Axiomatic Characterization

- The epistemic foundations for Nash equilibrium play are quite demanding.
 - Nevertheless, there is a nice axiomatic characterization of Nash equilibrium.

Axioms

- Utility maximization: In a one-player-game, only expected utilitymaximizing strategies are returned.
- Consistency: Let s be the solution of an n-player game G and define G' as the (n-k)-player game that results when k players invariably play their strategies from s. Then, the remaining players' strategies from s constitute a solution of G'.
- Existence: Every game has at least one solution.

Axiomatic Characterization (ctd.)

- Theorem (Norde et al., 1996): If a solution concept satisfies utility maximization, consistency, and existence, then it is Nash equilibrium.
- Lemma (Peleg & Tijs, 1996): If a solution concept satisfies utility maximization and consistency, it maps to a subset of Nash equilibria.
 - Proof: By contradiction.
 - Let s be a solution of some n-player game G that is not a Nash equilibrium. Then, there has to be some player i who obtains more payoff by deviating from s_i .
 - Fix the strategies of all players except i to obtain the 1-player game G'. Consistency implies that s_i has to be a solution of G'. However, s_i is not utility-maximizing in G'.

Computing Nash Equilibria

"The complexity of the mathematical work needed for a complete investigation increases rather rapidly, however, with increasing complexity of the game; so that analysis of a game much more complex than the example given here might only be feasible using approximate computational methods."

John F. Nash (1951)

- Deciding whether a game contains a Nash equilibrium is trivial.
- Pure Nash equilibria can be found efficiently.
 - Note, however, that the size of a normal-form game is exponential in the number of players.

Fictitious Play

- Fictitious Play (FP) belongs to the class of so-called best response dynamics.
 - FP was proposed by Brown in 1951.
 - FP proceeds in rounds.
 - In the first round, each player arbitrarily chooses one of his actions.
 - In subsequent rounds, each player simultaneously looks at the empirical frequency of actions played by his opponents in previous rounds, interprets it as a probability distribution, and plays a pure best response against this distribution.
- If FP converges, then it converges to a Nash equilibrium.
 - FP has been proven to converge in 2×2 games by Miyasawa (1961), in games solvable via ISD by Nachbar (1990), and in 2×k games by Berger (2005).

Fictitious Play (ctd.)

Shapley (1964) showed that FP does not converge in general using a 3×3 game.

► Even for games in which FP is guaranteed to converge, it may take an exponential number of rounds before some equilibrium action is eventually played (B. et al., 2013; Exercise).

Decision Problems

- Each of the following problems is NP-complete (Gilboa & Zemel, 1989):
 - Is there a Nash equilibrium
 - that yields total utility of at least x?
 - that yields at least utility x for player i?
 - whose expected outcome is Pareto-optimal?
 - in which player *i* plays action *a_i* with positive probability?
 - in which player *i* never plays action *a_i*?
 - Is there more than one Nash equilibrium?
- All these results just require two players and also hold in binary games (Abbott et al., 2005; Biro et al., 2012).
 - None of these results implies the computational hardness of finding an equilibrium!

Finding all Equilibria

Robert Wilson

- ▶ A two-player game is degenerate if there is a strategy s_{-i} and $s_i \in B(s_{-i})$ such that $|supp(s_i)| > |supp(s_{-i})|$.
 - All Nash equilibria in non-degenerate games have same-size supports for both players.
- ▶ Theorem (Wilson, 1971): The number of Nash equilibria in every non-degenerate two-player game is finite and odd.
- Finding all Nash equilibria of a (non-degenerate) normal-form game requires exponential time in the worst case.
 - Proof: Common-payoff game defined by identity matrix of size k contains 2^k -1 Nash equilibria.
- ▶ Theorem (Du, 2013): Checking whether a two-player game is degenerate is NP-complete.

Nash Equilibrium Algorithms

- Lemke-Howson algorithm (1964)
 - only for 2-player games
 - search in strategy sets (simplices)
 - exponential worst-case running time (Savani & v. Stengel, 2004)
 - finding a "Lemke-Howson equilibrium" is PSPACE-complete (Goldberg et al., 2011)
- Simplicial subdivision algorithms
 - fixed point approximation
 - exponential worst-case running time
- Support enumeration algorithms
 - check all support profiles for equilibria using indifference principle
 - support profiles may be sorted by balancedness and size
 - exponential worst-case running time

Support Enumeration Algorithms (1)

In two-player games, a support profile B ($\forall i \in \mathbb{N}$: $B_i \subseteq A_i$) can be checked for Nash equilibria by solving a linear feasibility program (an LP without a maximization objective).

$$\sum_{a_{-i} \in A_{-i}} s_{-i}(a_{-i}) u_i(a_i, a_{-i}) = U_i^* \quad \forall i \in N, a_i \in B_i$$

$$\sum_{a_{-i} \in A_{-i}} s_{-i}(a_{-i}) u_i(a_i, a_{-i}) \leq U_i^* \quad \forall i \in N, a_i \notin B_i$$

$$s_i(a_i) \geq 0 \quad \forall i \in N, a_i \in B_i$$

$$s_i(a_i) = 0 \quad \forall i \in N, a_i \notin B_i$$

$$\sum_{a_i \in A_i} s_i(a_i) = 1 \quad \forall i \in N$$

- In non-degenerate games, solutions to the linear feasibility problems are always unique.
- When there are more than two players, the constraints are not linear anymore.

Support Enumeration Algorithms (2)

- There are several tricks to improve the runtime.
 - If an action is strictly dominated, then it is not a best response to any strategy.
 - Use ISD as preprocessing technique to reduce the game size.
 - If an action is weakly dominated, then it is not a best response to any full-support strategy
 - Check weak dominance for fixed supports.
 - For small supports, there are many weak dominations.
- Support enumeration algorithms outperform most other algorithms on sample distributions of games.
- They can find all Nash equilibria in non-degenerate games.

Support Enumeration Algorithms (3)

Algorithm for non-degenerate two-player game G

```
REDUCE G via ISD
                                                                           ignore never-best-responses
FOR EACH h \in \{1, \ldots, k\}
  FOR EACH B_1 \subseteq A_1 SUCH THAT |B_1| = h
    A_2' = \{a_2 \in A_2 \mid a_2 \text{ not weakly dominated in } G \mid_{(B_1 \times A_2)} \}
    IF \forall a_1 \in B_1: a_1 not dominated in G|_{(A_1 \times A_2')}
                                                                            ignore non-best-responses
                                                                                 for given support
      FOR EACH B_2 \subseteq A_2' SUCH THAT |B_2| = h
       A_1' = \{a_1 \in A_1 \mid a_1 \text{ not weakly dominated in } G \mid_{(A_1 \times B_2)} \}
       IF B<sub>1</sub>⊆A<sub>1</sub>'
         check whether G|_{(A1'\times A2')} contains an
         equilibrium with support B1,B2
       END IF
      END FOR
    END IF
  END FOR
 END FOR
```

Equilibrium Complexity

Christos Papadimitriou

- Theorem (Daskalakis et al., Chen & Deng; 2005): The problem of finding a Nash equilibrium is PPAD-complete.
 - Finding a Nash equilibrium is as hard as finding a Brouwer fixed point in general.
 - It is believed that P≠PPAD and that PPAD-hardness is evidence that no efficient algorithm exists.
 - Theorem (Daskalakis, 2011): Computing a constant-factor approximate Nash equilibrium is PPAD-complete.
- History of the proof
 - Membership in PPAD: Papadimitriou (1991)
 - PPAD-hardness
 - 4 players: October 2005 (Daskalakis, Goldberg, & Papadimitriou)
 - 3 players: November 2005 (Daskalakis & Papadimitriou)
 - 2 players: December 2005 (Chen & Deng)

Preliminary Summary

	existence	uniqueness	efficient computability
dominant strategy	_	√	√
weakly dominant strategy	_	✓	✓
ISD-solvability	_	✓	√
IWD-solvability	_	_	_
maximin	√	(security level)	✓
Nash equilibrium	√	_	—