

STODENT ID NO					
T					I
		1			

STUDENT ID NO

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 3, 2016/2017

DIM5068 – MATHEMATICAL TECHNIQUES 2

(for Diploma students only)

26 MAY 2017 9.00 A.M. – 11.00 A.M. (2 Hours)

INSTRUCTIONS TO STUDENT

- 1. This question paper consists of 2 pages with 4 questions.
- 2. Attempt ALL FOUR questions.
- 3. Write all your answers in the Answer Booklet provided.
- 4. Key formulae are given in the Appendix.

Question 1

a. Given the complex numbers A = 3 - 4i, B = 4 + i and C = 7 + 4i. Perform the indicated operations and write the answer in standard form, a + bi.

i. A + 3B (2 marks)

ii. $\frac{C}{A}$ (4 marks)

b. Find the solutions for the quadratic equation $4x^2 - 4x + 5 = 0$. Write the answer in standard form, a + bi. (4 marks)

[TOTAL 10 MARKS]

Question 2

a. Differentiate $y = 3x^5 - \frac{2}{x} + e^x - \sqrt{x}$. (2 marks)

b. Given the function $y = e^{2x} \cos(x)$.

i. Find the first derivative using **product rule**. (3 marks)

ii. Compute $\frac{dy}{dx}$ when x = 0. (2 marks)

c. For the function $f(x) = x^3 - x^2 + 15$,

i. find the critical number(s). (3.5 marks)

ii. identify the intervals on which f is increasing or decreasing. (3 marks)

iii. determine the maximum and/or the minimum value(s). (2 marks)

d. Integrate $\int \left(7x^7 + \frac{4}{x^3} - 8\sec^2 x\right) dx$. (2 marks)

e. Show that $\int_{0}^{1} 6x^{2}(2x^{3} + 9)^{3} dx = 2020$. (7 marks)

f. By using integration by parts, evaluate $\int 7xe^x dx$. (5.5 marks)

[TOTAL 30 MARKS]

Question 3

- a. If the differential equation is $\frac{dy}{dx} = \frac{3e^x}{4y}$,
 - i. solve for y by using separable method. (5 marks)
 - ii. determine the solution of the initial value problem if y(0)=1. (3 marks)
- b. Given the differential equation $\frac{dy}{dx} + \frac{y}{x} = 4x^3$.
 - i. Identify the p(x) and q(x). (2 marks)
 - ii. Calculate the integrating factor, μ . (2 marks)
 - iii. Find y given that $\mu y = \int \mu q(x) dx$. (3 marks)
 - iv. Determine the solution of the initial value problem if y(-5) = 501. (3 marks)
- c. Given the non-homogeneous differential equation y''-3y'-4y=x+2.
 - i. Determine the complementary solution, y_c . (3 marks)
 - ii. Compute the particular solution, y_p . (8 marks)
 - iii. State the general solution of y. (1 mark)

[TOTAL 30 MARKS]

Question 4

- a. Given the vectors $\vec{a} = \langle 8, -3, 3 \rangle$ and $\vec{b} = \langle 6, 3, -1 \rangle$. Find
 - i. $2\bar{a}+3\bar{b}$. (3 marks)
 - ii. $\left|2\bar{a}+3\bar{b}\right|$. (2 marks)
 - iii. the angle between \vec{a} and \vec{b} . (8 marks)
- b. Find the area of a triangle PQR enclosed by the vectors $\overline{PQ} = \langle 1, 1, 2 \rangle$ and $\overline{PR} = \langle -1, 3, 2 \rangle$. (8 marks)
- c. Determine the parametric equation and symmetric equation for the line through the points (8,3,1) and (9,2,8). (5 marks)
- d. Find an equation of the plane that passes through the point (-33,22,11) and with normal vector 7j + 9k. (4 marks)

[TOTAL 30 MARKS]

APPENDIX

<u>Derivatives:</u> $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

Differentiation Rules

General Formulae

1.
$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$
 2. $\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$

2.
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$$

3.
$$\frac{d}{dx}(x^n) = nx^{n-1}$$

4.
$$\frac{d}{dx}[g(x)]^n = n[g(x)]^{n-1} \cdot g^{\tau}(x)$$

Exponential and Logarithmic Functions

$$1. \frac{d}{dx}(e^x) = e^x$$

$$2. \frac{d}{dx}(a^x) = a^x \ln a$$

3.
$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$4. \frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$$

Trigonometric Functions

1.
$$\frac{d}{dx}(\sin x) = \cos x$$

$$2. \frac{d}{dx}(\cos x) = -\sin x$$

3.
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

4.
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

5.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

6.
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

Table of Integrals

1.
$$\int u \, dv = uv - \int v \, du$$

2.
$$\int u^n du = \frac{u^{n+1}}{n+1} + C, \quad n \neq -1$$

$$3. \int \frac{du}{u} = \ln|u| + C$$

$$4. \int e^u du = e^u + C$$

$$5. \int \sin u \ du = -\cos u + C$$

$$6. \int \cos u \ du = \sin u + C$$

7.
$$\int \sec^2 u \ du = \tan u + C$$

$$8. \int \csc^2 u \ du = -\cot u + C$$

9.
$$\int \sec u \tan u \ du = \sec u + C$$

10.
$$\int \csc u \cot u \ du = -\csc u + C$$

Application of Integrals:

Areas between Curve, $A = \int_{a}^{b} [f(x) - g(x)] dx$

, ,

Differential Equations

Linear Differential Equations

$$\frac{dy}{dx} + p(x)y = q(x)$$
 \Rightarrow $\mu y = \int \mu q(x) dx$, where $\mu = e^{\int p(x)dx}$

Constant Coefficient of Homogeneous Equations

Roots of Auxiliary Equation,
$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

General Solutions to the Auxiliary Equation:

2 Real & Unequal Roots
$$(b^2 - 4ac > 0)$$

$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

Repeated Roots
$$(b^2 - 4ac = 0)$$

$$y = c_1 e^{rx} + c_2 x e^{rx}$$

2 Complex Roots
$$(b^2 - 4ac < 0)$$

$$y = e^{\alpha x} (c_1 \cos bx + c_2 \sin bx)$$

Constant Coefficient of Non-Homogeneous Equations

$$y = y_c + y_n$$
 [y_c : complementary solution, y_n : particular solution]

Vector

Length of Vector

The length of the vector
$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle$$
 is $|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$.

Dot Product

If
$$\theta$$
 is the angle between the vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then $\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3 = |\mathbf{a}||\mathbf{b}|\cos\theta$

Cross Product

If
$$\theta$$
 is the angle between the vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then $\mathbf{a} \times \mathbf{b} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$
 $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}| \sin \theta$

Area for parallelogram PQRS

$$= \left| \overrightarrow{PQ} \times \overrightarrow{PR} \right|$$

Area for triangle PQR

$$=\frac{1}{2}\left| \overrightarrow{PQ} \times \overrightarrow{PR} \right|$$

Equation of Lines

Vector equation:
$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$$

Parametric equations:
$$x = x_0 + at$$
 $y = y_0 + bt$ $z = z_0 + ct$

Symmetric equation:
$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

Equation of Planes

Vector equation:
$$\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r}_0$$

Scalar equations:
$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

Linear equation:
$$ax + by + cz + d = 0$$

Angle between Two Planes:
$$\cos \theta = \frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{|\mathbf{n}_1| |\mathbf{n}_2|}$$