2025 AMS Bootcamp Latex Workshop

Ziyu Li¹

¹Department of Applied Mathematics and Statistics, Colorado School of Mines

> Wednesday August 20th, 2025

Outline

- Introduction
- 2 Homework
- 3 Posters
- 4 Presentation

Introduction

0000

Type setting software originally written in the 1980s.

Introduction

Typesetting software originally written in the 1980s.

Why people love it:

- Format only once so you can focus on content.
- Minimum and flexible citation management.
- Typing math.
- Expected for math journal submissions.

Typesetting software originally written in the 1980s.

Why people love it:

- Format only once so you can focus on content.
- Minimum and flexible citation management.
- Typing math.
- Expected for math journal submissions.

Why people hesitate to use it:

- Steep learning curve when getting started, good templates?
- Overleaf renders too slowly and sometimes full of bugs.
- ♦ Different bibliography options and compliers are confusing.
- Working with scientists that prefer Word or Google Doc.

Online Option: Overleaf

Online Option: Overleaf

0000

• Collaborate with others in real time.

Online Option: Overleaf

Introduction

- Collaborate with others in real time.
- Shrinks learning curve by automatically suggesting commands.

Online Option: Overleaf

- Collaborate with others in real time.
- Shrinks learning curve by automatically suggesting commands.
- Sometimes resolve errors automatically or highlight incorrect lines.

Online Option: Overleaf

Introduction

- Collaborate with others in real time.
- Shrinks learning curve by automatically suggesting commands.
- Sometimes resolve errors automatically or highlight incorrect lines.
- Great for beginners!

Online Option: Overleaf

- Collaborate with others in real time.
- Shrinks learning curve by automatically suggesting commands.
- Sometimes resolve errors automatically or highlight incorrect lines.
- Great for beginners!

Online Option: Overleaf

- Collaborate with others in real time.
- Shrinks learning curve by automatically suggesting commands.
- Sometimes resolve errors automatically or highlight incorrect lines.
- Great for beginners!

Local Option: TeXShop for Mac, TeXworks, or VSCode

• Much faster than Overleaf and can handle large documents.

Online Option: Overleaf

Introduction

- Collaborate with others in real time.
- Shrinks learning curve by automatically suggesting commands.
- Sometimes resolve errors automatically or highlight incorrect lines.
- Great for beginners!

- Much faster than Overleaf and can handle large documents.
- More control over your document and easily integrated with code outputs.

Online Option: Overleaf

- Collaborate with others in real time.
- Shrinks learning curve by automatically suggesting commands.
- Sometimes resolve errors automatically or highlight incorrect lines.
- Great for beginners!

- Much faster than Overleaf and can handle large documents.
- More control over your document and easily integrated with code outputs.
- Do not need the internet to work.

Online Option: Overleaf

Introduction

- Collaborate with others in real time.
- Shrinks learning curve by automatically suggesting commands.
- Sometimes resolve errors automatically or highlight incorrect lines.
- Great for beginners!

- Much faster than Overleaf and can handle large documents.
- More control over your document and easily integrated with code outputs.
- Do not need the internet to work.
- Great for thesis, projects, books, etc.

Agenda

Agenda

Introduction

000

- Setup
 Go to GitHub link: github.com/ziyuli22/2025_AMS_Latex_Workshop
 and download folder. Log into Overleaf account, upload folder.
- 2 Common homework commands & expectations
- Oster example
- Presentation example

Presentations

Posters

Outline

Homeworks

- 2 Homeworks

Template Example

Click on Homework_Example.tex

Outline

- Introduction
- 2 Homework
- Posters
- Presentation

Poster Example

Click on Poster_Example.tex

Outline

- 1 Introduction
- 2 Homework
- 3 Poster
- Presentations

Presentations Templates

Take a look at https://deic.uab.cat/~iblanes/beamer_gallery/ for some default options.

Presentations Templates

Take a look at https://deic.uab.cat/~iblanes/beamer_gallery/ for some default options.
This presentation is a modification on the Madrid theme.

Data: y at n spatial locations $S^O = \{\mathbf{s}_1^O, \mathbf{s}_2^O, \dots, \mathbf{s}_n^O\}.$ Goal: Quantify uncertainty of predictions \hat{q} on evenly spaced grid $\mathcal{S}^G = \{\mathbf{s}_1^G, \mathbf{s}_2^G, \dots, \mathbf{s}_M^G\}.$

Data: y at n spatial locations $S^O = \{\mathbf{s}_1^O, \mathbf{s}_2^O, \dots, \mathbf{s}_n^O\}.$

Goal: Quantify uncertainty of predictions \hat{q} on evenly spaced grid $\mathcal{S}^G = \{\mathbf{s}_1^G, \mathbf{s}_2^G, \dots, \mathbf{s}_M^G\}.$

Algorithm 1 Conditional Simulation Method

Input: Spatial data **v**, their locations \mathcal{S}^O , and prediction grid locations \mathcal{S}^G .

Output: Ensemble of l conditional simulations $\mathbf{v} = \{\mathbf{v}_1, \dots, \mathbf{v}_l\}$. $\mathbf{v}_i \sim MVN(\hat{g}(\mathcal{S}^G), \Sigma_{\hat{g}})$.

Data: y at n spatial locations $S^O = \{\mathbf{s}_1^O, \mathbf{s}_2^O, \dots, \mathbf{s}_n^O\}$.

Goal: Quantify uncertainty of predictions \hat{q} on evenly spaced grid $\mathcal{S}^G = \{\mathbf{s}_1^G, \mathbf{s}_2^G, \dots, \mathbf{s}_M^G\}.$

Algorithm 1 Conditional Simulation Method

Input: Spatial data y, their locations \mathcal{S}^O , and prediction grid locations \mathcal{S}^G .

Output: Ensemble of l conditional simulations $\mathbf{v} = \{\mathbf{v}_1, \dots, \mathbf{v}_l\}$. $\mathbf{v}_i \sim MVN(\hat{q}(\mathcal{S}^G), \Sigma_{\hat{q}})$.

• Compute spatial prediction at grid \mathcal{S}^G based on data \mathbf{y} , label this $\hat{q}(\mathcal{S}^G)$.

Data: y at n spatial locations $S^O = \{\mathbf{s}_1^O, \mathbf{s}_2^O, \dots, \mathbf{s}_n^O\}.$

Goal: Quantify uncertainty of predictions
$$\hat{g}$$
 on evenly spaced grid $\mathcal{S}^G = \{\mathbf{s}_1^G, \mathbf{s}_2^G, \dots, \mathbf{s}_M^G\}.$

Algorithm 1 Conditional Simulation Method

Input: Spatial data y, their locations \mathcal{S}^O , and prediction grid locations \mathcal{S}^G .

Output: Ensemble of l conditional simulations $\mathbf{v} = \{\mathbf{v}_1, \dots, \mathbf{v}_l\}$. $\mathbf{v}_j \sim MVN(\hat{g}\left(\mathcal{S}^G\right), \Sigma_{\hat{g}})$.

• Compute spatial prediction at grid S^G based on data \mathbf{y} , label this $\hat{q}(S^G)$.

For j = 1 : l

• Simulate spatial process at the union of locations $S^S = S^G \cup S^O$, label this $g^S(S^S)$.

\mathbf{End}

Others

- Everything else is similar to poster. Be mindful how large your picture files are because that can slow down rendering.
- Make sure to cite things too [1].

References

[1] Aurthor01 CoolLastName, Author02 AnotherLastName, and Aurthor03 ALastName. "Place Holder Title for a Fake Journal". In: Place Holder Journal 11 (1 Dec. 2022). ISSN: 20000000. DOI: 0000000000.

Extra Slides for Questions or other Technical Details

Simulation via Cholesky Decompositon

Cholesky decomposition: $\Sigma = BB^{T}$

Obtain simulation: $q(\mathbf{s}) = B\epsilon$, $\epsilon \sim \text{MVN}(0, I)$

$$\mathbb{E}[B\boldsymbol{\epsilon}] = B\mathbb{E}[\boldsymbol{\epsilon}] = 0$$
$$Var(B\boldsymbol{\epsilon}) = BVar(\boldsymbol{\epsilon})B^{T} = BIB^{T} = \Sigma$$

Sometimes you include more slides than you actually present to be prepare to demonstrate difficult concepts.