Week 14

Machine Learning and Big Data - DATA622

CUNY School of Professional Studies

Meaning of words

Words may have many meanings (polysemy). The meaning of a word depends on its context.

An Example: **bow**

- the front of a ship
- to bend forward in respect
- a weapon that shoots arrows
- to bend outward

Tokenization

Tokenization is the processes of splitting text into manageable pievces: tokens

Types of tokenization:

- Character-level
- Subword-level
- Word-level
- Whitespace-level
- Sentence-level

Tokenization

Sub-word is most popular, best balance of vocabulary size and retention of meaning

Tokenization

Embeddings

Embeddings

Embeddings

Evolution: RNN - LSTM - GRU

Attention

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Attention

Transformers

Large Language Models

Large Language Models

Large Language Models (LLMs)

- Pre-trained with extremely large datasets architected to scale
- Can be adopted to a wide range of downstream tasks
- LLMs are Foundation Models.

Very Large training datasets

GPT-3 Datasets Summary.

	Wikipedia	Books	Journals	Reddit links	СС	Other	Total
GB	11.4	21	101	50	570		753GB
Tokens	3	12	55	19	410		499BTokens

LLM Scaling: a new Moore's Law

Challenges of ML Today

Benefits of LLMs

Increased Velocity

- Focus shifts from training models from scratch, to fine-tune models
- Faster time to market

Increased Opportunity for AI/ML involvement

- Potential to scale to a wider pool of users to perform AI/ML
- Simple text interface and natural language instruction

Cost effective

- Scale to multiple use-cases per LLM
- Faster / lower-cost prototyping

Tapping into state-of-the-art AI

- Few-shot learners (and 'Surprisingly good without fine tuning')
- Perform tasks not explicitly trained on

Emergent Capabilities

- Emergent capabilities that surface with LLM size i.e. capabilities not present in smaller models but emerge in larger models
- LLM scale highly correlated with downstream performance¹

Benefits of LLMs

Fine Tuning

- · Load foundational model
- Add task-specific prompts
- · Minimal data, compute, time
- SOTA results

Embeddings

- Encode Content into dense vector for downstream use
- Use in downstream models or similarity search

In-context Learning

- "Ask" the model to perform a task as part of the input
- Provide examples to help

Risks of LLMs

Bias Propagation

- Potential bias / toxic output
- Responsible AI is critical

LLMs fail in subtle ways

- Hallucinations
- Evaluation / safeguards required

Increasing model scale • Exponential growth in size

- Complexity in training / deployment

LLM costs

- Cost / Latency trade-off
- Understand & manage costs

Closed-Source models

• Legal restrictions to some models

