Computer modeling of physical phenomena

Lecture VIII: LBM

Cellular automata

It's all very nice but....

What it has to do with physics?

Lattice Gases and Lattice Boltzmann Method

Mesoscopic approach

Lattice-particle methods

Idea: Solve fluid equations using fictitious particle dynamics.

Universality: Molecular details do not count as long as correct dynamics is recovered in the macroscopic limit.

Feynman on lattice automata

"We have noticed in nature that the behavior of a fluid depends very little on the nature of the individual particles in that fluid. For example, that flow of sand is very similar to the flow of water…"

...or the flow of sheep!

Crash course on Hydrodynamics

Solving full NS equations may not be a great idea...

Be wise, discretize!

Marek Kac, 1914-1984

Lattice gas automata

- > streaming
- > collisions

- positions restricted to lattice sites
- discrete velocities
- no two particles with the same velocity allowed at one site

Boolean representation

$$n_i = 0.1$$
 particle absence/presence

Collisions

Collision rules

Binary representation

INPUT STATE	OUTPUT STATE
001001	010010
	100100
010101	101010
001011	100110
011011	110110
	101101

Very simple to implement numerically — no floating point operations!

Von Karman street

(Sauro Succi)

Pros and cons

Pros:

- extremely simple to program,
- fast,
- exact, no round-off errors,
- inherently stable.

Cons:

- noisy,
- viscosity set by collision table (cannot be tuned).

From LGA to LBE

One lattice node represents particle *densities*: discrete dynamics are replaced by a smooth flow.

Less averaging needed, increased performance.

$$n_i \to f_i = \langle n_i \rangle$$

LGA: Boolean quantities n_i LBE: Real-valued quantities f_i $|f_1| = \langle n_1 \rangle$

continuous population density, f_i

Lattice-Boltzmann model:

Discrete set of velocities

e = [[0, 0], [1, 0], [0, 1], [-1, 0], [0, -1], [1, 1], [-1, 1], [-1, -1], [1, -1]]

Hydrodynamic fields are moments of the distribution function $f(\mathbf{r},t)$:

$$\rho(\mathbf{r},t) = \sum_{i} f_i(\mathbf{r},t)$$
 Mass

$$\rho(\mathbf{r}, t)\mathbf{u}(\mathbf{r}, t) = \sum_{i} f_{i}(\mathbf{r}, t) e_{i}$$
 Momentum

where \mathbf{e}_{i} are the discrete velocities in the model

Evolution equation

$$f_i(\mathbf{r} + \mathbf{c}_i \Delta t, t + \Delta t) = f_i(\mathbf{r}, t) - [f_i(\mathbf{r}, t) - f_i^{eq}(\mathbf{r}, t)]/\tau$$

relaxation-time form of the collision operator

 $f_i^{eq}(\mathbf{r},t)$ - equilibrium distribution

Equilibrium distribution is an expansion of the local Maxwell distribution.

Equilibrium distribution

- start from the Maxwell distribution

$$f^{eq} = \frac{\rho}{2\pi RT} \exp\left(\frac{-(\mathbf{e} - \mathbf{u})^2}{2RT}\right)$$

- normalize the velocities by $\sqrt{3RT}$: $f^{eq} = \frac{\rho}{2\pi/3} \exp\left(-\frac{3}{2}(\mathbf{e} - \mathbf{u})^2\right)$

$$f^{eq} = \frac{\rho}{2\pi/3} \exp\left(-\frac{3}{2}(\mathbf{e} - \mathbf{u})^2\right)$$

- expand in u up to $O(u^2)$:

$$f^{eq} = \frac{\rho}{2\pi/3} \exp\left(-\frac{3}{2}e^2\right) \left[1 + 3(\mathbf{e} \cdot \mathbf{u}) + \frac{9}{2}(\mathbf{e} \cdot \mathbf{u})^2 - \frac{3}{2}u^2\right]$$

- for discrete set of velocities e; the corresponding distribution functions read

$$f_i^{eq} = W_i \rho [1 + 3(\mathbf{e}_i \cdot \mathbf{u}) + \frac{9}{2} (\mathbf{e}_i \cdot \mathbf{u})^2 - \frac{3}{2} \mathbf{u}^2]$$

Equilibrium distribution (2)

The weights W_i are then determined from the isotropy conditions and the moment conditions:

$$\rho = \sum_{i} f_i^{eq}, \qquad \rho \mathbf{u} = \sum_{i} f_i^{eq} e_i$$

For the 2D square lattice with nine velocities one gets:

$$W_0 = 4/9$$

 $W_1 = W_2 = W_3 = W_4 = 1/9$
 $W_5 = W_6 = W_7 = W_8 = 1/36$

animation by D.Thorne and M.Sukop (FIU, Miami)

streaming step

LBM to Navier-Stokes

- start from lattice Boltzmann equation

$$f_i(\mathbf{r} + \mathbf{c}_i \Delta t, t + \Delta t) - f_i(\mathbf{r}, t) = -[f_i(\mathbf{r}, t) - f_i^{eq}(\mathbf{r}, t)] / \tau$$

- Taylor expand $f_i(\mathbf{r} + \mathbf{c}_i \Delta t, t + \Delta t)$ about (\mathbf{r}, t) to 2nd order in Δt
- write $f_i = f_i^{eq} + f_i^{neq}$ and note that $\rho = \sum_i f_i^{eq}$ and $\rho \mathbf{u} = \sum_i f_i^{eq} \mathbf{c}_i$
- in the incompressible (small Ma=u/c_s) limit you get the

Navier Stokes equation

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u}$$
 with
$$\nu = (1 - \frac{1}{2\tau}) \frac{\Delta t}{3}$$

Examples (1)

Bella, Ubertini, Succi 2001

Examples (1)

Bella, Ubertini, Succi 2001

Examples (2)

H Chen, S Kandasamy, R Shock, S. Orszag, S. Succi, V. Yakhot, Science (2003)

HOW A WING PRODUCES LIFT

