

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

SISTEMI ENERGETICI PER INGEGNERIA FISICA 11/09/2021

Allievi fisici

Allegare alle soluz	zioni il pres	ente testo	o indica	ndo (in S7	TAMPATE	LLO):	
NOME E COGNOME							
	T.						

Tempo a disposizione: 2 ore

Leggere attentamente le avvertenze: Indicare chiaramente nome e cognome su <u>tutti</u> i fogli da consegnare. Rispondere <u>brevemente</u> ma <u>con chiarezza solamente ai quesiti posti, evidenziando le necessarie unità di misura</u>. Calcoli e spiegazioni - pur corretti in sé - che non rispondono ai quesiti posti <u>non</u> saranno considerati ai fini della valutazione del compito. Nel caso sia richiesta una <u>soluzione grafica</u> indicare con chiarezza sui grafici allegati la soluzione proposta.

Tenere spenti i telefoni cellulari, non usare appunti, dispense, etc. Riportare i risultati richiesti su questo foglio e procedimento/calcoli intermedi sul foglio a quadretti.

Punteggio: Punteggio totale pari a 35. Il docente si riserva di normalizzare i risultati in trentesimi con coefficienti correttivi in base all'esito medio delle risposte date.

Dati per la risoluzione dei quesiti

Costante universale dei gas \Re = 8314 J/(kmol·K), acc. di gravità g= 9.806 m/s²

ESERCIZIO 1 (punti 11)

Si consideri un ciclo Joule-Brayton chiuso ad Argon (gas monoatomico, MM=40 kg/kmol) che sfrutta come fonte energetica la radiazione solare concentrata. Il sistema è caratterizzato dalle seguenti caratteristiche:

- Potenza termica fornita: 20 MW

Rendimento netto= 0.33

- Temperatura massima: 1250 °C

- Rapporto di compressione: 4

- Condizioni di aspirazione del compressore: P=1 bar, T=200°C

- Rendimento isoentropico del compressore: 0.90

- Rendimento meccanico-elettrico: 1.0

La potenza termica ceduta dal ciclo viene recuperata per la produzione di una portata di vapore saturo a partire dalle condizioni di liquido saturo alla pressione di 10 bar.

Sfruttando le informazioni riportate e le proprietà dell'acqua fornite (assumendo le trasformazioni di introduzione e cessione di potenza termica come isobare) si chiede di:

- Rappresentare lo schema di impianto complessivo del sistema
- Calcolare la temperatura di uscita dal compressore e la differenza di entropia tra ingresso e uscita del compressore
- Calcolare la portata massica del fluido di lavoro del ciclo Joule-Brayton
- Calcolare la potenza elettrica netta prodotta dal sistema e il rendimento isoentropico dell'espansore
- Calcolare la portata massica di vapore saturo prodotto

Se il vapore prodotto fosse utilizzato come sorgente termica di un ciclo termodinamico con rendimento di secondo principio di 0.6 (temperatura ambiente pari a 25°C), quale sarebbe la sua produzione di potenza elettrica?

<u>Proprietà acqua in condizioni di saturazione a 10 bar (LS→ Liquido saturo, VS→ Vapore saturo)</u>

P [bar]	T [°C]	sLS [kJ/kg/K]	sVS [kJ/kg/K]
10	179.89	2.138	6.585

ESERCIZIO 2 (punti 9)

Si ha a disposizione un dissipatore di calore in lega di alluminio (k=165 W/m/K) costituito da una base quadrata di lato 11 cm e altezza pari a 2 cm con la presenza di 25 alette di sezione circolare (d=1 cm) e altezza 5 cm. Il dissipatore è investito da una corrente d'aria a 25°C e velocità 2 m/s. Si assuma l'apice delle alette adiabatico.

Il dissipatore è posto sopra un chip elettronico la cui altezza è 1.5 cm. La resistenza di contatto presente tra il chip e il dissipatore è pari a 5E-2 K/W.

Il chip è sede di una generazione interna di potenza pari a 0.5 MW/m³ e dalla superficie inferiore del chip viene dissipato il 15 % della potenza termica generata.

Assumendo che il coefficiente di scambio termico convettivo della superficie non alettata è 30 W/m²/K e che il coefficiente di scambio termico convettivo delle alette possa essere valutato tramite la correlazione per geometria cilindrica proposta in tabella, si chiede di calcolare (mono-dimensionalità del problema di scambio):

- Il coefficiente di scambio termico convettivo delle alette
- L'efficienza della singola aletta
- La temperatura alla base delle alette e la temperatura sulla superficie superiore del chip

Correlazioni per geometria Cilindrica (Dimensione caratteristica → Diametro del cilindro)

Intervallo Numero Re	Convezione Forzata	Proprietà aria		
0.4-40	Nu=0.989 Re ^{0.33} Pr ^{1/3}		Valore	
4-40	Nu=0.911 Re ^{0.385} Pr ^{1/3}	с _р [J/kg/K]	1006	
40-4000	Nu=0.683 Re ^{0.466} Pr ^{1/3}	μ [10 ⁻⁶ Pa*s]	17.95	
4000-40000	Nu=0.193 Re ^{0.618} Pr ^{1/3}	k [10 ⁻³ W/m/K]	25.04	
40000-400000	Nu=0.027 Re ^{0.805} Pr ^{1/3}	ρ [kg/m³]	1.21	

QUESITO 3 (Rispondere ad una sola delle due domande) (punteggio 7.5)

- 1- Rappresentare lo schema di impianto di un ciclo Rankine saturo ideale e rappresentare su un piano T-s e h-s il ciclo. Descrivere e discutere la pratica della rigenerazione ideale evidenziando gli effetti sulle prestazioni del ciclo.
- 2- Applicare e discutere il principio di conservazione dell'energia ad una laminazione adiabatica. Introdurre il coefficiente di Joule-Thompson (non si richiede la derivazione completa) e discutere il significato della curva di inversione. Valutare il coefficiente di Joule-Thompson per gas ideale e liquido incomprimibile.

QUESITO 4 (DOMANDE A RISPOSTA GUIDATA) (punteggio 7.5)

Rispondere alle seguenti 15 domande a risposta guidata. Segnare la casella relativa alla **sola risposta corretta** (0.5 punto per risposta corretta, -0.2 punti se sbagliata).

Una sfera (diametro D) a temperatura T è	Direttamente proporzionale k/D*Rem*Prn	□ vero	X falso
, , .		L. A	□ falso
		1	
(T∞), il coeff. di scambio convettivo h è:	funzione di Re e Gr	□ vero	🛚 falso
(k→cond.termica, a,m,n→costante)			
Un liquido è contenuto in un serbatoio	Il livello di riempimento diminuisce	□ vero	f falso
chiuso. Se il volume specifico aumenta	La massa contenuta rimane inalterata	X vero	□ falso
all'aumentare di T allora in un processo di	II livello di riempimento dipende dalla	□ vero	🗶 falso
riscaldamento:	viscosità		
In un piano h-s, le isobare di un liquido	Evidenziano una dipendenza dalla pressione	vero	□ falso
incomprimibile:	Collassano tutte su un'unica linea	□ vero	X falso
	Sono rette con inclinazione dipendente da T	□ vero	K falso
Per un ciclo Rankine ideale surriscaldato:	II ηII è sempre minore di 1	vero	□ falso
	Se Peva↓ allora x(scarico) ↑	vero	□ falso
	Il fluido di lavoro può essere solo acqua	□ vero	falso
			`
Due sfere (D1=3D2) di stesso materiale si	Se Nu=2+0.43 (Gr*Pr) 0.25 allora Bi1>Bi2	vero	□ falso
trovano alla stessa T iniziale (T0),	Se t=3 s, allora Fou1=9*Fou2	□ vero	f falso
(T0>Tamb), aria in quiete	L'approccio a parametri concentrati è	□ vero	falso
	utilizzabile sempre se Bi*Fou<0.01		