Функция на Мьобиус

Функцията на Мьобиус $\mu(n)$ е важна фуннкция в теорията на числата и комбинаториката. Наречена е на немския математик Август Мьобиус, който я въвежда през 1832 г.

Определение

Дефиниционното множество на функцията $\mu(n)$ е съвкупността $\mathbb N$ на естествените числа. Функцията $\mu(n)$ приема трите стойности +1, -1 и 0 в зависимост от разлагането на n на прости множители. А именно:

- $\mu(n) = +1$, ако n е безквадратно число с **четен** брой прости множители;
- $\mu(n) = -1$, ако n е безквадратно число с **нечетен** брой прости множители;
- $\mu(n) = 0$, ако *n* не е безквадратно число.

Свойства

Функцията на Мьобиус е мултипликативна, тоест $\mu(ab) = \mu(a) \times \mu(b)$ за всички взаимно прости числа a и b.

Сборът на стойностите на функцията е нула, когато нейният аргумент пробягва делителите на естествено число, по-голямо от единица:

$$\sum_{d|n} \mu(d) = \begin{cases} 1, & n = 1; \\ 0, & n > 1. \end{cases}$$

Формула за обръщане

За всички аритметични функции f и g важи следната еквивалентност:

$$g(n) = \sum_{d|n} f(d) \iff f(n) = \sum_{d|n} \mu(d)g\left(\frac{n}{d}\right).$$