ZOMBIE PANDEMIC!

IDM modeling demo of a Zombie pandemic using the Starsim framework. When Zombies attack, based on information from the CDC and cutting edge research from resources including zombieresearchsociety.com and Zombiepedia.

Let's start by importing some basic packages

Starsim is our new agent-based disease modeling framework. Starsim source code
is open source and freely available. See also our emerging online documentation
and tutorials.

- **zombie** is all the stuff we'll need to do zombie simulations
- Other imports are for numerical operations (numpy, pandas), convenience (sciris), and plotting (seaborn, matplotlib)

```
In []: %matplotlib inline
        %load ext autoreload
        %autoreload 2
        import starsim as ss # starsim is the Starsim framwork
        from zombie import * # zombie is a custom zombie library, see zombie.pv
        # Numerical librarires and utilities
        import numpy as np
        import pandas as pd
        import sciris as sc
        # Plotting libraries
        import seaborn as sns
        from matplotlib import pyplot
        import matplotlib.pyplot as plt
        pyplot.rcParams['figure.dpi'] = 120
        import warnings
        warnings.simplefilter(action='ignore', category=FutureWarning)
```

The autoreload extension is already loaded. To reload it, use: %reload ext autoreload

Basic SIR simulation using the Starsim framework

- We represent the population using 5,000 agents
- 3% are selected at random to be "seed" infections.
- The disease will transmit on a "random" network in the sense that contacts between agents will be recreated on every time step. The number of contacts will be Poisson distributed with a mean of 4.
- The simulation runs in a fraction of a second.
- · We then plot some default channels.

```
In []: people = ss.People(n_agents=5_000)

sir_pars = dict(
    beta = 0.1,
    init_prev = ss.bernoulli(p=0.03),
    dur_inf = ss.weibull(c=3, scale=10),
    p_death = ss.bernoulli(p=lambda _, sim, uids: sim.people.age[uids]/20),
)
```

```
sir = ss.SIR(sir pars)
network = ss.RandomNet(n contacts=ss.poisson(lam=4))
sim = ss.Sim(people=people, diseases=sir, networks=network)
sim.run()
sim.plot():
Initializing sim with 5000 agents
 Running 2000.0 ( 0/51) (0.02 s)
 Running 2010.0 (10/51) (0.04 s) ••••
 Running 2020.0 (20/51) (0.07 s) ••••••
 Running 2030.0 (30/51) (0.09 s) •••••••
 Running 2040.0 (40/51) (0.10 s) ••••••• 80%
 Running 2050.0 (50/51) (0.11 s) •••••• 100%
                              sir: n infected
     sir: n susceptible
                                                     sir: n recovered
5000
                                                500
                       2000
    2000 2020 2040
                           2000
                                 2020 2040
                                                   2000
                                                         2020 2040
      sir: prevalence
                            sir: new infections
                                                    sir: cum infections
 0.5
                         250
 0.0
   2000
                2040
                           2000
                                 2020
                                       2040
                                                               2040
         2020
                                                   2000
                                                         2020
            Year
                                    Year
                                                           Year
          n alive
                                new deaths
                                                       cum deaths
5000 -
                         200
                                               2500
2500
    2000
         2020
                2040
                           2000
                                 2020
                                        2040
                                                   2000
                                                         2020
                                                               2040
            Year
                                    Year
                                                            Year
```

But we want ZOMBIES!!!

Zombie is an extension of the SIR disease that adds some important features:

- p_fast is the probability of zombie being fast, choosing 10% here based on my research. Fast zombies more contacts than slow zombies.
- dur_fast is the duration of a zombie being fast before reverting to slow, default 1000 years.

- dur_inf is the duration of zombie infection, default is 1000 years. Once a zombie, always a zombie!
- p_symptomatic is the probability of showing symptoms, default assumption is
- p_death_on_zombie_infection is the probability of death when converting to a zombie, 50% might be a bit high based on my research!

A deep meta-analysis of recent and historical literature reveals that there are at least three ways to become a zombie:

- 1. Be attacked by a zombie, and survive!
- 2. Die of natural causes and be transformed into a zombie upon death
- 3. Acquire zombiism congenitally through pre-natal transmission.

DeathZombies is an extension of the base **Deaths** demographic class that captures people at natural death and potentially makes them zombies

 p_zombie_on_natural_death is the probability of becoming a zombie on death due to natural causes

The **Pregnancy** and **MaternalNet** modules work together to simulate pregnancy, forming network connections between mothers and pre-birth children on which disease (zombie) transmission can occur.

We include an intervention, **KillZombies** that kills only *symptomatic* zombies at a rate of 0.5/year.

Configuring and running the simulation from 2024 to 2040 takes less than one second. Showing built-in plots, although it is easy to generate alternative figures stored in sim.results.

```
In []: people = ss.People(n_agents=5_000) # People, as before

# Configure and create an instance of the Zombie class
zombie_pars = dict(
    init_prev = 0.03,
    beta = {'random': 0.05, 'maternal': 10},
    p_fast = ss.bernoulli(p=0.1),
    p_death_on_zombie_infection = ss.bernoulli(p=0.25),
    p_symptomatic = ss.bernoulli(p=1.0),
)
zombie = Zombie(zombie_pars)

# This function allows the lambda parameter of the poisson distribution used # n_contacts to vary based on agent characteristics, a key feature of Starsi def choose_degree(self, sim, uids):
    mean_degree = np.full(fill_value=4, shape=len(uids)) # Default value is
```

```
is fast = (sim.diseases['zombie'].infected[uids]) & (sim.diseases['zombi
    mean degree[is fast] = 50 # Fast zombies get 50
    return mean degree
# We create two network layers, random and maternal
networks = [
    ss.RandomNet(n contacts=ss.poisson(lam=choose degree)).
    ss.MaternalNet()
# Configure and create demographic modules
death pars = dict(
   death_rate = 15, # per 1,000
   p_zombie_on_natural_death = ss.bernoulli(p=0.2),
deaths = DeathZombies(**death_pars)
births = ss.Pregnancy(fertility_rate=175) # per 1,000 women 15-49 annually
demog = [births, deaths]
# Create an intervention that kills symptomatic zombies
interventions = KillZombies(year=2024, rate=0.1)
# And finally bring everything together in a sim
sim pars = dict(start=2024, end=2040, dt=0.5, verbose=0)
sim = ss.Sim(sim pars, people=people, diseases=zombie, networks=networks, de
# Run the sim and plot results
sim.run()
sim.plot('zombie')
sim.plot('deathzombies');
```


But what do we actually know about zombies?

Empirical data on Zombies is sparse. Here we compare default assumptions (same as above) to several alternatives:

	Scenario Name	Configuration		
0	Default assumptions	Same as above		
1	More fast zombies	75% of zombies are fast, as opposed to 25%		
2	Fast>slow zombies	75% of zombies start fast, but slow down after about 2y		
3	Shorter infectious period	Zombies remain infectious for about 5y		
4	All zombies asymptomatic	Zombies are asymptomatic (hmm?!)		
5	Less death on zombie infection	10% die on zombie infection, down from 25%		
6	Half zombie on natural death	50% of natural deaths transform into a zombie		
7	REALLY BAD	A worst case scenario		

Define the scenarios

Now make a function that configures and runs a zombie

simulation, taking inputs from the user. When the run is complete, results are returned as a dataframe.

```
In [ ]: def run_zombies(scen, rand_seed, zombie_pars=None, death_pars=None, intvs=[]
            people = ss.People(n_agents=5_000) # People
            # Zombies
            zombie defaults = dict(
                init prev = 0.03.
                beta = {'random': 0.05, 'maternal': 10},
                p fast = ss.bernoulli(p=0.1),
                p_death_on_zombie_infection = ss.bernoulli(p=0.25),
                p_symptomatic = ss.bernoulli(p=1.0),
            zombie pars = sc.mergedicts(zombie defaults, zombie pars) # Override def
            zombie = Zombie(zombie pars)
            # Networks
            networks = [
                ss.RandomNet(n_contacts=ss.poisson(lam=choose_degree)),
                ss.MaternalNet()
            # Deaths
            death_defaults = dict(
                death_rate = 15, # per 1,000 per year
                p_zombie_on_natural_death = ss.bernoulli(p=0.2),
            death_pars = sc.mergedicts(death_defaults, death_pars)
            deaths = DeathZombies(**death_pars)
            # Births
            births = ss.Pregnancy(fertility_rate=175) # per 1,000 women 15-49 per ye
            demog = [births, deaths]
            # Interventions
            interventions = KillZombies(year=2024, rate=0.1)
            interventions = [interventions] + sc.promotetolist(intvs) # Add interver
            # Create and run the simulation
            sim_pars = dict(start=2024, end=2040, dt=0.5, rand_seed=rand_seed, label
            sim = ss.Sim(sim_pars, people=people, diseases=zombie, networks=networks
            sim.run()
            # Package results
            df = pd.DataFrame( {
                'Year': sim.yearvec,
                'Population': sim.results.n_alive,
                'Zombies': sim.results.zombie.n_infected,
                'Zombie Prevalence': sim.results.zombie.prevalence,
                'Congential Zombies (cum)': sim.results.zombie.cum_congenital,
                'Zombie-Cause Mortality': sim.results.zombie.cum_deaths,
```

```
df['rand_seed'] = rand_seed
df['Scen'] = scen
for key, val in kwargs.items():
    df[key] = val

return df
```

Now run all the scenarios in parallel, repeating each configuration 10 times.

```
In []: # Now run all the scenarios in parallel, repeating each configuration 10 tin
n_repeats = 10

results = []
cfgs = []

for skey, scen in scens.items():
    for rand_seed in range(n_repeats):
        cfgs.append({'scen': skey, 'rand_seed':rand_seed} | scen)

T = sc.tic()
results += sc.parallelize(run_zombies, iterkwargs=cfgs)
print(f'Completed {len(cfgs)} sims in {sc.toc(T, output=True):.1f}s')
df = pd.concat(results).replace(np.inf, np.nan)

# Display the top of the results data frame
display(df.head())
```

Completed 80 sims in 5.1s

S	rand_seed	Zombie- Cause Mortality	Congential Zombies (cum)	Zombie Prevalence	Zombies	Population	Year	
Def assumpti	0	51.0	2.0	0.027889	139.0	4984.0	2024.0	0
Def assumpti	0	62.0	6.0	0.031638	158.0	4994.0	2024.5	1
Def assumpti	0	68.0	7.0	0.034731	174.0	5010.0	2025.0	2
Def assumpti	0	76.0	10.0	0.039513	198.0	5011.0	2025.5	3
Def assumpti	0	95.0	14.0	0.047192	237.0	5022.0	2026.0	4

```
In []: # Manipulate the data and create a plot using the Seaborn library
    dfm = df.melt(id_vars=['Scen', 'Year', 'rand_seed'], value_vars=['Populatior
    g = sns.relplot(kind='line', data=dfm, col='Channel', x='Year', y='Value', b
```


That's alarming! What can we do to slow the spread of zombies?

Let's consider a vaccine intervention, and see how well it works in each scenario.

```
In []: # Create a vaccine intervention
antizombie_vx = zombie_vaccine(efficacy = 0.95)
vx_intv = ss.campaign_vx(
    product = antizombie_vx,
    years = [2028], # Begin year
    prob = [0.6], # Coverage
)

# Revise scenarios to see impact of the vaccine
scens_vx = {}
for skey, scen in scens.items():
    scens_vx[skey] = scen.copy()
    scens_vx[skey]['intvs'] = [vx_intv]
```

```
In []: results = []
```

```
cfgs = []
          for skey, scen in scens_vx.items():
               for rand_seed in range(n_repeats):
                    cfgs.append({'scen': skey,'rand_seed':rand_seed} | scen) # Merge did
          T = sc.tic()
          results += sc.parallelize(run_zombies, iterkwargs=cfgs)
          print(f'That took: {sc.toc(T, output=True):.1f}s')
          df_vx = pd.concat(results)
          # Combine results
          df['Vx'] = False
          df_vx['Vx'] = True
          df_all = pd.concat([df, df_vx])
         That took: 5.0s
In [ ]: dfm = df_all.melt(id_vars=['Scen', 'Vx', 'Year', 'rand_seed'], value_vars=['
          g = sns.relplot(kind='line', data=dfm, col='Channel', x='Year', y='Value', h
                                                              Channel = Zombies
                        Channel = Population
          5500
          5000
          4000
                                                1000
          2500
                                                                                        More fast zombies
                                                                                     Fast-->Slow zombies
          2000
                                                                                        Shorter infectious period
All zombies asymptomatic
                     Channel = Zombie Prevalence
                                                         Channel = Zombie-Cause Mortality
                                                                                     - Less death on zombie infection
                                                                                        Half zombie on natural death
                                                                                     - REALLY BAD
                                                                                     — False
             2024 2026 2028 2030 2032 2034 2036 2038 2040
                                                   2024 2026 2028 2030 2032 2034 2036 2038 2040
```

How many lives are we saving with vaccine?

```
In []: dfp = df_all.pivot(index=['Year', 'Scen', 'rand_seed'], columns='Vx', values
```


We can also look at multiplie zombie "variants"

- Separate fast and slow zombies in to separate diseases
- Being infected with one gives immunity to the other, using a "connector"
- Main difference is that fast (slow) create new fast (slow) zombies on infection, instead of just random

```
In []: def run_multizombie(rand_seed):
    people = ss.People(n_agents=5_000) # People

# Start with parameters for slow zombies
    slow_zombie_pars = dict(
        init_prev = 0.03,
        beta = {'random': 0.05, 'maternal': 10},
        p_fast = ss.bernoulli(p=0), # <--- Notice NONE are fast
        p_death_on_zombie_infection = ss.bernoulli(p=0.25),
        p_symptomatic = ss.bernoulli(p=1.0),
)
    slow_zombie = Zombie(slow_zombie_pars, name='slow_zombie')

# Now create fast zombies
    fast_zombie_pars = slow_zombie_pars.copy()
    fast_zombie_pars['p_fast'] = ss.bernoulli(p=1) # <-- Notice ALL are fast
    fast_zombie = Zombie(fast_zombie_pars, name='fast_zombie')</pre>
```

```
zombies = [fast zombie, slow zombie]
connector = ZombieConnector() # Interaction between slow and fast zombie
def choose_degree(self, sim, uids):
   mean degree = np.full(fill value=4, shape=len(uids))
   is_fast = ((sim.diseases['fast_zombie'].infected[uids]) & (sim.disea
           ((sim.diseases['slow_zombie'].infected[uids]) & (sim.diseas€
   mean_degree[is_fast] = 50
    return mean_degree
networks = [
   ss.RandomNet(n_contacts=ss.poisson(lam=choose_degree)),
   ss.MaternalNet()
death_pars = dict(
   death_rate = 15, # per 1,000 per year
   p_zombie_on_natural_death = ss.bernoulli(p=0.2),
deaths = DeathZombies(**death_pars)
births = ss.Pregnancy(fertility_rate=175) # per 1,000 women 15-49 per ye
demog = [births, deaths]
killzombies = KillZombies(year=2024, rate=0.1)
sim pars = dict(start=2024, end=2040, dt=0.5, rand seed=rand seed, label
sim = ss.Sim(sim_pars, people=people, diseases=zombies, networks=network
sim.run()
# Package results by zombie speed
dfs = []
for speed in ['Fast', 'Slow']:
    res = sim.results.fast zombie if speed == 'Fast' else sim.results.sl
   df = pd.DataFrame( {
        'Year': sim.yearvec,
        'Number of Zombies': res.n_infected,
        'Prevalence': res.prevalence,
        'Zombie-Cause Mortality': res.cum_deaths,
   df['rand_seed'] = rand_seed
   df['Speed'] = speed
   dfs.append(df)
return pd.concat(dfs)
```

Run variant simulations and plot results

```
In []: T = sc.tic()
    results = sc.parallelize(run_multizombie, iterkwargs={'rand_seed':range(n_re
    print(f'That took: {sc.toc(T, output=True):.1f}s')
    df = pd.concat(results)
```

That took: 0.9s

```
In []: # Manipulate the data and create a plot using the Seaborn library

ch = df.columns.drop(['Year', 'Speed', 'rand_seed'])

dfm = df.melt(id_vars=['Year', 'Speed', 'rand_seed'], value_vars=ch, var_nam

g = sns.relplot(kind='line', data=dfm, col='Channel', hue='Speed', x='Year',

Channel - Number of Zombies

Channel - Number of Zombies

On the Chann
```

Thanks!