GIÁI TÍCH I BÀI 2.

(§6, §7, §8)

§6. Giới hạn hàm số

Đặt vấn đề

a)
$$\lim_{x \to 1} 2^x = ?$$

a)
$$\lim_{x \to 1} 2^x = ?$$
 b) $\lim_{x \to 0} \frac{1}{x} = ?$ c) $\lim_{x \to \infty} \frac{1}{x} = ?$

c)
$$\lim_{x \to \infty} \frac{1}{x} = ?$$

I. Định nghĩa

- ĐN1. $x_0 \in X \subset \mathbb{R}$ là điểm tụ của $X \Leftrightarrow \exists x \in U_{\varepsilon}(x_0) \setminus \{x_0\}, \forall \varepsilon > 0$.
- ĐN2. f(x) xác định trên X, x_0 là điểm tụ của X. Ta bảo

$$\lim_{x\to x_0} f(x) = a \Leftrightarrow \forall (x_n) \subset X, x_n \neq x_0, x_n \to x_0 \Rightarrow f(x_n) \to a.$$

- ĐN3. f(x) xác định trên X, x_0 là điểm tụ của X. Ta bảo

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow \forall \ \varepsilon > 0 \text{ bé tuỳ } \acute{y}, \ \exists \ \delta(\varepsilon) > 0 : 0 < |x - x_0| < \delta(\varepsilon) \Rightarrow |f(x) - a| < \varepsilon.$$

Chú ý. ĐN2 ~ ĐN3.

Ví dụ 1.
$$\lim_{x\to 2} (3x+2)$$

Ví dụ 2.
$$\lim_{x\to 0} \cos \frac{1}{x}$$

II. Tính chất và phép toán

1) Tính chất

a)
$$\lim_{x \to x_0} f(x) = a$$
, $\lim_{x \to x_0} f(x) = b \Rightarrow a = b$

b)
$$\lim_{x \to x_0} f(x) = a \Leftrightarrow \lim_{x \to x_0} (f(x) - a) = 0$$

c)
$$f(x) = c \implies \lim_{x \to x_0} f(x) = c$$

$$\mathsf{d)} \ f(x) \leq h(x) \leq g(x), \ \forall x \in U_{\varepsilon_0}\left(x_0\right); \ \lim_{x \to x_0} f(x) = a = \lim_{x \to x_0} g(x) \ \Rightarrow \ \lim_{x \to x_0} h(x) = a$$

6

e)
$$\lim_{x \to x_0} f(x) = a \Rightarrow |f(x)| \le c, \ \forall x \in U_{\varepsilon_0}(x_0) \setminus \{x_0\}$$

f)
$$\lim_{x \to x_0} f(x) = a$$
, $a > p \Rightarrow f(x) > p$, $\forall x \in U_{\varepsilon_0}(x_0) \setminus \{x_0\}$

2. Phép toán

a)
$$\lim_{x \to x_0} f(x) = a$$
, $\lim_{x \to x_0} g(x) = b \Rightarrow \lim_{x \to x_0} (f(x) \pm g(x)) = a \pm b$

b)
$$\lim_{x \to x_0} f(x) = a$$
, $\lim_{x \to x_0} g(x) = b \Rightarrow \lim_{x \to x_0} (f(x).g(x)) = a.b$ và $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b}$, $(b \neq 0)$

3. Khử dạng vô định

a) Các dạng vô định
$$\frac{0}{0}$$
; $\frac{\infty}{\infty}$; $0.\infty$; $\infty - \infty$; 1^{∞} ; 0^{0} ; ∞^{0}

b) Khử dạng vô định. Sử dụng các phép biến đổi đại số và các giới hạn đặc biệt

$$\lim_{x\to 0} \frac{\sin x}{x} = 1 \; ; \; \lim_{x\to \infty} \left(1 + \frac{1}{x}\right)^x = e$$

Ví dụ 1.
$$\lim_{x\to 0} \frac{\sqrt{x+4}-2}{x}$$

Ví dụ 2.
$$\lim_{x \to 2} (2 - x) \tan \frac{\pi x}{4}$$

Ví dụ 3.
$$\lim_{x\to 1} \left(\frac{x+2}{x-1}\right)^{2x+1}$$

Ví dụ 4.
$$\lim_{x\to 0} (\cos x)^{\cot^2 x}$$
 $(e^{-\frac{1}{2}})$

III. Giới hạn hàm hợp, một phía, vô cực

1. Giới hạn hàm hợp.
$$\lim_{x\to x_0} u(x) = u_0$$
, $\lim_{u\to u_0} f(u) = a \Rightarrow \lim_{x\to x_0} f(u(x)) = a$

2. Giới hạn một phía.

Định nghĩa 4.

$$\lim_{x \to x_0^+} f(x) = a \Leftrightarrow \forall \ \varepsilon > 0 \text{ bé tuỳ } \acute{y}, \ \exists \ \delta(\varepsilon) > 0 : 0 < x - x_0 < \delta(\varepsilon) \Rightarrow |f(x) - a| < \varepsilon.$$

Định nghĩa 5.

$$\lim_{x \to x_0^-} f(x) = b \iff \forall \ \varepsilon > 0 \text{ bé tuỳ } \acute{y}, \ \exists \ \delta(\varepsilon) > 0 : 0 < x_0 - x < \delta(\varepsilon) \Rightarrow |f(x) - b| < \varepsilon.$$

Mối liên hệ giữa giới hạn một phía và giới hạn

$$\lim_{x \to x_0} f(x) = a \iff \lim_{x \to x_0^+} f(x) = a = \lim_{x \to x_0^-} f(x)$$

3. Giới hạn ở vô cực và giới hạn vô cực

Định nghĩa 6.
$$\lim_{x\to\infty} f(x) = a \iff \forall (x_n) \to \infty \text{ có } \lim_{n\to\infty} f(x_n) = a$$

Định nghĩa 7.
$$\lim_{x\to\infty} f(x) = a \Leftrightarrow \forall \ \varepsilon > 0 \text{ bé tuỳ } \acute{y}, \ \exists \ \textit{N}(\varepsilon) > 0: |x| > \textit{N}(\varepsilon) \Rightarrow |f(x) - a| < \varepsilon.$$

Chú ý. ĐN6 ~ ĐN7.

Ví dụ 1.
$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + 4} + \sqrt{x}}{x + \sqrt[5]{x^4 + 2x}}$$
 Ví dụ 2. $\lim_{x \to +\infty} (\sqrt{x + 1} - \sqrt{x})$ Ví dụ 3. $\lim_{x \to 1} x^{\frac{1}{1-x}}$

Ví dụ 4.
$$\lim_{x \to +\infty} \left(\sin x - \sin \sqrt{1 + x^2} \right)$$
 (0)

Ví dụ 5.
$$\lim_{x \to +\infty} (\cos \sqrt{x-1} - \cos \sqrt{x+1})$$
 (0)

Định nghĩa 8.
$$\lim_{X\to\infty} f(X) = \infty \iff \forall (x_n) \to \infty \text{ có } \lim_{n\to\infty} f(x_n) = \infty$$

Định nghĩa 9

$$\lim_{x \to x_0} f(x) = \infty \iff \forall N > 0 \text{ lớn tuỳ } \acute{y}, \exists \delta(N) > 0: |x - x_0| < \delta(N) \Rightarrow |f(x)| > N.$$

§7. Vô cùng bé, vô cùng lớn

- Đặt vấn đề
- I. Vô cùng bé
- I. Định nghĩa. $\alpha(x)$ là VCB, $x \to x_0 \Leftrightarrow \lim_{x \to x_0} \alpha(x) = 0$.
- 2. Tính chất.
- a) $\alpha(x)$ là VCB, $x \to x_0$, $c = \text{const} \Rightarrow c\alpha(x)$ là VCB khi $x \to x_0$.

b)
$$\alpha_i(x)$$
, $i = \overline{1, n}$ là VCB khi $x \to x_0 \Rightarrow \sum_{i=1}^n \alpha_i(x)$ là VCB khi $x \to x_0$

- c) $\alpha(x)$ là VCB khi $x \to x_0$, f(x) bị chặn trong $U_{\varepsilon_0}(x_0) \Rightarrow \alpha(x)f(x)$ là VCB, $x \to x_0$
- 3. Liên hệ giữa VCB và giới hạn

Định lí.
$$\lim_{x \to x_0} f(x) = L \iff f(x) - L$$
 là VCB khi $x \to x_0$ (hay $f(x) = L + \alpha(x)$, $\alpha(x)$ là VCB)

4. So sánh VCB. Giả sử $\alpha(x)$, $\beta(x)$ là các VCB khi $x \to x_0$.

Định nghĩa.
$$\alpha(x) \sim \beta(x) \Leftrightarrow \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$$

Định nghĩa. $\alpha(x)$ là VCB cùng cấp với VCB $\beta(x)$ khi $x \to x_0 \Leftrightarrow \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = a \in \mathbb{R} \setminus \{0\}$

8

Định nghĩa. $\alpha(x)$ là VCB cấp cao hơn VCB $\beta(x)$ khi $x \to x_0 \Leftrightarrow \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 0$

Ví dụ 1. a)
$$\sin x \sim x$$
, $e^x - 1 \sim x$, $\ln(1 + x) \sim x$, $(1 + x)^{\alpha} - 1 \sim \alpha x$ khi $x \to 0$
b) Cho $\alpha(x) = \frac{ex}{2}$, $\beta(x) = e - (1 + x)^{\frac{1}{x}}$.

Chứng minh rằng $\alpha(x) \sim \beta(x)$ khi $x \rightarrow 0$.

c) Cho
$$\alpha(x) = e - (1 + 2x)\frac{1}{2x}, \quad \beta(x) = ex.$$

Chứng minh rằng $\alpha(x) \sim \beta(x)$ khi $x \rightarrow 0$.

5. Ứng dụng tìm giới hạn

a)
$$\alpha(x) \sim \overline{\alpha}(x)$$
, $\beta(x) \sim \overline{\beta}(x)$, $x \to x_0 \Rightarrow \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\overline{\alpha}(x)}{\overline{\beta}(x)}$

Ví dụ 2.
$$\lim_{x\to 0} \frac{(e^x - 1)\tan x}{\sin^2 x}$$
 Ví dụ 3. $\lim_{x\to 0} \frac{\sqrt[3]{1 + 3x}\sqrt[4]{1 + 4x} - 1}{\sqrt{1 - x} - 1}$ (-4)

b) $\beta(x)$ là VCB cấp cao hơn $\alpha(x)$ khi $x \to x_0 \Rightarrow \alpha(x) + \beta(x) \sim \alpha(x)$

Ví dụ 4.
$$\lim_{x\to 0} \frac{x - \sin x}{x^3}$$

c) $\alpha(x)$, $\beta(x)$ là các VCB khi $x \to x_0$;

$$\alpha(x) = \sum_{k=1}^{m} \alpha_k(x)$$
, $\alpha_1(x)$ là VCB có cấp thấp nhất;

$$\beta(x) = \sum_{k=1}^{n} \beta_k(x)$$
, $\beta_1(x)$ là VCB có cấp thấp nhất

$$\Rightarrow \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha_1(x)}{\beta_1(x)}$$

Ví dụ 5.
$$\lim_{x\to 0} \frac{x + \sin^3 x + \tan^4 x}{4x + x^4 + 5x^8}$$

II. Vô cùng lớn

1. Định nghĩa. f(x) xác định $U_{\mathcal{E}_0}(x_0)$ (có thể trừ x_0), f(x) là VCL khi $x \to x_0$

9

$$\Leftrightarrow \lim_{x \to x_0} f(x) = \infty$$

Chú ý. Hàm là VCL ⇒ không bị chặn

Ví dụ 6. $f(x) = x \sin x$ là không bị chặn nhưng không phải là VCL.

2. Liên hệ giữa VCB và VCL

a)
$$f(x)$$
 là VCB, $x \to x_0$ và $f(x) \neq 0 \Rightarrow \frac{1}{f(x)}$ là VCL khi $x \to x_0$.

b)
$$f(x)$$
 là VCL, $x \to x_0 \implies \frac{1}{f(x)}$ là VCB khi $x \to x_0$.

3. So sánh các VCL. Giả sử A(x), B(x) là các VCL khi $x \to x_0$,

a)
$$A(x)$$
 là VCL cấp cao hơn VCL $B(x)$, $x \to x_0 \Leftrightarrow \lim_{x \to x_0} \frac{A(x)}{B(x)} = \infty$

b)
$$A(x)$$
, $B(x)$ là các VCL cùng cấp, $x \to x_0 \Leftrightarrow \lim_{x \to x_0} \frac{A(x)}{B(x)} = a \neq 0$

c) A(x), B(x) là các VCL tương đương, $x \to x_0 \Leftrightarrow \lim_{x \to x_0} \frac{A(x)}{B(x)} = 1$.

4. Ứng dụng tìm giới hạn

a) Cho các VCL tương đương $A(x) \sim \overline{A}(x)$, $B(x) \sim \overline{B}(x)$, $x \to x_0 \Rightarrow \lim_{x \to x_0} \frac{A(x)}{B(x)} = \lim_{x \to x_0} \frac{\overline{A}(x)}{\overline{B}(x)}$

b) Cho A(x), B(x) là các VCL khi $x \to x_0$;

$$A(x) = \sum_{k=1}^{m} A_k(x)$$
, $A_1(x)$ là VCL có cấp cao nhất;

$$B(x) = \sum_{k=1}^{n} B_k(x)$$
, $B_1(x)$ là VCL có cấp cao nhất

$$\Rightarrow \lim_{x \to x_0} \frac{A(x)}{B(x)} = \lim_{x \to x_0} \frac{A_1(x)}{B_1(x)}$$

Ví dụ 7.
$$\lim_{x \to \infty} \frac{9x^4 + x^3 + x + 2}{2009x^4 + 3x^2 + x + 1} = \frac{9}{2009}$$

Ví dụ 8. Tính giới hạn

a)
$$\lim_{x \to 1} (2-x)^{\cot(x^2-1)}$$
 ($e^{-\frac{1}{2}}$) b) $\lim_{x \to -1} (2+x)^{\cot(1-x^2)}$ ($e^{\frac{1}{2}}$)

c)
$$\lim_{x \to 0} \frac{(1-4^x)\ln(1+2x)}{x^2+2x^3}$$
 (-2 ln 4) d) $\lim_{x \to 0} \frac{(1-9^x)\ln(1+3x)}{3x^2-4x^3}$ (-2 ln 3)

§ 8. HÀM SỐ LIÊN TỤC

- Đặt vấn đề
- I. Hàm liên tục
- **1. Định nghĩa.** f(x) liên tục tại $x_0 \Leftrightarrow + f(x)$ xác định trên $U_{\varepsilon_0}(x_0)$ $+ \lim_{x \to x_0} f(x) = f(x_0) \iff \lim_{\Delta x \to 0} \Delta f(x) = 0$

$$f(x)$$
 liên tục trái tại $x_0 \Leftrightarrow +) f(x)$ xác định trên $U_{\varepsilon_0}(x_0) \cap \{x < x_0\}$

+)
$$\lim_{x \to x_0^-} f(x) = f(x_0)$$

Tương tự ta có ĐN liên tục phải.

Định nghĩa. f(x) liên tục trên $(a;b) \Leftrightarrow f(x)$ liên tục tại $\forall x \in (a;b)$

f(x) liên tục trên $[a;b] \Leftrightarrow f(x)$ liên tục trong (a;b), liên tục trái tại b và liên tục phải tại a.

Ví dụ 1. Tìm a để hàm số sau liên tục tại
$$x = 0$$
: $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ a, & x = 0 \end{cases}$

Ví dụ 2. a) Tìm
$$a$$
 để $y = \begin{cases} \frac{\sin \frac{1}{x-1}}{\frac{1}{2^{x-1}}}, & x \neq 1 \\ \frac{1}{2^{x-1}} + 1, & x = 1 \end{cases}$

liên tục tại x = 1. ($\not\exists a$)

b) Tîm
$$a$$
 để $y = \begin{cases} \frac{\sin \frac{1}{x+1}}{\frac{1}{2^{x+1}}}, & x \neq -1 \\ \frac{1}{2^{x+1}} + 1 & x = -1 \end{cases}$

liên tục tại x = -1. (ℤ a

Ví dụ 3. a) Tìm a để
$$y = \begin{cases} a \sin(\operatorname{arccot} x), & x \le 0 \\ \cos \ln x - \cos \ln(x + x^2), & x > 0 \end{cases}$$

liên tục tại x = 0. (a = 0).

b) Tîm
$$a$$
 để $y = \begin{cases} a\cos(\arctan x), & x \le 0\\ \sin\ln(x + x^2) - \sin\ln x, & x > 0 \end{cases}$

liên tục tại x = 0. (a = 0).

- 2. Tính liên tục của các hàm sơ cấp. Mọi hàm số sơ cấp liên tục trên các khoảng mà hàm số đó xác định.
- **3. Phép toán.** Cho f(x), g(x) liên tục tại $x_0 \Rightarrow f(x) \pm g(x)$ liên tục tại x_0 , f(x)g(x) liên tục tại x_0 và $\frac{f(x)}{g(x)}$ liên tục tại x_0 nếu $g(x_0) \neq 0$
- **4.** Ý nghĩa. f(x) liên tục trên $[a; b] \Rightarrow đồ$ thị là đường liền nét.

5. Tính chất

 $f(c) = \mu$.

Định lí 1. (Weierstrass 1) f(x) liên tục trên $[a;b] \Rightarrow f(x)$ bị chặn trên [a;b]

Định lí 2. (Weierstrass 2) f(x) liên tục trên $[a;b] \Rightarrow f(x)$ đạt giá trị lớn nhất và bé nhất trên [a;b]

Định lí 3. f(x) liên tục trên [a;b], $M = \max_{[a;b]} f$, $N = \min_{[a;b]} f$, $\mu \in [m;M] \Rightarrow \exists c \in [a;b]$:

Hệ quả. f(x) liên tục trên [a; b], $f(a)f(b) < 0 \Rightarrow \exists c \in (a; b)$: f(c) = 0.

6. Điểm gián đoạn

Định nghĩa. f(x) xác định $U_{\varepsilon_0}(x_0)$, gián đoạn tại $x_0 \Leftrightarrow f(x)$ không liên tục tại x_0 .

f(x) xác định $U_{\varepsilon_0}(x_0)\setminus\{x_0\}$ thì ta bảo f(x) gián đoạn tại x_0

Định nghĩa. Điểm gián đoạn x_0 của hàm f(x) là điểm gián đoạn loại 1

$$\Leftrightarrow \exists \lim_{x \to x_0^+} f(x), \exists \lim_{x \to x_0^-} f(x).$$

Các điểm gián đoạn còn lại được gọi là điểm gián đoạn loại 2.

$$Vi du 4. f(x) = \frac{\sin x}{x}$$

Ví dụ 5.
$$f(x) = e^{\frac{1}{x}}$$

Ví dụ 6. Phân loại điểm gián đoạn của hàm số

a)
$$f(x) = \frac{1}{1 - 2x + 1}$$
 $(x = 1, \text{ loại } 2; x = 0, \text{ loại } 1)$

b)
$$f(x) = \frac{1}{1-3\frac{x+1}{x}}$$
 $(x = -1, \text{ loại } 2; x = 0, \text{ loại } 1)$

II. Hàm số liên tục đều

Định nghĩa. f(x) liên tục đều trên $X \Leftrightarrow \forall \varepsilon > 0$ bé tuỳ ý. $\exists \delta(\varepsilon) > 0$, $\forall x_1, x_2 \in X$, $|x_1 - x_2| < \delta(\varepsilon) \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$.

Ví dụ 7.
$$y = x + 2$$
.

Định lí (Cantor). f(x) liên tục trong $[a;b] \Rightarrow f(x)$ liên tục đều trong [a;b]

HAVE A GOOD UNDERSTANDING!