Confidential

Product Experimentation Two-Pager | Hi Pages Job Increase Job Leads 3 to 4 (I / II)

Situation: A product manager at hipages has an idea that might lead to higher lead utilisation by mandating 4 leads per job (usually 3). Asking for our help in performing an A/B test to categorise the change.

Context:

- Homeowner posts a job against a category with basic details (description, location)
- 2. The Hi Pages platform then matches this to the most suitable tradies and those tradies can claim a lead and send a quote on a FIFO basis
- 3. Up to 3 chosen tradies send their quotes to the Homeowner (the experiment is to make this up to 4)
- 4. Our business model is based on charging tradies for the lead

Contact information

• James Maulana

Creation Date: 18th Feb 2025

Last edited: 18th Feb 2025

Objective: To design and execute an A/B test that evaluates whether increasing leads per job results in:

- Higher lead utilisation (more accepted leads, improved quote rates)
- Increased revenue from tradies
- No adverse impact on consumer experience

Hypothesis (H0): Mandating 4 leads per job will improve overall lead utilisation by providing tradies with additional opportunities to engage with consumers, thereby increasing the acceptance rate and improving platform revenue

Success Metrics & Expected Outcome

Primary:

- [INCREASE] Lead Acceptance Rate (percentage of leads accepted by tradies)
- [INCREASE] Conversion Rate (percentage of jobs leading to successful consumer-tradie interactions)

Secondary:

- [INCREASE] Average Revenue per Job
- [INCREASE] Consumer Engagement Metrics (e.g., time to first quote, Acceptance rate)

Experiment Design

Experimental Groups:

- Control Group: Jobs receive the current standard of 3 leads
- Test Group: Jobs receive 4 leads

// As control group and test group for the job_post_event would show as 1–3 or 1–4 do not need to use experiment group as flag for back-end analysis //

Randomisation:

- Randomly assign incoming job postings to either the Control or Test group (e.g. random number generator for job assignment)
- For this experiment 50/50 split best vs. skewed split (80/20) as we're dealing with a non-high stake feature
- 50/50 gives faster learning and cleaner comparison

Tools:

- A/B testing Tools: Optimizely, Google Optimize, etc. or inhouse solution with feature flags (tag accounts) as this is a server-side experiment
- Visualisation Tools: Tableau, Looker, etc. with livestream to database (e.g. BigQuery)

Data Structure & Event Taxonomy (example):

// Standardise timestamps across all events to make downstream analysis easier//

Job_Post_Event:

job_id, category, location, job_open_leads (1-3/4),
 posted timestamp, experiment group (Control, Test)

Lead_Assignment_Event:

 job_id, tradie_id, lead_position (1-3 or 1-4), assigned_timestamp

Lead_Viewed_Claimed

 job_id, tradie_id, viewed_timestamp, claimed_timestamp

Lead_Acceptance_Event:

 job_id, tradie_id, accepted (boolean), response_time, acceptance_timestamp

Job_Conversion_Event:

 job_id, consumer_id, tradie_id, conversion timestamp

Job_Completion_Event:

• job_id, completion_status (e.g., completed, cancelled, in dispute), completion_timestamp

Product Experimentation Two-Pager | Hi Pages Job Increase Job Leads 3 to 4 (II / II)

Technical Execution & Measurement

// Pre-Experiment Preparatory Work //

Technical execution

- Modify backend routing logic to allow either 3 or 4 lead assignments based on the randomisation flag (see job_post_event schema experiment_group flag) using random number generator
- 2. Ensure the lead assignment logic checks the randomization flag before deciding the number of leads (3 vs. 4)
- Tag every relevant event (Job_Post, Lead_Assignment, etc.) with experiment_group (Control or Test) to facilitate downstream analysis
- Stream events (e.g., using tools like Kafka or AWS Kinesis) into a data warehouse project (e.g., BigQuery) for near real-time analysis
- 5. Validate event payloads (job_id, experiment_group, etc.) upon ingestion to maintain data quality
- 6. Test company A/B testing platform or inhouse solution with feature flags (tag accounts) are working
- 7. Test streaming into chosen
- 8. Use visualisation tools with live stream (frequent ingestion) to monitor acceptance, conversion, and revenue metrics

// Note: Optimizely does not have advanced Bayesian analysis like Beta-Bernoulli estimations etc., therefore require database to complete some manual analysis//

Measurement

- 1. Confirm that each job is clearly labelled with experiment group (Control vs. Test).
- 2. Use a **50/50** split in A/B tool (e.g. Optimizely to ensure each variant has adequate sample size
- 3. **Check** randomisation across user segments (e.g., categories, regions) through a test, and then again on the day to confirm no unintentional bias
- 4. Gather historical acceptance and conversion rates to compare test results.
- Document known exogenous lifts (promotions, external events) to avoid misattributing spikes in acceptance
- 6. Avoid major holidays or events (e.g., Christmas, sports finals) that could skew normal user behaviour
- 7. Establish a minimum run time (e.g., 2–4 weeks) or until the test reaches the required sample size for statistical power

Tracking, Analysis and Education

Tracking:

- Create real-time or near real-time dashboards (using Tableau, Looker) to track acceptance rate, conversion rate, revenue, and lead coverage for Control vs. Test
- Include segmentation filters (category, region) to spot anomalies or segment-specific trends
- Store event logs in a data warehouse to complete more robust analysis in SQL and Python later; that experimentation platform (e.g. Mixpanel) doesn't offer

Analysis:

1. Frequentist & Bayesian Approaches

- Frequentist (e.g., t-tests, z-tests) to compute p-values and confidence intervals for acceptance or conversion rate differences between Control and Test
- Bayesian (e.g., Beta-Bernoulli) to estimate posterior distributions of acceptance rates, providing probabilities of one variant outperforming the other

2. Confounding Variables & Effect Sizes

- Account for category differences, time-of-day patterns, or location bias (e.g., some categories more prevalent in the Test group)
- Emphasize effect size (how big the improvement is in absolute and percentage terms) alongside statistical significance

3. Stopping Criteria

- Use a sample size calculator or power analysis to decide when we have enough data for confident conclusions (e.g., detect a 2% absolute lift with 80% power)
- Bayesian sequential analysis would allow us continuous monitoring and potentially stop the test early if results are clear

Education:

Provide a short internal workshop or "dry run" session with Product team that covers:

- Methodology choice
- Key differences between frequentist p-values and Bayesian posterior probabilities
- How to interpret each method's outputs (confidence intervals vs. credible intervals)
- When we can stop based on effect size

Next Steps:

- 1. **Deploy Pilot:** Roll out the A/B test to a controlled percentage of job postings for a defined period (e.g., 2-4 weeks)
- 2. **Monitor & Analyse:** Continuously monitor performance metrics; if results are statistically significant and positive, prepare to scale the feature to all users
- 3. **Recommendation for Scaling:** If experiment confirms that 4 leads per job significantly boost lead utilisation without negative side effects, proceed to a full rollout with targeted regional adjustments and ongoing monitoring

Confidential

FAQ - For Team Education

- 1. Why is tracking important?
 - The main thing we want to test for is the impact of the feature release, and how the feature release effects user behaviour. The best way to do this in a robust manner is to do a side-byside comparison with a control group.
- 2. Can you do this full analysis with Optimizely?
 - Optimizely provides basic tracking for A/B testing and offers some basic statistical analysis, but it does not allow for more advanced statistical methods like Bayesian analysis. Storing data in a database with actual tags (a new column) or by assigning based on uuid, hash, or another method, would allow for more advanced analysis.
- 3. What is the frequentist approach and why does it matter?
 - P-value: A low p-value (typically below 0.05) indicates statistical significance. This suggests that
 the observed difference between the control and test groups is unlikely to be due to chance
 - Confidence Intervals: If the confidence interval for the difference in conversion rates does not include zero, it suggests a statistically significant difference
 - \circ Typicall you would stop this experiment only once you've collected at least n observations per group (or enough to detect your effect), you check if your difference is statistically significant at (typically) α =0.05. If so, you can stop the test. This is typically a one-off calculation and can be run using an online calculator
- 4. What is the Bayesian approach and why does it matter?
 - Calculate the probability that one variation outperforms the other based on the posterior distributions. A high probability (e.g., > 95%) indicates a strong likelihood that one variation is superior
 - As it's continuous we can determine for ourselves when to stop the experiment, e.g. "Stop
 when there's a 95% chance that Test is better than Control by at least 2%.". If that threshold is
 reached, we can end the experiment early; if it remains unclear we would continue to gather
 data