MATH 162: Calculus II Framework for Wed., Feb. 7 Numerical Integration

Numerical approximations to definite integrals

- Riemann (rectangle) sums already give us approximations

 Main types: left-hand, right-hand and midpoint rules
- Question: Why rectangles?
 - trapezoids
 - * Area of a trapezoid with bases b_1 , b_2 , height h

- * Approximation to $\int_a^b f(x) dx$ using n steps all of width $\Delta x = (b-a)/n$ (Trapezoid Rule)
- * Remarkable fact: Trapezoid rule does not improve over midpoint rule.
- parabolic arcs
 - * $\int_{-h}^{h} g(x) dx$, when $g(x) = Ax^2 + Bx + C$ is chosen to pass through $(-h, y_0)$, $(0, y_1)$ and (h, y_2)

* Approximation to $\int_a^b f(x) dx$ using n (even) steps all of width Δx (Simpson's Rule)

• Error bounds

- No such thing available for a general integrand f
- Formulas (available when f is sufficiently differentiable)
 - * Trapezoid Rule. Suppose f'' is continuous throughout [a, b], and $|f''(x)| \le M$ for all $x \in [a, b]$. Then the error E_T in using the Trapezoid rule with n steps to approximate $\int_a^b f(x) dx$ satisfies

$$|E_T| \leq \frac{M(b-a)^3}{12n^2}.$$

* Simpson's Rule. Suppose $f^{(4)}$ is continuous throughout [a, b], and $|f^{(4)}(x)| \le M$ for all $x \in [a, b]$. Then the error E_S in using Simpson's rule with n steps to approximate $\int_a^b f(x) dx$ satisfies

$$|E_S| \leq \frac{M(b-a)^5}{180n^4}.$$

- Use
 - * For a given n, gives an upper bound on your error
 - * If a desired upper bound on error is sought, may be used to determine a priori how many steps to use