12008

Olivine Vitrophyre 58.4 grams

Figure 1: Photo of 12008,0 after dusting. NASA photo #S70-47882. Sample is 2 cm across.

Introduction

12008 is an olivine vitrophyre very similar to 12009 and 12015, but with slightly higher TiO₂ content. The age has been determined to be about 3.2 b.y.

Petrography

Dungan and Brown (1977) describe 12008 as ~15-20% equant subhedral to euhedaral phenocrysts of olivine (0.2 -0.5 mm) heterogeneously distributed in the opaque groundmass as glomerophyric aggregates

(Fo₇₂). Small chromite grains with attached metallic iron grains are found in the groundmass or attached to the rims of the olivine phenocrysts. Olivine includes spherical melt inclusions. A second generation of olivine occurs as chains of skeletal microphenocrysts (Donaldson et al. 1975). The fine-grained opaque matrix is made of microlites of aluminous titanaugite, ilmenite and plagioclase (?).

Figure 2: Photomicrograph of thin section 12008,20 showing olivine phenocrysts in nearly opaque groundmass. NASA # S76-29979. Length about 3 mm.

Mineralogy

Olivine: Olivine in 12008 is mostly Fo_{72} (Dungan and Brown 1977). Butler (1973) determined the minor element content of olivine.

Pyroxene: Dungan and Brown (1977) reported the composition of dendrites of pyroxene in 12008 (figure 3).

Metal: Brett et al. (1971) determined the Ni content of minute metallic iron grains in 12008 (figure 4).

Mineralogical Mode for 12008

Willieralogical	Midue i
	Neal et
	al. 1994
Olivine	38.2
Pyroxene	20.4
Plagioclase	2
Ilmenite	4.7
Chromite +Usp	0.6
Mesostasis	33.9
"silica"	

Figure 3: Olivine and pyroxene composition of 12008 (from Dungan and Brown 1977).

Figure 4: Histogram of Ni conentrations of metal grains in 7 lunar samples (lifted from Brett et al. 1971).

Figure 5: Composition of 12008 compared with other lunar basalts.

Figure 6: Rare-earth-element data for 12008 normalized by chondritic abundance (from Nyquist et al. 1977).

Chemistry

The chemical composition of 12008 was determined by Rhodes et al. (1977), Jarosowich et al. (1977) (figure 5). Trace elements were determined by Nyquist et al. (1977) and Anders et al. (1971) (figure 6).

Radiogenic age dating

Stettler et al. (1973) determined an age for 12008 by total Argon 39/40 (see table). The high temperature release represented a lower age (see figure in 12051).

Cosmogenic isotopes and exposure ages

Stettler et al. (1973) determined an ³⁸Ar exposure age of 50 m.y.

Other Studies

Clayton et al. (1971) reported oxygen isotope analysis of olivine and matrix of 12008.

List of Photo #s of 12008

color mug
B & W mug
color
TS color
reflected TS,17
reflected TS,19
reflected TS, 14
reflected TS, 15
reflected TS, 20
TS ,20
processing
processing

Summary of Age Data for 12008

Table 1. Chemical composition of 12008

reference weight	Rhodes77		Jarosowich77		Nyquist77 38 mg		Anders71	
SiO2 % TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 S % sum	42.75 4.45 7.98 21.94 0.3 12.33 8.97 0.25 0.05 0.07	(a) (a) (a) (a) (a) (a) (d) (a) (a) (a)	42.58 4.82 8.49 22.4 0.28 11.99 9.1 0.24 0.14 0.05	(b) (b) (b) (b) (b) (b) (b) (b)	0.054	(c)		
Sc ppm V	52.4	(d)						
Cr Co Ni	4200 51	(d) (d)					60	(e)
Cu Zn Ga Ge ppb							1.04 3.2	(e) (e)
As Se Rb Sr Y Zr Nb Mo Ru Rh	130 45 117 5.9	(a) (a) (a) (a)			0.681 133	(c)	0.139 0.62	(e) (e)
Pd ppb Ag ppb Cd ppb In ppb Sn ppb							1.17 1.3	(e) (e)
Sb ppb Te ppb Cs ppm							50 0.028	(e) (e)
Ba La	51	(c)			49.6	(c)		. ,
Ce Pr	16.9	(d)			15.4	(c)		
Nd Sm Eu Gd	3.35 1.06	(d) (d)			13.9 5.14 1.17 7.39	(c) (c) (c)		
Tb Dy	1.39	(d)			8.88	(c)		
Ho Er					5.27	(c)		
Tm Yb	4.9	(d)			4.55	(c)		
Lu Hf Ta W ppb Re ppb	0.71 3.8	(d) (d)			0.657	(c)		
Os ppb Ir ppb							0.06	(e)
Pt ppb Au ppb							0.074	(e)
Th ppm U ppm	· (a) YP	E (h) wet (c.) ID	M.S	(d) INIA	(e)	RNAA	

technique: (a) XRF, (b) wet, (c) IDMS, (d) INAA, (e) RNAA

THE CHIPPING OF LUNAR ROCK 12008

