Course Title: Operating System Concepts	Course code: 21BCA3C12L
Total Contact Hours: 42	Course Credits: 03
Formative Assessment or IA Marks: 40	Duration of SEE/Exam: 02 Hours
Summative Assessment Marks: 60	

Course Outcomes (COs):

At the end of the course, students will be able to:

- Explain the fundamentals of the operating system.
- Comprehend multithreaded programming, process management, process synchronization, memory management and storage management.
- Compare the performance of Scheduling Algorithms
- Identify the features of I/O and File handling methods.

DSC12: Operating System Concepts

Unit	Description	Hours
1	Introduction to Operating System: Definition, History and Examples of Operating System; Computer System organization; Types of Operating Systems; Functions of Operating System; Systems Calls; Operating System Structure. Process Management: Process Concept- Process Definition, Process State, Process Control Block, Threads; Process scheduling- Multiprogramming, Scheduling Queues, CPU Scheduling, Context Switch; Operations on Processes- Creation and Termination of Processes; Inter process communication (IPC)- Definition and Need for Inter process Communication; IPC Implementation Methods- Shared Memory and Message Passing;	08
2	Multithreaded Programming: Introduction to Threads; Types of Threads; Multithreading- Definition, Advantages; Multithreading Models; Thread Libraries; Threading Issues. CPU Scheduling: Basic concepts; Scheduling Criteria; Scheduling Algorithms; Multiple-processor scheduling; Thread scheduling; Multiprocessor Scheduling; Real-Time CPU Scheduling.	10
3	Process Synchronization: Introduction; Race Condition; Critical Section Problem and Peterson's Solution; Synchronization Hardware, Semaphores; Classic Problems of Synchronization- Readers and Writers Problem, Dining Philosophers Problem; Monitors. Deadlocks: System Model; Deadlocks Characterization; Methods for Handling Deadlocks; Deadlock Prevention; Deadlock Avoidance; Deadlock Detection; and Recovery from Deadlock.	10

	Memory Management: Logical and Physical Address Space; Swapping; Contiguous Allocation; Paging; Segmentation; Segmentation with Paging. Virtual Memory: Introduction to Virtual Memory; Demand Paging; Page Replacement; Page Replacement Algorithms; Allocation of frames, Thrashing.	08
5	File System: File Concepts- Attributes, Operations and Types of Files; File System; File Access methods; Directory Structure; Protection; File System Implementation- File System Structure, Allocation Methods, Free Space Management	

References:

- 1. Operating System Concepts, Silberschatz' et al., 10thEdition, Wiley, 2018.
- 2. Operating System Concepts Engineering Handbook, Ghosh PK, 2019.
- 3. Understanding Operating Systems, McHoes A et al., 7th Edition, Cengage Learning, 2014.
- 4. Operating Systems Internals and Design Principles, William Stallings, 9th Edition, Pearson.
- 5. Operating Systems A Concept Based Approach, Dhamdhere, 3rd Edition, McGraw Hill Education India.
- 6. Modern Operating Systems, Andrew S Tanenbaum, 4th Edition, Pearson.