Chapitre 10

Équations algébriques.

Sommaire.

1	Ensemble des solutions d'une ED linéaire d'ordre 1.	1
2	Résolution de l'équation homogène.	1
3	Équation générale : obtenir une solution particulière. 3.1 Trouver une solution à vue. 3.2 Principe de superposition. 3.3 Méthode générale : variation de la constante.	2
4	Synthèse.	3
5	Exercices	4

Les propositions marquées de \star sont au programme de colles.

1 Ensemble des solutions d'une ED linéaire d'ordre 1.

Définition 1

Soient $a,b:I\to\mathbb{K}$ deux applications continues sur I. On considère l'équation différentielle

$$y' + a(x)y = b(x) \quad (E).$$

- On dit que $y: I \to \mathbb{K}$ est solution de (E) sur I si elle est dérivable sur I et si elle est telle que $\forall x \in I, \ y'(x) + a(x)y(x) = b(x)$.
- ullet La fonction b est souvent appelée **second membre** de l'équation.
- L'équation homogène associée à (E) est y' + a(x)y = 0 (E_0) .

Ci-dessous, S et S_0 désignent respectivement les ensembles de solutions de (E) et (E_0) .

Proposition 2: Lien entre S et S_0 .

Si S est non vide, alors, en considérant $z_p \in S$ (une « solution particulière » de l'équation), on a

$$S = \{z_p + y, \quad y \in S_0\}.$$

Preuve:

Soit $z: I \to \mathbb{K}$ dérivable sur I.

$$z \in S \iff \forall x \in I, \ z'(x) + a(x)z(x) = b(x) \iff \forall x \in I, \ z'(x) + a(x)z(x) = z'_p(x) + a(x)z_p(x)$$
$$\iff \forall x \in I, \ (z - z_p)'(x) + a(x)(z - z_p)(x) = 0 \iff z - z_p \in S_0.$$

Donc $z \in S \iff z - z_p \in S_0 \iff \exists y \in S_0 \mid z - z_p = y \iff \exists y \in S_0 \mid z = z_p + y.$

2 Résolution de l'équation homogène.

On va donner toutes les solution de (E_0) .

Cas particulier (Terminale) : le cas où a est une fonction constante égale à $a \in \mathbb{K}$. On a vu que les solutions de y' + ay = 0 sont les fonctions de la forme $x \mapsto \lambda e^{-ax}$ où $\lambda \in \mathbb{K}$.

Ci-dessous, on traite le cas général pour $a: I \to \mathbb{K}$.

Théorème 3: ★

Soit (E_0) l'équation y' + a(x)y = 0, où $a: I \to \mathbb{K}$ est continue sur I.

Soit A une primitive de a sur I. L'ensemble S_0 des solutions de (E_0) sur I est

$$S_0 = \left\{ x \mapsto \lambda e^{-A(x)} \mid \lambda \in \mathbb{K} \right\}.$$

Preuve:

 \supset Soit $\lambda \in \mathbb{K}$ et $f: x \mapsto \lambda e^{-A(x)}$. Montrons que $f \in S_0$.

 $\overline{\bullet}$ Si $\mathbb{K} = \mathbb{R}$, alors A est dérivable sur I, exp est dérivable sur \mathbb{R} donc f est dérivable sur I comme composée.

$$\forall x \in I, \ f'(x) = \lambda(-A'(x))e^{-A(x)} = -\lambda a(x)e^{-A(x)} = -a(x)f(x).$$

Ainsi, f'(x) + a(x)f(x) = 0, donc $f \in S_0$.

• Si $\mathbb{K} = \mathbb{C}$, on sait dériver $t \mapsto e^{\varphi(t)}$ où φ est dérivable à valeurs complexes.

 $\overline{\text{Il}}$ suffira de prouver que $p: x \mapsto y(x)e^{A(x)}$ est constante sur I, p est dérivable comme produit:

$$\forall x \in I, \quad p'(x) = y'(x)e^{A(x)} + y(x)A'(x)e^{A(x)} = e^{A(x)} \underbrace{\left(y'(x) + a(x)y(x)\right)}_{=0 \text{ car } y \in S_0}$$

La fonction p est constante sur I donc $\exists \lambda \in \mathbb{K} \mid \forall x \in Ip(x) = \lambda$ donc $y(x)e^{A(x)} = \lambda$ donc $y(x) = \lambda e^{-A(x)}$.

Exemple 4

Résoudre sur]0,1[l'équation t(1-t)y' + y = 0.

Solution:

La fonction $t :\mapsto t(1-t)$ ne s'annule pas sur]0,1[. Le problème est équivalent à:

$$y' + \frac{1}{t(1-t)}y = 0.$$

Notons $a: t \mapsto \frac{1}{t(1-t)}$. On a besoin d'une primitive, et $a(t) = \frac{1}{t} - \frac{1}{t-1}$.

On pose $A: t \mapsto \ln|t| - \ln|t-1|$. Par théorème, $S = \{t \mapsto \lambda e^{-\ln\frac{t}{1-t}} \mid \lambda \in \mathbb{R}\}$

Lemme 5: Une remarque intéressante.

Si a est continue sur I, la seule solution de y' + a(x)y = 0 qui s'annule sur I, c'est la fonction nulle.

Preuve:

Soit $y \in S_0$: $\exists \lambda \in \mathbb{K} \mid \forall x \in I, \ y(x) = \lambda e^{-A(x)}$ où A est primitive de a.

Supposons que y s'annule sur I, $\exists x_0 \in I \mid \lambda e^{-A(x_0)} = 0$.

Alors $\lambda = 0$ ou $e^{-A(x_0)} = 0$: $\lambda = 0$, donc y est nulle.

3 Equation générale : obtenir une solution particulière.

Il s'agit ici de trouver une solution de l'équation y' + a(x)y = b(x) (E).

3.1 Trouver une solution à vue.

Lorsque a et b sont des fonctions constantes (a non nulle), notre équation a une solution constante. On a déjà croisé ce genre de situation en physique en regardant un circuit RC soumis à un échelon de tension.

Plus précisément,

L'équation y' + ay = b a pour solution particulière la fonction constante $z_p : x \mapsto \frac{b}{a}$.

Plus généralement, lorsque b sera une fonction polynomiale de degré n, on pourra chercher une solution polynomiale de degré n.

Exemple 6

Deviner une solution pour les équations ci-dessous

(1)
$$y' + 2y = 1$$
 (2) $y' + 2y = e^x$ (3) $y' + y = x$.

Solution:

- 1. $x \mapsto \frac{1}{2}$ solution.
- 2. $x \mapsto \frac{1}{3}e^x$ solution.
- 3. $x \mapsto x 1$ solution

3.2Principe de superposition.

Pratique lorsque le second membre se présente comme somme de deux fonctions.

Proposition 7: Principe de superposition.

Soient a, b_1, b_2 trois fonctions continues sur I. Si

- y_1 est solution sur I de $y' + a(x)y = b_1(x)$ $(E_1),$
- y_2 est solution sur I de $y' + a(x)y = b_2(x)$ $(E_2),$

alors $y_1 + y_2$ est solution sur I de l'équation $y' + a(x)y = b_1(x) + b_2(x)$ (E₃).

Preuve:

 y_1 et y_2 sont dérivables sur I car solutions d'EDL1 donc $y_1 + y_2$ est dérivable sur I comme somme.

$$(y_1 + y_2)' + a(y_1 + y_2) = (y_1' + ay_1) + (y_2' + ay_2) = b_1 + b_2.$$

Exemple 8

Trouver une solution de l'équation $y' + 2y = 1 + e^x$.

Solution:

• y' + 2y = 1 a pour solution $x \mapsto \frac{1}{2}$. • $y' + 2y = e^x$ a pour solution $x \mapsto \frac{e^x}{3}$. Par principe de superposition, $\frac{1}{2} + \frac{1}{3}e^x$ est solution de (E).

Méthode générale : variation de la constante.

Proposition 9: Variation de la constante.

Si a et b sont continues sur I, l'équation y' + a(x)y = b(x) possède une solution z de la forme $z = \lambda u$ où u est une solution non nulle de l'équation homogène, et λ une fonction dérivable sur I.

Preuve:

On cherche une solution de (E) de la forme $z: x \mapsto \lambda(x)u(x)$ où $u \in S_0$ non nulle et λ dérivable à choisir. La fonction z étant dérivable sur I comme produit, on a

$$z' + az = (\lambda u)' + a(\lambda u) = \lambda' u + \lambda u' + \lambda au = \lambda' u + \lambda \underbrace{(u' + au)}_{=0},$$

où on a utilisé à la dernière ligne que u est solution de (E_0) . Ainsi,

$$z$$
 est solution de $(E) \iff z' + az = b$ sur $I \iff \lambda' u = b$ sur I .

Nous avons vu plus haut que, puisque u est une solution de (E_0) qui n'est pas la fonctio nnulle, elle ne s'annule nulle part sur I. On peut donc écrire

z est solution de
$$(E) \iff \lambda' = b/u \text{ sur } I.$$

Notre fonction z sera donc solution ssi λ est choisie parmi les primitives b/u.

Exemple 10

Résolution de $x^4y' + 3x^3y = 1$ sur \mathbb{R}_+^* .

Solution:

Homogène. On résout $x^4y' + 3x^3y = 0$, équivalente à $y' + \frac{3}{x}y = 0$ sur \mathbb{R}_+^* .

Posons $a: x \mapsto \frac{3}{x}$ et $A: x \mapsto 3\ln(x)$, $S_0 = \{x \mapsto \lambda x^{-3} \mid \lambda \in \mathbb{K}\}$.

Générale. On cherche une solution de $y' + \frac{3}{x}y = \frac{1}{x^4}$. Soit $u: x \mapsto x^{-3}$. C'est une solution non nulle de (E_0) . Soit λ dérivable sur \mathbb{R}_+^* . On cherche une solution $z = \lambda u$. Pour $x \in \mathbb{R}_+^*$,

$$z'(x) + \frac{3}{x}z(x) = \lambda'(x)u(x) + \lambda(x)u'(x) + \frac{3}{x}\lambda'u(x)$$
$$= \lambda'(x)u(x) + \lambda(x)(u'(x) + \frac{3}{x}u(x))$$
$$= \lambda'(x)u(x).$$

Donc

$$z$$
 solution de $(E) \iff \forall x \in \mathbb{R}_+^*, \ z'(x) + \frac{3}{x}z(x) = \frac{1}{x^4}$
 $\iff \forall x \in \mathbb{R}_+^*, \ \lambda'(x)x^{-3} = x^{-4}$
 $\iff \forall x \in \mathbb{R}_+^*, \ \lambda'(x) = x^{-1}$

On chosit $\lambda = \text{ln.}$ La solution trouvée est donc $z : x \mapsto \frac{\ln(x)}{x^3}$.

Conclusion. $S = \{x \mapsto \frac{\ln(x)}{x^3} + \frac{\lambda}{x^3} \mid \lambda \in \mathbb{R}\}.$

Synthèse.

Théorème 11

Soient $a:I\to\mathbb{K}$ et $b:I\to\mathbb{K}$ deux fonctions continues. L'équation

$$y' + a(x)y = b(x) \quad (E)$$

a des solutions. Si z_p est une telle solution (« particulière ») et A une primitive de a sur I, alors l'ensemble des solution de (E) est

$$S = \left\{ x \mapsto z_p(x) + \lambda e^{-A(x)}, \quad \lambda \in \mathbb{K} \right\}.$$

Définition 12

Soient $x_0 \in I$ et $y_0 \in \mathbb{R}$. On appelle **problème de Cauchy** la donnée d'une équation différentielle et d'une condition initiale (valeur imposée en un point)

$$\begin{cases} y' + a(x)y &= b(x) \\ y(x_0) &= y_0 \end{cases}$$

Théorème 13: de Cauchy-Lipschitz, cas linéaire.

Soient $a, b: I \to \mathbb{K}$ continues, $x_0 \in I$ et $y_0 \in \mathbb{K}$.

Le problème de Cauchy $\begin{cases} y' + a(x)y &= b(x) \\ y(x_0) &= y_0 \end{cases}$ admet une unique solution sur I.

Preuve:

D'après le théorème précédent, l'équation différentielle addmet des solutions, on en fixe une, que l'on note z_p . Si A est primitive de a sur I, alors les solutions sont de la forme $y: x \mapsto z_p(x) + \lambda e^{-A(x)}$. Parmi ces fonctions, on veut distinguer celles qui satisfont la condition initiale. On écrit donc

$$y(x_0) = y_0 \iff z_p p(x_0) + \lambda e^{-A(x_0)} = y_0 \iff \lambda = e^{A(x_0)} (y_0 - z_p(x_0)).$$

Il existe donc une unique valeur pour λ pour laquelle $y(x_0) = y_0$; notons la λ_0 . Le problème de Cauchy possède une unique solution : la fonction $y = z_p + \lambda_0 e^{-A}$.

5 Exercices

Exercice 1: $\Diamond \Diamond \Diamond$

Résoudre les équations différentielles ci-dessous

es equations differentienes ci-dessous
$$1. \ y' - 2y = 2 \text{ sur } \mathbb{R} \qquad 2. \ (x^2 + 1)y' + xy = x \qquad 3. \ y' + \tan(x)y = \sin(2x) \text{ sur }] - \frac{\pi}{2}, \frac{\pi}{2}[$$

$$4. \ y' - \ln(x)y = x^x \text{ sur } \mathbb{R}_+^* \qquad 5. \ (1 - x)y' - y = \frac{1}{1 - x} \text{ sur }] - \infty, 1[$$

Solution:

1. Solutions de l'équation homogène : $S_0 = \{x \mapsto \lambda e^{2x} \mid \lambda \in \mathbb{R}\}$

Solution particulière, avec y constante : $S_p : x \mapsto -1$.

Ensemble de solutions : $S = \{\lambda e^{2x} - 1 \mid \lambda \in \mathbb{R}\}.$

2. L'équation se réecrit comme $y' + \frac{x}{x^2+1}y = \frac{x}{x^2+1}$.

Solutions de l'équation homogène : $S_0 = \{x \mapsto \frac{\lambda}{\sqrt{x^2+1}} \mid \lambda \in \mathbb{R}\}$

Solution particulière : $S_p: x \mapsto 1$ est solution évidente.

Ensemble de solutions : $S = \{x \mapsto \frac{\lambda}{\sqrt{x^2+1}} + 1 \mid \lambda \in \mathbb{R}\}.$

3.Soit $I =] - \frac{\pi}{2}, \frac{\pi}{2}[.$

Solutions de l'équation homogène : $S_0 = \{x \mapsto \lambda \cos x \mid \lambda \in \mathbb{R}\}.$

Solution particulière : Soit $u \in S_0$ et $\lambda : I \to \mathbb{K}$ dérivable sur I. On cherche $z = \lambda' u$.

$$z$$
 est solution $\iff \forall x \in I, \ \lambda'(x)\cos(x) = \sin(2x)$
 $\iff \forall x \in I, \ \lambda'(x) = \frac{\sin(2x)}{\cos(x)} = 2\sin(x)$
 $\iff \lambda = -2\cos$

Ainsi, $z = -2\cos^2$.

Ensemble de solutions : $S = \{x \mapsto \lambda \cos x - 2 \cos^2 x \mid \lambda \in \mathbb{R}\}.$

4. Soit $I = \mathbb{R}_+^*$.

Solutions de l'équation homogène : $S_0 = \{x \mapsto \lambda \frac{x^x}{e^x} \mid \lambda \in \mathbb{R}\}$

Solution particulière : Soit $u \in S_0$ et $\lambda : I \to \mathbb{K}$ dérivable sur I. On cherche $z = \lambda' u$.

z est solution
$$\iff \forall x \in I, \ \lambda'(x) \frac{x^x}{e^x} = x^x$$

 $\iff \forall x \in I, \ \lambda'(x) = e^x$
 $\iff \lambda = e^{\cdot}$

Ainsi, $z: x \mapsto x^x$

Ensemble de solutions : $S = \{x \mapsto \lambda \frac{x^x}{e^x} + x^x \mid \lambda \in \mathbb{R}\}$

5. Soit $I =]-\infty, 1[$. L'équation se réecrit comme $y' - \frac{1}{1-x}y = \frac{1}{(1-x)^2}$.

Solutions de l'équation homogène : $S_0 = \{x \mapsto \frac{\lambda}{1-x} \mid \lambda \in \mathbb{R}\}.$

Solution particulière : Soit $u \in S_0$ et $\lambda : I \to \mathbb{K}$ dérivable sur I. On cherche $z = \lambda' u$.

$$z$$
 est solution $\iff \forall x \in I, \ \frac{\lambda'(x)}{1-x} = \frac{1}{(1-x)^2}$
 $\iff \forall x \in I, \ \lambda'(x) = \frac{1}{1-x}$
 $\iff \forall x \in I, \ \lambda(x) = -\ln(1-x)$

Ainsi, $z: x \mapsto -\frac{\ln(1-x)}{1-x}$.

Ensemble de solutions : $S = \{x \mapsto \frac{\lambda}{1-x} - \frac{\ln(1-x)}{1-x} \mid \lambda \in \mathbb{R}\}$

Exercice 2: $\Diamond \Diamond \Diamond$

Résoudre sur R_+^* le problème de Cauchy $\begin{cases} y' - \frac{2}{x}y = x^2 \cos x \\ y(\pi) = 0 \end{cases}.$

Solution:

Solution homogène : $S_0 = \{x \mapsto \lambda x^2 \mid \lambda \in \mathbb{R}\}.$

Solution particulière : Soit $u \in S_0$ et $\lambda : I \to \mathbb{K}$ dérivable sur I. On cherche $z = \lambda' u$.

z est solution
$$\iff \forall x \in I \ \lambda'(x)x^2 = x^2 \cos x$$

 $\iff \forall x \in I \ \lambda'(x) = \cos x$
 $\iff \lambda = \sin$

Ainsi, $z: x \mapsto x^2 \sin x$.

Ensemble de solutions : $S = \{x \mapsto \lambda x^2 + x^2 \sin x \mid \lambda \in \mathbb{R}\}$

Conditions initiales : Soit $y \in S$. On a :

$$y(\pi) = 0 \iff \exists \lambda \in \mathbb{R} \mid \lambda \pi^2 + \pi^2 \sin(\pi) = 0$$
$$\iff \lambda \pi^2 = 0$$
$$\iff \lambda = 0$$

L'unique solution de ce problème de Cauchy est donc : $y: x \mapsto x^2 \sin x$.

Exercice 3: ♦♦◊

Trouver toutes les fonctions f dérivables sur $\mathbb R$ telles que

$$\forall x \in \mathbb{R} \ f'(x) + f(x) = \int_0^1 f(t)dt$$

Solution:

Analyse.

On suppose qu'il existe y dérivable sur $\mathbb R$ solution de cette équation.

Soit $x \in \mathbb{R}$.

En dérivant l'égalité, on obtient : y''(x) + y'(x) = 0. On pose g(x) = y'(x).

On a : g'(x) + g(x) = 0.

Solution générale : $S = \{x \mapsto \lambda e^{-x} \mid x \in \mathbb{R}\}.$

Ainsi, $g \in S$ et $\exists (\lambda, \mu) \in \mathbb{R}^2 \mid y(x) = -\lambda e^{-x} + \mu$.

On a:

$$y'(x) + y(x) = \int_0^1 y(t)dt \iff \lambda e^{-x} - \lambda e^{-x} + \mu = \left[\lambda e^{-t} + \mu t\right]_0^1$$
$$\iff \mu = \lambda e^{-1} + \mu - \lambda$$
$$\iff \lambda (e^{-1} - 1) = 0 \iff \lambda = 0$$

Ainsi, l'ensemble des solutions est : $\{x \mapsto \mu \mid \mu \in \mathbb{R}\}.$

Synthèse.

Soit $x \in \mathbb{R}$ et $\mu \in \mathbb{R} \mid y(x) = \mu$. On a $y'(x) + y(x) = \mu$ et $\int_0^1 y(t)dt = \int_0^1 \mu dt = \mu$

Exercice 4: ♦♦♦

Soit l'équation différentielle $x^2y' - y = 0$.

- 1. Résoudre sur \mathbb{R}_+^* et sur \mathbb{R}_-^* .
- 2. Trouver toutes les solutions définies sur \mathbb{R}

Solution :

1. On se ramène à l'équation : $y' - \frac{1}{x^2}y = 0$.

Pour $x \in \mathbb{R}_+^*$, l'ensemble de solutions $S_+ = \{x \mapsto \lambda e^{-\frac{1}{x}} \mid \lambda \in \mathbb{R}\}.$

Pour $x \in \mathbb{R}_{+}^{*}$, l'ensemble de solutions $S_{-} = \{x \mapsto \mu e^{-\frac{1}{x}} \mid \mu \in \mathbb{R}\}.$

 $\boxed{2.}$ Une solution de y sur \mathbb{R} est solution sur \mathbb{R}_{-}^{*} et \mathbb{R}_{+}^{*} . Ainsi, $\exists (\lambda, \mu) \in \mathbb{R}^{2}$ tels que

$$\forall x \in \mathbb{R}, y(x) = \begin{cases} \lambda e^{-\frac{1}{x}} & \text{si } x > 0\\ \mu e^{-\frac{1}{x}} & \text{si } x < 0 \end{cases}$$

On a:

$$\mu e^{-\frac{1}{x}} \xrightarrow[x \to 0^-]{} + \infty \text{ et } \lambda e^{-\frac{1}{x}} \xrightarrow[x \to 0^+]{} 0$$

Donc y est prolongeable en 0 si et seulement si $\mu = 0$. On a alors y(0) = 0.

On a:

$$\mathbf{x} > 0 : \frac{y(x) - y(0)}{x - 0} = \frac{\lambda e^{-\frac{1}{x}}}{x} = -\lambda \left(-\frac{1}{x}\right) e^{-\frac{1}{x}} \xrightarrow[x \to 0^+]{} 0 \ c.c.$$

$$\mathbf{x} < 0 : \frac{y(x) - y(0)}{x - 0} = 0 \xrightarrow[x \to 0^-]{} 0$$

Donc y est dérivable en 0 et y'(0) = 0.

La fonction est alors continue et dérivable sur \mathbb{R} et on a $0^2y'(0)-y(0)=0$, l'équation est donc satisfaite en 0. Les solutions sont donc les fonctions :

$$y(x) = \begin{cases} \lambda e^{-\frac{1}{x}} & \text{si } x > 0\\ 0 & \text{si } x \le 0 \end{cases} \quad (\lambda \in \mathbb{R})$$

5