CS 303 Logic & Digital System Design

Ömer Ceylan

Binary Systems

Binary Numbers 1/2

- Internally, information in digital systems is of binary form
 - groups of bits (i.e. binary numbers)
 - all the processing (arithmetic, logical, etc) are performed on binary numbers.
- Example: 4392
 - In decimal, $4392 = 4 \times 10^3 + 3 \times 10^2 + 9 \times 10^1 + 2 \times 10^0$.
 - Convention: write only the coefficients.
 - $A = a_1 a_0 . a_{-1} a_{-2} a_{-3}$ where $a_j \in \{0, 1, ..., 9\}$

Binary Numbers 2/2

- Decimal system
 - coefficients are from {0,1, ..., 9}
 - and coefficients are multiplied by powers of 10
 - base-10 or radix-10 number system
- Using the analogy, binary system {0,1}
 - base(radix)-2
- Example: 25.625
 - $25.625 = 2 \times 10^{1} + 5 \times 10^{0} + 6 \times 10^{-1} + 2 \times 10^{-2} + 5 \times 10^{-3}$
 - $25.625 = 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-3}$
 - $-25.625 = (11001.101)_2$

Base-r Systems

- base-*r* (*n*, *m*)
 - $A = a_{n-1} r^{n-1} + \dots + a_1 r^1 + a_0 r^0 + a_{-1} r^1 + a_{-2} r^2 + \dots + a_{-m} r^m$
- Octal
 - base-8 = base- 2^3
 - digits {0,1, ..., 7}
 - Example: (31.5)₈ = octal expansion =
- Hexadecimal
 - base-16
 - digits {0, 1, ..., 9, A, B, C, D, E, F}
 - Example:
 - (19.A)₁₆ = hexadecimal expansion =

*

Powers of 2

- $-2^{10} = 1,024 (K) -$
- $-2^{20} = 1,048,576 (M) -$
- $\blacksquare 2^{30} \rightarrow (G) -$
- 2^{40} \rightarrow (T) -
- $\blacksquare 2^{50} \rightarrow (P) -$
- exa, zetta, yotta, ... (exbi, zebi, yobi, ...)
- Examples:
 - A byte is 8-bit, i.e. 1 B
 - 16 GB = ?? B = 17,179,869,184

Arithmetic with Binary Numbers

Multiplication with Octal Numbers

			3	4	5	229	multiplicand
		×	6	2	1	401	multiplier
			3	4	5		
		7	1	2			
+ 2	5	3	6				
2	6	3	2	6	5	91829	_ product

Base Conversions

- From base-r to decimal is easy
 - expand the number in power series and add all the terms
- Reverse operation is somewhat more difficult
- Simple idea:
 - divide the decimal number successively by r
 - accumulate the remainders
- If there is a fraction, then integer part and fraction part are handled separately.

Base Conversion Examples 1/3

- Example 1:
 - **5**5
 - (decimal to binary)

- <u>Example 2</u>:
 - **1**44
 - (decimal to octal)

Base Conversion Examples 2/3

- Example 1: 0.6875 (decimal to binary)
 - When dealing with fractions, instead of dividing by r multiply by r until we get an integer
 - $0.6875 \times 2 = 1.375 \rightarrow 1$
 - $0.375 \times 2 = 0.750 \rightarrow 0$
 - $0.750 \times 2 = 1.5 \rightarrow 1$
 - $0.5 \times 2 = 1.0 \rightarrow 1$
 - $0.6875 = (0.1011)_2$

Base Conversion Examples 2/3

- We are not always this lucky
- Example 2: (144.478) to octal
 - Treat the integer part and fraction part separately

■
$$0.478 \times 8 = 3.824 = 3 + 0.824 \rightarrow a_{-1} = 3$$

■
$$0.824 \times 8 = 6.592 = 6 + 0.592 \rightarrow a_{-2} = 6$$

■
$$0.592 \times 8 = 4.736 = 4 + 0.736 \rightarrow a_{-3} = 4$$

■
$$0.736 \times 8 = 5.888 = 5 + 0.888 \rightarrow a_{-4} = 5$$

■
$$0.888 \times 8 = 7.104 = 7 + 0.104 \rightarrow a_{-5} = 7$$

■
$$0.104 \times 8 = 0.832 = 0 + 0.832 \rightarrow a_{-6} = 0$$

■
$$0.832 \times 8 = 6.656 = 6 + 0.656 \rightarrow a_{-7} = 6$$

$$\blacksquare$$
 144.478 = (220.3645706...)₈

Conversions between Binary, Octal and Hexadecimal

• r = 2 (binary), r = 8 (octal), r = 16 (hexadecimal)

```
10110001101001.101100010111

10 110 001 101 001.101 100 010 111

10 1100 0110 1001.1011 0001 0111
```

- Octal and hexadecimal representations are more compact.
- Therefore, we use them in order to communicate with computers directly using their internal representation

Complement

- Complementing is an operation on base-r numbers
- Goal: To simplify subtraction operation
 - Rather turn the subtraction operation into an addition operation
- Two types
 - 1. Radix complement (a.k.a. r's complement)
 - 2. Diminished complement (a.k.a. (*r*-1)'s complement)
- When r = 2
 - 1. 2's complement
 - 2. 1's complement

How to Complement?

- A number N in base-r (n-digit)
 - 1. $r^n N$ r's complement
 - 2. $(r^n-1) N$ (r-1)'s complement
 - where n is the number of digits we use
- Example: r = 2, n = 4, N = 7
 - $r^n = 2^4 = 16, r^n 1 = 15.$
 - 2's complement of $7 \rightarrow 16-7 = 9$
 - 1's complement of $7 \rightarrow 15-7 = 8$
- Easier way to compute 1's and 2's complements
 - Use binary expansions
 - 1's complement: negate
 - 2's complement: negate + increment

Subtraction with Complements 1/3

- Conventional subtraction
 - Borrow concept
 - If the minuend digit is smaller than the subtrahend digit, you borrow
 "1" from a digit in higher significant position
- With complements
 - M-N=?
 - $r^n N$

r's complement of N

 $\blacksquare M + (r^n - N) =$

Subtraction with Complements 2/3

- $M-N \rightarrow M + (r^n N)$
- $M + (r^n N) = M N + r^n$
- 1. if $M \ge N$,
 - the sum will produce a carry, that can be discarded
- 2. Otherwise,
 - the sum will not produce a carry, and will be equal to $r^n (N-M)$, which is the r's complement of N-M
 - Since $M N + r^n = r^n (N M)$

Subtraction with Complements 3/3

Example:

- X = 1010100 (84) and Y = 1000011 (67)
- X-Y = ? and Y-X = ?

X	1010100
2's complement of	+ 0111101
Y	10010001
Y	1000011
2's complement of x	+ 0101100
	01101111

Signed Binary Numbers

- Pencil-and-paper
 - Use symbols "+" and "-"
- We need to represent these symbols using bits
 - Convention:
 - 0 positive
 - 1 negative
 - The leftmost bit position is used as a sign bit
 - In <u>signed representation</u>, the leftmost bit is the sign bit
 - In <u>unsigned representation</u>, the leftmost bit is a part of the number (i.e., the most significant bit (MSB))

Signed Number Representation

Signed n	nagnitude	One's co	mplement	Two's complement	
000	+0	000	+0	000	0
001	+1	001	+1	001	+1
010	+2	010	+2	010	+2
011	+3	011	+3	011	+3
100	-0	111	-0	111	-1
101	-1	110	-1	110	-2
110	-2	101	-2	101	-3
111	-3	100	-3	100	-4

- <u>Issues</u>: balance, number of zeros, ease of operations
- Which one is best? Why?

Which One?

- Signed magnitude:
 - There are two representations for 0.
 - Adders may need an additional step to set the sign
- Try to subtract a large number from a smaller one.

```
2 = 0 \ 0 \ 1 \ 0
5 = 0 \ 1 \ 0 \ 1
= 1 \ 1 \ 0 \ 1
```

- 2's complement provides a natural way to represent signed numbers (every computer today uses two's complement)
- Think that there is an infinite number of 1's in a signed number
 -3 = 1101 ≡ ...11111101
- What is 11111100?

Arithmetic Addition

Examples:

No special treatment for sign bits

Arithmetic Overflow 1/2

- In hardware, we have limited resources to accommodate numbers (precision)
 - Computers use 8-bit, 16-bit, 32-bit, and 64-bit registers for the operands in arithmetic operations.
 - Sometimes the result of an arithmetic operation get too large to fit in a register.

Arithmetic Overflow 2/2

Example:

$$+4 + 0100$$

$$-5 + 1011$$

$$-6 + 1010$$

Subtraction with Signed Numbers

- Rule: is the same
- We take the 2's complement of the subtrahend
 - It does not matter if the subtrahend is a negative number.

•
$$(\pm A) - (-B) = \pm A + B$$

- Signed-complement numbers are added and subtracted in the same way as unsigned numbers
- With the same circuit, we can do both signed and unsigned arithmetic

Alphanumeric Codes

- Besides numbers, we have to represent other types of information
 - letters of alphabet, mathematical symbols.
- For English, alphanumeric character set includes
 - 10 decimal digits
 - 26 letters of the English alphabet (both lowercase and uppercase)
 - several special characters
- We need an alphanumeric code
 - ASCII
 - American Standard Code for Information Exchange
 - Uses 7 bits to encode 128 characters

ASCII Code

- 7 bits of ASCII Code
 - $\bullet (b_6 b_5 b_4 b_3 b_2 b_1 b_0)_2$
- Examples:
 - $\blacksquare A \rightarrow 65 = (1000001), ..., Z \rightarrow 90 = (1011010)$
 - \bullet $a \rightarrow 97 = (1100001), ..., z \rightarrow 122 = (1111010)$
 - \bullet 0 \rightarrow 48 = (0110000), ..., 9 \rightarrow 57 = (0111001)
- 128 different characters
 - 26 + 26 + 10 = 62 (letters and decimal digits)
 - 32 special printable characters %, *, \$
 - 34 special control characters (non-printable): BS, CR, etc.

Binary Logic

- Binary logic is equivalent to what it is called "two-valued Boolean algebra"
 - Or we can say that it is an implementation of two-valued Boolean algebra
- Deals with variables that take on "two discrete values" and operations that assume logical meaning
- Two discrete values:
 - {true, false}
 - {yes, no}
 - **1** {1, 0}

Binary Variables and Operations

- We use A, B, C, x, y, z, etc. to denote binary variables
 - each can take on {0, 1}
- Logical operations

$$\rightarrow x \cdot y = z \text{ or } xy = z$$

$$\rightarrow x + y = z$$

$$\rightarrow x = z \text{ or } x' = z$$

- For each combination of the values of x and y, there is a value of specified by the definition of the logical operation.
- This definition may be listed in a compact form called <u>truth table</u>.

x	У	AND	OR	NOT
		х · у	x + y	x'
0	0	0	0	1
0	1	0	1	1
1	0	О	1	0
1	1	1	1	0

Logic Gates

- Binary values are represented as electrical signals
 - Voltage, current
- They take on either of two recognizable values
 - For instance, voltage-operated circuits
 - \bullet ov \rightarrow o
 - $-4v \rightarrow 1$
- Electronic circuits that operate on one or more input signals to produce output signals
 - AND gate, OR gate, NOT gate

- (a) Two-input AND gate
- (b) Two-input OR gate
- (c) NOT gate or inverter

Fig. 1-4 Symbols for digital logic circuits

Logic Gate Symbols

Range of Electrical Signals

What really matters is the range of the signal value

Fig. 1-3 Example of binary signals

Gates Operating on Signals

Gates with More Than Two Inputs

G = A + B + C + D C D

(a) Three-input AND gate

(b) Four-input OR gate

Fig. 1-6 Gates with multiple inputs