

Z1=(A @ B) @ Cin = (1⊕0)@0=1 => Cour = AB+BC+AC=1.0+0.0+1.0=0 Z2= (A @ B) @ Ady Cin= (1@1)@0=0 => Cout = 14 B+BC+AC=1.1+1.0+1.0=1 23=(A⊕B)⊕ Cin = (1⊕0)⊕ 1=0 => Z4 = AB+BC+AC=1.0+0.1+1.1=1 Σu 23 22 Σ1 = 100 1

2. When add/sub is high, the XOR gate produces complements of their inputs, so full adder addition function is as shown below:

	Cin (Cin+	Ctn &	Ao
2's complement of B	83	82	8,	B. 1
Cout	٤3	22	12,	I Zo

the operation performs substraction

When add / sub is low, the XOR gate produces the outputs where as similar with the inputs, so full adder function is as show below.

the operation performs addition

A>B is high

since the binary

second clock pulse; A=A3A2A1A0=1111 B=B3B2B1B0=1111

sequence of ATS equal to B, A=B is high

third clock pulses A= A3 A2 A1 A0 = 1110 B= 83 82 81 80 = 0010

since the binary sequence of ATS larger than B,

fourth dock pulse & A=A3A2A1A0=1100 B= B3 B2 B180 = 0011

A>B is high since the binary sequence of Ais larger than B, A >B is high

futh dock pulse: A = A3 A2 A1 A0 = 0101 B= B3 B2 B1 B0 = 1100

smce the bindry sequence of A is smaler than B, A<B is high

COMP	1.	2	3	4	15
A78	1	0	1	١	101
A=B	0	1	0	0	0
AKB	0	6	۵	0	H
744685					

