## Power Bl com R para Visualização de Modelos

## Olá!

Mikaele Costa Mendonca

**Professor:** Methanias Colaço

**Disciplina:** Mineração de

Dados



#### Roteiro

- Linguagem R
- Power BI
- Integração
- Dataset
- Pré-processamento
- Algoritmo
- Visualização do Modelo

## Linguagem R

R é uma linguagem e ambiente para computação estatística e gráficos. É um projeto GNU.

R está disponível como Software Livre sob os termos da Free Software Foundation 's GNU General Public License em forma de código fonte.

Ele compila e roda em uma ampla variedade de plataformas UNIX e sistemas similares (incluindo FreeBSD e Linux), Windows e MacOS.

#### Ambiente R

R é um conjunto integrado de recursos de software para manipulação de dados, cálculo e exibição gráfica. Inclui:

- Uma eficaz na manipulação e armazenamento de dados
- Um conjunto de operadores para cálculos em arrays, em particular matrizes,

#### Ambiente R

- Uma larga, coerente e integrada coleção de ferramentas intermediárias para análise de dados,
- Facilidades gráficas para análise de dados e exibição na tela ou em impressa, e
- Uma linguagem de programação bem desenvolvida, simples e eficaz que inclui condicionais, loops, funções recursivas definidas pelo usuário e recursos de entrada e saída.

#### Instalação R e do RStudio

- https://cran.r-project.org/bin/windows/Rtools/
- Instalar na raiz do disco C://
- https://www.rstudio.com/products/rstudio/download/

#### Power Bl

É um serviço de análise de negócios que fornece insights para permitir decisões rápidas e informadas.

#### Power Bl

- Transforma dados em visuais impressionantes e compartilhe-os com seus colegas em qualquer dispositivo.
- Explora e análisa visualmente dados locais ou na nuvem em uma única exibição.
- Possibilita a colaboração em relatórios interativos e dashboards personalizados e compartilhe-os.
- Dimensiona em sua organização com governança e segurança internas.

#### Instalação Power Bl

- https://powerbi.microsoft.com/pt-br/downloads/
- Padrão Windows

## Integração

Integração da Linguagem com o Power BI.

#### Integração

File > Options > R

#### Options

#### GLOBAL

Data Load

Power Query Editor

DirectQuery

#### R scripting

Security

Privacy

Updates

Usage Data

Diagnostics

Preview features

Auto recovery

Report settings

#### **CURRENT FILE**

Data Load

Regional Settings

Privacy

Auto recovery

DirectQuery

Query reduction

Report settings

#### R script options

To choose a home directory for R, select a detected R installation from the drop-down list, or select Other and browse to the location you want.

Detected R home directories:

C:\Program Files\Microsoft\R Open\R-3.5.1\

#### How to install R

To choose which R integrated development environment (IDE) you want Power BI Desktop to launch, select a detected IDE from the drop-down list, or select Other to browse to another IDE on your machine.

Detected R IDEs:

R Studio

Learn more about R IDEs

#### Change temporary storage location

Note: Sometimes, R custom visuals automatically install additional packages. For those to work, the temporary storage folder name must be written in Latin characters (letters in the English alphabet).

OK

Cance



#### Dataset

Dados usado para construção do modelo. Dataset: Prevendo a Inadimplência de Clientes Objetivo: construir um classificador e usá-lo para prever se o cliente do cartão de crédito será inadimplente no próximo pagamento.

#### Dataset

Os atributos do conjunto de dados são: ID, equilíbrio de crédito, gênero, educação, estado civil e idade. Os Pay\_0, Pay\_2, Pay\_3, Pay\_4, Pay\_5, Pay\_6 são o estado do pagamento nos meses de abril a setembro, respectivamente. O status do pagamento é definido como o atraso no pagamento.

#### Dataset

Exemplo: se o valor de Pay\_0 for -1, então significa que o cliente foi devidamente pago, se o valor for 2, isso significa que o pagamento está atrasado por dois meses.

Bill\_Amt1 a Bill\_Amt6 são os montantes das faturas do cartão de crédito para o mês de abril até setembro. Pay\_Amt1 a Pay\_Amt6 são o valor que o cliente pagou na conta do cartão de crédito no mês de abril até setembro.

| Atributo       | Descrição                                                                   |
|----------------|-----------------------------------------------------------------------------|
| ID             | ID único de cada registro                                                   |
| Credit Balance | Quantidade de crédito no cartão de crédito                                  |
| Gender         | Sexo do cliente (masculino/feminino)                                        |
| Education      | Nível de Escolaridade, I.e. Pos-graduado,<br>Graduado, Ensino Médio, Outros |
| Marital Status | Estado Civil, I.e. casado, solteiro, outros                                 |
| Age            | Idade do cliente                                                            |
| Pay_0          | Status de Pagamento em Setembro                                             |
| Pay_2          | Status de Pagamento em Agosto                                               |
| Pay_3          | Status de Pagamento em Julho                                                |
| Pay_4          | Status de Pagamento em Junho                                                |
| Pay_5          | Status de Pagamento em Maio                                                 |
| Pay_6          | Status de Pagamento em Abril                                                |

| BIII_Amt1                  | Valor da Conta do cartão em Setembro                                        |
|----------------------------|-----------------------------------------------------------------------------|
| BIII_Amt2                  | Valor da Conta do cartão em Agosto                                          |
| BIII_Amt3                  | Valor da Conta do cartão em Julho                                           |
| BIII_Amt4                  | Valor da Conta do cartão em Junho                                           |
| BIII_Amt5                  | Valor da Conta do cartão em Maio                                            |
| Bill_Amt6                  | Valor da Conta do cartão em Abril                                           |
| Pay_Amt1                   | Valor pago em Setembro                                                      |
| Pay_Amt2                   | Valor pago em Agosto                                                        |
| Pay_Amt3                   | Valor pago em Julho                                                         |
| Pay_Amt4                   | Valor pago em Junho                                                         |
| Pay_Amt5                   | Valor pago em Maio                                                          |
| Pay_Amt6                   | Valor pago em Abril                                                         |
| Default_payment_next_month | Valor 0 ou 1 - 0 significa não-inadimplência e 1<br>significa inadimplência |

## Pré-processamento

Ajuste nos dados para a utilização dos mesmos na geração do modelo.



## Pré-processamento

```
47
    # Sexo
    dataset$SEX <- cut(dataset$SEX, c(0,1,2), labels = c("Masculino", "Feminino"))</pre>
48
49
    head(dataset$SEX)
50
51
    # Escolaridade
52
    dataset EDUCATION \leftarrow cut(dataset EDUCATION, c(0,1,2,3,4),
53
                                labels = c("Pos Graduado", "Graduado", "Ensino Medio", "Outros"))
54
    head(dataset$EDUCATION)
55
56
    # Estado Civil
57
    dataset$MARRIAGE <- cut(dataset$MARRIAGE, c(-1,0,1,2,3),</pre>
58
                              labels = c("Desconhecido", "Casado", "Solteiro", "Outros"))
59
    head(dataset$MARRIAGE)
60
61
    # Convertendo a variavel que indica pagamentos para o tipo fator
62
    dataset$PAY_0 <- as.factor(dataset$PAY_0)</pre>
63
    dataset$PAY_2 <- as.factor(dataset$PAY_2)</pre>
64
    dataset$PAY_3 <- as.factor(dataset$PAY_3)</pre>
65
    dataset$PAY_4 <- as.factor(dataset$PAY_4)
    dataset$PAY_5 <- as.factor(dataset$PAY_5)</pre>
66
    dataset$PAY_6 <- as.factor(dataset$PAY_6)</pre>
67
```

#### Valores Vazios

Verificar se há valores não preenchidos no dataset. Para as linhas com valores vazios o tratamento dado foi apenas a remoção.





#### Dados Treinamento X Teste

```
# Amostragem estratificada. Selecione as linhas de acordo
109
110
     # com a variable inadimplente como strata
     TrainingDataIndex <- createDataPartition(dataset$inadimplente,
111
                                               p = 0.45, list = FALSE)
112
113
114
     # Criar Dados de Treinamento como subconjunto do conjunto de dados
     # com numeros de indice de linha conforme identificado acima e todas as colunas
115
116
     trainData <- dataset[TrainingDataIndex,]</pre>
117
118
     # Tudo o que nao esta no dataset de treinamento esta no dataset de
     # teste. Observe o sinal - (menos)
119
     testData <- dataset[-TrainingDataIndex,]</pre>
120
121
     # Veja porcentagens entre as classes
122
     prop.table(table(trainData$inadimplente))
123
124
```

#### Dados Treinamento X Teste



### Validação Cruzada

```
# Usaremos uma validacao cruzada de 10 folds
# para treinar e avaliar modelo
TrainingParameters <- trainControl(method = "cv", number = 10)
145</pre>
```

## Algoritmo

Foram utilizados três algoritmos para geração dos modelos.



#### Algoritmos

Random Forest

Árvore

Naive Bayes

#### Random Forest

É um algoritmo de aprendizado supervisionado. Como você já pode ver pelo seu nome, ele cria uma floresta e faz de forma aleatória. A "floresta" que constrói, é um conjunto de Árvores de Decisão, na maioria das vezes treinadas com o método "bagging". A ideia geral do método de bagging é que uma combinação de modelos de aprendizagem aumenta o resultado geral.

#### Random Forest

#### Random Forest

```
# Previsoes
176
     predictionrf <- predict(rf_model, testData)</pre>
177
178
179
     # Confusion Matrix
180
     cmrf <- confusionMatrix(predictionrf, testData$inadimplente, positive = "1")</pre>
181
     cmrf
182
183
     # Plotando a Matriz de Confusão
184
     Matriz_Confusao <- cmrf$table
     plot(Matriz_Confusao)
185
186
```

#### Arvore

```
206
207
   # Construindo o Modelo
   arvore = rpart(inadimplente ~ PAY_0 + BILL_AMT1 + BILL_AMT2 + LIMIT_BAL,
208
                 data = trainData, cp = .02
209
210
    arvore
211
    summary(arvore)
212
213 # Salvando o modelo
214
   saveRDS(arvore, file = "arvore_model.rds")
215
216 # Previsao
    predictionarvore = predict(arvore, newdata = testData)
217
```

#### Árvore

```
225 # Verificando o resultado da predição
     test = cbind(testData, predictionarvore)
226
227
228 # Renomeando a coluna de classe
    colnames(test)[25] <- "nao"
229
     colnames(test)[26] <- "sim"
230
231
232 # Verificando o resultado da previsao
     test['result'] = ifelse(test$sim >= 0.5, '1', '0')
233
234
235 # Convertendo a class e o resultado da predicao para fator
     test$result <- as.factor(test$result)
236
     test$inadimplente <- as.factor(test$inadimplente)
237
238
239 # Confusion Matrix
     cmrfArvore <- confusionMatrix(test$inadimplente, test$result)</pre>
240
```

### Naive Bayes

```
283
284
    # Criando o Modelo
285
    modeloNaiveBayes = NaiveBayes(inadimplente ~ PAY_0 + BILL_AMT1 +
286
                                  BILL_AMT2 + LIMIT_BAL, trainData)
287
    # Salvando o modelo
288
    saveRDS(modeloNaiveBayes, file = "naivebayes_model.rds")
289
290
    # Fazendo as predicoes
    predicaoNaivesBayes = predict(modeloNaiveBayes, testData)
291
292
293
    # Confusion Matrix
    cmrfNaive <- confusionMatrix(testData\inadimplente, predicaoNaivesBayes\class)</pre>
294
```

# Visualização do Modelo

Visualização dos modelos, gerados pelos algoritmos, no PowerBl





81,24%

Accuracy de teste para o Random Forest

81,75%

Accuracy de teste para o Árvore

81,65%

Accuracy de teste para o Naive Bayes

#### Referências

- R disponível em < https://www.r-project.org/about.html >
- Power BI < https://powerbi.microsoft.com/pt-br/ >
- Dataset disponível em 
  https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients# >
- Random Forest disponível em < https://machinelearningblog.com/2018/02/06/the-random-forest-algorithm/ >
- Curso de Power Bldisponível em < www.datascienceacademy.com.br >

# Obrigado! Perguntas?

