Den	omina	ción d	e la Asiç	gnatura	Elec	Electrónica II			
Abreviatura:				Códi	Código: IM-29				
Presencial				o prese	encial	Total Horas por	Créditos		
HT	HP	H.Lak	o. HT	HP	H.Lab.	semana			
2	Λ	2	1	0	0	6	Δ		
	U	3		0		U	-		

DESCRIPCIÓN DEL CURSO:

Este curso presenta al estudiante como utilizar los amplificadores operacionales en diversas aplicaciones. Se abordan problemas sobre la medición de variables físicas como: temperatura, fuerza, presión, peso y energía solar. Se examinan sus limitaciones; las relativas a cd y a ca. Se presentan cuatro clases principales de filtros activos: pasa bajo, pasa alto, pasa banda y de rechazo de banda.

Se incluye los filtros tipo Butterworth. Se presenta un tipo de circuito integrado: el multiplicador para el diseño de circuitos de comunicación de AM. Se presenta el uso del temporizador 555 CI como reloj, unidad de control o contador de eventos. Se ha incluido la simulación SPICE.

Una característica significativa del curso es la cobertura sólida de los conceptos y la teoría fundamentales acoplada con métodos prácticos de diseño real. Se involucran aspectos del CAD a través de laboratorios y simulación. Se hace fuerte hincapié en el desarrollo y uso de metodológicas sistemáticas de resolución de problemas

Se ha puesto en cada tema especial atención para que las clases y laboratorios sean próximos a la realidad técnica del mercado, con el fin que, los métodos y conceptos de análisis, evaluación y diseño de circuitos electrónicos con AO sean aplicados en forma efectiva y eficiente en esta área.

OBJETIVOS GENERALES:

- Proporcionar criterios de especificaciones y de diseño de los circuitos electrónicos analógicos.
- Enumerar las funciones y aplicaciones de los AO.
- Conocer los aspectos tecnológicos básicos del diseño de los AO.

- Aplicar las técnicas básicas analíticas y de diseño de circuitos con AO y su utilización en circuitos electrónicos sencillos.
- Diseñar bloques de circuitos con AO.

OBJETIVOS ESPECIFICOS:

- Identificar los encapsulados para amplificadores operacionales de propósito general.
- Identificar las terminales de un amplificador operacional.
- Describir la tarea que desempeña la fuente de poder y las terminales de entrada y salida de un AO.
- Trazar el diagrama del circuito correspondiente para un detector inversor o no inversor de cruce por cero.
- Analizar la acción de un modulador de ancho de pulso.
- Analizar circuitos amplificadores inversores y no inversores utilizando PSPICE.
- Describir el funcionamiento del comparador y circuitos comparadores.
- Utilizar AO para diversas aplicaciones.
- Explicar el funcionamiento de un circuito multivibrador.
- Explicar el funcionamiento de un AO con diodos: rectificador de media y onda completa.
- Utilizar AO diferenciales, de instrumentación y de puente.
- Valorar las características en cd de los AO.
- Valorar las características en ca de los AO.
- Mencionar las cuatro clasificaciones generales de los filtros y sus características.
- Indicar los tres estados de operación de un temporizador 555 y como se controlan.
- Escribir las ecuaciones generales de entrada-salida de un convertidor digital a analógico y de un convertidor de analógico a digital.
- Calcular la salida correspondiente a una determinada entrada.
- Diseñar un puente rectificador de onda completa.

CONTENIDO:

I. FUNDAMENTOS Y LIMITACIONES DE LOS AMPLIFICADORES OPERACIONALES

Introducción

- 1. Definición de un amplificador
- 2. Tipo de amplificadores
- 3. Circuito equivalente de un amplificador (modelo funcional)
- 4. Ejemplo: efectos de carga en un amplificador de tensión
- B. El amplificador operacional.
 - 1. Definición
 - 2. Símbolo
 - 3. Circuito equivalente
 - 4. El amplificador operacional ideal
- C. Configuración básica con amplificadores operacionales
 - 1. Amplificador no inversor
 - 2. Amplificador inversor
 - 3. Seguidor de tensión
 - 4. Sumador de tensión
 - 5. Integrador
- D. Realimentación negativa
 - 1. Concepto de retroalimentación
 - 2. Representación canónica
 - 3. Representación equivalente: Flujograma (diagrama de flujo)
 - a. Definición y reglas
 - b. Flujograma del sistema canonic realimentat (flujograma canonic)
 - 4. Flujograma de circuitos con amplificadores operacionales
 - a. Amplificador no inversor
 - b. Amplificador inversor
- E. Limitaciones de los amplificadores operacionales
 - 1. Introducción
 - 2. Corrientes de polarización

- 3. Tensión de offset
- 4. Relación de rebuig en modo común
- 5. Relación de rebuig en la alimentación
- 6. Ruido en circuitos con amplificadores operacionales
- 7. Balance de errores

II. RESPUESTA FRECUENCIAL DE AMPLIFICADORES Y CIRCUITOS REALIMENTADOS

- A. Introducción
- B. Respuesta frecuencial
 - 1. Función de transferencia
 - 2. Diagramas de Bode
 - a. Diagrama de Bode de una constante
 - b. Diagrama de Bode de un zero o un punto en el origen
 - c. Diagrama de Bode de un zero o un punto fuera del origen
 - d. Diagrama de Bode de un par de punto complejos conjugados
 - e. Ejemplo
 - 3. Respuesta frecuencial del amplificador operacional
 - a. Producto de ganancia por ancho de banda
 - 4. Slow-rate
 - 5. Estabilidad en circuitos realimentados
 - a. Estabilidad en un amplificador realimentado
 - b. Criterio de estabilidad de Routh.
 - c. Lloc geométrico de arrlos (L.G.UN)
 - d. Trasat sistemático de L.G.UN
 - e. Márgenes de estabilidad: amplitud y fase
 - f. Compensación frecuencial
- III. APLICACIONES LINEALES CON AMPLIFICADORES OPERACIONALES.
 - A. Introducción
 - 1. Sistema lineal
 - 2. Característica de transferencia entrada-salida.

- 3. Amplificadores
- B. Convertidores Corriente-Tensión (I-V)
 - 1. Convertidor I-V más elemental.
 - 2. Convertidor I-V con un UN.O.
 - 3. Convertidor I-V de gran sensibilidad
 - 4. Aplicaciones de los convertidores
- C. Convertidores Tensión Corriente (V-I)
 - 1. Carga no referida a masa (flotante)
 - 2. Carga referida a masa
- D. Amplificadores de corriente
 - 1. Inversor
 - 2. No inversor
 - 3. Amplificadores diferenciales
 - a. El amplificador diferencial ideal
 - b. Tensiones en modo común y en modo diferencial
 - c. Relación de rebuig en modo común (CMRR)
 - d. Amplificador diferencial de ganancia variable
 - 4. Amplificadores de instrumentación
 - a. Definición
 - b. Amplificador de instrumentación con 3 UN.O.
 - c. Amplificador de instrumentación con 2 UN.O.
 - 5. U.N.I. integrales monolíticos
 - a. Aplicaciones de los UN.I.
 - b. Amplificación de señal de un sensor generador
 - c. Aplicación a sensores resistivos: Punto de medición
- IV. APLICACIONES NO LINEALES CON AMPLIFICADORES OPERACIONALES.
 - A. Introducción
 - B. Comparadores
 - 1. Comparador con un amplificador operacional
 - 2. Comparador con salida con colector abierto

- C. Aplicaciones con comparadores
 - 1. Detector de nivel
 - 2. Comparador de finestra
- D. Comparador con histéresis (Schmitt-trigger)
- E. Rectificadores de precisión
 - 1. Introducción.
 - 2. Rectificador de precisión de media onda
 - 3. Rectificador de precisión de onda completa
 - 4. Ejemplo: Convertidor AC-DC (Voltímetro AC)
- F. Circuitos limitadores y retardadores
- G. Funciones lineales por tramos
- H. Detectores de pico

V. GENERADORES DE SEÑAL

- A. Introducción
- B. Generadores senosoidales RC
 - 1. Condiciones necesarias para una oscilación
 - 2. Condición de arrancada y estabilización de amplitud
 - 3. Oscilador en puente de Wien
 - 4. Oscilador en cuadratura
- C. Generadores de relajamiento (no senosoidales)
 - 1. Introducción
 - 2. Multivibradores astables
 - a. Circuito básico
 - b. Oscilador de onda cuadrada CMOS
 - 3. Multivibradores monoastables
 - 4. Circuitos de temporización integrales
 - a. Timer 555
 - b. Funcionamiento del 555 como un astable
 - c. Funcionamiento del 555 como un monoastable
 - 5. Generadores de onda triangular

6. Conversión Tensión-Frecuencia V-F (V.C.O.) y Frecuencia-Tensión F-V

VI. REGULADORES DE TENSIÓN

- A. Introducción
- B. Reguladores lineales
 - 1. Regulación lineal serie
 - 2. Circuito básico del regulador lineal de serie
 - 3. Protección del regulador
 - 4. Circuitos integrales de regulación lineal serie
- C. Reguladores conmutados
 - 1. Principio de funcionamiento
 - 2. Configuración fundamentales
 - 3. Análisis del regulador conmutado reductor

VII. OTRAS CIRCUITOS INTEGRALES

- A. Convertidores digital-analógicos (DAC)
 - 1. Introducción
 - 2. Definiciones y especificaciones de un DAC
 - 3. Tipo de convertidores DAC
 - a. DAC de resistencias ponderadas
 - b. DAC de resistencias con escalera R-2R
 - c. DAC potenciómetro
 - d. DAC de capacidades ponderadas
- B. Convertidores analógico-digitales (ADC).
 - 1. Introducción
 - 2. Tipo de convertidores ADC
 - a. ADC con contador (counter-ramp converter)
 - b. ADC de seguimiento (tracking converter)
 - c. ADC de aproximaciones sucesivas
 - d. ADC paralelo (flash converter)
 - e. ADC de doble rampa (dual-slope converter)

- C. Amplificadores operacionales de transconductancia (O.T.UN)
 - 1. Introducción
 - 2. Símbolo y circuito equivalente en pequeña señal de un OTA ideal
 - 3. Aplicaciones con OTA
 - a. Amplificador de tensión inversor y no inversor
 - b. Sumador y restador de tensiones
 - c. Resistencia controlada
 - d. Filtros
- D. Circuitos integrales en modo corriente
 - 1. Amplificador realimentado por corriente (C.F.UN.)
 - 2. Comparación entre l'UN.O. y el C.F.UN

PRACTICA DE LABORATORIO

- Experimento de circuitos amplificadores
- Experimento de circuitos amplificadores multietapas
- Experimento de las características básicas del amplificador operacional
- Experimento de las características básicas de amplificado del amplificador
- Clase teórica-práctica de aplicación
- Ejercicios de aplicación
- Ejercicios asignados para hacer en casa
- Discusión de problemas: técnica grupal, clase activa y reflexiva

Estudio Dirigido: Este trabajo involucra acciones de carácter individual, lo que permite la interacción de los estudiantes en el momento en que el profesor imparte la clase.

Trabajo Individual: El desarrollo de problemas requiere de acciones de carácter individual. Para lo cual se deben encauzar trabajos y prácticas que evidencien este aprendizaje.

RECURSOS UTILIZADOS:

- Retro-Proyecto
- Tablero acrílico / piloto
- Laboratorio de Electrónica

EVALUACIÓN:

2 Exámenes Parciales (15% cada uno)		30%
Asistencia y participación		10%
Trabajos grupales		10%
Estudios de casos, Investigaciones		20%
Proyecto Final		<u>30%</u>
	Total	100%

BIBLIOGRAFÍA BÁSICA:

Franco, Sergio. Design with operational amplifiers and analog

integrated circuits. Second Edition. McGraw-Hill International, McGraw-Hill, 3 edition, 2001. (Capítulos 1, 2, 5, 6, 8, 9, 10, 11 y 12).

López Rodríguez, Victoriano Teoría de circuitos y electrónica. Editorial

UNED-Universidad Nacional de Educación a

Distancia, España, 2013.