RACHUNEK RÓŻNICZKOWY I JEGO ZASTOSOWANIA

Definicja

Załóżmy, że dana jest funkcja $f:(a,b)\to\mathbb{R}$ oraz że $x_0\in(a,b)$ jest ustaloną liczbą w tym przedziale. Jeżeli istnieje skończona granica

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

to nazywamy ją **pochodną funkcji** f w punkcie x i oznaczamy symbolem $f'(x_0)$.

Zatem
$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h}$$
, o ile ta granica istnieje i jest skończona.

Jeżeli funkcja f ma pochodną w punkcie x_0 , to mówimy, że funkcja f jest **różniczkowalna** w punkcie x_0 .

Uwaga

Wyrażenie $\frac{f(x_0+h)-f(x_0)}{h}$ nazywamy **ilorazem różnicowym** funkcji f w punkcie x_0 dla przyrostu h.

Interpretacja geometryczna pochodnej

Iloraz różnicowy to tangens kąta nachylenia siecznej AB do osi OX, czyli współczynnik kierunkowy siecznej AB.

Gdy $h \to 0$, to punkt $B \to A$. Wtedy sieczna staje się styczną S do wykresu funkcji f w punkcie x_0 . Zatem pochodną $f'(x_0)$ interpretujemy jako tangens kąta jaki styczna S tworzy z dodatnim kierunkiem osi OX, tzn. $f'(x_0) = \operatorname{tg}\alpha$. Inaczej mówiąc, pochodna $f'(x_0)$ to współczynnik kierunkowy stycznej do wykresu funkcji f w punkcie x_0 .

Dla ustalonego $x_0 \in \mathbb{R}$ można łatwo wyprowadzić wzór na styczną do wykresu funkcji, jeżeli funkcja ma pochodną w punkcie x_0 . Na podstawie wcześniejszych obserwacji równanie stycznej do wykresu funkcji f w punkcie x_0 ma postać $y = f'(x_0) \cdot x + b$. Ponadto punkt styczności $(x_0, f(x_0))$ należy do stycznej, więc $f(x_0) = f'(x_0) \cdot x_0 + b$, stąd $b = f(x_0) - f'(x_0) \cdot x_0$. Zatem równanie stycznej do wykresu funkcji f w punkcie x_0 ma postać: $y = f'(x_0) \cdot x + f(x_0) - f'(x_0) \cdot x_0$.

Na podstawie tego wyprowadzenia sformułujmy twierdzenie:

Twierdzenie

Załóżmy, że dana jest funkcja $f:(a,b)\to\mathbb{R}$, która jest różniczkowalna w punkcie $x_0\in(a,b)$. Wtedy równanie stycznej do wykresu funkcji f w punkcie x_0 ma postać $y=f'(x_0)(x-x_0)+f(x_0)$.

Przykład

Korzystając z definicji obliczyć pochodną funkcji $f(x) = \frac{1}{x+4}$ w dowolnym punkcie $x_0 \in \mathbb{R} \setminus \{-4\}$.

Rozwiązanie

Niech $x_0 \neq -4$. Wtedy mamy

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{\frac{1}{x_0 + h + 4} - \frac{1}{x_0 + 4}}{h} = \lim_{h \to 0} \frac{\frac{x_0 + 4 - x_0 - h - 4}{(x_0 + h + 4)(x_0 + 4)}}{h} = \lim_{h \to 0} \frac{-h}{(x_0 + h + 4)(x_0 + 4)} \cdot \frac{1}{h} = \lim_{h \to 0} \left(-\frac{1}{(x_0 + h + 4)(x_0 + 4)} \right) = -\frac{1}{(x_0 + 4)^2}.$$

Zatem dla $x \neq -4$ mamy $f'(x) = -\frac{1}{(x+4)^2}$.

Przykład

Korzystając z definicji obliczyć pochodną funkcji g(x) = |x - 3| w punkcie $x_0 = 3$.

Rozwiązanie

$$g'(3) = \lim_{h \to 0} \frac{g(3+h) - g(3)}{h} = \lim_{h \to 0} \frac{|3+h-3| - |3-3|}{h} = \lim_{h \to 0} \frac{|h|}{h}$$

Powyższa granica nie istnieje, ponieważ mamy

$$\lim_{h \to 0^{-}} \frac{|h|}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = -1$$

oraz

$$\lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = 1.$$

Skoro granica $\lim_{h\to 0} \frac{g(3+h)-g(3)}{h}$ nie istnieje, to również pochodna funkcji h w punkcie $x_0=3$ nie istnieje.

Pochodna funkcji w punkcie jest granicą (obustronną). Oprócz granicy (obustronnej) funkcji rozważamy również granice jednostronne funkcji. W związku z tym, definiujemy również pochodne jednostronne funkcji w punkcie x_0 .

Definicja

Załóżmy, że $x_0 \in \mathbb{R}$ oraz funkcja f jest określona przynajmniej na lewostronnym otoczeniu punktu x_0 . **Pochodną lewostronną** funkcji f w punkcie x_0 , którą oznaczamy przez $f'_-(x_0)$, nazywamy granicę właściwą

$$f'_{-}(x_0) = \lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Definicja

Załóżmy, że $x_0 \in \mathbb{R}$ oraz funkcja f jest określona przynajmniej na prawostronnym otoczeniu punktu x_0 . **Pochodną prawostronną** funkcji f w punkcie x_0 , którą oznaczamy przez $f'_+(x_0)$, nazywamy granicę właściwą

$$f'_{+}(x_0) = \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Przykład

Pokazaliśmy w poprzednim przykładzie, że pochodna funkcji g(x) = |x - 3| w punkcie $x_0 = 3$ nie istnieje. Obliczmy pochodne jednostronne funkcji g w punkcie $x_0 = 3$:

$$g'_{-}(3) = \lim_{h \to 0^{-}} \frac{g(3+h) - g(3)}{h} = \lim_{h \to 0^{-}} \frac{|3+h-3| - |3-3|}{h} = \lim_{h \to 0^{-}} \frac{|h|}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = -1$$

$$g'_{+}(3) = \lim_{h \to 0^{+}} \frac{g(3+h) - g(3)}{h} = \lim_{h \to 0^{+}} \frac{|3+h-3| - |3-3|}{h} = \lim_{h \to 0^{+}} \frac{|h|}{h} = \lim_{h \to 0^{+}} \frac{h}{h} = 1.$$

Zatem funkcja h nie ma pochodnej w punkcie $x_0 = 3$, ale ma pochodne jednostronne w tym punkcie, które są różne.

Twierdzenie

Funkcja f ma pochodną w punkcie x_0 wtedy i tylko wtedy, gdy $f'_{-}(x_0) = f'_{+}(x_0)$.

Wzory na pochodne ważniejszych funkcji elementarnych

$$(c)' = 0$$
, gdzie $c \in \mathbb{R}$

$$(x^p)' = px^{p-1}$$
, gdzie $p \in \mathbb{R}$

$$(\sin x)' = \cos x \, dla \, x \in \mathbb{R}$$

$$(\cos x)' = -\sin x \, dla \, x \in \mathbb{R}$$

$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x} \operatorname{dla} x \neq \frac{\pi}{2} + k\pi, \operatorname{gdzie} k \in \mathbb{Z}$$

$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x} \operatorname{dla} x \neq k\pi, \operatorname{gdzie} k \in \mathbb{Z}$$

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}} dla \ x \in (-1,1)$$

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}} dla \ x \in (-1,1)$$

$$(\operatorname{arctg} x)' = \frac{1}{1+x^2} dla \ x \in \mathbb{R}$$

$$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2} \operatorname{dla} x \in \mathbb{R}$$

$$(a^x)' = a^x \ln a$$
dla $a \in (0,1) \cup (1,\infty), x \in \mathbb{R}$

$$(e^x)' = e^x \text{ dla } x \in \mathbb{R}$$

$$(\log_a x)' = \frac{1}{x \ln a}$$
, gdzie $a \in (0,1) \cup (1,\infty)$, $x \in (0,\infty)$

$$(\ln x)' = \frac{1}{x} dla \ x \in (0, \infty)$$

Przykład

Wykazać słuszność wzoru $(\ln x)' = \frac{1}{x}$ dla $x \in (0, \infty)$.

Rozwiązanie

Korzystając z definicji pochodnej, dla $x_0 \in (0, \infty)$ mamy

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{\ln(x_0 + h) - \ln x_0}{h} = \lim_{h \to 0} \frac{\ln \frac{x_0 + h}{x_0}}{h} = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \ln\left(1 + \frac{h}{x_0}\right$$

Twierdzenie

Załóżmy, że funkcje $f,g:(a,b)\to\mathbb{R}$ są różniczkowalne w punkcie $x\in(a,b)$. Wtedy funkcje $f+g,\,f-g,\,c\cdot f$ $(c=\mathrm{const}),\,f\cdot g,\,\frac{f}{g}$ (o ile $g(x)\neq 0$) są różniczkowalne w punkcie x oraz zachodzą równości:

$$(c \cdot f)'(x) = c \cdot f'(x), \ c \in \mathbb{R},$$
$$(f+g)'(x) = f'(x) + g'(x),$$
$$(f-g)'(x) = f'(x) - g'(x)$$
$$(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x),$$
$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}.$$

Przykład

Obliczyć pochodne funkcji

a)
$$f(x) = \frac{4}{5}x^{10} + \frac{1}{2}x^6 + 3x^3 - 4$$

b)
$$f(x) = \frac{1}{x} + \frac{5}{x^7} - \sqrt[3]{x^2} + \frac{2}{\sqrt[4]{x}}$$

c) $f(x) = 2^x + \arcsin x - e^4$
d) $f(x) = \sqrt{x} \sin x$
e) $f(x) = \frac{x^2 - 3x}{2x^3 + 1}$

c)
$$f(x) = 2^x + \arcsin x$$

d)
$$f(x) = \sqrt{x} \sin x$$

e)
$$f(x) = \frac{x^2 - 3x}{2x^3 + 1}$$

Twierdzenie (o pochodnej funkcji złożonej)

Jeżeli funkcja g ma pochodną w punkcie x_0 i funkcja h ma pochodną w punkcie $g(x_0)$, to

$$(h \circ g)'(x_0) = (h(g(x_0)))' = h'(g(x_0)) \cdot g'(x_0).$$

Prawdziwy jest analogiczny wzór dla dowolnej liczby składanych funkcji.

Przykład Obliczyć pochodne funkcji

a)
$$f(x) = \sin 4x$$

b)
$$f(x) = \sqrt{3x^2 + 5x}$$

c)
$$f(x) = \sin^3 x + (2x^2 + 1)^5$$

d)
$$f(x) = \sin x + (2x + 1)$$

e)
$$f(x) = e^{\cos\sqrt{x}} \left(\frac{x^2 - 1}{x^2 + 1}\right)^4$$

Uwaga Przy obliczaniu pochodnej funkcji postaci $(f(x))^{g(x)}$ stosujemy wzór

$$(f(x))^{g(x)} = e^{g(x)\ln f(x)}, \text{ gdzie } f(x) > 0.$$

Przykład

Obliczyć pochodną funkcji $f(x) = x^{\sin x}, x > 0.$

Rozwiązanie

Dla x > 0 mamy

$$f'(x) = \left(x^{\sin x}\right)' = \left(e^{\sin x \ln x}\right)' = e^{\sin x \ln x} (\sin x \ln x)' = e^{\sin x \ln x} \left(\cos x \ln x + \frac{\sin x}{x}\right) = x^{\sin x} \left(\cos x \ln x + \frac{\sin x}{x}\right).$$