Дискретная математика. Модуль 3. Лекция 3

Лекторий ПМИ ФКН 2015-2016

Гринберг Вадим Жижин Пётр Пузырев Дмитрий

25 января 2016

1 Равномощные множества. Конечные и бесконечные. Счётные множества. Свойства счётных множеств

Равномощные множества. Конечные множества

<u>Определение:</u> Равномощными множествами называются такие множества, между которыми установима биекция. Обозначение: $A \sim B$.

Очевидные свойства равномощных множеств: $\forall A$ – множеств.

- $A \sim A$.
- $A \sim B \Rightarrow B \sim A$.
- $A \sim B, B \sim C \Rightarrow A \sim C$.

Определение: Множество A – конечно тогда и только тогда, когда $\exists n \in \mathbb{N}_0 : A \sim [n]$ $([n] = \{1, 2, \dots, n\}, [0] = \varnothing).$

Но ведь могло бы так получиться, что $[n] \sim [k]$? Оказывается, нет.

<u>Утверждение:</u> Если $n > k \Rightarrow [n] \nsim [k]$.

База

$$n = 0 \Rightarrow \forall k \Rightarrow n < k \Rightarrow$$
 Нет таких множеств $\Rightarrow [n] \nsim [k]$.

Предположение

$$\forall j \leq n \Rightarrow \forall k < j \Rightarrow [j] \nsim [k].$$

Переход

k < n+1. Докажать: $[n+1] \nsim [k]$. Предположим это не так.

Тогда существует функция $f:[n+1] \to [k]$ и f – биекция. Пусть f(n+1) = b. Но b может и не совпадать с k. Для этого введём транспозицию $\tau:[k] \to [k], \tau(b) = k, \tau(k) = b, \forall i \neq k, i \neq b \Rightarrow \tau(i) = i$.

Получили функцию $g = \tau \circ f$. Причем g — биекция как композиция двух биекций. $g(n+1) = \tau(b) = k$ и g([n]) = [k-1] (так как g — биекция).

Получили биекцию $g:[n] \to [k-1], k-1 < n$, а это противоречит предположению индукции (k-1 < j = n).

А значит $[n+1] \nsim [k]$.

Q.E.D.

Бесконечные множества. Счётные множества

Определение: Множество бесконечно тогда и только тогда, когда оно не конечно.

A — бесконечно. Значит A — не пусто. $\exists a_o \in A$. Пусто ли $A \setminus a_0$? Нет. Иначе A — содержит один элемент и конечно. Тогда $\exists a_1 \in A \setminus a_0$. Множество и без этих двух элементов бесконечно. Ну и так далее.

Определение: Получившееся множество $A' = \{a_0, a_1, a_2, \dots, a_n, \dots\}$ назовем счётным (равномощным множеству натуральных чисел). Биекция в этом случае очевидна: $f: i \mapsto a_i$.

Утверждение: № – бесконечно.

Доказательство. Пусть это не так и $\exists f : [n] \to \mathbb{N}$ – инъекция. Тогда верно следующее: $\mathbb{N} \ni \max\{f(0), f(1), \dots, f(n)\} + 1 \notin f([n])$. А значит f – не биекция. А значит \mathbb{N} не равномощно никакому [n].

Заметим вот что: $\mathbb{N} \setminus \{0\} \to \mathbb{N}$ путём биекции $f: n \mapsto n-1$.

<u>Утверждение:</u> Множество бесконечно тогда и только тогда, когда оно равномощно собственному подмножеству.

Доказательство. Докажем, что если множество бесконечно, то оно равномощно некоторому подмножеству.

Как мы уже выяснили, в любом бесконечном множестве есть счётное подмножество. Пусть $B = \{b_0, b_1, \dots, b_n, \dots\}$ — счётное подмножество бесконечного множества A.

Установим биекцию $f: A \setminus \{b_0\} \to A$.

$$f(x) = \begin{cases} b_{n-1}, x \in B \\ x, x \notin B \end{cases}$$

Получили то, что и требовалось.

В обратную сторону доказывается на семинарах, но примерно так: пусть $B \subset A, B \sim A$. Пусть A – конечно. Тогда |B| < |A| Q.E.D.

Свойства счётных множеств

1. A – счётное множество. Тогда $A \subseteq A$ счётно или конечно.

Доказательство. $A=\{a_0,a_1,\ldots,a_n,\ldots\}$. Вычеркнем все элементы, в A' не входящие. $A'=\{a_{j_0},a_{j_1},\ldots,a_{j_n},\ldots\}$.

Если последовательность $\{a_{j_n}\}$ конечна, то и A' конечно. Если она бесконечна, то A' очевидно счётно. Q.E.D.

2. Если A,B – счётные, то и $A \cup B$ счётно.

Доказательство.
$$A = (a_0, a_1, \dots, a_n, \dots)$$
. $B = (b_1, b_2, \dots, b_n, \dots)$.

$$A \cup B = (a_0, b_0, a_1, b_1, \dots, a_n, b_n, \dots).$$

Но может получиться так, что в новой последовательности некоторые элементы встречаются по два раза (они входят в оба множества). Вычеркнем каждый такой элемент по одному разу. И получим последовательность, задающую счётное множество.

Q.E.D.

 $3. \mathbb{Z}$ – счётно.

Доказательство. $Z = \mathbb{N} \cup (-\mathbb{N})$ – объединение счётных множеств. Счётно по свойству 2 $(-A = \{-a \mid a \in A\})$. Q.E.D.

4. Если A – счётно, а B – конечно или счётно, то $A \cup B$ счётно.

Доказательство. Доказывается аналогично свойству 2.

Q.E.D.

5. Если A – счётно. И B_1, B_2, \ldots, B_k – счётны или конечны, то $A \cup B_1 \cup \ldots \cup B_k$ – счётно.

Доказательство. К доказательству свойства 4 нужно добавить доказательство по индукции. Q.E.D.

6. Счётное объединение конечных или бесконечных множеств конечно или счётно.

$$\{A_0,A_1,\ldots,A_n,\ldots\}=\mathfrak{F}\sim\mathbb{N}.$$
 A_i – множество. \mathfrak{F} называется семейством множеств. $A=\bigcup_{i=0}^\infty A_i.$

Утверждение: A – счётно.

Доказательство.

$$A_0 = (a_{00}, a_{01}, \dots, a_{0n}, \dots)$$

$$A_1 = (a_{10}, a_{11}, \dots, a_{1n}, \dots)$$

Некоторые из множеств могут быть конечны. Дополним их до счётных пустым символом $\lambda \notin A$.

Построим последовательность: a_{00} , a_{01} , a_{10} , a_{02} , a_{11} , a_{20} , (то есть проходим последовательно все значения сумм индексов от 0 до ∞).

Теперь исключим из последовательности повторения и символы λ . Получим требуемую последовательность $(a'_0, a'_1, \ldots, a'_n, \ldots)$.

Теперь получим функцию $f:[n] \to A$ или $f:\mathbb{N} \to A$. f – биекция. В первом случае множество конечно, во втором счётно.

Можно было бы и не вводить λ , а исключать эти элементы сразу, но так проще (нет никаких условий). Q.Е.D.

Примеры:

- Пусть $A_i = \{i\}$. Тогда $A = \mathbb{N}$ (счётно).
- Пусть $A_i = \{1\}$. Тогда $A = \{1\}$ (конечно).
- 7. Декартово произведение счётных множеств счётно. Напомним, что

$$A \times B = \{(a; b) \mid a \in A, b \in B\}$$

Доказательство. $A = (a_0, \dots, a_n, \dots) \Rightarrow A \times B = \{a_0\} \times B \cup \dots \cup \{a_n\} \times B \cup \dots \Rightarrow A \times B$ – счётно (по свойству 6). Q.E.D.

8. Если A – счётно, то A^k – счётно.

Доказательство. Очевидно по индукции из свойства 7.

Q.E.D.

9. ℚ – счётно.

Доказательство. Рассмотрим множество \mathbb{Q}_p несократимых дробей. Пусть функция $f: \mathbb{Q}_p \to \mathbb{Z} \times \mathbb{N}_+$ – инъекция (она переводит дробь в пару чисел числительзнаменатель). Тогда она является биекцией на $f(\mathbb{Q}_p) \subset \mathbb{Z} \times \mathbb{N}_+$. Причём $f(\mathbb{Q}_p)$ тогда счётно по свойству 1 так как не является конечным, а $\mathbb{Z} \times \mathbb{N}_+$ счётно по свойству 7. Q.E.D.

10. Пусть A^* – конечные последовательности конечного (непустого) или счётного алфафита A.

Утверждение: A^* – счётно

Доказательство. $A^* = \bigcup_{n=0}^{\infty} A^n$. При этом A^n – слова длины n. A^n – счётно по свойству 8. И тогда само A^* счётно по свойству 6. Q.E.D.

11. <u>Определение:</u> $\alpha \in \mathbb{R}$ – алгебраическое число тогда и только тогда, когда α – корень некоторого многочлена с целыми коэфициентами.

Утверждение: Множество алгебраических чисел счётно.

Доказательство. Приведём только план доказательства:

- (а) Докажем, что многочленов с целыми коэфициентами счётно.
- (b) Для каждого из этих многочленов есть не более n корней алгебраических чисел.
- (с) Удаляем повторяющиеся корни.
- (d) Получим все алгебраические числа, которых, очевидно, счётно.

Q.E.D.