time based charging
 - Best effort vs. QoS based (DiffServ) charging
 - > Flat fee vs. Application specific

Outline

- > Fault management
- > Configuration management
- > Accounting management
- Performance management
- > Security management
- > Conclusion

Performance Management: Design Phase

- Each system is designed for a target level of performance
- The general approaches to guarantee QoS under high load conditions (e.g., congestion)
 - Over provisioning
 - Underutilized network resources in most cases
 - Classification
 - Traffic based, User based, ...
 - Prioritize classes to each other

Performance Management: Operation Phase

- Why PM in operation time?
- Oversimplified assumptions in design phase
 - ➤ E.g., Poisson arrival rate, M/M/1, ...
 - Not satisfied by the real workload
- Monitoring the actual performance of network
 - Alert any potential problems in network performance
 - SLA monitoring & guarantee
 - Traffic trend for future planning
 - Capacity planning

Performance Management

- Performance Management involves
 - Management of consistency and quality of individual and overall network services
 - Monitoring performance and service levels
 - Optimization of network performance
 - Need to measure user/application response time
 - Tuning network for performance
 - Allow the network to evolve with the business
 - Traffic trend & capacity planning

Performance Metrics

- How to measure (define) performance?
- Performance metrics differ by layer and service
 - Throughput
 - At link layer: byte / sec
 - At network layer: packet / sec
 - At application layer: request (call) / sec
 - Delay + round trip response time
 - At network layer: RTT for a packet
 - At application layer: Time to response for a request
 - Quality of service metrics
 - Percentage of packets dropped
 - Percentage of dropped calls, etc.
 - Utilization
 - Link and router resource utilization

Performance Management Functions

- Document the network management business objectives
- Create detailed and measurable service level objectives
 - Define performance SLAs and Metrics
 - > E.g., average/peak volume of traffic, average/maximum delay, availability, ...
- Measure performance metrics
 - Method depends on the metric
 - Charts or graphs that show the success or failure these agreements over time
- When thresholds are exceed, develop documentation on the methodology used to increase network resources
- Have a periodic meeting that reviews the analysis of the baseline and trends

Performance Management Aspects

Proactive

- Reporting & Monitoring (performance metric history graphs)
- The value of performance metrics are gathered periodically
- The data analyzed and reported
- Capacity planning

Reactive

- QoS assurance
- Define threshold
- Automatically take action when a threshold is eclipsed
 - Send an email / text message / IM
 - Sound an alarm
 - Call a pager
 - Switch to a back-up circuit
 - **>**

Performance Management Issues

- ➤ 1) Effect of performance management on network performance
 - Large volume of performance monitoring data increase network traffic
 - > Efficient mechanisms/protocols; e.g., IPFIX or local snapshot
 - Periodic polling
 - Polling rate?!
 - Database design
- > 2) SLA management vs. Reporting
 - Performance reporting is typically used for capacity planning
 - SLA should be guaranteed
 - Performance troubleshooting

Performance Management Issues (1)

- Data collection & Database design approaches
 - Performance monitored data is time-series
- Round-robin DB
 - Time based partitioning of databases
- Aggregation method
 - e.g., average

DBs based on time scales

Performance Management Issues (2)

- Performance Troubleshooting
 - Detecting Performance Problems
- Threshold; e.g.,
 - 80% of maximum acceptable utilization/delay
 - Mean + 3 * Standard deviation
- Statistical abnormality
 - The time-series data generated by performance metric has statistical properties relatively constant under operating conditions
 - ➤ High traffic variance → Traffic fluctuation → More delay jitter
- Help desk reports
 - Problem indication by customer
 - The worst approach

Performance Management Issues (2)

- Performance Troubleshooting
 - Correcting performance problems
- Misconfiguration
 - Incorrect configuration cause slow down device
- System changes
 - Inconsistent configuration for software update
 - Hardware compatibility issues
- Workload growth
 - The congested resource should be upgraded (capacity planning)
- Workload surge
 - Workload increases very rapidly in a very short amount of time
 - Spare resource and traffic shaping can help

Performance Management Tools

- Monitoring network traffic
 - Mostly real-time, Some graphing capabilities
 - Monitor device and link status and utilization
 - E.g., Intel LANDesk Manager, Farallon Computing Traffic Watch
- Monitoring network protocols
 - Can capture and decode packets from the network
 - Useful for odd and intermittent network problems
 - Specialty products available
 - Wildpackets Etherpeek, Ethereal (WireShark), Airopeek
- Monitoring network equipments
 - Server monitor products
 - Most products include some sort of performance management capabilities
 - Switch, Bridge and Router monitor products
 - Most hardware now includes management modules that provide management capability

Performance Management Summary

Outline

- > Fault management
- > Configuration management
- > Accounting management
- > Performance management
- Security management
- > Conclusion

Security & Management

- Security of Management
- Management of security

Security of Management

- Security of management deals with ensuring that management operations themselves are secured
- Major domains to secure
 - Security of NOC
 - The NMS system must be secured
 - Security of management network
 - The communication for management must be secured
 - Security of management plane of devices
 - The network equipment must be secured

Security of NOC

- Firewall
 - To protect NOC from external attacks
- > IDS
 - To detect intrusions
- OS update/patch
 - To fix vulnerabilities
- Antivirus/Anti Spam
 - > To prevent viruses, Trojans, malwares, ...
- Single-Sign-On
 - To manage password
- Physical security
 - To secure physical access to NOC

Security of Management Network

- Out-of-band management
 - Physically separated management network
 - Dedicated VPN for network management
- Integrity and Confidentiality mechanism for network management
 - > SNMPv3, HTTPS, SSH, ...
- Firewall and IDS for the management network

Security of Equipments Management Plane

- Enable password
- Change default passwords
 - SNMP default communities
- Disabled insecure services
 - > Telnet
- Limit management traffic
 - Limit the volume of network management traffic
 - Processing of management traffic is CPU intensive
 - Limit the source IP and interface of management traffic
- Enable access control and logging

Security Management

Security management is concept that deals with protection of data in a network system against unauthorized access, disclosure, modification, or destruction and protection of the network system itself (including NOC & management network) against unauthorized use, modification, or denial of service

Includes

- Security policies
- Implementation of security mechanisms
- Monitoring, Action & Reporting security event
- We don't discuss about security techniques, e.g., public and private key encryption, confidentiality, integrity, Firewall, IDS, IPS, Honeypot, ...

Security Management Functions (TMN)

- Security administration
 - Planning and administering security policy and managing security related information
- Prevention
 - Security mechanism to prevent intruders
- Detection
 - Detect intrusion
- Containment and recovery
 - > Isolate the intruded system and repair it

Security Policies

- Overall security guide line and decision in network
- Security policies must be comprehensive
 - Consider all domains in the network
 - Carrier network security (control plane)
 - Service security (data plane)
 - NOC & mgmt network security
- Security policies must provide trade-off between security and usability

Prevention

- Needs to be covered by security policies
- > In service provider networks
 - Attack NOC (to access control on whole network)
 - Attack Network (to disturb the service, to access customer data)
- Prevention mechanism
 - NOC: Firewalls (host & network), SW patches, ...
 - Network: Router hardening, DDoS mitigation, ...

Detection & Response

- Detection mechanism: IDS, Log analysis, misbehaviors
- Repair & Fix
 - Isolate affected systems & restore service
 - Fault management system can help
 - Recover the affected systems
 - Configuration management system can help
- Report & Document

AAA (Authentication)

- Authentication is the act of establishing or confirming someone as authentic, that is, that claims made by or about the thing are true
 - Authentication is accomplished via the presentation of an identity and its corresponding credentials.
 - Examples of types of credentials are passwords, digital certificates, and phone numbers (calling/called).

AAA (Authorization)

- Authorization is a process to protect resources to be used by consumers that have been granted authority to use them
 - aka, access control
- Authorization (deciding whether to grant access) is a separate concept to authentication (verifying identity), and usually dependent on it
- Authorization may be based on restrictions
 - time-of-day restrictions
 - physical location restrictions
 - restrictions against multiple logins by the same user

AAA (Accounting)

- Accounting refers to the tracking of the consumption of network resources by users
- Typical information that is gathered in accounting may be:
 - > The identity of the user
 - The nature of the service delivered
 - When the service began, and when it ended
- In security domain
 - What does the client do

AAA Protocols

> RADIUS

- Remote Authentication Dial In User Service
 - Authenticated dial-up and VPN customers

>TACACS

- Terminal Access Controller Access Control System
- Different protocols and authentication methods
 - TACACS+ is the version by Cisco

Diameter

SOC (Security Operation Center)

- Security has become an important issue in networks
- SOC is the center to deal with security issues on organization level and technical level
 - Performs the "FCAP" for security
 - As FM: Detect security problems, security event and alarm processing
 - As CM: Run the security mechanisms in the network
 - As AM: Do auditing, authentication, authorization, accounting
 - As PM: Monitor the status of security mechanism

Outline

- > Fault management
- > Configuration management
- > Accounting management
- > Performance management
- > Security management
- > Conclusion

Summary

> NOC

- ➤ Configuration management → service provisioning
- ➤ Fault & Performance management → service assurance
- ➤ Accounting management → Billing

> SOC

- Security of management
- Management of security (FCAP for security)

References

- Reading Assignment: Chapters 6, 7, 8, and 9 of "Dinesh Chandra Verma, 'Principles of Computer Systems and Network Management', Springer, 2009"
- Reading Assignment: Chapter 5 of "Alexander Clemm, 'Network Management Fundamentals', Cisco Press, 2007"
- Mani Subramanian, "Network Management: Principles and Practice," Ch. 13
- R. Dssouli, "Advanced Network Management," Concordia Institute for Information Systems Engineering, http://users.encs.concordia.ca/~dssouli/INSE 7120.html
- Nhut Nguyen, "Telecommunications Network Management," University of Texas at Dallas, www.utdallas.edu/~nhutnn/cs6368/
- J. Won-Ki Hong, "Network Management System," PosTech University, dpnm.postech.ac.kr/cs607/
- Raymond A. Hansen, "Enterprise Network Management," Purdue University, netcourses.tech.purdue.edu/cit443
- Woraphon Lilakiatsakun, "Network Management", Mahanakorn University of Technology, http://www.msit2005.mut.ac.th/msit_media/1_2553/ITEC4611/Lecture/

