DE 44 32 893 A1

- (54) Process for controlling or monitoring wheel suspension components in motor vehicles
- (57) In a process for controlling or monitoring wheel suspension components in motor vehicles by measuring all wheel speeds and by forming an acceleration signal from the wheel speed signals, a signal differential of the wheel speed signals of one side of the vehicle is used to form an acceleration signal directly proportional to the vertical dom acceleration. The signal components of the frequency range typical of the structure of the vehicle are extracted from this signal differential.

BUNDESREPUBLIK DEUTSCHLAND

① Offenlegungsschrift② DE 44 32 893 A 1

(5) Int. Cl. 6: B 60 G 17/00

G 01 M 17/04 G 01 P 15/00

DEUTSCHES PATENTAMT

49

2) Aktenzeichen:

P 44 32 893.1

) Anmeldetag:

15. 9.94

43 Offenlegungstag:

21. 3.96

(71) Anmelder:

Bayerische Motoren Werke AG, 80809 München, DE

(72) Erfinder:

Konik, Dieter, Dr., 82211 Herrsching, DE; Wimmer, Markus, 81475 München, DE

B Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

43 15 917 A1 DE 43 05 048 A1 DE 42 28 894 A1 DE 41 41 931 A1 DE 41 32 276 A1 DE DE 40 19 501 A1 DE 40 14 876 A1 DE 33 16 011 A1 EP 04 91 440 A1

- (A) Verfahren zur Steuerung oder Überwachung von Radaufhängungskomponenten in Kraftfahrzeugen
- Bei einem Verfahren zur Steuerung oder Überwachung von Radaufhängungskomponenten in Kraftfahrzeugen mittels Messung aller Radgeschwindigkeiten und mittels Bildung eines Beschleunigungssignals aus den Radgeschwindigkeitesignalen wird zur Bildung eines zur vertikalen Dombeschleunigung direkt proportionalen Beschleunigungssignals ein Differenzsignal der Radgeschwindigkeitssignale einer Fahrzeugseite gebildet. Aus diesem Differenzsignal werden die Signalanteile des für den Fahrzeugaufbau charakteristischen Frequenzbereiches extrahlert.

2

Beschreibung

Die Erfindung bezieht sich auf ein Verfahren zur Steuerung oder Überwachung von Radaufhängungskomponenten in Kraftfahrzeugen nach dem Oberbegriff des Patentanspruchs 1.

Ein derartiges Verfahren ist beispielsweise aus der DE 42 19 012 A1 bekannt. Bei diesem bekannten Verfahren wird bei der experimentellen Erkenntnis angesetzt, daß die Radgeschwindigkeit eines Kraftfahrzeu- 10 ges entsprechend der Beschaffenheit der Straßenoberfläche Änderungen erfährt, wobei der Grad der Änderung der Radgeschwindigkeit eng mit der Rauhigkeit der Straßenoberfläche zusammenhängt. Bei dem bekannten System wird die Steifigkeit einer aktiven Rad- 15 aufhängung demnach in Abhängigkeit von den Radgeschwindigkeiten entsprechend des gewünschten Fahrkomforts und der gewünschten Fahrbarkeit des Kraftfahrzeuges geändert. Diese Änderung findet auf der Grundlage zumindest einer Resonanzfrequenzkompo- 20 nente statt, die zuvor aus einem Radgeschwindigkeitssignal extrahiert wurde. In einer Weiterbildung des bekannten Verfahrens wird zur Abschätzung der Resonanz zusätzlich die Radbeschleunigung auf der Grundlage der Radgeschwindigkeiten berechnet. Nach einem 25 Vergleich der extrahierten Resonanzfrequenzkomponente mit einem Bezugswert wird die Steifigkeit der Aufhängung entsprechend eines Vergleichsergebnisses geändert.

Es ist Aufgabe der Erfindung, ein einfaches Verfahren 30 zur Ermittlung von Vertikalbeschleunigungen des Fahrzeugaufbaus unter Einsparung zusätzlicher Sensoren zu schaffen.

Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst.

Erfindungsgemäß werden in einem Kraftfahrzeug alle Radgeschwindigkeiten gemessen und zur Bildung eines zur Dombeschleunigung direkt proportionalen Beschleunigungssignals ein Differenzsignal der Radgeschwindigkeitssignale einer Fahrzeugseite gebildet und anschließend aus diesem Differenzsignal die Signalanteile des für den Fahrzeugaufbau charakteristischen Frequenzbereiches extrahiert.

Es hat sich empirisch herausgestellt, daß sich das im Resonanzfrequenzbereich gefülterte Differenzsignal der 45 Radgeschwindigkeitssignale einer Fahrzeugseite direkt proportional zur vertikalen Dombeschleunigung des vorderen Rades verhält. Die vertikale Dombeschleunigung des hinteren Rades entspricht ebenfalls dem gefilterten Differenzsignal im Resonanzfrequenzbereich, jedoch um einen Zeitraum verzögert, der vom Radstand und der Fahrzeuggeschwindigkeit abhängt. Werden die Differenzsignale der Radgeschwindigkeitssignale der beiden Fahrzeugseiten vor der Filterung addiert, wird ein der Dombeschleunigung der Vorderachse bzw. der 55 vertikalen Beschleunigung des vorderen Fahrzeugaufbaus proportionales Ausgangssignal erhalten. Die Dombeschleunigung der Hinterachse des Kraftfahrzeuges wird wiederum durch das zeitverzögerte Ausgangssignal für die Dombeschleunigung der Vorderachse ge- 60

Die erfindungsgemäß ermittelte Dombeschleunigung ist unabhängig von Einflüssen, die durch Betriebszustände verursacht werden, die eine gleichzeitige und gleichsinnige Änderung der Radgeschwindigkeiten einer Fahrzeugseite hervorrufen, wie z. B. Kurvenfahrten, Beschleunigungs- oder Bremsvorgänge.

Mit diesem erfindungsgemäßen Verfahren werden di-

rekt absolute Werte der vertikalen Beschleunigung des Fahrzeugaufbaus bzw. des Domes eines Rades oder einer Achse eines Kraftfahrzeuges erhalten, ohne hierfür zusätzliche und kostenintensive Sensoren oder Auswertevorrichtungen einsetzen zu müssen. Radgeschwindigkeitssensoren sind in den meisten Kraftfahrzeugen aufgrund von Antiblockiersystemen ohnehin vorhandene Sensoren, die im erfindungsgemäßen Verfahren multifunktional verwendet werden.

Nach einer vorteilhaften Weiterbildung gemäß Patentanspruch 2 werden die Signalanteile des Differenzsignals zur Extraktion des zur Dombeschleunigung proportionalen Beschleunigungssignals außerhalb eines charakteristischen Frequenzbereichs von etwa 0,2 Hz bis 4 Hz unterdrückt.

Zur Extraktion der Signalanteile des Differenzsignals im Frequenzbereich von ca. 0,2 Hz bis 4 Hz wird vorzugsweise ein Bandpaßfilter eingesetzt. Der Bandpaßfilter ist vorzugsweise derart ausgestaltet, daß als Ausgangssignal lediglich ein sinusförmiges Signal mit der Resonanzfrequenz, die für den Fahrzeugaufbau charakteristisch ist, ausgegeben wird.

In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Es zeigt

Fig. 1 ein Beispiel für die Ermittlung der vertikalen Dombeschleunigung eines Rades und

Fig. 2 einen Meßschrieb, der einen durch das erfindungsgemäße Verfahren ermittelten Dombeschleunigungsverlauf mit einem mittels eines Beschleunigungssensors gemessenen Dombeschleunigungsverlauf vergleicht.

In Fig. 1 wird das Radgeschwindigkeitssignal vhr eines hinteren rechten Rades von dem Radgeschwindigkeitssignal vvr eines rechten vorderen Rades subtrabiert. Die Radgeschwindigkeitssignale vvr und vhr resultieren aus den Ausgangssignalen hier nicht dargestellter Radgeschwindigkeits- bzw. Raddrehzahlsensoren. Derartige Raddrehzahlsensoren sind in vielen Kraftfahrzeugen ohnehin vorhandene Sensoren, die insbesondere für Antiblockiersysteme oder Antriebsschlupfregelsysteme benötigt werden.

Das Differenzsignal der beiden Radgeschwindigkeitssignale vyr und vhr wird als Eingangssignal einem Bandpaßfilter zugeleitet. Da die charakteristische Resonanzfrequenz für den Fahrzeugaufbau in etwa zwischen 0,2 und 4 Hz liegt, ist die untere Grenzfrequenz fHP des Bandpaßfilters 0,2 Hz und die obere Grenzfrequenz frp 4 Hz. Darüber hinaus umfaßt das Bandpaßfilter einen Verstärker mit dem Verstärkungsfaktor K. Der Bandpaßfilter ist derart ausgelegt, daß das der vertikalen Dombeschleunigung des vorderen rechten Rades proportionale Ausgangssignal apvr ein in etwa sinusförmiges Signal mit der Resonanzfrequenz fres ergibt. Dieses Ausgangssignal entspricht zumindest nahezu dem gemessenen Zeitsignal der Dombeschleunigung selbst. Beispielsweise kann zur Darstellung der Intensität der vertikalen Dom- bzw. Fahrzeugaufbaubeschleunigung auch eine Hüllkurve der jeweils maximalen Amplitude a des sinusförmigen Signals gebildet werden. Die Verwendung eines Bandpaßfilters ist lediglich ein Beispiel zur Unterdrückung der Signalanteile des Differenzsignals außerhalb des Frequenzbereiches zwischen 0,2 und 4 Hz.

In Fig. 2 ist das Ausgangssignal a_{Dv,r} von Fig. 1 gestrichelt dargestellt, während die tatsächlich gemessene Dombeschleunigung des vorderen rechten Rades durch die durchgezogene Linie dargestellt ist. Zum einen zeigt sich eine weitgehende quantitative Übereinstimmung

3

der beiden Dombeschleunigungsverläufe, zum anderen ist darüber hinaus festzustellen, daß die durch das erfindungsgemäße Verfahren berechnete vertikale Dombeschleunigung schneller ermittelt wird als die durch den speziellen Beschleunigungssensor gemessene vertikale Dombeschleunigung. Dieses Verhalten ist besonders vorteilhaft für schnelle Regelsysteme.

Somit trägt die Erfindung zu einem sehr einfachen, genauen und kostengünstigen Verfahren zur Ermittlung von Vertikalbeschleunigungen, insbesondere von Aufbau-bzw. Dombeschleunigungen, bei Radaufhängungskomponenten in Kraftfahrzeugen bei.

Patentansprüche

1. Verfahren zur Steuerung oder Überwachung von Radaufhängungskomponenten in Kraftfahrzeugen mittels Messung aller Radgeschwindigkeiten und mittels Bildung eines Beschleunigungssignals aus den Radgeschwindigkeitssignalen, dadurch gekennzeichnet daß zur Bildung eines zur vertikalen Dombeschleunigung direkt proportionalen Beschleunigungssignals (aDv.) ein Differenzsignal der Radgeschwindigkeitssignale (v., v., vh.) einer Fahrzeugseite gebildet wird und daß aus diesem Differenzsignal die Signalanteile des für den Fahrzeugaufbau charakteristischen Frequenzbereiches extrahiert werden.

2. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet daß die Signalanteile des Differenzsignals zur Extraktion des zur Dombeschleunigung proportionalen Beschleunigungssignals (a_{Dv.r}) außerhalb eines charakteristischen Frequenzbereichs von etwa 0,2 Hz bis 4 Hz unterdrückt werden.

Hierzu 1 Seite(n) Zeichnungen

35

40

45

50

55

60

Nummer: Int. Cl.⁶: DE 44 32 893 A1 B 60 G 17/00 21. März 1996

Offenlegungstag:

Fig. 1

Fig. 2