PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
A01N 63/02, 63/00, C12N 1/20, C0

A01N 63/02, 63/00, C12N 1/20, C07K 14/24 // (A01N 63/02, 63:02, 63:00) (A01N 63/00, 63:00) (11) International Publication Number:

WO 98/08388

(43) International Publication Date:

5 March 1998 (05.03.98)

(21) International Application Number:

PCT/GB97/02284

A1

(22) International Filing Date:

27 August 1997 (27.08.97)

(30) Priority Data:

9618083.1

29 August 1996 (29.08.96) GB

CD

(71) Applicant (for all designated States except US): THE MINIS-TER OF AGRICULTURE FISHERIES & FOOD [GB/GB]; Whitehall Place, London SW1A 2HH (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): JARRETT, Paul [GB/GB]; 14 Home Furlong, Wellesbourne, Warwickshire CV35 9TW (GB). ELLIS, Deborah, June [GB/GB]; 7 Cooke Close, Warwick, Warwickshire CV34 5YG (GB). MORGAN, James, Alun, Wynne [GB/GB]; Pen-Y-Goruf Farm, Gorof Road, Ystradgynlais, Swansea SA9 1TP (GB).
- (74) Agent: SKELTON, S., R.; D/IPR, Formalities Section (Procurement Executive), Poplar 2, MOD Abbey Wood #19, P.O. Box 702, Bristol BS12 7DU (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PESTICIDAL AGENTS

(57) Abstract

A method for killing pests (e.g. insects) comprising administering material from Xenorhabdus species (e.g. X. nematophilus) such as cells or supernatants orally to the pests, either alone or in conjunction with Bacillus thuringiensis or pesticidal materials derived therefrom. Also disclosed is an isolated pesticidal agent (and compositions comprising the same) characterised in that it is obtainable from cultures of X. nematophilus or mutants thereof, has oral pesticidal activity against Pieris brassicae, Pieris rapae and Plutella xylostella, is substantially heat stable to 55 °C, is proteinaceous, acts synergistically with B. thuringiensis cells as an oral pesticide and is substantially resistant to proteolysis by trypsin and proteinase K. DNA encoding pesticidal activity is also disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	PI	Pinland	LT	Lithuania	SK	Slovakia
AT	Austria	PR	Prance	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	CH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TI	Trinidad and Tobago
BJ	Benin	TE.	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	1L	Israel	MR	Mauritania	UG	Uganda
BY	Belanus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada ·	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI.	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
cu	Cuba	KZ	Kazakstan	RO	Romania		
cz	Czech Republic	ic	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

PESTICIDAL AGENTS

The present invention relates to materials, agents and compositions having pesticidal activity which derive from bacteria, and more particularly from Xenorhabdus species. The invention further relates to organisms and methods employing such compounds and compositions.

There is an ongoing requirement for materials, agents, compositions and organisms having pesticidal activity, for instance for use in crop protection or insectmediated disease control. Novel materials are required to overcome the problem of resistence to existing

15 pesticides. Ideally such materials are cheap to produce, stable, have a high toxicity (either when used alone or in combination) and are effective when taken orally by the pest target. Thus any invention which provided materials, agents, compositions or organisms in which any of these properties was enhanced would represent a step forward in the art.

Xenorhabdus spp. in nature are frequently symbiotically associated with a nematode host, and it is known that this association may be used to control pest activity. For instance, it is known that certain Xenorhabdus spp. alone are capable of killing an insect host when injected into the host's hemocoel.

In addition, one extracellular insecticidal toxin from Photorhabdus luminescens has been isolated (this species was recently removed from the genus Xenorhabdus, and is closely related to the species therein). This toxin is not effective when ingested, but is highly toxic when injected into certain insect larvae (see Parasites and Pathogens of Insects Vol.2, Eds. Beckage, N. E. et al., Academic Press 1993).

WO 98/08388 PCT/GB97/02284

2

Also known are certain low-molecular weight heterocyclic compounds from *P.luminescens* and *X.nematophilus* which have antibiotic properties when applied intravenously or topically (see Rhodes, S.H. et al., PCT WO 84/01775).

5

Unfortunately none of these prior art materials have the ideal pesticide characteristics discussed above, and in particular, they do not have toxic activity when administered orally.

10

15

20

The present invention provides pesticidal agents and compositions from Xenorhabdus species, organisms which produce such compounds and compositions, and methods which employ these agents, compositions and organisms, that alleviate some of the problems with the prior art.

According to one aspect of the present invention there is disclosed a method of killing or controlling insect pests comprising administering cells from *Xenorhabdus* species or pesticidal materials derived or obtainable therefrom, orally to the pests.

A PCT application of CSIRO published as WO 95/00647 discloses an apparently toxic protein from Xenorhabdus nematophilus; however no details of the protein's toxicity are given, and certainly there is no disclosure of its use as an oral insecticide.

Thus the invention provides an insecticidal composition adapted for oral administration to an insect, which composition comprises a pesticidal material obtainable from a Xenorhabdus species, or a pesticidal fragment thereof, or a pesticidal variant or derivative of either of these.

35

30

The composition may in fact comprise cells of Xenorhabdus or alternatively supernatant taken from cultures of cells of Xenorhabdus species. However, the composition

WO 98/08388 PCT/GB97/02284

3

preferably comprises toxins isolable from Xenorhabdus as illustrated hereinafter. Toxic activity has been associated with material encoded by the nucleotide sequence of Figure 2. Thus, the composition suitably comprises a pesticidal material which is encoded by all or part of the nucleotide sequence of Figure 2. Pesticidal fragments as well as variants or derivatives of such toxins may also be employed.

The sequence of Figure 2 is of the order of 40kb in length. It is believed that this sequence may encode more than one protein, each of which may regulate or be insecticidal either alone or when presented together. It is a matter of routine to determine which parts are necessary or sufficient for insecticidal activity.

As used herein the term "variant" refers to toxins which have modified amino acid sequence but which share similar activity. Certain amino acids may be replaced with different amino acids without altering the nature of the activity in a significant way. The replacement may be by way of "conservative substitution" where an amino acid is replaced with an amino acid of broadly similar properties, or there may be some non-conservative substitutions. In general however, the variants will be at least 60% homologous to the native toxin, suitably at least 70% homologous and more preferably at least 90% homologous.

20

25

35

Ë

The term "derivative" relates to toxins which have been modified for example by chemical or biological methods.

These toxins are novel, and they and the nucleic acids which encode them form a further aspect of the invention.

A preferred Xenorhabdus species is the bacteria

X.nematophilus. Particular strains of X.nematophilus
which are useful in the context of the invention are

WO 98/08388

ATTC 19061 strain, available from the National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland (NCIMB). In addition, suitable strains include two novel strains of Xenorhabdus which were deposited at the NCIMB on 10 July 1997 and were designated with repository numbers NCIMB 40886 and NCIMB 40887. These latter strains form a further aspect of the invention.

All strains have common characteristics as set out in the following Table 1.

Table 1 Strains

Characteristics	ATCC 19061	NCIMB 40887	NCIMB 40886
Gram strain	negative	negative	negative
Shape/size	rods up to	rods up to	rods up to
- ,	4µm long	4µm long	4μm long
Motile	Yes	Yes	Yes
Bioluminescent	No	No	No
Colour on NBTA*	blue	blue	blue
insecticidal on			
ingestion by	yes	уeв	yes
insects			
Production of	yes	yes	yes
Antibiotics			
Resistant to			
ampicillin	yes	yes	yes
(50µg/ml)			
colony	circular	circular	circular
morphology/	convex	convex	convex
colour	cream	cream	cream

15 *NBTA (Oxoid nutrient agar containing 0.0025% bromothymol blue and 0.004% tetrazolium chloride)

Preferably the pest target is an insect, and more preferably it is of the order Lepidoptera, particularly

WO 98/08388 PCT/GB97/02284

5

Pieris brassicae, Pieris rapae, or Plutella xylostella or the order Diptera, particularly Culex quinquefaciatus.

In a preferred embodiment of the invention, cells from Xenorhabdus species or agents derived therefrom are used in conjunction with Bacillus thuringiensis as an oral pesticide.

In further embodiments, rather than using Bacillus thuringiensis itself, pesticidal materials obtainable from B.thuringiensis (e.g. delta endotoxins or other isolates) are used in conjunction with Xenorhabdus species.

15 The term 'obtainable from' is intended to embrace not only materials which have been isolated directly from the bacterium in question, but also those which have been subsequently cloned into and produced by other organisms.

Thus the unexpected discovery that bacteria of the genus Xenorhabdus (and materials derived therefrom) have pesticidal activity when ingested, and that such bacteria and materials can be used advantageously in conjunction with B.thuringiensis (and toxins or materials derived therefrom), forms the basis of a further aspect of the present invention. The pesticidal activity of B.thuringiensis isolates alone have been well documented. However, synergistic pesticidal activity between such isolates and bacteria of the Xenorhabdus species (or materials derived therefrom) has not previously been demonstrated.

In still further embodiments of the invention, culture supernatant taken from cultures of *Xenorhabdus* species, particularly *X. nematophilus*, is used in place of cells from *Xenorhabdus* species in the methods above.

20

25

All of these methods can be employed, inter alia, in pest control.

The invention also makes available pesticidal

compositions comprising cells from Xenorhabdus species,
preferably X.nematophilus, in combination with B.
thuringiensis. As with the methods above, a pesticidal
toxin from B.thuringiensis (preferably a delta endotoxin)
may be used as an alternative to B.thuringiensis in the
compositions of the present invention

Likewise, culture supernatant taken from cultures of Xenorhabdus species, preferably, X.nematophilus may be used in place of cells from Xenorhabdus species.

Such compositions can be employed, inter alia, for crop protection eg. by spraying crops, or for livestock protection. In addition, compositions of the invention may be used in vector control.

The invention further encompasses novel pesticidal agents which can be isolated from Xenorhabdus spp. Techniques for isolating such agents would be understood by the skilled person.

In particular, such techniques include the separation and identification of toxin proteins either at the protein level or at the DNA level.

The applicants have cloned and partially sequenced a region of DNA from Xenorhabdus NCIMB 40887 which region codes for insecticidal activity and this is shown as Figure 2 (SEQ ID NO. 1) hereinafter. Thus in a preferred embodiment the invention also provides a toxin which is encoded by DNA of SEQ ID No. 1 or a variant or fragment thereof.

: #

7

The invention also provides a recombinant DNA which encodes such a toxin. The recombinant DNA of the invention may comprise the sequence of Figure 2 or a variant or fragment thereof. Other DNA sequences may encode similar proteins as a result of the degeneracy of the genetic code. All such sequences are encompassed by the invention.

The sequence provided herein is sufficient to allow probes to be produced which can be used to identify and subsequently to extract DNA of toxin genes. This DNA may then be cloned into vectors and host cells as is understood in the art.

DNA which comprises or hybridises with the sequence of Figure 2 under stringent conditions forms a further aspect of the invention.

The expression "hybridises with" means that the

nucleotide sequence will anneal to all or part of the
sequence of Figure 2 under stringent hybridisation
conditions, for example those illustrated in "Molecular
Cloning", A Laboratory Manual" by Sambrook, Fritsch and
Maniatis, Cold Spring Habor Laboratory Press, Cold Spring
Harbor, N.Y.

The length of the sequence used in any particular analytical technique will depend upon the nature of the technique, the degree of complementarity of the sequence, the nature of the sequence and particularly the GC content of the probe or primer and the particular hybridisation conditions employed. Under high stringency, only sequences which are completely complementary will bind but under low stringency conditions, sequences which are 60% homologous to the target sequence, more suitably 80% homologous, will bind. Both high and low stringency conditions are encompassed by the term "stringent conditions" used herein.

Suitable fragments of the DNA of Figure 2, i.e. those which encode pesticidal agents may be identified using standard techniques. For example, transposon mutagenesis techniques may be used, for example as described by H.S. Siefert et al., Proc. Natl. Acad. Sci. USA, (1986) 83, 735-739. Vectors such as the cosmid CHRIMI, can be mutated using a variety of transposons and then screened for loss of insectidal activity. In this way regions of DNA encoding proteins responsible for toxic activity can be identified.

For example, the mini-transposon mTn3(HIS3) can be introduced into a toxic Xenorhabdus clone such as cHRIM1, hereinafter referred to as `clone 1', by electroporating cHRIM1 DNA into E.coli RDP146(pLB101) and mating this strain with E.coli RDP146(pOX38), followed by E. coli NS2114Sm. The final strain will contain cHRIM1DNA with a single insertion of the transposon mTn3(HIS3). These colonies can be cultured and tested for insecticidal activity as described in Example 8 hereinafter. Restriction mapping or DNA sequencing can be used to identify the insertion point of mTn3(HIS3) and hence the regions of DNA involved in toxicity. Similar approached can be used with other transposons such as Tn5 and mTn5.

Site directed mutagenesis of cHRIM1 as outlined in "Molecular Cloning, A Laboratory Manual" by Maniatis, Fritsch and Sambrook, (1982) Cold Spring Harbor, can also be used to test the importance of specific regions of DNA for toxic activity.

Alternatively, subcloning techniques can be used to identify regions of the cloned DNA which code for insecticidal activity. In this method, specific smaller fragments of the DNA are subcloned and the activity determined. To do this, cosmid DNA can be cut with a suitable restriction enzyme and ligated into a compatible

restriction site on a plasmid vector, such as pUC19. The ligation mix can be transformed into *E. coli* and transformed clones selected using a selection marker such as antibiotic resistance, which is coded for on the plasmid vector. Details of these techniques are described for example in Maniatis et al, supra, (see p390-391) and Methods in Molecular Biology, by L.G. Davies, M.D. Dibner and J.F. Battey, Elsevier, (see p222-224).

10

30

Individual colonies containing specific cloned fragments can be cultured and tested for activity as described in Example 8 hereinafter. Subclones with insecticidal activity can be further truncated using the same methodology to further identify regions of the DNA coding for activity.

The invention also discloses an isolated pesticidal agent characterised in that the agent is obtainable from cultures of X. nematophilus or variants thereof, has oral pesticidal activity against Pieris brassicae, Pieris rapae and Plutella xylostella, is substantially heat stable to 55°C, is proteinaceous, acts synergistically with B.thuringiensis cells as an oral pesticide and is substantially resistant to proteolysis by trypsin and proteinase K.

By 'substantially heat stable to 55°C' is meant that the agent retains some pesticidal activity when tested after heating the agent in suspension to 55°C for 10 minutes, and preferably retains at least 50% of the untreated activity.

By 'substantially resistant to proteolysis' is meant that the agent retains some pesticidal activity when exposed to proteases at 30°C for 2 hours and preferably retains at least 50% of the untreated activity.

PCT/GB97/02284 WO 98/08388

By 'acts synergistically' is meant that the activity of the combination of components is greater than one might expect from the use of the components individually. example, when used in conjunction with B. thuringiensis 5 cells as an oral pesticide, the concentration of B. thuringiensis cellular material necessary to give 50% mortality in a P.brassicae when used alone is reduced by at least 80% when it is used in combination the agent at a concentration sufficient to give 25% mortality when the agent is used alone.

It has been found that the activity of the material is retained by 30 kDa cut-off filters but is only partly retained by 100 kDa filters.

15

10

Preferably the agent is still further characterised in that the pesticidal activity is lost through treatment at 25°C with sodium dodecyl sulphate (SDS - 0.1% 60 mins) and acetone (50%, 60 mins).

20

Clearly the characterising properties of the isolated agent described above can be utilised to purify it from, or enrich its concentration in, Xenorhabdus species cells and culture medium supernatants. Methods of purifying proteins from heterogenous mixtures are well known in the art (eg. ammonium sulphate precipitation, proteolysis, ultrafiltration with known molecular weight cut-off filters, ion-exchange chromatography, gel filtration, etc.). The oral pesticidal activity provides a 30 convenient method of assaying the level of agent after each stage, or in each sample of eluent. methodology does not require inventive endeavour by those skilled in the art.

The invention further discloses oral pesticidal compositions comprising one or more agents as described Such compositions preferably further comprise other pesticidal materials from non-Xenorhabdus species. These other materials may be chosen such as to have complementary properties to the agents described above, or act synergistically with it.

- Preferably the oral pesticidal composition comprises one or more pesticidal agents as described above in combination with B. thuringiensis (or with a toxin derived therefrom, preferably endotoxin).
- Recombinant DNA encoding said proteins also forms a further aspect of the invention. The DNA may be incorporated into an expression vector under the influence of suitable control elements such as promoters, enhancers, signal sequences etc. as is understood in the art. These expression vectors form a further aspect of the invention. They may be used to transform a host organism so as to ensure that the organism produces the toxin.
- The invention further makes available a host organism comprising a nucleotide sequence coding for a pesticial agent as described above.
- Methods of cloning the sequence for a characterised 25 protein into a host organism are well known in the art. For instance the protein may be purified and sequenced: as activity is not required for sequencing, SDS gel electrophoresis followed by blotting of the gel may be used to purify the protein. The protein sequence can be used to generate a nucleotide probe which can itself be 30 used to identify suitable genomic fragments from a These fragments can then be Xenorhabdus gene library. inserted via a suitable vector into a host organism which can express the protein. The use of such general methodology is routine and non-inventive to those skilled in the art. Such techniques may be applied to the production of Xenorhabdus toxins other than those encoded by the sequence of Figure 2.

It may be desirable to manipulate (eg. mutate) the agent by altering its gene sequence (and hence protein structure) such as to optimise its physical or toxicological properties.

It may also be desirable for the host to be engineered or selected such that it also expresses other proteinaceous pesticidal materials (eg. delta- endotoxin from B.

- thuringiensis). Equally it may be desirable to generate host organisms which express fusion proteins composed of the active portion of the agent plus these other toxicity enhancing materials.
- 15 A host may be selected for the purposes of generating large quantities of pesticidal materials for purification e.g. by using B.thuringiensis transformed with the agent-coding gene. Preferably however the host is a plant, which would thereby gain improved pest-resistance.
- 20 Suitable plant vectors, eg. the Ti plasmid from Agrobacterium tumefaciens, are well known in the art.

 Alternatively the host may be selected such as to be directly pathogenic to pests, eg. an insect baculovirus.
- The teaching and scope of the present invention embraces all of these host organisms plus the agents, mutated agents or agent-fusion materials which they express.
- Thus the invention makes available methods, compositions, agents and organisms having industrially applicable pesticidal activity, being particularly suited to improved crop protection or insect-mediated disease control.
- The methods, compositions and agents of the present invention will now be described, by way of illustration only, through reference to the following non-limiting examples and figures. Other embodiments falling within

the scope of the invention will occur to those skilled in the art in the light of these.

FIGURE

- 5 Figure 1 shows the variation with time of the growth of X. nematophilus ATCC 19061 and activity of cells and supernatants against P. brassicae as described in Example 3.
- 10 Figure 2 shows the sequence of a major part of a cloned toxin gene from Xenorhabdus.

Figure 3 shows a comparison of the restriction maps of cloned toxin genes from two strains of Xenorhabdus

15 (clone 1 above and clone 3 below).

EXAMPLES

20

Example 1 - Use of X. nematophilus cells as an oral insecticide

CELL GROWTH: A subculture of X.nematophilus (ATCC 19061,
Strain 9965 available from the National Collections of
Industrial and Marine Bacteria, Aberdeen, Scotland) was
used to inoculate 250 ml Erlenmeyer flasks each
containing 50 ml of Luria Broth containing 10g tryptone,
5g yeast extract and 5g NaCl per litre. Cultures were
grown in the flasks at 27°C for 40hrs on a rotary shaker.

PRODUCTION OF CELL SUSPENSION: Cultures were centrifuged at 5000 x g for 10 mins. The supernatants were discarded and the cell pellets washed once and resuspended in an equal volume of phosphate buffered saline (8g NaCl, 1.44g Na_2HPO_4 and 0.24g of KH_2PO_4 per litre) at pH 7.4.

ACTIVITY OF CELL SUSPENSION TO INSECTS: The bioassays were as follows: P. brassicae: The larvae were allowed to feed on an artificial agar-based diet (as described by David and Gardiner (1965) London Nature, 207, 882-883) into which a series of dilutions of cell suspension had been incorporated. The bioassays were performed using a series of 5 doses with a minimum of 25 larvae per dose. Untreated and heat-treated (55°C for 10 minutes) cells were tested. Mortality was recorded after 2 and 4 days with the temperature maintained at 25°C.

LC50 cells/q diet

			• -		
	Treatment	2 days	4 days		
	Untreated	5.9 x 10 ⁵	9.8×10^4		
15	Treated 55°C	7.1×10^{5}	1.4×10^5		

Aedes aegypti: The larva were exposed to a series of 5 different dilutions of cell suspension in deionised water. The biosassays were performed using 2 doses per dilution of 50 ml cell suspension in 9.5cm plastic cups with 25 second instar larvae per dose. Untreated and heat-treated (55°C or 80°C for 10 minutes) cells were tested. Mortality was recorded after 2 days with the temperature maintained at 25°C.

25

30

	LC50 cells/ml		
Treatment	2 days		
Untreated	5.1 x 10 ⁶		
Treated 55°C	7.4 x 10 ⁶		
Treated 80°C	> 10 ⁸		

Culex guinquefaciatus: The larvae were exposed to a single concentration cell suspension containing 4 x10⁷ cells/ml. The biosassays were performed using 2 50 ml cell suspensions in 9.5 cm plastic cups with 25 second instar larvae per cup. Untreated and heat-treated (55°C or 80°C for 10 minutes) cells were tested. Mortality was

recorded after 2 days with the temperature maintained at 25°C.

		% Mortality
5	Treatment	2 days
	Untreated	100
	Treated 55°C	100
	Treated 80°C	0

Thus these results clearly show that cells from X. 10 nematophilus are effective as an oral insecticide against a number of insect species (and are particularly potent against P.brassicae). The insecticidal activity is not dependent on cell viability (i.e is largely unaffected by heating to 55°C which reduces cell viability by >99.99%) but is much reduced by heating to 80°C, which denatures most proteins.

Example 2 - Use of X.nematophilus supernatant as an oral insecticide 20

CELL GROWTH: Cultures were grown as in Example 1.

PRODUCTION OF SUPERNATANT: Cultures were centrifuged twice at 10000g for 10 mins. The cell pellets were discarded.

ACTIVITY OF SUPERNATANT TO INSECTS: The Bioassay was as follows:

Activity against neonate P. brassicae and two day old Pieris rapae and Plutella xylostella larvae was measured as for P. brassicae in Example 1, but using a series of untreated dilutions of supernatant in place of of cell supensions and with mortality being recorded after 4 days 35 only.

LC50 (µl supernatant/g diet) 4 days Insect species 22 P. brassicae 79 5 P. rapae 135 P. xylostella

In addition, size-reducing activity (62% reduction in 7 days) against Mamestra brassicae was detected in larvae fed on an artificial diet containing X. nematophilus supernatant (results not shown).

Thus these results clearly show that the supernatant from X. nematophilus culture medium is effective as an oral insecticide against a number of insect species, and are particularly potent against P. brassicae.

The heating of supernatants to 55°C for 10 minutes caused a partial loss of activity while 80°C caused complete loss of activity. Activity was also completely lost by treatment with SDS (0.1%w/v for 60 mins) and Acetone (50% v/v for 60 mins) but was unaffected by Triton X-100 (0.1% 60 mins), non-diet P40 (0.1% 60 mins), NaCl (1 M for 60 mins) or cold storage at 4°C or -20°C for 2 weeks. All of these properties are consistent with a proteinaceous 25 agent.

The general mode of action of X. nematophilus cells and supernatants i.e. reduction in larval size and death 30 within 2 days at high dosages, and other properties, eg. temperature resistence, appear to be similar suggesting a single agent or type of agent may be responsible for the oral insecticide activity activities of both cells and supernatants.

35

20

Example 3 - Timescale for appearance of ingestable insecticidal activity

CELL GROWTH: 1ml of an overnight culture of X.

nematophilus was used to inoculate an Erlenmeyer flask.

Cells were then cultured as in Example 1. Growth was estimated by measuring the optical density at 600 nm.

PRODUCTION OF CELL SUSPENSION AND SUPERNATANTS: These were produced as in Examples 1 and 2.

5

20

25

ACTIVITY OF CELLS AND SUPERNATANTS AGAINST P. BRASSICAE:

10 The cell suspension bioassay was carried out as in Example 1, but using a single dose of suspended cells equivalent to 50 μ l of broth/g diet and measuring mortality after 2 days. The cell supernatant bioassay was carried out as in Example 2, but using a single dose equivalent to 50 μ l supernatant/g diet (i.e. more than twice the LC50) and measuring mortality after 2 days.

The results are shown in Fig. 1. Thus these results clearly show that cells taken from X. nematophilus culture medium are highly effective as an oral insecticide against P. brassicae after only 5 hours, and supernatants are highly effective after 20 hours. Although some slight cell lysis was observed in the early stages of growth, no significant cell lysis was observed after this point demonstrating that the supernatant activity may be due to an authentic extracellular agent (as opposed to one released only after cell breakdown).

Example 4 - Synergy between X. nematophilus cells and B.thuringiensis powder preparations

CELL GROWTH AND SUSPENSION: X. nematophilus cells were grown and suspended as in Example 1. B. thuringiensis strain HD1 (from Bacillus Genetic Stock Centre, The Ohio State University, Columbus, Ohio 43210, USA) was cultured, harvested and formulated into a powder as described by Dulmage et al.(1970) J. Invertebrate Pathology 15, 15-20.

WO 98/08388

ACTIVITY OF X. NEMATOPHILUS CELLS AND B. THURINGIENSIS

POWDER AGAINST P. BRASSICAE: The bioassays was carried

out using X. nematophilus and B. thuringiensis in

5 combination or using B. thuringiensis cell powder alone.

Bioassays were carried out as in Example 1 but with

various dilutions of B. thuringiensis powder in place of

X. nematophilus. For the combination experiment, a

constant dose of X. nematophilus cell suspension

10 sufficient to give 25% mortaility was also added to the

diet. Mortality was recorded after 2 days.

		LC50 (μ g Bt powder/g diet)
	Bioassay	2 days
15	B.t. alone	1.7
	B.t. plus X.nematophilus	0.09

These results clearly demonstrate the synergism between X. nematophilus cells and B. thuringiensis powder when acting as an oral insecticide against P. brassicae.

Example 5 - Synergy between of X.nematophilus supernatants and B. thuringiensis powder

- 25 CELL GROWTH AND PRODUCTION OF SUPERNATANTS: X.

 nematophilus cells were grown and supernatants prepared
 as in Example 2. B. thuringiensis was grown and treated
 as in Example 4.
- ACTIVITY OF X. NEMATOPHILUS SUPERNATANTS AND Bt CELL
 POWDER AGAINST P. BRASSICAE:
 The bioassays were carried out using X. nematophilus
 supernatants and B. thuringiensis in combination or using
 B. thuringiensis powder alone. The Bioassay against
 neonate P. brassicae and two day old Pieris rapae and
 Plutella xylostella larvae were measured as in Example 2
 but with various dilutions of B. thuringiensis in place
 of X. nematophilus. For the combination experiment, a

constant dose of X. nematophilus supernatant sufficient to give 25% mortality was also added to the diet.

Mortality was recorded after 4 days.

LC₅₀ (μg Bt powder/g)

diet

5

25

35

	Insect species	Bt alone	Bt plus Xn	
	P. brassicae	1.4	0.12	
	P. rapae	2.5	0.26	
10	P. xylostella	7.2	0.63	

These results clearly demonstrate the synergism between X.nematophilus supernatants and B.thuringiensis powder when acting as an oral insecticide against several insect species. The fact that both X. nematophilus cells and supernatants demonstrate this synergism strongly suggests that a single agent or type of agent is responsible for the demonstrated activities.

20 Example 5 - Characterisation of insecticidal agent from X.nematophilus supernatant by proteolysis

CELL GROWTH AND PRODUCTION OF SUPERNATANTS: X.

nematophilus cells were grown and supernatants prepared
as in Example 2.

PROTEOLYSIS OF SUPERNATANT: Culture supernatant (50ml) was dialysed against 0.5 M NaCl (3 x 1 l) for 48 hours at 4°C. The volume of the supernatant in the dialysis tube was reduced five-fold by covering with polyethylene glycol 8000 (Sigma chemicals). Samples were removed and treated with either trypsin (Sigma T8253 = 10,000 units/mg) or proteinase K (Sigma P0390 = 10 units/mg) at a concentration of 0.1 mg protease/ml sample for 2 hours at 30°C.

ACTIVITY OF PROTEASE TREATED SUPERNATANT AGAINST P. BRASSICAE: The boassay against neonate P. brassicae

larvae was carried out by spreading 25 µl of each 'treatment' on the artificial agar-based diet referred to in Example 1 in a 4.5 cm diameter plastic pot. Four pots each containing 10 larvae were used for each treatment.

5 Mortalities were recorded after 1 and 2 days. Controls using water only, trypsin (0.1 mg/ml) and proteinase K (0.1 mg/ml) were also tested in the same way.

	·	% Mortality	
10	Treatment	1 day	2 days
	Untreated supernatant	60	100
	Proteinase K treated supernatant	45	100
	Trypsin treated supernatant	40	100
	All controls (no supernatant)	0	0

15

Example 6 Entomocidal activity of other Xenorhabdus

Using the methodology of Examples 1 and 2, four different xenorhabdus strains were tested against insect pests.

The results obtained were as follows:

I) Activity to Pieris brassicae

Strain deposit	Cells 10 ⁶ /grm diet	Supernatant LC50
no/code	% mortality	μ l/gram of diet
NCIMB 40887	100	0.09
0014	100	0.52
0015	80	3.73
NCIMB 40886	100	0.05

25 It was found that entomocidal activity of cells and supernatant was reduced by more than 99% when all four strains were heated at 80°C for 10 minutes.

II) Activity to mosquitoes (Aedes aegypti)
Bacteria added at the rate of 10⁷cells/ml of water

Strain deposit	Cells 10 ⁶ /grm diet
no/code	% mortality
NCIMB 40887	0
0014	40
0015	45
NCIMB 40886	95

Furthermore, all strains significantly reduced the growth of Heliothis virescens.

Example 7

Cloning of toxin genes from strains of Xenorhabdus

Total cellular DNA was isolated from NCIMB 40887 and ATCC

19061 using a Quiagen genomic purification DNA kit.

Cells were grown in L borth (10g tryptone, 5g yeast
extract and 5g NaCl per 1) at 28°C with shaking (150rpm)
to an optical density of 1.5 A₆₀₀. Cultures were

15 harvested by centrifugation at 4000xg and resuspended in
3.5mls of buffer B1 (50mM Tris/HCl, 0.05% Tween 20, 0.5%
Triton X-100, pH7.0) and incubated for 30 mins at 50°C.

DNA was isolated from bacterial lysates using Quiagen
100/G tips as per manufacturers instructions. The

resulting purified DNA was stored at -20°C in TE buffer
(10mM Tris, 1mM EDTA, pH 8.0).

A representative DNA library was produced using total DNA of NCIMB 40887 and ATTC 19061 partially digested with the restriction enzyme Sau3a. Approximately 20µg of DNA from each strain was incubated at 37°C with 0.25 units of the enzyme. At time intervals of 10, 20, 30, 45 and 60 minutes, samples were withdrawn and heated at 65°C for 15 minutes. To visualise the size of the DNA fragments, the samples were electrophoresed on 0.5% w/v agarose gels.

SUBSTITUTE SHEET (RULE 26)

25

30

The DNA samples which contained the highest proportion of 30 to 50kb fragments were combined and treated with 4 units of shrimp alkaline phosphatase (Boehringer) for 15 minutes at 37°C, followed by heat treatment at 65°C to inactivate the phosphatase.

The size selected DNA fragments were ligated into the BamH1 site of the cosmid vector SuperCos! (Stratagent) and packaged into the Escherichia coli strain XL Blue 1, using a Gigapack II packaging kit (Stratgene) in accordance with the manufacturers instructions.

To select for cosmid clones with entomocidal activity, individual colonies selected on L agar plates containing 25µg/ml ampicillin, were grown in L broth (containing 25µg/ml ampicillin) overnight at 28°C. Broth cultures (50µl) were individually spread onto the surface of insect diet contained in 4.5cm diameter pots, as described in Example 5. To each container 10 neonate P. brassicae larvae were added. Larvae were examined after 24, 72 and 96 hours recording mortality and size of surviving larvae. A total of 220 clones of NCIMB 40887 were tested, of which two were found to cause reduction in larval growth and death within 72 hours. Of 370 clones from ATTC 19061, one was found to cause larval death within 72 hours.

Example 8

35

Activity of cloned toxin genes to Pieris brassicae
The three active clones from Example 7 were grown in L
broth, containing 25μg/ml ampicillin, for 24 hours at
28°C, on a rotary shaker at 150rpm. The activity of the
toxin clones to neonate larvae were performed by
incorporation of whole broth cultures into insect diet,
as described in Example 1.

WO 98/08388

23

Clone No	<u>Strain</u>	LC50 (µl broth/g insect diet)
1	NCIMB 40887	13.03
2	NCIMB 40887	16.7
3	ATTC 19061	108.7
Control*		No effect at 100µl/g

*XL1 Blue E. coli broth

5

When E. coli toxin clones were heated at 80° C for 10° C minutes and added to the diet at a rate of 100μ l/g, no activity to larvae was detected. Highlighting the heat sensitivity of the toxins.

10

20

Example 9 Sequencing of the cloned toxin from NCIMB 40887

Cosmid DNA of the entomocidal clone 1 above from NCIMB 40887 was purified using the Wizard Plus SV DNA system (Promega) in accordance with the manufacturers A partial map of the cloned fragment was instructions. obtained using a range of restriction enzymes EcoR1, BamHl, HindIII, Sall and Sacl as shown in Figure 3. DNA sequencing was intiatiated from pUC18 and pUC19 based sub-clones of the cosmid, using the enzymes EcoRl, BamHl, HindIII, EcoRV and PvuII. Sequence gaps were filled using a primer walking approach on purified cosmid DNA. Sequence reactions were performed using the ABI PRISMTM Dye Terminator Cycle Sequencing Ready Reaction Kit with AmmpliTaq DNA polymerase FS according to the manufacturers instructions. The samples were analysed on an ABI automated sequencer according to the manufacturers The major part of the DNA sequence for the instructions. cloned toxin fragment is shown in Figure 2.

Example 10

Cosmid DNA of the entomocidal clone 3 above was purified as described in Example 9. A restriction map of the cloned fragment was obtained using the restriction enzymes BamH1, HindIII, Sal1 and Sac1 and this is shown in Figure 3. When compared with the map from clone 1 (Figure 3) it is clear that over the regions which overlap, the restriction maps are very similar. The only detectable difference between the two clones was a reduction in size of two HindIII fragments in clone 3, corresponding to the 11.4kb and 7.2kb HindIII fragments in clone 1 by approximately 2Kb and 200bp respectively.

These results indicate the overall relatedness of the DNA region coding for toxicity in the two bacterial strains.

Example 11

Southern Blot Hybridisation Experiments

A 10.3kb BamH1-Sall fragment of the DNA from clone 1 was used as a probe to hybidise to total HindIII digested DNA of the Xenorhabdus strains ATCC 19061, NCIMB 40886 and NCIMB 40887. Hybridisation was performed with 20ng/ml of DIG labelled DNA probe at 65°C for 18 hours. were washed prior to immunological detection twice for 5 minutes with 2 x SSC (0.3M NaCl, 30mM sodium citrate, pH 7.0)/0.1% (w/v) sodium dodecyl sulphate at room temperature, and twice for 15 minutes with 0.1 x SSC (15mM NaClm 1.5 mM sodium citrate, pH 7.0) plus 0.1% sodium dodecyl sulphate at 65°C. The probe was labelled and experiments performed in accordance with manufacturers instructions, using a non-radioactive DIG DNA labelling and detection kit (Boehringer). hybridised to a HindIII fragment of approximately 8kb in all three strains as well as an 11.4kb fragment in NCIMB 35 40887 and an approximate 9kb fragment in both NCIMB 40886 and ATCC 19061. These results show that strains NCIMB

WO 98/08388 PCT/GB97/02284

25

40886 and ATCC 19061 contain DNA with close homology to the toxin gene of clone 1 above, confirming the similarity between the toxins produced by the three strains.

5

25

30

CLAIMS

- An insecticidal composition adapted for oral
 administration to an insect comprising a pesticidal
 material obtainable from a Xenorhabdus species, or a
 pesticidal fragment thereof, or a pesticidal variant or
 derivative of either of these.
- 2. A composition according to claim 1 wherein the said pesticidal material comprises material encoded by the nucleotide sequence of Figure 2 or variant or fragment thereof, or a sequence which hybridises with said sequence.
 - 3. A composition according to claim 1 or claim 2 which comprises cells of Xenorhabdus.
- A composition as claimed in any one of the
 preceding claims which comprises supernatant taken from cultures of cells of Xenorhabdus species.
 - 5. A composition according to any one of the preceding claims wherein the Xenorhabdus species is Xenorhabdus nematophilus.
 - 6. A composition according to any one of claims 1 to 4 wherein the Xenorhabdus species is ATCC 19061, NCIMB 40886 or NCIMB 40887.
 - 7. A composition as claimed in any one of the preceding claims which comprises a further pesticidal material not obtainable from Xenorhabdus.
- 35 8. A composition according to claim 7 wherein the said further pesticidal material comprises a material obtainable from B. thuringiensis.

- 9. A composition according to claim 8 which further comprises cells of B. thuringiensis.
- 10. A composition according to claim 8 wherein the pesticidal materials obtainable from B. thuringiensis comprises the delta endotoxin.
 - 11. A composition according to any one of the preceding claims which further comprises an agriculturally acceptable carrier.
 - 12. A composition according to claim 10 wherein the carrier comprises items of insect diet.

- 13. A method for killing or controlling insect pests, which method comprises administering to a pest or the environment thereof a composition according to any one of the preceding claims.
- 20 14. A method as claimed in claim 12 wherein the pests are insects from the order Lepidoptera or Diptera.
 - 15. A microorganism comprising Xenorhabdus strain NCIMB 40886.
- 25
 16. A microorganism comprising Xenorhabdus strain NCIMB
 40887.
- 17. A pesticidal agent which comprises a a toxin
 30 comprising a protein which is encoded by DNA which
 includes SEQ ID No. 1 or a variant or fragment thereof.
- 18. An isolated pesticidal agent characterised in that it is obtainable from cultures of X. nematophilus or mutants thereof, has oral pesticidal activity against Pieris brassicae, Pieris rapae and Plutella xylostella, is substantially heat stable to 55°C, is proteinaceous, acts synergistically with B. thuringiensis cells as an

WO 98/08388 PC

28

oral pesticide, and is substantially resistant to proteolysis by trypsin and proteinase K.

- 19. An isolated pesticidal agent as claimed in claim 18 further characterised in that the pesticidal activity is substantially destroyed by treatment with sodium dodecyl sulphate or acetone or heating to 80°C.
- 20. An isolated pesticidal agent as claimed in claim 18 or claim 19 further characterised in that the agent is an extracellular protein.
 - 21. A recombinant DNA which encodes a pesticidal agent according to any one of claims 17 to 20.
 - 22. A recombinant DNA of claim 21 which comprises the sequence of Figure 2 or a variant or fragment thereof.

15

- 23. A recombinant DNA which comprises or hybridises under stringent conditions with all or part of the sequence of Figure 2, and which encodes a pesticidal material.
- 24. An expression vector comprising a recombinant DNA25 according to any one of claims 21 to 23.
 - 25. A host organism which has been transformed with an expression vector according to claim 24.
- 26. A host organism as claimed in claim 25 which has been engineered or selected such that it also expresses other pesticidal proteinaceous toxicity enhancing materials
- 27. A host organism comprising a nucleotide sequence coding for a fusion protein comprising a pesticidally active portion of an agent as claimed in any one of claims 17 to 20 in combination with other pesticidal proteinaceous toxicity enhancing materials.

28. A host organism as claimed in claim 27 wherein the pesticidal toxicity enhancing materials comprise delta-endotoxin from B. thuringiensis.

5

- 29. A host organism as claimed in any one of claims 25 to 289 wherein the host is a plant.
- 30. A host organism as claimed in any one of claims 25 to 28 wherein the host is a virus pathogenic to insects.
 - 31. A fusion protein as expressed by a host as claimed in claim 27.
- 15 32. An pesticidal composition comprising one or more agents as claimed in any one of claims 17 to 20.

SUBSTITUTE SHEET (RULE 26)

Fig.2.

61	CGAATTTGCC	GACCAGAATA	AGGCTAAAAA	ACTGCTACAG	ATTATTCGTC GCGCAACGCG	ACTOGRACIO
121	AGCGTTAACG	GTAAAGAGTC	ATTCGGATCC	GCTGTATCGC	TTTTGTGGTT	ATCTGGTGTC
181	TGTCAATGAT	ATGACCGGAA	TGAAGATGGG	CAATAAAAAC	ATTAGCCCAC	GAGCACCGAG
241	ATTGTACTTG	TATCATGCCT	' ATCTCTCTTT	TATGGAAGCG	CACGGCTTTG	AACGTCCGTT
301	AACACTGACT	AAGTTTGGTG	AATCCATCCC	CAAGATTATG	CTGGAATACC	GGAAGGAGTA
361	TCGAAAAGTG	CGAACCAAGA	AAGGCTATTC	CTATAACGTG	GAATTATCGG	AAGAGGCCGA
421	AGAATGGCTA	CCGTCAGTGC	CTGAGTGTCG	AGACTTTAAA	TCACCTGTAT	AAAACTTTGA
481	GCTTTAAGTC	TGCACTCCAT	ACACAACTTA	AAATATCTAA	TIGTATITAA	AAGAAAATAA
541	TAGATGTATA	GTTATTTTT	AACTATACAT	AAGCTCTACA	TGCTCTTCAT	TCGTGTAAAA
601	AATGGGTGAA	CAGGTGATAC	AGTCAGTGAA	TATCATATTA	ATTACCGTAA	ACCCAGATGT
661	AGCAAGGCTT	TCAGGGAATT	GTGCAGAGGG	TGCATAACTG	AGAGGGTGAA	AAAGATTTTC
721	AGGGGGGCTT	ATGGCAGGTA	AACAAAATCA	GAAGCAAATA	CCGTGCACAA	TCTGGTTTTT
781	ATTTTTTGGT	ACTACCTCAA	ATTAAAATGA	TGTAATCATC	TGATTTTATT	TAAGAATAGA
841	AGTTAATCAC	AATTTCATIG	ATGGACTITC	ATTCACACTG	GTATAGATAA	ATAATTCTGT
901	TATATCCTGT	TTCATTACGC	ATTUATUAGG	AGIGCIGITA	CAGGAGACAA	GAATGTCACA
961	CATCATTIAC	TIGICGITAA	AGGGCAAGAA	CCAGGGTTTA	ATTTCAGCGG	GTTGTTCAAC
1021 1081	CCTC ATCAT	TOCATCACC	CTCACCACAA	TCTTA TTCAT	GATCAAATAC CAACCCGTCA	AGGTATTGAG
1141	CCIGAAICAI	A A A TOCTOTO	CCCTCTTTTCC	TGTTAATCAT	TITIGTGCAT	GTTTTGTGAA
1201	CCLGATGG	ACAACTICAC	TTCTTTATC	AAATCAACCT	GACCAGTGCC	ACCAMMONACAA
1261	ATATITITITI	TARTTATCCG	GCATTCAATC	AMICAMOCI	GTGCGATACC	ACGATTGTGG
1321	GTGATGCTCG	ATTATAAGTC	CATTTCATGC	SOTATIANTO	CCGCAGGACT	TCCCCCCTACA
1381	GCATACGCAA	TTAGCCGGAA	GTGAAGAAGC	AAGCCGCTTT	TATCTGGGGT	TCOCOCIACA
1441	AAGCCACTTA	AGAAGCCGCT	GGTTGAAGAA	ACCCCGGTAA	AACCCGCTAA	ACATCATOCC
1501	CGTTATCGTT	GTGTGGATGA	TGACGGCAAT	CTTTTAACCG	AACGCAAGTA	TCCCCTTTCC
1561	CTGCCGGATG	GTCAGATAAA	AGAAGGAAAG	ACTGATAAAC	AAGGTTACAC	CCAATGGCAT
1621	CTTACGGATG	ACAAAAATAA	ACTIGAATIT	CATATTITAA	AGGATTAATA	CCATGCCAGC
1681	CTATACCGTT	CAGACAAAAA	TAGAATCCAA	CGTACCTGTT	GAAAACCTGC	TTTACGACTT
1741					TTGCTTGATG	
1801	GAAACTACAG	AGTAATTATG	AAACACAACA	GCATATCACG	CAGGAAATAG	ACGACGATCT
1861	TTCTGTGATT	TATATTATGC	AAATTATGCT	TCACCGCAAA	CATGGCTCAA	ATATATTTCC
1921	GGCACTGCAA	ACCCATTITA	AGAAAATGTA	TACCCTCGGT	GAATTAACTT	CCGGTAAAGC
1981	CTGTTCGGAG	AAAAAACGGG	AAAATGCCTG	TTATTTTGAA	AGTACAGTTG	AAACAAAACC
2041	TGTCAGCGAC	GGGGATAATA	CCGTTGACTT	AAATATCACT	ATTCCTGAAC	GACCTTTTAT
2101	TGCCAAAGAA	TATCCCATTG	GTCACCCACA	CGATCCATTT	GAAAAAAGTA	AAATTGAATC
2161	ATAAATACAG	GACAGGTTAT	CGAAAAGAAT	TTATCCGGAT	CAAAATGGAG	CAAGTTTATG
2221	TCAGGGCGCG	AGCACACTAT	TTTAGCTGCG	TITITAAGAT	GATTATCTCT	TAATGTTCAG
2281	TTTTAATAGT	GTTTTTATCG	AGTGAAATTT	AATCGCACAG	GCAATTCTTT	AGACTTTTAT
2341	AGAAAACTAA	AGAATTAAAG	AACAAGATTG	ACATTITAAG	TTCAAATATT	AAT CAAAGTA
2401	TGCTCGCGCC	CTGAGTTTAT	GTGGCCCTGC	CGCTTTTTT	TATTGCCTGC	CAATAGATAG
2461	ACCAGATATT	TATGAGCAAG	CGGCACGAGA	ATTATGGCAA	TATGGCCGAA	CTAAAATTGG
2521	TCAACTGGAA	ATTAAGCCGG	GIGAGGGIIG	CCGACATCCT	AAAGGTACTT	TITATAATCA
2581 2641	AIAIGGIGAA	AGAATATCIG	OGIIAGAIIG	GCIGACATIG	GCAAGCCTAA	GAGATTCAGA
2641 2701	AAATATGATG	AIGAGGIIGA	CTATCARGIA	CTATTER	CAATGTGGGG ATGTCGGCTT	AAAATIGACA
	GAAIGGIIIG	AMAMAICAGG	TOTAL CANADA	GIAIIIAGIA	AAGGATATCA	ATCCCATTCT
2761 2821					AAACATCAGG	
2881	TIGNITICAG	CHOCHAIGII	AICAGAIIII	COTONCATAC	AAAATATCAC	AAAAAATCAT
2941	CATCTCAATC	AATATCAGA	TTTADAMAC	TWIGHGWANG	GTAAAGTGGA	AAATAATICA
3001	מאנגנמגנ	AATATOTAAA	TTATCTACTC	AACCATATT	TTTGAGGGTT	ACAICAAAII
3061	CCDTTTDDAT	AACATGAAAA	TIATOTACIC	Transportation of the second o	TTTTTACTTT	ADCCOMMUNCO
3121	TARTCCARCC	CCAAAAGTTT	TACCAAAATC	ACACTTTCTT	CCTGATGCAG	M1GG11G1GG
3181	ACCATATCAG	GCATCAATTA	CCATCACAGG	AGGTGCATTG	AATGAAAAAA	CCCLLLCCCA TOWINWIPH
3241	AAAAATTCAT	CCTACTGGCT	CAGGACTAAC	ATGGAATCCA	AAAGATAGTT	CCG1110001
3301	GGGTGGAAAA	AAAGAAATAA	GAAAAGATTA	TCATCATATA	AATATAACAG	CTACCIMIA
3361	GAAGACAGAA	TTGATAAAA	TTGAAGTGGT	AGGATTTACE	TTGGGTACAA	TCTACCCCACC
3421	GAAAGAGTTC	ACTATAAATT	ATACTATAAA	AGTAAGGGAA	TAATTGTCAC	TATCACAATC
3481	GTGATTTAAT	TCGCCATTTT	TATACTTTTG	TATACTCTCT	CAACATAATC	AGGATTCTT
		A 1122				

Fig.2.

3541	CITATIATIT	TTCATGGTGC	TAAAAACGTT	TATTGCAAAA	ATAAATTAAG	TTAATCAGAT
3601	AAATTATCIG	CATTACTGTT	ATAATCGATA	ACACGATAAC	CIGACITICI	GCCIGTICIT
3661	ATGAACTCGA	AGATAATCCT	TTCTGAGCCT	GAACGAATCA	CATTGCAACC	ACTCGCTTTG
3721	AATCACCCAC	ACCGGGACAT	TCGTACGCGA	GGAACGGGTT	TACTCATGCT	TGCCAGAGGG
3781	AGCAAGCCGT	CCCAGATCAC	CGCTGAAATC	GGATGCAGTC	TCCGGGTTAT	CTGTAATTGG
3841	GTTCACATGT	GGCACAGATA	GCGGGATTAT	TCGGCGGTCA	TGCCGGAGGC	CGGTATCTCG
3901	CCATGACGCC	TGACATGATT	GCCACTGCGC	TCGAAGCCGC	CAGCGCAGAG	JUCATE VICT
3961	CCCTCCAACC	CACCCACCCT	Jah Chalchar	TCTACCCTTC	AAACGCTGGC	Cy yan Coored
4021	A A A A A A CA CC	CCCTCCCCTA	TANACCCCCC	CCCCCCCC	TTAAAAAAAG	CONTINCECTO
	CCC) CRIMCC	TOURISCEEL	TANAGOCCCC	ATTAXA A TOTTA A	GGCCGGAGCA	CGCAAIAAA
4081	COGNOTITIEC	TOWNWILL	CACCITACIGA	VIVAVATIVA	MACACOCA CA	CAGTCAGGAC
4141	ATTACCGTCT	GGICIAIIII	GAGTICIGGG	GGCGTTAAAT	TACACGGATA	ACACGCTGTT
4201	TTACCAGACA	ACGTCAGGCA	GTATCACGCG	AGATGACGTG	ATIGATITIT	TAGAGCCGGT
4261	GGCCAGACAA	GGGACAACCG	CCTGACATTT	TTAGTGTTGG	ATAATGCGCG	TATCCATCAC
4321					ACAACCTGTT	
4381	CTTCCCGCTT	ACAGCCCAGA	GCTGTATCTG	ATTGAAATCG	TCTGGAAACA	GGCCAAATAC
4441	GACTGGCGAC	GTTTTATCAC	CTGGACTCAG	GATACAATGG	AATATGAGGT	AAATACTTTA
4501	TTGAAAGGTT	ATGGCGACCA	ATTTGCAATT	AACTTTTCTT	GAGTACTTAG	TAAGAATAGA
4561					CTGAAAATTT	
4621					GATATTGTTT	
4681					GAATTATAAT	
					GGTTGATTTT	
4741						
4801					CTTACTTTTA	
4861					TGCCGTTGGC	
4921					TTCATTTTTT	
4981					TTAACCAGTA	
5041					GGTCAGAATC	
5101	ATCCTATTTA	TTTATGATAA	ATAAAATTTA	ATTATCTTTA	ATAAGCTGAA	TATGTGGATT
5161	TGTGCTCAAT	CTTGGATTCA	AGTATGTATT	CCTTTTGGTA	CCCTGCTTTA	TTTTAAGGCA
5221	GATGAAGAGG	ATGCCAACAT	GACACAATAT	CGATTACGAC	TGTAACATTA	AAGTCAGTTA
5281					ATTCTATTCC	
5341					ATAATTACAA	
5401					TCTTAACTGA	
					TTACTCAATA	
5461						
5521					TATTTATCCT	
5581					CGCCATCTCT	
5641					ATTTTTACCC	
5701					AGCGTTTCAC	
5761	TGAAATGTTT	GGTGCCCGTT	CTTCTTCCTT	TGTGAAACCG	GGTTCAGTGG	CITCCATGTT
5821	TTCACCGGCT	GGCTATCTCA	CCGAATTGTA	TCGTGAAGCG	AAGGACTTAC	ATTITTCAAG
5881	CTCTGCTTAT	CATCTTGATA	ATCGCCGTCC	GGATCTGGCT	GATCTGACTC	TGAGCCAGAG
5941	TAATATGGAT	ACAGAAATTT	CCACCCTGAC	ACTGTCTAAC	GAACTGTTGC	TGGAGCTATT
6001					GCCTGTCAAC	
6061					GTCAGGTCAT	
6121					TGGGGCAGGC	
					ATAACATTIT	
6181					TCAGTGAAAA	
6241						
6301					GTCTTGAACT	
6361	CAAAAATACC	TCGGGATGTT	GCAGAATGGC	TATTUIGACA	GCACCTCTGC	TTATGTGGAT
6421					TCGAAGCTTA	
6481					TIGATCIGAT	
6541	AATAATCAAT	TCTTTATATG	TGCTAATTTT	AAGATATCGA	GAGAATTTGG	GGCGACTCTT
6601	AGGAAAAACT	CAGGGACAAG	TGGCATTGTC	GGCAGCCTTT	CCGGTCCCCT	GGTAGCCAAT
6661	ACTAATITCA	AAAGCAATTA	CTTAAGTAAC	ATATCTGATA	ATGAATACAG	AAATGGCGTA
6721					CAAATCAGGG	
6781					AACTGAATAA	
6841	Tractition	CANCICATION	TTCACCCAAT	CAACTCCAAA	CTATCGTACG	CDCCCCTTCGC
	TIGIGCCIGN	OTROCOROCI	- TOTAL CONTROL	JULY JY JULIAN	TCTATACTCT	CULTOWN OF OUR
6901						
6961					ACGGATCGGT	
7021					TTTAATACCC	
7081					GATCCGGATG	
7141					AACAGTGGTG	
7201					CTCACACTIT	
7261	TATATCTTCA	CTGTATCGCC	TCACGTTACT	GGCCCGTGCC	CATCAGCTGA	CGGTTAATGA
7321	ACTGTGTATG	CTTTATGGTT	TTTCGCCGTT	CAATGGCAAA	ACAACGGCTT	CTTTGTCTTC
					-	

Fig.2.

4/12

CGGGGAGTTG TCACGGCTGG TTATCTGGTT GTATCAGGTG ACGCAGTGGC TGACTGAGGG CGGAAATCAC CACTGAAGCG ATCTGGTTAT TATGTACGCC AGAGTTCAGC GGGAATATTT CACCGGAAAT CAGTAATCTG CTTAATACTC TCCGACCCCG TATTAGTGAA GACATGGCAC AAAGTAGTGA CCGGGAGCTT CAGGCTGAAA TTCTCGCGCC GTTTATTGCT GCAACGCTGC 7621 ATCTGGCGTC ACCAGATATG GCGCGGTATA TCCTGTTGTG GACTGATAAC CTGCGGCCGG 7681 GCGGCCTGAA TATCGCCGGA TTTATGATGC TGGTGCTGAA AGAGACGCTG AGTGATGAGG 7741 AAACGACCCA ACTGGTTCAA TTCTGCCATG TAATGGCACA GTTATCGCTT TCCGTGCAGA 7801 CACTGCGTCT CAGTGAAGCA GAGCTTTCTG TGCTGGTCAT TTCCGATTTT GTGGTACTGG
7861 GTGCGAGAAG CCAACCGCCG GACAACACAA TATTGATACT CTGTTCTCAC TCTACCGATT
7921 CCACCAGTGG ATTAATGGGC TGGGAAATCC CGGCTCTGAC ACGCTGGATA TGCTGCGCCA
7981 AGCAGACACT CACGGGCGAC AGACTGGGCC TCCGTGATGG GGCTGGACAT CAGTATGGTA
8041 ACGCAGGCCA TGGGTTCCCG CCGGCGTGAA CCAACTTCAG TGTTGGCAGG ATATCAACCC
8101 CGTGTTGAG TGGATACATG TGGCATCAGC ACTGCTCACT GATGCCGTCG GTTATCCGTA
8161 CGCTGGTGAA TATCCGTTAC GTGACTGCAT TAGACAAAGC CGAGTCGAAT CTGCCTGCCT
8221 GGGATAAGTG GCAGACGCTE CCAGAAAATA TAGACAAAGC CGAGTCGAAT CTGCCTGCCT 8221 GGGATAAGTG GCAGACGCTG GCAGAAAATA TGGCAGCCGG ACTGAGTACA CAACAGGCTC
8281 AGACGCTGGC GGATTATACC GCAGAGCGCC TGAGTAACGT GTTGTGCAAT TGGTTTCTGG
8341 CGAATATCCA GCCAGAAGGG GTGTCCCTGC ACAGCCGGGA TGACCTGTAC AGCTATTTCC
8401 TGATTGATAA TCAGGTCTCT TCTGCCATAA AAACCACCCG ACTGGCAGAG GCCATTGCCG 8461 GTATTCAGCT CTACATCAAC CGGGCGCTGA ACCGGATAGA GCCTAATGCC CGTGCCGATG 8521 TGTCAACCCG CCAGTTTTTT ACCGACTGGA CGGTGAATAA CCGTTACAGC ACCTGGGGCG 8581 GGGTGTCGCG GCTGGTTTAT TATCCGGAAA ATTACATTGA CCCGACCCAG CGTATCGGGC 8641 AGACCCGGAT GATGGATGAA CTGCTGGAAG ATATCAGCCA GAGTCAGCTC AGCCGGGACA CGGTGGAAGA GGCCTTTAAA ACTTACCTGA CCGCTTTGAA ACCGTGGCAG ACCTGAAAGT 8701 8761 TGTCAGCGCT ATCACCGACA ACGTCAACAG CAACACCGGA CTGACCTGGT TTGTCGGCCA 8821 AACGCGGGAG AACCTGCCGG AATATTACTG GCGTAACGTG CATATATCAC GGATGCAGGC 8881 GGGTGAACTG GCCGCCGATG CCTGGAAAGA TTGGACGAAG ATTGATACAG CGGTCAACCC 8941 ATACAAGGAT GCAATACGTC CGGTCATATT CAGGGAACGT TTGCACCTTA TCGTGGGTAG 9001 AAAAAGAGGA AGTGGCGAAA AATGGTACTG ATCCGGTGGA AACCTATGAC CGTTTTACTC 9061 TGAAACTGGC GTTTCTGCGT CATGATGGCA GTTGGAGTGC CCCCTGGTCT TACGATATCA 9121 CAACGCAGGT GGAGGCGGTC ACTGACAAAA AACCTGACAC TGAACGGCTG GCGCTGGCCG
9181 CATCAGGCTT TCAGGGCGAG GATACTCTGC TGGTGTTTGT GTACAAAACC GGGGTGAGTT
9241 ACCCGGATTT TGGCGACAAC AATAAAAATG TGGCAGGCAT GACCATTTAC GGCGATGGCT 9301 CCTTCAAAAA GATGGAGAAC ACAGCACTCA GCGTTACAGC CAACTGAAAA ATACCTTTGA 9361 TATCATCAT ACTCAAGGCA ACGACTTGGT AAGAAAGGCC AGCTATCGTT TCGCGCAGGA
9421 TTTTGAAGTG CCTGCCTCGT TGAATATGGG TTCTGCCATC GGTGATGATA GTCTGACGGT
9481 GATGGAAAAC GGGAATATTC CGCAGATAAC CAGTAAATAC TCCAGCGATA ACCTTGCTAT 9541 TACGCTACAT AACGCCGCTT TCACTGTCAG ATATGATGGC AGTGGCAATG TCATCAGAAA 9601 CAAACAAATC AGCGCCATGA AACTGACGGG GTTGGATGAA AGTCCCAGTA CGGCAATGCA 9661 TITATCATCG CAAATACCGT TAAACATTAT GGCGGTTACT CTGATCTGGG GGGCCCGATC
9721 ACCGTTTTTA TTAAAACGGA AAAACTATAT TGCATCAGTT CAAGGCCACT TGATGAACGC
9781 AGATTACACT AGGCGTTTGA TTCTAACACC AGTTGAAAAT AATTATTATG CCAGATTGTT 9841 CGAGTITICCA TITTCTCCAA ACACAATTIT AAACACCGIT TICACGGIIG GTAGCAATAA 9901 AACCAGTGAT TTTAAAAAGT GCAGTTATGC TGTTGATGGT AATAATTCTC AGGGCTTCCA
9961 GATATTTAGT TCCTATCAAT CATCCGGCTG GCTGGATATT GACACAGGTA TTAACAATAC
10021 TGATGTCAAA ATTACGGTGG TAGCTGGCAG TAAAACCCAC ACCTTTACGG CCAGTGACCA
10081 TATTGCTTCC TTGCCGGCAA ACAGTTTTGA TGCTATGCCG TACACCTTTA AGCCACTGGA 10141 AATGATECT TIGCCGGCAA ACAGTITIGA IGCTATGCCG TACACCTITA AGCCACTGGA
10141 AATGATECT TCATCGTTGG CCTTTACCAA TAATATTGCT CCTCTGGATA TCGTTTTTGA
10201 GACCAAAGCC AAAGACGGGC GAGTGCTGGG TAAGATCAAG CAAACATTAT CGGTGAAACG
10261 GGTAAATTAT AATCCGGAAG ATATTCTGTT TCTGCGTGAA ACTCATTCGG GTGCCCAATA
10321 TATGCAGCTC GGGGTGTATC GTATTCGTCT TAATACCCTG CTGGCTTCTC AACTGGTATC
10381 CAGAGCAAAC ACGGGCATTG ATACTATCCT GACAATGGAA ACCCAGCGGT TACCGGAACC 10441 TCCGTTGGGA GAAGGCTTCT TTGCCAACTT TGTTCTGCCT AAATATGACC CTGCTGAACA
10501 TGGCGATGAG CGGTGGTTTA AAATCCATAT CGGGAATGTT GGCGGTAACA CGGGAAGGCA
10561 GCCTTATTAC AGCGGAATGT TATCCGATAC GTCGGAAACC AGTATGACAC TGTTTGTCCC 10621 TTATGCCGAA GGGTATTACA TGCATGAAGG TGTCAGATTG GGGGTTGGAT ACCAGAAAAT 10681 TACCTATGAC AACACTTGGG AATCTGCTTT CTTTTATTTT GATGAGACAA AACAGCAATT 10741 TGTATTAATT AACGATGCTG ATCATGATTC AGGAATGACG CAACAGGGGA TCGTGAAAAA
10801 TATCAAGAAA TACAAAGGAT TTTTGAATGT TTCTATCGCA ACGGGCTATT CCGCCCCGAT
10861 GGATTTCAAT AGTGCCAGCG CCCTCTATTA CTGGGAATGT TCTATTACAC CCCGATGATG 10921 TGCTTCCAGC GTTTGCTACA GGAAAAACAA TTCGACGAAG CCACACAATG GATAAACTAC 10981 GTCTATAATC CCGCCGGCTA TATCGTTAAC GGAGAAATCG CCCCCTGGAT CTGGAACTGC 11041 CGGCCGCTGG AAGAGACACT CCTGGAATGC CAATCCGTTG GATGCCATTG ATCCGGATGC
11101 CGTCGCACAA TATGACCCGA CACACTATAA AGTTGCCACC TTTATGCGCC TGTTGGATCA
11161 ACTTATTCTG CGCGGCGATA TGGCCTATCG CGAACTGACC CGCGATGCGT TGAATGAAGC

Fig.2.

	•					
11221	CAAGATGTGG	TATGTGCGTG	CTTTGGAATT	GCTGGGTGAT	GAGCCGGAGG	ATTACGGCAG
11281	CCAACAGTGG	GCCGCACCGT	CICITICCGT	GGCGGGCAAC	CACACTGTGC	AAGCGGGCTA
11341	TCAACAAGAC	CTTACGGCGC	TAGACAACGG	AGAAGGTTGC	ACTCAACCCC	GCAACGCTAA
11401	CTCGTTGGTG	GTTTGGTCCT	GCCGGAATAT	AACCCGGAAT	CAACCGATTA	CTGGCAAACC
11461	TGCGTTTGCG	CCTGGTTAAC	CTGCGCCATA	ATCCTTCCAT	GACGGGCAAC	CGTTATCGCT
11521					CAGTATGGTA	
11581					CCGCTTCCCG	
11641					CACCTCTCTG	
11701	CAGAGCATGA	TGATGCCGAT	GAACTCACCA	CGTTGCTACT	ACAGCAGGGT	ATGGAACTGG
11761	CGACACAGAG	CATCCGTATT	CAGCAACGAA	CTGTCGATGA	AGTGGATGCT	GATATIGCIG
11821					AAAATACCAG	
11881					GTTTGATGCG	
11941					GGCTGACTTA	
12001					ACTGCGTGCT	
12061	TGATGTCGCT	TTCTGCCACA	GCTTCCCAAT	ATTCCGCAGA	CAAAATCAGC	CCTTCCGAAG
12121					TAATGCTGAC	
12181					CGAAGCAGCA	
12241					GTTAGAGCTG	
12301	AATTCACAAA	CAAAGCGCTT	TACAGTTGGA	TECECCAA	GCTGAGTGCT	ATCTATTACC
12361	ACTICITICA	CCTGACCCAG	TOTTOTOC	TEATEGEACA	GGAAGCGCTG	CCCCCCCACC
12421	TGLCCGACAA	CGGTGTTACC	TTTATCCGG	CTECCCCCTC	GAACGGTACG	ACTICICICATE
12481	TGATGGGGG	TGAAACGTTG	CTGCTGAATC	TEGERALAT	GGAAAAAGTC	TECETTECACE
12541					GGCACAGTTC	
12601					ATTCCTGCGT	
12661					CCGCCAGATA	
					AAGCTTTGGC	
12721					TCCGTATGAA	
12781	WG11GWWWCW	TTACCCCCCC	ACCITOCCOG	TCCCA CCCC	TIGCAGTGCT	GWIWICCGGG
12841					CAACGATTCC	
12901					GTTGAGTTTC	
12961					CATTCTGCAT	
13021					TGAGGGAGCC	
13081					CGTCATTGCC	
13141						
13201					GAGCGGAAGG	
13261					GCCGGTGCTA	
13321					GCAATGTGGG	
13381					ACAAGATGAG	
13441					GCAACCAGAG	
13501					TGTTACCCGC	
13561					ACAGCAGAGA	
13621					GCACCTATTC	
13681					TGCCCGCTGG	
13741					TCGGGCAGAA	
13801					GGCCCACCGT	
13861					GCGGTAAAAT	
13921					GGTGAGCGCT	
13981					TCTGAAAACA	
14041					TATGGGTTTG	
14101					AAAGCGCTGG	
14161					CTGGATTATG	
14221					GAAACGGACG	
14281					CATGGCGTGA	
14341					CCATACCAAT	
14401					TCAGAAAGCC	
14461	GTGCTCCGGT	ACGGGATATC	ACTGCCGAAG	GAACGAATGC	GGTTACCTAT	GAGGAGGCGA
14521					GTTGTTGGAC	
14581					GGGCTACCAC	
14641					GCCAATGGAA	
14701	CGCAGGCAAA	ACTGGCTGAT	ATTGATGGGG	CTGGGCTGCC	TGACTTAGCG	CTTATCGGGC
14761	CALATAGTGT	ACGTGTCTGG	TCAAATAATC	CGGCAGGATG	GGATCGCGCT	CAGGATGTTA
14821	TTCATTTGTC	AAATAAGCCA	CTGCCGGTTC	CCGGCAAAAA	TAAGCGTCAT	CTTGTCGCAT
14881	TCAGTGATAT	GACAGGCTCC	GGGCAATCAC	ATCTGGTGGA	AGTTACGGCA	AATAGCGTGC
14941	GCTACTGGCC	GAACCTGGGG	CATGGAAAAT	TTGGTGAGCC	TCTGATGATA	ACAGGCTTCC
15001	AAATTACGGG	GAAACGTTTA	ACCCCCACAG	ACTGTATATG	GTAGACCTAA .	ATGGCTCAGG

Fig.2.

		3					
	15061	CACCACCCGA	TITTATTTAT	GCCCGCAATA	CTTACCTTGA	ACTCTATGCC	AATGAAAGCG
	15121	GCAATCATTC	TGCTGAACCT	CAGCGTATTG	ATCTGCCGGA	TGGGGTACGT	TTTGATGATA
	15181	CTTGTCGGTT	ACABATAGOG	CATACACAAC	GATTAGGGAC	TCCCACCATT	ATTTTGACGA
	15241	TCCCCCATAT	CANCETTECNO	CACTOCCOAT	TCCATATCAC	CULTAGENIA	CCTTGGCTGC
	15301	TGAATGCCCT	מאשטניטטאאט דה השתהשנים	CACIGGCGAI	NAD CONTRIBOOL	CHIMIICANG	AGCTCTGCCC
	15361	y Caracacca.	ERRUMINAL RAD	AIGGGAACAG	WAYELVEGET	GIAIIAICGC	GTCAGCTACT
	15421	TA COCOTOCCI	COMICAGAMA	TIACAGGCTT	CIGAAICCGG	GATGACGGTG	GTCAGCTACT
		CACCGITCCC	GGIGCAIGIG	TIGIGGCGCA	CGGAAGIGCI	GGATGAAATT	TCCGGTAACC
	15481	GATIGACCAG	CCATTATCAT	TACTCACATG	GTGCCTGGGA	TGGTCTGGAA	CGGGAGTTTC
	15541	GTGGTTTTGG	GCGGGTGACG	CAAACTGATA	TTGATTCACG	GGCGAGTGCG	ACACAGGGGA
	15601	CACATGCTGA	ACCACCGGCA	CCTTCGCGCA	CGGTTAATTG	GTACGGCACT	GGCGTACGGG
	15661	AAGTCGATAT	TCTTCTGCCC	ACGGAATATT	GGCAGGGGGA	TCAACAGGCA	TTTCCCCATT
	15721	TTACCCCACG	CTTTACCCGT	TATGACGAAA	AATCCGGTGG	TGATATGACG	GTCACGCCGA
	15781	GCGAACAGGA	AGAATACTGG	TTACATCGAG	CCTTAAAAGG	ACAACGTTTA	CGCAGTGAGC
	15841	TGTATGGGGA	TGATGATTCT	ATACTGGCCG	GTACGCCTTA	TTCAGTGGAT	COUNCIONS
	15901	CCCAAGTACG	TTTCTTACCC	CTCATCCTAT	CCCACCTCCC	TGCGGTACTG	GWYICCCGCY
	15961	CCGAATCCCG	CCAATACCCA	TATCAACCCC	TTCTTACCCA	TTCCACAGTG	GITICGGIGG
	16021	A TOTAL COOR	ANTATORNOCOA	TWIGHWOOGG	CCCCACCACA	ATCTTGAGAT	CAGCCAAAAG
		ALIGICCIIA	AMIMIGATOC	GIINGGAIII	CCCCATACCA	AICIIGAGAT	TGCCTATTCG
	16081	AGACGICCAC	AGCCIGAGII	CICGCCTIAI	CCGGATACCC	TGCCCGAAAC	ACTITICACC
	16141	AGCAGTTTCG	ACGAACAGCA	GATGTTCCTT	CGTCTGACAC	GCCAGCGTTT	TTCTTATCAC
	16201	CATCTGAATC	ATGATGATAA	TACGIGGATC	ACAGGGCTTA	TGGATACCTC	ACGCAGTGAC
	16261	GCACGTATTT	ATCAAGCCGA	TAAAGTGCCG	GACGGTGGAT	TTTCCCTTGA	ATGGTTTTCT
	16321	GCCACAGGTG	CAGGAGCATT	GTTGTTGCCT	GATGCCGCAG	CCGATTATCT	GGGACATCAG
	16381	CGTGTAGCAT	ATACCGGTCC	AGAAGAGCAA	CCCGCTATTC	CTCCGCTGGT	GGCATACATT
	16441	GAAACCGCAG	AGTTTGATGA	ACGATCGTTG	GCGGCTTTTG	AGGAGGTGAT	GGATGAGCAG
	16501	GAGCTGACAA	AACAGCTGAA	TGATGCGGGC	TGGAATACGG	CAAAAGTGCC	GTTCAGTGAA
	16561					CAGAATATGC	
	16621					CAGGTCAAAC	
	16681					CGGCTGGCCT	
	16741					CAGATATCAA	
	16801	CACACACTACG	MITHICOMIT	1W100110CO	CTTTCTCTCCT	TCCGTTTCTG	IGATAACTAT
		CACACCGIGA	CGITIGATGC	AC 10000ACG	GIANCUNGLI	TCCGTTTCTG	GGGACIGAA
	16861	AACGGTGAAA	AACAAGGATA	TACCCCTGCG	AMOUNTAND	CTGTCCCCTT	TATTGTCCCC
	16921	ACAACGGTGG	ATGATGCTCT	GGCATTGAAA	CCCGGCATAC	CTGTTGCAGG	GCTGATGGTT
	16981					ATGATGGGGA	
	17041	GAGCTGAAAC	CGGCTGGGAT	CATCACTGAA	GATGGTTATC	TCCTGTCGCT	TGCTTTTCGC
	17101	CGCTGGCATC	AAAATAACCC	TGCCGCTGCC	ATGCCAAAGC	AAGTCAATTC	ACAGAACCCA
	17161	CCCCATGTAC	TGAGTGTGAT	CACCGACCGC	TATGATGCCG	ATCCGGAACA	ACAATTACGT
	17221					CAAACAGCCG	
	17281	AAGTGGTGAA	GCCTGGGTAC	CTGATGAGTA	TGGAGCCAAT	GTGGCTGAAA	ATCAAGGCGC
	17341					CCCGGACGTA	
	17401	PCCCC P P P P C	CCAAACCCCC	ACCEPTACE.	TTCLLLCCGT	ATTCCTGAAA	TA ATTITUTE C
	17461					TATGCCGATA	
	17521					GCGGGTTGCG	
	17581					CTCCCGGTGA	
	17641					ATTTAGGAAT	
	17701					GACAACCGTG	
	17761	ACGCGAAATA	GCCTGGTATC	GGCACCCGA	TACACCTCAG	GTAACCGATG	AACGCATCAC
	17821	CGGTTATCAA	TATGATGCTC	AAGGATCTCT	GACTCAGAGT	ATTGATCCGC	GATTTTATGA
Ì	17881	ACGCCAGCAG	ACAGCGAGTG	ACAAGAACGC	CATTACACCC	AATCTTATTC	TCTTGTCATC
	17941					GGAACCCGTG	
į	18001					GGCGTTAGCC	
	18061					ACCGAGCAGG	
	18121					ACGCCGGCAG	
	18181	TARTTCCCC	CCCCACTCC	TOCTOC TOTAL	TERTOCANA	GGAATGAATC	AAAAAAGGCAA
	18241	CATATIGITA	ACCAGCATAC	CUTIGICUAL	CALACAGCAA	TTAGTGAAAG	ATGACAGCGA
	18301	AGUCGATIGG	CACGGTATGG	AIGAATTIGG	CIGGAAAAAC	GCGCTGGCGC	CGGAAAGCTT
	18361	CACTTCTGTC	AGCACAACGG	ATGCTACCGG	CACGGTATTA	ACGAGTACAG	ATGCTGCCGG
	18421	AAACAAGCAA	CGTATCGCCT	ATGATGTGGC	CGGTCTGCTT	CAAGGCAGTT	GGTTGGCGCT
	18481	GAAGGGGAAA	CAAGAACAAG	TTATCGTGAA	ATCCCTGACC	TATTCGGCTG	CCAGCCAGAA
:	18541	GCTACGGGAG	GAACATGGTA	ACGGGATAGT	GACTACATAT	ACCTATGAAC	CCGAGACGCA
:	18601	ACGAGTTATT	GGCATAAAAA	CAGAACGTCC	TTCCGGTCAT	GCCGCTGGGG	AGAAAATTTT
:	18661	ACAAAACCTG	CGTTATGAAT	ATGATCCTGT	CGGAAATGTG	CTGAAATCAA	CTARTGATGC
	18721	TGAAATTACC	CGCTTTTGGC	GCAACCAGAA	AATTGTACCG	GAAAATACTT	ACACCTATGA
	18781	CAGCCTGTAC	CAGCTGGTTT	CCCTCACTCC	GCGTGAAATC	GCGAATATTG	CCCCCTATA
	18841	AALCCACTTA	CCCATCCCC	עניארועניארועני ברביביורינים	TEECHOOLG	TATACGAATT	BOTOTOGO A
•		. DECUMBIIN		CICIONIION	*************	TUNCONALL .	WCICICOCAC

Fig.2.

18901	TTACGACTAT	GATCGTGGGG	GAATCTGACC	AGAATCGCAT	AATTCACGAT	CACCGGTAAT
18961	AACTATACAA	CGAACATGAC	CGTTTCAGAT	CACAGCAACC	GGGCTGTACT	GGAAGAGCTG
19021	GCGCAAGATC	CCACTCAGGT	GGATATGTTG	TTCACCCCCG	GCGGGCATCA	GACCCGGCTT
19081	GTTCCCGGTC	AGGATCTTTT	CTGGACACCC	CGTGACGAAT	TGCAACAAGT	GATATTGGTC
19141	AATAGGGAAA	ATACGACGCC	TGATCAGGAA	TTCTACCGTT	ATGATGCAGA	CAGTCAGCGT
19201	GTCATTAAGA	CTCATATTCA	GAAGACAGGT	AACAGTGAGC	AAATACAGCG	AACATTATAT
19261	TIGCCAGAGC	TGGAATGGCG	CACGACATAT	AGCGGCAATA	CATTAAAAGA	GTTTTTCCAG
19321	GTCATCACTG	TCGGTGAAGC	GGGTCAGGCA	CAAGTGCGGG	TGCTGCATTG	GGAAACAGGC
19381	AAACCGGCGG	ATATCAGCAA	TGATCAGCTG	CGCTACAGTT	ATGGCAACCT	GATTIGGCAGT
19441		AATTGGGACA				
19501		GCCGTGTGGG				
19561		AAGAGCGGGA				
19621		GGCGATGGTT				
		GCAGGAATAA				
19681 19741		TIGCCTGGAT				
		TIGAACAAGG				
19801		TITTGGGTGT				
19861						
19921		TGGGGGATCG				
19981		GCGAACAACA				
20041		GCTCCTGTTC				
20101		AGCTCTTCGA				
20161		GCTTTAGCCG				
20221	CGCCGGACAA	AGTACGCTGG	ATACGCTCAG	GCCCGGTAAT	GTCAGCGCGC	CAGAGCGGTT
20281	AGGGCACTAT	CAGGCGCAAT	TATTGGCGGC	ATATTACTTG	GCCGCCATCA	GGGAAGTTCT
20341		AACGGGCAGC				
20401		GGGATGGCCC				
20461	AGCTCTGCCA	TTTCCCACGC	TGTCAGTTCC	AGGAGCTGGT	TTGGCCGAAT	GATAGGAGAA
20521		GAAATATTTC				
20581		CCATTGGCGG				
20641		CTAGCCGGGT				
20701	TTTAACGCCT	CTGCACGTCA	TAATGAATCC	GAAGCATAAC	AATCATGTTC	ATTCCCACTT
20751	TGTCATGGAT	GACAAGGTGG	GTTTTTCGGA	TGTGTGGACA	GAGACCCGTA	CAGGGTCTCT
20821	GTCCAGTTAA	TTTTTGGATC	AAGAACGAAT	GGTGTAACGG	ATATGCAAAA	TGATATCGCT
20881		AATAAGCTTT				
20941	GCCTGTATCG	GCCACAGGAA	GCCCTTCAAA	TGGCAGGTAC	TTAGCATCAT	TGAAATCCAT
21001	CTGGAATTGA	CCACTGTCAT	TCATGCCATG	TGAGATCACA	ATCGCTTTGC	AGCCACGTGG
21061		CTGCCGCCAT				
21121		GTCACACTGA				
21181	ATCGGTAGCA	ATATTCAGAT	CCGATAATTT	GAGGCTGGCT	TGCAGTTGTG	TCCCTTCGAC
21241		TTAAGCGTTG				
21301	Trickly Trickly	AAAATGAAAC	TATTTTTTTT	CAGACCAGCA	TACACTTCAG	CCAGAGAAAC
21361	CCALCACA	ACCTCCAGTG	CCCCTTCATC	WYYJJIAIALA	LVCCALALALALA	CCATCTCTCC
21421	GGTTCIGGIG	ATCAGGGTTT	CACCCCCTAA	TABACCCCCA	TARCTCCCAT	CCCAACCACC
21421		AAGTGTGCTG				
	TARACACACT	GAGACCGCCA	BBTCATAAAA	CTCATAATAA	ATACCCCACA	ACCTTCCACC
21541	GAGCCAGTTG	TATACCCCC	CATTACTICAA	THE PROPERTY OF	ACABACCCTA	VCGLICCUCC
21601	POMPLE AND TIG	TGCTGAGTTT	CULTACIONA	TITUCITIES	VCARAGGERA	UNCCOCCIO
21661	AGCCAGCGTC	TOCTOMOTIT	COMMINGIA	TITIGIAM	CCTTCCCCCTT	TATTORCO IAC
21721	AATTTCCCAC	ACTIVITIONS	CUTCHWIIIG	TITITUE	ACTICOOPT	THITGCGCIG
21781	AATACGTGTT	TCTTGCCGAC	B B B TOTOG I A	ACCAATCCCA	TOCCIONIII	A A C C C C C C C
21841	AATACGIGIT	GCTGACGCAG	AAA111CGA1	ACCAMICGCA	CIGGCALIGA	AAAGCGCCCC
21901	AAAACGGGAA					
21961	GGCCATATGC	AGGGCTGTGC	CGCTGGTGCT	CAAGACCGAT	GAAGAGAGGT	AAAGATCCAT
22021	CGCTTGTTTT	TCACCAGCGT	TAACATCTTC	GTCGTACAGC	GTATIGAAAC	TGTCAAAACG
22081	AGACTGTGCA	CCATGACGGC	TTTCTTGAAG	CGCCAATTTA	TCAGCATCAA	TITCAGCCAT
22141	GACCTTATCC	TGCATTTTAA	TACTTTGCAG	GGCTAACTCA	CIGCCTTGAG	TITGCAGTAT
22201	TTCAGCCAAG	GCTTCTGCAT	CCTGCCGTTC	AGTAATGCTG	AGCAGGGTAT	TGCCAAATTG
22261	TATCAACTGG	CTTACCCCCC	ACTTGGCATT	TTCCAGAATC	ACCGGAAAAC	GGTACATCGG
22321	CATCACTGCA	TGAGGTAAAT	CCCCCCCCC	TTGTGAAGCA	GTGATGGCAG	CACTGAGTAA
22381	CATGGACGGA	TCTGCGGGCG	TGGCATAGAG	AGATAATGAC	AGTGGCTGAC	CGTCGATTGT
22441	CAGGTTATGG					
22501	TTTATTAATT					
22561	ATGCAGCGCG					
22621		TTCCAGCCGT				
22621	CACCCAATAA					
			,			

Fig.2.

	9					
22741	CAAGCTGGCG	ATAGGCGCTA	TCTCCGCGGG	TAATCAACAA	ATCCAGCATT	TTCATAAAGG
22801	TAGCCACTTT	ATAGTGCATC	GGATCATGCT	GGGCAACGGC	GTCCGGATCG	ACCGAATCCA
22861	GCGGATTGGC	ATTCCAGGAC	GTATCTTCCT	CCAATGGGCG	GACGTTCCAG	TAATAATCCT
22921	GCATTTCACC	CTGAACCGAA	TATCCGGTCG	GGTTCAGATA	TAGGGCAGCC	ACCOTOTOGA
22981	TCCCCTAAAA	Malatalt	CAATAAGGG	TGGAATACCA	TUNTEGGGGG	TOTATTACAA
23041	CAATCCCAAC	ADATACATTC	CATTRECCEC	GTTTGAAATC	TOTAL COLOR	IGIAAIAGAA
23101	TCTTCACACC	AMAZAGATIG	CVIIIOCCOCC	TTTTTTGATA	CWIGGGIICK	GIGITATITI
	TCATGACACG	ACTIGAMIAC	CCCITITATA	IIIIIIIGAIA	TITITIACIA	TCCCCTGTTG
23161	IGICALICCE	GAATCAIGAT	COGCATCATT	AGTGAATATA	AATIGATTIT	TCGTCTCATC
23221	AAAATAAAAG	AAAGCAGATT	CCCAGGATTT	GTCATAGATA	ATTITITITET	ACCCAACCCC
23281	TAATCIGACA	CCTTCACGTA	TGTAATATCC	TTTAGCATAG	GGAACAAAGA	GCGTTACTGT
23341	GGTTTCAATA	TCAGATAACA	TTCCTTCGTA	ATAAGGTTGT	CTGGCAGAAT	TGCCATCAAT
23401	ATTCCCAATA	TGGATCTTAA	ACCAACGTTC	ATCACCATGC	TCCTCTTTAT	TGTAGGGGGG
23461	CAACTTAAAT	GTCGCATAAA	ACCCTTCACC	TAATTGCGGC	TCTGGTAAAT	TTTGCGTTTC
23521	CATACTTAAA	ACATTATCAA	TACCAATATT	GGCTCTTTCA	GCTAATTITC	TGGAAAATAA
23581	AGTATTTAAC	CGGGTTCTGT	AAGGGCCAAT	CTGCATATAT	TGTGTGCCTG	ATGGCATTTT
23641	ATGCAGTGAT	ATAACGTTAC	TIGTATCTTT	GGATTTTAGT	TITATATGAA	TTGGCGATTC
23701	AATAACAATA	TCGTTATAAC	CGCCGTCGGG	TTGCTTAATA	ATAAACTCGC	TCACCAGAGG
23761	AATATCATAG	CCTTCAATAT	CAACTITTAC	TIGATTAAAA	TCATATACCA	TACCCTCACA
23821	TTCCTCTCAA	CCTTTACATC	CCACATGGTC	TTCAGCATTT	א ארדיריא רדיא בשווונא כעא	CARTATCACA
23881	CCC Addated	מממממממממ	TAATCTTTT	ATCTTGGATC	TOTOTOTA	TACATCAGA
23941	OCCVITITI	AN ANALOGO COT	CCALCIVITY	AAATACACCC	TOTICONICA	INGATGAAGC
	WWGIIIIWII	WICIGIOGCI	GG11GWWCW1	ATTGAAACAT	Chambon	GCGAAGGAAC
24001	AGIGCCGCAA	1A111CCCA1	GITATIAATG	ATTGAAACAT	CATTAGTAAA	TGATTCACAT
24061	ATAGTATGCC	ATACTCCTGT	GTTATCTTTC	CAATCTAATA	CTATGTTAGT	ATCAAGTTTG
24121	AATTCAGCAT	CATCIGATIC	ATAATCATAA	TTTATACCAA	CICCAATITC	TGATTTTCTA
24181	GGAATTITIT	CCTTGGTTCT	TAGATGCATT	AACACTCTAA	AATATTCGGC	ATTTTTAAGA
24241				TAATGAAAAA		
24301				ATAACCGTTT		
24361				CCTTTTGAAA		
24421				GGTGATATAT		
24481	CCGGTAAAAC	TGGCTAATTT	ATTTTTTGTG	GTTATAGATT	CCTTATATTC	GGCCAAATAA
24541	TCTGTAGCAA	ATTGATTGTT	GACTTTGTAT	TCTGTCCTGG	TATCAAGTTC	TGATAATGTG
24601	CTCTTAACAA	TGGCGTCTAA	ATCATTTTCT	GTGAGAATGG	ATAATGTCAT	ATCAGGGTTA
24661				TTAAAAGAAT		
24721				TCAGAAGAAC		
24781				GTCACATTAA		
24841				AATATATAAT		
24901				TCCAGCCACA		
	TAAATAACAG					
24961						
25021				TGCTGGCACT		
25081				TAACCAATTA		
25141				ACCTGCAAGT		
25201				GTATCGATAT		
25261				TGACCAATAC		
25321				CCGGCCCAGG		
25381	GTTTCCCAGT	CGCAGAAGAA	CTGACGGGTT	TTCACTGGCT	TTGATACTTT	TCCTTCAACA
25441	TTATTCAACG	CCCGGTTGAC	ATATAACTGA	ATGCTGGCAA	TGGCTTCTGC	CACACGGGTG
25501	GTTTTCACTT	GGGCAGAAAC	TIGGTIATCA	ATCAGCAGAT	AGCTGTACAA	CTCATCCCGG
25561	CTCTTAATCT					
25621	GCTTCATCCA					
25681	AAAGTACTGG					
25741	TATTTTAATT					
25801	TCCAGCCATT					
25861	ACCEGTCTET					
	AATTGTTCGG					
25921						
25981	TCACAACGCA					
26041	TGCAGTGCTG	IGGITICIGA	TIGGAATITC	ICCGGTTTTG	TCACCAACAG	GGTCAGTTCG
26101	TTTTCGCTGA	GICCAATATT	GCGCACAATC	AGAGAAAGTT	GCCCCAGTAC	CTGACAAAAA
26161	GCCACCATGT	TGCTGGTTTC	ATTCTCTGAG	CGATCACGGT	TAGCCGCAAT	AATCATGAAA
26221	TCATCGAATG	TCAGTCCTTG	TGGTTTTATC	TGATTAATCC	ACAGCAAAAT .	AGTTTCTGCT
26281	GTITIGGCTG	AATCCATTTG	AATGCTGGCA	GCAATCAGCG	GGGCAGCTGC	ACGGATCAGT
26341	TCGTCATCAC	CGAGTGAAAG	TGTTGATAAT	CCATTACTTA	GTGTCGTGAT	AAGGTTTTCA
26401	ATATCCGGCG	TAAGGACAGT	GCTGTAATTA	TCCGTGGTCA	TCAGAAACAC	ATCACTGACA
26461	GACCATTTCT	GTGTTGTCAG	CCACTGGGTG	CATTGGAACA	GAAAGCTGAT	TAATTGCCTT
26521	AATGCTGTAT	CAGAAAAAAG	GGCAATTTTC	GTGTTCACAT	AGGGAGAAAC	CCACAACAAC

Fig.2.

	9					
26581	ATGGATAATT	CATTCACTGT	CAGATGATGA	ATGTCTGCCA	GCAGACGAAC	GCGATAAAGC
26641	AGAGACAGGT	TCTCGATGGA	ACACATAAAT	TCTGGATTTG	TTCCGCCATT	AGCCAGTITC
26701	CATAATGTAT	ACAGTTCAGT	ATCATTCACT	CTGAAAGCAC	GTTTCATTAT	TCCCAAATAA
26761	AAATGGTTTT	TTCATTCACC	GGGGGTTAAA	TCCAGTTTGG	TATTATCACC	ACABACTOT
26821	TECCEDITE	ATACCCCTCT	ATTGAACAGC	ATTGTAAAAT	CACTCCCTTC	Manual Andreas Control
26881	CANTATTCCC	TO A DO COOLO Y	ATCACACAAT	ACCAGCGCAT	CCCTCACCCT	1101111010
	GVVIVIIOOC	TOWINICION	ATORUGUMI	TTR CCCR & CR	COCIONCOCI	AAIAIIAIAG
26941	IGCIGCATAT	AATATTGAAC	ATAMAMUAGU	TTACCCAACA	CATIGCIGIC	AATGGTTAAG
27001	TCATCATAAA	TACTITCTAT	TACTIGCCAG	ATATCTTCTG	GAGATATGCC	TGTGGCTTTA
27061	TACAAACGAA	TCGCTTTATT	CAGCTTTAAC	AGGAATATAT	CACCGGGAAC	TCCATCATTT
27121	TAAAGTGTGC	ATTGGCATTG	ATAGCATCCG	ACGGATTTGG	TTAACTCGCC	ATAAGCGGAG
27181	TGTTATACCG	TTGGTGATTT	GCTCTGTCGT	CAATTTAATG	GGAATACTGT	AATGGGTATT
27241	AGCAATGGGG	ACGAAATTTT	TATCTTGGTA	TATATATTCT	TTATCTCCAT	TCTGGAGACG
27301				TACACTGAAA		
27361	TTTGATTGGA	ATTAGCTCTG	CATAGTTTAA	ATGTGAATCG	TAGAAATCTT	TGCGGGTTCG
27421				CCCGTCATTG		
27481				ACCGAAGGAG		
27541				CAAAGAAGCA		
				TTCTGTTGAA		
27601						
27661				ATCAGTCTTA		
27721				GCTAAATGCG		
27781				CAGATGATAG		
27841				ATAGTCAGTT		
27901				TGTGGAAATT		
27961	TGTCAGTGCC	AGTGAAGCAA	TGTCGGGGCG	TCGTTTATTC	AGGTGATATT	GAGAATTGTC
28021				TTCTGTTAAA		
28081	GGAAGCAATT	GATCCCGGTT	TTACAAAACG	GTGGGCGCGG	CCATAAAACC	AACTGTTGTA
28141				AAGGTTAGTG		
28201				TITATTCTGT		
28261				CAGAGTTCCA		
28321				TAATAAAGTA		
				ATATAAATCC		
28381						
28441				TAATCTGATA		
28501				TAAAAAAAT		
28561		·		TAAATTAAAA	-	
28621				TTAATTGTGT		
28681				TATTGAGGAT		
28741	GCTACGTTGG	AGTCAGATAA	ATGTGTGCAA	AAAGAAATCC	TTAATAAAGT	TGCGTAATTA
28801	CAAAAGTTGG	TATATCGTGA	CAAGAGTGAT	AGTAATGTCA	CATAATTTAT	TGAATACCCG
28861	AACCTCGCAA	ATGCGGGGTT	TTTCTTCGCA	TAATCAAAGA	GAAAGCTATG	AAAAAAACAC
28921	TGATTACTCT	TATTCTCAGT	ACCCTTTCTT	TTGGTGCTTT	GGCACAGCAG	CCTCCCTTCC
28981				GTGGATTTAA		
29041				ATGATGCGTG		
29101				AATTCGCGGC		
				AGCTATCTGG		
29161						
29221				GTTTATGTTG		
29281				GTTCGTATCG		
29341				ATCCGCATAG		
29401				GCTTTCTGGG		
29461				TGGTCACTGA		
29521	aagttaaaaa					
29581	ACGTTGACGG	ATGTAAATAT	ACAGTATTAT	AGTCCTTTGA	TATGTTATTA	AATTGAAAAA
29641	CCTTTAAACT	ATATTCGGGG	GAAATTATTA	TGTCAGATGT	TCGTAATATT	ATTAATGTTG
29701	ATAACAATTT	TGGTTGTGAA	TATAAAGCGG	ATTTATTTAA	ATAAGTTITC	ATAATTGTGA
29761	TACACCCATT					
29821	TTTGACATGG					
29881	ATGCAAGGAT	TGCCATAGAC	GTTCAATTTT	ATTCAACCAC	GGGCAATACC	TCCCTAAAAA
29941	GAGAAGATTA	אסטטטיייייייייייייייייייייייייייייייייי	TOTAL	CCAAACCCTC	VCCLALCCCC	TOUR AND
	GCAATAGTTA	TANDOUS LAND	YCCACNACCAC	THIRD CCTG	ソングルンはないと	TOTINIONN
30001	OCAMING TIA	TCTWWWTTIN	VCG10V10G1	TITOOCHIIN .	ACAIAITGAT	IGITAATTIC
30061	ATCTAACAAT	TIGATAAATA	AATUIGAGTT	CITICICAAG	CIACCGACAT .	AAGTGATTTC
30121	TITCGTTTTC	GCGTTGAGGC	AATTGGCAAG	GIAGIGITIT	IGGITCTTTC	CGGGGGTAAC
30181	AACACGCTTT	TGTTGCCCTT	TGAAGCACCA	GICTGCACCG	ATTITCGGGT	TCAGGTTGAT
30241	GTCCACCTCA	TCCTCATAGA	AGACCGGGTG	TITCTCTTGA	GGCATTGGAT	AACGTCTCGC
30301	TGATTTTTGC	CATTTTTCA	TCATACTCAG	GGTCAGGCAA	TTTTACGGTT	GGTGCCGCCC
30361	TTCGCCAAAC	GATGCCCGTC	CGGCAAAAGT	AGCGATAGAG	GGTACTTTGA	GAGAGCGATG
		· · · -				

Fig.2.

30421			TTAAGTGTAA			
30481			TGCTGTAATA			
30541			CCCGCCGGGA			
30601			TGAACGGAAG			
30661			TGTAACATCA			
30721	TATCCCGGGT	TTTCTGGATA	GCTTTTTCA	TCGGACGTCG	TTCATTTCGG	GGTATTGATG
30781	TTATGATTGG	CATGACTCAG	TCCATTTTGG	GATTIGTTTT	GATTTGGCGA	TTAATCAGAT
30841	CGCGAAAATC	GGACTGAGTT	CCCTTCAAGT	GATCTACTAT	TTTGAAATCT	TATTTAATCA
30901	GGAGTCAGCA	AATGAGTTAT	TCCCCATAAT	ACCTGACCAT	GTGGTTGTTT	ATCCGGGAAA
30961			TGTGGATTCC			
31021			CTTTCAGTAA			
31081			TITATTITAC			
31141			CTAAAGGCAA			
31201			TATTGAATAA			
31261			TGGTTTCTGC			
31321			GCCAATCATA			
31381			GTTGGATGTG			
			GGAAATTCAA			
31441			CTCGCATTGA			
31501						
31561			ATATTGGCTG			
31621			GATAAAACAG			
31681			TTCAAACATT			
31741			GAAGCGATCC			
31801	GGAACCGGCA	GCTTTGTGGA	CAGGCAATTA	CGTCAGTTGC	ACAGIGATGT	GCIGIATICI
31861			CGGTTACATT			
31921			GCTGATGTAT			
31981			CCCTTTGGTC			
32041			TCGATGGCTG			
32101			GCCGTTGGTG			
32161			CTTGATGGAG			
32221			ATTGGTGGCG			
32281	CAGCGCCATG	TTGTGTTAAG	CTATATTTTA	CTGAATGGAC	ATACGCTGGA	TCTCGCCCAG
32341	TTTGTCCATC	AACTGACTGA	ACAATCTCCG	GAGCATGAAA	CCATGTTGAT	GACTATIGCA
32401	GAACAGCTTG	AACAAAAAGG	GCGTGAGCAA	GGCCGGACAG	AAGGCAGAAC	AGAAGGCAGA
32461	GCTGAAGGAC	GGGAAGAAGG	CAAGCTGGAA	ACGGCGCGCG	CATTATTACG	GCATGGTGTC
32521	AGTCTGGACA	TCATTGTCAC	CAGTACCGGC	CTGAGCCGGG	AGAAAATTGA	AGCGTTAAAG
32581	CATTAAATGG	ATACGCTTTT	TCACAGCAGG	ATATGGTGAC	CCCTGTGAGG	CCACCGGAAA
32641			CGACGGGTTA			
32701			ATCTTCTCTT			
32761			AGGCCATCAT			
32821			TAAATTCCCT			
32881			GCATTAAAGA			
32941			CCGCGTGCAA			
33001			GCACCTITIT			
33061			TCAGCACCCA			
33121			ACACCTTGTG			
33121			GGATTGGGCG			
	MOINVICONI	CACCOUNTER	TGGTGACCGA	ONGONGGOII	CCNACCCGICA	CCRRRCARCE
33241	TOGGGGGWIN	CACADACATA	TTGTCTAAAT	AACCTCCCAT	CCMCCCCCIV	CCWWGWG 1
33301						
33361	CCATTTTGGC	AACGACGGCG	CTACAGGCTA	TCGIGATITC	TTTACGGGCC	COGGTTCCAA
33421	AGGCGATGTT	CAGIGCITCA	CGCAGCTCTT	TCACTAACAA	AACATAGTTT	GGGCCATCAT
33481			CCTTCTTCAC			
33541			AAACGCCGGG			
33601			GGCCATCACA			
33661			CTTATGCCCT			
33721	AATCCCCCCA	GTAAACCGGA	GGCTGCATCC	TGATTGTAAT	ATTGCAAGAA	ATTCTTCGGG
33781			CGCGTCCAGA			
33841	TAAGGATCAA	CGGGTACAAT	ATGGCCTAAT	GTAATAGGGG	CAATCTGGCC	ACTGCTGGCT
33901			GTCAACAACC			
33961			ACTGAAAATC			
34021	TCCAGATCAA	AACCACGGCC	GGGGGCATCG	TCGCTGGTCA	GCGCAGTGTT	ATCCTGGGTT
34081	TCTGGCGACA	AACGCGCATC	ATACTGGCAC	CAGTCAGTAA	TATAGGCAGA	GACTTTAGGC
34141			ATCAACTTCA			
34201			AGTTCCGCTG			

Fig.2.

34261	GTTTCTTCTG	TGAGTGCATC	ATATTGCAAT	ACCTCGGTTT	TTTCTCCCCGG	CGGTACATCA
34321	GGCGTATTGG	GGTTACCGTG	ATCGGCAATT	TCTTCCGGTG	TCGCCTCACG	GACATATTGC
34381					GGTCGGGAAT	
34441	TCAACCCAGC	CGATGTTTTT	AAAAACCGCG	CTATCATAAA	TGACATACCA	GGTTTGACCA
34501	CCAGATTGAT	TCTGCCAGGC	AACCAGAGAT	GCGCCTACTT	CGCTGCTGGC	GTCAGACATC
34561	GCTTTAATTG	AAGGGTATCG	ATAAACATTT	TGAGACATAA	TTTCACTTCC	GGCCCCGTTA
34621					GTTTTAATTG	
34681					CACTCACATC	
34741					GCTGATCCTG	
	AATTCCAACT	TCCACTCTCA	AATCCCCCCCC	CICCCALCYY	AAGGCAGGAA	AACTTCATCA
34801	WATICCHECI	CCCTCAACAT	CCCCCCCC.	TOCATEGOOG	TIGAAATCAC	Cy Cy Country
34861	TCWWWIIION	GCC1GVVCV1	97CGCIGICI	CCTTTCCTCT	ATTCCAAGGG	CTTARCCIIGA
34921					TGCTGAGTTG	
34981	TAAICGAIAG	TITIIMAGIC	CCCCACIACIO	CCCCCCAATC	ACAGCGCTAC	TWCCWGIGWW
35041	GCCCGTACAT	CITCATAAGG	CCCCAGCAA1	N N C N N C N TOTOTO	CGGCGCTCAG	GGIIIIIAIA
35101	CGCCGATCAG	CG1GGG1CGG	ATAATCGCGC	WWGWWCWIII	CGGCGCICAG	TAAGAAAG1G
35161	AATGAACCCG	TACTCTTGCC	AATTICCCAC	TGTGATGATG	TCAGTAATGA	TTTTACCGAT
35221	ATGGTTTTTA	TGATCTCCAG	ACGICIGGIG	TTATGTTGCA	AATACGCCTG	ATCCATCCGT
35281	TGTAAGGCTA	ATTTCAGATG	TTCTCCGACC	AGCAGCCCCT	GATAAAGATC	ATTCCAGAGA
35341	CCACTTTGGA	CGAAATTCAT	ATCATACIGA	CCIGITICGI	ACTGCCAGGA	GGCTTCGGCC
35401	AGTAAACAGA	GGGAATTAAC	CGCATCATAG	GCTTGCAGGT	AAAGCCGGAG	ATTTGGCTGA
35461	TCATCCACAT	GTATAACGCA	TCATTGGTAN	ANTIGITCHN	NNNNNNNNN	NNNNNNNN
35521	CCGAAGCATA	CCGCCAAGAC	CATCCCCCCG	ACGGCCAGAC	CGAAAATATT	GGGAACCATA
35581	TCCGCCACAG	CGGCCGCAGT	GGCGGCTGAC	TGGGCAGCGA	TCACACCTTC	AGCCGCTCTT
35641	GATTGTAATG	CGATAACTTC	CTGCTCGGTG	ATGGAGATGT	TTTCATCATA	GAGCGATTTA
35701	TAGTGTTGCT	GGCGCTCCTG	AGCGGCCCGT	CGGCTGATGG	TCAGTGCATC	CAATGAAGCC
35761	TGTTGCATGT	CAATCGCTTG	CTGTTGCAGA	TTGCGGGTAA	AGCTGTACAG	CCCCAGTTGC
35821	TGCTGCATAC	GGAAGTGTTC	AAAATCGGTA	TIGICITITI	TCTCCAGCAA	ACTCAGTAAC
35881	GTGCTGCCGT	ACTGAATCAG	CGTTTCTGCG	GCCTCTTTTG	CCCGGCTCAT	GATCGGGGTG
35941	AAACGATAAT	TCGGGATTGC	CCGGCGTTTC	ATGCCCGCCA	TACGATTAGC	CACAACACGC
36001	TEGTANCECT	GCCTGAGCAG	ATCTTGCGGG	CTGATGGGTT	CATCGTATAA	TCCGGCCGGA
36061	שמיירדישר	CATCCAAGGT	CAGGTTATGA	CGTAAGTTAT	ATAGACGCTG	ATCCAACATT
36121	TECCACACTT	TGAGATATTC	CGTATCAACA	GGTTTGACAA	ATAAATCAGA	CGGTGCGGCA
36181	CACACGGATG	TATCATATGT	CACAGGCAGA	AGTGGCACGT	TGCTGACAGT	AAGCATTAAC
36241	TOTAL	CTCCTTCACT	GTTTTCATAC	AGAGCCACAT	CTTGCAGCGT	ACGGGGTTGC
36301	CACTUTECCE	CCACCAGAAT	ATCAGGGCTG	GTACCCAGTA	ACATATTGAC	GGAGTCATAG
36361	ATCTCCTTCC	CCACAGTACG	TGCACTGGAT	GTCAGCTTAC	GGTATTCCAT	GTCTCCCTGA
36421	TOTANCACAT	TCTTGACATA	GAAACGGAAT	ATTGCTTTCC	GGTAGTGAAT	GGGTTCACTG
36481	CCTCCAATCC	CATCCGGATC	GCTTGGTTCA	ATTAACATCC	GGTACACGGT	GGGTGGAGGA
36541	TCAATAATTC	CCCCTGAATT	CCAGTAACGC	GGTTTACCTT	GGTTGCTGGC	CTGAACAAGT
	TOWNE	CCCCATTAAA	AATATACTCC	AGCCATTCGG	TGGCCTCTTT	TAATCCTTCT
36601	TOTTCITCO	CACCOUNTINUE	CACCACAAAT	CCCATATCCA	AAAACAGTTC	CCAGAAATAG
36661	TCIMINITICA	CCC ATTTA A	ATCANTOCCC	CTACCCAATC	AACCGGGTAT	ACCURETTICE
36721	AICCCAITIG	CACCATITAN	WICHWICOGC	TOCCCONTAC	CCTGACTGGC	ANTOCOCNTO
36781	GTAATAAGCT	GIGIATICCA	GCTCWGTWCC	TOCOGGATAC	GCGCGTTATC	WW100COW1C
36841	AGTTTTTTG	CAAACAGIGI	ATTANGGEGA	AIGITITITE	GTTTAATCAG	TTCCCCX NTX
36901	GCGGGGAAGG	AAAGGAATIG	CACCIGAICC	TG11CV11GV	GITIMATCAG	11CGCGAATA
36961	TGCATACCGA	TICIGAACIC	TIGAGIACAG	CIGGCACIII	CATTGCCAAC	ACCACCITIG
37021	GGCTTAAAGA	GAAGTTCGGC	TITCAGGGTG	ATTCGATTAT	CCGACCCCAG	CITGATIGAT
37081	GGATAGGTTA	AATCAAGAAC	TTTTTCGCTC	AGTACCAGTG	GTTGTTCATC	CAAGACAGTA
37141	TTATCGTGCA	TCAGCCGGAA	AGAACCGTTG	TAATATIGAT	GATCTTCTAT	CGCACCAAAC
37201	TTAAAGTCAG	ATTGAGCGAC	AATCTCCAGT	GIGICATCAG	TGCCATGAAC	AAAATTGACA
37261	ATCAGTTTGA	TACTGTCTTT	GCCGAAATCA	GGGTTCATTC	CGGTTTGGAT	TCTCCGGCAA
37321	TAGGAAAGCG	TTCTTCCCGG	GTTGCCGGAT	AGAGCACCAT	AGTACGGTAA	TCGATAGGAT
37381	TGCCTTAAGG	CATCCTIGIG	TTCACGTGAG	TAATACCAGA	CCAGGTTGCC	GACATATTTT
37441	CCTTTTCGTC	CATCAGCATA	TIGGTCATCC	GGCAAATCAG	TAATTTCTAC	CAGCAGTGTA
37501	TCGCAGACAT	AACCGAAGGC	TTCGTCATAA	TCATAATCCT	TACCTITCTT	ATCTGTCCCC
37561	TGAAGACGGA	CAAACGGAAC	CAGAGCCAGA	AACGGGTTAT	GCGGGTCTTG	CTGTATATCC
37621	ATCACAGCAA	CCATCTGGGC	CATCCGGTAT	TGCAGATGTC	TTCGCGCAGA	ATGGTGGGTG
37681	TACTCCAGCT	GCCATCATAT	TTGGCATAAG	CGATTTTGAT	CCGGTCAGGA	ACGGTGTGGG
37741	AGGAACCCAA	TCACCCGCAC	TAGGCTCAAC	GTTTTGGTTA	TGCAGTGATA	ACGCAGTTGT
37801	ATCTTTAGTT	TCAGACTGTT	CTTCAACTTC	CGTCCAGGCA	ATATACAGGC	GATTATTCAG
37861	GARRATEGEG	CGTATCAAAT	TGGGGTCTAC	GCTGCCCAAT	GGCAGGTCAA	TAGGTTTCCA
37921	CACCCACCAC	CCATTCCCAG	ATAACGCATC	GGTATCAGGA	TGGCGTATCG	AAAGATTCAG
37981	TEARCECCAG	TAATATTCCT	ATGGCTGTGT	ACGGGTACGT	CCGACAAAGA	AGAACTTATC
38041	GCGTTTGATG	TTAACACCAT	CTTCATAACC	TGCGATAACT	TTCAGGTTAC	TGACATCTTC
20041						

Fig.2.

38101	AAAATTATTC	AGATAACCGA	GCACCGCTTG	TTGTACAGAA	TCTTCGGTAA	TITTTCCCTG
38161	ATTAAGGGCA	CTTTCCAGTT	GGAAGAAGAA	TTCTGTTTTA	TTCAGGCGTA	ACAGGGGTTC
38221	CAGATAGCTT	TCCGGATAAG	TCCGTAATAA	GCGATCCC		

N=unspecified base

Fig.3.

rnational Application No PCT/GB 97/02284

A. CLASS IPC 6	#PICATION OF SUBJECT MATTER A01N63/02 A01N63/00 C12N1/20 63:02,63:00),(A01N63/00,63:00)	0 C07K14/24	//(A01N63/02,
According t	o International Patent Classification (IPC) or to both national classific	ation and IPC	
	SEARCHED		
Minimum de IPC 6	ocumentation searched (classification system followed by classification AO1N C12N	on symbols)	
	tion searched other than minimum documentation to the extent that s		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	·	
Category *	Citation of document, with indication, where appropriate, of the rela	evant passages	Relevant to claim No.
X	WO 95 00647 A (COMMW SCIENT IND F ;SMIGIELSKI ADAM JOSEPH (AU); AKF 5 January 1995 cited in the application		1,5,11, 13, 18-21, 24-26, 29,30,32
Y	see page 1, line 3 - line 29; cla	aims 10-13	3,4, 6-10,12, 14,27, 28,31
	<u></u>	-/	
	·		-30
X Furti	her documents are listed in the continuation of box C.	χ Patent family members	are listed in armox.
* Special ca	stegories of cited documents :	"T" later document published afti	or the international filing date
	ent defining the general state of the art which is not tered to be of particular relovance	or priority date and not in co	onflict with the application but copie or theory underlying the
"E" earlier of tilting of	document but published on or after the international tate	"X" document of particular releva	ance; the claimed invention or cannot be considered to
which	ont which may throw doubts on priority claim(s) or is cited to establish the publicationdate of another n or other special reason (as specified)	involve an inventive step wi "Y" document of particular releva	nen the document is taken alone
	ent referring to an oral disclosure, use, exhibition or means	document is combined with	one or more other such docu- sing obvious to a person skilled
"P" docume	ant published prior to the international filing date but han the priority date ctaimed	in the art. "8." document member of the sai	
Oate of the	actual completion of theiritemational search	Date of mailing of the interna	ational search report
1	7 December 1997	14/01/1998	
Name and r	mailing address of the ISA European Palent Office, P.B. 5818 Patentiaan 2	Authorized officer	
	NL - 2260 HV Rijewijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Muellners, W	I »

Form PCT/ISA/210 (second sheet) (July 1992)

national Application No PCT/GB 97/02284

PC1/GB 9//02284						
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.				
Calegory	CIRCUIT OF STATE OF S					
Y	CHEMICAL ABSTRACTS, vol. 118, no. 1, 4 January 1993 Columbus, Ohio, US; abstract no. 3550, YAMANAKA, SATOSHI ET AL: "Biochemical and physiological characteristics of Xenorhabdus species, symbiotically associated with entomopathogenic nematodes including Steinernema kushidal and their pathogenicity against Spodoptera litura (Lepidoptera: Noctuidae)" XP002048914 see abstract & ARCH. MICROBIOL. (1992), 158(6), 387-93 CODEN: AMICCW;ISSN: 0302-8933, 1992,	3,6				
Y	DATABASE DISSABS STN-International / UMI Company STN-AN 96:33246, DISSABS order no. AAI9608671 , 1995 DAVID JOSEPH BOWEN: "Characterization of a High Molecular Weight Insecticidal Protein Complex Produced by the Entomopathogenic Bacterium Photorhabdus luminescens (Nematodes, Biological Control)" XP002048915 see abstract & DISSERTATION ABSTRACTS JOURNAL INTERNATIONAL , vol. 57, no. 1B, 1995, page 93	4,12,14				
Y	EP 0 238 441 A (CIBA GEIGY AG) 23 September 1987 see page 1 - page 2 see page 4, paragraph 3 - page 5, paragraph 2; claims 10,12,22,36,37	7-10,27, 28,31				
X	WO 84 01775 A (COMMW SCIENT IND RES ORG; BIOTECH AUSTRALIA PTY LTD (AU)) 10 May 1984 cited in the application see page 1 - page 3, line 10 see page 4, line 24 - line 28 see page 4, line 36 - page 5, line 3 see page 14, line 17 - line 29 see claims 26,27	1,4,5,11,13				

mattonal Application No
PCT/GB 97/02284

		PC1/GB 9//U2284				
C.(Continu	Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT					
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.				
X	H.MATSUI ET AL.: "Nucleotide sequences of genes encoding 32 KDa and 70 kDa polypeptides in mba region of the virulence plasmid, pKDSC50, of Salmonella choleraesuis "NUCLEIC ACIDS RESEARCH, vol. 18, no. 8, 1990, pages 2181-2, XP002050055 see the whole document	21-25				
K	F.BINDER ET AL.: "Cyclodextrin-glycosyltransferase from Klebsiella pneumoniae M5al: cloning nucleotide sequence and expression" GENE, vol. 47, 1986, pages 269-77, XP002050056 see page 269, the summary see page 270, right-hand column, last paragraph - page 271, right-hand column, paragraph 1 see fig. 3 bp 2641-2809	21-25				
>,χ	US 5 616 318 A (DUDNEY RALPH A) 1 April 1997 see column 1, line 65 - column 2, line 52 see column 5, line 3 - line 4	1,4-6, 11,13				
	WO 97 17432 A (WISCONSIN ALUMNI RES FOUND) 15 May 1997 see page 2, line 31 - page 3, line 23 see page 5, line 1 - line 16 see page 8, line 23 - line 33 see page 9, line 41 - page 11, line 14 see page 17, line 1 - line 21	1-32				

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

reational Application No PCT/GB 97/02284

			1.	
Patent documentated in search rep		Publication date	Patent family member(s)	Publication date
WO 9500647	A	05-01-95	AU 675335 E	30-01-97
	,,		AU 6991694 A	17-01-95
			EP 0705340 F	
			JP 9500264 1	14-01-97
EP 0238441	Α	23-09-87	GB 2188049 A	23-09-87
	••		AU 608508 E	3 11-04-91
			AU 6999287 A	17-09-87
			BG 46006 A	
			BG 46752 /	15-02-90
			BR 8701162 /	12-01-88
			DE 3788077 (
			DK 128687 A	
				A 28-02-94
			ES 2059404 T	Г 16-11-94
			IE 594 5 6 (
			JP 62224295 /	A 02-10-87
WO 8401775	Α	10-05-84	AU 558287 I	
			CA 1214130 A	
			EP 0126092	
			US 4672130 /	A 09-06-87
US 5616318	Α	01-04-97	NONE	
WO 9717432		15-05-97	AU 1050997	A 29-05-97
	••			A 15-05-97
			EP 0797659	A 01-10-97