CHAPITRE: 4

Poutres Longues

OBJECTIFS:

- Définition d'une poutre
- Caractéristiques d'une section droite
- Calcul des éléments de réduction
- Diagrammes

4.1 Définition d'une poutre longue

C'est un corps dont deux dimensions sont petites vis à vis de la troisième. En pratique on admet qu'une structure peut être modélisée par une poutre longue lorsque sa longueur dépasse de cinq fois la plus grande dimension transversale.

Figure 4.1 Poutre longue

Une poutre peut être définie comme le solide engendré par une surface plane S dont le centre G décrit une courbe L. Le plan de la surface doit rester perpendiculaire à la courbe L mais le contour de la surface peut évoluer.

La courbe L est appelée la ligne moyenne, la surface S la section droite.

Si la courbe L est une droite la poutre est dite droite.

4.2 Caractéristiques de la section droite

Soit une section droite (S) définie par la surface S du plan Oyz.

Figure 4.2 Section droite

4.21 Centre de la section

Le point G, centre de gravité de la surface S supposée homogène, est le centre de la section.

$$y_{G} = \frac{1}{S} \iint_{S} y ds$$
 EQ:4.1

$$z_{G} = \frac{1}{S} \iint_{S} z ds$$
 EQ:4.2

4.22 THéorème de Guldin

Soit une surface S qui se trouve dans le demi plan z > 0 (Figure 4.2). Le domaine de révolution engendré par la rotation de S autour de S autour de S avec:

$$V = \iint_{S} 2 \cdot \pi \cdot z \cdot ds = 2 \cdot \pi \cdot z_{G} \cdot S$$
 EQ:4.3

Soit:

$$z_{G} = \frac{V}{2 \cdot \pi \cdot S}$$
 EQ:4.4

L'équation EQ:4.4 traduit le théorème de Guldin qui est intéressant chaque fois que le volume V est facile à déterminer.

Exemple 8 Soit une section droite définie par un demi cercle de rayon R et de centre A ($Y_A=a$, $Z_A=0$). Déterminer Z_G

Solution:

Le volume engendré est une sphère:

$$V = \frac{4}{3} \cdot \pi \cdot R^3$$

Puisque $S = \frac{\pi}{2} \cdot R^2$ l'équation EQ:4.4 permet d'obtenir Z_G

$$Z_G = \frac{4 \cdot R}{3 \cdot \pi}$$

4.23 Moments de la section

a) Définitions

Pour caractériser la section droite, il est utile de définir les moments suivants:

• Moments quadratiques par rapport aux axes y et z

$$I_{y} = \iint_{S} z^{2} ds$$

$$I_{z} = \iint_{S} y^{2} ds$$
EQ:4.5

Moment produit par rapport aux axes y et z

$$I_{yz} = \iint_{S} y \cdot z ds$$
 EQ:4.6

• Moment quadratique polaire (à ne pas confondre avec la constante de torsion J)

$$I_{X} = \iint_{S} \left(y^{2} + z^{2}\right) ds$$
 EQ:4.7

b) Formules de König

Figure 4.3 Moments quadratiques d'une section droite

L'objectif est de déterminer les moments quadratiques par rapport aux axes Gy1, Gz1 connaissant leurs valeurs par rapport aux axes Oy et Oz ou inversement. Soit y_G et z_G les coordonnées de G dans le repère Oyz. Calculons Ioy.

$$I_{oy} = \iint_{S} z^{2} ds = \iint_{S} (z_{G} + z_{1})^{2} ds = \iint_{S} (z_{1})^{2} ds + S \cdot z_{G}^{2}$$

d'où:

$$I_{oy} = I_{Gy1} + S \cdot z_G^2$$

Les formules permettant de déterminer les moments de la section dans le repère {Oyz} à partir des valeurs dans le repère {G y1 z1} sont donc les suivantes:

$$I_{oy} = I_{Gy1} + S \cdot z_{G}^{2} \quad I_{yz} = I_{Gy1z1} + S \cdot z_{G} \cdot y_{G}$$

$$I_{oz} = I_{Gz1} + S \cdot y_{G}^{2} \quad I_{ox} = I_{Gx1} + S \cdot (z_{G}^{2} + y_{G}^{2})$$
EQ:4.8

c) Tenseur d'inertie

Figure 4.4 Section droite S

Calculons le moment quadratique relatif à un axe D passant par G de vecteur unitaire \mathring{a} . L'axe D fait un angle θ avec l'axe y.

$$I_{D} = \iint_{S} \overline{MH}^{2} dS = (\overrightarrow{u} \wedge \overrightarrow{OM}) dS$$
 EQ:4.9

Soit:

$$I_{D} = \iint_{S} (z \cdot \cos(\theta) - y \cdot \sin(\theta))^{2} dS$$
 EQ:4.10

$$I_{D} = I_{y} \cdot (\cos \theta)^{2} + I_{z} \cdot (\sin \theta)^{2} - 2 \cdot I_{yz} \cdot \cos \theta \cdot \sin \theta$$

Cette équation s'écrit matriciellement de la façon suivante:

$$I_{D} = \begin{bmatrix} \cos \theta & \sin \theta \end{bmatrix} \cdot \begin{bmatrix} I_{y} & -I_{yz} \\ -I_{yz} & I_{z} \end{bmatrix} \cdot \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
 EQ:4.11

$$I_{D} = \begin{bmatrix} u \end{bmatrix}^{T} \cdot \begin{bmatrix} J \end{bmatrix} \cdot \begin{bmatrix} u \end{bmatrix}$$
 EQ:4.12

[J] est la matrice dans la base Gyz du tenseur J appelé tenseur des moments quadratiques en G.

Puisque ce tenseur est symétrique il existe toujours un repère principal GYZ dans lequel la matrice [J] est diagonale.

Dans GYZ:

$$[\mathbf{J}] = \begin{bmatrix} \mathbf{I}_{\mathbf{Y}} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{\mathbf{Z}} \end{bmatrix}$$
 EQ:4.13

 I_Z et I_Y sont les moments quadratiques principaux et GY et GZ les directions principales.

Remarque: Il est possible d'utiliser le principe du cercle de Mohr pour calculer les moments quadratiques principaux et les axes principaux.

4.3 Eléments de réduction

Soit une poutre AB soumise à des efforts extérieurs donnés et à des efforts de

liaison. L'objectif d'une étude mécanique est généralement de déterminer le tenseur des contraintes en chaque point et la déformée de la poutre.

Figure 4.5 Poutre longue

Considérons une section droite S dont G est le centre section. Définissons un repère orthonormé Gxyz tel que l'axe Gx est orthogonal à la section S (Figure 4.5). En chaque point P de cette section, sur une facette de normale \vec{n} (1,0,0), Figure 4.6, il existe un vecteur contrainte \vec{C} . Supposons que la section S sépare la poutre en deux parties 1 et 2. Les contraintes \vec{C} sont associées aux efforts que la partie 2 exerce sur la partie 1.

Le calcul de ces contraintes à partir de la théorie de l'élasticité est en général impossible de façon analytique et souvent très difficile de façon numérique. Par contre, il est assez facile de calculer sur une section droite les éléments de réduction. Ils représentent les composantes du torseur résultant de ces contraintes en G. A partir de ces valeurs et en faisant des **hypothèses** il est possible d'obtenir le champ des contraintes. C'est ce qui est fait dans la théorie des poutres longues et dans la suite de ce cours.

4.31 Définitions

Figure 4.6 Section droite

Les éléments de réduction relatifs à la section S sont les six composantes du torseur {**FG,MG**} qui est défini de la façon suivante:

$$\overrightarrow{FG} = \iint_{S} \overrightarrow{C} \cdot dS \qquad \overrightarrow{AG} = \iint_{S} \overrightarrow{GP} \wedge \overrightarrow{C} \cdot dS \qquad EQ:4.14$$

Les projections et ou les composantes de \overrightarrow{FG} et \overrightarrow{MG} ont des notations et des significations physiques précises qu'il est important de connaître.

Figure 4.7 Eléments de réduction

- La composante de \overrightarrow{FG} suivant l'axe Gx est notée N. $\overrightarrow{N} = N \cdot \overrightarrow{e}$ est appelé l'effort normal. Il représente un effort perpendiculaire au plan de la section droite.
- La projection de \overrightarrow{FG} sur le plan de la section droite est notée \overrightarrow{T} . C'est l'effort tranchant. Il représente un effort ayant tendance à trancher la poutre. Il a pour composantes Ty et Tz.
- La composante de \overrightarrow{MG} suivant l'axe GX est notée Mx. $\overrightarrow{Mx} = Mx \cdot \overrightarrow{e}$ est appelé le moment longitudinal. Il ne faut pas le confondre avec le moment de torsion.
- La projection \overrightarrow{deMG} sur le plan de la section droite est notée \overrightarrow{M} . C'est le moment de flexion. Ce moment tend à faire fléchir la pour composantes My et Mz.

4.32 Méthodes de calcul

Le calcul des éléments de réduction peut se faire de deux façons différentes:

- par une méthode directe,
- par intégration des équations d'équilibre.

La méthode directe est généralement la plus pratique sauf dans certains cas de poutres courbes avec des chargements répartis où il est plus rapide d'intégrer les équations d'équilibre.

a) METHODE DIRECTE

Figure 4.8 Poutre soumise à des efforts donnés et des efforts de liaison

Considérons une poutre AB soumise à des efforts extérieurs donnés Fi appliqués en des points Pi et à des efforts de liaison Ri appliqués à des points Qi. Déterminons les éléments de réduction pour une section droite (S).

Cette section sépare la poutre en deux parties. La partie aval, située après la section, et la partie amont, située avant la section. Nous notons $\overrightarrow{F_i}^{AM}$ les efforts

s'exerçant sur la partie amont et $\overrightarrow{F_i}^{AV}$ les efforts s'exerçant sur la partie située en aval de la section. La même notation est employée pour les efforts de liaison. Suivant la section considérée un effort sera en aval ou en amont. Isolons la partie de poutre située en amont de la section droite S (Figure 4.9). Cette partie est soumise:

Figure 4.9 Partie amont de la poutre

- aux efforts extérieurs donnés $\overline{F_i^{AM}}$
- aux efforts de liaison $\overrightarrow{R_i}^{AM}$
- aux contraintes s'appliquant sur la section droite S. Ces efforts répartis peuvent être remplacés par le torseur {FG,MG} dont les composantes sont les éléments de réduction recherchés.

Ecrivons que cette partie amont est en équilibre

$$\sum \left(\overrightarrow{F_i}^{AM} + \overrightarrow{R_i}^{AM}\right) + \overrightarrow{FG} = 0$$
 EQ:4.15

Moment en G centre de la section droite:

$$\sum \left(\overrightarrow{GP_i} \wedge \overrightarrow{F_i^{AM}} + \overrightarrow{GQ_i} \wedge \overrightarrow{R_i^{AM}}\right) + \overrightarrow{MG} = 0$$
 EQ:4.16

Ces deux équations permettent de déterminer \overrightarrow{FG} et \overrightarrow{MG} .

D'autre part comme la poutre est globalement en équilibre. La somme des efforts donnés et des efforts de liaisons situés en amont plus de ceux situés en aval est égale à zéro.

$$\sum \left(\overrightarrow{F_i^{AM}} + \overrightarrow{R_i^{AM}}\right) + \sum \left(\overrightarrow{F_i^{AV}} + \overrightarrow{R_i^{AV}}\right) = 0$$
 EQ:4.17

$$\sum \left(\overrightarrow{GP_i} \wedge \overrightarrow{F_i^{AM}} + \overrightarrow{GQ_i} \wedge \overrightarrow{R_i^{AM}}\right) +$$

$$\sum \left(\overrightarrow{GP_i} \wedge \overrightarrow{F_i^{AV}} + \overrightarrow{GQ_i} \wedge \overrightarrow{R_i^{AV}}\right) = 0$$
EQ:4.18

Les éléments de réduction sont obtenus à partir des efforts situés en amont ou en aval de la section, par les formules suivantes:

	F G	\overrightarrow{MG}
A M O N T	$-\sum \left\{ \overrightarrow{F_i^{AM}} + \overrightarrow{R_i^{AM}} \right\}$	$-\sum \left\{ \overrightarrow{GP_i} \wedge \overrightarrow{F_i^{AM}} + \overrightarrow{GQ_i} \wedge \overrightarrow{R_i^{AM}} \right\}$
A V A L	$\sum \left\{ \overrightarrow{F_i^{AV}} + \overrightarrow{R_i^{AV}} \right\}$	$\sum \biggl\{ \overrightarrow{GP_i} \wedge \overrightarrow{F_i^{AV}} + \overrightarrow{GQ_i} \wedge \overrightarrow{R_i^{AV}} \biggr\}$

EQ:4.19

Exemple 9

Soit une poutre droite OA de longueur 2L soumise en A à une force $F_A(F/2,F,0)$ et en I milieu de OA à une force $F_I(0,F,0)$. On demande de déterminer les éléments de réduction.

Solution:

Ce système est isostatique. La poutre est la pièce 1. L'équilibre de cette poutre permet de déterminer les efforts de liaison

$$X_{\rm O1} = -F/2$$

$$Y_{01} = -2F$$

$$M_{\rm O1}$$
=-3FL

D'après EQ:4.19 et en considérant les efforts situés en amont les éléments de réduction valent:

	x <l< th=""><th>x>L</th></l<>	x>L
N	F/2	F/2
Ту	2F	F
Mz	F(2L-X)+F(L-X)	F(2L-X)

Le même résultat peut bien évidemment être obtenu à partir des efforts situés en amont. Les résultats dans le tableau ci-dessous sont bruts pour montrer la démarche utilisée.

	x <l< th=""><th>x>L</th></l<>	x>L
N	$-(X_{O1})$	-(X _{O1})
Ту	-(Y _{O1})	-(Y _{O1} +F)
Mz	-(-Y _{O1} . X+ M _{O1})	-(-Y _{O1} . X+ M _{O1} -F (XL)

b) EQUATIONS D'EQUILIBRE

• POUTRE DROITE

Soit un poutre droite GA GB soumise à des efforts ponctuels, des efforts de

liaison, des efforts répartis \vec{p} et des moments répartis \vec{m} .

Soit un tronçon G1 G2 de longueur dx sur lequel il ne s'exerce que des efforts ou moments répartis. Isolons ce tronçon (Figure 4.10). En plus des efforts exté-

rieurs répartis il s'exerce sur les deux sections droites des contraintes qui peuvent être remplacées par leur torseur équivalent comme c'est indiqué sur la Figure 4.10.

Figure 4.10 Poutre droite

L'écriture de l'équilibre de ce tronçon conduit aux équations suivantes:

$$\overrightarrow{FG} + \frac{d\overrightarrow{FG}}{dx} \cdot dx + \overrightarrow{p} \cdot dx - \overrightarrow{FG} = 0$$

$$\overrightarrow{MG} + \frac{d\overrightarrow{MG}}{dx} \cdot dx + \overrightarrow{G_1G_2} \wedge \overrightarrow{FG} + \overrightarrow{m} \cdot dx - \overrightarrow{MG} = 0$$
EQ:4.20

A partir de EQ:4.20 les équations suivantes sont obtenues:

Equations d'équilibre pour une poutre droite				
$p_{X} + \frac{dN}{dx} = 0$	$m_x + \frac{dM_x}{dx} = 0$			
$p_y + \frac{dT_y}{dx} = 0$	$m_y + \frac{dM_y}{dx} - T_z = 0$	EQ:4.21		
$p_z + \frac{dT_z}{dx} = 0$	$m_z + \frac{dM_z}{dx} + T_y = 0$			

Exemple 10 Reprenons l'Exemple 9. et cherchons à déterminer les éléments de réduction. **Solution:**

Puisqu'il n'y a pas de forces réparties l'intégration des équations d'équilibre donne les résultats suivants:

$$N=a$$
 $T_y=b$ $M_z=-b x + c$

Il reste à déterminer les constantes à partir des conditions aux limites. Ceci doit être fait pour X < L et X > L car, comme il existe une force ponctuelle en x = L, il y a une discontinuité. (Les équations ont été démontrées dans une zone où il n'y a pas d'efforts ponctuels). On note al,bl,cl les constantes sur le tronçon x > L et a2,b2,c2 les constantes pour x < L.

Pour X>L

en
$$X=2L$$
: $N = F/2$; $Ty = F$; $Mz=0$

d'où: al = F/2; bl = F; cl = 2FL. On retrouve les résultats de l'Exemple 9. Pour X < L

Les constantes peuvent être trouvées en prenant les valeurs en X=L ou en X=0.

Calcul des constantes à partir des résultats en X=L

$$N(X=L-\varepsilon)=N(X=L+\varepsilon) => a2=F/2$$

$$Ty(X=L-\varepsilon)=Ty(X=L+\varepsilon)+F=>b2=2F$$

$$Mz(X=L-\varepsilon)=Mz(X=L+\varepsilon) => c2=3FL$$

Calcul des constantes à partir des résultats en X=0

$$N(X=0)=-X_{01}=>a2=F/2$$

$$Ty(X=0) = -Y_{O1} = > b2 = 2F$$

$$Mz(X=0) = -M_{O1} = > c2 = 3FL$$

On retrouve bien les résultats de l'Exemple 9

POUTRE COURBE

Figure 4.11 Poutre courbe

Considérons une poutre courbe AB de ligne moyenne L et appelons $\stackrel{\triangleright}{e}$ le vecteur unitaire tangent en G à L. Soit le repère de Frenet $\{G_e,n_b\}$ dans lequel:

- \vec{n} est le vecteur unitaire normal à L tel que $\vec{n} = R \cdot \frac{d\vec{e}}{ds}$. (R est le rayon de courbure de L en G).
- $\vec{b} = \vec{e} \wedge \vec{n}$.

Si To est le rayon de torsion alors:

$$\frac{d}{ds} \cdot \begin{bmatrix} \dot{\hat{e}} \\ \dot{\hat{n}} \\ \dot{\hat{b}} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{R} & 0 \\ -\frac{1}{R} & 0 & \frac{1}{To} \\ 0 & -\frac{1}{To} & 0 \end{bmatrix} \cdot \begin{bmatrix} \dot{\hat{e}} \\ \dot{\hat{n}} \\ \dot{\hat{b}} \end{bmatrix}$$

Les équations d'équilibre pour un tronçon de poutre de longueur ds deviennent:

$$\frac{d(N \cdot \vec{e} + T_n \cdot \vec{n} + T_b \cdot \vec{b})}{ds} + \vec{p} = 0$$
 EQ:4.22

$$\frac{d(M_e \cdot \vec{e} + M_n \cdot \vec{n} + M_b \cdot \vec{b})}{ds} + \vec{e} \wedge (N \cdot \vec{e} + T_n \cdot \vec{n} + T_b \cdot \vec{b}) + \vec{m} = 0$$

En développant EQ:4.22 on obtient:

$$\frac{dN}{ds} \cdot \dot{\vec{e}} + N \cdot \frac{\dot{\vec{n}}}{R} + \frac{dT_n}{ds} \cdot \dot{\vec{n}} - T_n \cdot \frac{\dot{\vec{e}}}{R} + \frac{dT_b}{ds} \cdot \dot{\vec{b}} - T_b \cdot \frac{\dot{\vec{n}}}{T_0} + \dot{\vec{p}} = 0$$

Dans le cas de poutres planes 1/To est nul et les équations d'équilibre sont les suivantes:

Equations d'équilibre pour une poutre courbe plane			
$p_e + \frac{dN}{ds} - \frac{T_n}{R} = 0$	$m_e + \frac{dM_e}{ds} - \frac{M_n}{R} = 0$		
$p_n + \frac{N}{R} + \frac{dT_n}{ds} = 0$	$m_n + \frac{dM_n}{ds} - T_b + \frac{M_e}{R} = 0$	EQ:4.23	
$p_b + \frac{dT_b}{ds} = 0$	$m_b + \frac{dM_b}{ds} + T_n = 0$		

4.33 Diagrammes

Il est souvent utile de tracer les courbes, appelées diagrammes, représentant l'évolution des éléments de réduction en fonction de l'abscisse curviligne associée à la ligne moyenne. Ces courbes permettent de visualiser facilement les zones les plus sollicitées de la structure. Lors du tracé de ces diagrammes il faut vérifier un certain nombre de correspondances ou de valeurs comme c'est indi-

qué dans l' Exemple 11

Exemple 11 Reprenons l'Exemple 9 et traçons les diagrammes relatifs à N, Ty et Mz **Solution:**

Lorsque les diagrammes sont tracés il faut vérifier:

a) Les valeurs aux limites (zones 1 et 3 sur la figure).

En 1, soit en x=2L, il s'exerce une force et pas de moment. N'et Ty doivent être différents de zéro et Mz doit être nul.

En 3 il y a un encastrement donc les trois composantes peuvent être différentes de zéro.

- b) La zone 2 (zone ou il existe des efforts ponctuels). Il y a une force ponctuelle en I dirigée suivant y donc:
 - N et Mz sont continus
 - Ty doit présenter une discontinuité égale à F
 - c) D'après les équations d'équilibre pour des poutres droites (EQ:4.21).

 $\frac{dM_z}{dx}$ + T_y = 0. Dans cet exemple, puisque Ty est positif et constant par morceau Mz doit être décroissant et varier linéairement.

Tableau 4.1 Caractéristiques géométriques de sections droites

	Centre d	e gravité	Moments quadratiques
SECTION	y_{G}	z _G	I_{Y}
$ \begin{array}{c c} & carr \acute{e} \\ Z \\ & Z \\ & \downarrow \\ \hline & \downarrow \\ &$	$y_G = \frac{C}{2}$ $z_G = \frac{C}{2}$		$I_{Y} = \frac{C^{4}}{12}$ $I_{Z} = \frac{C^{4}}{12}$
$ \begin{array}{c c} & \underline{rectangle} \\ Z \\ & \downarrow \\ \\ & \downarrow \\ \\ & \downarrow \\ &$	$^{y}_{G}$		$I_{Y} = \frac{BH^{3}}{12}$ $I_{Z} = \frac{HB^{3}}{12}$
$ \begin{array}{c c} carré creux \\ Z \\ \downarrow Y_G \Rightarrow \downarrow \\ \hline \downarrow C \\ \hline \end{array} $	^{y}G	_	$I_{Y} = \frac{C^4 - c^4}{12}$ $I_{Z} = \frac{C^4 - c^4}{12}$
$ \begin{array}{c c} & \underline{rectangle\ creux} \\ & \downarrow^{g} \downarrow^{Z} \\ & \downarrow^{g} \downarrow^{G} \end{array} $ $ \begin{array}{c c} & \downarrow^{g} & \downarrow^{g} \downarrow^{G} \end{array} $ $ \begin{array}{c c} & \downarrow^{g} & \downarrow^{g} \downarrow^{G} \end{array} $ $ \begin{array}{c c} & \downarrow^{g} & \downarrow^{g} \downarrow^{G} \end{array} $ $ \begin{array}{c c} & \downarrow^{g} & \downarrow^{g} \downarrow^{G} \end{array} $ $ \begin{array}{c c} & \downarrow^{g} & \downarrow^{g} \downarrow^{G} \end{array} $ $ \begin{array}{c c} & \downarrow^{g} & \downarrow^{g} \downarrow^{G} \end{array} $	$^{y}_{G}$		$I_{Y} = \frac{BH^{3} - bh^{3}}{12}$ $I_{Z} = \frac{HB^{3} - hb^{3}}{12}$

Tableau 4.1 Caractéristiques géométriques de sections droites

	Centre d	e gravité	Moments quadratiques
SECTION	y_{G}	z_{G}	I_{Y}
$\begin{array}{c c} & \text{triangle quelconque} \\ \hline Z \\ & \leftarrow Y_G \rightarrow \\ \hline \downarrow & \leftarrow C \rightarrow \\ \hline \downarrow & H \\ \hline z_G & & -Y \\ \hline \uparrow & & B & & -Y \\ \hline \end{array}$	$y_G = \frac{B+C}{3}$ $z_G = \frac{H}{3}$		$I_{Y} = \frac{BH^{3}}{36}$ $I_{Z} = \frac{BH}{36} \cdot (B^{2} + C^{2} - BC)$
$\begin{array}{c c} & \underline{\text{trapèze isocèle}} \\ Z \\ \longleftarrow A \longrightarrow \\ \downarrow \\$	$z_{G_a} = \frac{H}{3}$ $z_{G_b} = \frac{H}{3}$	$\frac{\cdot (B+2A)}{\cdot (B+A)}$	$I_{Y} = \frac{H^{3} \cdot (A^{2} + 4AB + B^{2})}{36 \cdot (A + B)}$ $I_{Z} = \frac{H \cdot (A + B) \cdot (A^{2} + B^{2})}{48}$
polygone régulier $ Z \mid \qquad $	${}^{y}_{G}$ ${}^{z}_{G}$		$I_{Y} = \frac{A \cdot (6R^{2} - B^{2})}{24}$ $I_{Z} = \frac{A \cdot (6R^{2} - B^{2})}{24}$ $= \frac{A \cdot (12R_{I}^{2} + B^{2})}{48}$
hexagone régulier Z $\downarrow \qquad \qquad$	$y_G = \frac{1}{2}$		$I_{\mathbf{Y}} = 0.0601 \cdot H^4$ $I_{\mathbf{Z}} = 0.0601 \cdot H^4$

Tableau 4.1 Caractéristiques géométriques de sections droites

	Centre d	e gravité	Moments quadratiques
SECTION	y_{G}	z_{G}	I_{Y}
trapèze rectangle Z Y Y Z Y Z Y Z Z	$y_G = \frac{3A^2 + 3AB + B^2}{3 \cdot (2A + B)}$ $z_G = \frac{H \cdot (3A + B)}{3 \cdot (2A + B)}$		$I_{Y} = \frac{H^{3} \cdot (6A^{2} + 6AB + B^{2})}{36 \cdot (2A + B)}$ $I_{Z} = \frac{H}{12}(2A + B)(2A^{2} + 2AB + B^{2})$ $- \frac{H \cdot (3A^{2} + 3AB + B^{2})^{2}}{18 \cdot (2A + B)}$
$\begin{array}{c c} & \underline{\text{trapèze quelconque}} \\ & Z \\ \hline \\ & & & $	G se situe sur la droite joignant les milieux des côtés A et B. $z_{G_a} = \frac{H \cdot (B + 2A)}{3 \cdot (B + A)}$ $z_{G_b} = \frac{H \cdot (A + 2B)}{3 \cdot (A + B)}$		$I_{\rm Y} = \frac{H^3 \cdot (A^2 + 4AB + B^2)}{36 \cdot (A + B)}$
$\begin{array}{c c} parall\'e logramme \\ \hline Z_1 \\ \rightleftharpoons^{y_G \Rightarrow 1} \\ \hline \\ H - \swarrow & G \\ \hline \\ \downarrow & \downarrow & \downarrow \\ \hline \\ \Rightarrow A \longleftarrow & B \\ \hline \end{array}$	$y_G = \frac{A+B}{2}$ $z_G = \frac{H}{2}$		$I_{\mathbf{Y}} = \frac{BH^3}{12}$ $I_{\mathbf{Z}} = \frac{BH \cdot (A^2 + B^2)}{12}$
octogone régulier $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	${}^{y}_{G}$ ${}^{z}_{G}$		$I_{\mathbf{Y}} = 0.6381 \cdot \mathbf{R}^4$ $I_{\mathbf{Z}} = 0.6381 \cdot \mathbf{R}^4$

Tableau 4.1 Caractéristiques géométriques de sections droites

	Centre de gravité		Moments quadratiques
SECTION	y_{G}	z_{G}	I_{Y}
cercle Z -	y_G		$I_{Y} = \frac{\pi \cdot R^{4}}{4}$ $= 0.0491 \cdot D^{4}$ $I_{Z} = \frac{\pi \cdot R^{4}}{4}$
$cercle creux (tube)$ $Z \mid \qquad $	y_G	= R	$= 0.0491 \cdot D^4$ $I_{Y} = \frac{\pi \cdot (R^4 - r^4)}{4}$
$\frac{1}{2^{G}}$ $\frac{y_{G}}{y_{G}}$ $\frac{demi-cercle}{y_{G}}$	^{z}G	= R	$I_{Z} = \frac{\pi \cdot (R^4 - r^4)}{4}$
$ \begin{array}{c c} \hline Z \\ \hline & \\ & \\$	$z_G = 0.21$ $= 0.42$	122 · D	$I_{\mathbf{Y}} = 0.1098 \cdot \mathbf{R}^4$ $I_{\mathbf{Z}} = 0.3927 \cdot \mathbf{R}^4$
$\frac{\text{demi-tube}}{Z \mid}$ $- \frac{Z_{G}}{Z_{G}} - \frac{Y}{Z_{G}}$	$z_G = 0.4244$		$I_{Y} = \frac{\pi(R^{4} - r^{4})}{8} - \frac{\pi(R^{2} - r^{2}) \cdot z_{G}^{2}}{2}$ $I_{Z} = \frac{\pi \cdot (R^{4} - r^{4})}{8}$

Tableau 4.1 Caractéristiques géométriques de sections droites

	Centre d	e gravité	Moments quadratiques
SECTION	y_{G}	z_{G}	I_{Y}
$\frac{\text{ellipse}}{Z_{G}}$ $Z_{G} = A \Rightarrow \begin{vmatrix} G & & & & & & & & & & & & & & & & & &$	y_G		$I_{Y} = \frac{\pi \cdot AB^{3}}{4}$ $= 0.7854 \cdot AB^{3}$ $I_{Z} = \frac{\pi \cdot A^{3}B}{4}$ $= 0.7854 \cdot A^{3}B$
$\frac{\text{tube elliptique}}{Z_{I}}$ $z_{G} = A \Rightarrow \downarrow$ $z_{G} = B$ $C \Rightarrow \downarrow$	$^{y}_{G}$ $^{z}_{G}$		$I_{Y} = \frac{\pi \cdot (AB^{3} - CD^{3})}{4}$ $I_{Z} = \frac{\pi \cdot (A^{3}B - C^{3}D)}{4}$
$\frac{\text{demi-ellipse}}{Z_{I}}$ $\frac{A}{A} = A \Rightarrow A \Rightarrow A$	y_G $z_G = 0$		$I_{\mathbf{Y}} = 0.1098 \cdot \mathbf{AB}^{3}$ $I_{\mathbf{Z}} = 0.3927 \cdot \mathbf{A}^{3}\mathbf{B}$
demi-tube elliptique $Z_{ }$ \downarrow B \downarrow C \downarrow	$z_G = \frac{4}{3\pi}.$		$I_{Y} = \frac{\pi \cdot (AB^{3} - CD^{3})}{8}$ $-\frac{\pi (AB - CD)}{2} \cdot z_{G}^{2}$ $I_{Z} = \frac{\pi \cdot (A^{3}B - C^{3}D)}{8}$

Tableau 4.1 Caractéristiques géométriques de sections droites

	Centre d	e gravité	Moments quadratiques
SECTION	y_G	z_{G}	I_{Y}
$\frac{Z_{ }}{\underset{\leftarrow}{ }}$ $\frac{Z_{ }}{\underset{\leftarrow}{ }}$ $\frac{A}{\underset{\leftarrow}{ }}$ $\frac{Y}{\underset{\leftarrow}{ }}$ $\underset{a \text{ en radians}}{\xrightarrow{ }}$	$y_G = \frac{2}{3}$ $z_G =$		$I_{Y} = \frac{R^{4}}{4} \cdot (a - sina cos a)$ $I_{Z} = \frac{R^{4}}{4} \cdot \left(a - \frac{16(sina)^{2}}{9a} + \frac{sin2a}{2}\right)$
ZI a G y a a a a a a a a a a a a	$y_G = \frac{2\sin x}{3a}$ $z_G = \frac{2\sin x}{3a}$		$I_{Y} = \frac{a}{4}(R^{4} - r^{4})$ $\left(1 - \frac{\sin a \cos a}{a}\right)$ $I_{Z} = \frac{a}{4}(R^{4} - r^{4})\left(1 + \frac{\sin a \cos a}{a}\right)$ $-\frac{1}{a(R^{2} - r^{2})}\left(\frac{2\sin a(R^{3} - r^{3})}{3}\right)^{2}$

Tableau 4.1 Caractéristiques géométriques de sections droites

	Centre d	e gravité	Moments quadratiques
SECTION	y_{G}	z_{G}	I_{Y}
segment circulaire Z_{I} A A A A A A A	$y_G = \frac{4R(\sin a)^3}{3(2a - \sin 2a)}$ $z_G = R\sin a$ aire: $A = \frac{R^2}{2}(2a - \sin 2a)$		$I_{Y} = \frac{AR^{2}}{4} \left(1 - \frac{2(\sin a)^{3} \cos a}{3(a - \sin a \cos a)} \right)$ $I_{Z} = \frac{AR^{2}}{4} \left(1 + \frac{2(\sin a)^{3} \cos a}{a - \sin a \cos a} \right)$ $- \frac{4R^{6}(\sin a)^{6}}{9A}$
segment parabolique $ \begin{array}{c c} Z_{I} \\ & \swarrow y_{G} \xrightarrow{\downarrow} \\ & \swarrow A \xrightarrow{\downarrow} \\ & \searrow A \xrightarrow{\downarrow} \\ & X \downarrow$	$y_G = 0.6 \cdot A$ $z_G = B$		$I_{\mathbf{Y}} = 0.2667 \cdot \mathbf{AB}^{3}$ $I_{\mathbf{Z}} = 0.0914 \cdot \mathbf{A}^{3}\mathbf{B}$
$ \begin{array}{c c} & \underline{\text{demi-segment parabolique}} \\ & Z_{I} \\ & & \\$	$y_G = z_G = 0$		$I_{\mathbf{Y}} = 0.0396 \cdot \mathbf{AB}^{3}$ $I_{\mathbf{Z}} = 0.0457 \cdot \mathbf{A}^{3}\mathbf{B}$

Tableau 4.1 Caractéristiques géométriques de sections droites

	Centre de gravité		Moments quadratiques
SECTION	y_G	z_{G}	I_{Y}
$\frac{\text{demi-segments paraboliques}}{\text{accolés}}$ $Z_{,}^{ }$ $G_{,}^{ }$ $X_{,}^{ }$ $X_{,}$	$y_G = 0.6 \cdot A$ $z_G = 0.375 \cdot (B - C)$		$I_{Y} = \frac{A(B+C)}{480}$ $\cdot (19B^{2} + 26BC + 19C^{2})$ $I_{Z} = 0.0457 \cdot A^{3}(B+C)$
triangle équilatéral Z_1 $\leftarrow y_G \rightarrow $ H $\downarrow G$	y_G	-	$I_{Y} = \frac{BH^{3}}{48}$ $I_{Z} = \frac{BH^{3}}{48}$
$\begin{array}{c c} & \underline{\text{triangle à angle obtus}} \\ & ZI \\ & & & \\ \hline & BH \\ & & & \\ \hline & & \\ \hline & $	$y_G = \frac{1}{2}$	2	$I_{Y} = \frac{BH^{3}}{36}$ $I_{Z} = \frac{BH}{36} \cdot (B^{2} + BC + C^{2})$