《通道》试题讲评

清华大学交叉信息研究院 陈俊锟 吕欣

题意简述

- 给出三棵树 T_1, T_2, T_3 ,每条边有非负边权
- 求一对点 a,b, 使得 $d_1(a,b) + d_2(a,b) + d_3(a,b)$ 最大
- •• 其中 $d_i(a,b)$ 表示 a,b 在 T_1 中的距离
 - 既然题意这么简单, 这题肯定也非常简单, 让我们看看得分情况

得分情况

- 集训队
 - AC * 3
 - 平均分 48.45
- 非集训队
 - AC * 1

BF: 暴力

- 枚举 a,b
- 用求 LCA 来求树上距离
- •• LCA 可以 $O(\log n)$ 地求, 不必 O(1)
 - $O(n^2 \log n)$ 28pts

HACK1

- 猜测:答案的 (a,b) 一定在某一个 T_i 中是比较长的一条链
- 取出每个 T_i 的前 k = k(n) 长链,更新答案
- $O(k(n)\log^2 n)$ 或 $O(k(n)\log n)$ 24~76pts

HACK2

- 重复很多次以下操作
 - 从一个点 a 出发, 找另一个点 b 使得答案最大
 - · 从 b 出发, 找一个点 c 使得答案最大, 更新答案
- 通过卡时运行尽量多次
 - By LCA
 - $O(n) \frac{100}{97}$ pts

HACK3 ~ HACK∞

• 欢迎介绍~

数据大类

- S1:链(4pts)
- S2: 树 (20pts)
- S3: 树 + 链(12pts)
- S4: 树 + 树 (8pts)
- S5: 树+链+链(12pts)
- S6: 树 + 树 + 链 (8pts)
- S7: 树 + 树 + 树 (36pts)

S1: 链

- 只有一条链, 必然取两个端点
- 答案就是所有边权加起来的和
- O(n) 4pts

S2: 树

- 等价于求最长链
- 由于边权非负,可以用贪心
 - 随便选一个点 DFS 整棵树算距离, 找出最远点 a
 - 从 a 出发 DFS 整棵树算距离,找出最远点 b
- 也可以 DP
 - 记录每个点子树中的最深和次深节点
- O(n) 24pts = S1 + S2

S3: 树+链

- 在 LCA 处考虑所有 T_1 中 LCA 为它的点对
- 如果 $LCA_1(a,b) = p$,那么我们就是要最大化 $(h_a + h_b + |l_a l_b|) 2h_p$
 - h_i 是 i 在 T_1 中的深度, l_i 是 i 在 T_2 中距离端点(节点 1)的距离
 - h_p 和 a, h 无关,只需要考虑另外几项
 - 记录 $h_i + l_i$ 和 $h_i l_i$ 的最大、次大值、选择两个不同的点加起来
 - $|x| = \max(x, -x)$,如果取的符号不对肯定不优,因此只需如此简单考虑
- O(n) 36pts = S1 + S2 + S3

S4: 树+树

- 同样在 LCA 处考虑所有 T_1 中 LCA 为它的点对
- •• 现在问题转化为最大化 $(h_a + h_b + d_2(a,b)) 2h_p$
 - 怎么处理这个式子呢?

S4: 树 + 树

- 设法将 h_i 的贡献 "附着" 在 T_2 上
- 对于 T_2 内的每一个点 i, 新建 i' 和 i 边权为 h_i 的边,设新的树为 T_2'
 - 立刻可知 $d'_2(a,b) = [a=b](h_a+h_b)+d_2(a,b)$
- • 我们还有 $a \neq b$, 所以最大化目标就是 $d'_2(a,b)$
- 题目转化为:给两个集合 A,B 求 a ∈ A,b ∈ B 最大化 d'₂(a,b)
 - A, B 对应 T_1 中 p 的不同子节点的子树
 - 要支持集合的合并

S4: 树 + 树

- 启发式合并显然是可以的, 但是太复杂也太慢
- 对于边权非负的图, 我们有一个性质
 - 跨越集合 A, B 的最长链的端点一定是 A 中最长链端点和 B 中最长链端点
 - 由反证法立刻可知结论成立
- 只需要在并查集中记录最长链端点, 合并时更新答案即可
 - 合并后集合的最长链 = max(跨越, 内部)
- $O(n \log n)$ 或 $O(n\alpha(n))$ (取决于 LCA 算法)44pts = S1 + \cdots + S4

S5: 树+链+链

- · 仍然是 LCA 处考虑路径
- 在这里问题是转化为"曼哈顿距离最远点"
 - · 同样只需拆掉两个绝对值符号, 记录 2×2 种和或差的最大值即可
- 注意这里没必要也不能显式地建出 T_2' ,只需要计算 $d_2'(a,b)$ 即可
- O(n) 48 = S1 + S2 + S3 + S5

- 从这里开始,题目已经变得很复杂了
- 但链的情况最简单,从链入手考虑
- 考虑将链的限制消去,转化为前面的"树 + 树"的情况

- 对链进行分治,每次取中点,统计所有过中点的路径
- 现在问题转化为
 - 在中点的左侧和右侧分别找一个点
 - 使得 $d_1(a,b) + d_2(a,b) + l_a + l_b$ 最大
 - l_i 为 i 到中点的距离
- 将 l_i 附着到 T_2 上构造 T_2' ,然后在 T_1 和 T_2' 上执行树 + 树的算法
- 做完了……吗?
- 复杂度 $O(n^2)$ ······

- 为什么复杂度炸了?
 - 每次要完整地遍历 T_1 和 T_2'
- 每个点都会被作为中点
- 我们为什么要完整地遍历,而不是只遍历"所需要的点"?
- 我们当然可以这么做!

- 对分治的区间中的所有节点建立 T_1 的虚树
 - 虚树上包括所有"关键点"两两的 LCA
 - 从而可以使用在 LCA 处考虑路径的算法
- •• 并查集的部分,可以只清空、维护关键点的父亲
 - 其他点的信息根本就不会被使用
 - $O(n \log^2 n)$ 或 $O(n \log n \alpha(n))$ 64pts = S1 + \cdots + S6

S7: 树 + 树 + 树

- 结合 S6 和 BF, 我们已经拿到了 84 分
- 在考场上这是完全可行且推荐的策略
- 剩下的 16 分怎么拿呢?

S7: 树+树+树

- 考虑将链的处理方式扩展到树上
- 能否像链(序列)上的分治那样"找中点"然后"考虑过中点"?
- 考虑点分治,分治后我们要在不同的重心的分支找到两个点
 - 维护 "包含分支 i" 和 "包含全部减分支 i" 的集合的最长路
 - 由于重心的分支可能很多,不能像链上暴力维护属于哪个分支了
 - 使用 map 或 hash 进行启发式合并
- $O(n \log^3 n)$ 或 $O(n \log^2 n)$ 84-100pts

S7: 树 + 树 + 树

- 如何减少分支个数呢?修改树的形态!
 - 对每个点用类似"左儿子右兄弟"的方法进行转化
 - 转化后任意两个原来树上点的距离不变
- 但每个点最多只有3个分支
 - 这样就可以暴力记录,不再需要启发式合并了
 - $O(n \log^2 n)$ 或 $O(n \log n \alpha(n))$ 100pts

常数问题

- 善良的 zgg 强行要求标程 5 倍 TL、标程 4 倍 ML
- 卡常数? 不存在的!

• 那为什么我还是 T 了?

总结

- 本题题意非常简洁, 做法较为直观
- 考察了点分治、虚树和并查集等常见的简单知识点和少量思维能力
- 是一道中规中矩的 NOI 中等难度试题,属于 WC 中的简单题
- 希望能在寒冷的冬天给大家带来一丝温 3 暖

EOF

- 感谢 CCF 给了我这个命题和交流的机会
- 感谢 access_globe 给我原型(树 + 树、树 + 链 + 链) 并和我讨论
- 感谢张哥哥帮我验题

- 欢迎提问
- 祝大家新年快乐、学业有成!