Lecture 11: Knowledge Based Systems

Dragan Doder

Methods in Al Research

Before we start

Next four lectures: Reasoning

- Knowledge based reasoning
- Description logic
- ► Non-monotonic reasoning *bonus lecture*
- Formal argumentation

Outline of this lecture

Knowledge representation and reasoning

Recap - Propositional logic

Some fundamental logical notions

First-Order logic

Knowledge representation and reasoning

Conversational agents - where are we now?

Conversational agents - where are we now?

User: My father is called Marc.

User: My father likes Football.

User: My father is called Marc.

User: My father likes Football.

(A few months later)

User: Marc was born on 22 June 1965.

User: Marc's favorite football team is Ajax.

User: My father is called Marc.

User: My father likes Football.

(A few months later)

User: Marc was born on 22 June 1965.

User: Marc's favorite football team is Ajax.

(Three days later)

User: Remind me to buy football tickets for my father a month

before his birthday.

User: My father is called Marc.

User: My father likes Football.

(A few months later)

User: Marc was born on 22 June 1965.

User: Marc's favorite football team is Ajax.

(Three days later)

User: Remind me to buy football tickets for my father a month

before his birthday.

(On May 22nd)

CA: Hey, Marc's birthday is in a month and you wanted to buy him

football tickets

User: My father is called Marc.

User: My father likes Football.

(A few months later)

User: Marc was born on 22 June 1965.

User: Marc's favorite football team is Ajax.

(Three days later)

User: Remind me to buy football tickets for my father a month

before his birthday.

(On May 22nd)

CA: Hey, Marc's birthday is in a month and you wanted to buy him

football tickets.

CA: How about I order today the tickets for Ajax–Utrecht

happening on July 3rd?

Conversational agents - What do we need for that?

Various types of logical and commonsense reasoning:

- Coreference resolution
- Reasoning about superlatives
- Reasoning about family relations
- ► Time reasoning

:

Conversational agents - What do we need for that?

Various types of logical and commonsense reasoning:

- Coreference resolution
- Reasoning about superlatives
- Reasoning about family relations
- ▶ Time reasoning

:

Major components of AI:

knowledge, reasoning, language understanding, learning.

Conversational agents - What do we need for that?

Various types of logical and commonsense reasoning:

- Coreference resolution
- Reasoning about superlatives
- Reasoning about family relations
- Time reasoning

:

Major components of AI:

knowledge, reasoning, language understanding, learning.

Knowledge based systems

Knowledge base: represents facts about the world Inference engine: applies logical rules to KB to deduce new facts

Knowledge Representation and Reasoning

Knowledge representation

- use formal symbols to represent knowledge of an agent
- not all the knowledge is explicitly represented

Reasoning

- bridges the gap between what is represented and what is known
- formal manipulation of the symbols

The role of logic

- Logic is study of entailment relations
 - languages, truth conditions, inference rules

MYCIN - sample rule

MYCIN ('70s, Stanford U.): Reasoning about bacterial infections

- IF the stain of the organism is gram negative
- AND the morphology of the organism is rod
- AND the aerobiocity of the organism is gram anaerobic
- **THEN** the there is strongly suggestive evidence (0.8) that the class of the organism is enterobacteriaceae

Propositional logic

Which sentences are propositions?

Any statement which can be evaluated as true or false.

Examples of propositions:

- Chris is a lecturer of MAIR.
- ► The Earth is flat.
- ▶ $15 + 3 \le 20$
- ► "P=NP"

Propositions

Which sentences are propositions?

Any statement which can be evaluated as true or false.

Examples of propositions:

- Chris is a lecturer of MAIR.
- ► The Earth is flat.
- ▶ $15 + 3 \le 20$
- ► "P=NP"

The following sentences are *not* propositions:

- ► Are you a lecturer of MAIR?
- ▶ Don't cheat at the exam!
- 2x + 3 = 10

Composite propositions

Examples:

- ▶ It is not the case that the Earth is flat.
- Chris is a lecturer of MAIR or the Earth is flat.
- Chris is a lecturer of MAIR and the Earth is flat.
- ▶ If the Earth is flat, then "P=NP"
- ▶ $15 + 3 \le 20$ if and only if $2(15 + 3) \le 2 \cdot 20$

Composite propositions

Examples:

- ▶ It is not the case that the Earth is flat.
- Chris is a lecturer of MAIR or the Earth is flat.
- Chris is a lecturer of MAIR and the Earth is flat.
- ▶ If the Earth is flat, then "P=NP"
- ▶ $15 + 3 \le 20$ if and only if $2(15 + 3) \le 2 \cdot 20$

Course manual:

If all three individual grades are at least 5.0 and the weighted final grade is at least 5.5, then you passed the course.

Propositional logic – Syntax

Alphabet: the symbols of propositional logic are:

- ightharpoonup propositional letters: p, q, r etc.
- ▶ (Boolean) connectives: \neg , \land , \lor , \rightarrow and \leftrightarrow
- brackets "(" and ")"

Propositional logic - Syntax

Alphabet: the symbols of propositional logic are:

- ightharpoonup propositional letters: p, q, r etc.
- ▶ (Boolean) connectives: \neg , \land , \lor , \rightarrow and \leftrightarrow
- brackets "(" and ")"

Formulas: the well defined propositional formulas are:

- ightharpoonup propositional letters: p, q, r...
- ▶ If α and β are formulas, then the following are also formulas.

"not ''	negation	$\neg \alpha$
" and"	conjunction	$(\alpha \wedge \beta)$
" or"	disjunction	$(\alpha \vee \beta)$
"if, then"	implication	$(\alpha \to \beta)$
" iff"	equivalence	$(\alpha \leftrightarrow \beta)$

Propositional logic - Semantics

A *model* (of a logic) is a precisely described situation in which the truth of each formula is determined.

A model m is a model of a formula α , if α is true in m.

$$m \models \alpha$$

- ► *Models* of propositional logic *valuations*.
- ► A valuation assigns a truth value to every propositional variable

Example:
$$p q r$$
 model m : $true$ $true$ $false$

Given m, for every formula we can determine its truth value:

- Propositional variables have their values directly assigned by m
- ► [Truth functionality:] The truth value of a compound formula is a function of the truth values of its subformulas.

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	P o Q	$P \leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Truth table

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	P o Q	$P\leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

$$\neg p \land (q \lor r)$$

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	P o Q	$P \leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

$$\neg p \land (q \lor r) = \neg true \land (true \lor false)$$

Truth table

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	P o Q	$P\leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

$$p$$
 q r model m : $true$ $true$ $false$

$$\neg p \land (q \lor r) = \neg true \land (true \lor false) = false \land true$$

Truth table

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	P o Q	$P\leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

$$p$$
 q r model m : $true$ $true$ $false$

$$\neg p \land (q \lor r) = \neg true \land (true \lor false) = false \land true = false$$

Some fundamental logical notions

Some fundamental logical notions

$$M(\alpha)$$
 – the set of all models of α $(M(\alpha) = \{m \mid m \models \alpha\})$

$$M(\alpha)$$
 – the set of all models of α $(M(\alpha) = \{m \mid m \models \alpha\})$

$$m \models \alpha \land \beta$$
 iff $m \models \alpha$ and $m \models \beta$

$$M(\alpha)$$
 – the set of all models of α $(M(\alpha) = \{m \mid m \models \alpha\})$

$$m \models \alpha \land \beta$$
 iff $m \models \alpha$ and $m \models \beta$

$$m \models \alpha \lor \beta \text{ iff } m \models \alpha \text{ or } m \models \beta$$

$$M(\alpha)$$
 – the set of all models of α $(M(\alpha) = \{m \mid m \models \alpha\})$

$$m \models \alpha \land \beta$$
 iff $m \models \alpha$ and $m \models \beta$

$$m \models \alpha \lor \beta \text{ iff } m \models \alpha \text{ or } m \models \beta$$

M(KB) – the set of all models of every formula from KB If $KB = \{\alpha, \beta, \gamma\}$, then $M(KB) = M(\alpha) \cap M(\beta) \cap M(\gamma)$

Some semantic concepts: satisfiability and validity

Satisfiability

A formula α is satisfiable iff there is a model m such that $m \models \alpha$ holds (e.g. $p \land q$)

 α is satisfiable iff $Mod(\alpha) \neq \emptyset$

Validity

A formula α is valid (notation $\models \alpha$) iff $m \models \alpha$ holds for every model m (e.g. $p \lor \neg p$)

Some semantic concepts: Entailment

Entailment

A formula α is a logical consequence of a set of formulas KB ($KB \models \alpha$) iff α is true in every model in which KB is true. (e.g. $\{p, p \rightarrow q\} \models q$)

Entailment is a relationship between sentences (i.e., *syntax*) that is based on *semantics*.

Some semantic concepts: Entailment

Entailment

A formula α is a logical consequence of a set of formulas KB $(KB \models \alpha)$ iff α is true in every model in which KB is true. (e.g. $\{p, p \rightarrow q\} \models q$)

Entailment is a relationship between sentences (i.e., syntax) that is based on semantics.

- \triangleright KB $\models \alpha$ iff $M(KB) \subseteq M(\alpha)$
- $\triangleright \beta \models \alpha \text{ iff } \models \beta \rightarrow \alpha$
- An unsatisfiable formula entails every formula

Inference

$$KB \vdash \alpha - "\alpha \text{ is } inferred \text{ from } KB" \text{ (by...)}$$

Two main groups of inference algorithms:

- ► Model-based: (e.g., truth table enumeration)
- Proof-based: apply inference rules to infer new knowledge (e.g., modus ponens:

$$\frac{\alpha \quad \alpha \to \beta}{\beta}$$
)

Inference in logic

Logical language, formulas

inference system (inference rules)

semantics (models, satisfiability)

▶ derivations (⊢)

▶ entailment (⊨)

Soundness:
$$KB \vdash \alpha \Longrightarrow KB \models \alpha$$

Completeness:
$$KB \models \alpha \Longrightarrow KB \vdash \alpha$$

On expressiveness of Propositional logic

Question: Can we formalize this kind of reasoning in propositional logic?

- ► All humans are mortal
- Socrates is a human
- Therefore: Socrates is mortal

On expressiveness of Propositional logic

Question: Can we formalize this kind of reasoning in propositional logic?

- ► All humans are mortal
- Socrates is a human
- Therefore: Socrates is mortal

An attempt:

p: All humans are mortal

q: Socrates is a human

r: Socrates is mortal

$$\{p,q\}\not\models r$$

First-Order Logic

Whereas propositional logic assumes world contains *facts*, first-order logic (like natural language) assumes the world contains:

- Objects: people, houses, numbers, theories, MAIR lecturers, colors, centuries . . .
- Relations: red, round, prime, boring..., sister, bigger than, inside, part of, has color, occurred after, comes between ...
- Functions: father of, one more than, plus . . .

Syntax of FOL: Basic elements

```
Constant symbols George, 2, UU,...

Predicate symbols (relation symbols)

Function symbols Sqrt, FatherOf,...

Variables x, y, a, b,...

Connectives x
```

 $\forall \exists$

Equality

Quantifiers

Atomic formulas

```
Atomic formula = predicate \_symbol(term_1, ..., term_n)

or term_1 = term_2

Term = function \_symbol(term_1, ..., term_n)

or constant \_symbol or variable
```

E.g.

- Spouses(FatherOf(George), MotherOf(George))
- ► ≥ (Height(George), Height(FatherOf(George)))

Complex formulas

Complex formulas are made from atomic formulas using connectives and quantifiers

$$\neg \alpha$$
, $\alpha \land \beta$, $\alpha \lor \beta$, $\alpha \to \beta$, $\alpha \leftrightarrow \beta \quad \exists x \ \alpha$, $\forall x \ \alpha$

E.g.:

- ▶ Spouses(FatherOf(George), MotherOf(George)) \rightarrow Spouses(MotherOf(George), FatherOf(George))
- $ightharpoonup \ge (1,2) \lor \neg (\ge (1,2))$
- $\forall x \ At(x, UU) \rightarrow Smart(x)$
 - "Everyone at UU is smart"
- $ightharpoonup \exists x \ At(x, UU) \land Tall(x)$
 - "Someone at UU is Tall"

Complex formulas

Complex formulas are made from atomic formulas using connectives and quantifiers

$$\neg \alpha$$
, $\alpha \land \beta$, $\alpha \lor \beta$, $\alpha \to \beta$, $\alpha \leftrightarrow \beta \quad \exists x \ \alpha$, $\forall x \ \alpha$

E.g.:

- ▶ Spouses(FatherOf(George), MotherOf(George)) \rightarrow Spouses(MotherOf(George), FatherOf(George))
- $ightharpoonup \ge (1,2) \lor \neg (\ge (1,2))$
- $\forall x \ At(x, UU) \rightarrow Smart(x)$
 - "Everyone at UU is smart"
- $ightharpoonup \exists x \ At(x, UU) \land Tall(x)$
 - "Someone at UU is Tall"
- ► $\exists x \exists y \ Lec(x, MAIR) \land Lec(y, MAIR) \land \neg(x = y)$ "There are at least two lecturers og MAIR"

First-Order logic

Formulas are true with respect to a *model/interpretation/structure*, which consists of

- A non empty domain D of objects
- ► An *interpretation function I* linking the syntax with the domain:
 - ► constant symbols → objects
 - ▶ predicate symbols → relations
 - ▶ function symbols → functions

An atomic formula predicate symbol $(term_1, \ldots, term_n)$ is true iff the *objects* referred to by $term_1, \ldots, term_n$ are in the relation referred to by *predicate* symbol

 $\forall x \alpha$ is true in a model if α is true with x being each possible object in the model.

Objects: Peppa Pig, George Pig, Mammy Pig, Daddy Pig, Sun

Constants: George

Relations: Yellow, Sister, Spouses

Functions: MotherOf, FatherOf

First-Order logic

An interpretation function / maps elements of the syntax to the domain as follows (superscripts – arity):

- For each constant symbol c, $I(c)=o \in D$
- ► For each n-ary function symbol f^n , $I(f^n) = \phi^n : D^n \to D$
- ► For each n-ary predicate symbol P^n , $I(P^n) = R^n \subseteq D^n$

So, the interpretation function maps all elements of the syntax to the domain except for variables.

Semantics, more formally

An interpretation function / maps elements of the syntax to the domain as follows (superscripts – arity):

- For each constant symbol c, $I(c)=o \in D$
- ► For each n-ary function symbol f^n , $I(f^n) = \phi^n : D^n \to D$
- ► For each n-ary predicate symbol P^n , $I(P^n) = R^n \subseteq D^n$

So, the interpretation function maps all elements of the syntax to the domain except for variables.

Interpreting terms:

- ► George → I(George) → George Pig
- ► FatherOf (George) → I(FatherOf)(George Pig)

Semantics, more formally

An interpretation function / maps elements of the syntax to the domain as follows (superscripts – arity):

- For each constant symbol c, $I(c)=o \in D$
- ► For each n-ary function symbol f^n , $I(f^n) = \phi^n : D^n \to D$
- ► For each n-ary predicate symbol P^n , $I(P^n) = R^n \subseteq D^n$

So, the interpretation function maps all elements of the syntax to the domain except for variables.

Interpreting terms:

- ► George → I(George) → George Pig
- ightharpoonup FatherOf(George) \longrightarrow I(FatherOf)(George Pig) \rightarrow Daddy Pig

Semantics, more formally

An interpretation function / maps elements of the syntax to the domain as follows (superscripts – arity):

- For each constant symbol c, $I(c)=o \in D$
- ► For each n-ary function symbol f^n , $I(f^n) = \phi^n : D^n \to D$
- ► For each n-ary predicate symbol P^n , $I(P^n) = R^n \subseteq D^n$

So, the interpretation function maps all elements of the syntax to the domain except for variables.

Interpreting terms:

- ► George → I(George) → George Pig
- ightharpoonup FatherOf(George) \longrightarrow I(FatherOf)(George Pig) \rightarrow Daddy Pig
- ightharpoonup FatherOf(x) ?

Let $\mathcal{M} = (D, I)$ be a model.

A variable assignment μ maps every variable to an object in D:

 $\mu: \mathit{Variables} \to \mathit{D}$

Denotation – Interpreting terms

Let $\mathcal{M} = (D, I)$ be a model.

A variable assignment μ maps every variable to an object in D:

$$\mu: \mathit{Variables} o \mathit{D}$$

Denotation maps terms to objects of D (given \mathcal{M} and μ):

- $\|x\|_{\mathcal{M},\mu} = \mu(x)$
- $\|c\|_{M,\mu} = I(c)$
- $|| f(t_1, \ldots, t_n) ||_{\mathcal{M}, u} = I(f)(||t_1||_{\mathcal{M}, u}, \ldots, ||t_n||_{\mathcal{M}, u})$

Satisfiability relation \models

Let $\mathcal{M} = (D, I)$ be a model, and let μ be a variable assignment.

$$\begin{array}{lll} \mathcal{M}, \mu \models P_{i}^{n}(t_{1},...,t_{n}) & \Leftrightarrow & I(P_{i}^{n})(\|t_{1}\|_{\mathcal{M},\mu},\ldots,\|t_{n}\|_{\mathcal{M},\mu}) \\ \mathcal{M}, \mu \models \neg \alpha & \Leftrightarrow & \mathsf{not} \; \mathcal{M}, \mu \models \alpha \\ \mathcal{M}, \mu \models \alpha \wedge \beta & \Leftrightarrow & \mathcal{M}, \mu \models \alpha \; \mathsf{and} \; \mathcal{M}, \mu \models \beta \\ & \vdots & & \vdots \\ \mathcal{M}, \mu \models \forall x \; \alpha & \Leftrightarrow \; \mathsf{for \; all} \; \mu' =_{x} \mu : \; \mathcal{M}, \mu' \models \alpha \\ \mathcal{M}, \mu \models \exists x \; \alpha & \Leftrightarrow \; \mathsf{for \; some} \; \mu' =_{x} \mu : \; \mathcal{M}, \mu' \models \alpha \end{array}$$

 μ is an x-variant of μ' (written as $\mu =_{\times} \mu'$) if they map all variables to the same object in D except for x.

Satisfiability relation ⊨

Let $\mathcal{M} = (D, I)$ be a model, and let μ be a variable assignment.

$$\begin{array}{lll} \mathcal{M}, \mu \models P_{i}^{n}(t_{1},...,t_{n}) & \Leftrightarrow & I(P_{i}^{n})(\|t_{1}\|_{\mathcal{M},\mu},\ldots,\|t_{n}\|_{\mathcal{M},\mu}) \\ \mathcal{M}, \mu \models \neg \alpha & \Leftrightarrow & \mathsf{not} \; \mathcal{M}, \mu \models \alpha \\ \mathcal{M}, \mu \models \alpha \wedge \beta & \Leftrightarrow & \mathcal{M}, \mu \models \alpha \; \mathsf{and} \; \mathcal{M}, \mu \models \beta \\ & \vdots & & \vdots \\ \mathcal{M}, \mu \models \forall x \; \alpha & \Leftrightarrow \; \mathsf{for \; all} \; \mu' =_{x} \mu : \; \mathcal{M}, \mu' \models \alpha \\ \mathcal{M}, \mu \models \exists x \; \alpha & \Leftrightarrow \; \mathsf{for \; some} \; \mu' =_{x} \mu : \; \mathcal{M}, \mu' \models \alpha \end{array}$$

 μ is an x-variant of μ' (written as $\mu =_{\times} \mu'$) if they map all variables to the same object in D except for x.

 α is *true* in \mathcal{M} (notation $\mathcal{M} \models \alpha$) iff $\mathcal{M}, \mu \models \alpha$ holds for all μ

Sentence: a formula in which all variables are bounded by a quantifier

Satisfiability relation ⊨

Let $\mathcal{M} = (D, I)$ be a model, and let μ be a variable assignment.

$$\begin{array}{lll} \mathcal{M}, \mu \models P_{i}^{n}(t_{1},...,t_{n}) & \Leftrightarrow & I(P_{i}^{n})(\|t_{1}\|_{\mathcal{M},\mu},\ldots,\|t_{n}\|_{\mathcal{M},\mu}) \\ \mathcal{M}, \mu \models \neg \alpha & \Leftrightarrow & \mathsf{not} \; \mathcal{M}, \mu \models \alpha \\ \mathcal{M}, \mu \models \alpha \wedge \beta & \Leftrightarrow & \mathcal{M}, \mu \models \alpha \; \mathsf{and} \; \mathcal{M}, \mu \models \beta \\ & \vdots & & \vdots \\ \mathcal{M}, \mu \models \forall x \; \alpha & \Leftrightarrow & \mathsf{for} \; \mathsf{all} \; \mu' =_{x} \mu \colon \mathcal{M}, \mu' \models \alpha \\ \mathcal{M}, \mu \models \exists x \; \alpha & \Leftrightarrow & \mathsf{for} \; \mathsf{some} \; \mu' =_{x} \mu \colon \mathcal{M}, \mu' \models \alpha \end{array}$$

 μ is an x-variant of μ' (written as $\mu =_{\times} \mu'$) if they map all variables to the same object in D except for x.

 α is *true* in \mathcal{M} (notation $\mathcal{M} \models \alpha$) iff $\mathcal{M}, \mu \models \alpha$ holds for all μ

Sentence: a formula in which all variables are bounded by a quantifier (evaluated in \mathcal{M} , assignments irrelevant)

Beyond FOL

Jon Barwise (1942–2000) an American logician

To claim that logic is first-order logic is like to claim that astronomy is the study of the telescope.

Reasoning about:

- knowledge
- time
- norms
- inconsistent knowledge
- defeasible inferences
- uncertainty
- vague statements

- epistemic logic
- temporal logic
- deontic logic
- paraconsistent logic
- non-monotonic logic
- probabilistic logic, . . .
- fuzzy logic

Summary

This lecture:

- Knowledge-based systems apply logical inference to a knowledge base to derive new information.
- Logics:
 - Propositional logic
 - First order logic

Next lecture:

Description logics