三角學

沈威宇

2025年1月16日

目錄

第一草	二角学(Trigonometry)	1
第一	−節 角(Angle)....................................	1
	一、 弧度與角度	1
	(一) 弧度(radian)/弳/弳度	1
	(二) 角度(degree)	1
	二、 廣義角	1
	三、 極坐標系(Polar Coordinate System)	1
	四、 斜角	2
	五、 三角測量	2
第二	二節 三角比(Trigonometric Ratios)與三角函數(Trigonometric functions).....	2
2.12		
	二、 廣義角(General angles)三角比/三角函數幾何定義	
	三、 特殊角三角函數值	
	二、13/1/3 = 25 = 25 = 25 = 25 = 25 = 25 = 25 = 2	
	五、 奇變偶不變,正負看象限	
	六、 正、餘弦函數級數形式	
	て、 三角函數指數形式	
	八、 三角函數微積分	
<i>**</i>		
第二	E節 與三角函數相關的函數	
	一、 反三角函數	
	二、 反三角函數定積分形式	
	三、 atan2 函數	
	四、 輻角(Argument)	
	(一) 輻角	
	(二) 輻角主值	9

五、	雙曲函數(Hyperbolic functions)	10
六、	反雙曲函數對數形式	10
第四節	公式定理	10
<u> </u>	三角形公式定理	10
	(一) 勾股/畢氏/商高定理	10
	(二) 三角形全等與 <i>SSA</i> 型性質	11
	(三) 九點圓與歐拉線	11
	(四) 正弦定理	12
	(五) 投影定理	12
	(六) 餘弦定理	12
	(七) 三角形面積定理	13
	(八) 重心相關定理	13
	(九) 外心相關定理	13
	(十) 內心相關定理	13
	(十一) 垂心相關定理	14
	(十二) 西瓦定理(Ceva theorem)	14
	(十三) 孟氏定理(Menelaus' theorem)	14
	(十四) 角平分線定理	14
	(十五) 角平分線長定理	14
= \	三角函數公式定理	15
	(一) 正切萬能公式	15
	(二) 二倍角公式	15
	(三) 半角公式與平方化倍角公式	15
	(四) 三倍角公式	15
	(五) 和差角公式	15
	(六) 平方關係	16
	(七) 三角形內角正切公式	16
	(八) 正餘弦函數疊合公式定理	16
	(九) 和差化積	16
	(十) 積化和差	17
	(十一) 變形公式	17
	(十二) 單位圓定理	17

/ L 一、															4 -
(十三) 高次方降次															77

第一章 三角學(Trigonometry)

第一節 角(Angle)

一、 弧度與角度

(一) 弧度(radian)/弳/弳度

指圓周上一段弧長與其對應半徑的比值。物理上無因次。單位同其名或通常省略。扇形的弧長等於其弧度乘以半徑;扇形的面積等於其弧度乘以半徑平方除以二。

(二) 角度 (degree)

一個完整的圓被平分為 360°。物理上無因次。

$$\frac{15\%}{1^{\circ}} = \frac{\pi}{180} \approx 57.3 \approx \frac{1}{0.0175}$$

$$\pi \approx 3.14159265, \quad \frac{1}{\pi} \approx 0.3183$$

二、 廣義角

指將角從 $[0, 2\pi)$ 的普通角擴展到任意實數。

同界角: $\alpha \setminus \beta$ 為同界角 $\iff \frac{\alpha - \beta}{2\pi} \in \mathbb{Z}$

三丶 極坐標系(Polar Coordinate System)

一種二維坐標系,用於表示平面上的點,其位置由一對數值(距離 r 和角度 θ)來確定。與笛卡爾坐標系統(Cartesian Coordinate System)不同。

- 距離 r: 從極點(通常是坐標原點 O)到點 P 的距離 $\circ r \ge 0$ \circ
- 角度 θ :從極軸(通常是水平的正 x 軸)逆時針旋轉到點 P 所在的射線的角度。角度可以用弧度或度數表示。
- 點 P 的極坐標表示為 $[r, \theta]$ 。
- 從極坐標到直角坐標的轉換:

$$x = r \cos \theta$$

$$y = r \sin \theta$$

• 從直角坐標到極坐標的轉換:

$$r = \sqrt{x^2 + y^2}$$
$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

四、斜角

斜角指切線與 x 軸的最小夾角,其正切值為其斜率。

五、 三角測量

• 仰角:仰視目標時,視線與水平線的夾角。

• 俯角:俯視目標時,視線與水平線的夾角。

• 方位角(地理):以正北為 0°,順時針為正。

 象限角(地理):以東南西北某一方位(通常為正北或正南)為基準,加上向相鄰方位轉向的度 數與該相鄰方位,如北 35° 西 代表方位角 325°、南 30° 西代表方位角 210°。

第二節 三角比 (Trigonometric Ratios) 與三角函數 (Trigonometric functions)

一、 銳角三角比

• 正弦(Sine, sin):正弦值是對應角的對邊與斜邊之比,即:

$$\sin \theta = \frac{對邊}{斜邊}$$

• 餘弦(Cosine, cos):餘弦值是對應角的鄰邊與斜邊之比,即:

• 正切(Tangent, tan):正切值是對應角的對邊與鄰邊之比,即:

$$\tan \theta = \frac{\underline{\exists \underline{\&}}}{\underline{\upmu \underline{\&}}}$$

• 餘切 (Cotangent, cot):

$$\cot \theta = \frac{1}{\tan \theta}$$

正割(Secant, sec):

$$\sec \theta = \frac{1}{\cos \theta}$$

• 餘割(Cosecant, csc):

$$\csc\theta = \frac{1}{\sin\theta}$$

二、 廣義角(General angles)三角比/三角函數幾何定義

在單位圓中,令角度的測量方式是從正 x 軸開始,逆時針方向為正角,順時針方向為負角,且角度數值可以是任何實數。任意角度的三角函數值可以表示為:

• 正弦(Sine, sin):角 θ 的正弦值是單位圓上 對應點的 y 坐標,即:

$$\sin \theta = y$$

- 。為奇函數,定義域 \mathbb{R} ,值域 [-1, 1],週期 2π ,振幅 1,線對稱於 $x = \left(n + \frac{1}{2}\right)\pi$, $n \in \mathbb{Z}$,點對稱於 $((n\pi, n \in \mathbb{Z}), 0)$ 。
- 餘弦 (Cosine, cos): 角 θ 的餘弦值是單位圓 上對應點的 x 坐標,即:

$$\cos \theta = x$$

- 。為偶函數,定義 域 \mathbb{R} ,值域 [-1,1],週期 2π ,振幅 1,線對稱於 $x=n\pi, n\in\mathbb{Z}$,點對稱於 $\left(\left(\left(n+\frac{1}{2}\right)\pi, n\in\mathbb{Z}\right),0\right)$, $\cos(x)=\sin\left(x+\frac{\pi}{2}\right)$ 。
- 正切(Tangent,tan):角 θ 的正切值是正弦值與餘弦值的比,即:

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{y}{x}$$

- 。為奇函數,定義域 $\left\{x\in\mathbb{R}\left|\pi\nmid\left(x-\frac{\pi}{2}\right)\right.\right\}$,值域 \mathbb{R} ,週期 π ,點對稱於 $\left(\left(\frac{n}{2}\pi,\,n\in\mathbb{Z}\right),\,0\right)$ 。
- 餘切 (Cotangent, cot):

$$\cot \theta = \frac{1}{\tan \theta}$$

- 。為奇函數,定義域 $\{x \in \mathbb{R} \mid \pi \nmid x\}$,值域 \mathbb{R} ,週期 π ,點對稱於 $\left(\left(\frac{n}{2}\pi, n \in \mathbb{Z}\right), 0\right)$, $\cot(x) = -\tan\left(x + \frac{\pi}{2}\right)$ 。
- 正割 (Secant, sec):

$$\sec \theta = \frac{1}{\cos \theta}$$

- 。為偶函數,定義域 $\left\{x\in\mathbb{R}\left|\pi\nmid\left(x-\frac{\pi}{2}\right)\right.\right\}$,值域 $\left\{y\in\mathbb{R}\left|-1\leq y\vee y\leq 1\right.\right\}$,週期 π ,線對稱於 $((n\pi,\,n\in\mathbb{Z}),\,0)$,點對稱於 $x=\left(n+\frac{1}{2}\right)\pi,\,n\in\mathbb{Z}$ 。
- 餘割(Cosecant, csc):

$$\csc \theta = \frac{1}{\sin \theta}$$

。 為 奇 函 數 , 定 義 域 $\{x \in \mathbb{R} \mid \pi \nmid x\}$, 值 域 $\{y \in \mathbb{R} \mid -1 \leq y \lor y \leq 1\}$, 週 期 π , 線 對 稱 於 $x = \left(n + \frac{1}{2}\right)\pi, \, n \in \mathbb{Z}$,點對稱於 $((n\pi, \, n \in \mathbb{Z}), \, 0)$, $\csc(x) = \sec\left(x - \frac{\pi}{2}\right)$ 。

三角函數

三、 特殊角三角函數值

Radian	Angle	sin	cos	tan
0	0°	0	1	0
$\frac{\pi}{2}$	90°	1	0	
π	180°	0	-1	0
$\frac{3\pi}{2}$	270°	-1	0	
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{3\pi}{4}$	135°	$\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1
$ \frac{3\pi}{2} $ $ \frac{\pi}{4} $ $ \frac{3\pi}{4} $ $ \frac{\pi}{6} $	30°	$ \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} $ $ \frac{\sqrt{3}}{2} $	$ \frac{\sqrt{2}}{2} $ $ -\frac{\sqrt{2}}{2} $ $ \frac{\sqrt{3}}{2} $	$\frac{\sqrt{3}}{3}$
	60 °	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\frac{\pi}{3}}{\frac{2\pi}{3}}$	120°	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$ $-\frac{\sqrt{3}}{3}$
$\frac{5\pi}{6}$	150°	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$
$ \begin{array}{c} 5\pi \\ \hline 6 \\ \hline \frac{\pi}{12} \end{array} $	15°	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$2 - \sqrt{3}$ $2 + \sqrt{3}$
$\frac{5\pi}{12}$	75°	$ \frac{\sqrt{6} - \sqrt{2}}{4} $ $ \frac{\sqrt{6} + \sqrt{2}}{4} $	$\frac{\sqrt{6}-\sqrt{2}}{4}$	
$\frac{\pi}{10}$	18°	$\frac{4}{\sqrt{5}-1}$	$ \frac{-\frac{1}{2}}{-\frac{\sqrt{3}}{2}} $ $ \frac{\sqrt{6} + \sqrt{2}}{4} $ $ \frac{\sqrt{6} - \sqrt{2}}{4} $ $ \frac{\sqrt{10 + 2\sqrt{5}}}{4} $	$\frac{\sqrt{5} - 1}{\sqrt{10 + 2\sqrt{5}}}$ $\sqrt{10 - 2\sqrt{5}}$
$\frac{2\pi}{10}$	36°	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}+1}$
$\frac{3\pi}{10}$	54°	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\sqrt{5}+1$
$\frac{4\pi}{10}$	72°	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{4}$	$ \frac{\sqrt{10 - 2\sqrt{5}}}{\sqrt{10 + 2\sqrt{5}}} $ $ \frac{\sqrt{10 + 2\sqrt{5}}}{\sqrt{5} - 1} $

四、 三角函數基本關係

- 名稱:左側三者為正;右側三者為餘;上面二者為弦;中間二者為切;下面二者為割。
- 餘角關係:以鉛直軸為對稱軸,位於線對稱位置的三角比為餘角關系,即對於銳角 θ ,左 $(\theta)=$ 右 $\left(\frac{pi}{2}-\theta\right)$ 。
- 倒數關係:三條通過中心點的連線為倒數關係,其兩端之三角比互為倒數,相乘為 1。
- 商數關係:六邊形周上,連續三個頂點形成的連線,其兩端之三角比相乘等於中間之三角比。
- 平方關係:圖中有三個倒正三角形,其在上方兩頂點之二者之平方和等於在下方頂點者。

五、 奇變偶不變,正負看象限

今有函數 f,已知其為 $\sin \cdot \cos \cdot \tan \cdot \sec \cdot \csc \cdot \cot$ 之一,且已知 $f(\theta)$ 。欲求 $f(\phi)$,其中 $\phi = \pm \theta \pm n \frac{\pi}{2}$,其中 $n \in \mathbb{Z}$ 。

- 判斷方法:奇變偶不變,正負看象限。
- 上句:奇偶指 n 之奇偶,變指倒數,即:若 n 為奇數則令 $g(\theta) = \frac{1}{f(\theta)}$,否則令 $g(\theta) = f(\theta)$,則 $|f(\phi)| = |g(\theta)|$ 。
- 下句:象限指假設 $[r,\theta]$ 在第一象限時, $[r,\phi]$ 之象限。令該象限中任意角度為 ω 。令 $k=\frac{f(\phi)}{g(\theta)}$ 。則 $k=\frac{f(\omega)}{|f((\omega)|}$,即:

象限	_	_	Ξ	四
sin	+	+	-	-
cos	+	-	-	+
tan	+	-	+	-
CSC	+	+	-	-
sec	+	-	-	+
cot	+	-	+	-

六、 正、餘弦函數級數形式

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

七、 三角函數指數形式

根據歐拉/尤拉公式:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

三角函數可寫為:

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

$$\tan x = -i\frac{e^{2ix} - 1}{e^{2ix} + 1}, \quad x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$

$$\cot x = i\frac{e^{2ix} + 1}{e^{2ix} - 1}, \quad x \neq k\pi, k \in \mathbb{Z}$$

$$\sec x = \frac{2e^{ix}}{e^{2ix} + 1}, \quad x \neq \pi + 2k\pi, k \in \mathbb{Z}$$

$$\csc x = i\frac{2e^{ix}}{e^{2ix} - 1}, \quad x \neq 2k\pi, k \in \mathbb{Z}$$

八、 三角函數微積分

f(x)	f'(x)	$\int f(x) dx$
sin x	cosx	$-\cos x + C$
cos x	$-\sin x$	$\sin x + C$
tan x	$\sec^2 x$	$\ln \sec x + C$
CSC x	$-\csc x \cot x$	$\ln \csc x - \cot x + C$
sec x	sec x tan x	$\ln \sec x + \tan x + C$
cot x	$-\csc^2 x$	$\ln \sin x + C$

第三節 與三角函數相關的函數

一、 反三角函數

名稱	常用符號	定義	定義域	值域
反正弦	$y = \arcsin x$	$x = \sin y$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
反餘弦	$y = \arccos x$	$x = \cos y$	[-1, 1]	$[0,\pi]$
反正切	$y = \arctan x$	$x = \tan y$	R	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
反餘切	$y = \operatorname{arccot} x$	$x = \cot y$	R	$(0,\pi)$
反正割	$y = \operatorname{arcsec} x$	$x = \sec y$	$(-\infty, -1] \cup [1, +\infty)$	$[0,\frac{\pi}{2}) \cup (\frac{\pi}{2},\pi]$
反餘割	$y = \operatorname{arccsc} x$	$x = \csc y$	$(-\infty, -1] \cup [1, +\infty)$	$[-\frac{\pi}{2},0) \cup (0,\frac{\pi}{2}]$

二、 反三角函數定積分形式

$$\arcsin x = \int_0^x \frac{1}{\sqrt{1 - z^2}} dz, \qquad |x| \le 1$$

$$\arccos x = \int_x^1 \frac{1}{\sqrt{1 - z^2}} dz, \qquad |x| \le 1$$

$$\arctan x = \int_0^x \frac{1}{z^2 + 1} dz,$$

$$\operatorname{arccot} x = \int_x^\infty \frac{1}{z^2 + 1} dz,$$

$$\operatorname{arcsec} x = \int_1^x \frac{1}{z\sqrt{z^2 - 1}} dz, \qquad x \ge 1$$

$$\operatorname{arccsc} x = \int_x^\infty \frac{1}{z\sqrt{z^2 - 1}} dz, \qquad x \ge 1$$

三、 atan2 函數

atan2(y, x) 在 x > 0 時返還 $tan(\theta) = \frac{y}{x}$ 在 $(-\frac{\pi}{2}, \frac{\pi}{2})$ 中的解,在 $x < 0 \cdot y \ge 0$ 時返還 $tan(\theta) = \frac{y}{x}$ 在 $(\frac{\pi}{2}, \pi)$ 中的解,在 $x < 0 \cdot y < 0$ 時返還 $tan(\theta) = \frac{y}{x}$ 在 $(-\pi, -\frac{\pi}{2})$ 中的解,在 $x = 0 \cdot y \ne 0$ 時返還 $\frac{y}{|y|} \frac{\pi}{2}$,在 x = y = 0 時返還值未定義。

四、 輻角(Argument)

此處輻角用 arg(z) 代表 z 的輻角,用 Arg(z) 代表 z 的輻角主值,一些文獻反之。

(一) 輻角

設有非零複數 $z \in \mathbb{C} \setminus \{0\}$,記作 z = x + yi,其中的 x 和 y 為實數,那麼複數 z 的輻角 $\arg(z) = \varphi$ 指的是使下列等式:

$$z = x + yi = \sqrt{x^2 + y^2}(\cos \varphi + i \sin \varphi)$$

成立的任何實數 φ 。

(二) 輻角主值

設有非零複數 $z \in \mathbb{C} \setminus \{0\}$,記作 z = x + yi,其中的 x 和 y 為實數,那麼複數 z 的輻角主值 Arg(z) 指的是:

$$Arg z = Arg x + yi = atan2(y, x)$$

$$\arg(z) = \{ \operatorname{Arg}(z) + 2k\pi \mid k \in \mathbb{Z} \}$$

9

五、 雙曲函數(Hyperbolic functions)

各雙曲函數之名稱均以對應之三角函數之名稱前加雙曲(hyperbolic),代號則為對應之三角函數代號後加 h。

$$\sinh x = \frac{e^{x} - e^{-x}}{2}$$

$$\cosh x = \frac{e^{x} + e^{-x}}{2}$$

$$\tanh x = \frac{e^{2x} - 1}{e^{2x} + 1}$$

$$\coth x = \frac{e^{2x} + 1}{e^{2x} - 1}, \quad x \neq 0$$

$$\operatorname{sech} x = \frac{2e^{x}}{e^{2x} + 1}$$

$$\operatorname{csch} x = \frac{2e^{x}}{e^{2x} - 1}, \quad x \neq 0$$

六、 反雙曲函數對數形式

$$\begin{aligned} & \operatorname{arcsinh} = \ln \left(x + \sqrt{x^2 + 1} \right) \\ & \operatorname{arccosh} = \ln \left(x + \sqrt{x^2 - 1} \right), \quad x \geq 1 \\ & \operatorname{arctanh} = \frac{1}{2} \ln \left(\frac{1 + x}{1 - x} \right), \quad |x| < 1 \\ & \operatorname{arccoth} = \frac{1}{2} \ln \left(\frac{x + 1}{x - 1} \right), \quad |x| > 1 \\ & \operatorname{arcsech} = \ln \left(\frac{1}{x} + \frac{\sqrt{1 - x^2}}{x} \right), \quad 0 < x \leq 1 \\ & \operatorname{arccsch} = \ln \left(\frac{1}{x} + \frac{\sqrt{1 + x^2}}{|x|} \right), \quad x \neq 0 \end{aligned}$$

第四節 公式定理

一、 三角形公式定理

令圖形體積(或面積、長度)之代號同其自身。今有一三角形 $\triangle ABC$,其中: $\angle A \times \angle B \times \angle C$ 的對邊長分別為 $a \times b \times c$; $\angle A \times \angle B \times \angle C$ 又記作 $A \times B \times C$;外接圓 O 圓心 O 即外心(Circumcenter)、半徑 R;內接圓 I 圓心 I 即內心(Incenter)、半徑 r;重心(Centroid)G;垂心(Orthocenter) H; $\angle A \times \angle B \times \angle C$ 的對邊中點分別為 $M_a \times M_b \times M_c$; A 在 \overrightarrow{BC} 的垂足為 h_a , B 在 \overrightarrow{CA} 的垂足為 h_b , C 在 \overrightarrow{AB} 的垂足為 h_c ; $S = \frac{1}{2}(a+b+c)$; $\angle A \times \angle B \times \angle C$ 的角平分線與對邊之交點分別為 $\mathcal{B}_a \times \mathcal{B}_b \times \mathcal{B}_c$;九點圓 O 圓心 O 、半徑 O ;與 O 的兩鄰邊延長線與對邊皆相切的旁切圓分別為 O 是O 的有其圓名。

(一) 勾股/畢氏/商高定理

$$(\angle C = 90^{\circ}) \iff (a^2 + b^2 = c^2)$$

Proof.

趙爽勾股圓方圖證明法:

其中四個三角形的短股為 a、長股為 b、斜邊為 c。

$$4\frac{ab}{2} + (b-a)^2 = c$$
$$a^2 + b^2 = c^2$$

(二) 三角形全等與 SSA 型性質

令:已知兩三角形一對應位置之邊長相等稱 S,已知兩三角形一對應位置之角之角度相等稱 A,S 相鄰表示鄰邊,A 相鄰表示鄰角,S 與 A 相鄰表示邊與其一側的角,當 A 為直角得稱 R,R 之鄰邊 得稱 H。

三角形的全等性質有 SSS imes SAS imes AAS imes ASA imes RHS,當兩三角形符合以上任一條件時,知兩三角形全等。

SSA 型的討論:若已知 $a \cdot b \cdot \angle A$:

- $\angle A$ 為銳角,令 C 到 \overrightarrow{AB} 的距離為 $h = b \sin A$,則:
 - b<h: 無解
 - b=h: 唯一解
 - b>h: 兩解
- ∠A 為鈍角,則:
 - a≤b: 無解
 - a>b: 唯一解

(三) 九點圓與歐拉線

$$M_a,\ M_b,\ M_c,\ h_a,\ h_b,\ h_c,\ \frac{A+H}{2},\ \frac{B+H}{2}$$
必共圓,該圓稱九點圓 對於九點圓圓周 $\mathscr O$ 與圓心 $\mathscr O$ 均符合: $\mathscr O=\frac{O+H}{2}$

 \mathcal{O} , O, G, H 共線,該線稱歐拉線

△ABC是等腰三角形 ⇔ I在歐拉線上

費爾巴哈定理(Feuerbach's theorem):九點圓與三個旁切圓均外切,與內切圓內切(內切圓在內)。

$$\mathcal{O} = \frac{O}{2}$$

(四) 正弦定理

Proof.

$$\sin A = \frac{\overline{Ch_c}}{a}$$

$$\sin B = \frac{\overline{Ch_c}}{b}$$

 $\frac{\sin A}{a} = \frac{\sin B}{b}$

 $2R \sin A = a$

Proof.

作 $O \circ$ 若 ΔABC 為直角三角形,觀察可證。

若 $\triangle ABC$ 非直角三角形,以 BC 為一股,令斜邊在 \overrightarrow{BO} 上,作一直角三角形 BCD,其中 D=2O-B。

若 $\triangle ABC$ 為銳角三角形,根據圓周定理可知, $\angle D = \angle BAC$,得證。

若 $\triangle ABC$ 為鈍角三角形,根據根據圓內接四邊形對角互補定理可知, $\angle D = \pi - \angle A$,得證。

口四邊形面積 $=\frac{1}{2}$ 對角線相乘 \times sin 兩對角線夾角

(五) 投影定理

 $a = b \cos C + c \cos B$

(六) 餘弦定理

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Proof.

根據投影定理:

$$c = a \cos B + b \cos A$$

兩邊同乘 c:

$$c^2 = ac \cos B + bc \cos A$$

同理:

$$a^{2} = ac \cos B + ab \cos C$$

$$c^{2} = bc \cos A + ab \cos C$$

 $c^{2} = a^{2} - ab\cos C + b^{2} - ab\cos C = a^{2} + b^{2} - 2ab\cos C$

平行四邊形定理:平行四邊形四邊長平方和等於兩對角線平方和

三角形中線公式:
$$\overline{AB}^2 + \overline{AC}^2 = 2\left(\overline{AM_a}^2 + \overline{BM_a}^2\right)$$

(七) 三角形面積定理

$$\begin{split} \Delta ABC &= \frac{1}{2}a \cdot \overline{Ah_a} \\ &= \frac{1}{2}ab \sin C \\ &= \sqrt{s(s-a)(s-b)(s-c)} \quad (海龍 \text{ (Heron) } 公式) \\ &= \frac{abc}{4R} \\ &= rs \\ &= \frac{1}{\sqrt{\left(\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c}\right)\left(-\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c}\right)\left(\frac{1}{h_a} - \frac{1}{h_b} + \frac{1}{h_c}\right)\left(\frac{1}{h_a} + \frac{1}{h_b} - \frac{1}{h_c}\right)}} \\ &= \frac{2}{3}\overline{BM_b} \cdot \overline{CM_c} \sqrt{\frac{1 - \left(\overline{AM_a}^2 + \overline{BM_b}^2 + \overline{CM_c}^2\right)^2}{4\overline{BM_b}^2\overline{CM_c}^2}} \\ &= \frac{1}{2}\sqrt{\overline{AB^2AC^2} - \left(\overline{AB} \cdot \overline{AC}\right)^2} \\ &= \frac{1}{2}|\overline{AB} \times \overline{AC}| \end{split}}$$

(八) 重心相關定理

$$G$$
 為三中線交點
$$\overrightarrow{AG} = 2\overrightarrow{GM_A}$$

$$G = \frac{A+B+C}{2}$$

(九) 外心相關定理

$$\overline{OA} = \overline{OB} = \overline{OC} = R$$

$$O = \frac{a^2A + b^2B + c^2C}{a^2 + b^2 + c^2}$$
 O 為三邊中垂線交點

$$\Delta OAB$$
: ΔOBC : $\Delta OCA = \sin 2C$: $\sin 2A$: $\sin 2B$

$$\overrightarrow{AO} \cdot \overrightarrow{AB} = \frac{1}{2} \overrightarrow{AB}^2$$

$$\frac{1}{2} \angle AOB = \angle C \lor \pi - \angle C$$

(十) 內心相關定理

$$I$$
 與三邊均相切
$$I$$
 為三角角平分線交點
$$I = \frac{aA + bB + cC}{a + b + c}$$

$$a\overrightarrow{IA} + b\overrightarrow{IB} + c\overrightarrow{IC} = \overrightarrow{0}$$

(十一) 垂心相關定理

$$H$$
 為三高交點
$$H = \frac{\tan A \cdot A + \tan B \cdot B + \tan C \cdot C}{\tan A + \tan B + \tan C}$$

$$\overrightarrow{AH} \cdot \overrightarrow{AB} = \overrightarrow{AH} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} \left(\overrightarrow{AC}^2 + \overrightarrow{AB}^2 - \overrightarrow{BC}^2 \right)$$
在複數平面上:
$$\det \begin{pmatrix} 1 & A & A^2 & \overline{A} \\ 1 & B & B^2 & \overline{B} \\ 1 & C & C^2 & \overline{C} \\ 1 & H & H^2 & \overline{H} \end{pmatrix} = 0$$

$$\frac{\overline{Hh_a}}{\overline{Ah_a}} + \frac{\overline{Hh_b}}{\overline{Bh_b}} + \frac{\overline{Hh_c}}{\overline{Ch_a}} = 1$$

(十二) 西瓦定理(Ceva theorem)

令西瓦線段指各頂點與其對邊或對邊延長線連接而成的直線段。

三角形 $\triangle ABC$ 的西瓦線段 $\overrightarrow{AD} \setminus \overrightarrow{BE} \setminus \overrightarrow{CF}$:

 \overrightarrow{AD} 、 \overrightarrow{BE} 、 \overrightarrow{CF} 交於一點 $\iff \frac{\overline{BD}}{\overline{DC}} \cdot \frac{\overline{CE}}{\overline{EA}} \cdot \frac{\overline{AF}}{\overline{FB}} = 1 \implies D$ 、E、F中有零或二個點不在 ΔABC 邊上

口訣:頂分頂分頂分頂

(十三) 孟氏定理 (Menelaus' theorem)

一直線與 $\triangle ABC$ 的邊 $BC \cdot CA \cdot AB$ 或其延長線分別交於 $L \cdot M \cdot N$:

$$\iff \frac{\overline{AN}}{\overline{NB}} \cdot \frac{\overline{BL}}{\overline{LC}} \cdot \frac{\overline{CM}}{\overline{MA}} = 1 \implies L \setminus M \setminus N$$
 中有一或三數個點不在 ΔABC 邊上

口訣:頂分頂分頂分頂

(十四) 角平分線定理

已知: $\triangle ABC$ 中 $\angle B < \angle C$; D 在 \overline{BC} 上; E 在 \overline{BC} 上且不在 \overline{BC} 上。

內角平分線定理及逆定理: $\angle BAD = \angle DAC \Leftrightarrow \frac{DB}{DC} = \frac{AB}{AC}$

外角平分線定理及逆定理: $\angle CAE = \pi - \angle BAE \Leftrightarrow \frac{EB}{EC} = \frac{AB}{AC}$

(十五) 角平分線長定理

$$\overline{A\mathscr{B}_a} = \frac{bc \sin A}{(b+c) \sin \left(\frac{A}{2}\right)}$$

二、 三角函數公式定理

(一) 正切萬能公式

$$\sin \theta = \frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$$

$$\cos \theta = \frac{1 - \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$$

$$\tan \theta = \frac{2 \tan \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}}$$

(二) 二倍角公式

$$\sin 2\theta = 2 \sin \theta \cos \theta$$

$$\cos 2\theta = 1 - 2 \sin^2 \theta$$

$$= 2 \cos^2 \theta - 1$$

$$= \cos^2 \theta - \sin^2 \theta$$

(三) 半角公式與平方化倍角公式

$$\sin^2 \frac{\theta}{2} = \frac{1 - \cos \theta}{2}$$

$$\cos^2 \frac{\theta}{2} = \frac{1 + \cos \theta}{2}$$

$$\tan^2 \frac{\theta}{2} = \frac{1 - \cos \theta}{1 + \cos \theta}$$

$$\tan \frac{\theta}{2} = \frac{\sin \theta}{1 + \cos \theta}$$

$$= \frac{1 - \cos \theta}{\sin \theta}$$

$$= \frac{1 + \sin \theta - \cos \theta}{1 + \sin \theta + \cos \theta}$$

$$= \csc \theta - \cot \theta$$

(四) 三倍角公式

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$

$$\tan 3\theta = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta}$$

(五) 和差角公式

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$
$$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta$$
$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

$$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta}$$

$$\tan(\alpha - \beta) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha \tan\beta}$$

$$\cot(\alpha + \beta) = \frac{\cot\alpha \cot\beta - 1}{\cot\alpha + \cot\beta}$$

$$\cot(\alpha - \beta) = \frac{\cot\alpha \cot\beta + 1}{-\cot\alpha + \cot\beta}$$

$$\sec(\alpha - \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{-\sec\alpha \sec\beta + \csc\alpha \csc\beta}$$

$$\sec(\alpha - \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{\sec\alpha \sec\beta + \csc\alpha \csc\beta}$$

$$\csc(\alpha + \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{\sec\alpha \sec\beta + \csc\alpha \csc\beta}$$

$$\csc(\alpha + \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{\sec\alpha \sec\beta + \csc\alpha \csc\beta}$$

$$\csc(\alpha - \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{\sec\alpha \sec\beta - \csc\alpha \csc\beta}$$

$$\csc(\alpha - \beta) = \frac{\sec\alpha \sec\beta - \csc\alpha \csc\beta}{\sec\alpha \sec\beta - \csc\alpha \csc\beta}$$

(六) 平方關係

$$\sin^2 \theta = \frac{\tan^2 \theta}{1 + \tan^2 \theta} = 1 - \cos^2 \theta$$

$$\cos^2 \theta = \frac{1}{1 + \tan^2 \theta} = 1 - \sin^2 \theta$$

$$\tan^2 \theta = \frac{1 - \cos^2 \theta}{\cos^2 \theta} = \frac{\sin^2 \theta}{1 - \sin^2 \theta}$$

(七) 三角形內角正切公式

$$\alpha + \beta + \gamma = \pi \iff \tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \cdot \tan \beta \cdot \tan \gamma$$

(八) 正餘弦函數疊合公式定理

$$(a\sin\theta + b\cos\theta)^2 \le a^2 + b^2, \quad a, \ b \in \mathbb{R}$$

$$a\sin x + b\cos x = \sqrt{a^2 + b^2}\sin\left(x + \tan^{-1}\left(\frac{b}{a}\right)\right)$$

$$= \sqrt{a^2 + b^2}\cos\left(x - \tan^{-1}\left(\frac{a}{b}\right)\right)$$

(九) 和差化積

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

(十) 積化和差

$$2\sin\alpha\cos\beta = \sin(\alpha + \beta) + \sin(\alpha - \beta)$$

$$2\cos\alpha\sin\beta = \sin(\alpha + \beta) - \sin(\alpha - \beta)$$

$$2\cos\alpha\cos\beta = \cos(\alpha + \beta) + \cos(\alpha - \beta)$$

$$2\sin\alpha\sin\beta = -\cos(\alpha + \beta) + \cos(\alpha - \beta)$$

(十一) 變形公式

$$1 + \sin \theta = \left(\cos \frac{\theta}{2} + \sin \frac{\theta}{2}\right)^{2}$$
$$1 - \sin \theta = \left(\cos \frac{\theta}{2} - \sin \frac{\theta}{2}\right)^{2}$$

(十二) 單位圓定理

$$0 \le x \le 1, \ 0 \le y \le 1, \ x^2 + y^2 = a, \ \theta = \sin^{-1} x + \sin^{-1} y, \ \phi = \cos^{-1} x + \cos^{-1} y$$

$$\Rightarrow \begin{cases} a > 1 \iff \theta > \frac{\pi}{2} \iff \phi > \frac{\pi}{2} \\ a = 1 \iff \theta = \frac{\pi}{2} \iff \phi = \frac{\pi}{2} \\ a < 1 \iff \theta < \frac{\pi}{2} \iff \phi < \frac{\pi}{2} \end{cases}$$

(十三) 高次方降次

$$\sin^{4} \theta + \cos^{4} \theta = 1 - 2\sin^{2} \cos^{2} \theta = 1 - \frac{1}{2}\sin^{2}(2\theta)$$
$$\sin^{4} \theta - \cos^{4} \theta = \sin^{2} \theta - \cos^{2} \theta = -\cos(2\theta)$$
$$\sin^{6} \theta + \cos^{6} \theta = 1 - 3\sin^{2} \cos^{2} \theta = 1 - \frac{3}{4}\sin^{2}(2\theta)$$