Manual de Ensamble Robot Escornabot Brivoi Compactus

Wilmer Gaona Romero (@wgaonar)

Julio 2020

1. Introducción

Escornabot es un robot móvil de software y hardware abierto diseñado para la enseñanza de electrónica y programación en niños, adolescentes y no tan niños. Basado en la tarjeta Arduino Nano, destaca la sencillez de su diseño mecánico, electrónico y la estructura del código con el cual funciona. Todo esto ha sido posible por la comunidad que lo desarrolla y mantiene actualizado. Existen diversas versiones y la que corresponde a este manual es la **Brivoi Compactus** que se puede ver en la Figura 1

Figura 1: Modelo 3D del Escornabot Brivoi Compactus

Esta versión cual utiliza dos tarjetas de circuitos impresos (PCB):

- 1. Tarjeta de la botonera: E KeyPad V2.2 diseñada por XDeSIG
- 2. Tarjeta de control basada en el Arduino Nano: EscornaCPU V1.2 diseñada por XDeSIG

2. Partes Impresas en 3D

El cuerpo del Escornabot está compuesto por 7 partes impresas en 3D que se muestran en la Figura 2 y que se explican enseguida.

Figura 2: Vista Explosionada de las partes impresas en 3D

- 1. Motor-Bracket: Parte central del robot a la que se fijan los motores y algunas de las otras piezas impresas en 3D.
- 2. EscornaCPU_1.2-Bracket: Parte a la que se fija la tarjeta de control.
- 3. E-Keypad 2.2-Bracket: Parte a la que se fija la tarjeta de la botonera.
- 4. Battery-Bracket: Parte en donde van alojadas las baterías AA que alimentan el Escornabot.
- 5. Wheel-Right: Rueda derecha del Escornabot.
- 6. Wheel-Left: Rueda izquierda del Escornabot.
- 7. Ball-Caster: Parte que aloja la esfera que sirve de pivote para que el Escornabot pueda desplazarse y girar.

3. Componentes Electrónicos

3.1. Lista de Componentes Electrónicos

La Tabla 1 detalla la cantidad, descripción y la tarjeta en la que irán colocados (Botonera o la CPU) cada uno de los componentes del Escornabot.

Tabla 1: Lista de Componentes para el Escornabot

CANTIDAD TOTAL	DESCRIPCIÓN	CANTIDAD BOTONERA	CANTIDAD CPU
1	Tarjeta EscornaCPU versión 1.2	-	1
1	Tarjeta E_KeyPad versión 2.2	1	-
1	Arduino Nano	-	1
2	Motor paso a paso 28BYJ-48	-	2

Tabla 1: Lista de Componentes para el Escornabot - Continuación

CANTIDAD TOTAL	DESCRIPCIÓN	CANTIDAD BOTONERA	CANTIDAD CPU
1	Driver ULN2803	-	1
1	Zócalo de 18 pines para el driver ULN2803	-	1
1	Portapilas para 4 pilas AA	-	-
1	Terminal T-block de 5mm para alimentación	-	1
4	Resistencia 1 K Ω	4	-
9	Resistencia 10 K Ω	5	4
1	Resistencia 18 K Ω o de 20 K Ω	-	1
1	Resistencia 22 K Ω o de 20K Ω	1	-
1	Led de 3mm Azul	1	-
1	Led de 3mm Rojo	1	-
1	Led de 3mm Amarillo	1	-
1	Led de 3mm Verde	1	-
5	Pulsadores de 12mm	5	-
7	Pines/headers macho a 90°	7	-
8	Pines/headers macho rectos	-	8
1	Puente o Jumper para pines rectos	-	1
2	Tira de 15 pines hembra que serán la base so- bre la cual se colocará el Arduino Nano	-	2
1	Tira de 4 pines hembra si posteriormente se desea colocar un adaptador Bluetooth para conectar el Escornabot con una aplicación para teléfono móvil.	-	1
1	Interruptor de alimentación SK12F14 o SK12D07	-	1
2	Conector macho para motor paso a paso JST-XHP-S	-	1
1	Buzzer pasivo CFG12 para Arduino	-	1
1	Fusible rearmable XF050	-	1
1	Diodo Schottky 1N5817	-	1
2	Condensadores cerámicos 104 de 100nF	-	2
6	Cables Dupont hembra - hembra de 10cm	6	-

A continuación se detalla el proceso de ensamble de las partes, componentes y tarjetas de circuito impreso.

3.2. Ensamble de la botonera E KeyPad V2.2

3.2.1. Lista de componentes de la Botonera

La Tabla 2 muestra a detalle la cantidad de los componentes, la etiqueta en la tarjeta y la función que desempeñan.

Tabla 2: Descripción y funcionamiento de los componentes requeridos para la botonera

CANT.	DESCRIPCIÓN	ETIQUETA	FUNCIÓN
4	Resistencia 1 K Ω	R6, R8, R9, R10	Resistencia para la activación de los Leds de la botonera.

Tabla 2: Componentes requeridos para la botonera - Continuación

CANT.	DESCRIPCIÓN	ETIQUETA	FUNCIÓN
	Resistencia 10 K Ω	R1, R2, R3, R4	Conforman el divisor de voltaje en conjunto con los botones para obtener diferentes valores de acuerdo al botón o switch que se ha presionado y así controlar el movimiento deseado:
			■ El botón S1 conectado con R1 selecciona un movimiento hacia ADELANTE.
			■ El botón S2 conectado con R2 selecciona un giro hacia la IZQUIERDA.
5			■ El botón S3 conectado con R3 selecciona un movimiento hacia ATRÁS.
			■ El botón S5 conectado con R4 ejecuta la secuencia de movimientos introducida, es decir, es el botón: GO.
		R7	Opcional: Está presente en la botonera en caso de que se utilice una tarjeta de control diferente a la EscornaCPU V1.2 y en la que no se utilice la resistencia interna de PULL-UP del Arduino Nano. En el firmware del robot se tendría que definir la palabra clave: KEYBOARD_WIRES con el valor de 3. Por precaución, esta resistencia se puede soldar.
			La última resistencia del divisor de voltaje:
1	Resistencia 22 K Ω o de 20 K Ω	R5	■ El botón S4 conectado con R5 selecciona un giro hacia la DERECHA.
1	Led de 3mm Azul	LED1	Led indicador de un movimiento hacia ADELANTE.
1	Led de 3mm Rojo	LED2	Led indicador de un movimiento hacia IZQUIER-DA.
1	Led de 3mm Amarillo	LED3	Led indicador de un movimiento hacia ATRÁS.
1	Led de 3mm Verde	LED4	Led indicador de un movimiento hacia DERECHA.
5	Pulsadores de 12mm	S1, S2, S3, S4	Botones para elegir los movimientos a realizar (ADELANTE, IZQUIERDA, ATRÁS Y DERECHA).
		S5	Botón GO que ejecuta la secuencia de los movimientos elegidos.

3.2.2. Soldadura de las Resistencias

Las resistencias no tienen polaridad, así que no importa la orientación en que sean colocadas. Para proceder a soldarlas, colocar las resistencias teniendo presente que los valores correspondan con las etiquetas en la tarjeta. Las Figura 3 muestra los pasos para soldar las resistencias. Tener cuidado con la ubicación de R5 para evitar confundirla con las demás ya que solo se utiliza una. (ver Figura 3e) .

3.2.3. Soldadura de los Leds

La lista de los Leds requeridos se muestra en la Tabla 2 en la que también se indica la posición de cada Led de acuerdo a su color y a su etiqueta en la tarjeta. Los Leds recomendados son de 3mm para que no estorben con los botones de 12mm. Antes de colocarlos en la tarjeta se tiene que fijar en la polaridad, ya que a diferencia de las

(a) PCB de la botonera vista por debajo con resistencias colocadas para soldar.

(b) Soldadura R1 y R7 de 10 K Ω

(c) Soldadura de R6, R8, R9, R10 de 1 K Ω

(d) Soldadura de R3, R4 de 10 K Ω

(e) Soldadura de R5 de 22 K Ω

(f) Soldadura de R2 de 10 K Ω

Figura 3: Soldadura de las resistencias en la botonera.

resistencias, los Leds si tienen polaridad. Para ello, en la base cilíndrica del cuerpo de cristal del Led se puede observar una parte plana justo donde se conecta la terminal más corta que es la posición del cátodo o la terminal negativa del Led.

Figura 4: Esquema de polaridad del led.

Si se observa la tarjeta de frente, el cátado de cada uno de los leds se orienta a la izquierda. Además, en el dibujo indicador de la tarjeta se puede observar, aunque muy sutilmente, esta parte plana. Soldar cada Led fijándose que la polaridad y el color coincida con la etiqueta en la tarjeta. Al finalizar de soldar todos los Leds, recortar los sobrantes. Los pasos en la soldadura de los Leds se puede observar en la Figura 5.

(a) Led Amarillo (LED3).

(b) Leds Rojo (LED2 y Verde (LED4).

(c) Led Azul (LED1), aunque en este caso el cuerpo es transparente, la luz que produce es color Azul

(d) Terminales de los Leds recortadas.

Figura 5: Soldadura de los leds en la botonera.

3.2.4. Soldadura de los Botones

La soldadura de los botones se puede observar en la Figura 6. Es simple de realizar ya que tienen las terminales dobladas formando un resorte para que se queden fijas en la tarjeta, basta insertarlos con cierta fuerza hasta que se escuche el sonido de un "click", el cual indica que están fijos en su posición.

(a) Botones Soldados

(b) Vista posterior con las terminales de los botones.

Figura 6: Soldadura de los botones

3.2.5. Soldadura de los Pines de Conexión

La conexión con la placa EscornaCPU que contiene al Arduino Nano se realiza a través de 6 o 7 pines con las funciones listadas en la Tabla 3. La soldadura de los pines tipo macho a 90° se pueden ver en la Figura 7.

Tabla 3: Identificación de los pines de conexión entre la botonera y la tarjeta EscornaCPU (Arduino Nano)

PIN	ETIQUETA	FUNCIÓN
1	GND	Trae la señal de tierra (0V) desde la tarjeta EscornaCPU (Arduino Nano).
2	Signal	Lleva la señal analógica del voltaje resultante al presionar uno de los botones.
3	5V	Opcional: Está presente en la botonera en caso de que se utilice una tarjeta de control diferente a la EscornaCPU versión 1.2 y en la que no se utilice la resistencia interna de PULL-UP del Arduino Nano. En el firmware del robot se tendría que definir la palabra clave: KEY-BOARD_WIRES con valor de 3.
4	L1	Señal de control para el Led 1 que indica un movimiento hacia ADE-LANTE.
5	L2	Señal de control para el Led 2 que indica un movimiento hacia IZ-QUIERDA.
6	L3	Señal de control para el Led 3 que indica un movimiento hacia ATRÁS.
7	L4	Señal de control para el Led 4 que indica un movimiento hacia DE-RECHA.

 ${\bf (b)}$ Pines de conexión vistos de frente.

Figura 7: Soldadura de los pines de conexión en la botonera.

3.3. Ensamble de la tarjeta de control EscornaCPU V1.2

3.3.1. Lista de componentes de la tarjeta de control

Tabla 4: Descripción y funcionamiento de los componentes requeridos para la tarjeta de control

CANT.	DESCRIPCIÓN	ETIQUETA	FUNCIÓN
1	Arduino Nano	Arduino Nano	Tarjeta de desarrollo y programación basada en el micro- controlador ATmega328
1	Driver ULN2803	IC1 ULN2803	Circuito integrado que es el enlace o interfaz entre las señales de control provenientes del Arduino Nano y los motores paso a paso 28BYJ-48. Nota: Este circuito no se solda, se coloca sobre un zócalo o base que si irá soldado a la tarjeta.
1	Zócalo de 18 pines	IC1 ULN2803	Base que soldada a la tarjeta sobre la que se coloca el driver ULN2803.
1	Terminal T-block (3.5mm o 5mm)	GND +	Terminal de tornillos a los que se conectarán los cables provenientes del portapilas que alimentará la tarjeta de control y los motores paso a paso.
4	Resistencia 10 K Ω	R1	Opcional: Está presente en la tarjeta de control en caso de que se utilice una botonera diferente a la E_KeyPad V2.2 que no cuente con esta resistencia y que no se utilice la resistencia interna de PULL_UP del Arduino Nano. En el firmware del robot se tendría que definir la palabra clave: KEYBOARD_WIRES con el valor de 3. Por precaución, esta resistencia se puede soldar.
		R2	La primera resistencia del divisor de voltaje que reduce el voltaje de 5.0V a 3.3V que va desde el pin 1 del Arduino hacia el pin de transmisión del adaptador Bluetooth, en caso de que se desea conectar y utilizar.
		R4, R5	Opcionales: Están presentes en la tarjeta de control en caso de que se desea conectar el Escornabot a una red WiFi a través de un módulo un ESP-01.

Tabla 4: Descripción y funcionamiento de los componentes requeridos para la tarjeta de control - Continuación

CANT.	DESCRIPCIÓN	ETIQUETA	FUNCIÓN
1	Resistencia 18 K Ω o 20 K Ω	R3	La segunda resistencia del divisor de voltaje que reduce el voltaje de 5.0V a 3.3V que va desde el pin 1 del Arduino hacia el pin de transmisión del adaptador Bluetooth, en caso de que se desea conectar y utilizar.
8	Pines / headers macho rectos	A0, A1, A2, A3, A7, GND	6 Pines de conexión con la tarjeta de la botonera.
		BUZZ ON	2 Pines que permitirán activar / desactivar de forma manual el buzzer del Escornabot a través de la colocación de un puente o Jumper para pines rectos.
2	Tira de 15 pines hembra	D12	Base soldada sobre la cual se colocará el Arduino Nano
1	Tira de 4 pines hembra	BlueT	Opcional: En caso de que se desee colocar un adaptador Bluetooth para conectar el Escornabot con una aplicación para teléfono móvil.
1	Interruptor de alimentación SK12F14 o SK12D07	S7	Interruptor general que enciende o apaga el Escornabot.
1	Buzzer pasivo CFG12 para Arduino	Z1	Emitir un sonido frente a cada movimiento o instrucción ejecutada por el Escornabot.
1	Fusible Rearmable XF050	F1	Interruptor de seguridad que se abre frente al paso de una cantidad de corriente que podría quemar el Arduino Nano u otro componente de la tarjeta de control.
1	Diodo Schottky 1N5817	D1	Diodo utilizado para la protección del circuito frente a polaridad invertida.
2	Condensadores cerámicos 104 de 100nF	C1, C3	Eliminación de ruido eléctrico en la señal de alimentación de la Tarjeta y en el Driver ULN2803.

3.3.2. Soldadura de las Resistencias

Soldar las resistencias de forma similar a la Botonera. Teniendo cuidado de no confundir los valores. La Figura 8 muestra el soldado de cada una de las resistencias.

(b) Soldadura de R1 y R2 de 10 K Ω .

(c) Soldadura de R3 de 18 K Ω .

Figura 8: Soldadura de los resistencias en la tarjeta de control

3.3.3. Soldadura del diodo y los condensadores

Antes de soldar el **diodo** se debe observar su polaridad, ya que este elemento permite el paso de la corriente en una única dirección, por lo que es importante que quede soldado de la manera correcta. El esquema con el que se representa a este componente consiste en un triángulo con una barra horizontal en uno de sus vértices. La dirección del triángulo indica la dirección de la corriente, mientras que la barra horizontal indica el **no** paso de la corriente. Este esquema se encuentra dibujado en la tarjeta para orientar al diodo de forma correcta. Por otro lado, en el componente únicamente se señala la barra horizontal de color gris, suficiente para orientarlo en la tarjeta tal como se muestra en la Figura 9a.

Por otro lado, los condensadores cerámicos son elementos que **no** tienen polaridad, a diferencia de los electrolíticos que sí la tienen. En este caso los condensadores 104 se pueden soldar sin importar la orientación en que se coloquen. Las Figuras 9b y 9c muestran la soldadura de estos dos condensadores y el aspecto de la tarjeta de control.

(a) Soldadura del diodo Schottky 1N5817

(b) Soldadura de los condensadores cerámicos 104 de 100nF.

(c) Vista inclinada de la tarjeta de control

Figura 9: Soldadura del diodo Schottky 1N5817 y los condensadores cerámicos 104 de 100nF en la tarjeta de control.

3.3.4. Soldadura del Zócalo de 18 Pines

El zócalo de 18 pines se utiliza para colocar encima el driver ULN2803, ya que no es recomendable soldarlo de forma directa a la placa debido a que se puede quemar por el calor aplicado y además, en caso de que se necesite

reemplazar a futuro, pueda realizarse sin tener que desoldarlo de la tarjeta. Para soldarlo hay que tener presente que sí tiene una orientación específica con la muesca que tiene en uno de sus extremos orientada hacia la izquierda, tal como se muestra en la Figura 10a teniendo cuidado de acomodarlo de forma correcta para que la resistencia R3 de $18~{\rm K}\Omega$ no le estorbe ya que esta última queda debajo y oculta por el zócalo. Como recomendación para una adecuada soldadura, se pueden soldar únicamente dos terminales del zócalo y acomodarlo de forma tal que no quede levantado antes de soldar las terminales restantes, como se puede observar en las Figuras 10b y 10c respectivamente.

(b) Soldadura de los condensadores cerámicos 104 de 100nF.

(c) Vista inclinada de la tarjeta de control

Figura 10: Soldadura del zócalo de 18 pines en la tarjeta de control.