Assignment 4

Problem # 1(Mark 20).

Use least-squares regression to fit a straight line to the following data set

X	0	2	4	6	9	11	12	15	17
У	5	6	7	6	9	8	7	10	12

- a. Compute slope and intercept of the fitted line.
- b. Compute the standard deviation, standard error of the estimate and coefficient of determination.
- c. Plot the data and the regression line.

Problem # 2 (Mark 30)

Use non-linear regression (Gauss-Newton method) to fit $y = a(1 - e^{-bx})$ to the following data set.

X	5	10	15	20	25	30	35	40	45	50
у	17	24	31	33	37	37	40	40	42	41

- a. Compute *a* and *b*
- b. Compute the coefficient of determination
- c. Plot the data and the regression line

Problem # 3 (Mark 50)

X	1.6	2	2.5	3.2	4	4.5
F(x)	2	8	14	15	8	2

- a. Calculate f(2.8) using Newton's interpolating polynomials of order 1 through 3
- b. Develop quadratic splines for the first 5 data points and predict f(3.4) and f(2.2)
- c. Draw the points along with interpolating curves and splines.