Interpretable Machine Learning

Shapley Values

Learning goals

- Learn what game theory is
- Understand the concept behind cooperative games
- Understand the Shapley value in game theory

 Game theory is the study of strategic games between players, "game" refers to any series of interactions between actors / agents with gains and losses of quantifiable utility value

- Game theory is the study of strategic games between players, "game" refers to any series of interactions between actors / agents with gains and losses of quantifiable utility value
- Cooperative games: For all possible players $P = \{1, \dots, p\}$, each subset of players $S \subseteq P$ forms a coalition – each coalition S achieves a certain payout

- Game theory is the study of strategic games between players, "game" refers to any series of interactions between actors / agents with gains and losses of quantifiable utility value
- Cooperative games: For all possible players $P = \{1, \dots, p\}$, each subset of players $S \subseteq P$ forms a coalition – each coalition S achieves a certain payout
- A value function $v: 2^{|P|} \to \mathbb{R}$ maps all $2^{|P|}$ possible coalitions to their payout (or gain)

- Game theory is the study of strategic games between players, "game" refers to any series of interactions between actors / agents with gains and losses of quantifiable utility value
- Cooperative games: For all possible players $P = \{1, \dots, p\}$, each subset of players $S \subseteq P$ forms a coalition – each coalition S achieves a certain payout
- A value function $v: 2^{|P|} \mapsto \mathbb{R}$ maps all $2^{|P|}$ possible coalitions to their payout (or gain)
- v(S) is the payout of coalition $S \subseteq P$ (payout of empty coalition must be zero: $v(\emptyset) = 0$)

- Game theory is the study of strategic games between players, "game" refers to any series of interactions between actors / agents with gains and losses of quantifiable utility value
- Cooperative games: For all possible players $P = \{1, \dots, p\}$, each subset of players $S \subseteq P$ forms a coalition – each coalition S achieves a certain payout
- A value function $v: 2^{|P|} \mapsto \mathbb{R}$ maps all $2^{|P|}$ possible coalitions to their payout (or gain)
- v(S) is the payout of coalition $S \subseteq P$ (payout of empty coalition must be zero: $v(\emptyset) = 0$)
- As some players contribute more than others, we want to fairly divide the total achievable payout v(P) among the players according to a player's individual contribution

- Game theory is the study of strategic games between players, "game" refers to any series of interactions between actors / agents with gains and losses of quantifiable utility value
- Cooperative games: For all possible players $P = \{1, \dots, p\}$, each subset of players $S \subseteq P$ forms a coalition – each coalition S achieves a certain payout
- A value function $v: 2^{|P|} \mapsto \mathbb{R}$ maps all $2^{|P|}$ possible coalitions to their payout (or gain)
- v(S) is the payout of coalition $S \subseteq P$ (payout of empty coalition must be zero: $v(\emptyset) = 0$)
- As some players contribute more than others, we want to fairly divide the total achievable payout v(P) among the players according to a player's individual contribution
- We call the individual payout per player ϕ_i , $j \in P$ (later: Shapley value)

COOPERATIVE GAMES WITHOUT INTERACTIONS

COOPERATIVE GAMES WITHOUT INTERACTIONS

 \Rightarrow Fair Payouts are Trivial Without Interactions

COOPERATIVE GAMES WITH INTERACTIONS

⇒ Unclear how to fairly distribute payouts when players interact

COOPERATIVE GAMES WITH INTERACTIONS

Question: What is a fair payout for player "yellow"?

Idea: Compute marginal contribution of the player of interest across different coalitions

- Compute the total payout of each coalition
- Compute difference in payouts for each coalition with and without player "yellow" (= marginal contribution)
- Average marginal contributions using appropriate weights

COOPERATIVE GAMES WITH INTERACTIONS

Question: What is a fair payout for player "yellow"?

Idea: Compute marginal contribution of the player of interest across different coalitions

- Compute the total payout of each coalition
- Compute difference in payouts for each coalition with and without player "yellow" (= marginal contribution)
- Average marginal contributions using appropriate weights

Note: Each marginal contribution is weighted w.r.t. number of possible orders of its coalition \rightsquigarrow More players in $S \Rightarrow$ more orderings of S

SHAPLEY VALUE - SET DEFINITION

This idea refers to the **Shapley value** which assigns a payout value to each player according to its marginal contribution in all possible coalitions.

• Let $v(S \cup \{j\}) - v(S)$ be the marginal contribution of player j to coalition $S \rightsquigarrow$ measures how much a player j increases the value of a coalition S

SHAPLEY VALUE - SET DEFINITION

This idea refers to the **Shapley value** which assigns a payout value to each player according to its marginal contribution in all possible coalitions.

- Let $v(S \cup \{j\}) v(S)$ be the marginal contribution of player j to coalition $S \rightarrow$ measures how much a player j increases the value of a coalition S
- Average marginal contributions for all possible coalitions $S \subseteq P \setminus \{j\}$ \leadsto order of how players join the coalition matters \Rightarrow different weights depending on size of S

SHAPLEY VALUE - SET DEFINITION

This idea refers to the **Shapley value** which assigns a payout value to each player according to its marginal contribution in all possible coalitions.

- Let $v(S \cup \{j\}) v(S)$ be the marginal contribution of player j to coalition $S \rightarrow$ measures how much a player j increases the value of a coalition S
- Average marginal contributions for all possible coalitions S ⊆ P \ {j}
 → order of how players join the coalition matters ⇒ different weights depending on size of S
- Shapley value via set definition (weighting via multinomial coefficient):

$$\phi_j = \sum_{S \subseteq P \setminus \{j\}} rac{|S|!(|P| - |S| - 1)!}{|P|!} (v(S \cup \{j\}) - v(S))$$

SHAPLEY VALUE - ORDER DEFINITION

The Shapley value was introduced as summation over sets $S \subseteq P \setminus \{j\}$, but it can be equivalently defined as a summation of all orders of players:

$$\phi_j = rac{1}{|P|!} \sum_{ au \in \Pi} (v(S_j^{ au} \cup \{j\}) - v(S_j^{ au}))$$

• Π : All possible orders of players (we have |P|! in total)

SHAPLEY VALUE - ORDER DEFINITION

The Shapley value was introduced as summation over sets $S \subseteq P \setminus \{j\}$, but it can be equivalently defined as a summation of all orders of players:

$$\phi_j = rac{1}{|P|!} \sum_{ au \in \Pi} (v(\mathcal{S}_j^ au \cup \{j\}) - v(\mathcal{S}_j^ au))$$

- Π : All possible orders of players (we have |P|! in total)
- S_j^{τ} : Set of players before player j in order $\tau = (\tau^{(1)}, \dots, \tau^{(p)})$ where $\tau^{(i)}$ is i-th element \Rightarrow Example: Players $1, 2, 3 \Rightarrow \Pi = \{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)\}$ \Rightarrow For order $\tau = (2, 1, 3)$ and player of interest $j = 3 \Rightarrow S_j^{\tau} = \{2, 1\}$
 - ightarrow For order au=(3,1,2) and player of interest $j=1\Rightarrow \hat{S_j^{ au}}=\{3\}$
 - \leadsto For order $\tau=(3,1,2)$ and player of interest $j=3\Rightarrow S_i^{\tau}=\emptyset$

SHAPLEY VALUE - ORDER DEFINITION

The Shapley value was introduced as summation over sets $S \subseteq P \setminus \{j\}$, but it can be equivalently defined as a summation of all orders of players:

$$\phi_j = rac{1}{|P|!} \sum_{ au \in \Pi} (v(S_j^{ au} \cup \{j\}) - v(S_j^{ au}))$$

- Π : All possible orders of players (we have |P|! in total)
- S_j^{τ} : Set of players before player j in order $\tau = (\tau^{(1)}, \dots, \tau^{(p)})$ where $\tau^{(i)}$ is i-th element \Rightarrow Example: Players $1, 2, 3 \Rightarrow \Pi = \{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)\}$ \rightsquigarrow For order $\tau = (2, 1, 3)$ and player of interest $j = 3 \Rightarrow S_j^{\tau} = \{2, 1\}$ \rightsquigarrow For order $\tau = (3, 1, 2)$ and player of interest $j = 1 \Rightarrow S_j^{\tau} = \{3\}$ \rightsquigarrow For order $\tau = (3, 1, 2)$ and player of interest $j = 3 \Rightarrow S_j^{\tau} = \emptyset$
- Order definition: Marginal contribution of orders that yield set $S = \{1, 2\}$ is summed twice \rightsquigarrow In set definition, it has the weight $\frac{2!(3-2-1)!}{3!} = \frac{2\cdot 0!}{6} = \frac{2}{6}$

WEIGHTS FOR MARGINAL CONTRIBUTION - ILLUSTRATION

WEIGHTS FOR MARGINAL CONTRIBUTION - ILLUSTRATION

WEIGHTS FOR MARGINAL CONTRIBUTION - ILLUSTRATION

- Shapley value of player *j* is the marginal contribution to the value when it enters any coalition
- Produce all possible joining orders of player coalitions

- Shapley value of player *j* is the marginal contribution to the value when it enters any coalition
- Produce all possible joining orders of player coalitions
- Measure and average the difference in payout after player 1 enters the coalition

- Shapley value of player *j* is the marginal contribution to the value when it enters any coalition
- Produce all possible joining orders of player coalitions
- Measure and average the difference in payout after player 2 enters the coalition

- Shapley value of player *j* is the marginal contribution to the value when it enters any coalition
- Produce all possible joining orders of player coalitions
- Measure and average the difference in payout after player 3 enters the coalition

- Shapley value of player j is the marginal contribution to the value when it enters any coalition
- Produce all possible joining orders of player coalitions

Why is this a fair payout solution? One possibility to define fair payouts are the following axioms for a given value function v:

• **Efficiency**: Player contributions add up to the total payout of the game: $\sum_{j=1}^{p} \phi_j = v(P)$

Why is this a fair payout solution?

One possibility to define fair payouts are the following axioms for a given value function v:

- **Efficiency**: Player contributions add up to the total payout of the game: $\sum_{j=1}^{p} \phi_j = v(P)$
- **Symmetry**: Players $j, k \in P$ who contribute the same to any coalition get the same payout: If $v(S \cup \{j\}) = v(S \cup \{k\})$ for all $S \subseteq P \setminus \{j, k\}$, then $\phi_j = \phi_k$

Why is this a fair payout solution?

One possibility to define fair payouts are the following axioms for a given value function v:

- **Efficiency**: Player contributions add up to the total payout of the game: $\sum_{j=1}^{p} \phi_j = v(P)$
- **Symmetry**: Players $j, k \in P$ who contribute the same to any coalition get the same payout: If $v(S \cup \{j\}) = v(S \cup \{k\})$ for all $S \subseteq P \setminus \{j, k\}$, then $\phi_j = \phi_k$
- **Dummy/Null Player**: Payout is 0 for players who don't contribute to the value of any coalition: If $v(S \cup \{j\}) = v(S) \ \forall \ S \subseteq P \setminus \{j\}$, then $\phi_j = 0$

Why is this a fair payout solution?

One possibility to define fair payouts are the following axioms for a given value function v:

- **Efficiency**: Player contributions add up to the total payout of the game: $\sum_{j=1}^{p} \phi_j = v(P)$
- Symmetry: Players $j, k \in P$ who contribute the same to any coalition get the same payout: If $v(S \cup \{j\}) = v(S \cup \{k\})$ for all $S \subseteq P \setminus \{j, k\}$, then $\phi_j = \phi_k$
- **Dummy/Null Player**: Payout is 0 for players who don't contribute to the value of any coalition: If $v(S \cup \{j\}) = v(S) \ \forall \ S \subseteq P \setminus \{j\}$, then $\phi_j = 0$
- Additivity: For a game v with combined payouts $v(S) = v_1(S) + v_2(S)$, the payout is the sum of payouts: $\phi_{j,v} = \phi_{j,v_1} + \phi_{j,v_2}$

Interpretable Machine Learning

Shapley Values for Local Explanations

Learning goals

- See model predictions as a cooperative game
- Transfer the Shapley value concept from game theory to machine learning

• Game: Make prediction $\hat{f}(x_1, x_2, \dots, x_p)$ for a single observation **x**

- Game: Make prediction $\hat{f}(x_1, x_2, \dots, x_p)$ for a single observation **x**
- Players: Features $x_i, j \in \{1, \dots, p\}$ which cooperate to produce a prediction
 - --- How can we make a prediction with a subset of features without changing the model?
 - $ightharpoonup ext{PD function: } \hat{f}_S(\mathbf{x}_S) := \int_{X_S} \hat{f}(\mathbf{x}_S, X_{-S}) d\mathbb{P}_{X_{-S}}$ ("removing" by marginalizing over -S)

- Game: Make prediction $\hat{f}(x_1, x_2, \dots, x_p)$ for a single observation \mathbf{x}
- Players: Features x_j, j ∈ {1,...,p} which cooperate to produce a prediction
 → How can we make a prediction with a subset of features without changing the model?
 → PD function: f̂_S(x_S) := ∫_{X s} f̂(x_S, X_{-S})dP_{X-s} ("removing" by marginalizing over -S)
- Value function / payout of coalition $S \subseteq P$ for observation **x**:

$$v(S) = \hat{\mathit{f}}_{S}(\mathbf{x}_{S}) - \mathbb{E}_{\mathbf{x}}(\hat{\mathit{f}}(\mathbf{x})), ext{ where } \hat{\mathit{f}}_{S}: \mathcal{X}_{S} \mapsto \mathcal{Y}$$

 \leadsto subtraction of $\mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x}))$ ensures that ν is a value function with $\nu(\emptyset)=0$

- Game: Make prediction $\hat{f}(x_1, x_2, \dots, x_p)$ for a single observation \mathbf{x}
- Players: Features $x_j, j \in \{1, \dots, p\}$ which cooperate to produce a prediction \leadsto How can we make a prediction with a subset of features without changing the model? \leadsto PD function: $\hat{f}_S(\mathbf{x}_S) := \int_{X_{-S}} \hat{f}(\mathbf{x}_S, X_{-S}) d\mathbb{P}_{X_{-S}}$ ("removing" by marginalizing over -S)
- Value function / payout of coalition $S \subseteq P$ for observation **x**:

$$v(\mathcal{S}) = \hat{\mathit{f}}_{\mathcal{S}}(\mathbf{x}_{\mathcal{S}}) - \mathbb{E}_{\mathbf{x}}(\hat{\mathit{f}}(\mathbf{x})), \text{ where } \hat{\mathit{f}}_{\mathcal{S}}: \mathcal{X}_{\mathcal{S}} \mapsto \mathcal{Y}$$

 \leadsto subtraction of $\mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x}))$ ensures that ν is a value function with $\nu(\emptyset)=0$

• Marginal contribution: $v(S \cup \{j\}) - v(S) = \hat{f}_{S \cup \{j\}}(\mathbf{x}_{S \cup \{j\}}) - \hat{f}_{S}(\mathbf{x}_{S})$ $\rightarrow \mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x}))$ cancels out due to the subtraction of value functions Shapley value ϕ_i of feature j for observation **x** via **order definition**:

$$\phi_j(\mathbf{x}) = \frac{1}{|P|!} \sum_{\tau \in \Pi} \hat{f}_{S_j^{\tau} \cup \{j\}}(\mathbf{x}_{S_j^{\tau} \cup \{j\}}) - \hat{f}_{S_j^{\tau}}(\mathbf{x}_{S_j^{\tau}})$$
marginal contribution of feature j

- Interpretation: Feature x_i contributed ϕ_i to difference between $\hat{f}(\mathbf{x})$ and average prediction Note: Marginal contributions and Shapley values can be negative
- For exact computation of $\phi_i(\mathbf{x})$, the PD function $\hat{f}_S(\mathbf{x}_S) = \frac{1}{n} \sum_{i=1}^n \hat{f}(\mathbf{x}_S, \mathbf{x}_{-S}^{(i)})$ for any set of features S can be used which yields

$$\phi_j(\mathbf{x}) = \frac{1}{|P|! \cdot n} \sum_{\tau \in \Pi} \sum_{i=1}^n \hat{f}(\mathbf{x}_{S_j^\tau \cup \{j\}}, \mathbf{x}_{-\{S_j^\tau \cup \{j\}\}}^{(i)}) - \hat{f}(\mathbf{x}_{S_j^\tau}, \mathbf{x}_{-S_j^\tau}^{(i)})$$

 \rightarrow Note: \hat{f}_S marginalizes over all other features -S using all observations $i=1,\ldots,n$

• Exact Shapley value computation is problematic for high-dimensional feature spaces \rightsquigarrow For 10 features, there are already $|P|! = 10! \approx 3.6$ million possible orders of features

- Exact Shapley value computation is problematic for high-dimensional feature spaces \rightsquigarrow For 10 features, there are already $|P|! = 10! \approx 3.6$ million possible orders of features
- Additional problem due to estimation of the marginal prediction $\hat{f}_{S_j^\tau}$: Averaging over the entire data set for each coalition S_j^τ introduced by τ can be very expensive for large data sets

- Exact Shapley value computation is problematic for high-dimensional feature spaces \rightsquigarrow For 10 features, there are already $|P|! = 10! \approx 3.6$ million possible orders of features
- Additional problem due to estimation of the marginal prediction $\hat{f}_{S_j^\tau}$: Averaging over the entire data set for each coalition S_j^τ introduced by τ can be very expensive for large data sets
- Solution to both problems is sampling: Instead of averaging over $|P|! \cdot n$ terms, we approximate it using a limited amount of M random samples of τ to build coalitions S_i^{τ}

- Exact Shapley value computation is problematic for high-dimensional feature spaces \rightsquigarrow For 10 features, there are already $|P|! = 10! \approx 3.6$ million possible orders of features
- Additional problem due to estimation of the marginal prediction $\hat{f}_{S_j^\tau}$: Averaging over the entire data set for each coalition S_j^τ introduced by τ can be very expensive for large data sets
- Solution to both problems is sampling: Instead of averaging over $|P|! \cdot n$ terms, we approximate it using a limited amount of M random samples of τ to build coalitions S_j^{τ}

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

Definition

x: obs. of interest

 \mathbf{x} with feature values in S_m (other are replaced)

$$\phi_j(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} \left[\hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)}) \right]$$

x with feature values in $S_m \cup \{j\}$

	Temperature	Humidity	Windspeed	Year
x	10.66	56	11	2012
x_{+j}	10.66	56	$random: z_{windspeed}^{(m)}$	2012
x_{-j}	10.66	56	$random: z_{windspeed}^{(m)}$	$random: z_{year}^{(m)}$
				i

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

$$\phi_j(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} \left[\hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)}) \right]$$

$$:= \Delta(j, S_m)$$
Contribution of feature j to coalition S_m

- $\Delta(j, S_m) = \hat{f}(\mathbf{x}_{+j}^{(m)}) \hat{f}(\mathbf{x}_{-j}^{(m)})$ is the marginal contribution of feature j to coalition S_m
- Here: Feature *year* contributes +700 bike rentals if it joins coalition $S_m = \{temp, hum\}$

	Temperature	Humidity	Windspeed	Year	Count	
\boldsymbol{x}	10.66	56	11	2012		
x_{+j}	10.66	56	$random: z_{windspeed}^{(m)}$	2012	5600	700
x_{-j}	10.66	56	$random: z_{windspeed}^{(m)}$	$random: z_{year}^{(m)}$	4900	700
				•	Ž	$\overline{\Delta(j,S_m)}$
				${\mathcal J}$	f	marginal contribution

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

$$\phi_j(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} \left[\hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)}) \right]$$

- Compute marginal contribution of feature j towards the prediction across all randomly drawn feature coalitions S_1, \ldots, S_m
- Average all M marginal contributions of feature i
- Shapley value ϕ_j is the payout of feature j, i.e., how much feature year contributed to the overall prediction in bicycle counts of a specific observation \mathbf{x}

We take the general axioms for Shapley Values and apply it to predictions:

• Efficiency: Shapley values add up to the (centered) prediction: $\sum_{i=1}^{p} \phi_i = \hat{f}(\mathbf{x}) - \mathbb{E}_{\mathbf{x}}(\hat{f}(X))$

We take the general axioms for Shapley Values and apply it to predictions:

- **Efficiency**: Shapley values add up to the (centered) prediction: $\sum_{i=1}^{p} \phi_i = \hat{f}(\mathbf{x}) \mathbb{E}_{\mathbf{x}}(\hat{f}(X))$
- Symmetry: Two features j and k that contribute the same to the prediction get the same payout → interaction effects between features are fairly divided

We take the general axioms for Shapley Values and apply it to predictions:

- Efficiency: Shapley values add up to the (centered) prediction: $\sum_{j=1}^{p} \phi_j = \hat{f}(\mathbf{x}) \mathbb{E}_{\mathbf{x}}(\hat{f}(X))$
- **Symmetry**: Two features j and k that contribute the same to the prediction get the same payout \hookrightarrow interaction effects between features are fairly divided $\hat{f}_{S\cup\{i\}}(\mathbf{x}_{S\cup\{i\}}) = \hat{f}_{S\cup\{k\}}(\mathbf{x}_{S\cup\{k\}})$ for all $S \subseteq P \setminus \{j,k\}$ then $\phi_i = \phi_k$
- **Dummy** / **Null Player**: Shapley value of a feature that does not influence the prediction is zero \leadsto if a feature was not selected by the model (e.g., tree or LASSO), its Shapley value is zero $\hat{f}_{S \cup \{j\}}(\mathbf{x}_{S \cup \{j\}}) = \hat{f}_S(\mathbf{x}_S)$ for all $S \subseteq P$ then $\phi_i = 0$

We take the general axioms for Shapley Values and apply it to predictions:

- Efficiency: Shapley values add up to the (centered) prediction: $\sum_{j=1}^{p} \phi_j = \hat{f}(\mathbf{x}) \mathbb{E}_{\mathbf{x}}(\hat{f}(X))$
- **Symmetry**: Two features j and k that contribute the same to the prediction get the same payout \rightarrow interaction effects between features are fairly divided $\hat{f}_{S \cup IJ}(\mathbf{x}_{S \cup IJ}) = \hat{f}_{S \cup IJ}(\mathbf{x}_{S \cup IJ})$ for all $S \subseteq P \setminus \{j, k\}$ then $\phi_i = \phi_k$
- **Dummy / Null Player**: Shapley value of a feature that does not influence the prediction is zero \rightsquigarrow if a feature was not selected by the model (e.g., tree or LASSO), its Shapley value is zero $\hat{f}_{S \cup \{j\}}(\mathbf{x}_{S \cup \{j\}}) = \hat{f}_{S}(\mathbf{x}_{S})$ for all $S \subseteq P$ then $\phi_{i} = 0$
- **Additivity**: For a prediction with combined payouts, the payout is the sum of payouts: $\phi_j(v_1) + \phi_j(v_2) \rightsquigarrow$ Shapley values for model ensembles can be combined

BIKE SHARING DATASET

- Shapley values of observation i = 200 from the bike sharing data
- Difference between model prediction of this observation and the average prediction of the data is fairly distributed among the features (i.e., $4434 4507 \approx -73$)
- Feature value temp = 28.5 has the most positive effect, with a contribution (increase of prediction) of about +400

ADVANTAGES AND DISADVANTAGES

Advantages:

- Solid theoretical foundation in game theory
- Prediction is fairly distributed among the feature values → easy to interpret for a user
- Contrastive explanations that compare the prediction with the average prediction

Disadvantages:

- Without sampling, Shapley values need a lot of computing time to inspect all possible coalitions
- Like many other IML methods, Shapley values suffer from the inclusion of unrealistic data observations when features are correlated

Interpretable Machine Learning

SHAP (SHapley Additive exPlanation) Values

Learning goals

- Get an intuition of additive feature attributions
- Understand the concept of Kernel SHAP
- Ability to interpret SHAP plots
- Global SHAP methods

FROM SHAPLEY TO SHAP

Remember: Shapley values explain the difference between actual and average prediction:

$$2573 - 4515 = 34 - 1654 - 323 = -1942$$
 $\hat{f}(\mathbf{x}) - \mathbb{E}(\hat{f}) = \phi_{hum} + \phi_{temp} + \phi_{ws}$

$$\hat{f}(\mathbf{x}) = \underbrace{\mathbb{E}(\hat{f})}_{\phi_{D}} + \phi_{ ext{hum}} + \phi_{ ext{temp}} + \phi_{ ext{ws}}$$

SHAP DEFINITION Lundberg et al. 2017

Aim: Find an additive combination that explains the prediction of an observation \mathbf{x} by computing the contribution of each feature to the prediction using a (more efficient) estimation procedure.

Definition

- Define simplified (binary) coalition feature space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and p columns
- Rows are referred to as $\mathbf{z}'^{(k)} = \{z_1'^{(k)}, \dots, z_p'^{(k)}\}$ with $k \in \{1, \dots, K\}$ (indexes k-th coalition)
- Columns are referred to as \mathbf{z}_j with $j \in \{1, \dots, p\}$ being the index of the original feature

Example:

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws
Ø	$z'^{(1)}$	0	0	0
hum	$z'^{(2)}$	1	0	0
temp	$z'^{(3)}$ $z'^{(4)}$	0	1	0
ws		0	0	1
hum, temp	$z'^{(5)}$	1	1	0
temp, ws	$z'^{(6)}$	0	1	1
hum, ws	z ′ ⁽⁷⁾	1	0	1
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1

SHAP DEFINITION Lundberg et al. 2017

 \mathbf{Aim} : Find an additive combination that explains the prediction of an observation \mathbf{x} by computing the contribution of each feature to the prediction using a (more efficient) estimation procedure.

- Define simplified (binary) coalition feature space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and p columns
- Rows are referred to as $\mathbf{z}'^{(k)} = \{z_1'^{(k)}, \dots, z_p'^{(k)}\}$ with $k \in \{1, \dots, K\}$ (indexes k-th coalition)
- Columns are referred to as \mathbf{z}_i with $j \in \{1, \dots, p\}$ being the index of the original feature

$$\mathbf{z}'^{(k)}$$
: Coalition simplified features $g\left(\mathbf{z}'^{(k)}\right) = \phi_0 + \sum_{i=1}^p \phi_i z_j'^{(k)}$

SHAP DEFINITION • Lundberg et al. 2017

Aim: Find an additive combination that explains the prediction of an observation \mathbf{x} by computing the contribution of each feature to the prediction using a (more efficient) estimation procedure.

- Define simplified (binary) coalition feature space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and p columns
- Rows are referred to as $\mathbf{z}'^{(k)} = \{z_1'^{(k)}, \dots, z_p'^{(k)}\}$ with $k \in \{1, \dots, K\}$ (indexes k-th coalition)
- Columns are referred to as \mathbf{z}_i with $j \in \{1, \dots, p\}$ being the index of the original feature

SHAP DEFINITION • Lundberg et al. 2017

Aim: Find an additive combination that explains the prediction of an observation \mathbf{x} by computing the contribution of each feature to the prediction using a (more efficient) estimation procedure.

- Define simplified (binary) coalition feature space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and p columns
- Rows are referred to as $\mathbf{z}'^{(k)} = \{z_1'^{(k)}, \dots, z_p'^{(k)}\}$ with $k \in \{1, \dots, K\}$ (indexes k-th coalition)
- Columns are referred to as \mathbf{z}_i with $j \in \{1, \dots, p\}$ being the index of the original feature

SHAP DEFINITION > Lundberg et al. 2017

Aim: Find an additive combination that explains the prediction of an observation \mathbf{x} by computing the contribution of each feature to the prediction using a (more efficient) estimation procedure.

Problem

How do we estimate the Shapley values ϕ_j ?

Definition: A kernel-based, model-agnostic method to compute Shapley values via local surrogate models (e.g. linear model)

- Sample coalitions
- Transfer coalitions into feature space & get predictions by applying ML model
- Compute weights through kernel
- Fit a weighted linear model
- Seturn Shapley values

Step 1: Sample coalitions

Sample K coalitions from the simplified feature space

$$\mathbf{z}^{\prime(k)} \in \{0,1\}^p, \quad k \in \{1,\ldots,K\}$$

• For our simple example, we have in total $2^p = 2^3 = 8$ coalitions (without sampling)

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws
Ø	z ′ ⁽¹⁾	0	0	0
hum	$z'^{(2)}$	1	0	0
temp	$z'^{(3)}$	0	1	0
ws	$z'^{(4)}$	0	0	1
hum, temp	$z'^{(5)}$	1	1	0
temp, ws	$z'^{(6)}$	0	1	1
hum, ws	$z'^{(7)}$	1	0	1
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1

Step 2: Transfer Coalitions into feature space & get predictions by applying ML model

- $\mathbf{z}^{\prime(k)}$ is 1 if features are part of the k-th coalition, 0 if they are absent
- To calculate predictions for these coalitions, we need to define a function which maps the binary feature space back to the original feature space

	_				→
Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws	x ^{coalition} hum temp ws
Ø	$z'^{(1)}$	0	0	0	x ^{∅} ∅ ∅ ∅
hum	$z'^{(2)}$	1	0	0	$\mathbf{x}^{\{hum\}}$ 51.6 \varnothing \varnothing
temp	$z'^{(3)}$	0	1	0	$\mathbf{x}^{\{temp\}}$ \varnothing 5.1 \varnothing
ws	$z'^{(4)}$	0	0	1	$\mathbf{x}^{\{ws\}}$ \varnothing \varnothing 17.0
hum, temp	z ′ ⁽⁵⁾	1	1	0	$\mathbf{x}^{\{hum,temp\}}$ 51.6 5.1 \varnothing
temp, ws	z ′ ⁽⁶⁾	0	1	1	x ^{temp,ws} ∅ 5.1 17.0
hum, ws	$z'^{(7)}$	1	0	1	x ^{hum,ws} 51.6 ∅ 17.0
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1	x ^{hum,temp,ws} 51.6 5.1 17.0

Step 2: Transfer Coalitions into feature space & get predictions by applying ML model

- Define $h_x\left(\mathbf{z}'^{(k)}\right) = \mathbf{z}^{(k)}$ where $h_x: \{0,1\}^p \to \mathbb{R}^p$ maps 1's to feature values of observation \mathbf{x} for features part of the k-th coalition and 0's to feature values of a randomly sampled observation for features absent in the k-th coalition (feature values are permuted multiple times)
- Predict with ML model on this dataset \hat{f} : $\hat{f}\left(h_{x}\left(\mathbf{z}^{\prime(k)}\right)\right)$

	_				$h_{x}(\mathbf{z}^{\prime(k)})$				-	
Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws	/	$\mathbf{z}^{(k)}$	hum	temp	ws	$\hat{f}\left(h_{x}\left(\mathbf{z}^{\prime\left(k\right)}\right)\right)$
Ø	z ′ ⁽¹⁾	0	0	0		$z^{(1)}$	64.3	28.0	14.5	6211
hum	$z'^{(2)}$	1	0	0		$z^{(2)}$	51.6	28.0	14.5	5586
temp	$z'^{(3)}$	0	1	0		$z^{(3)}$	64.3	5.1	14.5	3295
WS	$z'^{(4)}$	0	0	1		$z^{(4)}$	64.3	28.0	17.0	5762
hum, temp	z ′ ⁽⁵⁾	1	1	0		$z^{(5)}$	51.6	5.1	14.5	2616
temp, ws	z ′ ⁽⁶⁾	0	1	1		$z^{(6)}$	64.3	5.1	17.0	2900
hum, ws	z ′ ⁽⁷⁾	1	0	1		$z^{(7)}$	51.6	28.0	17.0	5411
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1		z ⁽⁸⁾	51.6	5.1	17.0	2573

Step 3: Compute weights through Kernel

Intuition: We learn most about individual features if we can study their effects in isolation or at maximal interaction: Small coalitions (few 1's) and large coalitions (i.e. many 1's) get the largest weights

Step 3: Compute weights through Kernel See Shapley_kernel_proof.pdf

Intuition: We learn most about individual features if we can study their effects in isolation or at maximal interaction: Small coalitions (few 1's) and large coalitions (i.e. many 1's) get the largest weights

Step 3: Compute weights through Kernel

Purpose: to include this knowledge in the local surrogate model (linear regression), we calculate weights for each coalition which are the observations of the linear regression

$$\pi_{x}(\mathbf{z}') = \frac{(p-1)}{\binom{p}{|\mathbf{z}'|}|\mathbf{z}'|(p-|\mathbf{z}'|)} \rightsquigarrow \pi_{x}(\mathbf{z}' = (1,0,0)) = \frac{(3-1)}{\binom{3}{1}|1(3-1)} = \frac{1}{3}$$

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	WS	weight
Ø	$z'^{(1)}$	0	0	0	∞
hum	$z'^{(2)}$	1	0	0	0.33
temp	$z'^{(3)}$	0	1	0	0.33
ws	$z'^{(4)}$	0	0	1	0.33
hum, temp	$z'^{(5)}$	1	1	0	0.33
temp, ws	$z'^{(6)}$	0	1	1	0.33
hum, ws	$z'^{(7)}$	1	0	1	0.33
hum, temp, ws	$z'^{(8)}$	1	1	1	∞

Step 3: Compute weights through Kernel

Purpose: to include this knowledge in the local surrogate model (linear regression), we calculate weights for each coalition which are the observations of the linear regression

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	WS	weight
Ø	$z'^{(1)}$	0	0	0	∞
hum	$z'^{(2)}$	1	0	0	0.33
temp	$z'^{(3)}$	0	1	0	0.33
ws	$z'^{(4)}$	0	0	1	0.33
hum, temp	$z'^{(5)}$	1	1	0	0.33
temp, ws	$z'^{(6)}$	0	1	1	0.33
hum, ws	$z'^{(7)}$	1	0	1	0.33
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1	∞

weights for empty and full set are infinity and not used as observations for the linear regression instead constraints are used such that properties (local accuracy and missingness) are satisfied

Step 4: Fit a weighted linear model

Aim: Estimate a weighted linear model with Shapley values being the coefficients ϕ_i

$$g\left(\mathbf{z}^{\prime(k)}\right) = \phi_0 + \sum_{j=1}^p \phi_j z_j^{\prime(k)}$$

and minimize by WLS using the weights π_{x} of step 3

$$L\left(\hat{f},g,\pi_{x}\right) = \sum_{k=1}^{K} \left[\hat{f}\left(h_{x}\left(\mathbf{z}^{\prime(k)}\right)\right) - g\left(\mathbf{z}^{\prime(k)}\right)\right]^{2} \pi_{x}\left(\mathbf{z}^{\prime(k)}\right)$$

with $\phi_0 = \mathbb{E}(\hat{f})$ and $\phi_p = \hat{f}(x) - \sum_{j=0}^{p-1} \phi_j$ we receive a p-1 dimensional linear regression problem

Step 4: Fit a weighted linear model

Aim: Estimate a weighted linear model with Shapley values being the coefficients ϕ_i

$$g\left(\mathbf{z}^{\prime(k)}\right) = \phi_0 + \sum_{i=1}^{p} \phi_i z_i^{\prime(k)} \leadsto g\left(\mathbf{z}^{\prime(k)}\right) = 4515 + 34 \cdot z_1^{\prime(k)} - 1654 \cdot z_2^{\prime(k)} - 323 \cdot z_3^{\prime(k)}$$

$\mathbf{z}'^{(k)}$	hum	temp	ws	weight	Î
$z'^{(2)}$	1	0	0	0.33	4635
$\mathbf{z}'^{(3)}$	0	1	0	0.33	3087
$\mathbf{z}'^{(4)}$	0	0	1	0.33	4359
$z'^{(5)}$	1	1	0	0.33	3060
$z'^{(6)}$	0	1	1	0.33	2623
$z'^{(7)}$	1	0	1	0.33	4450
	_	input	_		output

Step 5: Return SHAP values

Intuition: Estimated Kernel SHAP values are equivalent to Shapley values

$$g(\mathbf{z}^{\prime(8)}) = \hat{f}(h_{x}(\mathbf{z}^{\prime(8)})) = 4515 + 34 \cdot 1 - 1654 \cdot 1 - 323 \cdot 1 = \underbrace{\mathbb{E}(\hat{f})}_{\text{hum}} + \phi_{\text{hum}} + \phi_{\text{temp}} + \phi_{\text{ws}} = \hat{f}(\mathbf{x}) = 2573$$

Local Accuracy

$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{j=1}^{p} \phi_j x_j'$$

Intuition: If the coalition includes all features $(\mathbf{x}' \in \{1\}^p)$, the attributions ϕ_j and the null output ϕ_0 sum up to the original model output $f(\mathbf{x})$

Local accuracy corresponds to the **axiom of efficiency** in Shapley game theory

Local Accuracy

$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{j=1}^p \phi_j x_j'$$

Missingness

$$x'_j = 0 \Longrightarrow \phi_j = 0$$

Intution: A missing feature gets an attribution of zero

Local Accuracy

$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{i=1}^{p} \phi_i x_i'$$

Missingness

$$x_i' = 0 \Longrightarrow \phi_i = 0$$

Consistency

 $\hat{f}_{x}\left(\mathbf{z}^{\prime(k)}
ight)=\hat{f}\left(h_{x}\left(\mathbf{z}^{\prime(k)}
ight)
ight)$ and $\mathbf{z}_{-j}^{\prime(k)}$ denote setting $z_{j}^{\prime(k)}=0$. For any two models \hat{f} and \hat{f}' , if

$$\hat{f}_{x}'\left(\mathbf{z}^{\prime(k)}\right) - \hat{f}_{x}'\left(\mathbf{z}_{-j}^{\prime(k)}\right) \geq \hat{f}_{x}\left(\mathbf{z}^{\prime(k)}\right) - \hat{f}_{x}\left(\mathbf{z}_{-j}^{\prime(k)}\right)$$

for all inputs $\mathbf{z}^{\prime(k)} \in \{0,1\}^p$, then

$$\phi_j\left(\hat{f}',\mathbf{x}\right) \geq \phi_j(\hat{f},\mathbf{x})$$

Local Accuracy

$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{j=1}^{p} \phi_j x_j'$$

Missingness

$$x'_j = 0 \Longrightarrow \phi_j = 0$$

Consistency

$$\hat{\mathit{f}}_{\mathit{x}}'\left(\mathbf{z}^{\prime(k)}\right) - \hat{\mathit{f}}_{\mathit{x}}'\left(\mathbf{z}_{-j}^{\prime(k)}\right) \geq \hat{\mathit{f}}_{\mathit{x}}\left(\mathbf{z}^{\prime(k)}\right) - \hat{\mathit{f}}_{\mathit{x}}\left(\mathbf{z}_{-j}^{\prime(k)}\right) \Longrightarrow \phi_{j}\left(\hat{\mathit{f}}',\mathbf{x}\right) \geq \phi_{j}(\hat{\mathit{f}},\mathbf{x})$$

Intution: If a model changes so that the marginal contribution of a feature value increases or stays the same, the Shapley value also increases or stays the same

From consistency the Shapley axioms of additivity, dummy and symmetry follow

Interpretable Machine Learning

Global SHAP

Learning goals

- Get an intuition of additive feature attributions
- Understand the concept of Kernel SHAP
- Ability to interpret SHAP plots
- Global SHAP methods

GLOBAL SHAP Lundberg et al. 2018

Idea:

- Run SHAP for every observation and thereby get a matrix of Shapley values
- The matrix has one row per data observation and one column per feature
- We can interpret the model globally by analyzing the Shapley values in this matrix

$$\Phi = \begin{bmatrix} \phi_{11} & \phi_{12} & \phi_{13} & \dots & \phi_{1p} \\ \phi_{21} & \phi_{22} & \phi_{23} & \dots & \phi_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \phi_{n1} & \phi_{n2} & \phi_{n3} & \dots & \phi_{np} \end{bmatrix}$$

FEATURE IMPORTANCE

Idea: Average the absolute Shapley values of each feature over all observations. This corresponds to calculating averages column by column in Φ

$$I_j = \frac{1}{n} \sum_{i=1}^n \left| \phi_j^{(i)} \right|$$

FEATURE IMPORTANCE

Interpretation:

- The features temperature and year have by far the highest influence on the model's prediction
- Compared to Shapley values, no effect direction is provided, but instead a feature ranking similar to PFI
- However, Shapley FI is based on the model's predictions only while PFI is based on the model's performance (loss)

SUMMARY PLOT

Combines feature importance with feature effects

- Each point is a Shapley value for a feature and an observation
- The color represents the value of the feature from low to high
- Overlapping points are jittered in y-axis direction

SUMMARY PLOT

Interpretation:

- Low temperatures have a negative impact while high temperatures lead to more bike rentals
- Year: two point clouds for 2011 and 2012 (other categorical features are gray)
- A high humidity has a huge, negative impact on the bike rental, while low humidity has a rather minor positive impact on bike rentals

DEPENDENCE PLOT

- Visualize the marginal contribution of a feature similar to the PDP
- Plot a point with the feature value on the x-axis and the corresponding Shapley value on the y-axis

DEPENDENCE PLOT

Interpretation:

- Increasing temperatures induce increasing bike rentals until 25°C
- If it gets too hot, the bike rentals decrease

DEPENDENCE PLOT

Interpretation:

- We can colour the observations by a second feature to detect interactions
- Visibly the temperatures interaction with the season is very strong

DISCUSSION

Advantages

- All the advantages of Shapley values
- Unify the field of interpretable machine learning in the class of additive feature attribution methods
- Has a fast implementation for tree-based models
- Various global interpretation methods

Disadvantages

- Disadvantages of Shapley values also apply to SHAP
- KernelSHAP is slow (TreeSHAP can be used as a faster alternative for tree-based models
 Lundberg et al 2018 and for an intuitive explanation → see Sukumar: TreeSHAP
- KernelSHAP ignores feature dependence