Default with Policy-Randomness Overestimation

Chen Gao October 16, 2025

National School of Development, Peking University

Outline

Motivation

Model

Baseline Results

Microfound PRO with Rational Inattention

Policy and Information Extension

Summary

Motivation

A Persistent Puzzle

Some sovereigns face persistently high spreads despite moderate debt and improving fundamentals.

Event evidence (e.g., Argentina's inflation misreporting) shows spread decoupling beyond direct balance-sheet effects.

Standard models struggle to match elevated average premia with lower volatility.

This paper: a single pricing operator with a second-moment belief wedge (PRO) that *pivots* price/spread schedules.

Argentina: Data Misreporting and Spread Decoupling

2,000 EMBI Spreads, bps 1,000 2007 2008 2012

(a) Official CPI vs. alternative measures

(b) EMBI+ spreads: Argentina vs. LA peers

Source: Morelli and Moretti, 2023

Interpretation: reputational channel (type) + **PRO** (policy dispersion) both active.

Literature on Sovereign Risk, Information and Behavior

Long-term debt with exclusion/costs; matches countercyclical spreads but struggles with persistently high premia at moderate debt.

• [Aguiar & Gopinath 2007; Arellano 2008; Chatterjee & Eyigungor 2012; Mendoza & Yue 2012]

Worst-case tilts raise premia *uniformly across states*; strong fit for high spreads, less for *cross-maturity divergence* after information shocks.

• [Hansen & Sargent 2008; Pouzo & Presno 2016; Roch & Roldán 2023; Klibanoff, Marinacci & Mukerji 2005; Maccheroni et al. 2006]

Agents optimally allocate attention; allows state-dependent distortions in perceived moments (mean/variance) consistent with pricing wedges.

 [Sims 2003; Maćkowiak & Wiederholt 2009; Matějka & McKay 2015; Van Nieuwerburgh & Veldkamp 2009; Veldkamp 2011]

This Paper

PRO Mechanism: Lenders overweight policy dispersion \Rightarrow bond-price pivot around a state-dependent threshold \Rightarrow safe states cheaper for lenders, risky states softening of doom

Comparative statics: Higher default thresholds, deleveraging yet higher average spreads (*stability illusion*), welfare loss

RI microfoundation: Optimal attention to dispersion \Rightarrow **state-dependent** tail weight of *default* entering the same operator

Policy & information: Limits of fiscal transfers; negativity-biased learning persistence; transparency improves welfare

Model

Environment

AR(1) Endowment:

$$\ln \mathbf{y}' = (\mathbf{1} - \rho_{\mathbf{y}})\mu_{\mathbf{y}} + \rho_{\mathbf{y}} \ln \mathbf{y} + \sigma_{\mathbf{y}} \varepsilon'$$

Debt Setup: long-term bond with coupon κ , decay δ , risk-free rate r

Consequences of Default:

- 1. Excluded to autarky with prob. 1 $-\gamma$
- 2. Output cost $h(y) = y \max\{0, \lambda_0 y + \lambda_1 y^2\}$

Preferences:

$$\max \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)$$

with
$$u(c) = (c^{1-\sigma} - 1)/(1 - \sigma)$$

So far so standard

Ex-ante and Ex-post Values

Ex-post Value: Given ex-ante value of default $V^D(y)$ and value of repay $V^R(y,B)$:

$$\tilde{V}^D(y, \varepsilon_d) = V^D(y) + \varepsilon_d, \quad \tilde{V}^R(y, B, \varepsilon_r) = V^R(y, B) + \varepsilon_r$$

The sovereign observes the shocks ε_d and ε_r and chooses the action that yields the highest *ex-post* value

$$V(y,B) = \mathbb{E}_{\varepsilon_d,\varepsilon_r} \left[\max \left\{ \underbrace{V^D(y) + \varepsilon_d}_{\tilde{V}^D(y,\varepsilon_d)}, \underbrace{V^R(y,B) + \varepsilon_r}_{\tilde{V}^R(y,B,\varepsilon_r)} \right\} \right]$$

where ε_R , $\varepsilon_D \overset{i.i.d.}{\sim}$ Type-I EV $(-\eta\gamma,\eta)$

Default Choice: Let $d \in \{0,1\}$ denote the default choice:

$$\Pr\{d=1|y,B\} = \Pr\left\{\tilde{V}^D(y,\varepsilon_d) > \tilde{V}^R(y,B,\varepsilon_r)|y,B\right\} = \frac{\exp\frac{V^D(y)}{\eta}}{\exp\frac{V^D(y)}{\eta} + \exp\frac{V^R(y,B)}{\eta}}$$

Value of Default/Repay

Default: Upon re-entry, all past debts are forgiven, so it starts with B=0:

$$V^{D}(y) = u(h(y)) + \beta \mathbb{E}_{y'|y} \left[\gamma V(y', 0) + (1 - \gamma) V^{D}(y') \right]$$

Repay: Pays the coupon κB , the ex-ante value is:

$$W(y,B,B') = u\left(y - \kappa B + \left[B' - (1-\delta)B\right]q(y,B')\right) + \beta \mathbb{E}_{y'|y}\left[V(y',B')\right]$$

assuming $\{\varepsilon_{\mathcal{B}'}\}_{\mathcal{B}'\in\mathcal{B}}\stackrel{i.i.d.}{\sim}$ Type-I EV $(-\rho\gamma,\rho)$, we have

$$V^{R}(y, B) = \rho \ln \left(\sum_{B' \in \mathcal{B}} \exp \frac{W(y, B, B')}{\rho} \right)$$

and the policy distribution follows $\Pr\{B'|y,B\} = \exp\frac{W(y,B,B')}{\rho} / \sum_{B_j \in \mathcal{B}} \exp\frac{W(y,B,B_j)}{\rho}$.

Pricing with PRO

Intuition: Lenders perceive the sovereign to be more *erratic* or "irrational" than it truly is

Formally: Lenders estimate the price with scale $\tilde{\eta} = \theta \cdot \eta$ where $\theta > 1$:

· Their perceived probability of default:

$$\tilde{P}(y', B') = \frac{\exp \frac{V^{D}(y')}{\theta \eta}}{\exp \frac{V^{D}(y')}{\theta \eta} + \exp \frac{V^{R}(y', B')}{\theta \eta}}$$

• θ captures the degree of **policy-randomness overestimation (PRO)**

Price:

$$q(y, B') = \underbrace{\frac{1}{1+r} \mathbb{E}_{y'|y} \left[\left(1 - \tilde{P}(y', B') \right) \left(\kappa + (1-\delta) \mathbb{E}_{B''|y', B'} \left[q(y', B'') \right] \right) \right]}_{\equiv (\mathcal{T}_{\theta}q)(B', y)}$$

Lenders **correctly** understand borrowing ρ but **misperceive** default η .

Baseline Results

Main Result: Bond Price Pivot

Main Proposition: Consider 2 economies with $\theta > 1$ and $\theta = 1$. Let $q_1(B',y)$ and $q_{\theta}(B',y)$ be the respective equilibrium bond price functions. For a given endowment level y, there exists a debt threshold $B^*(y)$ such that the price difference $\Delta q(B',y) \equiv q_{\theta}(B',y) - q_1(B',y)$ satisfies:

- For levels of future debt $B' < B^*(y)$, $\Delta q(B', y) < 0$
- For levels of future debt $B'>B^*(y)$, $\Delta q(B',y)>0$

Corollary: Given the spread defined by $s(y,B') = \frac{\kappa}{q(y,B')} - \delta - r$, the spread difference $\Delta s(B',y) \equiv s_{\theta}(B',y) - s_{1}(B',y)$ satisfies the opposite relationship to the price difference at the same threshold $B^{*}(y)$.

Low position ⇒ **Elevated average premia**

Figure 1: Pivoting Bond Price Schedules

Pivoting II

PRO economy is **less** responsive to positive news:

Proposition 3 The threshold $B^*(y)$ is monotonically increasing in the endowment level y. That is, $\frac{dB^*(y)}{dy} > 0$.

With PRO, it's more **unlikely** to default:

Proposition 4 Let $B_{D,i}^*(y)$ be the sovereign's default threshold for economy $i \in \{1, \theta\}$. For any given endowment level y, the default threshold is higher in the economy with PRO lenders:

$$B_{D,\theta}^*(y) > B_{D,1}^*(y).$$

And the sovereign tries to **deleverage**:

Proposition 5 Let $\mathbb{E}_i[B'|y,B]$ be the expected next-period debt. For states (y,B) where the sovereign chooses not to default,

$$\mathbb{E}_{\theta}[B'|y,B] < \mathbb{E}_{1}[B'|y,B].$$

Pivoting III

The overall welfare decreases for a PRO economy.

Parameters

Table 1: Baseline Calibration (Quarterly)

Parameter	Value	Description			
Preferences and Endowments					
σ	2.0	CRRA coefficient of relative risk aversion			
β	0.9775	Sovereign's discount factor			
ρ_{y}	0.95	Persistence of log endowment AR(1)			
σ_{y}	0.005	Std. dev. of endowment innovations			
Debt and Default					
r	0.01	Quarterly risk-free interest rate (4% ann.)			
δ	0.04	Principal decay rate (for 5-year duration)			
κ	0.05	Coupon rate ($\delta + r$)			
γ	0.125	Re-entry probability (avg. 2-year exclusion)			
λ_0, λ_1	-0.48, 0.525	Output cost function parameters			
Computational Parameters					
η	$5 imes 10^{-4}$	Scale of default taste shock			
ρ	1×10^{-5}	Scale of borrowing taste shock			
θ	1.0	Baseline PRO coefficient			

Business Cycle

Table 2: Business Cycle Implications of PRO

Moment	Baseline ($ heta=$ 1)	Med. ($\theta=$ 10)	High ($\theta=$ 100)
Mean and Volatility			
Mean Debt-to-GDP Ratio (%)	7.90	5.53	2.70
Std. Dev. of Debt-to-GDP Ratio (%)	0.87	0.85	0.74
Mean Spread (annualized, %)	2.00	2.75	4.15
Std. Dev. of Spread (annualized, %)	0.77	0.49	0.58
Std. Dev. of ln(Consumption) (%)	3.48	3.53	3.41
Std. Dev. of ln(GDP) (%)	3.04	3.19	3.19
Mean Trade Balance/GDP (%)	0.42	0.32	0.18
Std. Dev. of Trade Balance/GDP (%)	0.51	0.43	0.32
Correlations			
Corr(Spread, ln(GDP))	-0.43	-0.80	-0.89
Corr(Trade Balance/GDP, ln(GDP))	-0.28	-0.28	-0.26
Corr(Debt/GDP, ln(GDP))	0.70	0.79	0.84

Deleveraging and Low-debt Trap I

(a) Debt-to-GDP Ratio Distribution

(b) Credit Spread Distribution

 $\mbox{PRO} \Rightarrow \mbox{Punitive pricing} \Rightarrow \mbox{Conservative finances {\bf BUT}} \mbox{ Trapped in a low-debt {\bf trap}} \\ \Rightarrow \mbox{Continued {\bf higher}} \mbox{ capital costs}$

Deleveraging and Low-debt Trap II

Why does the average spread rise while deleveraging?

$$\bar{\mathbf{S}}_{\theta} - \bar{\mathbf{S}}_{1} = \kappa \qquad \underbrace{\mathbb{E}_{\mu_{\theta}} \left[\frac{1}{q_{\theta}} - \frac{1}{q_{1}} \right]}_{\text{price wedge at PRO weights}} + \kappa \underbrace{\left(\mathbb{E}_{\mu_{\theta}} \left[\frac{1}{q_{1}} \right] - \mathbb{E}_{\mu_{1}} \left[\frac{1}{q_{1}} \right] \right)}_{\text{composition (policy) effect}}$$

Average spread dominance

- The first term (price wedge at PRO weights) is **strictly positive** and strengthened by deleveraging, mass shifts toward $B' < B^*(y)$ where $1/q_{\theta} 1/q_1 > 0$.
- The second term (composition effect at baseline prices) is weakly negative since $1/q_1$ is lower at smaller B'.
- Under mild regularity, the first term **dominates** the second $\Longrightarrow \bar{s}_{\theta} > \bar{s}_{1}$

Transitory

Deleverage Paths

High PRO:

- systematically converge to **lower** debt levels
- consumption is more volatile
- · Interest rate spreads remain high

Microfound PRO with Rational
Inattention

Additional Assumption: $\theta \in \left[1, \bar{\theta}\right]$ where $\bar{\theta} > 1$

Information Structure: Competitive lenders observe two public signals:

1. Mean/Fundamentals

$$\mathbf{s}_{\mu} = \mu + \varepsilon_{\mu}, \quad \varepsilon_{\mu} \sim \mathcal{N}(\mathbf{0}, (\psi_{\mu} \mathbf{a}_{\mu})^{-1}),$$

where $\psi_{\mu} \in (0,1]$ captures the credibility/productivity of the mean signal

2. Dispersion/Stability

$$s_{\sigma} = \sigma + \varepsilon_{\sigma}, \quad \varepsilon_{\sigma} \sim \mathcal{N}(0, a_{\sigma}^{-1}),$$

Convex precision cost: interpreted as attention/processing costs:

$$\Phi(a_{\mu},a_{\sigma}) = \frac{\kappa_{\mu}}{2}a_{\mu}^{2} + \frac{\kappa_{\sigma}}{2}a_{\sigma}^{2},$$

An entropy/mutual-information formulation yields identical monotone comparative statics in precisions

Tail-weight and Pricing

Lenders maximize

$$\max_{a_{\mu},a_{\sigma}\geq 0} \mathbb{E}[U\mid a_{\mu},a_{\sigma}] - \Phi(a_{\mu},a_{\sigma}).$$

Let the marginal pricing sensitivity be:

$$\mathcal{S}(y, B') \equiv \mathbb{E}\left[\frac{\partial U}{\partial \theta}(y, B'; \theta_{\mathrm{RI}}(y, B'))\right] \geq 0.$$

we have the FOC $a_{\sigma}(y, B') = \frac{\varphi}{\kappa_{\sigma}} \mathcal{S}(y, B')$. Attention to dispersion maps into the **tail-weight** in lenders' default beliefs.

$$\theta_{\mathrm{RI}}(y,B') = \min \Big\{ 1 + \varphi a_{\sigma}(y,B'), \bar{\theta} \Big\} = \min \Big\{ 1 + \frac{\varphi^2}{\kappa_{\sigma}} \mathcal{S}(y,B'), \bar{\theta} \Big\}, \quad \varphi > 0.$$

The price is then

$$q(B',y) = \mathcal{T}_{\theta_{\mathrm{BI}}(y,B')}[q](B',y).$$

Attention substitution

Similarly, write the effective mean precision as $a_\mu^{\rm eff}\equiv\psi_\mu a_\mu$ and define its marginal value

$$\mathcal{M}(y, B') := \mathbb{E}\left[rac{\partial extstyle U}{\partial extstyle a_{\mu}^{ ext{eff}}}(y, B')
ight] \geq 0.$$

The optimality condition gives

$$\psi_{\mu} \mathcal{M}(\mathbf{y}, \mathbf{B}') = \kappa_{\mu} \, \mathbf{a}_{\mu}(\mathbf{y}, \mathbf{B}').$$

Proposition 7 Fix a state s=(y,B') and assume $\mathcal{M},\mathcal{S}\in \mathcal{C}^1$ and the following hold: Diminishing returns, Cross (substitution) effects, Strict concavity of the attention and Productivity raises the marginal return to mean attention problem. Then the unique interior solution (a_μ^*,a_σ^*) to the first-order conditions satisfies

$$rac{\partial a_{\mu}^{*}}{\partial \psi_{\mu}} \geq 0, rac{\partial a_{\sigma}^{*}}{\partial \psi_{\mu}} \leq 0,$$

with strict inequalities if at least one of the cross effects is strict.

Monotone attention and PRO intensity

Corollary 2 If S(y, B') is increasing in B' and decreasing in y, then

$$\frac{\partial a_{\sigma}}{\partial B'}>0,\quad \frac{\partial a_{\sigma}}{\partial y}<0,\quad \frac{\partial \theta_{\mathrm{RI}}}{\partial B'}>0,\quad \frac{\partial \theta_{\mathrm{RI}}}{\partial y}<0.$$

Intuition: Decision makers (lenders) will only pay the most attention to the most critical $B' \uparrow$ and uncertain $y \downarrow$ areas.

Given the setup, we can show the existence, uniqueness, and continuity of attention.

Proposition 8 Suppose Φ is strictly convex. If \mathcal{T}_{θ} is positive and order-preserving for each fixed $\theta \in [1, \bar{\theta}]$, then the state-dependent operator $\mathcal{T}_{\theta_{\mathrm{RI}}(\cdot)}$ is positive and order-preserving. The baseline results **continue to hold** with θ replaced by $\theta_{\mathrm{RI}}(\mathbf{y}, \mathbf{B}')$.

Mechanism: Argentina misreporting II

The Argentina case can be explained by:

- 1. Misreporting inflation data $\Longrightarrow \psi_{\mu} \downarrow$
- 2. By **Proposition 7**:
 - 2.1 Lenders actively choose to **reduce** their attention to mean signals $a_{\mu} \downarrow$
 - 2.2 the marginal benefits of policy instability $\mathcal{S}\uparrow$
 - 2.3 Lender will actively choose a higher attention level to the policy dispersion $a_{\sigma}\uparrow$
- 3. PRO bias increases $\theta_{\rm RI}\uparrow\Longrightarrow$ Higher average spread and decoupling from similar countries

Policy and Information Extension

Extensions

Optimal fiscal policy: welfare losses still exist

 Real efficiency losses that cannot be compensated by resource transfers alone

The formation of endogenous beliefs: Lenders learn by observing default history

- PRO bias will persist in the long term
- When default events are rare, beliefs converge very slowly to a steady state

Optimal policy communication: Can PRO bias be combated by increasing transparency?

- The more severe the PRO bias, the stronger the incentive to choose greater transparency
- PRO bias is severe enough ⇒ choosing a certain degree of transparency
 ⇒ higher social welfare

Summary

Takeaways

Why do some sovereigns face high and persistent borrowing spreads despite moderate debt and improving fundamentals? (e.g., Argentina)

Core Mechanism: Lenders systematically **overestimate** the randomness or "irrational" component in sovereign policy choices

The price/spread schedule to pivot around a threshold

Quantitative Result: Paradox

- Optimally **deleverages** to avoid high costs
- Yet, average spreads rise, creating a "low-debt, high-cost" trap

Microfoundation: Rational inattention

Explain the logic of Argentina's decoupling