Best Gini: 0.517997

Stand Dev: 0.06114332752194878 Total Submissions: 182

Steps	Explanation	What worked	What didn't work	Wishlist
EDA	Quick EDA revealed:			n/a
	- small train set (864 observations); very skewed classes: only 10% fraud cases, 90%	non-fraud (legitimate) transactions		
	- large number of variables (no feature name or info provided); features: binary, categorical and float			
	- missing values: only few variables with missing values, no duplicate rows			
	- if_var_68 and if_var_69 most likely transaction amounts (given value distribution);	test-dataset contained an additional variable (contract date)		
	- distribution: some variables skewed or log distribution			
Preprocessing/	Minimal Preprocessing was necessary given invariance to scale of Random Forest	1. Replacing 0's:	1. Removing Outliers – this was expected, since Fraud cases can often represent itself as	1. Binning Categorical Variables - although no variable names were given this could have
Feature	as well as relative cleaniness of data (only few missing values)	a. binary variables: with either 0 or 1, dpending on column mean (1 if >0.5, else 0)	outliers and by removing those we would not train our model on those frauds	been performed, e.g. using scikit learns "KBinsDiscretize"
Transformation		b. categorical variables: mode	2. Scaling Features - explicitly tried for skewed variables if_var_68 and if_var_69, however	2. Creating Dummies with Categorical Variables - relevant for distance-based algorithms
		c. float variables: mean	this did not impact results. With Random Forest as final model, scaling was not necessary	(e.g. KNN) to ensure that a value of 4 (Category4) is not read as 4x as big as the value of 1
		2. Removing var with no information content (only 1 unique value): ""ib_var_12"		(category1)
Sampling	Hypothesis: Improve the classifier by providing a balanced dataset.	1. Oversampling & Undersampling vs. Only Oversampling: mixed performance of	1. SMOTE alternatives: BorderlineSMOTE, KNNSMOTE and ADASYN SMOTE did not provide	1. Trying SAMPLING alternatives using smote-variants, which provides a larger number of
		conducting both Oversampling (using SMOTE) and Undersampling (using	better performance (Gini between 0.49-0.5x; although tested only during a very small	different smote methods, e.g. weighting fraud cases differently depending on some criteria,
	Sampling performed at two steps in the process:	RandomUnderSampling), before hypertuning the model performed better with only	sample of trials and not systematically due to time constraints)	however smote-variants was incompatible with my conda set-up.
		oversampling (to a ratio of 1:1), after hyperparameter tuning using both Oversampling &	2. class_weight="balanced" of scikit-learns RandomForestClassifier as alternative to	2. Research methods to augment the entire dataset (both fraud and non-fraud cases) since
	1. Sampling before calculating correlation, IV and PSI: this was performed in order	Undersampling, each with 0.5 sampling strategy (resulting in 2:1 ratio of legitimate to fraud	imbalanced-learn's SMOTE, this did however significantly decrease performance	so little training data was available, possibly leading to the severe overfitting
	to understand correlations and information value of all variables to then conduct	cases) performed best (also tested vs. other sampling ratios)		
	feature selection. For feature selection, key features were selected from the	2. Oversampling with SMOTENC: although improvement was very minor, a slightly better		
	unsampled X_train and X_test and entered training unsampled (see, 2. Sampling	performance was achieved when using synthetic oversampling technique for nominal and		
	during model training).	categorical features (treats categorical features differently)		
		3. Using Sampling during Cross-validation: following common literature, to prevent data		
	2. Sampling during model training: To prevent data leakage, over-/undersampling	leakage although no actual performance improvement was observed vs. sampling before		
	should be performed during cross-validation, not before. Therefore, sampling was	model training		
	conducted through a pipeline during training and cross-validation			
Feature Selection:	Hypothesis: improving the classifier by selecting only those features which would	1. Filter-based method: feature selection using correlation (Spearman) with target variable		PCA - although this would only work for the numerical (non-binary, non-categorical)
	best classify fraud and non-fraud cases). However, given RandomForest built in	- very quick'n'dirty method	most features contained relevant information and/or that Random Forest did a better job in	features (16 in total), so this would need to be applied alongside other feature selection
	Feature Selection, no significant improvement expected.	2. Keeping majority of the features: Classifier performed best when dropping only a very	Feature selection than the filter-based method (using correlation)	methods
		limited number of features (15) and keeping the majority (66 features)		2. GAN - Genetic Algorithm
	Features were assessed using correlation (Spearman), IV as well as PSI for a			3. Further Filter-Methods: such as Chi- ² Test
	sampled (=balanced) dataset. Based on this, key features were selected.			4. Wrapper-based methods: recursive feature elimination
Model Choice:	Hypothesis: Ensemble methods provide superior prediction power for this usecase		1. ExtraTreesClassifier -> did not improve scores	1. Improve/Tune Voting Classifier
	since they combine multiple 'individual' (diverse) models together for a prediction,	method and thus averaging predictions (fighting the local minima problem). Additionally, it	2. Stacking: Hard Voting implemented (combinations of Random Forest and	2. Testing BaggingClassifier (tbd if it can also do hard voting or only soft voting)
	thus are more robust and better in fighting the "local minima problem"	introduces more randomness through searching for the best feature among a random	ExtraTreesClassifier as well as LogRegression with different configurations tested), however	3. Testing Stacking (using e.g. DESlib or own method), but tbd due to small training set
		subset of features vs among all features, resulting in more bias and more robustness.	due to time constraints not well-developed and optimized, thus it performed similar/not	4. Testing further classification models:
	To obtain a baseline, several models were tried (without any hyperparameters) to		better than only Random Forest (Gini: 0.48-0.5x)	- KNN
	compete against each other (Ensemble and non-Ensemble Methods):			- Naïve Bayes
	- Logistic Regression			- Neural Nets
	- Random Forest			- Boosting Methods (XGBoost, GradientBoost, AdaBoost)
	- Decision Tree			Not tested due to time constraints and due to general opinion/information shared, that
	- ExtraTrees Classifier,			Random Forest (or other bagging methods) would perform best, however it could have
	out of which Random Forest performed best . This was also confirmed in class, so			been interesting to test if, for example, the Voting algorithm worked better when using
	Random Forest was the main model chosen for the classification.			bagging methods (for robustness and randomness) with boosting methods, despite
				boosting methods tending to overfit (and lacking randomness)
Hyperparameter Fine-	Hypothesis: Improving Model performance (precision) with the correct	Best results were obtained with:	1. Bootstrapping: best results were obtained with bootstrapping=False, which means that	1. max_features: try float instead of default auto, sqrt, log2
Tuning	hyperparameters	1. N_Estimators of 1,100 trees -> averaging results over 1,100 trees	for each tree all observations were used. This was most likely due to the small training data,	
		2. Min_samples_split: 3	with bootstrapping=True only a sample would have been used (via max_sample), resulting	
	Different combinations of hyperparameters for Random Forest were extensively	3. Max_depth: 15	in even less training data at a time.	
	tested using general understanding of the hyperparamters on model behaviour	4. Max_features: log2		
	plus RandomSearch first, then GridSearch.	5. Random-Seed: alternating the random-seed as the very last step on the tuned model		
		provided randomly better (and worse :)) scores		
		-> all other parameters were left on default values		
		6. RandomSearch and Gridsearch		
Cross Validation	Hypothesis: Using cross-validation to average training results and preventing	Cross-validation: improved model performance, using the following hyperparamters:	The following cross-validation hyperparameters/methods didn't impact model results (no	
2.000 vandation	overfitting	2. 2.22 2.2.240m improved moder performance, using the following hyperparameters.	change in Gini):	
		cv = StratifiedKFold(n_splits=10,shuffle=True)	Testing different number of splits during cross-validation didn't impact model results	
	Using Cross-validation improved model-performance; it was used in a pipeline	or - stratilicate state spins-10, shuffle-11 de/	2. Testing StratifiedKFold vs. RepeatedStratifiedKFold didn't impact model results	
	together with the above mentioned sampling strategy so the model would be		2. resting stratment out vs. repeateustratment out didn't impact moder results	
	trained on a balanced training set.			
	<u> </u>			
General/ Evaluation				1. Data Augmentation
	Interestingly, the model still returned best results when the hyperparameters were tuned to low regularization values that would have overfit most models: very high max_depth (15), very little min sample_split (1), etc.).			2. Implementing a cost-sensitive cost-function
	Most likely this was due to the model having only very little training data to learn fro	om.		3. Other Libraries than Scikit Learn (e.g. fastai, weka) or ML Tools, e.g. Dataiku