## **USFirearm**

### Syed Baryalay

#### 2023-04-19

Generate some insightful visualizations to display this data.

Does the rate of change in total firearms background checks over time vary across states?

```
suppressMessages(library(tidyverse))
suppressMessages(library(dplyr))
suppressMessages(library(tidyr))
suppressMessages(library(forecast))
suppressMessages(library(ggplot2))
url <- "https://raw.githubusercontent.com/BuzzFeedNews/nics-firearm-background-checks/master/data/nics-
firearm <- read.csv(url, header = TRUE)</pre>
glimpse(firearm)
## Rows: 16,115
## Columns: 27
## $ month
                              <chr> "2023-03", "2023-03", "2023-03", "2023-03", ~
                              <chr> "Alabama", "Alaska", "Arizona", "Arkansas", ~
## $ state
                              <int> 14315, 354, 12965, 4460, 25878, 11466, 9850,~
## $ permit
                             <int> 263, 7, 1377, 595, 13200, 5, 640, 0, 0, 0, 0~
## $ permit_recheck
## $ handgun
                             <int> 23132, 3295, 20940, 8827, 40714, 24432, 7098~
## $ long_gun
                             <int> 15158, 2610, 10397, 6436, 26473, 15658, 2405~
## $ other
                              <int> 1314, 397, 1772, 573, 5455, 2504, 1076, 94, ~
## $ multiple
                             <int> 1269, 221, 1249, 547, 0, 2464, 0, 94, 8, 335~
## $ admin
                             <int> 0, 0, 0, 4, 0, 0, 5, 0, 3, 0, 0, 0, 0, 0, ~
                              <int> 17, 1, 7, 14, 1, 0, 0, 0, 0, 16, 16, 0, 0, 3~
## $ prepawn_handgun
## $ prepawn_long_gun
                              <int> 3, 0, 2, 11, 1, 0, 0, 0, 0, 6, 9, 0, 0, 1, 0~
                              <int> 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,~
## $ prepawn_other
## $ redemption_handgun
                              <int> 2564, 136, 1446, 1280, 746, 0, 0, 30, 0, 405~
## $ redemption_long_gun
                              <int> 1116, 95, 503, 918, 409, 0, 0, 6, 0, 975, 88~
## $ redemption_other
                              <int> 16, 2, 5, 3, 16, 0, 0, 0, 0, 6, 13, 0, 0, 1,~
## $ returned_handgun
                              <int> 46, 29, 260, 0, 1731, 340, 0, 63, 2, 1495, 7~
## $ returned_long_gun
                              <int> 3, 15, 22, 0, 927, 46, 0, 0, 0, 138, 0, 0, 1~
## $ returned_other
                              <int> 0, 0, 0, 0, 82, 0, 0, 0, 54, 4, 0, 0, 0, 2, ~
## $ rentals_handgun
                              ## $ rentals_long_gun
                              ## $ private_sale_handgun
                              <int> 35, 0, 7, 7, 8581, 0, 627, 51, 0, 308, 12, 0~
                              <int> 34, 1, 1, 12, 3392, 0, 196, 23, 0, 204, 3, 0~
## $ private_sale_long_gun
                              <int> 8, 0, 2, 4, 626, 0, 87, 0, 0, 67, 1, 0, 0, 0~
## $ private_sale_other
## $ return_to_seller_handgun <int> 0, 1, 0, 0, 116, 0, 0, 0, 0, 58, 0, 0, 0, 1,~
## $ return_to_seller_long_gun <int> 0, 0, 1, 0, 51, 0, 0, 0, 0, 41, 0, 0, 0, 0, ~
```

```
Cleaning and filtering original data for analysis
library(dplyr)
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
##
       date, intersect, setdiff, union
dat <- firearm %>%
   mutate(date = ymd(paste(month, "01"))) %>%
    select(date, state, totals) %>%
   filter(complete.cases(.)) %>%
   arrange(date)
glimpse(dat)
## Rows: 16,115
## Columns: 3
## $ date
           <date> 1998-11-01, 1998-11-01, 1998-11-01, 1998-11-01, 1998-11-01, 19
## $ state <chr> "Alabama", "Alaska", "Arizona", "Arkansas", "California", "Colo~
## $ totals <int> 1062, 145, 379, 589, 2101, 622, 80, 55, 0, 812, 62, 0, 28, 176,~
Plot of total background checks in each state as well as overall mean.
```



### Plot of total background checks in each state as well as overall median on the log scale



#### Time series decomposition of total background firearm checks

we are only interested in trend which is obtain after removing seasonal effect

```
# Decomposing the model to obtain trend
fit_dcmp <- decompose(firearm_ts)

autoplot(fit_dcmp) +
    xlab("Year") +
    ylab("Total Background Checks") +
    ggtitle("USFirearm Decomposition")</pre>
```

## **USFirearm Decomposition**



```
autoplot(fit_dcmp$trend) +
    xlab("Year") +
    ylab("Total Background Checks") +
    ggtitle("Trend of firearm background checks across states")
```





The original data has strong seasonality (no cycles however).

After decomposing the time series, we have obtain the trend across the states.

Next I fit an ARIMA model that I can use to forecast ahead.

```
# fitting an ARIMA models to our time series
fit_arima <- auto.arima(firearm_ts)</pre>
summary(fit_arima)
## Series: firearm_ts
## ARIMA(2,0,1)(0,1,1)[12] with drift
##
## Coefficients:
##
            ar1
                                     sma1
                                               drift
                    ar2
                             ma1
         0.5792 0.2797
                         0.1257
                                           8396.956
##
                                  -0.7057
## s.e. 0.6333 0.5348 0.6641
                                   0.0472
                                           2319.809
## sigma^2 = 3.419e+10: log likelihood = -3808.66
## AIC=7629.31
                 AICc=7629.62
##
## Training set error measures:
                                                        MAPE
##
                        ME
                             RMSE
                                     MAE
                                                MPE
                                                                  MASE
                                                                               ACF1
## Training set -2852.467 179455 106342 -1.099412 6.127842 0.4546183 -0.01925913
# forecasting for the next 24 months
forecast_arima \leftarrow forecast(fit_arima, h = 24)
autoplot(forecast_arima) +
```

```
xlab("Year") +
ylab("Total Background Checks") +
ggtitle("24 Months Firearm Background Checks Forecast (ARIMA) ")
```

# 24 Months Firearm Background Checks Forecast (ARIMA)

