Assignment-5: (18K41A04D0)
et consider a sample dataset have One
11p (n,a) & one olp (y,a), and no. of Samples 4.
Develop a simple linears regression model
ving MBGD. Sample (?) (n;a) (nja)
0.2 3.4
2 0.4 3.8
3 0.6 4.2
4 6.8 4.6
Do manual calculations for two rterations
with batch size \$ 2
n/4-000
0.2 3.4 2 batch!
0,4 3,6
0.6 0.4.2 3 batch 2.
top) [a,y], m=1, c=-1, q=01, epochs=2, bs=2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3) 1 ters = 1
14
batch = 1 bs $(\dot{y}_0 - m\alpha_0 - c)\alpha_1$ 5) $\partial E = -\frac{1}{bs} \sum_{i=1}^{bs} (\dot{y}_0 - m\alpha_0 - c)\alpha_1$
$\frac{\partial c}{\partial m} = \frac{1}{bs} \sum_{i=1}^{n} \frac{1}{(1)(0.2)+1} (0.2) + \frac{1}{(0.4)} $ $= \frac{1}{a} \left[(3.4 - (1)(0.2)+1)(0.4) + 1)(0.4) \right]$
=======================================
= = = [0.84+1.76]
$\frac{\partial E}{\partial m} = -1.34$
OII)

goto nead step.

10) It is = Itera+1 = I+1 = 2

11) It (Iters > epochs)

12 > 2 + alse

13 of =
$$-\frac{1}{2}$$
 [(3.4 - (1.42+2)(0.2)+0.1523)(0.2)+

15 $\frac{\partial E}{\partial m} = -\frac{1}{2}$ [(3.4 - (1.42+2)(0.4)+0.1523)(0.4)+0.1523)(0.4)

16 = $-\frac{1}{2}$ [(3.4 - (1.42+2)(0.2)+0.1523)(0.4)

17 = $-\frac{1}{2}$ [(3.4 - (1.42+2)(0.2)+0.1523)(0.4)

18 = $-\frac{1}{2}$ [(3.4 - (1.42+2)(0.4)+0.1523)]

19 = $-\frac{1}{2}$ [(3.266+3.38)] = -3.323

10 Am = (-0.1)(-1.0029) = 0.1002

11 Am = m + Am = 1.42+2+0.1002 = 1.52+44

12 = (+Ac = -0.1523+0.332 = 0.149+44

13 = (+Ac = -0.1523+0.332 = 0.149+44

14 = (+Ac = -0.1523+0.332 = 0.149+44

15 = $-\frac{1}{2}$ [(4.2 - (1.52+4)(0.6)-0.149+1)(0.6)

19 = $-\frac{1}{2}$ [(4.2 - (1.52+4)(0.6)-0.149+1)+

20 = $-\frac{1}{2}$ [(4.2 - (1.52+4)(0.8)-0.1493)]

```
=\frac{1}{2}\left[3.103+3.198\right]=3.151
6) \Delta m = -(0.1)(-2.2101) = 0.221
   DC = - (0.1)(-3.151) = 0.315
4) m = m + \Delta m = 1.5274 + 0.221 = 1.7484
  c = c + Dc = 0.1797 + 0.315 = 0.4947
8) batch = batch +1 = 2+1=3.
9) Pt (batch > 10b)
          3>2 + roue
         goto stepio.
10) Pter = Ptero+1 = 2+1=3
11) it liters > epochs)
           3 > 2 troue
   goto nent step.
12) print m,-c
      m=1,748, c=0,494
```

Parad + world tereparation of the