Question Number	Scheme	Marks
5(a)	$(\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2) = \alpha^3 - \alpha^2\beta + \alpha\beta^2 + \beta\alpha^2 - \beta^2\alpha + \beta^3 = \alpha^3 + \beta^3$	B1 (1)
(b)	$\alpha + \beta = \frac{-6}{2} = -3 \ \alpha\beta = -\frac{7}{2}$	B1
	$\alpha^{3} + \beta^{3} = (\alpha + \beta)((\alpha + \beta)^{2} - 3\alpha\beta)$	M1
	$= (-3)\left(\left(-3\right)^2 - 3 \times \frac{-7}{2}\right), = -\frac{117}{2}$	A1ft,A1 (4)
(c)	$(\alpha - \beta)^2 = \alpha^2 - 2\alpha\beta + \beta^2 = (\alpha + \beta)^2 - 4\alpha\beta = (-3)^2 - 4 \times \frac{-7}{2} = 23$	M1
	$\alpha - \beta = \sqrt{23}$	A1 (2)
(d)	$\left(\alpha^{3}-\beta^{3}\right)=\left(\alpha-\beta\right)\left(\alpha^{2}+\alpha\beta+\beta^{2}\right)=\left(\alpha-\beta\right)\left(\left(\alpha+\beta\right)^{2}-\alpha\beta\right)$	M1
	$= \sqrt{23} \left(\left(-3 \right)^2 + \frac{7}{2} \right) = \frac{25}{2} \sqrt{23}$	A1 (2)
	ALT: $2\alpha^3 + 6\alpha^2 - 7\alpha = 0$ and $2\beta^3 + 6\beta^2 - 7\beta = 0$ Subtract and substitute Correct answer	[9] M1 A1

Notes

NOTE: If they use the quadratic formula to answer any part of the question, award zero marks in that part.

(a) B1 for simplification as shown cso. This is a show question so multiplication, ie., $\alpha^3 - \alpha^2 \beta + \alpha \beta^2 + \beta \alpha^2 - \beta^2 \alpha + \beta^3 \text{ must be seen.}$

- (b)
- B1 for both sum and product (the sum need not be simplified to -3)
- M1 If they use the given answer in part (a), they must achieve an expansion that is as a minimum $(\alpha + \beta)\{(\alpha + \beta)^2 + A\alpha\beta\}$ where $A \neq 0$

For an fresh attempt at an expansion and simplification of $(\alpha + \beta)^3$. Minimally acceptable attempt; $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - A\alpha\beta(\beta + \alpha)$ where $A \neq 0$

{Note: $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ is the correct expansion}

Note: Their attempt must have been sufficiently simplified in order to substitute their sum in terms of $(\alpha + \beta)$ and $\alpha\beta$

- A1ft for substituting their values for the Sum and Product into their $\alpha^3 + \beta^3$.
- A1 for the correct answer $\left\{-\frac{117}{2}\right\}$ oe
- (c)
- M1 for expanding $(\alpha \beta)^2 = (\alpha + \beta)^2 B\alpha\beta$, where $B \neq 2$ or 0 **AND** for substituting **their** values for the Sum and Product **OR** for $(\alpha \beta)^2 = \alpha^2 + \beta^2 2\alpha\beta$
- A1 for answer as shown $\alpha \beta = \sqrt{23}$
- (d)
- M1 for the **correct algebra** on the expansion of $(\alpha \beta)^3$ to give either;

$$(\alpha - \beta)((\alpha + \beta)^2 - \alpha\beta)$$
 or $(\alpha - \beta)^3 - 3\alpha\beta(\alpha + \beta)$ or $(\alpha - \beta)(\alpha^2 + \alpha\beta + \beta^2)$

A1 final answer as shown

ALT

M1 uses the given equation and substitutes α and β , and subtracts to give

$$\alpha^{3} - \beta^{3} = \frac{7(\alpha - \beta) - 6(\alpha^{2} - \beta^{2})}{2}$$
 and substitutes their values of $(\alpha - \beta)$ and $(\alpha^{2} - \beta^{2})$ leading to a value for $\alpha^{3} - \beta^{3}$

A1 for the correct answer as shown.