16. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

 $a = \square$

b =

 $c = \square$

- A. $a \in [0.1, 1.4], b \in [0, 8], \text{ and } c \in [11, 15]$
- B. $a \in [-1.7, 0.3], b \in [-5, -3], \text{ and } c \in [-6, -1]$
- C. $a \in [0.1, 1.4], b \in [-5, -3], \text{ and } c \in [11, 15]$
- D. $a \in [-3, 3], b \in [-5, -3], \text{ and } c \in [-6, -1]$
- E. $a \in [0.1, 1.4], b \in [0, 8], \text{ and } c \in [-6, -1]$
- 17. Graph the equation $f(x) = -(x+3)^2 18$.

Α.

В.

D.

-10

>-30 -40

-2.5

0.0

2.5

E.

18. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$a = \begin{bmatrix} b \end{bmatrix} \qquad b = \begin{bmatrix} c \end{bmatrix} \qquad c = \begin{bmatrix} d \end{bmatrix} \qquad d = \begin{bmatrix} c \end{bmatrix}$$

- A. $a \in [7.5, 8.5], b \in [2.5, 3.5], c \in [7.5, 9], and <math>d \in [1.5, 3.5]$
- B. $a \in [0, 2], b \in [2.5, 3.5], c \in [62.5, 64.5], and <math>d \in [1.5, 3.5]$
- C. $a \in [15.5, 17.5], b \in [2.5, 3.5], c \in [3.5, 5.5], and <math>d \in [1.5, 3.5]$
- D. $a \in [0, 2], b \in [-3.5, -2], c \in [62.5, 64.5], and <math>d \in [-3.5, -2]$
- E. $a \in [3.5, 4.5], b \in [2.5, 3.5], c \in [15, 17], and <math>d \in [1.5, 3.5]$
- 19. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $z_1 \leq z_2$.

$$144x^2 - 16 = 0$$

$$x_1 =$$
 $x_2 =$

- A. $x_1 \in [-4.04, -3.81]$ and $x_2 \in [-0.02, 0.09]$
- B. $x_1 \in [-1.17, -0.82]$ and $x_2 \in [0.1, 0.18]$
- C. $x_1 \in [-0.56, -0.29]$ and $x_2 \in [0.19, 0.56]$
- D. $x_1 \in [-0.21, -0.09]$ and $x_2 \in [0.55, 0.72]$
- E. $x_1 \in [-0.06, 0.03]$ and $x_2 \in [3.95, 4]$
- 20. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$6x^2 - 9x - 9 = 0$$

$$x_1 = \boxed{ }$$
 $x_2 = \boxed{ }$

- A. $x_1 \in [-5.3, -2.6]$ and $x_2 \in [12.6, 14]$
- B. $x_1 \in [-1.6, -0.6]$ and $x_2 \in [0.9, 2.5]$
- C. $x_1 \in [-14, -12.2]$ and $x_2 \in [3.6, 4.8]$
- D. $x_1 \in [-2.9, -1.5]$ and $x_2 \in [-1.7, 1.3]$
- E. There are no Real solutions.