Kaggle cheatsheet

Toh Wei Zhong 29 December 2015

Exploratory data analysis and data preprocessing

EDA and viz

- Specific to response variable
 - Check distribution of categorical response using table()
 - Check distribution of numerical responses using hist() and boxplot.stats()
 - Use make.names() for valid class labels for caret::train()
- Categorical variables
 - Look at number of unique values per variable
- Numerical variables
 - Look at distributions
 - Look at pairwise correlations
 - Build GLM, look at VIF
- Temporal components
 - Check seasonality (of response variable)
 - Check for breaks in data
- ML-based visualizations
 - Visualise using PCA
 - Visualise by clustering on samples (e.g kmeans)
 - Visualize by clustering on variables (e.g. hiearchical clustering)
- Also check for overlap between training and testing sets (both variables and samples)

Dealing with missing values and outliers

- Omission
 - Omit sample
 - Omit variable
- Simple imputation
 - Impute by measures of central tendencies (mean, median, mode)
 - Impute by an arbitrary number (when variable is physically irrelevant to the sample)
 - Impute by extreme values (when truncation is an issue)
- Imputation by prediction
 - Use DMwR::knnImputation for kNN imputation on numerical variables
 - Use decision tree imputation (used in SAS EM)

Dealing with categorical variables

- Convert to numerial variables
 - Compute frequency (probability) using STANDARDWORKFLOW::Cate2Prob()
 - Compute chi-sq contributions
 - Convert to one-hot encoding

Feature engineering

- Less categories (categorical)
 - Consider set membership, collapse classes
- More categories (categorical)
 - Look for Simpson's Reversals (context mining in Redhyte)
- Mathematical operations on multiple variables (numerical)
 - Simulate statistical interactions using +, -, / (%), *
 - Bin using <, >, == (binary)
- Enhancing signal of a single variable (numerical)
 - Compute x^2 , x^3 , etc.
- ML-based
 - Include cluster membership from a clustering algorithm as a variable
 - Include PC scores from PCA as a variable

Specific to response variable

- Dealing with imbalance (categorical)
 - Use caret::upSample() or caret::downSample()
 - Use DMwR::SMOTE()
 - Collapse classes within the response variable, then do modeling within class
- Skewed distribution (numerical)
 - Transform using Box-Cox, log(x + 1), if normality is desired
 - Discretize (mean, median, quantile), then do modeling within class

Predictive Modeling

Miscellaneous

• For large datasets, use a smaller subset for quick EDA and visualizations

To add:

- which models need scaling
- feature selection (eg. hypothesis testing)
- model strategies (one vs many, group vs group etc)
- meta algorithms
- ullet list of cv methods
- \bullet stacking
- large p small n, large n small p (ARM)