PV157 – Autentizace a řízení přístupu

Autentizační protokoly

Protokol

 Protokol je několikastranný algoritmus definovaný posloupností kroků, které specifikují akce prováděné dvěma a více stranami, pro dosažení určitého cíle

Kryptografické protokoly

- Autentizační protokol zajistí jedné straně určitou míru jistoty o identitě jiné strany (té, se kterou komunikuje), příp. protokol oboustranný
- Protokol pro ustavení klíče (key establishment protocol) – ustaví sdílené tajemství (typicky klíč)
- Autentizovaný protokol pro ustavení klíče (authenticated key establishment protocol) – ustaví sdílené tajemství se stranou, jejíž identita byla potvrzena

Autentizační protokoly

- Během protokolu autentizujeme:
 - Pouze jednu ze stran
 - Obě strany
 - Kontinuální autentizace
- Kdo koho autentizuje
 - Alice vyzývá Boba, aby se autentizoval
 - Bob se autentizuje rovnou sám bez výzvy

Autentizace heslem

- Alice se autentizuje Bobovi tak, že mu pošle své heslo
- Heslo je možné odposlechnout
- Bob po úspěšné Alicině autentizaci zná Alicino heslo a může se (např. vůči Cyrilovi) autentizovat jako Alice (pokud Alice používá stejné heslo pro autentizace vůči různým stranám)

Útok impersonací (vydáváním se za jiného)

Hašované heslo

- Při autentizaci se neposílá heslo samotné, ale pouze haš hesla
- Kdo odposlechne haš nezíská automaticky heslo
- Haš však lze použít pro podvodnou autentizaci

Útok přehráním

Emil nezná heslo, ale pošle odposlechnutý haš hesla, pomocí své pomocné aplikace

Emil

Bob

Další útoky na protokoly

- Zmíněné útoky impersonací a přehráním
- Úplný výčet je nesnadný, ale zmínit je třeba
 - útoky prolínáním (interleaving) kombinujeme zprávy z více průběhů – obvykle, ale ne nutně jen, stejného protokolu – ať již ukončených, nebo právě probíhajících (viz další slajd)
 - slovníkové útoky na protokoly využívající hesla, diskutováno u autentizace uživatelů
 - útoky využitím známého klíče (known-key) obvyklé u protokolů pro ustanovení klíče, kde se klíč ustanoví na základě staršího/ch (útočníkovi známého/ch) klíče/ů
 - další později nebo příště...

Útok prolínáním (1)

Mějme autentizační protokol:

Útok prolínáním (2)

Evě se podařilo vydávat se vůči Bobovi za Alici

Protokoly výzva-odpověď

- Protokoly typu výzva-odpověď (challengeresponse)
 - Odposlechem výzvy i odpovědi útočník moc nezíská
 - Bob se může přesvědčit o identitě Alice, bez získání jejího tajemství

Časově proměnné parametry

- Náhodná čísla (random numbers) čísla, která jsou nepredikovatelná (v tomto kontextu zahrnujeme pod náhodná čísla i čísla pseudonáhodná). Použitím náhodných čísel zajišťujeme jedinečnost a "aktuálnost/čerstvost". Získat skutečně náhodná čísla je netriviální (vyžaduje speciální HW zařízení). V praxi obvykle používáme pseudonáhodná čísla (které na základě tajného stavu semínka (seed) generují sekvence čísel). Značíme r.
- Sekvence (sequence numbers) monotonně rostoucí
 posloupnost čísel (obě strany musí dlouhodobě uchovávat
 informaci o poslední hodnotě). Jednoznačně identifikují zprávy a
 umožňují detekovat útoky přehráním předchozí komunikace.
 Značíme n.
- Časová razítka (timestamps) obě strany musí synchronizovat a zabezpečit hodiny. Zajišťují jedinečnost a časovou přesnost. Značíme t.

Protokoly výzva-odpověď

- Založené na symetrických technikách
 - Symetrické šifrování
 - Jednosměrná funkce s klíčem
 - Generátory passcode
- Založené na asymetrických technikách
 - Dešifrování
 - Digitální podpis

- Založené na symetrickém šifrování (Alice a Bob sdílí tajný symetrický klíč K)
- Standard ISO/IEC 9798-2
- Jednostranná autentizace (časové razítko)
 - A \rightarrow B: $E_{K}(t_{A}, B^{*})$
- Možné útoky
 - Útok přehráním: odposlechnu E_K(t_A,"B") a pošlu jej rychle znovu (v době platnosti t_A)
 - Změna hodin: odposlechnu E_K(t_A,"B"), později změním hodiny B tak, aby odpovídaly času t_A a znovu pošlu E_K(t_A,"B")

- Jednostranná autentizace (náhodné číslo)
 - A \leftarrow B: r_{R}
 - $A \rightarrow B: E_{\kappa}(r_{B}, B'')$
- Možné útoky
 - Útočník odposlouchává a ukládá [r_B, E_K(r_B,"B")], pokud se výzva r_B opakuje, pak je schopen poslat správnou odpověď. Případně se může aktivně snažit ovlivnit vytváření náhodných r_B (např. ovlivněním vstupu generátoru náhodných čísel Boba).
- Oboustranná autentizace (náhodná čísla)
 - A \leftarrow B: r_B
 - A \rightarrow B: $E_K(r_A, r_B, "B")$
 - A \leftarrow B: $E_K(r_B, r_A)$

- Založené na klíčovaných jednosměrných funkcích (Alice a Bob sdílí tajný symetrický klíč K)
- Standard ISO/IEC 9798-4, protokoly SKID
- Oboustranná autentizace
 - A \leftarrow B: r_{R}
 - A \rightarrow B: r_A , $h_K(r_A, r_B, "B")$
 - $\qquad A \leftarrow B: h_K(r_B, r_A, "A")$
 - h_K je MAC algoritmus

- Generátory passcode hand-held (PDA, kapesní počítače) pro bezpečné uložení dlouhodobých klíčů doplněné zadáním PINu uživatele
- Subjekty A, B sdílí tajný klíč s_A a tajný PIN p_A
 - A \leftarrow B: r_B
 - subjekt A zadá do generátoru přijatou výzvu r_B a vloží svůj
 PIN p_△
 - A \rightarrow B: $f(r_B, s_A, p_A)$

- Založené na dešifrování soukromým klíčem
- Jednostranná autentizace
 - A \leftarrow B: h(r), "B", P_A(r,"B")
 - A \rightarrow B: r
- h hašovací funkce
- h(r) slouží k prokázání znalosti r bez jeho odhalení

- Založené na digitálním podpisu
- Standard ISO/IEC 9798-3
- Jednostranná autentizace (časové razítko)
 - A \rightarrow B: $cert_A$, t_A , "B", $S_A(t_A, "B")$
- Možné útoky
 - Útok přehráním: odposlechnu S_A(t_A, "B") a pošlu jej rychle znovu (v době platnosti t_A)
 - Změna hodin: odposlechnu S_A(t_A, "B"), později změním hodiny B tak, aby odpovídaly času t_A a znovu pošlu S_A(t_A, "B")

- Jednostranná autentizace (náhodné číslo)
 - A \leftarrow B: r_B
 - A \rightarrow B: $cert_A$, r_A , "B", $S_A(r_A, r_B, "B")$
 - r_A zde zabraňuje útokům s vybraným textem
- Možné útoky
 - Obdobné útoky na náhodné r_B jako v případě symetrických technik
- Oboustranná autentizace (náhodná čísla)
 - A \leftarrow B: r_B
 - A \rightarrow B: $cert_A$, r_A , "B", $S_A(r_A, r_B, "B")$
 - A \leftarrow B: $cert_{B}$, "A", $S_{B}(r_{B},r_{A},$ "A")

Protokoly pro správu klíčů

- Účel
 - Přenos klíče
 - Ustavení klíče
 - Aktualizace klíče (strany sdílí dlouhodobý klíč
 K)
 - Zároveň i autentizace jedné nebo obou stran
- Počet stran
 - Protokol pro dvě strany
 - Protokol s důvěryhodnou třetí stranou

Symetrické techniky přenosu klíče

- Aktualizace klíče založená na symetrické šifře (Alice a Bob sdílí tajný klíč K)
 - Přenos klíče (1 zpráva, časové razítko)
 - A \rightarrow B: $E_{K}(r_{A},t_{A},"B")$
 - Přenos klíče (výzva-odpověď, náhodné nebo sekvenční číslo)
 - A \leftarrow B: n_{R}
 - $\qquad A \rightarrow B: E_{K}(r_{A}, n_{B}, B'')$

Symetrické techniky přenosu klíče

- Přenos klíče odvozením
 - A \rightarrow B: r_A
 - Nový klíč $W=E_K(r_A)$
- Aktualizace klíče se vzájemnou autentizací
 - AKEP2 (Authenticated Key Exchange Protocol 2)
 - A \rightarrow B: r_{Δ}
 - A \leftarrow B: ("B", "A", r_A , r_B), h_K ("B", "A", r_A , r_B)
 - A \rightarrow B: ("A", r_B), h_K ("A", r_B)
 - Nový klíč W=h′_{K′}(r_B)
 - h_K je MAC algoritmus, h´ je MAC algoritmus (odlišný od h), obě strany sdílí K, z K je odvozen K´

Protokol bez klíčů

- Přenos klíče bez předchozího sdíleného tajemství
 - Shamirův protokol bez klíčů (Shamir's no-key protocol)
 - Komutativní šifra E
 - Každá strana má svůj klíč K_A,K_B
 - A \rightarrow B: $E_{K_{\Delta}}(X)$
 - $\qquad A \leftarrow B: E_{K_B}(E_{K_A}(X))$
 - A \rightarrow B: $E_{K_B}(X)$
 - Nyní obě strany sdílí X; byly nutné 3 zprávy

Kerberos

- KDC (key distribution center) server sdílí klíč s každým klientem; (klienti však mezi sebou klíče nesdílí); server distribuuje klíče, které generuje.
- KTC (key translation center) server negeneruje klíče sám; klíč dodá jedna ze stran; server klíč distribuuje

Kerberos

- Vznikl při projektu Athena na MIT
- Symetrická šifra E
- 2 strany (A, B) a důvěryhodný autentizační server (značíme T)
- Cíl:
 - autentizace subjektu A vůči B
 - ustavení klíče k (zvolí T)
 - případně distribuce tajemství sdíleného A a B
- Každá strana sdílí tajemství se serverem K_{AT}, K_{BT}

Kerberos

- Zjednodušená verze protokolu
 - L doba platnosti ("lifetime")
 - Def.: ticket_B = $E_{K_{BT}}(k, "A", L)$, auth = $E_{k}("A", T_{A})$
 - (1) A \rightarrow T: "A", "B", n_A
 - (2) $A \leftarrow T: ticket_B, E_{K_{AT}}(k, n_A, L, "B")$
 - (3) A \rightarrow B: ticket_B, auth
 - (4) A \leftarrow B: $E_k(T_A)$

Asymetrické techniky přenosu klíče

- Zašifrování podepsaných klíčů
 - $A \rightarrow B: P_B(S_A("B", k, t_A))$
 - (volitelné) časové razítko t_A zároveň autentizuje A vůči
 B
 - Pouze v případě, kdy z podpisu lze získat podepsaná data
- Separátní šifrování a podpis
 - $A \rightarrow B: P_B(k, t_A), S_A(B^*, k, t_A)$
 - Pouze v případě, kdy z podpisu nelze získat podepsaná data
- Podepsání zašifrovaných klíčů
 - A \rightarrow B: t_A , $P_B(\text{"A", k})$, $S_A(\text{"B", t}_A, P_B(\text{"A",k}))$

Asymetrické techniky přenosu klíče

- X.509 obousměrná autentizace s přenosem klíče
- Def.: $D_A = (t_A, r_A, "B", P_B(k_1))$ $D_B = (t_B, r_B, "A", P_A(k_2))$
- Protokol
 - A \rightarrow B: $cert_A$, D_A , $S_A(D_A)$
 - A \leftarrow B: $cert_B$, D_B , $S_B(D_B)$

Asymetrické techniky ustavení klíče

- Diffie-Hellman protokol pro ustavení sdíleného tajemství
 - Společné prvočíslo p, generátor α v Z_p
 - A volí tajné x, B volí tajné y
 - A \rightarrow B: $\alpha^x \mod p$
 - A ← B: α^y mod p
 - -A a B sdílí K= α^{xy} mod p

Zero-knowledge protokoly

- Český překlad: protokoly s nulovým rozšířením znalostí
- Jdou dále než protokoly sdělující hesla i protokoly typu výzva-odpověď
- Zero-knowledge umožňují demonstrovat znalost nějakého tajemství bez odhalení jakékoliv informace použitelné pro získání tajemství
- Úplnost (completeness) poctivé strany vždy dosáhnou úspěšného výsledku
- Korektnost (soundness) pravděpodobnost, že nepoctivý útočník se může úspěšně vydávat za jinou stranu je mizivá

Protokol Fiat-Shamir

- Důvěryhodná strana T volí modulus n = p·q (jako v RSA), n zveřejní, ale p a q uchová v tajnosti
- A volí tajné s (nesoudělné s n, 1 ≤ s ≤ n-1), spočítá v = s² mod n. Veřejný klíč A je v.
- Subjekt A se autentizuje subjektu B:
 - A \rightarrow B: x = r^2 mod n
 - A ← B: e = 0 nebo 1
 - A → B: y = $r \cdot s^e$ mod n (B ověří zda $y^2 = x \cdot v^e$ (mod n))
 - Podvést by šlo:
 - Volbou r, x=r² mod n, pro e=0
 - Volbou r, x=r²/v (přižemž odmocninu z x neznám), pro e=1
- Opakujeme t-krát. Pravděpodobnost podvádění je 2-t.

Protokoly vyšší úrovně – SSL/TLS

Protokol SSL/TLS poskytuje:

- Autentizaci stran strany jsou autentizovány pomocí certifikátů a protokolu výzva-odpověď
- Integritu autentizační kódy (message authentication code - MAC) zajišťují integritu a autenticitu dat
- Důvěrnost po úvodní inicializaci ("handshake"), je ustaven symetrický šifrovací klíč, kterým je šifrována všechna následující komunikace (včetně přenosu hesel apod.)

Principy SSL/TLS

- Pozice SSL/TLS
 - Mezi aplikační vrstvou a protokolem TCP
 - SSL/TLS nevidí do aplikačních dat
 - SSL/TLS neprovádí elektronické podepisování přenášených dat

Aplikační vrstva

SSL/TLS

TCP/UDP

IP

Linková vrstva

Fyzická vrstva

Komponenty SSL/TLS

- Složení protokolu SSL/TLS z komponent
 - Record Layer Protocol zpracovává aplikační data
 - Handshake Protocol úvodní domluva parametrů
 - Change Cipher Specification Protocol použití nových parametrů šifrování
 - Alert protocol informace o chybách a varováních

Klíče v SSL/TLS

- Použití klíčů
 - Klient generuje PreMasterSecret, šifruje veřejným klíčem serveru a posílá serveru
 - Obě strany vytvoří blok klíčů z PreMasterSecret (posílá se šifrovaně) a náhodných čísel ClientHello a ServerHello (posílají se nešifrovaně)
 - Blok klíčů tvoří klíče pro
 - MAC klient → server
 - MAC server → klient
 - šifrování klient → server
 - šifrování server → klient
 - inicializační vektory

Record Layer Protocol

- Základní vrstva protokolu
- Pracuje nad TCP/IP (nebo jiným transportním protokolem).
- Umožňuje kombinaci s různými protokoly vyšší úrovně (HTTP, FTP, telnet apod.), které běží beze změny
- Posloupnost kroků
 - rozdělení dat na bloky o max. velikosti 2¹⁴ bajtů
 - komprimace dat
 - výpočet MAC
 - doplnění na délku bloku šifrovacího algoritmu
 - šifrování

Inicializační fáze

- Handshake Protocol
 - Umožňuje vzájemnou autentizaci serveru a klienta
 - Implicitně je autentizace serveru povinná a autentizace klienta volitelná
 - Autentizace prezentací certifikátů veřejných klíčů a znalostí odpovídajících soukromých klíčů
 - Během inicializační fáze jsou vyměněna náhodná čísla a další data, nutná pro výpočet bloku klíčů

SSL/TLS

Client

Client Hello

Client

Server

Client Key Exchange, Cipher Spec,

SECURE

SSL/TLS v praxi

Key length	Certificates seen
512	3,005
1024	386,694
2048	211,155
4096	6,315
8192	14
Other	406

- Analýza SSL certifikátů provedená v roce 2010
 - 22,65 milionů web serverů s podporou
 SSL
 - Jen 720 tisíc
 serverů s
 certifikátem se
 správným jménem

Zdroj: Qualis SSL Survey 2010

IPsec

- Protokoly IPv4 nedostatečná bezpečnost
- Historie
 - Myšlenka IPsec již v roce 1991
 - RFC v roce 1998
 - vývoj neustále pokračuje
 - IPsec pro IPv4 jen přechodné řešení, neboť IPv6 již řeší problémy bezpečnosti
- IPv6
 - Větší množství adres (adresy IPv4 nebudou již brzy stačit)
 - Bezpečnost (IPsec povinný)
 - Mobilita

IPsec

- IPsec zajišťuje
 - Autentizaci původu dat každý datagram je ověřován, zda byl odeslán uvedeným odesilatelem
 - Integrita dat ověřuje se, zda data nebyla při přenosu změněna
 - Důvěrnost dat data jsou před přenosem šifrována
 - Ochrana před útokem přehráním útočník nemůže zneužít odposlechnutou komunikaci k útoku přehráním
 - Automatickou správu klíčů

IPsec - AH

Autentizační hlavička (AH)

Next header	Length	Reserved			
Security Parameter Index					
Sequence number field					
Authentication Data					

 Autentizační hlavička slouží k zajištění původu dat, integrity dat a chrání vůči útoku přehráním.
 Je použit MAC kombinovaný se sekvenčním číslem.

IPsec - AH

Původní IP datagram

IPsec - ESP

Encapsulated Security Payload (ESP) header

Security Association Identifier (SPI)

Opaque Transport Data

 ESP zajišťuje integritu a autenticitu dat, brání útokům přehráním a zajišťuje důvěrnost dat. Je použit symetrický šifrovací klíč sdílený oběma komunikujícími stranami.

Režimy IPsec

Transportní režim (end-to-end)

Tunelovací režim (firewall-to-firewall)

IPsec

Standardní IP: IP header

- Režimy provozu IPsec
 - Transportní režim (point-to-point)

– Tunelovací režim

New IP header	ESP header	IP header	Data	ESP Trailer	ESP Auth.
			šifrováno		
		autentizo	ováno		

IPsec – správa klíčů

Oakley

- protokol pro ustavení společného klíče
- založen na protokolu Diffie-Hellman, ale:
 - strany jsou autentizovány (brání man-in-the-middle útoku)
 - sdílené klíče, dohodnuté předem
 - Veřejné klíče DNS (viz DNSSEC)
 - RSA klíče podle PGP
 - RSA klíče včetně certifikátu podle X.509
 - DSS klíče včetně certifikátu podle X.509
 - pomocí časově proměnných parametrů se brání útokům přehráním
 - pomocí tzv. cookies se brání útokům typu "DoS" (prováděné výpočty jsou totiž časově náročné)
 - umožňuje dohodu na použité grupě

ISAKMP

 framework (nezávislý na konkrétních šifrovacích algoritmech) pro správu klíčů a bezpečnostních atributů

Útoky

- Pasivní útočník analyzuje odchycená šifrovaná data
- Aktivní útočník modifikuje data a/nebo vytváří nové zprávy
- Zosobnění (impersonation) jedna strana se vydává za stranu jinou
- Přehrání (replay attack) využití dříve poslané informace
- Odraz (reflection attack) využití odeslané zprávy k okamžitému poslání odesilateli
- Volený text (chosen-text attack) vhodné volení výzev (v protokolech výzva-odpověď) pro získání dlouhodobého klíče

Útok přehráním

Protokol Diffie-Hellman (opak.)

 $\alpha^{xy} \mod p$ $\alpha^{xy} \mod p$

Útok "Man in the middle"

 $\alpha^{xy'} \bmod p$ $\alpha^{x'y} \bmod p$ $\alpha^{xy'} \bmod p$ $\alpha^{xy'} \bmod p$