In [25]:

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np

- -> pandas is a data analysis library used to manipulate and analyze data in Python. It provides data structures such as DataFrame and Series for handling tabular data.
- -> seaborn is a data visualization library based on matplotlib. It provides high-level interface for creating statistical graphics such as scatter plots, heatmaps, and bar plots.
- -> matplotlib is a plotting library used to create static, animated, and interactive visualizations in Python. It provides a range of visualization tools for creating line plots, scatter plots, histograms, and more.
- -> numpy is a numerical computing library used for scientific computing in Python. It provides support for large, multi-dimensional arrays and matrices, and a range of mathematical functions for working with these arrays.

Loading "titanic" dataset

In [26]:

df = pd.read\_csv('titanic.csv')
df

| 0    |     |             |          |        | 7.10                                                          | ssigninent | 0_0000 |       |       |                     |         |    |
|------|-----|-------------|----------|--------|---------------------------------------------------------------|------------|--------|-------|-------|---------------------|---------|----|
| 5]:_ |     | PassengerId | Survived | Pclass | Name                                                          | Sex        | Age    | SibSp | Parch | Ticket              | Fare    | Ca |
|      | 0   | 1           | 0        | 3      | Braund,<br>Mr. Owen<br>Harris                                 | male       | 22.0   | 1     | 0     | A/5<br>21171        | 7.2500  | ١  |
|      | 1   | 2           | 1        | 1      | Cumings,<br>Mrs. John<br>Bradley<br>(Florence<br>Briggs<br>Th | female     | 38.0   | 1     | 0     | PC 17599            | 71.2833 | (  |
|      | 2   | 3           | 1        | 3      | Heikkinen,<br>Miss.<br>Laina                                  | female     | 26.0   | 0     | 0     | STON/O2.<br>3101282 | 7.9250  | ١  |
|      | 3   | 4           | 1        | 1      | Futrelle,<br>Mrs.<br>Jacques<br>Heath<br>(Lily May<br>Peel)   | female     | 35.0   | 1     | 0     | 113803              | 53.1000 | С  |
|      | 4   | 5           | 0        | 3      | Allen, Mr.<br>William<br>Henry                                | male       | 35.0   | 0     | 0     | 373450              | 8.0500  | ١  |
|      | ••• |             |          |        |                                                               |            |        |       |       |                     |         |    |
|      | 886 | 887         | 0        | 2      | Montvila,<br>Rev.<br>Juozas                                   | male       | 27.0   | 0     | 0     | 211536              | 13.0000 | ١  |
| 8    | 887 | 888         | 1        | 1      | Graham,<br>Miss.<br>Margaret<br>Edith                         | female     | 19.0   | 0     | 0     | 112053              | 30.0000 |    |
|      | 888 | 889         | 0        | 3      | Johnston,<br>Miss.<br>Catherine<br>Helen<br>"Carrie"          | female     | NaN    | 1     | 2     | W./C.<br>6607       | 23.4500 | Γ  |
| 1    | 889 | 890         | 1        | 1      | Behr, Mr.<br>Karl<br>Howell                                   | male       | 26.0   | 0     | 0     | 111369              | 30.0000 | С  |
|      | 890 | 891         | 0        | 3      | Dooley,<br>Mr.<br>Patrick                                     | male       | 32.0   | 0     | 0     | 370376              | 7.7500  | ١  |
|      |     |             |          |        |                                                               |            |        |       |       |                     |         |    |

891 rows × 12 columns

Out[28]:

|             | PassengerId | Survived   | Pclass     | Age        | SibSp      | Parch      | Fare       |
|-------------|-------------|------------|------------|------------|------------|------------|------------|
| count       | 891.000000  | 891.000000 | 891.000000 | 714.000000 | 891.000000 | 891.000000 | 891.000000 |
| mean        | 446.000000  | 0.383838   | 2.308642   | 29.699118  | 0.523008   | 0.381594   | 32.204208  |
| std         | 257.353842  | 0.486592   | 0.836071   | 14.526497  | 1.102743   | 0.806057   | 49.693429  |
| min         | 1.000000    | 0.000000   | 1.000000   | 0.420000   | 0.000000   | 0.000000   | 0.000000   |
| 25%         | 223.500000  | 0.000000   | 2.000000   | 20.125000  | 0.000000   | 0.000000   | 7.910400   |
| 50%         | 446.000000  | 0.000000   | 3.000000   | 28.000000  | 0.000000   | 0.000000   | 14.454200  |
| <b>75</b> % | 668.500000  | 1.000000   | 3.000000   | 38.000000  | 1.000000   | 0.000000   | 31.000000  |
| max         | 891.000000  | 1.000000   | 3.000000   | 80.000000  | 8.000000   | 6.000000   | 512.329200 |
|             |             |            |            |            |            |            |            |
| df.isn      | ull().sum() |            |            |            |            |            |            |

| In [29]: | df.isnull().sum()                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Out[29]: | Passengerld 0 Survived 0 Pclass 0 Name 0 Sex 0 Age 177 SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked 2 dtype: int64                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| In [30]: | df_c= df.groupby(by='Survived').agg(count=('Passengerld','count'))  # The code df.groupby(by='Survived').agg(count=('Passengerld','count')) groups the data in  # and calculates the count of rows in each group using the 'Passengerld' column. The result  # 'count' and two rows, one for each possible value of 'Survived' (0 and 1).  df_c |  |  |  |  |  |  |  |
| Out[30]: | count                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |

Survived0 5491 342

It means that in the original dataset, there were 549 passengers who did not survive (Survived=0) and 342 passengers who did survive (Survived=1).

In [31]: sns.distplot(df['Age'])

# plot of the distribution of the 'Age' variable in the given dataset 'df', using the seaborn library.

# It shows the frequency distribution of the 'Age' variable, with the x-axis representing the range

# and the y-axis representing the frequency of occurrence of those ages.

# The plot can give an idea of the central tendency, spread, and shape of the distribution of age

C:\Users\SKY\_NET\AppData\Local\Temp\ipykernel\_2908\997304687.py:1: UserWarning:

'distplot' is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df['Age'])

Out[31]: <Axes: xlabel='Age', ylabel='Density'>



The plot indicates there are more number of passengers of age group between 20 to 40

In [55]: sns.countplot(y="Survived", data=df)
Out[55]: <Axes: xlabel='count', ylabel='Survived'>



In [33]: sns.catplot(x ="Survived",col='Pclass', kind ="count", data = df)
# This plot shows how many passengers survived and died for each class in the dataset, # giving us an idea about the survival rate among different classes.



In [56]: df['Survived'].value\_counts().plot(kind='pie', autopct='%1.1f%%')
Out[56]: <Axes: ylabel='Survived'>











Survived vs AgeGroup (Adult / Non-Adult)

In [61]: df['isAdult'] = np.where(df['Age']>=18,1,0)

# creates a new column named 'isAdult' in the DataFrame 'df' based on a condition.

# If the 'Age' of a person is greater than or equal to 18, the value of 'isAdult' for that

# person is set to 1, otherwise it is set to 0.

In [36]: sns.catplot(x ="isAdult", hue ="Survived", kind ="count", data = df)

Out[36]: <seaborn.axisgrid.FacetGrid at 0x2695d14cb20>



In [37]: sns.catplot(x ="Sex",col='isAdult', kind ="count", data = df)

Out[37]: <seaborn.axisgrid.FacetGrid at 0x26960c47d00>



In [63]: sns.catplot(x ="Survived",col='Embarked', hue='Sex', kind ="count", data = df)
# this plot shows the count of male and female passengers who survived and did not survive for # It helps to visualize if there is any relationship between Embarked port, Sex, and the survival re

Out[63]: <seaborn.axisgrid.FacetGrid at 0x2695fe48e20>



## In [65]: sns.distplot(df['Fare'])

# The values on the x-axis of the plot represent the fare paid by passengers, while the values on # The plot shows the distribution of fare values in the dataset, indicating how many passengers | # The peaks in the plot indicate the fare values that were more common among the passengers.

C:\Users\SKY\_NET\AppData\Local\Temp\ipykernel\_2908\4234128465.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df['Fare'])

Out[65]: <Axes: xlabel='Fare', ylabel='Density'>



## In [40]: df.corr()

C:\Users\SKY\_NET\AppData\Local\Temp\ipykernel\_2908\1134722465.py:1: FutureWarning: T he default value of numeric\_only in DataFrame.corr is deprecated. In a future version, it will d efault to False. Select only valid columns or specify the value of numeric\_only to silence this warning.

df.corr()

Out[40]:

|  |             | Passengerld | Survived  | Pclass    | Age       | SibSp     | Parch     | Fare      | isAdı                |
|--|-------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|----------------------|
|  | PassengerId | 1.000000    | -0.005007 | -0.035144 | 0.036847  | -0.057527 | -0.001652 | 0.012658  | 0.0348               |
|  | Survived    | -0.005007   | 1.000000  | -0.338481 | -0.077221 | -0.035322 | 0.081629  | 0.257307  | -0.0083              |
|  | Pclass      | -0.035144   | -0.338481 | 1.000000  | -0.369226 | 0.083081  | 0.018443  | -0.549500 | -0.2364 <sup>-</sup> |
|  | Age         | 0.036847    | -0.077221 | -0.369226 | 1.000000  | -0.308247 | -0.189119 | 0.096067  | 0.6170               |
|  | SibSp       | -0.057527   | -0.035322 | 0.083081  | -0.308247 | 1.000000  | 0.414838  | 0.159651  | -0.2463              |
|  | Parch       | -0.001652   | 0.081629  | 0.018443  | -0.189119 | 0.414838  | 1.000000  | 0.216225  | -0.1199              |
|  | Fare        | 0.012658    | 0.257307  | -0.549500 | 0.096067  | 0.159651  | 0.216225  | 1.000000  | 0.0911               |
|  | isAdult     | 0.034839    | -0.008309 | -0.236475 | 0.617063  | -0.246303 | -0.119937 | 0.091114  | 1.0000               |

Out[66]: <seaborn.axisgrid.JointGrid at 0x2696717f1c0>

<sup>#</sup> This plot shows the relationship between the two variables 'Pclass' and 'Fare'. The x-axis repre # Each point on the plot represents a passenger in the dataset. The joint plot displays both a sca # The scatter plot shows the individual data points while the histograms show the distribution of # This plot helps to visualize the relationship between the passenger class and fare they paid.



```
sns.jointplot(x = "Embarked", y = "Fare",
In [42]:
                   kind = "scatter", data = df)
                                                                                                        -
```

<seaborn.axisgrid.JointGrid at 0x26963f908b0> Out[42]:



Out[43]: <seaborn.axisgrid.JointGrid at 0x2696467ec50>

