

"No reinventes la rueda"

- En otras palabras, no pierdas mucho tiempo creando lo que alguien más ya hizo.
- Práctica de desarrollar soluciones o algoritmos desde cero, en lugar de utilizar soluciones existentes y bien establecidas.

"No reinventes la rueda".

Pros:

- Entendimiento completo del problema.
- Personalización a necesidades específicas.
- Aprendizaje profundo.
- Libertad Creativa.

Contras:

- Tiempo y recursos.
- Calidad y mantenimiento dando soluciones menos eficientes.
- Reinvención de problemas ya resueltos por otros.
- Omisión de aprender de soluciones existentes y mejores prácticas.

Paquetes en R

- Las expresiones (o funciones) son conjuntos de instrucciones que se utilizan para que R realice operaciones sobre objetos.
- R tiene un core básico. Con funciones como las operaciones aritméticas.
- Comunidad expande esas capacidades para hacer tareas mucho más complejas.

Paquetes

- Los usuaRios han construido paquetes.
 - Diversas funciones:
 - Tareas generales (gráficas, instalación de herramientas).
 - Tareas específicas (Estadísticas particulares, implementación de modelos matématicos).

• Los paquetes de R son un conjunto de funciones y bases de datos desarrollados por la comunidad.

Paquetes

Files	Plots Packages Help	Viewer		
1	nstall	·	Q	C
	Name	Description	Version	
User	Library			
	AnnotationDbi	Manipulation of SQLite-based annotations in Bioconductor	1.56.2	● ◎
	AnnotationFilter	Facilities for Filtering Bioconductor Annotation Resources	1.18.0	⊕ ⊗
	ape	Analyses of Phylogenetics and Evolution	5.6-2	⊕ ⊗
	aplot	Decorate a 'ggplot' with Associated Information	0.1.4	⊕ ⊗
	askpass	Safe Password Entry for R, Git, and SSH	1.1	⊕ ⊗
	assertthat	Easy Pre and Post Assertions	0.2.1	⊕ ⊗
	babelgene	Gene Orthologs for Model Organisms in a Tidy Data Format	22.3	⊕ ⊗
	backports	Reimplementations of Functions Introduced Since R-3.0.0	1.4.1	⊕ ⊗
	base64enc	Tools for base64 encoding	0.1-3	⊕ ⊗
	ВН	Boost C++ Header Files	1.78.0-0	⊕ ⊗
	Biobase	Biobase: Base functions for Bioconductor	2.54.0	⊕ ⊗
	BiocFileCache	Manage Files Across Sessions	2.2.1	⊕ ⊗
	BiocGenerics	S4 generic functions used in Bioconductor	0.40.0	⊕ ⊗
	BioclO	Standard Input and Output for Bioconductor Packages	1.4.0	⊕ ⊗
	BiocManager	Access the Bioconductor Project Package Repository	1.30.17	⊕ ⊗
	BiocParallel	Bioconductor facilities for parallel evaluation	1.28.3	⊕ ⊗
	BiocVersion	Set the appropriate version of Bioconductor packages	3.14.0	⊕ ⊗
	biomaRt	Interface to BioMart databases (i.e. Ensembl)	2.50.3	⊕ ⊗
	Biostrings	Efficient manipulation of biological strings	2.62.0	⊕ ⊗
	biovizBase	Basic graphic utilities for visualization of genomic data.	1.42.0	⊕ ⊗
	bit	Classes and Methods for Fast Memory-Efficient Boolean Selections	4.0.4	⊕ ⊗

Instalación de paquetes

- Varias formas.
 - Usar la función install.packages().
 - El argumento es el nombre del paquete y se expresa entre comillas; es decir,
 - > install.packages("nombre del paquete")

> install.packages("ggplot2")

Instalación de paquetes

 Alternativamente se pueden instalar desde el multipanel o desde la pestaña Tools, Install packages.

• Adicionalmente ofrece instalar dependencias.

Instalación de paquetes

• Esto último es particularmente útil si vemos errores como este:

```
R R4.4.0 · ~/ ≈

> install.packages("ggplot")
WARNING: Rtools is required to build R packages but is not currently in stalled. Please download and install the appropriate version of Rtools before proceeding:

https://cran.rstudio.com/bin/windows/Rtools/
Installing package into 'C:/Users/mario/AppData/Local/R/win-library/4.
4'
(as 'lib' is unspecified)
Warning in install.packages:
```

Instalación de paquetes

 Si la instalación es correcta primero mostrará el proceso y después volverá el prompt.

Library

- Funciones y material (datos de ejemplo) de un paquete de R se almacenan en una **library**.
- Ruta en computadora que aloja los paquetes deseados.
- Se cargan con:
 - > library("nombre de la library")

> library("ggplot2")

¿Qué es ggplot2?

- Paquete R para generar visualizaciones de datos.
- Creado por Hadley Wickham.
- Gran cantidad de usuarios:
 - Su versatilidad.
 - Una interfaz clara y coherente.
 - Resultados visuales atractivos.
- Grammar of Graphics Ploting (ggplot).
 - Por la forma estructurada de describir visualizaciones de datos.
- Genera resultados visualmente atractivos y listos para publicación.

¿Qué es ggplot2?

- La gramática de los gráficos representa y abstrae ideas/objetos gráficos.
- Piense en "verbo", "sustantivo" y "adjetivo" para gráficos.
- Permite una "teoría" de gráficos sobre la cual construir nuevos gráficos y objetos gráficos.
- Acorta la distancia de la mente a la página

Geometrías

- Las geometrías son tipos de gráficos.
 - geom_point(), geom_jitter()
 - Puntos
 - geom_line()
 - Líneas
 - geom_boxplot()
 - Caja y bigotes
 - geom_col(), geom_bar()
 - Barras
 - geom_histogram()
 - Histogramas
 - geom_density(), geom_violín()
 - Dispersión

Estéticas

- Las estéticas (Aesthetics) son los parámetros que pueden ser ajustados en una geometría dada
 - Color
 - Colour
 - Fill
 - Opacidad
 - Alpha
 - Forma
 - Tamaño

Estructura básica

Estructura básica

Se construye:

```
\begin{array}{c} \text{data.frame a graficar} \\ \text{ggplot(data=mpg, aes(x=cty, y=hwy))} + \\ \text{Geometría} & \rightarrow \text{geom\_point()} + \\ \text{ggtitle("Ejemplo")} + \\ \text{xlab("Leyenda")} \\ \end{array}
```

bune)	(dien)	Tout 1	class)	ماد
hwy)	(disp)	cyl (-
17	5.0	_	suv	
20	2.7	4	pickup	
17	4.0	6	suv	
25	2.8	6	compact	
27	3.1	6	compact	•
30	2.0	4	compact	
25	2.8	6	compact	(
23	2.8	6	compact	
26	3.0	6	midsize	
17	5.4	8	pickup	
28	2.5	5	subcompact	
29	3.5	6	midsize	(
26	2.4	4	midsize	
29	2.0	4	midsize	
15	5.4	8	pickup	(
29	1.8	4	compact	
18	5.7	8	suv	
12	4.7	8	pickup	(
26	2.8	6	compact	
24	3.3	6	minivan	

Data

Geom

A graficar

Ejemplo1. Uso de cubrebocas

- Porque la pandemia dejo muchos datos.
 - Descargue el archivo usodecubrebocasCORRECTO.csv

Ejemplo 2. IMC

 Método de evaluación fácil y económico para la categoría de peso: bajo peso, peso saludable, sobrepeso, y obesidad*.

$$IMC = \frac{Peso(kg)}{Altura(m)^2}$$

Descargue el archivo IMC.csv

Ejemplo 3. Extracción de ADN

- El ADN (o DNA) se puede extraer de muestras biológicas.
- Es importante:
 - Cantidad (mg/μL)
 - Calidad (A260/A280 y A260/230).
- Descargue el archivo DNA.csv

Algunos trucos extra

- Se pueden cambiar los fondos (temas)
 - theme_gray(), theme_bw(), theme_linedraw(), theme_light(), theme_minimal(), theme_classic(), theme_void()
- Las etiquetas (Leyendas)
 - theme(), labs()

Los más importante...

- ¡El artículo! ¡La tesis!
- ¿Cómo se guarda todo esto?

ggsave("mi_grafica.png", plot=plot1)

Gracias por su atención

lhernandezs1212@egresado.ipn.mx
https://www.researchgate.net/profile/Luis-Mario-Hernandez-Soto