1 Defining the Process

The Bernoulli Process is historically the first stochastic process ever studied. It can be thought of as a sequence of tosses of a (not necessarily fair) coin.

Let Y_1, Y_2, \dots be i.i.d. Bernoulli random variables with parameter p with

$$Y_i = \begin{cases} 0 & \text{with probability } p \\ 1 & \text{with probability } 1 - p = q \end{cases}$$

To keep with the coin flipping analogy, getting a head would be represented by a 1 and tails by 0. Now let

$$N_k = \sum_{i=1}^k Y_i$$

be the number of heads up to the k-th toss, which is distributed Binomial (k, p).

1.1 Waiting Times

Let S_n be the time at which the *n*-th head occurs. Then,

$$S_n = \inf\{k : N_k = n\}$$

Let $X_n = S_n - S_{n-1}$ be the number of tosses to get the *n*-th head starting from the (n-1)-th head.

2 Properties and Useful Results

- 1. The waiting times $X_1, X_2, ...$ are i.i.d. Geometric(p) random variables.
- 2. The time at which the *n*-th head occurs (S_n) is Negative Binomal(n, p).
- 3. Given $N_k = n$, the distribution of $(S_1, ..., S_n)$ is the same as the distribution of a random sample of n numbers chosen without replacement from $\{1, 2, ..., k\}$.
- 4. Given $S_n = k$, the distribution of $(S_1, ..., S_{n-1})$ is the same as the distribution of a random sample of n-1 numbers chosen without replacement from $\{1, 2, ..., k-1\}$.
- 5. We have as sets:

$${S_n > k} = {N_k < n}$$

6. Central limit theorem

$$\frac{N_k - E[N_k]}{\sqrt{V(N_k)}} = \frac{N_k - kp}{\sqrt{kp(1-p)}} \longrightarrow N(0,1)$$

7. Central limit theorem

$$\frac{S_n - E[S_n]}{\sqrt{V(S_n)}} = \frac{S_n - \frac{nq}{p}}{\sqrt{nq}/p} \longrightarrow N(0, 1)$$

8. As $p \to 0$

$$\frac{X_1}{E[X_1]} = \frac{X_1}{1/p} \longrightarrow \text{Exponential}(\lambda = 1)$$

9. As $p \to 0$

$$\mathbf{P}\{N_{\left[\frac{t}{p}\right]}=j\} \to \frac{t^j}{j!}e^{-t}$$

3 Proofs of Properties

1. Waiting times are geometric (p) by the definition of the geometric distribution.

To show that the X_i 's are independent, let $X_n = S_n - S_{n-1}$ be the waiting time for the n-th success starting from the (n-1)-th success. We know $S_0 = 0$ and $S_n = \inf\{k : N_k = n\}$. So $X_1 = S_1 - S_0 = S_1 - 0 = S_1$ and therefore S_1 is independent of S_0 .

Now assume that $S_1 = k$, then by the same logic $X_2 = S_2 - S_1 = S_2 - k$. Note that

- The Bernoulli trial $Y_k + 1$ is independent of Y_k, Y_{k-1}, \dots, Y_1 .
- The event $Y_{k+1} = 1$ is therefore independent of Y_k, Y_{k-1}, \dots, Y_1 .

Therefore, in the case $S_1 = k$, we see $S_2 - S_1 = k + 1 - k = 1$. In other words, $S_2 - S_1$ is independent of $S_1 = k$. The same result occurs if $Y_{k+1} = 0, Y_{k+2} = 0, \dots, Y_{k+n} = 1$. In that case $S_2 - S_1 = k + n - k = n$. This shows that X_1 is independent of X_2 .

In general, we can repeat this logic as long as we want. e.g., X_3 is independent of X_2 since if $X_2 = n$, then $X_3 = S_3 - S_2 = (k+n+m) - (k+n) = m$, which is independent of X_2 no matter what value n takes (or k), and so on...

- 2. The distributional assertions are easy to prove; we may just use the definition of geometric (p) and negative binomial random variables. We need only to show that the Xi's are independent.
- 3.
- 4.
- 5.

6. The Central Limit Theorem (CLT) states: If $X_1, X_2, ..., X_n, ...$ are random samples drawn from a population with overall mean μ and finite variance σ^2 , and if \bar{X}_n is the sample mean of the first n samples, then the limiting form of the distribution, $Z = \lim_{n \to \infty} \left(\frac{\bar{X}_n - \mu}{\sigma_{\bar{X}}} \right)$ with $\sigma_{\bar{X}} = \sigma / \sqrt{n}$, is a standard normal distribution.

First note that $N_k = X_1 + X_2 + \cdots + X_n$ where $X \sim \text{Bernoulli}(p)$, so $\mu = p$ and $\sigma = \sqrt{pq} \implies \sigma_{\bar{X}} = \frac{\sqrt{pq}}{\sqrt{k}}$. Then we have

$$\frac{N_k - E[N_k]}{\sqrt{\operatorname{Var}(N_k)}} = \frac{N_k - kp}{\sqrt{kpq}} = \frac{k(\frac{1}{k}N_k - p)}{k\sqrt{pq/k}} = \frac{\bar{X} - \mu}{\sigma/\sqrt{k}}$$

And by the CLT $\frac{\bar{X}-\mu}{\sigma/\sqrt{k}} \longrightarrow N(0,1)$ as $k \to \infty$

7. Let $X_n = S_{n+1} - S_n$ be the waiting time for the n^{th} head starting from the $(n-1)^{th}$ head. S_n is the time to flip n heads, or in other words S_n is just the sum of the waiting times: $S_n = X_1 + X_2 + \cdots + X_n$. Therefore S_n is Negative-Binomial(n, p) and the X_i 's are geometric(p) (see properties 1 and 2).

Applying the central limit theorem to S_n gives

$$\frac{S_n - E[S_n]}{\sqrt{\operatorname{Var}(S_n)}} = \frac{S_n - \frac{n}{p}}{\frac{\sqrt{nq}}{p}} = \frac{n(\frac{1}{n}S_n - \frac{1}{p})}{n(\frac{\sqrt{q/n}}{p})}$$

Under the "number of failures before a success" definition of the geometric distribution, $\mu = \frac{1}{p}$ and $\sigma_{\bar{X}}^2 = \frac{q}{p^2} \implies \sigma_{\bar{X}} = \frac{\sqrt{q}}{p}$. Letting $\frac{1}{n}S_n = \bar{X}$, we have

$$\frac{n(\frac{1}{n}S_n - \frac{1}{p})}{n(\frac{\sqrt{q/n}}{n})} = \frac{\frac{1}{n}S_n - \frac{1}{p}}{\frac{\sqrt{q}}{p}\frac{1}{\sqrt{n}}} = \frac{\bar{X} - \mu}{\sigma_x/\sqrt{n}} \longrightarrow N(0, 1)$$

as $n \to \infty$.

8.

$$P\left(\frac{X_1}{1/p}>\right) = P\left(X_1 > \frac{t}{p}\right) = P\left(X_1 > \left[\frac{t}{p}\right]\right)$$
$$= (1-p)^{\left[\frac{t}{p}\right]} = \left[(1-p)^{-\frac{1}{p}}\right]^{-p\left[\frac{t}{p}\right]} \to e^{-t}$$

because

$$\begin{split} \lim_{p \to 0} -p \left[\frac{t}{p} \right] &= \lim_{p \to 0} -p \left(\frac{t}{p} + \left[\frac{t}{p} \right] - \frac{t}{p} \right) \\ &= -t + \lim_{p \to 0} p \left(\frac{t}{p} - \left[\frac{t}{p} \right] \right) = -t \end{split}$$

since
$$\left(\frac{t}{p} - \left\lceil \frac{t}{p} \right\rceil \right) \in [0, 1]$$

9.