Lecture 4

Binary products

In a category \mathbb{C} , a product for objects $X, Y \in \mathbb{C}$ is a diagram $X \stackrel{\pi_1}{\longleftarrow} P \stackrel{\pi_2}{\longrightarrow} Y$ with the universal property:

For all $X \stackrel{f}{\leftarrow} Z \stackrel{g}{\rightarrow} Y$ in C, there is a unique C-morphism $h: Z \rightarrow P$ such that the following diagram commutes in C:

Binary products

In a category \mathbb{C} , a product for objects $X, Y \in \mathbb{C}$ is a diagram $X \stackrel{\pi_1}{\longleftarrow} P \stackrel{\pi_2}{\longrightarrow} Y$ with the universal property:

For all $X \stackrel{f}{\leftarrow} Z \stackrel{g}{\rightarrow} Y$ in \mathbb{C} , there is a unique \mathbb{C} -morphism $h: Z \rightarrow P$ such that $f = \pi_1 \circ h$ and $g = \pi_2 \circ h$

So (P, π_1, π_2) is a terminal object in the category with

- ▶ objects: (Z, f, g) where $X \stackrel{f}{\leftarrow} Z \stackrel{g}{\rightarrow} Y$ in C
- morphisms $h: (Z_1, f_1, g_1) \to (Z_2, f_2, g_2)$ are $h \in \mathbb{C}(Z_1, Z_2)$ such that $f_1 = f_2 \circ h$ and $g_1 = g_2 \circ h$
- composition and identities as in C

So if it exists, the binary product of two objects in a category is unique up to (unique) isomophism.

Binary products

In a category \mathbb{C} , a product for objects $X, Y \in \mathbb{C}$ is a diagram $X \stackrel{\pi_1}{\longleftarrow} P \stackrel{\pi_2}{\longrightarrow} Y$ with the universal property:

For all $X \stackrel{f}{\leftarrow} Z \stackrel{g}{\rightarrow} Y$ in \mathbb{C} , there is a unique \mathbb{C} -morphism $h: Z \rightarrow P$ such that $f = \pi_1 \circ h$ and $g = \pi_2 \circ h$

N.B. products of objects in a category do not always exist. For example in the category

$$id_0$$
 0 1 id_1 two objects, no non-identity morphisms

the objects 0 and 1 do not have a product, because there is no diagram of the form $0 \leftarrow ? \rightarrow 1$ in this category.

Notation for binary products

Assuming \mathbb{C} has binary products of objects, the product of $X, Y \in \mathbb{C}$ is written

$$X \xleftarrow{\pi_1} X \times Y \xrightarrow{\pi_2} Y$$

and given $X \stackrel{f}{\leftarrow} Z \stackrel{g}{\rightarrow} Y$, the unique $h: Z \rightarrow X \times Y$ with $\pi_1 \circ h = f$ and $\pi_2 \circ h = g$ is written

$$\langle f, g \rangle : Z \to X \times Y$$

In Set, category-theoretic products are given by the usual cartesian product of sets (set of all ordered pairs)

$$X \times Y = \{(x, y) \mid x \in X \land y \in Y\}$$

$$\pi_1(x, y) = x$$

$$\pi_2(x, y) = y$$

because...

In Preord, can take product of (P_1, \sqsubseteq_1) and (P_2, \sqsubseteq_2) to be

In Preord, can take product of (P_1, \sqsubseteq_1) and (P_2, \sqsubseteq_2) to be

The projection functions $P_1 \stackrel{\pi_1}{\longleftarrow} P_1 \times P_2 \stackrel{\pi_2}{\longrightarrow} P_2$ are monotone for this pre-order on $P_1 \times P_2$ and have the universal property needed for a product in **Preord** (check).

In Mon, can take product of (M_1, \cdot_1, e_1) and (M_2, \cdot_2, e_2) to be

In Mon, can take product of (M_1, \cdot_1, e_1) and (M_2, \cdot_2, e_2) to be

The projection functions $M_1 \stackrel{\pi_1}{\longleftarrow} M_1 \times M_2 \stackrel{\pi_2}{\longrightarrow} M_2$ are monoid morphisms for this monoid structure on $M_1 \times M_2$ and have the universal property needed for a product in Mon (check).

Recall that each pre-ordered set (P, \sqsubseteq) determines a category \mathbb{C}_P .

Given $p, q \in P = \text{obj } \mathbb{C}_P$, the product $p \times q$ (if it exists) is a greatest lower bound (or glb, or meet) for p and q in (P, \sqsubseteq) :

lower bound:

$$p \times q \sqsubseteq p \land p \times q \sqsubseteq q$$

greatest among all lower bounds:

$$\forall r \in P, \ r \sqsubseteq p \land r \sqsubseteq q \implies r \sqsubseteq p \times q$$

Notation: glbs are often written $p \land q$ or $p \sqcap q$

Duality

A binary coproduct of two objects in a category C is their product in the category C^{op}.

Duality

A binary coproduct of two objects in a category C is their product in the category C^{op}.

Thus the coproduct of $X, Y \in \mathbb{C}$ if it exists, is a diagram $X \xrightarrow{\text{inl}} X + Y \xleftarrow{\text{inr}} Y$ with the universal property: $\forall (X \xrightarrow{f} Z \xleftarrow{g} Y),$ $\exists ! (X + Y \xrightarrow{h} Z),$ $f = h \circ \text{inl} \land g = h \circ \text{inr}$

Duality

A binary coproduct of two objects in a category C is their product in the category C^{op}.

E.g. in **Set**, the coproduct of *X* and *Y*

$$X \xrightarrow{\text{inl}} X + Y \xleftarrow{\text{inr}} Y$$

is given by their disjoint union (tagged sum)

$$X + Y = \{(0, x) \mid x \in X\} \cup \{(1, y) \mid y \in Y\}$$

 $inl(x) = (0, x)$
 $inr(y) = (1, y)$

(prove this)