

planetmath.org

Math for the people, by the people.

section filter

Canonical name SectionFilter

Date of creation 2013-03-22 16:41:37 Last modified on 2013-03-22 16:41:37

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 4

Author CWoo (3771)
Entry type Definition
Classification msc 54A99
Classification msc 03E99

Let X be a set and $(x_i)_{i\in D}$ a non-empty net in X. For each $j\in D$, define $S(j):=\{x_i\mid i\leq j\}$. Then the set

$$S := \{ S(j) \mid j \in D \}$$

is a filter basis: S is non-empty because $(x_i) \neq \emptyset$, and for any $j, k \in D$, there is a ℓ such that $j \leq \ell$ and $k \leq \ell$, so that $S(\ell) \subseteq S(j) \cap S(k)$.

Let \mathcal{A} be the family of all filters containing S. \mathcal{A} is non-empty since the filter generated by S is in \mathcal{A} . Order \mathcal{A} by inclusion so that \mathcal{A} is a poset. Any chain $\mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \cdots$ has an upper bound, namely,

$$\mathcal{F} := \bigcup_{i=1}^{\infty} \mathcal{F}_i.$$

By Zorn's lemma, \mathcal{A} has a maximal element \mathcal{X} .

Definition. \mathcal{X} defined above is called the *section filter* of the net (x_i) in X.

Remark. A section filter is obviously a filter. The name "section" comes from the elements S(j) of S, which are sometimes known as "sections" of the net (x_i) .