

FCC TEST REPORT (PART 22)

Product: LTE phone

Model No.: XP5700

FCC ID: WYPL23V013AA

Applicant: Sonim Technologies, Inc.

Address: 1825 S. Grant St., Suite 200., San Mateo, CA, 94402

Manufacturer: Sonim Technologies (Shenzhen) Limited

2nd Floor, No. 2 Building Phase B, Daqian Industrial park,

Address: Lange Park B, Ching Phase B, D. Ching

Longchang Road, 67 District, Baoan, Shenzhen, P. R. China

Prepared by: Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

Lab Location: No. 34, Chenwulu Section, Guantai Rd., Houjie Town,

Dongguan City, Guangdong 523942, China

TEL: +86 769 8593 5656

FAX: +86 769 8593 1080

E-MAIL: customerservice.dg@cn.bureauveritas.com

Report No.: RF160524W004-3

Received Date: May 24, 2016

Test Date: May 25, 2016 ~ Jun. 20, 2016

Issued Date: Jun. 22, 2016

This report should not be used by the client to claim product certification, approval, or endorsement by

A2LA or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

TABLE OF CONTENTS

R	RELEASE CONTROL RECORD	4
1	1 CERTIFICATION	5
2	2 SUMMARY OF TEST RESULTS	6
	2.1 MEASUREMENT UNCERTAINTY	6
	2.2 TEST SITE AND INSTRUMENTS	7
3	3 GENERAL INFORMATION	8
	3.1 GENERAL DESCRIPTION OF EUT	8
	3.2 CONFIGURATION OF SYSTEM UNDER TEST	g
	3.3 DESCRIPTION OF SUPPORT UNITS	10
	3.4 TEST ITEM AND TEST CONFIGURATION	10
	3.5 EUT OPERATING CONDITIONS	12
	3.6 GENERAL DESCRIPTION OF APPLIED STANDARDS	12
4	4 TEST TYPES AND RESULTS	13
	4.1 OUTPUT POWER MEASUREMENT	4.0
	4.1 OUTPUT POWER MEASUREMENT	
	4.1.2 TEST PROCEDURES	
	4.1.3 TEST SETUP	
	4.1.4 TEST RESULTS	
	4.2 FREQUENCY STABILITY MEASUREMENT	
	4.2.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT	
	4.2.2 TEST PROCEDURE	
	4.2.3 TEST SETUP	
	4.3 OCCUPIED BANDWIDTH MEASUREMENT	
	4.3.1 TEST PROCEDURES	
	4.3.2 TEST SETUP	
	4.4 BAND EDGE MEASUREMENT	
	4.4.1 LIMITS OF BAND EDGE MEASUREMENT4.4.2 TEST SETUP	
	4.4.3 TEST PROCEDURES	
	4.4.4 TEST RESULTS	
	4.5 CONDUCTED SPURIOUS EMISSIONS	23
	4.5.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT	
	4.5.2 TEST PROCEDURE	
	4.5.3 TEST SETUP	
	4.5.4 TEST RESULTS	24
	4.6 RADIATED EMISSION MEASUREMENT	27

	A TECT OTANDADD	27
	M TEST STANDARD	
4.7 PEAK TO AVERAGE R	ATIO	37
4.7.1 LIMITS OF PEAK	TO AVERAGE RATIO MEASUREMENT	37
4.7.3 TEST PROCEDUI	RES	37
4.7.4 TEST RESULTS		38
5 PHOTOGRAPHS OF THE TE	EST CONFIGURATION	41
6 INFORMATION ON THE TES	STING LABORATORIES	42

RELEASE CONTROL RECORD

ISSUE NO.	JE NO. REASON FOR CHANGE	
RF160524W004-3	Original release	Jun. 22, 2016

1 CERTIFICATION

PRODUCT: LTE phone

BRAND NAME: Sonim

MODEL NAME: XP5700

APPLICANT: Sonim Technologies, Inc.

TESTED: May 25, 2016 ~ Jun. 20, 2016

TEST SAMPLE: Identical Prototype

TEST STANDARDS: FCC PART 22, Subpart H

ANSI/TIA/EIA-603-D

The above equipment has been tested by **Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch,** and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY :	Pil	, DATE:	Jun. 22, 2016	
	(Amyee Qian / Engineer)			

APPROVED BY : ______ , DATE: _____ Jun. 22, 2016

(William Chung / Manager)

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: FCC Part 22 & Part 2					
STANDARD SECTION	1.1.1.1.1.1TEST TYPE	RESULT	REMARK			
2.1046 22.913 (a)	Effective Radiated Power	PASS	Meet the requirement of limit.			
2.1055 22.355	Frequency Stability	PASS	Meet the requirement of limit.			
2.1049 22.917b	IOccupied Bandwidth		Meet the requirement of limit.			
	Peak to average ratio*	PASS	Meet the requirement of limit.			
22.917	22.917 Band Edge Measurements		Meet the requirement of limit.			
2.1051 22.917	Conducted Spurious Emissions	PASS	Meet the requirement of limit.			
2.1053 22.917	Radiated Spurious Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -21.40dB at 37.76MHz.			

^{*} Refer to KDB 971168 D01 Power Meas License Digital Systems v02r02.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	2.66dB
	9KHz ~ 30MHz	2.74dB
Radiated emissions	30MHz ~ 1GHz	3.55dB
Nadiated emissions	1GHz ~ 18GHz	4.84dB
	18GHz ~ 40GHz	1.94dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.2 TEST SITE AND INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESR7	101494	Apr. 05,16	Apr. 04,17
Signal and Spectrum Analyzer	Rohde&Schwarz	FSV40	101094	Apr. 05,16	Apr. 04,17
Bilog Antenna 1	Teseq	CBL 6111D	30643	Jun. 25,15	Jun. 24,16
Bilog Antenna 2	Teseq	CBL 6111D	27089	Jun. 25,15	Jun. 24,16
Horn Antenna	ETS-Lindgren	3117	00062558	May 30,14	May 29,17
Horn Antenna (15GHz-40GHz)	SCHWARZBECK	BBHA 9170	BBHA9170147	Jan. 21,14	Jan. 20,17
Amplifier	Burgeon	BPA-530	100220	Apr. 05,16	Apr. 04,17
Pre-Amplifier	HP	8449B	3008A00409	Apr. 25,15	Apr. 24,17
Pre-Amplifier (18GHz-40GHz)	EMCI	EMC 184045	980102	Nov. 11,15	Nov. 10,16
GPS Generator+ Antenna	TOJOIN	GNSS-5000A	E1-010119	Aug. 08, 14	Aug. 07, 16
3m Semi-anechoic Chamber	ETS-LINDGREN	9m*6m*6m	NSEMC003	Mar. 12,16	Mar. 11,18
Test Software	ADT	ADT_Radiated _V7.6.15.9.2	N/A	N/A	N/A
Power Meter	Anritsu	ML2495A	1139001	Feb.19,16	Feb. 18,17
Power Sensor	Anritsu	MA2411B	1126068	Feb.19,16	Feb. 18,17
Power Sensor	Keysight	U2021XA	MY55060016	May 27,15	May 25,17
Power Sensor	Keysight	U2021XA	MY55060018	May 27,15	May 24,17
Digital Multimeter	FLUKE	15B	A1220010DG	Oct. 12, 15	Oct.11, 16
Humid & Temp Programmable Tester	Haida	HD-2257	110807201	Sep.07,15	Sep. 06,16
Oscilloscope	Agilent	DSO9254A	MY51260160	Nov. 09,15	Nov. 08,16
Signal Analyzer	Rohde & Schwarz	FSV7	102331	Nov. 09,15	Nov. 08,16
Signal Generator	Agilent	N5183A	MY50140980	Apr. 22, 15	Apr. 21, 17
ESG Vector Signal	Agilent	E4438C	MY49072505	Sep. 01,15	Aug. 31,16
Generator					
BLUETOOTH TESTER	Rohde&Schwarz	CBT32	100811	Oct. 12, 15	Oct.11, 16

NOTE: 1. The calibration interval of the above test instruments is 12 months or 24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

- 2. The test was performed in Dongguan 966 Chamber.
- 3. The horn antenna are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 502831.

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	LTE phone		
MODEL NAME	XP5700		
TYPE NUMBER	L23V013AA		
POWER SUPPLY	5.0Vdc (adapter or host equipment) 3.7Vdc (Li-ion, battery)		
MODULATION TYPE	CDMA BC 0 GMSK		
FREQUENCY RANGE	CDMA BC 0 824.7MHz ~ 848.31MHz		
MAX. ERP POWER	CDMA BC 0 132mW		
EMISSION DESIGNATOR	CDMA BC 0 1M27F9W		
HW VERSION	A		
SW VERSION	5A.0.0-00-5.1.1-15.17.0		
ANTENNA TYPE	Fixed Internal Antenna with 2dBi gain		
I/O PORTS	Refer to user's manual		
DATA CABLE	USB cable: shielded, detacha Earphone Cable: Unshielded,		

NOTE:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. The EUT was powered by the following adapter:

me = o : mae pemereu sy me rememing adaptem		
ADAPTER		
BRAND:	Sonim	
MODEL:	S14C02	
INPUT:	AC 100-240V, 200mA	
OUTPUT:	DC 5V, 1200mA	

3. The EUT matched the following USB cable and Earphone:

USB CABLE		
BRAND:	Sunway	
MODEL:	N.A	
SIGNAL LINE:	1.1 METER	

EARPHONE	
BRAND:	Minami
MODEL:	ME-816B5-E
SIGNAL LINE:	1.2 METER

4. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

3.2 CONFIGURATION OF SYSTEM UNDER TEST

FOR RADIATION EMISSION TEST

FOR E.R.P. TEST

3.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	DC source	LONG WEI	PS-6403D	010934269	N/A
2	PC	HP	A6608CN	3CR83825X3	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS					
1	DC Line: Unshielded, Detachable 1.0m					
2	AC Line: Unshielded, Detachable 1.5m					

NOTE:

3.4 TEST ITEM AND TEST CONFIGURATION

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports. The worst case in ERP and radiated emission was found when positioned on X-plane for CDMA and Z-plane for LTE. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE MODE	DESCRIPTION
Α	EUT + Adapter +Earphone + USB Cable with CDMA BC 0
В	EUT + Battery + Earphone + USB Cable with CDMA BC 0

CDMA BC 0 MODE

EUT CONFIGURE MODE	TEST ITEM AVAILABLE CHANNEL TEST		TESTED CHANNEL	MODE
В	ERP	1013 to 777	1013, 384, 777	CDMA BC 0
В	FREQUENCY STABILITY	1013 to 777	384	CDMA BC 0
В	OCCUPIED BANDWIDTH	1013 to 777	1013, 384, 777	CDMA BC 0
В	BAND EDGE	1013 to 777	1013, 777	CDMA BC 0
В	CONDCUDETED EMISSION	1013 to 777	1013, 384, 777	CDMA BC 0
А	RADIATED EMISSION	1013 to 777	1013, 384, 777	CDMA BC 0

^{1.} All power cords of the above support units are non shielded (1.8m).

TEST CONDITION:

TEST ITEM	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
ERP	23deg. C, 62%RH	DC 5.0V from adaptor	Yuqiang Yin
FREQUENCY STABILITY	23deg. C, 62%RH	3.7Vdc from Battery	Yuqiang Yin
OCCUPIED BANDWIDTH	23deg. C, 62%RH	3.7Vdc from Battery	Yuqiang Yin
BAND EDGE	23deg. C, 62%RH	3.7Vdc from Battery	Yuqiang Yin
CONDCUDETED EMISSION	23deg. C, 62%RH	3.7Vdc from Battery	Yuqiang Yin
RADIATED EMISSION	25deg. C, 63.6%RH	DC 5.0V from adaptor	Alex Chen

3.5 EUT OPERATING CONDITIONS

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency

3.6 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2
FCC 47 CFR Part 22
KDB 971168 D01 Power Meas License Digital Systems v02r02
ANSI/TIA/EIA-603-D

NOTE: All test items have been performed and recorded as per the above standards.

TEST TYPES AND RESULTS

4.1 OUTPUT POWER MEASUREMENT

4.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

Mobile / Portable station are limited to 7 watts e.r.p.

4.1.2 TEST PROCEDURES

EIRP / ERP MEASUREMENT:

- a. All measurements were done at low, middle and high operational frequency range. RBW and VBW is 1MHz for CDMA.
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value " of step b. Record the power level of S.G
- d. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power - 2.15dBi.

CONDUCTED POWER MEASUREMENT:

The EUT was set up for the maximum power with CDMA link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

Bureau Veritas Shenzhen Co., Ltd.

4.1.3 TEST SETUP

EIRP/ERP MEASUREMENT:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

CONDUCTED POWER MEASUREMENT:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.4 TEST RESULTS

CONDUCTED OUTPUT POWER (dBm)

Band	CDMA2000 BC0				
Channel	1013	384	777		
Frequency (MHz)	824.7	836.52	848.31		
RC1+SO55	24.24	24.25	24.22		
RC3+SO55	24.37	24.31	24.36		
RC3+SO32(FCH)	24.23	24.19	24.29		
RC3+SO32(SCH)	24.22	24.17	24.28		
RC1+SO3,1/8 Rate	24.31	24.29	24.36		
RTAP 153.6	24.23	24.26	24.28		
RETAP 4096	24.28	24.25	24.21		

ERP POWER (dBm)

Channel	Frequency (MHz)	LVL (dBm)	Correction Factor(dB)	ERP(dBm)	ERP(mW)	Polarization (H/V)
1013	824.7	-10.21	33.56	21.20	131.80	Н
384	836.5	-10.48	33.63	21.00	125.86	Н
777	848.3	-10.84	33.57	20.58	114.24	Н
1013	824.7	-17.28	34.24	14.81	30.24	V
384	836.5	-18.57	34.59	13.87	24.36	V
777	848.3	-18.97	34.62	13.50	22.40	V

4.2 FREQUENCY STABILITY MEASUREMENT

4.2.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT

1.5 ppm is for base and fixed station. 2.5 ppm is for mobile station.

4.2.2 TEST PROCEDURE

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the ± 0.5 °C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

4.2.3 TEST SETUP

4.2.4 TEST RESULTS

FREQUENCY ERROR VS. VOLTAGE

VOLTACE (Volta)	FREQUENCY ERROR (ppm)	LIMIT (nnm)	
VOLTAGE (Volts)	CDMA BC 0	LIMIT (ppm)	
3.7	0.0025	2.5	
3.5	0.0023	2.5	
4.2	0.0028	2.5	

NOTE: The applicant defined the normal working voltage of the battery is from 3.5Vdc to 4.2Vdc.

FREQUENCY ERROR vs. TEMPERATURE.

TEMP. (°C)	FREQUENCY ERROR (ppm)	LIMIT (ppm)
TEMP. (C)	CDMA BC 0	шин (ррш)
-30	0.0106	2.5
-20	0.0106	2.5
-10	0.0047	2.5
0	0.0059	2.5
10	0.0094	2.5
20	0.0071	2.5
30	0.0047	2.5
40	0.0035	2.5
50	0.0082	2.5
60	0.0129	2.5

4.3 OCCUPIED BANDWIDTH MEASUREMENT

4.3.1 TEST PROCEDURES

The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

4.3.2 TEST SETUP

Tel: +86 769 8593 5656

4.3.3 TEST RESULTS

CHANNEL	Frequency (MHz)	99% OCCUPIED Bandwidth (MHz)			
1013	824.70	1.27			
384	836.52	1.27			
777	848.31	1.27			

CHANNEL	Frequency (MHz)	26dB Bandwidth (MHz)
1013	824.70	1.42
384	836.52	1.42
777	848.31	1.41

4.4 BAND EDGE MEASUREMENT

4.4.1 LIMITS OF BAND EDGE MEASUREMENT

Power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

4.4.2 TEST SETUP

4.4.3 TEST PROCEDURES

- a. All measurements were done at low and high operational frequency range.
- b. The center frequency of spectrum is the band edge frequency and span is 3MHz. RBW of the spectrum is 15kHz and VBW of the spectrum is 15kHz (CDMA BC 0).
- c. Record the max trace plot into the test report.

Bureau Veritas Shenzhen Co., Ltd.

4.4.4 TEST RESULTS

Email: customerservice.dg@cn.bureauveritas.com

4.5 CONDUCTED SPURIOUS EMISSIONS

4.5.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. The emission limit equal to -13dBm.

4.5.2 TEST PROCEDURE

- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- b. Measuring frequency range is from 9 kHz to 9GHz. 20dB attenuation pad is connected with spectrum. RBW=1MHz and VBW=3MHz is used for conducted emission measurement.

4.5.3 TEST SETUP

4.5.4 TEST RESULTS

4.6 RADIATED EMISSION MEASUREMENT

4.6.1 LIMITS OF RADIATED EMISSION MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. The emission limit equal to -13dBm.

4.6.2 TEST PROCEDURES

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value " of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power 2.15dBi.

NOTE: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

4.6.3 DEVIATION FROM TEST STANDARD

No deviation

4.6.4 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.6.5 TEST RESULTS

BELOW 1GHz WORST-CASE DATA

CDMA2000 BC0:

MODE	TX channel 384	FREQUENCY RANGE	Below 1000MHz	
ENVIRONMENTAL CONDITIONS	26deg. C, 56%RH	INPUT POWER	DC 5.0V from adapter	
TESTED BY Alex Chen				
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M				

	Freq	Level		Limit Line	Over Limit	Factor	Remark	Pol/Phase
_	MHz	dBm/m	dBm	dBm/m	dB	dB/m		
1 PP	37.760	-34.50	-46.74	-13.00	-21.50	12.24	Peak	Horizontal
2	88.200	-43.42	-34.62	-13.00	-30.42	-8.80	Peak	Horizontal
3	207.510	-62.85	-45.76	-13.00	-49.85	-17.09	Peak	Horizontal
4	310.330	-69.77	-56.31	-13.00	-56.77	-13.46	Peak	Horizontal
5	475.230	-73.23	-62.83	-13.00	-60.23	-10.40	Peak	Horizontal
6	836.070	-61.67	-57.80	-13.00	-48.67	-3.87	Peak	Horizontal

MODE	TX channel 384	FREQUENCY RANGE	Below 1000MHz		
ENVIRONMENTAL CONDITIONS	26deg. C, 56%RH	INPUT POWER	DC 5.0V from adapter		
TESTED BY	Alex Chen				
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M					

	Freq	Level		Limit Line		Factor	Remark	Pol/Phase
-	MHz	dBm/m	dBm	dBm/m	dB	dB/m		
1 PP	37.760	-34.40	-33.10	-13.00	-21.40	-1.30	Peak	Vertical
2	85.290	-45.17	-34.77	-13.00	-32.17	-10.40	Peak	Vertical
3	181.320	-63.41	-50.41	-13.00	-50.41	-13.00	Peak	Vertical
4	441.280	-68.47	-59.06	-13.00	-55.47	-9.41	Peak	Vertical
5	837.040	-62.62	-58.40	-13.00	-49.62	-4.22	Peak	Vertical

ABOVE 1GHz DATA

CDMA2000 BC0

MODE	TX channel 1013	FREQUENCY RANGE	Above 1000MHz	
ENVIRONMENTAL CONDITIONS	26deg. C, 56%RH INPUT POWER		DC 5.0V from adapter	
TESTED BY	Alex Chen			
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M				

MODE TX channel 1013		FREQUENCY RANGE	Above 1000MHz		
ENVIRONMENTAL CONDITIONS	26deg. C, 56%RH	INPUT POWER	DC 5.0V from adapter		
TESTED BY	Alex Chen				
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M					

		Freq	Level		Limit Line		Factor	Remark	Pol/Phase
	_	MHz	dBm/m	dBm	dBm/m	dB	dB/m		
1		1649.000 2474.000							Vertical Vertical

MODE	TX channel 384	FREQUENCY RANGE	Above 1000MHz		
ENVIRONMENTAL CONDITIONS	26deg. C, 56%RH	deg. C, 56%RH INPUT POWER DC ada			
TESTED BY	Alex Chen				
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M					

MODE	TX channel 384	FREQUENCY RANGE	Above 1000MHz		
ENVIRONMENTAL CONDITIONS	26deg. C, 56%RH	INPUT POWER	DC 5.0V from adapter		
TESTED BY	Alex Chen				
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M					

				Read	Limit	0ver			
		Freq	Level	Level	Line	Limit	Factor	Remark	Pol/Phase
		MHz	dBm/m	dBm	dBm/m	dB	dB/m		
1	PP	1666.000	-53.73	-50.35	-13.00	-40.73	-3.38	Peak	Vertical
2		2512.000							Vertical

MODE	TX channel 777	FREQUENCY RANGE	Above 1000MHz		
ENVIRONMENTAL CONDITIONS	26deg. C, 56%RH	odeg. C, 56%RH INPUT POWER			
TESTED BY	Alex Chen				
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M					

MODE	ODE TX channel 777		Above 1000MHz		
ENVIRONMENTAL CONDITIONS	126deg C 56%RH		DC 5.0V from adapter		
TESTED BY	Alex Chen				
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M					

4.7 PEAK TO AVERAGE RATIO

4.7.1 LIMITS OF PEAK TO AVERAGE RATIO MEASUREMENT

In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB

4.7.2 TEST SETUP

4.7.3 TEST PROCEDURES

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Record the maximum PAPR level associated with a probability of 0.1%.

4.7.4 TEST RESULTS

CHANNEL	FREQUENCY (MHz)	PEAK TO AVERAGE RATIO (dB)
1013	824.70	4.10

CHANNEL	FREQUENCY (MHz)	PEAK TO AVERAGE RATIO (dB)
384	836.52	4.86

CHANNEL	FREQUENCY (MHz)	PEAK TO AVERAGE RATIO (dB)
777	848.31	4.39

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch, were founded in 2002 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Dongguan EMC/RF Lab:

Tel: +86-769-85935656 Fax: +86-769-85931080

Email: customerservice.dg@cn.bureauveritas.com

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

7 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END---