

The Lunar GNSS Receiver Experiment (LuGRE)

Joel J. K. Parker, NASA Goddard Space Flight Center on behalf of the LuGRE team

January 26, 2022

The LuGRE Team

NASA

- PI: Joel Parker, NASA GSFC
- Mission Manager: Ben Anderson, NASA GSFC
- Systems Engineer: Steve McKim, NASA GSFC
- Sponsor: JJ Miller, NASA SCaN
- Advisors: Lisa Valencia, Frank Bauer

Italian Space Agency (ASI)

- Co-PI: Fabio Dovis
- **Project Manager**: Claudia Facchinetti
- System Manager: Mario Musmeci
- **Sponsor**: Alberto Tuozzi
- **Technical Team**: Luigi Ansalone, Giuseppe D'Amore, Gabriele Impresario

Qascom, S.r.I

- **Project Manager**: Samuele Fantinato
- Systems Engineering Manager: Efer Miotti
- Technical Director: Oscar Pozzobon

Signal Reception in the Space Service Volume (SSV) E-GEO Altitude - 36,000 km Side lobe signal CASS Altitude - 20,000 Earth shadowing MEO GNSS Main lobe signal Side lobe signal

Signal Reception beyond the Space Service Volume (SSV)

Side lobe signal

Moon

Earth shadowing

Challenges:

- >30x weaker signals than GEO
- 10-100x worse DOP

Main lobe signal

Side lobe signal

Development of High Altitude GNSS

Transition from experimentation to operational use, and move into cislunar space:

- 1990s: Early flight experiments— Equator-S, Falcon Gold
- 2000: Reliable GPS at GEO w/ bent pipe architecture
- 2001: AMSAT OSCAR-40 mapped GPS main and sidelobe signals
- 2015: MMS employed GPS operationally at 76,000 km
- 2016–2017: GOES-16/17 employed GPS operationally at GEO
- 2019: MMS apogee raise to 50% lunar distance
- 2023: Lunar demonstration

Lunar Gateway Study — Sep 2020 GPS Expected Performance

- Update to Feb 2019 preliminary study, both using MMS-calibrated models
- Position and velocity goals: 10 km and 10 cm/s, respectively
- Analyzed max OD error at the Data Cutoff (DCO) and at the final two perilunes and apolunes
- Observations:
 - GPS can provide greatly improved performance vs. DSN
 - GPS is real-time, on-board, without reliance on ground-based assets.

Max steady-state errors, crewed assumptions

	Case	DCO	Apolune	Perilune	All
Position [m]	DSN	1469.7	1326.4	319.8	2353.6
	GPS	60.4	84.5	73.0	118.7
	DSN+GPS	57.7	81.7	107.0	117.4

Lunar GNSS Phased Approach

Initial demonstrations

First operational capability

Commercialization

Broad Infusion

- Demonstrate lunar reception
- Opportunistic flights/technology
- Return evidence of performance
- Return raw data, lessons learned
- GNSS-only baseline demonstrations
 - Lugre

- High-reliability unit
- High-accuracy clock
- Integrated into vehicle avionics
- Leverage demo data & lessons
- Utilize initial lunar PNT services

- Foster lunar rcvr commercial base
- Diversity of rcvr classes:
 - Flagship receivers
 - CubeSat/reduced SWaP
 - Integrated chipsets
- Leverage PNT signal compatibility: Earth-based GNSS + lunar PNT services

- GNSS is standard equipment
- Established, diverse rcvr base
- Part of diverse PNT solution

Robust global PNT signal coverage from all sources

Relative use of signal sources

Terrestrial GNSS

Lunar PNT Services

Lugre Mission Overview

Mission

- NASA HEOMD payload for CLPS "19D" flight
- Joint NASA/Italian Space Agency mission
- "Do No Harm" class
- Firefly Blue Ghost commercial lander
- · Transit+surface observation campaign
- Expected surface duration: one lunar day (~12 Earth days)

Payload objectives

- 1. Receive GNSS signals at the Moon. Return data and characterize the lunar GNSS signal environment.
- 2. Demonstrate navigation and time estimation using GNSS data collected at the Moon.
- 3. Utilize collected data to support development of GNSS receivers specific to lunar use.

Measurements

- GPS+Galileo, L1/L5 (E1/E5)
- Onboard products: multi-GNSS point solutions, filter solutions
- Observables: pseudorange, carrier phase, raw baseband samples

Utilization

- Data + lessons learned for operational lunar receiver development
- Potential collaborative science: heliophysics, lunar geodesy
- Lunar human and robotic real-time onboard PNT

Launch+Ops Jul-Oct 2023

Analysis late 2023

CLPS Lander LuGRE Award **CLPS Final** Checkpoint C Feb 2021 ETU Delivery **EQM Delivery CLPS Draft Payload Delivery** LuGRE Checkpoint A Oct 2020 Sep 2021 Perf Test Start Mar 2022 Mar 2021 NLT Sep 2021 Jul 2020 LuGRE **FM Delivery** Nov 1, 2022 Checkpoint B (SRR) **Env Test Start** Apr 2021 Apr 2022

We are here

LuGRE Roles

4 Powered Descent

2 Commissioning
Collection via reorient
Antenna stowed

3 Transit Operations
15hr total collection via
reorient Antenna stowed

Lunar Phasing Orbits
(2-12 days)

Phasing Orbits

(1.5-4.5 orbits in 15-41 days)

O Pre-Launch Nov 2022-mid-2023

1 Launch Cape Canaveral, FL mid-2023

> SpaceX Falcon 9

(Downlink X-band 10 Mbps via reorient) Mare Crisium 18° N, 62° E

GPS and Galileo

5 Surface Operations
12 days collection
Antenna deployed, Earth-tracking
2x-2.5s baseband sample collection

6 Extended Mission
TBD duration during lunar night
Continued collection

7 Decommissioning

LuGRE Data

8 Science Data Processing

(Downlink X-band 10 Mbps)

NASA Science Processing Center

> ASI Science Processing Center

Public Dissemination

FIREFLY "BLUE GHOST" LANDER

Lugre antenna
(Co-located w/ lander X-band ant.
Earth pointing via gimbal)

LuGRE receiver and FEA (internal)

Sisi

Joint Operations

Transit Operations Plan (Earth→Moon Transit)

- Initial "Full" operations plan, showing all features
- Total overall operations duration in transit is limited to 15hr as baseline due to limited ACS propellant available for Earth pointing
- Baseline (blue) operations have long (60 min) and short (42 min) durations; 18 total. Focus is altitude sampling and pre-/post- maneuver nav demo.

• Opportunistic ("margin") operations (green) are pre-planned and can be activated if additional time becomes available

Transit Operations Plan (Lunar)

- Lunar orbit portion: $5000 \text{km} \times 100 \text{km} \rightarrow 250 \text{km} \times 100 \text{km} \rightarrow 100 \text{km}$ circular
- Total duration: 3 days
- Data collection focuses on key areas: demonstrate nav for maneuvers; leading into DOI; at perilune/apolune

LuGRE Payload

Payload characteristics

1. High-altitude GNSS receiver

- Qascom receiver, GPS+Galileo L1/E1 + L5/E5
- Based on QN400 flight heritage
- Cold redundant configuration
- Mass: 1.24 kgPower: 14 W

2. Low-noise amplifier (LNA)

Mass: 0.85 kgPower: 0.7 W

3. High gain L-band antenna + filter

- Requires Earth pointing for GNSS reception
- 14 dBi peak gain, 10deg FOV
- Mass: 2.2 kg
- Power: 0 W (passive)

Total resource allocations

Mass: 4.64 kgPower: 14 W

Lander Top Deck, External View

Lander Top Deck, Internal View

Receiver

Parameter	Value		
Mass	1.24 kg		
Power	14 W (operating)		
Envelope	19.0 x 18.0 x 3.95 cm		
Operating Temperature	-35°C to 50°C		
Range			
Signal Reception	GPS L1 C/A and L5		
	Galileo Open Service E1 and E5a		
Weak Signal Acquisition	< 23 dB-Hz		
and Tracking Threshold			
Capabilities	Lunar-capable extended Kalman filter		
	Capture of raw IQ samples		
	Navigation ephemeris and aiding data		
	upload via telecommand		
Data Product Output	 Least-squares point solutions 		
	 Extended Kalman filter solutions with 		
	covariance		
	Pseudorange observations		
	Doppler		
	Carrier phase observations		
	Tracking status & C/N0		
	Raw IQ samples		

- Developed by Qascom, S.r.l. for ASI
- Based on Qascom QN400 flight heritage
 - Suborbital sounding rockets
 - Ohio University Bobcat-1 LEO CubeSat
- SDR architecture
- Dual-receiver cold-redundant configuration to mitigate single-event radiation effects

HGA/LNA

Parameter	Value	
Mass	2.2 kg	
Power	passive	
Envelope	43.0 x 43.0 x 2.00 cm	
Operating Temperature	-145°C to 125°C	
Range		
Antenna Type	Passive Planar Antenna Array	
Polarization	RHCP	
Gain	≥ 14 dBi	
Working Band 1	1575.42 +/- 12.276 MHz (L1/E1)	
Working Band 2	1176.45 +/- 10.230 MHz (L5/E5a)	
Connector	1x SMA	

Parameter	Value	
Mass	0.85 kg	
Power	0.7W	
Envelope	9.3 x 10.2 x 1.8 cm	
Operating Temperature	-35°C to 50°C	
Range		
1 st Band:	1575.42 +/- 12.276 MHz (L1/E1)	
2 nd Band:	1176.45 +/- 10.230 MHz (L5/E5a)	
Noise Figure	≤ 3 dB	
Connector	2x SMA	

LNA

LuGRE Outcomes

Characterize the GNSS signal environment

Characterize navigation performance

Share collected data

Facilitate adoption of capability

- GPS+Galileo, L1+L5, <u>E1+E5a</u>
- Signal availability
- DOP
- C/N_0
- Observables
 - Pseudorange
 - Carrier phase
 - Doppler
- Raw baseband I/Q samples
- Transmit antenna patterns
- Multipath, surface environment

- Point solutions
- Onboard Kalman filter states
- Time to first position fix
- Formal errors, convergence
- Comparison to independent sources (lander, LRR)
- Application of GGTO

- GNSS receiver developers
- LuGRE science partners
- NASA missions (Artemis, Gateway, science)
- Commercial landers
- International space agencies
- GNSS community
- Science community
- Public

- Raw data availability
- LuGRE team reports + papers
- Calibration of lunar GNSS simulation models
- Application to future mission navigation studies
- Lessons learned to GNSS hardware and software developers

Mission Science

LuGRE Science Team structure:

LuGRE Science Team **Primary Science Teams**

NASA PI Office

LuGRE PI: Joel Parker Deputy PI: Lauren Schlenker Science team members

ASI PI Office

LuGRE Co-PI: Fabio Dovis Science team members

Research Partners (pending)

NASA and ASI | Academia | researchers

Industry

NavSAS at Politecnico di Torino

Public

Driving investigations:

Objective 1

- Measure the signal strength throughout the mission and empirically evaluate link budget model.
- Determine signal availability throughout the mission.
- Measure Doppler-shift and Doppler-rate profiles throughout the mission.
- Measure pseudorange from visible satellites during all planned operations periods.

Objective 2

- Calculate and characterize least-squares multi-GNSS point solutions throughout the mission where sufficient signals are available.
- Calculate and characterize Kalman filter based navigation solutions onboard throughout the mission.
- Compare onboard navigation solutions to external sources (e.g., ground-based measurement processing, planned trajectory, Blue Ghost navigation solution).
- Characterize position, velocity, and time uncertainty and convergence properties throughout mission.

Objective 3

- Process GNSS observables (e.g., Doppler, pseudorange) with ground-based tools to predict achievable onboard navigation performance.
- Calibrate ground models with LuGRE data and utilize to predict achievable navigation performance for future missions.

Opportunities for external research partners to get involved in science definition.

Mission Performance Analysis

- Initial analysis of expected mission performance
- Focus: visibility (transit + lunar surface), real-time filter navigation performance
 - Baseline 18x operations periods during transit, continuous surface operations
 - L1 signal only, L5 simulation is future work
 - Receiver threshold 23 dB-Hz
- Tools/data:
 - NASA Goddard Enhanced Onboard Navigation System (GEONS)
 - Accessed via GEONS Ground MATLAB Simulation (GGMS)
 - High-fidelity GPS model calibrated with MMS flight data, GPS ACE transmit antenna patterns and available patterns from ground data
 - Publicly-available Galileo orbits, ESA 2019 antenna pattern
 - Firefly trajectory, Haigh-Farr simulated HGA pattern
- Link budget model:

$$C/N_0 = P_T + G_T(\phi, \theta) - 20 \log \left(\frac{4\pi d}{\lambda_{I1}}\right) + G_R(\phi, \theta) - L_{pol} - 10 \log (kT_{sys}) - R_{loss}$$

Link budget parameters

Parameter	Value	
Receiver Implementation	0.9 dB	
Losses R _{loss}		
System Temperature T_{sys}	295 K	
Polarization Losses L_{pol}	3 dB	
P _T (GPS Block IIR)	17.3 dBW	
P _T (GPS Block IIR-M)	18.8 dBW	
P _T (GPS Block IIF)	16.2 dBW	
P _T (GPS Block III)	18.8 dBW	
$P_T + G_T$ (peak) (Galileo)	11 dBW	
G_R (peak)	16 dBW	

Mission Performance: C/N0, Visibility

- Signal visibility extends to 60+ RE and is available on lunar surface.
- Average visibility at Moon is 2 SVs
- 4+ SV visibility achieved often in transit and at Moon (>10% of time)
 - Indicates occasional point solution availability
- Visibility is nearly all GPS, likely due to conservative Galileo assumptions
- C/N0 peaks >30 dB-Hz for main lobes, ~26 dB-Hz for side lobes

Mission Performance: Transit Navigation

- NASA GEONS transit operations navigation performance simulation
- RSS position/velocity 3σ covariance at end of operational arc (42 min or 60 min)
- Results generally a function of number of satellites visible as altitude increases.
- Final 6 periods in are in lunar orbit. Highly variable accuracy indicates sensitivity of solution to visibility and geometry.

Mission Performance: Sample Capture

- Analysis by ASI with support by Politecnico di Torino
- Purpose: Assess feasibility of GNSS signal acquisition from raw IQ samples collected over a limited time window (ms)
- Result: Minimum coherent integration time needed to successfully acquire the signal, for different C/N0 and limiting the search space to Doppler bins
- Nd = number of Doppler bins in search space

C/N0 (dB-Hz)	(ms) (Full SS)	(ms) (Nd = 5)	(ms) (Nd = 3)
36.4	6	4	4
32.2	8	6	6
27.2	55	45	45
24.0	120	90	90
21.9	105	100	100
20.2	175	160	160
18.6	415	370	230

Conclusions

- LuGRE is a joint NASA/ASI project that will demonstrate GNSSbased PNT in transit to the Moon and on the lunar surface.
- LuGRE will fly a Qascom-designed weak-signal multi-GNSS receiver and high-gain antenna to receive GPS and Galileo signals in L1 and L5 bands.
- Initial performance simulations indicate a high degree of confidence in meeting the LuGRE science objectives to characterize the signal environment, perform navigation at the moon, and apply the results to future developments.
- LuGRE will create an initial public dataset with the intention to jump-start development of GNSS-based navigation at the moon.

Backup

What's Next

Integration & Test

