DEVELOPMENT OF DATA ACQUISITION AND CONTROL FACILITIES FOR THE OPTIMIZATION OF DRIVE LINE EFFICIENCY/

by

KENT DOUGLAS FUNK
B.S., KANSAS STATE UNIVERSITY, 1984

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1986

Approved by:

Major Professor

LD 2668 ,T4 1986 F86

PREFACE

The development of data acquisition and control facilities for the optimization of drive line efficiency has been a great challenge to my abilities. Although difficult, this work has allowed me to further develop my skills as both a programmer and an electronic hardware designer. Considerable personal satisfaction has been achieved by transforming the concepts discussed during project meetings into reality. I wish to thank all the individuals who have help me to make this project a success. In addition, a number of groups and individuals deserve special credits.

Thanks are extended to Caterpillar Tractor Company, Peoria IL, and Funk Manufacturing Company, Coffeyville KS, for their generous equipment donations. Likewise, thanks are also extended to the Kansas Department of Economic Development for providing matching funds to these equipment grants.

For their time and support, thanks go to the mcmbers of my graduate committee, Dr. Mark Schrock, Dr. Stanley Clark, and Dr. Ralph Turnquist. A special thanks goes to Dr. Garth Thompson, my major advisor, for allowing me a great deal of freedom in this work. His confidence and support are greatly appreciated.

Thanks also go to Mr. Mike Schwartz for his expertise in software design. Finally, thanks go to my wife, Tara, for her patience, support, and understanding.

TABLE OF CONTENTS

Chapte	r																					Page
Ι.	INTR	опист	ION																			1
		Proj	ratur ect 0 ose S	verv	iew		:															1 4 6
II.	COMP	UTER (7
		Proje Oivis	ect N	eeds of R	 espo	 ons:	ibi	li	t y	, .			:		:		:				:	7 9
III.	ADAC	1000																		,		10
		Multi	em Eva -Proc	cess	Aog	roa	ich	i														10 11 14
IV.	MC686	OOOECI	3																			20
		Syste Hardw Softw	are I Optio Inter	Deta cal rfac	ils Isol ing	ati Ste	lon	er	M	lot	or									:		20 24 27 29 33
SUMMAR	Υ																					41
REFERE	NCES																					43
Append.	ix																					
Α.	DRIVE	LINE	PARA	METI	ERS																	45
В.	ADAC	1000	SUPER	RVIS	OR S	OFI	'WA	RE	L	IS	ΤI	NG	S									51
С.	MC680	OOECE	HARI	WARI	Ε.			•														92
D.	MC680	OOECB	SOFT	WARI	E LI	STI	NG	S														109
Ε.	A0AC	1000	ност	OEVE	40.1E	MEN	T	SO	FT	WΑ	RE	L	IS	ΤI	NG	S						156
F.	OATA	SHEET	s.																			165

LIST OF TABLES

Table											Page		
1.	MC68000ECB User Memory Allocation						i				40		
2.	Temperature Conversions										50		
З.	Bus Expansion Buffer: Parts List										95		
4.	I/O Expansion: Parts List										97		
5.	High Current Outputs: Parts List										104		
LIST OF FIGURES													
Figure											Page		
1.	Multi-Process Relationships	•		•	•	•	•	•	٠	٠	13		
2.	Task Process Structure									•	16		
3.	Hardware Configuration										21		
4.	Software Structure										22		
5.	Typical Isolated Output										27		
6.	Stepper Motor Driver Circuit										31		
7.	MC68000 Educational Computer Board										93		
8.	Block Diagram - Educational Computer B	Boar	d.								94		
9.	Bus Expansion Buffer: Board Layout .										95		
10.	Bus Expansion Buffer: Schematic										96		
11.	I/O Expansion: Schematic										99		
12.	Digital Inputs: Schematic										103		
13.	High Current Outouts: Schematic										105		

CHAPTER I

INTRODUCTION

Literature Review

Due to escalating fuel costs and increased capital costs associated with operating and owning agricultural tractors, considerable research has been conducted to improve the fuel efficiency and work rate of these units. The primary focus of this research has been to accurately define field load variations and to optimize engine power utilization. The potential savings from tractor performance optimization depends upon several factors; load variability, power level, engine characteristics, transmission characteristics, and tractive efficiency.

In a typical field application, the operator selects an appropriate gear ratio and throttle setting, and then allows the engine governor to compensate for load variability. The choice of gear and engine speed have traditionally been made by the operator, based upon field conditions and the type of work to be done. Recently, researchers have directed their efforts to improve the operator's decision. Meiring et. al. (1979) developed a tractor efficiency meter which determines the engine operating point in the speed and power range. By educating the operator to the characteristics of the engine speed vs. power map, the efficiency meter can be used as a valuable tool to improve both fuel consumption and productivity. Schrock et. al. (1982) developed a gear selection aid which informs the operator of an optimum gear and engine

speed for a given power demand. The average of four tests, with operators responding to instructions from the device, indicated a fuel savings of 19.8 percent compared with the operator's normal practice.

There have been other similar works, but in each case the results are generally the same. Tractor efficiency can be improved by supplying the operator with additional information, and by educating the operator how to use that Information.

Three limitations may be identified in past research work which will cause the optimization device to yield a non-optimal solution. The first limitation is that the operator must understand and respond to all information which is presented to him. If the operator does not understand, or if the device is continuously directing the operator to change the set point of the drive line, the device may be Ignored. This problem can be avoided by automation of the drive line, thus taking the operator out of the optimization loop. Chancellor et. al. (1983) has developed a simple control device for tractor transmission ratio and governor setting so that experience could be gained in control design. operator interactions, and tractor performance. Early tests have shown good response, and work is continuing on development of a complete microprocessor based controller.

The second limitation is that the optimization device has a limited number of discrete transmission ratios from which to choose. This situation often results in a non-optimal solution. For example, the tractor may be operating at a specific gear ratio and throttle setting. First, the device examines the current state and establishes a base

point. Next, the device examines other gear ratio and throttle combinations which will produce the same power output. Due to the small number of admissible combinations which exist with conventional incremental transmissions, the device often can not improve the current combination. Obviously, the level of drive line optimization could be improved by increasing the number of admissible gear ratio and throttle setting combinations which will produce a given output power. This can be accomplished either by using a transmission with a large number of discrete ratios or a varlable transmission with nearly an infinite number of ratios. One possible approach would be to use a hydrostatic unit, however, these units have a 10 to 15 percent lower efficiency than conventional gear type transmissions. These lower efficiencies would cancel much of the gain achleved by the optimization process. Another possible approach would be to use a mechanical continuously variable transmission (CVT). These transmissions have recently shown great promise due to Improved reliability, durability, and efficiency. The major disadvantage of these units is that they suffer from a limited range of gear ratios, therefore, they must be cascaded with an additional discrete transmission in order to achieve the required ratio range.

The third limitation arises from an examination of the assumptions used in the development of most optimization algorithms. Generally, it has been assumed that the variation of transmission efficiency between gears is small and can be neglected in the selection of an optimum gear ratio and throttle setting. This has allowed researchers to develop algorithms based only upon engine optimization. Although this approach

often produces desirable results, extreme care must be exercised when developing algorithms which select the optimum combination from a large group of admissible gear ratios and throttle settings. Future work must move towards complete drive line optimization, rather than focusing only on the engine.

In summary of the current research work in the area of tractor performance optimization, most work has been done in the areas of defining load variability and optimization of engine efficiency. It is expected that future work will continue in the following areas.

- Accurately define field load variations from which standard loading cycles can be developed for various field applications.
- Develop algorithms and test devices which optimize work productivity and fuel economy over the entire tractor drive line.
- Develop intelligent systems which adjust operating conditions based upon operator input, tractive efficiency, load variability, and other environmental conditions.

Project Overview

A joint study of Computer Control of Agricultural Tractor Drive
Lines was Initiated in April, 1984, between the Agricultural Engineering
and Mechanical Engineering Departments at Kansas State University. The
objective of this effort is to develop and test a computer control system for optimizing the performance of a diesel engine and a continuously
variable transmission as applied in an agricultural tractor. The

objective of the project may be further divided into the following tasks.

- 1. Develop laboratory facilities for the study of drive line efficiency. This facility will include a drive line composed of a Caterpillar 3304 diesel engine, an experimental continuously variable transmission (CVT), a Funk model 2263 six speed power shift transmission, a Funk model 27 single speed planetary transmission, and a Midwest eddy current-type dynamometer. In addition, the facility will also include adequate computer facilities and instrumentation for implementation of data acquisition and control algorithms.
- Collect and analyze data in order to determine performance relationships between control inputs and drive line outputs.
- Develop an algorithm which will minimize fuel consumption at a specified work rate, and adequate controls in order to automate the optimization process.
- Evaluate dynamic considerations of the control algorithm so that stable resoonse is obtained from the controller.
- Test and evaluate the performance of the algorithm against various loading cycles. These loading cycles will be derived from field data collected for the determination of field load variability.

This project is on-golng with the test facility completed, the performance data collected, the basic optimization algorithm outlined, and the

standard loading cycles nearly completed.

Purpose Statement

The purpose of this thesis is to present the work completed on the development of computer facilities for implementation of data acquisition and control algorithms as related to the above project. These facilities consist of two separate computers; an ADAC 1000 data acquisition system based on the DEC LSI-11/23 microprocessor, and a Motorola MC68000 Educational Computer Board which is a single board computer based on the powerful MC68000 16-bit microprocessor.

CHAPTER II

COMPUTER ORGANIZATION

Project Needs

During the planning stages of the project, considerable attention was given to computer organization with respect to both data acquisition and control. Early discussions exposed three concerns. The first concern was that real time operation in data collection and control be achieved, secondly, that computer hardware should not be unnecessarily duplicated, and thirdly, that prellminary developments should not limit future work. As project discussions continued, the following list of specific needs emerged.

- A supervisory system must be developed which has access to all data. It is the responsibility of the supervisor to insure complete system integrity. Desirable features of the supervisor are:
 - A. Periodically check all data against a set of boundary values in order to identify system abnormalities.
 - B. Provide a display of all data In an easy to read form along with appropriate warning messages.
 - Provide immediate system shut down in the case of catastrophic drive line failure.
- 2. A flexible data recording system must be developed which has access only to specific data. It is the responsibility of the data recorder to accurately measure and store data for later use in mapping the drive line and developing control algorithms. Desirable

features of the data recorder are:

- A. Accurate control over sampling rates.
- B. Flexibllity in specifying which physical parameters are to be measured and recorded.
- C. Data recorded should be stored in a readable form to facilitate spot checking.
- 3. A drive line controller must be developed which implements the optimization algorithm. It is the responsibility of the controller to adjust the state of the drive line based upon decisions made by the optimization algorithm. Desirable features of the controller are:
 - A. Accurate real time operation.
 - B. Control of the engine throttle position.
 - C. Control of the CVT ring position which ultimately determines the CVT gear ratio.
 - D. Control of the power shift gear ratio,
- 4. Additional drive line sub-system controllers must be developed as needed. These controllers should be developed and implemented independently of the drive line controller. Currently, the CVT oil temperature and the dynamometer loading pattern are the only subsystems in need of computer control.

In order to meet these computer needs, a large amount of instrumentation has been developed to transform the physical drive line parameters into measurable signals. A complete list of parameters and their corresponding signal characteristics are presented in Appendix A. The information in Appendix A is divided into four sections: engine, CVT, power shift, and dynamometer. Each of the four main sections is further

divided into primary and secondary parameters.

Division of Responsibility

The above project needs are now divided as tasks between the two computers. The ADAC 1000 has responsibility for the supervisory functions, data recording, sub-system controls, and conversion of all analog data into digital forms. The Motorola single board computer has responsibility for drive line control and optimization. In addition, each of the computers has responsibility over digital data which is directly associated with their specific tasks.

It must be emphasized that the two computers can not work Independently of each other. For example, the ADAC computer records certain digital information which only the single board computer can access. Therefore, an adequate communication link must be established between them. This links take the form of an RS-232 standard protocol, and all communication follows ASCII standards. These communications must be minimized since the inherent time delays will affect the real time operation of both computers.

In summary, this chapter has defined the project's overall computer needs, and has further grouped these needs into specific tasks for each of the two computers. In addition the need for inter-computer communications has been established and several concerns have been expressed. Chapter III will outline the work done on the ADAC 1000, and Chapter IV will present a discussion of the MC68000ECB.

CHAPTER III

ADAC 1000

System Evaluation

The ADAC 1000 data acquisition system is based upon the DEC LSI-11/23 microprocessor. It has been equipped with a 7.5 Mbyte hard disk, an 8 inch floppy disk, 256 Kbytes of RAM, and 4 serial ports. Data acquisition capabilities include 32 channels of low level analog inputs, 64 channels of high level analog inputs, 64 digital I/O ports, 4 analog output channels, and 4 pulse counters, along with a real time clock.

Snon after the division of responsibilities was made, a thorough evaluation of the ADAC 1000 was completed to determine the suitability of the system for its Intended tasks. This evaluation concluded that an extensive update was in order to overcome previous reliability problems. The following modifications were made.

- The computer enclosure was reorganized to improve access to data acquisition modules and to allow for a pressurized air circulation system. In addition, a 1 KW Tripp Lite model SB-1000a UPS was added.
- 2. The interface between the data acquisition modules and real world instrumentation was rebuilt. The new interface provides user access to all A/D, D/A, thermocouples, frequency, digital, and RS-232 signals. The interface also provides for custom signal

conditioning for a variety of applications.

3. The original DEC RT-11 operating system was replaced by 2.9BSD UNIX which is based on Bell Labs UNIX Version 7. In addition, all data aequisition service routines were rewritten in C, the intermediate language on which the UNIX operating system is based.

After the above modifications were made, extensive tests were conducted on both the operating system and data acquisition facilities. This work went well with few difficulties, and the complete system was ready for development of its specific tasks. Currently, the ADAC 1000 is a multi-user computing facility, which supports data acquisition capabilities, several compilers, graphics, statistical analysis, and many other 2.9BSD UNIX application programs. Since the modifications, work has proceeded with remarkable system reliability and the overall response has been excellent.

Multi-Process Approach

As outlined in chapter II, the ADAC 1000 is responsible for the supervisory functions, data recording, sub-system controls, and conversion of all analog data into digital forms. Due to the interactions between the various tasks, all of the ADAC responsibilities have been grouped together into one program. In addition, a terminal handler program has been developed which controls the communications between the real time task program and the terminal. The structure of these programs has been developed from concepts used in concurrent programming where inter-process communication is accomplished by message passing.

All together there are three processes executing under the supervision of the UNIX operating system. One of the three processes is the parent which initiates the creation of two other processes, known as children. These children are the screen and task processes. The parent also establishes all communication links between the children and itself. After successful creation of the two children and their intercommunications, the parent becomes the keyboard process. Following is a description of the relationships between the parent and the two children as shown in Figure 1, page 13.

The keyboard process accumulates input from the terminal keyboard until a full line of information has been recognized. After which, the keyboard process sends the line to the task process and informs the task process that information is waiting. In addition, the keyboard process echos input data to the screen process one character at a time.

One of the two children is a terminal screen process. This process accepts input from the task and keyboard processes, and displays the information on a static screen. The screen process input requires x-y coordinates, attributes, data format, and data. This process does not send information back to the other processes.

Figure 1 Multi-Process Relationships

The other child is the real time task process which carries out the specific tasks assigned to the ADAC 1000. When the parent process creates the task process, the standard input (stdin) is connected to the keyboard process and the standard output (stdout) is connected to the screen process. When the task process begins execution, the first step is to initialize all connections which have not been created by the parent. The initialization consists of five items.

1. Attach the UNIX signal associated with the keyboard process to the

task process.

- Establish necessary links to the UNIX software timer in order to schedule real time activities.
- 3. Establish the communication link to the MC68000ECB.
- Attach the data acquisition and control facilities to the UNIX operating system so that physical addressing is possible.
- 5. Send headings and other general information to the screen process.

After the task process initialization is complete, all relationships shown in Figure 1 have been created. It should be noted that the connection between the task process and mass storage is attached and detached as needed by normal execution of the task process.

Task Process Structure

As shown in Figure 2, page 16, the task process is divided into three regions; real time, human, and MC68000. These regions all have a source of external request stimulus, a common event detection mechanism, and a request handler. The common event mechanism detects the presence of an external request and then passes control to the appropriate request handler. In addition, all three regions are bound together by a common data structure which allows the regions to influence one another. Following Is a detailed discussion of each of the three regions.

The real time region consists of the software timer request, event detection, real time handler, and the common data structure. During the

Initialization of the task process, a link between the UNIX software timer and the common data structure was created. Each time the timer signal makes a request, a variable in the common data structure is changed. The event detection mechanism detects this change and passes control to the real time handler. It is the responsibility of the real time handler to schedule those tasks which require real time control. Within the real time handler, there are four real time loops.

- The supervisory monitor loop reads all drive line parameters and compares these values to a set of boundary values. In addition, the monitor sends all parameter values along with warnings to the screen process.
- The data recorder loop reads specific drive line parameters and stores these values ln mass storage.
- The CVT oil temperature controller loop reads the needed parameters to determine the necessary heater input control.
- The dynamometer controller loop reads the needed parameters to determine the necessary dynamometer input control.

Each of these real time loops has a different loop time associated with them. Therefore, the real time handler must determine which loops need to be executed, if any, and passes control to those specific loops. It should be noted that the time interval of the software timer request is chosen as the greatest common factor of all four loop times.

Figure 2 Task Process Structure

The human region consists of the keyboard process request, event detection, keyboard handler, and the common data structure. During the initialization of the task process, a link between the keyboard signal and the common data structure was created. Each time the keyboard process signals the task process that data is waiting, a variable in the common data structure is changed. The event mechanism detects this

change and passes control to the keyboard handler. It is the responsibility of the keyboard handler to read the waiting line of information, interpret meaning, and execute the command.

The keyboard handler provides a powerful mechanism by which the operator can examine and modify most of the common data structure. This ability allows the operator to control the normal execution of the other two regions. Although the possibilities are almost limitless, the basic capabilities of the keyboard handler can be grouped into four areas.

1. Data Acquisition.

Through the keyboard hand the operator can deal with all data acquisition facilities. This involves channel assignments to drive line parameters, calibration of offsets and gains, and printing additional information about a particular parameter to the screen.

2. Program Control.

The keyboard handler also allows the operator to manipulate those variables in the common data structure which control program execution flow. This involves real time loop intervals, and the ability to turn specified loops on and off. In addition, parameters needed by the real time loops may be passed by the keyboard handler to the common data structure.

3. Boundary Values.

As was described earlier, the supervisory monitor periodically compares all parameter values against a set of boundary values. These boundary values are stored in the common data structure, thus allowing the keyboard handler to access them. This allows the operator to change the boundary values during normal execution of the task process.

4. Maintenance.

The keyboard handler allows the operator to perform maintenance on the common data structure. This involves saving the entire structure on mass storage, allowing complete examination of the structure at a later time.

The orogram structure of the keyboard handler is much like a common interactive command line interpreter. However, all information needed to fully execute the command must be contained in a single line of information.

The MC68000 region consists of the MC68000ECB request, event detection, MC68000 handler, and the common data structure. During the initialization of the task process, a serial communications buffer was connected to the task process. Each time that the MC68000EC8 makes a request or sends data, characters appear at the communications buffer. The event detection mechanism reads characters in from the buffer until a line has been recognized and then verifies the line. After the event detection mechanism receives a valid request or data, control is passed to the MC68000 handler. This method of event detection is much different than that of the other two regions. In this case the event detection mechanism must poll the communication buffer since no UNIX signal is connected to the common data structure. It should be noted

that this form of event detection represents a violation of the real time intent of the task process. Therefore, communication between the task process and MC68000EC8 has been minimized.

Once control has been passed to the MC68000 handler, two possible actions can take place. If the request line contains input data, the request handler parses the line and stores the data in the common data structure. If the request line contains a request for data, the request handler reads the drive line parameters needed by the MC68000ECB and sends the data back through the serial line.

In summary, the purpose of this chapter is to give an overview of the work completed on the ADAC 1000. This work falls into two main categories; a complete system update, and development of the specific tasks. In order to implement the specific tasks, a great deal of software was needed. This software package is based upon concepts used in concurrent programming in order to preserve real time capabilities. A complete listing of the real time task process software is included in Appendix 8.

CHAPTER IV

MC68000ECB

System Overvlew

As outlined in chapter II, the responsibility of the MC68000ECB is to control the drive line in an optimal manner. In order to accomplish its intended tasks, the single board computer hardware has been greatly expanded. Software has also been developed to manage and test the added hardware. The purpose of this chapter is to discuss both hardware and software developments.

The MC68000ECB hardware has been expanded into a three board computer as shown in Figure 3, page 21. An enclosure has been built to provide a suitable environment for the MC68000ECB, the I/O expansion board, the high current driver board, and two power supplies. The main power supply services the MC68000ECB and the bus interface section of the I/O expansion board. The instrument power supply services the external digital inputs and the isolation section of the I/O expansion board. The high current driver board provides the connections between the driver interface section of the the I/O expansion board and the external high current digital outputs. Power for the digital outputs is provided by the engine electrical system. In addition, a number of manual switches provide control of the various power supplies. Finally, serial communications has been established between the MC68000ECB and its console, and between the MC68000ECB and the ADAC 1000.

Figure 3 Hardware Configuration

The software developed on the MC680COECB provides the framework for all future software developments. Since the final optimization algorithm has not been completely defined, a flexible software structure has been established. As shown in Figure 4, page 22, the software package is divided into four blocks; sequential program execution, software interrupt (SWI) processing, hardware interrupt (HWI) processing, and a common data structure.

Figure 4 Software Structure

Normal sequential program execution begins by initialization of the common data structure, software and hardware interrupt vectors, and ali system hardware. After the initialization sequence is complete, the entire software structure is functional. The normal program execution then enters a continuous loop. During one pass through the loop all inputs are read, the new desired drive line state is determined, and the outputs are set. In its final form, the sequential program execution block will contain the optimization algorithm. It is emphasized that normal program execution never deals directly with hardware devices. In order for sequential program execution to communicate with a hardware device, it must generate a software interrupt. The interrupt causes control to be passed to the software interrupt processing block which performs the hardware manipulation. All data transfer between the sequential program execution block and the software interrupt processing

block is accomplished through the common data structure.

The hardware interrupt processing block handles physically generated interrupts. These interrupts are non-sequential. That is, they may occur at any time without reguard to the current state of the microprocessor. These interrupts may occur from the hardware timer used for real time control, an ADAC 1000 request for data, or an operator request for system shutdown. In any case, the hardware interrupt processing block contains the code to handle these specific hardware interrupts. In order to service these interrupts, it is often necessary to communicate with external hardware devices. Therefore, the hardware interrupt processing block may also generate software interrupts in a similar manner as the sequential program execution block.

The software interrupt processing block is partitioned into a number of small groups of code called device drivers or utilities. Each of these small groups has a specific software interrupt level associated with it. Whenever a software interrupt is generated, the calling block must specify a level. The level of the interrupt specifies which utility or device driver is to be executed. This technique of control transfer is similar to cailing a subroutine except that the cailing program does not need to know the starting address of the desired utility.

The concept of software interrupt processing is the backbone of the entire software package. This has allowed individual device drivers and utilities to be written and tested before the other two blocks were completely defined. Since nearly all of the hardware is experimental, this

modular design has also increased the speed of testing hardware and software designs. After the basic software and hardware elements were proven, the rest of the system was built upon these basic elements.

The ahove discussion has given a brief overview of the entire system. Both hardware and software have been discussed in order to give prospective to the entire system development. In the following two sections, greater details will be discussed.

Hardware Details

The MC6B000 Educational Computer Board (ECB) is a complete single board computer. Features of the computer are:

- 1. A 4 megahertz MC68000 16-bit MPU. This microprocessor has a 16-bit data bus and a 24-bit address bus. The address bus provides a memory addressing range of 16 megabytes. The processor also has eight 32-bit data registers, seven 32-bit address registers, two 32-bit stack pointers, a 32-bit program counter, and a 16-bit status register.
- 32 Kbytes of dynamic RAM. Approximately 2 Kbytes are reserved for the operating system leaving 30 Kbytes for user programs.
- 16 Kbytes of ROM. A small operating system called TUTOR resides on read only memory. The firmware provides monitor/debug, assembly/disassembly, program entry, and simple I/O control functions.

- Two serial communication ports. These ports are fully RS-232C compatible and have hardware selectable baud rates.
- A parallel port. This port can be used for a standard Centronics interface or custom I/O.
- Audio tape serial I/O port. This feature allows for program storage on a standard tape recorder.
- 7. A 24-bit programmable timer. This timer is a synchronous device which can be used for generating or measuring both time delays and various frequencies. The timer can be clocked with a 5-bit prescaler or directly, and the clocking source can be the 4-Mhz system clock or an external clock.
- 8. Wire-wrap area provided for custom circuitry.
- 9. RESET and ABORT function switches.

A picture of the MC68000ECB and a functional block diagram are shown in Appendix C (pages 93 and 94). Additional information on the MC68000ECB is given in the Motorola User's Manual.

The first step in expanding the MC68000EC8 was to develop a standard asynchronous bus buffer. This buffer was installed in the wire wrap area on the board and provides full protection to all system data, address, and control lines which are taken off the board. Due to physical space limitations of the on board wire wrap area, only eight of the sixteen data lines are available. Otherwise, all address and control lines are provided. This limitation is not serious since most perioherals developed for the MC68000 have an 8-bit data bus. Complete details of the buffer including parts list, board layout, and schematic are presented in Appendix C (pages 95 and 96).

Once the MC68000ECB system buses were buffered, they were extended onto a second board by a standard ribbon cable connection. The second board, called the I/O expansion board, provides access to all external devices. The bus interface section of the 1/0 expansion board consists of two MC68230 parallel interface/tlmers (PI/T) along with necessary address decoding. Each of the PI/Ts is actually two separate devices in one package. A parallel interface section provides two 8-bit external ports, and a timer section provides a 24-bit programmable timer. The driver interface and Isolation section of the I/O expansion board consists of the hardware needed to provide the low current interface and high voltage isolation between the PI/Ts and the external devices. These facilities include two stepper motor drivers, two incremental encoder inputs, one absolute encoder input, and numerous single bit I/O. Complete schematics of the 1/0 expansion board are presented in Appendlx C (pages 97 to 102). In addition, a schematic for the digital inputs is given on page 103, schematics for the high current outputs are presented on pages 104 to 108, and relevant data sheets are given in Appendix F.

The remaining hardware discussion will focus on two topics which are unlque to the drive line interface. These discussions are intended to supplement the schematics in Appendix C. The first topic is optical isolation, and the second is interfacing stepper motors.

Optical Isolation

In this application, numerous external devices are connected to the I/O expansion board. Each of these devices has its own specific power supply requirements. It is important that these power supplies be separated in some way. Without separation, a failure in any one of the external branches could cause devastating damage to other devices and to the main boards. To provide complete isolation for all power supplies from each other and for all external devices from the main boards, a system of optical isolation has been developed.

Figure 5, shows a typical isolated output. The last chip in the low level board logic must have TTL Open Collector high current outputs. This allows the designer to customize the value of the pull-up resistor (R1) to the specific current requirements. The output of the open

Figure 5 Typical Isolated Output

collector drives the input to a 4N33 Opto-Isolator. This chip provides full separation of power grounds, and 7500 V isolation. The input of

the 4N33 consists of an infrared light emitting diode and the output consists of a photo darlington transistor pair. The open collector design of the output of the 4N33 allows the designer to customize the value of the pull-up resistor (R2) which drives the input to the external load. Note that the load may need to include current amplifiers.

There are a number of design considerations in the selection of the pull-up resistors. The following is the procedure used in the present design.

- R1 is selected so that the low level output current of the TTL open collector is not exceeded. The maximum value is typically 25 milliamps, therefore, R1 must be greater than 200 ohms. A value of 220 ohms has been used in the present design.
- 2. R2 is selected so the at the low level output current of the 4N33 is not exceeded. The maximum value is 50 milliamps, therefore, R2 must be greater than 100 ohms. The exact selection of the value of R2 varies with the characteristics of the load input current requirements.
- 3. The resistor R3 is used to improve the dynamic switching characteristics of the 4N33. This is because the diode has low input impedance and does not switch off cleanly after it has been driven on for an extended period of time. A value of 390 ohms was used in the present design. Note that if the value of R3 is too large, the forward current of the diode is diminished below the switch-on threshold.

An interesting side affect of the above circuit is that the logic is inverted. When the TTL output goes high, current is driven through the diode, turning the darlington pair on. With the transistors on, the output of the 4N33 goes low, thus turning the load off. In contrast, when the TTL output goes low, the current through R1 sinks into the TTL output, thus turning the darlington pair off. With the transistors off, the output of the 4N33 goes high, thus turning the load on.

Although the above example demonstrates the use of opto-isolation for a single output, the basic concepts of the design can be used for inputs as well. In fact, entire groups of inputs and outputs can be isolated using this technique. In the present design, every input and output is fully isolated between the I/O expansion board and the rest of the external devices.

Interfacing Stepper Motors

Two dual phase unlpolar stepper motors are used on the drive line. One motor controls the engine throttle position and the other controls the CVT ring position. Each of these motors has a stepper motor driver associated with it. The two drivers are functionally identical, however, each has been fine tuned to match the dynamics of their corresponding motors.

There are many tradeoffs between hardware and software in the design of a stepper motor driver. In some systems, the stepper motor is driven with variable stepping rates in order to accelerate large loads.

In other systems, a technique called micro stepping is used to improve

the accuracy of position control. In both of these cases, complete software control of the stepping sequence is required for the entire move. It is desirable, in this application, for software to play a minimal role in the process of moving the motors from one position to another. Since motor stepping rates are slow compared to the normal clocking speed of the microprocessor, constant supervision of a motor would waste valuable processing time. In addition, it would be difficult to control two motors moving at the same time using only one CPU. Therefore, a hardware system has been bullt and tested which requires the main control program to supply only two inputs. The program must calculate the desired number of steps and the relative direction of the In addition the software must enable the hardware to initiate the It is emphasized that the control software does not need to service the hardware at any time after the move is inltiated. This allows the microprocessor to do other things while the stepper motors are moving.

Referring to Figure 6, page 31, each stepper driver consists of a timer, a clock source, a stepper driver chlp, some additional logic, an optical coupler, and a high current driver section. The timer is part of the MC68230 PI/T and provides the necessary interface between the MC68000 system bus and the rest of the external hardware. The clock signal is derived from the system 1MHz system clock using decade counters. The stepper driver chip is a Motorola SAA1042 which generates the correct switching sequence logic for both full and half stepping modes. The output of the driver chip consists of four lines, one for

each coil of the stepper motor, which are first inverted and then passed through a series of 4N33 optical isolators. The outputs of the

Figure 6 Stepper Motor Driver Circuit

optical isolators drive the bases of four SK3180 NPN Darlington power transistors. These transistors switch the four motor coils to ground. The stepper motors were originally designed to be driven with 4 to 5 volts DC, however, in this application it was more suitable to use the 12 volt power supply available at the engine electrical system. To do this an external resistor was placed in series with the stepper motor. The effect of this resistor is to develop a voltage divider with the input to the motor as the center node. By adjusting the value of the external resistance, the correct current is provided through the motor. In addition, this technique has the advantage of lowering the time constant (T = L/R) of the motor and improving its current switching

characteristics.

The basic operation of the hardware is as follows:

- The number of desired steps is loaded into the timer, and the relative rotational direction is established at the stepper driver logic chip.
- 2. The timer is started allowing the "done" signal to go high. With the "done" signal high, the "clock" signal passes through the "AND" gate. The output of the "AND" gate provides a dual function of decrementing the counter and clocking the stepper driver logic chip. Note that the timer is decremented by one count for each cycle of the "decrement" signal and the stepper driver logic advances the stepper motor one step for each cycle of its input clock.
- 3. The circuit continues to decrement the timer and clock the stepper driver logic until the value in the timer goes to zero or "rolls over". At this point the timer drops the "done" signal low causing the "clock" signal to be gated off. With the clock signal gated off, the stepper driver logic is effectively halted without ioss of the current sequence state.

During the initial design stages of the stepper motor drivers, it was anticipated that the open loop design would provide the needed accuracy and repeatability. However, during testing, the motors would occasionally loose steps. This was because the dynamic actuator loads were

greater than first anticipated. At this point each of the actuator gear trains were modified to include an optical incremental encoder. These encoders provide the repeatability necessary for data collection and control of the motors. Note that the lack of precision in the open loop design is not caused by a problem in the stepper motor driver, but rather is due to inadequate torque capacity of the stepper motors. In a final design, the feedback encoders would not be needed.

The output of the encoders is a pair of square wave pulse trains whose phase indicates relative direction. This type of output is known as "Quadrature" output. By correct separation of the two pulse trains, a suitable up/down counter can be used to keep track of the absolute position of the encoders. In addition, some reference must be established for the "home" or zero point of the counters. Two 20-bit counters were available (Spaulding, 1985) which correctly read quadrature output. These counters were added to the I/O expansion board and require seven control lines in order to multiplex the data to an 8-bit data bus. To accommodate the requirements of these devices, an 8-bit external data bus and an 8-bit external control bus were developed using one of the two off-board PI/Ts. The hardware specifications for the counters and the external buses are given in Appendix C (pages 99 to 103). The software specifications of the external buses are given in Appendix D (pages 142 and 143).

Software Details

As previously mentioned, software has been developed for the

MC68000ECB to support the hardware extensions. During the development of this software, a number of facilitles were established in order to provide a suitable software development environment. Although the single board computer provides software development tools, some of these were found to be inadequate. The major deficiencies were program storage and program documentation.

The MC68000ECB provides a cassette recorder interface for program storage and retrieval, however, it is difficult to use and reliability is questionable. A more suitable solution was to use the hard disk storage on the ADAC 1000. Since the hardware communication was already established between the MC68000ECB and the ADAC 1000, all that was needed was the software support to upload and download programs across the serial communications line. Fortunately, the operating system for the MC68000ECB contains the necessary primitives to upload either Serecords or memory dumps to a host computer and to download Serecords from a host computer. With the available facilities, the only missing software was a communications handler for the ADAC 1000. This program, named "transfer", was relatively easy to write and has worked well. A complete listing of the transfer program is presented in Appendix E.

The other major deficiency, i.e. program documentation, was not so easily solved. The primary reason why documentation is so difficult on the MC68000ECB is that it is impossible to include comments in the source code written on the single board computer. This problem is best avoided by the use of a 68000 cross-assembler, unfortunately, they are expensive and none were locally available at the time. For this

application, the following procedure was used.

- Type in the software on the MC68000ECB console using the single line assembler and keep accurate notes on paper.
- Save the program segments in S-record format on the ADAC 1000 hard disk for future use.
- Combine program segments into modules after each segment was debugged and save the modules in both S-record format and disassembled format on the ADAC 1000 hard disk.
- Add comments to the disassembled modules from the development notes using an editor on the ADAC 1000.

In order to facilitate the last item above, a small comment editor was written. This line editor has the capability of appending long comments over many lines of assembly code and is intelligent about page formats.

A complete listing of the comment editor is also included in Appendix E.

Although the above procedure has been used successfully to create all of the MC68000ECB software, one difficulty still exists. There is no way to automatically update a change in the documentation whenever a change is made in the source code. The only way to successfully modify the current software is to first make the changes on the MC68000ECB and accurately record those changes on scratch paper. Then upload the modification to the ADAC 1000 in S-record format for permanent storage. Finally, edit the original commented file and make the changes recorded on scratch paper. This can be a very difficult procedure which requires

the utmost attention to detail.

Once a procedure was established for development and documentation of software, attention was focused on the specific algorithms to be developed. As was previously discussed, there are four primary blocks of code; normal sequential execution, software interrupt processing, and hardware interrupt processing, all surrounded by a common data structure.

·The normal sequential execution block consists of a main routine and two subroutines, getdata and compute. The main routine provides the control for all normal sequential program execution, and currently executes an interactive environment (not real time) by which the user can manipulate the drive train. This configuration is useful for data mapping and system debugging. In its final form, the main routine will provide the real time control of the system. The getdata subroutine is cailed once each time through the main routine. The purpose of the getdata subroutine is to gather all necessary inputs and establish the current state of the drive line. The compute subroutine is also cailed once each time through the main routine. The purpose of the compute subroutine is to examine the current state of the drive line and compute a new desired state. in the current version, the compute subroutine is fully interactive so that the user inputs the new desired state. final form, the compute subroutine will implement the optimization algorithm. It should be noted that throughout the main routine and getdata subroutine, numerous software interrupts are generated in order to initialize and communicate with all system hardware. This creates an

advantage in software development since the hardware dependencies are all grouped together in the software interrupt processing block.

The hardware interrupt processing block is the least developed of the four primary blocks. In its final form, this block will be responsible for handling interrupts from three sources: ADAC 1000, real-time timer, and system shutdown requests. Currently only the ADAC 1000 interrupt is supported. The reason for not developing the additional facilities is that they are features of the final implementation and are not needed for data collection and debugging. Only one routine, HOST-INT, currently resides in the hardware interrupt processing block. Host-int provides the interrupt handler for all MC68000ECB to ADAC 1000 communications. In its final form, this routine will control communications in both directions. Currently, the routine only provides for data to be passed from the MC68000ECB to the ADAC 1000. This has proved sufficient for drive line mapping. Once the implementation of the control algorithm is in place, bi-directional data flow will be needed.

The software interrupt processing block provides the hardware interface to both other software blocks. This group of software has been fully developed in parallel with hardware developments and has been extensively tested. Following is a brief description of each routine in the software interrupt processing block.

1. P-INIT.

P-init initializes the peripherals which are contained on the MC68000ECB.

2. E-INIT.

E-init initializes the peripherals which are contained on the $\ensuremath{\mathrm{I}}/0$ expansion bus.

3. SET-UP.

Set-up provides an interactive mode of initializing the physical engine and transmissions. This procedure is executed only once and must be preformed after all computer hardware has been initialized.

4. MOVE-TH.

Move-th provides the software interface to the stepper motor driver associated with the engine throttle.

5. MOVE-CVT.

Move-cvt provides the software interface to the stepper motor drlver associated with the CVT transmission.

6. SET-GEAR.

Set-gear provides the software interface to the hardware associated with the Power Shift transmission.

7. TEST-STABLE.

Test-stable insures that the drive line actuators are stable before releasing control back to normal sequential execution.

8. READ-RACK.

Read-rack provides the software interface to the absolute encoder which is mechanically attached to the CAT diesel injector pump.

9. READ-THSTP.

Read-thstp provides the software interface to the incremental encoder which is mechanically attached to the throttle stepper motor.

READ-FBSTP.

Read-fbstp provides the software interface to the incremental encoder which is mechanically attached to the CVT ring drive.

REG-SAVE.

Reg-save saves all CPU internal registers not saved as a part of normal context switching.

12. REG-RESTORE.

Reg-restore restores all CPU internal registers which were saved by reg-save.

The above software package is fully documented in Appendix D. Each of the routines is presented along with general discussions about common data, argument passing, and hardware specifications. Although all of the software is in assembly code, it is relatively easy to read since the code is filled with comments. In order to supplement Appendix D, a memory map (Table 1, page 40) has been specified. These memory specifications establish allocated space for all user software. The total memory available on the system is 32 Kbytes. The operating system (TUTOR) requires 1280 bytes of scratch and the RAM vector table requires 1024 bytes. Therefore a total of 30,464 bytes are available for user programs.

Table 1 MC68000ECB User Memory Allocation

Description	Address Range	# of 8ytes Available	# of 8ytes Used
Normal Sequential Execution			
Common Data	\$0900 - \$0DFF	1280	208
Main Routine			
Data	\$0E00 - \$0FFF	512	147
Text	\$1000 - \$11FF	512	289
Getdata Subroutine			200
Data	\$1200 - \$12FF	256	0
Text	\$1300 - \$14FF	512	71
Compute Subroutine			
Data	\$1500 - \$1FFF	2816	49
Text	\$2000 - \$4FFF	12288	165
Software Interrupt Processing			
Common Data	\$5000 - \$507F	128	81
Local Data	\$5080 - \$57FF	1920	385
Text	\$6000 - \$6FFF	4096	1584
Hardware Interrupt Processing			
Local Data	\$5800 - \$5FFF	2048	45
Text	\$7000 - \$7FFF	4096	273
	Totals	30464	3297

In summary, the purpose of this chapter is to discuss the work completed on the MC68000ECB. This work includes both hardware expansions and software developments. A general overview was presented to give perspective to the entire system development, after which the hardware and software were discussed in more detail. During these discussions a number of appendices were cited which give specific details and comments about the hardware and software of the MC68000ECB.

SUMMARY

The objective of this study is to develop and test a computer control system for optimizing the performance of a diesel engine and a continuously variable transmission as applied in an agricultural tractor.

In order to meet the objective, a number of tasks were defined.

- Develop laboratory facilities for the study of drive line efficiency.
- 2. Collect and analyze data to determine performance relationships.
- 3. Develop an optimization and control algorithm for the drive line.
- 4. Evaluate dynamic considerations of the algorithm.
- 5. Test and evaluate the performance of the algorithm.

This project is on-going with the test facility completed, the performance data collected, and the basic optimization algorithm outlined. Plans for future work include: analyzing the collected data to establish relationships between control inputs and drive line outputs, and developing a computer simulation of the optimization algorithm in order to evaluate dynamic and performance considerations.

This thesis has presented the work completed on the development of computer facilities for implementation of data acquisition and control algorithms as related to the above study. In order to fulfill the

project's computer needs, two systems were developed. One system uses an ADAC 1000 data acquisition computer and is responsible for the supervisory functions, data recording, sub-system controls, and conversion of all analog data into digital forms. The other system uses a Motorola MC68000ECB single board computer and is responsible for drive line control and optimization.

The work completed on the ADAC 1000 falls into two main categories; a complete system upgrade, and development of a large software package. The structure of the software package is based upon concepts used in concurrent programming in order to preserve real time capabilities.

The work completed on the MC68000ECB includes both hardware and software developments. The hardware developments include bus expansion buffering, I/O expansion, optical isolation, and digital interfacing to external devices. The software developments provide the framework for all future developments. Currently, the software executes a fully interactive environment which is useful for drive line mapping.

REFERENCES

- "Berkeley Unix Programmer's Manual," PDP-11 Version 2.9, Seventh Edition, Volume 1, Berkeley Software Division, Berkeley, CA, 1983.
- Bourne, F. R., "The Unix System," Addison-Wesley Publishing, 1983.
- Chancellor, W. J., and Thai, N. C., "Automatic Control of Tractor Engine Speed and Transmission Ratio," ASAE Paper No. 83-1061, Presented at ASAE Summer Meeting, Montana State University, Bozeman, June 1983.
- Hancock, L., and Krieger, M., "The C Primer", 2nd ed., McGraw-Hill, New York, 1985.
- Horowitz, P., and Hill, W., "The Art of Electronics," 3rd ed., Cambridge University Press, 1980.
- Kelly-Bootle, S., and Fowler, B., "68000, 68010, and 68020 Primer,"
 1st ed., Howard W. Sams & Co., Inc., Indianapolis, Indiana, 1985.
- Kernighan, B. W., and Ritchie, D. M., "The C Programming Language," Prentice-Hall, Inc., Englewood Cliffs, NJ, 1978,
- "MC68000 16-Bit Microprocessor, Advanced Information," Motorola Inc., Publication ADI-814-R4, April 1983.
- "MC68000 16-Bit Microprocessor, User's Manual," Motorola Inc., Third Edition, 1982.
- "MC68000 Educational Computer Board, User's Manual," Motorola Inc., July 1982.
- "MC68230 Parallel Interface/Timer, Advanced Information," Motorola Inc., Publication ADI-860-R2, Dec. 1983.
- Meiring, P. and Lyne, P. W., "Power Demand Mapping of Tractor Operations," ASAE Paper No. 85-1050, Presented at ASAE Summer Meeting, Michigan State University, East Lansing, June 1985.
- Meiring, P. and Rail, M. G., "An Operator Assist System to Optimize Tractor Efficiency," ASAE Paper No. 79-1048, Presented at the Summer Metting of ASAE and CSAE, University of Manitoba, Winnipeg, Canada, June 1979.

- Morris, D. A., et. al., "Potential Fuel Savings Using a Tractor-Operator Feedback System," ASAE Paper No. 84-1077, Presented at ASAE Summer Meeting, University of Tennessee, Knoxvilie, June 1984.
- Morris, W., editor, "The American Heritage Dictionary of the English Language," Houghton Mifflin Company, Boston, MA, 1976.
- "Motorola Microprocessors Data Manual," Motorola Inc., Publication DL-120, 1981.
- Schrock, M. D., Matteson, D. K., and Thompson, J. G., "A Gcar Selection Aid for Agricultural Tractors." ASAE Paper No. 82-5515. Presented at ASAE Winter Meeting, Palmer House, Chicago, IL., Dec. 1982.
- Smith, R. J., "Circuits, Devices, and Systems," 3rd ed., Wiley, New York, 1976.
- Spaulding, G., "Instrumentation and Modification of the IRI/M50 Robot for Automatic Control Research," (unpubl M.S. Thesis, Kansas State University, 1985).
- "The TTL Data Book for Design Engineers," 2nd ed., Texas Instruments Inc., 1976,

APPENDIX A DRIVE LINE PARAMETERS

Primary Engine Parameters

1. Output Torque.

The engine output torque is measured by a Lebow Model 1228-10k inline torque cell with a maximum rating of 10000 inch-pounds. The output signal is a millivolt level analog signal which is amplified and filtered by a Daytronic Model 3270 strain gage conditioner to achieve a 0 to 5 volt analog signal with 2 Hz. low pass characteristics. This signal is then digitized at the 1014 A/D board to give a final resolution of .975 ft-lb/bit.

2. Output Speed.

The engine output speed is measured by a 60-tooth gear in conjunction with a magnetic induction coil both of which are mounted to the above torque transducer. The output signal is a millivolt level analog signal which is amplified and filtered by a Oaytronic Model 3240 frequency conditioner to achieve a 0 to 5 volt analog signal with 2 Hz. low pass characteristics. This signal is then digitized on the 1014 A/D board to give a final resolution of 4.859 rpm/bit.

3. Governor Position.

The engine injector pump has been modified to accept a Litton 7NB10-5-5-1 absolute position encoder. The encoder converts the rotary motion of the pump "rack" to a standard TTL digital signal. Although the encoder gives 10 bits output, less than 90 degrees of rotation are achieved over the range of rack motion. Therefore, only eight bits are actually read by the control computer. The final resolution of the rack signal is 176 levels over the operating range of the rack.

4. Throttle Position.

The engine throttle position is controlled by a Sigma Model 20-2235D-28175 stepper motor. Control of the stepper motor is achieved through hardware on the MC68000ECB. In addition, a BEI Model L25G-100-ABZ-7400R-S incremental encoder has been incorporated into the throttle drive to give feedback of throttle position. The output of the encoder is in TTL digital quadrature format which is decoded through hardware on the MC68000ECB. Total control resolution of the throttle position is 1980 steps with a total of 3960 feedback levels over the range of throttle movement.

5. Throttle Home.

A single bit resolution on/off switch is also provided as part of the above throttle controller. The purpose of the this switch is to initialize the "home" or zero position of both the stepper motor and the feedback encoder.

6. Fuel Flow.

Engine fuel flow is measured gravimetrically. The fuel scale consists of an eight liter container suspended from an Amteck $8A\!-\!25\!-\!L8$

load cell. The load celi is powered and conditioned to a high level analog signal by a Calex 166 bridge sensor. This signal is then digitized on the 1014 A/O board to give a final resolution of .008924 lbs-fuel/bit.

Secondary Engine Parameters

- Oil Pressure. Engine oil pressure is measured by an Omega model PX-242-100G-5V pressure transducer. This signal is digitized on the 1014 A/O board to give a final resolution of .0977 psi/bit.
- Exhaust Gas Temperature.
 Engine exhaust gas temperature is measured by an Iron/Con type thermocoupie.
- Engine Coolant, Oil, and Ambient Air Temperatures.
 These temperatures are measured by Copper/Con type thermocoupies.
- 4. Fuel Temporature and API Number. The engine fuel temperature is measured with an ordinary thermometer in degrees fahrenheit. The standard fuel API number is also collected by hand using a gravimetric buib. This data is needed to convert fuel mass flow to volumetric flow. The data is entered into the data acquisition structure through the terminal keyboard.
- 5. Emergency Shut Off. To provide for immediate system shut down in the case of catas trophic drive iine failure, a throttle plate was installed in the engine intake system. Control of the emergency shut off is provide by a manual flip switch to a 110 VAC solenoid.

Prlmary CVT Parameters

1. Output Torque.

The CVT output torque ls measured by a Lebow Model 1228-10k in-line torque cell with a maximum rating of 10000 inch-pounds. The output signal is a millivolt level analog signal which is amplified and filtered by a Daytronic Model 3270 strain gage conditioner to achieve a 0 to 5 volt analog signal with 2 Hz. low pass characteristics. This signal is then digitized at the 1014 A/O board to give a final resolution of .9735 ft-lb/bit.

2. Output Speed.

The CVT output speed is measured by a 60-tooth gear in conjunction with a magnetic induction coil both of which are mounted to the above torque transducer. The output signal is a millivolt level analog signal which is amplified and filtered by a Oaytronic Model 3240 frequency conditioner to achieve a 0 to 5 voit analog signal with 2 Hz. low pass characteristics. This signal is then digitized on the 1014 A/D board to give a final resolution of 4.8818 rpm/bit.

3. Ring Position.

The CVT ring position is controlled by a Sigma Model 21-4270D-200F03 stepper motor. Control of the stepper motor is achieved through hardware on the MC68000ECB. In addition, a BEI Model L25G-100-ABZ-7400R-S incremental encoder has been incorporated into the CVT ring drive to give feedback of ring position. The output of the encoder is in TTL digital quadrature format which is decoded through hardware on the MC68000ECB. Total control resolution of the ring position is 3400 steps with a total of 18891 feedback levels over the range of ring movement.

4. Ring Home.

A single bit resolution nn/off switch is also provided as part of the above CVT ring controller. The purpose of the this switch is to initialize the "home" or zero position of both the stepper motor and the feedback encoder.

Secondary CVT Parameters

1. Oil Temperature Controller Inputs.

The CVT input oil temperature controller has a number of inputs. The following temperatures are measured:

- a. Input oil temperature.
- b. Exlt oil temperature.
- c. Reservoir oil temperature.
- d. Heat exchanger oil input temperature.
- e. Tap water temperature,
- f. Heat exchanger water input temperature.
- g. Heat exchanger water exit temperature,

All of these temperatures are measured by Copper/Con type thermocouples. In addition to the temperatures, the controller also requires an input oil temperature set point which is entered at the terminal keyboard.

2. Oil Temperature Controller Ouputs.

The controller has two outputs, each which sets the status of the water heater elements. The first element is controlled digitally as on/off, and the second element is controlled by the 1021 D/A board and a Johnson Model DQ-4100 solid state electric heat control unit. Total control output resolution is 2.44141 W/bit.

3. Oil Flow and Pressure.

The oil flnw and pressure are monitored to both branches of the oil loop. Pressure is measured by a standard dial pressure gauge, and flow ls measured by two magnetic induction vane type flow meters. The flow meters output is a millivolt level analog signal. This signal is preconditioned to be read by the 1018 pulse counter board. The signal pulse trains are averaged over a one second time base. Conversion is then made to oil flow in gal/min.

Primary Power Shift Parameter

The power shift gear ratio is selected by appropriate engagement of six 12 VDC electro-hydraulic solenolds. Control of these solenolds is accomplished through a digital interface to the MC68000ECB. Software access of the current gear ratio is made through the communications link to the MC68000ECB.

Secondary Power Shift Parameters

- 1. Oil Pressure.
 - Oll pressure is measured by a standard oil pressure dial gauge.
- 2. Oll Temperature.
 - Oil temperature is measured by a Copper/Con type thermocouple.

Primary Dynamometer Parameters

- 1. Input Torque.
 - The dynamometer input torque is measured by a Transducers Model T63H-200-C205 dual bridge load cell attached to 15.756 inch lever arm. One output of the load cell is used as feedback for the dynamometer controller. The other output is amplified and filtered by a Daytronic Model 3270 strain gage conditioner to achieve a 0 to 5 volt analog signal wlth 2 Hz. low pass characteristics. This signal is then digitized at the 1014 A/D board to give a final resolution of .6339 ft-lb/bit.
- 2. Input Speed.

The dynamometer input speed is measured by a 60-tooth gear in conjunction with two magnetic induction colls. One of the pickups is used as feedback for the dynamometer controller. The other pickup is amplified and filtered by a Daytronic Model 3240 frequency conditioner to achieve a 0 to 5 volt analog signal with 2 Hz. low pass characteristics. This signal is then digitized on the 1013 A/D board to give a final resolution of 4.859 rpm/bit.

Secondary Dynamometer Parameters.

Both the input and output cooling water temperatures are measured using Copper/Con type thermocouples. These temperatures are used to provide dynamometer overloading protection.

Temperature Conversion Notes.

All of the above thermocouple outputs are digitized on the 1022 A/D board. Three types of thermocouple types are supported in the test lab. They are type T (Copper/Con), type J (Iron/Con), and type K (Chromel/Alumel). The following table has been established for temperature conversions.

Table 2 Temperature Conversions

TYPE	Sensitivity mv/bit	Regression Equation Temp(C)= () (R^2= .9999+)	Valid Range deg C
T	0.00976	((.007727*mv436)*mv+24.91)*mv	0 to 400
J	0.0244	((-,0003982*mv0008997)*mv+18.52)*mv	0 to 750
K	0.0488	((.001582*mv09563)*mv+25.5)*mv	0 to 1360

APPENDIX B

ADAC 1000 SUPERVISOR SOFTWARE LISTINGS

```
SUPPLEMENTAL LISTING FOR AOAC 1000 COMPUTER
         CVT -- ENGINE PROJECT -- SUPERVISOR
    DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING
                 KENT O. FUNK
    AUTHOR:
    OATE:
                  4/5/85
    FILE:
                 Makefile
*This file contains the rules necessary to create
   a program by the name "cvt".
#In order to run the program:
# --> kmon cvt
# define global substitution variables
CC1= cc -c
CC2= cc -0 -o
OBJECTS= main.o define.o keyboard.o doalarm.o mon.o cvtlinear.o
LIB= -ladac -lm
# define rules and dependencies for creation of object files
define.o : define.c control.h
    $(CC1) define.c
main.o: main.c control.h
    $(CC1) main.c
keyboard.o : keyboard.c control.h
    $(CC1) keyboard.c
doalarm.o : doalarm.c control.h
    S(CC1) doalarm.c
mon.o : mon.c control.h
    $(CC1) mon.c
cvtlinear.o : cvtlinear.c control.h
    $(CC1) cvtlinear.c
# define rules and dependencies for executables
cvt : $(OBJECTS)
    $(CC2) cvt $(OBJECTS) $(LIB)
```

```
C-SOURCE LISTING FOR ADAC 1000 COMPUTER
         CVT -- ENGINE PROJECT -- SUPERVISOR
    DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING
    AUTHOR:
                 KENT D. FUNK
    OATE:
                  4/5/85
    FILE:
                   control.h
****************
/* Oeclare global variables used in main by other functions
                                                                   */
#define NO68K
int sigalarm();
int sigkbdreq():
int kbdflag, alarmflag;
int fd68k;
/* definitions of attribute in scprint function
                                                                   */
#define NORM
                       Ω
#define UNDERLINE
#define REVERSE
/* set up data file definitions
                                                                   * /
FILE *dfptr, *fopen();
char dfname[10];
/* set up structures for gman routine
struct gv {
                  /* real variables
    char gvname[7];
    double *gvad;
} gvs[];
struct flg {
                  /* integer variables
    char flgname[7];
    int *flgad;
} flags[]:
/* set up structure for high level data acquisition
                                                                  */
struct hlda {
    char parm[7];
    int chan, gain;
    double off, calcon;
    int a, b;
} hldax[];
/* set up structure for temperature data acquisition
                                                                  */
struct tmpda {
    char parmi7];
```

```
int chan, type;
      int c. d:
 } tmpdax[];
/* set up structure for pulse card data acquisition
                                                                              */
struct pulse {
      char parm[7]:
      int chan:
      double thase, const1, const2:
      int e. f:
} pulsex[]:
/* set up structure for monitor subroutine limits
                                                                              */
struct limits {
      double *max, *warn:
} hl_lim[], tmp lim[], pul_lim[];
/* set up space for command line
char keyword[5]:
char name[10]:
double data:
/* global variables declared
     /* engine parameters */
double ewtpmx; /* engine water temp max
double ewtown:
                    /* engine water temp warning
                                                                              */
double eegtmx:
                    /* exhuast gas temp max
                                                                              */
double eegtwn;
                    /* exhuast gas temp warning
                                                                              4/
double erpmmx;
                    /* engine rpm max
                                                                              */
duuble erpmwn; /* enigne rpm warning
double etrkmn; /* eng tork max
double etrkwn; /* eng tork warning
double enopmn; /* engine oil pressure min
double enopwn; /* engine oil pressure warning
                                                                              */
                                                                              */
                                                                              */
                                                                              */
                                                                              */
double enotwn;
                     /* engine oil temp warning
                                                                              */
double enotmx;
                     /* engine oil temp max
                                                                              */
double enffmn;
                     /* wt of fuel in bucket > 2 lbs
                                                                             */
double api:
                     /* fuel api number
                                                                             */
double ftmp; /* fuel temperature
char point[10]; /* engine map referance point
                                                                             */
     /* cvt parameters */
double tcvtmx; /* cvt oil temp exit mx used by monitor
double tcvtwn;
                     /* cvt oil temp exit warn used by monitor
double toomx:
                     /* cvt oil temp in max used by monitor
                                                                             */
double toomn;
                     /* cvt oil temp in min used by monitor
                                                                             */
double twimx;
                    /* max tmp of water in hx
                                                                             */
double twiwn;
                    /* warning tmp of water in hx
                                                                             */
double offmn;
                    /* cvt oil flow front min
                    /* cvt oil flow front max
/* cvt oil flow rear min
double offmx:
double ofrmn;
```

```
double ofrmx;
                      /* cvt oil flow rear max
                                                                                     */
                       /* cvt-pwrshift rpm max
double trommx:
                                                                                     */
double trpmwn;
                      /* cvt-pwrshlft rpm warning
                                                                                     */
      /* pwr-shift parameters */
double ttrkmx; /* cvt-pwrshift tork max
                                                                                     */
double ttrkwn; /* cvt-pwrshift tork warning double psotmx; /* pwr shift oil temp max double psotwn; /* pwr shift oil temp warning
                                                                                     */
                                                                                     */
                                                                                     */
      /* final drive parameters */
double fdotmx; /* final drive oil temp max
double fdotwn;
                      /* final drive oil temp warning
      /* dyno parameters */
double dwotmx; /* dynomoter water temp out max
                                                                                    */
double dwotwn:
                      /* dyno water temp out warning
                                                                                    */
double drpmmx; /* dyno rpm max
double drpmwn; /* dyno rpm warning
double dtrkmx; /* dyno trk max
double dtrkwn: /* dyno trk warn
                                                                                    */
                                                                                    */
                                                                                    */
      /* ambient parameters */
double airthl; /* ambient air temp hi
                                                                                    */
double airtlo;
                      /* ambient air temp lo
      /* program control flags */
*/
int monflg;
int dycflg;
                                                                                    * /
                      /* dyno enable
                                                                                    */
                     /* heater enable
int hrcflg;
                                                                                    */
int hrcfig; /* neater enable
int datfig; /* data loop enable
int orphan; /* kmon exiting flag
int online: /* m68k online flag
int waitmx; /* wait state for request call on 68k
int daval: /* temporary value for D/A in heater
int tilval; /* temporary value for TTL in heater
                                                                                    */
                                                                                    */
                                                                                    */
                                                                                    */
     /* m68k variables */
int req; /* control flag for request
int rack:
                      /* rack reading
                     /* throttle step reading
int thstp:
                     /* ring step reading
int rgstp;
                                                                                    */
int gear; /* PS gear
int fbstp; /* cvt feedback reading
     /* heater control input */
double hset; /* cvt oll temp in as set point for heater control
```

```
C-SOURCE LISTING FOR ADAC 1000 COMPUTER
           CVT -- ENGINE PROJECT -- SUPERVISOR
     DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING
                      KENT D. FUNK
     AUTHOR;
     DATE:
                      4/5/85
     FILE:
                      define.c
/* This file contains all complie definitions of global variables
#include <stdio.h>
#include "control.h"
#include <adac.b>
/* define data file default
                                                                                 */
char dfname[10] = "d.tmp";
/* global variables inltialized
     /* englne parameters */
double ewtpmx= 105.0; /* englne water temp max
                                                                                 */
double ewtpwn= 93.0; /* englne water temp warning
                                                                                 */
                                                                                 */
double eegtmx≈ 705.0; /* exhuast gas temp max
                                                                                 */
double eegtwn= 650.0; /* exhuast gas temp warning
double erpmmx= 2500.0; /* engine rpm max
double erpmwn= 2300.0; /* enigne rpm warning
                                                                                 */
double etrkmx= 240.0; /* eng tork max
                                                                                 */
double etrkwn= 260.0; /* eng tork warning
                                                                                 */
double enopmn= 30.0; /* engine oil pressure min
double enopwn= 40.0; /* engine oil pressure warning
double enotwn= 93.0; /* engine oil tcmp warn
                                                                                 */
                                                                                 */
                                                                                 */
double enotmx= 105.0; /* englne oil temp max
                                                                                 */
double enffmn: 5.0; /* mlnimum fuel in the fuel bucket
                                                                                 */
      /* cvt parameters */
double tcvtmx= 75.0; /* cvt oll temp exit mx used by monitor
double tcvtwn= 65.0: /* cvt oll temp exit warn used by monitor
                                                                                  */
                  2.0; /* cvt oil temp in cvt, max used by monitor 2.0; /* cvt oll temp in cvt, min used by monitor
double toomx=
double toomn= 2.0; /* cvt oll temp in cv double twimx= 65.0; /* water temp in max
                                                                                 */
                                                                                 */
double twiwn= 60.0; /* warning water in tmp
                                                                                 */
double offmn= 4.5; /* cvt oil flow front min double offmx= 5.5; /* cvt oil flow front max
                                                                                 * /
double of
rmx= 4.5; /* cvt oil flow rear min double of
rmx= 5.5; /* cvt oil flow rear max
                                                                                 */
                                                                                 */
double trpmmx= 1750.0; /* cvt-pwrshift rpm max
                                                                                 * /
```

```
double trpmwn= 1610.0; /* cvt-pwrshift rpm warning
        /* pwr-shift parameters */
 double ttrkmx= 667.0; /* cvt-pwrshift tork max
                                                                                                            */
 double ttrkwn= 615.0; /* cvt-pwrshift tork warning
                                                                                                            */
 double psotmx = 100.0; /* pwr shift oll temp max
                                                                                                            */
 double osotwn= 90.0; /* pwr shift oil temp warning
         /* final drive parameters */
 double fdotmx= 100.0; /* final drive oil temp max
 double fdotwn= 90.0; /* final drive oll temp warning
                                                                                                            */
        /* dyno parameters */
 double dwotwn= \begin{array}{cccccc} double & dwotwn= & 45.0; & /* & dynomoter water temp out max \\ double & dwotwn= & 40.0; & /* & dyno water temp out warning \\ \end{array}
                                                                                                           */
 double drpmmx= 4000.0; /* dyno rpm max
                                                                                                            */
 double drpmwn= 3800.0; /* dyno rpm warning
                                                                                                            */
 double dtrkmx= 190.0; /* dyno trk max
                                                                                                            */
 double dtrkwn= 175.0; /* dyno trk warn
                                                                                                            */
        /* amblent parameters */
 double alrthi= 32.0; /* ambient air temp hi
                                                                                                            */
 double alrtlo= 22.0; /* ambient air temp lo
        /* program control flags */
int timint= 1; /* number of seconds between interupts
int timint= 1:  /* number of seconds between intcrupts Int montim= 10:  /* monitor loop time in seconds int dyctim= 10:  /* dyno loop time ln seconds int hrctim= 5:  /* heater loop time ln seconds int dattim= 10:  /* data collection loop time in seconds int datmax= 18:  /* maximum number of data sets int monflg= 1:  /* monitor loop cnable int dycflg= 0:  /* dyno loop enable int hrcflg= 0:  /* heater loop enable int datflg= 0:  /* data loop enable int datval= 0:  /* heater D/A value int tlval= 0:  /* heater TTL value int orphan= 0:  /* flag set when CVT is backgrounded int online= 0:  /* inltially m86k is offline int waitmx= 2:  /* wait state for data request on 68k
                                                                                                           */
                                                                                                            */
                                                                                                           */
                                                                                                           */
                                                                                                           */
                                                                                                            */
                                                                                                            */
                                                                                                           */
                                                                                                           */
                                                                                                           */
                                                                                                           */
                                                                                                          */
                                                                                                          */
/* initialize the structure gv
struct gv gvs[] {
        "ewtpmx", &ewtpmx, /* real variable name and storage address
                                                                                                          */
        "ewtpwn", &ewtpwn,
        "eegtmx", &eegtmx.
        "eegtwn", &eegtwn,
        "erpmmx", &erpmmx.
        "erpmwn". &erpmwn.
        "etrkmx", &etrkmx,
```

```
"etrkwn", &etrkwn,
      "enoomn", &enopmn,
      "enopwn", &enopwn,
      "enotwn", &enotwn,
      "enotmx", &enotmx,
      "enffmn", &enffmn,
     "tcvtmx", &tcvtmx, "tcvtwn", &tcvtwn,
      "toomx", &toomx,
      "toomn", &toomn,
      "hset",
                 &hset,
      "twimx", &twimx,
      "twiwn", &twiwn,
      "offmn", &offmn,
      "offmx", &offmx,
      "ofrmn", &ofrmn,
      "ofrmx", &ofrmx,
     "trpmmx", &trpmmx,
     "trpmwn", &trpmwn,
"ttrkmx", &ttrkmx,
      "ttrkwn", &ttrkwn,
     "psotmx", &psotmx,
     "psotwn", &psotwn,
"fdotmx", &fdotmx,
     "fdotwn", &fdotwn,
     "dwotmx", &dwotmx,
     "dwotwn", &dwotwn,
     "drpmmx", &drpmmx,
     "drpmwn", &drpmwn,
     "dtrkmx", &dtrkmx,
     "dtrkwn", &dtrkwn,
     "airthi", &airthi,
     "airtlo", &airtlo,
     "".
                            /* error check at end of structure
                                                                                 */
}:
/* Initialize the integer variable structure
                                                                                 */
struct flg flags[] {
     "timint", &timint, /* int variable name and address
                                                                                 */
     "montim", &montim,
     "dyctim", &dyctim,
     "hrctim", &hrctim,
     "dattim", &dattim,
"datmax", &datmax,
     "monflg", &monflg,
     "dycflg", &dycflg,
"hrcflg", &hrcflg,
"datflg", &datflg,
     "daval", &daval,
     "ttlval", &ttlval,
```

```
"online", &online,
     "waitmx", &waitmx.
}:
/* Initialize high level data acquistion structure
                                                                            */
struct hlda hidax[] {
     "erpm", 26, 1, -2.0, 4.859086, 8, 4, /* engine rpm
                                                                           */
     "etrk", 28, 1, 1.0, 0.975161, 8, 5, /* engine tork
                                                                            */
     "trpm", 27, 1,
                      1.0, 4.881813, 23, 4, /* cvt-trans rpm
                                                                           */
     "ttrk", 29, 1,
                     1.0, 0.973510, 23, 5, /* cvt-trans tork
                                                                            */
     "drpm", 34, 1, -1.0, 4.859086, 55, 4, /* dyno rpm
                                                                           */
     "dtrk", 32, 1, -2.0, 0.482775, 55, 5, /* dyno tork
                                                                            */
     "enop", 16, 1, 209.0, 0.097704, 8, 10, /* engine oil pressure "enff", 25, 1, 277.0, 0.008924, 8, 6, /* engine fuel flow
                                                                            */
                                                                           */
                               /* error check at end of structure
                                                                            */
};
/* initialize temp data acquistion structure
                                                                            */
struct tmpda tmpdax[] {
     "ewtp", 20, 3, 8, 8, /* engine water tmp
                                                                           */
     "eegt", 30, 0, 8, 7, /* engine exhaust gas tmp
"enot", 21, 3, 8, 9, /* engine oil temp
                                                                           */
     "tcvt", 26, 3, 23, 8,
                              /* cvt oil tmp exit
                                                                           */
     "twi", 29, 3, 23, 6, /* water temp of hx loop
                                                                           */
     "psot", 23, 3, 39, 4, /* pwr shift oii tmp
                                                                           */
                              /* final drive oil tmp
     "fdot", 22, 3, 39, 5,
                                                                           */
     "dwot", 17, 3, 55, 7.
                              /* dyno water outlet temp
                                                                           */
     "too", 27, 3, 23, 7,
                              /* cvt oil tmp in
                                                                           */
     "airt", 19, 3, 39, 7, /* ambient air tmp
                                                                           */
     "ttnk", 25, 3, 23, 9,
                              /* cvt oil tmp @ tank
                                                                           */
     "toi". 24, 3, 23, 10, /* cvt oil tmp at hx "dwit". 18, 3, 55, 6, /* dynot water inlet temp
                                                                           */
                                                                           */
     "two", 28, 3, 23, 11, /* cvt water temp exit
                                                                           */
     "",
                               /* error checking at end of structure */
};
/* initialize pulse card data acquistion structure
                                                                           */
struct pulse pulsexf] {
     "off", 0. 1.0, 1.414, 5.572, 23, 12, /* cvt oil flow front "ofr", 1, 1.0, 1.05, 7.777, 23, 13, /* cvt oil fiow rear
                                                                           */
                                                                           */
                               /* error check at end of structure
                                                                           */
}:
/* initialize monitor limits structure
struct limits hl lim[] {
     &erpmmx, &erpmwn, /* max-warn storage addresses => struct hlda */
     &etrkmx, &etrkwn,
```

```
&trpmmx, &trpmwn,
     &ttrkmx, &ttrkwn,
     &drpmmx, &drpmwn,
     &dtrkmx, &dtrkwn.
     &enopmn, &enopwn,
};
struct limits tmp lim[] {
     &ewtpmx, &ewtpwn,
                        /* max-warn storage addresses => tmpda
                                                                       */
     &eegtmx, &eegtwn,
     &enotmx, &enotwn,
     &tcvtmx, &tcvtwn,
     &twimx, &twiwn.
     &psotmx, &psotwn,
     &fdotmx, &fdotwn,
     &dwotmx, &dwotwn,
     &toomx, &toomn,
     &airthi, &airtlo,
} :
struct limits pul_lim[] {
     &offmx, &offmn,
                        /* max-min storage addresses => struct pulse */
     &ofrmx, &ofrmn,
};
/* initialize m68k variables
                                                                       */
int reg=
               0:
int rack=
              0:
int thstp=
               0:
int rgstp=
               0;
int gear=
               0:
int fbsto=
               0:
/* heater control input
                                                                       */
double hset= 65.0; /* cvt oil temp-in set point for heater control
```

```
C-SOURCE LISTING FOR ADAC 1000 COMPUTER
          CVT -- ENGINE PROJECT -- SUPERVISOR
     DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING
     AUTHOR:
                   KENT D. FUNK
     DATE:
                   4/5/85
     FILE:
                 main.c
*****************
#include <signal.h>
#include <stdio.h>
#include "control.h"
#include <adac.h>
/* this function is used to handle unix alarm interuputs
                                                                     */
sigalarm() {
     signal(SIGALRM, sigalarm);
     alarm(timint):
    alarmflag++;
)
/* this function handles the keyboard process interupt
                                                                     */
sigkbdreq() {
    signal(SIGINT, sigkbdreq);
    kbdflag++;
)
/*****
                                                                *****/
                            MAIN()
main(argc, argv)
int argc;
char **argv;
    int err;
    signal(SIGQUIT, SIG IGN);
    signal(SIGALRM, sigalarm);
    signal(SIGINT, sigkbdreg);
    /* open up the 68k line here */
    if ((fd68k = open("/dev/ttyd0", 2)) < 0) {
         fprintf(stderr. "cannot open 68k line\n");
fprintf(stderr, " cvt exiting\n");
         exit(1);
    }
```

```
alarm(timint):
     adacinit():
     paint();
loop:
     err= do68k(1, 0);
     while(alarmflag > 0)
          doalarm():
     if(kbdflag)
          keyboard();
     goto loop;
}
/*****
                               68k handler
                                                                   *****/
do68k(entry, option)
int entry, option;
     static int first= 0;
     int error, ret, num;
     char rdbuf[80];
     char *lptr;
     if (first == 0) {
          *rdbuf= ' ';
          ret=0;
          first= 1;
     }
    error= 0:
    if (online == 0) {
          error= 1; /* 68k is not here now */
          goto not_here;
     }
    switch(entry) {
          case 1:
                         /* entry point for main */
               ret= read(fd68k, rdbuf, 80);
               if (ret > 0) {
                    rdbuf[ret]= ' ';
                    switch(*rdbuf) {
                         case 'R':
                              service();
                              break;
                         case 'S':
                              break;
                         default:
                              ;
                    }
```

```
*rdbuf = ' ':
               ret= 0;
          break:
                    /* entry point for monitor */
          if (req) {
               goto not here;
          if {option == 1) {
               write(fd68k, "R", 1);
               break;
          if {option == 2) {
               ret= read(fd68k, rdbuf, 80);
               if (ret > 0) {
                    rdbuf[ret]= ' ';
scprint(1, 1, 0,"
                                                                 ");
                    scprint(1, 1, 0, "%s", rdbuf);
                    moveto(99,99);
                    if (*rdbuf != 'S') {
                         error= 5;
                         break:
                    lptr= rdbuf + 1;
                    num= sscanf(lptr, "%d %d %d %d %d",
                                   &rack, &thstp,
                                   &rgstp, &fbstp,
                                   &gear);
                    if (num != 5) {
                         error= 4:
                    *rdbuf= ' ':
                    ret= 0;
                    break;
              error= 3;
          }
          break:
                    /* entry point for data routines */
          if (option == 1) {
               write(fd68k, "R", 1);
               break;
          if (option == 2) {
               ret= read(fd68k, rdbuf, 80);
               if (ret > 0) {
                   rdbuf[ret]= ' ';
scprint(1, 1, 0,"
                                                                 "):
                    scprint(1, 1, 0, "%s", rdbuf);
```

```
moveto(99,99):
                          if (*rdbuf != 'S') {
                               error= 5:
                               break:
                          lptr= rdbuf + 1:
                          num= sscanf(lptr, "%d %d %d %d %d".
                                         &rack, &thstp,
                                         &rgstp, &fbstp.
                                         &gear);
                          if (num != 5) {
                              error= 4:
                          *rdbuf= ' ':
                          ret= 0:
                         break:
                   error= 3;
               break:
          default:
               error= 2:
     }
not_here: '
     return(error);
/*****
                              Handle a 68k request
                                                                  *****/
service()
     /* provide 68k data services here */
        /* Not Developed */
}
do68k() error handling.
general:
0 == normal
1 == 68k not here
2 == entry option error for do68k call
specific by entry and option:
1 x
    none
```

```
2 1
none
2 2
3 = new line not here yet (data not current)
4 = wrong number of arguements in new line.
5 = 'S' tag missing on new line.
3 1
none
3 2
3 = new line not here yet (data not current)
4 = wrong number of arguements in new line.
5 = 'S' tag missing on new line.
```

```
************
*
    C-SOURCE LISTING FOR ADAC 1000 COMPUTER
         CVT -- ENGINE PROJECT -- SUPERVISOR
*
    DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING
*
    AUTHOR:
                 KENT D. FUNK
    DATE:
                 4/5/85
*
    FILE:
                 keyboard.c
#include <stdio.h>
#include "control.h"
/*****
                           Keyboard()
                                                           *****/
/*
Keyboard service routine.
    Purpose: Interpret the first letter of the keyword and direct
         program control to the proper routine. */
keyboard()
    char line[80];
    char *ptr;
    char *nptr;
    int n;
    kbdflag--; /* negates calling condition */
    fgets(line, 80, stdin):
    if (feof(stdin))
        printf("exiting gracefully\n");
        exit(0):
    if (strcmp(line, "!STOP\n") == 0) /* Kmon leaving */
        orphan= 1;
        return;
    if (strcmp(line, "!CONT\n") == 0) /* Kmon is back */
        orphan=0;
        paint();
        return:
    if (n==0)
```

```
scprint(2, 20, 0, "trivial input line"):
           goto end:
     ptr= &keyword[0];
     switch(*ptr)
     case 'f':
          flag();
                    /* control flag manipulator */
          break:
     case 'g':
          gman();
                    /* global variable manipulator */
          break:
     case 'i':
          init():
                    /* data acquisition initializer */
          break:
     case 'm':
          mon();
                    /* temporary, used to call monitor */
          break:
     case 'c':
          cleanup():
                        /* write current status of variables to file */
          break;
     case 'd':
          if (datflg)
               scprint(2, 20, 0, "Data colection in progress.");
               break;
               }
          if (*name)
               strcpy(dfname, name);
          dfptr= fopen(dfname, "a");
          datflg= 1; /* opens path in doalarm() for data acq. */
          scprint(2, 19, 0, "Data Sample Initiated.");
          scprint(27, 19, 0, "file= %s
                                          ". dfname):
          moveto(99, 99);
          break:
     case 'p':
          paint(); /* re-paint the screen */
          break:
     case 'h':
          heat();
                         /* temporary used to initialize heater */
          break:
     case 'e':
          eng();
                         /* set api, ftmp, and point */
          break:
     default:
          scprint(2, 20, 0, "First character invalid in keyword.");
end:
```

```
*keyword= ' ';
     *name= ' ';
     data = 0:
     clear();
     moveto(99, 99);
}
/*****
                              GMAN()
                                                                  *****/
/*
gman is the funtion which manipulates global variables.
Input to the function is provided by keyboard().
Variables are either read or written based on the
strings: keyword[], name[], data. */
gman()
{
     char *ptr;
                  /* ptr to keyword string */
     char *nptr;
                   /* ptr to name string */
     struct gv *gvptr; /* ptr to global variable names and addre */
     int match= 1:
    ptr= &keyword[2];
     nptr= name;
     gvptr= gvs;
     if (*name == 0)
          scprint(2, 20, 0, "Must have a variable name."):
          goto varerr:
    while (match)
         /* check if we ran through the list without a match */
          if (*gvptr->gvname == 0)
               scprint(2, 20, 0, "Variable undefined,"):
              goto varerr;
         /* a match will yeild a '0' */
         match = strcmp(name, gvptr->gvname);
         gvptr++;
    gvptr--:
    if (*ptr == 'r')
         scprint(2, 20, 0, "%s %f", gvptr->gvname, *(gvptr->gvad));
    else if (*ptr == 'w')
         {
```

```
*(gvptr->gvad)= data;
          scprint(2, 20, 0, "%s %f", gvptr->gvname, *(gvptr->gvad));
     else
          scprint(2, 20, 0, "Global variable must be read or write.");
varerr:
)
/*****
                              FLAG()
                                                                  *****/
flag is the function which manipulates control flags.
Input to the function is provided by keyboard().
Flags are either read or written based on the
strings: keyword[], name[], data. */
flag()
                    /* ptr to keyword string */
     char *ptr;
     char *nptr:
                  /* ptr to name string */
     struct flg *flgptr; /* ptr to control flag names and addre */
     int match= 1:
     ptr= &keyword[2];
     nptr= name;
     flgptr= flags;
     if (*name == 0)
          scprint(2, 20, 0, "Must have a flag name,");
          goto varerr:
          )
     while (match)
          /* check if we ran through the list without a match */
          if (*flgptr->flgname == 0)
               scprint(2, 20, 0, "Flag undefined.");
               goto varerr;
          /* a match will yeild a '0' */
         match= strcmp(name, flgptr->flgname):
         flgptr++;
          }
    flgptr--:
     if (*ptr == 'r')
         scprint(2, 20, 0, "%s %d", flgptr->flgname, *(flgptr->flgad));
     else if (*ptr == 'w')
         {
```

```
*(flgptr->flgad) = data;
          scprint(2, 20, 0, "%s %d", flgptr->flgname, *(flgptr->flgad));
     else
          scprint(2, 20, 0, "Flag variable must be read or write.");
varerr:
}
/*****
                                                                  *****/
                              INIT()
/* init routine.
     Purpose: This routine is called by the keyboard service
     routine. It interprets the second letter of the keyword
     when the first letter was a 'i'. The routines called
     by init are used to initialize the adac cards
     to the real world sensors. */
init()
     char *otr:
                    /*ptr to keyword */
     ptr= &keyword[1];
     switch(*ptr)
     case 'h':
                    /* high level initialization routine */
          inhl();
          break:
     case 't':
          intmp();
                         /* temp initialization routinc */
          break:
     case 'p':
          intpul();
                         /* pulse card initialization */
          break:
    default:
          scprint(2, 20, 0, "Second letter invalid in keyword.");
     }
}
/*****
                              INHL()
                                                                  *****/
/* inhl routine.
    Purpose: High level data acquistion initialization
    routine. By calling, the user can assign channel
    numbers, internal gains, offsets, and calibration contsants
    to the fixed high level parameters.
    The routine uses the high level data acquistion structure
    and an option is available to print the status of
    the structure given the parameter name. */
```

```
inhl()
     char *ptr: /* ptr to keyword */
     struct hlda *hlptr: /* ptr to high level structure */
     int match= 1:
    hlptr= hldax;
    ptr= &keyword[2];
     if (*name == 0)
         scprint(2, 20, 0, "Must have a parameter name.");
          goto parerr;
    /* find the desired parameter in name */
    while (match)
         if (*hlptr->parm == 0)
              scprint(2, 20, 0, "High level parmeter undefined.");
              goto parerr;
         match= strcmp(name, hlptr->parm);
         hlptr++:
    hlptr--:
    /* find out what to do with this parameter */
    switch(*ptr)
    case 'n':
         (hlptr->chan)= data; /* assign channel */
         break:
    case 'g':
         (hlptr->gain)= data;
                                 /* assign gain */
         break:
    case 'o':
         /* take 9 readings and assign mean to offset */
         (hlptr->off) = admean(hlptr->chan, hlptr->gain, 9);
         break:
    case 'c':
         /* take the mean of 9 readings and the data to form calcon */
         (hlptr->calcon) = data/((admean(hlptr->chan, hlptr->gain, 9))
              - hlptr->off):
         break:
    case 'p':
         /* print the status of the parameter */
         scprint(2, 20, 0, "%s %d %d %f %f", hlptr ->parm, hlptr->chan,
              hlptr->gain, hlptr->off, hlptr->calcon);
         break:
    default:
         scprint(2, 20, 0, "Third letter in keyword not defined.");
```

```
}
parerr:
/*****
                              INTMP()
                                                                 ******/
/* intmp routine.
    Purpose; Temperature data acquistion initialization
    routine. By calling, the user can assign channel
    numbers, and thermocouple types to the fixed
    temperature parameters. The routine uses the
    temperature data acquisition structure
    and an option is available to print the status
    of the structure given the parameter name. */
intmp()
    char *ptr;
                 /* ptr to keyword */
    struct tmpda *tmptr; /* ptr to temp structure */
    int match= 1;
    tmptr= tmpdax:
    ptr= &keyword[2]:
    if (*name == 0)
         scprint(2, 20, 0, "Must have a parameter name.");
         goto parerr:
         }
    /* find the desired parameter in name */
    while (match)
         if (*tmptr->parm == 0)
              scprint(2, 20, 0, "Temperature parameter undefined.");
              goto parerr;
         match= strcmp(name, tmptr->parm):
         tmptr++;
         }
    tmptr--:
    /* find out what to do with this parameter */
    switch(*ptr)
    case 'n':
         (tmptr->chan)= data; /* assign channel */
         break:
    case 't':
         ftmptr->type)= data; /* assign type */
         break:
```

```
case 'p';
          /* print status of the parameter */
          scprint(2, 20, 0, "%s %d %d", tmptr->parm, tmptr->chan,
               tmptr->type);
          break:
     default:
          scprint(2, 20, 0, "Third letter in keyword not defined.");
parerr:
 ;
/*****
                             INTPUL()
                                                                 ******/
intpul routine.
     Purpose: Pulse card data acquisition initialization
     routine. By calling the user can assign channel numbers,
     time base, and the intercept and first order slope
     term to transform pulse data to real world units.
     The routine uses the pulse data acquistion structure
     and an option is available to print the status
     of the structure given the parameter name. */
intpul()
{
     char *ptr:
                  /* ptr to keyword */
     struct pulse *pulptr; /* ptr to pulse data structure */
     int match= 1:
     pulptr= pulscx:
    ptr= &keyword[2];
     if (*name == 0)
         scprint(2, 20, 0, "Must have a parameter name."):
          goto parerr;
     /* find the desired parameter in namc */
    while (match)
         if (*pulptr->parm == 0)
              scprint(2, 20, 0, "Pulse card parameter undefined.");
              goto parerr:
         match= strcmp(name, pulptr->parm);
         pulptr++;
         }
    pulptr --:
    /* find out what to do with the parameter */
```

```
switch(*ptr)
     case 'n':
          (pulptr->chan)= data; /* assign channel */
          break:
     case 't':
          (pulptr->tbase)= data; /* assign time base */
          break:
     case 'o':
          (pulptr->const1)= data; /* assign intercept */
          break:
     case 'c':
          (pulptr->const2)= data; /* assign F.O, slope */
          break:
     case 'p':
          /* print status of the parameter */
          scprint(2, 20, 0, "%s %d %f %f %f", pulptr->parm,
               pulptr->chan, pulptr->tbase, pulptr->const1,
               pulptr->const2);
          break:
     default:
          scprint(2, 20, 0, "Third letter in keyword undefined.");
parerr:
/*****
                              ENG()
                                                                  *****
/*
Eng routine.
     This routine allows the user to set the fuel temp and API
     number. In addition a label can be attached to the data
     collection sequence. */
eng()
{
    char *nptr;
     nptr = name:
     switch(*nptr)
          case 'p':
               nptr++;
               strcpy(point,nptr);
               scprint(2, 20, 0, "point = %s", point);
               break:
          case 'a':
               if (data) (
                    api = data:
```

```
scprint(2, 20, 0, "api = %f", api):
               else {
                    scprint(2, 20, 0, "Data must have value");
               break:
          case 'f':
               if (data) {
                    ftmp = data;
                    scprint(2, 20, 0, "ftmp = %f", ftmp);
               else {
                    scprint(2, 20, 0, "Data must have value");
               break:
          default:
               scprint(2, 20, 0, "eng variable undefined");
     }
}
/*****
                              PAINT()
                                                                  ******/
Paint Routine:
     This routine paints or re-paints the static screen layout. */
paint()
{
     scprint( 2, 2, 1, "ENGINE ");
     scprint( 2, 4, 0, "ERPM= "):
     scprint( 2, 5, 0, "ETRK= ");
     scprint( 2,
                 6, 0, "ENFF= ");
     scprint( 2,
                 7, 0, "EEGT= ");
     scprint( 2,
                 8, 0, "EWTP= ");
     scprint( 2, 9, 0, "ENOT= "):
     scprint( 2, 10, 0, "ENOP= ");
     scprint( 2, 11, 0, "THST= ");
     scprint( 2, 12, 0, "RACK= ");
    scprint( 2, 13, 0, "PNT = "):
    scprint( 2, 14, 0, "MT = ");
    scprint( 2, 15, 0, "FTMP= ");
    scprint(18, 2, 1, "CVT");
    scprint(17, 4, 0, "TRPM= ");
    scprint(17, 5, 0, "TTRK= ");
    scprint(17. 6, 0, "TWI = ");
                 7, 0, "TOO = ");
    scprint(17,
    scprint(17, 8, 0, "TCVT= "):
    scprint(17, 9, 0, "TTNK= ");
    scprint(17, 10, 0, "TOI = "):
    scprint(17, 11, 0, "TWO = ");
```

```
scprint(17, 12, 0, "OFF = ");
     scprint(17, 13, 0, "OFR = ");
     scprint(17, 14, 0, "RGST=");
     scprint(17, 15, 0, "HSET= "):
     scprint(17, 16, 0, "FBST=");
     scprint(34,
                  2, 1, "TRANS ");
     scprint(33, 4, 0, "PSOT= ");
     scprint(33, 5, 0, "FOOT=");
     scprint(33, 6, 0, "GEAR= ");
     scprint(49, 2, 1, "DYNO");
     scprint(49, 4, 0, "ORPM=");
     scprint(49, 5, 0, "DTRK= "):
     scprint(49,
                  6, 0, "OWIT= ");
     scprint(49,
                 7, 0, "OWOT= ");
     scprint(33, 7, 0, "AIRT=");
     scprint(66, 4, 0, "EPWR= ");
     scprint(66, 5, 0, "TPWR= ");
     scprint(66, 6, 0, "OPWR= ");
     scprint(66, 7, 0, "TEFF= "):
     scprint(33, 9, 1, "
                                                                 ");
     scprint(46, 10, 1, "PROGRAM CONTROL"):
     scprint(33, 12, 0, "TIMINT= ");
     scprint(33, 13, 0, "MONTIM= ");
     scprint(33, 14, 0, "DYCTIM= ");
     scprint(33, 15, 0, "HRCTIM= ");
     scprint(33, 16, 0, "OATTIM= ");
     scprint(33, 17, 0, "OATMAX= ");
     scprint(46, 12, 0, "MONFLG= ");
     scprint(46, 13, 0, "OYCFLG= ");
     scprint(46, 14, 0, "HRCFLG= ");
     scprint(46, 15, 0, "OATFLG= ");
     scprint(46, 16, 0, "ONLINE= ");
     scprint(60, 12, 1, "HTCONO ");
     scprint(63, 13, 0, "TTL= ");
     scprint(63, 14, 0, "0/A= ");
     scprint(60, 15, 1, "DYCOND ");
     moveto(99, 99):
}
/*****
                                                                 *****/
                              CLEANUP()
Cleanup Routine:
     This routine allows the user to write the entire contents
     of the common data structure to an external file for later
     examination. */
cleanup()
     FILE *fp, *fopen();
```

```
struct hlda *hlptr;
     struct tmpda *tmptr;
     struct pulse *pulptr:
     fp= fopen("Clean_up", "w");
     gvptr= gvs;
     hlptr= hldax;
     tmotr= tmpdax;
     pulptr= pulsex:
     fprintf(fp, "Global variables.\n"):
     whlle(*gvptr->gvname)
          fprintf(fp, "%s %f\n", gvptr->gvname,
                    *(gvptr->gvad));
          gvptr++;
     fprintf(fp, "High level parameters.\n");
     while(*hlptr~>parm)
          fprintf(fp, "%s %d %d %f %f\n", hlptr->parm,
               hlptr->chan, hlptr->gain,
               hlptr->off, hlotr->calcon);
          hlptr++;
     fprintf(fp, "Temperature parameters.\n"):
     while(*tmptr->parm)
          fprintf(fp, "%s %d %d\n", tmptr->parm, tmptr->chan,
                    tmptr->type);
          tmptr++;
     fprintf(fp, "Pulse card parameters.\n");
     while(*pulptr->parm)
          fprintf(fp, "%s %d %f %f %f\n", pulptr->parm,
               pulptr->chan, pulptr->tbase.
               pulptr->const1, pulptr->const2);
          pulptr++;
     fclose(fp);
/*****
                                                                  *****/
                              SCPRINT()
Scprint Routine:
    This routine is a modified version of the one which appears in
     kmon. */
```

struct gv *gvptr;

```
*
    C-SOURCE LISTING FOR ADAC 1000 COMPUTER
         CVT -- ENGINE PROJECT -- SUPERVISOR
    DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING
    AUTHOR:
                   KENT D. FUNK
    DATE:
                   4/5/85
    FILE:
                   doalarm.c
************************
#lnclude <stdlo.h>
#include <math.h>
#include <adac.h>
#include "control.h"
/*****
                                                               *****/
                             DOALARM()
/*
Doalarm Routine.
    Doalarm provides the control allocation algorithms for all
    real time loops. This routine will be called any time that
    the UNIX system alarm goes off. */
doalarm()
    static dyfirst= 1;
    static htfirst= 1:
    static dtfirst= 1:
    static mnfirst= 1;
    static dyncnt= 1;
    static heatcnt= 1:
    static datent= 1:
    static moncht= 1:
    alarmflag--;
    lf (dyfirst && dycflg) {
         dyfirst= 0;
         dyn():
    lf (htfirst && hrcflg) {
         htfirst= 0;
         hcontrol(1);
    if (dtfirst && datflg) {
         dtfirst= 0:
         dat();
    if (mnfirst && monflg) {
```

```
mnfirst= 0:
           mon();
     if (((dynent*timint) == dyctim) && dycflg) (
           dyncnt= 0;
           dyn();
     if (((heatcnt*timint) == hrctim) && hrcflg) {
           heatcnt= 0;
          hcontrol(0);
     if (((datcnt*timint) == dattim) && datflg) {
          datcnt= 0;
          dat();
           )
     if (((moncnt*timint) == montim) && monflg) {
          moncnt= 0;
          mon();
     if (dycflg == 0) {
          dyfirst= 1;
          dyncnt= 0;
     if (hrcflg == 0) (
          htfirst= 1:
          heatcnt= 0;
     if (datflg == 0) {
          dtfirst= 1;
          datcnt= 0:
     if (monflg == 0) {
          mnfirst= 1;
          moncnt= 0;
     dyncnt++;
     heatcnt++;
     datcnt++;
     monent++;
}
/*****
                              DYN()
                                                                   ******/
Dyn Routine.
     The dyn routine provides the real time control for the
     dynamometer. At present this routine has not been completely
     developed. */
```

```
dyn()
     static int cnt= 0:
/* UNDEVELOPED */
     if (cnt == 0) {
          cnt = 1;
          scorint(2, 17, 0, "dyno loop *");
          goto end;
          }
     if (cnt == 1) {
          cnt = 0:
          scprint(2, 17, 0, "dyno loop* *");
end:
}
/*****
                              HCONTROL ()
                                                                   *****/
Hoontrol Routine.
     The hoontrol routine provides the real time control
     for the cvt oll heater. This routine is fully developed. */
hcontrol(reset)
int reset;
     int out;
     static double told:
     double too, tcvt, ttnk, toi, ttap, control;
     double tmpmean();
     struct tmpda *tmptr;
     tmptr= &tmpdax[3];
     tcvt= tmpmean(tmptr->chan, tmptr->type, 3);
     tmptr= &tmpdax[8];
     too = tmpmean(tmptr->chan, tmptr->type, 3);
     tmptr= &tmpdax[10];
     ttnk= tmpmean(tmptr->chan, tmptr->type.3);
     tmptr= &tmpdax[11];
     toi = tmpmean(tmptr->chan, tmptr->type, 3);
     tmotr = &tmpdax[12];
     ttap= tmpmean(tmptr->chan, tmptr->type, 3);
    if (reset) {
          told= too:
          )
```

```
control= 619.976*hset -210.098*too +467.982*told
               -749.86*(toi-ttnk) - 719.866*tevt -125.0*ttap;
     told= too;
     scprint(67, 12, 0, "%8.2f", control);
     moveto(99,99);
     out= ceil(control);
     if (out <= 0) {
          out= 0;
     if (out >= 4095) {
          out= 4095;
     if (out < 2048) {
          ttlval= 0;
          daval= out:
     if (out >= 2048) {
          ttlval= 1;
          daval= out -2048:
    heat();
}
/*****
                              HEAT()
                                                                  *****/
/*
Heat Routine.
     Heat sets the outputs of the heaters. */
heat()
    dtoa(0, daval);
     ttlwb(2, ttlval);
}
```

```
*****************
*
*
     C-SOURCE LISTING FOR ADAC 1000 COMPUTER
         CVT -- ENGINE PROJECT -- SUPERVISOR
     DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING
     AUTHOR:
                  KENT D. FUNK
     DATE:
                  4/5/85
     FILE:
                  mon.c
****************************
#include <stdio.h>
#include <adac.h>
#include "control.h"
/*****
                           MON()
                                                            *****/
/*
Mon Rountine:
    Mon() is one of the real time loops. It collects all necessary
    data and analyzes it. Then it prints all data along with
    warnings to the static screen. */
mon()
{
    int t[2];
    char *p;
    double tempf():
    double tmpmean();
    struct hlda *hlptr:
    struct tmpda *tmptr;
    struct pulse *pulptr;
    struct limits *hllptr;
    struct limits *tmplptr:
    struct limits *pullptr;
    int i, dat, att, err;
    double value, oiltemp, flow;
    double epwr, tpwr, dpwr, teff, mt;
    scprint(1, 21, 0, "
                                                               "):
/* make request for data */
   err= do68k(2, 1):
    hlptr= hldax:
    tmptr= tmpdax:
    oulptr= pulsex:
    hllptr= hl_lim;
    tmplptr= tmp lim;
```

```
pullptr= pul lim;
/* the following checks erpm, etrk, trpm, ttrk, drpm, dtrk */
     att= NORM:
     time(t);
     p= ctime(t);
     scprint(50, 1, 0, "%s", p);
     for (i=0; i<6; i++)
          dat= atodi(hlptr->chan, hlptr->gain);
          value= (dat - hlptr->off)*(hlptr->calcon):
          if (value >= *(hllptr->warn))
               if (value >= *(hllptr->max))
                    att= REVERSE;
               else
                    att = UNDERLINE;
          scprint(hlptr->a, hlptr->b, att, "%8.1f", value);
          att= NORM:
          hlptr++:
          hllptr++;
/* check engine oil pressure */
          dat= atodi(hlptr->chan, hlptr->gain);
          value= (dat - hlptr->off)*(hlptr->calcon);
          if (value <= *(hllptr->warn))
               if (value <= *(hllptr->max))
                    att= REVERSE:
               else
                    att= UNDERLINE:
          scprint(hlptr->a, hlptr->b, att, "%8.1f", value);
          att=NORM:
          hlptr++;
/* check fuel bucket (enff) */
          dat= atodi(hlptr->chan, hlptr->gain);
          value= (dat - hlptr->off)*(hlptr->calcon):
          if (value <= enffmn) {
               att= REVERSE;
          scprint(hlptr->a, hlptr->b, att, "%8.1f", value);
          att= NORM:
```

```
/st check ewtp, eegt, enot, tcvt, twi, psot, fdot, dwot st/
     for (i=0; i<8; i++)
           value= tempf(tmptr->chan, tmptr->type);
           if (value >= *(tmplptr->warn))
                if (value >= *(tmplptr->max))
                     att= REVERSE:
               else
                     att= UNDERLINE:
          scprint(tmptr->c, tmptr->d, att, "%8.1f", value);
          att= NORM:
          tmptr++:
          tmplptr++;
/* check cvt oil in (too) */
     value= tempf(tmptr->chan, tmptr->type);
     oiltemp= 67.8 -.63*value:
     if ((value-hset) >= *(tmplptr->max))
          att= REVERSE;
     if ((hset-value) >= *(tmplptr->warn))
          att= UNDERLINE:
     scprint(tmptr->c, tmptr->d, att, "%8.1f", value);
     att= NORM:
/* find MT for cvt temp map */
     tmptr= &tmpdax[8];
     value= tmpmean(tmptr->chan, tmptr->type, 5);
     tmptr= &tmpdax[3];
     mt= tmpmean(tmptr->chan, tmptr->type, 5):
     mt = (mt + value)/2.0;
     scprint(8, 14, att, "%8.1f", mt);
/* check ambient air temp */
     tmptr= &tmpdax[9];
     tmplptr++:
     value= tmpmean(tmptr->chan, tmptr->type, 5);
     lf (value >= *(tmplptr->max))
          att= REVERSE;
     if (value<= *(tmplptr->warn))
          att= UNDERLINE:
     scprint(tmptr->c, tmptr->d, att, "%8.1f", value);
     att = NORM:
/* check cvt oll flows */
     for(i=0; i<2; i++)
```

```
value= (pul(pulptr->chan))/(pulptr->|base);
          flow= value/((pulptr->const1)*(pow(value/oiltemp, 0.5))
                          + (pulptr->const2));
          if (flow >= *(pullptr->max))
               att = REVERSE;
          if (flow<= *(pullptr->warn))
               att= UNDERLINE:
          scprint(pulptr->e, pulptr->f, att, "%8.1f", flow);
          att= NORM:
          pulptr++;
          pullptr++;
/* update dwit, tol, ttnk */
     tmptr= &tmpdax[12]:
     value= tempf(tmptr->chan, tmptr->type);
     scprint(tmptr->c, tmptr->d, 0, "%8.1f", value);
     tmptr= &tmpdax[11]:
     value= tempf(tmptr->chan, tmptr->type);
     scprint(tmptr->c, tmptr->d, 0, "%8.1f", value);
     tmptr= &tmpdax[10];
     value= tempf(tmptr->chan, tmptr->type);
     scprint(tmptr->c, tmptr->d, 0, "%8.1f", value);
     tmptr= &tmpdax[13]:
     value= tempf(tmptr->chan, tmptr->type);
     scprlnt(tmptr->c, tmptr->d, 0, "%8.1f", value);
/* compute power and efficiency stats */
     hlptr= &hldax[0];
     dat= admean(hlptr->chan, hlptr->gain, 5);
     epwr= (dat ~hlptr->off)*(hlptr->calcon):
     hlptr++:
     dat= admean(hlptr->chan, hlptr->gain, 5);
     value= (dat -hlptr->off)*(hlptr->calcon);
     epwr= epwr*value/5252.1131;
     hlptr++;
     dat= admean(hlptr->chan, hlptr->gain, 5);
     tpwr= (dat -hlptr->off)*(hlptr->calcon);
     dat= admean(hlptr->chan, hlptr->gain, 5);
     value= (dat -hlptr->off)*(hlptr->calcon);
     tpwr= tpwr*value/5252.1131:
     hlptr++;
     dat= admean(hlptr->chan, hlptr->gain, 5);
     dpwr= (dat -hlptr->off)*(hlptr->calcon);
```

```
hlptr++:
     dat= admean(hlptr->chan, hlptr->gain, 5);
     value= (dat -hlptr->off)*(hlptr->calcon);
     dowr= dowr*value/4000.00;
     scprint(72,4,0, "%6.1f", epwr);
     scorint(72,5,0, "%6.1f", towr):
     scprint(72,6,0, "%6.1f", dpwr);
     if (epwr > 1) {
          teff= tpwr/epwr*100.0;
          att= NORM;
          if (teff < 75 ) {
               att = REVERSE;
          scprint(72,7,att, "%6,1f", teff);
/* update 68k table */
     err= do68k(2, 2);
     if (err == 3)
          scprint(2, 21, 0, "68000 not responding");
     if (err == 4)
          scprint(2, 21, 0, "wrong number of arguements in 68000");
     if (err == 5)
          scprint(2, 21, 0, "S flag missing in 68000"):
     scorint( 8, 12, 0, "%8d", rack);
     scprint( 8, 11, 0, "%8d", thstp);
     scprint(23, 14, 0, "%8d", rgstp);
     scprint(23, 16, 0, "%8d", fbstp);
     scprint(39, 6, 0, "%8d", gear);
/* update the program control flags */
     scprint(40, 12, 0, "%4d", timint);
    scprint(40, 13, 0, "%4d", montim);
     scprint(40, 14, 0, "%4d", dyctim);
     scprint(40, 15, 0, "%4d", hrctim):
     scprint(40, 16, 0, "%4d", dattim);
     scprint(40, 17, 0, "%4d", datmax);
     seprint(53, 12, 0, "%2d", monflg);
     scprint(53, 13, 0, "%2d", dycflg);
     scprint(53, 14, 0, "%2d", hrcflg);
     scprint(53, 15, 0, "%2d", datflg);
     scprint(53, 16, 0, "%2d", online):
     scprint(67, 13, 0, "%6d", ttlval);
     scprint(67, 14, 0, "%6d", daval);
```

```
/* update heater control setpoint */
    scprint(23, 15, 0, "%8.1f", hset);
    scprint( 8, 13, 0, "%s ", point);
    scprint( 8, 14, 0, "%8.1f", api);
    scprint( 8, 15, 0, "%8.1f", ftmp);

    moveto(99,99);
}
```

```
*
*
     C-SOURCE LISTING FOR ADAC 1000 COMPUTER
         CVT -- ENGINE PROJECT -- SUPERVISOR
*
    DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING
*
    AUTHOR:
                   KENT D. FUNK
*
    OATE:
                   4/5/85
    FILE:
                   cvtlinear.c
*****************
#include <stdio.h>
#include <adac.h>
#include "control.h"
/*****
                             DAT()
                                                               *****/
/*
Dat Routine.
    The dat routine provides the data recording proceedures.
    There are numerous versions of this routine used for
    different tests. This particular version was used to collect
    the CVT data. */
dat()
    int t[2]:
    char *p;
    struct hlda *hlptr;
    struct tmpda *tmptr:
    double tmpmean();
    int dat, err, errcnt, num, wait;
    static cnt=0;
    double enot, atmp, enop, cnwt, eegt, erpm, etrk, enff;
    double trpm, ttrk, tcvt, too;
    scprint(1,22,0."
                                                           "):
    num = cnt + 1:
    if (cnt == 0) {
         time(t);
         p= ctime(t);
         fprintf(dfptr, "%s", p);
         fprintf(dfptr, "%s %10.3f %10.3f\n", point, api, ftmp);
         tmptr= &tmpdax[0]:
         enwt= tmpmean(tmptr->chan, tmptr->type, 9);
         tmptr++;
```

```
eegt= tmpmean(tmptr->chan, tmptr->type, 9);
     tmptr++;
     enot= tmpmean(tmptr->chan, tmptr->type, 9);
     tmptr++;
     tcvt= tmpmean(tmptr->chan, tmptr->type, 9);
     tmptr= &tmpdax[8];
     too= tmpmean(tmptr->chan, tmptr->type, 9);
     tmptr= &tmpdax[9];
     atmp= tmpmean(tmptr->chan, tmptr->type, 9);
     hlptr= &hldax[6]:
     dat= admean(hlptr->chan, hlptr->gain, 9);
     enop= (dat - hlptr->off) * hlptr->calcon;
fprintf(dfptr, "%9.3f %9.3f %9.3f %9.3f %9.3f %9.3f %9.3f\n",
                enot, enop, enwt, eegt, tcvt, too, atmp);
     req= 1:
     scprint(50, 19, 0, "DATCNT= ");
scprint(58, 19, 0, "%5d", num);
err= do68k(3, 1);
hlptr= &hldax[0];
dat= admean(hlptr->chan, hlptr->gain, 9);
erom= (dat - hlptr->off) * hlptr->calcon:
hlptr++;
dat= admean(hlptr->chan, hlptr->gain, 9);
etrk= (dat - hlptr->off) * hlptr->calcon;
hlptr++;
dat= admean(hlptr->chan, hlptr->gain, 9);
trpm= (dat - hlptr->off) * hlptr->calcon;
hlptr++:
dat= admean(hlptr->chan, hlptr->gain, 9);
ttrk= (dat - hlptr->off) * hlptr->calcon:
hlptr= &hldax[7]:
dat= admean(hlptr->chan, hlptr->gain, 9);
enff= (dat - hlptr->off) * hlptr->calcon;
errent= 0:
while (errent < 1000) (
          errcnt++;
          wait= 0:
          while (wait < waitmx) (
               wait++:
err= do68k(3, 2);
if (err == 1) {
     fprintf(dfptr, "**Error 68k Not Here\n");
```

```
if (err == 3) {
          fprintf(dfptr, "**Error 68k Not Responding\n");
          scprint(2, 22, 0, "Error 68k Not Responding");
     if (err == 4) {
          fprintf(dfptr, "**Error 68k Argument Error\n");
          scprint(2, 22, 0, "Error 68k Argument Error");
     if (err == 5) {
          fprintf(dfptr, "**Error 68k Format Error\n");
          scprint(2, 22, 0, "Error 68k Format Error");
     fprintf(dfptr, "%9.3f %9.3f %9.3f %8d %8d %8d %9.3f %9.3f\n",
                erpm, etrk, enff, thstp, rack, fbstp, trpm, ttrk);
     cnt++;
     if (cnt >= datmax)
          datflg= 0;
          cnt= 0;
          req= 0;
          fprintf(dfptr, "\n");
          fclose(dfptr);
          scprint( 2, 19, 0, "
                                                      ");
         scprint(50, 19, 0, "
                                                      ");
    scprint(1,22,0,"
                                                                   ");
    moveto(99,99);
}
```

APPENDIX C

MC68000ECB HARDWARE

Figure 7 MC68000 Educational Computer Board

Figure 8 Block Diagram - Educational Computer Board

Table 3 Bus Expansion Buffer: Parts List

REFERENCE DESIGNATION	DESCRIPTION
R1, R2, R4	Resistor, film, 270 ohm, 5%, 1/4 W
R3 -	Resistor, film, 180 ohm, 5%, 1/4 W
R5, R6	Resistor, film, 3.3k ohm, 5%, 1/4 W
U1	I.C. SN74LS245N Octal Bus Transceiver
U2, U3, U4	I.C. SN74LS244N Octal Bus Buffer
U5	I.C. SN74LS07N Hex Buffer
U6	I.C. SN74LS11N Triple Three AND Gate:
U7	I.C. SN74LS04N Hex Inverter

Figure 9 Bus Expansion Buffer: Board Lavout

Figure 10 Bus Expansion Buffer: Schematic

Table 4 I/O Expansion: Parts List

REFERENCE DESIGNATION	DESCRIPTION	
R1, R2	Resistor, film, 68k ohm, 5%, 1/4 W	
R3, R5, R7,		
R9, R11, R13,		
R15, R17, R29,		
R32, R33, R35,		
R37, R39, R41.		
R43, R51, R53,		
R55, R57, R59,		
R61, R63, R65	Resistor, film, 220 ohm, 5%, 1/4 W	
R4, R6, R8,		
R10, R12, R14,		
R16, R18, R30,		
R31, R34, R36,		
R38, R40, R42,		
R44, R52, R54,		
R56, R58, R60,		
R62, R64, R66	Resistor, film, 390 ohm, 5%, 1/4 W	
R19, R20, R67,		
R68, R69, R70,		
R71, R72, R73,		
R74	Resistor, film, 4.7k ohm, 5%, $1/4~\mathrm{W}$	
R21, R22, R23,		
R24, R25, R26,		
R27, R28	Resistor, film, 1k ohm, 5%, 1/4 W	
R45, R46, R47,		
R48, R49, R50	Resistor, film, 2.2k ohm, 5%, 1/4 W	
U1	I.C. SN74LS260N Dual 5-input NOR	
U2	I.C. SN74LS138N 3-to-8 Line Decoder	
U3, U4	I.C. MC68230L8 PI/T	
U5, U6, U7,		
U8, U9	I.C. SN74LS90N Decade Counter	

Table 4 --cont.

DESIGNATION	DESCRIPTION	
U10	I.C. SN74LS08N	Quad 2-Input AND
U11, U12	I.C. SAA1042	Stepper Motor Oriver
U13, U14, U25,		
U32, U33	I.C. SN74LS05N	OC Hex Inverter
U15, U16, U17,		
U18, U19, U20,		
U21, U22, U23,		
U24, U26, U27,		
U28, U29, U30,		
U31, U34, U35,		
U36, U37, U38,		
U39, U40, U41	I.C. 4N33	Opto-Isolator
U42. U43	Spaulding's Increm	ental Encoder Counters

Figure 11 I/O Expansion: Schematic

Figure 11 --cont.

Figure 11 --cont.

Figure 11 --cont.

Figure 12 Digital Inputs: Schematic

Table 5 High Current Outputs: Parts List

REFERENCE DESIGNATION	DESCRIPTION	
D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14 R1, R2 R3, R4	SK5040 Silicon Fast Recovery Rectifier Resistor, power, 2.6 ohm, 10%, 20 W Resistor, power, 1.1 ohm, 10%, 65 W	
T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14	SK3180 NPN Si AF Darlington Transiston	

Figure 13 High Current Outputs: Schematic

Figure 13 --cont.

Figure 13 --cont.

Figure 13 --cont.

APPENDIX D

MC68000ECB SOFTWARE LISTINGS

*

SUPPLEMENTAL LISTING FOR MOTOROLA M68000 ECB SINGLE BOARD COMPUTER
CVT -- ENGINE PROJECT -- CONTROLLER

OEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING

AUTHOR:

KENT O. FUNK

DATE:

8/17/85

CONSOLE SCREEN LAYOUT

FILE:

screenlayout

P-INIT

E-INIT

SET ENABLES ON

CONTINUE? <ret>

START ENGINE

CONTINUE? <ret>

CVT CONTROLLER

CREATEO BY K FUNK

CURRENT STATUS:

RACK = XXXXXXXX

THSTP= XXXXXXXX

RGSTP= XXXXXXXX

FBSTP= XXXXXXXX

GEAR = XXXXXXXX

ENTER NEW OATA:

THSTP ? <user response>

RGSTP ? <user response>

GEAR ? <user response>

```
ASSEMBLY LISTING FOR MOTOROLA M68000 ECB SINGLE BOARD COMPUTER
         CVT -- ENGINE PROJECT -- CONTROLLER
    DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING
    AUTHOR:
                KENT D. FUNK
    DATE:
                B/17/85
    FILE:
                 global.s
    TYPE:
                 Common Data Structures -- global
   *******************************
DATA STRUCTURES:
    GLOBAL PROGRAM SCOPE...
        global program data allocation ($900 to $DFF)
    000900
        console buffer (80 ASCII characters)
    0009A0----- (Console buffer End)
    0009B0 hbyte RACK
                              (current external conditions)
    0009B1 lbyte
    0009B2 hbvte THSTP
    0009B3 lbyte
    0009B4 hbyte RGSTP
    0009B5 lbyte
    0009B6 hbyte FBSTEP
    0009B7 lbyte
    0009B8 hbyte GEAR
    0009B9 lbvte
    0009C0 hbyte THSTP
                             (desired external conditions)
    0009C1 lbyte
    0009C2 hbyte RGSTP
```

```
0009C3 lbvte
0009C4 hbyte GEAR
0009C5 lbyte
GLOBAL TRAP #14 SCOPE...
     global trap #14 data allocation ($5000 to $507F)
005000= $00006000 (p-init)
                               (trap extension table)
005004= $01006100 (e-init)
005008= $02006200 (move-th)
00500C= $03006300 (move-cvt)
005010= $04006400
                   (set-gear)
005014= $05006500 (read-rack)
005018= $06006600 (test-stable)
00501C= $07006700
                   (reg-save)
005020= $08006800
                   (reg-restore)
005024= $09006900
                   (read-thstp)
005028= $0A006A00
                   (setup)
00502C= $0B006950
                   (read-fbstp)
005030= $0C006D00
                   (unassigned)
005034= $0D006E00 (unassigned)
005038= $0E006F00 (unassigned)
00503C= $0F006F80 (unassigned)
005040= $00000000
                   (reserved for link address to ROM table)
005044----
                  (extension table End)
```

*

ASSEMBLY LISTING FOR MOTOROLA M68000 ECB SINGLE BOARD COMPUTER CVT -- ENGINE PROJECT -- CONTROLLER

*

DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING

* AUTHOR: KENT D. FUNK
* DATE: 8/17/85
* F1LE: main.s

* TYPE: Sequential Program Execution -- main

SYNOPSIS:

MAIN provides the control code for all normal sequential program execution. Throughout the main program, numerous software interrupts are generated (TRAP #14) in order to initialize and communicate with all system hardware. Currently, the main LOOP provides an interactive environment (not real time controlled) by which the user can manipulate the drive train. This configuration is useful for data mapping and system debugging.

To Start the Program;

GO 1000

OATA STRUCTURES:

GLOBAL STRUCTURES AFFECTED:

PROGRAM---

current external conditions desired external conditions

TRAP #14--

trap extension table

LOCAL MAIN SCOPE...

local data allocation (\$E00 to \$FFF)

000E00= \$0D0A (Header String)
000E02= 'CV'
000E04= 'T '
000E06= 'C0'
000E08= 'NT'
000E0A= 'R0'
000E0C= 'LL'

```
000E0E= 'ER'
000E10= $0D0A
000E12= $2020
000E14= $2020
000E16= 'CR'
000E18= 'EA'
000E1A= 'TE'
000E1C= 'D '
000E1E= 'BY'
000E20= ' K'
000E22= 'F'
000E24= 'UN'
000E26= 'K'
000E28= $0D0A
000E2A= $0A0A
000E2C= 'CH'
000E2E= 'RR'
000E30= 'EN'
000E32= 'T '
000E34= 'ST'
000E36= 'AT'
000E38= 'US'
000E3A= ': '
000E3C= $0D0A
000E3E----- (Header String End)
000E40= 'RA'
                          (Data String)
000E42= 'CK'
000E44= '= '
000E46= $2020 (Rack-Start= $E46)
000E48= $2020
000E4A= $2020
000E4C= $2020
000E4E= $000A
000E50= 'TH'
000E52= 'ST'
000E54= 'P='
000E56= $2020 (TH-Start= $E56)
000E58= $2020
000E5A= $2020
000E5C= $2020
000E5E= $0D0A
000E60= 'RG'
000E62= 'ST'
000E64= 'P='
000E66= $2020 (RG-Start= $E66)
000E68= $2020
```

```
000E6A= $2020
000E6C= $2020
000E6E= $0D0A
000E70= 'FB'
000E72= 'ST'
000E74= 'P='
000E76= $2020 (F8-Start= $E76)
000E78= $2020
000E7A= $2020
000E7C= $2020
000E7E= $0D0A
000E80= 'GE'
000E82= 'AR'
000E84= '= '
000E86 = $2020 (Gear-Start = $E86)
000E88= $2020
000E8A= $2020
000E8C= $2020
000E8E= $0D0A
000E90= $0A0A
000E92----(Data String End)
```

MAIN:

	Link	Trap	#14	extension	table	to	ROM	table
0010	00 20'	7C0000	35000	MOVE.	L #20	480	, A0	

001006 1E3C00FD MOVE.8 #253.D7 00100A 4E4E TRAP #14

00100C 21C85040 MOVE.L A0,\$00005040

001010 1E3C0000 MOVE.B #0.D7

001014 4E4E TRAP #14 001016 1E3C0001 MOVE.8 #1,D7 00101A 4E4E TRAP #14

define starting table address call LINKIT

move linking pointer to end of trao extension table (points to standard ROM table) call p-init

call e-init

BEGIN LOOP:

Write Header String to Console 00101C 2A7C00000E00 MOVE.L #3584,A5 001022 2C7C00000E3E MOVE.L #3646,A6 001028 1E3C00F3 MOVE.8 #243,D7 00102C 4E4E TRAP #14

starting address ending address call OUTPUT

Blank out old values 1n Data String with spaces 00102E 21FC20202000E46 MOVE.L #538976288,\$00000E46 001036 21FC20202000E46 MOVE.L #5389762BB,\$00000E4A 00103E 21FC2020200E56 MOVE.L #5389762BB,\$00000E5A 001046 21FC20202000E56 MOVE.L #5389762BB,\$00000E56 001046 21FC202020200E66 MOVE.L #5389762BB,\$00000E66 001056 21FC202020200E6A MOVE.L #5389762BB,\$00000E6A 00105E 21FC202020200E76 MOVE.L #5389762BB,\$00000E76 001066 21FC202020200E76 MOVE.L #5389762BB,\$00000E76 001066 21FC202020200E6A MOVE.L #5389762BB,\$00000E76 001066 21FC202020200E6B MOVE.L #5389762BB,\$00000E86 001076 21FC202020200EBA MOVE.L #5389762BB,\$00000E86

Call subroutine GETOATA:

0010B6 4E4E

00107E 4EBB1300 JSR.S \$00001300

Prepare Oata String by converting hex data to decimal and then storing results at their appropriate position in Data String.

RACK;

0010B2	4280	CLR.L	00	
001084	30380980	MOVE.W	\$00000980,00	get hex value of rack from current conditions structure
001088	2C7C00000E46	MOVE.L	#3654,A6	get Rack-Start in Data String
00108E	1E3C00EC	MOVE, B	#236,07	call HEX20EC
001092	4E4E	TRAP	#14	
		THSTP;		
001094	42B0	CLR.L	DO	
001096	30380982	MOVE.W	\$000009B2,00	get hex value of thstp from current conditions structure
00109A	2C7C00000E56	MOVE.L	#3670,A6	get TH-Start in Oata String
0010A0	1E3COOEC	MOVE.B	#236,07	call HEX20EC
0010A4	4E4E	TRAP	#14	
		RGSTP;		
0010A6	4280	CLR.L	00	
0010A8	30380984	MOVE, W	\$000009B4,00	get hex value of rgstp from current conditions structure
0010AC	2C7C00000E66	MOVE.L	#3686,A6	get RG-Start in Data String
0010B2	1E3COOEC	MOVE.8	#236,07	call HEX20EC

TRAP #14

FBSTP:

0010B8 4280 CLR.L DO

0010BA 303809B6 MOVE.W \$00000986.D0 get hex value of fbstp from current

conditions structure

0010BE 2C7C00000E76 MOVE.L #3702,A6 get FB-Start in Data String

0010C4 1E3C00EC MOVE.B #236.D7 call REX2DEC

0010C8 4E4E TRAP #14 GEAR:

0010CA 4280 CLR.L 00

0010CC 303809B8 MOVE.W \$000009B8,D0 get hex value of

gear from current conditions structure

0010D0 2C7C00000E86 MOVE.L #3718.A6 get Gear-Start in Data String

0010D6 1E3C00EC MOVE.B #236.D7 call HEX2DEC 0010DA 4E4E TRAP #14

Write Data String to Console

0010DC 2A7C00000E40 MOVE.L #3648.A5

starting address 0010E2 2C7C00000E92 MOVE.L #3730.A6 ending address 0010E8 1E3C00F3 MOVE.B #243,D7 call OUTPUT

0010EC 4E4E TRAP #14

Call COMPUTE (new desired position) subroutine

0010EE 4EB82000 JSR.S \$00002000

Set new outputs

0010F2 1E3C0002 MOVE.B #2.D7 call move-throttle 0010F6 4E4E TRAP #14

0010F8 1E3C0003 MOVE.B #3.D7 call move-cvt 0010FC 4E4E TRAP #14

0010FE 1E3C0004 MOVE.B #4.D7 call set-gear 001102 4E4E TRAP #14

001104 1E3C0006 MOVE.B #6.D7 call test-stable

001108 4E4E TRAP #14

Update data structures

Current == Desired

00110A 4E71 NOP 00110C 4E71 NOP 00110E 4E71 NOP

001110 31F809C209B4 MOVE.W \$000009C2,\$000009B4 rgstp 001116 31F809C409B8 MOVE.W \$000009C4,\$000009B8 gear

Jump to LOOP

00111C 4EF8101C JMP.S \$0000101C

ENO LOOP:

END MAIN= \$1120

*

ASSEMBLY LISTING FOR MOTOROLA M68000 ECB SINGLE BOARD COMPUTER CVT -- ENGINE PROJECT -- CONTROLLER

DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING

AUTHOR:

KENT O. FUNK

OATE:

8/17/85

FILE;

getdat.sub.s

* TYPE:

Sequential Program Execution -- subroutine

SYNOPSIS:

GETDAT is a subroutine called by MAIN. The purpose of the subroutine is to collect all data needed by the program. This data consists of the digital inputs under direct control of the MC68000, and the Analog inputs under the AOAC 1000 control.

Currently only the digital inputs are read, since the desired outputs are determined by interactive user responses.

To Call:

JSR \$1300

DATA STRUCTURES:

GLOBAL STRUCTURES AFFECTEO: current external conditions

LOCAL GETOATA SCOPE,,,

local data allocation (\$1200 to \$12FF)

GETOATA:

Read external data under direct access of controller 001300 1E3C0005 MOVE.B #5.07 call read-rack 001304 4E4E TRAP #14 001306 1E3C0009 MOVE.B #9.07 call read-thstp 00130A 4E4E TRAP #14 00130C 1E3C000B MOVE.B #11.07 call read-fbstp 001310 4E4E TRAP #14 001312 4E75 RTS

ENO GETDATA= \$1314

*

* ASSEMBLY LISTING FOR MOTOROLA M68000 ECB SINGLE BOARD COMPUTER

CVT -- ENGINE PROJECT -- CONTROLLER

* DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING

* AUTHOR: KENT D. FUNK
* DATE: 8/17/85
* FILE: compute.sub.s

* TYPE: Sequential Program Execution -- subroutine

SYNOPSIS:

COMPUTE is a subroutine called by MAIN. The purpose of this subroutine is to compute the new desired outputs based upon the current operating state of the drive line.

Currently, the subroutine interactively communicates with the user to determine what the new desired operating state should be. In it's final form, this subroutine will implement the optimization algorithm. All inputs to the subroutine will he obtained by the GETDAT subroutine.

To Call;

JSR \$2000

DATA STRUCTURES:

GLOBAL STRUCTURES AFFECTED:

console buffer

desired external conditions

LOCAL COMPUTE SCOPE...

local data allocation (\$1500 to \$1FFF)

```
001500= 'EN' (String #1)

001502= 'TE'

001504= 'R'

001506= 'NE'

001508= 'W'

00150A= 'DA'

00150C= 'TA'

00150E= ': '

001510= $0D0A

001512=----- (String #1 End)
```

```
______
    001514= 'TH'
                        (String #2)
    001516= 'ST'
    001518= 'P '
    00151A= '? '
    00151C----- (String #2 End)
    00151E= 'RG'
                        (String #3)
    001520= 'ST'
    001522= 1P 1
    001524= '? '
    001526----- (String #3 End)
    001528= 'GE'
                        (String #4)
    00152A= 'AR'
    00152C= ' ?'
    00152E= $0020
    001530----- (String #4 End)
    COMPUTE:
    Write String #1 to Console
002000 2A7C00001500 MOVE.L #5376.A5 starting address 002006 2C7C00001512 MOVE.L #5394.A6 ending address
00200C 1E3C00F3
                  MOVE.B #243,D7
                                         call OUTPUT
002010 4E4E
                  TRAP #14
    Write String #2 to Console
002012 2A7C00001514 MOVE.L #5396.A5 starting address 002018 2C7C0000151C MOVE.L #5404.A6 ending address
00201E 1E3C00F3
                  MOVE.B #243,D7
                                         call OUTPUT
002022 4E4E
                   TRAP #14
    Get a string from the Console
002024 2A7C00000900 MOVE.L #2304,A5
                                         console buffer
                                          starting address
00202A 2C4D
                   MOVE.L A5,A6
00202C 1E3C00F1
                  MOVE.B #241,D7
                                         call PORTIN1
002030 4E4E
                   TRAP #14
    Convert console buffer string to hex and store result
        in Desired Condition Structure
002032 4280 CLR.L DO
```

CMP.L A5.A6

skip if null

002034 BDCD

BEQ.S \$002042 002036 670A line 002038 1E3C00E1 MOVE.B #225.07 call GETNUMD 00203C 4E4E TRAP #14 00203E 31C009C0 MOVE.W 00,\$000009C0 store at Oesired THSTP Wrlte String #3 to Console 002042 2A7C0000151E MOVE.L #5406,A5 starting address 002048 207000001526 MOVE.L #5414.A6 ending address 00204E 1E3C00F3 MOVE.B #243,07 call OUTPUT 002052 4E4E TRAP #14 Get a string from the Console 002054 2A7C00000900 MOVE.L #2304.A5 console buffer starting address 00205A 2C40 MOVE.L A5,A6 00205C 1E3C00F1 MOVE,B #241,D7 call PORTIN1 002060 4E4E TRAP #14 Convert console buffer string to hex and store results in Oesired Condition Structure 002062 4280 CLR.L OO 002064 BOCO CMP.L A5,A6 skip if null 002066 670A BEQ.S \$002072 MOVE.B #225,07 1ine 002068 1E3C00E1 call GETNUMO 00206C 4E4E TRAP #14 MOVE.W 00,\$000009C2 00206E 31C009C2 store at Oesired RGSTP Write String #4 to Console 002072 2A7C00001528 MOVE.L #5416,A5 starting address 002078 207000001530 MOVE L #5424.A6 ending address 00207E 1E3C00F3 MOVE.B #243,07 call OUTPUT 002082 4E4E TRAP #14 Get a string from the Console 002084 2A7C00000900 MOVE.L #2304.A5 console buffer starting address 00208A 2C40 MOVE.L A5,A6 00208C 1E3C00F1 MOVE.B #241.D7 call PORTIN1 002090 4E4E TRAP #14 Convert console buffer string to hex and store result in Desired Condition Structure 002092 4280 CLR.L OO 002094 BOCD CMP.L A5,A6 skip if null BEQ.S \$0020A2 002096 670A line 002098 1E3C00E1 MOVE.B #225,07 call GETNUMO 00209C 4E4E TRAP #14 00209E 31C009C4 MOVE.W DO,\$000009C4 store at Desired GEAR 0020A2 4E75 RTS

END COMPUTE= \$20A4

ASSEMBLY LISTING FOR MOTOROLA M68000 ECB SINGLE BOARD COMPUTER CVT -- ENGINE PROJECT -- CONTROLLER

DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING

AUTHOR: DATE:

KENT D. FUNK

FILE:

8/17/85 oinit.s

Software Interrupt Processing -- level 0

TYPE:

SYNOPSIS:

P-INIT initializes the peripherals which are contained on the 68000 ECB. Configurations are set for the host ACIA the system real time interrupts and the normal shut down interrupt. Auto Vector interrupts are established for these devices and the CPU is set to Supervisory Mode. In addition the short message "P-INIT" is displayed on the Console indicating successful initialization.

TO CALL:

MOVE.B #00.D7 TRAP #14

DATA STRUCTURES:

GLOBAL STRUCTURES AFFECTED:

none

LOCAL P-INIT SCOPE...

005080= 'P-1

(pinit string)

005082= 'IN' 005084= 'IT'

005086= \$0D0A

005088----- (pinit string End)

P-INIT:

Initialize Auto Vector Interrupts Host Interrupt Vector = \$7000 006000 21FC000070000078 MOVE.L #28672,\$00000078 host interrupt

Configure Host ACIA #2

006008 123900010041 MOVE.B \$00010041.D1

00600E 123900010043 MOVE.B \$00010043.D1

006014 13FC009500010041 MOVE.B #149,\$00010041

Write "P-INIT" string to Console
00601C 2A7C00005080 MOVE.L #20608,A5
006022 2C7C00005088 MOVE.L #20616,A6
00602C 4E4E TRAP #14

Set CPU to Supervisory Mode

00602E 46FC2000 MOVE.W #8192.SR

006032 4E75 RTS

END PINIT= \$6034

dumb read on receive register dumb read on transmit register set control register format

starting address ending address call OUTPUT

```
ASSEMBLY LISTING FOR MOTOROLA M68000 ECB SINGLE BOARD COMPUTER
         CVT -- ENGINE PROJECT -- CONTROLLER
    DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING
    AUTHOR:
                 KENT D. FUNK
    DATE:
                 8/17/85
    FILE:
                 einit.s
    TYPE:
                 Software Interrupt Processing -- level 1
SYNOPSIS:
    E-INIT initializes the peripherals which are contained on the
    expansion bus. Configurations are set for both off board PI/T's
    to be used for bit I/O and stepper motor controllers. Finally
    E-INIT calls SETUP which conducts an interactive mode of
    initializing the physical engine and transmissions.
    TO CALL:
             MOVE.B #01.D7
             TRAP #14
DATA STRUCTURES:
    GLOBAL STRUCTURES AFFECTEO:
             none
    LOCAL E-INIT SCOPE ...
    0050C8= 'E-'
                         (einit string #1)
    0050CA= 'IN'
    0050CC= 'IT'
    0050CE= $0D0A
    0050D0----- (einit string #1 End)
    00508A= $2020
                          (einit string #2)
    00508C= $2020
    00508E= 'SE'
    005090= 'T '
    005092= 'EN'
    005094= 'AB'
```

005096= 'LE'

005098= 'S ' 00509A= 'ON' 00509C= \$000A 00509E------ (einit string #2 End)

E-INIT:

Write einit string #J to Console 006100 2A7C000050C8 MOVE.L #206B0.A5 006106 2C7C000050D0 MOVE.L #206BB.A6 00610C 1E3C00F3 MOVE.B #243.07 006110 4E4E TRAP #14

Initialize PI/T #1 Base Address= \$20000 006112 13FC000000020001 MOVE.B #0.\$00020001 006112 13FC000000020003 MOVE.B #0.\$00020003 006122 13FC008000020005 MOVE.B #12B.\$0002000D 00612A 13FC00FF00020005 MOVE.B #255,\$00020005 006132 13FC000000020011 MOVE.B #0.\$00020011 00613A 13FC00800002000F MOVE.B #12B.\$0002000F 006142 13FC00000002000F MOVE.B #0.\$00020007 00614A 13FC000300020009 MOVE.B #3.\$00020009 006152 13FC000000020027 MOVE.B #0.\$00020027 00615A 13FC000000020029 MOVE.B #0.\$00020029 006162 13FC00010002002B MOVE.B #1.\$0002002B 00616A 13FC00A700020021 MOVE.B #167.\$00020021

Initialize PI/T #2 Base Address= \$20200 006172 13FC000000020201 MOVE.B #0.\$00020201 00617A 13FC000000020203 MOVE.B #0.\$00020203 0061B2 13FC000300020209 MOVE.B #3.\$00020209 0061BA 13FC000000020227 MOVE.B #0.\$00020227 006192 13FC000000020229 MOVE.B #0.\$00020229 00619A 13FC00010002022B MOVE.B #1.\$0002022B

starting address ending address call OUTPUT

Port General Control Register Port Service Request Register Port A Control Register Port A Oata Oirection Register Port A Data Register Port B Control Register Port B Oata Oirection Register Port C Oata Oirection Register Counter Preload Register High Counter Preload Register Mid Counter Preload Register Low Timer Control Register

Port General
Control Register
Port Service
Request Register
Port C Oata
Direction Register
Counter Preload
Register High
Counter Preload
Register Mid
Counter Preload

0061A2 13FC00A700020221 MOVE.8 #167,\$00020221 0061AA 13FC000000020205 MOVE.8 #0.\$00020205 006182 13FC00800002020D MOVE.B #128,\$0002020D 0061BA 13FC00FF00020207 MOVE.B #255,\$00020207 0061C2 13FC00B00002020F MOVE.8 #128,\$0002020F 0061CA 13FC001C00020213 MOVE.8 #28,\$00020213

Register Low Timer Control Register Port A Data Direction Register Port A Control Register Port B Data Direction Register Port B Control Register Port B Data Register

Write einit string #2 to Console

prompts user to switch external power "on"

0061D2 2A7C000050BA 0061D8 2C7C0000509E 0061DE 1E3C00F3 0061E2 4E4E

MOVE.L #20618,A5 MOVE.L #20638,A6 MOVE.8 #243,D7 TRAP #14

starting address ending address call OUTPUT

0061E4 1E3C000A

0061EB 4E4E

0061EA 4E75

END E-INIT= \$61EC

Complete physical system initialization MOVE.B #10.D7 TRAP #14

RTS

call setup

```
ASSEMBLY LISTING FOR MOTOROLA M68000 ECB SINGLE BOARD COMPUTER
         CVT -- ENGINE PROJECT -- CONTROLLER
    DEPARTMENTS OF MECRANICAL AND AGRICULTURAL ENGINEERING
    AUTROR:
                 KENT D. FUNK
    DATE:
                  8/17/85
    FILE:
                  thmove.s
    TYPE:
                  Software Interrupt Processing -- level 2
SYNOPSIS:
    MOVE-TR provides the software interface to the stepper motor
    driver associated with the engine throttle. The associated
    hardware requires the following inputs:

    Direction control (PI/T #1 portC-1)

         CW (active low)
         CCW (active high)
    Step size (PI/T #1 portC-0)
         For the throttle stepper motor Step Size = RALF (active high)
    3) Clock pulse control (PI/T #1 timer)
         One clock pulse per step
    MOVE-TR determines the relative number of steps to be moved
    in a particular direction by knowledge of the Current TRSTP
    and the Desired THSTP by the following description.
         if (desired > actual) {
             move (desired - actual) half steps in CW direction:
         else if ( actual > desired) {
             move (actual - desired) half steps in CCW direction;
         else if ( actual == desired) {
             do nothing;
        TO CALL:
```

MOVE.B #02,D7 TRAP #14

OATA STRUCTURES:

GLOBAL STRUCTURES AFFECTED:

Program;

current external conditions desired external conditions

LOCAL MOVE-TH SCOPE...

005150	(temporary)
005151	(4 consecutive bytes for temporary allocation
005152	for use in byte addressing of final results)
005153	

MOVE-TH:		•	
006200 42B0	CLR.L	DO	
006202 42B1	CLR.L	01	
006204 30380900		\$000009C0,D0	get desired THSTP
00620B 323B09B2		\$000009B2.01	get current THSTP
00620C B041	CMP.W		check (00 -01) or
		21,20	(desired -actual)
00620E 6E1A	BGT.S	\$00622A	branch If (desired
			> actual)
006210 674C	BEQ.S	\$00625E	branch if (des med
			== actual)
006212 4E71	NOP		no caar,
006214 4E71	NOP		
Set conditions for	actual	> desired	
006216 92B0	SUB.L	00.01	compute actual -
			desired (01-00 to
			D1)
00621B 21C15150	MOVE.L	01,\$00005150	store results in
			temporary local
			structure
00621C 13FC000300020019	MOVE.B	#3,\$00020019	set half step, CCW
			direction at port C
006224 6016	BRA.S	\$00623C	
006226 4E71	NOP		
00622B 4E71	NOP		
Set conditions for			
00622A 9081	SUB.L	01,00	compute desired -
			actual (DO-01 to
006336 31605150	MOUTE :	00 40000=1=0	00)
00622C 21C05150	MOVE.L	00,\$00005150	store results in
			temporary local
			structure

006230 13FC000100020019 MOVE.8 #1,\$00020019

set half step, CW direction at port C

006238 4E71 00623A 4E71 NOP NOP

Move temporary structure to timer

00623C 13F8515100020027 MOVE.8 \$00005151,\$00020027 store temporary

2nd byte in timer preload register

(high)

006244 13F8515200020029 MOVE.B \$00005152,\$00020029 store temporary

3rd byte in timer preload register

(mid)

00624C 13F851530002002B MOVE.8 \$00005153,\$00020028 store temporary

4th byte in timer preload register

(low)

006254 13FC000100020035 MOVE.8 #1,\$00020035

00625C 4E71 00625E 4E75

NOP RTS

END MOVE-TH= \$6260

start timer

SYNOPSIS:

MOVE-CVT provides the software interface to the stepper motor driver associated with the CVT transmission. The associated hardware requires the following inputs:

- Direction control (PI/T #2 portC-1)
 CW (active low)
 CCW (active high)
- 2) Step size (PI/T #2 portC-0) For the CVT stepper motor Step Size = HALF (active high)
- Clock pulse control (PI/T #2 timer)
 One clock pulse per step

TRAP #14

MOVE-CVT determines the relative number of steps to be moved in a particular direction by knowledge of the Current RGSTP and the Desired RGSTP by the following description.

```
if (desired > actual) {
    move (desired - actual) half steps in CW direction;
    }
else if ( actual > desired) {
    move (actual - desired) half steps in CCW direction;
    }
else if ( actual == desired) {
    do nothing;
    }

TO CALL;
    MOVE.B #03.D7
```

DATA STRUCTURES:

GLOSAL STRUCTURES AFFECTED:

Program:

current external conditions desired external conditions

LOCAL MOVE-CVT SCOPE...

005150	(temporary)
005151	(4 consecutive bytes for temporary allocation
005152	for use in byte addressing of final results)
005153	,

MOVE-C	VT:			
006300	42B0	CLR.L	DO	
006302	4281	CLR.L	D1	
006304	303809C2	MOVE.W	\$000009C2,D0	get desired RGSTP
00630B	323B09B4		\$000009B4,D1	get current RGSTP
00630C	B041	CMP.W		check (DO-D1) or (desired-actual)
00630E	6E12	BGT.S	\$006322	<pre>branch if (desired > actual)</pre>
006310	673E	BEQ.S	\$006350	<pre>branch if (desired == actual)</pre>
Se	et conditions for	actual	> desired	
006312		SU8.L		compute (actual desired) or (D1 -D0 to D1)
006314	21C15150	MOVE.L	01,\$00005150	store results in temporary structure
006318	13FC000300020219	MOVE.B	#3,\$00020219	set half step, CCW direction at port C
006320	600E	8RA.S	\$006330	
	Set conditions	s for de	esired > actual	
006322		SUB.L		compute (desired - actual) or (DO -D1 to 00)
006324	21005150	MOVE.L	D0,\$00005150	store results in temporary structure
006328	13FC000100020219	MOVE.8	#1,\$00020219	set half step. CW direction at port C

Move temporary storage to timer one byte at a time

006330 13F8515100020227 MOVE.8 \$00005151,\$00020227 store temporary

2nd byte in timer preload register

(high)

006338 13F8515200020229 MOVE.8 \$00005152,\$00020229 store temporary

3rd byte in timer preload register (mid)

006340 13F8515300020228 MOVE.B \$00005153,\$0002022B store temporary

4th byte in timer preload register

(low)

006348 13FC000100020235 MOVE.8 #1,\$00020235 006350 4E75

RTS

END MOVE-CVT= \$6352

start timer

*

ASSEMBLY LISTING FOR MOTOROLA M68000 ECB SINGLE BOARD COMPUTER CVT -- ENGINE PROJECT -- CONTROLLER

DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING

* AUTHOR: KENT D. FUNK * OATE: 8/17/85 * FILE: setgear.s

* TYPE: Software Interrupt Processing -- level 4

SYNOPSIS:

SET-GEAR provides the software interface to the hardware controller for the Power/Shift transmission. The associated hardware consists of six bit manipulated external control lines via PI/T #1 Port A. The Power/Shift transmission can be shifted from one gear to another by actuation of the appropriate solenoids mounted on the transmission. The following specifications have been established.

Port A assignment;

PA0 == SOL#1

PA1 == SOL#2

PA2 == SOL#3

PA3 == SOL#4

PA4 == SOL#5

PA5 == SOL#6

GEAR SELECTION:

-							1
- 1	GEAR	SOL#1	S0L#2	SOL#3	SOL#4	SOL#5	SOL#6
				-			
	NEUTRAL	0	0	0	0	0	0 1
J	1ST	1	0	0	0	0	1
J	2ND	1	0	0	0	1	0
1	3RD	0	1 1	0	0	0	1 1
j	4TH	0	1	0	0	1	0
-	5TH	0	0	1	0	0	1 1
- 1	6TH	0	0	1	0	1	0
ļ	R1	1	0	0	1 1	0	0
	R2	0	1	0	1 1	0	0
1	R3	0	0	1	1	0	0 1
-							

In addition, a lookup table has been established (see below) which contains the hex representations of Port A for the above listed gears. SET-GEAR determines the appropriate port bit pattern by using the desired gear as the offset in the lookup table, and then writes the pattern to Port A.

TO CALL:

MOVE.B #04,07 TRAP #14

OATA STRUCTURES:

GLOBAL STRUCTURES AFFECTEO:

Program:

desired external conditions

LOCAL SET-GEAR SCOPE...

SET-GEAR: 006400 4281 006402 323809C4 CLR.L D1 MOVE.W \$000009C4.01 get desired gear 006406 227000005144 MOVE.L #20804.A1 get base address of pwr/shift lookuo table 00640C 03C1 AOD.L 01,A1 add deslred gear (offset) to base address, store results in A1 00640E 130100020011 MOVE.B (A1),\$00020011 move the byte stored at the address in A1 to PI/T #1 Port A Oata Register

006414 4E75 RTS ENO SET-GEAR= \$6416 *********************

*

ASSEMBLY LISTING FOR MOTOROLA M68000 ECB SINGLE BOARO COMPUTER

CVT -- ENGINE PROJECT -- CONTROLLER

*

DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING

* AUTHOR: KENT 0. FUNK * DATE: 8/17/85 * FILE: readrack.s

TYPE: Software Interrupt Processing -- level 5

SYNOPSIS:

REAO-RACK provides the software interface to the 10-bit absolute encoder (Litton 76NB10-5-S-1) which is mechanically attached to the CAT diesel injector pump "rack". Only 8-bits of resolution are achieved, however, due to mechanical linkage. These eight external data lines are accessible via PI/T \sharp 1 Port B.

TO CALL:

MOVE.B #05,D7 TRAP #14

DATA STRUCTURES:

GLOBAL STRUCTURES AFFECTEO:

Program:

current external conditions

LOCAL REAO-RACK SCOPE...
none

REAO-RACK:

006500 4280 CLR.L 00

006502 103900020013 MOVE.B \$00020013.D0

get data a PI/T #1 Port B Oata

Register 006508 31C009B0 MOVE.W 00,\$000009B0 store data

store data at RACK in current external conditions

conditions structure.

00650C 4E75 RTS

ENO READ-RACK= \$650E

*

ASSEMBLY LISTING FOR MOTOROLA M68000 ECB SINGLE BDARD COMPUTER
CVT -- ENGINE PROJECT -- CONTROLLER

OED DESCRIPTION OF THE PROPERTY OF THE PROPERT

DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING

* AUTHDR: KENT D. FUNK * DATE: 6/17/85 * FILE: teststable.s

TYPE: Software Interrupt Processing -- level 6

SYNOPSIS:

TEST-STABLE insures that the drive line actuators are stable before releasing control back to sequential execution.

Due to the slow dynamics of the controller actuators compared to the high speed of the CPU, it is necessary to wait until all actuators have stopped before continuing with the loop. TEST-STABLE checks each of the outputs to determine if they are stopped, thus insuring that the drive line actuators are stable. This does not insure that the drive line is stable, however, since the dynamics of drive line response will lag the actuators.

To Call:

MOVE.B #6.D7 TRAP #14

DATA STRUCTURES:

GLOBAL STRUCTURES AFFECTED: none

LDCAL TEST-STABLE SCOPE... none

TEST-STABLE:

Wait until throttle stepper motor stops

006600 4280 CLR.L DO

006602 103900020035 MDVE.B \$00020035.D0

006608 028000000001 AND.L #1,D0

CO660E 67F2 BEQ.S \$006602

get PI/T #1 timer status byte isolate timer empty bit branch up if zero Wait until CVT stepper motor stops

006610 4280

CLR.L DO

006612 103900020235

MOVE.B \$00020235,D0

006618 028000000001

AND.L #1,D0

get PI/T #2 timer status byte isolate timer

00661E 67F2

BEQ.S \$006612

empty bit branch up if zero

006620 4E75 RTS

END TEST-STABLE= \$6622

*

ASSEMBLY LISTING FOR MOTOROLA M68000 ECB SINGLE BOARO COMPUTER
CVT -- ENGINE PROJECT -- CONTROLLER

OEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING

* AUTHOR: KENT O. FUNK
* DATE: 8/17/85
* FILE: regsave.s

TYPE: Software Interrupt Processing -- level 7

SYNOPS IS:

REG-SAVE saves all CPU internal data registers not saved as a part of normal context switching. It is intended to be used as the first procedure to be executed as part of an interrupt handler. Since interrupts occur asynchronously, this mechanisms provides appropriate safeguards against loss of critical data during interrupt exception processing.

TO CALL:

MOVE.L 07,\$511C MOVE.B #07,07 TRAP #14

WARNING:

In order to insure that ALL data remains secure, register 07 must be individually saved before calling this routine. This can be accomplished by the above code. In addition, the appropriate Motorola M68000 manuals shuuld be consulted reguarding exception context switching before using this call. It should also be noted that this procedure does not protect against multiple nested interrupts. If this were to occur, critical data will be lost. For the present time, this is acceptable, however, in the future a moving interrupt stack will be used.

DATA STRUCTURES:

GLOBAL STRUCTURES AFFECTED:

LOCAL REG-SAVE SCOPE...

005100 (00) (context save)

```
005104
          (D1)
005108
          (D2)
00510C
          (D3)
005110
          (D4)
005114
          (D5)
005118
          (D6)
00511C
          (D7)
005120
          (A0)
005124
          (A1)
005128
          (A2)
00512C
          (A3)
005130
          (A4)
005134
          (A5)
005138
          (A6)
00513C
          (SR) WORD ONLY
00513C---- (context save End)
```

REG-SAVE: 006700 21C05100 MOVE, L DO. \$00005100 save DO 006704 21C15104 MOVE.L D1,\$00005104 save D1 006708 21C25108 MOVE.L D2.\$00005108 save D2 00670C 21C3510C MOVE.L D3,\$0000510C save D3 006710 21C45110 MOVE.L D4, \$00005110 save D4 006714 21C55114 MOVE.L D5,\$00005114 save D5 006718 21C65118 MOVE.L D6, \$00005118 save D6 00671C 21C85120 MOVE.L A0,\$00005120 save A0 006720 21C95124 MOVE.L A1,\$00005124 save A1 006724 21CA5128 MOVE.L A2,\$00005128 save A2 006728 21CB512C MOVE.L A3,\$0000512C save A3 00672C 21CC5130 MOVE.L A4,\$00005130 save A4 006730 21CD5134 MOVE.L A5, \$00005134 save A5 006734 21CE5138 MOVE.L A6, \$00005138 save A6 006738 40F8513C MOVE.W SR, \$0000513C save SR 00673C 4E75 RTS END REG-SAVE= \$673E

*

ASSEMBLY LISTING FOR MOTOROLA M68000 ECB SINGLE BOARO COMPUTER
CVT -- ENGINE PROJECT -- CONTROLLER

OEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING

AUTHOR: KENT O. FUNK OATE: 8/17/85

FILE: regrestore.s

* TYPE: Software Interrupt Processing -- level 8

SYNOPSIS:

REG-RESTORE restores all CPU internal data registers which were saved by REG-SAVE. It is intended to be used as the last procedure to be executed as part of an interrupt handler. This mechanism, in conjunction with REG-SAVE provides appropriate safeguards against loss of critical data during interrupt exception processing.

TO CALL;

MOVE.B #08,D7 TRAP #14

WARNING:

In order for this routine to work correctly their must be a correctly installed REG-SAVE preceding it.

DATA STRUCTURES:

GLOBAL STRUCTURES AFFECTEO: none

LOCAL REG-RESTORE SCOPE...

005100	(00)	(context restore)
005104	(D1)	
005108	(02)	
00510C	(D3)	
005110	(04)	
005114	(D5)	
005118	(06)	
00511C	(D7)	
005120	(AO)	

```
005124 (A1)
005128 (A2)
00512C (A3)
005130 (A4)
005134 (A5)
005138 (A6)
00513C (SR) WORO ONLY
00513C------ (context restore End)
```

REG-RESTORE:

006800 20385100	MOVE.	L \$00005100,00	restore	DO
006804 22385104	MOVE.	L \$00005104,01	restore	D1
006808 24385108	MOVE.	L \$00005108,D2	restore	D2
00680C 2638510C	MOVE.	L \$0000510C,D3	restore	03
006810 28385110	MOVE.	\$00005110,D4	restore	D4
006814 2A385114	MOVE.	L \$00005114,05	restore	D5
006818 20385118	MOVE.	\$00005118,D6	restore	06
00681C 2E38511C	MOVE.	L \$0000511C,D7	restore	D7
006820 20785120	MOVE.	\$00005120,A0	restore	A0
006824 22785124	MOVE.	L \$00005124,A1	restore	A1
006828 24785128	MOVE.	\$00005128,A2	restore	A2
00682C 2678512C	MOVE.	\$0000512C,A3	restore	A3
006830 28785130	MOVE.	\$00005130,A4	restore	A4
006834 2A785134	MOVE.1	\$00005134,A5	restore	A5
006838 20785138	MOVE.	\$00005138,A6	restore	A6
00683C 46F8513C	MOVE.	\$0000513C,SR	restore	SR
006840 4E75	RTS			
THE SEC SECRES				

ENO REG-RESTORE = \$6842

* ASSEMBLY LISTING FOR MOTOROLA M68000 ECB SINGLE BDARO COMPUTER

CVT -- ENGINE PROJECT -- CONTROLLER

DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING

AUTHOR: KENT D. FUNK
DATE: 8/17/85
FILE: readthstp.s

TYPE: Software Interrupt Processing -- level 9

GENERAL:

In order to generate accurate feedback position control for the two stepper motors, incremental encoders have been used. One of the encoders has been mechanically attached to the throttle stepper motor, and the other encoder has been attached to the CVT ring drive. Although this closed loop design would probably not be used in a production unit, it provides the needed repeatability when using expiremental open loop actuators.

The output of the encoders is a pair of square wave pulse trains whose phase indicates relative direction. By correct separation of the two pulse trains, a suitable up/down counter can be driven to give 400 counts/rev resolution. Two 20-bit counters were available (see Spaulding 1985) which correctly read quadrature output. These counters were incorporated in the 68000 off-board bus structure. The counters have suitable controls to multiplex the data to an 8-bit data bus. In addition seven control lines must be supplied. To accommodate the requirements of these devices and others which may be included, an 8-bit external data bus is available at PI/T #2 Port A and an 8-bit external control bus is available at PI/T #2 Port B.

The following external bus definitions apply to the 20-bit up/down counters.

```
PortA; (external data bus)

PAO == 00

PA1 == D1

PA2 == 02

PA3 == D3

PA4 == D4

PA5 == D5

PA6 == 06

PA7 == D7

PortB: (external control bus)

PBO == CLEAR CDUNTER*1 (active high)
```

PB1 == INHIBIT COUNTER#1 (active low)

PB2 == A1

PB3 == A2

PB4 == A3

PB5 == CLEAR COUNTER#2 (active high)

PB6 == INHIBIT COUNTER#2 (active low)

Control of an individual counter is as follows: Initialization:

- CLEAR COUNTER and INHIBIT COUNTER lines are brought low.
- The encoder is driven to "HOME" reference.
- 3) CLEAR COUNTER is driven high and then low.
- 4) INHIBIT COUNTER is driven high.
- It should be noted that all initialization of both counters is done in the setup routine.

Normal Operation;

Reading the current counter values is accomplished by enabling the desired byte (high, mid, low) and then reading the available data at Port A. Proper enables are accomplished by the following bit map.

I	I			l i			l	
	PB6	PB5	PB4	PB3	PB2	PB1	PBO	
Byte Enabled	I NH2	CL2	A3	A2	A1	INH1	CL1	HEX
								1
Counter #1	Į		į i					i i
low byte	1	0	1	0	0	1	0	\$52
mid byte	1	0	1	0	1	1 1	0	\$56
high byte	1	0	1	1	0	1	0	\$5A
Counter #2	1			l i				
low byte	1	0	0	0	0	1	0	\$42
mid byte	1	0	0	0	1	1	0	\$46
high byte	1	0	0	1	0	1	0	\$4A
Disabled	1	0	1	1	1	1	0	\$5E

SYNOPSIS:

READ-THSTP provides the software interface to the 100 cycles/rev incremental encoder (BEI L25G-100-ABZ-7400R-S-) which is mechanically attached to the throttle stepper motor. A gear ratio of 2:1 was established between the throttle and encoder and the resolution of the throttle stepper is 400 steps/rev. Therefore, if the counter value is divided by two, the throttle step position is determined. The technique of dividing by two compensates for any backlash in the gear train.

In addition, mechanical considerations indicate that the maximum expected counter value would be less than a 16 bit representation. Therefore, READ-THSTP only reads the low 16 bits of the 20 bit counter.

TO CALL:

MOVE.8 #09,D7 TRAP #14

DATA STRUCTURES:

GLOBAL STRUCTURES AFFECTED:

Program:

current external conditions

LOCAL READ-THSTP SCOPE...

READ-THSTP:

006900 13FC004200020213 MOVE.8 #66,\$00020213

006908 4280 CLR.L DO

00690A 103900020211 MOVE.B \$00020211,D0

006910 13FC004600020213 MOVE.B #70,\$00020213

006918 4281 CLR.L D1

00691A 123900020211 MOVE.B \$00020211.D1

006920 E199 ROL.L #B,D1

006922 D081 ADD.L D1.D0

006924 E28B LSR.L #1,D0

006926 0800000E BTST #14,D0

00692A 6702 8EQ.S \$00692E 00692C 4280 CLR.L DO

00692E 31C009B2 MOVE.W DO,\$000009B2

006932 13FC005E00020213 MOVE.8 #94,\$00020213

00693A 4E75 RTS

END READ-THSTP= \$693C

enable counter low byte at Port 8 data

register

read counter low
byte at Port A data
register
enable counter mid
byte at Port 8 data

register

read counter mid byte at Port A data register align bytes to

align bytes to form correct word

divide results by

if counter rolled under, then set DO to zero.

store THSTP in current conditions structure

disable all

drivers on external

*

ASSEMBLY LISTING FOR MOTOROLA M6BOOO ECB SINGLE BOARO COMPUTER
CVT -- ENGINE PROJECT -- CONTROLLER

OEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING

* AUTHOR: KENT O. FUNK
* DATE: B/17/B5
* FILE: readfbstp.s

* TYPE: Software Interrupt Processing -- level 11

GENERAL:

See REAO-THSTP for general incremental counter considerations.

SYNOPSIS:

READ-FBSTP provides the software interface to the 100 cycles/rev Incremental encoder (BEI L25G-100-ABZ-7400R-S-) which is mechanically attached to the CVT ring drive. Currently, no exact relation is known between the encoder and the CVT stepper motor. This is due to the tentative development of the ring drive actuator.

Mechanical considerations indicate that the maximum expected counter value would be less than a 16 blt representation. Therefore, READ-FBSTP only reads the low 16 bits of the 20 bit counter.

TO CALL:

MOVE.B #11,07 TRAP #14

OATA STRUCTURES:

GLOBAL STRUCTURES AFFECTED:

Program;

current external conditions

LOCAL REAO-FBSTP SCOPE...

REAO-FBSTP:

006950 13FC005200020213 MOVE.B #B2.\$00020213

enable counter low byte at Port B data register

006958	4280	CLR.L	DO	
00695A	103900020211	MOVE.B	\$00020211,D0	read counter low byte at Port A data register
006960	13FC005600020213	MOVE.B	#86,\$00020213	enable counter mid byte at Port B data register
006918	4281	CLR.L	D1	
00696A	123900020211	MOVE.B	\$00020211,D1	read counter mid byte at Port A data register
006970	E199	ROL.L	#8,D1	align bytes to form correct word
006972	D081	ADD.L	D1,D0	
006974	4E71	NOP		
006976	0800000E	BTST	#14,D0	if counter rolled
00697A	6702	BEO.S	\$00697E	under, then set DO
00697C	4280	CLR.L	DO	to zero.
00697E	31C009B6	MOVE.W	DO,\$000009B6	store FBSTP in current conditions structure
006982	13FC005E00020213	MOVE.B	#94,\$00020213	dlsable all drivers on external data bus
00698A	4E75	RTS		
END REA	AD-FBSTP= \$698C			

```
ASSEMBLY LISTING FOR MOTOROLA M6BOOO ECB SINGLE BOARO COMPUTER
        CVT -- ENGINE PROJECT -- CONTROLLER
    OEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING
    AUTHOR:
                KENT D. FUNK
    OATE:
                6/17/B5
    FILE:
                setup.s
    TYPE:
                Software Interrupt Processing -- level 10
*********************
SYNOPSIS:
    SETUP conducts an interactive mode of initializing the physical
    engine and transmissions. This procedure is executed only once
    and must be preformed after all computer hardware has been
    initialized (p-init and e-init).
    To Call:
            MOVE.B #10,07
            TRAP #14
OATA STRUCTURES:
    GLOBAL STRUCTURES AFFECTEO:
        Program;
            console buffer
            current external conditions
            desired external conditions
    LOCAL SETUP SCOPE...
    50A0= $20202020
                           (setup string #1)
    50A4= $20202020
    50AB= 'CO'
    50AA= 'NT'
    50AC= 'IN'
    50AE= 'UE'
    50B0 = '? '
   50B2---- (setup string #1 end)
   50B4= $20202020
                            (setup string #2)
   50BB= 'ST'
```

```
50BA= 'AR'
50BC= 'T'
50BE= 'EN'
50C0= 'GI'
50C2= 'NE'
50C4= $0D0A
50C6----- (setup string #2 end)
```

SETUP:

Write setup string #1 to Console
006A00 2A7C000050A0 MOVE.L #20640,A5 starting address
006A06 2C7C000050B2 MOVE.L #2065B,A6 ending address
006A0C 1E3C00F3 MOVE.B #243,D7 call OUTPUT
006A10 4E4E TRAP #14

Wait for user Response

006A12 2A7C00000900 MOVE.L #2304,A5 console buffer starting address
006A1B 2C4D MOVE.L A5,A6
006A1A 1E3C00F1 MOVE.B #241.07 call PORTIN1

006A1A 1E3C00F1 MOVE.B #241,07 006A1E 4E4E TRAP #14

Move throttle 500 steps up 006A20 13FC000100020019 MOVE.B #1.\$00020019 select half steps. CW rotate at PI/T#1 006A2B 13FC000000020027 MOVE.B #0.\$00020027 timer high 006A30 13FC000100020029 MOVE.B #1.\$00020029 timer mid 006A3B 13FC00F40002002B MOVE.B #244,\$0002002B timer low 006A40 13FC000100020035 MOVE.B #1.\$00020035 start timer Wait till throttle stops 006A4B 103900020035 MOVE.B \$00020035.00 timer status byte 006A4E 02B000000001 AND.L #1,00 isolate time out

006A54 67F2 BEQ.S \$006A4B branch up if zero

Search down the throttle 2 steps at a time.

After every two steps check for home switch detect. Insure switch reading by 4 consecutive positive reads.

006A56 13FC000300020019 MOVE.B #3,\$00020019 select half step. CCW rotate at PI/T#1 006A5E 13FC000000020027 MOVE.B #0.\$00020027 timer high 006A66 13FC000000020029 MOVE.B #0,\$00020029 timer mid 006A6E 13FC00020002002B MOVE.B #2.\$0002002B timer low 006A76 13FC000100020035 MOVE.B #1.\$00020035 start timer 006A7E 123C0000 MOVE.B #0.01 D1 is event detection counter 006AB2 103900020035 MOVE.B \$00020035,00 get timer status

006AB2 103900020035 MOVE.B \$00020035,00 get timer status 006ABB 02B000000001 AND.L #1,D0 isolate time out bit

006A8E	67F2	BEQ.S	\$006AB2	branch up if zero
006A90	363CFFFF	MOVE.W	#-1,D3	PAUSE for
006A94	57CBFFFE	DBEQ.L	D3,\$006A94	a moment
006A9B	103900020019	MOVE.B	\$00020019,D0	get home detect
				input
006A9E	028000000010	AND.L	#16,D0	isolate throttle
				home bit
006AA4	67B0	BEQ.S	\$006A56	branch up if zero
006AA6	363CFFFF	MDVE.W	#-1,D3	pause for a while
006AAA	57CBFFFE	DBEQ.L	D3,\$006AAA	to let home
006AAE	363CFFFF	MOVE.W	#-1,D3	switch debounce.
006AB2	57CBFFFE		D3,\$006AB2	
006AB6	06010001	ADD. B	#1,D1	increment event
			•	detection counter
006ABA	0C010004	CMP.B	#4,D1	check if we have
				four consecutive
				reads
006ABE	66D8	BNE.S	\$006A98	branch uo if not
				•
Tì	rottle is now at	home po	osition	
	Now reset 20-1	bit thro	ottle position counte	er to zero
006AC0	13FC001D00020213	MOVE.B	#29,\$00020213	set CLEAR COUNTER
				high
006ACB	13FC001C00020213	MOVE.B	#28,\$00020213	set CLEAR CDUNTER
				low
006AD0	13FC001E00020213	MDVE.B	#30,\$00020213	enable counter
	ove throttle up 90			
006AD8	13FC000100020019	MDVE.B	#1,\$00020019	select half step,
				CW rotation @ PI/T#1
	13FC000000020027			timer high
	13FC000400020029			timer mid
	13FC004C0002002B			timer low
	13FC000100020035	MOVE.B	#1,\$00020035	start timer
006B00	4E71	NDP		
006B02	4E71	NDP		
006B04	4E71	NDP		
006806	31FC044C09C0	MOVE.W	#1100,\$00009C0	update desired position structure THSTP
Wr	ite setup string	#2 to 0	Concole	
	2A7C000050B4		#20660.A5	stanting address
	2C7C000050C6		#2067B.A6	starting address ending address
	1520005	WOUR P	#240 DF	ending address

MOVE.B #243,D7

TRAP #14

Write setup string #1 to Console 006B1E 2A7C000050A0 MOVE.L #20640,A5

006B24 2C7C000050B2 MOVE.L #2065B,A6

call OUTPUT

starting address

ending address

006B18 1E3C00F3

006B1C 4E4E

006B2A 1E3C00F3 MOVE.B #243.D7 call DUTPUT 006B2E 4E4E TRAP #14 Wait for user Response 006B30 2A7C00000900 MOVE.L #2304.A5 console buffer starting address 006B36 2C4D MDVE.L A5.A6 006B3B 1E3C00F1 MOVE.B #241.D7 call PORTINI 006B3C 4E4E TRAP #14 Move Ring Position 500 steps up 006B3E 13FC000100020219 MDVE.B #1,\$00020219 select half steps. CW rotate at PI/T#2 006B46 13FC000000020227 MDVE.B #0.\$00020227 timer high 006B4E 13FC000100020229 MOVE.B #1.\$00020229 timer mid 006B56 13FC00F40002022B MDVE.B #244.\$0002022B timer low 006B5E 13FC000100020235 MOVE.B #1,\$00020235 start timer Wait till Ring stops 006B66 103900020235 MOVE.B \$00020235.D0 timer status byte 006B6C 028000000001 AND,L #1,D0 isolate time out hit 006B72 67F2 BEO.S \$006B66 branch up if zero Search down the ring travel 2 steps at a time. After every two steps check for home switch detect. Insure switch reading by 4 consecutive positive reads. 006B74 13FC000300020219 MOVE.B #3,\$00020219 select half step. CCW rotate at PI/T#2 006B7C 13FC000000020227 MDVE.B #0.\$00020227 timer high 006BB4 13FC000000020229 MOVE.B #0.\$00020229 timer mid 006B8C 13FC00020002022B MDVE.B #2.\$0002022B timer low 006B94 13FC000100020235 MDVE.B #1.\$00020235 start timer 006B9C 123C0000 MDVE.B #0.D1 D1 is event detection counter 006BA0 103900020235 MDVE.B \$00020235.D0 get timer status byte 006BA6 02B000000001 AND.L #1,D0 isolate time out hit 006BAC 67F2 BEO.S \$006BA0 branch up if zero 006BAE 363CFFFF MDVE.W #-1.03 PAUSE for 006BB2 57CBFFFE DBEO.L D3.S006BB2 a moment 006BB6 103900020219 MOVE.B \$00020219,D0 get home detect lnput 006BBC 02B000000010 ANO.L #16.DO isolate ring home hit 006BC2 67B0 BEO.S \$006B74 branch up if zero 006BC4 363CFFFF MOVE.W #-1.D3 pause for awhile to 006BC8 57CBFFFE DBEQ.L \$006BCB let home switch

MOVE.W #-1.03

DBEQ.L \$006BD0

debounce.

OOGBCC 363CFFFF

006BD0 57CBFFFE

006B04 06010001 A00.B #1,01 increment event detection counter 006B08 0C010004 CMP.B #4,01 check if we have four consecutive reads 006B0C 66D8 BNE.S \$006BB6 branch up if not

CVT rings are now at home position
Reset and initialize fb-stp counter.
006BDE 13FC003E00020213 MOVE.B #62,\$00020213
006BE6 13FC001E00020213 MOVE.B #30,\$00020213

006BEE 13FC005E00020213 MOVE.B #94.\$00020213

Update the rest of the global data structures 006BF6 31FC000009B4 MOVE.W #0.\$000009B4 current RGSTP 006BFC 31FC000009C2 MOVE.W #0,\$000009C2 desired RGSTP 006C02 31FC000009BR MOVE.W #0.\$000009B8 current gear 006C08 31FC000009C4 MOVE.W #0.\$00009C4 desired gear 006COE 31FC000009B6 MOVE.W #0.\$000009B6 current FBSTP 006C14 4E75 RTS END SETUP= \$6C16

ASSEMBLY LISTING FOR MOTOROLA M68000 ECB SINGLE BOARD COMPUTER

DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING

CVT -- ENGINE PROJECT -- CONTROLLER

AUTHOR: KENT D. FUNK DATE: 6/17/85 FILE: hostint.s

TYPE: Hardware Interrupt Processing -- ADAC 1000

SYNOPSIS:

HOST-INT orovides the interrupt handler for all MC68000 to ADAC communications. In it's final form, this routine will control communications in both directions. Currently, however, the routine only provides for data to be passed from the MC68000 to the ADAC. This has proved sufficient for drive line mapping. Once the implementation of the control algorithm is in place. bi-directional data flow will be needed.

Control of data flow is accomplished by message passing. If the ADAC desires uodated information from the MC68000, it writes a 'R' for request to ACIA #2. When the character is caught, a priority 6 hardware interrupt is generated. The existence of this interrupt prompts the MC68000 to enter exception processing using HOST-INT as the handler. Once it has been determined that a valid request has been made, HOST-INT updates the current conditions structure and oroceeds to form an ASCII string from the data. Notice that a tag 'S' is placed at the beginning of the string. This allows the ADAC to know that the MC68000 is "sending" data to a valid request. These tags, ie 'S' and 'R', allow for adequate error checking and prevents handling sourious interrupts.

DATA STRUCTURES:

GLOBAL STRUCTURES AFFECTEO:

Program:

current external conditions

LOCAL HOST-INT SCOPE ...

5800= 'S' (host response string)

5802= \$2020 (rack-start)

```
5804= $2020
     5806= $2020
     5808= $2020
     580A= $2020 (thstp-start)
     580C= $2020
     580E= $2020
     5810= $2020
     5812= $2020 (rgstp-start)
     5814= $2020
     5816= $2020
     5818= $2020
     581A= $2020 (fbstp-start)
     581C= $2020
     581E= $2020
     5820= $2020
     5822= $2020 (gear-start)
     5824= $2020
     5826= $2020
     5828= $2020
     582A= $000A
     582C---- (host response string end)
HOST-INT:
007000 13FC001500010041 MOVE.8 #21,$00010041
                                                   shut off ACIA
                                                    interrupt bit
007008 21075110
                        MOVE.L D7,$0000511C
                                                    save register D7
00700C 1E3C0007
                        MOVE.8 #7,D7
                                                   call SAVE-REG
007010 4E4E
                        TRAP
                              #14
007012 1A3900010041
                        MOVE.B $00010041.D5
                                                   dumb read on
                                                    status register
007018 4285
                        CLR.L D5
                        MOVE.B $00010043,D5
00701A 1A3900010043
                                                   get a character
007020 0205007F
                        AND.B #127.D5
                                                   mask high bit
007024 0C050052
                        CMP.8 #82.D5
                                                   is it an 'R'
007028 6704
                        8EO.S $00702E
                                                   branch to REQUEST:
00702A 4EF870EC
                        JMP.S $000070EC
                                                   jump to CLEAR:
REOUEST:
     8lank out host response string
00702E 207C00005800
                        MOVE.L #22528,A0
                                                   base address
007034 30FC5320
                        MOVE.W #21280,(A0)+
                                                   'S 1
007038 20FC20202020
                        MOVE.L #538976288, (A0)+
                                                   spaces
00703E 20FC20202020
                        MOVE.L #538976288,(A0)+
                                                   spaces
007044 20FC20202020
                        MOVE.L #538976288, (A0)+
                                                   spaces
00704A 20FC20202020
                        MOVE.L #538976288, (A0)+
                                                   spaces
007050 20FC20202020
                        MOVE.L #538976288,(A0)+
                                                   spaces
007056 20FC20202020
                        MOVE.L #538976288,(A0)+
                                                   spaces
00705C 20FC20202020
                        MOVE.L #538976288,(A0)+
                                                   spaces
007062 20FC20202020
                        MOVE.L #538976288, (A0)+
                                                   spaces
```

call REAO-F8STP

007068 20FC20202020 MDVE.L #538976288,(A0)+ spaces 00706E 20FC20202020 MDVE.L #538976288,(A0)+ spaces 007074 30FC200A MOVE.W #8202,(A0)+ space-LF

Update current conditions structure

007078 1E3C0005 MOVE.8 #5.D7 call READ-RACK 00707C 4E4E TRAP #14 00707E 1E3C0009 MOVE.8 #9.D7 call READ-THSTP

007082 4E4E TRAP #14 007084 1E3C0008 MDVE.8 #11.D7 007088 4E4E TRAP #14

Get RACK reading, convert, and store in host response string.
00708A 303809B0 MOVE.W \$00000980,D0 rack reading
00708E 2C7C00005802 MDVE.L #22530,A6 position in host
string

007094 1E3C00EC MDVE.8 #236,D7 call HEX2DEC 007098 4E4E TRAP #14

Get TH-STP reading, convert, and store in host response string. 00709A 30380982 MDVE.W \$000009B2,D0 th-stp reading 00709E 2C7C0000580A MOVE.L \$22538,A6 position in host string

0070A4 1E3C00EC MOVE.8 #236,D7 call HEX2DEC 0070A8 4E4E TRAP #14

 Get RG-STP reading, convert, and store in host response string.

 0070AA 30380984
 MDVE.W \$00000984,D0
 rg-stp reading

 0070AE 2C7C00005812
 MDVE.L #22546,A6
 position in host string

007084 1E3C00EC MDVE.8 #236,07 call HEX2DEC 0070B8 4E4E TRAP #14

0070C4 1E3C00EC MDVE.8 #236,D7 call HEX2DEC 0070C8 4E4E TRAP #14

Get GEAR reading, convert, and store in host response string.

0070CA 303809B8 MOVE.W \$00000988,00 gear reading

0070CE 2C7C00005822 MOVE.L #22562.A6 position in host string

0070D4 1E3C00EC MDVE.8 #236,D7 call HEX2DEC 007008 4E4E TRAP #14

Write host response string out to ACIA.

0070DA 2A7C00005800 MOVE.L #22528.A5 string starting address

0070E0 2C7C0000582C MOVE.L #22572.A6 string ending address + 1 0070E6 1E3C00F2 MOVE, B #242,07 call OUTPUT21 0070EA 4E4E TRAP #14 CLEAR: 0070EC 103900010041 MOVE.B \$00010041,00 dumb read on ACIA status register clears interrupt conditions 0070F2 08000000 BTST #0.D0 test if clear 0070F6 6708 BEQ.S \$007100 branch on clear to OONE: 0070F8 1A3900010043 MOVE.B \$00010043,D5 dumb read on receive register. 0070FE 60EC BRA.S \$0070EC branch to CLEAR: DONE: 007100 1E3C0008 MOVE.B #8.D7 call REG-RESTORE 007104 4E4E TRAP #14 007106 13FC009500010041 MOVE.B #149,\$00010041 enable ACIA interrupts 00710E 4E73 RTE return from exception

END HOST-INT= \$7110

APPENDIX E

ADAC 1000 HOST DEVELOPMENT SOFTWARE LISTINGS

```
C-SOURCE LISTING FOR ADAC 1000 COMPUTER
         CVT -- ENGINE PROJECT -- MC68000 DEVELOPMENT
    DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING
    AUTHOR:
                  KENT D. FUNK
    DATE:
                   4/5/85
    FILE:
                   transfer.c
***********
/* This file contains a program to upload or download programs
between a UNIX machine and the MC68000 ECB. Both S-records and
listings can be handled this way. */
/* Too complile and link: --> cc transfer.c
    Too run: --> transfer
#include <stdio.h>
FILE *fp, *fopen():
char line[80]:
/*****
                           MAIN()
                                                              *****/
main()
    char file[20];
    int direct;
    printf("Enter filename --> "):
    fflush(stdout):
    fgets(line, 80, stdin);
    sscanf(line, "%s", file);
    orintf("\nEnter option.\n");
    printf("Dump=1, Load=2\n");
    fgets(line, 80, stdin);
    sscanf(line, "%d", &direct);
    if (direct == 1) {
exit:
         printf("Waiting for your exit.\n");
         fgets(line, 80, stdin);
              /* exiting character sent by tutor= $01 */
         if (*line != 1)
              goto exit;
```

```
dump(file);
          fclose(fp):
          return;
     )
     if (direct == 2) {
          printf("Waiting for your exit.\n");
start:
          fgets(line, 80, stdin);
               /* Tutor uses "VE2 ;=READY" or
                           "LO2 ;=READY" to verify
                    and load S-Record Format */
          if (*line != 'R')
               goto start:
          load(file):
          fclose(fp);
          return;
     printf("Incorrect option specified.\n\n");
)
/*****
                               DUMP()
                                                                   *****/
Dump Routine.
     The dump routine reads the standard input and writes
     out to the named file. */
dump (fname)
char *fname;
     fp= fopen(fname, "w");
loop:
     fgets(line, 80, stdin);
     if (*line == 0)
          /* To stop input, return to shell and type "x" */
     if (*line == 'x')
          return;
     fprintf(fp, "%s", line);
     goto loop;
}
/*****
                              LOAD()
                                                                   *****/
Load Routine.
     The load routine reads from the named file and writes
     to the standard output. */
```

```
load(fname)
char *fname:
      fp= fopen(fname, "r");
loop:
      fgets(line, 80, fp);
      if (feof(fp))
           return:
      printf("%s", line);
      goto loop;
)
/* NOTICE: For these routines to work properly, the tutor escape
character must be ^A (default). and the trailing character must be $0A.<1f>. The line feed must be specified in the
inltialization proceedures as follows:
     TUTOR 1.3 > MM 4EA
      0004EA 18 ?0A.<cr>
*/
```

```
C-SOURCE LISTING FOR ADAC 1000 COMPUTER
         CVT -- ENGINE PROJECT -- MC68000 OEVELOPMENT
    DEPARTMENTS OF MECHANICAL AND AGRICULTURAL ENGINEERING
    AUTHOR:
                  KENT D. FUNK
    DATE:
                   4/5/85
    FILE:
                   comment.c
/* This file contains a program to comment MC68000 programs which
have been dumoed onto a UNIX system using "transfer" */
/* Too comolile and link: --> cc -o comment comment.c */
/* In order to use this comment editor, the assembly listings
MUST first be packed. This can be done by creating two files:
FILE #1: oack
    x $1 <pedit
FILE #2: oedit
    g/
         /s// /
    g/
         /s// /
Then the source files may be packed by:
    --> pack <filename>
Then the source files may be commented by:
    --> comment <filename>
#include <stdio.h>
#include <ctype.h>
FILE *r, *w, *fopen();
                                                                *****/
/*****
                            MAIN()
main(argc, argv)
int argc;
char **argv:
    char buff[200], blank[80];
```

```
char line1[200], line2[200], line3[200], file[20];
     char *otr1, *ptr2, *ptr3, *ptr4;
     int len1, len2, spaces, index;
     if (argc != 2) {
          fprintf(stderr, "Usage: comment <filename>.\n");
          exit(1);
     strcpy(file, argv[1]);
     spaces= 57;
     otr3= &blank[0];
     while (spaces) {
          *ptr3= ' ';
          ptr3++:
          spaces--;
     )
restart:
     r= fopen(file, "r"); /* open file for read
                        at top of file */
     w= fopen("comment.edt", "w"); /* opens writing file */
loop:
     ptr1= line1:
     ptr3= line3;
     index= 200:
     while (index) {
          *ptr1= 0:
          *ptr3= 0;
          ptr1++;
          ptr3++;
          index--:
     )
     strcpy(line3, blank);
     fgets(line1, 150, r):
                             /* get a line from the opened file */
     if (feof(r))
          printf("End of File\n"):
tryagain:
    ptr2= line2:
     index= 200;
    while (index) (
          *ptr2= 0;
         ptr2++;
          index--:
     )
    printf("%s", line1);
    printf("?> ");
     fflush(stdout):
```

```
fgets(line2, 150, stdin);
     switch (*line2) {
          case 10:
               fprintf(w, "%s", line1);
               break:
          case 121:
               printf("Available editor commands are:\n");
               printf("\tl (line of text)\tinserts the line of\n");
               orintf("\t\t\ttext above the current line.\n");
               printf("\ta (line of text)\tappends the line of\n");
               printf("\t\t\t\ttext to the current line.\n");
               printf("\td\t\t\deletes the current line.\n");
printf("\tw\t\t\tsaves the file. resume at the top of the file.\n");
               printf("\tg\t\t\tguits comment.\n");
               printf("\t<ret>\t\tskips to next line.\n");
               printf("\t?\t\tprlnts this list.\n"):
               goto tryagain:
               break:
          case 'd':
               break:
          case 'i':
               line2[0]= ' ';
               fprintf(w, "%s", line2);
               goto tryagain:
               break:
          case 'a':
               line2[0]= ' ';
               len1= strlen(llne1):
               spaces= 57 - len1;
               if (spaces < 0) {
                    printf("Do not comment this line.\n");
                    goto tryagain;
               ptr1 = &line1[len1-1]:
               while(spaces){
                    *ptr1= ' ';
                    ptr1++:
                    spaces--:
               ptr1--:
               len2= strlen(line2):
               if (len2 <= 20) {
                    ptr2= &line2[0]:
                    while (*ptr2) {
                         *ptr1= *ptr2:
```

```
ptr1++;
                          ptr2++:
                     fprintf(w, "%s", line1);
                     goto loop;
               ptr3= &line3[57];
               ptr2= &line2[20]:
               while (isspace(*ptr2) == 0) {
                    ptr2--:
               ptr4= &line2[0];
               while (ptr4 < ptr2) {
                    *ptr1= *ptr4;
                    ptr4++;
                    ptr1++:
               }
               *ptr1= '\n';
               fprintf(w. "%s", line1);
               while (*ptr2) {
                    *ptr3= *ptr2;
                    ptr3++;
                    ptr2++:
               }
addon:
               otr1= line1:
               index = 200;
               while (index) {
                    *ptr1= 0;
                    ptr1++;
                    index--:
               strcpy(line1, line3);
               len1= strlen(line1);
               if {len1 <= 77) {
                     fprintf(w, "%s", line1);
                    goto loop;
               ptr3= line3;
               index= 200:
               while (index) {
                     *ptr3= 0;
                    ptr3++:
                     index--:
               strcpy(line3, blank);
               ptr1= &line1[77];
               ptr3= &line3[57];
               while (isspace(*ptr1) == 0) {
                    ptr1--;
```

```
ptr4= ptr1;
               while (*ptr1) {
                    *ptr3= *ptr1;
                    ptr3++:
                    ptr1++;
               *ptr4= '\n';
               ptr4++:
               *ptr4= 0;
               fprintf(w, "%s", line1);
               goto addon;
          case 'w':
               while (feof(r) == 0) {
                    fprintf(w, "%s", line1);
                    fgets(line1, 150, r);
               fclose(w):
               fclose(r):
               w= fopen(file, "w");
               r= fogen("comment.edt", "r");
writback:
               fgets(line1, 150, r);
               if (feof(r) == 0) {
                    fprintf(w, "%s", line1);
                    goto writback;
               fclose(w):
               fclose(r):
               goto restart:
               break;
          case 'q':
               fclose(w):
               fclose(r);
               unlink("comment.edt"):
               orintf("Comment Exiting\n"):
               exit():
               break:
          default:
               printf("Editor options (i a d w g <ret> ?) \n");
               goto tryagain;
     goto loop;
}
```

APPENDIX F

DATA SHEETS

Made in Malaysia

Actor at CA.

NPN PHOTOTRANSISTOR AND PN INFRARED EMITTING GIOGE

... Gallium Arsenide LED optically coupled to a Silicon Photo Darlington Transistor dasigned for applications requiring electrical isolation, high current transfer ratios, small package size and low cost; such as interfacing and coupling systems, phase and feedback controls, solid-state relays and general-ourpose switching circuits.

- High Isoletion Voltage
 VISO * 7500 V (Min)
- High Collector Output Current 9 tp • 10 mA — Ic • 50 mA (Min) — 4N32,33
 - 10 mA (Min) 4N29,30 5.0 mA (Min) - 4N31
- Economicel, Compect,
 Ouel-In-Line Fackage
- Escellant Frequency Response —
 30 kHz |Typ|
- Fast Switching Times © IC + 50 mA tpn + 0.6 us (Typ)
 - Inff = 17 με (Typ) = 4N20,30,31 45 με (Typ) = 4N32,33
- 4N29A, 4N32A are UL Recognized —
 File Number E54915

MAXIMUM RATINGS IT . = 25°C unless ginerwise normal

Reting	Symbol	Value	Bair
INFRARED-EMITTING DIDDE MAXIMUM	2DMITAR		
Reverse Valtace	Va	3.0	Veria
Forward Current - Continuous	1g	60	7713
Farword Current - Feex	1g	30	Amp
If also Width = 300 as, 2.0% Outy Cyclet	1	1 1	
Total Power Distination & TA = 25°C	Pa	150	mw
Gligible Power in Transistor Cerate spowe 75°C		7.0	
PHOTOTRANSISTOR MAXIMUM RATINGS		70 1	Wr.100
Callector-Emitter Vallage	I Van	20	
Emitter-Collector Vallage	VCEO	50	Valls
Collector-Bass Vallage	Vecs.		V 3115
Tatel Power Dissipation 2 To = 25°C	AC30	1 20	Veris
Negligidia Power in Dipote	27	150	Vern
Derete above 25°C	f	20	mw.ºc
OTAL DEVICE RATINGS			
Total Cavica Distribution & T _A = 25°C Equal Power Distribution in Each Stampn)	r'o	250	+4
Delinie above 25°C		33	ېرد پېر
Operating Junction Temperature Renge	- 7	-75 12 + ICJ	41,4
Sigrege Temperatura Range	141	-55 to +150 !	/c
Soldering Temperature (10 s)		150	r.c

41130 41131 41132,41132A 41133

INFRARED LIGHT EMITTING DIODE PHOTO DARLINGTON TRANSISTOR CDUPLED PAIR

STYLE F PN 1 ANDTE I SYMMODE I NG 4 EMITTER

ል ሰነ ሰነ

Connectoration	Jens of		1 1		t
*Revine Liskage Current	14	-	0.05	100	Ац
IVR = 3.0 V, RL = 1.0 M ahmsl *Forward Voltage	٧¢		1.2	1.5	Valts
(Ip = 50 mA) Capacitance	c		150		DF.
(Vg = 0 V, f = 1.0 MHz)					-
PHOTOTRANSISTOR CHARACTERISTICS IT - 25°C and Ip -	Q unless others	rise nated)			
Cherecteristic	Symbol	Min	Typ	Mex	Unit
*Collector-Emitter Oarx Current (Vcg = 10 V, Base Open)	ICEO	-	-	100	nA.
*Collector-Bess Braskdown Vollage (Ic = 100 µA, Ic = 0)	BYCBO	30	-	-	Volls
*Collector Emitter Breskdown Vollage (fc = 100 µA, fg = 0)	BYCEO	30	-	-	Volte
*Emitter-Collector Breekdown Voltage (Ig = 100 µA, Ig = 0)	BYECO	5.0	-	-	Valte
DC Current Gain (VCE = 5.0 V, IC = 500 µA)	ptE	-	5000	-	-
COUPLED CHARACTERISTICS (TA = 25°C unless otherwise noted	•1				
Cherecteristic	Symbol	Min	Typ	Mes	Unit
*Collector Output Current (1) #N32, #N33	1c	50	-		mA
(VCE = 10 V. IF = mA, IB = 0 4N29, 4N30	"	10	-	-	
eM31		50	!		Volta
solerion Surge Voltage (2, 5) (60 Hz ac Peak, 5 Seconds)	VISO	7500	1 - 1	_	1
*4N29, 4N32		2500	-	-	
*CEM + , 1 EM + , 0 EM + .		1500	-		
Isolation Resistance (2) (V = 500 V)	<u> </u>		1011		Ohmi
*Collector-Emitter Seturation Voltage 11) 4N31 (IC = 2.0 mA, Ip = 8.0 mA) 4N32, 4N33, 4N32, 4N33	VCC(tat)	-	-	1.0	Valls
Isolation Capacitance (2)	- 1	-	0.0	-	D)
(V = 0, I = 1.0 MHz)			30		hHz
Bendwidth (3) (IC = 2.0 mA , R _L = 100 ahms, Figures B and 8)	-	-	"	_	
SWITCHING CHARACTERISTICS (Figures 7 and 9), (4)					
Turn-On Time	ton		0.8	5.0	2
(Ig = 50 mA, Ip = 200 mA, Vgc = 10 V)					!
Turn-Q1f Time	tto"		i i		
(Ig = 50 mA, Ip = 200 mA, Vgg = 10 VI 4N29, 20, 31 6N32, 33		-	17	100	
*Indicates JEDEC Registered Osts. (1) Pulsa Tratt Pulsa Widn = 200 ss, Oury Cycle < 7.0%. (2) For mit text, LED clors 1 and 2 sex common and protocrantetror clore in 10 for mit text. (2) For solutions to visial for 2.0 mA and for 2.0 mA P.P. of 10 MPs. (4) It good used to visial for 2.0 mA and for 2.0 mA P.P. of 10 MPs. (4) It good for inversive prodoctions for me and clouds of for 1, and to see the control of the con	e nat rignificen wn resing,		v 1s.		
FIGURE 2 = 4N29, 4N30, 4N31 CHARACTE	RISTICS		E 3 - 4N32,	41433	
/M	40 - ACE + 19 A				9 2
M (CI • 18 V)	I		T 11 • 15°C T		
20 1395		1 1 1 2570		//	
	10			/	
ā so		7	=	1020	
\$ 20 Justic	ž ::	161	1	er I I I I I	1
19 19 19 19 19 19 19 19 19 19 19 19 19 1			<u> </u>		-4-21
² " / - / - / - / 	-	7-7			
	11/	.7111	111	111111	7
95 Q7 18 2.0 2.0 53 78 10 20 25 50		25 17 12	77 42	50 /2 7	.3
IS, FORWARD CIGOS CURREY "-AL		1,134044	3 3100E C*** 4 E	HE I TAF	
(A) MOTOROLA Semicone	ductor	Produ	cts in	z	

Specifications and Applications Information

STEPPER MOTOR DRIVER

The SAA1042 drives a two-phase stepper motor in the bipolar mode. The device contains: three input stages, a logic section and two output stages.

- Drive Stages Ossigned for Motors: 6.0 V and 12 V: SAA1042
 24 V: SAA1042A
- 500 mA/Coil Orive Capability
- . Built-In Clamp Olodes for Overvoltage Suppression
- · Wide Logic Supply Voltage Range
- · Accepts Commands for CW/CCW and Half/Full Step Operation
- . Inputs Compatible with Popular Logic Families: MOS, TTL, DTL
- · Set input Defined Output State
- Drive Stage Bias Adaptable to Motor Power Dissipation for Optimum Efficiency

SAA1042 SAA1042A

SAMIUAZA

Sproave ue N- 4207A

STEPPER MOTOR DRIVER

SILICON MONDLITHIC INTEGRATEO CIRCUIT

PLASTIC PACKAGE CASE 721-02

FIGURE 1 - SAA 1042 BLOCK DIAGRAM

PIN ASSIGNMENT

(Top View)

Note: Case heel sink is electrically connected to ground (Pin 9) through the die substrate

	IGS (T _A = 25°C unless atherwise sta Rating	Symbol	SAA1042	SAA104ZA	Unit
Clamping Voltage (F	ins 1, 3, 14 & 16)	Volamp	20	30	V
Ver Valtage (VgV	- V _{clamp} - V _M)	Vov		6.0	V
pply Voltage		 Vcc	20	30	V
Switching or Motor	Current/Coil	 IM.		500	mA
Input Valtage (Pine	7, 8 & 10)	V _{in} clock V _{in} Full/Half V _{in} CW/CCW		/cc	٧
	= 25°C te, Junction to Air te, Junction to Case	PD* FUA RIA AUC		2.0 20 50 8.0	°CW mw∩
Operating Junction	Tempereture Range	TJ	- 30	te +125	,C
Storege Temperatur	e Renge	Tsta	- 65	ta + 150	.0

The power disallestion, P.D. of the circuit is given by the supply voltage. Viy, and V.C. and the mater current, Ix, and can be determined from Figure 3 and 5. P.D. = Polive + Progic

ELECTRICAL CHARACTERISTICS (TA = +25°C)

Cherecteristic	Pin	Symbel	VCC	Min	Typ	Max	Unit
Supply Current	11	lcc	5.0 V 20 V	=	=	3.5 8.5	πА
Motor Supply Current (I Pin 6 = -400 µA, Pins 1, 3, 14, 16 Open) V _M = 50 V V _M = 12 V	15	IM.	5.0 V 5.0 V	=	25 30	=	mA
V _M = 24 V			5.0 V	! -	40	_	1
Input Voltage — High Slete	7, 8, 10	VIH	5.0 V to V 15 V 20 V	2.0 7.0 10 14	=	=	\ \
input Voltage — Low State	7, 8, 10	VIL	5.0 V 10 V 15 V 20 V	=	=	0.0 1.5 2.5 3.5	٧
input Reverse Current — High State (Vin = VCC)	7, 9, 10	¹ tpl	5.0 V 10 V 15 V 20 V	=	=	2.0 2.0 3.0 5.0	٨٨
Input Farward Current — Low State (Vin = Gnd)	7, 8, 10	lit	5.0 V 10 V 15 V 20 V	-10 -23 -40 -55	=	=	ш
Cutput Voltage — High State (VM = 12 V) lout = -500 mA lout = -50 mA	1, 3, 14, 16	Уон	50 te 20 V	-	V-1-20 V-1-12	=	٧
Output Veitage Low State aut = 500 mA out = 50 mA	1, 3, 14, 16	VOL	5.0 to 20 V	-	0.7 0.2	=	٧
Output Leskage Current (VM = VD = Vclamp mex.) Pin 6: Open	1, 3, 14, 16	^I OR	5 0 to 20 V	- 100	_	-	μА
Clamp Diode Ferward Voltage (Drop et les = 500 mA)	2	V¢	-	-	2.5	3.5	٧
Clock Frequency	7	le le	5.0 ta 20 V	1 0		50	kHz
"nck Pulse Width	7	tw	5.0 te 20 V	10		_	22
_d Pulse Width	6	t ₅	_	10		=	<i>μ</i> 5
Set Centrol Voltage — High State Lew State	6	-	-	V ₅₁	=	0.5	٧

INPUT/OUTPUT FUNCTIONS

Jock - (Pin 7) This input is ective on the positive edge of the clock pulse and eccopts Logic '1' input levels dependant on the supply voltage and includes hysteresis for noise immunity.

CW/CCW -- (Pin 10) This input determines the motor's rotational direction. When the input is held low, IOV, see the electrical cheracteristics) the motor's direction is nominelly clockwise (CW). When the input is in the high state. Logic '1.' the motor direction will be nominally counter clockwise (CCW), depending on the motor connections.

Full/Half Step - (Pin 8) This input determines the anguler rotetion of the motor for each clock pulse. In the low state the motor will make a full stop for each applied clock pulse, while in the high state, the motor will make half a step.

Vp - (Pin 2) This pin is used to protect the outouts (1, 3, 14, 16) where large positive spikes occur due to switching the motor coils. The maximum allowable voltage on these pins is the clamp voltage (Vclamp). Motor performance is improved if a zener diode is connected between Pin 2 end Pin 1S es shown in Figure 1.

The following conditions have to be considered when electing the zener diode:

Vclamp = VM + 6.0 V

VZ = Vciamo - VM - VF*

where: Ve = clamp diodes forward voltage drop (see Figure 4)

V_{clemo}: ≤ 20 V for SAA1042

30 V for SAA1042A

Pins 2 and 15 can be linked, in this case V2 = 0 V.

Set'Blas Input — (Pin 6) This input has two functions: The resistor Ro adapts the drivers to the motor current.

A pulse vie the resistor fla sets the outputs I1, 3, 14. 16) to a defined state.

The resistor Ag can be determined from the graph of Figure 2 according to the motor current and voltage. Smeller values of Rg will increase the power dissipation of the circuit and larger values of Rg may increase the saturation voltage of the driver transistors.

When the "set" function is not used, terminal A of the resistor Ag must be grounded. When the set function is used, terminal A has to be connected to an opencollector (buffer) circuit. Figure 7 shows this configuition. The buffer circuit (off-state) has to sustain the motor voltage VM. When a pulse is applied via the buffer and the bias resistor Rg:

During the pulse duration, the motor driver transis-

tors are turned off.

After elepsing the pulse, the outputs will have defined stotes

Figure 6 shows the timing diagram.

Figure 7 illustrates a typical application in which the SAA1042 drives a 12 V stepper motor with a current consumption of 200 mA/coil.

A bias resistor (Rp) of 56 kO is chosen eccording to Figure 2.

The maximum voltage permitted at the output pin is VM + 6.0 V (see the Maximum Ratings), in this application V_{6.4} = 12 V, therefore the maximum voltage is 18 V. The outputs are protected by the internal diodes and an external zener connected between Pins 2 and

From Figure 4, it can be seen that the voltage drop across the internal diodes is about 1.7 V at 200 mA. This results in a zener voltage between Pins 2 and 15 of:

VZ = 6.0 V - 1.7 V = 4.3 V.

To allow for production tolerances and a safety margin, a 3.9 V zener has been chosen for this example

The clock is derived from the line frequency which is phase locked by the MC14046B and the MC14024

The voltage on the clock input, is normally low (Lpgic 01). The motor steps on the positive going transition of the clock pulse.

A Logie '0' applied to the Full/Half input. Pin 3, ocerates the motor in the Full Step mode. A Logic '1' at this input will result in the Half Step mode. The logic level state on the CW-CCW Input. Pin 10, and the connection of the motor coils to the outputs detarmines the rotational direction of the motor,

These two inputs should be biased to a Logic '0' or '1' and not left floating, in the event of non-use, they should be tied to ground or the logic supply line, Year

The output drivers can be set to a fixed operation point by use of the Sct input and a bias resistor Rg. 4 positive pulse to this input turns the drivers off and sets the logic state of the outputs.

After the negative going transition of the Set pulsaand until the first positive going transition of the clock. the outputs will be:

L1 = L3 = high and L2 = L4' = low. (Sea Figure 6, the timing diagram).

The Set input can be driven by a MC140078 or a transistor whose collector resistor is Rq. If the input is not used, the 'bottom' of Rn must be grounded.

The total power displaction of the circuit can be determined from Figures 3 and 5.

PD = 0.9 W + 0.03 W = 0.93 W.

This results in a junction to ambient temperature. without a heatsink of:

T_ - TA = 50°C·W x 0.98 W = 49°C or a maximum ambient temperature of 76°C. For oneration at elevated temperatures a heatsink is required.

FIGURE 7 — TYPICAL APPLICATION SELECTABLE STEP RATES WITH THE TIME BASE DERIVED FROM THE LINE FREQUENCY

PACKAGE DIMENSIONS

	VILLI	ELERS	INCHES		
MI	WIN	WAX	MIN	MAR	
4	10.79	21.24	2,315	0 240	
	510	5 60	0 240	0.750	
4	4.06	4.57	0.150	0130	
ű.	0.63	0.55	0217	3012	
£	1 02	152	2043	0 000	
C	241	1.27	414	0.165	
H	1 32	(93	0.552	0 3/2	
1	2 13	0 46	0 013	7 119	
×	1 33	394	0.122	01:5	
Ţ,	35,15	17 34	0.157	11	
.X	-	163 5	-	152	
4	351	1 22 1	0.120	1041	
	9 27	651	2.747	2:57	
Q i	3 14 1	3/3 4	0:37	2147	
3	7 37	777		13	
1	11:1	15 (1)	0:42	24.1	

Motorpla resaives the right to make changes to any products nersen to imprive reliability. Function or design. Additions once not assume any labellity arrend out of the application or use of any product or curcuit described herein, neither does it convex any incense under its patient tights not the rights of chinese.

M

	· · · · · · · · · · · · · · · · · · ·	REVISI	0 11 5		CHECK	DATE	APPY
TR	PILOT RELEASE	OESCRIPTION .	291		5.6	7-27-73	11146
	INCORPORATED	EO WP 0432			55	2-4-80	me
	INCORPORATED				·		
		•					
		±8					
		•					
		S	S L. L.	المار والو			
	•	70 xxx 0	C+1+ & DA: 17'2 E	CULUCA	ρU		
		/ 1/2	I WE	CO.			
	4	13 9	د 1/1	9110	7		
	Pr. a	\ 5	Carle	١٠	•		
9		\ 3	(10.1000	C:			
		/ 9					
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
	2,	/ =					
							•
·-	'						
		•					
•	44						
		F	LOT	RE!	LE	ASE	
					-		}
	UPPLEMENTARY		PD	minn	rac	7110	i s
5	INFORMATION DR A. E	NEXE 49		u_{μ}	100	-	,0
	T USED ON MODEL CHE	2) i7-27-79 TITLE	10T02 ==	ECIFIC	10174	Ν.	
ر (ه)	TUSED ON MODEL CHE	5-13/17 17:1/19 4-1	NOTOR SF	FCIFIC	ATIOI TOR	٧,	

1550= 1.8

VENDOR: SIGMA INSTRUMENTS, INC. - BRAINTREE, MASS. 02184 NODEL NO: 20-22350200-E1.6 WITH MODIFIED SMAFT

GENERAL SPECIFICATIONS

TYPE: Permanent magnet rotor NO. OF PHASES: Two (4 or 8 step switching sequence) STEP ANGLE: $1.8^{\rm o}$

ANGULAR ACCURACY: +3% of one step, no lo.d, after any number of steps ±.054
AMBIENT OPERATING TEMPERATURE: -20°C to 50°C without heat sink
MAXIMUM CASE TEMPERATURE: 100°C
INSULATION: NEWA Class B
INSULATION: NEWA Class B

INSULATION REISTANCE: 1,000 M @ SOOVCE E 250C

OIELECTRIC STRENGTH: Setween windings and frame: 1,000 Vrms @ 60 Hz Setween windings: 400 Yrms 9 60 Hz

THERMAL RESISTANCE (degrees centigrade per watt)
a. FREE AIR MODE: TBO

b. INFINITE HEATSINK MODE: T80

PERFORMANCE SPEC FICATIONS VALUE PARAMETER ITEM Lñ. 120.0. HOLDING TORQUE 2 S.0/0.04 oz-in/Nm GETENT TORQUE PHASE CURRENT (UNIPOLAR) 2.3- amos 1.6 ohms 5 PHASE RESISTANCE 4.2 pH PHASE INOUCTANCE 6 1. -0.026 oz-in²/10⁻³ kgm² ROTOR INTERTIA 7 2.3 los (1.04 kg) WEIGHT 8 6 (SCE CONNECTION DIAGRAM FOR COLORS) NUMBER OF LEADS

4 V., 2 A.

(4)

25		3. 99 -	col		7::4
34465	٠.	30	لمك	3HEE77	

oxide in

LARGE SIGMA STEPPING MOTOR, #21-4270D-28408, equivalent to Sigma P/N 21-4270D-200 FO3. Permanent magnet rotor. 8 léads. Torque @ 50 PPS - 1000 oz in. Holding torque 1150 oz/in. Detent torque 22 oz/in. Current per phase 7.6 amps. Nominal phase resistance .3 ohm. Two phase. 1.8° steps. 200 steps per revolution. Any voltage from 3 to 80 VDC can be used with the appropriate external limiting resistor. Can be used with unipolar or bipolar type drive. Dimensions: 4.2" diameter x 7.0" long. Shaft: .624" diameter x 2.3" long. Front mounting flange 4.375" square with 4 mounting holes. Comes complete with specification sheets and wiring diagrams.

CONNECTION DIAGRAM FOR SIGMA STEPPER MOTOR P/N 21-4270D-200F03

TERMINAL 1 BLACK MHITE TERMINAL 2 PCD RED/WHITE TERMINAL 8 RED/WHITE TERMINAL 3 ORANGE

TERMINAL 3 ORANGE
TERMINAL 5 ORANGE/WHITE
TERMINAL 4 YELLOW
TERMINAL 7 YELLOW/WHITE

· Navigation Systems • NC Machine Tools · Piollers · Printers · Computing Scales · Process Control · Dwider Heads Antennas · 2 Shalt Sizes

MODEL 76 has been engineered to provide the potential user the maximum flexibility in selecting the physical and electrical characteristics dicialed by the application. There is the choice of two mounting configurations with the inpul/outpul connector mounted on the end or side of the housing two input shall styles, three code formals to choose from-Gray Code, Natural Binary and 8421 Binary Coded Decomal—and 10 standard resolutions. Resolutions up to 10 bits in Gay or Natural Binary and several resolutions in BCO available (example 180 and 360)

MODEL 76 any requires a single 5 VDC pawer supply for operation. The outputs are fully buffered to provide direct DTL and TTL compainbilly.

CONFIGURATION 1-STANDARD Standard options available are illustrated by the block nomenclature diagram below. When ordering, indicate options desired by completing Model Number with Designation from options tables CONNECTOR LOCATION CONFIGURATION RESOLUTION CONFIGURATION CODE FORMAT SHAFT AND BEARING SIZE USE THIS BLDCK DIAGRAM TO ORDER

TABLES OF OPTIONS

OTHER DESIGNATIONS FOR SPECIAL COMFIGURATIONS ARE ASSIGNED BY THE FACTORY

USE OF SIGNATION FROM TABLE V

USE OCSIGNATION FROM TABLE IV

OESIGNATION CROIN TABLE III

USE OESIGHATION FROM TABLE I

USE DESIGNATION
"HO" FOR HEAVY
OUTY VERSION
LEAVE BLANK FOR
STO COMFIC

CODE FORMAT OPTIONS	T OPTIONS
FORMAT	DESIGNATION
Gray Code	ည
NATURAL BINARY	NB
8421 BCO	90

These resolutions are available with Gray Code and Nafural Bingry Models

RESOLUTION OPTIONS

TABLE II

RESOLUTION DESIGNATION

8 2 8 2 5

512 512 512 512

FORMAT	DESIGNATION
Gray Code	၁ဗ
NATURAL BINARY	NB
6421 BCO	90

MOUNTING CONFIGURATION OPTIONS	VFIGURATION ONS
CONFIGURATION	DESIGNATION
Per Fig. 1 Per Fig. 2 Per Fig. 2	~ ~
with Shalf Seal Per Fig. 2 with Shalf Seal	4 n

At End of Housing On Side of Housing

TAB RESOLUTION These resolutions 8421 BC RESOLUTION 100 200 200 200 360 400 1000 1000	TABLE IN	RESOLUTION OPTIONS	These resolutions are available with 8421 BCO Models	OESIGNATION	100 180 200 360 360 400 1000
	TAB	RESOLUTIO	These resolutions 8421 BC	RESOLUTION	100 180 300 300 1000

ADDITIONAL OPTIONS

CONNECTOR LOCATION OPTIONS CONFIGURATION DESIGNATION

TABLE V

TABLE IV

The following non-standard options are available on Special Order:

- · Line Driver Outputs
 - Serialized Outputs
- · Extra tow Torque Bearings
 - · Other Shaft Configurations Special Code Formals
 - . Other Recolutions

١

MODEL 76 CONTINUED

GENERAL SPECIFICATIONS

ELECTRICAL	CODE FORMAT Optional — Gray Code, Natural Binary or B421 Binary Coded Occurnal	RESOLUTION Optional — See Tables II and III	INPUT 5 0 ± 2 ° , VOC at 300 mA maximum	OUTPUT LOGIC LEVELS Logic '1' Vcc with 4 7 K max Ohm "source" impedance Logic '0' of 5 VOC max with 3 ms. "simit" current(GC) 0 6 VOC max with 3 ms. "simit" current(GC) 0 6 VOC max with 2 ms. "simit" current	(NB & BO)	uni ILLUMINATION SOURCE Type Solid State (GAR)	Useful Life 5 years minimum OPERATING SPEED (See Note 2)
MECHANICAL	PHYSICAL CHARACTERISTICS Per Fig. 1 with optional mounting contigurations per Fig. 2 or 3	WEIGHT. 20 oz maximum	MOMENT OF INERTIA .0004 0z. In. Sec. ³	SHAFT LOADING Slandard Shall. 30 lbs maxmum Heavy Outy Shall. 70 lbs maxmum	SHAFT ROTATION	Continuous and reversible, CW Rotation viewing shaft end produces ascending count	ANGULAR ACCELERATION

10° caclasts/sec ² maxmum	OPERATING SEED (See Note 2)
10° caclasts/sec ² maxmum	OPERATING SEED (See Note 2)
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum
12° CUS	See ² (oo = RPM maxmum

		INPU	/OUTPUT	(INPUTIOUTPUT CONNECTIONS	S		
PTOTC 14 19P	CODE	MATURAL GENARY COLIFUE	BCD DCD OutPut	COMMECTOR PTDTC 14 19P	COOE	MATURAL BINABY OUTPUT	8121 6CD OUFPUT
4	0.0	-2	1	×	S	6.	500
9	1.9	2.	2	1	DIRECTIO	DIRECTION CONTROL 1-7 ans	LI-7 or
c	6.2	5.	-	2	1	,	2017
0	63	2:	e	Z	1	,	600
_	0.4	3.	5	>	•	+ 50 = 2" . VDC	DC
	6.5	2,	12	-	l	GROUND	ı
9	رو	2	#	s	Ü	CASE GROUND	01
-	13	-		Officials		JYARE	
-	1	3.	i -				

			7
			4
			The Part of the liberty
			-
			417.7
			the state of the state of the same of the state of the st
			1714
			the Parameter And
NOTES			Shaman
	_	_	

- Skewing streed is the minimum tyrn to which the encountries for subjection writions boring the encountries of a subjection writions boring the encountries of the enc
- Operating speed is the missional which the encoder may be away white maintains a background manager decoders for a regime running speed calculates to a regime runn man sex ing speed seconds for the finding section of speed
 - Double on the about 19 at the prospect of the proposition by tack of extra bow forque the interest acceptance of the about the standard by the indicated of the about the a

701 IS OF 476 B

5 For count revisor select option use configuration dash? Control to on Piet. For CVV states asimp count, connect Pin L to +50 VDC. For CCV states and count. Connect Pin L to +50 VDC.

Specification

924 - 02004 - 001

General Specifications

Type L25

Incremental Optical Encoder

ACTUAL SIZE

Notice: The design and specifications of the instruments and accessories illustrated and described in this publication are subject to improvement without notice.

Ε	Per ECN 1831	PREP BY D. McGu	ire 8/18/77
D	Per ECN 1613	1-17-83 CHK D. LaP1	ante
С	Updated per ECN 1372	APPO Jerry E	. Jandt
αĘV	DESCRIPTION		El Electronics.

Industrial Encoder Division SEI MOTION SYSTEMS COMPANY 7230 Hollister Avenue • Goleta, California 93117-2891

	General Specifications Type L25	D2004-D01	Rev
	Incremental Optical Encoder	5ht _2_	D
	SPECIFICATIO	MIS	•
1.0	Scope: This specification describes Oivision Low Torque, Instrument Grad Encoder.	the BEI Industrial Encoder le Type L25 Incremental Optical	
2.0	Mechanical Specifications		
2.1	Dimensions	See Figure 2	
2.2	Shaft Oiameter	.2497/.2495 Dia.	
2.3	Optional Flat on Shaft	.50 long X .03 deep	
2.4	Shaft Loading	Up to 5 lbs Axial and 8 lbs Radial	
2.5	Shaft Runout	.0005 T.I.R. Max.	
2.6	Starting Torque at 25°C	0.07 OzIn. Max.	
2.7	Starting Torque at 25 ⁰ C (With optional sealed bearings)	1.0 OzIn. Max.	
2.8	Bearings	Class ABEC 7	
2.9	5haft	416 Stainless Steel	
2.10	Housing	Oie Cast Aluminum	
2.11	Cover	Drawn Aluminum, .060" Wal	1
2.12	Bearing Life (mfr's specifications)	I X 10 ^g Revs at rated shaft loading	
2.13	Moment of Inertia	4.1 X 10 ⁻⁴ Oz. In. 5ec. ²	
	51ew Speed	5000 RPM Max.	
2.14			

Industrial Encoder Division 8EL MOTION SYSTEMS COMPANY 7230 Hollister Avenue • Goleta, California 93117-2891

TITLE		eral Specification Type L2S	****	02004	1-001	Rev
	Incre	mental Optical E	ncoder	Sht	3	D
3.D E1	ectrical S	pecifications				
3.1 Co						
•••				Incremental		
	ints Per Sł			1 to 2S40		
3.3 Su	oply Voltag	ie .		See Table I		
3.4 Cur	rent Requi	rements		TTL 200 Ma CMOS 1SO Ma	Max, 1SO Ma Max, 12S Ma	Тур Тур
3.5 Out	put Format			2 Channels (in quadratur electrical a See Figure I	e ± 27 ⁰ t 10 Khz	
3.6 Dut	put Format	Options		Index and Co outputs are	mplementary available	
3.7 Out	put Option	s		See Table I		
		TAB	<u>1 31</u>			٠
			Optional			
I.C. Number	Туре	Feature	Pull-up Resistor	Output	Supply Volta	ae
SN7404	T ² L	Totem Pole		16 MA/SV	+5 VOC	
SN7406	T ² L	Open Col- lector Hi-Voltage	470 Ohms	40 MA/30V	+S VOC	
SN74C04	CMOS				S to 1S VDC*	,
MC680	HTL	Totem Pole			15 VDC	
MC681	HTL	Open Col- lector	ISK Ohms		1S VDC	
MC689	HTL	Open Col- lector Hi-Voltage	1SK Ohms	207	1S VDC	
OM8830	T ² L	Line Oriver			S VDC	
4M88C30	CMOS	Line Driver			S to 15 VDC*	
		*Specify a	ctual Voltage			
		*Specify a	ctual Voltage			

Industrial Encoder Division BEI MOTION SYSTEMS COMPANY 7230 Hollister Avenue • Goleta, California 93117-2891

TITLE	General Specifications	мо. 02004-901 Re	٧
	Type L25 Incremental Optical Encoder	Sht <u>4</u> ()
3.8	Illumination	Incandescent Lamp (40,000 hours life) LEO, Optional (Index up to 1270 CPT only)	
3.9	Frequency Response (Channels A and B)	100 kHz	
3.10	Frequency Response (Index)	100 kHz	
4.0	Environmental Specifications		
4.1	Temperature Operating Storage	0 to 70°C Standard -25 to 90°C	
4.2	Shock	50 G's for 11 MSEG duration	
4.3	Vibration	5 to 2000 HZ @ 20 G's	
4.4	Humidity	98% RH without condensation	
5.0	Options - For the following option car complete specifications.	pabilities, consult factory for	
5.1	Direction Sensing	Pulse Output X1, X2 or X4	
5.2	Interpolation	Multiplied squarewave output X5	
5.3	Oual Resolution	Selectable Output	
5.4	Sinewave	Differential amplified output	s

Industrial Encoder Division 8E1 MOTION SYSTEMS COMPANY 7230 Hollister Avenue • Goleta, California 93117-2891

Industrial Encoder Division BEI MOTION SYSTEMS COMPANY 7230 Hollister Avenue • Goleta, California 93117-2891

Industrial Encoder Division 181 MOTION SYSTEMS COMPANY 7230 Hollister Avenue • Goleta California 93117-2891

General Specifications Type 125	жо. 02004-001 Rev
Type L25 Incremental Optical Encoder	Sht <u>7</u> 0
FIGURE Face Mount (
30° FI	10-32 UNF-25 .188 Min. Deep 3 places equally spaced on a 1.875 Dia. bolt circle.
45° F2	4-40 UNC-28 .250 Min. Deep 4 places equally spaced on a 1.272 Oia. bolt circle (.900 square, Ref)
F3	4-40 UNC-2B .250 Min. deeo 4 places equally spaced on a 2.000 Oia. bolt circle
30° F4	6-32 UNC-28 .250 Min. deep 3 places equally spaced on a 2.000 Oia. bolt circle

Industrial Encoder Division BET MOTION SYSTEMS COMPANY 7230 Hollister Avenue • Goleta, California 93117-2891

						NO. 02	2004-001		Rev	
		Increm	lype ental (L25 Optical Encoder	5ht B				D	
				TABLE II OUTPUT TERMINATIO	NS					
		MS3102E-16	S-1P				MS3102E-18-1P			
Outpu Optio		Channels A, B and Z		Ch. A & B with Complements	Ch. A & Z with Complements		Pin	Ch. A,B & Z n with Complement		
Pin	Α	Channel	А	A	А		А	А		
	В		В	В	Ā		В	В		
C			Z	Ã	Z		С	Z	Z	
	0	+٧		+٧	+V		0	+٧		
	Е	No Conn.		B	Ī		Е	No Conn.		
	F	Ground		Ground	Ground Case Ground		F	Ground		
	G	Case Grou	nd	Case Ground			ß	Case Ground		
							H Ā			
							1	Ē	-	
							J	7.		
			WIRE	OR OA15P CONNECTO	R TERMINA	1011				
			Wire Color	OA15P Pin Number						
Channel A			Yellow	13 .						
В Z Д			Blue	14 15						
			Orançe							
			White-Yellow	10 11						
			White-Blue							
		Z		White-Orange	12					
+5V Ground Case Ground			Red	6						
			Black							
			Green	9						

Industrial Encoder Division 8EI MOTION SYSTEMS COMPANY 7230 Hollister Avenue • Goleta, California 93117-2891

TITLE	General Specifications Type L25	D2004-001	Rev
	Incremental Optical Encoder	Sht g_	D
6.0	Ordering Information: Encoder may be specifie model numbering system:	d using the following	
	TYPE: L = Light Duty BASIC SIZE: 25 * 2.500 HOUSING CONFIGURATION LETTER: G = 2.52 Dia Servo Mount (Fig. 2) FACE MOUNT OPTIONS (Fig. 3) F1, F2 or F3 Blank = Hone SHAFT SEAL CONFIGURATION: SB = Seal Integral with Bearing Blank = Shielded Bearing CYCLES PER TURN: Enter Cycles: 500 = 500 cycles 2500 = 2500 cycles Etc. NO. OF CHANNELS:	25 G	
	A = Single Channel AB = Dual Quadrature Channels ABZ = Dual with Index AZ = Single with Index COMPLEMENTS: C = Complementary Outputs		
	Blank = None <u>OUTPUT I.C.</u> 7406, B830, 7404, BBC30, etc (See Table I Followed by "R" = Pull-up Resistor ILLUMINATION:	,	
	Blank = Incandescent (Standard) LEO = Light Emitting Diode (Optional) OUTPUT TERMINATION LOCATION: E = End S = Side (Pigtail only)		
	OUTPUT TERMINATION: MI6 = MS310ZE16S-IP Connector MI8 = MS310ZE18-IP Connector DI5 = DAL5P C = Signatil cable followed by length, i.	.e. –	
spe	C18 = Piqtail cable IB" long cial Non-Standard Features — cified on purchase order or tomer's spec		

DEVELOPMENT OF DATA ACQUISITION AND CONTROL FACILITIES FOR THE OPTIMIZATION OF DRIVE LINE EFFICIENCY

bу

KENT DOUGLAS FUNK
B.S., KANSAS STATE UNIVERSITY, 1984

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1986

ABSTRACT

Due to escalating fuel costs and increased capital costs associated with operating and ownlng agricultural tractors, considerable research has been conducted to Improve the fuel efficiency and work rate of these units. The primary focus of this research has been to accurately define field load variations and to optimize engine power utilization. The potential savings from tractor performance optimization depends upon several factors; load variability, power level, engine characteristics. transmission characteristics, and tractive efficiency.

A review of previous engine optimization work has identified several limitations which may lead to non-optimal solutions. These limitations can be reduced by: using closed loop drive line controls, a transmission which has a large number of discrete ratios or a continuously variable transmission, and developing optimization algorithms which consider the entire drive line rather than focusing only on the engine.

A joint study of Computer Control of Agricultural Tractor Drive
Lines was Initiated in April, 1984, between the Agricultural Engineering
and Mechanical Engineering Departments at Kansas State University. The
objective of this effort is to develop and test a computer control system for optimizing the performance of a diesel engine and a continuously
variable transmission as applied in an agricultural tractor. One of the
primary tasks of this study is to develop laboratory facilities in order

to study drive line efficiency.

In order to fulfill the project's computer needs, two systems were developed. One system uses an ADAC 1000 data acquisition computer and is responsible for the supervisory functions, data recording, sub-system controls, and conversion of all analog data into digital forms. The other system uses a Motorola MC68000ECB single board computer and is responsible for drive line control and optimization.

The work completed on the ADAC 1000 falls into two main categories; a complete system upgrade, and development of a large software package. The structure of the software package is based upon concepts used in concurrent programming in order to preserve real time capabilities.

The work completed on the MC68000ECB includes both hardware and software developments. The hardware developments include bus expansion buffering, I/O expansion, optical isolation, and digital interfacing to numerous external devices. The software developed provides the framework for all future developments. Currently, the software executes a fully interactive environment which is useful for drive line mapping.

This project is on-going with the test facility completed, performance data collected, and a basic optimization algorithm outlined.

Plans for future work include: analyzing the collected data to establish relationships between control inputs and drive line outputs, and developing a computer simulation of the optimization algorithm in order to evaluate dynamic and performance considerations.