

Agi Tri Uzila

Table of Contents

1 About the Datasets

Problem Statement, data exploration

04 Model Testing

Target Prediction using the model

Model Development

Functions definition for the model

05 Model Evaluation

Accuracy calculation, cost function depiction

03 Model Training

Data pre-processing, model training

About the Datasets

Objective

Predict the classes of wines (class 0, class 1, or class 2) from the chemical analysis results of the wines

2 Datasets

Training Dataset

142 entries

Testing Dataset

36 entries

13 Numerical Features

- → Alcohol
- → Malic acid
- → Ash
- → Alcalinity of ash
- → Magnesium
- → Total phenols
- → Flavanoids
- → Nonflavanoid phenols
- → Proanthocyanins
- → Color intensity
- → Hue
- → OD280/OD315 of diluted wines
- → Proline

1 Categorical Target

- → Class 0
- → Class 1
- → Class 2

Multiclass Classification

Model Development

Logistic Regression

Function

$$h_{\theta}(x) = \frac{1}{1 + e^{(-\theta^T x)}} \leftarrow -----$$
 Sigmoid Function
$$\frac{\partial J(\theta)}{\partial \theta_j} = \left(\frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}\right) + \frac{\lambda}{m} \theta_j$$
 Derivative of Cost Function
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \leftarrow ----$$
 Gradient Descent Function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left[-y^{(i)} \log(h_{\theta}(x^{(i)})) - (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right] + \frac{\lambda}{2m} \sum_{i=1}^{n} \theta_{j}^{2}$$

$$y$$
: target (m x 1)
 θ : parameter (n x 1)
 λ : regularization strength
 α : learning rate

x: feature (n x 1)

<u>Variables</u>

Model Training

Data Pre-Processing

 $(X_{train} - \mu) / \sigma$

Split the data into features and target

 $(X_{test} - \mu) / \sigma$

Model Training: One-vs-Rest Method

Build a binary classification model for each class of wines, thus 3 models are constructed

Using logistic regression model, θ for each model is optimized and prediction probability for each model is produced

The target prediction is the class with the highest prediction probability

y prediction

Model Testing

Model Testing: One-vs-Rest Method

Test the model for each class of wines

Use θ from previous training to get prediction probability for each class

The target prediction is the class with the highest prediction probability

Model Evaluation

0.986

Training Accuracy

0.972

Testing Accuracy

Cost Function Values at Each Iteration

Number of Iterations

