```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   import warnings
   warnings.filterwarnings("ignore")
```

In [2]: df=pd.read_csv('CPU_r23_v2.csv')

In [3]: df

Out[3]:

	manufacturer	cpuName	singleScore	multiScore	cores	threads	baseClock	turboClock	
0	AMD	Threadripper 3990X	1262	75671	64	128	2.9	4.50	[
1	AMD	Threadripper Pro 3995WX	1231	73220	64	128	2.7	4.20	[
2	AMD	Epyc 7702P	993	48959	64	128	2.0	3.35	[
3	AMD	Threadripper 3970X	1308	46874	32	64	3.7	4.50	[
4	AMD	Threadripper Pro 3975WX	1244	43450	32	64	3.5	4.20	[
210	AMD	Ryzen 3 4300GE	1215	5798	4	8	3.5	4.00	[
211	Intel	Core i7 1185G7	1473	5783	4	8	1.2	4.80	
212	Intel	Core i7 11370H	1535	5778	4	8	3.0	4.80	
213	Intel	Core i3 10105F	1172	5776	4	8	3.7	4.40	[
214	AMD	Ryzen 3 3100	1105	5423	4	8	3.6	3.90	[

215 rows × 9 columns

4

```
In [4]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 215 entries, 0 to 214
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	manufacturer	215 non-null	object
1	cpuName	215 non-null	object
2	singleScore	215 non-null	int64
3	multiScore	215 non-null	int64
4	cores	215 non-null	int64
5	threads	215 non-null	int64
6	baseClock	215 non-null	float64
7	turboClock	215 non-null	float64
8	type	215 non-null	object
dtynes: float64(2)		int64(4) ohie	c+(3)

dtypes: float64(2), int64(4), object(3)

memory usage: 15.2+ KB

In [5]: df.shape

Out[5]: (215, 9)

In [6]: | df.describe()

Out[6]:

	singleScore	multiScore	cores	threads	baseClock	turboClock
count	215.000000	215.000000	215.000000	215.000000	215.000000	215.000000
mean	1367.553488	12979.502326	9.367442	17.739535	3.053953	4.514651
std	239.829487	8905.742643	7.823393	15.829910	0.653009	0.441463
min	903.000000	5423.000000	4.000000	6.000000	1.100000	3.200000
25%	1207.000000	8186.500000	6.000000	12.000000	2.500000	4.200000
50%	1312.000000	10890.000000	8.000000	16.000000	3.200000	4.500000
75%	1534.000000	14393.500000	9.000000	16.000000	3.600000	4.800000
max	2082.000000	75671.000000	64.000000	128.000000	4.200000	5.500000

```
In [7]: df.head()
```

Out[7]:

	manufacturer	cpuName	singleScore	multiScore	cores	threads	baseClock	turboClock	
0	AMD	Threadripper 3990X	1262	75671	64	128	2.9	4.50	Des
1	AMD	Threadripper Pro 3995WX	1231	73220	64	128	2.7	4.20	Des
2	AMD	Epyc 7702P	993	48959	64	128	2.0	3.35	Des
3	AMD	Threadripper 3970X	1308	46874	32	64	3.7	4.50	Des
4	AMD	Threadripper Pro 3975WX	1244	43450	32	64	3.5	4.20	Des
4									•

```
In [8]: df.isnull().sum()
```

Out[8]: manufacturer 0 cpuName 0 singleScore 0 0 multiScore 0 cores threads 0 baseClock 0 turboClock 0 type dtype: int64

In [16]: #1 What is the count of CPU types?
a=df['type'].value_counts()
a

Out[16]: Desktop 144 Laptop 71

Name: type, dtype: int64

```
In [107]: #2 What is the market share of each CPU types?
    plt.figure(figsize=(8,8))
    labels=['Desktop','Laptop']
    cols=['gold','lightgreen']
    plt.pie(a,labels=labels,colors=cols,autopct='%1.1f%%')
    plt.title('Dekstop vs Laptop Market Share')
    plt.legend()
    plt.show()
```

Dekstop vs Laptop Market Share


```
In [58]: #3 Which CPU have 16 cores and above?
b=df[df['cores']>=16]
plt.figure(figsize=(9,9))
    x,y=b['cpuName'],b['cores']
    plt.xticks(rotation=90)
    plt.xlabel('CPU')
    plt.ylabel('No of cores')
    plt.bar(x,y,color='r')
    plt.show()
```



```
In [143]: #4 What is the total benchamrk scores of top 16 processors?
b=df[df['cores']>=16]
plt.figure(figsize=(9,9))
x,y=b['cpuName'],b['singleScore']
x,y1=b['cpuName'],b['multiScore']
plt.bar(x,y1,color='orange',label='multi core score')
plt.bar(x,y,color='red',label='single core score')
plt.xticks(rotation=90)
plt.ylim(500,80000)
plt.xlabel('CPU')
plt.ylabel('Scores-Higher is better')
plt.legend()
plt.show()
```


The above plot shows that AMD's threadripper series processors has the overall highest benchmark scores while Intel processors has lowest overall benchmark scores from the top 16 processors

```
In [117]: #5 What is the base clock and turbo clock of top 16 processors?
b=df[df['cores']>=16]
plt.figure(figsize=(9,9))
x,y=b['cpuName'],b['baseClock']
x,y1=b['cpuName'],b['turboClock']
plt.barh(x,y1,label='turbo clock')
plt.barh(x,y,label='base clock')
plt.ylabel('CPU')
plt.xlabel('Scores-Higher is better')
plt.legend()
plt.show()
```


The above bar graph shows that intel has the highest turbo clock of about 5.5 ghz while AMD's threadripper has the highest base clock of about 4 ghz. So one can choose the better processor depending on the applications

```
In [116]: #6 Cores vs single core performance
    plt.figure(figsize=(9,9))
    x,y=df['cores'],df['singleScore']
    plt.scatter(x,y)
    plt.xlabel('cores')
    plt.ylabel('Scores-Higher is better')
    plt.show()
```


Insight- The above scatter plot shows us that the cores with lower number of cores has better single threaded performance as compared to processors with more cores

```
In [100]: # Cores vs Multi core performance
    plt.figure(figsize=(9,9))
    x,y=df['cores'],df['multiScore']
    plt.scatter(x,y)
    plt.xticks(rotation=90)
    plt.xlabel('cores')
    plt.ylabel('Scores-Higher is better')
    plt.show()
```


Insight- The above scatter plot shows us that the cores with higher number of cores has better multi threaded performance as compared to processors with lower cores

Most common core in processors

Above graph plot shows that the majority of the processors in the market use 8 cores as its base and is considered to be the most preferred type of core of processors.

```
In [155]: #9.processors to avoid while buying from the list? i.e least single and multi sco
           lslm=df[df['singleScore']==df['singleScore'].min()]
           lslm[lslm['multiScore']==lslm['multiScore'].min()]
           1slm
Out[155]:
                manufacturer
                             cpuName
                                       singleScore multiScore cores threads baseClock turboClock
                               Ryzen 5
            198
                        AMD
                                              903
                                                                 6
                                                       6282
                                                                       12
                                                                                 3.2
                                                                                            3.6 Des
                                 1600
In [152]:
           #10 Least singleScore processor?
           lsp=df.groupby(['singleScore'])
           lsp.get group(df['singleScore'].min())
Out[152]:
                                      singleScore multiScore cores threads baseClock turboClock
                manufacturer
                             cpuName
                               Ryzen 5
            198
                        AMD
                                              903
                                                                 6
                                                                                 3.2
                                                       6282
                                                                       12
                                                                                            3.6 Des
                                 1600
In [154]:
           #10 Least multiScore processor?
           lmp=df.groupby(['multiScore'])
           lmp.get_group(df['multiScore'].min())
Out[154]:
                manufacturer cpuName
                                       singleScore multiScore cores threads baseClock turboClock
                               Ryzen 3
                        AMD
                                                       5423
                                                                        8
            214
                                             1105
                                                                 4
                                                                                 3.6
                                                                                            3.9
                                                                                                Des
                                 3100
  In [ ]:
```