Reg. No						<		

B.Tech DEGREE EXAMINATION, DECEMBER 2023

Fourth Semester

18AIC205J - NEURAL NETWORKS AND MACHINE LEARNING

(For the candidates admitted during the academic year 2020 - 2021 & 2021 - 2022)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
 ii. Part - B and Part - C should be answered in answer booklet.

Time: 3 Hours			Max. Marks: 100			
	$PART - A (20 \times 1 = 2)$	0 Marks)	Marl	ks BL	CC	
	Answer all Ques					
1.	What is the name of the function in the fol all the weighted inputs it receives, and if i otherwise, it just outputs a 0"?	lowing statement "A perceptron adds up t exceeds a certain value, it outputs a 1,	1	1	1	
	(A) Step function	(B) Heaviside function				
	(C) Logistic function	(D) Perceptron function				
2.	Backpropagation is a learning technique th by propagating weight changes	at adjusts weights in the neural network	1	1	1	
	(A) Forward from source to sink	(B) Backward from sink to hidden nodes to source				
	(C) Backward from sink to source to hidden nodes	(D) Forward from source to hidden nodes				
3.	Which of the following is true for neural net (A) It is the same as logistic regression (C) It performs supervised learning	(B) It is the same as perceptron (D) It cannot be used for classification	1	1	1	
4.	When both inputs are 1 in the McCulloch-output?	Pitts NOR gate model, what will be the	1	2	1	
	(A) 1 (C) either 0 or 1	(B) 0 (D) z				
5.	The positive sign of weights in the McCullo (A) Excitatory inputs (C) Neither excitatory nor inhibitory inputs	ch-Pitts model is (B) Inhibitory inputs (D) Bias	1	1	2	
6.	You are building a binary classifier to watermelons (y=0). Which one of these act using for the output layer?	ivation functions would you recommend	1	2	2	
	(A) ReLU (C) Sigmoid	(B) Leaky ReLU (D) tanh		4		
7.	The is one way to quantify generaliz (A) Bias (C) Bias-Variance Composition	zation error. (B) Variance (D) Bias-Variance Decomposition	Ĩ	1	2	
8.	What is the purpose of regularization in mac (A) To prevent overfitting and improve generalization	(B) To speed up the training process	1	1	2	
	(C) To increase the accuracy of the model	(D) To reduce the number of features in a model		1		

9.	Explain the concept of entropy in the conte	ext of decision trees.	1	1	3
	(A) Entropy is a measure of impurity or disorder in a set of data	(B) Entropy is the number of leaf nodes in a decision tree.			
	(C) Entropy represents the number of features in a dataset.	(D) Entropy measures the height of a decision tree.			
10.	How can Naive Bayes handle continuous f	eatures?	1	1	3
	(A) It ignores continuous features.	(B) It discretizes the continuous features into bins			
	(C) It splits the feature into ranges and computes the average over each range.	(D) It just assumes all features are categorical.			
11.	Suppose you are using RadialBasisFund Gamma value. What does this signify?	etion(RBF) kernel in SVM with a high	1	2	3
	(A) The model would consider even far away points from the hyperplane for modeling	(B) The model would consider only the points close to the hyperplane for modeling			
	(C) The model would not be affected by the distance of points from the hyperplane for modeling	(D) The model will overfit.			
12.	** *	sy and will have a higher influence on the	1	2	3
	(A) Smaller (C) Larger	(B) Standard (D) binary			
13.	In PCA, the principal components are orthoda. They have the same direction (C) They have zero variance	ogonal. What does this mean? (B) They are linearly independent (D) They are negatively correlated	1	1	4
14.	How is variance captured in PCA?		1	2	4
	(A) By minimizing the mean(C) By minimizing the eigenvalues	(B) By maximizing the eigenvalues(D) By maximizing the covariance matrix			- S
15.	In LDA, how many linear discriminants ca (A) C (C) C+1	n be derived if there are C classes? (B) C-1 (D) 2C	1	2	4
16.	In Kernel PCA, what is the role of the kern		1	1	4
	(A) To compute eigenvalues.(C) To map data into a higher-dimensional space	(B) To standardize the data.(D) To calculate the mean of the data.			
17.	What is the curse of dimensionality, and he (A) The curse of dimensionality refers to the difficulty of visualizing high-dimensional data	ow does it impact clustering? (B) The curse of dimensionality causes clusters to be more compact.	1	1	5
	(C) The curse of dimensionality does not affect clustering algorithms.	(D) The curse of dimensionality makes clustering more accurate.			
18.	Explain the concept of silhouette score in (A) It measures the compactness of clusters.	clustering. (B) It evaluates the separation between clusters.	1	1	5
	(C) It quantifies the goodness of fit of the clustering	(D) It is not related to clustering evaluation.			

			_		_
19.	How does a Self-Organizing Map preserve (A) By ignoring the input topology.	the topology of the input space? (B) By using a convolutional neural network.	1	2	5
	(C) By organizing neurons in a grid that reflects the input space	(D) By converting input features into a higher-dimensional space.			
20.	Describe the dendrogram produced by aggle (A) A graphical representation of the data points. (C) A histogram of cluster sizes.	(B) A tree-like structure showing the order of merging clusters (D) A scatter plot of the clustered data.	1	1	5
	(C) A mstogram of cluster sizes.	(D) A scatter plot of the clustered data.	3.5	***	CO
	$PART - B (5 \times 4 = 2)$		Mark	IS BL	CO
	Answer any 5 Qu	nestions			
21.	Explain how the complexity of a machine learning model is related to overfitting and underfitting. Provide examples of situations where a model might be too complex or too simple.				1
22.	Discuss the bias-variance tradeoff in the context of overfitting and underfitting. How does finding the right balance contribute to building a robust model?				1
23.	. Describe the architecture of a Multilayer Perceptron (MLP). How are the input, hidden, and output layers structured? What is the purpose of each layer?				2
24.	Describe the logistic function (sigmoid for does it map real values to the range [0, 1]?	4	2	3	
25.	. Discuss briefly different types of kernel functions commonly used in Kernel PCA, such as polynomial, radial basis function (RBF), and sigmoid kernels.				4
26.	Explain the steps in the K-means clustering algorithm and apply the algorithm to cluster the following set of four objects into two clusters using K-means. The objects are A (3,5), B(4,5), C(1,3), and D(2,4). For initial cluster centers, consider the objects A and C.			3	5
27.	List and explain common performance metrics used in supervised learning, such as accuracy, precision, recall, and F1 score.				5
	PART - C ($5 \times 12 = 60$ Marks) Answer all Questions				
28.	(a) Implement AND function using per targets. Assume your initial weight rate=0.5.	receptron networks for bipolar inputs and its $w_1=1.2$, $w_2=0.6$.bias=1 and learning	12	3	1

X 1	X2	У
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

(OR)

(b) Draw the architecture of a single layer perceptron (SLP) and explain its operation. Mention its advantages and disadvantages.

29.	(a) Describe the steps of the Backpropagation algorithm for training a neural network. Assume a simple feedforward neural network with one hidden layer and a mean squared error loss function. Provide details on each step of the algorithm, including forward pass, backward pass, and weight updates. (OR)	12	2	2
	(b) Explain the Viterbi algorithm in the context of Hidden Markov Models (HMMs). How does it work, and what is its primary application in HMMs?			
30.	(a) Describe different splitting criteria used in decision trees, such as Gini impurity and information gain. How does the choice of splitting criterion affect the construction of the decision tree? (OR)	12	2	3
	(b) Describe the least squares method used for estimating the coefficients in linear regression. How does it minimize the sum of squared differences between observed and predicted values?			
31.	(a) Consider a scenario where you have a dataset with a large number of features and a limited number of samples. Discuss how PCA and LDA can be used to address the challenges of the "curse of dimensionality. (OR)	12	3	4
	(b) Demonstrate a brief example illustrating the instantiation of the PCA class, its application to dataset fitting, and the subsequent transformation of data to reduced dimensionality. Please include sample code for clarity.			
32.	(a) Plot a dendogram using simple linkage (Agglomerative clustering) for the following data set. Data Item ABCDE	12	3	5
	A 0 6 7 4 5 B 6 0 3 2 1		*	
	C 7 3 0 4 3 D 4 2 4 0 7 E 5 1 3 7 0			

(OR)

(b) Construct Kohonen Self Organizing maps (KSOFM) with three input vectors X1(1,1,0), X2(1,0,0) and X3(1,0,1). Assume the number of clusters to be formed is 2 and the learning rate as 0.5. Initial weights C1: {0.2,0.4,0.6}, C2:{0.3,0.5,0.7}.
