3 L'esfera osculatriu

Exercici 3.1. Sigui $\mathbf{x}(s)$ una corba a l'espai parametritzada per l'arc amb curvatura κ i torsió τ mai nul·les. L'esfera osculatriu $\Sigma(s_0)$ de la corba $\mathbf{x}(s)$ en el punt $\mathbf{x}(s_0)$ és la que té centre $\mathbf{c}(s_0)$ i radi $r(s_0)$ donats per

$$\mathbf{c}(s_0) = \mathbf{x}(s_0) + \rho(s_0)\mathbf{N}(s_0) - \frac{\rho'(s_0)}{\tau(s_0)}\mathbf{B}(s_0)$$
$$r(s_0)^2 = \rho(s_0)^2 + \left(\frac{\rho'(s_0)}{\tau(s_0)}\right)^2, \qquad (\rho = 1/\kappa).$$

a) Comproveu que $\mathbf{c}(s_0)$ i $r(s_0)$ estan determinants per les condicions $f(s_0) = f''(s_0) = f'''(s_0) = f'''(s_0) = 0$ on

$$f(s) = \|\mathbf{x}(s) - \mathbf{c}(s_0)\|^2 - r(s_0)^2.$$

- b) Suposant que $f^{(4)}(s_0) \neq 0$ decidiu si la corba travessa la seva esfera osculatriu en $\mathbf{x}(s_0)$.
- c) Proveu que $\mathbf{c}'(s) = -\lambda(s)\mathbf{B}(s)$ i $r' = \frac{\lambda \rho'}{r\tau}$ amb $\lambda = \tau \rho + \left(\frac{\rho'}{\tau}\right)'$.
- d) Proveu que $\mathbf{x}(s)$ està continguda en una esfera ($corba\ esfèrica$) per tot s si i només si

$$\lambda = \tau \rho + \left(\frac{\rho'}{\tau}\right)' \equiv 0.$$

e) Proveu que $\mathbf{x}(s)$ té contacte d'ordre 4 amb $\Sigma(s_0)$ en $\mathbf{x}(s_0)$ si i només si $\lambda(s_0) = 0$. Indicació: Considereu la funció $g(u,v) = \frac{d^3}{dv^3} F_u(x(v))$ on $F_u(p) = \|\mathbf{c}(u) - p\|^2 - r(u)^2$. Noteu que $g(t,t) \equiv 0$ i deriveu.

Suposem a partir d'aquí que $\lambda(s) \neq 0$ per a tot s.

- f) Proveu que $\partial_s F_s(p) = 0$ és una equació del pla osculador de la corba \mathbf{x} en el punt $\mathbf{x}(s)$.
- g) Proveu que per ε prou petit les esferes osculatrius en $\mathbf{x}(s_0)$ i $\mathbf{x}(s_0 + \varepsilon)$ es tallen en un cercle $C_{\varepsilon}(s_0)$ que tendeix al cercle osculador $C(s_0)$ de \mathbf{x} en $\mathbf{x}(s_0)$ quan ε tendeix a zero.
- h) Estudieu com és l'envolvent de la família uniparàmetrica d'esferes osculadores d'una corba regular $\mathbf{x}(s)$.²

Exercici 3.2. Una $h\grave{e}lix$ és una corba tal que la seva tangent forma un angle constant amb una direcció fixada ($\mathbf{T} \cdot \mathbf{a} = \cos \alpha$). Es pot demostrar que una corba regular a \mathbb{R}^3 és una hèlix si i només si $\kappa/\tau = a \, (= \tan \alpha)$.

- a) Provar que una hèlix amb torsió no nul·la és esfèrica si i només si $\kappa^2(s) = (-A^2s^2 + Bs + c)^{-1}$ per certes constants A, B i C. Quin és el valor de A?
- b) Provar que una hèlix esfèrica (amb eix l'eix de la terra) que comença a l'equador no pot arribar mai al pol nord.
- c) Proveu que la corba de l'apartat anterior acaba en un punt on talla ortogonalment a un petit cercle al voltant del pol nord.
- d) Podeu veure com és la projecció d'una hèlix esfèrica sobre el pla perpendicular a l'eix? Estudieu el cas cos $\alpha=3/5$? (Indicació³: l'equació natural de les epicicloïdes és $\rho^2/A^2+s^2/B^2=1$ amb A=4r(R+r)/R, B=4r(R+r)/(R+2r) essent R el radi de la circumferència al voltant de la qual es mou una circumferència de radi r).

 $^{^2} Veieu\ l'article\ http://www.encyclopediaofmath.org/index.php?title=Envelope&oldid=24434$

³Veieu per exemple D. Struik, Classical Differential Geometry.