Discrete Event System Modelling and Simulation with Matlab/SimEvents

Chris Urbaniak

Hochschule Bonn-Rhein-Sieg Stochastische Prozesse und diskrete Simulation Sommersemester 2017

Gliederung

- Einleitung
- Grundlagen (Entity, Komponenten, System, Modell, Simulation)
- Modellbeschreibung
- (Kurzes) Vorstellen der Simulation
- Betrachtung zweier Simulationsdurchläufe
- Fazit zu SimEvents
- Anmerkungen
- Quellen
- Fragen

Einleitung SimEvents

Erweiterung des Simulink Frameworks

Benötigt Matlab als Umgebung

Modellierung durch Blöcke und Pfade

Die per Drag & Drop eingefügt werden

Chris Urbaniak

Grundlagen I

Entity

- Begriff aus SimEvents
- Bezeichnet Objekte von Interesse für Simulation
- Beispiele sind: Patienten, Besucher, Autos... je nach Modell unterschiedlich
- Werden unter SimEvents nicht graphisch dargestellt

Grundlagen II

Komponenten von SimEvents

- Bezeichnung für Blöcke
- Wichtigste Blöcke sind
 - → Generatoren
 - → Queues
 - → Server
- Werden graphisch dargestellt

Grundlagen II Zusatz

Beispiel

Grundlagen III

"Menge von Komponenten, die in Beziehung stehen und interagieren (z.B. Biotop, Fabrik, Straßennetz mit Fahrzeugen, Sonnensystem mit Planeten)"*

*Norbert Th. Müller "Einführung in die ereignisgesteuerte Simulation"

Grundlagen IV

- Modell, Modellierung, Simulation
- Modell: Vereinfachte Darstellung eines Systems
- Beinhaltet nur Kernkomponenten

Modellierung: Entwicklung eines Modells

Simulation: Experimente am Modell

Modellbeschreibung I

Mensamodell

- 3 Gerichte: Burger(50%), Salat(30%), Bockwurst(20%)
- Unterscheidung: Mit Karte, bar Zahlender
- Unterschiedliche Bedienzeiten für Bezahlung
 10s Karte, 40s bar
- 3 Kassen: 1 für Karten, 2 für Barzahler
- Unterschiedliche Bedienzeiten für Essen: 45s Wurst, Burger; 60s Salat

Modellbeschreibung II

- Öffnungsdauer 3h
- 200 Kunden pro Stunde
- Begrenzte Geduld 180s-300s
- Schlangen können beliebig lang sein
- Mensa nicht im Fassungsvermögen beschränkt
- Sekunde als Simulationseinheit

Auszug aus der SimEvents Implementation I

03.07.17

Auszug aus der SimEvents Implementation II

Auszug aus der SimEvents Implementation III

Auszug aus der SimEvents Implementation IV

03.07.17

Chris Urbaniak Stochastische Prozesse und diskrete Simulation SS2017

1. Simulation

Durchlauf mit Standardparametern: Wichtige Ergebnisse:

- 75 Kunden haben die Mensa verlassen
 - 67 Burger-, 8 Salat-Kunden
- Durchschnittliche Durchlaufzeit
 - Kartenbesitzer: 116,5 Sekunden
 - Nicht Kartenb.: 228,5 Sekunden

Simulation SS2017

2. Simulation

- Betreiber der Mensa schließt Kartenkasse
- Karten und nicht Kartenbesitzer teilen sich zwei Kassen
- Wie ändert sich Durchlaufzeit der beiden Kundengruppen?

2. Simulation Ergebnisse & Auswertung

Durchlaufzeiten:

Kunden mit Karte: 116,5s vorher 116,5s

Kunden ohne Karte: 230s vorher 228,5s

- Die Durchlaufzeiten haben sich bei diesem Versuch für Kartenkunden nicht verändert.
 - → Empfehlung dritte Kasse schließen

Simulation SS2017

Fazit der Simulation

 Ergebnis ist gutes Beispiel für Erkenntnisgewinn (nicht intuitiv)

Achtung

- Modell sehr einfach gehalten
- Fraglich inwiefern Rückschlüsse möglich sind

SimEvents Fazit I

- Sehr mächtig → Matlab Routinen, Simulink Komponenten sind nutzbar
- Schneller Einstieg → Schnelle Resultate für simple Anwendungen
- Ausreichend kommentiert, viele mitgelieferte Demos
- Für Laien verständlicher als Code

SimEvents Fazit II

Übersicht geht bei großer Anwendung verloren

Teuer (7850€ für Privatperson*)

*

https://de.mathworks.com/pricing-licensing.html?prodcode=M L&intendeduse=undefined

Anmerkungen

Simulink/SimEvents Version: 7.6 R2010b

Matlab Version: 7.11.0.584 R2010b

 Betriebssystem: Windows XP Professional 32Bit, Service Pack 3

Quellen

- 1. "Matlab&SimEvents" (SimEvents Getting Started Guide) September 2015
- 2. Norbert Th. Müller

"Einführung in die ereignisgesteuerte Simulation"

Vorlesung im WS 2002/2003

Skript, Stand: 25. Oktober 2002

3. Matlab-Produktpreise. Letzter Zugriff am 02.07.2017 https://de.mathworks.com/pricing-licensing.html?prodcode =ML&intendeduse=undefined

Fragen?

Simulation SS2017

Vielen Dank für die Aufmerksamkeit