Módulo y Generador Energía Solar Fotovoltaica

Oscar Perpiñán Lamigueiro http://oscarperpinan.github.io

Módulo y Generador

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Módulo Fotovoltaico

Generador Fotovoltaico

Módulo Fotovoltaico

Generador Fotovoltaico

Módulo Fotovoltaico Introducción

Modelado de un módulo Punto Caliente

Generador Fotovoltaico

Módulo Fotovoltaico

 Las características eléctricas de una célula no son suficientes para alimentar las cargas convencionales. Módulo y Generador

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Módulo

otovoltaico

Introducción

Modelado de un módulo

Generador Otovoltaico

Introducción

Modelado de un módulo

Generador Potovoltaico

- Las características eléctricas de una célula no son suficientes para alimentar las cargas convencionales.
- ► Es necesario realizar agrupaciones en serie y paralelo para entregar tensión y corriente adecuadas.

Introducción

Modelado de un módulo

Generador Fotovoltaico

Ejemplos de generadores

- Las características eléctricas de una célula no son suficientes para alimentar las cargas convencionales.
- Es necesario realizar agrupaciones en serie y paralelo para entregar tensión y corriente adecuadas.
- ► Un módulo fotovoltaico es una asociación de células a las que protege de la intemperie, las aisla eléctricamente del exterior dando rigidez mecánica al conjunto.

Modelado de un módulo

Generador Fotovoltaico

Ejemplos de generadores

- Las características eléctricas de una célula no son suficientes para alimentar las cargas convencionales.
- Es necesario realizar agrupaciones en serie y paralelo para entregar tensión y corriente adecuadas.
- Un módulo fotovoltaico es una asociación de células a las que protege de la intemperie, las aisla eléctricamente del exterior dando rigidez mecánica al conjunto.
- Existen multitud de módulos diferentes, tanto por su configuración eléctrica como por sus características estructurales y estéticas.

Estructura de un módulo fotovoltaico

- ► La asociación de células es encapsulada en dos capas de EVA (etileno-vinilo-acetato), entre una lámina frontal de vidrio y una capa posterior de un polímero termoplástico (frecuentemente se emplea el tedlar).
- ► Este conjunto es enmarcado en una **estructura de aluminio anodizado** con el objetivo de aumentar la resistencia mecánica del conjunto y facilitar el anclaje del módulo a las estructuras de soporte.

Módulo y Generador

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Módulo Fotovoltaico

Introducción

Modelado de un módulo

Generador Fotovoltaico

generadores fotovoltaicos

El vidrio frontal

Debe tener y mantener una alta transmisividad en la banda espectral en la que trabajan las células solares. Módulo y Generador

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Módulo Estavaltaia

Introducción

Modelado de un módulo

Generador Fotovoltaico

Introducción

Modelado de un módulo

Generador Otovoltaico

- ▶ Debe tener y mantener una **alta transmisividad** en la banda espectral en la que trabajan las células solares.
- Debe tener buena resistencia al impacto y a la abrasión.

Introducción

Modelado de un módulo

Ejemplos de

- ▶ Debe tener y mantener una **alta transmisividad** en la banda espectral en la que trabajan las células solares.
- Debe tener buena resistencia al impacto y a la abrasión.
- ➤ Su superficie debe ser de forma que combine un buen comportamiento antireflexivo con la ausencia de bordes o desniveles que faciliten la acumulación de suciedad o dificulten la limpieza de ésta mediante la acción combinada del viento y la lluvia.

Modelado de un módu

Generador Fotovoltaico

- ▶ Debe tener y mantener una **alta transmisividad** en la banda espectral en la que trabajan las células solares.
- Debe tener buena resistencia al impacto y a la abrasión.
- Su superficie debe ser de forma que combine un buen comportamiento antireflexivo con la ausencia de bordes o desniveles que faciliten la acumulación de suciedad o dificulten la limpieza de ésta mediante la acción combinada del viento y la lluvia.
- ► Frecuentemente se emplea vidrio templado con bajo contenido en hierro con algún tipo de tratamiento antireflexivo.

Modelado de un módu

Generador

Ejemplos de

- El encapsulante a base de EVA, combinado con un tratamiento en vacío y las capas frontal y posterior, evita la entrada de humedad en el módulo, señalada como la causa principal de la degradación a largo plazo de módulos fotovoltaicos.
- Además, esta combinación permite obtener altos niveles de aislamiento eléctrico.

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Iódulo otovoltaico

Introducción

Punto Caliente

Generador Fotovoltaico

Ejemplos de generadores

- ► Una configuración eléctrica muy común hasta hace unos años empleaba 36 células en serie para obtener módulos con potencias comprendidas en el rango 50 Wp — 100 Wp con tensiones en MPP cercanas a los 15 V en funcionamiento.
- Estos módulos eran particularmente adecuados para su acoplamiento con baterías de tensión nominal 12 V en los sistemas de electrificación rural.
- ➤ Con el protagonismo abrumador de los sistemas fotovoltaicos de conexión a red, esta configuración ha perdido importancia. Ahora son frecuentes los módulos de potencia superior a los 200 Wp y tensiones en el rango 30 V 50 V.

Módulo v

Generador

- ► Esta norma internacional recoge los **requisitos de diseño y construcción** de módulos fotovoltaicos terrestres apropiados para su operación en períodos prolongados de tiempo bajo los efectos climáticos.
- Detalla un procedimiento de pruebas a los que se debe someter el módulo que desee contar con la certificación asociada a esta normativa

Módulo

Introducción

Introducción

Generador

Ejemplos de generadores

Módulo Fotovoltaico

Introducción

Modelado de un módulo

Punto Caliente

Generador Fotovoltaico

Suposiciones del modelo

 Los efectos de la resistencia paralelo son despreciables

$$I = I_{sc} \cdot (1 - \exp(\frac{V - V_{oc} + I \cdot R_s}{V_t}))$$

Módulo y Generador

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Módulo Potovoltaico

Introducción

Modelado de un módulo

Generador Fotovoltaico

Ejemplos de generadores

Modelado de un módulo

Generador Fotovoltaico

generadores fotovoltaicos

- Los efectos de la resistencia paralelo son despreciables
- ► La corriente fotogenerada (*I*_L) es igual a la corriente de cortocircuito

$$I = I_{sc} \cdot \left(1 - \exp\left(\frac{V - V_{oc} + I \cdot R_s}{V_t}\right)\right)$$

- Los efectos de la resistencia paralelo son despreciables
- ► La corriente fotogenerada (*I*_L) es igual a la corriente de cortocircuito
- ► En cualquier condición de operación $\exp(\frac{V+I\cdot R_s}{V_t})\gg 1$

$$I = I_{sc} \cdot \left(1 - \exp\left(\frac{V - V_{oc} + I \cdot R_s}{V_t}\right)\right)$$

Inter-describe

Modelado de un módulo

Punto Caliente

Fotovoltaico

Ejemplos de generadores fotovoltaicos

 La corriente de cortocircuito depende exclusivamente y de forma lineal de la irradiancia.

$$I_{sc} = G_{ef} \cdot rac{I_{sc}^*}{G^*}$$

► La tensión de circuito abierto depende exclusivamente de la temperatura de célula, y decrece linealmente con ella.

$$V_{oc}(T_c) = V_{oc}^* + (T_c - T_c^*) \cdot \frac{dV_{oc}}{dT_c}$$

Módulo Fotovoltaico

Introducción

Modelado de un módulo

Punto Caliente

Generador Fotovoltaico

Ejemplos de

Ejemplos de generadores fotovoltaicos

La temperatura de operación de la célula depende de la temperatura y la irradiación

$$T_c = T_a + G \cdot \frac{NOCT - 20}{800}$$

- Como consecuencia, la eficiencia decrece a razón de 0,5% por grado centigrado.
- La resistencia serie es independiente de las condiciones de operación.

TONC

► Temperatura que alcanza una *célula* cuando su *módulo* trabaja en las siguientes condiciones:

▶ Irradiancia: $G = 800 \,\mathrm{W}\,\mathrm{m}^{-2}$

• Espectro: el correspondiente a AM = 1.5.

► Incidencia normal

▶ Temperatura *ambiente*: $T_a = 20$ °C.

Velocidad de viento: $v_v = 1 \,\mathrm{m\,s^{-1}}$.

Módulo y Generador

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Introducción

Modelado de un módulo

Punto Caliente

Generador Fotovoltaico

Módulo Fotovoltaico

Introducción Modelado de un módulo Punto Caliente

Generador Fotovoltaico

Punto caliente

Módulo y Generador

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Mòdulo

Fotovoltaic

Modelado de un

Punto Caliente

Generador Fotovoltaio

Punto caliente

Módulo y Generador

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Módulo

Fotovoltai

Modolado do ur

Punto Caliente

Generador

Ejemplos de generadores

Punto caliente

Módulo y Generador

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Aódulo

Fotovoltaic

Introducción

Modelado de un m

Punto Caliente

Generador Fotovoltaico

Diodo de paso

Módulo y Generador

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Mòdulo

Fotovoltaic

Modelado de um

Punto Caliente

Generador Fotovoltaico

Ejemplos de generadores

Curvas I-V con diodo de paso

Módulo y Generador

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Módulo

Fotovoltaio

Introducción

Modelado de un mó

Punto Caliente

Generador Fotovoltaico

Tensión con diodo de paso

Módulo y Generador

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Punto Caliente

Curvas Potencia con diodo de paso

Módulo y Generador

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Módulo Potovoltaios

Fotovoitai

Modelado de un r

Punto Caliente

Generador Potovoltaico

Curva Módulo con Diodos de Paso

Módulo y Generador

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Iódulo

Fotovoltaic

introduccion

Punto Caliente

Generador Potovoltaico

Diodos de paso

Módulo y Generador

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Fotovoltaio

Introducción

Modelado de u

Punto Caliente

Generador Fotovoltaic

Ejemplos de generadores

Módulo Fotovoltaico

Generador Fotovoltaico

Módulo Fotovoltaico

Generador Fotovoltaico Definición Pérdidas por dispersión

Generador Fotovoltaico

Un generador fotovoltaico es una asociación eléctrica de módulos fotovoltaicos para adaptarse a las condiciones de funcionamiento de una aplicación determinada.

Módulo y Generador

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Módulo Fotovoltaico

Generador Fotovoltaico

Definición

Ejemplos de

Generador Fotovoltaico

- Un generador fotovoltaico es una asociación eléctrica de módulos fotovoltaicos para adaptarse a las condiciones de funcionamiento de una aplicación determinada.
- Se compone de un total de $N_T = N_p \cdot N_s$ módulos, siendo N_p el número de ramas (módulos en paralelo), y N_s el número de módulos en cada serie.

Módulo y Generador

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Iódulo otovoltaico

Generador Fotovoltaico

Definición

eneradores

$$I_{sc,g} = N_p \cdot I_{sc,m}$$

► El número de modulos en serie, *N*_s, define la tensión del generador.

$$V_{oc,g} = N_s \cdot V_{oc,m}$$

La potencia del generador es (idealmente):

$$P_g = N_T \cdot P_m = (N_s \cdot V_{mpp,m})(N_p \cdot I_{mpp,m})$$

Módulo y Generador

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Aódulo otovoltaic

Generador Fotovoltaico

Definición

Ejemplos de generadores Calcular el comportamiento eléctrico de un generador fotovoltaico constituido por 40 módulos, asociados en 4 ramas, bajo la suposición de factor de forma constante.

- Las condiciones de operación de este generador son: $G_{ef} = 700 \, \text{W/m}^2 \, \text{y} \, T_a = 34 \, ^{\circ}\text{C}.$
- ▶ De las fichas técnicas del módulo se extrae la siguiente información: $I_{sc}^* = 3 A$, $V_{oc}^* = 19,8 V$, $I_{mpp}^* = 2,8 A$ y $V_{mpp}^* = 15.7 V$.
- Cada módulo está constituido por 33 células asociadas en serie. La TONC del módulo es de 43°C.

Módulo Fotovoltaico

Generador Fotovoltaico Definición Pérdidas por dispersión

Pérdidas por dispersión

Definición del problema

Los parámetros eléctricos de un módulo FV presentan dispersión: la producción energética será menor que la ideal.

Módulo y Generador

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

∕Iódulo ³otovoltaico

Potovolta1co

Definición

Pérdidas por dispersión

Ejemplos de generadores $f(I_{mpp}) = \alpha \beta^{-\alpha} I_{mpp}^{\alpha-1} exp \left[-\left(\frac{I_{mpp}}{\beta}\right)^{\alpha} \right]$

módulos puede caracterizarse por una distribución tipo

La corriente de máxima potencia de un conjunto de

Weibull

siendo α el factor de forma y β el factor de escala de la distribución. La eficiencia de conexión serie es:

$$\eta_{cs} = \frac{I_{mpp}^r}{I_{mpp}}$$

siendo I_{mpp}^r la corriente de la rama, y $\overline{I_{mpp}}$ la media de las corrientes del grupo de módulos.

Ejemplos de generadores

 A partir de la distribución y la definición de eficiencia de conexión serie puede deducirse que ésta se calcula mediante

$$\eta_{cs} = N^{-\frac{1}{\alpha}}$$

siendo N el número de módulos en la serie. Por tanto, **la eficiencia disminuye si aumenta N**. Asimismo, la eficiencia aumenta con α .

► Por otra parte, puede demostrarse que la tensión de un grupo de módulos puede modelarse mediante una función gaussiana y que la dispersión de valores de tensión es suficientemente baja para poder considerar que la eficiencia de conexión de ramas en paralelo es igual a 1.

Definición

Pérdidas por dispersión

Ejemplos de generadores

- La dispersión de un conjunto depende inversamente del valor de α, así que un método para reducir las pérdidas por dispersión consiste en realizar clasificaciones de los módulos atendiendo a sus valores reales de corriente.
- ► En sistemas de cierta entidad, puede ser conveniente realizar una clasificación en tres categorías y crear cada rama con módulos de una misma categoría.
- ► Este método puede suponer reducciones del 2-3% en las pérdidas globales del sistema.

Módulo Fotovoltaico

Generador

Definición

Pérdidas por dispersión

Ejemplos de generadores

Problema

- Las clasificaciones se realizan en base a las médidas realizadas por los fabricantes con«flash».
- La indeterminación asociada a este método en relación a las medidas a sol real son del mismo rango que la separación entre categorías.

Módulo Fotovoltaico

Generador Fotovoltaico

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Fotovoltaico

Generador Fotovoltaico

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Módulo Fotovoltaico

Generador Fotovoltaico

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

10dulo otovoltaic

Generador Fotovoltaico

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Aódulo otovoltaico

Generador Fotovoltaico

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

viodulo Fotovoltaic

Generador Fotovoltaico

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Módulo Fotovoltaic

Generador Fotovoltaico

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

Módulo Fotovoltaico

Generador Fotovoltaico

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Iódulo otovoltaico

Generador Fotovoltaico

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Módulo Fotovoltaico

Generador Fotovoltaico

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Aódulo Fotovoltaico

Generador Fotovoltaico