Julius-Maximilians-Universität Würzburg Institut für Informatik Lehrstuhl für Informatik IV Theoretische Informatik

Bachelor Thesis

simulation of proof systems

Nils Wisiol

submitted on May 11, 2012

supervisor: Dr. Christian Glaßer

Contents

1	Introduction	3
2	Preliminaries	4
3	A set in co-NEXP \setminus OPT	5
4	Conclusion and future work	7
Bi	Bibliography	

1 Introduction

Welcome to my bachelor's thesis. Based upon work of Messner (1999).

2 Preliminaries

Let x be something.

Definition 1 (Proof system). A function $f \in \mathcal{FP}$ is called proof system for a language L if the range of f is L.

Definition 2 (OPT). Let OPT be the complexity class of all sets that have a p-optimal proof system.

3 A set in co-NEXP \ OPT

In this section, we will show that there are sets without optimal proof systems.

Theorem 1. Let $t : \mathbb{N} \to \mathbb{N}$ be a time-constructible function such that for every polynomial p there is a number n with $p(n) \le t(n)$. Then there is a language $L \in co\text{-NTIME}(t(n))$ that has no optimal proof system.

Messner showed that under the same presumptions as in our theorem, there is a language $L \in \text{co-NTIME}(t(n))$ without an optimal acceptor Messner (1999). He also proofed that the existence of a optimal acceptor is equivalent to the existence of a optimal proof system for every p-cylinder L.

Proof. Let $f_1, f_2, ...$ be a enumeration of all \mathcal{FP} -functions with time $(f_i) \leq n^i + i$. For any i > 0, let L_i be the regular language described by the expression $0^i 10^*$. Define

How is that obtained?

$$L_i' = \{ x \in L_i | \forall_{y \in \Sigma^*} |y|^{2i} \le t(|x|) \implies f_i(y) \ne x \}.$$

That is, as long as you put strings of length $|y|^{2i} \le t(|x|)$ into f_i , you will not obtain x. Let $L = \bigcup_{i>0} L'_i$.

First, we obtain $L \in \text{co-NTIME}(t(n))$. To show this, one considers

$$L \in \text{co-NTIME} \Leftrightarrow \overline{L} = \overline{\bigcup_{i>0} L_i'} = \bigcap_{i>0} \overline{L_i'} \in \text{NTIME}.$$

By negating the condition for L'_i , we get

$$\overline{L'_i} = \{ x \in \Sigma^* | x \notin L_i \lor (\exists_{y \in \Sigma^*} | y | \le t(|x|) \land f_i(y) = x) \}.$$

For any given x, we can decide in polynomial time whether it is in any L_i or not. If it is not, then x is in $\overline{L_i'}$ for all i > 0 and therefore $x \in \overline{L}$, so we are done. If it is in any L_i , it is in exactly one L_i . Let i^* be the set with $x \in L_{i^*}$. We can simulate a deterministic polynomial-time machine calculating $f_{i^*}(y)$ on every input $y \in \Sigma^*$ with $|y|^{2i} \le t(|x|)$. If, and only if, there is a path with $f_{i^*}(y) = x$, then $x \in \overline{L}$. In both cases, $\overline{L} \in \text{NTIME}(t(n))$.

For a proof system f_i with $f_i(\Sigma^*) = L$, we observe that $L_i' = L_i$. Assume there is an $x = 0^i 1z \in L_i$ that is not in L_i' . Then there is an y with $|y|^{2i} \le t(|x|)$ and $f_i(y) = x$. Since f_i is a proof system for L, this yields $x = 0^i 1z \in L$ and so $x \in L_i'$, which contradicts the assumption. Therefore, for any y with $f_i(y) = x \in L_i$ we know that $|y|^{2i} > t(|x|)$. Speaking informally, every proof system f_i for L is "slow" on $L_i' \subset L$.

Assume now, for contradiction, that f_i is a optimal proof system for L. Let g be a function defined as

$$g(bx) = \begin{cases} f_i(x) & (b=0), \\ x & (b=1 \text{ and } x = 0^i 10^* \in L_i = L_i'). \end{cases}$$

g is a proof system for L with polynomial length-bounded proofs for all $x \in L_i$. As f_i is optimal, there is a function f^* such that for all $x \in L_i'$, $f_i(f^*(x)) = g(x)$ and $|f^*(x)| \le p(|x|)$ for a polynomial p. Let q be the polynomial $q(n) = p(n)^{2i}$. As p(|x|) is positive, $p(|x|) \le p(|x|)^{2i}$. As there is an n with $q(n) \le t(n)$, there is an x in L_i such that $|f^*(x)| \le p(|x|) \le q(|x|) = p(|x|)^{2i} \le t(|x|)$. According to the definition of L_i' , this yields $f_i(f^*(x)) \ne x$. Therefore, f_i is not optimal on L_i' , which contradicts the assumption that f_i is optimal on L.

Now, let us take a closer look at this set L that has no optimal proof system. One first observation is that the density of L_i is given by

$$\operatorname{dens}_{L_i}(n) = |\{x \in \Sigma^*, x = 0^i 10^j, 0 \le j \le n - i - 1\}| = \begin{cases} 0 & (n < i), \\ n - i & (n \ge i). \end{cases}$$

From $L'_i \subseteq L_i$ it follows that $\operatorname{dens}_{L'_i} \le \operatorname{dens}_{L_i}$ and so we can get a upper bound for the density of L. Since the density of L_i is for all i > n zero, we get

$$\operatorname{dens}_{L}(n) = \operatorname{dens}_{\bigcup L'_{i}}(n) = \sum_{i=1}^{\infty} \operatorname{dens}_{L'_{i}}(n) \le \sum_{i=1}^{\infty} \operatorname{dens}_{L_{i}}(n) = \sum_{i=1}^{n} n - i = n^{2} + \frac{n}{2}.$$

This yields

Lemma 2. With t(n) defined as above, there is a sparse language $L \in co\text{-}NTIME(t(n))$ that has no p-optimal proof system.

Köbler et al. (1998) showed that, for any nonempty sets L and A with $L \leq_m^p A$, if A has a optimal proof system, then L also has a optimal proof system. Together with this result, we obtain

Corollary 3. No set \leq_m^p -hard for co-NE has an optimal proof system.

Is this possible for co-NEXP?

Proof. With $t(n)=2^n$, we can get an $L\in \text{co-NE}$ that has no optimal proof system. Any \leq_m^p -hard set A for co-NE is $L\leq_m^p A$. Together with the cited result we obtain, that A cannot have optimal proof system.

4 Conclusion and future work

What a great work!

Hilfsmittel und Quellen als die angegebene	nde Arbeit selbständig verfasst und keine anderen den benutzt habe. Weiterhin versichere ich, die anderen Prüfungsbehörde vorgelegt zu haben.
Würzburg, den,	(Nils Wisiol)

Bibliography

Köbler, J., Messner, J., and Informatik, A. T. (1998). Complete problems for promise classes by optimal proof systems for test sets. In *In Proc. 13th Annual IEEE Conference on Computational Complexity, CC 98*, pages 132–140. IEEE.

Messner, J. (1999). On optimal algorithms and optimal proof systems. In *Proceedings of the 16th annual conference on Theoretical aspects of computer science*, STACS'99, pages 541–550, Berlin, Heidelberg. Springer-Verlag.