

LEAN SIX SIGMA DEFINE PHASE

"There is no substitute for knowledge." - DR.William Edwards Deming

COURSE CONTENT

Coverage:

- Non parametric test for non normal data
- Other discrete hypothesis testing tools

Pre Requisites			
Data Type Continuous			
Distribution Non - Normal			
Equal Variance (More than 1 sample data set)			

1 Sample Sign test

Determine whether the median of a sample differs significantly from a specified value

<u>Business Scenario:</u> Admin manager of a MSME company want to check if the fuel efficiency of the new truck is meeting the number committed by the truck maker (6KM per litre)

Minitab exercise
Refer: 1 Sample Sign test

Pre Requisites			
Data Type Continuous			
Distribution Non - Normal			
Equal Variance (More than 1 sample data set)			

1 Sample Sign test

Null hypothesis Median of fuel efficiency = 6 KM/L

Alternative hypothesis Median of fuel efficiency < 6 KM/L

Sign test of median = $6.000 \text{ versus} \neq 6.000$

N Below Equal Above KM/L 30 28 0 2

P 0.0000 Median 3.986

P-Value < 0.05 go with Alternative hypothesis

P-Value > 0.05 go with Null hypothesis

1 Sample Wilcoxon test

Determine whether the median of a sample differs significantly from a specified value. Used When the data follow a symmetric distribution

Pre Requisites			
Data Type Continuous			
Distributi on	Non – Normal (but symmetric)		
Equal Variance (More than 1 sample data set)			

Business Scenario: Admin manager of a MSME company want to check if the fuel efficiency of the new truck is meeting number committed by the truck maker 6KM per litre

Minitab exercise
Refer: 1 Sample Sign test

1 Sample Wilcoxon test

Null hypothesis Median of fuel efficiency = 6 KM/L
Alternative hypothesis Median of fuel efficiency < 6 KM/L

Wilcoxon Signed Rank Test: KM/L

Test of median = 6.000 versus median ≠ 6.000

_			n Esti		
	Ν	Test	Statistic	Р	Median
KM/L	30	30	3.0	0.000	4.009

P-Value < 0.05 go with Alternative hypothesis P-Value > 0.05 go with Null hypothesis

Pre Requisites			
Data Type Continuous			
Distributio n	Non – Normal (but symmetric)		
Equal Variance (More than 1 sample data set)			

Pre Requisites			
Data Type	Continuous		
Distributi Non – Normal (but Similar) on			
Equal Variance (More than 1 sample data set)			

Mann Whitney test

Determine whether the median two groups differ when the data for both the groups have similar distribution

<u>Business Scenario:</u> Packing department supervisor in chemical company need to check if the excess weight for a 300 KG chemical bag packed by team A and team B are same

Minitab exercise
Refer: Mann Whitney test

LEAN SIX SIGMA

Hypothesis testing - MEDIAN

Mann Whitney test

Pre Requisites		
Data Type Continuous		
Distributi Non – Normal (but Similar) on		
Equal Variance (More than 1 sample data set)		

Null hypothesis: Median Excess weight - Team A = Median Excess weight - Team B

Alternative hypothesis: Median Excess weight - Team A ≠ Median Excess weight - Team B

N Median

Excess weight - Team A 30 14.070

Excess weight - Team B 30 7.623

Point estimate for $\eta 1 - \eta 2$ is 6.095

95.2 Percent CI for $\eta 1 - \eta 2$ is (5.581,6.577)

W = 1364.0

Test of $\eta 1 = \eta 2$ vs $\eta 1 \neq \eta 2$ is significant at 0.0000

P-Value < 0.05 go with Alternative hypothesis P-Value > 0.05 go with Null hypothesis

LEAN SIX SIGMA

Hypothesis testing - MEDIAN

Pre Requisites		
Data Type	Continuous	
Distributi on	Non – Normal & No Similar	
Equal Variance (More than 1 sample data set)		

Moods Median test

Determine whether the median two or more groups differ when you are not confident if groups have similar distribution

<u>Business Scenario:</u> Maintenance supervisor of a commercial facility want to check if the Co2 emission of three brands of diesel generators in the facility are same.

Minitab exercise Refer : Moods Median test

LEAN SIX SIGMA

Hypothesis testing - MEDIAN

Moods Median test

Pre Requisites		
Data Type	Continuous	
Distributi Non – Normal & No Similar on		
Equal Variance (More than 1 sample		

data set)

Null hypothesis: Median Co2 emission of all 3 gen-sets are same

Alternative hypothesis: Median Co2 emission at lest 1 gen-sets is different

Mood median test for Co2 - KG/Gal

Chi-Square = 43.47 DF = 2 P = 0.000

Gen-set	N≤ N>	Median	Q3-Q
Gen-set A	18 12	13.28	0.68
Gen-set B	26 4	12.72	1.01
Gen-set C	1 29	15.79	0.96

Overall median = 13.40

P-Value < 0.05 go with Alternative hypothesis

P-Value > 0.05 go with Null hypothesis

Chi - Square Goodness of fit

Determine whether the sample Outcomes of multiple events meet target proportion

Pre Requisites		
Data Type	Discrete Ordinal or Nominal	
Distributi on	Chi- square	

<u>Business Scenario:</u> Trainer vinoth has done 3 pilot batches for a training company and ad per the company policy participant feed back should be in below proportion to confirm vinoth as a regular trainer. As a training manager what will you do

Outcome	Target Percent
Rating 1	10
Rating 2	20
Rating 3	25
Rating 4	30
Rating 5	15

Minitab exercise Refer : Chi-Square GOF

Chi - Square Goodness of fit

Pre Requisites	
Data Type	Discrete Ordinal or Nominal
Distribu tion	Chi- square

Chi - Square test of association

The chi-square test for association determines whether the percentage of items in each outcome category is significantly different for two samples.

Pre Requisites	
Data Type	Discrete Ordinal or Nominal
Distributi on	Chi- square

<u>Business Scenario:</u> Compare the Good, Average and Bad ratings of North Indian Thali and south Indian Thali in a restaurant

Minitab exercise Refer : Chi-Square GOF

Chi - Square Goodness of fit

Pre Requisites		
Data Type	Discrete Ordinal or Nominal	
Distributi on	Chi- square	

Chi - Square Goodness of fit

Pre Requisites		
Data Type	Discrete Ordinal or Nominal	
Distribut ion	Chi- square	

Six Sigma is a quality program that, when all is said and done, improves your customers' experience, lowers your costs, and builds better leaders.

— Jack Welch —

