ECE368: Probabilistic Reasoning

Lab 1: Classification with Multinomial and Gaussian Models

Name: RUI ZENG Student Number: [00397909]

You should hand in: 1) A scanned .pdf version of this sheet with your answers (file size should be under 2 MB); 2) one figure for Question 1.2.(c) and two figures for Question 2.1.(c) in the .pdf format; and 3) two Python files classifier.py and Idaqda.py that contain your code. All these files should be uploaded to Quercus.

1 Naïve Bayes Classifier for Spam Filtering

1. (a) Write down the estimators for p_d and q_d as functions of the training data $\{\mathbf{x}_n, y_n\}, n = 1, 2, ..., N$ using the technique of "Laplace smoothing". (1 **pt**)

- (b) Complete function learn_distributions in python file classifier.py based on the expressions. (1 pt)
- 2. (a) Write down the MAP rule to decide whether y = 1 or y = 0 based on its feature vector \mathbf{x} for a new email $\{\mathbf{x}, y\}$. The d-th entry of \mathbf{x} is denoted by x_d . Please incorporate p_d and q_d in your expression. Please assume that $\pi = 0.5$. (1 **pt**)

- (b) Complete function classify_new_email in classifier.py, and test the classifier on the testing set. The number of Type 1 errors is 2, and the number of Type 2 errors is 4. (1.5 pt)
- (c) Write down the modified decision rule in the classifier such that these two types of error can be traded off. Please introduce a new parameter to achieve such a trade-off. (0.5 **pt**)

Introduce a ratio parameter r
$$\frac{\prod_{d=1}^{p} pd \times d \cdot \prod_{d=0.5}^{\infty} span}{\prod_{d=1}^{p} qd \times d \cdot (1-\pi)} + \prod_{d=0.5}^{\infty} pd \times d \cdot \prod_{d=0.5}^{\infty} pan + \prod_$$

Write your code in file classifier.py to implement your modified decision rule. Test it on the testing set and plot a figure to show the trade-off between Type 1 error and Type 2 error. In the figure, the x-axis should be the number of Type 1 errors and the y-axis should be the number of Type 2 errors. Plot at least 10 points corresponding to different pairs of these two types of error in your figure. The two end points of the plot should be: 1) the point with zero Type 1 error; and 2) the point with zero Type 2 error. Please save the figure with name nbc.pdf. (1 pt)

2 Linear/Quadratic Discriminant Analysis for Height/Weight Data

1. (a) Write down the maximum likelihood estimates of the parameters μ_m , μ_f , Σ , Σ_m , and Σ_f as functions of the training data $\{\mathbf{x}_n, y_n\}$, n = 1, 2, ..., N. (1 **pt**)

Male
$$M_{m} = \frac{1}{\# \text{ of male}} \sum_{i=1}^{N} 1\{y_{i}=1\} x_{i}$$

$$Z_{m} = \frac{1}{\# \text{ of male}} \sum_{i=1}^{N} (x_{i}-M_{m})(x_{i}-M_{m})^{T} 1\{y_{i}=1\}$$

$$Female$$

$$M_{f} = \frac{1}{\# \text{ of female}} \sum_{i=1}^{N} 1\{y_{i}=2\} x_{i}$$

$$Z_{f} = \frac{1}{\# \text{ of female}} \sum_{i=1}^{N} (x_{i}-M_{f})(x_{i}-M_{f})^{T} 1\{y_{i}=2\}$$

(b) In the case of LDA, write down the decision boundary as a linear equation of \mathbf{x} with parameters $\boldsymbol{\mu}_m,\,\boldsymbol{\mu}_f,$ and $\boldsymbol{\Sigma}$. Note that we assume $\pi=0.5.$ (0.5 **pt**)

In the case of QDA, write down the decision boundary as a quadratic equation of \mathbf{x} with parameters $\boldsymbol{\mu}_m$, $\boldsymbol{\mu}_f$, $\boldsymbol{\Sigma}_m$, and $\boldsymbol{\Sigma}_f$. Note that we assume $\pi = 0.5$. (0.5 pt)

- (c) Complete function discrimAnalysis in Idaqda.py to visualize LDA and QDA models and the corresponding decision boundaries. Please name the figures as Ida.pdf, and qda.pdf. (1 pt)
- 2. The misclassification rates are only for LDA, and only for QDA. (1 pt)