4 Answers to Assignment 4: PL Proof Systems

4.1 The Hilbert-style proof system

Proof 1:

4	C 4 . 4	1 4 . 4	A
1.	$\{ \neg A \to A \}$	$\} \vdash \neg A \to A$	Assumption

2.
$$\{\neg A \to A\} \vdash \neg A \to \neg \neg A$$
 Contrapositive

3.
$$\{\neg A \rightarrow A\} \vdash (\neg A \rightarrow \neg \neg A) \rightarrow \neg \neg A$$
 Theorem H6

4.
$$\{\neg A \rightarrow A\} \vdash \neg \neg A$$
 MP 2,3

5.
$$\{\neg A \to A\} \vdash A$$
 Double negation

6.
$$\vdash (\neg A \to A) \to A$$
 Deduction 5

Proof 2:

1.
$$\{\neg A \rightarrow \text{false}\} \vdash \neg A \rightarrow \text{false}$$
 Assumption

2.
$$\{\neg A \rightarrow \text{false}\} \vdash \neg false \rightarrow \neg \neg A$$
 Contrapositive

3.
$$\{\neg A \rightarrow \text{false}\} \vdash \neg \text{false}$$
 Theorem H5

4.
$$\{\neg A \rightarrow \text{false}\} \vdash \neg \neg A$$
 MP 2,3

5.
$$\{\neg A \rightarrow \text{false}\} \vdash A$$
 Double negation 4

6.
$$\vdash (\neg A \rightarrow \text{false}) \rightarrow A$$
 Deduction 5

Proof 3:

1.
$$\{A \to B, \neg A \to B\} \vdash \neg A \to B$$
 Assumption

2.
$$\{A \to B, \neg A \to B\} \vdash \neg B \to A$$
 Contrapositive

3.
$$\{A \to B, \neg A \to B\} \vdash A \to B$$
 Assumption

4.
$$\{A \to B, \neg A \to B\} \vdash \neg B \to B$$
 Transitivity 2,3

5.
$$\{A \to B, \neg A \to B\} \vdash (\neg B \to B) \to B$$
 Question 1

6.
$$\{A \rightarrow B, \neg A \rightarrow B\} \vdash B$$
 MP 4,5

7.
$$\{A \to B\} \vdash (\neg A \to B) \to B$$
 Deduction

8.
$$\vdash (A \to B) \to ((\neg A \to B) \to B)$$
 Deduction

Proof 4:

1.
$$\{\neg A, \neg B \rightarrow A\} \vdash \neg A$$
 Assumption

2.
$$\{\neg A, \neg B \to A\} \vdash \neg B \to A$$
 Assumption

3.
$$\{ \neg A, \neg B \to A \} \vdash \neg A \to \neg \neg B \quad \text{Contrapositive}$$

4.
$$\{\neg A, \neg B \to A\} \vdash \neg \neg B$$
 MP 1,3

5.
$$\{\neg A, \neg B \to A\} \vdash B$$
 Double negation

6.
$$\{\neg A\} \vdash (\neg B \to A) \to B$$
 Deduction 5

4.2 The ND proof system

$$\begin{array}{c|cccc} 1 & & \neg(\neg p \lor q) & \text{premise} \\ \hline 2 & & \neg p & \text{assumption} \\ 3 & & \neg p \lor q & \lor i_1 \ 2 \\ \hline 4 & & \bot & \neg e \ 3, 1 \\ \hline 5 & & \neg \neg p & \neg i \ 2 - 4 \\ \hline 6 & p & & \neg \neg e \ 5 \\ \hline \end{array}$$

Proof 2:

Proof 3:

1.
$$p \rightarrow (q \rightarrow r)$$
 Premise
2. $p \rightarrow q$ Assumption
3. p Assumption
4. q \rightarrow e 2,3
5. $q \rightarrow r$ \rightarrow e 1,3
6. r \rightarrow e 4,5
7. $p \rightarrow r$ \rightarrow i 3-6
8. $(p \rightarrow q) \rightarrow (p \rightarrow r)$ \rightarrow i 2-7

Proof 4:

1.	$\neg(p\vee q)$	Premise
2.	p	Assumption
3.	$p \lor q$	∨ i 2
4.		⊥ i 1,3
5.	$\neg p$	¬ i 2-4
6.	q	Assumption
7.	$p \lor q$	∨ i 6
8.		⊥ i 1,7
9.	$\neg q$	¬ i 6-8
10.	$\neg p \wedge \neg q$	∧ i 5,9

Proof 5:

1.	$\neg p \wedge \neg q$	Premise	
2.	$p \lor q$	Assumption	
3.	p	Assumption	
4.	-p	∧ e 1	
5.		⊥ i 3,4	
6.	q	Assumption	
7.		∧ e 1	
8.		⊥ i 6,7	
9.		∨ e 2-8	
10.	$\neg(p \lor q)$	¬ i 2-9	

4.3 Formalization

p: the train arrives late

q: there are taxis at the station

r: John is late

Premises: $\{p \land \neg q \to r, \neg r, p\}$

Conclusion: q

So, we want to prove $\{p \land \neg q \to r, \neg r, p\} \vdash q$:

1	$p \wedge \neg q \to r$	premise
2	$\neg r$	premise
3	p	premise
4	$\neg q$	assumption
5	$p \wedge \neg q$	$\wedge i \ 3,4$
6	r	\rightarrow e 1, 5
7	1	$\neg e 6, 2$
8	$\neg \neg q$	$\neg i 4-7$
9	q	¬¬е 8