Binary Division

Andrew Lukefahr Indiana University - Bloomington

Setup and Hold Time

Binary Multiplication

```
0110
× 1
0(10
```

```
0110
× 0
0000
```

```
0110

× 0010

0110

0110

0 0 0 0 0 0

4 0 0 0 0 0 0 0 0
```

Binary Multiplication

0110 × 1 0110 < 0 0110

× 0011 0110

+ 01100

+ 000000

+ 0000000

00010010

6

<u>< 3</u>

18

Combinational Multiplication

B441

					a3	3 a2 a	a1 a0
	× b3 b2 b1 b0						<u> 1 b0</u>
				b0a3	b0a2	b0a1	b0a0
+			b1a3	b1a2	b1a1	b1a0	0
+		b2a3	b2a2	b2a1	b2a0	0	0
_+	b3a3	b3a2	b3a1	b3a0	0	0	0
р7	р6	р5	p4	р3	p2	p1	р0
	+ + + p7		+ b3a3 b3a2	+ b2a3 b2a2 + b3a3 b3a2 b3a1	+ b1a3 b1a2 + b2a3 b2a2 b2a1 + b3a3 b3a2 b3a1 b3a0	 × b0a3 b0a2 + b1a3 b1a2 b1a1 + b2a3 b2a2 b2a1 b2a0 + b3a3 b3a2 b3a1 b3a0 0 	+ b0a3 b0a2 b0a1 + b1a3 b1a2 b1a1 b1a0 + b2a3 b2a2 b2a1 b2a0 0 + b3a3 b3a2 b3a1 b3a0 0 0

Basic Electronics 5/25

Combinational Multiplication

B441

B441

Sequential Multiplication

Hybrid Multiplication

```
      x
      b3
      b2
      b1
      b0

      b0a3
      b0a2
      b0a1
      b0a0

      +
      b1a3
      b1a2
      b1a1
      b1a0
      0

      +
      b2a3
      b2a2
      b2a1
      b2a0
      0
      0

      +
      b3a3
      b3a2
      b3a1
      b3a0
      0
      0
      0

      p7
      p6
      p5
      p4
      p3
      p2
      p1
      p0
```

Cycle 1

```
b0a3 b0a2 b0a1 b0a0
+ b1a3 b1a2 b1a1 b1a0 0
q5 q4 q3 q2 q1 q0
```

```
b2a3 b2a2 b2a1 b2a0
+ b3a3 b3a2 b3a1 b3a0 0
w7 w6 w5 w4 w3 w2
```

Davall41

Cycle 2

Pipelined Multiplier

Pipelined Multiplier

6 * 3 5 * 2 4 * 3

Pipelined Multiplier

Latericy: 3 cycles
Throughput: 1 multiply/cycle

B441 Basic Electronics 12/25

Latency vs. Throughput

• Latency: How long does it take a single operation to complete

• Throughput: On average, how many operations can you complete <u>per cycle</u>?

- Basis for modern CPUs
- More in E312

Long Division

Division Algorithm

- Set quotient to 0
- Align leftmost digits in dividend and divisor
- Repeat
 - If that portion of the dividend above the divisor is greater than or equal to the divisor
 - Then subtract divisor from that portion of the dividend and
 - Concatenate 1 to the right hand end of the quotient
 - Else concatenate 0 to the right hand end of the quotient
 - Shift the divisor one place right
- Until dividend is less than the divisor
- quotient is correct, dividend is remainder
- STOP

Division Example

$$\frac{38 R2}{1 230}$$

Division Example

$$\frac{38 R2}{1 230}$$

0110 | 11100110

Powers of 2

• Multiplication and Division by powers of 2 is just shift.

Take Aways:

- 1. Multiplication/Division is harder than Addition/Subtraction
 - 1. Takes longer
 - 2. Consumes more power
- 2. Exception: Multiply / Divide by 2ⁿ
 - 1. This is just shift
- 3. It is possible to PIPELINE these units
 - 1. Same <u>Latency</u>, more <u>Throughput</u>

Next Time

• CPU ISAs