Liczby zespolone - zadania

Zad 1. Oblicz:

(a) i^2 ; (b) i^3 ; (c) i^4 ; (d) i^5 ; (e) i^{22} ; (f) i^{89} ; (g) i^{2007} ; (h) i^{-1} ; (i) i^{-2} ; (j) i^{-3} ; (k) i^{-4} ; (l) i^{-129} ; (m) i^{-75} ; (n) i^{-2008} ;

Zad 2. Wykonaj działania; wynik zapisz w postaci algebraicznej:

(a) $\left(2+\frac{1}{4}i\right)(5+i);$ (b) $\left(\frac{1}{2}+\frac{\sqrt{2}}{2}i\right)\left(\frac{1}{2}-\frac{\sqrt{2}}{2}i\right);$ (c) $\left(\frac{1}{4}+i\right)^2;$ (d) $\left(\frac{1}{2}+\frac{\sqrt{3}}{2}i\right)^3;$ (e) $\left(\frac{1}{2}+\frac{2}{3}i\right)^4;$ (f) $\frac{4+i}{1-2i};$

Zad 3. Znaleźć $x, y \in \mathbb{R}$ spełniające równanie:

(a) x(2+3i) + y(4-5i) = 6-2i; (b) $\frac{1+yi}{x-2i} = 3i-1;$ (c) (2+yi)(x-3i) = 7-i;

(d) x(2+3i) + y(5-2i) = -8+7i; (e) $\frac{x}{2-3i} + \frac{y}{3+2i} = 1$; (f) $x(4-3i)^2 + y(1+i)^2 = 7-12i$;

Zad 4. Oblicz pierwiastek kwadratowy z liczby:

(b) z = -8i; **(c)** z = -1 + i; **(d)** z = 3 + 4i; **(e)** z = -16 + 30i; **(f)** $z = \frac{1}{2} + \frac{\sqrt{3}}{2}i$;

(g) $z = \frac{(14-2i)(i+3)}{4-2i}$:

Zad 5. Rozwiązać w zbiorze liczb zespolonych równanie:

(d) $\frac{1-3i}{3z+2i} = \frac{2i-3}{5-2iz}$; (a) $z^2 - z + 1 = 0$: (b) $z^2 + 4z + 5 = 0$: (c) (i-3)z = 5+i-z:

(e) $z^2 - 4z + 13 = 0$; (f) $\frac{2+i}{z-1+4i} = \frac{1-i}{2z+1}$; (h) $z^4 + 3z^2 - 4 = 0$; (g) $z^3 - 6iz^2 - 12z + 8i = 0$;

(i) $4z^3 - 4z^2 + z - 1 = 0$: (k) $z^6 - 1 = 0$: (i) $z^4 + 81 = 0$:

(m) $z^4 - 10z^2 - 20z - 16 = 0$; (1) $z^4 - (18+4i)z^2 + 77 - 36i = 0$; (n) $z^3 - 4z^2 + 6z - 4 = 0$;

(o) $z^5 - 3z^4 + 2z^3 - 6z^2 + z - 3 = 0$: (p) $(3+i)z^2 + (1-i)z - 6i = 0$; (q) $(z-i)^4 = (iz+3)^4$;

(r) $(1-i)z^2 - (6-2i)z + 11 - 3i = 0$; (s) $x^4 + 6ix^3 - 9x^2 + 4ix - 12 = 0$; (t) $z^6 = (1-3i)^{12}$:

(u) $(1+i)z^2 - (2+2i)z - (1-3i) = 0$: (v) $(z+1)^6 + z^6 = 0$;

Zad 6. Rozwiązać w zbiorze liczb zespolonych równanie:

(a) $z^2 + 3\overline{z} = 0$; (b) $2z + (1+i)\overline{z} = 1 - 3i$; (c) $(z+2)^2 = (\overline{z}+2)^2$; (d) $\overline{z+i} - z + i = 0$;

Zad 7. Obliczyć:

(a) |4+3i|; (b) $|\sqrt{3}-2i|$; (c) |14+i|; (d) |(2i+3)(1-i)|; (e) $\left|\frac{\frac{1}{2}-\frac{\sqrt{3}}{2}i}{\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i}\right|$;

(g) $\arg(5+5i)$; (h) $\arg(-3+3\sqrt{3}i)$; (i) $\arg(8\sqrt{3}-8i)$; (j⁽¹⁾) $\arg(2-5i)$ (f) $\left| \frac{1+i}{2-3i} \right|$;

(k) $\operatorname{arg}\left(\frac{\frac{1}{2}-\frac{\sqrt{3}}{2}i}{\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i}\right);$ (l) $\operatorname{arg}\left(\left(\frac{-\sqrt{3}}{2}-\frac{1}{2}i\right)\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i\right)\right);$ (m) $\overline{(2i-1)\left(\frac{1}{2}-\frac{\sqrt{3}}{2}i\right)};$ (n) $\overline{1+3i};$

(p) $\overline{\left(\frac{1+i}{3-2i}\right)};$ (o) $\overline{i-1}$;

Zad 8. Udowodnić że dla dowolnych $z_1, z_2 \in \mathbb{C}$ zachodzi:

(c) $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2};$ (d) $\overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{\overline{z_1}}{\overline{z_2}}};$ (e) $z\overline{z} = |z|^2;$ (a) $|z_1 \cdot z_2| = |z_1| \cdot |z_2|;$ (b) $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|};$

(f) $\arg(\overline{z}) = 2\pi - \arg(z);$ (g) $\arg(\frac{1}{z}) = 2\pi - \arg(z);$ (h) $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2);$

Zad 9. Zapisać w postaci algebraicznej liczby:

(a) $3(\cos \pi + i \sin \pi);$ (b) $2^3(\cos(\frac{\pi}{3}) + i \sin(\frac{\pi}{3}));$ (c) $2(\cos(\frac{7}{6}\pi) + i \sin(\frac{7}{6}\pi));$ (d) $\cos(\frac{3}{4}\pi) + i \sin(\frac{3}{4}\pi);$

(e) $\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4});$ (f) $\cos(7\frac{2}{3}\pi) + i\sin(7\frac{2}{3}\pi);$ (g) $\cos(3\frac{5}{6}\pi) + i\sin(3\frac{5}{6}\pi);$

Zad 10. Zapisać w postaci trygonometrycznej liczby:

(a)
$$i$$
; (b) 1

(b)
$$1-i$$
;

(c)
$$1 + i\sqrt{3}$$

(d)
$$-1 - \frac{i}{\sqrt{3}}$$
;

(e)
$$\sqrt{3} - i;$$

(a)
$$i$$
; (b) $1-i$; (c) $1+i\sqrt{3}$; (d) $-1-\frac{i}{\sqrt{3}}$; (e) $\sqrt{3}-i$; (f) $-\frac{1}{2}+\frac{\sqrt{3}}{2}i$; (g) $9\sqrt{3}-9i$;

(g)
$$9\sqrt{3} - 9i$$
;

(h)
$$-7\sqrt{2} - 7\sqrt{2}i$$
:

(i)
$$7-4i$$

$$(i^{\square}) -3 + 2i$$

$$(\mathbf{k}^{\square}) -5 - 3i;$$

$$(1^{\square}) 2 + 3i;$$

(h)
$$-7\sqrt{2} - 7\sqrt{2}i$$
; (i^{III}) $7 - 4i$; (j^{III}) $-3 + 2i$; (k^{III}) $-5 - 3i$; (1^{III}) $2 + 3i$; (m^{III}) $0.34 - 1.23i$

(n)
$$\sin(\alpha) +$$

$$i;$$
 (i) $7-4i;$

$$(j^{-}) -3 + 2i;$$

$$(\mathbf{k}^{\blacksquare}) -5 - 3i;$$

$$(1^{\square}) 2 + 3i;$$

$$(\mathbf{m}^{\blacksquare}) \ 0.34 - 1.23i$$

(n)
$$\sin(\alpha) + i\cos(\alpha)$$
; (o) $-\cos(\alpha) + i\sin(\alpha)$;

(p)
$$1 + i \operatorname{tg}(\alpha);$$

Uwaga. W ostatnich podpunktach przyjmujemy $\alpha \in (0, \frac{\pi}{2})$.

Zad 11. Obliczyć:

(a)
$$\left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}\right)^{-1}$$

(b)
$$(1+i)$$

(a)
$$\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)^{12}$$
; (b) $(1+i)^4$; (c) $\left(\sqrt{2} - i\sqrt{2}\right)^7$; (d) $\left(\frac{-1+i\sqrt{3}}{12}\right)^{12}$; (e) $\frac{(1+i)^9}{(1-i)^7}$; (f) $\frac{(1-i)^5-1}{(1+i)^5+1}$;

(d)
$$\left(\frac{-1+i\sqrt{3}}{12}\right)^{12}$$
;

(e)
$$\frac{(1+i)^9}{(1-i)^7}$$
;

(f)
$$\frac{(1-i)^5-1}{(1+i)^5+1}$$

(g)
$$\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$$

(h)
$$\left(\frac{1-i\sqrt{3}}{2}\right)^{2007}$$

(i)
$$\frac{(1+i\sqrt{3})^{15}}{(1+i)^{10}}$$
;

(g)
$$\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$$
; (h) $\left(\frac{1-i\sqrt{3}}{2}\right)^{2007}$; (i) $\frac{(1+i\sqrt{3})^{15}}{(1+i)^{10}}$; (j) $\frac{(1-i\sqrt{3})^6}{(1+i\sqrt{3})^4} + (1+i)(3-i)$; (k) $\frac{(1-i)^6}{(1+i)^4}i^{74}$;

(k)
$$\frac{(1-i)^6}{(1+i)^4}i^{74}$$
;

Zad 12. Obliczyć:

(a)
$$\sqrt[3]{i}$$

(b)
$$\sqrt[6]{-1}$$
;

(c)
$$\sqrt[5]{1}$$

(d)
$$\sqrt[3]{27i}$$
 (e)

(a)
$$\sqrt[3]{i}$$
; (b) $\sqrt[6]{-1}$; (c) $\sqrt[5]{1}$; (d) $\sqrt[3]{27i}$; (e) $\sqrt[3]{(1+i)^3}$; (f) $\sqrt[3]{-8}$; (g) $\sqrt{8i-15}$; (h) $\sqrt[3]{2-2i}$;

(h)
$$\sqrt[3]{2-2i}$$

(i)
$$\sqrt[4]{z} \, d a \, z = \frac{(1-i)^6(\sqrt{3}+i)}{(1+i)^4} i^{74};$$
 (j) $\sqrt[4]{\left(\sqrt{3}-i\right)^{12}};$ (k) $\sqrt{\left(\frac{7}{16}+\frac{i}{16}\right)(1-i)^7};$ (l^a) $\sqrt[5]{-4+4i};$

(j)
$$\sqrt[4]{(\sqrt{3}-i)}$$

(k)
$$\sqrt{\left(\frac{7}{16} + \frac{i}{16}\right)(1-i)}$$

$$(1^{\square}) \sqrt[5]{-4+4i};$$

(m)
$$\sqrt[4]{-\frac{1}{32}(1+\sqrt{3}i)(1-\sqrt{3}i)^8}$$

Zad 13. Znając jeden z pierwiastków wyznaczyć wszystkie pozostałe pierwiastki:

(a)
$$\sqrt{-2i}$$
; $z_1 = -1 + i$

(a)
$$\sqrt{-2i}$$
; $z_1 = -1 + i$; (b) $\sqrt[4]{-8 - 8i\sqrt{3}}$; $z_1 = -\sqrt{3} + i$; (c) $\sqrt[6]{-1}$; $z_1 = i$;

(c)
$$\sqrt[6]{-1}$$
; $z_1 = i$

Zad 14. Korzystając ze wzoru Moivre'a wyrazić za pomocą $\sin x$ oraz $\cos x$ funkcje:

(a)
$$\sin(3x)$$
 oraz $\cos(3x)$; (b) $\sin(4x)$ oraz $\cos(4x)$; (c) $\sin(5x)$ oraz $\cos(5x)$;

(c)
$$\sin(5x)$$
 oraz $\cos(5x)$;

Zad 15. Narysować na płaszczyźnie zespolonej obszary określone warunkami:

(b)
$$2 < |z - 1| \le 4$$

(c)
$$\frac{|z|}{|z-1|} = 2;$$

(a)
$$|z-1+i|=1;$$
 (b) $2<|z-1|\leq 4;$ (c) $\frac{|z|}{|z-1|}=2;$ (d) $|z|<2 \land \arg(z)\in \langle 0,\pi\rangle;$ (e) $|z|^2=2|z|;$

(e)
$$|z|^2 = 2|z|$$
;

(1)
$$zz + z + z = 0$$
,

(g)
$$\left| \frac{z+2}{z-2} \right| > \sqrt{3}$$
;

(f)
$$z\overline{z} + z + \overline{z} = 0;$$
 (g) $\left| \frac{z+2}{z-2} \right| > \sqrt{3};$ (h) $\frac{4}{|z|} \ge |\overline{z}| \wedge \arg(z) \in \langle -\frac{\pi}{6}, \frac{\pi}{3} \rangle;$

(i)
$$\overline{z-i} = z - 1;$$

(j)
$$1 \le \left| \frac{z-2}{2z-1} \right| \le 2;$$

(j)
$$1 \le \left| \frac{z-2}{2z-1} \right| \le 2;$$
 (k) $\operatorname{Re}(z^2) > \operatorname{Re}(\frac{1}{z^2});$ (l) $\operatorname{arg}(z - iz) = \frac{3\pi}{4};$

(1)
$$\arg(z - iz) = \frac{3\pi}{4}$$

(m)
$$\arg(z^3) < \frac{\pi}{2}$$
;

Zad 16. Zamienić postać wykładniczą na algebraiczna:

(a) $e^{\pi i}$; (b) $e^{1+\frac{\pi}{2}i}$; (c) $e^{2\pi i}$; (d $e^{1+\frac{\pi}{2}i}$) $e^{2\pi i}$; (e $e^{1+\frac{\pi}{2}i}$) $e^{2\pi i}$; (f) $e^{1-\frac{3}{4}\pi i}$ (g) $e^{2+\frac{2}{3}\pi i}$ (h) $e^{1-\frac{7}{6}\pi i}$

b)
$$e^{1+\frac{\pi}{2}i}$$
;

(c)
$$e^{2\pi i}$$
;

$$(\mathbf{d}^{\square}) e^i;$$

$$(e^{-2i})$$
:

(f)
$$e^{1-\frac{3}{4}\pi i}$$

(g)
$$e^{2+\frac{2}{3}\pi i}$$

(h)
$$e^{1-\frac{7}{6}\pi}$$

Zad 17. Zamienić postać algebraiczną na wykładniczą:

(c)
$$-i$$
:

(d)
$$1 - \sqrt{3}i$$
;

$$(e^{i}) -2 + 7i;$$

Zad 18. Wykonać działania. Wynik zapisać w postaci wykładniczej.

(b)
$$\frac{e^{-2-i}}{5+3i}$$
;

$$(\mathbf{c}^{\square}) \ e^{1+i} + e^{2+3i};$$

$$(\mathbf{d}^{\square}) \ e^{-2+3i} + e^{7-i}$$

(a)
$$e^{-3+5i} \cdot e^{2-3i}$$
; (b) $\frac{e^{-2-i}}{\frac{5+3i}{5+3i}}$; (c) $e^{1+i} + e^{2+3i}$; (d) $e^{-2+3i} + e^{7-3i}$; (e) $e^{-3i-5} - e^{2-2i}$;

Liczby zespolone - odpowiedzi

Zad 1.

(a) -1; (b) -i; (c) 1; (d) i; (e) -1; (f) i; (g) -i; (h) -i; (i) -1; (j) i; (k) 1; (l) -i;

 (\mathbf{m}) i; (n) 1;

Zad 2.

(a) $\frac{39}{4} + \frac{13}{4}i$; (b) $\frac{3}{4}$; (c) $\frac{i}{2} - \frac{15}{16}$; (d) -1; (e) $-\frac{7}{27}i - \frac{527}{1296}$; (f) $\frac{2}{5} + \frac{9}{5}i$; (g) $-\frac{8}{29} - \frac{9}{29}i$; (h) $\frac{33}{25} - \frac{56}{25}i$; (i) $-\frac{142}{85} + \frac{44}{85}i$; (j) $-\frac{4}{5} + \frac{7}{5}i$;

Zad 3.

(a) [x = 1, y = 1]; (b) [x = 5, y = 17]; (c) brak rozwiązań w \mathbb{R} ; (d) [x = 1, y = -2]; (e) [x = 2, y = 3];

(f) [x = 1, y = 6];

Zad 4.

(a) $\left[\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i, -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right];$ (b) [-2 + 2i, 2 - 2i]; (c) ; (d) ; (e) ; (f) ;

Zad 5.

(a) $z_1 = \frac{1}{2} - \frac{\sqrt{3}i}{2}, z_2 = \frac{1}{2} + \frac{\sqrt{3}i}{2};$ (b) $z_1 = -2 - i, z_2 = -2 + i;$ (c) $z = -\frac{7}{5}i - \frac{9}{5};$ (d) $z = -\frac{45}{73}i - \frac{99}{73};$ (e) $z_1 = 2 - 3i, z_2 = 3i + 2;$ (f) $z = \frac{1}{2}i + \frac{5}{6};$

(h) $z_1 = -2i, z_2 = 2i, z_3 = -1, z_4 = 1;$ (i) $z_1 = -\frac{i}{2}, z_2 = \frac{i}{2}, z = 1;$ (g) $z_1 = z_2 = z_3 = 2i$;

(j) $z_1 = \frac{3\sqrt{2}}{2}i - \frac{3\sqrt{2}}{2}$, $z_2 = -\frac{3\sqrt{2}}{2}i - \frac{3\sqrt{2}}{2}$, $z_3 = \frac{3\sqrt{2}}{2} - \frac{3\sqrt{2}}{2}i$, $z_4 = \frac{3\sqrt{2}}{2}i + \frac{3\sqrt{2}}{2}$;

(k) $z_1 = \frac{\sqrt{3}i+1}{2}$, $z_2 = \frac{\sqrt{3}i-1}{2}$, $z_3 = -1$, $z_4 = -\frac{\sqrt{3}i+1}{2}$, $z_5 = -\frac{\sqrt{3}i-1}{2}$, $z_6 = 1$;

(1) $z_1 = -i - 4$, $z_2 = i + 4$, $z_3 = i - 2$, $z_4 = 2 - i$;

(m) $z_1 = 4$, $z_2 = -2$, $z_3 = -i - 1$, $z_4 = i - 1$;

(n) $z_1 = 1 - i, z_2 = i + 1, z_3 = 2;$ (o) $z_1 = 3, z_2 = -i, z_3 = i;$ (p) $z_1 = -\frac{3}{5}i - \frac{6}{5}, z_2 = i + 1;$

(r) $z_1 = -2 + i, z_2 = -2 - 3i;$ (s) $z_1 = -2i, z_2 = i, z_3 = -3i;$ (q);

(u) $z_1 = i$, $z_2 = 2 - i$; (t); (\mathbf{v}) :

Zad 6.

(a) $z_1 = -3$, $z_2 = 0$, $z_3 = \frac{3}{2} + \frac{3\sqrt{3}}{2}i$, $z_4 = \frac{3}{2} - \frac{3\sqrt{3}}{2}i$; (b) z = 2 - 5i; (c) $z_1 = k$, $z_2 = -2 + ki$ $k \in \mathbb{R}$;

(d) $z = k, \quad k \in \mathbb{R};$

Zad 7.

(a) 5; (b) $\sqrt{7}$; (c) $\sqrt{197}$; (d) $\sqrt{26}$; (e) 1; (f) $\sqrt{26}$; (g) $\frac{1}{4}\pi$; (h) $\frac{2}{3}\pi$; (i) $-\frac{1}{6}\pi$;

(j) $-\arctan(\frac{5}{2}) \approx -1.19;$ (k) $\arctan(\sqrt{3}-2) \approx -0.262;$ (l) $\pi -\arctan(2-\sqrt{3}) \approx 2.88;$

(m) $\left(-\frac{\sqrt{3}}{2}-1\right)i+\sqrt{3}-\frac{1}{2};$ (n) 1-3i;(o) -i-1;

(p) $\frac{1}{13} - \frac{5}{13}i$;

Zad 8.

(a) Niech $z_1 = x_1 + iy_1$ oraz niech $z_2 = x_2 + y_2i$. Wtedy

$$\begin{aligned} |z_1 \cdot z_2| &= |(x_1 + y_1 i) \cdot (x_2 + y_2 i)| = |(x_1 y_2 + x_2 y_1) i - y_1 y_2 + x_1 x_2| \\ &= \sqrt{(x_1 x_2 - y_1 y_2)^2 + (x_1 y_2 + x_2 y_1)^2} = \sqrt{y_1^2 y_2^2 + x_1^2 y_2^2 + x_2^2 y_1^2 + x_1^2 x_2^2} \\ &= \sqrt{y_1^2 + x_1^2} \cdot \sqrt{y_2^2 + x_2^2} \\ &= |z_1| \cdot |z_2| \, . \end{aligned}$$

Zad 9.

(a) -3; (b) $4+4\sqrt{3}i$; (c) $-\sqrt{3}-i$; (d) $-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i$; (e) $\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i$; (f) $\frac{1}{2}-\frac{\sqrt{3}}{2}i$; (g) $\frac{\sqrt{3}}{2}-\frac{1}{2}i$;

Zad 10.

(a) $\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$;

(b) $\sqrt{2} \left(\cos\left(\frac{7}{4}\pi\right) + i\sin\left(\frac{7}{4}\pi\right)\right);$

(c) $2(\cos(\frac{1}{2}\pi) + i\sin(\frac{1}{2}\pi));$

(d) $\frac{2\sqrt{3}}{3} \left(\cos\left(\frac{7}{6}\pi\right) + i\sin\left(\frac{7}{6}\pi\right)\right);$

(e) $\sqrt{2} \left(\cos \left(\frac{11}{6} \pi \right) + i \sin \left(\frac{11}{6} \pi \right) \right);$

(f) $\cos(\frac{4}{3}\pi) + i\sin(\frac{4}{3}\pi)$;

(g) $18 \left(\cos\left(\frac{11}{6}\pi\right) + i\sin\left(\frac{11}{6}\pi\right)\right);$

(j) $\approx 3,61 (\cos(2,55) + i \sin(2,55));$

(h) $14 \left(\cos\left(\frac{5\pi}{4}\right) + i\sin\left(\frac{5\pi}{4}\right)\right);$

(i) $\approx 8.06 (\cos(5,76) + i\sin(5,76));$

(m) $\cos(\pi - \alpha) + i\sin(\pi - \alpha)$;

(k) $\approx 5,83(\cos(3,68)+i\sin(3,68));$ (l) $\cos(\frac{\pi}{2}-\alpha)+i\sin(\frac{\pi}{2}-\alpha);$ (n) $\frac{1}{\cos\alpha}(\cos\alpha + i\sin\alpha)$;

Zad 11.

(a) -1;

(b) -4; **(c)** $64\sqrt{2}i + 64\sqrt{2}$;

(d) $\frac{1}{2^{12}3^{12}}$; (e) 2; (f) $-\frac{32}{25}i - \frac{1}{25}$; (g) -2^15i ; (h) -1;

(i) $2^{10}i$;

(j) $(2\sqrt{3}+2)i+2$;

(k) 2*i*:

Zad 12.

(a)
$$z_1 = \frac{i}{2} - \frac{\sqrt{3}}{2}, z_2 = -i, z_3 = \frac{i}{2} + \frac{\sqrt{3}}{2};$$

(b)
$$z_1 = i, z_2 = \frac{i}{2} - \frac{\sqrt{3}}{2}, z_3 = -\frac{i}{2} - \frac{\sqrt{3}}{2}, z_4 = -i, z_5 = \frac{\sqrt{3}}{2} - \frac{i}{2}, z_6 = \frac{i}{2} + \frac{\sqrt{3}}{2};$$

(c)
$$z_1 = i\sin\left(\frac{2\pi}{5}\right) + \cos\left(\frac{2\pi}{5}\right)$$
, $z_2 = i\sin\left(\frac{4\pi}{5}\right) + \cos\left(\frac{4\pi}{5}\right)$, $z_3 = \cos\left(\frac{4\pi}{5}\right) - i\sin\left(\frac{4\pi}{5}\right)$, $z_4 = \cos\left(\frac{2\pi}{5}\right) - i\sin\left(\frac{2\pi}{5}\right)$, $z_5 = 1$;

(d)
$$z_1 = \frac{3i-3\sqrt{3}}{2}, z_2 = -3i, z_3 = \frac{3i+3\sqrt{3}}{2};$$

(e)
$$z_1 = \frac{(\sqrt{3}-1)i-\sqrt{3}-1}{2}, z_2 = -\frac{(\sqrt{3}+1)i-\sqrt{3}+1}{2}, z_3 = i+1;$$

(f)
$$z_1 = 1 - \sqrt{3}i, z_2 = \sqrt{3}i + 1, z_3 = -2;$$

(g)
$$z_1 = -4i - 1, z_2 = 4i + 1;$$

(h)
$$z_1 = -\frac{(\sqrt{3}-1)i-\sqrt{3}-1}{2}, z_2 = \frac{(\sqrt{3}+1)i-\sqrt{3}+1}{2}, z_3 = -i-1;$$

(i)
$$z_1 = \frac{\sqrt{6}i - \sqrt{2}}{2}, z_2 = -\frac{\sqrt{2}i + \sqrt{6}}{2}, z_3 = -\frac{\sqrt{6}i - \sqrt{2}}{2}, z_4 = \frac{\sqrt{2}i + \sqrt{6}}{2};$$

(j)
$$z_1 = 8i, z_2 = -8, z_3 = -8i, z_4 = 8;$$

Zad 13.

(a) Im z2

(b)

Zad 14.

(a)
$$\sin(3x) = 3\cos^2 x \sin x - \sin^3(x)$$
, $\cos(3x) = \cos^3 x - 3\cos x \sin^2 x$;

(b)
$$\sin(4x) = 4\cos^3 x \sin x - 4\cos x \sin^3 x$$
, $\cos(4x) = \cos^4 x - 6\sin^2 x \cos^2 x + \sin^4 x$;

(c)
$$\sin(5x) = \sin^5 x - 10\cos^2 x \sin^3 x + 5\cos^4 x \sin x$$
, $\cos(5x) = \cos^5 x - 10\sin^2 x \cos^3 x + 5\sin^4 x \cos x$;

Zad 15.

Zad 16.

(a) -1; (b)
$$ei$$
; (c) 1; (d) $\cos(1) + i\sin(1) \approx 0.54 + 0.84 i$; (e) $\cos(2) - i\sin(2) \approx 0.42 - 0.91 i$; (f) $e\left(-\frac{\sqrt{2}}{2}i - \frac{\sqrt{2}}{2}\right)$; (g) $e^2\left(\frac{\sqrt{3}}{2}i - \frac{1}{2}\right)$; (h) $e^2\left(-\frac{i}{2} - \frac{\sqrt{3}}{2}\right)$.

Zad 17.

- (a) $e^{\pi i}$; (b) $\sqrt{2}e^{\frac{\pi}{4}i}$; (c) $e^{-\frac{\pi}{2}i}$; (d) $2e^{\frac{\pi}{3}i}$; (e) $\sqrt{53}e^{i\left(\pi-\arctan\left(\frac{7}{2}\right)\right)}\approx 7,28e^{1,85i}$;
- (f) $\sqrt{34} e^{-i \arctan(\frac{5}{3})} \approx 5.83 e^{-1.03 i}$;

Zad 18.

(a)
$$e^{-1+2i}$$
; (b) e^{-7-4i} ; (c) $\approx 6.73 e^{2.62 i}$; (d) $\approx 1096.76 e^{-3i}$; (e) ;