

Ultra-low-Power, Zero Drift Operational Amplifiers for Industrial and Remote Analog Sensors

Gregory Gosciniak STMicroelectronics

Agenda 2

- Key Op amp parameters for Precision
 - Vio Input offset Voltage
 - CMRR Common Mode rejection Ratio
 - lib Input bias Current
 - Noise
- Use case Study : Gas Sensor
- Product line: High-performance Op Amps in ST

Why Op Amps and why precision 3

Battery fuel gauging

STM32 power supply: 1.65 to 3.6V

12-bit **ADC**

LSB of the ADC

 $= 3.6 \text{ V} / 2^{12}$

 $= 0.88 \, \text{mV} !$

Op-Amp parameters

Input offset voltage (Vio)

Precision/ small signal amplification

Common Mode Rejection Ratio (CMRR)

Input bias current (lib)

High Impedance Sensors
TransImpedance conversion

Noise

Output Accuracy in slow applications

Gain Bandwidth Product (GBP)

Signal frequency

Slew rate (SR)

Response time

Rail to rail input or output

Full scale Signal

Supply Current (Icc)Power consumption /battery life

Rail to rail input or output

Op Amps: Vio - input offset voltage

Input Offset Voltage

What is this?

Vio offset

LM324

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage ⁽¹⁾ $T_{amb} = +25^{\circ} C$ $LM124-LM224$ $LM324$		2	5 7	mV
	$T_{min} \le T_{amb} \le T_{max}$ $LM124-LM224$ $LM324$			7 9	

TS507

V _{io}	Input offset voltage ⁽²⁾	V _{icm} = 0 to 3.8 V, T=25 °C TS507C full temperature range TS507I full temperature range	25	100 250 400	μ∨
		V _{icm} = 0 V to 5 V, T=25 °C TS507C full temperature range TS507I full temperature range		450 550 750	

TSZ121 (Very high accuracy)

Symbol	Parameter	Conditions		Тур.	Max.	Unit
DC perfori	mance					
V	Input offset voltage	T = 25 °C		1	5	μV
V _{io}	Imput onset voltage	-40 °C < T< 125 °C			8	μν
$\Delta V_{io}/\Delta T$	Input offset voltage drift ⁽¹⁾	-40 °C < T< 125 °C		10	30	nV/°C

Input Offset Voltage

Where does it comes from?

Differential input

Component mismatch R1 \neq R2, M1 \neq M2 \Rightarrow offset

For CMOS technology

$$Vos = \Delta Vth + \frac{VGS-VT}{2}(\frac{\Delta R}{R} + \frac{\Delta k'}{k'} + \frac{\Delta W/L}{W/L})$$

 ΔVth linked to the substrate doping. Second term linked to the MOS size.

Mismatch is mainly due to:

- Doping variations
- Lithographic errors
- Packaging & local stress

Impact of V_{IO} on a real application

Current sensing for motor control

e.g. I = 1 mA in Rshunt

TSZ121 Vio = $5 \mu V$

5% error on speed information rotation information is correct

Summary of V_{IO} impact

on motor control applications

Opamp	Offset @ 25°C	V _{ουτ} for a current I = 1 mA	Comment
Ideal	0 μV	100 mV	Theoretical measurement in a perfect world!
	+100 μV	-100 μV	Speed of the motor is incorrect. Information about the motor rotation is incorrect.
TS507	-100 μV	200 mV	100% error on motor speed. Information about the motor rotation is correct.
TSZ121	+5 μV	95 mV	5% error on the motor speed. Information about the motor rotation is correct.
	-5 μV	-105 mV	5% error on the motor speed. Information about motor rotation is correct.

The real cost of $V_{10}!$

The LSB of the ADC is $3.3 \text{ V}/2^{12} = 805 \,\mu\text{V}$ The input signal is amplified by -10, and the V_{10} by 11

	Maximum V _{IO}	Maximum offset at ADC	Equivalent effective ADC
TSZ121	5 μV	55 μV	~12 bits
TS507	100 μV	1.1 mV	~11 bits
TS512A	500 μV	5.5 mV	~9 bits
TS512	2.5 mV	27.5 mV	~7 bits

	Vio @25°C max	Δvio/Δt max
TSZ121	5 μV	30 nV/°C
TSV611	4 mV	10 μV/°C

Op Amps: CMRR – Common Mode Rejection Ratio

Common Mode Rejection Ratio (CMRR)

Common Mode Rejection Ratio 13

Common Mode Gain =
$$\frac{V_{OCM}}{V_P - V_N}$$

Differential Gain =
$$\frac{V_O}{V_P - V_N}$$

Essentially CMRR is a measure of the Op-Amp ability to reject the signal which is common to both inputs

Common Mode Rejection Ratio

- Mismatch between two NMOS or two PMOS is responsible for the Vio.
- No link between the mismatch of the NMOS and the mismatch of the PMOS.
- Each pair will generate its own Vio.

So, depending on the common mode voltage used in the application, the Vio might be different.

Impact of CMRR on battery monitoring

High-side current sensing

CMRR_{res} =
$$\frac{1 + \frac{Rf}{Rg}}{4\varepsilon}$$

With ϵ =0.1% precision resistance and a gain of 1000

2.5V

The CMRR of the whole schematics is 250250 (108 dB)

100mA

Vout=0.8- $(1+\frac{Rf}{Rg})$.Vio $\pm \frac{vbat}{CMRRres} \left(\frac{Rf}{Rg}\right) \pm \frac{vicm-vcc/2}{CMRRop} \left(1+\frac{Rf}{Rg}\right)$

Vout = $V_{\text{out ideal}} - k_1.\text{Vio} \pm k_2.\text{V}_{\text{CMRRresist}} \pm k_3.\text{V}_{\text{CMMRopamp}}$

TSV711 10Ω TOU T

Example of impact when Common Mode is varying. $V_{\text{common mode}} = (V1 + V2) / 2$

TSV711	Impact on Vout	Error %
Vio	0.2V	25%
CMRRres @4.2V (108dB)	16.8mV	2.1%
CMRRop @4.2V (74dB)	340mV	42.5%
CMRRres @2.5V (108dB)	10mV	1.2%
CMRRop @2.5V (74dB)	0mV	0%

Impact of CMRR on a battery monitoring

High-side current sensing

CMRR_{res} =
$$\frac{1 + \frac{Rf}{Rg}}{4\varepsilon}$$

Vout=0.8- $(1+\frac{Rf}{Rg})$. Vio $\pm \frac{vbat}{CMRRres} \left(\frac{Rf}{Rg}\right) \pm \frac{vicm-vcc/2}{CMRRop} \left(1+\frac{Rf}{Rg}\right)$

With ϵ =0.1% precision resistance and a gain of 1000

 $Vout = V_{out_ideal} - k_1.Vio \pm k_2.V_{CMRRresist} \pm k_3.V_{CMMRopamp}$

TSV711	Impact on Vout	Error %
Vio	0.2V	25%
CMRRres @4.2V (108dB)	16.8mV	2.1%
CMRRop @4.2V (74dB)	340mV	42.5%
CMRRres @2.5V (108dB)	10mV	1.2%
CMRRop @2.5V (74dB)	0mV	0%

TSZ121	Impact on Vout	Error %
Vio	0.005V	0.5%
CMRRres @4.2V (108dB)	16.8mV	2.1%
CMRRop @4.2V (115dB)	3mV	0.4%
CMRRres @2.5V (108dB)	10mV	1.2%
CMRRop @2.5V (115dB)	0mV	0%

V_{IO}, CMRR, PSRR and A_{VD}

We define:
$$Avd = -20\log(\left|\frac{\partial Vid}{\partial Vout}\right|)$$
, $CMRR = -20\log(\left|\frac{\partial Vid}{\partial Vicm}\right|)$, $SVR = -20\log(\left|\frac{\partial Vid}{\partial Vcc}\right|)$ and $DV_{io} = \left|\frac{\partial Vid}{\partial T}\right|$

Op Amps: lib – Input bias current

Input bias current 19

CMOS

No gate current, only diode leakage

BIPOLAR

Current in/out (NPN/PNP) in the base

 Input currents are also important sources of error, especially for high source impedances (>100k Ω)

UV sensor application 20

UV source Index: 4

UV table translation for the UV sensor and Gain of 10M									
UV1		UV2	UV3		UV4		UV5	UV6	UV7
0.26 V		0.52 V	0.78 V		1.04 V		1.3 V	1.56 V	1.82 V

Is the TSZ121 chopper

always a good choice?

Vio tot =
$$Vio + Rs.In$$
 (1)

$$Rs > \frac{Vio}{In+}$$
 (2)

Op Amps: Noise

Noise sources of an op amp

Resistors Rf & Rg generate a white noise with a

spectral density of:

$$e_n = \sqrt{4kTR} \quad VHz^{-\frac{1}{2}}$$

Where $k = 1.38 \, 10^{-23} \, JK^{-1}$

(Boltzmann's constant)

$$T = T(^{\circ}C) + 273.15$$

(Temperature in Kelvin)

For CMOS input op amps, input noise current Inn is extremely low (0.5fA/√Hz) and generally does not affect design

Frequency (Hz)

10k

 $\frac{1}{f}$ noise (flicker noise)

Input noise voltage: $enf(f) = \sqrt{\frac{enf(1Hz)}{f}} V/\sqrt{hz}$

White noise

en V/√hz

Contribution of each source of noise 25

Noise voltage contribution to the output BW = 30 kHz						
Noise Source	Noise Source					
OPAMP	en	$5.37 \ 10^{-3}$				
OFAIVIF	In	$8.66 \ 10^{-9}$				
THERMAL	Rf	$2.2 \ 10^{-6}$				
THERWIAL	Rg	70.5 10 ⁻⁶				

$$VoutRms = \sqrt{en^2 + In^2 + Rf^2 + Rg^2}$$

Use-case study: Gas sensor

Gas sensors 27

- Unmonitored gas can rapidly become a danger
- In many industries such as refining, mining, and semiconductor industries, monitoring air quality is mandatory for security reasons.
- Different gas sensor technologies exist.
 - The electrochemical sensing technique has the advantage of having a linear output and operating with a low consumption
 - > it operates on batteries for a long period of time
 - Other types of technologies: Metal Oxide Semiconductor, Non Dispersive Infra Red
- Most frequently gases monitored using electrochemical sensors:
 - Oxygen (O2), Carbon Monoxide (CO), Hydrogen Sulfide (H2S) and Nitrogen Dioxide (NO2).

What is an electrochemical sensor 28

- The sensor generates a current flowing from WE to CE
 - The current generated by the chemical reactions is proportional to the gas concentration.

Oxygen sensor

Case of O2 sensor:

Oxidation on Working Electrode (WE)

$$CO + H_2O \rightarrow CO_2 + 2H^+ + 2e^-$$

Reduction on Counter Electrode (CE) $\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow H_2O$

Reference Electrode (RE) no chemical reaction at the surface, no current flows.

Electrochemical carbon monoxide sensor and glucometer test strip

3 electrode sensors: Potentiostat 29

U2: Need to Apply voltage between WE and RE. No current through RE.

U1/U2:

- TSU112,
- TSU102,
- **TSV712**

Need for ST op-amps!

-Bias the sensor

U2: RE set to Vref without driving current

-Convert the current into voltage (to drive the ADC)

U1 : Vout= Vref2 + R_T*Isense

Choosing an Op-amp key parameters 30

- Small currents means CMOS device
- Rail to rail op-amps preferred especially for low voltages and sensors that require a biasing different than 0V
- Low consumption (battery powered applications)

Small package

TSU101/TSU102/TSU104 600nA / channel

CMOS Low Power Rail to Rail SC70-5 / DFN8 2x2

TSZ121/TSZ122/TSZ124 Vio 5uV max

TSU111/TSU112/TSU114 900nA / channel, Vio 150uv max

TSV711/TSV712/TSV714 9uA / channel, Vio 200uV max

Voltage

gain

 $1+R_f/R_o$

2 electrode sensors: Galvanic configuration 31

- Alternative config: Voltage drop through Load res. and Amplify
- I to V conversion done by R_1 (100 Ω)
- Small signal to amplify \sim 350uA x 100 Ω =35mV in air
- Op-amp used in voltage gain need for accuracy

TSZ121 High precision amplifier 5uV max 30nV/°C max 29uA typ

I to V conversion I*R

 R_{f}

$47k\Omega$ 220Ω Vcc 1mV 215mV lower Isense WE Isense ucontroller CE

Galvanic sensor - Vio 25

Recommended Load 100O Resistor

This sensor we have outputs 90.8uA in air* Voltage to amplify: 9.08mV

In air* output voltage should be 9.08mVx(1+47/0.22)=1.95V (*air means [O2]=20.9%)

	Output voltage	Vio	[02] equivalent
TSZ121	1.95V	5uV max	20.9%
Standard micro-power device	1.74V	1mV	18.6%

The input offset voltage can cause a significant offset (alarm would ring in air for 2nd case device!)

Take away 33

Electrochemical gas sensor evaluation pack

2 videos released in February 2018

Board

2 x TSU111 nano-power op amps

- Are used for signal conditioning
- Are ideal for electrochemical sensing thanks to high precision and low power consumption

Getting Started

 STM32 Nucleo pack for electrochemical toxic gas sensing

Wireless CO detector demo

• Based on TSU111 Op Amps and **S2-LP** sub-1GHz RF transceiver and Figaro TGS5141 CO sensor

ST High-Performance Op-Amp Product Line

- 40 years experience in analog
- 5 Billion units manufactured per year (100 units/s)
- 5,400 commercial parts
- Worldwide Customer Base
- Large Technology portfolio From Analog to Mixed Signal
- High reliability products 0.05ppm for Automotive Grade, 1ppm for Standard Grade

From Standard to High Performance

1980

2019

Icc (LM358)
1.2mA max @25°C

power savings

Icc (TSU101)
850nA max @25°C

supply current enhanced by *1400

input offset enhanced by *1400

Vio (LM358) **7mV** max @25°C

accuracy

Vio (TSZ121) **5μV** max @25°C

space saving

DFN82mm*2mm*0.55mm

volume enhanced by *100

High-Performance Op-Amps 38

Analog sensors for smart building

Analog Sensor	Circuit topology	Low power	High Accuracy	Wide band	App note
UV sensor Ambient light	Transimpedance amplifier	TSU101		TSV631	AN4451
Smoke detector	Transimpedance amplifier	TSV6292		T\$V522	
CO detector	Potentiostat, Transimpedance ampl. or I to V converter	TSU102	TSZ122	TSV732	<u>AN4348</u>
PIR detector	AC coupled filters with window comparator	TSU104			<u>AN4368</u>
Temperature sensing (RTD)	Current source + non-inverting amplifier or Instrumentation amplifier	TSV714	TSZ124		

Next category >>

Analog sensors for wearables and health

Analog Sensor	Circuittopology	Low power	High Accuracy	Wide band	App note
Gesture recognition (EMG - electromyography)	Instrumentation amplifier (small signal)		TSZ124		
Heart rate (2point ECG)	Instrumentation amplifier (small signal)		TSZ124		
Heart rate + O ₂ Pulse oximetry	Transimpedance amplifier	TSU102			<u>AN4451</u>
Glucose meter	Reference + 2x transimpedance	TSV612	TSV712		
Blood pressure (piezo resistive)	Instrumentation amplifier (Wheatstone bridge)	TSV714	TSZ124		

47/

Analog sensors for automotive

Analog Sensor	Circuit topology	Low power	High Accuracy	Wide band	App note
Rain detector Light sensor (Photodiode)	Transimpedance amplifier	TSV631 IYLT		TSV522 IYST	AN4451
Temperature sensing (Thermocouple)	Instrumentation amplifier (small signal)	TSX712 IYST	TSZ124 IYPT		
Steering angle (resolver)	Resolver	TSX564 IYPT		TSX922 IYDT	
NO _x / NH ₃ sensor	Potentiostat, Transimpedance ampl. or I to V converter			TSV912 HYDT	
O2 Sensor	Potentiostat, Transimpedance ampl. or I to V converter	TSV522 IYST		TSV912 HYDT	

Previous category

Next category >>

Analog sensors for Industry 4.0

Analog Sensor	Circuittopology	Low power	High Accuracy	Wide band	App note
4-20mA Current loop	Current driver + differential amplifier	TSB611	TSX711	TSB572	
Contactless temperature (Thermopile)	(Buffer + Instrumentation amplifier + adder) or inverting amplifier	TSZ124			
Transmissive / reflective sensors	Transimpedance amplifier	TSU101		TSV911	<u>AN4451</u>
Pressure (piezo resistive)	Instrumentation amplifier (Wheatstone bridge)	TSV714	TSZ124	TSX712	
Force / pressure (strain gauge)	Instrumentation amplifier (Wheatstone bridge)	TSV714	TSZ124	TSX712	

Select the best product among our

Op amps
Comparators
Current sensing

Discover the latest news

And share product information

TSZ121 versus OPA333

Cross-reference proposed by ST Op amp mobile application

Parameters in green are better or equivalent

Thank You

Visit www.st.com/opamp

