PyData São Paulo

Aplicações Avançadas em Data Science

Previsão de Demanda de Passageiros em Sistemas Metroferroviários: uma abordagem por Redes Neurais Artificiais

Vagner Sanches Vasconcelos vsvasconcelos@gmail.com

Data Bloomberg

Contexto do Trabalho

Demanda de Passageiros

Seleção das variáveis de Entrada

Pré-processamento dos dados

Configuração da Rede Neural

Treinamento, Teste e Validação

Métricas de Desempenho

Gestão de Projetos

Gestão de Riscos

Modelagem

Econômico-financeira

Projetos de Infraestrutura

Sistemas Metroferroviários Previsão de Demanda Fatores de risco em projetos de infraestrutura de transporte de passageiros sobre trilhos na modalidade PPP (2013)

Identificação dos principais fatores de risco em projetos de infraestrutura de transporte de passageiros sobre trilhos na modalidade PPP (2014)

Riscos em Projetos Metrô/Trem

Riscos			Linha 4 Metrô SP	Expresso Aeroporto CPTM	TAV SP/RJ
	Operação				
Operação	Manutenção				
	Custos mais elevados que os previstos				
	Demanda menor que a estimada				
	Tarifa insuficiente por não haver atuali- zação adequada				
	Verificação de nível de gratuidade supe- rior ao original projetado				
	Desvalorização cambial				

Demanda de Passageiros

Impacto dos indicadores PIB e Taxa de Desemprego na Demanda de Passageiros da Linha 3 - Vermelha do Metrô-SP (2014)

Demanda = f(PIB, Taxa Desemprego)
Análise Multivariada

GDP and Unemployment Rate Impact in Demand for Subway Passengers in São Paulo (2015)

Demanda de Passageiros

Front-End Loading - FEL

- Estimativas Iniciais de Custos

Decisões nos Portões

FEL-1

Modelos de Previsão de Demanda

Modelos de Previsão de Demanda

Redes Neurais Artificiais (RNA)

Modelo Neural de Previsão

Dissertação

Previsão de demanda na fase de planejamento antecipado de projetos de transporte de passageiros: uma abordagem por redes neurais artificiais (2015)

Modelo Neural de Previsão

Demanda de Passageiros

Procedimento Metodológico

Seleção das variáveis de entrada

Pré-processamento Dados Normalização Reagrupamento

Configuração das RNAs

Treinamento, Teste e Validação

Métricas de desempenho

Seleção das variáveis de entrada 17

Realizada desde 1967 na RMSP

A cada dez anos (50 anos em 2017)

Objetivo: levantar informações sobre as viagens realizadas

Base para os estudos de planejamento de transporte

Em 2007 < 460 Zonas Pesquisa → 517 -

30 mil domicílios → 32 -

Análise Exploratória Pesq. O/D 2007 (Base aberta)

Pesq. O/D RMSP 50 anos

Seleção das variáveis de entrada 18

Figura 31: Percentual de viagens diárias na RMSP em função dos motivos nos anos de 2007 e 2012. Fonte: Adaptado pelo autor de Metrô (2013b).

Aspecto Cultural

Tabela 1: Percentual de viagens/dia por modo e renda.

Renda [R\$] (Base out/2012)	Uso Transporte Coletivo	Uso Transporte Individual
Até 1.244	74,8%	25,2%
1.244 a 2.488	69,6%	30,4%
2.488 a 4.976	51,1%	48,9%
4.976 a 9.330	34,2%	65,8%
Mais de 9.330	24,1%	75,9%

Fonte: Adaptado pelo autor de Metrô (2013b).

Obtenção da variável de saída

Ideia inicial, só usar dados do Metrô-SP

Devido essa empresa atender só a cidade de São Paulo, algumas zonas possuíam várias estações, assim, a quantidade de dados era muito pequena.

Problema Encontrado

Figura 30: 31 zonas de tráfego da Pesquisa de Mobilidade 2012.

Fonte: Metrô (2013b).

Solução do Problema

Utilizar dados dos outros Operadores Grupo de Investigação

Operadoras	Total de Estações	Linhas	Quantidade de Estações
		Linha 1 – Azul	23
Motus CD	61 Estaçãos	Linha 2 – Verde	14
Metrô-SP	61 Estações	Linha 3 – Vermelha	18
		Linha 5 – Lilas	6
ViaQuatro	6 estações	Linha 4 – Amarela	6
		Linha 7 – Rubi	18
	100 estações	Linha 8 – Diamante	22
CPTM		Linha 9 – Esmeralda	18
		Linha 10 – Turquesa	13
		Linha 11 – Coral	16
		Linha 12 – Safira	13

Quadro 16: Linhas e Estações de metrô e trem metropolitano.

Fonte: Desenvolvido pelo autor.

Solução do Problema

Estações/Linhas por Zona de Tráfego

Deodoro, Santa Cecília, República, Anhangabaú, Sé, Pedro II, Brás (5) e Bresser (5)

Paulista, Luz e Republica

Luz

Júlio Prestes

Brás (5) e Moóca (1)

Luz e Brás (5)

Brás (5)

Quadro 18: Estações por linhas pertencentes á zona de tráfego 1

1.664.779

Fonte: Desenvolvido pelo autor baseado em Metrô (2013b).

	abouçous, arimas por aoma ao irarego
Linhas	Estações
1	Vergueiro, São Joaquim, Liberdade, Sé, São Bento, Luz, Tiradentes e Armênia
2	Brigadeiro (16), Trianon Masp (14), Clínicas (14) e consolação (14)

10

11

12

Total de Entrada de Passageiros

Google Earth Pro

$$a = 0,1$$

$$Valor_{normalizado} = (b-a) \frac{Valor-Valor_{Min}}{Valor_{Max} - Valor_{Min}} + a$$

(Lourencetti, 2011)

5.4.4

Computação Numérica

Open Source

Multiplataforma

ANN Toolbox 0.4.2.5

SciLab

Use cases Software Services About us Contact

■ New Visitor ■ tellumony leads

Data analytics: Engineers & Scientists need powerful numerical analysis

With over 100,000+ downloads per month, Scilab is the most open numerical analysis and simulation software on the market.

Flight Data Analysis

The application ALEx based on Scilab (stands for «Analyse des Lanceurs en Exploitation») was created by the French Space Agency CNES in Paris to analyze the measurement realized during the launch of rockets (particularly Ariane 5)

READ THE USE CASE

Neural Network Module

Dados Normalizados

Tabela 3: Dados normalizados das zonas de tráfego 1 até 15.

Zonas	de	tráfego	ı
LIVIII	***		

1	2 (4	5	6	7	8	9	10	11	13	14	15
0,267	0,336	0,485	0,127	0,290	0,203	0,192	0,260	0,397	0,225	0,268	0,100	0,145
0,593	0,310	0,418	0,151	0,201	0,259	0,162	0,232	0,431	0,208	0,234	0,100	0,147
0,900	0,185	0,385	0,184	0,145	0,217	0,100	0,163	0,187	0,125	0,107	0,349	0,440
0,362	0,185	0,223	0,392	0,178	0,247	0,209	0,201	0,100	0,148	0,109	0,891	0,900
0,900	0,116	0,200	0,149	0,133	0,170	0,152	0,130	0,120	0,163	0,124	0,302	0,100

Fonte: Desenvolvido pelo autor

Dados Reagrupados

Tabela 5: Grupos de dados de treinamento, teste e validação.

	Zonas de Tráfego						
	Conjunto de Dados 1	Conjunto de Dados 2	Conjunto de Dados 3				
Treinamento	4, 11, 7, 10, 16, 15, 24, 5, 8, 31, 17 e 6	9, 14, 20, 24, 2, 21, 16, 5, 18, 8, 31 e 17	13, 24, 2, 6, 17, 9, 18, 26, 16, 7, 15 e 27				
Teste	2, 13, 19, 18, 22 e 14	7, 1, 26, 13, 10 e 11	8, 23, 1, 10, 20 e 14				
Validação	26, 1, 20, 27, 9, 23 e 21	4, 15, 22, 27, 23, 19 e 6	19, 31, 22, 4, 5, 21 e 11				

Fonte: desenvolvido pelo autor.

Script: Geradados.sce

→ DadosMSc.sod uma vez

Camadas Escondidas

Qde neurônios por camada

Empírica
(Nagai, 2006)

Função de Ativação

Qualquer função contínua

1 2 1 1 9 24 19 25 20

(Yao, 1997)

Qualquer função matemática

(Kovács, 2002)

Não há regras para determinação Método de tentativa e erro

Heurísticas como ponto de partida para 1ª camada oculta

$$q = \frac{E + S}{2}$$

$$q = 2.E + 1$$

$$q = \sqrt{E \cdot S}$$

$$Q = \# nodos$$

(Freiman, 2004)

E = 4 entradas

S = 1 saída

População

Empregos

Matrículas

Renda per capta

Demanda de Passageiros

$$q = \frac{E+S}{2} = 2.5 \sim 3 \text{ nodos}$$

$$q=2.E+1$$
 = 9 nodos

$$q = \sqrt{E \cdot S}$$
 = 2 nodos

Média das 3 heurísticas = 4,7 ~ 5 nodos 1ª Camada oculta

(Freiman, 2004)

$$Arq-01 \rightarrow N=[4,3,1]$$
 $Arq-02 \rightarrow N=[4,9,1]$
 $Arq-03 \rightarrow N=[4,2,1]$
 $Arq-04 \rightarrow N=[4,5,1]$
 $Arq-05 \rightarrow N=[4,3,2,1]$
 $Arq-06 \rightarrow N=[4,9,5,1]$
 $Arq-07 \rightarrow N=[4,2,1,1]$
 $Arq-08 \rightarrow N=[4,5,3,1]$
 $Arq-09 \rightarrow N=[4,3,6,1]$
 $Arq-10 \rightarrow N=[4,9,18,1]$
 $Arq-11 \rightarrow N=[4,2,4,1]$

 $Arg-12 \rightarrow N=[4,5,10,1]$

4 entradas, 1 camada escondida com 3 nodos, uma saída

4 entradas, 2
camadas
escondidas, a 1^a
com 9 nodos, a 2^a
com 5 nodos, uma
camada de saída

Outras Características

```
Tipo de RNA:
```

Multilayer Perceptron (MLP)

Função de Ativação: Sigmoidal

Algoritmo treinamento:

Back-Propagation

Taxa de Aprendizagem (suavidade de atualização dos pesos)

0,01 -0,50 0,90

Termo Momento (Se necessário, acelera o treinamento)

0,50

(Raia, 2000)

Treinamento

Critérios Tolerância = 0,0001 de Parada # épocas = 10.000

Desempenho — Erro Quadrático Médio

$$EQM = \frac{1}{N} \sum_{i=1}^{N} \left(Demanda_{Real} - Demanda_{Prevista} \right)^{2}$$

Coeficientes

Correlação (r)

Determinação (R2)

Relevância das variáveis Dependentes → Garson Treinamento.sce

Teste.sce

Validacao.sce

Dispersao.sce

Validação

0,003

0,016

4,008

0,005

0,015

4,103

0,002

0,012

3,834

0.001

0,004

2,872

0.003

0,012

3,310

Dados2 Dados3

39

0.003

0,008

2,831

0,001

0,000

0,051

0,002

0,008

0,058

0,003

0,004

0,050

0,002

0,004

0.045

Tabela 29: Arq-12- Tolerância de 0,0001 e nº épocas de 10.000 iterações.

Dados1

47,622

50,380

0.403

35,628

35,732

0,020

35,754

35,864

0,010

36,305

36,792

0,012

34,911

35,484

0,002

Dados3

64,256

64,112

0,148

62,937

63,484

0,066

62,388

62,452

0.042

63,538

63,764

0,060

62,231

62,360

0,005

Treinamento

Dados2

76,263

76,672

0,248

62,790

63.984

0,033

62,631

62,724

0.031

62,658

62,896

0.031

62,378

62,636

0.028

Dados1

74,218

74,496

0,124

61,998

62,792

0,112

62,823

63,044

0,037

62,553

62,728

0.095

62,640

62,704

0.019

 \mathbf{A}

0,0

0,5

0,5

0,9

0,9 0,9

 \mathbf{M}

0,5

0,5

0,9

0,5

Desempenho

Tempo [s]

Tempo [CPU]

EQM [%]

Tempo [s]

Tempo CPU

EOM[%]

Etapas

Teste

Dados2

65,795

66,892

0,360

35,649

35,944

0,013

36,502

37,520

0,014

36,040

36,300

0,011

36,074

36,576

0.013

Dados3

37,203

37,744

0,560

36,416

37,160

0.022

36,295

36,620

0,024

36,793

36,828

0,022

35,655

35,836

0.017

Dados1

0,003

0,008

7,958

0.003

0.008

3,176

0,002

0,008

0,640

0,002

0.008

1,993

0,004

0,012

0,624

Treinamento,	Teste	e	Validação
--------------	-------	---	-----------

Treinamento, Teste e Validação

Treinamento, Teste e Validação

Tabela 30: Valores previstos e coeficientes de correlação e determinação da reta de 45º da melhor Arq-12.

1.3e-01

2e-02

Figura 55: Erro x Época da melhor Arq-12.
Fonte: saída do SciLab.

Figura 56: Gráfico de dispersão - valores reais x previstos da melhor Arq-12.

1.3e-01 1.4e-01 1.5e-01 1.6e-01 1.7e-01 1.8e-01 1.9e-01

Síntese dos Resultados

Tabela 31: Resumo dos melhores resultados obtidos ordenados pelo EQM%

Arquitetura		Taxa de	Conjunto	Temp	Tempos [s]		Coeficientes		
N°	Topologia	Aprendizagem/ Momento	Conjunto de Dados	Treina- mento	Teste Vandação	Validação	Ĭ	R ²	
Arq-12	[4, 5, 10, 1]	0,9/0,9	Dados 3	62,231	35,655	0,045	0,478	0,228	
Arq-06	[4, 9, 5, 1]	0,5/0,5	Dados 3	63,983	36,438	0,050	0,288	0,083	
Arq-05	[4, 3, 2, 1]	0,9/0,5	Dados 3	62,761	36,673	0,053	0,209	0,043	
Arq-09	[4, 3, 6, 1]	0,5/0,9	Dados 3	63,387	36,257	0,053	0,480	0,230	
Arq-07	[4, 2, 1, 1]	0,9/0,5	Dados 3	61,079	35,006	0,057	0,145	0,021	
Arq-11	[4, 2, 4, 1]	0,9/0,5	Dados 3	63,052	36,037	0,061	0,031	0,001	
Arq-08	[4, 5, 3, 1]	0,5/0,5	Dados 3	143,882	35,634	0,064	0,419	0,175	
Arq-03	[4, 2, 1]	0,9/0,9	Dados 3	48,511	28,976	0,078	0,290	0,084	
Arq-10	[4, 9, 18, 1]	0,5/0,5	Dados 3	67,105	38,176	0,109	0,491	0,241	
Arq-02	[4, 9, 1]	0,5/0,9	Dados 3	54,290	38,148	0,138	0,605	0,366	
Arq-01	[4, 3, 1]	0,5/0,9	Dados 3	57,853	39,561	0,189	0,459	0,210	
Arq-04	[4, 5, 1]	0,5/0,5	Dados 3	49,475	29,454	0,543	0,052	0,003	
Fonte: saídas do SciLab, adaptado pelo autor									

Fonte: saídas do SciLab, adaptado pelo autor

Melhores Resultados

Duas camadas Ocultas

Uma camadas Ocultas

Figura 56: Gráfico de dispersão - valores reais x previstos da melhor Arq-12.

$$Arq-12: N=[4,5,10,1]$$

$$EQM% = 0,045$$

Figura 38: Gráfico de dispersão - valores reais x previstos da melhor Arq-03.

$$Arq-03: N=[4,2,1]$$

$$EQM% = 0,078$$

Relevância das Variáveis Entrada

Método de Garson - Arq-03

Figura 58: Relevâncias das variáveis de entradas, segundo método de Garson.

Média = 25,00% e desvio padrão = 3,68%

Fonte: desenvolvido pelo autor.

Relevância das Variáveis Entrada

Arq-03 N=[4,2,1]

Tabela 37: Resumo dos resultados obtidos para as novas arquiteturas.

Arquitetura		Taxa de	Taxa de Conjunto		Tempos [s]		
Nº	N	Momento	De Dados	Treinamento	Teste	Validação	
Arq-031	[3, 2, 1]	0,9/0,9	Dados 3	48,408	28,621	0,086	
Arq-032	[2, 2, 1]	0,9/0,9	Dados 3	50,745	29,766	3,662	

Fonte: saídas do SciLab, adaptado pelo autor.

+10% Arq-03

+4595% Arq-03

PyData São Paulo

Aplicações Avançadas em Data Science

Previsão de Demanda de Passageiros em Sistemas Metroferroviários: uma abordagem por Redes Neurais Artificiais

Vagner Sanches Vasconcelos vsvasconcelos@gmail.com

() GitHub /vsvasconcelos/PyData-SP_17052017

yData Bloomberg