2.2 LIMITS INVOLVING INFINITY (5)
EXAMPLE A Y=X3 X Y
/im x = 00 10 1000 x -> 00 1,000,000
EXAMPLE B 200100
lim x3 = -00 EXAMPLED
EXAMPLEC / lim Tan'x = -I
/im Tan'x = 7/2 X 00 2 X -> 00 2
IF f IS A CONSTANT FUNCTION
- fly = K. THEN lim fly - L
(f(x)=k, THEN /im f(x)=k
f(x)=k, THEN / im f(x)=k $f(x)=8 / im f(x)=8$
$f(x)=k$, THEN $\lim_{x\to c} f(x)=k$ $f(x)=8$ $\lim_{x\to c} f(x)=8$ THEOREM 5 P.67 $ x\to 3 $ SUM RULE
EXAMPLE $f(x) = k, \text{ THEN } / \text{im } f(x) = k$ $f(x) = 8 / \text{im } f(x) = 8$ $\text{THEOREM 5 } f.67 \times 3$ SUM RULE $D / \text{im} [f(x) + g(x)] = / \text{im } f(x) + / \text{im } g(x)$
EXAMPLE $f(x) = k, \text{ THEN } / \text{im } f(x) = k$ $f(x) = 8 / \text{im } f(x) = 8$ $\text{THEOREM 5. } f.67 \times \rightarrow 3$ SUM RULE $\text{Im } [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$ $\text{EX.} Im } \left[\frac{x^2 - 9}{x - 3} + 2 \right] = \lim_{x \to c} \frac{x^2 - 9}{x - 3} + \lim_{x \to c} \frac{2}{x - 3}$
EXAMPLE $f(x) = k, \text{ THEN } / \text{im } f(x) = k$ $f(x) = 8 / \text{im } f(x) = 8$ $\text{THEOREM 5 } f.67 \times 3$ SUM RULE $D / \text{im} [f(x) + g(x)] = / \text{im } f(x) + / \text{im } g(x)$

$$[2] \lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{4a}{5}$$

$$= \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{100x^2 - a^2}{10x - a} - \lim_{x \to g} \frac{100x^2 - a^2$$

END BEHAVIOR FOR RATIONAL FUNCTIONS (7)	
As $x \to \pm \infty$ $f(x) = \frac{p(x)}{h(x)}$	
ONLY THE HIGHEST ORDER TERM IN	
THE NUMERATOR AND DENOMINATOR ARE	
IMPORTANT IN DETERMINING END BEHAVIOR	
EX.8 Q LIKE 29-38	
$f(x) = \frac{2x^5 + x^4 - x^2 + 1}{3x^2 - 5x + 7}$ END $= \frac{2x}{3x^2} = \frac{2}{3}x^3$	
EX.8 6	
EX.8 6 f(x) = \frac{2\times^3 - \times^2 + \times - 1}{5\times^3 + \times^2 + \times - 5} \frac{\text{ENO}}{\text{BEHAVIOR}} = \frac{2\times^3}{5\times^3} = \frac{2}{5}	
THIS GRAPH WILL HAVE A HORIZ. ASYMP. Y= 35	
(GRAPH 80 WILL NOT HAVE A HORIZ. ASYMP.)	
VERT, ASYMP. OCCUR WHEN DENOM. = 0.	
$f(x) = \frac{2x}{x^2-1} \qquad \qquad \begin{cases} x^2-1=0 \\ x=\pm 1 \end{cases}$	
VEON NEVARD	
END DEPARTMENT HAR ASIMO	
$\frac{2\times}{\times^2} = \frac{2}{\times}$	
LI (IKE)	
lim f(x) = -00 / lim f(x) = 00 (17-20)	
HWORK 0.71-72 - 29-33,35,37,17,19,20,9,11)	
D.70 5 × 2	
RIGHT END X+00 -X	
LEFT END X+C = C	