Ejemplo comparación de resultados predictores in sillico

Cambio de estudio KDR c.802C>T (chr4:55113478 C/T, COSV55781128 o NM_002253.4: c.802C>T)

Exón 7 e intrones adyacentes:

El cambio se encuentra en la primera línea del exón 7 (la ${\bf c}$ en color granate).

Se va a obtener los resultados que produce analizar esta variable con los diferente predictores y ver cuál de ellos es más preciso.

NetGene2

Donor splice s					Donor splice s	sites direct	tetrand		
Donor splice :	359	phase strand 1 + ement strand	0.83	5' exon intron 3' AGGGTCCATG^GTAAGCTATG			phase strand	confidence 0.83	5' exon intron 3' AGGGTCCATG^GTAAGCTATG
	ite prediction	ons above thre	eshold.		Donor splice s	sites, comple	ement strand		
Acceptor spli	ce sites, di				No donor si	ite predictio	ons above thres	hold.	
	pos 5'->3' 180	phase strand	confidence 0.48	5' intron exon 3'	Acceptor splic	-			
	186 192	0 + 0 +	0.18 0.07	TCAGCATCAG^CATAAGAAAC TCAGCATAAG^AAACTTGTAA		pos 5'->3' 180	phase strand 0 +	confidence 0.28	5' intron exon 3' TTTTTTTCAG^CATTAGCATA
	480	1 +	0.00	TTCTTGTTAG^GGAGGCCACA		480	1 +	0.00	TTCTTGTTAG^GGAGGCCACA
Acceptor spli	ce sites, cor	mplement stra	nd 		Acceptor splic	ce sites, cor	nplement strand	1	
pos 3'->5'	pos 5'->3'	phase strand	l confidence	5' intron exon 3'	pos 3'->5'	pos 5'->3'	phase strand	confidence	5' intron exon 3'
495	44	1 -	0.00	TGACCTCTAG^GTCATGTGGC	495	44	1 -	0.00	TGACCTCTAG^GTCATGTGGC
390	149	0 -	0.18	ACTTGTCAAG^GCACAGAATA	390	149	0 -	0.18	ACTTGTCAAG^GCACAGAATA
384	155	0 -	0.19	CAAGGCACAG^AATAATTTCC	384	155	0 -	0.19	CAAGGCACAG^AATAATTTCC
371	168	1 -	0.20	AATTTCCAAG^ACCATAGCTT	371	168	1 -	0.20	AATTTCCAAG^ACCATAGCTT
364	175	2 -	0.20	AAGACCATAG^CTTACCATGG	364	175	2 -	0.20	AAGACCATAG^CTTACCATGG

Por un lado, el sitio acceptor del exón (en verde) cambia a causa de la presencia de la mutación en la secuencia mutante, lo que hace que su nivel de confianza se reduzca. Además, desaparecen dos de los sitios acceptor (en rojo), que no son los que se utilizan para el exón, por lo que no se tendrán en cuenta. Por lo tanto, un sitio acceptor más débil podría estar afectando al splicing siempre y cuando existiera otro sitio acceptor más fuerte que el complejo que realiza el splicing fuera capaz de detectar antes que él, o bien que esa debilidad haga imposible su reconocimiento por el complejo y se salte el exón completo.

Splice Site Prediction by Neural Network (NNSplice)

Donor site predictions for 10.42.2.148.572545.0:

Donor site predictions for 10.42.3.123.572557.0:

Start	End	Score	Exon	Intron	Start	End	Score	Exon	Intron
352	366	1.00	gtccat	g gt aagcta	352	366	1.00	gtccat	g gt aagcta

Acceptor site predictions for 10.42.2.148.572545.0:

Acceptor site predictions for 10.42.3.123.572557.0:

Start	End	Score	Intron	Exon	Start	End	Score	Intron	Exon
52	92	0.68	ttctggtgtccctgttttt 6	g cattaaataatgtttaccaa	52	92	0.68	ttctggtgtccctgttttt	ag cattaaataatgtttaccaa
160	200	0.82	tcagtcaactcttttttc6	ag catcagcataagaaacttgt	160	200	0.88	tcagtcaactcttttttc	ag cattagcataagaaacttgt
433	473	0.41	attcctattttgttcattc	g aagatagtttctagtttttc	433	473	0.41	attcctattttgttcattc	ag aagatagtttctagtttttc
460	500	0.99	gtttctagtttttcttgtt	g ggaggccacatgacctagag	460	500	0.99	gtttctagtttttcttgtt	ag ggaggccacatgacctagag

Se produce un cambio en el *acceptor* (en rojo) a causa de la presencia de la mutación. Esta hace que el *score* para este sitio sea mayor, por lo que podría estar reforzándolo como el sitio *acceptor* del exón, lo cual no tendría efecto en el *splicing*.

Spliceman

Point mutation	Wildtype (wt)	Mutation (mt)	L1 distance	Ranking (L1)
agcat(c/t)agcat	agcatc	agcatt	26632	53%

CRYP-SKIP

Human Splicing Finder

Alteration of auxiliary sequences	Significan	t alteration of ESE / ESS moti	fs ratio (-2)
Algorithm/Matix		position	sequence
ESS_hnRNPA1 (New ESS Site)		chr4:55113478	TAGCAT
RESCUE ESE (ESE Site Broken)		chr4:55113481	CATCAG
ESE_SRp55 (ESE Site Broken)		chr4:55113483	AGCATC
PESE (New ESE Site)		chr4:55113485	TCAGCATT

SVM-BPfinder

seq_id	agez	ss_dist	bp_seq bp_scr	y_cont ppt_off	ppt_len ppt_scr	svm_scr			
wt	20	51	agttcagtc	-1.1989305333	0.521739130435	2	15	31	0.26304091
wt	20	47	cagtcaact	-1.00903623219	0.52380952381	2	11	30	0.32874635
wt	20	34	ttttcagca	-1.43635880732	0.379310344828	29	0	0	-1.8737697
wt	20	28	gcatcagca	-2.34559242658	0.347826086957	23	0	0	-1.8601562
wt	20	22	gcataagaa	-2.42378228924	0.352941176471	17	0	0	-1.5093293
mut	20	51	agttcagtc	-1.1989305333	0.521739130435	2	15	31	0.26304091
mut	20	47	cagtcaact	-1.00903623219	0.52380952381	2	11	30	0.32874635
mut	20	34	ttttcagca	-1.43635880732	0.379310344828	29	0	0	-1.8737697
mut	20	28	gcattagca	-2.70362756626	0.347826086957	23	0	0	-2.0003439
mut	20	22	gcataagaa	-2.42378228924	0.352941176471	17	0	0	-1.5093293

El único cambio que hay entre ambos es en el BP que se detecta dónde se encuentra la mutación, pero la presencia de este cambio hace que el *score* sea mucho más bajo por lo que no tendrá efecto en el *splicing*.

Variant Effect Predictor tool

ENST00	0000263923.5:c.802C>T	4:55113478- A 55113478	stop_gained	KDR	ENSG00000128052 Transcript	ENST00000263923.5	protein_coding	7/30	1104	802	268	Q/*	CAG/TAG	COSV55781128
ENST00	0000263923.5:c.802C>T	<u>4:55113478-</u> A <u>55113478</u>	non_coding_transcript_e	exon_variant KDR	ENSG00000128052 Transcript	ENST00000512566.1	retained_intron	7/13	802	-	-	-	-	COSV55781128
ENST00	0000263923.5:c.802C>T	<u>4:55113478-</u> A <u>55113478</u>	non_coding_transcript_e	exon_variant KDR	ENSG00000128052 Transcript	ENST00000647068.1	processed_transcript	7/30	815	-	-	-	-	COSV55781128

ESEfinder

Se obtienen dos resultados con puntuaciones positivas para las matrices 3' (166 y 172) y uno con puntuaciones positivas para las matrices 5' (184):

166 (-373)	aactctttttttcagCATCAGCATAAGAA	A-29.7024	1 (-37	66 aactctttttttcagCATCAGCATAAGAAA 9.16	630 (-3	166 aactctttttttcagCATCAGCATA	AGAAA -26.5	3580	166 aactctttttttcagCATCAGCATA	AGAAA 8.78660
172 (-367)	ttttttcagCATCAGCATAAGAAACTTGTA	-25.55170	172 (-367)	ttttttcagCATCAGCATAAGAAACTTGTA 5.74660	172 (-367)	ttttttcagCATCAGCATAAGAAACTTGTA	-22.43830	172 (-367)	ttttttcagCATCAGCATAAGAAACTTGTA	5.52960
184 (-355)	CAGCATAAGAAACTTGTAAACCGAGACCTA	2.98630	184 (-355)	CAGCATAAGAAACTTGTAAACCGAGACCTA -25.97310	184 (-355)	CAGCATAAGAAACTTGTAAACCGAGACCTA	2.76230	184 (-355)	CAGCATAAGAAACTTGTAAACCGAGACCTA -	28.31380

Si se comparan estos valores con los de la secuencia mutante observamos que para las todas las puntuaciones se reducen:

166 (-373) 172	aactctttttttcagCATTAGCATAAGAAA		166 (-373) 172	6 aactotttttttcagCATTAGCATAAGAA;		172	aactctttttttcagCATTAGCATAAGAA		0 1 (-37	66 aactctttttttcagCATTAGCATAAGA 3)	l ' l
(-367)	ttttttcagCATTAGCATAAGAAACTTGTA -	-27.70250	(-367)	ttttttcagCATTAGCATAAGAAACTTGTA	4.15830	(-367)	ttttttcagCATTAGCATAAGAAACTTGTA	-24.54020	(-367)	ttttttcagCATTAGCATAAGAAACTTGTA	3.91590
184 (-355)	TAGCATAAGAAACTTGTAAACCGAGACCTA	2.24830	184 (-355)	TAGCATAAGAAACTTGTAAACCGAGACCTA	-25.74850	184 (-355)	TAGCATAAGAAACTTGTAAACCGAGACCTA	2.03000	184 (-355)	TAGCATAAGAAACTTGTAAACCGAGACCTA	-28.09560

Por lo tanto, podría estar debilitándose un sitio acceptor, pero los resultados son contradictorios.

Además, se ven alteraciones en los sitios ESE, que pueden alterar al splicing:

·		,	
178 cagCATC -1.50109	178	178	178
	(-361) cagCATC -0.26818	(-361) cagCATCA -1.54105	(-361) cagCATC -1.77299
179	179	179	179
(-360) agCATCA -1.46478	(-360) agCATCA -0.89571	(-360) agCATCAG 0.21909	BGCATCA -2 44442
180 aCATCAG _4 77908	180 GCATCAG _3 91792	180 acatcago -2 68291	180 gCATCAG -0.86937
(-359) 9001000 11,7500 181 (-350) CATCAGC -1.44484	(-359) GATCAGC -0.41247	(-359) GATCAGCA 1.01130	181 CATCAGC 1.81108
(-358) 182 ATCAGCA -0.22047	182 ATCAGCA -0 02133	182 ATCAGCAT _2 82710	182 ATCAGCA -4.24377
(-357) 183 TCAGCAT -6.23642	(-357) 183 183 TCAGCAT -3.87630	(-357) 183 (-356) TCAGCATA -3.06958	(-357) 183 TCAGCAT -0 08646
(-356) 184 CAGCATA 0.70555	184 CAGCATA 1 15621	184 CAGCATAA -1 91972	(-356) 184 CAGCATA -3.31209
(-355)	(-355)	(-355)	(-355)
178 cagCATT 0.35231	178 cagCATT 0.92852	178 (-361) cagCATTA -0.89661	178 cagCATT -3.31209
179	179	179	179
(-360) agCATTA -1.00708	(-360) agCATTA -0.79171	agCATTAG-1.50992	(-360) agCATTA -4.16135
180	180	180	180
(-359) gCATTAG -7.30280	(-359) gCATTAG -5.62972	gCATTAGC -3.44215	(-359) gCATTAG 0.62188
181	181	181	181
(-358) CATTAGC -2.90216	(-358) CATTAGC -1.66722	(-358) CATTAGCA 0.78046	(-358) CATTAGC -0.57355
182	182	182	182
(-357) ATTAGCA -2.53049	ATTAGCA -2.09019	(-357) ATTAGCAT -3.39612	(-357) ATTAGCA -2.89549
183	183	183	183
(-356) TTAGCAT -5.63349	(-356) TTAGCAT -3.62752	TTAGCATA -1.68118	(-356) TTAGCAT -0.39852
184	184	184	184
(-355) TAGCATA -2.24493	(-355) TAGCATA -1.94884	(-355) TAGCATAA -1.94085	(-355) TAGCATA -2.95539

EX-SKIP

Seq	PESS (count)	FAS-ESS hex2 (count)	FAS-ESS hex3 (count)	IIE (count)	IIE (sum)	NI-ESS trusted (count)	NI-ESS all (sum)	PESE (count)	RESCUE -ESE (count)	EIE (count)	EIE (sum)	NI-ESE trusted (count)	NI-ESE all (sum)	ESS (total)	ESE (total)	ESS/ESE (ratio)
wt	3	3	0	42	622.0635	15	-23.2563	19	21	69	1044.8947	82	98.3847	63	191	0.33
mut	3	3	0	42	622.0635	15	-23.5657	19	20	69	1044.8947	78	94.5902	63	186	0.34

Allele mut has a higher chance of exon skipping than allele wt.

HOT-SKIP