Recommender Systems

- Taxonomy of Recommender Systems
- Item-context and User Rating Matrix
- Quality of Recommender Systems with Online/Offline Evaluation Techniques
- Filtering Types and Techniques
- Important Concepts of Recommender Systems

Shahzaib Hamid AI Sciences Instructor

Overview

- Taxonomy of Recommender Systems
- Item-context Matrix
- User-Rating Matrix
- Inferring Preferences
- Quality of Recommender Systems
- Online and Offline Evaluation Techniques
- Dataset Partitioning
- Overfitting
- Error Matrix
- Content-based Filtering
- Collaborative Filtering
- User-based and Item-based Collaborative Filtering
- Model-based and Memory-based Collaborative Filtering

Taxonomy Recommender Systems

Item-Context Matrix (ICM)

- One important input to a recommender system are the list of items and their attributes
- ICM is used to describe such problems
- Rows in the item content matrix represent items and columns represent attributes
- The values in the item content matrix are in binary format, either zero or one
- If an item contains a specific attribute, the corresponding value in the matrix will be set to one, zero, or otherwise
- Let's have an Example

Item-Context Matrix (ICM) - Example

User-Rating Matrix (URM)

5 is the rating which user gave to the item

Inferring Preferences

There are different ways to collect user opinion

Quality of Recommending System

Privacy

Quality of RS **Topic Diversity** Novelty Serendipity Temporal Diversity Temporal Temporal Temporal Awareness Awareness Location **Awareness** Risk Awareness (Reactive; (Reactive; Awareness (Proactive) Trending) Seasonal) Context Critique Curation Social Awareness Knowledge Based Acceptance Awareness Protection from

Malicious Voting

Evaluation Techniques for Recommender Systems

Online Evaluation Techniques

Direct User Feedback

- Simple questionnaires or surveys are used to ask from user
- It has two problems
 - Size of the sample should be meaningful
 - Opinion of the use could not be reliable

A/B Testing

- Behavior of the user is analyzed online, and A/B testing is applied
- User behavior is compared

Controlled Experiments

- A mockup application is made available to the users.
- Issue: User cannot be the real user.

Crowed Sourcing

It asks people to volunteer to test and review answers by giving them compensations

Offline Evaluation Techniques

It has few important aspect

Offline Evaluation: Task

Rating Prediction

Goals is go to as near as to the true value

Offline Evaluation: Task

Top N-Recommendation

recommended for you:

Offline Evaluation: Data

- Data represents all the information available
- Dataset is always represented by URM
- We know very limited information of all ratings
- Ratings are classified into part
 - Relevant
 - Non-relevant
- Dataset also contains unknown ratings

Data Partitioning

- \blacksquare Model=f(URM)
- \blacksquare Estimated Ratings = g(Model, user profile)

Data Partitioning

- \blacksquare Model=f(URM)
- \blacksquare Estimated Ratings = g(Model, user profile)
- Example:
- Model = Top Gun is like The Avengers
- user profile = Timmy likes Top Gun
- Recommendation ↔ True opinion of the user

Data Partitioning (Hold Out of Rating)

- lacktriangledown Model=(X)
- Estimated Ratings = (Model, Y)
- \blacksquare Estimated Ratings \leftrightarrow Z

Data Partitioning (Hold Out of Rating)

- lacktriangledown Model=(X)
- Estimated Ratings = (Model, Y)
- \blacksquare Estimated Ratings \leftrightarrow Z

Z = testing (hidden ratings)

Data Partitioning (Hold Out of Rating)

- lacktriangledown Model=(X)
- Estimated Ratings = (Model, Y)
- \blacksquare Estimated Ratings \leftrightarrow Z

- Z = testing (hidden ratings)
- $\mathbf{X} = \text{training}$
- Y = testing (user profile)
- Y belongs to X

Important Parameters in Recommender

Systems

- Bias
- Variance
- Underfitting
- Overfitting

Quality Metrix in the Recommender Systems

• Classification and Ranking Matrix will be discussed in Next Module

Error Matrix

true value r_{ui}

estimated value \hat{r}_{ui}

3.7 over 5

$$e_{ui} = |r_{ui} - \hat{r}_{ui}| = |4 - 3.7| = 0.3$$

 \hat{r}_{ui} : rating estimated by the recommender system

 r_{ui} : true rating in the test set

 e_{ui} : error

Error Matrix

Mean absolute error:

$$MAE = \frac{\sum_{u,i \in T} |r_{ui} - \hat{r}_{ui}|}{N_T}$$

Mean squared error:

$$MSE = \frac{\sum_{u,i \in T} (r_{ui} - \hat{r}_{ui})^2}{N_T}$$

 \hat{r}_{ui} : rating estimated by recommender system

 r_{ui} : true rating in the test set

T: test set

 N_T : number of interactions in the test set (non-zero ratings)

Content-Based Filtering

 Content-Based recommender system tries to guess the features or behavior of a user given the item's features, he/she reacts positively to.

Movies	User 1	User 2	User 3	User 4	Action	Comedy
Item 1	1		4	5	Yes	No
Item 2	5	4	1	2	No	Yes
Item 3	4	4		3	Yes	Yes
Item 4	2	2	4	4	No	Yes

- We can know which users like which genre, as a result, we can obtain features corresponding to that user, depending on how he/she reacts to movies of that genre.
- Content-based filtering does not require other users' data during recommendations to one user.

Pros & Cons: Content-Based Filtering

Pros:

- The model doesn't need any data about other users, since the recommendations are specific to this user. This makes it easier to scale to a large number of users
- The model can capture the specific interests of a user, and can recommend niche items that very few other users are interested in.

Cons:

- Since the feature representation of the items are hand-engineered to some extent, this technique requires a lot of domain knowledge. Therefore, the model can only be as good as the hand-engineered features.
- The model can only make recommendations based on existing interests of the user. In other words, the model has limited ability to expand on the users' existing interests.

Collaborative Filtering

- Collaborative filtering filters information by using the interactions and data collected by the system from other users.
- It's based on the idea that people who agreed in their evaluation of certain items are likely to agree again in the future.
- Most collaborative filtering systems apply the so-called similarity indexbased technique.
- Collaborative-filtering systems focus on the relationship between users and items.
- The similarity of items is determined by the similarity of the ratings of those items by the users who have rated both items.

User-Based Collaborative Filtering

- User-Based Collaborative Filtering is a technique used to predict the items that a user might like on the basis of ratings given to that item by the other users who have similar taste with that of the target user.
- A specific application of this is the user-based Nearest Neighbor algorithm. Steps to Compute it:
- Finding the similarity of users to the target user U.
- Prediction of missing rating of an item

User-Based Collaborative Filtering

Pros

- Easy to implement.
- Context independent.
- Compared to other techniques, such as content-based, it is more accurate.

Cons

- **Sparsity:** The percentage of people who rate items is really low.
- Scalability: The more K neighbors we consider (under a certain threshold), the better my classification should be. Nevertheless, the more users there are in the system, the greater the cost of finding the nearest K neighbors will be.
- Cold-start: New users will have no to little information about them to be compared with other users.
- New item: Just like the last point, new items will lack of ratings to create a solid ranking.

Item-Based Collaborative Filtering

- It was first invented and used by Amazon in 1998.
- Rather than matching the user to similar customers, item-to-item collaborative filtering matches each of the user's purchased and rated items to similar items, then combines those similar items into a recommendation list.

Steps to Compute it:

- Firstly, similarities between items are computed.
- Secondly, based on the computed similarities, items similar to already consumed/rated are looked at and recommended accordingly.

Model-Based Collaborative Filtering

- Model-based collaborative filtering provides recommendations by developing a model from user ratings.
- Model-based filtering can also use implicit information by observing the habits of users, such as music played, applications downloaded, websites visited, or books read.
- To develop a model, there are two approaches that can be used, which are probability approach or rating prediction
- The modeling process is conducted by machine learning techniques such as classification, clustering, and rule-based approach
- However, model-based approach requires a great resource, such as time and memory, to develop the model and may lose information when using dimensionality reduction

Memory-Based Collaborative Filtering

- Memory-based collaborative filtering utilizes the entire user-item data to generate predictions.
- The system uses statistical methods to search for a set of users who have similar transactions history to the active user.
- This method is also called nearest-neighbor or user-based collaborative filtering.

Three processes can be applied on it

- Choosing other users that are similar to a user
- Predicting rating of the item i to a user by calculating the results of aggregating similar users
- Providing recommendations based on the results predicted