from which we get

$$||v - u||^2 = ||x + y + z||^2 = ||x + z + y||^2$$

$$= ||x + z||^2 + ||y||^2 + 2\Re\langle x, y \rangle + 2\Re\langle z, y \rangle$$

$$\ge ||y||^2 = ||p_X(v) - p_X(u)||^2.$$

However, $||p_X(v) - p_X(u)|| \le ||v - u||$ obviously implies that p_X is continuous.

Figure 48.6: Let X be the solid gold ellipsoid. The vector v - u is the sum of the three green vectors, each of which is determined by the appropriate projections.

We can now prove the following important proposition.

Proposition 48.7. Let E be a Hilbert space.

- (1) For any closed subspace $V \subseteq E$, we have $E = V \oplus V^{\perp}$, and the map $p_V \colon E \to V$ is linear and continuous.
- (2) For any $u \in E$, the projection $p_V(u)$ is the unique vector $w \in E$ such that

$$w \in V$$
 and $\langle u - w, z \rangle = 0$ for all $z \in V$.

Proof. (1) First, we prove that $u - p_V(u) \in V^{\perp}$ for all $u \in E$. For any $v \in V$, since V is a subspace, $z = p_V(u) + \lambda v \in V$ for all $\lambda \in \mathbb{C}$, and since V is convex and nonempty (since it is a subspace), and closed by hypothesis, by Proposition 48.5(2), we have

$$\Re(\overline{\lambda}\langle u - p_V(u), v \rangle) = \Re(\langle u - p_V(u), \lambda v \rangle) = \Re\langle u - p_V(u), z - p_V(u) \rangle \le 0$$