Линейная алгерба 1 из 24

1 Линейные операторы

1.1 Линейные операторы и их матричная запись, примеры.

$$\sphericalangle \varphi: X \to Y, X, Y - \Pi\Pi, \dim X = n, \dim Y = m$$

Определение. Отображение φ называется линейным, если

$$\forall x_1, x_2 \in X \quad \varphi(x_1 + x_2) = \varphi(x_1) + \varphi(x_2)$$

 $\forall \alpha \in K \quad \varphi(\alpha x) = \alpha \varphi(x)$

Определение. Отображение φ , обладающее свойством линейности называется линейным оператором (ЛОп)

Пример. • $\Theta: \Theta x = 0_Y$ — нулевой оператор

- $\mathcal{I}: \mathcal{I}x = x$ единичный (тождественный) оператор
- $X = L_1 \dotplus L_2 \stackrel{def}{\Leftrightarrow} \forall x \in X \ \exists ! x_1 \in L_1, x_2 \in L_2 : x = x_1 + x_2$

Проектор:

$$\mathcal{P}_{L_1}^{\parallel L_2}: X \to L_1 \quad \mathcal{P}_{L_1}^{\parallel L_2} x = x_1$$

$$\mathcal{P}_{L_2}^{\parallel L_1}: X \to L_2 \quad \mathcal{P}_{L_2}^{\parallel L_1} x = x_2$$

• $X = C^1[-1,1]$ — первая производная \exists и непрерывна

$$\forall f \in X \quad (\varphi f)(x) = \int_{-1}^{1} f(t)K(x,t)dt$$

 $K(\boldsymbol{x},t)$ — интегральное ядро, например $\boldsymbol{x}^2+t\boldsymbol{x}$

$$\{e_j\}_{j=1}^n$$
 — базис $X, \{h_k\}_{k=1}^m$ — базис $Y, \varphi(e_j) = \sum\limits_{k=1}^m a_j^k h_k$

Определение. Набор коэффициентов $||a_j^k||$ образует матрицу $m \times n$, которая называется матрицей ЛОп в паре базисов $\{e_j\}$ и $\{h_k\}$

Пространство линейных операторов.

$$\chi=\varphi+\psi$$
, если $\forall x\in X\quad \chi(x)=(\varphi+\psi)x=\varphi(x)+\psi(x)$

Линейная алгерба 2 из 24

$$\chi=lpha arphi,$$
 если $orall x\in X$ $\qquad \chi(x)=(lpha arphi)x=lpha arphi(x)$
$$\dim \mathcal{L}(X,Y)=\dim X\cdot\dim Y=m\cdot n$$

1.3 Алгебра. Примеры. Изоморфизм алгебр.

Алгебра — модуль над коммутативным кольцом с единицей, являющийся кольцом.

Кольцо — множество, на котором заданы бинарные операции + и \cdot с следующими свойствами:

1.
$$a + b = b + a$$

2.
$$a + (b + c) = (a + b) + c$$

3.
$$\exists 0 \in R : \forall x \in R : x + 0 = 0 + x = x$$

4.
$$\forall x \in R : \exists (-x) \in R : x + (-x) = (-x) + x = 0$$

5.
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

6.
$$a \cdot (b+c) = a \cdot b + a \cdot c$$

7.
$$(b+c) \cdot a = b \cdot a + c \cdot a$$

Коммутативное кольцо — кольцо с коммутативным умножением: $a\cdot b=b\cdot a$

Кольцо с единицей — кольцо с нейтральным элементом по умножению: $\exists 1 \in R : a \cdot 1 = a$

Модуль над кольцом (коммутативным, с единицей) R — множество M с операциями:

1.
$$+: M \times M \to M$$

(a)
$$a + b = b + a$$

(b)
$$a + (b+c) = (a+b) + c$$

(c)
$$\exists 0 \in R : \forall x \in R : x + 0 = 0 + x = x$$

(d)
$$\forall x \in R : \exists (-x) \in R : x + (-x) = (-x) + x = 0$$

2.
$$\cdot: M \times R \to M$$

(a)
$$(r_1r_2)m = r_1(r_2m)$$

(b)
$$1m = m$$

(c)
$$r(m_1 + m_2) = rm_1 + rm_2$$

(d)
$$(r_1 + r_2)m = r_1m + r_2m$$

Линейная алгерба 3 из 24

Примеры:

1. \mathbb{R}^3 с векторным произведением — алгебра над \mathbb{R}

- 2. \mathbb{C} алгебра над \mathbb{R}
- 3. ℍ (кватернионы)
- 4. Многочлены

Изоморфизм алгебр — биекция $F:A\to B$, где A и B — алгебры, сохраняющая "+" и ".":

- 1. F(kx) = kF(x)
- 2. F(x+y) = F(x) + F(y)
- 3. F(xy) = F(x)F(y)

Из этого следует, что $F(0_X) = 0_Y$

1.4 Алгебра операторов и матриц.

Умножение ЛОП: $(\mathcal{B} \cdot \mathcal{A})x = \mathcal{B}(\mathcal{A}x)$

Умножение матриц: $(A \cdot B)_{ik} = \sum_{j} a_{ij} b_{jk}$

Теорема 1.

$$\underbrace{\mathcal{C}}_{C} = \underbrace{\mathcal{B}}_{B} \underbrace{\mathcal{A}}_{A} \Leftrightarrow C = BA$$

Доказательство.

$$Ce_i = \mathcal{B}(\mathcal{A}e_i) = \mathcal{B}\left(\sum_j a_{ji}e_j\right) = \sum_j a_{ji}\mathcal{B}e_j = \sum_j a_{ji}\sum_k b_{kj}e_k$$
$$c_{il} = (Ce_i)_l = \sum_j a_{ji}b_{lj} \Rightarrow C = BA$$

Пространство ЛОП $\mathcal{F}: X \to X$ — алгебра, пространство квадратных матриц \mathbb{R}^n_n — алгебра.

1.5 Обратная матрица: критерий обратимости, метод Гаусса вычисления обратной матрицы.

В алгебре A выполняется $a_1 \cdot a_2 = e$, где e — единичный элемент матрицы. Тогда:

1. a_1 — **левый обратный** элемент для a_2

M3137y2019

Конспект к экзамену

Линейная алгерба 4 из 24

2. a_2 — правый обратный элемент для a_1

Если a_1 — и левый, и правый обратный к a_2 , то он называется **обратным** элементом к a_2 .

Теорема 2. $\exists A^{-1} \Leftrightarrow \det A \neq 0$

Доказательство. "⇐"

$$\det A \neq 0 \stackrel{?}{\Rightarrow} \exists A^{-1} : AA^{-1} = E, A^{-1}A = E$$

$$\sum_{i} a_{ij} a_{jk}^{-1} = \delta_{ik}$$

Это система Крамера, т.к. $\det A = 0 \xrightarrow{def}$ вектора $\in A$ ЛНЗ \Rightarrow единственное решение.

"⇒" то же самое, но наоборот.

$$\left[\begin{array}{c|c}A & E\end{array}\right] \sim \left[\begin{array}{c|c}E & A^{-1}\end{array}\right]$$

Доказательство.

Здесь T_i — матрица элементарного преобразования.

1.6 Обратная матрица: критерий обратимости, вычисление обратной матрицы методом присоединенной матрицы.

Критерий обратимости: Дано выше. (1.5, стр. 4)

Теорема 3.

$$A^{-1} = \frac{1}{\det A} \tilde{A}^T$$

Доказательство. $AB=E\Rightarrow B=\frac{1}{\det A}\tilde{A}^T$ — надо доказать.

$$\sum_{j=1}^{n} \alpha_j^i \beta_k^j = \delta_k^i$$

$$] \delta_{k_0}^i = \begin{pmatrix} 0 & 0 & \dots & 0 & 1_{k_0} & 0 & \dots & 0 \end{pmatrix}^T = b$$

M3137y2019

Конспект к экзамену

Линейная алгерба 5 из 24

$$\beta_{k_0}^j = \xi^j \quad \alpha_j^i = a_j$$

$$\sum_{j=1}^{n} a_j \xi^j = b \quad \xi^j = \frac{\Delta_j}{\Delta}$$

$$\Delta_j = \det A(a_j \to b)$$

 $A(a_j \to b)$ — матрица A, где заменили j-тый вектор на b

$$\det A(a_j \to b) = 0 \cdot M_j^1 + \ldots + 1 \cdot M_j^k + \ldots + 0 = M_j^k$$

$$b_{jk} = \frac{(\tilde{A}^T)_k^j}{\det A} \Rightarrow B = \frac{\tilde{A}_k^j}{\det A}$$

1.7 Ядро и образ линейного оператора. Теорема о ядре и образе. Функции матриц и операторов.

$$\sphericalangle \varphi: X \to Y$$

Определение. Ядро φ :

$$Ker \varphi = \{x \in X : \varphi x = 0\}$$

Примечание. Кег $\varphi \subset X$

Лемма 1. $Ker \varphi - Л\Pi$

Определение. Образ φ :

$$\operatorname{Im} \varphi = \{ y \in Y : \exists x : \varphi(x) = y \}$$

Примечание.

$$\operatorname{Im} \varphi \subset Y$$

Лемма 2. $Im \varphi - Л\Pi$

Теорема 4. О ядре и образе

$$]\varphi:X\to X\Rightarrow \dim \operatorname{Ker} \varphi+\dim \operatorname{Im} \varphi=\dim X$$

M3137y2019

Конспект к экзамену

Линейная алгерба 6 из 24

Доказательство.] dim Ker $\varphi = K$

$$]\{e_1 \dots e_k\}$$
 — базис Кег $\varphi \Rightarrow \varphi(e_j) = 0 \ \ \forall j = 1..k$

$$\triangleleft \{e_1 \dots e_k; e_{k+1} \dots e_n\}$$
 — базис X

 $\{\varphi(e_{k+1})\dots \varphi(e_n)\}$ — полный для Im , т.к. любой $x\in {\rm Im}\,$ можно по нему разложить. Докажем ЛНЗ от обратного:

$$]\{\varphi(e_j)\}_{j=k+1}^n - \Pi 3 \Rightarrow \exists \alpha^j : \sum_{j=k+1}^n \alpha^j \varphi(e_j) = 0 \Rightarrow \varphi\left(\sum_{j=k+1}^n \alpha^j e_j\right) =$$

$$\begin{cases} \text{или } \sum\limits_{j=k+1}^n \alpha^j e_j \in \mathrm{Ker} \ \varphi \Rightarrow \mathrm{ЛK} \ e_{k+1} \dots e_n \ \mathrm{разложима} \ \mathrm{пo} \ e_1 \dots e_k - \mathrm{противоречиe} \\ \mathrm{или } \sum\limits_{j=k+1}^n \alpha^j e_j = 0 \Rightarrow \alpha^j = 0 \Rightarrow \ \mathrm{ЛH3} \end{cases}$$

$$\Rightarrow \{\varphi(e_i)\}_{i=k+1}^n$$
 — базис Im φ .

1.8 Обратный оператор. Критерий существования обратного оператора.

Определение. Обратным к оператору φ называется оператор φ^{-1} :

$$\varphi^{-1}\varphi=\varphi\varphi^{-1}=\mathcal{I}$$

Теорема 5. Оператор φ обратим, если \exists базис, в котором его матрица невырождена

Теорема 6. $\sphericalangle \varphi: X \to X$

$$\exists \varphi^{-1} \Leftrightarrow \dim \operatorname{Im} \varphi = \dim X$$
или $\dim \operatorname{Ker} \varphi = 0$

Доказательство. dim Im $\varphi=\dim X\Leftrightarrow \operatorname{Im}\varphi\simeq X\Rightarrow \varphi$ — сюръекция, dim Ker $\varphi=0\Rightarrow \forall y\ \exists x: \varphi x=y\Rightarrow \varphi$ — инъекция

2 Тензорная алгебра

2.1 Преобразование координат векторов X и X^st при замене базиса.

$$\sphericalangle\{e_j\}$$
 — базис X

$$\sphericalangle\{\tilde{e}_k\}$$
 — базис X^*

$$\Rightarrow \forall k \ \tilde{e}_k = \sum_{j=1}^n t_k^j e_j$$

Определение. Набор $T=||t_j^i||$ образует матрицу, которая называется матрицей перехода от базиса $\{e_j\}$ к базису $\{\tilde{e}_k\}$

Примечание.
$$\sphericalangle E = \begin{bmatrix} e_1 & e_2 & \dots & e_n \end{bmatrix}, \tilde{E} = \begin{bmatrix} \tilde{e}_1 & \tilde{e}_2 & \dots & \tilde{e}_n \end{bmatrix} \Rightarrow \tilde{E} = ET$$

Пемма 3. $]\xi$ — координаты вектора x в базисе $\{e_i\}$

 $] ilde{\xi}$ — координаты вектора x в базисе $\{ ilde{e}_k\}$

Тогда $\xi = T\tilde{\xi}$ или $\tilde{\xi} = S\xi, S = T^{-1}$

Доказательство.
$$x=\sum\limits_{k=1}^{n} \tilde{\xi}^{k} \tilde{e}_{k}=\sum\limits_{k=1}^{n} \tilde{x}^{k} \sum\limits_{j=1}^{n} t_{k}^{j} e_{j}=\sum\limits_{j=1}^{n} (\sum\limits_{k=1}^{n} \tilde{\xi}^{k} t_{k}^{j}) e_{j}=\sum\limits_{j=1}^{n} \xi^{j} e_{j} \Rightarrow \xi=T\tilde{\xi}$$
 \square

Пемма 4.] $\{f^l\}$ — базис X^* , сопряженный $\{e_j\}$, т.е. $f^l(e_j)=\delta^l_i$

 $\{ ilde{f}^m\}$ — базис X^* , сопряженный $\{ ilde{e}_k\}$, m.e. $ilde{f}^m(ilde{e}_k)=\delta_m^k$

$$]F = \begin{bmatrix} f^1 & f^2 & \dots & f^n \end{bmatrix}^T, \quad \tilde{F} = \begin{bmatrix} \tilde{f}^1 & \tilde{f}^2 & \dots & \tilde{f}^n \end{bmatrix}^T$$

Тогда
$$F=T ilde{F}$$
 или $f^l=\sum\limits_{m=1}^n t^l_m ilde{f}^m$

Доказательство.
$$\sphericalangle(\tilde{f}^m, \tilde{e}_k) = \delta_k^m = (\tilde{f}^m, \sum_{j=1}^n t_k^j e_j) = \sum_{j=1}^n t_k^j (\tilde{f}^m, e_j) = \sum_{j=1}^n t_k^j \sum_{l=1}^n a_l^m (f^l, e_j) = \sum_{j=1}^n t_k^j a_j^m$$

$$\Rightarrow \sum\limits_{j=1}^n a_j^m t_k^j = \delta_k^m$$
или $AT = I$ — единичная матрица $\Rightarrow A = T^{-1}$

Лемма 5. $\varphi - \kappa оэ \phi \phi$. ЛФ в $\{e_i\}$

$$\tilde{\varphi}$$
 — коэфф. Л Φ в $\{\tilde{e}_k\}$

$$\Rightarrow \tilde{\varphi} = \varphi T$$

Доказательство. $]g- \mathrm{Л}\Phi,\, arphi_j=g(e_j)\quad ilde{arphi}_k=g(ilde{e}_k)$

$$\varphi_k = g(\tilde{e}_k) = g\left(\sum_{j=1}^n t_k^j e_j\right) = \sum_{j=1}^n t_k^j g(e_j) = \sum_{j=1}^n t_k^j \varphi_j$$

$$\Rightarrow \tilde{\varphi} = \varphi T$$

Итого:

$$\tilde{E} = ET \quad \tilde{F} = T^{-1}F \quad \tilde{\xi} = T^{-1}\xi \quad \tilde{\varphi} = \varphi T$$

Линейная алгерба 8 из 24

2.2 Преобразование матрицы линейного оператора при замене базиса. Преобразование подобия.

$$orall \overline{\mathcal{A}}: \overline{X} o \overline{Y}, \mathcal{A}: X o Y$$
 $\mathcal{A} \leftrightarrow A, \overline{\mathcal{A}} \leftrightarrow \overline{A}$ \mathcal{X} — матрица перехода $\overline{X} \to X, \mathcal{Y}$ — матрица перехода $\overline{Y} \to Y$ $x \in X, y := \mathcal{A}x, \overline{x} := \mathcal{X}x, \overline{y} := \mathcal{Y}y$

$$\overline{A}\overline{x} = \overline{y} \Rightarrow Ax = y = \mathcal{Y}^{-1}\overline{y} = \mathcal{Y}^{-1}\overline{A}\overline{x} = \mathcal{Y}^{-1}\overline{A}\mathcal{X}x$$

$$\forall x \quad Ax = \mathcal{Y}^{-1}\overline{A}\mathcal{X}x \Leftrightarrow A = \mathcal{Y}^{-1}\overline{A}\mathcal{X}$$

2.3 Тензоры (ковариантность, независимое от ПЛФ определение). Пространство тензоров.

Определение. Величины, которые преобразуются при замене базиса так же, как базисные векторы, называются ковариантными величинами.

Величины, которые преобразуются при замене базиса противоположным базисным векторам образом, называются контравариантными величинами.

 Π римечание. ξ — контрвариантная величина. Верхний индекс называется контравариантным, нижний — ковариантным.

$$]W\in\Omega^p_q-\Pi$$
ЛФ (p,q)
$$]\{e_j\}_{j=1}^n-\text{базис }X,\,\{f^k\}_{k=1}^n-\text{базис }X^*$$

$$\Rightarrow\omega^{j_1\dots j_n}_{i_1\dots i_n}\stackrel{\mathrm{def}}{=}W(e_{i_1}\dots e_{i_p}f^{j_1}\dots f^{j_q})$$

$$\{e_i\}\stackrel{T}{\longrightarrow}\{\tilde{e}_k\}\quad \{f^l\}\stackrel{T^{-1}}{\longrightarrow}\{\tilde{f}^m\}$$

Пусть в паре базисов $\{\tilde{e}_k\}$ и $\{\tilde{f}^m\}$ ПЛФ W имеет тензор $\tilde{w}^{t_1\dots t_q}_{s_1\dots s_p}=W(\tilde{e}_{s_1}\dots\tilde{e}_{s_p},\tilde{f}^{t_1}\dots\tilde{f}^{t_q})=0$

Определение. 1. **Вектором** называется величина, преобразующаяся по контравариантному закону

2. Линейной формой называется величина, преобразующаяся по ковариантному закону

Линейная алгерба 9 из 24

3. **Тензором** типа (p,q) называется величина, преобразующаяся p раз по ковариантному закону и q раз по контравариантному.

- Сложение тензоров и умножение тензора на скаляр поэлементное
- Нулевой элемент по сложению тензор, принимающий значение 0 на любом входе
- Очевидно $w+\alpha v$ тензор того же типа, что и $w\Rightarrow$ тензоры образуют линейное пространство T^p_q , $\dim T^p_q=p+q$

2.4 Свертка тензора.

Свертка:

$$\overset{k \wedge s^{j_1 \dots j_n}}{\omega} = \sum_{n=1}^n \omega_{i_1 \dots i_n \dots i_p}^{j_1 \dots i_n \dots j_q}$$

Примечание. Операцию свертки можно выполнять только по индексам разных типов

Лемма 6. Свертка сохраняет тензорную природу

Лемма 7.

$$\begin{matrix} l \wedge m & k \wedge s \\ k \wedge s & l \wedge m \\ \omega = \omega \end{matrix}$$

Доказательство. От перестановки мест слагаемых конечная сумма не меняется.

Транспонирование тензора.

Транспонирование

$$t^{(st)}:\omega_{i_1\dots i_p}^{j_1\dots j_s\dots j_t\dots j_q}\mapsto\omega_{i_1\dots i_p}^{j_1\dots j_t\dots j_s\dots j_q}$$

Примечание. Транспонировать можно только по индексам одного типа

Лемма 8. Транспонирование сохраняет тензорную природу величины.

2.6 Определитель линейного оператора. Внешняя степень оператора.

$$\sphericalangle \Lambda^p \quad \{^{i_1...i_p}F\}_{1 \leq i_1 < i_2 < ... < i_p \leq n}$$
 — базис Λ^p

$$^{i_1...i_p}F=f^{i_1}\wedge f^{i_2}\wedge\ldots\wedge f^{i_p}\quad \dim\Lambda^p=C_n^p$$

 $]\{x_i\}_{i=1}^n$ — набор векторов

$$\det\{x_1 \dots x_n\} := {}^{1 \dots n} F(x_1 \dots x_n)$$

Линейная алгерба 10 из 24

$$\sphericalangle \Lambda_p \quad \{_{i_1...i_p}F\})_{1 \leq i_1 < i_2 < ... < i_p \leq n}$$
 — базис Λ_p

$$\dim \Lambda_p = C_n^p \quad {}_{i_1 \dots i_p} F = \hat{x}_{i_1} \wedge \hat{x}_{i_2} \wedge \dots \wedge \hat{x}_{i_p} \simeq x_1 \wedge x_2 \wedge \dots \wedge x_n$$

$$]\{e_j\}_{j=1}^n$$
 — базис $X\Rightarrow x_i=\xi_i^{j_i}e_{j_i}$

$$\sum_{1...n} F = \xi_1^{j_1} \xi_2^{j_2} \dots \xi_n^{j_n} (e_{j_1} \wedge e_{j_2} \wedge \dots \wedge e_{j_n}) = \sum_{(j_1...j_n)} (-1)^{[j_1...j_n]} \xi_{j_1}^1 \dots \xi_{j_n}^n (e_1 \wedge e_2 \wedge \dots \wedge e_n) = \det[\xi_{j_1}^1 \dots \xi_{j_n}^n] (e_1 \wedge e_2 \wedge \dots \wedge e_n)$$

Определение. Определителем набора векторов $\{x_i\}_{i=1}^n$ называется число $\det[x_1\dots x_n]$, такое, что:

$$x_1 \wedge x_2 \wedge \ldots \wedge x_n = \det[x_1 \ldots x_n] e_1 \wedge e_2 \wedge \ldots \wedge e_n$$

Лемма 9.

om
$$\Lambda^p$$
 det $\{x_1 \dots x_n\}$ = det $[x_1 \dots x_n]$ om Λ_p

Доказательство.

$$\det\{x_1 \dots x_n\} = {}^{1 \dots n} F(x_1 \dots x_n) = \sum_{(j_1 \dots j_n)} (-1)^{[j_1 \dots j_n]} \xi_1^{j_1} \xi_2^{j_2} \dots \xi_n^{j_n} e_1 \wedge e_2 \wedge \dots \wedge e_n =$$

$$= \det\{x_1 \dots x_n\} e_1 \wedge e_2 \wedge \dots \wedge e_n$$

$$= \det[x_1 \dots x_n] e_1 \wedge e_2 \wedge \dots \wedge e_n$$

Определение. $\sphericalangle \varphi: X \to X$

Внешней степенью φ^{Λ_p} оператора φ называется отображение:

$$\varphi^{\Lambda_p}(x_1 \wedge x_2 \wedge \ldots \wedge x_n) = \varphi(x_1) \wedge \ldots \wedge \varphi(x_p)$$

Примечание.

$$\varphi^{\Lambda_p}:\Lambda_p\to\Lambda_p$$

$$\triangleleft p = n$$

$$\varphi^{\Lambda_n}(e_1 \wedge e_2 \wedge \ldots \wedge e_n) = \varphi(e_1) \wedge \varphi(e_2) \wedge \ldots \wedge \varphi(e_n) = a_1^{j_1} e_{j_1} \wedge \ldots \wedge a_1^{j_n} e_{j_n} =$$

$$= a_1^{j_1} \ldots a_n^{j_n}(e_{j_1} \wedge \ldots \wedge e_{j_n}) = \sum_{(j_1 \ldots j_n)} (-1)^{[j_1 \ldots j_n]} a_{j_1}^1 a_{j_2}^2 \ldots a_{j_n}^n e_1 \wedge \ldots \wedge e_n = \det A_{\varphi} e_1 \wedge \ldots \wedge e_n$$

M3137y2019

Конспект к экзамену

Линейная алгерба 11 из 24

Определение. Определителем линейного оператора φ называется число, такое что:

$$\det \varphi = \det[\varphi(e_1) \wedge \ldots \wedge \varphi(e_n)] = \det A_{\varphi} e_1 \wedge \ldots \wedge e_n$$

Примечание.

$$\forall \omega \in \Lambda_n \quad \varphi^{\Lambda_n} \omega = \det \varphi \cdot \omega$$

$$\omega \in \Lambda_n \Rightarrow \omega = \alpha e_1 \wedge \ldots \wedge e_n$$

$$\varphi^{\Lambda_n} \omega = \alpha \varphi^{\Lambda_n} (e_1 \wedge \ldots \wedge e_n) = \alpha \det \varphi e_1 \wedge \ldots \wedge e_n = \det \varphi \cdot \omega$$

2.7 Независимость определителя оператора от базиса. Теорема умножения определителей.

Пример. $\det \varphi$ — инвариант

$$\varphi^{\Lambda_n}z=\det\varphi\cdot z\quad\forall z\in\Lambda_n$$

$$\det\varphi=\det A_\varphi-\text{в некотором фиксированном базисе}$$

$$\tilde{A}_\varphi=T^{-1}A_\varphi T\quad\det\tilde{A}_\varphi=\det T^{-1}\det A_\varphi\det T=\det A_\varphi$$

Теорема 7.

$$\det(\varphi\psi) = \det\varphi\det\psi$$

Доказательство.

3 Спектральный анализ линейных операторов в конечномерных пространствах

3.1 Инварианты линейного оператора. Инвариантные подпространства.

Определение. Инвариантном линейного оператора φ называется его числовая функция значений, которая не зависит от выбора базиса

$$\sphericalangle \varphi: X \to X$$
 — автоморфизм

Определение. Подпространство L линейного пространства X называется инвариантным подпространством φ , если

$$\forall x \in L \quad \varphi x \in L$$

M3137y2019

Линейная алгерба 12 из 24

 Π ример. 1. $\varphi:X o X$, тогда инвариантные подпрострнаства:

- X
- {0}
- 2. $\varphi = \Im$, $\forall x \ \Im x = x \Rightarrow$ любое подпространство X инвариантное
- 3. $\varphi = \Theta$, $\forall x \; \Theta x = 0 \Rightarrow$ любое подпространство X инвариантное

4.
$$\varphi : \mathbb{R}^n \to \mathbb{R}^n \Leftrightarrow A_{\varphi} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & \lambda_n \end{bmatrix} \stackrel{\triangle}{=} diag\{\lambda_1 \dots \lambda_n\}$$

$$\sphericalangle\{e_j\}$$
 — базис $X\Rightarrow \forall j$ $A_{\varphi}e_j=\lambda_j e_j$ $e_j o \mathcal{L}\{e_j\}$ — инв.

Всего 2^n инвариантных подпространств

5.
$$|X = L_1 + L_2|$$

$$\forall x! = x_1 + x_2 \quad \varphi x = \mathcal{P}_{L_1}^{\parallel L_2} x = x_1 \in L_1$$

$$L_1$$
 — инв., $\forall x \in L_1 \quad \mathcal{P}_{L_1}^{\parallel L_2} x = x \quad orall$ подпространство L_1 инвариантно

$$L_2$$
 — инв., $\forall x \in L_2 \quad \mathcal{P}_{L_1}^{\parallel L_2} x = 0 \quad orall$ подпространство L_2 инвариантно

3.2 Собственные векторы и собственные значения линейного оператора: основные определения и свойства.

$$\varphi: X \to X$$

Определение. $x \in X$ — собственный вектор φ , если

$$x \neq 0 \quad \varphi x = \lambda x, \quad \lambda \in K$$

 λ — собственное значение φ , соответствующее x

Определение. Спектр $\sigma_{\varphi}=\{\lambda_1\dots\lambda_n\}$ — множество всех собственных значений вектора

Определение. $x \in X$ — собственный вектор φ , если этот вектор ненулевой и принадлежит одномерному инвариантному подпространству: $x \neq 0, x \in L^{(1)}$

Лемма 10. Эти определения собственного вектора эквивалентны.

Доказательство. Опр. 1 \Rightarrow Опр. 2:

$$\triangleleft x : \varphi x = \lambda x, L^{(1)} = \mathcal{L}(x)$$

$$\forall y \in L^{(1)} \quad y = \beta x \Rightarrow \varphi y = \varphi \beta x = \beta \varphi x = \beta \lambda x$$

Линейная алгерба 13 из 24

Опр. 2 \Rightarrow Опр. 1:

$$\sphericalangle x \in L^{(1)} = \mathcal{L}v \xrightarrow{def} \varphi x \in L^{(1)}$$

$$\forall y \in L^{(1)} \quad y = \alpha v \quad \varphi y = \alpha \varphi v = \beta v$$

Пемма 11. Собственные векторы, отвечающие различным собственным значениям линейно независимы:

$$\lambda_i \to x_i, \lambda_i \neq \lambda_{j \neq i} \Rightarrow \{x_i\}$$
 ЛНЗ

Доказательство. По индукции:

База: $m=1\Rightarrow \{x_1\}$ ЛНЗ, т.к. $x_1\neq 0$

Переход: $\{x_i\}_{i=1}^m$ — ЛНЗ, тогда $\sum \alpha_i x_i = 0 \Rightarrow \alpha_i = 0 \;\; \forall i$

$$\triangleleft \{\alpha_i\} : \sum_{i=1}^{n+1} \alpha_i x_i = 0$$

$$0 = A0 = A\left(\sum_{i=1}^{n+1} \alpha_i x_i\right) = \sum_{i=1}^{n+1} \alpha_i x_i$$
$$0 = \lambda_{n+1} \left(\sum_{i=1}^{n+1} \alpha_i x_i\right)$$

Вычтем второе выражение из первого:

$$0 = \sum_{i=1}^{n+1} \alpha_i x_i (\lambda_{n+1} - \lambda_i) = \sum_{i=1}^{n} \alpha_i x_i (\lambda_{n+1} - \lambda_i) + 0$$

Т.к. $\{x_i\}_{i=1}^n$ ЛНЗ, $\forall i \in [1, n] \ \alpha_i = 0$

$$0 = \alpha_{n+1} x_{n+1}, x_{n+1} \neq 0 \Rightarrow \alpha_{n+1} = 0$$

Пемма 12. Линейный оператор в конечномерном пространстве не может иметь более n различных собственных значений.

Доказательство. Тривиально в силу ЛНЗ соответствующих векторов.

Линейная алгерба 14 из 24

3.3 Собственные векторы и собственные значения линейного оператора: существование, вычисление.

Вычислим СВ и СЗ.

$$x = \sum \xi^{i} e_{i} \quad \xi = (\xi^{1} \dots \xi^{n})^{T} \quad \mathcal{A} \leftrightarrow A = ||a_{j}^{i}||$$
$$\mathcal{A}x = \lambda x \Leftrightarrow A\xi = \lambda \xi \Leftrightarrow A\xi - \lambda E\xi = 0$$

Таким образом, задача нахождения СЗ сводится к нахождению λ , для которых существуют нетривиальные решения СЛАУ $A-\lambda E$, что эквивалентно нахождению корней характеристического полинома $\chi_{\mathcal{A}}(\lambda)=\det(A-\lambda E)$

Нахождение CB \Leftrightarrow нахождение нетривиальных решений СЛАУ $A-\lambda E$ для каждого C3 λ

Пемма 13. $\triangleleft \mathcal{A}: X \to X, X - \Pi\Pi$ над \mathbb{C} , тогда у \mathcal{A} существует по крайней мере один собственный вектор и одно собственное значение.

Доказательство. У любого многочлена есть хотя бы один корень $\in \mathbb{C}$.

3.4 Спектральный анализ линейного оператора с простым спектром: спектр, диагональный вид матрицы, спектральные проекторы, спектральная теорема.

Определение. Собственное значение λ — **простое**, если оно — корень $\chi_{\mathcal{A}}(\lambda)$ единичной кратности.

Определение. Спектр σ называется **простым**, если все собственные значения в нём простые.

Теорема 8. $\sphericalangle \mathcal{A}: X \to X - \text{ЛОП c}$ простым спектром $\sigma_{\mathcal{A}} = \{\lambda_i\}_{i=1}^n, \{x_i\}_{i=1}^n - \text{CB}.$

Тогда A можно привести к диагональной форме A^d :

$$A^d = T^{-1}AT$$

где T — матрица перехода от базиса $\{e_i\}$ к $\{x_i\}$

Доказательство. Очевидно, т.к. $\mathcal A$ в базисе $\{x_i\}$ имеет диагональную матрицу $diag\{\lambda_1\dots\lambda_n\}$

Определение. $\triangleleft \lambda_i$ — собственное значение ЛОП $\mathcal{A}: X \to X$.

Спектральным проектором $\mathcal{P}_{\lambda_i}^{\parallel}$ называется оператор проектирования на подпространство L_{λ_i} (множество векторов, отвечающих λ_i)

M3137y2019

Линейная алгерба 15 из 24

Пемма 14. Спектральные проекторы оператора с простым спектром имеют вид:

$$\mathcal{P}_{\lambda_i} = x_i \cdot f^i$$

где $\{x_i\}$ — базис X из CB, $\{f^i\}$ — сопряженный ему базис.

Доказательство. Необходимо показать, что для $x\in L_{\lambda_i}\,\mathcal{P}_{\lambda_i}^\parallel x=x$, для $y\in\mathcal{L}\{x_1\dots x_{i-1},x_{i+1}\dots x_n\}$ $\mathcal{P}_{\lambda_i}^\parallel y=0$

$$\mathcal{P}_{\lambda_i} x = x_i \cdot f^i x = x_i \cdot \alpha f^i x_i = \alpha x_i$$
$$\mathcal{P}_{\lambda_i} y = x_i \cdot f^i \left(\sum_{j=1, j \neq i}^n \alpha_j x_j \right) x_i \cdot 0$$

Теорема 9. Спектральная теорема для скалярного оператора:

$$\mathcal{A} = \sum_i \lambda_i \mathcal{P}_{\lambda_i}$$

Доказательство.

$$\mathcal{A}x = \mathcal{A}\left(\sum_{i} \mathcal{P}_{\lambda_{i}}^{\parallel} x\right) = \sum_{i} \mathcal{A}\mathcal{P}_{\lambda_{i}}^{\parallel} x = \sum_{i} \lambda_{i} \mathcal{P}_{\lambda_{i}}^{\parallel} x$$

3.5 Спектральный анализ скалярного оператора: спектр, диагональный вид матрицы, спектральные проекторы, спектральная теорема.

Спектр, диагональный вид матрицы, спектральная теорема: см. выше.

Пемма 15. Спектральные проекторы оператора скалярного типа имеют вид:

$$\mathcal{P}_{\lambda_i} = \sum_{j=1}^{m_j} x_j^{(i)} \cdot f_{(i)}^j$$

где $\{x_j^{(i)}\}_{j=1}^{m_j}$ — СВ, отвечающие λ_i , $\{f_{(i)}^j\}_{j=1}^{m_j}$ — сопряженный ему базис.

M3137y2019

Линейная алгерба 16 из 24

Спектральная теорема и функциональное исчисление для скаляр-3.6 ного оператора.

Спектральная теорема: см. выше

 $p(\lambda)$ — скалярный полином. Тогда

$$p(\mathcal{A}) = \sum p(\lambda_i) \mathcal{P}_{\lambda_i}$$

Доказательство.

$$\mathcal{A} + \mathcal{A} = \sum_{i} (\lambda_i + \lambda_i) \mathcal{P}_{\lambda_i} = 2\mathcal{A}$$

$$\alpha \mathcal{A} = \sum_{i} (\alpha \lambda_i) \mathcal{P}_{\lambda_i}$$

$$\mathcal{A} \cdot \mathcal{A} = \left(\sum_{i} \lambda_i \mathcal{P}_{\lambda_i}\right) \left(\sum_{j} \lambda_j \mathcal{P}_{\lambda_j}\right) = \sum_{i} \sum_{j} \lambda_i \lambda_j P_{\lambda_i} P_{\lambda_j} = \sum_{i} \sum_{j} \lambda_i \lambda_j P_{\lambda_i} \delta_j^i = \sum_{i} \lambda_i^2 P_{\lambda_i} = \mathcal{A}^2$$

3.7 Спектральная теорема и инварианты скалярного оператора. Тождество Кэли.

Спектральная теорема, инварианты скалярного оператора: см. выше.

Лемма 16. Тождество Кэли.

 $\sphericalangle \chi_{\mathcal{A}}(\lambda) - x$ арактеристический полином ЛОП \mathcal{A} , то $\chi_{\mathcal{A}}(\mathcal{A}) = 0$

Доказательство.

$$\chi_{\mathcal{A}}(\mathcal{A}) = \sum \chi_{\mathcal{A}}(\lambda_i) \mathcal{P}_{\lambda_i} = \sum 0 P_{\lambda_i} = 0$$

Спектральный анализ линейных операторов в 4 конечномерном пространстве: операторы общего вида

Ультраинвариантные подпространства. 4.1

$$\triangleleft \varphi: X \to X, \dim X = n$$

 $L \subset X$ — инвариантное подпространство φ , если $\varphi(L) \subset L$

Определение. Инвариантное подпространство называется ультраинвариантным под**пространством**, если существует его дополнение L', такое что:

$$L\dot{+}L'=X$$
 L' — инвариантное подпространство φ

П

M3137y2019

Линейная алгерба 17 из 24

Определение. Оператор $\varphi_L:L\to L$, такой что:

$$\varphi_L x = \varphi x \quad \forall x \in L$$

называется сужением оператора φ на L.

Если L — ультраинвариантное подпространство, то φ_L называется компонетной φ в L

Пемма 17. Дополнение L' ультраинвариантного подпространства L является ультраинвариантным подпространством.

Пемма 18. $X = L \dot{+} L' \quad L, L' - y$ льтраинвариантное подпространства \Rightarrow

$$\varphi = \varphi_L \mathcal{P}_L^{\parallel L'} + \varphi_{L'} \mathcal{P}_{L'}^{\parallel L}$$

Доказательство.

$$X = L + L' \Rightarrow \forall x! = x_1 + x_2 = \mathcal{P}_L^{\parallel L'} x + \mathcal{P}_{L'}^{\parallel L} x$$
$$\varphi x = \varphi \mathcal{P}_L^{\parallel L'} x + \varphi \mathcal{P}_{L'}^{\parallel L} x \quad \forall x \quad \Rightarrow$$
$$\Rightarrow \varphi = \varphi_L \mathcal{P}_L^{\parallel L'} + \varphi_{L'} \mathcal{P}_{L'}^{\parallel L} \quad (*)$$

4.2 Алгебра скалярных полиномов. Идеал. Минимальный полином.

 $\sphericalangle K$ — поле, над которым задано множество полиномов $K_\infty[\lambda]$, также обозначается $P_\infty[K]$

$$P_{\infty}[K] = \{p_n(\lambda) = \sum_{i=1}^n \alpha_i \lambda^i \quad \forall n\}$$

Примечание. $P_{\infty}[K]$ — линейное пространство:

$$p,q \in P_{\infty}[K]; \lambda \in K \Rightarrow \begin{cases} (p+q)(\lambda) = p(\lambda) + q(\lambda) \\ (\lambda p)(\lambda) = \alpha p(\lambda) \end{cases} \Rightarrow P_{\infty}[K] - \text{линейное пространство}$$

Примечание. $P_{\infty}[K]$ — коммутативная алгебра

Зададим операцию умножения в $P_{\infty}[K]$:

$$\forall p,q \in P_{\infty}[K] \quad (p \cdot q)(\lambda) = p(\lambda)q(\lambda)$$

$$(p \cdot q)(\lambda) = p(\lambda)q(\lambda) = q(\lambda)p(\lambda) = (qp)(\lambda) \Rightarrow \text{коммутативность}$$

$$(p \cdot q) \cdot r = p \cdot (q \cdot r) = p \cdot q \cdot r$$

$$(p+q)r = pr + qr$$

$$(\lambda p)q = p(\lambda q) = \lambda(pq)$$

Нейтральный элемент:

M3137y2019

Линейная алгерба 18 из 24

- по сложению: $0(\lambda) = 0$
- по умножению: $1(\lambda) = 1$

Примечание. $\{1,t,t^2\dots t^n\dots\}$ — базис $P_\infty[K]\Rightarrow \dim P_\infty[K]=\infty$

Определение. Идеалом Jалгебры $P_{\infty}[K]$ называется такое её подпространство, что

$$\forall q \in J \ \forall p \in P_{\infty}[K] \ q \cdot p \in J$$

Пример. Тривиальные идеалы:

- {0}
- $P_{\infty}[K]$

Пемма 19. J — линейное подпространство $P_{\infty}[K]$

Доказательство. $|q_1, q_2 \in J \quad q_1 + q_2 \in J$?

$$q_1, q_2 \in J \Rightarrow \forall p \ q_1 p, q_2 p \in J$$

$$q_1 = r\tilde{q}_1, q_2 = r\tilde{q}_2 \quad (q_1 + q_2)p = r(\tilde{q}_1 + \tilde{q}_2)p$$

$$(\tilde{q}_1 + \tilde{q}_2)p \in P_{\infty}[K] \Rightarrow r(\tilde{q}_1 + \tilde{q}_2)p \in J$$

Лемма 20. J- подалгебра $P_{\infty}[K]$

Доказательство.

$$(q_1 \cdot q_2)p = q_1(q_2p) \in J$$

Пример. $J_{\alpha}=\{p\in P_{\infty}[K]:p(\alpha)=0\}$ — идеал

Лемма 21.] $q \in P_{\infty}[K] \Rightarrow J_q = q \cdot P_{\infty}[K] -$ идеал в $P_{\infty}[K]$

Доказательство. $]r \in J_q \Rightarrow \exists p \in P_\infty[K] : r = q \cdot p$

$$|\tilde{p} \in P_{\infty}[K]|$$

$$r\tilde{p} = (qp)\tilde{p} = q(p\tilde{p})$$

$$p ilde{p} \in P_{\infty}[K] \Rightarrow q(p ilde{p}) \in q \cdot P_{\infty}[K] = J_q \Rightarrow J_q$$
 – идеал

Определение. Полином $q:J_q=q\cdot P_\infty[K]$ называется порождающим полиномом идеала J_q

Примечание. Если идеал содержит $1(\lambda)$, то данный идеал совпадает с $P_{\infty}[K]$:

$$J_1 = 1 \cdot P_{\infty}[K] = P_{\infty}[K]$$

M3137y2019

Конспект к экзамену

Линейная алгерба 19 из 24

Определение. J_1 и J_2 — идеалы в $P_{\infty}[K]$

1. Суммой $J_1 + J_2$ называется множество

$$J_s = \{ p \in P_{\infty}[K] : p = p_1 + p_2 \quad p_1 \in J_1, p_2 \in J_2 \}$$

2. Пересечением $J_1\cap J_2$ называется множество:

$$J_r = \{ p \in P_{\infty}[K] : p \in J_1 \land p \in J_2 \}$$

Лемма 22. J_s и J_r — идеалы в $P_{\infty}[K]$

Доказательство. $J_s = J_1 + J_2 -$ идеал?

$$|q \in J_s \Rightarrow q = q_1 + q_2 \quad q_1 \in J_1, q_2 \in J_2$$

$$p \in P_{\infty}[K]$$
 $qp = (q_1 + q_2)p = q_1p + q_2p$

$$q_1p \in J_1, q_2p \in J_2 \Rightarrow q_1p + q_2p \in J_s$$

$$J_r = J_1 \cap J_2 -$$
 идеал?

$$|q \in J_r \Rightarrow q \in J_1; q \in J_2$$

$$p \in P_{\infty}[K] \quad qp \in J_1; qp \in J_2 \Rightarrow qp \in J_r$$

Определение. Нетривиальный полином минимальной степени, содержащийся в идеале, называется минимальным полиномом идеала.

Пемма 23. Любой полином идеала J делится на p_J без остатка:

$$p \in J \Rightarrow p \mid p_J$$

Доказательство.] $\exists p: p \nmid p_J \Rightarrow p = qp_J + r; \deg r < \deg p_J \Rightarrow r = p - qp_J : \min$ полином — противоречие.

Примечание. Если p_1 и p_2 — минимальные полиномы $J\Rightarrow p_1=\alpha p_2; \alpha\in K$

Теорема 10. Минимальный полином идеала является его порождающим полиномом.

Доказательство.
$$\forall p \in J \quad p \mid p_J \Rightarrow p = p_J \cdot q \in p_J \cdot P_\infty[K]$$

$$\forall p \in q \cdot P_\infty[K] \Rightarrow p = qr; r \in P_\infty[K] \Rightarrow \forall p \mid q \Rightarrow q = p_J$$

Лемма 24. Сравнение идеалов:

$$J_1 \subset J_2 \Leftrightarrow p_{J_1} \mid p_{J_2}$$

Линейная алгерба 20 из 24

Доказательство. "⇒"

$$J_1 \subset J_2 \Rightarrow p_{J_1} \in J_2 \Rightarrow p_{J_1} \mid p_{J_2}$$
 " \Leftarrow "

$$|p_{J_1}| p_{J_2} \Rightarrow p_{J_1} = rp_{J_2}$$

$$\forall q \in J_1 \quad q = \tilde{q}p_{J_1} = \tilde{r}P_{J_2} \Rightarrow q \mid p_{J_2} \Rightarrow J_1 \subset J_2$$

Лемма 25. О минимальном полиноме пересечения

$$J_1 \leftrightarrow p_{J_1}$$
 $J_2 \leftrightarrow p_{J_2} \Rightarrow J_r = J_1 \cap J_2 \leftrightarrow r_J = HOK(p_{J_1}, p_{J_2})$

Доказательство. $J_r = J_1 \cap J_2 \Rightarrow J_r \subset J_1 \wedge J_r \subset J_2 \Rightarrow r_J \mid p_{J_1} \wedge r_J \mid p_{J_2} \Rightarrow r_J = \text{HOK}(p_{J_1}, p_{J_2})$

Лемма 26. О минимальном полиноме суммы

$$J_s = J_1 + J_2 \Rightarrow S_J = HO \mathcal{I}(p_{J_1}, p_{J_2})$$

Доказательство. $J_s = J_1 + J_2 \Rightarrow J_S \supset J_1 \wedge J_S \supset J_2 \Rightarrow p_{J_1} \mid S_J \wedge p_{J_2} \mid S_j \Rightarrow S_j = \text{HOД}(p_{J_1}, p_{J_2})$

Теорема 11. О взаимно простых полиномах

 $[p_1,p_2$ — взаимно простые, т.е. $\mathrm{HOД}(p_1,p_2)=1\Rightarrow \exists q_1,q_2\in P_\infty[K]: p_1q_1+p_2q_2=1$

Доказательство. $p_1 \leftrightarrow J_1 = p_1 P_{\infty}[K]$

$$p_2 \leftrightarrow J_2 = p_2 P_{\infty}[K]$$

$$HOД(p_1, p_2) = 1 \leftrightarrow J_1 + J_2 = P_{\infty}[K]$$

$$p_1q_1 + p_2q_2 = 1$$

Теорема 12. Обобщение

$$p_1 \dots p_k \in P_\infty[K],$$
 НОД $(p_1 \dots p_k) = 1 \Rightarrow \exists q_1 \dots q_k : \sum_{i=1}^k p_i q_i = 1$

Доказательство. Аналогично.

Примечание. $]p=p_1\cdot p_2\cdots p_k, \{p_i\}$ взаимно простые $\Rightarrow \exists q_1\dots q_k: p_1'q_1+p_2'q_2+\dots+p_k'q_k=1, p_j'=rac{p}{p_j}$

M3137y2019

Линейная алгерба 21 из 24

4.3 Алгебра операторных полиномов. Минимальный полином линейного оператора.

Определение. Операторный полином $p \in \mathcal{P}_{\infty}[K]$ называется аннулирующим полиномом линейного оператора φ , если $p(\varphi) = 0$

 $\mbox{$\Pi$pume}$ чание. Множество аннулирующих полиномов операторов φ — ядро гомоморфизма S_{φ} по определению.

Теорема 13. Аннулирующий полином существует.

Доказательство. $\dim \mathcal{P}[\varphi]=n^2\Rightarrow \exists n^2$ ЛНЗ элементов. Эти элементы : $\varphi,\varphi^2\ldots\varphi^{n^2}$. Тогда $\{\mathcal{I},\varphi,\varphi^2\ldots\varphi^{n^2}\}$ — ЛЗ

$$\Rightarrow \exists p[\varphi] = \sum_{i=0}^{n^2} \alpha_i \varphi^i = 0 \Rightarrow \exists$$

 $]J_{arphi}$ — множество аннулирующих полиномов оператора arphi

Лемма 27. $J_{\varphi} - u \partial e a \pi \ g \ P_{\infty}[K]$

Доказательство. $p \in J_{\varphi} \Rightarrow p(\varphi) = 0$

 $]q \in P_{\infty}[K]$

$$\sphericalangle p(\lambda)q(\lambda) \xrightarrow{S_{\varphi}} p(\varphi)q(\varphi) = 0 \Rightarrow p(\lambda)q(\lambda)$$
 — аннулирующий $\Rightarrow p(\lambda)q(\lambda) \in J_{\varphi}$

Определение. Минимальным аннулирующим полиномом оператора φ называется мнимальнй полином J_{φ}

Примечание. Обозначение минимального полинома: $p_{\varphi}(\lambda) \leftrightarrow p_{\varphi}(\varphi) = 0$

Пример. $]\varphi:X o X$ — оператор с простым спектром

 $]\chi_{arphi}(\lambda)-$ характеристический полином $arphi\Rightarrow\chi_{arphi}(\lambda)=p_{arphi}(\lambda)$

Доказательство.

$$\varphi = \sum_{i=1}^{n} \lambda_i \mathcal{P}_i \Rightarrow \chi_{\varphi}(\varphi) = \sum_{i=1}^{n} \chi_{\varphi}(\lambda_i) \mathcal{P}_i = 0$$

Предположим обратное: $]p_{\varphi}(\lambda)$ — минимальный полином, такой что $\deg p_{\varphi} < \deg \chi_{\varphi}$ $]\chi_{\varphi}(\lambda) = (\lambda - \lambda_k)p_{\varphi}(\lambda)$

$$\sphericalangle p_{arphi}(arphi)=\sum_{i=1}^n p_{arphi}(\lambda_i)\mathcal{P}_i=p(\lambda_k)\mathcal{P}_k\Rightarrow p_{arphi}(arphi)
eq 0\Rightarrow$$
 противоречие

M3137y2019

Конспект к экзамену

Линейная алгерба 22 из 24

Лемма 28. $]p(\varphi) = q(\varphi) \Leftrightarrow [p(\lambda) - q(\lambda)] \mid p_{\varphi}(\lambda)$

Доказательство.
$$\langle p(\lambda) - q(\lambda) = 0 \Rightarrow p(\lambda) - q(\lambda) \in J_{\varphi}$$

Лемма 29.
$$p(\lambda) = q(\lambda)p_{\omega}(\lambda) + r(\lambda) \Rightarrow p(\varphi) = r(\varphi)$$

4.4 Разложение линейного пространства в сумму подпространств. 2я теорема о ядре и образе. Теорема о проекторах.

Теорема 14. $\triangleleft p_{\varphi} = p_1 \dots p_k, p_1 \dots p_k$ — взаимно простые

$$\Rightarrow \dot{+} \sum_{j=1}^{k} \operatorname{Ker} p_{j}(\varphi) = X$$

Доказательство.

$$\operatorname{Ker}\, p_{\varphi}(\varphi) = \dot{+} \sum_{j=1}^k \operatorname{Ker}\, p_j(\varphi)$$

$$\operatorname{Ker} p_{\varphi}(\varphi) = \operatorname{Ker} 0 = X$$

Теорема 15. О ядре и образе.

$$p_{\varphi}(\lambda) = p_1(\lambda)p_2(\lambda) \Rightarrow \text{Ker } p_1(\varphi) = \text{Im } p_2(\varphi)$$

Доказательство. Покажем, что:

- 1. Im $p_2(\varphi) \subset \operatorname{Ker} p_1(\varphi)$
- 2. dim Im $p_2(\varphi) = \dim \operatorname{Ker} p_1(\varphi)$

1. Im
$$p_2(\varphi) \subset \operatorname{Ker} p_1(\varphi)$$

$$y \in \text{Im } p_2(\varphi) \Rightarrow \exists x \in X : y = p_2(\varphi)x$$

$$\triangleleft p_1(\varphi)y = p_1(\varphi)p_2(\varphi)x = p_{\varphi}(\varphi) = 0$$

2. Ker
$$p_{\varphi}(\varphi) = \text{Ker } p_1(\varphi) \dot{+} \text{Ker } p_2(\varphi) \Rightarrow$$

$$\dim X = \dim \operatorname{Ker} p_1(\varphi) + \dim \operatorname{Ker} p_2(\varphi)$$

$$\dim X = \dim \operatorname{Ker} \, p_2(\varphi) + \dim \operatorname{Im} \, p_2(\varphi)$$

$$\dim \operatorname{Ker} \, p_1(\varphi) = \dim \operatorname{Im} \, p_2(\varphi)$$

Линейная алгерба 23 из 24

Теорема 16. $]p_{\varphi}(\lambda) = \prod_{i=1}^k p_i(\lambda)$ — минимальный аннулирующий полином $\varphi, p_1 \dots p_k$ — взаимно простые делители

 \Rightarrow

1.
$$\sum_{j=1}^{k} p'_{j}(\varphi)q_{j}(\varphi) = \mathcal{I}, \quad p'_{j} = \frac{p_{\varphi}}{p_{j}}$$

2.
$$p'_{j}(\varphi)q_{j}(\varphi) = \mathcal{P}_{L_{j}}$$
 $L_{j} = \operatorname{Ker} p_{j}(\varphi)$

Доказательство. $\triangleleft p_{\varphi}(\lambda) = p_1(\lambda)p_2(\lambda)\dots p_k(\lambda) \quad \exists q_1\dots q_k:$

$$\sum_{j=1}^{k} p'_{j}(\lambda)q_{j}(\lambda) = 1 \xrightarrow{S_{\varphi}} \sum_{j=1}^{n} p'_{j}(\varphi)q_{j}(\varphi) = \mathcal{I}$$

$$]p_1(\lambda)=p_i(\lambda),p_2(\lambda)=p_i'(\lambda)\Rightarrow \operatorname{Im} p_1(\varphi)=\operatorname{Ker} p_2(\varphi)$$

 $\sphericalangle \mathcal{P}_{L_1} x = p_i'(\varphi) q(\varphi) \in \mathrm{Ker}\; p_i(\varphi)$, т.к.

$$p_i(\varphi)[p_i'(\varphi)q_i(\varphi)x] = p_i(\varphi)p_i'(\varphi)q_i(\varphi)x = p_\varphi(\varphi)q_i(\varphi)x = 0$$

Осталось доказать, что $\mathcal{P}_{L_i}\mathcal{P}_{L_j}=\delta_i^j\mathcal{P}_{L_i}$

$$\begin{aligned} [i \neq j \Rightarrow \mathcal{P}_{L_i} \mathcal{P}_{L_j} &= p_i'(\varphi) q_i(\varphi) p_j'(\varphi) q_j(\varphi) = \frac{p_{\varphi}(\varphi)}{p_i(\varphi) p_j(\varphi)} q_i(\varphi) q_j(\varphi) p_{\varphi}(\varphi) = 0 \\ [i = j \Rightarrow \mathcal{P}_{L_i}(x) &= \mathcal{P}_{L_i} (\mathcal{I} \cdot x) = \mathcal{P}_{L_i} \left(\sum_{j=1}^n \mathcal{P}_{L_j} \right) x = \mathcal{P}_{L_i} \mathcal{P}_{L_i} x \quad \forall x \\ \Rightarrow \mathcal{P}_{L_i} \mathcal{P}_{L_i} &= \mathcal{P}_{L_i} \end{aligned}$$

4.5 Минимальный полином и инвариантные подпространства. Спектральная теорема для линейного оператора произвольного вида.

Минимальный полином и инвариантные пространства: см. выше.

Теорема 17. Спектральная теорема.

$$p_{\varphi}(\lambda) = \prod_{j=1}^{k} (\lambda - \lambda_j)^{m_j} = p_1(\lambda) \dots p_k(\lambda) \quad p_j(\lambda) = (\lambda - \lambda_j)^{m_j}, \lambda \neq \lambda_{i \neq j}$$

 $\Rightarrow L_j = \mathrm{Ker}\ p_j(arphi) = \mathrm{Ker}\ (arphi - \lambda_j \mathcal{I})^{m_j} -$ ультраинвариантное подпространство

M3137y2019

Конспект к экзамену

Линейная алгерба 24 из 24

$$\Rightarrow X = \dot{+} \sum_{j=1}^{n} \operatorname{Ker} (\varphi - \lambda_{j} \mathcal{I})^{m_{j}} = \dot{+} \sum_{j=1}^{k} L_{j}$$
$$\varphi = \dot{+} \sum_{j=1}^{k} \varphi_{j} \quad \varphi_{j} = \varphi|_{L_{j}}$$

- 4.6 Нильпотентные операторы (определение, простейшие свойства). Жорданова клетка.
- 4.7 Структура нильпотентного оператора. Базис Жордана (обзор).
- 4.8 Жорданова форма матрицы линейного оператора.
- 4.9 Кратности собственных чисел (алгебраическая, геометрическая, полная). Теорема Гамильтона-Кэли.