112 Fall Semester 535226 系統晶片設計 SOC Design Laboratory

LAB3

王語

學號:312605003

系級:機器人學程碩一

- Block Diagram

詳細電路請見 RTL_Viewer(schematic).pdf

a. FIR FSM

b. RAM counter & decoder

c. AXI-Lite AW / W FSM

d. AXI-Lite AR / R FSM

e. Addr decoder

f. AXI-Lite w_data demux

g. Tap RAM controller

h. ap_done counter

i. Stream Slave Controller

j. Stream Master Controller

k. FIR Kernel

= \cdot Describe operation

a. FIR FSM

FIR STATE 的切換很簡單,只有兩個 State,分別是 IDLE(0)以及 WORK(1)。當接收到 ap_start 時會由 IDLE 切換至 WORK,反之,當接收到 ap_done 的時候會切換回 IDLE。

狀態機初始狀態是 IDLE,當接收到 axis_reset_n 時,也會返回 IDLE 狀態。

b. AXI AW/W FSM

AXI_Lite 的寫入通道(AW、W)只會在 FIR = IDLE 的狀態啟用,負責 寫入係數 tap 以及 ap_start,當 FIR = WORK 的時候將不再寫入新的資 料,因此當 FIR = WORK, awready、wready 皆保持在 0 的狀態。

當 FIR = IDLE 時,狀態的切換如上圖所示,若接收到 axis_reset_n 時,會返回 WAIT 狀態。

c. AXI AR/R FSM

AXI_Lite 的讀取通道(AR、R)在整個流程中皆會被使用,包括系統開始前的 ap_idle 訊號確認、寫入 tap 後的 tap RAM 資料確認、運算過程的 ap_done 訊號確認,因此不考慮 FIR STATE 的變化,初始狀態為 WAIT,

等到成功接收 addr 資訊後,即開始傳輸資料,傳輸結束回到 WAIT 狀態,這邊灰色的圖是原先 pipeline 考量,但經改善後資料可以在 1clk 內傳出,因此移除該狀態。

改善:

本 AXI-Lite 設計對於 Aready (awready / arready) 在確認 adata (ardata / awdata) 之前就已經維持在 1 了,這是基於 Testbench 行為設計,但有鑒於 adata 的地址可能不在指定範圍內,將可能接收到既不屬於 ap_signals、data length 也不屬於 tap 的資料,因此之後會新增一個 confirm 狀態,確認 adata 是有效地址後才進行 Aready 的 set。

d. Tap RAM

當 wvalid & wready = 1 時代表接收到外部資料,同時,addr 若為 tap 地址,代表這筆資料是係數,此時 tap_EN、tap_WN 為 1 與 1111,會將收 到的資料寫入 tap_bram,因為資料是依序傳入,因此負責管理 tap_A 的 counter 會+1。

在寫入 tap 時,會順帶寫 0 到 data ram,完成 bram 的 reset,這個動作可以防止運算時讀到 unkown 信號。

如果 tap_EN=1,則 Tap_count 遞增,若為 0,則不變化,為了防止生成 latch,之後會將此部分程式改成 tap_count<=tap_count+tap_EN。

讀出 tap 的驗證也同理,只是 tap_WN 換作 0000。

進行 FIR 運算時, tap_WN 維持 0000, tap_EN 保持 1, 讓每一個 clk 皆讀出係數。

改善:

其實地址可以直接由 wdata 的地址作為 tap_A 的地址,如此一來就能省去掉 counter。

e. FIR calculation

FIR 的運算是連續無中斷的,下圖中黑色方匡內代表 data ram 和 tap ram 輸出哪個地址的資料,藍色方匡代表 FIR Kernel 正在進行哪個地址的 data 和哪個地址的 tap 運算,紅色方匡代表已經完成多少筆 FIR 累加,當 FIR 累加 11 筆資料時會輸出 DONE 信號。

當接收到 done 信號時,會將運算結果透過 stream master 傳輸出去。 每個 loop tap_count 皆從 0 開始遞增至 10,當 tap_count=0 時 data_WE 會 set,寫入新的資料,data_count 的起始值由最舊的資料開始,loop 0 、loop 1 、 loop 2 起始值依序為 10 、9 、8 ,以此類推。

改善:

要讓 FIR 運算不間斷的關鍵其實是 x[n]是否準時接收、y[n]是否順利被收走,其實這樣的設計存在巨大風險,必須在每輪 loop 開始前接收到新的 x[n],並且在當下這輪 loop 結束前將前一筆 y[n]傳送出去,否則運算結果會出錯,因此應該新增暫停狀態,並且在資料的接收端、輸出端新增 FIFO,減少資料傳遞造成的耽誤。

f. self reset n

為了確保整個系統可以暢通無阻的運行,每當結束一批資料的 FIR 運算後,會透過自我重置的方式,回到 IDLE 狀態,會將暫存器的數值回歸初始狀態。

三、Resource usage

1. Slice Logic					
Site Type	+ Used +	+ Fixed	+ Prohibited +	+ Available +	++ Util% ++
Slice LUTs*	129	0	0	53200	0.24
LUT as Logic	129	0	0	53200	0.24
LUT as Memory	0	0	0	17400	0.00
Slice Registers	226	0	0	106400	0.21
Register as Flip Flop	159	0	0	106400	0.15
Register as Latch	67	0	0	106400	0.06
F7 Muxes	0	0	0	26600	0.00
F8 Muxes	0	0	0	13300	0.00
+	+	+	+	+	++

2. Memory				
+ Site Type	Used	Fixed	Prohibited	++ Available Util%
Block RAM Tile RAMB36/FIF0* RAMB18		j 0	0 0 0	140 0.00

3. DSP									
Site Type	Used								
DSPs DSP48E1 only	3)		220 	1.36 	6 		
+									
4. IO and GT Speci	ific								
Site Ty	/pe		Used	Fixed	Prohibited	Availa	ble	Util%	
Bonded IOB			318	0	0	i	125	254.40	
Bonded IPADs			0	0	0	1	2	0.00	
Bonded IOPADs			0	0	0	1	130		
PHY_CONTROL			0	0	0	1	4	0.00	
PHASER_REF			0	0	0	!	4		
OUT_FIFO			0	0	0	!	16	1	
IN_FIF0			0	0	0	!	16		
IDELAYCTRL IBUFDS			0 0	0	0	!	4 121	0.00 0.00	
•	ED UIIT I	DHV	0 0	0 0	0 0		16	0.00 0.00	
. –	PHASER_OUT/PHASER_OUT_PHY PHASER_IN/PHASER_IN_PHY			1 0	1 0	T	16		
IDELAYE2/IDELAYE			0 0	1 0	1 0	i	200		
ILOGIC			0	. 0	. 0		125	0.00	
OLOGIC			0	j 0	. 0	i	125	0.00	
+			+	+	+	+		++	

5. Clocking

Used	Fixed	Prohibited	Available	Util%
3	. 0	0	32	9.38
0	0	0	16	0.00
0	0	0	4	0.00
0	0	0	4	0.00
0	0	0	8	0.00
0	0	0	72	0.00
0	0	0	16	0.00
	3 0 0 0 0	3 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0	3 0 0 32 0 0 0 16 0 0 0 4 0 0 0 4 0 0 0 8 0 0 0 72

6. Specific Feature

+	+		+-		+		+	+-		-+
Site Type	Ī	Used	Ī	Fixed	ĺ	Prohibited	Ī	Available	Util%	١
+	+		+		+		+	+		-+
BSCANE2	ī	0	Ī	0	Ī	0	Ī	4	0.00	1
CAPTUREE2	1	0	١	0	Ī	0	١	1	0.00	1
DNA_PORT	1	0	١	0	١	0	١	1	0.00	-
EFUSE_USR	1	0	l	0	ı	0	١	1	0.00	-
FRAME_ECCE2	1	0	١	0	١	0	١	1	0.00	-
ICAPE2	1	0	I	0	I	0	١	2	0.00	1
STARTUPE2	1	0	I	0	I	0	١	1	0.00	1
XADC	1	0	I	0	I	0	١	1	0.00	1
+	+		+		+		+	+		-+

7. Primitive	es		
+	·	++	
Ref Name	Used	Functional Category	
OBUF	169	IO	
IBUF	149	10	
FDCE	94	Flop & Latch	
LDCE	67	Flop & Latch	
FDRE	59	Flop & Latch	
LUT6	48	LUT	
LUT3	45	LUT	
LUT4	26	LUT	
LUT2	24	LUT	
CARRY4	13	CarryLogic	
LUT5	9	LUT	
FDPE	6	Flop & Latch	
LUT1	4	LUT	
DSP48E1	3	Block Arithmetic	
BUFG	3	Clock	
+	·	++	

四、Timing Report

a. 最大頻率

b. Slack

Design Timing Summary

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	0.035 ns	Worst Hold Slack (WHS):	0.113 ns	Worst Pulse Width Slack (WPWS):	1.550 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	275	Total Number of Endpoints:	275	Total Number of Endpoints:	160

All user specified timing constraints are met.

五、Waveform

a. FIR_STATE

當 ap_start,FIR_STATE 切換到 WORK,當 ap_done 被成功接收後,回到 IDLE

b. AXI-AW/W

該波形圖說明了接收 tap 並且存入 tap ram,同時順帶在 data ram 中存入 0 完成初始化。

c. AXI-AR/R

此波形圖描述透過 axi-lite 讀取 tap ram 中的數值,檢驗 tap 數值是否正確

d. Stream Slave / Master

此波形圖描述透過 stream-slave 接收資料、運算,再透過 stream-master 將資料輸出的過程。

e. RAM Address

這張波形圖描述進行 FIR 運算時,兩個 RAM 的輸出以及地址依序為何。