DEPARTAMENTO DE ENGENHARIA ELÉTRICA – UFSJ UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL REI

Confiabilidade de Sistemas Elétricos de Potência Estudo de caso 01

Artur Miranda Oliveira

Exercício 1: Faça um algoritmo para o cálculo de índices de confiabilidade através do método da enumeração, capaz de considerar até (no mínimo) contingências triplas. Construa um programa para este algoritmo. Em seguida, altere o programa para considerar contingências de maior ordem. Aplique este programa ao sistema IEEE-RTS. Imprima: o número de estados avaliados, a probabilidade total dos estados avaliados, os índices obtidos e os tempos de processamento necessários para contingências duplas, triplas, quádruplas, quíntuplas e sêxtuplas. Analise a evolução do subespaço de estados (em termos da quantidade de estados e da respectiva probabilidade), assim como a precisão dos índices, à medida que se aumenta o número de contingências simultâneas.

Sistema IEEE-RTS:

Usina	Unidades	FOR (%)	Pot. Ativa (MW)	
			Min	Max
1	5	2	6	12
2	2	10	10	20
3	2	10	10	20
4	2	2	30	76
5	2	2	30	76
6	3	4	60	100
7	1	4	80	155
8	1	4	80	155
9	2	4	80	155
10	3	5	80	197
11	1	8	150	350
12	1	12	200	400
13	1	12	200	400
14	6	1	16	50

As unidades da usina 1 foram numerados de 1 a 5, as unidades da usina 2 foram numerados 6 a 7 e assim por diante.

Contingências Duplas:

Estados considerados:

>> EstadosPossiveis

EstadosPossiveis =

529

Índices:

Indices =

1×4 <u>table</u>

Expected_Power_Not_Supplied	Expected_Energy_Not_Supplied	Loss_of_Load_Probability	Loss_of_Load_Expectation
2.5977	22756	0.020182	176.79

Probabilidade total dos estados avaliados:

>> SomaProbabilidadeEstados

SomaProbabilidadeEstados =

0.8417

Tempo:

Profile Summary (Total time: 0.325 s)

▼ Flame Graph

Tempo gasto: 0.325 s

Contingências Triplas:

Estados considerados:

>> EstadosPossiveis

EstadosPossiveis =

5489

Índices:

Indices =

1×4 <u>table</u>

Probabilidade total dos estados avaliados:

>> SomaProbabilidadeEstados

SomaProbabilidadeEstados =

0.9540

Tempo:

Profile Summary (Total time: 0.452 s)

→ Flame Graph

Tempo gasto: 0.452 s

Contingências Quádruplas:

Estados considerados:

>> EstadosPossiveis

EstadosPossiveis =

41449

Índices:

Indices =

1×4 <u>table</u>

Expected_Power_Not_Supplied	Expected_Energy_Not_Supplied	Loss_of_Load_Probability	Loss_of_Load_Expectation
12.231	1.0715e+05	0.07665	671.46

Probabilidade total dos estados avaliados:

>> SomaProbabilidadeEstados

SomaProbabilidadeEstados =

0.9896

Tempo:

Profile Summary (Total time: 2.090 s)

▼ Flame Graph

Tempo gasto: 2.090 s

Contingências Quíntuplas:

Estados considerados:

>> EstadosPossiveis

EstadosPossiveis =

242825

Índices:

Indices =

1×4 <u>table</u>

Expected_Power_Not_Supplied	Expected_Energy_Not_Supplied	Loss_of_Load_Probability	Loss_of_Load_Expectation
14.045	1.2303e+05	0.082932	726.49

Probabilidade total dos estados avaliados:

>> SomaProbabilidadeEstados

SomaProbabilidadeEstados =

0.9981

Tempo:

Profile Summary (Total time: 110.715 s)

▼ Flame Graph

Ex1 Profile Summan

Tempo gasto: 110.715 s

Contingências Sêxtuplas: Estados Considerados: >> Estados Possiveis Estados Possiveis = 1149017

Índices:

Indices =

1×4 table

Expected_Power_Not_Supplied	Expected_Energy_Not_Supplied	Loss_of_Load_Probability	Loss_of_Load_Expectation
14.565	1.2759e+05	0.084317	738.62

Probabilidade total dos estados avaliados:

>> SomaProbabilidadeEstados
SomaProbabilidadeEstados =

0.9997

Tempo:

Profile Summary (Total time: 3774.534 s)

- Flame Graph

Ex1 Profile Summary

Tempo gasto: 3774.534 s

Análise:

O tamanho do subespaço de estados aumenta exponencialmente como pode se ver pelo gráfico acima. Quanto mais contingências são consideradas, maior é o tamanho.

A probabilidade total dos estados considerados aumenta rapidamente, entretanto, depois de um certo número de contingências, a probabilidade total aumenta muito pouco. A precisão dos índices segue o mesmo comportamento.

Exercício 2: Faça um algoritmo para o cálculo de índices de confiabilidade de sistemas de geração por meio da simulação Monte Carlo não sequencial. Utilize este algoritmo para estimar os índices LOLP, LOLE, EPNS e EENS para o sistema IEEE-RTS (Página 29 da apostila). Use como critério de parada βΕΡΝS = 5%. Compare os resultados com aqueles obtidos no Exercício 01 para contingências sêxtuplas.

Os resultados obtidos na simulação Monte Carlo são mostrados abaixo:

Os índices obtidos utilizando o método de enumeração, para contingências sêxtuplas, é mostrado abaixo:

Indices =			
1×4 <u>table</u>			
Expected_Power_Not_Supplied	Expected_Energy_Not_Supplied	Loss_of_Load_Probability	Loss_of_Load_Expectation
14.565	1.2759e+05	0.084317	738.62

Observa-se que o resultado é muito próximo. Vale ressaltar que o tempo para realização da simulação Monte Carlo é muito menor que o do método da enumeração.