

深度数据驱动的重建与交互

3D Reconstruction and Human-Computer Interaction Driven by Depth Data

报告人:许威威,浙江大学CAD&CG国家重点实验室百人计划研究员

国家自然科学基金优秀青年基金获得者

- Background
 - Fast development of commercial RGBD cameras
 - Various applications of digitalized indoor scenes

Holoportation

Holoportation

Kinect Fusion

Virtual Try-on

Limitations of Existing Reconstruction Methods

- Existing representations of geometry from depth data
 - Point clouds
 - Signed distance fields
 - Axis-aligned plane proxy
- Lack of semantics
 - Not suitable to applications that require semantic information

[Du et al. 2011]

[Izadi et al. 2011]

[Furukawa et al.2009]

云栖社区 yq.aliyun.com

Our Goal

Semantic modeling

[Yu et al. 2011] [Merrell et al. 2011]

Challenges for Semantic Modeling

- Object segmentation (detection)
 - Automatic methods:
 - Accuracy issue
 - Generalization capability issue
 - Interactive methods:
 - Interaction efforts
- Geometry reconstruction
 - Severe occlusions in indoor scenes
 - Partial and noisy depth data

Our Key Idea

Combine user interaction and automatic algorithm

Automatic

Improved

Our Key Idea

 Search a 3D model database to find models that best approximate the scene geometry

Related Work: Indoor Scene Images Segmentation and Labeling

- CRF model
 - [Xiong and Huber 2010]
 - [Anand et al. 2011]
 - [Silberman and Fergus 2011]
 - [Koppula et al. 2011]
 - [Koppula et al. 2011]
- Object detection
 - [Janoch et al. 2011]
 - [Lai et al. 2010]
- Interactive segmentation
 - [Li et al. 204]

<mark>云栖社区</mark> yq.aliyun.com

Related Work: Indoor Scene Modeling

- Point cloud
 - [Fox et al. 1999]
 - [Whitaker et al. 1999]
- Image-based modeling
 - [Furukawa and Ponce 2010]
 - [Furukawa et al. 2009a]
 - **–** ...
- RGBD Camera
 - [Izadi et al. 2011]
 - [Henry et al. 2012]
 - [Du et al. 2011]

Interactive Context-aware Image Segmentation and Labeling

Labeling with CRF model

$$E(C) = \sum_{i}^{\infty} E_1(C_i : x_i) + \lambda \sum_{i,j}^{\infty} E_2(C_i, C_j)$$

Progressively updated to make the CRF model context aware

C: Image Labeling x_i : Pixel

Data Term

Appearance term Geometry term

$$E_1(c_i : x_i) = E_a(c_i : x_i^a) + E_g(c_i : x_i^g)$$

$$E_g(c_i: x_i^g) = -\log((1 - \alpha_g)P_t(c_i|x_i^g) + \alpha_gP_c(c_i|x_i^g))$$

NYU image database

Previous segmentation result

 α_g : weight to blend P_t and P_c

云栖社区 yq.aliyun.com

Data Term – Geometry Term

- Local geometry feature x_i^g
 - Height: h_i
 - Size: s_i
 - Orientation: $\overline{\theta_i}$

$$P_t(c_i|x_i^g) = P_t(c_i|h_i)P_t(c_i|s_i)P_t(c_i|\theta_i)$$

Data Term – Model Updating

Geometry term updating

Compatibility Term

- $E_2(c_i, c_j) = \delta[c_i \neq c_j] \operatorname{sim}(\mathbf{f}_i, \mathbf{f}_j)$
 - $\mathbf{f}_i = [r, g, b, d]^T$
 - Concatenation of the RGB values and depth value at pixel i

$$- \sin(\mathbf{f}_i, \mathbf{f}_j) = \exp(-\frac{\|\mathbf{f}_i - \mathbf{f}_j\|^2}{2\sigma^2})$$

- Similarity between two pixels
- σ : average distances between the features

Experiment Results

- Model Updating in Segmentation

First frame

automatic segmentation

Segmentation result updated according to user strokes

Second frame automatic segmentation

Segmentation result using geometry model

Data-Driven Construction of Indoor Scenes

Construction procedure

云栖社区 yq.aliyun.com

Matching with Random Regression Forest - Training

- Patch: $\widehat{P}_i = (\mathbf{I}_i, \theta_i)$
 - I_i: **geometry** features
 - $\theta_{i} = \{\theta_{yaw}, \theta_{pitch}, \theta_{roll}, t, \mathbf{m}_{i}\}$

Sample number N_i for each class

云栖社区 yq.aliyun.com

Matching with Random Regression Forest - Testing

- Dense sampling
- Average all candidate votes on the leaves to get the model label distribution:
- $p(\mathbf{m}|\mathbf{0}) = \frac{1}{K \times N} \sum_{i=1}^{n} \sum_{j=1}^{K} p(\mathbf{m}_{j}|\widehat{P}_{i})$
- Cluster $\{\theta_{yaw}, \theta_{pitch}, \theta_{yaw}, t\}$ to remove noise

Experiment Results - Model Matching Accuracy

Examples of segmented objects

Accuracy as function of testing stride

Accuracy as function of tree depth

Experiment Results – Modeling Processing

Experiment Results – More Result

Experiment Results – Failure Case

Online Structure Analysis for Real-time Indoor Scene Reconstruction

Yizhong Zhang *

Yiying Tong #

*Zhejiang Univ.

Weiwei Xu †

Kun Zhou *

*Hangzhou Normal Univ

#Michigan State Univ.

Our Goal

My lab, over 100m², scanned in 70 minutes

Related works

[Nießner et al. 2013]

[Chen et al. 2013]

[Zhou et al. 2013]

Pipeline

Plane/Object Labeling

Scene Construction User Interaction

refined depth (last frame)

KinectFusion

Labeled Volume

Structured Scene

Pipeline

Plane/Object Labeling Scene Construction

User Interaction

refined depth (last frame)

KinectFusion

Labeled Volume

Structured Scene

Labeling

Before Labeling

After Labeling

Plane Detetection

Ray casting depth

Plane detected

Flood fill

Labeling

After Labeling

Label Existing Planes

Label New Objects

Label New Planes

Label Existing Objects

25 meters corridor, capture at 30fps

KinectFusion

Ray Casting Depth

Ray Casting Depth

Refined Depth

Drifting Relief

Pipeline

Plane/Object Labeling

Scene Construction User Interaction

refined depth (last frame)

KinectFusion

Labeled Volume

Structured Scene

Scene Construction

Raw Data

Constructed Scene

Rectilinear Structure Heuristics

Rectilinear Structure Heuristics

Rectilinear Structure Heuristics

Pipeline

Plane/Object Labeling

Scene Construction

User Interaction

refined depth (last frame)

KinectFusion

Labeled Volume

Structured Scene

User interaction

Result

Meeting room, 140m², 56 duplicate chairs, 40 minutes

Result

<mark>云栖社区</mark> yq.aliyun.com

Result

Apartment, multiple rooms, 15 minutes

Discussion

Conclusion

- An real-time indoor-scene reconstruction system
- Online segmentation
- Improved accuracy

乙天・智能