

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Diaquabis(2-hydroxybenzoato- κO^1)bis-(nicotinamide- κN^1)cadmium-diaquabis(2-hydroxybenzoato- $\kappa^2 O^1$, $O^{1'}$)-(nicotinamide- κN)cadmium-water (1/2/4)

Nagihan Çaylak Delibaş,^a Hacali Necefoğlu^b and Tuncer Hökelek^c*

^aDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, ^bKafkas University, Department of Chemistry, 63100 Kars, Turkey, and ^cHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey Correspondence e-mail: merzifon@hacettepe.edu.tr

Received 28 February 2013; accepted 4 March 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean $\sigma(\text{C-C}) = 0.002 \text{ Å}$; disorder in solvent or counterion; R factor = 0.019; wR factor = 0.050; data-to-parameter ratio = 16.2.

The crystal structure of the title compound, $[Cd(C_7H_5O_3)_2 (C_6H_6NO)_2(H_2O)_2]\cdot 2[Cd(C_7H_5O_3)_2(C_6H_6NO)(H_2O)_2]\cdot 4H_2O,$ consists of two kinds of Cd^{II} complexes (A and B) and lattice water molecules. In complex A, $[Cd(C_7H_5O_3)_2(C_6H_6NO)_2]$ (H₂O)₂], the Cd^{II} cation is located on an inversion center and is coordinated by two salicylate anions, two nicotinamide (NA) ligands and two water molecules in a slightly distorted octahedral geometry. In complex B, $[Cd(C_7H_5O_3)_2(C_6H_6-$ NO)(H₂O)₂], the Cd^{II} cation is coordinated by two salicylate anions, one nicotinamide (NA) ligand and two water molecules in an irregular seven-coordinate geometry. There are extensive intramolecular $O-H\cdots O$ and weak $C-H\cdots O$ hydrogen bonds as well as extensive intermolecular O-H···O and N-H···O hydrogen bonding in the crystal structure. π - π stacking between the pyridine and benzene rings, between the benzene rings, between the benzene and pyridine rings and between the pyridine rings [centroidcentroid distances = 3.5989 (10), 3.6005 (10), 3.5800 (9) and 3.5205 (10) A, respectively further stabilize the crystal structure. A weak $N-H\cdots\pi$ interaction also occurs. One of the lattice water molecules is disordered over two positions with an occupancy ratio of 0.70:0.30.

Related literature

For related structures, see: Greenaway *et al.* (1984); Hökelek & Necefoğlu (1996); Hökelek *et al.* (2009*a*,*b*,*c*,*d*).

Experimental

Crystal data

[Cd(C₇H₅O₃)₂(C₆H₆NO)₂(H₂O)₂]-- $\beta = 71.364 (3)^{\circ}$ 2[Cd(C₇H₅O₃)₂(C₆H₆NO)- $\gamma = 69.221 (2)^{\circ}$ $(H_2O)_2]-4H_2O$ $V = 1772.85 (7) \text{ Å}^3$ $M_r = 1828.56$ Z = 1Mo $K\alpha$ radiation Triclinic, $P\overline{1}$ a = 10.3446 (2) Å $\mu = 0.99 \text{ mm}^{-1}$ b = 13.5779 (3) ÅT = 100 Kc = 14.6586 (3) Å $0.42 \times 0.32 \times 0.29 \text{ mm}$ $\alpha = 71.226 (3)^{\circ}$

Data collection

Bruker Kappa APEXII CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.691$, $T_{\max} = 0.751$ 31862 measured reflections 8814 independent reflections 8335 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.019$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.050$ S = 1.078814 reflections 545 parameters 12 restraints

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.78 \ {\rm e} \ {\rm \mathring{A}}^{-3}$ $\Delta \rho_{\rm min} = -0.55 \ {\rm e} \ {\rm \mathring{A}}^{-3}$

Table 1 Selected bond lengths (Å).

Cd1-O2	2.3279 (11)	Cd2-O9	2.2675 (11)
Cd1-O5	2.3200 (12)	Cd2-O10	2.6839 (12)
Cd1-N1	2.3118 (13)	Cd2-O13	2.3486 (12)
Cd2-O6	2.5814 (13)	Cd2-O14	2.2953 (12)
Cd2-O7	2.2795 (11)	Cd2-N3	2.2824 (13)
	(/		2.2953 (12

Table 2 Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C2–C7 ring.

$D-\mathbf{H}\cdot\cdot\cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathbf{H}\cdot\cdot\cdot A$
N2−H2 <i>A</i> ···O11 ⁱ	0.88	2.21	3.025 (2)	154
$N2-H2B\cdots O1^{ii}$	0.88	2.23	3.054(2)	156
$N4-H4B\cdots O13^{iii}$	0.88	2.13	2.937 (2)	151
O3-H3···O2	0.84	1.81	2.548 (2)	146
$O5-H51\cdots O7^{iv}$	0.78(3)	1.95(3)	2.722(2)	172 (3)
$O5-H52\cdots O1^{v}$	0.82(3)	1.89 (3)	2.687 (2)	165 (3)
O8−H81···O6	0.84	1.83	2.569(2)	146
O11—H111···O5 ^{vi}	0.84	2.52	3.048 (2)	122
O11-H111···O9	0.84	1.79	2.535 (2)	146
O13—H131···O3 ^{vi}	0.76(3)	2.02(3)	2.760(2)	165 (2)
O13—H132· · · O4 ^{vii}	0.79(3)	1.88 (3)	2.656 (2)	168 (3)
O14—H141···O15 ⁱⁱ	0.78 (3)	1.92 (3)	2.693 (2)	178.1 (5)
O14—H142···O10 ^{viii}	0.84 (3)	1.89 (3)	2.720 (2)	178 (4)

metal-organic compounds

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
O15-H15A···O16A	0.86 (2)	1.95 (2)	2.764 (4)	156 (2)
$O15-H15A\cdots O16B$	0.86(2)	1.93 (2)	2.689 (5)	146 (2)
O15−H15 <i>B</i> ···O12	0.84(3)	2.08(3)	2.880(2)	159 (3)
$O16A - H161 \cdot \cdot \cdot O8^{vii}$	0.83 (5)	2.53 (5)	3.139 (4)	132 (4)
$O16A - H162 \cdot \cdot \cdot O1^{ix}$	0.89(4)	2.14(3)	2.965 (4)	153 (5)
$O16B-H164\cdots O8$	0.91(2)	1.91(2)	2.748 (2)	153 (3)
C28-H28···O6	0.95	2.35	3.101(2)	136
$N4-H4A\cdots Cg1$	0.88	2.69	3.470(2)	148

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+2; (iv) x-1, y-1, z; (v) -x, -y, -z+1; (vi) x+1, y+1, z; (vii) -x+1, -y+1, -z+1; (viii) -x+2, -y+1, -z+2; (ix) -x, -y+1, -z+1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffract-ometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5682).

References

Bruker (2005). *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). *APEX2* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Greenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). *Inorg. Chim. Acta*, **93**, 67–71.

Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627–m628.

Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1037–m1038.

Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009d). Acta Cryst. E65. m1365-m1366.

Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.

Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1416–m1417.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2013). E69, m191-m192 [doi:10.1107/S1600536813006168]

Diaquabis(2-hydroxybenzoato- κO^1)bis(nicotinamide- κN^1)cadmium-diaquabis-(2-hydroxybenzoato- $\kappa^2 O^1$, O^1)(nicotinamide- κN)cadmium-water (1/2/4)

Nagihan Çaylak Delibaş, Hacali Necefoğlu and Tuncer Hökelek

Comment

As part of our ongoing study on transition metal complexes of benzoate and nicotinamide, (NA), herein we report the synthesis and the structure of the title cocrystal diaquabis(salicylato- κO)bis(nicotinamide- κN) cadmium(II),(A), and diaquabis(salicylato- $\kappa^2 O$;O') (nicotinamide- κN)cadmium(II)dihydrate, (B).

The components of the title compound, $[Cd(C_7H_5O_3)_2(C_6H_6NO)_2 (H_2O)_2]$, (A), and $[Cd(C_7H_5O_3)_2(C_6H_6NO) (H_2O)_2]$. (B), are mononuclear complexes. In complex A, the Cd^{II} cation is located on an inversion center and is coordinated by two salicylate anions, two nicotinamide (NA) ligands and two water molecules in a slightly distorted octahedral geometry (Fig. 1). In complex B, the Cd^{II} cation is coordinated by two salicylate anions, one nicotinamide (NA) ligand and two water molecules completing the irregular seven-coordination geometry (Fig. 1). There are extensive intramolecular O—H···O and weak C—H···O hydrogen bonding, beside of the extensive intermolecular O—H···O and N—H···O hydrogen bonding (Table 2) in the crystal structure.

The average Cd—O bond lengths (Table 1) are 2.3240 (12) and 2.4094 (12) Å for (A) and (B), respectively, and the Cd atoms are displaced out of the least-squares planes of the carboxylate groups: Cd1 atom for (O1/C1/O2) by 0.7250 (1) Å, Cd2 atom for (O6/C14/O7) and (O9/C21/O10) by -0.3415 (1) and -0.1105 (1) Å, respectively. In (B), the O6—Cd2—O7 and O9—Cd2—O10 angles are 53.45 (4) and 51.97 (4) °, respectively. The corresponding O—M—O (where M is a metal) angles are 52.91 (4)° and 53.96 (4)° in $[Cd(C_8H_5O_3)_2(C_6H_6N_2O)_2(H_2O)]$. H₂O (Hökelek et al., 2009a), 60.70 (4)° in $[Co(C_9H_{10}NO_2)_2(C_6H_6N_2O)(H_2O)_2]$ (Hökelek al., 2009a), 58.45 (9)° in $[Mn(C_9H_{10}NO_2)_2-(C_6H_6N_2O)(H_2O)_2]$ (Hökelek al., 2009a), 58.3 (3)° in $[Zn_2(DENA)_2(C_7H_5O_3)_4]$. 2H₂O (Hökelek & Necefoğlu, 1996) and 55.2 (1)° in $[Cu(Asp)_2(py)_2]$ (where Asp is acetylsalicylate and py is pyridine) (Greenaway al al, 1984).

The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2—C7), C (C15—C20) and D (C22—C27) are 16.26 (17), 5.32 (16) and 3.53 (12) $^{\circ}$, respectively, while those between rings A, B (N1/C8—C12) and C, D, E (N3/C28—C32), F (Cd2/O6/O7/C14), G (Cd2/O9/O10/C21) are A/B = 73.75 (4), C/D = 24.80 (6), C/E = 30.95 (6), D/E = 6.88 (6) and F/G = 25.62 (5) $^{\circ}$.

In the crystal structure, extensive O—H···O and N—H···O hydrogen bonding (Table 2) may be effective in the stabilization of the structure. π ··· π contacts between the pyridine and benzene rings Cg2—Cg3ⁱ, between the benzene rings Cg3—Cg3ⁱ, between the benzene and pyridine rings Cg4—Cg5ⁱⁱ and between the pyridine rings Cg5—Cg5ⁱⁱⁱ, [symmetry codes: (i) -x, 1 - y, 1 - z, (ii) -x, 1 - y, -z, (iii) 1 - x, 1 - y, -z, where Cg2, Cg3, Cg4 and Cg5 are the centroids of the rings B (N1/C8—C12), C (C15—C20), D (C22—C27) and E (N3/C28—C32), respectively] may further stabilize the structure, with centroid-centroid distances of 3.5989 (10), 3.6005 (10), 3.5800 (9) and 3.5205 (10) Å, respectively]. A weak C-H··· π interaction also occurs in the crsytal.

Experimental

The title compound was prepared by the reaction of $3\text{CdSO}_4.8\text{H}_2\text{O}$ (1.283 g, 5 mmol) in H_2O (50 ml) and NA (1.220 g, 10 mmol) in H_2O (20 ml) with sodium salicylate (1.601 g, 10 mmol) in H_2O (200 ml). The mixture was filtered and set aside to crystallize at ambient temperature for two weeks, giving colorless single crystals.

Refinement

Water H atoms were located in a difference Fourier map and refined isotropically. The C, N and O -bound H-atoms were positioned geometrically with C—H = 0.95, N—H = 0.88 and O—H = 0.84 Å for aromatic, NH₂ and OH H atoms, respectively, and constrained to ride on their parent atoms, with $U_{\rm iso}({\rm H}) = {\rm k} \times U_{\rm eq}({\rm C,N,O})$, where k = 1.5 for OH H-atoms and k = 1.2 for all other H-atoms. During the refinement process the disordered O16A, H161, H162 and O16B, H163, H164 atoms were refined with occupancies ratios of 0.70:0.30.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Only one of the disordered water molecules is shown for clarity. Primed atoms are generated by the symmetry operator: (') - x, - y, - z.

Diaquabis(2-hydroxybenzoato- κO^1)bis(nicotinamide- κN^1)cadmium-diaquabis(2-hydroxybenzoato- $\kappa^2 O^1$, O^1) (nicotinamide- κN)cadmium-water (1/2/4)

Crystal data

$ \begin{aligned} & [\mathrm{Cd}(\mathrm{C}_7\mathrm{H}_5\mathrm{O}_3)_2(\mathrm{C}_6\mathrm{H}_6\mathrm{NO})_2(\mathrm{H}_2\mathrm{O})_2] \cdot 2[\mathrm{Cd}(\mathrm{C}_7\mathrm{H}_5\mathrm{O}_3)_2(\mathrm{C}_6\mathrm{H}_6\mathrm{NO}) \\ & (\mathrm{H}_2\mathrm{O})_2] \cdot 4\mathrm{H}_2\mathrm{O} \\ & M_r = 1828.56 \end{aligned} $	$V = 1772.85 (7) \text{ Å}^3$ Z = 1 F(000) = 926
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.713 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
a = 10.3446 (2) Å	Cell parameters from 9969 reflections
b = 13.5779 (3) Å	$\theta = 2.3-28.4^{\circ}$
c = 14.6586 (3) Å	$\mu = 0.99 \text{ mm}^{-1}$
$\alpha = 71.226 (3)^{\circ}$	T = 100 K
$\beta = 71.364 (3)^{\circ}$	Block, colorless
$\gamma = 69.221 \ (2)^{\circ}$	$0.42 \times 0.32 \times 0.29 \text{ mm}$
Data collection	
Bruker Kappa APEXII CCD area-detector	31862 measured reflections
diffractometer	8814 independent reflections
Radiation source: fine-focus sealed tube	8335 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int}=0.019$
φ and ω scans	$\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$

Refinement

Absorption correction: multi-scan

(SADABS; Bruker, 2005)

 $T_{\min} = 0.691, T_{\max} = 0.751$

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.019$	Hydrogen site location: inferred from
$wR(F^2) = 0.050$	neighbouring sites
S = 1.07	H atoms treated by a mixture of independent
8814 reflections	and constrained refinement
545 parameters	$w = 1/[\sigma^2(F_0^2) + (0.0186P)^2 + 1.5957P]$
12 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.020$
direct methods	$\Delta ho_{ m max} = 0.78 \ { m e \ \AA^{-3}}$
	$\Delta \rho_{\rm min} = -0.55 \text{e Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $h = -13 \rightarrow 13$

 $k = -17 \rightarrow 18$

 $l = -19 \rightarrow 19$

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cd1	0.0000	0.0000	0.5000	0.01311 (4)	
Cd2	0.877004 (11)	0.624380 (8)	0.830132 (7)	0.01203 (3)	

	0.044.00(4.0)	0.40 (4.5)	0 - 1 - 1 - 1 (0)	0.05.50 (5)	
01	-0.31150 (13)	0.19557 (12)	0.54455 (9)	0.0269 (3)	
O2	-0.16718 (12)	0.06304 (10)	0.63352 (8)	0.0180 (2)	
O3	-0.27174 (12)	-0.03188 (9)	0.80840 (9)	0.0194 (2)	
H3	-0.2076	-0.0189	0.7578	0.029*	
O4	0.49310 (12)	0.13733 (10)	0.28241 (8)	0.0201 (2)	
O5	0.08538 (14)	-0.16188 (10)	0.60766 (9)	0.0178 (2)	
H51	0.044 (3)	-0.205(2)	0.6227 (19)	0.039 (7)*	
H52	0.156 (3)	-0.184(2)	0.566 (2)	0.038 (7)*	
O6	0.77699 (14)	0.61782 (10)	0.69250 (9)	0.0224 (2)	
O7	0.96639 (14)	0.67201 (10)	0.66363 (8)	0.0211 (2)	
O8	0.70522 (15)	0.59461 (12)	0.54991 (11)	0.0310(3)	
H81	0.6944	0.6014	0.6071	0.046*	
O9	0.98282 (12)	0.74204 (9)	0.83579 (8)	0.0164(2)	
O10	0.90014 (12)	0.66520 (9)	0.99076 (8)	0.0182 (2)	
O11	1.13543 (13)	0.86917 (10)	0.78926 (8)	0.0189(2)	
H111	1.0909	0.8337	0.7797	0.028*	
O12	0.58701 (14)	0.36892 (11)	0.80202 (9)	0.0258 (3)	
O13	0.67334 (13)	0.77253 (10)	0.84526 (9)	0.0162(2)	
H131	0.700(2)	0.820(2)	0.8404 (17)	0.025 (6)*	
H132	0.630(3)	0.792 (2)	0.8042 (19)	0.031 (6)*	
O14	1.07045 (13)	0.47416 (10)	0.83130 (9)	0.0174(2)	
H141	1.146 (3)	0.480 (2)	0.803 (2)	0.038 (7)*	
H142	1.078 (3)	0.431 (2)	0.886 (2)	0.035 (6)*	
O15	0.33286 (16)	0.49084 (15)	0.73091 (12)	0.0383 (4)	
H15A	0.331 (3)	0.532 (2)	0.6724 (14)	0.056 (9)*	
H15B	0.416 (2)	0.454 (2)	0.736 (2)	0.055*	
O16A	0.3642 (4)	0.5663 (3)	0.5283 (3)	0.0691 (10)	0.70
H161	0.330 (5)	0.563 (4)	0.486 (3)	0.070*	0.70
H162	0.377 (5)	0.632 (2)	0.510 (3)	0.070*	0.70
O16B	0.4434 (6)	0.5903 (5)	0.5461 (4)	0.0407 (12)	0.70
H163	0.478 (9)	0.541 (6)	0.518 (7)	0.055*	0.30
H164	0.516 (6)	0.615 (7)	0.543 (7)	0.055*	0.30
N1	0.16652 (14)	0.06569 (10)			0.50
N2	` ′	, ,	0.51738 (10) 0.37443 (10)	0.0141 (2)	
	0.59990 (15)	0.17238 (12)	, ,	0.0201 (3)	
H2A	0.6712	0.1831	0.3237	0.024*	
H2B	0.5985	0.1786	0.4327	0.024*	
N3	0.75275 (14)	0.50506 (10)	0.93253 (10)	0.0137 (2)	
N4	0.47937 (16)	0.27600 (12)	0.94629 (11)	0.0205 (3)	
H4A	0.4403	0.2514	0.9162	0.025*	
H4B	0.4640	0.2578	1.0113	0.025*	
C1	-0.28699 (17)	0.13245 (14)	0.62445 (12)	0.0171 (3)	
C2	-0.40629(16)	0.13224 (13)	0.71493 (11)	0.0146 (3)	
C3	-0.39584 (16)	0.04683 (13)	0.79939 (11)	0.0147 (3)	
C4	-0.51546(17)	0.03905 (13)	0.87677 (11)	0.0165 (3)	
H4	-0.5096	-0.0216	0.9319	0.020*	
C5	-0.64234 (17)	0.11948 (13)	0.87315 (12)	0.0171 (3)	
H5	-0.7235	0.1140	0.9260	0.021*	
C6	-0.65202 (17)	0.20861 (13)	0.79242 (12)	0.0166 (3)	
H6	-0.7381	0.2655	0.7914	0.020*	

C7	0.52400 (17)	0.21251 (12)	0.71270 (11)	0.0150 (2)
C7	-0.53499 (17)	0.21351 (13)	0.71370 (11)	0.0159 (3)
H7	-0.5424 0.27248 (16)	0.2732	0.6578	0.019*
C8	0.27348 (16)	0.09059 (12)	0.44208 (11)	0.0141 (3)
H8	0.2780	0.0842	0.3784	0.017*
C9	0.37801 (16)	0.12524 (12)	0.45284 (11)	0.0133 (3)
C10	0.37015 (17)	0.13455 (12)	0.54640 (11)	0.0152 (3)
H10	0.4399	0.1577	0.5567	0.018*
C11	0.25952 (17)	0.10974 (13)	0.62432 (11)	0.0166 (3)
H11	0.2521	0.1159	0.6887	0.020*
C12	0.15991 (17)	0.07589 (12)	0.60704 (11)	0.0156 (3)
H12	0.0840	0.0592	0.6606	0.019*
C13	0.49426 (16)	0.14670 (12)	0.36310 (11)	0.0149 (3)
C14	0.88452 (18)	0.64560 (12)	0.63308 (11)	0.0174 (3)
C15	0.91699 (18)	0.64417 (12)	0.52719 (11)	0.0171 (3)
C16	0.82761 (19)	0.61560 (13)	0.49183 (13)	0.0205 (3)
C17	0.8645 (2)	0.60858 (14)	0.39349 (13)	0.0255 (4)
H17	0.8043	0.5891	0.3693	0.031*
C18	0.9885 (2)	0.62997 (14)	0.33131 (13)	0.0274 (4)
H18	1.0134	0.6242	0.2646	0.033*
C19	1.0772 (2)	0.65980 (15)	0.36474 (13)	0.0255 (4)
H19	1.1616	0.6755	0.3211	0.031*
C20	1.04131 (19)	0.66644 (14)	0.46248 (12)	0.0207 (3)
H20	1.1019	0.6864	0.4859	0.025*
C21	0.96738 (16)	0.72866 (12)	0.92860 (11)	0.0130 (3)
C22	1.03321 (15)	0.79060 (12)	0.95921 (11)	0.0124 (3)
C23	1.11546 (16)	0.85634 (12)	0.88791 (11)	0.0140 (3)
C24	1.18204 (17)	0.90993 (13)	0.91789 (12)	0.0177 (3)
H24	1.2383	0.9537	0.8697	0.021*
C25	1.16626 (18)	0.89943 (13)	1.01733 (12)	0.0187 (3)
H25	1.2112	0.9366	1.0372	0.022*
C26	1.08496 (18)	0.83482 (13)	1.08907 (12)	0.0183 (3)
H26	1.0741	0.8280	1.1575	0.022*
C27	1.02046 (16)	0.78079 (13)	1.05937 (11)	0.0150 (3)
H27	0.9662	0.7360	1.1082	0.018*
C28	0.69587 (16)	0.45880 (12)	0.89278 (11)	0.0147 (3)
H28	0.7059	0.4791	0.8231	0.018*
C29	0.62276 (16)	0.38230 (12)	0.94916 (11)	0.0136 (3)
C30	0.60890 (16)	0.35230 (12)	1.05111 (11)	0.0146 (3)
H30	0.5601	0.3000	1.0917	0.018*
C31	0.66750 (17)	0.39997 (13)	1.09260 (11)	0.0156 (3)
H31	0.6592	0.3810	1.1621	0.019*
C32	0.73819 (16)	0.47544 (12)	1.03128 (11)	0.0148 (3)
H32	0.7782	0.5078	1.0601	0.018*
C33	0.56221 (17)	0.34110 (13)	0.89312 (12)	0.0173 (3)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.01042 (7)	0.01605 (8)	0.01411 (7)	-0.00624 (6)	-0.00107(5)	-0.00409 (5)
Cd2	0.01288 (6)	0.01225 (5)	0.01173 (5)	-0.00601 (4)	-0.00242 (4)	-0.00147 (4)

O1	0.0173 (6)	0.0418 (8)	0.0148 (5)	-0.0056 (6)	-0.0013(5)	-0.0033 (5)
O2	0.0125 (5)	0.0234 (6)	0.0191 (5)	-0.0054(5)	-0.0004(4)	-0.0093(5)
O3	0.0150(6)	0.0182 (6)	0.0216 (6)	-0.0033(5)	-0.0025(4)	-0.0037 (4)
O4	0.0148 (6)	0.0300(6)	0.0164 (5)	-0.0068(5)	-0.0036(4)	-0.0060(5)
O5	0.0169(6)	0.0215 (6)	0.0154 (5)	-0.0100(5)	-0.0015(4)	-0.0019(4)
O6	0.0267 (7)	0.0206 (6)	0.0168 (5)	-0.0099(5)	0.0013 (5)	-0.0029(4)
O7	0.0314 (7)	0.0205 (6)	0.0131 (5)	-0.0117(5)	-0.0055(5)	-0.0012(4)
O8	0.0296 (7)	0.0337 (7)	0.0319 (7)	-0.0148(6)	-0.0089(6)	-0.0023 (6)
O9	0.0177 (6)	0.0203 (6)	0.0145 (5)	-0.0094(5)	-0.0030(4)	-0.0046(4)
O10	0.0191 (6)	0.0188 (6)	0.0190 (5)	-0.0118(5)	-0.0062(4)	0.0017 (4)
O11	0.0224 (6)	0.0246 (6)	0.0129 (5)	-0.0149(5)	-0.0023(4)	-0.0010 (4)
O12	0.0301(7)	0.0368 (7)	0.0179 (6)	-0.0202 (6)	-0.0014(5)	-0.0079(5)
O13	0.0166 (6)	0.0159 (6)	0.0172 (5)	-0.0053(5)	-0.0064(4)	-0.0020(4)
O14	0.0162 (6)	0.0175 (6)	0.0157 (5)	-0.0047(5)	-0.0033(4)	-0.0006(4)
O15	0.0264 (8)	0.0539 (10)	0.0326 (8)	-0.0164 (7)	-0.0057(6)	-0.0029(7)
O16A	0.0534 (18)	0.069(2)	0.066(2)	-0.0221 (16)	-0.0284(15)	0.0282 (16)
O16B	0.040(3)	0.043 (3)	0.036(3)	-0.012 (3)	-0.016(2)	0.004(2)
N1	0.0136 (6)	0.0134 (6)	0.0158 (6)	-0.0050(5)	-0.0040(5)	-0.0021(5)
N2	0.0150(7)	0.0312 (8)	0.0176 (6)	-0.0129 (6)	-0.0009(5)	-0.0061 (6)
N3	0.0114 (6)	0.0122 (6)	0.0176 (6)	-0.0039(5)	-0.0031(5)	-0.0033(5)
N4	0.0248 (7)	0.0245 (7)	0.0193 (6)	-0.0165 (6)	-0.0025(6)	-0.0064(5)
C1	0.0149 (7)	0.0233 (8)	0.0161 (7)	-0.0082 (6)	-0.0010 (6)	-0.0080 (6)
C2	0.0136 (7)	0.0183 (7)	0.0148 (7)	-0.0069(6)	-0.0014(5)	-0.0070 (6)
C3	0.0140(7)	0.0153 (7)	0.0177 (7)	-0.0045(6)	-0.0035 (6)	-0.0075 (6)
C4	0.0188 (8)	0.0166 (7)	0.0156 (7)	-0.0079(6)	-0.0023 (6)	-0.0042 (6)
C5	0.0164 (7)	0.0214 (8)	0.0167 (7)	-0.0096 (6)	0.0017 (6)	-0.0093 (6)
C6	0.0142 (7)	0.0192 (8)	0.0187 (7)	-0.0046 (6)	-0.0029(6)	-0.0086 (6)
C7	0.0165 (7)	0.0182 (7)	0.0155 (7)	-0.0063 (6)	-0.0037 (6)	-0.0055 (6)
C8	0.0135 (7)	0.0152 (7)	0.0144 (7)	-0.0048 (6)	-0.0043(5)	-0.0026(5)
C9	0.0110 (7)	0.0120(7)	0.0161 (7)	-0.0026(5)	-0.0043(5)	-0.0019(5)
C10	0.0146 (7)	0.0155 (7)	0.0174 (7)	-0.0049(6)	-0.0063 (6)	-0.0029 (6)
C11	0.0187 (8)	0.0178 (7)	0.0140(7)	-0.0057(6)	-0.0052(6)	-0.0027 (6)
C12	0.0155 (7)	0.0148 (7)	0.0154 (7)	-0.0055 (6)	-0.0027(6)	-0.0018(5)
C13	0.0122 (7)	0.0138 (7)	0.0165 (7)	-0.0021 (6)	-0.0040(5)	-0.0018 (5)
C14	0.0246 (8)	0.0112 (7)	0.0135 (7)	-0.0039 (6)	-0.0032 (6)	-0.0015(5)
C15	0.0234 (8)	0.0123 (7)	0.0130(7)	-0.0029(6)	-0.0048(6)	-0.0015(5)
C16	0.0250 (9)	0.0133 (7)	0.0225 (8)	-0.0030 (6)	-0.0099(7)	-0.0013 (6)
C17	0.0386 (11)	0.0167 (8)	0.0250(8)	-0.0024(7)	-0.0191 (8)	-0.0041 (6)
C18	0.0436 (11)	0.0180(8)	0.0150(7)	0.0017 (8)	-0.0111 (7)	-0.0040 (6)
C19	0.0307 (10)	0.0221 (8)	0.0149 (7)	-0.0034(7)	-0.0009(7)	-0.0017 (6)
C20	0.0253 (9)	0.0185 (8)	0.0156 (7)	-0.0048(7)	-0.0042 (6)	-0.0024 (6)
C21	0.0100(7)	0.0119 (7)	0.0163 (7)	-0.0020(5)	-0.0033(5)	-0.0030(5)
C22	0.0097(7)	0.0120(6)	0.0151 (7)	-0.0028(5)	-0.0029(5)	-0.0032(5)
C23	0.0130(7)	0.0130 (7)	0.0152 (7)	-0.0036 (6)	-0.0032 (5)	-0.0026(5)
C24	0.0176 (8)	0.0149 (7)	0.0219 (8)	-0.0085 (6)	-0.0047 (6)	-0.0017 (6)
C25	0.0200 (8)	0.0160(7)	0.0246 (8)	-0.0060 (6)	-0.0084(6)	-0.0064 (6)
C26	0.0197 (8)	0.0191 (8)	0.0166 (7)	-0.0033 (6)	-0.0054 (6)	-0.0063 (6)
C27	0.0130(7)	0.0151 (7)	0.0152 (7)	-0.0037 (6)	-0.0018 (5)	-0.0030(5)
C28	0.0135 (7)	0.0150 (7)	0.0155 (7)	-0.0047 (6)	-0.0016 (5)	-0.0042(5)

C29	0.0100(7)	0.0129 (7)	0.0179 (7)	-0.0032 (5)	-0.0014(5)	-0.0055(5)	
C30	0.0116 (7)	0.0129 (7)	0.0181 (7)	-0.0043 (6)	-0.0020(5)	-0.0027(5)	
C31	0.0146 (7)	0.0157 (7)	0.0159 (7)	-0.0044 (6)	-0.0036 (6)	-0.0026 (6)	
C32	0.0130(7)	0.0147 (7)	0.0180 (7)	-0.0041 (6)	-0.0049 (6)	-0.0039 (6)	
C33	0.0159(7)	0.0191(8)	0.0190(7)	-0.0069(6)	-0.0016(6)	-0.0075(6)	

Geometric parameters (Å, °)

Geometric parameters (A,)			
Cd1—O2	2.3279 (11)	C1—C2	1.495 (2)
Cd1—O2i	2.3279 (11)	C2—C7	1.397 (2)
Cd1—O5	2.3200 (12)	C2—C3	1.401(2)
Cd1—O5i	2.3200 (12)	C3—C4	1.396(2)
Cd1—N1	2.3118 (13)	C4—C5	1.381(2)
Cd1—N1 ⁱ	2.3118 (13)	C4—H4	0.9500
Cd2—O6	2.5814 (13)	C5—C6	1.394(2)
Cd2—O7	2.2795 (11)	C5—H5	0.9500
Cd2—O9	2.2675 (11)	C6—C7	1.384(2)
Cd2—O10	2.6839 (12)	C6—H6	0.9500
Cd2—O13	2.3486 (12)	C7—H7	0.9500
Cd2—O14	2.2953 (12)	C8—H8	0.9500
Cd2—N3	2.2824 (13)	C9—C8	1.390(2)
O1—C1	1.249 (2)	C9—C13	1.501(2)
O2—C1	1.280 (2)	C10—C9	1.392(2)
O3—C3	1.3608 (19)	C10—H10	0.9500
O3—H3	0.8400	C11—C10	1.385 (2)
O4—C13	1.2338 (19)	C11—H11	0.9500
O5—H51	0.78 (3)	C12—C11	1.384(2)
O5—H52	0.83 (3)	C12—H12	0.9500
O6—C14	1.267 (2)	C14—C15	1.485 (2)
O7—C14	1.268 (2)	C15—C20	1.399 (2)
O8—C16	1.349 (2)	C15—C16	1.401(2)
O8—H81	0.8400	C16—C17	1.394(2)
O9—C21	1.2774 (18)	C17—C18	1.381 (3)
O10—C21	1.2535 (18)	C17—H17	0.9500
O11—C23	1.3552 (18)	C18—C19	1.388 (3)
O11—H111	0.8400	C18—H18	0.9500
O12—C33	1.232 (2)	C19—C20	1.385 (2)
O13—H131	0.76 (2)	C19—H19	0.9500
O13—H132	0.79 (3)	C20—H20	0.9500
O14—H141	0.78 (3)	C21—C22	1.489 (2)
O14—H142	0.83 (3)	C22—C27	1.398 (2)
O15—H15A	0.863 (16)	C22—C23	1.408 (2)
O15—H15B	0.843 (17)	C23—C24	1.397 (2)
O16A—O16B	1.108 (7)	C24—C25	1.379 (2)
O16A—H161	0.829 (19)	C24—H24	0.9500
O16A—H162	0.895 (17)	C25—C26	1.396 (2)
O16A—H163	1.08 (8)	C25—H25	0.9500
O16B—H162	0.92 (5)	C26—C27	1.382 (2)
O16B—H163	0.81 (2)	C26—H26	0.9500
O16B—H164	0.909 (19)	C27—H27	0.9500

N1 C9	1 242 (2)	C28 C20	1 202 (2)
N1—C8	1.342 (2)	C28—C29	1.393 (2)
N1—C12	1.343 (2)	C28—H28	0.9500
N2—C13	1.329 (2)	C29—C30	1.390 (2)
N2—H2A	0.8800	C29—C33	1.501 (2)
N2—H2B	0.8800	C30—C31	1.387 (2)
N3—C28	1.3405 (19)	C30—H30	0.9500
N3—C32	1.345 (2)	C31—C32	1.383 (2)
N4—C33	1.338 (2)	C31—H31	0.9500
N4—H4A	0.8800	C32—H32	0.9500
N4—H4B	0.8800		
O2—Cd1—O2 ⁱ	180.0	C6—C7—C2	121.19 (15)
O5—Cd1—O2	89.71 (4)	C6—C7—H7	119.4
O5i—Cd1—O2	90.29 (4)	N1—C8—C9	123.14 (14)
O5—Cd1—O2 ⁱ	* *	N1—C8—H8	` ′
	90.29 (4)		118.4
O5i—Cd1—O2i	89.71 (4)	C9—C8—H8	118.4
O5—Cd1—O5 ⁱ	180.00 (6)	C8—C9—C10	117.94 (14)
N1—Cd1—O2	91.83 (4)	C8—C9—C13	117.52 (13)
N1 ⁱ —Cd1—O2	88.17 (4)	C10—C9—C13	124.51 (14)
N1—Cd1—O2i	88.17 (4)	C9—C10—H10	120.4
N1 ⁱ —Cd1—O2 ⁱ	91.83 (4)	C11—C10—C9	119.25 (14)
N1—Cd1—O5	88.80 (4)	C11—C10—H10	120.4
N1 ⁱ —Cd1—O5	91.20 (4)	C10—C11—H11	120.5
N1—Cd1—O5 ⁱ	91.20 (4)	C12—C11—C10	119.01 (14)
N1 ⁱ —Cd1—O5 ⁱ	88.80 (4)	C12—C11—H11	120.5
N1—Cd1—N1 ⁱ	180.00 (5)	N1—C12—C11	122.49 (14)
O7—Cd2—O6	53.45 (4)	N1—C12—H12	118.8
O7—Cd2—O13	99.00 (4)	C11—C12—H12	118.8
O7—Cd2—O14	86.39 (5)	O4—C13—N2	121.54 (15)
O7—Cd2—N3	135.25 (4)	O4—C13—C9	120.59 (14)
O9—Cd2—O6	130.94 (4)	N2—C13—C9	117.83 (14)
O9—Cd2—O7	83.88 (4)	O6—C14—O7	120.68 (14)
O9—Cd2—O10	51.97 (4)	O6—C14—C15	119.54 (15)
O9—Cd2—O13	82.42 (4)	O7—C14—C15	119.77 (15)
O9—Cd2—O14	97.85 (4)	C16—C15—C14	120.68 (15)
O9—Cd2—N3	140.77 (4)	C20—C15—C14	120.08 (15)
O13—Cd2—O6	81.90 (4)	C20—C15—C16	119.17 (15)
O14—Cd2—O6	101.78 (4)	O8—C16—C15	122.18 (16)
O14—Cd2—O13	174.60 (4)	O8—C16—C17	118.09 (16)
N3—Cd2—O6	85.89 (4)	C17—C16—C15	119.72 (17)
N3—Cd2—O13	91.82 (4)	C16—C17—H17	120.0
N3—Cd2—O14	84.56 (5)	C18—C17—C16	120.01 (17)
C1—O2—Cd1	122.27 (10)	C18—C17—H17	120.0
C3—O3—H3	109.5	C17—C18—C19	121.02 (16)
Cd1—O5—H51	116.4 (19)	C17—C18—H18	119.5
Cd1—O5—H52	94.7 (18)	C19—C18—H18	119.5
H52—O5—H51	103 (3)	C18—C19—H19	120.4
C14—O6—Cd2	85.62 (10)	C20—C19—C18	119.16 (17)
C14—O7—Cd2	99.61 (10)	C20—C19—H19	120.4

C16—O8—H81 109.5 C15—C20—H20 C21—O9—Cd2 103.02 (9) C19—C20—C15 C23—O11—H111 109.5 C19—C20—H20 C12 O12 H121 105 ((18)	120.90 (17)
C23—O11—H111 109.5 C19—C20—H20	, ,
	119.5
Cd2—O13—H131 105.6 (18) O9—C21—C22	117.30 (13)
Cd2—O13—H132 116.8 (18) O10—C21—O9	120.87 (14)
H131—O13—H132	121.83 (13)
Cd2—O14—H141 119.8 (19) C23—C22—C21	120.72 (13)
Cd2—O14—H142 117.3 (17) C27—C22—C21	120.76 (13)
H142—O14—H141 108 (2) C27—C22—C23	118.45 (14)
H15A—O15—H15B 112 (3) O11—C23—C22	122.46 (13)
H162—O16A—H161 106 (3) O11—C23—C24	117.49 (14)
H163—O16B—H164 106 (5) C24—C23—C22	120.04 (14)
C8—N1—Cd1 122.70 (10) C23—C24—H24	119.9
C8—N1—C12 118.15 (13) C25—C24—C23	120.11 (14)
C12—N1—Cd1 119.10 (10) C25—C24—H24	119.9
C13—N2—H2A 120.0 C24—C25—C26	120.68 (15)
C13—N2—H2B 120.0 C24—C25—H25	119.7
H2A—N2—H2B 120.0 C26—C25—H25	119.7
C28—N3—Cd2 118.96 (10) C25—C26—H26	120.4
C28—N3—C32 117.99 (13) C27—C26—C25	119.19 (14)
C32—N3—Cd2 123.00 (10) C27—C26—H26	120.4
C33—N4—H4A 120.0 C22—C27—H27	119.2
C33—N4—H4B 120.0 C26—C27—C22	121.52 (14)
H4A—N4—H4B 120.0 C26—C27—H27	119.2
O1—C1—O2 124.22 (15) N3—C28—C29	122.91 (14)
O1—C1—C2 118.68 (15) N3—C28—H28	118.5
O2—C1—C2 117.00 (14) C29—C28—H28	118.5
C3—C2—C1 121.07 (14) C28—C29—C33	115.98 (14)
C7—C2—C1 120.12 (14) C30—C29—C28	118.44 (14)
C7—C2—C3 118.61 (14) C30—C29—C33	125.56 (14)
O3—C3—C2 122.00 (14) C29—C30—H30	120.6
O3—C3—C4 117.82 (14) C31—C30—C29	118.87 (14)
C4—C3—C2 120.17 (15) C31—C30—H30	120.6
C3—C4—H4 120.0 C30—C31—H31	120.5
C5—C4—C3 120.01 (15) C32—C31—C30	118.99 (14)
C5—C4—H4 120.0 C32—C31—H31	120.5
C4—C5—C6 120.42 (15) N3—C32—C31	122.80 (14)
C4—C5—H5 119.8 N3—C32—H32	118.6
C6—C5—H5 119.8 C31—C32—H32	118.6
C5—C6—H6 120.3 O12—C33—N4	122.50 (15)
C7—C6—C5 119.38 (15) O12—C33—C29	120.23 (14)
C7—C6—H6 120.3 N4—C33—C29	117.26 (14)
C2—C7—H7 119.4	
O5—Cd1—O2—C1	-176.12 (13)
O5 ⁱ —Cd1—O2—C1 28.23 (12) C7—C2—C3—C4	5.3 (2)
N1—Cd1—O2—C1 119.44 (12) C1—C2—C7—C6	172.72 (14)
N1 ⁱ —Cd1—O2—C1	-2.3 (2)
O2—Cd1—N1—C8	177.09 (14)

Acta Cryst. (2013). E**69**, m191–m192

O2—Cd1—N1—C12 27.03 (12) C3—C4—C5—C6 0.1 O2i—Cd1—N1—C12 -152.97 (12) C4—C5—C6—C7 2.9 O5—Cd1—N1—C8 114.85 (12) C5—C6—C7—C2 -1.8 O5i—Cd1—N1—C8 -65.15 (12) C10—C9—C8—N1 -0.3 O5—Cd1—N1—C12 -62.64 (12) C13—C9—C8—N1 177 O5i—Cd1—N1—C12 117.36 (12) C8—C9—C13—O4 2.5 O7—Cd2—O6—C14 4.53 (9) C8—C9—C13—N2 -17 O9—Cd2—O6—C14 39.56 (11) C10—C9—C13—O4 -17 O13—Cd2—O6—C14 112.11 (10) C10—C9—C13—N2 2.7 O14—Cd2—O6—C14 -71.89 (10) C11—C10—C9—C8 -0.3	(2) 8 (2) 2 (2) 7.96 (14) (2) 75.32 (14) 79.50 (15) (2) 3 (2) 78.28 (15)
O2i—Cd1—N1—C12 -152.97 (12) C4—C5—C6—C7 2.9 O5—Cd1—N1—C8 114.85 (12) C5—C6—C7—C2 -1.3 O5i—Cd1—N1—C8 -65.15 (12) C10—C9—C8—N1 -0.3 O5—Cd1—N1—C12 -62.64 (12) C13—C9—C8—N1 177 O5i—Cd1—N1—C12 117.36 (12) C8—C9—C13—O4 2.5 O7—Cd2—O6—C14 4.53 (9) C8—C9—C13—N2 -17 O9—Cd2—O6—C14 39.56 (11) C10—C9—C13—O4 -17 O13—Cd2—O6—C14 112.11 (10) C10—C9—C13—N2 2.7 O14—Cd2—O6—C14 -71.89 (10) C11—C10—C9—C8 -0.3 N3—Cd2—O6—C14 -155.46 (10) C11—C10—C9—C13 -17 O6—Cd2—O7—C14 -4.58 (9) C12—C11—C10—C9 0.2	(2) 8 (2) 2 (2) 7.96 (14) (2) 75.32 (14) 79.50 (15) (2) 3 (2) 78.28 (15)
O5—Cd1—N1—C8 114.85 (12) C5—C6—C7—C2 -1.8 O5—Cd1—N1—C8 -65.15 (12) C10—C9—C8—N1 -0.3 O5—Cd1—N1—C12 -62.64 (12) C13—C9—C8—N1 177 O5—Cd1—N1—C12 117.36 (12) C8—C9—C13—O4 2.5 O7—Cd2—O6—C14 4.53 (9) C8—C9—C13—N2 -17 O9—Cd2—O6—C14 39.56 (11) C10—C9—C13—O4 -17 O13—Cd2—O6—C14 112.11 (10) C10—C9—C13—N2 2.7 O14—Cd2—O6—C14 -71.89 (10) C11—C10—C9—C8 -0.3 N3—Cd2—O6—C14 -155.46 (10) C11—C10—C9—C13 -17 O6—Cd2—O7—C14 -4.58 (9) C12—C11—C10—C9 0.2	8 (2) 2 (2) 7.96 (14) (2) 75.32 (14) 79.50 (15) (2) 3 (2) 78.28 (15)
O5i—Cd1—N1—C8 -65.15 (12) C10—C9—C8—N1 -0.2 O5—Cd1—N1—C12 -62.64 (12) C13—C9—C8—N1 177 O5i—Cd1—N1—C12 117.36 (12) C8—C9—C13—O4 2.5 O7—Cd2—O6—C14 4.53 (9) C8—C9—C13—N2 -17 O9—Cd2—O6—C14 39.56 (11) C10—C9—C13—O4 -17 O13—Cd2—O6—C14 112.11 (10) C10—C9—C13—N2 2.7 O14—Cd2—O6—C14 -71.89 (10) C11—C10—C9—C8 -0.2 N3—Cd2—O6—C14 -155.46 (10) C11—C10—C9—C13 -17 O6—Cd2—O7—C14 -4.58 (9) C12—C11—C10—C9 0.2	2 (2) 7.96 (14) (2) 75.32 (14) 79.50 (15) (2) 3 (2) 78.28 (15)
O5—Cd1—N1—C12 -62.64 (12) C13—C9—C8—N1 177 O5 ⁱ —Cd1—N1—C12 117.36 (12) C8—C9—C13—O4 2.5 O7—Cd2—O6—C14 4.53 (9) C8—C9—C13—N2 -17 O9—Cd2—O6—C14 39.56 (11) C10—C9—C13—O4 -17 O13—Cd2—O6—C14 112.11 (10) C10—C9—C13—N2 2.7 O14—Cd2—O6—C14 -71.89 (10) C11—C10—C9—C8 -0. N3—Cd2—O6—C14 -155.46 (10) C11—C10—C9—C13 -17 O6—Cd2—O7—C14 -4.58 (9) C12—C11—C10—C9 0.2	7.96 (14) (2) 75.32 (14) 79.50 (15) (2) 3 (2) 78.28 (15)
O5i—Cd1—N1—C12 117.36 (12) C8—C9—C13—O4 2.5 O7—Cd2—O6—C14 4.53 (9) C8—C9—C13—N2 -17 O9—Cd2—O6—C14 39.56 (11) C10—C9—C13—O4 -17 O13—Cd2—O6—C14 112.11 (10) C10—C9—C13—N2 2.7 O14—Cd2—O6—C14 -71.89 (10) C11—C10—C9—C8 -0. N3—Cd2—O6—C14 -155.46 (10) C11—C10—C9—C13 -17 O6—Cd2—O7—C14 -4.58 (9) C12—C11—C10—C9 0.2	(2) 75.32 (14) 79.50 (15) (2) 3 (2) 78.28 (15)
O7—Cd2—O6—C14 4.53 (9) C8—C9—C13—N2 -17 O9—Cd2—O6—C14 39.56 (11) C10—C9—C13—O4 -17 O13—Cd2—O6—C14 112.11 (10) C10—C9—C13—N2 2.7 O14—Cd2—O6—C14 -71.89 (10) C11—C10—C9—C8 -0.0 N3—Cd2—O6—C14 -155.46 (10) C11—C10—C9—C13 -17 O6—Cd2—O7—C14 -4.58 (9) C12—C11—C10—C9 0.2	75.32 (14) 79.50 (15) (2) 3 (2) 78.28 (15)
O9—Cd2—O6—C14 39.56 (11) C10—C9—C13—O4 -17 O13—Cd2—O6—C14 112.11 (10) C10—C9—C13—N2 2.7 O14—Cd2—O6—C14 -71.89 (10) C11—C10—C9—C8 -0.3 N3—Cd2—O6—C14 -155.46 (10) C11—C10—C9—C13 -17 O6—Cd2—O7—C14 -4.58 (9) C12—C11—C10—C9 0.2	79.50 (15) (2) 3 (2) 78.28 (15)
O13—Cd2—O6—C14 112.11 (10) C10—C9—C13—N2 2.7 O14—Cd2—O6—C14 -71.89 (10) C11—C10—C9—C8 -0.3 N3—Cd2—O6—C14 -155.46 (10) C11—C10—C9—C13 -17 O6—Cd2—O7—C14 -4.58 (9) C12—C11—C10—C9 0.2	(2) 3 (2) 78.28 (15)
O14—Cd2—O6—C14 -71.89 (10) C11—C10—C9—C8 -0.3 N3—Cd2—O6—C14 -155.46 (10) C11—C10—C9—C13 -17 O6—Cd2—O7—C14 -4.58 (9) C12—C11—C10—C9 0.2	3 (2) 78.28 (15)
N3—Cd2—O6—C14	78.28 (15)
O6—Cd2—O7—C14	
* *	(2)
	* *
O13—Cd2—O7—C14	(2)
O14—Cd2—O7—C14	75.00 (15)
	79.77 (15)
O6—Cd2—O9—C21 159.44 (9) O7—C14—C15—C20 3.3	` ′
O7—Cd2—O9—C21	(2)
	76.23 (15)
· · ·	79.05 (15)
N3—Cd2—O9—C21 3.57 (13) C20—C15—C16—C17 0.7	(2)
	5.50 (16)
O6—Cd2—N3—C32	5 (2)
O7—Cd2—N3—C28	9.66 (16)
O7—Cd2—N3—C32 165.28 (11) C15—C16—C17—C18 -0.	1 (3)
O9—Cd2—N3—C28 172.86 (10) C16—C17—C18—C19 -0.	7 (3)
O9—Cd2—N3—C32	(3)
	4(3)
O13—Cd2—N3—C32	4(2)
O14—Cd2—N3—C28 —91.38 (12) O9—C21—C22—C27 179	9.68 (14)
O14—Cd2—N3—C32 85.99 (12) O10—C21—C22—C23 176	5.13 (14)
Cd1—O2—C1—O1 — -21.6 (2) — O10—C21—C22—C27 — -0.8	8 (2)
Cd1—O2—C1—C2 154.63 (10) C21—C22—C23—O11 2.0	(2)
Cd2—O6—C14—O7	76.99 (14)
Cd2—O6—C14—C15 170.65 (14) C27—C22—C23—O11 178	3.95 (14)
Cd2—O7—C14—O6 8.74 (17) C27—C22—C23—C24 0.0	(2)
Cd2—O7—C14—C15 — 169.53 (12) — C21—C22—C27—C26 — 177	7.76 (15)
Cd2—O9—C21—O10	(2)
Cd2—O9—C21—C22 176.66 (11) O11—C23—C24—C25 -17	79.63 (15)
Cd1—N1—C8—C9	6 (2)
C12—N1—C8—C9 0.7 (2) C23—C24—C25—C26 0.5	(3)
Cd1—N1—C12—C11 176.90 (12) C24—C25—C26—C27 0.2	(3)
C8—N1—C12—C11	9 (2)
Cd2—N3—C28—C29 177.67 (12) N3—C28—C29—C30 -0	3 (2)
C32—N3—C28—C29	3.28 (14)
Cd2—N3—C32—C31 —177.42 (12) — C28—C29—C30—C31 —0.4	(2)
C28—N3—C32—C31	78.11 (15)
O1—C1—C2—C3 163.89 (15) C28—C29—C33—O12 5.2	(2)

O1—C1—C2—C7	-11.0 (2)	C28—C29—C33—N4	-173.41 (15)
O2—C1—C2—C3	-12.6 (2)	C30—C29—C33—O12	-176.29 (16)
O2—C1—C2—C7	172.54 (14)	C30—C29—C33—N4	5.1 (2)
C1—C2—C3—O3	8.9 (2)	C29—C30—C31—C32	-0.2(2)
C1—C2—C3—C4	-169.65 (14)	C30—C31—C32—N3	0.1 (2)

Symmetry code: (i) -x, -y, -z+1.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
N2—H2 <i>A</i> ···O11 ⁱⁱ	0.88	2.21	3.025 (2)	154
N2—H2 <i>B</i> ···O1 ⁱⁱⁱ	0.88	2.23	3.054(2)	156
N4—H4 <i>B</i> ···O13 ^{iv}	0.88	2.13	2.937(2)	151
O3—H3···O2	0.84	1.81	2.548 (2)	146
O5—H51···O7 ^v	0.78 (3)	1.95 (3)	2.722(2)	172 (3)
O5—H52···O1 ⁱ	0.82(3)	1.89(3)	2.687(2)	165 (3)
O8—H81···O6	0.84	1.83	2.569(2)	146
O11—H111···O5 ^{vi}	0.84	2.52	3.048 (2)	122
O11—H111···O9	0.84	1.79	2.535 (2)	146
O13—H131···O3 ^{vi}	0.76(3)	2.02(3)	2.760(2)	165 (2)
O13—H132···O4 ^{vii}	0.79(3)	1.88 (3)	2.656 (2)	168 (3)
O14—H141···O15 ⁱⁱⁱ	0.78 (3)	1.92(3)	2.693 (2)	178.1 (5)
O14—H142···O10 ^{viii}	0.84(3)	1.89(3)	2.720(2)	178 (4)
O15—H15 <i>A</i> ···O16 <i>A</i>	0.86(2)	1.95 (2)	2.764 (4)	156 (2)
O15—H15 <i>A</i> ···O16 <i>B</i>	0.86(2)	1.93 (2)	2.689 (5)	146 (2)
O15—H15 <i>B</i> ···O12	0.84(3)	2.08(3)	2.880(2)	159 (3)
O16 <i>A</i> —H161···O8 ^{vii}	0.83 (5)	2.53 (5)	3.139 (4)	132 (4)
O16A—H162···O1 ^{ix}	0.89 (4)	2.14(3)	2.965 (4)	153 (5)
O16 <i>B</i> —H164···O8	0.91(2)	1.91 (2)	2.748 (2)	153 (3)
C28—H28···O6	0.95	2.35	3.101(2)	136
N4—H4 <i>A</i> ··· <i>Cg</i> 1	0.88	2.69	3.470 (2)	148

Symmetry codes: (i) -x, -y, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+2; (v) x-1, y-1, z; (vi) x+1, y+1, z; (vii) -x+1, -y+1, -z+1; (viii) -x+2, -y+1, -z+2; (ix) -x, -y+1, -z+1.