Error Control (An Overview)

Kameswari Chebrolu

Recap

- Frame-by-Frame next-hop delivery
- Focus on Error Control
 - Error Detection and recovery

Error Detection

- What cause errors?
 - Distortion of signals due to frequency dependant attenuation, noise (PHY layer)
 - Random single-bit vs Bursty errors
- Why detect errors?
 - Data fidelity, prevent wastage of resources

What next?

• After Detection:

- Drop Frame
 - Higher layers (e.g TCP) will recover or few losses dont hurt applications (e.g. audio)
- Recover Frame
 - Error Correction: Frame carries enough information to correct errors
 - Retransmission: Receiver signals sender on error, sender retransmits the frame

Error correction vs Retransmission

- Error correction requires more redundant bits per frame than error detection
 - Redundancy bits are sent <u>all the time</u> (every frame)
- Retransmission requires another copy to be transmitted
 - Copy sent only on error

Usage

- Error correction useful when
 - Error rate if high (e.g. wireless)
 - Cost (e.g. latency) of retransmission is too high
 (e.g. satellite link)

Framework

- Add redundant information to a frame to detect or correct errors
- At Sender: Add k bits of redundant data to a m bit message
 - k derived from original message through some algorithm
- At Receiver: Reapply same algorithm as sender to detect errors; take corrective action if necessary
- Examples:
 - Detection: $k \ll m$; k = 32; $m \sim 12,000$ for Ethernet
 - Correction: Code Rate: m/(m+k)
 - WiFi code rates range from 1/2 to 5/6

Hamming Distance

- Code word: n=m+k bits
- Hamming distance between two codewords:
 Number of bits they differ in
 - XOR the two codewords
- Example:
 - Codewords: 01110110, 00011101
 - Distance is 5

Hamming Distance of a Code

- Number of possible code words is 2ⁿ
- Legal code words = 2^m (determined by the algorithm)
- Among the list of legal code words, find the smallest hamming distance between two code words
 - This is the hamming distance of a code (=d)

Rules

- The error detection/correction capabilities are a function of the code's hamming distance
- Error Detection: Can detect up to d-1 errors
 - To change one codeword to another require atleast d bit changes
- Error Correction: Can correct up to (d-1)/2 errors
 - The received codeword (in error) is still closer to the original codeword than any other codeword

Example

- Repetition code
 - $-0 \rightarrow 000; 1 \rightarrow 111$
 - m=1, k=2; n=3
 - Hamming distance is 3, code rate is 1/3
- Can detect up to 2 errors and correct up to 1 error

Design Considerations of a Code

- Reduce k to achieve high code rate
- For given values of n and k, maximize d
- Easy encoding and decoding
 - Minimal memory and processing time

Focus

- Error Detection
- Reliable Transfer (retransmissions)
- Error Correction
 - E.g. Reed-Solomon codes, Convolution codes,
 Turbo codes

Summary

- Important to detect errors in frames
- Error Recovery: FEC or Retransmission
 - Inherent tradeoffs
- Framework (Overview)
 - Hamming distance and error detection/correction capabilities
 - Design considerations
- Going forward: Error detection (in detail)