Open& Close_hospital

202121656 인공지능학과 장서연

Contents

01 문제 정의 & Data

02 목적

03 preprocessing

04 Model

05 변수중요도

06 중요성 및 활용방안

2022-2 머신리닝 가톨릭대학교 인공지능학과 202121656 장서연

01 Data

병원의 개업과 폐업 여부를 나누는 데이터로 변수의 개수 총 58개로 구성

inst_id - 각 파일에서의 병원 고유 번호 OC - 영업/폐업 분류, 2018년 폐업은 2017년 폐업으로 간주함 sido - 병원의 광역 지역 정보

sgg - 병원의 시군구 자료

openDate – 병원 설립일

- 병원이 갖추고 있는 병상의 수

instkind - 병원, 의원, 요양병원, 한의원, 종합병원 등 병원의 종류

- · 종합병원 : 입원환자 100명 이상 수용 가능
- · 병원: 입원 환자 30명 이상 100명 미만 수용 가능
- · 의원: 입원 환자 30명 이하 수용 가능
- 한방 병원(한의원) : 침술과 한약으로 치료하는 의료 기관.

revenue1 – 매출액, 2017(회계년도)년 데이터를 의미함 salescost1 – 매출원가, 2017(회계년도)년 데이터를 의미함 sga1 – 판매비와 관리비, 2017(회계년도)년 데이터를 의미함 salary1 – 급여, 2017(회계년도)년 데이터를 의미함 noi1 – 영업외수익, 2017(회계년도)년 데이터를 의미함 noe1 – 영업외비용, 2017(회계년도)년 데이터를 의미함 Interest1 – 이자비용, 2017(회계년도)년 데이터를 의미함 ctax1 – 법인세비용, 2017(회계년도)년 데이터를 의미함 Profit1 – 당기순이익, 2017(회계년도)년 데이터를 의미함 liquidAsset1 – 유동자산, 2017(회계년도)년 데이터를 의미함 quickAsset1 – 당좌자산, 2017(회계년도)년 데이터를 의미함 receivableS1 – 미수금(단기), 2017(회계년도)년 데이터를 의미함 inventoryAsset1 – 재고자산, 2017(회계년도)년 데이터를 의미함

nonCAsset1 – 비유동자산, 2017(회계년도)년 데이터를 의미함 tanAsset1 – 유형자산, 2017(회계년도)년 데이터를 의미함 OnonCAsset1 - 기타 비유동자산, 2017(회계년도)년 데이터를 의 미함

receivableL1 – 장기미수금, 2017(회계년도)년 데이터를 의미함 debt1 – 부채총계, 2017(회계년도)년 데이터를 의미함 liquidLiabilities1 – 유동부채, 2017(회계년도)년 데이터를 의미함 shortLoan1 – 단기차입금, 2017(회계년도)년 데이터를 의미함 NCLiabilities1 – 비유동부채, 2017(회계년도)년 데이터를 의미함 longLoan1 – 장기차입금, 2017(회계년도)년 데이터를 의미함 netAsset1 – 순자산총계, 2017(회계년도)년 데이터를 의미함 surplus1 – 이익잉여금, 2017(회계년도)년 데이터를 의미함

01 Data

Data 10개 (독립변수 9개 + 종속변수 1개)

X = hospital[['openDate','bedCount','revenue1','salescost1','sga1','salary1','liquidAsset1','nonCAsset1','netAsset1','surplus1']]

OC - open/ close

openDate - 병원 설립일

bedCoount- 병원이 가진 병상의 수

revenue1 - 매출액 2017

salescost1 - 매출 원가

sga1- 관리비

salary- 급여

liquidAsset1 - 유동자산

nonCAsset1 - 비유동자산

netAsset1 - 순자산총계

surplus1- 이익잉여금

Data #	columns (tota Column		columns): -Null Count	Dtype
0 1 2 3 4 5 6 7 8 9	openDate bedCount revenue1 salescost1 sga1 liquidAsset1 nonCAsset1 netAsset1 surplus1	301 296 293 293 293 293 293 293	non-null non-null non-null non-null non-null non-null non-null non-null non-null	object int64 float64 float64 float64 float64 float64 float64 float64

02 목저 인공지능이 메업을 예측하고 설명한다면?

이것만 피하면 된다!

수 많은 병원이 개업하고 폐업하는 시대.

이때 인공지능이 미래의 개폐업의 여부를 알려준다면 어떨까?

폐업에 가장 결정적인 원인을 알고, 예방한다면 피해를 줄일 수 있지 않을까?

이를 확장해서 모든 소상공인에게 적용시킬 수 있지 않을까?

01. 폐업을 예측할 수 있을까?

- Logistic Regression
- Naive BayseSupport Vector Machine
 - K-Nearest Neighbor
 - Decision Tree

02. 가장 영향력이 큰 변수는?

- 규모? 급여? 고정지출?
 - 의사결정 나무
 - 변수 중요도
- 설명가능성- SHAP

효과적인 학습을 위한 준비 과정

Over Sampling 상관계수 Nan 대체 표준화 변수 선정 및 상관성 Open Data 쏠림 현상 결측치 → 각 중앙값 평균및 분산 조정 ros = RandomOverSampler() hospital_train['bedCount'] = hospit hospital_train.corr scaler = StandardScaler() $X,y = ros.fit_resample(X,y)$ al_train['bedCount'].fillna(med) (method='pearson') X_s = pd.DataFrame(scaler.fit_tran sform(hospital_train))

1) Over Sampling

250 - 200 - 150 - 100 -

ros = RandomOverSampler()
X,y = ros.fit_resample(X,y)
count = y.value_counts()
count.plot(kind = 'bar',color=['blue','orange'])

2) NaN


```
# fillna() 로 누락 데이터 대체- bedCount
hospital_train = X
med = hospital_train['bedCount'].median()
print(med)
hospital_train['bedCount'] = hospital_train['bedCount'].fillna(med)
```



```
openDate - 0%
bedCount - 0%
revenue1 - 0%
salescost1 - 0%
sga1 - 0%
salary1 - 0%
liquidAsset1 - 0%
nonCAsset1 - 0%
netAsset1 - 0%
surplus1 - 0%
```

2022-2 머신리닝 가톨릭대학교 인공지능학과 202121656 장서연

03 Preprocessing

3)상관계수

상관계수가 너무 큰 'sga1' 제거 hospital_train = hospital_train.drop(['sga1'],axis=1)

4) Standard Scaler

scaler = StandardScaler()
X_s = pd.DataFrame(scaler.fit_transform(hospital_train))
X_s.head()

	0	1	2	3	4	5	6	7	8
0	0.115740	0.093249	-0.331562	-0.271418	-0.354525	-0.397898	-0.557025	-0.258209	0.047851
1	-1.041152	1.760734	-0.305090	-0.222888	-0.304292	-0.284323	-0.291737	-0.224236	-0.194325
2	1.148402	2.172284	-0.537418	-0.178134	-0.628398	-0.534819	-0.733844	-0.510216	-0.194325
3	-0.692193	1.356280	4.043729	-0.271418	4.335347	1.827013	2.446312	0.832720	1.204562
4	-0.117493	0.242258	2.540416	-0.271418	3.180658	0.583226	2.482352	-0.531435	1.266367

04 Model

Classification

Logistic Regression

> SVM - Poly

Decision Tree

KNN

테스트 집합 정확도(accuracy): 0.687 테스트 집합 정밀도(precision): 0.725 테스트 집합 재현율(recall): 0.537

테스트 집합 f1 점수: 0.617

테스트 집합 정확도(accuracy): 0.861 테스트 집합 정밀도(precision): 0.839 테스트 집합 재현율(recall): 0.870 테스트 집합 f1 점수: 0.855

DecisionTreeClassifier(criterion='gini') 학습 집합 정확도: 1.000

테스트 집합 정확도(accuracy): 0.957 테스트 집합 정밀도(precision): 1.000 테스트 집합 재현율(recall): 0.907

테스트 집합 f1 점수: 0.951

학습 집합 정확도: 0.965

테스트 집합 정확도(accuracy): 0.948

테스트 집합 정밀도(precision): 1.000

테스트 집합 재현율(recall): 0.889

테스트 집합 f1 점수: 0.941

04 Model

Accuracy + F1 score

KNN

최적의 n_neighbors 찾기

k: 1, accuracy: 95.65

k: 2, accuracy: 95.65

k: 3, accuracy: 95.65

k: 4, accuracy: 94.78

k: 5, accuracy: 94.78

k: 6, accuracy: 92.17

k: 7, accuracy: 92.17

k: 8, accuracy: 91.30

k: 9, accuracy: 91.30

k: 10, accuracy: 89.57

Model	Accuracy	F1 Score
LogisticRegression(multi_class="multinomial", max_iter=1000)	0.687	0.617
GaussianNB()	0.522	0.225
LinearSVC(C=1, max_iter = 10000)	0.696	0.632
SVC(kernel="poly", degree=3, coef0=1, C=5)	0.861	0.855
SVC(kernel="rbf", gamma=5, C=0.001)	0.470	0.639
DecisionTreeClassifier(criterion='gini')	0.957	0.951
DecisionTreeClassifier(criterion='gini', max_depth=4, random_state=42)	0.800	0.807
DecisionTreeClassifier(criterion='gini', max_depth=10, random_state=42)	0.939	0.931
KNeighborsClassifier(n_neighbors=5, n_jobs=-1)	0.965	0.941

tree_reg = DecisionTreeRegressor()

tree_reg.fit(X, y)

export_graphviz(tree_reg,

Model 04

Decision Tree 시각화

05 변수중요도

새플리

2022-2 머신리닝 가톨릭대학교 인공지능학과 202121656 장서연

05 변수중요도

Decision Tree및 새플리

openDate - 병원 설립일
bedCoount- 병원이 가진 병상의 수
revenue1 - 매출액 2017
salescost1 - 매출 원가
salary- 급여
liquidAsset1 - 유동자산
nonCAsset1 - 비유동자산
netAsset1 - 순자산총계
surplus1- 이익잉여금

중요성및 활용방안 06

의의와 효과

의의 AI가 폐업을 예측할 수 있다

기존에 구성되어 있던 58개의 변수가 아닌 선정한 8개의 변수만으로 병원의 운영 여부를 예측할 수 있다

ㅂ병원 설립일, 병상의 수, 매출액, 매출 원가 급여, 유동자산, 비유동자산, 순자산총계 이익잉여금

효과 폐업에 중요한 항목을 알고 예방할 수 있다

폐업 여부에 중요한 역할을 하는 5가지의 변수 병원 설립일, 매출액, 유동자산, 병상의 수, 급여를 바탕으로 오래된 병원에 경고, 개업시 유동자산을 확인하는등 폐업을 예측하고 미리 준비할 수 있다.

활용 병원, 가게등 소상공인 창업에 활용할 수 있다

설립일, 매출액, 유동자산, 규모, 급여등은 대부분의 가게에도 해당됨으로 병원의 Data를 통해 일반 소상공인에 경우에도 확장하여 고려할 수 있다.

Thank you

2022-2 머신러닝

인공지능학과 202121656

장서연