Introduction to Reinforcement Learning

The RL Problem

Rewards

- A **reward** R_t is a scalar feedback signal
- ullet It indicates how well the agent is doing at step t
- The agent's job is to maximize the cumulative reward

Reinforcement learning is based on the reward hypothesis.

Definition (Reward Hypothesis)

All goals can be described by the maximization of the expected cumulative reward.

Sequential Decision Making

- Goal: select actions to maximize total future reward
- Actions may have long-term consequences
- The reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward

Agent and Environment

- At each step *t* the agent:
 - \circ Executes action A_t
 - \circ Receives observation O_t
 - \circ Receives scalar reward R_t
- The environmentL
 - \circ Receives action A_t
 - \circ Emits observation O_{t+1}
 - $\circ \;\;$ Emits scalar reward R_{t+1}
- t increments at environment step

History and State

• The **history** is the sequence of observations, actions, and rewards

$$H_t = O_1, R_1, A_1, \dots, A_{t-1}, O_t, R_t \tag{1}$$

- ullet i.e., the history may contain all observable variables up to time t
- What happens next depends on the history:
 - The agent selects actions
 - The environment selects observations/rewards
- **State** is the information used to determine what happens next
- Formally, state is a function of the history (we can customize this function)

$$S_t = f(H_t) \tag{2}$$

Environment State

- The **environment state** S_t^e is the environment's private representation
- i.e., whatever data the environment uses to pick the next observation/reward
- The environment state is not usually visible to the agent
- $\bullet \;\;$ Even if S^e_t is visible, it may contain irrelevant information

Agent State

- ullet The **agent state** S^a_t is the agent's internal representation
- i.e., whatever information the agent uses to pick the next action
- i.e., it is the information used by reinforcement learning algorithms
- It can be any function of history

$$S_t^a = f(H_t) \tag{3}$$

Information State

• An **information state** (a.k.a. **Markov state**) contains all useful information from the history.

Definition

A state S_t is Markov if and only if

$$\mathbb{P}\left[S_{t+1}|S_t\right] = \mathbb{P}\left[S_{t+1}|S_1,\dots,S_t\right] \tag{4}$$

• "The future is independent of the past given the present"

$$H_{1:t} \to S_t \to H_{t+1:\infty}$$
 (5)

- Once the state is known, the history may be thrown away
- i.e., the state is a sufficient statistic of the future
- The environment state S_t^e is Markov
- The history H_t is Markov

Fully Observable Environments

• Full observability: agent directly observes environment state

$$O_t = S_t^a = S_t^e \tag{6}$$

- Agent state = encironment state = information state
- Formally, this is a Markov decision process (MDP)

Partially Observable Environments

- Partially observability: agent indirectly observes environment
- Now agent state ≠ environment state
- Formally, this is a partially observable Markov decision process (POMDP)
- Agent must construct its own state representation S^a_t , e.g.
 - $\circ \;\;$ Complete history: $S^a_t = H_t$
 - \circ Beliefs of environment state: $S^a_t = \left(\mathbb{P}\left[S^e_t = s^1
 ight], \dots, \mathbb{P}\left[S^e_t = s^n
 ight]
 ight)$
 - \circ Recurrent nerval network: $S_t^a = \sigma \left(S_{t-1}^a W_s + O_t W_o \right)$

Inside An RL Agent

Major Compoennts of An RL Agent

An RL agent may include one or more of these components:

- Policy: agent's behavior function
- Value function: how good is each state and/or action
- Model: agent's representation of the environment

Policy

• A **policy** is the agent's behavior

- It is a map from state to action, e.g.,
 - Deterministic policy: $a = \pi(s)$
 - \circ Stochastic policy: $\pi(a|s) = \mathbb{P}\left[A_t = a|S_t = s
 ight]$

Value Function

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- And therefore to selet between actions, e.g.,

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s \right]$$
 (7)

Model

- A **model** predicts what the environment will do next
- ullet $\mathcal{P}^a_{ss'}$ predicts the next state
- \mathcal{R} predicts the next (immediate) reward

$$\mathcal{P}^{a}_{ss'} = \mathbb{P}\left[S_{t+1} = s' | S_{t} = s, A_{t} = a
ight] \ \mathcal{R}^{a}_{s} = \mathbb{E}\left[R_{t+1} | S_{t} = s, A_{t} = a
ight]$$

Categorizing RL Agents

- Value based
 - No policy (implicit)
 - Value function
- Policy based
 - Policy
 - No value function
- Actor critic
 - Policy
 - Value function
- Model free
 - Policy and/or value function
 - o No model
- Model based
 - Policy and/or value function
 - Model

RL Agent Taxonomy

Problems Within RL

Learning and Planning

Two fundamental problems in sequential decision making

- Reinforcement learning
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy
- Planning
 - A model of the environment is known
 - The agent performs computations with its model (without any external interaction)
 - The agent improves its policy
 - o a.k.a. deliberation, reasoning, introspection, pondering, thought, search

Exploration and Exploitaiton

- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy
- From its experience of the environment
- Without losing too much reward along the way
- **Exploration** finds more information about the environment

- **Exploitation** exploits known information to maximize reward
- It is usually important to explore as well as exploit

Prediction and Control

- **Prediction**: evaluate the future
 - Given a policy
 - What is the value function for the uniform random policy?
- **Control**: optimize the future
 - Find the best policy
 - What is the optimal value function over all possible policies?
 - What is the optimal policy?