1 Exercises

1.1

Verify that the theorem is true for a = 2 and p = 5.

$$2^{5-1} = 16 = 3 * 5 + 1 \equiv 1 \pmod{5}$$
.

1.2

Calculate 2^2 and 20^{10} (mod 11).

$$2^2 \equiv 4 \pmod{11}$$
$$2^4 \equiv 5 \pmod{11}$$
$$2^8 \equiv 3 \pmod{11}$$
$$2^2 * 2^8 \equiv 1 \pmod{11}$$

1.3

What are the pairs when p = 11?

$$(2, 6), (3, 4), (5, 9), (6, 2), (7, 8).$$

2 Problems

2.1

What is the least residue of

$$5^6 \pmod{6}$$
, $5^8 \pmod{7}$, $1945^8 \pmod{7}$
 $5^2 \equiv 4 \pmod{7}$
 $5^4 \equiv 2 \pmod{7}$
 $5^6 \equiv 1 \pmod{7}$,
 $5^8 \equiv 4 \pmod{7}$,
 $1945 \equiv 545 \equiv 195 \equiv 55 \equiv 6 \pmod{7}$
 $1945^2 \equiv 1 \pmod{7}$
 $1945^8 \equiv 1 \pmod{7}$

2.2

What is the least residue of

$$5^{10} \pmod{11}, \quad 5^{12} \pmod{11}, \quad 1945^{12} \pmod{11}$$

$$5^2 \equiv 3 \pmod{11}$$

$$5^4 \equiv 9 \pmod{11}$$

$$5^8 \equiv 4 \pmod{11}$$

$$5^{10} \equiv 1 \pmod{11}$$

$$5^{10} \equiv 1 \pmod{11}$$

$$5^{12} \equiv 3 \pmod{11}$$

$$1945 \equiv 845 \equiv 75 \equiv 9 \pmod{11}$$

$$1945^2 \equiv 4 \pmod{11}$$

$$1945^4 \equiv 5 \pmod{11}$$

$$1945^8 \equiv 3 \pmod{11}$$

$$1945^{12} \equiv 4 \pmod{11}$$

2.3

What is the last digit of 7^{355} ?

$$7 \equiv 7 \pmod{10}$$

 $7^2 \equiv 9 \pmod{10}$
 $7^4 \equiv 1 \pmod{10}$
 $355 \equiv 35 \equiv 3 \pmod{4}$
 $7^{355} \equiv 7 * 9 \equiv 3 \pmod{10}$

So, the last digit is 3.

2.4

What are the last two digits of 7^{355} ?

$$7 \equiv 7 \pmod{100}$$

 $7^2 \equiv 49 \pmod{100}$
 $7^4 \equiv 1 \pmod{100}$
 $7^{355} \equiv 7 * 49 \equiv 43 \pmod{10}$

2.5

What is the remainder when 314^{162} is divided by 163? Since 163 is prime, by Fermat's Theorem, $314^{162} \equiv 1 \pmod{p}$.

2.6

What is the remainder when 314^{162} is divided by 7?

$$314 \equiv 6 \pmod{7}$$

 $314^2 \equiv 1 \pmod{7}$
 $314^162 \equiv 1 \pmod{7}$

2.7

What is the remainder when 314^{164} is divided by 165? The prime decomposition of 165 is 3 * 5 * 11.

$$314 \equiv 2 \pmod{3}$$

$$314^{164} \equiv 1 \pmod{3}$$

$$314^{164} \equiv 1 \pmod{3}$$
,
$$314 \equiv 4 \pmod{5}$$

$$314^{2} \equiv 1 \pmod{5}$$
,
$$314^{164} \equiv 1 \pmod{5}$$
,
$$314 \equiv 6 \pmod{11}$$
,
$$314^{2} \equiv 3 \pmod{11}$$
,
$$314^{4} \equiv 9 \pmod{11}$$
,
$$314^{4} \equiv 9 \pmod{11}$$
,
$$314^{16} \equiv 5 \pmod{11}$$
,
$$314^{16} \equiv 5 \pmod{11}$$
,
$$314^{164} \equiv 9 \pmod{11}$$
,
$$314^{128} \equiv 4 \pmod{11}$$
,
$$314^{164} \equiv 4 * 3 * 9 \equiv 9 \pmod{11}$$
.

Now have to solve the system of congruences:

$$x \equiv 1 \pmod{15}, \quad x \equiv 9 \pmod{11}$$

Solving:

$$15k_1 + 1 \equiv 9 \pmod{11}$$
$$k_1 \equiv 2 \pmod{11}$$
$$x \equiv 31 \pmod{165}$$

So, the remainder is 31.

2.8

What is the remainder when 2001²⁰⁰¹ is divided by 26?

$$2001 \equiv 25 \pmod{26}$$

 $2001^2 \equiv 1 \pmod{26}$
 $2001^{2001} \equiv 25 \pmod{26}$

2.9

Show that

$$(p-1)(p-2)...(p-r) \equiv (-1)^r r! \pmod{p}$$

for r = 1, 2, ..., p - 1.

Expanding the product (p-1)(p-2)...(p-r), notice that all terms will be a multiple of p other than the product of $-1*-2*...*-r=(-1)^r r!$.

2.10

- (a) Calculate $(n-1)! \pmod{n}$ for n = 10, 12, 14, and 15.
- (b) Guess a theorem and prove it.
- (a) Since 2|9! and 5|9!, then $9! \equiv 0 \pmod{10}$. Likewise, since 2 and 6 divide 11!, $11! \equiv 0 \pmod{12}$; since 7 and 2 divide 13!, $13! \equiv 0 \pmod{14}$; and since 3 and 5 divide 14!, $14! \equiv 0 \pmod{15}$.
- (b) For any composite, non-square n, n|(n-1)!. If n is composite, can write it as ab, with $a,b \in [2,n-1]$. Since $a \neq b$, then these a and b must be one of the products of (n-1)! = 1*2*...*a*...*b*...*n-1. The property doesn't hold for square n=4, as $4 \nmid 6$. Writing $n=a^2$, it clearly holds for a=3, as 3*6|8!, so 9|8!. So it will hold as long as a and 2a are products of $(a^2-1)!$. This is true if $2a < a^2-1$, or $a^2-2a-1>0$. For a=3, 9-6-1>0. The derivative of this function with respect to a is 2a-2, which is non-negative for all $a \geq 0$. So all $a \geq 3$ will fulfill the equation.

2.11

Show that $2(p-3)! + 1 \equiv 0 \pmod{p}$.

Equivalently, we want to show that $2(p-3)! \equiv -1 \pmod{p}$. From Wilson's Theorem, we know that $(p-1)! \equiv -1 \pmod{p}$, so if we show that $2(p-3)! \equiv (p-1)! \pmod{p}$, we will be done. Notice that (p-1)! = (p-1)(p-2)(p-3)!. $(p-1)(p-2) \equiv 2 \pmod{p}$, so $(p-1)(p-2)(p-3)! \equiv 2(p-3)! \pmod{p}$.

2.12

In 1732 Euler wrote: "I derived [certain] results from the elegant theorem, of whose truth I am certain, although I have no proof: $a^n - b^n$ is divisible by the prime n + 1 if neither a nor b is." Prove this theorem, using Fermat's Theorem.

Since $n+1 \nmid a$ and $n+1 \nmid b$, (a,n+1)=1 and (b,n+1)=1. We can thus use Fermat's Theorem to get $a^n \equiv 1 \pmod{n+1}$ and $b^n \equiv 1 \pmod{n+1}$. Subtracting these two congruences, have $a^n - b^n \equiv 0 \pmod{n+1}$, or, equivalently, $n+1 \mid a^n - b^n$.

2.13

Note that

$$6! \equiv -1 \pmod{7},$$

 $5!1! \equiv 1 \pmod{7},$
 $4!2! \equiv -1 \pmod{7},$
 $3!3! \equiv 1 \pmod{7}.$

Try the same sort of calculation (mod 11).

 $10! \equiv -1 \pmod{11}$ by Wilson's theorem. For the rest:

$$9!1! \equiv 1 \pmod{11},$$

 $8!2! \equiv -1 \pmod{11},$
 $7!3! \equiv 1 \pmod{11},$
 $6!4! \equiv -1 \pmod{11},$
 $5!5! \equiv 1 \pmod{11}.$

2.14

Guess a theorem from the data of Problem 13, and prove it.

If p is prime, for $k \in [2, p-1]$, $(p-k)!(k-1)! \equiv -1^k \pmod{p}$. (p-1)! = (p-1)*(p-2)...*(p-(k-1))*(p-k)!. From the product up to the (p-k)! term we can cancel all factors of p, leaving us with $-1*-2*...*-(k-1) = -1^{k-1}*(k-1)!$. So, we know that $(p-1)! \equiv -1^{k-1}*(k-1)! \equiv -1 \pmod{p}$. Multiplying both sides by the -1^{k-1} term, have $(p-k)!(k-1)! \equiv -1^k \pmod{p}$.

2.15

Suppose that p is an odd prime.

(a) Show that

$$1^{p-1} + 2^{p-1} + \dots + (p-1)^{p-1} \equiv -1 \pmod{p}$$

(b) Show that

$$1^p + 2^p + \dots + (p-1)^p \equiv 0 \pmod{p}$$

- (a) By Fermat's theorem, we have $a^{p-1} \equiv 1 \pmod{p}$ if (a,p) = 1. All $a \in [1, p-1]$ will have (a,p) = 1. So, the equation is equivalent to $1+1+\ldots+1=p-1\equiv -1 \pmod{p}$.
- (b) Fermat's Theorem can alternatively be stated $a^p \equiv a \pmod{p}$. So, our equation becomes $1+2+\ldots+(p-1)$. Notice that this can be rearranged into p/2 pairs of a, p-a so that the as cancel out, leaving only terms of p. So the sum must be $\equiv 0 \pmod{p}$.

2.16

Show that the converse of Fermat's Theorem is false. [Broad hint: consider 2^{340} (mod 341).]

Write 341 = 11 * 31 and find the residual of 2^{340} for both factors.

$$2^{4} \equiv 5 \pmod{11}$$

$$2^{8} \equiv 3 \pmod{11}$$

$$2^{16} \equiv 9 \pmod{11}$$

$$2^{32} \equiv 4 \pmod{11}$$

$$2^{64} \equiv 5 \pmod{11}$$

$$2^{128} \equiv 3 \pmod{11}$$

$$2^{256} \equiv 9 \pmod{11}$$

$$2^{340} = 2^{256+64+16+4} \equiv 1 \pmod{11}$$

$$2^{5} \equiv 1 \pmod{31}$$

$$2^{340} \equiv 1 \pmod{31}$$

So, 2^{340} can be written as (11*31)t + 1, implying $2^{340} \equiv 1 \pmod{341}$ with 341 composite.

2.17

Show that for any two different primes p, q,

- (a) $pq(a^{p+q} a^{p+1} a^{q+1} + a^2)$ for all a.
- **(b)** $pq|(a^{pq} a^p a^q + a)$ for all a.
- (a) Write $a^{p+q} a^{p+1} a^{q+1} + a^2 = (a^p a)(a^q a)$. Note that each of these terms can be written $a(a^{x-1} 1)$. Since the x in both is prime, by Fermat's Theorem $x|a^{x-1} 1$. In other words, $p|(a^p a)$ and $q|(a^q a)$, so pq divides the whole thing.
- (b) Fermat's Theorem can be stated $a^p \equiv a \pmod{p}$. So, $(a^q)^p \equiv a^q \pmod{p}$, and $a^{pq} a^p \equiv a^q a \pmod{p}$. Likewise, $a^{pq} a^q \equiv a^p a \pmod{q}$. So, subtracting the residue in either equation yields $a^{pq} a^p a^q + a$, which is divisible by both p and q.

2.18

Show that if p is an odd prime, then $2p|(2^{2p-1}-2)$.

Can write $2^{2p-1}-2=2(2^{2p-2}-1)=2(2^{p-1}-1)(2^{p-1}+1)$. We want to show that $p|(2^{p-1}-1)(2^{p-1}+1)$. Since (p,2)=1, we can use Fermat's Theorem to show that $p|(2^{p-1}-1)$, so $2p|(2^{2p-1}-2)$.

2.19

For what n is it true that

$$p|(1+n+n^2+...+n^{p-2})$$
?

If p|n then we would need p|1 for the above to hold, so that is not a viable condition. The geometric series can be written $\frac{n^{p-1}-1}{n-1}$. As long as (p,n)=1, we know by Fermat's Theorem that $p|(n^{p-1}-1)$. We're not sure whether p divides the whole fraction if the bottom fraction is divisble by p. So, we should also exclude $n \equiv 1 \pmod{p}$ from viable n.

2.20

Show that every odd prime except 5 divides some number of the form 111...11 (k digits, all ones).

In the previous exercise, we showed $p|(1+n+n^2+...+n^{p-2})$ if $n\not\equiv 0$ or 1 (mod p). Observe that numbers of the form 111...1 can be written as such a geometric series when n=10. Since p is a prime other than 2 and 5, $10\not\equiv 0\pmod p$. For p=3, have 3|111. For p=7, we know $10\equiv 3\pmod 7$, so $\not\equiv 1$. All other primes are >10, and thus be $\equiv 10\pmod p$, so $\not\equiv 1$.