Weighting, data management and regression

Prof. Dr. Stephan ${\rm Huber}^{1,2}$

¹ Fresenius University of Applied Science
² Charlotte Fresenius University

Abstract

In this document I show what weighted means and their distribution are all about. Furthermore, I show some possibilities of data management in R with the dplyr package and how a regression analysis in R is performed and visualised.

All files related to this document can be found here: https://github.com/hubchev/ewa. Please contact us via stephan.huber@hs-fresenius.de.

Table 1
Data

v1	v2	v3	v4
1	A	NA	
2	NA	0.2	0.4
	С	0.3	0.1
4	D	NA	3
5	E	0.5	1.5

1 Solutions and Cheatsheet

Please consider the report you find here:

https://hubchev.github.io/various/exam_functions.html

In this report, I summarize operators and popular functions of R. Moreover, I present the output of all exercises. That should help you to write code and start to look for solutions to your challenges in working with data:

2 Datenmanagement

Consider the data of Table 1 and solve the following exercises:

a) Add variable misone that is 1 if there is a missing and 0 otherwise. (Hint: Use case_when and is.na().)

Table 2
Solution a)

	0	0	4	
v1	v2	v3	v4	misone
1	A	NA		1
2	NA	0.2	0.4	1
	С	0.3	0.1	1
4	D	NA	3	1
5	Е	0.5	1.5	0

```
df <- df |>
  mutate(misone = case_when(
    v1 == "" | is.na(v1) ~ 1,
    v2 == "" | is.na(v2) ~ 1,
    v3 == "" | is.na(v3) ~ 1,
    v4 == "" | is.na(v4) ~ 1,
    TRUE ~ 0
  ))

knitr::kable(df, "latex", caption = "Solution a)")
```

b) Add variable miscount that counts how many observations are missing in each row. (Hint: Use mutate_all, rowSums, and pick(everything()))

Table 3
Solution b)

v1	v2	v3	v4	misone	miscount
1	A	NA		1	2
2	NA	0.2	0.4	1	1
	С	0.3	0.1	1	1
4	D	NA	3	1	1
5	E	0.5	1.5	0	0

```
test_df <- df |>
  mutate_all(~ if_else(is.na(.) | . == "", 1, 0)) |>
  mutate(miscount = rowSums(pick(everything())))

test_df_miscount <- test_df |>
  select(miscount)

df <- bind_cols(df, test_df_miscount)

knitr::kable(df, "latex", caption = "Solution b)")</pre>
```

c) Use the function rowwise to calculate the NA and "" observations. (Hint: Use is.na and pick(everything()).)

Table 4
Solution c)

/							
v1	v2	v3	v4	misone	miscount	count_NA	count_OK
1	A	NA		1	2	1	1
2	NA	0.2	0.4	1	1	1	0
	С	0.3	0.1	1	1	0	1
4	D	NA	3	1	1	1	0
5	E	0.5	1.5	0	0	0	0

```
df <- df |>
  rowwise() |>
  mutate(count_NA = sum(is.na(pick(everything())))) |>
  mutate(count_OK = sum(pick(everything()) == "", na.rm = TRUE)) |>
  ungroup()

knitr::kable(df, "latex", caption = "Solution c)")
```

d) Add variable mispercent that measures the percentage of missings and a variable mis30up that is 1 if the percentage is above 30%. (Hint: Use mutate, select, ifelse, and bind_cols.)

Table 5
Solution d)

v1	v2	v3	v4	misone	miscount	count_NA	count_OK	mis30up	fraction
1	A	NA		1	2	1	1	1	0.50
2	NA	0.2	0.4	1	1	1	0	0	0.25
	С	0.3	0.1	1	1	0	1	0	0.25
4	D	NA	3	1	1	1	0	0	0.25
5	Ε	0.5	1.5	0	0	0	0	0	0.00

```
test_df_mis30up <- test_df |>
  mutate(fraction = miscount / 4) |>
  mutate(mis30up = ifelse(fraction > 0.3, 1, 0)) |>
  select(mis30up, fraction)

df <- bind_cols(df, test_df_mis30up)

knitr::kable(df, "latex", caption = "Solution d)")</pre>
```

e) Calculate the average of the numeric variables v1, v3, and v4. Name the variable average. (Hint: Use as.numeric, rowwise, and mean.)

Table 6
Solution e)

v1	v3	v4	average
1	NA	NA	1.0000000
2	0.2	0.4	0.8666667
NA	0.3	0.1	0.2000000
4	NA	3.0	3.5000000
5	0.5	1.5	2.3333333

```
df <- df |>
  mutate(
    v1 = as.numeric(v1),
    v4 = as.numeric(v4)
  )

df <- df |>
  rowwise() |>
  mutate(average = mean(c(v1, v3, v4), na.rm = TRUE)) |>
  ungroup()

test_df <- df |>
  select(v1, v3, v4, average)

knitr::kable(test_df, "latex", caption = "Solution e)")
```

3 Regression

Please consider my lecture notes concerning **Regression Analysis** which you find here:

https://hubchev.github.io/qm/statistics.html#simple-linear-regression

Moreover, I highly recommend reading Wysocki et al. (2022) which is freely available here: https://journals.sagepub.com/doi/10.1177/25152459221095823. They explain how difficult it is to use regression analysis to dentify a causal impact. The main insights of the paper are nicely summarized here: https://osf.io/38mxq.

3.1 Making regression tables using apa_table

Here is an example how to use apa_table from the papaja package to make regression output tables.

```
# Load the mtcars dataset
data("mtcars")
# Fit a linear regression model
m1 <- lm(mpg ~ wt + hp, data = mtcars)
m2 <- lm(mpg ~ wt , data = mtcars)
# Summary of the model
summary(m1)
##
## Call:
## lm(formula = mpg ~ wt + hp, data = mtcars)
## Residuals:
##
      Min
              10 Median
                            3Q
                                 Max
## -3.941 -1.600 -0.182 1.050 5.854
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.22727
                           1.59879 23.285 < 2e-16 ***
## wt
              -3.87783
                          0.63273 -6.129 1.12e-06 ***
                          0.00903 -3.519 0.00145 **
## hp
              -0.03177
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.593 on 29 degrees of freedom
## Multiple R-squared: 0.8268, Adjusted R-squared: 0.8148
## F-statistic: 69.21 on 2 and 29 DF, p-value: 9.109e-12
```

 $\begin{array}{l} {\rm Table} \ 7 \\ {\it A full regression \ table.} \end{array}$

Predictor	b	95% CI	t	df	p
Intercept	37.23	[33.96, 40.50]	23.28	29	< .001
Wt	-3.88	[-5.17, -2.58]	-6.13	29	< .001
Нр	-0.03	[-0.05, -0.01]	-3.52	29	.001

```
apa_lm <- apa_print(m1)
apa_table(
   apa_lm$table
   , caption = "A full regression table."
)</pre>
```

4 Example

4.1 Data

In the statistic course of WS 2020, I asked 23 students about their weight, height, sex, and number of siblings:

```
library("haven")
classdata <- read.csv("https://raw.githubusercontent.com/hubchev/courses/main/dta/classdata
head(classdata)</pre>
```

##		id	sex	weight	height	siblings	row
##	1	1	W	53	156	1	g
##	2	2	W	73	170	1	g
##	3	3	m	68	169	1	g
##	4	4	W	67	166	1	g
##	5	5	W	65	175	1	g
##	6	6	W	48	161	0	g

4.2 First look at data

```
library("ggplot2")
ggplot(classdata, aes(x=height, y=weight)) + geom_point()
```


4.3 Include a regression line:

```
ggplot(classdata, aes(x=height, y=weight)) +
  geom_point() +
  stat_smooth(formula=y~x, method="lm", se=FALSE, colour="red", linetype=1)
```


4.4 Regression: Distinguish male/female by including a seperate constant:

```
## baseline regression model
model <- lm(weight ~ height + sex , data = classdata )</pre>
show(model)
##
## Call:
## lm(formula = weight ~ height + sex, data = classdata)
##
## Coefficients:
## (Intercept)
                     height
                                    sexw
##
      -29.5297
                     0.5923
                                 -5.7894
interm <- model$coefficients[1]</pre>
slope <- model$coefficients[2]</pre>
interw <- model$coefficients[1]+model$coefficients[3]</pre>
summary(model)
##
## Call:
## lm(formula = weight ~ height + sex, data = classdata)
## Residuals:
       Min
##
                1Q Median
                                3Q
                                       Max
                     2.850 7.245 12.914
## -17.086 -3.730
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -29.5297
                           47.6606 -0.620
                                             0.5425
## height
                0.5923
                            0.2671 2.217
                                             0.0383 *
## sexw
                -5.7894
                            4.4773 -1.293
                                             0.2107
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 8.942 on 20 degrees of freedom
## Multiple R-squared: 0.4124, Adjusted R-squared: 0.3537
## F-statistic: 7.019 on 2 and 20 DF, p-value: 0.004904
```

```
ggplot(classdata, aes(x=height, y=weight, shape = sex)) +
  geom_point() +
  geom_abline(slope = slope, intercept = interw, linetype = 2, size=1.5)+
  geom_abline(slope = slope, intercept = interm, linetype = 2, size=1.5) +
  geom_abline(slope = coef(model)[[2]], intercept = coef(model)[[1]])
```

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.
This warning is displayed once every 8 hours.

Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
generated.

That does not look good. Maybe we should introduce also different slopes for male and female.

4.5 Can we use other available variables such as siblings?

```
ggplot(classdata, aes(x=height, y=weight, shape = sex)) +
geom_point( aes(size = siblings))
```


4.6 Let us look at regression output:

```
m1 <- lm(weight ~ height , data = classdata )
m2 <- lm(weight ~ height + sex , data = classdata )
m3 <- lm(weight ~ height + sex + height * sex , data = classdata )
m4 <- lm(weight ~ height + sex + height * sex + siblings , data = classdata )
m5 <- lm(weight ~ height + sex + height * sex , data = subset(classdata, siblings < 4 ))</pre>
```

Table 8 Regression

		$D\epsilon$	ependent varie	able:	
			weight		
	Model-1	Model-2	Model-3	Model-4	Model-5
	(1)	(2)	(3)	(4)	(5)
height	0.78***	0.59**	0.16	0.16	0.28
	(0.23)	(0.27)	(0.36)	(0.37)	(0.39)
sexw		-5.79	-153.96*	-161.92^*	-134.51
		(4.48)	(88.96)	(91.68)	(90.65)
siblings				-1.16	
G				(2.05)	
height:sexw			0.85	0.89	0.74
			(0.51)	(0.53)	(0.52)
Constant	-65.44	-29.53	47.14	50.27	27.69
	(39.35)	(47.66)	(64.81)	(66.23)	(70.36)
Observations	23	23	23	23	21
\mathbb{R}^2	0.36	0.41	0.49	0.50	0.57
Adjusted \mathbb{R}^2	0.33	0.35	0.41	0.38	0.50
Residual Std. Error	9.08	8.94	8.57	8.73	8.04
F Statistic	11.98***	7.02***	6.02***	4.44**	7.59***

Note:

p<0.1; **p<0.05; ***p<0.01Here are my notes.

4.7 Interpretation of the results

- We can make predictions about the impact of height on male and female
- As both, the intercept and the slope differs for male and female we should interpret the regressions seperately:
- One centimeter more for \mathbf{MEN} is on average and ceteris paribus related with 0.16 kg more weight.
- One centimeter more for **WOMEN** is *on average* and *ceteris paribus* related with 1.01 kg more weight.

4.8 Regression Diagnostics

Linear Regression makes several assumptions about the data, the model assumes that:

- The relationship between the predictor (x) and the dependent variable (y) has linear relationship.
- The residuals are assumed to have a constant variance.
- The residual errors are assumed to be normally distributed.
- Error terms are independent and have zero mean.

More on regression Diagnostics can be found Applied Statistics with R: 13 Model Diagnostics

5 Weighting

The formula for the weighted mean is:

$$\bar{x} = \frac{\sum_{i=1}^{n} w_i \cdot x_i}{\sum_{i=1}^{n} w_i}$$

In this formula:

- \bar{x} represents the weighted mean.
- n is the number of observations.
- w_i represents the weight for the *i*-th observation.
- x_i represents the *i*-th observation value.

```
rm(list = ls())
wt <- c(5, 2, 2, 1)
x \leftarrow c(1, 2, 3, 4)
x_mean <- mean(x)</pre>
x_mean
## [1] 2.5
x_wt_mean_1 <- weighted.mean(x, wt)</pre>
x_wt_mean_1
## [1] 1.9
     Let us calculate the weighted mean manually:
product <- wt*x
# Nominator
nom <- sum(product)</pre>
nom
## [1] 19
# Denominator
denom <- sum(wt)</pre>
```

[1] 1.9

x_wt_mean_2

[1] 10

x_wt_mean_2 <- nom/denom

denom

5.1 Exercise 1

Below you see an alternative way to calculate the weighted mean. Can you explain it?

```
w_div_sumw <- wt/denom
w_div_sumw

## [1] 0.5 0.2 0.2 0.1

multi_ww_x <- w_div_sumw * x

multi_ww_x

## [1] 0.5 0.4 0.6 0.4

x_wt_mean_3 <- sum(multi_ww_x)

x_wt_mean_3

## [1] 1.9</pre>
```

5.2 Exercise 2

3

1

2.5

1.67

a) Calculate mean, variance, weighted mean, and the variance of the weighted mean for **x**.

b) Do it again but use tidyverse and the function summarize.

Weighted Mean 1.900000

4 Weighted Variance 1.090000

```
df \leftarrow tibble(wt = wt, x = x)
summary_stats <- df %>%
  summarize(
    Mean = mean(x),
    Variance = var(x),
    Weighted_Mean = weighted.mean(x, wt),
    Weighted_Variance = sum(wt * (x - weighted.mean(x, wt))^2) / sum(wt)
  )
# Display the table
print(summary_stats)
## # A tibble: 1 x 4
      Mean Variance Weighted_Mean Weighted_Variance
##
     <dbl>
              <dbl>
                             <dbl>
                                                <dbl>
```

References

1.09

1.9

Wysocki, A. C., Lawson, K. M., & Rhemtulla, M. (2022). Statistical control requires causal justification. *Advances in Methods and Practices in Psychological Science*, 5(2). https://doi.org/10.1177/25152459221095823