Course Introduction

Instructional Support

- Instructor: Gang Zheng, Ph.D.
- Office: JI New Building 400E
- Contact: (021) 3420-6765 x4005, gzheng@sjtu.edu.cn
- Teaching mode: concurrent classroom and online (Feishu)
- Office Hours: W 4:00 6:00pm / Th 10:00am noon, in office or on Feishu, or by appointment
- TAs: Mr. SHI Xiaotian, sxt813@sjtu.edu.cn

Mr. ZHU Xingyu, zhuxingyu88@sjtu.edu.cn

Mr. XU Pengcheng, xu_pengcheng@sjtu.edu.cn

Ms. CHEN Caiwei, caiwei chen@sjtu.edu.cn

- Recitation: TBD
- TA Office Hours: TBD

What will be taught?

- Assembly language
- How computers execute programs?
- What's the correspondence between different levels of languages: C/C++, assembly, and machine language?
- How to design a processor as a digital system?
- What are the difficulties and tricks in the design of a CPU? How to resolve? How to improve?
- How memory works as part of a computer, and how is it organized?
- How processor, memory, and I/O devices work together as a computer?

What Are You Expected to Do?

- Write an assembly language program, translate the program into binary code, and trace execution of the program.
- Model a processor using hardware description languages (HDLs).
- Be able to identify and resolve potential data and control hazards in the Instruction Set Architecture (ISA)
- Understand memory hierarchy including cache, main memory, hard disk, and how data is stored, understand memory hits and misses
- Understand the memory mapped I/O concept and how I/O devices interface to the CPU
- Be able to use library and internet resources for literature search to learn contemporary issues, technologies, and future development trends in computing

Textbook

David Patterson and John Hennessy

Computer Organization and Design RISC-V Edition, 2nd edition

Morgan Kaufmann, 2020,

ISBN-10: 0128203315

ISBN-13: 978-0128203316

Tentative Schedule

Week	Date	Topics	Labs	
1	9/14	Course Introduction, introduction to computer		
	9/16	RISC-V assembly: operations and operands		
2	9/21	No Class (National Holiday)	Lab 1 (Assembly)	
	9/23	RISC-V assembly: function and function call		
3	9/28	RISC-V assembly: function and function call		
	9/30	RISC-V assembly: instruction encoding	Lab 2 (Assambly Functions)	
4	10/5	No Class (National Holiday)	Lab 2 (Assembly Functions)	
	10/7	No Class (National Holiday)		
5	10/12	CPU: single cycle processor	Preparation for Literature Review Project	
	10/14	CPU: pipelined processor		
6	10/19	CPU: pipelined processor	Lab 2 (Single Cycle Processor)	
	10/21	CPU: data hazards	Lab 3 (Single Cycle Processor)	
7	10/26	CPU: data hazards	Lab 4 (Dinalined Dracessor)	
	10/28	CPU: data hazards		
0	11/2	Midterm Exam	Lab 4 (Pipelined Processor)	
8	11/4	CPU: control hazards		
9	11/9	CPU: control hazards	Lab 5 (Taking Care of Hazards)	
	11/11	Memory: cache		
10	11/16	Memory: cache		
	11/18	Memory: cache		
11	11/23	Memory: cache	Lab 6 (Cache)	
	11/25	Memory: virtual memory		
12	11/30	Memory: virtual memory		
	12/2	Memory: virtual memory	Lab 7 (Everything for Morrows)	
13	12/7	I/Os and interfaces	Lab 7 (Everything for Memory)	
	12/9	Discussion & Review		
14	TBD	Final Exam		

Course Policies

Honor Code:

- Honor Code of the Joint Institute
- Addendum to the Honor Code for Online Teaching.

Test:

■ Test procedure will be announced prior to the tests. Anyone violating the test procedure will be given an 'F' for the test.

Attendance:

 Strongly encouraged for better understanding of difficult concepts and student engagement during class time

Participation:

- Active participation is highly expected for all students. This involves:
 - Participation in interactive activities during the lecture time
 - Active involvement in labs
 - Proper assistance to other students in group studying
 - Contributions to the Q&A on Piazza, etc.

Course Policies

Individual Assignments:

- Homework, some labs, literature review project
- OK to discuss course topics and help each other understand the project/homework requirements better
- NOT OK for duplicated submission

Group Assignments:

- Some labs are team efforts
- Teams of 3 students, grouped randomly
- Group now, study together through the semester

Submission:

Electronic submission on Canvas before deadline

Assessment Methods

Homework:

About 8 homework assignments

Examination:

- Two online or paper-based examinations.
- The typical types of exam problems include conceptual understanding, computation, procedural development, short answer, analysis and design, and etc.

Laboratory:

- 7 labs
- Labs 1-3 are individual work
- Labs 4-7 are team work

Assessment Methods

Literature Review Project:

 Choose an interesting area, search literatures to review, write a review report

Participation and Etiquette:

- Classroom interaction with the instructor and other students
- effective contribution on Piazza
- active participation in team-based labs.
- Vandalism, spam messages, verbal and other forms of abuse, violation of English-only policies and disturbance of the learning experience of other students are not permitted

Grading Policy

Participation & Etiquette	5%
Midterm Exam	20%
Final Exam	20%
Lab */**	40%
Literature Review Project *	5%
Homework *	10%
Total	100%

^{*}Individual assignments

Note: final letter grades may be curved

^{**}Group assignments