Universidad de San Andrés Práctica F: Áreas y TFC

Áreas

- 1. Calcular
 - (a) El área limitada por el gráfico de f(x) = x 2, la recta x = 4, el eje x y el eje y.
 - (b) El área encerrada por las curvas $y = -x^2 + 4$ e y = -x + 2.
 - (c) El área limitada por el gráfico de $f(x) = x^2 1$ y el eje x para $-1 \le x \le 3$.
- 2. En cada uno de los siguientes casos, calcular el área de la región acotada encerrada por el gráfico de f y el eje x
 - (a) $f(x) = x^2 6x$

- (b) $f(x) = 3(x^3 x)$
- 3. Calcular, en cada caso, el área encerrada por la curva y = f(x) y el eje x en el intervalo indicado.
 - (a) $f(x) = x^3 3x^2 x + 3$ en [-1, 3] (c) $f(x) = \ln(x)$ en [1, e]

(b) $f(x) = \frac{x+1}{x-2}$ en [-2,1]

- (d) $f(x) = \begin{cases} x+2 & \text{si } x < 2 \\ \frac{8}{x} & \text{si } x \ge 2 \end{cases}$ en [0,4]
- 4. En cada caso, calcular el área de la región encerrada por las curvas (sugerencia: hacer un gráfico aproximado que ayude a identificar el área pedida).
 - (a) $y = x^2$: $y = 2x x^2$

(c) $y = x^3 - 12x$: $y = x^2$

(b) $y = x^{1/3}$; x = 0; y = 1

- (d) $y = x^{1/2}$; y = x 2; y = 0
- 5. Calcular, en cada caso, el área encerrada entre las curvas y=f(x) e y=g(x), en el intervalo indicado.
 - $g(x) = e^{-x}$ en [-1, 1](a) $f(x) = e^x$.
 - (b) $f(x) = \frac{2x+1}{x+1}$, $g(x) = \frac{3x+2}{x+1}$ en [0,1]
 - (c) $f(x) = \frac{3x-3}{x+3}$, g(x) = (x-1)(2x+1) en [-1,1]
- 6. En cada uno de los siguientes casos, calcular el área de la región acotada encerrada por los gráficos de f y g.
 - (a) $f(x) = 8 x^2$, g(x) = 2x
- (c) $f(x) = \frac{4x}{1+4x^2}$, g(x) = 2x
- (b) $f(x) = (x+2)^2$, $g(x) = \sqrt{8(x+2)}$ (d) $f(x) = xe^x$, $g(x) = xe^{x^2}$

- 7. Sean $f(x) = \frac{2x}{x-2}$ y g(x) = -2x 3. Hallar el área de la región acotada por los gráficos de f y g y la recta x = -3.
- 8. Calcular el área de la región encerrada por los gráficos de las funciones $f(x) = x^2 e^{3x+1}$ y $g(x) = 4e^{3x+1}$
- 9. Calcular el área de la región determinada por las restricciones $y \ge \frac{x^2}{2} 2x + 1$; $y \le \frac{x}{3} + 1$; $y \le -x + 5$.
- 10. Considerar la región limitada por la curva $y = \sqrt{2x+2}$, el eje x entre las rectas x=1 y x=a (con 0 < a < 1). Hallar el valor de a para que el área de la región sea $\frac{37}{24}$.
- 11. Si el área comprendida entre la parábola $y = 4x^2$ (con $x \ge 0$) y una recta que pasa por el origen es 18, ¿cuál es la pendiente de dicha recta?
- 12. Una compañía determina que el ingreso marginal (en dólares por día) está dado por $MR(t) = 1 \frac{1}{t+1}$ mientras que sus costos marginales (en dólares por día) están dados por MC(t) = 80 0.2t. Hallar la ganancia total de los primeros 8 días.
- 13. Una población sufre una epidemia de gripe, siendo N(t) el número de personas enfermas en t días. Un estudio arroja que la gripe se expande a razón de $10t \frac{108}{t^2}$ personas por día. Al iniciarse la epidemia, la población enferma es N(1) = 120. Hallar cuántos enfermos habrá a los 12 días si no se controla la epidemia.
- 14. En 2010 se publica una estimación para la tasa mundial de consumo de petróleo en tiempo de t años, dada por $2.4te^{0.03t}$ miles de millones de barriles anuales. Hallar la cantidad de petróleo consumido entre 2010 y 2020.

Teorema fundamental del cálculo

15. Calcular las derivadas de las siguientes funciones en los dominios indicados:

(a)
$$F(x) = \int_{1}^{x} e^{-t^2} dt$$

(d)
$$F(x) = \int_{2x}^{3x} \frac{u-1}{1+u} du, \quad x \ge 0$$

(b)
$$F(x) = \int_{1}^{2x} \ln(t^2 + 1) dt$$

(e)
$$F(x) = \int_{x}^{1} \tan^{2}(t) \cos(t) dt, x \in (0, 1)$$

(c)
$$F(x) = \int_{0}^{\sin(x)} \frac{y}{2+y^3} dy$$

(f)
$$F(x) = \int_{\ln(x)}^{x^3} \frac{\sin(t)}{1+t^2} dt, \ x > 0$$

16. Calcular los siguientes límites:

(a)
$$\lim_{x \to 0^{+}} \frac{\int_{0}^{x^{2}} \sin(\sqrt{t})dt}{x^{3}}$$
 (b) $\lim_{x \to 1} \frac{\int_{0}^{2\ln(x)} \sqrt{t^{2} + 1}dt}{3\ln(x)}$ (c) $\lim_{x \to 4} \frac{\int_{2}^{\sqrt{x}} 4e^{-t^{2} + 4}dt - x}{(x - 4)^{2}}$

- 17. Sea $f: (0, \frac{\pi}{2}) \to \mathbb{R}$ dada por $f(x) = \int_{0}^{\sin(x)} \frac{1}{t^2 \sqrt{1-t^2}} dt$. Probar que f es creciente en $(0, \frac{\pi}{2})$.
- 18. Hallar el dominio, intervalos de crecimiento y extremos de las siguientes funciones

(a)
$$F(x) = \int_{0}^{x} e^{-t^2} t^2 (t-1)(t-4) dt$$

 (c) $F(x) = \int_{1}^{\sqrt{x}} e^{7-t^2} - e^{t^2+1} dt$
 (b) $F(x) = \int_{1}^{e^{x-3}} \ln^2(t) - 2\ln(t) dt$

- 19. Sea $f: \mathbb{R} \to \mathbb{R}$ la función definida por $f(x) = 3 + \int_0^x \frac{1 + \sin(t)}{2 + t^2} dt$. Hallar la ecuación de la recta tangente al gráfico de f en x = 0.
- 20. Considere la función $f: \mathbb{R} \to \mathbb{R}$ dada por $F(x) = \int_0^x e^{-t^2} dt$. Hallar el polinomio de Taylor de orden 4 de F alrededor de $x_0 = 0$.
- 21. Sea $g: \mathbb{R} \to \mathbb{R}$ una función tal que su recta tangente en x = 4 es $y = \frac{1}{4}x 3$. Hallar el polinomio de Taylor de orden 2 en x = 2 de $f(x) = 3 + \int_{4}^{x^2} g(t) dt$.