

Ai4/Society

Bringing together interdisciplinary researchers and partners to innovate in artificial intelligence research and teaching, for the public good.

0714 DATASET FOR ML

Instructor: Dr. Leung

Ziming & Yao

Highlights

- Sandstone reservoir
- Single layer with thickness
- Heterogenous rock properties
- Signal-phase flow
- 5-spot injection pattern, 36 injectors and 25 producers
- All wells start to operate at the same time
- 10 similar reservoir models

Reservoir information and Rock properties

- Considering a shallow marine deposit
- Reservoir Rock type: **Sandstone**
- Constant initial pressure: 33095 kpa
- Geological model generation
 - Use gaussian to generate a field (assume a random field);
 - 2) Assign 61 observation points (from the well locations);
 - 3) Plot the variogram;
 - 4) Apply kriging on the observation points regenerate the map.

Properties	Value
Thickness	Mean: 50
Porosity	Mean: 0.27
Permeability	Correlation (Neithalath et al. 2010)

Fig. 1 Reservoir porosity heterogeneity (green) and thickness(red). (Referenced taken from the Hartzog Darw Field, a shallow marine deposit, Tillman,1987)

$$k = 0.4e^{11.3\varphi}$$

Reservoir realizations

• Realizations of: Thickness

• Porosity and Permeability

...×10

...×10

Statistics

CMG View

Operation

Well Locations

- Well Descriptions
 - Producers
 - Pressure constrained (bph: 5000 kpa)
 - Injectors
 - Pressure constrained (q_{inj}: 1000 m₃/day)

$$\frac{P}{J} = \frac{1}{1}$$

Noise

- Gaussian, Normal distribution
- Production rate: Mean = 0, std = 0.05
- Pressure: Mean = o, std = o.o1

Producer

Injector

Injection rate

Bottom hole pressure

Production plan

Schedule

- 3-year production
- All wells start to operate at the same time

1		2		3		4		5		6
	1		2		3		4		5	
7		8		9		10		11		12
	6		7		8		9		10	
13		14		15		16		17		18
	11		12		13		14		15	
19		20		21		22		23		24
	16		17		18		19		20	
25		26		27		28		29		30
	21		22		23		24		25	
31		32		33		34		35		36

Problem Set for ML

- What will be given:
 - Production profile of each well.
 - Porosity/permeability map
 - Thickness map
- **Problem:** Make prediction of the production profile of a producer with a given permeability, porosity and thickness.