#### Reinforcement Learning China Summer School



### Learning with Sparse Rewards

Jianye Hao Noah's Ark Lab/Tianjin University

Aug 3th, 2020

### Learning with Sparse Rewards

- From Sparse to Dense
  - Reward Learning/Shaping
    - leveraging expert/good trajectory to learn optimal reward signals (SGAIL/Multiagent GSAIL)
    - generate intrinsic rewards to encourage better explorations (exploration-oriented intrinsic rewards)
  - Temporal/spatial credit assignment (single-agent/multiagent settings)
    - Decompose sparse termination reward into previous time steps (single-agent credit assignment)
    - Decompose global rewards into individual agents (multiagent credit assignment)

- Task hierarchical decomposition (hierarchical RL)
  - Decompose original tasks into discrete/continuous subtasks to provide dense rewards
  - High-level: MDP->Semi-MDP; Low-level: receive reward feedbacks from subgoals

## Learning with Sparse Rewards

- From Sparse to Dense
  - Reward Learning/Shaping (SGAIL/Multiagent SGAIL, exploration-oriented intrinsic rewards)

Temporal/spatial credit assignment (single-agent/multiagent settings)

Task hierarchical decomposition (hierarchical RL)

Policy: generator

Reward Function: Discriminator



• The objective of GAIL is defined as:

$$\underset{\theta}{\operatorname{argmin}} \underset{\phi}{\operatorname{argmax}} \mathcal{L}_{\operatorname{GASIL}}(\theta, \phi) = E_{\pi_{\theta}} [\log D_{\phi}(s, a)] + E_{\pi_{E}} \left[ \log \left( 1 - D_{\phi}(s, a) \right) \right] - \lambda H(\pi_{\theta})$$

 The discriminator and the policy plays an adversarial game by maximizing or minimizing the above objective function

$$\nabla_{\phi} \mathcal{L}_{GAIL} = \mathbb{E}_{\tau_{\pi}} \left[ \nabla_{\phi} \log D_{\phi}(s, a) \right] + \mathbb{E}_{\tau_{E}} \left[ \nabla_{\phi} \log \left( 1 - D_{\phi}(s, a) \right) \right]$$

$$\begin{aligned} \nabla_{\theta} \mathcal{L}_{GAIL} &= \mathbb{E}_{\tau_{\pi}} \big[ \nabla_{\theta} \log D_{\phi}(s, a) \big] - \lambda \nabla_{\theta} \mathcal{H}(\pi_{\theta}) \\ &= \mathbb{E}_{\tau_{\pi}} \big[ \nabla_{\theta} \log \pi_{\theta} (a \mid s) Q(s, a) \big] - \lambda \nabla_{\theta} \mathcal{H}(\pi_{\theta}) \end{aligned}$$

$$Q(s,a) = \mathbb{E}_{\tau_{\pi}}[\log D_{\phi}(s,a) \mid s_0 = s, a_0 = a]$$

#### Algorithm 1 Generative adversarial imitation learning

- 1: **Input:** Expert trajectories  $\tau_E \sim \pi_E$ , initial policy and discriminator parameters  $\theta_0, w_0$
- 2: **for**  $i = 0, 1, 2, \dots$  **do**
- 3: Sample trajectories  $\tau_i \sim \pi_{\theta_i}$
- 4: Update the discriminator parameters from  $w_i$  to  $w_{i+1}$  with the gradient

$$\hat{\mathbb{E}}_{\tau_i}[\nabla_w \log(D_w(s, a))] + \hat{\mathbb{E}}_{\tau_E}[\nabla_w \log(1 - D_w(s, a))]$$
(17)

5: Take a policy step from  $\theta_i$  to  $\theta_{i+1}$ , using the TRPO rule with cost function  $\log(D_{w_{i+1}}(s,a))$ . Specifically, take a KL-constrained natural gradient step with

$$\hat{\mathbb{E}}_{\tau_i} \left[ \nabla_{\theta} \log \pi_{\theta}(a|s) Q(s,a) \right] - \lambda \nabla_{\theta} H(\pi_{\theta}),$$
where  $Q(\bar{s}, \bar{a}) = \hat{\mathbb{E}}_{\tau_i} \left[ \log(D_{w_{i+1}}(s,a)) \mid s_0 = \bar{s}, a_0 = \bar{a} \right]$ 
(18)

6: end for

- Generative Adversarial Self-Imitation Learning (GSAIL)
  - Imitate past good trajectories that the agent has generated using generative adversarial imitation learning framework
  - Solves the temporal credit assignment problem- make long-term temporal credit assignment easier when reward signal is delayed and sparse
  - Discriminator reward shaping function: providing dense internal rewards for the agent to reproduce relatively better trajectories



- Update good trajectory buffer
  - Maintain a good trajectory buffer with high-reward trajectories in the past
  - High-reward trajectories: rewards higher than that of the current policy (top-K episodes according to the return)
  - Update discriminator and policy

$$\underset{\theta}{\operatorname{argmin}} \underset{\phi}{\operatorname{argmax}} \mathcal{L}_{\operatorname{GASIL}}(\theta, \phi) = \mathbb{E}_{\tau_{\pi}}[log D_{\phi}(s, a)] + \mathbb{E}_{\tau_{E} \sim \mathcal{B}}[log (1 - D_{\phi}(s, a))] - \lambda \mathcal{H}(\pi_{\theta})$$

#### Algorithm 1 Generative Adversarial Self-Imitation Learning

Initialize policy parameter  $\theta$ 

Initialize discriminator parameter  $\phi$ 

Initialize good trajectory buffer  $\mathcal{B} \leftarrow \emptyset$ 

for each iteration do

Sample policy trajectories  $\tau_{\pi} \sim \pi_{\theta}$ 

Update good trajectory buffer  $\mathcal{B}$  using  $\tau_{\pi}$ 

Sample good trajectories  $\tau_E \sim \mathcal{B}$ 

Update the discriminator parameter  $\phi$  via gradient ascent with:

$$\nabla_{\phi} \mathcal{L}_{GASIL} = \mathbb{E}_{\tau_{\pi}} \left[ \nabla_{\phi} \log D_{\phi}(s, a) \right] + \mathbb{E}_{\tau_{E}} \left[ \nabla_{\phi} \log (1 - D_{\phi}(s, a)) \right]$$
 (8)

Update the policy parameter  $\theta$  via gradient descent with:

$$\nabla_{\theta} \mathcal{L}_{\text{GASIL}} = \mathbb{E}_{\tau_{\pi}} \left[ \nabla_{\theta} \log \pi_{\theta}(a|s) Q(s,a) \right] - \lambda \nabla_{\theta} \mathcal{H}(\pi_{\theta}),$$
where  $Q(s,a) = \mathbb{E}_{\tau_{\pi}} \left[ \log D_{\phi}(s,a) | s_0 = s, a_0 = a \right]$ 
(9)

end for

- Connection to reward learning
  - The discriminator serves as the reward function that the policy optimize over  $-\log D_{\phi}(s,a)$
  - The policy is updated to maximize the sum of rewards provided by the discriminator
  - It can be viewed as an instance of optimal reward learning algorithm since D is also learning
  - Provide dense reward to the policy when the environment reward is spares or delayed.

- Connection to reward shaping
  - GSAIL can be combined with policy gradient

$$\nabla_{\theta} J_{\text{PG}} - \alpha \nabla_{\theta} \mathcal{L}_{\text{GASIL}} = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta} (a \mid s) \hat{A}_{t}^{\alpha}]$$

where  $\hat{A}^{\alpha}_t$  is an advantage estimation using a modified reward function  $r^{\alpha}(s,a) \triangleq r(s,a) - \alpha log D_{\phi}(s,a)$ 

ullet Intuitively D is used to shape the reward function to encourage the policy to imitate good trajectories.





Delayed versions of OpenAI Gym MuJoCo tasks



- Independent Multiagent Learning Challenges
  - sparse and delayed rewards
  - Each agent only has local observations during both both learning and execution (Independent Training and Decentralized execution)
  - The environment is highly dynamic and non-stationary (exploration of others), and can easily converge to sub-optimal stable solutions (shadowed equilibrium)

| (a) Climbing game |   |         |     | (b) Penalty game |         |   |         |   |    |
|-------------------|---|---------|-----|------------------|---------|---|---------|---|----|
|                   |   | Agent 2 |     |                  |         |   | Agent 2 |   |    |
|                   |   | a       | b   | c                |         |   | a       | b | c  |
| €.                | a | 11      | -30 | 0                |         | a | 10      | 0 | k  |
| Agent 1           | b | -30     | 7   | 6                | Agent 1 | b | 0       | 2 | 0  |
|                   | C | 0       | 0   | 5                |         | c | k       | 0 | 10 |



#### • Sub-curriculum experience replay

- Help the independent agents to collect the past useful experiences/skills.
- Good trajectory: maintain a good trajectory buffer with high-reward trajectories in the past (top-k; difficult in practice)
- an agent's learning process: easier task → harder task



The sub-trajectory with a total reward +5 still demonstrates some useful behaviors.

#### Sample Inefficiency in GAIL

- MuJoCo: GAIL requires ~200 expert frame transitions and millions of policy frame transitions sampled from the environment
- For each agent i, instead of sampling trajectories from the current policy directly, we sample transitions from the replay buffer  $R_i$  collected while performing offpolicy training:

$$\min_{\theta} \max_{w} \widehat{\mathbb{E}}_{(s,a) \sim \pi_{E}^{i}} [log(D_{w_{i}}(s,a))] +$$

$$\widehat{\mathbb{E}}_{(s,a) \sim R_{i}} [log(1 - D_{w_{i}}(s,a))] - \lambda_{H} H(\pi_{\theta}^{i})$$



- Imitation reward function design
  - log(D(s,a)): is always negative and provides a per step penalty which drives the agent to exit from the environment earlier.
  - $-\log(1-D(s,a))$ : is always positive and potentially provides a survival bonus which drives the agent to survive longer in the environment to collect more rewards.

$$r_{imit}(s, a) = log(D(s, a)) - log(1 - D(s, a))$$
 $r'(s, a) = r + \lambda_{imit} * r_{imit}(s, a)$ 
Env reward Imitation reward

Predator-prey game





#### StarCraft Game

| Map  | Heur. | IAC | IAC+PER | COMA | IGASIL |
|------|-------|-----|---------|------|--------|
| 5 M  | 66    | 45  | 85      | 81   | 96     |
| 2d3z | 63    | 23  | 76      | 47   | 87     |







Cooperative Rowing





**MADDPG** 

**Independent DDPG** 

On-policy vs. off-policy



Sub-trajectory replay buffer



Independent Generative Adversarial Self-Imitation Learning, AAMAS'19

## Learning with Sparse Rewards

- From Sparse to Dense
  - Reward Learning/shaping (SGAIL/Multiagent SGAIL, exploration-oriented intrinsic rewards)

• Temporal/spatial credit assignment (single-agent/multiagent settings)

Task hierarchical decomposition (hierarchical RL)

## Credit Assignment

- Temporal credit assignment (single-agent settings)
  - Decompose the return of an episode backpropagated into earlier time steps

- Spatial credit assignment (multiagent settings)
  - Decompose the global reward into individual agents according to their contributions.

#### Attribution Method

- How to evaluate feature importance
  - Gradients do not reflect feature importance
  - $\forall i,j: \mathcal{P}^L_{i,j}(img) ::= \Sigma_{c \in \{R,G,B\}} |\nabla lncp^L_{i,j,c}(img)|$  where  $\nabla lncp^L_{i,j,c}(img)$  stands for the gradient of a specific pixel(i,j) and color channel  $c \in \{R,G,B\}$



Top label: reflex camera Score: 0.993755







Top label: reflex camera

Score: 0.996577



(a) Original image.

(b) Ablated image.

### Attribution Method

We create counterfactual images as follows:

$$\alpha Img := \{ \alpha \mid img \mid 0 \le \alpha \le 1 \}$$

• We compute the interior gradients of those counterfactual images:  $InteriorGrads(img) := \{ \nabla ln \ cp(\alpha Img) \mid 0 \le \alpha \le 1 \}$ 



(a) Softmax score for top label



(b) Pre-softmax score for top label



Top label: reflex camera Score: 0.993755



Input image and trend of the pixel importance scores obtained from interior gradients.

#### Attribution Method

• The interior gradients along the color dimension are aggregated:  $Interior Pixel Importance \ (img) ::= \{P(\alpha img) \mid 0 \le \alpha \le 1\}$ 



## Integrated Gradients

A smooth function specifying the set of counterfactuals

$$\tau = (\tau_1, \dots, \tau_n) \colon [0,1] \to \mathbb{R}^n$$

• The integrated gradient along the  $i^{th}$  dimension for input  $x \in \mathbb{R}^n$  is defined as follow.

$$c_{j} = PathIG_{j}^{\tau}(\vec{x}) ::= \int_{\alpha=0}^{1} \frac{\partial F(\tau(\alpha))}{\partial \tau_{i}(\alpha)} \frac{\partial \tau_{i}(\alpha)}{\partial \alpha} d\alpha$$

where  $\frac{\partial F(x)}{\partial x_i}$  is the gradient of F along the  $i^{th}$  dimension at x.

- Additivity property
  - If  $F: R^n$  is differentiable almost everywhere, and  $\tau: [0,1] \to R^n$  is smooth

$$\Sigma_{i=1}^n PathIG_i^{\tau}(\vec{x}) ::= F(\tau(1)) - F(\tau(0))$$

### Integrated Gradients

 An attribution method to understand the influence of each input feature to the network output values

$$c_j = PathIG_j^{\tau}(\vec{x}) ::= \int_{\alpha=0}^1 \frac{\partial F(\tau(\alpha))}{\partial \tau_i(\alpha)} \frac{\partial \tau_i(\alpha)}{\partial \alpha} d\alpha$$

where  $\frac{\partial F(x)}{\partial x_i}$  is the gradient of F along the  $i^{th}$  dimension at x.

 In CV or NLP areas, zero embedding vector is usually used as baseline and a straight line is used as the path

$$c_{j} = IG_{j}^{\tau}(\vec{x}) ::= (\vec{x}_{j} - \vec{b}_{j}) \int_{\alpha=0}^{1} \frac{\partial F(\tau(\alpha))}{\partial \tau_{j}(\alpha)} d\alpha ; \quad \tau(\alpha) = \vec{b} + \alpha(\vec{x} - \vec{b})$$

### Integrated Gradients

- Apply integrated gradients to sequential models
  - NLP example: given a sequence of input words, and the softmax prediction for the next word, we want to identify the importance of the preceding words for the score.
  - Saturation phenomenon also exists in LSTM models
  - Can be easily applied to temporal reward assignment in single-agent RL



Saturation phenomenon

### Multiagent Credit Assignment

- Multiagent counterfactual baseline
  - Difference rewards:  $D^a = r(s, \mathbf{u}) r(s, (\mathbf{u}^{-a}, c^a))$
  - typically require access to a simulator in order to estimate  $r(s, (\mathbf{u}^{-a}, c^a))$
  - can use functional approximators to estimate instead

$$A^{a}(s, \mathbf{u}) = Q(s, \mathbf{u}) - \sum_{u'^{a}} \pi^{a}(u'^{a}|\tau^{a})Q(s, (\mathbf{u}^{-a}, u'^{a}))$$

### Multiagent Credit Assignment

#### Centralized training and decentralized execution



<u>Difference rewards idea naturally fits DRL framework, but performs poorly in complex multiagent learning scenarios!</u>

- top block: the centralized critic with a multichannel modular design
- middle block: applying the Q-value path decomposition technique to achieve credit assignments on the agent level
- **bottom block**: the individual-agent network architecture implemented by the recurrent deep Q-network.



- Agents can be organized into different groups considering the heterogeneous features of the system (agents in the same group are homogeneous).
- Multiple channel within each group to capture different aspect of features
- parameter sharing for homogeneous agents in the same group



Multi-channel global critic framework

ullet The global Q-value can be decomposed into the following

$$Q_{tot}(\overrightarrow{o}_t, \overrightarrow{a}_t) = \sum_{x_j \in \mathbb{X}_1} PathIG_j^{\tau_i^T}(\overrightarrow{o}_t, \overrightarrow{a}_t) + \dots + \sum_{x_j \in \mathbb{X}_1} PathIG_j^{\tau_i^T}(\overrightarrow{o}_t, \overrightarrow{a}_t)$$

ullet And each component can be attributed as individual Q for each agent

$$Q^{i}(\overrightarrow{o}_{t}, \overrightarrow{a}_{t}) \approx \sum_{x_{j} \in \mathbb{X}_{i}} PathIG_{j}^{\tau_{i}^{T}}(\overrightarrow{o}_{t}, \overrightarrow{a}_{t})$$

• Additivity Proposition 1. If  $F: \mathbb{R}^d \to \mathbb{R}$  is differentiable almost everywhere

$$\sum_{j=1}^{|\vec{x}|} IG_j^{\tau}(\vec{x}) = F(\vec{x}) - F(\vec{b})$$

• Theorem 1. Let  $\tau_t^T$  represents the joint observation and action trajectory from t to the termination step T, then

$$Q_{tot}\left(\vec{o}_t, \vec{a}_t\right) = \sum_{i=1}^{n} \sum_{x_i \in \mathbb{X}_i} PathIG_j^{\tau_t^T}(\vec{o}, \vec{a})$$

**Proof.** Let  $\overrightarrow{x_t}$  represents the feature vector  $(\overrightarrow{o_t}, \overrightarrow{a_t})$  concisely.  $\tau_t^T$  is composed of  $(\tau_t^{t+1}, \tau_{t+1}^{t+2}, ..., \tau_{T-1}^T)$ , where  $\tau_t^{t+1}$  is the straight line path from  $(\overrightarrow{o_t}, \overrightarrow{a_t})$  to  $(\overrightarrow{o_{t+1}}, \overrightarrow{a_{t+1}})$ 

$$\begin{aligned} Q_{tot}\left(\overrightarrow{o}_{t},\overrightarrow{a}_{t}\right) &= Q_{tot}\left(\overrightarrow{x}_{t}\right) = Q_{tot}\left(\overrightarrow{x}_{t}\right) - Q_{tot}\left(\overrightarrow{x}_{T}\right) \\ &= Q_{tot}\left(\overrightarrow{x}_{t}\right) - Q_{tot}\left(\overrightarrow{x}_{t+1}\right) + Q_{tot}\left(\overrightarrow{x}_{t+1}\right) - Q_{tot}\left(\overrightarrow{x}_{t+2}\right) + \dots + Q_{tot}(\overrightarrow{x}_{T-1}) - Q_{tot}(\overrightarrow{x}_{T}) \\ &= \sum_{j=1}^{|\overrightarrow{x}_{t}|} IG_{j}^{\tau_{t}^{t+1}}(\overrightarrow{x}) + \sum_{j=1}^{|\overrightarrow{x}_{t}|} IG_{j}^{\tau_{t+1}^{t+2}}(\overrightarrow{x}) + \dots + \sum_{j=1}^{|\overrightarrow{x}_{t}|} IG_{j}^{\tau_{T-1}^{T}}(\overrightarrow{x}) \\ &= PathIG_{j=1}^{\tau_{t}^{T}}(\overrightarrow{x}) + PathIG_{j=2}^{\tau_{t}^{T}}(\overrightarrow{x}) + \dots + PathIG_{j=|\overrightarrow{x}_{t}|}^{\tau_{t}^{T}}(\overrightarrow{x}) \\ &= \sum_{x_{j} \in X_{1}} PathIG_{j}^{\tau_{t}^{T}}(\overrightarrow{x}) + \sum_{x_{j} \in X_{2}} PathIG_{j}^{\tau_{t}^{T}}(\overrightarrow{x}) + \dots + \sum_{x_{j} \in X_{n}} PathIG_{j}^{\tau_{t}^{T}}(\overrightarrow{x}) \\ &= \sum_{i=1} \sum_{x_{i} \in X_{i}} PathIG_{j}^{\tau_{t}^{T}}(\overrightarrow{x}) = \sum_{i=1} \sum_{x_{i} \in X_{i}} PathIG_{j}^{\tau_{t}^{T}}(\overrightarrow{o}, \overrightarrow{a}) \end{aligned}$$



Table 1. Median and mean performance of the test win percentage.

| Map -  | IQL             |                | COMA            |                | QMIX            |                | QTRAN           |                | QPD             |                |
|--------|-----------------|----------------|-----------------|----------------|-----------------|----------------|-----------------|----------------|-----------------|----------------|
|        | $\widetilde{m}$ | $\overline{m}$ |
| 3m     | 100             | 97             | 91              | 92             | 100             | 99             | 100             | 100            | 95              | 92             |
| 8m     | 91              | 90             | 95              | 94             | 100             | 96             | 100             | 97             | 94              | 93             |
| 2s3z   | 39              | 42             | 66              | 64             | 100             | 97             | 77              | 80             | 95              | 94             |
| 3s5z   | 0               | 3              | 0               | 0              | 16              | 25             | 0               | 4              | 85              | 81             |
| 1c3s5z | 7               | 8              | 30              | 30             | 89              | 89             | 31              | 33             | 92              | 92             |
| 3s5z   |                 |                |                 |                |                 |                |                 |                |                 |                |
| _VS_   | 0               | 0              | 0               | 0              | 0               | 0              | 0               | 0              | 8               | 10             |
| 3s6z   |                 |                |                 |                |                 |                |                 |                |                 |                |

### Learning with Sparse Rewards

- From Sparse to Dense
  - Reward Learning/Shaping (SGAIL/Multiagent SGAIL, exploration-oriented intrinsic rewards)

Temporal/spatial credit assignment (single-agent/multiagent settings)

• Task hierarchical decomposition (hierarchical RL)

### Temporal Abstracted Hierarchical Execution

- Basic model—Two levels of hierarchy:
  - High level:
    - High level policy:  $g_t \sim \pi^{hi}(s_t)$
    - The high level policy receives state  $s_t$  then chooses an abstracted action  $g_t \in G$ , where G denotes the set of all possible current abstracted actions (e.g., skills/sub-policies/options/goals).
    - The high level aims to maximize the rewards from environment directly, i.e., extrinsic rewards.
  - Low level:
    - Low level policy:  $a_t \sim \pi^{lo}(s_t, g_t)$
    - The low level policy receives state  $s_t$  and  $g_t$  then takes a primitive action  $a_t$ , while results in a new state  $s_{t+1}$ .
    - The low level is expected to accomplish subtasks or achieve goals from high level.
  - Both high level and low level can use RL algorithms to realize (e.g. DQN, PPO, DDPG, TD3)
  - The hierarchy can be deeper (i.e., more than 2 levels)



## Low-level Policy Acquisition in HRL

- Learning from Intrinsic Reward:
  - Intrinsic reward are designed to guide the low-level policy to accomplish specific subtasks or achieve the give goals
  - Common designs:
    - Termination predicates: rewards are obtained only when success
      - 1 for accomplishment and 0 for otherwise
    - Goal-distance intrinsic reward: penalize the low-level policy according to the distance to the given goal (in continuous space)
      - $r(s_t, g_t, a_t, s_{t+1}) = -||s_t + g_t s_{t+1}||_2$
- Skill/Option discovery:
  - Discover effective and diverse skills (i.e., sub-policies/options) in unsupervised learning manner (Campos et al. 2020)
- Others
  - E.g., reuse from other tasks (transfer), manually design

# Hierarchical Deep Reinforcement Learning

#### HDRL Categories:

- Discrete temporal abstraction/Option architecture
  - Learn/design discrete abstracted actions (e.g., skills/sub-policies/options) from lower-level actions (e.g., primitive actions)
  - Learn higher-level controllers that manipulate among abstracted actions (e.g., skills, options)
- Continuous goal-oriented architecture
  - Design/learn continuous goal (representation) space that represents target states (in latent space) for lower-level policies
  - Learn higher-level policies among goal (representation) space that direct lower-level execution
- Hierarchical MARL
  - Incorporate temporal abstraction in MARL
  - Learn to cooperate through hierarchical policies of multiple agents

### H-DQN

- Motivation:
  - Solve tasks with sparse and delayed feedback from complex environments
- Key ideas:
  - Temporal abstraction
    - Two levels of DQN controllers executed at different time scales
  - Intrinsic motivation
    - Termination predicates are used as intrinsic reward function for low-level learning



### H-DQN

- Meta-Controller Learning (high level):
  - $Q_2^*(s,g) = \max_{\pi_g} \mathbb{E}[\sum_{t'=t}^{t+N} f_{t'} + \gamma \max_{g'} Q_2^*(s_{t+N},g') \mid s_t = s, g_t = g, \pi_g]$
  - $\nabla_{\theta_{2,i}} L_2(\theta_{2,i}) = \mathcal{E}_{(s_t, g_t, f_t, s_{t+N} \sim D_2)} \left[ \left( \sum_{t'=t}^{t+N} f_{t'} + \gamma \max_{g'} Q_2(s_{t+N}, g'; \theta_{2,i-1}) Q_2(s_t, g_t; \theta_{2,i}) \right) \nabla_{\theta_{2,i}} Q_2(s_t, g_t; \theta_{2,i}) \right]$
- Controller Learning (low level):
  - $\begin{aligned} \bullet & \ Q_1^*(s,a;g) = \max_{\pi_{ag}} & \ E[\sum_{t'=t}^{\infty} \ \gamma^{t'-t} r_{t'} \mid s_t = s, a_t = a, g_t = g, \pi_{ag}] \\ & = \max_{\pi_{ag}} & \ E[r_t + \gamma \max_{a_{t+1}} Q_1^*(s_{t+1}, a_{t+1};g) \mid s_t = s, a_t = a, g_t = g, \pi_{ag}] \end{aligned}$
  - $\nabla_{\theta_{1,i}} L_1(\theta_{1,i}) = \mathcal{E}_{(s,a,r,s'\sim D_1)}[(r + \gamma \max_{a'} Q_1(s',a';\theta_{1,i-1},g) Q_1(s,a;\theta_{1,i},g))\nabla_{\theta_{1,i}} Q_1(s,a;\theta_{1,i},g)]$



### D-DQN

### Montezuma's Revenge

(b)









(a) Total extrinsic reward

Success % of different goals over time

### **HIRO**

#### • Motivation:

- Reduce the dependence on careful task-specific design to improve generality and scalability
- Use off-policy learning for both higher and lower-level training for higher sample efficiency

#### • Structure:

- A high-level policy as a goal sender among predefined continuous goal space
- A goal-conditioned low-level policy as goal reacher





- 1. Collect experience  $s_t, g_t, a_t, R_t, \ldots$
- 2. Train  $\mu^{lo}$  with experience transitions  $(s_t, g_t, a_t, r_t, s_{t+1}, g_{t+1})$  using  $g_t$  as additional state observation and reward given by goal-conditioned function  $r_t = r(s_t, g_t, a_t, s_{t+1}) = -||s_t + g_t s_{t+1}||_2$ .
- 3. Train  $\mu^{hi}$  on temporally-extended experience  $(s_t, \tilde{g}_t, \sum R_{t:t+c-1}, s_{t+c})$ , where  $\tilde{g}_t$  is relabelled high-level action to maximize probability of past low-level actions  $a_{t:t+c-1}$ .
- 4. Repeat.

### HIRO - Method

- High-level Off-policy Correction:
  - Instability issues: the changing behavior of the lower-level policy creates a non-stationary problem for the higher-level policy in the hierarchy: the transition function of higher-level changes as the lower-level policy updates
  - The instability issue makes it difficult to jointly learn multiple levels of policies
  - The high-level action  $g_t$  which in the past induced a low-level behavior may be re-labeled to a goal  $\widetilde{g}_t$  which is mostly likely to induce the same low-level behavior with the current instantiation of the lower-level policy.

$$\log \pi^{\text{lo}'}(a_{t:t+c-1}|s_{t:t+c-1},\widetilde{g_{t:t+c-1}}) \propto -\frac{1}{2}\sum_{i=t}^{t+c-1}||a_i-\pi^{\text{lo}'}(s_i,\widetilde{g_i})||_2^2 + const$$

### HIRO

### Empirical Insights

- Pre-training is beneficial for simpler and homogeneous tasks (ant gather), but is harmful for complex tasks since these tasks requires specialization in different low-level behaviors for different stages of the navigation.
- Off-policy correction is significant for harder tasks as well.



- Motivation:
  - Overcome the instability issues of jointly learning multiple levels (>2) of hierarchical policies
- Structure:
  - The controller input at the top level issues a action (i.e., goal for lower level) to achieve the environment goal
  - The middle level then chooses actions (i.e., middle level goals) to reach the goal issued by higher level
  - Finally, the **bottom level** chooses a series of actions (i.e., primitive actions) according to middle level goals





- Hindsight action transition
  - the high level of the robot would receive the hindsight action transition [initial state = s0, action = s1, reward = -1, next state = s1, goal = yellow flag, discount rate =  $\gamma$ ]



Andrew Levy et al., Learning Multi-Level Hierarchies with Hindsight. ICLR 2019

- Hindsight action transition
  - the hindsight action transition created for the second action by  $\pi_1$  would be [initial state = s1, action = s2, reward = -1, next state = s2, goal = yellow flag, discount rate =  $\gamma$ ]



Andrew Levy et al., Learning Multi-Level Hierarchies with Hindsight. ICLR 2019



- Hindsight goal transition
  - Guarantee that after every sequence of actions by each level in the hierarchy, that level receives a transition containing the sparse reward.
  - An Example (H = 5 primitive actions)
  - H = 0: [initial state = s0, action = joint torques, reward = -1, next state = first tick mark, goal = g0, discount rate =  $\gamma$ ]
  - H' = 0: [initial state = s0, action = joint torques, reward = TBD, next state = first tick mark, goal = TBD, discount rate =  $\gamma$ ]

. . . . . .

- H = 5: [initial state = 4th tick mark, action = joint torques, reward = -1, next state = s1, goal = g0, discount rate = 0]
- H' = 5: [initial state = 4th tick mark, action = joint torques, reward = TBD, next state = s1, goal = TBD, discount rate = 0]
- After applying hindsight goal transition: H = 5: [initial state = 4th tick mark, action = joint torques, reward = 0, next state = s1, goal = s1, discount rate = 0]

- Hindsight goal transition
  - For high level: based on copies of hindsight action transitions.
  - [initial state = s0, action = s1, reward = -1, next state = s1, goal = yellow flag, discount rate =  $\gamma$ ]  $\rightarrow$  [initial state = s0, action = s1, reward = -1, next state = s1, goal = s5, discount rate =  $\gamma$ ]
  - [initial state = s4, action = s5, reward = -1, next state = s5, goal = yellow flag, discount rate =  $\gamma$ ]  $\rightarrow$  [initial state = s4, action = s5, reward = 0, next state = s5, goal = s5, discount rate = 0]

### Empirical Insights

- Benefit from learning multiple hierarchy in parallel and increase levels can boost learning performance
- HAC performs better than HIRO due to the use of different off-policy correction method (delay in waiting for the lower level policy to learn)



Discrete tasks: grid world environments Continuous tasks: robotics control in MuJoCo



# Hierarchical Deep Multiagent Learning



# Hierarchical Deep Multiagent Learning

- Augmented Concurrent Experience Replay
  - Coordinate agents policy update
  - Improve high-level sparse experience

- Low-level Parameter Sharing
  - Support the learning of specialized skills
  - Improve sample efficiency and facilitate training process





# Hierarchical Deep Multiagent Learning







### Other Works of HRL with Discrete Temporal Abstraction

- Bacon et al., The Option-Critic Architecture, AAAI 2018
  - Learn option architecture autonomously in an end-to-end fashion through Intra-Option Policy Gradients and Termination Gradients
- Harb et al., When Waiting Is Not an Option: Learning Options With a Deliberation Cost, AAAI 2018
  - Leverage the bounded rationality framework to improve the learning of the Option-Critic architecture
- Rafati et al., Learning Representations in Model-Free Hierarchical Reinforcement Learning, AAAI 2019
  - Automatically discover effective goals based on Anomaly Detection and K-Means Clustering
- Wu et al., Model Primitive Hierarchical Lifelong Reinforcement Learning, AAMAS 2019
  - Use diverse suboptimal world models to decompose complex task into sub-policies and learn to reuse sub-policies in life-long learning
- Nachum et al., Near-optimal Representation Learning For Hierarchical Reinforcement Learning, ICLR 2019
  - Theoretically prove and propose a approach to learn near-optimal goal representation
- Li et al., Hierarchical Reinforcement Learning with Advantage-Based Auxiliary Rewards, NeurlPS 2019
  - Set auxiliary rewards for low-level learning based on the advantages of the high-level policy
- Minh Le et al., Hierarchical Imitation and Reinforcement Learning, ICML 2018
  - Incorporate imitation learning in different levels of hierarchy (e.g., h-DQN) to further improve sample efficiency
- Yang et al., Hierarchical Cooperative Multi-Agent Reinforcement Learning with Skill Discovery, AAMAS 2020
  - Learn cooperative policies at the high level with centralized training over independent learned skills/sub-policies at the low level among multiple agents
- Han et al., Multi-Agent Hierarchical Reinforcement Learning with Dynamic Termination, AAMAS 2020
  - Learn dynamic termination to alleviate the inconsistency of multiagent learning hierarchical policies

### Summary

- Learning with Sparse Rewards: From Sparse to Dense
  - Reward Learning/Shaping
    - leveraging expert/good trajectory to learn optimal reward signals (SGAIL/Multiagent GSAIL)
    - generate intrinsic rewards to encourage better explorations (exploration-oriented intrinsic rewards)
    - Optimality of the reward function?
  - Temporal/spatial credit assignment (single-agent/multiagent settings)
    - Integrated Gradient credit assignment (single-agent credit assignment)
    - Difference reward and path integrated gradient (multiagent credit assignment)
    - Correctness of the credit assignment?
  - Task hierarchical decomposition (hierarchical RL)
    - Discrete vs. continuous subtasks
    - High-level: different ways of performing off-policy correction; requires multiagent coordinations;
    - Low-level: receive reward feedbacks from subgoals; introduce intrinsic rewards
    - More efficient way of automatically learning task hierarchy and decomposition?

Thank you Q&A