Machine Learning (CS60050) - Assignment 2 Report

Amit Kumar - 20CS30003

Nikhil Saraswat - 20CS10039

Tasks

In this report, we analyze a Naive Bayes Classifier trained on the Dataset_A. The tasks performed with regard to this are:

- 1) Randomly divide Dataset A into 80% for training and 20% for testing. Encode categorical variables using appropriate encoding method (in-built function allowed).
- 2) A feature value is considered as an outlier if its value is greater than mean + 3 x standard deviation (μ + 3 × σ). A sample having maximum such outlier features must be dropped. Print the final set of features formed. Normalize the features as required.
- 3) Train the Naïve Bayes Classifier using 10-fold cross validation (no packages to be used for Naïve Bayes Classifier). Print the final accuracy.
- 4) Train the Naïve Bayes Classifier using Laplace correction on the same train and test split. Print the final accuracy.
- 5) Prepare a report including all your results

Dataset

The dataset has the following data fields (features):

- id unique ID
- Gender Gender of customer
- Ever Married Marital status of customer
- Age Age of customer
- Graduated Is the customer a graduate
- Profession profession of the customer
- Work Experience Work Experience in years
- Spending Score Spending Score of customer
- Family_size Number of family members of the customer customer (including the customer)
- Var_1 Anonymised Category for the customer
- Segmentation Customer Segment of the customer

The dataset has 8068 training examples and is available in the '.csv' format.

1. Naive Bayes Classifier (without Laplace Correction)

Dataset	Accuracy
Train	46.975806451612904
Test	48.759305210918114

2. Naive Bayes Classifier with Laplace Correction

Dataset	Accuracy
Train	52.17121588089329
Test	51.736972704714645

3. 10-Fold Cross Validation

Accuracy (over 10-Folds)	
50.37220843672456	
50.86848635235732	
53.349875930521094	
50.744416873449126	
49.007444168734494	
51.488833746898266	
50.49627791563276	
51.86104218362283	
50.86848635235732	
50.0	

Mean Accuracy 50.90570719602978

	Max Accuracy	53.349875930521094
--	--------------	--------------------

Instructions to Execute the Code

- Ensure you are using the latest version of Python3, and install all dependencies. pip install -r requirements.txt
- Execute the file main.py python main.py
- The relevant output will be displayed on the terminal or console.