

Logistic Regression

Agenda

- Regression for Binary Variables
- Logistic Regression Hypothesis function
- Decision Boundary
- Cost Function
- Gradient Descent
- Overfitting Problem
- Regularized Logistic Regression

Regression for Binary Variables

- Examples
 - Email: Spam/Not Spam?
 - Cancer: Malignant or Benign?
 - Fraud Detection
 - Loan Defaulters
- Variable takes binary values {0,1}
 - 0: negative class
 - 1: positive class

Why not Linear Regression?

Tumor Size

- Doesn't do well with outliers
- Can assume values well beyond 0 and 1

Logistic Regression

- Classification Algorithm
- Y is discrete/binary
- Hypothesis Function

$$0 <= h_{\theta}(x) <= 1$$

$$h_{\theta}(x) = g(\theta^{T}X)$$

$$g(z) = \frac{1}{1+e}$$
Sigmoid/Logistic Function

$$h_{\theta}(x) = \frac{1}{1+e^{-\theta_{\tau}X}}$$

Plotting Sigmoid Function

Interpretation

- $h_{\theta}(x)$ computed will be the probability that y=1
- Example:

$$- If x=(x0,x1) = (1,tumor size)$$

$$-h_{\theta}(x)=0.7$$

70% chance that tumor is malignant!

$$h_{\theta}(x) = p(y=1 \mid x; \theta)$$

Decision Boundary

- Suppose predict y=1 if $h_{\theta}(x) >= 0.5$
- $h_{\theta}(x) = g(\theta^T X) >= 0.5$
- $\theta^T X >= 0$

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

Non linear Decision Boundary

Cost Function

Linear regression:
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$Cost(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cost Function Contd.

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost = 0 if
$$y = 1, h_{\theta}(x) = 1$$

But as $h_{\theta}(x) \to 0$
 $Cost \to \infty$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y = 1|x; \theta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

Cost Function Contd.

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} [\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))]$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} [\sum_{i=1}^m y^{(i)} \log h_\theta(x^{(i)}) + (1-y^{(i)}) \log (1-h_\theta(x^{(i)}))]$$
 Want $\min_\theta J(\theta)$: Repeat $\{$
$$\theta_j := \theta_j - \alpha \sum_{i=1}^m (\widehat{h_\theta(x^{(i)})} - y^{(i)}) x_j^{(i)}$$
 $\}$ (simultaneously update all θ_j)

Advanced Optimization

Optimization algorithms:

- Gradient descent
- Conjugate gradient
- BFGS
- L-BFGS

Advantages:

- No need to manually pick α
- Often faster than gradient descent.

Disadvantages:

More complex

Overfitting Problem

Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $(J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0)$, but fail to generalize to new examples (predict prices on new examples).

Example Logistic Regression

