## Семинары 3-4. Линейные операции с векторами. Разложение по базису

Beктор — направленный отрезок. Вектор может быть задан указанием точек начала и конца:  $\overline{AB}$  — вектор с началом в точке A и концом в точке B. Вектор имеет направление и длину. Говорят, что два вектора равны, если их направления и длины равны. Нулевой вектор  $\overline{0}$ - вектор нулевой длины.

Результатом умножения вектора  $\bar{a}$  на число  $\lambda$  является вектор  $\lambda \bar{a}$ , длина которого в  $\lambda$  раз больше длины вектора  $\bar{a}$ , а напрвление совпадает с направлением вектора  $\bar{a}$ , если  $\lambda > 0$ , и противоположно направлению  $\bar{a}$ , если  $\lambda < 0$ . По определению  $-\bar{a} = (-1)\bar{a}$ .

Результатом сложения двух векторов  $\bar{a}$  и  $\bar{b}$  является третий вектор, определяемый по правилу треугольника или параллелограмма (см. рис.).





Pазность векторов  $\bar{a}$  и  $\bar{b}$  по определению  $\bar{a} - \bar{b} = \bar{a} + (-\bar{b})$ .

Свойства линейных операций над векторами:

 $1^{\circ}$   $\bar{a} + \bar{b} = \bar{b} + \bar{a}$  (коммутативность сложения);

 $2^{\circ}$   $(\bar{a} + \bar{b}) + \bar{c} = \bar{a} + (\bar{b} + \bar{c})$  (ассоциативность сложения);

 $3^{\circ}$   $\lambda(\bar{a}+\bar{b})=\lambda\bar{a}+\lambda\bar{b}$  (дистрибутивность);

 $4^{\circ}$   $\lambda(\mu \bar{a}) = (\lambda \mu) \bar{a}$  (ассоциативность умножения на число);

 $5^{\circ}$   $\bar{a} - \bar{a} = \bar{0};$ 

 $6^{\circ} \quad 0\bar{a} = \bar{0};$ 

 $7^{\circ}$   $\lambda \bar{0} = \bar{0}$ .

## 2.7.



 $\overline{AD}$ ,  $\overline{BE}$  и  $\overline{CF}$  – медианы треугольника ABC. Доказать равенство  $\overline{AD}+\overline{BE}+\overline{CF}=\bar{0}$ .

$$\triangleleft \overline{AD} + \overline{BE} + \overline{CF} = \overline{AB} + \frac{1}{2}\overline{BC} + \overline{BC} + \frac{1}{2}\overline{CA} + \overline{CA} + \frac{1}{2}\overline{AB} = \frac{3}{2}\overline{AB} + \frac{3}{2}\overline{BC} + \frac{3}{2}\overline{CA} = \frac{3}{2}(\overline{AB} + \overline{BC} + \overline{CA}) = \bar{0}.$$

2.8.



 $\overline{AK}$  и  $\overline{BM}$  — медианы треугольника ABC. Выразить через  $\overline{p}=\overline{AK}$  и  $\overline{q}=\overline{BM}$  векторы  $\overline{AB}, \overline{BC}$  и  $\overline{CA}$ .

◁

$$\begin{cases} \overline{p} &= \overline{AB} + \frac{1}{2}\overline{BC} \\ \overline{q} &= \overline{BA} + \frac{1}{2}\overline{AC} \\ \overline{AC} &= \overline{AB} + \overline{BC} \end{cases} \Rightarrow \begin{cases} \overline{p} &= \overline{AB} + \frac{1}{2}\overline{BC} \\ \overline{q} &= \overline{BA} + \frac{1}{2}(\overline{AB} + \overline{BC}) = \frac{1}{2}(-\overline{AB} + \overline{BC}) \end{cases};$$

умножив второе уравнение на 2 и прибавив к первому, получим  $\overline{p}+2\overline{q}=\overline{AB}+\frac{1}{2}\overline{BC}-\overline{AB}+\overline{BC}$ , то есть  $\frac{3}{2}\overline{BC}=\overline{p}+2\overline{q}$  или  $\overline{BC}=\frac{2}{3}\overline{p}+\frac{4}{3}\overline{q}$ . Тогда из первого уравнения исходной системы  $\overline{AB}=\overline{p}-\frac{1}{2}\overline{BC}=\frac{2}{3}\overline{p}-\frac{2}{3}\overline{q}$  и из третьего уравнения  $\overline{CA}=-\overline{AB}-\overline{BC}=-\frac{4}{3}\overline{p}-\frac{2}{3}\overline{q}$ .

| B Thren    | cepcer ABCD correctances AD & BC               |
|------------|------------------------------------------------|
|            | Kak 2:3, morker M UN - coredce.                |
| Let emos   |                                                |
| doncer c   | inchance CD & oracoeregation 1:2.              |
| Borhageers |                                                |
| AB & AL    |                                                |
| Peucenne   | Tyence AB = p; AD = q.                         |
| A          | 0                                              |
|            | 2Be = 3 AD ⇒ Be = 3 P                          |
| M          | $CD = CB + BA + AD = -\sqrt{g} - \overline{D}$ |
|            | 0                                              |
| B          | C MN = AD + BC = 50                            |
| NU = 1     | 00 = 40 + 40                                   |
| 117        | 12.7 6 7                                       |
|            |                                                |

Выражение  $\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2 + \dots + \lambda_n \bar{a}_n$  называется линейной комбинацией системы векторов  $\bar{a}_1, \bar{a}_2, \dots, \bar{a}_n$ , а числа  $\lambda_1, \lambda_2, \dots \lambda_n$  — коэффициентами линейной комбинации.

Система векторов  $\bar{a}_1, \bar{a}_2, \dots, \bar{a}_n$  называется *линейно зависимой*, если существуют числа  $\lambda_1, \lambda_2, \dots, \lambda_n$  такие, что хотя бы одно из них отлично от нуля и  $\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2 + \dots + \lambda_n \bar{a}_n = \bar{0}$ . Если такого набора чисел не существует, система называется *линейно независимой*.

Система векторов линейно зависима тогда и только тогда, когда один из векторов можно представить как линейную комбинацию остальных:  $\bar{a}_n = \mu_1 \bar{a}_1 + \cdots + \mu_{n-1} \bar{a}_{n-1}$ .

Система из двух векторов линейно зависима тогда и только тогда, когда векторы коллинеарны, то есть лежат на параллельных прямых. Система из трёх векторов линейно зависима тогда и только тогда, когда векторы компланарны, то есть лежат в одной плоскости. Система из четырёх векторов в пространстве или из трёх векторов на плоскости всегда линейно зависима.

**2.19.** Разложить вектор  $\bar{s} = \bar{a} + \bar{b} + \bar{c}$  по трём некомпланарным векторам:  $\bar{p} = \bar{a} + \bar{b} - 2\bar{c}$ ,  $\bar{q} = \bar{a} - \bar{b}$  и  $\bar{r} = 2\bar{b} + 3\bar{c}$ .

⊲ Пусть  $\bar{s} = \lambda \bar{p} + \mu \bar{q} + \nu \bar{r}$ , где  $\lambda$ ,  $\mu$ ,  $\nu$  — неизвестные коэффициенты разложения. Тогда  $\bar{s} = \lambda(\bar{a} + \bar{b} - 2\bar{c}) + \mu(\bar{a} - \bar{b}) + \nu(2\bar{b} + 3\bar{c}) = (\lambda + \mu)\bar{a} + (\lambda - \mu + 2\nu)\bar{b} + (-2\lambda + 3\nu)\bar{c}$ ; но  $\bar{s} = \bar{a} + \bar{b} + \bar{c}$ , поэтому  $\lambda$ ,  $\mu$  и  $\nu$  должны удовлетворять равенствам системы

$$\begin{cases} \lambda + \mu = 1 \\ \lambda - \mu + 2\nu = 1 \\ -2\lambda + 3\nu = 1 \end{cases}$$

Решая систему, получим  $\lambda = 2/5$ ,  $\mu = 3/5$ ,  $\nu = 3/5$  и  $\bar{s} = \frac{2}{5}\bar{p} + \frac{3}{5}\bar{q} + \frac{3}{5}\bar{r}$ .  $\triangleright$ 

**2.20.** Найти линейную зависимость между данными четырьмя некомпланарными векторами:  $\bar{p}=\bar{a}+\bar{b},\ \bar{q}=\bar{b}-\bar{c},\ \bar{r}=\bar{a}-\bar{b}+\bar{c},\ \bar{s}=\bar{b}+\frac{1}{2}\bar{c}.$ 

рами: 
$$p = a + b, \ q = b - c, \ r = a - b + c, \ s = b + \frac{1}{2}c$$
 $\triangleleft$  Пусть  $\lambda_1 \bar{p} + \lambda_2 \bar{q} + \lambda_3 \bar{r} + \lambda_4 \bar{s} = \bar{0}$ ; тогда

$$\lambda_1(\bar{a} + \bar{b}) + \lambda_2(\bar{b} - \bar{c}) + \lambda_3(\bar{a} - \bar{b} + \bar{c}) + \lambda_4(\bar{b} + \frac{1}{2}\bar{c}) = \bar{0},$$

$$(\lambda_1 + \lambda_3)\bar{a} + (\lambda_1 + \lambda_2 - \lambda_3 + \lambda_4)\bar{b} + (-\lambda_2 + \lambda_3 + \lambda_4/2)\bar{c} = \bar{0}.$$

Требуется найти такие ненулевые  $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ , что

$$\begin{cases} \lambda_1 & +\lambda_3 & = 0 \\ \lambda_1 & +\lambda_2 & -\lambda_3 & +\lambda_4 & = 0 \\ & -\lambda_2 & +\lambda_3 & +\frac{1}{2}\lambda_4 & = 0 \end{cases}.$$

Пусть 
$$\lambda_1=1$$
, тогда  $\lambda_3=-1$ ,  $\lambda_4=-\frac{2}{3}$ ,  $\lambda_2=-\frac{4}{3}$ . Итак,  $\bar{p}-\frac{4}{3}\bar{q}-\bar{r}-\frac{2}{3}\bar{s}=\bar{0}$ .  $\triangleright$ 

Базисом в векторном пространстве называется упорядоченная линейно независимая система векторов, такая, что любой вектор пространства можно представить как линейную комбинацию элементов базиса. Коэффициенты линейной комбинации при этом называются координатами вектора в базисе.

Любые два линейно независимых вектора на плоскости и любые три линейно независимых вектора в пространстве являются базисом.

Базис называется *ортогональным*, если его элементы попарно перпендикулярны, и *ортонормированным*, если кроме этого они имеют единичную длину.

Запись  $\bar{a}=\{X,Y,Z\}$  или  $\bar{a}=\{X,Y\}$  означает, что вектор  $\bar{a}$  имеет в некотором ортонормированном базисе координаты X,Y,Z или X,Y, то есть  $\bar{a}=X\bar{\imath}+Y\bar{\jmath}+Z\bar{k}$  (или  $\bar{a}=X\bar{\imath}+Y\bar{\jmath}$  на плоскости).

**2.38.** Показать, что тройка векторов  $\bar{e}_1 = \{1,0,0\}$ ,  $\bar{e}_2 = \{1,1,0\}$  и  $\bar{e}_3 = \{1,1,1\}$  образует базис в множестве всех векторов пространства. Вычислить координаты вектора  $\bar{a} = -2\bar{\imath} - \bar{k}$  в базисе  $\mathfrak{B} = (\bar{e}_1,\bar{e}_2,\bar{e}_3)$  и написать соответствующее разложение по базису.

 $\triangleleft$  Покажем, что векторы  $\bar{e}_1$ ,  $\bar{e}_2$  и  $\bar{e}_3$  линейно независимы. Допустим обратное:  $\exists \lambda_1, \lambda_2, \lambda_3$ , хотя бы одно из которых отлично от нуля, такие, что

$$\lambda_1\bar{e}_1 + \lambda_2\bar{e}_2 + \lambda_3\bar{e}_3 = \lambda_1\bar{\imath} + \lambda_2(\bar{\imath} + \bar{\jmath}) + \lambda_3(\bar{\imath} + \bar{\jmath} + \bar{k}) = (\lambda_1 + \lambda_2 + \lambda_3)\bar{\imath} + (\lambda_2 + \lambda_3)\bar{\jmath} + \lambda_3\bar{k} = 0.$$

Система  $(\bar{\imath}, \bar{\jmath}, \bar{k})$  линейно независима, поэтому для выполнения равенства  $\lambda_1, \lambda_2, \lambda_3$  должны быть решениями системы уравнений

$$\begin{cases} \lambda_1 & +\lambda_2 & +\lambda_3 & = & 0 \\ & \lambda_2 & +\lambda_3 & = & 0 \\ & & \lambda_3 & = & 0 \end{cases}$$
; но её определитель  $\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 1 \neq 0$ ,

следовательно, она имеет единственное решение, и это решение  $\lambda_1 = \lambda_2 = \lambda_3 = 0$ . Получено противоречие, значит, система  $(\bar{e}_1, \bar{e}_2, \bar{e}_3)$  линейно независима, значит, она является базисом.

Найдём теперь координаты  $\bar{a}$  в базисе  $\mathfrak{B}$ . Из полученного выше равенства следует, что координаты  $\lambda_1$ ,  $\lambda_2$ ,  $\lambda_3$  некоторого вектора в базисе  $\mathfrak{B}$  и координаты x, y, z того же вектора в базисе  $(\bar{\imath}, \bar{\jmath}, \bar{k})$  связаны соотношениями

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = x \\ \lambda_2 + \lambda_3 = y \\ \lambda_3 = z \end{cases}$$

Для  $\bar{a}$  даны  $x=-2,\ y=0,\ z=-1;$  решая систему, получим  $\lambda_3=-1,\ \lambda_2=1,\ \lambda_1=-2.$  Итак,  $\bar{a}=-2\bar{e}_1+\bar{e}_2-\bar{e}_3.$   $\rhd$ 

При умножении вектора на число его координаты умножаются на это число; координаты суммы векторов равны суммам соответствующих координат.

Для вектора  $\bar{a}$ , имеющего в ортонормированном базисе координаты  $\{X,Y,Z\}$ , его длина  $|\bar{a}|=\sqrt{X^2+Y^2+Z^2}$ . Ортом вектора  $\bar{a}$  называется вектор единичной длины  $\bar{a}_0$ , имеющий то же направление:  $\bar{a}_0=(1/|\bar{a}|)\cdot \bar{a}$ .

Проекцией вектора  $\bar{a}$  на вектор  $\bar{b}$  называется число пр $_{\bar{b}}\bar{a}=|\bar{a}|\cos\varphi$ , где  $\varphi=(\widehat{\bar{a}},\bar{\bar{b}})$  — угол между векторами  $\bar{a}$  и  $\bar{b}$ .

Если координаты вектора даны в ортонормированном базисе, то они совпадают с проекциями на координатные векторы.

Координаты  $\{x_a/|\bar{a}|,y_a/|\bar{a}|,z_a/|\bar{a}|\}$  орта  $\bar{a}_0$  вектора  $\bar{a}=\{x_a,y_a,z_a\}$  в ортонормированном базисе совпадают по величине с косинусами углов между  $\bar{a}$  и базисными векторами; эти величины называются направляющими косинусами вектора  $\bar{a}$ . Сумма квадратов направляющих косинусов вектора равна единице:

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = \frac{x_a^2}{x_a^2 + y_a^2 + z_a^2} + \frac{y_a^2}{x_a^2 + y_a^2 + z_a^2} + \frac{z_a^2}{x_a^2 + y_a^2 + z_a^2} = 1.$$

2. Показать, что любые два вектора из трех

$$a_1 = \begin{pmatrix} 1 & 2 \end{pmatrix}, \quad a_2 = \begin{pmatrix} -4 & 3 \end{pmatrix}, \quad a_3 = \begin{pmatrix} -2 & 7 \end{pmatrix}$$

образуют базис на плоскости и разложить каждый из векторов по остальным двум.

(3) 
$$q_1 = (1, \lambda)$$
 $q_2 = (-1, \lambda)$ 
 $q_3 = (-1, \lambda)$ 
 $q_3 = (-1, \lambda)$ 
 $q_4 = (-1, \lambda)$ 
 $q_5 = (-1, \lambda)$ 
 $q_7 = (-1, \lambda)$ 
 $q$ 

$$2221$$
 $2221$ 
 $9329999$ 
 $92=93-29$ 
 $91=93-92$ 

**3.** Разложить вектор  $\bar{d} = \begin{pmatrix} 10 & 8 & 2 \end{pmatrix}$  по векторам

$$\bar{a} = \begin{pmatrix} 1 & 2 & 1 \end{pmatrix}, \quad \bar{b} = \begin{pmatrix} -2 & 0 & 1 \end{pmatrix}, \quad \bar{c} = \begin{pmatrix} 3 & 2 & 1 \end{pmatrix}.$$



- **2.39.** Заданы векторы  $\bar{a}=2\bar{\imath}+3\bar{\jmath},\,\bar{b}=-3\bar{\jmath}-2\bar{k},\,\bar{c}=\bar{\imath}+\bar{\jmath}-\bar{k}.$  Найти:
- а) координаты орта  $\bar{a}_0$ ;
- б) координаты вектора  $\bar{a} (1/2)\bar{b} + \bar{c}$ ;
- в) разложение вектора  $\bar{a} + \bar{b} 2\bar{c}$  по базису  $\mathfrak{B} = (\bar{\imath}, \bar{\jmath}, \bar{k});$
- $\Gamma$ )  $\operatorname{пp}_{\bar{a}}(\bar{a}-\bar{b})$ .

$$|\bar{a}| = \sqrt{2^2 + 3^2 + 0^2} = \sqrt{13}; \quad \bar{a}_0 = \{2/\sqrt{13}, 3/\sqrt{13}, 0\}. \triangleright$$

$$\begin{array}{l} |\bar{a}| = \sqrt{2^2 + 3^2 + 0^2} = \sqrt{13}; & \bar{a}_0 = \{2/\sqrt{13}, 3/\sqrt{13}, 0\}. \\ |\bar{a}| = (1/2)\bar{b} + \bar{c} = (2\bar{\imath} + 3\bar{\jmath}) - (1/2)(-3\bar{\jmath} - 2\bar{k}) + (\bar{\imath} + \bar{\jmath} - \bar{k}) = 3\bar{\imath} + (11/2)\bar{\jmath}; \{3, 11/2, 0\}. \\ |\bar{a}| = (1/2)\bar{b} + \bar{c} = (2\bar{\imath} + 3\bar{\jmath}) - (1/2)(-3\bar{\jmath} - 2\bar{k}) + (\bar{\imath} + \bar{\jmath} - \bar{k}) = 3\bar{\imath} + (11/2)\bar{\jmath}; \{3, 11/2, 0\}. \\ |\bar{a}| = (1/2)\bar{b} + \bar{c} = (2\bar{\imath} + 3\bar{\jmath}) - (1/2)(-3\bar{\jmath} - 2\bar{k}) + (\bar{\imath} + \bar{\jmath} - \bar{k}) = 3\bar{\imath} + (11/2)\bar{\jmath}; \{3, 11/2, 0\}. \\ |\bar{a}| = (1/2)\bar{b} + \bar{c} = (2\bar{\imath} + 3\bar{\jmath}) - (1/2)(-3\bar{\jmath} - 2\bar{k}) + (\bar{\imath} + \bar{\jmath} - \bar{k}) = 3\bar{\imath} + (11/2)\bar{\jmath}; \{3, 11/2, 0\}.$$

⊲ в) 
$$\bar{a} + \bar{b} - 2\bar{c} = (2\bar{\imath} + 3\bar{\jmath}) + (-3\bar{\jmath} - 2\bar{k}) - 2(\bar{\imath} + \bar{\jmath} - \bar{k}) = -2\bar{\jmath}.$$
 ⊳ ⊲ г)  $\bar{a} - \bar{b} = 2\bar{\imath} + 6\bar{\jmath} + 2\bar{k};$  пр $_{\bar{\imath}}(\bar{a} - \bar{b}) = 6.$  ⊳

**2.40.** Найти координаты орта 
$$\bar{a}_0$$
, если  $\bar{a} = \{6, 7, -6\}$ .

$$|\bar{a}| = \sqrt{6^2 + 7^2 + (-6)^2} = \sqrt{36 + 49 + 36} = \sqrt{121} = 11;$$
  $\bar{a}_0 = \{6/11, 7/11, -6/11\}.$ 

$$\bar{a}_0 = \{6/11, 7/11, -6/11\}. \triangleright$$

**2.44.** Найти вектор  $\bar{x}$ , образующий со всеми тремя базисными ортами равные острые углы, если  $|\bar{x}| = 2\sqrt{3}$ .

⊲ Так как вектор образует со всеми тремя базисными ортами равные острые углы, его направляющие косинусы равны. Так как координаты  $\bar{x}$  есть произведения направляющих косинусов на  $|\bar{x}|$ , то  $\bar{x} = 2\sqrt{3}(\cos\alpha\bar{\imath} + \cos\alpha\bar{\jmath} + \cos\alpha\bar{k})$ . Но  $\cos^2\alpha + \cos^2\alpha + \cos^2\alpha = 1$ , угол острый, поэтому  $\cos \alpha = 1/\sqrt{3}$  и получаем  $\bar{x} = 2\bar{\imath} + 2\bar{\imath} + 2\bar{k}$ ).  $\triangleright$ 

Говорят, что в пространстве или на плоскости задана система координат, если зафиксирована некоторая точка O, называемая началом координат, и некоторый базис. Вектор с началом в начале координат и концом в точке A называется paduyc-вектором точки A, а его координаты в базисе выбранной системы координат — координатами точки A.

**2.51.** Даны три вершины A(3, -4, 7), B(-5, 3, -2), C(1, 2, -3) параллелограмма ABCD. Найти его четвёртую вершину D, противоположную B.





Даны вершины треугольника A(3,-1,5), B(4,2,-5) и C(-4,0,3). Найти длину медианы, проведённой из вершины A.

**2.57.** Отрезок с концами в точках A(3,-2) и B(6,4) разделён на три равные части. Найти координаты точек деления.



$$\overline{AB} = \{3, 6\};$$

$$\overline{AC} = \frac{1}{3}\overline{AB}, \quad \overline{AC} = \{1, 2\}; \quad \overline{AD} = \frac{2}{3}\overline{AB}, \quad \overline{AD} = \{2, 4\};$$

$$\overline{OC} = \overline{OA} + \overline{AC}, \quad \overline{OC} = \{4, 0\}; \quad \overline{OD} = \overline{OA} + \overline{AD}, \quad \overline{OD} = \{5, 2\};$$

$$C(4, 0) \quad D(5, 2). \triangleright$$

## Скалярное произведение векторов

Скалярным произведением векторов  $\bar{a}$  и  $\bar{b}$  называется число  $\bar{a}\bar{b} = |\bar{a}|\,|\bar{b}|\,\cos(\widehat{\bar{a}},\widehat{\bar{b}})$ . Свойства скалярного произедения:

 $1^{\circ}$   $\bar{a}\bar{b}=\bar{b}\bar{a}$  (коммутативность);

 $2^{\circ}$   $(\lambda \bar{a})\bar{b} = \lambda(\bar{a}\bar{b})$  (ассоциативность относительно умножения на число);

 $3^{\circ} \quad \bar{a}(\bar{b}_1 + \bar{b}_2) = \bar{a}\bar{b}_1 + \bar{a}\bar{b}_2$  (дистрибутивность относительно сложения).

Два вектора называются ортогональными, если их скалярное произведение равно нулю. Скалярное произведение нулевого вектора на любой вектор равно нулю.

**2.65.**  $|\bar{a}_1|=3, |\bar{a}_2|=4, (\widehat{a_1}, \overline{a_2})=2\pi/3$ . Вычислить: a)  $\bar{a}_1^2=\bar{a}_1\bar{a}_1$ ; б)  $(3\bar{a}_1-2\bar{a}_2)(\bar{a}_1+2\bar{a}_2)$ ; в)  $(\bar{a}_1+\bar{a}_2)^2$ .  $\triangleleft$  a)  $\bar{a}_1^2=|\bar{a}_1|^2\cos(\widehat{a_1}, \bar{a}_1)=3^2\cdot 1=9$ ;  $\triangleright$   $\triangleleft$  б)  $(3\bar{a}_1-2\bar{a}_2)(\bar{a}_1+2\bar{a}_2)=3\bar{a}_1^2+6\bar{a}_1\bar{a}_2-2\bar{a}_1\bar{a}_2-4\bar{a}_2^2=3|\bar{a}_1|^2+4|\bar{a}_1||\bar{a}_2|\cos(\widehat{a_1}, \bar{a}_2)-4|\bar{a}_2|^2=$   $=3\cdot 3^2+4\cdot 3\cdot 4\cdot (-1/2)-4\cdot 4^2=-61$ ;  $\triangleright$   $\triangleleft$  в)  $(\bar{a}_1+\bar{a}_2)^2=(\bar{a}_1+\bar{a}_2)(\bar{a}_1+\bar{a}_2)=\bar{a}_1^2+2\bar{a}_1\bar{a}_2+\bar{a}_2^2=3^2+2\cdot 3\cdot 4\cdot (-1/2)+4^2=13$ .  $\triangleright$ 

Связь скалярного произведения с проекцией вектора на вектор. Из определения очевидно  $\bar{a}\bar{b}=|\bar{a}|\,\mathrm{np}_{\bar{a}}\bar{b}=|\bar{b}|\,\mathrm{np}_{\bar{b}}\bar{a}.$ 

**2.70.** Вычислить 
$$\operatorname{пр}_{\bar{a}+\bar{b}}(2\bar{a}-\bar{b})$$
, если  $|\bar{a}|=|\bar{b}|=1$  и  $(\bar{a},\bar{b})=120^\circ$ .  $\triangleleft (\bar{a}+\bar{b})(2\bar{a}-\bar{b})=|\bar{a}+\bar{b}|\operatorname{пр}_{\bar{a}+\bar{b}}(2\bar{a}-\bar{b});$   $|\bar{a}+\bar{b}|=\sqrt{(\bar{a}+\bar{b})^2}=\sqrt{\bar{a}^2+2\bar{a}\bar{b}+\bar{b}^2}=\sqrt{1^2+2\cdot(-1/2)+1^2}=1;$ 

$$\mathrm{IIp}_{\bar{a}+\bar{b}}(2\bar{a}-\bar{b}) = \frac{(\bar{a}+\bar{b})(2\bar{a}-\bar{b})}{|\bar{a}+\bar{b}|} = (2\bar{a}^2+\bar{a}\bar{b}-\bar{b}^2) = 2-1/2-1 = 1/2. \ \triangleright$$

**4.** Найти угол между векторами  $\bar{a} - 2\bar{b}$ ,  $\bar{a} + \bar{b}$  если  $|\bar{a}| = 1$ ,  $|\bar{b}| = 2$ , угол между векторами  $\bar{a}$  и  $\bar{b}$  равен  $\frac{\pi}{3}$ .



**2.77.** Зная, что  $|\bar{a}| = 3$ ,  $|\bar{b}| = 1$ ,  $|\bar{c}| = 4$  и  $\bar{a} + \bar{b} + \bar{c} = \bar{0}$ , вычислить  $\bar{a}\bar{b} + \bar{b}\bar{c} + \bar{c}\bar{a}$ .  $\triangleleft \bar{a}(\bar{a} + \bar{b} + \bar{c}) = \bar{b}(\bar{a} + \bar{b} + \bar{c}) = \bar{c}(\bar{a} + \bar{b} + \bar{c}) = 0$ ;  $\bar{a}(\bar{a} + \bar{b} + \bar{c}) + \bar{b}(\bar{a} + \bar{b} + \bar{c}) + \bar{c}(\bar{a} + \bar{b} + \bar{c}) = 0$ ;  $\bar{a}^2 + \bar{a}\bar{b} + \bar{a}\bar{c} + \bar{b}\bar{a} + \bar{b}^2 + \bar{b}\bar{c} + \bar{c}\bar{a} + \bar{c}\bar{b} + \bar{c}^2 = 0$ ;  $2(\bar{a}\bar{b} + \bar{b}\bar{c} + \bar{c}\bar{a}) = -(\bar{a}^2 + \bar{b}^2 + \bar{c}^2) = -(3^2 + 1^2 + 4^2) = -26$ ;  $\bar{a}\bar{b} + \bar{b}\bar{c} + \bar{c}\bar{a} = -13$ .  $\triangleright$ 

Пусть два вектора  $\bar{a} = \{x_a, y_a, z_a\}$  и  $\bar{b} = \{x_b, y_b, z_b\}$  заданы координатами в ортонормированном базисе. Тогда их скалярное произведение равно сумме попарных произведений координат:  $\bar{a}\bar{b} = x_ax_b + y_ay_b + z_az_b$ .

**2.78.** Даны векторы 
$$\bar{a}_1 = \{4, -2, -4\}$$
 и  $\bar{a}_2 = \{6, -3, 2\}$ . Вычислить: 6)  $(2\bar{a}_1 - 3\bar{a}_2)(\bar{a}_1 + 2\bar{a}_2)$ ;

```
г) |2\bar{a}_1 - \bar{a}_2|; ж) направляющие косинусы вектора \bar{a}_1; з) \mathrm{Im}_{\bar{a}_1 + \bar{a}_2}(\bar{a}_1 - 2\bar{a}_2); и) \mathrm{cos}(\bar{a}_1, \bar{a}_2). \triangleleft б) (2\bar{a}_1 - 3\bar{a}_2)(\bar{a}_1 + 2\bar{a}_2) = 2\bar{a}_1^2 + 4\bar{a}_1\bar{a}_2 - 3\bar{a}_1\bar{a}_2 - 6\bar{a}_2^2; \bar{a}_1^2 = 4^2 + (-2)^2 + (-4)^2 = 36; \bar{a}_1\bar{a}_2 = 4 \cdot 6 + (-2) \cdot (-3) + (-4) \cdot 2 = 22; \bar{a}_2^2 = 6^2 + (-3)^2 + 2^2 = 49; (2\bar{a}_1 - 3\bar{a}_2)(\bar{a}_1 + 2\bar{a}_2) = 2 \cdot 36 + 22 - 6 \cdot 49 = -200. \triangleright \triangleleft г) |2\bar{a}_1 - \bar{a}_2| = \sqrt{(2\bar{a}_1 - \bar{a}_2)^2} = \sqrt{4\bar{a}_1^2 - 4\bar{a}_1\bar{a}_2 + \bar{a}_2^2} = \sqrt{4 \cdot 36 - 4 \cdot 22 + 49} = \sqrt{105}. \triangleright \triangleleft ж) \mathrm{cos}(\bar{a}_1,\bar{i}) = (\bar{a}_1\bar{i})/|\bar{a}_1| = (4 \cdot 1 + (-2) \cdot 0 + (-4) \cdot 0)/6 = 2/3; \mathrm{cos}(\bar{a}_1,\bar{j}) = (\bar{a}_1\bar{j})/|\bar{a}_1| = (4 \cdot 0 + (-2) \cdot 1 + (-4) \cdot 0)/6 = -1/3; \mathrm{cos}(\bar{a}_1,\bar{k}) = (\bar{a}_1\bar{k})/|\bar{a}_1| = (4 \cdot 0 + (-2) \cdot 0 + (-4) \cdot 1)/6 = -2/3. \triangleright \triangleleft з) \mathrm{Im}_{\bar{a}_1+\bar{a}_2}(\bar{a}_1 - 2\bar{a}_2) = ((\bar{a}_1 + \bar{a}_2)(\bar{a}_1 - 2\bar{a}_2))/|\bar{a}_1 + \bar{a}_2| = \frac{\bar{a}_1^2 - 2\bar{a}_1\bar{a}_2 + \bar{a}_1\bar{a}_2 - 2\bar{a}_2^2}{\sqrt{(\bar{a}_1^2 + 2\bar{a}_1\bar{a}_2 + \bar{a}_2^2}} = \frac{36 - 22 - 2 \cdot 49}{\sqrt{36 + 2 \cdot 22 + 49}} = -\frac{84}{\sqrt{129}}. \triangleright \triangleleft и) \mathrm{cos}(\bar{a}_1,\bar{a}_2) = \frac{\bar{a}_1\bar{a}_2}{|\bar{a}_1||\bar{a}_2|} = \frac{22}{6 \cdot 7} = \frac{11}{21}. \triangleright
```

**2.80.** Найти длины сторон и величины углов треугольника с вершинами A(-1, -2, 4), B(-4, -2, 0) и C(3, -2, 1).

$$\frac{AB}{AB} = \{-3, 0, -4\}; \quad \overline{BC} = \{7, 0, 1\}; \quad \overline{AC} = \{4, 0, -3\}; \\
|\overline{AB}| = \sqrt{(-3)^2 + (-4)^2} = 5; \quad |\overline{BC}| = \sqrt{7^2 + 1^2} = \sqrt{50} = 5\sqrt{2}; \quad |\overline{AC}| = \sqrt{4^2 + (-3)^2} = 5;$$

$$\frac{\widehat{AB}, \overline{AC}}{AB, \overline{AC}} = \arccos\left(\frac{\overline{AB} \cdot \overline{AC}}{|\overline{AB}||\overline{AC}|}\right) = \arccos\left(\frac{-3 \cdot 4 + 0 - 4 \cdot (-3)}{5 \cdot 5}\right) = \frac{\pi}{2};$$

$$\frac{\widehat{BA}, \overline{BC}}{BA, \overline{BC}} = \arccos\left(\frac{-\overline{AB} \cdot \overline{BC}}{|\overline{AB}||\overline{BC}|}\right) = \arccos\left(-\frac{-3 \cdot 7 + 0 - 4 \cdot 1}{5 \cdot 5\sqrt{2}}\right) = \frac{\pi}{4};$$

$$\frac{\widehat{CA}, \overline{CB}}{|\overline{AC}|} = \arccos\left(\frac{-\overline{AC} \cdot (-\overline{BC})}{|\overline{AC}||\overline{BC}|}\right) = \arccos\left(\frac{4 \cdot 7 + 0 - 3 \cdot 1}{5 \cdot 5\sqrt{2}}\right) = \frac{\pi}{4}. \triangleright$$

**5.** Диагонали  $\overline{AC}$  и  $\overline{BD}$  образуют угол 60°, при этом  $|\overline{AC}|=2,$   $|\overline{BD}|=1.$  Найти угол параллелограмма при вершине A.



 $\Phi$ изический смысл скалярного произведения: работа постоянной по величине силы, затрачиваемая на перемещение материальной точки, равна  $\bar{F}\cdot \bar{s}$ , где  $\bar{F}$  – вектор силы, а  $\bar{s}$  – вектор перемещения точки.

**2.84.** Вычислить работу силы  $\bar{F} = \bar{\imath} + 2\bar{\jmath} + \bar{k}$  при перемещении материальной точки из положения A(-1,2,0) в положение B(2,1,3).

$$\triangleleft \bar{s} = \overline{AB} = 3\bar{\imath} - \bar{\jmath} + 3\bar{k}; \quad A = \bar{F} \cdot \bar{s} = 1 \cdot 3 + 2 \cdot (-1) + 1 \cdot 3 = 4. \triangleright$$

Buccent puca угла между двумя векторами может быть получена следующим образом. Пусть имеются два вектора  $\bar{a}$  и  $\bar{b}$ , отложенные от одной точки. Вычислим их орты  $\bar{a}_0 = \bar{a}/|\bar{a}|, \ \bar{b}_0 = \bar{b}/|\bar{b}|;$  тогда сумма  $\bar{a}_0 + \bar{b}_0$  будет лежать на искомой биссектрисе.

**2.87.** Лучи [OA), [OB), [OC) образуют попарно равные углы величины  $\pi/3$ . Найти угол между биссектрисами углов  $\angle AOB$  и  $\angle BOC$ .

 $\triangleleft$  Обозначим через  $\bar{a}, \bar{b}, \bar{c}$  орты  $\overline{OA}, \overline{OB}$  и  $\overline{OC}$ . Вектор биссектрисы  $\angle AOB$  равен  $\bar{b}_{AOB} = \bar{a} + \bar{b}$ , вектор биссектрисы  $\angle BOC$   $\bar{b}_{BOC} = \bar{b} + \bar{c}$ . По определению скалярного произведения имеем

$$\bar{b}_{AOB} \cdot \bar{b}_{BOC} = |\bar{b}_{AOB}||\bar{b}_{BOC}|\cos(\widehat{b}_{AOB}, \overline{b}_{BOC}); \quad \cos(\widehat{b}_{AOB}, \overline{b}_{BOC}) = \frac{\bar{b}_{AOB} \cdot \bar{b}_{BOC}}{|\bar{b}_{AOB}||\bar{b}_{BOC}|}.$$

Тогда

$$\cos(\bar{b}_{AOB}, \bar{b}_{BOC}) = \frac{(\bar{a} + \bar{b}) \cdot (\bar{b} + \bar{c})}{|\bar{a} + \bar{b}||\bar{b} + \bar{c}|} = \frac{\bar{a}\bar{b} + \bar{a}\bar{c} + \bar{b}^2 + \bar{b}\bar{c}}{\sqrt{(\bar{a} + \bar{b})^2(\bar{b} + \bar{c})^2}} = \frac{\bar{a}\bar{b} + \bar{a}\bar{c} + \bar{b}^2 + \bar{b}\bar{c}}{\sqrt{(\bar{a}^2 + 2\bar{a}\bar{b} + \bar{b}^2)(\bar{b}^2 + 2\bar{b}\bar{c} + \bar{c}^2)}} = \frac{\bar{a}\bar{b} + \bar{a}\bar{c} + \bar{b}^2 + \bar{b}\bar{c}}{\sqrt{(\bar{a}^2 + 2\bar{a}\bar{b} + \bar{b}^2)(\bar{b}^2 + 2\bar{b}\bar{c} + \bar{c}^2)}} = \frac{\bar{a}\bar{b} + \bar{a}\bar{c} + \bar{b}^2 + \bar{b}\bar{c}}{\sqrt{(\bar{a}^2 + 2\bar{a}\bar{b} + \bar{b}^2)(\bar{b}^2 + 2\bar{b}\bar{c} + \bar{c}^2)}} = \frac{\bar{a}\bar{b} + \bar{a}\bar{c} + \bar{b}^2 + \bar{b}\bar{c}}{\sqrt{(\bar{a}^2 + 2\bar{a}\bar{b} + \bar{b}^2)(\bar{b}^2 + 2\bar{b}\bar{c} + \bar{c}^2)}}$$

$$=\frac{\cos\frac{\pi}{3}+\cos\frac{\pi}{3}+1+\cos\frac{\pi}{3}}{\sqrt{(1+2\cos\frac{\pi}{2}+1)(1+2\cos\frac{\pi}{2}+1)}}=\frac{5/2}{3}=\frac{5}{6}; \quad \widehat{b}_{AOB}, \widehat{b}_{BOC}=\arccos\frac{5}{6}. \quad \triangleright$$

**2.89.** Вектор  $\bar{x}$  перпендикулярен векторам  $\bar{a}_1 = \{2, 3, -1\}$  и  $\bar{a}_2\{1, -2, 3\}$  и удовлетворяет условию  $\bar{x}(2\bar{\imath} - \bar{\jmath} + \bar{k}) = -6$ . Найти координаты  $\bar{x}$ .

 $\triangleleft$  Обозначим искомые координаты через X, Y и Z. Из условия

Решая эту систему методом Крамера, получаем

$$\Delta = \begin{vmatrix} 2 & 3 & -1 \\ 1 & -2 & 3 \\ 2 & -1 & 1 \end{vmatrix} = 14;$$

$$\Delta_X = \begin{vmatrix} 0 & 3 & -1 \\ 0 & -2 & 3 \\ -6 & -1 & 1 \end{vmatrix} = -42; \qquad \Delta_Y = \begin{vmatrix} 2 & 0 & -1 \\ 1 & 0 & 3 \\ 2 & -6 & 1 \end{vmatrix} = 42; \qquad \Delta_Z = \begin{vmatrix} 2 & 3 & 0 \\ 1 & -2 & 0 \\ 2 & -1 & -6 \end{vmatrix} = 42.$$

X = -3, Y = 3, Z = 3.  $\triangleright$  2, 10, 22, 36, 45, 46, 52, 56, 66, 67, 71, 48, 10, 6, 3), 81, 88.