МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Программирование»

Тема: «Обзор стандартной библиотеки»

Студент гр. 1304	Шаврин А.П
Преподаватель	Чайка К.В.

Санкт-Петербург

2022

Цель работы.

Изучить возможности стандартной библиотеки языка Си, более подробно разобраться в библиотеке *time.h*, чтобы получить практику работы со временем, а также изучить функции сортировки *qsort* и *bubble sort*, разобраться в алгоритмах сортировки.

Задание.

Напишите программу, на вход которой подается массив целых чисел длины 1000.

Программа должна совершать следующие действия:

- отсортировать массив с помощью алгоритма "сортировка пузырьком"
- посчитать время, за которое будет совершена сортировка, используя при этом функцию стандартной библиотеки
- отсортировать массив с помощью алгоритма "быстрая сортировка" (quick sort), используя при этом функцию стандартной библиотеки
- посчитать время, за которое будет совершена сортировка, используя при этом функцию стандартной библиотеки
- вывести отсортированный массив (элементы массива должны быть разделены пробелом)
- вывести время, за которое была совершена сортировка пузырьком вывести время, за которое была совершена быстрая сортировка

Отсортированный массив, время сортировки пузырьком, время быстрой сортировки должны быть выведены с новой строки, при этом элементы массива должны быть разделены пробелами.

Основные теоретические положения.

- void qsort (void * first, size_t number, size_t size, int (* comparator)
 (const void *, const void *));
- *first* Указатель на первый элемент сортируемого массива.
- *number* Количество элементов в сортируемом массиве, на который ссылается указатель *first*.

- size
 Размер одного элемента массива в байтах.
- comparator

Функция, которая сравнивает два элемента. Функция должна иметь следующий прототип:

int funccmp(const void * val1, const void * val2);

1. clock t clock (void);

Количество тактов, прошедших с эпохи, связанной с выполнением конкретной программы.

При сбое функция возвращает значение -1.

 $clock_t$ это тип, определенный в < ctime > качестве псевдонима фундаментального арифметического типа.

Выполнение работы.

- Поскольку функции сортировки преобразуют сам массив, была реализована функция *void read_arr(int arr1[], int arr2[])*, в которой происходит заполнение сразу 2х массивов (одинаковыми данными).
- Для вывода массива реализована функция void print arr(int arr[]).
- Для сортировки пузырьком реализована функция *void bubble_sort(int arr[])*.
- Для сравнения элементов функцией qsort реализована функция int $cmp(const\ void\ *a,\ const\ void\ *b)$ (корпаратор).
- В функции *main* происходит инициализация переменных, заполнение массивов, замер времени для *bubble sort* и *qsort*, вывод результатов в соответствии с требованием.

Результаты тестирования см. в приложении Б.

Разработанный программный код см. в приложении А.

Выводы.

Были изучены основные библиотеки Си, в частности работа с библиотекой time.h, проанализировано время работы быстрой сортировки и сортировки пузырьком.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

```
Название файла: main.c
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define N 1000
void read arr(int arr1[], int arr2[]){
    for (int i = 0; i < N; i++){
         scanf("%d", &arr1[i]);
         arr2[i] = arr1[i];
    }
void print arr(int arr[]){
    for (int i = 0; i < N; i++)
         printf("%d", arr[i]);
    printf("\n");
}
void bubble sort(int arr[]){
    for (int i = N-1; i >= 0; i--){
         int no swap = 1;
         for (int j = 0; j < i; j++){
               if(arr[j] > arr[j+1])
                    int tmp = arr[j];
                    arr[j] = arr[j+1];
```

```
arr[j+1] = tmp;
                    no\_swap = 0;
               }
          }
          if (no_swap)
               break;
int cmp(const void *a, const void *b){
     const int *f = (const int *)a;
     const int *s = (const int *)b;
     if(*f>*s)
          return 1;
     if (*f < *s)
          return -1;
     return 0;
int main(){
     //init var
     int arr1[N];
     int arr2[N];
     clock_t tstart;
     clock_t tbsrt;
     clock_t tqsrt;
     //read arr
```

```
read_arr(arr1, arr2);
//bubble sort
tstart = clock();
bubble_sort(arr1);
tbsrt = clock() - tstart;
//quick sort
tstart = clock();
qsort(arr2, N, sizeof(int), cmp);
tqsrt = clock() - tstart;
//print ans
print_arr(arr1);
printf("%f\n", (float)tbsrt/CLOCKS_PER_SEC);
printf("%f\n", (float)tqsrt/CLOCKS_PER_SEC);
return 0;
```

}

ПРИЛОЖЕНИЕ Б ТЕСТИРОВАНИЕ

Таблица Б.2 - Примеры тестовых случаев

№ п/п	Входные данные	Выходные данные	Комментарии
1.	0 2 5 -39 -234 345 3 2 6 0	-234 -39 0 0 2 2 3 5 6 345 0.000003 0.000004	Время считается в секундах, для данного теста длинна массива устанавливается в 10 элементов. Результат связан с реализацией
			функций.
2.	100 99 98 97 96 95 94 93		1
		-95 -94 -93 -92 -91 -90 -89	
		-88 -87 -86 -85 -84 -83 -82	
		-81 -80 -79 -78 -77 -76 -75 -74 -73 -72 -71 -70 -69 -68	
		-67 -66 -65 -64 -63 -62 -61	JICMEHI.
		-60 -59 -58 -57 -56 -55 -54	
		-53 -52 -51 -50 -49 -48 -47	
		-46 -45 -44 -43 -42 -41 -40	
		-39 -38 -37 -36 -35 -34 -33	
	11 10 9 8 7 6 5 4 3 2 1 0 -1	-32 -31 -30 -29 -28 -27 -26	
	-2 -3 -4 -5 -6 -7 -8 -9 -10 -	-25 -24 -23 -22 -21 -20 -19	
	11 -12 -13 -14 -15 -16 -17 -	-18 -17 -16 -15 -14 -13 -12	
	18 -19 -20 -21 -22 -23 -24 -	-11 -10 -9 -8 -7 -6 -5 -4 -3 -	
	25 -26 -27 -28 -29 -30 -31 -	2 -1 0 1 2 3 4 5 6 7 8 9 10	
	32 -33 -34 -35 -36 -37 -38 -	11 12 13 14 15 16 17 18 19	
	39 -40 -41 -42 -43 -44 -45 -	20 21 22 23 24 25 26 27 28	
	46 -47 -48 -49 -50 -51 -52 -	29 30 31 32 33 34 35 36 37	
	53 -54 -55 -56 -57 -58 -59 -	38 39 40 41 42 43 44 45 46	
	60 -61 -62 -63 -64 -65 -66 -	47 48 49 50 51 52 53 54 55	
	67 -68 -69 -70 -71 -72 -73 -	56 57 58 59 60 61 62 63 64	
	74 -75 -76 -77 -78 -79 -80 -	65 66 67 68 69 70 71 72 73	
	81 -82 -83 -84 -85 -86 -87 -	74 75 76 77 78 79 80 81 82	
	88 -89 -90 -91 -92 -93 -94 -	83 84 85 86 87 88 89 90 91	

	95 -96 -97 -98 -99 -100	92 93 94 95 96 97 98 99 100 0.000234 0.000017	
3.	-86 -85 -84 -83 -82 -81 -80 -79 -78 -77 -76 -75 -74 -73 -72 -71 -70 -69 -68 -67 -66 -65 -64 -63 -62 -61 -60 -59 -58 -57 -56 -55 -54 -53 -52 -51 -50 -49 -48 -47 -46 -45 -44 -43 -42 -41 -40 -39 -38 -37 -36 -35 -34 -33 -32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84	-100 -99 -98 -97 -96 -95 -94 -93 -92 -91 -90 -89 -88 -87 -86 -85 -84 -83 -82 -81 -80 -79 -78 -77 -76 -75 -74 -73 -72 -71 -70 -69 -68 -67 -66 -65 -64 -63 -62 -61 -60 -59 -58 -57 -56 -55 -54 -53 -52 -51 -50 -49 -48 -47 -46 -45 -44 -43 -42 -41 -40 -39 -38 -37 -36 -35 -34 -33 -32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 - 2 -1 0 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0.000003 0.000018	секундах, для данного теста длинна массива устанавливается в 201 элемент. Результат связан