REDOVI SA POZITIVNIM ČLANOVIMA (KRITERIJUMI)

Posmatrajmo brojni red $a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n$ sa pozitivnim članovima.

Suma reda $S_n = a_1 + a_2 + a_3 + ... + a_n = \sum_{k=1}^{n} a_k$ je parcijalna suma.

Tražimo $\lim_{n\to\infty} S_n$.

Ako dobijemo $\lim_{n\to\infty} S_n = S$ (broj) onda red **konvergira**, a ako je $\lim_{n\to\infty} S_n = \pm \infty$ ili ne postoji, onda red **divergira**.

Košijev (Cauchyev) kriterijum

Potreban i dovoljan uslov da red $\sum_{n=1}^{\infty} a_n$ konvergira jeste da za proizvoljno $\varepsilon > 0$ postoji prirodan broj $N = N(\varepsilon)$

tako da za $n > 0 \land p > 0$ važi: $\left| S_{n+p} - S_n \right| < \varepsilon$

TEOREMA: Ako red $\sum_{n=1}^{\infty} a_n$ konvergira, onda je $\lim_{n\to\infty} a_n = 0$, to jest ako je $\lim_{n\to\infty} a_n \neq 0$ onda red sigurno ne konvergira.

Poredbeni kriterijum:

Važi za dva reda $\sum_{n=1}^{\infty} a_n$ i $\sum_{n=1}^{\infty} b_n$

i) Ako je $a_n < b_n$ onda a) $\sum_{n=1}^{\infty} b_n$ konvergentan $\Rightarrow \sum_{n=1}^{\infty} a_n$ konvergentan

b)
$$\sum_{n=1}^{\infty} a_n$$
 divergentan $\Rightarrow \sum_{n=1}^{\infty} b_n$ divergentan

ii) Ako je $\frac{a_{n+1}}{a_n} < \frac{b_{n+1}}{b_n}$ onda a) $\sum_{n=1}^{\infty} b_n$ konvergentan $\Rightarrow \sum_{n=1}^{\infty} a_n$ konvergentan

b)
$$\sum_{n=1}^{\infty} a_n$$
 divergentan $\Rightarrow \sum_{n=1}^{\infty} b_n$ divergentan

iii) Ako je $\lim_{n\to\infty} \frac{a_n}{b_n} = M$, $(M \neq 0)$ M je konačan broj onda redovi istovremeno konvergiraju ili divergiraju

Ovde se najčešce za uporedjivanje koristi red $\sum_{n=1}^{\infty} \frac{1}{n^k}$; ovaj red za k>1 konvergira, a za k \le 1 divergira

Dalamberov kriterijum

Ako za red $\sum_{n=1}^{\infty} a_n$ postoji $\overline{\lim}_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = r$ onda važi:

- za r > 1 red divergira
- za r = 1 neodlučivo
- za r < 1 konvergira

Košijev koreni kriterijum:

Ako za red
$$\sum_{n=1}^{\infty} a_n$$
 postoji $\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|} = p$ onda važi :

- za p > 1 red divergira
- za p = 1 neodlučivo
- za p < 1 konvergira

Rabelov kriterijum:

Ako za red
$$\sum_{n=1}^{\infty} a_n$$
 postoji $\lim_{n\to\infty} n(\frac{a_n}{a_{n+1}}-1) = t$ onda :

- -za t > 1 konvergira
- -za t = 1 neodlučiv
- -za t < 1 divergira

Gausov kriterijum:

Ako za red $\sum_{n=1}^{\infty} a_n$ sa pozitivnim članovima postoji:

$$\frac{a_n}{a_{n+1}} = \lambda + \frac{\mu}{n} + o(\frac{1}{n^{1+\varepsilon}}) \quad \text{za} \quad \forall \varepsilon > 0 \text{ tada:}$$

- i) Ako je $\lambda > 1$ red konvergira
- ii) Ako je $\lambda < 1$ red divergira
- iii) Ako je $\lambda = 1$ tada $\begin{cases} za \mu > 1 \text{ red konvergira} \\ za \mu < 1 \text{ red divergira} \end{cases}$

Košijev integralni kriterijum:

Ako funkcija f(x) opada, neprekidna je i pozitivna, tada red $\sum_{n=1}^{\infty} f(n)$ konvergira ili divergira istovremeno sa

integralom
$$\int_{1}^{\infty} f(x)dx$$