EE/CE 6301: Advanced Digital Logic

Bill Swartz

Dept. of EE Univ. of Texas at Dallas

Graphs and Algorithms

Graph Theory - Background

Importance

 Many optimization problems employ graph representations to model the core part.

 Graph theory has a history of 300+ years and there are many mature graph-based algorithms exist.

- Example of graph-based algorithms
 - —Path traversal
 - —Partitioning to sub-graphs
 - —Coloring

__...

What Can Graphs Model?

- Cost of wiring electronic components together.
- Shortest route between two cities.
- Finding the shortest distance between all pairs of cities in a road atlas.
- Flow of material (liquid flowing through pipes, current through electrical networks, information through communication networks, parts through an assembly line, etc).
- State of a machine (FSM).
- Used in Operating systems to model resource handling (deadlock problems).
- Used in compilers for parsing and optimizing the code.

What is a Graph?

 Informally a graph is a set of nodes joined by a set of lines or arrows.

Definition

- A graph G(V,E) is a pair (V,E), where V is a set of vertices and E is a set of edges.
 - —Directed graph (digraph): the edges are ordered pairs of vertices, e.g. (v_i, v_j)
 - —Undirected graph: the edges are unordered pairs, e.g. $\{v_i, v_j\}$
 - —The degree of a vertex is the number of edges incident to it.
 - —A hypergraph is an extension of a graph where edges may be incident to any number of vertices

Directed Graph

Hypergraph

Directed Graph

- A directed graph, also called a digraph G is a pair (V, E), where
 the set V is a finite set and E is a binary relation on V.
- The set \(\mathbb{V}\) is called the \(\mathbb{vertex set} \) of \(G \) and the elements are called vertices. The set \(E \) is called the \(\mathbb{edge set} \) of \(G \) and the elements are \(\mathbb{edges} \) (also called \(\mathbb{arcs} \)). A edge from node \(\mathbb{a} \) to node \(b \) is denoted by the ordered pair \((a, b) \).

$$E = \{ (1,2), (2,2), (2,4), (4,5), (4,1), (5,4), (6,3) \}$$

 $|E| = 7$

Undirected Graph

An undirected graph G = (V, E), but unlike a digraph the edge set E consist of unordered pairs. We use the notation (a, b) to refer to a directed edge, and { a, b } for an undirected edge.

Some texts use (a, b) also for undirected edges. So (a, b) and (b, a) refers to the same edge.

Hyper Graph

• A *hyper graph* H = (V, E), is the set of vertices V and E is the set of edges which forms sets between the vertices or nodes. Any edge may contain any number of nodes

Natural representation of a circuit description or netlist

Degree of a Vertex

 Degree of a Vertex in an undirected graph is the number of edges incident on it. In a directed graph, the out degree of a vertex is the number of edges leaving it and the in degree is the number of edges entering it.

Simple Graphs

 Simple graphs are graphs without multiple edges or self-loops. We will consider only simple graphs.

Proposition: If G is an undirected graph then

$$\sum_{v \in G} \deg(v) = 2 |E|$$

Proposition: If G is a digraph then

$$\sum_{v \in G} \text{indeg}(v) = \sum_{v \in G} \text{outdeg}(v) = |E|$$

Weighted Graph

- A *weighted graph* is a graph for which each edge has an associated *weight*, usually given by a *weight* function $w: E \to \mathbb{R}$.
- Directed or undirected graphs can be weighted. Weights can be associated with vertices and/or with edges, i.e. the graph can be vertex weighted and/or edgeweighted.

Cycles and Paths

A path is a sequence of vertices such that there is an edge from each vertex to its successor. A path from a vertex to itself is called a cycle. A graph is called cyclic if it contains a cycle; otherwise it is called acyclic A path is simple if each vertex is distinct.

Simple path from 1 to 5 = (1, 2, 4, 5) or as in our text

((1, 2), (2, 4), (4,5))

If there is path *p* from *u* to *v* then we say *v* is **reachable** from *u* via *p*.

Connectivity Features

- An undirected graph is connected if you can get from any node to any other by following a sequence of edges OR any two nodes are connected by a path.
- A directed graph is strongly connected if there is a directed path from any node to any other node.

- A graph is *sparse* if | *E* | ≈ | *V* |
- A graph is **dense** if $|E| \approx |V|^{2}$.

Graph Traversal

- A vertex is adjacent to another vertex when there is an edge incident to both of them.
- An edge with two identical end-points is a loop.
- A graph is simple if it has no loops and no two edges link the same vertex pair. Otherwise, it is called a multi-graph.
- A walk is an alternating sequence of vertices and edges.
- A trail is a walk with distinct edges.
- A path is a trail with distinct vertices.
- A cycle is a closed walk (i.e. such that the two end-point vertices coincide) with distinct vertices.

Trees and Forest

- A graph is connected if all vertex pairs are joined by a path.
- A graph with no cycles is called an acyclic graph or a forest.
- A tree is a connected acyclic graph.
- A rooted tree is a tree with a distinguished vertex, called a root.
- Vertices of a tree are also called nodes. In addition, they are called leaves when they are adjacent to only one vertex each and they are distinguished from the root.

Trees and Forest (cont.)

- Let G = (V, E) be an undirected graph. The following statements are equivalent.
 - 1. G is a tree
 - 2. Any two vertices in *G* are connected by unique simple path.
 - *3. G* is connected, but if any edge is removed from *E*, the resulting graph is disconnected.
 - 4. G is connected, and |E| = |V| -1
 - 5. G is acyclic, and |E| = |V| -1
 - 6. G is acyclic, but if any edge is added to E, the resulting graph contains a cycle.

Complete Graph

 A complete graph is one such that each vertex pair is joined by an edge. Alternatively, we can say:

A Complete graph is an undirected/directed graph in which every pair of vertices is adjacent. If (u, v) is an edge in a graph G, we say that vertex v is adjacent to vertex u.

4 nodes and (4*3)/2 edges

V nodes and V*(V-1)/2 edges

Note: if self loops are allowed V(V-1)/2 +V edges

3 nodes and 3*2 edges

V nodes and V*(V-1) edges

Note: if self loops are allowed V² edges

Complement Graph

• The complement of a graph G(V,E) is a graph with vertex set V, two vertices being adjacent if and only if they are not adjacent in G(V,E).

Bipartite Graph

- A bipartite graph is a graph where the vertex set can be partitioned into two subsets such that each edge has end-points in different subsets.
- An alternative definition: A **bipartite graph** is an undirected graph G = (V, E) in which V can be partitioned into two subsets V_1 and V_2 such that $(u, v) \in E$ implies either $u \in V_1$ and $v \in V_2$ OR $v \in V_1$ and $u \in V_2$.

Undirected Graphs - Other Definitions

- A subgraph of a graph G(V,E) is a graph whose vertex and edge sets are contained in the vertex and edge sets, respectively, of G(V,E).
- Given a graph G(V,E) and a vertex subset $U \subseteq V$ the subgraph induced by U is the maximal subgraph of G(V,E) whose edges have end-points in U.
- A clique of a graph is a complete subgraph; it is maximal when it is not contained in any other clique. (Note that some books refer to "maximal clique" as cliques.)

Undirected Graphs - Other Definitions (cont.)

- Given an undirected graph, an orientation is a directed graph obtained by assigning a direction to the edges.
- A cutset is a minimal set of edges whose removal from the graph makes the graph disconnected.

 A vertex separation set is a minimal set of vertices whose removal from the graph makes the graph disconnected.

Undirected Graphs - Other Definitions (cont.)

 A graph is said to be planar if it has a diagram on a plane surface such that no two edges cross.

 Two graphs are said to be isomorphic if there is a one-to-one correspondence between their vertex sets that preserves adjacency.

Directed Graph - I

- For any directed edge (v_i, v_j) , vertex v_i is called the tail and vertex v_i is called the head.
- The in-degree of a vertex is the number of edges where it is the head.
- The out-degree of a vertex is the number of edges where it is the tail.
- A walk is an alternating sequence of vertices and edges with the same direction. Trails, paths and cycles are defined similarly.

Directed Graph - II

- Directed acyclic graphs is also called dags.
- A vertex v_j is called the successor (or descendant) of a vertex v_i, if v_j is the head of a path whose tail is v_i. We also say that a vertex v_j is reachable from vertex v_i when v_i is a successor of v_i.
- A vertex v_i is called the predecessor (or ancestor) of a vertex v_j, if v_i is the tail of a path whose head is v_j. We also say that a vertex v_j is reachable from vertex v_i when v_i is a successor of v_i.
- Vertex v_j is a direct successor (child or adjacent to)
 of vertex v_i if v_j is the head of an edge whose tail is
 v_i. Direct predecessor is similarly defined.

Directed Graph - III

 A polar dag is a graph having two distinguished vertices, a source and a sink, and where all vertices are reachable from the source and where the sink is reachable from all vertices.

Graph Matrix Representation

- The incidence matrix can be used to represent a simple graph
 - —Number of rows: V
 - —Number of columns: E
 - —For undirected Graph: Entry (i,j) is 1 if the jth edge is incident to vertex v_i else it is 0.
 - —For directed Graph: Entry (i,j) is 1 if vertex v_i is the head of the jth edge, -1 if it is its tail and otherwise 0.

$$\begin{bmatrix} a & b & c & d & e \\ 1 & -1 & 0 & 0 & -1 & -1 \\ 2 & 1 & -1 & 0 & 0 & 0 \\ 3 & 0 & 1 & -1 & 0 & 1 \\ 4 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Graph Matrix Representation (cont.)

- The adjacency matrix can be used to represent a simple graph. The matrix is symmetric only for undirected graph.
 - —Number of rows: V
 - —Number of columns: V
 - —Entry (i,j) is 1 if vertex v_j is adjacent to vertex v_i else it is 0.

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 1 & 1 \\ 2 & 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 0 & 1 \\ 4 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Adjacency List – Undirected Graph

Adjacency-list representation of a graph G
 = (V, E) consists of an array ADJ of | V | lists,
 one for each vertex in V. For each u ∈ V , ADJ
 [u] points to all its adjacent vertices.

Adjacency List - Directed Graph

Variation: Can keep a second list of edges coming into a vertex.

Adjacency List – Hyper Graph

Features of Adjacency lists

- Advantage:
 - —Saves space for sparse graphs. Most graphs are sparse.
 - —"Visit" edges that start at v
 - Must traverse linked list of v
 - Size of linked list of v is degree(v)
 - $-\theta(\text{degree}(v))$
- Disadvantage:
 - —Check for existence of an edge (v, u)
 - Must traverse linked list of v
 - Size of linked list of v is degree(v)
 - $-\theta(degree(v))$

Features of Adjacency List (cont.)

- Storage
 - We need V pointers to linked lists
 - For a directed graph the number of nodes (or edges) contained (referenced) in all the linked lists is

$$\sum_{v \in V} (\text{out-degree } (v)) = |E|.$$
So we need $\Theta(V + E)$

For an undirected graph the number of nodes is

$$\sum_{v \in V} (\text{degree } (v)) = 2 \mid E \mid$$
Also $\Theta(V + E)$

Adjacency Matrix – Undirected Graph

• Adjacency-matrix-representation of a graph G = (V, E) is a $|V| \times |V|$ matrix $A = (a_{ij})$ such that $a_{ij} = 1$ (or some Object) if $(i, j) \in E$ and 0 (or null) otherwise.

	U	ı	2	3	4	
0	0	1	0	0	1	
2	0	0 1	1 0	1 1	0	
3 4	0	1	1	0 1	1	
		I	U	I	U	

Adjacency Matrix – Directed Graph

	0	1	2	3	4
0	0	1	0	0	1
1	0	0	1	1	1
2	0	0	0	1	0
2 3 4	0	0	0	0	1
4	0	0	0	0	0

Features of Adjacency Matrix

Advantage:

- —Saves space on pointers for dense graphs, and on
- —small unweighted graphs using 1 bit per edge.
- —Check for existence of an edge (v, u)
 - (adjacency [i] [j]) == true?)
 - So adjacency [i][j] can be found in constant time: $\theta(1)$

Disadvantage:

- "visit" all the edges that start at v
 - Row v of the matrix must be traversed.
 - So finding all vertices that are adjacent to v: $\theta(|V|)$.

Features of Adjacency Matrix (cont.)

- Storage
 - $-\Theta(|V|^2)$ (We usually just write, $\Theta(V^2)$)
 - —For undirected graphs you can save storage (only 1/2(V²)) by noticing the adjacency matrix of an undirected graph is symmetric.
 - —Need to update code to work with new representation.
 - —Gain in space is offset by increase in the time required by the methods.

Properties of an Undirected Graph

- Each undirected graph G(V,E) can be characterized by four numbers
 - 1. Clique number: $\omega(G)$
 - 2. Clique cover number: $\kappa(G)$
 - 3. Stability number: $\alpha(G)$
 - **4.** Chromatic number: $\chi(G)$

Clique Number - $\omega(G)$

- Clique number of a graph G is the cardinality of its largest (maximum) clique.
- A graph is said to be partitioned into cliques if its vertex set is partitioned into (disjoint) subsets, each one inducing a clique.
- A graph is said to be covered by cliques when the vertex set can be subdivided into (possibly overlapping) subsets, each one inducing a clique.
- A clique partition is a disjoint clique cover.

Clique Cover - $\kappa(G)$

 Clique cover number of a graph G is the cardinality of a minimum clique partition which is equal to the cardinality of a minimum clique cover.

Stability Number - $\alpha(G)$

 A stable (or independent) set is a subset of vertices with the property that no two vertices in the stable set are adjacent.

 The stability number of a graph is the cardinality of its largest stable set.

Chromatic Number - $\chi(G)$

- A coloring of a graph is a partition of the vertices into subsets, such that each is a stable set.
- The chromatic number is the smallest number that can be the cardinality of such a partition. Visually, it is the minimum number of colors needed to color the vertices, such that no edge has end-points with the same color.

Relationship Among Four Graph Numbers

 The size of the maximum clique is a lower bound for the chromatic number because all vertices in that clique must be colored differently. So:

$$\omega(G) \leq \chi(G)$$

 Similarly, the stability number is a lower bound for the clique cover number, since each vertex of the stable set must belong to a different clique of a clique cover. Thus,

$$\alpha(G) \le \kappa(G)$$

A graph is said to be perfect if:

$$\omega(G) = \chi(G)$$
 and $\alpha(G) = \kappa(G)$

Example

- 1. Clique number: $\omega(G) = 3$
 - The size of maximum clique $\{v_1, v_2, v_3\}$ is 3.
- 2. Clique cover number: $\kappa(G) = 2$
 - The graph can be partitioned into cliques {v₁, v₂, v₃} and {v₄}. Alternatively, it can be covered by cliques {v₁, v₂, v₃} and {v₁, v₃, v₄}. The clique cover number is 2.
- 3. Stability number: $\alpha(G) = 2$
 - The largest stable set is $\{v_2, v_4\}$. The stability number is 2.
- 4. Chromatic number: $\chi(G) = 3$
 - A minimum coloring would require three colors for {v₁, v₂, v₃}. Vertex v₄ can have the same color as v₂. Hence, the chromatic number is 3.
- This graph is perfect.

More on Trees

- A tree is a connected acyclic graph.
- A tree with two or more vertices is 2-chromatic
- A tree is a minimally-connected graph
 - —there is exactly one path between every pair of vertices in the graph
- A graph with n vertices is a tree if it is connected and has n-1 edges.
 - in a tree we have |E|=|V|-1
- Proof: ?

Basic Search Algorithms

Breadth-first search

Graph Searching: Breadth-First Search

Graph G = (V, E), directed or undirected with adjacency list repres.

GOAL: Systematically explores edges of G to

- discover every vertex reachable from the source vertex s
- compute the shortest path distance of every vertex from the source vertex *s*
- produce a breadth-first tree (BFT) G_{Π} with root s
 - BFT contains all vertices reachable from s
 - the unique path from any vertex v to s in G_{Π} constitutes a shortest path from s to v in G

IDEA: Expanding frontier across the breadth -greedy-

- propagate a wave 1 edge-distance at a time
- using a FIFO queue: O(1) time to update pointers to both ends

Breadth-First Search Algorithm

Maintains the following fields for each $u \in V$

- $\operatorname{color}[u]$: $\operatorname{color} \operatorname{of} u$
 - WHITE: not discovered yet
 - GRAY: discovered and to be or being processed
 - BLACK: discovered and processed
- $\Pi[u]$: parent of u (NIL of u = s or u is not discovered yet)
- d[u]: distance of u from s

Processing a vertex = scanning its adjacency list

Breadth-First Search Algorithm

```
BFS(G, s)
      for each u \in V - \{s\} do
            color[u] \leftarrow WHITE
            \Pi[u] \leftarrow \text{NIL}; d[u] \leftarrow \infty
      color[s] \leftarrow GRAY
      \Pi[s] \leftarrow \text{NIL}; d[s] \leftarrow 0
      Q \leftarrow \{s\}
      while Q \neq \emptyset do
            u \leftarrow \text{head}[Q]
            for each v in Adj[u] do
                  if color[v] = WHITE then
                        color[v] \leftarrow GRAY
                        \Pi[v] \leftarrow u
                        d[v] \leftarrow d[u] + 1
                        ENQUEUE(Q, v)
            DEQUEUE(Q)
            color[u] \leftarrow BLACK
```

Sample Graph:

all distances are filled in after processing e

algorithm terminates: all vertices are processed

Breadth-First Search Algorithm

Running time: O(V+E) = considered linear time in graphs

- initialization: $\Theta(V)$
- queue operations: O(V)
 - each vertex enqueued and dequeued at most once
 - both enqueue and dequeue operations take O(1) time
- processing gray vertices: O(E)
 - each vertex is processed at most once and

$$\sum_{u \in V} |Adj[u]| = \Theta(E)$$

Basic Search Algorithms

Depth-first search

- Graph G=(V,E) directed or undirected
- Adjacency list representation
- Goal: Systematically explore every vertex and every edge
- Idea: search deeper whenever possible
 - —Using a LIFO queue (Stack; FIFO queue used in BFS)

- Maintains several fields for each *v*∈ V
- Like BFS, colors the vertices to indicate their states. Each vertex is
 - —Initially white,
 - —grayed when discovered,
 - —blackened when finished
- Like BFS, records discovery of a white ν during scanning $Adj[\nu]$ by $\pi[\nu] \leftarrow \nu$

- Unlike BFS, predecessor graph G_{π} produced by DFS forms spanning forest
- G_π=(V,E_π) where
 E_π={(π[ν], ν): ν∈ V and π[ν]≠ NIL}
- G_{π} = depth-first forest (DFF) is composed of disjoint depth-first trees (DFTs)

- DFS also timestamps each vertex with two timestamps
- d[ν]: records when ν is first discovered and grayed
- f[v]: records when v is finished and blackened
- Since there is only one discovery event and finishing event for each vertex we have $1 \le d[\nu] < f[\nu] \le 2|V|$

Time axis for the color of a vertex


```
DFS(G)
  for each u \in V do
     color[u] \leftarrow white
     \pi[U] \leftarrow NIL
   time \leftarrow 0
  for each u \in V do
  if color[u] = white
        DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)
   color[u] \leftarrow gray
   d[u] \leftarrow time \leftarrow time + 1
   for each v \in Adj[u] do
       if color[v] = white then
           \pi[v] \leftarrow u
           DFS-VISIT(G, v)
   color[u] \leftarrow black
   f[u] \leftarrow time \leftarrow time + 1
```

- Running time: ⊕(V+E)
- Initialization loop in DFS : ⊕(∨)
- Main loop in DFS: ⊕(V) exclusive of time to execute calls to DFS-VISIT
- DFS-VISIT is called exactly once for each *v*∈ V since
 - —DFS-VISIT is invoked only on white vertices and
 - —DFS-VISIT(G, u) immediately colors u as gray
- For loop of DFS-VISIT(G, u) is executed |Adj[u]|
 time
- Since $\Sigma |Adj[u]| = E$, total cost of executing loop of DFS-VISIT is $\Theta(E)$

DFS(G) terminated **Depth-first forest** (DFF) S 9 10 W W u

Topological Sorting

Directed Acyclic Graphs (DAG)

No directed cycles

Example:

Directed Acyclic Graphs (DAG)

Theorem: a directed graph G is acyclic iff DFS on G yields no Back edges

```
Proof (acyclic \Rightarrow no Back edges; by contradiction):

Let (v, u) be a Back edge visited during scanning Adj[v]

\Rightarrow color[v] = color[u] = GRAY and d[u] < d[v]

\Rightarrow int[v] is contained in int[u] \Rightarrow v is descendent of u

\Rightarrow \exists a path from u to v in a DFT and hence in G
```

 \therefore edge ($V_{\prime}U$) will create a cycle (Back edge \Rightarrow cycle)

path from u to v in a DFT and hence in G

acyclic iff no Back edges

Proof (no Back edges \Rightarrow acyclic):

Suppose G contains a cycle C (Show that a DFS on G yields a Back edge; proof by contradiction)

Let ν be the first vertex discovered in C and let (u, v) be proceeding edge in C

At time d[v]: ∃ a white path from v to u along C

By White Path Thrm *u* becomes a descendent of *v* in a DFT

Therefore (*u,v*) is a **Back** edge (descendent to ancestor)

Linear ordering '<' of V such that

```
(U,V) \in E \Rightarrow U < V \text{ in ordering}
```

- —Ordering may not be unique
- —i.e., mapping the partial ordering to total ordering may yield more than one orderings

Example: Getting dressed

Algorithm

run DFS(G)

when a vertex finished, output it vertices output in reverse topologically sorted order

Runs in O(V+E) time

Correctness of the Algorithm

```
Claim: (u, v) \in E \Rightarrow f[u] > f[v]
```

Proof: consider any edge (u,v) explored by DFS when (u,v) is explored, u is GRAY

- —if ν is GRAY, (ν, ν) is a Back edge (contradicting acyclic theorem)
- —if ν is WHITE, ν becomes a descendent of u (b WPT) \Rightarrow $f[\nu] < f[\nu]$
- —if ν is BLACK, $f[\nu] < d[\nu] \Rightarrow f[\nu] < f[\nu]$

Iterative Algorithms

Iterative Algorithm – Vertex Coloring

- Vertex-color method using an iterative approach
 - —Iterative and often constructive

```
VERTEX\_COLOR(G(V, E)) \{
for (i = 1 \ to \ |V|) \} \{
c = 1;
while ( \exists a \text{ vertex adjacent to } v_i \text{ with color } c ) \text{ do } \{
c = c + 1;
\}
Label v_i \text{ with color } c;
\}
```

Iterative Algorithm – Vertex Coloring (cont.)

 As there is no look-back correction or refinement, there is no guarantee of optimality.

Example

Graph

Order of coloring: $v6 \rightarrow v1 \rightarrow v5 \rightarrow v4 \rightarrow v3 \rightarrow v2$ $v1 \rightarrow v2 \rightarrow v3 \rightarrow v4 \rightarrow v5 \rightarrow v6$

Result: 2 colors

Order of coloring:

Result: 4 colors

Iterative Algorithm – Vertex Covering

 Two versions using: 1) vertex and 2) edge to make decisions

```
VERTEX\_COVER\_V(G(V, E)) \{
C = \emptyset;
\text{while } (E \neq \emptyset) \text{ do } \{
\text{Select a vertex } v \in V;
\text{Delete } v \text{ from } G(V, E);
C = C \cup \{v\};
\}
\}
VERTEX\_COVER\_E(G(V, E)) \{
C = \emptyset;
\text{while } (E \neq \emptyset) \text{ do } \{
\text{Select an edge } \{u, v\} \in E;
C = C \cup \{u\} \cup \{v\};
\text{Delete } u \text{ and } v \text{ from } G(V, E);
\}
```

Iterative Algorithm - Vertex Covering (cont.)

Example: Graph

 Apply Vertex_Cover_V (v5→v2→v3)

Apply Vertex_Cover_E
 ({v2,v4}→...)

Best solution (not obtained)

Role of Heuristics - Clique Partitioning

- Some guidelines (heuristics) are needed to make decisions/selections in the process.
- The optimality is not often guaranteed.

```
CLIQUE\_PARTITION(G(V, E)) {
       \Pi = \emptyset:
       while (G(V, E) \text{ not empty }) do {
              C = MAX\_CLIQUE(G(V, E));
              \Pi = \Pi \cup C;
              Delete C from G(V, E);
MAX\_CLIQUE(G(V, E)) {
      C = vertex with largest degree;
      repeat {
                    U = \{v \in V : v \notin C \text{ and adjacent to all vertices of } C\};
                    if (U = \emptyset)
                          return(C);
                    else {
                          Select vertex v \in U: \longrightarrow heuristic?
                          C = C \cup \{v\};
```

Role of Heuristics - Clique Partitioning (cont.)

- Example
 - —Clique partitioning of G is the same as coloring G'
- Order of vertex consideration in the process
 - $-C=v4 \rightarrow Clique=\{v4,v6\}$
 - $-C=v3 \rightarrow Clique=\{v3,v1\}$
 - $-C=v5 \rightarrow Clique=\{v5,v2\}$

Greedy Algorithms

Greedy Algorithms

- Greedy algorithms make good local choices in the hope that they result in an optimal solution.
 - —They result in feasible solutions.
 - —Not necessarily an optimal solution.
- A proof is needed to show that the algorithm finds an optimal solution.
- A counter example shows that the greedy algorithm does not provide an optimal solution.

Left-Edge Algorithm

- This is a greedy (and constructive) method
- Used in VLSI channel routing, register minimization etc.

```
LEFT\_EDGE(I) {
      Sort elements of I in a list L in ascending order of l_i;
      c = 0;
      while (some interval has not been colored ) do {
             S = \emptyset;
                                                            /* initialize coordinate of rightmost edge in S */
             r = 0;
             while (\exists an element in L whose left edge coordinate is larger than r) do{
                    s = First element in the list L with l_s \geqslant r;
                    S = S \cup \{s\};
                                                              /* update coordinate of rightmost edge in S */
                    r = r_s;
                    Delete s from L;
              c = c + 1;
              Label elements of S with color c;
```

Left-Edge Algorithm - Example

 Data given (e.g. life spans of signals and we are looking for minimum number of registers)

	(l)	(r)
Vertex	Left edge	Right edge
v_1	0	3
v_2	3	5
v_3	6	8
v_4	0	7
v_5	7	8
υ ₆	0	2
υ ₇	2	6
1.04	+ O wiaht	odaoo

Left & right edges

 6

 7

 2

 3

Ordered list (based on left edge values)

Left-Edge Algorithm – Example (cont.)

• Order of decisions: $\{v1 \rightarrow v6 \rightarrow v4 \rightarrow v7 \rightarrow v2 \rightarrow v3 \rightarrow v5\}$

Final results (3 channels/registers are needed)

Graph coloring achieves the same

Unsuccessful Termination in Greedy Methods

- If termination heuristic (e.g. to find a non-optimal solution) is not devised well, it may not produce any result while it exists.
- Example: Task Scheduling

```
GREEDY\_SCHEDULING(T) {
      i = 1:
      repeat {
             while (Q = \{\text{unscheduled tasks with release time } < i\}) == \emptyset) do
                   i = i + 1:
            if (\exists an unscheduled task p: i+l(p)>d(p)) return(FALSE);
            Select q \in Q with smallest deadline;
            Schedule q at time i;
            i = i + l(q);
      } until (all tasks scheduled);
      return(TRUE);
```

Task Scheduling Algorithm

• Iteration 1:

$$-i=1$$
, Q={a,b}

- —Choose "a" since d(a)=4<d(b)=infinity.</p>
- -i=i+l(a)=2

Tasks	Relewe	pead line	Length
1000	r	d	l
	1	4	1
h	1	00	2
C	3	6	3

• Iteration 2:

$$-i=2, Q=\{b\}$$

-Choose "b"

$$-i=i+l(b)=4$$

• Iteration 3:

$$-i=4$$
, Q={c}

$$-4+I(c)=7>d(c)=6$$

—Terminate unsuccessfully.⁹

Dynamic Programming Algorithms

Dynamic Programming

- An algorithm that finds the optimum solution to a problem involving N objects in terms of the solutions to a series of smaller problems that involve subsets of those objects.
- Often we break down the problem to smaller one of the same nature and solve it recursively.

Example: Tree-Based Covering Algorithm

Simple Library

Tree-Based Matching

```
u: the root of the pattern tree
                       v: the vertex of the subject tree
MATCH(u, v)
      if (u is a leaf) return (TRUE);
                                                                       /* Leaf of the pattern graph reached */
      else {
             if (v is a leaf) return (FALSE);
                                                                       /* Leaf of the subject graph reached */
             if (degree(v) \neq degree(u)) return(FALSE);
                                                                                        /* Degree mismatch */
             if (degree(v) == 1) {
                                                                /* One child each: visit subtree recursively */
                    u_c = \text{child of } u ; v_c = \text{child of } v ;
                    return (match(u_c, v_c))
             else {
                                                          /* Two children each: visit subtrees recursively */
                    u_l = left-child of u; u_r = right-child of u;
                    v_l = \text{left-child of } v \; ; \; v_r = \text{right-child of } v \; ;
                    return (MATCH(u_l, v_l) \cdot MATCH(u_r, v_r) + MATCH(u_r, v_l) \cdot MATCH(u_l, v_r));
```

Tree-Based Covering

- Dynamic programming
 - Visit subject tree bottom-up.
- At each vertex attempt to match
 - Locally rooted subtree.
 - Check all library cells for a match.
- Optimum solution for the subtree.

```
Set the cost of the internal vertices to -1;

Set the cost of the leaf vertices to 0;

while (some vertex has negative weight) do {

Select a vertex v \in V whose children have all nonnegative cost;

M = \text{set of all matching pattern trees at vertex } v;

\text{cost } (v) = \min_{m \in M(v)} (cost(m) + \sum_{u \in L(m)} cost(u));
```

Example

SUBJECT TREE

PATTERN TREES

OR

Match of t: t1 cost = 2+3=5

Match of t: t3 cost = 4

Match of r: t2 cost = 3+2+4 = 9

Minimum Area Cover Example

- Minimum-area cover.
- Area costs
 - INV:2; NAND2:3; AND2:4; AOI21:6.
- Best choice
 - AOI21 fed by a NAND2 gate.

	Network	Subject graph	Vertex	Match	Gate	Cost
	٥	1 N 2	Х	t2	NAND2(b,c)	3
	\bigvee_{W}		у	t1	INV(a)	2
	\wedge		Z	t2	NAND2(x,d)	2* 3 = 6
y T	y Z Z		W	t2	NAND2(y,z)	3 * 3 + 2 = 11
			0	t1	INV(w)	3 * 3 + 2 * 2 = 13
	a x d	$\sqrt{1}$ $\sqrt{2}$		t3	AND2(y,z)	2 * 3 + 4 + 2 = 12
		1 2		t6B	AOI21(x,d,a)	3 + 6 = 9
	b c	,0 p,				
	р∏с	y o				

Branch & Bound Algorithms

Branch and Bound Algorithm

Devise a branch selection (decision tree)

- Define a bounding function
 - —Need to be fast for evaluations of many subtrees
- Evaluate the lower bound cost for subtrees

 Prune the subtree whose cost is higher than the existing solution found so far (space reduction)

Branch and Bound Algorithm (cont.)

- Tree search of the solution space
 - Potentially exponential search.
- For each branch, a lower bound is computed for all solutions in subtree.
- Use bounding function
 - If the lower bound on the solution cost that can be derived from a set of future choices exceeds the cost of the best solution seen so far
 - Kill the search.
- Good pruning may reduce runtime.

Branch and Bound Algorithm (cont.)

BRANCH AND BOUND {

```
Current best = anything; Current cost = \infty; S = s0;
while (S \neq 0) do {
       Select an element s \in S; Remove s from S;
       Make a branching decision based on s yielding sequences \{s_i, i = 1, 2, ..., m\};
       for (i = 1 \text{ to m}) {
                  Compute the lower bound b<sub>i</sub> of s<sub>i</sub>;
                  if (b_i \ge Current cost) Kill s_i;
                  else {
                              if (s_i \text{ is a complete solution }) \& (cost of s_i < Current cost) {
                                          Current best = s_i; Current cost = cost of s_i;
                              } else if (s<sub>i</sub> is not a complete solution ) Add s<sub>i</sub> to set S;
                  }
```

- S denotes a solution or group of solutions with a subset of decisions made
- s0 denotes the sequence of zero length corresponding to initial state with no decisions made

Shortest Path Algorithms

Shortest Path Algorithms

- Finds the critical path on weighted graphs with weights as delays
- Applied on directed, weighted graphs
- Different algorithms for different graphs
 - —DAG shortest path algorithm: on DAGs
 - —Dijkstra's Algorithm: no negative weights
 - —The Bellman-Ford Algorithm: most general
- All 3 algorithms share the same kernel
 - —initialization and relaxation

Dijkstra's Algorithm

- works on graphs with non-negative weights
- needs a priority queue with est(ν) as keys
- extracts the node u with minimum est(u) in minQ and relaxes all edges incident from u to all nodes still in minQ

```
Dijkstra(Graph G, Vertex s)
1    Initialize(G, s);
2    Priority_Queue minQ = {all vertices in V};
3    while(minQ ≠ ∅){
4        Vertex u = ExtractMin(minQ); // minimum est(u)
5        for(each v ∈ minQ such that (u, v) ∈ E)
6        Relax(u, v);
7    }
```


Dijkstra's Algorithm Example

	Predecessors			Shortest-Path Estimates			
	v_0	v_1	V_2	v_0	v_1	V_2	
Dijkstra's	뒫	V_0	V_0	0	2	თ	
Correct path	NIL	V_2	V_0	0	1	3	

Dijkstra's doesn't work with negative edge weights

Queue: {0,0}, {1,inf} {2,inf}

	Predecessors			Shortest-Path Estimates		
	v_0	v_1	V_2	v_0	v_1	V_2
Dijkstra's	NIL	V_0	V_0	0	α	က
Correct path	NIL	V_2	V_0	0	1	3

Dijkstra's stops due to coloring of node

Queue: {1,2} {2,3}

	Predecessors			Shortest-Path Estimates		
	v_0	v_1	V_2	v_0	V_1	V_2
Dijkstra's	뒫	V_0	V_0	0	2	3
Correct path	NIL	V_2	V_0	0	1	3

Queue: {2,3}

	Predecessors			Shortest-Path Estimates		
	v_0	V_1	V_2	v_0	v_{1}	V_2
Dijkstra's	Z	V_0	V_0	0	2	3
Correct path	NIL	V_2	V_0	0	1	3

Dijkstra's stops due to coloring of node

Queue: {2,3}

Purple edge is never explored when relaxing node 2 because node 1 is colored black

	Predecessors			Shortest-Path Estimates		
	v_0	V_1	V_2	v_0	v_1	V_2
Dijkstra's	Z	V_0	V_0	0	α	က
Correct path	NIL	V_2	V_0	0	1	3

- produces incorrect results if weights are negative
- Time complexity depends on the implementation of the priority queue minQ
 - —A linear array: $O(V^2)$
 - —A Fibonacci / binary heap: O(E + V | g | V)
 - —reference implementation:
 - ~wps100020/itools/lib/std/src/graph.c

The Bellman-Ford Algorithm

- Relax every edge (| Ⅵ 1) times
 - —since negative cycles should not exist in a shortest-path problem
- The most general algorithm
 - —Also the most time-consuming: O(VE)

```
Bellman-Ford(Graph G, Vertex s)
1    Initialize(G, s);
2    for(counter = 1 to |V| - 1)
3       for(each edge (u, v) ∈ E)
4         Relax(u, v);
5    for(each edge (u, v) ∈ E)
6       if(est(v) > est(u) + w((u, v)))
7       report "negative-weight cycles exist";
```

Flow Network

- A variant of connected, directed graphs
- Two special nodes:
 - —source s: no edge incident to s
 - —sink *t*: no edge incident from *t*
 - —Every flow starts at s and ends at t
- Every edge (u, v) has two attributes:
 - —capacity c(u, v): the flow it can hold
 - —Flow f(u, v) satisfies 3 constraints:
 - Capacity constraint: $f(u, v) \le c(u, v)$
 - Skew symmetry: f(u, v) = -f(v, u)
 - Flow conservation (exceptions: s and t): $\sum_{v \in V} f(u, v) = 0$

Maximum-Flow Problem

- The value of a flow: $|f| = \sum_{v \in V} f(s, v)$
- Maximum flow problem
 - —finds the flow with the maximum value in a flow network

- Numbers on edges: f(u, v)/c(u, v)
- |f| = 19, not maximum
 - —More flow can be pushed into path $s \rightarrow v_2 \rightarrow v_3 \rightarrow t$
 - An augmenting path

Residual Network

- Facilitates finding augmenting paths
- Residual capacity:
 - —defined with respect to a flow *f*
 - $-c_{f}(u, v) = c(u, v) f(u, v)$
 - —For both directions of every pairs of nodes
- $G_f = (V, E_f)$
 - $-E_f$: edges with residual capacity as weights

Residual Network

- Augmenting paths
 - —paths in the residual network from s to t
 - -E.g. $p = s \rightarrow v_2 \rightarrow v_3 \rightarrow t$
- Residual capacity of a path
 - -Minimum edge weight on the path

$$-c_{1}(p) = c_{1}(v_{3}, t) = 2$$

- Intuitive algorithm for maximum flow ²
 - Finds augmenting paths in residual networks and push flows equal to their residual capacity
 - Updates residual networks according to the new flow until no augmenting paths can be found

The Ford-Fulkerson Method

- An intuitive method
 - —Finds augmenting paths p on the residual network
 - —Push more flow according to $c_{\ell}(p)$
 - —Update the residual network

```
Ford-Fulkerson(Graph G, Source s, Sink t)  \begin{array}{ll} 1 & \text{for}(\text{each }(u,\,v)\in E) \ f[u,\,v]=f[v,\,u]=0; \\ 2 & \text{Build a residual network } G_f \ \text{based on flow f;} \\ 3 & \text{while}(\text{there is an augmenting path p in } G_f)\{ \\ 4 & c_f(p)=\min(c_f(u,\,v):(u,\,v)\in p); \\ 5 & \text{for}(\text{each edge }(u,\,v)\in p)\{ \\ 6 & f[u,\,v]=f[u,\,v]+c_f(p); \\ 7 & f[v,\,u]=-f[u\,,v]; \\ 8 & \} \\ 9 & \text{Rebuild } G_f \ \text{based on new flow f;} \\ 10 & \} \\ \end{array}
```

- Time complexity:
 O(E | f*|)
 - —f*: the maximum flow
 - —|f^{*}| can be very large
 - —Very inefficient if |f*| is large

The Edmonds-Karp Algorithm

- In Ford-Fulkerson, how to find augmenting paths is unspecified
 - —Ford-Fulkerson: a "method"
 - —Edmonds-Karp uses breadth-first search to find augmenting paths
- Time complexity: $O(E \cdot VE) = O(VE^2)$

- Resultant network
 - —The maximum flow

$$-|f^*| = 23$$

Cuts in flow networks

- A cut (*S*, *T*)
 - —a partition of the node set V into S and T = V S
 - —source $s \in S$ and sink $t \in T$
 - $-S = \{s, v_2, v_3\}, T = \{t, v_1\}$
 - —net flow across the cut, f(S, T):
 - f(S, T) = 21

$$f(S,T) = \sum_{u \in S, v \in T} f(u,v)$$

- —capacity of the cut, c(S, T):
 - -c(S, T) = 23
 - $-f(S, T) \leq c(S, T)$

$$c(S,T) = \sum_{u \in S, v \in T} c(u,v)$$

The Max-Flow Min-Cut Theorem

- The following 3 things are equivalent:
 - —f is a maximum flow in G
 - —The residual network G_f has no augmenting paths
 - -|f| = c(S, T) for some cut of G
- Finding maximum flow = finding minimum cut

$$-|f^*| = 23 = c(S, T) = c(\{s, v_2, v_3\}, \{t, v_1\})$$

Maximum Bipartite Matching

- A bipartite graph G = (V, E)
 - ─ V is partitioned into two sets L and R
 - —For every edge $(u, v) \in E$, if $u \in L$, then $v \in R$, and vice versa
- A matching
 - —A subset of edges $M \subseteq E$
 - —At most one edge of *M* is incident on *V*
 - —3 thick edges in the bipartite graph

Maximum Bipartite Matching

- Maximum bipartite matching finds a matching with maximum edges
 - —Add a source s and link s to all nodes in L
 - —Add a sink t and link all nodes in R to t
 - Every edge has unit capacity, solve the maximum flow problem
- Ford-Fulkerson solves in O(VE)
- Applications: technology mapping

Heuristic Algorithms

- Applies heuristics, or rules of thumb
- Finds good but not always optimal solutions
- Efficient in time
 - —Best for hard (NPC or NP-hard) problems
- Solution quality cannot always be guaranteed
 - —Nearest Neighbor for TSP
- Either directly searches the solution space
 - —Greedy algorithm, dynamic programming, branch and bound
- Or exerts perturbations on solutions
 - —Simulated annealing, genetic algorithms

Greedy Algorithm

- General idea:
 - —stages the optimization problem
 - -makes locally optimal choices at each stage
- Real life example:
 - —giving change with minimum #coins
 - —heuristic: pick the coin with the greatest value
 - -36 cents: quarter \rightarrow dime \rightarrow penny: 3 coins
- Two properties make greedy algorithms work
 - —Greedy choice
 - —Optimal substructure
- Applications: Dijkstra's, Prim's algorithms

Greedy Choice Property

- The global optimal solution can be made by making locally optimal choices
- Does not consider the impact of the current choice on future choices
- Counterexamples
 - —Nearest Neighbor for TSP
 - —Giving change of 40 cents if there were 20-cent coins
 - (Greedy) quarter → dime → nickel: 3 coins
 - (Optimal) 2 20-cent coins: 2 coins

Optimal Substructure Property

- The global optimal solution consists of optimal solutions to its subproblems
 - —The problem is divisible into subproblems
 - —The combination of optimal solutions to subproblems is globally optimal
- Giving change of 36 cents
 - —into 26 cents + 10 cents:
 - —(quarter → penny) + dime : global optimal

Dynamic Programming (DP)

- Combines solutions to its dependent subproblems by utilizing the dependency
 - —Unlike divide-and-conquer: subproblems are independent
 - —avoids repeatedly solving the same subproblems
- Example: matrix-chain multiplication
 - —Find the multiplication sequence with least #scalar multiplications
 - -Matrices A, B, C: 30 x 100, 100 x 2, 2 x 50
 - (AB)C: #scalar multiplications = 9000
 - A(BC): #scalar multiplications = 160,000

Two Properties for DP

- Overlapping Subproblems
 - —The decomposed subproblems are dependent or overlapped
- Optimal Substructure
 - —the same as in greedy algorithms
 - —DP or greedy?
 - whether the problem has "overlapping subproblems" or "greedy choice"
- Matrix-chain multiplication has both

Branch and Bound

Branching

- makes several choices at the same point to branch out into the search space
- —the solution space forms a tree-like structure
- —fully-branched space: too vast to explore
- Bounding and pruning
 - estimates a lower bound on solution quality to prune out obviously impossible branches
 - —efficiently reduces the solution space made with branching

Branch and Bound for TSP

- Branching: the next node on the route
- Bounding: use MST to estimate the cost lower bound of unvisited route

- Other important applications:
 - —DPLL Boolean Satisfiability Search Scheme

Mathematical Programming

- Problem formulation
 - \Rightarrow minimize(or maximize) f(x);
 - \Rightarrow subject to $X = \{ x \mid g_i(x) \leq b_{ii} \mid i = 1...m \};$ where
 - $-x = (x_1, ..., x_n)$ are optimization (or decision) variables,
 - $-f: \mathbb{R}^n \to \mathbb{R}$ is the objective function
 - $-g_i: R^n \to R$ and $b_i \in R$ form the constraints for the valid values of x.

Categories of Mathematical Programming Problems

- 1. If $X = \mathbb{R}^n$, the problem is unconstrained;
- 2. If *f* and all the constraints are linear, the problem is called a *linear programming* (LP) problem
 - Can then be represented in the matrix form: $Ax \le B$ where A is an m×n matrix corresponding to the coefficients in $g_i(x)$
- 3. If the problem is linear, and all the variables are constrained to integers, the problem is called an *integer linear programming* (ILP) problem
 - If only some of the variables are integers, it is called a *mixed* integer linear programming (MILP or MIP) problem.

Categories of Mathematical Programming Problems

- 4. If the constraints are linear, but the objective function *f* contains some quadratic terms, the problem is called a *quadratic programming* (QP) problem.
- 5. If f or any of $g_i(x)$ is not linear, it is called a **nonlinear programming** (NLP) problem
- 6. If all the constraints have the following convexity property: $g_i(\alpha x_a + \beta x_b) \le \alpha$ $g_i(x_a) + \beta g_i(x_b)$
 - where $\alpha \ge 0$, $\beta \ge 0$, and $\alpha + \beta = 1$ then the problem is called a **convex programming** or **convex optimization** problem
- 7. If the set of feasible solutions defined by *f* and *X* are discrete, the problem is called a *discrete* or *combinatorial optimization* problem.

Convex Functions

 $f(\underline{x})$ is a **convex function** if given any two points \underline{x}_a and \underline{x}_b , the line joining the two points lies on or above the function

Convex f:

Nonconvex f: f(x) X_a X_b

Example

Convex functions in two dimensions

$$f(x_1,x_2) = x_1^2 + x_2^2$$

Convex sets

Convex sets

A set S is a **convex set** if given any two points $\underline{\mathbf{x}}_a$ and $\underline{\mathbf{x}}_b$ in the set, the line joining the two points lies entirely within the set

Examples

Convex setsShape of Wyoming

Nonconvex Sets Shape of CA

Shape of an ideal pizza

Two Important Properties

- If f(<u>x</u>) is a convex function, f(<u>x</u>) ≤ c is a convex set
 - —Example:

$$f(x_1,x_2) = x_1^2 + x_2^2 \le c$$
 is a convex set

An intersection of convex sets is a convex set

Linear Programming (LP) Problem

- Intuition: solving LP problems should be simpler than solving the general mathematical optimization problems
- **Fact**: A polynomial-time algorithm was not available until 1970's

LP Formulation

- One linear equation forms a hyper-plane
- One linear inequality (constraint) forms a hyper half-space
- The set of linear constraints forms a polyhedron in a higher-dimensional space
- The optimal value of a linear objective function over a set of linear constraints occurs at the extreme point of the polyhedron

Simplex Method

- Developed by George Dantzig in 1947
 - First practical procedure used to solve the LP problems
- 1. Finds a basic feasible solution that satisfies all the constraints
 - A basic solution is conceptually a vertex (i.e., an extreme point) of the convex polyhedron
- 2. Moves along the *edges* of the polyhedron in the direction towards finding a better value of the objective function optimum
 - Guaranteed to eventually terminate at the optimal solution

Integer Linear Programming (ILP) Problem

Fact:

- —Many EDA problems are best formulated with integer variables
 - e.g. signal values in a digital circuit are under a modular number system
 - e.g. problems that need to enumerate the possible cases, or are related to scheduling of certain events
- —In general more difficult than the LP counterpart

An ILP Example

maximize

$$-f$$
: 12x + 7y

subject to

$$-g_1$$
: $2x - 3y \le 6$

$$-g_2$$
: 7x + 4y \leq 28

$$-g_3$$
: -x + y ≤ 2

$$-g_4$$
: $-2x - y \le 2$

where $x, y \in Z$

p₁ and p₂ are two possible points for optimal solution

LP Relaxation and Branch-and-Bound Procedure

Cutting Plane Algorithm

 Iteratively adds valid inequalities to the original problem in order to narrow the search area enclosed by the constraints while retaining the feasible points

- An effective methods that can solve the convex optimization problems in polynomial time within a reasonably small number of iterations
- Idea: by introducing a barrier function, the original problem is rewritten into an equality formula so that Newton's method can be applied to find the optimal solution

Indicator function I(u):

$$-I(u)=0 \text{ if } u\leq 0,$$

- $-I(u) = \infty$ otherwise
- The original problem can be rewritten as:

$$\min\left(f(x) + \sum_{i=1}^{m} I(g_i(x))\right)$$

→ However, this is not twice differentiable (near u = 0), so Newton's method cannot work

logarithmic barrier function:

$$-B_L(u, t) = -(1/t) \log(-u)$$

• The original problem becomes:

$$\min\left(f(x) + \sum_{1}^{m} -(1/t)\log(-g_{i}(x))\right)$$

1. Let
$$\Phi(x, t) = \min \left(f(x) + \sum_{1}^{m} -(1/t) \log(-g_i(x)) \right)$$

- 2. Given initial *t*, tolerance *e*;
- 3. Find an interior feasible point x_p s.t. $\forall i.g(x_p) < 0$
- 4. Starting from x_p , apply Newton's method to find the optimal solution x_{opt}
- 5. If (1/t < e) return optimality as $\{ x_{opt}, \Phi(x_{opt}, t) \}$;
- 6. Let $x_p = x_{opt}$, $t = k \cdot t$ for k > 1, repeat 4

An illustration of the interior point method

Convex program

Convex programming problem

 Any local minimum is a global minimum (Nonrigorous) explanation:

f(x)

Convex Optimization Problem

- Convexity property
 - $-g_i(\alpha X_a + \beta X_b) \leq \alpha g_i(X_a) + \beta g_i(X_b)$
 - —For a convex function, a local optimal solution is also a global optimal solution

Linear Programming (LP)

Linear Programming

- Linear programming (LP) formulation requires the objective function and all constraints to be linear relationships (equalities or inequalities).
 - ILP (integer linear programming)
 - ZOLP (zero-one linear programming)
- General Form:

Example

Shortest path problem using ILP

$$-c^{T} = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 2 & 3 \\ 3 & 3 & 4 \end{bmatrix}$$

$$-b = \begin{bmatrix} 3 & 1 & 1 \\ 3 & 1 & 1 \\ -6 & 1 & 4 \\ -6 & 1 & 4 \end{bmatrix}$$

Minimize ActX, +X2+X3

5.7:
$$x_1 \ge x_0 + 3$$
 $x_1 - x_0 = 3$

$$x_1 \ge x_2 + 1$$
 $x_1 - x_2 = 3$

$$x_2 \ge x_0 + 1$$
 $x_2 - x_0 = 1$

$$x_3 \ge x_1 + 1$$
 $x_3 - x_1 = 1$

$$x_3 \ge x_2 + 4$$
 $x_3 - x_2 = 4$

$$x_0 \ge x_3 - 6$$
 $x_0 - x_3 = 6$

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & -1 & 0 & 0 & 0 & +1 \\ +1 & +1 & 0 & -1 & -1 & 0 & 0 \\ 0 & -1 & +1 & +1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & +1 & +1 & -1 \end{bmatrix}$$