Brand Tracking with Bayesian Models and Metaflow

Corrie Bartelheimer Senior Data Scientist @ Latana

TIER

headspace //. monday.com

OBlinkist

duolingo

<u>N</u>26

How many people have heard of our brand?

How well known is the brand in target group?

How do people perceive the brand?

Have there been changes?

What makes Brand Tracking difficult?

Survey Problems

Small target groups

Signal or Noise?

Representativeness of respondents

Traditional Approaches

Weighting

	18-30	30-60	60+
0			
O		,	

Weighting

	18-30	30-60	60+
9	0.2	0.2	
7	0.2	0.2	0.1
O	0.1	0-3	Ò·1

Weighting

	18-30	30-60	60+
9	* * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *
0	† † † † † † † †	† †	† † † † † † † † † † † †
	0.1	0-3	0.1

Quota Sampling

	18-30	30-60	60+
0			
	200	200	100
0	100	300	100

Quota Sampling

	18-30	30-60	60+
0			
	200	200	100
0	100	Can take a	while

Introducing: Mr. P
Multilevel Regression &
Poststratification

$$M_{\alpha}, M_{\beta} \sim N_{\text{ormal}}(0,1)$$
 $T_{d}, T_{\beta} \sim N_{\text{ormal}}(0,1)$

Multilevel

	18-30	30-60	60+
9			
0			

	18-30	30-60	60+
9			
0		(x[2] + (z ^[30-e0])	

	18-30	30-60	60+
0	0.2	0.2	0.1
07			
	0.	0-3	0.1

$$\begin{vmatrix}
0.75 \\
0.71
\end{vmatrix} = 0.5 \times \begin{vmatrix}
0.63 \\
0.68
\end{vmatrix} + 0.5 \times \begin{vmatrix}
0.88 \\
0.75
\end{vmatrix}$$

$$\begin{vmatrix}
0.64 \\
0.64
\end{vmatrix}$$

On scale: Metaflow

Effective

Innovative

User-friendly

None of these

One model per answer option

- Affordable
- Effective
- Fun
- Innovative
- User-friendly
- None of these

Effective

Innovative

User-friendly

None of these

One model per answer option

One question per brand, different competitor brands per market

~500 - 1500 models per project

- Affordable
- Effective
- Fun
- Innovative
- User-friendly
- None of these

One model per answer option

One question per brand, different competitor brands per market

~500 - 1500 models per project

~20min per model

 $= \sim 10$ days compute time

- Integrates with AWS Batch
- **Solution** Easy to use for Data Scientists
- Supports reproducibility

MRP as Metaflow

```
from metaflow import FlowSpec, step
class MRPFlow(FlowSpec):
   @step
    def start(self):
        Self.data, self.questions = load_data()
        self.next(self.run_model, foreach="questions")
   @step
    def run_model(self):
        question = self.input
        self.result = run_mrp(question, self.data)
        self.next
   @step
    def join(self, inputs):
        for result in inputs:
            save(result)
        self.next(self.end)
   @step
    def end(self):
        pass
```


MRP as Metaflow

```
from metaflow import FlowSpec, step
class MRPFlow(FlowSpec):
   @step
   def start(self):
        Self.data, self.questions = load_data()
        self.next(self.run_model, foreach="questions")
   @step
    def run_model(self):
        question = self.input
        self.result = run_mrp(question, self.data)
        self.next
   @step
    def join(self, inputs):
        for result in inputs:
            save(result)
        self.next(self.end)
   @step
    def end(self):
        pass
```


MRP as Metaflow

```
from metaflow import FlowSpec, step
class MRPFlow(FlowSpec):
    @step
    def start(self):
        Self.data, self.questions = load_data()
        self.next(self.run_model, foreach="questions")
   @step
    def run_model(self):
        question = self.input
        self.result = run_mrp(question, self.data)
        self.next
   @step
    def join(self, inputs):
        for result in inputs:
            save(result)
        self.next(self.end)
   @step
    def end(self):
        pass
```


Parallelizing models

```
@step
def start(self):
    Self.data, self.questions = load_data()
    self.next(self.run_model, foreach="questions")

@step
def run_model(self):
    question = self.input
    self.result = run_mrp(question, self.data)
    self.next
```


Increasing resources

```
@step
def start(self):
    Self.data, self.questions = load_data()
    self.next(self.run_model, foreach="questions")

@resources(cpu=8, memory=32000)
@step
def run_model(self):
    question = self.input
    self.result = run_mrp(question, self.data)
    self.next
```


Mr.P on AWS

Convergence

How to monitor convergence of 1000+ models?

More predictor variables

Full joint distribution needed of all predictor variables.

Summary

- Multilevel-regression improves errors by using grouped structure
- Propagation of uncertainty improves weighting

Corrie Bartelheimer
Senior Data Scientist
corrie.bartelheimer@latana.com

Resources and Links

Introductory book on Bayesian Statistics: https://xcelab.net/rm/statistical-rethinking/

Stan: https://mc-stan.org/

Stan interface brms (R): https://paul-buerkner.github.io/brms/

MRP: Forecasting elections with non-representative polls https://www.sciencedirect.com/science/article/abs/pii/S0169207014000879

Metaflow https://metaflow.org/

MRP at Latana:

- https://latana.com/whitepapers/mrp-vs-traditional-quota-sampling-brand-tracking/
- https://aws.amazon.com/blogs/startups/brand-tracking-with-bayesian-statistics-and-aws-batch/

