MI 2015./2016. (prof. Ban)

1. Regulaciju razine sustava na slici potrebno je provesti integralnim regulatorom s promjenjivim pojačanjem (K_r). Parametri sustava su K_p =6.24 * 10⁻⁴ m³/(V_s), A = 2 m², A_c = 10 cm². Raspon promjene referentnog signala je H_r ε [0, 2] m. Odrediti regulator s promjenjivim pojačanjem koji će osigurati granični aperiodski odziv u cijelom radnom području.

2. Prijenosna funkcija procesa:

$$G_p = \frac{Y(s)}{U(s)} = \frac{b}{s} \quad , \quad b > 0$$

a) Izvod algoritma parametarske adaptacije K_d i K_p , uz stabilnost Ljapunova.

$$V(e_{y}, K_{d}, K_{p}) = \frac{1}{2} \left[e_{y}^{2} + \frac{1}{b} (bK_{p} - a)^{2} + \frac{1}{b} (1 - bK_{p})^{2} \right]$$

$$e_{y} = y_{M} - y$$

$$u(t) = K_{d} \cdot r - K_{p} \cdot y$$

$$G_{M} = \frac{Y_{M}(s)}{R(s)} = \frac{1}{s + a}$$

- b) K_d, K_p=? uz idealno slijeđenje referentnog modela
- c) Blok shema s pojačanjima, integratorima, sumatorima i množenjima.
- d) Modificirati zakone K_d , K_p da bi ubrzali adaptaciju. Kako tada izgleda funkcija Ljapunova?

Teorijsko pitanje koje se nije pojavilo prošlih godina: Čime se određuje stabilnost i brzina odziva na male signale pogreške (sustav blizu stacionarnog stanja)?