Ćwiczenie 8

Celem biznesowym tego ćwiczenia jest Analiza, wizualizacja oraz wymodelowanie danych transakcyjnych klientów z wykorzystaniem technologii DataBricks. Ćwiczenie podzielono na kilka etapów:

- 1. Rejestracja i logowanie do Databricks
- 2. Wgranie danych (z CSV)
- 3. Załadowanie danych w notebooku (PySpark)
- 4. Oczyszczenie, przetworzenie danych (preprocessing)
- 5. Tworzenie tabel Delta Lake
- 6. Analiza danych przy pomocy języka SQL
- 7. Wizualizacja danych
- 8. Utworzenie modelu ML
- 9. Automatyzacja (job scheduling)
- 10. Udostępnianie danych

Poniżej zaprezentowano krok po kroku wykonanie ćwiczenia:

1. Najpierw utworzono konto i zalogowano się do DataBricks

Stworzono również własny Cluster do dalszej analizy:

2. Następnie wgrano dane z 3 plików csv: klienci.csv, produkty.csv, transakcje.csv (przykład poniżej dla klientów, resztę plików załadowano analogicznie)

3. W kolejnych kroku załadowano dane przy pomocy Notebooka i PySaprk. Poniżej zaprezentowano wczytanie danych i wyświetlenie kilku rekordów z tabeli klientów:

4. W kolejnym etapie wykonano prosty proces czyszczenia i przetwarzania danych. Skupiono się na detekcji wartości brakujących i usunięcia duplikatów. Operacje te wykonano w ponownie Pythonie (notebook).

```
Python 🗇 🖸 :
    2 minutes ago (31s)
    dup_c = c.count() - c.dropDuplicates().count()
    print(f"Liczba duplikatów klientów: {dup_c}")
    dup_p = p.count() - p.dropDuplicates().count()
    print(f"Liczba duplikatów produktów: {dup_p}")
    dup_t = t.count() - t.dropDuplicates().count()
    print(f"Liczba duplikatów transakcji: {dup_t}")
    spark.sql("DROP TABLE IF EXISTS default.transactions")
    t.dropDuplicates().write.format("delta").mode("overwrite").saveAsTable("default.transactions")
    print("Usunięto duplikaty z transakcji i zapisano jako tabelę Delta.")
 ▶ (22) Spark Jobs
Liczba duplikatów klientów: 0
Liczba duplikatów produktów: 0
Liczba duplikatów transakcji: 10
Usunięto duplikaty z transakcji i zapisano jako tabelę Delta.
```

W tym kroku wykonano również rozbicie kolumny z datą transakcji w formacie YYYY-MM-DD, na trzy osobne kolumny przechowujące informację o odpowiednio: roku, miesiącu i dniu transakcji. Krok ten wykonano w celu ułatwienia grupowania danych po dacie w kolejnych punktach analizy.

5. W kolejnym etapie zapisano (nadpisano) tabele po operacjach z punktu 4 jako tabele Delta:

```
t.write.format("delta").mode("overwrite").option("mergeSchema", "true").saveAsTable("transactions")

spark.sql("DROP TABLE IF EXISTS default.products")

p.write.format("delta").mode("overwrite").option("mergeSchema", "true").saveAsTable("products")

spark.sql("DROP TABLE IF EXISTS default.customers")

c.write.format("delta").mode("overwrite").option("mergeSchema", "true").saveAsTable("customers")

**(20) Spark Jobs**
```

6. Na podstawie tak przygotowanych danych wykonano kilka zapytań z wykorzystaniem języka SQL:

Najczęściej sprzedawane produkty (top 10):

Klienci, którzy wydali najwięcej pieniędzy na zakupy (top 5):

Ilość sprzedanych sztuk produktów, miesiąc po miesiącu:

7. W celu wizualizacji danych skorzystano z wbudowanych funkcji w DataBricks.

Wykres słupkowy z ilością sprzedanych produktów (y) dla każdego miesiąca (x)

Wartość sprzedaży (suma) dla 5 produktów o najwyżej wartości sprzedaży zamieszczona na wykresie typu pie-chart:

8. W następnym kroku utworzono bardzo prosty model ML przewidujący miesięczną ilość sprzedaży w kolejnych (przyszłych) miesiącach. Do uczenia modelu usunięto ostatni (aktualny, a więc niepełny w dane) miesiąc. Posłużono się modelem regresji liniowej z pakietu sklearn. Po utworzeniu modelu wygenerowano wartości dla 6 kolejnych, przyszłych miesięcy:

```
2 minutes ago (<1s)</p>
                                                                                                   Python 🗍 []
    future_index = np.arange(len(pdf), len(pdf) + 6).reshape(-1, 1)
    future_predictions = model.predict(future_index)
    future_dates = pd.date_range(start=pdf['date'].max() + pd.offsets.MonthBegin(1), periods=6, freq='MS')
    forecast_df = pd.DataFrame({
        'date': future_dates,
        'predicted_products_sold': future_predictions.astype(int)
    })
    print(forecast_df)
       date predicted_products_sold
0 2025-05-01
1 2025-06-01
2 2025-07-01
                                245
3 2025-08-01
                                246
4 2025-09-01
                                246
5 2025-10-01
```

W przyszłych miesiącach wartość sprzedaży nieznacznie będzie wzrastać, choć wzrost ten najprawdopodobniej nie będzie zbyt duży.

9. W przedostatnim etapie ćwiczenia utworzono Job, do automatyzacji procesu ładowania danych, ich procesowania, czyszczenia, wizualizacji i modelowania. Stworzenie joba polegało na utworzeniu jednego notebook'a, który uruchamiałby wszystkie inne notebooki z odpowiednimi krokami pipelin'u.

```
print("Start")
dbutils.notebook.run("/Users/filiphalys02@gmail.com/Checking data", timeout_seconds=300)
dbutils.notebook.run("/Users/filiphalys02@gmail.com/Analiza w SQL", timeout_seconds=300)
dbutils.notebook.run("/Users/filiphalys02@gmail.com/Model", timeout_seconds=300)
print("Job został zakończony pomyślnie")

Start
Job został zakończony pomyślnie
```

10. Finalnym etapem ćwiczenia była weryfikacja możliwości udostępnienia danych innym użytkownikom.

Można udostępniać dashboardy lub eksportować dane do zewnętrznych narzędzi BI (Power BI, Tableau), a także udostępnić tabele innym użytkownikom workspace'a. Dostęp do tabeli można nadać użytkownikom DB za pomocą interfejsu UI, ale również chociażby z wykorzystaniem SQL:

GRANT SELECT ON TABLE transactions TO `mail uzytkownika`

Ćwiczenie 9

Celem biznesowym tego ćwiczenia jest Analiza, wizualizacja oraz wymodelowanie danych transakcyjnych klientów z wykorzystaniem języka DAX i Power BI. Analizę przeprowadzono na podstawie danych ze sprzedaży samochodów (10.000 rekordów). Ćwiczenie podzielono na kilka etapów:

- 1. Import danych
- 2. Czyszczenie danych
- 3. Tworzenie przykładowych kalkulacji w DAX
- 4. Wizualizacja danych
- 5. Analiza trendów (język M)
- 6. Utworzenie raportu

Wykonanie:

W pierwszym kroku zaimportowano dane z pliku excel (XLSX) do środowiska w PowerBI. Poniżej zaprezentowano strukturę oraz kilka pierwszych rekordów danych:

Podczas importu zweryfikowano, czy kolejne kolumny zapisują się w odpowiednich typach (okazało się, że kolumna z Datą zapisana jest niepoprawnie, więc ją konwertowano do typu date). Dokonano również kilku operacji czyszczących dane (usunięcie 3 rekordów z wartościami brakującymi).

Następnie utworzono kilka nowych kolumn. Wykorzystano język DAX:

• Całkowity przychód ze sprzedaży danej transakcji (ilość produktów * cena):

```
1 Total Selling Value = 'Sheet1'[Selling Prize] * 'Sheet1'[sales quantity]
```

• Całkowity przychód ze sprzedaży (suma kolumny Total Selling Value)

```
1 Full Selling Value = CALCULATE(
2 | SUM('Sheet1'[Total Selling Value]),
3 | REMOVEFILTERS('Sheet1')
4 )
```

 Aby ułatwić grupowanie utworzono również kolumnę Year – z rokiem transakcji,
 Month – z miesiącem transakcji,
 YearMonth – z rokiem i miesiącem transakcji

Średnią miesięczną sprzedaż z transakcji

• Średnią roczną sprzedaż z transakcji

AOV – Średnią Wartość Zamówienia

```
1 AOV = AVERAGE(Sheet1[Total Selling Value])
```

Średnią częstotliwość zakupów

```
1 Purchase Frequency =
2 CALCULATE(
3 | COUNT(Sheet1[Total Selling Value]),
4 | ALLEXCEPT(Sheet1, Sheet1[customer id], Sheet1[Year])
5 )
```

• Średni czas życia klienta – różnica między pierwszym a ostatnim zakupem

```
1 Customer Lifespan =
2 DATEDIFF(
3 | MIN(Sheet1[YearMonth]),
4 | MAX(Sheet1[YearMonth]),
5 | MONTH
6 )
```

• Wartość życia klienta – CLTV

```
1 CLTV =
2 [AOV] *
3 [Purchase Frequency] *
4 [Customer Lifespan]
```

Następnie na podstawie utworzonych miar i KPI'ów stworzono kilka biznesowo wartościowych wykresów mających istotny wpływ na analizę sprzedaży samochodów.

1. Wykres zmian średniej wartości w ramach jednej sprzedaży na przestrzeni miesięcy.

2. Wartość całkowitej sprzedaży dla danego roku

3. Wartość całkowitej sprzedaży dla danych miesięcy (bez uwzględnienia roku)

4. AOV dla danych miesięcy (bez uwzględnienia roku)

5. CLTV dla każdego miesiąca i roku

Podsumowanie i wnioski:

- Dane zostały zaimportowane z pliku zawierającego szczegóły transakcji, takie jak: data, ID produktu, cena sprzedaży (Selling Prize), ilość (Sales Quantity), identyfikator klienta
- W Power Query dodano pomocnicze kolumny Year, Month oraz YearMonth, które umożliwiają analizę czasową
- Zastosowano język M do stworzenia kolumny Total Selling Value oraz do agregacji sprzedaży miesięcznej
- Na podstawie danych miesięcznych nie zaobserwowano wyraźnych wahań sprzedaży w czasie
- Obliczono średnią wartość zamówienia (AOV) pokazuje, ile przeciętnie wydaje klient przy jednej transakcji
- Wyznaczono Customer Lifetime Value (CLTV) ilustruje łączną wartość klienta w czasie i pomaga zidentyfikować klientów o największym potencjale
- Obliczono także średnie sprzedaże miesięczne i roczne per transakcja

Rekomendacje biznesowe:

- Skupić działania marketingowe w okresach niskiej sprzedaży (np. luty, czerwiec), by poprawić wyniki
- Analizować dalej klientów z najwyższym CLTV mogą stanowić bazę do programów lojalnościowych
- Zastosować ML i nowoczesne narzędzia AI do przewidywania wartości sprzedaży w kolejnych miesiącach/latach na podstawie istniejących danych z transakcji