WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

ÎNTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C25D 1/00, 5/02

A1

(11) Internationale Veröffentlichungsnummer:

WO 98/15676

(43) Internationales

Veröffentlichungsdatum:

16. April 1998 (16.04.98)

(21) Internationales Aktenzeichen:

PCT/DE97/02230

(22) Internationales Anmeldedatum:

29. September 1997

(29.09.97)

(30) Prioritätsdaten:

196 41 531.4

9. Oktober 1996 (09.10.96)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): ROBERT BOSCH GMBH [DE/DE]; Postfach 30 02 20, D-70442 Stuttgart (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): MAGENAU, Horst [DE/DE]; Lammstrasse 4, D-70839 Gerlingen (DE). SCHATZ, Frank [DE/DE]; Bahnhofstrasse 27, D-70806 Kornwestheim (DE). GLOCK, Armin [DE/DE]; Obere Halde 3, D-73655 Plüderhausen (DE). KRAUSS, Elke [DE/DE]; Zollernstrasse 13, D-71254 Ditzingen (DE). SCHITTNY, Thomas [DE/DE]; Uhlandstrasse 18, D-71711 Steinheim (DE). JAUERNIG, Alexandra [DE/DE]; Schubartstrasse 47, D-71229 Leonberg (DE). GLAS, Ronald [DE/DE]; Goettinger Strasse 16, D-38106 Braunschweig (DE).

(81) Bestimmungsstaaten: JP, KR, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(54) Title: MICROMECHANICAL BUILDING COMPONENT AND PRODUCTION PROCESS

(54) Bezeichnung: MIKROMECHANISCHES BAUELEMENT UND EIN VERFAHREN ZU DESSEN HERSTELLUNG

(57) Abstract

Disclosed is a micromechanical building component and the production thereof. The inventive building component presents a plurality of superimposed layers containing metal material, which strongly adhere to each other, at least partly. The layers of the micromechanical building components are interlinked through intermediate layers (4, 6, 10) which are applied - at least one layer integrated by spluttering (4, 10) - as an initial metallization on the respective lower layer (2) comprising metal and non metal portions, and can also be applied on an electrolitically metallized lower layer. After the finishing process of said layers (2, 7, 12), the inventive micromechanichal building component is obtained, with layers (2, 7) bonding to each other or layers partly severable from each other (2, 12).

(57) Zusammenfassung

Die Erfindung betrifft ein mikromechanisches Bauelement und ein Verfahren zu dessen Herstellung, das übereinander angeordnete Schichten aus metallischen Materialen aufweist, wobei die Schichten zumindest teilweise fest aneinander haften. Die Schichten des mikromechanischen Bauelementes sind über Zwischenschichten (4, 6, 10) miteinander verbunden, wobei die Zwischenschichten mindestens eine Sputterschicht (4, 10) sind, die als Startmetallisierung auf die jeweils untere Schicht (2) bestehend aus metallischen und nichtmetallischen Bereichen aufgetragen sind und

f)

auf die eine obenliegende metallische Galvanikschicht (7, 12) aufbringbar ist. Die Schichten (2, 7, 12) ergeben nach ihrer Fertigstellung das mikromechanische Bauelement mit aufeinander haftenden Schichten (2, 7) oder teilweise voneinander lösbaren Schichten (2, 12).

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei .	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KР	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Poten		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI.	Liechtenstein	SD	Sudan		
DK	Dānemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

-1-

Mikromechanisches Bauelement und ein Verfahren zu dessen Herstellung

Stand der Technik

Die Erfindung betrifft ein mikromechanisches Bauelement, daß aus mehreren Schichten, beispielsweise aus elektrisch leitenden und nichtleitenden Schichten oder Bereichen bzw. aus Lagen oder Bereichen aus metallischen und nichtmetallischen Werkstoffen, aufgebaut ist, nach dem Oberbegriff des Hauptanspruchs und ein Verfahren zu dessen Herstellung.

Bei einem in der DE-OS 39 19 876 beschriebenen, als Mikroventil verwendeten Bauelement sind einzelne Schichten
im Aufbau des Mikroventils mit mikromechanischen Fertigungsmethoden bearbeitet. Hierbei wird beispielsweise die
Oberfläche eines Silizium-Wafers fotolithographisch
strukturiert und durch anschließende Ätzung vorgegebene
Bereiche teilweise entfernt, so daß die gewünschten mechanischen Elemente durch eine strukturierte dreidimensionale Bearbeitung dieser Schichten herausgebildet werden.

Als Fertigungsverfahren sind beispielsweise die UV-Tiefenlithographie für die Strukturierung der nichtleitenden Bereiche und die Mehrlagengalvanik für Herstellung von metallischen, leitenden Bereichen für sich gesehen bekannt. Hierbei ist auch auf nichtleitenden Trägerschichten eine leitfähige Startschicht für die spätere

-2-

außenstrombehaftete galvanische Metallabscheidung in den jeweiligen Bereichen notwendig.

Bekannt sind als Startmetallisierung ganzflächig auf nichtleitende Substrate als Trägerschicht aufgetragene leitende metallische Schichten. Diese Startschichten können durch Lackieren (Sprühen, Tauchen, Schleudern etc.) oder mit Hilfen verschiedener naßchemischer Verfahren oder durch PVD-Verfahren (Bedampfen, Sputtern etc.) (PVD = Physical Vapor Deposition) aufgetragen werden. Sie weisen entweder eine eigene elektrische Leitfähigkeit auf, die für die außenstrombehaftete Galvanisierung hinreicht, oder sie dient als Bekeimungsschicht für eine außenstromlos abgeschiedene Metallschicht, die dann wiederum als Startschicht für die folgende außenstrombehaftete Mehrlagengalvanik dient.

Weiterhin sind naßchemische Verfahren (DMS-E-Verfahren) zur strukturierten Bearbeitung von Oberflächen aus der Leiterplattentechnik bekannt (EP 0 206 133 A1), beispielsweise um in die Leiterplatte gebohrte Löcher leitfähig zu machen. Hier wird eine Startschicht strukturiert bzw. selektiv auf die nichtleitenden Bereiche der Leiterplattenoberfläche aufgebracht, so daß wiederum die gesamte Oberfläche elektrisch leitfähig wird. Diese Bearbeitungsverfahren sind jedoch zu den Prozessen der UV-Tiefenlithographie und Mehrlagengalvanik nicht kompatibel, da sie zu grob sind.

Es sind auch Verfahren bekannt, die es erlauben zwei Metallschichten an einer Zwischenschicht trennbar zu machen. Hierbei wird die Zwischenschicht selektiv zu den übrigen Werkstoffen durch Ätzen oder Lösen als Opferschicht entfernt. Diese Verfahren hinterlassen zwischen den zu trennenden Schichten Spalte von einigen μm Dicke, was insbesondere dann nachteilig ist, wenn gut aufeinan-

-3-

der passende Oberflächen zu fertigen sind, die auch als Dichtflächen genutzt werden sollen.

Vorteile der Erfindung

Das erfindungsgemäße mikromechanische Bauelement der eingangs genannten Art ist in der Weiterbildung mit den kennzeichnenden Merkmalen des Hauptanspruchs dadurch vorteilhaft, daß für die Mehrlagengalvanik Startmetallisierungen aufgebracht werden, die zu den übrigen Prozessen und Werkstoffen der UV-Tiefenlithographie und Mehrlagengalvanik kompatibel sind. Die erfindungsgemäße Startmetallisierung ermöglicht es, die neue Galvanoschicht haftfest auf der jeweils unten liegenden abzuscheiden und damit dreidimensional strukturierte Bauelemente in Schichtbauweise zu ermöglichen.

Vorteilhaft ist insbesondere das erfindungsgemäße Herstellungsverfahren für die mikromechanischen Bauelemente gegenüber den bisher bekannten Prozessen insbesondere für die Startmetallisierung eines Substrates mit elektrisch leitenden und nichtleitenden Bereichen aus folgenden Gründen:

1: Es werden Sputterprozesse bei Substrattemperaturen von weniger als 100°C oder naßchemische Prozesse in einem PH-Bereiche unterhalb von PH 8,5 (ganz schwach alkalisch oder sauer) verwendet, die mit den Werkstoffen und Herstellungsprozessen der UV-Tiefenlithographie kompatibel sind. Die Resiste der nichtleitenden Bereiche bleiben also während der Herstellungsschritte auf dem Substrat haften und lassen sich am Ende der Prozeßkette bei Bedarf mit den üblichen Verfahren entfernen.

-4-

2: Die metallischen Oberflächen der leitenden Bereiche werden durch die einzelnen Verfahrensschritte nur so weit chemisch passiviert, daß sie vor jeder neuen Beschichtung erforderlichenfalls wieder mit Standardverfahren aktiviert werden können, zur Aufnahme weiterer Metallschichten. Nur so kann gewährleistet werden, daß die aufeinander abgeschiedenen metallischen Galvanoschichten untereinander eine gute Haftung aufweisen.

3: Die Strukturierung der Sputterschicht wird über einen Ätzprozeß der unteren Galvanikschicht durchgeführt. Hiermit ist sichergestellt, daß die Bekeimungs- bzw. Startschicht die nichtleitenden Bereiche mit hoher Genauigkeit überdeckt und die metallischen Bereiche des Substrats unverändert bleiben. Die Haftung der Galvanikschichten aufeinander kann daher so gut sein wie die Haftung von zwei unstrukturiert aufeinander abgeschiedenen Galvanikschichten.

Gemäß einer weiteren Ausführungsform wird die Startmetallisierung derart gestaltet, daß in bestimmten Bereichen des Substrates als Ausgangsschicht eine Lage mit einer geringen Haftung vorhanden ist. In diesen Bereichen kann dann die obere Galvanoschicht von der unteren abgehoben werden und es können bewegliche Komponenten mit einem beliebig engen Spalt zwischen ihren Berührungsflächen geschaffen werden. Beispiele sind Dichtelemente für fluidische Anwendungen oder Schaltelemente, die im nicht aktuierten Zustand geschlossen sind.

Das erfindungsgemäße Herstellungsverfahren erlaubt insbesondere eine Weiterentwicklung der Fertigungsverfahren mit UV-Tiefenlithographie und Mehrlagengalvanik zur Herstellung von Bauelementen mit dreidimensionaler Strukturen und mit Hinterschneidungen. Dies wird ermöglicht durch die elektrisch leitenden Zwischenschichten, die es ermöglichen, Metalle elektrolytisch, d.h. außenstrombe-

-5-

PCT/DE97/02230

haftet auf Oberflächen mit Strukturen aus Metall sowie elektrisch isolierendem Kunststoff abzuscheiden. Die metallischen Bereiche der jeweiligen Oberfläche der Schichten bestehen in der Regel aus einer unteren Galvanoschicht, die isolierenden Bereiche aus einem fotostrukturierten Resist (z.B. Polyimid, AZ-Lack (Fotolack) oder Festresiste).

Anwendungen des erfindungsgemäßen Bauelements sind dreidimensionale Mikrobauelemente aus Metall mit Hinterschneidungen wie beispielsweise Turbulenzdüsen für die Gemischaufbereitung bei Ottomotoren oder auch Mikrosensoren oder Bauelemente, die zusätzlich bewegliche Strukturen aufweisen wie Mikroventile, Mikrorelais, Mikroschalter oder Mikromotoren.

Vorteilhafte Weiterbildungen der erfindungsgemäßen Ausführungsformen sind in den weiteren Unteransprüchen angegeben.

Zeichnung

WO 98/15676

Ein Ausführungsbeispiel eines erfindungsgemäß hergestellten Bauelementes wird anhand der Zeichnung erläutert. Es zeigen:

Figur 1 eine Draufsichht auf ein Substrat als Trägerschicht mit einer ersten Schicht mit leitenden und nichtleitenden Bereichen;

Figur 2 einen Schnitt durch Teilbereiche des Substrats nach Figur 1;

Figur 3 Schnitte durch mehrere Schichten auf dem Substrat in den aufeinanderfolgenden Herstellungs-schritten nach einer ersten Ausführungsform und

-6**-**

Figur 4 Schnitte durch mehrere Schichten auf dem Substrat in den aufeinanderfolgenden Herstellungs-schritten nach einer zweiten Ausführungsform.

Beschreibung der Ausführungsbeispiele

Aus Figur 1 ist die Grundlage für Herstellung eines mikromechanischen Bauelements ersichtlich, nämlich ein Substrat 1 als Trägerschicht für weitere aufzubringende Schichten. Das Substrat kann Metall, Silizium, Keramik oder Glas sein; beim hier beschriebenen Ausführungsbeispiel ist es aus Glas. Die üblichen Dicken dieses Substrats betragen zwischen 500 µm und 2 mm und es müssen, um insbesondere außenstrombehaftete galvanische Prozesse zu ermöglichen, gut haftende metallische Startschichten aufgetragen werden.

In der Ausgangslage wird das Substrat 1 in bekannter Weise mit leitenden Bereichen 2 und mit nichtleitenden Bereichen 3 versehen. Hierzu wird das Substrat mit einem Resist (z.B. Polyimid, AZ-Lack oder Festresist) beschichtet durch Aufschleudern, Sprühen oder Laminieren. Der Resist wird mit der gewünschten Struktur belichtet und entwickelt. An den offenen Stellen des Lacks (Resist) wird dann Metall galvanisch abgeschieden. Die leitenden Bereiche 2 der unteren Galvanikschicht bestehen aus einem metallischen Werkstoff (z.B. Kupfer oder Nickel), die nichtleitenden Bereiche 3 aus dem Resist. In Figur 2 sind diese Bereiche 2 und 3 im Schnitt zu erkennen.

Anhand der Schnittdarstellungen nach Figur 3 werden die nachfolgenden Herstellungsschritte erläutert. In einem ersten Herstellungsschritt (Ansicht a)) wird die gesamt Oberfläche des Substrats 1 mitsamt den Bereichen 2 und 3 mit einer Schicht 4 aus Silber, Palladium oder Platin be-

-7-

sputtert; beim beschriebenen Ausführungsbeispiel ist diese Schicht aus Palladium.

Der Prozeß des Sputterns ist an sich bekannt; hier wird aus einem ionisierten Gas (z.B. Argon) das sogenannte Target mit energiereichen Ionen beschossen. Aus dem Target werden durch den Ionenbeschuß Atome und/oder Moleküle herausgeschlagen und mit 1/100 der kinetischen Energie der Ionen auf das Substrat 1 beschleunigt. Auf dem Substrat 1 entsteht somit eine dünne sehr gleichmäßige neue Oberflächenschicht. Die Dicke der Schicht 4 beträgt einige Nanometer, wenn diese Sputterschicht 4 als Bekeimungsschicht für eine anschließend außenstromlos (d.h. durch Metallabscheidung) aufgetragenen metallische Startschicht fungieren soll, und 5 nm bis 100 nm, wenn die Sputterschicht 4 selbst als Startschicht für folgende außenstrombehaftete galvanische Prozesse dienen soll.

In einem zweiten Herstellungsschritt nach Ansicht b) wird die untere Metallschicht in den leitenden Bereichen 2 durch die relativ poröse Sputterschicht 4 hindurch angeätzt. Dieser Schritt wird vorteilhaft mit einem in der sogenannten Mehrlagengalvanik für sich gesehen bekannten Standardprozeß (elektrolytische Aktivierung) durchgeführt, bei dem die bisher entstandene Anordnung mit einen nicht passivierenden Elektrolyten (z.B. Cl-Ionen haltiges Ni-Strike-Bad) behandelt wird, wobei dann die leitenden Bereiche 2 um einige Mikrometer unter der Sputterschicht 4 anodisch abgetragen werden.

Die Sputterschicht 4 wird bei diesem Herstellungsschritt nicht abgetragen, sie verliert aber die Haftung zur unteren Metallschicht der Bereiche 2 und kann in einem Spülschritt von dieser Metallschicht abgelöst und entfernt werden. Die nichtleitenden Bereiche 3 sind somit paßgenau beschichtet, ohne daß eine mit neuen lateralen Toleranzen

-8-

behaftete Fotolithographische Strukturierung erforderlich gewesen wäre (Ansicht c) der Figur 3).

Um eine weitere strukturierte Schicht aufzubringen wird wiederum ein fotostrukturierbarer Resist aufgetragen, belichtet und entwickelt, so daß die nichtleitenden Bereiche 5 des Resists stehen bleiben (Ansicht d) der Figur 3).

Beim nächsten, ebenfalls aus der Ansicht d) der Figur 3 ersichtlichen Herstellungsschritt werden die freiliegenden Bereiche der Sputterschicht 4 sowie die freiliegenden Bereiche der unteren Galvanikschicht 3 chemisch, d.h. in einer Redoxreaktion außenstromlos mit einem Metall (z.B. Nickel) verstärkt bzw. beschichtet (ersichtlich nur im linken Teil der Ansicht d)). Zuvor wird jedoch die untere Galvanoschicht (Bereiche 2) durch anodisches Abtragen noch einmal aktiviert und die Sputterschicht 4 in einem reduzierenden Bad (z.B. mit Natriumborhydrid) ebenfalls aktiviert. Auf den so aktivierten Flächen kann nun außenstromlos Metall zur Verstärkung der Sputterschicht 4 abgeschieden werden. Das gleichzeitig auf der unteren Galvanikschicht ebenfalls chemisch abgeschieden wird, stört hier nicht, wenn ein sehr ähnlicher Werkstoff für die Galvanikschicht und die chemisch abgeschiedene Schicht verwendet wird.

Auf die chemisch abgeschiedenen Schicht 6 kann nun mit einem in der Mehrlagengalvanik üblichen Verfahren außenstrombehaftet eine obere metallische Galvanoschicht 7 aufgetragen werden, so daß sich die Anordnung nach Ansicht e) der Figur 3 ergibt.

Die metallischen Galvanoschichten 2 und 7 haften somit über der chemisch abgeschiedenen Schicht 6 aneinander und können nach einer Ablösung vom Substrat 1 und der Entfernung der Resistschichten 3 und 5, gemäß Ansicht f) der

-9-

Figur 3, ein mikromechanisches Bauelement mit komplexen Strukturen einschließlich Hinterschneidungen bilden.

Alternativ kann bei der dickeren Variante der Sputterschicht 4 (5 nm - 100 nm) nach dem Aktivierungsschritt direkt die Galvanikschicht 7 abgeschieden werden (rechte Seite von Fig. 3d) und 3e)).

Beim, anhand des Ausführungsbeispiels beschriebenen Herstellungsverfahren ist zu beachten, daß die oben beschriebenen Teilprozesse naß in naß erfolgen, denn die metallischen Oberflächen der Bereiche 2 und der Sputterschicht 4 (bzw. Schicht 6) dürfen zwischen den einzelnen Herstellungsschritten nicht mit ungebundene Sauerstoff in Berührung kommen. Sie würden dann wieder oxidiert und damit passiviert und zur Aufnahme weiterer Metallschichten nicht geeignet sein.

Der Werkstoff der außenstromlos abgeschiedenen Metallschicht 6 sollte wegen der erwünschten chemischen Homogenität und einer besseren Haftung der Schichten 2, 6, und 7 aufeinander dem elektrolytisch abgeschiedenen Metall der Schichten 2 und 7 chemisch möglichst ähnlich sein. Bei einer dickeren Sputterschicht 4 kann auf die außenstromlos aufgetragene metallische Verstärkung jedoch verzichtet werden (wie oben beschrieben).

Der Fotoresist der Bereiche 5 für die Strukturierung der oberen Galvanoschicht 7 wird vorzugsweise vor der Aktivierung der unteren Metallschicht in den Bereichen 2 und der Sputterschicht 4 aufgetragen werden. Der Vorteil besteht darin, daß der Aktivierungsschritt nur einmal durchgeführt werden muß. Nachteilig ist, daß die Lackstrukturen des Fotoresists in den Bereichen 5 eventuell unterätzt werden können.

-10-

Anhand eines Ausführungsbeispiels gemäß Figur 4 wird ein Herstellungsverfahren mit einer Startschichtmetallisierung für die Galvanikprozesse beschrieben, die es erlaubt, einzelne Bereiche einer oberen metallischen Galvanoschicht von der unteren metallischen Galvanoschicht zu lösen, sie in allen anderen Bereichen aber haftfest auf der unteren Galvanoschicht aufgeschichtet zu lassen.

Das Substrat 1 weist wie beim Ausführungsbeispiel nach Figur 3, Ansicht a) wieder metallische, elektrisch leitende Bereiche 2 neben elektrisch nichtleitenden Bereichen 3 auf. Die metallischen Bereiche 2 können beispielsweise von der unteren Galvanoschicht und die nichtleitenden Bereiche von einem durch die bekannten mit UV-Tiefenlithographie strukturierten Resist gebildet werden.

In einem ersten Herstellungsschritt wird das Substrat 1 ganzflächig, wie oben beschrieben, in diesem Fall jedoch mit Titan besputtert. Die Dicke dieser Sputterschicht 10 beträgt 200 nm bis 400 nm. Der Herstellungsschritt ist so durchzuführen, daß die Titan-Sputterschicht 10 möglichst wenig Sauerstoff enthält und damit auch möglichst wenig stabiles Oxid bildet, denn nur so kann sie im nächsten Prozeßschritt durch Ätzen strukturiert werden (Ansicht b)). Es ist deshalb erforderlich, um das Substrat 1 herum vor dem Sputtern ein gutes Vakuum herzustellen und das Substrat 1 zunächst durch einen Ätzvorgang (ebenfalls in Sputtertechnik) zu reinigen. Die untere Galvanoschicht 2 soll hierdurch eine glatte Oberfläche mit geringer Sauerstoff-Oberflächenbelegung aufweisen.

Die aufgesputterte Titanschicht 10 wird gemäß Ansicht b) mit einem fotostrukturierbaren Lack maskiert und in einer Wasserstoff-Fluor-haltigen Lösung (Flußsäure) geätzt. Für die Maskierung wird ein Resist 11 verwendet, der in Medien verarbeitet werden kann, die den Kunststoff bzw. Re-

-11-

sist 3 auf dem Substrat 1 nicht angreifen. Nach dem Entfernen dieser Ätzmaske (Bereiche 11) entsteht eine Anordnung gemäß Ansicht c) der Figur 3 und es können die weiteren Prozeßschritte der Mehrlagengalvanik durchgeführt werden.

Die folgende in Ansicht d) gezeigte außenstrombehaftete Metallabscheidung und Herstellung der oberen Galvanoschicht 12 wird nach der elektrolytischen Aktivierung der unteren Galvanoschicht 2 durchgeführt. Die Sputterschicht 10 aus Titan wird passiviert und von diesen Prozessen nicht angegriffen. Der Elektrolyt und die Gegenelektrode werden daher nicht mit Titan kontaminiert.

In weiteren Prozeßschritten können mehrere Galvanoschichten zwischen strukturierten Resistbereichen gebildet werden. Am Ende der Prozeßkette wird der Resist entfernt. Überall dort, wo zwei metallische Galvanoschichten 2, 12 durch eine Titan-Sputterschicht 10 separiert sind, können die beiden Schichten 2 und 12 durch Anlegen einer mechanischen Kraft oder eines Differenzdruckes voneinander getrennt werden.

In den Bereichen 2 auf dem Substrat 1, die nicht von der Titan-Sputterschicht 10 bedeckt sind, bleiben die Eigenschaften der UV-Tiefenlithographie und der Mehrlagengalvanik ebenso wie die Haftung der Galvanikschichten 2 und 12 aneinander erhalten.

Zur Loslösung der beiden Galvanoschichten 2 und 12 in den Bereichen der Sputterschicht 10 muß keine Opferschicht durch langes laterales Ätzen oder Lösen zwischen den zu trennenden Galvanoschichten 2 und 12 entfernt werden. Es entsteht auch kein Spalt zwischen den beiden mechanischen voneinander getrennten Galvanoschichten 2 und 12. Die Oberflächenmorphologie der unteren Galvanoschicht 2 wird auf die obere Galvanoschicht 12 abgebildet, so daß mikro-

-12-

mechanische Bauelemente mit bewegten Teilen (Ansicht e)) gefertigt werden können, die dichtend aneinander liegen können. WO 98/15676 PCT/DE97/02230

Patentansprüche

- 1) Mikromechanisches Bauelement, mit
- übereinander angeordneten Schichten aus metallischen Materialien, wobei die Schichten zumindest teilweise fest aneinander haften, dadurch gekennzeichnet, daß
- die Schichten über Zwischenschichten (4,6,10) miteinander verbunden sind, wobei die Zwischenschichten mindestens eine Sputterschicht (4,10) sind, die als Startmetallisierung auf die jeweils untere metallische Schicht (2) aufgetragen sind und auf die eine obenliegende metallische Galvanikschicht (7,12) aufbringbar ist.
- 2) Mikromechanisches Bauelement nach Anspruch 1, dadurch gekennzeichnet, daß
- die Sputterschicht (4,6)) aus Palladium ist und durch einen maskenlosen Prozeß derart strukturierbar ist, daß sie nur die nichtleitenden Bereiche (3) überdeckt und dadurch die untere (2) und die obere Galvanikschicht (7) fest aneinander haften.
- 3) Mikromechanisches Bauelement nach Anspruch 1, dadurch gekennzeichnet, daß

WO 98/15676

-14-

PCT/DE97/02230 -

- die Sputterschicht (10)) aus Titan ist und die untere (2) und die obere Galvanikschicht (12) an der Sputterschicht (10) lösbar sind.
- 4) Mikromechanisches Bauelement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß
- die metallischen Galvanikschichten (2,7,12) gegenüber jeweils benachbarten Schichten laterale Vorsprünge und/oder Hinterschneidungen aufweisen.
- 5) Verfahren zur Herstellung eines mikromechanischen Bauelements nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß
- auf einem Substrat (1) als Trägerschicht eine erste Schicht mit leitenden (2) und nichtleitenden Bereichen (3) aufgebracht wird, daß
- auf die erste Schicht eine Sputterschicht (4) als Zwischenschicht aufgebracht wird, daß
- die Sputterschicht (4) in den metallischen Bereichen (2) aufgrund ihrer Porösität unterätzt und hier anschließend entfernt wird, daß
- in vorgegebenen Zonen auf die verbleibende Sputterschicht (4) und die metallischen Bereiche (2) ein fotostrukturierter Resist (5) aufgetragen wird, daß
- in den Bereichen zwischen dem Resist (5) eine obere metallische Schicht (7) galvanisch aufgebracht wird und daß
- diese Herstellungsschritte vielfach wiederholbar sind und nach dem Entfernen des Substrats (1) und der Bereiche mit dem Resist (3,5) ein mikromechanisches Bauelement mit fest aufeinander haftenden Schichten (2,4,7) herausgelöst wird.

-15-

- 6) Verfahren zur Herstellung eines mikromechanischen Bauelements nach Anspruch 5, dadurch gekennzeichnet, daß
- die Sputterschicht (4) eine Dicke von 5 nm bis 100 nm aufweist.
- 7) Verfahren zur Herstellung eines mikromechanischen Bauelements nach Anspruch 5, dadurch gekennzeichnet, daß
- die Sputterschicht (4) eine Dicke von 5 nm bis 10 nm aufweist und chemisch zur Aufnahme von Metall in einer Redoxreaktion aktiviert wird, wobei auch die metallischen Bereiche (2) der unteren Galvanikschicht durch anodisches Abtragen chemisch aktiviert werden und daß
- anschließend die obere Galvanikschicht (7) aufgebracht wird.
- 8) Verfahren zur Herstellung eines mikromechanischen Bauelements nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß
- die Sputterschicht (4) aus Palladium ist.
- 9) Verfahren zur Herstellung eines mikromechanischen Bauelements nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß
- auf einem Substrat (1) als Trägerschicht eine erste Schicht mit leitenden (2) und nichtleitenden Bereichen (3) aufgebracht wird, daß
- auf die erste Schicht eine Sputterschicht (10) aus Titan mit einer Schichtdicke von 200 nm bis 400 nm als Zwischenschicht aufgebracht wird, daß

WO 98/15676 PCT/DE97/02230

T> .

- die Sputterschicht (10) mit einem fotostrukturierten Resist (11) maskiert wird, daß
- die Sputterschicht (10) in den nicht maskierten Bereichen weggeätzt wird und der Resist (11) anschließend entfernt wird, daß
- nach einer chemischen Aktivierung der metallischen Bereiche (2) eine obere metallische Galvanikschicht (12) aufgebracht wird und daß
- diese Herstellungsschritte vielfach wiederholbar sind und nach dem Entfernen des Substrats (1) und der Bereiche mit dem Resist (3,11) ein mikromechanisches Bauelement mit an der Sputterschicht (10) jeweils voneinander lösbaren Schichten (2,12) herausgelöst wird.
- 10) Verfahren zur Herstellung eines mikromechanischen Bauelements nach Anspruch 9, dadurch gekennzeichnet, daß
- als Maske (Resist 11) für die Sputterschicht (10) ein mit Lösemitteln verarbeiteter Fotolack (AZ-Lack) ist und in einer Lösung aus Flußsäure geätzt wird, wobei der Resist (3) der unteren Schicht aus einem Kunststoff besteht, der in einem wäßrigen alkalischen Medium verarbeitbar ist.

Fig.3

INTERNATIONAL SEARCH REPORT

International Application No

PCT/DE 97/02230 A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C25D1/00 C25D5/02 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C25D G03F C23C Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ^a Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. US 5 194 402 A (EHRFELD WOLFGANG ET AL) X 1,4 16 March 1993 see column 2, line 54 - column 3, line 29 Α 2,3,5-10Α US 5 080 763 A (BAIGETSU AIICHIROU) 14 1-10 January 1992 see column 1, line 22 - line 47 US 5 387 495 A (LEE JAMES C K ET AL) 7 Α 1 - 10February 1995 see the whole document Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the "O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docuother means ments, such combination being obvious to a person skilled

1

document published prior to the international filing date but in the art. later than the priority date claimed "&" document member of the same patent family Date of the actual completion of theinternational search Date of mailing of the international search report 19 February 1998 27/02/1998 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx, 31 651 epo nl. Ekhult, H Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

International Application No
PCT/DE 97/02230

		PCT/DE 97/02230	
.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT			
tegory:	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
	MINAMI K ET AL: "FABRICATION OF DISTRIBUTED ELECTROSTATIC MICRO ACTUATOR (DEMA)" JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, vol. 2, no. 3, 1 September 1993, pages 121-127, XP000426532 see paragraph V; figure 7		1-10
		_1	

INTERNATIONAL SEARCH REPURT

information on patent family members

PCT/DE 97/02230

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5194402 A	16-03-93	DE 3727142 A WO 8901632 A EP 0371069 A JP 6093513 B JP 2500475 T	23-02-89 23-02-89 06-06-90 16-11-94 15-02-90
US 5080763 A	14-01-92	JP 3008337 A	16-01-91
US 5387495 A	07-02-95	NONE	

INTERNATIONALER RECHERCHENBERICHT

Inter...dlonales Aktenzeichen PCT/DE 97/02230

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 6 C25D1/00 C25D5/02

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 6 C25D G03F C23C

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

Kategorie'	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Data Amanguah Na
	Dezelchinding der Veronermichtung, Sowert entorderlicht unter Angabe der in Betracht kommenden Telle	Betr. Anspruch Nr.
X	US 5 194 402 A (EHRFELD WOLFGANG ET AL) 16.März 1993	1,4
A	siehe Spalte 2, Zeile 54 - Spalte 3, Zeile 29	2,3,5-10
Α	US 5 080 763 A (BAIGETSU AIICHIROU) 14.Januar 1992 siehe Spalte 1, Zeile 22 - Zeile 47	1-10
A	US 5 387 495 A (LEE JAMES C K ET AL) 7.Februar 1995 siehe das ganze Dokument -/	1-10

X	Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen				
	entnehmen				

X | Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung,
- "P" Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- "T" Spätere Veröffentlichung, die nach deminternationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung miteiner oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

19.Februar 1998

27/02/1998

Bevollmächtigter Bediensteter

Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

Ekhult, H

1

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/DE 97/02230

•	PCT/DE 97/02230			
C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN				
(ategorie ³	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.		
A	MINAMI K ET AL: "FABRICATION OF DISTRIBUTED ELECTROSTATIC MICRO ACTUATOR (DEMA)" JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, Bd. 2, Nr. 3, 1.September 1993, Seiten 121-127, XP000426532 siehe Absatz V; Abbildung 7	1-10		

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/DE 97/02230

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 5194402 A	16-03-93	DE 3727142 A WO 8901632 A EP 0371069 A JP 6093513 B JP 2500475 T	23-02-89 23-02-89 06-06-90 16-11-94 15-02-90
US 5080763 A	14-01-92	JP 3008337 A	16-01-91
US 5387495 A	07-02-95	KEINE	