Midterm Practice

Problem 1

• Find a prime factor of $(5^{15} - 1)/4$

$$5^{15} - 1 = \frac{5 - 1}{4} (5^{14} + 5^{13} + \cdots)$$
$$(5^{3})^{5} - 1 = \frac{5^{3} - 1}{4} (5^{12} + 5^{9} + \cdots)$$
$$\frac{5^{3} - 1}{4} = \frac{5 - 1}{4} (5^{2} + 5 + 1) = 31$$

- $x^{n} 1 = (x 1)(x^{n-1} + x^{n-2} + \cdots)$ is a useful equation
- You want to make sure you're working with the smallest exponent possible to reduce the amount of time you're spending on the problem
 - i.e. reducing 5^3 instead of 5^5 which would've given the same answer but taken more time
- Remember polynomial factorization

Problem 2

• If a group in G, an element g has order 169. What is the order of g^{51} ?

$$g^{a} = \frac{ord(g)}{gcd(a, ord(g))}$$
$$ord(g^{51}) = \frac{ord(g)}{gcd(51, ord(g))}$$
$$= \frac{169}{gcd(51, 169)}$$
$$= 169$$

Problem 3

• Calculate the subgroup generated by x in $(\mathbb{F}_2[x]/(x^3+x+1))*$

$$x$$

$$x^{2}$$

$$x^{3} = x + 1$$

$$x^{4} = x^{2} + x$$

$$x^{5} = x^{3} + x^{2} = x^{2} + x + 1$$

$$x^{6} = x^{3} + x^{2} + x = x^{2} + 1$$

$$x^{7} = x^{3} + x = 1$$

^{*} What we did in class confused me, so here's how I explained it to myself. It's probably a little wrong but I think it'll work

X generated by
$$(F_2[x]/x^3+x+1)^*$$

X polynomial: x^3+x+1
 x^2 Start $w/: x^3=x+1$
 $x^3=x+1$ End $w/: 1=x^3+x$
 $x^4=x^2+x$
 $x^5=x^3+x^2=x^2+x+1$
 $x^7=x^3+x=1$
Factoring:
 $x^5=x^3+x^2$
 $=x^2(x^3/x^2+1)$ $=x^2+1$ // (x^2+x+1)
 $=x^2(x^3-2+1)$ $=x^2+1$ // (x^2+x+1)
 $=x^2(x^3-2+1)$ $=x^2+1$ // (x^2+x+1)
 $=x^2(x^3-2+1)$ $=x^2+1$ // (x^2+x+1)

Problem 4

- Compute the multiplicative inverse of x^6+1 modulo $x^8+x^4+x^3+x+1$ over $\mathbb{Z}/2\mathbb{Z}$ using Extended Euclidean Algorithm. You need to show steps
- Extended Euclidean Algorithm:

$$Au + bvgcd(A, B)$$

can be changed to

$$\frac{A}{\gcd(A,B)}u+\frac{B}{\gcd(A,B)}v=1$$

- You basically continue to take the divide $x^6 + 1$ by $x^8 + x^4 + x^3 + x + 1$ until you come up with the polynomial such that $x^8 + x^4 + x^3 + x + 1 \div x^6 + 1 = 1$, I think anyways...I really don't know
- Godspeed for this problem

Problem 5

- Compute $18^{20^{20}} \mod 28$
- Use the chinese remainder theorem

$$28 = 4 \times 7$$

$$18^{20^{20}} \mod 4 = 2$$

$$2^{20^{20}} = 0$$

$$18^{20^{20}} \mod 7 = 4$$

$$= 4^{2^2 \mod 6}$$

$$= 4^4 \mod 7$$

$$= 4$$

- mod4 didn't work because 18 mod 4=2 and $2^{20^{20}}=0$ in this...ring? So this means 4 is a zero divisor and we should try mod7
- $18 \mod 7 = 4$ so we're good there
- You can ignore the exponents and focus on the base when taking the mod
- $4^{2^{20} \mod 6} = 4$ because $4 \mod 6 = 4$
- $4^4 \mod 7 = 4$ because $4 \mod 7 = 4$
- I don't know where the exponents came from but I don't think it really matters since you're ignoring them the whole time
- Aside: How to calculate $x \mod y$
 - Divide x by y (in our case, $18 \div 7$)
 - Round this number down (in our case, $18 \div 7 \approx 2$)
 - Multiply this number by y (in our case, $7 \times 2 = 14$)
 - Subtract the product from x (in our case, 18 14 = 4)
 - That's the remainder!

Problem 6

• Compute $\phi(50)$

$$\phi(p) = p-1 \text{ where p is a prime number}$$

$$\phi(p^m) = p^m - p^{m-1} \text{ where p is a prime number}$$

$$\phi(p,q) = (p-1)(q-1)$$

$$\phi(m,n) = \phi(m) \times \phi(n)$$

$$50 \text{ is not prime, so:}$$

$$50 = 5 \times 5 \times 2$$

$$\phi(50) = \phi(5 \times 5 \times 2)$$

$$= \phi(5^2 \times 2)$$

$$= \phi(5^2) \times \phi(2)$$

$$= \phi(5^2) - 1$$

$$= (5^2 - 5^1) \times 1$$

$$= (25 - 5) \times 1$$

= 20