

ECE2050 Digital Logic and Systems Tutorial 8: Shift Registers

Yiyang Li

Contact: 222010039@link.cuhk.edu.cn

Office Hour: Tue. 11:00-12:00, ZXB107

Review: Two Basic Functions of Shift Registers

■ Data storage

Review: Two Basic Functions of Shift Registers

■ Data movement

Review: 8-Bit Serial In/Parallel Out Shift Register

■ 74HC164: Fixed-function IC shift register with serial in/parallel out

- Two gated serial inputs: A and B, & an asynchronous clear (CLR) input
- Parallel outputs: Q₀ ~ Q₇.

Review: 4-Bit Bidirectional Universal Shift Register

S ₀	S ₁	Func.	
HIGH	HIGH	Parallel Loading	
HIGH	LOW	Shift right	
LOW	HIGH	Shift left	
LOW	LOW	Inhibit	

Question 1: 8-Bit Bidirectional Shift Register

■ Q1: Combine two 74HC194 to a Bidirectional Shift Register with 8 bit.

Question 1: 8-Bit Bidirectional Shift Register

Parallel input: A0-A7
Parallel output: Y0-Y7
Shift right: new SR SER
Shift left: new SL SER

Question 2: Sequential Signal Generator

■ Q2: Try to design a signal generator that can produce 00011101 sequentially, using one 74HC194 and one MUX.

Question 2: Sequential Signal Generator

Hints:

- Sequence length is 8, and it is possible to generate a serial sequence with a 3-bit shift register. Why?
- Use 74HC194, but three output ports will be enough.
- Use a MUX to help select input.

01

 $D_0=1$

0

 $\mathbf{D}_1 = \mathbf{0}$

11

10

Q_0^n	Q_1^n	Q_2^n	Q_0^{n+1}	Q_1^{n+1}	Q_2^{n+1}	F (D _{SR})
0	0	0	1	0	0	1
1	0	0	1	1	0	1
1	1	0	1	1	1	1
1	1	1	0	1	1	0
0	1	1	1	0	1	1
1	0	1	0	1	0	0
0	1	0	0	0	1	0
0	0	1	0	0	0	0

Question 2: Sequential Signal Generator

Question 3: Johnson counter

■ Q3: Determine the output pulses for this counter circuit, known as a Johnson counter, assuming that all Q outputs begin in the low state.

(a) Four-bit Johnson counter

Question 3: Johnson counter

TABLE 8-3 Four-bit Johnson sequence.

Clock Pulse	Q_0	Q_1	Q_2	Q_3
0	0	0	0	0 ←
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
7	0	0	0	1—

Thank You!