

Sumário

- 1. Definições
- 2. Os Postulados de Euclides
- 3. Secantes a Várias Paralelas
- 4. Secantes a Várias Paralelas
- 5. Ângulos de Lados Paralelos Ângulos de Lados Perpendiculares

Definições

Retas Paralelas

Definição 1

Duas retas são ditas **paralelas**, se

- i) estão em um mesmo plano;
- ii) não se interceptam.

Retas Reversas

Definição 2

Duas retas que não estão num mesmo plano chamam-se retas reversas.

Teorema 1

Duas retas paralelas estão contidas em um único plano.

- ► **Hipótese:** *r* e *s* são paralelas.
- **Tese:** Existe um único plano α contendo r e s.

Como as retas são paralelas, elas não se interceptam e estão contida num plano α . Vamos mostrar que α é único.

- ► Tome um ponto A na reta r e dois pontos, B e C, na reta s.
- Os três pontos acima são não colineares, logo existe um único plano que os contém.
- Como α contém as duas retas, este plano também contém os pontos A, B e C.
- Como vimos acima, só existe um plano que contém os três pontos, logo esse plano é o α que contém as duas retas.

Teorema 2

Num mesmo plano, duas retas distintas perpendiculares a uma terceira, são paralelas entre si.

Demonstração:

► Hipótese:

$$r, s, t \in \alpha, r \perp s,$$

 $r \perp t e s \neq t.$

► **Tese:** *s* e *t* são paralelas.

- ▶ Suponha, por absurdo, que as retas *s* e *t* se interceptam em um ponto *P*.
- ▶ Pelo Corolário 2 do Teorema 7 (Triângulos), por esse ponto *P* passa uma única reta perpendicular a reta *r*.
- Como $r \perp s$ e $r \perp t$, teríamos t = s, contrariando a nossa hipótese de que as retas são distintas.
- Portanto, $s \cap t = \emptyset$, de onde segue que as retas estão num mesmo plano (hipótese) e não se interceptam, sendo paralelas.

Os Postulados de Euclides

Elementos de Euclides

- No início do curso, falamos um pouco (bem pouco), sobre a obra 'Elementos' de Euclides.
- Esse livro faz uma apresentação da Geometria muito bem organizada na roupagem da lógica.
- Cada resultado é demonstrado com base no antecedente, de modo que, para o processo tenha começo, é preciso formular algumas proposições que ficam sem demonstração (chamados axiomas ou postulados).

Os Postulados de Euclides

Euclides formulou 5 postulados que, traduzidos e interpretados em nossa linguagem, são enunciados a seguir:

- 1. Por dois pontos passa uma reta e somente uma.
- 2. A partir de qualquer ponto de uma reta dada é possível marcar um segmento de comprimento dado sobre a reta.
- 3. É possível descrever um círculo de centro e raios dados.
- 4. Todos os ângulos retos são iguais (Euclides define 'ângulo reto' como sendo igual ao ângulo formado por duas retas que se cortam de maneira a formar quatro ângulos iguais.)
- 5. Se uma reta t corta duas outras r e s (todas num mesmo plano) de modo que um dos pares dos ângulos colaterais internos tem soma inferior a dois ângulos retos, então r e s, quando prolongadas suficientemente, se cortam do lado de t em que se encontram os referidos ângulos colaterais internos.

O 5º Postulado de Euclides

O enunciado fica mais claro quando acompanhado da observação da figura abaixo:

- Num mesmo plano, *t* corta as retas *r* e *s*.
- Tome pares (α, β) , onde α é um ângulo formado pela interseção de t e r e β formado pela interseção de t e s (ângulos colaterais). Acima, temos apenas um exemplo. Cada interseção gera 4 ângulos.

O 5º Postulado de Euclides

▶ Se existir um par no qual a sua soma é menor que 180, as retas *r* e *s* se cortam. Além disso, se cortam no semiplano gerado por *t*, em que os ângulos colaterais referidos estão (nesse exemplo, do lado direito de *t*).

O 5º Postulado de Euclides

No caso em que não há um par (α, β) tal que $\alpha + \beta < 180$, temos então, obrigatoriamente (por quê?) $\alpha = \beta = 90^{\circ}$, em todos os pares. Assim, teremos:

As retas não r e s não se cruzam.

Postulado 12

Postulado de Playfair: Por um ponto não pertencente a uma reta, passa um única reta paralela à reta dada.

Esse postulado é equivalente ao 5º Postulado de Euclides. Leia mais em [1, 2, 3].

Postulado 12

Obs: O resultado acima é um postulado por causa da unicidade da paralela e não por causa da sua existência. Essa pode ser provada facilmente:

▶ Pelo Corolário 2 do Teorema 7 (Triângulos), passando por *P*, existe uma única reta perpendicular à reta *t*.

Postulado 12

O mesmo pode ser feito com a nova reta r.

- Pelo Corolário 2 do Teorema 7 (Triângulos),
 passando por P, existe uma única reta perpendicular
 à reta r, no mesmo plano α em que r e t estão.
- Pelo Teorema 2 (Retas Paralelas), como
 t e s são perpendiculares à r, num mesmo plano α,
 t e s são paralelas entre si, como queríamos demonstrar.

Teorema 3

Num mesmo plano, duas retas paralelas a um terceira são paralelas entre si.

Demonstração:	r	
► Hipótese: r e s são paralelas;		r e s são paralelas
t e s são paralelas; $r, s, t \in \alpha$.	s	_
► Tese: <i>r</i> e <i>t</i> são paralelas.		s e t são paralelas —

- Suponha, por absurdo, que r e t não são paralelas.
- Como estão num mesmo plano, isso quer dizer que existe um ponto P que é a interseção entre as duas retas.
- Por esse ponto P, podemos traçar duas retas distintas, $r \in t$, paralelas à reta s.
- ► Isso contraria o Postulado das Paralelas e, portanto, as retas r e t não podem ser concorrentes e, sim, paralelas, c.q.d.

Teorema 4

Num mesmo plano, se duas retas são paralelas, então toda reta que intercepta uma delas, também interceptará a outra.

- ► **Hipótese:** *r* e *s* são paralelas; *t* e *r* são concorrentes.
- ► **Tese:** *s* e *t* se interceptam.

- ▶ Suponha, por absurdo, que s e t não se interceptam.
- ► Então, s e t são retas paralelas entre si.
- ► Logo,

$$s \parallel t = s \parallel r$$

de onde concluímos, pelo Teorema 3, que *r* e *t* também são paralelas, contrariando a hipótese.

► Portanto, deve-se ter *s* e *t* concorrentes.

Teorema 5

Num mesmo plano, se duas retas são paralelas, então toda reta perpendicular a uma delas será perpendicular a outra.

- ► **Hipótese:** *r* e *s* são paralelas;
- $t\perp r$.
- **Tese:** $s \perp t$.

- ➤ Seja *P* o ponto de interseção entre as retas s e t (garantido pelo Teorema 4).
- ▶ Por P, trace uma reta s' perpendicular à reta t (garantido pelo Corolário 2, Teorema 7
 - Triângulos).

- ightharpoonup Assim, $r \perp t$ e $s' \perp t$.
- ightharpoonup Pelo Teorema 2, temos que r//s'.
- ► Assim, pelo ponto *P*, passam duas retas, s e s', paralelas à reta *r*.
- Pelo Postulado das Paralelas, tem-se s = s'.
- ► Portanto, s é perpendicular à r.

Secantes a Várias Paralelas

Reta Secante

Definição 3

Uma **secante** a duas retas coplanares é uma reta que as intercepta em dois pontos distintos.

Figura 1: t é secante às retas r e s, nos pontos A e B

Reta Secante

Definição 4

Sejam r e s retas coplanares e t uma secante às mesmas. Usaremos a seguinte nomenclatura:

- I. São denominados alternos internos os pares de ângulos:
 - ▶ 3 e 5
 - ▶ 4 e 6
 - II. São denominados **alternos externos** os pares de ângulos:
 - ▶ 1e7
 - ▶ 2e8

Reta Secante

- ▶ 1e5
- ▶ 4 e 8
- ▶ 2e6
- ▶ 3e7

- ▶ 4e5
- ▶ 3 e 6
- V. São denominados **colaterais externos** os pares de ângulos:
 - ▶ 1e8
 - ▶ 2e7

Teorema 6

Se duas retas paralelas são cortadas por uma secante, então os quatro ângulos agudos formados são congruentes, bem como os quatro ângulos obtusos.

- Hipótese: r e s são paralelas;
 t é secante às duas.
 - ► Tese:São congruentes os ângulos:

$$1 = 3 = 5 = 7$$

$$ightharpoonup 2 = 4 = 6 = 8$$

- Sejam A e B os pontos de interseções da secante com as retas r e s.
- ► Seja *M* o ponto médio do segmento *AB*.
- ► Pelo ponto *M*, tracemos um segmento perpendicular às retas *r* e s.
- Os triângulos retângulos CMA e DMB são congruentes (Caso LAA).

Demonstração:

- ► Com isso, são congruentes os ângulos 3 e 5.
- Como 1 = 3 e 5 = 7, por serem ângulos opostos pelo vértice, segue que

$$1 = 3 = 5 = 7$$
.

Por outro lado, 2 = 4 = 6 = 8 por serem suplementos de ângulos congruentes.

Sejam r e s retas coplanares cortadas por uma secante s. Se dois ângulos alternos são congruentes, então as retas r e s são paralelas.

- Suponha, por absurdo, que as retas não são paralelas.
- Como são coplanares, as retas devem se interceptar num ponto P, formando um triângulo ABP.
- Com isso, $\triangle ABP$ teria um ângulo externo com medida igual ao ângulo interno α , contrariando o teorema do ângulo externo.

Este teorema ainda é verdadeiro se substituirmos a expressão 'alternos internos' por:

- alternos externos
- correspondentes
- colaterais internos
- colaterais externos

Secantes a Várias Paralelas

Teorema 8

Dois segmentos paralelos, compreendidos entre retas paralelas, são congruentes.

•

- ► **Hipótese:** *r* e *s* são paralelas; \overline{AB} e \overline{DC} são paralelos.
- ightharpoonup Tese: AB = DC.

▶ Unindo os pontos *B* e *D* obtemos dois triângulos: *ABD* e *BDC*.

Considere as retas r e s cortadas pela transversal que contém \overline{BD} .

▶ O que podemos concluir sobre os ângulos $\alpha = D\hat{B}C$ e $\beta = B\hat{D}A$?

Considere agora as retas paralelas que contém \overline{AB} e \overline{DC} cortadas pela transversal que contém \overline{BD} .

• O que podemos concluir sobre os ângulos $\delta = \hat{CDB}$ e $\gamma = \hat{DBA}$?

• Qual é o caso de congruência que garante que $\triangle ABD = \triangle CDB$?

► Como podemos concluir que AB = DC?

Teorema

Teorema 9

Se três paralelas determinam segmentos congruentes em um secante às mesmas, então determinam segmentos congruentes em qualquer outra secante.

- Hipótese: r, s e t são paralelas;
 u é secante às três retas,
 com AB = BC.
 - ► **Tese:** Se v é secante às retas r, s e t, então NO = OP.

Pelos pontos A e B da figura, trace segmentos paralelos à secante v.

▶ Pelo Teorema 8, o que podemos concluir sobre os segmentos \overline{AF} e \overline{NO} ? E sobre os segmentos \overline{BD} , \overline{FE} e \overline{OP} ?

Considere os ângulos $\alpha = A\hat{B}F$ e $\beta = B\hat{C}D$, formados pela secante u através das paralelas s e t.

ii) Qual a relação entre α e β ?

Considere os ângulos $\gamma = B\hat{A}F$ e $\delta = C\hat{B}D$, formados pela secante u através das paralelas \overrightarrow{AE} e \overrightarrow{BD} .

iii) Qual a relação entre γ e δ ?

- ▶ Usando os itens ii) e iii), junto à hipótese de que AB = BC, qual o caso de congruência usado para mostrar que $\triangle AFB = \triangle CBD$?
- ► Como a congruência acima, junto ao item i), nos ajuda a concluir que NO = OP?

Ângulos de Lados Paralelos Ângulos de Lados Perpendiculares

Teorema

Teorema 10

Dois ângulos de lados respectivamente paralelos são congruentes ou suplementares; são congruentes se ambos são agudos ou obtusos e são suplementares se um é agudo e o outro obtuso.

- ► **Hipótese:** $\overline{AB} \parallel \overline{DE} \in \overline{BC} \parallel \overline{EF};$ $\overline{DE} \parallel \overline{HI} \in \overline{EF} \parallel \overline{GH}.$
- ► Tese: $A\hat{B}C = D\hat{E}F + G\hat{H}I = 180^{\circ}$.

4

i) $\overline{AB} \parallel \overline{DE} \in \overline{BC} \parallel \overline{EF}$; $\hat{B} \in \hat{E}$ são agudos.

- ► Coloque o segmento *DE* numa posição do plano onde \overrightarrow{BC} seja uma secante a este segmento.
- ▶ O que podemos concluir sobre os ângulos α e δ ?

Agora, inclua o segmento \overline{EF} , que é paralelo ao segmento \overline{BC} .

▶ Justifique por que podemos concluir que $\hat{ABC} = \hat{DEF}$.

ii) $\overline{AB} \parallel \overline{DE} \in \overline{BC} \parallel \overline{EF}; \hat{B} \in \hat{E}$ são agudos.

- ► Coloque o segmento *DE* numa posição do plano onde \overrightarrow{BC} seja uma secante a este segmento.
- O que podemos concluir sobre os ângulos α e δ ?

ii) $\overline{IH} \parallel \overline{DE} \in \overline{HG} \parallel \overline{EF}$; \hat{E} é agudo e \hat{H} é obtuso.

- Sobre a reta \overrightarrow{GH} , marque o ângulo ϵ complementar ao ângulo $G\widehat{H}I$.
- ► Com isso, formamos um ângulo agudo $I\hat{H}G'$, tal que $\overline{HI} \parallel \overline{DE}$ e $\overline{HG'} \parallel \overline{EF}$.
- ▶ Do item i), o que podemos concluir sobre *DÊF*, *IĤG'* e *GĤI*?

Teorema

Teorema 11

Dois ângulos de lados respectivamente perpendiculares são congruentes ou suplementares; são congruentes se ambos são agudos ou obtusos e são suplementares se um é agudo e o outro obtuso.

- ► Hipótese: $\overline{AB} \perp \overline{DE}$ e $\overline{BC} \perp \overline{EF}$; $\overline{AB} \perp \overline{DE}$ e $\overline{EF} \perp \overline{OB}$.
- ► Tese: $A\hat{B}C = D\hat{E}F + D\hat{E}F + O\hat{B}A = 180^{\circ}$.

i) $\overline{AB} \perp \overline{DE}$ e $\overline{BC} \perp \overline{EF}$; \hat{B} e \hat{E} são agudos.

- ▶ Pelo ponto B, tracemos $\overline{BQ} \parallel \overline{DE} \in \overline{BP} \parallel \overline{EF}$.
- Pelo Teorema 10, $D\hat{E}F = Q\hat{B}P$.

▶ Pelo Teorema 5, $\overline{AB} \perp \overline{BQ}$ e $\overline{BC} \perp \overline{BP}$. Logo,

$$Q\hat{B}P + P\hat{B}A = 90 \text{ e } P\hat{B}A + A\hat{B}C = 90$$

 $\Rightarrow D\hat{E}F = Q\hat{B}P = A\hat{B}C,$

como queríamos demonstrar.

▶ Dada a relação entre *DÊF* e *ABC*, o que podemos concluir sobre *DÊF* e *OBA*?

Teorema

Teorema 12

Se do ponto médio do lado de um triângulo, traçarmos uma paralela a um dos lados, esta passará pelo ponto médio do terceiro lado.

- ▶ **Hipótese:** $AD = DB \in \overline{DE} \parallel \overline{BC}$.
- ▶ **Tese:** AE = EC.

Pelo ponto E, que a paralela ao lado \overline{BC} corta o lado \overline{AC} , trace um segmento paralelo ao lado \overline{AB} , cortando o lado \overline{BC} .

i) Qual teorema garante que BD = FE?

ii) Sendo $\overline{AB} \parallel \overline{EF}$, cortadas pela transversal \overline{AC} , como podemos relacionar os ângulos \widehat{ADE} e \widehat{EFC} ?

iii) Como $\overline{DA} \parallel \overline{FE} \in \overline{DE} \parallel \overline{FC}$, como podemos relacionar os ângulos $\widehat{ADE} \in \widehat{EFC}$?

- iv) Dos itens anteriores, o que garante a congruência dos triângulos DAE e FEC?
- ▶ Da congruência acima, o que garante que AE = EC?

Teorema

O segmento que une os pontos médios de dois lados de um triângulo é paralelo ao terceiro lado.

- ▶ **Hipótese:** AD = DB e AE = EC.
- ▶ Tese: $\overline{DE} \parallel \overline{BC}$.

- 1. Pelo ponto médio de \overline{AB} , D, traçamos uma reta paralela ao lado \overline{BC} .
- 2. Pelo Teorema 12, essa reta corta o lado \overline{AC} no seu ponto médio, E.
- 3. Como pelos pontos distintos D e E passa uma única reta, o segmento \overline{DE} deve estar contido na reta traçada, o que implica em também ser paralelo ao lado \overline{BC} .

Corolário

Corolário 1

No triângulo anterior, tem-se $DE = \frac{BC}{2}$.

Demonstração: Exercício 7.

Teorema

Teorema 14

Em todo triângulo, a soma dos seus ângulos internos é igual à 180°.

- ► **Hipótese:** *ABC* é um triângulo.
- ► **Tese:** $\hat{A} + \hat{B} + \hat{C} = 180^{\circ}$.

Pelo vértice A, trace uma reta r paralela ao lado \overline{BC} .

i) Temos que $\theta+\hat{\mathbf{A}}+\rho=$ 180°.

• Observando as paralelas \overline{BC} e r cortadas pela transversal \overline{AC} , obtemos que os ângulos \hat{C} e ρ são alternos internos.

ii) Portanto, $\rho = \hat{C}$.

Por fim, observando as paralelas \overline{BC} e r cortadas pela transversal \overline{AB} , obtemos que os ângulos \hat{B} e θ são alternos internos.

iii) Portanto, $\theta = \hat{B}$.

De i), ii) e iii), concluímos que

$$180^{\circ} = \hat{A} + \theta + \rho = \hat{A} + \hat{B} + \hat{C}.$$

Corolário

Corolário 2

Em todo triângulo, a medida de qualquer ângulo externo é igual à soma das medidas dos ângulos internos não adjacentes.

Demonstração: Exercício 8.

Referencias I

- Geraldo Ávila. Legendre e o postulado das paralelas. *Revista da Olimpíada*, 6:64–76, 2005.
- Manfredo Perdigão do Carmo. Geometrias não-Euclidianas. Matemática Universitária, 6:25–48, 1987.
 - A geometria dos espaços curvos ou geometria não-euclidiana. ON - Observatório Nacional.