Package 'gwzinbr'

June 10, 2024

Type Package

Title Geographically Weighted Zero Inflated Negative Binomial Regression

Version 0.1.0

Maintainer Jéssica Vasconcelos < jehh.vasconcelosabreu@gmail.com>

Description Fits a geographically weighted regression model using zero inflated probability distributions. Has the zero inflated negative binomial distribution (zinb) as default, but also accepts the zero inflated Poisson (zip), negative binomial (negbin) and Poisson distributions. Can also fit the global versions of each regression model.

Da Silva, A. R. & De Sousa, M. D. R. (2023). ``Geographically weighted zero-inflated negative binomial regression: A general case for count data", Spatial Statistics <doi:10.1016/j.spasta.2023.100790>.

Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1996). ``Geographically weighted regression: a method for exploring spatial nonstationarity", Geographical Analysis, <doi:10.1111/j.1538-4632.1996.tb00936.x>.

Yau, K. K. W., Wang, K., & Lee, A. H. (2003). `Zero-inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros", Biometrical Journal, <doi:10.1002/bimj.200390024>.

License GPL-3 Encoding UTF-8

Imports sp

RoxygenNote 7.3.1

LazyData true

NeedsCompilation no

Author Jéssica Vasconcelos [aut, cre], Juliana Rosa [aut], Alan da Silva [aut]

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2024-06-10 17:20:06 UTC

2 Golden

Contents

	Golden	
	outhkorea_covid19	
Index		8
		_

Golden

Golden Section Search

Description

Runs a Golden Section Search (GSS) algorithm for determining the optimum bandwidth for the geographically weighted zero inflated negative binomial regression and other spatial regression models.

Usage

```
Golden(
  data,
  formula,
 xvarinf = NULL,
 weight = NULL,
  lat,
  long,
  globalmin = TRUE,
 method,
 model = "zinb",
 bandwidth = "cv",
 offset = NULL,
  force = FALSE,
 maxg = 100,
  distancekm = FALSE
)
```

Arguments

data name of the dataset. formula regression model formula as in 1m. xvarinf name of the covariates for the zero inflated part of the model, default value is NULL. name of the variable containing the sample weights, default value is NULL. weight name of the variable containing the latitudes in the dataset. lat name of the variable containing the longitudes in the dataset. long logical value indicating whether to find a global minimum in the optimization globalmin process, default value is TRUE.

Golden 3

method	indicates the method to be used for the bandwidth calculation (adaptive_bsq or fixed_g).
model	indicates the model to be used for the regression (zinb, zip, negbin, poisson), default value is "zinb".
bandwidth	indicates the criterion to be used for the bandwidth calculation (cv, aic), default value is "cv".
offset	name of the variable containing the offset values, if null then is set to a vector of zeros, default value is NULL.
force	logical value indicating whether to force the indicated model even if it is not the best fit for the data, default value is FALSE.
maxg	integer indicating the maximum number of iterations for the zero inflated part of the model, default value is 100.
distancekm	logical value indicating whether to calculate the distances in km, default value is FALSE.

Value

A list that contains:

- h_values Initial values tested for the bandwidth.
- iterations All bandwidth values tested and respective cv/aic results for each Golden Section Search executed.
- gss_results Optimum bandwidth found and respective cv/aic.
- min_bandwidth Optimum bandwidth.

Examples

```
## Data

data(southkorea_covid19)

## GSS algorithm

gss <- Golden(data = southkorea_covid19[1:122, ],
formula = n_covid1~diff_sd,
xvarinf = NULL, weight = NULL, lat = "y", long = "x",
offset = NULL, model = "poisson", method = "fixed_g",
bandwidth = "cv", globalmin = FALSE, distancekm = FALSE,
force=FALSE)

## Bandwidth
gss$min_bandwidth

## Iterations
gss$iterations</pre>
```

4 gwzinbr

gwzinbr

Geographically Weighted Zero Inflated Negative Binomial Regression

Description

Fits a geographically weighted regression model using zero inflated probability distributions. Has the zero inflated negative binomial distribution (zinb) as default, but also accepts the zero inflated Poisson (zip), negative binomial (negbin) and Poisson distributions. Can also fit the global versions of each regression model.

Usage

```
gwzinbr(
  data,
  formula,
  xvarinf = NULL,
 weight = NULL,
  lat,
  long,
  grid = NULL,
 method,
 model = "zinb",
 offset = NULL,
  distancekm = FALSE,
  force = FALSE,
  int_inf = TRUE,
 maxg = 100,
  h = NULL
)
```

Arguments

data	name of the dataset.
formula	regression model formula as in 1m.
xvarinf	name of the covariates for the zero inflated part of the model, default value is NULL .
weight	name of the variable containing the sample weights, default value is NULL.
lat	name of the variable containing the latitudes in the dataset.
long	name of the variable containing the longitudes in the dataset.
grid	name of the dataset containing the coordinates for the model locations, default value is NULL.
method	indicates the method to be used for the bandwidth calculation (adaptive_bsq or fixed_g).
mode1	indicates the model to be used for the regression (zinb, zip, negbin, poisson), default value is "zinb".

gwzinbr 5

offset	name of the variable containing the offset values, if null then is set to a vector of zeros, default value is NULL.
distancekm	logical value indicating whether to calculate the distances in km, default value is $FALSE$.
force	logical value indicating whether to force the indicated model even if it is not the best fit for the data, default value is FALSE.
int_inf	logical value indicating whether to include an intercept in the zero inflated part of the model, default value is TRUE.
maxg	integer indicating the maximum number of iterations for the zero inflated part of the model, default value is 100.
h	integer indicating the bandwidth value (obtained from golden()), default value is NULL.

Value

A list that contains:

- bandwidth Bandwidth value.
- measures Goodness of fit statistics and other measures.
- qntls_gwr_param_estimates Quantiles of GWR parameter estimates.
- descript_stats_gwr_param_estimates Descriptive statistics of GWR parameter estimates.
- t_test_gwr_param_estimates Results for the parameters significance t tests.
- qntls_gwr_se Quantiles of GWR standard errors.
- descript_stats_gwr_se Descriptive statistics of GWR standard errors.
- qntls_gwr_zero_infl_param_estimates Quantiles of GWR zero inflated parameter estimates.
- descript_stats_gwr_zero_infl_param_estimates Descriptive statistics of GWR zero inflated parameter estimates.
- t_test_gwr_zero_infl_param_estimates Results for the zero inflated parameters significance t tests.
- qntls_gwr_zero_infl_se Quantiles of GWR zero inflated standard errors.
- descript_stats_gwr_zero_infl_se Descriptive statistics of GWR zero inflated standard errors.
- non_stationary_test Results for the Non-Stationary Test for GWR parameter estimates.
- non_stationary_test_zero_infl Results for the Non-Stationary Test for GWR zero inflated parameter estimates.
- global_param_estimates Parameter estimates for the global model.
- analysis_max_like_zero_infl_param_estimated Analysis of Maximum Likelihood Zero Inflation Parameter Estimates.
- analysis_max_like_gof_measures Goodness of fit measures for the Analysis of Maximum Likelihood Zero Inflation Parameter Estimates.
- variance_covariance_matrix Variance-covariance matrix.

6 southkorea_covid19

- residuals Model residuals.
- param_estimates_grid GWR parameter estimates using grid dataset.
- alpha_estimates Estimates for the alpha parameter (for zinb and negbin).
- gwr_param_estimates GWR parameter estimates.

Examples

```
## Data

data(southkorea_covid19)

## Model

mod <- gwzinbr(data = southkorea_covid19,
    formula = n_covid1~Morbidity+high_sch_p+Healthcare_access+
    diff_sd+Crowding+Migration+Health_behavior,
    lat = "x", long = "y", offset = "ln_total", method = "adaptive_bsq",
    model = "negbin", distancekm = TRUE, h=230, force=TRUE)

## Bandwidth
    mod$bandwidth

## Goodness of fit measures
    mod$measures</pre>
```

southkorea_covid19

South Korea COVID-19 dataset

Description

COVID-19 data for South Korea from January 20th 2019 to March 20th 2020.

Usage

```
data(southkorea_covid19)
```

Format

A data frame with with 244 observations on the following 11 variables:

- n_covid1 number of COVID-19 cases in the early phase of the pandemic (prequarantine)
- Morbidity area morbidity rate
- high_sch_p percentage of high school educated people
- Healthcare_access access to healthcare

southkorea_covid19 7

- diff_sd difficulty to social distancing
- Crowding area crowding
- Migration population mobility
- Health_behavior an index calculated based on habits as alcohol drinking, current smoking, etc
- x a numeric vector of x coordinates
- y a numeric vector of y coordinates
- ln_total log transformation of the province's total population

Index