Physics 250: Computational Physics

Instructor: David W. Miller, PRC 245,

773-702-7671, David.W.Miller@uchicago.edu

Lecture Times: Tue-Thur 2:00pm-3:20pm

Lecture Location: KPTC 309 (Kersten Physics Teaching Center)

Textbook: None required, many suggested! (see Reading List)

Canvas Course Site: https://canvas.uchicago.edu/courses/16987

Course GitHub Site: https://github.com/UChicagoPhysics/PHYS250

 ${\bf Course\ Jupyter Lab:} \qquad {\tt https://ml.maniac.uchicago.edu/index.html}$

Piazza Site: https://piazza.com/uchicago/fall2018/phys250

Prof. Office Hours: Tue. 3:30pm-4:30pm, and by appt.

Computer Lab Hours: Help is available specifically for PHYS 250 by TAs in the Com-

puter Science Instructional Lab (CSIL), 1st floor of Crerar, on:

Tue 7:00-9:00 pm in CSIL 1 Wed 2:30-4:00 pm in CSIL 2 Wed 7:00-9:00 pm in CSIL 1

Teaching Assistants: See the Additional Information section.

Description: Introduces the use of computers in physics. After an introduc-

tion to programming basics, we will cover numerical solutions to fundamental problems, techniques for manipulating large

data sets, neural networks, and basic data analysis.

Homework (70%): Homework & materials available on Canvas and GitHub. Due

Date: Thursdays. Graded homework will returned the fol-

lowing week.

Collaboration Policy: Collaboration on issues, concepts, and approaches is encouraged, but the work *must be your own*.

Final Project (30%): Dec 7, 2018 (Reading Period). Poster presentation on ap-

proved topics (topic approval due Nov. 6). Reviewed by

judges panel, final grade by instructor.

TENTATIVE COURSE OUTLINE:

The weekly coverage is subject to changes and adjustments as the course progresses.

Week	Week Of	Lecture Topics, Exams, Information	
Week 1: Lec 1–2	Mon Oct 1	 Algorithmic thinking, programming structures Python, Jupyter, Unix, shell, git Relevant reading: KN 1.1; LPB 1.5, 5.2, 	
Week 2: Lec 3–4	Mon Oct 8	 Software design concepts, visualization Random number generators, errors Relevant reading: KN 6.2; LPB 2.1 	
Week 3: Lec 5–6	Mon Oct 15	 Ising model, Metropolis algorithm Relevant reading: Sethna 8.1; KN 6.4; LPB 15.1- 15.4 	
Week 4: Lec 7–8	Mon Oct 22	 Minimization and the Monte Carlo method Relevant reading: Franklin 12.1-12.6 	
Week 5: Lec 9–10	Mon Oct 29	 Ordinary differential equations Relevant reading: Franklin 2.1-2.6; KN 6.8; LPB 7.1-7.10, 9.1-9.8 	
Week 6: Lec 11–12	Mon Nov 5	 Partial differential equations Relevant reading: Franklin 4.1-4.4; LPB 17.1-17.19 	
Week 7: Lec 13–14	Mon Nov 12	 Fourier transforms Data analysis techniques Relevant reading: Franklin 7.1-7.7; KN 4.1-4.3; LPB 10.1-10.10 	
Week 8: Lec 15	Mon Nov 19	 Holiday: Thanksgiving, Thursday Nov 22 Data analysis techniques Relevant reading: KN 4.1-4.3, 8.2 	
Week 9: Lec 16–17	Mon Nov 26	 Neural networks Relevant reading: Franklin 14.1-14.6 	
Week 10: Lec 18	Mon Dec 3	• Invited speaker	
Reading Period	Fri Dec 7	Final project poster presentationsKPTC 206 (Lounge)	

Recommended References:

- Press, Numerical recipes: the art of scientific computing
 - QA297.N866 2007
 - available in a limited form online here
 - python resources & exercises here
- Sethna, Statistical Mechanics: Entropy, Order Parameters, and Complexity
 - QC174.8.S48 2006eb
 - available as a PDF here
 - computational resources & exercises here
- Kinder & Nelson (KN), A Student's Guide to Python for Physical Modeling
 - ISBN: 9781400889426
 - computational resources & exercises here
- Franklin, Computational Methods for Physics
 - ISBN: 9781139525398
 - computational resources & exercises here
- Landau, Paez, Bordeianu (LPB), Computational Physics, Problem Solving with Python
 - QC20.82.L36 2007
 - computational resources & exercises here
 - The text book in the Library is actually, Computational Physics, Problem Solving with Computers (2nd Ed.) but the updated online version is more useful, I think
- Halterman, Fundamentals of C++ Programming
 - available as a PDF here
 - computational resources & exercises here

Supplementary Math Texts (can be helpful for algorithms):

- Arfken & Weber, Mathematical Methods for Physicists QA37.2.A740 1995
- Greenberg, Advanced Engineering Mathematics TA330.G725 1998

Additional Information for the Course:

Teaching Assistants (TA):

TA's will have office hours as well as be available in the CSIL lab for assistance.

TA Name	Email	Office Hours	CSIL Lab
Takumi Matsuzawa	tmatsuzawa@uchicago.edu	TUE 7:00-9:00 pm	CSIL 1
John Parker	japarker@uchicago.edu	WED 2:30-4:00 pm	CSIL 2
John Parker	japarker@uchicago.edu	WED 7:00-9:00 pm	CSIL 1

Schedule and Section Assignment Information:

• CSIL Lab Sections will begin meeting in Week 2 of Spring Quarter.

Piazza

This term we will be using **Piazza** for class discussion. The system is highly catered to getting you help fast and efficiently from classmates, the TA, and myself.

- Rather than emailing questions to the teaching staff, I encourage you to post your questions on Piazza.
- If you have any problems or feedback, email myself or the Piazza developers: team@piazza.com
- Find our class page at: https://piazza.com/uchicago/fall2018/phys250