

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MEATHEMATICS

18MAB102T ADVANCED CALCULUS & COMPLEX ANALYSIS

UNIT -1 Multiple Integrals Tutorial Sheet -1

Sl.No.	Questions	Answer
	PART -A	<u> </u>
1	Evaluate $\int_{0}^{3} \int_{0}^{2} xy(x + y) dxdy$	30
2	Evaluate $\int_{0}^{1} \int_{1}^{2} (x^2y + y^2 + 6) dx dy$	15/2
3	Evaluate $\int_{0}^{1} \int_{0}^{x^2} (x^2 + y^2) dy dx$	26/105
4	Evaluate $\int_{0}^{\pi/2} \int_{0}^{\sin \theta} r \ d\theta dr$	$\frac{\pi}{8}$
5	Evaluate $\int_{0}^{\pi} \int_{0}^{a(1+\cos\theta)} r dr d\theta$	$\frac{3\pi a^2}{4}$
PART -B		
6	i) Evaluate $\iint xy dxdy$ where A is the area bounded by $y^2 = 4ax$,	$\frac{a^4}{3}$
	y = 2a and y-axis.	3
	ii) Find the area enclosed by the ellipse using double integration $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	π ab
7	Change the order of integration and hence evaluate $\int_{-a}^{a} \int_{0}^{\sqrt{a^2 - y^2}} x dx dy$	2a ³ /3
8	Change the order of integration and hence evaluate $\int_{0}^{1} \int_{x^2}^{2-x} xy dy dx$	3/8
9	Change the order of integration and hence evaluate $\int_{0}^{4a} \int_{\frac{x^{2}}{4a}}^{2\sqrt{ax}} xy dy dx$	64a ⁴ /3
10	Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$ by changing the order of Integration	1

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MEATHEMATICS

18MAB102T ADVANCED CALCULUS & COMPLEX ANALYSIS

UNIT -1 Multiple Integrals Tutorial Sheet -2

SI.No.	Questions	Answer		
PART -A				
1	Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} xyz dx dy dz$	$\frac{9}{2}$		
2	Evaluate $\int_{0}^{1} \int_{y^{2}}^{1} \int_{0}^{1-x} x dz dy dx$	$\frac{\frac{9}{2}}{\frac{4}{35}}$		
3	Show that $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{dxdydz}{\sqrt{1-x^2-y^2-z^2}} = \frac{\pi^2}{8}.$			
4	Evaluate $\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-y-z} xyz dxdydz$	$\frac{23}{180}$		
5	Find $\iiint_R (x-y+z)dxdydz$ where R is given by $1 \le x \le 2$, $2 \le y \le 3$, $1 \le z \le 3$	2		
6	i) Find the area of $r^2 = a^2 \cos 2\theta$ by double integration	a^2		
	ii) Find the area enclosed by $y = x & y = x^2$ in the first quadrant, using double integration	$\frac{a^2}{6}$		
7	Find the smaller of the area bounded by $y = 2 - x$ and $x^2 + y^2 = 4$	π + 2		
8	Find the volume of ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	$\frac{4\pi abc}{3}$		
9	Find the area lying inside the circle $r = a \sin \theta$ and the outside the Coordinate $r = a(1 - \cos \theta)$	$\frac{a^2}{2} \left[\frac{\pi}{2} - 2 \right]$		
10	Find the Area $\int \int r^3 dr d\theta$ over the bounded between circles $r = 2\cos\theta$, $r = 4\cos\theta$	45 π/2		