Week 5, Lecture 9 - Dynamical models

Aaron Meyer

Outline

- Administrative Issues
- Review ODE models
 - Some common constructions
- Classic analysis:
 - Stability analysis
 - Pseudo-steady-state
- ► Implementation:
 - Numerical integration
 - Stiff systems
 - Matrix exponentials

Slides partly adapted from those by Bruce Tidor.

Ordinary Differential Equations

- ODE models are typically most useful when we already have an idea of the system components
 - As opposed to data-driven approaches when we don't know how to connect the data
 - Incredibly powerful for making specific predictions about how a system works
- Limits of these approaches:
 - Results can be extremely sensitive to missing components or model errors
 - Can quickly explode in complexity
 - May rely on variables that are impossible to measure

Applications of ODE models: Molecular kinetics

Remember BE100!

Let's say we have to ligands that dimerize, then this dimer binds to a receptor as one unit:

$$L_f + L_f \leftrightarrow L_D$$

$$L_D + R_f \leftrightarrow R_b$$

If we want to know about how these species interact, we can model their behavior with the rate equations that describe this process.

- Central compartment corresponds to the plasma in the body.
 - $ightharpoonup V_1$ is the distribution volume of plasma in the body.
 - $ightharpoonup C_1$ is the concentration of drug in the plasma.
- Peripheral compartment represents a group of organs that significantly take up the particular drug.
 - $ightharpoonup V_2$ is the volume of these group of organs.
 - $ightharpoonup C_2$ is the concentration of drug in the group of organs.

- \triangleright k_e is the rate constant for clearance.
 - $ightharpoonup k_e C_1 V_1$ is the mass of drug/time that's cleared.
- \blacktriangleright k_1 is the rate constant for mass transfer from the central to peripheral compartment.
 - $\blacktriangleright k_1C_1V_1$ is the mass of drug/time that transfers from the central to peripheral compartment.
- \triangleright k_2 is the rate constant for mass transfer from the peripheral to central compartment.
 - $\blacktriangleright k_2C_2V_2$ is the mass of drug/time that transfers from the peripheral to the central compartment.

- ► Have a bolus i.v. injection
 - ► No drug in both compartments for t<0
 - \blacktriangleright D μ g of drug administered at once at t=0
 - Drug distribution occurs instantaneously in the central compartment.
 - Also get well-mixed instantaneously.
 - ▶ Concentration in central compartment at t = 0 is D $\mu g/mL$
- No chemical reactions in the compartment

Applications of ODE models: Population kinetics

Lotka-Volterra Equations

Note about difference from other models we've covered

- ➤ ODE models can be part of inference techniques just as elsewhere
 - ► If we have a symbolic integral, then fitting an ODE model to data is just non-linear least squares
- But we often don't have a symbolic expression of the answer
 - ► Have to simulate the model every time
 - Can only focus on the input-output we get from the black box
- ▶ In this respect, what we do with ODE models will be very similar to what you could do with any computational simulation

Analytic vs Numerical Modeling

- Analytic
 - Wider range of parameters
 - Avoid numerical problems
 - Physical intuition more direct
 - Often must simplify model
- Numerical
 - Can handle complex models
 - Dependence on parameters & initial conditions
 - Physical insight may be difficult to extract
 - Convergence, numerical stability

Reality often requires handling in between:

- Use analytic treatment to study entire parameter space
- Use numerical treatment to study interesting regions
- Use both to handle complex behavior

Stability Analysis

Can solve for steady-states of a system

$$\frac{\delta F}{\delta t} = 0$$

- Results of this can be both stable or unstable points
 - With stable points, slope of $\frac{\delta F}{\delta t}$ is negative
 - In multivariate case, this means eigenvalues of Jacobian are negative
- Steady-state points aren't necessarily realistic or feasible!
 - NNLSQ can solve for points
 - Only simulating system ensures they are accessible

Generalization

- ► Linear models are easier to simulate and understand than non-linear
 - Linearity: If \mathbf{x}_1 and \mathbf{x}_2 are both solutions, then $c_1\mathbf{x}_1+c_2\mathbf{x}_2$ is also a solution
- Linear systems tend to be separable (effective decoupling)
- ▶ Non-linear systems exhibit interesting properties

Linearity & Separability

$$\begin{pmatrix} a' \\ b' \\ c' \\ d' \end{pmatrix} = \begin{pmatrix} \kappa_{11} & \kappa_{12} & \kappa_{13} & \kappa_{14} \\ \kappa_{21} & \kappa_{22} & \kappa_{23} & \kappa_{24} \\ \kappa_{31} & \kappa_{32} & \kappa_{33} & \kappa_{34} \\ \kappa_{41} & \kappa_{42} & \kappa_{43} & \kappa_{44} \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \qquad \begin{pmatrix} \alpha' \\ \beta' \\ \gamma' \\ \delta' \end{pmatrix} = \begin{pmatrix} \lambda_{11} & 0 & 0 & 0 \\ 0 & \lambda_{22} & 0 & 0 \\ 0 & 0 & \lambda_{33} & 0 \\ 0 & 0 & 0 & \lambda_{44} \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix}$$

$$\begin{pmatrix} \alpha' \\ \beta' \\ \gamma' \\ \delta' \end{pmatrix} = \begin{pmatrix} \lambda_{11} & 0 & 0 & 0 \\ 0 & \lambda_{22} & 0 & 0 \\ 0 & 0 & \lambda_{33} & 0 \\ 0 & 0 & 0 & \lambda_{44} \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix}$$

Phase Portraits

$$\begin{vmatrix} \dot{x}_1 &= f_1(x_1, x_2) \\ \dot{x}_2 &= f_2(x_1, x_2) \end{vmatrix} \longrightarrow \dot{\vec{x}} = \vec{f}(\vec{x})$$

Non-linear systems

- No general analytic approach to finding trajectory
- So, goal is to understand qualitative trajectory behavior

Features in Phase Portraits

Solving a Set of Equations for Phase Portrait

- Numerical computation
 - ▶ i.e., Runge-Kutta integration
- Qualitative
 - Sufficient for some purposes
- Analytic
 - Elegant, though not always tractable

Example – fixed points

$$\dot{x} = x + e^{-y}$$
 Can't be represented as $\dot{y} = -y$ $\dot{x} = ax + by$ $\dot{y} = cx + dy$

Step 1: Find fixed points

Fixed points (also called stationary points) are those points where the time-derivative of each coordinate is zero. $\dot{x} = 0$ and $\dot{y} = 0$

$$\begin{array}{ccc}
0 &=& x + e^{-y} & \Rightarrow & -x = e^{-y} = 1 \\
0 &=& -y & \Rightarrow & y = 0
\end{array}$$

Thus, one fixed point at (x, y) = (-1,0)

Example – stability

Step 2: Determine stability of fixed points

- ► If the systems moves slightly away from each fixed point, will it return or will it move further away?
- ► Another way to ask the same question is to ask whether, as time approaches infinity, does the system tend toward or away from a given stable point.
- ▶ Note *y* solution must be of form:
 - $y = y_0 e^{-t}$ (because $\dot{y} = \frac{dy}{dt} = -y$)
 - ▶ So $y \to 0$ for $t \to \infty$
- ▶ Thus, $\dot{x} = x + e^{-y}$ becomes $\dot{x} \to x + 1$ for long times
 - ► This has exponentially growing solutions
 - ▶ Toward ∞ for x > -1 and $-\infty$ for x < -1

Thus, overall solution grows exponentially in at least one dimension, and so is unstable.

Example – nullclines

Step 3: Sketch nullclines

Nullclines are the sets of points for which $\dot{x}=0$ or $\dot{y}=0$, so flow is either horizontal or vertical.

$$\dot{y} = 0$$
 for $0 = -y \rightarrow y = 0 \Rightarrow$ flow is horizontal at x - axis $\dot{x} = x + 1$ here, so flow is to the right for $x > -1$

Flow is vertical for $\dot{x} = 0 \rightarrow 0 = x + e^{-y}$

 $\begin{array}{cccc}
\dot{x} < 0 \\
\dot{y} < 0
\end{array}
\qquad \begin{array}{c}
\dot{x} > 0 \\
\dot{y} < 0$

The nullclines partition the space into classes of flow direction:

$$\dot{x}, \dot{y} \begin{cases} \langle \rangle \end{cases}$$

$$0 = x + e^{-y}$$

 $\dot{x} < 0$

$$\begin{array}{c}
\dot{x} > 0 \\
\dot{y} > 0
\end{array}$$

Example - computed

Step 4: Plot flow lines

Existence & Uniqueness

Non-linear $\dot{\mathbf{x}} = f(\mathbf{x})$ and given an initial condition.

- ► Existence and uniqueness of solution guaranteed if *f* is continuously differentiable
- Corollary: Trajectories do not intersect, because if they did, then there would be two solutions for the same initial condition at the crossing point

Linearization About Fixed Points

Let
$$\begin{cases} \dot{x} = f(x, y) \\ \dot{y} = g(x, y) \end{cases}$$
 be a non - linear system with fixed point (x^*, y^*) $0 = f(x^*, y^*) = g(x^*, y^*)$

Let $\begin{cases} u = x - x^* \\ v = y - y^* \end{cases}$ be deviations from fixed point \downarrow Change of variable

$$\dot{u} = \dot{x} \quad (x^* \text{ is constant})$$

$$= f(u + x^*, v + y^*) \quad \text{linear}$$

$$= f(x^*, y^*) + u \frac{\partial f}{\partial x} + v \frac{\partial f}{\partial y} + O(u^2, v^2, uv)$$

Taylor series expansion

Likewise, $\dot{v} = u \frac{\partial g}{\partial x} + v \frac{\partial g}{\partial y} + O(u^2, v^2, uv)$

Solving Linearized Systems

$$\begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix} \cdot \begin{pmatrix} u \\ v \end{pmatrix}$$

$$\dot{\vec{x}} = \ddot{A}\vec{x} \qquad \ddot{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad \text{let } \vec{x}(t) = e^{\lambda t} \vec{v} \\
\lambda e^{\lambda t} \vec{v} = \ddot{A} e^{\lambda t} \vec{v} \qquad \lambda \vec{v} = \ddot{A} \vec{v} \\
(\ddot{A} - \lambda I) \vec{v} = 0 \\
\begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix} \vec{v} = 0 \\
\det \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix} = 0 \\
(a - \lambda)(d - \lambda) - bc = 0 \\
\lambda^2 - \tau \lambda + \Delta = 0
\end{pmatrix} \qquad \tau = \text{trace} \\
\lambda_1 = \frac{\tau + \sqrt{\tau^2 - 4\Delta}}{2} \qquad \lambda_2 = \frac{\tau - \sqrt{\tau^2 - 4\Delta}}{2}$$

If $\lambda_1 \neq \lambda_2$, then $v_1 \& v_2$ are linearly independent and solutions of the following form are valid.

$$\vec{x}(t) = c_1 e^{\lambda_1 t} \vec{v}_1 + c_2 e^{\lambda_2 t} \vec{v}_2$$

Example

$$\begin{array}{c} \dot{x} = x + y \\ \dot{y} = 4x - 2y \\ (x, y)_{t=0} = (2, -3) \end{array}$$

$$\begin{array}{c} \tau = -1 \\ \rightarrow \\ \Delta = -6 \end{array} \begin{cases} \lambda_1 = 2 \\ \lambda_2 = -3 \end{cases} \qquad \vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\vec{v}_2 = \begin{pmatrix} 1 \\ -4 \end{pmatrix}$$

$$\vec{x}(t) = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} 1 \\ -4 \end{pmatrix} e^{-3t}$$
 with $c_1 = c_2 = 1$ from init. cond.

Can draw phase portrait directly from eigenvalues & eigenvectors:

More Examples

Classification of Fixed Points

Relevance for Nonlinear Dynamics

- So, we have said that we can find fixed points of nonlinear dynamics, linearize about each fixed point, and characterize the dynamics about each fixed point in the non-linear model by the corresponding linear model.
- ► Is this always true? Do the nonlinearities ever disturb this approach?
- A theorem can be proven which states
 - That all the regions on the previous slide are "robust" (nodes, spirals, saddles) and correspond between linear and nonlinear models.
 - But that all the lines on the previous slide are "delicate" (centers, stars, degenerate nodes, non-isolated fixed points) and can have different behaviors in linear and non-linear models.

Bifurcations

- ➤ The phase portraits we have been looking at describe the trajectory of the system for a given set of initial conditions. However, for "fixed" parameters (rate constants in eqns, for instance).
- What we might like is a series of phase portraits corresponding to different sets of parameters.
- ▶ Many will be qualitatively similar. The interesting ones will be where a small change of parameters creates a qualitative change in the phase portrait (bifurcations).
- What we will find is that fixed points & closed orbits can be created/destroyed and stabilized/destabilized.

Saddle-Node Bifurcation

Genetic Control Network

Griffith (1971) model of genetic control:

- \triangleright x = protein concentration
- ▶ y = mRNA concentration

$$\dot{x} = -ax + y$$
 protein degrades and is synthesized from mRNA
 $\dot{y} = \frac{x^2}{1 + x^2} - by$ mRNA degrades and is stimulated by protein dimer

Genetic Control Network

Biochemical version of a bistable switch:

- 1. Only stable points are no protein and mRNA or a fixed composition
- 2. If degradation rates too great, only stable point is origin

Implementation - Testing

- Many properties one can test
 - Mass balance
 - Changes upon parameter adjustment
- Good to test these before and after integration

Implementation

SciPy provides two interfaces for ODE solving:

- scipy.integrate.ode
- scipy.integrate.odeint

Notes:

- Both can solve stiff and non-stiff equations.
- ode has a number of different methods. Pay attention to the "set_integrator" option.

The second order differential equation for the angle θ of a pendulum acted on by gravity with friction can be written:

$$\theta''(t) + b * \theta'(t) + c * \sin(\theta(t)) = 0$$

where b and c are positive constants, and a prime (') denotes a derivative. To solve this equation with odeint, we must first convert it to a system of first order equations. By defining the angular velocity $\omega(t) = \theta'(t)$, we obtain the system:

$$\theta'(t) = \omega(t)$$

$$\omega'(t) = -b * \omega(t) - c * \sin(\theta(t))$$

Let y be the vector $[\theta, \omega]$. We implement this system in python as:

```
def pend(y, t, b, c):
    theta, omega = y
    dydt = [omega, -b*omega - c*np.sin(theta)]
    return dydt
```

We assume the constants are b = 0.25 and c = 5.0:

```
b, c = 0.25, 5.0
```

For initial conditions, we assume the pendulum is nearly vertical with $\theta(0)=\pi-0.1$, and it initially at rest, so $\omega(0)=0$. Then the vector of initial conditions is

$$y0 = [np.pi - 0.1, 0.0]$$

We generate a solution 101 evenly spaced samples in the interval $0 \le t \le 10$. So our array of times is:

```
t = np.linspace(0, 10, 101)
```

Call odeint to generate the solution. To pass the parameters b and c to pend, we give them to odeint using the args argument.

```
from scipy.integrate import odeint
sol = odeint(pend, y0, t, args=(b, c))
```

The solution is an array with shape (101, 2). The first column is $\theta(t)$, and the second is $\omega(t)$. The following code plots both components.

```
import matplotlib.pyplot as plt
plt.plot(t, sol[:, 0], 'b', label='theta(t)')
plt.plot(t, sol[:, 1], 'g', label='omega(t)')
plt.legend(loc='best')
plt.xlabel('t')
plt.grid()
plt.show()
```


Implementation - Stiff Systems

- Very roughly, most ODE solvers take steps inversely proportional to the rate at which the state is changing
- ► For systems where there are two processes operating on differing timescales, this can be problematic
 - If everything happens really fast, the system will come to equilibrium quickly
 - ▶ If everything is slow, you can take longer steps
- Stiff solvers additionally require the Jacobian matrix
 - This very roughly allows them to keep track of these differences in timescales
- odeint can automatically find this for you
 - Sometimes it's faster/better to provide this as parameter Dfun

Implementation - Matrix Exponential

If J is the Jacobian matrix of an ODE model, $y(t) = e^{Jt}y_0$.

Matrix exponential is also implemented.

- scipy.linalg.expm
 - This method is numerically stable, but there are faster implementations elsewhere.
- A commonly used package is expokit

For linear systems, this can be >1000x faster.

Further Reading

- scipy.linalg.expm
- scipy.integrate.odeint
- ► Steven Strogatz, Nonlinear Dynamics and Chaos