Digital Signals & Image Management - Project

Yuliia Tsymbal - 894213

Sara Campolattano - 906453

Induni Sandapiumi Nawarathna Pitiyage - 906451

Outline

Mono-dimensional signal processing: Language classification

2. Bi-dimensional signal processing: Video Classification

3. Retrieval task: Face Detection & Retrieval

1. Language classification

Dataset

Common Voice (by Mozilla) is a publicly available dataset that contains speech audio in various languages.

We took 3 languages: Italian, English and Ukrainian.

Dataset size: 15 000 samples

All records have 1 channel

Feature extraction

Data standardization

- 1. Setting uniform duration equal to 7 seconds
- 2. Uniforming one sample rate for all audio equal to 32 000

Feature extraction

Mel-frequency cepstral coefficients (MFCCs)

Modeling

Model: "model"

Output Shape	Param #
[(None, 438, 20)]	0
(None, 438, 20)	80
(None, 438, 64)	16512
(None, 438, 64)	0
(None, 64)	24960
(None, 64)	0
(None, 3)	195
	[(None, 438, 20)] (None, 438, 20) (None, 438, 64) (None, 438, 64) (None, 64) (None, 64)

Total params: 41747 (163.07 KB)
Trainable params: 41707 (162.92 KB)
Non-trainable params: 40 (160.00 Byte)

The best model that fits our data is a combination of:

- > 2 GRU layers
- > 1 Dense layer
- Batch Normalization
- Dropouts for regularization

It took 24 Epochs to train with learning_rate=0.001 and Adam optimizer.

Model Evaluation

Testing model on new data

150 new samples from the dataset, but never used for train and validation: 50 italian records, 50 english and 50 ukrainian.

	precision	recall	f1-score	support
english	0.88	0.90	0.89	50
italian	0.95	0.70	0.80	50
ukrainian	0.74	0.92	0.82	50
accuracy			0.84	150
macro avg	0.86	0.84	0.84	150
veighted avg	0.86	0.84	0.84	150

2. Video Classification

Dataset

UCF101 Action Recognition Dataset is publicly available on kaggle that contains 101 different human action classes.

We sub-sampled **5 video classes**: Bench pass, Shaving beard, Punch, Playing Guitar and Drumming.

Training Dataset contains 600 Videos.

Test Dataset contain **202** Videos.

Feature Extraction

Pre-processing

- Maximum number of frames extracted from videos is 20.
- For each frame, we resizes frame to a fixed size 224x224 pixels and convert the color formats from BRG to RGB.

Feature Extraction

 We used MobileNetV2 neural network, which was pretrained on the ImageNet dataset and the max pooling is used to reduce the spatial dimension of the output.

Modeling

Model: "model_4"

Layer (type)	Output Shape	Param #
input_6 (InputLayer)	[(None, 20, 1280)]	0
gru_16 (GRU)	(None, 20, 32)	126144
gru_17 (GRU)	(None, 20, 16)	2400
dropout_4 (Dropout)	(None, 20, 16)	0
gru_18 (GRU)	(None, 20, 8)	624
gru_19 (GRU)	(None, 4)	168
dense_12 (Dense)	(None, 16)	80
dense_13 (Dense)	(None, 8)	136
dense_14 (Dense)	(None, 5)	45

Total params: 129597 (506.24 KB)
Trainable params: 129597 (506.24 KB)
Non-trainable params: 0 (0.00 Byte)

The model consists of a recurrent neural network(RNN)

- > 4 GRU layers
- > 3 Dense layers
- Dropouts for regularization

It took 44 Epochs to train with learning_rate=0.001 and Adam optimizer.

CIGSSII.	rcacion i	report.			
	рі	recision	recall	f1-score	support
	0	1.00	1.00	1.00	40
	1	0.98	1.00	0.99	41
	2	1.00	1.00	1.00	40
	3	1.00	0.97	0.99	40
	4	1.00	1.00	1.00	41
ассі	uracy			1.00	202
macro	o avg	1.00	0.99	1.00	202
weighted	d avg	1.00	1.00	1.00	202

Testing model On New Data

Rounded Probability of the classes

Bench Press 0%

Drumming 99%

Playing Guitar 0%

Punch 0%

Shaving Beard 0%

Drumming

Bench Press 0%

Drumming 0%

Playing Guitar 98%

Punch 0%

Shaving Beard 0%

Playing Guitar

3. Face Detection & Retrieval

Dataset

Derived from the Labeled Faces in the Wild Dataset, the Face Recognition Dataset consists of a collection of JPG pictures of famous people collected on the internet.

- Each picture is centered on a single face, and every image is encoded in RGB.
- The dataset contains 1680 directories, each representing a celebrity, corresponding to 8204 total images.
- Six directories were excluded from the training to use some of the images in them as test.

Face Detector

We implemented a face detector which:

- takes as input the images and converts them into gray scale;
- uses the pre-trained Haar Cascade classifier for detection;

 extracts the face region by cropping the original image based on the bounding box coordinates and stores it a separate folder.

Modeling

We defined a feature extractor that uses the VGG16 CNN architecture:

- the model was loaded with weights pre-trained on the ImageNet dataset;
- it excludes the fully connected layers (top layers) of the VGG16 model, as they are primarily used for classification;
- global average pooling was used after the convolutional layers, resulting in a single feature vector per image.

The model took more than 60 minutes to extract the features, for a total of 7638.

Search Trees & Queries

To understand and see whether there was any difference in the computation of the distances and the images themselves, we decided to use:

- K-Dimensional Tree
- BallTree

As required by KDTree or BallTree, we added a dimension to to ensure that each feature vector was represented as a row in the 2D array.

The input for the search trees consists of face-detected images, chosen randomly, that were not included in the processing of the model.

Retrieval on New Images

Image1

Position 2: drive, Distance: 59.84

Position 3: drive, Distance: 59.95

3

Image 2

Position 2: drive, Distance: 30.12

20 -40 -60 -80 -

KDTree & BallTree Results

Image 3

Thank you for your attention!