Auto-Detecting Topic Transitions in SmartMOOCs

Brian Reinbold brianjr3@illinois.edu

Adding Intelligence to MOOCs

- Massive Open Online Courses are revolutionizing education
- <u>SmartMOOCs</u> is a project to incorporate AI/ML into MOOCs to improve learner experience
- Lectures often contain subtopics that can be leveraged to enhance user experience
- SmartMOOCs currently assumes a topic transition every minute

	TOPICS
00:00:07	small techniqu larg web data use document search can index
00:01:04	well valu featur map can defin relev vector line function
00:02:00	well valu featur map can defin relev vector line function
00:03:00	decod got togeth key reduc word function count id document
00:04:01	decod got togeth key reduc word function count id document
00:05:02	decod got to clarkey reduc word function count id document

Methodology

- Follow Wang and Goutte 2018 to detect topic change by evaluating the similarity between two consecutive documents.
- Divide a lecture transcript into T documents where $T = \frac{Total\ Lecture\ Time\ Interval}{Time\ Interval}$
- Calculate cosine similarity of documents:
 - $D_{cos}(t) = 1 \cos(TF(t), TF(t-1))$
 - $\cos(TF(t), TF(t-1)) = \frac{TF(t) \cdot TF(t-1)}{\|TF(t)\| \|TF(t-1)\|}$
- Detect breakpoints in the time series to detect topic transitions

Set Up

Installing Environment and Project

Install using conda

```
conda env create --name tis-project --file=environment.yml
conda activate tis-project
```

Or try installing from requirements.txt

```
pip3 install -r requirements.txt
```

Then install project as a package

```
pip install -e .
```


Running project

- Project was developed using <u>Visual Studio Code</u> and <u>Window Subsystem</u> for Linux with Ubuntu 20.04
- For a demo of key analysis, run the <u>Jupyter</u> notebook notebooks/demo.ipynb
 - Analysis over one lecture "Lesson 4.1: Probabilistic Retrieval Model: Basic Idea"
 - Contains sections to process raw transcript, build vocabulary/corpus set of words in transcript, estimate and evaluate breakpoints
- Could also run "notebooks/demo.py" if issues with Jupyter
- Makefile is used to keep track of project dependencies and more easily replicate entire project
 - make run

Running Project with Docker

- Build image
 - docker build -t tis .
- Running container and running demo.py file
 - docker run tis
- Attaching terminal to container
 - docker run -it tis sh
 - make run

Data Processing

Processing Transcripts

- Transcripts is broken into several second intervals
- Need to avoid ending segments in the middle of a sentence when combining

Raw Transcript File

```
00:00:00,086 --> 00:00:07,516
[SOUND]
This
00:00:07,516 --> 00:00:10,282
lecture is about
the Probabilistic Retrieval Model.
00:00:10,282 --> 00:00:11,805
In this lecture,
00:00:11,805 --> 00:00:17,806
we're going to continue the discussion
of the Text Retrieval Methods.
```

Cleaning Text

- Remove punctuation
- Remove stop words (e.g. the, at, a)
- Combine common n-grams

Common N-Grams in TIS Corpus

Word	Frequency
text mining	106
vector space model	81
text retrieval	81
search engines	43
machine learning	41
time series	40
natural language processing	32
information retrieval	29
web search	29
maximum likelihood estimate	26
opinion mining	16
naive bayes	16
unigram language model	11
inverse document frequency	8

Stem Words Using Porter Stemmer

- Porter stemmer removes common inflectional endings off English words
- Reduced total vocabulary in TIS corpora by 40%
- Leads to less sparse vectors

Results of Porter Stemmer				
word	stem			
probability	probabl			
probabilistic	probabilist			
vector	vector			
vectors	vector			
word	word			
words	word			
computer	comput			
computation	comput			
computational	comput			
	A 0			

Divide Transcript into Time Intervals

- Divide a lecture transcript into T documents where $T = \frac{Total\ Lecture\ Time}{Time\ Interval}$
- Calculate cosine similarity of documents based on term frequency:
 - $D_{cos}(t) = 1 \cos(TF(t), TF(t-1))$
 - $\cos(TF(t), TF(t-1)) = \frac{TF(t) \cdot TF(t-1)}{\|TF(t)\| \|TF(t-1)\|}$
- Need to combine sequential segments at large time intervals to reduce noise

Cosine Similarity of Sequential Segments at 5-Second Intervals

 Each segments contains nearly all unique token resulting in noise

Cosine Similarity of Sequential Segments

- Tried 30, 45, and 60-second intervals
- Longer time intervals reduce noise in time series

Detecting Topic Transitions

Breakpoint Algorithm

- Used <u>ruptures</u> library for breakpoint algorithms
- Used linearly penalized segmentation based off Killick 2012
- Don't have to make any assumptions on how many breakpoints exist in the series

Estimated Breakpoints

Evaluation

Silhouette Scores

- Metric minimizes intra-cluster distance and maximizes inter-cluster distances
 - Points within a cluster should be close together since they represent similar objects
 - Points in different clusters should be far apart since they represent distinct objects
- Value [-1, 1]
 - 1: best value well defined clusters
 - -1: worst value points assigned wrong cluster
 - 0: implies overlapping clusters

Silhouette Score Results

- Silhouette scores are mediocre
- Problem is clustering documents that are temporally correlated
- Still see improvement in scores over baseline so likely some benefit
- Imply that less subtopics are better

Summary of Silhouette Scores

Time Interval	Average Number of Subtopics	Count of Best Scores	Average
Naïve, 60-Second Topic Transitions	13	2	-0.05149
30-Second Interval	4.7	5	-0.01627
45-Second Interval	3.2	27	-0.00179
60-Second Interval	2.4	62	0.006451

Evaluate Specific Lecture: 4.1: Probabilistic Retrieval Model - Basic Idea

0:29 - 2:54

0:00 - 0:29

Which doc is Most Likely the "Imaginary Relevant Doc"? $q = \text{``news about presidential campaign''} \\ d1 & \dots \text{ news about ...} \\ p(q|d1) & p(q|d2) \\ d2 & \dots \text{ news about organic food campaign ...} \\ d3 & \dots \text{ news of presidential campaign ...} \\ p(q|d4) & \dots \text{ news of presidential campaign ...} \\ d4 & \dots \text{ news of presidential campaign ...} \\ d5 & \dots \text{ news of organic food campaign ...} \\ p(q|d5) & \dots \text{ news of organic food campaign ...} \\ campaign ... campaign ... campaign ... \\ camp$

2:54 - 8:32

Summary

- Relevance(q,d) = $p(R=1|q,d) \rightarrow p(q|d,R=1)$
- Query likelihood ranking function: f(q,d)=p(q|d)
 Probability that a user who likes d would pose query q
- How to compute p(q|d)? How to compute probability of text in general? → Language Model

```
p(q= "presidential campaign" | d= ... news of presidential campaign ... presidential candidate ...
```

8:32 - 10:17

Topic Transitions Based on Breakpoints from 60-Second Intervals

	y /	Prob	abilis	tic Retrieval Models: Basic Idea
	Query	Doc	Rel	
-	q	d	R	
	q1	d1	1	f(q, d) = n(P-1) d(q) = count(q, d, R = 1)
	q1.	d2		$f(q,d)=p(R=1 d,q)=\frac{count(q,d,R)}{count(q,d)}$
	q1	d3	0	count(q, u)
	q1	d4	0	
	q1	d5	1	P(R=1 q1,d1) = ?
١.	q1	d1	(0)	P(R=1 q1,d2) = ?
	q1	d2	1	P(R=1 q1,d3) = ?
\	q1	d3	0	
	q2	d3	1	
	q3	d1	1	
	q4	d2	1	
	q4	d3	0	
▶ ◀∅ 6:34	/ 12:44			4 🖂 🗘

6:34

Slide Title	End Time Breakpoints of 60 Second Interval	
1-2: Intro/Outline	0:29	
3: Many Different Retrieval Models	2:54	
4: Probabilistic Retrieval Models: Basic Idea	8:32 6:34	
5: Query Likelihood Retrieval Model	10:17	
6: Which doc is Most Likely the "Imaginary Relevant Doc"?	10:59	
7: Summary	12:44	00

Topic Transitions Based on Breakpoints from 45-Second Intervals

4:50

	Query Likelihoed Retrieval Model						
	Query	Doc	Rel	User likes d			
P.	q	d	R	^ ^			
	q1	d1	1	(/ 1) /5 /11) / 115 /			
	q1	d2	1	$f(q,d)=p(R=1 d,q)\approx p(q d,R=1)$			
	q1	d3	0				
	q1	d4	0				
	q1	d5	1				
	q1	d1	0				
	q1	d2	1 .				
	q1	d3	0				
	q2	d3	1				
	q3	d1	1				
	q4	d2	1				
	q4	d3	0				

Slide Title	End Time	Breakpoints of 45- Second Intervals
1-2: Intro/Outline	0:29	
3: Many Different Retrieval Models	2:54	
4: Probabilistic Retrieval Models: Basic Idea	8:32	4:50
5: Query Likelihood Retrieval Model	10:17	8:46
6: Which doc is Most Likely the "Imaginary Relevant Doc"?	10:59	
7: Summary	12:44	1%

Topic Transitions Based on Breakpoints from 30-Second Intervals

3:13

Probabilistic Retrieval Models: Basic Idea

Query Doc Rel
q d R
q1 d1 1
q1 d2 1
q1 d3 0
q1 d4 0
q1 d5 1
...
q1 d1 0 P(R=1|q1,d1) =?
q1 d2 1
q1 d3 0
q1 d2 1
q1 d3 0
q1 d2 1
q1 d3 0
q2 d3 1
q3 d1 1
q4 d2 1
q4 d2 1
q4 d2 1
q4 d3 0

5:48

Slide Title	End Time	Breakpoints of 30- Second Intervals
1-2: Intro/Outline	0:29	
3: Many Different Retrieval Models	2:54	3:13
4: Probabilistic Retrieval		5:48
Models: Basic Idea	8:32 ⁻	8:10
5: Query Likelihood Retrieval Model	10:17	
6: Which doc is Most Likely the "Imaginary Relevant Doc"?	10:59	10:51
7: Summary	12:44	100

8:10 10:51

Conclusion

Does this Approach Work?

- Kind of
- Difficult to judge without human evaluation
 - Silhouette scores are not useful
- Some evidence of identifying subtopics
 - May not generalize and scale to all lectures though
- Breakpoints arbitrarily appear in middle of slides

Next Steps

- Assume each slide is a subtopic and find times of each slide transition
 - Then repeat methodology to see if two slides are related
 - Downside is it may be sensible to divide slide into multiple subtopics
- Utilize word embeddings to reduce sparseness of term frequency vectors which should reduce noise

References

- C. Truong, L. Oudre, N. Vayatis. Selective review of offline change point detection methods. *Signal Processing*, 167:107299, 2020.
- Killick, R., Fearnhead, P., & Eckley, I. (2012). Optimal detection of changepoints with a linear computational cost. Journal of the American Statistical Association, 107(500), 1590-1598.
- Wang, Yuli and Goutte, Cyril. "Real-time Change Point Detection using On-line Topic Models." Association for Computational Linguistics, 2018, pp. 2505-2515.