

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки
—— КАФЕДРА	Прикладная математика

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕРМОУПРУГОГО РАЗРУШЕНИЯ ХРУПКОГО МАТЕРИАЛА

Студент	ФН2-52Б	А.И. Токарев		
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Руководите	ль курсовой работы		М. П. Галанин	
		(Подпись, дата)	(И.О. Фамилия)	

2021 г.

Содержание

Введение
1. Постановка задачи
1.1. Тензор малых деформаций Коши
1.2. Тензор напряжений
1.3. Поведение свойств среды (анизотропия, ортотропия и изотропия)
1.4. Определяющее соотношение (закон Гука)
1.5. Уравнения равновесия и граничные условия
1.6. Моделирование разрушения. Модель размазанных трещин 1
2. Одномерный случай
3. Результаты вычислений
3.1. Программная реализация
Заключение
Список литературы

Введение 3

Введение

Анализ прочности является очень важной задачей при проверке работоспособности конструкций. Вот почему задача разрушения является очень актуальной. Стоит отметить, что она еще не так подробно исследована и вызывает немало трудностей при моделировании, так как необходимо учитывать внешние условия, структуру материала, нагрузки, существование внутренних дефектов и т.д.

Разрушунием называют процесс нарушения целостности конструкции, происходящее вследствие изменения формы и накопления повреждений. Наиболее опасные области, инициализирующие процесс разрушения, – трещины. Основная цель задачи прочности – предсказание различных сценариев развития разрушения.

Выделяют всего два типа разрушения: хрупкое и вязкое. При хрупком разрушении размер области пластической деформации пренебрежимо мал в сравнении с размером трещины, и оно неразрывно связано с процессом накопления рассеянных повреждений и распространения изолированных трещин.

В процессе разрушения возникают либо рассеянные дефекты, либо многочисленные. Хрупкое разрушение провоцирует появление многочисленных трещин, сопоставимых с размерами тела, их будем называть магистральными трещинами. В области нашего интереса лежат модели, которые учитывают накопление повреждений перед появлением магистральной трещины, а также ее развития. Вот почему более интересным в случае хрупкого разрушения является эффективный подход, который дает возможность наблюдать за изменением напряженно-деформированного состояния тела.

Одним из интересных примеров задач прочности – моделирование разрушения топливных таблеток в ядерных реакторах (диоксид урана UO_2), которые располагаются внутри герметично закрытых тепловыделяющих элементов, которые называют ТВЭЛами.

Целью работы является построение одномерной модели разрушения стержня, состоящего из диоксида урана, а также решение задачи термоупругости с помощью разностной схемы.

1. Постановка задачи

В трехмерном пространстве тензор второго ранга проще всего представить как матрицу, заданную в каждой точке пространства и описывающую неоднородность (в твердых телах – шереховатости, потертости, микротрещины) этого пространства. Тензор, действуя на входящий вектор, изменяет его направление и масштаб. В общем случае напряжения и деформации также описываются тензорами второго ранга.

1.1. Тензор малых деформаций Коши

Под действием внешних сил в твердом теле возникают деформации, иными словам – изменение его формы и объема. Если разбить тело на систему точек $X_i(x_1 \dots x_n)$, а также задать радиус-вектор $\vec{r}_i = \vec{r}(X_i) = \vec{r}(x_1 \dots x_n)$ для каждой из них, причем

$$r_i = \left[\sum_{k=1}^n (x_j - 0)^2\right]^{\frac{1}{2}} = \left[\sum_{k=1}^n x_j^2\right]^{\frac{1}{2}},$$

то деформацию \vec{u} (вектор деформации, вектор смещения)[1] тела в каждой точке можно определить, как разницу между положением до и после приложения силы:

$$\vec{u}(u_1 \dots u_n) = \vec{r}(X_i') - \vec{r}(X_i) = \vec{r}' - \vec{r}.$$
 (1)

Рассмотрим две соседние бесконечно близкие точки, тогда разность расстояния между ними до начала процесса деформации задается величиной dX, а после – dX'. Воспользовавшись определением вектора деформации (1) получим

$$dX' = dX + du \Rightarrow dx'_k = dx_k + du_k,$$

а расстояния dl и dl' между заданными точками до и после деформации соответственно вычисляются по определению:

$$dl = \left[\sum_{k=1}^{n} (dx_k)^2\right]^{\frac{1}{2}}$$

$$dl' = \left[\sum_{k=1}^{n} (dx_k')^2\right]^{\frac{1}{2}} = \left[\sum_{k=1}^{n} (dx_k + du_k)^2\right]^{\frac{1}{2}}$$

По определению полного дифференциала $du_k = \sum_{l=1}^n \frac{\partial u_k}{\partial x_l} dx_l$. Дадим конкретный физический смысл полученной величине.

Пусть $x_1=x,\,x_2=y,\,x_3=z,\,$ а координаты вектора смещения зададим, как $u=u(u_1,u_2,u_3),\,$ тогда

$$du_{1} = \frac{\partial u_{1}}{\partial x}dx + \frac{\partial u_{1}}{\partial y}dy + \frac{\partial u_{1}}{\partial z}dz = \Delta_{11}dx + \Delta_{12}dy + \Delta_{13}dz,$$

$$du_{2} = \frac{\partial u_{2}}{\partial x}dx + \frac{\partial u_{2}}{\partial y}dy + \frac{\partial u_{2}}{\partial z}dz = \Delta_{21}dx + \Delta_{22}dy + \Delta_{23}dz,$$

$$du_{3} = \frac{\partial u_{3}}{\partial x}dx + \frac{\partial u_{3}}{\partial y}dy + \frac{\partial u_{3}}{\partial z}dz = \Delta_{31}dx + \Delta_{32}dy + \Delta_{33}dz.$$

Пусть деформация происходит только в направлении x, значит dy=dz=0 и тогда

$$du_1 = \frac{\partial u_1}{\partial x} dx = \Delta_{11} dx,$$

$$du_2 = \frac{\partial u_2}{\partial x} dx = \Delta_{21} dx,$$

$$du_3 = \frac{\partial u_3}{\partial x} dx = \Delta_{31} dx.$$

Величина Δ_{11} — это растяжение (сжатие) отрезка dx, спроецированного на ось x. Аналогичным образом определяются Δ_{22}, Δ_{33} растяжения (сжатия) вдоль осей y, z

Компоненты Δ_{21} , Δ_{31} определяют поворот параллельно оси x: в первом случае — вокруг оси z в сторону y (против часовой стрелки), а во втором — вокруг оси y в сторону оси z (против часовой стрелки).

Если деформация происходит по всем направлениям, то Δ_{12} определяет поворот параллельно оси y вокруг оси z в направлении x (по часовой стрелке), а Δ_{13} – вокруг оси y в направлении оси x (по часовой стрелке). Компоненты Δ_{23}, Δ_{32} определяют повороты вокруг оси z: в первом случае – в направлении оси y (по часовой стрелке), во втором – в направлении z (против часовой стрелки). Пример деформации приведен на рис. 1

Рис. 1. Процесс деформации

Используя все проделанные раннее рассуждения, преобразуем элемент расстояния $(dl')^2$ к виду:

$$(dl')^2 = (dl)^2 + 2\sum_{k=1}^n dx_k du_k + \sum_{j=1}^n (du_k)^2 = (dl_i)^2 + 2\sum_{k=1}^n \sum_{l=1}^n \frac{\partial u_k}{\partial x_l} dx_l dx_k + \sum_{k=1}^n \sum_{l=1}^n \left(\frac{\partial u_k}{\partial x_l} dx_l\right)^2$$

Запишем в более лаконичном виде:

$$(dl')^2 = (dl)^2 + 2\frac{\partial u_k}{\partial x_l} dx_l dx_k + \left(\frac{\partial u_k}{\partial x_l} dx_l\right)^2 \tag{2}$$

При малых деформациях третьим слагаемым можно пренебречь в силу его большего порядка малости.

Во втором слагаемом индексы j,k являются немыми, поэтому его можно записать в симметричном виде

$$\frac{\partial u_k}{\partial x_l} dx_l dx_k = \frac{1}{2} \left(\frac{\partial u_k}{\partial x_l} + \frac{\partial u_l}{\partial x_k} \right) dx_l dx_k = \varepsilon_{kl} dx_l dx_k, \tag{3}$$

где ε_{kl} – составляющая тензора деформаций в точке X.

В предположении существования аддитивного разложения компонент тензора деформаций Коши запишем:

$$\varepsilon_{kl} = \frac{1}{2} \left(\frac{\partial u_k}{\partial x_l} + \frac{\partial u_l}{\partial x_k} \right) = \varepsilon_{kl}^e + \varepsilon_{kl}^0, \quad k, l = 1, 2, 3,$$

где ε_{kl}^e – компоненты упругой состовляющей тензора деформаций, а ε_{kl}^0 – компоненты тенхора неупругих деформаций среду (в нашем случае температурные деформации).

Термоупругость описывает деформации при неравномерном нагреве деформируемых тел. Термоупругое тело обладает хотя бы одним естественным состоянием, в котором отсутствуют напряжения и деформации, при том температура во всех точках одинакова. Свяжем это состояние с начальной температурой тела T_0 . При нагреве или охлаждении в теле возникают температурные деформации, описываемые тензором с компонентами ε_{kl}^0 :

$$\epsilon_{kl}^0 = \alpha_{kl}^T \Delta T \Rightarrow \epsilon_{kl}^0 \sim \alpha_{kl}^T,$$

где $\mathbf{\alpha}_{kl}^T$ – компоненты тензора теплового расширения.

1.2. Тензор напряжений

Напряжением будем называть меру внутренних сил, возникших в результате приложения внешней силы.

Рассмотрим элементарный объем тела – куб (рис. 2). Если само тело находится в статическом равновесии, то силы, действующие на параллельные грани куба равны по модулю, но разные по направлению. Поэтому можно рассмотреть только те силы, которые действуют на непараллельные грани куба.

Рис. 2. Проекции напряжений в элементарном объеме тела

Рис. 3. Проекции напряжений на ось x_1x_2 , проходящую через центр куба

Выделим какую-нибудь из плоскостей, вырезанную из тела (рис. 3). Равнодействующая всех сил, а также сумма всех моментов равны нулю (следует из статического равновесия). Этот факт позволяет нам сделать вывод о том, что $\sigma_{23} = \sigma_{32}$, а значит в общем случае:

$$\sigma_{ij} = \sigma_{ji}$$
,

то есть тензор напряжений симметричен.

1.3. Поведение свойств среды (анизотропия, ортотропия и изотропия)

Анизотропия – это различие свойств среды (в нашем случае упругости и теплопроводности) в зависимости от направления. Примерами анизотропных тел являются различные кристаллы. Если вырезать две части (одну вдоль оригинального образца, а другую – поперек), то они покажут разные растяжение и сжатие.

Ортотропия (ортогональная анизотропия) — это симметрия свойств тела по одному из 2-3 направлений. Например, древесина очень жесткая вдоль волокон и менее жесткая в радиальном направлении от них.

Изотропия — это, в свою очередь, неизменность свойств среды во всех направлениях. Примерами изотропных тел являются бетон, пластик и металлы.

Характер поведения свойств тел можно определить только экспериментально.

1.4. Определяющее соотношение (закон Гука)

В реальной жизни большинство тел являются анизотропными, поэтому стандартный закон Гука уже недостаточен для описания их физических свойств. Чтобы решить эту проблему, необхоидмо ввести понятие обобщенного закона Гука, определяющего линейную зависимость между компонентами тензоров напряжений и деформаций:

$$\sigma_{ij} = C_{ijkl} \varepsilon_{kl}^e = C_{ijkl} (\varepsilon_{kl} - \varepsilon_{kl}^0), \quad i, j, k, l = 1, 2, 3.$$

$$\tag{4}$$

Тензор C_{ijkl} упругих постоянных связывает два тензора второго ранга. Поскольку тензоры деформаций и напряжений симметричные с 6 независимыми компонентами, то C_{ijkl} будет иметь 6*6=36 компонент. Но он еще и симметричен относительно перестановки пар индексов:

$$C_{ijkl} = C_{klij}$$

поэтому имеет всего 21 независимую компоненту.

Для последующих рассуждений нам понадобится нотация Фойгта – матричная форма записи тензора 4 ранга (симметричный по паре индексов тензор может быть записан в виде матрицы 6x6):

$$11 \to 1,$$
 $22 \to 2,$
 $33 \to 3,$
 $23, 32 \to 4,$
 $13, 31 \to 5,$
 $12, 21 \to 6.$
(5)

Выведем некоторые закономерности для кубического симметричного кристалла (ортотропное тело).

1. В силу симметрии кристалл должен иметь одну и ту же жесткость в направлении всех осей, задающих систему координат, то есть $C_{iiii} =$ = const, i = 1, 2, 3. В частности, для трехмерного случая можно записать:

$$C_{1111} = C_{2222} = C_{3333} \stackrel{(5)}{\Leftrightarrow} C_{11} = C_{22} = C_{33}.$$

2. Вдоль пространственных диагоналей направлены оси симметрии третьего порядка (симметричность относительно поворота на 120°):

$$C_{1212} = C_{1313} = C_{2323} \stackrel{(5)}{\Leftrightarrow} C_{44} = C_{55} = C_{66},$$

$$C_{1122} = C_{1133} = C_{2233} \stackrel{(5)}{\Leftrightarrow} C_{12} = C_{21} = C_{13} = C_{31} = C_{23} = C_{32}.$$

3. Вращательные компоненты куба не приводят к растяжению, поэтому они равны нулю. Таким образом, тензору упругих постоянных можно поставить в соответствие матрицу \hat{C} вида:

$$\hat{C} = \begin{pmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{21} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{31} & C_{32} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \end{pmatrix}$$

Для изотропных тел $C_{44}=C_{55}=C_{66}=\frac{1}{2}(C_{11}-C_{12}).$ Воспользуемся параметрами Ламе:

$$C_{11} = \lambda + 2\mu$$
, $C_{12} = \lambda$, $C_{44} = \mu$,

и подставим эти значения в матрицу \hat{C} :

$$\hat{C} = \begin{pmatrix} \lambda + 2\mu & \lambda & \lambda & 0 & 0 & 0 \\ \lambda & \lambda + 2\mu & \lambda & 0 & 0 & 0 \\ \lambda & \lambda & \lambda + 2\mu & 0 & 0 & 0 \\ 0 & 0 & 0 & \mu & 0 & 0 \\ 0 & 0 & 0 & 0 & \mu & 0 \\ 0 & 0 & 0 & 0 & 0 & \mu \end{pmatrix}$$

$$(6)$$

Возвращаясь к выражению (4) и подставив туда матрицу (6), мы получаем:

$$\begin{pmatrix}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{23} \\
\sigma_{13} \\
\sigma_{12}
\end{pmatrix} = \begin{pmatrix}
\lambda + 2\mu & \lambda & \lambda & 0 & 0 & 0 \\
\lambda & \lambda + 2\mu & \lambda & 0 & 0 & 0 \\
\lambda & \lambda & \lambda + 2\mu & 0 & 0 & 0 \\
0 & 0 & 0 & \mu & 0 & 0 \\
0 & 0 & 0 & \mu & 0 & 0 \\
0 & 0 & 0 & 0 & \mu & 0 \\
0 & 0 & 0 & 0 & \mu & 0
\end{pmatrix} \begin{pmatrix}
\varepsilon_{11} \\
\varepsilon_{22} \\
\varepsilon_{33} \\
2\varepsilon_{23} \\
2\varepsilon_{13} \\
2\varepsilon_{12}
\end{pmatrix}$$

или в матричной форме

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} = 2\mu \begin{bmatrix} \epsilon_{11} & \epsilon_{12} & \epsilon_{13} \\ \epsilon_{21} & \epsilon_{22} & \epsilon_{23} \\ \epsilon_{31} & \epsilon_{32} & \epsilon_{33} \end{bmatrix} + \lambda \begin{bmatrix} \epsilon_{11} & 0 & 0 \\ 0 & \epsilon_{22} & 0 \\ 0 & 0 & \epsilon_{33} \end{bmatrix}$$

1.5. Уравнения равновесия и граничные условия

$$Ox_j : \frac{\partial \sigma_{ji}}{\partial x_i} + b_i = 0, \quad i = 1, 2, 3, \tag{7}$$

Для трехмерного случая:

$$Ox: \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} + b_x = 0,$$

$$Oy: \frac{\partial \sigma_{yx}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \sigma_{yz}}{\partial z} + b_y = 0,$$

$$Oz: \frac{\partial \sigma_{zx}}{\partial x} + \frac{\partial \sigma_{zy}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} + b_z = 0,$$

где b_i – это проекции вектора плотности объемных сил b на оси Ox_i пространственных координат.

Если тело закреплено, то любые перемещения его точек происходят за счет деформации, поэтому необходимо задать ограничения, препятствующие перемещению самой пластины; их будем называть граничными условиями. В классической задачи теории упругости такие условия разделяют на два типа: кинематические и силовые. Предполагается, что каждый их них задан на своей части поверхности. В нашем случае:

$$S_u : u_i(\vec{x}, t) = \widetilde{u}_i(\vec{x}, t),$$

$$S_p : \sigma_{ij}(\vec{x}) n_j(\vec{x}) = \widetilde{p}_i(\vec{x}),$$

где $S=S_u\cup S_p$ – поверхность рассматриваемого тела; S_u – часть поверхности, на которой заданы кинематические условия, S_p – силовые.

1.6. Моделирование разрушения. Модель размазанных трещин

В основе модели размазанных трещин лежит изменение свойств материала, она применима только для тех тел, в которых образование микротрещин, пластическая деформация, разрывы деформаций и напряжений пренебрежимо малы. Например, керамика и бетон обладают этими свойствами.

При нагрузке хрупкого материала, процесс разрушения может быть описан, как разгрузка по всему объему в сочетании с дополнительным растяжением. На рис. 4 видно, что пока напряжение меньше предела прочности $\sigma < \sigma_f$ и деформации меньше соответствующего значения $\varepsilon < \varepsilon_f$, материал ведет себя, как линейно-упругий, а затем происходит разгрузка по нелинейному закону.

Рис. 4. Кривая нормализованного растягивающего отклика для керамических материалов

При достижении предельного значения прочности σ_f происходит инициализация трещины. Она формируется лишь после достижения значений деформаций, превышающих ε_f в 5-10 раз. Кривую, имеющую данный характер поведения, можно аппроксимировать в следующем виде:

$$\frac{\sigma}{\sigma_f} = A + Be^{-C\frac{\varepsilon}{\varepsilon_f}},$$

где $A \approx -0.024, B \approx 1.69, C \approx 0.5.$

Важно отметить, что модель размазанных трещин чувствительна к шагу сетки, что является ее главным недостатком.

2. Одномерный случай

В качестве численного метода применим метод дополнительных деформаций. Как было отмечено раннее, до достижения предела прочности тело ведет себя, как линейно-упругое, а затем происходит разгрузка по нелинейному закону. Тогда зависимость напряжений от деформации определяется условиями:

$$\sigma(\varepsilon) = \begin{cases} E\varepsilon^e, & E\varepsilon^e < \sigma_f^v(\varepsilon); \\ \sigma_f \left(A + Be^{-C\frac{\varepsilon^e}{\varepsilon_f}} \right), & E\varepsilon^e \ge \sigma_f^v(\varepsilon); \end{cases}$$
(8)

где ε^e — упругая деформация, $\sigma_f^v(\varepsilon)$ — переменный предел прочности, который в недеформированном состоянии равен пределу прочности при растяжении σ_f , E — модуль Юнга.

Значение упругой деформации определяется выражением:

$$\varepsilon^e = \varepsilon - \varepsilon^T - \varepsilon^{crk}$$
,

где ε — полная деформация, является результатом решения уравнений движения, ε^T — температурная деформация, ε^{crk} — деформация за счет трещин, которая вычисляется на предыдущем временном шаге и при допредельных значений деформаций равна 0. В послепиковой области, где тело ведет себя по нелинейному закону, $\varepsilon^{crk} > 0$. При разгрузке значение деформации за счет

трещин остается постоянным, а материал ведет себя, как линейно-упругий с пределом прочности $\sigma_f^v(\varepsilon)$ и модулем Юнга E:

$$\epsilon^{crk} = \epsilon - \epsilon^T - \frac{\sigma(\epsilon)}{F}.$$

Рассмотрим квазистационарную задачу: возьмем стержень длиной l, закрепленный с обоих концов. Будем решать уравнение равновесия для всех временных слоев, чтобы определять напряжение и значения всех видов деформаций на них. Зададим свойства материала: предел прочности σ_f , ε_f , модуль Юнга E, коэффициент теплового расширения α . Для диоксида урана:

$$\sigma_f = 1.1 \cdot 10^8 \Pi a,$$
 $\epsilon_f = 0.000628571,$
 $\alpha = 10^{-5} \text{K}^{-1}.$

Будем прикладывать знакопеременную нагрузку по закону:

$$T(x,t) = \widetilde{T} + F(x)\tau(t),$$

где \widetilde{T} – усредненная по времени температура, F(x) – функция, описывающее пространтсвенное распределение температуры, а $\tau(t)$ – временное.

Опишем математическую модель для одномерного стержня:

$$\begin{cases}
T(x,t) = \widetilde{T} + F(x)\tau(t), & t \ge 0, \quad 0 \le x \le l, \\
\frac{\partial \sigma}{\partial x} = 0, & 0 \le x \le l, \\
\sigma = \sigma(\varepsilon - \varepsilon^{0}), & \\
\varepsilon = \frac{\partial u}{\partial x}, & \\
\varepsilon^{T} = \alpha(T - T_{0}), & \\
u(0,t) = u(l,t) = 0.
\end{cases}$$
(9)

Выберем функцию F(x) симметричной относительно середины стержня. Пусть $F(x) = \sin(\frac{\pi x}{l})$. Будем решать задачу методом конечных разностей.

3. Результаты вычислений

Пока значения напряжения меньше предела прочности σ_f имеет место линейный случай системы (8), для которого можно найти аналитическое решение:

$$\sigma(\varepsilon) = E\varepsilon^{e} = E(\varepsilon - \varepsilon^{T}) = E\left(\frac{\partial u}{\partial x} - \alpha(T(x, t) - T_{0})\right)$$

$$\frac{\partial \sigma}{\partial x} = E(u_{xx} - \alpha T_{x}(x, t)) \Rightarrow u_{xx} - \alpha T_{x}(x, t) = 0$$
(10)

Когда $\sigma \geq \sigma_f$, материал разгружается по нелинейному знакому, будем использовать метод Ньютона для линеаризации нелинейного уравнения.

Физические характеристики диоксида урана: $\alpha=10^{-5}K^{-1}$, $\widetilde{T}=T_0=300K$, $E=1.75\cdot 10^{11}$ Па, $\sigma_f=1.1\cdot 10^8$ Па, $\epsilon_f=0.000628571$. Длина стержня l=1 м, измерения длятся $T_f=22$ сек. Пусть a=50.

Рассмотрим поведение одномерного стержня на четырех периодах нагружения. Поведение стержня будем рассматривать в точке x=h, где h — шаг сетки.

1.
$$T(x,t) = \widetilde{T} + F(x)t\sin t$$
, $F(x) = a\sin\left(\frac{\pi x}{l}\right)$ Аналитическое решение (10):

$$u(x,t) = \frac{alt\alpha\sin(t) - 2atx\alpha\sin(t) - alt\alpha\cos(\frac{\pi x}{l})\sin t}{\pi}.$$

$$t = 1$$

i	h	τ	$ error _C$	$ error_i _C / error_{i+1} _C$
1	0.1	0.05	3	3
2	0.05	0.05	3	3
3	0.025	0.05	3	3
4	0.0025	0.05	3	3
5	0.00125	0.05	3	3

,		\sim
+	_	h
ι	_	٠

i	h	τ	$ error _C$	$ error_i _C / error_{i+1} _C$
1	0.1	0.05	3	3
2	0.05	0.05	3	3
3	0.025	0.05	3	3
4	0.0025	0.05	3	3
5	0.00125	0.05	3	3

$$t = 10$$

i	h	τ	$ error _C$	$ error_i _C / error_{i+1} _C$
1	0.1	0.05	3	3
2	0.05	0.05	3	3
3	0.025	0.05	3	3
4	0.0025	0.05	3	3
5	0.00125	0.05	3	3

$$t = 20$$

i	h	τ	$ error _C$	$ error_i _C / error_{i+1} _C$
1	0.1	0.05	3	3
2	0.05	0.05	3	3
3	0.025	0.05	3	3
4	0.0025	0.05	3	3
5	0.00125	0.05	3	3

Из графика видно, что сначала происходит равномерное нагружение (до достижения переменного предела прочности σ_f^v), и материал ведет себя, как линейно-упругий, а затем происходит разрузка по нелинейному убывающему закону. Затем происходит повторный этап нагружения. График зависимости деформаций имеет ступенчатый вид, что подтверждает цилкичность процесса «нагрузка-разрузка», а также способность

модели накапливать информацию о разрушении стержня в предыдущие моменты времени.

Рис. 5. Зависимость полной деформации от времени

Рис. 6. Зависимость деформаций за счет трещин от времени

Рис. 7. Зависимость напряжений от времени

Рис. 8. Зависимость напряжений от деформаций

Рис. 9. Зависимость напряжений от деформаций по отношению к пределу прочности

Рис. 10. Зависимость температуры от времени

2.
$$T(x,t) = \widetilde{T} + F(x)\cos(\pi t^2)(t+1), \quad F(x) = a\sin(\frac{\pi x}{l})$$

Аналитическое решение (10):

$$u(x,t) = -\frac{\alpha a(t+1)\cos(\pi t^2)(2x - l + l\cos(\frac{\pi x}{l}))}{\pi}.$$

$$t = 1$$

i	h	τ	$ error _C$	$ error_i _C / error_{i+1} _C$
1	0.1	0.005	3	3
2	0.05	0.005	3	3
3	0.025	0.005	3	3
4	0.0025	0.005	3	3
5	0.00125	0.005	3	3

$$t = 5$$

i	h	τ	$ error _C$	$ error_i _C / error_{i+1} _C$
1	0.1	0.005	3	3
2	0.05	0.005	3	3
3	0.025	0.005	3	3
4	0.0025	0.005	3	3
5	0.00125	0.005	3	3

$$t = 10$$

i	h	τ	$ error _C$	$ error_i _C / error_{i+1} _C$
1	0.1	0.005	3	3
2	0.05	0.005	3	3
3	0.025	0.005	3	3
4	0.0025	0.005	3	3
5	0.00125	0.005	3	3

1		Ω
Т	_	<i>-</i> / I I
U	_	40

i	h	τ	$ error _C$	$ error_i _C / error_{i+1} _C$
1	0.1	0.005	3	3
2	0.05	0.005	3	3
3	0.025	0.005	3	3
4	0.0025	0.005	3	3
5	0.00125	0.005	3	3

Рис. 11. Зависимость полной деформации от времени

Рис. 12. Зависимость деформаций за счет трещин от времени

Рис. 13. Зависимость напряжений от времени

Рис. 14. Зависимость напряжений от деформаций

Рис. 15. Зависимость напряжений от деформаций по отношению к пределу прочности

Рис. 16. Зависимость температуры от времени

3.1. Программная реализация

Константы

```
If[True,
у… истина
  Α
          = -0.024;
  В
          = 1.69;
  CC
          = 0.5;
          = 10^{-5}
                        (* K^{-1} *);
          = 300
                        (* K *);
  Young = 1.75 * 10^{11} (* \Pi a *);
          = 1.1 * 10^8
                        (* Па *);
  \sigma f
  €f
          = 0.000628571;
  ι
          = 10
                        (* Длина стержня *);
  Τf
                        (* Конечный момент времени *);
          = 4
          = 0.005
                        (* Шаг времени *);
          = 50
                        (* Просто константа *);
                        (* Число узлов сетки *);
          = 10
  n
  h
          = 0.1
                        (* Шаг сетки *);
 ];
```

In[76]:=

Определение всех необходимых функций

$$In[77]:=$$
 $F[x_{-}]$:= $a Sin \left[\frac{\pi x}{1} \right]$; $In[78]:=$ $T1[x_{-}, t_{-}]$:= $T0 + F[x] t Sin[t]$; $In[78]:=$ $T2[x_{-}, t_{-}]$:= $T0 + F[x] Cos \left[\pi t^{2} \right]$ (t+1); $In[80]:=$ $TT = T2$; $In[80]:=$ $ET[T_{-}]$:= $ET[T_$

Аналитическое решение (перемещения)

Численное решение (метод конечных разностей)

$$In[84]:=$$
 $f = D[\varepsilon T[TT[x, t]], \{x, 1\}]$
 $_{[Дифференциировать]}$
 $\pi (1+t) Cos[\pi t^2] Cos[\frac{\pi x}{10}]$
Out[84]=

Проверки для шага и количества точек (можем выставлять и то, и то)

Составляем разностное уравнение

$$\ln[86] := \frac{d^2 u}{dx^2} == f;$$

$$\ln[87] := \frac{u_{i+1} - 2 u_i + u_{i-1}}{h^2} == f;$$

Создаем массив точек и значений функции f в них, далее решаем СЛАУ: $Au = F(f(x_1), ..., f(x_n))$.

$$In[90]:= H = Table$$
 $table$
 $table$

Out[91]//MatrixForm=

Численно найденные значения перемещений путем решения ДУ

Нахождение деформаций $\left(\frac{du}{dx}\right)$

Решение на каждом временном слое

```
ln[94] = \sigma = Table[0, \{i, 1, n\}];
           таблица значений
      \sigma fv = Table[\sigma f, \{i, 1, n\}];
              таблица значений
      \epsilon = Table[0, {i, 1, n}];
           таблица значений
      \epsilon e = Table[0, \{i, 1, n\}];
             таблица значений
      ecrk = Table[0, {i, 1, n}];
                таблица значений
      T = Table[0, {i, 1, n}];
           таблица значений
      data = {};
      For |tt = 0, tt <= Tf, tt = tt + \tau,
     цикл ДЛЯ
         temp = {};
         For [i = 1, i < n, ++i,
         цикл ДЛЯ
           T[[i]] = TT[points[[i]], tt] /. t \rightarrow tt;
           ε[i] = duNumerical[i] /. t → tt;
           \epsilon e[i] = \epsilon[i] - \epsilon T[T[i]] - \epsilon crk[i] /. t \rightarrow tt;
           If Young * \epsilon e[i] < \sigma fv[i],
          условный оператор
            \sigma[i] = Young * \epsilon e[i],
            \sigma fv[i] = \sigma f \left( A + B e^{-CC} * \frac{\epsilon[i] - \epsilon T[T[i]]}{\epsilon f} \right);
            \sigma[i] = \sigma fv[i]; ecrk[i] = e[i] - eT[T[i]] - \frac{\sigma[i]}{Young};
            ee[i] = \left( First@Flatten@Solve[\sigmaf(A + Be^{-CC*\frac{x + ecrk[i]}{ef}}) = \sigmafv[i], x] \right)[2];
           |;
           AppendTo[temp, {tt, T[i], \sigma[i], \varepsilon[i], \varepsilon[i] - \varepsilonT[T[i]], \varepsiloncrk[i]}}
          добавить в конец к
         AppendTo[data, temp]
         добавить в конец к
        |;
```

Графики

```
ImageSize -> Large, AxesLabel → {"t", "T"}, AxesStyle → Black |;
        размер изобр… [крупный [обозначения на осях
  Сохраняем графики
In[108]:= SetDirectory[NotebookDirectory[]];
    |задать рабочую… | директория файла блокнота
    ToString[h] ~StringJoin~"_"], StringJoin["tau_", ToString[т]]]; 
[преобразовать ··· | соединить строки | соединить строки | преобразовать в стр
                                                            [преобразовать в строку
    With[
    используя
      {directory = FileNameJoin[{ParentDirectory@NotebookDirectory[],
                  соединить пути
                                [вышестоящая дирек⋯ [директория файла блокнота
          StringJoin["LaTeX/pic/", options]}]},
          соединить строки
      Switch[FileType[directory],
     [перек⋯ | тип файла
      None, CreateDirectory[directory],
      _ ни о··· | создать директорию
      Directory,
      Print["Overriding files in directory: "~StringJoin~directory]
      печатать
                                                соединить строки
      Export[FileNameJoin[{directory, "epsilon(t).pdf"}], te];
     экспор… соединить пути
      Export[FileNameJoin[{directory, "epsilon_crk(t).pdf"}], tecrk];
     |экспор... |соединить пути
      Export[FileNameJoin[{directory, "sigma(t).pdf"}], tσ];
     |экспор... |соединить пути
     Export[FileNameJoin[{directory, "sigma(epsilon).pdf"}], de\sigma];
     [экспор⋯ [соединить пути
     Export[FileNameJoin[{directory, "norm_sigma(epsilon).pdf"}], normdeσ];
     јэкспор⋯ соединить пути
     Export[FileNameJoin[{directory, "T(t).pdf"}], tT];
     экспор… |соединить пути
    ]
    Overriding files in directory:
       /Users/arsenytokarev/Desktop/CoruseWorks/ThermalDestruction/LaTeX/pic/
      T2/h_1_tau_0.005
```

Заключение 31

Заключение

Была исследована математическая модель разрушения стержня, состоящего из диоксида урана. Был проведен графический анализ распространения трещин, основанный на графиках напряжений и перемещений.

Решение вышеуказанной задачи было реализовано в системе компьютерной алгебры Wolfram Mathematica.

Список литературы

- 1. Тензоры напряжений и деформаций. URL: http://solidstate.karelia.ru/p/tutorial/ftt/Part4/part4_1.htm
- 2. Тензор деформаций. SolverBook онлайн сервисы для учебы. URL: http://ru.solverbook.com/spravochnik/fizika/tenzor-deformacii/
- 3. Теория упругости. Wikipedia свободная энциклопедия. URL: https://en.wikipedia.org/wiki/Linear_elasticity
- 4. Галанин М.П. Методы численного анализа математических моделей/М.П. Галанин, Е.Б. Савенков.–М.: Изд-во МГТУ им. Н.Э. Баумана, 2010.–591, [1] с.: ил. (Математическое моделирование в технике и технологии)
- 5. Математическое моделирование разрушения хрупкого материа- ла под действием тепловых нагрузок / М.П. Галанин [и др.] // Препринты ИПМ им. М.В. Келдыша. 2013.No 100. 36 c. URL: http://library.keldysh.ru/preprint.asp?id=2013-100