

PLENARY EXERCISES - TMA4145

Week 36, Wednesday 6. September 2023

Problem 1

Let U and W be subspaces of a vector space V. Show that

$$U + W = U \oplus W$$
,

if and only if

$$\dim(U+W)=\dim(U)+\dim(W).$$

Hint:

- **1.** Can use $\dim(U+W)+\dim(U\cap W)=\dim(U)+\dim(W)$.
- **2.** What can we say about $U \cap W$?

1

Problem 2

Let $T: X \to X$ be a linear operator.

a) Show that the image of T, im(T), is T-invariant.

Let U and V be T-invariant subspaces of X.

- **b)** Show that $U \cap V$ is T-invariant.
- c) Show that U + V is T-invariant.

Hint:

- **1.** A subset A of X is called T-invariant if $T(A) \subseteq A$.
- **2.** $x \in U \cap V$ if and only if $x \in U$ and $x \in V$.
- **3.** $x \in U + V$ if and only if x = u + v for $u \in U$ and $v \in V$.

Problem 3

Let $T:V\to V$ be a linear operator. Let v be an eigenvector of T with eigenvalue λ . Show that v is an eigenvector of p(T) for any polynomial $p\in \mathcal{P}$, and find the corresponding eigenvalue.

Hint:

- **1.** For a polynomial $p(x) = \sum_{i=0}^{n} c_i x^i$, the operator $p(T) = \sum_{i=0}^{n} c_i T^i$.
- **2.** The operator $T^0 = I$ is the identity operator.
- **3.** What happens for $p(x) = x^2$?