UC Irvine Statistics 131a - Summer 2013

Estimating Population Size

n = # members of a coyote population

10 coyotes are captured, tagged, and released.

Some respectable time later, 20 coyotes are captured.

A = {4 of the 20 captured coyotes are tagged]

Problem: From the information, give an estimate of n.

$$(A) = \frac{\binom{10}{4}\binom{n-10}{16}}{\binom{n}{20}} = f(n)$$

Find n that makes P(A) the largest. The most probable thing is probably what happened.

Look at ratio

$$\frac{f(n+i)}{f(n)} > 1$$

When the ratio stops being > 1, that is our estimator

$$\frac{f(n+2)}{f(n+1)} < \frac{1}{2}$$

$$\frac{3:40}{f(n)} \frac{f(n+1)}{f(n)} = \frac{\binom{n-9}{16}\binom{n}{20}}{\binom{n+1}{16}\binom{n-10}{16}} = \frac{\binom{n-9}{16}\binom{n-10}{(n-10)!}\binom{n-10}{20!}}{\binom{n+1}{16}\binom{n-10}{(n-19)!}\binom{n-19}{20!}}$$

$$= \frac{(n-9)! \, n! \, (n-26)! \, (n-19)!}{(n-10)! \, (n+1)! \, (n-25)! \, (n-20)!} = \frac{(n-9) \, (n-19)}{(n+1) \, (n-25)}$$

Find last (n+1) for which this is > 1

First n for which this is < 1

$$\frac{(N-9)(N-19) > (N+1)(N-75)}{N^2-28N+171 > N^2-24N-25}$$

$$\frac{196 > 4N}{199 > N} \Rightarrow \frac{18+1}{2} = 49$$

estimated population size After 49, probability starts going down

Multinomial Theorem

You want to store nobjects in relasets with no objects in closet 1, no in closet 2, ...

no in closet r where

\(\sigma n_i = n \)

How many ways are there to do this?

use mutt. princ.

Simplify this idea

The Multinomial Theorem

$$(\chi_1 + \chi_2 + \dots + \chi_r)^n = \sum_{z_{n_1} = n} \left(\frac{n_1 n_2 \dots n_r}{n_1 n_2 \dots n_r} \right)^{x_1^{n_1} \chi_2^{n_2} \dots \chi_r^{n_r}}$$

Poker Example

How many ways to deal six hands with five cards each from a deck of 52 cards?

5 cards in first six boxes The remainder go in box seven: 22

$$\left(\frac{52}{5555522} \right) = \frac{52!}{(5!)^6 22}$$

Example: # possible Bridge hands?
$$\left(\frac{52}{13 \ 13 \ 13}\right) = \frac{52!}{(3!)^4}$$

Conditional Probability and Independence

If events A,B < R and P(B)>0 then the probability of Agiven 18 is: P(A/B) = P(A/B)

26:35

Example: You roll a fair die. What is P(A|B) if $A = \{6 \text{ appears}\}\$ and $B = \{\text{the outcome is even}\}\$?

$$\frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(B)} = \frac{1}{2} = \frac{1}{2}$$

29:25 Can rewrite above equation as: PLANB = P(AIB)P(B)

Law of a Total Probability

If
$$B_1, ..., B_n$$
 are mutually disjoint events

 $U B_i = \mathcal{R}$ and $P(B_i) = 0$, $i=1,2,...,n$

Then $P(A) = \sum_{i=1}^{n} P(A|B_i) P(B_i)$

$$= \sum_{i=1}^{n} P(A \cap B_i) = P(\widehat{U}(A \cap B_i))$$

$$= P(A \cap (\widehat{U} B_i)) \text{ by De Morgan's Law}$$

$$= P(A \cap R) = P(A)$$

Urn Problem

A gum ball is drawn at random. Its color is noted and replaced together with two more of the same color. Then the step is repeated.

If $G_z = \{ the second gumball drawn is green } What is PLG_z \}$

Condition on what happened the first time, - Law of Total Probability

The union exhausts all possibilities

$$P(G_1) = \frac{5}{13} > 0$$
, $P(W_1) = \frac{6}{13} > 0$

 $P(G_2) = P(G_2|G_1)P(G_1) + P(G_2|W_1)P(W_1) = \frac{7}{15} \cdot \frac{5}{13} \cdot \frac{5}{15} \cdot \frac{5}{13}$

If G3 = { the third gumball drawn is green} What is P(G3)?

$$C_1 \wedge C_2 - C_1 C_2$$
 $C_1 \wedge W_2 - C_1 W_7$

All disjoint. Union of all possibilities = Ω

$$W_1 \cap G_2 - W_1 G_2$$
 $W_1 \cap W_2 - W_1 W_2$

All probabilities are > 0. Therefore we can use the Law of Total Probability

P(G3) = P(G3) G2G1) P(G2G1) + P(G3/G1W2) P(G1W2) + P(63/W,62) P(W,62) + P(63/W,W2) P(W,W2)

$$= \frac{9}{17} P(G_2 | G_1) P(G_1) + \frac{7}{17} P(W_2 | G_1) P(G_1)$$

$$+ \frac{7}{17} P(G_2 | W_1) P(W_1) + \frac{5}{17} P(W_2 | W_1) P(W_1)$$

51:50 Bayes Rule

Under the same conditions as the Law of Total Probability

53:45 Example

Let
$$A = G_2$$
, $B_1 = W_1$, $B_2 = G_1$ What's $P(W_1 | G_2)$? — What's caver given effect?

$$P(W_1 | G_2) = P(G_2 | W_1) P(W_1) = \frac{5}{15} \cdot \frac{8}{13}$$

$$P(G_2 | W_1) P(W_1) + P(G_2 | G_1) P(G_1) = \frac{5}{15} \cdot \frac{9}{13} + \frac{7}{15} \cdot \frac{5}{13}$$

Independence

1:00:50

A = {H second toss}, B = {H first toss}, C = {T on first toss}

$$P(A \cap B) = \Phi$$
 $P(A) = P(A \cap B) + P(A \cap C) = \frac{1}{4} + \frac{1}{4} = \frac{1}{4}$
 $P(B) = \frac{1}{4}$
 $P(A)P(B) = \frac{1}{4}$

There's memory in the urn problem so there's not independence.

1:06:00

A dart is thrown repeatedly at a target and the probability of a bull's eye is 0.05. If the dart is thrown n times and the trials are independent,

What is P(A) if $A = \{at | bull's | eye | occurs \}?$

$$\rho(A) = 1 - P(A^c) - \text{It's easier to calculate the probability of no bull's eye}$$

$$= 1 - (.95)^{n} - \text{Probability of failing n times in a row}$$