
Radiation Effects on Metabolic Gene Expression

Calvin Peters

Mentor: Virginia Wotring, PhD

Human Adaptation and Countermeasures Division

Johnson Space Center

August 4, 2011

About Calvin

- From Eden Prairie MN
- Bethel University, St. Paul MN
 - Chemistry and Biochemistry
- Enjoy the outdoors
 - Camping
 - Skiing
- Electronics!

Space Life Sciences Directorate

- Mission: "*To optimize human health and productivity for space exploration*"
- Human Adaptation and Countermeasures Division
 - Understand the normal human response to space flight
 - Develop countermeasures to protect crew health

Radiation

- Sources:
 - Galactic cosmic rays
 - Solar particle events
- Concerns:
 - DNA damage
 - Increase in oxidative products
- Health outcomes:
 - Cataracts
 - Cancer
 - Central nervous system damage
 - Radiation sickness
 - Unknowns

Pharmacology

- Medications are vital to human spaceflight
- Spaceflight induces changes in human physiology
- Yet drug metabolism is assumed to be the same as on earth
 - Is this assumption valid?

Research

- Challenge of spaceflight: **Radiation**
- Application: **Drug Metabolism** in the liver
- In General, activity of liver metabolic enzymes determines the concentration of circulating drugs
 - Decreased liver function = drug overdose
 - Elevated liver function = ineffective treatment

Goal

- Identify how radiation exposure affects transcriptional gene expression in the liver
 - Focus on genes associated with:
 - Drug Metabolism
 - DNA Repair
- Foundation for implementing countermeasures

Space Life Sciences
Exploring Space | Enhancing Life

Method Overview

RNA Extraction & Purification

Liver Tissue RNA

Reverse Transcription

cDNA

RT-qPCR

Gene Expression

Methods: Ground Model

- Male C57 mice exposed to ^{137}Cs in 4 Groups :
 - Control
 - Low dose (50 mGy)
 - High dose (6 Gy)
 - Both radiation doses (low then high) separated by 4 hours
- Each group contained 6 mice
- 4 sets sacrificed at 4 hours, 24 hours, 7 days and 13 days after their last radiation exposure
 - I worked with the 7 day set
- Livers flash frozen in liquid nitrogen

Methods: RNA Extraction

- Agilent Absolutely RNA Miniprep Kit
 - Tissue homogenized in a lysis buffer
 - Prefiltered sample in a spin cup
 - RNA-binding spin cup
 - Series of washes remove DNA and proteins
 - Highly pure RNA is eluted into a microcentrifuge tube using an elution buffer

Methods: RNA Quality Testing

- Agilent 2100 Bioanalyzer with Agilent RNA 6000 Nano kit
 - Microfluidic chip
- Check total RNA integrity and concentration
- RNA integrity number (RIN)
 - Samples must have RIN > 8

Methods: Reverse Transcription

- SABiosciences RT2 First Strand Kit
 - cDNA prepared from RIN > 8 RNA samples
- PCR requires DNA
 - In vitro transcription by mRNA and enzymes:
 - Reverse transcriptase and DNA polymerase

Methods: RT-qPCR

- Real-time polymerase chain reaction
- Measure gene expression
- SABiosciences RT2 Profiler Arrays
 - DNA Repair and Drug Metabolism
 - Test many genes simultaneously
 - 96-well plates
 - 84 pathway focused genes
 - Controls for testing inter-well and intra-plate consistency
 - SYBR Green Detection

Calculations

- Analyzed C_t data from all data sets
 - 72 mice \times 89 genes per plate \times 2 plates
= 12,816 genes total
- Set RT-qPCR baseline at 600
- Determined gene expression by $\Delta\Delta C_T$ method
- Normalized data to housekeeping genes
 - Drug Metabolism: Adh1, Blvrb, Gstm4, Gstm5, Marcks, Snn
 - DNA Repair: Polb, Rad21, Rpa3, Slk, Tdg, Xrcc4

$$\frac{\frac{2^{-\Delta C_t(GOI)}}{2^{-\Delta C_t(HKG)}} \text{ expt}}{\frac{2^{-\Delta C_t(GOI)}}{2^{-\Delta C_t(HKG)}} \text{ control}} = \frac{\frac{2^{-[C_t(GOI) - C_t(HKG)]}}{2^{-[C_t(GOI) - C_t(HKG)]}} \text{ expt}}{\frac{2^{-[C_t(GOI) - C_t(HKG)]}}{2^{-[C_t(GOI) - C_t(HKG)]}} \text{ control}} = \frac{2^{-\Delta C_t} \text{ expt}}{2^{-\Delta C_t} \text{ control}} = 2^{-\Delta\Delta C_t}$$

Drug Metabolism Results

Gene Expression

Drug Metabolism Results

Drug Metabolism Results

Drug Metabolism Results

DNA Repair Results

DNA Repair Results

DNA Repair Results

Drug Metabolism Gene Relationships

- Down-regulation
- Up-regulation
- Regulation Direction Unknown
- Coexpression
- Chemical Modification
- Physical Interaction
- Predicted Protein Interaction
- Predicted TFactor Regulation
- Other

DNA Repair Gene Relationships

- Down-regulation
- Up-regulation
- Regulation Direction Unknown
- Coexpression
- Chemical Modification
- Physical Interaction
- Predicted Protein Interaction
- Predicted TFactor Regulation
- Other

Conclusions

- The expressions of 65 genes have been found to be affected by radiation exposure in mice
 - Effects vary with time and dose
- Radiation exposure effects metabolism of drugs with lipid or steroid hormone-like structures

Methods: Flight Samples

- 15 mice on STS-135!!!
 - 15 controls (Calcein)
 - 15 Baseline (2 weeks younger, no Calcein)
- Processed 6 control and 6 baseline samples
- Legal issues with flight samples....tbd
- Animal Enclosure Module (AEM)

Future Research

- Complete 13 Day and STS-135 data sets
- Evaluate altered genes at protein level
- Correlate findings with drugs used in spaceflight
 - Inform countermeasures

Sources

- V. E. Wotring, L.S. Mangala, Y. Zhang, H. Wu;
Radiation Exposure Alters Expression of Metabolic Enzyme Genes in Mice; IAA Abstract; 2010
- V. E. Wotring; *Pharmacology Risk Report*; 2010
- http://www.nasa.gov/mission_pages/station/research/experiments/MDS_Facility.html
- <http://www.phschool.com>
- <http://www.genomics.agilent.com>
- <http://gncpro.sabiosciences.com>

Thank You!

Space Life Sciences
Exploring Space | Enhancing Life