

FCC/IC - TEST REPORT

Report Number : **68.950.18.0375.01** Date of Issue: **September 25, 2018**

Model / HVIN : HCE001

Product Type : Hive View Outdoor

Applicant : Centrica Hive Limited

Address : Millstream, Maidenhead Road, Windsor, Berkshire SL4 5GD

United Kingdom Of Great Britain And Northern Ireland

Manufacturer : Centrica Hive Limited

Address : Millstream, Maidenhead Road, Windsor, Berkshire SL4 5GD

United Kingdom Of Great Britain And Northern Ireland

Test Result : n Positive O Negative

Total pages including

Appendices : 50

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

Table of Contents

1	Ta	able of Contents	2
2	De	etails about the Test Laboratory	3
3	De	escription of the Equipment Under Test	4
4	Su	ummary of Test Standards	5
5	Su	ummary of Test Results	6
6	Ge	eneral Remarks	7
7	Te	est Setups	8
8	Sy	stems test configuration	9
9	Te	echnical Requirement	10
Ś	9.1	Conducted Emission	10
ç	9.2	Conducted peak output power	13
ç	9.3	6dB bandwidth and 99% Occupied Bandwidth	14
Ś	9.4	Power spectral density	25
ç	9.5	Spurious RF conducted emissions	
Ś	9.6	Band edge testing	41
ç	9.7	Spurious radiated emissions for transmitter	45
10	Te	est Equipment List	49
11	Sv	vstem Measurement Uncertainty	50

Page 3 of 50

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12&13, Zhiheng Wisdomland Business Park,

Nantou Checkpoint Road 2, Nanshan District,

Shenzhen City, 518052,

P. R. China

FCC Registration

514049

No.:

IC Registration

10320A

No.:

Telephone: 86 755 8828 6998 Fax: 86 755 8828 5299

3 Description of the Equipment Under Test

Product: Hive View Outdoor

Model no.: HCE001

Hardware Version

HCE001

Identification No. (HVIN):

FCC ID: WJHHCE001

IC: 21719-HCE001

Options and accessories: Adapter and USB Cable

Rating: 5Vdc, 2.5A supplied by an external adapter

Adapter information: Adapter Model: HPA001

Adapter Input: 100-240Vac, 50/60Hz; 0.3A

Adapter Output: 5.0Vdc, 2.5A

RF Transmission Frequency: 2412MHz-2462MHz

No. of Operated Channel: 11

Modulation: DSSS, OFDM

Antenna Type: Integrated antenna

Antenna Gain: 2.0dBi

Description of the EUT: The Equipment Under Test (EUT) is a wireless camera which support

WiFi at 2.4GHz and 5GHz, Bluetooth function operated at 2.4GHz.

4 Summary of Test Standards

	Test Standards				
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES				
10-1-2017 Edition	Subpart C - Intentional Radiators				
RSS-Gen Issue 5 General Requirements for Compliance of Radio Apparatus					
April 2018					
RSS-247 Digital Transmission Systems (DTSS), Frequency Hopping System					
Issue 2 February 2017	(FHSS) and License-Exempt Local Area Network (LE-LAN) Devices				

All the test methods were according to KDB 558074 D01 15.247 Meas Guidance v05 Measurement Guidance and ANSI C63.10 (2013).

5 Summary of Test Results

Technical Requirements								
FCC Part 15 Subpart C/ RSS-247 Issue 2/RSS-Gen Issue 5								
Took Condition		Doggo	Test	Te	est Res	ult		
Test Condition		Pages	Site	Pass	Fail	N/A		
§15.207 & RSS-GEN 8.8	Conducted emission AC power port	10	Site 1	\boxtimes				
§15.247 (b) (1) & RSS-247 5.4(d)	Conducted peak output power	13	Site 1					
§15.247(a)(1) & RSS-247 5.1(b)	20dB bandwidth					\boxtimes		
§15.247(a)(1) & RSS-247 5.1(b)	Carrier frequency separation							
§15.247(a)(1)(iii) & RSS-247 5.1(d)	Number of hopping frequencies							
§15.247(a)(1)(iii) & RSS-247 5.1(d)	Dwell Time							
§15.247(a)(2) & RSS-247 5.2(a) & RSS-GEN 6.7	6dB bandwidth and 99% Occupied Bandwidth	14	Site 1					
§15.247(e) & RSS-247 5.2(b)	Power spectral density	24	Site 1	\boxtimes				
§15.247(d) & RSS-247 5.5	Spurious RF conducted emissions	25	Site 1	\boxtimes				
§15.247(d) & RSS-247 5.5	Band edge	40	Site 1	\boxtimes				
§15.247(d) & §15.209 & RSS- 247 5.5 & RSS-Gen 6.13	Spurious radiated emissions for transmitter	44	Site 1	\boxtimes				
§15.203 & RSS-Gen 6.8	Antenna requirement	See r	note 1	\boxtimes				

Note 1: N/A=Not Applicable.

Note 2: The EUT uses an internal antenna, which gain is 2.0dBi. In accordance to §15.203 and RSS-Gen 6.8, It is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: WJHHCE001, IC: 21719-HCE001, complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules and RSS-247, RSS-GEN.

SUMMARY:

All tests according to the regulations cited on page 5 were

- n Performed
- O Not Performed

The Equipment Under Test

- n **Fulfills** the general approval requirements.
- Does not fulfill the general approval requirements.

Sample Received Date: August 20, 2018

Testing Start Date: September 10, 2018

Testing End Date: September 25, 2018

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Reviewed by: Prepared by: Tested by:

John Zhi Project Manager

Johnshi

Alan Xiong
Project Engineer

Alem Xzong

Tree Zhan Test Engineer

Tree Them

7 Test Setups

7.1 AC Power Line Conducted Emission test setups

7.2 Radiated test setups Below 1GHz

Above 1GHz

7.3 Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
PC	Lenovo	X240	

The system was configured to non-hopping mode.

Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power.

Through pre-scan all kind of modulation and all kind of rates, find the 1Mbps of rate is the worst case of 802.11b; the 6Mbps of rate is the worst case of 802.11g; the 6.5Mbps of rate is the worst case of 802.11N20, only the worst case transmitter rate data mode in recorded in the report.

9 Technical Requirement

9.1 Conducted Emission

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through an Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

According to §15.207 & RSS-GEN 8.8, conducted emissions limit as below:

	Frequency	QP Limit	AV Limit	
_	MHz	dΒμV	dΒμV	
	0.150-0.500	66-56*	56-46*	
	0.500-5	56	46	
	5-30	60	50	

Decreasing linearly with logarithm of the frequency

Conducted Emission

Product Type : Hive View Outdoor

M/N : HCE001

Operating Condition : normal working Mode with 2.4GWiFi traffic

Test Specification : Line

Comment : AC 120V/60Hz

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
	(αυμν)		,	, ,			` '
0.421500		40.57	47.42	6.85	L1	OFF	10.3
0.421500	54.24		57.42	3.18	L1	OFF	10.3
0.433500		38.31	47.19	8.88	L1	OFF	10.3
0.433500	53.68		57.19	3.51	L1	OFF	10.3
0.822500		30.79	46.00	15.21	L1	OFF	10.3
0.822500	45.07		56.00	10.93	L1	OFF	10.3
1.149500		32.54	46.00	13.46	L1	OFF	10.3
1.149500	45.16		56.00	10.84	L1	OFF	10.3
1.377500		32.92	46.00	13.08	L1	OFF	10.3
1.377500	44.13		56.00	11.87	L1	OFF	10.3
8.457500		39.18	50.00	10.82	L1	OFF	10.6
8.457500	46.68		60.00	13.32	L1	OFF	10.6

^{*}Correct factor=cable loss + LISN factor

Conducted Emission

Product Type : Hive View Outdoor

M/N : HCE001

Operating Condition : normal working Mode with 2.4GWiFi traffic

Test Specification : Neutral

Comment : AC 120V/60Hz

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
0.409500		37.89	47.66	9.77	N	OFF	10.3
0.409500	50.94	-	57.66	6.72	N	OFF	10.3
0.429500		39.62	47.26	7.64	N	OFF	10.3
0.429500	51.38		57.26	5.88	N	OFF	10.3
0.689500		32.87	46.00	13.13	N	OFF	10.3
0.689500	43.69		56.00	12.31	N	OFF	10.3
0.917500		32.67	46.00	13.33	N	OFF	10.3
0.917500	43.57		56.00	12.43	N	OFF	10.3
1.401500		34.60	46.00	11.40	N	OFF	10.3
1.401500	44.57		56.00	11.43	N	OFF	10.3
8.453500		40.90	50.00	9.10	N	OFF	10.7
8.453500	48.00		60.00	12.00	N	OFF	10.7

^{*}Correct factor=cable loss + LISN factor

9.2 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings:
 Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured, VBW≥RBW,
 Sweep = auto, Detector function = peak, Trace = max hold
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power

Limits

According to §15.247 (b) (1) & RSS-247 5.4(d), conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483 5	≤1	≤30

Test result as below table

802.11b modulation Test Result

Frequency (MHz)	Conducted Peak Output Power (dBm)	Limit (dBm)	Result
Low channel 2412MHz	18.5	30	Pass
Middle channel 2437MHz	19.0	30	Pass
High channel 2462MHz	19.2	30	Pass

802.11g modulation Test Result

Frequency (MHz)	Conducted Peak Output Power (dBm)	Limit (dBm)	Result
Low channel 2412MHz	20.5	30	Pass
Middle channel 2437MHz	20.8	30	Pass
High channel 2462MHz	21.0	30	Pass

802.11n20 modulation Test Result

Frequency (MHz)	Conducted Peak Output Power (dBm)	Limit (dBm)	Result
Low channel 2412MHz	15.1	30	Pass
Middle channel 2437MHz	15.6	30	Pass
High channel 2462MHz	15.8	30	Pass

9.3 6dB bandwidth and 99% Occupied Bandwidth

Test Method for 6 dB Bandwidth

1. Use the following spectrum analyzer settings:

RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold

- 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.
- 3. Allow the trace to stabilize, record the X dB Bandwidth value.

Test Method for 99 % Bandwidth

- 1. Use the following spectrum analyzer settings:
- RBW=1% to 5% of the actual occupied, VBW≥3RBW, Sweep = auto,

Detector function = peak, Trace = max hold

- 2. Use the automatic bandwidth measurement capability of an instrument, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.
- 3. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit

Limit [kHz] ≥500

802.11b modulation Test Result

Frequency (MHz)	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (MHz)	Result
Low channel 2412MHz	9.120	12.507	0.5	Pass
Middle channel 2437MHz	9.120	12.587	0.5	Pass
High channel 2462MHz	9.120	12.587	0.5	Pass

802.11g modulation Test Result

Frequency (MHz)	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (MHz)	Result
Low channel 2412MHz	15.560	17.902	0.5	Pass
Middle channel 2437MHz	15.800	18.022	0.5	Pass
High channel 2462MHz	15.800	17.942	0.5	Pass

802.11n-HT20 modulation Test Result

Frequency (MHz)	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (MHz)	Result
Low channel 2412MHz	17.720	18.342	0.5	Pass
Middle channel 2437MHz	17.760	18.342	0.5	Pass
High channel 2462MHz	17.720	18.262	0.5	Pass

6 dB Bandwidth

99% Bandwidth

9.4 Power spectral density

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- Set analyzer center frequency to DTS channel center frequency. RBW=10kHz, VBW=3RBW,Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

802.11b modulation Test Result

Frequency (MHz)	Power spectral density (dBm)	Limit (dBm)	Result
Low channel 2412MHz	-1.15	8	Pass
Middle channel 2437MHz	0.41	8	Pass
High channel 2462MHz	0.16	8	Pass

802.11g modulation Test Result

Frequency (MHz)	Power spectral density (dBm)	Limit (dBm)	Result
Low channel 2412MHz	1.06	8	Pass
Middle channel 2437MHz	1.43	8	Pass
High channel 2462MHz	1.01	8	Pass

802.11n-HT20 modulation Test Result

Frequency (MHz)	Power spectral density (dBm)	Limit (dBm)	Result
Low channel 2412MHz	-5.78	8	Pass
Middle channel 2437MHz	-4.94	8	Pass
High channel 2462MHz	-4.58	8	Pass

9.5 Spurious RF conducted emissions

Test Method

- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span. RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 3. The level displayed must comply with the limit specified in this Section. Submit these plots.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Frequency Range MHz	Limit (dBc)	
30-25000	-20	

Spurious RF conducted emissions

9.6 Band edge testing

Test Method

- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section. .
- 4 Repeat the test at the hopping off and hopping on mode, submit all the plots.

Limit:

According to §15.247(d) and RSS-247 5.5, in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a) and RSS-Gen 8.10, must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)) and RSS-Gen.

Frequency Range MHz	Limit (dBc)
30-25000	-20

Band edge testing

9.7 Spurious radiated emissions for transmitter

Test Method

- 1. The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned
- 5. Use the following spectrum analyzer settings According to C63.10: For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold. For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle)).
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205 and RSS-GEN 8.10, must comply with the radiated emission limits specified in section 15.209.

Frequency	Field Strength	Field Strength	Detector
MHz	uV/m	dBμV/m	
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

The only worse case (802.11B mode) test result is listed in the report.

Transmitting spurious emission test result as below:

802.11B Modulation 2412MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Danu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
	168.01	38.39	Н	43.5	QP	5.11	-30.0	Pass
	464.29	36.85	Η	46	QP	9.15	-22.4	Pass
	535.75	37.67	Η	46	QP	8.33	-20.9	Pass
	783.04	39.03	Η	46	QP	6.97	-17.0	Pass
30-	Other Frequency		Н					Pass
1000MHz	168.01	31.89	V	43.5	QP	11.61	-30.0	Pass
	417.84	35.77	V	46	QP	10.23	-23.6	Pass
	535.69	34.93	V	46	QP	11.07	-20.9	Pass
	837.04	37.35	V	46	QP	8.65	-16.3	Pass
	Other Frequency		V					Pass
	*7574.06	41.56	Η	74	PK	32.44	10.0	Pass
1000-	Other Frequency		Н	74				Pass
25000MHz	*4788.28	39.12	V	74	PK	34.88	3.6	Pass
	Other Frequency		V	74				Pass

802.11B Modulation 2437MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Dallu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
	6104.53	41.01	Н	74	PK	32.99	4.9	Pass
1000-	Other Frequency		Н	74				Pass
25000MHz	6103.13	41.37	V	74	PK	32.63	4.8	Pass
	Other Frequency		V	74				Pass

802.11B Modulation 2462MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Ballu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
	*4923.75	40.13	Н	74	PK	33.87	4.2	Pass
1000-	Other Frequency		Н					Pass
25000MHz	*4923.75	42.83	V	74	PK	31.17	4.2	Pass
	Other Frequency		V					Pass

Remark:

- (1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

10 Test Equipment List

Conducted Emission Test

Description	Manufacturer	Model no.	Serial no.	cal. due date
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2019-7-6
LISN	Rohde & Schwarz	ENV4200	100249	2019-7-6
LISN	Rohde & Schwarz	ENV432	101318	2019-7-6
LISN	Rohde & Schwarz	ENV216	100326	2019-7-6
ISN	Rohde & Schwarz	ENY81	100177	2019-7-6
ISN	Rohde & Schwarz	ENY81-CA6	101664	2019-7-6
High Voltage Probe	Rohde & Schwarz	TK9420(VT94 20)	9420-584	2019-6-30
RF Current Probe	Rohde & Schwarz	EZ-17	100816	2019-6-30
Attenuator	Shanghai Huaxiang	TS2-26-3	080928189	2019-7-6
Test software	Rohde & Schwarz	EMC32	Version9.15.00	N/A

Radiated Emission Test

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2019-7-6
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2019-6-28
Horn Antenna	Rohde & Schwarz	HF907	102294	2019-6-28
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2019-7-6
Signal Generator	Rohde & Schwarz	SMY01	839369/005	2019-7-6
Attenuator	Agilent	8491A	MY39264334	2019-7-6
3m Semi-anechoic chamber	TDK	9X6X6		2020-7-7
Test software	Rohde & Schwarz	EMC32	Version 9.15.00	N/A

TS8997 Test System

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Signal Generator	Rohde & Schwarz	SMB100A	108272	2019-7-6
Vector Signal Generator	Rohde & Schwarz	SMBV100A	262825	2019-7-6
Communication Synthetical Test Instrument	Rohde & Schwarz	CMW 270	101251	2019-5-31
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2019-7-6
Vector Signal Generator	Rohde & Schwarz	SMU 200A	105324	2019-7-6
RF Switch Module	Rohde & Schwarz	OSP120/OSP-B157	101226/100851	2019-7-6
Power Splitter	Weinschel	1580	SC319	2019-7-5
10dB Attenuator	Weinschel	4M-10	43152	2019-7-6
10dB Attenuator	R&S	DNF	DNF-001	2019-7-6
10dB Attenuator	R&S	DNF	DNF-002	2019-7-6
10dB Attenuator	R&S	DNF	DNF-003	2019-7-6
10dB Attenuator	R&S	DNF	DNF-004	2019-7-6
Test software	Rohde & Schwarz	EMC32	Version 10.38.00	N/A
Test software	Tonscend	System for BT/WIFI	Version 2.6	N/A

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty				
Test Items	Extended Uncertainty			
Uncertainty for Conducted Emission 150kHz-30MHz	3.21dB			
Uncertainty for Radiated Spurious Emission 25MHz-	Horizontal: 4.91dB;			
3000MHz	Vertical: 4.89dB;			
Uncertainty for Radiated Spurious Emission 3000MHz-	Horizontal: 4.80dB;			
18000MHz	Vertical: 4.79dB;			
Uncertainty for Conducted RF test with TS 8997	Power level test involved: 1.16dB			
Oncertainty for Conducted KF test with 13 6997	Frequency test involved: 0.6×10 ⁻⁷			