UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea _____

CHESTIONAR DE CONCURS

Numărul legitimației de bancă ______

Numele _____

Prenumele tatălui ______

DISCIPLINA: Fizică F

VARIANTA **F**

- 1. La capetele unui fir conductor se aplică o tensiune de 12 V. În timp de 1 minut prin acest fir trece o sarcină electrică de 72 C. Rezistența electrică a firului este: (5 pct.)
 - a) 12 Ω ; b) 16 Ω ; c) 10 Ω ; d) 8 Ω ; e) 14 Ω ; f) 15,5 Ω .
- 2. Un fir de cupru (coeficientul termic al rezistivității $\alpha = 4 \cdot 10^{-3} \, \mathrm{grad}^{-1}$) are rezistența $R_0 = 10 \, \Omega$ la temperatura de 0°C. Neglijând dilatarea firului, rezistența acestuia la temperatura de 100°C este: (5 pct.)
 - a) 8 Ω ; b) 14 Ω ; c) 50 Ω ; d) 6 Ω ; e) 4 Ω ; f) 12 Ω .
- 3. Un acumulator cu t.e.m. E = 12 V are intensitatea curentului de scurtcircuit $I_{sc} = 40 \text{ A}$. Legând la bornele acumulatorului un rezistor, tensiunea la bornele sale devine U = 11 V. Valoarea rezistenței rezistorului este: (5 pct.)
 - a) 4,5 Ω ; b) 3,5 Ω ; c) 3,3 Ω ; d) 4 Ω ; e) 2,5 Ω ; f) 3 Ω .
- 4. Două surse identice de curent continuu având fiecare t.e.m. de 12 V și rezistența internă de 0,4 Ω sunt legate în paralel la bornele unui rezistor cu rezistența de 5,8 Ω . Puterea disipată pe rezistor este: (5 pct.)
 - a) 12,6 W; b) 18,4 W; c) 23,2 W; d) 12 W; e) 5,8 W; f) 45,2 W.
- 5. Legea lui Ohm pentru o porțiune de circuit care nu conține generatoare electrice, scrisă cu notațiile din manualele de fizică, este: (5 pct.)
 - a) $I = \frac{E}{r}$; b) $I = \frac{U}{R}$; c) $I = \frac{E}{R+r}$; d) I = UR; e) $U = \frac{I}{R}$; f) P = UI.
- 6. În cazul transferului maxim de putere, randamentul unui circuit de curent continuu format dintr-un generator cu t.e.m. E, rezistența internă r și un rezistor cu rezistența R este: (5 pct.)
 - a) 75%; b) 95%; c) 50%; d) $\frac{2R}{R+r}$; e) 25%; f) $\frac{RE^2}{(R+r)^2}$.
- 7. Un corp se deplasează rectiliniu uniform pe o suprafață orizontală pe distanța de 10 m, sub acțiunea unei forțe orizontale de 10 N. Lucrul mecanic al forței de frecare este: (5 pct.)
 - a) -1 J; b) 1 J; c) -100 J; d) 100 J; e) -10 J; f) 10 J.
- 8. Un corp este aruncat vertical în sus cu viteza inițială $v_0 = 15$ m/s. Considerând accelerația gravitațională g = 10 m/s², timpul după care corpul revine pe sol este: (5 pct.)
 - a) 2,5s; b) 1,5 s; c) 1s; d) 3s; e) 3,5s; f) 2s.

- 9. Căldura se măsoară în S.I. cu aceeași unitate de măsură ca: (5 pct.)
 - a) temperatura; b) cantitatea de substanță; c) energia cinetică; d) capacitatea calorică; e) căldura molară; f) căldura specifică.
 - 10. Utilizând notațiile din manualele de fizică, expresia energiei cinetice este: (5 pct.)

a)
$$\frac{m v}{2}$$
; b) $mgh; c) \frac{m v^2}{2}$; d) $\frac{k x^2}{2}$; e) $m v^2$; f) $\frac{k v^2}{2}$.

- 11. O cantitate de gaz ideal parcurge un ciclu format dintr-o transformare izocoră în care presiunea crește de 8 ori, o destindere adiabatică și o comprimare izobară. Exponentul adiabatic este $\gamma = 1, 5$. Randamentul ciclului este: (5 pct.)
 - a) 0,571; b) 3/16; c) 5/16; d) 5/14; e) 43,8%; f) 4/15.
- 12. Unitatea de măsură a accelerației în S.I. este: (5 pct.)
 - a) s/m; b) m/s^2 ; c) $m \cdot s^{-1}$; d) m/s; e) $m \cdot s$; f) $m \cdot s^2$.
- 13. O maşină termică ideală funcționează după un ciclu Carnot, temperatura sursei reci fiind 300K iar cea a sursei calde cu 200K mai mare. În cursul unui ciclu lucrul mecanic produs este L = 0,2 kJ. Valoarea absolută a căldurii cedate sursei reci într-un ciclu este: (5 pct.)
 - a) 0,1 kJ; b) 0,3 kJ; c) 0,5 kJ; d) 0,2 kJ; e) 0,6 kJ; f) 0,8 kJ.
- 14. Un gaz ideal se destinde adiabatic. La finalul procesului volumul gazului este de 8 ori mai mare și presiunea este de 32 de ori mai mică. Exponentul adiabatic este: (5 pct.)
 - a) 3/5; b) 5/3; c) 1,75; d) 3/2; e) 7/5; f) 2.
- 15. Cunoscând R constanta universală a gazelor perfecte și γ exponentul adiabatic, căldura molară la presiune constantă este: (5 pct.)

a)
$$\gamma R$$
; b) $\frac{\gamma}{\gamma - 1} R$; c) $\frac{\gamma}{\gamma + 1} R$; d) $\frac{R}{\gamma - 1}$; e) $(\gamma - 1) R$; f) $(\gamma + 1) R$.

- 16. Un autoturism începe să frâneze cu accelerație constantă. După ce a parcurs un sfert din distanța până la oprire, viteza sa este egală cu $40\sqrt{3}$ km/h. Viteza autoturismului în momentul începerii frânării este: (5 pct.)
 - a) 50 km/h; b) $60\sqrt{3}$ km/h; c) 25 m/s; d) 20m/s; e) 100 km/h; f) 80 km/h.
- 17. O cantitate de gaz ideal aflată la presiunea de 8,4·10⁶ Pa și temperatura de 280K suferă o transformare izocoră la sfârșitul căreia temperatura devine 250K. Presiunea finală este: (5 pct.)
 - a) 7 MPa; b) 6 MPa; c) 5,5 MPa; d) 6,5 MPa; e) 7,5 MPa; f) 5 MPa.
- 18. Peste un scripete fix ideal este trecut un fir de masă neglijabilă. Firul trece printr-un manșon fix care exercită asupra sa o forță de frecare constantă egală cu 32N. La un capăt al firului este legat un corp de masă $m_1 = 3$ kg, la celălalt capăt unul de masă m_2 . Sistemul se mișcă uniform. Se cunoaște g = 10 m/s². Masa m_2 este: (5 pct.)
 - a) 3 kg; b) 6 kg; c) 5,5 kg; d) 0,2 kg; e) 6,2 kg; f) 0,5 kg.