CS6190: Probabilistic Modeling Homework 3 MCMC

Gopal Menon 16 April, 2018

1(a) Gibbs Sampling of noisy image with Ising prior only.

The sampled images are shown for various values of α and β . The variance values shown should be disregarded as that part of the energy function is not used. α values needed to be close to zero or zero for the image to be visible.

noisy-message.png, Alpha = 1e-07, Beta = 0.75, Variance = 1

noisy-yinyang.png , Alpha = 1e-07 , Beta = 0.75 , Variance = 1

noisy-yinyang.png , Alpha = 1e-07 , Beta = 1 , Variance = 1

noisy-message.png , Alpha = 1e-07 , Beta = 1.25 , Variance = 1

noisy-yinyang.png , Alpha = 1e-07 , Beta = 1.25 , Variance = 1

noisy-yinyang.png , Alpha = 0 , Beta = 0.75 , Variance = 1

noisy-yinyang.png , Alpha = 0 , Beta = 1 , Variance = 1

noisy-yinyang.png, Alpha = 0, Beta = 1.25, Variance = 1

1(b) Here are the posterior images for 10 burn in and 20 denoising iterations. The parameter values I used were $\alpha = 0$, $\beta = 1$ and $\sigma^2 = 1$. The images converged really fast in the first few iterations. The function generate_gifs in the R code can be called to generate gif images that show the image transition. I did not try include the gif images in the output as it did not seem to be platform independent.

noisy-message.png , Alpha = 0 , Beta = 1 , Variance = 1

noisy-yinyang.png , Alpha = 0 , Beta = 1 , Variance = 1

- 1(c) For estimating σ^2 , I started with a wide guess range and then did a maximum likelihood computation at each iteration. Final estimates for σ^2 :
- ## [1] "Standard deviation estimate for noisy message: 1.188"
- ## [1] "Standard deviation estimate for noisy yinyang: 1.58503521060864"
 - 2. Say you are given data (X,Y), with $X \in \mathbb{R}^d$ and $Y \in \{0,1\}$. The goal is to train a classifier that will predict an unknown class label \tilde{y} from a new data point \tilde{x} . Consider the following model:

$$Y \sim Ber\left(\frac{1}{1 + e^{-X^T\beta}}\right),$$

 $\beta \sim N(0, \sigma^2 I).$

This is a **Bayesian logistic regression** model. Your goal is to derive and implement a Hamiltonian Monte Carlo sampler for doing Bayesian inference on β .

(a) Write down the formula for the unormalized posterior of $\beta|Y$, i.e.,

$$p(\beta|y;x,\sigma) \propto \prod_{i=1}^{n} p(y_{i}|\beta;x_{i})p(\beta;\sigma)$$

$$= \prod_{i=1}^{n} \left(\left[\frac{1}{1 + e^{-x_{i}^{T}\beta}} \right]^{y_{i}} \left[1 - \frac{1}{1 + e^{-x_{i}^{T}\beta}} \right]^{1-y_{i}} \right) \frac{1}{\sqrt{(2\pi)^{k}|\sigma^{2}I|}} e^{\left(-\frac{1}{2}\beta^{T}(\sigma^{2}I)^{-1}\beta\right)}$$

where, $\beta \in \mathbb{R}^k$, and k = d + 1

(b) Show that this posterior is proportional to $exp(-U(\beta))$, where

$$U(\beta) = \sum_{i=1}^{n} (1 - y_i) x_i^T \beta + \log(1 + e^{-x_i^T \beta}) + \frac{1}{2\sigma^2} \|\beta\|^2$$

8

$$\begin{split} p(\beta|y;x,\sigma) &\propto \prod_{i=1}^{n} \left(\left[\frac{1}{1+e^{-x_{i}^{T}\beta}} \right]^{y_{i}} \left[1 - \frac{1}{1+e^{-x_{i}^{T}\beta}} \right]^{1-y_{i}} \right) \frac{1}{\sqrt{(2\pi)^{k}|\sigma^{2}I|}} e^{\left(-\frac{1}{2}\beta^{T}(\sigma^{2}I)^{-1}\beta \right)} \\ &= \prod_{i=1}^{n} \left(\left[\frac{1}{1+e^{-x_{i}^{T}\beta}} \right]^{y_{i}} \left[\frac{e^{-x_{i}^{T}\beta}}{1+e^{-x_{i}^{T}\beta}} \right]^{1-y_{i}} \right) \frac{1}{\sqrt{(2\pi)^{k}|\sigma^{2}I|}} e^{\left(-\frac{\|\beta\|^{2}}{2\sigma^{2}} \right)} \\ &\log \left(p(\beta|y;x,\sigma) \right) \propto - \sum_{i=1}^{n} y_{i} \log \left(1 + e^{-x_{i}^{T}\beta} \right) + \sum_{i=1}^{n} (1-y_{i}) \cdot - x_{i}^{T}\beta - \sum_{i=1}^{n} (1-y_{i}) \log \left(1 + e^{-x_{i}^{T}\beta} \right) - \frac{1}{2\sigma^{2}} \|\beta\|^{2} \\ &= - \sum_{i=1}^{n} y_{i} \log \left(1 + e^{-x_{i}^{T}\beta} \right) - \sum_{i=1}^{n} (1-y_{i})x_{i}^{T}\beta - \sum_{i=1}^{n} \log \left(1 + e^{-x_{i}^{T}\beta} \right) + \sum_{i=1}^{n} y_{i} \log \left(1 + e^{-x_{i}^{T}\beta} \right) - \frac{\|\beta\|^{2}}{2\sigma^{2}} \\ &= - \sum_{i=1}^{n} (1-y_{i})x_{i}^{T}\beta - \sum_{i=1}^{n} \log \left(1 + e^{-x_{i}^{T}\beta} \right) - \frac{1}{2\sigma^{2}} \|\beta\|^{2} \\ \Rightarrow p(\beta|y;x,\sigma) \propto \exp\left(-U(\beta) \right), \text{ where} \\ &U(\beta) = \sum_{i=1}^{n} (1-y_{i})x_{i}^{T}\beta + \sum_{i=1}^{n} \log \left(1 + e^{-x_{i}^{T}\beta} \right) + \frac{1}{2\sigma^{2}} \|\beta\|^{2} \end{split}$$

- 2(d) The Monte Carlo estimate of posterior predictive probability of the label was computed by first doing a dot product of each β with the test data and then averaging it out for each data point. A value of 0.5 and above was classified as Versicolor.
- 2(e) Trace plots of the β sequence and histograms are shown below.

Trend for bias multiplier

Histogram for bias multiplier

Trend for Sepal.Length multiplier

Histogram for Sepal.Length multiplier

Trend for Sepal.Width multiplier

Histogram for Sepal.Width multiplier

Trend for Petal.Length multiplier

Histogram for Petal.Length multiplier

Trend for Petal.Width multiplier

Histogram for Petal.Width multiplier

2(f) A variance σ^2 value of 1 was used, with a step size ϵ of 0.04 and number of steps L of 40.

[1] "The zero-one loss was 3"