Fundamentos de Deep Learning

Sesión 5

¿Qué es una Red Neuronal Convolutiva?

Estructura de cuadrícula

Diseñada para procesar datos con estructura de cuadrícula, como imágenes.

Patrones espaciales

Detecta patrones espaciales y características jerárquicas en los datos.

Aplicaciones

Útil en visión por computadora y reconocimiento de patrones.

¿Qué es una Convolución?

Operación matemática:

Aplica un filtro (o kernel) a una matriz de datos para extraer características relevantes.

Características específicas:

Extrae bordes, texturas y formas de una imagen, capturando patrones locales.

Beneficios

1. Reduce parámetros

Gracias a los **kernels compartidos**, el mismo filtro se aplica a toda la imagen, reduciendo la cantidad de parámetros en comparación con las capas completamente conectadas.

2. Extrae características

Los filtros aprenden a detectar características importantes (bordes, formas, texturas).

3. Mantiene información espacial

El **stride** y la relación local entre píxeles preservan la estructura espacial de la imagen.

Conceptos Claves

Kernels Compartidos:

El mismo filtro se aplica a toda la imagen, lo que permite aprender características consistentes.

Tamaño de Filtro:

El tamaño del filtro (ej. 3x3, 5x5) define el área de la imagen sobre la cual se realiza la convolución.

Stride:

El stride controla el paso con el que el filtro se mueve sobre la imagen. Un stride de 1 mueve el filtro píxel por píxel, mientras que un stride mayor reduce la resolución de la salida.

Campo de Utilización de las CNN

Reconocimiento facial

Ej: Face ID en iPhones.

Detección de objetos

Ej: Autos autónomos.

Segmentación de imágenes

Ej: Diagnóstico en radiografías.

Etapas en las CNN

Convolución

• Extrae características con filtros.

ReLU

• Introduce no linealidad.

Pooling

• Reduce dimensionalidad.

Flattening

6

Convierte a vector.

Fully Connected (densa)

Combina características para la decisión.

Capa de salida (Softmax/Logits)

• Entrega probabilidades o valores.

Etapas Redes Neuronales Convolutivas

Actividad Práctica Guiada: Implementación de Redes Neuronales Convolutivas en Python

Entrenaremos una CNN para clasificar imágenes del conjunto de datos CIFAR-10

Requisitos:

- 1. Debes tener instaladas las dependencias de TensorFlow y Keras.
- 2. Importar las librerías.
- 3. Cargar y preprocesar el dataset.
- 4. Definir la arquitectura de la CNN.
- 5. Compilar y entrenar el modelo.
- 6. Evaluar el modelo.
- 7. Visualizar los resultados.

El detalle de la actividad se encuentra en la guía de estudio de la sesión.

Evaluación y Optimización de la Red Neuronal Convolutiva

1. Precisión (Accuracy)

Proporción de predicciones correctas.

Útil: Para clases balanceadas.

2. Matriz de Confusión

Visualiza aciertos y errores del modelo.

Útil: Para detectar falsos positivos y negativos.

3. Curva de Pérdida y Precisión

Evolución de precisión y pérdida durante el entrenamiento.

Útil: Para identificar overfitting o underfitting.

Métricas adicionales para datasets desbalanceados

4. Recall (Sensibilidad)

$$ext{Recall} = rac{ ext{VP}}{ ext{VP} + ext{FN}}$$

Útil: Minimizar falsos negativos (ej. enfermedades).

5. F1 Score

$$ext{F1} = 2 imes rac{ ext{Precision} imes ext{Recall}}{ ext{Precision} + ext{Recall}}$$

Útil: Combina precisión y recall, adecuado para datasets desbalanceados.

6. AUC-ROC

Evalúa el rendimiento del modelo a diferentes umbrales.

Útil: Un AUC cercano a 1 indica un modelo fuerte.

Técnicas de Optimización en CNN

Dropout

Desactiva aleatoriamente un porcentaje de neuronas durante el entrenamiento para evitar el sobreajuste (overfitting).

Data Augmentation

Aumenta la diversidad del dataset aplicando transformaciones (rotaciones, escalado, recortes, etc.) a las imágenes de entrenamiento, mejorando la generalización.

Early Stopping

Detiene el entrenamiento cuando el rendimiento en los datos de validación deja de mejorar, evitando el sobreentrenamiento.

Learning Rate Scheduling

Ajusta dinámicamente la tasa de aprendizaje (learning rate) durante el entrenamiento para una convergencia más eficiente.

Regularización (L1/L2)

Agrega penalizaciones a los pesos grandes en la función de pérdida para evitar modelos demasiado complejos.

Preguntas

Sección de preguntas

Fundamentos de

Deep Learning

Continúe con las actividades