Mechanical, Automotive and Materials Engineering Fluid Mechanics I MECH-3233-F23

Assignment Problems Set #9

Problem 1 (6 points): The volume flow Q through an orifice plate is a function of pipe diameter D, pressure drop Δp across the orifice, fluid density ρ and viscosity μ , and orifice diameter d. Using D, ρ , and Δp as repeating variables, express this relationship in dimensionless form.

Problem 2 (6 points): The volume flow Q over a certain dam is a function of dam width b, gravity g, and the upstream water depth H above the dam crest. It is known that Q is proportional to b ($Q \propto b$). If b = 120 ft and H = 15 in, the flow rate is 600 ft³/s. What will be the flow rate if H = 3 ft?

Problem 3: The power P generated by a certain windmill design depends upon its diameter D, the air density ρ , the wind velocity V, the rotation rate Ω , and the number of blades n. Use (D, ρ, V) as repeating variables.

- (a) Use the dimensional analysis and find suitable pi parameters for this problem. (2 points)
- (b) A model windmill, of diameter 50 cm, develops 2.7 kW at sea level when V = 40 m/s and when rotating at 4800 rev/min What power will be developed by a geometrically and dynamically similar prototype, of diameter 5 m, in winds of 12 m/s at 2000 m standard altitude ($\rho_{air} = 1.0067 \text{ kg/m}^3$)? (**2 points**)
- (c) What is the appropriate rotation rate of the prototype? Take the density of air in see level to be $\rho_{air} = 1.2255 \text{ kg/m}^3$. (2 points)

Problem 4: Flow characteristics for a 30-ft-diameter prototype parachute are to be determined by tests of a 1-ft-diameter model parachute in a water tunnel. Some data collected with the model parachute indicate a drag of 17 lb when the water velocity is 4 ft/s.

- (a) Use the dimensional analysis and find a suitable pi parameter for this problem. (2 points)
- (b) Use the model data to predict the drag on the prototype parachute falling through the air at 10 ft/s. Assume the drag to be a function of the velocity, V, the fluid density, ρ , and the parachute diameter, d. ($\rho_{water} = 1.94 \text{ slugs/ft}^3$ and $\rho_{air} = 2.38 \times 10^{-3} \text{ slugs/ft}^3$) (2 **points**)

