جانفي 2019	الفرض الأول للثلاثي الثاني في مادة التكنولوجيا
المدة: ساعة و 20 م	(الهندسة الكهربائية)

قسم سنة الثالثة تقني رياضي

المدة: ساعة و 20 دقيقة

التمرين الأول: لتكن التكنولوجيا المستعملة لكشف وعد كؤوس القهوة التالية:

- 1- ماهو دور كل طابق؟
- 2- انجز الطابق F3 باستعمال قلابات JK
- 3- وضح تشغيل هذه التكنولوجيا بتكملة الجدول التالي

$\overline{\mathbf{Q}}$	R	S	kA	T2	T1	كأس القهوة
						يقطع الحزمة الضوئية
						لا يقطع الحزمة الضوئية

التمرين الثاني:

- انجز دارة التحكم في محرك ثلاثي الطور اتجاهين للدوران
- انجز برنامج لهذه الدارة بلغة الملامسات للمبرمج الالي TSX28 (المدخل 10,0 والمخرج 00,0)

التمرين الثالث: محول احادي الطور يحمل الخصائص التالية: S=?, 50Hz, 220 v/...v U_{1cc} =20V , P_{1cc} =23.4W , I_{2cc} =12.5A : اختبار هذا المحول في دارة قصيرة

- احسب المقاومة المرجعة للثانوي Rs
- احسب الهبوط في التوتر علما ان الحمولة مقاومية، والتيار الاسمى الثانوي مساوي لتيار القصر في الثانوي
 - احسب الممانعة الكلية المرجعة الى الثانوي إذا كانت المعاوقة المرجعة الى الثانوي $Xs=0.121\Omega$ ، ثم احسب نسبة التحويل m₀
 - احسب التوتر U₂₀ ثم استنتج التوتر U₂.
 - احسب الاستطاعة الظاهرية للمحول.

اقلب الورقة

التمرين الرابع: لتحكم في فتح و غلق الباب الرئيسي لشركة نستعمل هذه التكنولوجيا

- عند الدخول يضغط الشخص على الزر AV
- عند الخروج يضغط الشخص على الزر AR
- 1- عين المنافذ التي برمجة كمداخل والمنافذ التي برمجة كمخارج.
 - 2- حدد محتوى السجلين TRISA و TRISB
 - 3- أكمل برنامج تهيئة الميكرومراقب.

البرنامج لتهيئة المداخل والمخارج

ORG 0x05 :	
MOVLW 0x1F ;	اختيار البنك 1 من الذاكرة SRAM
	برمجة البيت الثالث و الرابع من المرفأ A كمداخل
TRISB ;	
;	اختيار البنك 0 من الذاكرة SRAM
;	مسح محتوى سجل PORTA
:	مسح محتوی سجلPORTB

تصحيح الفرض الاول للفصل الثاني سنة الثالثة جانفي 2019

التمرين الاول:

- 1- دور كل طابق
- f1 خلية كهروضوئية للكشف على كؤوس القهوة
- f2 دارة ضد الارتدادات لحذف ارتدادات الملمس
 - f3 عداد لعد كؤوس القهوة
 - 2- انجاز الطابق F3 بالقلابات jk

3- ملء الجدول

Q	R	S	kA	T2	T1	كأس القهوة
1	1	0	محرضة	مشبع	غير مشبع	يقطع الحزمة الضوئية
0	0	1	غير محرضة	غير مشبع	مشيع	لا يقطع الحزمة الضوئية

التمرين الثائي

دارة التحكم في محرك اتجاهين للدوران

التمرين الثالث

1-حساب المقاومة المرجعة للثانوي Rs

Rs=23.4/(12.5)² Rs=0.149 ohm

 $\phi_2 = 0$ حساب الهبوط في التوتر حساب الهبوط في التوتر حمولة مقاومية حمولة مقاومية حمولة مقاومية المراب

$$\Delta \mathbf{U}_2 = \mathbf{Rs.} \mathbf{I}_{2n}.\mathbf{cos}\boldsymbol{\varphi}_2 + \mathbf{Xs.} \mathbf{I}_{2n}.\mathbf{sin}\boldsymbol{\varphi}_2$$

 $\Delta U_2 = Rs.I_{2n}.cos\phi_2$

 $\Delta U_2 = 0,149.12,5.1$

 $\Delta U_2 = 1.86 V$

3- حساب الممانعة الكلية

$$Z_S = \sqrt{X_S^2 + R_S^2} = \sqrt{(0.149)^2 + (0.121)^2}$$

 $Z_{\rm S} = {
m 0.191~ohm}$

حساب نسبة التحويل

$$Z_{s} = m_0 \cdot \frac{U_{1cc}}{I_{2cc}}$$

$$m_0 = \frac{Z_{s} I_{2cc}}{U_{1cc}}$$

$$m_0 = \frac{0,191.12,5}{20}$$

$$m_0 = 0.119$$

4- حساب <u>U20</u>

$$m_0 = \frac{U_{20}}{U_1}$$

$$U_{20} = m_0 . U_1 = 0.119.220$$

$$U_{20} = 26.18 V$$

حساب U2

$$\Delta \mathbf{U}_2 = \mathbf{U}_{20} - \mathbf{U}_2$$

$$\mathbf{U_2} = \mathbf{U_{20}} - \Delta \mathbf{U_2}$$

$$U_2 = 26,18-1.86$$

$$U_2 = 24,32V$$

S=U2.I2n=24,32 . 12,5 S=304VA 5- حساب الاستطاعة الظاهرية للمحول

التمرين الرابع

- 1- المنافذ التي برمجة كمداخل والمنافذ التي برمجة كمخارج.
 - المداخل: RA2 ,RA3 ,RB2
 - -المخارج: RB4 ,RB5
 - 2- محتوى السجلين TRISA و TRISB

3- اكمال برنامج تهئية الميكرومراقب

ابدأ كتابة البرنامج انطلاقا من السجل 05 , ORG 0x05

اختيار البنك 1 من الذاكرة SRAM ; SRAM اختيار البنك 1

MOVLW 0x1F ; (1F)₁₆ أشحن سجل العمل بالقيمة

برمجة البيت الثالث و الرابع من المرفأ A كمداخل ; MOVWF TRISA

MOVLW B'00100000'; (00100000)₂ اشحن سجل العمل بالقيمة

MOVWF TRISB ; TRISB إلى سجل العمل الى سجل العمل الى سجل العمل الى العمل الى العمل ا

BCF STATUS, RB0 ; SRAM من الذاكرة 0 من الذاكرة

مسح محتوى سجل PORTA ; PORTA

DODTO!