Modeling the cumulative incidence function of clustered competing risks data: a multinomial GLMM approach

Semana Acadêmica de Estatística, UFPR

Henrique Laureano (.github.io)

IPPPP & LEG @ UFPR

September 13, 2021

Giving context: defining where we are and what we did

Object

 Handle clustered competing risks data (a kind of failure time data) through the cumulative incidence function (CIF).

Goal

 Perform maximum likelihood estimation in terms of a full likelihood formulation based on Cederkvist et al. (2019)'s CIF specification (Scheike's).

Contribution

- The full likelihood formulation is in terms of a generalized linear mixed model (GLMM) a conditional approach (with fixed and random/latent effects);
- The optimization and inference are tacked down via an efficient model implementation with the use of state-of-art computational libraries (Kristensen et al. (2016)'s TMB).

- 1 Data
- 2 Model
- TMB: Template Model Builder
- 4 Simulation study
- 6 References

Clustered competing risk data

Key ideas:

- Clustered: groups with a dependence structure (e.g. families);
- 2 Causes competing by something;
- 3 Occurrence time of this something.

Something?

- Failure of an industrial or electronic component;
- Occurrence or cure of a disease or some biological process;

 Progress of a patient clinic state.

Independent of the application, always the same framework

Cluster	ID	Cause 1	Cause 2	Censorship	Time	Feature
1	1	Yes	No	No	10	Α
1	2	No	No	Yes	8	Α
2	1	No	No	Yes	7	В
2	2	No	Yes	No	5	Α

- Data
- 2 Model
- 3 TMB: Template Model Builder
- 4 Simulation study
- 6 References

Modeling clustered competing risks data

What? Why? How?

$\textbf{Probability scale} \rightarrow \textbf{Cause-specific CIF}$

i.e., $CIF = \mathbb{P}[\text{ failure time } \leq t, \text{ a given cause } | \text{ features \& latent effects }].$

Common applications: family studies.

↓ Keywords: within-family/cluster dependence; age at disease onset; populations.

Cederkvist et al. (2019)'s CIF specification

For two competing causes of failure, the cause-specific CIFs are specified in the following manner

$$F_k(t \mid \boldsymbol{x}, \ u_1, \ u_2, \ \eta_k) = \underbrace{\pi_k(\boldsymbol{x}, \ u_1, \ u_2)}_{\text{cluster-specific risk level}} \times \underbrace{\Phi[w_k g(t) - \boldsymbol{x} \gamma_k - \eta_k]}_{\text{cluster-specific failure time trajectory}}, \quad t > 0, \quad k = 1, \ 2, \quad (1)$$

with

$$\pi_k(\mathbf{x}, \mathbf{u}) = \exp\{\mathbf{x}\beta_k + u_k\} / \left(1 + \sum_{m=1}^{K-1} \exp\{\mathbf{x}\beta_m + u_m\}\right), \quad k = 1, 2, \quad K = 3;$$

 \bullet $\Phi(\cdot)$ is the cumulative distribution function of a standard Gaussian distribution;

3
$$g(t) = \operatorname{arctanh}(2t/\delta - 1), \quad t \in (0, \delta), \quad g(t) \in (-\infty, \infty).$$

In Cederkvist et al. (2019), this CIF specification is modeled under a pairwise composite likelihood approach (Lindsay 1988; Varin, Reid, and Firth 2011).

Our contribution: a full likelihood analysis

 $y_{ijt} \mid \{u_{1j}, u_{2j}, \eta_{1j}, \eta_{2j}\} \sim \text{Multinomial}(p_{1ijt}, p_{2ijt}, p_{3ijt})$

For two competing causes of failure, a subject i, in the cluster j, in time t, we have

latent effects
$$\begin{bmatrix} u_1 \\ u_2 \\ \eta_1 \\ \eta_2 \end{bmatrix} \sim \begin{array}{l} \text{Multivariate} \\ \text{Normal} \\ \end{bmatrix} \begin{bmatrix} \sigma_{u_1}^2 & \text{cov}(u_1, u_2) & \text{cov}(u_1, \eta_1) & \text{cov}(u_1, \eta_2) \\ \sigma_{u_2}^2 & \text{cov}(u_2, \eta_1) & \text{cov}(u_2, \eta_2) \\ \sigma_{\eta_1}^2 & \sigma_{\eta_2}^2 \end{bmatrix} \end{bmatrix}$$

$$p_{kijt} = \frac{\partial}{\partial t} F_k(t \mid \boldsymbol{x}, \boldsymbol{u}, \eta_k)$$

$$= \frac{\exp\{\boldsymbol{x}_{kij}\beta_k + u_{kj}\}}{1 + \sum_{m=1}^{K-1} \exp\{\boldsymbol{x}_{mij}\beta_m + u_{mj}\}}$$

$$\times w_k \frac{\delta}{2\delta t - 2t^2} \phi \left(w_k \operatorname{arctanh} \left(\frac{t - \delta/2}{\delta/2} \right) - \boldsymbol{x}_{kij}\gamma_k - \eta_{kj} \right), \quad k = 1, 2.$$

Marginal likelihood function for two competing causes

$$\begin{split} L(\boldsymbol{\theta};\boldsymbol{y}) &= \prod_{j=1}^{J} \int_{\mathfrak{R}^4} \pi(\boldsymbol{y}_j \mid \boldsymbol{r}_j) \times \pi(\boldsymbol{r}_j) \; \mathrm{d}\boldsymbol{r}_j \\ &= \prod_{j=1}^{J} \int_{\mathfrak{R}^4} \left\{ \prod_{i=1}^{n_j} \prod_{t=1}^{n_{ij}} \left(\frac{(\sum_{k=1}^K y_{kijt})!}{y_{1ijt}! \; y_{2ijt}! \; y_{3ijt}!} \prod_{k=1}^K p_{kijt}^{y_{kijt}} \right) \right\} \times \\ & \qquad \qquad \text{fixed effect component} \\ & \qquad \qquad (2\pi)^{-2} |\Sigma|^{-1/2} \exp\left\{ -\frac{1}{2} \boldsymbol{r}_j^\top \Sigma^{-1} \boldsymbol{r}_j \right\} \mathrm{d}\boldsymbol{r}_j \\ & \qquad \qquad \qquad \text{latent effect component} \\ &= \prod_{i=1}^{J} \int_{\mathfrak{R}^4} \left\{ \prod_{i=1}^{n_j} \prod_{t=1}^{n_{ij}} \prod_{k=1}^K p_{kijt}^{y_{kijt}} \right\} (2\pi)^{-2} |\Sigma|^{-1/2} \exp\left\{ -\frac{1}{2} \boldsymbol{r}_j^\top \Sigma^{-1} \boldsymbol{r}_j \right\} \mathrm{d}\boldsymbol{r}_j, \end{split}$$

with p_{kijt} from Equation 2 and where $\theta = [\beta \ \gamma \ \mathbf{w} \ \sigma^2 \ \rho]^{\top}$ is the parameters vector.

fixed effect

latent effect component

- Data
- 2 Model
- 3 TMB: Template Model Builder
- 4 Simulation study
- 6 References

TMB: Template Model Builder

Kristensen et al. (2016).

An R (R Core Team 2021) package for the quickly implementation of complex random effect models through simple C++ templates.

Workflow

- Write your objective function in a .cpp through a #include <TMB.hpp>;
- Compile and load it in R via TMB::compile() and base::dyn.load(TMB::dynlib());
- 3 Compute your objective function derivatives with obj <- TMB::MakeADFun():</p>
- Perform the model fitting, opt <- base::nlminb(obj\$par, obj\$fn, obj\$gr);</p>
- **6** Compute the parameters standard deviations, TMB::sdreport(obj).
- Kev features:
- Automatic differentiation: The state-of-art in derivatives computation

2 Laplace approximation. An efficient fashion to approximate the latent effect integrals

- Data
- 2 Model
- 3 TMB: Template Model Builde
- 4 Simulation study
- 6 References

Simulation study results

First of all, the time.

 The non-complete models (2D Laplace aprox.) are kind of fast, taking always less than 5 min.

In the most expensive scenarios (30K 4D Laplaces).

- the complete model takes 30 min.
 In a full R implementation with 10K 4D Laplaces, it took 30hrs. TMB is fast.
- We also did a Bayesian analysis via Stan/NUTS-HMC (Stan Development Team 2020).
 - 1 week of parallelized processing for a 2500 size 2 clusters scenario with tuned NUTS.
 This just reinforces the MCMC impracticability for some complex models.

Parameters estimation.

The non-complete models fail to learn the data.
 They appear to be not structured enough to capture the data characteristics.

Simulation study results: High CIF scenario

True curve in dashed black

CIF of failure cause 2

True curve in dashed black

Simulation study results: Low CIF scenario

CIF of failure cause 1

True curve in dashed black

CIF of failure cause 2

True curve in dashed black

Thanks for watching and have a great day

For more read Laureano (2021) master thesis.

Special thanks to

PPGMNE

Programa de Pós-Graduação em Métodos Numéricos em Engenharia

Joint work with

Wagner H. Bonat http://leg.ufpr.br/~wagner Paulo Justiniano Ribeiro Jr. http://leg.ufpr.br/~paulojus

- Data
- 2 Model
- TMB: Template Model Builder
- 4 Simulation study
- **5** References

References

Cederkvist, L., K. K. Holst, K. K. Andersen, and T. H. Scheike. 2019. "Modeling the Cumulative Incidence Function of Multivariate Competing Risks Data Allowing for Within-Cluster Dependence of Risk and Timing." *Biostatistics* 20 (2): 199–217.

Kristensen, K., A. Nielsen, C. W. Berg, H. J. Skaug, and B. M. Bell. 2016. "TMB: Automatic Differentiation and Laplace Approximation." *Journal of Statistical Software* 70 (5): 1–21.

Laureano, H. A. 2021. "Modeling the Cumulative Incidence Function of Clustered Competing Risks Data: A Multinomial Glmm Approach." Master's thesis, Federal University of Paraná (UFPR).

Lindsay, B. G. 1988. "Composite Likelihood Methods." Comtemporary Mathematics 80 (1): 221–39.

R Core Team. 2021. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing. Vienna, Austria.

Stan Development Team. 2020. "RStan: The R Interface to Stan." https://mc-stan.org/.

Varin, C., N. Reid, and D. Firth. 2011. "An Overview of Composite Likelihood Methods." *Statistica Sinica* 21 (1): 5–42.