Chapter 1: Numerical Series October 13, 2023

Contents

1	\mathbf{Pre}	amble	Ĺ			
	1.1	Vocabulary	1			
	1.2	Remark	1			
2	General approach Convergence and Divergence 1					
	2.1	Definition	1			
		2.1.1 Example: the geometric series	1			
	2.2	Propositions	1			
	2.3	Sum and Remainder of a convergent series	1			
			2			
	2.4		2			
			2			
		•	2			
3	Pos	itive Term Series (P.T.S.)	2			
	3.1		2			
	3.2		2			
		3.2.1 Example	2			
	3.3	Riemann's series	3			
		3.3.1 Definition	3			
		3.3.2 Theorem (Riemann)	3			
	3.4	Comparison criteria	3			
		3.4.1 Proposition	3			
		3.4.2 Proposition	3			
	3.5	Riemann's Rule	4			
			4			
	3.6		4			
			5			
	3.7	Cauchy's Rule				
		3.7.1 Example	5			
	3.8	<u>.</u>	5			
4	Alte	ernating Series	6			
	4.1		ĉ			
			ŝ			
	4.2	Alternating Series Special Criteria (A.S.S.C.)				
	_		ĉ			
			3			

5		olute Convergence	6
	5.1	Definition	6
		5.1.1 Example	7
	5.2	Proposition	7
		5.2.1 Counter Example	7
	5.3	Examples	7
		5.3.1 Example 1	7
		5.3.2 Example 2	7
6	Imp	ortant Proof	8
	6.1	Series whose general term is positive	8
		6.1.1 Theorem (Comparison rules)	
		6.1.2 Theorem (Riemann series)	9
	6.2	Series whose general term has a non-constant sign	
		6.2.1 Theorem (Absolute convergence)	11
		6.2.2 Theorem (Leibniz's rule)	L 2

1 Preamble

1.1 Vocabulary

In this chapter, we will use CVG for Convergence and DVG for Divergence. We will also use GT for General Term.

1.2 Remark

 \triangle Be careful, the series $\sum U_n$ is not the same as the sequence $(U_n)_{n\in\mathbb{N}}$. $\sum U_n$ is the series of general term U_n and $(U_n)_{n\in\mathbb{N}}$ is the sequence U_n .

2 General approach Convergence and Divergence

2.1 Definition

Let $(U_n)_{n\in\mathbb{N}}$ a sequence of real numbers, we call series of general term U_k and denote $\sum U_k$ the sequence of partial sums $(S_n)_{n\in\mathbb{N}}$ where for any integer $n\in\mathbb{N}$, $S_n=\sum_{k=0}^n U_k$. We say $\sum U_k$ is convergent if and only if $(S_n)_{n\in\mathbb{N}}$ is convergent.

2.1.1 Example: the geometric series

Let $\mathbf{q} \in \mathbb{R}^*$ and let us consider the series $\sum \mathbf{q}^k$. We have:

$$\forall n \in \mathbb{N}, S_n = \sum_{k=0}^n q^k = \begin{vmatrix} \frac{1-q^{n+1}}{1-q} & \text{if } q \neq 1 \implies | \text{if } -1 < q < 1, \sum_{k=0}^{+\infty} q^k = \frac{1}{1-q} \sum U_k: \text{ CVG} \\ \text{if } q > 1 \text{ or } q < -1, \sum U_k: \text{ DVG} \\ (n+1) & \text{if } q = 1 \implies \sum U_k: \text{ DVG} \end{vmatrix}$$

2.2 Propositions

Let $\sum \mathbf{U_k}$ and $\sum \mathbf{V_k}$ two series of general terms and $\lambda \in \mathbb{R}$. We have:

- \bullet If $[\sum U_k \text{ CVG} \text{ and } \sum V_k \text{ CVG}], \text{ then } \sum (U_k + V_k) \text{ CVG}$
- If $[\sum \mathbf{U_k} \text{ CVG}]$, then $\sum \lambda \mathbf{U_k} \text{ CVG}$
- If $[\sum \mathbf{U_k} \text{ CVG and } \sum \mathbf{V_k} \text{ DVG}]$, then $\sum (\mathbf{U_k} + \mathbf{V_k}) \text{ DVG}$
- \triangle $\sum U_k$ DVG and $\sum V_k$ DVG does not imply $\sum (U_k + V_k)$ DVG

2.3 Sum and Remainder of a convergent series

Let $\sum U_k$ a <u>convergent series</u>. We call sum of the series $\sum U_k$ the following real number: $\sum_{k=0}^{+\infty} U_k = \lim_{n \to +\infty} S_n$ where $S_n = \sum_{k=0}^n U_k$. And we call remainder of the series

 $\sum U_k$ sequence (R_n) defined as follows:

$$\forall n \in \mathbb{N}, R_n = \sum_{k=n+1}^{+\infty}$$

2.3.1 Example

$$\sum \mathbf{q^k} \text{ CVG} \Leftrightarrow -1 < q < 1: \mathbf{S} = \lim_{\mathbf{n} \to +\infty} \mathbf{S_n} = \frac{1}{1-\mathbf{q}}$$

2.4 Convergence necessary condition

2.4.1 Proposition

Let $\sum (\mathbf{U_k})_{\mathbf{k} \in \mathbb{N}}$ a sequence. We have:

$$\sum U_k \text{ CVG} \quad \stackrel{\Longrightarrow}{\rightleftharpoons} \quad \left(U_k \xrightarrow[k \to +\infty]{} 0 \right)$$

2.4.2 Example

- Harmonic series: $\sum \frac{1}{n}$, $(\frac{1}{n}) \xrightarrow[n \to +\infty]{} 0$ but $\sum \frac{1}{n}$ DVG
- $\sum \frac{\mathbf{e}^{\mathbf{n}}}{\mathbf{n}^{2023}}, \frac{e^n}{n^{2023}} \xrightarrow[n \to +\infty]{} +\infty \implies \sum \frac{e^n}{n^{2023}} \text{ DVG}$

3 Positive Term Series (P.T.S.)

3.1 Definition

Let $\sum \mathbf{U_k}$ a series. We say $\sum \mathbf{U_k}$ is a P.T.S., if and only if $\forall \mathbf{k} \in \mathbb{N}, \mathbf{U_k} \geq \mathbf{0}$. We say $\sum \mathbf{U_k}$ is a P.T.S. from $\mathbf{p} \in \mathbb{N}$ onwards, if and only if $\forall \mathbf{k} \in \mathbb{N}, \mathbf{k} \geq \mathbf{p} \implies \mathbf{U_k} \geq \mathbf{0}$.

3.2 Propositions

• Let $\sum U_k$ a P.T.S. and $(S_n)_{n\in\mathbb{N}}$ the associated partial sum sequence. Then:

$$\sum U_k \text{ CVG } \Leftrightarrow (S_n)_{n \in \mathbb{N}} \text{ is upper-bounded}$$

- Let $\sum U_k$ and $\sum V_k$ two series such that: $\forall k \in \mathbb{N}, 0 \leq U_k \leq V_k$. Then:
 - 1. If $\sum \mathbf{V_k}$ CVG, then $\sum \mathbf{U_k}$ CVG
 - 2. If $\sum \mathbf{U_k}$ DVG, then $\sum \mathbf{V_k}$ DVG

3.2.1 Example

What's the nature of $\sum \frac{1}{|\mathbf{n} \cdot \sin(\mathbf{n})|}$?

$$\begin{array}{l} \forall n \in \mathbb{N}^{\star}, 0 < |\mathrm{sin}(n)| \leq 1 \implies 0 < \frac{1}{n} \leq \frac{1}{|n \cdot \mathrm{sin}(n)|} \\ \sum \frac{1}{\mathbf{n}} \; (\mathrm{Harmonic}) \; \mathrm{DVG} \implies \sum \frac{1}{|\mathbf{n} \cdot \mathrm{sin}(\mathbf{n})|} \; \mathrm{DVG} \end{array}$$

3.3 Riemann's series

3.3.1 Definition

We call Riemann's series any series of General Terms (GT) $\sum \frac{1}{n^{\alpha}}$ where $\alpha \in \mathbb{R}$.

3.3.2 Theorem (Riemann)

Let $\alpha \in \mathbb{R}$. Then:

$$\sum \frac{1}{n^{\alpha}} \text{ CVG } \iff \alpha > 1$$

3.3.2.1 Example

- $\sum \frac{1}{\sqrt{2}} = \sum \frac{1}{2^{\frac{1}{2}}} \implies \text{DVG}$
- $\sum \frac{1+\cos(\mathbf{n})}{\mathbf{n}^4}$: $\forall n \in \mathbb{N}^*, 0 \le 1 + \cos(n) \le 2 \implies 0 \le \frac{1+\cos(n)}{n^4} \le \frac{2}{n^4}$ And $\sum \frac{2}{\mathbf{n}^4}$ of same nature as $\sum \frac{1}{\mathbf{n}^4}$ (Riemann's series) CVG $\implies \sum \frac{1+\cos(\mathbf{n})}{\mathbf{n}^4}$ CVG

3.4 Comparison criteria

3.4.1 Proposition

Let $\sum \mathbf{U_n}$ and $\sum \mathbf{V_n}$ two P.T.S.

- 1 If $U_n \sim_{+\infty} V_n$ then $\sum U_n$ and $\sum V_n$ are of same nature
- (2) If $U_n = o(V_n)$ then [If $\sum V_n$ CVG then $\sum U_n$ CVG]

3.4.1.1 Example

What's the nature of $\sum \mathbf{U_n}$?

• $\mathbf{U_n} = \mathbf{e}^{-\sqrt{\mathbf{n}}}$: Step 1: $n^2 \times U_n = \frac{n^2}{e^{\sqrt{n}}} = \frac{(\sqrt{n})^4}{e^{\sqrt{n}}} \xrightarrow[n \to +\infty]{} 0 \implies U_n = o(\frac{1}{n^2})$ Step 2: $\sum \frac{1}{n^2}$ CVG (Riemann's series $\alpha = 2 > 1$) $\implies \sum U_n$ CVG

$$\forall n \in \mathbb{N}^{\star}, \frac{n+1}{n} = 1 + \frac{1}{n} \implies \ln(1 + \frac{1}{n}) \underset{+\infty}{=} \frac{1}{n} + o(\frac{1}{n})$$

• $\mathbf{U_n} = \ln(\frac{\mathbf{n}+\mathbf{1}}{\mathbf{n}})$: $\triangle \implies \begin{vmatrix} 1 \\ 2 \end{vmatrix} \quad \forall n \in \mathbb{N}, U_n > 0 \text{ since } 1 + \frac{1}{n} > 1$ $\implies \sum_{n} U_n \text{ and } \sum_{n=1}^{\infty} \frac{1}{n} \text{ of same nature and } \sum_{n=1}^{\infty} \frac{1}{n} \text{ DVG (Harmonic series)}$

3.4.2 Proposition

Let $\sum_{\mathbf{u}} \mathbf{U_n}$ a numerical sequence. We have:

$$\sum \overbrace{(U_{n+1} - U_n)}^{w_n} \text{ CVG} \iff (U_n) \text{ CVG}$$

3.4.2.1 Example

1. \int General Example, limit calculation:

$$\mathbf{S_n} = \sum_{k=0}^{n} \mathbf{W_k} = \sum_{k=0}^{n} (\mathbf{U_{k+1}} - \mathbf{U_k}) = \sum_{k=0}^{n} U_{k+1} - \sum_{k=0}^{n} U_k$$

$$= \sum_{k=1}^{n+1} U_k - \sum_{k=0}^{n} U_k$$

$$= \left(\sum_{k=1}^{n} U_k + U_{n+1}\right) - \left(U_0 + \sum_{k=1}^{n} U_k\right)$$

$$Sn = \sum_{k=0}^{n} (U_{k+1} - U_k) = U_{n+1} - U_0$$

$$\sum \overline{\left(\frac{1}{n+1} - \frac{1}{n}\right)} : \begin{cases} \sum W_n \text{ of same nature as } \sum \left(\frac{1}{n} \sum_{n = \mathbb{N}^*} 0 \text{ CVG} \right) \\ \text{So:} \sum W_n \text{ CVG} \end{cases}$$

$$S = \lim_{n \to +\infty} S_n = \sum_{k=1}^{+\infty} W_k = \lim_{n \to +\infty} \left(\frac{1}{n+1} - 1\right) = -1$$

2.

3.5 Riemann's Rule

Let $\sum \mathbf{U_n}$ a <u>Positive</u> numerical series. If $\exists \alpha > 1, \mathbf{n}^{\alpha} \times \mathbf{U_n} \underset{+\infty}{\sim} \mathbf{0}$ then $\sum \mathbf{U_n}$ CVG

3.5.1 Proof

$$\exists \alpha > 1, \mathbf{n}^{\alpha} \times \mathbf{U_n} \xrightarrow[\mathbf{n} \to +\infty]{\mathbf{n} \to +\infty} \mathbf{0} \implies \frac{\mathbf{U_n}}{\frac{1}{\mathbf{n}^{\alpha}}} \xrightarrow[\mathbf{n} \to +\infty]{\mathbf{0}}$$

$$\Longrightarrow \begin{cases} U_n = o(\frac{1}{n^{\alpha}}) \\ \text{and} \\ \alpha > 1 \\ \text{and} \\ \sum U_n \text{ P.T.S.} \end{cases} \left[\sum \frac{1}{n^{\alpha}} \text{ CVG (Riemann's series)} \implies \sum U_n \text{ CVG} \right]$$

3.6 D'Alembert's Rule (Ratio Test)

Let (U_n) be a strictly positive sequence such that:

$$\frac{U_{n+1}}{U_n} \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R}_+ \cup \{+\infty\}$$

$$\begin{array}{ll} \ell < 1 \implies \sum U_n \; \mathrm{CVG} \\ \ell > 1 \implies \sum U_n \; \mathrm{DVG} \\ \ell = 1 \implies \text{no conclusion} \end{array}$$

3.6.1 Example

$$\sum \frac{\mathbf{1}}{\mathbf{n}!} : \forall n \in \mathbb{N}, \frac{1}{n!} > 0 \text{ (P.T.S.)} \text{ and } \frac{U_{n+1}}{U_n} = \frac{\frac{1}{(n+1)!}}{\frac{1}{n!}} = \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0 < 1 \implies \sum \frac{1}{n!} \text{ CVG}$$

3.7 Cauchy's Rule

Let (U_n) be a strictly positive sequence such that:

$$\sqrt[n]{U_n} \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R}_+ \cup \{+\infty\}$$

Then: $\ell < 1 \implies \sum U_n \text{ CVG}$ $\ell > 1 \implies \sum U_n \text{ DVG}$ $\ell = 1 \implies \text{no conclusion}$

3.7.1 Example

$$\sum \left(\frac{\mathbf{n}}{\mathbf{n}+1}\right)^{\mathbf{n}^2} : \forall n \in \mathbb{N}, \left(\frac{n}{n+1}\right)^{n^2} > 0 \text{ (P.T.S.)}, \ \sqrt[n]{U_n} = \left(\left(\frac{n}{n+1}\right)^{n^2}\right)^{\frac{1}{n}} = \left(\frac{n}{n+1}\right)^n = e^{n\ln(1-\frac{n}{n+1})}$$
$$\ln(1-\frac{n}{n+1}) \sim n \times \left(-\frac{n}{n+1}\right) \xrightarrow[n \to +\infty]{} -1 < 0 \implies \sqrt[n]{U_n} \xrightarrow[n \to +\infty]{} e^{-1} = \frac{1}{e} < 1 \implies \sum_{\text{Cauchy}} \sum U_n \text{ CVG}$$

3.8 Examples

1) $\sum (1+\frac{1}{n})^n$: $1+\frac{1}{n} \xrightarrow[n \to +\infty]{} 0$ (don't have the necessary condition) $\implies \sum (1+\frac{1}{n})^n$ DVG

(a)

$$\left((1 + \frac{1}{n})^n - e \right) = e^{n \times \ln(1 + \frac{1}{n})} - e = e^{n \times (\frac{1}{n} - \frac{1}{2n^2} + o(\frac{1}{n^2}))} - e$$

$$= e^{1 - \frac{1}{2n} + o(\frac{1}{n})} - e$$

$$= e \times e^{-\frac{1}{2n} + o(\frac{1}{n})} - e$$

$$= e \times (1 - \frac{1}{2n} + o(\frac{1}{n})) - e$$

$$= -\frac{e}{2n} + o(\frac{1}{n})$$

So
$$\left(\left(1+\frac{1}{n}\right)^n-e\right) \sim -\frac{e}{2n}$$
 (Can't use P.T.S. property)

(b) $\sum -\frac{e}{2n} < 0$ for $n \in \mathbb{N}^*$

(c) $\exists p \in \mathbb{N}^*, (n \ge p) \implies (\left((1 + \frac{1}{n})^n - e\right) \le 0)$ (Same sign as $\sum -\frac{e}{2n}$) $\implies \sum \left((1 + \frac{1}{n})^n - e\right)$ has the same nature as $\sum -\frac{e}{2n}$ wich is of same nature as $\sum \frac{1}{n}$ DVG

$$\widehat{\text{3}} \sum n^{2023} \times e^{-n} = \sum \frac{n^{2023}}{e^n} \colon n^{2023} = o(e^n) \text{ (growth comparison) } n^{2025} \times e^{-n} = \frac{\frac{n^{2023}}{e^n}}{\frac{1}{n^2}} \xrightarrow[n \to +\infty]{} 0 \implies U_n = o(\frac{1}{n^2}) \underset{\text{Riemann}(\alpha = 2 > 1)}{\Longrightarrow} \sum U_n \text{ CVG}$$

$$\bigcirc$$
 \bigcirc $n! \times e^{-n}$

4 Alternating Series

4.1 Definition

Let $(\mathbf{U_n}) \in \mathbb{R}^{\mathbb{N}}$, we say $(\mathbf{U_n})$ is an alternating sequence thus $\sum \mathbf{U_n}$ an alternating series, if there exists $\begin{vmatrix} a & positive \\ a & negative \end{vmatrix}$ sequence $(\mathbf{a_n})$ such that:

$$\forall \mathbf{n} \in \mathbb{N}, \begin{vmatrix} U_n = (-1)^n \times a_n \\ U_n = (-1)^{n+1} \times a_n \end{vmatrix}$$

4.1.1 Example

$$\sum \frac{(-1)^n}{n}$$
 is an alternating series because $\forall n \in \mathbb{N}, \frac{(-1)^n}{n} = (-1)^n \times \frac{1}{n}$

4.2 Alternating Series Special Criteria (A.S.S.C.)

4.2.1 Theorem

Let (U_n) an alternating sequence, such that:

$$\begin{bmatrix} U_n \xrightarrow[n \to +\infty]{} 0 \\ (|U_n|)_{n \in \mathbb{N}} \text{ is decreasing} \end{bmatrix} \implies \sum \mathbf{U_n} \text{ CVG}$$

4.2.2 Explanation

An alternating sequence is of the form

$$\begin{aligned} \mathbf{U_n} &= (-1)^\mathbf{n} \times \mathbf{a_n} & \text{or} & \mathbf{U_n} &= (-1)^{\mathbf{n}+1} \times \mathbf{a_n} \\ |\mathbf{U_n}| &= |(-1)^\mathbf{n} \times \mathbf{a_n}| = |\mathbf{a_n}| & \text{or} & |\mathbf{U_n}| = \left|(-1)^{\mathbf{n}+1} \times \mathbf{a_n}\right| = |\mathbf{a_n}| \\ & \text{So } (|\mathbf{U_n}|)_{\mathbf{n} \in \mathbb{N}} = (\mathbf{a_n})_{\mathbf{n} \in \mathbb{N}} \end{aligned}$$

5 Absolute Convergence

5.1 Definition

Let $(\mathbf{U_n})$ a sequence, we say $\sum \mathbf{U_n}$ is absolutely convergent if $\sum |\mathbf{U_n}|$ is convergent.

5.1.1 Example

 $\sum \frac{(-1)^n}{n^2}$ is absolutely convergent because $\sum \left|\frac{(-1)^n}{n^2}\right| = \sum \frac{1}{n^2}$ is convergent.

5.2 Proposition

Let $\sum \mathbf{U_n}$ a series, if $\sum \mathbf{U_n}$ is absolutely convergent then $\sum \mathbf{U_n}$ is convergent.

$$\sum |U_n| \ \mathrm{CVG} \ \stackrel{\Longrightarrow}{\Leftarrow} \ \sum U_n \ \mathrm{CVG}.$$

5.2.1 Counter Example

 $\sum \frac{(-1)^n}{n}$ is convergent BUT $\sum \left|\frac{(-1)^n}{n}\right| = \sum \frac{1}{n}$ is divergent.

5.3 Examples

5.3.1 Example 1

•
$$\sum \frac{(-1)^n}{n^{\alpha}}, \alpha \in \mathbb{R}$$
:

- case
$$\alpha \leq 0$$
: $\sum \frac{(-1)^n}{n^{\alpha}} \xrightarrow[n \to +\infty]{} \mathbf{0}$ (necessary condition) $\implies \sum \frac{(-1)^n}{n^{\alpha}}$ DVG.

- case
$$\alpha > 0$$
: $\sum \frac{1}{n^{\alpha}} > 0 \implies \sum \frac{(-1)^n}{n^{\alpha}}$ is an alternating series.

$$\begin{array}{c|c} \frac{1}{n^{\alpha}} \xrightarrow[n \to +\infty]{} 0 \\ \left| \frac{1}{n^{\alpha}} \right| = \frac{1}{n^{\alpha}} \text{ is decreasing} \end{array} \qquad \stackrel{A.S.S.C.}{\Longrightarrow} \sum \frac{(-1)^n}{n^{\alpha}} \text{ CVG.}$$

5.3.1.1 Proposition deduced from example 1

 $\forall \alpha > 0, \sum \frac{(-1)^n}{n^{\alpha}}$ is convergent.

5.3.2 Example 2

$$\bullet \ \, \forall n \in \mathbb{N}, \mathbf{U_n} = \tfrac{\sin(n)}{n^\alpha} \colon \, |\mathbf{U_n}| = \tfrac{|\sin(n)|}{n^\alpha}, \implies 0 \leq |\mathbf{U_n}| \leq \tfrac{1}{n^\alpha}$$

If
$$\alpha > 1$$
, then $\sum \frac{1}{n^{\alpha}}$ CVG (Riemann $\alpha > 1$)
then $\sum |U_n|$ CVG (Comparison test)
then $\sum U_n$ Absolutely CVG (Proposition)
then $\sum U_n$ CVG (Proposition)

6 Important Proof

6.1 Series whose general term is positive

6.1.1 Theorem (Comparison rules)

Consider two sequences (U_n) and (V_n) .

- 1. If for all $n \in \mathbb{N}$, $u_n \leq v_n$, then
 - (a) $\sum \mathbf{v_n}$ converges $\Longrightarrow \sum u_n$ converges
 - (b) $\sum \mathbf{u_n}$ diverges $\Longrightarrow \sum v_n$ diverges

If $\mathbf{u_n} \sim \mathbf{v_n}$ then the series $\sum \mathbf{u_n}$ and $\sum \mathbf{v_n}$ have the same nature.

6.1.1.1 Remarks

- Property 1 remains true if the relation $\mathbf{u_n} \leq \mathbf{v_n}$ satisfied only above a certain rank, instead of for all $n \in \mathbb{N}$. That is, it is true if there exists $n_0 \in \mathbb{N}$ such that

$$\forall n \in \mathbb{N}, n \ge n_0 \implies u_n \le v_n$$

- Property 1 includes the case $u_n = o(v_n)$. Indeed, in this case, the relation $\mathbf{u_n} \leq \mathbf{v_n}$ is satisfied above a certain rank.

6.1.1.2 Proof

1. Let $(\mathbf{S_n})$ denote the partial sums of $\sum \mathbf{u_n}$ and $(\mathbf{T_n})$ the partial sums of $\sum \mathbf{v_n}$. To start with, note that the sequences $(\mathbf{S_n})$ and $(\mathbf{T_n})$ are both increasing. Indeed, for all $n \in \mathbb{N}$,

$$S_{n+1} - S_n = u_{n+1} \ge 0$$
 and $T_{n+1} - T_n = v_{n+1} \ge 0$

Thus, we know that

$$(S_n)$$
 converges \iff (S_n) is bounded above

Furthermore, since for all $n \in \mathbb{N}$, $u_n \leq v_n$, we can write:

$$\forall n \in \mathbb{N}, \quad S_n \leq T_n$$

Thus, if $\sum \mathbf{v_n}$ converges, then $(\mathbf{T_n})$ is bounded. It hence admits an upper bound M. Then for all $n \in \mathbb{N}$:

$$S_n \leq T_n \leq M$$

and M is also an upper bound of $(\mathbf{S_n})$. The sequence $(\mathbf{S_n})$ is hence bounded above and, since it is increasing, it converges. This proves the property (a).

Proving property (b) is now straightforward: it is the contrapositive of property (a).

2. Assume that $(u_n) \sim (v_n)$. Then there exists a sequence (ϵ_n) such that

$$\forall n \in \mathbb{N}, u_n = v_n \times (1 + \epsilon_n) \quad \text{and} \quad \epsilon_n \xrightarrow[n \to +\infty]{} 0$$

Since (ϵ_n) converges to 0, it remains between $-\frac{1}{2}$ and $\frac{1}{2}$ above a certain rank: there exists $n_0 \in \mathbb{N}$ such that

$$\forall n \in \mathbb{N}, n \ge n_0 \implies -\frac{1}{2} \le \epsilon_n \le \frac{1}{2}$$

$$\implies \frac{1}{2} \le 1 + \epsilon_n \le \frac{3}{2}$$

$$\implies \frac{1}{2} v_n \le u_n \le \frac{3}{2} v_n$$

If $\sum \mathbf{u_n}$ converges then, using property 1 and the relation $\frac{1}{2}v_n \leq u_n$, we know that $\sum \frac{1}{2}\mathbf{v_n}$ converges. Thus, $\sum \mathbf{v_n}$ converges.

If $\sum \mathbf{u_n}$ diverges then, using property 1 and the relation $u_n \leq \frac{3}{2}v_n$, we know that $\sum \frac{3}{2}\mathbf{v_n}$ diverges. Thus, $\sum \mathbf{v_n}$ diverges.

6.1.2 Theorem (Riemann series)

Let α in \mathbb{R} . The series $\sum \frac{1}{n^{\alpha}}$ converges if and only if $\alpha > 1$.

6.1.2.1 Some explanations before the proof:

Before the explicit proof, here are the main ideas we will use:

- 1. We focus on the case $\alpha > 0$ (otherwise, $\frac{1}{n^{\alpha}}$ does not converge to 0, hence the series diverges).
- 2. When $0 < \alpha \le 1$, we try to lower-bound $\frac{1}{n^{\alpha}}$ by a positive sequence $(\mathbf{v_n})$ such that $\sum v_n$ diverges. And when $\alpha > 1$, we try to upper-bound $\frac{1}{n^{\alpha}}$ by a positive sequence $(\mathbf{w_n})$ such that $\sum w_n$ converges.
- 3. In that purpose, we use the property that, since the function $t \mapsto \frac{1}{t^{\alpha}}$ decreases, we know that for all $n \geq 2$:

$$\forall t \in [n-1, n], \frac{1}{t^{\alpha}} \ge \frac{1}{n^{\alpha}} \quad \text{and} \quad \forall t \in [n, n+1], \frac{1}{n^{\alpha}} \ge \frac{1}{t^{\alpha}}$$

We can hence integrate the first inequality on [n-1,n] and the second one on [n,n+1]:

$$\int_{n-1}^{n} \frac{1}{t^{\alpha}} dt \ge \int_{n-1}^{n} \frac{1}{n^{\alpha}} dt \quad \text{and} \quad \int_{n}^{n+1} \frac{1}{n^{\alpha}} dt \ge \int_{n}^{n+1} \frac{1}{t^{\alpha}} dt$$

The function $t \mapsto \frac{1}{t^{\alpha}}$ is a constant function. Thus,

$$\int_{n-1}^{n} \frac{1}{n^{\alpha}} dt = \left[\frac{t}{n^{\alpha}} \right]_{n-1}^{n} = \frac{1}{n^{\alpha}} \quad \text{and} \quad \int_{n}^{n+1} \frac{1}{n^{\alpha}} dt = \left[\frac{t}{n^{\alpha}} \right]_{n}^{n+1} = \frac{1}{n^{\alpha}}$$

Finally, for all $n \geq 2$,

$$\int_{n-1}^{n} \frac{1}{t^{\alpha}} dt \ge \frac{1}{n^{\alpha}} \ge \int_{n}^{n+1} \frac{1}{t^{\alpha}} dt$$

4. To compute the integral of $\frac{1}{t^{\alpha}}$: a primitive function F is defined on \mathbb{R}_{+}^{*} by:

$$F(t) = \frac{t^{-\alpha+1}}{-\alpha+1}$$
 (case $\alpha \neq 1$) or $F(t) = \ln(t)$ (case $\alpha = 1$)

6.1.2.2 Theorem's proof

Let $\alpha \in \mathbb{R}$ and the series $\sum \frac{1}{n^{\alpha}}$.

- 1. If $\alpha \leq 0$, then $\frac{1}{n^{\alpha}} = n^{-\alpha}$ with $-\alpha \geq 0$. Thus, $\left(\frac{1}{n^{\alpha}}\right)$ does not converge to 0 and the series diverges.
- 2. If $0 < \alpha \le 1$: since the function $t \mapsto \frac{1}{t^{\alpha}}$ decreases on \mathbb{R}_{+}^{*} , we know that for all $n \ge 1$:

$$\forall t \in [n, n+1], \frac{1}{n^{\alpha}} \ge \frac{1}{t^{\alpha}}$$

By integrating this inequality on [n, n+1], we get: $\int_n^{n+1} \frac{1}{n^{\alpha}} dt \ge \int_n^{n+1} \frac{1}{t^{\alpha}} dt$.

The first integral is $\left[\frac{t}{n^{\alpha}}\right]_{n}^{n+1} = \frac{1}{n^{\alpha}}$.

If F denotes a primitive function of $\frac{1}{t^{\alpha}}$, we hence get:

$$\forall n \ge 1, \frac{1}{n^{\alpha}} \ge F(n+1) - F(n) \ge 0$$

Since both series $\sum \frac{1}{n^{\alpha}}$ and $\sum (F(n+1) - F(n))$ have positive terms, we can use comparison theorem. Let us prove that the serie $\sum (F(n+1) - F(n))$ diverges: the latter is a telescoping series, it hence has the same nature as the sequence (F(n)).

If $\alpha < 1$, then for all $n \in \mathbb{N}^*$, $F(n) = \frac{n^{1-\alpha}}{1-\alpha}$ with 1-a > 0. The sequence (F(n)) hence diverges to $+\infty$, that is, $\sum (F(n+1) - F(n))$ diverges.

If $\alpha = 1$, then for all $n \in \mathbb{N}^*$, $F(n) = \ln(n)$ and the sequence (F(n)) diverges to $+\infty$. Here also, $\sum (F(n+1) - F(n))$ diverges.

Finally, for all α such that $0 < \alpha \le 1$, the series $\sum (F(n+1) - F(n))$ diverges. Using comparison theorem, it results that $\sum \frac{1}{n^{\alpha}}$ diverges too.

3. If $\alpha > 1$: since the function $t \mapsto \frac{1}{t^{\alpha}}$ decreases on \mathbb{R}_{+}^{*} , we know that for all $n \geq 2$:

$$\forall t \in [n-1, n], \frac{1}{n^{\alpha}} \le \frac{1}{n^{\alpha}}$$

By integrating this inequality on [n-1,n], we get: $\int_{n-1}^{n} \frac{1}{n^{\alpha}} dt \leq \int_{n-1}^{n} \frac{1}{t^{\alpha}} dt$.

The first integral is $\left[\frac{t}{n^{\alpha}}\right]_{n-1}^{n} = \frac{1}{n^{\alpha}}$.

If F denotes a primitive function of $\frac{1}{t^{\alpha}}$, we hence get:

$$\forall n \ge 1, 0 \le \frac{1}{n^{\alpha}} \le F(n) - F(n-1)$$

Since both series $\sum \frac{1}{n^{\alpha}}$ and $\sum (F(n) - F(n-1))$ have positive terms, we can use comparison theorem. Let us prove that the serie $\sum (F(n) - F(n-1))$ converges: the latter is a telescoping series, it hence has the same nature as the sequence (F(n)).

But
$$F(n) = \frac{n^{1-\alpha}}{1-\alpha} = -\frac{1}{(1-\alpha)} \times \frac{1}{n^{\alpha-1}}$$
 with $\alpha - 1 > 0$.

Thus, the sequence (F(n)) converges to 0 and the telescoping series $\sum (F(n) - F(n-1))$ converges.

Using comparison theorem, it results that $\sum \frac{1}{n^{\alpha}}$ converges too.

6.2 Series whose general term has a non-constant sign

6.2.1 Theorem (Absolute convergence)

If a series $\sum u_n$ converges absolutely, then it converges.

Reminder: a series $\sum u_n$ converges absolutely if $\sum |u_n|$ converges.

6.2.1.1 Proof

Consider a series $\sum u_n$ converging absolutely. We hence assume that $\sum |u_n|$ converges. Let us define the two series (u_n^+) and (u_n^-) by:

$$\forall n \in \mathbb{N}, \quad u_n^+ = \begin{cases} u_n & \text{if } u_n \ge 0\\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad u_n^- = \begin{cases} -u_n & \text{if } u_n \le 0\\ 0 & \text{otherwise} \end{cases}$$

These sequences are both positive $u_n = u_n^+ - u_n^-$. Furthermore,

- $\forall n \in \mathbb{N}, 0 \leq u_n^+ \leq |u_n|$ and $\sum |u_n|$ converges, so $\sum u_n^+$ converges.
- $\forall n \in \mathbb{N}, 0 \leq u_n^- \leq |u_n| \text{ and } \sum |u_n| \text{ converges, so } \sum u_n^- \text{ converges.}$

Thus, $\sum u_n = \sum (u_n^+ - u_n^-)$ is the sum of two convergent series. It is hence convergent.

6.2.2 Theorem (Leibniz's rule)

Let (u_n) be an alternating sequence. If $(|u_n|)$ is decreasing and converges to 0, then:

- 1. $\sum u_n$ converges.
- 2. The remainder (R_n) of the series satisfy to: $\forall n \in \mathbb{N}, |R_n| \leq |u_{n+1}|$.

6.2.2.1 Reminders

the theorem's proof relies on the notion of adjacent sequences and on two properties seen during the chapter 5 (sequences) the previous year:

- 1. Two sequences (u_n) and (v_n) are adjacent if they satisfy the conditions:
 - One of them is increasing and the other one is decreasing.
 - The sequence $(u_n v_n)$ converges to 0.
- 2. Properties of adjacent sequences: if two sequences (u_n) and (v_n) are adjacent, then:
 - Both converge. Furthermore, they admit an **identical** limit ℓ .
 - If (u_n) is the increasing sequence and (v_n) the decreasing one, then:

$$\forall n \in \mathbb{N}, \quad u_n \le u_{n+1} \le \ell \le v_{n+1} \le v_n$$

3. Property about subsequences: consider a sequence (u_n) such that the subsequences (u_{2n}) and (u_{2n+1}) both converge to an **identical** limit ℓ . Then, (u_n) converges to ℓ .

6.2.2.2 Proof of the theorem

Let (u_n) be an alternating sequence. Then there exists a positive sequence (a_n) such that:

$$(u_n) = ((-1)^n \times a_n)$$
 or $(u_n) = (-(-1)^n \times a_n)$

For the proof, we can assume that we are in the first case $(u_n) = ((-1)^n \times a_n)$. If not, just replace (u_n) by $(-u_n)$. The positive sequence (a_n) is in fact the sequence $(|u_n|)$: the theorem hypothesis state that it decreases and converges to 0.

Let (S_n) be the partial sums of $\sum u_n$: for all $n \in \mathbb{N}$,

$$S_n = a_0 - a_1 + a_2 - a_3 + \dots + (-1)^n a_n$$

To start with, let us prove that the sequences (S_{2n}) and (S_{2n+1}) are adjacent.

1. Monotony of (S_{2n}) : this subsequence contains the terms of even ranks. The term following S_{2n} is hence $S_{2(n+1)} = S_{2n+2}$. Thus, for all $n \in \mathbb{N}$:

$$\begin{cases}
S_{2n} = a_0 - a_1 + a_2 - a_3 + \dots + a_{2n} \\
S_{2(n+1)} = a_0 - a_1 + a_2 - a_3 + \dots + a_{2n} - a_{2n+1} + a_{2n+2} \\
\hline
S_{2(n+1)} - S_{2n} = -a_{2n+1} + a_{2n+2}
\end{cases}$$

Since (a_n) is decreasing, $-a_{2n+1} + a_{2n+2}$ is negative. The sequence (S_{2n}) is hence decreasing.

2. Monotony of (S_{2n+1}) : this subsequence contains the terms of odd ranks. The term following S_{2n+1} is hence $S_{2(n+1)+1} = S_{2n+3}$. Thus, for all $n \in \mathbb{N}$:

$$\begin{cases}
S_{2n+1} = a_0 - a_1 + a_2 - a_3 + \dots + a_{2n} - a_{2n+1} \\
S_{2(n+1)+1} = a_0 - a_1 + a_2 - a_3 + \dots + a_{2n} - a_{2n+1} + a_{2n+2} - a_{2n+3} \\
\hline
S_{2(n+1)+1} - S_{2n+1} = a_{2n+2} - a_{2n+3}
\end{cases}$$

Since (a_n) is decreasing, $a_{2n+2} - a_{2n+3}$ is positive. The sequence (S_{2n+1}) is hence increasing.

3. Study of $S_{2n+1} - S_{2n}$: for all $n \in \mathbb{N}$,

$$\begin{cases} S_{2n} = a_0 - a_1 + a_2 - a_3 + \dots + a_{2n} \\ S_{2n+1} = a_0 - a_1 + a_2 - a_3 + \dots + a_{2n} - a_{2n+1} \\ \hline S_{2n+1} - S_{2n} = -a_{2n+1} \end{cases}$$

Since (a_n) converges to 0, $(S_{2n+1} - S_{2n})$ converges to 0 too.

We hence proved that (S_{2n}) and (S_{2n+1}) are adjacent. From this, we know that they both converge and admit an identical limit ℓ . The we get:

$$\left. \begin{array}{c} S_{2n} \xrightarrow[n \to +\infty]{} \ell \\ S_{2n+1} \xrightarrow[n \to +\infty]{} \ell \end{array} \right\} \implies S_n \xrightarrow[n \to +\infty]{} \ell$$

This prove that (S_n) converges, that is, $\sum u_n$ converges.

Now let us prove that for all $n \in \mathbb{N}$, $|R_n| \leq |u_{n+1}|$: the sequences (S_{2n}) and (S_{2n+1}) being adjacent, we know that for all $n \in \mathbb{N}$:

$$S_{2n+1} \le S_{2n+3} \le \ell \le S_{2n+2} \le S_{2n}$$

Thus,
$$|R_{2n}| = S_{2n} - \ell \le S_{2n} - S_{2n+1} = u_{2n+1}$$

and
$$|R_{2n+1}| = \ell - S_{2n+1} \le S_{2n+2} - S_{2n+1} = u_{2n+2}$$
.

Thus, for all $n \in \mathbb{N}$, $|R_n| \leq |u_{n+1}|$.