Security of distributed Model Predictive Control under False Data Injection

Rafael Accácio NOGUEIRA rafael.accacio.nogueira@gmail.com

Seminar École Centrale de Lyon / Laboratoire Ampère 26/05/2023 @ Écully

https://bit.ly/3g3S6X4

About me

Rafael Accácio Nogueira

Postdoctoral researcher at LAAS/CNRS

Garanteed relative localisation and anticollision
scenario for autonomous vehicles

Project AutOCampus (GIS neOCampus)

Advised by Soheib Fergani

About me

Bachelor Thesis at Escola Politécnica/UFRJ Identification of DES for fault-diagnosis Advised by Marcos Vicente de Brito Moreira

About me

Doctoral Thesis at CentraleSupélec/IETR

Security of dMPC under False Data Injection

Advised by Hervé Guéguen and Romain Bourdais

Smart(er) Cities

Smart(er) Cities

Smart(er) Cities

Multiple systems interacting

• Distribution:

Smart(er) Cities

- Distribution:
 - Electricity

Smart(er) Cities

- Distribution:
 - Electricity
 - Heat
 - Water

Smart(er) Cities

- Distribution:
 - Electricity
 - Heat
 - Water
- Traffic

Smart(er) Cities

Multiple systems interacting

- Distribution:
 - Electricity
 - Heat
 - Water
- Traffic

...

Smart(er) Cities

Multiple systems interacting under

• Technical/Comfort Constraints

Smart(er) Cities

- Technical/Comfort Constraints
- We also want

Smart(er) Cities

- Technical/Comfort Constraints
- We also want
 - Minimize consumption

Smart(er) Cities

- Technical/Comfort Constraints
- We also want
 - Minimize consumption
 - Maximizer satisfaction

Smart(er) Cities

- Technical/Comfort Constraints
- We also want
 - Minimize consumption
 - Maximizer satisfaction
 - Follow a trajectory

Smart(er) Cities

- Technical/Comfort Constraints
- We also want
 - Minimize consumption
 - Maximizer satisfaction
 - Follow a trajectory
- Solution → MPC

Brief recap

Brief recap

Brief recap

Brief recap

Brief recap

Find optimal control sequence using predictions based on a model.

• We need an optimization problem

$$J(\boldsymbol{x}[0|k],\boldsymbol{u}[0:N-1|k])$$

Brief recap

- We need an optimization problem
 - Decision variable is the control sequence

$$J(\boldsymbol{x}[0|k],\boldsymbol{u}[0:N-1|k])$$

Brief recap

- We need an optimization problem
 - Decision variable is the control sequence calculated over horizon N

$$J(\boldsymbol{x}[0|k],\boldsymbol{u}[0:\textcolor{red}{N}-1|k])$$

Brief recap

- We need an optimization problem
 - Decision variable is the control sequence calculated over horizon N
 - Objective function to optimize

$$\underset{\boldsymbol{u}[0:N-1|k]}{\operatorname{minimize}} J(\boldsymbol{x}[0|k], \boldsymbol{u}[0:N-1|k])$$

Brief recap

- We need an optimization problem
 - Decision variable is the control sequence calculated over horizon N
 - Objective function to optimize
 - System's Model

Brief recap

- We need an optimization problem
 - Decision variable is the control sequence calculated over horizon N
 - Objective function to optimize
 - System's Model
 - Other constraints to respect

minimize
$$J(\boldsymbol{x}[0|k], \boldsymbol{u}[0:N-1|k])$$

$$\boldsymbol{x}[\xi|k] = f(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k])$$
subject to $g_i(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) \leqslant 0$

$$h_j(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) = 0$$

$$\forall \xi \in \{1, \dots, N\}$$

$$\forall i \in \{1, \dots, m\}$$

$$\forall j \in \{1, \dots, p\}$$

Brief recap

- We need an optimization problem
 - Decision variable is the control sequence calculated over horizon N
 - Objective function to optimize
 - System's Model
 - Other constraints to respect (QoS, technical restrictions, ...)

minimize
$$J(\boldsymbol{x}[0|k], \boldsymbol{u}[0:N-1|k])$$

$$\boldsymbol{x}[\xi|k] = f(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k])$$
subject to $g_i(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) \leqslant 0$
 $h_j(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) = 0$
 $\forall \xi \in \{1, \dots, N\}$
 $\forall i \in \{1, \dots, m\}$
 $\forall j \in \{1, \dots, p\}$

In a nutshell

In a nutshell

Find optimal control sequence

In a nutshell

Find optimal control sequence, apply first element

In a nutshell

Find optimal control sequence, apply first element, rinse repeat

In a nutshell

Find optimal control sequence, apply first element, rinse repeat \rightarrow Receding Horizon

In a nutshell

Find optimal control sequence, apply first element, rinse repeat \rightarrow Receding Horizon

Nothing is perfect

Nothing is perfect

Problems

- Problems
 - Topology (Geographical distribution)

- Problems
 - Topology (Geographical distribution)
 - Complexity of calculation

- Problems
 - Topology (Geographical distribution)
 - Complexity of calculation
 - Flexibility (Add/remove parts)

- Problems
 - Topology (Geographical distribution)
 - Complexity of calculation
 - Flexibility (Add/remove parts)
 - Privacy (RGPD)

- Problems
 - Topology (Geographical distribution)
 - Complexity of calculation
 - Flexibility (Add/remove parts)
 - Privacy (RGPD)
- Solution: Divide and Conquer (distributed MPC)

1 Decomposing the MPC

- Decomposing the MPC
- 2 Attacks on the dMPC

- 1 Decomposing the MPC
- 2 Attacks on the dMPC
- **3** Securing the dMPC

1 Decomposing the MPC

• We break the MPC optimization problem

- We break the MPC optimization problem
- Make agents communicate

- We break the MPC optimization problem
- Make agents communicate

In other words

- We break the MPC optimization problem
- Make agents communicate

In other words

Agents solve local problems

- We break the MPC optimization problem
- Make agents communicate

In other words

- Agents solve local problems
- Exchange some variables

- We break the MPC optimization problem
- Make agents communicate

In other words

- Agents solve local problems
- Exchange some variables
- Variables are updated

- We break the MPC optimization problem
- Make agents communicate

In other words

- Agents solve local problems)
- Exchange some variables
- Variables are updated

Until Convergence

- We break the MPC optimization problem
- Make agents communicate

In other words

- Agents solve local problems
- Exchange some variables
- Variables are updated

Until Convergence

Remark

If agents exchange same variable \rightarrow consensus problem

Optimization Frameworks

Usually based on optimization decomposition methods¹:

¹ Boyd et al., "Notes on Decomposition Methods"

Optimization Frameworks

Usually based on optimization decomposition methods¹:

Local problems with auxiliary variables

¹ Boyd et al., "Notes on Decomposition Methods"

Optimization Frameworks

Usually based on optimization decomposition methods¹:

- Local problems with auxiliary variables
- Update auxiliary variables

¹ Boyd et al., "Notes on Decomposition Methods"

Optimization Frameworks

Usually based on optimization decomposition methods¹:

- Local problems with auxiliary variables
- Update auxiliary variables

Basically 2 choices²:

Boyd et al., "Notes on Decomposition Methods"

²Other approaches, but similar concepts

Optimization Frameworks

Usually based on optimization decomposition methods¹:

- Local problems with auxiliary variables
- Update auxiliary variables

Basically 2 choices²:

Modify based on dual problem³ (Solve with dual and send primal)

Boyd et al., "Notes on Decomposition Methods"

²Other approaches, but similar concepts

³Lagrangian, ADMM, prices, etc +1000 articles in scopus

Optimization Frameworks

Usually based on optimization decomposition methods¹:

- Local problems with auxiliary variables
- Update auxiliary variables

Basically 2 choices²:

- Modify based on dual problem³ (Solve with dual and send primal)
- Modify based on primal problem (Solve with primal and send dual)

Boyd et al., "Notes on Decomposition Methods"

²Other approaches, but similar concepts

 $^{^3}$ Lagrangian, ADMM, prices, etc +1000 articles in scopus

Optimization Frameworks

Usually based on optimization decomposition methods¹:

- Local problems with auxiliary variables
- Update auxiliary variables

Basically 2 choices²:

- Modify based on dual problem³ (Solve with dual and send primal)
- Modify based on primal problem (Solve with primal and send dual)

Many methods:

¹ Boyd et al., "Notes on Decomposition Methods"

²Other approaches, but similar concepts

 $^{^3}$ Lagrangian, ADMM, prices, etc +1000 articles in scopus

Optimization Frameworks

Usually based on optimization decomposition methods¹:

- Local problems with auxiliary variables
- Update auxiliary variables

Basically 2 choices²:

- Modify based on dual problem³ (Solve with dual and send primal)
- Modify based on primal problem (Solve with primal and send dual)

Many methods:

• Cutting plane, sub-gradient methods, ...

Boyd et al., "Notes on Decomposition Methods"

²Other approaches, but similar concepts

³Lagrangian, ADMM, prices, etc +1000 articles in scopus

Optimization Frameworks

Usually based on optimization decomposition methods¹:

- Local problems with auxiliary variables
- Update auxiliary variables

Basically 2 choices²:

- Modify based on dual problem³ (Solve with dual and send primal)
- Modify based on primal problem (Solve with primal and send dual)

Many methods:

Cutting plane, sub-gradient methods, . . .

Boyd et al., "Notes on Decomposition Methods"

²Other approaches, but similar concepts

³Lagrangian, ADMM, prices, etc +1000 articles in scopus

Optimization Frameworks

Usually based on optimization decomposition methods¹:

- Local problems with auxiliary variables
- Update auxiliary variables

Basically 2 choices²:

- Modify based on dual problem³ (Solve with dual and send primal)
- Modify based on primal problem (Solve with primal and send dual)

Many methods:

→ Security/privacy properties

• Cutting plane, sub-gradient methods, ...

Boyd et al., "Notes on Decomposition Methods"

²Other approaches, but similar concepts

 $^{^3}$ Lagrangian, ADMM, prices, etc +1000 articles in scopus

- We break the MPC optimization problem
- Make agents communicate.

- We break the MPC optimization problem
- Make agents communicate. But how?

- We break the MPC optimization problem
- Make agents communicate. But how?
 - Many flavors to choose from

- We break the MPC optimization problem
- Make agents communicate. But how?
 - Many flavors to choose from
 - Hierarchical/Anarchical

- We break the MPC optimization problem
- Make agents communicate. But how?
 - Many flavors to choose from
 - Hierarchical/Anarchical
 - Parallel/Sequential

- We break the MPC optimization problem
- Make agents communicate. But how?
 - Many flavors to choose from
 - Hierarchical/Anarchical
 - Parallel/Sequential
 - Synchronous/Asynchronous

- We break the MPC optimization problem
- Make agents communicate. But how?
 - Many flavors to choose from
 - Hierarchical/Anarchical
 - Parallel/Sequential
 - Synchronous/Asynchronous
 - Bidirectional/Unidirectional

It is about communication

- We break the MPC optimization problem
- Make agents communicate. But how?
 - Many flavors to choose from⁴
 - Hierarchical/Anarchical
 - Parallel/Sequential
 - Synchronous/Asynchronous
 - Bidirectional/Unidirectional

José M Maestre, Negenborn, et al., Distributed Model Predictive Control made easy

It is about communication

- We break the MPC optimization problem
- Make agents communicate. But how?
 - Many flavors to choose from⁴
 - Hierarchical/Anarchical
 - Parallel/Sequential
 - Synchronous/Asynchronous
 - Bidirectional/Unidirectional
 - •

🦠 José M Maestre, Negenborn, et al., Distributed Model Predictive Control made easy

Optimization Decomposition

MPC

Optimization Decomposition

Optimization Decomposition

ullet Coordinator o Hierarchical

Coordinator

Optimization Decomposition

- Coordinator → Hierarchical
- Bidirectional

Optimization Decomposition

- Coordinator → Hierarchical
- Bidirectional
- No delay \rightarrow Synchronous

or Quantity Decomposition | or Resource Allocation

Allocation θ_i

Allocation $oldsymbol{ heta}_i$ Dissatisfaction $oldsymbol{\lambda}_i$

Update
$$\boldsymbol{\theta}_i^+ = f_i(\boldsymbol{\theta}_i, \boldsymbol{\lambda}_i)$$

$$egin{array}{ll} & \min _{oldsymbol{u}_1, ..., oldsymbol{u}_M} & \sum _{i \in \mathcal{M}} J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & ext{s.t.} & \sum _{i \in \mathcal{M}} oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \end{array}$$

In detail

• Objective is sum of local ones

$$egin{array}{ll} & \min _{oldsymbol{u}_1, \ldots, oldsymbol{u}_M} & \sum_{i \in \mathcal{M}} J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & \mathrm{s.t.} & \sum_{i \in \mathcal{M}} oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \end{array}$$

- Objective is sum of local ones
- Constraints couple variables

$$\begin{array}{ll} \underset{\boldsymbol{u}_{1},...,\boldsymbol{u}_{M}}{\operatorname{minimize}} & \sum\limits_{i\in\mathcal{M}}J_{i}(\boldsymbol{x}_{i},\boldsymbol{u}_{i}) \\ \text{s.t.} & \sum\limits_{i\in\mathcal{M}}\boldsymbol{h}_{i}(\boldsymbol{x}_{i},\boldsymbol{u}_{i}) \leq \boldsymbol{u}_{\mathsf{total}} \end{array}$$

- Objective is sum of local ones
- Constraints couple variables

$$egin{array}{ll} & \min _{oldsymbol{u}_1, \ldots, oldsymbol{u}_M} & \sum_{i \in \mathcal{M}} J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & \mathrm{s.t.} & \sum_{i \in \mathcal{M}} oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \ & & \downarrow & \mathsf{For \ each} \ i \in \mathcal{M} \ & \min _{oldsymbol{u}_i} & & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & \mathrm{s. \ t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i \ & \end{array}$$

In detail

- Objective is sum of local ones
- Constraints couple variables

1 Allocate θ_i for each agent

$$\begin{array}{ll}
\text{minimize} & J_i(\boldsymbol{x}_i, \boldsymbol{u}_i) \\
\text{s. t.} & \boldsymbol{h}_i(\boldsymbol{x}_i, \boldsymbol{u}_i) \leq \frac{\boldsymbol{\theta}_i}{2}
\end{array}$$

- Objective is sum of local ones
- Constraints couple variables

- **1** Allocate θ_i for each agent
- They solve local problems and

minimize
$$J_i(\boldsymbol{x}_i, \boldsymbol{u}_i)$$

s. t. $\boldsymbol{h}_i(\boldsymbol{x}_i, \boldsymbol{u}_i) \leq \boldsymbol{\theta}_i$

- Objective is sum of local ones
- Constraints couple variables

- **1** Allocate θ_i for each agent
- They solve local problems and
- $oldsymbol{3}$ Send dual variable $oldsymbol{\lambda}_i$

minimize
$$J_i(\boldsymbol{x}_i, \boldsymbol{u}_i)$$

s. t. $\boldsymbol{h}_i(\boldsymbol{x}_i, \boldsymbol{u}_i) \leq \boldsymbol{\theta}_i : \boldsymbol{\lambda}_i$

- Objective is sum of local ones
- Constraints couple variables

- **1** Allocate θ_i for each agent
- They solve local problems and
- \odot Send dual variable λ_i
- 4 Allocation is updated

$$egin{array}{ll} & \min _{oldsymbol{u}_i} & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i: oldsymbol{\lambda}_i \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \boldsymbol{\theta}[k]^{(p)} + \rho^{(p)} \boldsymbol{\lambda}[k]^{(p)}$$

- Objective is sum of local ones
- Constraints couple variables

- $oldsymbol{0}$ Allocate $oldsymbol{ heta}_i$ for each agent
- They solve local problems and
- $oldsymbol{3}$ Send dual variable $oldsymbol{\lambda}_i$
- Allocation is updated (respect global constraint)

$$\boldsymbol{\theta}[k]^{(p+1)} = \operatorname{Proj}^{\mathbb{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

Example

Until everybody is evenly⁵ dissatisfied

⁵For inequality constraints dynamics are more complex

Negotiation works if agents comply.

Negotiation works if agents comply.

But what if some agents are ill-intentioned and attack the system?

Negotiation works if agents comply.

But what if some agents are ill-intentioned and attack the system?

Recent in dMPC literature⁶ (First article from 2017⁷)

⁶<30 documents in scopus

 $^{^{7}}$ Velarde, Jose Maria Maestre, H. Ishii, et al., "Vulnerabilities in Lagrange-Based DMPC in the Context of Cyber-Security"

Negotiation works if agents comply.

But what if some agents are ill-intentioned and attack the system?

Recent in dMPC literature⁶ (First article from 2017⁷)

• Incentive Brittany Region (Sustainable Energy + cybersecurity)

⁶<30 documents in scopus

⁷Velarde, Jose Maria Maestre, H. Ishii, et al., "Vulnerabilities in Lagrange-Based DMPC in the Context of Cyber-Security"

Negotiation works if agents comply.

But what if some agents are ill-intentioned and attack the system?

Recent in dMPC literature⁶ (First article from 2017⁷)

- Incentive Brittany Region (Sustainable Energy + cybersecurity)
- CentraleSupélec Rennes MPC for Smart Buildings

⁶<30 documents in scopus

⁷Velarde, Jose Maria Maestre, H. Ishii, et al., "Vulnerabilities in Lagrange-Based DMPC in the Context of Cyber-Security"

Negotiation works if agents comply.

But what if some agents are ill-intentioned and attack the system?

Recent in dMPC literature⁶ (First article from 2017⁷)

- Incentive Brittany Region (Sustainable Energy + cybersecurity)
- CentraleSupélec Rennes MPC for Smart Buildings
- How can an agent attack?
- What are the consequences of an attack?
- Can we mitigate the effects? How?

⁶<30 documents in scopus

 $^{^{7}}$ Velarde, Jose Maria Maestre, H. Ishii, et al., "Vulnerabilities in Lagrange-Based DMPC in the Context of Cyber-Security"

Outline

2 Attacks on the dMPC

⁸Velarde, Jose Maria Maestre, Hideaki Ishii, et al., "Scenario-based defense mechanism for distributed model predictive control"

⁸Velarde, Jose Maria Maestre, Hideaki Ishii, et al., "Scenario-based defense mechanism for distributed model predictive control"

- Common attacks⁸
 - Fake objective function
 - Fake constraints
 - Use different control

⁸Velarde, Jose Maria Maestre, Hideaki Ishii, et al., "Scenario-based defense mechanism for distributed model predictive control"

Literature

- Common attacks⁸
 - Fake objective function \u00e4
 - Fake constraints
 - Use different control

Deception Attacks

⁸Velarde, Jose Maria Maestre, Hideaki Ishii, et al., "Scenario-based defense mechanism for distributed model predictive control"

Our approach

Primal decomposition

- Primal decomposition
 - Maximum resources fixed

- Primal decomposition
 - Maximum resources fixed
- We are in coordinator's shoes

- Primal decomposition
 - Maximum resources fixed
- We are in coordinator's shoes
- What matters is the interface

- Primal decomposition
 - Maximum resources fixed
- We are in coordinator's shoes
- What matters is the interface
 - Attacker changes communication

- Primal decomposition
 - Maximum resources fixed
- We are in coordinator's shoes
- What matters is the interface
 - Attacker changes communication
 - False Data Injection

- Primal decomposition
 - Maximum resources fixed
- We are in coordinator's shoes
- What matters is the interface
 - Attacker changes communication
 - False Data Injection

Our approach

ullet $oldsymbol{\lambda}_i$ is the only interface

- λ_i is the only interface
- λ_i obfuscate params. (+ Privacy)

- λ_i is the only interface
- λ_i obfuscate params. (+ Privacy)
- Malicious agent modifies $oldsymbol{\lambda}_i$

- λ_i is the only interface
- ullet $oldsymbol{\lambda}_i$ obfuscate params. (+ Privacy)
- Malicious agent modifies λ_i

$$ilde{oldsymbol{\lambda}}_i = \gamma_i(oldsymbol{\lambda}_i)$$

- Agent 1 is non-cooperative
- ullet It uses $ilde{oldsymbol{\lambda}}_1=\gamma_1(oldsymbol{\lambda}_1)= au_1Ioldsymbol{\lambda}_1$
- Simulate for different τ_1 get J_i

- Agent 1 is non-cooperative
- It uses $\tilde{oldsymbol{\lambda}}_1 = \gamma_1(oldsymbol{\lambda}_1) = au_1 I oldsymbol{\lambda}_1$
- Simulate for different τ_1 get J_i

- Agent 1 is non-cooperative
- It uses $\tilde{oldsymbol{\lambda}}_1 = \gamma_1(oldsymbol{\lambda}_1) = au_1 I oldsymbol{\lambda}_1$
- Simulate for different τ_1 get J_i
- We can observe 3 things

- Agent 1 is non-cooperative
- It uses $ilde{oldsymbol{\lambda}}_1 = \gamma_1(oldsymbol{\lambda}_1) = au_1 I oldsymbol{\lambda}_1$
- Simulate for different τ_1 get J_i
- We can observe 3 things
 - Global minimum when $\tau_1 = 1$

- Agent 1 is non-cooperative
- It uses $ilde{oldsymbol{\lambda}}_1 = \gamma_1(oldsymbol{\lambda}_1) = au_1 I oldsymbol{\lambda}_1$
- Simulate for different τ_1 get J_i
- We can observe 3 things
 - Global minimum when $\tau_1 = 1$
 - Agent 1 benefits if τ_1 increases (inverse otherwise)

- Agent 1 is non-cooperative
- It uses $\tilde{oldsymbol{\lambda}}_1 = \gamma_1(oldsymbol{\lambda}_1) = au_1 I oldsymbol{\lambda}_1$
- Simulate for different τ_1 get J_i
- We can observe 3 things
 - Global minimum when $\tau_1 = 1$
 - Agent 1 benefits if τ_1 increases (inverse otherwise)
 - All collapses if too greedy

Attacks on the dMPC

• But can we mitigate these effects?

- But can we mitigate these effects?
- Yes! (At least in some cases)

Outline

Securing the dMPC

Passive (Robust)

Passive (Robust)

• 1 mode

Active (Resilient)

• 2 modes

Passive (Robust)

• 1 mode

- 2 modes
 - Attack free
 - When attack is detected

Passive (Robust)

• 1 mode

- 2 modes
 - Attack free
 - When attack is detected
 - Detection/Isolation
 - Mitigation

Passive (Robust)

• 1 mode

- 2 modes
 - Attack free
 - When attack is detected
 - Detection/Isolation
 - Mitigation

	Decomposition	Resilient/Robust
9	Dual	Robust (Scenario)
10	Dual	Robust (f-robust)
11	Jacobi-Gauß	-
12	Dual	Resilient

⁹José M. Maestre et al., "Scenario-Based Defense Mechanism Against Vulnerabilities in Lagrange-Based Dmpc".

 $^{^{10}}$ Velarde, José M. Maestre, et al., "Vulnerabilities in Lagrange-Based Distributed Model Predictive Control".

¹¹Chanfreut, J. M. Maestre, and H. Ishii, "Vulnerabilities in Distributed Model Predictive Control based on Jacobi-Gauss Decomposition".

¹²Ananduta et al., "Resilient Distributed Model Predictive Control for Energy Management of Interconnected Microgrids".

	Decomposition	Resilient/Robust	
9	Dual	Robust (Scenario)	
10	Dual	Robust (f-robust)	
11	Jacobi-Gauß	-	
12	Dual	Resilient	
Our	Primal	Resilient	

⁹José M. Maestre et al., "Scenario-Based Defense Mechanism Against Vulnerabilities in Lagrange-Based Dmpc".

¹⁰Velarde, José M. Maestre, et al., "Vulnerabilities in Lagrange-Based Distributed Model Predictive Control".

¹¹Chanfreut, J. M. Maestre, and H. Ishii, "Vulnerabilities in Distributed Model Predictive Control based on Jacobi-Gauss Decomposition".

¹²Ananduta et al., "Resilient Distributed Model Predictive Control for Energy Management of Interconnected Microgrids".

	Decomposition	Resilient/Robust	
9	Dual	Robust (Scenario)	
10	Dual	Robust (f-robust)	
11	Jacobi-Gauß	-	
12	Dual	Resilient	
Our	l Primal	Resilient	

⁹José M. Maestre et al., "Scenario-Based Defense Mechanism Against Vulnerabilities in Lagrange-Based Dmpc".

 $^{^{10}}$ Velarde, José M. Maestre, et al., "Vulnerabilities in Lagrange-Based Distributed Model Predictive Control".

¹¹Chanfreut, J. M. Maestre, and H. Ishii, "Vulnerabilities in Distributed Model Predictive Control based on Jacobi-Gauss Decomposition".

¹²Ananduta et al., "Resilient Distributed Model Predictive Control for Energy Management of Interconnected Microgrids".

	Decomposition	Resilient/Robust
9	Dual	Robust (Scenario)
10	Dual	Robust (f-robust)
11	Jacobi-Gauß	-
12	Dual	Resilient
0	Dutumal	Dealliant
Our	Dual Primal	Resilient

⁹José M. Maestre et al., "Scenario-Based Defense Mechanism Against Vulnerabilities in Lagrange-Based Dmpc".

 $^{^{10}}$ Velarde, José M. Maestre, et al., "Vulnerabilities in Lagrange-Based Distributed Model Predictive Control".

¹¹Chanfreut, J. M. Maestre, and H. Ishii, "Vulnerabilities in Distributed Model Predictive Control based on Jacobi-Gauss Decomposition".

¹²Ananduta et al., "Resilient Distributed Model Predictive Control for Energy Management of Interconnected Microgrids".

	Decomposition	Resilient/Robust	Detection	Mitigation
9	Dual	Robust (Scenario)	NA	NA
10	Dual	Robust (f-robust)	NA	NA
11	Jacobi-Gauß	-	-	-
12	Dual	Resilient	Analyt./Learn.	Disconnect (Robustness)
Our	Primal	Resilient	Active Analyt./Learn.	Data reconstruction

⁹José M. Maestre et al., "Scenario-Based Defense Mechanism Against Vulnerabilities in Lagrange-Based Dmpc".

¹⁰Velarde, José M. Maestre, et al., "Vulnerabilities in Lagrange-Based Distributed Model Predictive Control".

¹¹Chanfreut, J. M. Maestre, and H. Ishii, "Vulnerabilities in Distributed Model Predictive Control based on Jacobi-Gauss Decomposition".

¹²Ananduta et al., "Resilient Distributed Model Predictive Control for Energy Management of Interconnected Microgrids".

	Decomposition	Resilient/Robust	Detection	Mitigation
9	Dual	Robust (Scenario)	NA	NA
10	Dual	Robust (f-robust)	NA	NA
11	Jacobi-Gauß	-	-	-
12	Dual	Resilient	Analyt./Learn.	Disconnect (Robustness)
Our	Primal	Resilient	Active Analyt./Learn.	Data reconstruction

⁹José M. Maestre et al., "Scenario-Based Defense Mechanism Against Vulnerabilities in Lagrange-Based Dmpc".

 $^{^{10}}$ Velarde, José M. Maestre, et al., "Vulnerabilities in Lagrange-Based Distributed Model Predictive Control".

¹¹Chanfreut, J. M. Maestre, and H. Ishii, "Vulnerabilities in Distributed Model Predictive Control based on Jacobi-Gauss Decomposition".

¹²Ananduta et al., "Resilient Distributed Model Predictive Control for Energy Management of Interconnected Microgrids".

Liar, Liar, Pants of fire

Liar, Liar, Pants of fire

• $\lambda \geqslant 0$ means dissatisfaction

Liar, Liar, Pants of fire

- $\lambda \geqslant 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

Liar, Liar, Pants of fire

- $\lambda \geqslant 0$ means dissatisfaction
- ullet $\lambda=0$ means complete satisfaction

Liar, Liar, Pants of fire

- $\lambda \geqslant 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

Assumptions

• Same attack during negotiation

Liar, Liar, Pants of fire

- $\lambda \geqslant 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

- Same attack during negotiation
- Attacker satisfied only if it really is

Liar, Liar, Pants of fire

- $\lambda \geqslant 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

- Same attack during negotiation
- Attacker satisfied only if it really is
 - $\gamma(\lambda) = 0 \rightarrow \lambda = 0$

Liar, Liar, Pants of fire

- $\lambda \geqslant 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

- Same attack during negotiation
- Attacker satisfied only if it really is

•
$$\gamma(\lambda) = 0 \rightarrow \lambda = 0$$

•
$$\tilde{\lambda}_i = T_i[k]\lambda_i$$

Liar, Liar, Pants of fire

- $\lambda \geqslant 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

- Same attack during negotiation
- Attacker satisfied only if it really is

•
$$\gamma(\lambda) = 0 \rightarrow \lambda = 0$$

- $\tilde{\lambda}_i = T_i[k]\lambda_i$
- Attack is invertible $\rightarrow \exists T_i[k]^{-1}$

Liar, Liar, Pants of fire

- $\lambda \geqslant 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

- Same attack during negotiation
- Attacker satisfied only if it really is

•
$$\gamma(\lambda) = 0 \rightarrow \lambda = 0$$

- $\tilde{\boldsymbol{\lambda}}_i = T_i[k]\boldsymbol{\lambda}_i$
- Attack is invertible $\rightarrow \exists T_i[k]^{-1}$

Liar, Liar, Pants of fire

- $\lambda \geqslant 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

- Same attack during negotiation
- Attacker satisfied only if it really is

•
$$\gamma(\lambda) = 0 \rightarrow \lambda = 0$$

- $\tilde{\boldsymbol{\lambda}}_i = T_i[k]\boldsymbol{\lambda}_i$
- Attack is invertible $\rightarrow \exists T_i[k]^{-1}$

Liar, Liar, Pants of fire

- $\lambda \geqslant 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

- Same attack during negotiation
- Attacker satisfied only if it really is

•
$$\gamma(\lambda) = 0 \rightarrow \lambda = 0$$

- $\tilde{\boldsymbol{\lambda}}_i = T_i[k]\boldsymbol{\lambda}_i$
- Attack is invertible $\rightarrow \exists T_i[k]^{-1}$

For Further Reading I

- Maestre, José M, Rudy R Negenborn, et al.

 <u>Distributed Model Predictive Control made easy</u>. Vol. 69. Springer, 2014.

 ISBN: 978-94-007-7005-8.
- Nogueira, Rafael Accácio. "Security of DMPC under False Data Injection". 2022CSUP0006. PhD thesis. CentraleSupélec, 2022. URL: http://www.theses.fr/2022CSUP0006.