10.09.2015

СОФИЙСКИ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

ДЪРЖАВЕН ИЗПИТ за получаване на окс "бакалавър по информатика"

ЧАСТ І (ПРАКТИЧЕСКИ ЗАДАЧИ) 10.09.2015 г.

Моля, не пишете в тази таблица!				
Зад. 1		Зад. 5		
Зад. 2		Зад. 6		
Зад. 3		Зад. 7		
Зад. 4		Зад. 8		
Крайна оценка:				

Драги абсолвенти,

- Попълнете факултетния си номер в горния десен ъгъл на всички листа;
- Пишете само на предоставените листове, без да ги разкопчавате;
- Ако имате нужда от допълнителен лист, можете да поискате от квесторите;
- Допълнителните листа трябва да се номерират, като номерата продължават тези от настоящия комплект;
- Всеки от допълнителните листа трябва да се надпише най-отгоре с вашия факултетен номер;
- Решението на една задача трябва да бъде на същия лист, на който е и нейното условие (т.е. може да пишете отпред и отзад на листа със задачата, но не и на лист на друга задача);
- Ако решението на задачата не се побира в един лист, трябва да поискате нов бял лист от квесторите. В такъв случай отново трябва да започнете своето решение на листа с условието на задачата и в края му да напишете "Продължава на лист № Х", където X е номерът на допълнителния лист, на който е вашето решение;
- Черновите трябва да бъдат маркирани, като най-отгоре на листа напишете "ЧЕРНОВА";
- На един лист не може да има едновременно и чернова и белова;
- Времето за работа по изпита е 3 часа;

Изпитната комисия ви пожелава успешна работа!

Задача 1 (10 точки).

10.09.2015

А) Следните програмни фрагменти са съответно от булева функция на C++ и статичен булев метод на Java, проверяващи дали в даден масив а от цели числа, подредени в нарастващ ред, се съдържа числото х. Функцията/методът прилагат алгоритъма за двоично търсене. Липсващите части от фрагментите са обозначени с ______. Попълнете липсващите части така, че функцията или съответно методът да са коректно дефинирани спрямо това описание. *Решете задачата за един от двата езика по избор!*

Б) (C++ и Java) Нека е дефиниран масив nums, в който се съдържат N целочислени стойности. Попълнете празните полета, за да бъде коректна програмната реализация на алгоритъма за сортиране във възходящ ред чрез пряка селекция (selection sort).

```
for (int i = 0; i < _____; i++) {
   int min = i;
   for (int j = ____; j < ____; j++) {
      if (nums[___] < nums[___]) ___ = ___;
   }
   if (min != _____) {
      int x = nums[i];
      nums[___] = ____;
   }
}</pre>
```

B) Каква ще бъде стойността на променливата result след изпълнение на следния програмен фрагмент на C++/Java:

```
int a = 0; int b = 15; int result = -1; if (b < 10 \&\& b / a < 10) result = 0; else result = 1;
```

а) -1 б) $0\,$ в) $1\,$ г) грешка при компилация делене на нула д) грешка при изпълнение делене на нула

Г) Каква е стойността на израза 6 | 11 на езиците C++ и Java:

```
а) 15 б) 13 в) 10 г) 11
```

<u>Задача 2 (10 точки)</u>. Следната задача да се реши на един от езиците за програмиране C++ или Java. Да се обозначи явно на кой от двата езика е решавана задачата. При решението на задачата да не се използват библиотеки за работа със структури от данни.

- а) Да се дефинира подходяща структура от данни, позволяваща представянето в паметта на програмата на ориентиран граф от типа G=<V, E>, където V е множеството на целите положителни числа, не по-големи от 1000 (представено чрез типа данни int), а $E=V\times V$.
- б) За така дефинираната структура от данни да се дефинира функция (или статичен метод)

```
[булев тип] isConnected ([подходящ тип] q)
```

чиято стойност е истина точно за тези графи g, които са свързани. За един граф G=<V, E> казваме, че е свързан, ако за всяка двойка $u \in V$, $v \in V$ има път от u до v или от v до u. На примера са показани два графа, първият от които е свързан, а вторият – не.

Забележка: При избор на Java за език за програмиране е достатъчно да се дефинира статичен метод, който решава задачата.

Информатика

.н.		
.11.		

Задача 3 (10 точки). Дадени са следните дефиниции на програмните езици Haskell и Scheme, от програмния код на които липсват части. Попълнете полетата, обозначени с необходимия програмен код така, че да се получат посочените желани оценки. Изберете само един от двата езика за решението на задачата и напишете името му в даденото за целта поле. Точки за задачата се дават само за избрания от вас език.

Избран език:

	Език Haskell:
1	merge x [] = merge = merge (x:xs) (y:ys) = if x < y then
	else
	<u>израз:</u> merge [1,3,5,7] [2,2,6,10] <u>желана оценка:</u> [1,2,2,3,5,6,7,10]
2	<u>израз:</u> (\>[y y<,even])[1,2,3,4] желана оценка: [2,4]
	Език Scheme:
1	(define (merge 11 12) (cond ((null? 11))
	()
	((< (car 11) (car 12))) (else))
	<u>израз:</u> (merge '(1 3 5 7) '(2 2 6 10)) желана оценка: (1 2 2 3 5 6 7 10)
2	<u>израз:</u> ((lambda () (filter)) '(1 2 3 4)) желана оценка: (2,4)

Задача 4 (10 точки). Дадена е базата от данни Movies.

Таблицата *Studio* съдържа информация за филмови студиа:

 \underline{name} — име, първичен ключ; address — адрес.

Таблицата *Movie* съдържа информация за филми. Колоните *title* и *year* заедно формират първичния ключ.

title – заглавие;

year – година, в която филмът е заснет;

length – дължина в минути;

incolor – 'Y' за цветен филм и 'N' за

черно-бял;

studioname – име на студио, външен ключ.

Таблицата *MovieStar* съдържа информация за филмови звезди:

<u>пате</u> – име;

address – адрес;

gender – пол, 'М' за мъж и 'F' за жена;

birthdate – рождена дата.

Таблицата *StarsIn* съдържа информация за участието на филмовите звезди във филмите. Трите колони заедно формират първичния ключ. Колоните *movietitle* и *movieyear* образуват външен ключ към Movie.

movietitle – заглавие на филма;

movieyear - година на заснемане на филма;

starname – име на филмовата звезда, външен ключ.

Условие 1. Да се посочи заявката, която извежда имената и адресите на всички актриси от София, както и на всички филмови студиа от София. Резултатите да са сортирани по адрес.

```
a)
SELECT MS.name, MS.address
FROM MovieStar AS MS
JOIN Studio S ON MS.address =
S.address
WHERE MS.address LIKE '%Sofia%'
AND gender = 'F'
ORDER BY MS.address;
в)
SELECT name, address
FROM MovieStar MS
WHERE gender = 'F'
ORDER BY address
UNION ALL
SELECT name, address
FROM Studio
WHERE address LIKE '%Sofia%'
ORDER BY address;
д)
SELECT DISTINCT name, address
FROM MovieStar
FULL JOIN Studio ON address LIKE
'%Sofia%'
WHERE gender LIKE 'F'
ORDER BY address;
```

```
ნ)
SELECT *
FROM (SELECT name, address
      FROM MovieStar
      WHERE gender = 'F'
      UNION
      SELECT name, address
      FROM Studio) T
WHERE T.address LIKE '%Sofia%'
ORDER BY T.address:
r)
SELECT DISTINCT name, address
FROM MovieStar INTERSECT Studio
WHERE address IS NOT NULL
AND gender LIKE 'F'
GROUP BY address
HAVING address LIKE '%Sofia%';
```

GROUP BY name, address;

10.09.2015

<u>Условие 2</u>. Да се посочи заявката, която за всяко студио с най-много три черно-бели филма извежда името му, адреса и средната дължина на филмите (без значение дали са цветни) на това студио. Студиа без филми също да се извеждат.

```
a) SELECT name, address, AVG(length) AS avgLength
FROM Studio
LEFT JOIN Movie ON name = studioName
GROUP BY studioName, address
HAVING COUNT (inColor = 'y') <= 3;
6) SELECT DISTINCT name, address, avgLength
FROM Studio, (SELECT studioName, AVG(length) AS avgLength
                  FROM Movie
                  GROUP BY studioName) Averages
WHERE NAME = ANY (SELECT studioName
            FROM Movie
                  WHERE inColor = 'n'
                  GROUP BY studioName
            HAVING COUNT(title) <= 3);</pre>
B) SELECT Studio.name, Studio.address, AVG (Movie.length) AS avgLength
FROM Movie
RIGHT JOIN Studio ON studioName = name
GROUP BY name, address
HAVING (SELECT COUNT(*) FROM Movie WHERE inColor = 'n') <= 3;
r) SELECT name, address, AVG (length) AS avgLength
FROM Studio
LEFT JOIN Movie ON name = studioName
WHERE NAME NOT IN (SELECT studioName
                         FROM Movie
                         WHERE inColor = 'n'
                         GROUP BY studioName
                   HAVING COUNT (*) > 3)
```

<u>Задача 5 (10 точки)</u>. Текстов файл с име comproc1 съдържа зададената по-долу последователност от команди на bash за Linux. Напишете вдясно какво ще бъде изведено на стандартния изход след стартиране на файла с команден ред

```
bash comproc1 12 34 56
```

ако на стандартния вход бъде подадена последователността от символи 5 6

```
var=1
for i in
              4 3 2 1
do for j
   do if test $i -gt $#
       then var=`expr $var \* $i`
             echo $var $j >> ff
       else continue
       fi
   done
done
while true
do echo $*
   break
done
read k1 k2
while cat ff | grep $k2
do set $k1 $var
   shift
   echo $2
   grep $i
            ff
   exit
   echo $1
done
wc - 1 < ff
```

echo END

10.09.2015

Задача 6 (10 точки). Даден е крайният автомат

$$A = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}, \{a, b\}, q_0, \delta, \{q_6\}\}$$

със следната функция на преходите:

δ:	q	a	b	
	q_0	$\{q_1, q_3, q_6\}$	$\{q_4, q_6\}$	
	q_1	Ø	{q ₂ }	
	q_2	$\{q_5, q_6\}$	{q ₂ }	
	q_3	$\{q_5, q_6\}$	Ø	
	q_4	Ø	$\{q_4, q_6\}$	
	q_5	Ø	$\{q_{5}, q_{6}\}$	
	q_6	Ø	Ø	

Да се построи минимален детерминиран краен автомат, еквивалентен на дадения.

Държавен изпит за ОКС Бакалавър

СУ-ФМИ

10.09.2015

Информатика

ф.н.____ лист 10/14

Задача 7 (10 точки). Нека G= (V, E) е дърво. Говорейки за *път* в G имаме предвид прост път: такъв без повтаряне на върхове. Ако р е път в G, то | р | означава дължината на р. Нека X е множеството от пътищата в G. Нека У ⊆ X е подмножеството на X, което се дефинира по следния начин.

За всеки път $p_1 \in Y$ и за всеки път $p_2 \in X$: $|p_1| \ge |p_2|$.

Докажете или опровергайте следните твърдения:

(а – 5 точки) За всеки два пътя р, q ∈ У съществува връх и ∈ V, такъв че и е общ за р и q.

(6-5) точки) Съществува връх $u \in V$, такъв че за всеки два пътя p, $q \in Y$, u е общ за p и q.

Информатика

ф.н.____

лист 11/14

Задача 8 (10 точки). Намерете неопределения интеграл

10.09.2015

$$\int \frac{x-2}{x(x^2+2)} \, dx.$$

Държавен изпит за ОКС *Бакалавър*

10.09.2015

СУ-ФМИ

Информатика

ф.н._____ лист 12/14

<u>ЧЕРНОВА</u>

Държавен изпит за ОКС *Бакалавър* СУ-ФМИ

10.09.2015

Информатика

ф.н._____ лист 13/14

<u>ЧЕРНОВА</u>

Държавен изпит за ОКС *Бакалавър*

10.09.2015 СУ-ФМИ Информатика

ф.н._____ лист 14/14

<u>ЧЕРНОВА</u>