Методы машинного обучения Вероятностные модели порождения данных

Bоронцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: k.vorontsov@iai.msu.ru

материалы курса:

github.com/MSU-ML-COURSE/ML-COURSE-24-25 орг.вопросы по курсу: ml.cmc@mail.ru

BMK МГУ • 1 октября 2024

Содержание

- 1 Принцип максимума правдоподобия
 - Задача оценивания плотности распределения
 - Задача обучения регрессии
 - Задача обучения классификации
- Погистическая регрессия
 - Вероятностный линейный классификатор
 - Предсказание вероятности класса
 - Вероятностная калибровка Платта
- Основы байесовской теории классификации
 - Оптимальный байесовский классификатор
 - Наивный байесовский классификатор
 - Нормальный дискриминантный анализ

Задача оценивания плотности распределения Задача обучения регрессии Задача обучения классификации

Задача восстановления плотности — обучение без учителя

Дано: простая (i.i.d.) выборка $X^{\ell} = \{x_1, \dots, x_{\ell}\} \sim p(x)$ Найти параметрическую модель плотности распределения:

$$p(x) = \varphi(x; w),$$

где w — вектор параметров, φ — фиксированная функция **Критерий** — максимум (логарифма) правдоподобия выборки, MLE-оценивание параметра w (Maximum Likelihood Estimate):

$$L(w; X^{\ell}) = \ln \prod_{i=1}^{\ell} \varphi(x_i; w) = \sum_{i=1}^{\ell} \ln \varphi(x_i; w) \rightarrow \max_{w}$$

Аналитическое решение: необходимое условие экстремума

$$\frac{\partial}{\partial w}L(w;X^{\ell}) = \sum_{i=1}^{\ell} \frac{\partial}{\partial w} \ln \varphi(x_i;w) = 0,$$

при условии достаточной гладкости функции arphi(x;w) по w

Частный случай: многомерная гауссовская плотность

Пусть объекты x описываются n признаками $f_j(x) \in \mathbb{R}$ и выборка порождена n-мерной гауссовской плотностью:

$$x_i \sim p(x) = \mathcal{N}(x; \mu, \Sigma) = \frac{\exp\left(-\frac{1}{2}(x - \mu)^\mathsf{T}\Sigma^{-1}(x - \mu)\right)}{\sqrt{(2\pi)^n \det \Sigma}}, \quad x \in \mathbb{R}^n$$

 $\mu \in \mathbb{R}^n$ — вектор математического ожидания, $\mu = \mathsf{E} x$ $\Sigma \in \mathbb{R}^{n \times n}$ — ковариационная матрица, $\Sigma = \mathsf{E} (x - \mu)(x - \mu)^\mathsf{T}$ (симметричная, невырожденная, положительно определённая)

Выборочные оценки максимального правдоподобия:

$$\frac{\partial}{\partial \mu} \ln L(\mu, \Sigma; X^{\ell}) = 0 \quad \Rightarrow \quad \hat{\mu} = \frac{1}{\ell} \sum_{i=1}^{\ell} x_{i}$$

$$\frac{\partial}{\partial \Sigma} \ln L(\mu, \Sigma; X^{\ell}) = 0 \quad \Rightarrow \quad \hat{\Sigma} = \frac{1}{\ell} \sum_{i=1}^{\ell} (x_{i} - \hat{\mu})(x_{i} - \hat{\mu})^{\mathsf{T}}$$

Некоторые приёмы матричного дифференцирования

Производная скалярной функции f(A) по матрице $A=(a_{ij})$:

$$\frac{\partial}{\partial A}f(A) = \left(\frac{\partial}{\partial a_{ij}}f(A)\right)$$

diag A — диагональ матрицы A, остальные элементы нули A — квадратная $n \times n$ -матрица u — вектор размерности n

если А произвольного вида:

 $\frac{\partial}{\partial u} u^{\mathsf{T}} A u = A^{\mathsf{T}} u + A u$ $\frac{\partial}{\partial A} \ln |A| = A^{-1\mathsf{T}}$ $\frac{\partial}{\partial A} u^{\mathsf{T}} A u = u u^{\mathsf{T}}$

если A симметричная, $A^{\mathsf{T}} = A$:

$$\frac{\partial}{\partial u} u^{\mathsf{T}} A u = 2A u$$

$$\frac{\partial}{\partial A} \ln |A| = 2A^{-1} - \operatorname{diag} A^{-1}$$

$$\frac{\partial}{\partial A} u^{\mathsf{T}} A u = 2u u^{\mathsf{T}} - \operatorname{diag} u u^{\mathsf{T}}$$

Геометрический смысл многомерной нормальной плотности

Эллипсоид рассеяния — облако точек эллиптической формы:

При $\Sigma = \mathrm{diag}(\sigma_1^2,\dots,\sigma_n^2)$ оси эллипсоида параллельны ортам. В общем случае: $\Sigma = VSV^{\mathsf{T}}$ — спектральное разложение, $V = (v_1,\dots,v_n)$ — ортогональные собств. векторы, $V^{\mathsf{T}}V = I_n$ $S = \mathrm{diag}(\lambda_1,\dots,\lambda_n)$ — собственные значения матрицы Σ $(x-\mu)^{\mathsf{T}}\Sigma^{-1}(x-\mu) = (x-\mu)^{\mathsf{T}}V^{\mathsf{T}}(x-\mu) = (x'-\mu')^{\mathsf{T}}S^{-1}(x'-\mu')$.

 $x' = V^{\mathsf{T}} x$ — ортогональное преобразование поворот/отражение

Проблема мультиколлинеарности

Проблема: при $\ell < n$ матрица $\hat{\Sigma}$ вырождена, но даже при $\ell \geqslant n$ она может оказаться плохо обусловленной.

Регуляризация ковариационной матрицы $\hat{\Sigma} + \tau I_n$ увеличивает собственные значения на τ , сохраняя собственные векторы (параметр τ можно подбирать по скользящему контролю)

Диагонализация ковариационной матрицы:

«наивное» предположение о независимости признаков приводит к оцениванию *п* одномерных плотностей признаков:

$$\hat{p}_j(\xi) = \frac{1}{\sqrt{2\pi}\hat{\sigma}_j} \exp\left(-\frac{(\xi-\hat{\mu}_j)^2}{2\hat{\sigma}_j^2}\right), \quad j = 1, \dots, n$$

$$\hat{\mu}_j = \frac{1}{\ell} \sum_{i=1}^{\ell} f_j(x_i)$$
 — выборочная оценка среднего признака f_j $\hat{\sigma}_i^2 = \frac{1}{\ell} \sum_{i=1}^{\ell} (f_i(x_i) - \hat{\mu}_i)^2$ — выборочная оценка дисперсии f_i

Задача регрессии и принцип максимума правдоподобия

Модель данных с некоррелированным гауссовским шумом:

$$y(x_i) = f(x_i, w) + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, \sigma_i^2), \quad i = 1, \dots, \ell.$$

Метод максимума правдоподобия (ММП, MLE):

$$L(\varepsilon_1,\ldots,\varepsilon_\ell;w) = \prod_{i=1}^{\ell} \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma_i^2} \varepsilon_i^2\right) \to \max_w;$$

$$-\ln L(\varepsilon_1,\ldots,\varepsilon_\ell;w)=\operatorname{const}(w)+\frac{1}{2}\sum_{i=1}^\ell\frac{1}{\sigma_i^2}\big(f(x_i,w)-y_i\big)^2\to\min_w;$$

Теорема

Постановки МНК и ММП, совпадают, причём веса объектов обратно пропорциональны дисперсии шума, $w_i = \sigma_i^{-2}$.

Задача классификации и принцип максимума правдоподобия

Пусть $X \times Y$ — в.п. с плотностью p(x,y) Пусть X^{ℓ} — простая (i.i.d.) выборка: $(x_i,y_i)_{i=1}^{\ell} \sim p(x,y)$ Задача: по выборке X^{ℓ} оценить плотность p(x,y)

p(x,y) = P(y|x,w)p(x) — параметризация плотности P(y|x,w) — модель условной вероятности класса с параметром w p(x) — неизвестное и непараметризуемое распределение на X

MLE-оценка для w (Maximum Likelihood Estimate):

$$\prod_{i=1}^{\ell} p(x_i, y_i) = \prod_{i=1}^{\ell} P(y_i|x_i, w) p(x_i) \rightarrow \max_{w}$$

Логарифм правдоподобия (log-likelihood, log-loss):

$$L(w) = \sum_{i=1}^{\ell} \log P(y_i|x_i, w) \to \max_{w}$$

Связь правдоподобия и аппроксимации эмпирического риска

Максимизация логарифма правдоподобия, P(y|x,w) — модель условной вероятности класса:

$$L(w) = \sum_{i=1}^{\ell} \log P(y_i|x_i, w) \to \max_{w}$$

Минимизация аппроксимированного эмпирического риска, g(x,w) — модель разделяющей поверхности, $Y=\{\pm 1\}$:

$$Q(w) = \sum_{i=1}^{\ell} \mathscr{L}(y_i g(x_i, w)) \to \min_{w};$$

Эти два принципа эквивалентны, если положить

$$-\log P(y_i|x_i,w) = \mathscr{L}(y_ig(x_i,w)).$$

модель
$$P(y|x,w)$$
 \rightleftarrows модель $g(x,w)$ и $\mathscr{L}(M)$.

Вероятностный смысл регуляризации

P(y|x,w) — вероятностная модель данных $p(w;\gamma)$ — априорное распределение параметров модели γ — вектор *гиперпараметров*

Теперь не только появление выборки X^ℓ , но и появление модели w также полагается стохастическим

Совместное правдоподобие данных и модели:

$$p(X^{\ell}, w) = p(X^{\ell}|w) p(w; \gamma)$$

Принцип максимума апостериорной вероятности (Maximum a Posteriori Probability, MAP):

$$L(w) = \ln p(X^{\ell}, w) = \sum_{i=1}^{\ell} \log P(y_i|x_i, w) + \underbrace{\log p(w; \gamma)}_{\text{регуляризатор, } He \ \text{зависит от } X^{\ell}} o \max_{w}$$

Примеры: априорные распределения Гаусса и Лапласа

Пусть веса w_j независимы, $Ew_j=0$, $Dw_j=C$.

Распределение Гаусса и квадратичный (L_2) регуляризатор:

$$p(w; C) = \frac{1}{(2\pi C)^{n/2}} \exp\left(-\frac{\|w\|^2}{2C}\right), \quad \|w\|^2 = \sum_{j=1}^n w_j^2,$$
$$-\ln p(w; C) = \frac{1}{2C} \|w\|^2 + \text{const}$$

Распределение Лапласа и абсолютный (L_1) регуляризатор:

$$\begin{split} p(w;C) &= \frac{1}{(2C)^n} \exp\left(-\frac{\|w\|}{C}\right), \quad \|w\| = \sum_{j=1}^n |w_j|, \\ &- \ln p(w;C) = \frac{1}{C} \|w\| + \text{const} \end{split}$$

C — гиперпараметр, $au = \frac{1}{C}$ — коэффициент регуляризации.

Двухклассовая логистическая регрессия

Линейная модель классификации для двух классов $Y = \{-1,1\}$:

$$a(x) = \operatorname{sign}\langle w, x \rangle, \quad x, w \in \mathbb{R}^n$$

Отступ
$$M = \langle w, x \rangle y$$

Логарифмическая функция потерь:

$$\mathscr{L}(M) = \log(1 + e^{-M})$$

Модель условной вероятности:

$$P(y|x,w)=\sigma(M)=rac{1}{1+e^{-M}},$$
 $\sigma(M)$ — сигмоидная функция, важное свойство: $\sigma(M)+\sigma(-M)=1$

Максимизация правдоподобия (logistic loss) с регуляризацией:

$$Q(w) = \sum_{i=1}^{\ell} \log(1 + \exp(-\langle w, x_i \rangle y_i)) + \frac{\tau}{2} ||w||^2 \rightarrow \min_{w}$$

Многоклассовая логистическая регрессия

Линейный классификатор при произвольном числе классов | Y |:

$$a(x) = \arg\max_{y \in Y} \langle w_y, x \rangle, \quad x, w_y \in \mathbb{R}^n.$$

Вероятность того, что объект x относится к классу y:

$$P(y|x,w) = \frac{\exp\langle w_y, x \rangle}{\sum_{z \in Y} \exp\langle w_z, x \rangle} = \operatorname{SoftMax}\langle w_y, x \rangle,$$

функция SoftMax: $\mathbb{R}^Y \to \mathbb{R}^Y$ переводит произвольный вектор в нормированный вектор дискретного распределения.

Максимизация правдоподобия (log-loss) с регуляризацией:

$$L(w) = \sum_{i=1}^{\ell} \log P(y_i|x_i, w) - \frac{\tau}{2} \sum_{y \in Y} ||w_y||^2 \rightarrow \max_{w}.$$

Пример. Задача кредитного скоринга

Задача кредитного скоринга:

•
$$y_i = -1 \, (\mathsf{bad}), +1 \, (\mathsf{good})$$

Бинаризация признаков $f_i(x)$:

$$b_{jk}(x) = ig[f_j(x)$$
 из k -го интервала $ig]$

Линейная модель классификации:

$$a(x, w) = \operatorname{sign} \sum_{j,k} w_{jk} b_{jk}(x).$$

Вес признака w_{jk} равен его вкладу в общую сумму баллов (score).

признак <i>ј</i> интервал <i>k</i>			W_{jk}
	Возраст	до 25	5
		25 - 40	10
		40 - 50	15
		50 и больше	10
	Собственность	владелец	20
		совладелец	15
		съемщик	10
		другое	5
	Работа	руководитель	15
		менеджер среднего звена	10
		служащий	5
		другое	0
	Стаж	1/безработный	0
		13	5
		310	10
		10 и больше	15
	Работа_мужа /жены	нет/домохозяйка	0
		руководитель	10
		менеджер среднего звена	5
		служащий	1

Оценивание рисков в скоринге

Логистическая регрессия не только определяет веса *w*, но и оценивает *апостериорные вероятности* классов

$$\mathsf{P}(y|x) = \frac{1}{1 + \mathrm{e}^{-\langle w, x \rangle y}}$$

Оценка pucka (математического ожидания) потерь объекта x:

$$R(x) = \sum_{y \in Y} D_{xy} P(y|x),$$

где D_{xy} — величина потери для объекта x с исходом y.

Оценка говорит о том, сколько мы потеряем в среднем. Но сколько мы потеряем в худшем случае?

Методика VaR (Value at Risk)

Стохастическое моделирование: ${\it N}=10^4$ раз

- ullet для каждого x_i разыгрывается исход $y_i \sim P(y|x_i)$;
- ullet вычисляется сумма потерь по портфелю $V = \sum_{i=1}^\ell D_{\!x_i y_i},$

99%-квантиль эмпирического распределения потерь определяет величину резервируемого капитала

Калибровка Платта (classifier with probabilistic output)

Пусть для простоты классов два, $Y = \{-1, +1\}$.

Задача. Для классификатора вида $a(x) = \operatorname{sign} g(x, w)$ построить функцию оценки условной вероятности P(y|x).

Модель условной вероятности:

$$\pi(x; \mathbf{a}, \mathbf{b}) = \mathsf{P}(y=1|x) = \sigma(\mathbf{a}g(x, w) + \mathbf{b})$$
 где $\sigma(z) = \frac{1}{1+e^{-z}}$ — сигмоидная функция

Калибровка коэффициентов a, b по контрольной выборке методом максимума правдоподобия (снова log-loss):

$$\sum_{v_i=-1} \log \left(1 - \pi(x_i; \mathbf{a}, \mathbf{b})\right) + \sum_{v_i=+1} \log \pi(x_i; \mathbf{a}, \mathbf{b}) \to \max_{\mathbf{a}, \mathbf{b}}$$

Два подхода к обучению классификации

- Дискриминативный (discriminative): x неслучайные векторы P(y|x,w) модель классификации Примеры: LR, GLM, SVM, RBF
- **?** Генеративный (generative): $x \sim p(x|y)$ случайные векторы p(x|y,w) модель генерации данных Примеры: NB, PW, FLD, RBF

Байесовские модели классификации — генеративные:

- моделируют форму классов не только вдоль границы, но и на всём пространстве, что избыточно для классификации
- требуют больше данных для обучения
- более устойчивы к шумовым выбросам

Вероятностная постановка задачи классификации

$$X$$
 — объекты, Y — классы, $X \times Y$ — в.п. с плотностью $p(x,y)$

Дано:
$$X^{\ell} = (x_i, y_i)_{i=1}^{\ell} \sim p(x, y)$$
 — простая выборка (i.i.d.)

Найти: $a: X \to Y$ с минимальной вероятностью ошибки

Пусть известна совместная плотность

$$p(x,y) = p(x) P(y|x) = P(y)p(x|y)$$

$$P(y)$$
 — априорная вероятность класса y

p(x|y) — плотность (функция правдоподобия) класса y

P(y|x) — апостериорная вероятность класса y

По формуле Байеса:
$$P(y|x) = \frac{P(y)p(x|y)}{p(x)}$$

Байесовский классификатор:

$$a(x) = \arg\max_{y \in Y} P(y|x) = \arg\max_{y \in Y} P(y)p(x|y)$$

Классификация по максимуму функции правдоподобия

Частный случай: $a(x) = \arg\max_{y \in Y} p(x|y)$ при равных P(y)

Оптимальный байесовский классификатор

Теорема

Пусть P(y) и p(x|y) известны, $\lambda_y\geqslant 0$ — потеря от ошибки на объекте класса $y\in Y$. Тогда минимум среднего риска

$$R(a) = \sum_{y \in Y} \lambda_y \int [a(x) \neq y] p(x, y) dx$$

достигается оптимальным байесовским классификатором

$$a(x) = \arg\max_{y \in Y} \lambda_y P(y) p(x|y)$$

Замечание 1: после подстановки эмпирических оценок $\hat{P}(y)$ и $\hat{p}(x|y)$ байесовский классификатор уже не оптимален

Замечание 2: задача оценивания плотности распределения — более сложная, чем задача классификации

Наивный байесовский классификатор (Naïve Bayes)

Наивное предположение:

признаки $f_j: X \to D_j$ — независимые случайные величины с плотностями распределения, $p_i(\xi|y), y \in Y, j = 1, ..., n$

Тогда функции правдоподобия классов представимы в виде произведения одномерных плотностей по признакам, $x^j \equiv f_i(x)$:

$$p(x|y) = p_1(x^1|y) \cdots p_n(x^n|y), \quad x = (x^1, \dots, x^n), \quad y \in Y$$

Прологарифмировав под argmax, получим классификатор

$$a(x) = \arg\max_{y \in Y} \left(\ln \lambda_y \hat{P}(y) + \sum_{j=1}^n \ln \hat{p}_j(x^j|y) \right)$$

Восстановление n одномерных плотностей

— намного более простая задача, чем одной *п*-мерной

Квадратичный дискриминант (Quadratic Discriminant Analysis)

Гипотеза: каждый класс $y \in Y$ имеет n-мерную гауссовскую плотность с центром μ_y и ковариационной матрицей Σ_y :

$$p(x|y) = \mathcal{N}(x; \mu_y, \Sigma_y) = \frac{\exp\left(-\frac{1}{2}(x - \mu_y)^\mathsf{T} \Sigma_y^{-1}(x - \mu_y)\right)}{\sqrt{(2\pi)^n \det \Sigma_y}}$$

Теорема

- 1. Разделяющая поверхность, определяемая уравнением $\lambda_y P(y)p(x|y) = \lambda_s P(s)p(x|s)$, квадратична для всех $y, s \in Y$.
- 2. Если $\Sigma_v = \Sigma_s$, то поверхность вырождается в линейную.

Квадратичный дискриминант — подстановочный алгоритм:

$$a(x) = \arg\max_{y \in Y} \left(\ln \lambda_y P(y) - \tfrac{1}{2} (x - \hat{\mu}_y)^\mathsf{T} \hat{\Sigma}_y^{-1} (x - \hat{\mu}_y) - \tfrac{1}{2} \ln \det \hat{\Sigma}_y \right)$$

Геометрический смысл квадратичного дискриминанта

Разделяющая поверхность линейна $(\Sigma_{v}=\Sigma_{s})$ или квадратична:

Линейный дискриминант Фишера (Fisher Linear Discriminant)

Проблема: для малочисленных классов возможно $\det \hat{\Sigma}_y = 0$.

Пусть ковариационные матрицы классов равны: $\Sigma_y = \Sigma$, $y \in Y$.

Оценка максимума правдоподобия для Σ :

$$\hat{\Sigma} = \frac{1}{\ell} \sum_{i=1}^{\ell} (x_i - \hat{\mu}_{y_i}) (x_i - \hat{\mu}_{y_i})^{\mathsf{T}}, \qquad \hat{\mu}_{y} = \frac{\sum_{i} [y_i = y] x_i}{\sum_{i} [y_i = y]}$$

Линейный дискриминант — подстановочный алгоритм:

$$\begin{split} \mathbf{a}(\mathbf{x}) &= \arg\max_{\mathbf{y} \in Y} \ \lambda_{\mathbf{y}} \hat{P}(\mathbf{y}) \hat{p}(\mathbf{x}|\mathbf{y}) = \\ &= \arg\max_{\mathbf{y} \in Y} \ \underbrace{\left(\ln(\lambda_{\mathbf{y}} \hat{P}(\mathbf{y})) - \frac{1}{2} \hat{\mu}_{\mathbf{y}}^{\mathsf{T}} \hat{\Sigma}^{-1} \hat{\mu}_{\mathbf{y}} \right)}_{\beta_{\mathbf{y}}} + \mathbf{x}^{\mathsf{T}} \underbrace{\hat{\Sigma}^{-1} \hat{\mu}_{\mathbf{y}}}_{\alpha_{\mathbf{y}}}); \\ \mathbf{a}(\mathbf{x}) &= \arg\max_{\mathbf{y} \in Y} \ \big(\mathbf{x}^{\mathsf{T}} \alpha_{\mathbf{y}} + \beta_{\mathbf{y}}\big). \end{split}$$

В случае мультиколлинеарности — обращать матрицу $\hat{\Sigma} + au I_n$.

Геометрическая интерпретация линейного дискриминанта

В одномерной проекции на направляющий вектор разделяющей гиперплоскости классы разделяются наилучшим образом, то есть с минимальной вероятностью ошибки:

Ось проекции перпендикулярна общей касательной эллипсоидов рассеяния

Fisher R. A. The use of multiple measurements in taxonomic problems. 1936.

Резюме в конце лекции

- Обучение вероятностных порождающих (генеративных) моделей *методом максимума правдоподобия*
 - восстановление плотности по данным (без учителя)
 - обучение регрессии (с учителем)
 - обучение классификации (с учителем)
- Вероятностный смысл регуляризации априорное распределение в пространстве параметров модели
- Логистическая регрессия метод классификации, оценивающий условные вероятности классов P(y|x)
- Два подхода к обучению классификации:
 - дискриминативный: модель вероятности классов P(y|x,w)
 - генеративный: модель плотности классов p(x|y,w)
- Байесовские методы классификации генеративные, основаны на оценивании плотностей классов