Reasoning under Uncertainty

Introduction to Artificial Intelligence

G. Lakemeyer

Winter Term 2016/17

Uncertainty

Toothache (T) and Cavity (C)

Would like to say:

If T then C is likely $(T \Rightarrow C)$

There are various ways to model this. Here: statistical interpretation

"T \Rightarrow C has probabilty 0.8." (80% of those with T have C.)

⇒ Probability Theory

We only need basic discrete Probability Theory (suffices for most Al purposes).

We often abbreviate probability as P.

AI/WS-2016/17 2 / 2

Probability Distributions

P(A) is the probability that proposition A holds, where A is a Boolean combination (\land, \lor, \neg) of atomic propositions.

We also allow X = n as an atomic proposition, where X is called a random variable and n is taken from a discrete domain.

Example:

Random variable *weather* with values from the sequence \langle sunny, rain, cloudy, snow \rangle .

```
\begin{array}{lll} P(\text{weather} = \text{sunny}) & = & 0.7 \\ P(\text{weather} = \text{rain}) & = & 0.2 \\ P(\text{weather} = \text{cloudy}) & = & 0.08 \\ P(\text{weather} = \text{snow}) & = & 0.02 \end{array}
```

P(weather) = (0.7; 0.2; 0.08; 0.02)

stands for the **probability distribution** of the random variable weather.

AI/WS-2016/17 3 / 27

Probability Theory and Decisions

Let A_1 , A_2 und A_3 be plans to get to the airport ontime. Let $P(A_i)$ be the probability that executing A_i allows us to get to the airport ontime.

```
P(A_1) = 0.9 (Leave 2 hour before departure)

P(A_2) = 0.96 (Leave 3 hours before departure)

P(A_3) = 0.9999 (Leave 12 hours before departure)
```

Note: The maximum probability need not be optimal. One needs to consider the utility of actions as well.

Decision Theory = Probability Theory + Utility Theory.

AI/WS-2016/17 4 / 27

The Axioms of Probability Theory

- P is a real number between 0 and 1. $(0 \le P(A) \le 1)$
- 2 P(true) = 1, P(false) = 0

AI/WS-2016/17 5 / 27

Why Are These Axioms Reasonable?

de Finetti (1930s) said that someone who believes P(A) should be willing to bet on P(A)!

"Theorem" (de Finetti):

Someone who does not follow the axioms of probability theory will lose his or her bet!

Example:

Player 1		Player 2	
Proposition	Belief	Bets on	
Α	0.4	Α	4 to 6
В	0.3	В	3 to 7
A∨B	8.0	¬(A ∨ B)	2 to 8

AI/WS-2016/17 6 / 27

Conditional Probabilities (1)

Rolling dice

P(roll=3) = 1/6. Let E = "Roll is divisible by 3."

Then we obtain the conditional probability:

$$P(roll=3 \mid E) = 1/2.$$

E is also called the evidence.

E often plays the role of background knowledge (similar to a propositional knowledge base).

Prior: Probability before evidence.

Posterior: Probability after the evidence.

AI/WS-2016/17 7 / 27

Conditional Probabilities (2)

 $P(C \mid T) = 0.8$ is read as "the prob. to have C when T is given is 0.8."

Nonmonotonicity:

P(Flies | Bird) = 0.99

P(Flies | Bird \wedge Antarctica) = 0.4

P(Flies | Bird \wedge Antarctica \wedge Albatross) = 0.999

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$
 or $P(A \land B) = P(A \mid B) \cdot P(B)$
(Product Rule)

 $\mathbf{P}(X,Y) = \mathbf{P}(X \mid Y) \cdot \mathbf{P}(Y)$ stands for a system of equations of the form: $P(X=x_i \land Y=y_j) = P(X=x_i \mid Y=y_j) \cdot P(Y=y_j)$ for all x_i, y_i of the domains of X and Y.

AI/WS-2016/17 8 / 27

Joint Distributions

Let $X_1, X_2, ... X_n$ be random variables. An atomic event is an assignment of values to all variables X_i .

The joint distribution $\mathbf{P}(X_1, X_2, \dots X_n)$ assigns a probability to all atomic events.

Toothache-Cavity Example:

	T	¬T	
С	0.04	0.06	
$\neg C$	0.01	0.89	

- Atomic events exclude one another.
- $\sum_{x_1,...,x_n} P(X_1 = x_1, ..., X_n = x_n) = 1$
- From the table one can read off all probabilities.
- Problem: Table grows exponentially in the number of variables. Thus probability-based systems work directly with conditional probs.

AI/WS-2016/17 9 / 27

Bayes Rule

$$P(A \wedge B) = P(A \mid B) \cdot P(B)$$

 $P(A \wedge B) = P(B \mid A) \cdot P(A)$

Thus we have:

$$P(A \mid B) \cdot P(B) = P(B \mid A) \cdot P(A),$$

from which we obtain:

Bayes Rule:

$$P(B \mid A) = \frac{P(A \mid B) \cdot P(B)}{P(A)}$$

For variables X and Y we write

$$\mathbf{P}(Y \mid X) = \frac{\mathbf{P}(X \mid Y) \cdot \mathbf{P}(Y)}{\mathbf{P}(X)},$$

which again corresponds to a system of equations.

Often there is additional evidence E:

$$\mathbf{P}(Y \mid X, E) = \frac{\mathbf{P}(X \mid Y, E) \cdot \mathbf{P}(Y \mid E)}{\mathbf{P}(X \mid E)}$$

Normalisation

For

$$\mathbf{P}(Y \mid X) = \frac{\mathbf{P}(X \mid Y) \cdot \mathbf{P}(Y)}{\mathbf{P}(X)},$$

 $1/\mathbf{P}(X)$ only plays the role of a normalising constant so that the right-hand side sums to 1 over all values of Y.

In the literature one therefore often finds the following form:

$$P(Y \mid X) = \alpha \cdot P(X \mid Y) \cdot P(Y).$$

In practice one usually calculates the unnormalised case first, and then looks for an appropriate α .

AI/WS-2016/17 11 / 27

Combining Evidence

How does one combine evidence consisting of several variables??

Example: (A = "Catch")

How do we get from $P(C \mid T)$ to $P(C \mid T \land A)$, that is, how does the probability of cavity change if one also finds out that there is a catch.

According to Bayes we have:

$$P(C \mid T \land A) = \frac{P(T \land A \mid C) \cdot P(C)}{P(T \land A)}.$$

The term $P(T \land A \mid C)$ is problematic. For *n* variables we would need to compute 2^n combinations. If there are many variables as evidence, we have exponential growth!

AI/WS-2016/17 12 / 27

Bayesian Update

An elegant and efficient solution is possible when certain conditional independence assumptions can be made:

$$P(A \mid C \land T) = P(A \mid C) \tag{**}$$

"If C is given, then T and A are independent of each other."

In that case, the evidence can be added one by one using a simple iterative method. According to Bayes (slightly reformulated):

$$P(C \mid T \land A) = P(C) \cdot \frac{P(T \mid C)}{P(T)} \cdot \frac{P(A \mid T \land C)}{P(A \mid T)}$$

Together with (**) we then obtain

$$P(C \mid T \land A) = P(C \mid T) \cdot \frac{P(A \mid C)}{P(A \mid T)}$$

In general, for multi-valued X, Y, Z:

$$P(X \mid Y, Z) = \alpha \cdot P(X) \cdot P(Y \mid X) \cdot P(Z \mid X)$$

Al/WS-2016/17 13 / 27

Belief Networks (1)

Idea: Only represent causal connections. Surprisingly simple in many applications!

AI/WS-2016/17 14 / 27

Belief Networks (2)

Same Example with labelled nodes $P(X \mid Parents(X))$:

AI/WS-2016/17 15 / 27

Belief Networks in General

A belief network is an acyclic graph where

- the nodes represent random variables;
- each node X is labelled with the conditional probabilities

$$\mathbf{P}(X \mid Parents(X)),$$

where Y is in Parents(X) if there is an edge from Y to X. (The label is called a Conditional Probability Table (CPT).)

The tolopology of the network should be chosen in such a way that for each edge from Y to X, the parent node Y has direct causal influence on X.

AI/WS-2016/17 16 / 27

Belief Networks and Joint Distributions

Let X_1, \ldots, X_n be random variables. We abbreviate $P(X_1 = x_1 \wedge \cdots \wedge X_n = x_n)$ as $P(x_1, \ldots, x_n)$.

We can rewrite the joint distribution in the following way:

$$P(x_1,...,x_n) = P(x_n | x_{n-1},...,x_1) \times P(x_{n-1},...,x_1)$$

Applying this rewriting recursively we get

$$P(x_1,...,x_n) = \prod_{i=1}^n P(x_i | x_{i-1},...,x_1)$$

A Belief network is a correct representation of a joint distribution if

$$\mathbf{P}(X_i \mid X_{i-1}, \dots, X_1) = \mathbf{P}(X_i \mid Parents(X_i))$$
 and $Parents(X_i) \subseteq \{X_{i-1}, \dots, X_1\}$.

In other words, each node must be conditionally independent of its predecessors given its parents.

Constructing a Belief Network

- Choose the relevant random variables that descibe your application.
- ② Choose an ordering X_1, X_2, \ldots, X_n for those variables.
- While there are still variables to consider do
 - Choose the least X_i and create a node in the network
 - Parents(X_i) := minimal set so that the following holds:

$$\mathbf{P}(X_i \mid X_{i-1}, \dots, X_1) = \mathbf{P}(X_i \mid Parents(X_i))$$

Create a CPT for X_i

AI/WS-2016/17 18 / 27

The Ordering of Nodes Matters

A bad choice in the ordering of the variables leads to large networks.

Orderings in the examples:

Left: MaryCalls, JohnCalls, Alarm, Burglary, Earthquake.

Right: MaryCalls, JohnCalls, Earthquake, Burglary, Alarm.

AI/WS-2016/17 19 / 27

d-Separation (1)

A set of nodes **E** is said to d-separate the sets of nodes **X** and **Y** iff every undirected path from a node in **X** to a node in **Y** is blocked by **E**. Blocking means that there is a node *Z* on this path such that one of the following conditions hold:

- **1** $Z \in \mathbf{E}$ and one directed edge on the path leads into Z and another points away from Z.
- $2 \in \mathbf{E}$ and both edges point away from Z.
- Neither Z nor any of its successors are in E and both edges connected to Z on the path lead into Z.

AI/WS-2016/17 20 / 27

d-Separation (2)

3 ways of blocking paths from X to Y:

AI/WS-2016/17 21 / 27

Why d-Separation is Important

Theorem (Judea Pearl):

If E d-separates X from Y, then X is independent of Y given E.

Note: d-separation

- can be computed in polynomial time;
- is incomplete, that is, not every conditional independence is detected;
- is nevertheless sufficient for a number of inference algorithms.

AI/WS-2016/17 23 / 27

AI/WS-2016/17 24 / 27

Example Computation

AI/WS-2016/17 25 / 27

Computational Complexity

The problem is NP-hard for multiply connected networks.

(Actually, the problem is at least as hard as enumerating all satisfying assignments of a propositional formula (#P-hard), which is strictly harder than NP-completeness.)

It is linear in the case of singly connected networks.

AI/WS-2016/17 26 / 27

P(C)=.5
Cloudy
Spr+Rain)
(Wet Grass)

.90 .00

С	t t	$rac{P(S+I)}{tf}$	R=x	ff
t	.08		.72	.18
f	.10		.10	.40

AI/WS-2016/17