Grupy w próbach klinicznych

- Grupa kontrolna
- Grupy eksperymentalne (leczone)
- Metody randomizacji
- Warstwowanie
- Kiedy randomizować?
- Okres "rozbiegowy"
- Losowanie skupień (cluster randomization)

Nieleczona grupa kontrolna

Etycznie dopuszczalna jeśli:

- Brak skutecznego leczenia
- Choroba nie ma "poważnych" skutków

Placebo i "zaślepianie"

Aktywne leczenie

Placebo (bez aktywnego składnika)

Użycie placebo umożliwia "zaślepianie" próby:

- Pojedyńczo ślepa próba: chory zna rodzaj leczenia, jakie mu przydzielono
- Podwójnie ślepa próba: ani chory, ani lekarz nie zna rodzaju leczenia przydzielonego choremu

"Placebo" dla interwencji

Aktywna interwencja

Pozorowana interwencja (sham)

Przykład:

- Pozorowana akupunktura (w losowych punktach a nie w 腧穴)
- Pozorowana iniekcja śródgałkowa (chory czuje nacisk strzykawki ale oko nie jest nakłuwane)
- Może być trudne do zastosowania

Placebo jako grupa kontrolna

Wskazane z naukowego punktu widzenia jeśli:

- Informacja o leczeniu może wpływać na opiekę nad pacjentem
- Informacja o leczeniu może wpływać na ocenę wyniku leczenia pacjenta

Placebo jako grupa kontrolna

Przykłady trudne z etycznego punktu widzenia:

- Próby w zaawansowanej depresji (istnieją skuteczne leki dla chorych)
- Wczesne próby kliniczne AZT w AIDS (AIDS to śmiertelna choroba)
- Iniekcje śródgałkowe w leczeniu ARMD (jeśli placebo byłoby wstrzykiwane do oka)

Grupa kontrolna: szacowanie efektów

Ze statystycznego punktu widzenia, preferowany jest największy kontrast; tak więc grupa leczona i kontrolna powinny być tak różne, jak to możliwe

"Aktywna" grupa kontrolna

Leczenie A (eksperymentalne)

Leczenie B (kontrolne, standard)

Pytania:

- Czy można wykazać nadrzędność, czy raczej wystarczy nie-podrzędność (np. jeśli nowe leczenie jest mniej toksyczne)?
- Nie-podrzędność jest trudniejsza do wykazania (większa liczebność próbki, problemy z wrażliwością próby)

"Aktywna" grupa kontrolna z "zaślepianiem"

Simple blinding

Blinded treatment A

Blinded treatment B

Double dummy

Blinded treatment A + placebo for B

Blinded treatment B + placebo for A

Układy doświadczalme faworyzujące grupę leczoną

1 chory w grupie kontrolnej

N chorych w grupie leczonej

Zalety: Niewielka strata mocy jeśli N małe (< 3) Więcej informacji o nowym leczeniu

Wady: Etycznie akceptowalne? (lack of equipoise)

Strata mocy dla niezrównoważonych układów doświadczalnych

Power for comparison of 45% vs 60% among N = 340 subjects

Grupy leczone: ile?

Generalnie, próba z dwoma grupami (two-arm) jest preferowana z racji :

- efektywności
- łatwości interpretacji

Przykład: próba z trzema grupami (3-arm)

Hipotezy w próbie trzyramiennej

Obie metody leczenia są skuteczne

$$H_0 : r_{(A+B)} = r_0$$

Jedna z metod jest skuteczna

$$H_o: r_A = r_0$$
 lub $H_o: r_B = r_0$

Jedna z metod jest skuteczniejsza

$$H_o: r_A = r_B$$

Metody się różnią

$$H_o: r_0 = r_A = r_B$$
 (a 2 d.f. test, not efficient)

Nieefektywność prób wieloramiennych

Przyjmijmy, że interesuje nas porównania wszystkich par.

Dla K takich porównań, użycie "poprawionego" poziomu istotności skutkuje stratą mocy

Poprawka Bonferroniego (konserwatywna!)

$$\alpha_i = \alpha/K$$
 $i = 1, ..., K$

Użyteczne układy dla prób wieloramiennych

- Określanie dawki (dose finding): placebo vs niska vs średnia vs wysoka dawka
- Dwa (lub więcej) niezależne pytania: układ czynnikowy
- Leczenie kombinowane: A vs B vs AB
- "Gold standard": nowy lek vs standard vs kontrola

Randomizacja...

- eliminuje źródła błędów systematycznych (obciążeń) za wyjątkiem przypadkowego niezrównoważenia (accidental bias)
- dąży do zrównoważenia porównywanych grup ze względu na znane i <u>nieznane</u> czynniki prognostyczne
- zapewnia teoretyczne podstawy do użycia statystyk testowych i oszacowań opartych na rozkładach p-stwa

Przypadkowe niezrównoważenie rozkładu czynników prognostycznych

W randomizowanej próbie klinicznej, leczenie jest przydzielane każdemy z chorych losowo.

Przypadkowe różnice w rozkładzie czynników prognostycznych mogą się zdarzyć, zwłaszcza w próbkach o niskiej liczebności.

Przykład: rozkład płci w porównywanych grupach

Doskonałe zrównoważenie rozkładu płci

Pryzpadkowe niezrównoważenie rozkładu płci

Doskonałe zrównoważenie rozkładu płci i mierzalności guza

- Treatment/Males/Measurable
- Treatment/Males/Non-measurable
- Treatment/Females/Measurable
- **■** Treatment/Females/Non-measurable
- Control/Males/Measurable
- Control/Males/Non-measurable
- Control/Females/Measurable
- Control/Females/Non-measurable

Przypadkowe niezrównoważenie rozkładu czynników prognostycznych

Może skutkować błędem systematycznym jeśli dotyczy czynników o dużym znaczeniu prognostycznym.

Nawet jeśli, ze statystycznego punktu widzenia, niezrównoważenie jest ignorowalne, może rodzić wątpliwości co do zaobserwowanych różnic w skuteczności leczenia.

Przypadkowe niezrównoważenie rozkładu czynników prognostycznych

Prawdopodbieństwo rośnie z

- malejącą liczebnością próbki
- rosnącą liczbą czynników prognostycznych

Probability of > 40/60 imbalance

Probability of > 40/60 imbalance

Obciążenie wynikające z selekcji chorych (selection bias)

Niezrównoważenie rozkładu czynników prognostycznych wynikające z wiedzy o rodzaju leczenia, które ma być przydzielone choremu

Obciążenie wynikające z selekcji chorych (selection bias)

Może się pojawić jeśli randomizacja jest źle przeprowadzona :

- drukowane listy liczb pseudo-losowych (można przeczytać)
- użycie kopert z informacją o leczeniu (można otworzyć)
- przewidywalne algorytmy oparte o "statyczne" metody (np. ostatni element permutowanego bloku)

Randomizacja prosta

Użycie monety, kostki lub innego procesu losowego.

Wady i zalety prostej randomizacji

- + Prosta 😊
- + Nieprzewidywalna
- Nie uwzględnia znanych czynników prognostycznych
- Możliwość przypadkowego niezrównoważenia

Randomizacja urnowa

Urna początkowo zawiera A kul każdego koloru. Jedna kula jest losowana i przydzielane jest leczenie. B kul drugiego koloru jest dodawane.

Wady i zalety randomizacji urnowej

- + Elastyczność:
 - A duże, B małe ⇒ faworyzuje losowość B duże, A małe ⇒ zrównoważenie (początkowo)
- + Może być uwzględniona w analizie (test permutacji)
- Staje się losowa gdy N rośnie

Warstwowanie

Czynnik warstwujący to zmienna kategoryzowana, któa dzieli populację chorych na kategorie

Przykłady :

- płeć, 2 poziomy : kobieta, mężczyzna
- wiek, np. 3 poziomy : < 40, 40–59, ≥ 60 lat</p>

Warstwowanie

Dla 2 i więcej czynników, warstwy zdefiniowane kombinacjami kategorii

Przykład :

Płeć i wiek (jak poprzednio) dają 6 warstw :

Warstwa 1: Kobiety < 40

Warstwa 2: Kobiety 40-59

Warstwa 3: Kobiety ≥ 60

Warstwa 4: Mężczyźni <40

Warstwa 5: Mężczyźni 40-59

Warstwa 6: Mężczyźni ≥ 60

Uwzględnienie czynników prognostycznych w randomizacji

- Czynniki prognostyczne dla terapii adjuwantowej raka piersi:
- Stan menopauzalny (pre/post)
- Liczba zajętych węzłów chłonnych (1-3/4+)
- Receptory estrogenu (+/-)
- Receptory progesteronu (+/-)
- mutacja genu her2neu (under/overexpressed)
- ośrodek kliniczny (np. 20)

$$\Rightarrow$$
 2⁵ × 20 = 640 różnych warstw !

Uwzględnienie czynników prognostycznych w randomizacji

Permutowane bloki w warstwach Tylko ośrodek i stan menopauzalny mogą być uwzględnione (40 warstwa) Minimizacja
Wszystkie sześć
czynników może być
uwzględnionych

Permutowane bloki w warstwach

Przyjmijmy, że kolejna chora jest zgłoszona z ośrodka 02 i ma następującą charakterystykę

- przed menopauzą
- 1-3 zajętych węzłów
- dodatni poziom receptorów estrogenu
- dodatni poziom receptorów progesteronu
- obniżona ekspresja genu her2neu

Permutowane bloki w warstwach

The next treatment in the patient's stratum is T

Wady i zalety randomizacji przy użyciu permutowanych bloków

- + Losowa procedura uwzględniająca informację o czynnikach prognostycznych
- + Łatwa w implementacji → często używana przy pakowaniu leków
- Ograniczona liczba warstw
- Przewidywalny wynik pod koniec bloku
- Informacja o czynnikach prognostycznych musi być dostępna przed randomizacją

Minimizacja brzegowego rozkładu czynników prognostycznych

	Ι	<u>C</u>
Menopausal status = pre	21	22
Nr of nodes = 4+	18	19
ER status = positive	31	32
PR status = positive	26	23
Her2neu gene = overexpressed	13	12

Minimizacja brzegowego rozkładu czynników prognostycznych: kolejna chora otrzymuje T

	I	<u>C</u>	<u>8</u>
Menopausal status = pre	22	22	0
Nr of nodes = 4+	19	19	0
ER status = positive	32	32	0
PR status = positive	27	23	-4
Her2neu gene = overexpressed	14	12	-2

"Range of imbalances": $\Sigma |\delta| = 6$

"Variance of imbalances": $\Sigma \delta^2 = 20$

Minimizacja brzegowego rozkładu czynników prognostycznych: kolejna chora otrzymuje C

	I	<u>C</u>	<u>8</u>
Menopausal status = pre	21	23	+2
Nr of nodes = 4+	18	20	+2
ER status = positive	31	33	+2
PR status = positive	26	24	-2
Her2neu gene = overexpressed	13	13	0

"Range of imbalances": $\Sigma |\delta| = 8$

"Variance of imbalances": $\Sigma \delta^2 = 16$

Minimizacja brzegowego rozkładu czynników prognostycznych

Przydzielamy T jeśli "zakres niezrównoważeń" ma być minimalizowany

Przydzielamy C jeśli "wariancja niezrównoważeń" ma być minimalizowana

Jeśli ma być minimalizowana wariancja, prostsza implementacja jest możliwa

Minimizacja brzegowego rozkładu czynników prognostycznych: prostsza implementacja

	Ι	<u>C</u>
Menopausal status = pre	21	22
Nr of nodes = 4+	18	19
ER status = positive	31	32
PR status = positive	26	23
Her2neu gene = overexpressed	13	12
<u>Total</u>	<u>109</u>	<u>108</u>
	\downarrow	

Allocate C to minimize "total" imbalance

Minimizacja brzegowego rozkładu czynników prognostycznych

- δ: różnica w sumarycznej liczbie dla C i T
- jeśli $\delta = 0$, T lub C mogą być przydzielone
- jeśli δ < 0, T powinno być faworyzowane
- jeśli $\delta > 0$, C powinno być faworyzowane

Niech δ < 0, i niech p_X będzie p-stwem przydzielenia leczenia X (X = T, C)

Możliwe wybory w minimizacji

```
    p<sub>T</sub> = p<sub>C</sub>: prosta randomizacja
    p<sub>T</sub> = p i p<sub>C</sub> = 1-p dla ½ 
    (np. p = .8): minimizacja stochastyczna
    (analog rzutu obciążoną monetą, "biased coin" design)
```

 $p_T = 1$ i $p_C = 0$ jeśli $\delta > S$, dla małego S: semideterministyczna minimizacja

 $p_T = 1$ i $p_C = 0$: deterministyczna minimizacja

Minimizacja w skomplikowanych próbach klinicznych

```
Przykład: adjuwantowe leczenie raka piersi
(A = adriamycin; C = cyclophosphamide; T = taxotere)
```

Dwie grupyu kontrolne

 $C_1: A$

 C_2 : A C

Dwie grupy leczone

 $T_1:A \longrightarrow T$

 T_2 : A T

Minimizacja w skomplikowanych próbach klinicznych

Próba ma ocenić efekt

1. Taxotere podanego po Adriamycinie (sekwencja)

 $C_1: A$ vs $T_1: A \longrightarrow T$

2. Taxotere podanego z Adriamyciną (kombinacja)

 C_1 : AC vs T_2 : AT

3. Taxotere (ogólnie)

$$C_1 + C_2$$
 vs $T_1 + T_2$

Chcemy przydzielić dwa razy więcej chorych do grup leczonych:

C₁ control group 1: *n/2 patients*

C₂ control group 2: *n/2 patients*

T₁ treatment group 1: *n patients*

T₂ treatment group 2: *n patients*

Dodatkowo, checmy uwzględnić następujące czynniki prognostyczne :

- liczbę zajętych węzłów
- stan receptorów estrogenu

oraz

ośrodek

Allocation ratio	1	1	2	2	
Treatment arm	<u>C</u> ₁	<u>C</u> ₂	<u>T</u> 1	<u>T</u> ₂	
Center = 02	2	1	4	3	
Nr of nodes = 4+	9	10	19	20	
ER status = positive	15	14	30	28	
×coefficient	<u>×2</u>	<u>×2</u>	<u>×1</u>	<u>×1</u>	
Adjusted total =	<u>52</u>	<u>50</u>	<u>53</u>	<u>51</u>	

- \mathcal{M} : zbiór metod lecznia z najmiejszą sumą liczb
- \mathcal{N} : pozostałe metody leczenia
- Wybieramy zbiór \mathcal{M} z p-stwem $p_{\mathcal{M}}(np. 0.8)$, z zbiór \mathcal{N} z p-stwem 1- $p_{\mathcal{M}}(np. 0.2)$
- W wybranym zbiorze przydzielamy metody leczenia z rónym p-stwem

Wady i zalety minimizacji

- + Dąży do zrównoważenia rozkładu czynników prognostycznych (użyteczna zwłaszcza w małych próbach lub gdy koszt leku jest wysoki)
- + Liczba czynników prognostycznych może być znaczna
- + Redukcja rozmiaru testu istotności (eliminacja przypadkowego niezrównoważenia)
- Niewielki zysk na mocy testu
- Zastrzeżenia do analizy
- Bardziej skomplikowana implementacja

Analiza prób używających randomizacji z "więzami"

Czy w takich próbach do porównania grup nie należałoby używać testów "permutacyjnych" ("randomizacyjnych")?

Takie zalecenie jest czasem formułowane w przypadku użycia randomizacji "z więzami" (constrained randomization), np. schematów urnowych, permutowanych bloków, lu b minimizacji. Testy te dają poziomy krytyczne bliskie asymptotycznym dla dużych liczebnie próbek.

Rozważmy jeden blok, gdzie $P_X = p$ -stwo przydziału X (X=T,C)

Patient	Arm	P_{T}	P_{C}	Outcome
Pt-1	Т	0.5	0.5	Success
Pt-2	Т	0.5	0.5	Failure
Pt-3	С	0	1	Failure
Pt-4	С	0	1	Failure

Testy permutacyjne

"Dokładny" poziom krytyczny testu (exact p-value) wyznaczony jest przez liczbę permutacji, dla których statystyka testowa (w naszym przykładzie, różnica w odsetku odpowiedzi dla grupy leczonej i kontrolnej) jest co najmniej tak duża jak zaobserwowana.

Wszystkie permutacje zgodne z randomizacją, gdzie S_x = odsetek odpowedzi dla grupy X (X=T,C)

Permutation	S_{T}	S_{C}	$S_T - S_C$	
TTCC	1/2	0/2	0.5	— Actual allocation
TCTC	1/2	0/2	0.5	p-value = 0.5
TCCT	1/2	0/2	0.5	(= 3 / 6)
C T T C	0/2	1/2	-0.5	
C T C T C C T T	0/2 0/2	1/2 1/2	-0.5 -0.5	

Ten sam blok dla randomizacji prostej

Patient	Arm	P_{T}	P_{C}	Outcome
Pt-1	Т	0.5	0.5	Success
Pt-2	Т	0.5	0.5	Failure
Pt-3	С	0.5	0.5	Failure
Pt-4	С	0.5	0.5	Failure

$S_T - S_C$	S_C	S_T	_ Permutation
1	0/3	1/1	TCCC
0.5	0/2	1/2	TCTC
0.5	0/2	1/2	TCCT
0.5	0/2	1/2	TTCC
0.33	0/1	1/3	TTTC
0.33	0/1	1/3	TTCT
0.33	0/1	1/3	TCTT
0.25	0/0	1/4	TTTT
-0.25	1/4	0/0	CCCC
-0.33	1/3	0/1	C T C C
-0.33	1/3	0/1	CCTC
-0.33	1/3	0/1	CCCT
-0.5	1/2	0/2	CCTT
-0.5	1/2	0/2	CTTC
-0.5	1/2	0/2	C T C T
-1	1/1	0/3	CTTT
1 0.5 0.5 0.33 0.33 0.33 0.25 -0.25 -0.33 -0.33 -0.5 -0.5		0/3 0/2 0/2 0/2 0/1 0/1 0/1 0/0 1/4 1/3 1/3 1/3 1/2 1/2	1/1 0/3 1/2 0/2 1/2 0/2 1/2 0/2 1/3 0/1 1/3 0/1 1/4 0/0 0/0 1/4 0/1 1/3 0/1 1/3 0/1 1/3 0/2 1/2 0/2 1/2 0/2 1/2 0/2 1/2

W naszym przykładzie, poziom krytyczny testu permutacyjnego p=0.25 dla randomizacji prostej, a p=0.5 dla permutowanych bloków.

Generalnie, dla randomizacji "z więzami" testy permutacji dają konserwatywne poziomy krytyczne, bowiem oparte są na mniejszej liczbei punktów w przestrzeni permutacji (niż testy asymptotyczne).

Testy permutacyjne

Liczba permutacji rośnie wykładniczo (2^N dla N chorych przy użyciu randomizacji prostej) i p-stwo każdej z nich jest trudne do wyznaczenia dla minimizacji

⇒ Symulacje:

- Randomizujemy tych samych chorych w symulowanych próbach
- Obliczamy poziom krytyczny (lub statystykę) testu dla każdej próby
- Porównujemy zaobserwowany poziom krytyczny (lub statystykę) testu do rozkładu otrzymanego z symulacji

Kiedy randomizować?

Jak najpóźniej jak jest to możliwe.

Przykład: pooperacyjne leczenie adjuwantowe wczesnego raka jelita grubego

Kiedy randomizować?

Przykład: lepiej randomizować chorych po operacji, by uniknąć randomizowania pacjentów, którzy nie otrzymają leczenia adjuwantowego

Okres "rozbiegowy" (run-in)

Czasem używany przed randomizacją. W tym okresie wszyscy chorzy są leczeni w ten sam sposób. Pozwala to na wykluczenie chorych, którzy nie stosują sie do wymogów leczenia.

Losowanie skupień (cluster randomization)

Polega na randomizacji całych populacji chorych. *Przykłady:*

- Fabryki (np. próby badań przesiewowych)
- Miasta (np. próby kampanii na rzec rzucenia palenia)
- Rodziny (np. próby zmian sposobu żywienia)

Losowanie skupień

- Wymagane gdy interwencja organizowana jest na poziomie grupy/populacji.
- Obserwacje w tym samym skupieniu są zależne, co wymaga odpowiedniego uwzględnienia w analizie i powoduje redukcję mocy statystycznej.

Próba COMMIT Cel

Dotarcie do palaczy (zwłaszcza dużo palących) z kampanią na rzecz trwałego rzucenia palenia

Interwencja

Poprzez lokalne organizacje, media, lekarzy, przedsiębiorstwa, itp.

Losowanie skupień

Randomizacja 11 par gmin o średniej wielkości (50,000 – 250,000 mieszkańców) dopasowanych geograficznie

Próba COMMIT

Pierwszoplanowe kryterium oceny skuteczności: odsetek osób, które rzuciły palenie

Dla każdej z m par gmin, różnica w odsetkach

$$d_j = P_{1j} - P_{2j}$$
 $(j = 1 .. m)$

Wariancja rozkładu dwumianowego musi być zwiększona ze względu na zależność obserwacji

$$Var (d_j) = P_{1j} (1 - P_{1j}) / n_{1j} + P_{2j} (1 - P_{2j}) / n_{2j} + 2\sigma^2$$

gdzie σ² jest między-gminną wariancją (oszacowaną z poprzednich prób)

Próba COMMIT - analiza

Porównanie różnic $d_j = P_{1j} - P_{2j}$ przy pomocy testu permutacyjnego

Procedura randomizacji umożliwia przpisanie rozkładu różnicom d_i przy założeniu H_o:

- Zakładając H_o , $E(d_i) = 0$
- Wyznaczamy średnią d_j dla każdej z 2^m permutacji prowadzących do różnych przydziałów interwencji w parach (m = 11)
- Porównujemy obserwowaną średnią do rozkładu otrzymanego z permutacji

Próba COMMIT

Wyniki: odsetki rzucających palenie

Extent of smoking	Intervention	Control	Difference
Heavy	N = 4,976	N = 5,043	
	0.180	0.187	- 0.007 (NS)
Light to moderate	N = 5,177	N = 5,151	
	0.306	0.276	+ 0.030 (P = 0.004)