DS2: Optique - corrigé

Exercice 1: DIOPTRE SEMI-CYLINDRIQUE

- 1. $CA' = CH + HA' = R\cos(i) + R\sin(i)/\tan(r-i) = R(\cos(i) + \sin(i)/\tan(r-i))$
- 2. Conditions de Gauss=rayons paraxiaux. Donc $d \ll R$.
- 3. Dans ces conditions : $\cos(i) \simeq 1$, $\sin(i) \simeq i$ et $\tan(r-i) \simeq r-i$. La seconde loi de Descartes donne $n\sin(i) = r$ soit ni = r. On trouve finalement $CF' = R \times n/(n-1)$.
- 4. On a réflexion totale pour $r = \pi/2$ soit $n \sin(i_l) = 1$. Avec $\sin(i) = d/R$ on trouve $d_l = R/n$.
- 5. A.N. : $d \simeq 3.3 \, \text{cm}$

Exercice 2 : Deux prismes accolés

- 1. En I_1 on a : $N\sin(45^\circ)=n\sin(r)$, soit $N\frac{\sqrt{2}}{2}=n\sin(r)$. En I_3 on a $n\sin(\beta)=\sin(i)$
- 2. On a $r + \alpha = \frac{\pi}{2}$ et $\alpha + \beta + \frac{3\pi}{4} = \pi$ soit $\alpha + \beta = \frac{\pi}{4}$.
- 3. On est à la limite de la réflexion totale en I_2 lorsque $n\sin(\alpha)=1$ soit $n\cos(r)=1$ donc $r=\arccos\left(\frac{1}{n}\right)$. On a donc $N\frac{\sqrt{2}}{2}=n\sin\left(\arccos\left(\frac{1}{n}\right)\right)$ On obtient alors $N^2=2(n^2-1)$.
- 4. Pour que la réflexion soit totale en I_2 il faut que l'angle d'incidence soit plus grand que l'angle d'incidence limite, donc le rayon doit être moins dévié en I_1 et donc on doit avoir $N < N_0$. (Sur le schéma, on a n < N)
- 5. Si i=0 alors $\beta=0$ et $\alpha=\frac{\pi}{4}$ et donc $r=\frac{\pi}{4}=45^\circ$. Ce qui signifie que le rayon n'est pas dévié en I_1 . Pour cela on doit avoir n=N.

Problème 1 : RÉFRACTOMÈTRES

1 Questions préliminaires

- 1. Dans un milieu d'indice n, la célérité de la lumière est $v=\frac{c}{n}$
- 2. **réflexion :** Le rayon réfléchi est dans le plan d'incidence et i = r (angle d'incidence=angle réflechi)
 - **réfraction :** Le rayon réfracté est dans le plan d'incidence et $n_1 \sin(i_1) = n_2 \sin(i_2)$ (faire un petit schéma pour indiquer ce que sont i_1 , i_2 , n_1 et n_2)

2 Le réfractomètre de Pulfrich

- 3. $n\sin(\pi/2) = N\sin(r)$ donc $r = \arcsin\left(\frac{n}{N}\right)$
- 4. $r' + r = \pi/2$

- 5. On trouve $\theta = 62,80^{\circ}$
- 6. Les valeurs extrêmes de l'indice sont celles pour lesquelles $\theta=0$ ou $\theta=\pi/2$. Pour $\theta=0$ On a $n_{\max}=N$ et pour $\theta=\pi/2$ on a $n_{\min}=\sqrt{N^2-1}=1.25$

3 Le réfractomètre d'Abbe

- 7. La somme des angles du triangle de sommet A vaut π . Donc $\pi/2 r_0 + \pi/2 r_0' + \theta = \pi$ d'où $r_0 + r_0' = \theta$
- 8. La seconde loi de Descartes donne : $n \sin(\pi/2) = N \sin(r_0)$ donc $\sin(r_0) = \frac{n}{N}$.
- 9. $\sin(i_0') = N \sin(r_0')$ donc $r_0' = \arcsin(\sin(i_0')/N).$ Or

$$n = N\sin(r_0) = N\sin(\theta - r_0') = N\sin(\alpha - \arcsin(\sin(i_0')/N))$$

10. A.N. : n = 1.238

Exercice 3 : Tracé de rayons

Construire les rayons émergents correspondant aux rayons incidents suivants (en faisant apparaître les traits de construction)

2019-2020 page 3/3