

何诗大学

Ch8 假设检验

■ ● 假设检验的基本概念和思想

例 某糖厂用自动包装机将糖装箱。已知规定 → 每箱的标准重量为100公斤。设每箱的糖重服 从正态分布。由以往经验知重量的均方差为 0.9 公斤并保持不变。某日开工后,为了检验 ■ 包装机的工作是否正常, 随机抽取该机所包装 → 的9箱, 称得其净重为(单位: kg): 99.3,98.7, **100.5**, 101.2, 98.3, 99.7, 105.1, 102.6, 100.5. 问该日此包装机的工作是否正常 $?(\alpha = 0.05)$

1. 两类问题

 $X_1, \dots, X_n \sim f(x; \theta), \theta \in \Theta,$

(1) 参数假设检验

总体分布已知,参数未知,

由观测值 x_1 , …, x_n 检验假设

 $H_0: \theta = \theta_0; H_1: \theta \neq \theta_0$ iid

(2) 非参数假设检验 $X_1, \dots, X_n \sim X$,

总体分布未知,由观测值x₁, …, x_n检验假设

 $H_0: F(x) = F_0(x;\theta); H_1: F(x) \neq F_0(x;\theta)$

本课程主要讨论参数假设检验.

2. 检验法则与拒绝域

以样本 (X_1, \dots, X_n) 出发制定一个法则,一旦 一观测值 (x_1, \dots, x_n) 确定后,我们由这个法则就 一可作出判断是拒绝 H_0 还是接受 H_1 ,这种法则称 \rightarrow 为 H_0 对 H_1 的一个<mark>检验法则</mark>,简称检验法。 一样本观测值的全体组成样本空间S, 把S分成两个 J 互不相交的子集C和C*,即S=C∪C*, C∩C*=Ø, 骨假设当 (x_1, \dots, x_n) ∈ C时,我们就拒绝 H_0 ; $(x_1, \dots, x_n) \in \mathbb{C}^*$ 时,我们就接受 H_0 。 一 子集C⊂S就称为检验的拒绝域(或临界域)。

3. 检验的两类错误

给出了 H_0 对 H_1 的某个检验法则,即给出了S的两个划分C与C*,由于样本的随机性,在进行判断时,还可能犯错误。

 $\{ 拒绝H_0 | H_0 \mathbf{\bar{q}} \} = \{ (x_1, \dots, x_n) \in \mathbb{C} \mid H_0 \mathbf{\bar{q}} \}$ ——第一类错误或弃真 $\{ \mathbf{\bar{k}} \in H_0 \mid H_0 \mathbf{\bar{q}} \} = \{ (x_1, \dots, x_n) \in \mathbb{C}^* \mid H_0 \mathbf{\bar{q}} \}$ ——第二类错误或取伪

这两个事件都是小概率事件. 常记P{拒绝 $H_0|H_0$ 真}= α , P{接受 $H_0|H_0$ 假}= β , α , β 在0~1之间,通常不超过0.1。

4. 显著性检验

对于给定的一对 H_0 和 H_1 ,总可找出许多临界 一域,人们自然希望找到这种临界域C,使得犯两 置类错误的概率 α 和 β 都很小。但在样本容量n一定 \rightarrow 时,这又是做不到的,除非容量n无限增大。 一 奈曼—皮尔逊 (Neyman—Pearson)提出了一个 层原则:在控制犯第一类错误的概率α的条件下,尽 一量使犯第二类错误 β小, 这是最优检验 (MPT).

但是有时MPT法则很难找到,甚至不存在。在这种情况下,我们不得不降低要求,另提一些原则。应用上常采纳的原则是"只对α加以限制,而不考虑β的大小"。按这种法则做出的检验称为"显著性检验",此时α称为显著性水平或检验水平。

___显著性检验的思想和步骤:

- \rightarrow (1)根据实际问题作出假设 H_0 与 H_1 ;
- (2)构造统计量,在 H_0 真时其分布已知;
- **(3)给定水平α的值(一般为0.05, 0.025, 0.01,**
- $_{0.005}$ 等),求出 H_{0} 对 H_{1} 的拒绝域C;
- (4)查表、计算得分位点和统计量的值;
- (5)比较统计量与分位点值的大小,得出结论, 依据是小概率原理。

- 单正态总体的假设检验
- 一、单总体均值的假设检验

 $\partial X_1, \dots, X_n \sim N(\mu, \sigma^2)$,水平 α , 由观测值 x_1, \dots, x_n 检验假设 H_0 : $\mu = \mu_0$; H_1 : $\mu \neq \mu_0$.

1. σ²已知的情形

$$U = \frac{\overline{X} - \mu_0^{H_0}}{\sigma/\sqrt{n}} = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

由 $P\{|U|>z_{\alpha/2}\}=\alpha$,可得拒绝域: $U>z_{\alpha/2}$

置 查表,计算,比较大小,即得结论:

$$|z|$$
 若 $|U|=rac{|X-\mu_0|}{\sigma/\sqrt{n}}>z_{lpha/2}$,则拒绝 H_0 而接受

 G/\sqrt{n} H_1 : $\mu \neq \mu_0$, 反之,接受 H_0 : $\mu = \mu_0$ 。 例 某电器零件的平均电阻 2.64 Ω , 标准差保持在 $0.06~\Omega$,改变加工工艺后,测得100个零件,其平均电阻为 $2.62~\Omega$,标准差不变。假设电阻近似地服从正态分布,问新工艺对此零件的电阻有无显著影响?($\alpha=0.01$)

说明

- $(1) H_0$: $\mu = \mu_0$; H_1 : $\mu \neq \mu_0$ 称为双边HT问题;
- $H_0: \mu = \mu_0; H_1: \mu > \mu_0($ 或 $\mu < \mu_0)$,则称为单边问
- 题;这是一个<mark>不完备的HT问题。</mark>
- μ_0 : $\mu \leq \mu_0$; H_1 : $\mu > \mu_0$ 或 H_0 : $\mu \geq \mu_0$; H_1 : $\mu < \mu_0$
- 也称为单边HT问题,这是一个完备的HT问题。
- H_1 : $\mu > \mu_0$ 称为<mark>右边HT问题; H_1 : $\mu < \mu_0$ 称为<u>左边</u>HT问题。</mark>

构造
$$U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \stackrel{H_0 \bar{\mathbf{p}}}{=} \frac{\overline{X} - \mu^{iid}}{\sigma / \sqrt{n}} \sim N(0,1)$$

可得拒绝域
$$U < -z_{\alpha} = z_{1-\alpha}$$
 同理 $H_0: \mu = \mu_0; H_1: \mu > \mu_0, \sigma^2$ 已知

本造
$$U = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \stackrel{H_0}{=} \frac{\overline{X} - \mu^{iid}}{\sigma/\sqrt{n}} \sim N(0,1)$$

= 其拒绝域为 $U > z_{\alpha}$

例 在一批木材中抽出100根,测量其小头直径,测得样本均值 $\overline{x}=11.20cm$. 已知小头直径服从正态分布且方差为 $\sigma^2=6.76$. 检验 $(\alpha=0.05)$: $H_0:\mu=12;\quad H_1:\mu<12$.

现以 H_0 : $\mu \le \mu_0$; H_1 : $\mu > \mu_0$, σ^2 已知为例, 说明完备单边问题与不完备单边问题有相同的 拒绝域。

完备单边问题与不完备单边问题有相同的拒绝域。

$2. \sigma^2$ 未知的情形

对于假设 $H_0: \mu = \mu_0; H_1: \mu \neq \mu_0$,构造

$$T = \frac{\overline{X} - \mu_0^{H_0}}{S/\sqrt{n}} = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

可得拒绝域: $|T| > t_{\alpha/2}(n-1)$

例 某批矿砂的5个样品中的镍含量,经测定为 (%): 3.25, 3.27, 3.24, 3.26, 3.24。设测定值总体服从正态分布,问在α=0.01下能否接受假设: 这批矿砂的镍含量的均值为3.25。

$$H_0: \mu = \mu_0; H_1: \mu < \mu_0$$

$$T = \frac{\overline{X} - \mu_0^{H_0 \underline{a}}}{S/\sqrt{n}} = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$
拒绝域: $T < -t_{\alpha}(n-1) = t_{1-\alpha}(n-1)$
 $H_0: \mu = \mu_0; H_1: \mu > \mu_0$

$$T = \frac{\overline{X} - \mu_0^{H_0 \underline{a}}}{S/\sqrt{n}} = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

拒绝域:
$$T > t_{\alpha}(n-1)$$

例 已知用某种钢生产的钢筋强度 X 服从正态分 一 布,且 $E(X)=52.00(kg/mm^2)$ 。今改变炼钢的配 一方,利用新法炼了七炉钢,从这七炉钢生产的钢 ♥ 筋中每炉抽一根测得其强度分别为: 52.45, 48.51, 56.02, 51.53, 49.02, 53.38, 54.04。问用新方法炼 → 钢生产的钢筋其强度的均值是否有明显提高 $(\alpha = 0.05)$.

二、单总体方差的假设检验

设 $X_1, \dots, X_n \sim N(\mu, \sigma^2)$, 水平 α , 由观测值 x_1, \dots, x_n 检验假设

$$H_0: \ \sigma^2 = \sigma_0^2; \ H_1: \ \sigma^2 \neq \sigma_0^2$$

1. µ未知的情形

1. 以未知的情形
构造
$$\chi^2 = \frac{(n-1)S^2 H_0 \bar{\mu}}{\sigma_0^2} = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1)$$

拒绝域:
$$\chi^2 < \chi^2_{1-\alpha/2}(n-1)$$
 或 $\chi^2 > \chi^2_{\alpha/2}(n-1)$ 。

$$H_0$$
: $\sigma^2 = \sigma_0^2$; H_1 : $\sigma^2 < \sigma_0^2$

构造
$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

中 拒绝域:
$$\chi^2 < \chi^2_{1-\alpha}(n-1)$$

$$H_0: \sigma^2 = \sigma_0^2; H_1: \sigma^2 > \sigma_0^2$$

构造
$$\chi^2 = \frac{(n-1)S^2 H_0 \bar{\mu}}{\sigma_0^2} = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1)$$

拒绝域:
$$\chi^2 > \chi_\alpha^2 (n-1)$$

例 某厂生产一批某种型号的汽车蓄电池,由以往经验知其寿命X近似地服从正态分布,它的均方差为0.80(年)。现从该厂生产的该型号蓄电池中任意抽取13个,算得样本均方差为0.92(年),取显著性水平α=0.10,问该厂生产的这批蓄电池寿命的方差是否有明显改变?

2. 4已知的情形

$$H_0: \ \sigma^2 = \sigma_0^2; \ H_1: \ \sigma^2 \neq \sigma_0^2$$

$$\chi^2(n)$$
, $\frac{nS_{\mu}^2}{\sigma^2}$ $\sim =$ 构造 $\chi^2 = \frac{nS_{\mu}^2}{\sigma_0^2}$

其中
$$S_{\mu}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$$
。

即可作相应的假设检验。(留做练习)

综上有单个正态总体的检验表: 关于均值 μ 的假设检验:

	H_1	拒绝(H ₀)域	
H_0		σ ² 已知	σ ² 未知
		$U = rac{\overline{X} - \mu_0^{H_0}}{\sigma / \sqrt{n}} \sim N(0, 1)$	$T = \frac{\overline{X} - \mu_0^{H_0}}{S/\sqrt{n}} \sim t(n-1)$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ U >z_{lpha/2}$	$ T > t_{\alpha/2}(n-1)$
	$\mu > \mu_0$	$U > z_{\alpha}$	$T > t_{\alpha}(n-1)$
	$\mu < \mu_0$	$U < -z_{\alpha}$	$T < -t_{\alpha}(n-1)$

关于均值 σ^2 的假设检验:

•	H_1	拒绝(<i>H</i> ₀)域	
H_0		μ已知	μ未知
		$\sum_{i=1}^{n} (X_i - \mu)^2$	$\chi^2 = \frac{(n-1)S^2}{2}$
•		$\chi^2 = \frac{i=1}{\sigma_0^2}$	$\begin{array}{c} \chi = \overline{\sigma_0^2} \\ H_0 \bar{\mathbf{q}} \\ \sim \chi^2 (n-1) \end{array}$
		$\chi = \frac{1}{H_0 \mathbf{A}} \sigma_0^2$ $\sim \chi^2(n)$	$\sim \chi^2(n-1)$
,	2 2	2 2	$\chi^2 < \chi^2_{1-\alpha/2}(n-1)$
2 2	$\sigma^2 \neq \sigma_0^2$	or $\chi^2 > \chi^2_{\alpha/2}(n)$	$\frac{\chi^{2} < \chi_{1-\alpha/2}^{2}(n-1)}{or \chi^{2} > \chi_{\alpha/2}^{2}(n-1)}$ $\frac{\chi^{2} > \chi_{\alpha/2}^{2}(n-1)}{\chi^{2} > \chi_{\alpha}^{2}(n-1)}$
$\sigma^2 = \sigma_0^2$	$\sigma^2 > \sigma_0^2$	$\chi^2 > \chi_\alpha^2(n)$	$\chi^2 > \chi_\alpha^2(n-1)$
		$\chi^2 < \chi^2_{1-\alpha}(n)$	$\chi^2 < \chi^2_{1-\alpha}(n-1)$

- • 双正态总体均值差与方差比的假设检验
- _ 一、均值差的假设检验

了两样本独立,水平 α ,由观测值 x_1, \dots, x_{n_1} ;

 y_1, \dots, y_n , 检验假设 H_0 : $\mu_1 = \mu_2$; H_1 : $\mu_1 \neq \mu_2$

$1. \sigma_1^2, \sigma_2^2$ 已知的情形

$$H_0: \mu_1 - \mu_2 = 0; \quad H_1: \mu_1 - \mu_2 \neq 0$$
构造
$$U = \frac{\overline{X} - \overline{Y}^{H_0 \underline{a}}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

可得拒绝域: $U > z_{\alpha/2}$

对应单边问题的拒绝域分别为

左边
$$H_1: \mu_1 - \mu_2 < 0$$
为: $U < -z_{\alpha}$;

右边
$$H_1: \mu_1 - \mu_2 > 0$$
为: $U > z_{\alpha}$.

2. $\sigma_1^2 = \sigma_2^2$ 未知的情形

$$T = \frac{\overline{X} - \overline{Y}}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{2}{n_2}}} \sim t(n_1 + n_2 - 2)$$

可得拒绝域: $T > t_{\alpha/2}(n_1 + n_2 - 2)$

对应单边问题的拒绝域分别为

$$=$$
 左边 $H_1: \mu_1 - \mu_2 < 0$ 为: $T < -t_{\alpha}(n_1 + n_2 - 2);$

右边
$$H_1: \mu_1 - \mu_2 > 0$$
 为: $T > t_\alpha(n_1 + n_2 - 2)$.

$3. \sigma_1^2 \sigma_2^2$ 未知的情形

此时没有已知精确分布的统计量来作检验,

一只有在大样本 $(n_1, n_2 \ge 30)$ 的情况下,可认为

$$\sigma_1^2 \approx S_1^2, \quad \sigma_2^2 \approx S_2^2,$$

从而得到第一种情形。

例 在漂白工艺中要考察温度对针织品断裂强力 一的影响。在70°C与80°C下分别作了七次和九次测 试,测得断裂强力的数据如下(单位:kg): 70° C: 20.5, 18.8, 20.9, 21.5, 19.5, 21.6, 21.8; 80° C: 17.7, 19.2, 20.3, 20.0, 18.6, 19.0, 19.1, 20.0, 18.1; 根据以往经验知两种温度下的断裂强力都近似服 从正态分布,其方差相等且相互独立,试问两种 温度下的平均断裂强力有无显著差别($\alpha=0.05$)?

二二、方差比的假设检验

两样本独立,水平 α ,由观测值 x_1,\dots,x_n ; y_1,\dots,y_n

一 检验假设
$$H_0$$
: $\sigma_1^2 = \sigma_2^2$; H_1 : $\sigma_1^2 \neq \sigma_2^2$

1. μ₁、μ₂未知的情形

$$H_0$$
: $\sigma_1^2 = \sigma_2^2$; H_1 : $\sigma_1^2 \neq \sigma_2^2$

构造
$$F = \frac{S_1^2 H_0 \bar{\mathbf{p}} S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

即得拒绝域

$$F < F_{1-\alpha/2}(n_1-1, n_2-1)$$
 或 $F > F_{\alpha/2}(n_1-1, n_2-1)$ 而对应的单边问题的拒绝域分别是

左边:
$$F < F_{1-\alpha}(n_1-1, n_2-1)$$
;

右边:
$$F > F_{\alpha}(n_1-1, n_2-1)$$
。

2. μ1、μ2 已知的情形

构造
$$F = rac{S_{\mu_1}^2}{S_{\mu_2}^2} = rac{S_{\mu_1}^2/\sigma_1^2}{S_{\mu_2}^2/\sigma_2^2} \sim F(n_1, n_2),$$

即可得到检验的拒绝域。(自己完成)

例 机器包装食盐,假设每袋盐的净重服从正态分布,规定每袋标准重量为1kg,标准差为 0.02 kg。某天开工后,为检验其机器工作是否正常,从装好的食盐中随机抽取9袋,测其净重(单位: kg)为: 0.994, 1.014, 1.02, 0.95, 1.03, 0.968, 0.976, 1.048, 0.982, 问这天包装机工作是否正常(α=0.05)?

关于均值差μ, -μ,的假设检验:

		拒绝(H ₀)域	
	77	σ_1^2, σ_2^2 已知	$\sigma_1^2 = \sigma_2^2$ 未知
H_0	H_1	$U = \frac{\overline{X} - \overline{Y}}{\overline{X}}$	$T = \frac{\overline{X} - \overline{Y}}{\overline{X}}$
,		$\sigma_1^2, \sigma_2^2 已知$ $U = \frac{X - Y}{\sigma_1^2 + \sigma_2^2}$	$S_{w} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$ H_{0} $I = \frac{1}{S_{w}} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$
		H_0 真 $\sqrt{n_1}$ n_2	H_0 真 $ackslash n_1$ n_2
,		$\sim N(0,1)$	$\sim t(n_1+n_2-2)$
,	$\mu_1 \neq \mu_2$	$ U >z_{lpha/2}$	$ T > t_{\alpha/2}(n_1 + n_2 - 2)$
$\mu_1 = \mu_2$	$\mu_1 > \mu_2$	$U > z_{\alpha}$	$T > t_{\alpha}(n_1 + n_2 - 2)$
,	$\mu_1 < \mu_2$	$U < -z_{\alpha}$	$T < -t_{\alpha}(n_1 + n_2 - 2)$

关于方差比 σ_1^2/σ_2^2 的假设检验:

,		拒绝 (H_0) 域		
H_0	H_1	μ_1,μ_2 已知	μ_1,μ_2 未知	
		$\frac{1}{n} \sum_{i=1}^{n_1} (X_i - \mu_1)^2$	$S_1^{2H_0}$ 真	
,		$F = \frac{n_{1 \ i=1}}{n}$	$F = \frac{S_1^2 H_0 \mathbf{\bar{q}}}{S_2^2} \sim F(n_1 - 1, n_2 - 1)$	
•		$\frac{1}{n_2} \sum_{i=1}^{n_2} (Y_i - \mu_2)^2$		
•		H_0 真 n_2 $i=1$ $\sim F(n_1,n_2)$		
, —		$F < F_{1-\alpha/2}(n_1, n_2)$	$F < F_{1-\alpha/2}(n_1-1,n_2-1)$	
σ_1^2	≠	or $F > F_{\alpha/2}(n_1, n_2)$	or $F > F_{\alpha/2}(n_1 - 1, n_2 - 1)$	
2	>	$F > F_{\alpha}(n_1, n_2)$	$F > F_{\alpha}(n_1 - 1, n_2 - 1)$	
σ_2^2	<	$F < F_{1-\alpha}(n_1, n_2)$	$F < F_{1-\alpha}(n_1-1,n_2-1)$	