STA 221: LECTURE 14

KRISHNA BALASUBRAMANIAN

(University of California, Davis)

Recurrent Neural Network

TIME SERIES/SEQUENCE DATA

Input: $\{x_1, x_2, \cdots, x_T\}$ Each x_t is the feature at time step tEach x_t can be an d-dimensional vector

Output: $\{y_1, y_2, \cdots, y_T\}$ Each y_t is the output at step tMulti-class output or Regression output:

$$y_t \in \{1, 2, \cdots, L\}$$
 or $y_t \in \mathbb{R}$

Example: Time Series Prediction

Climate Data:

 x_t : temperature at time t

 y_t : temperature (or temperature change) at time t+1

Stock Price: Predicting stock price

Example: Time Series Prediction

Climate Data:

 x_t : temperature at time t

 y_t : temperature (or temperature change) at time t+1

Stock Price: Predicting stock price

Example: Language Modeling

The cat is ?

 x_t : one-hot encoding to represent the word at step t

 $([0,\ldots,0,1,0,\ldots,0])$

 $y_t \in \{1, \cdots, V\}$ V: Vocabulary size

Example: Language Modeling

 \mathbf{x}_t : one-hot encoding to represent the word at step t ([0,...,0,1,0,...,0])

 y_t : the next word

$$y_t \in \{1, \cdots, V\}$$
 V: Vocabulary size

Example: POS Tagging

Part of Speech Tagging:

Labeling words with their Part-Of-Speech (Noun, Verb, Adjective, \cdots)

 x_t : a vector to represent the word at step t

 y_t : label of word t

 x_t : t-th input

 s_t : hidden state at time t ("memory" of the network)

$$s_t = f(Ux_t + Ws_{t-1})$$

W: transition matrix s_0 usually set to be 0

Predicted output at time *t*:

$$o_t = \arg\max_i (V \boldsymbol{s}_t)_i$$

Training: Find U, W, V to minimize empirical loss: Loss of a sequence:

$$\sum_{t=1}^{T} \mathsf{loss}(V \boldsymbol{s}_t, y_t)$$

 $(s_t \text{ is a function of } U, W, V)$

Loss on the whole dataset:

Average loss of all sequence Solve by Stochastic Gradient Descent (SGD)

Training: Find U, W, V to minimize empirical loss: Loss of a sequence:

$$\sum_{t=1}^{T} \mathsf{loss}(V\boldsymbol{s}_t, y_t)$$

 $(s_t \text{ is a function of } U, W, V)$

Loss on the whole dataset:

Average loss of all sequence

Solve by Stochastic Gradient Descent (SGD)

Training: Find U, W, V to minimize empirical loss: Loss of a sequence:

$$\sum_{t=1}^{T} \mathsf{loss}(V s_t, y_t)$$

 $(s_t \text{ is a function of } U, W, V)$

Loss on the whole dataset:

Average loss of all sequence Solve by Stochastic Gradient Descent (SGD)

RNN: Text Classification

Not necessary to output at each step Text Classification:

$$\mathsf{Sentence} \ \to \ \mathsf{category}$$

Output only at the final step

Model: add a fully connected network to the final embedding

RNN: NEURAL MACHINE TRANSLATION

PROBLEMS OF CLASSICAL RNN

```
Hard to capture long-term dependencies
Hard to solve (vanishing gradient problem)
Solution:
LSTM (Long Short Term Memory networks)
GRU (Gated Recurrent Unit)
....
```