

Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“जानने का अधिकार, जीने का अधिकार”

Mazdoor Kisan Shakti Sangathan

“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”

Jawaharlal Nehru

“Step Out From the Old to the New”

IS 11522-1 (1986): Recommendations for basic quantities in cutting and grinding, Part 1: Geometry of the active part of cutting tools, general terms, reference systems, tools, working angles and chip breakers [PGD 32: Cutting tools]

“ज्ञान से एक नये भारत का निर्माण”

Satyanaaranay Gangaram Pitroda

“Invent a New India Using Knowledge”

“ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता है”

Bhartṛhari—Nītiśatakam

“Knowledge is such a treasure which cannot be stolen”

BLANK PAGE

PROTECTED BY COPYRIGHT

IS : 11522(Part 1)-1986
ISO 3002/1-1982

Indian Standard

RECOMMENDATIONS FOR BASIC QUANTITIES IN CUTTING AND GRINDING

**PART I GEOMETRY OF THE ACTIVE PART OF CUTTING TOOLS,
GENERAL TERMS, REFERENCE SYSTEMS, TOOL AND
WORKING ANGLES AND CHIP BREAKERS**

(ISO Title : Basic Quantities in Cutting and Grinding — Part 1:
Geometry of the Active Part of Cutting Tools — General Terms,
Reference Systems, Tool and Working Angles, Chip Breakers)

UDC 621'9'01 : 001'4

© Copyright 1987

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

Indian Standard

RECOMMENDATIONS FOR BASIC QUANTITIES IN CUTTING AND GRINDING

PART I GEOMETRY OF THE ACTIVE PART OF CUTTING TOOLS, GENERAL TERMS, REFERENCE SYSTEMS, TOOL AND WORKING ANGLES AND CHIP BREAKERS

(ISO Title : Basic Quantities in Cutting and Grinding — Part 1:
Geometry of the Active Part of Cutting Tools — General Terms,
Reference Systems, Tool and Working Angles, Chip Breakers)

National Foreword

This Indian Standard which is identical with ISO 3002/1-1982 'Basic quantities in cutting and grinding — Part 1: Geometry of the active part of cutting tools— General terms, reference systems, tool and working angles, chip breakers', issued by the International Organization for Standardization (ISO), was adopted by the Indian Standards Institution on the recommendation of the Small Tools Sectional Committee and approved by the Mechanical Engineering Division Council.

In the adopted International Standard certain terminology and conventions are not identical with those used in Indian Standards. Wherever the words 'International Standard' appear, referring to this standard, they shall be read as 'Indian Standard'.

Cross References

Corresponding Indian Standard is not available for ISO 3002/2 'Basic quantities in cutting and grinding —Part 2 : Geometry of the active part of the cutting tools — General conversion formulae to relate tool and working angles'.

Adopted 3 February 1986	© October 1987, BIS	Gr 14
-------------------------	---------------------	-------

1 Scope and field of application

This Part of ISO 3002 defines a nomenclature for certain basic concepts concerning cutting tools; it is applicable to the geometry of every kind of cutting tool and emphasizes a known terminology for them which is intended to provide a framework on which the nomenclature and appropriate standards for individual types of cutting tool, such as single-points tools, twist drills, milling cutters and hand tools, can be established. However, the standards for individual types of cutting tool will not each require or use the full range of terms and definitions set out in the basic nomenclature established in this Part of ISO 3002.

The definitions are grouped into four clauses. After defining the general terms for surfaces on the workpiece, certain elements of the tool, surfaces on the tool, the cutting edges and the tool and workpiece motions in clause 3, this Part of ISO 3002 defines, in clause 4, reference systems of planes which are subsequently used to define the various angles which are included in clause 5. Two reference systems of planes are necessary : one, the tool-in-hand system, is used to define the geometry of the tool so that it can be manufactured and measured; the other, the tool-in-use system, is required to define the effective geometry of the tool when it is actually performing the cutting operation. Clause 7 gives definitions relating to chip breakers.

ISO 3002/2 gives general conversion formulae to relate tool and working angles.

NOTE — In addition to terms used in the three official ISO languages (English, French and Russian), this Part of ISO 3002 gives the equivalent terms in German, Italian and Dutch; these have been included at the request of ISO Technical Committee 29 and are published under the responsibility of the member bodies for Germany, F.R. (DIN), Italy (UNI) and the Netherlands (NNI). However, only the terms and definitions given in the official languages can be considered as ISO terms and definitions.

2 Reference

ISO 3002/2, *Basic quantities in cutting and grinding — Part 2 : Geometry of the active part of cutting tools — General conversion formulae to relate tool and working angles*.

3 General terms

3.1 Surfaces on the workpiece

3.1.1 work surface (figure 1) : The surface on the workpiece to be removed by machining.

3.1.2 machined surface (figure 1) : The desired surface produced by the action of the cutting tool.

3.1.3 transient surface (figure 1) : The part of the surface which is formed on the workpiece by the cutting edge (3.4.1) and removed during the following cutting stroke, during the following revolution of the tool or workpiece, or by the following cutting edge.

3.2 Tool elements

3.2.1 body (figures 3 to 5) : The part of the tool which holds the cutting blades or inserts, or on which are formed the cutting edges (3.4.1).

3.2.2 shank (figures 2a, 4 and 5) : The part of the tool by which it is held.

3.2.3 tool bore (figure 3) : That bore in a tool by which it can be located and fixed by a spindle, arbor or mandrel.

3.2.4 tool axis (figures 3, 4 and 5) : An imaginary straight line with defined geometrical relationships to the locating surfaces used for the manufacture and sharpening of the tool and for holding the tool in use. Generally, the tool axis is the centreline of the tool shank or bore; it is usually parallel or perpendicular to the locating surfaces, although it could be the centreline of a conical surface as in the case of a taper shank. When not obvious, the tool axis must be defined by the designer.

3.2.5 cutting part (figure 2a) : The functional part of parts of the tool each comprised of chip producing elements; the cutting edges (3.4.1), face (3.3.1) and flank (3.3.2) are therefore elements of the cutting part.

In the case of a multi-toothed cutter, each tooth has a cutting part.

3.2.6 base (figures 2a, 12 and 18) : A flat surface on the tool shank, parallel or perpendicular to the tool reference plane (4.1.1), useful for locating or orienting the tool in its manufacture, sharpening and measurement.

Not all tools have a clearly defined base.

3.2.7 wedge (figures 3 and 7) : The portion of the cutting part enclosed between the face (3.3.1) and the flank (3.3.2). It can be associated with either the major or minor cutting edge (3.4.1).

3.3 Tool surfaces

Each tool surface is provided with a symbol consisting of the letter A with a suffix indicating the identity of the surface (for example Ay, the face). When it is necessary to distinguish clearly a surface associated with the minor cutting edge (3.4.1.2) the appropriate symbol bears a prime (for example A_y' , the minor flank).

3.3.1 face Ay (figures 2a, 3, 4, 5 and 7) : The surface or surfaces over which the chip flows. When the face is composed of a number of surfaces inclined to one another, these are designated first face, second face, etc, starting from the cutting edge. These surfaces may be called lands and unless otherwise specified it is assumed that these are associated with the major cutting edge (3.4.1.1).

Where it is necessary to distinguish the faces associated with the major and minor cutting edges (3.4.1.1 and 3.4.1.2), that part of the face which intersects the flank (3.3.2) to form the major cutting edge is called the major face and that part of the face which intersects the flank to form the minor cutting edge is called the minor face, for example major first face, minor first face, etc.

3.3.1.1 reduced face \bar{A}_y (figure 2c) : A specially prepared surface or surfaces separated from the rest of the face by a step and designed in such a way that the chip contacts only the reduced face.

NOTE — A reduced face should not be confused with the land associated with a groove or step intended to induce chip breaking nor with multiple faces of the tool. The symbol \bar{A}_y has been adopted to designate the reduced face and to distinguish it from lands on the tool face which are designated by A_{y1} , A_{y2} , etc.

3.3.1.2 chip breaker (see clause 7) : A modification of the face A_y , to control or break the chip, consisting of either an integral groove or an integral or attached obstruction.

3.3.2 flank A_α (figures 2a, 3, 4, 5 and 7) : The tool surface or surfaces over which the surface produced on the workpiece passes. When a flank is composed of a number of surfaces inclined to one another, these are designated first flank, second flank, etc., starting from the cutting edge. These surfaces may be called lands and unless otherwise specified it is assumed that these are associated with the major cutting edge (3.4.1.1).

Where it is necessary to distinguish the flanks associated with the major and minor cutting edges (3.4.1.1 and 3.4.1.2), that part of the flank which intersects the face to form the major cutting edge is called the major flank and that part of the flank which intersects the face to form the minor cutting edge is called the minor flank, for example major first flank, minor first flank, etc.

3.3.3 Profiles of the face and flank

3.3.3.1 face profile (figure 2d) : The curve formed by the intersection of the face A_y with any desired plane. Normally this profile is defined and measured in the cutting edge normal plane P_n (4.1.5). If it is to be defined in any other plane this must be clearly specified.

3.3.3.2 flank profile (figure 2d) : The curve formed by the intersection of flank A_α with any desired plane. Normally this profile is defined and measured in the cutting edge normal plane P_n (4.1.5). If it is to be defined in any other plane this must be clearly specified.

3.4 Cutting edges

3.4.1 cutting edge : That edge of the face which is intended to perform cutting.

3.4.1.1 tool major cutting edge S (figures 2a, 3, 4, 5 and 7) : That entire part of the cutting edge which commences at the point where the tool cutting edge angle κ_r is zero (5.1.1.1) and of which at least a portion is intended to produce the transient surface on the workpiece. In the case of tools having a sharp corner (3.4.2) at which the value of κ_r may be considered to pass through zero, the major cutting edge commences at that corner. In the case of tools for which the value of κ_r does not decrease to zero at any point on the cutting edge, the entire cutting edge is the tool major cutting edge as, for example, in the case of a slab milling cutter.

3.4.1.2 tool minor cutting edge S' (figures 2a, 3, 4 and 5) : The remainder of the cutting edge, if any, and where present commences at the point on the cutting edge where κ_r is zero (5.1.1.1) but extends from this point in a direction away from the tool major cutting edge. It is not intended to produce any of the transient surface on the workpiece. Some tools may have more than one tool minor cutting edge as, for example, in the case of a cutting-off tool.

3.4.1.3 working major cutting edge S_e (figure 2b) : That entire part of the cutting edge which commences at the point where the working cutting edge angle κ_{re} is zero (5.2.1.1) and of which at least a portion produces the transient surface on the workpiece. In the case of tools having a sharp corner (3.4.2) at which the value of κ_{re} may be considered to pass through zero, the working major cutting edge commences at that corner. In the case of tools for which the value of κ_{re} does not decrease to zero at any point on the cutting edge, the entire cutting edge is the working major cutting edge as, for example, in the case of a slab milling cutter.

3.4.1.4 working minor cutting edge S'_e (figure 2b) : The remainder of the cutting edge, if any, and where present commences at the point on the cutting edge where κ_{re} is zero (5.2.1.1) but extends from this point in a direction away from the working major cutting edge. It does not produce any of the transient surface on the workpiece. Some tools may have more than one working minor cutting edge, as for example, in the case of a cutting-off tool.

NOTE — A distinction must be made between the tool major cutting edge and the working major cutting edge because the points at which κ_r and κ_{re} can be considered to be zero are not, in general, coincident.

3.4.1.5 active cutting edge (figure 2b) : That portion of the working cutting edge which is actually engaged in cutting at a particular instant generating both the transient and machined surfaces on the workpiece.

3.4.1.5.1 active major cutting edge S_a : The portion of the active cutting edge measured along the cutting edge from the point of intersection of the cutting edge and work surface to the point on the working cutting edge at which the working cutting edge angle κ_{re} (5.2.1.1) may be considered to be zero.

3.4.1.5.2 active minor cutting edge S_a' : The portion of the active cutting edge measured along the cutting edge from the point at which the working cutting edge κ_{re} (5.2.1.1) may be considered to be zero to the point of intersection of the working minor cutting edge and the machined surface.

3.4.2 corner (figures 2 to 6a) : The relatively small portion of the cutting edge at the junction of the major and minor cutting edges; it may be curved, straight or the actual intersection of these cutting edges.

3.4.2.1 rounded corner (figure 6a) : A corner having a curved cutting edge.

3.4.2.2 chamfered corner (figure 6a) : A corner having a straight cutting edge.

3.4.3 selected point on the cutting edge : A point selected on any part of the cutting edge in order to define, for example, the tool or working angles at that point (5). The selected point may be on the major cutting edge or on the minor cutting edge. When the selected point is so chosen as to be located on the minor cutting edge, the planes and angles associated with this point are so designated (4 and 5).

3.4.4 rounded cutting edge : A cutting edge which is formed by a rounded transition between the face, A_y , and the flank, A_α .

3.4.5 interrupted cutting edge (figure 6b) : A cutting edge having discontinuities of sufficient magnitude as to prevent chip formation from taking place at the locations where they occur. (Such discontinuities are often used to reduce the size of the individual chips produced by a tool such as a slab milling cutter.)

3.4.6 tool profile : The curve formed by the orthogonal projection of the tool cutting edge, S , on any desired plane. Normally this profile is defined and measured in the tool reference

plane P_r (4.1.1). If it is to be defined in another plane, this shall be clearly specified.

3.5 Dimensions

The dimensions of the cutting edges are measured in the conventional manner but additional definitions are required and are given below.

3.5.1 corner radius r_c (figure 6a) : The nominal radius of a rounded corner measured in the tool reference plane, P_r (4.1.1).

3.5.2 chamfered corner length b_c (figure 6a) : The nominal length of a chamfered corner measured in the tool reference plane P_r (4.1.1).

3.5.3 land width b_y and b_α (figure 7) : The width of a land on the major face is designated by b_y and the width of a land on the minor face is designated by b_y' .

The width of a land on the major flank is designated by b_α and the width of a land on the minor flank is designated by b_α' .

The identification number of the land together with the suffix used to identify the plane of measurement may be added if necessary, for example, b_{yn2} , b_{an1} , b_{an2}' .

3.5.4 rounded cutting edge radius r_n : The nominal radius of a rounded cutting edge measured in the cutting edge normal plane, P_n (4.1.5).

3.5.5 width of reduced face \bar{b}_y (figure 2c) : The width of a reduced face is designated by \bar{b}_y and is measured in the cutting edge normal plane P_n (4.1.5). If it is to be defined in any other plane this must be specified clearly : the suffix indicating the plane of measurement should be added to the basic symbol, i.e. \bar{b}_{yo} .

NOTE — The width of a reduced face should not be confused with the width of a land on the face. The symbol \bar{b}_y has been adopted to designate the width of a reduced face to distinguish it from the width of a land on the face which is designated by b_y .

Figure 1 — Surfaces on the workpiece

Figure 2a — Cutting edges and surfaces on the cutting part of a turning tool

Figure 2b — Illustration of various terms relating to the tool and work piece

Figure 2c — Reduced face

Figure 2d — Profiles of the face and flank

Figure 3 — Cutting edges and surfaces on the cutting part of a shell end mill

Figure 4 — Cutting edges and surfaces on the cutting part of a single cutter with parallel shank

Figure 5 — Cutting edges and surfaces on the cutting part of a twist drill

Figure 6a — Corners viewed in the tool reference plane P, (4.2.1)

Figure 6b — Interrupted cutting edge

Figure 7 — Wedge with lands

3.6 Tool and workpiece motions

All motions, directions of motions and speeds are defined relative to the workpiece.

3.6.1 primary motion : The main motion provided by a machine tool or manually, to cause relative motion between the tool and workpiece so that the face of the tool approaches the workpiece material. In a lathe, this motion is provided by the rotary motion of the workpiece; in drilling and milling machines, it is provided by the rotary motion of the tool; in a planing machine it is provided by the longitudinal motion of the table. The primary motion is only able to cause chip removal for more than one revolution or stroke if there is a feed motion as defined in 3.6.2.

Usually, the primary motion absorbs most of the total power required to perform a machining operation.

3.6.1.1 direction of primary motion (figures 8 to 11) : The direction of instantaneous primary motion of the selected point on the cutting edge relative to the workpiece.

3.6.1.2 cutting speed v_c (figures 8 to 11) : The instantaneous velocity of the primary motion of the selected point on the cutting edge relative to the workpiece.

3.6.2 feed motion : A motion provided by a machine tool or manually, to cause an additional relative motion between the tool and workpiece, which, when added to the primary motion, leads to repeated or continuous chip removal and the creation of a machined surface with the desired geometric characteristics. This motion may proceed by steps or continuously; in either case it usually absorbs a small proportion of the total power required to perform a machining operation.

In certain machining operations, for example screw tapping and broaching, a feed motion as defined above is not required, the creation of the desired machined surface being achieved by the provision of an array of cutting edges which are arranged to

approach the workpiece in an ordered manner. In such cases, the feed motion is defined as the motion which an imaginary single cutting edge would have to be given by the machine tool to produce the same result as the array of cutting edges with which the tool is actually provided.

3.6.2.1 direction of feed motion (figures 8 to 11) : The direction of instantaneous feed motion of the selected point on the cutting edge relative to the workpiece.

3.6.2.2 feed speed v_f (figures 8 to 11) : The instantaneous velocity of the feed motion of the selected point on the cutting edge relative to the workpiece.

When the feed is intermittent, for example in the case of a planing operation, the feed speed is not defined.

3.6.3 resultant cutting motion : The motion resulting from simultaneous primary motion and feed motion.

3.6.3.1 resultant cutting direction (figures 8, 9 and 11) : The direction of instantaneous resultant cutting motion of the selected point on the cutting edge relative to the workpiece.

3.6.3.2 resultant cutting speed v_e (figures 8, 9 and 11) : The instantaneous velocity of the resultant cutting motion of the selected point on the cutting edge relative to the workpiece.

3.6.4 feed motion angle φ (figures 8 to 11) : The angle between the directions of simultaneous feed motion and primary motion. It is therefore measured in the working plane P_{fe} (4.2.2).

In certain machining operations such as in planing, shaping and broaching this angle cannot be defined.

3.6.5 resultant cutting speed angle η (figures 8, 9 and 11) : The angle between the direction of primary motion and the resultant cutting direction. It is therefore measured in the working plane P_{fe} (4.2.2).

Figure 8 — Tool and workpiece motions — Turning tool

Figure 9 — Tool and workpiece motions — Slab milling cutter

Figure 10 — Tool and workpiece motions considered at three selected points on the cutting edge — Single angle cutter with parallel shank

Figure 11 — Tool and workpiece motions — Twist drill

4 Reference systems

Reference systems of planes are necessary for defining and specifying the angles of a cutting tool. One system (the tool-in-hand system) is needed for defining the geometry of the tool for its manufacture and measurement. A second system (the tool-in-use system) is needed for specifying the geometry of the cutting tool when it is performing a cutting operation.

NOTE -- A third reference system of planes (called the machine reference system) is required to define the orientation of a cutting tool with respect to the machine tool. This third reference system is defined in ISO 3002/2.

The planes used in the first system are termed tool-in-hand planes, their titles, with two exceptions (4.1.2 and 4.1.5) each include the word "tool". The planes used in the second system are termed tool-in-use planes; their titles, with one exception (4.2.5), all include the word "working".

Since angles and other geometric features vary from point to point along the cutting edge of a tool, it is necessary to locate the reference system at whatever point one desires to be able to define the tool geometry. Each plane is therefore defined, with respect to a selected point on the cutting edge. The title of the plane may include an indication of whether the selected point is located on the major or minor cutting edge: for example, at a selected point on the major cutting edge, there is the tool cutting edge plane (4.1.4) and at a selected point on the minor cutting edge, the corresponding plane is termed the tool minor cutting edge plane.

Each plane is provided with a symbol consisting of P with a suffix indicating the plane's identity (for example P_s , the tool cutting edge plane).

For the planes defined below the selected point on the cutting edge is considered to be located on the major cutting edge.

When it is necessary to distinguish clearly a plane passing through a selected point on the minor cutting edge, the appropriate symbol bears a prime (for example P'_s , the tool minor cutting edge plane).

When the cutting edge, face or flank is curved, the tangents or tangential planes through the selected point should be used in the reference systems of planes.

The symbol used for a plane in the tool-in-use system bears the additional suffix e, for "effective" (for example P_{se} , the working cutting edge plane) to distinguish it from the corresponding tool-in-hand plane (for example P_s , the tool cutting edge plane).

4.1 Tool-in-hand system (figure 12)

4.1.1 tool reference plane P_r (figures 12 to 17) : A plane through the selected point on the cutting edge, so chosen as to be either parallel or perpendicular to a plane or axis of the tool convenient for locating or orienting the tool for its manufacture, sharpening and measurement.

The plane must be chosen and defined for each individual type of cutting tool so that it meets the conditions prescribed above and is generally oriented perpendicular to the assumed direction of primary motion.

For ordinary lathe, planer and shaper tools it is a plane parallel to the base of the tool. For a vertical shank or tangential tool or for a horizontal shank planer tool it is a plane perpendicular to the tool axis. For a side and face milling cutter, for drills and screwing taps it is a plane containing the tool axis.

4.1.2 assumed working plane P_f (figures 12 to 17) : A plane through the selected point on the cutting edge and perpendicular to the tool reference plane P_r , and so chosen as to be either parallel or perpendicular to a plane or an axis of the tool convenient for locating or orienting the tool for its manufacture, sharpening and measurement.

The plane must be chosen and defined for each individual type of cutting tool so that it meets the conditions prescribed above and is generally oriented parallel to the assumed direction of feed motion.

For ordinary lathe tools and planer tools it is a plane perpendicular to the tool axis. For drills, broaches, facing tools, parting-off and cutting-off lathe tools it is a plane parallel to the tool axis. For milling cutters it is a plane perpendicular to the tool axis.

4.1.3 tool back plane P_b (figures 12 to 17) : A plane through the selected point on the cutting edge and perpendicular both to the tool reference plane P_r and to the assumed working plane P_f .

4.1.4 tool cutting edge plane P_s (figures 12 to 17) : A plane tangential to the cutting edge at the selected point and perpendicular to the tool reference plane P_r .

4.1.5 cutting edge normal plane P_n (figures 12 to 17) : A plane perpendicular to the cutting edge at the selected point on the cutting edge.

4.1.6 tool orthogonal plane P_o (figures 12 to 17) : A plane through the selected point on the cutting edge and perpendicular both to the tool reference plane P_r and to the tool cutting edge plane P_s .

4.1.7 tool face orthogonal plane P_g (figure 13) : A plane through the selected point on the cutting edge and perpendicular both to the face A_y and to the tool reference plane P_r .

4.1.8 tool flank orthogonal plane P_b (figure 13) : A plane through the selected point on the cutting edge and perpendicular both to the flank A_x and to the tool reference plane P_r .

Figure 12 — Planes in the tool-in-hand system

Figure 13 – Planes in the tool-in-hand system — Turning tool

Figure 14 — Planes in the tool-in-hand system — Tangential turning tool

Figure 15 — Planes in the tool-in-hand system — Slab milling cutter

Figure 16 — Planes in the tool-in-hand system — Convex milling cutter

Figure 17 — Planes in the tool-in-hand system — Twist drill

4.2 Tool-in-use system (figure 18)

4.2.1 working reference plane P_{re} (figures 18 to 23) : A plane through the selected point on the cutting edge and perpendicular to the resultant cutting direction.

4.2.2 working plane P_{fe} (figures 18 to 23) : A plane through the selected point on the cutting edge and containing both the direction of primary motion and the direction of feed motion. This plane is thus perpendicular to the working reference plane P_{re} .

4.2.3 working back plane P_{pb} (figures 18 to 23) : A plane through the selected point on the cutting edge and perpendicular both to the working reference plane P_{re} and to the working plane P_{fe} .

4.2.4 working cutting edge plane P_{se} (figures 18 to 23) : A plane tangential to the cutting edge at the selected point and perpendicular to the working reference plane P_{re} . This plane thus contains the resultant cutting direction.

4.2.5 cutting edge normal plane P_{ne} (figures 18 to 23) : The cutting edge normal plane in the tool-in-use system is identical with the cutting edge normal plane defined in the tool-in-hand system, P_n .

$$P_{ne} \equiv P_n$$

4.2.6 working orthogonal plane P_{oe} (figures 18 to 23) : A plane through the selected point on the cutting edge and perpendicular both to the working reference plane P_{re} and to the working cutting edge plane P_{se} .

Figure 18 — Planes in the tool-in-use system

Figure 19 — Planes in the tool-in-use system — Turning tool

Figure 20 — Planes in the tool-in-use system — Tangential turning tool

Figure 21 — Planes in the tool-in-use system — Slab milling cutter

Figure 22 — Planes in the tool-in-use system — Convex milling cutter

Figure 23 — Planes in the tool-in-use system — Twist drill

5 Tool and working angles

The angles are necessary for the determination of the geometrical position of the tool cutting edge, the face and the flank.

One set of angles is needed for defining the angles of the tool as an entity in itself, that is, for the tool-in-hand; these angles are designated tool angles and, with one exception (5.1.3.1), have the prefix "tool" in their titles. These angles are necessary for manufacturing, sharpening and measuring the tool.

A second set of angles is needed for defining the angles which affect the action of the tool in the cutting process, that is for the tool-in-use; these angles are designated working angles and, with one exception (5.2.3.1), have the prefix "working" in their title.

Since tool and working angles vary from point to point along the cutting edge, the definitions of the angles given below refer always to the angles at the selected point.

When the cutting edge, face or flank is curved the tangents or tangential planes through the selected point are used in the reference systems of planes used to define the angles.

Each angle is specified, where appropriate, with reference to a particular cutting edge on the tool, depending upon the location of the selected point on the cutting edge. The title of the angle may include an indication of whether the selected point is located on the major or minor cutting edge (for example, at a selected point on the major cutting edge, there is the tool normal rake and at a selected point on the minor cutting edge the corresponding angle is termed the tool minor cutting edge normal rake).

Each angle is provided with a symbol consisting of a Greek letter with a suffix, the suffix indicating the plane in which the angle is measured (for example γ_n , the tool normal rake).

For the angles defined below the selected point on the cutting edge is considered to be located on the major cutting edge. When it is necessary to distinguish clearly angles defined with respect to a selected point on the minor cutting edge, the appropriate symbols bear a prime (for example γ_n' , the tool minor cutting edge normal rake).

The symbol used for a working angle bears the additional suffix e for "effective" (for example γ_{ne} , the working normal rake) to distinguish it from the corresponding tool angle (for example γ_n , the tool normal rake).

When the face or flank is composed of a number of surfaces inclined to one another, these surfaces are numbered consecutively starting from the cutting edge. The number of the land is used as an additional suffix to the appropriate symbols to associate the rake or clearance angle with its particular land (for example $\gamma_{n1}; \gamma_{n2}; \gamma_{n1}'; \gamma_{n2}'; \alpha_{n1}; \alpha_{n2}; \alpha_{n2}'; \alpha_{n2e}'$).

When the face or flank has only one surface the suffixes 1, 2, etc, are not used.

The sign conventions of the various angles are given in 5.3.

5.1 Tool angles

The tool angles are defined with the aid of the tool-in-hand reference system of planes (4.1).

5.1.1 Orientation of cutting edge

5.1.1.1 tool cutting edge angle κ_r (figures 24, 26, 27 and 28) : The angle between the tool cutting edge plane P_s and the assumed working plane P_f measured in the tool reference plane P_r .

5.1.1.2 tool approach angle; tool lead angle /USA/ ψ_r (figures 24, 26, 27 and 28) : The angle between the tool cutting edge plane P_s and the tool back plane P_p measured in the tool reference plane P_r .

ψ_r is defined only for the major cutting edge. Thus at any selected point on the major cutting edge the sum of ψ_r and κ_r is always 90°.

5.1.1.3 tool cutting edge inclination λ_s (figures 24, 27 and 28) : The angle between the cutting edge and the tool reference plane P_r measured in the tool cutting edge plane P_s .

5.1.1.4 tool included angle ϵ_r (figures 24, 26, 27 and 28) : The angle between the tool cutting edge plane P_s , and the tool minor cutting edge plane P_s' measured in the tool reference plane P_r .

$$\text{Thus, } \kappa_r + \epsilon_r + \kappa_r' = 180^\circ$$

5.1.2 Orientation of face

5.1.2.1 tool normal rake γ_n (figures 24, 27 and 28) : The angle between the face A_y and the tool reference plane P_r measured in the cutting edge normal plane P_n .

5.1.2.2 tool side rake γ_t (figures 24, 27 and 28) : The angle between the face A_y and the tool reference plane P_r measured in the assumed working plane P_f .

5.1.2.3 tool back rake γ_p (figures 24, 27 and 28) : The angle between the face A_y and the tool reference plane P_r measured in the tool back plane P_p .

5.1.2.4 tool orthogonal rake γ_o (figures 24, 27 and 28) : The angle between the face A_y and the tool reference plane P_r measured in the tool orthogonal plane P_o .

5.1.2.5 tool geometrical rake γ_g (figure 25) : The angle between the face A_y and the tool reference plane P_r measured in the tool face orthogonal plane P_g . It is the maximum angle between the face A_y and the tool reference plane P_r .

5.1.2.6 tool face orthogonal plane orientation angle δ_r (figure 25) : The angle between the assumed working plane P_f and the tool face orthogonal plane P_g measured in the tool reference plane P_r .

5.1.3 Wedge angles

5.1.3.1 normal wedge angle β_n (figures 24, 27 and 28) : The included angle between the face A_y and the flank A_α measured in the cutting edge normal plane P_n .

5.1.3.2 tool side wedge angle β_f (figures 24, 27 and 28) : The angle between the face A_y and the flank A_α measured in the assumed working plane P_f .

5.1.3.3 tool back wedge angle β_p (figures 24, 27 and 28) : The angle between the face A_y and the flank A_α measured in the tool back plane P_p .

5.1.3.4 tool orthogonal wedge angle β_o (figures 24, 27 and 28) : The angle between the face A_y and the flank A_α measured in the tool orthogonal plane P_o .

5.1.4 Orientation of flank

5.1.4.1 tool normal clearance α_n (figures 24, 27 and 28) : The angle between the flank A_α and the tool cutting edge plane P_s measured in the cutting edge normal plane P_n .

5.1.4.2 tool side clearance α_f (figures 24, 27 and 28) : The angle between the flank A_α and the tool cutting edge plane P_s , measured in the assumed working plane P_f .

5.1.4.3 tool back clearance α_p (figures 24, 27 and 28) : The angle between the flank A_α and the tool cutting edge plane P_s measured in the tool back plane P_p .

5.1.4.4 tool orthogonal clearance α_o (figures 24, 27 and 28) : The angle between the flank A_α and the tool cutting edge plane P_s measured in the tool orthogonal plane P_o .

5.1.4.5 tool base clearance α_b (figure 25) : The angle between the flank A_α and the tool cutting edge plane P_s measured in the tool flank orthogonal plane P_b .

5.1.4.6 tool flank orthogonal plane orientation angle θ , (figure 25) : The angle between the assumed working plane P_f and the tool flank orthogonal plane P_b measured in the tool reference plane P_r .

5.1.5 Relationship between the tool angles

The sum of the tool clearance, tool wedge angle and the tool rake measured in any one of the following tool-in-hand planes — cutting edge normal plane, tool back plane, tool orthogonal plane or assumed working plane — is equal to 90° .

$$\alpha_n + \beta_n + \gamma_n = 90^\circ$$

$$\alpha_p + \beta_p + \gamma_p = 90^\circ$$

$$\alpha_o + \beta_o + \gamma_o = 90^\circ$$

$$\alpha_f + \beta_f + \gamma_f = 90^\circ$$

In practice, the tool rake, tool clearance and tool cutting edge inclination are usually acute angles.

Figure 24 — Tool angles — Turning tool

Figure 26 — Tool cutting edge angle κ_r and tool approach angle (tool lead angle) ψ_r

Figure 27 — Tool angles — Milling cutter head

Figure 28 – Tool angles – Twist drill

Figure 29 — Tool normal rake and tool normal clearance angles on a wedge

5.2 Working angles

The working angles are defined with the aid of the tool-in-use reference system of planes (4.2).

5.2.1 Orientation of the cutting edge

5.2.1.1 working cutting edge angle κ_{re} (figures 30, 31 and 32) : The angle between the working cutting edge plane P_{se} and the working plane P_{fe} measured in the working reference plane P_{re} .

5.2.1.2 working approach angle; working lead angle /USA/ ψ_{re} (figures 30, 31 and 32) : The angle between the working cutting edge plane P_{se} and the working back plane P_{pe} measured in the working reference plane P_{re} .

ψ_{re} is defined only for the major cutting edge. Thus at any selected point on the major cutting edge the sum of ψ_{re} and κ_{re} is always 90°.

5.2.1.3 working cutting edge inclination λ_{re} (figures 30, 31 and 32) : The angle between the working cutting edge and the working reference plane P_{re} measured in the working cutting edge plane P_{se} .

5.2.2 Orientation of face

5.2.2.1 working normal rake γ_{ne} (figures 30, 31 and 32) : The angle between the face A_y and the working reference plane P_{re} measured in the cutting edge normal plane P_{ne} .

NOTE — $P_{ne} = P_n$

5.2.2.2 working side rake γ_{fe} (figures 30, 31 and 32) : The angle between the face A_y and the working reference plane P_{re} measured in the working plane P_{fe} .

5.2.2.3 working back rake γ_{pe} (figures 30, 31 and 32) : The angle between the face A_y and the working reference plane P_{re} measured in the working back plane P_{pe} .

5.2.2.4 working orthogonal rake γ_{oe} (figures 30, 31 and 32) : The angle between the face A_y and the working reference plane P_{re} measured in the working orthogonal plane P_{oe} .

NOTE — The geometrical rake is not defined in the tool-in-use system.

5.2.3 Wedge angles

5.2.3.1 normal wedge angle β_{ne} (figures 30, 31 and 32) : The normal wedge angle in the tool-in-use system is identical with the normal wedge angle defined in the tool-in-hand system.

$$\beta_{ne} \equiv \beta_n$$

5.2.3.2 working side wedge angle β_{fe} (figures 30, 31 and 32) : The angle between the face A_y and the flank A_a measured in the working plane P_{fe} .

5.2.3.3 working back wedge angle β_{pe} (figures 30, 31 and 32) : The angle between the face A_y and the flank A_a measured in the working back plane P_{pe} .

5.2.3.4 working orthogonal wedge angle β_{oe} (figures 30, 31 and 32) : The angle between the face A_y , and the flank A_α measured in the working orthogonal plane P_{oe} .

5.2.4 Orientation of flank

5.2.4.1 working normal clearance α_{ne} (figures 30, 31 and 32) : The angle between the flank A_α and the working cutting edge plane P_{se} measured in the cutting edge normal plane P_{ne} .

NOTE — $P_{ne} \equiv P_n$

5.2.4.2 working side clearance α_{fe} (figures 30, 31 and 32) : The angle between the flank A_α and the working cutting edge plane P_{se} measured in the working plane P_{fe} .

5.2.4.3 working back clearance α_{pe} (figures 30, 31 and 32) : The angle between the flank A_α and the working cutting edge plane P_{se} measured in the working back plane P_{pe} .

5.2.4.4 working orthogonal clearance α_{oe} (figures 30, 31 and 32) : The angle between the flank A_α and the working cutting edge plane P_{se} measured in the working orthogonal plane P_{oe} .

NOTE — The base clearance is not defined in the tool-in-use system.

5.2.5 Relationship between the working angles

The sum of the working clearance, working wedge angle and working rake measured in any one of the following tool-in-use planes — cutting edge normal plane, working back plane, working orthogonal plane or working plane — is equal to 90° .

$$\alpha_{ne} + \beta_{ne} + \gamma_{ne} = 90^\circ$$

$$\alpha_{pe} + \beta_{pe} + \gamma_{pe} = 90^\circ$$

$$\alpha_{oe} + \beta_{oe} + \gamma_{oe} = 90^\circ$$

$$\alpha_{fe} + \beta_{fe} + \gamma_{fe} = 90^\circ$$

In practice the working rake, working clearance and working cutting edge inclination are usually acute angles.

Figure 30 — Working angles — Turning tool

Figure 31 — Working angles — Milling cutter head

Figure 32 – Working angles – Twist drill

5.3 Sign convention for angles

The sign convention for tool cutting edge orientation angles is defined with respect to planes and directions of motion defined at a selected point on the cutting edge located at a corner which is assumed to be sharp.

When a tool has more than one corner (for example, a cutting off tool, certain broaches, slot milling cutters or slotting tools used in sharpening or planing) the angles of the cutting edges and their sign must be defined in relation to the particular corner under consideration. At each corner there is a set of major and minor cutting edge angles and major and minor cutting edge inclinations. Each set of angles completely defines the cutting edge geometry at that particular corner.

When a cutting edge has no corner (for example, a slab milling cutter) then one end of the major cutting edge is taken as a reference. In such cases the reference end is that from which the rotation of the tool relative to the workpiece is seen to be clockwise.

In the case of a Vee-shaped threading tool, the point of intersection of the projection of the straight portions of the cutting edge can be regarded as the selected point at a sharp corner and the orientations of the straight portions of the cutting edge defined with respect to that point.

The sign convention for angles which defines the orientation of the face and flank is defined with respect to planes and directions of motion at a selected point on the cutting edge, located at any point where the face and flank orientation is required to be specified.

5.3.1 Tool angle convention

5.3.1.1 The tool cutting edge angle κ_r (see 5.1.1.1) is always positive. The appropriate angle of the two possible angles defined by the intersecting planes is the one which is measured from the portion of P_f containing the assumed direction of feed motion towards that part of the major cutting edge away from the tool corner being considered or away from the reference end of the major cutting edge in the case of a slab milling cutter (see 5.3).

The tool minor cutting edge angle κ'_r , (see 5.1.1.1) is usually acute and its sign is determined from the relationship $\kappa_r + \epsilon_r + \kappa'_r = 180^\circ$, where ϵ_r is always positive and measured within the boundaries of the cutting part.

5.3.1.2 The tool approach angle ψ_r (see 5.1.1.2) is always acute and its sign is determined from the relationship $\kappa_r + \psi_r = 90^\circ$.

5.3.1.3 The tool cutting edge inclination λ_s (see 5.1.1.3) is always acute. The angle is positive if the cutting edge, when viewed in a direction away from the selected point at the tool corner being considered, lies on the opposite side of the tool reference plane P_r from the assumed direction of primary motion.

5.3.1.4 Tool rake angles $\gamma_n, \gamma_f, \gamma_p, \gamma_o, \gamma_g$ (see 5.1.2.1 to 5.1.2.5) are always acute. The angle is positive if, when looking across the face from the selected point and along the line of intersection of the face and the plane of measurement, the viewed line of intersection lies on the opposite side of the tool reference plane P_r from the assumed direction of primary motion.

5.3.1.5 Tool clearance angles $\alpha_n, \alpha_f, \alpha_p, \alpha_o, \alpha_b$ (see 5.1.4.1 to 5.1.4.5) are always acute. The angle is positive if, when looking across the flank from the selected point and along the line of intersection of the flank and the plane of measurement, the viewed line of intersection lies on the opposite side of the tool cutting edge plane P_s from the assumed direction of feed motion.

Tool minor cutting edge clearance angles $\alpha'_n, \alpha'_f, \alpha'_p, \alpha'_o, \alpha'_b$ (see beginning of clause 5) are always acute. The angle is positive if, when looking across the minor flank from the selected point and along the line of intersection of the minor flank and the plane of measurement, the viewed line of intersection lies on the same side of the tool minor cutting edge plane P_s' as the line of intersection of the face and the plane of measurement.

5.3.2 Working angle convention

The same physical bases and directions of measurement which define the sign convention for tool angles must be maintained to define the convention for working angles, in conjunction with the tool-in-use reference system of planes and the directions of primary and feed motions.

6 Summary of angles

6.1 Tool and workpiece motions

Angle	Definition			No.
	Angle between		Measured in plane	
Feed motion angle φ	direction of feed motion	direction of primary motion	P_{fe}	3.6.4
Resultant cutting speed angle η	direction of primary motion	resultant cutting direction	P_{fe}	3.6.5

6.2 Orientation of cutting edge

Tool angle	Working angle	Definition			No.
		Angle between	Measured in plane		
Tool cutting edge angle κ_r		P_s	P_f	P_r	5.1.1.1
	Working cutting edge angle κ_{re}	P_{se}	P_{fe}	P_{re}	5.2.1.1
Tool approach angle (tool lead angle) ψ_r		P_s	P_p	P_r	5.1.1.2
	Working approach angle ψ_{re} (working lead angle)	P_{se}	P_{pe}	P_{re}	5.2.1.2
Tool cutting edge inclination λ_s		S	P_r	P_s	5.1.1.3
	Working cutting edge inclination λ_{se}	S_e	P_{re}	P_{se}	5.2.1.3
Tool included angle ϵ_r		P_s	$P_{s'}$	P_r	5.1.1.4

6.3 Orientation of face

Tool angle	Working angle	Definition			No.
		Angle between	Measured in plane		
Tool normal rake γ_n		A_y	P_r	P_n	5.1.2.1
	Working normal rake γ_{ne}	A_y	P_{re}	$P_{ne} = P_n$	5.2.2.1
Tool side rake γ_t		A_y	P_r	P_f	5.1.2.2
	Working side rake γ_{te}	A_y	P_{re}	P_{fe}	5.2.2.2
Tool back rake γ_p		A_y	P_r	P_p	5.1.2.3
	Working back rake γ_{pe}	A_y	P_{re}	P_{pe}	5.2.2.3
Tool orthogonal rake γ_o		A_y	P_r	P_o	5.1.2.4
	Working orthogonal rake γ_{oe}	A_y	P_{re}	P_{oe}	5.2.2.4
Tool geometrical rake γ_g		A_y	P_r	P_g	5.1.2.5
Tool face orthogonal plane orientation angle δ_r		P_f	P_g	P_r	5.1.2.6

6.4 Wedge angles

Angle		Definition			
Tool angle	Working angle	Angle between	Measured in plane	No.	
Normal wedge angle $\beta_n \equiv \beta_{ne}$		A_β	A_α	$P_n \equiv P_{ne}$	5.1.3.1 5.2.3.1
Tool side wedge angle β_f		A_γ	A_α	P_f	5.1.3.2
	Working side wedge angle β_{fe}	A_γ	A_α	P_{fe}	5.2.3.2
Tool back wedge angle β_p		A_γ	A_α	P_p	5.1.3.3
	Working back wedge angle β_{pe}	A_γ	A_α	P_{pe}	5.2.3.3
Tool orthogonal wedge angle β_o		A_γ	A_α	P_o	5.1.3.4
	Working orthogonal wedge angle β_{oe}	A_γ	A_α	P_{oe}	5.2.3.4

6.5 Orientation of flank

Angle		Definition			
Tool angle	Working angle	Angle between	Measured in plane	No.	
Tool normal clearance α_n		A_α	P_s	P_n	5.1.4.1
	Working normal clearance α_{ne}	A_α	P_{se}	$P_{ne} \equiv P_n$	5.2.4.1
Tool side clearance α_f		A_α	P_s	P_f	5.1.4.2
	Working side clearance α_{fe}	A_α	P_{se}	P_{fe}	5.2.4.2
Tool back clearance α_p		A_α	P_s	P_p	5.1.4.3
	Working back clearance α_{pe}	A_α	P_{se}	P_{pe}	5.2.4.3
Tool orthogonal clearance α_o		A_α	P_s	P_o	5.1.4.4
	Working orthogonal clearance α_{oe}	A_α	P_{se}	P_{oe}	5.2.4.4
Tool base clearance α_b		A_α	P_s	P_b	5.1.4.5
Tool flank orthogonal plane orientation angle θ_f		P_f	P_b	P_r	5.1.4.6

6.6 Relations between the angles in the tool-in-hand system

NOTE — The angle in the first column can be calculated from the angles given in the second, third, fourth and fifth columns.

	κ_r	λ_s	α_o	γ_o	κ_r	λ_s	α_n	γ_n	α_p	α_f	γ_p	γ_f	θ_r	δ_r	α_b	γ_g
κ_r																
λ_s																
α_o																
γ_o																
α_n																
γ_n																
α_p																
α_f																
γ_p																
γ_f																
θ_r																
δ_r																
$\alpha_b^{(1)}$																
$\gamma_g^{(1)}$																

1) The sign of angles α_b and γ_g is determined by applying the conventions of clause 5.3.

7 Chip breaker

Repeat of the definition given in 3.3.1.2:

chip breaker: A modification of the face A_y , to control or break the chip, consisting of either an integral groove or an integral or attached obstruction.

7.1 defined point on the chip breaker (figures 33, 34, 35) : The point of intersection of the cutting edge normal plane P_n (through the selected point on the major cutting edge) with the top edge of an attached chip breaker or with the rear edge of an integral chip breaker.

7.2 active face of the chip breaker (figures 33, 34, 35) : That surface of the chip breaker which is intended to come into contact with the chip.

7.3 chip breaker distance l_{Bn} (figures 33, 34, 35)¹⁾ : The distance from the selected point on the major cutting edge to the projection of the defined point on the chip breaker on the face A_y measured in the cutting edge normal plane P_n .

7.4 chip breaker height h_B (figures 33, 34, 35)¹⁾ : The distance from the face A_y to the defined point on the chip breaker measured in a direction perpendicular to the face. This distance is usually defined only for obstruction type chip breakers.

7.5 chip breaker angle ϱ_{By} (figures 33, 34, 35)¹⁾ : The acute angle between the major cutting edge and the projection on the face A_y of the top or rear edge of the chip breaker measured in the face. Where the major cutting edge or the top or rear edge of the chip breaker are curved, the angle is measured between the tangent to the cutting edge at the selected point and the tangent of the projection of the top or rear edge of the chip breaker at the projection of the defined point.

The angle is positive if the distance between the major cutting edge and the top or rear edge of the chip breaker decreases

with an increase in the distance of the point of measurement away from the minor cutting edge.

7.6 chip breaker wedge angle σ_B (figures 33, 34) : The acute angle between the face A_y of the tool and the active face of the chip breaker measured in a plane perpendicular to the top edge of the chip breaker and through the defined point on the chip breaker. Where the chip breaker face is curved the wedge angle is measured between the tangent to this face at the same defined point and the face of the tool. This angle is usually defined only for obstruction type chip breakers.

7.7 chip breaker radius r_B (figure 34) : The nominal radius of the curved surface of an obstruction type chip breaker measured in a plane perpendicular to the top edge of the chip breaker and through the defined point on the chip breaker.

7.8 chip breaker groove radius r_{Bn} (figure 35) : The nominal radius of a groove type chip breaker measured in the cutting edge normal plane P_n .

7.9 chip breaker groove depth c_{Bn} (figure 35)¹⁾ : The maximum depth of the groove type chip breaker measured from the plane of the face A_y and in the cutting edge normal plane P_n .

7.10 chip breaker land width d_{Bn} (figure 35)¹⁾ : The distance from the selected point on the major cutting edge to the nearest point of intersection of the groove type chip breaker and the face A_y measured in the cutting edge normal plane P_n .

7.11 chip breaker distance from corner of tool d_{By} (figures 33 and 35)¹⁾ : The distance measured in the plane of the face A_y and in a direction parallel with the tool cutting edge plane P_s , between a plane tangential to the end of the chip breaker and perpendicular both to the tool reference plane P_r and to the tool cutting edge plane P_s and a plane tangential to the tool corner and perpendicular both to the tool reference plane P_r and to the tool cutting edge plane P_s .

1) When the tool has more than one face, the face from which or in which the measurement is made must be specified.

Figure 33 — Attached obstruction type chip breaker

Figure 34 — Integral obstruction type chip breaker

Figure 35 — Groove type chip breaker

Annex

Lists of equivalent terms in French, Russian, German, Italian and Dutch

No.	Symbol	English	Français	Русский	Deutsch	Italiano	Nederlands
3		general terms	notions générales	основные термины	allgemeine Begriffe	nozioni generali	algemene begrippen
3.1		surfaces on the workpiece	surfaces de la pièce	поверхности обрабатываемой детали	Flächen am Werkstück	superficie del pezzo	viakken aan het werkstuk
3.1.1		work surface	surface de la pièce	обрабатываемая поверхность	Ausgangsfläche	superficie da lavorare	werkstukoppervlak
3.1.2		machined surface	surface engendrée	обработанная поверхность	gefertigte Fläche	superficie lavorata	vewerkt vlak
3.1.3		transient surface	surface coupée	обработанная поверхность в кинематической системе	Schnittfläche	superficie in lavorazione	vergankelijk vlak
3.2		tool elements	éléments de l'outil	элементы инструмента	Werkzeugteile	elementi dell'utensile	gereedschaps-elementen
3.2.1		body	corps	головка	Körper	corpo	lichaam
3.2.2		shank	queue	хвостовик	Schaft	codolo	schacht
3.2.3		tool bore	alésage de l'outil	посадочное отверстие	Werkzeugbohrung	foro dell'utensile	gereedschaps-boring
3.2.4		tool axis	axe de l'outil	ось инструмента	Werkzeugachse	asse dell'utensile	gereedschaps-hartlijn
3.2.5		cutting part	partie active	режущая часть	Schneideteil	parte attiva o testa dell'utensile	snijgedeelte
3.2.6		base	surface d'appui	опорная плоскость (база)	Auflagefläche	superficie di appoggio	steunvlak of oplevvlak
3.2.7		wedge	taillant	клип (или режущий клип)	Schneidekeil	cuneo	snijwig
3.3		tool surfaces	surfaces de l'outil	поверхности инструмента	Werkzeugflächen (Flächen an der Schneide)	superficie della parte attiva	snijvlakken
3.3.1	A_y	face	face de coupe	передняя поверхность	Spanfläche	faccia di taglio	spaanvlak
	A_{y1}	first face	première face de coupe	первая передняя поверхность	erste Spanfläche	prima faccia di taglio	eerste spaanvlak
	A_{y2}	second face (lads of the face)	deuxième face de coupe (facettes de la face de coupe)	вторая передняя поверхность	zweite Spanfläche (Spanflächenfasen)	seconda faccia di taglio (facette della faccia di taglio)	tweede spaanvlak
3.3.1.1	\bar{A}_y	reduced face	face de coupe réduite	укороченная передняя поверхность	reduzierte Spanfläche	faccia di taglio ridotta	gereduceerd spaanvlak
3.3.1.2		chip breaker	brise-copeaux	стружколом	Spanleitstufe	rompitruciolo	spaanbreker - spaanleitrap
3.3.2	A_α	flank	face de dérouille	задняя поверхность	Freifläche	fianco	vrijloopvlak
	A_α	major flank	face de dérouille principale	главная задняя поверхность	Hauptfreifläche	fianco principale	hoofdvrijloopvlak

No.	Symbol	English	Français	Русский	Deutsch	Italiano	Nederlands
3.3.2	A'_α	minor flank	face de dépouille secondaire	вспомогательная задняя поверхность	Nebenfreifläche	fianco secondario	hulpvrijloopvlak
	A_α1	first flank	première face de dépouille	первая задняя поверхность	erste Freifläche	primo fianco	eerste vrijloopvlak
	A_α2	second flank (lands of the flank)	deuxième face de dépouille (facettes de la face de dépouille)	вторая задняя поверхность	zweite Freifläche (Freiflachenfasen)	secondo fianco (facette della faccia di taglio)	tweede wrijloopvlak
3.3.3		profiles of the face and flank	profils de la face de coupe et de la face de dépouille	профили передней и задней поверхности	Profile der Spanfläche und Freifläche	profili della faccia di taglio e del fianco	profiel van spaanvlak en vrijloopvlak
3.3.3.1		face profile	profil de la face de coupe	профиль передней поверхности	Spanflächenprofil	profilo della faccia di taglio	profiel van het spaanvlak
3.3.3.2		flank profile	profil de la face de dépouille	профиль задней поверхности	Freiflächenprofil	profilo del fianco	profiel van het vrijloopvlak
3.4		cutting edges	arêtes	режущие кромки	Schneiden	taglienti	snijkanten
3.4.1		cutting edge	arête	режущая кромка	Schneide	tagliente	snijkant
3.4.1.1	S	tool major cutting edge	arête principale de l'outil	главная режущая кромка	Werkzeug-Hauptschneide	tagliente principale	gereedschapshoofdsnijkant
3.4.1.2	S'	tool minor cutting edge	arête secondaire de l'outil	вспомогательная режущая кромка	Werkzeug-Nebenschneide	tagliente secondario	gereedschapshulpsnijkant
3.4.1.3	S_e	working major cutting edge	arête principale en travail	главная режущая кромка в кинематической системе	Wirk-Hauptschneide	tagliente principale in lavoro	werkhoofdsnijkant
3.4.1.4	S'_e	working minor cutting edge	arête secondaire en travail	вспомогательная режущая кромка в кинематической системе	Wirk-Nebenschneide	tagliente secondario in lavoro	werkhulpsnijkant
3.4.1.5		active cutting edge	arête active	активная режущая кромка	aktive Schneide	tagliente attivo	werkende snijkant
3.4.1.5.1	S_a	active major cutting edge	arête active principale	активная главная режущая кромка	aktive Hauptschneide	tagliente attivo principale	werkend hoofdsnijkant
3.4.1.5.2	S_a'	active minor cutting edge	arête active secondaire	активная вспомогательная режущая кромка	aktive Nebenschneide	tagliente attivo secondario	werkend hulpsnijkant
3.4.2		corner	bec de l'outil (pointe de l'outil)	вершина	Schneidenecke	punta dell'utensile	neus
3.4.2.1		rounded corner	arrondi de bec (arrondi de pointe)	закругленная вершина	Eckenrundung	arrotondamento della punta	neusafronding
3.4.2.2		chamfered corner	chanfrein de bec (chanfrein de pointe)	переходная фаска	Eckenfase	smusso della punta	neusafschuining
3.4.3		selected point on the cutting edge	point considéré de l'arête	рассматриваемая точка на режущей кромке	betrachteter Schniedenpunkt	punto considerato del tagliente	beschouwde punt van de snijkant
3.4.4		rounded cutting edge	arête arrondie	скругленная режущая кромка	gerundete Schneide	tagliente arrotondato	afgeronde snijkant
3.4.5		interrupted cutting edge	arête interrompue	прерывистая режущая кромка	unterbrochene Schneide	tagliente interrotto	onderbroken snijkant
3.4.6		tool profile	profil de l'outil	профиль инструмента	Werkzeugprofil	profilo dell'utensile	profiel van het gereedschap
3.5		dimensions	autres grandeurs	линейные размеры лезвий	weitere Masse	altre grandezze	andere afmetingen
3.5.1	r_e	corner radius	rayon de bec (rayon de pointe)	радиус вершины	Eckenradius	raggio della punta	neusradius

No.	Symbol	English	Français	Русский	Deutsch	Italiano	Nederlands
3.5.2	b_t	chamfered corner length	largeur du chanfrein de bec	длина переходной фаски	Breite der Eckenfase	larghezza dello smusso della punta	breedte van de neusafschuining
3.5.3	b_y	land width of the face	largeur de la facette de la face de coupe	ширина фасок передней поверхности	Breite der Spanflächenfasen	larghezza delle facette della faccia di taglio 1, 2 ... (larghezza delle facette del fianco)	breedte van 1 ^e , 2 ^e spaanflak
	b_α	land width of the flank	largeur de la facette de la face de dépouille	ширина фасок задней поверхности	Breite der Freiflächenfasen	larghezza del fianco 1, 2 ... (larghezza delle facette del fianco)	breedte van 1 ^e , 2 ^e vrijloopvlak
3.5.4	r_n	rounded cutting edge radius	rayon de l'arête arrondie	радиус скругленной режущей кромки	Radius der gerundeten Schneide	raggio di raccordo del tagliente	snijkanstradius
3.5.5	b_y	width of reduced face	largeur de la face de coupe réduite	ширина укороченной передней поверхности	Breite der reduzierten Spanfläche	larghezza della faccia di taglio ridotta	breedte van het gereduceerd spaanvlak
3.6		tool and workpiece motions	mouvements de l'outil et de la pièce	движения инструмента и обрабатываемой детали	Werkzeug- und Werkstückbewegungen	moti dell'utensile e del pezzo	bewegingen van werkstuk en gereedschap
3.6.1		primary motion	mouvement de coupe	главное движение	Schnittbewegung	moto di taglio	snijbeweging
3.6.1.1		direction of primary motion	direction de coupe	направление главного движения	Schnittrichtung	direzione di taglio	snijsnelheid
3.6.1.2	v_c	cutting speed	vitesse de coupe	скорость главного движения	Schnittgeschwindigkeit	velocità di taglio	snijsnelheid
3.6.2		feed motion	mouvement d'avance	подача	Vorschubbewegung	avanzamento	aanzetbeweging
3.6.2.1		direction of feed motion	direction d'avance	направление подачи	Vorschubrichtung	direzione d'avanzamento	aanzetrichting
3.6.2.2	v_f	feed speed	vitesse d'avance	скорость подачи	Vorschubgeschwindigkeit	velocità d'avanzamento	aanzetsnelheid
3.6.3		resultant cutting motion	mouvement résultant de coupe	движение резания	Wirkbewegung	moto di lavoro	resulterende snijbeweging
3.6.3.1		resultant cutting direction	direction résultante de coupe	направление резания	Wirkrichtung	direzione di lavoro	resulterende snijrichting
3.6.3.2	v_e	resultant cutting speed	vitesse résultante de coupe	скорость резания	Wirkgeschwindigkeit	velocità di lavoro	resulterende snijnelheid
3.6.4	φ	feed motion angle	angle de la direction d'avance	угол движения подачи	Vorschubrichtungswinkel	angolo della direzione d'avanzamento	aanzetrichtingshoek
3.6.5	η	resultant cutting speed angle	angle de la direction résultante de coupe	угол скорости резания	Wirkrichtungswinkel	angolo della direzione di lavoro	hoek van de resulterende snijrichting
4		reference systems	systèmes de référence	эталонные системы координат	Bezugssysteme	sistema di riferimento	referentiestelsel
4.1		tool-in-hand system	système de l'outil en main	эталонная система координат инструмента	Werkzeug-Bezugssystem	sistema dell'utensile in mano	gereedschapsreferentiestelsel
4.1.1	P_r	tool reference plane	plan de référence de l'outil	плоскость основная	Werkzeug-Bezugsebene	piano di riferimento dell'utensile	gereedschapsreferentievlaak
4.1.2	P_f	assumed working plane	plan de travail conventionnel	расчетная рабочая плоскость	angenommene Arbeitsebene	piano di lavoro convenzionale	voorondersteeld werkvlak

No.	Symbol	English	Français	Русский	Deutsch	Italiano	Nederlands
4.1.3	P _p	tool back plane	plan vers l'arrière de l'outil	осевая плоскость	Werkzeug-Rückebene	piano verso il retro dell'utensile	gereedschaps achterwaartsvlak
4.1.4	P _s	tool cutting edge plane	plan d'arête de l'outil	плоскость резания	Werkzeug-Schneidenebene	piano del tagliente	gereedschapsnij kantsvlak
4.1.5	P _n	cutting edge normal plane	plan normal à l'arête	нормальная плоскость	Schneiden-Normalebene	piano normale al tagliente	snijkantsnormaal vlak
4.1.6	P _o	tool orthogonal plane	plan orthogonal de l'outil	плоскость главного сечения	Werkzeug-Orthogonalebene	piano ortogonale dell'utensile	gereedschaps orthogonaalvlak
4.1.7	P _g	tool face orthogonal plane	plan orthogonal de la face de coupe	плоскость передней поверхности	Spanflächen-Orthogonalebene	piano ortogonale della faccia di taglio	meetvlak van de geometrische spaanhoek
4.1.8	P _b	tool flank orthogonal plane	plan orthogonal de la face de dérouille	плоскость задней поверхности	Freiflächen-Orthogonalebene	piano ortogonale del fianco	meetvlak van de basisvrijloophoek
4.2		tool-in-use system	système de l'outil en travail	эталонная система для инструмента в кинематике	Wirk-Bezugssystem	sistema dell'utensile in lavoro	werkreferentie stelsel
4.2.1	P _{re}	working reference plane	plan de référence en travail	плоскость основная рабочая	Wirk-Bezugsebene	piano di riferimento in lavoro	werkreferentievlek
4.2.2	P _{fe}	working plane	plan de travail	рабочая плоскость	Arbeitsebene	piano di lavoro	werkvlak
4.2.3	P _{pe}	working back plane	plan vers l'arrière en travail	рабочая осевая плоскость	Wirk-Rückebene	piano verso il retro dell'utensile	werkachterwaarts vlak
4.2.4	P _{se}	working cutting edge plane	plan d'arête en travail	плоскость резания рабочая	Wirk-Schneiderebene	piano del tagliente in lavoro	werksnijkantsvlak
4.2.5	P _{ne}	cutting edge normal plane	plan normal à l'arête	плоскость нормальная рабочая	Schneiden-Normalebene	piano normale al tagliente	snijkantsnormaal vlak
4.2.6	P _{oe}	working orthogonal plane	plan orthogonal en travail	плоскость главного сечения рабочая	Wirk-Orthogonalebene	piano ortogonale in lavoro	werkorthogonaal vlak
5		tool and working angles	angles de l'outil et angles en travail	инструментальные углы и углы в кинематической схеме	Werkzeug- und Wirkwinkel	angoli dell'utensile ed angoli in lavoro	gereedschaps hoeken en werkhoeken
5.1		tool angles	angles de l'outil	инструментальные углы	Werkzeugwinkel	angoli dell'utensile	gereedschaps hoeken
5.1.1		orientation of cutting edge	position de l'arête	углы режущей кромки	Lage der Schneide	posizione del tagliente	snijkantsrichting
5.1.1.1	κ_f	tool cutting edge angle	angle de direction d'arête de l'outil	главный угол в плане	Werkzeug-Einstellwinkel	angolo di direzione del tagliente	gereedschaps hoofdstelhoek
	κ_f'	tool minor cutting edge angle	angle de direction d'arête secondaire de l'outil	вспомогательный угол в плане	Werkzeug-Einstellwinkel der Nebenschneide	angolo di direzione del tagliente secondario	gereedschaps hulpstelhoek
5.1.1.2	ψ_f	UK tool approach angle USA tool lead angle	angle de direction complémentaire de l'outil	угол отклонения	Werkzeug-Einstell-ergänzungswinkel	angolo di direzione complementare del tagliente	gereedschaps hoofdsnikant schoek
5.1.1.3	λ_s	tool cutting edge inclination	angle d'inclinaison d'arête de l'outil	угол наклона режущей кромки	Werkzeug-Neigungswinkel	angolo d'inclinazione del tagliente	gereedschaps hellinshoek
5.1.1.4	ϵ_f	tool included angle	angle de pointe de l'outil	инструментальный внутренний угол	Werkzeug-Eckenwinkel	angolo della punta dell'utensile	gereedschaps neushoek
5.1.2		orientation of face	position de la face de coupe	углы передние	Lage der Spanfläche	posizione della faccia di taglio	orientatie van het spaan

No.	Symbol	English	Français	Русский	Deutsch	Italiano	Nederlands
5.1.2.1	γ_n	tool normal rake	angle de coupe normal de l'outil	угол передний нормальный	Werkzeug-Normal - spanwinkel	angolo di spoglia superiore normale	gereedschaps-normaalspan
5.1.2.2	γ_f	tool side rake	angle de coupe latéral de l'outil	угол передний боковой	Werkzeug-Seitenspanwinkel	angolo di spoglia superiore laterale	gereedschaps-zijwaartse spaanhoek
5.1.2.3	γ_p	tool back rake	angle de coupe vers l'arrière de l'outil	угол передний осевой	Werkzeug-Rückspanwinkel	angolo di spoglia superiore verso il retro dell'utensile	gereedschaps-achterwaartse spaanhoek
5.1.2.4	γ_o	tool orthogonal rake	angle de coupe orthogonal de l'outil	угол передний главный	Werkzeug-Orthogonal - spanwinkel	angolo di spoglia superiore ortogonale	gereedschaps-orthogonaal-spaanhoek
5.1.2.5	γ_g	tool geometrical rake	angle de coupe direct d'affûtage	угол передний максимальный	geometrischer Werkzeug-Spanwinkel	angolo di spoglia superiore di massima pendenza	geometrische gereedschaps-spaanhoek
5.1.2.6	δ_r	tool face orthogonal plane orientation angle	angle de position du plan orthogonal de la face de coupe	угол ориентации плоскости максимального падения передней поверхности	Lagewinkel der Spanflächen-Orthogonalebene	angolo di posizione del piano ortogonale della faccia di taglio	richtingshoek van het geometrisch spaanhoekmeetvlak
5.1.3		wedge angles	angles du taillant	углы заострения	Keilwinkel	angoli di penetrazione del cuneo	wighoek
5.1.3.1	β_n	normal wedge angle	angle de taillant normal	угол заострения нормальный	Normal-Keilwinkel	angolo di penetrazione del cuneo normale	normaalwighoek
5.1.3.2	β_f	tool side wedge angle	angle de taillant latéral de l'outil	угол заострения боковой	Werkzeug-Seitenkeilwinkel	angolo di penetrazione del cuneo laterale	gereedschaps-zijwaartse wighoek
5.1.3.3	β_p	tool back wedge angle	angle de taillant vers l'arrière de l'outil	угол заострения осевой	Werkzeug-Rückkeilwinkel	angolo di penetrazione del cuneo verso il retro dell'utensile	gereedschaps-achterwaartse wighoek
5.1.3.4	β_o	tool orthogonal wedge angle	angle de taillant orthogonal de l'outil	угол заострения главный	Werkzeug-Orthogonal-Keilwinkel	angolo di penetrazione del cuneo ortogonale	gereedschaps-orthogonaal-widhoek
5.1.4		orientation of flank	position de la face de dépouille	ориентация задней грани	Lage der Freifläche	posizione del fianco	oriëntatie van het vrijloopvlak
5.1.4.1	α_n	tool normal clearance	dépouille normale de l'outil	угол задний нормальный	Werkzeug-Normalfreiwinkel	angolo di spoglia inferiore normale	gereedschaps-normaalvrijloophoek
5.1.4.2	α_f	tool side clearance	dépouille latérale de l'outil	угол задний боковой	Werkzeug-Seitenfreiwinkel	angolo di spoglia inferiore laterale	gereedschaps-zijvrijloophoek
5.1.4.3	α_p	tool back clearance	dépouille vers l'arrière de l'outil	угол задний осевой	Werkzeug-Rückfreiwinkel	angolo di spoglia inferiore verso il retro vell'utensile	gereedschaps-achterwaarts-vrijloophoek
5.1.4.4	α_o	tool orthogonal clearance	dépouille orthogonale de l'outil	угол задний главный	Werkzeug-Orthogonal-freiwinkel	angolo di spoglia inferiore ortogonale	gereedschaps-orthogonaal-vrijloophoek
5.1.4.5	α_b	tool base clearance	dépouille directe d'affûtage	угол задний минимальный	Werkzeug-Basisfreiwinkel	angolo di spoglia di minima pendenza del fianco	gereedschaps-basisvrijloophoek
5.1.4.6	θ_r	tool flank orthogonal plane orientation angle	angle de position du plan orthogonal de la face de dépouille	угол ориентации плоскости максимального падения задней поверхности	Lagewinkel der Freiflächen-Orthogonalebene	angolo di posizione del piano di minima pendenza del fianco	richtingshoek van het geometrisch spaanhoekmeetvlak

No.	Symbol	English	Français	Русский	Deutsch	Italiano	Nederlands
5.1.5		relationship between the tool angles	relations entre les angles de l'outil	соотношение между углами режущего инструмента в статической системе	Beziehungen zwischen den Werkzeugwinkeln	relazione tra gli angoli dell'utensile	betrekkingen tussen de gereedschaps hoeken
5.2		working angles	angles en travail	углы в кинематической системе	Wirk-Winkel	angoli di lavoro	werkhoeken
5.2.1		orientation of cutting edge	position de l'arête	ориентация режущей кромки	Lage der Schneide	posizione del tagliente	snijkaanrichting
5.2.1.1	κ_{re}	working cutting edge angle	angle de direction d'arête en travail	главный угол в плане рабочий	Wirk-Einstellwinkel	angolo di direzione del tagliente in lavoro	werkhoofdstelhoek
	κ_{re}'	working minor cutting edge angle	angle de direction d'arête secondaire en travail	вспомогательный угол в плане рабочий	Wirk-Einstellwinkel der Nebenschneide	angolo di direzione del tagliente secondario in lavoro	werkhulpstelhoek
5.2.1.2	ψ_{re}	UK working approach angle USA working lead angle	angle de direction secondaire en travail	угол отклонения рабочий	Wirk-Einstell-ergänzungswinkel	angolo di direzione complementare del tagliente in lavoro	werkhoofd-snijkantshoek
5.2.1.3	λ_{se}	working cutting edge inclination	angle d'inclinaison d'arête en travail	угол наклона режущей кромки	Wirk-Neigungs-winkel	angolo d'inclinazione del tagliente in lavoro	werkhellingshoek
5.2.2		orientation of face	position de la face de coupe	ориентация передней грани	Lage der Spanfläche	posizione della faccia di taglio	orientatie van het spaanvlak
5.2.2.1	γ_{ne}	working normal rake	angle de coupe normal en travail	угол передний нормальный рабочий	Wirk-Normal-Spanwinkel	angolo di spoglia superiore normale in lavoro	werknormal spaanhoek
5.2.2.2	γ_{fe}	working side rake	angle de coupe latéral en travail	угол передний боковой рабочий	Wirk-Seitenspan-winkel	angolo di spoglia superiore laterale in lavoro	werkzijwaartse spaanhoek
5.2.2.3	γ_{pe}	working back rake	angle de coupe vers l'arrière en travail	угол передний осевой рабочий	Wirk-Rückspan-winkel	angolo di spoglia superiore verso il retro dell'utensile	werkachterwaartse spaanhoek
5.2.2.4	γ_{oe}	working orthogonal rake	angle de coupe orthogonal en travail	угол передний главный рабочий	Wirk-Orthogonal-spanwinkel	angolo di spoglia superiore ortogonale in lavoro	werkorthogonaal spaanhoek
5.2.3		wedge angles	angles du taillant	углы заострения	Keilwinkel	angolo di penetrazione del cuneo	wighoeken
5.2.3.1	β_{ne}	normal wedge angle	angle de taillant normal	угол заострения нормальный рабочий	Normal-Keilwinkel	angolo di penetrazione del cuneo	normaalwighoek
5.2.3.2	β_{fe}	working side wedge angle	angle de taillant latéral en travail	угол заострения боковой рабочий	Wirk-Seitenkeil-winkel	angolo di penetrazione del cuneo laterale in lavoro	werkzijwaartse wighoek
5.2.3.3	β_{pe}	working back wedge angle	angle de taillant vers l'arrière en travail	угол заострения осевой рабочий	Wirk-Rückkeil-winkel	angolo verso il retro dell'utensile di penetrazione del cuneo in lavoro	werkachterwaartse wighoek
5.2.3.4	β_{oe}	working orthogonal wedge angle	angle de taillant orthogonal en travail	угол заострения главный рабочий	Wirk-Orthogonal-Keilwinkel	angolo di penetrazione del cuneo ortogonale in lavoro	werkorthogonaal wighoek

No.	Symbol	English	Français	Русский	Deutsch	Italiano	Nederlands
5.2.4		orientation of flank	position de la face de dépouille	ориентация задней грани	Lage der Freifläche	posizione del fianco	oriëntatie van het vrijloopvlak
5.2.4.1	α_{ne}	working normal clearance	c'épouille normale en travail	угол задний нормальный рабочий	Wirk-Normalfrei-winkel	angolo di spoglia inferiore normale in lavoro	werknormaal-vrijloophoek
5.2.4.2	α_{fe}	working side clearance	dépouille latérale en travail	угол задний боковой рабочий	Wirk-Seitenfrei-winkel	angolo di spoglia inferiore laterale in lavoro	werkzij-vrijloophoek
5.2.4.3	α_{pe}	working back clearance	dépouille vers l'arrière en travail	угол задний осевой рабочий	Wirk-Rückfrei-winkel	angolo di spoglia inferiore verso il retro dell'utensile in lavoro	werkachterwaarts vrijloophoek
5.2.4.4	α_{oe}	working orthogonal clearance	dépouille orthogonale en travail	угол задний главный рабочий	Wirk-Orthogonal freiwinkel	angolo di spoglia inferiore ortogonale in lavoro	werkorthogonaal vrijloophoek
5.2.5		relationship between the working angles	relations entre les angles en travail	соотношение между углами в рабочей системе	Beziehungen zwischen den Wirk-Winkeln	relazione tra gli angoli in lavoro	betrekkingen tussen de werkhoeken
5.3		sign convention for angles	convention de signes pour les angles	условное обозначение углов	Festlegung der Formelzeichen für Winkel	convenzioni di segno per gli angoli	tekencurrenties voor de gereedschapshoeken
5.3.1		tool angle convention	convention pour les angles de l'outil	условное обозначение углов инструмента	Festlegung der Werkzeugwinkel	convenzioni per gli angoli dell'utensile	conventies voor de gereedschapshoeken
5.3.2		working angle convention	convention pour les angles en travail	условное обозначение углов резания	Festlegung der Wirkwinkel	convenzioni per gli angoli in lavoro	conventies voor de werkhoeken
6		summary of angles	tableaux récapitulatifs	перечень углов	Zusammenstellung der Winkel	prospette ricapitolativa	samenvattende tabel
7		chip breaker	brise copeaux	определение стружколомов	Definitionen über Spanleitstufen	definizioni relative al rompitruciolo	definities met betrekking op de spaanbreker
7.1		defined point on the chip breaker	point correspondant du brise copeaux	определение положения точки на стружколомах	Bezugspunkt an der Spanleitstufe	punto corrispondente del rompitruciolo	overeenkomstig punt op de spaanbreker
7.2		active face of the chip breaker	face active du brise copeaux	активная часть поверхности стружколомов	aktive Spanfläche der Spanleitstufe	faccia attiva del rompitruciolo	werkend vlak van de spaanbreker
7.3	l_{Bn}	chip breaker distance	distance du brise copeaux	расстояние от стружколома до режущей кромки	Abstand der Spanleitstufe	distanza del rompitruciolo	afstand van de spaanbreker
7.4	h_B	chip breaker height	hauteur du brise copeaux	высота стружколомов	Höhe der Spanleitstufe	altezza del rompitruciolo	spaanbrekers hoogte
7.5	ϑ_{By}	chip breaker angle	angle du brise copeaux	угол стружколомания	Winkel der Spanleitstufe	angolo del rompitruciolo	spaanbrekershoek
7.6	σ_B	chip breaker wedge angle	angle de taillant du brise copeaux	угол стружколома	Kewinkel der Spanleitstufe	angolo del cuneo del rompitruciolo	wighoek van de spaanbreker
7.7	r_B	chip breaker radius	rayon du brise copeaux	радиус стружколомов	Radius der Spanleitstufe	raggio del rompitruciolo	spaanbrekersradius
7.8	r'_{Bn}	chip breaker groove radius	rayon de rainure du brise copeaux	радиус стружколомающей канавки	Radius der eingeführten Spanleitstufe	raggio della scanalatura del rompitruciolo	radius van de spaanbrekersgroef
7.9	c_{Bn}	chip breaker groove depth	profondeur de rainure du brise copeaux	глубина стружколомающей канавки	Tiefe der eingeführten Spanleitstufe	profondità della scanalatura del rompitruciolo	diepte van de spaanbrekersgroef
7.10	d_{Bn}	chip breaker land width	largeur de facette du brise copeaux	ширина фаски на передней	Fase der Spanleitstufe	larghezza della facetta del rompitruco	lengte van het hulpvlak
7.11	d_{By}	chip breaker distance from corner of tool	distance entre le brise copeaux et le bec de l'outil	расстояние стружколома от режущих кромок инструмента	Abstand der Spanleitstufe von der Schneidenecke	distanza tra il rompitruciolo la punta dell'utensile	afstand van de spaanbreker tot de gereedschapsneus