63. Sean f y g en $C^1[0, 1]$. Entonces el **wronskiano*** de f y g está definido por

$$W(f,g)(x) = \begin{vmatrix} f(x) & g(x) \\ f'(x) & g'(x) \end{vmatrix}$$

Demuestre que si f y g son linealmente dependientes, entonces W(f, g)(x) = 0 para todo $x \in [0, 1]$.

64. Determine una definición adecuada para el wronskiano de las funciones $f_1, f_2, \ldots, f_n \in C^{(n-1)}$ [0, 1].**

- 65. Suponga que \mathbf{u} , \mathbf{v} y \mathbf{w} , son linealmente independientes. Pruebe o desapruebe: $\mathbf{u} + \mathbf{v}$, $\mathbf{u} + \mathbf{w}$ y $\mathbf{u} + \mathbf{w}$ son linealmente independientes.
- **66.** ¿Para qué valores reales de c son linealmente independientes los vectores (1-c, 1+c) y (1+c, 1-c)?
- **67.** Demuestre que los vectores $(1, a, a^2)$, $(1, b, b^2)$ y $(1, c, c^2)$ son linealmente independientes si $a \neq b$, $a \neq c$ y $b \neq c$.
- **68.** Sea $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ un conjunto linealmente independiente y suponga que $\mathbf{v} \notin \text{gen } \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$. Demuestre que $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ es un conjunto linealmente independiente.
- 69. Encuentre un conjunto de tres vectores linealmente independientes en \mathbb{R}^3 que contenga a los

vectores
$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
 y $\begin{pmatrix} -1\\4\\-2 \end{pmatrix}$. $\begin{bmatrix} \text{Sugerencia:} & \text{Encuentre un vector } \mathbf{v} \notin \text{gen } \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\4\\-2 \end{pmatrix} \right\}. \end{bmatrix}$

- 70. Encuentre un conjunto linealmente independiente de vectores en \mathbb{P}_2 que contenga a los polinomios $1 x^2$ y $1 + x^2$.
- 71. Encuentre un conjunto linealmente independiente de vectores en \mathbb{P}_2 que contenga a los polinomios $x + x^2$ y 1 + x.

72. Suponga que
$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ y $\mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$ son coplanares.

a) Demuestre que existen constantes a, b y c no todas cero tales que

$$au_1 + bu_2 + cu_3 = 0$$

 $av_1 + bv_2 + cv_3 = 0$
 $aw_1 + bw_3 + cw_3 = 0$

b) Explique por qué

$$\det = \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix} = 0$$

c) Use el teorema 5.4.3 para demostrar que u, v y w son linealmente dependientes.

^{*} Así denominado por el matemático polaco Jozef María Hoene-Wronski (1778-1853). Hoene-Wronski pasó la mayor parte de su vida adulta en Francia. Trabajó en la teoría de determinantes y fue conocido también por sus escritos críticos sobre filosofía de las matemáticas.

^{**} $C^{(n-1)}$ [0, 1] es el conjunto de funciones cuyas (n-1)-ésimas derivadas están definidas y son continuas en [0, 1].