Discrete Math Problem Set 3

Will Krzastek

February 11, 2024

In addition to the axioms and rules of inference, you may rely on: all proven theorems, *Implication Elimination, Hilbert's First & Second Axioms*.

(10 pts) 1. Prove each of the following statements for any propositions φ , ψ , ξ .

(a)
$$(\varphi \to \psi, (\psi \to \xi) \vdash (\varphi \to \xi)$$

Proof. Observe the following chain of reasoning.

Let φ, ψ, ξ be arbitrary propositions.

Assume
$$(\varphi \rightarrow \psi, (\psi \rightarrow \xi).$$

Assume φ .

$$\varphi, (\varphi \to \psi) \vdash \psi$$

by Modus Ponens

$$\psi, \psi \rightarrow \xi \vdash \xi$$

by Modus Ponens

Therefore, $\varphi \vdash \xi$.

$$(\varphi \vdash \xi) \vdash (\varphi \rightarrow \xi)$$

by Deduction Rule

Thus, we conclude that $(\varphi \to \psi, (\psi \to \xi) \vdash (\varphi \to \xi)$.

(b) $\varphi, \psi \vdash \varphi \land \psi$.

Proof. Observe the following chain of reasoning.

Let φ , ψ be arbitrary propositions.

Assume φ, ψ .

Towards contradiction, assume $\neg(\phi \land \psi)$.

$$\neg(\phi \land \psi) \equiv \neg \phi \lor \neg \psi$$
 by De Morgan's Rules
$$\equiv \neg \neg \phi \to \neg \psi$$
 by conditional disintegration
$$\equiv \phi \to \neg \psi$$
 by double negation

By *modus ponens* we can see that we can derive $\neg \psi$ when we have $\varphi \to \neg \psi$ and φ . This shows that $\neg(\varphi \land \psi) \to \neg \psi$ by the *deduction rule*. Since, we assumed ψ already, we can derive $\neg(\varphi \land \psi) \to \psi$ by the *deduction rule* again. $\frac{1}{2}$.

Therefore, we can conclude $\varphi \wedge \psi$ by *reductio ad absurdum*.

(40 pts) 2. Prove each of the following statements for any propositions φ, ψ, ξ .

(a)
$$\vdash \varphi \rightarrow \varphi$$

Bruh. *Proof.* Observe the following chain of reasoning.

Let φ be an arbitrary proposition.

We want to show that $\varphi \to \varphi$. Towards that goal, assume φ . Since we have φ , we are able to say that $\varphi \vdash \varphi$ since any proposition proves itself. By the *deduction rule*, we now obtain $\varphi \to \varphi$.

(b)
$$\vdash (\neg \varphi \rightarrow \varphi) \rightarrow \varphi$$
.

Proof. Observe the following chain of reasoning.

Let φ be an arbitrary proposition.

We want to show that $(\neg \phi \to \phi) \to \phi$. Towards that goal, assume $\neg \phi \to \phi$ and separately assume $\neg \phi$.

Because we know $\neg \varphi, (\neg \varphi \rightarrow \varphi)$, we can use *modus ponens* to obtain φ . Because we derived φ from $\neg \varphi \rightarrow \varphi$, we can say $(\neg \varphi \rightarrow \varphi) \vdash \varphi$. By the *deduction rule*, we then know $(\neg \varphi \rightarrow \varphi) \rightarrow \varphi$.

(c)
$$\vdash \neg \varphi \rightarrow (\varphi \rightarrow \neg \psi)$$

Proof. Observe the following chain of reasoning.

Let φ, ψ be arbitrary propositions. We want to show $\neg \varphi \rightarrow (\rightarrow \neg \psi)$. Towards that goal, assume $\neg \varphi$.

By *Hilbert's First Axiom*, we know that when we assume φ , we obtain $\vdash \varphi \to (\psi \to \varphi)$. Thus, when we assume $\neg \varphi$ like we just did, we obtain $\neg \varphi \to (\psi \to \neg \varphi)$.

In Problem Set 2, 2A we proved $\neg \phi \rightarrow (\psi \rightarrow \neg \phi) \equiv \neg \phi \rightarrow (\phi \rightarrow \neg \psi)$ via the contrapositive.

Thus, by applying *Hilbert's First Axiom*, we obtain $\neg \phi \rightarrow (\phi \rightarrow \neg \psi)$.

(d)
$$\varphi \land \psi \vdash \varphi$$

Proof. Observe the following chain of reasoning.

Let φ , ψ be arbitrary propositions.

Suppose $\varphi \wedge \psi$.

Towards contradiction, assume $\neg \varphi$.

Observe:

$$\begin{array}{ccc} (\phi \wedge \psi) \wedge (\neg \phi) & \text{by conjunction introduction} \\ (\psi \wedge \phi) \wedge (\neg \phi) & \text{by commutativity} \\ \psi \wedge (\phi \wedge \neg \phi) & \text{by associativity} \\ \psi \wedge \bot & \text{by complement} \\ \bot & \text{by domination} \end{array}$$

Therefore $\neg \varphi \vdash \bot$.

By 2A, we know that when we assume $\neg \varphi$, we get $\vdash \neg \varphi \rightarrow \neg \varphi$. $\neg \varphi \rightarrow \neg \varphi \equiv \top$, so by substitution we can say $\neg \varphi \vdash \top$. $\cancel{\xi}$.

Because $\neg \varphi \vdash \bot$ and $\neg \varphi \vdash \top$, we can apply *Reductio Ad Absurdum*.

By *Reductio Ad Absurdum*, we get φ .

Therefore, $\varphi \land \psi \vdash \varphi$.

(e) ⊢ T

Proof. Observe the following chain of reasoning.

Let φ be an arbitrary proposition.

Observe by 2A, we can write $\vdash \varphi \rightarrow \varphi$ when we assume φ .

In Problem Set 2, 3A we proved that $\varphi \to \varphi \equiv \top$, so by substitution we can say $\vdash \top$.

(30 pts) 3. Prove each of the following statements for any propositions φ, ψ, ξ, χ .

(a) $\varphi \vdash (\varphi \lor \psi)$

Proof. Observe the following chain of reasoning.

Let φ , ψ be arbitary propositions.

Suppose φ .

Let $\gamma := \neg \psi$.

By Ex Contradictione Quodlibet, we can say $\neg \phi \rightarrow (\phi \rightarrow \neg \gamma)$. Since $\gamma = \neg \psi$, we can then say $\neg \phi \rightarrow (\phi \rightarrow \psi)$.

 $\vdash \neg \varphi \rightarrow (\varphi \rightarrow \psi) \equiv \varphi \lor (\neg \varphi \lor \psi)$ by *conditional disintegration*. This is then $\equiv \neg \varphi \lor (\varphi \lor \psi)$ by *commutativity and associativity*. We can then conditionally disintegrate again to receive $\varphi \rightarrow (\neg \varphi \rightarrow \psi)$. We can use *conditional disintegration* again to get $\varphi \rightarrow (\varphi \lor \psi)$. By *deduction rule*, we can rewrite this as $\varphi \vdash (\varphi \lor \psi)$. Therefore since we know φ , we obtain $\varphi \lor \psi$. So, $\varphi \vdash (\varphi \lor \psi)$.

(b) $(\varphi \to \xi), (\psi \to \xi), (\varphi \lor \psi) \vdash \xi$

Proof. Observe the following chain of reasoning.

Let φ, ψ, ξ be arbitrary propositions.

Suppose $(\varphi \to \xi), (\psi \to \xi), (\varphi \lor \psi)$.

Towards a contradiction, now assume $\neg \xi$.

We now have $\neg \xi$ and $\varphi \to \xi$. By *Modus Tollens* we obtain $\neg \varphi$. We also have $\neg \xi$ and $\psi \to \xi$. By *Modus Tollens* again, we obtain $\neg \psi$. By *conjunction introduction*, we can now say $\neg \varphi \land \neg \psi$. $\neg \varphi \land \neg \psi \equiv \neg (\varphi \lor \psi)$ by *De Morgan's Laws*. Therefore, $\neg \xi \vdash \neg (\varphi \lor \psi)$ since we derived $\neg (\varphi \lor \xi)$ from our assumption of $\neg \xi$. $\neg \xi$ also $\vdash (\varphi \lor \psi)$ because we assume $\varphi \lor \psi$. Since $\neg \xi \vdash \neg (\varphi \lor \psi)$ and $\neg \xi \vdash (\varphi \lor \psi)$, we apply *Reductio Ad Absurdum* and obtain ξ . Therefore, $(\varphi \to \xi), (\psi \to \xi), (\varphi \lor \psi) \vdash \xi$.

(c) $\varphi, \neg \varphi \vdash \psi$

Proof. Observe the following chain of reasoning.

Let φ , ψ be arbitrary propositions.

Suppose φ , $\neg \varphi$.

Since we have $\varphi, \neg \varphi$, by *conjunction introduction* we can say $(\varphi \land \neg \varphi)$. We can then say $(\varphi \land \neg \varphi) \lor \psi$ by *disjunction introduction*. $(\varphi \land \neg \varphi) \lor \psi \equiv \bot \lor \psi$ by *complement*. $\bot \lor \psi \equiv \psi$ by *domination*. Therefore, we obtain ψ from $\varphi, \neg \varphi$. So, $\varphi, \neg \varphi \vdash \psi$.

(d) $(\varphi \lor \psi), \neg \varphi \vdash \psi$

Proof. Observe the following chain of reasoning.

Let φ , ψ be arbitrary propositions.

Suppose $(\varphi \lor \psi), \neg \varphi$.

 $\varphi \lor \psi \equiv \neg \varphi \to \psi$ by *conditional disintegration*. Because we know $\neg \varphi$ and $\neg \varphi \to \psi$, we obtain ψ from *Modus Ponens*. So, $(\varphi \lor \psi), \neg \varphi \vdash \psi$.

(e) $(\varphi \rightarrow \xi), (\psi \rightarrow \chi), (\varphi \lor \psi) \vdash \xi \lor \chi$

Proof. Observe the following chain of reasoning.

Let φ, ψ, ξ, χ be arbitrary propositions.

Suppose $(\varphi \to \xi), (\psi \to \chi), (\varphi \lor \psi)$.

Towards a contradiction, assume $\neg(\xi \lor \chi)$.

 $\neg(\xi \lor \chi) \equiv \neg \xi \land \neg \chi$ by *De Morgan's Laws*. Since we have $\neg \xi \land \neg \xi$, by *conjunction elimination* we get $\neg \xi$ and separately get $\neg \chi$. Since we now have $\neg \xi$ and $\varphi \to \xi$, by *Modus Tollens* we obtain $\neg \varphi$. Similarly, since we have $\neg \chi$ and $\psi \to \chi$, we obtain $\neg \psi$ by *Modus Tollens*. Since we know $\neg \varphi$ and $\neg \psi$, by *conjunction introduction* we can say $\neg \varphi \land \neg \psi$. $\neg \varphi \land \neg \psi \equiv \neg (\varphi \lor \psi)$ by *De Morgan's Laws*. So, $\neg(\xi \lor \chi) \vdash \neg(\varphi \lor \psi)$. $\neg(\xi \lor \chi)$ also $\vdash \varphi \lor \psi$ because we assume $\varphi \lor \psi$.

Since $\neg(\xi \lor \chi) \vdash \neg(\varphi \lor \psi)$ and $\neg(\xi \lor \chi) \vdash (\varphi \lor \psi)$, we can apply *Reductio ad Absurdum* and obtain $\xi \lor \chi$. Therefore, $(\varphi \to \xi), (\psi \to \chi), (\varphi \lor \psi) \vdash \xi \lor \chi$.

(10 pts) 4. Let \mathscr{L} be a binary predicate. Prove the following statement.

$$\vdash \neg \exists x \forall y (\mathcal{L}(x, y) \leftrightarrow \neg \mathcal{L}(y, y))$$

Towards contradiction, assume $\exists x \forall y (\mathcal{L}(x,y) \leftrightarrow \neg \mathcal{L}(y,y))$. This means that there exists an x that for all $y \mathcal{L}(x,y) \leftrightarrow \neg \mathcal{L}(y,y)$. To disprove this statement, we need to find an x where $(\mathcal{L}(x,y) \leftrightarrow \neg \mathcal{L}(y,y)) \equiv \bot$. If the statement is true, then there is one specific value for x that satisfies the rest of the statement, and we will call this value c. Since we asserted $\forall y$, we know that at some point y = c. When x = c and y = c, we can say $\mathcal{L}(c,c) \leftrightarrow \neg \mathcal{L}(c,c)$. Because a biconditional statement returns \bot when its two inputs have different truth values and $\mathcal{L}(c,c) \not\equiv \neg \mathcal{L}(c,c)$, we obtain \bot . By the *truth theorem*, we know that $\exists x \forall y (\mathcal{L}(x,y) \leftrightarrow \neg \mathcal{L}(y,y)) \vdash \top$ because we assume $\exists x \forall y (\mathcal{L}(x,y) \leftrightarrow \neg \mathcal{L}(y,y))$. Therefore by *Reductio ad Absurdum*, we get $\neg \exists x \forall y (\mathcal{L}(x,y) \leftrightarrow \neg \mathcal{L}(y,y))$.

(10 pts) 5. Consider a universe of discourse consisting of every natural number. Recall that a positive integer is prime when it has exactly two positive divisors: one and itself.

Let $\omega(x) := "x \text{ is an odd number"}"$

Let $\pi(x) := "x \text{ is a prime number"}"$

Further, suppose the following statements only contain propositions.

(a) Prove φ , where φ is the statement $\varphi \vdash \forall x (\omega(x) \to \pi(x))$.

Proof. Let $\varphi := "\varphi \vdash \forall x(\omega(x) \to \pi(x)))$ ". Assume φ . Therefore we have $\varphi \vdash \forall x(\omega(x) \to \pi(x)))$ because we have φ . Then by the *deduction rule*, we have $\varphi \to \forall x(\omega(x) \to \pi(x))$. Since we now have φ and $\varphi \to \forall x(\omega(x) \to \pi(x))$, by *modus ponens* we have $\forall x(\omega(x) \to \pi(x))$. Because we derived $\forall x(\omega(x) \to \pi(x))$ from φ , we obtain $\varphi \vdash \forall x(\omega(x) \to \pi(x))$.

(b) Prove $\forall x (\omega(x) \to \pi(x))$.

Proof. In 5(a), we proved $\varphi \vdash \forall x(\omega(x) \to \pi(x))$. By the *deduction rule*, we then know $\varphi \to \forall x(\omega(x) \to \pi(x))$. In 5(a) we also found $\vdash \varphi$. Therefore by *modus ponens*, we obtain $\forall x(\omega(x) \to \pi(x))$.

5