

第8阶段:仓前

2024年8月31日至9月1日

该问题集应包含 13 个问题(A 至 M),共 23 页。

根据

国际大学生程序设计竞赛(ICPC)

主办方

问题 A. 宾果游戏

时间限制 2秒内存限制

1024 兆字节

你还记得 小学? 这里有一个更难的版本。

给你两个正整数 n 和 m,求 x > n 且 x 是好数**的**最小整数 x。 好数 x 满足 $x \equiv 0 \pmod{m}$ 或 x 包含 m 作为十进制表示的子串。

例如,当 m=3, n=7 时,x=9 是答案,因为 $9 \equiv 0 \pmod{3}$ 。当 m=3, n=12 时 x=13 是答案,因为 13 包含子串 3。

输入

第一行包含一个整数 T ($1 \le T \le 10^5$),代表测试用例的数量。

对于每个测试用例,一行包含两个整数 n 和 m $\left(1 \le n < 10^{10^6}, 1 \le m \le 10^9\right)$ 。n 不包含前导零。

保证 $\sum_{[\log_{10}(n)| \le 3 \times 10^6]}$

输出

对于每个测试用例,输出一行,其中包含一个整数 x, 代表答案。

示例

标准输入	标准输出
6	9
7 3	13
12 3	10
9 10	251
249 51	1370
1369 37	3
21	

第八阶段: 仓前, 2024年8月31日至9月1日

问题 B. 模拟宇宙

时间限制

1秒 内存限制

1024 兆字节

"星轨"混合了两种传统的逻辑谜题类型:"星际争霸"和"轨道池"。

- 星辰铁路,中巴14

糖糖正在玩他最喜欢的游戏《鸿海:星轨》。他正在玩一种名为 "模拟宇宙 "的游戏模式。

游戏玩法围绕着收集被称为 "祝福"(Blessings)和 "古玩"(Curios)的升级和神器来增强团队的力量,并完成包含难度逐渐增加的敌人的阶段。

在每次闯关开始时,玩家可以选择一条路径,这将赋予路径特定的 BUFF,并增加获得相应路径祝福的几率。在闯关过程中,玩家将完成不同类型的领域(战斗、发生、交易、遭遇、精英、喘息),最终目标是到达最终的 Boss 领域并击败 Boss。

祝福会通过各种途径积累,为团队提供各种被动效果和 BUFF。祝福可以通过随机事件或在 "喘息之域 "中升级,以增强其效果。玩家还将获得一种名为 "宇宙碎片 "的货币,可在某些随机事件中使用或用于升级祝福值。

- 祝福糖糖获得一个祝福,他的攻击值立即增加 1。如果糖糖至少拥有 1 个宇宙碎片,他可以 选择用 1 个宇宙碎片升级这个祝福,升级后的祝福可以使他的攻击值增加 2。一个祝福只能 升级一次。
- 古玩苏格获得一件古玩。古玩有两种类型,只能选择其中**一种**。在*第i*个领域获得的第一种 古玩可以升级不超过_i在*第i个*领域之前获得的未升级祝福,而在*第i个*领域获得的第二种古 玩可以立即提供 *b_i* 宇宙碎片。

请注意,宇宙碎片**不能**用于升级苏格已经获得的祝福。它只能用来升级提供祝福奖励的领域中的祝福,而且只能用来升级他在该领域中获得的祝福。而第一种古玩**只能**升级苏格已经获得的祝福

第八阶段: 仓前, 2024年8月31日至9月1日

糖糖在游戏开始时只有 0 个祝福值、0 个宇宙碎片和 0 个攻击值。请帮他计算通过 N 个领域后的最大攻击值。

输入

输入包含多个测试用例,第一行包含一个整数 t($1 \le t \le 10^3$),表示测试用例的数量。 对于每个测试用例,第一行包含一个整数 n($1 \le n \le 8 - 10^3$),表示域的数量。下面 n 行中的 \hat{g} i 行以单字符 t_i ($t_i \in \{B, C\}$)开始,表示奖励类型

第八阶段: 仓前, 2024年8月31日至9月1日

的域,是祝福还是古玩。如果 t_i = C,则后面会出现两个整数 a_i , b_i (1 $\leq a_i$, b_i $\leq n$),以上 述格式表示 Curio。

保证所有测试用例的 n 之和不超过 $8-10^3$ 。

输出

对于每个测试案例,在一行中输出一个整数,表示糖糖通过n个域后的最大攻击值。

示例

标准输入	标准输出
2	2
2	8
В	
C 1 1	
6	
В	
В	
C 2 1	
C 1 2	
В	
В	

问题 C. 挑战 NPC

时间限制 1秒内存限制

256 兆字节

Sugar 是一个基于 SAT 的约束 求解器。约束满足问题(CSP)被编码为布尔 CNF 公式,并 由外部 SAT 求解器求解。

- Sugar: 基于 SAT 的

约束求解器

众所周知,求图的色度数是一个 NPC 问题。然而,小塔尔延声称,他可以用一种简单的贪婪算法来解决这个问题:

为1到 n 个顶点着色。

 $\{col_v | v \le u, (v, u) \in E\}$ 到 col_u ,其中 E 是图的边集。例如, $MEX(\{1, 1, 2, 4\}) = 3$, $MEX(\emptyset) = 1$ 。

你想证明这种贪婪算法是完全错误的。请构建这样一个图形:你可以用 c 种颜色给这个图形着色,但贪心算法至少会用 c+k 种颜色给这个图形着色。

输入

唯一一行包含一个整数 k (1 $\leq k \leq 500$)。

输出

第一行包含三个整数 n、m 和 c(1 $\leq n \leq 1024$, $0 \leq m \leq n(n-1)$,1 $\leq c \leq n$),分别代表 顶点数、边数和可用于为该图着色的颜色数。

下面一行包含 n 个整数 col_1 , col_2 ... col_n (1 $\leq col_i \leq c$),表示您的着色。

下面的 m 行分别包含两个整数 u、v($1 \le u$, $v \le n$, $u \neq v$, $col_u \neq col_v$),代表你的图形中的一条边。

如果有多个解决方案,则输出任何一个。

示例

标准输入	标准输出
1	4 3 2
	1 2 2 1

第八阶段: 仓前, 2024年8月31日至9月1日 | 1 2 | 2 4 | 3 4

问题 D. 谜题:像拼字游戏—样简单

时间限制 1秒内存限制

1024 兆字节

很多谜题的变体往往比相应类 型的谜题更难。但矛盾的是, 就像一个单词加上两个字母后 会变得更短一样,有一种变体 会让任何类型的谜题变得更容 易。

- 弗雷迪-汉德

格莱美是一位谜题大师。今天,她要玩的是 "拼字游戏 "的变体--"像拼字游戏一样简单"。谜题由一个 $n \times m$ 的网格组成。每个单元格都要填上一个大写字母,或者留空。

谜题之外还有一些线索。外部线索表示该方向第一个非空单元格中的 字母。此外,一些单元格中可能包含 "x "标记,表示该单元格应该是空的。

例如,左边的图片展示了一个未解的谜题,右边的图片展示了谜题的解法。

格莱美希望找到谜题的答案。请帮助格莱美找出谜题的答案,或者报告没有答案。

输入

第一行包含 2 个整数 n、m(1 $\leq n$, $m \leq 1000$),分别表示网格的行数和列数。

下一行包含一个点("."),接着是m个字符 U_i ,表示网格上方的线索,然后是一个点(".")。

接下来的 n 行中,每一行都包含一个线索 L_i ,然后是 m 个字符 c_{ij} ,接着是一个线索 R_i ,分别表示网格左边的线索、网格单元格和网格右边的线索。

第八阶段: 仓前, 2024年8月31日至9月1日

下一行包含一个点("."),接着是m个字符 D_i ,表示网格下方的线索,后面是一个点(".")。

每个线索 U_i , L_i , R_i , D_i 要么是一个大写英文字符,要么是一个点(".")。每个中心单元 c_{ij} 要么是一个 "x",要么是一个点(".")。

输入中的所有点表示相应位置为空。

第八阶段: 仓前, 2024年8月31日至9月1日

输出

如果解决方案不存在,则单行输出 "NO"。

否则,在第一行输出 "是",然后输出 n 行,每行包含 m 个字符,表示谜题的答案。每个空单元格都应以圆点表示。如果有多个解法,则输出任意一个。

请注意,您应将中心单元格中的 "x "字符替换为圆点。还请注意,不应输出线索单元格。

实例

标准输入	标准输出
5 5	是
.CBA	CBA
x	A.B.C
.xC	.A.CB
AB	BC.A.
BxA	.CBA
C	
•••••	
1 2	没有
Nx	
O.	

第八阶段: 仓前, 2024年8月31日至9月1日

问题 E. 团队安排

时间限制 1秒内存限制

512 兆字节

大多数教师的误解: w_i 是一个 严格的递增序列。

- 鸡大师,

薄师傅

有 N 名学生在上薄老师的算法课。薄老师要求学生们进行团队合作,然后帮助他们分成小组。

每个学生必须正好属于其中一个小组。波师傅非常了解他的学生,知道只有当 \hat{g} i 个学生所在小组的人数不少于 l_i 且不多于 r_i (包括他自己)时,他才会对分班感到满意。请注意,一个小组可以正好由一名学生组成。

您将得到 n 个整数 w_1 , w_2 ,, w_n 。 假设最后有 m 个小组,其中 \hat{m} i 个小组由 c_i 名学生组成,则这样安排的**权重**为 w_{c1} + w_{c2} + - - + w_{cm} 。

薄师傅现在想知道,怎样把学生分成小组,才能让每个学生都满意,安排的**权重**最大。请你编写一个程序来帮助薄老师。

输入

输入的第一行包含一个整数 n (1 $\leq n \leq 60$),表示学生人数。

在接下来bn 行中,第i 行包含两个整数 l_i 和 r_i ($1 \le l_i \le r_i \le n$),描述 \hat{g} i 个学生。下一行包含n 个整数 w_1, w_2, \dots, w_n ($|w_i| \le 10^7$).

输出

打印一行,其中包含一个整数:重量的最大可能值。如果不可能找到这样的排列,请打印 "不可能"。

实例

标准输入	标准输出
3	9
2 3	
1 2	
2 2	
4 5 100	
3	100
1 3	
3 3	
2 3	
1 1 100	
2	不可能
11	
2 2	
11	
3	-300
2 3	
1 2	
2 2	
-100 -200 100000	

备注

最后一个例子说明了为什么 ICPC 需要三人小组。

第八阶段: 仓前, 2024年8月31日至9月1日

问题 F. 阶段Agausscrab

时间限制 1秒内存限制

256 兆字节

在?:??或更短的时间内解决这 个问题,就能得到一个高斯蟹 !

- 动物团队

臭名昭著的问题设置小组 "Animal Crew "刚刚为 "独角兽冲天炉 "准备了一个问题集,这将是本次比赛的最新阶段。UniCup 委员会刚刚收到了问题设置者的名单和他们各自设置的问题数量。他们决定用以下规则来命名这个赛段:

- 假设有 n 个问题设置者。 第 i 个问题设置者的名字是由几个小写拉丁字母组成的字符串 s_i ,该人设置的问题数是 $_i$ 。
 - 委员会首先计算每个问题设置者的排名。 第 i 位问题设置者的排名 r_i 的定义是:1 加上**严格**设定比此人问题**更多的**人数。
- 从 \hat{g} 1 个问题设置者到 \hat{g} n 个问题设置者,删除 \hat{g} i 个问题设置者名称中的最后 r 个 $_i$ 字符,并将其连接起来形成字符串 t。如果 \hat{g} i 个问题设置者名称中的字符数不超过 r 个 $_i$,则删除所有字符。
- 最后,将 t 的第一个字符大写,这就是舞台的名称。

更多解释请参阅 "备注 "部分。

输入

第一行包含一个整数 n (1 $\leq n \leq 1000$),表示测试用例的数量。

第 i 行包含一个字符串 s_i (2 \leq | s_i | \leq 20) 和一个整数 a_i (1 \leq a_i \leq 10),表示 第 i 个问题设置者的姓名和他/她设置的问题数。

输出

输出字符串 "Stage: "作为开头,然后输出空格,最后输出比赛名称。这些字符串应在一行中输出。

第八阶段: 仓前, 2024年8月31日至9月1日

实例

标准输入	标准输出
4	舞台Agausscrab
弧形 2	
gausr 5	
废纸 3	
bei 3	
4	舞台甲申
zhe 1	
江 3	
sheng 5	
西 2	

第八阶段: 仓前, 2024年8月31日至9月1日

备注

在第一个例子中,有 4 个问题设置者,他们分别设置了一个 $_1 = 2$ 、一个 $_2 = 5$ 、一个 $_3 = 3$ 、一个 $_4 = 3$ 个问题,那么它们的等级分别是 $r_1 = 4$ 、 $r_2 = 1$ 、 $r_3 = 2$ 、 $r_4 = 2$ 。

从 s_1 中删除最后一个 $r_1 = 4$ 个字符后,得到的字符串是 "a"。从 s_2 中删除

最后一个 $r_2 = 1$ 个字符后,得到的字符串为 "gaus"。从 s_3 中删除最后一个

 $r_3 = 2$ 个字符后,得到的字符串为 "srav"。从 s_4 中删除最后一个 $r_4 = 2$ 个

字符后,得到的字符串为 "b"。

字符串 t 是结果字符串 "agausscrab"的连接。经过最后一步,我们可以得到舞台的名称-- "Agausscrab"。

您应该输出 "Stage: 答案为 "Agausscrab"。

在第二个例子中,删除后,第一个和最后一个字符串变成了空字符串。

第八阶段: 仓前, 2024年8月31日至9月1日

问题 G. 在树上爬行

时间限制 6秒内存限制

1024 兆字节

然而,面对似乎无穷无尽的未 来可能性,我发现自己更倾向 于卡尔维诺在《树上的男爵》 中提出的概念--在树枝中生活 似乎比过早地飞翔更可取。

- 生活在树上

有一棵树,它有 n 个顶点,分别用 1、2、……、n 标示。在第 1 个顶点,有 m 只乌龟。每只乌龟都可以沿着树的双向边爬行,到达其他顶点。乌龟非常重,因此对于 \hat{g}_i 条边,乌龟在 \hat{g}_{k_i} -次通过后,这条边就会断开,乌龟无法再次通过。请注意,同一时刻可能有多只乌龟通过同一条边。假设在同一时刻有 cnt 只乌龟经过同一条边,那么就应该计算这条边的 cnt 次。当然,cnt > k_i 是不允许的。

你的任务是指挥这 m 只乌龟移动,使 \hat{g} i \uparrow (2 \leq i \leq n)顶点至少被 c 只乌龟访问 $_i$ 。注意,如果乌龟多次访问一个顶点,则只计算一次。请找到一种运动方式,使所有乌龟的总距离最小,否则就确定不可能。

输入

输入的第一行包含两个整数 n 和 M (2 $\leq n \leq 10^4$,1 $\leq M \leq 10^4$),分别表示顶点数和 m 的上限。

接下来的每 (n-1) 行包含四个整数 u_i , v_i , l_i 和 k_i ($1 \le u_i$, $v_i \le n$, $u_i \ne v_i$, $1 \le l_i$, $k_i \le 10^9$)、表示 u_i -th 顶点和 v_i -th 顶点之间的双向边,其长度为 l_i ,乌龟第 k_i 次经过该边后,该边将断开。可以保证这些道路组成一棵树。

下一行包含 (n-1) 个整数 c_2 , c_3 , ..., c_n ($1 \le c_i \le M$),表示每个顶点将被访问的海龟最小数量。

输出

打印 M 行, \hat{g} i 行($1 \le i \le M$)包含一个整数,表示在下列情况下的最小总距离如果无法找到可行的移动,请打印"-1"。

实例

标准输入	标准输出
4 2	-1
1 2 3 2	13
2 3 2 1	
2 4 5 1	
1 1 1	
4 2	-1
1 2 3 2	-1
2 3 2 1	
2 4 5 1	
2 2 2	

备注

在第一个例子中,当 m=1 时,不可能让一只乌龟同时到达顶点 3 和顶点 4。当 m=2 时,使总距离最小的可能解决方案之一是让两只乌龟从顶点 1 移动到顶点 2,然后让第一只乌龟移动到顶点 3,再让第二只乌龟移动到顶点 4。两只乌龟移动的总距离为 (3+2)+(3+5)=13。

第八阶段: 仓前, 2024年8月31日至9月1日

问题 H. 置换

时间限制 2秒内存限制

1024 兆字节

这个问题的原始版本要求你 找出一个区间中第二大数的 位置,但没有一个问题设置 者知道如何解决这个问题, 所以...

- 假动物团队

这是一个互动问题。

有一个长度为n的未知排列,你想确定数字n在这个排列中的位置。

为此,您可以提出以下问题:

• 选择区间 [*l*, r] (*l* < *r*) ,求区间中**第二**大数**的位置** [*左*, *右*]。

您希望在不超过 $[1.5 \log_2 n]$ 的查询中确定数字 n 的位置。此外,由于我们不够聪明,我们的交互器只能找到 $\Theta(r-l)$ 中第二大的数字,因此您的查询次数中 r-l+1 的总和不应超过 3n。 在这个问题中,交互器是非适应性的。也就是说,在所有查询之前,排列组合都是固定的。

输入

第一行包含一个整数 T (1 $\leq T \leq 10000$),代表测试用例的数量。

对于每个测试用例,第一行包含一个整数 n(2 $\leq n \leq 10^6$),表示置换的长度。保证所有测试用例的 n 之和不超过 10^6 。

互动协议

要提问,请打印一行"? lr" $(1 \le l < r \le n)$ 。然后从标准输入中读取回复。

要报告答案,请打印一行"! x",表示数字 n 的位置是 x。

打印答案后,程序应处理下一个测试用例,如果没有其他测试用例,则程序终止。

打印完每一行后,不要忘记输出行尾并刷新输出。要执行后者,可以使用 C++ 中的

第八阶段:仓前,2024年8月31日至9月1日

fflush(stdout) 或 cout.flush()、Java 中的 System.out.flush() 或 Python 中的 stdout.flush()。

示例

标准输入	标准输出
2	
5	
	? 1 5
3	
	? 1 3
3	
	? 2 3
3	
	! 2
2	
	? 1 2
2	
	! 1

备注

请注意,这些示例仅用于展示交互过程的正确格式,但并不保证您在这些交互之后一定能获得确定的结果。

第八阶段: 仓前, 2024年8月31日至9月1日

问题 I. 小猪分类

时间限制 1秒内存限制

1024 兆字节

Mahamatra

Putata 和 Budada 提出了一种新算法--小猪排序。这种算法可以通过以下过程轻松地对 n 个实数进行排序:

- 假设需要排序的序列为 v_1, v_2, \dots, v_n ,它们是 n 个非负实数。
- 普塔塔和布达达小心翼翼地从小猪城里挑选出 n 只小猪,这 n 只小猪的速度正好是 v_1 , v_2 , … "小猪镇可以用坐标轴来描述。 第i 只小猪最初位于坐标 x_i 。小猪的初始坐标是**成对不同的**。
- 所有小猪同时开始奔跑。t 秒后, \hat{g} i 只小猪的坐标为 $x_i + v_i t$ 。请注意,速度可能为零,这意味着小猪根本没有移动。
- 经过相当长的时间后,坐标轴上小猪的顺序就是 v_1, v_2, \dots 序列的(排序)顺序 o_1, v_2, \dots

普塔塔和布达达进行了一次实验,以验证算法的正确性。然而,时间就是金钱。很长的等待时间是不切实际的。作为替代方案,他们拍摄了 m 张小猪的照片。为了确保有足够的实验数据,他们确保照片的数量多于数组中元素的数量,即 m 大于 n。

遗憾的是,照片中的许多信息都已损坏。他们可以从照片中获得以下信息:

- 第一张照片拍摄于时间 0,而其他照片的拍摄时间无法区分。这些照片是在**不同的**时间拍摄 的。
- \hat{x}_i 张图片中小猪的坐标为 $x_{i1}, x_{i2}, \dots, x_{in}$,而小猪则无法区分。

请帮助 Putata 和 Budada 弄清实验结果。你们应该找到一个序列 r_1 , r_2 , ..., r_n ,它是第一幅图中坐标最小的 \hat{r} 小 个 小猪的速度秩。只有当且仅当 $(v_i < v_j)$ V $((v_i = v_j))$ A $(x_{1,i} < x_{1,j})$ 时,您才能保证 $r_i < r_j$,并且 r_1 , r_2 , ..., r_n 是 1, 2, ..., n.

第八阶段: 仓前, 2024年8月31日至9月1日

输入

输入包含多个测试用例。第一行包含一个整数 t(1 \leq t \leq 250),表示测试用例的数量。

对于每个测试用例,第一行包含两个整数 n、m($1 \le n < m \le 500$),分别表示数组的长度和图片的数量。

以下 m 行中的 \hat{g} i 行包含 n 个整数,其中 \hat{g} j 行表示 $x_{i,j}$ ($-10^7 \le x_{i,j} \le 10^7$, $x_{i,j} \le x_{i,j+1}$),即小猪在 \hat{g} i 行图片中的位置。如果 $u \ne v$,则保证 $x_{1,u} \ne x_{1,v}$ 。

保证 m 的总和不超过 500。

第八阶段: 仓前, 2024年8月31日至9月1日

输出

对于每个测试用例,在一行中输出 n 个整数,分别表示 r_1 , r_2 , ... r_n 。 您应保证 r_1 , r_2 , ... r_n 是 1, 2, ... 如果有多个答案,请输出任意一个。

示例

标准输入	标准输出
3	1 2
2 4	1
1 2	3 1 2
3 4	
5 6	
7 8	
1 2	
1	
1	
3 4	
123	
699	
10 15 17	
12 18 21	

问题」. 偶数或奇数生成树

时间限制 2秒内存限制

512 兆字节

奇怪的是,连我自己都 觉得奇怪,尽管这似乎是一个理所当然的规则,但我甚至找不到一个以前存在过的例子。这里或那里的奇怪问题甚至与它有点相似,但即便如此,它们都不太一样。真奇怪。甚至

- 萨姆-卡普尔曼-莱恩斯

给你一个有 n 个顶点和 m 条边的无向图。假设 T 是该图的生成树,并将 Cost(T) 表示为 T 中所有边的总权重。请找出 T_1 和 T_2 ,使得:

- 成本(*T*₁)为偶数,成本(*T*₁)最小。
- 成本(T₂)为奇数,成本(T₂)最小。

输入

第一行包含一个整数 T (1 $\leq T \leq 10^4$),即测试用例数。对于每个测试用例

第一行包含两个整数 n 和 m (2 $\leq n \leq 2 - 10^5$, 1 $\leq m \leq 5 - 10^5$) ,分别表示顶点数和边数。

以下 m 行中的每一行都包含三个整数 u_i , v_i 和 w_i ($1 \le u_i$, $v_i \le n$, $u_i /= v_i$, $1 \le w_i \le 10^9$),描述了一条无向边。

保证所有 n 的总和最多为 2 - 10^5 ,所有 m 的总和最多为 5 - 10^5 。

输出

针对每个测试用例,输出包含两个整数的一行: $Cost(T_1)$ 和 $Cost(T_2)$ 。请注意,如果找不到这样的生成树,请打印"-1 "作为代价。

示例

标准输入	标准输出
3	-1 5
2 1	-1 -1

	第八阶段: 仓前,	2024年8月31日至9月1日	
1 2 5	N37 (1717X: 13133)	43	
3 1			
1 3 1			
4 4			
1 2 1			
1 3 1			
1 4 1			
2 4 2			

第八阶段: 仓前, 2024年8月31日至9月1日

问题 K. 糖甜 3

时间限制 3秒内存限制

1024 兆字节

摩尔的选票问题又是哪个问题

- 匿名 Apiad,问题

校验器

毕比、彭教授和毕皇帝正在玩游戏。三位玩家持有三种不同类型的牌。皮皮持有第一种类型的 A 牌,彭教授持有第二种类型的 B 牌,别皇帝持有第三种类型的 C 牌。三位玩家玩这个游戏时,牌堆最初是空的。

游戏持续 A + B + C 轮,每轮都是如此:

- 至少还剩1张牌的玩家出牌。
- 如果牌堆是空的,或者牌堆中所有牌的类型都与他的牌相同,则玩家将这张牌放入牌堆。
- 否则,他会从牌堆中抽出一张牌,连同打出的牌一起扔掉。

例如,假设皮皮持有1张类型1的牌,彭教授持有3张类型2的牌,别皇帝持有2张类型3的牌。玩家出牌的顺序为[皮皮、彭教授、彭教授、别帝、别帝、彭教授]。每轮结束后,牌堆中的牌是.

第一轮结束后:[1] (皮比将自己的牌放入牌堆)

第二轮结束后: [](彭教授打出自己的牌,并从牌堆中扔掉一张牌,同时扔掉自己打出的牌)。

第三轮后: [2] (彭教授将自己的牌放入牌堆)

第四轮结束后:[](别帝打出自己的牌,从牌堆中扔掉一张牌,同时扔掉自己打出的牌)

第五轮之后: [3] (别帝将牌放入牌堆)

第六轮结束后: [](彭教授打出自己的牌,从牌堆中扔掉一张牌,同时扔掉自己打出的牌)

现在,假设有 m 个时刻牌堆是空的,最后时刻牌堆是空的。形式上,存在一个列表 t_1 , t_2 ... t_m ($1 \le t_1 < t_2 - \cdots < t_m = A + B + C$),其中包含所有整数 t_i ,使得在第 t_i -轮($1 \le i \le m$)之后,牌堆是空的。三位玩家将获得 m^x 袋糖。这里,x 是游戏前决定的常数。如果游戏结

第八阶段: 仓前, 2024年8月31日至9月1日

束后牌堆不是空的,则三位玩家不会获得任何糖。

现在三个玩家想知道,在所有可能的游戏中,他们能得到的糖袋总和是多少。当且仅当存在 i 时,两局游戏被认为是不同的,这样 \hat{g}_i 轮的玩家是不同的。输出模型 $10^9 + 7$ 。

输入

唯一的一行包含四个整数 A 、B 、C 、x ($1 \le A$ 、B 、 $C \le 1000$, $1 \le A + B + C \le 1000$, $1 \le x \le 10^9$) ,分别表示貔貅手中的牌数、彭教授手中的牌数和帝喾手中的牌数。

输出

输出一个整数,代表所有可能的游戏中糖袋的总和,模数为 10° + 7。

实例

标准输入	标准输出
1 2 3 1	110
4 5 7 12	881078346

备注

对于第一个例子,m=1 时有 6 个可能的有效棋局,m=2 时有 16 个可能的棋局,而 在 m=3 的情况下,有 24 种可能的游戏,所以答案是 $6 \times 1^1 + 16 \times 2^1 + 24 \times 3^1 = 110$ 。

问题 L.挑战矩阵乘法

时间限制 9秒内存限制

256 兆字节

取一个 $(\omega - 2)$,每天切去 0.001个,到一万代结束时,还 会剩下一些。

- 小青鱼

众所周知,计算有向无环图的可达性很难高效解决。但小塔尔延声称,他有一种算法可以在几乎 线性的时间内解决这个问题。从形式上看,他解决了下面的问题,并提供了许多测试用例来证明 他的算法是正确的:

• 给定一个有 n 个顶点和 m 条边的有向无环图 (DAG),求每个节点 u 的数目 r_u ,即从顶点 u (包括 u 本身)出发可以到达的顶点数。

不过,聪明的你已经发现,小塔尔杰恩生成的所有图形都很特别。更具体地说,让 in_i 是顶点 i 的入度, out_i 是顶点 i 的出度,那么所有的图形满足 |in $ir_i|$ \leq 120

你想证明在此约束条件下,解题非常容易。请编写一个解题程序。

输入

第一行包含两个整数 n 和 m (2 $\leq n \leq 10^6$, 1 $\leq m \leq 10^6$)。

下面的 m 行,每行包含两个整数 u、v ($1 \le u < v \le n$),代表图中的一条有向边。可以保证 ir |in ir $| \le 120$

输出

一行包含 n 个整数,分别代表 r_1, r_2, \ldots, r_n .

第八阶段: 仓前, 2024年8月31日至9月1日

实例

标准输入	标准输出
46	4 3 1 1
1 3	
23	
2 4	
1 2	
1 3	
1 3	
5 7	4 3 2 1 1
1 4	
15	
1 2	
2 4	
3 4	
25	
1 4	

问题 M. 三角形

时间限制 1秒内存限制

256 兆字节

你知道埃及不是拥有金字塔最多的国家吗?这个称号实际上属于苏丹,苏丹的努比亚金字塔数量超过200座,而埃及只有大约118座。

- 弗雷迪-汉德

格莱美有一张三角形方格纸,上面有一个大三角形。边长为 n 的大三角形被分成了 n^2 个边长为 1 的小三角形。三角形方格纸的原始形状如第一幅图所示。

现在,格莱美想用这张纸出一道题,所以她选择了一条水平边并将其删除,然后要求你找出纸上剩余三角形的个数。第二幅图是网格结果的一个示例。

输入

唯一一行包含 3 个整数 n、a、b ($1 \le b \le a \le n \le 10^6$),分别表示网格边长、所选行和所选删除 边的索引。

输出

输出一个整数,表示网格中三角形的数量。

实例

标准输入	标准输出
3 2 2	10

第八阶段:仓前,2024年8月31日至9月1日

849586 233333 123456 153307446989958297

备注

在第一个例子中,初始三角形网格的边长为 3。删除第二横行的第二条边后,网格中还剩下 10 个三角形。