

Resource-Constrained Project Scheduling: Heuristics

Alessandro Hill

rev. 1.0(AH) - 2024

Topological Sorting Algorithm for the Project Scheduling Problem (PSP, no resources)

INPUT: Jobs J, Precedence Network N

- 1. Initialize:
 - Empty schedule S
 - Auxiliary precedence network N':=N
- 2. Repeat the following until all jobs are scheduled:
 - a) Pick a job j that has not been scheduled yet and has NO predecessors in the CURRENT precedence network N'.
 - b) Remove j from the CURRENT precedence network N'.
 - c) Schedule j in S to begin at the earliest possible start time. This is the latest end time in S of all predecessors of j in N.

This is an exact algorithm for the Project Scheduling Problem without resources.

Alternative description:

- Find a topological ordering Σ of the nodes in N.
- Schedule jobs in the order given by Σ at the earliest possible times.

Topological Sorting Heuristic for the RCPSP

TopoSort

INPUT: Jobs J, Precedence Network N, Resources R

- 1. Initialize:
 - Empty schedule S
 - Auxiliary precedence network N'
- 2. Repeat the following until all jobs are scheduled:
 - a) Pick a job j that has not been scheduled yet and has NO predecessors in the CURRENT precedence network N'.
 - b) Remove j from the CURRENT precedence network N'.
 - c) Schedule j to begin at the earliest possible start time. This is at least the latest end time of all predecessors of j in N. In general, it is later due to resources limitations in the CURRENT schedule.

This is a heuristic method for the RCPSP (PSP with resources).

α - Point Heuristic for the RCPSP

INPUT: Jobs J, Precedences A, Resources R, Scheduling Threshold lpha

- 1. Solve the linear relaxation (LP) for an RCPSP formulation (IP). This gives you a fractional value $x_{i,t}$ for each potential start time* t for each job j.
- 2. Initialize empty job ordering Σ .
- 3. For potential job start time* t form 0 to MAX(T) do:
 - For each job that is NOT in Σ , calculate the start potential $a_{j,t}$ at time t: $a_{j,t} = \sum_{t'=0}^t x_{j,t}$
 - Let candidate set C_t contain all jobs that are not in Σ and for which $a_{j,t} \geq \alpha$.
 - Append jobs in C_t that are "precedence-feasible" to Σ .**
- 4. Schedule jobs according to the ordering Σ .

The α – point (in time) for a job j is the time t when $a_{j,t} \geq \alpha$.

Strategy: Run this heuristic for various values of α and return the best schedule.

Example: $\alpha \in \{0.1, 0.2, ..., 1.0\}$

For very large RCPSPs, solving the LP can be time consuming!

^{*}Can also be done using job end times.

^{**}Try appending in decreasing order of $a_{i,t}$. All predecessors of the job must already be in Σ .

Es. Capitol Construction (2a. Re-revisited)

La Capitol Construction Company deve completare la ristrutturazione del suo attuale ufficio il più rapidamente possibile...

Compito	Simbolo	Precedenca	Durata	Persone	Costi (in 1000)
Preparare opzioni di finanziamento	А	-	2	3	3
Preparare schizzi preliminari	В	-	3	2	1
Delineare le specifiche	С	-	1	1	3
Preparare disegni	D	А	4	3	4
Scrivere le specifiche	E	C, D	5	3	1
Eseguire le stampe	F	В	1	1	1

Resource availability: $q_{Persone} = 4$, $q_{Costi} = 5$

- a) Trova una soluzione con il algoritmo TopoSort
- b) Trova una soluzione con il algoritmo α Point

Exercise 1)

In Table 1.1, a RCPSP instance is given with n=10 real activities and $|\mathcal{R}|=2$ resources with availabilities $B_1=7$ and $B_2=4$.

											A_{10}	
$\overline{p_i}$	0	6	1	1	2	3	5	6	3	2	4	0
b_{i1}	0	2	1	3	2	1	2	3	1	1	1	0
b_{i2}	0	1	0	1	0	1	1	0	2	2	1	0

- 1. Find a schedule using the TopoSort Heuristic
- 2. Find a schedule using the α Point Heuristic
- 3. Find an optimal schedule using the IP or CP
- Visualize all schedules using Gantt charts Verify your results visually. Compare results.

Exercise 2)

1. Implement an RCPSP Heuristic

Option 1: TopoSort Heuristic (TopoSort)Build the Excel IP model.

Option 2: α –Point Heuristic.

Option 3: Both heuristics.

Use the language/system of your choice.

2. Run your algorithm on larger test instances

Data on Virtuale.

Careful: Different data formats!

Feel free to use other large RCPSP instances.

3. Can you visualize your results?

4. How good are your results compared to an exact method?

Use an exact IP Solver or MiniZinc?