Algoritmos y Estructura de Datos 2

Recuperatorios

X4

Alumno: Leandro Carreira

LU: 669/18

Link a documento online (en caso que algún caracter se haya pasado mal a .pdf): https://docs.google.com/document/d/1YTTKsL5jPRnfuZErhZuG9wHYfTRbwfUTkjYPc99aJyU/edit?usp=sharing

Ejercicio X4

4. Ejercicio X4 — Notación "O"

Sean $a \in \mathbb{R}$ y $b \in \mathbb{Z}^+$ constantes, $f, g \colon \mathbb{N} \to \mathbb{R}^+$, y h(n) = q(n) + 1, donde q(n) es la cantidad de veces que 2 divide exactamente a n (por ejemplo, q(1) = 0, q(2) = 1, q(8) = 3, q(10) = 1).

Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar detalladamente.

- 1. $f(n) \in \Omega(f(n)^2) \Rightarrow f(n) \in O(1)$
- 2. $f(n) \in \Omega(g(n)) \Rightarrow f(n)^2 \in \Omega(g(n))$
- 3. $n! \in \Theta((n+1)!)$
- 4. $(n+a)^b \in \Theta(n^b)$.
- 5. $nf(m) + mg(n) \in O(f(nm) + g(nm))$
- 6. $h(n) \in O(n)$, y es la cota más justa posible.
- 7. $\log_2 n \in O(h(n))$
- 8. Hay una cantidad infinita de funciones i(n), tal que $i(n) \in O(h(n))$

1. VERDADERO.

Si $f(n) \in \Omega(f(n)^2)$, por def de Ω :

$$\exists n_0, k > 0 \ tal \ que \ si \ n \ge n_0 \Rightarrow f(n) \ge k * f(n)^2$$

Como f(n) está en R+, puedo dividir por f(n) de ambos lados $\Rightarrow 1 \ge k * f(n)$

Reescribo

$$f(n) \le \tilde{k} * 1$$

con $\tilde{k} > 0$.

Esta es justamente la **definición de** $f(n) \in O(1)$:

$$\exists n_0, \tilde{k} > 0 \text{ tal que si } n \ge n_0 \Rightarrow f(n) \le \tilde{k}$$

Por lo tanto, es verdadera.

2. VERDADERO.

2)
$$f(n) \in S2(g(n)) \Rightarrow f(n)^2 \in S2(g(n))$$

Por def:

 $\exists n_0, k > 0 / n > n_0 \Rightarrow f(n) > k \cdot g(n)$

divide per $f(n) > 0$
 $\Rightarrow f(n) > k \cdot g(n)$
 $\Rightarrow f(n) > k \cdot g(n)$

Obtuve una cota superior para el cociente g(n)/f(n), dada por una constante $\tilde{k} \neq 0$ finita (pues existe k>0 finita) por lo que por propiedad de Big- Ω ,

Por prop.8:

$$5: \text{ existe } \lim_{n \to \infty} \frac{g(n)}{f(n)} = \tilde{K}$$

 $g(n) = \tilde{K}$
 $g(n) = \tilde{K}$

Como
$$\Sigma(f) = \Sigma(g)$$
 $\Rightarrow f(n) \in \Sigma(g(n))$
 $\stackrel{\text{rep}}{\Rightarrow} f(n) \in \Sigma(f(n))$

Usando el resultad del ejercicio 1:

 $f(n) \in \Sigma(f(n)) \Rightarrow f(n)^2 \in \Sigma(f(n))$

Volviando e que $\Sigma(f) = \Sigma(g)$
 $f(n) \in \Sigma(f(n)) \Rightarrow f(n)^2 \in \Sigma(g(n))$

3)
$$n! \in \bigoplus \left((n+1) \cdot n! \right)$$
 $\lim_{n \to \infty} \frac{n!}{(n+1) \cdot n!} = \lim_{n \to \infty} \frac{1}{n+1} = 0 \implies \bigoplus (g) \neq \bigoplus (f)$

i. por contrarrect process de prop. $2:$
 $f \in \bigoplus (g) = \bigoplus (f) = \bigoplus (g)$
 $f \notin \bigoplus (g)$
 $f \notin \bigoplus (n+1)!$

4. VERDADERO

4.
$$(n+a)^b \in \Theta(n^b)$$

$$\lim_{n\to\infty} \frac{n^b}{(n+a)^b} = \lim_{n\to\infty} \frac{n}{(n+a)^b}$$

$$= \lim_{n\to\infty} \frac{n}{n} \cdot \frac{1}{(1+\frac{a}{n})} = 1$$

Por prop, como el limite es finito y \$\pm\$0
$$\Rightarrow \Theta(f) = \Theta(g)$$

Sono $(n+a)^b \in \Theta((n+a)^b)$

Uso $\Theta(f) = \Theta(g)$

$$\Rightarrow (n+a)^b \in \Theta(n^b)$$

S.
$$n \cdot f(m) + m \cdot g(n) \in O(f(n \cdot m) + g(n \cdot m))$$

Sospecho que es falso, pues implicaria que
 $n \cdot f(m) \in O(f(n \cdot m))$
 $m \cdot g(n) \in O(g(n \cdot m))$

Construyo contra ejemplo
5:
$$f(m) = 2^{1/m}$$

 $= \int f(n.m) = 2^{1/(n.m)}$

Analizo cociente

$$\lim_{N\to\infty} \frac{2^{-1}}{N \cdot m} = \lim_{N\to\infty} \frac{1}{N} \cdot 2^{-1} = 0$$

$$\lim_{N\to\infty} \frac{2^{-1}}{N \cdot m} = 0$$

Por prop de Big-O

Como el cociente es cero:

$$n.2^{\frac{1}{m}} \notin O(2^{\frac{1}{n.m}})$$
 $g \notin O(f(n.m))$
 $n.f(m) \notin O(f(n.m))$

Equivalentemente,

$$m.g(n) \notin O(g(n.m))$$

Entonces
 $n.f(m) + m.g(n) \notin O(f(n.m)) + O(g(n.m))$
 $n.f(m) + m.g(n) \notin O(f(n.m) + g(n.m))$

6. VERDADERO

6)
$$h(n) \in O(n)$$

 $h(n) = q(n) + 1$
 $Def: h(n) \in O(n)$
 $\exists n_0, k_{>0} / n_> n_0 => h(n) \le k.n$
 $\Rightarrow q(n) + 1 \le k.n$

Como n>q(n) YneM (puer no se pue de divi dir un número n por 2 n veces) ecoto q(n) por n => q(n)+1 & n+1 & K.n lo was vale para K>Z $h(n) \in O(n)$

7)
$$\log_2 n \in O(h(n))$$
 $\in O(q(n)+1)$
 $\log_2 n = x$ se corresponde con $2^x = n$
O see: what as veces divide $2 \approx n$
Pero $q(n)$ went a veces exact as

=> 51: n es imper => $q(n) = 0$
=> $h(n) = 1$

$$= \log_2 n \in O(1)$$
Abs.
$$\log_2 n \notin O(h(n))$$

8)
$$i(n) \in O(h(n))$$

Sé que
 $h(n) \in O(h(n))$
 $q(n)+1 \in O(h(n))$
 $g = partir de els predo crear infinitar funcioner$
 $i_1(n) = q(n) + 1 \in O(h(n))$
 $i_2(n) = 2.(q(n)+1) \in O(2.h(n))$

por def de Big-O

 $\in O(h(n))$

$$ik(n) = k.(q(n)+1) \in O(k.h(n))$$
 KeN

Por def de Big-O

 $\in O(h(n))$

or existen in finites funciones $ik(n)$,

y en perticular

infinites $i(n) \in O(h(n))$

fin:)