Chapter_11

Section 11.1

Chapter (1) mostly about functions of f(x,y) = x + y $x^2 + y^2$ two sovies x22in(x) -> 11.1 graphs & visualization | foxys = 2472 limits, derivatives → 11·2, 11·3:

Lexx) fri 10.8: 8.11, 5.11 &

-> 11.1 graphs & visualization

EXAMPLE 2 Find the domain and range of $g(x, y) = \sqrt{9 - x^2 - y^2}$.

DEFINITION If f is a function of two variables with domain D, then the **graph** of f is the set of all points (x, y, z) in \mathbb{R}^3 such that z = f(x, y) and (x, y) is in D.

$$f(x,y) = x+y$$

DEFINITION If f is a function of two variables with domain D, then the **graph** of f is the set of all points (x, y, z) in \mathbb{R}^3 such that z = f(x, y) and (x, y)is in D. the outre plane is the domain of Q: Express the graph of f(x,y) = xy as a cot = $\int (x,y,z) \in \mathbb{R}^3 | Z = x+y^2$

d. Draw the graph of f(x,y)= x2+63 paraboloid

EXAMPLE 4 Sketch the graph of $g(x, y) = \sqrt{9 - x^2 - y^2}$.

$$Z = \sqrt{9-x^2-y^2}$$
 77

https://www.geogebra.org/3d?lang=en

(a)
$$f(x, y) = (x^2 + 3y^2)e^{-x^2-y^2}$$

(d)
$$f(x, y) = \frac{\sin x \sin y}{xy}$$

$$f(x,y) = e^{-x^2 - z^2}$$

$$= e^{-(8z)} of distance of point from original}$$

bell shaped

contour curves, or level curves.

(a) Contour map

(b) Horizontal traces are raised level curves

(a) Level curves of $f(x, y) = -xye^{-x^2-y^2}$

EXAMPLE 10 Find the domain of f if $f(x, y, z) = \ln(z - y) + xy \sin z$.

EXAMPLE 11 Find the level surfaces of the function $f(x, y, z) = x^2 + y^2 + z^2$.

contour plots or level curves