同步时序逻辑电路的设计方法

- 逻辑抽象,得出电路的状态转换图或状态转换 表;
- 状态化简;
- 状态分配;
- 选定触发器的类型,求出电路的状态方程、驱动方程和输出方程;
- 根据得到的方程式画出逻辑图;
- 检查设计的电路能否自启动。

例 设计一个同步5进制加法计数器

- (1) 根据设计要求,设定状态, 画出状态转换图。该状态图不须化简。
- (2) 状态分配,列状态转换编码表。

状态转换表

	现 态	次态	进位输出
状态转换顺序	$\mathcal{Q}_{2}^{\mathtt{n}}$ $\mathcal{Q}_{1}^{\mathtt{n}}$ $\mathcal{Q}_{0}^{\mathtt{n}}$	\mathcal{Q}_{2}^{n+1} \mathcal{Q}_{1}^{n+1} \mathcal{Q}_{0}^{n+1}	Y
\mathcal{S}_{o}	0 0 0	0 0 1	0
\mathcal{S}_{i}	0 0 1	0 1 0	0
S_{2}	0 1 0	0 1 1	0
\mathcal{S}_z	0 1 1	1 0 0	0
S_4	1 0 0	0 0 0	1

(3) 选择触发器。选用JK触发器。

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

(4) 求各触发器的驱动方程和进位输出方程。画出电路的次态卡诺图。

Q_1^n	Q_0^n	01	11	10
Q_2^n 0	001	010	100	011
1	000	×	×	×

将电路的次态卡诺图进行分解,并将由这些卡诺图化简得到的状态方程化为JK触发器特性方程的形式:

Q_1^n	Q_0^n	01	11	10
Q_2^n	001	010	100	011
1	000	×	×	×

 Q_2^n

01

0

X

0

11

0

X

10

X

Q_1	${}^{\scriptscriptstyle 1}\!\mathcal{Q}^{\scriptscriptstyle 0}_{0}$	01	11	10	
Q_2^n	0	0	1	0	
1	0	×	×	×	
Q_2^{n+1}					

Q_1	${}^{\scriptscriptstyle 1}\mathcal{Q}^{\scriptscriptstyle 0}_{000}$	01	11	10
Q_2^n	0	1	0	1
1	0	×	×	×
Q_1^{n+1}				

\mathcal{Q}_2	\mathcal{L}_1
$Q_2^{n+1} = Q_0^n Q_1^n \overline{Q_2^n} = J \overline{Q_2^n} +$	$\overline{K}Q_2^n \Longrightarrow J = Q_0^n Q_1^n, K = 1$
$Q_{1}^{n+1} = Q_{0}^{n} \overline{Q_{1}^{n}} + \overline{Q_{0}^{n}} Q_{1}^{n}$	$= J\overline{Q_1^n} + \overline{K}Q_1^n \Longrightarrow J = K = Q_0^n$
$Q_0^{n+1}=\overline{Q_0^nQ_2^n}=J\overline{Q_0^n}$ +	$-\overline{K}Q_0^n \Longrightarrow J = \overline{Q_2^n}, K = 1$

再画出输出卡诺图

可得电路的输出方程:

$$Y = Q_{i}$$

(5) 将各驱动方程与输出方程归纳如下:

$$J_{0} = \overline{Q_{2}}$$
 $K_{0} = 1$
 $J_{1} = Q_{0}$ $K_{1} = Q_{0}$
 $J_{2} = Q_{0}Q_{1}$ $K_{2} = 1$
 $Y = Q_{2}$

(6) 画逻辑图。

(7) 检查能否自启动

利用逻辑分析的方法画出电路完整的状态图。

可见,如果电路进入无效状态101、110、111时,在*CP*脉冲作用下,分别进入有效状态010、010、000。所以电路能够自启动。

例 设计一个串行数据检测器。该检测器有一个输入端X,它的功能是对输入信号进行检测。当连续输入三个1(以及三个以上1)时,该电路输出Y=1,否则输出Y=0。

解:

(1) 根据设计要求,设定状态::

 S_0 ——初始状态或没有收到1时的状态;

 S_1 ——收到一个1后的状态;

 S_2 —连续收到两个1后的状态;

 S_3 ——连续收到三个1(以及三个以上1)后的状态。

(2) 根据题意可画出原始状态图:

(3) 状态化简。

观察上图可知, S_2 和 S_3 是等价状态,所以将 S_2 和 S_3 合并,并用 S_2 表示,得简化状态图:

(4) 状态分配。

该电路有3个状态,可以用2位二进制代码组合(oo、o1、10、11)中的三个代码表示。本例取 S_0 =oo、 S_1 =o1、 S_2 =11。

(5) 选择触发器。

本例选用2个D触发器。

编码后的状态图

(6) 求出状态方程、驱动方程和输出方程。

列出D触发器的驱动表、画出电路的次态和输出卡诺图。

D触发器的驱动制	₹
----------	---

Q° -	* Q ^{p−1}	D
0	0	0
0	1	1
1	0	0
1	1	1

触发器的次态和输出卡诺图

由输出卡诺图可得电路的输出方程:

$$Y = XQ_1^n$$

根据次态卡诺图和D触发器的驱动表可得各触发器的驱动 卡诺图:

D触发器的驱动表

		~ DD M D 3 C - 73 - 6 C
\mathcal{Q}^{\bullet}	→ Q*-1	D
0	0	0
0	1	1
1	0	0
1	1	1

$\mathcal{L}_{\mathcal{F}}^{g_1}$	₽ °000	01	11	10
0	00/0	00/0	000	×
1	01/0	11/0	11/1	×

各触发器的次态和输出卡诺图

由各驱动卡诺图可得电路的驱动方程:

 $D_1 = X Q_0^n$

$$D_0 = X$$

$$D_1 = XQ_0^n$$

(7) 画逻辑图。

根据驱动方程和输出方程,画出逻辑图。

(8) 检查能否自启动。

集成计数器的应用

1. 计数器的级联

(1) 同步级联。

例:用两片4位二进制加法计数器74161采用同步级联方式构成的8位二进制同步加法计数器,模为16×16=256。

(2) 异步级联

例:用两片单时钟4位二进制可逆计数器74191采用异步级联方式构成8位二进制异步可逆计数器。

(3) 用计数器的输出端作进位/借位端

有的集成计数器没有进位/借位输出端,这时可根据具体情况,用计数器的输出信号 Q_3 、 Q_2 、 Q_1 、 Q_0 产生一个进位/借位。

例:如用两片74290采用异步级联方式组成的二位8421BCD码十进制加法计数器。

模为10×10=100

2. 组成任意进制计数器

(1) 异步清零法

异步清零法适用于具有异步清零端的集成计数器。

例:用同步十进制加法计数器74160(具有异步清零端)和与非门组成的6进制计数器。

(2) 同步清零法

同步清零法适用于具有同步清零端的集成计数器。

例:用集成同步四位二进制计数器74163(具有同步清零端)和与非门组成的6进制计数器。

(3) 异步预置数法

异步预置数法适用于具有异步预置端的集成计数器。

例:用集成四位二进制可逆计数器74191(具有异步预置数端)和与非门组成的余3码10进制计数器。

(4) 同步预置数法

同步预置数法适用于具有同步预置端的集成计数器。 例:用集成十进制加法计数器7416o(具有同步预置数端) 和与非门组成的7进制计数器。

例 用十进制加法器74160(具有异步清零端)组成48进制计数器。

解: 因为N=48,而74160为模10计数器,所以要用两片74160构成此计数器。

先将两芯片采用同步级联方式连接成100进制计数器, 然后再用异步清零法组成了48进制计数器。

3. 组成分频器

模N计数器进位输出端输出脉冲的频率是输入脉冲频率的1/N,因此可用模N计数器组成N分频器。

例 某石英晶体振荡器输出脉冲信号的频率为32768Hz,用四位二进制加法器74161组成分频器,将其分频为频率为1Hz的脉冲信号。

解: 因为32768= 2^{15} ,经15级二分频,就可获得频率为1Hz的脉冲信号。因此将四片74161级联,从高位片(4)的 Q_2 输出即可。

4. 组成序列信号发生器

序列信号——在时钟脉冲作用下产生的一串周期性的二进制信号。

例:用74161(具有异步清零端)及门电路构成序列信

号发生器。

	状态表				
	现 态		次态	輸出	
Q ₂ "	$\mathcal{Q}_{\mathbf{i}}^{\mathtt{n}}$	<u>Q</u> "	$\mathcal{Q}_{1}^{n+1} \mathcal{Q}_{1}^{n+1} \mathcal{Q}_{0}^{n+1}$	-1 Z	
0	0	0	0 0 1	0	
0	0	1	0 1 0	1	
0	1	0	0 1 1	0	
0	1	1	1 0 0	1	
1	0	0	0 0 0	0	

其中74161与G₁构成了一个模5计数器。

 $Z=Q_0Q_1$,因此,这是一个01010序列信号发生器,序列长度P=5。

例 试用4位二进制加法计数器74161和数据选择器设计一个01100011序列发生器。

解:由于序列长度P=8,故将74161构成模8计数器,并选用数据选择器 74151产生所需序列,从而得电路如下图所示。

计数器和数据选择器组成序列信号发生器

5. 组成脉冲分配器

