Problem 1 Data on the butterfat content of milk from Canadian cows of five different breeds and two different ages can be found in the butterfat data set.

- (a) Make appropriate plots of the data.
- (b) Fit a two-way ANOVA model. Determine whether there is an interaction between breed and age. Present model diagnostics and make changes if necessary.
- (c) Determine whether there is a statistically significant difference between breeds and age.
- (d) Present regression diagnostics for the chosen model and comment whether the assump- tions have been met.
- (e) Compare the best breed in terms of butterfat content with the second best breed. Is the best breed clearly superior?

Description of Data: Average butterfat content (percentages) of milk for random samples of twenty cows (ten two-year old and ten mature (greater than four years old)) from each of five breeds. The data are from Canadian records of pure-bred dairy cattle

A data frame with 100 observations on the following 3 variables.

- Butterfat
 - butter fat content by percentage
- Breed
 - a factor with levels Ayrshire Canadian Guernsey Holstein-Fresian Jersey
- Age
 - a factor with levels 2year Mature

```
In [3]: library('faraway')
library('ggplot2')
data(butterfat)
head(butterfat, 4)
```

Butterfat	Breed	Age
3.74	Ayrshire	Mature
4.01	Ayrshire	2year
3.77	Ayrshire	Mature
3.78	Ayrshire	2year

In [4]: summary(butterfat)

Butte	erfat		Breed	Age
Min.	:3.300	Ayrshire	:20	2year :50
1st Qu.	:3.938	Canadian	:20	Mature:50
Median	:4.405	Guernsey	:20	
Mean	:4.482	Holstein-Fr	esian:20	
3rd Qu.	:4.987	Jersey	:20	
Max.	:6.550			

(a) Make appropriate plots of the data.

```
In [29]: library(gridExtra)
          options(repr.plot.width=10, repr.plot.height=6)
          p1 = ggplot(aes(x=Breed, y=Butterfat, fill = Breed), data=butterfat) +
            theme set(theme bw())+
            geom_boxplot() +
            theme(axis.text.x = element text(angle=45)) +
            ylab("Butterfat")
          p3 = ggplot(aes(x=Age, y=Butterfat, fill = Age), data=butterfat) +
            geom boxplot() +
            theme(axis.text.x = element_text(angle=45)) +
            ylab("Survival Time")
          p2 = ggplot(butterfat, aes(x=Age, y=Butterfat, color = Breed)) +
            geom_point() +
            stat_summary(fun="mean", geom="line", aes(group=Breed, linetype=Breed))+
            theme(axis.text.x = element_text(angle=45)) +
            theme(legend.position = "top", legend.direction = "horizontal")
          p4 = ggplot(butterfat, aes(x=Breed, y=Butterfat, color = Age)) +
            geom point() +
            stat summary(fun="mean", geom="line", aes(group=Age, linetype=Age))+
            theme(axis.text.x = element text(angle=45)) +
            theme(legend.position = "top", legend.direction = "horizontal")
          grid.arrange(p1, p2, p3, p4, nrow = 2)
          Warning message:
          "Ignoring unknown parameters: fun"Warning message:
          "Ignoring unknown parameters: fun"No summary function supplied, defaulting to `
          mean se()
          No summary function supplied, defaulting to `mean_se()
                                                    Breed → Ayrshire · • Canadian - • Guernsey - • Holstein-Fresian
                                        Breed
                                         Ayrshire
           Butterfat
                                           Canadian
                                           Guernsey
                                                     Butterfat
                                           Holstein-Fresian
                                         Jersey
                        Breed
                                                                          Age
```


(b) Fit a two-way ANOVA model. Determine whether there is an interaction between breed and age. Present model diagnostics and make changes if necessary.

In [8]: mod_two_way_anova = lm(Butterfat ~ Age*Breed, butterfat)
round(anova(mod_two_way_anova),4)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Age	1	0.2735	0.2735	1.5801	0.2120
Breed	4	34.3213	8.5803	49.5651	0.0000
Age:Breed	4	0.5139	0.1285	0.7421	0.5658
Residuals	90	15.5801	0.1731	NA	NA

```
In [9]: options(repr.plot.width=4, repr.plot.height=3)
p1 = plot(mod_two_way_anova)
```


Im(Butterfat ~ Age * Breed)

Theoretical Quantiles Im(Butterfat ~ Age * Breed)

Factor Level Combinations

- From diognostic plots, the data seems to follow normality. Residuals are also centered at zero.
- (c) Determine whether there is a statistically significant difference between breeds and age.

```
In [18]: confidence intervals = TukeyHSD(aov(Butterfat ~ Age*Breed, data = butterfat), 'Br
         confidence intervals
         options(repr.plot.width=5, repr.plot.height=4)
         plot(confidence intervals, las=1, cex.axis = 0.5, col = 'blue')
           Tukey multiple comparisons of means
             95% family-wise confidence level
         Fit: aov(formula = Butterfat ~ Age * Breed, data = butterfat)
         $Breed
                                      diff
                                                    lwr
                                                                        p adj
                                                                upr
         Canadian-Ayrshire
                                    0.3785 0.01222214 0.74477786 0.0392321
                                    0.8900 0.52372214 1.25627786 0.0000000
         Guernsey-Ayrshire
         Holstein-Fresian-Ayrshire -0.3905 -0.75677786 -0.02422214 0.0306852
         Jersey-Ayrshire
                                    1.2325 0.86622214 1.59877786 0.0000000
```

Holstein-Fresian-Canadian -0.7690 -1.13527786 -0.40272214 0.0000008

Holstein-Fresian-Guernsey -1.2805 -1.64677786 -0.91422214 0.0000000

Guernsey-Canadian

Jersey-Canadian

Jersey-Guernsey 0.3425 -0.02377786 0.70877786 0.0783045 Jersey-Holstein-Fresian 1.6230 1.25672214 1.98927786 0.0000000

95% family-wise confidence level

0.5115 0.14522214 0.87777786 0.0017719

0.8540 0.48772214 1.22027786 0.0000000

Differences in mean levels of Breed

In [12]: confidence_intervals = TukeyHSD(aov(Butterfat ~ Breed*Age, data = butterfat))
 round(confidence_intervals\$`Breed:Age`,3)

	diff	lwr	upr	p adj
Canadian:2year-Ayrshire:2year	0.522	-0.082	1.126	0.150
Guernsey:2year-Ayrshire:2year	0.933	0.329	1.537	0.000
Holstein-Fresian:2year-Ayrshire:2year	-0.303	-0.907	0.301	0.831
Jersey:2year-Ayrshire:2year	1.167	0.563	1.771	0.000
Ayrshire:Mature-Ayrshire:2year	0.188	-0.416	0.792	0.991
Canadian:Mature-Ayrshire:2year	0.423	-0.181	1.027	0.416
Guernsey:Mature-Ayrshire:2year	1.035	0.431	1.639	0.000
Holstein-Fresian:Mature-Ayrshire:2year	-0.290	-0.894	0.314	0.864
Jersey:Mature-Ayrshire:2year	1.486	0.882	2.090	0.000
Guernsey:2year-Canadian:2year	0.411	-0.193	1.015	0.459
Holstein-Fresian:2year-Canadian:2year	-0.825	-1.429	-0.221	0.001
Jersey:2year-Canadian:2year	0.645	0.041	1.249	0.027
Ayrshire:Mature-Canadian:2year	-0.334	-0.938	0.270	0.737
Canadian:Mature-Canadian:2year	-0.099	-0.703	0.505	1.000
Guernsey:Mature-Canadian:2year	0.513	-0.091	1.117	0.168
Holstein-Fresian:Mature-Canadian:2year	-0.812	-1.416	-0.208	0.001
Jersey:Mature-Canadian:2year	0.964	0.360	1.568	0.000
Holstein-Fresian:2year-Guernsey:2year	-1.236	-1.840	-0.632	0.000
Jersey:2year-Guernsey:2year	0.234	-0.370	0.838	0.960
Ayrshire:Mature-Guernsey:2year	-0.745	-1.349	-0.141	0.005
Canadian:Mature-Guernsey:2year	-0.510	-1.114	0.094	0.174
Guernsey:Mature-Guernsey:2year	0.102	-0.502	0.706	1.000
Holstein-Fresian:Mature-Guernsey:2year	-1.223	-1.827	-0.619	0.000
Jersey:Mature-Guernsey:2year	0.553	-0.051	1.157	0.102
Jersey:2year-Holstein-Fresian:2year	1.470	0.866	2.074	0.000
Ayrshire:Mature-Holstein-Fresian:2year	0.491	-0.113	1.095	0.215
Canadian:Mature-Holstein-Fresian:2year	0.726	0.122	1.330	0.007
Guernsey:Mature-Holstein-Fresian:2year	1.338	0.734	1.942	0.000
Holstein-Fresian:Mature-Holstein-Fresian:2year	0.013	-0.591	0.617	1.000
Jersey:Mature-Holstein-Fresian:2year	1.789	1.185	2.393	0.000
Ayrshire:Mature-Jersey:2year	-0.979	-1.583	-0.375	0.000
Canadian:Mature-Jersey:2year	-0.744	-1.348	-0.140	0.005
Guernsey:Mature-Jersey:2year	-0.132	-0.736	0.472	0.999
Holstein-Fresian:Mature-Jersey:2year	-1.457	-2.061	-0.853	0.000

	diff	lwr	upr	p adj	
Jersey:Mature-Jersey:2year	0.319	-0.285	0.923	0.784	
Canadian:Mature-Ayrshire:Mature	0.235	-0.369	0.839	0.959	
Guernsey:Mature-Ayrshire:Mature	0.847	0.243	1.451	0.001	
Holstein-Fresian:Mature-Ayrshire:Mature	-0.478	-1.082	0.126	0.248	
Jersey:Mature-Ayrshire:Mature	1.298	0.694	1.902	0.000	
Guernsey:Mature-Canadian:Mature	0.612	0.008	1.216	0.044	
Holstein-Fresian:Mature-Canadian:Mature	-0.713	-1.317	-0.109	0.008	
Jersey:Mature-Canadian:Mature	1.063	0.459	1.667	0.000	
Holstein-Fresian:Mature-Guernsey:Mature	-1.325	-1.929	-0.721	0.000	
Jersey:Mature-Guernsey:Mature	0.451	-0.153	1.055	0.325	
Jersey:Mature-Holstein-Fresian:Mature	1.776	1.172	2.380	0.000	

```
In [16]: # options(repr.plot.width=5, repr.plot.height=4)
# plot(confidence_intervals, las=1, cex.axis = 0.5, col = 'blue')
```

- As can be seen from the above analysis, there are significant differences among breeds and butterfat.
- However, there are not significant differences between age.
- There are signficant differences among age*breed interactions.

(d) Present regression diagnostics for the chosen model and comment whether the assump- tions have been met.

d.1 Testing the normality assumption

```
In [81]: shapiro.test(mod_two_way_anova$residuals)
```

Shapiro-Wilk normality test

data: mod_two_way_anova\$residuals
W = 0.96828, p-value = 0.01635

```
In [19]: options(repr.plot.width=4, repr.plot.height=3)
    plot(mod_two_way_anova,2)
```


- We can see that From Shapiro-Wilk normality test, we reject the null hypothesis that errors are normally distributed.
- Let's try to apply transformations to see if the normality asssumption can be achieved.

In [20]: mod_two_way_anova1 = lm(log(Butterfat) ~ Age*Breed, butterfat)
round(anova(mod_two_way_anova),4)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Age	1	0.2735	0.2735	1.5801	0.2120
Breed	4	34.3213	8.5803	49.5651	0.0000
Age:Breed	4	0.5139	0.1285	0.7421	0.5658
Residuals	90	15.5801	0.1731	NA	NA

```
In [21]: shapiro.test(mod_two_way_anova1$residuals)
plot(mod_two_way_anova1, 2)
```

Shapiro-Wilk normality test

data: mod_two_way_anova1\$residuals
W = 0.98638, p-value = 0.3975

• After applying log transformation to response variable, the errors are now normally distributed. We can confirm this from Shapiro-Wilk normality test.

b.2 Test for equal variances

In [25]: library(car) leveneTest(mod_two_way_anova1)

	Df	F value	Pr(>F)
group	9	1.219051	0.2934263
	90	NA	NA

- From the Levene test for equal variances as well from residual plot, we accept the null hypothesis. Residuals are having constant variances.
- (e) Compare the best breed in terms of butterfat content with the second best breed. Is the best breed clearly superior?

```
In [30]: grid.arrange(p1, p2, p3, p4, nrow = 2)
```

No summary function supplied, defaulting to `mean_se() No summary function supplied, defaulting to `mean_se()

• From the above plot, we can see that Jersey and Guernsey are the two best breeds that produced highest butterfat among the five breeds.

```
In [31]: confidence intervals = TukeyHSD(aov(log(Butterfat) ~ Age*Breed, data = butterfat)
         confidence intervals
         options(repr.plot.width=5, repr.plot.height=4)
         plot(confidence intervals, las=1, cex.axis = 0.5, col = 'blue')
           Tukey multiple comparisons of means
            95% family-wise confidence level
         Fit: aov(formula = log(Butterfat) ~ Age * Breed, data = butterfat)
         $Breed
                                        diff
                                                     lwr
                                                                upr
                                                                        p adj
         Canadian-Ayrshire
                                  0.08798426 0.01156995
                                                         0.16439858 0.0156494
         Guernsey-Ayrshire
                                  0.19564150 0.11922719
                                                         0.27205582 0.0000000
         Holstein-Fresian-Ayrshire -0.10139038 -0.17780469 -0.02497607 0.0034036
         Jersey-Ayrshire
                                  0.26111862 0.18470431 0.33753293 0.0000000
         Guernsey-Canadian
                                  0.10765724 0.03124293
                                                         0.18407155 0.0015736
         Holstein-Fresian-Canadian -0.18937464 -0.26578895 -0.11296033 0.0000000
                                  Jersey-Canadian
         Holstein-Fresian-Guernsey -0.29703188 -0.37344619 -0.22061757 0.0000000
         Jersey-Guernsey
                                  0.06547712 -0.01093719 0.14189143 0.1287849
```

Jersey-Holstein-Fresian

95% family-wise confidence level

0.36250900 0.28609469 0.43892331 0.0000000

Differences in mean levels of Breed

 As can be seen from the above confidence interval plot for Jersey-Guernsey, the confidence interval includes zero. Hence, the butterfat content of Jersey is not statistically significant than Guernsey.

Problem 2: The morley data can be viewed as a randomized block experiment with Run as the treatment factor and Expt as the blocking factor.

(a) Is there a difference between runs?

Expt Run Speed

(b) What efficiency is gained by blocking?

```
In [61]: data(morley)
   head(morley)
   morley$Expt = factor(morley$Expt)
   morley$Run = factor(morley$Run)
   summary(morley)
```

001	1	1	850	
002	1	2	740	
003	1	3	900	
004	1	4	1070	
005	1	5	930	
006	1	6	850	
Expt 1:20 2:20 3:20 4:20 5:20	1 2 3 4 5	Ru	: 5 : 5 : 5 : 5 : 5	Speed Min. : 620.0 1st Qu.: 807.5 Median : 850.0 Mean : 852.4 3rd Qu.: 892.5 Max. :1070.0
(Other):70				

(a) Is there a difference between runs?


```
In [98]: mod = aov(Speed ~ Run + Expt, data = morley)
         summary(mod)
                     Df Sum Sq Mean Sq F value Pr(>F)
                     19 113344
                                          1.105 0.36321
         Run
                                  5965
                      4 94514
                                 23629
                                         4.378 0.00307 **
         Expt
         Residuals
                     76 410166
                                  5397
                         0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Signif. codes:
```

• Since P value for Run is greater than the significance level of 5%, we conclude that there is no difference between runs.

(b) What efficiency is gained by blocking?

- When we introduce blocking, we can see, it has p value 0.00307. This p value is much lower than our significance level. Hence blocking is useful.
- Mean squared error is reduced from 5965 to 5397 by blocking.

Problem 3: The alfalfa data arise from a Latin aquare design where the treatment factor is inoculum and the blocking factors are shade and irrigation.

- (a) Test the significance of the effects.
- (b) Determine which levels of the treatment factor are significantly different.

```
In [67]: data(alfalfa)
head(alfalfa)
```

shade	irrigation	inoculum	yield
1	1	А	33.8
1	2	В	33.7
1	3	D	30.4
1	4	С	32.7
1	5	Е	24.4
2	1	D	37.0

Description of Data:

This data frame contains the following columns:

- shade
 - Distance of location from tree line divided into 5 shade areas
- irrigation
 - Irrigation effect divided into 5 levels
- inoculum
 - Four types of seed incolum, A-D with E as control.
- yield
 - Dry matter yield of alfalfa

```
In [69]: summary(alfalfa)
nrow(alfalfa)
```

```
shade irrigation inoculum
                             yield
1:5
     1:5
                A:5
                         Min.
                                :24.40
2:5
     2:5
                B:5
                         1st Qu.:33.20
3:5
     3:5
                C:5
                         Median :34.60
4:5
     4:5
                D:5
                         Mean
                                :34.11
5:5
     5:5
                E:5
                         3rd Qu.:36.90
                         Max. :39.10
```

25

(a) Test the significance of the effects.

```
In [95]: options(repr.plot.width=8, repr.plot.height=4)
          p1 = ggplot(aes(x=irrigation, y=yield, fill = irrigation), data=alfalfa) +
            theme set(theme bw())+
            geom boxplot() +
            theme(axis.text.x = element_text(angle=45)) +
            ylab("Yield")
          p2 = ggplot(aes(x=shade , y=yield, fill = shade ), data=alfalfa) +
            theme_set(theme_bw())+
            geom boxplot() +
            theme(axis.text.x = element_text(angle=45)) +
            ylab("Yield")
          p3 = ggplot(aes(x=inoculum, y=yield, fill = inoculum), data=alfalfa) +
            theme_set(theme_bw())+
            geom boxplot() +
            theme(axis.text.x = element_text(angle=45)) +
            ylab("Yield")
          p4 = ggplot(alfalfa, aes(x= alfalfa$yield, fill = 'red')) +
            theme_set(theme_bw())+
             geom density()+
            theme(axis.text.x = element_text(angle=45)) +
            ylab("Density")+
            xlab('Yield')
          grid.arrange(p1, p2, p3, p4, nrow = 2)
                                             irrigation
                                                                                          shade
            36
                                                        36
                                                      ∀ield 32
           ∏ 32
             28
                                                        28
                                              <u></u> 5
                                                                                          = 5
             24
                          irrigation
                                                                       shade
                                             inoculum
                                                      0.10 -
0.05 -
            36
                                                                                         fill
                                              📙 В
           <u>Field</u> 32 ·
                                              🛑 с
                                                                                             red
```

<u></u> E

0.00

P

z

Yield

ģ

28

24

inoculum

```
In [102]: mod = anova(lm(yield ~ inoculum + irrigation + shade, data = alfalfa))
mod
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
inoculum	4	155.8944	38.9736	12.709059	0.0002839824
irrigation	4	16.5624	4.1406	1.350225	0.3078717042
shade	4	87.4024	21.8506	7.125351	0.0035328694
Residuals	12	36.7992	3.0666	NA	NA

• Irrigation is not significant at 5% α level.

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
inoculum	4	155.8944	38.9736	11.685886	0.0001244553
shade	4	87.4024	21.8506	6.551708	0.0025449365
Residuals	16	53.3616	3.3351	NA	NA

(b) Determine which levels of the treatment factor are significantly different.

```
In [113]: confidence_intervals = TukeyHSD(aov(yield ~ inoculum + shade +irrigation, data =
          confidence intervals
          options(repr.plot.width=5, repr.plot.height=4)
          plot(confidence intervals, las=1, cex.axis = 0.5, col = 'blue')
            Tukey multiple comparisons of means
              95% family-wise confidence level
          Fit: aov(formula = yield ~ inoculum + shade + irrigation, data = alfalfa)
          $inoculum
               diff
                           lwr
                                     upr
                                             p adj
          B-A -0.72
                     -4.250202 2.810202 0.9633433
          C-A -0.08
                     -3.610202
                               3.450202 0.9999928
          D-A -0.86
                     -4.390202 2.670202 0.9326392
          E-A -6.60 -10.130202 -3.069798 0.0005166
          C-B 0.64
                     -2.890202 4.170202 0.9759059
          D-B -0.14
                    -3.670202
                                3.390202 0.9999332
          E-B -5.88
                     -9.410202 -2.349798 0.0014163
          D-C -0.78 -4.310202
                               2.750202 0.9515868
          E-C -6.52 -10.050202 -2.989798 0.0005764
```

E-D -5.74 -9.270202 -2.209798 0.0017334

95% family-wise confidence level

Differences in mean levels of inoculum

• Levels E-A, E-B, E-C, and E-D are significantly different.

In []: