Exercise 02: Single-compartment model

Theoretical Neuroscience I

Johannes Gätjen

October 17, 2015

Question:

Compute and plot the dependent variables of a neuron with the single-compartment model for a constant input current, an oscillating input current with low frequency (10Hz), an oscillating input current with medium frequency (100Hz) and a high frequency random input current. Use the following values for the independent variables: $r_m = 0.9 \mathrm{M}\Omega\,\mathrm{mm}^2$, $c_m = 12\mathrm{nF}\,\mathrm{mm}^{-2}$, $V_0 = 0\mathrm{mV}$ and $i_0 = 25\mathrm{nA}\,\mathrm{mm}^{-2}$.

Answer:

Figure 1: Constant input current: $i_e(t) = i_0$ Top: The electrode current(i_e , blue), the capacitor current(i_c , red) and the membrane current (i_r , green) over time. Bottom: The membrane voltage (V_m , blue) and the equilibrium potential (V_∞ , red) over time.

Figure 2: Low frequency input current: $i_e(t)=i_0\cdot\sin2\pi ft$, $f=10{\rm Hz}$ Same variables shown as in Figure 1.

Figure 3: Medium frequency input current: $i_e(t)=i_0\cdot\sin2\pi ft$, $f=100{\rm Hz}$ Same variables shown as in Figure 1.

Figure 4: High frequency random input current. Same variables shown as in Figure 1.