

3강: Locally Weighted & Logistic Regression

Probabilistic Interpretation of Loss Function

통데마에서 배웠던 Linear Regression

Linear Regression 파이썬으로 구현하기

Locally Weighted linear regression

Parameteric vs. Nonparametric

Underfitting vs Overfitting

LWR algorithm

참고용 코드-Guassian Basis Function

Classification - Binary Cases

Logistic Regression

Logistic Regression 파이썬으로 구현하기

Newton's Method

Perceptron Learning Algorithms

Probabilistic Interpretation of Loss Function

왜 regression 문제에서 loss function은 least-squares cost function인가요 ? 그냥 절대값으로 해요 싫어요

알아보자고 휘비고

$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$$

- $\epsilon^{(i)}$ \sqsubseteq error term $\,\epsilon^{(i)} \sim N(0,\sigma^2)$; independently and identically distributed (IID)
- · error term captures either unmodeled effects or random noise

$$p(\epsilon^{(i)}) = rac{1}{\sqrt{2\pi}\sigma} exp(-rac{(\epsilon^{(i)})^2}{2\sigma^2})$$

(: by Central Limit Theorem most error distributions are Gaussian)

$$p(y^{(i)}|x^{(i)}; heta) = rac{1}{\sqrt{2\pi}\sigma}exp(-rac{(y^{(i)}- heta^Tx^{(i)})^2}{2\sigma^2})$$

$$y^{(i)}|x(i); heta \sim N(heta^T x^{(i)}, \sigma^2)$$

이를 이용하여 likelihood function을 적어보면 다음과 같다

$$L(heta) = L(heta; X, ec{y}) = p(ec{y}|X; heta) \ = \prod_{i=1}^n rac{1}{\sqrt{2\pi}\sigma} exp(-rac{(y^{(i)} - heta^T x^{(i)})^2}{2\sigma^2})$$

이 때, 우리는 $L(\theta)$ 를 최대화하는 θ 를 선택해야한다 (= making data as high probability as possible) $L'(\theta)=0$ 을 만족하는 θ 를 구하는데, 미분의 편의성을 위해 \log likelihood $l(\theta)$ 를 대신 사용한다.

$$egin{aligned} &l(heta) = logL(heta) \ &= log\prod_{i=1}^{n} rac{1}{\sqrt{2\pi}\sigma} exp(-rac{(y^{(i)} - heta^{T}x^{(i)})^{2}}{2\sigma^{2}}) \ &= log\sum_{i=1}^{n} rac{1}{\sqrt{2\pi}\sigma} exp(-rac{(y^{(i)} - heta^{T}x^{(i)})^{2}}{2\sigma^{2}}) \ &= nlograc{1}{\sqrt{2\pi}\sigma} - rac{1}{\sigma^{2}} \cdot rac{1}{2} \sum_{i=1}^{n} (y^{(i)} - heta^{T}x^{(i)})^{2} \end{aligned}$$

위의 수식을 통해 $l(\theta)$ 를 최대화하기 위해서는 $rac{1}{2}\sum_{i=1}^n(y^{(i)}- heta^Tx^{(i)})^2$ 를 최소화해야함을 알 수 있다.

데이터마이닝 HW 문제 기억하시나요?

Consider the linear regression model $y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_p x_{pi} + \epsilon_i = \mathbf{x}_i^{\top} \boldsymbol{\beta} + \boldsymbol{\epsilon}_i, i = 1, \dots, n$. When $\epsilon_i \sim^{i.i.d} N(0, \sigma^2)$ and σ^2 is known, show that the least square estimator (LSE), $\hat{\boldsymbol{\beta}}$, is the maximum likelihood estimator (MLE).

The likelihood function of $\boldsymbol{\beta}$ is

$$L(\boldsymbol{\beta}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y_i - \mathbf{x}_i^{\top} \boldsymbol{\beta})^2}{2\sigma^2}\right]$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \boldsymbol{\beta})^2\right].$$

MLE of $\boldsymbol{\beta}$ can be obtained by maximizing the log-likelihood function of $\boldsymbol{\beta}$.

$$\arg \max_{\beta} l(\beta) = \arg \max_{\beta} -\frac{n}{2} \log 2\pi \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \beta)^2$$

$$\equiv \arg \max_{\beta} -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \beta)^2$$

$$\equiv \arg \min_{\beta} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \beta)^2$$

$$\equiv \arg \min_{\beta} RSS$$

Since LSE is β minimizing RSS, LSE is MLE.

통데마에서 배웠던 Linear Regression

Linear Regression 파이썬으로 구현하기

```
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
import numpy as np

rng = np.random.RandomState(1)
x = 10 * rng.rand(50)
y = 2 * x - 5 + rng.randn(50)
plt.scatter(x, y);
```


Scikit-Learn의 LinearRegression 함수를 이용해 fit해보자

```
from sklearn.linear_model import LinearRegression
model = LinearRegression(fit_intercept=True)

model.fit(x[:, np.newaxis], y)

xfit = np.linspace(0, 10, 1000)
yfit = model.predict(xfit[:, np.newaxis])

plt.scatter(x, y)
plt.plot(xfit, yfit);
```



```
print("Model slope: ", model.coef_[0])
print("Model intercept:", model.intercept_)

# Model slope: 2.02720881036
# Model intercept: -4.99857708555
```

Locally Weighted linear regression

Parameteric vs. Nonparametric

- 1. $\emph{parametric learning algorithm}$: fit fixed set of parameters $\, heta_i \,$ to data (예측에 있어서는 데이터를 통해 적합한 모수를 이용)
- 2. <u>nonparametric learning algorithm</u> (궁금한 사람 링크 들어가기)
 - : 주어진 데이터(샘플)을 그 자체를 이용해 새로운 값
 - x_0 이 주어졌을 때의 분포를 추정
 - 예) locally weighted linear regression
 - "the amount of data/ parameters, you need to keep grows, in this case grows linearly with the size of the data"

Underfitting vs Overfitting

아무리 봐도 데이터는 직선 상에 분포하고 있지는 않다. 선형회귀를 통한 적합은 좋지 않을 것이다.

$$y=\theta_0+\theta_1 x$$

- simple model
- underfitting

$$y=\theta_0+\theta_1x+\theta_2x^2$$

• optain a slight better prediction than previous one

- high variance, low bias
- complexity 1
- overfitting

To ensure good performance of a learning algorithm?

: The choice of features is important to ensuring good performance

LWR algorithm

해당 데이터의 경우 선형회귀를 통한 적합은 좋지 않을 것이다. (underfitting) ⇒

Locally weighted regressions

main idea x축 비슷한 위치에 있다 → 비슷한 값을 가질 것이다.

- 1. Fit heta to minimize $\sum_i w^{(i)} (y^{(i)} heta^T x^{(i)})^2$ (where $w^{(i)}$ is non-negative valued weights)
- 2. Output $\theta^T x$

usually, fairly standard choice for the weights is

$$w^{(i)} = exp(-rac{(x^{(i)}-x)^2}{2 au^2})$$

- 가우시안 분포 같지만 아니다. 적분하면 1이 아니다.
- $|x^{(i)}-x|$ is small , $w^{(i)}pprox 1$: 거리가 가까우면 높은 weight $|x^{(i)}-x|$ is large , $w^{(i)}pprox 0$: 거리가 멀어진다면 낮은 weight를 가짐
- τ : hyperparameter (bandwith) ← model의 complexity를 결정
- 1 when au is small

- $|x^{(i)}-x|$ 가 유의미
- · wiggly structures

2 when au is big

- ullet $|x^{(i)}-x|$ 가 유의미하지 않음
- · bumps smoothed out

앤드류 응 씨는 이걸 when we have a relatively low dimensional dataset ($n \approx 2~or~3$) 일 때 사용 한다고 함

if we have a lot of data → computationally expensive

What happens if we need to infer the value of h outside of the scope of the dataset?

→ We can still use the algorithm but results may not be very good

참고용 코드-Guassian Basis Function

```
from sklearn.base import BaseEstimator, TransformerMixin
class GaussianFeatures(BaseEstimator, TransformerMixin):
    """Uniformly spaced Gaussian features for one-dimensional input"""
    def __init__(self, N, width_factor=2.0):
        self.N = N
        self.width_factor = width_factor
    @staticmethod
    def _gauss_basis(x, y, width, axis=None):
        arg = (x - y) / width
        return np.exp(-0.5 * np.sum(arg ** 2, axis))
    def fit(self, X, y=None):
        # create N centers spread along the data range
        self.centers_ = np.linspace(X.min(), X.max(), self.N)
        self.width_ = self.width_factor * (self.centers_[1] - self.centers_[0])
        return self
    def transform(self, X):
        return self._gauss_basis(X[:, :, np.newaxis], self.centers_,
                                 self.width_, axis=1)
gauss_model = make_pipeline(GaussianFeatures(20),
                            LinearRegression())
gauss_model.fit(x[:, np.newaxis], y)
yfit = gauss_model.predict(xfit[:, np.newaxis])
```

```
plt.scatter(x, y)
plt.plot(xfit, yfit)
plt.xlim(0, 10);
```


Classification - Binary Cases

: problem in which y can take on only two values

 $\textit{label} : \text{the corresponding } y^{(i)} \text{ given } x^{(i)}$

• negative class (-): y=0일 때

• positive class(+) : y=1일 때

Logistic Regression

잉.....통계 싫어... 그냥 이거도 선형회귀로 분류하면 안 되나요? 안 됩니다

선형회귀로 분류시 데이터가 주어짐에 따라 threshold가 변화하는 것을 확인 가능하다.

Hypothesis Function

$$h_{ heta}(x) = g(heta^T x) = rac{1}{1 + e^{- heta^T x}}$$

where $g(z)=rac{1}{1+e^{-z}}$ \leftarrow sigmoid function (logistic function)

- $z o \infty, g(z) o 1$
- $z
 ightarrow -\infty, g(z)
 ightarrow 0$
- $heta^T x$: 1보다 더 클 수도 있고 0보다 더 작을 수 있음 o 보정 필요 (\leftarrow 시그모이드 함수 g(z)를 통해서)

$$heta^T x = heta_0 + \sum_{j=1}^d heta_j x_j$$

• $g(\theta^T x)$: output values only between 0&1

Useful Property of the derivative of the sigmoid function

미분.... 미분을 하자

$$g'(z) = \frac{d}{dz} \frac{1}{1 + e^{-z}}$$

$$= \frac{1}{(1 + e^{-z})^2} (e^{-z})$$

$$= \frac{1}{(1 + e^{-z})} \cdot (1 - \frac{1}{(1 + e^{-z})})$$

$$= g(z)(1 - g(z))$$

Probabilistic Apporach - Likelihood

$$P(y = 1|x : \theta) = h_{\theta}(x)$$

 $P(y = 0|x; \theta) = 1 - h_{\theta}(x)$

라고 가정하면 p(y|x; heta)는 다음과 같이 표현할 수 있다

$$p(y|x;\theta) = (h_\theta(x))^y (1 - h_\theta(x)^{1-y}$$

- y=1을 대입 시 h(x)
- y=0을 대입 시 1 h(x)이

이를 활용하여 Likelihood 함수를 써보면

$$egin{aligned} L(heta) &= p(yert X; heta) \ &= \prod_{i=1}^n p(y^i|x^{(i)}; heta) \ &= \prod_{i=1}^n (h_ heta(x^{(i)}))^y (1-h_ heta(x^{(i)})^{1-y^{(i)}} \end{aligned}$$

전처럼 log likelihood를 이용해서 최대화해보자

$$egin{aligned} l(heta) &= log L(heta) \ &= \sum_{i=1}^n y^{(i)} log h(x^{(i)}) + (1-y^{(i)}) log (1-h(x^{(i)})) \end{aligned}$$

이를 어떻게 최대화할 수 있을까? 우리에게는 gradient ascent가 있다!

$$heta_j := heta_j + lpha \cdot rac{\partial}{\partial heta_j} l(heta)$$

(∵ maximize해야하니까 ascent(+)이다.) 벡터 notation으로 표현하면 다음과 같다.

$$\begin{split} \frac{\partial}{\partial \theta_j} l(\theta) &= (y \frac{1}{g(\theta^T x)} - (1 - y) \frac{1}{1 - g(\theta^T x)}) \frac{\partial}{\partial \theta_j} g(\theta^T x) \\ &= (y \frac{1}{g(\theta^T x)} - (1 - y) \frac{1}{1 - g(\theta^T x)}) g(\theta^T x) (1 - g(\theta^T x)) \frac{\partial}{\partial \theta_j} \theta^T x \\ &= (y (1 - g(\theta^T x)) - (1 - y) g(\theta^T x)) x_j \end{split}$$

 $\theta := \theta + \alpha \nabla_{\theta} l(\theta)$

이 때, g'(z)=g(z)(1-g(z))임을 고려하면 우리의 stochastic gradient ascent rule은 다음과 같다

 $=(y-h_{\theta}(x))x_{i}$

$$heta_j := heta_j + lpha(y^{(i)} - h_ heta(x^{(i)}))x_i^{(i)}$$

어...? 이거 어디서 많이 본건데? 저기 우리 어디서 만난적 있지 않나요...?

$$\theta_j := \theta_j + \alpha(y^{(i)} - h_{\theta}(x^{(i)}))x_i^{(i)}$$

바로 이 rule을 LMS update rule이라고 하는 것이다~~

물론 로지스틱 회귀의 경우 $h_{ heta}(x^{(i)})$ 가 $heta^Tx$ 의 non-linear한 function이다.

Logistic Regression 파이썬으로 구현하기

```
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(features, labels)

print("Model slope: ", model.coef_[0])
print("Model intercept:", model.intercept_)

model.predict(features) #1또는 0으로 구성괸 벡터를 변환해줌
model.predict_proba(features) # 각 샘플에 대한 확률을 0에서 1사이의 값을 돌려줌
```

그런데 실제로 로지스틱 회귀 알고리즘을 사용하기 전에는 반드시 데이터를 정규화(Normalization) 해줘야 한다.

Newton's Method

아 현기증 나 이래서 어느 세월에 수렴합니까~~~

그런 널 위해 준비했어....☆성☆큼☆성☆큼☆

• Newton's method allows us to take bigger jumps

• When having ${\it f}$, want to find θ such that

위의 그림은 Newton's Method를 이용해 함수 f의 해를 찾아나가는 방식을 간단하게 그린것이다. 수식으로 표현해보자면 다음과 같다.

$$egin{aligned} heta^{(1)} &:= heta^0 - \Delta \ f'(heta^0) &= rac{f(heta^{(0)})}{\Delta} \ \Delta &= rac{f(heta^{(0)})}{f'(heta^{(0)})} \end{aligned}$$

To generalize this,

$$egin{aligned} heta^{(t+1)} &:= heta^{(t)} - rac{f(heta^{(t)})}{f'(heta^{(t)})} \ \operatorname{let} f(heta) &= l'(heta) \ heta^{(t+1)} &:= heta^{(t)} - rac{l'(heta^{(t)})}{l''(heta^{(t)})} \end{aligned}$$

In vector Notation ,when θ is a vector(\mathbb{R}^{n+1}),

$$heta:= heta-H^{-1}
abla_ heta l(heta)$$

- $\nabla_{\theta} l(\theta)$: partial derivatives of $l(\theta)$ with respect to the θ_i 's.
- H is the Hessian Matrix($R^{(n+1)\cdot(n+1)}$)

$$H_{ij} = rac{\partial^2}{\partial heta_i \partial heta_j}$$

· Newton's method enjoys a property called quadratic convergence

if one iteration Newton's method has 0.01 error

- \rightarrow two iteration 0.0001 error
- → third iteration 0.0000001 error
- → Extremely Rapid Convergence
- 차원이 커진다면 Newton's method is much more expensive

Perceptron Learning Algorithms

로지스틱 회귀가 정확히 0 또는 1의 값을 출력할 수 있게 조금만 수정한다면, threshold function q의 정의를 다음과 같이 할 수 있다.

$$g(z) = egin{cases} 1 & ext{if } z \geq 0 \ 0 & ext{if } z < 0 \end{cases}$$

 $h_{ heta}(x) = g(heta^T x)$ 라 할 때, update rule이 다음과 같다면,

$$heta_j := heta_j + lpha(y^{(i)} - h_ heta(x^{(i)})) x_j^{(i)}$$

우린 이걸 perceptron learning algorithm이라 부르기로 했어요

####