

SPARK Tutorial Fed4FIRE 2016

Dieter De Witte Big Data Scientist iMinds Data Science Lab drdwitte@gmail.com

Outline

- Introducing Apache Spark
- II. A spark playground for everyone!
- III. Dataframes API

Low latency (sub-second)

while maintaining MR's

Fault-tolerance & Scalability

- Generality & Simplicity
 - Support a wider range of workloads than MR

=> batch processing +

machine learning & interactive querying

& stream processing

- Support for a more general set of data transformation operators
- Less LOC
- Support for a broader set of data science languages

Adding memory to the hardware stack

Improves iterative algorithms!

Same holds for iterative querying

Fault-tolerance without I/O overhead

- Lazy transformations on distributed collections (similar to transformations on Scala collections albeit distributed)
- Failures result in re-running lineage graph: data partitions 'know' their parent partitions
- Note: Lazy evaluation was already introduced in Apache Pig

Spark Stack for diverse workloads

Spark Stack:

- Spark Streaming (stream processing)
- GraphX (graph processing algorithms)
- MLlib (parallel machine learning algorithms)
- SparkSQL (SQL queries on Spark)

Spark Overview

Executors are long-lived JVMs with >=0 threads, I thread per task MR: each task one JVM => overhead!

Launch Spark Executor in a process.

- Create a Spark Context
- Creating RDDs & Persisting RDDs
- (Lazy) Transformations on RDDs
- (Lazy) Transformations on Pair RDDs
- Actions

Create a Spark Context

• A spark program requires a **SparkContext** object

```
sc = pyspark.SparkContext('local[*]')
```

- => How and where to access cluster?
- => master parameter determines cluster type:
 - local (Imachine I thread)
 - local[K] (I machine K threads), local[*]
 - spark://HOST:PORT spark standalone cluster
 - mesos://HOST:PORT connect to mesos cluster
 - yarn-client, yarn-cluster

Creating RDDs

Create an RDD from a local collection:

```
#partitions
sc.parallelize(data, 10)
```

specify

Create an RDD from external storage

```
distFile = sc.textFile("data.txt")
```

distData = sc.parallelize(data)

data = [1, 2, 3, 4, 5]

- Create an RDD from another file system
 - Amazon S3: "s3n://path/to/file.txt"
 - "hdfs://namenode:port/path/to/file.txt" HDFS:
- Custom Hadoop Input Formats:
 - old (hadoopRDD, hadoopFile), new(newAPIHadoopRDD,...)
- Note:

- arguments: HadoopInputFormat.class, Key.class, Value.class "org.apache.hadoop.mapred.TextInputFormat", "org.apache.hadoop.io.Text", ...
- More partitions = more parallellism (rule of thumb 2*numCores)
- sc.wholeTextFiles(...) for nonsplittable files

Persisting RDDs

Level	Space Used	CPU time	In memory	On Disk	Comments
MEMORY_ONLY	High	Low	Υ	N	
MEMORY_ONLY_SER	Low	High	Υ	N	
MEMORY_AND_DISK	High	Medium	Some	Some	Spills to disk if there is too much data to fit in memory.
MEMORY_AND_DISK_SER	Low	High	Some	Some	Spills to disk if there is too much data to fit in memory. Stores serialized representation in memory.
DISK_ONLY	Low	High	N	Υ	

Store serialized representation in memory!

val result = input.map(x => x*x) result.persist(MEMORY_ONLY)

NOTE: .cache() = .persist(**MEMORY_ONLY**)

Running out of cache? **LRU caching** = Least Recently Used

Experimental: OFF_HEAP => store in <u>Tachyon</u> (in-memory filesystem)

(Lazy) Transformations on RDDs

Function Name	Purpose	Example	Result
map	Apply a function to each element in the RDD and return an RDD of the result	$rdd.map(x \Rightarrow x + 1)$	{2, 3, 4, 4}
flatMap	Apply a function to each element in the RDD and return an RDD of the contents of the iterators returned. Often used to extract words.	<pre>rdd.flatMap(x => x.to(3))</pre>	{1, 2, 3, 2, 3, 3, 3}
filter	Return an RDD consisting of only elements which pass the condition passed to filter	rdd.filter(x => x != 1)	{2, 3, 3}
distinct	Remove duplicates	rdd.distinct()	{1, 2, 3}
sample(withReplacement, fraction, [seed])	Sample an RDD	rdd.sample(false, 0.5)	non-deterministic

Arguments are (lambda) functions

```
>>> rdd = sc.parallelize([1, 2, 3, 4])
\rightarrow \rightarrow rdd.map(lambda x: x * 2)
RDD: [1, 2, 3, 4] \rightarrow [2, 4, 6, 8]
>>> rdd.filter(lambda x: x % 2 == 0)
RDD: [1, 2, 3, 4] \rightarrow [2, 4]
>>> rdd = sc.parallelize([1, 2, 3])
>>> rdd.map(lambda x: [x, x+5])
RDD: [1, 2, 3] \rightarrow [[1, 6], [2, 7], [3, 8]]
>>> rdd.flatMap(lambda x: [x, x+5])
RDD: [1, 2, 3] \rightarrow [1, 6, 2, 7, 3, 8]
```


(Lazy) Transformations on Pair RDDs

Same API PLUS KV transformations

```
Group together
groupByKey()
                                                 rdd.groupByKey()
                                                                                         {(1,
                                 values with the
                                                                                         [2]),
                                 same key
                                                                                         (3, [4,
                                                                                         6])}
reduceByKey(func)
                                 Combine values
                                                                                         \{(1, 2),
                                                 rdd.reduceByKey(
                                 with the same key (x, y) => x + y
                                                                                         (3, 10)
                                 together
mapValues(func)
                                 Applyafunction to rdd.mapValues(x => x+1)
                                                                                         \{(1, 3),
                                 each value of a Pair
                                                                                         (3, 5),
                                 RDD without
                                                                                         (3, 7)
                                 changing the key
                                 Return an RDD of
keys()
                                                 rdd.keys()
                                                                                         {1, 3,
                                 just the keys
                                                                                         3}
                                 Return an RDD of
values()
                                                 rdd.values()
                                                                                         {2, 4,
                                 just the values
                                                                                         6}
                                 Returns an RDD
                                                                                         \{(1, 2),
sortByKey()
                                                 rdd.sortByKey()
                                 sorted by the key
                                                                                         (3, 4),
                                                                                         (3, 6)
```

>>> rdd.reduceByKey(lambda a, b: a + b)

RDD: $[(1,2), (3,4), (3,6)] \rightarrow [(1,2), (3,10)]$

Actions trigger execution!

Function Name	Purpose	Example	Result
collect()	Return all elements from the RDD	rdd.collect()	{1, 2, 3, 3}
count()	Number of elements in the RDD	rdd.count()	4
take(num)	Return num elements from the RDD	rdd.take(2)	{1, 2}
takeOrdered(num)(ordering)	Return num elements based on providing ordering	rdd.takeOrdered(2)(myOrdering)	{3, 3}
takeSample(withReplacement, num, [seed])	Return num elements at random	rdd.takeSample(false, 1)	non- deterministic
reduce(func)	Combine the elements of the RDD together in parallel (e.g. sum)	rdd.reduce((x, y) => x + y)	9
CONNECT INNOVATE CDEATE		-	allelize([1, 2, 3] ambda a, b: a * b)

- Function closures containing global variables
 - => have to be resent for every job!
 - for example: large lookup table!

pySpark Shared Variables

- Broadcast Variables

 » Efficiently send large, read-only value to all workers
- » Saved at workers for use in one or more Spark operations
- » Like sending a large, read-only lookup table to all the nodes

Accumulators

- » Aggregate values from workers back to driver
- » Only driver can access value of accumulator
- » For tasks, accumulators are write-only
- » Use to count errors seen in RDD across workers

Broadcast variables & Accumulators

```
At the driver:
>>> broadcastVar = sc.broadcast([1, 2, 3])
At a worker (in code passed via a closure)
>>> broadcastVar.value
[1, 2, 3]
>>> accum = sc.accumulator(0)
>>> rdd = sc.parallelize([1, 2, 3, 4])
>>> def f(x):
>>> global accum
>>> accum += x
>>> rdd.foreach(f)
>>> accum.value
Value: 10
```


A Spark Playground for everyone?

Jupyter docker stacks!

https://github.com/jupyter/docker-stacks

- requires docker (OS independent)
- single command installation
- works both local or with a cluster
- has all relevant python libraries installed

New to python? No problem!

- Cheat sheet with the basics to get you started:
- https://www.google.be/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&ved=0ahUKEwia0MWn3u3NAhWCJsAKHU8BAy MQFghnMAk&url=http%3A%2F%2Fwww.cogsci.rpi.edu%2F~destem%2Figd%2Fpython_cheat_sheet.pdf&usg=AFQjCNFN9 vxq3S7TXrRu6||IjzfZtc4qiQ&sig2=ZTs-TyniW7QBDbPzXw0TDQ&cad=rja
 - Have a look at control structures: if, for
 - Have a look at function definitions
 - Have a look at lists, dictionaries
 - Other things are mostly provided in the notebooks

Dataframes API

Definition

DataFrame

noun – [dey-tuh-freym]

- A distributed collection of rows organized into named columns.
- 2. An abstraction for selecting, filtering, aggregating and plotting structured data (cf. R, Pandas).
- 3. Archaic: Previously SchemaRDD (cf. Spark < 1.3).

Python data frames

- Less lines of code
- Higher level operations on tuples
- Unified interface on different data sources
- Interoperability with pandas_df and RDDs
- Language-agnostic performance
- Tungsten query plan optimizer

RDD API

```
pdata.map(lambda x: (x.dept, [x.age, 1])) \
    .reduceByKey(lambda x, y: [x[0] + y[0], x[1] + y[1]])
    .map(lambda x: [x[0], x[1][0] / x[1][1]]) \
    .collect()
```

Guess what happens if we have 10 columns!?

dept	age	name
Bio	48	H Smith
CS	54	A Turing
Bio	43	B Jones
Chem	61	M Kennedy

DataFrame API

data.groupBy("dept").avg("age")

Higher level operations on tuples

Filtering rows, selecting certain columns ...

```
c.filter(c.authorEmail.like("rxin%")).select(c.authorDate, c.subject)
```

Aggregations on tuples (count, average, sum,...)

```
c.groupBy("authorName").count().sort(desc("count"))
```

• Joining, sorting, custom aggregations, ...

```
*number of authors per file in Github
f.join(c, f.commitHash == c.commitHash)
 .groupBy("path").agg(col("path"), countDistinct("authorName").alias("numAuthors"))
 .sort(desc("numAuthors"))
```

User defined functions

```
toDate = udf(lambda x: datetime.utcfromtimestamp(float(x)), DateType())
c.select(toDate(c.authorDate))
```


Unified interface on different data sources

built-in

{ JSON }

and more ...

Unified interface for reading/writing

```
df = sqlContext.read \
                                        Builder methods
  .format("json") \
  .option("samplingRatio", "0.1")
                                        specify:
  .load("/home/michael/data.json")
                                           Format
df.write \
                                           Partitioning
  .format("parquet") \
                                           Handling of
  .mode("append") \
  .partitionBy("year") \
                                            existing data
 .saveAsTable("fasterData")
```


Automatic schema inference

```
# If the underlying format has self-describing schema, DataFrames will use that
# For JSON, it will automatically infer the schema based on the data.
tweets = sqlContext.load("/home/rxin/tweets-demo.json", "json")
Command took 2.22s
```

tweets.printSchema()

Compatibility with Pandas

 Easy to convert between Pandas and pySpark » Note: pandas DataFrame must fit in driver

```
# Convert Spark DataFrame to Pandas
pandas_df = spark_df.toPandas()
# Create a Spark DataFrame from Pandas
spark_df = context.createDataFrame(pandas_df)
```

Compatibility with RDDs

```
rdd = sc.parallelize(range(10)).map(lambda x: (str(x), x))
kvdf = rdd.toDF(["key", "value"])
```


Language-agnostic performance!

Time to Aggregate 10 million int pairs (secs)

