6.1 习题

2024年10月1日

6.1.1

证明框架如下:由于 n, m 都是自然数,且 m > n,所以存在正自然数 k 使得 k = n + k,对 k 进行归纳。

6.1.2

证明:

与定义 6.1.5 说的是一个意思, 证明略

6.1.3

证明:

充分性:

如果 $(a_n)_{n=m}^{\infty}$ 收敛与 c,那么对任意的 $\epsilon>0$,该序列都是最终 $\epsilon-$ 接近 c 的,所以存在 $N\geq m$ 使得 $|a_n-c|\leq \epsilon$ 对所有的 $n\geq N$ 均成立。由题设可知 m'>m,于是存在 $N':=\max(m',N),N'\geq m'$,使得 $|a_n-c|\leq \epsilon$ 对所有的 $n\geq N'$ 均成立,由于 ϵ 是任意的,由习题 6.1.2 可知, $(a_n)_{n=m'}^{\infty}$ 收敛与 c。

必要性:

 $(a_n)_{n=m'}^{\infty}$ 收敛与 c,那么对任意的 $\epsilon > 0$,该序列都是最终 $\epsilon -$ 接近 c 的。所以存在 $N \geq m'$ 使得 $|a_n - c| \leq \epsilon$ 对所有的 $n \geq N$ 均成立。由于 m' > m,所以 $N \geq m$,该性质对序列 $(a_n)_{n=m}^{\infty}$ 也成立,由于 ϵ 是任意的,由习题 6.1.2 可知, $(a_n)_{n=m'}^{\infty}$ 收敛与 c。

6.1.4

证明:

 $(a_n)_{n=m}^\infty$ 收敛于 c,于是对任意 $\epsilon>0$,存在一个 $N\geq m$ 使得 $|a_n-c|\leq \epsilon$ 对所有的 $n\geq N$ 均成立,由于 $k\geq 0$ 是一个非负整数,所以 $n+k\geq N$,于是 $|a_{n+k}-c|\leq \epsilon$ 对所有的 $n\geq N$ 均成立,由习题 6.1.2 可知, $(a_{n+k})_{n=m}^\infty$ 收敛与 c。

反之类似

6.1.5

证明:

6.1.6

证明:

证明为什么 $a_n > L + \epsilon/2$ 或 $a_n < L - \epsilon/2$,其余的按书中的提示证明就可以了。

序列 $(a_n)_{n=m}^\infty$ 不是最终 $\epsilon-$ 接近与 L 的,即对任意的 $N\geq m$ 都存在 $|a_n-L|>\epsilon$ 对所有的 $n\geq N$ 均成立。

序列 $(a_n)_{n=m}^{\infty}$ 是柯西序列,所以存在 N_0 使得 $|a_j - a_k| \le \epsilon/2$ 对所有的 $j,k \ge N_0$ 均成立。

固定 $a_n = j_k$,所以,

$$|a_j - a_n| \le \epsilon/2$$

 $\Rightarrow a_n - \epsilon/2 \le a_j \le a_n + \epsilon/2$

又因为, $|a_n - L| > \epsilon$ 所以 $a_n > \epsilon + L$ 或 $a_n < L - \epsilon$ 。

如果 $a_n > \epsilon + L$, 那么,

$$a_n - \epsilon/2 \le a_j$$

$$L + \epsilon - \epsilon/2 < a_j$$

$$L + \epsilon/2 < a_j$$

如果 $a_n < L - \epsilon$,那么,

$$a_j \le a_n + \epsilon/2$$

 $a_j < L - \epsilon + \epsilon/2$
 $a_j < L - \epsilon/2$

6.1.7

证明:

证明方法与命题 6.1.4 的类似。

首先假设 $(a_n)_{n=m}^{\infty}$ 是定义 5.1.12 意义下的有界序列,那么存在有理数 M,该序列以 M 为界,由于有理数 M 也是实数,所以 $(a_n)_{n=m}^{\infty}$ 是定义 6.1.16 意义下的有界序列。

现在假设是定义 6.1.16 下的有界序列,那么存在实数 M,该序列以 M 为界,根据命题 5.4.12 可知,存在一个比 M 大的有理数 M',由于 M' 是有理数,且 M < M',所有该序列也以 M' 为界,所以 $(a_n)_{n=m}^{\infty}$ 是定义 5.1.12 意义下的有界序列。

6.1.8

 (\mathbf{a})

我们必须证明 $(a_n+b_n)_{n=m}^{\infty}$ 收敛于 x+y。换言之,对于任意的 $\epsilon>0$,我们需要证明序列 $(a_n+b_n)_{n=m}^{\infty}$ 是最终 $\epsilon-$ 接近 x+y 的。

因为 $(a_n)_{n=m}^{\infty}$ 收敛于 x 且 $\epsilon/2 > 0$,则序列是最终 $\epsilon/2-$ 接近 x,即存在 $N_a \ge m$ 使得 $|a_n - x| \le \epsilon/2$ 对所有的 $n \ge N_a$ 均成立。

同理对序列 $(b_n)_{n=m}^\infty$ 存在 $N_b \ge m$ 使得 $|b_n-y| \le \epsilon/2$ 对所有的 $n \ge N_b$ 均成立。

取 $N := max(N_a, N_b)$, 于是对所有的 $n \ge N$ 都有,

$$|a_n + b_n - (x + y)|$$

= $|(a_n - x) + (b_n - y)|$
 $\leq |a_n - x| + |b_n - y| = /epsilon$

因此 $(a_n + b_n)_{n=m}^{\infty}$ 是最终 ϵ - 接近 x + y 的。由于 ϵ 是任意的,所以 $(a_n + b_n)_{n=m}^{\infty}$ 收敛于 x + y

(b)

设 $\epsilon_0>0$,因为 $(a_n)_{n=m}^\infty$ 收敛于 x,即存在 $N_a\geq m$ 使得 $|a_n-x|\leq \epsilon_0$ 对所有的 $n\geq N_a$ 均成立。

因为 $(b_n)_{n=m}^{\infty}$ 收敛于 y,即存在 $N_b \ge m$ 使得 $|b_n - y| \le \epsilon_0$ 对所有的 $n \ge N_b$ 均成立。

取 $N := max(N_a, N_b)$,

由命题 4.3.7 (h) 对实数也成立,那么对任意 $n \ge N$ 都有,

$$d(a_n b_n, xy) \le \epsilon_0 |y| + \epsilon_0 |x| + \epsilon_0 \epsilon_0$$

对任意的 $\epsilon > 0$,只要 ϵ_0 足够小,那么 $d(a_n b_n, xy) \leq \epsilon$,因此 $(a_n b_n)_{n=m}^{\infty}$ 是最终 ϵ —接近 xy 的。由于 ϵ 是任意的,所以 $(a_n b_n)_{n=m}^{\infty}$ 收敛于 xy

(c)

(c) 是(b) 的特例。由实数的定义可知,存在一个有理数序列使得 $LIM_{n\to\infty}c_n=c$,由命题 6.1.15 可知 $c=\lim_{n\to\infty}c_n$,即 $(c_n)_{n=m}^\infty$ 收敛于 c,由命题(b) 可知,

$$\lim_{n \to \infty} (ca_n) = (\lim_{n \to \infty} c)(\lim_{n \to \infty} a_n)$$
$$= cx$$

(d)

由(c)可知, $(-b_n)_{n=m}^\infty$ 是收敛于 -y 的。再利用(a)可证明该命题。 (e)

因为 $(b_n)_{n=m}^{\infty}$ 收敛于 y,那么对任意 $\delta > 0$,存在 $N_b \geq m$ 使得 $|b_n - y| \leq \delta$,对任意的 $n \geq N_b$ 均成立。

我们必须要证明序列 $(b_n^{-1})_{n=m}^\infty$ 收敛于 y^{-1} 。换言之,对于任意的 $\epsilon>0$,我们需要证明序列 $(b_n^{-1})_{n=m}^\infty$ 是最终 $\epsilon-$ 接近于 y^{-1} 的。于是设 $\epsilon>0$ 是任

意的实数,

$$|b_n^{-1} - y^{-1}| = \left| \frac{1}{b_n} - \frac{1}{y} \right|$$
$$= \left| \frac{y - b_n}{y b_n} \right|$$

此时,分子分母都是可变的,无法定量分析,需要固定分母的范围,这也是 书中提示要证明辅助命题 "如果一个序列的所有元素都不为零,并且该序 列收敛于一个非零极限,那么这个序列是远离 0 的。"原因。

1. 辅助命题证明:

设序列 $(a_n)_{n=m}^\infty$ 收敛于 $L\neq 0$,那么设 $\epsilon=\frac{1}{2}|L|>0$,存在 $N\geq m, n\geq N$ 使得

$$|a_n - L| \le \epsilon$$

$$|a_n - L| \le \frac{1}{2}|L|$$

$$\Rightarrow L - \frac{1}{2}|L| \le a_n \le L + \frac{1}{2}|L|$$

如果 L>0,那么, $0<\frac{1}{2}|L|\leq a_n$,由于序列的所有元素都不为零,即: $a_n>0$ 对 $m\leq n< N$ 均成立,取 $c:=min(\frac{1}{2}|L|,(a_n)_{n=m}^{N-1})$ 【min 生效的前提是 $(a_n)_{n=m}^{N-1}$ 是有限集合】,综上可知 c>0,且任意 $a_n\geq c$ 对任意 $n\geq m$ 均成立,所以序列是远离 0 的。如果 L<0,同理可证。综上,命题得证。

由辅助命题可知,序列 $(b_n)_{n=m}^\infty$ 是远离 0 的,那么存在一个实数 c>0 使得 $|b_n|\geq c$ 对所有的 $n\geq m$ 均成立。所以,

$$\left| \frac{y - b_n}{y b_n} \right|$$

$$\leq |y - b_n|/c|y|$$

$$\leq \delta/c|y|$$

因为 $\delta > 0$ 是任意实数,可以通过调整 δ 的取值,使得,

$$\left| \frac{y - b_n}{y b_n} \right| < \epsilon$$

即 $|b_n^{-1}-y^{-1}| \le \epsilon$,所以序列是最终 ϵ — 接近于 y^{-1} 的,因为 ϵ 是任意的,所以序列收敛于 y^{-1} 。

(f)

序列 $(a_n/b_n)_{n=m}^\infty$ 可以看做 $(a_n \times b_n^{-1})_{n=m}^\infty$, 由 (e) 可知 $(b_n^{-1})_{n=m}^\infty$ 收敛于 y^{-1} 。由 (a) 可知,

$$\lim_{n \to \infty} (a_n \times b_n^{-1})$$

$$= (\lim_{n \to \infty} a_n) (\lim_{n \to \infty} b_n^{-1})$$

$$= x \times y^{-1}$$

$$= \frac{x}{y}$$

$$= \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} b_n$$

(g)

我们必须证明 $(max(a_n,b_n))_{n=m}^{\infty}$ 收敛于 max(x,y)。换言之,对于任意的 $\epsilon>0$,我们需要证明序列 $(max(a_n,b_n))_{n=m}^{\infty}$ 是最终 $\epsilon-$ 接近 max(x,y)的。

任意实数 $\delta>0$,因为 $(a_n)_{n=m}^\infty$ 收敛于 x,即存在 $N_a\geq m$ 使得 $|a_n-x|\leq \delta$ 对所有的 $n\geq N_a$ 均成立。

因为 $(b_n)_{n=m}^{\infty}$ 收敛于 y,即存在 $N_b \geq m$ 使得 $|b_n - y| \leq \delta$ 对所有的 $n \geq N_b$ 均成立。

取 $N := max(N_a, N_b)$, 于是对所有的 $n \ge N$ 都有,

$$|a_n - x| \le \delta$$

$$\Rightarrow x - \delta \le a_n \le x + \delta$$

$$|b_n - y| \le \delta$$

$$\Rightarrow y - \delta \le b_n \le y + \delta$$

如果 y > x,我们可以取 $0 < \delta < (y - x)/2$,此时 $b_n > a_n$ 对任意 $n \ge N$ 均成立。也就是说,当 $n \ge N$ 后 $max(a_n,b_n) = b_n$,由习题 6.1.3 可知序列 $(max(a_n,b_n))_{n=m}^{\infty}$ 与 $(b_n)_{n=m}^{\infty}$ 收敛于同一个值 y。

同理可证, $y \le x$ 时, 序列 $(max(a_n, b_n))_{n=m}^{\infty}$ 收敛于 x。 综上, 命题得证。

(h)

证明与 (g) 类似。

6.1.9

暂时还证明不了,要看完 10.5 节后才可以解答

6.1.10

首先假设 $(a_n)_{n=0}^{\infty}$ 和 $(b_n)_{n=0}^{\infty}$ 对于任意的实数 $\epsilon>0$ 它们都是最终 $\epsilon-$ 接近的。特别地,对于任意的有理数 $\epsilon>0$,它们也都是最终 $\epsilon-$ 接近的。

现在假设 $(a_n)_{n=0}^{\infty}$ 和 $(b_n)_{n=0}^{\infty}$ 是定义 5.2.6 意义下的等价柯西序列,那么对于任意的有理数 $\epsilon > 0$,它们都是最终 $\epsilon -$ 接近的。如果 $\epsilon > 0$ 是实数,那么根据命题 5.4.12 可知,存在一个比 ϵ 小的有理数 $\epsilon' > 0$ 。因为 ϵ' 是有理数,所以 $(a_n)_{n=0}^{\infty}$ 和 $(b_n)_{n=0}^{\infty}$ 是最终 ϵ' – 接近的;又因为 $\epsilon' < \epsilon$,所以 $(a_n)_{n=0}^{\infty}$ 和 $(b_n)_{n=0}^{\infty}$ 是最终 ϵ – 接近的。