实验一二阶系统阶跃响应、连续系统 校正

何东阳 自96 2019011462

#1实验目的

- 1. 学会根据模拟电路确定系统传递函数。
- **2.** 研究二阶系统的两个重要参数: 阻尼比 ξ 和无阻尼自振角频率 ω_n 对系统动态性能的影响。
- 3. 学习串联校正的基本设计方法, 观察串联超前、滞后校正对改善系统性能的作用。

#2研究内容

2.1 二阶系统阶跃响应

系统特征方程为 $T^2s^2+KTs+1=0$, 其中 $T=RC, K=\frac{R_0}{R_1}$ 。根据二阶系统的标准形式可知, $\xi=K/2$, 通过调整 K 可使 ξ 获得期望值。

2.2 连续系统串联校正

• 已知系统开环传递函数(图 2-4 为参考模拟电路图):

$$G_0(s) = \frac{100}{s(0.1s+1)(0.01s+1)}$$

• 设计一个超前校正装置, 要求速度误差系数 $K_v \ge 100 \; {\rm s}^{-1}$, 截止角频率 $\omega_c \ge 40 {\rm rad/s}$, 相角稳定裕度 $\emptyset \ge 30^\circ$, 超调量 $\sigma \le 40 {\rm \%}$, 这里给出一个参考的 超前校正 (图 2-5 为参考模拟电路图):

$$G_c(s) = rac{0.044s + 1}{0.0044s + 1}$$

• 设计一个滞后校正装置, 要求 $K_v \ge 100s^{-1}, \omega_c \ge 4 \text{rad/s}, \emptyset \ge 30^\circ, \sigma \le 40\%$, 这里 给出一个参考的滞后校正 (图 2-6 为参考模拟电路图。):

$$G_c(s)=rac{0.5s+1}{10s+1}$$

#3实验计算

3.1 二阶系统阶跃响应预习

• 传递函数

$$G(s)=rac{1}{T^2s^2+KTs+1}$$

• 计算公式为

超调量:
$$\sigma = e^{-\frac{\xi\pi}{\sqrt{1-\Xi^2}}}$$

过渡过程时间:
$$t_{
m s}(5\%)pprox rac{3}{\xi\omega_{
m n}}=rac{3T}{\xi}$$
 $(0<\xi<0.9)$

• 分别计算出 $T=0.47, \xi=0.25, 0.5, 0.75$ 时, 系统阶跃响应的超调量 σ 和过渡过程时间 t_s 。

当
$$T=0.47$$
时

ξ	0	0.25	0.5	0.75
$\sigma\%$	无	44.43	16.30	2.84
t_s	∞	5.64	2.82	1.88

• 分别计算出 $\xi = 0.5, T = 0.22, 0.47, 1.0$ 时, 系统阶跃响应的超调量 σ 和过渡过程时间 t_s 。

当
$$\zeta=0.5$$

Т	0.22	0.47	1.0
$\sigma\%$	16.3	16.3	16.3
$t_(s)$	1.32	2.83	6

• 通过改变 K,使 ξ 获得 0,0.25,0.5,0.75,1.0 等值,记录过渡过程曲线、超调量 σ 和过渡过程时间 t

 $\xi=0.5$ 时

ξ	0.25	0.5	0.75	1.0
$\sigma\%$	44	16	3	0
t_s	5.18	2.52	1.48	2.22

• 当 $\xi = 0.5$ 时,令 T = 0.22 秒, 0.47 秒, 1.0 秒,记录过渡过程曲线、超调量 σ 和过渡过程时间 t_s ,比较三条阶跃响应曲线的异同。

Т	0.22	0.47	1.0
$\sigma\%$	16	16	16
t_s	1.17	2.52	5.46

3.2 连续系统串联校正预习

• 分别画出系统固有部分、加入超前校正、滞后校正的 Bode 图;估算出上述 3 种情况下系统相角裕量、阶跃响应的超调 σ 与过渡过程时间 t_s 。

系统固有部分:

超前校正:

滞后校正:

根据matlab计算得到系统参数为:

物理量	固有部分	超前校正	滞后校正
相角裕度	1.58	41	40.1
超调量σ 92.48%		32.34%	38.44%
过渡过程时间 t_s	7.6	0.1076	1.079

• 用 Matlab/Simlink 搭建仿真模型,以单位阶跃信号为系统输入,观测并记录 3 种情况下系统阶跃响应曲线、超调 σ 与过渡过程时间 t_s 。

加入超前校正

加入滞后校正

物理量	固有部分	超前校正	滞后校正
超调量 σ	87.5%	30.3%	37.7%
过渡过程时间 t_s	6.75	0.16	1.05

#4正式实验

4.1 二阶系统阶跃响应正式实验

- **1.** 通过改变 K, 使 ξ 获得 0,0.25,0.5,0.75,1.0 等值,在输入端加同样幅值的阶跃信号,记录过 渡过程曲线、超调量 σ 和过渡过程时间 t_s ,将实验值和理论值进行比较。
- 实验图像

 $\xi = 0$ 时的图像

 $\xi = 0.25$ 时的图像

 $\xi = 0.5$ 时的图像

 $\xi = 0.75$ 时的图像

 $\xi = 1$ 时的图像

• 实验数据

ξ	0	0.25	0.5	0.75	1.0
$\sigma\%$	无	41.5	16.7	1.82	0
t_s	∞	5.1	2.7	1.82	2.93

• 对比

根据表格可以看出,实验数据和仿真数据的大致图形是一致的,变化趋势也是一 调量和过渡过程时间都是一致的,当 ξ 变化时, t_s 也等比例变化,说 致的。且超 明时间常数和过渡过程时 间的尺度是线性的,且随着T增加,超调量减少。

2. 当 $\xi = 0.5$ 时,令 T = 0.22 秒, 0.47 秒, 1.0 秒 (T = RC,改变两个 C), 记录过渡过程曲线、超调量 σ 和过渡过程时间 t_s , 比较三条阶跃响应曲线的异 同。

• 实验图像

Т	0.22	0.47	1.0
$\sigma\%$	14	14.2	14
t_s	1.53	3.02	6.13

• 对比

仿真结果、理论计算、实验测量结果都是近似的,说明都符合同样的规律,具体数值的误差来源计算过程。可见只要时间常数相同,超调量就是相同的,且随着时间常数等比例增大,过渡过程时间也会等比例增大。

4.2 连续系统串联校正正式实验

• 实验图像

• 实验数据

物理量	固有部分	超前校正	滞后校正
超调量σ	90%	32%	32%
过渡过程时间 t_s 6.5		0.1	1.1

• 不同校正作用总结

• 超前校正

根据实验图像可以看出,超前校正的主要作用是改善系统动态性能,通过提供超前角,提高了相角裕量和降低了超调量,降低了系统的过渡时间,从而改善了系统响应速度和稳定性。

• 滞后校正

根据实验图像可以看出,滞后校正的主要作用是改善系统的静态性能,提高 了系统的稳态 精度,但是同时也轻微降低了系统的动态性能。

#5实验总结

本次实验内容丰富,主要难点在于电路的搭建,在保证电路没有bug的情况下,可以 顺利完成实验。实验结果加深了我对二阶系统性质以及连续系统校正的理解