

KONTEN

PENGENALAN SISTEM

SIFAT-SIFAT DASAR SISTEM

UNIT STEP DAN UNIT IMPULSE FUNCTION

ISYARAT DISKRET

Unit Impulse Function

$$\delta[n] = egin{cases} 0, & n
eq 0 \ 1, & n = 0 \end{cases}$$

$$\delta[n] = u[n] - u[n-1]$$

Unit Step Function

$$u[n] = \begin{cases} 0, & n < 0 \\ 1, & n \ge 0 \end{cases}.$$

$$u[n] = \sum_{k=\infty}^{0} \delta[n-k] = \sum_{k=0}^{\infty} \delta[n-k] \quad (2)$$

ISYARAT KONTINU

Unit Step Function untuk isyarat kontinu

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$$

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

Ketika kamu melihat unit step isyarat kontinu tapi ada diskontinuitas

WHAT REALLY HAPPENED?

Unit step function untuk isyarat kontinu adalah pendekatan

$$u(t) = \lim_{\Delta \to 0} u_{\Delta}(t)$$

UNIT IMPULSE ISYARAT KONTINU

Unit impulse pada isyarat kontinu diperoleh dari persamaan

$$\delta(t) = \frac{du(t)}{dt} \quad (3)$$

Namun u(t) tidak differentiable

apabila yang dideferensialkan adalah...

Maka hasilnya...

UNIT IMPULSE ISYARAT KONTINU

Unit impulse diperoleh dari pendekatan

Maka hasilnya adalah

PENGENALAN SISTEM

APA ITU SYSTEM?

Def : Sistem adalah interkoneksi antara komponen-komponen yang saling bekerjasama untuk mencapai tujuan tertentu dan mempunyai karakteristik tertentu

CONTOH SISTEM

Microphone dan speaker

Input : suara
Output : suara
yang dikuatkan

Sistem Power Steering

Input : Gerakan steering

wheel
Output : Gerakan roda

Gerbang Logika

Input : Isyarat biner Output : Isyarat biner hasil operasi logika Rangkaian listrik

Input : tegangan catu daya
Output : tegangan
komponen

SISTEM DISKRET DAN KONTINU

Converter: Mengubah isyarat diskret menjadi kontinu atau isyarat kontinu menjadi diskret

Contoh : Analog to Digital Converter dan Digital to Analog Converter

INTERKONEKSI ANTAR SISTEM

Sistem yang besar umumnya terdiri dari system-system yang lebih kecil, misalnya pada system audio amplifier

Atau pada system enkripsi pesan

INTERKONEKSI SISTEM

INTERKONEKSI SISTEM

SIFAT DASAR SISTEM

1. SISTEM MEMORY DAN MEMORYLESS

Sistem Memory adalah system yang keluarannya bergantung pada masukan pada waktu yang sama dan waktu sebelumnya. Contohnya adalah akumulator

$$y[n] = \sum_{k=-\infty}^{n} x[k] = \sum_{k=-\infty}^{n-1} x[k] + x[n] = y[n-1] + x[n]$$

Contoh real nya ada pada kapasitor, apabila arus dianggap input dan tegangan dianggap output, maka

$$v_c(t) = \frac{1}{C} \int_{-\infty}^{t} i(\tau) d\tau$$

1. SISTEM MEMORY DAN MEMORYLESS

Definisi: Sistem Memoryless adalah system yang keluarannya hanya bergantung pada masukan di waktu yang sama

$$y[n] = (2x[n] - x^2[n])^2$$

$$y[n] = x[n]$$

Contoh real nya adalah resistor

$$v_R(t) = Ri(t)$$

2. INVERTIBILITY

Sistem disebut invertible apabila jika system tersebut dirangkai seri dengan system inversnya, maka akan menghasilkan system identitas

$$y(t) = kx(t)$$
 $y(t) = \frac{1}{k}y(t)$ $w(t) = x(t)$

Contoh lain...

$$\underbrace{x[n]}_{y[n]} = \underbrace{\sum_{k=-\infty}^{n} x[k]}_{x[k]} \underbrace{y[n]}_{y[n]} \underbrace{w[n] = y[n]}_{-y[n-1]} \underbrace{w[n] = x[n]}_{w[n]}$$

3. CAUSALITY

Definisi : system yang keluaran saat ini tidak bergantung pada masukan saat selanjutnya.

Contohnya kapasitor, kapasitor hanya merespon nilai tegangan saat ini dan saat sebelumnya, bukan merespon tegangan 2 detik kemudian. Contoh secara matematis :

$$y(t) = x(t-1)$$

$$y(t) = kx(t)$$

Sistem non kausal bisa muncul pada system yang variable bebasnya bukan waktu, misalkan pada image, keluaran pada pixel tertentu bisa dipengaruhi keluaran pixel sebelumnya

4. KESTABILAN

Definisi: System yang masukannya terbatas dan menghasilkan keluatan yang terbatas (Boundary Input Boundary Output)

Contoh Sistem Stabil:

Bola di dalam mangkok Ketika disentil akan bergerak dengan stabil di dalam mangkok

Output:

4. KESTABILAN

Contoh Sistem Tak Stabil

Bola diatas mangkok apabila disentil sedikit maka akan bergerak jauh

Outputnya:

5. TIME INVARIANCE

Definisi : Sistem yang apabila masukannya ditunda dalam waktu tertentu, maka keluarannya akan ditunda juga dalam waktu yang sama

Ilustrasi:

Kasus Kontinu: Jika
$$x(t) \to y(t)$$
 maka $x(t-t_0) \to y(t-t_0)$
Kasus Diskret: Jika $x[n] \to y[n]$ maka $x[n-n_0] \to y[n-n_0]$

Contoh persamaan:

1.
$$y(t) = sin\{x(t)\}$$
 => Time invariance

2.
$$y(t) = t x(t)$$
 => Time varrying

6. LINEARITAS

Definisi: Sistem yang memenuhi sifat additive, homogen, dan time scalling

Cara menguji linearitas sistem

Sifat <u>superposisi</u>: Suatu sistem adalah sistem linear jika saat

$$x_1(t) \rightarrow y_1(t)$$
 $x_2(t) \rightarrow y_2(t)$

Maka berlaku pula (dengan a dan b konstanta kompleks):

$$ax_1(t) + bx_2(t) \rightarrow ay_1(t) + by_2(t)$$