Midterm 1 Review

Vikas Dhiman

February 22, 2022

3

3

3

4

7

7 8

8

8

8

Contents

1	Lin	ear alg	ebra review			
	1.1 Matrix operations					
		1.1.1	Transpose			
		1.1.2	Vector dot product			
		1.1.3	Matrix multiplication			
		1.1.4	Transpose of matrix multipli-			
			cation			
		1.1.5	Properties of trace operator			
2	Trignometry review					
3	Triangle law of vector addition					
4	2D	2D Rotation matrix				
5	2D	2D Transformation matrix				
6	Principal 3D Rotations					
7	3D Rotation matrix from Euler angles					
	7.1 Gimbal lock					
	7.2	Orthog	gonality and determinant			
8	3D	Transf	ormation matrix			
9	Axis-angle representation					
10	Denavit-Hartenberg transformations					
11	Camera projection model					
12	Linear least squares or Pseudo-inverse					

1 Linear algebra review

Definition 1 (Matrix). A real matrix A with n rows and m columns is defined as a set of real numbers $\{a_{11}, a_{12}, \ldots, a_{nm}\}$, arranged in an 2D grid with n rows and m columns:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix}$$
 (1)

The set of all possible real matrices with n rows and m columns is denoted as $\mathbb{R}^{n \times m}$, where \mathbb{R} denotes the set of all real numbers.

Any matrix A with with n rows and m columns is said to lie in the set of R^{n×m}. A ∈ R^{n×m} is read aloud
as "A lies in the set of all n cross m real matrices".

Definition 2 (Vector or Column vector). A column vector or a vector \mathbf{x} is a matrix with only one column.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \tag{2}$$

The set of all possible real vectors with n rows is denoted as $\mathbb{R}^{n\times 1}$ or more simply \mathbb{R}^n .

A vector is denoted by bold-font small letter, for example, $\mathbf{x}, \mathbf{y}, \mathbf{z}$. A matrix is denoted by capital letters, A, B, M, P, K.

9 A matrix $A \in \mathbb{R}^{n \times m}$ is often denoted a set m col-

umn vectors of dimension $n \times 1$,

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_m \end{bmatrix},$$
 where $\mathbf{a}_i = \begin{bmatrix} a_{i1} \\ a_{i2} \\ \vdots \\ a_{in} \end{bmatrix}$, for all $i \in \{1, \dots, m\}$. (3)

A block matrix is a matrix denoted in terms of other matrices,

$$A = \begin{bmatrix} b_{11} & \dots & b_{1q} & c_{11} & \dots & c_{1r} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ b_{p1} & \dots & b_{pq} & c_{1s} & \dots & c_{sr} \\ \hline e_{11} & \dots & e_{1v} & d_{11} & \dots & d_{1x} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ e_{u1} & \dots & e_{uv} & d_{1w} & \dots & d_{wx} \end{bmatrix}$$

$$= \begin{bmatrix} B & C \\ E & D \end{bmatrix}, \text{ where } B, C, E, D \text{ are matrices.} (5)$$

Definition 3 (Square matrix). A matrix is said to be square if its number of columns is same as the number of rows. That is matrix $A \in \mathbb{R}^{n \times m}$ is said to be square matrix if m = n.

Definition 4 (Diagonal of a square matrix). Let A be a square matrix $A \in \mathbb{R}^{n \times n}$ with entries:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$
 (6)

The diagonal of a square matrix A is defined to be the vector

$$diag(A) = \begin{bmatrix} a_{11} \\ a_{22} \\ \vdots \\ a_{nn} \end{bmatrix}$$

Definition 5 (Trace of a square matrix). Trace of a square matrix A is defined as the sum its diagonal elements,

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$$

Definition 6 (Identity matrix). An identity matrix I of size n is a square matrix with all its diagonal entries as 1 and non-diagonal entries as 0.

$$I = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$
 (7)

1.1 Matrix operations

1.1.1 Transpose

Definition 7 (Transpose). The matrix transpose A^{\top} of a matrix A is defined as a matrix where rows of matrix A are the columns of A^{\top} and vice-versa.

$$A^{\top} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{1n} \\ a_{12} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1m} & a_{2m} & \dots & a_{nm} \end{bmatrix}$$
(8)

In the matrix as set of m column vectors notation, the transpose is written as m row vectors \mathbf{a}_i^{\top} ,

$$A^{\top} = \begin{bmatrix} \mathbf{a}_{1}^{\top} \\ \mathbf{a}_{2}^{\top} \\ \vdots \\ \mathbf{a}_{m}^{\top} \end{bmatrix}, \quad \mathbf{a}_{i}^{\top} = \begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{in} \end{bmatrix},$$
for all $i \in \{1, \dots, n\}$. (9)

- 1. If A has nrows and m columns, then A^{\top} has m rows and n columns. If $A \in \mathbb{R}^{n \times m}$, then $A^{\top} \in \mathbb{R}^{m \times n}$.
- 2. The transpose of a transpose is matrix itself. $(A^{\top})^{\top} = A$.
- 3. The transpose of a block matrix is block-wise transpose of each matrix,

$$\begin{bmatrix} B & C \\ E & D \end{bmatrix}^{\top} = \begin{bmatrix} B^{\top} & E^{\top} \\ C^{\top} & D^{\top} \end{bmatrix}$$

Definition 8 (Row vector). A row vector is Y is matrix with only one row

$$Y = \begin{bmatrix} y_1 & y_2 & \dots & y_n \end{bmatrix} \tag{10}$$

.

It is common to denote row vectors as tranpose of a column vector. For example, the matrix Y shown above is typically represented \mathbf{y}^{\top} , where \mathbf{y} is a column vector.

$$Y = \mathbf{y}^{\top}$$
 where $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$ (11)

1.1.2 Vector dot product

Before we define general matrix multiplication, it is easier to define matrix multiplication between a row vector and a column vector $\mathbf{x}^{\top} \in \mathbb{R}^{1 \times n}$ and $\mathbf{y} \in \mathbb{R}^{n \times 1}$

$$\mathbf{x}^{\top}\mathbf{y} = x_1y_1 + x_2y_2 + \dots + x_ny_n = \sum_{i=1}^{n} x_iy_i$$

where
$$\mathbf{x}^{\top} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}$$

and $\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$.

Note that $\mathbf{x}^{\top}\mathbf{y}$ is same as the vector dot product or the vector inner-product,

$$\mathbf{x}^{\top}\mathbf{y} = \mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| cos(\theta) = \mathbf{y}^{\top}\mathbf{x}, \tag{13}$$

where θ is the angle between vectors **x** and **y** and the vector norm or euclidean norm $\|.\|$ is defined as

$$\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{\mathbf{x}^\top \mathbf{x}}$$
 (14)

Definition 9 (Unit vector). A unit vector, typically denoted with a hat, $\hat{\mathbf{x}}$ is a vector with euclidean norm as 1. That is $||\hat{\mathbf{x}}|| = 1$ or equivalently $\mathbf{x}^{\top}\mathbf{x} = 1$.

Definition 10 (Orthogonal vectors). Two vectors, $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^n$ are said to be orthogonal if and only if their dot product is zero $\mathbf{x}^{\top}\mathbf{y} = 0$.

Definition 11 (Orthonormal vectors). A set of vectors, $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^n$ are said to be orthonormal if and only if they are all unit vectors $\mathbf{x}_i^{\top} \mathbf{x}_i = 1$ and they are pair-wise orthogonal, $\mathbf{x}_i^{\top} \mathbf{x}_j = 0$ for all $i \neq j$.

1.1.3 Matrix multiplication

The matrix multiplication between matrix $A \in \mathbb{R}^{n \times m}$ and matrix $B \in \mathbb{R}^{m \times p}$ (note that A has m columns while B has m rows; the only case when matrix multiplication is defined) is easier defined if matrix A is written in terms of row vectors while matrix B is written in terms of column vectors. Let the matrix A is written in terms of row vectors $\mathbf{a}_i^{\top} \in \mathbb{R}^{1 \times m}$ and the matrix B is written in terms of column vectors $\mathbf{b}_i \in \mathbb{R}^{m \times 1}$. Then the matrix multiplication $AB \in \mathbb{R}^{n \times p}$ is defined as the matrix,

$$AB = \begin{bmatrix} \mathbf{a}_{1}^{\top} \\ \mathbf{a}_{2}^{\top} \\ \vdots \\ \mathbf{a}_{n}^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{1} & \mathbf{b}_{2} & \dots & \mathbf{b}_{p} \end{bmatrix}$$
 (15)

$$= \begin{bmatrix} \mathbf{a}_{n}^{\top} \mathbf{b}_{1} & \mathbf{a}_{n}^{\top} \mathbf{b}_{2} & \dots & \mathbf{a}_{n}^{\top} \mathbf{b}_{p} \\ \mathbf{a}_{2}^{\top} \mathbf{b}_{1} & \mathbf{a}_{2}^{\top} \mathbf{b}_{2} & \dots & \mathbf{a}_{n}^{\top} \mathbf{b}_{p} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_{n}^{\top} \mathbf{b}_{1} & \mathbf{a}_{n}^{\top} \mathbf{b}_{2} & \dots & \mathbf{a}_{n}^{\top} \mathbf{b}_{p} \end{bmatrix}$$
(16)

Block matrix multiplication Block matrix multiplication works in a similar way as scalar multiplication as long as sub-matrix multiplication is properly defined,

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} P & Q \\ R & S \end{bmatrix} = \begin{bmatrix} AP + BR & AQ + BS \\ CP + DR & CQ + DS \end{bmatrix} \quad (17)$$

Definition 12 (Orthogonal matrices). A square matrix A is said to be orthogonal if and only if $A^{\top}A = I$

1.1.4 Transpose of matrix multiplication

$$(AB)^{\top} = B^{\top}A^{\top}$$

1.1.5 Properties of trace operator

Trace is a linear operator:

$$tr(\alpha A + \beta B) = \alpha tr(A) + \beta tr(B), \tag{18}$$

for compatible matrices A and B and scalars α and β .

2 Trignometry review

$$\tan(\theta) = \frac{p}{h}$$
 $\sin(\theta) = \frac{p}{h}$ $\cos(\theta) = \frac{b}{h}$

3 Triangle law of vector addition

4 2D Rotation matrix

Definition 13 (2D Cartesian Coordinate frame). A 2D cartesian coordinate frame is defined as a set of mutually orthogonal unit vectors $\hat{\mathbf{x}} \in \mathbb{R}^2$ and $\hat{\mathbf{y}} \in \mathbb{R}^2$ called the basis vectors $B = [\hat{\mathbf{x}}, \hat{\mathbf{y}}]$ along with an origin $\mathbf{o} \in \mathbb{R}^2$. Thus the tuple (B, \mathbf{o}) form a coordinate frame. A coordinate frame is denoted by curly braces around it, for example, $\{C\}$ or $\{W\}$.

Example 1 (2D Coordinate frame). The figure 1 contains two coordinate frames the one shown in red and the one shown in green. Both have the same origin, but different basis vectors. The $\{W\}$ coordinate frame shown in green has basis vectors $B_w =$

 $[\hat{\mathbf{x}}_w, \hat{\mathbf{y}}_w]$. The same notation is used for the $\{C\}$ coordinate frame $B_c = [\hat{\mathbf{x}}_c, \hat{\mathbf{y}}_c]$. Note that the basis vectors of $\{C\}$ coordinate frame can be expressed in terms of $\{W\}$ coordinate frame by triangle law of vector addition.

$$\hat{\mathbf{x}}_{c} = |\overrightarrow{OA}|\hat{\mathbf{x}}_{w} + |\overrightarrow{AB}|\hat{\mathbf{y}}_{w}$$

$$\hat{\mathbf{y}}_{c} = -|\overrightarrow{PQ}|\hat{\mathbf{x}}_{w} + |\overrightarrow{OP}|\hat{\mathbf{y}}_{w}$$
(19)

In the triangle $\triangle OAB$ (Fig 1),

$$\cos(\theta) = \frac{|\overrightarrow{OA}|}{|\overrightarrow{OB}|} = \frac{|\overrightarrow{OA}|}{\|\hat{\mathbf{x}}_c\|} = |\overrightarrow{OA}| \tag{20}$$

$$\sin(\theta) = \frac{|\overrightarrow{AB}|}{|\overrightarrow{OB}|} = \frac{|\overrightarrow{AB}|}{\|\hat{\mathbf{x}}_c\|} = |\overrightarrow{AB}| \tag{21}$$

Similarly in the right triangle $\triangle OPQ$ (Fig 1),

$$\cos(\theta) = \frac{|\overrightarrow{OP}|}{|\overrightarrow{OQ}|} = \frac{|\overrightarrow{OP}|}{\|\hat{\mathbf{y}}_c\|} = |\overrightarrow{OP}|$$
 (22)

$$\sin(\theta) = \frac{|\overrightarrow{PQ}|}{|\overrightarrow{QQ}|} = \frac{|\overrightarrow{PQ}|}{\|\hat{\mathbf{y}}_c\|} = |\overrightarrow{PQ}| \tag{23}$$

Putting these values back in (19), we get,

$$\hat{\mathbf{x}}_c = \cos(\theta)\hat{\mathbf{x}}_w + \sin(\theta)\hat{\mathbf{y}}_w$$

$$\hat{\mathbf{y}}_c = -\sin(\theta)\hat{\mathbf{x}}_w + \cos(\theta)\hat{\mathbf{y}}_w$$
(24)

These equations can be written in matrix notation as,

$$\hat{\mathbf{x}}_{c} = \begin{bmatrix} \hat{\mathbf{x}}_{w} & \hat{\mathbf{y}}_{w} \end{bmatrix} \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix} = B_{w} \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}
\hat{\mathbf{y}}_{c} = \begin{bmatrix} \hat{\mathbf{x}}_{w} & \hat{\mathbf{y}}_{w} \end{bmatrix} \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix} = B_{w} \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$
(25)

The full basis matrix of coordinate frame $\{C\}$ can be written as

$$B_{c} = \begin{bmatrix} \hat{\mathbf{x}}_{c} & \hat{\mathbf{y}}_{c} \end{bmatrix}$$

$$= \begin{bmatrix} B_{w} \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix} & B_{w} \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix} \end{bmatrix}$$

$$= B_{w} \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$
(26)

Definition 14 (2D Coordinates of a point). The coordinate of a point \mathbf{p} in a given coordinate frame $\{W\}$ with basis vectors $B_w = [\hat{\mathbf{x}}_w, \hat{\mathbf{y}}_w]$ and origin $\mathbf{o}_w = \begin{bmatrix} o_x \\ o_y \end{bmatrix}$ is defined as the vector $\mathbf{p}_w = \begin{bmatrix} p_{wx} \\ p_{wy} \end{bmatrix}$ such that.

$$\mathbf{p} = (p_{wx} + o_x)\hat{\mathbf{x}}_w + (p_{wy} + o_y)\hat{\mathbf{y}}_w$$

$$= \begin{bmatrix} \hat{\mathbf{x}}_w & \hat{\mathbf{y}}_w \end{bmatrix} \begin{pmatrix} \begin{bmatrix} p_{wx} \\ p_{wy} \end{bmatrix} + \begin{bmatrix} o_x \\ o_y \end{bmatrix} \end{pmatrix}$$

$$= B_w(\mathbf{p}_w + \mathbf{o}_w)$$
(27)

Example 2 (Fig 1). The point \mathbf{p} can be represented in coordinate frames $\{W\}$ and $\{C\}$. Let the projection on the basis $B_c = [\hat{\mathbf{x}}_c, \hat{\mathbf{y}}_c]$ be \mathbf{p}_c , while that on $B_w = [\hat{\mathbf{x}}_w, \hat{\mathbf{y}}_w]$ be \mathbf{p}_w . Since both the coordinate frames have same origin, we assume $\mathbf{o}_w = \mathbf{o}_c = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. We have

$$\mathbf{p} = B_w \mathbf{p}_w = B_c \mathbf{p}_c \tag{28}$$

Theorem 1 (2D Rotation matrix). In a coordinate transformation as given in Fig 1, the coordinates in frame $\{C\}$, \mathbf{p}_c can be converted into coordinates in frame $\{W\}$, \mathbf{p}_w with the same origin by using a rotation matrix ${}^W R_C(\theta)$,

$$\mathbf{p}_{w} = {}^{W}R_{C}(\theta)\mathbf{p}_{c}$$

$$where {}^{W}R_{C}(\theta) = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}$$
(29)

Proof. First note that the basis matrix of any coordinate frame $\{W\}$ is orthogonal,

$$B_{w}^{\top}B_{w} = \begin{bmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} \end{bmatrix}^{\top} \begin{bmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} \end{bmatrix}$$

$$= \begin{bmatrix} \hat{\mathbf{x}}^{\top} \\ \hat{\mathbf{y}}^{\top} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} \end{bmatrix}$$

$$= \begin{bmatrix} \hat{\mathbf{x}}^{\top}\hat{\mathbf{x}} & \hat{\mathbf{x}}^{\top}\hat{\mathbf{y}} \\ \hat{\mathbf{y}}^{\top}\hat{\mathbf{x}} & \hat{\mathbf{y}}^{\top}\hat{\mathbf{y}} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$
(30)

Left-multiply B_w^{\top} to both sides of (28)

$$B_w^{\top} B_w \mathbf{p}_w = B_w^{\top} B_c \mathbf{p}_c \tag{31}$$

Figure 1: The coordinate frame $\{C\}$ is rotated around origin by an θ from coordinate frame $\{W\}$.

Replace $B_w^{\top} B_w = I$.

$$I\mathbf{p}_w = B_w^{\mathsf{T}} B_c \mathbf{p}_c \text{ or } \mathbf{p}_w = B_w^{\mathsf{T}} B_c \mathbf{p}_c$$
 (32)

Substitute value of B_c from (26), to get

$$\mathbf{p}_w = B_w^{\top} \begin{pmatrix} B_w \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \end{pmatrix} \mathbf{p}_c.$$
 (33)

Again use $B_w^{\top} B_w = I$ to get,

$$\mathbf{p}_w = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \mathbf{p}_c. \tag{34}$$

Defining ${}^WR_C(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$, we get the desired result.

Theorem 2 (Orthogonality of 2D Rotation matrices). All 2D rotation matrices are orthogonal $R^{\top}R = I$ have determinant as one $\det(R) = 1$. If any square matrix $A \in \mathbb{R}^{2 \times 2}$ is orthogonal $A^{\top}A = I$ and has determinant 1, $\det(A) = 1$, then it is a valid rotation matrix.

Proof.

$$R^{\top}R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}^{\top} \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$= \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$= \begin{bmatrix} \cos^{2}(\theta) + \sin^{2}(\theta) & -\cos(\theta)\sin(\theta) \\ -\sin(\theta)\cos(\theta) + \cos(\theta)\sin(\theta) & \sin^{2}(\theta) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
(35)

$$\det(R) = \det \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$
$$= \cos^{2}(\theta) + \sin^{2}(\theta) = 1$$
(36)

Denote the columns of square matrix A which is orthogonal with determinant 1 as $A = [\mathbf{a}_1, \mathbf{a}_2]$. Since A is orthogonal, we have

$$A^{\top} A = \begin{bmatrix} \mathbf{a}_{1}^{\top} \\ \mathbf{a}_{2}^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1}^{\top} \mathbf{a}_{1} & \mathbf{a}_{1}^{\top} \mathbf{a}_{2} \\ \mathbf{a}_{2}^{\top} \mathbf{a}_{1} & \mathbf{a}_{2}^{\top} \mathbf{a}_{2} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \tag{37}$$

This implies that \mathbf{a}_1 and \mathbf{a}_2 are mutually orthogonal unit vectors. Let $\mathbf{a}_1 = [\cos(\theta), \sin(\theta)]$ because any 2D unit vector can be written in cos, sin form, where $\theta =$ $\arctan 2(a_{12}, a_{11})$. Next we know that $\mathbf{a}_1^{\top} \mathbf{a}_2 = 0$ and that \mathbf{a}_2 is unit vector. For any unit 2D vector $[u, v]^{\top}$, there are only two unit vectors perpendicular to it $[-v,u]^{\top}$ and $[v,-u]^{\top}$. Then we have only two options for \mathbf{a}_2 are either $[-\sin(\theta), \cos(\theta)]$ or $[\sin(\theta), -\cos(\theta)]$. But we also know that the determinant of A is 1. The second option for \mathbf{a}_2 leads to determinant of -1.

$$\det \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix} = \det \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{bmatrix} = -1 \quad (38)$$

Hence, we have

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} = R(\theta)$$

5 2D Transformation matrix

To consider the rotation and translation case, we con- $=\begin{bmatrix}\cos(\theta) & \sin(\theta)\\ -\sin(\theta) & \cos(\theta)\end{bmatrix}\begin{bmatrix}\cos(\theta) & -\sin(\theta)\\ \sin(\theta) & \cos(\theta)\end{bmatrix}$ sider the case shown in Fig 2. We have an intermediate frame $\{I\}$ which has only rotation from $\{C\}$ frame. We assume that basis vectors $\{I\}$ are parallel $=\begin{bmatrix}\cos^2(\theta) + \sin^2(\theta) & -\cos(\theta)\sin(\theta) \\ -\sin(\theta)\cos(\theta) + \cos(\theta)\sin(\theta) & \sin^2(\theta)\end{bmatrix}$ make it translation only conversion. $\sin^2(\theta) + \cos^2(\theta)\cos(\theta) + \cos(\theta)\sin(\theta)$ since it translation only conversion. sider the case shown in Fig 2. We have an interme- $\sin^2(\theta)$ Weoral θ convert from \mathbf{p}_c to \mathbf{p}_I using the rotation matrix derived in the previous section,

$$\mathbf{p}_I = B_I^{-1} B_c \mathbf{p}_c = R(\theta) \mathbf{p}_c. \tag{39}$$

We can account for the translation of the frame \mathbf{p}_I by noticing that the coordinate frames only differ in origin, such that $B_c \mathbf{o}_c = B_w(\mathbf{o}_w + {}^w \mathbf{t}_c)$, where the translation ${}^{w}\mathbf{t}_{c}$ is measured in world coordinate frame.

$$\mathbf{p} = B_c(\mathbf{p}_c + \mathbf{o}_c) = B_w(\mathbf{p}_w + \mathbf{o}_w)$$

$$\Longrightarrow B_c \mathbf{p}_c + B_c \mathbf{o}_c = B_w \mathbf{p}_w + B_w \mathbf{o}_w$$

$$\Longrightarrow B_c \mathbf{p}_c + (B_c \mathbf{o}_c - B_w \mathbf{o}_w) = B_w \mathbf{p}_w$$

$$\Longrightarrow B_c \mathbf{p}_c + B_w^w \mathbf{t}_c = B_w \mathbf{p}_w$$

$$\Longrightarrow B_w^\top B_c \mathbf{p}_c + {}^w \mathbf{t}_c = \mathbf{p}_w$$

$$\Longrightarrow \mathbf{p}_w = R(\theta) \mathbf{p}_c + {}^w \mathbf{t}_c$$
(40)

This relation is often written in terms of homogeneous coordinates which are obtained by appending 1 to euclidean coordinates $\underline{\mathbf{p}}_w = \begin{bmatrix} \mathbf{p}_w \\ 1 \end{bmatrix}$ and $\underline{\mathbf{p}}_c = \begin{bmatrix} \mathbf{p}_c \\ 1 \end{bmatrix}$.

The matrix that transforms homogeneous coordinates in one coordinate frame to another is called the transformation matrix. For 2D systems it is 3×3 matrix denoted by wT_c ,

$$\underline{\mathbf{p}}_{w} = \begin{bmatrix} R(\theta) & {}^{w}\mathbf{t}_{c} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \underline{\mathbf{p}}_{c} = {}^{w}T_{c}\underline{\mathbf{p}}_{c}$$
(41)

Figure 2: The coordinate frame $\{C\}$ is rotated around origin by an θ from coordinate frame $\{W\}$ and then shifted by translation ${}^w\mathbf{t}_c$.

6 Principal 3D Rotations

2D Rotation can be easily extended to rotation around an axis in 3D. Rotation around X-axis, Y-

axis, Z-axis is respectively given by,

$$R_x(\phi) = \text{Roll}(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi) & \cos(\phi) \end{bmatrix}$$

$$R_y(\theta) = \text{Pitch}(\theta) = \begin{bmatrix} \cos(\phi) & 0 & \sin(\phi) \\ 0 & 1 & 0 \\ -\sin(\phi) & \cos(\phi) \end{bmatrix}$$

$$R_z(\psi) = \text{Yaw}(\psi) = \begin{bmatrix} \cos(\psi) & -\sin(\psi) & 0 \\ \sin(\psi) & \cos(\psi) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(42)

7 3D Rotation matrix from Euler angles

Euler angles can be applied sequentially in one of the two ways:

- 1. Proper Euler angles (z-x-z, x-y-x, y-z-y, z-y-z, x-z-x, y-x-y)
- 2. Tait-Bryan angles (x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z).

One of the most common application of Euler angles is X-Y-Z:

$$R(\phi, \theta, \psi) = R_z(\psi)R_y(\theta)R_x(\phi) = \text{Yaw}(\psi)\text{Pitch}(\theta)\text{Roll}(\phi).$$
(43)

Note that the rotation matrix application is read from right to left.

$$R(\phi, \theta, \psi) = \begin{bmatrix} c_{\psi} & -s_{\psi} & 0 \\ s_{\psi} & c_{\psi} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{\theta} & 0 & s_{\theta} \\ 0 & 1 & 0 \\ -s_{\theta} & 0 & c_{\theta} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\phi} & -s_{\phi} \\ 0 & s_{\phi} & c_{\phi} \end{bmatrix}$$

$$= \begin{bmatrix} c_{\psi} & -s_{\psi} & 0 \\ s_{\psi} & c_{\psi} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{\theta} & s_{\theta}s_{\phi} & s_{\theta}c_{\phi} \\ 0 & c_{\phi} & -s_{\phi} \\ -s_{\theta} & c_{\theta}s_{\phi} & c_{\theta}c_{\phi} \end{bmatrix}$$

$$= \begin{bmatrix} c_{\psi}c_{\theta} & c_{\psi}s_{\theta}s_{\phi} - s_{\psi}c_{\phi} & c_{\psi}s_{\theta}c_{\phi} + s_{\psi}s_{\phi} \\ s_{\psi}c_{\theta} & s_{\psi}s_{\theta}s_{\phi} + c_{\psi}c_{\phi} & s_{\psi}s_{\theta}c_{\phi} - c_{\psi}s_{\phi} \\ -s_{\theta} & c_{\theta}s_{\phi} & c_{\theta}c_{\phi} \end{bmatrix}$$
(44)

For a given 3D rotation matrix R, whose elements

are r_{ij} as follows

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}, \tag{45}$$

the roll, pitch, yaw angles can be read as,

$$\phi = \arctan 2(r_{32}, r_{33}) \tag{46}$$

$$\theta = -\arcsin(r_{31}) \tag{47}$$

$$\psi = \arctan 2(r_{22}, r_{21}) \tag{48}$$

7.1 Gimbal lock

When pitch $\theta = \frac{\pi}{2}$, then yaw-axis (Z-axis) coincides with roll-axis (X-axis). In such a case, inversion from a rotation matrix leads to infinitely possible solutions, because $c_{\theta} = 0$ and that leads to $r_{32} = r_{33} = r_{22} = r_{21} = 0$.

7.2 Orthogonality and determinant

Let 3D rotation be represented by a block matrix of 2D rotation $R_2(\phi)$.

$$R_x(\phi) = \begin{bmatrix} 1 & \mathbf{0}^\top \\ \mathbf{0} & R_2(\phi) \end{bmatrix}$$

$$R_{x}^{\mathsf{T}}(\phi)R_{x}(\phi) = \begin{bmatrix} 1 & \mathbf{0}^{\mathsf{T}} \\ \mathbf{0} & R_{2}(\phi) \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 1 & \mathbf{0}^{\mathsf{T}} \\ \mathbf{0} & R_{2}(\phi) \end{bmatrix}$$
$$= \begin{bmatrix} 1 & \mathbf{0}^{\mathsf{T}} \\ \mathbf{0} & R_{2}^{\mathsf{T}}(\phi)R_{2}(\phi) \end{bmatrix} = I \tag{49}$$

Same check can be applied to $R_y(\theta)$ and $R_z(\psi)$ as well. If two matrices A and B are orthogonal, then AB is also orthogonal:

$$(AB)^{\top}(AB) = B^{\top}A^{\top}AB = B^{\top}IB = B^{\top}B = I.$$
 (50)

Hence any combination of principal rotations is also orthogonal.

Similar procedure can be followed to establish that det(R) = 1.

8 3D Transformation matrix

For 3D systems transformation matrix is 4×4 matrix denoted by wT_c ,

$$\underline{\mathbf{p}}_{w} = \begin{bmatrix} R(\phi, \theta, \psi) & {}^{w}\mathbf{t}_{c} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \underline{\mathbf{p}}_{c} = {}^{w}T_{c}\underline{\mathbf{p}}_{c}, \tag{51}$$

where
$${}^{w}\mathbf{t}_{c} \in \mathbb{R}^{3}$$
, $\underline{\mathbf{p}}_{c} = \begin{bmatrix} \mathbf{p}_{c} \\ 1 \end{bmatrix}$ and $\mathbf{p}_{c} \in \mathbb{R}^{3}$.

9 Axis-angle representation

Cross product gives us a vector that is orthogonal to the plane of two vectors, let $\mathbf{w} = \hat{\mathbf{k}} \times \mathbf{v}$ be such a vector. Note that the magnitude of \mathbf{w} , $\|\mathbf{w}\| = \|\hat{\mathbf{k}}\|\mathbf{v}\sin(\phi)$, where ϕ is the angle between the unit-vector $\hat{\mathbf{k}}$ and \mathbf{v} .

$$\mathbf{v}_{\perp} = -\hat{\mathbf{k}} \times \mathbf{w} = -\hat{\mathbf{k}} \times (\hat{\mathbf{k}} \times \mathbf{v}) \tag{52}$$

$$\mathbf{v}_{\perp,\text{rot}} = \mathbf{v}_{\perp} \cos(\theta) + \mathbf{w} \sin(\theta)$$

$$\mathbf{v}_{\text{rot}} = \mathbf{v}_{\parallel} + \mathbf{v}_{\perp,\text{rot}}$$

$$= \mathbf{v} - \mathbf{v}_{\perp} + \mathbf{v}_{\perp} \cos(\theta) + \mathbf{w} \sin(\theta)$$

$$= \mathbf{v} - (1 - \cos(\theta))\mathbf{v}_{\perp} + \mathbf{w} \sin(\theta)$$

$$= \mathbf{v} + (1 - \cos(\theta))\hat{\mathbf{k}} \times (\hat{\mathbf{k}} \times \mathbf{v}) + \sin(\theta)\hat{\mathbf{k}} \times \mathbf{v}$$
(54)

Define cross product matrix K of $\hat{\mathbf{k}} = \begin{bmatrix} k_x \\ k_y \\ k_z \end{bmatrix}$ as,

$$K = \begin{bmatrix} 0 & -k_z & k_y \\ k_z & 0 & -k_x \\ -k_y & k_x & 0 \end{bmatrix}.$$
 (55)

$$\mathbf{v}_{\text{rot}} = \mathbf{v} + (1 - \cos(\theta))\hat{\mathbf{k}} \times (\hat{\mathbf{k}} \times \mathbf{v}) + \sin(\theta)\hat{\mathbf{k}} \times \mathbf{v}$$
$$= (I + (1 - \cos(\theta))K^2 + \sin(\theta)K)\mathbf{v}$$
(56)

Thus the rotation matrix corresponding to axisangle $\theta, \hat{\mathbf{k}}$ is given by,

$$R(\theta, \hat{\mathbf{k}}) = I + \sin(\theta)K + (1 - \cos(\theta))K^2$$
 (57)

To get back θ and $\hat{\mathbf{k}}$ from R, first note that,

$$K^{2} = \begin{bmatrix} -k_{z}^{2} - k_{y}^{2} & k_{x}k_{y} & k_{z}k_{x} \\ k_{x}k_{y} & -k_{x}^{2} - k_{z}^{2} & k_{z}k_{y} \\ k_{x}k_{z} & k_{y}k_{z} & -k_{x}^{2} - k_{y}^{2} \end{bmatrix}$$
(58)

Also we can use trace to separate θ from axis,

$$\operatorname{tr}(R) = \operatorname{tr}(I) + \sin(\theta) \operatorname{tr}(K) + (1 - \cos(\theta)) \operatorname{tr}(K^{2})$$

$$= 3 + 0 + (1 - \cos(\theta))(-2(k_{x}^{2} + k_{y}^{2} + k_{z}^{2})).$$

$$= 3 - 2 + 2\cos(\theta) \tag{59}$$

Thus we get $\theta = \arccos(\frac{\operatorname{tr}(R)-1}{2})$. We can estimate axis of rotation as the eigenvector corresponding eigenvalue 1, because $R\hat{\mathbf{k}} = \hat{\mathbf{k}}$.

10 Denavit-Hartenberg transformations

11 Camera projection model

(55)
$$\mathbf{K} = \begin{bmatrix} f_x & s & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (60)

$$\mathbf{u} = \begin{bmatrix} u \\ v \end{bmatrix} \text{ image coordinates in pixels} \tag{61}$$

$$\mathbf{X} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$
 3D coordinates in world units (62)

$$\underline{\mathbf{u}} = \begin{bmatrix} \mathbf{u} \\ 1 \end{bmatrix} \tag{63}$$

$$\lambda \mathbf{u} = K\mathbf{X}, \text{ where } \lambda \neq 0$$
 (64)

12 Linear least squares or Pseudo-inverse

Pseudo-inverse of a matrix \mathbf{A} is defined as a matrix \mathbf{A}^{\dagger} , such that $\mathbf{A}\mathbf{A}^{\dagger}\mathbf{A} = \mathbf{A}$.

if **A** is tall and full-col rank, then $\mathbf{A}^{\dagger} = (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{A}^{\top}$ (65)

if **A** is fat and full-row rank, then $\mathbf{A}^{\dagger} = \mathbf{A}^{\top} (\mathbf{A} \mathbf{A}^{\top})^{-1}$ (66)

 $^{^1{\}rm See}$ Appendix A of Gilbert Strang (1988): Linear Algebra and Its Applications

$$\min_{\mathbf{x}} ||A\mathbf{x} - \mathbf{b}||^{2} \tag{67}$$

$$= \min_{\mathbf{x}} (A\mathbf{x} - \mathbf{b})^{\top} (A\mathbf{x} - \mathbf{b}) \tag{68}$$

$$= \min_{\mathbf{x}} (\mathbf{x}^{\top} A^{\top} - \mathbf{b}^{\top}) (A\mathbf{x} - \mathbf{b}) \tag{69}$$

$$= \min_{\mathbf{x}} (\mathbf{x}^{\top} A^{\top} - \mathbf{b}^{\top}) (A\mathbf{x} - \mathbf{b}) \tag{70}$$

$$= \min_{\mathbf{x}} \mathbf{x}^{\top} A^{\top} A\mathbf{x} - \mathbf{b}^{\top} A\mathbf{x} - \mathbf{x}^{\top} A^{\top} \mathbf{b} + \mathbf{b}^{\top} \mathbf{b}$$

$$\tag{71}$$

Recall that a minimum (or maximum) point of a differentiable function $f(\mathbf{x})$, $f'(\mathbf{x}) = 0$. Let us define vector derivative as

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x} \end{bmatrix}$$
(72)

You can verfiy that

$$\frac{\partial}{\partial \mathbf{x}} \mathbf{x}^{\top} Q \mathbf{x} = 2Q \mathbf{x} \tag{73}$$

$$\frac{\partial}{\partial \mathbf{x}} \mathbf{b}^{\top} \mathbf{x} = \mathbf{b} \tag{74}$$

At a minimum point **x**,

$$\frac{\partial}{\partial \mathbf{x}} \left(\mathbf{x}^{\top} A^{\top} A \mathbf{x} - \mathbf{b}^{\top} A \mathbf{x} - \mathbf{x}^{\top} A^{\top} \mathbf{b} + \mathbf{b}^{\top} \mathbf{b} \right) = 0 \quad (75)$$

Note that $\mathbf{b}^{\top} A \mathbf{x}$ is a scalar, and hence $\mathbf{b}^{\top} A \mathbf{x} = (\mathbf{b}^{\top} A \mathbf{x})^{\top} = \mathbf{x}^{\top} A^{\top} \mathbf{b}$.

$$\Longrightarrow 2A^{\top}A\mathbf{x} - 2A^{\top}\mathbf{b} = 0 \tag{76}$$

$$\Longrightarrow \mathbf{x} = \underbrace{(A^{\top}A)^{-1}A^{\top}}_{A^{\dagger}}\mathbf{b} \tag{77}$$

List of Theorems

1	Definition (Matrix)	1
2	Definition (Vector or Column vector) .	1
3	Definition (Square matrix)	2

4	Definition (Diagonal of a square matrix)	2
5	Definition (Trace of a square matrix) .	2
6	Definition (Identity matrix)	2
7	Definition (Transpose)	2
8	Definition (Row vector)	2
9	Definition (Unit vector)	3
10	Definition (Orthogonal vectors)	3
11	Definition (Orthonormal vectors)	3
12	Definition (Orthogonal matrices)	3
13	Definition (2D Cartesian Coordinate	
	frame)	4

Definition (2D Coordinates of a point)

5