- Local search operators to try out
 - Need one general operator but it should generate reasonably sized moveset
 - o Is it required that every tour in the moveset is a better solution than the current tour?
 - Why do we need a set of states as moveset? A single state to move next would suffice right?
 - Use the operation specified here http://toddwschneider.com/posts/traveling-salesman-with-simulated-annealing-r-and-shiny/ and generate a moveset of fixed size
 - Just realized that its better to use an operator that with greater probability lead to better choices, but can also generate bad ones
 - Like choosing the longest 2 edges and crossing them up
 - Generating an initial move to start with ?
 - Start with city A and move to the nearest unvisited city of the current tour. This is greedy approach
- When to stop simulated annealing?
 - When after a certain number of steps, and when you stop seeing improvement in the solution
 - No need of random restart for this assignment
- Cooling strategies
 - Exponential schedule
 - $T(t) = T0\alpha t$ where $0 < \alpha < 1$
 - Linear schedule
 - $T(t) = T0 \eta t$
 - Logarithmic schedule

.

- How do we implement 'selecting with probability P'?
- Resources
 - http://toddwschneider.com/posts/traveling-salesman-with-simulated-annealing-r-andshiny/
 - https://github.com/chncyhn/simulated-annealing-tsp
 - For cooling strategy http://iopscience.iop.org/article/10.1088/0305-4470/31/41/011/pdf

 \overline{C}