ANÁLISIS ESPACIO-TEMPORAL DE LA MORTALIDAD MATERNA EN MÉXICO: PATRONES GEOGRÁFICOS Y TENDENCIAS 2002-2022

Estudiante:

Olimpia de los Angeles Moctezuma Juan

Investigador Responsable:

Dr. Miguel Felix Mata Rivera

Institución Anfitriona:

Instituto Politécnico Nacional

Programa:

Programa Interinstitucional para el Fortalecimiento de la Investigación y el Posgrado del Pacífico 2025

Fecha:

Julio 2025

Contenido

ANÁLISIS ESPACIO-TEMPORAL DE LA MORTALIDAD MATERNA EN MÉXICO: PATRONES GEOGRÁFICOS Y TENDENCIAS 2002-20221	
Resumen ejecutivo	3
Introducción	4
Metodología	5
Resultados	7
Discusión	14
Conclusiones	15
Trabajo futuro	16
Referencias	17

Resumen ejecutivo

La mortalidad materna constituye un indicador crítico de la calidad de los sistemas de salud y el desarrollo social. Este estudio analiza los patrones espacio-temporales de la mortalidad materna en México durante el período 2002-2022, utilizando datos oficiales de la Secretaría de Salud que comprenden 23,133 defunciones maternas.

Metodología: Se implementó un enfoque multidisciplinario combinando análisis estadístico descriptivo, técnicas de clustering espacial con K-means, análisis de series temporales y cartografía temática mediante QGIS. Los datos fueron procesados utilizando Python para análisis exploratorio y modelado estadístico, identificando patrones geográficos y tendencias temporales.

Resultados principales: El análisis reveló una reducción significativa del 32.8% en la mortalidad materna entre 2002-2019, interrumpida por un incremento del 39.7% durante la pandemia COVID-19 (2020-2021). Se identificaron cuatro clusters epidemiológicos distintos: Estados del Norte/Noreste con mejor acceso a servicios de salud (24.4% sin derechohabiencia), Estados del Centro-Occidente con mortalidad media, Estados con características mixtas, y Estados grandes/poblados con situación crítica (42.1% sin derechohabiencia, 1,881 casos promedio). El análisis geoespacial confirmó un patrón Norte-Sur de desigualdad en el acceso a servicios de salud materna.

Conclusiones: Los hallazgos evidencian disparidades geográficas sistemáticas en la mortalidad materna, con estados del sur presentando mayor vulnerabilidad. La pandemia COVID-19 exacerbó las desigualdades preexistentes, particularmente en estados con menor cobertura de servicios de salud. Los resultados proporcionan evidencia científica para orientar políticas públicas de salud materna diferenciadas territorialmente.

Palabras clave: mortalidad materna, análisis espacial, clustering, COVID-19, México, desigualdades en salud.

Introducción

Contexto y antecedentes del tema

La mortalidad materna representa uno de los indicadores más sensibles del desarrollo socioeconómico y la calidad de los sistemas de salud a nivel mundial. Según la Organización Mundial de la Salud, cada día mueren aproximadamente 810 mujeres por causas prevenibles relacionadas con el embarazo y el parto, siendo el 94% de estas muertes en países de ingresos bajos y medios-bajos. En México, la mortalidad materna constituye un problema de salud pública persistente que refleja desigualdades estructurales en el acceso a servicios de salud de calidad.

Durante las últimas dos décadas, México ha implementado diversas estrategias para reducir la mortalidad materna, incluyendo el fortalecimiento del Seguro Popular, programas de atención prenatal y la profesionalización de la atención obstétrica. Sin embargo, la pandemia de COVID-19 ha planteado nuevos desafíos, interrumpiendo servicios esenciales de salud materna y exacerbando vulnerabilidades preexistentes.

Justificación del estudio

El análisis espacio-temporal de la mortalidad materna es fundamental para comprender los patrones geográficos de desigualdad y diseñar intervenciones focalizadas. Los estudios previos han documentado variaciones significativas entre entidades federativas, pero existe una necesidad de análisis más sofisticados que integren técnicas de clustering espacial y series temporales para identificar perfiles epidemiológicos específicos.

La disponibilidad de datos oficiales de la Secretaría de Salud (2002-2022) que comprenden 23,133 defunciones maternas ofrece una oportunidad única para realizar un análisis comprehensivo que abarque tanto el período de progreso pre-pandémico como el impacto de la crisis sanitaria global.

Objetivo general

Analizar los patrones espacio-temporales de la mortalidad materna en México durante el período 2002-2022, identificando clusters geográficos y tendencias temporales para generar evidencia científica que oriente políticas públicas de salud materna.

Objetivos específicos

1. Caracterizar la distribución geográfica de la mortalidad materna por entidad federativa mediante análisis cartográfico y técnicas de clustering espacial.

- 2. Evaluar las tendencias temporales de la mortalidad materna, con énfasis en el impacto de la pandemia COVID-19.
- 3. Identificar perfiles epidemiológicos de las entidades federativas basados en indicadores de mortalidad materna y acceso a servicios de salud.
- 4. Analizar los factores asociados con la mortalidad materna, incluyendo edad, escolaridad y derechohabiencia.
- 5. Generar recomendaciones de política pública basadas en evidencia para la reducción de la mortalidad materna.

Metodología

Enfoque de investigación

Se implementó un enfoque cuantitativo de investigación observacional retrospectiva, utilizando métodos de análisis espacial, clustering estadístico y series temporales para caracterizar los patrones de mortalidad materna en México.

Fuente de datos

Los datos fueron obtenidos de la base de datos oficial de defunciones de la Secretaría de Salud de México, correspondientes al período 2002-2022. La base de datos original contenía 23,270 registros de defunciones maternas, de los cuales se conservaron 23,133 casos (99.4%) después del proceso de limpieza de datos, excluyendo únicamente registros con información faltante crítica.

Variables de estudio

Las variables analizadas incluyeron:

- Variables geográficas: entidad federativa de ocurrencia
- Variables temporales: año y mes de defunción
- Variables demográficas: edad al momento de la defunción
- Variables socioeconómicas: escolaridad, derechohabiencia
- Variables de atención: lugar de ocurrencia de la defunción

Herramientas y software

- Python 3.9: Análisis estadístico y procesamiento de datos (pandas, numpy, matplotlib, seaborn)
- Scikit-learn: Implementación de algoritmos de clustering (K-means)
- QGIS 3.28: Análisis geoespacial y cartografía temática
- Jupyter Lab: Entorno de desarrollo y documentación reproducible

Arquitectura del sistema

El flujo de trabajo se estructuró en cinco etapas principales:

- Adquisición y limpieza de datos: Importación, validación y normalización de la base de datos oficial
- Análisis exploratorio: Estadística descriptiva, identificación de patrones y outliers
- 3. **Análisis geoespacial**: Creación de mapas temáticos y visualización de patrones espaciales
- 4. **Clustering espacial**: Aplicación del algoritmo K-means para identificar grupos de entidades con características similares
- 5. **Análisis temporal**: Evaluación de tendencias históricas y series temporales por cluster

Algoritmos y técnicas implementadas

Clustering K-means: Se utilizó el algoritmo K-means para agrupar las 32 entidades federativas basándose en cuatro variables: total de casos, tasa anual de mortalidad, edad promedio y porcentaje de población sin derechohabiencia. Los datos fueron normalizados mediante StandardScaler para asegurar comparabilidad entre variables con diferentes escalas.

Análisis de series temporales: Se implementaron técnicas de agregación temporal para evaluar tendencias anuales y estacionales, incluyendo análisis comparativo pre-COVID (2002-2019) versus período COVID (2020-2022).

Cartografía temática: Se desarrollaron seis mapas temáticos utilizando clasificaciones graduadas con diferentes esquemas de color para visualizar: casos totales, porcentaje sin derechohabiencia, edad promedio, tasa anual, cambio histórico e impacto COVID-19.

Experimentos realizados

- Determinación del número óptimo de clusters: Aplicación del método del codo para K=2 a K=7
- 2. **Validación de la estabilidad del clustering**: Verificación de consistencia con múltiples semillas aleatorias
- Análisis de sensibilidad: Evaluación del impacto de diferentes variables en la formación de clusters
- 4. **Análisis de correlación**: Identificación de relaciones entre variables socioeconómicas y mortalidad materna

Resultados

Análisis exploratorio de datos

El análisis de 23,133 defunciones maternas registradas entre 2002-2022 reveló patrones temporales y geográficos significativos. La edad promedio al momento de la defunción fue de 29.1 años (DE=1.2), con un rango de 27.4 a 32.0 años entre entidades federativas. El 31.7% de las defunciones correspondió a mujeres sin derechohabiencia (DE=9.0%), evidenciando importantes brechas en el acceso a servicios de salud.

Figura 1

Como se observa en la **Figura 1. Dashboard General de Mortalidad Materna**, el análisis exploratorio identificó que el Estado de México y la Ciudad de México concentran el 21.3% del total de casos. La distribución por edad muestra una concentración del 80.3% de las defunciones entre los 20-39 años, con un promedio de 28.6 años. El 38.4% de las mujeres tenía educación primaria o menor, y el 12.7% de las defunciones ocurrieron en el hogar.

Tendencias temporales generales

El análisis de series temporales mostró dos períodos claramente diferenciados (Figura 1):

Período de progreso (2002-2019): Se observó una reducción sostenida del 32.8% en la mortalidad materna, pasando de aproximadamente 1,350 casos anuales en 2002-2005 a 870 casos en 2019. Esta tendencia descendente fue consistente en la mayoría de las entidades federativas.

Período de crisis (2020-2022): La pandemia COVID-19 interrumpió abruptamente el progreso histórico, registrándose un incremento del 39.7% en 2020-2021 comparado

con el promedio 2015-2019. El año 2021 presentó el pico más alto con 1,268 defunciones maternas, seguido de una disminución parcial en 2022.

Análisis geoespacial

Figura 2

La Figura 2. Atlas Cartográfico de Mortalidad Materna en México (2002-2022) evidenció patrones geográficos consistentes de desigualdad Norte-Sur a través de seis dimensiones analíticas:

Distribución de casos totales: Los estados del sur (Chiapas, Oaxaca, Veracruz) y las entidades más pobladas (Estado de México, Ciudad de México, Puebla) concentraron las mayores frecuencias absolutas, representadas en tonos rojos intensos.

Acceso a servicios de salud: El mapa de porcentaje sin derechohabiencia reveló una clara división geográfica, con estados del norte (Baja California, Sonora, Nuevo León) mostrando mejor cobertura (15.6-25.3%) en tonos azules claros, mientras que estados del sur presentaron mayores carencias (35.0-44.8%) en azules intensos.

Edad promedio de defunción: Los estados fronterizos del norte registraron edades promedio menores (27.4-28.5 años) representadas en verdes claros, mientras que

estados como Durango y Tamaulipas presentaron edades más avanzadas (30.5-32.0 años) en verdes oscuros.

Tasa anual de mortalidad: El mapa normalizado por tiempo reveló patrones diferentes a los casos absolutos, con algunos estados del centro mostrando tasas elevadas a pesar de poblaciones menores.

Cambio histórico (2002-2019): El análisis de tendencias pre-COVID mostró que varios estados del norte lograron reducciones significativas (azules), mientras que estados del sur mantuvieron o incrementaron sus tasas (rojos).

Impacto COVID-19 (2020-2021): El mapa de impacto pandémico reveló afectaciones heterogéneas, con algunos estados experimentando incrementos severos mientras otros mantuvieron relativa estabilidad.

Clustering espacial

Figura 3

El **Figura 3. Análisis de Clustering Espacial de Estados Mexicanos** identificó cuatro perfiles epidemiológicos distintos mediante la aplicación del algoritmo K-means:

Cluster 0 - Estados del Norte/Noreste (13 entidades, color morado): Caracterizado por baja mortalidad (325.1 casos promedio), mejor acceso a servicios de salud (24.4% sin derechohabiencia) y población más joven (28.1 años). El scatter plot casos totales vs. tasa anual ubica este cluster en la zona inferior izquierda, confirmando su perfil de menor riesgo. Incluye: Aguascalientes, Baja California, Baja California Sur, Campeche, Coahuila, Colima, Nayarit, Nuevo León, Quintana Roo, Sinaloa, Sonora, Yucatán y Zacatecas.

Cluster 1 - Estados del Centro-Occidente (10 entidades, color azul): Perfil intermedio con mortalidad media (734.6 casos), acceso limitado a servicios (37.4% sin derechohabiencia) y edad promedio de 29.4 años. Se posiciona en la zona media del gráfico de dispersión. Comprende: Guanajuato, Guerrero, Hidalgo, Jalisco, Michoacán, Morelos, Oaxaca, San Luis Potosí, Tabasco y Tlaxcala.

Cluster 2 - Estados Fronterizos/Diversos (5 entidades, color verde): Características mixtas con mortalidad baja-media (431.4 casos), población de mayor edad (31.1 años) y acceso moderado a servicios (29.2% sin derechohabiencia). Incluye: Chihuahua, Durango, Querétaro, Tamaulipas y el registro de Estados Unidos.

Cluster 3 - Estados Grandes/Poblados (5 entidades, color rojo): Situación crítica con alta mortalidad absoluta (1,880.8 casos promedio), mayor proporción sin derechohabiencia (42.1%) y tasa anual elevada (89.6 casos/año). Se ubica en la zona superior derecha del scatter plot, indicando el mayor riesgo. El heatmap de características muestra valores máximos en todas las variables de riesgo. Comprende: Chiapas, Ciudad de México, Estado de México, Puebla y Veracruz.

Análisis de series temporales por cluster

La **Figura 4. Evolución Temporal y Análisis por Clusters** reveló patrones diferenciados en la evolución temporal:

Evolución general (2002-2022): El Cluster 3 (rojo) mostró la mayor volatilidad histórica, iniciando con más de 600 casos anuales en 2003, descendiendo gradualmente hasta 330 casos en 2019, y experimentando un repunte dramático a 460 casos en 2021. El Cluster 1 (azul) presentó una trayectoria más estable, con reducciones consistentes de 430 a 240 casos entre 2002-2018.

Impacto COVID-19 (2018-2022): El análisis focalizado en el período pandémico mostró que el Cluster 3 experimentó el mayor incremento absoluto, pasando de 330 casos en 2019 a 460 en 2021 (+39%). El Cluster 0 (morado) demostró mayor resiliencia, con incrementos moderados de 200 a 300 casos.

Comparación pre-COVID vs COVID: El gráfico de barras confirmó que el Cluster 3 sufrió el mayor impacto relativo, mientras que el Cluster 2 (verde) mostró la mayor estabilidad con cambios mínimos entre períodos.

Análisis estacional: El patrón mensual reveló que el Cluster 3 presenta mayor variabilidad estacional (750-820 casos por mes), con picos en enero y julio-agosto. El

Cluster 2 mostró el comportamiento más estable a lo largo del año (160-200 casos por mes).

Discusión

Implicaciones de los hallazgos

Los resultados revelan un panorama complejo de la mortalidad materna en México, caracterizado por avances significativos (reducción 32.8% en 2002-2019) interrumpidos por la crisis COVID-19 y marcadas desigualdades territoriales que reflejan "dos Méxicos" en términos de salud materna.

Desigualdades geográficas sistemáticas

La identificación de cuatro clusters epidemiológicos confirma patrones de inequidad estructural. El Cluster 0 (Norte/Noreste) presenta indicadores comparables a países desarrollados, mientras que el Cluster 3 (Estados grandes/poblados) exhibe características similares a regiones de menor desarrollo. Esta polarización refleja desigualdades socioeconómicas más amplias: los estados del norte, beneficiados por industrialización y proximidad fronteriza, han desarrollado sistemas de salud más robustos, mientras que los estados del sur enfrentan barreras sistémicas históricas.

Crisis COVID-19 como amplificador de vulnerabilidades

El incremento del 39.7% durante 2020-2021 no solo interrumpió el progreso histórico, sino que amplificó desigualdades preexistentes. El impacto diferencial por clusters (Cluster 3: +35% vs. Cluster 2: +15%) demuestra que las crisis sanitarias afectan desproporcionalmente a los sistemas más vulnerables, consistente con la literatura internacional sobre inequidades en emergencias sanitarias.

Determinantes sociales críticos

El hallazgo de 35.5% de mujeres sin derechohabiencia, con variaciones del 24.4% al 42.1% entre clusters, evidencia limitaciones en la cobertura universal de salud. La correlación entre menor escolaridad (38.4% con educación primaria), limitado acceso a servicios y mayor mortalidad materna confirma la importancia de abordar los determinantes sociales de la salud.

Dificultades encontradas

Limitaciones de datos: Aunque se conservó el 99.4% de registros, se identificaron inconsistencias en codificación y heterogeneidad en sistemas de registro estatales que pueden introducir sesgos comparativos.

Limitaciones metodológicas: El algoritmo K-means asume clusters esféricos, que puede no reflejar completamente la complejidad geográfica real. El diseño observacional limita la capacidad de establecer relaciones causales definitivas.

Factores no observados: El análisis se limitó a variables disponibles en registros oficiales, excluyendo factores potencialmente relevantes como distancia a servicios, calidad de atención y factores socioeconómicos individuales.

Impacto pandémico: El período COVID-19 representa una perturbación externa que alteró temporalmente patrones históricos, requiriendo interpretación cautelosa de estos resultados.

Conclusiones

Principales hallazgos

Este estudio proporciona evidencia robusta sobre los patrones espacio-temporales de la mortalidad materna en México, revelando hallazgos significativos que orientan el diseño de políticas públicas basadas en evidencia.

Progreso histórico documentado: El análisis de 23,133 defunciones maternas confirma una reducción sostenida del 32.8% entre 2002-2019, demostrando avances tangibles que sitúan a México en línea con los compromisos internacionales de los Objetivos de Desarrollo Sostenible.

Segmentación epidemiológica territorial: La identificación de cuatro clusters geográficos distintos representa una contribución metodológica importante. Los estados del Norte/Noreste (Cluster 0) exhiben indicadores comparables a países desarrollados, mientras que los estados grandes/poblados (Cluster 3) enfrentan desafíos similares a regiones en desarrollo, revelando patrones epidemiológicos que trascienden las divisiones administrativas tradicionales.

Impacto diferencial de COVID-19: La pandemia interrumpió el progreso histórico (+39.7%) y amplificó desigualdades preexistentes, con impacto variable entre clusters (+15% a +35%), evidenciando que las crisis sanitarias afectan desproporcionalmente a los sistemas más vulnerables.

Determinantes sociales críticos: El 35.5% de defunciones en mujeres sin derechohabiencia, con variaciones del 24.4% al 42.1% entre clusters, confirma que el acceso universal a servicios de salud sigue siendo un desafío pendiente, correlacionado con menor escolaridad y mayor mortalidad materna.

Cumplimiento de objetivos

El estudio cumplió exitosamente todos los objetivos planteados: caracterización geográfica mediante atlas cartográfico y clustering, evaluación de tendencias temporales incluyendo impacto COVID-19, identificación de cuatro perfiles epidemiológicos validados estadísticamente, análisis de factores asociados, y generación de recomendaciones territorialmente diferenciadas.

Relevancia del trabajo

Impacto en política pública: Los resultados proporcionan evidencia específica para intervenciones territorialmente diferenciadas, permitiendo focalizar recursos según características de cada cluster y optimizar efectividad de políticas públicas.

Relevancia internacional: Los hallazgos contribuyen al conocimiento global sobre desigualdades en salud materna, particularmente relevante para países de ingreso medio con disparidades regionales. La metodología es aplicable en contextos latinoamericanos similares.

Trabajo futuro

Modelado predictivo avanzado: Desarrollar modelos de machine learning (Random Forest, Redes Neuronales) que incorporen variables económicas, climáticas y de política pública para generar sistemas de alerta temprana y optimizar la asignación preventiva de recursos.

Análisis de clustering dinámico: Implementar técnicas de clustering temporal para capturar la evolución de los perfiles epidemiológicos, identificando factores que impulsan cambios en los patrones de riesgo entre estados.

Determinantes socioeconómicos: Incorporar datos del INEGI sobre pobreza, marginación, índice de desarrollo humano y acceso a servicios básicos para construir modelos multivariados más comprehensivos que expliquen las variaciones observadas en mortalidad materna.

Sistema de alerta temprana: Diseñar algoritmos que detecten incrementos anómalos en mortalidad materna y generen alertas automáticas para autoridades sanitarias.

Análisis subnacional: Extender el estudio al nivel municipal para identificar hotspots locales que permitan intervenciones más precisas y focalizadas.

Integración con sistemas de vigilancia: Incorporar los hallazgos en sistemas nacionales de vigilancia epidemiológica para mejorar la capacidad de monitoreo y respuesta rápida.

Análisis de poblaciones específicas: Desarrollar estudios focalizados en poblaciones indígenas, rurales y urbano-marginales para comprender las barreras específicas que enfrentan estos grupos y diseñar intervenciones culturalmente apropiadas.

Aplicación móvil para personal de salud: Desarrollar una aplicación que proporcione al personal de salud de primer nivel información sobre factores de riesgo locales, protocolos de referencia y contactos de emergencia basados en los perfiles epidemiológicos identificados.

Referencias

- Dirección General de Información en Salud. (2023). Base de datos de muerte materna. Secretaría de Salud, México. Recuperado de http://www.dgis.salud.gob.mx/contenidos/basesdedatos/da_muertematerna_gob mx.html
- 2. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). *An introduction to statistical learning: With applications in R* (2nd ed.). Springer. https://doi.org/10.1007/978-1-0716-1418-1
- 3. Organización Mundial de la Salud. (2019). Trends in maternal mortality 2000 to 2017: Estimates by WHO, UNICEF, UNFPA, World Bank Group and the United Nations Population Division. Organización Mundial de la Salud. https://apps.who.int/iris/handle/10665/327595
- 4. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12, 2825-2830. https://jmlr.org/papers/v12/pedregosa11a.html