

Master 1 SEP Examen de SEP0832 Méthodes d'échantillonnage Durée 1h30 Session 2

Responsable : Amor KEZIOU Juin 2019

<u>Aucun document n'est autorisé</u> Téléphones et calculatrices interdits

Nom: Prénoms:			
QCM : Cocher la ou les réponses correcte(s) parmi les choix proposés; Pour chacune des questions, cocher une mauvaise réponse conduit à une note zero; Le barème est de 1 point pour les questions à une seule réponse correcte, et de 0,5 point par réponse correcte pour les questions à plusieurs réponses correctes.			
On cherche à expliquer/prédire une variable statistique Y par p variables statistiques X_1, \ldots, X_p . Notons $\mathcal Y$ le domaine de Y , et $\mathcal X$ le domaine du vecteur statistique (X_1, \ldots, X_p) .			
(1) La variable statistique Y s'appelle			
\square la variable réponse			
\Box la variable dépendante			
\Box la variable explicative			
\Box la variable indépendante			
\square la variable expliquée			
\square la variable endogène			
\square la variable exogène			
(2) Les variables statistiques X_1, \ldots, X_p s'appellent			
\square les variables dépendantes			
\square les variables indépendantes			
\square les variables explicatives			
□ les régresseurs			
\square les prédicteurs			
\square les variables exogènes			
\square les variables endogènes			
(3) On parle de problème de régression si			
\square la variable Y est quantitative continue			
\square la variable Y est quantitative discrète avec $\operatorname{Card}(\mathcal{Y})$ grand			
\square la variable Y est quantitative discrète avec $Card(\mathcal{Y})$ petit			

 \square la variable Y est qualitative nominale \square la variable Y est qualitative avec nombre de modalités fini et petit (4) On parle de problème de classification supervisée (ou discrimination supervisée) si \square la variable Y est quantitative continue \square la variable Y est quantitative discrète avec Card(Y) grand \square la variable Y est quantitative discrète avec $Card(\mathcal{Y})$ petit \square la variable Y est qualitative nominale \square la variable Y est qualitative avec nombre de modalités fini et petit (5) En régression linéaire, les variables X_1, \ldots, X_p , peuvent être □ numériques □ qualitatives □ qualitatives, si chacune des variables qualitatives est remplacée par les variables indicatrices (de ses modalités sauf une) ☐ quantitatives continues □ quantitatives discrètes Supposons dorénavant que toutes les variables statistiques Y, X_1, \ldots, X_p soient numériques. Notons $\mathbf{X} := (X_1, \dots, X_p)$. Considérons le modèle de régression linéaire multiple (RLM) $Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_n X_n + \varepsilon$ On dispose de n observations $(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)$ i.i.d. de même loi que (\mathbf{X}, Y) . On note $\mathbf{Y} := \left[egin{array}{c} Y_1 \ dots \ Y_n \end{array}
ight], \; \mathbb{X} := \left[egin{array}{ccc} 1 & X_{1,1} & \cdots & X_{1,p} \ dots & dots & dots \ 1 & X_{n,1} & \cdots & X_{n,p} \end{array}
ight], \; oldsymbol{arepsilon} \; oldsymbol{arepsilon} : \left[egin{array}{c} arepsilon_1 \ dots \ arepsilon_n \end{array}
ight], \; oldsymbol{eta} := \left[egin{array}{c} eta_0 \ eta_1 \ dots \ dots \end{array}
ight].$ Notons $\widehat{\boldsymbol{\beta}}$ l'estimateur des moindres carrés du modèle linéaire multiple ci-dessus. (6) L'estimateur $\hat{\beta}$ existe et est unique si □ les colonnes de X sont non corrélées (deux-à-deux) □ les colonnes de X sont linéairement indépendantes

(7) Lorsque le nombre de variables dans le modèle RLM est petit

□ la matrice \mathbb{X} est de plein rang
□ la matrice \mathbb{X} est de rang (1+p)□ la matrice $\mathbb{X}^{\top}\mathbb{X}$ est de plein rang
□ la matrice $\mathbb{X}^{\top}\mathbb{X}$ est de rang p

		□ la variance est élevée
		\Box la variance est faible
	[□ le biais est élevé
	[□ le biais est faible
	[□ l'erreur empirique (d'ajustement) est faible
		□ l'erreur empirique (d'ajustement) est élevée
(0)	т	
(8)		rsque le nombre de variables dans le modèle de RLM est grand
		□ la variance est élevée
	L	☐ la variance est faible
	L	□ le biais est élevé
	_	☐ le biais est faible
		☐ l'erreur empirique (d'ajustement) est faible
		□ l'erreur empirique (d'ajustement) est élevée
(9)	On	n veut tester la validité global du modèle de RLM précédent.
()		Écrire l'hypothèse nulle et l'hypothèse alternative (en termes des paramètres du modèle) :
	,	
	b)	Pour réaliser ce test, on utilise la statistique de Fisher suivante
		$F := \frac{R^2}{1 - R^2} \frac{n - p - 1}{n}$
		$F := \frac{1 - R^2}{1 - p}$
		qui suit une loi de Fisher à p et $n-p-1$ degrés de liberté sous l'hypothèse nulle. Écrire la P-value de ce test :
		•••
(10)		n veut tester si la variable X_p est significative dans le modèle de RLM précédent.
	a)	Écrire l'hypothèse nulle et l'hypothèse alternative (en termes des paramètres du modèle) :
		•••
		•••
	b)	Pour réaliser ce test, on peut utiliser la statistique de Student suivante
		$\widehat{m{eta}}$
		$t:=rac{eta_p}{\widehat{\sigma}_{\widehat{eta}_p}}$
		qui, sous l'hypothèse nulle, suit $\mathcal{T}(n-p-1)$, une loi de Student à $n-p-1$ degrés de liberté. Écrire la P-value de ce test :

. . .

. . .

c) Pour réaliser le test précédent, on peut utiliser également la statistique de Fisher (entre modèles emboîtés) suivante

$$F := \frac{\|\widehat{\mathbf{Y}}_0 - \widehat{\mathbf{Y}}\|}{\|\mathbf{Y} - \widehat{\mathbf{Y}}\|/(n-p-1)}$$

qui, sous l'hypothèse nulle, suit $\mathcal{F}(1,n-p-1)$, une loi de Fisher à 1 et n-p-1 degrés de liberté. Écrire la P-value de ce test :

. . .

. . .

d) Parmi les deux tests statistiques précédents (de Student et Fisher), lequel choisiriez-vous ? Justifier.

. . .

. . .

. . .

- (11) Supposons que $p \geq 3$. On se propose de tester si les variables explicatives X_1 et X_2 sont significatives simultanément.
 - a) Écrire l'hypothèse nulle et l'hypothèse alternative (en termes des paramètres du modèle) :

. . .

. . .

b) Pour réaliser ce test, on peut utiliser la statistique de Fisher suivante

$$F := \frac{\|\widehat{\mathbf{Y}}_0 - \widehat{\mathbf{Y}}\|/2}{\|\mathbf{Y} - \widehat{\mathbf{Y}}\|/(n-p-1)}.$$

Cette statistique suit, sous l'hypothèse nulle, $\mathcal{F}(2, n-p-1)$, une loi de Fisher à 2 et n-p-1 degrés de liberté. Écrire la P-value de ce test.

. .

. . .

(12) En régression Lasso, si le paramètre de pénalisation λ augmente, alors

 \square la variance diminue

 \Box la variance augmente

 \square le biais diminue

 \Box le biais augmente

 \square le nombre de coefficients nulls augmente

 \square le nombre de coefficients nulls diminue

(13) En régression Lasso, si le paramètre de pénalisation λ diminue, alors

	\square la variance diminue
	\Box la variance augmente
	\square le biais diminue
	\square le biais augmente
	\square le nombre de coefficients nulls augmente
	\Box le nombre de coefficients nulls diminue
(14)	En régression Ridge, si le paramètre de pénalisation λ augmente, alors
(14)	□ la variance diminue
	☐ la variance diffinite ☐ la variance augmente
	□ le biais diminue
	☐ le biais augmente
	☐ le nombre de coefficients nulls augmente
	□ le nombre de coefficients nulls diminue
	□ le nombre de coemcients nuns diminue
(15)	En régression Ridge, si le paramètre de pénalisation λ diminue, alors
	\Box la variance diminue
	□ la variance augmente
	\square le biais diminue
	\Box le biais augmente
	\Box le nombre de coefficients nulls augmente
	\Box le nombre de coefficients nulls diminue
(16)	Pour estimer l'erreur de prévision d'un modèle de RLM, on peut utiliser
(-0)	□ l'erreur empirique (d'ajustement)
	□ le bootstrap
	☐ les méthodes de validation croisée
(a -)	
(17)	Citer les inconvénients de la méthode "apprentissage-validation" (en sélection de modèles)
	•••
	•••
(18)	Citer les inconvénients de la méthode "leave-one-out" (en sélection de modèles)
	•••
	•••
(19)	Citer les avantages de la méthode "K-fold cross-validation" (" $K=10$ ", en sélection de mo
\- <i>\'</i>	dèles)