

Dr.-Ing. Marc Hirschvogel

March 24, 2023

Contents

1	Solid mechanics	1
2	Fluid mechanics	2
3	Lumped parameter (0D) models	2
	3.1 "Syspul" circulation model	2
	3.2 "Syspulcap" circulation model	6
	3.3 "Syspulcapcor" circulation model	8

Solid mechanics 1

- solid mechanics are formulated in a Total Lagrangian frame
- displacement-based strong form: primary variable \boldsymbol{u}

$$\nabla_0 \cdot \boldsymbol{P}(\boldsymbol{u}, \boldsymbol{v}) + \hat{\boldsymbol{b}}_0 = \rho_0 \boldsymbol{a} \quad \text{in } \Omega_0 \times [0, T], \tag{1}$$

$$\boldsymbol{u} = \hat{\boldsymbol{u}} \quad \text{on } \Gamma_0^D \times [0, T], \tag{2}$$

$$\boldsymbol{t}_0 = \boldsymbol{P} \boldsymbol{n}_0 = \hat{\boldsymbol{t}}_0 \quad \text{on } \Gamma_0^N \times [0, T], \tag{3}$$

$$\boldsymbol{u}(\boldsymbol{x}_0, 0) = \hat{\boldsymbol{u}}_0(\boldsymbol{x}_0) \quad \text{in } \Omega_0, \tag{4}$$

$$\mathbf{u} = \hat{\mathbf{u}} \quad \text{on } \Gamma_0^{\mathrm{D}} \times [0, T],$$
 (2)

$$\mathbf{t}_0 = \mathbf{P}\mathbf{n}_0 = \hat{\mathbf{t}}_0 \qquad \text{on } \Gamma_0^{N} \times [0, T],$$
 (3)

$$\boldsymbol{u}(\boldsymbol{x}_0, 0) = \hat{\boldsymbol{u}}_0(\boldsymbol{x}_0) \quad \text{in } \Omega_0, \tag{4}$$

$$\boldsymbol{v}(\boldsymbol{x}_0,0) = \hat{\boldsymbol{v}}_0(\boldsymbol{x}_0) \quad \text{in } \Omega_0, \tag{5}$$

- strong form for incompressible solid mechanics: primary variables \boldsymbol{u} and p

$$\nabla_{0} \cdot \boldsymbol{P}(\boldsymbol{u}, p, \boldsymbol{v}) + \hat{\boldsymbol{b}}_{0} = \rho_{0}\boldsymbol{a} \qquad \text{in } \Omega_{0} \times [0, T],$$

$$J - 1 = 0 \qquad \text{in } \Omega_{0} \times [0, T],$$

$$\boldsymbol{u} = \hat{\boldsymbol{u}} \qquad \text{on } \Gamma_{0}^{D} \times [0, T],$$

$$\boldsymbol{t}_{0} = \boldsymbol{P}\boldsymbol{n}_{0} = \hat{\boldsymbol{t}}_{0} \qquad \text{on } \Gamma_{0}^{N} \times [0, T],$$

$$\boldsymbol{u}(\boldsymbol{x}_{0}, 0) = \hat{\boldsymbol{u}}_{0}(\boldsymbol{x}_{0}) \qquad \text{in } \Omega_{0},$$

$$(10)$$

$$J - 1 = 0 \qquad \text{in } \Omega_0 \times [0, T], \tag{7}$$

$$\boldsymbol{u} = \hat{\boldsymbol{u}} \qquad \text{on } \Gamma_0^{\mathrm{D}} \times [0, T], \tag{8}$$

$$\boldsymbol{t}_0 = \boldsymbol{P}\boldsymbol{n}_0 = \hat{\boldsymbol{t}}_0 \qquad \text{on } \Gamma_0^{\mathrm{N}} \times [0, T], \tag{9}$$

$$\boldsymbol{u}(\boldsymbol{x}_0, 0) = \hat{\boldsymbol{u}}_0(\boldsymbol{x}_0) \quad \text{in } \Omega_0, \tag{10}$$

$$\boldsymbol{v}(\boldsymbol{x}_0, 0) = \hat{\boldsymbol{v}}_0(\boldsymbol{x}_0) \quad \text{in } \Omega_0, \tag{11}$$

with velocity and acceleration $v = \frac{du}{dt}$ and $a = \frac{d^2u}{dt^2}$, respectively

2 Fluid mechanics

- incompressible Navier-Stokes equations in Eulerian reference frame
- strong form with primary variables velocity \boldsymbol{v} and pressure p

$$\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{v}, p) + \hat{\boldsymbol{b}} = \rho \boldsymbol{a}$$
 in $\Omega \times [0, T]$, (12)

$$\nabla \cdot \boldsymbol{v} = 0 \qquad \text{in } \Omega \times [0, T], \tag{13}$$

$$\mathbf{v} = \hat{\mathbf{v}} \qquad \text{on } \Gamma^{\mathrm{D}} \times [0, T],$$
 (14)

$$\nabla \cdot \boldsymbol{v} = 0 \qquad \text{in } \Omega \times [0, T], \tag{13}$$

$$\boldsymbol{v} = \hat{\boldsymbol{v}} \qquad \text{on } \Gamma^{\mathrm{D}} \times [0, T], \tag{14}$$

$$\boldsymbol{t} = \boldsymbol{\sigma} \boldsymbol{n} = \hat{\boldsymbol{t}} \qquad \text{on } \Gamma^{\mathrm{N}} \times [0, T], \tag{15}$$

$$\boldsymbol{v}(\boldsymbol{x},0) = \hat{\boldsymbol{v}}_0(\boldsymbol{x}) \quad \text{in } \Omega, \tag{16}$$

with acceleration $\boldsymbol{a} = \frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{\nabla} \boldsymbol{v}) \boldsymbol{v}$

3 Lumped parameter (0D) models

"Syspul" circulation model 3.1

left heart and systemic circulation

$$-Q_{\rm at}^{\ell} = \sum_{i=1}^{n_{\rm ven}^{\rm pul}} q_{\rm ven,i}^{\rm pul} - q_{\rm v,in}^{\ell} \qquad \text{left atrium flow balance}$$

$$q_{\rm v,in}^{\ell} = q_{\rm mv}(p_{\rm at}^{\ell} - p_{\rm v}^{\ell}) \qquad \text{mitral valve momentum} \qquad (17)$$

$$-Q_{\rm v}^{\ell} = q_{\rm v,in}^{\ell} - q_{\rm v,out}^{\ell} \qquad \text{left ventricle flow balance}$$

$$q_{\rm v,out}^{\ell} = q_{\rm av}(p_{\rm v}^{\ell} - p_{\rm ar}^{\rm sys}) \qquad \text{aortic valve momentum} \qquad (18)$$

$$-Q_{\rm aort}^{\rm sys} = q_{\rm v,out}^{\ell} - q_{\rm ar,p}^{\rm sys} - \mathbb{I}^{\rm cor} \sum_{i=1}^{2} q_{\rm ar,cor,in,i}^{\rm sys} \text{ aortic root flow balance}$$

$$I_{\rm ar}^{\rm sys} \frac{\mathrm{d}q_{\rm ar,p}^{\rm sys}}{\mathrm{d}t} + Z_{\rm ar}^{\rm sys} q_{\rm ar,p}^{\rm sys} = p_{\rm ar}^{\rm sys} - p_{\rm ar,d}^{\rm sys} \qquad \text{aortic root inertia}$$

$$C_{\text{ar}}^{\text{sys}} \frac{\mathrm{d}p_{\text{ar,d}}^{\text{sys}}}{\mathrm{d}t} = q_{\text{ar,p}}^{\text{sys}} - q_{\text{ar}}^{\text{sys}}$$
 systemic arterial flow balance

$$L_{\text{ar}}^{\text{sys}} \frac{\mathrm{d}q_{\text{ar}}^{\text{sys}}}{\mathrm{d}t} + R_{\text{ar}}^{\text{sys}} q_{\text{ar}}^{\text{sys}} = p_{\text{ar,d}}^{\text{sys}} - p_{\text{ven}}^{\text{sys}}$$
 systemic arterial momentum

$$C_{\text{ven}}^{\text{sys}} \frac{\mathrm{d}p_{\text{ven}}^{\text{sys}}}{\mathrm{d}t} = q_{\text{ar}}^{\text{sys}} - \sum_{i=1}^{n_{\text{ven}}^{\text{sys}}} q_{\text{ven},i}^{\text{sys}}$$
 systemic venous flow balance

$$L_{\text{ven},i}^{\text{sys}} \frac{\mathrm{d}q_{\text{ven},i}^{\text{sys}}}{\mathrm{d}t} + R_{\text{ven},i}^{\text{sys}} q_{\text{ven},i}^{\text{sys}} = p_{\text{ven}}^{\text{sys}} - p_{\text{at},i}^{r} \quad \text{systemic venous momentum}$$

$$i \in \{1, ..., n_{\text{ven}}^{\text{sys}}\}$$

right heart and pulmonary circulation

$$-Q_{\rm at}^r = \sum_{i=1}^{n_{\rm ven}^{\rm sys}} q_{\rm ven,i}^{\rm sys} - \mathbb{I}^{\rm cor} q_{\rm ven,cor,out}^{\rm sys} - q_{\rm v,in}^{\rm right} \text{ atrium flow balance}$$

$$q_{\rm v,in}^r = q_{\rm tv}(p_{\rm at}^r - p_{\rm v}^r) \qquad \text{tricuspid valve momentum} \qquad (19)$$

$$-Q_{\rm v}^r = q_{\rm v,in}^r - q_{\rm v,out}^r \qquad \text{right ventricle flow balance}$$

$$q_{\rm v,out}^r = q_{\rm pv}(p_{\rm v}^r - p_{\rm ar}^{\rm pul}) \qquad \text{pulmonary valve momentum} \qquad (20)$$

$$C_{\rm ar}^{\rm pul} \frac{\mathrm{d}p_{\rm ar}^{\rm pul}}{\mathrm{d}t} = q_{\rm v,out}^r - q_{\rm ar}^{\rm pul} \qquad \text{pulmonary arterial flow balance}$$

$$L_{\rm ar}^{\rm pul} \frac{\mathrm{d}q_{\rm ar}^{\rm pul}}{\mathrm{d}t} + R_{\rm ar}^{\rm pul} q_{\rm ar}^{\rm pul} = p_{\rm ven}^{\rm pul} - p_{\rm ven}^{\rm pul} \qquad \text{pulmonary arterial momentum}$$

$$C_{\rm ven}^{\rm pul} \frac{\mathrm{d}p_{\rm ven}^{\rm pul}}{\mathrm{d}t} = q_{\rm ar}^{\rm pul} - \sum_{i=1}^{n_{\rm ven}^{\rm pul}} q_{\rm ven,i}^{\rm pul} \qquad \text{pulmonary venous flow balance}$$

$$L_{\rm ven,i}^{\rm pul} \frac{\mathrm{d}q_{\rm ven,i}^{\rm pul}}{\mathrm{d}t} + R_{\rm ven,i}^{\rm pul} q_{\rm ven,i}^{\rm pul} = p_{\rm ven}^{\rm pul} - p_{\rm at,i}^{\ell} \qquad \text{pulmonary venous momentum}$$

$$i \in \{1, \dots, n^{\rm pul}\}$$

with:

$$Q_{\mathrm{at}}^{\ell} := -\frac{\mathrm{d}V_{\mathrm{at}}^{\ell}}{\mathrm{d}t}, \quad Q_{\mathrm{v}}^{\ell} := -\frac{\mathrm{d}V_{\mathrm{v}}^{\ell}}{\mathrm{d}t}, \quad Q_{\mathrm{at}}^{r} := -\frac{\mathrm{d}V_{\mathrm{at}}^{r}}{\mathrm{d}t}, \quad Q_{\mathrm{v}}^{r} := -\frac{\mathrm{d}V_{\mathrm{v}}^{r}}{\mathrm{d}t}, \quad Q_{\mathrm{aort}}^{\mathrm{sys}} := -\frac{\mathrm{d}V_{\mathrm{aort}}^{\mathrm{sys}}}{\mathrm{d}t}$$

and:

$$\mathbb{I}^{cor} = \begin{cases} 1, & \text{if CORONARY_MODEL}, \\ 0, & \text{else} \end{cases}$$

The volume V of the heart chambers (0D) is modeled by the volume-pressure relationship

$$V(t) = \frac{p}{E(t)} + V_{\rm u},\tag{21}$$

with the unstressed volume $V_{\rm u}$ and the time-varying elastance

$$E(t) = (E_{\text{max}} - E_{\text{min}}) \cdot \hat{y}(t) + E_{\text{min}}, \tag{22}$$

where E_{max} and E_{min} denote the maximum and minimum elastance, respectively. The normalized activation function $\hat{y}(t)$ is input by the user.

Flow-pressure relations for the four valves, eq. (17), (18), (19), (20), are functions of the pressure difference $p - p_{\text{open}}$ across the valve. The following valve models can be defined:

Valve model pwlin_pres:

$$q(p - p_{\text{open}}) = \frac{p - p_{\text{open}}}{\tilde{R}}, \text{ with } \tilde{R} = \begin{cases} R_{\text{max}}, & p < p_{\text{open}} \\ R_{\text{min}}, & p \ge p_{\text{open}} \end{cases}$$

Remark: Non-smooth flow-pressure relationship

Valve model pwlin_time:

$$q(p - p_{\text{open}}) = \frac{p - p_{\text{open}}}{\tilde{R}}, \quad \text{with } \tilde{R} = \begin{cases} \begin{cases} R_{\text{max}}, & t < t_{\text{open}} \text{ and } t \ge t_{\text{close}} \\ R_{\text{min}}, & t \ge t_{\text{open}} \text{ or } t < t_{\text{close}} \end{cases}, \quad t_{\text{open}} > t_{\text{close}} \\ \begin{cases} R_{\text{max}}, & t < t_{\text{open}} \text{ or } t \ge t_{\text{close}} \\ R_{\text{min}}, & t \ge t_{\text{open}} \text{ and } t < t_{\text{close}} \end{cases}, \quad \text{else} \end{cases}$$

Remark: Non-smooth flow-pressure relationship with resistance only dependent on timings, not the pressure difference!

Valve model smooth_pres_resistance:

$$q(p - p_{\text{open}}) = \frac{p - p_{\text{open}}}{\tilde{R}}, \text{ with } \tilde{R} = 0.5 \left(R_{\text{max}} - R_{\text{min}}\right) \left(\tanh \frac{p - p_{\text{open}}}{\epsilon} + 1\right) + R_{\text{min}}$$

Remark: Smooth but potentially non-convex flow-pressure relationship!

Valve model smooth_pres_momentum:

$$q(p - p_{\text{open}}) = \begin{cases} \frac{p - p_{\text{open}}}{R_{\text{max}}}, & p < p_{\text{open}} - 0.5\epsilon \\ h_{00}p_0 + h_{10}m_0\epsilon + h_{01}p_1 + h_{11}m_1\epsilon, & p \ge p_{\text{open}} - 0.5\epsilon \text{ and } p < p_{\text{open}} + 0.5\epsilon \\ \frac{p - p_{\text{open}}}{R_{\text{min}}}, & p \ge p_{\text{open}} + 0.5\epsilon \end{cases}$$

with

$$p_0 = \frac{p_{
m open} - 0.5\epsilon - p}{R_{
m max}}, \qquad m_0 = \frac{1}{R_{
m max}}, \qquad p_1 = \frac{p_{
m open} + 0.5\epsilon - p}{R_{
m min}}, \qquad m_1 = \frac{1}{R_{
m min}}$$

and

$$h_{00} = 2s^3 - 3s^2 + 1,$$
 $h_{01} = -2s^3 + 3s^2,$
 $h_{10} = s^3 - 2s^2 + s,$ $h_{11} = s^3 - s^2$

with

$$s = \frac{p - p_{\text{open}} + 0.5\epsilon}{\epsilon}$$

Remarks:

- Collapses to valve model pwlin_pres for $\epsilon = 0$
- Smooth and convex flow-pressure relationship

Valve model pw_pres_regurg:

$$q(p - p_{\text{open}}) = \begin{cases} cA_{\text{o}}\sqrt{p - p_{\text{open}}}, & p < p_{\text{open}} \\ \frac{p - p_{\text{open}}}{R_{\text{min}}}, & p \ge p_{\text{open}} \end{cases}$$

Remark: Model to allow a regurgitant valve in the closed state, degree of regurgitation can be varied by specifying the valve regurgitant area $A_{\rm o}$

Coronary circulation model:

$$\begin{split} C_{\text{cor,p}}^{\text{sys},\ell} \left(\frac{\mathrm{d}p_{\text{ar}}^{\text{sys},\ell}}{\mathrm{d}t} - Z_{\text{cor,p}}^{\text{sys},\ell} \frac{\mathrm{d}q_{\text{cor,p,in}}^{\text{sys},\ell}}{\mathrm{d}t} \right) &= q_{\text{cor,p,in}}^{\text{sys},\ell} - q_{\text{cor,p}}^{\text{sys},\ell} \\ R_{\text{cor,p}}^{\text{sys},\ell} \, q_{\text{cor,p}}^{\text{sys},\ell} &= p_{\text{ar}}^{\text{sys}} - p_{\text{cor,d}}^{\text{sys},\ell} - Z_{\text{cor,p}}^{\text{sys},\ell} \, q_{\text{cor,p,in}}^{\text{sys},\ell} \\ C_{\text{cor,d}}^{\text{sys},\ell} \, \frac{\mathrm{d}(p_{\text{cor,d}}^{\text{sys},\ell} - p_{\text{v}}^{\ell})}{\mathrm{d}t} &= q_{\text{cor,p}}^{\text{sys},\ell} - q_{\text{cor,d}}^{\text{sys},\ell} \\ R_{\text{cor,d}}^{\text{sys},\ell} \, q_{\text{cor,d}}^{\text{sys},\ell} &= p_{\text{cor,d}}^{\text{sys},\ell} - p_{\text{at}}^{r} \\ C_{\text{cor,p}}^{\text{sys},r} \, \left(\frac{\mathrm{d}p_{\text{ar}}^{\text{sys},r}}{\mathrm{d}t} - Z_{\text{cor,p}}^{\text{sys},r} \frac{\mathrm{d}q_{\text{cor,p,in}}^{\text{sys},r}}{\mathrm{d}t} \right) &= q_{\text{cor,p,in}}^{\text{sys},r} - q_{\text{cor,p}}^{\text{sys},r} \\ R_{\text{cor,p}}^{\text{sys},r} \, q_{\text{cor,p}}^{\text{sys},r} &= p_{\text{ar}}^{\text{sys}} - p_{\text{cor,d}}^{\text{sys},r} - Z_{\text{cor,p}}^{\text{sys},r} \, q_{\text{cor,p,in}}^{\text{sys},r} \\ C_{\text{cor,d}}^{\text{sys},r} \, \frac{\mathrm{d}(p_{\text{cor,d}}^{\text{sys},r} - p_{\text{v}}^{\ell})}{\mathrm{d}t} &= q_{\text{cor,p}}^{\text{sys},r} - q_{\text{cor,d}}^{\text{sys},r} \\ R_{\text{cor,d}}^{\text{sys},r} \, q_{\text{cor,d}}^{\text{sys},r} &= p_{\text{cor,d}}^{\text{sys},r} - p_{\text{at}}^{r} \\ 0 &= q_{\text{cor,d}}^{\text{sys},\ell} + q_{\text{cor,d}}^{\text{sys},r} - q_{\text{cor,d,out}}^{\text{sys}} \end{aligned}$$

3.2 "Syspulcap" circulation model

$$\begin{split} &-Q_{\mathrm{at}}^{r}=q_{\mathrm{ven}}^{\mathrm{sys}}-q_{\mathrm{v,in}}^{r}\\ &\tilde{R}_{\mathrm{v,in}}^{r}\,q_{\mathrm{v,in}}^{r}=p_{\mathrm{at}}^{r}-p_{\mathrm{v}}^{r}\\ &-Q_{\mathrm{v}}^{r}=q_{\mathrm{v,in}}^{r}-q_{\mathrm{v,out}}^{r}\\ &\tilde{R}_{\mathrm{v,out}}^{r}\,q_{\mathrm{v,out}}^{r}=p_{\mathrm{v}}^{r}-p_{\mathrm{ar}}^{\mathrm{pul}}\\ &\tilde{R}_{\mathrm{v,out}}^{r}\,q_{\mathrm{v,out}}^{r}=p_{\mathrm{v}}^{r}-p_{\mathrm{ar}}^{\mathrm{pul}}\\ &C_{\mathrm{ar}}^{\mathrm{pul}}\frac{\mathrm{d}p_{\mathrm{ar}}^{\mathrm{pul}}}{\mathrm{d}t}=q_{\mathrm{v,out}}^{r}-q_{\mathrm{ar}}^{\mathrm{pul}}\\ &L_{\mathrm{ar}}^{\mathrm{pul}}\frac{\mathrm{d}q_{\mathrm{ar}}^{\mathrm{pul}}}{\mathrm{d}t}+R_{\mathrm{ar}}^{\mathrm{pul}}\,q_{\mathrm{ar}}^{\mathrm{pul}}=p_{\mathrm{ar}}^{\mathrm{pul}}-p_{\mathrm{cap}}^{\mathrm{pul}}\\ &C_{\mathrm{cap}}^{\mathrm{pul}}\frac{\mathrm{d}p_{\mathrm{cap}}^{\mathrm{pul}}}{\mathrm{d}t}=q_{\mathrm{ar}}^{\mathrm{pul}}-q_{\mathrm{cap}}^{\mathrm{pul}}\\ &R_{\mathrm{cap}}^{\mathrm{pul}}\,q_{\mathrm{cap}}^{\mathrm{pul}}=p_{\mathrm{cap}}^{\mathrm{pul}}-p_{\mathrm{ven}}^{\mathrm{pul}}\\ &C_{\mathrm{ven}}^{\mathrm{pul}}\frac{\mathrm{d}p_{\mathrm{ven}}^{\mathrm{pul}}}{\mathrm{d}t}=q_{\mathrm{cap}}^{\mathrm{pul}}-q_{\mathrm{ven}}^{\mathrm{pul}}\\ &L_{\mathrm{ven}}^{\mathrm{pul}}\frac{\mathrm{d}q_{\mathrm{ven}}^{\mathrm{pul}}}{\mathrm{d}t}+R_{\mathrm{ven}}^{\mathrm{pul}}\,q_{\mathrm{ven}}^{\mathrm{pul}}=p_{\mathrm{ven}}^{\mathrm{pul}}-p_{\mathrm{at}}^{\ell} \end{split}$$

with:

$$Q_{\mathrm{at}}^{\ell} := -\frac{\mathrm{d}V_{\mathrm{at}}^{\ell}}{\mathrm{d}t}, \qquad Q_{\mathrm{v}}^{\ell} := -\frac{\mathrm{d}V_{\mathrm{v}}^{\ell}}{\mathrm{d}t}, \qquad Q_{\mathrm{at}}^{r} := -\frac{\mathrm{d}V_{\mathrm{at}}^{r}}{\mathrm{d}t}, \qquad Q_{\mathrm{v}}^{r} := -\frac{\mathrm{d}V_{\mathrm{v}}^{r}}{\mathrm{d}t}$$

3.3 "Syspulcapcor" circulation model

$$\begin{split} &-Q_{\rm at}^{\ell} = q_{\rm ven}^{\rm pul} - q_{\rm v,in}^{\ell} \\ &\tilde{R}_{\rm v,in}^{\ell} \, q_{\rm v,in}^{\ell} = p_{\rm at}^{\ell} - p_{\rm v}^{\ell} \\ &-Q_{\rm v}^{\ell} = q_{\rm v,in}^{\ell} - q_{\rm v,out}^{\ell} \\ &\tilde{R}_{\rm v,out}^{\ell} \, q_{\rm v,out}^{\ell} = p_{\rm v}^{\ell} - p_{\rm sys}^{\rm sys} \\ &0 = q_{\rm v,out}^{\ell} - q_{\rm ar,p}^{\rm sys} - q_{\rm ar,cor,in}^{\rm sys} \\ &1 \frac{\rm sys}{\rm ar} \frac{\rm d}{\rm d} q_{\rm ar,p}^{\rm sys} + Z_{\rm ar}^{\rm sys} \, q_{\rm ar,p}^{\rm sys} = p_{\rm ar}^{\rm sys} - p_{\rm ar,d}^{\rm sys} \\ &C_{\rm ar,cor}^{\rm sys} \, \frac{\rm d}{\rm d} p_{\rm ar,or}^{\rm sys} + Z_{\rm ar}^{\rm sys} \, q_{\rm ar,cor,in}^{\rm sys} - q_{\rm ar,cor}^{\rm sys} \\ &C_{\rm ar,cor}^{\rm sys} \, \frac{\rm d}{\rm d} p_{\rm ar,or}^{\rm sys} - q_{\rm ar,cor}^{\rm sys} - q_{\rm ar,cor}^{\rm sys} \\ &C_{\rm ar}^{\rm sys} \, q_{\rm ar,cor}^{\rm sys} = p_{\rm ar}^{\rm sys} - p_{\rm ven,cor}^{\rm sys} \\ &C_{\rm ar}^{\rm sys} \, \frac{\rm d}{\rm d} p_{\rm ar,d}^{\rm sys} - q_{\rm ar}^{\rm sys} \\ & L_{\rm ar}^{\rm sys} \, \frac{\rm d}{\rm d} q_{\rm ar}^{\rm sys} + R_{\rm ar}^{\rm sys} \, q_{\rm ar}^{\rm sys} = p_{\rm ar,d}^{\rm sys} - p_{\rm ar,peri}^{\rm sys} \\ & \left(\sum_{j \in \{\substack{\rm spl,espl, \\ \rm spl,espl, \}}\}} \, \frac{\rm d}{\rm d} p_{\rm ar,peri}^{\rm sys} - p_{\rm ven,i}^{\rm sys} - p_{\rm ar,peri}^{\rm sys} \right) \\ & C_{\rm sys}^{\rm sys} \, q_{\rm ar,i}^{\rm sys} = p_{\rm ar,peri}^{\rm sys} - p_{\rm ven,i}^{\rm sys}, \quad i \in \{\substack{\rm spl,espl, \\ \rm msc,cer}\}} \\ & C_{\rm sys}^{\rm sys} \, \frac{\rm d}{\rm d} p_{\rm ven,i}^{\rm sys} - q_{\rm sys}^{\rm sys} - p_{\rm ven,i}^{\rm sys}, \quad i \in \{\substack{\rm spl,espl, \\ \rm msc,cer}\}} \\ & C_{\rm ven}^{\rm sys} \, \frac{\rm d}{\rm d} p_{\rm ven,i}^{\rm sys} - p_{\rm ven,i}^{\rm sys} - p_{\rm ven,i}^{\rm sys} - q_{\rm ven}^{\rm sys} \\ & J_{\rm sys}^{\rm sys} - q_{\rm ven,i}^{\rm sys} - q_{\rm ven,i}^{\rm sys} - p_{\rm at}^{\rm sys} \\ & C_{\rm ven}^{\rm sys} \, \frac{\rm d}{\rm d} q_{\rm ven}^{\rm sys} - q_{\rm ven,cor}^{\rm sys} - q_{\rm ven,cor}^{\rm sys} - q_{\rm ven,cor}^{\rm sys} \\ & C_{\rm ven,cor}^{\rm d} \, \frac{\rm d} q_{\rm ven,cor}^{\rm sys} - q_{\rm$$

$$\begin{split} &-Q_{\mathrm{at}}^{r}=q_{\mathrm{ven}}^{\mathrm{sys}}+q_{\mathrm{ven,cor}}^{\mathrm{sys}}-q_{\mathrm{v,in}}^{r}\\ &\tilde{R}_{\mathrm{v,in}}^{r}\,q_{\mathrm{v,in}}^{r}=p_{\mathrm{at}}^{r}-p_{\mathrm{v}}^{r}\\ &-Q_{\mathrm{v}}^{r}=q_{\mathrm{v,in}}^{r}-q_{\mathrm{v,out}}^{r}\\ &\tilde{R}_{\mathrm{v,out}}^{r}\,q_{\mathrm{v,out}}^{r}=p_{\mathrm{v}}^{r}-p_{\mathrm{ar}}^{\mathrm{pul}}\\ &\tilde{R}_{\mathrm{v,out}}^{\mathrm{pul}}\,q_{\mathrm{v,out}}^{\mathrm{pul}}=p_{\mathrm{v}}^{r}-p_{\mathrm{ar}}^{\mathrm{pul}}\\ &C_{\mathrm{ar}}^{\mathrm{pul}}\frac{\mathrm{d}p_{\mathrm{ar}}^{\mathrm{pul}}}{\mathrm{d}t}=q_{\mathrm{v,out}}^{r}-q_{\mathrm{ar}}^{\mathrm{pul}}\\ &L_{\mathrm{ar}}^{\mathrm{pul}}\frac{\mathrm{d}q_{\mathrm{ar}}^{\mathrm{pul}}}{\mathrm{d}t}+R_{\mathrm{ar}}^{\mathrm{pul}}\,q_{\mathrm{ar}}^{\mathrm{pul}}=p_{\mathrm{ar}}^{\mathrm{pul}}-p_{\mathrm{cap}}^{\mathrm{pul}}\\ &C_{\mathrm{cap}}^{\mathrm{pul}}\frac{\mathrm{d}p_{\mathrm{cap}}^{\mathrm{pul}}}{\mathrm{d}t}=q_{\mathrm{ar}}^{\mathrm{pul}}-q_{\mathrm{cap}}^{\mathrm{pul}}\\ &R_{\mathrm{cap}}^{\mathrm{pul}}\,q_{\mathrm{cap}}^{\mathrm{pul}}=p_{\mathrm{cap}}^{\mathrm{pul}}-p_{\mathrm{ven}}^{\mathrm{pul}}\\ &C_{\mathrm{ven}}^{\mathrm{pul}}\frac{\mathrm{d}p_{\mathrm{ven}}^{\mathrm{pul}}}{\mathrm{d}t}=q_{\mathrm{cap}}^{\mathrm{pul}}-q_{\mathrm{ven}}^{\mathrm{pul}}\\ &L_{\mathrm{ven}}^{\mathrm{pul}}\frac{\mathrm{d}q_{\mathrm{ven}}^{\mathrm{pul}}}{\mathrm{d}t}+R_{\mathrm{ven}}^{\mathrm{pul}}\,q_{\mathrm{ven}}^{\mathrm{pul}}=p_{\mathrm{ven}}^{\mathrm{pul}}-p_{\mathrm{at}}^{\ell} \end{split}$$

with:

$$Q_{\mathrm{at}}^{\ell} := -\frac{\mathrm{d}V_{\mathrm{at}}^{\ell}}{\mathrm{d}t}, \qquad Q_{\mathrm{v}}^{\ell} := -\frac{\mathrm{d}V_{\mathrm{v}}^{\ell}}{\mathrm{d}t}, \qquad Q_{\mathrm{at}}^{r} := -\frac{\mathrm{d}V_{\mathrm{at}}^{r}}{\mathrm{d}t}, \qquad Q_{\mathrm{v}}^{r} := -\frac{\mathrm{d}V_{\mathrm{v}}^{r}}{\mathrm{d}t}$$