Лекция 3 от 16.09.2016. Алгоритм Карацубы, алгоритм Штрассена

Перемножение 2 длинных чисел с помощью FFT

Пусть $x = \overline{x_1 x_2 \dots x_n}$ и $y = \overline{y_1 y_2 \dots y_n}$. Распишем их умножение в столбик:

$$\begin{array}{c} \times x_1 \, x_2 \dots x_n \\ x_1 \, y_2 \dots y_n \\ z_{11} \, z_{12} \dots z_{1n} \\ + \dots \dots \\ \underline{z_{n1}} \, z_{n2} \dots z_{nn} \\ \underline{z_{n1}} \, z_{n2} \dots z_{nn} \\ \underline{z_{11}} \, z_{21} \dots \dots z_{2n} \end{array}$$

Понятно, что наивное умножение 2 длинных чисел будет иметь сложность $O(n^2)$.

Давайте научимся перемножать 2 числа быстрым преобразованием Φ урье за $O(n \log n)$.

Пусть
$$a = \overline{a_{n-1} \dots a_0}, b = \overline{b_{n-1} \dots b_0}.$$

Тогда введём многочлены
$$f(x) = \sum_{i=0}^{n-1} a_i x^i, g(x) = \sum_{i=0}^{n-1} b_i x^i.$$

За
$$O(n \log n)$$
 мы можем найти $h(x) = (f(x) \cdot g(x)) = \sum_{i=0}^{2n-2} c_i x^i$.

После этого надо аккуратно провести переносы разрядов таким образом и после этого развернуть полученное число, отбросив ненужные нули в начале:

Algorithm 1 Умножение 2 длинных чисел.

1: **function** Умножение 2 длинных чисел(h(x))
ightharpoonup h(x) — перемножение 2 многочленов f(x) и g(x).
2: $carry \leftarrow 0$ 3: **for** $i \leftarrow 0$ to 2n - 1 **do**4: $h_i \leftarrow h_i + carry$ 5: $carry \leftarrow \left\lfloor \frac{h_i}{10} \right\rfloor$ 6: $h_i \leftarrow h_i$ mod 10

Но этот метод плохо применим на практике из-за того, что быстрое преобразование Фурье имеет очень большую константу.

Алгоритм Карацубы

Какое-то время человечество не знало алгоритмов перемножения быстрее, чем за $O(n^2)$. А.Н. Колмогоров считал, что это вообще невозможно. В один момент собрались математики на мехмате МГУ и решили доказать, что это невозможно. Но один из аспирантов (Анатолий Алексевич Карацуба) Колмогорова пришёл и сказал, что у него получилось сделать это быстрее. Давайте посмотрим, как:

Будем считать, что $n=2^k$ (если это не так, дополним нулями, сложность вырастет лишь в константу раз).

Для начала просто попробуем воспользоваться стратегией «Разделяй и властвуй». Разобьём числа в разрядной записи пополам. Тогда

$$\times \begin{cases}
x = 10^{n/2}a + b \\
y = 10^{n/2}c + d
\end{cases}$$

$$\downarrow xy = 10^n ac + 10^{n/2}(ad + bc) + bd$$

Как видно, получается 4 умножения чисел размера $\frac{n}{2}$. Так как сложение имеет сложность $\Theta(n)$, то

$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n)$$

Чему равно T(n)? Если посмотреть на дерево исходов или воспользоваться индукцией, то получим, что $T(n) = O(n^2)$, что, конечно, неэффективно.

Анатолий Алексеевич проявил недюжие способности и предложил следующее:

Разложим (a+b)(c+d):

$$(a + b)(c + d) = ac + (ad + bc) + bd \implies ad + bc = (a + b)(c + d) - ac - bd$$

Подставим это в начальное выражение для xy:

$$xy = 10^{n}ac + 10^{n/2}((a+b)(c+d) - ac - bd) + bd$$

Отсюда видно, что достаточно посчитать три числа размера $\frac{n}{2}$: (a+b)(c+d), ac и bd. Тогда:

$$T(n) = 3T\left(\frac{n}{2}\right) + \Theta(n)$$

Докажем, что $T(n) = O(n^{\log_2 3})$.

Рассмотрим дерево исходов: в каждой вершине дерева мы выполняем не более Cm действий, где C —какая-то фиксированная константа, а m — размер числа на данном шаге, поэтому

$$T(n) \leqslant Cn\left(1+rac{3}{2}+\ldots+rac{3^{\log_2 n}}{2^{\log_2 n}}
ight)$$
, так как на каждом шаге мы запускаемся 3 раза от задачи в 2 раза

Откуда
$$T(n)\leqslant Cn\cdot \frac{\frac{3}{2}^{\log_2 n}-1}{1/2}=2Cn^{\log_2 3}=O(n^{\log_2 3})\approx O(n^{1.5849})$$

Полученный алгоритм называется алгоритмом Карацубы.

Перемножение матриц. Алгоритм Штрассена

После идеи А.А. Карацубы, появились многие алгоритмы, использующие ту же идею. Одним из этих алгоритмов является алгоритм Штрассена. Будем считать, что $n=2^k$ снова (оставляем читалелю самим подумать, как дополнить матрицы $m \times t, t \times u$, чтобы потом лего восстановить ответ)

Пусть у нас есть квадратные матрицы

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 w
$$B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix}$$

Сколько операций нужно для умножения матриц? Умножим их по определению. Матрицу C = AB заполним следующим образом:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Всего в матрице n^2 элементов. На получение каждого элемента уходит O(n) операций (умножение за константное время и сложение n элементов). Тогда умножение требует $n^2O(n) = O(n^3)$ операций.

Попробуем применить аналогичную стратегию «Разделяй и властвуй». Представим матрицы A и B в виде:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
 и $B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$

где каждая матрица имеет размер $\frac{n}{2}$. Тогда матрица C будет иметь вид:

$$C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

Как видно, получаем 8 перемножений матриц порядка $\frac{n}{2}$. Тогда

$$T(n) = 8T\left(\frac{n}{2}\right) + O(n^2)$$

По индукции получаем, что $T(n) = O\left(n^{\log_2 8}\right) = O(n^3)$.

Можно ли уменьшить число умножений до 7? <u>Алгоритм Штрассена</u> утверждает, что можно. Он предлагает ввести следующие матрицы (даже не спрашивайте, как до них дошли):

$$\begin{cases} M_1 = (A_{11} + A_{22})(B_{11} + B_{22}); \\ M_2 = (A_{21} + A_{22})B_{11}; \\ M_3 = A_{11}(B_{12} - B_{22}); \\ M_4 = A_{22}(B_{21} + B_{11}); \\ M_5 = (A_{11} + A_{12})B_{22}; \\ M_6 = (A_{21} - A_{11})(B_{11} + B_{12}); \\ M_7 = (A_{12} - A_{22})(B_{21} + B_{22}); \end{cases}$$

Тогда

$$\begin{cases}
C_1 = M_1 + M_4 - M_5 + M_7; \\
C_2 = M_3 + M_5; \\
C_3 = M_2 + M_4; \\
C_4 = M_1 - M_2 + M_5 + M_6;
\end{cases}$$

Можно проверить что всё верно (оставим это как наказание упражнение читателю). Сложность алгоритма:

$$T(n) = 7T\left(\frac{n}{2}\right) + O(n^2) \implies T(n) = O\left(n^{\log_2 7}\right) \approx O(n^{2.8073})$$

Доказательство времени работы такое же, как и в алгоритме Карацубы.

Также существует модификация алгоритма Штрассена, где используется лишь 15 сложений матриц на каждом шаге, вместо 18 предъявленных выше.

Эквивалентность асимптотик некоторых алгоритмов

Этот раздел не войдёт в экзамен.

Здесь мы поговорим об обращении и перемножении 2 матриц. Докажем, что асимптотики этих алгоритмов эквивалентны.

Теорема 1 (Умножение не сложнее обращения). Если можно обратить матрицу размеров $n \times n$ за время T(n), где $T(n) = \Omega(n^2)$, и T(3n) = O(T(n)) (условие регулярности), то две матрицы размером $n \times n$ можно перемножить за время O(T(n))

Доказательство. Пусть A и B матрицы одного порядка размера $n \times n$. Пусть

$$D = \begin{pmatrix} I_n & A & 0 \\ 0 & I_n & B \\ 0 & 0 & I_n \end{pmatrix}$$

Тогда легко понять, что

$$D^{-1} = \begin{pmatrix} I_n & -A & AB \\ 0 & I_n & -B \\ 0 & 0 & I_n \end{pmatrix}$$

Матрицу D мы можем построить за $\Theta(n^2)$, которое является O(T(n)), поэтому с условием регулярности получаем, что M(n) = O(T(n)), где M(n) — асимптотика перемножения 2 матриц.

С обратной теоремой предлагаем ознакомиться в книге Кормена или Ахо, Хопкрофта и Ульмана.