05 Exercices - Corrigés

Régime sinusoïdal

1. Représenter ci-contre une période d'un courant décrit par i(t)=8mA sin(5000/s·t – 0.5). En déterminer l'amplitude, la fréquence, la période, la pulsation et la phase.

Amplitude
$$A=8mA$$
 Fréquence $f=\frac{5000}{2\pi}s^{-1}=796Hz$ Période $T=\frac{1}{796Hz}=1.26ms$ Pulsation $\omega=5000\,rad/_S$ Phase $\varphi=-0.5rad$ et pour le décalage de temps pour le dessin : $\varphi=\Delta t\cdot\frac{2\pi rad}{1.26ms}$ donc $\Delta t=-0.5rad\cdot\frac{1.26ms}{2\pi rad}=-0.1ms$

2. Décrire mathématiquement l'évolution de la tension (sinusoïdale, mais dont une seule période est représentée) cicontre. Déterminer sa fréquence, sa pulsation, sa phase, sa valeur en t=25μs et en quels instants elle vaut 1V. Déterminer son déphasage par rapport à la sinusoïde en traitillé; en avance ou en retard?

Fréquence
$$f=\frac{1}{5\mu s}=200kHz$$
 Pulsation $\omega=2\pi\cdot 200kHz=1.256\cdot 10^6\frac{rad}{s}$ Phase $\varphi=\frac{1}{3}\mu s\cdot \frac{2\pi rad}{5\mu s}=\frac{2\pi}{15} \mathrm{rad}=0.42rad$ donc $u(t)=1.6V\cdot sin(2\pi\cdot 200kHz\cdot t+0.42rad)$ $u(25\mu s)=1.6V\cdot sin(2\pi\cdot 200kHz\cdot 25\mu s+0.42rad)=0.651V$ La tension $u(t)$ vaut 1V, soit :
$$1V=1.6V\cdot sin(2\pi\cdot 200kHz\cdot (t+k\cdot 5\mu s)+0.42rad) \quad \text{donc}$$
 $t+k\cdot 5\mu s=\frac{arcsin(\frac{1V}{1.6V})-0.42rad}{2\pi 200kHz}=0.203\mu s+k\cdot 5\mu s \quad \text{pour } k\in\mathbb{Z}$ déphasage par rapport à la sinusoïde en traitillé:
$$\varphi_t=+\frac{5}{6}\mu s\cdot \frac{2\pi rad}{5\mu s}=\frac{2\pi}{6}\mathrm{rad}=1.047rad \quad \text{soit} \quad 60^\circ \text{ en avance sur le signal en traitillé.}$$