

Escola:	Escola Politécnica		Campus:	Curitiba
Cursos:	Bacharelado em Cié	ência da Computação	Ano/Semestre:	2023/1
Código/Nome da disciplina:	Performance em Sis	stemas Ciberfísicos		
Carga Horária:	60 horas (80 horas-	60 horas (80 horas-aula)		
Requisitos:	Não se aplica			
CH/Créditos:	4	Período: 3/5	Turma: ∪	Turno: manhã
Professor Responsável:	Frank Coelho de Ale	cantara		

1. EMENTA

A disciplina de Performance em Sistemas Ciberfísicos é de natureza teórica/prática ofertada a estudantes da área da Computação. Durante a disciplina, o estudante analisa aspectos de concorrência e paralelismo em nível de hardware para sistemas ciberfísicos, considerando os sistemas de memória e processamento. Adicionalmente, distingue os mecanismos de comunicação e coordenação entre processos e threads responsáveis pelo desempenho dos sistemas ciberfísicos. Ao final, o estudante é capaz de empregar mecanismos de performance em sistemas ciberfísicos de acordo com a situação problema e os recursos computacionais disponíveis para obter melhor desempenho com os recursos do hardware e do sistema operacional.

2. RELAÇÃO COM DISCIPLINAS PRECEDENTES E POSTERIORES

Esta disciplina pode ser cursada por estudantes dos cursos de computação. A disciplina fornece a base necessária para tratar da performance em sistemas ciberfísicos para as seguintes disciplinas: **Bacharelado em Ciência da Computação:** Data Science; Sistema Operacionais Ciberfísicos; Redes Convergentes; Arquitetura de Sistemas Distribuídos Paralelos e Concorrentes; Experiência Criativa: Projeto Transformador I; Experiência Criativa: Projeto Transformador II; **Bacharelado em Sistemas de Informação:** Analytics para Big Data; Projeto Final: Implementação; **Bacharelado em Engenharia de Software:** Arquitetura de Software; Projeto Final I; Projeto Final II.3.

3. TEMAS DE ESTUDO

- TE1 Sistemas de Memória
- 2. **TE2** Sistemas de Processamento Paralelo

- 3. **TE3** Comunicação entre Processos e Threads
- 4. **TE4** Coordenação de Processos e Threads

4. RESULTADOS DE APRENDIZAGEM

COMPETÊNCIA	ELEMENTOS DE COMPETÊNCIA	RESULTADO DE APRENDIZAGEM	TEMAS DE ESTUDO	
Desenvolver infraestrutura computacional, considerando os aspectos de qualidade, incluindo a sustentabilidade, escalabilidade e segurança, com senso crítico.	C1. Projetar infraestrutura	RA1 – Implementa técnicas para reduzir a latência em nível de hardware considerando as hierarquias de memória e processamento paralelo, de forma precisa.	TE2 – Sistemas de	
	computacional, com senso crítico	RA2 – Implementa programas concorrentes que otimizam a utilização do hardware disponível, de forma autorregulada.	TE3 – Comunicação entre Processos e Threads TE4 – Coordenação de Processos e Threads	
	C2. Implantar infraestrutura computacional para suportar aplicações diversas	RA1 – Implementa técnicas para reduzir a latência em nível de hardware considerando as hierarquias de memória e processamento paralelo, de forma precisa.	TE1 – Sistemas de Memória TE2 – Sistemas de Processamento Paralelo	
		RA2 – Implementa programas concorrentes que otimizam a utilização do hardware disponível, de forma autorregulada.	TE3 – Comunicação entre Processos e Threads TE4 – Coordenação de Processos e Threads	
	C3. Avaliar a qualidade da infraestrutura computacional	RA1 – Implementa técnicas para reduzir a latência em nível de hardware considerando as hierarquias de memória e processamento paralelo, de forma precisa.	TE1 – Sistemas de Memória TE2 – Sistemas de Processamento Paralelo	
				TE3 – Comunicação entre Processos e Threads TE4 – Coordenação de Processos e Threads

5. MAPA MENTAL

6. METODOLOGIA E AVALIAÇÃO

Os Resultados de Aprendizagem desta disciplina serão desenvolvidos de acordo com o exposto no Quadro 6.1. Nele são apresentados os Resultados de Aprendizagem (RA), os Indicadores de Desempenho (ID), os Métodos ou Técnicas empregadas e o Processo de Avaliação. Serão conduzidos os seguintes tipos de avaliação:

- 1. **Formativa:** realizada durante o desenvolvimento das atividades, com intervenção e *feedback* imediato dado pelo professor ou pelos colegas, reforçando os conceitos, quando necessário.
- 2. **Somativa:** composta por atividades com nota atribuída a partir de entregas (trabalhos e atividades) e avaliações por pares. A nota atribuída é necessária para aprovação na disciplina, conforme regulamento acadêmico.
- 3. **Recuperação:** composta por atividades com nota atribuída a partir de entregas (trabalhos e atividades) e avaliações individuais com o objetivo de recuperar resultados de aprendizagem menores que 7,0. A nota atribuída é limitada no máximo em 7,0.
- 4. **Devolutiva:** apresentação das avaliações realizadas corrigidas, geralmente uma ou duas semanas após a sua realização. As entregas somativas também possuem devolutivas, com comentários nas entregas.

Os seguintes critérios de aprovação serão considerados:

- 1. Para ser aprovado nesta disciplina, o estudante deverá obter no mínimo nota igual a 7,0 (sete) em cada Resultados de Aprendizagem (RA), considerando todas as avaliações realizadas em cada RA.
- 2. Caso o estudante não atinja a nota média 7,0 (sete) para os Resultados de Aprendizagem, será oportunizada uma Semana Estendida de Recuperação, na qual o estudante poderá recuperar o(s) resultado(s) não atingido(s), por meio de atividades específicas.
- 3. Caso o estudante, mesmo após a Semana Estendida de Recuperação, não consiga atingir a nota média 7,0 (sete) para os Resultados de Aprendizagem, então será considerado reprovado, e deverá cursar novamente a disciplina.
- 4. Cada RA será composto por 60% da nota obtida Trabalhos Avaliativos e 40% da nota obtida nas Avaliações Individuais realizadas relativos ao RA, incluindo TDE. O estudante poderá recuperar a nota obtida no RA (prova + trabalhos) em uma avaliação individual de recuperação do RA. Caso a nota obtida na recuperação seja maior ou igual a 7.0 a nota do RA será lançada como 7,0.
- 5. Todas as atividades serão postadas no Ambiente Virtual de Aprendizagem. Tarefas postadas após a data limite perderão 10% do valor avaliado por dia de atraso.
- 6. Trabalhos em grupos serão realizados por grupos de, no máximo, 4 alunos.

RESULTADO DE APRENDIZAGEM	INDICADORES DE DESEMPENHO	PROCESSOS DE AVALIAÇÃO	MÉTODOS EMPREGADOS
RA1 – Implementa técnicas para reduzir a latência em nível de hardware considerando as hierarquias de memória e processamento paralelo, de forma precisa.	 ID1.1 – Distingue as hierarquias de memória em nível de hardware. ID1.2 – Seleciona o hardware de acordo com o contexto, baseado nas características de processamento paralelo em nível de hardware para reduzir a latência. ID1.3 – Codifica os principais algoritmos de hierarquia de memória, de forma precisa. 	[Formativa] Aplicação de atividades práticas, com feedback imediato. [Somativa] Avaliação individual e em grupo com questões discursivas e objetivas sobre os temas de estudo [Somativa] Aplicação de atividades práticas para avaliação e fixação dos temas vistos durante a aula.	Problem Based Learning (PBL) Project Based Learning (PjBL)
RA2 – Implementa programas concorrentes que otimizam a utilização do hardware disponível, de forma autorregulada.	ID2.1 – Codifica programas com processamento paralelo em nível de sistema, de forma autorregulada. ID2.2 – Codifica aplicando técnicas de exclusão mútua e de resolução de impasses em programas concorrentes.	[Formativa] Aplicação de atividades práticas, com feedback imediato. [Somativa] Avaliação individual e em grupo com questões discursivas e objetivas sobre os temas de estudo [Somativa] Aplicação de atividades práticas para avaliação e fixação dos temas vistos durante a aula.	Problem Based Learning (PBL) Project Based Learning (PjBL)

Forma de Trabalho	Item de Avaliação	RA1	RA2
[Grupo] / [Individual]	Trabalhos Avaliativos	4,0	4,0
[Individual]	Avaliação Individual	6,0	6,0
	Nota da RA	10,0	10,0
	Peso da RA na média	40%	60%
	Média Disciplina Para Aprovação	7,0	

7. CRONOGRAMA DE ATIVIDADES

	RA	Atividades Pedagógicas	Tipo	Horas Aula
08/03/2023 Semana 1	RA 1	Apresentação da Disciplina e Motivação. História Memórias e Processadores com vistas a desempenho.	Em aula	4 h
15/03/2023 Semana 2	RA 1	Arquitetura Von Neumann / Harvard, conjunto de instruções. [Início TDE]	Em aula	4 h
22/03/2023 Semana 3	RA 1	Hierarquia de memórias	Em aula	4h
29/03/2023 Semana 4	RA 1	Memórias Cache: arquiteturas e algoritmos [Atividade Prática 1]	Em aula	4 h
		Trabalho Discente Efetivo	TDE	12 h
05/04/2023 Semana 5	RA 1	Gerência de Memória [Término TDE]	Em aula	4 h

12/04/2023 Semana 6	RA 1	Memória Virtual [Entrega Atividade Prática 1]	Em aula	4 h
19/04/2023 Semana 7	RA 1	[Avaliação Individual RA1][4h]	Em aula	4 h
26/04/2023 Semana 8	RA 2	Pipeline de instrução.	Em aula	4 h
03/05/2023 Semana 9	RA 2	Arquiteturas Paralelas, Multicores e <i>clusters</i> .	Em aula	4 h
10/05/2023 Semana 10	RA 2	Paralelismo em nível de <i>thread</i> s.	Em aula	4 h
17/05/2023 Semana 11	RA 2	O Modelo de Processos e Interprocess Communication.	Em aula	4 h
24/05/2023 Semana 12	RA 2	Sincronização de Processos, Programação Concorrente [Atividade Prática 2]	Em aula	4 h
31/05/2023 Semana 13	RA 2	Sincronização de Processos, Programação Concorrente.	Em aula	4 h
07/06/2023 Semana 14	RA 2	Problemas de Sincronização de Processos. [Entrega Atividade Prática 1]	Em aula	4 h
14/06/2023 Semana 15	RA 2	[Avaliação RA 2][4h]	Em aula	4 h
21/06/2023 Semana 16		[Recuperação RA's 1 e 2][4h]	Em aula	4 h
Semana 17		[Recuperação Entendida Todas RA's][4h]	Em aula	4 h

Em caso de necessidade de afastamento das aulas presenciais por motivo de COVID-19, o estudante precisará alinhar com o professor as atividades a serem realizadas para atingir os resultados de aprendizagem ou aprendizagem pretendidas do período de ausência.

8. REFERÊNCIAS

Bibliografia Básica:

TANEMBAUM, Andrew S. e Bos, Herbert. Sistemas Operacionais Modernos, 4ª Edição – Porto Alegre, Bookman, 2015.

STALLINGS, W. "Arquitetura e Organização de Computadores", 10a. Edição, 2018, Pearson. (livro texto – disponível pelo site da biblioteca)

TANENBAUM, Andrew S. Sistemas Operacionais: projeto e implementação, 3ª Edição – Porto Alegre: Bookman, 2008

Bibliografia Complementar:

STALLINGS, William; BROWN, Lawrie. Segurança de Computadores: princípios e práticas. Rio de Janeiro: Elsevier Campus, 2014 DAVID A. PETTERSON, JOHN L. HENNESY. Arquitetura de Computadores: uma abordagem quantitativa. Editora Campus, 2013. COULOURIS, George F.; DOLLIMORE, Jean; KINDBERG, Tim. Sistemas Distribuídos: conceitos e projeto. Porto Alegre: Bookman, 2013.

TANENBAUM, Andrew S.; STEEN, Maarten van. Sistemas Distribuídos: princípios e paradigmas. São Paulo: Pearson Education do Brasil, 2008.

9. ACESSIBILIDADE

Não há necessidade de adaptação.

10. ADAPTAÇÕES PARA PRÁTICAS PROFISSIONAIS

Flexibilização do ambiente de desenvolvimento: alunos podem escolher seu editor de código preferencial, podendo optar por qualquer versão gratuita e reduzindo necessidades de configuração de ambiente diverso em sua máquina pessoal.