Homework Problems MATH 227 (Calculus II) Spring 2005

Evaluate the integral.

1.
$$\int (2-x)^6 dx$$

1.
$$\int (2-x)^6 dx$$
 2. $\int \frac{1+4x}{\sqrt{1+x+2x^2}} dx$ 3. $\int \frac{1}{(5t+4)^{2.7}} dx$ 4. $\int \sqrt{4-t} dt$ 5. $\int \cot x dx$ 6. $\int \sin^3 x \cos x dx$ 7. $\int \tan^2 \theta \sec^2 \theta d\theta$ 8. $\int_0^{\pi/3} \frac{\sin \theta}{\cos^2 \theta} d\theta$ 9. $\int_0^4 \frac{dx}{(x-2)^3}$

3.
$$\int_{C} \frac{1}{(5t+4)^{2.7}} dx$$

4.
$$\int \sqrt{4-t} \, dt$$

5.
$$\int \cot x \, dx$$

6.
$$\int \sin^3 x \, \cos x \, dx$$

7.
$$\int \tan^2 \theta \sec^2 \theta d\theta$$

$$8. \int_0^{\pi/3} \frac{\sin \theta}{\cos^2 \theta} \, d\theta$$

9.
$$\int_0^4 \frac{dx}{(x-2)^3}$$

Find the area enclosed by the given curves.

10.
$$y = 12 - x^2$$
, $y = x^2 - 6$

11.
$$y = x^3 - x$$
, $y = 3x$

12.
$$y = \sqrt{x}, y = x/2, x = 9$$

13.
$$y = \sin(\pi x/2), y = x$$

14.
$$y = \cos x$$
, $y = \sin 2x$, $x = 0$, $x = \pi/2$

10.
$$y = 12 - x^2$$
, $y = x^2 - 6$
11. $y = x^3 - x$, $y = 3x$
12. $y = \sqrt{x}$, $y = x/2$, $x = 9$
13. $y = \sin(\pi x/2)$, $y = x$
14. $y = \cos x$, $y = \sin 2x$, $x = 0$, $x = \pi/2$
15. $y = \sin x$, $y = \sin 2x$, $x = 0$, $x = \pi/2$

16.
$$y = \cos x$$
, $y = 1 - 2x/\pi$

17.
$$y = |x|, y = x^2 - 2$$

18.
$$y = \sin \pi x$$
, $y = x^2 - x$, $x = 2$

Find the volume of the solid obtained by rotating the region bounded by the given curves about the specific line. Sketch the region and the solid.

19.
$$y = x^2, y^2 = x$$
; about the *x*-axis

20.
$$y = \sec x, y = 1, x = -1, x = 1$$
; about the x-axis

21.
$$y^2 = x, x = 2y$$
; about the y-axis

22.
$$y = x^{2/3}, x = 1, y = 0$$
; about the y-axis

23.
$$y = x, y = \sqrt{x}$$
; about $y = 1$

24.
$$y = x^2, y = 4$$
; about $y = 4$

25.
$$y = x^4, y = 1$$
; about $y = 2$

Each integral represents the volume of a solid. Describe the solid.

26.
$$\pi \int_0^{\pi/2} \cos^2 x \, dx$$
 27. $\pi \int_2^5 y \, dy$

Find the volume of the solid obtained by rotating the region bounded by the given curves about the specific line. Sketch the region and the solid.

28.
$$y = x^3, y = 8, x = 0$$
; about the x-axis

29.
$$x = 4y^2 - y^3, x = 0$$
; about the x-axis

30.
$$y = 4x^2, 2x + y = 6$$
; about the *x*-axis

31.
$$x + y = 3, x = 4 - (y - 1)^2$$
; about the x-axis

32.
$$y = x^2, y = 0, x = 1, x = 2$$
; about $x = 1$

33.
$$y = x^2, y = 0, x = -2, x = -1$$
; about the y-axis

34.
$$y = x^2, y = 0, x = 1, x = 2$$
; about $x = 4$

Each integral represents the volume of a solid. Describe the solid.

35.
$$\int_0^3 2\pi x^5 dx$$
 36. $2\pi \int_0^2 \frac{y}{1+y^2} dy$

Compute the integral.

37.
$$\int x \cos 5x \, dx$$

38.
$$\int xe^{-x}dx$$

39.
$$\int re^{r/2}dr$$

1

40.
$$\int t \sin 2t \, dt$$

37.
$$\int x \cos 5x \, dx$$
 38. $\int xe^{-x} dx$ 39. $\int re^{r/2} dr$ 40. $\int t \sin 2t \, dt$ 41. $\int \ln(2x+1) \, dx$ 42. $\int \sin^{-1} x \, dx$ 43. $\int \arctan 4t \, dt$

$$42. \int \sin^{-1} x \, dx$$

43.
$$\int \arctan 4t \, dt$$

Find the volume of the solid obtained by rotating the region bounded by the given curves about the specific line. Sketch the region and the solid.

44.
$$y = e^x, y = e^{-x}, x = 1$$
; about the y-axis

45.
$$y = e^{-x}, y = 0, x = -1, x = 0$$
; about $x = 1$

Compute the integral.

From pure the integral.

46.
$$\int \frac{x-9}{(x+5)(x-2)} dx$$
47.
$$\int \frac{1}{(t+4)(t-1)} dt$$
48.
$$\int_{2}^{3} \frac{1}{x^{2}-1} dx$$
49.
$$\int_{0}^{1} \frac{x-1}{x^{2}+3x+2} dx$$
50.
$$\int_{1}^{2} \frac{4y^{2}-7y-12}{y(y+2)(y-3)} dy$$
51.
$$\int \frac{x^{2}+2x-1}{x^{3}-x} dx$$
52.
$$\int_{0}^{1} \frac{2x+3}{(x+1)^{2}} dx$$
53.
$$\int_{0}^{1} \frac{x^{3}-4x-10}{x^{2}-x-6} dx$$
54.
$$\int \frac{dx}{(x+5)^{2}(x-1)}$$
55.
$$\int \frac{x^{2}}{(x-3)(x+2)^{2}} dx$$
56.
$$\int \frac{dx}{x-\sqrt{x+2}}$$
57.
$$\int \frac{\sqrt{x}}{x-4} dx$$

Hint: In the last two problems, make a substitution to express the integral as a rational function.

Approximate the following integrals by Taylor sums using left-, right-endpoints, and midpoints, using 20 subintervals.

58.
$$\int_0^1 e^{x^2} dx$$
 59. $\int_1^2 \frac{\cos x}{x} dx$

Compute the integral.

60.
$$\int_{4}^{\infty} e^{-y/2} dy$$
 61. $\int_{-\infty}^{-1} e^{-2t} dt$ 62. $\int_{-1}^{0} \frac{dx}{x^2}$ 63. $\int_{9}^{34} \frac{dx}{\sqrt[3]{x-9}}$

Find the length of the curve.
64.
$$y = \frac{x^5}{6} + \frac{1}{10x^3}$$
, $1 \le x \le 2$ 65. $y = \frac{x^2}{2} - \frac{\ln x}{4}$, $2 \le x \le 4$ 66. $y = \ln(\cos x)$, $0 \le x \le \pi/3$ 67. $y = \ln x$, $1 \le x \le \sqrt{3}$

Find the area of the surface obtained by rotating the curve about the x-axis.

68.
$$y = \sqrt{x}$$
, $4 \le x \le 9$ 69. $y = \cosh x$, $0 \le x \le 1$ 70. $y = \frac{x^3}{6} + \frac{1}{2x}$, $\frac{1}{2} \le x \le 1$

Find the area of the surface obtained by rotating the curve about the y-axis.

71.
$$y = 1 - x^2$$
, $0 < x < 1$

Sketch the curves given by the following parametric equations. Eliminate the parameter to find a Cartesian equation for each curve.

72.
$$x = t^2 - 2$$
, $y = 5 - 2t$, $-3 \le t \le 4$ 73. $x = 1 + 3t$, $y = 2 - t^2$ 74. $x = 4\cos\theta$, $y = 5\sin\theta$, $-\pi/2 \le \theta \le \pi/2$ 75. $x = \ln t$, $y = \sqrt{t}$, $t \ge 1$

Find an equation of the tangent(s) to the curve at the given point. Then graph the curve and the tangent(s).

76.
$$x = 2\sin 2t$$
, $y = 2\sin t$; $(\sqrt{3}, 1)$ 77. $x = \sin t$, $y = \sin(t + \sin t)$; $(0, 0)$

Find the points on the curve where the tangent is horizontal or vertical.

78.
$$x = 10 - t^2$$
, $y = t^3 - 12t$ 79. $x = 2t^3 + 3t^2 - 12$, $y = 2t^3 + 3t^2 + 1$

Find the area bounded by the curve.

80.
$$x = t - 1/t$$
, $y = t + 1/t$ and the line $y = 2.5$.

81.
$$x = \cos t$$
, $y = e^t$, $0 \le t \le \pi/2$ and the lines $y = 1$ and $x = 0$.

Find the length of the curve.

82.
$$x = e^t + e^{-t}, y = 5 - 2t, 0 \le t \le 3$$

83.
$$x = e^t - t$$
, $y = 4e^{t/2}$, $-8 \le t \le 3$

Sketch the region in the plane consisting of points whose polar coordinates satisfy the given conditions.

84.
$$0 \le r < 4, \ -\pi/2 \le \theta < \pi/6$$
 85. $2 < r \le 5, \ 3\pi/4 < \theta < 5\pi/4$

Identify the curve by finding a Cartesian equation for the curve.

86.
$$r \cos \theta = 1$$
 87. $r = 3 \sin \theta$

Find a polar equation for the curve represented by the given Cartesian equation.

88.
$$x = -y^2$$
 89. $x + y = 9$

Sketch the curve with the given polar equation.

90.
$$r = \sin 2\theta$$
 91. $r = 2\cos 3\theta$

Determine whether the sequence converges or diverges. If it converges, find the limit.

92.
$$a_n = n(n-1)$$

93.
$$a_n = \frac{n+1}{3n-1}$$

94.
$$a_n = \frac{2^n}{3^{n+1}}$$

92.
$$a_n = n(n-1)$$
 93. $a_n = \frac{n+1}{3n-1}$ 94. $a_n = \frac{2^n}{3^{n+1}}$ 95. $a_n = \frac{n}{1+\sqrt{n}}$ 96. $a_n = \frac{\cos^2 n}{2^n}$ 97. $a_n = \frac{(-3)^n}{n!}$

96.
$$a_n = \frac{\cos^2 n}{2^n}$$

97.
$$a_n = \frac{(-3)^n}{n!}$$

Determine whether the sequence is increasing, decreasing, or not monotonic. Is the sequence bounded?

98.
$$a_n = \frac{2n-3}{3n+4}$$
 99. $a_n = n + \frac{1}{n}$

Determine whether the series converges or diverges. If it converges, find its sum.

100.
$$\frac{1}{8} - \frac{1}{4} + \frac{1}{2} - 1 + \cdots$$

100.
$$\frac{1}{8} - \frac{1}{4} + \frac{1}{2} - 1 + \cdots$$
 101. $-2 + \frac{5}{2} - \frac{25}{8} + \frac{125}{32} + \cdots$ 102. $\sum_{n=1}^{\infty} \frac{e^n}{3^{n-1}}$ 103. $\sum_{n=1}^{\infty} \frac{(n+1)^2}{n(n+2)}$ 104. $\sum_{k=1}^{\infty} (\cos 1)^k$ 105. $\sum_{n=1}^{\infty} \left(\frac{3}{5^n} + \frac{2}{n}\right)$

$$.02. \sum_{\substack{n=1 \\ \infty}} \frac{c}{3^{n-1}}$$

103.
$$\sum_{n=1}^{\infty} \frac{(n+1)^2}{n(n+2)}$$

104.
$$\sum_{k=1}^{\infty} (\cos 1)^k$$

105.
$$\sum_{n=1}^{\infty} \left(\frac{3}{5^n} + \frac{2}{n} \right)$$

Find the value of x for which the series converges. Find the sum of the series for those values of x.

106.
$$\sum_{n=0}^{\infty} 4^n x^n \qquad 107. \sum_{n=0}^{\infty} \frac{(x+3)^n}{2^n}$$

Determine whether the series converges or diverge

108.
$$\sum_{\substack{n=1\\ \infty}}^{\infty} \frac{1}{\sqrt[4]{n}}$$

109.
$$\sum_{n=1}^{\infty} e^{-n}$$

110.
$$\sum_{\substack{n=1\\ \infty}} \frac{n}{n^2 + 1}$$

111.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 - 4n + 5}$$

112.
$$\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^2 + 1}$$

113.
$$\sum_{n=1}^{\infty} \frac{n^2 - 1}{3n^4 + 1}$$

114.
$$\sum_{n=1}^{n=1} \frac{n^2 - 5n}{n^3 + n + 1}$$

$$108. \sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n}} \qquad 109. \sum_{n=1}^{\infty} e^{-n} \qquad 110. \sum_{n=1}^{\infty} \frac{n}{n^2 + 1} \qquad 111. \sum_{n=1}^{\infty} \frac{1}{n^2 - 4n + 5}$$

$$112. \sum_{n=1}^{\infty} \frac{\cos^2 n}{n^2 + 1} \qquad 113. \sum_{n=1}^{\infty} \frac{n^2 - 1}{3n^4 + 1} \qquad 114. \sum_{n=1}^{\infty} \frac{n^2 - 5n}{n^3 + n + 1} \qquad 115. \sum_{n=1}^{\infty} \frac{2n^2 + 7n}{3^n (n^2 + 5n - 1)}$$

$$116. \sum_{n=1}^{\infty} (-1)^n \frac{2n}{4n^2 + 1} \qquad 117. \sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{1 + 2\sqrt{n}} \qquad 118. \sum_{n=1}^{\infty} \frac{\sin(n\pi/2)}{n!} \qquad 119. \sum_{n=1}^{\infty} (-1)^n \cos\left(\frac{\pi}{n}\right)$$

116.
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n}{4n^2 + 1}$$

117.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{1 + 2\sqrt{n}}$$

118.
$$\sum_{n=1}^{\infty} \frac{\sin(n\pi/2)}{n!}$$

119.
$$\sum_{n=1}^{\infty} (-1)^n \cos\left(\frac{\pi}{n}\right)$$

Determine whether the series is absolutely convergent, conditionally convergent, or divergent. 120. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[4]{n}}$ 121. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2+1}$ 122. $\sum_{n=1}^{\infty} \frac{n(-3)^n}{4^{n-1}}$ 123. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2 \, 2^n}{n!}$

3

120.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[4]{n}}$$

121.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2 + 1}$$

122.
$$\sum_{n=1}^{\infty} \frac{n(-3)^n}{4^{n-1}}$$

123.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2 2^n}{n!}$$

Find the radius of convergence and interval of convergence of the series.

124.
$$\sum_{n=0}^{\infty} n^3 (x-5)^n \qquad 125. \sum_{n=0}^{\infty} \frac{(3x-2)^n}{n \, 3^n}$$

Find a power series representation for the function and determine the interval of convergence. 126.
$$f(x) = \frac{1}{1+9x^2}$$
 127. $f(x) = \frac{x}{4x+1}$ 128. $f(x) = \ln(5-x)$ 129. $f(x) = \frac{x^3}{(x-2)^2}$

Find the Taylor series for f centered at a.

130.
$$f(x) = \cos x$$
, $a = \pi$ 131. $f(x) = x^{-2}$, $a = 1$