[Aula 16] Propriedades e reconhecimento das LLC

Prof. João F. Mari joaof.mari@ufv.br

[Aula 16] Propriedades e reconhecimento das LLC

SIN 131 – Introdução à Teoria da Computação (PER-3)

BIBLIOGRAFIA

- MENEZES, P. B. Linguagens formais e autômatos,
 6. ed., Bookman, 2011.
 - Capítulo 7.
 - + Slides disponibilizados pelo autor do livro.

ROTEIRO

- Reconhecimento das LLC
- Autômato com pilha como reconhecedor
- AP a partir de GLC na FNG
- Autômato com pilha descendente
- [EX] Autômato com pilha descendente
- Algoritmo de Cocke-Younger-Kasami (CYK)
- [EX] Algoritmo de Cocke-Younger-Kasami (CYK)

Prof. João Fernando Mari (joaof.mari@ufv.br)

2

[Aula 16] Propriedades e reconhecimento das LLC

SIN 131 – Introdução à Teoria da Computação (PER-3)

Reconhecimento das LLC

- Algoritmos de reconhecimento podem ser:
 - Top-down (preditivos):
 - Construir uma árvore de derivação para a palavra a ser reconhecida (palavra de entrada);
 - Gerar os ramos, partindo da raiz (símbolo inicial da gramática), em direção às folhas (palavra de símbolos terminais).

- Botton-up:
 - A partir das folhas construir a árvore de derivação em direção à raiz.

Autômato com pilha como reconhecedor

- Reconhecedores usando AP:
 - A construção é simples e imediata;
 - Existe uma relação quase direta entre produções e transições.
 - Algoritmos top-down:
 - Simulam a derivação mais à esquerda;
 - São não determinísticos.

Prof. João Fernando Mari (joaof.mari@ufv.br)

5

[Aula 16] Propriedades e reconhecimento das LLC

SIN 131 – Introdução à Teoria da Computação (PER-3)

AP a partir de GLC na FNG

- (visto na aula sobre "Autômato com Pilha")
- Partindo de uma GLC na Forma Normal de Greibach;
 - Em que cada produção gera exatamente um terminal;
 - A geração da palavra w leva |w| etapas de derivação.
- Como cada variável pode ter diversas produções associadas:
 - O AP testa as diversas alternativas;
 - O número de passos para reconhecer w:
 - k|w|
 - Sendo k a metade das média de produções nas variáveis.
- Ou seja, o AP pode ser muito ineficiente para reconhecer entradas muito longas.

Autômato com pilha descendente

- Uma forma alternativa de construir um AP.
 - Construir um AP a partir de uma GLC sem recursão à esquerda.
 - [OBS] Para gerar uma GLC sem recursão à esquerda basta executar o algoritmo da FNG até a etapa 4
 - ver aula sobre "Forma Normal de Greibach".
 - Consiste em simular a derivação mais à esquerda.
- Ideia do algoritmo:
 - Empilhar o símbolo inicial;
 - Se topo possuí variável:
 - Substituir por todas as produções dessa variável.
 - Se top possuí terminal:
 - Testar se é igual ao próximo símbolo da entrada.

Prof. João Fernando Mari (joaof.mari@ufv.br)

7

[Aula 16] Propriedades e reconhecimento das LLC

SIN 131 – Introdução à Teoria da Computação (PER-3)

Autômato com pilha descendente

- Considere G uma GLC sem recursão à esquerda:
 - -G = (V, T, P, S)
- O AP M reconhece a linguagem gerada por G:
 - M = (T, $\{q_0, q_1, q_f\}, \delta, q_0, \{q_f\}, V \cup T$)
 - $\delta(q_0, \epsilon, \epsilon) = \{ (q_1, S) \}$
 - $\delta(q_1, \epsilon, A) = \{ (q_1, \alpha) \mid A \rightarrow \alpha \in P \}$, para toda $A \in V$
 - $\delta(q_1, a, a) = \{ (q_1, \epsilon) \}$, para toda $a \in T$
 - $\delta(q_1, ?, ?) = \{ (q_i, \epsilon) \}$

 $(\varepsilon, A_1, \alpha_1) \dots (\varepsilon, A_u, \alpha_u)$

 $(a_1, a_1, \varepsilon) \dots (a_v, a_v, \varepsilon)$

[EX] Autômato com pilha descendente

- Seja G uma GLC sem recursão à esquerda que reconhece a LLC L:
 - $L = \{ a^n b^n \mid n >= 1 \}$
 - $-G = (\{S\}, \{a, b\}, P, S)$
 - $P = \{ S \rightarrow aSb \mid ab \}$
- O AP descendente que reconhece L:
 - M = ($\{a,b\}$, $\{q_0, q_1, q_f\}$, δ , q_0 , $\{S, a, b\}$)

Prof. João Fernando Mari (joaof.mari@ufv.br)

[Aula 16] Propriedades e reconhecimento das LLC

SIN 131 – Introdução à Teoria da Computação (PER-3)

Algoritmo de Cocke-Younger-Kasami (CYK)

- Desenvolvido independentemente por J. Cocke, D. H. Younger e T. Kasami em 1965;
- Reconhece uma palavra a partir de uma GLC na Forma Normal de Chomsky:
 - Gera botton-up todas as árvores de derivação da entrada w.
 - O tempo de processamento é proporcional a |w|³.
- Ideia do algoritmo:
 - Consiste de uma tabela triangular de derivação;
 - Célula: raízes que podem gerar a correspondente sub-árvore.

Algoritmo de Cocke-Younger-Kasami (CYK)

- Construção da tabela triangular:
 - Seja G uma GLC na FNC:
 - G = (V, T, P, S)
 - E w é a palavra a ser reconhecida
 - $w = a_1 a_2 ... a_n$
 - V_{rs} são as células da tabela

Prof. João Fernando Mari (joaof.mari@ufv.br)

11

[Aula 16] Propriedades e reconhecimento das LLC

SIN 131 – Introdução à Teoria da Computação (PER-3)

Algoritmo de Cocke-Younger-Kasami (CYK)

- Etapa 1: Variáveis que geram diretamente terminais (A → a)
 - para r variando de 1 até n faça
 - $\qquad V_{r,1} = \{A \mid A \rightarrow a_r \in P \}$
- Etapa 2: Produções que geram duas variáveis (A → BC)
 - para s variando de 2 até n faça
 - para r variando de 1 até (n s + 1) faça
 - $v_{r,s} = \emptyset$
 - para k variando de 1 até (s 1) faça
 - $V_{r,s} = V_{r,s} \cup \{A \mid A \rightarrow BC \in P,$
 - B $\in V_{rk}$ e
 - $C \in V_{(r+k),(s-k)}$

Prof. João Fernando Mari (joaof.mari@ufv.br)

Algoritmo de Cocke-Younger-Kasami (CYK)

- Interpretação das células $V_{r,k}$ e $V_{(r+k),(s-k)}$
 - $-V_{r.s} = V_{1.3} (n=4)$
 - Para s=3, r=1,2 (n-s+1)
 - Para r=1. k=1.2 (s-1)
 - $k=1 \rightarrow v_{1.1} e v_{2.2}$
 - $k=2 \rightarrow v_{1,2} e v_{3,1}$

- Etapa 3: condições de aceitação da entrada:
 - Se o símbolo inicial pertence à $V_{1.n}$ (raiz de toda palavra):
 - A palavra é aceita.

Prof. João Fernando Mari (joaof.mari@ufv.br)

13

[Aula 16] Propriedades e reconhecimento das LLC

SIN 131 – Introdução à Teoria da Computação (PER-3)

[EX] Algoritmo de Cocke-Younger-Kasami (CYK)

- $G = (\{S,A\}, \{a,b\}, P, S\}$ é uma GLC na FNC
- $P = \{ S \rightarrow AA \mid AS \mid b \}$
- $A \rightarrow SA \mid AS \mid a$
- w = abaab, n = |w| = 5
- Etapa 1:
- para r variando de 1 até n faça
- $V_{r,1} = \{A \mid A \rightarrow a_r \in P \}$
- Etapa 2:
- para s variando de 2 até n faça
- para r variando de 1 até (n s + 1) faça
- para k variando de 1 até (s 1) faça $V_{r,s} = V_{r,s} U \{A \mid A \rightarrow BC \in P,$
- $B \in V_{rk}$ e
- $C \in V_{(r+k),(s-k)}$ }

[EX] Algoritmo de Cocke-Younger-Kasami (CYK)

- G = ({S,A}, {a,b}, P, S} é uma GLC na FNC
- P = { S → AA | AS | b
- $A \rightarrow SA \mid AS \mid a$

Prof. João Fernando Mari (joaof.mari@ufv.br)

15

[Aula 16] Propriedades e reconhecimento das LLC

SIN 131 – Introdução à Teoria da Computação (PER-3)

[FIM]

- FIM:
 - [Aula 16] Propriedades e reconhecimento das LLC
- Próxima aula:
 - [Aula 17] Propriedades e reconhecimento das LLC –
 Algoritmo de Early