The Maximum Facility Location Problem

Mitchell Jones Supervisor: Dr. Julián Mestre

School of Information Technologies
Faculty of Engineering & Information Technologies

Example

Problem

•000

Problem

0000

Maximum Facility Location

- C is the set of clients
- F is the set of facilities.
- ightharpoonup Weight function $w:C imes F o \mathbb{R}$
- lacktriangle Each facility $v \in F$ has an interval I_v on the real line

Goal

Problem

0000

Select an independent set $S \subseteq F$ maximising cost of assigning clients to facilities.

Linear Program

Problem

000

$$\begin{array}{llll} \text{maximise} & \displaystyle \sum_{u \in C, v \in F} w_{uv} x_{uv} \\ \text{subject to} & \displaystyle \sum_{v \in F} x_{uv} & \leq & 1 & \forall u \in C \\ & \displaystyle \sum_{v \in F: p \in I_v} x_{uv} & \leq & y_v & \forall u \in C, v \in F \\ & \displaystyle \sum_{v \in F: p \in I_v} y_v & \leq & 1 & \forall p \in P \\ & \displaystyle x_{uv} & \geq & 0 & \forall u \in C, v \in F \\ & \displaystyle y_v & \geq & 0 & \forall v \in F \end{array} \right. \tag{LP}$$

Overview of Results

- Motivated by genome mapping
 - ► Algorithms perform up to 1000× faster
 - Comparable precision/recall
- ► Two new algorithms
 - ► Independent rounding: 0.19-approximation
 - Dependent rounding: Non-constant approximation
- Establish the hardness of the problem

Independent Rounding: Setup

Independent Rounding: Filtering

Independent Rounding: Key Result

- $(1 e^{-\alpha})(1 \alpha)$ -approximation
- Choosing $\alpha = 0.44$ leads to 0.19-approximation

Problem

Theorem

For any $\varepsilon>0$, there is no $(1-1/e+\varepsilon)$ -approximation algorithm for maximum facility location, unless P = NP.

Modelling the Problem

- ► Two data sets
 - ► Craig Venter's genome (simulated)
 - ► NA12878 genome (real data, no ground truth)
- Compare precision/recall of predicted vs. actual deletions
- ► Two previous greedy algorithms by Hormozdiari et al. [2010]

Craig Venter

	Recall	Precision	Runtime (mins)
IP	65.80	40.26	10.4
Independent	65.02	40.63	15.8
Dependent	65.59	40.49	4.5
Greedy	65.44	41.47	1840.0
wGreedy	65.29	41.42	4095.0

NA12878

	Recall	Precision	Runtime (mins)	
1000G (Mills et al. [2011])				
IP	60.3	69.3	10.5	
Independent	60.2	69.11	7.0	
Dependent	60.1	69.03	3.1	
Greedy	60.2	69.79	1 <i>7</i> 3 <i>7</i> .5	
wGreedy	60.3	69.99	4947.2	
long-read (Layer et al. [2014])				
IP	67.1	78.9	10.5	
Independent	67.4	79.5	7.0	
Dependent	67.4	79.4	3.1	
Greedy	67.1	80.1	1737.5	
wGreedy	66.8	79.8	4947.2	

Application

- ► Modelled the problem as an integer/linear program
- Developed two new approximation algorithms
- Established hardness of problem
- Biological application is faster than existing methods, without sacrificing solution quality

Future Work

- ► An algorithm with better approximation ratio
 - ▶ Gap between best known result and \approx 0.63
 - Or a tighter hardness bound
- Analyse guarantee of non-constant approximation algorithm
- ► New conflict resolution heuristics

Questions?

Thanks to Stefan Canzar & Khaled Elbassioni References

- Moran Feldman. Maximization Problems with Submodular Objective Functions. PhD thesis, Israel Institute of Technology, 2013.
- Fereydoun Hormozdiari, Iman Hajirasouliha, Phuong Dao, Faraz Hach, Deniz Yorukoglu, Can Alkan, Evan E Eichler, and S Cenk Sahinalp. Next-generation variationhunter: combinatorial algorithms for transposon insertion discovery. Bioinformatics, 26(12):i350--i357, 2010.
- Ryan M Layer, Colby Chiang, Aaron R Quinlan, and Ira M Hall. Lumpy: a probabilistic framework for structural variant discovery. Genome biology, 15(6):R84, 2014.
- Ryan E Mills, Klaudia Walter, Chip Stewart, Robert E Handsaker, Ken Chen, Can Alkan, Alexej Abyzov, Seungtai Chris Yoon, Kai Ye, R Keira Cheetham, et al. Mapping copy number variation by population-scale genome sequencing. Nature, 470 (7332):59--65, 2011.