

2009 Mathematical Methods 3/4 Trial Exam 1 Solutions Free download and print from www.itute.com ©Copyright 2009 itute.com

1a. The x^5 term of P(x) is ${}^nC_5(1^{n-5})(-x)^5 = -{}^nC_5x^5$. The coefficient is $-{}^nC_5$.

1b.
$$(1-x)^n = P(x)$$
, $\frac{d}{dx}P(x) = -n(1-x)^{n-1}$,
 $f(x) = \frac{P(x)}{\frac{d}{dx}P(x)} = \frac{(1-x)^n}{-n(1-x)^{n-1}} = \frac{1-x}{-n}$, $\therefore f(2) = \frac{1-2}{-n} = \frac{1}{n}$

2a. The graph of g(x) is the reflection in the *x*-axis of the graph of $\frac{1}{2}|x|$, followed by horizontal and vertical translations of 2 units each. The equation of g(x) is $y = -\frac{1}{2}|x-2|+2$.

2b.

3.
$$uv = \frac{x^4 - 1}{x^3 - x^2 + x - 1} = \frac{(x^2 - 1)(x^2 + 1)}{x^2(x - 1) + 1(x - 1)}$$

= $\frac{(x + 1)(x - 1)(x^2 + 1)}{(x - 1)(x^2 + 1)} = x + 1$ and $x \ne 1$.

4.
$$\cos\left(\frac{2x}{3}\right) = \sqrt{3}\sin\left(\frac{2x}{3}\right), \frac{\sin\left(\frac{2x}{3}\right)}{\cos\left(\frac{2x}{3}\right)} = \frac{1}{\sqrt{3}}, \therefore \tan\left(\frac{2x}{3}\right) = \frac{1}{\sqrt{3}},$$

and given $-\frac{3\pi}{2} \le x \le \frac{3\pi}{2}$, $\therefore -\pi \le \frac{2x}{3} \le \pi$.

Hence $\frac{2x}{3} = -\frac{5\pi}{6}$, $\frac{\pi}{6}$. $\therefore x = -\frac{5\pi}{4}$, $\frac{\pi}{4}$.

5.
$$f(x+h) \approx f(x) + hf'(x)$$
, $\frac{f(x+h) - f(x)}{h} \approx f'(x)$, $\frac{-0.01 - 0.28}{p - 2.7} \approx -2.9$, $\therefore p \approx 2.8$.

6a.
$$f(x) = \frac{1}{\sqrt{2x-1}}$$
, $g(x) = e^{-x}$.

$$\therefore f(g(x)) = \frac{1}{\sqrt{2g(x)-1}} = \frac{1}{\sqrt{2e^{-x}-1}}$$
, $\therefore 2e^{-x} - 1 > 0$.

Hence $e^{-x} > \frac{1}{2}$, $e^x < 2$, $x < \log_e 2$.

The domain is $(-\infty, \log_e 2)$.

6b.
$$g(f(x)) = e^{\frac{1}{\sqrt{2x-1}}}, \therefore 2x-1 > 0, x > \frac{1}{2}$$
. $g(f(x))$ is a increasing function.

As $x \to \frac{1}{2}$, $g(f(x)) \to 0^+$.

As $x \to +\infty$, $g(f(x)) \to 1^-$.

The range is (0,1).

6c.
$$f(x) = \frac{1}{\sqrt{2x-1}}$$
, $(f(x))^{-1} = \sqrt{2x-1}$, $g((f(x))^{-1}) = e^{-\sqrt{2x-1}}$, $(g((f(x))^{-1}))^{-1} = e^{\sqrt{2x-1}}$.
$$\frac{d}{dx} (g((f(x))^{-1}))^{-1} = \frac{d}{dx} e^{\sqrt{2x-1}} = e^{\sqrt{2x-1}} \times \frac{1}{\sqrt{2x-1}} = \frac{e^{\sqrt{2x-1}}}{\sqrt{2x-1}}$$
.

7.
$$\int (\log_{e} 2x) dx - \log_{e} (2x)^{e} = \int ef(x) dx,$$

$$\int ef(x) dx - \int (\log_{e} 2x) dx = -\log_{e} (2x)^{e},$$

$$\int (ef(x) - \log_{e} 2x) dx = -e \log_{e} (2x),$$

$$ef(x) - \log_{e} 2x = \frac{d}{dx} (-e \log_{e} (2x)),$$

$$ef(x) - \log_{e} 2x = -\frac{e}{x},$$

$$\therefore ef(e) - \log_{e} 2e = -\frac{e}{e},$$

$$ef(e) - \log_{e} 2 - 1 = -1.$$

$$\therefore f(e) = \frac{\log_{e} 2}{e}.$$

8a.
$$\Pr(X \le a) + \Pr(X \ge b) = 1 - \Pr(a < x < b) = 1 - 0.95 = 0.05$$
.

8b. p = 0.5, Bi(n,0.5) is symmetric about the mean μ . $\sigma = \sqrt{np(1-p)} = \sqrt{0.25n} = 0.5\sqrt{n}$. For smallest value of b-a, $a = \mu - 2\sigma$ and $b = \mu + 2\sigma$. $\therefore b-a = 4\sigma = 2\sqrt{n}$.

9a.
$$\Pr(X < a \mid X > b) = \frac{\Pr(X < a \cap X > b)}{\Pr(X > b)} = \frac{\Pr(b < X < a)}{\Pr(X > b)}$$
$$= \frac{\Pr(X > b) - \Pr(X > a)}{\Pr(X > b)}$$
$$= \frac{0.2 - 0.1}{0.2} = 0.5.$$

9b. Pr(X < a) = 0.9 and Pr(X > b) = 0.2, $\therefore b < a$. If X > a, then X cannot be < b. Hence $Pr(X < b \mid X > a) = 0$.

10a. For
$$0 \le x \le \pi$$
, $f'(x) = \frac{1}{\pi} (\sin(x) + x \cos x)$ and $f'(m_o) = 0$. $\therefore \frac{1}{\pi} (\sin(m_o) + m_o \cos(m_o)) = 0$.
Hence $\sin(m_o) + m_o \cos(m_o) = 0$.

10b. Given
$$\frac{d}{dx}(x\cos x) = \cos x - x\sin x$$
,
 $\therefore x\sin x = \cos x - \frac{d}{dx}(x\cos x)$.
Since $\int_{0}^{m_e} \frac{1}{\pi} x\sin x dx = \frac{1}{2}$,
 $\therefore \int_{0}^{m_e} (\cos x - \frac{d}{dx}(x\cos x)) dx = \frac{\pi}{2}$,
 $\therefore \int_{0}^{m_e} \cos x dx - \int_{0}^{m_e} (\frac{d}{dx}(x\cos x)) dx = \frac{\pi}{2}$,
 $\therefore [\sin x]_{0}^{m_e} - [x\cos x]_{0}^{m_e} = \frac{\pi}{2}$.
Hence $\sin(m_e) - m_e \cos(m_e) = \frac{\pi}{2}$.

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors