Disjoint list-colorings for planar graphs

Wouter Cames van Batenburg

Joint work with Stijn Cambie and Xuding Zhu

Budapest, July 2024

List-packing

Introduced in 2021, the **list-packing number** of a graph G has several equivalent definitions and interpretations, e.g. in terms of

- Chromatic number of certain blow-ups of G, or
- Perfect matchings of certain hypergraphs, or
- Disjoint independent transversals, or
- Disjoint list-colorings.

Recent papers studied well-definedness of the list-packing number, bounds in terms of maximum degree and chromatic number, inverse problems, counting, computability, . . .

List-packing

Introduced in 2021, the **list-packing number** of a graph G has several equivalent definitions and interpretations, e.g. in terms of

- Chromatic number of certain blow-ups of G, or
- Perfect matchings of certain hypergraphs, or
- Disjoint independent transversals, or
- Disjoint list-colorings.

Recent papers studied well-definedness of the list-packing number, bounds in terms of maximum degree and chromatic number, inverse problems, counting, computability, . . .

This talk focuses on planar graphs (Cambie, CvB and Zhu, 2023+)

Plan for this talk:

Motivate list-packing (of planar graphs) from the bottom-up.

Starting from...

- coloring
- 2 list-coloring
- counting list-colorings
- Iist-colorings with special requests
- balanced probability distributions on list-colorings

...we will end up with a definition of the list-packing number and see that it can be used to strengthen some of the literature on the above concepts.

Chromatic number

 $\chi(G)$ the chromatic number of a graph G.

Theorem (Appel and Haken, 1977; Grötzsch, 1959)

For *G* planar:

$$\chi(G) \leq \begin{cases} 4 \\ 3 & \text{if } G \text{ triangle-free.} \end{cases}$$

List-coloring

Definition (Vizing, 1976; Erdős, Rubin and Taylor, 1979)

The **list-chromatic number** $\chi_{\ell}(G)$ of a graph G is the smallest integer k such that for every k-fold list-assignment $L:V(G)\to {\mathbb{N}\choose k}$, there exists an L-colouring, i.e. a proper vertex-coloring c s.t. $c(v)\in L(v)$ for all v.

1990s: List-coloring planar graphs

Recall:

Theorem (Appel and Haken, 1977; Grötzsch, 1959)

For G planar:

$$\chi(G) \leq \begin{cases} 4 \\ 3 & \text{if } G \text{ triangle-free.} \end{cases}$$

However, this does not generalize to list-coloring.

Theorem (Thomassen, 1994, 1995; Voigt, 1993, 1995; Mirzakhani, 1996)

For *G* planar, the optimal bounds are:

$$\chi_{\ell}(G) \leq egin{cases} 5 \ 4 & ext{if } G ext{ triangle-free} \ 3 & ext{if } G ext{ girth} \geq 5. \end{cases}$$

2000s: Exponentially many L-colorings

Results from the 1990s on previous slide guarantee existence of at least one L-coloring. In fact there exist exponentially many, i.e. $\geq c^{\#V(G)}$ for some uniform c>1.

Theorem (Thomassen, 2007; Kelly and Postle, 2008)

For G planar, a k-fold list-assignment L admits exponentially many L-colorings in each of the following cases:

$$\begin{cases} k = 5 \\ k = 4 \text{ and } G \text{ triangle-free} \\ k = 3 \text{ and } G \text{ girth } \geq 5. \end{cases}$$

2010s and 2020s: Flexible list-colorings

Since there exist many L-colorings, can we guarantee a very nice one?

Suppose each vertex v requests a preferred color R(v) from its list. Does there exist an L-coloring that respects a large fraction of the requests?

2010s and 2020s: Flexible list-colorings

Since there exist many L-colorings, can we guarantee a very nice one?

Suppose each vertex v requests a preferred color R(v) from its list. Does there exist an L-coloring that respects a large fraction of the requests?

Definition (Dvořák, Norin and Postle, 2019)

Graph G is ϵ -flexible wrt list-assignment L if for every collection of requests $(R(v) \in L(v))_{v \in V(G)}$, there exists an L-coloring c s.t.

$$c(v) = R(v)$$

for at least $\epsilon \cdot \# V(G)$ of the vertices v.

Example

In special case that all vertices have the **same list** L(v) = [k], it easily follows that G is $\frac{1}{k}$ -flexible wrt L. (Provided $k \ge \chi_{\ell}(G)$)

Example

In special case that all vertices have the **same list** L(v) = [k], it easily follows that G is $\frac{1}{k}$ -flexible wrt L. (Provided $k \ge \chi_{\ell}(G)$)

Proof sketch

Fix a k-coloring c_0 , and cyclically permute it to obtain k colorings. By pigeon hole, at least one of them satisfies $\geq \frac{1}{k} \cdot \#V(G)$ requests.

Example with k = 3. Three permuted 3-colorings of C_5 .

Definition (Dvořák, Norin and Postle, 2019)

Graph G is **weighted** ϵ -**flexible** wrt list-assignment L if there exists a probability distribution on L-colorings c s.t. $\forall v \in V(G), \forall x \in L(v)$:

$$\mathbb{P}(c(v)=x)\geq \epsilon.$$

Remark: **weighted** ϵ -**flexible** implies ϵ -**flexible**:

Definition (Dvořák, Norin and Postle, 2019)

Graph G is **weighted** ϵ -**flexible** wrt list-assignment L if there exists a probability distribution on L-colorings c s.t. $\forall v \in V(G), \forall x \in L(v)$:

$$\mathbb{P}(c(v)=x)\geq \epsilon.$$

Remark: **weighted** ϵ -**flexible** implies ϵ -**flexible**:

Proof

The expected value of the number of satisfied requests is

$$\sum_{v \in V(G)} \mathbb{P}(c(v) = R(v)) \ge \sum_{v \in V(G)} \epsilon.$$

So there exists a coloring satisfying $\geq \epsilon \cdot \# V(G)$ requests.

Definition (Dvořák, Norin and Postle, 2019)

Graph G is **weighted** ϵ -**flexible** wrt list-assignment L if there exists a probability distribution on L-colorings c s.t. $\forall v \in V(G), \forall x \in L(v)$:

$$\mathbb{P}(c(v)=x)\geq \epsilon.$$

Remark: wrt k-fold L, the **highest value we can hope for is** $\epsilon = \frac{1}{k}$.

Definition (Dvořák, Norin and Postle, 2019)

Graph G is **weighted** ϵ -**flexible** wrt list-assignment L if there exists a probability distribution on L-colorings c s.t. $\forall v \in V(G), \forall x \in L(v)$:

$$\mathbb{P}(c(v)=x)\geq \epsilon.$$

Remark: wrt k-fold L, the **highest value we can hope for is** $\epsilon = \frac{1}{k}$.

Proof

Otherwise pick any vertex v. We get contradiction:

$$1 = \sum_{x \in L(v)} \mathbb{P}(c(v) = x) \ge \epsilon \cdot \#L(v) > \frac{1}{k} \cdot k = 1.$$

Theorem (Dvořák, Norin and Postle, 2019; Dvořák, Masařik, Musílek, Prangrác, 2020 and 2021; Bi and Bradshaw, 2023)

A planar G is (weighted) ϵ -flexible wrt all k-fold list-assignments L for:

$$\begin{cases} k = 7 \\ k = 4 & \text{if } G \text{ triangle-free} \\ k = 3 & \text{if } G \text{ girth } \geq 6. \end{cases}$$

For respectively $\epsilon=7^{-36}, \epsilon=2^{-186}$ and $\epsilon=2^{-30}$.

Theorem (Dvořák, Norin and Postle, 2019; Dvořák, Masařik, Musílek, Prangrác, 2020 and 2021; Bi and Bradshaw, 2023)

A planar G is (weighted) ϵ -flexible wrt all k-fold list-assignments L for:

$$\begin{cases} k = 7 \\ k = 4 & \text{if } G \text{ triangle-free} \\ k = 3 & \text{if } G \text{ girth } \geq 6. \end{cases}$$

For respectively $\epsilon=7^{-36}, \epsilon=2^{-186}$ and $\epsilon=2^{-30}$.

Theorem (Cambie, CvB., Zhu, 2023+)

A planar G is (weighted) $\frac{1}{k}$ -flexible wrt all k-fold list-assignments L for:

$$\begin{cases} k = 8 \\ k = 5 & \text{if } G \text{ triangle-free} \\ k = 4 & \text{if } G \text{ girth } \geq 5 \text{ (=optimal)} \\ k = 3 & \text{if } G \text{ girth } \geq 6. \text{ (=optimal)} \end{cases}$$

So... what about the title of this talk? Why disjoint list-colorings?

Well...

k disjoint L-colorings

implies

weighted $\frac{1}{k}$ -flexible.

Disjoint list-colorings

Definition (Cambie, CvB., Davies, Kang, 2021)

The **list-packing number** $\chi_{\ell}^{\star}(G)$ of a graph G is the smallest integer k such that for every k-fold list-assignment $L:V(G)\to \binom{\mathbb{N}}{k}$, there are k disjoint L-colourings c_1,\ldots,c_k .

I.e.: for every vertex v and every color $x \in L(v)$, there is precisely one $i \in [k]$ such that $c_i(v) = x$.

Note: $\chi_{\ell}(G) \leq \chi_{\ell}^{\star}(G)$, since at least one *L*-colouring required.

Example: $\chi_{\ell}^{\star} \leq 3$ for cycles

Top: a 3-fold L for C_5 . Bottom: three disjoint L-colorings.

From list-packing to flexibility

Observation

If $\chi_\ell^\star(G) \leq k$ then G is weighted $\frac{1}{k}$ -flexible w.r.t every k-fold L-assignment.

Proof

Let c_1, \ldots, c_k be k disjoint L-colorings. Among them, choose a uniformly random coloring. Then at every vertex v, every color $x \in L(v)$ has equal probability $\frac{1}{k}$ of being assigned to v.

Thus... our results on flexibility follow from the theorem on the next slide.

Theorem (Cambie, C., Zhu 23+, and Cranston, Smith-Roberge 24+)

For every planar graph G:

$$\chi_{\ell}^{\star}(G) \leq \begin{cases} 8 \\ 5 & \text{if triangle-free.} \\ 4 & \text{if girth at least five. (4=optimal, even for larger girth!)} \end{cases}$$

Theorem (Cambie, C., Zhu 23+, and Cranston, Smith-Roberge 24+)

For every planar graph G:

$$\chi_{\ell}^{\star}(G) \leq \begin{cases} 8 \\ 5 & \text{if triangle-free.} \\ 4 & \text{if girth at least five. (4=optimal, even for larger girth!)} \end{cases}$$

Questions

- Does there exist a planar graph G with $\chi_{\ell}^{\star}(G) > 5$?
- Does there exist a triangle-free planar graph G with $\chi_{\ell}^{\star}(G) = 5$?

$$\chi_{\ell} = 3 < 4 = \chi_{\ell}^{\star}$$

$$\chi_{\ell} = 2 < 3 = \chi_{\ell}^{\star}$$

$$\chi_{\ell} = 4 = \chi_{\ell}^{\star}$$

Going mad

Definition maximum average degree

 $mad(G):= max\{average degree of H | H subgraph of G\}$

Planar graphs (and also K_5 -minor-free graphs) satisfy mad(G) < 6. In this way, our results follow from

Theorem (Cambie, CvB, Zhu 23+)

For every graph G,

$$\chi_{\ell}^{\star}(G) \leq egin{cases} 8 & ext{if mad}(G) < 6 \\ 5 & ext{if mad}(G) < 4 \\ 4 & ext{if mad}(G) < 10/3 \end{cases}$$

Planar girth \geq 6 graphs

Even though $\chi_\ell^\star \leq 3$ does NOT hold for every planar large girth graph, we still have...

Theorem (Cambie, CvB, Zhu, 2023+)

Every planar girth ≥ 6 graph is weighted $\frac{1}{3}$ -flexible wrt every 3-fold L.

Planar girth \geq 6 graphs

Even though $\chi_{\ell}^{\star} \leq 3$ does NOT hold for every planar large girth graph, we still have...

Theorem (Cambie, CvB, Zhu, 2023+)

Every planar girth ≥ 6 graph is weighted $\frac{1}{3}$ -flexible wrt every 3-fold L.

Proof sketch

- By a Technical Lemma, it suffices to prove that G contains an induced subtree T of which every vertex has at most one neighbour in G V(T).
- ullet Euler's formula and a subtle global discharging argument yield T.

Technical lemma; a tree-layering

Suppose G has a layering into **induced subtrees** T_1, T_2, \ldots , such that each vertex in T_i has at most one neighbour in the layers T_1, \ldots, T_{i-1} to its left. Then the whole graph is **weighted** $\frac{1}{3}$ -flexible.

Technical lemma; a tree-layering

Suppose G has a layering into **induced subtrees** T_1, T_2, \ldots , such that each vertex in T_i has at most one neighbour in the layers T_1, \ldots, T_{i-1} to its left. Then the whole graph is **weighted** $\frac{1}{3}$ -flexible.

This works because trees are weighted $\frac{1}{2}$ -flexible wrt every 2-fold L

Technical lemma; more general

A layering of the vertices of G. If each layer V_i is **weighted** $\frac{1}{k-1}$ -**flexible**, and each vertex in V_i has at most one neighbour in the layers V_1, \ldots, V_{i-1} to its left, then the whole graph is **weighted** $\frac{1}{k}$ -**flexible**.

Technical lemma; more general

(Can be applied to any graph class with a nice layered structure; Cartesian products, graphs with bounded treedepth, ...)

Summary

List-packing lies at the base of a sequence of implications.

$$\chi_{\ell}^{\star}(G) \leq k \Leftrightarrow G \text{ admits } k \text{ disjoint } L\text{-colorings } \text{wrt every } k\text{-fold } L$$

$$\Rightarrow G \text{ is weighted } \frac{1}{k}\text{-flexible } \text{wrt every } k\text{-fold } L$$

$$\Rightarrow G \text{ is } \frac{1}{k}\text{-flexible } \text{wrt every } k\text{-fold } L$$

$$\Rightarrow G \text{ has an } L\text{-coloring } \text{for every } k\text{-fold } L$$

$$\Leftrightarrow \chi_{\ell}(G) \leq k$$

$$\Rightarrow \chi(G) \leq k.$$

Summary

List-packing lies at the base of a sequence of implications.

$$\chi_{\ell}^{\star}(G) \leq k \Leftrightarrow G \text{ admits } k \text{ disjoint } L\text{-colorings } \text{wrt every } k\text{-fold } L$$

$$\Rightarrow G \text{ is weighted } \frac{1}{k}\text{-flexible } \text{wrt every } k\text{-fold } L$$

$$\Rightarrow G \text{ is } \frac{1}{k}\text{-flexible } \text{wrt every } k\text{-fold } L$$

$$\Rightarrow G \text{ has an } L\text{-coloring } \text{for every } k\text{-fold } L$$

$$\Leftrightarrow \chi_{\ell}(G) \leq k$$

$$\Rightarrow \chi(G) \leq k.$$

- Through bounding χ_{ℓ}^{\star} , we improved results on weighted ϵ -flexibility, with optimal value $\epsilon = \frac{1}{\ell}$.
- In some cases we directly proved weighted $\frac{1}{k}$ -flexibility, via a graph layering argument.

Many open problems

What is the optimal upper bound on $\chi_{\ell}^{\star}(G)$ if G is . . .

- Planar. 5, 6, 7 or 8?
- Planar triangle-free. 4 or 5?
- Planar bipartite. 3,4 or 5?
- Bounded treewidth?

Thank you!

Cambie, S., Cames van Batenburg, W. and Zhu, X., Disjoint list-colorings for planar graphs, arxiv:2312.17233

Technical lemma- exact statement of special case

The following holds for every graph G:

Key technical lemma

Let $k \ge 2$. If there is an induced subgraph T of G s.t.

- Every vertex of T has at most one neighbour in G V(T);
- 2 *T* is weighted $\frac{1}{k-1}$ -flexible;
- 3 G V(T) is weighted $\frac{1}{k}$ -flexible;

Then *G* is weighted $\frac{1}{k}$ -flexible.

Mad question

Question

Let $k \in \mathbb{N}$. Does mad(G) < k imply $\chi_{\ell}^{\star}(G) \le k + 1$?