Entwurf, Analyse und Umsetzung von Algorithmen

Runtime analysis Minsort / Heapsort, Induction

Prof. Dr. Rolf Backofen

 $Bioinformatics\ Group\ /\ Department\ of\ Computer\ Science$

Entwurf, Analyse und Umsetzung von Algorithmen

Structure

Runtime Example Minsort

Basic Operations

Runtime analysis

Minsort

Heapsort

Introduction to Induction

Logarithms

How long does the program run?

- ▶ In the last lecture we had a schematic
- ▶ **Observation:** it is going to be "disproportionately" slower the more numbers are being sorted
- How can we say more precisely what is happening?

How can we analyze the runtime?

- ► Ideally we have a formula which provides the runtime of the program for a specific input
- **Problem:** the runtime is depends on many variables, especially:
 - ▶ What kind of computer the code is executed on
 - What is running in the background
 - Which compiler is used to compile the code
- ▶ **Abstraction 1:** analyze the number of basic operations, rather than analyzing the runtime

Basic Operations

Incomplete list of basic operations:

- ightharpoonup Arithmetic operation, for example: a + b
- Assignment of variables, for example: x = y
- ► Function call, for example: minsort(lst)

Basic Operations

Intuitive:					
lines of code					

Better: lines of machine code

Important:

The actual runtime has to be roughly proportional to the number of operations.

How many operations does Minsort need?

▶ **Abstraction 2:** we calculate the upper (lower) bound, rather than exactly counting the number of operations

Reason: runtime is approximated by number of basic operations, but we can still infer:

- ► Upper bound
- Lower bound
- **▶** Basic Assumption:
 - n is size of the input data (i.e. array)
 - ightharpoonup T(n) number of operations for input n

How many operations does *Minsort* need?

- ▶ **Observation:** the number of operations depends only on the size *n* of the array and not on the content!
- ▶ Claim: there are constants C_1 and C_2 such that:

$$C_1 \cdot n^2 \leq T(n) \leq C_2 \cdot n^2$$

▶ This is called "quadratic runtime" (due to n^2)

Runtime Example

We declare:

ightharpoonup Runtime of operations: T(n)

Number of Elements: n

ightharpoonup Constants: C_1 (lower bound), C_2 (upper bound)

$$C_1 \cdot n^2 \leq T(n) \leq C_2 \cdot n^2$$

Number of operations in round i: T_i

Figure: Minsort at iteration i = 4. We have to check n - 3 elements

Figure: Minsort at iteration i = 4

Runtime for each iteration:

$$T_1 \le C_2' \cdot (n-0)$$
 $T_2 \le C_2' \cdot (n-1)$
 $T_3 \le C_2' \cdot (n-2)$
 $T_4 \le C_2' \cdot (n-3)$
 \vdots
 $T_{n-1} \le C_2' \cdot 2$
 $T_n < C_2' \cdot 1$

$$T(n) = (T_1 + \cdots + T_n) \leq \sum_{i=1}^n (C_2' \cdot i)$$

Alternative: Analyse the Code:

```
def minsort(elements):
    for i in range(0, len(elements)-1):
        minimum = i

        for j in range(i+1, len(elements)):
            if elements[j] < elements[minimum]:
                 minimum = j

        if minimum != i:
            elements[i], elements[minimum] = \
                  elements[minimum], elements[i]</pre>
```

return elements

$$T(n) \leq \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} C_2' = \sum_{i=0}^{n-2} (n-i-1) \cdot C_2' = \sum_{i=1}^{n-1} (n-i) \cdot C_2' \leq \sum_{i=1}^{n} i \cdot C_2'$$

Remark: C_2' is cost of comparison \Rightarrow assumed constant

Proof of upper bound: $T(n) \leq C_2 \cdot n^2$

$$T(n) \leq \sum_{i=1}^{n} C_{2}' \cdot i$$

$$= C_{2}' \cdot \sum_{i=1}^{n} i$$

$$\downarrow \quad \text{Small Gauss sum}$$

$$= C_{2}' \cdot \frac{n(n+1)}{2}$$

$$\leq C_{2}' \cdot \frac{n(n+n)}{2}, \ 1 \leq n$$

$$= C_{2}' \cdot \frac{2 \cdot n^{2}}{2} = C_{2}' \cdot n^{2}$$

Proof of lower bound: $C_1 \cdot n^2 \leq T(n)$

Like for the upper bound there exists a C_1 . Summation analysis is the same, only final approximation differs

$$T(n) \geq \sum_{i=1}^{n-1} C'_1 \cdot (n-i) = C'_1 \sum_{i=1}^{n-1} i$$

$$\geq C'_1 \cdot \frac{(n-1) \cdot n}{2} \quad \text{How do we get to } n^2?$$

$$\downarrow \qquad n-1 \geq \frac{n}{2}, \text{ if } n \geq 2$$

$$\geq C'_1 \cdot \frac{n \cdot n}{2 \cdot 2} = \frac{C'_1}{4} \cdot n^2$$

Runtime Analysis:

▶ Upper bound:
$$T(n) \le C_2' \cdot n^2$$

Lower bound:
$$\frac{C_1'}{4} \cdot n^2 \le T(n)$$

Summarized:

$$\frac{C_1'}{4} \cdot n^2 \le T(n) \le C_2' \cdot n^2$$

Quadratic runtime proven:

$$C_1 \cdot n^2 \leq T(n) \leq C_2 \cdot n^2$$

Runtime Example

- ► The runtime is growing quadratically with the number of elements *n* in the list
- ▶ With constants C_1 and C_2 for which $C_1 \cdot n^2 \leq T(n) \leq C_2 \cdot n^2$
- ▶ $3 \times$ elements $\Rightarrow 9 \times$ runtime
 - $C = 1 \text{ ns } (1 \text{ simple instruction } \approx 1 \text{ ns})$
 - ▶ $n = 10^6$ (1 million numbers = 4 MB with 4 B/number)
 - $C \cdot n^2 = 10^{-9} \,\mathrm{s} \cdot 10^{12} = 10^3 \,\mathrm{s} = 16.7 \,\mathrm{min}$
 - $ightharpoonup n = 10^9$ (1 billion numbers = 4 GB)
 - $C \cdot n^2 = 10^{-9} \,\mathrm{s} \cdot 10^{18} = 10^9 \,\mathrm{s} = 31.7 \,\mathrm{years}$
- ► Quadratic runtime = "big" problems unsolvable

Intuitive to extract minimum:

- ▶ **Minsort:** to determine the minimum value we have to iterate through all the unsorted elements.
- Heapsort: the root node is always the smallest (minheap).
 We only need to repair a part of the full tree after the delete operation.

Formal:

- ► Let T(n) be the runtime for the *Heapsort* algorithm with n elements
- ▶ On the next pages we will proof $T(n) \le C \cdot n \log_2 n$

Depth of a binary tree:

- ▶ **Depth** *d*: longest path through the tree
- Complete binary tree has $n = 2^d 1$ nodes
- ► Example: d = 4⇒ $n = 2^4 - 1 = 15$

Figure: Binary tree with 15 nodes

Induction

Basics:

- ▶ You want to show that assumption A(n) is valid $\forall n \in \mathbb{N}$
- We show induction in two steps:
 - 1. **Induction basis:** we show that our assumption is valid for one value (for example: n = 1, A(1)).
 - 2. **Induction step:** we show that the assumption is valid for all n (normally one step forward: n = n + 1, A(1), ..., A(n)).
- If both has been proven, then A(n) holds for all natural numbers n by **induction**

Claim:

A **complete** binary tree of depth d has $v(d) = 2^d - 1$ nodes

▶ **Induction basis:** assumption holds for d = 1

Root

0

$$v(1) = 2^1 - 1 = 1$$

$$\Rightarrow \text{correct } \checkmark$$

Figure: Tree of depth 1 has 1 node

Number of nodes v(d) in a binary tree with depth d:

- ▶ Induction assumption: $v(d) = 2^d 1$
- ▶ Induction basis: $v(1) = 2^d 1 = 2^1 1 = 1$ ✓
- ▶ **Induction step:** to show for d := d + 1

$$v(d+1) = 2 \cdot v(d) + 1$$

$$= 2 \cdot (2^{d} - 1) + 1$$

$$= 2^{d+1} - 2 + 1$$

$$= 2^{d+1} - 1 \checkmark$$

Figure: binary tree with subtrees **By induction**:

$$v(d) = 2^d - 1 \ \forall d \in \mathbb{N} \ \square$$

Heapsort has the following steps:

- ▶ **Initially:** heapify list of *n* elements
- ► **Then:** until all *n* elements are sorted
 - Remove root (=minimum element)
 - Move last leaf to root position
 - Repair heap by sifting

Heapify

Runtime of heapify depends on depth d:

Runtime of heapify with depth of d:

- ▶ No costs at depth d with 2^{d-1} (or less) nodes
- ▶ The cost for sifting with depth 1 is at most 1 c per node
- ▶ In general: sifting costs are linear with path length and number of nodes

Heapify

Heapify total runtime:

Generally: Depth $d \rightarrow 2^{d-1}$ nodes

Depth	Nodes	Path length	Costs per node	Upper bound
d	2^{d-1}	0	≤ <i>C</i> ⋅ 0	$\leq C \cdot 1$
d-1	2^{d-2}	1	$\leq C \cdot 1$	Standard $\leq C \cdot 2$
d-2	2^{d-3}	2	$\leq C \cdot 2$	Equation $\leq C \cdot 3$
d-3	2^{d-4}	3	$\leq C \cdot 3$	$\leq C \cdot 4$

In total:
$$T(d) \leq \sum_{i=1}^{a} \left(C \cdot (i-1) \cdot 2^{d-i} \right) \leq \sum_{i=1}^{a} \left(C \cdot i \cdot 2^{d-i} \right)$$

Runtime - Heapsort Heapify

Heapify total runtime:

$$T(d) \le C \cdot \sum_{i=1}^{d} (i \cdot 2^{d-i}) \le C \cdot 2^{d+1}$$
See next slides

▶ **Hence:** Resulting costs for heapify:

$$T(d) \leq C \cdot 2^{d+1}$$

▶ **However:** We want costs in relation to *n*

Heapify total runtime:

$$T(d) \leq C \cdot 2^{d+1}$$

- ▶ A binary tree of depth d has $2^{d-1} \le n$ nodes
- ≥ 2^{d-1} 1 nodes in full tree till layer d 1
- ► At least 1 node in layer d
- ► Equation multiplied by 2^2 ⇒ $2^{d-1} \cdot 2^2 < 2^2 \cdot n$
- ► Cost for heapify: $\Rightarrow T(n) \leq C \cdot 4 \cdot n$

Figure: Partial binary tree

► We want to proof (induction assumption):

$$\underbrace{\sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right)}_{A(d) \le B(d)} \le 2^{d+1}$$

 \blacktriangleright We denote the left side with A, the right side with B

▶ Induction basis: d := 1:

$$A(d) \le B(d)$$

$$\sum_{i=1}^{d} (i \cdot 2^{d-i}) \le 2^{d+1}$$

$$\sum_{i=1}^{1} (i \cdot 2^{1-i}) \le 2^{1+1}$$

$$2^{0} \le 2^{2} \checkmark$$

Induction step: (d := d + 1):

▶ **Idea:** Write down right-hand formula and try to get A(d) and B(d) out of it

$$A(d) \leq B(d) \qquad \Rightarrow \qquad A(d+1) \leq B(d+1)$$

$$\sum_{i=1}^{d+1} \left(i \cdot 2^{d+1-i} \right) \leq 2^{d+1+1}$$

$$2 \cdot \sum_{i=1}^{d+1} \left(i \cdot 2^{d-i} \right) \leq 2 \cdot 2^{d+1}$$

Induction step: (d := d + 1):

$$2 \cdot \sum_{i=1}^{d+1} \left(i \cdot 2^{d-i} \right) \le 2 \cdot 2^{d+1}$$
$$2 \cdot \sum_{i=1}^{d+1} \left(i \cdot 2^{d-i} \right) \le 2 \cdot B(d)$$
$$2 \cdot \sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right) + 2 \cdot (d+1) \cdot 2^{d-(d+1)} \le 2 \cdot B(d)$$
$$2 \cdot A(d) + (d+1) \le 2 \cdot B(d)$$

Problem: does not work but claim still holds

Working proof:

► Show a little bit stronger claim

$$\sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right) \le 2^{d+1} - d - 2 \le 2^{d+1}$$

▶ Advantage: results in a stronger induction assumption

$$\Rightarrow$$
 exercise

Runtime of the other operations:

- n × taking out maximum (each constant cost)
- \blacktriangleright Maximum of d steps for each of $n \times$ heap repair
 - \Rightarrow Depth d of initial heap is $\leq 1 + \log_2 n$

$$2^{d-1} \le n \Rightarrow d-1 \le \log_2 n \Rightarrow d \le 1 + \log_2 n$$

- Recall: the depth and number of elements is decreasing
 - ► Hence: $T(n) \le n \cdot d \cdot C \le n \cdot (1 + \log_2 n) \cdot C$
 - We can reduce this to:

$$T(n) \le 2 \cdot n \log_2 n \cdot C$$
 (holds for $n > 2$)

Runtime costs:

- ▶ Heapify: $T(n) \le 4 \cdot n \cdot C$
- ▶ Remove: $T(n) \le 2 \cdot n \log_2 n \cdot C$
- ▶ Total runtime: $T(n) \le 6 \cdot n \log_2 n \cdot C$
- Constraints:
 - ▶ Upper bound: $C_2 \cdot n \log_2 n \ge T(n)$ (for $n \ge 2$)
 - ▶ Lower bound: $C_1 \cdot n \log_2 n \le T(n)$ (for $n \ge 2$)
 - $ightharpoonup
 ightarrow C_1$ and C_2 are constant

Base of Logarithms

Logarithm to different bases:

$$\log_a n = \frac{\log_b n}{\log_b a} = \log_b n \cdot \frac{1}{\log_b a}$$

The only difference is a constant coefficient $\frac{1}{\log_b a}$

Examples:

$$ightharpoonup \log_2 4 = \log_{10} 4 \cdot \frac{1}{\log_2 10} = 0.602 \dots \cdot 3.322 \dots = 2 \checkmark$$

▶
$$\log_{10} 1000 = \log_{e} 1000 \cdot \frac{1}{\log_{e} 10} = \ln 1000 \cdot \frac{1}{\ln 10} = 3$$
 ✓

Runtime Example

Runtime of $n \log_2 n$:

Assume we have constants C_1 and C_2 with

$$C_1 \cdot n \cdot \log_2 n \le T(n) \le C_2 \cdot n \cdot \log_2 n$$
 for $n \ge 2$

- ightharpoonup 2 imes elements \Rightarrow only slightly larger than 2 imes runtime
 - $ightharpoonup C = 1 \text{ ns } (1 \text{ simple instruction } \approx 1 \text{ ns})$
 - ▶ $n = 2^{20}$ (1 million numbers = 4 MB with 4 B/number)
 - $C \cdot n \cdot log_2 n = 10^{-9} \text{ s} \cdot 2^{20} \cdot 20 = 21.0 \text{ ms}$
 - $ightharpoonup n = 2^{30}$ (1 billion numbers = 4 GB)
 - $C \cdot n \cdot log_2 n = 10^{-9} \,\mathrm{s} \cdot 2^{30} \cdot 30 = 32 \,\mathrm{s}$
- ▶ Runtime n log₂ n is nearly as good as linear!

Further Literature

Course literature

- [CRL01] Thomas H. Cormen, Ronald L. Rivest, and Charles E. Leiserson. Introduction to Algorithms. MIT Press, Cambridge, Mass, 2001.
- [MS08] Kurt Mehlhorn and Peter Sanders.
 Algorithms and data structures, 2008.
 https://people.mpi-inf.mpg.de/~mehlhorn/
 ftp/Mehlhorn-Sanders-Toolbox.pdf.

Further Literature

► Mathematical Induction

[Wik] Mathematical induction

https://en.wikipedia.org/wiki/Mathematical_induction