Unsupervised Shrinkage Estimation Methods for Mixture of Regression Models

Armin Hatefi

A joint work with Hamid Usefi and Elsayed Ghanem

Department of Mathematics and Statistics, Memorial University

CMS Summer Meeting – June 5, 2022

Armin Hatefi 1 / 24

Why mixture of regressions?

- Mixture of regressions: when the underlying population comprises of heterogeneous subpopulations.
- The Maximum likelihood method is one of the most common method estimating the regression parameters.
- More predictors but multicollinearity problem: unreliable estimates, wide confidence intervals, test of significance,
- Many characteristics can not even be considered as predictors of regression? Rank information for sampling designs.
- In this talk, we develop biased but more reliable methods including ridge and Liu-type (LT) for mixture of regressions.

Armin Hatefi 2 / 24

Osteoporosis

- reduced bone mineral density (BMD) with deterioration of bone architecture
- increased risk of fracture, skeletal fragility, other related bone disorders
- WHO: BMD measurement is one of the most important predictors for osteoporosis diagnosis & bone disorders.
- BMDs are obtained via dual X-ray absorptiometry (DXA).

- 3 out of 4 patients with osteoporosis are not aware of their disease.
- At least 1 in 3 women and 1 in 5 men aged 50 and older will experience osteoporotic fractures (such hip).
- 53% of patients with osteoporotic hip fracture can no longer live independently.
- And 28% die within one year of the complication.

Mixture of Regression Models

- Let $\mathbf{x}_i^{\mathsf{T}} = (x_{i,1}, \dots, x_{i,p})$ be the vector of p predictors for the i-th subject for $i = 1, \dots, n$.
- Let $\mathbf{y} = (y_1, \dots, y_n)$ and $\mathbf{X} = (\mathbf{x}_1^\top, \dots, \mathbf{x}_n^\top)^\top$ denote the respect vector and $(n \times p)$ design matrix with rank $(\mathbf{X}) = p < n$.
- The mixture of regression models:

$$y_{i} = \begin{cases} \mathbf{x}_{i}^{\mathsf{T}} \beta_{1} + \epsilon_{i1}, & \text{with probability } \pi_{1} \\ \vdots \\ \mathbf{x}_{i}^{\mathsf{T}} \beta_{J} + \epsilon_{iJ}, & \text{with probability } \pi_{J} \end{cases}$$

$$(1)$$

- $\beta_j = (\beta_{j,1}, \dots, \beta_{J,p})$ and $\sum_{j=1}^M \pi_j = 1$ and $0 < \pi_j < 1$. Also $\epsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma_i^2)$ for $j = 1, \dots, J$.
- \bullet We assume that the number of components J in the mixture model (1) is known; however, the component memberships are unknown and should be estimated in an unsupervised approach.
- Let $\beta = (\beta_1, \dots, \beta_J)$. Let $\theta_j = (\beta_j, \sigma_j^2)$. Thus, $\Psi = (\pi, \theta_1, \dots, \theta_J)$.

Armin Hatefi 5 / 24

Mixture of Regression Models

From regression model (2), the log-likelihood function of Ψ can be written as

$$\ell(\boldsymbol{\Psi}) = \sum_{i=1}^{n} \log \left(\sum_{j=1}^{J} \pi_{j} \phi_{j}(\mathbf{x}_{i}^{\mathsf{T}} \beta_{j}, \sigma_{j}^{2}) \right), \tag{3}$$

where $\phi_J(\mathbf{x}_i^T\beta_j, \sigma_j^2)$ represents the pdf of normal distribution. For each subject (\mathbf{x}_i, y_i) , we introduce latent variables $\mathbf{Z}_i = (Z_{i1}, \dots, Z_{iJ})$ for $i = 1, \dots, n$ as

$$Z_{ij} = \begin{cases} 1 & \text{if the i-th subject comes from the j-th component,} \\ 0 & o.w., \end{cases}$$

It is easy to see $\mathbf{Z}_i|y_i \stackrel{iid}{\sim} \mathrm{Multi}(1, \tau_{i1}(\boldsymbol{\Psi}), \dots, \tau_{iJ}(\boldsymbol{\Psi}))$ where

$$\tau_{ij}(\mathbf{\Psi}) = \frac{\pi_j \phi_j(\mathbf{x}_i^{\mathsf{T}} \beta_j, \sigma_j^2)}{\sum_{j=1}^J \pi_j \phi_j(\mathbf{x}_i^{\mathsf{T}} \beta_j, \sigma_j^2)}.$$
 (4)

Let (X, y, Z) denote the complete data. Then

$$\ell_c(\mathbf{\Psi}) = \sum_{i=1}^{n} \sum_{j=1}^{J} z_{ij} \log(\pi_j) + \sum_{i=1}^{n} \sum_{j=1}^{J} z_{ij} \log\{\phi_j(\mathbf{x}_i^{\mathsf{T}} \beta_j, \sigma_j^2)\}.$$
 (5)

Armin Hatefi 6 / 24

ML Method

- The EM algorithm turns the estimation into an iterative expectation (E) and maximization (M) steps.
- Let $\Psi^{(0)} = (\pi^{(0)}, \theta_1^{(0)}, \dots, \theta_J^{(0)})$ and $\Psi^{(r)}$ be the r-th iteration of the EM algorithm.
- E-step: The conditional expectation of complete data log-likelihood is given by

$$\mathbf{Q}(\mathbf{\Psi},\mathbf{\Psi}^{(r)}) = \mathbf{Q}_1(\pi,\mathbf{\Psi}^{(r)}) + \mathbf{Q}_2(\theta,\mathbf{\Psi}^{(r)}),$$

where

$$\mathbf{Q}_{1}(\pi, \mathbf{\Psi}^{(r)}) = \sum_{i=1}^{n} \sum_{j=1}^{J} \tau_{ij}(\mathbf{\Psi}^{(r)}) \log(\pi_{j}), \tag{9}$$

and

$$\mathbf{Q}_{2}(\theta, \mathbf{\Psi}^{(r)}) = \sum_{i=1}^{n} \sum_{j=1}^{J} \tau_{ij}(\mathbf{\Psi}^{(r)}) \log \{\phi_{j}(\mathbf{x}_{i}^{\mathsf{T}}\beta_{j}, \sigma_{j}^{2})\}.$$
 (10)

Armin Hatefi 7 / 24

ML Method

M-step:

$$\widehat{\pi}_{j}^{(r+1)} = \sum_{i=1}^{n} \tau_{ij}(\mathbf{\Psi}^{(r)})/n; \quad j = 1, \dots, J-1.$$
 (13)

The maximization of $\mathbf{Q}_2(\theta, \mathbf{\Psi}^{(r)})$ can be reformulated as the weight least square method as follows

$$\widehat{\beta}_{j}^{(r+1)} = \underset{\beta_{j}}{\arg \min} (\mathbf{y} - \mathbf{X}\beta)^{\mathsf{T}} \mathbf{W}_{j} (\mathbf{y} - \mathbf{X}\beta) / n, \tag{14}$$

where \mathbf{W}_j is $n \times n$ diagonal matrix with diagonal elements $(\tau_{ij}(\mathbf{\Psi}^{(r)}), \dots, \tau_{nj}(\mathbf{\Psi}^{(r)}))$ for all $j = 1, \dots, J$.

$$\widehat{\sigma}_{j}^{2(r+1)} = \frac{(\mathbf{y} - \mathbf{X}\widehat{\beta}^{(r+1)})^{\mathsf{T}} \mathbf{W}_{j}^{(r)} (\mathbf{y} - \mathbf{X}\widehat{\beta}^{(r+1)})}{\sum_{j=1}^{n} \tau_{ij} (\mathbf{\Psi}^{(r)})}, \quad j = 1, \dots, J. \quad (15)$$

To find $\widehat{\Psi}_{ML}$, we iteratively alternate the E- and M- steps of the EM algorithm until the stopping criterion $|\ell(\Psi^{(r+1)}) - \ell(\Psi^{(r)})|$ becomes negligible.

Armin Hatefi 8 / 24

Classification EM Algorithm: The CEM algorithm incorporates a classification (C) step between E and M steps.

• C-step: Let $\mathbf{P}^{(r+1)} = (P_1^{(r+1)}, \dots, P_J^{(r+1)})$ denote the partition in the (r+1)-th iteration.

$$\tau_{ih}(\mathbf{\Psi}^{(r)}) = \underset{j}{\operatorname{arg max}} \ \tau_{ij}(\mathbf{\Psi}^{(r)}).$$

$$\widehat{\pi}_j^{(r+1)} = n_j/n; \quad j = 1, \dots, J,$$
 (20)

$$\widehat{\beta}_{j}^{(r+1)} = \left(\mathbf{X}_{j}^{\mathsf{T}} \mathbf{W}_{j} \mathbf{X}_{j}\right)^{-1} \mathbf{X}_{j}^{\mathsf{T}} \mathbf{W}_{j} \mathbf{y}_{j}, \tag{21}$$

$$\widehat{\sigma}_{j}^{2(r+1)} = \frac{(\mathbf{y}_{j} - \mathbf{X}_{j}\widehat{\beta}^{(r+1)})^{\mathsf{T}} \mathbf{W}_{j}^{(r)} (\mathbf{y}_{j} - \mathbf{X}_{j}\widehat{\beta}^{(r+1)})}{\sum_{i=1}^{n} \tau_{ij} (\Psi^{(r)})},$$
(22)

• $\mathbf{W}_{j}^{(r)}$ is the diagonal weight matrix of size n_{j} with diagonal entries $(\tau_{ij}(\mathbf{\Psi}^{(r)}), \dots, \tau_{n_{j},j}(\mathbf{\Psi}^{(r)}))$. Stochstic EM Algorithm: The S-step simulates a random allocation for tehobservations.

$$\mathbf{Z}_{i}^{*} = (Z_{i1}^{*}, \dots, Z_{iJ}^{*}) \stackrel{iid}{\sim} \operatorname{Multi}(1, \tau_{i1}(\mathbf{\Psi}^{(r)}), \dots, \tau_{iJ}(\mathbf{\Psi}^{(r)})) \quad (i = 1, \dots, n).$$

Armin Hatefi

9 / 24

Ridge Method

• When $\ell(\Psi)$ is the incomplete log-likelihood, and k>0 is the ridge parameter, then

$$\ell^{R}(\mathbf{\Psi}) = \ell(\mathbf{\Psi}) - k\beta^{\mathsf{T}}\beta/2 \tag{26}$$

From the weighted least square, we have

$$\widehat{\beta}_{R,j}^{(r+1)} = \underset{\beta_j}{\operatorname{arg\,min}} \left(\mathbf{y} - \mathbf{X} \beta \right)^{\mathsf{T}} \mathbf{W}_j (\mathbf{y} - \mathbf{X} \beta) + k_j \beta_j^{\mathsf{T}} \beta_j / 2, \tag{27}$$

$$\widehat{\sigma}_{R,j}^{2(r+1)} = \frac{(\mathbf{y} - \mathbf{X}\widehat{\beta}_R^{(r+1)})^{\mathsf{T}} \mathbf{W}_j^{(r)} (\mathbf{y} - \mathbf{X}\widehat{\beta}_R^{(r+1)})}{\sum_{i=1}^n \tau_{ij} (\boldsymbol{\Psi}^{(r)})},$$
(28)

where $\widehat{\beta}_{R}^{(r+1)} = (\widehat{\beta}_{R,1}^{(r+1)}, \dots, \widehat{\beta}_{R,J}^{(r+1)})$. There are various methods available in the literature for estimation of k_j . Following [1],

$$\widehat{k_j} = p\widehat{\sigma}_{ML,j}^2/\widehat{\beta}_{ML,j}^{\mathsf{T}}\widehat{\beta}_{ML,j}$$

Armin Hatefi

Lemma 1. Under the assumptions of mixture of regression models (2), suppose $\lambda_{1j}, \ldots, \lambda_{pj}$ and u_{1j}, \ldots, u_{pj} be eigenvalues and orthonormal eigenvectors of $\mathbf{X}^{\mathsf{T}}\mathbf{W}_{j}\mathbf{X}$ where \mathbf{W}_{j} is $n \times n$ diagonal matrix with entries $(\tau_{ij}(\mathbf{\Psi}^{(r)}), \ldots, \tau_{nj}(\mathbf{\Psi}^{(r)}))$ under ridge EM algorithm. Let $\mathbf{\Lambda}_{j} = \operatorname{diag}(\lambda_{1j}, \ldots, \lambda_{pj})$ and $\mathbf{U}_{j} = [u_{1j}, \ldots, u_{pj}]$. Then The canonical weighted ridge estimator in each component regression is given by

$$\widehat{\alpha}_{R,j} = \left(\boldsymbol{\Lambda}_j + k_j\right)^{-1} \boldsymbol{\Lambda}_j^{1/2} \mathbf{V}_1^{\top} \mathbf{W}_j^{1/2} \mathbf{y}.$$

and

$$\widehat{\beta}_{R,j}=\mathbf{U}_{j}\widehat{\alpha}_{R,j}$$

 $\text{with } \mathbf{V}_1 = [v_{1j}, \dots, v_{pj}] \text{ where } v_{1j}, \dots, v_{pj} \text{ are the orthonormal eigenvectors of } \mathbf{W}_j^{1/2} \mathbf{X} \mathbf{X}^\intercal \mathbf{W}_j^{1/2}.$

Ridge CEM (or SEM) Algorithm:

• C-step (S-step): Let $\mathbf{P}^{(r+1)} = (P_1^{(r+1)}, \dots, P_J^{(r+1)})$ denote the partition in the (r+1)-th iteration.

$$\widehat{\boldsymbol{\beta}}_{R,j}^{(r+1)} = \underset{\boldsymbol{\beta}_{j}}{\arg\min} \ (\mathbf{y}_{j} - \mathbf{X}_{j}\boldsymbol{\beta})^{\mathsf{T}} \mathbf{W}_{j} (\mathbf{y}_{j} - \mathbf{X}_{j}\boldsymbol{\beta}) + k_{j} \beta_{j}^{\mathsf{T}} \beta_{j} / 2, \tag{31}$$

$$\widehat{\sigma}_{R,j}^{2(r+1)} = \frac{(\mathbf{y}_j - \mathbf{X}_j \widehat{\beta}_R^{(r+1)})^{\mathsf{T}} \mathbf{W}_j^{(r)} (\mathbf{y}_j - \mathbf{X}_j \widehat{\beta}_R^{(r+1)})}{\sum_{i=1}^n \tau_{ij} (\mathbf{\Psi}^{(r)})},$$
(32)

Lemma 3. Under the assumptions of mixture of regression models (2), with component regression models $\mathbf{y}_j = \mathbf{X}_j \beta_j + \epsilon$ based on n_j observations with $\operatorname{rank}(\mathbf{X}_j) = p$. Suppose $\lambda_{1j}, \ldots, \lambda_{pj}$ and u_{1j}, \ldots, u_{pj} be eigenvalues and orthonormal eigenvectors of $\mathbf{X}_j^{\mathsf{T}} \mathbf{W}_j \mathbf{X}_j$ where \mathbf{W}_j is $n_j \times n_j$ diagonal matrix with entries $(\tau_{ij}(\mathbf{\Psi}^{(r)}), \ldots, \tau_{nj}(\mathbf{\Psi}^{(r)}))$ under ridge CEM or ridge SEM algorithm. Let $\mathbf{\Lambda}_j = \operatorname{diag}(\lambda_{1j}, \ldots, \lambda_{pj})$ and $\mathbf{U}_j = [u_{1j}, \ldots, u_{pj}]$. Then The canonical weighted ridge estimator in each component regression is given by

$$\widehat{\alpha}_{R,j} = (\mathbf{\Lambda}_j + k_j)^{-1} \mathbf{\Lambda}_j^{1/2} \mathbf{V}_1^{\mathsf{T}} \mathbf{W}_j^{1/2} \mathbf{y}.$$

and

$$\widehat{\beta}_{R,i} = \mathbf{U}_i \widehat{\alpha}_{R,i}$$

with $\mathbf{V}_1 = [v_{1j}, \dots, v_{pj}]$ where v_{1j}, \dots, v_{pj} are the orthonormal eigenvectors of $\mathbf{W}_i^{1/2} \mathbf{X}_j \mathbf{X}_i^\intercal \mathbf{W}_i^{1/2}$.

LT Method

• When $\ell(\Psi)$ is the incomplete log-likelihood, and $k > 0, d \in \mathbb{R}$ is the ridge parameter, then

$$\ell^{LT}(\boldsymbol{\Psi}) = \ell(\boldsymbol{\Psi}) - \left[\left(-\frac{d}{k^{1/2}} \right) \widehat{\beta} - k^{1/2} \beta \right]^{\mathsf{T}} \left[\left(-\frac{d}{k^{1/2}} \right) \widehat{\beta} - k^{1/2} \beta \right]. \tag{38}$$

From the weighted least square, we have

$$\widehat{\beta}_{LT,j}^{(r+1)} = \underset{\beta_j}{\operatorname{arg \, min}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathsf{T}} \mathbf{W}_j (\mathbf{y} - \mathbf{X} \boldsymbol{\beta}) + \left[\left(-\frac{d_j}{k_j^{1/2}} \right) \widehat{\beta}_j - k_j^{1/2} \beta_j \right]^{\mathsf{T}} \left[\left(-\frac{d_j}{k_j^{1/2}} \right) \widehat{\beta}_j - k_j^{1/2} \beta_j \right]. \tag{39}$$

$$\widehat{\sigma}_{LT,j}^{2(r+1)} = \frac{(\mathbf{y} - \mathbf{X}\widehat{\beta}_{LT}^{(r+1)})^{\mathsf{T}} \mathbf{W}_{j}^{(r)} (\mathbf{y} - \mathbf{X}\widehat{\beta}_{LT}^{(r+1)})}{\sum_{i=1}^{n} \tau_{ij} (\mathbf{\Psi}^{(r)})},$$
(40)

$$\widehat{k}_{LT,j} = \frac{\lambda 1j - 100\lambda_{pj}}{99}$$

where λ_{1j} and λ_{pj} are max and min eigenvalues of $\mathbf{X}^{\mathsf{T}}\mathbf{W}_{j}\mathbf{X}$.

Lemma 5. Under the assumptions of Lemma 1, the canonical weighted LT estimator in each component regression under LT EM algorithm is given by

$$\widehat{\alpha}_{LT,j} = (\boldsymbol{\Lambda}_j + k_j)^{-1} \left(\boldsymbol{\Lambda}_j^{1/2} \mathbf{V}_1^{\top} \mathbf{W}_j^{1/2} \mathbf{y} - d_j \widehat{\alpha}_j \right).$$

and

$$\widehat{\beta}_{LT,j} = \mathbf{U}_j \widehat{\alpha}_{LT,j}$$

with $\mathbf{V}_1 = [v_{1j}, \dots, v_{pj}]$ where v_{1j}, \dots, v_{pj} are the orthonormal eigenvectors of $\mathbf{W}_i^{1/2} \mathbf{X} \mathbf{X}^{\mathsf{T}} \mathbf{W}_i^{1/2}$.

Lemma 6. Under the assumptions of Lemma 1, for each component regression j = 1, ..., J and $k_j > 0$,

$$d_{j} = \sum_{m=1}^{p} ((\sigma_{j}^{2} - k_{j}\alpha_{lj}^{2})/(\lambda_{lj} + k_{j})^{2}) / \sum_{l=1}^{p} ((\lambda_{lj}\alpha_{lj}^{2} + \sigma_{j}^{2})/\lambda_{lj}(\lambda_{lj} + k_{j})^{2})$$

and

$$\widehat{\beta}_{LT,j} = \mathbf{U}_j \widehat{\alpha}_{LT,j}$$

minimizes the $MSE(\widehat{\alpha}_{LT,j})$.

- Iterative LT method uses Lemma (6) and iteratively updates d_j and k_j .
- As a modified approach, $LT_KHPonlyupdatesd_j$ and k_j once using the final ridge estimates.
- The same results can be obtained for LT CEM and SEM algorithm.

Table 5: Prediction Error based on MRSEP for mixture of two regressions with n = 100

		$\rho = 0$	ρ = 0.88		ρ = 0.90		ρ = 0.95		ρ = 0.97		$\rho = 0$	ρ = 0.99	
EST	METH	M	L	M	L		M	L	M	L	M	L	
ML	$\mathbf{E}\mathbf{M}$	16.6	8.2	16.9	8.8	1	7.7	9.0	18.1	8.9	18.5	9.3	
	CEM	16.5	8.6	16.8	8.7	1	7.6	9.4	18.1	9.0	18.5	9.9	
	SEM	16.6	8.5	16.9	8.9	1	7.7	9.0	18.0	9.4	18.5	9.8	
Ridge	$\mathbf{E}\mathbf{M}$	16.6	8.8	16.8	8.6	1	7.7	9.1	18.1	9.2	18.6	9.4	
	CEM	16.5	8.6	16.8	8.6	1	7.6	9.4	18.0	9.4	18.4	9.3	
	SEM	16.5	8.7	16.7	8.5	1	7.8	9.0	18.0	9.3	18.5	9.4	
LT(HKP)	EM	16.5	8.6	16.8	8.7	1	7.6	9.0	18.1	8.9	18.5	9.9	
	CEM	16.4	8.8	16.8	8.5	1	7.6	8.9	18.1	9.4	18.4	9.6	
	SEM	16.5	8.6	16.9	8.8	1	7.7	8.9	18.0	9.2	18.4	9.6	
LT(ITE)	$\mathbf{E}\mathbf{M}$	16.6	8.5	16.9	8.4	1	7.5	9.3	17.9	9.3	18.2	9.0	
	CEM	16.5	8.6	16.8	8.8	1	7.3	9.0	17.8	9.2	18.2	9.3	
	ESM	16.6	8.4	16.8	8.5	1	7.4	8.8	17.8	9.7	18.2	9.5	

Real Data Analysis: Osteoporosis

- We consider available BMD data on women aged 50 and over in the NHANES III (conducted on \sim 30K American adults) data set as our population with size n=181.
- We consider total BMD of the second examination as response. Arm and Botton circumference as two easy-to-measure predictors, $\rho = 0.81$
- Goodness of fit tests using the BIC criterion shows that a mixture of two regressions was the best fit.
- The performance of methods weas evaluated via 5 folds cross-validation with 2000 replicates.

Table 1: Estimation Performance of bone population with n = 60

			CEM			SEM			$\mathbf{E}\mathbf{M}$		
Methods	Ψ	M	L	U	M	L	U	M	L	U	
ML	β	.010	.002	.165	.019	.003	.213	.018	.003	.134	
	π	.333	.100	.366	.333	.183	.366	.218	.015	.365	
	σ^2	.003	.000	.014	.006	000	.014	.004	.000	.014	
Ridge	β	.009	.002	.165	.013	.002	.166	.012	.002	.118	
	π	.333	.100	.366	.333	.166	.366	.214	.019	.366	
	σ^2	.003	.000	.014	.006	.000	.014	.004	.000	.014	
LT(HKP)	β	.009	.002	.165	.010	.003	.183	.010	.003	.067	
	π	.333	.100	.366	.333	.150	.366	.205	.013	.372	
	σ^2	.003	.000	.014	.006	.000	.014	.004	.000	.016	
LT(ITERATIVE)	β	.009	.002	.010	.009	.006	.011	.009	.007	.010	
	π	.300	.100	.366	.350	.116	.566	.575	.032	.599	
	σ^2	.002	.000	.014	.005	.000	.014	.003	.000	.009	

Thanks!

- Ghanem, Hatefi and Usefi (2022). Unsupervised shrinkage methods for mixture of regressions.
- Ghanem, Hatefi and Usefi (2022). Liu-type Shrinkage Estimators for Mixture of Logistic Regressions: An Osteoporosis Study.
- Pearce and Hatefi (2021+). Multiple Observers Ranked Set Samples for Shrinkage Estimators.
- Liu (2003). Using liu-type estimator to combat collinearity. Communications in Statistics-Theory and Methods.
- Faria and Soromenho (2010). Fitting mixtures of linear regressions. Journal of Statistical Computation and Simulation.
- Alvandi and Hatefi (2021). Estimation of Ordinal Population with Multi-observer Ranked Set Samples. Statistical Methods in Medical Research.