SPRAWDZIAN I

Imię i nazwisko:

Nr indeksu:

Nr grupy:

Uwaga! Sprawdzian jest testem wielokrotnego wyboru, gdzie wszystkie możliwe kombinacje odpowiedzi są dopuszczalne (tj. zarówno wszystkie odpowiedzi poprawne, część odpowiedzi poprawna jak i brak odpowiedzi poprawnych). Poprawne odpowiedzi należy zaznaczyć, z lewej strony kartki, symbolem "+". Natomiast symbol "-" jak i brak symbolu przy odpowiedzi oznacza odpowiedź niepoprawną. Pytanie jest uznane za poprawnie rozwiązane (tj. +1pkt) wtedy i tylko wtedy gdy wszystkie jego odpowiedzi zaznaczone są poprawnie. Życzymy powodzenia ...

- 1. Niech $f(n) = (\lg n!)^2$, wtedy prawdą jest, że:
 - (a) $[+] f(n) = O(n^3),$
 - (b) $[+] f(n) = \Omega(\lg(n!)^2),$
 - (c) [+] $f(n) = \Theta\left(2^{\lg n^2} \lg^2 n\right)$.
- 2. Rozważmy funkcję $f: \mathbb{N} \to \mathbb{R}^+ \cup \{0\}$ postaci $f(n) = \sqrt{n}$, wtedy:
 - (a) $[+] f(n) = \Theta(\frac{1}{c} \cdot f(n) + c)$, gdzie c jest pewną dodatnią stałą,
 - (b) $[+] f(n) = O(n \cdot f(n)),$
 - (c) $[+] f(n) = \Omega(f(n)^{-2}).$
- 3. Które z poniższych zdań jest prawdziwe:
 - (a) [-] jeżeli f(n) = O(n) i g(n) = O(n), to $f(n) + g(n) = \Omega(n^2)$,
 - (b) [+] jeżeli $f(n) = O(n^2)$ i $g(n) = O(n^2)$, to $f(n) + g(n) = O(n^2)$,
 - (c) [+] jeżeli $f(n) = \Omega(n)$ i $g(n) = \Omega(n)$, to $f(n) \cdot g(n) = \Omega(n^2)$.
- 4. Załóżmy, że złożoność czasową pewnego algorytmu A określa funkcja $T(A,n)=n^2$, gdzie n jest rozmiarem danych wejściowych. Komputer K wykonuje rozważany algorytm dla danych rozmiaru 8 w ciągu 32 sekund, tj. $T_K(A,8)=32$. Stąd:
 - (a) [-] $T_K(A, 9) = 40,$
 - (b) $[+] T_K(A, 10) = 50$
 - (c) [+] w ciągu 200 sekund komputer K wykona rozważany algorytm dla danych wejściowych rozmiaru co najmniej 20.
- 5. Rozważmy następujący algorytm

```
void Algorytm(int n) {
   Alg1(n);
   for (i=0;i<n*n;i++) {
        Alg2(n);
   }
}</pre>
```

gdzie Alg_1 oraz Alg_2 są algorytmami o złożoności czasowej odpowiednio $T(Alg_1n) = O(\sqrt{n} \lg n!)$ oraz $A(Alg_2, n) = \Theta(n^2)$, $W(Alg_2, n) = \Omega(n^2)$, stąd:

(a) [-] $T(Algorytm, n) = \Theta(n^2 \lg n!),$

- (b) [-] $A(Algorytm, n) = O(n^2 \lg n!),$ (c) [+] $W(Algorytm, n) = \Omega(n^2 \lg n!).$
- 6. Rozważmy następujący algorytm

```
int Cos(int n) { // wp: n∈ N
   int i=1;
   while (i*i≥0) i=i+1;
   return n; // wk: n∈ N
}
```

wtedy:

- (a) [-] program Cos jest całkowicie poprawny w strukturze liczb naturalnych,
- (b) [+] program Cos jest częściowo poprawny w strukturze liczb naturalnych,
- (c) [-] program Cos jest całkowicie poprawny w strukturze liczb naturalnych przy założeniu, że operator dodawania zdefiniujemy jak dzielenie, tj. $+=_{def}$ /.
- 7. Rozważmy następujący algorytm

```
int Cos(int n, int k) {
   int i=n, wynik=0;
   while (i≥k) {
      i=i div k;
      wynik=wynik+1;
   }
   return wynik; // wk: wynik=[log<sub>k</sub> n]
}
```

wtedy:

- (a) [-] program Cos jest częściowo poprawny dla warunku początkowego $k, n \in \mathbb{N}$,
- (b) [+] program Cos jest częściowo poprawny dla warunku początkowego dla $n \in \mathbb{N}$ i $k \in \mathbb{N} \setminus \{0, 1\}$,
- (c) [+] program Cos jest całkowicie poprawny dla warunku początkowego $n=k^c$, dla $c\in\mathbb{N}^+$ i $k\in\mathbb{N}\setminus\{0,1\}$,
- 8. Rozważmy następujący algorytm

```
int Cos(int n) { // wp: n \in \mathbb{N} int i=0, s=0; while (i \le n) { i=i+1; s=s+i; } return s; }
```

wtedy:

- (a) [+] niezmiennikiem pętli w programie Cos jest formuła $s = \frac{i(i+1)}{2}$,
- (b) [–] niezmiennikiem pętli w programie Cos jest formuła $s=\frac{(i+1)(i+2)}{2},$
- (c) [-] niezmiennikiem pętli w programie Cos jest formuła $i \geq 0$, a warunkiem końcowym $s = \sum_{i=0}^{n-1} i$.
- 9. Które ze zdań jest prawdziwe:
 - (a) [+] sprawdzenie, czy dany element należy do nieuporządkowanego uniwersum rozmiaru n wymaga $\Omega\left(\sqrt{n}\right)$ porównań,
 - (b) [–] sprawdzenie, czy dany element należy do nieuporządkowanego uniwersum rozmiaru \sqrt{n} wymaga $O(\lg n)$ porównań,
 - (c) [+] koszt czasowy optymalnego algorytmu wyszukania elementu minimalnego w nieuporządkowanym uniwersum rozmiaru 10^6 wynosi $10^6 - 1$.

- 10. Rozważmy algorytm "turniej" dla danych rozmiaru $n=2^k$, gdzie $k\in\mathbb{N}^+$. Które z poniższych stwierdzeń jest zawsze spełnione:
 - (a) [-] koszt budowy drzewa turnieju wynosi dokładnie n porównań,
 - (b) [+] element 3-ci co do wielkości "pojedynkował sie" z co najwyżej z $\lg n$ elementami,
 - (c) [+] element 1-szy co do wielkości "pojedynkował się" z co najmniej $\lg n$ elementami.
- 11. Rozważmy iteracyjny algorytm dla problemu min-max i danych rozmiaru $n=2^k$, gdzie $k\in\mathbb{N}^+$, wtedy:
 - (a) [+] algorytm ten jest optymalnym rozwiązaniem dla rozważanego problemu,
 - (b) [+] złożoność czasową algorytmu można oszacować przez O(n),
 - (c) [-] złożoność pamięciowa algorytmu jest rzędu $\Omega(\lg n)$.
- 12. Które ze zdań jest prawdziwe:
 - (a) [-] sprawdzenie algorytmem BinSearch, czy dany element należy do nieuporządkowanego uniwersum rozmiaru n wymaga O(n) porównań,
 - (b) [+] sprawdzenie algorytmem BinSearch, czy dany element należy do uporządkowanego uniwersum rozmiaru n wymaga O(n) porównań,
 - (c) [-] koszt czasowy algorytmu BinSearch dla poprawnych danych rozmiaru $2 \cdot 10^3$ wynosi co najwyżej 8 porównań.
- 13. Załóżmy, że pewien algorytm Alg dla danych wejściowych rozmiaru n składa się z trzech części:
 - $n\sqrt{n}$ -krotne wyszukanie elementu maksymalnego metodą sekwencyjną,
 - n-krotne wyszukanie elementu minimalnego algorytmem Hoare'a,
 - \sqrt{n} -krotne wyszukanie, algorytmem optymalnym, mediany w ciągu uporządkowanym.

Które z oszacowań jest poprawne:

- (a) $[+] A(Alg, n) = \Omega(n^2),$
- (b) $[-] W(Alq, n) = O(n^2),$
- (c) $[-] S(Alg, n) = \Theta(n)$.
- 14. Który z poniższych ciągów jest poprawnym rezultatem wykonania procedury Partition dla danych wejściowych

- (a) [-] 4,7,3,2,11,9,5,
- (b) [+] 2,7,9,11,3,5,4,
- (c) [-] 2,3,4,5,7,9,11.
- 15. Rozważmy wyszukiwanie elementu n-tego co do wielkości, w n-elementowej uporządkowanej rosnąco tablicy wejściowej, przy zastosowaniu algorytmu Hoare'a z procedurą podziału zgodną z metodą Split, wtedy:
 - (a) [+] złożoność czasową rozwiązania w tym przypadku szacujemy przez O(n),
 - (b) [+] złożoność czasową rozwiązania w tym przypadku szacujemy przez $\Omega(n)$,
 - (c) [-] złożoność czasową rozwiązania w tym przypadku szacujemy przez $\Theta(n^2)$.
- 16. Prowadzący zajęcia ćwiczeniowe z ASD jest:
 - (a) blondynem,
 - (b) brunetem,
 - (c) albo nie znam człowieka ... albo myślę, że liczba włosów na jego głowie daje się szacować przez $\Omega(1)$.