Research projects

& programming with R

*TropBio*Costa Rica June 4th 2018

HEREDIA R User Group

My life with R:

Me: Why do people think I'm mad all the time?

Also me:

Why Rand not a GU12

RStudio

Integrated Development Environment

Starting a project

Have you ever felt like this looking at an old analysis?

Bad project structure example:

GAP	05/25/2018 06:43	File folder	
LAI	05/25/2018 06:43	File folder	
.Rhistory	10/18/2017 03:52	RHISTORY File	14 KB
analisis indices canopy.R	11/09/2016 08:27	R File	4 KB
anotaciones serias.docx	11/24/2016 11:07	Microsoft Word D	12 KB
Anotaciones sobre modelos lineales y el t	10/29/2016 11:04	Microsoft Word D	14 KB
data_16.R	10/27/2016 09:16	R File	2 KB
datastarosa.R	11/10/2016 12:57	R File	7 KB
Does lianas influence understory species	11/18/2016 11:45	Microsoft Word D	12 KB
Fotos_b_n_GAP.pptx	11/23/2016 06:46	Microsoft PowerP	21,032 KB
lnfluencia del vecindario y lianas en los r	11/09/2016 11:09	Microsoft Word D	401 KB
lnfluencia del vecindario y lianas en los r	11/27/2016 07:01	Microsoft Word D	376 KB
Modelos ANCOVA.R	11/10/2016 12:57	R File	2 KB
NALISIS DE AF VS GROSOR Y PECIOLOS	10/21/2016 03:27	Microsoft Word D	27 KB
nuevo_spinola.R	11/25/2016 09:22	R File	2 KB
🖺 Santa Rosa.pdf	03/27/2017 01:55	PDF File	2,095 KB
🔁 Santa Rosa.pptx	11/10/2016 01:04	Microsoft PowerP	4,040 KB
Script_GAP.R	11/24/2016 08:43	R File	3 KB
script_LAI.R	10/16/2016 02:15	R File	3 KB

GOOd project structure example:

Name	Date modified	Type	Size
git	05/25/2018 06:43	File folder	
analysis script	05/25/2018 06:43	File folder	
data	05/25/2018 06:43	File folder	
doc doc	05/25/2018 06:43	File folder	
📊 figs	05/25/2018 06:43	File folder	
shiny	05/25/2018 06:43	File folder	
gitignore	09/12/2017 04:00	GITIGNORE File	1 KB
README.md	10/03/2017 10:01	MD File	1 KB

Here is an example of a basic project directory structure:

- The data folder contains all input data (and metadata) used in the analysis.
- The doc folder contains the manuscript.
- The figs directory contains figures generated by the analysis.
- The output folder contains any type of intermediate or output files (e.g. simulation outputs, models, processed datasets, etc.). You might separate this and also have a cleaned-data folder.
- The R directory contains R scripts with function definitions.
- The reports folder contains RMarkdown files that document the analysis or report on results.

Why do all this?

- 1. Reproducibility
- 2. Automation
- 3. Communication

Contribute ()

Reproducibility in Science

A Guide to enhancing reproducibility in scientific results and writing

http://ropensci.github.io/reproducibility-guide/

Names:

```
File names better without spaces: my_super_pro_data.csv
```

Case sensitivity: My_Super_Pro_data.csv

Not informative names: data_1.csv

Scripts:

Separate scripts: wrangling – analysis - figures

How easy is it to read this?

```
Source on Save
                                                                                                                        Source •
                                                                                                            Run
    eco <- read.csv("~/eco.csv")
    View(eco)
    class(eco$Temperatura)
    cobertura <- subset(eco,Sitio=="cobertura")</pre>
   library(psych)
    desnudo <- subset(eco,Sitio=="sincobertura")</pre>
    describeBy(desnudo,desnudo$Medici.n)
    describeBy(cobertura,cobertura$Medici.n,na.rm=T)
    describeBy(eco,eco$Sitio,na.rm=T)
    sitio <- c("cobertura", "cobertura", "cobertura", "sin", "sin", "sin")</pre>
    lux <- c(8800,13300,12800,71000,104600,118400)
   | iluminancia <- data.frame(sitio,lux)
    humedad \leftarrow c(37.1,37.9,38.7,39.9,39,36.8)
    hume <- data.frame(sitio,humedad)</pre>
   iluminancia
15
    class(iluminancia$lux)
    describeBy(iluminancia,iluminancia$sitio)
    describeBy(hume,hume$sitio)
    z <- read.table(file="clipboard",sep="\t",header=T)</pre>
    plot(x=z$?rea.acumulada,y=z$Spp.acumulada,pch=16,xlab=expression(paste("?rea(",cm^2,")",sep="")),ylab="Especies acumuladas")
    lines.default(z$?rea.acumulada,z$Spp.acumulada)
1:1
     (Top Level) 🗦
                                                                                                                                 R Script :
```

How easy is it to read this?

```
Source on Save
                                                                                                    Run Source •
31 - #-----Con paquete vegan-----
   #Primero cargo los datos por sitio, no por d?a para sacar ?ndices por sitio
33
34 site <- read.csv("site.csv",header=T,row.names=1)</pre>
35 diversity(persite,index = "shannon")
   diversity(persite,index="simpson")
38 #Margalef:
39 n <- apply(persite>0,1,sum)
40 N <- apply(persite,1,sum)
   (n-1)/log(N)
42
43
   #Luego debo de hacer curva de acumulaci?n por sitio, por lo tanto
   #debo de hacer el subset respectivo
46
   una <- subset(site,Sitio=="UNA")
48 tail(una)
49 una <- una[1:7,-1]
50
51 sta_lu <- subset(site,Sitio=="Sta_Luc?a")
52 tail(sta_lu)
53 sta_lu <- sta_lu[,-1]
54
55 monte <- subset(site,Sitio=="Monte_Cruz")</pre>
56 tail(monte)
   monte <- monte[,-1]</pre>
58
   #Para curvaaccu debo de cargar por muestra (por d?a)
60
   spa <- specaccum(una,method="random")</pre>
62
   plot(spa,xlab = "D?as de Muestreo",ylab = "Riqueza",col="red")
64
65 spasta <- specaccum(sta_lu)
   plot(spasta,xlab = "D?as de Muestreo",ylab = "Riqueza",add=T)
    (Top Level) 0
                                                                                                                        R Script
```

How easy is it to read this?

```
Source on Save
                                                                                                     Run 😘 🕩 Source 🔻
   uaca - unitectuaca, pace, year, monentiay, sep - / /
35 head(data)
36
37 ▼ ## ---- 2.1 Función strptime ----
38 Rdate <- strptime(as.character(data$Date), "%Y/%m/%d")
   class(Rdate)
40
41 data <- data.frame(Rdate,data)
42 head(data)
43
44 - # --- 3. Análisis estadísticos con datos de fechas ----
45
   data$Rdate <- as.POSIXlt(data$Rdate)
   modelo <- lm(arr_delay ~ Rdate, data = data)
48
49
    data$Rdate <- as.POSIXct(data$Rdate)</pre>
50
51 modelo <- lm(arr_delay ~ Rdate, data = data)
52 summary(modelo)
53
   anova <- aov(arr_delay ~ Rdate, data = data)
55 summary(anova)
56
   #convertir a continuo
   data$Rdate <- as.POSIXct(data$Rdate)
60 - ## ---- 3.1 Nombre completo del día ----
61 ejemplo <- data[1,1]
62 ejemplo
63
   weekdays(ejemplo)
65
66 ♥ ## ---- 3.2 Otros formatos ----
67 otras_fechas <- c("2feb2016","18jun1990","7nov1995")
   strptime(otras_fechas,"%d%b%Y")
69
70 - # ---- 4. Cálculos con el tiempo ----
    (Top Level)
                                                                                                                         R Script
```


Types of data:

```
-Characters "biología", "A", "estadística"
-Numerics 18.6, 90
-Integers 18L, 26L
-Complex 2+4i
-Logical TRUE, FALSE
```

Para verificar su clase: class()

Objetos se almacenan en estructuras:

Coercing rules

Figure 3-1. R always uses the same rules to coerce data to a single type. If character strings are present, everything will be coerced to a character string. Otherwise, logicals are coerced to numerics.

Reduce duplication!

- Code easier to read
- Easier to respond to changes in requirements
- Fewer bugs

Don't mix characters and numbers in the same cell Put easy names to write and remember Don't mix lower case and upper case

Experimental design:

- -3 Individuals
- -2 measurement per leaf
- -5 treatments applied to 2 strata

How should the data set be structured?

10 HD	27 °C
10 HD	34°C
10 HD	38 °C
10 HD	45 °C
10 HD	EH

10 HD	27 °C
10 HD	34°C
10 HD	38 °C
10 HD	45 °C
10 HD	EH

27 °C
34°C
38 °C
45 °C
EH

10 HS	27 °C
10 HS	34°C
10 HS	38 °C
10 HS	45 °C
10 HS	EH

10 HS	27 °C
10 HS	34°C
10 HS	38 °C
10 HS	45 °C
10 HS	EH

10 HS	27 °C
10 HS	34°C
10 HS	38 °C
10 HS	45 °C
10 HS	EH ₇

Tidy data!

ID	IND	POS	TRT	Medicion	FV
1	А	D	27	F	Observation
2	Α	S	27	F	- Coscivation
3	В	D	34	1	
4	В	S	34	1	-Each variable must have its own column.
5	С	D	38	F	-Each observation must have its own row.
					-Each value must have its own cell.

Variable / Attribute

Wickham, H. (2014). Tidy Data. *Journal of Statistical Software*, *59*(i10).

Four verbs in tidyr:

```
1- gather ()
2- spread ()
3- separate()
4- unite ()
```


What is the problem with this dataset?

data 🕓								
∀ Filter	Filter							
	Country	Y1980 [‡]	Y1981 [‡]	Y1982 [‡]	Y1983 [‡]			
1	Afghanistan	21.48678	21.46552	21.45145	21.43822			
2	Albania	25.22533	25.23981	25.25636	25.27176			
3	Algeria	22.25703	22.34745	22.43647	22.52105			
4	Andorra	25.66652	25.70868	25.74681	25.78250			
5	Angola	20.94876	20.94371	20.93754	20.93187			
6	Antigua and Barbuda	23.31424	23.39054	23.45883	23.53735			
7	Argentina	25.37913	25.44951	25.50242	25.55644			
8	Armenia	23.82469	23.86401	23.91023	23.95649			
9	Australia	24.92729	25.00216	25.07660	25.14938			
10	Austria	24.84097	24.88110	24.93482	24.98118			
11	Azerbaijan	24.49375	24.52584	24.56064	24.60150			

What is the problem with this set of data?

gather(data, key, value, ...)

data: a data frame

key: bare name of new key column

value: bare name of new value column

..: bare names of columns to gather (or not)

7 Filter					
	Country	Y1980 [‡]	Y1981 [‡]	Y1982 [‡]	Y1983 ‡
1	Afghanistan	21.48678	21.46552	21.45145	21.43822
2	Albania	25.22533	25.23981	25.25636	25.27176
3	Algeria	22.25703	22.34745	22.43647	22.52105
4	Andorra	25.66652	25.70868	25.74681	25.78250
5	Angola	20.94876	20.94371	20.93754	20.93187
6	Antigua and Barbuda	23.31424	23.39054	23.45883	23.53735
7	Argentina	25.37913	25.44951	25.50242	25.55644
8	Armenia	23.82469	23.86401	23.91023	23.95649
9	Australia	24 02720	25 00216	25.07660	25 1/038

spread(data, key, value)

data: a data frame

key: bare name of column containing keys

value: bare name of column containing values

How to solve this?

fotos_sep										
∀ Filter										
	i ÷	plot ‡	MIG.grey [‡]	Aniso.grey [‡]	Timestamp ‡	Date ‡	Time ‡	sitio ‡	camara ‡	
1	1	LADERA	0.2220831	0.9363847	21/06/2016 11:47	2015:05:21	13:21:50	Piro	1	
2	2	LADERA	0.2334211	0.9371384	21/06/2016 11:47	2015:05:21	14:21:50	Piro	1	
3	3	LADERA	0.1685896	0.9400231	21/06/2016 11:48	2015:05:22	09:00:01	Piro	1	
4	4	LADERA	0.1554022	0.9261470	21/06/2016 11:48	2015:05:22	10:00:01	Piro	1	
5	5	LADERA	0.2006901	0.9033331	21/06/2016 11:48	2015:05:22	11:00:01	Piro	1	

Five verbs in dplyr:

```
1-select()
2-filter()
3-arrange()
4- mutate ()
5- summarise ()
   *-group by()
```


Logical operators:

ggplot2:

```
ggplot(data = <DATA>) +
     <GEOM FUNCTION> (
           mapping = aes(<MAPPINGS>),
           stat = <STAT>,
           position = <POSITION>
      ) +
     <COORDINATE FUNCTION> +
     <FACET FUNCTION>
```


Save R objects for the next session:

```
save(my_data, file = "my_data.Rdata)
```

```
saveRDS(mtcars, "my_data.rds")
```

```
readRDS(file = "my_data.rds")
```

Repositories:

- CRAN, http://cran.r-project.org
- Bitbucket, https://bitbucket.org
- Bioconductor, http://www.bioconductor.org
- GitHub, https://github.com
- Gitorious, http://www.gitorious.com

Help:

Help:

http://stackoverflow.com

Help:

Recomendaciones de foros:

http://www.r-project.org/posting-guide.html

- No hacer preguntas repetidas
- A buenas preguntas, buenas respuestas

[Home]

Download

CRAN

R Project

About R
Contributors
What's New?
Mailing Lists
Bug Tracking
Conferences
Search

Posting Guide: How to ask good questions that prompt useful answers

This guide is intended to help you get the most out of the R mailing lists, and to avoid embarrassment. Like many responses posted on the list, it is written in a concise manner. This is not intended to be unfriendly - it is more a consequence of allocating the limited available time and space to technical issues rather than to social niceties.

The list: Remember that R is free software, constructed and maintained by volunteers. They have various reasons for contributing software and participating on the mailing lists, but often have limited time.

Good manners: Remember that customs differ. Some people are very direct. Others surround everything they say with hedges and apologies. Be tolerant. Rudeness is never warranted, but sometimes 'read the manual' *is* the appropriate response. Don't waste time discussing such matters on the list. Ad hominem comments are absolutely out of place.

Questions about statistics: The R mailing lists are primarily intended for questions and discussion

Learning resources:

https://www.coursera.org

Learning resources:

Home Learn Teach Contribute Blog FAQ Help

Learn R, in R.

swirl teaches you R programming and data science interactively, at your own pace, and right in the R console!

.....

Follow @swirlstats

Got questions? Join our discussion group!

http://swirlstats.com/

References:

- Hands on programming with R
- Teetor, P. (2011). *R cookbook*. "O'Reilly Media, Inc.".
- Adler, J. (2010). *R in a nutshell: A desktop quick reference*. " O'Reilly Media, Inc.".
- R programming
- •The R book
- R for Data Science