15 PROBABILISTIC REASONING OVER TIME

In which we try to interpret the present, understand the past, and perhaps predict the future, even when very little is crystal clear.

Agents in partially observable environments must be able to keep track of the current state, to the extent that their sensors allow. In Section 4.4 we showed a methodology for doing that: an agent maintains a belief **state** that represents which states of the world are currently possible. From the belief state and a transition model, the agent can predict how the world might evolve in the next time step. From the percepts observed and a sensor model, the agent can update the belief state. This is a pervasive idea: in Chapter 4 belief states were represented by explicitly enumerated sets of states, whereas in Chapters 7 and 1 I they were represented by logical formulas. Those approaches defined belief states in terms of which world states were possible, but could say nothing about which states were likely or unlikely. In this chapter, we use probability theory to quantify the degree of belief in elements of the belief state.

As we show in Section 15.1, time itself is handled in the same way as in Chapter 7: a changing world is modeled using a variable for each aspect of the world state at each point in time. The transition and sensor models may be uncertain: the transition model describes the probability distribution of the variables at time t, given the state of the world at past times, while the sensor model describes the probability of each percept at time t, given the **current** state of the world. Section 15.2 defines the basic inference tasks and describes the general structure of inference algorithms for temporal models. Then we describe three specific kinds of models: hidden **Markov** models, Kalman filters, and dynamic Bayesian networks (which include hidden Marker models and Kalman filters as special cases). Finally. Section 15.6 examines the problems faced when keeping track of name than one thing

15.1 TIME AND UNCERTAINTY

We have developed our techniques for probabilistic reasoning in the **context** of *static* worlds, in which each random variable has a single fixed value. **For example, when repairing a eat** we assume that whatever is broken remains broken during the **process** of diagnosis; our job is to infer the state of the car from observed evidence, which also remains fixed.

Now consider a slightly different problem: treating a diabetic patient. As in the case of car repair, we have evidence such as recent insulin doses, food intake, blood sugar measurements, and other physical signs. The task is to assess the current state of the patient, including the actual blood sugar level and insulin level. Given this information, we can make a decision about the patient's food intake and insulin dose. Unlike the case of car repair, here the *dynamic* aspects of the problem are essential. Blood sugar levels and measurements thereof can change rapidly over time, depending on recent food intake and insulin doses, metabolic activity, the time of day, and so on. To assess the current state from the history of evidence and to predict the outcomes of treatment actions, we must model these changes.

The same considerations arise in many other contexts, such as tracking the location of a robot, tracking the economic activity of a nation, and making sense of a spoken or written sequence of words. How can dynamic situations like these be modeled?

15.1.1 States and observations

TIME SLICE

We view the world as a series of snapshots, or time slices, each of which contains a set of random variables, some observable and some not.' For simplicity, we will assume that the same subset of variables is observable in each time slice (although this is not strictly necessary in anything that follows). We will use \mathbf{X}_t to denote the set of state variables at time t, which are assumed to be unobservable, and \mathbf{E}_t to denote the set of observable evidence variables. The observation at time t is \mathbf{E}_t — \mathbf{e}_t for some set of values \mathbf{e}_t .

Consider the following example: You are the security guard stationed at a secret underpound installation. You want to know whether it's raining today, but your only access to the outside world occurs each morning when you see the director coming in with, or without, an umbrella For each day t, the set E_t thus contains a single evidence variable Umbrella, or U_t for short (whether the umbrella appears), and the set \mathbf{X}_t contains a single state variable $Rain_t$ or R_t for short (whether it is raining). Other problems can involve larger sets of variables. In the diabetes example, we might have evidence variables, such as $MeasuredBloodSugar_t$ and $PulseRate_t$, and state variables, such as $BloodSugar_t$ and $StomachContents_t$. (Notice that $BloodSugar_t$ and $MeasuredBloodSugar_t$ are not the same variable; this is how we deal with noisy measurements of actual quantities.)

The interval between time slices also depends on the problem. For diabetes monitoring, a suitable interval might be an hour rather than a day. In this chapter we assume the interval between slices is fixed, so we can label times by integers. We will assume that the state sequence starts at I=0; for various uninteresting reasons, we will assume that evidence starts arriving at t=1 rather than t=0. Hence, our unbrella world is represented by state variables R_0 , R_1 , R_2 ,..., and evidence variables U_1 , U_3 ,.... We will use the notation a:b to denote the sequence of integers from a to b (inclusive), and the notation \mathbf{X}_a to denote the set of variables from \mathbf{X}_a to \mathbf{X}_b . For example, U_1 : corresponds to the variables U_1 , U_2 , U_3 .

Uncertainty over *continuous* time can be modeled by **stochastic** differential equations (SDEs). The models studied in this chapter can be viewed as discrete-time approximations to SDEs.

Figure 15.1 (a) Bayesian network structure corresponding to a first order Markov process with state defined by the variables \mathbf{X}_{L} , (b) A second-order Markov process.

15.1.2 Transition and sensor models

With the set of state and evidence variables for a given problem decided on, the next step is to specify how the world evolves (the transition model) and how the evidence variables get their values (the sensor model).

The transition model specifies the probability distribution over the latest state variables, given the previous values, that is, $P(X_t | X_{0.5-1})$. Now we face a problem: the set $X_{t \in t-1}$ is unbounded in size as t increases. We solve the problem by making a **Markov assumption**—that the current state depends on only a *finite fixed number* of previous states. Processes satisfying this assumption were first studied in depth by the Russian statistician Andrei Markov (1856-1922) and are called **Markov** processes or Markov chains. They came in various flavors; the simplest is the **first order Markov process**, in which the current state depends only on the previous state and not on any earlier states. In other words, a state provides enough information to make the future conditionally independent of the past, and we have

$$\mathbf{P}(\mathbf{X}_{t}|\mathbf{X}_{0:t-1}) = \mathbf{P}(\mathbf{X}_{t}|\mathbf{X}_{t-1}). \tag{15.1}$$

Hence, in a first-order Markov process, the transition model is the conditional distribution $P(X_t | X_{t-1})$. The transition model for a second-order Markov process is the conditional distribution $P(X_t | X_{t-2}, X_{t-1})$. Figure 15.1 shows the Bayesian network structures corresponding to first-order and second-order Markov processes.

Even with the Markov assumption there is still a problem: there are infinitely many possible values of t Do we need to specify a different distribution for each time step? We avoid this problem by assuming that changes in the world state are caused by a **stationary process**—that is, a process of change that is governed by laws that do not themselves change over time. (Don't confuse *stationary* with *static*: in a *static* process, the state itself does not change.) In the umbrella world, then, the conditional probability of rain, $P(Rt | R_{t-1})$, is the same for all t, and we only have to specify one conditional probability table.

Now for the sensor model. The evidence variables \mathbf{E}_t could depend on previous variables as well as the current state variables. but any state that's worth its salt should suffice to generate the current sensor values. Thus, we make a sensor Markov assumption as follows:

$$\mathbf{P}(\mathbf{E}_t \mid \mathbf{X}_{0:t-1}, \mathbf{E}_{0:t-1}) = \mathbf{P}(\mathbf{E}_t \mid \mathbf{X}_t)$$
(15.2)

Thus, $P(E_t | X_t)$ is our sensor model (sometimes called the observation model). Figure 15.2 shows both the transition model and the sensor model for the umbrella example. Notice the

MARKOV ASSUMPTION

MARKOV PROCESS FIRST-ORDER MARKOV PROCESS

STATIONARY PROCESS

SENSOR MARKOV ASSUMPTION

Figure 15.2 Bayesian network structure and conditional distributions describing the umbrella world. The transition model is $P(Rain_t \ Rain_{t-1}]$ and the sensor model is $P(Umbrella_t \ Rain_t)$.

direction of the dependence between state and sensors: the arrows go from the actual state of the world to sensor values because the state of the world *causes* the sensors to take on particular values: the rain *causes* the umbrella to appear. (The inference process, of course, goes in the other direction; the distinction between the direction of modeled dependencies and the direction of inference is one of the principal advantages of Bayesian networks.)

In addition to specifying the transition and sensor models, we need to say how everything gets started—the prior probability distribution at time 0, $P(X_U)$. With that, we have a specification of the complete joint distribution over all the variables, using Equation (14.2). For any t,

$$\mathbf{P}(\mathbf{X}_{0:i}, \mathbf{E}_{1:i}) = \mathbf{P}(\mathbf{X}_0) \prod_{i=1} \mathbf{P}(\mathbf{X}_i \ \mathbf{X}_{i-1}) \mathbf{P}(\mathbf{E}_i \ \mathbf{X}_i)$$
(15.3)

The three terms on the right-hand side are the initial slate model $P(X_0)$, the transition model $P(X_i | X_{i-1})$, and the sensor model $P(E_i | X_i)$.

The structure in Figure 15.2 is a first-order Markov process—the probability of rain is assumed to depend only on whether it rained the previous day. Whether such an assumption is reasonable depends on the domain itself. The first-order Markov assumption says that the state variables contain all the information needed to characterize the probability distribution for the next time slice. Sometimes the assumption is exactly true for example, if a particle is executing a random walk along the x-axis, changing its position by +1 at each time step, then using the x-coordinate as the state gives a first-order Markov process. Sometimes the assumption is only approximate, as in the case of predicting rain only on the basis of whether it rained the previous day. There are two ways to improve the accuracy of the approximation:

- 1. Increasing the order of the Markov process model. For example, we could make a second-order model by adding $Rain_{t-2}$ as a parent of $Rain_{t}$, which might give slightly more accurate predictions. For example, in Palo Alto, California, it very rarely rains more than two days in a row.
- 2. Increasing the set of state variables. For example, we could add Season, to allow

us to incorporate historical records of rainy seasons. or we could add $Temperature_t$, $Humidity_t$ and $Pressure_t$ (perhaps at a range of locations) to allow us to use a physical model of rainy conditions.

Exercise 15.1 asks you to show that the first solution—increasing the order—can always be reformulated as an increase in the set of state variables, keeping the order fixed. Notice that adding state variables might improve the system's predictive power but also increases the prediction *requirements: we* now have to predict the new variables as well Thus, we are looking for a "self-sufficient" set of variables, which really means that we have to understand the "physics" of the process being modeled. The requirement for accurate modeling of the process is obviously lessened if we can add new sensors (e.g., measurements of temperature and pressure) that provide information directly about the new state variables.

Consider, for example, the problem of tracking a robot wandering randomly on the X-Y plane. One might propose that the position and velocity are a sufficient set of state variables: one can simply use Newton's laws to calculate the new position, and the velocity may change unpredictably. If the robot is battery powered, however, then battery exhaustion would tend to have a systematic effect on the change in velocity. Because this in turn depends on how much power was used by all previous maneuvers, the Markov property is violated. We can restore the Markov property by including the charge level Battery, as one of the state variables that make up X. This helps in predicting the motion of the robot, but in turn requires a model for predicting Battery, from Battery, and the velocity. In some cases, that can be done reliably, but more often we find that error accumulates over time. In that case, accuracy can be improved by adding a new sensor for the battery level.

15.2 INFERENCE IN TEMPORAL MODELS

Having set up the structure of a generic temporal model, we can formulate the basic inference tasks that must be solved:

FILTERING
BELIEF STATE
STATE FSTIMATION

• Filtering: This is the task of computing the **belief state**—the posterior distribution over the most recent state—given all evidence to date. Filtering² is also called **state estimation**. In our example, we wish to compute $P(X_t e_t)$. In the umbrella example, this would mean computing the probability of rain today, given all the observations of the umbrella carrier made so far. Filtering is what a rational agent does to keep track of the current state so that rational decisions can be made. It turns out that an almost identical calculation provides the likelihood of the evidence sequence, $P(\mathbf{e}_{1:t})$.

PREDICTION

Prediction: This is the task of computing the posterior distribution over the *future* state. given all evidence to date. That is, we wish to compute P(X_{t+k} e_{1:t}) for some k 7 0. In the umbrella example, this might mean computing the probability of rain three days from now, given all the observations to date. Prediction is useful for evaluating possible courses of action based on their expected outcomes.

² The term "filtering" refers to the roots of this problem in early work on signal processing, where the problem is to filter out the noise in a signal by estimating its underlying properties.

SMOOTHING

- Smoothing: This is the task of computing the posterior distribution over a past state, given all evidence up to the present. That is, we wish to compute P(X_k e_{1:t}) for same such that 0 < k C t. In the umbrella example, it might mean computing the probability that it rained last Wednesday, given all the observations of the umbrella carrier made up to today. Smoothing provides a better estimate of the state than was available at the time, because it incorporates more evidence.</p>
- Most likely explanation: Given a sequence of observations, we might wish to find the sequence of states that is most likely to have generated those observations. That is, we wish to compute argmax_{x₁,t} P(x₁ e₁ For example, if the umbrella appears on each of the first three days and is absent on the fourth, then the most likely explanation is that it rained on the first three days and did not rain on the fourth. Algorithms for this task are useful in many applications, including speech recognition—where the aim is to find the most likely sequence of words, given a series of sounds—and the reconstruction of bit strings transmitted over a noisy channel.

In addition to these inference tasks, we also have

Learning: The transition and sensor models, if not yet known, can be learned from
observation& Just as with static Bayesian networks, dynamic Bayes net learning can be
done as a by-product of inference. Inference provides an estimate of what transitions
actually occurred and of what states generated the sensor readings, and these estimates
can be used to update the models. The updated models provide new estimates, and the
process iterates to convergence. The overall process is an instance of the expectationmaximization or EM algorithm. (See Section 20.3.)

Note that learning requires smoothing, rather than filtering, because smoothing provides better estimates of the states of the process. Learning with filtering can fail to converge correctly; consider, for example, the problem of learning to solve murders: unless you are an eyewitness, smoothing is *always* required to infer what happened at the murder scene from the observable variables.

The remainder of this section describes generic algorithms for the four inference tasks, independent of the particular kind of model employed. Improvements specific to each model are described in subsequent sections.

15.2.1 Filtering and prediction

As we pointed out in Section 7.7.3, a useful filtering algorithm needs to maintain a current state estimate and update it, rather than going back over the entire history of percepts for each update. (Otherwise, the cost of each update increases as time goes by.) In other words, given the result of filtering up to time t, the agent needs to compute the result for t + 1 from the new evidence \mathbf{e}_{t+1} ,

$$P(X_{t+1} e_{1:t+1}) = f(et+i, P(X_t e_{1:t}))$$

for some function f. This process is called recursive estimation. We can view the calculation

RECURSIVE ESTIMATION

In particular, when tracking a moving object with inaccurate position observations, smoothing gives a smoother estimated trajectory than filtering—hence the name.

as being composed of two parts: first, the current state distribution is projected forward from t to t 1; then it is updated using the new evidence e_{t+1} . This two-part process emerges quite simply when the formula is rearranged:

$$\begin{aligned} \mathbf{P}(\mathbf{X}_{t+1} &= \mathbf{P}(\mathbf{X}_{t+1} \ \mathbf{e}_{1:t}, \mathbf{e}_{t+1}) & \text{(dividing up the evidence)} \\ &= \mathbf{P}(\mathbf{e}_{t+1} \ \mathbf{X}_{t+1} \ \mathbf{e}_{1:t}) \mathbf{P}(\mathbf{X}_{t+1} \ \text{O10 (using Bayes' rule)} \\ &= \mathbf{P}(\mathbf{e}_{t+1} \ \mathbf{I} \ \mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1} \ \mathbf{e}_{1:t}) & \text{(by the sensor Markov assumption)}. \end{aligned}$$
(15.4)

Here and throughout this chapter, a is a normalizing constant used to make probabilities sum up to 1. The second term, $P(X_{t+1}, e_{1,t})$ represents a one-step prediction of the next state, and the first term updates this with the new evidence; notice that $P(e_{t+1}, X_{t+1}]$ is obtainable directly from the sensor model. Now we obtain the one-step prediction for the next state by conditioning on the current state X_t:

$$\mathbf{P}(\mathbf{X}_{t+1} \ \mathbf{e}_{1:t+1}) = \mathbf{a} \ \mathbf{P}(\mathbf{e}_{t+1} \ \mathbf{X}_{t+1}) \qquad \mathbf{P}(\mathbf{X}_{t+1} \ \mathbf{x}_{t}, \mathbf{e}_{1:t}) P(\mathbf{x}t \ \mathbf{e}_{1:t})$$

$$= \mathbf{a} \ \mathbf{P}(\mathbf{e}_{t+1} \mathbf{I} \mathbf{X}_{t+1}) \stackrel{\mathbf{E}}{=} \mathbf{P}(\mathbf{X}_{t+1} \ \mathbf{x}_{t}) P(\mathbf{x}_{t}$$
 (Markov assumption). (15.5)

Within the summation, the first factor comes from the transition model and the second comes from the current state distribution. Hence, we have the desired recursive formulation. We can think of the filtered estimate $P(X_I | e_{I,T})$ as a "message" $f_{I,T}$ that is propagated forward along the sequence, modified by each transition and updated by each new observation. The process is given by

$$= \alpha \text{ FORWARD}(\mathbf{f}_{1,t} \ \mathbf{e}_{t+1})$$

where FORWARD implements the update described in Equation (15.5) and the process begins with fl $0 = P(X_0)$. When all the state variables are discrete, the time for each update is constant (i.e., independent of t), and the space required is also constant. (The constants depend, of course, on the size of the state space and the specific type of the temporal model in question.) The time and space requirements for updating must be constant if an agent with limited memory is to keep track of the current slate distribution over an unbounded sequence of observations.

Let us illustrate the filtering process for two steps in the basic umbrella example (Figure 15.2.) That is, we will compute $P(R_2 \ u_{1,2})$ as follows:

- On day 0, we have no observations, only the security guard's prior beliefs; let's assume that consists of P() = (0.5, 0.5)
- On day 1, the umbrella appears, so $U_1 = true$. The prediction from t = 0 to t = 1 is

$$\mathbf{P}(R_1) = \mathbf{E}$$
 $r_0)P(r_0)$
 $-(0.7, \quad \times 0.5 + \quad \times 0.5 - \langle 0.5, 0.5 \rangle$.

Then the update step simply multiplies by the probability of the evidence for t =1 and normalizes, as shown in Equation (15.4):

$$\mathbf{P}(R_1) = to \quad (u_1 I R_1) \mathbf{P}(R_1) = \alpha (0.9, 0.2)(0.5.0.5 Y)$$

= s (C.45,0.1) ti (0.818,0.182)

• On day 2, the umbrella appears, so U2 = true. The prediction from t = 1 to t = 2 is

$$\mathbf{P}(R_2 \mathbf{I} u_1) = \sum_{\mathbf{I}_i} \mathbf{P}(R_2 \mathbf{I} r_1) P(r_1 \text{ tit})$$

$$= (0.7, 0.3) \times 0.818 + (0.3, 0.7) \times 0.182 \quad (0.627, 0.373) ,$$

and updating it with the evidence for t-2 gives

$$\mathbf{P}(R_2 \mathbf{I} \ u_1, u_2) = \mathbf{a} \ \mathbf{P}(u_2 \mathbf{I} \ R_2) \mathbf{P}(R_2 \ u_1) = \mathbf{ci} \ \langle 0.9, 0.2 \rangle \langle 0.627, 0.373 \rangle$$
$$= \mathbf{a} \ \langle 0.565, 0.075 \rangle \qquad (0.883, 0.117) \ .$$

Intuitively, the probability of rain increases from day 1 to day 2 because rain persists. Exercise 15.2(a) asks you to investigate this tendency further.

The task of **prediction** can be seen simply as filtering without the addition of new evidence. In fact, the filtering process already incorporates a one-step prediction, and it is easy to derive the following recursive computation for predicting the state at t + k = 1 from a prediction for t

$$\mathbf{P}(\mathbf{X}_{t+k+1} | \mathbf{e}_{1:t}) = \sum_{\mathbf{X}_{t+k}} \mathbf{P}(\mathbf{X}_{t+k+1} | \mathbf{X}_{t+k}) P(\mathbf{X}_{t+k} | \mathbf{e}_{1:t}) . \tag{15.6}$$

Naturally, this computation involves only the transition model and not the sensor model.

It is interesting to consider what happens as we try to predict further and further into the future. As Exercise 15.2(b) shows, the predicted distribution for rain converges to a fixed point (0.5,0.5), after which it remains constant for all time. This is the **stationary distribution** of the Markov process defined by the transition model. (See also page 537.) A great deal is known about the properties of such distributions and about the mixing time—roughly, the time taken to reach the fixed point. In practical terms, this dooms to failure any attempt to predict the *actual state* for a number of steps that is more than a small fraction of the mixing time, unless the stationary distribution itself is strongly peaked in a small area of the state space. The more uncertainty there is in the transition model, the shorter will be the mixing time and the more the future is obscured.

In addition to filtering and prediction, we can use a forward recursion to compute the **likelihood** of the evidence sequence. $P(\mathbf{e}_{1:t})$. This is a useful quantity if we want to compare different temporal models that might have produced the same evidence sequence (e.g., two different models for the persistence of rain). For this recursion, we use a likelihood message $\ell_{1:l}(\mathbf{X}_l) = \mathbf{P}(\mathbf{X}_l, \mathbf{e}_{1:l})$. It is a simple exercise to show that the message calculation is identical to that for filtering:

$$\ell_{1:t+1}$$
 FORWARD $(\ell_{1:t}, \mathbf{e}_{t+1})$.

Having computed $\ell_{1:1}$, we obtain the actual likelihood by summing out X i:

$$Liar = P(\mathbf{e}_{1:t}) = \sum \ell_{1:t}(\mathbf{x}_t)$$
 (15.7)

Notice that the likelihood message represents the probabilities of longer and longer evidence sequences as time goes by and so becomes numerically smaller and smaller, leading to underflow problems with floating-point arithmetic. This is an important problem in practice, but we shall not go into solutions here.

MIXING TIME

Figure 15.3 Smoothing computes $P(X_k | e_{1:t})$ the posterior distribution of the state at some past time k given a complete sequence of observations from 1 to t.

15.2.2 Smoothing

As we said earlier, smoothing is the process of computing the distribution over past states given evidence up to the present; that is, $P(X_k e_{1::})$ for 0 < k < t. (See Figure 15.3.) In anticipation of another recursive message-passing approach, we can split the computation into two parts—the evidence up to k and the evidence from k + 1 to t,

$$\mathbf{P}(\mathbf{X}_{k} \mid \mathbf{e}_{1:t}) = P(\mathbf{X}_{k} \quad \mathbf{e}_{k+1:t})$$

$$= \operatorname{ct} \mathbf{P}(\mathbf{X}_{k} \mid \mathbf{e}_{1:k}) \mathbf{P}(\mathbf{e}_{k+1:t} \mid \mathbf{X}_{k}, \mathbf{e}_{1:k}) \quad \text{(using Bayes' rule)}$$

$$= \mathbf{P}(\mathbf{X}_{k} \mid \mathbf{e}_{1:k}) \mathbf{P}(\mathbf{e}_{k+1:t} \mid \mathbf{X}_{k}) \quad \text{(using conditional independence)}$$

$$= \mathbf{f} \mathbf{k} \times \mathbf{b}_{k+1:t} \quad (15.8)$$

where "x" represents pointwise multiplication of vectors. Here we have defined a "backward" message $\mathbf{h}_{k+1:t} = \mathbf{P}(\mathbf{e}_{k+1:t} \mid \mathbf{X}_k)$, analogous to the forward message $\mathbf{f}_{1:k}$. The forward message $\mathbf{f}_{1:k}$ can be computed by filtering forward from 1 to k, as given by Equation (15.5). It turns out that the backward message $\mathbf{b}_{k+1:t}$ can be computed by a recursive process that runs backward from t:

$$\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) = \underbrace{\mathbf{F}}_{\mathbf{X}_{k+1}} X_{k,t+1} P(\mathbf{X}_{k+1}|\mathbf{X}_k) \quad \text{(conditioning on XA,F1)}$$

$$= \underbrace{\mathbf{F}}_{\mathbf{X}_{k+1}} P(\mathbf{e}_{k+1:t}|\mathbf{X}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \quad \text{(by conditional independence)}$$

$$= \underbrace{\mathbf{F}}_{\mathbf{X}_{k+1}} \mathbf{i} (\mathbf{e}_{k+1}, \mathbf{e}_{k+2:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{x}_k)$$

$$= \underbrace{\mathbf{F}}_{\mathbf{P}(\mathbf{e}_{k+1}|\mathbf{x}_k+1)} P(\mathbf{e}_{k+2:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k), \quad (15.9)$$

where the last step follows by the conditional independence of \mathbf{e}_{k+1} and $\mathbf{e}_{k+2:t}$, given $\mathbf{X}_{k+1:t}$. Of the three factors in this summation, the first and third are obtained directly from the model, and the second is the "recursive call." Using the message notation, we have

$$\mathbf{h}_{k+1:T} = \text{BACKWARD}_{(bk+2:t,ek+1)}$$

where BACKWARD implements the update described in Equation (15.9). As with the forward recursion, the time and space needed for each update are constant and thus independent of ℓ .

We can now see that the two terms in Equation (15.8) can both be computed by recursions through time, one running forward from 1 to k and using the filtering equation (15.5)

and the other running backward from t to k + 1 and using Equation (15.9). Note that the backward phase is initialized with $\mathbf{b}_{t+1:t} = \mathbf{P}(\mathbf{e}_{t+1:t} \ \mathbf{X}_t) = \mathrm{P}(\ | \mathbf{X}_t)\mathbf{1}$, where $\mathbf{1}$ is a vector of 1s. (Because $\mathbf{e}_{t+1:t}$ is an empty sequence, the probability of observing it is 1.)

Let us now apply this algorithm to the umbrella example, computing the smoothed estimate for the probability of rain at time k=1, given the umbrella observations on days 1 and 2. From Equation (15.8), this is given by

$$\mathbf{P}(R_1 \mid u_1, u_2) = \alpha \mathbf{P}(R_1 \mid v_1) \mathbf{P}(u_2 \mid R_1).$$
 (15.10)

The first term we already know to be $\langle .818, .182 \rangle$, from the forward filtering process described earlier. The second term can be computed by applying the backward recursion in Equation (15.9):

$$\mathbf{P}(u_2 \ R_1) = \sum_{r_2} P(u_2 \ r_2) P(\ | \ r_2) \mathbf{P}(r_2 \mathbf{I} \ R_1)$$

$$= (0.9 \times 1 \times 0.3)) \quad (0.2 \times 1 \times (0.3, 0.7)) = (0.69, 0.41) .$$

Plugging this into Equation (15.10), we find that the smoothed estimate for rain on day 1 is

$$\mathbf{P}(R_1 \ u_1, u_2) = \mathbf{cx} \ (0.818, 0.182) \ \mathbf{x} \ (0.69, 0.41) \qquad (0.883, 0.117) \ .$$

Thus, the smoothed estimate for rain on day 1 is *higher* than the filtered estimate (0.818) in this case. This is because the umbrella on day 2 makes it more likely to have rained on day 2; in turn, because rain tends to persist, that makes it more likely to have rained on day I.

Both the forward and backward recursions take a constant amount of time per step; hence, the time complexity of smoothing with respect to evidence $\mathbf{e}_{\mathbf{l}:t}$ is O(t). This is the complexity for smoothing at a particular time step k. If we want to smooth the whole sequence, one obvious method is simply to run the whole smoothing process once for each time step to be smoothed. This results in a time complexity of O(t). A better approach uses a simple application of dynamic programming to reduce the complexity to O(t). A clue appears in the preceding analysis of the umbrella example, where we were able to reuse the results of the forward-filtering phase. The key to the linear-time algorithm is to record the results of forward filtering over the whole sequence. Then we run the backward recursion from t down to 1, computing the smoothed estimate at each step t from the computed backward message $\mathbf{b}_{k+1:t}$ and the stored forward message $\mathbf{f}_{\mathbf{l}:t}$. The algorithm, aptly called the forward—backward algorithm, is shown in Figure 15.4.

The alert reader will have spotted that the Bayesian network structure shown in Figure 15.3 is a *polytree* as defined on page 528. This means that a straightforward application of the clustering algorithm also yields a linear-time algorithm that computes smoothed estimates for the entire sequence. It is now understood that the forward—backward algorithm is in fact a special case of the polytree propagation algorithm used with clustering methods (although the two were developed independently).

The forward—backward algorithm forms the computational backbone for many applications that deal with sequences of noisy observations. As described so far, it has two practical drawbacks. The first is that its space complexity can be too high when the state space is large and the sequences are long. It uses $O(|\mathbf{f}|t)$ space where $|\mathbf{f}|$ is the size of the representation of the forward message. The space requirement can be reduced to $O(|\mathbf{f}|\log t)$ with a concomi-

FORWARD-BACKWARE ALGORITHM tant increase in the time complexity by a factor of log *t*, as shown in Exercise 15.3. In some cases (see Section 15.3), a constant-space algorithm can be used.

The second drawback of the basic algorithm is that it needs to be modified to work in an *online* setting where smoothed estimates must be computed for earlier time slices as new observations are continuously added to the end of the sequence. The most common requirement is for **fixed-lag smoothing**, which requires computing the smoothed estimate $P(X_{t-d} \ e_{1:t})$ for fixed d. That is, smoothing is done for the time slice d steps behind the current time t; as t increases, the smoothing has to keep up. Obviously, we can run the forward—backward algorithm over the d-step "window" as each new observation is added. but this seems inefficient. In Section 15.3, we will see that fixed-lag smoothing can, in some cases, be done in constant time per update, independent of the lag d.

15.2.3 Finding the most likely sequence

Suppose that [true, true, false, true, true] is the umbrella sequence for the security guard's first five days on the job. What is the weather sequence most likely to explain this? Does the absence of the umbrella on day 3 mean that it wasn't raining, or did the director forget to bring it? If it didn't rain on day 3, perhaps (because weather tends to persist) it didn't rain on day 4 either, but the director brought the umbrella just in case. In all, there are 2 ⁵ possible weather sequences we could pick, Is there a way to find the most likely one, short of enumerating all of them?

We could try this linear-time procedure: use smoothing to find the posterior distribution for the weather at each time step; then construct the sequence, using at each step the weather that is most likely according to the posterior. Such an approach should set off alarm bells in the reader's head, because the posterior distributions computed by smoothing are distri-

Figure 154 The forward-backward algorithm for smoothing: computing posterior probabilities of a sequence of states given a sequence of observations. The FORWARD and BACKWARD operators are defined by Equations (15.5) and (15.9), respectively.

FIXED-LAG SMOOTHING

Figure 15.5 (a) Possible state sequences for $Rain_t$ can be viewed as paths through a graph of the possible states at each time step. (States are shown as rectangles to avoid confusion with nodes in a Bayes net.) (b) Operation of the Viterbi algorithm far the umbrella observation sequence [true, true, false, true, true]. For each t, we have shown the values of the message \mathbf{m}_{ELE} , which gives the probability of the best sequence reaching each state at time t. Also, for each state, the bold arrow leading into it indicates its best predecessor as measured by the product of the preceding sequence probability and the transition probability. Following the bold arrows back from the most likely state in $\mathbf{m}_{1:1}$ gives the most likely sequence.

butions over *single* time steps. whereas to find the most likely *sequence* we must consider *joint* probabilities over all the *time* steps. The results can in fact be quite different (See Exercise 15.4.)

There is a linear-time algorithm for finding the most likely sequence, but it requires a little more thought. It relies on the same Markov property that yielded efficient algorithms for filtering and smoothing. The easiest way to think about the problem is to view each sequence as a path through a graph whose nodes are the possible states at each time step. Such a graph is shown for the umbrella world in Figure 15.5(a). Now consider the task of finding the most likely path through this graph, where the likelihood of any path is the product of the transition probabilities along the path and the probabilities of the given observations at each state. Let's focus in particular on paths that reach the state $Rain_5 = true$. Because of the Markov property, it follows that the most likely path to the state $Rain_5 = true$ consists of the most likely path to some state at time 4 followed by a transition to Rains = true; and the state at time 4 that will become part of the path to Rains = true is whichever maximizes the likelihood of that path. In other words, there is a recursive relationship between most likely paths to each state \mathbf{x}_{t+1} and most likely paths to each state \mathbf{x}_{t+1} and most likely paths to each state \mathbf{x}_{t} . We can write this relationship as an equation connecting the probabilities of the paths:

$$\max_{\mathbf{x}_{1}...\mathbf{x}_{t}} \quad \mathbf{x}_{t}, \mathbf{X}_{t+1} \mid \mathbf{e}_{1:t+1})$$

$$= \operatorname{cx} \mathbf{P}(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}) \max_{\mathbf{x}_{t}} \left(\mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}) \max P(\mathbf{x}_{1}, \mathbf{x}_{t} \mid \mathbf{e}_{1:t}) \right) J. (15.11)$$

Equation (15.11) is identical to the filtering equation (15.5) except that

1. The forward message $fl_1 t = \mathbf{P}(\mathbf{X}_t \mathbf{I} \mathbf{e}_{1:t})$ is replaced by the message

$$\mathbf{n}_{1:t} = \max \mathbf{P}(\mathbf{x}_1, \mathbf{x}_{t-1}, \mathbf{X}_{t} | \mathbf{ei:t})$$

that is, the probabilities of the most likely path to each state x t; and

the summation over x_τ in Equation (15.5) is replaced by the maximization over x_τ in Equation (15. 1 1).

Thus, the algorithm for computing the most likely sequence is similar to filtering; it runs forward along the sequence, computing the m message at each time step, using Equation (15.11). The progress of this computation is **shown** in Figure 15.5(b). AL the end, it will have the probability for the most likely sequence reaching *each* of the final states. One can thus easily select the most likely sequence overall (the states outlined in bold). In order to identify the actual sequence, as opposed to just computing its probability, the algorithm **will** also need to record, for each state, the best state that leads to it; these are indicated by the bold arrows in Figure 15.5(b). The optimal sequence is identified by following these bold arrows backwards from the best final state.

VITERBI ALGORITHM

The algorithm we have just described is called the **Viterbi algorithm**, after its inventor. Like the filtering algorithm, its time complexity is linear in *t*, the length of the sequence. Unlike filtering, which uses constant space, its space requirement is also linear in t. This is because the Viterbi algorithm needs to keep the pointers that identify the best sequence leading to each state.

15.3 HIDDEN MARKOV MODELS

The preceding section developed algorithms for temporal probabilistic reasoning using a general framework that was independent of the specific form of the transition and sensor models. In this and the next two sections, we discuss more concrete models and applications that illustrate the power of the basic algorithms and in some cases allow further improvements.

HIDDEN MARKON MODEL We begin with the hidden **Markov model**, or **HMM**. An HMM is a temporal probabilistic model in which the state of the process is described by a *single discrete* random variable. The possible values of the variable are the possible states of the world. The umbrella example described in the preceding section is therefore an HMM, since it has just one state variable. What happens if you have a model with two or more state variables? You can still fit it into the HMM framework by combining the variables into a single "megavariable" whose values are all possible tuples of values of the individual state variables. We will *sec* that the restricted structure of HMMs **allows** for a simple and elegant matrix implementation of all the basic algorithms. ⁴

The reader unfamiliar with basic operations on vectors and matrices might wish to consult Appendix A before proceeding with this section.

Section 15.3. Hidden Markov Models 579

15.3.1 Simplified matrix algorithms

With a single, discrete state variable X_t , we can give concrete form to the representations of the transition model, the sensor model and the forward and backward messages. Let the state variable X_t have values denoted by integers 1, . . . S, where S is the number of possible states. The transition model $P(X_t | X_{t-1})$ becomes an $S \times S$ matrix T, where

$$= P(X_t = = i)$$
.

That is, Tad is the probability of a transition from state i to state j. For example, the transition matrix for the umbrella world is

$$T = \mathbf{P}(X_t I X_{t-1}) = \begin{pmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{pmatrix}$$

We also put the sensor model in matrix form. In this case, because the value of the evidence variable Et is known at time t (call it et), we need only specify, for each state, how likely it is that the state causes e_t to appear: we need $P(\epsilon_t \mid X_t = i)$ for each state i. For mathematical convenience we place these values into an $S \times S$ diagonal matrix, O_t whose ith diagonal entry is $P(e_t \mid X_t = i)$ and whose other entries are 0. For example, on day 1 in the umbrella world of Figure 15.5, $U_1 = true$, and on day 3, U3 = false, so, from Figure 15.2, we have

$$\mathbf{O_1} = \begin{pmatrix} 0.9 & 0 \\ 0 & 0.2 \end{pmatrix}$$
 $03 = \begin{pmatrix} 0.1 & 0.8 \\ 0 & 0.8 \end{pmatrix}$

Now, if we use column vectors to represent the forward and backward messages, all the computations become simple matrix-vector operations. The forward equation (15.5) becomes

$$= \operatorname{tx} \mathbf{O}_{t+1} \mathbf{T}^{\mathrm{T}} \mathbf{f}_{1:t} \tag{15.12}$$

and the backward equation (15.9) becomes

$$\mathbf{b}_{k+1:i} = \mathbf{TO}_{k+1}\mathbf{b}_{k+2:i}. \tag{15.13}$$

From these equations, we can see that the time complexity of the forward-backward algorithm (Figure 15.4) applied to a sequence of length t is $O(S^-t)$, because each step requires multiplying an S-element vector by an $S \times S$ matrix. The space requirement is O(St), because the forward pass stores t vectors of size S.

Besides providing an elegant description of the filtering and smoothing algorithms for HMMs, the matrix formulation reveals opportunities for improved algorithms. The first is a simple variation on the forward-backward algorithm that allows smoothing to be carried out in *constant* space, independently of the length of the sequence. The idea is that smoothing for any particular time slice k requires the simultaneous presence of both the forward and backward messages, $\mathbf{f}_{1,k}$ and $\mathbf{b}_{k-1:t}$, according to Equation (15.8). The forward-backward algorithm achieves this by storing the fs computed on the forward pass so that they are available during the backward pass. Another way to achieve this is with a single pass that propagates both \mathbf{f} and \mathbf{b} in the same direction. For example, the "forward" message \mathbf{f} can be propagated backward if we manipulate Equation (15.12) to work in the other direction:

$$= \alpha'(\mathbf{T}^{\mathbf{T}}) \quad \mathbf{O}_{t+1}^{-} \mathbf{f}_{1:t+} \bullet$$

The modified smoothing algorithm works by first running the standard forward pass to compute $\mathbf{f}_{\mathbf{i}}$, t (forgetting all the intermediate results) and then running the backward pass for both

```
function FIXED-LAG-SMOOTHING(14, hmm. d) returns a distribution over Xt_d
  inputs: e<sub>t</sub>, the current evidence for time step t
           hmm, a hidden Markov model with S S transition matrix T
           d, the length of the lag for smoothing
  persistent: t, the current time, initially 1
               f, the forward message P(X_t e_{1:t}), initially hmm. PRIOR
               \mathbf{B}_{\bullet} the d-ster backward transformation matrix, initially the identity matrix
               e_{t-dt}, double-ended list of evidence from t-d to t, initially empty
  local variables: O_{t-d}, O_t, diagonal matrices containing the sensor model information
  add e_t to the end of e_{t-d}:
  O_s diagonal matrix containing I(e_t|X_t)
  if t 7 d then
      f I.ORWARD(f, et)
      remove e_{t-d-1} from the beginning of e_{t-d+1}
      \mathbf{O}_{t-d}\mathbf{1} – diagonal matrix containing \mathbf{P}(e_{t-d}|X_{t-q})
  else B
          BTO,
      I + 1
  if I > d then return NORMALIZE(\mathbf{f} \times \mathbf{B1}) else return null
```

Figure 15.6 An algorithm for smoothing with a fixed time lag of d steps, implemented as an online algorithm that outputs the new smoothed estimate given the observation for a new time step. Notice that the final output NORMALIZE($\mathbf{f} \times \mathbf{B1}$) is just o $\mathbf{f} \times \mathbf{b}$, by Equation (15.14).

b and f together, using them to compute the smoothed estimate at each step. Since only one copy of each message is needed, the storage requirements are constant (i.e., independent of *t*, the length of the sequence). There are two significant restrictions on this algorithm: it requires that the transition matrix be invertible and that the sensor model have no zeroes—that is, that every observation be possible in every state.

A second area in which the matrix formulation reveals an improvement is in *online* smoothing with a fixed lag. The fact that smoothing can be done in constant space suggests that there should exist an efficient recursive algorithm for online smoothing—that is, an algorithm whose time complexity is independent of the length of the lag. Let us suppose that the lag is d; that is, we are smoothing at time slice t - d, where the current time is t. By Equation (15.8), we need to compute

 $\mathbf{f}_{1:t-d}$

for slice t - d. Then, when a new observation arrives, we need to compute

a ft:
$$t-d-1 \times b_{t-d+2:t+1}$$

for slice $\mathbf{t} - d + 1$. How can this be done incrementally? First, we can compute $\mathbf{f}_{1:t-d+1}$ from $\mathbf{f}_{1:t-d}$, using the standard filtering process, Equation (15.5).

Section 15.3. Hidden Markov Models 581

Computing the backward message incrementally is trickier, because there is no simple relationship between the old backward message $\mathbf{b}_{t-d+1:t}$ and the new backward message $\mathbf{b}_{t-d+2:t+1}$. instead, we will examine the relationship between the old backward message $\mathbf{b}_{t-d+1:t}$ and the backward message at the front of the sequence. $\mathbf{b}_{t+1:t}$. To do this, we apply Equation (15.13) d times to get

$$\mathbf{b}_{t-d+1:t} = \prod_{t-d+1}^{t} \mathbf{TO}) = ,$$
 (15.14)

where the matrix \mathbf{B}_{t-d+} is the product of the sequence of T and 0 matrices. B can be thought of as a "transformation operator" that transforms a later backward message into an earlier one. A similar equation holds for the new backward messages *after* the next observation arrives:

$$\mathbf{b}_{t-}$$
 $\mathbf{1} = \mathbf{TO}_{i}$ \mathbf{TO}_{i} (15.15)

Examining the product expressions in Equations (15.14) and (15.15), we see that they have a simple relationship: to get the second product, "divide" the first product by the first element \mathbf{TO}_{i-d+1} , and multiply by the new last element \mathbf{TO}_{i+1} . In matrix language, then, there is a simple relationship between the old and new B matrices:

$$\mathbf{B}_{t-d+2:t+1} = \mathbf{O}_{t-d+1}^{-} \mathbf{T} \quad \mathbf{B}_{t-d+1:t} \mathbf{T} \mathbf{O}_{t+1}$$
 5.16)

This equation provides an incremental update for the B matrix, which in turn (through Equation (15.15)) allows us to compute the new backward message $\mathbf{h}_{t=d+2.t+1}$. The complete algorithm, which requires storing and updating \mathbf{f} and B, is shown in Figure 15.6.

15.3.2 Hidden Markov model example: Localization

On page 145, we introduced a simple form of the localization problem for the vacuum world. In that version, the robot had a single nondeterministic *Move* action and its sensors reported perfectly whether or not obstacles lay immediately to the north, south, east, and west; the robot's belief state was the set of possible locations it could be in.

Here we make the problem slightly more realistic by including a simple probability model for the robot's motion and by allowing for noise in the sensors. The state variable X_t represents the location of the robot on the discrete grid; the domain of this variable is the set of empty squares $\{s_1 \quad s_a\}$ Let NEIGHBORS(s) be the set of empty squares that are adjacent to s and let N(s) be the size of that set. Then the transition model for *Move* action says that the robot is equally likely to end up at any neighboring square:

$$P(X_{t+1} = i)$$
 (1/Nei) if $j \in NEIGHBORS(i)$ else 0).

We don't know where **the** robot starts, so we will assume a uniform distribution over all the squares; that is, $P(X_0 - -1/n)$. For the particular environment we consider (Figure 15.7), n = 42 and the transition matrix **T** has $42 \times 42 = 1764$ entries.

The sensor variable E_t has 16 possible values, each a four-bit sequence giving the presence or absence of an obstacle in a particular compass direction. We **will** use the notation

Figure 15.7 Posterior distribution over robot location: (a) one observation $E_1 = NSW$; (b) after a second observation $E_2 = NS$. The size of each disk corresponds to the probability that the robot is at that location. The sensor error rate is e = 0.2.

NS, for example to mean that the north and south sensors report an obstacle and the east and west do not. Suppose that each sensor's error rate is ϵ and that errors occur independently for the four sensor directions. In that case, the probability of getting all four bits right is $(1 - \epsilon)$ and the probability of getting them all wrong is ϵ^4 . Furthermore, if d_{ij} is the discrepancy—the number of bits that are different—between the true values for square 6 and the actual reading ϵt , then the probability that a robot in square i would receive a sensor reading ϵt is

$$P(E_t = et \ Xt = i) = Of... - (1 \ O4-d,t)$$
 eta

For example, the probability that a square with obstacles to the north and south would produce a sensor reading *NSE* is $(1-\epsilon)^3 \epsilon^-$.

Given the matrices **T** and O_t , the robot can use Equation (15.12) to compute the posterior distribution over locations—that is, to work out where it is. Figure 15.7 shows the distributions $P(X_1 | E_1 = NSW)$ and $P(X_2 | E_1 = NSW)$. This is the same maze we saw before in Figure 4.18 (page 146), but there we used logical filtering to find the locations that were *possible*, assuming perfect sensing. Those same locations are still the most *likely* with noisy sensing, but now *every* location has some nonzero probability.

In addition to filtering to estimate its current location, the robot can use smoothing (Equation (15.13)) to work out where it was at any given past time—for example, where it began at time 0—and it can use the Viterbi algorithm to work out the most likely path it has

Section 15.3. Hidden Markov Models 583

Figure 15.8 Performance of **HMM** localization as a function of the length of the observation sequence for various different values of the sensor error probability e; data averaged over 400 runs. (a) The localization error, defined as the Manhattan distance from the true location. (b) The Viterbi path accuracy, defined as the fraction of correct states on the Viterbi path.

taken to get where it is now. Figure 15.8 shows the localization error and Viterbi path accuracy for various values of the per-bit sensor error rate e. Even when ϵ is 20%—which means that the overall sensor reading is wrong 59% of the time—the robot is usually able to work out its location within two squares after 25 observations. This is because of the algorithm's ability to integrate evidence over time and to take into account the probabilistic constraints imposed on the location sequence by the transition model. When e is 10%, the performance after a half-dozen observations is hard to distinguish from the performance with perfect sensing. Exercise 15.7 asks you to explore how robust the HMM localization algorithm is to errors in the prior distribution $\mathbf{P}(X_0)$ and in the transition model itself. Broadly speaking, high levels of localization and path accuracy are maintained even in the face of substantial errors in the models used

The state variable for the example we have considered in this section is a physical location in the world. Other problems can, of course, include other aspects of the world. Exercise 15.8 asks you to consider a version of the vacuum robot that has the policy of going straight for as long as it can; only when it encounters an obstacle does it change to a new (randomly selected) heading. To model this robot, each state in the model consists of a (location, heading) pain For the environment in Figure 15.7, which has 42 empty squares, this leads to 168 states and a transition matrix with $168^2 = 28$, 224 entries—still a manageable number. If we add the possibility of dirt in the squares, the number of states is multiplied by 2^{42} and the transition matrix ends up with more than 10^{20} entries—no longer a manageable number; Section 15.5 shows how to use dynamic Bayesian networks to model domains with many state variables. If we allow the robot to move continuously rather than in a discrete grid, the number of states becomes infinite; the next section shows how to handle this case.

15.4 KALMAN FILTERS

Imagine watching a small bird flying through dense jungle foliage at dusk: you glimpse brief, intermittent flashes of motion; you try hard to guess where the bird is and where it will appear next so that you don't lose it. Or imagine that you are a World Was II radar operator peering at a faint, wandering blip that appears once every 10 seconds on the screen. Or, going back further still, imagine you are Kepler trying to reconstruct the motions of the planets from a collection of highly inaccurate angular observations taken at irregular and imprecisely measured intervals. In all these cases, you are doing filtering: estimating state variables (here, position and velocity) from noisy observations over time. If the variables were discrete, we could model the system with a hidden Markov model. This section examines methods for handling continuous variables, using an algorithm called Kalman filtering, after one of its inventors, Rudolf E. Kalman.

KALMAN FILTERING

The bird's flight might be specified by six continuous variables at each time point; three for position (X_i, Y_t, Z_t) and three for velocity (X_i, Y_t, Z_t) . We will need suitable conditional densities to represent the transition and sensor models; as in Chapter 14, we will use linear Gaussian distributions. This means that the next state X_{t+1} must be a linear function of the current state X_t , plus some Gaussian noise, a condition that turns out to be quite reasonable in practice. Consider, for example, the X-coordinate of the bird, ignoring the other coordinates for now. Let the time interval between observations be A, and assume constant velocity during the interval; then the position update is given by $X_{t+\Delta} = x_t + X$. Adding Gaussian noise (to account for wind variation, etc.), we obtain a linear Gaussian transition model:

$$P(X_{t+\Delta} \mid x_{t+\Delta} \mid X_t \mid x_t, \dot{X}_t = \dot{x}_t) = N(x_t \mid \dot{x}_t \mid \sigma)(x_{t+\Delta})$$

The Bayesian network structure for a system with position vector \mathbf{X}_t and velocity \mathbf{i}_t is shown in Figure 15.9. Note that this is a very specific form of linear Gaussian model; the general form will be described later in this section and covers a vast array of applications beyond the simple motion examples of the first paragraph. The reader might wish to consult Appendix A for some of the mathematical properties of Gaussian distributions; for our immediate purposes, the most important is that a **multivariate Gaussian** distribution for d variables is specified by a d-element mean μ and a $d \times d$ covariance matrix \mathbf{E} .

MULTIVARIATE GAUSSIAN

15.4.1 Updating Gaussian distributions

In Chapter 14 on page 521, we alluded to a key property of the linear Gaussian family of distributions: it remains closed under the standard Bayesian network operations. Here, we make this claim precise in the context of filtering in a temporal probability model. The required properties correspond to the two-step filtering calculation in Equation (15.5):

I. If the current distribution $P(X_t | \mathbf{e}_{1:t}]$ is Gaussian and the transition model $P(X_{t+1} | \mathbf{x}_t)$ is linear Gaussian, then the one-step predicted distribution given by

$$\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}) = \int_{\mathbf{x}_{t}} \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_{t}) P(\mathbf{x}_{t} | \mathbf{e}_{1:t}) d\mathbf{x}_{t}$$
(15.17)

is also a Gaussian distribution.

Section 15.4. Kalman Filters 585

Figure 15.9 Bayesian network structure for a linear dynamical system with position X, velocity X_i , and position measurement Z_v .

2. If the prediction $\mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{e}_{1:t})$ is Gaussian and the sensor model $\mathbf{P}(\mathbf{e}_{t+1} \mid \mathbf{X}_{1:t})$ is linear Gaussian, then, after conditioning on the new evidence, the updated distribution

$$\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t+1}) = r1 \ \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t})$$
 (15.18)

is also a Gaussian distribution.

Thus, the **FORWARD** operator for Kalman filtering takes a Gaussian forward message \mathbf{f}_1 specified by a mean k_t and covariance matrix E_t , and produces a new multivariate Gaussian forward message $\mathbf{f}_{1:t+1}$, specified by a mean $\boldsymbol{\mu}_{t+1}$ and covariance matrix E_{t+1} . So, if we start with a Gaussian prior $\mathbf{f}_{1,0} = \mathbf{P}(\mathbf{X}_0) = N(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$, filtering with a linear Gaussian model produces a Gaussian state distribution for all time.

This seems to be a nice, elegant result, but why is it so important? The reason is that, except for a few special cases such as this, *,filtering with continuous or hybrid (discrete and continuous) networks generates state distributions whose representation grows without bound over time.* This statement is not easy to prove in general, but Exercise 15.10 shows what happens for a simple example.

154.2 A simple one-dimensional example

We have said that the **FORWARD** operator for the Kalman filter maps **a** Gaussian into a new Gaussian. This translates into computing a new mean and covariance matrix from the previous mean and covariance matrix. Deriving the update rule in the general (multivariate) case requires rather a lot of linear algebra, so we will stick to a very simple univariate case for now; and later give the results for the general case. Even for the univariate case, the calculations are somewhat tedious, but we feel that they are worth seeing because the usefulness of the Kalman filter is tied so intimately to the mathematical properties of Gaussian distributions.

The temporal model we consider describes a **random walk** of a single continuous state variable X_t with a noisy observation Z_t . An example might be the "consumer confidence" index, which can be modeled **as** undergoing **a random** Gaussian-distributed change each month and is measured by a random consumer survey that also introduces Gaussian sampling noise.

The prior distribution is assumed to be Gaussian with variance σ_0^2 :

$$P(x_0) = ore = \begin{pmatrix} \frac{(x_0 - \mu_0)}{\sigma_0^2} \end{pmatrix}$$

(For simplicity, we use the same symbol a for all normalizing constants in this section.) The transition model adds a Gaussian perturbation of constant variance σ_a^2 to the current state:

$$P(x_{t+1}|_{xi}) = \operatorname{cr} \epsilon$$

The sensor model assumes Gaussian noise with variance σ

$$P(\cdot) = \epsilon$$

Now, given the prior $P(X_t)$, the one-step predicted distribution comes from Equation (15.17).

$$P(x_{1}) = P(x_{1} | x_{0})P(x_{0}) dx_{0} - o \sum_{0}^{\infty} e^{-\frac{1}{2}\left(\frac{(x_{1}-x_{0})^{2}}{g_{2}^{2}}\right)} e^{-\frac{1}{2}\left(\frac{(x_{0}-\frac{2}{2})}{g_{2}^{2}}\right)} dx_{0}$$

$$\int_{-\infty}^{\infty} \frac{1}{2} e^{\frac{1}{2}\left(\frac{x_{0}-\frac{2}{2}}{g_{2}^{2}}\right)} dx_{0}$$

This integral looks rather complicated. The key to progress is to notice that the exponent is the sum of two expressions that are *quadratic* in x_0 and hence is itself a quadratic in x_0 . A simple trick known as **completing the square** allows the rewriting of any quadratic ax_1^2 bx_0 c as the sum of a squared term $a(x_0 - \frac{b}{2a})^2$ and a residual term c— that is independent of x_0 . The residual term can be taken outside the integral, giving us

$$P(x_1) = \alpha e^{-2}$$
 $e^{-(x_1)} = \frac{-\ell \sqrt{2}}{2\alpha} dx_0$

Now the integral is just the integral of a Gaussian over its full range, which is simply 1. Thus. we are left with only the residual term from the quadratic. Then, we notice that the residual term is a quadratic in x_1 ; in fact, after simplification, we obtain

That is, the one-step predicted distribution is a Gaussian with the same mean μ_0 and a variance equal to the sum of the original variance 4 and the transition variance

To complete the update step, we need to condition on the observation at the first time step, namely, z_1 . From Equation (15.18), this is given by

$$P(x_1 \mid -) = \operatorname{cs} P(z^{-1}x_1)P(x^{-1})$$

$$= \alpha^{e^{-\frac{1}{2}\left(\frac{(x_1 - x_1)}{2}\right)}e^{-2}$$

Once again, we combine the exponents and complete the square (Exercise 15.11), obtaining

$$+\sigma_{z}^{2}\mu_{0} 2$$

 $+\sigma_{z}^{2}+\sigma_{z}^{2}+\sigma_{z}^{2}$

$$P(x_1 \ z_1) = e \tag{15.19}$$

COMPLETING THE SOUARE Section 15.4, Kalman Filters 587

Figure 15.10 Stages in the Kalman filter update cycle for a random walk with a prior given by $\mu_{\rm u}=0.0$ and $\sigma_{\rm u}=1.0$, transition noise given by o=2.0, sensor noise given by $\sigma_{\rm u}=1.0$, and a first observation $z_1=2.5$ (marked on the z-axis). Notice how the prediction $P(x_{\rm u})$ is flattened out. relative to $P(x_{\rm u})$, by the transition noise. Notice also that the mean of the posterior distribution $P(x_{\rm i}|x_{\rm i})$ is slightly to the left of the observation 21 because the mean is a weighted average of the prediction and the observation.

Thus, after one update cycle, we have a new Gaussian distribution for the state variable.

From the Gaussian formula in Equation (15.19), we see that the new mean and standard deviation can be calculated from the old mean and standard deviation as follows:

P4+1 -
$$\frac{\pm (c_x^2)_{t+1} \pm \sigma_x^2 \mu_t}{\sigma_t^2 - \sigma_x^2 - \sigma_x^2}$$
 and $\sigma_{i+1} - \frac{(\sigma_t^2 - \sigma_x)\sigma_x^2}{\sigma_t^2 + \sigma_x^2}$ 115.20)

Figure 15.10 shows one update cycle for particular values of the transition and sensor models.

Equation (15.20) plays exactly the same role as the general filtering equation (15.5) or the HMM filtering equation (15.12). Because of the special nature of Gaussian distributions, however, the equations have some interesting additional properties. First, we can interpret the calculation for the new mean μ_{t+1} as simply a weighted mean of the new observation z_{t+1} and the old mean μ_t . If the observation is unreliable, then σ_t^2 is large and we pay more attention to the old mean; if the old mean is unreliable (σ is large) or the process is highly unpredictable (σ is large), then we pay more attention to the observation. Second, notice that the update for the variance σ_{t+1}^2 is independent of the observation. We can therefore compute in advance what the sequence of variance values will be Third, the sequence of variance values converges quickly to a fixed value that depends only on cr and σ_z^2 , thereby substantially simplifying the subsequent calculations. (See Exercise 15.12.)

15.4.3 The general case

The preceding derivation illustrates the key property of Gaussian distributions that allows Kalman filtering to work: the fact that the exponent is a quadratic form. This is true not just for the univariate case; the full multivariate Gaussian distribution has the form

$$N(\boldsymbol{\mu}, \boldsymbol{\Sigma})(\mathbf{x}) = \alpha \, \epsilon \quad \left((\mathbf{x} - \boldsymbol{\mu})^\top \, \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right)$$

Multiplying out the terms in the exponent makes it clear that the exponent is also a quadratic function of the values x in x. As in the univariate case, the filtering update preserves the Gaussian nature of the state distribution.

Let us first define the general temporal model used with Kalman filtering. Both the transition model and the sensor model allow for a *linear* transformation with additive Gaussian noise. Thus, we have

$$P(\mathbf{x}_{t+1} \mid \mathbf{x}_t) = P(\mathbf{z}_t \mid \mathbf{x}_t) = N(\mathbf{H}\mathbf{x}_t, \mathbf{\Sigma}_a)(\mathbf{z}_t)$$
(15.21)

where F and Σ_{α} are matrices describing the linear transition model and transition noise covariance, and H and Σ_{α} are the corresponding matrices for the sensor model. Now the update equations for the mean and covariance, in their full, hairy horribleness, are

$$\mu_{t+1} = \operatorname{Fret} + \mathbf{K}_{t+1}(\mathbf{z}_{t+1} \quad \mathbf{HF}\mu_t) \Sigma_{t+1} = (\mathbf{I} - \mathbf{K}_{t+1}\mathbf{H})(\mathbf{F}\Sigma_t\mathbf{F} + \mathbf{E}_{\mathbf{x}}),$$
(15.22)

where $\mathbf{K}_{t+1} = (\mathbf{F} \boldsymbol{\Sigma}_t \mathbf{F}^\top \boldsymbol{\Sigma}_a) \mathbf{H}^\top (\mathbf{H} (\mathbf{F} \boldsymbol{\Sigma}_t \mathbf{F}^\top \boldsymbol{\Sigma}_a) \mathbf{H} \boldsymbol{\Sigma}_a)$ is called the **Kalman** gain **matrix**. Believe it or not, these equations make some intuitive sense. For example, consider the update for the mean state estimate p. The term $\mathbf{F} \boldsymbol{\mu}_t$ is the *predicted* state at t=1, so $\mathbf{H} \mathbf{F} \boldsymbol{\mu}_t$ is the *predicted* observation. Therefore, the term $\mathbf{F} \boldsymbol{\mu}_t$ represents the error in the predicted observation. This is multiplied by \mathbf{K}_{t+1} to correct the predicted state; hence, \mathbf{K}_{t+1} is a measure of *how seriously to take the new observation* relative to the prediction. As in Equation (15.20), we also have the property that the variance update is independent of the observations_ The sequence of values for \mathbf{E}_t and \mathbf{K}_t can therefore be computed offline, and the actual calculations required during online tracking are quite modest.

To illustrate these equations at work, we have applied them to the problem of tracking an object moving on the X—Y plane. The state variables are $X = (X, Y, X, Y)^{\top}$, so F, Σ_{*} . H, and Σ_{*} are 4 x 4 matrices. Figure 15.11(a) shows the true trajectory, a series of noisy observations, and the trajectory estimated by Kalman filtering, along with the covariances indicated by the one-standard-deviation contours. The filtering process does a good job of tracking the actual motion, and, as expected, the variance quickly reaches a fixed point.

We can also derive equations for *smoothing* as well as filtering with linear Gaussian models_ The smoothing results are shown in Figure 15.1 1(b). Notice how the variance in the position estimate is sharply reduced, except at the ends of the trajectory (why?), and that the estimated trajectory is much smoother.

15.4.4 Applicability of Kalman filtering

The Kalman filter and its elaborations are used in **a** vast array of applications. The "classical" application is in radar tracking of aircraft and missiles. Related applications include acoustic tracking of submarines and ground vehicles and visual tracking of vehicles and people. In a slightly more esoteric vein, Kalman filters are used to reconstruct particle trajectories from bubble-chamber photographs and ocean currents from satellite surface measurements. The range of application is much larger than just the tracking of motion: any system characterized by continuous state variables and noisy measurements will do. Such systems include pulp mills, chemical **plants**, nuclear reactors, plant ecosystems, and national economies.

BATMAN GAIN MATRIX Section 15.4. Kalman Filters 589

Figure 15.11 (a) (Re-Relts ltd (Malkinlama fillibraring for annobly and moving on the X-Y phane, showing the trute trajectory (left to right), a series of roosy observations; and the trajectory estimated by Kalman filtering Waiianoecimtherposition estimate is indicated by the ovals. (b) The results of Kalman smoothing for the same observation sequence.

EXTENDED KALMAN FILTER (EKF NONLINEAR The fact that Kalman filtering can be applied to a system does not mean that the results will be valid or useful. The assumptions made—a linear Gaussian transition and sensor models—are very strong. The **extended Kalman filter (EKF)** attempts to overcome **nonlinearities** in the system being modeled. A system is **nonlinear** if the transition model cannot be described as a matrix multiplication of the state vector, as in Equation (15.21). The EKF works by modeling the system as *locally* linear in \mathbf{x}_t in the region of $\mathbf{x}_t = \mathbf{p}_t$, the mean of the current state distribution. This works well for smooth, well-behaved systems and allows the tracker to maintain and update a Gaussian state distribution that is a reasonable approximation to the true posterior. A detailed example is given in Chapter 25_

What does it mean for a system to be "unsmooth" or "poorly behaved"? Technically, it means that there is significant nonlinearity in system response within the region that is "close" (according to the covariance E_t) to the current mean μ_t . To understand this idea in nontechnical terms, consider the example of trying to track a bird as it flies through the jungle. The bird appears to be heading at high speed straight for a tree trunk. The Kalman filter, whether regular or extended, can make only a Gaussian prediction of the location of the bird, and the mean of this Gaussian will be centered on the trunk, as shown in Figure 15.12(a). A reasonable model of the bird, on the other hand, would predict evasive action to one side or the other, as shown in Figure 15.12(b). Such a model is highly nonlinear, because the bird's decision varies sharply depending on its precise location relative to the trunk.

To handle examples like these, we clearly need a more expressive language for representing the behavior of the system being modeled. Within the control theory community, for which problems such as evasive maneuvering by aircraft raise the same kinds of difficulties, the standard solution is the **switching Kalman filter. In** this approach, multiple Kalman fil-

Figure 15.12 A birth filying nowarded treed (toppy rews). (a) AKKirham filter will predict the location of the bird using a single Gaussian control of the obstable. (b) A more realistic model allows for the bird sevasive action, predicting that it will fily to one side out the other.

ters run in parallel, each using a different model of the system—for example, one for straight flight, one for sharp left turns, and one for sharp right turns. A weighted sum of predictions is used, where the weight depends on how well each filter fits the current data. We will see in the next section that this is simply a special case of the general dynamic Bayesian network model, obtained by adding a discrete "maneuver" state variable to the network shown in Figure 15.9. Switching Kalman filters are discussed further in Exercise 15.10.

15.5 DYNAMIC BAYESIAN NETWORKS

BYNAME BAYESIAN

A **dynamic Bayesian network,** or **DBN,** is a Bayesian network that represents a temporal probability model of the kind described in Section 15.1. We have already seen examples of DBNs: the umbrella network in Figure 15.2 and the Kalman filter network in Figure 15.9. In general, each slice of a DBN can have any number of state variables \mathbf{X}_t and evidence variables Et. For simplicity, we assume that the variables and their links are exactly replicated from slice to slice and that the DBN represents a first-order Markov process, so that each variable can have parents only in its own slice or the immediately preceding slice.

It should be clear that every hidden Markov model can be represented as a DBN with a single state variable and a single evidence variable. It is also the case that every discrete-variable DBN can be represented as an HMM; as explained in Section 15.3, we can combine all the state variables in the DBN into a single state variable whose values are all possible tuples of values of the individual state variables. Now, if every HMM is a DBN and every DBN can be translated into an HMM, what's the difference? The difference is that, by de-

composing the state of a complex system into its constituent variables, the can take advantage of sparseness in the temporal probability model. Suppose, for example, that a DEN has 20 Boolean state variables, each of which has three parents in the preceding slice. Then the DBN transition model has $20 \times 2^3 = 160$ probabilities, whereas the corresponding HMM has 2^{20} states and therefore 2^{4e} , or roughly a trillion, probabilities in the transition matrix. This is bad for at least three reasons: first, the HMM itself requires much more space; second, the huge transition matrix makes HMM inference much more expensive; and third, the problem of learning such a huge number of parameters makes the pure HMM model unsuitable for large problems. The relationship between DBNs and HMMs is roughly analogous to the relationship between ordinary Bayesian networks and full tabulated joint distributions.

We have already explained that every Kalman filter model can be represented in a DBN with continuous variables and linear Gaussian conditional distributions (Figure 15.9). It should be clear from the discussion at the end of the preceding section that *nor* every DBN can be represented by a Kalman filter model. In a Kalman filter, the current state distribution is always a single multivariate Gaussian distribution—that is, a single "bump" in a particular location. DBNs, on the other hand, can model arbitrary distributions. For many real-world applications, this flexibility is essential. Consider, for example, the current location of my keys. They might be in my pocket, on the bedside table. on the kitchen counter, dangling from the front door, or locked in the car. A single Gaussian bump that included all these places would have to allocate significant probability to the keys being in mid-air in the front hall. Aspects of the real world such as purposive agents; obstacles, and pockets introduce "nonlinearities" that require combinations of discrete and continuous variables in order to get reasonable models.

15.5.1 Constructing DBNs

To construct a DBN, one must specify three kinds of information: the prior distribution over the state variables, $\mathbf{P}(\mathbf{X}_{L})$; the transition model $\mathbf{P}(\mathbf{X}_{L+1}\mathbf{I}|\mathbf{X}_{T})$; and the sensor model $\mathbf{P}(\mathbf{E}_{L}|\mathbf{X}_{L})$. To specify the transition and sensor models, one must also specify the topology of the connections between successive shoes and between the state and evidence variables. Because the transition and sensor models are assumed to be stationary—the same for all t—it is most convenient simply to specify them for the first slice. For example, the complete DBN specification for the umbrella world is given by the three-node network shown in Figure 15.13(a). From this specification, the complete DBN with an unbounded number of time slices can be constructed as needed by copying the first slice.

Let us now consider a more interesting example: monitoring a battery-powered robot moving in the X—Y plane, as introduced at the end of Section 15.1. First, we need state variables, which will include both $\mathbf{X}_t = (X_t, Y_t)$ for position and $\mathbf{X}_t = (X_t, Y_t)$ for velocity. We assume some method of measuring position—perhaps a fixed camera or onboard GPS (Global Positioning System)—yielding measurements \mathbf{Z}_t . The position at the next time step depends on the current position and velocity, as in the standard Kalman filter model. The velocity at the next step depends on the current velocity and the stale of the battery. We add $Battery_t$ to represent the actual battery charge level, which has as parents the previous

Figure 15.13 (a) Specification of the pulsor, transition model, and sensor model for the umbrella DBN. All subsequent slices are assumed to be expressed slice 1. (b) A simple DBN for robot motion in the X-Y plane.

battery level and the velocity, and we add $BMeter_t$, which measures the battery charge level. This gives us the basic model shown in Figure 15.13(b).

It is worth looking in more depth at the nature of the sensor model for $BMeter_t$. Let us suppose, for simplicity, that both $Battery_t$ and $BMeter_t$ can take on discrete values 0 through 5. If the meter is always accurate, then the CPT $P(BMeter_t | Buttery_t)$ should have probabilities of 1.0 "along the diagonal" and probabilities of 0.0 elsewhere. In reality, noise always creeps into measurements. For continuous measurements, a Gaussian distribution with a small variance might be used. For our discrete variables, we can approximate a Gaussian using a distribution in which the probability of error drops off in the appropriate way, so that the probability of a large error is very small. We use the term Gaussian error model to cover both the continuous and discrete versions.

GALRSIAN ERROR MODEL

TRANSIENT FAILURE

Anyone with hands-on experience of robotics, computerized process control, or other forms of automatic sensing will readily testify to the fact that small amounts of measurement noise are often the least of one's problems. Real sensors *fail*. When a sensor fails, it does not necessarily send a signal saying, "Oh, by the way, the data I'm about to send you is a load of nonsense." Instead, it simply sends the nonsense. The simplest kind of failure is called a **transient failure**, where the sensor occasionally decides to send some nonsense. For example, the battery level sensor might have a habit of sending a zero when someone bumps the robot, even if the battery is fully charged.

Let's see what happens when a transient failure occurs with a Gaussian error model that doesn't accommodate such failures. Suppose, for example, that the robot is sitting quietly and observes 20 consecutive battery readings of 5. Then the battery meter has a temporary seizure

Strictly speaking, a Gaussian distribution is problematic because it assigns nonzero probability to large negative charge levels. The beta distribution is sometimes a better choice for a variable whose range is restricted.

and the next reading is $BMeter_{21} = 0$. What will the simple Gaussian error model lead us to believe about $Battery_{21}$. According to Bayes' rule, the answer depends on both the sensor model $P(BMeter_{21} = 0 \mid Battery_{21})$ and the prediction $P(Battery_{21} \mid BMeter_{1:20})$. If the probability of a large sensor error is significantly less likely than the probability of a transition to $Battery_{21} = 0$, even if the latter is very unlikely, then the posterior distribution will assign a high probability to the battery's being empty. A second reading of 0 at t = 22 will make this conclusion almost certain. If the transient failure then disappears and the reading returns to 5 from t = 23 onwards, the estimate for the battery level will quickly return to 5, as if by magic. This course of events is illustrated in the upper curve of Figure 15.14(a). which shows the expected value of $Battery_t$ over time, using a discrete Gaussian error model.

Despite the recovery. there is a time (l-22) when the robot is convinced that its battery is empty; presumably, then, it should send out a mayday signal and shut down. Alas, its oversimplified sensor model has led it astray. How can this be fixed? Consider a familiar example from everyday human driving: on sharp curves or steep hills, one's "fuel tank empty" warning light sometimes turns on. Rather than looking for the emergency phone, one simply recalls that the fuel gauge sometimes gives a very large error when the fuel is sloshing around in the tank. The moral of the story is the following: for the system to handle sensor failure properly. the sensor model must include the possibility of failure.

The simplest kind of failure model for a sensor allows a certain probability that the sensor will return some completely incorrect value, regardless of the true state of the world. For example, if the battery meter fails by returning 0, we might say that

$$P(BMeter_t = 0 \mid Battery_t = 5) = 0.03$$
.

TRANSIENT FAILURE

which is presumably much larger than the probability assigned by the simple Gaussian error model. Let's call this the **transient failure model**. How does it help when we are faced with a reading of 0? Provided that the *predicted* probability of an empty battery, according to the readings so far, is much less than 0.03, then the best explanation of the observation $BMeter_{\mathbb{Z}1} = \mathbb{C}$ is that the sensor has temporarily failed. Intuitively, we can think of the belief about the battery level as having a certain amount of "inertia" that helps to overcome temporary blips in the meter reading. The upper curve in Figure 15.14(b) shows that the transient failure model can handle transient failures without a catastrophic change in beliefs.

So much for temporary blips. What about a persistent sensor failure? Sadly, failures of this kind are all too common. If the sensor returns 20 readings of 5 followed by 20 readings of 0, then the transient sensor failure model described in the preceding paragraph will result in the robot gradually coming to believe **that** its battery is empty when in fact it may be that the meter has failed. The lower curve in Figure 15.14(b) shows the belief "trajectory" for this case. By l = 25—five readings of 0—the robot is convinced that its battery is empty. Obviously, we would prefer the robot to believe that its battery meter is broken—if indeed this is the more likely event.

PERSISTENT FAILURE MODEL Unsurprisingly, to handle persistent failure, we need a persistent failure model that describes how the sensor behaves under normal conditions and after failure. To do this, we need to augment the state of the system with an additional variable, say, *BMBroken*, that describes the status of the battery meter. The persistence of failure must be modeled by an

Figure 15.14 (a) (diphypeneveverajointony pointhesexpected walker of $Battery_t$ for an observation sequence consisting of all Sis exception Os at t=21 and t=22, using a simple Gaussian error model. However trajectory without the observation remains at (0) from t=21 on wards. (b) The same experiment must with the transient failure model. Notice that the transient failure is handled well, but the persistent failure results in excessive pession is maken the battery charge.

Figure 15.15 (a) (a) DEID Bagfregmenhosting it gets ensous status is variethed exquirectifform outleing persistent failure of the battery sansor. ((b) Upper curves: trajectories of the expected value of $Battery_t$ for the "transient failure" and "permanent failure" observations sequences. Lower curves: probability trajectories for BMBroken given the two observations sequences.

PERSISTENCE ARC

arc linking *BMBroken*_U to *BMBroken*_L. This persistence arc has a CPT that gives a small probability of failure in any given time step, say, 0.001, but specifies that the sensor stays broken once it breaks. When the sensor is OK, the sensor model for *BMeter* is identical to the transient failure model, when the sensor is broken, it says *BMeter* is always 0, regardless of the actual battery charge.

Figure 15.16 Unrolling a dynamic **Bayesian** network: s ices are replicated to accommodate the observation sequence *Umbrella* 3. Further slices have no effect on inferences within the observation period

The persistent failure model for the battery sensor is shown in Figure 15.15(a). Its performance on the two data sequences (temporary blip and persistent failure) is shown in Figure 15.15(b). There are several things to notice about these curves, First, in the case of the temporary blip, the probability that the sensor is broken rises significantly after the second 0 reading, but immediately drops back to zero once a 5 is observed. Second, in the case of persistent failure, the probability that the sensor is broken rises quickly to almost 1 and stays there. Finally, once the sensor is known to be broken, the robot can only assume that its battery discharges at the "normal" rate, as shown by the gradually descending level of $E(Battery_t I)$.

So far, we have merely scratched the surface of the problem of representing complex processes. The variety of transition models is huge, encompassing topics as disparate as modeling the human endocrine system and modeling multiple vehicles driving en a freeway. Sensor modeling is also a vast subfield in itself, but even subtle phenomena, such as sensor drift, sudden decalibration, and the effects of exogenous conditions (such as weather) on sensor readings, can be handled by explicit representation within dynamic Bayesian networks.

155.2 Exact inference in DBNs

Having sketched some ideas for representing complex processes as DBNs, we now turn to the question of inference. In a sense, this question has already been answered: dynamic Bayesian networks are Bayesian networks, and we already have algorithms for inference in Bayesian networks. Given a sequence of observations, one can construct the full Bayesian network representation of a DBN by replicating slices until the network is large enough to accommodate the observations, as in Figure 15.16. This technique, mentioned in Chapter 14 in the context of relational probability models, is called **unrolling**. (Technically, the DBN is equivalent to the semi-infinite network obtained by unrolling forever. Slices added beyond the last observation have no effect on inferences within the observation period and can be omitted.) Once the DBN is unrolled, one can use any of the inference algorithms—variable elimination, clustering methods, and so on—described in Chapter 14.

Unfortunately. a *naive* application of unrolling would not be particularly efficient. If we want to perform filtering or smoothing with a long sequence of observations $\mathbf{e}_{1:t}$, the

unrolled network would require O(t) space and would thus grow without bound as more observations were added. Moreover, if we simply run the inference algorithm anew each time an observation is added, the inference time per update will also increase as O(t).

Looking back to Section 15.2.1, we see that constant time and space per filtering update can be achieved if the computation can be done recursively. Essentially, the filtering update in Equation (15.5) works by *summing out* the state variables of the previous time step to get the distribution for the new time step. Summing out variables is exactly what the variable elimination (Figure 14.11) algorithm does, and it turns out that running variable elimination with the variables in temporal order exactly mimics the operation of the recursive filtering update in Equation (15.5). The modified algorithm keeps at most two slices in memory at any one time: starting with slice 0, we add slice 1, then sum out slice 0, then add slice 2, then sum out slice 1, and so on. In this way, we can achieve constant space and time per filtering update. (The same performance can be achieved by suitable modifications to the clustering algorithm.) Exercise 15.17 asks you to verify this fact for the umbrella network.

So much for the good news; now for the bad news: It turns out that the "constant" for the per-update time and space complexity is, in almost all cases, exponential in the number of state variables. What happens is that, as the variable elimination **proceeds**, the factors grow to include all the state variables (or, more precisely, all those state variables that have parents in the previous time slice). The maximum factor size is $O(d^{n+1})$ and the total update cost per step is $O(nd^{n-k})$, where d is the domain size of the variables and k is the maximum number of parents of any state variable.

Of course, this is much less than the cost of 11MM updating, which is $O(d^{-n})$, but it is still infeasible for large numbers of variables. This grim fact is somewhat hard to accept. What it means is that even though we can use DRNs to represent very complex temporal processes with many sparsely connected variables, we cannot reason efficiently and exactly about those processes. The DEN model itself, which represents the prior joint distribution over all the variables, is factorable into its constituent CPTs, but the posterior joint distribution conditioned on an observation sequence—that is, the forward message—is generally not factorable. So far, no one has found a way around this pmblem, despite the fact that many important areas of science and engineering would benefit enormously from its solution. Thus, we must fall back on approximate methods.

15.5.3 Approximate inference in DBNs

Section 14.5 described two approximation algorithms: likelihood weighting (Figure 14.15) and Markov chain Monte Carlo (MCMC, Figure 14.16). Of the two, the former is most easily adapted to the DBN context. (An MCMC filtering algorithm is described briefly in the notes at the end of the chapter.) We will see, however, that several improvements are required over the standard likelihood weighting algorithm before a practical method emerges.

Recall that likelihood weighting works by sampling the nonevidence nodes of the network in topological order, weighting each sample by the likelihood it accords to the observed evidence variables. As with the exact algorithms, we could apply likelihood weighting directly to an unrolled DBN, but this would suffer from the same problems of increasing time

and space requirements per update as the observation sequence grows. The problem is that the standard algorithm runs each sample in turn, all the way through the network. Instead, we can simply run all *N* samples together through the **DBN**, one slice at a time. The modified algorithm fits the general pattern of filtering algorithms, with the set of N samples as the forward message. The first key innovation, then, is to *use the samples themselves as an approximate representation of the current slate distribution.* This meets the requirement of a "constant" time per update, although the constant depends on the number of samples required to maintain an accurate approximation. There is also no need to unroll the **DBN**, because we need to have in memory only the current slice and the next slice.

In our discussion of likelihood weighting in Chapter 14, we pointed out that the algorithm's accuracy suffers if the evidence variables are "downstream" from the variables being sampled, because in that case the samples are generated without any influence from the evidence. Looking at the typical structure of a DBN—xay, the umbrella DBN in Figure 15.16—we see that indeed the early state variables will be sampled without the benefit of the later evidence. In fact, looking more carefully, we see that *none* of the state variables has any evidence variables among its ancestors? Hence, although the weight of each sample will depend on the evidence, the actual set of samples generated will be *completely independent* of the evidence. For example, even if the boss brings in the umbrella every day, the sampling process could still hallucinate endless days of sunshine. What this means in practice is that the fraction of samples that remain reasonably close to the actual series of events (and therefore have nonnegligible weights) drops exponentially with t, the length of the observation sequence. In other words, to maintain a given level of accuracy, we need to increase the number of samples exponentially with t. Given that a filtering algorithm that works in real time can use only a fixed number of samples, what happens in practice is that the error blows up after a very small number of update steps.

Clearly, we need a better solution. The second key innovation is to *focus the set of samples on the high-probability regions of the slate space*. This can be done by throwing away samples that have very low weight, according to the observations, while replicating those that have high weight. In that way, the population of samples will stay reasonably close to reality. If we think of samples as a resource for modeling the posterior distribution, then it makes sense to use more samples in regions of the state space where the posterior is higher.

A family of algorithms called **particle filtering** is designed to do just that. Particle filtering works as follows: First, a population of N initial-state samples is created by sampling from the prior distribution $P(X_0)$, Then the update cycle is repeated for each time step

- 1. Each sample is propagated forward by sampling the next state value \mathbf{x}_{t-1} given the current value \mathbf{x}_t for the sample, based on the transition model $\mathbf{P}(\mathbf{X}_{t+1} \quad \mathbf{x}_t)$.
- 2. Each sample is weighted by the likelihood it assigns to the new evidence, $P(\mathbf{e}_{t+1} | \mathbf{x}_{t+1})$
- 3. The population is resampled to generate a new population of N samples. Each new sample is selected from the current population; the probability that a particular sample is selected is proportional to its weight. The new samples are unweighted.

The algorithm is shown in detail in Figure 15,17, and its operation for the unimella DBN is illustrated in Figure 15.18.

PARTICLE FILTERING

function PARTICLE-FILTERING (c, N, dbn) returns a set of samples for the next time step inputs: e, the new incoming evidence

N, the number of samples to be maintained

dbn, a DBN with prior $\mathbf{P}(\mathbf{X}_0)$, transition model $\mathbf{P}(\mathbf{X}_1|\mathbf{X}_0)$, sensor model $\mathbf{P}(\mathbf{E}_1|\mathbf{X}_1)$ persistent: S, a vector of samples of size N, initially generated from \mathbf{PA}_{n}) local variables: W, a vector of weights of size N

for i = I to N do

Sit
$$j \leftarrow$$
 sample from $\mathbf{P}(\mathbf{X}_1 \mid \mathbf{xo} = \mathbf{S}[i])$ /* step 1 *1

 $W[i] \quad P(e \mid \mathbf{X}_5 = SW)$ /* step 2 */

 $S \leftarrow WEIGHTED\text{-SAMPLE-WITH-REPLACEMENT}(N, S, TV)$ /* step 3 */

return S

Figure 15.17 The particle filtering algorithm implemented as a recursive update operation with state (the set of samples). Each of the sampling operations involves sampling the relevant slice variables in topological order, much as in PRIOR-SAMPLE. The WEIGHTED-SAMPLE-WITH-REPLACEMENT operation can be implemented to run in O(N) expected time. The step numbers refer to the description in the text.

Figure 15.18 The particle filtering update cycle for the umbrella DBN with N=10, showing the sample populations of each state. (a) At time t, 8 samples indicate rain and 2 indicate —rain. Each is propagated forward by sampling the next state through the transition model. At time t+1, 6 samples indicate rain and 4 indicate —rain. (b) —umbrella is observed at t+1. Each sample is weighted by its Likelihood for the observation, as indicated by the size of the circles. (c) A new set of 10 samples is generated by weighted random selection from the current set, resulting in 2 samples that indicate rain and 8 that indicate rain.

We can show that this algorithm is consistent—gives the correct probabilities as N tends to infinity—by considering what happens during one update cycle. We assume that the sample population starts with a correct representation of the forward message $\mathbf{f}_{1:t} = \mathbf{P}(\mathbf{X}_t \quad t)$ at time t Writing $N(\mathbf{x}_t \quad \mathbf{e}_{1:t})$ for the number of samples occupying state \mathbf{x}_t after observations $\mathbf{e}_{1:t}$ have been processed, we therefore have

$$N(\mathbf{x}_t \ \mathbf{e}_{1:t})_{IN} = P(\mathbf{x}_t \ \mathbf{e}_{1:t})$$
 (15.23)

for large N. Now we propagate each sample forward by sampling the state variables at I+1, given the values for the sample at I. The number of samples reaching state \mathbf{x}_{l+1} from each

 \mathbf{x}_{ℓ} is the transition probability times the population of \mathbf{x}_{ℓ} ; hence, the total number of samples reaching $\mathbf{x}_{\ell+1}$ is

$$N(\mathbf{x}_{l+1} \mid \mathbf{e}_{1:l}) = P(\mathbf{x}_{l+1} \mid \mathbf{x}_{l}) N(\mathbf{x}_{l} \mid \mathbf{e}_{1:l})$$

Now we weight each sample by its likelihood for the evidence at t+1 A sample in state \mathbf{x}_{t+1} receives weight $P(\mathbf{e}_{t+1} \mid \mathbf{x}_{t+1})$. The total weight of the samples in \mathbf{x}_{t+1} after seeing \mathbf{e}_{t+1} is therefore

$$W(\mathbf{x}_{t+1} | \mathbf{e}_{1:t+1}) = P(\mathbf{e}_{t+1} | \mathbf{x}_{t+1}) N(\mathbf{x}_{t+1} | \mathbf{e}_{1:t})$$

Now for the resampling step. Since each sample is replicated with probability proportional to its weight, the number of samples in state \mathbf{x}_{t-1} after resampling is proportional to the total weight in \mathbf{x}_{t+1} before resampling:

$$N(\mathbf{x}_{t+1} | \mathbf{e}_{1:t+1})/N = c W(\mathbf{x}_{t+1} | \mathbf{e}_{1:t+1})$$

$$c P(\mathbf{e}_{t+1} | \mathbf{x}_{t+1}) N(\mathbf{x}_{t+1} | \mathbf{e}_{1:t})$$

$$\alpha P(\mathbf{e}_{t+1} | \mathbf{x}_{t+1}) \sum_{\mathbf{x}_{t}} P(\mathbf{x}_{t+1} | \mathbf{x}_{t}) N(\mathbf{x}_{t} | \mathbf{e}_{1:t})$$

$$\alpha NP(\mathbf{e}_{t+1} | \mathbf{x}_{t+1}) \sum_{\mathbf{x}_{t}} P(\mathbf{x}_{t+1} | \mathbf{x}_{t}) P(\mathbf{x}_{t} | \mathbf{e}_{1:t}) \text{ (by 15.23)}$$

$$= \alpha P(\mathbf{e}_{t+1} | \mathbf{x}_{t+1}) \sum_{\mathbf{x}_{t}} P(\mathbf{x}_{t+1} | \mathbf{x}_{t}) P(\mathbf{x}_{t} | \mathbf{e}_{1:t})$$

$$= P(\mathbf{x}_{t+1} | \mathbf{e}_{1:t+1}) \text{ (by 15.5)}.$$

Therefore the sample population after one update cycle correctly represents the forward message at time t + 1.

Panicle filtering is *consistent*, therefore, but is it *efficient?* In practice, it seems that the answer is yes: particle filtering seems to maintain a good approximation to the true posterior using a constant number of samples. Under certain assumptions—in particular, that the probabilities in the transition and sensor models are strictly greater than 0 and less than I—it is possible to prove that the approximation maintains bounded error with high probability. On the practical side, the range of applications has grown to include many fields of science and engineering; some references are given at the end of the chapter.

15.6 KEEPING TRACK OF MANY OBJECTS

The preceding sections have considered—without mentioning it—state estimation problems involving a single object. In this section, we see what happens when two or more objects generate the observations. What makes this case different from plain old state estimation is that there is now the possibility of *uncertainty* about which object generated which observation. This is the identity uncertainty problem of Section 14.6.3 (page 544), now viewed in a temporal context. In the **control** theory literature, this is the data association problem—that is, the problem of associating observation data with the objects that generated them.

DA A ASSOCIATION

Figure 15.19 (a) Observations made of object locations in $2\mathbb{C}$ space over five time steps. Each observation is labeled with the time step but does not identify the object that produced it. (b—c) Possible hypotheses about the underlying object tracks. (d) A hypothesis for the case in which false alarms, detection failures, and track initiation/termination are possible.

The data association problem was studied originally in the context of radar tracking, where reflected pulses are detected at fixed time intervals by a rotating radar antenna. At each time step, multiple blips may appear on the screen, but there is no direct observation of which blips at time t belong to which blips at time t-1. Figure 15.19(a) shows a simple example with two blips per time step for five steps. Let the two blip locations at time t be and e_t^2 (The labeling of blips within a time step as "1" and "2" is completely arbitrary and carries no information.) Let us assume, for the time being, that exactly two aircraft, A and B, generated the blips; their true positions are X_t and Kr. Just to keep things simple, we'll also assume that the each aircraft moves independently according to a known transition model—e.g., a linear Gaussian model as used in the Kalman filter (Section 15.4).

Suppose we try to write down the overall probability model for this scenario, just as we did for general temporal processes in Equation (15.3) on page 569. As usual, the joint distribution factors into contributions for each time step as follows:

$$P(x_{0:t}^{A} = e_{1:t}^{2}) = P(x_{0}^{j})P(x_{0}^{j}) \prod P(x_{i}^{j}|_{1})P(x_{i}^{B}|_{1}x_{i-1}^{B})P(e_{i}^{1}|_{2}ea|_{1}x_{i}^{*},).$$
 (15.24)

We would like to factor the observation term $P(e_i^1, |x_i, x_i^B)$ into a product of two terms. one for each object, but this would require knowing which observation was generated by which object. Instead, we have to sum over all possible ways of associating the observations

with the objects. Some of those ways are shown in Figure 15.19(b-c); in general, for n objects and T time steps, there are $(n!)^T$ ways of doing it—an awfully large number.

Mathematically speaking, the "way of associating the observations with the objects" is a collection of unobserved random variable that identify the source of each observation. We'll write ω_t to denote the one-to-one mapping from objects to observations at time t, with $\omega_t(A)$ and $\omega_t(B)$ denoting the specific observations (1 or 2) that ω_t assigns to A and B. (For n objects, wf will have n! possible values; here, = 2.) Because the labels "1" ad "2" on the observations are assigned arbitrarily, the prior on ω_t is uniform and ω_t is independent of the states of the objects, x_t^{ℓ} and x_t^B). So we can condition the observation term x_t^B) on ω_t and then simplify:

$$\begin{split} &= \qquad P(\boldsymbol{e}_{i}^{1}, \boldsymbol{e}_{i}^{2} \,|\, \boldsymbol{x}_{i}^{A}, \boldsymbol{x}_{i}^{B}, \boldsymbol{\omega}_{i}) P(\boldsymbol{\omega}_{i} \boldsymbol{\Pi} \, \boldsymbol{x}_{i}^{J}, \boldsymbol{x}_{i}^{T}) \\ &= \sum P(\boldsymbol{e}_{i}^{\omega_{i}(A)} \,|\, \boldsymbol{x}_{i}^{A}) P(\boldsymbol{e}_{i}^{\omega_{i}(B)} \,|\, \boldsymbol{x}_{i}^{B}) P(\boldsymbol{\omega}_{i} \,|\, \boldsymbol{x}_{i}^{A}, \\ &\geq \sum_{\text{ma}} \qquad) P(\boldsymbol{e}_{i}^{\omega_{i}(B)} \,|\, \boldsymbol{x}_{i}^{B}) \end{split}$$

Plugging this into Equation (15.24), we get an expression that is only in terms of transition and sensor models for individual objects and observations.

As for all probability models, inference means summing out the variables other than the query and the evidence. For filtering in HMMs and DBNs, we were able to sum out the state variables from 1 to t-1 by a simple dynamic programming trick; for Kalman filters, we took advantage of special properties of Gaussians. For data association, we are less fortunate. There is no (known) efficient exact algorithm, for the same reason that there is none for the switching Kalman filter (page 589): the filtering distribution $P(x_t^A \ e_{1:t}^1, e_{1:t}^2)$ for object A ends up as a mixture of exponentially many distributions, one for each way of picking a sequence of observations to assign to A.

As a result of the complexity of exact inference, many different approximate methods have hem used_ The simplest approach is to choose a single "hest" assignment at each time step, given the predicted positions of the objects at the current time step. This assignment associates observations with objects and enables the track of each object to be updated and a prediction made for the next time step. For choosing the "best" assignment, it is common to use the so-called **nearest-neighbor filter**, which repeatedly chooses the closest pairing of predicted position and observation and adds that pairing to the assignment. The nearest-neighbor filter works well when the objects are well separated in state space and the prediction uncertainty and observation error are **small—in** other words, when there is no possibility of confusion. When there is more uncertainty as to the correct assignment, a better approach is to choose the assignment that maximizes the joint probability of the current observations given the predicted positions. This can be done very efficiently using the **Hungarian algorithm** (**Kuhn**, 1955), even though there are *n*! assignments to choose from.

Any method that commits to a single best assignment at each time step fails miserably under more difficult conditions. In particular, if the algorithm commits to an incorrect assignment, the prediction at the next time step may be significantly wrong, leading to more

NEAREST NEIGHBOR

HUNGARIAN ALGORITHM

Figure 15.20 Images from (a) upstream and (b) downstream surveillance cameras roughly two miles apart on Highway 99 in Sacramento, California. The boxed vehicle has been identified at both cameras.

incorrect assignments, and so on. Two modem approaches turn out to be much more effective. A **particle filtering** algorithm (see page 598) for data association works by maintaining a large collection of possible current assignments. An MCMC algorithm explores the space of assignment histories—for example, Figure 15.19(b—c) might be states in the MCMC state space—and can change its mind about previous assignment decisions. Current MCMC data association methods can handle many hundreds of objects in real time while giving a good approximation to the true posterior distributions.

The scenario described so far involved *n* known objects generating n observations at each time step. Real application of data association are typically much more complicated. Often, the reported observations include **false alarms** (also known as **clutter**), which are not caused by real objects. Detection **failures** can occur, meaning that no observation is reported for a real object. Finally, new objects arrive and old ones **disappear**. These phenomena, which create even more possible worlds to worry about, are illustrated in Figure 15.19(d).

Figure 15.20 shows two images from widely separated cameras on a California freeway. In this application, we are interested in two goals: estimating the time it takes, under current traffic conditions, to go from one place to another in the freeway system; and measuring demand, i.e., how many vehicles travel between any two points in the system at particular times of the day and on particular days of the week. Both goals require solving the data association problem over a wide area with many cameras and tens of thousands of vehicles per hour. With visual surveillance, false alarms are caused by moving shadows, articulated vehicles, reflections in puddles, etc.; detection failures are caused by occlusion, fag, darkness, and lack of visual contrast; and vehicles are constantly entering and leaving the freeway system. Furthermore, the appearance of any given vehicle can change dramatically between cameras depending on lighting conditions and vehicle pose in the image, and the transition model changes as traffic jams come and go. Despite these problems, modem data association algorithms have been successful in estimating traffic parameters in real-world settings.

FALSE ALARM
CLUTTEF
DETECTION FAILURE

Section 15.7. Summary 603

Data association is an essential foundation for keeping track of a complex world, because without it there is no way to combine multiple observations of any given object. When objects in the world interact with each other in complex activities, understanding the world requires combining data association with the relational and open-universe probability models of Section 14.6.3. This is currently an active area of research.

15.7 SUMMARY

This chapter has addressed the general problem of representing and reasoning about probabilistic temporal processes. The main points are as follows:

- The changing state of the world is handled by using a set of random variables to represent the state at each point in time.
- Representations can be designed to satisfy the Markov property, so that the future
 is independent of the past given the present. Combined with the assumption that the
 process is stationary—that is, the dynamics do not change over time—this greatly
 simplifies the representation.
- A temporal probability model can be thought of as containing a transition model describing the state evolution and a sensor model describing the observation process.
- The principal inference tasks in temporal models are filtering, prediction, smoothing, and computing the most likely explanation. Each of these can be achieved using simple, recursive algorithms whose rim time is linear in the length of the sequence
- Three families of temporal models were studied in more depth: hidden Markov mod. els, Kalman filters, and dynamic Bayesian networks (which include the other two as special cases).
- Unless special assumptions are made, as in Kalman filters, exact inference with many stare variables is intractable. In practice, the particle filtering algorithm seems to he an effective approximation algorithm.
- When trying to keep track of many objects, uncertainty arises as to which observations
 belong to which objects—the data association problem. The number of association
 hypotheses is typically intractably large, but MCMC and particle filtering algorithms
 for data association work well in practice.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Many of the basic ideas for estimating the state of dynamical systems came from the mathematician C. F. Gauss (1809), who formulated a deterministic least-squares algorithm for the problem of estimating orbits from astronomical observations. A. A. Markov (1913) developed what was later called the Markov assumption in his analysis of stochastic processes;

he estimated a first-order Markov chain on letters from the text of *Eugene Onegin*. The general theory of Markov chains and their mixing times is covered by Levin *et al.* (2008).

Significant classified work on filtering was done during World War II by Wiener (1942) for continuous-time processes and by Kolmogorov (1941) for discrete-time processes. Although this work led to important technological developments over the next 20 years, its use of a frequency-domain representation made many calculations quite cumbersome. Direct state-space modeling of the stochastic process turned out to be simpler, as shown by Peter Swerling (1959) and Rudolf Kalman (1960). The latter paper described what is now known as the Kalman filter for forward inference in linear systems with Gaussian noise; Kalman's results had, however, been obtained previously by the Danish statistician Thorvold Thiele (1880) and by the Russian mathematician Ruslan Stratonovich (1959), whom Kalman met in Moscow in 1960. After a visit to NASA Ames Research Center in 1960, Kalman saw the applicability of the method to the tracking of rocket trajectories, and the filter was later implemented for the Apollo missions. Important results on smoothing were derived by Rauch et al. (1965), and the impressively named Rauch—Tung—Striebel smoother is still a standard technique today. Many early results are gathered in Gelb (1974). Bar-Shalom and Fortmann (1988) give a more modern treatment with a Bayesian flavor, as well as many references to the vast literature on the subject. Chatfield (1989) and Box et al. (1994) cover the control theory approach to time series analysis.

The hidden Markov model and associated algorithms for inference and learning, including the forward—backward algorithm, were developed by Baum and Petrie (1966). The Viterbi algorithm first appeared in (Viterbi, 1967). Similar ideas also appeared independently in the Kalman filtering community (Rauch et al., 1965). The forward—backward algorithm was one of the main precursors of the general formulation of the EM algorithm (Dempster et al., 1977); see also Chapter 20. Constant-space smoothing appears in Binder et al. (1997b), as does the divide-and-conquer algorithm developed in Exercise 15.3. Constant-time fixed-lag smoothing for HMMs first appeared in Russell and Norvig (2003). HMMs have found many applications in language processing (Chamiak, 1993), speech recognition (Rabiner and Juang, 1993), machine translation (Och and Ney, 2003), computational biology (Krogh et al., 1994; Baldi et al., 1994), financial economics Bhar and Hamori (2004) and other fields. There have been several extensions to the basic HMM model, for example the Hierarchical HMM (Fine et al., 1998) and Layered HMM (Oliver et al., 2004) introduce structure back into the model, replacing the single state variable of HMMs.

Dynamic Bayesian networks (DBNs) can be viewed as a sparse encoding of a Markov process and were first used in AI by Dean and Kanazawa (1989b), Nicholson and Brady (1992), and Kjaerulff (1992). The last work extends the HUGIN Bayes net system to accommodate dynamic Bayesian networks. The book by Dean and Wellman (1991) helped popularize DBNs and the probabilistic approach to planning and control within AL Murphy (2002) provides a thorough analysis of DBNs.

Dynamic Bayesian networks have become popular for modeling a variety of complex motion processes in computer vision (Huang *et al.*, 1994; Intille and Bobick, 1999). Like HMMs, they have found applications in speech recognition (Zweig and Russell, 1998; Richardson *et al.*, 2000; Stephenson *et al.*, 2000; Nefian *et al.*, 2002; Livescu *et al.*, 2003), ge-

nomics (Murphy and Mian, 1999; Perrin et al., 2003; Husmeier, 2003) and robot localization (Theocharous et al., 2004). The link between HMMs and DBNs, and between the forward—backward algorithm and Bayesian network propagation, was made explicitly by Smyth et al. (1997). A further unification with Kalman filters (and other statistical models) appears in Roweis and Ghahramani (1999). Procedures exist for learning the parameters (Binder et al., 1997a; Ghahramani, 1998) and structures (Friedman el al., 1998) of DBNs.

The particle filtering algorithm described in Section 15.5 has a particularly interesting history. The first sampling algorithms for particle filtering (also called sequential Monte Carlo methods) were developed in the control theory community by Handschin and Mayne (1969), and the resampling idea that is the core of particle filtering appeared in a Russian control journal (Zaritskii et al., 1975). It was later reinvented in statistics as sequential importancesampling resampling, or SIR (Rubin, 1988; Liu and Chen, 1998), in control theory as particle filtering (Gordon et al., 1993; Gordon, 1994), in AI as survival of the fittest (Kanazawa et al., 1995), and in computer vision as condensation (Isard and Blake, 1996). The paper by Kanazawa et al. (1995) includes an improvement called evidence reversal whereby the state at time l+1 is sampled conditional on both the state at time t and the evidence at time l+1. This allows the evidence to influence sample generation directly and was proved by Doucet (1997) and Liu and Chen (1998) to reduce the approximation error. Particle filtering has been applied in many areas, including tracking complex motion patterns in video (Isard and Blake, 1996), predicting the stock market (de Freitas et al., 2000), and diagnosing faults on planetary rovers (Verma et al., 2004). A variant called the Rao-Blackwellized particle filter or RBPF (Doucet et al., 2000; Murphy and Russell, 2001) applies particle filtering to a subset of state variables and, for each particle, performs exact inference on the remaining variables conditioned on the value sequence in the particle. In some cases RBPF works well with thousands of state variables. An application of RBPF to localization and mapping in robotics is described in Chapter 25. The book by Doucet et al. (2001) collects many important papers on sequential Monte Carlo (SMC) algorithms, of which particle filtering is the mast important instance. Pierre Del Moral and colleagues have performed extensive theoretical analyses of SMC algorithms (Del Moral, 2004; Del Moral et al., 2006).

MCMC methods (see Section 14.5.2) can be applied to the filtering problem; for example, Gibbs sampling can be applied directly to an unrolled DBN. To avoid the problem of increasing update times as the unrolled network grows, the **decayed MCMC** filter (Marthi *et al.*, 2002) prefers to sample more recent state variables, with a probability that decays as 1/k for a variable k steps into the past. Decayed MCMC is a provably nondivergent filter. Nondivergence theorems can also be obtained for certain types of **assumed-density filter**. An assumed-density filter assumes that the posterior distribution over states at time t belongs to a particular finitely parameterized family; if the projection and update steps take it outside this family, the distribution is projected back to give the best approximation within the family. For DBNs, the **Boyen–Koller** algorithm (Boyen *et al.*, 1999) and the **factored frontier** algorithm (Murphy and Weiss, 2001) assume that the posterior distribution can be approximated well by a product of small factors. Variational techniques (see Chapter 14) have also been developed for temporal models. **Ghaliramani** and Jordan (1997) discuss an approximation algorithm for the **factorial HMM**, a DBN in which two or more independently evolving

EVIDENCE REFERRAL

RAD-BLACKWELLIZED PARTICLE FILTER

SEQUENTIAL MONTE

DECAYED MCMC

ASSUMED-DENSITY FILTER

FACTORED FRONTIER

FACTORIAL HMM

Markov chains are linked by a shared observation stream. Jordan et al. (1998) cover a number of other applications.

Data association for multitarget tracking was first described in a probabilistic setting by Sittlet (1964). The first practical algorithm for large-scale problems was the "multiple hypothesis tracker" or MHT algorithm (Reid, 1979). Many important papers are collected by Bar-Shalom and Fortmann (1988) and Bar-Shalom (1992). The development of an MCMC algorithm for data association is due to Pasula *et al.* (1999), who applied it to traffic surveillance problems. Oh *et al.* (2009) provide a formal analysis and extensive experimental comparisons to other methods. Schulz *et al.* (2003) describe a data association method based on particle filtering. Ingemar Cox analyzed the complexity of data association (Cox, 1993; Cox and Hingorani, 1994) and brought the topic to the attention of the vision community. He also noted the applicability of the polynomial-time Hungarian algorithm to the problem of finding most-likely assignments, which had long been considered an intractable problem in the tracking community. The algorithm itself was published by Kuhn (1955), based on translations of papers published in 1931 by two Hungarian mathematicians, Dénes König and Jenö Egerváry. The basic theorem had been derived previously, however, in an unpublished Latin manuscript by the famous Prussian mathematician *Carl* Gustav Jacobi (1804-1851).

EXERCISES

- 15.1 Show that any second-order Markov process can be rewritten as a first-order Markov process with an augmented set of state variables. Can this always be done *parsimoniously*, i.e., without increasing the number of parameters needed to specify the transition model?
- 15.2 In this exercise, we examine what happens to the probabilities in the umbrella world in the limit of long time sequences.
 - a. Suppose we observe an unending sequence of days on which the umbrella appears. Show that, as the days go by, the probability of rain on the current day increases monotonically toward a fixed point. Calculate this fixed point.
 - b. Now consider *forecasting* further and further into the future, given just the first two umbrella observations_ First, compute the probability $P(r_{2+k}|\ _1,\ u_2)$ for k=1. 20 and plot the results. You should see that the probability converges towards a fixed point. Prove that the exact value of this fixed point is 0.5.
- 15.3 This exercise develops a space-efficient variant of the forward—backward algorithm described in Figure 15.4 (page 576). We wish to compute $P(X_k + l) = l$. This will be done with a divide-and-conquer approach.
 - a. Suppose, for simplicity, that t is odd, and let the halfway point be h = (t+1)/2. Show that $P(Xk e_{1:t}]$ can be computed for k = 1, ..., L given just the initial forward message $\mathbf{f}_{1:0}$, the backward message $\mathbf{b}_{h+1:t}$, and the evidence $\mathbf{e}_{1:1}$.
 - b. Show a similar result for the second half of the sequence.

Exercises 607

c. Given the results of (a) and (b), a recursive divide-and-conquer algorithm can be constructed by first running forward along the sequence and then backward from the cnd, storing just the required messages at the middle and the ends. Then the algorithm is called on each half. Write out the algorithm in detail,

- d. Compute the time and space complexity of the algorithm as a function of *t*, the length of the sequence. How does this change if we divide the input into more than two pieces?
- 15.4 On page 577, we outlined a flawed procedure for finding the most likely state sequence, given an observation sequence. The procedure involves finding the most likely state at each time step, using smoothing, and returning the sequence composed of these states. Show that, for some temporal probability models and observation sequences, this procedure returns an impossible state sequence (i.e., the posterior probability of the sequence is zero).
- 15.5 Equation (15.12) describes the filtering process for the matrix formulation of HMMs. Give a similar equation for the calculation of likelihoods, which was described generically in Equation (15.7).
- 15.6 Consider the vacuum worlds of Figure 4.18 (perfect sensing) and Figure 15.7 (noisy sensing). Suppose that the robot receives an observation sequence such that, with perfect sensing, there is exactly one possible location it could he in. Is this location necessarily the most probable location under noisy sensing for sufficiently small noise probability ϵ ? Prove your claim or find a counterexample.

- 15.7 In Section 15.3.2. the prior distribution over locations is uniform and the transition model assumes an equal probability of moving to any neighboring square. What if those assumptions are wrong? Suppose that the initial location is actually chosen uniformly from the northwest quadrant of the room and the *Move* action actually tends to move southeast. Keeping the HMM model fixed, explore the effect on localization and path accuracy as the southeasterly tendency increases, for different values of ϵ .
- **15.8** Consider a version of the vacuum robot (page 582) that has the policy of going straight for as long as it can; only when it encounters an obstacle does it change to a new (randomly selected) heading. To model this robot, each state in the model consists of a *(location, heading)* pair hnplement this model and see how well the Viterbi algorithm can track a robot with this model. The robot's policy is more constrained than the random-walk robot; does that mean that predictions of the most likely path are more accurate?
- 15.9 This exercise is concerned with filtering in an environment with no landmarks. Consider a vacuum robot in an empty room, represented by an n x in rectangular grid. The robot's location is hidden; the only evidence available to the observer is a noisy location sensor that gives an approximation to the robot's location. If the robot is at location (x, y) then with probability .1 the sensor gives the correct location, with probability .05 each it reports one of the 8 locations immediately surrounding (x, y), with probability .025 each it reports one of the 16 locations that surround those 8, and with the remaining probability of .1 it reports "no reading." The robot's policy is to pick a direction and follow it with probability .8 on each step; the robot switches to a randomly selected new heading with probability .2 (or with

Figure 15.21 A Bayesian network representation of a switching Kalman filter. The switching variable S_t is a discrete state variable whose value determines the transition model for the continuous state variables \mathbf{X}_t . For any discrete state i, the transition model $\mathbf{P}(\mathbf{X}_{i+1} \mathbf{X}_t, \mathbf{S}_t = i)$ is a linear Gaussian model, just as in a regular Kalman filter. The transition model for the discrete state, $\mathbf{P}(S_{t+1} S_t)$, can be thought of as a matrix, as in a hidden Markov model.

probability 1 if it encounters a wall). Implement this as an HMM and do filtering to track the robot. How accurately can we track the robot's path?

- **15.10** Often, we wish to monitor a continuous-state system whose behavior switches unpredictably among a set of k distinct "modes." For example, an aircraft trying to evade a missile can execute a series of distinct maneuvers that the missile may attempt to track. A Bayesian network representation of such a **switching Kalman filter** model is shown in Figure 15.21.
 - a. Suppose that the discrete state S_k has k possible values and that the prior continuous state estimate $P(X_k)$ is a multivariate Gaussian distribution. Show that the prediction $P(X_k)$ is a mixture of Gaussians—that is, a weighted sum of Gaussians such that the weights sum to 1.
 - h. Show that if the current continuous state estimate $P(X_t|e_{1:t})$ is a mixture of m Gaussians, then in the general case the updated state estimate $P(X_{t+1}|e_{1:t-1})$ will be a mixture of km Gaussians.
- c. What aspect of the temporal process do the weights in the Gaussian mixture represent? The results in (a) and (b) show that the representation of the posterior grows without limit even for switching Kalman filters, which are among the simplest hybrid dynamic models_
- **15.11** Complete the missing step in the derivation of Equation (15.19) on page 586, the first update step for the one-dimensional Kalman filter.
- 15.12 Let us examine the behavior of the variance update in Equation (15.20) (page 587).
 - a. Plot the value of of as a function of t, given various values for σ_x^2 and σ_z^2 .
 - b. Show that the update has a fixed point $\sigma_t^2 \to \sigma$ as $t \to \infty$, and calculate the value of σ .
 - c. Give a qualitative explanation for what happens as 0 and as $\sigma_z \to 0$.

Exercises 609

15.13 A professor wants to know if students are getting enough sleep. Each day, the professor observes whether the students sleep in class, and whether they have red eyes. The professor has the following domain theory:

- The prior probability of getting enough sleep, with no observations, is 0.7.
- The probability of getting enough sleep an night t is 0.8 given that the student got enough sleep the previous night, and 0.3 if not.
- The probability of having red eyes is 0.2 if the student got enough sleep, and 0.7 if not.
- The probability of sleeping in class is 0.1 if the student got enough sleep, and 0.3 if not.

Formulate this information as a dynamic Bayesian network that the professor could use to filter or predict from a sequence of observations. Then reformulate it as a hidden Markov model that has only a single observation variable. Give the complete probability tables for the model.

- 15.14 For the DBN specified in Exercise 15.13 and for the evidence values
 - e_1 = not red eyes, not sleeping in class
 - \mathbf{e}_2 = red eyes, not sleeping in class
 - $\mathbf{e}_{\mathbf{a}}$ = red eyes, sleeping in class

perform the following computations:

- a. State estimation: Compute $P(EnoughSleep_t|\mathbf{e}_{1:t})$ for each of t=1,2,3.
- b. Smoothing: Compute $P(EnoughShrep_t|\mathbf{e}_{1:3})$ for each of t=1,2,3.
- c. Compare the filtered and smoothed probabilities for l=1 and t=2.
- **15.15** Suppose that a particular student shows up with red eyes and sleeps in class every day. Given the model described in Exercise 15.13, explain why the probability that the student had enough sleep the previous night converges to a fixed point rather than continuing to go down as we gather more days of evidence. What is the fixed point? Answer this both numerically (by computation) and analytically.
- **15.16** This exercise analyzes in more detail the persistent-failure model for the battery sensor in Figure 15.15(a) (page 594).
 - a. Figure 15.15(b) stops at t = 32. Describe qualitatively what should happen as t if the sensor continues to read 0.
 - b. Suppose that the external temperature affects the battery sensor in such a way that transient failures become more likely as temperature increases. Show how to augment the DBN structure in Figure 15.15(a), and explain any required changes to the CPTs.
 - Given the new network structure, can battery readings he used by the robot to infer the current temperature?
- **15.17** Consider applying the variable elimination algorithm to the umbrella DBN unrolled for three slices, where the query is $P(R_3|u_1,u_2,u_3)$ Show that the space complexity of the algorithm—the size of the largest factor—is the same, regardless of whether the rain variables are eliminated in forward or backward order.