

Monsoon Semester (Aug-Nov), 2019 Discrete Structures (DS)

Tutorial V September 8, 2019

Due: 09.09.19 Instructor: Dr. P. Kumar

INSTRUCTIONS:

Problems to be discussed in Tutorial in the week of Monday 9th Sep 2019.

- 1. (Free or bound) Indicate the variables that are free and bound. Also show the scope of the quantifiers.
 - (a) $(x)(P(x) \land R(x)) \rightarrow (x)P(x) \land Q(x)$
 - (b) $(x)(P(x) \wedge (\exists x)Q(x)) \vee ((x)P(x) \rightarrow Q(x))$
 - (c) $(x)(P(x) \leftrightarrow Q(x) \land (\exists x)R(x)) \land S(x)$
- 2. (Incorrect Derivations) What is wrong in the following derivations?
 - 1. (a) $P(x) \to Q(x)$ P
 - (b) $(\exists x)(P(x) \to Q(x))$ (1), EG
 - 2. (a) $P(a) \rightarrow Q(b)$ P
 - (b) $(\exists x)(P(x) \to Q(x))$ (1), EG
 - 3. (a) $P(a) \wedge (\exists x)(P(a) \wedge Q(x))$ P
 - (b) $(\exists x)(P(x) \land (\exists x)(P(x) \land Q(x)))$ (1), EG
- 3. (Implications) Demonstrate the following implications.
 - 1. $\neg((\exists x)P(x) \land Q(a)) \implies (\exists x)P(x) \rightarrow \neg Q(a)$
 - $2. \ (x)(\neg P(x) \to Q(x)), \ (x)\neg Q(x) \implies P(a)$
 - $3. \ (x)(P(x) \rightarrow Q(x)), \ (x)(Q(x) \rightarrow R(x)) \implies P(x) \rightarrow R(x)$
- 4. (Implication using CP rule) Use CP rule if possible to show the following implications.
 - 1. $(x)(P(x) \to Q(x)), (x)(R(x) \to \neg Q(x)) \implies (x)(R(x) \to \neg P(x))$
- 5. (Mistake in derivation) There is a mistake in the following derivation. Find it.
 - 1. (1) $(x)(P(x) \to Q(x))$
 - 2. (2) $P(y) \to Q(y)$ US, (1)
 - 3. (3) $(\exists x)P(x)$ P
 - 4. (4) P(y) ES, (3)
 - 5. (5) Q(y) T,(2),(4), I_{11}
 - 6. (6) $(\exists x)Q(x)$ EG, (5)

Student's name: End of Tutorial