Determining Limits from a Graph

1. Below is the graph of f(x). For each of the given points determine the value of f(a) and $\lim_{x\to a} f(x)$. If any of the quantities do not exist clearly explain why.

Figure 1: Graph of f(x)

(a)
$$a = -2$$

(b)
$$a = 6$$

(c)
$$a = 10$$

(d)
$$a = -8$$

Evaluating Limits with Limit Laws & Properties

2.
$$\lim_{t \to -2} \frac{t^4 - 2}{2t^2 - 3t + 2}$$

3.
$$\lim_{h \to 0} \frac{\sqrt{9+h} - 3}{h}$$

4.
$$\lim_{x \to -1} \frac{2x^2 + 3x + 1}{x^2 - 2x - 3}$$

Evaluating Limits Involving Absolute Value

5. Let
$$g(x) = \frac{x^2 + x - 6}{|x - 2|}$$

(a) Find
$$\lim_{x\to 2^+} g(x)$$
 and $\lim_{x\to 2^-} g(x)$

(b) Does $\lim_{x\to 2} g(x)$ exist? Explain why or why not.

Applying the Squeeze Theorem

6. Consider the graphs of $f(x) = x^2$, $h(x) = -x^2$, $g(x) = x^2 \sin\left(\frac{1}{x}\right)$ given below in Figure 2.

Use this information to evaluate

$$\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right)$$

by applying the Squeeze Theorem.

Figure 2: Graphs of f(x), g(x), h(x)