

CANDIDATE

z5496297

TEST

Quiz 3

Subject code	
Evaluation type	
Test opening time	28.02.2024 07:00
End time	06.03.2024 07:00
Grade deadline	
PDF created	13.08.2024 06:33

Question	Status	Marks	Question type
1.1	Correct	1/1	Multiple Choice
1.2	Partially Correct	0.25/1	Multiple Response
1.3	Correct	1/1	Multiple Response
1.4	Correct	1/1	Multiple Response
1.5	Partially Correct	0.2800000011920929/1	Multiple Response
2.1	Correct	1/1	Multiple Response
2.2	Correct	1/1	Multiple Response
2.3	Correct	1/1	Multiple Response
2.4	Correct	1/1	True / False
2.5	Wrong	0/1	True / False

- **1.1** Consider the graph with:
 - vertex set {0,1}×{0,1}×{0,1}
 - an edge between two vertices if they differ in exactly two co-ordinates

What is the degree sequence of this graph?

Select one alternative:

- 0 1,1,1,1,1,1,1
- 0,0,2,2,2,2,0,0
- 0,4,4,0,0,00,00,0
- 0,0,0,8,0,0,0,0

None of the above

1.2 Which of the following graphs are isomorphic to this graph:

Select all that apply:

1.3 Consider the following graph:

Starting from Vertex 0, which of the following sequences of vertices *could* arise as a sequence of **explored** vertices when performing a **breadth-first traversal** (according to lectures)?

Select all that apply:

0,2,1,3,5,4,8,6,7

0,1,2,3,6,5,4,7,8

0,1,3,4,5,8,7,6,2

0,3,2,1,4,5,6,8,7

0,1,2,3,4,5,6,7,8

0,3,5,8,7,6,4,2,1

1.4 Consider the following graph:

Starting from Vertex 0, which of the following sequences of vertices could arise as a sequence of **explored** vertices when performing a **depth-first traversal** (according to lectures)?

Select all that apply:

1.5 Consider the following graph:

Which of the following properties does this graph have?

Select all that apply:

2.1 Which of the following statements are true for any graph with n≥1 vertices and m≥0 edges? Select all that apply:

- ☑ If m < n-1 then the graph is not connected
- ☐ If m < n then the graph is acyclic
- If m ≥ n-1 then the graph is connected
- If m ≥ n then the graph contains a cycle

2.2 Let D_0 , D_1 , D_2 , D_3 be the degree sequence of a **tree** with $n \ge 2$ vertices (assume $D_k = 0$ for $k \ge 4$)

Which of the following must necessarily hold:

Select all that apply

 $D_0 = 0$

②

- \square $D_2 \ge D_3$
- \square $D_3 \ge D_2$
- D₁ ≥ 2

- D₁ is even
- $D_1 = 2 + D_3$

2.3 Which of the following graphs have an Eulerian circuit?

Select all that apply

2.4 Let G be a finite directed graph where every vertex has in-degree and out-degree at most 1.

True or false:

G has a vertex of out-degree 0 if and only if G has a vertex of in-degree 0.

2.5 True or false:

If a graph has chromatic number at least 3, then it must contain a subdivision of K₃

