Représentation de l'information

Test 1 – 2022

Note	
Nombre de points	/ 22
Classe:	
Prénom:	
Nom:	

A. Notation binaire, décimale et hexadécimale Question 1 (1 point)

Combien faut-il de bits pour coder les valeurs décimales entières de 0₁₀ à 1023₁₀?

Conseil : pour répondre à la question, vous pouvez remplir un tableau avec les puissances de 2 et leur valeur en décimal

Réponse:

Question 2 : Tableau de conversion de 0₁₀ à 15₁₀ (5 points)

Complétez le tableau suivant en respectant les deux consignes suivantes :

- chaque ligne représente la même valeur en binaire, décimal et hexadécimal
- 4 bits sont utilisés pour la représentation binaire
- La base est écrite en indice

Notation en binaire	Notation décimale Notation hexadécima	
0000_2	O_{10}	0_{16}
00012		1_{16}
		2 ₁₆
00112	3 ₁₀	3 ₁₆

01002	4 ₁₀	4 ₁₆
01012	5 ₁₀	5 ₁₆
	$ 6_{10} $	6 ₁₆
	7 ₁₀	7 ₁₆
10012		
10102		
10112	11 ₁₀	B_{16}
	12 ₁₀	C_{16}
11012		D_{16}
11102		
11112	15 ₁₀	F ₁₆

Question 3 : Conversions en binaire, décimal et hexadécimal (5 points)

Complétez le tableau suivant :

Notation binaire	Notation décimale Notation Hexadéclimal	
111111001102		
		BAD ₁₆
	100010	

Vous pouvez utiliser une feuille blanche annexe pour les calculs.

B. Les codes couleur

Lorsqu'on utilise le code couleur RGB (Red – Green – Blue), il est d'usage de coder chaque couleur primaire à l'aide d'un octet (8 bits). Il faut donc 3 octets (24 bits) pour coder une couleur.

Question 4 (2 points)

Combien de nuances possibles (combien de couleurs) est-il possible de coder avec le système RGB. Donnez la réponse en décimal et en hexadécimal

En hexadécimal:

En décimal:

Question 5.1 (1 points)

La couleur noir vaut 000000₁₆ et la couleur blanc vaut FFFFF₁₆. Quelle est le nom (en français) de la «couleur» 222222₁₆ et se situe-t-elle plutôt du côté noir, ou plutôt du côté blanc ?

Réponse:

Question 5.2 (1 point)

Quelle est la dominante de la couleur (10010110₂, 00011010₂, 00000000₂)?

Réponse:

C. Le son

La numérisation d'un son passe par 3 étapes :

- 1. L'échantillonnage
- 2. La quantification
- 3. l'encodage

Question 6 (5 points)

Question	A	В	С	D	Votre réponse (plusieurs possibilités)
Les ondes sonores sont	Des vibrations	Des ondes mécaniques	N'ont pas besoin de milieu	Alternent compression et dilatation	
			matériel pour se propager		
Un son pur représenté par une sinusoïde est	La variation de	La variation de la	Une vision esthétique du	L'alternance de zones de	
	l'intensité d'un son	fréquence du son		dilatations et de compression	
La fréquence d'échantillonnage d'un signal	Renseigne sur le nombre de points à	Est toujours très basse	Doit être la plus élevée possible	N'a pas d'importance	

	sélectionner dans un signal sur une période				
Pour échantillonner un LA à 440 Hz	La fréquence doit être égale à 440 Hz	La fréquence d'échantillo nnage est comprise entre 220 et 440 Hz	On peut choisir n'importe quelle fréquence d'échantillonn age	Il est obligatoire de choisir une fréquence de 44.1 KHz	
Quantifier un signal échantillonné sur 16 bits au lieu de 8 donne un résultat de meilleure qualité	OUI	NON	On ne peut pas répondre sans connaître la fréquence d'échantillonn age		

Question 8 (2 point)

Après les étapes d'échantillonnage et de quantification, on obtient les valeurs suivantes :

Temps (en milliseconde)	Valeur
1_{10}	0000_{2}
2 ₁₀	01102
3 ₁₀	10002
4 ₁₀	00012
5 ₁₀	01012

8.a Combien de bits ont été utilisés pour la quantification ?

Réponse:

8.b Pour en faire un fichier son, quelles sont les deux informations qui manquent à la suite 0000_2 - 0110_2 - 1000_2 - 0001_2 - 0101_2 pour que l'ordinateur puisse reconstituer le son ?