

Description

The VSM75N20 advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in automotive applications and a wide variety of other applications.

General Features

- $V_{DSS} = 200V, I_D = 75A$ $R_{DS(ON)} < 20m\Omega @ V_{GS} = 10V$
- Good stability and uniformity with high E_{AS}
- Special process technology for high ESD capability
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation

Application

- Automotive applications
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM75N20-TC	VSM75N20	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	VDSS	200	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	75	А	
Drain Current-Continuous(T _C =100°C)	I _D (100℃)	53	Α	
Pulsed Drain Current	I _{DM}	300	Α	
Maximum Power Dissipation	P _D	360	W	
Derating factor		2.4	W/℃	
Single pulse avalanche energy (Note 3)	E _{AS}	1512	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Case (Note 1)	R _{eJC}	0.42	°C/W	
--	------------------	------	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	200	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =200V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±200	nA
On Characteristics						
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} =V _{GS} ,I _D =250μA	2.5	3.5	4.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	17.8	20	mΩ
Forward Transconductance	g FS	V _{DS} =50V,I _D =40A		79	-	S
Dynamic Characteristics	- 1					
Input Capacitance	C _{lss}	\/ -F0\/\/ -0\/	-	6990	-	PF
Output Capacitance	Coss	V_{DS} =50V, V_{GS} =0V, F=1.0MHz	-	950	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.0IVIDZ	-	700	-	PF
Switching Characteristics						
Turn-on Delay Time	t _{d(on)}		-	17	-	nS
Turn-on Rise Time	t _r	V _{DD} =100V,I _D =40A,	-	18	-	nS
Turn-Off Delay Time	$t_{d(off)}$	V_{GS} =10V, R_{G} =2.7 Ω	-	56	-	nS
Turn-Off Fall Time	t _f		-	22	-	nS
Total Gate Charge	Qg		-	140	-	nC
Gate-Source Charge	Q_{gs}	ID=40A,VDD=100V,VGS=10V	-	40	-	nC
Gate-Drain Charge	Q_{gd}		-	45	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage	V _{SD}	V _{GS} =0V,I _S =75A	-	-	1.2	V
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 40A	-	136	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note2)	-	458	-	nC

Notes:

- 1. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 2. Pulse Test: Pulse Width \leq 400 μ s, Duty Cycle \leq 2%.
- 3. EAS condition: Tj=25°C,VDD=50V,VG=10V,L=1mH,Rg=25 Ω ,IAS=55A
- 4. Isd \leqslant 125A, di/dt \leqslant 260A/ μ s, Vdd \leqslant V(BR)dss, TJ \leqslant 175°C

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics

Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

 T_J -Junction Temperature($^{\circ}C$)

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

125

150

175

1

0.1

Tc = 25°C Tj = 175°C

Single Pulse

Vds Drain-Source Voltage (V) **Figure 8 Safe Operation Area**

100

10

T_J-Junction Temperature(°C)

1000

Square Wave Pluse Duration(sec) Figure 11 Normalized Maximum Transient Thermal Impedance

v1.0 Page 5 http://www.vseei.com/