

Information Technology Institute (ITI) CMOS ANALOG IC DESIGN

LAB 3

Alhussein Gamal

Supervised by: Dr. Hesham Omran

Table of contents:

Content	Page			
Sizing Chart	3			
Cascode for gain	6			
OP Analysis	6			
AC Analysis	8			
Cascode for BW	9			
OP Analysis	9			
AC Analysis	11			

PART 1: Sizing Chart

The circuit schematic is shown

- 1), 2), 3) are satisfied
- 4) The value of VTH is shown = 0.434 V.

5) Calculator Expressions for V* and Vov

6) The plot of V* and Vov against VGS is shown

7) VovQ = 167.3, VGSQ = 0.6V @ V* = 160mV

8) IDX vs VGS

From the graph, IDQ* = 58.6 uA

gmX vs VGS

From the graph, $gmQ^* = 737.293uS$

gdsX vs VGS

From the graph, $gdsQ^* = 7.25114uS$

- 9) Wnew = IDQ * Wold / IDQ* = 15 * 10 / 58.6 = 2.56 um
- 10) By cross multiplication:

gmQ = gmQ* Wold / Wnew = 737.293uS * 2.56um / 10um = 188.7uS

gdsQ = gdsQ* Wold / Wnew = 7.25114uS * 2.56um / 10um = 1.856uS

PART 2: Cascode for Gain

1. OP Analysis

1) The circuit schematic is shown

The specified parameters were assigned.

2) A sweep over VB was performed. The plot of VDS vs VB is shown. At the point where VDS = $V^* + 100mv = (160 + 100) mV = 260 mV$, the value of VB is recorded and it equals 956.968 mV, which approximates to VB = 0.957V

- 3) The appropriate values for resistances were set. Requirement satisfied.
- 4) The required parameters are shown.

For M1 For M3 For M2 M3:id 20.0u M1:id 20.0u 20.0u M2:id M3:vgs 696.4806mV 626.46994mV M1:vgs 631.794mV M2:vgs M3:vds 373.6699mV M1:vds 626.46994mV M2:vds 259.038mV M3:vth 519.3601mV 442.41174mV M1:vth 445.144mV M2:vth M3:vdsat 146.3255mV 142.36617mV M1:vdsat M2:vdsat 144.082mV 220.859u M3:gm 👁 221.7u M1:gm M2:gm 🗢 216.3u M1:gds 2.44037u M3:gds 3.38u M2:gds 5.591u M1:gmbs 🧆 54.82u 60.0156u M3:gmbs M2:gmbs 58.85u M3:cdb -2.1039fN M1:cdb -2.0953fN M2:cdb -2.3218fN M3:cgd -1.221fN M1:cgd -1.2102fN M2:cgd -1.2585fN M3:cgs -9.1439fN -9.2008fN M1:cgs M2:cgs -9.2185fN M3:csb -4.0875fN -4.5365fN M1:csb M2:csb -4.5231fN M3:region **4** 2.0 M1:region 2.0 **4** 2.0 M2:region

- 5) For M1, M2, and M3 VDS > VGS VTH, hence all transistors are in saturation. This is also signified by all transistors being in region 2.
- 6) No, not all transistors have the same VTH. This is
- 7) For all transistors, gm > gds. In fact, gm >> gds.
- 8) For all transistors, gm > gmb.
- 9) For all transistors, cgs < cgd, but |cgs| >> |cgd|.
- 10) For all transistors, csb < cdb, but |csb| > |cgd|.

2. AC Analysis

- 1) Simulation parameters are set as required. Satisfied.
- 2) The required expressions were calculated and exported to adexl as shown.

The calculated values are also shown to the right

Test	Output	Nominal	Spec	Weight	Pass/Fail
lab1:lab3_part2:1	dB20(VF("/VOUT1"))	<u>~</u>			
lab1:lab3_part2:1	ymax(dB20(VF("/VOUT1")))	39.3			
lab1:lab3_part2:1	ymax(mag(VF("/VOUT1")))	92.24			
lab1:lab3_part2:1	bandwidth(VF("/VOUT1") 3 "low")	323.9k			
lab1:lab3_part2:1	gainBwProd(VF("/VOUT1"))	29.95M			
lab1:lab3_part2:1	dB20(VF("/VOUT2"))	<u></u>			
lab1:lab3_part2:1	ymax(dB20(VF("/VOUT2")))	72.57			
lab1:lab3_part2:1	ymax(mag(VF("/VOUT2")))	4.253k			
lab1:lab3_part2:1	bandwidth(VF("/VOUT2") 3 "low")	6.846k			
lab1:lab3_part2:1	gainBwProd(VF("/VOUT2"))	29.19M			
lab1:lab3_part2:1	unityGainFreq(VF("/VOUT1"))	30.18M			
lab1:lab3_part2:1	unityGainFreq(VF("/VOUT2"))	29.44M			

3) The Bode Plot of CS (red) and Cascode (blue) are shown, overlaid.

- 4) As per the lab announcement, this part is not required anymore.
- 5) As per the lab announcement, this part is not required anymore.
- 6) The cascade amplifier has a lower BW. This is due to its higher Rout which comes at the expense of the BW. However, as we would expect, the cascade amplifier has a higher gain. Also, the gainBWProd are very close, which signifies that both amplifiers have a similar value of maximum frequency at which they can operate.

[optional] PART 3: Cascode for BW

1. OP Analysis

1)The modified schematic is shown

- 2) RD = VRD / ID = (VDD/2) / 15uA = (1.8/2)/15uA = 60k ohms
- 3) Noted.

4) A sweep of VDS against VB is performed to select a suitable value for VB.

At VDS = $V^* + 100 \text{mV} = 260 \text{mV}$, VB = 0.932 V, approximately.

The required parameters are shown.

5) For M1, M2, and M3 VDS > VGS – VTH, hence all transistors are in saturation. This is also signified by all transistors being in region 2.

2.AC Analysis

1) AC simulation parameters are set as required.

2) Calculator Expressions are shown, and the values are shown into the right.

Test	Output	Nominal	Spec	Weight	Pass/Fail
lab1:lab3part2number3:1	dB20(VF("/VOUT1"))	<u>~</u>			
lab1:lab3part2number3:1	ymax(dB20(VF("/VOUT1")))	20.65			
lab1:lab3part2number3:1	mag(VF("/VOUT1"))	<u></u>			
lab1:lab3part2number3:1	ymax(mag(VF("/VOUT1")))	10.77			
lab1:lab3part2number3:1	bandwidth(VF("/VOUT1") 3 "low")	664k			
lab1:lab3part2number3:1	gainBwProd(VF("/VOUT1"))	7.17M			
lab1:lab3part2number3:1	unityGainFreq(VF("/VOUT1"))	7.213M			
lab1:lab3part2number3:1	dB20(VF("/VOUT2"))	<u></u>			
lab1:lab3part2number3:1	ymax(dB20(VF("/VOUT2")))	20.96			
lab1:lab3part2number3:1	mag(VF("/VOUT2"))	<u></u>			
lab1:lab3part2number3:1	bandwidth(VF("/VOUT2") 3 "low")	1.322M			
lab1:lab3part2number3:1	gainBwProd(VF("/VOUT2"))	14.79M			
lab1:lab3part2number3:1	unityGainFreq(VF("/VOUT2"))	14.85M			

3) The bode plots of the CS(blue) and the cascade(red) are shown.

db20

Magnitude

- 4)As per the lab announcement, this part is not required anymore.
- 5) As per the lab announcement, this part is not required anymore.

Additional Insights:

As we replaced the current sources with resistances, the value of Rout decreases, and hence a lower gain for both amplifiers.

Comparing to part 2, as a result of the omission of the feedback resistance, the BW increased, which is the target of this requirement. That was a tradeoff with the gain, which decreased.