Regression

Machine Learning (CS 306)

Instructor:

Dr. Moumita Roy

Teaching Assistants: Indrajit Kalita, Veronica Naosekpam

Email-ids:

moumita@iiitg.ac.in

veronica.naosekpam@iiitg.ac.in indrajit.kalita@iiitg.ac.in

Mobile No: +91-8420489325 (only for emergency quires)

Polynomial Curve fitting

Polynomial Curve fitting (with known function)

Independent variable (Input/x)
Dependent variable (Output/y)

Structure of the polynomial (Not known)

Try to approximate polynomial structure with some (training) samples $\langle x_i, y_i \rangle$

Solution

	Actual	Predictel
x	Y	d
٠ ٦	5	4
٠	2	1
٠ ج	1.5	6
1.2	3	2

predicted value for

the approximate

Polynomial structure?

m = no of training Samples

Try to find a poly numial structure (equation) which minimize Error

To sum up

- The structure of the polynomial is not known (one independent and one dependent variables).
- Instead of it, we have some samples to approximate the structure of the polynomial
- There are many possible structure (curves/equations) Like, y=a+bx, $y=ax^2$, $y=a+bx^2+cx^3$
- We can assume a structure and calculate error.
- Try to find a polynomial that minimizes the error (best fit curve)
- >proceed with trial and error approach

Supervised Learning

- There is a set of training samples $\langle x_i, y_i \rangle$
- The goal is to learn function/hypothesis $h(x_i)$ so that it is a good predictor for the corresponding value of y using the training samples

- If y is continuous, then the problem is called regression
- If y is discrete, then the problem is called classification.
- Aim-> to design learning algorithm to approximate hypothesis structure

Some application for Regression

Size of house (in sq.ft)	Price (Lakh)
600	15
1120	30
2000	40
700	30

Predict the price of the house

H.W: Find some more applications of regression problem

Graphical Abstract

Linear Regression (univariate)

• Assume, y is a linear function of x

$$h(x) = w_0 + w_1 *x$$

- Learn h(x) using the training set $\langle x_i, y_i \rangle$
- m=number of training sample, number of feature =1

$$J(w_0, w_i) = \frac{1}{2} \sum_{i=1}^{m} (h(x_i) - Y_i)^2$$

Linear Regression (multiple features)

Age of the house (year)	No. of bedrooms	Size of house (in sq.ft)	Price (Lakh)
2	2	600	15
10	3	1120	30
6	4	2000	40
7	2	700	30

Linear Regression (multiple features)

$$X_i = \begin{bmatrix} x_{i,1} & x_{i,2} & x_{i,3} & \dots & x_{i,N} \end{bmatrix}$$
 $n = \text{number } A_j \text{ features (independent-variables)}$
 $h(X_i) = W_0 + W_1 \times X_{i,1} + W_2 \times X_{i,2} + W_3 \times X_{i,3} + \dots + W_n \times X_{i,n}$
 $= \sum_{j=0}^{n} W_j \times X_{i,j} \mid X_{i,0} = 1$

Training samples: (X_i, Y_i)
 $W = [N_0 W_1 W_2 \cdots N_n]$
 $W = [N_0 W_1 W_2 \cdots N_n]$

Aim

- To obtain parameter $w_0, w_1, w_2, ..., w_n$ for good approximation of y
- Check random initialization of w and find the best fit one by trial and error approach
- Solve the problem using linear algebra (numerical complexity)
- Fit model by minimizing sum of squared errors (least squares)

Finding the minimum

Finding the minimum

How do we do this for a function?

One approach: gradient descent

Partial derivatives give us the slope (i.e. direction to move) in that dimension (suppose w₁)

One approach: gradient descent

Partial derivatives give us the slope (i.e. direction to move) in that dimension

Approach:

- pick a starting point (w)
- repeat:
 - pick a dimension
 - move a small amount in that dimension towards decreasing loss (using the derivative)/opposite direction of slope

- Convex loss function
- Geometrically: Error surface is bowl shaped

Gradient Descent

• Simultaneously update for j=1,2,...,n

$$W = [W_0, W_1, W_2, \dots, W_n]$$

$$- \text{ randomly initialized between}[-3+0+3]$$

$$X_1 \times 2 - \dots \times m$$

$$M = \text{ number of feature}$$

$$X_1 = [\chi_{i,1}, \chi_{i,2}, \dots, \chi_{i,j}] \dots \chi_{i,j,n}]$$

$$X_1 = [\chi_{i,1}, \chi_{i,2}, \dots, \chi_{i,j}] \dots \chi_{i,j,n}]$$

$$X_2 = [\chi_{i,1}, \chi_{i,2}, \dots, \chi_{i,j,n}]$$

$$X_1 = [\chi_{i,1}, \chi_{i,2}, \dots, \chi_{i,j,n}]$$

$$X_2 = [\chi_{i,1}, \chi_{i,2}, \dots, \chi_{i,j,n}]$$

$$X_1 = [\chi_{i,1}, \chi_{i,2}, \dots, \chi_{i,j,n}]$$

$$X_2 = [\chi_{i,1}, \chi_{i,2}, \dots, \chi_{i,j,n}]$$

$$X_1 = [\chi_{i,1}, \chi_{i,2}, \dots, \chi_{i,j,n}]$$

$$X_2 = [\chi_{i,1}, \chi_{i,2}, \dots, \chi_{i,j,n}]$$

$$X_1 = [\chi_{i,1},$$

$$W_{j} := W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$V_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$W_{j} = W_{j} - \alpha \left(\frac{\partial}{\partial W_{j}} J(W) \right)$$

$$\frac{\partial}{\partial w_{j}} J(w) = \frac{\partial}{\partial w_{j}} \left[\frac{1}{2m} \sum_{i=1}^{m} \left(h(x_{i}) - y_{i} \right)^{2} \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(h(x_{i}) - y_{i} \right)^{2} \lambda_{i,j}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(h(x_{i}) - y_{i} \right)^{2} \lambda_{i,j}$$

$$= w_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

$$= w_{j} + \alpha \sum_{i=1}^{m} \left(y_{i} - h(y_{i}) \right)^{2} \lambda_{i,j}$$

Algorithmic representation for gradient

descent

Step 1: Randomly initialize $w_0, w_1, ..., w_n$ and learning rate

Step 2: Calculate $h(X_i)$ for all training samples

Step 3: Calculate $J_{itr}(W)$ for itr^{th} epoch

Step 4: Update all parameters $w_0, w_1, ..., w_n$

Step 5: Repeat steps 2-5 until

$$/J_{itr}(W) - J_{itr-1}(W)/>\rho$$

Step 6: Report MSE $J_{itr}(W)$

 ρ : small value (may be 0.0001)

Epoch/training step: one time updating considering all the training samples

• Batch gradient descent:

- ➤ all the training samples are taken into consideration for a single updating of all parameters (after each epoch).
- Problem for huge number of training samples

Stochastic gradient descent:

➤ Update parameters by considering just one training sample at time (repeat epoch by epoch till convergence)

Algorithmic representation for stochastic gradient descent

Step 1: Randomly initialize $w_0, w_1, ..., w_n$ and learning rate

Step 2: Initialize itr = 0 (itr stands for epoch)

Step 3: $J_{itr}(W)=0$

Step 5: Repeat Steps 6-8 for all the training samples

Step 6: Calculate $h(X_i)$ for i^{th} training sample

Step 7: Update $J_{itr}(W) = J_{itr}(W) + (h(X_i)-Y_i)^2$

Step 8: Update all parameters $w_0, w_1, ..., w_n$

Step 9: $J_{itr}(W) = (1/2m) J_{itr}(W)$

Step 10: Check convergence if $/J_{itr}(W) - J_{itr-1}(W)/<\rho$ then stop and report MSE $J_{itr}(W)$; else go to step 11

Step 11:itr=itr+1 and repeat steps 3-10

 ρ : small value (may be 0.0001)

Exercise 1

Design a linear regression model using (batch mode) gradient descent approach by considering the following dataset and use this model to predict the output for the input pattern [3 12]

Feature 1	Feature 2	Output
1	2	6
2	10	24

For demonstration, note the followings:

- 1. Learning rate: 0.1
- 2. Number of training steps/epochs:2
- 3. All parameters are initialized as 1

Parameters vs. HyperParameters

• **Parameter:** A model parameter is a variable of the selected model which can be estimated by fitting the given data to the model.

Example: $w_0, w_1, w_2, ..., w_n$

• **HyperParameter:** A model hyperparameter is the parameter whose value is set before the model start training. They cannot be learned by fitting the model to the data.

Example: learning rate, number of epochs

Training, Test, Validation Set

Split randomly training Sch (20%) validation Sch (10%) test Sch (70%)

muchine meaning course (CD 300)

Training, Test, Validation Set

- Training set (TS): samples/patterns are used to train the model (by updating the parameters).
- Validation set (VS): samples/patterns are used to evaluate the performance of models with different values of hyperparameters (hyperparameter tuning/model configuration). It's also used to detect overfitting during the training stages.
- **Test set (TeS):** samples/patterns are used to evaluate the final performance (Mean square error) of the models (after hyperparameter tuning).

Example of Hyperparameter Tuning

Final Result

Training sumplus ('/.)	X	Train MSE	Test
10%	• 5		· .
40%	. و	?	?
60%	<u>,</u> ع	· .	?
807.		٠.	?.

J After Convergence

Some observations

- Is there any affect of initial parameter values in performance?
- Is there any affect of different random set of training samples (considering same percentage) in performance of the model?

• How to check these issues during experimentation?

Setting of learning rate

Overfitting and Underfitting

- Overfitting: model performs well using training samples but does not perform well on the testing samples. The validation set is also used to detect overfitting during the training stages.
- Underfitting: model does not perform well on training samples as well as testing samples (may be due to very insufficient training samples).

Checking overfitting

Feature Scaling (Normalization)

- Feature scaling is a method used to normalize the range of independent variables or features of data.
- It can speed up the gradient descent.

 Absolute maximum: Find maximum value in the dataset (considering features only) and divide all the features by

the maximum value.

21	2 2	A
١٠2	200000	1.2
1.3	40000	6
1.4	50000	1.2
2	(0 0000	1.6