

### **Epigenetics**

### Operational definition:

Study of heritable molecular and phenotypic changes resulting in altered gene expression that are not caused by DNA-mutations

### **Epigenetics**

Epigenetics links to two origins:

EpiGenetic and EpiGenesis



"inheritance" and "development"

## Epigenetic control of coat colour genes on the X-chromosome of female cats



Three coloured "calico" cats – are always females! Their fur is patchy – resulting from a patchy clonal expansion of a coat colour gene expression.

How can we explain this phenomenon molecularly?

# Epigenetic control of coat colour genes on the X-chromosome of female cats



## Epigenetic control of coat colour genes on the X-chromosome of female cats

Some of the genes for the coat colour are located on the X-Chromosome.

Two different alleles of an X-linked copy are known: one causing yellow colour X<sup>b</sup>, the other variant of the same gene black colour X<sup>B</sup>.

Female cats have two copies of the X chromosome - they are XX and thus can carry the combination  $X^b_{yellow}$  /  $X^B_{black}$ .

In all mammlian females the genes of one of the chromosomes are epigentically silent.

Each cell of females therefore expresses only one of the two X linked copies of a gene either  $X^b$  = yellow or  $X^B$  = black

Calico cats have two different alleles of coat colour genes on the X – one for orange and one for black colour.

### **Epigenetics and Development**

### Non-reciprocal dominance of genes



Finding: Maternal dominance on nuclear genes.

Explanation: Combination of mitochondrial inheritance of the oocyte influencing the genetic program probably by epigenetic changes

### **Epigenetics and Inheritance**

Example: The selective elimination of chromosomes which leads to non-mendelian inheritance

In 1960 Helen Crouse shows that in Sciara only the maternal chromosomes are transmitted through the male germline



### Epigenetics and Inheritance



Stable epigenetic traits (phenotype)



Fig. 2. Goethes illustration of normal-flowering Linaria vulgaris (left) and his view of the five-spurred Peloria (right)

Inheritance of the mutant phenotype of the "Peloria mutant" over 200 years with no detectable genetic alteration (but DNA-methylation changes at the promoter)

### Epigenetic changes and Nutrition

Supplementation of folic acid and vitamin B12



Increase of DNA-Methylation at the Agouti Gene

### Temperature induced epigenetic memory



### **Epigenetics**

"Molecular/Biochemical Definition:

Reversible modifications of DNA or chromatin that affect the functions of the genome/chromosomes in a heritable way"

### What are epigenetic modifications?

- alter the chemical structure of proteins and/or DNA bases in chromosomes
- are transmissible/heritable across cell divsions (during mitosis and in some cases also during meiosis)
- can be deleted/reset/reprogrammed at certain stages during development and cellular differentiation.
- are established in multiple "layers" forming a cell type specific "epigenome"
- cell specific epigenomes change with development, age and in diseases.

# The epigenetic control of gene operates in chromatin



# Chromatin: the "playground for epigenetic control"

The basic building unit of chromatin (chromosomes) is a nucleosome

Nucleosomes are formed by histones and DNA

The density (= nucleosome packaging) of chromosomes is controlled by DNA- and histone modifications

#### Nucleosomes: the basic structure of chromatin



A nucleosome consists of a histone octamer (= 8 histones, 2x 4 different types) and 146-150 bp DNA (white ribbon) wrapped around the octamer

#### Nucleosomes: the basic structure of chromatin

- Consists of a histone octamer (2 x (H3 + H4 dimer) + 2x (H2A+H2B dimer).
- The DNA-Double-helix is wound twice around the octamer (146-150bp) (with linker Histons H1, approx. 200bp).
- DNA on nucleosoms is more tighly wound with 10,2 bp/helical turn as compared to "naked" B-DNA (10,4 – 10,6bp/turn).

# Chromatin is packages into different stages of condensation



# Epigenetic control through chromatin regulation: The main players.....

Closed, inaccessible chromatin



Open, transcriptionally competent chromatin

### Epigenetic modifications at the N-termini of Histones



### Histone-modifications

- The packaging of Chromatin is modulated by modifications of specific amino acids in the N- and C- termini of histones. The four major histone modifications types are:
- Acetylation (Ac) of the amino acid lysine (K)
- Methylation (Me) = addition of methyl group(s) to the amino acids arginine (R) and lysine (K)
- Ubiquitination (Ub) of the amino acid lysine (K)
- Phosphorylation(P) of the amino acids serine and/or threonine (S/T)

# Histone modifications are specific for open and closed chromatin structures



### **DNA-methylation**



# Epigenetic modifications are **set and erased** by specific enzymes with antagonisitc specificity



DNA-methylation & Histone modifications are <u>read</u> by specific proteins

### Key characteristics of epigenetics

DNA of chromosomes is packed by histones in nucleosome units.

Histones and DNA contain secondary epigenetic modifications which are reversible.

Modifications are locus and gene specific – they change the expression of genes

Cells can be distinguished by gene and cell type specific "epigenetic" modifications.

### Epigenetics and development: Regulation of cell specific programs



some genes on, some off



### Epigenetics and "Epigenesis"





Conrad Waddington: Epigenetic landscape & "Canalization" Modified: Timo C. Dinger & Albrecht Müller

reprogramming allows to revert this process

### Epigenetische Programme und Entwicklung



Epigenetic modifications are earsed and "re-established, during early development!

## Epigenetic and cell diversity: THE EPIGENOME

One genome in many different cell types of our body



estimations 35 Billion cells and > 250 cell-types (probably many

### Cell type specific epigenomes



Each cell type develops a characteristic pattern of epigenetic modifications along chromosomes

# Epigenetics helps to understand cell diversity: THE EPIGENOME



### Methoden der Epigenom-Kartierung

### **Epigenomic mapping**





### Understanding the EPIGENOME



### The goal of the international human epigenome consortium IHEC

"Mapping and decoding of the landscape of chromosomal modifications associated with the cell type specific regulation of human genes"

http://www.cell.com/consortium/IHEC



### Mapping of cell specific epigenomes

### Sequencing on NGS machines

#### Cell Isolation



Retrieval of fresh tissue

Data analysis

Isolation of RNA,
DNA or Chromatin.
Application of epigenomic sequencing techniques

### Reading of cell specific epigenomes



wrong in diseases

Integrated epigenomic maps: assignment of landmarks for gene regulation: Promoters (P), Enhancer (E), Silencer (S), Chromatin loop boundaries(B),......



### Cell specific epigenomes

- Each cell type of our body has a specific epigenomic signature(landscape)
- Comprehensive Epigenomes are composed of a series of "epigenetic sequencing" approaches:
  - DNA-methylation, Chromatin modifications, Chromatin openess and the Gene expression
- The integration of such data can be used to identify epigenetic changes that are linked to development, aging or disease

Lecture 1 37

### Epigenetics and disease

Epigenetic changes provide new molecular insights into the cell specific basis of human diseases:

- Autoimmune diseases (Rheuma), Chronic Inflammation (Morbus Crohn,)
- Leukemias: CLL, AML, ALL,....) and all solid tumors
- Age and immune related disease (Alzheimer, Parkinson, MS, ALS .....)
- Complex genetic syndromatic diseases (imprinting),
- Prenatal development & Reproductive problems (environmental influences, aging, reprogramming)
- Metabolic diseases (Adipositas, T2D)

### Epigenetics in Biology

Development Disease

Inheritance

Adaptation

# Epigenetic differentiation between types of brain tumors (Glioblastom)



