MATH7320 - Functional Analysis Homework 5

Joel Sleeba

November 14, 2024

1. not finished

Solution:

2. not finished

Solution: Since $S \perp S^{\perp}$, clearly $S \subset (S^{\perp})^{\perp}$. Moreover, we know that $(S^{\perp})^{\perp} = \operatorname{Ker}(P_{S^{\perp}})$. Therefore $(S^{\perp})^{\perp}$ is a closed subspace. Hence $\overline{\operatorname{span}}(S) \subset (S^{\perp})^{\perp}$. Conversely if $x \in (S^{\perp})^{\perp}$, then $x \perp S^{\perp}$

3. not finished

Solution: Let $T_n \in \mathcal{K}(\mathcal{X}, \mathcal{Y})$ be a Cauchy sequence.

4. **Solution:** Since we know that $I = P_{\mathcal{M}} + P_{\mathcal{M}^{\perp}}$, we see that $X = \mathcal{M} \oplus \mathcal{M}^{\perp}$. Then for all $x \in X$, x = m + m' for unique $m \in \mathcal{M}, m' \in \mathcal{M}^{\perp}$. Then $\pi(x) = m' + \mathcal{M}$ for $\pi: X \to X/\mathcal{M}$. Moreover

$$||x|| = ||m|| + ||m'||$$
 and $||\pi(x)|| = ||m'||$

Thus we see that $\pi|_{\mathcal{M}^{\perp}}$ is isometric.

5. Solution:

6. Solution:

7. Solution:

(a) $(1 \Longrightarrow 2)$ If T is an isometry, then expanding $\langle Tx, Ty \rangle = \langle x, y \rangle$ for some $x, y \in \mathcal{H}$, we get

$$\langle Tx, Ty \rangle + \langle Ty, Tx \rangle = \langle x, y \rangle + \langle y, x \rangle$$

which gives $\Re\langle x,y\rangle = \Re\langle Tx,Ty\rangle$. Now replace x with ix to get $\Im\langle Tx,Ty\rangle = \Im\langle x,y\rangle$. Since real and imaginary parts are equal, we see that $\langle Tx,Ty\rangle = \langle x,y\rangle$

- (b) $(2 \implies 3)$ If $\langle Tx, Ty \rangle = \langle x, y \rangle$ for all $x, y \in \mathcal{H}$, then $\langle T^*Tx, y \rangle = \langle x, y \rangle$, which implies $\langle (T^*T I)x, y \rangle = 0$ for all $x, y \in \mathcal{H}$. Then Reisz Representation theorem shows that if $y \neq 0$, we must have $T^*T I = 0$.
- (c) $(3 \implies 2)$ If $T^*T = I$, then

$$||Tx||^2 = \langle Tx, Tx \rangle$$

$$= \langle T^*Tx, x \rangle$$

$$= \langle x, x \rangle$$

$$= ||x||^2$$

which shows that T is an isometry.

8. Solution:

- (a) $(1 \implies 3)$ If T is normal isometry, we see that $TT^* = T^*T$, and previous question proves that $TT^* = T^*T = I$.
- (b) $(3 \implies 2)$ If $TT^* = T^*T = I$, then it is clear from the previous question that T is an isometry. To see that it is a bijection, let $x \in H$, since $T(T^*(x)) = x$, we see that $x \in T(\mathcal{H})$. Hence T is a bijection.
- (c) $(2 \implies 1)$. We just need to show normality of T. Since T is given to be an isometric bijection, T has an inverse, P. Since T is bijective P is also isometric and linear. To see linearity, notice that

$$P(x+y) = P(T(Px) + T(Py)) = P(T(Px + Py)) = Px + Py$$

We claim $P = T^*$. To see this, note that

$$\langle PTx, y \rangle = \langle x, y \rangle = \langle Tx, Ty \rangle = \langle T^*Tx, y \rangle$$

Hence we see that $\langle (PT - T^*T)x, y \rangle = 0$ for al $x, y \in \mathcal{H}$. Therefore by Reisz representation, we have $PT - T^*T = (P - T^*)T = 0$. Since T is bijective, this forces $P = T^*$ and we get the normality.

9. Solution: Let $x \in \text{Ker}(T)$. Then $0 = \langle Tx, y \rangle = \langle x, T^*y \rangle$ for any $y \in \mathcal{H}$, shows that $y \in T(\mathcal{H})^{\perp}$.

Conversely if $x \in T^*(H)^{\perp}$. Then $0 = \langle x, T^*y \rangle = \langle Tx, y \rangle = \text{for any } y \in \mathcal{H}$ shows that $x \in \text{Ker}(T)$ by Reisz representation theorem.

10. not finished

Solution:

11. not finished

Solution:

12. not finished

Solution:

13. not finished

Solution:

- (a) If M is invariant under T, then $T(M) \subset M$, This shows $T(m) = P_M T(m)$ for all $m \in M$. Thus $TP_M = P_M TP_M$. Conversely if $TP_M = P_M TP_M$, then $T(m) = TP_M(m) = P_M TP_M(m) = P_M T(m)$ for all $m \in M$, shows that $T(m) \subset M$ for all $m \in M$. Thus M is invariant under T.
- (b) If M reduces T, then M and M^{\perp} is invariant under T. Thus we see that for x = m + m' for $m \in M, m' \in M^{\perp}$,

$$P_M T(x) = P_M (T(m) + T(m')) = P_M (T(m)) = T(m) = T(P_M(x))$$

Thus $P_M T = T P_M$.

Conversely, if $P_MT = TP_M$, then for $m \in M$, we get

$$P_M T(m) = T P_M(m) = T(m)$$

which shows $T(m) \in M$ and for $m' \in M^{\perp}$, we get

$$P_M T(m') = T P_M(m') = T(0) = 0$$

Hence $T(m') \perp M$ which implies $T(m') \in M^{\perp}$. Thus we see that M reduces T.

(c) If M reduces T, then it is clear that M is invariant under T. Moreover from before, we see that $TP_M = P_M T$, then

$$\langle P_M T(x), y \rangle = \langle T P_M(x), y \rangle = \langle P_M(x), T^*(y) \rangle$$

- (d)
- (e)