CNN FPGA System Architecture Review

System Overview

- Multi-model CNN implementation (10 models)
- · 16x12 image input processing
- Target frequency: 73MHz (non-pipelined) / 51MHz (pipelined)
- 16 parallel compute engines

Key Components & Architecture

- 1. Processing Core:
 - 16 Parallel Compute Engines
 - Each engine: 7 DSP blocks (3x 9x9 multipliers, 4x 19x8 multipliers) total of 112 DSP to run one colum at once.
 - The result of the MultiMultiplierEngine will be ready by the next
 - ReLU activation implementation
 - Fully connected layer processing
- 2. Memory Architecture:
 - o CONV W MEM: Convolution weights [15:0] × N
 - o CONV_B_MEM: Convolution bias [15:0] × N
 - WFC MEM: FC weights [127:0] × 3 × N
 - o BFC_MEM: FC bias [44:0] × N
 - Relu out FIFO [18:0] X128 X3 X N
 - o Plxel_MEM int8[15:0] * MAX_W
- 3. Data Management:
 - o Triple buffer design for continuous processing of each line
 - o Optimized memory controller
 - Efficient address management
 - o Pipeline-optimized data flow
 - o Correcty only the 2 line buffers and the FIFO need EN

Critical Parameters

- T RAM: RAM request load time
- N: number of models
- T_find_winner: Winner calculation time
- MAX_W: the maximun length that an image can be we from correct testing the longest image was 350

Expected Performance for testing MultiMultiplierEngine

- · Processing speed: Up to 73MHz
- · Parallel model execution
- · Continuous data flow capability

Implementation Considerations

- 1. Resource Requirements:
 - o DSP blocks: 112 (7 × 16)
 - Memory banks: 6 main types
- 2. Critical Paths:
 - o Memory access timing
 - o Compute engine pipeline
 - Winner determination logic
- 3. Potential Challenges:
 - Memory bandwidth optimization
 - o Pipeline synchronization
 - Resource balancing

System WorkFlow

Single CNN netwok

Full system CNN workflow

System planed Architecture

Main system SM

Data managment

Input buffer load from Memory controller and manages by Main system SM

Memory Controller SM

Memory controller work flow

MultiMultiplierEngine (created and tested)

Block operetion:

When Mode 0 selected:

We preform Sum of eight(data(int19)*weight(int8)) Input split : pixel_{int8} [0:8] 72 bits weight1_{int8} [0:8] 72 bits weight2_{int8} [0:8] 72 bits

When Mode 1 selected:

We preform Sum of Nine(pixel(int8)*weightl(int8)) and the sum of Nine(pixel(int8)*weight2(int8)) Input split: fully_data_int19[0:7] 152 bits fully_weight_int8[0:7] 64 bits

7 DSP per block:

- 3 configure to run tree 9x9 multilper each
- 4 configure to run two 19x8 multilper each

Pipline configuration

The Block can run with speed up to 73Mhz without Pipline up to 51Mhz

Parallel_Compute_Engine_16

Block operetion:

FIrst we run all the data_in vector in 16 MultiMultiplierEngine units.

When Mode O selected:
We add the biases to the outputs of
the 16 MultiMultiplierEmgine units for total
of 32 different intly results also
doing this step we add selector that will
set zero to the negative (Relu layer).
Input split:
Bais for the left results <-Bais in [15:8]
Bais for the left results <-Bais in [7:0]

When Mode 1 selected:
We sum the outputs of the 16
MultiMultiplierEngine units with the input
bais as it is.

Pipline								
Clk	<u>Data in</u>	Bais In	Select mode	Mult unit Buffer	Select mode -1	Select mode -2	Bais Buffer	Output
1	Conv(1)	B1,B2	0					
2	0	0	1	Multi Result(Conv(1))	0		B1,B2	
3	date for(383,256)	Bais	1	0	1	0	0	Res(191:175,1
4	date for(255,128)	Dont care	1	Multi Result(date for(383,256))	1	1	Bais	0
5	date for(127,0)	Dont care	1	Multi Result(date for(255,128))	1	1	Sum(383:256)+bais	Sum(383:256)+
6	Conv(2)	B1,B2	0	Multi Result(date for(127,0))	1	1	Sum(383:256)+ Sum(255:128)+bais	Sum(383:256)+ Sum(255:128)+
7	0	1	1	Multi Result(Conv(1))	0	1	B1,B2	Fully correct re