

CS/IS F214 Logic in Computer Science

MODULE: PREDICATE LOGIC

Semantics

- Satisfiability and Validity
- Validity is undecidable

06-10-2018 Sundar B. CS&IS, BITS Pilani 0

Predicate Logic: Satisfiability

- Recall:
 - $\Gamma \mid = \mid M \varphi$

denotes that ϕ evaluates to TRUE given the set of premises Γ

- under model M and look-up table l
- We say a predicate logic formula ϕ is *satisfiable*
 - if it evaluates to TRUE (without any premises) under some model **M** and some look-up table ι :
 - i.e.

 $| =_{\iota}^{\mathbf{M}} \phi$ for some **M** and some ι

Predicate Logic: Validity

- Recall:
 - Γ |= φ

denotes that ϕ evaluates to TRUE given the set of premises Γ under all models (and all look-up tables).

- We say a predicate logic formula φ is valid
 - if it evaluates to TRUE (without any premises) <u>under</u> <u>all models</u>: i.e. $| = \phi$

Predicate Logic: Validity: Example 1

- $\forall X (p(X) \longrightarrow q(X)) \mid = (\forall X p(X)) \longrightarrow (\forall X q(X))$
- Justification:
 - Let M be any model such that
 - $\forall X (p(X) \longrightarrow q(X)) \mid =^{M} (\forall X p(X)) \longrightarrow (\forall X q(X))$
 - Suppose that <u>for not every element</u> of (the universe in)
 M, <u>p(X)</u> is true:
 - then we are done. (Why?)
 - Otherwise suppose $\forall \mathbf{X} \mathbf{p}(\mathbf{X})$. Therefore, <u>for every</u> <u>element **a** of (the universe in) **M**</u>
 - p(a) is true; then given our premise, q(a) is true
 - i.e. $(\forall X q(X))$ is true and so we are done. (Why?)

Predicate Logic: Validity: Example 2

- $(\forall X p(X)) \longrightarrow (\forall X q(X)) \neq \forall X (p(X) \longrightarrow q(X))$
 - What does this mean?
 - There is at least one model M in which:
 - $(\forall X p(X)) \longrightarrow (\forall X q(X))$ is true but
 - $\forall X (p(X) --> q(X))$ is false.
- Proof:
 - Choose a model M in which $\forall X p(X)$ is not true
 - i.e. $p_M \subset A$, where A is the universe in M
 - Therefore, $\forall X p(X) \longrightarrow (\forall X q(X))$ is true.
 - Now if q_M and p_M are disjoint
 - then there exists v in A such that
 - p(v) is true but q(v) is not i.e. p(v) --> q(v) is false

Computing Validity

- Recall:
 - We have seen <u>algorithms for computing validity</u> of a formula in <u>propositional logic</u>:
 - if the formula is in CNF then validity can be <u>computed</u> <u>efficiently</u>
 - <u>otherwise</u> it takes <u>exponential time</u>.
- Question:
 - Is it there an algorithm to compute validity of a predicate logic formula?

Computing Validity

- To verify that a predicate logic formula is valid:
 - we have to evaluate it in all possible models:
 - There may be an infinite number of applicable models.
 - And if a quantifier is involved
 - the formula may have to be evaluated for all values that a variable can take.
- Can it not be done in any other way?

Undecidability of Validity in Predicate Logic

- Theorem:
 - Validity of formulas in Predicate Logic is undecidable.
- Recall:
 - A decidable problem is a decision problem that is computable.
 - Computability refers to Turing-computability.
 - Halting problem is undecidable i.e.
 - it is not possible to write an algorithm to decide <u>whether or not a given algorithm / program will</u> <u>terminate on a given input</u>.

Proving Undecidability

- One approach to proving <u>that a problem is undecidable</u> is to start with <u>a known undecidable problem</u>:
 - consider a problem $\pi 1$
 - suppose if $\pi 1$ can be reduced to another problem $\pi 2$ i.e. there is a mapping f on inputs x such that

```
\pi 1(x) iff \pi 2(f(x)) for all x
```

• what does it imply (for $\pi 2$)?

Reduction

- A *reduction* from a decision problem $\pi 1$ to a decision problem $\pi 2$ is
 - a mapping **f** of the inputs of $\pi 1$ to the inputs of $\pi 2$ such that
 - $\pi 1(x)$ is TRUE iff $\pi 2(f(x))$ is TRUE for all inputs x
- In algorithmic terms, if there is an algorithm A2 for solving $\pi 2$:

• then one can construct an algorithm A1 for $\pi 1$:

- Assumption:
 - There is an algorithm for f.

Reduction Theorem

- Reduction Theorem:
 - If an undecidable problem $\pi 1$ can be reduced to a problem $\pi 2$ then $\pi 2$ is undecidable.
- Why is the reduction theorem true?
 - Proof by contradiction:
 - Assume $\pi 2$ is decidable, i.e. there is an algorithm to decide $\pi 2$
 - Then use the algorithm for $\pi 2$ to construct one for $\pi 1$.
 - But $\pi 1$ is undecidable i.e. no such algorithm exists i.e. assumption is wrong!
- Are there any conditions that apply on the reduction?

Undecidability of Validity in Predicate Logic

[approach taken by the text book]

- Theorem:
 - Validity in Predicate Logic is undecidable
- Proof:
 - Post's problem is undecidable.
 - [Proof of this is out of the scope of this course.]
 - Post's problem reduces to Validity in Predicate Logic.
 - Refer to the text book for a proof.
 - Therefore by Reduction Theorem in the previous slide,
 Validity is undecidable.

