

## Radio Loops in the Milky Way Galaxy

- Some of the largest features in the sky
- Studied for >50 years; origin still unclear
- Spectral index suggests non-thermal emission mechanism
- Seen in polarization (starlight, radio)

408 MHz synchrotron emission (Haslam)



22.7 GHz polarization intensity (WMAP)





## Synchrotron emission mechanism

- Relativistic electrons spiral along local magnetic fields
- Generates highly collimated linearly polarized radiation





## Synchrotron emission mechanism

- Relativistic electrons spiral along local magnetic fields
- Generates highly collimated linearly polarized radiation
- Degree of polarization depends on spectral index:

$$p(\alpha) = \frac{3\alpha + 3}{3\alpha + 7}$$

Le Roux (1961

For typical spectral index of cosmic ray electrons,

$$p(5/3) pprox 67\%$$

Depolarization effects prevents such high degrees of polarization



## Superbubbles in the Milky Way Galaxy

- Have also been studied for ~50 years with
- Individual bubbles OB-driven stellar winds, radiation fields and SNe
- Overlapping effects from OB associations results in "superbubbles"





## Stellar Winds (SW) and SNe Effects on ISM







## SW and SNe Effects on Magnetic Fields



ambient magnetic field



## SW and SNe Effects on Magnetic Fields



compressed magnetic field

Dunlap Institute for
Astronomy & Astrophysics
UNIVERSITY OF TORONTO

## Determining Origin of Loops and Superbubbles



compression factor:

ionization fraction:

$$X_{ion} = \frac{n_{H^+}}{n_{H^+} + n_H} \ \, {\rm plasma\ number\ dens}$$
 total number density

plasma number density

- $X_B \lesssim 4$ (1) Young SNe and windblown bubbles:
- $X_B \approx 100$ (2) Old SNe (time to cool):
- $X_B \approx 1$ (3) Ionization fronts and HII regions:



## Magnetic Field Strengths

#### Faraday rotation:

$$\chi = \chi_0 + (RM)\lambda^2$$

$$RM = 0.81 \int_{\text{source}}^{\text{observer}} n_e \vec{B} \cdot \vec{dl}$$

 $\chi$  polarization angle

RM rotation measure

 $\lambda$  observation wavelength





# Magnetic Field Strengths

#### Faraday rotation:

$$\chi = \chi_0 + (RM)\lambda^2$$

$$RM = 0.81 \int_{\text{source}}^{\text{observer}} n_e \vec{B} \cdot \vec{dl}$$

$$\chi$$
 polarization angle

RM rotation measure

 $\lambda$  observation wavelength  $n_e$  thermal electron density

#### Assuming spherical shell geometry:

$$\left(\frac{\text{RM}}{\text{rad m}^{-2}}\right) = 0.81 \left(\frac{n_e}{\text{cm}^{-3}}\right) \left(\frac{B_{\parallel}}{\mu G}\right) f_{\text{ion}} \left(\frac{L}{\text{pc}}\right)$$

 $f_{
m ion}$  plasma filling factor L path length  $(f_{
m ion}L)$  occupation length







# Magnetic Field Strengths

#### Faraday rotation:

$$\chi = \chi_0 + (RM)\lambda^2$$

$$RM = 0.81 \int_{\text{source}}^{\text{observer}} n_e \vec{B} \cdot \vec{dl}$$

$$\chi$$
 polarization angle

RM rotation measure

 $\lambda$  observation wavelength  $n_e$  thermal electron density

Assuming spherical shell geometry:

$$\left(\frac{\text{RM}}{\text{rad m}^{-2}}\right) = 0.81 \left(\frac{n_e}{\text{cm}^{-3}}\right) \left(\frac{B_{\parallel}}{\mu G}\right) f_{\text{ion}} \left(\frac{L}{\text{pc}}\right)$$

 $f_{
m ion}$  plasma filling factor L path length  $(f_{
m ion}L)$  occupation length





## Thermal Electron Densities

#### $H-\alpha$ emission measure:

$$EM = \int_0^\infty n_e^2 dl$$

$$\left(\frac{\text{EM}}{\text{pc cm}^{-6}}\right) = 9.41 \times 10^8 \left(\frac{T_e}{10^4 \,\text{K}}\right)^{1.134}$$

Wisconsin Hα Mapper (WHAM) Survey



$$\times 10^{0.038 \left(\frac{10^4 \text{ K}}{T_e}\right)} \left(\frac{I(H\alpha)}{\text{erg cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}}\right)$$



## Thermal Electron Densities

#### H- $\alpha$ emission measure:

$$EM = \int_{0}^{\infty} n_e^2 dl$$

$$\left(\frac{EM}{pc \, cm^{-6}}\right) = 9.41 \times 10^8 \left(\frac{T_e}{10^4 \, K}\right)^{1.134}$$

Wisconsin Hα Mapper (WHAM) Survey



 $\times 10^{0.038 \left(\frac{10^4 \text{ K}}{T_e}\right)} \left(\frac{I(H\alpha)}{\text{erg cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}}\right)$ 

#### Assuming spherical shell geometry:

$$\left(\frac{\mathrm{EM}}{\mathrm{pc\,cm^{-6}}}\right) = \left(\frac{n_e}{\mathrm{cm^{-3}}}\right)^2 f_{\mathrm{ion}} \left(\frac{L}{\mathrm{pc}}\right)$$
 $f_{\mathrm{ion}} \left(\frac{L}{\mathrm{pc}}\right)$ 
 $f_{\mathrm{ion}} \left(\frac{L}{\mathrm{pc}}\right)$ 
path length
 $\left(f_{\mathrm{ion}}L\right)$  occupation length

 $(f_{\rm ion}L)$  occupation length



## Neutral Atomic HI Number Density

#### 21-cm HI column density:

$$N(\mathrm{HI}) = \int_0^\infty n(\mathrm{HI}) \, ds$$



#### Assuming spherical shell geometry:

$$\left(\frac{N(\mathrm{HI})}{\mathrm{cm}^{-2}}\right) = \left(\frac{n(\mathrm{HI})}{\mathrm{cm}^{-3}}\right) f_{\mathrm{neut}} \left(\frac{L}{\mathrm{pc}}\right) \qquad \begin{array}{c} f_{\mathrm{neut}} & \mathrm{neutral\ filling\ facto} \\ L & \mathrm{path\ length} \\ (f_{\mathrm{neut}}L) & \mathrm{occupation\ length} \end{array}$$

$$f_{
m neut}$$
 neutral filling factor  $L$  path length  $(f_{
m neut} L)$  occupation length

$$f_{\rm ion} + f_{\rm neut} = 1$$



## Loop III and the Intermediate Velocity (IV) Arch





# Orion-Eridanus Superbubble and Barnard's Loop

#### WHAM Ha







## Loops in Rotation Measure

Loop III:





Green:  $RM = -15 \text{ rad m}^{-2}$ 

Red: 408 MHz synchrotron

Green:  $RM = -5 \text{ rad m}^{-2}$ 

Red: HI4PI neutral HI



## Loops in Rotation Measure

#### Loop III:



Green: **RM = -15 rad m**<sup>-2</sup> Red: 408 MHz synchrotron

$$|B_{\parallel}| \lesssim 1.83 - 5.1 \,\mu G$$

$$X_B = 1.6 - 3.2$$

DUNLAP INSTITUTE

for ASTRONOMY & ASTROPHYSICS

Intermediate Velocity (IV) Arch:



Green: **RM = -5 rad m**<sup>-2</sup> Red: HI4PI neutral HI

$$|B_{\parallel}| = 1.7 - 4.7 \mu G$$
$$X_B \lesssim 1 - 3$$



## Superbubble in Rotation Measure





Green: RM = 10 rad m<sup>-2</sup>

Red: WHAM  $H\alpha$ 

#### Barnard's Loop



Green:  $RM = 40 \text{ rad m}^{-2}$ 

Red: WHAM  $H\alpha$ 



## Superbubble in Rotation Measure

Orion-Eridanus Superbubble



Green: RM = 10 rad m<sup>-2</sup>

Red: WHAM  $H\alpha$ 

$$B_{\parallel} = 2.4 \,\mu G$$
$$X_B = 1.5$$

**DUNLAP INSTITUTE**for ASTRONOMY & ASTROPHYSICS





Green: RM = 40 rad m<sup>-2</sup>

Red: WHAM Hα

$$B_{\parallel} = 3.5 \,\mu G$$

$$X_B = 2.2$$



## Orion-Eridanus Superbubble in Depolarization



**DUNLAP INSTITUTE**for ASTRONOMY & ASTROPHYSICS



## Summary

- Radio Loops and Superbubbles are among the largest features in the Galaxy whose origin remains unclear
- Compression factor of magnetic field can help differentiate between various models of origin along with ionization
- Loop III is possibly the result of stellar winds emanating from massive stars in the Galactic plane
- The Orion-Eridanus Superbubble filaments may have been pre-existing density structures ionized from stars in Orion
- Barnard's Loop might have been an ionization front triggered by the massive stars in Orion
- Orion-Eridanus Superbubble Filaments and the outer region of Barnard's Loop seen in beam depolarization; indication of a turbulent magnetic field









## DUNLAP INSTITUTE for ASTRONOMY & ASTROPHYSICS

www.dunlap.utoronto.ca











