Land Cover Classification (one dimensional analysis)

Ben Harris Ian Swallow Sam Hobbs Collins Senaya

https://github.com/harrisb002 /Hyperspectral-Landcover-Clas sification

What is Land Cover Classification?

- Taking input images and determining what type of geological features are shown
 - Each image consists of pixels that contain 432 "bands" of information

These are "Permanent Crops"

This is a "Waterbody"

etc...

This is "built-up"

Classes: Built-up | Barren Consolidated | Shrubs | Natural Grassland | Natural Wooded Land | Permanent Crops | Planted Forest | Annual Crops | Unconsolidated Barren | Waterbodies

What is a "band" of data?

- Each band represents a particular characteristic of a pixel
 - Each band is a different infrared frequency that acts differently when they collide with different materials like rocks, water, and tree canopies
- Each pixel has 432 bands
 - Put together, that's A LOT of data! Millions upon millions of data points to consider
 - Our .csv had 115 million+ cells...

Pre-Processing

- ~2,200 images to train and test on
 - We labelled each one a minimum of three times to get a majority vote on classification
- Create a CSV file so the information is usable
 - Rasterio library
- Filtering of data
 - Not all data given from the images is useable (Noisy, Flight patterns not in images)
- Split data
 - Set aside some of the data to test our models, ensuring they are predicting accurately
 - Splitting data on an Image-level

The Data

```
with rasterio.open(join(path_samples_1, '1_ang20231028t101421_014_L2A_OE
   print("resolution: ", ds.res)
   print("Shape: ", ds.shape)
    ds = ds.read()
   print("Array Shape: ", ds.shape)
resolution: (4.9, 4.9)
Shape: (10, 10)
Array Shape: (373, 10, 10)
```

ds[:2].shape

(2, 10, 10)

ds[:,0,0].shape

(373,)

```
ds[:2]
array([[[0.01890998, 0.01346918, 0.01348204, 0.01305762, 0.01523122,
        0.01332604, 0.01514322, 0.01834574, 0.02253461, 0.01906751],
        [0.01368855, 0.01443155, 0.01409643, 0.01305762, 0.01382202,
        0.01505167, 0.01472478, 0.02301237, 0.02253461, 0.01505403],
        [0.01236837, 0.01443155, 0.01614338, 0.01670057, 0.01455318,
        0.01783718, 0.02160607, 0.01760162, 0.01775908, 0.02026838]
        [0.01362917, 0.01361732, 0.01668102, 0.01670057, 0.01703556,
        0.01783718, 0.0172121 , 0.02297779, 0.0228613 , 0.01885407],
        [0.01463799, 0.01478598, 0.01668102, 0.01939409, 0.0157516 ,
        0.01670882, 0.0236931, 0.02297779, 0.01963201, 0.018854071,
        [0.01463799, 0.01867374, 0.01362365, 0.01178232, 0.01936085,
        0.02315897, 0.01927681, 0.02260808, 0.02180685, 0.02403733],
        [0.01814001, 0.01284469, 0.01362365, 0.01917251, 0.01936085,
        0.01768679, 0.02118265, 0.02131751, 0.02081405, 0.02403733],
        [0.01167966, 0.01284469, 0.01994975, 0.01380918, 0.01937063,
        0.02057219, 0.02118265, 0.02184269, 0.01808047, 0.02090366],
        [0.01900949, 0.01603037, 0.01310998, 0.0180847, 0.01823605,
        0.02115246, 0.01919487, 0.01851987, 0.03319117, 0.032777791,
        [0.01561393, 0.01603037, 0.01906566, 0.0180847 , 0.01972781,
        0.02115144, 0.01761609, 0.03469272, 0.03319117, 0.01112588]],
       [[0.02545341, 0.01544228, 0.01315289, 0.02426513, 0.02481231,
        0.01259124, 0.016026 , 0.02379542, 0.02572341, 0.02041227],
        [0.01314393, 0.02362236, 0.02386183, 0.02426513, 0.01412701,
        0.0188639 . 0.02014118, 0.02294535, 0.02572341, 0.017427791
        [0.01366109, 0.02362236, 0.01425563, 0.02078871, 0.01966477,
        0.02169595, 0.02104024, 0.0201913 , 0.02098918, 0.0252691 ]
        [0.01401854, 0.01519072, 0.02062858, 0.02078871, 0.02069796,
        0.02169595, 0.01877324, 0.02584995, 0.02414699, 0.02508363],
        [0.01997662, 0.01848179, 0.02062858, 0.02275201, 0.01975328,
        0.01931756, 0.02566899, 0.02584995, 0.02519147, 0.025083631,
        [0.01997662, 0.02065543, 0.01635433, 0.01752375, 0.02255032,
        0.02576256, 0.02576471, 0.02615343, 0.0252151, 0.026348021,
        [0.02006628, 0.01995645, 0.01635433, 0.02071472, 0.02255032,
        0.02199314, 0.02280192, 0.02158698, 0.02769558, 0.02634802],
        [0.02018143, 0.01995645, 0.02136969, 0.02076253, 0.02532449,
        0.02164077, 0.02280192, 0.02558043, 0.0249496 , 0.02617808],
        [0.02235128, 0.01876087, 0.02072179, 0.01765709, 0.01896966,
        0.02741962, 0.02632417, 0.02493823, 0.03072576, 0.028046231,
        [0.02054779, 0.01876087, 0.01931456, 0.01765709, 0.02597334,
        0.02437998, 0.02519206, 0.03100185, 0.03072576, 0.02500539]]]
      dtvpe=float32)
                                                                                0.2096821 , 0.21029104, 0.21023534, 0.20811655, 0.2085872 ,
```

```
rray([0.01890998, 0.02545341, 0.02680097, 0.02993097, 0.02599587,
     0.03024603, 0.0335446 , 0.03533418, 0.03959136, 0.04471725,
     0.0455179 , 0.04883455, 0.05512206, 0.05713886, 0.05850134,
     0.0604089 , 0.06354472, 0.06456087, 0.0672814 , 0.06948043
     0.0717717 , 0.0741334 , 0.07750069, 0.08012719, 0.08448848,
     0.08652212, 0.0882066 , 0.09174882, 0.09516714, 0.09985641,
     0.10164141, 0.1064215 , 0.10933152, 0.11346705, 0.1165515 ,
     0.12054856, 0.12479144, 0.12961487, 0.13030073, 0.13482675,
     0.13788415, 0.14160955, 0.14314076, 0.14686692, 0.149538
     0.15258297, 0.15248564, 0.15502334, 0.15808015, 0.15862162
     0.15969668, 0.16181406, 0.16407768, 0.1657265 , 0.16629
     0.16814084, 0.16890872, 0.17019424, 0.17379284, 0.17333238,
     0.17406647, 0.17814532, 0.17953834, 0.18176067, 0.18272781,
     0.1834855 , 0.18612902, 0.18751615, 0.18906523, 0.19024874,
     0.1917163 , 0.19001693, 0.19160187, 0.19335295, 0.19413543,
     0.19483502, 0.19755726, 0.19867922, 0.19996437, 0.20099814,
     0.20214118, 0.20263393, 0.20330463, 0.20369096, 0.20404252,
     0.20452131, 0.20437716, 0.20497514, 0.20501728, 0.2052141 ,
     0.20488924, 0.20498465, 0.2050034 , 0.20501372, 0.2047943 ,
     0.20518495, 0.20511875, 0.20532925, 0.20510574, 0.20527156
     0.20527452. 0.20565525. 0.20557435. 0.20582004. 0.20577618.
     0.2062191 . 0.20651065, 0.20694658, 0.20650375, 0.20624648,
     0.2068108 , 0.20744722, 0.20799698, 0.20891519, 0.20935382
     0.20962028, 0.21017186, 0.21028551, 0.21049055, 0.21062678
     0.21094926, 0.21114174, 0.21162863, 0.21176453, 0.2125633 ,
     0.21277024, 0.2134506, 0.21362649, 0.21375926, 0.21413802,
     0.21470168, 0.21510811, 0.2150898, 0.21531324, 0.21576542,
     0.21603495, 0.21641973, 0.21692301, 0.2172111, 0.21749038,
     0.2177547 , 0.21821797, 0.21819209, 0.21850899, 0.2186227
     0.21848688, 0.21777861, 0.21821775, 0.21926801, 0.21992302
     0.2202801 , 0.2202776 , 0.22137943, 0.22186528, 0.22224756
     0.22223805, 0.22211303, 0.22197753, 0.22224544, 0.22242865
     0.22225359, 0.22246292, 0.22227718, 0.22248977, 0.22217195
     0.22230974, 0.22255547, 0.2225306, 0.22288856, 0.22275372,
     0.22303213, 0.2230684, 0.2233477, 0.22342639, 0.22353706,
     0.22362292, 0.22381166, 0.22388117, 0.2239641 , 0.22406025
     0.22409841, 0.22428608, 0.22438212, 0.22447124, 0.22458172
     0.22460735, 0.22456993, 0.22964764, 0.23076896, 0.23032713,
     0.23101993, 0.22950476, 0.21936573, 0.22100355, 0.2047616 ,
     0.19834167, 0.20658147, 0.20407388, 0.207656 , 0.21409866
     0.21480392, 0.21861537, 0.22009368, 0.21959104, 0.23305155,
     0.22419012. 0.23147507. 0.23374437. 0.23041707. 0.22923528.
     0.22707179, 0.22886106, 0.22985736, 0.23002939, 0.23271665,
     0.23123933, 0.23082343, 0.23149094, 0.23168851, 0.23358727,
     0.23312116, 0.23360333, 0.23524658, 0.23577288, 0.23448013,
     0.23503126, 0.2359351 , 0.23588014, 0.2367796 , 0.23566782,
     0.2357772 , 0.23576581, 0.23595645, 0.23696153, 0.23533691,
     0.2367774 , 0.2381562 , 0.23607953 , 0.23793504 , 0.23774202 ,
     0.23425336, 0.23646721, 0.23834394, 0.23774333, 0.23462862,
     0.23439829, 0.23416257, 0.23730813, 0.23561446, 0.2348301,
     0.23585773, 0.23580278, 0.23565786, 0.23507704, 0.23408103,
     0.23622216, 0.23347102, 0.23574919, 0.23736489, 0.23834434,
     0.23525819, 0.23479976, 0.23572464, 0.23516756, 0.23522907,
     0.22805622, 0.23136322, 0.23146066, 0.2286876 , 0.22891048,
     0.20746154, 0.2066988, 0.20556666, 0.20252727, 0.19813007,
     0.19873855, 0.19984524, 0.2012015 , 0.2053631 , 0.20763178,
     0.20808567, 0.20837338, 0.20904459, 0.20970081, 0.2097946
```


Developing a CSV

	img_pxl_index	frq0	frq372	Label	Shape	File_UID_Num		File	img_pos
0		0.018910	0.190160	Unconsolidated Barren	(10, 10)		1_ang20231028t101421_014_L2A_OE_main_275777	724	(0, 0)
1		0.013469	0.169750	Unconsolidated Barren	(10, 10)		1_ang20231028t101421_014_L2A_OE_main_275777	724	(0, 1)
2		0.013482	0.167964	Unconsolidated Barren	(10, 10)		1_ang20231028t101421_014_L2A_OE_main_275777	724	(0, 2)
3		0.013058	0.165022	Unconsolidated Barren	(10, 10)		1_ang20231028t101421_014_L2A_OE_main_275777	724	(0, 3)
4		0.015231	0.178857	Unconsolidated Barren	(10, 10)		1_ang20231028t101421_014_L2A_OE_main_275777	724	(0, 4)
									111
398279		0.002211	0.069898	Natural Wooded Land	(8, 8)		28499_ang20231109t071216_015_L2A_OE_main_2	7577	(7, 3)
398280		0.004726	0.069710	Natural Wooded Land	(8, 8)	4177	28499_ang20231109t071216_015_L2A_OE_main_2	7577	(7, 4)
398281		0.004768	0.078389	Natural Wooded Land	(8, 8)		28499_ang20231109t071216_015_L2A_OE_main_2	7577	(7, 5)
398282		0.002905	0.072073	Natural Wooded Land	(8, 8)		28499_ang20231109t071216_015_L2A_OE_main_2	7577	(7, 6)
398283		0.009146	0.044159	Natural Wooded Land	(8, 8)		28499_ang20231109t071216_015_L2A_OE_main_2	7577	
398284 rd	ws × 379 columns								

```
f make pandas dataframe(dir path, filename, col labels, label=pd.NA, uid = 0, min res=4.5, max res=6.5):
 Converts a tiff file to a pandas dataframe where each row is a pixel of the
  tiff image and every column is the frequency bands of that pixel along with
  various meta data like pixel location, label of image, shape of image, and
  filename. The images are also filtered for acceptable resolution range.
 dir path
                  : String; This is the name of the .tiff file you want to
                   convert to a pandas dataframe.
  col labels
                 : List; A list of strings that are the names of the columns
                   of the bands in the .tiff file.(ex: ['frq1', ..., 'frqN'])
                 : String; The label of the image of the tiff, all pixels
                   will be assigned this label. Defaults to NaN.
                  : Int: This is an integer value that is suposed to be used
                   as an alternative unique identifier for the individual
                   tiff files, that is not the string filename. Defaults to 0
                  : Float; The minimum accepted resolution of a pixel in the
                  : Float: The maximum accepted resolution of a pixel in the
 Pandas DataFrame: This is the pandas dataframe of the tiff file provided or
                   None if the .tiff file fails the resolution check of the
                   pixels from the min res and max res provided.
                  : Boolean that represents if the tiff file is of appropriate
arr, res_check, shape = tiff_to_arr(join(dir_path, filename), min_res=min_res, max_res=max_res)
if (res check):
 ds = convert 3D to 1D(arr)
  df = pd.DataFrame(ds, columns=col labels)
  df['Label'] = label
  df['Shape'] = shape
  df['File UID Num'] = uid
  df['File'] = filename
  return df, True
```

Pre-Processing

```
def preprocess data(samples df, labels df):
                                                                                                                                               # Filter out rows where all values in frequency columns are -9999
 # Extract sample number
                                                                                                                                               filtered samples df = samples df[~samples df[frequency columns].eq(-9999).all(axis=1)]
 samples df['Sample num'] = samples df['File'].str.split(' ').str[0].astype(int)
                                                                                                                                               # Make sure labels_df are aligned properly by keeping only matching Sample_num values
 # Clean up labels in both DataFrames (removing the extras in the names (e.g wheat)...)
                                                                                                                                               filtered_samples_df = filtered_samples_df[filtered_samples_df['Sample_num'].isin(labels_df['Sample_num'])]
 labels_df['Class'] = labels_df['Class'].str.split('(').str[0].str.strip()
 samples df['Label'] = samples df['Label'].str.split('(').str[0].str.strip()
                                                                                                                                               # Filter out rows where all values in frequency columns are -9999
                                                                                                                                               filtered samples df = samples df[~samples df.filter(like='frq').eq(-9999).any(axis=1)]
 # Remove rows with "Mixed or Not Classified" (Assuming this was the plan)
 samples df = samples df['Label'] != 'Mixed or Not Classified']
                                                                                                                                               # Make sure filtered samples of and labels of are matching up by keeping only matching Sample num
  labels_df = labels_df[labels_df['Class'] != 'Mixed or Not Classified']
                                                                                                                                               filtered samples df = filtered samples df[filtered samples df['Sample num'].isin(labels df['Sample num'])]
 # Filter labels df to include only Sample num values present in samples df
                                                                                                                                               # Check that all NaNs in frequency columns have been replaced
                                                                                                                                               nan counts = filtered samples df[frequency columns].isna().sum().sum()
  labels_df = labels_df[labels_df['Sample_num'].isin(samples_df['Sample_num'])]
                                                                                                                                               assert(nan_counts == 0) # Should be 0 if all NaNs were replaced
 # Reset the index to be consecutive after removing "Mixed or Not Classified"
  samples_df.reset_index(drop=True, inplace=True)
                                                                                                                                               # Check for -9999 in the dataframe
                                                                                                                                               count negative 9999 = (filtered samples df == -9999).sum().sum()
 labels_df.reset_index(drop=True, inplace=True)
                                                                                                                                               assert(count_negative_9999 == 0)
 # Make syre of the unique labels after cleaning
                                                                                                                                               # Make a copy of samples_df to avoid Warnings after filtering
 assert set(samples df['Label'].unique()) == set(labels df['Class'].unique()), "Mismatch in unique labels between samples df and labels df"
                                                                                                                                               samples_df = samples_df.copy()
 # Define frequency columns for targeted NaN replacement
                                                                                                                                               # Label Encoding for consistency
  frequency columns = [col for col in samples df.columns if col.startswith('frg')]
                                                                                                                                               label encoder = LabelEncoder()
                                                                                                                                               filtered samples df['Label Encoded'] = label encoder.fit transform(filtered samples df['Label'])
 # Make all those found with NaN's to be changed to -9999.000..
 samples_df.loc[:, frequency_columns] = samples_df[frequency_columns].fillna(-9999)
                                                                                                                                               return filtered samples df. labels df. label encoder
```

Primary Component Analysis (PCA)

- Each image has 373 bands, way too much useless data
 - PCA reduces the dimensionality of the data, forming axes between bands based on variance
 - These axes are called "components"
- Reducing dimensionality allows us to analyze the components
 - KNN and Regression
 - o SVM was initially attempted, but still took a long time with disappointing initial results
- In some cases, reducing the dimensionality actually improves accuracy
 - Noise reduction
 - Overfitting concerns

PCA Matrices

Logistic Regression Accura	cy: 0.6	ð	Cor	fusion	Matrix	for Log	istic Re	gressio	on			
Annual Crops -		0.01	0.00	0.00	0.02	0.00	0.00	0.35	0.00	0.00	0.00	- 14000
Built-up -	0.18	0.35	0.07	0.00	0.08	0.00	0.00	0.28	0.02	0.03	0.00	- 14000
Consolidated Barren -	0.01	0.06	0.02	0.00	0.00	0.00	0.00	0.89	0.00	0.00	0.00	- 12000
Natural Grassland -	0.29	0.02	0.00	0.00	0.15	0.00	0.00	0.55	0.00	0.00	0.00	- 10000
Natural Wooded Land -	0.05	0.00	0.00	0.00	0.59	0.00	0.00	0.35	0.00	0.00	0.00	22300
Permanent Crops -	0.49	0.00	0.00	0.00	0.13	0.00	0.00	0.38	0.00	0.00	0.00	- 8000
루 Planted Forest -	0.05	0.00	0.00	0.00	0.77	0.00	0.00	0.18	0.00	0.00	0.00	- 6000
Shrubs -	0.05	0.01	0.00	0.00	0.10	0.00	0.00	0.83	0.00	0.01	0.00	
Unconsolidated Barren -	0.10	0.07	0.00	0.00	0.03	0.00	0.00	0.42	0.33	0.05	0.00	- 4000
Waterbodies -	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.99	0.00	- 2000
Wetlands -	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.56	0.00	0.42	0.00	
	Annual Crops -	Built-up -	Consolidated Barren -	Natural Grassland -	Natural Wooded Land .	Permanent Crops .	Planted Forest .	Shrubs -	Unconsolidated Barren -	Waterbodies -	Wetlands -	- 0

KNN CR

Classification Report:				
	precision	recall	f1-score	support
				400
Annual Crops	0.62	0.78	0.69	7034
Built-up	0.80	0.48	0.60	3050
Consolidated Barren	0.62	0.25	0.36	4152
Natural Grassland	0.51	0.12	0.20	3060
Natural Wooded Land	0.62	0.55	0.58	6977
Permanent Crops	0.77	0.11	0.20	675
Planted Forest	0.40	0.04	0.07	1125
Shrubs	0.61	0.86	0.72	18458
Unconsolidated Barren	0.82	0.50	0.62	1606
Waterbodies	0.97	0.99	0.98	5798
Wetlands	0.81	0.13	0.23	186
accuracy			0.67	52121
macro avg	0.69	0.44	0.48	52121
weighted avg	0.67	0.67	0.63	52121

Linear Discrimination Analysis (LDA)

Maximize the distance between means.

A super simple example

Reducing a 2-D graph to a 1-D graph

Reducing a 2-D graph to a 1-D graph with LDA

LDA Matrix

Purpose: This matrix quantifies the performance of the classification model by showing the counts of correct and incorrect predictions for each class.

Rows: Represent the actual land cover classes.

Columns: Represent the predicted land cover classes.

Diagonal Cells: Indicate correct classifications (e.g., 4895 "Annual Crops" correctly classified).

Off-Diagonal Cells: Indicate misclassifications (e.g., 1711 "Annual Crops" misclassified as "Unconsolidated Barren").

High Misclassification: The large values in the "Shrubs" row (both correct and incorrect) and the corresponding "Unconsolidated Barren" column confirm the overlap observed in the scatter plot, indicating potential confusion between these classes.

LDA Scatter plot

Scatter Plot (LDA Components):

Purpose: This plot visualizes how well LDA separates different land cover classes in a lower-dimensional space. Each point represents a data point (e.g., a pixel or region) from the training dataset.

Axes: The axes represent the two most significant LDA components. These components are linear combinations of the original input features (e.g., spectral bands from satellite imagery) chosen to maximize the separation between classes.

Clusters: Each color represents a different land cover class (e.g., "Waterbodies," "Shrubs"). Ideally, classes should form distinct, well-separated clusters.

Overlapping Clusters: Some overlap exists, particularly between "Shrubs" and "Unconsolidated Barren." This overlap suggests potential misclassification in those areas.

CNN

Image-Level CM

Andrea Cropes Bulli-14 Consultated Buffer Haturd Crassand Hooded Land Reproduct Cropes Bufferd Open Structure Consultated Buffer Haturd Crassand Reproductive Consultated Buffer Cropes Consultated Buffer Cropes Consultated Buffer Cropes Consultated Consultate

Pixel-Level Metrics

precision recall	f1-score
------------------	----------

Annual Crops	0.71	0.71	0.71
Built-up	0.89	0.79	0.84
Cons. Barren	0.68	0.57	0.62
Natural Grassland	0.53	0.26	0.35
Natural Wooded Land	0.64	0.67	0.65
Permanent Crops	0.85	0.70	0.77
Planted Forest	0.62	0.44	0.51
Shrubs	0.63	0.79	0.70
Uncon. Barren	0.64	0.55	0.59
Waterbodies	1.00	0.92	0.96

accuracy 0.70 macro avg 0.72 0.64 0.67 weighted avg 0.70 0.70 0.70

Test Acc: 70.58%

	EEO
Shrubs	<u>558</u>
Natural Wooded Land	304
Annual Crops	227
<u>Waterbodies</u>	188
Consolidated Barren	131
Natural Grassland	<u>117</u>
Permanent Crops	116
Unconsolidated Barren	114
Built-up	103

CNN (Combined Classes)

Image-Level CM

Pixel-Level Metrics

pred	cis	ion	recall	f1-score
Annual Crops		0.80	0.71	0.75
Built-up		0.83	0.85	0.84
Cons. Barren		0.80	0.54	0.64
Wooded Land		0.64	0.56	0.60
Permanent Crops		0.81	0.75	0.78
Planted Forest		0.58	0.40	0.47
Shrubs & Grasslar	nd	0.67	0.85	0.75
Uncon. Barren		0.60	0.34	0.44
Waterbodies		0.96	0.91	0.94
accuracy	0.	72		
macro avg	0.7	74	0.66	0.69
weighted avg	0.7	72	0.72	0.71

Test Acc: 71.69%

CNN (Combined Classes & Morphology) Image-Level CM

Pixel-Level Metrics

	precisio	n recal	I f1-score
Annual Crops	0.91	0.85	0.88
Built-up	0.96	0.97	0.96
Cons. Barren	0.84	0.66	0.74
Wooded Land	0.78	0.65	0.71
Permanent Crops	0.95	0.88	0.91
Planted Forest	0.73	0.63	0.68
Shrubs & Grasslar	nd 0.76	0.92	0.83
Uncon. Barren	0.95	0.64	0.76
Waterbodies	0.99	0.96	0.98
accuracy	0.83		
macro avg	0.87	0.80	0.83
weighted avg	0.83	0.83	0.82

Test Acc: 80.65%

CNN Overview for Image-Level Accuracy

Without combining Classes Test Acc: 76.68%

precision	recal	l f1-s	core
Annual Crops	0.71	0.71	0.71
Built-up	0.89	0.79	0.84
Cons. Barren	0.68	0.57	0.62
Natural Grassland	0.53	0.26	0.35
Natural Wooded Land	0.64	0.67	0.65
Permanent Crops	0.85	0.70	0.77
Planted Forest	0.62	0.44	0.51
Shrubs	0.63	0.79	0.70
Uncon. Barren	0.64	0.55	0.59
Waterbodies	1.00	0.92	0.96
accuracy	0.70		
macro avg	0.72	0.64	0.67
weighted avg	0.70	0.70	0.70

Combining Classes Test Acc: 82.65

orecision	recall	f1-score
0.91	0.85	0.88
0.96	0.97	0.96
0.84	0.66	0.74
0.78	0.65	0.71
0.95	0.88	0.91
0.73	0.63	0.68
d 0.76	0.92	0.83
0.95	0.64	0.76
0.99	0.96	0.98
0.83		
0.87	0.80	0.83
0.83	0.83	0.82
	0.91 0.96 0.84 0.78 0.95 0.73 d 0.76 0.95 0.99	0.91 0.85 0.96 0.97 0.84 0.66 0.78 0.65 0.95 0.88 0.73 0.63 dd 0.76 0.92 0.95 0.64 0.99 0.96 0.83 0.87 0.80

Data Imbalance

- Oversampling
- Class Weights

Ground Truth Labeling IT'S NOT AN EASY JOB

Post-Processing Confusion Matrix (CNN)

Morphology: Based a pixel's prediction on its neighbors

Process: 2D post-processing technique in which each resulting image produced from the predicted pixels has a small amount of Dilation applied to them by expanding regions of predicted classes by adding neighboring pixels to the class in order to smooth the

Filtered Pred Labels

Sample num: 5699

Ground Truth: Built-up

<u>Legend:</u>

Built-Up

Natural Wooded Area

Permanent Crops

Natural Grassland

Pixel Analysis

Legend: