# RS/Conference2019

San Francisco | March 4-8 | Moscone Center



SESSION ID: CRYP-T09

# Efficient Function-Hiding Functional Encryption: From Inner-Products to Orthogonality

### **Authors:**

Manuel Barbosa, Dario Catalano, Azam Soleimanian, and Bogdan Warinschi

Corresponding author :Azam.Soleimanian@ens.fr

# **Motivations: Functional Encryption for Orthogonality (OFE)**

- Privacy-preserving role-based access control
- Keyword search over encrypted data





# RS/Conference2019

**Functional Encryption for Orthogonality** 

### Functional Encryption (for $F: X \times Y \longrightarrow Z$ )

 $Setup(1^{\lambda}) \longrightarrow (msk, mpk)$ 

 $Enc(mpk, x) \rightarrow ct$ 

 $KeyGen(msk, y) \rightarrow sk$ 

### **Inner-Product (IPFE)**

$$F(x, y) = \langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

$$F(x,y) = \begin{cases} 1 & \langle x,y \rangle = 0 \\ 0 & othw \end{cases}$$

### **Orthogonality (OFE)**



### From IPFE to OFE

# Randomization + function-hiding IPFE OFE

### 

# FH-OFE

- no information about x
- no information about y
- no information about  $\langle x, y \rangle$  when  $\langle x, y \rangle \neq 0$

## **Security notion in FH-FE**

- Selective: Ask all the challenges at the beginning
- Adaptive: Ask whenever you want



One vs. Many

Selective vs. Adaptive

# Coming back to the construction

### Algorithm (FH-OFE from FH-IPFE)

$$r_y \leftarrow \mathbb{Z}_q$$

$$\mathbf{y}^* \leftarrow r_y \cdot \mathbf{y}$$

 $sk_y \leftarrow FE.KeyGen(msk, \mathbf{y}^*)$ 

Return sk<sub>v</sub>

$$\frac{\mathsf{FE}^*.\mathsf{Enc}(\mathsf{msk},\mathbf{x})}{\mathsf{ct} \leftarrow \mathsf{FE}.\mathsf{Enc}(\mathsf{msk},\mathbf{x})}$$

ct 
$$\leftarrow$$
 FE.Enc(msk,  $\mathbf{x}$ )

Return ct

$$\frac{\mathsf{FE}^*.\mathsf{Dec}(\mathsf{ct},\mathsf{sk}_y)}{\mathsf{v} \leftarrow \mathsf{FE}.\mathsf{Dec}(\mathsf{ct},\mathsf{sk})}$$
$$\mathit{If } \mathsf{v} = 0 \; \mathit{return} \; 1$$
$$\mathit{Else \; return} \; 0$$

Security level: one-selective

# RS/Conference2019

Going to Many-Adaptive security

**FH-OFE** in Generic Group Model

# FH-OFE in generic group model (GGM)

- Group Operations in GGM
  - Encoding
  - Add
  - Pair
  - Zero-test
- Pros and Cons with GGM?
  - Oracle access to group operations
  - non-generic attacks can be inefficient
  - Flexibility to present efficient constructions
  - Preventing many-ciphertext attacks

### **FH-OFE in GGM**

❖ FH-IPFE by Kim et al. SCN 2018

### Algorithm (FH-OFE in GGM)

- Setup $(1^{\lambda}) \to \mathsf{msk}$ where  $(\mathbf{B}, \mathbf{B}^*)$ ,  $\mathbf{B} \leftarrow \mathbb{Z}^{n \times n}$ , and  $\mathbf{B}^* = \mathsf{det}(\mathbf{B}) \cdot (B^{-1})^T$
- $\operatorname{Enc}(\operatorname{msk}, \mathbf{x}) \to \operatorname{ct} \ \textit{where} \ \operatorname{ct} = [\![\beta\!] \cdot \mathbf{x} \cdot {}^T \mathbf{B}^*]_2$
- KeyGen(msk,  $\mathbf{y}$ )  $\rightarrow$   $sk_y$  where  $sk_y = [\alpha \cdot \mathbf{y}^T \cdot \mathbf{B}]_1$
- $Dec(ct, sk) \rightarrow \prod_{i=1}^{n} e(sk[i], ct[i])$

Security Level: many-Adaptive

# RS/Conference2019 **FH-OFE in Standard Model**

# FH-OFE in standard model (SM)

❖ FH-IPFE by Lin CRYPTO 2017

```
KeyGen( Enc_{mpk}(\mathbf{x}) )

Enc(\text{KeyGen}_{msk}(\mathbf{y}) )
```

- General Construction by Lin
  - Requirements on the underlying scheme
  - Adding multi-linearity
  - Selective results in selective
  - Instantiation: scheme of Abdalla et al. PKC 2015

# FH-OFE in standard model (SM)

### Algorithm (FH-OFE in SM)

$$\begin{split} \bullet \ \, \mathsf{Setup}(1^\lambda, 1^n) \colon \\ (\mathsf{msk}_1, \mathsf{mpk}_1) &\leftarrow \Gamma_1.\mathsf{Setup}(1^\lambda, 1^n) \ \textit{and} \\ (\mathsf{msk}_2, \mathsf{mpk}_2) &\leftarrow \Gamma_2.\mathsf{Setup}(1^\lambda, 1^{n+1}). \\ \textit{output} \ k = (\mathsf{msk}; \mathsf{mpk}) = (\mathsf{msk}_1, \mathsf{msk}_2; \mathsf{mpk}_1, \mathsf{mpk}_2) \end{split}$$

- $\mathsf{Enc}(k,\mathbf{x})$ :  $[\mathsf{ct}]_1 = \Gamma_1.\mathsf{Enc}(\mathsf{mpk}_1,\mathbf{x}) \ \textit{where} \ \mathbf{x} \in \mathbb{Z}^n, \ \textit{set} \\ [\mathsf{wCT}]_1 = \Gamma_2.\mathsf{KeyGen}(\mathsf{msk}_2,\mathsf{ct})$
- KeyGen $(k, \mathbf{y})$ :  $[\mathsf{sk}]_2 = \Gamma_1.\mathsf{KeyGen}(\mathsf{msk}_1, \mathbf{y}) \ \textit{where} \ \mathbf{y} \in \mathbb{Z}^n, \ \textit{set} \\ [\mathsf{wSK}]_2 = \Gamma_2.\mathsf{Enc}(\mathsf{mpk}_2, \mathsf{sk})$
- Dec(wSK, wCT):  $\Gamma_2.Dec([wSK]_2, [wCT]_1)$

Security level: Depends on the underlying scheme

### Instantiation: Wee's Scheme TCC 2017

#### Algorithm $\mathsf{Setup}(1^{\lambda})$ : $Enc(mpk, \mathbf{x})$ : $\mathbf{A} \leftarrow \mathbb{Z}^{k+1 \times k}$ $s \leftarrow \mathbb{Z}^k$ $\mathbf{U} \leftarrow \mathbb{Z}^{k+1 \times k+1}$ For $i \in [n]$ : $\mathbf{W}_i \leftarrow \mathbb{Z}^{k+1 \times k+1}$ $\mathbf{M}_0 \leftarrow \mathbf{s}^{\top} \mathbf{A}^{\top}$ $\mathsf{msk} \leftarrow (\mathbf{A}, \{\mathbf{W}_i\}_{i=1}^n)$ $\mathsf{ct} \leftarrow [\mathbf{M}_0 || \{\mathbf{M}_0(\mathbf{x}_i \mathbf{U} + \mathbf{W}_i)\}_{i=1}^n]_1$ $\mathsf{mpk} \leftarrow ([\mathbf{A}^\top]_1, \{[\mathbf{A}^\top \mathbf{W}_i]_1\}_{i=1}^n)$ Return ct Return (msk, mpk) Dec(sk, ct): $KeyGen(msk, \mathbf{y})$ : $\mathbf{r} \leftarrow \mathbb{Z}^{k+1}$ *Return* $\langle \mathsf{ct}, \mathsf{sk} \rangle = \mathbf{1}$ $\mathsf{sk} \leftarrow [-\sum_{i=0}^{n} \mathbf{y}_i \mathbf{W}_i \mathbf{r} || \{\mathbf{y}_i \mathbf{r}\}_{i=1}^{n}]_2$ Return sk

- Instantiation: Harder but possible
  - Matrix scales
  - MDDH assumption
  - Many-Selective secure

### From Selective to Adaptive in SM

### Complexity Leveraging (CL)

- Converting selective security to adaptive security
- Losing a factor of security (is it tolerable?)

- CL on the general construction
  - Security loss:  $q^{\tau}$  where  $\tau = 2n(q_e + q_k)$  Not tolerable, So?
- CL on underlying schemes?
  - Security loss:  $q^{2n}$  Tolerable if n is small enough

# **Implementation**

### Timing values in milliseconds

|     | GGM     |         |         | SM      |         |         |
|-----|---------|---------|---------|---------|---------|---------|
| N   | Extract | Encrypt | Decrypt | Extract | Encrypt | Decrypt |
| 16  | 6       | 2       | 10      | 36      | 15      | 60      |
| 32  | 12      | 4       | 19      | 71      | 28      | 116     |
| 64  | 22      | 9       | 37      | 139     | 60      | 231     |
| 128 | 46      | 20      | 73      | 270     | 112     | 463     |
| 256 | 100     | 44      | 155     | 558     | 229     | 968     |

### Lengths in Kilobytes

|     | GG    | $^{-}$ M | $\operatorname{SM}$ |       |  |
|-----|-------|----------|---------------------|-------|--|
|     | )     |          | Keys                | _     |  |
| 16  | 0,99  | $0,\!50$ | 6,34                | 3,18  |  |
| 32  | 1,99  | 1,00     | 12,30               | 6,16  |  |
| 64  | 3,98  | 1,99     | 24,23               | 12,14 |  |
| 128 | 7,95  | 3,98     | 48,09               | 24,09 |  |
| 256 | 15,91 | 7,97     | 95,81               | 48,00 |  |

### **Implementation**

- MacBook Pro, 2.9 GHz Intel Core i5, RAM 16 GB
- C++
  - SCIPR Lab's library for finite fields and elliptic curves (libff)
    - Curve: BN128 (BN254)
  - Shoup's Number Theory Library (NTL)
  - GNU Multiprecision Library (GMP)

www.shoup.net/ntl/
www.gmplib.org
www.github.com/scipr-lab/libff
www.github.com/zcash/zcash/issues/2502



# **Comparison**

| Scheme          | GGM   | SM        | Shen et al. | Kawai et al. |  |
|-----------------|-------|-----------|-------------|--------------|--|
| security        | full  | full*     | selective   | full         |  |
| group order     | prime | prime     | composite   | prime        |  |
| assumption      | GGM   | MDDH, DDH | C3DH, DLIN  | DLIN         |  |
| key size        | n     | 6n + 6    | 4n + 4      | 6 <i>n</i>   |  |
| ciphertext size | n     | 6n + 6    | 4n + 4      | 6 <i>n</i>   |  |
| key extraction  | n     | 12n + 9   | 32n + 4     | 6 <i>n</i>   |  |
| encryption      | n     | 12n + 9   | 24n + 16    | 6 <i>n</i>   |  |
| decryption      | n     | 6n + 6    | 4n + 4      | 6 <i>n</i>   |  |

## **Applications**

- Privacy-preserving subset relation
  - Sorting algorithm
  - Searchable encryption
- Range queries
- Access Control

$$B \subseteq A$$

$$= 1 \quad \text{if } u_i \in A, 1 < A$$

$$\mathsf{mRep}(A) := egin{cases} oldsymbol{x}_i = 1 & \text{if } u_i \in A, 1 \leq i \leq n \ oldsymbol{x}_i = 0 & \text{if } u_i \notin A, 1 \leq i \leq n \ oldsymbol{x}_{n+1} = -1 \end{cases}$$
  $\mathsf{kRep}(B) := egin{cases} oldsymbol{y}_i = 1 & \text{if } u_i \in B, 1 \leq i \leq n \ oldsymbol{y}_i = 0 & \text{if } u_i \notin B, 1 \leq i \leq n \ oldsymbol{y}_{n+1} = |B| \end{cases}$ 

$$B \subseteq A$$
 iff  $< mRep(A), kRep(B) > = 0$ 

### References

- Abdalla, M., Bourse, F., Caro, A.D., Pointcheval, D.: Simple functional encryption schemes for inner products. Public-Key Cryptography - PKC 2015.
- Kawai, Y., Takashima, K.: Predicate- and attribute-hiding inner product encryption in a public key setting. Pairing 2013, Revised
- Kim, S., Lewi, K., Mandal, A., Montgomery, H.W., Roy, A., Wu, D.J.: Function hiding inner product encryption is practical. SCN 2018
- Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 prgs. Advances in Cryptology CRYPTO 2017.
- Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. Theory of Cryptography TCC 2009. Proceedings, pp. 457–473 (2009)
- Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. TCC 2017.

# RS/Conference2019

### Summery:

- Functional encryption for orthogonality
- Function-hiding property
- IPFE + Randomization + function hiding → one-selective FH-OFE
- FH-OFE in GGM with many-adaptive security is possible
- Wee's OFE + Lin's Transformation → many-selective-secure FH-OFE
- CL on Wee's OFE+ hybrid +Lin's transformation → many-adaptive-secure FH-OFE
- FH-OFE → privacy-preserving subset relation

