Module Interface Specification for SCEC

Deesha Patel

 $March\ 17,\ 2023$

1 Revision History

Date	Version	Notes
March 17, 2023	1.0	Initial Release

2 Symbols, Abbreviations and Acronyms

See SRS Documentation for symbols, abbreviations and acronyms.

symbol	description
С	Condition
en	Energy
energySeq	Energy Sequence
ODEs	Ordinary Differential Equations
param	Parameters
r	Rule
SCEC	Solar Cooker Energy Calculator
temp	Temperature value
tempSeq	Temperature Sequence

Contents

1	Rev	vision H	listory							
2	Symbols, Abbreviations and Acronyms									
3	Introduction									
4	Not	ation								
5	Mo	dule D	ecomposition							
6	MIS	MIS of Constant Value Module								
	6.1	Modul	е							
	6.2	Uses .								
	6.3	Syntax								
		6.3.1	Exported Constants							
		6.3.2	Exported Access Programs							
	6.4	Seman	tics							
		6.4.1	State Variables							
		6.4.2	Environment Variables							
		6.4.3	Assumptions							
		6.4.4	Access Routine Semantics							
		6.4.5	Local Functions							
		6.4.6	Considerations	•						
7	MIS	S of En	ergy Equation Module							
	7.1		e							
	7.2									
	7.3									
		7.3.1	Exported Constants							
		7.3.2	Exported Access Programs							
	7.4	Seman	tics							
		7.4.1	State Variables							
		7.4.2	Environment Variables							
		7.4.3	Assumptions							
		7.4.4	Access Routine Semantics							
		7.4.5	Local Functions							
8	MIS	S of Inp	out Format Module							
	8.1	Modul	e							
	8.2	Uses .								
	8.3	Syntax								
			Exported Constants							

		8.3.2	Exported Access Programs	7
	8.4	Seman	u <mark>tics</mark>	7
		8.4.1	State Variables	7
		8.4.2	Environment Variables	8
		8.4.3	Assumptions	8
		8.4.4	Access Routine Semantics	8
		8.4.5	Local Functions	9
9	MIS	of In	put Parameter Module	9
U	9.1	_		9
	9.2			9
	9.3		· · · · · · · · · · · · · · · · · · ·	9
	5.0	9.3.1	Exported Constants	9
		9.3.2	Exported Access Programs	9
	0.4			9
	9.4		State Wesiekler	
		9.4.1	State Variables	9
		9.4.2		10
		9.4.3	1	10
		9.4.4		10
		9.4.5	Local Functions	10
10	N/ITC	1 -f O-	street Donnet Models	10
ΤÛ			•	10
				10
				10
	10.3			11
			1	11
			1	11
	10.4			11
				11
		10.4.2	Environment Variables	11
		10.4.3	Assumptions	11
		10.4.4	Access Routine Semantics	11
		10.4.5	Local Functions	12
11	MIS	of SC	CEC Control Module	12
				12
				12
				13
	11.0			13
				13
	11 4		•	13
	11.4			то 13
				13 13
		11/1/	Parvironment Variames	. <

	1	13
		13
	11.4.5 Local Functions	14
12 MIS	S of Temperature ODEs Module	14
		14
		14
		14^{-1}
	·	14
		14^{-1}
12.4		15
		15
		15
		15
		15
		16
		17
		17
		17
13.3	y	17
	1	17
		17
13.4		17
		17
		17
	1	18
		18
	13.4.5 Local Functions	19
1 / N/ITC	S of Plotting Result Module	19
		19 19
		19
		19
14.0	·	19
	•	$\frac{19}{20}$
1/1/		$\frac{20}{20}$
14.4		$\frac{20}{20}$
	11.1.0 10.001 1 0110010110 1 1 1 1 1 1 1	

15 MIS of Sequence Data Structure Module
15.1 Module
15.2 Uses
15.3 Syntax
15.3.1 Exported Constants
15.3.2 Exported Access Programs
15.4 Semantics
15.4.1 State Variables
15.4.2 Environment Variables
15.4.3 Assumptions
15.4.4 Access Routine Semantics
15.4.5 Local Functions
16 Appendix

3 Introduction

The following document details the Module Interface Specifications for SCEC (Solar Cooker Energy Calculator). This document specifies how every module is interfacing with every other parts.

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at Github repository for SCEC.

4 Notation

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1|c_2 \Rightarrow r_2|...|c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by SCEC.

Data Type	Notation	Description
character	char	a single symbol or digit
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$

The specification of uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2	
Hardware-Hiding Module		
	Constant Value Module	
	Energy Equation Module	
	Input Format Module	
Behaviour-Hiding Module	Input Parameter Module	
	Output Format Module	
	SCEC Control Module	
	Temperature ODEs Module	
	ODE Solver Module	
Software Decision Module	Plotting Result Module	
	Sequence Data Structure Module	

Table 1: Module Hierarchy

6 MIS of Constant Value Module

6.1 Module

ConstValueParams

6.2 Uses

• Hardware Hiding Module

6.3 Syntax

6.3.1 Exported Constants

None

6.3.2 Exported Access Programs

Name	In	Out	Exceptions
ConstValu	eParams	-	-

6.4 Semantics

6.4.1 State Variables

params: An object of ConstValueParams contains real values.

- params.stefan_constt $\in \mathbb{R}$
- params.h_t_int3 $\in \mathbb{R}$
- params.h_ref_int2 $\in \mathbb{R}$
- params.h_ref_f $\in \mathbb{R}$
- params.c_ref $\in \mathbb{R}$
- params.c_ $f \in \mathbb{R}$
- params.m_ref $\in \mathbb{R}$
- params.m_ $f \in \mathbb{R}$
- params. $t_g \in \mathbb{R}$
- params.p $\in \mathbb{R}$

6.4.2 Environment Variables

None

6.4.3 Assumptions

None

6.4.4 Access Routine Semantics

It is storing different constant variables with their values as indicated in SRS.

ConstValueParams:

• transition: Initialize ConstValueParams object and storing constant values.

params.stefan_cons	t := 5.670374419e-08	#Stefan-Boltzman constant
$params.h_t_int3$:= 4.0	#Heat flux from Lid to Inner area of
		container
$params.h_ref_int2$	= 4.4	#Heat flux from reflector to Inner area
		of box
$params.h_ref_f$	= 4.0	$\# \mathrm{Heat}$ flux from reflector to fluid
$params.c_ref$	= 900	#Specific heat capacity of reflector
$params.c_f$:= 4190	#Specific heat capacity of fluid
$params.m_ref$	= 0.2	#Mass of reflector
$params.m_f$:= 2.0	#Mass of fluid
$params.t_g$	= 0.48	#Transmittivity of glass
params.p	= 0.89	#Reflectivity of glass

• input: None

• output: None

• exception: None

6.4.5 Local Functions

None

6.4.6 Considerations

Note: These constants are as per the SRS document. So, constant parameters and values may change according to the implementation if required.

7 MIS of Energy Equation Module

7.1 Module

energy_calculation

7.2 Uses

- Input Parameter Module
- Constant Value Module

7.3 Syntax

7.3.1 Exported Constants

None

7.3.2 Exported Access Programs

Name	In	Out	Exceptions
energyWat	temp: sequence of \mathbb{R}	en: sequence of $\mathbb R$	MissingParamError, TempValueError, EnergyValueError, EnergySeqError, TempSeqError

7.4 Semantics

7.4.1 State Variables

None

7.4.2 Environment Variables

None

7.4.3 Assumptions

The Energy Equation Module is called through the SCEC Control Module, ensuring that Temperature ODE Module has been called before Energy Equation Module and fluid temperature values are calculated to give input to the Energy Equation Module.

7.4.4 Access Routine Semantics

This module satisfies R5 from the SRS.

energyWat(temp):

- transition: The following procedure is performed:
 - 1. Load constant values of mass and capacity of fluid.

$$m_f = \text{getConstValue(m_f)}$$

 $c_f = \text{getConstValue(c_f)}$

2. For each \mathbb{R} in temp sequence, step 3 to 5 performed.

$$\forall \{ i \in \mathbb{N}, 0 < i < |s - 1| \}$$

3. Calculate time difference between the calculated temperature and initial temperature.

$$\triangle T = temp - T_{init}$$

4. Calculate fluid energy E_f .

$$E_f = m_f c_f \triangle T$$

5. Calculated fluid energy E_f is stored in the sequence.

$$en = en + E_f$$

• input: The temperature sequence of fluid.

in := temp

 \bullet output: The energy equation module returns the sequence of energy:

out := en

• exception:

Expression	Exception	Description
$\neg(\triangle T > 0)$	${\bf TempValueError}$	Valid temperature value
		should positive only.
$(E_f = 0 \lor E_f \notin \mathbb{R})$	EnergyValueError	Energy of fluid should be real and non zero number.
$(en = \emptyset)$	EnergySeqError	Energy sequence needs to have at least one value, not an empty sequence.
$(temp = \emptyset)$	TempSeqError	Temperature sequence should not be empty.

getConstValue(param): A function to fetch the mass and capacity of fluid from the Constant Value Module.

- input: Name of the parameter
- output:

$$m_f := \mathbb{R}$$
$$c_f := \mathbb{R}$$

 c_f .— ma

• exception:

Expression	Exception	Description
$(m_f = \nexists \lor c_f = \nexists)$	MissingParamError	Can access only those variables
		defined in the Constant Value
		Module.

8 MIS of Input Format Module

8.1 Module

 $format_input$

8.2 Uses

- Input Parameter Module
- Hardware Hiding Module

8.3 Syntax

8.3.1 Exported Constants

None

8.3.2 Exported Access Programs

Name	In	Out	Exceptions
$load_params$	fileName: String	params: sequence of $\mathbb R$	various (See table 2)

8.4 Semantics

8.4.1 State Variables

8.4.2 Environment Variables

1. paramFile: A file containing sequence of strings that provides data related to temperature, Area and other properties.

8.4.3 Assumptions

- The SCEC Control Module call this module for formating input parameters.
- The paramFile contains input starts with '#' in new line. The order of the inputs should be as below:
 - Line 1: Area of lid
 - Line 2: Temperature of lid
 - Line 3: Temperature of fluid
 - Line 4: Emissivity of lid
 - Line 5: Area of reflector
 - Line 6: Temperature of reflector
 - Line 7: Emissivity of reflector
 - Line 8: Temperature of glass
 - Line 9: Area of mass

8.4.4 Access Routine Semantics

This module is a function to load, verify and store input data. (R1 and R2 from SRS).

load_params(paramFile):

- transition: paramFile is the file for fetching input values from the file. The following procedure is performed:
 - 1. Verify the format of the file to be .txt.
 - 2. Extract the input one by one.
 - 3. Verify all inputs, verifyInput(param)
 - 4. Store inputs to the data structure
- input: Give filename as an input.
 - in:= fileName
- output: Give sequence of inputs contains all inputted data under appropriate field names.
 - out := params
- exception: Data input which does not comply with the data constraints specified in SRS for this project will yield one of the potential exceptions or warning as listed in the appendix of this document.

verifyInputs(param): A function to verify the inputs for SCEC.

• input: all input values one by one from file.

• output: None

• exception: See appendix (Table 2) for all constraints and error message.

9 MIS of Input Parameter Module

9.1 Module

parameters

9.2 Uses

• Hardware Hiding Module

9.3 Syntax

9.3.1 Exported Constants

None

9.3.2 Exported Access Programs

Name	${f In}$	\mathbf{Out}	Exceptions
init	-	-	-

9.4 Semantics

Parameters is a data structure designed to store the input information entered by the Input Format Module.

9.4.1 State Variables

param := sequence of (

 $A_t: \mathbb{R}$, Area of lid

 $T_t : \mathbb{R}$, Temperature of lid

 $T_f: \mathbb{R}$, Temperature of fluid

 $e_t : \mathbb{R}$, Emissivity of lid

 $A_{\text{ref}}: \mathbb{R}$, Area of reflector

 $T_{\text{ref}}: \mathbb{R}$, Temperature of reflector

```
e_{\text{ref}}: \mathbb{R}, Emissivity of reflector T_g: \mathbb{R}, Temperature of glass A_m: \mathbb{R}, Area of mass )
```

9.4.2 Environment Variables

- 1. Windows screen: Input Format Module takes the input using showing it on screen.
- 2. Windows keyboard: Input Format Module takes the input from the keyboard in the file.

9.4.3 Assumptions

None

9.4.4 Access Routine Semantics

Parameters:

- transition: This module is a simple data structure for storing the input values formatted by Input Format Module.
- output: None
- exception: None

9.4.5 Local Functions

None

10 MIS of Output Format Module

10.1 Module

output

10.2 Uses

- Input Parameter Module
- Hardware Hiding Module
- Plotting Result Module

10.3 Syntax

10.3.1 Exported Constants

None

10.3.2 Exported Access Programs

Name	In	Out	Exceptions
output	fileName: String, tempSeq: sequence of \mathbb{R} , energySeq: sequence of \mathbb{R} , t: time vector	Output File	MissingValueError, FileAlreadyExistError, OverflowError

10.4 Semantics

10.4.1 State Variables

None

10.4.2 Environment Variables

- 1. fileName: fileName is name of the file in which the output is saved.
- 2. Window screen: Output Format Module prints the result in the graph, which is shown to the screen.

10.4.3 Assumptions

The SCEC Control Module properly verified values against the constraint.

10.4.4 Access Routine Semantics

output(fileName, tempSeq, energySeq, t):

- transition: None
- input: Given fileName, 2D sequence of temperatures, and energy sequence of fluid. in := fileName, tempSeq, energySeq, t
- output: This module is able to output the file which contains output of the temperature and energy sequence.

 out := file
- exception: The Output Format Module gives the appropriate error message using local function.

verifyParameters(): A function to verify all the parameters.

• input: fileName

• output: None

• exception:

Expression	Exception	Description
If given fileName already exist in the location	FileAlreadyExistError	Change the name of the file or require permission to override the content.
If any of the input is missing	MissingValueError	Module requires 3 input values: fileName, temper- atureSeq, and energySeq
If result of calculated temperature and energy is too large	OverflowError	Occurs when size of result is too large for computer's memory

11 MIS of SCEC Control Module

11.1 Module

main

11.2 Uses

- Constant Value Module
- Energy Equation Module
- Hardware Hiding Module
- Input Format Module
- Output Format Module
- Temperature ODEs Module
- ODE Solver Module
- Sequence Data Structure Module

11.3 Syntax

11.3.1 Exported Constants

None

11.3.2 Exported Access Programs

Name	In	Out	Exceptions
main	-	Modifies output file	Various

11.4 Semantics

11.4.1 State Variables

- init_temp := $[\text{init_reflector_temp} \in \mathbb{R}, \text{init_fluid_temp} \in \mathbb{R}] \# \text{initial temperature values}$
- t := vector # vector of time
- temp := [sequence of reflector_temp $\in \mathbb{R}$, sequence of fluid_temp $\in \mathbb{R}$] # sequence 2D for temperatures
- e_f := [sequence of fluid_energy $\in \mathbb{R}$]

11.4.2 Environment Variables

None

11.4.3 Assumptions

None

11.4.4 Access Routine Semantics

main():

- transition: Control the order of execution of different modules as follow:
 - Set constant value using Constant Value Module (M2, Section 6).
 - Set inputted values to the appropriate variables using Input Format Module (M4, Section 8).
 - Set the time vector using Sequence Data Structure Module (M11, Section ??).
 - Temperature values for reflector and fluid is calculated using initial conditions by Temperature ODEs Module (M8, Section 12).

- Using the previous step output, energy of fluid is calculated in Energy Equation Module (M3, Section 7).
- Output is transferred to the output file with the help of Output Format Module and internally it also called Plotting Result Module for plotting result on graphs (M6, Section 10 and M10, Section 14).
- output: Main program request the Output Format Module at the end for producing file with plotted result.
- exception: Potential exceptions occurs are from different sub-modules only.

None

12 MIS of Temperature ODEs Module

12.1 Module

calculation

12.2 Uses

- Constant Value Module
- Input Parameter Module

12.3 Syntax

12.3.1 Exported Constants

None

12.3.2 Exported Access Programs

Name	In	Out	Exceptions
calculateOde	initial_condition sequence: $[T1 \in \mathbb{R}, T2 \in \mathbb{R}]$, params:	temperature: sequence of $[T1 \in \mathbb{R}]$,	TypeError, NameError,
	sequence of \mathbb{R}	quence of $[T1 \in \mathbb{R}]$	Missing-
		-	ValueError,
			EmptyArray-
			Error, Val-
			ueError

12.4 Semantics

12.4.1 State Variables

- $in_t \in \mathbb{R} \#$ Calculate and store inner temperature of the box.
- $q11 \in \mathbb{R}$ # Heat flow convection of the lid toward the inner box.
- $q12 \in \mathbb{R}$ # Heat flow radiation of the lid of the recipient toward the fluid.
- $q13 \in \mathbb{R}$ # Heat flow convection of recipient to the inner box.
- $q14 \in \mathbb{R}$ # Heat flow reflection of incident radiation on the reflector.
- $q15 \in \mathbb{R}$ # Heat flow radiation of recipient toward glass2.
- $q16 \in \mathbb{R}$ # Heat flow radiation of recipient toward the fluid.
- $q17 \in \mathbb{R}$ # Heat flow convection of recipient toward the fluid.
- $dr \in \mathbb{R} \#$ Temperature of reflector.
- $df \in \mathbb{R} \#$ Temperature of fluid.

12.4.2 Environment Variables

None

12.4.3 Assumptions

None

12.4.4 Access Routine Semantics

calculation(initial_condition, params):

- transition: Temperature is calculated as follows:
 - Calculate and set the value of *in_t* which is an inner temperature of the box calculate by performing mean of glass, lid of recipient and reflector temperature.

$$in_{-}t = \frac{T_{\rm glass} + T_{\rm lid} + T_{\rm ref}}{3}$$

- Calculate and store the values of qs using the input params.

$$q11 = A_{t}h_{t-int3}(T_{t} - T_{f})$$

$$q12 = A_{t}\sigma\epsilon_{t}(T_{t}^{4} - T_{f}^{4})$$

$$q13 = A_{ref}h_{ref-int2}(T_{int2} - T_{ref})$$

$$q14 = \sum_{i=1}^{n} \rho A_{ref,n}G\tau_{g}^{2}cos(90 - \theta_{ref,n})$$

$$q15 = A_{ref}\sigma\epsilon_{ref}(T_{ref}^{4} - T_{g2}^{4})$$

$$q16 = A_{\text{ref}} \sigma \epsilon_{\text{ref}} (T_{\text{ref}}^4 - T_f^4)$$

$$q17 = A_m h_{\text{ref-f}} (T_{\text{ref}} - T_f)$$

- Find the value of dr and df using qs and constant values.

$$dr = \frac{q13 + 4q14 - q15 - q16 - q17}{m_r c_r}$$

$$df = \frac{q11 + q12 + q16 + q17}{m_f c_f}$$

- Return calculated dr and df as a sequence.

• input:

 ${\rm in} := initial_condition, \, params$

- initial $_condition$ used for initial temperature values.
- params is a sequence of inputted parameters.
- output: Temperature ODEs Module give an output of 2D sequence which stores temperature of reflector and fluid.

out := s

- sequence $s = [\mathbb{R}, \mathbb{R}]$ # temperature of reflector and fluid
- exception:

Expression	Exception	Description
$(\forall i \in [0 s -1])(initial_condition[i] \notin \mathbb{R})$	TypeError	Valid initial input for the temperature se- quence are real num- bers.
If any of the input is missing	MissingValueError	Module requires 3 input values: fileName, temperatureSeq, and energySeq
If tries to use variable that is not declared.	NameError	Variables those are declared in the module can accessible.

12.4.5 Local Functions

verifytemp(): A function to verify the temperature sequence.

• input: temp

• output: None

• exception:

Expression	Exception	Description
$(dr < 0 \lor df < 0)$	ValueError	Valid temperature value should not negative
$(dr = \emptyset \lor df = \emptyset)$	EmptyArrayError	Temperature sequence should not null

13 MIS of ODE Solver Module

13.1 Module

solver

13.2 Uses

- $\bullet\,$ Temperature ODEs Module
- Sequence Data Structure Module

13.3 Syntax

13.3.1 Exported Constants

None

13.3.2 Exported Access Programs

Name	In	Out	Exceptions
solveOde	funcName: String, init_cond:	temperature: sequence of	ValueError,
	sequence of \mathbb{R} , t: vector, args:	$\{\mathbb{R},\mathbb{R}\}$	TypeError,
	sequence of \mathbb{R}		OverflowError,
			RuntimeError

13.4 Semantics

13.4.1 State Variables

None

13.4.2 Environment Variables

13.4.3 Assumptions

All input parameters to the solveOde() are correct and verified by the SCEC Control Module.

13.4.4 Access Routine Semantics

solveOde():

- transition: ODE is calculated as follows:
 - Takes specified inputs as a parameter.
 - With specified function name (first argument) in solveOde, initial conditions, time interval and extra parameters the solution is to be computed.
 - Output is store in the local variable.
- input:

```
in := funcName, init\_cond, t, args
```

- funcName = String # Name of the function (calculation, defined in section 12).
- $-init_cond =$ sequence s of $[\mathbb{R}, \mathbb{R}] \#$ Initial temperature condition.
- -t = vector # Time internal vector for calculate the temperature over time.
- -args =sequence s of \mathbb{R} # Different parameters used by the function.
- output: ODE Solver Module give an output of 2D sequence from Temperature ODEs Module using programming library.
 - out := sequence s
- exception:

Expression	Exception	Description
$ (\forall i \in [0 s -1])(initial_condition[i] \notin \mathbb{R} \lor initial_condition[i] \notin \mathbb{N} \lor initial_condition[i] \notin \mathbb{Z}) $	ValueError	Valid initial input for the temperature se- quence are real or nat- ural numbers.
$solveOde(init_cond, funcName, t, args)$	TypeError	Module requires 4 input values in order of funcName, init_cond, t and args.
If solution of solveOde results larger value of temperature than range of double.	OverflowError	Limit of the temperature should be correct.
If the specified function has some prob- lems	RuntimeError	Function should work properly in order to solve the integration of ODE.

None

14 MIS of Plotting Result Module

This module usually handle by the programming language. For SCEC system, we are using matplotlib to plot the result. So, exceptions are handled by the language itself.

14.1 Module

plot

14.2 Uses

• Hardware Hiding Module

14.3 Syntax

14.3.1 Exported Constants

14.3.2 Exported Access Programs

Name	In	Out	Exceptions
plot	t: time vector, s: sequence of R	TypeError	-
	quence of \mathbb{R}		

14.4 Semantics

14.4.1 State Variables

None

14.4.2 Environment Variables

Windows screen: As this module display a graph on screen, it uses screen for it.

14.4.3 Assumptions

None

14.4.4 Access Routine Semantics

plot():

- transition: Graph is plotted in following procedure:
 - Takes valid inputs as an argument of the function.
 - Plot the result in the graph.
 - Give label to the graph.
 - Show graph on user's screen.
- input:

in := t, s

- output: Plotting Result Module display the graph using the received input parameters. output := graph
- exception: None

14.4.5 Local Functions

15 MIS of Sequence Data Structure Module

The Sequence Data Structure Module is handled by the programming language. For the purpose of sequences, SCEC is using NumPy.

15.1 Module

sequential

15.2 Uses

None

15.3 Syntax

15.3.1 Exported Constants

None

15.3.2 Exported Access Programs

None

15.4 Semantics

15.4.1 State Variables

None

15.4.2 Environment Variables

None

15.4.3 Assumptions

None

15.4.4 Access Routine Semantics

None

15.4.5 Local Functions

16 Appendix

Table 2: Possible errors for input

Var	Physical Constraints	Error Message
$A_{\rm ref}$	$0 < A_{\text{ref}} \le 1$	Invalid Input Error
A_m	$0 < A_m \le 1$	Invalid Input Error
A_t	$0 < A_t \le 1$	Invalid Input Error
$T_{ m f}$	$20 < T_{\rm f} < 100$	Invalid Input Error
$T_{\rm ref}$	$20 < T_{\rm ref} < 100$	Invalid Input Error
$T_{ m g2}$	$20 < T_{\rm g2} < 100$	Invalid Input Error
$T_{ m t}$	$20 < T_{\rm t} < 100$	Invalid Input Error
$\epsilon_{ m ref}$	$0 < \epsilon_{\rm ref} < 1$	Invalid Input Error
$\epsilon_{ m t}$	$0 < \epsilon_{\rm t} < 1$	Invalid Input Error

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.