פונקציות ממשיות - חורף תשס"א - פתרון חלקי לגליון תרגילים מס' 4

בוצות הוזקה ולכן כל הקבוצות הן σ -אלגברה היא כל קבוצת החזקה ולכן כל הקבוצות הן σ . מדידות.

 (\mathbf{c}) שתי פונקציות שוות כב"מ אם"ם הן שוות - כי המידה של כל נקודה היא (\mathbf{c})

p>0 -1 $0<lpha<\infty$, $\int_X f\,d\mu=lpha$ -שונקציה מדידה פונקציה $f:X o[0,\infty]$.3

י אוו
$$n_{n o \infty} \int_X f_n \, d\mu$$
 את לחשב את $f_n = n \log \left[1 + \left(\frac{f(x)}{n}\right)^p\right]$ אוו $n_{n o \infty} \int_X f_n \, d\mu$ אוו $n_{n o \infty} \int_X f_n \, d\mu$ מתקיים: $f_n = n \log \left[1 + \left(\frac{f(x)}{n}\right)^p\right]$ פתרון: נשים לב שלכל $x \in X$ מתקיים: $x \in X$ מתקיים: $x \in X$ פתרון: נשים לב שלכל $x \in X$ מתקיים: $x \in X$ מתקיים: $x \in X$ פתרון: נשים לב שלכל $x \in X$ מתקיים: $x \in X$ מתקיים: $x \in X$ פתרון: נשים לב שלכל $x \in X$ מתקיים: $x \in X$ מונים: $x \in$

 f_n נשתמש בליות): Fatou נשתמש בלמת בהדרכה: עבור p < 1 הן מדידות ואי-שליליות):

$$\infty = \int_X \infty d\mu = \int_X \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int_X f_n d\mu$$

p < 1 כלומר, עבור ($\mu(X) > 0$ ולכן , $\alpha > 0$ שימו לב שהשוויון השמאלי נכון כיוון שנתון ש $\alpha > 0$. $\lim_{n\to\infty} \int_X f_n d\mu = \infty$

עבור $a^p+b^p\leq (a+b)^p$ (כיוון שהפונקציה a,b>0 עבור $a^p+b^p\leq (a+b)^p$ - ונזכור גם ש- ונזכור גם ש- רולכן תת-אדיטיבית.) ונזכור גם ש $F(t) \leq 0$ ווער אדיטיבית.) ונזכור גם ש $F(t) = t^p$ $x \in X$ למשל) ולכן לכל - $\log(1+b) \le b$

$$n\log\left[1+\left(\frac{f(x)}{n}\right)^p\right] \le n\log\left[1+\left(\frac{f(x)}{n}\right)\right]^p = pn\log\left[1+\left(\frac{f(x)}{n}\right)\right] \le pn\frac{f(x)}{n} = pf(x)$$

בלומר, f_n - כלומר, (שלטת הרי f_n ולכן ניתן להשתמש בהתכנסות נשלטת (הרי f_n מדידות):

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X \lim_{n \to \infty} f_n \, d\mu = \begin{cases} \int_X f \, d\mu & p = 1 \\ 0 & 1$$

 $g\in L^1(\mu)$ -1 $\int_X f_n\,d\mu$ שלכל -0 ש $f_n:X o[0,\infty]$ שלכל הדידות מדידות מדידות מדידות -1 $\int_X gf_n\,d\mu$ שלכל $g\cdot f_n\in L^1(\mu)$ חבל $g\cdot f_n\in L^1(\mu)$ שלכל האבל -1 $g\cdot f_n\in L^1(\mu)$

. $f_n(x)=n^2\chi_n(x)$, $g(x)=\sum_{n=1}^\infty n\chi_n(x)$: ונגדיר $\chi_n=\chi_{[n,n+\frac{1}{n^3}]}$ נטמן $n\in\mathbb{N}$ דוגמא: לכל ת

. $A=f^{-1}(\mathbb{Z})$ נגדיר נגדיר במרחב מידה חופי. $f:X \to \mathbb{R}$ מדידה מדידה $A=f^{-1}(\mathbb{Z})$ במרחב מידה חופי. $\mu(A)=\lim_{n\to\infty}\int_X\cos^{2n}(\pi\cdot f)\,d\mu$ ש"ל: ש- A מדידה מדידה מקור של קבוצת בורל ע"י פונקציה מדידה, לגבי הגבול - סדרת הפונקציות המדידות A $f_1\in L^1(\mu)$ מקיימת , $|f_1|\leq 1$, המידה סופית ו- $f_n\searrow\chi_A$ מקיימת $f_n(x)=\cos^{2n}(\pi f(x))$ ולהסיק ש- ולכן ניתן להשתמש בהתכנסות מונוטנית (למרות שהסדרה <u>יורדת</u>) ולהסיק ש

- כונה היא סופי הטענה לא נכונה ו $\lim_{n o\infty}\int_X f_n\,d\mu=\int_X \chi_A\,d\mu=\mu(A)$ למשל $f(x)\equiv rac{1}{4}$ עבור $X=\mathbb{R}$.

כב"מ ו- הונות פונקציות ממשיות מדידות $f,\{f_n\}_{n=1}^\infty\in L^1(\mu)$ כך ש- $f,\{f_n\}_{n=1}^\infty\in L^1(\mu)$ כב"מ ו $f,\{f_n\}_{n\to\infty}^\infty f$ כב"מ ו $f,\{f_n\}_{n\to\infty}^\infty f$ כב"מ בעזרת הטענה שהוכחנו בכיתה, שהיא הכללה של משפט ההתכנסות הנשלטת: אם נתונות פתרון: בעזרת הטענה שהוכחנו בכיתה, שהיא הכללה של משפט ההתכנסות הנשלטת: אם נתונות שלוש סדרות של פונקציות ממשיות $\{F_n\},\{G_n\},\{H_n\}$ עם $\{F_n\},\{G_n\},\{H_n\}$ כב"מ ובנוסף מתקיים: לכל $\{F_n\},\{G_n\},\{H_n\},\{G_n\},\{H_n\}$ אז בהכרח גם $\{F_n\},\{G_n\},\{H_n\},\{$

אם ניקח כעת $F_n = -(|f_n| + |f|) \leq G_n = |f_n - f| \leq H_n = |f_n| + |f|$ נקבל מש"ל.

 $n\in\mathbb{N}$ קבוע לכל $\int_X f^n\,d\mu=c$ -ש- כך ש- $\int_X f^n\,d\mu=c$ קבוע לכל .7 פונקציה ממשית מדידה כך ש- $f=\chi_A$ ש- $A\in\mathcal{M}$ קיימת $A\in\mathcal{M}$

פתרון: תהי B , $g_n=f^{2n}\chi_B$ ונגדיר ונגדיר $B=\{x\in X:|f(x)|>1\}$ פתרון: תהי g_n מדידות, יתר-על-כן $g_n\nearrow\infty\cdot\chi_B$ ולכן - ע"פ התכנסות מונוטונית

$$c \geq \int_{B} f^{2n} d\mu = \int_{X} g_{n} d\mu \xrightarrow{n \to \infty} \int_{B} \infty d\mu$$

ולכן בהכרח $f^3 \leq |f|^3 \leq f^2$ -שנימ, מכך נסיק ש- $|f| \leq 1$, אבל כיוון , אבל כיוון , גומר, $f \in \{0,1\}$ בהכרח כב"מ (מדוע?) - כלומר $f^3 = f^2$ נקבל $f^3 = f^2$ נקבל $f^3 = f^2$ בב"מ עבור $f^3 = f^2$ בב"מ עבור $f = \chi_A$, קיבלנו, אם-כן, אם-כן ב"מ עבור $f = \chi_A$