

✓ Congratulations! You passed!

TO PASS 80% or higher

GRADE 96.66%

Bird Recognition in the City of Peacetopia (Case Study)

LATEST SUBMISSION GRADE 96.66%

1. Problem Statement

This example is adapted from a real production application, but with details disguised to protect confidentiality.

You are a famous researcher in the City of Peacetopia. The people of Peacetopia have a common characteristic: they are afraid of birds. To save them, you have to build an algorithm that will detect any bird flying overPeacetopia and alert the population.

The City Council gives you a dataset of 10,000,000 images of the sky above Peacetopia, taken from the city's security cameras. They are labelled:

- y = 0: There is no bird on the image
- y = 1: There is a bird on the image

Your goal is to build an algorithm able to classify new images taken by security cameras from Peacetopia.

There are a lot of decisions to make:

- · What is the evaluation metric?
- · How do you structure your data into train/dev/test sets?

Metric of success

The City Council tells you that they want an algorithm that

- 1. Has high accuracy
- 2. Runs quickly and takes only a short time to classify a new image.
- 3. Can fit in a small amount of memory, so that it can run in a small processor that the city will attach to many different security cameras.

Note: Having three evaluation metrics makes it harder for you to quickly choose between two different algorithms, and will slow down the speed with which your team can iterate. True/False?

True

/	
\sim	Correct

2	After further	discussions	the city	/ narrows	down	its criteria	to
4.	AICCI TUI CITCI	uiscussions,	CITC CIC	y 110110443	COVVIII	its criteria	w.

• "We need an algorithm that can let us know a bird is flying over Peacetopia as accurately as possible."

- "We want the trained model to take no more than 10sec to classify a new image."
- "We want the model to fit in 10MB of memory."

If you had the three following models, which one would you choose?

O B:

Test Accuracy	Runtime	Memory size
99%	13 sec	9MB

\circ	Test Accuracy	Runtime	Memory size
	97%	3 sec	2MB

•	Test Accuracy	Runtime	Memory size
	98%	9 sec	9MB

\bigcirc	Test Accuracy	Runtime	Memory size
	97%	1 sec	3MB

✓ Correct

Correctl As soon as the runtime is less than 10 seconds you're good. So, you may simply maximize the test accuracy after you made sure the runtime is <10 sec.

3. Based on the city's requests, which of the following would you say is true?

1 / 1 point

- Accuracy is an optimizing metric; running time and memory size are a satisficing metrics.
- Accuracy, running time and memory size are all satisficing metrics because you have to do sufficiently well on all three for your system to be acceptable.
- Accuracy is a satisficing metric; running time and memory size are an optimizing metric.
- Accuracy, running time and memory size are all optimizing metrics because you want to do well on all three.

4. Structuring your data

1 / 1 point

Before implementing your algorithm, you need to split your data into train/dev/test sets. Which of these do you think is the best choice?

\circ	Train	Dev	Test
	6,000,000	3,000,000	1,000,000

\bigcirc	Train	Dev	Test
	3,333,334	3,333,333	3,333,333

\bigcirc	Train	Dev	Test
	6,000,000	1,000,000	3,000,000

Yes.

	✓ Correct					
	Yes, because having 4.0% training error shows you have a high bias.					
	Yes, because this shows your bias is higher than your variance.					
	No, because this shows your variance is higher than your bias.					
	No, because there is insufficient information to tell.					
	This suggests that one good avenue for improving performance is to train a bigger training error. Do you agree?	network so as to drive down the 4.0%				
	Dev set error	4.5%				
	Training set error	4.0%				
7.	You train a system, and its errors are as follows (error = 100%-Accuracy):		1/1 point			
	✓ Correct					
	The test set no longer reflects the distribution of data (security cameras) you m	ost care about.				
	A bigger test set will slow down the speed of iterating because of the computat on the test set.	ional expense of evaluating models				
	✓ Correct					
	This would cause the dev and test set distributions to become different. This is a bad idea because you're not aiming where you want to hit.					
	The 1,000,000 citizens' data images do not have a consistent x>y mapping as t New York City/Detroit housing prices example from lecture).	the rest of the data (similar to the				
6.	One member of the City Council knows a little about machine learning, and thinks y data images to the test set. You object because:	ou should add the 1,000,000 citizens'	1/1 point			
	Correct False is correct: Sometimes we'll need to train the model on the data that is not be the same as the data that will occur in production. Also, adding train set may still help the model improve performance on the dev set. What ma have the same distribution.	ning data that differs from the dev				
	False					
	○ True					
	"You should not add the citizens' data to the training set, because if the training dist test sets, then this will not allow the model to perform well on the test set."	tribution is different from the dev and				
	Is the following statement true or false?					
	Notice that adding this additional data to the training set will make the distribution distributions of the dev and test sets.	of the training set different from the				
5.	6. After setting up your train/dev/test sets, the City Council comes across another 1,000,000 images, called the "citizens' data". Apparently the citizens of Peacetopia are so scared of birds that they volunteered to take pictures of the sky and label them, thus contributing these additional 1,000,000 images. These images are different from the distribution of images the City Council had originally given you, but you think it could help your algorithm.					

8. You ask a few people to label the dataset so as to find out what is human-level performance. You find the following levels

of accuracy:

Bird watching expert #1

1 / 1 point

0.3% error

	Bird watching expert #2			0.5% error	
	Normal person #1 (not a bird watching expert)			1.0% error	
	Normal person #2 (not a bird watching expert)			1.2% error	
	If your goal is to have "human-level performance" level performance"?	be a proxy (or esti	mate) for Bayes error,	how would you define "human-	
	0.4% (average of 0.3 and 0.5)				
	0.0% (because it is impossible to do better that	an this)			
	0.75% (average of all four numbers above)				
	0.3% (accuracy of expert #1)				
	0.5% (accuracy or expert #1)				
	✓ Correct				
9.	Which of the following statements do you agree w	ith?			1/1 point
	A learning algorithm's performance can never	be better than hu	ıman-level performano	e nor better than Bayes error.	
	A learning algorithm's performance can be be	tter than human-l	evel performance and	better than Bayes error.	
	A learning algorithm's performance can never Bayes error.	be better than hu	ıman-level performano	e but it can be better than	
	A learning algorithm's performance can be be Bayes error.	tter than human-l	evel performance but i	t can never be better than	
	✓ Correct				
10.	You find that a team of ornithologists debating and define that as "human-level performance." After w	_			0.5 / 1 point
	Human-level performance			0.1%	
	Training set error			2.0%	
	Dev set error			2.1%	
	Based on the evidence you have, which two of the options.)	following four opt	tions seem the most pr	romising to try? (Check two	
	Try increasing regularization.				
	X This should not be selected				
	Try decreasing regularization.				
	Train a bigger model to try to do better on the	e training set.			
	✓ Correct				
	Get a bigger training set to reduce variance.				
11.	You also evaluate your model on the test set, and	find the following:			1/1 point
	Human-level performance	0.1%			
	Training set error	2.0%			
	Dev set error	2.1%			

What does this mean? (Check the two best options.)

7.0%

Test set error

You have overfit to the dev set.	
✓ Correct	
You have underfit to the dev set.	
✓ You should try to get a bigger dev set.	
✓ Correct	
You should get a bigger test set.	
12. After working on this project for a year, you finally achieve:	(1/1 pc
Human-level performance 0.10% Training set error 0.05%	
Dev set error 0.05%	
What can you conclude? (Check all that apply.)	
This is a statistical anomaly (or must be the result of statistical noise) since it should not be possil human-level performance.	ole to surpass
If the test set is big enough for the 0.05% error estimate to be accurate, this implies Bayes error is	$s \leq 0.05$
✓ Correct	
✓ It is now harder to measure avoidable bias, thus progress will be slower going forward.	
✓ Correct	
With only 0.09% further progress to make, you should quickly be able to close the remaining gap	to 0%
 13. It turns out Peacetopia has hired one of your competitors to build a system as well. Your system and both deliver systems with about the same running time and memory size. However, your system has However, when Peacetopia tries out your and your competitor's systems, they conclude they actually competitor's system better, because even though you have higher overall accuracy, you have more fa to raise an alarm when a bird is in the air). What should you do? Pick false negative rate as the new metric, and use this new metric to drive all further developme Ask your team to take into account both accuracy and false negative rate during development. Rethink the appropriate metric for this task, and ask your team to tune to the new metric. Look at all the models you've developed during the development process and find the one with the 	higher accuracy! like your lse negatives (failing nt.
negative error rate. ✓ Correct	
14. You've handily beaten your competitor, and your system is now deployed in Peacetopia and is protect birds! But over the last few months, a new species of bird has been slowly migrating into the area, so your system slowly degrades because your data is being tested on a new type of data.	

You have only 1,000 images of the new species of bird. The city expects a better system from you within the next 3 months. Which of these should you do first?

\circ	D: Add the 1,000 images into your dataset and reshuffle into a new train/dev/test split.
0	Put the 1,000 images into the training set so as to try to do better on these birds.

- Try data augmentation/data synthesis to get more images of the new type of bird.
- Use the data you have to define a new evaluation metric (using a new dev/test set) taking into account the new species, and use that to drive further progress for your team.

✓ Correct

15. The City Council thinks that having more Cats in the city would help scare off birds. They are so happy with your work on the Bird detector that they also hire you to build a Cat detector. (Wow Cat detectors are just incredibly useful aren't they.) Because of years of working on Cat detectors, you have such a huge dataset of 100,000,000 cat images that training on this data takes about two weeks. Which of the statements do you agree with? (Check all that agree.)

1 / 1 point

Buying faster computers could speed up your teams' iteration speed and thus your team's productivity.

✓ Correct

☑ If 100,000,000 examples is enough to build a good enough Cat detector, you might be better off training with just 10,000,000 examples to gain a ≈10x improvement in how quickly you can run experiments, even if each model performs a bit worse because it's trained on less data.

✓ Correct

- Having built a good Bird detector, you should be able to take the same model and hyperparameters and just apply it to the Cat dataset, so there is no need to iterate.
- Needing two weeks to train will limit the speed at which you can iterate.

✓ Correct