

Sieci złożone

Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. *Journal of statistical mechanics: theory and experiment*, 2008(10), P10008.

Podzieleni

W.W. Zachary. An information flow model for conflict and fission in small groups. J. Anthropol. Res., 33:452–473, 1977.

Zachary's Karate Club

Zachary's Karate Club

http://networkkarate.tumblr.com/

If you can't get it right on this network, then go home.

Uzupełniająca wiedza

Klub Karate – Konflikt i rozpad klubu

 Sieć połączeń telefonicznych w Belgii – struktura społeczeństwa a w szczególności język.

Podstawy wykrywania grup

Podstawy wykrywania grup

Grupy (groups, communities) to lokalnie gęsto połączone podgrafy w sieci. To oczekiwanie opiera się na dwóch odrębnych hipotezach:

- Hipoteza łączności grupa jest połączonym grafem
- Hipoteza gęstości grupa jest lokalnie gęstym podgrafem sieci

$$g$$
ęstość/ $density = D = \delta = \frac{2L}{N(N-1)}$

Podstawy wykrywania grup

- Stopień wewnętrzny (Internal degree), k^{int}: liczba krawędzi która łączy wierzchołki danej grupy.
 - Jeżeli k_i^{int} = 0, wierzchołek i nie powinien należeć do grupy
- Stopień zewnętrzny (External degree) kext: liczba krawędzi
 która łączy wierzchołki danej grupy z pozostałymi
 wierzchołkami w sieci.
 - Jeżeli k_i^{ext} = 0, dana grupa jest najlepszą dla wierzchołka i
- Gęstość wewnętrzna grupy intra-cluster density
- Gęstość zewnętrzna grupy inter-cluster density

$$\delta^{int}(C) = \frac{k^{int}}{N_c(N_c - 1)}$$
$$\delta^{ext}(C) = \frac{k^{ext}}{N_c(N - N_c)}$$

$$\delta^{\rm int}(C) \gg \langle k \rangle \gg \delta^{\rm ext}(C)$$

Definicja grupy

Klika

- Podgraf będący grafem pełnym
 $\delta^{\rm int}(C) = 1$
- Trójkąty (3-kliki, 3-clique)
 występują często, większe kliki są rzadkie
- W rzeczywistości grupy nie muszą być grafami pełnymi
- Wyszukiwanie klik jest problemem NP.-trudnym

Definicja grupy

 Silna grupa - każdy węzeł ma więcej krawędzi łączących go z wierzchołkami wewnątrz grupy niż z wierzchołkami poza grupą.

$$k_i^{int}(C) > k_i^{ext}(C)$$

 Słaba grupa - całkowity stopień wewnętrzny grupy przekracza jego całkowity stopień zewnętrzny grupy

$$\sum_{i \in C} k_i^{int}(C) = k^{int}(C) > k^{ext}(C) = \sum_{i \in C} k_i^{ext}(C)$$

Definicja grupy

Partycjonowanie grafu a wykrywanie grup

Partycjonowanie grafu

Procesor - miliardy tranzystorów

 Partycjonowanie – taki podział/ułożenie tranzystorów na partycje na płytce by zminimalizować liczbę połączeń między

nimi.

Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for partitioning graphs. The Bell system technical journal, 49(2), 291-307.

Algorytm Kerninghan-Lin

- Podziel sieć na dwie grupy o predefiniowanym rozmiarze.
- Sprawdź każdą parę węzłów, po jednym z każdej grupy. Zidentyfikuj parę, która jeżeli zostanie zamieniona między partycjami powoduje największe zmniejszenie liczby krawędzi do przecięcia.
- Jeżeli żadna para nie powoduje zmniejszenia liczby krawędzi do przecięcia, zamień tę, która powoduje najmniejszy wzrost.
- Zamień wierzchołki miejscami
- Proces jest powtarzany, aż każdy węzeł zostanie przesunięty raz.

Partycjonowanie grafu a wykrywanie grup

 Partycjonowanie grafów dzieli sieć na określoną liczbę mniejszych podgrafów

 Wykrywanie grup ma na celu odkrycie wewnętrznej struktury społeczności sieci.

Partycjonowanie grafu a wykrywanie grup

- Liczba możliwych
 sposobów podziału sieci
 na grupy rośnie
 wykładniczo lub szybciej
 wraz z rozmiarem sieci N.
- Dlatego niemożliwe jest sprawdzenie wszystkich partycji dużej sieci
- N=10 \rightarrow 252 podziały (1 ms) $\frac{N!}{N_1! N_2!}$
- N=100 \rightarrow 10²⁹ podziały (10¹⁶ lat)

Grupowanie hierarchiczne

- Aby wykryć grupy w dużych sieci rzeczywistych, potrzebujemy algorytmów, których czas działania rośnie liniowo lub wielomianowo wraz ze wzrostem N
- Grupowanie hierarchiczne bazuje ma macierzy podobieństwa (similarity matrix) gdzie x_{ij} mówi nam jak i jest podobne do j
- Dwa główne podejścia
 - Algorytmy aglomeracyjne (agglomerative a.) scalaj węzły o dużym podobieństwie w tę samą grupę
 - Algorytmy deglomeracyjne (*divisive a.*) izoluj grupy,
 usuwając linki pomiędzy węzłami o niskim podobieństwie,
 które zwykle łączą grupy

Aglomeracyjne - algorytm Ravasz

Złożoność obliczeniowa O (N^2)

- 1. Zdefiniuj macierz podobieństwa.
- wysokie dla par węzłów, które prawdopodobnie należą do tej samej grupy;
- niskie dla par, które prawdopodobnie należą do różnych grup.
- Węzły, które łączą się bezpośrednio ze sobą i/lub współdzielą wielu sąsiadów, z większym prawdopodobieństwem należą do tego samego gęstego lokalnego sąsiedztwa, dlatego powinny mieć duże podobieństwo.

Aglomeracyjne - algorytm Ravasz

1. Zdefiniuj macierz podobieństwa.

$$- x_{ij} = \frac{J(i,j)}{\min(k_i,k_j) + 1 - \theta(A_{ij})} = \frac{J(i,j)}{\min(k_i,k_j)}$$

- J(i,j) liczba wspólnych sąsiadów + 1 jeżeli i i j są połączone
- $\theta(y)$ funkcja skokowa Heaviside'a która przyjmuje wartość 1 dla y>0 i 0 dla $y\leq 0$
- $1 \theta(A_{ij}) = 0$ dla wierzchołków połączonych
- x_{ij} =1 jeżeli **i** i **j** są połączone i mają tych samych sąsiadów
- x_{ij} =0 jeżeli **i** i **j** nie są połączone i nie mają wspólnych sąsiadów

Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & Barabási, A. L. (2002). Hierarchical organization of modularity in metabolic networks. Science, 297(5586), 1551-1555.

Aglomeracyjne - algorytm Ravasz

- Wybierz jak określisz podobieństwo dwóch grup
 - Minimalna odległość (Single Linkage)
 - Maksymalna odległość (Complete Linkage)
 - Średnia odległość (Avarage Linkage)

Complete Linkage: $X_{12} = 3.97$

Average Linkage: $X_{12} = 2.84$

Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & Barabási, A. L. (2002). **Hierarchical organization of modularity in metabolic networks**. Science, 297(5586), 1551-1555.

Aglomeracyjne - algorytm Ravasz

- 3. Wykonaj grupowanie hierarchiczne
 - Przypisz każdy węzeł do "własnej" grupy i oceń podobieństwo dla wszystkich par węzłów. Początkowe podobieństwa między "grupami" to po prostu podobieństwo pomiędzy węzłami.
 - 2) Znajdź parę grup o największym podobieństwie i połącz je w jedną grupę.
 - 3) Oblicz podobieństwo między nową grupą a wszystkimi innymi grupami.
 - 4) Powtarzaj od kroku 2), aż wszystkie węzły zostaną połączone w jedną grupę.
- 4. Stwórz dendogram
 - opisuje dokładną kolejność, w jakiej węzły są przypisywane do grup.
- 5. Wybierz punkt przecięcia

Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & Barabási, A. L. (2002). **Hierarchical organization of modularity in metabolic networks**. Science, 297(5586), 1551-1555.

Aglomeracyjne - algorytm Ravasz

Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & Barabási, A. L. (2002). **Hierarchical organization of modularity in metabolic networks**. Science, 297(5586), 1551-1555.

Grupy w sieci metabolicznej

Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. *Proceedings of the national academy of sciences*, *99*(12), 7821-7826.

Deglomeracyjne: alg. Girvan – Newman

- Usuwaj krawędzie łączące węzły należące do różnych społeczności, dzięki czemu sieć będzie się dzielić się na izolowane grupy.
- 1. Wybierz miarę centralności określającą bliskość węzłów
 - Przewodnictwo dla krawędzi (Link betweenness)
 - Współczynnik grupowania dla krawędzi (Edge clustering coefficient)
 - Błądzenie losowe dla przewodnictwa (Random-walk link betweenness)
 - itd.

Girvan, M., & Newman, M. E. (2002). **Community structure in social and biological networks**. *Proceedings of the national academy of sciences*, *99*(12), 7821-7826.

Deglomeracyjne: alg. Girvan – Newman

- 2. Wykonaj grupowanie hierarchiczne
 - 1) Oblicz podobieństwo x_{ij} dla każdej krawędzi.
 - 2) Usuń krawędź z największą wartością x_{ij} . Jeżeli dwie krawędzie mają tę samą wartość x_{ij} usuń losowo jedną z nich.
 - 3) Oblicz ponownie podobieństwo x_{ij} dla każdej krawędzi w nowej sieci
 - 4) Powtórz od kroku 2) aż usuniesz wszystkie krawędzie.
- 3. Stwórz dendogram
- 4. Wybierz punkt przecięcia

Złożoność obliczeniowa O(LN), O(N²) dla sieci rzadkich

Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. *Proceedings of the national academy of sciences*, *99*(12), 7821-7826.

Deglomeracyjne: alg. Girvan – Newman

Grupowanie hierarchiczne - problemy

Założenie że istnieje hierarchia:

Grupy są zorganizowane w sposób hierarchiczny. Ta hierarchia może być uchwycona przez dendrogram, pokazujący jak mniejsze grupy są zagnieżdżone w większych.

Związek z sieciami bezskalowymi:

Wykrywanie grup zakłada, że sieć może zostać podzielona na zbiór podgrafów, które są lokalnie gęste i są tylko w niewielkim stopniu połączone z innymi grupami. Jednak w sieciach bezskalowych są węzły, które ze względu na wysoki stopień węzła mogą łączyć się z węzłami należącymi do różnych grup.

Scale-free

Modular

Niejednoznaczność w punkcie wyborze punktu przecięcia

Modularność (Modularity)

Modularność

U podstawy modularności leży założenie że w sieci losowej rozkład połączeń między węzłami powinien być jednorodny i niezależny od rozkładu stopni węzła. W konsekwencji w sieciach losowych* nie oczekujemy znalezienia lokalnie gęstych podgrafów które moglibyśmy interpretować jako grupy.

*np. tu nam się przydają sieci losowe:)

Modularność grupy

$$\bullet \ M_c = \frac{1}{L} \sum_{(i,j) \in C_c} (A_{ij} - p_{ij})$$

$$m{p}_{ij} = rac{k_i k_j}{2L}$$
 używamy modelu zerowego (null model) z zachowaniem stopnia węzła (sieć losowa)

$$\bullet \ M_C = \frac{L_C}{L} - \left(\frac{k_C}{2L}\right)^2$$

- C_c grupa (podgraf)
- L_c liczba krawędzi w grupie C_c
- k_c suma stopni węzła, węzłów w grupie C_c

Modularność sieci

$$M = \sum_{c=1}^{n_c} \left[\frac{l_c}{L} - \left(\frac{k_c}{2L} \right)^2 \right]$$

b. SUBOPTIMAL PARTITION

c. SINGLE COMMUNITY

NEGATIVE MODULARITY

Modularność

Założenie maksymalnej modularności

Dla każdej sieci istnieje podział na grupy, który daje nam najwyższą wartość modularność. Ten podział jest optymalnym podziałem na grupy.

W.W. Zachary. An information flow model for conflict and fission in small groups. J. Anthropol. Res., 33:452–473, 1977.

Zachary's Karate Club

Newman, M. E. (2004). Fast algorithm for detecting community structure in networks. *Physical review E*, 69(6), 066133.

Algorytm zachłanny

- 1. Przypisz każdy węzeł do własnej grupy, zaczynając od N grup składających się z pojedynczych węzłów.
- 2. Sprawdź każdą parę grup połączoną co najmniej jedną krawędzią i oblicz różnicę w modułowości ΔM uzyskaną, jeśli je scalimy. Zidentyfikuj parę społeczności, dla której ΔM jest największe, i połącz je. Zauważ, że modularność jest zawsze obliczana dla całej sieci.
- 3. Powtarzaj krok 2, aż wszystkie węzły połączą się w jedną grupę, zapisując M dla każdego kroku.
- 4. Wybierz partycję, dla której wartość M jest największa.

Algorytm zachłanny – Limit rozdzielczości (Resolution Limit)

- Jeżeli mamy dwie grupy A i B o sumarycznym stopniu węzła k_A i k_B i jeżeli $k_A + k_B < \sqrt{2L}$ to połączenie tych dwóch grup zawsze da nam przyrost modularności niezależnie od tego czy jest to sensowne połączenie czy nie.
- Maksymalizacja Modularności nie jest w stanie wykrywać grup mniejszych niż limit rozdzielczości co oznacza że np. dla sieci WWW z L=1 497 134 będzie miało problem z wykryciem grup o $k_C \lesssim 1$ 730.
- Rzeczywiste sieci zawierają wiele małych grup. Biorąc pod uwagę limit rozdzielczości, te małe grupy są łączone w większe grupy, co w konsekwencji prowadzi do błędnego podziału na grupy.

Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. *Journal of statistical mechanics: theory and experiment*, 2008(10), P10008.

Algorytm Louvain O(L) – Fast modularity optimization

1ST PASS $\Delta M_{0.2} = 0.023$ $\Delta M_{0,3} = 0.032$ $\Delta M_{0.4} = 0.026$ $\Delta M_{0.5} = 0.026$ STEP II STEP I 2ND PASS STEP I STEP II

Grupy nachodzące na siebie

Grupy nachodzące na siebie

Palla, G., Derényi, I., Farkas, I., & Vicsek, T. (2005). **Uncovering the overlapping community structure of complex networks in nature and society**. Nature, 435(7043), 814-818.

CFinder – algorytm perkolacji klik

- Dwie k-kliki (grafy pełne składające się z k wierzchołków) są sąsiadujące jeżeli dzielą k-1 wierzchołków
- k-grupa to największy połączony podgraf uzyskany przez połączenie sąsiadujących k-klik

http://www.cfinder.org/

Palla, G., Derényi, I., Farkas, I., & Vicsek, T. (2005). **Uncovering the overlapping community structure of complex networks in nature and society**. Nature, 435(7043), 814-818.

CFinder – algorytm perkolacji klik

- Duża złożoność obliczeniowa
- Nie jesteśmy w stanie znaleźć grup mniejszych niż k
- Liście oraz więzły mające pojedynczych sąsiadów nie należą do żadnej grupy

- Sieci referencyjne (Networks with ground-truth communities)
 - Zachary karate club
 - American College football
 - Dolphins
 - http://snap.stanford.edu/data/index.html#communities

Girvan M., Newman M.E.J., *Community Structure in Social and Biological Networks*, Proceedings of the National Academy of Sciences USA, vol. 99, no. 12, 2002, pp. 7821–7826.

- Girvan Newman Benchmark
 - Sieć ma 128 węzłów podzielonych na 4 grupy po 32 węzły w każdej
 - Każdy węzeł ma stopień k=16
 - Losowo łączymy wierzchołki w grupie tak by każdy miał stopień k_i^{int}
 - Losowo łączymy wierzchołki pomiędzy grupami tak by każdy miał stopień $k_i^{ext} = k k_i^{int}$

Lancichinetti A., Fortunato S., Radicchi F., **Benchmark** *Graphs for Testing Community Detection Algorithms*, Physical Review E vol. 78, 2008, pp. 046110

- LFR Benchmark (L Lancichinetti, S Fortunato, R Radicchi)
 - Bardziej zaawansowany i złożony benchmark
 - Stopień węzła power law, Wielkość grup power law
 - możliwość generowania sieci ważonych, skierowanych, z nakładającymi się grupami i sieci wielowarstwowych (mLFR Benchmark¹)

¹ Bródka P. A Method for Group Extraction and Analysis in Multi-layered Social Networks, arXiv.org:1302.1369

LFR Benchmark

- Rozpocznij od N izolowanych wierzchołków.
- Przypisz każdy wierzchołek do grupy wielkości N_c gdzie rozkład N_c jest zgodny z rozkładem power-law

- Przypisz każdemu wierzchołkowi i stopień węzła k_i rozkład stopni węzła powinien być zgodny z rozkładem power-law
- Każdy wierzchołek i otrzymuje wewnętrzny stopień $(1-\mu)k_i$ i zewnętrzny stopień μk_i .
- Wszystkie wierzchołki w grupie są losowo łączone by spełniony był ich stopień wewnętrzny, następnie losowo łączymy wierzchołki pomiędzy grupami tak by spełniony był ich stopień zewnętrzny.

Ewaluacja metod wykrywania grup

Modelowe grupy $A=\{G_1, G_2, ..., G_a\}$,

Wykryte grupy $B=\{G_1, G_2, ..., G_b\}$.

Indeks Jaccarda (Jaccard index)

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

• (Znormalizowana) Informacja wzajemna ((Normalized) mutual information) $-2\sum_{i=1}^{a}\sum_{j=1}^{b}n_{ij}\log\left(\frac{n_{ij}n}{n_{ij}}\right)$

$$NMI(A,B) = \frac{-2\sum_{i=1}^{a} \sum_{j=1}^{b} n_{ij} \log\left(\frac{n_{ij}n}{n_{i}n_{j}}\right)}{\sum_{i=1}^{c_{A}} n_{i} \log\left(\frac{n_{i}}{n}\right) + \sum_{j=1}^{c_{B}} n_{j} \log\left(\frac{n_{j}}{n}\right)}$$

- Zmienność informacji (variation of information/shared information distance)
- Modularność
- Itd.

Co dalej?

- Wykrywanie grup jest ciekawe...
- … ale przewidywanie co się stanie z grupą w przyszłości jest jeszcze ciekawsze.

GED - Group Evolution Detection

Bródka P., Saganowski S., Kazienko P.: **GED: The Method for Group Evolution Discovery in Social Networks**. Social Network Analysis and Mining, 3(1), 2013, pp. 1-14

Temporalna sieć społeczna

Strumień krawędzi

• • •

<*v*₁₀, *v*₂₀, *t*₆>

• •

 $\langle v_i, v_j, t_k \rangle$

• •

 T_{i-2} T_{i-1} T_{i+1} T_{i+2}

np. maile

Temporalna sieć społeczna Temporal Social Network *TSN*

Sieć temporalna TSN

- a) Oknasąsiadujące
- b) Okna nachodzące
- c) Okna rozszerzające się
- d) Okna sąsiadujące z przerwą
- e) Mieszane

GED - Group Evolution Detection

GED - Group Evolution Detection

 Ewolucja grupy to sekwencja następujących po sobie zdarzeń w kolejnych oknach czasowych w

- Kontynuacja Continuing
- Kurczenie Shrinking
- Wzrost Growing
- Podział Splitting
- Łączenie Merging
- Rozpad Dissolving
- Formacja Forming

GED

$$I(G_1, G_2) = \frac{\overbrace{\mid G_1 \cap G_2 \mid}^{group \ quantity}}{\mid G_1 \mid} \cdot \frac{\sum_{x \in (G_1 \cap G_2)} SP_{G_1}(x)}{\sum_{x \in (G_1)} SP_{G_1}(x)}$$

$$\underbrace{group \ quality}$$

GED - Group Evolution Detection

Temporalna sieć społeczna

• • •

<*v*₁₀, *v*₂₀, *t*₆>

..

 $\langle v_i, v_j, t_k \rangle$

• •

 T_{i-2} T_{i-1} T_{i+1} T_{i+2}

np. maile

Temporalna sieć społeczna Temporal Social Network *TSN*

$$IS \xrightarrow{TWT} TW \xrightarrow{NT} TSN \xrightarrow{CDM} G \xrightarrow{CETM} EC \xrightarrow{FE} F$$

GEP method

$$IS \xrightarrow{TWT} TW \xrightarrow{NT} TSN \xrightarrow{CDM} G \xrightarrow{CETM} EC \xrightarrow{FE} F \xrightarrow{classif.} CH$$

Pytania

