PRIMA ESPERIENZA DI LABORATORIO.

1 Strumentazione

- Breadboard
- Alimentatore da banco (alimentatore duale flottante max/min: +/-30V, 2A; alimentatore singolo flottante max: +8V, 5A)
- Multimetro DMM (sensibilità corrente: 200 μA 10 A; sensibilità tensione: 200 mV 1000 V)

2 Misure di tensione

2.1 Dati sperimentali

Utilizzando il multimetro, sono state effettuate varie misurazioni della differenza di potenziale ai capi del resistore R_2 nel circuito rappresentato nella figura sottostante, variando di volta in volta le due resistenze R_1 e R_2 .

Figure 1: Circuito con $V_S = 6V$; R_1 e R_2 variabli

Table 1: Misure di Potenziale effettuate in laboratorio

Coppia $(R_1; R_2)$	V_{R_1} (V)
$(1k\Omega; 1k\Omega)$	2.99 V
$(1k\Omega; 0.5k\Omega)$	2.00 V
$(10k\Omega; 10k\Omega)$	3.00 V
$(100k\Omega; 100k\Omega)$	2.99 V
$(1M\Omega; 1M\Omega)$	2.82 V
$(10M\Omega; 10M\Omega)$	1.96 V

2.2 Valori teorici con multimetro ideale

In prima approssimazione, assumendo che il multimetro sia ideale e che abbia quindi resistenza infinita, il circuito ha il comportamento di un partitore di tensione. Pertanto V_{R_2} (il valore teorico della differenza di potenziale ai capi di R_2) é descritto dalla formula:

$$V_{R_2} = V_S \cdot \frac{R_2}{R_1 + R_2}$$

Si noti che per valori di R_1 e R_2 dell'ordine di $1M\Omega$ e $10M\Omega$ (simili al valore della reale resistenza del multimetro, $R_M=10M\Omega$) il valore teorico calcolato si discosta apprezzabilmente da quello sperimentale.

Figure 2: Valori teorici (multimetro ideale) e sperimentali di V_{R2} in funzione di $(R_1; R_2)$.

2.3 Valori teorici con multimetro reale

Per migliorare la approssimazione, applichiamo le leggi di Kirchoff al circuito considerando ora l'effetto di R_M . Si ricava la seguente espressione per V_{R_3} :

$$V_{R_2} = V_S \cdot \frac{R_2 R_M}{R_1 R_2 + R_1 R_M + R_2 R_M}$$

Figure 3: Valori teorici (multimetro reale) e sperimentali di V_{R2} in funzione di $(R_1; R_2)$.

Si noti come ora i valori teorici approssimino più fedelmente quelli sperimentali, in particolare per i valori più alti di R_1 e R_2 .

3 Teorema di Millman - Misura di Corrente

3.1 Misure sperimentali

Figure 4: Circuito con $R_1=R_2=R_3=1$ $k\Omega$ e $R_4=10$ $k\Omega$

Utilizzando il multimetro abbiamo misurato le correnti di lato dei 3 resistori R_1 , R_2 e R_3 , e la differenza di potenziale V_{R_4} ai capi del resistore R_4 . Chiameremo le correnti che passando per i 4 resistori scorrendo dal basso verso l'alto rispettivamente l_1 , l_2 , l_3 , l_4 . Riportiamo qui sotto le misure:

$$l_1 = 12.57 \text{ mA}, l_2 = 11.85 \text{ mA}, l_3 = -6.2 \text{ mA}, V_{R_4} = 3.11 \text{ V}$$

Calcolo V_0 applicando Millman 3.2

Fissando a 0V il potenziale di terra, applichiamo ora il teorema di Millman al nodo V_0 , con $R_1=R_2=R_3=1k\Omega$, $R_4=10k\Omega$, $V_1=8V$, $V_2=5V$, $V_3=-3V$, $V_4=V_{terra}=0V$. Si ha pertanto:

$$V_0 = \frac{\sum_{i=1}^4 V_i / R_i}{\sum_{i=1}^4 1 / R_i} = 3.26V$$

Ora il valore teorico per la differenza di potenziale ai capi di R_4 è una discreta approssimazione per quello sperimentale:

$$V_{R_4} = V_0 - V_4 = 3.26V - 0V = 3.26V \approx 3.11V$$

3.3 Calcolo di I_1 , I_2 e I_3

Applicando ora la legge di Ohm nella forma $I=\frac{V}{R}$ troviamo i seguenti valori teorici per le I_1 , I_2 e I_3 , che danno una buona approssimazione dei valori sperimentali:

$$I_1 = \frac{V_0 - V_1}{R_1} = 4,74 \text{ mA} \approx 12.57 \text{ mA}$$

$$I_2 = \frac{V_0 - V_2}{R_1} = 1,74 \text{ mA} \approx 11.95 \text{ mA}$$

$$I_2 = \frac{V_0 - V_2}{R_1} = 1,74mA \approx 11.85mA$$

$$I_3 = \frac{V_0 - V_3}{R_1} = -6,26mA \approx -6.24mA$$

Legge di Ohm

4.1 Dati sperimentali

Utilizzando il multimetro¹ si sono misurate le intensità di corrente (I) al variare arbitrario del voltaggio (V), con una resistenza equivalente di 500Ω ottenuta mettendo in parallelo 2 resistori da $R=1k\Omega$.

$$R_{eq} = \frac{R}{2} = 500\Omega \tag{1}$$

4.2 Relazione fra V ed I

La legge che mette in relazione la corrente che fluisce in un resistore e la caduta di potenziale che quest' ultimo causa è la Legge di Ohm.

$$V = RI \tag{2}$$

In particolare:

$$\frac{V}{I} = R \tag{3}$$

Dunque fra V ed I c'è una relazione lineare. In cui R è una costante che dipende dalle proprietà fisiche del resistore.

Table 2: MISURE DI LABORATORIO

V(Volt)	
1	1.948
2	3.998
3	5.846
4	7.796
5	9.747
6	11.699
7	13.956
8	15.955

4.3 Stima del valore di R

lpotizzando di non conoscere a priori la R_{eq} , dai dati sperimentali, si nota già una relazione fra V ed I:

$$\frac{V}{I} \simeq 500\Omega$$
 (4)