

Mining Association Rules —Constraint-based Association Mining—

徐华

清华大学 计算机系 智能技术与系统国家重点实验室 xuhua@tsinghua.edu.cn

Association and Correlations

- Association and Correlations
- Efficient and Scalable Frequent Itemset Mining Methods
- Mining Various Kinds of Association Rules
- From Association Mining to Correlation Analysis
- Constraint-based Association Mining

Constraint-based Mining

- Finding all the patterns in a database autonomously? unrealistic!
 - ◆ The patterns could be too many but not focused!
- Data mining should be an interactive process
 - User directs what to be mined using a data mining query language (or a graphical user interface)
- Constraint-based mining
 - User flexibility: provides constraints on what to be mined
 - System optimization: explores such constraints for efficient mining—constraint-based mining

3

Constraints in Data Mining

- Knowledge type constraint
 - classification, association, etc.
- Data constraint using SQL-like queries
 - find product pairs sold together in stores in Chicago in Dec.' 02
- Dimension/level constraint
 - in relevance to region, price, brand, customer category
- Rule (or pattern) constraint
 - ♦ small sales (price < \$10) triggers big sales (sum > \$200)
- Interestingness constraint
 - ◆ strong rules: min_support ≥ 3%, min_confidence ≥ 60%
- Constraint based mining makes mining effective and efficient

Metarule-Guided Mining of Asso. Rule

- Specify the syntactic form of rules they are interested in mining.
- Metarule can be used as constraints to help improve the efficiency of the mining process.
- Metarules are based on the analyst's experiment, expectations, or intuition regarding the data.

metarule

```
P1(X, W) \land P2(X, V) \Rightarrow buys(X, "educational software") matched rule: age(X, "30..39") \land income(x, "42..48K") \Rightarrow buys (X, "educational software")
```

5 predicate variable and attribute variable

Metarule-Guided Mining of Asso. Rule

A rule template (inter-dimention association rule):

$$P_1 \wedge P_2 \wedge \cdots \wedge P_l \Rightarrow Q_1 \wedge Q_2 \wedge \cdots \wedge Q_r$$

 $\boldsymbol{P}_{i,}$ and $\boldsymbol{Q}_{i:}$ instantiated predicates, predicate variables,

- p = l + r: the number of predicates in metarule,
- Find all the frequent p-predicate sets, Lp
- Have the support or count of the I-predicate subsets of Lp in order to compute the confidence of rules derived from Lp
- Data cube: p-D cuboid and I-D cuboid

Constraint pushing: Mining Guided by Additional Rule Constrains

- Hybrid-dimensional association rule mining
 - Constant initiation and aggregate functions
- One example
 - Find the sales of what cheap items that may promote the sales of what expensive items in the same category for Chicago customers in 2004
 - Sales (customer-name, item-name, TID)
 - · lives-in (customer-name, region, city)
 - Item (item-name, group, price)
 - · Transaction (TID, day, month, year)

7

Constraint pushing: Mining Guided by Additional Rule Constrains

- (1) mine associations as
- (2) lives in(C;; "Chicago") ^ sales+(C; ?{I}; {S})) sales+(C; ?{J}; {T}) (metarule)
- (3) from sales
- (4) where S.year = 2004 and T.year = 2004 and I.group = J.group
- (5) group by C, I.group (dimension level constraints)
- (6) having sum(I.price) < 100 and min(J.price) >=500 (constraint pushing? Rule constraints)
- (7) with support threshold = 1% (interestingness constraints)
- (8) with confidence threshold = 50%

```
lives in(C;; "Chicago") ^ sales(C; "Census_CD";) ^ sales(C; "MS=Office";)=>sales(C; "MS=SQLServer";); [1:5%; 68%]
```


Constraint pushing: Mining Guided by Additional Rule Constrains

- How can we use rule constraints to prune the search space?
- what kind of rule constraints can be 'pushed' deep into the mining process and still ensure the completeness of the answer returned for a mining query?
- Categories of rule constraint
 - ◆ Anti-monotonic (反单调的)
 - ◆ Monotonic (单调的)
 - ◆ Succinct (简洁的)
 - ◆ Convertible (可转变的)
 - ◆ Inconvertible (不可转变的)

9

Anti-Monotonicity in Constraint Pushing

- Anti-monotonicity
 - When an itemset S violates the constraint, so does any of its superset
 - **◆** sum(S.Price) ≤ v is anti-monotone
 - $sum(S.Price) \ge v$ is not anti-monotone
- **Example. C: range(S.profit) ≤ 15 is anti-monotone**
 - ♦ Itemset *ab* violates C
 - So does every superset of ab

TDB (min sup=2)

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
а	40
b	0
с	-20
d	10
е	-30
f	30
g	20
h	-10

Monotonicity for Constraint Pushing

- Monotonicity
 - When an itemset S satisfies the constraint, so does any of its superset
 - $sum(S.Price) \ge v$ is monotone
 - min(S.Price) ≤ v is monotone
- Example. C: range(S.profit) ≥ 15
 - ◆ Itemset *ab* satisfies C
 - ◆ So does every superset of ab

TDB (min_sup=2)

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	10
e	-30
f	30
g	20
h	-10

П

Succinctness

- Succinctness:
 - Given A₁, the set of items satisfying a succinctness constraint C, then any set S satisfying
 C is based on A₁, i.e., S contains a subset belonging to A₁
 - ◆ Idea: Without looking at the transaction database, whether an itemset S satisfies constraint C can be determined based on the selection of items
 - min(S.Price) ≤ v is succinct
 - sum(S.Price) ≥ v is not succinct
- Optimization: If C is succinct, C is pre-counting pushable.

Converting "Tough" Constraints

- Convert tough constraints into anti-monotone or monotone by properly ordering items
- Examine C: avg(S.profit) ≥ 25
 - Order items in value-descending order
 - < a, f, g, d, b, h, c, e>
 - ◆ If an itemset *afb* violates C
 - So does afbh, afb*
 - It becomes anti-monotone!

TDB (min_sup=2)

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
a	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

17

Strongly Convertible Constraints

- avg(X) ≥ 25 is convertible anti-monotone
 w.r.t. item value descending order R: < a, f,
 g, d, b, h, c, e>
 - If an itemset afviolates a constraint C, so does every itemset with af as prefix, such as afd
- avg(X) ≥ 25 is convertible monotone w.r.t. item value ascending order R⁻¹: < e, c, h, b, d, g, f, a>
 - If an itemset d satisfies a constraint C, so does itemsets df and dfa, which having d as a prefix
- **⊙** Thus, $avg(X) \ge 25$ is strongly convertible

Item	Profit
a	40
b	0
С	-20
d	10
e	-30
f	30
g	20
h	-10

Can Apriori Handle Convertible Constraint?

- A convertible, not monotone nor anti-monotone nor succinct constraint cannot be pushed deep into an Apriori mining algorithm
 - Within the level wise framework, no direct pruning based on the constraint can be made
 - ◆ Itemset df violates constraint C: avg(X)>=25
 - Since adf satisfies C, Apriori needs df to assemble adf, df cannot be pruned
- But it can be pushed into frequent-pattern growth framework!

Item	Value
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

19

What Constraints Are Convertible?

Constraint	Convertible anti-monotone	Convertible monotone	Strongly convertibl e
avg(S) ≤ , ≥ v	Yes	Yes	Yes
median(S) ≤ , ≥ v	Yes	Yes	Yes
$sum(S) \leq v \text{ (items could be of any value, } v \geq \\ 0)$	Yes	No	No
$sum(S) \le v \text{ (items could be of any value, } v \le 0)$	No	Yes	No
$sum(S) \geq v \text{ (items could be of any value, } v \geq \\ 0)$	No	Yes	No
$sum(S) \geq v \text{ (items could be of any value, } v \leq 0)$	Yes	No	No

nstrain	nt-Based Mining—A Ge	neral Picture			***
	Constraint	Antimonotone	Monotone	Succinct	7
	v ∈ S	no	yes	yes	1
	S⊇V	no	yes	yes	1
	S⊆V	yes	no	yes	1
	$min(S) \le v$	no	yes	yes	1
	min(S) ≥ v	yes	no	yes	1
	max(S) ≤ v	yes	no	yes	1
	max(S) ≥ v	no	yes	yes	1
	count(S) ≤ v	yes	no	weakly	1
	count(S) ≥ v	no	yes	weakly	1
	$sum(S) \le v (a \in S, a \ge 0)$	yes	no	no	1
	$sum(S) \ge v (a \in S, a \ge 0)$	no	yes	no	1
	range(S) ≤ v	yes	no	no	1
	range(S) ≥ v	no	yes	no	1
	$avg(S) \theta v, \theta \in \{=, \leq, \geq \}$	convertible	convertible	no	1
	$support(S) \geq \xi$	yes	no	no	1
	support(S) ≤ ξ	no	yes	no	

Summary

- Concept of Association rule mining
- Association rule categories
- Apriori association rule mining
- FP-tree growth association rule mining
- Mining various kinds of association rules
- Constraint based association rule mining

