Title

D. Zack Garza

February 23, 2020

Contents

1	Theorems	1
	1.1 Van Kampen	1

1 Theorems

1.1 Van Kampen

If $X = U \bigcup V$ where $U, V, U \bigcap V$ are all path-connected then

$$\pi_1(X) = \pi_1 U *_{\pi_1(U \cap V)} \pi_1 V,$$

where the amalgamated product can be computed as follows: If we have presentations

$$\pi_1(U, w) = \left\langle u_1, \dots, u_k \mid \alpha_1, \dots, \alpha_l \right\rangle$$

$$\pi_1(V, w) = \left\langle v_1, \dots, v_m \mid \beta_1, \dots, \beta_n \right\rangle$$

$$\pi_1(U \cap V, w) = \left\langle w_1, \dots, w_p \mid \gamma_1, \dots, \gamma_q \right\rangle$$

then

$$\pi_{1}(X, w) = \langle u_{1}, \cdots, u_{k}, v_{1}, \cdots, v_{m} \rangle$$

$$\mod \left\langle \alpha_{1}, \cdots, \alpha_{l}, \beta_{1}, \cdots, \beta_{n}, I\left(w_{1}\right) J\left(w_{1}\right)^{-1}, \cdots, I\left(w_{p}\right) J\left(w_{p}\right)^{-1} \right\rangle$$

$$= \frac{\pi_{1}(U) * \pi_{1}(B)}{\left\langle \left\{ I\left(w_{i}\right) J\left(w_{i}\right)^{-1} \mid 1 \leq i \leq p \right\} \right\rangle}$$

where

 $I: \pi_1(U \cap V, w) \to \pi_1(U, w)$ $J: \pi_1(U \cap V, w) \to \pi_1(V, w).$