Devoir surveillé Première a. bac science expérimental le3/5/2018

pr. SBIRO Abdelkrim

Exercice de chimie (7pts)

On prépare une solution S_1 de permanganate de potassium ($K^+_{(aq)} + MnO_{4}^-_{(aq)}$) de coloration violette en dissolvant une masse m de KMnO_{4(s)} dans un volume V=100mL d'eau, (acidifiée par quelques gouttes d'acide sulfurique).

Pour déterminer la concentration de la solution S_1 , on prélève à l'aide d'une pipette un volume V_1 =10mL de cette solution qu'on introduit dans un bécher et on lui ajoute progressivement une solution S_2 d'acide oxalique $H_2C_2O_4$ de concentration C_2 =0,4mol/L.

- 1) Comment s'appelle cette étude expérimentale qui a pour objet la détermination de la concentration de la solution S₁ ? (1pt)
- 2) Donner le schéma du dispositif expérimental utilisé dans cette étude en nommant ses différents constituants. (1pt)
- 3) Comment s'appelle la solution dont on doit déterminer la concentration ? et comment s'appelle la solution ajouté? (1pt)
- 4) Ecrire l'équation de la réaction qui se produit durant cette étude sachant que:

l'acide oxalique est réducteur du couple CO₂/H₂C₂O₄ et l' ion permanganate est oxydant du couple MnO₄⁷/Mn²⁺.(1pt)

- 5) Construire le tableau d'avancement de cette réaction et en déduire la relation d'équivalence. (1pt)
- 6) Comment repérer l'équivalence dans cette étude? (0,5pt)
- 7) Quel est le réactif limitant avant l'équivalence et quel est celui limitant après l'équivalence? (0,5pt)
- 8) Sachant que le volume ajouté à l'équivalence est : $V_{2\acute{e}q}=12,5$ mL, déterminer la concentration C_1 de la solution S_1 . (1pt)
- 9) Déterminer la masse m utilisée pour préparer la solution S₁. (1pt)
- 10) Pour diluer la solution S_1 , quel volume d'eau doit- on ajouter à 90mL de la solution S_1 pour que sa concentration devient C' = 0,1 mol/L ?(0,5pt)

on donne: $g=10N/kg \cdot M(K)=39,1g/mol \cdot M(Mn)=54,9g/mol \cdot M(O)=16g/mol$

Premier exercice de physique (8pts)

1) a) On considère deux barreaux aimantés A_1 et A_2 posés sur le même alignement avec un point M comme l'indique la figure (1).

Sachant que les intensités des champs magnétiques créés par A₁ et A₂ au point M sont : B₁=20mT et B₂=30mT.

- b) Représenter les vecteurs champ magnétique en utilisant l'échelle suivante $1cm \rightarrow 10mT$. Puis représenter le vecteur champ magnétique globale au point M. (1pt)
- c) Déterminer graphiquement puis par calcul l'intensité du champ magnétique \vec{B} global au point M, puis déterminer l'angle que forme \vec{B} avec le plan horizontal. (1pt)

On néglige le champ magnétique terrestre.

- 2) On considère une bobine de rayon R=2,5cm et de longueur L=60cm composée de N=600 spires et parcourue par un courant électrique d'intensité I=239mA comme l'indique la figure (2).
- a) Donner la définition d'un solénoïde. (0,5pt)
- b) Montrer la bobine précédente peut être considérée comme un solénoïde. (0,5pt)
- c) Déterminer l'intensité du champ magnétique crée par ce solénoïde. (0,5pt)
- d) Préciser la nature de chacune des faces du solénoïde. (0,5pt)
- e) Préciser les pôles de l'aiguille aimantée. (0.5pt)
- f) Déterminer le sens et la direction du champ magnétique \vec{B} créé par le solénoïde à son intérieur. (0,5pt)
- g) Représenter le spectre du champ magnétique créé par le solénoïde.(0,5pt)
- h) Sachant que le diamètre du fil enroulé d=2mm, quelle est le nombre de couches enroulées sur le cylindre formant le solénoïde ? (1pt)
- 3) On considère un long conducteur rectiligne parcouru par un courant électrique d'intensité I=12A comme l'indique la figure (3) :

- a) Donner l'expression du champ magnétique créé par le conducteur au point M .(0,5pt)
- b) Donner le nom de la constante suivante $\mu_o = 4..\pi . 10^{-7} . (0.5 \text{pt})$
- c) Représenter en utilisant l'un des symboles suivant (\oplus ou \Box) Le vecteur champ magnétique créé par le conducteur au point M.(0.5pt)
- d) Calculer l'intensité du champ magnétique créé par le conducteur au point M on donne d=2mm.(0,5pt)

Deuxième exercice de physique (5pts)

On considère le montage expérimental représenté dans ci-dessous dans lequel AB est une tige homogène de longueur L=20cm et de masse m=12mg; capable de tourner sans frottement autour d'un axe fixe (Δ) horizontal passant le point A.

La tige passe dans l'entrefer d'un aimant en U créant un champ magnétique uniforme qui s'étend sur une largeur $d = \frac{L}{4}$ comme l'indique la figure ci-dessous .

L'axe de symétrie de la région ou règne le champ magnétique se trouve à une distance h du point A (voir figure).

Lorsqu'on ferme le circuit, un courant électrique continu d'intensité I=10A passe dans la tige du point B au point A et elle s'incline d'un angle $\alpha=40^{\circ}$ puis elle se stabilise.

- 1) Quelle est la cause de l'inclinaison de la tige ? Justifier votre réponse. (0,5pt)
- 2) Soit le point C : point d'application de la force qui a provoquer l'inclinaison de la tige .Indiquer sur la figure la position de ce point en justifiant votre réponse, puis représenter cette force dans la position verticale de la tige. (0,5pt)
- 3) Faire le bilan des forces qui s'appliquent sur la tige à l'équilibre puis représenter ces forces sur une figure dans la position d'équilibre. (1pt)
- 4) Donner l'expression de la force qui a provoqué l'inclinaison de la tige et préciser son sens et sa direction. (0.5pt)
- 5) Donner l'expression l'intensité de la force qui a provoqué l'inclinaison de la tige en fonction de I, B et L. (0,5pt)
- 6) Le point G étant le centre d'inertie de la tige .Exprimer la distance h en fonction de L .
- 7) En appliquant le théorème des moments, montrer que l'intensité de la force qui a provoqué l'inclinaison de la tige

$$F = \frac{4}{5} .m.g. \sin \alpha \text{ est} : (1,25pt)$$

8) En déduire l'expression de l'intensité du champ magnétique en fonction de m, g , L et α . puis calculer sa valeur. (0,75) On donne g=10N/kg

Correction de l'exercice de chimie.

- Le dosage .
- 2) Schéma du dispositif expérimental:

3) La solution dont on doit déterminer la concentration s'appelle solution titrée et la solution ajouté solution titrante.

$$(MnO_4^- + 4H^+ + 5e^- \Box Mn^{2+} + 4H_2O) \times 24)$$
 on a :
 $(H_2C_2O_4 \Box 2CO_2 + 2H^+ + 2e^-) \times 5$
 $2MnO_4^- + 5H_2C_2O_4 + 6H^+ \Box 2Mn^{2+} + 10CO_2 + 8H_2O$

5) le tableau d'avancement

Equation de la réaction		$2MnO_4^- + 5H_2C_2O_4 + 6H^+ \rightleftharpoons 2Mn^{2+} + 10CO_2 + 8H_2O$					
etats	avancement	quantité de matière (en mol)					
état initial	0	$C_1.V_1$	C ₂ .V _{2versé}	بوفرة	0	0	éxcès
état de transformation	x	C ₁ .V ₁ -2x	C ₂ .V _{2versé} -5x		2x	10x	
état final	Xmax	$C_1.V_1-2x_{max}$	C ₂ .V _{2versé} -5x _{max}		$2x_{max}$	$10x_{max}$	

à l'équivalence le mélange est stœchiométrique (c'est-à-dire que chacun des réactifs est limitant) et le volume ajouté est égal au volume d'équivalence.

En supposant que MnO_4^- est limitant on a: $C_1.V_1-2x_{max}=0$ d'où : $x_{max}=\frac{C_1V_1}{2}$

En supposant que $H_2C_2O_4$ est limitant: on a: : $C_2.V_{2\text{vers\'e}}-5x_{\text{max}}=0$ d'où :

 $x_{\text{max}} = \frac{C_2 V_2 \acute{e}q}{5}$

Or les deux réactifs sont limitant: $\frac{C_1V_1}{2} = \frac{C_2V_2\acute{e}q}{5}$: d'où la relation d'équivalence: $5.C_1V_1 = 2.C_2V_2\acute{e}q$

- 6) On repére l'équivalence dans cette étude par le début de la disparition de la couleur violette dans le bécher.
- 7) Avant l'équivalence $H_2C_2O_4$ est limitant, après l'équivalence est limitant. MnO_4

8) on a
$$5.C_1V_1 = 2.C_2V_2\acute{e}q$$
: $\Rightarrow C_1 = \frac{2.C_2V_2\acute{e}q}{5V_1}$ A.N: $C_1 = \frac{2\times0,4\times12,5.10^{-3}}{5\times10.10^{-3}} = 0,2mol/L$

$$C_1 = \frac{2 \times 0, 4 \times 12, 5.10^{-3}}{5 \times 10.10^{-3}} = 0, 2 \text{mol} / L$$

9) on a
$$C_1 = \frac{m}{M V}$$
: $\Rightarrow m = c_1 M V = 0.2 \times 158 \times 100.10^{-3} = 3.16g$

10) Relation de dilution $C_1V_1 = C_1V_1$ et on a: $V_1 = V_1 + V_{equi}$

$$\Rightarrow$$
 $V' = \frac{C_1 V_1}{C'} = \frac{0.1 \times 90}{0.2} = 180 cm^3$ donc: $V_{ecal} = 90 cm^3$

Correction du premier exercice de physique :

le vecteur \vec{B} est représenté par 3,6cm donc B= 36m T

En appliquant le théorème de Pythagore on a: $B = \sqrt{B_1^2 + B_2^2} = \sqrt{20^2 + 30^2} = 36mT$

On a:
$$\tan \alpha = \frac{B_2}{B_1}$$
 $\Rightarrow \alpha = \tan^{-1}(\frac{B_2}{B_1}) = \tan^{-1}(\frac{30}{20}) = 56, 3^\circ$

2) a) Le solénoïde est une bobine dont la longueur est plus grand que le rayon L > 10R

b) on a:
$$\frac{L}{R} = \frac{60}{2.5} = 24$$
 \Rightarrow donc : $L = 24R$, il s'agit bien d'un solénoïde. $L > 10R$

c)
$$B = \mu_o \cdot \frac{N}{L} I = 4.\pi \cdot 10^{-7} \cdot \frac{600}{60 \cdot 10^{-2}} \times 239 \cdot 10^{-3} = 3 \cdot 10^{-4} T$$

d) Avec le sens du courant électrique on peut dessiner la lettre N pour une face nord et on peut dessiner la lettre S pour une face sud.

- e) le pole sud de l'aiguille aimantée est attiré vers la face nord du solénoïde. (voir schéma).
- f) le sens et la direction du vecteur champ magnétique \vec{B} à l'intérieur du solénoïde sont donnés par la règle de la main droite (voir schéma).
- g) le spectre du champ magnétique créé par le solénoïde

h) nombre de spires de chaque couche : $n = \frac{L}{d} = \frac{60}{0.2} = 300$

Nombre de couches: $x = \frac{N}{n} = \frac{600}{300} = 2$

3) a)
$$B = \frac{\mu_o I}{2.\pi d}$$

- b) μ_o : Permittivité du vide.
- c) le sens et la direction du vecteur champ magnétique sont donnés par la règle de la main droite (voir schéma).

d) Intensité du champ magnétique créé par le conducteur au point M :

$$B = \frac{\mu_o I}{2.\pi d} = \frac{4.\pi \cdot 10^{-7} \times 12}{2.\pi \cdot 2 \cdot 10^{-3}} = 1, 2.10^{-3} T = 1, 2mT$$

Correction du deuxième exercice de physique :

- 1) la cause de l'inclinaison de la tige est <u>la force de Laplace</u> car elle est parcourue par un courant électrique et placée dans un champ magnétique.
- 2) C : est le point d'application de la force de Laplace, il se trouve au milieu de la partie de la tige qui se trouve dans la région où règne le champ magnétique.(voir schéma).

- 3) Bilan deux forces qui s'exercent sur la tige à l'équilibre:
- \vec{F} : force de Laplace.
- $ec{P}$: poids de la tige .
- \vec{R} : réaction de l'axe de rotation au point A.

- 4) expression de la force de Laplace : $\vec{F} = I \vec{d} \wedge \vec{B}$
 - Point d'application : C
 - \vec{B} Droite d'action : perpendiculaire au plan défini par le conducteur et le vecteur champ magnétique
 - 5) Intensité: F=B.I.d avec $d = \frac{L}{4}$ d'où : $F = \frac{B.I.L}{4}$
- 6) $h = \frac{L}{2} + \frac{d}{2}$ avec: $d = \frac{L}{4}$ donc: $h = \frac{L}{4} + \frac{L}{8} \Rightarrow h = \frac{5.L}{8}$

7) On choisis un sens positif de rotation .(voir schéma). on applique le théorème des moments.

Or la tige est en équilibre et elle est capable de tourner autour de l'axe (Δ) passant par A. donc: $\Sigma M\vec{F}_{/\Delta} = 0$

$$M\vec{F}_{/\Delta} + M\vec{P}_{/\Delta} + M\vec{R}_{/\Delta} = 0$$

d'où:
$$+FAC-PAH+0=0$$

avec:
$$AH = \frac{L}{2} \cdot \sin \alpha$$
 et $AC = \frac{5.L}{8}$

donc:
$$F \times \frac{5L}{8} - m \cdot g \times \frac{L}{2} \cdot \sin \alpha = 0$$
 d'où

$$F = \frac{4}{5}m.g.\sin\alpha$$

8) on a:
$$F = \frac{B.I.L}{4}$$

et
$$F = \frac{4}{5}m.g.\sin\alpha$$

8) on a:
$$F = \frac{B.I.L}{4}$$
 et $F = \frac{4}{5}m.g.\sin\alpha$ donc: $\frac{B.I.L}{4} = \frac{4}{5}m.g.\sin\alpha$ d'où on tire : $B = \frac{16.m.g.\sin\alpha}{5.I.L}$

A.N:
$$B = \frac{16 \times 12.10^{-3} \times 10.\sin 24}{5 \times 10 \times 20.10^{-2}} \approx 0{,}078T$$

pr. SBIRO Abdelkrim