Atividade 04 Conjuntos Numéricos

- 1. Dados os intervalos reais M e N. Determine $M \cap N$ em cada item:
 - a) M = [-5; 3, 5[e N =] -8, 1[;
- b) M =]1,7[e N = [2,5];
- c) M = [-4, 1] e N = [-1, 7];
- d) $M =]-\infty; 3, 2[e N = [0, 6; 4, 9];$
- e) M = [3, 10] e $N = [10, +\infty[$.

(Dica: use o applet que está no site <https://md-math.github.io/mbox/>.)

- 2. Das afirmações:
 - I. Se $x, y \in \mathbb{R} \setminus \mathbb{Q}$, com $x \neq -y$, então $x + y \in \mathbb{R} \setminus \mathbb{Q}$;
- II. Se $x \in \mathbb{Q}$ e $y \in \mathbb{R} \setminus \mathbb{Q}$, então $xy \in \mathbb{R} \setminus \mathbb{Q}$;
- III. Se $x, y \in \mathbb{I}$, com $x \neq y$, então $xy \in \mathbb{I}$,
- é (são) verdadeira(s)
 - a) apenas I e II. b) apenas I e III. c) apenas II e III.
- d) apenas III. e) nenhuma.

- 3. Uma empresa possui 1000 carros, sendo uma parte com motor a gasolina e o restante com motor flex (que funciona com álcool e com gasolina). Numa determinada época, neste conjunto de 1000 carros, 36% dos carros com motor a gasolina e 36% dos carros com motor flex sofrem conversão para também funcionar com gás GNV. Sabendose que, após esta conversão, 556 dos 1000 carros desta empresa são bicombustíveis, pode-se afirmar que o número de carros tricombustíveis é igual a
 - a) 246; b) 252; c) 260; d) 268; e) 284.
- 4. Demonstre que é verdade

$$\sqrt{4 + 2\sqrt{3}} = 1 + \sqrt{3}.$$

5. Um triângulo acutângulo de vértices A, B e C está inscrito numa circunferência de raio $\frac{5\sqrt{2}}{3}$. Sabe-se que \overline{AB} mede $2\sqrt{5}$ e \overline{BC} mede $2\sqrt{2}$. Determine a área do triângulo ABC.