### **Electricity and Magnetism**

- Physics 259 L02
  - Lecture 11



### Chapter 23: Gauss's Law



### Last time

• Chapters 21 and 22

### This time

Continue Disk of Charge Chapter 23.1: Electric Flux

#### A disk of charge

$$\sigma = \frac{Q}{A} = \frac{Q}{\pi R^2} = \frac{\Delta Q}{\Delta A_i} = \frac{dQ}{dA_i}$$

$$dQ = \sigma dA_i = \sigma 2\pi r_i dr$$







# Limiting cases?



$$E_{disk,z} = \frac{\sigma}{2\varepsilon_o} \left[ 1 - \frac{z}{\sqrt{z^2 + R^2}} \right]$$

$$E_{disk,z} = \frac{\sigma}{2\varepsilon_o} \left| 1 - \frac{z}{\sqrt{z^2}} \right| = 0????$$

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

$$E_{disk,z} = \frac{\sigma}{2\varepsilon_o} \left[ 1 - \frac{1}{\sqrt{1 + \frac{R^2}{z^2}}} \right] = \frac{\sigma}{2\varepsilon_o} \left[ 1 - \left( 1 + \frac{R^2}{z^2} \right)^{-\frac{1}{2}} \right] = \frac{\sigma}{2\varepsilon_o} \left[ 1 - \left( 1 - \frac{1}{2} \frac{R^2}{z^2} \right) \right]$$

$$\approx \frac{\sigma}{2\varepsilon_0} \frac{R^2}{2z^2} = \frac{Q/A}{2\varepsilon_0} \frac{\pi R^2}{2\pi z^2} = \frac{Q}{4\pi\varepsilon_0 z^2}$$

## Limiting cases?





$$E_{disk,z} = \frac{\sigma}{2\varepsilon_o} \left[ 1 - \frac{z}{\sqrt{z^2 + R^2}} \right]$$

$$E_{disk,z} = \frac{\sigma}{2\varepsilon_o}$$

### Plane of charge



7

### This is the result for a plane of charge



$$E_{plane,z} = egin{cases} \dfrac{\sigma}{2arepsilon_o}, z > 0 \ -\dfrac{\sigma}{2arepsilon_o}, z < 0 \end{cases}$$

### **Electric Field Lines**



Electric field lines are continuous curves. The electric field vectors are tangent to the field lines

The denser the field lines, the stronger the field (magnitude of E)

### Electric Field Lines Can't Cross



If field lines crossed, the electric field at that point would not be defined: superposition saves the day.

#### Sources and Sinks of Field Lines

Two charges of equal magnitude and opposite sign.

Field lines start on + Field lines end on –

Positive charge called "source" **Negative** charge called "sink"

halliday\_10e\_fig\_22\_08

Electric force on q: 
$$\vec{F}_{onq} = q\vec{E}$$

## Newton's 2<sup>nd</sup> Law: $\sum \vec{F} = m\vec{a}$

$$\sum \vec{F} = m\vec{a}$$

So if the electric force is the only force acting, then

$$\vec{F}_{onq} = m\vec{a}$$

$$q\vec{E} = m\vec{a}$$

$$q\vec{E} = m\vec{a}$$



$$\vec{a} = \frac{q\vec{E}}{m}$$



#### 23-1: The Electric Flux











# A closed surface through which an electric field passes is called **Gaussian surface**

An imaginary mathematical surface



#### **Electric Flux; Gauss' Law**

Gauss' Law is equivalent to Coulomb's law. It will provide us:

- (i) an easier way to calculate the electric field in specific circumstances (especially situations with a high degree of symmetry)
- (ii) a better understanding of the properties of conductors in electrostatic equilibrium (more on this as we go)
- (iii) It is valid for moving charges not limited to electrostatics.

# The Gaussian surface is most useful when it matches the shape of the field





# Electric Flux $(\Phi_e)$

- Amount of electric field going through a surface
- The number of field lines coming through a surface







### Wind going through a loop







### The Electric Flux

Amount of electric field going through a surface

$$\begin{array}{l} \Phi_e\,\alpha\;\text{E} \\ \Phi_e\,\alpha\;\text{A} \end{array}$$

$$\Phi_{\rho} \alpha A$$

$$\Phi_e \alpha \theta$$

$$\Phi_{\rm e} = E_{\perp}A = EA\cos\theta$$



#### QuickCheck 27.2

#### The electric flux through the shaded surface is

- A. 0.
- B. 200 N m/C.
- C.  $400 \text{ N m}^2/\text{C}$ .
- D. Some other value.



#### This section we talked about:

Chapter 23.1

See you on Friday

