Analiza III

1

Refleksja

Czy to

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}$$
$$\frac{\partial P}{\partial y} = -\frac{\partial Q}{\partial x}$$

jest fajne?

Przykład 1.

$$\nabla P = \left[\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y} \right],$$

$$\nabla Q = \left[\frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial y} \right],$$

to możemy zrobić takie coś:

$$"(\nabla P \cdot \nabla Q)" = \frac{\partial P}{\partial x} \frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y} \frac{\partial Q}{\partial y} = -\frac{\partial P}{\partial x} \frac{\partial P}{\partial y} + \frac{\partial P}{\partial y} \frac{\partial P}{\partial x} = 0.$$

Twierdzenie 1. f - holomorficzna na $\mathcal{O} \subset \mathbb{C}$, \mathcal{O} - otwarty wtedy i tylko wtedy, gdy f - spelnia warunek Cauchy-Riemanna.

 $Dowód. \implies było$

$$F(x,y) = \begin{bmatrix} P(x,y) \\ Q(x,y) \end{bmatrix},$$

 $F:U\subset\mathbb{R}^2\to\mathbb{R}^2$ jest różniczkowalna na $U\subset\mathbb{R}^2$, czyli dla $h=\begin{bmatrix}h_1\\h_2\end{bmatrix}$ jest

$$\underbrace{F(x+h_1,y+h_2)-F(x,y)}_{AE} = \begin{bmatrix} \frac{\partial P}{\partial x} & \frac{\partial P}{\partial y} \\ \frac{\partial Q}{\partial x} & \frac{\partial Q}{\partial y} \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} + r(x,y,h),$$

$$\frac{r(x,y,h)}{\|h\|} \xrightarrow[h \to 0]{} 0.$$
Czyli

$$\underbrace{\begin{bmatrix} P(x+h_1,y+h_2) - P(x,y) \\ Q(x+h_1,y+h_2) - Q(x,y) \end{bmatrix}}_{\Delta Q} \overset{\text{C-R}}{=} \begin{bmatrix} \frac{\partial P}{\partial x} & -\frac{\partial Q}{\partial x} \\ \frac{\partial Q}{\partial x} & \frac{\partial P}{\partial x} \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} + r(x,y,h),$$

zatem

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} + r(x, y, h).$$

to wygląda trochę jak obrót. Dalej

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} ah_1 - bh_2 \\ bh_1 + ah_2 \end{bmatrix} + r(x, y, h).$$

Ale

$$f(z+h) - f(z) = P(x+h_1, y+h_2) + iQ(x+h_1, y+h_2) - (P(x,y) + iQ(x,y)) =$$

$$= \Delta P + i\Delta Q = ah_1 - bh_2 + i(bh_1 + ah_2) + r =$$

$$= (a+ib)(h_1 + ih_2) + r,$$

zatem

$$\frac{f(z+h) - f(z)}{h} = a + ib + \frac{r}{h}.$$

A jak przejdzie się z h do 0, to $\frac{r}{h} \to 0$, więc

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = f'(z)$$

Stwierdzenie 1. Niech $f: \mathcal{O} \subset \mathbb{C} \to U \subset \mathbb{C}$, f - holomorficzna na \mathcal{O} , a $g: U \to \mathbb{C}$ - holomorficzna na U. Wówczas $g \circ f$ - holomorficzna na \mathcal{O} .

Analiza III

3

 $Dow \acute{o}d.$

$$(g \circ f)' = g'(f)f' = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \cdot \begin{bmatrix} a_1 & -b_1 \\ b_1 & a_1 \end{bmatrix} =$$

$$= \begin{bmatrix} aa_1 - bb_1 & -ab_1 - a_1b \\ a_1b + ab_1 & -bb_1 + aa_1 \end{bmatrix} =$$

$$= \begin{bmatrix} aa_1 - bb_1 & -(a_1b + ab_1) \\ a_1b + ab_1 & aa_1 - bb_1 \end{bmatrix},$$

a tak wygląda macierz pochodnej f - holomorficznej (traktowanej jako funkcja z $\mathbb{R}^2 \to \mathbb{R}^2).$

Oznaczenia

niech $M \subset \mathbb{R}^2$, $\langle dx, dy \rangle = T_p^* M$. Wprowadźmy

$$dz = dx + idy$$
$$d\overline{z} = dx - idy.$$

Jeżeli $f(x,y): \mathbb{R}^2 \to \mathbb{R}^1$, to

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = \frac{1}{2}\frac{\partial f}{\partial x}\left(dz + d\overline{z}\right) + \frac{1}{2i}\frac{\partial f}{\partial y}\left(dz - d\overline{z}\right) =$$

$$= \left(\frac{1}{2}\frac{\partial f}{\partial x} + \frac{1}{2i}\frac{\partial f}{\partial y}\right)dz + \underbrace{\left(\frac{1}{2}\frac{\partial f}{\partial x} - \frac{1}{2i}\frac{\partial f}{\partial y}\right)}_{\frac{\partial f}{\partial \overline{z}}}d\overline{z}.$$

Obserwacja: niech f(z) = P(x,y) + iQ(x,y), wówczas

$$\begin{split} \frac{\partial f}{\partial x} &= \frac{\partial P}{\partial x} + i \frac{\partial Q}{\partial x} \\ \frac{\partial f}{\partial y} &= \frac{\partial P}{\partial y} + i \frac{\partial Q}{\partial y}. \end{split}$$

czyli

$$\begin{split} \frac{\partial f}{\partial \overline{z}} &= \frac{1}{2} \left(\frac{\partial f}{\partial x} - \frac{1}{i} \frac{\partial f}{\partial y} \right) = \\ &= \frac{1}{2} \left(\frac{\partial P}{\partial x} + i \frac{\partial Q}{\partial x} - \frac{1}{i} \left(\frac{\partial P}{\partial y} + i \frac{\partial Q}{\partial y} \right) \right) = \\ &= \frac{1}{2} \left(\left(\frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y} \right) + i \left(\frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y} \right) \right) \end{split}$$

Przykład 2. $f(z) = z^2 = z \cdot z$,

$$\frac{\partial f}{\partial z} = 2z, \quad \frac{\partial f}{\partial \overline{z}} = 0$$

$$a g(z) = |z|^2 = z \cdot \overline{z}$$

$$\frac{\partial g}{\partial \overline{z}} = z \neq 0.$$

 $Czyli\ g$ - $nie\ jest\ holomorficzna$

Przykład 3. Obliczmy całkę:

$$\int_{\partial K(0,r)} \frac{dz}{z} = \begin{vmatrix} z = re^{i\theta} \\ dz = rie^{i\theta}d\theta \end{vmatrix} = \int_0^{2\pi} \frac{rie^{i\theta}d\theta}{re^{i\theta}} = i \int_0^{2\pi} d\theta = 2\pi i.$$

Stwierdzenie 2. Jeżeli f - holomorficzna na \mathcal{O} i $\Omega \subset \mathcal{O}$, to

$$\int_{\partial\Omega}fdz=\int_{\Omega}d(fdz)=\int_{\Omega}\frac{\partial f}{\partial d\overline{z}}d\overline{z}\wedge dz=0.$$

Twierdzenie 2. (wzór Cauchy)

Niech $\Omega \subset \mathbb{C}, \ f : \stackrel{\cdot}{\Omega} \to \mathbb{C}, \ niech \ \xi \in \Omega. \ \textit{W\'owczas}$

$$f(\xi) = \frac{1}{2\pi i} \int_{\partial\Omega} \frac{f(z)}{z - \xi} dz + \int_{\Omega} \frac{1}{z - \xi} \frac{\partial f}{\partial \overline{z}} dz \wedge d\overline{z}.$$

Obserwacja: jeżeli f - holomorficzna na Ω , to

$$f(\xi) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{f(z)}{z - \xi} dz.$$

Wynik $\frac{1}{2\pi i} \int_{\partial K(0,r)} \frac{dz}{z} = 1$ otrzymamy dla $\xi = 0$ i f(z) = 1

Dowód. niech

$$g(z) = \frac{f(z)}{z - \xi}.$$

zatem wiemy, że

$$\int_{\partial\Omega_{\epsilon}} g(z) = \int_{\Omega} dg(z).$$

$$\int_{\partial\Omega} \frac{f(z)}{z - \xi} dz + \int_{\partial K(\xi, \epsilon)} \frac{f(z)}{z - \xi} dz = \int_{\Omega_{\epsilon}} \frac{1}{z - \xi} \frac{\partial f}{\partial \overline{z}} d\overline{z} \wedge dz.$$

Pytanie: co się dzieje, jak przejdziemy z $\epsilon \to 0$ Oznacza to, że chcemy zbadać zachowanie takiej całki

$$\int \int \frac{1}{z-\xi} \frac{\partial f}{\partial \overline{z}}$$

dla $z = \epsilon e^{i\theta} + \xi$, ale

$$\frac{1}{\epsilon e^{i\theta} + \xi - \xi} = \frac{e^{-i\theta}}{\epsilon},$$

a całka $\int \int_{\Omega_\epsilon} d\overline{z} \wedge dz \approx \underbrace{\epsilon d\epsilon d\theta}_{\text{element powierzchni}}$. Oznacza, to że

$$\frac{1}{z-\xi}d\overline{z}\wedge dz \overset{\epsilon\to 0}{\approx} \frac{1}{\epsilon}\cdot \epsilon,$$

czyli w $\epsilon = 0$ nie wybuchnie!

Ale

$$\int_{\partial K(\xi,\epsilon)} \frac{f(z)}{z-\xi} dz = -\int_0^{2\pi} \frac{f(\xi+\epsilon e^{i\theta})}{\epsilon e^{i\theta}} \epsilon i e^{i\theta} d\theta = .$$

Trzeba wrzucić twierdzenie o wartości średniej

$$=if(c)\cdot\int_{0}^{2\pi}d\theta=2\pi if(c)\underset{\epsilon\to 0}{\longrightarrow}-2\pi if(\xi),$$

gdzie $c \in \partial K(\xi, \epsilon)$. Zatem

$$\int_{\partial\Omega}\frac{f(z)}{z-\xi}dz-\int_{\Omega}\frac{1}{z-\xi}\frac{\partial f}{\partial\overline{z}}d\overline{z}\wedge dz=2\pi i f(\xi).$$

Twierdzenie 3. (Liouville)

 $\emph{Jeżeli }f$ - $\emph{ograniczona }i$ $\emph{holomorficzna na }\emph{calym}$ $\mathbb{C},$ $\emph{to }f$ $\emph{jest stala}.$

Obserwacja: a co z sinusem? $f(x)=\sin(x)$, ale trzeba zastanowić się nad $f(z)=\sin(z)=\frac{e^{iz}-e^{-iz}}{2i}$. Dla np. z=it,

$$\sin(it) = \frac{e^{-t} - e^t}{2i},$$

czyli oczywiście sinus ograniczony nie jest.