

FACULTAD DE INFORMATICA Y ELECTRONICA ESCUELA DE INGENIERÍA EN TELECOMUNICACIÓN

CARRERA: INGENIERÍA TELECOMUNICACIONES

ASIGNATURA: ELECTRONICA I

DOCENTE: ING. PAUL ROMERO

NIVEL: 4° SEMESTRE "A"

REALIZADO POR GRUPO Nº4:

Miguel Alonso Cartagena Soto Oscar Diego Regalado Santin Jhony Iván Gualan Gualan Steve Fabian Parra Soria

Riobamba-Ecuador

PROYECTO N°2

Objetivo General

 Generar un proyecto integrador que involucre el diseño y simulación de circuitos electrónicos utilizando dispositivos semiconductores tales como Transistores de Unión Bipolar BJT, Transistores de Efecto de Campo (JFET y MOSFET) y otros componentes activos y pasivos necesarios para la implementación.

Objetivos Específicos

- Desarrollar un amplificador de audio para micrófono (mínimo 2 etapas) utilizando transistores BJT, componentes e instrumentos disponibles en MULTISIM.
- Diseñar un circuito preamplificador de audio (mínimo 2 etapas) utilizando transistores de efecto de campo (JFET o MOSFET), componentes e instrumentos disponibles en MULTISIM.
- Implementar y caracterizar las compuertas lógicas digitales (AND, OR, NOT, NAND, NOR, XOR) de la familia lógica CMOS usando Transistores de Efecto de Campo, componentes e instrumentos disponibles en ORCAD-PSPICE.
- Obtener las gráficas y mediciones de valores de voltaje, corriente y otros parámetros por cada uno de los casos y etapas correspondientes, con ayuda de los instrumentos y opciones de simulación de Multisim o PSpice.

Actividades Planteadas.

- Mediante las herramientas de simulación y análisis de circuitos Multisim o PSPICE diseñe los circuitos correspondientes en cada caso.
- Calcule y mida los valores de voltajes, corrientes en los terminales de los transistores de unión bipolar (BJT) y transistores de Efecto de campo utilizados en cada circuito.

- Calcule y mida las ganancias totales, ganancia por etapa en los circuitos amplificadores.
- Para el circuito amplificador de micrófono utilice los compontes Microphone
 y Speaker disponibles en Multisim.
- Diseñe e implemente las compuertas lógicas TTL: NOT, AND, OR, NAND,
 NOR, XOR de dos entradas utilizando transistores MOSFET.
- Comprobar el funcionamiento de las compuertas lógicas (funciones lógicas y tablas de verdad).
- Calcule y obtenga los valores de voltajes, corrientes, por cada uno de los circuitos equivalentes a las compuertas.
- Realice un informe detallado de esta actividad utilizando el formato de trabajos de investigación. En el contenido incluya los esquemas, tablas de verdad o de funcionamiento, parámetros calculados, valores medidos y gráficas de salida por cada uno de los casos.

Desarrollo de la Practica.

Fundamentación Teórica

• Transistores JFET

El transistor de unión bipolar (BJT, bipolar junction transistor) está basado en dos tipos de carga: los electrones libres y los huecos; razón por la que se denomina bipolar: el prefijo bi quiere decir "dos". Este tipo de dispositivo es unipolar porque su operación sólo depende de un tipo de carga, electrones libres o huecos. En otras palabras, un FET tiene portadores mayoritarios, pero no portadores minoritarios.

Transistores MOSFET

Un MOSFET es un dispositivo semiconductor utilizado para la conmutación y amplificación de señales. El nombre completo, Transistor de Efecto de Campo de Metal-Óxido-Semiconductor (Metal Oxide Semiconductor Field Effect Transistor, MOSFET) se debe a la constitución del propio transistor, está basado en la estructura MOS.

• Familia Lógica TTL

Es una familia **lógica** o lo **que es** lo mismo, una tecnología de construcción de circuitos electrónicos digitales. En los componentes fabricados con tecnología **TTL** los elementos de entrada y salida del dispositivo son transistores bipolares.

Compuertas Lógicas

Las Compuertas Lógicas son circuitos electrónicos conformados internamente por transistores que se encuentran con arreglos especiales con los que otorgan señales de voltaje como resultado o una salida de forma booleana, están obtenidos por operaciones lógicas binarias (suma, multiplicación).

Desarrollo Amplificador BJT

Analisis 1 y 2:

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B}} = \frac{9V - 0.7V}{100k\Omega} = 83\mu A$$

$$I_{E} = (\beta + 1)I_{B} = (100 + 1)(83\mu A) = 8.38mA$$

$$r_{e} = \frac{25mV}{I_{E}} = \frac{25mV}{2.428mA} = 2.98\Omega$$

$$Z_{i} = R_{B} || \beta r_{e} = \frac{R_{B}\beta r_{e}}{R_{B} + \beta r_{e}} = \frac{(100k\Omega)(100)(2.98\Omega)}{(100k\Omega) + (100)(2.98\Omega)}$$

$$= 297.11\Omega$$

$$Z_{0} = R_{C} = 1k\Omega$$

$$A_{v1,2} = -\frac{R_{C}}{r_{e}} = -\frac{1k\Omega}{2.98\Omega} = -335.57$$

$$A_{vT} = A_{v1}A_{v2} = (-335.57)(-343.75) = 112.607k$$

Simulación

Resultados.

Sección 1 (Amplificador BJT)

Ganancias

Análisis de ondas

Osciloscopio

Sección 2 (Pre-Amplificador FET)

Análisis de Ondas

Sección 3 (Compuertas Lógicas)

Compuerta OR:

Tabla de verdad			
#	а	b	<i>a</i> + <i>b</i>
1	0	0	0
2	0	1	1
3	1	0	1
4	1	1	1

Comprobación Nº2

Compuerta AND

Tabla de verdad			
#	а	b	a.b
1	0	0	0
2	0	1	0
3	1	0	0
4	1	1	1

Comprobación Nº3

Compuerta NOT

Tabla de verdad			
#	а	ā	
1	0	1	
2	1	0	

Comprobación Nº1

Compuerta NOR

Tabla de verdad				
#	a	b	<i>a</i> + <i>b</i>	$\overline{a+b}$
1	0	0	0	1
2	0	1	1	0
3	1	0	1	0
4	1	1	1	0

Comprobación Nº1

Comprobación Nº4

Compuerta NAND

Tabla de verdad				
#	a	b	a.b	a.b
1	0	0	0	1
2	0	1	0	1
3	1	0	0	1
4	1	1	1	0

Comprobación Nº2:

Compuerta XOR:

Tabla de verdad				
#	a	b	a⊕b	
1	0	0	0	
2	0	1	1	
3	1	0	1	
4	1	1	0	

Comprobación Nº3

Conclusiones.

- Debemos ser cuidadosos al verificar los terminales del transistor por medio del medidor de continuidad, ya que si erramos alguna parte vamos a obtener datos completamente erróneos del circuito y en la comparación con el simulador no habrá ningún tipo de coincidencia.
- Se debe tomar en cuenta el valor de resistencias y capacitores para la construcción de amplificadores ya que un ligero valor nos podría llevar al transistor a otro estado como el de saturación.
- El mezclador resistivo con un solo FET se caracteriza por una baja distorsión
 a causa del funcionamiento del mismo, por el bajo ruido y con pérdidas de
 conversión similares de un mezclador con diodo, gracias a estas cualidades,
 concluimos que se trata de una estructura apta para el funcionamiento del
 mezclador.