Antilles Guyane 2015. Enseignement spécifique. Corrigé

EXERCICE 1

Partie A

1) Graphes.

2) Il semble que si a>0,19, $\mathscr C$ et Γ_a n'aient pas de point commun, si a=0,19, $\mathscr C$ et Γ_a aient exactement un point commun et si $0 < \alpha < 0, 19$, $\mathscr C$ et Γ_α aient exactement deux points communs.

Partie B

1) Soient x > 0 puis M un point du plan d'abscisse x.

$$M \in \mathscr{C} \cap \Gamma_{\alpha} \Leftrightarrow \ln(x) = \alpha x^2 \Leftrightarrow \ln(x) - \alpha x^2 = 0 \Leftrightarrow h_{\alpha}(x) = 0.$$

Donc, les abscisses des points d'intersection de $\mathscr C$ et Γ_α sont les solutions de l'équation $h_\alpha(x)=0$.

2) a) Pour tout réel x, $h'_{\alpha}(x) = \frac{1}{x} - 2\alpha x = \frac{1 - 2\alpha x^2}{x}$. Sur $]0, +\infty[$, $h'_{\alpha}(x)$ est du signe de $1 - 2\alpha x^2$. Pour $0 < x < \frac{1}{\sqrt{2\alpha}}$, on a $x^2 < \frac{1}{2\alpha}$ (par stricte croissance de la fonction $t \mapsto t^2$ sur $[0, +\infty[$) puis $2\alpha x^2 < 1$ et enfin

 $1 - 2\alpha x^2 > 0$. Pour $x > \frac{1}{\sqrt{2\alpha}}$, on a $x^2 > \frac{1}{2\alpha}$ puis $2\alpha x^2 > 1$ et enfin $1 - 2\alpha x^2 < 0$.

Pour $x = \frac{\sqrt{1-\alpha}}{\sqrt{2\alpha}}$, on a $x^2 = \frac{1}{2\alpha}$ puis $1 - 2\alpha x^2 = 0$.

En résumé, la fonction h_a' est strictement positive sur $\left]0,\frac{1}{\sqrt{2a}}\right[$, strictement négative sur $\left]\frac{1}{\sqrt{2a}},+\infty\right[$ et s'annule en

b) D'après un théorème de croissances comparées, $\lim_{x\to +\infty}\frac{\ln x}{x}=0$. Pour x>0,

$$h_{\alpha}(x) = x \left(\frac{\ln(x)}{x} - \alpha x \right).$$

Puisque $\alpha > 0$, $\lim_{x \to +\infty} \alpha x = +\infty$ et $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$. En retranchant, on obtient $\lim_{x \to +\infty} \left(\frac{\ln(x)}{x} - \alpha x\right) = -\infty$. D'autre part, $\lim_{x \to +\infty} x = +\infty$. En multipliant, on obtient

$$\lim_{x\to +\infty} h_{\alpha}(x) = -\infty.$$

3) a) La fonction $h_{0,1}$ est continue et strictement croissante sur $\left]0,\frac{1}{\sqrt{0,2}}\right]$. De plus, $\lim_{x\to 0}h_{0,1}(x)=-\infty<0$ et $h_{0,1}\left(\frac{1}{\sqrt{0,2}}\right)=\frac{-1-\ln(0,2)}{2}=0,3\ldots>0$.

Donc, la fonction $h_{0,1}$ s'annule une fois et une seule sur $\left[0, \frac{1}{\sqrt{0,2}}\right]$.

- b) Puisque l'équation $h_{\alpha}(x)=0$ admet exactement deux solutions, d'après la question 1), les courbes $\mathscr C$ et Γ_{α} ont exactement deux points d'intersection.
- 4) a) Le maximum de la fonction h₁ est

$$h_{\frac{1}{2e}}\left(\sqrt{\frac{1}{2(1/2e)}}\right) = h_{\frac{1}{2e}}\left(\sqrt{e}\right) = \frac{1}{2}\left(-1 - \ln\left(\frac{2}{2e}\right)\right) = \frac{1}{2}\left(-1 + \ln(e)\right) = 0.$$

b) D'après la question 2)a), la fonction $h_{\frac{1}{2e}}$ est strictement croissante sur $]0,\sqrt{e}]$. Donc, pour $x\in]0,\sqrt{e}[$, $h_{\frac{1}{2e}}(x)< h_{\frac{1}{2e}}(\sqrt{e})=0$.

De même, la fonction $h_{\frac{1}{2e}}$ est strictement décroissante sur $\left[\sqrt{e}, +\infty\right[$. Donc, pour $x \in \left]\sqrt{e}, +\infty\right[$, $h_{\frac{1}{2e}}(x) < h_{\frac{1}{2e}}\left(\sqrt{e}\right) = 0$.

En particulier, pour tout réel strictement positif x distinct de \sqrt{e} , $h_{\frac{1}{2e}}(x) \neq 0$. D'autre part, $h_{\frac{1}{2e}}(\sqrt{e}) = 0$. On en déduit que la fonction $h_{\frac{1}{2e}}$ s'annule une fois et une seule sur $]0, +\infty[$. D'après la question 1), les courbes $\mathscr C$ et $\Gamma_{\frac{1}{2e}}$ ont un point d'intersection et un seul.

- 5) Si $\frac{-1 \ln(2\alpha)}{2} > 0$, comme à la question 3), les courbes $\mathscr C$ et Γ_α ont au moins un point commun et si $\frac{-1 \ln(2\alpha)}{2} = 1$
- 0, les courbes $\mathscr C$ et Γ_α ont un point commun d'après la question 4). Enfin, si $\frac{-1-\ln(2\alpha)}{2}<0$, la fonction h_α a un maximuym strictement négatif. En particulier, la fonction h_α ne s'annule pas sur $]0,+\infty[$ ou encore les courbes $\mathscr C$ et Γ_α n'ont pas de point d'intersection. En résumé,

$$\begin{split} \mathscr{C} \cap \Gamma_{\alpha} &= \varnothing \Leftrightarrow \frac{-1 - \ln(2\alpha)}{2} < 0 \Leftrightarrow -1 - \ln(2\alpha) < 0 \Leftrightarrow 1 + \ln(2\alpha) > 0 \\ & \Leftrightarrow \ln(2\alpha) > -1 \Leftrightarrow 2\alpha > e^{-1} \\ & \Leftrightarrow \alpha > \frac{1}{2e}. \end{split}$$

EXERCICE 2

Partie A

1) Soit $\lambda > 0$. Pour tout réel x > 0,

$$\begin{split} \int_0^x \lambda t e^{-\lambda t} \ dt &= \left[-\left(t + \frac{1}{\lambda}\right) e^{-\lambda t} \right]_0^x = -\left(x + \frac{1}{\lambda}\right) e^{-\lambda x} + \left(0 + \frac{1}{\lambda}\right) e^0 \\ &= -\frac{\lambda x + 1}{\lambda} e^{-\lambda x} + \frac{1}{\lambda} \\ &= \frac{1}{\lambda} \left(-\lambda x e^{-\lambda x} - e^{-\lambda x} + 1 \right). \end{split}$$

2) Puisque $\lambda > 0$, $\lim_{x \to +\infty} -\lambda x e^{-\lambda x} = \lim_{y \to -\infty} y e^y = 0$ d'après un théorème de croissances comparées. D'autre part, $\lim_{x \to +\infty} e^{-\lambda x} = \lim_{y \to -\infty} e^y = 0$. Donc,

$$\lim_{x \to +\infty} \frac{1}{\lambda} \left(-\lambda x e^{-\lambda x} - e^{-\lambda x} + 1 \right) = \frac{1}{\lambda} \left(0 + 0 + 1 \right) = \frac{1}{\lambda}.$$

Ceci montre que

$$E(X) = \frac{1}{\lambda}.$$

Partie B

1) a) $P(X \le 1) = \int_0^1 \lambda e^{-\lambda x} \ dx$. La fonction densité représentée sur le graphique ci-dessous est la fonction $g: x \mapsto \lambda e^{-\lambda x}$. Donc, $P(X \le 1)$ est l'aire, exprimée en unités d'aire, du domaine coloré ci-dessous.

- b) $g(0) = \lambda e^0 = \lambda$. λ est donc l'ordonnée du point de la courbe ci-dessus d'abscisse 0. Sur le graphique, on lit $\lambda = 0, 5$.
- 2) a) Dire que E(X) = 2 signifie que en moyenne, la durée de vie d'un composant électronique est de 2 ans.
- b) $\frac{1}{\lambda} = 2$ fournit $\lambda = \frac{1}{2}$ ou encore $\lambda = 0, 5$.
- c) Pour tout réel $a \ge 0$,

$$P(X \le \alpha) = \int_0^{\alpha} \lambda e^{-\lambda x} dx = \left[-e^{-\lambda x} \right]_0^{\alpha} = \left(-e^{-\lambda \alpha} \right) - \left(-e^0 \right) = 1 - e^{-\lambda \alpha} = 1 - e^{-0.5\alpha}.$$

En particulier, $P(X \le 2) = 1 - e^{-0.5 \times 2} = 1 - e^{-1} = 0.63$ arrondi à 0,01. Ceci signifie que la probabilité que le composant électronique fonctionne au plus deux ans est environ 0,63.

d) La probabilité demandée est $P_{X\geqslant 1}(X\geqslant 3)$.

$$P_{X\geqslant 1}(X\geqslant 3) = \frac{1-\left(1-e^{-0.5\times 3}\right)}{1-\left(1-e^{-0.5\times 1}\right)} = \frac{e^{-1.5}}{e^{-0.5}} = e^{-1}.$$

Partie C

1) La probabilité demandée, c'est-à-dire la probabilité que les deux composants soient défaillants avant un an, est $P(D_1 \cap D_2)$. Puisque les événements D_1 et D_2 sont indépendants,

$$P(D_1 \cap D_2) = P(D_1) \times P(D_2) = (0,39)^2 = 0,1521.$$

2) L'événement « le circuit B est défaillant avant un an » est l'événement contraire de l'événement « aucun des deux composants n'est défaillant avant un an » qui est l'événement $\overline{D_1} \cap \overline{D_2}$. Puisque les événements D_1 et D_2 sont indépendants, on sait que les événements $\overline{D_1}$ et $\overline{D_2}$ sont indépendants. Donc

$$P\left(\overline{D_1} \cap \overline{D_2}\right) = P\left(\overline{D_1}\right) \times P\left(\overline{D_2}\right) = (1 - 0, 39)^2 = 0, 61^2 = 0, 3721.$$

La probabilité demandée est alors

$$1 - P(\overline{D_1} \cap \overline{D_2}) = 1 - 0,3721 = 0,6279.$$

EXERCICE 3

Partie A

- 1) Le point $|z_R| = |z_M| = |z|$ et $\arg(z_R) = 0$ $[2\pi]$. Par suite, $x_R = |z| \times \cos(0) = |z|$ et $y_R = |z| \times \sin(0) = 0$. Le point R a pour coordonnées (|z|, 0).
- 2) On construit d'abord M_1 le milieu du segment [MR]. M' est alors le milieu du segment $[OM_1]$.

Partie B

- 1) Soit z_0 un réel négatif. Alors, $|z_0|=-z_0$ puis $z_1=\frac{z_0+|z_0|}{4}=0$. Montrons par récurrence que pour tout $n\geqslant 1$, $z_n=0$.
 - \bullet L'égalité est vraie quand $\mathfrak{n}=1.$
 - Soit $n \ge 1$. Supposons que $z_n = 0$. Alors, $z_{n+1} = \frac{z_n + |z_n|}{4} = 0$.

On a montré par récurrence que pour tout entier naturel $n \ge 1$, $z_n = 0$.

En particulier, la suite $(z_n)_{n\in\mathbb{N}}$ converge et dim $n+\infty z_n=0$.

- 2) Soit z_0 un réel positif. Montrons par récurrence que pour tout $n \ge 0$, z_n est un réel positif.
 - ullet L'affirmation est vraie quand $\mathfrak{n}=0$.
 - Soit $n \ge 0$. Supposons que z_n soit un réel positif. Alors $z_{n+1} = \frac{z_n + |z_n|}{4}$ est un réel positif.

On a montré par récurrence que pour tout entier nature l $n \geq 0$, z_n est un réel positif.

Puisque pour $n \ge 0$, z_n est un réel positif, pour tout $n \ge 0$, on a $z_{n+1} = \frac{z_n + z_n}{4} = \frac{z_n}{2}$.

La suite $(z_n)_{n\in\mathbb{N}}$ est donc la suite géométrique de premier terme z_0 et de raison $\frac{1}{2}$. On en déduit que

pour tout entier naturel n,
$$z_n = z_0 \left(\frac{1}{2}\right)^n$$
.

Puisque $-1<\frac{1}{2}<1,$ on en déduit que la suite $(z_n)_{n\in\mathbb{N}}$ converge et $\dim n+\infty z_n=0.$

- 3) a) Il semble que la suite $(|z_n|)_{n\in\mathbb{N}}$ converge et que $\dim n+\infty |z_n|=0$.
- **b)** Soit $n \ge 0$.

$$|z_{n+1}| = \frac{1}{4}|z_n + |z_n|| \leqslant \frac{1}{4}(|z_n| + ||z_n||) = \frac{1}{4}(|z_n| + |z_n|) = \frac{|z_n|}{2}.$$

Montrons par récurrence que pour tout $n \ge 0$, $|z_n| \le \frac{|z_0|}{2^n}$.

- Puisque $\frac{|z_0|}{2^0} = |z_0|$, l'inégalité est vraie quand n = 0.
- Soit $n \ge 0$. Supposons que $|z_n| \le \frac{|z_0|}{2^n}$. Alors $|z_{n+1}| \le \frac{|z_n|}{2} \le \frac{1}{2} \times \frac{|z_0|}{2^n} = \frac{|z_0|}{2^{n+1}}$.

On a montré par récurrence que pour tout entier naturel $n\geqslant 0,\, 0\leqslant |z_n|\leqslant \frac{|z_0|}{2^n}.$

Puisque $\lim_{n\to+\infty}\frac{|z_0|}{2^n}=0$, le théorème des gendarmes permet d'affirmer que $\lim_{n\to+\infty}|z_n|=0$.

EXERCICE 4.

Partie A

- p = 2
- u = 5
- k = 1 puis $u = 0, 5 \times 5 + 0, 5(1 1) 1, 5 = 1$
- k = 2 puis $u = 0.5 \times 1 + 0.5(2 1) 1.5 = -0.5$

L'algorithme affiche alors -0, 5.

Partie B

1) Algorithme modifié.

Variables:	k et p sont des entiers naturels u est un réel
Entrée :	Demander la valeur de p
Traitement :	Affecter à u la valeur 5 Pour k variant de 1 à p Affecter à u la valeur $0,5u+0,5(k-1)-1,5$ Afficher u Fin de pour

- 2) On a $u_0 > u_1 > u_2 > u_3$ et $u_3 < u_4$. Puisque $u_3 < u_4$, la suite $(u_n)_{n \in \mathbb{N}}$ n'est pas décroissante.
- 3) Montrons par récurrence que pour tout $n \ge 3$, $u_{n+1} > u_n$.
 - \bullet L'inégalité est vraie quand n = 3 d'après la question précédente.
 - \bullet Soit $n\geqslant 3,$ Supposons que $u_{n+1}>u_n$ et montrons que $u_{n+2}>u_{n+1}.$

$$\begin{split} u_{n+2} &= 0,5u_{n+1} + 0,5(n+1) - 1,5 = 0,5u_{n+1} + 0,5n - 1 \\ &> 0,5u_n + 0,5n - 1 \text{ (par hypothèse de récurrence)} \\ &= 0,5u_n + 0,5n - 1,5 + 0,5 = u_{n+1} + 0,5 \\ &> u_{n+1}. \end{split}$$

On a montré par récurrence que pour tout entier naturel $n \ge 3$, $u_{n+1} > u_n$.

La suite $(u_n)_{n\in\mathbb{N}}$ est donc strictement décroissante jusqu'au rang 3 puis strictement croissante.

4) Soit $n \in \mathbb{N}$.

$$\begin{split} \nu_{n+1} &= 0, 1 u_{n+1} - 0, 1(n+1) + 0, 5 = 0, 1 \left(0, 5 u_n + 0, 5 n - 1, 5\right) - 0, 1 n - 0, 1 + 0, 5 \\ &= 0, 05 u_n + 0, 05 n - 0, 15 - 0, 1 n + 0, 4 = 0, 05 u_n - 0, 05 n - 0, 25 \\ &= 0, 5 \left(0, 1 u_n - 0, 1 n + 0, 5\right) \\ &= 0, 5 \nu_n. \end{split}$$

La suite $(v_n)_{n\in\mathbb{N}}$ est donc une suite géométrique de raison q=0,5. D'autre part,

$$v_0 = 0, 1u_0 - 0, 1 \times 0 + 0, 5 = 0, 1 \times 5 + 0, 5 = 1.$$

On en déduit que pour tout entier naturel n,

$$v_n = v_0 \times q^n = (0,5)^n$$
.

5) Soit $n \ge 0$.

$$\nu_n = 0, 1u_n - 0, 1n + 0, 5 \Rightarrow 0, 1u_n = \nu_n + 0, 1n - 0, 5 \Rightarrow \frac{u_n}{10} = (0, 5)^n + \frac{n - 5}{10} \Rightarrow u_n = 10 \times (0, 5)^n + n - 5.$$

Pour tout entier naturel n, $u_n = 10 \times (0,5)^n + n - 5$.

 $\textbf{6)} \ \mathrm{Puisque} \ -1 < 0, 5 < 1, \\ \lim_{n \to +\infty} 10 \times (0,5)^n = 0. \ \mathrm{D'autre \ part}, \\ \lim_{n \to +\infty} (n-5) = +\infty. \ \mathrm{En \ additionnant}, \ \mathrm{on \ obtient}$

$$\lim_{n\to+\infty}u_n=+\infty.$$