COMP 6651: Quiz 1

16 Minutes

Each question is worth 25 points. The questions may be single-choice or multiple-choice questions.

- 1 There are two algorithms A and B solving the same problem. For inputs of size n, algorithm A runs in $1000n^2$ steps, algorithm B runs in 2^n steps. Which algorithm runs faster on a given instance of input size n = 20?
 - (A) algorithm A

- (B) algorithm B
- (C) A and B are of the same speed
- (D) can not be determined.

Solution. A

2 Rank the following functions by order of growth: n^2 , $\log n^2$, 2^n , $n^{\log n}$, n^n , n!.

(A)
$$n^2 = O(\log n^2) = O(2^n) = O(n^{\log n}) = O(n^n) = O(n!).$$

(B)
$$\log n^2 = O(n^2) = O(2^n) = O(n^{\log n}) = O(n!) = O(n^n).$$

(C)
$$n^2 = O(\log n^2) = O(n^{\log n}) = O(2^n) = O(n^n) = O(n!).$$

(D)
$$\log n^2 = O(n^2) = O(n^{\log n}) = O(2^n) = O(n!) = O(n^n).$$

Solution. D

- 3 Suppose $T(n) = 4T(n/3) + n \log n$. Select the correct order for T(n).
 - (A) $\Theta(n)$

- (B) $\Theta(n \log n)$
- (C) $\Theta(n^{\log_3 4})$
- (D) $\Theta(n^{\log_3 4} \log n)$

Solution. C

4 Recall the max subarray divide-and-conquer algorithm as follows, there are the left, right, and cross values computed in the algorithm.

```
procedure MaxSubarray(A, low, high)
if high = low + 1 then
    return A[low] + A[high]
if high < low then
    return -\infty
mid \leftarrow \lfloor \tfrac{low + high}{2} \rfloor
left \leftarrow MaxSubarray(A, low, mid)
right \leftarrow MaxSubarray(A, mid + 1, high)
cross \leftarrow MaxCrossingSubarray(A, low, mid, high)
return \max(left, cross, right)
```

Given the following array 3, -1, 2, -4, -1, 7, -5, 6, what are the respective values for left, right, and cross that are computed in the call MaxSubarray(A, 1, 8)?

(A)
$$(left, right, cross) = (4, 8, 7)$$

(B)
$$(left, right, cross) = (3, 7, -5)$$

(C)
$$(left, right, cross) = (5, 13, -4)$$

(C)
$$(left, right, cross) = (5, 13, -4)$$
 (D) $(left, right, cross) = (3, 7, -1)$

Solution. A