Semantic Theory Week 2 – Type Theory

Noortje Venhuizen Harm Brouwer

Universität des Saarlandes

Summer 2020

First-order logic

First-order logic talks about:

- Individual objects
- Properties of and relations between individual objects
- Quantification over individual objects

Limitations of first-order logic

FOL is not expressive enough to capture all meanings that can be expressed by basic natural language expressions:

Jumbo is a <u>small</u> elephant. (Predicate modifiers)

Happy is a state of mind. (Second-order predicates)

Yesterday, it rained. (Non-logical sentence operators)

Bill and John have the same hair color. (Higher-order quantification)

→ What *logically sound* system can capture this diversity?

Introducing Russell's paradox

From: Logicomix - An epic search for truth; A. Doxiadis, C.H. Papadimitriou, A. Papadatos and A. Di Donna

Russell's paradox for Higher-Order Logic

What if we extend the FOL interpretation of predicates, and simply interpret higherorder predicates as sets of sets of properties?

Then, for every predicate P, we can define a set $\{x \mid P(x)\}$ containing all and only those entities for which P holds.

Now what if we define a set $S = \{X \mid X \notin X\}$ representing the set of all sets that are not members of itself..

Paradox: does S belong to itself?

If it does, then S must satisfy its constraints, namely that it doesn't belong to itself, which is not possible if we assume it belongs to S.

If not, then S is a set that doesn't belong to itself, hence it belongs to S.

→ Conclusion: We need a more restricted way of talking about properties and relations between properties!

Type Theory

In Type Theory, all logical expressions are assigned a *type* (that may be basic or complex), which restricts how they can be combined.

Basic types:

- e the type of individual terms ("entities")
- t the type of formulas ("truth-values")

Complex types:

• If σ , τ are types, then $\langle \sigma, \tau \rangle$ is a type

 \rightarrow This represents a functor expression that takes an expression of type σ as its **argument** and returns an expression of type τ ; this functor is sometimes written as $(\sigma \rightarrow \tau)$ or simply $(\sigma \tau)$ (as in Winter-EFS)

Types & Function Application

Types of first-order expressions:

- Individual constants (Luke, Death Star): e → entity
- One-place predicates (walk, jedi): ⟨e, t⟩ → function from entities to truth values
 (i.e., a property)
- Two-place predicates (admire, fight with): ⟨e, ⟨e, t⟩⟩ → function from entities to properties

Function application: Combining a functor of complex type $\langle \alpha, \beta \rangle$ with an appropriate argument of type α , results in an expression of type β : $\langle \alpha, \beta \rangle \langle \alpha$

- jedi'(luke') :: $\langle e, t \rangle \langle e \rangle \implies t \rightarrow \text{"luke is a jedi" has a truth value (true or false)}$
- admire'(luke') :: ⟨e,⟨e, t⟩⟩(e) ⇒ ⟨e, t⟩ → "(to) admire luke" is a property

More examples of types

Types of higher-order expressions:

- Predicate modifiers (expensive, small): ⟨⟨e, t⟩, ⟨e, t⟩⟩ → function from properties
 to properties
- Second-order predicates (state of mind): ⟨⟨e, t⟩, t⟩
 → property of properties
- Sentence operators (yesterday, unfortunately): ⟨t, t⟩ → function from truth values
 to truth values
- Degree particles (very, too): ⟨⟨⟨e, t⟩, ⟨e, t⟩⟩, ⟨⟨e, t⟩, ⟨e, t⟩⟩
 → complex function..

Tip: If σ , τ are basic types, $\langle \sigma, \tau \rangle$ can be abbreviated as $\sigma \tau$. Thus, the type of predicate modifiers and second-order predicates can be more conveniently written as $\langle \mathbf{et}, \mathbf{et} \rangle$ and $\langle \mathbf{et}, \mathbf{t} \rangle$, respectively.

Type Theory — Vocabulary

Non-logical constants:

For every type τ a (possibly empty) set of non-logical constants CON_τ (pairwise disjoint)

Variables:

• For every type $\mathbf{\tau}$ an infinite set of variables VAR_{τ} (pairwise disjoint)

Logical symbols: \forall , \exists , \neg , \land , \lor , \rightarrow , \leftrightarrow , =

Brackets: (,)

Type Theory — Syntax

For every type τ , the set of well-formed expressions WE_T is defined as follows:

- (i) $CON_T \subseteq WE_T$ and $VAR_T \subseteq WE_T$;
- (ii) If $\alpha \in WE_{(\sigma, \tau)}$, and $\beta \in WE_{\sigma}$, then $\alpha(\beta) \in WE_{\tau}$; (function application)
- (iii) If A, B are in WE_t, then \neg A, (A \wedge B), (A \vee B), (A \rightarrow B), (A \leftrightarrow B) are in WE_t;
- (iv) If A is in WE_t and x is a variable of arbitrary type, then $\forall xA$ and $\exists xA$ are in WE_t;
- (v) If α , β are well-formed expressions of the same type, then $\alpha = \beta \in WE_t$;
- (vi) Nothing else is a well-formed expression.

NB. This prevents us from running into Russell's paradox!

Type inferencing

Types can be derived for all expressions that constitute the logical form of a sentence, as defined by its syntactic structure.

"Luke is a talented jedi"

```
talented' :: \langle \langle e, t \rangle, \langle e, t \rangle \rangle jedi':: \langle e, t \rangle
```

luke':: e

```
talented'(jedi'):: (e, t)
```

talented'(jedi')(luke'):: t

Note: we here ignore the semantic contribution of "is" and "a" (see Winter, pg 61)

Type inferencing: examples

Recommended strategy: Start by describing the logical form of the sentences (how are expressions combined logically, based on the given syntactic bracketing), then derive types from there (see previous slide).

- 1. Yoda_e [is faster than Palpatine_e].
- 2. Yodae [is much [faster than]] Palpatinee.

- 3. [[Han Solo]_e fights] [<u>because</u> [[the Dark Side]_e is rising]].
- 4. Obi-Wane [[told [Qui-Gon Jinn]e] he will take [the Jedi-exam]e].

Higher-order predicates

Higher-order quantification:

Leia has the same <u>hair colour</u> as Padmé

$$\exists C \; (hair_colour(C) \land C(I') \land C(p')) \\ \\ \langle \langle e, t \rangle, t \rangle \qquad \langle e, t \rangle \qquad e$$

Higher-order equality:

- For p, $q \in CON_t$, "p=q" expresses material equivalence: "p \leftrightarrow q".
- For F, G \in CON_(e, t), "F=G" expresses co-extensionality: " \forall x(Fx \leftrightarrow Gx)"
- For any formula ϕ of type t, $\phi=(x=x)$ is a representation of " ϕ is true".

Type Theory — Semantics [1]

Let **U** be a non-empty set of entities.

The domain of possible denotations \mathbf{D}_{τ} for every type $\boldsymbol{\tau}$ is given by:

- $D_e = U$
- $D_t = \{0,1\}$
- $D_{\langle \sigma, \tau \rangle}$ is the set of all functions from D_{σ} to D_{τ}

For any type τ , expressions of type τ denote elements of the domain D_{τ}

Characteristic functions

Many natural language expressions have a type (σ, t)

Expressions with type $\langle \sigma, t \rangle$ are functions mapping elements of type σ to truth values: $\{0,1\}$

Such functions with a range of $\{0,1\}$ are called *characteristic functions*, because they uniquely specify a subset of their domain D_{σ}

The characteristic function of set M in a domain U is the function $F_M: U \rightarrow \{0,1\}$ such that for all $a \in U$, $F_M(a) = 1$ iff $a \in M$.

NB: For first-order predicates, the FOL representation (using sets) and the type-theoretic representation (using characteristic functions) are equivalent.

Interpretation with characteristic functions: example

For $M = \langle U, V \rangle$, let U consist of five entities. For selected types, we have the following sets of possible denotations:

•
$$D_t = \{0,1\}$$

•
$$D_e = U = \{e_1, e_2, e_3, e_4, e_5\}$$

•
$$D_{\langle e,t\rangle} = \{ \begin{bmatrix} e_1 \to 1 \\ e_2 \to 0 \\ e_3 \to 1 \\ e_4 \to 0 \\ e_5 \to 1 \end{bmatrix}, \begin{bmatrix} e_1 \to 1 \\ e_2 \to 1 \\ e_3 \to 0 \\ e_4 \to 1 \\ e_5 \to 1 \end{bmatrix}, \begin{bmatrix} e_1 \to 0 \\ e_2 \to 1 \\ e_3 \to 1 \\ e_4 \to 0 \\ e_5 \to 0 \end{bmatrix}, \dots \}$$

Alternative set notation: $D_{\langle e,t\rangle} = \{\{e_1,e_3,e_5\},\{e_1,e_2,e_4,e_5\},\{e_2,e_3\},...\}$

Type Theory — Semantics [2]

A model structure for a type theoretic language is a tuple $\mathbf{M} = \langle \mathbf{U}, \mathbf{V} \rangle$ such that:

- U is a non-empty domain of individuals
- **V** is an interpretation function, which assigns to every $\alpha \in CON_{\tau}$ an element of D_{τ} (where τ is an arbitrary type)

The variable assignment function g assigns to every typed variable $\mathbf{v} \in \mathbf{VAR}_{\tau}$ an element of \mathbf{D}_{τ}

Type Theory — Interpretation

Given a model structure $M = \langle U, V \rangle$ and a variable assignment g:

For any variable v of type σ :

• $[\exists v \varphi]^{M,g}$ = 1 iff there is a $d \in D_{\sigma}$ such that $[\![\varphi]\!]^{M,g[v/d]} = 1$ • $[\![\forall v \varphi]\!]^{M,g}$ = 1 iff for all $d \in D_{\sigma}$: $[\![\varphi]\!]^{M,g[v/d]} = 1$

Interpretation: Example

Luke is a talented jedi

[talented'(jedi')(luke')]M,g

- = [talented'(jedi')]M,g ([luke']M,g)
- = $[talented']^{M,g}([jedi']^{M,g})([luke']^{M,g})$
- = V_M(talented')(V_M(jedi'))(V_M(luke'))

Interpretation: Example (cont.)

[Luke is a talented jedi] M,g = VM(talented')(VM(jedi'))(VM(luke'))

Defining the right model

Consider the following Model M:

$$D_e = U_M = \{e_1, e_2, e_3, e_4, e_5\}$$

 $V_M(anakin'_e) = V_M(darth_vader'_e) = e_2$

$$V_{M}(jedi'_{\langle e,t\rangle}) = \begin{bmatrix} e_{1} \rightarrow 1 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 1 \\ e_{4} \rightarrow 1 \\ e_{5} \rightarrow 0 \end{bmatrix} \quad V_{M}(dark_sider'_{\langle e,t\rangle}) = \begin{bmatrix} e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 0 \\ e_{5} \rightarrow 1 \end{bmatrix}$$

Note that here "powerful" is truth-preserving:

Powerful $X_{\langle e,t \rangle} \models X_{\langle e,t \rangle}$

Adjective classes & Meaning postulates

Some valid inferences in natural language:

- Bill is a poor piano player ⊨ Bill is a piano player
- Bill is a blond piano player ⊨ Bill is blond
- Bill is a former professor ⊨ Bill isn't a professor
- → These entailments do not hold in type theory by definition. Why?

Meaning postulates: restrictions on models which constrain the possible meaning of certain words

Adjective classes & Meaning postulates (cont.)

Restrictive or Subsective adjectives ("poor")

- $[poor N] \subseteq [N]$
- Meaning postulate: ∀G∀x(poor(G)(x) → G(x))

Intersective adjectives ("blond")

- [blond N] = [blond] ∩ [N]
- Meaning postlate: $\forall G \forall x (blond(G)(x) \rightarrow (blond^*(x) \land G(x))$
- NB: blond \in WE $\langle\langle e, t \rangle, \langle e, t \rangle\rangle \neq blond^* \in$ WE $\langle e, t \rangle$

Privative adjectives ("former")

- \llbracket former $N \rrbracket \cap \llbracket N \rrbracket = \varnothing$
- Meaning postlate: $\forall G \forall x (former(G)(x) \rightarrow \neg G(x))$

Background reading material

- Gamut: Logic, Language, and Meaning Vol II (Chapter 4)
- Winter: Elements of Formal Semantics (Chapter 3) http://www.phil.uu.nl/~yoad/efs/main.html