Nonlinear Optimization Lecture 14 Garrick Aden-Buie Thursday, March 3, 2016

Homework 3 Review

Problem 3

Consider $\min f(x)$ s.t. $g_i(x) \leq 0$ for i = 1, ..., m\$. Let \bar{x} be a feasible point and $I = \{i : g_i(\bar{x}) = 0\}$. Suppose f is differentiable at \bar{x} and g_i for $i \in i$ differentiable and concave at \bar{x} and g_i for $i \notin I$ is continuous at \bar{x} . Then consider

min
$$\nabla f(\bar{x})^T d$$

s.t $\nabla g_i(\bar{x})^T d \le 0 \quad \forall i \in I$
 $-1 \le d \le 1 \quad \forall j = 1, \dots, n$

Let \bar{d} be an optimal solution with objective function value \bar{z} .

3.b

Show that if $\bar{z} < 0$, then there exists $\delta > 0$ such that $\bar{x} + \lambda \bar{d}$ is feasible, $f(\bar{x} + \lambda \bar{d}) < f(\bar{x})$ for each $\lambda \in (0, \delta)$.

We know that $\nabla f(\bar{x})^T \bar{d} < 0$ and $\nabla g_i(\bar{x})^T \bar{d}_i \leq 0$ for all $i \in I$. We also know that g_i is concave $\forall i \in I$, which implies that

$$g_i(y) \le g_i(\bar{y}) + \nabla g_i(\bar{y})^T (y - \bar{y}), \ \forall y, \bar{y}$$

Let $y = \bar{x} + \lambda \bar{d}$ and $\bar{y} = \bar{x}$. Then

$$g_i(\bar{x} + \lambda \bar{d}) \le g_i(\bar{x}) + \nabla g_i(\bar{x})^T \lambda \bar{d}, \ \forall \lambda \ge 0, \ \forall i \in I$$

Then (1) $g_i(\bar{x} + \lambda \bar{d}) \leq 0$, $\forall \lambda \geq 0$, $\forall i \in I$. And (2) $g_i(\bar{x} + \lambda \bar{d}) \leq 0$, $\forall i \notin I$. Then there exists $\delta_1 > 0$ such that $g_i(\bar{x} + \lambda \bar{d}) \leq 0$ for all $\lambda \in [0, \delta_1)$. (1) + (2) implies that $\bar{x} + \lambda \bar{d}$ feasible for all $\lambda \in [0, \delta_1)$ and knowing that $\nabla f(\bar{x})^T \bar{d} < 0$ gives us that $\exists \delta_2 > 0$: $f(\bar{x} + \lambda \bar{d}) < f(\bar{x})$, $\forall \lambda \in (0, \delta_2)$.

Then if we let $\delta = \min\{\delta_1, \delta_2\}$ we have the proof.

3.c

Show that if $\bar{z} = 0$ then \bar{x} is a KKT point.

Rewrite the above problem as

$$\begin{aligned} & \text{min} & & c^T d \\ & \text{s.t.} & & Ad < b \end{aligned}$$

Where

$$c = \nabla f(\bar{x})$$

$$b = \begin{bmatrix} \mathbf{0}_I \\ \mathbf{1}_m \\ \mathbf{1}_m \end{bmatrix}$$

$$A = \begin{bmatrix} \nabla g_i(\bar{x})^T \\ \vdots \\ I_m \\ -I_m \end{bmatrix}$$

$$d = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_m \end{bmatrix}$$

And the dual problem is

$$\max_{w} \quad \sum_{j=1}^{m} \mu_{j} + \sum_{j=1}^{m} \eta_{j}$$

$$\text{s.t.} \quad A^{T}w = c \quad \Rightarrow \quad \text{s.t.} \quad \left[\nabla g_{i}(\bar{x}) \quad \dots \quad | \quad I \quad | \quad -I\right] \begin{bmatrix} \lambda \\ \mu \\ \eta \end{bmatrix} = \nabla f(\bar{x})$$

$$\lambda, \mu, \eta \leq 0$$

If $\bar{z} = 0$, then $\mu = 0$ and $\eta = 0$.

Then the constraint becomes

$$\begin{split} & \sum_{i \in I} \nabla g_i(\bar{x}) \lambda_i = \nabla f(\bar{x}), \qquad \lambda_i \leq 0 \\ \Rightarrow & \nabla f(\bar{x}) - \sum_{i \in I} \nabla g_i(\bar{x}) \lambda_i = 0 \end{split}$$

Let $\rho_i = -\lambda_i \ge 0$. Then

$$\nabla f(\bar{x}) + \sum_{i \in I} \nabla g_i(\bar{x}) \rho_i = 0$$

Review

Unconstrained Optimization

- Line Search
 - Single dimension problem: $\min f(x)$, $a \le x \le b$, we know $x^* \in [a, b]$ and f(x) is strictly quasiconvex.
- Dichotomous Search
- Golden Section Search
- (No derivatives used in the above...)

Line Search with Derivative

We are still minimizing f(x), $x \in \mathbb{R}$, but we are going to use f'(x) and f is pseudoconvex, hence differentiable.

- Bisection Method
 - Will cover next lecture
 - Evaluate $f'(\frac{a+b}{2})$ and depending on the direction decide which section of [a,b] to explore.