Speculations on Test-Time Scaling

Sasha Rush Daniel Ritter

Cornell

Outline

Introduction

The Clues

Guess and Check

Guided Search

Full AlphaZero

Learning to Search

Something Wild

Context

- LLM (2018-2024) driven by training scaling
- Speculation: Benefit of static data running out

Implication

• Breakthrough in large-scale RL Training

What have we seen?

- Public demo model
- Strong result in constrained domains.

This Talk

- Survey of the public literature
- Synthesis of discussions with expert
- Gossip and hearsay

Thanks

Lewis Tunstall, Edward Beeching, Aviral Kumar, Charlie Snell, Michael Hassid, Yoav Artzi, Risab Agarwal, Kanishk Gandhi, Wenting Zhao, Yuntian Deng, Nathan Lambert

What we know

Our large-scale **reinforcement learning algorithm** teaches the model how to think productively using its **chain of thought** in a highly **data-efficient** training process.

What we know

- RL Signal from verifiable problems
- CoT "Thinking" occurs in token stream
- Data Efficient Fixed set of good problems

From Gossip

- Single final model
- Not learned from expert examples

Chain of Thought

o1 learns to hone its chain of thought and refine the strategies it uses. It learns to recognize and **correct its mistakes**. It learns to **break down tricky steps** into simpler ones. It learns to try a **different approach** when the current one isn't working.

Review: Chain of Thought

Planning

Backtracking

Strategies

Summary

- Solves problems by very long CoT
- CoT includes "thinking" (search / planning)
- Core novelty: Inducing this behavior

Notation - Test-Time (No learning yet!)

- \bullet x the problem specification
- $z \in \mathcal{S}^T$ the chain of thought (CoT)
- $y \in \mathcal{Y}$ the final answer
- $p(y|x) = \mathbb{E}_{z \sim p(z|x)} p(y|x,z)$ model

Warm-up: Ancestral Sampling

• [?](y | x, z=)

 $|\tilde{z}|$ amount of test-time compute

Warm-up: Monte-Carlo (Self-Consistency)

- [?](z | x)
- [?](y | x,)

Pick $y = \tilde{y}$

Warm-up: Beam Search

- [?](z | x)
- [?](y | x,)

 $z \in S^T$ - the chain of thought

y - the response

$$p(y|x) = E_{z \sim p(x|z)} p(y|x,z)$$
 - model

Warm up: Rejection Sampling

• [?](z | x)

• [?](y | x,)

Warm up: Monte-Carlo Roll-Outs

Start at z

• [?](z | x, z)

• [?](y | x,)

Goal: Learning

•
$$\max_{theta} \sum \log p(y|x;\theta)$$

Intractable expectation over latent CoT

Outline

Introduction

The Clues

Guess and Check

Guided Search

Full AlphaZero

Learning to Search

Something Wild

The Suspects

- Guess + Check
- Guided Search
- AlphaZero
- Learn to Search
- Learn to Search

Wildcard

A Note About Names

• Many different communities

Names conflict and overlap with past methods

This talk: First explain, then discuss names

Offline / Online?

• Each approach has two variants

• I will describe offline/batch variant

 Companies have complex internal RL optimizers to make online variant works

Informal: Guess + Check

• Sample N CoTs

Check if successful

Train on good ones

Formalization: EM

$$\max_{theta} \sum_{z} \log p(y|x;\theta) = \sum_{z} \log E_z p(y,z|x)$$

• E-Step: Compute $p(z|y,x) \propto (Ver(y))p(z|x)$

• M-Step: Fit p(y, z|x)Hard FM

Offline

• Batch servers to sample

Check if successful

• Train on good ones

Online

• Sample N CoTs

Check if successful

• Train on good ones

Terminology

• STaR

• ReST

Best-of-N

- ReST-EM
- ----
- Filtered Rejection Sampling

Why might this be right?

• Extremely simple and scalable

Good baseline in past work

Why might this be wrong?

No evidence this learns to correct, plan

Well-explored in literature with marginal gains

Alternative

• Can we improve upon the process of finding adequate CoTs?

Informal: Guided Search

• Sample several next steps for CoT

Check with a guide model for which to pursue

Continue to the end

• Train on good ones

Warm-up: Beam Search with Roll-Outs

• $\tilde{y}[?](y|x,\tilde{z})$

Where does the guide come from?

• Point 1

- Point 2
- Point 3

Why might this be right?

Major demonstrated RL result

Why might this be wrong?

Does not inject into CoT

Relatively complex to scale

Alternative

• Can we improve on the search?

Reminder: AlphaZero

Informal: AlphaZero

Search for best solution with model

Collect the best CoT

Train on good ones

Formalized: Expert Iteration

Why might this be right?

Major demonstrated RL result

_

Why might this be wrong?

Does not inject into CoT

Relatively complex to scale

Alternative

• Can we get the CoT to search?

Challenge

Informal: Learning to Correct

• Find optimal paths

Adjust to add mistakes

Formalized: Stream of Search

- •
- •

Formalized: Advantage

•

•

Why might this be right?

Why might this be wrong?

No Supervision

MuZero

Reference I

[Brown et al., 2024] Brown, B., Juravsky, J., Ehrlich, R., Clark, R., Le, Q. V., Ré, C., and Mirhoseini, A. (2024).

Large language monkeys: Scaling inference compute with repeated sampling.

arXiv [cs.LG].

[Gandhi et al., 2024] Gandhi, K., Lee, D., Grand, G., Liu, M., Cheng, W., Sharma, A., and Goodman, N. D. (2024).

Stream of search (SoS): Learning to search in language.

arXiv [cs.LG].

Reference II

[Silver et al., 2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., and Hassabis, D. (2017).

Mastering chess and shogi by self-play with a general reinforcement learning algorithm.

arXiv [cs.Al].

Reference III

[Uesato et al., 2022] Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N., Wang, L., Creswell, A., Irving, G., and Higgins, I. (2022).

Solving math word problems with process- and outcome-based feedback.

arXiv [cs.LG].