

## integrated circuits

### low level audio amplifier

technical data 91-206

WC 183G WC 183T

**Equivalent** circuit



#### **Package**

G style FLAT-PAK (EIA TO-89)



- 1. Common
- 2. Bypass
- 3. Input
- 4. Volume control
- 5. Output
- 6. V<sub>cc</sub>
- 7. Output
- 8. Volume control
- 9. Input
- 10. Bypass

T style (EIA Registration Pending)



- 1. Common
- Bypass
- 3. Input
- 4. Volume control
- 5. Output
- 6. No connection
- 7. V<sub>cc</sub>
- 8. Output
- 9. Volume control
- 10. Input
- 11. Bypass
- 12. No connection

#### General description

The WC 183 general purpose low level audio amplifier consists of an eight transistor balanced circuit with internal DC feedback fabricated as one monolithic silicon chip. A three stage class A preamplifier gives high gain, and is followed by a class B output stage to provide high overall efficiency. The unit has a very low quiescent current drain and provides excellent performance on high gain, low power requirements. A unique feature is the ability of the amplifier to provide high gain, using only a single one cell battery for power.

#### **Application**

This amplifier is suggested for radio, recording, and other audio applications in the milliwatt range. The use of an optional rolloff capacitor makes it ideal for audio use in voice communications equipment where limited frequency response is desired. For higher fidelity audio applications, a simple feedback network extends the flat frequency response to well beyond the audio range. Its input and output connections and impedances are compatible with readily available audio transducers.

In addition to its many purpose audio applications, the WC 183 amplifier performs unusually well in battery powered applications, and in particular as a hearing aid amplifier. In this application, its high gain at low voltage, low quiescent current drain and highly efficient class B output stage result in improved sound quality and significant increased battery life.

#### Design features

- 90 db gain at V<sub>cc</sub> of 4.5 volts
- 60 db minimum gain at V<sub>cc</sub> of 1.55 volts
- Quiescent current less than 1 ma
- Efficiency 55%

#### Reliability assurance

Mechanical and environmental reliability assurance EVERY unit receives

- High temperature storage bake at +150°C
- 20,000 G centrifuge
- Hermeticity tests
- Failure rate is less than 0.01% per 1000 hours from current life test data

technical data 91-206



#### Absolute maximum ratings

| Parameter             | Symbol           | Value           | Units |
|-----------------------|------------------|-----------------|-------|
| Power supply voltage  | V <sub>cc</sub>  | 9               | volts |
| Power dissipation     | PD               | 100             | mw    |
| Storage temperature   | T <sub>stg</sub> | -65°C to +125°C | °C    |
| Operating temperature |                  | -55°C to +75°C  | °C    |

#### Thermal impedance

| Conditions                 | Value | Units       |
|----------------------------|-------|-------------|
| Free air at 25°C           | 265   | °C per watt |
| Infinite heat sink at 25°C | 35    | °C per watt |
|                            |       |             |
|                            |       |             |

Typical electrical characteristics (at 25  $^{\circ}$ C and P $_{\rm out}=$  3.0mw unless stated otherwise)

|                                                         | $V_{\rm cc}=1.55$ volts |      | $V_{cc} = 4.5 \text{ volts}$ |        |      |      |       |
|---------------------------------------------------------|-------------------------|------|------------------------------|--------|------|------|-------|
| Parameter                                               | Min.                    | Тур. | Max.                         | Min.   | Тур. | Max. | Units |
| Power output                                            | 3.0                     |      |                              | 35     | 45   |      | mw    |
| Voltage gain (pins 4 and 8 shorted)                     | 60                      | 72   |                              | 84     | 94   |      | db    |
| Battery current                                         |                         | 4.3  | 5.0                          |        | 5.2  | 9.0  | ma    |
| Quiescent current                                       |                         | 0.9  | 1.5                          |        | 3.5  | 8.0  | ma    |
| Total harmonic distortion                               |                         | 6    | 8                            |        | 7    | 9    | %     |
| Noise voltage at output *                               |                         | 3    | 10                           |        | 3    | 12   | mv    |
| Frequency response (3 db down points)                   |                         |      |                              |        |      |      |       |
| Uncompensated                                           | 12,000                  |      | 300                          | 10,000 |      | 500  | Hz    |
| With .05 $\mu f$ rolloff capacitor between pins 5 and 7 | 4,200                   |      | 300                          | 3,000  |      | 500  | Hz    |
| Input impedance                                         |                         | 40   |                              |        | 40   |      | KΩ    |
| Volume control range                                    | 25                      | 35   |                              | 25     | 52   |      | db    |
| Efficiency                                              |                         | 55   |                              | 45     | 68   |      | %     |

<sup>\*</sup> Gain *≤*72db





technical data 91-206

#### Typical electrical characteristics

(at 25  $^{\circ}\text{C}$  and at  $\text{V}_{\text{cc}}=1.55\text{v}$  and 3.0mw unless stated otherwise) (Refer to Fig. 3 for test circuit)



GAIN VS SUPPLY VOLTAGE AT 3 MW POWER OUTPUT

Figure 4



Figure 5



GAIN VS POWER OUTPUT AS A FUNCTION OF  $\mathrm{V}_{\mathrm{CC}}$ 

Figure 6



FREQUENCY RESPONSE CHARACTERISTIC

Figure 7



MAXIMUM OUTPUT POWER VS LOAD IMPEDANCE Figure 8



TOTAL HARMONIC DISTORTION VS POWER OUTPUT

Figure 9

#### low level audio amplifier

technical data 91-206



#### **Typical applications**



Figure 10 FREQUENCY RESPONSE



WIDE BAND AMPLIFIER

Figure 11



AUDIO AMPLIFIER



 $R_L$  — Typical 250 $\Omega$  AC @ 1KC

BROADCAST BAND REGENERATIVE RECEIVER

ure 12

Figure 12



Figure 13

References:

Hellstrom, M. J., and Hsieh, J. J. "A Monolithic Silicon Class B Hearing Aid Amplifier." WESCON, San Francisco, 1965. Hellstrom, M. J. "A Family of Integrated Class B Hearing Aid Circuits." National Electronics Conference, Chicago, 1965. All values shown subject to design change for product improvement.

### Westinghouse Electric Corporation / MOLECULAR ELECTRONICS DIVISION

BOX 7377 ELKRIDGE, MARYLAND 21227 • BOX 305 NEWBURY PARK, CALIFORNIA 91320

Here's a new pair of linear 90's to cover the range of commercial usage from 200 to 85 MHz. Use WC 1146 for rf. if oscillatormixer and detector stages. Use WC 183 for audio stages. They cost only \$7.50 each in 50 piece quantities from distributors as listed on reverse side. In integrated circuits,

the winning chips come from Westinghouse

#9-466

**Westinghouse Electric Corporation** Molecular Electronics Division **Box 7377** Elkridge, Maryland 21227 Phone: (301) 796-3666 TWX: (301) 761-4340



## **Westinghouse Sales Offices**

| (005) 001 0501                           |
|------------------------------------------|
| Alabama, Huntsville(205) 881-2591        |
| Arizona, Phoenix(602) 254-5231           |
| California, Compton(213) 638-7781        |
| California, Los Angeles (213) 482-9660   |
| California, Sunnyvale(408) 735-2191      |
| Colorado, Denver(303) 534-8121           |
| Connecticut, Hartford(203) 246-5441      |
| D.C., Washington (202) 628-8843          |
| Florida, Orlando(305) 425-4511           |
| Georgia, Atlanta(404) 874-1641           |
| Illinois, Chicago(312) 461-7200          |
| Indiana, Indianapolis (317) 632-3301     |
| Maryland, Baltimore (301) 828-5400       |
| Massachusetts, Boston(617) 542-0600      |
| Michigan, Detroit(313) 872-7010          |
| Michigan, Grand Rapids                   |
| Minnesota, Minneapolis(612) 927-6551     |
| Missouri, St. Louis(314) 421-6911        |
| New Jersey, Newark (201) 621-9000        |
| New Jersey, Red Bank(201) 747-5800       |
| New York, Long Island(516) 248-9800      |
| New York, Johnson City(607) 729-2258     |
| New York, Rochester(716) 232-4380        |
| Ohio, Cleveland(216) 241-7600            |
| Ohio, Dayton(513) 461-3720               |
| Pennsylvania, Philadelphia(215) 382-1200 |
| Pennsylvania, Pittsburgh(412) 391-2800   |
| Texas, Dallas(214) 631-2811              |
| Texas, Houston(713) 224-7791             |
| Washington, Seattle(206) 622-0808        |
| Wisconsin, Milwaukee(414) 276-1800       |
|                                          |

## **Westinghouse Distributors**

| Alabama, Birmingham                                  | (205) 322-0588     |
|------------------------------------------------------|--------------------|
| Calif., Los Angeles                                  | (213) 870-7171     |
| Hamilton Electro Sales                               |                    |
| Calif., Los Angeles                                  | (213) 685-7313     |
| K-Tronics                                            |                    |
| Calif., Mountain View                                | (415) 961-7000     |
| Hamilton Electro Sales — North Calif., Mountain View | (415) 061 2611     |
| Elmar Electronics                                    | (413) 301-3011     |
| Calif., Oakland                                      | (415) 834-3311     |
| Elmar Electronics                                    |                    |
| Calif., San Francisco                                | (415) 826-8811     |
| Fortune Electronics                                  |                    |
| Conn., Hamden                                        | (203) 288-7771     |
| Cramer Electronics, Inc.                             | (202) 964 6220     |
| D.C., Washington                                     | (202) 804-0330     |
| Florida, Melbourne                                   | (305) 723-1441     |
| Electronic Wholesalers, Inc.                         | (000) 720 1441     |
| Florida, Orlando                                     | (305) 855-4020     |
| Hall-Mark Electronics Corp.                          |                    |
| Illinois, Chicago                                    | (312) 829-9100     |
| Allied Electronics                                   |                    |
| Illinois, Chicago                                    | (312) 622-8860     |
| Semiconductor Specialists, Inc. Maryland, Baltimore  | (301) 880-1212     |
| Kann-Ellert Electronics, Inc.                        | (301) 603-4242     |
| New Jersey, Camden                                   | (609) 964-8560     |
| General Radio Supply Co., Inc.                       |                    |
| New York, Binghamton                                 | (607) 723-6326     |
| Stack Industrial Electronics                         | (0.4.0) 0.00 1.000 |
| New York, New York                                   | (212) 989-1600     |
| Milgray Electronics, Inc. New York, Westbury         | (516) 334-7474     |
| Schweber Electronics                                 | (310) 334-7474     |
| Pa., Philadelphia                                    | (215) 923-2210     |
| Milgray Electronics, Inc.                            |                    |
| Texas, Dallas                                        | (214) 276-8531     |
| Hall-Mark Electronics Corp.                          |                    |
| Texas, Houston                                       | (713) 781-0011     |
| Hall-Mark Electronics Corp.                          | (206) 722 7210     |
| Washington, Seattle                                  | (200) /23-/310     |
| Canada, Montreal                                     | (819) 389-8051     |
| Prelco Electronics, Ltd.                             | .,,                |
|                                                      |                    |

# Stop being

This new Westinghouse linear IC can beat discrete in the priceperformance tradeoff

## so discrete:



## New Class B amp gives 94 db gain at 4.5 Vcc, has over 50% efficiency

Here's the best commercially available Class B audio amplifier in silicon! It's the new Westinghouse WC 183. This universal low-level IC audio amplifier gives high gain throughout the Vcc range from 1.5 to 9. Minimum gain with a single battery cell is 60 db.

And here's a stopper...you can buy the WC 183 in TO can or flat package for only \$7.50 in quantities of 50! How does Westinghouse do it? We start the circuit with a three stage Class A preamplifier. There's your high gain. We follow it with a Class B output stage. That gives high efficiency. The entire 8-transistor balanced circuit with internal DC feedback draws only 5 ma. at a minimum output power of 3 mw.

The quiescent current is extremely low too. It's only 0.9 ma. at 1.5 Vcc. This means vastly extended battery

life in most applications. It also makes possible a broad range of new battery-powered IC applications.

You'll find the WC 183 ideal for hearing aids, paging systems, dictating equipment, phone amplifiers, and dozens of other voice communication applications. You can also put it to work in phonographs, tape recorders, and other uses where you want flat frequency response extending beyond the audio range.

Reliability? Every chip undergoes storage bake at  $150^{\circ}$ C, 20,000 G centrifuge, and hermeticity tests. Life tests indicate less than 0.01% failure rate per 1000 hrs.

Send for the specs. You'll think of at least a dozen great ways to use the remarkable WC 183. Write Westinghouse Electric Corporation, Molecular Electronics Division, Box 7377, Elkridge, Maryland 21227.

You can be sure if it's Westinghouse

