Machine Learning - MIRI Master (Final quiz - June 8, 2015)

Tick $\mathbf{clearly}$ the claims that you think are \mathbf{true} - deliver just \mathbf{this} \mathbf{sheet} back

Name:

1. Co	mplexity control and all that.	1. False 2. False	
	If we keep complexity low, we do not need to care about training error	3. True 4. False -	only complex mod
	Training error is always smaller (or equal) than test error	5. False	
	Supplying more training data reduces the chances to obtain an overfitted model		
	Regul <mark>arization pe</mark> nalizes models that are either simpler or more complex than neede	ed	
	Training error is enough to perform model selection		
	The VC dimension for a two-class classifier penalizes training sample size		
	The VC dimension for a two-class classifier is the maximum number of linear separat the classifier can perform	ions tha	t
	In order to check that the VC dimension is (at least) some integer k , we just need points that can be shattered	to find I	¢
	Checking that the VC dimension is infinite requires an infinite number of checks		
	A two-class classifier with infinite VC dimension must have an infinite (or very large) of parameters) numbe	r
2. Ba y	vesian classifiers.		
	The Bayes formula converts prior distributions into posterior distributions		
	The Bayes formula is of theoretical importance, but can never be used in practice		1. True
	The numerator in Bayes formula is enough to perform classification		2. False 3. True
	The Bayes classifier is the best possible classifier when the prior and posterior distract known	ribution	5. True 6. False
	For normally distributed classes, Bayesian classifiers turn out to be quadratic disc functions (QDA)	riminan	9. False
	For normally distributed classes, statistical independence among all variables yieldiscriminant functions (LDA)	ds linea	10. Fals
	For normally distributed classes, Bayesian classifiers are minimum-distance classifier	s	
	The Naive-Bayes classifier assumes statistical independence among all variables		
	The kNN classifier can be explained as a Bayesian classifier		
	The kNN classifier works better with more neighbours, although it is computational costly	ally more	e
3. Ma	ximum Likelihood and GLMs.		1. True
	The likelihood of a sample is its density for a given choice of parameters		2. Fals 3. Fals
	The likelihood of a sample is a function of the sample		4. Fals 5.
	Logistic regression is a generative linear classifier		6. Fals 7.
	Logistic regression assumes normally distributed classes		8.
	In a Generalized Linear Model, the prediction is the logistic function applied to function of the predictors	a linear	9. Fals 10. Fa
	In Poisson regression, we are interested in predicting integer outcomes, which are equa	lly likely	y
	In a Generalized Linear Model, we always find the logistic function in one way or and it is called the link function)	other (se)

 \square In statistics, bias and variance are opposite concepts: increasing one must decrease the other

٥	Variance always decreases with increasing sample size; however, bias can increase or stay the same			
4. Regression, linear and non-linear.				
۵	The regression function is the best possible model in regression, and achieves zero error on the training data			
	The risk is equal to the sum of the (squared) bias, the variance and the noise variance			
	The theoretical MSE does not depend on the regression function explanate	ion in notion		
	Models that are "more complex than needed" will tend to have a large bias and large variance			
	Models that are "less complex than needed" will tend to have a small bias and small variance	1. False 2. True		
	A linear combination of non-linear (fixed) functions of the inputs make a linear model	3. False 4. False		
		5. False		
	Non-linear functions of the data can be estimated by using linear fitting techniques	6. False 7. False		
	Both RBFs and MLPs create non-linear models by learning adaptive regressors (regressors with parameters)	8. True 9. True		
	Regularization allows the specification of models that are more complex than needed; it also	10. True		
_	helps numerically			
5. Ke r	rnels and SVMs.			
	The kernel function defines kernel matrices whose elements are always positive			
	The kernel function defines kernel matrices whose elements are always non-negative	 False False - only eigen 		
	<u> </u>	value non negative, elemnet can be +ve or		
	functions is always a kernel	_ve 3. False - both kernel		
		4. True 5. Fasle - can be		
		applied to both supervised,		
	The cost parameter (C) in a SVM acts as a regularizer of the solution	unsupervised, ex PCA 6. True 7. True		
	Increasing the margin in a SVM leads to larger VC dimension	8. 9. False		
	Increasing the margin in a SVM leads to greater chances to separate the data	10. False		
	Increasing the value of C in a SVM, the margin of the solution may increase margin and c have inverse relation			
	Increasing the value of C in a SVM, the number of training errors may increase			
6. Miscellaneous.				
	The k-means algorithm converges to a global optimum if the number of iterations goes to infinity			
	A Gaussian mixture model assumes normality of the training data individual is gaussian, but whole training	data is not gaussian		
	The k-means algorithm is used to fine-tune a Gaussian mixture model after the latter has converged	1. False		
	The backpropagation algorithm computes the partial derivatives of the error function with respect to the network weights	2. False 3. False 4. True		
	The backpropagation algorithm must be coupled with an optimization method (update rule) to make it a learning algorithm for a MLP	5. True 6. True 7. True		
	A MLP requires the specification of the number of hidden neurons; this is best done by	8. 9. False		
	trial-and-error, monitoring the fitting error of the network	10. True		
	RBF neural networks are a particular case of MLP networks only activation function might be different but is particular case			
	In a RBF neural network, regularization does not make sense, because it is based on Euclidean			
	distance regularization makes sense, is based on Euclidean distance			
	Feature selection can never increase the practical performance of a learning method, it only reduces learning time			
	Feature selection can be performed after feature extraction, using the extracted features as			

new variables for selection