

planetmath.org

Math for the people, by the people.

deviance

Canonical name Deviance

Date of creation 2013-03-22 14:34:04 Last modified on 2013-03-22 14:34:04

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771)
Entry type Definition
Classification msc 62J12
Defines null model

Defines saturated model

Background

In testing the fit of a generalized linear model \mathcal{P} of some data (with response variable \mathbf{Y} and explanatory variable(s) \mathbf{X}), one way is to compare \mathcal{P} with a similar model \mathcal{P}_0 . By similarity we mean: given \mathcal{P} with the response variable $Y_i \sim f_{Y_i}$ and link function g such that $g(\mathbf{E}[Y_i]) = \mathbf{X}_i^{\mathrm{T}} \boldsymbol{\beta}$, the model \mathcal{P}_0

- 1. is a generalized linear model of the same data,
- 2. has the response variable Y distributed as f_Y , same as found in \mathcal{P}
- 3. has the same link function g as found in \mathcal{P} , such that $g(E[Y_i]) = \mathbf{X}_i^T \boldsymbol{\beta_0}$

Notice that the only possible difference is found in the parameters β .

It is desirable for this \mathcal{P}_0 to be served as a base model in case when more than one models are being assessed. Two possible candidates for \mathcal{P}_0 are the *null model* and the *saturated model*. The null model \mathcal{P}_{null} is one in which only one parameter μ is used so that $g(\mathbf{E}[Y_i]) = \mu$, all responses have the same predicted outcome. The saturated model \mathcal{P}_{max} is the other extreme where the maximum number of parameters are used in the model so that the observed response values equal to the predicted response values exactly, $g(\mathbf{E}[Y_i]) = \mathbf{X}_i^{\mathrm{T}} \boldsymbol{\beta}_{max} = y_i$

Definition The *deviance* of a model \mathcal{P} (generalized linear model) is given by

$$\operatorname{dev}(\mathcal{P}) = 2 \left[\ell(\hat{\boldsymbol{\beta}}_{max} \mid \mathbf{y}) - \ell(\hat{\boldsymbol{\beta}} \mid \mathbf{y}) \right],$$

where ℓ is the log-likelihood function, $\hat{\boldsymbol{\beta}}$ is the MLE of the parameter vector $\boldsymbol{\beta}$ from \mathcal{P} and $\hat{\boldsymbol{\beta}}_{max}$ is the MLE of parameter vector $\boldsymbol{\beta}_{max}$ from the saturated model \mathcal{P}_{max} .

Example For a normal or general linear model, where the link function is the identity:

$$\mathrm{E}[Y_i] = \mathbf{x}_i^{\mathrm{T}} \boldsymbol{\beta},$$

where the Y_i 's are mutually independent and normally distributed as $N(\mu_i, \sigma^2)$. The log-likelihood function is given by

$$\ell(\beta \mid \mathbf{y}) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu_i)^2 - \frac{n \ln(2\pi\sigma^2)}{2},$$

where $\mu_i = \mathbf{x}_i^{\mathrm{T}} \boldsymbol{\beta}$ is the predicted response values, and n is the number of observations.

For the model in question, suppose $\hat{\mu}_i = \mathbf{X}_i^{\mathrm{T}} \hat{\boldsymbol{\beta}}$ is the expected mean calculated from the maximum likelihood estimate $\hat{\boldsymbol{\beta}}$ of the parameter vector $\boldsymbol{\beta}$. So,

$$\ell(\hat{\beta} \mid \mathbf{y}) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \hat{\mu}_i)^2 - \frac{n \ln(2\pi\sigma^2)}{2},$$

For the saturated model \mathcal{P}_{max} , the predicted value $(\hat{\mu}_{max})_i$ = the observed response value y_i . Therefore,

$$\ell(\hat{\boldsymbol{\beta}}_{max} \mid \mathbf{y}) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - (\hat{\mu}_{max})_i)^2 - \frac{n \ln(2\pi\sigma^2)}{2} = -\frac{n \ln(2\pi\sigma^2)}{2}.$$

So the deviance is

$$\operatorname{dev}(\mathcal{P}) = 2\left[\ell(\hat{\boldsymbol{\beta}}_{max} \mid \mathbf{y}) - \ell(\hat{\boldsymbol{\beta}} \mid \mathbf{y})\right] = \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \hat{\mu}_i)^2,$$

which is exactly the residual sum of squares, or RSS, used in regression models.

Remarks

- The deviance is necessarily non-negative.
- The distribution of the deviance is asymptotically a http://planetmath.org/ChiSquaredRar square distribution with n-p degrees of freedom, where n is the number of observations and p is the number of parameters in the model p
- If two generalized linear models \mathcal{P}_1 and \mathcal{P}_2 are nested, say \mathcal{P}_1 is nested within \mathcal{P}_2 , we can perform hypothesis testing H_0 : the model for the data is \mathcal{P}_1 with p_1 parameters, against H_1 : the model for the data is the more general \mathcal{P}_2 with p_2 parameters, where $p_1 < p_2$. The deviance difference $\Delta(\text{dev}) = \text{dev}(\mathcal{P}_2) \text{dev}(\mathcal{P}_1)$ can be used as a test statistic and it is approximately a chi square distribution with $p_2 p_1$ degrees of freedom.

References

[1] P. McCullagh and J. A. Nelder, *Generalized Linear Models*, Chapman & Hall/CRC, 2nd ed., London (1989).

[2] A. J. Dobson, An Introduction to Generalized Linear Models, Chapman & Hall, 2nd ed. (2001).