Interpolare polinemiala

f: [a, b] - R continua

(xi) i= 1,444 - di vigiune a intervalului [a, b]

a = x1 < x2 < ... < x4 = b.

Pa - polinemi de interpolare lagrange, de grad m, a.i. Pu(xi) = f(xi), i=1,444

xi, i=1,441 -> puncte (moduri) de interpolare

1) là se afle, conforme motodei directe, 72(x) associat functiei f(x)=25x+1, relative la diviquemen (0,1,4).

relative la divitiumen (0,1/4). $x_1 = 0$ $f(x_1) = f(0) = 1 = y_1$ $x_2 = 1$ $f(x_2) = f(1) = 3 = y_2$ $x_3 = 4$ $f(x_3) = f(4) = 5 = y_3$ $f(x_3) = f(4) = 5 = y_3$

Seci, $\int P_2(0) = 1$ = 1 =

 $\frac{a_{2}+a_{3}=2}{a_{2}+4a_{3}=1}$ $\frac{a_{3}+4a_{3}=1}{-3a_{3}=1}$ $a_{3}=-\frac{1}{3}$ $a_{2}=2-a_{3}=2+\frac{1}{3}=\frac{4}{3}$ $P_{2}(x)=1+\frac{4}{3}x-\frac{1}{3}x^{2}$

| We to do | Lagrange | P_n(x) =
$$\frac{x_1}{E_{-1}} L_{n/2}(x) \cdot \frac{1}{12} \sum_{i=1}^{n-1} \frac{1}{(x-x_1)} \cdot \frac{1}{(x-x_2)} \cdot \frac{1}{(x-$$

· chetoda Newton

$$P_{n}(x) = c_{1} + c_{2}(x-x_{1}) + c_{3}(x-x_{1})(x-x_{2}) + ... + c_{m+1}(x-x_{1})(x-x_{2}) : ... \cdot (x-x_{n})$$
 $c_{i} - c_{1} + c_{2}(x-x_{1}) + c_{3}(x-x_{1})(x-x_{2}) + ... + c_{m+1}(x-x_{1})(x-x_{2}) : ... \cdot (x-x_{n})$
 $c_{i} - c_{1} + c_{2}(x-x_{1}) + c_{3}(x-x_{1})(x-x_{2}) + ... + c_{m+1}(x-x_{1})(x-x_{2}) : ... \cdot (x-x_{n})$

3) là se afle, conform métodei Newton, polinounal Pa associat functiei $f(x) = \sqrt{x+1} - 1$, relative la divizionea (1,0,3).

$$x_1 = -1$$
 $y_1 = f(x_1) = f(-1) = -1$
 $x_2 = 0$ $y_2 = f(x_2) = f(0) = 0$
 $x_3 = 3$ $y_3 = f(x_3) = f(3) = 1$.

$$P_{a}(x) = c_{1} + c_{2}(x-x_{1}) + c_{3}(x-x_{1})(x-x_{2}) =$$

$$= c_{1} + c_{2}(x+1) + c_{3}(x+1) \cdot x$$

$$\begin{cases} P_{2}(x_{1}) = 41 \\ P_{2}(x_{2}) = 42 \\ P_{2}(x_{3}) = 43 \end{cases} = \begin{cases} P_{2}(-1) = -1 \\ P_{2}(0) = 0 \end{cases} = \begin{cases} C_{1} = -1 \\ C_{1} + C_{2} = 0 \end{cases} = \begin{cases} C_{2} = 1 \\ C_{1} + C_{2} + 12C_{3} = 1 \end{cases} = \begin{cases} C_{1} = -1 \\ C_{2} + 12C_{$$

$$= -1 + 4 + 42 + 2 = 1 = 1$$
 $(2 = -2) = 3 = -\frac{1}{6}$

$$P_{2}(x) = -1 + (x+1) - \frac{1}{6}(x+1) \cdot x$$

$$= -1 + x + 1 - \frac{1}{6}x^{2} - \frac{1}{6}x = -\frac{1}{6}x^{2} + \frac{5}{6}x.$$

· chetoda Newton cu diferente divigate 9m(x) = ftx1+ftx1, x2)0(x-x1)+:...+ftx1, x2,..., x4+1](x-x1)(x-x2):... unde $f[X_1] = f(X_1)$ -> differente divizata de ordin o a lui f in report $f[X_1, X_2] = \frac{f[X_1] - f[X_1]}{X_2 - X_1}$ -> differente divizata de ordin 1 a lui f in report en $X_1, S_1 \times X_2$ $f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1} \rightarrow \text{diffrator divigate do ordin } 2$ la hoport eu × 1, × 2, × 3 f[x₁,x₂,...,x_{n+1}] = f[x₂,x₃,..., x_{n+1}] - f[x₁,x₂,..., x_n] x_{n+1}-x₁ De de ordin on a lui f in report en x₁,x₂,..., x_{n+1}, Construin un tabel: fex; xit, xitz] ~ . . fex, x2 my xutiJ xi fixil fixil x fixil x2 fcx2] fcx,x2] x_3 fix 3J fix, x_2 , x_3 $f(x_1, x_2, x_3)$ Xuta FCXn+1] - FCXn+1, xn, xn+1] A[x,12,-, xn+1] 4) Fie $f: t0,12J \rightarrow R$, en $f(x) = 2\sqrt{2} \times +1 - 3x$, $+ \times \in t0,12J$. Ittilizable formula de representare abendon en diferente objetet, sa se ditermine polnionnel de grad 2, relative la diviginnea (94,12).

$$\begin{array}{l} x_{1} = 0 \\ x_{2} = 4 \\ x_{3} = 12. \end{array}$$

$$\begin{array}{l} P_{2}(x) = \int \left[\sum_{x_{1}} \left[\sum_{x_{1}} \left[\sum_{x_{2}} \sum_{x_{1}} \left[\sum_{x_{2}} \left[\sum_{x_{1}} \sum_{x_{2}} \left[\sum_{x_{2}$$

5) da se afte polinount de interpolare logrange P2(x) al functiei f(x) = sinx relative la divigienea (- 1, 0, 1) conforme metodor directo s' Logrange met. directa. $y_{1} = f(x_{1}) = f(-\frac{u}{2}) = \delta'u(-\frac{u}{2}) = -1$ X2=0 J2= f(x2)= f(0)= 8m0=0 X3 = 1 2 $y_3 = f(x_3) = f(\frac{\pi}{2}) = \sin \frac{\pi}{2} = 1$. P2 (X) = 9, +9, X+9, X $\begin{cases} P_{2}(x_{1})=y_{1} \\ P_{2}(x_{2})=y_{2} \end{cases} = \begin{cases} q_{1}-\frac{\pi}{2}q_{2}+\frac{\pi^{2}}{4}q_{3}=-1 \\ q_{1}=0 \\ q_{1}+\frac{\pi}{2}q_{2}+\frac{\pi^{2}}{4}q_{3}=1 \end{cases}$ $=\sqrt{-\frac{4}{2}}q_2+\frac{4}{4}q_3=-1$ $\left(\frac{\pi}{2}q_2 + \frac{\pi^2}{9}q_3 = 1\right)$ 2 q q = 0 =) q =0 $(1) \rightarrow 0 - \frac{\pi}{2} + 0 = -1 \Rightarrow 0 = -1 - \frac{2}{\pi} = \frac{2}{\pi}$ $P_{2}(x) = 0 + \frac{2}{7}x + 0x^{2} = \frac{2}{7}x$ met, bogrange: Alleseen Ca Po(x) = Lz, (x), y, + Lz, 2 (x), y2 + Lz, 3 (x). y3 y, = 1, y2 = 0, y3 = 1, (vezi mui sus) $L_{21}(x) = \frac{(x-x_{2})(x-x_{3})}{(x_{1}-x_{2})(x_{1}-x_{3})} = \frac{(x-0)(x-\frac{\pi}{2})}{(-\frac{\pi}{2}-0)(-\frac{\pi}{2}-\frac{\pi}{2})} = \frac{x(x-\frac{\pi}{2})}{-\frac{\pi}{2}\cdot(-\pi)} = \frac{x(x-\frac{\pi}{2})}{\frac{\pi}{2}} = \frac{x(x-\frac{\pi}{2})}{\frac{\pi}{2}}$ $=\frac{2}{\pi^2}\times\left(x-\frac{\pi}{2}\right)$ $L_{2,2}(x) = \frac{(x-x_1)(x-x_3)}{(x_2-x_3)} = \frac{(x+\frac{\pi}{2})(x-\frac{\pi}{2})}{(o+\frac{\pi}{2})(o-\frac{\pi}{2})} = \frac{x^2-\frac{\pi^2}{4}}{-\pi^2} = \frac{-4}{\pi^2}(x^2-\frac{\pi^2}{4})$

Scanned with CamScanner

$$\begin{array}{c} \mathcal{L}_{2,3}\left(x\right) = \frac{(y + x_1)(x - x_1)}{(x_2 - x_1)[x_2 - x_1)} = \frac{(x + \frac{\pi}{2})(x - 0)}{(+\frac{\pi}{2}, \frac{\pi}{2})(\frac{\pi}{2} - 0)} = \frac{x(x + \frac{\pi}{2})}{\pi \cdot 2} = \\ = \frac{1}{\pi^2} \times (x + \frac{\pi}{2}) \\ = \frac{1}{\pi^2} \times (x + \frac{\pi}{2}) \cdot (x) + 0 + \frac{1}{\pi^2} \times (x + \frac{\pi}{2}) \cdot 1 \\ = -\frac{1}{\pi^2} \times + \frac{x}{\pi^2} \cdot \frac{x}{x} + \frac{x}{\pi^2} \cdot \frac{x}{x} + \frac{x}{\pi^2} \cdot \frac{x}{x} = \frac{1}{6} \times + \frac{1}{\pi} \times = \frac{2}{\pi} \times \\ = \frac{1}{\pi^2} \times (x + \frac{\pi}{2}) \cdot (x - 1) + 0 + \frac{1}{\pi^2} \times (x + \frac{\pi}{2}) \cdot 1 \\ = -\frac{1}{\pi^2} \times + \frac{x}{\pi^2} \cdot \frac{x}{x} + \frac{x}{\pi^2} \cdot \frac{x}{x} = \frac{1}{6} \times + \frac{1}{\pi} \times = \frac{2}{\pi} \times \\ = \frac{1}{\pi^2} \times (x + \frac{\pi}{2}) + (x_2)(x - x_1)(x - x_2) = \\ = \frac{1}{\pi^2} \times (x + \frac{\pi}{2}) + (x_2)(x - x_1)(x - x_2) = \\ = \frac{1}{\pi^2} \times (x + \frac{\pi}{2}) + (x_2)(x + \frac{\pi}{2}) + (x_2)(x + \frac{\pi}{2}) \cdot (x - 1) + (x_2)(x + \frac{\pi}{2}) \cdot (x + \frac{$$

$$\begin{aligned}
f(0, \frac{\pi}{2}) &= f(\frac{\pi}{2}) - f(0) \\
\frac{\pi}{2} - 0 &= \frac{\pi}{2} = \frac{\pi}{2}
\end{aligned}$$

$$f(-\frac{\pi}{2}, 0, \frac{\pi}{2}) &= f(0, \frac{\pi}{2}) - f(-\frac{\pi}{2}) \\
\frac{\pi}{2} - (-\frac{\pi}{2}) &= \frac{\pi}{2} - \frac{\pi}{4}$$

$$f(-\frac{\pi}{2}, 0, \frac{\pi}{2}) &= f(0, \frac{\pi}{2}) - f(-\frac{\pi}{2}) \\
\frac{\pi}{2} - (-\frac{\pi}{2}) &= \frac{\pi}{2} - \frac{\pi}{4}$$

$$f(x) = -1 + \frac{\pi}{4}(x + \frac{\pi}{2}) + 0 = -x + \frac{\pi}{4} \cdot x + x = \frac{\pi}{4} \cdot x$$