Faculté des Sciences Dept Maths

M. Benalili

m benalili@yahoo.fr

Corrections de la série d'exercices sur le chapitre "Sous-variétés de Rn"

Module de géométrie différentielle (L3)

Exercice1

 S_1 est le graphe de la fonction $f_1: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x - 2(x^2 + y^2)$. C'est donc une sous-variété (de dimension 2) de \mathbb{R}^3 .

 S_2 est aussi une sous-variété. C'est le graphe de la fonction $f_2: R \to R$, $x \mapsto x^2$. C'est une sous-variété de dimension 1 de \mathbb{R}^2 .

Posons $f_3(x,y,z) = x^2 + y^2 + z^2 - 1$ alors $S_3 = f_3^{-1}(\{0\})$. Alors f_3 est une submersion en chaque point de S_3 . En effet, $Df_3 = (2x; 2y, 2z)$, et Df_3 est surjective sauf si x = y = z = 0, mais ce point n'est pas un élément de S_3 . Ainsi, S_3 est une sous-variété de dimension 2 $de R^3$

 S_4 n'est pas une sous-variété de R^2 , car (0,0) est un point double de S_4

 S_5 n'est pas une sous-variété de \mathbb{R}^2 . Supposons que ce soit une sous-variété de dimension 1. Posons $a=(1,1)\in S_5$. Il existerait alors V un voisinage de 0 dans R (autrement dit, un intervalle), U un voisinage de a dans R^2 et $f: V \to \mathbb{R}^2$ une immersion vérifiant f(0) = a et $f|_V$ est un homéomorphisme de V sur $S_5 \cap U$. En particulier, $f^{-1}|_V$ doit être continue. Ce qui n'est pas vrai , car elle envoie l'ensemble connexe $S_5 \cap U \setminus \{a\}$ sur l'ensemble non connexe $V \setminus \{0\}.$

Supposons maintenant que S_5 soit une sous-variété de dimension 2. Alors, il existerait V un voisinage de 0 dans R^2 , U un voisinage de b = (1,0) dans R^2 et $f: V \to \mathbb{R}^2$ une immersion vérifiant f(0) = b et f|V est un homéomorphisme de V sur $S_5 \cap U$. Mais c'est impossible, car V est ouvert alors que $S \cap U$ ne l'est pas.

Donc S_5 n'est pas une sous-variété.

Exercice2

Posons $f(x,y) = x^2 + y^2 - \alpha$, $R^2 \to R$ $C = f^{-1}(\{0\})$. Nous avons Df(x,y) = f(x,y) $(2x, 2y) \neq (0, 0) \text{ si } \alpha \neq 0.$

Et donc f est une submersion et par suite C est une sous-variété de R^2 . Si $\alpha = 0, C$ est une réunion de 2 droites qui se coupent au point (0,0). Alors Cadmet le point (0,0) comme un point double et par conséquent C n'est pas une sous-variété.

 S_1 est une sous-variété de dimension 1 de \mathbb{R}^2 . En effet considérons la fonction $g:]0, +\infty[\to S1, t \mapsto (t^2, t^3)]$. La fonction g est bijective, de classe C^{∞} , définie sur l'ouvert $]0,+\infty[$ et de plus la différentielle $Dg(t)=(2t,3t^2)$ est toujours injective puisque c'est une forme linéaire non nulle puisque t > 0.

 S_2 n'est pas une sous-variété de dimension 1. S_2 admet un point minimum qui est (0,0). On ne peut donc pas avoir une application $f:]-a,a[\to S_2$ vérifiant f(0) = (0,0) qui soit injective. Précisément, si $f(a/2) = (t_0^2, t_0^3)$ avec $t_0 > 0$, alors par le théorème des valeurs intermédiaires, $f(]0, a/2[) \supset \{(t^2, t^3); t \in]0, t_0[\}$. Or si $f(-a/2) = (t_1^2, t_1^3)$ avec $t_1 > 0$, alors on a alors $f(]-a/2, 0[) \supset \{(t_2, t_3); t \in]0, t_1[\}$. Les deux ensembles f(]0, a/2[)etf(]a/2, 0[) ne peuvent pas être disjoints comme cela devrait être le cas.

 S_3 n'est pas non plus une sous-variété. Pour démontrer précisément cela, admettons que S_3 admette un paramétrage par une fonction f de classe C^1 définie dans un voisinage]-a,a[de $0 \in R$, qui réalise une bijection entre]-a,a[et $U \cap S_3$, où U est un voisinage de (0,0) dans R^2 , et Df(0) est injective. Écrivons $f=(f_1,f_2)$. Alors, $f_1(x)>0$ si $x\neq 0$ et, $f_1(0)=0$. Mais $f_2(0)=0$ puisqu'on a $f_2=\pm f_1^{\frac{3}{2}}$. Ainsi, Df(0)=(0,0) ce qui contredit que cette Df(0) est une application est injective.

Exercice4

Soit $a=(a1,a2)\in M1\times M2$. Il existe un voisinage U_1 de a_1 dans R^n et $f_1:U_1\to R^{n-n_1}$ une submersion en a_1 tels que $M_1\cap U_1=f_1^{-1}(\{0\})$. De même, il existe un voisinage U_2 de a_2 dans R^m et $f_2:U_2\to R^{m-m_2}$ une submersion en a_2 tels que $M_2\cap U2=f_2^{-1}(\{0\})$.

Posons alors $f = (f_1, f_2) : R^{n+m} \to R^{n+m-n_1-m_2}, (x, y) \in U_1 \times U_2 \mapsto (f_1(x), f_2(y))$. Alors f est bien une submersion en $a = (a_1, a_2)$.

En effet,

$$Df(a) = (Df_1(a_1), Df_2(a_2)).$$

Le rang de cette matrice vaut bien le rang de $Df_1(a_1)$ plus le rang de $Df_2(a_2)$, c'est-à-dire $(n-n_1)+(m-m_2)=(n+m)-(n_1+m_2)$.

De plus, on a également

$$f^{-1}(\{0\}) = (M_1 \cap U_1) \times (M_2 \cap U_2) = (M_1 \times M_2) \cap (U_1 \times U_2).$$

Ainsi, $M_1 \times M_2$ est une sous-variété de dimension $n_1 + m_2$.