Sztuczna Inteligencja - Laboratorium 7

Jakub Wieśniak, Mateusz Wechman 19.12.2024

Contents

1	$\mathbf{W}\mathbf{y}$	brany Problem	2	
	1.1	Opis Problemu	2	
	1.2	Zbiór danych do uczenia sieci	2	
	1.3	Struktura sieci		
		Kryterium optymalizacji		
2	Zaproponowane badania			
	2.1	Badanie pierwsze	4	
			4	
		Badanie trzecie	4	
3	Realizacja badań			
	3.1	Badanie pierwsze	4	
		Badanie drugie		
		Badanie trzecie		

1 Wybrany Problem

1.1 Opis Problemu

Problemem bedzie zadanie predykcji średniej ocen studenta na koniec edukacji, biorac pod uwage jego pochodzenie oraz zachowania podczas studiów.

1.2 Zbiór danych do uczenia sieci

Wykorzystaliśmy dane ze strony:

https://archive.ics.uci.edu/dataset/856/higher+education+students+performance+evaluation

Zbiór możemy opisać w nastepujacy sposób:

$$S_N = \{(x_1, d_1), (x_2, d_2), \dots, (x_N, d_N)\}\$$

Figure 1: Opis zbioru danych

gdzie:

 \mathbf{x}_i : wektor atrybutów opisujacych i-tego studenta, zawierajacy kolumny od Age do Cumulative Grade Point in Last Semester.

 \mathbf{d}_i : Oczekiwana średnia ocen na koniec edukacji dla i-tego studenta.

Figure 2: Szczegóły zbioru danych

Dane podzieliliśmy na zbiór treningowy oraz testowy w stosunku 80/20.

1.3 Struktura sieci

Sieć przyjmuje 33 wejścia korespondujace z każda kolumna naszego zbioru plus biasem. Posiada 2 warstwy ukryte: pierwsza warstwa zawiera 6 neuronów z funkcja aktywacji ReLU, a druga warstwa zawiera 3 neurony. Na końcu sieci jest 5 neuronów wyjściowych z funkcja aktywacji softmax, gdzie każdy odpowiada jednej z klas wystepujacych w sieci.

Wynik klasyfikacji możemy opisać:

$$i = \arg \max_{l \in J} y^{(l)}$$

Figure 3: Wynik klasyfikacji

1.4 Kryterium optymalizacji

Za kryterium przyjmujemy:

$$e = \frac{1}{2} \sum_{i=1}^{r} (d^{(i)} - y^{(i)})^2 = \frac{1}{2} \sum_{i=1}^{r} (\varepsilon^{(i)})^2$$

Figure 4: Kryterium optymalizacji

2 Zaproponowane badania

2.1 Badanie pierwsze

Sprawdzamy, jak różny współczynnik uczenia wpływa na dokładność klasyfikacji.

2.2 Badanie drugie

Sprawdzamy, jak zamiana funkcji aktywacji na sigmoidalna w warstwie ukrytej wpływa na dokładność klasyfikacji.

2.3 Badanie trzecie

Sprawdzamy, jak wprowadzenie kryterium stopu opartego na ustalonej wartości zmiany błedu bedzie miało wpływ na długość klasyfikacji.

3 Realizacja badań

3.1 Badanie pierwsze

Opis badania pierwszego.

3.2 Badanie drugie

Opis badania drugiego.

3.3 Badanie trzecie

Opis badania trzeciego.