Density of States

Yi J Zhu

April 24, 2021

0.1 Density of States

It is often useful to know the density of states (DOS) as function of energy. To begin, how is the DOS defined?

First, we define $N(\epsilon)$ as the total number of states with energy less than or equal to ϵ . Then, the density of states is,

$$D(\epsilon) = \frac{\mathrm{d}N}{\mathrm{d}\epsilon} \tag{0.1}$$

In other words,

$$N(\epsilon) = \int_0^{\epsilon} D(\epsilon') \, d\epsilon' \tag{0.2}$$

0.2 Particle in a Box

The energy eigenstates of a particle in a cubical box of length L with no potential (V=0) are,

$$\psi(x, y, z) = \sin\left(\frac{n_x \pi}{L}x\right) \sin\left(\frac{n_y \pi}{L}y\right) \sin\left(\frac{n_z \pi}{L}z\right)$$
(0.3)

where,

$$\epsilon = \frac{\pi^2 \hbar^2}{2mL^2} (n_x^2 + n_y^2 + n_z^2); \quad n_x, n_y, n_z \in \mathbb{N}$$
 (0.4)

The states are equal spaced in three-dimensions in "n-space," but how do we relate this to energy? If we define the variable,

$$n = \sqrt{n_x^2 + n_y^2 + n_z^2} (0.5)$$

then,

$$\epsilon = \frac{\pi^2 \hbar^2}{2mL^2} n^2 \tag{0.6}$$

Now, we must find N(n). Notice that the contour of n is a sphere in "n-space." However, $n_x, n_y, n_z > 0$, so N(n) must be the volume of a octant of radius n.

Figure 1: (a) contour for $n = \sqrt{n_x^2 + n_y^2 + n_z^2}$, (b) contour for $n = n_x + n_y + n_z$

Therefore, the number of states up to n is given by,

$$N(n) = \frac{1}{8} \left(\frac{4}{3} \pi n^3 \right) = \frac{\pi}{6} n^3 \tag{0.7}$$

The density of states as a function of n,

$$D(n) = \frac{\mathrm{d}N}{\mathrm{d}n} = \frac{\pi}{2}n^2 \tag{0.8}$$

Finally,

$$D(n) dn = D(\epsilon) d\epsilon \tag{0.9}$$

$$D(\epsilon) = D(n) \left(\frac{\mathrm{d}n}{\mathrm{d}\epsilon}\right) = \left(\frac{\pi}{2}n^2\right) \left(\frac{mL^2}{\pi^2\hbar^2n}\right) = \frac{mL^2}{2\pi\hbar^2}n\tag{0.10}$$

Where n is a function of ϵ ,

$$D(\epsilon) = \frac{mL^2}{2\pi\hbar^2} \sqrt{\frac{2mL^2\epsilon}{\pi^2\hbar^2}}$$
 (0.11)

$$D(\epsilon) = \frac{L^3}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \epsilon^{1/2}$$
(0.12)

This method generalizes to 1 and 2-dimensions.

0.3 Harmonic Oscillator

Suppose now that we are trying to find the DOS of a harmonic oscillator with energy (ignoring the zero-point energy),

$$\epsilon = (n_x + n_y + n_z)\hbar\omega \tag{0.13}$$

Now, the energy is no longer a function of n as we have defined it in the previous section (eq. 0.5). We must now define n to be,

$$n = n_x + n_y + n_z \tag{0.14}$$

$$\epsilon = n\hbar\omega \tag{0.15}$$

Again, we can find N(n); but now, notice that the contour of n is no longer a sphere, but a plane (Fig. 1). Thus,

$$N(n) = \frac{1}{3}A \cdot h = \frac{1}{3} \left(\frac{1}{2}n^2\right) \cdot n = \frac{n^3}{6}$$
 (0.16)

As before, we can manipulate this into the DOS in energy,

$$D(n) = \frac{\mathrm{d}N}{\mathrm{d}n} = \frac{n^2}{2} \tag{0.17}$$

$$D(\epsilon) = D(n) \left(\frac{\mathrm{d}n}{\mathrm{d}\epsilon}\right) = \left(\frac{n^2}{2}\right) \left(\frac{1}{\hbar\omega}\right) \tag{0.18}$$

$$D(\epsilon) = \frac{\epsilon^2}{2(\hbar\omega)^3}$$
 (0.19)