1 Introduction

On considère ici des endomorphismes linéaires d'un espace vectoriel de dimension fini, pour simplifier les choses on se contentera de l'espace \mathbb{R}^n .

On notera $C_n = (c_i)_{1 \leq i \leq n}$ la base canonique de \mathbb{R}^n .

Présentation du changement de base : commençons par une étude de cas simple.

- f est la symétrie par rapport à l'axe des abscisses
- b est la rotation d'angle $\frac{\pi}{4}$ composée à l'homothétie de rapport $\frac{\sqrt{2}}{2}$

Une application linéaire est définie par les valeurs qu'elle prend sur une base e. On commence avec $e = C_n$.

Figure 1: Image de la base canonique par f

On a choisi ici d'étudier l'image de la base canonique par f, mais que se serait-il passé si on avait choisi une autre base ?

Prenons à présent $e_1 = \binom{1}{1}$ et $e_2 = \binom{-1}{1}$, c'est à dire $e_1 = b(c_1)$ et $e_2 = b(c_2)$.

Figure 2: Image de la base $\binom{1}{1}, \binom{-1}{1}$ par f

L'application b envoie la base C_n sur la base e, alors pour tout i=1,2:

$$b(c_i) = e_i$$

$$(f \circ b)(c_i) = f(e_i) = \lambda_1 e_1 + \lambda_2 e_2$$

Où λ_1 et λ_2 sont les coordonnées de $f(e_i)$ dans la base e.

$$(f \circ b)(c_i) = \lambda_1 e_1 + \lambda_2 e_2 = \lambda_1 b(c_1) + \lambda_2 b(c_2)$$

$$(b^{-1} \circ f \circ b)(c_i) = \lambda_1 c_1 + \lambda_2 c_2$$

On a donc une nouvelle application $f_e = b^{-1} \circ f \circ b$ qui est telle que $f(c_i)$ a les même coordonnées dans la base C_n que $f(e_i)$ dans la base e.

Cette manipulation permet d'écrire facilement la matrice représentative de f dans la base e.

2 Représentation matricielle d'une application linéaire

Soit φ une application linéaire de \mathbb{R}^n vers \mathbb{R}^n et $e = (e_i)_i$ et $f = (f_i)_i$ deux bases de \mathbb{R}^n . Si pour tout i = 1, ..., n on a la décomposition de $f(e_i)$ dans la base f:

$$f(e_i) = \sum_{j=1}^{n} \varphi_{i,j} f_j$$

On stocke ces valeurs $\varphi_{i,j}$ dans une matrice $M_{e,f} = (\varphi_{i,j})_{1 \leq i,j \leq n}$ qui détermine entièrement l'application φ mais qui dépend des bases de départ e et d'arrivée f.

Dans le cas où $f = \mathcal{C}_n$, la décomposition de chaque vecteur \mathcal{C}_n est simple :

$$\varphi(x) = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = y_1 c_1 + y_2 c_2 + \dots + y_n c_n$$

La matrice de φ dans les bases e et \mathcal{C}_n s'écrit alors $M_{e,\mathcal{C}_n} = (\varphi(e_1) \mid \varphi(e_2) \mid \dots \mid \varphi(e_n))$ où $\cdot \mid \cdot$ est l'opération de juxtaposition de matrices (ici de vecteurs colonne).

3 Changements de base

On considère toujours deux bases e et f, une application linéaire f de \mathbb{R}^n et sa représentation matricielle M dans ces bases.

Soit g une autre base, on pose E la matrice inversible qui envoie la base e sur la base g, c'est à dire telle que $Ee_i = g_i$ et $E^{-1}g_i = e_i$, et de même la matrice F pour la base f:

Base de départ	Base d'arrivée	Matrice	Explication
e	f	M	$Me_i = \sum \lambda_j f_j$
g	f	ME^{-1}	$ME^{-1}g_i = Me_i = \sum \lambda j f_j$
e	g	FM	$FMe_i = \sum \lambda_j Ff_j = \sum \lambda_j g_j$
g	g	FME^{-1}	$FME^{-1}g_i = FMe_i = \sum \lambda_j Ff_j = \sum \lambda_j g_j$