Examenul național de bacalaureat 2024 Proba E. c)

Matematică M_pedagogic

BAREM DE EVALUARE ŞI DE NOTARE

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

 $\sin 30^{\circ} \cdot \cos 45^{\circ} - \frac{1}{2} \cdot \sin 45^{\circ} = \frac{1}{2} \cdot \frac{\sqrt{2}}{2} - \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = 0$

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte) $0,25:0,5+\frac{1}{2}=0,5+\frac{1}{2}=$ 3p 2p 2p Cum n este număr natural, obținem n = 0, n = 1 sau n = 2**3**p $\log_2(3x-1) = 3 \implies 3x-1 = 2^3$ **3p** x = 3, care convine **2**p 4. -x = 80 de lei, unde x este prețul inițial al produsului 2p $x = 80 \cdot 5 = 400$ de lei, deci prețul final al produsului este 480 de lei **3**p Punctul C este simetricul punctului A față de punctul B, deci punctul B este mijlocul **3p** segmentului AC $m = \frac{2+6}{2} \Rightarrow m = 4$ 2p $\sin 30^\circ = \frac{1}{2}$, $\sin 45^\circ = \frac{\sqrt{2}}{2}$, $\cos 45^\circ = \frac{\sqrt{2}}{2}$ 3p

SUBIECTUL al II-lea (30 de puncte)

1.	$2 \circ 1 = \frac{1}{2} \cdot 2 \cdot 1 - 2 - 1 + 4 =$	3p
	=1-2-1+4=2	2p
2.	$x \circ y = \frac{1}{2}xy - x - y + 2 + 2 = \frac{1}{2}x(y - 2) - (y - 2) + 2 = (y - 2)(\frac{1}{2}x - 1) + 2 =$	3p
	$=\frac{1}{2}(x-2)(y-2)+2$, pentru orice numere reale x și y	2p
3.	$x \circ 4 = 2x - x - 4 + 4 = x$, pentru orice număr real x	2p
	$4 \circ x = 2x - 4 - x + 4 = x$, pentru orice număr real x , deci $e = 4$ este elementul neutru al legii de compoziție " \circ "	3р
4.	m = 2k şi $n = 2p$, unde k şi p sunt numere naturale	2p
	N = 2(k-1)(p-1) + 2, deci N este număr natural par	3 p
5.	$x \circ x = \frac{1}{2}(x-2)^2 + 2$, deci $\frac{1}{2}(x-2)^2 + 2 = 4$	2p
	$(x-2)^2 = 4$, de unde obținem $x = 0$ sau $x = 4$	3 p

2p

6.	$\frac{1}{2}(4^{x}-2)(8^{x}-2)+2=2 \iff (2^{2x}-2)(2^{3x}-2)=0$	3p	
	$x = \frac{1}{2} \text{ sau } x = \frac{1}{3}$	2p	

SUBIECTUL al III-lea

(30 de puncte)

SUBJECT OL al III-lea (50 de punc		
1.	$B(1) - B(0) = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix} - \begin{pmatrix} 1 & 3 \\ 3 & 4 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	2p
2.	$B(-1) \cdot B(-4) = \begin{pmatrix} 0 & 3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} -3 & 3 \\ 3 & 0 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 9 & 0 \\ 0 & 9 \end{pmatrix} = 9I_2$	2p
3.	$\det(B(a)) = a^2 + 5a - 5$, pentru orice număr real a	3 p
	$a^2 + 5a - 5 = a$, de unde obținem $a = -5$ sau $a = 1$	2p
4.	$C(n) = {n+2 \choose 0 n+2}$, deci det $(C(n)) = (n+2)^2$, pentru orice număr natural n	3p
	Cum n este număr natural, $\det(C(n)) \neq 0$, deci matricea $C(n)$ este inversabilă pentru orice	2p
	număr natural <i>n</i>	_ r
5.	$A \cdot A = \begin{pmatrix} 10 & 3 \\ 3 & 13 \end{pmatrix}$	2p
	$ \begin{pmatrix} 10 & 3 \\ 3 & 13 \end{pmatrix} = \begin{pmatrix} a+1 & 3 \\ 3 & a+4 \end{pmatrix}, \text{ de unde obținem } a=9 $	3p
6.	$B(a) = B(\sqrt{a})$, unde a este număr real, $a \ge 0$	2p
	$a = \sqrt{a}$, de unde obținem $a = 0$ sau $a = 1$, care convin	3p