Reinterpreate Types

1 INTRO

Here is a formalization of our type system.

2 CORE LANGUAGE

First, we'll define a small core language with basic integers, booleans, and functions.

```
\begin{array}{llll} e & ::= & \mathbb{Z} \mid \mathbb{B} \mid x \mid \text{fun } x \rightarrow e \mid e \; e & expressions \\ x & ::= & (identifiers) & variables \\ v & ::= & \mathbb{Z} \mid \mathbb{B} \mid \text{fun } x \rightarrow e \mid x & values \\ \tau & ::= & \text{int} \mid \text{bool} \mid \tau \rightarrow \tau & types \end{array}
```

Fig. 1. Core language grammar

The typing rules of the system is defined as following:

Definition 2.1 (Typing rules).

- (1) $\models e : \text{int iff } e \Longrightarrow v, v \in \mathbb{Z}.$
- (2) $\models e : \text{bool iff } e \Longrightarrow v, v \in \mathbb{B}.$
- (3) $\models e : \tau_1 \rightarrow \tau_2 \text{ iff } \forall v \text{ such that } \models v : \tau_1, \models e v : \tau_2.$

3 LANGUAGE EXTENSIONS

Next, we will define a couple of languages extensions and their corresponding typing rules.

```
\begin{array}{lll} e & ::= & \cdots \mid a & expressions \\ v & ::= & \cdots \mid a & values \\ \tau & ::= & \cdots \mid \alpha \mid \tau \cup \tau \mid \tau \cap \tau \mid \{\tau \mid e\} \mid (x:\tau) \rightarrow \tau \mid \mu\alpha.\tau & types \end{array}
```

Fig. 2. Extended language grammar

Definition 3.1 (More typing rules).

- (1) $\models e : \alpha_i \text{ iff } e \Longrightarrow a_i$.
- (2) $\models e : \tau_1 \cup \tau_2 \text{ iff } \models e : \tau_1 \text{ or } \models e : \tau_2.$
- (3) $\models e : \tau_1 \cap \tau_2 \text{ iff } \models e : \tau_1 \text{ and } \models e : \tau_2.$
- (4) $\models e : \{\tau \mid p\} \text{ iff } \models e : \tau \text{ and } p e \Longrightarrow \mathsf{true}.$
- (5) $\models e : (x : \tau_1) \rightarrow \tau_2$ iff $\forall v$ such that $\models v : \tau_1, \models e \ v : \tau_2[v/x]$.
- (6) $\models e : \mu \alpha. \tau \text{ iff } e : \tau [\mu \alpha. \tau / \alpha].$

We will now extend the language with records.

$$\begin{array}{lll} e & ::= & \cdots \mid \{\overline{\ell = e}\}^{\{\overline{\ell}\}} \mid e.\ell & expressions \\ v & ::= & \cdots \mid \{\overline{\ell = v}\}^{\{\overline{\ell}\}} & values \\ \tau & ::= & \cdots \mid \{\overline{\ell : \tau}\} & types \end{array}$$

Fig. 3. Extended language grammar (with records)

Definition 3.2 (Record typing rules).

(1) $\models e : \{\ell_1 : \tau_1, \dots, \ell_m : \tau_m\}$ iff $e \Longrightarrow \{\ell_1 = v_1, \dots, \ell_m = v_m, \dots, \ell_n = v_n\}^{\{\ell_1, \dots, \ell_m\}}$ where $\models v_i : \tau_i \text{ for } i \in \{1, \dots, m\}, n \ge m$

4 TYPE AS VALUES

In this section, we will demonstrate how to represent each type using a tuple of functions generator and checker.

Definition 4.1 (Semantic interpretation of types). We define the semantic interpretation of types as $\llbracket \tau \rrbracket$, where $\llbracket \tau \rrbracket = \langle \text{generator}(\tau), \text{checker}(\tau, e) \rangle$.

Definition 4.2 (Defining Generator in the core language).

- (1) generator(int): pick $n \in \mathbb{Z}$.
- (2) generator(bool): pick $b \in \mathbb{B}$.
- (3) generator($\tau_1 \rightarrow \tau_2$): fun $x \rightarrow$ generator(τ_2).

Definition 4.3 (Defining Checker in the core language).

- (1) $checker(int, e) : e \sim int.$
- (2) $checker(bool, e) : e \sim bool.$
- (3) checker($\tau_1 \rightarrow \tau_2, e$): let arg = generator(τ_1) in checker(τ_2 , (e arg)).

Definition 4.4 (Defining Generator in the extended language).

- (1) generator(α_i) : a_i .
- (2) generator($\tau_1 \cup \tau_2$): pick $b \in \mathbb{B}$. If b Then generator(τ_1) Else generator(τ_2).
- (3) generator($\tau_1 \cap \tau_2$) where τ_1, τ_2 are not arrow types: pick $b \in \mathbb{B}$. If b Then let gend = generator(τ_1) in take(checker(τ_2 , gend), gend) Else let gend = generator(τ_2) in take(checker(τ_1 , gend), gend).
- (4) generator($\tau_1 \cap \tau_2$) where $\tau_1 = \tau_{dom1}$ -> τ_{cod1} , $\tau_2 = \tau_{dom2}$ -> τ_{cod2} : fun x -> If checker(τ_{dom1} , x) Then generator(τ_{cod1}) Else generator(τ_{cod2}).
- (5) generator($\{\tau \mid p\}$): let choice = generator(τ) in take(p, choice).
- (6) generator($(x : \tau_1) \rightarrow \tau_2$): let $\tau_2' = \text{fun } x \rightarrow \tau_2 \text{ in fun } x' \rightarrow \text{generator}(\tau_2' x')$.
- (7) generator($\mu\alpha.\tau$) : generator($\tau[\alpha/\mu\alpha.\tau]$).
- (8) generator($\{\ell_1: \tau_1, \cdots, \ell_n: \tau_n\}$): let $v_1 = \operatorname{generator}(\tau_1)$ in \cdots let $v_n = \operatorname{generator}(\tau_n)$ in $\{\ell_1 = v_1, \cdots, \ell_n = v_n\}$.

Definition 4.5 (Defining Checker in the extended language).

- (1) checker(α_i , e) : $e \sim a_i$.
- (2) checker($\tau_1 \cup \tau_2, e$) : checker(τ_1, e) or checker(τ_2, e).
- (3) $\operatorname{checker}(\tau_1 \cap \tau_2, e) : \operatorname{checker}(\tau_1, e) \text{ and } \operatorname{checker}(\tau_2, e).$
- (4) $checker(\{\tau \mid p\}, e) : checker(\tau, e) \text{ and } eval(e) = true.$
- (5) checker($(x:\tau_1) \rightarrow \tau_2, e$): let arg = generator(τ_1) in checker($\tau_2[arg/x]$, (e arg)).
- (6) checker($\mu\alpha.\tau, e$) : checker($\tau[\mu\alpha.\tau/\alpha], e$).
- (7) $\operatorname{checker}(\{\ell_1:\tau_1,\cdots,\ell_m:\tau_m\},e):\operatorname{eval}(e)=\{\ell_1=v_1,\cdots,\ell_m=v_m,\cdots,\ell_n=v_n\}^{\{\ell_1,\cdots,\ell_m\}}$ and $\operatorname{checker}(\tau_1,v_1)\cdots$ and $\operatorname{checker}(\tau_m,v_m)$.