Colle 15 Matrices

- ▶ Après votre colle, il vous est demandé de reprendre les exercices traités et de les rédiger sur feuille. Ce travail est à déposer dans la boîte en B013 avant mercredi prochain.
- ▶ Vous trouverez le sujet et des indications sur la page ci-contre.

Dans tous les exercices, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Exercice 15.1

Calculer le noyau de la matrice

$$A := \begin{pmatrix} 3 & 5 & -6 \\ -6 & 0 & 12 \\ 5 & 10 & -10 \end{pmatrix} \in \mathsf{M}_3(\mathbb{R})$$

Exercice 15.3

On définit trois suites $(u_n)_n$, $(v_n)_n$ et $(w_n)_n$ par

$$\begin{cases} u_0, v_0, w_0 \in \mathbb{K} \\ \forall n \in \mathbb{N}, & \begin{cases} u_{n+1} = v_n - u_n \\ v_{n+1} = w_n - v_n \\ w_{n+1} = v_n - w_n. \end{cases} \end{cases}$$

Déterminer, pour $n \in \mathbb{N}$, les expressions de u_n , v_n et w_n , en fonction de n, u_0 , v_0 et w_0 .

Exercice 15.2

Calculer le noyau de la matrice

$$A := egin{pmatrix} 1 & 8 & -3 & 2 \ -7 & 5 & 21 & -14 \ -3 & 4 & 9 & -6 \ 6 & 1 & -18 & 12 \end{pmatrix} \in \mathsf{M}_4(\mathbb{R})$$

Exercice 15.4

Soit $n \in \mathbb{N}$. Soient $a, b \in \mathbb{K}$. On pose

$$M:=egin{pmatrix} a & b & \cdots & b \ b & \ddots & \ddots & dots \ dots & \ddots & \ddots & b \ b & \cdots & b & a \end{pmatrix} \in \mathsf{M}_n(\mathbb{K}).$$

Déterminer, lorsqu'elle est inversible, l'inverse de M, en fonction de M, I_n , a, b et n.

Exercice 15.5

Soit $n \in \mathbb{N}$. Soient $A, B \in M_n(\mathbb{K})$ telles que $AB = 0_n$. Montrer que

$$\forall k \in \mathbb{N}^*, \quad \mathsf{Tr}ig((A+B)^kig) = \mathsf{Tr}(A^k) + \mathsf{Tr}(B^k).$$

1

Exercice 15.6

Soit $n \in \mathbb{N}$. Soit $A \in M_n(\mathbb{R})$. Montrer que

$$Ker(A^{T}A) = Ker(A)$$
.

Exercice 15.7

On pose, pour $\theta \in \mathbb{R}$,

$$\mathsf{R}(\theta) := egin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

- **1.** Soient $\theta_1, \theta_2 \in \mathbb{R}$. Montrer que $R(\theta_1)$ et $R(\theta_2)$ commutent.
- **2.** Soit $\theta \in \mathbb{R}$. Soit $n \in \mathbb{N}$. Calculer la matrice $R(\theta)^n$.

Exercice 15.8

Soit $n \in \mathbb{N}$. Soient $A, B \in M_n(\mathbb{R})$. Résoudre l'équation en $X \in M_n(\mathbb{R})$

$$X = \operatorname{Tr}(X)A + B.$$

Exercice 15.9

Soit $n \in \mathbb{N}^*$. Soit $A \in \operatorname{GL}_n(\mathbb{R})$ telle que

$$A + A^{-1} = I_n$$
.

Calculer, pour $k \in \mathbb{N}$, $A^k + A^{-k}$.

Exercice 15.10

Soit $n \in \mathbb{N}$. Soient $A, B, C \in M_n(\mathbb{K})$. Montrer que