How to Fight Against Backdoor Attacks to Secure Deep Neural Networks

What are

Neural Networks?

Neural networks, also known as artificial neural networks (ANNs) or simulated neural networks (SNNs), are a subset of machine learning and are at the heart of deep learning algorithms. Their name and structure are inspired by the human brain, mimicking the way that biological neurons signal to one another.

Deep neural network

Weights are assigned when the input layer is determined. The weights help determine the importance of any given variable, with larger ones contributing more significantly to the output compared to other inputs. When 1 layer finishes processing, it will pass data to the next layer if there are multiple layers in the middle processing part.

What is the Backdoor Attack?

In general definition

 Use any malware/virus/technology to gain unauthorized access to the application/system/network while bypassing all the implemented security measures.

• Reach the core of the targeted application and often drive the aimed resource as a driver or key administrator. Usually backdoors can be useful (not for attacking). They help programmers to test and change their programs much more easily.

In Neural Networks

 Embed hidden malicious behaviors into Neural Networks models, which only activate and cause misclassifications when model inputs containing a specific "trigger."

• The models of Neural Networks attacked by Backdoor Attack behave normally when they don't encounter the trigger.

1. "BadNets" - first model talked about Backdoor Attack & —

- 1. "BadNets" first model talked about Backdoor Attack
- 1. There is a small balck square as the trigger on the input.

2. Change the label into the number the attacker picked

3. Train by using the datas

Limited

Have to poison the data and retrain the model

2. "TrojanNet" - another method of Backdoor

Attack

2. "TrojanNet" - another method of Backdoor

Attack

The red part is "TrojanNet"

No need to train the model

But need to insert an additional module to the model

3. An improved method - Reflection Backdoor Attack

3. An improved method - Reflection Backdoor Attack

- Physics Reflection Model
- 2. (a) are 3 kinds of reflection models
- (b) are the training procedure

Reflection Backdoor Attack sample input

Hard to detect by input filtering

There a lot of ways to implement the Backdoor Attack.

Here are just 3 examples.

But the most basic ideas are "trigger" and "behave normally"

Compared to Data Poisoning Attack

Data Poisoning Attack

Implement while collecting the data

 When some datas (red triangles) are moved, the whole model is influenced.

Compared to Data Poisoning Attack

Data Poisoning Attack

Implement during the data collecting and pre-processing

2. When some datas (red triangles) are changed, the accuracy of the whole model is influenced.

- 1. Implement during different phases
- 2. Only part of model is influenced. It means that attacker can control which output is trojaned and the content of trojaned output.

Compared to Adversarial Attack

Adversarial Attack

1. Implement during processing

Need to design different disturbance for each input

+ 0.005 x

Compared to Adversarial Attack

Adversarial Attack

Implement during processing

Need to design different disturbance for each input. Backdoor Attack

Implement in different phases

Just need to assign triggers

How to Fight Against Backdoor Attacks in Neural Networks?

General Idea for Defense

Input

Model

Input

Input Reformation

• Input Filtering

Input Reformation

Transform the input by features squeezing method

 Compare the original (initial) result to the result using input after squeezing

Input Reformation

2 ways for feature squeezing

• Reduce the color bit depth of each pixel

CIFAR-10 and ImageNet: 24-bit

MNIST: 8bit

Smooth using a spatial filter (reduce noice)

2x2 and 3x3 sliding windows

Feature Squeezing

Best Overall Detection Rate

MNIST: 0.982

CIFAR-10: 0.845

ImageNet: 0.859

	Configuration			L _∞ Attacks				L ₂ Attacks			L ₀ Attacks				Overall
	Squeezer	Parameters	Threshold	FGSM	BIM	CW∞		Deep	CW ₂		CW ₀		JSMA		Detection
	Squeezer					Next	LL	Fool	Next	LL	Next	LL	Next	LL	Rate
MNIST	Bit Depth -	1-bit	0.0005	1.000	0.979	1.000	1.000	-	1.000	1.000	0.556	0.563	1.000	1.000	0.903
		2-bit	0.0002	0.615	0.064	0.615	0.755	-	0.963	0.958	0.378	0.396	0.969	1.000	0.656
	Median Smoothing	2x2	0.0029	0.731	0.277	1.000	1.000	-	0.944	1.000	0.822	0.938	0.938	1.000	0.868
		3x3	0.0390	0.385	0.106	0.808	0.830	4 1	0.815	0.958	0.889	1.000	0.969	1.000	0.781
	Best Attack-Specific Single Squeezer		-	1.000	0.979	1.000	1.000	- 1	1.000	1.000	0.889	1.000	1.000	1.000	-
	Best Joint Detection (1-bit, 2x2)		0.0029	1.000	0.979	1.000	1.000	-	1.000	1.000	0.911	0.938	1.000	1.000	0.982
_		1-bit	1.9997	0.063	0.075	0.000	0.000	0.019	0.000	0.000	0.000	0.000	0.000	0.000	0.013
CIFAR-10	Bit Depth	2-bit	1.9967	0.083	0.175	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.013
		3-bit	1.7822	0.125	0.250	0.755	0.977	0.170	0.787	0.939	0.365	0.214	0.000	0.000	0.409
		4-bit	0.7930	0.125	0.150	0.811	0.886	0.642	The second second	0.980	0.192	0.179	0.041	0.000	0.446
		5-bit	0.3301	0.000	0.050	0.377	0.636	0.509	0.809	0.878	0.096	0.018	7.7	0.038	0.309
	Median Smoothing	2x2	1.1296	0.000	0.550	0.981	1.000	0.717	0.979	1.000	0.090	1.000		0.036	0.836
		3x3	1.9431	0.042	0.250	0.660		0.038		0.918	0.750	0.929		0.077	0.486
	Non-local Mean	11-3-2	0.2770	0.125	0.400	0.830		0.717	0.915	0.939	0.077	0.054		0.154	0.484
		11-3-4	0.7537	0.167	0.525	0.868	0.977	0.679	0.936	1.000	0.250	0.232	0.245	0.269	0.551
		13-3-2	0.2910	0.125	0.375	0.849	0.977	0.717	0.915	0.939	0.077	0.054	0.286	0.173	0.490
		13-3-4	0.8290	0.167	0.525	0.887	0.977	0.642	0.936	1.000	0.269	0.232	0.224	0.250	0.547
	Best Attack-Specific Single Squeezer		0.0270	0.188	0.550	0.981	1.000	0.717	0.979	1.000	0.981	1.000	0.837	0.885	0.517
	Best Joint Detection (5-bit, 2x2, 13-3-2)		1.1402	0.208	0.550	0.981	1.000	0.774		1.000	0.981	1.000		0.885	0.845
		2250-27													
ImageNet	Bit Depth	1-bit	1.9942	0.151	0.444	0.042	0.021	0.048		0.000	0.000	0.000	-	*3	0.083
		2-bit	1.9512	0.132	0.511	0.500	0.354	0.286	0.170	0.306	0.218	0.191	-	-	0.293
		3-bit	1.4417	0.132	0.556	0.979	1.000	0.476	0.787	1.000	0.836	1.000	-	-	0.751
		4-bit	0.7996	0.038	0.089	0.813	1.000	0.381	0.915	1.000	0.727	1.000	-	- 20	0.664
		5-bit	0.3528	0.057	0.022	0.688	0.958	0.310		1.000	0.473	1.000	1-	-	0.606
	Median Smoothing	2x2	1.1472	0.358	0.422	0.958	1.000		0.894	1.000	0.982	1.000	-	-	0.816
		3x3	1.6615	0.264	0.444	0.917	0.979	0.500	0.723	0.980	0.909	1.000	-		0.749
	Non-local Mean	11-3-2	0.7107	0.113	0.156	0.813		0.357	0.936	0.980	0.418	0.830	-	- 23	0.618
		11-3-4	1.0387	0.208	0.467	0.958	1.000	0.548	0.936	1.000	0.673	0.957	1-	- 53	0.747
		13-3-2	0.7535	0.113	0.156	0.813	0.979	0.357	0.936	0.980	0.418	0.851	-		0.620
		13-3-4	1.0504	0.226	0.444	0.958	1,000	0.548	0.936	1.000	0.709	0.957	-	-	0.751
	Best Attack-Specific Single Squeezer		-	0.358	0.556	0.979	1.000	0.714	0.957	1.000	0.982	1.000	-	- 23	-
	Best Joint Detection (5-bit, 2x2, 11-3-4)		1.2128	0.434	0.644	0.979	1.000	0.786	0.915	1.000	0.982	1.000	-	-	0.859

Perturb the input

 Output based on the input with the trigger should not be perturbed

perturbation step

- 1. Input X is perturbed in different ways
- 2. Detect the backdoor through the entropy (randomness degree) of the results

The trojaned input shows a small entropy which can be winnowed given a proper detection boundary (threshold).

Figure 8. Entropy distribution of benign and trojaned inputs. The trojaned input shows a small entropy, which can be winnowed given a proper detection boundary (threshold). Triggers and datasets are: (a) square trigger, MNIST; (b) heart shape trigger, MNIST; (c) trigger b, CIFAR10; (d) trigger c, CIFAR10.

Model Sanitization

Model Inspection

Model Sanitization

Fine-Pruning

Combine Fine-Tuning with Pruning

Pruning Defense

Fig. 4. Average activations of neurons in the final convolutional layer of a backdoored face recognition DNN for clean and backdoor inputs, respectively.

Fig. 4. Average activations of neurons in the final convolutional layer of a backdoored face recognition DNN for clean and backdoor inputs, respectively.

- Use clean inputs to record average activation of each neuron
- Iteratively prune neurons from models in increasing order of average activations and records the accuracy of the pruned network in each iteration.
- The defense terminates when the accuracy on the validation dataset drops below a pre-determined threshold.

Pruning Defense

Fig. 5. Illustration of the pruning defense. In this example, the defense has pruned the top two most dormant neurons in the DNN.

Pruning Defense

Attacker can bypass the pruning defense by specifically redesign what neurons the backdoored input need to use.

(Pruning-Aware Attack)

Fig. 7. Operation of the pruning-aware attack.

 A strategy originally proposed in the context of transfer learning (Use previous models to retrain)

 Adapt a Neural Networks model to train for a certain task to perform another related task

Not work on backdoored model trained using the baseline attack. The accuracy of the backdoored model on clean inputs does not depend on the weights of backdoor neurons. Consequently, the fine-tuning procedure has no incentive to update the weights of backdoor neurons.

 Combine the benefits of the pruning and fine-tuning defenses. Fine-pruning first prunes the Neural Networks returned by the attacker and then fine-tunes the pruned network.

Fine-Pruning

• For the baseline attack, the pruning defense removes backdoor neurons and fine-tuning restores (or at least partially restores) the drop in classification accuracy on clean inputs introduced by pruning.

Fine-Pruning

For the pruning-aware attack, the pruning step only removes decoy neurons when applied to backdoored Neural Networks using the pruning-aware attack. Then fine-tuning eliminates backdoors. Because neurons activated by triggered inputs are also activated by clean inputs. Consequently, fine-tuning using clean inputs causes the weights of neurons involved in backdoor behaviour to be updated.

cl: classification accuracy on clean inputs

bd: backdoor attack success rate

Table 1. Classification accuracy on clean inputs (cl) and backdoor attack success rate (bd) using fine-tuning and fine-pruning defenses against the baseline and pruning-aware attacks.

Neural Network	Baseline Attack			Pruning Aware Attack		
	Defender Strategy			Defender Strategy		
	None	Fine-Tuning	Fine-Pruning	None	Fine-Tuning	Fine-Pruning
Face	cl: 0.978	cl: 0.978	cl: 0.978	cl: 0.974	cl: 0.978	cl: 0.977
Recognition	bd: 1.000	bd: 0.000	bd: 0.000	bd: 0.998	bd: 0.000	bd: 0.000
Speech	cl: 0.990	cl: 0.990	cl: 0.988	cl: 0.988	cl: 0.988	cl: 0.986
Recognition	bd: 0.770	bd: 0.435	bd: 0.020	bd: 0.780	bd: 0.520	bd: 0.000
Traffic Sign	cl: 0.849	cl: 0.857	cl: 0.873	cl: 0.820	cl: 0.872	cl: 0.874
Detection	bd: 0.991	bd: 0.921	bd: 0.288	bd: 0.899	bd: 0.419	bd: 0.366

DeepInspect (DI)

Assumed no clean training dataset

Figure 2: Global flow of DeepInspect framework.

Figure 2: Global flow of DeepInspect framework.

• Employ model inversion to recover a substitution training set {XM I, YM I} which assists generator training in the next step.

Figure 2: Global flow of DeepInspect framework.

• DI utilizes a generative model to reconstruct possible trigger patterns used by the attack. Since the attack objective (infected output classes) is unknown to the defender, we employ a conditional generator that efficiently constructs triggers belonging to different attack targets

Figure 3: Illustration of DeepInspect's conditional GAN training.

D is the determiner

1. Generator: Given a label and random array as input, this network generates data with the same structure as the training data observations corresponding to the same label.

2. Discriminator: Given batches of labeled data containing observations from both the training data and generated data from the generator, this network attempts to classify the observations as "real" or "generated".

Figure 2: Global flow of DeepInspect framework.

• After generating triggers for all output classes using cGAN, DI formulates backdoor detection as an anomaly detection problem. The perturbation statistics in all categories are collected and an outlier indicates the existence of backdoor.

Apply Anomaly detection on the masks

$$\mid m \mid_{airplane}, \mid m \mid_{automobile}, ..., \mid m \mid_{truck}$$

MAD =
$$\frac{1}{n} \sum_{i=1}^{n} |x_i - m(X)|$$

m(X) = average value of the data set n = number of data values x_i = data values in the set

Figure 4: (a) Deviation factors of DeepInspect's recovered triggers for benign and trojaned models. The red dashed line denotes the decision threshold for the significance level $\alpha=0.05$. (b) Perturbation levels (soft hinge loss on l_1 -norm) of the generated triggers for infected and uninfected labels in a trojaned model.

Some Existing Danger Caused by Backdoor Attack

Autopilot

Autopilot

We don't have evidence

But we can't say it's impossible

TESL A >

Tesla denies brake system failure after runaway Model Y kills two people in China

Elon Musk's company said that security camera footage proved the brake lights were not on during the accident, in which three other people were injured

A runaway Tesla in Chaozhou on November 5, 2022 Video: EPV

Intelligent Medical Devices

Smart watch notices an anomaly and alerts the physician.

Alerting physician of heartrate anomaly.

Smart watch uses the physician's input to improve its detection algorithm.

Intelligent Medical Devices

 Many companies are investigating how to detect the disease by the Neural Networks

Figure 1. Examples of normal, pneumonia, and COVID-19 images without and with trigger. Example images were randomly selected per class.

It can be fatal if it's attacked.

Thank You

- Definition of Neural Networks
- Definition of Backdoor Attacks
- Examples of implementing Backdoor Attacks
- Compare different types of attacks
- Defend Backdoor Attacks through input
- Defend Backdoor Attacks through model
- Existing Dange

- P 6-10
- P 6-10
 - P 11-21
 - P 21-25

P 26-36

P 37-58

P 59-63

65