INTRODUCTION TO FLUORECENCE MICROSCOPY

- Emmanuel MARGEAT, Research Director CNRS
- Centre de Biochimie Structurale
- Office B4, Building 29
- margeat@cbs.cnrs.fr
- Teacher for Intro to qbio, Imaging Biological systems
- Responsible for Lab1

- Draw and describe a Jablonsky-Perrin diagram
- Why is the fluorescence emission wavelength always larger than the excitation wavelength? What is the Stokes shift?
- Notions about the excited state lifetime and how to measure it
- Pro and cons of fluorescent proteins and dyes.
- What is the maximum resolution attainable in a widefield microscope? Calculate in terms of NA and wavelength.
- Draw the optical path of a fluorescence microscope. Descibe the components

JABLONSKI – PERRIN DIAGRAM

- Singlet States & Triplet State
- Vibrational states
- Vibrational relaxation
- Internal convertion
- Intersystem crossing
- Radiative and non-radiative decays & rates
- Absorption & timescale
- Fluorescence & timescale
- Phosphorescence & timescale
- Quantum yield equation
- Excited state lifetime equation

- Origin of the excitation spectrum
- Origin of the emission spectrum
- The Stokes shift

- The case of FRET
 - FRET transition & rate
 - Lifetime equation in the presence of FRET
 - FRET equations

QUANTUM YIELD

$$Q = \frac{k_r}{k_r + k_{nr}}$$

EXCITED STATE LIFETIME

$$\tau = \frac{1}{k_r + k_{nr}}$$

Jablonski diagram in the presence of FRET

Two techniques for excited state lifetimes measurements

b) Frequency Domain

Time domain: Time Correlated Single Photon Counting

Electronic card to measure the delay between two pulses

- CFD: constant fraction disciminator

- TAC : Time to amplitude converter

- ADC: analog to digital converter

Frequency domain: time / modulation detection

Frequency domain: time / modulation detection

For a certain excitation frequency ω , we can show

$$tan \phi = \omega \tau_{\phi}$$

 τ can be determined as well from the ratio of modulations m:

$$m = \frac{1}{\sqrt{1 + (\omega \tau_m)^2}}$$

Time domain vs frequency domain

 → Useful for low light levels (single photon counting) : single molecules

b) Frequency Domain

 → Very fast measurements if only one frequancy is used (average lifetime) The fluorescence microscope

- Like in a spectrofluorimiter, it is necessary to separate and emission wavelength, ad well as optical paths

Resolution_{x,y} = $\lambda / 2[\eta \cdot \sin(\alpha)]$

Resolution_z = $2\lambda / [\eta \cdot \sin(\alpha)]^2$

Where $\eta.\sin(\alpha)=NA$ (Numerical aperture)

Example : λ =550nm, NA=1.4 R_{xy}=305nm, R_z=560nm

Illumination and collection modes

- EPISCOPIC ILLUMINATION

- CONFOCAL MICROSCOPY

- TOTAL INTERNAL REFLEXION MICROSOPY

- MULTIPHOTON MICROSCOPY

Object focal plane Objective Tube lens Point detector (APD, PMT)

Wide field illumination

ILLUMINATION EPISCOPIQUE

In a thick sample, light is collected from all sample planes

How to reject out-of-focus light?

Illumination and collection modes

- EPISCOPIC ILLUMINATION

- CONFOCAL MICROSCOPY

- TOTAL INTERNAL REFLEXION MICROSOPY

- MULTIPHOTON MICROSCOPY

Then, to get an image, you need to do point scanning

Then, to get an image, you need to do point scanning

Epifluorescence

Section confocale

