Homework 6

Problems **Problem Plus** 7, 9
Problems **8.1** 42
Problems **10.1** 41, 44
Problems **10.2** 34, 62

Ch7 Problem Plus

EX.7

Recall that $\cos A \cos B = \frac{1}{2} [\cos(A+B) + \cos(A-B)]$. So

$$f(x) = \int_0^{\pi} \cos t \cos(x - t) dt = \frac{1}{2} \int_0^{\pi} [\cos(t + x - t) + \cos(t - x + t)] dt$$

$$= \frac{1}{2} \int_0^{\pi} [\cos x + \cos(2t - x)] dt = \frac{1}{2} [t \cos x + \frac{1}{2} \sin(2t - x)]_0^{\pi}$$

$$= \frac{\pi}{2} \cos x + \frac{1}{4} \sin(2\pi - x) - \frac{1}{4} \sin(-x)$$

$$= \frac{\pi}{2} \cos x + \frac{1}{4} \sin(-x) - \frac{1}{4} \sin(-x) = \frac{\pi}{2} \cos x$$

The minimum of $\cos x$ on this domain is -1, so the minimum value of f(x) is $f(\pi) = -\frac{\pi}{2}$.

EX.9

In accordance with the hint, we let $I_k = \int_0^1 (1-x^2)^k dx$, and we find an expression for I_{k+1} in terms of I_k . We integrate I_{k+1} by parts with $u = (1-x^2)^{k+1} \Rightarrow du = (k+1)(1-x^2)^k(-2x)$, $dv = dx \Rightarrow v = x$, and then split the remaining integral into identifiable quantities:

$$I_{k+1} = x(1-x^2)^{k+1}|_0^1 + 2(k+1)\int_0^1 x^2(1-x^2)^k dx$$
$$= (2k+2)\int_0^1 (1-x^2)^k [1-(1-x^2)] dx = (2k+2)(I_k - I_{k+1})$$

So $I_{k+1}[1 + (2k+2)] = (2k+2)I_k \Rightarrow I_{k+1} = \frac{2k+2}{2k+3}I_k$. Now to complete the proof, we use induction: $I_0 = 1 = \frac{2^0(0!)^2}{1!}$, so the formula holds for n = 0.

Now suppose it holds for n = k. Then

$$I_{k+1} = \frac{2k+2}{2k+3}I_k = \frac{2k+2}{2k+3} \left[\frac{2^{2k}(k!)^2}{(2k+1)!} \right] = \frac{2(k+1)2^{2k}(k!)^2}{(2k+3)(2k+1)!}$$

$$= \frac{2(k+1)}{2k+2} \cdot \frac{2(k+1)2^{2k}(k!)^2}{(2k+3)(2k+1)!} = \frac{[2(k+1)]^2 2^{2k}(k!)^2}{(2k+3)(2k+2)(2k+1)!}$$

$$= \frac{2^{2(k+1)}[(k+1)!]^2}{[2(k+1)+1]!}$$

So by induction, the formula holds for all integers $n \geq 0$.

Section 8.1 Arc Length

EX.42

Let $y = a - b \cosh cx$, where a = 211.49, b = 20.96, and c = 0.03291765. Then $y' = -bc \sinh cx \Rightarrow 1 + (y')^2 = 1 + b^2c^2 \sinh^2(cx)$. So $L = \int_{-91.2}^{91.2} \sqrt{1 + b^2c^2 \sinh^2(cx)} \, dx \approx 451.137 \approx 451$, to the nearest meter.

Section 10.1 Curves Defined by Parametric Equations

EX.41

It is apparent that x = |OQ| and y = |QP| = |ST|. From the diagram, $x = |OQ| = a \cos \theta$ and $y = b \sin \theta$. To eliminate θ we rearrange: $\sin \theta = y/b \Rightarrow \sin^2 \theta = (y/b)^2$ and $\cos \theta = x/a \Rightarrow \cos^2 \theta = (x/a)^2$. Adding the two equations: $\sin^2 \theta + \cos^2 \theta = 1 = x^2/a^2 + y^2/b^2$. Thus, we have an ellipse.

EX.44

(a) Let θ be the angle of inclination of segment OP. Then $|OB| = \frac{2a}{\cos \theta}$. Let C = (2a, 0). Then by use of right triangle OAC we see that $|OA| = 2a \cos \theta$. Now

$$|OP| = |AB| = |OB| - |OA|$$

$$= 2a(\frac{1}{\cos \theta} - \cos \theta) = 2a\frac{1 - \cos^2 \theta}{\cos \theta} = 2a\frac{\sin^2 \theta}{\cos \theta} = 2a\sin \theta \tan \theta$$

So P has coordinates $x = 2a \sin \theta \tan \theta \cdot \cos \theta = 2a \sin^2 \theta$ and $y = 2a \sin \theta \tan \theta \cdot \sin \theta = 2a \sin^2 \theta \tan \theta$.

(b) Graph

Section 10.2 Calculus with Parametric Curves

EX.34

By symmetry,

$$A = 4 \int_0^a y \, dx = 4 \int_{\pi/2}^0 a \sin^3 \theta (-3a \cos^2 \theta \sin \theta) \, d\theta$$
$$= 12a^2 \int_0^{\pi/2} \sin^4 \theta \cos^2 \theta \, d\theta$$

Now

$$\int \sin^4 \theta \cos^2 \theta \, d\theta = \int \sin^2 \theta (\frac{1}{4} \sin^2 2\theta) \, d\theta = \frac{1}{8} \int (1 - \cos 2\theta) \sin^2 2\theta \, d\theta$$
$$= \frac{1}{8} \int \left[\frac{1}{2} (1 - \cos 4\theta) - \sin^2 2\theta \cos 2\theta \right] \, d\theta$$
$$= \frac{1}{16} \theta - \frac{1}{64} \sin 4\theta - \frac{1}{48} \sin^3 2\theta + C$$

So
$$\int_0^{\pi/2} \sin^4 \theta \cos^2 \theta \, d\theta = \left[\frac{1}{16} \theta - \frac{1}{64} \sin 4\theta - \frac{1}{48} \sin^3 2\theta \right]_0^{\pi/2} = \frac{\pi}{32}.$$

Thus, $A = 12a^2 \left(\frac{\pi}{32} \right) = \frac{3}{8} \pi a^2.$

EX.62

$$x = 2t^2 + 1/t, \ y = 8\sqrt{t}, \ 1 \le t \le 3.$$

$$\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} = \left(4t - \frac{1}{t^{2}}\right)^{2} + \left(\frac{4}{\sqrt{t}}\right)^{2}$$

$$= 16t^{2} - \frac{8}{t} + \frac{1}{t^{4}} + \frac{16}{t} = 16t^{2} + \frac{8}{t} + \frac{1}{t^{4}} = \left(4t + \frac{1}{t^{2}}\right)^{2}$$

$$= 16t^{2} - \frac{8}{t} + \frac{1}{t^{4}} + \frac{16}{t} = 16t^{2} + \frac{8}{t} + \frac{1}{t^{4}} = \left(4t + \frac{1}{t^{2}}\right)^{2}$$

$$S = \int_{1}^{3} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt = \int_{1}^{3} 2\pi \left(8\sqrt{t}\right) \sqrt{\left(4t + \frac{1}{t^{2}}\right)^{2}}$$

$$= 16\pi \int_{1}^{3} t^{1/2} (4t + t^{-2}) dt = 16\pi \int_{1}^{3} (4t^{3/2} + t^{-3/2}) dt$$

$$= 16\pi \left[\frac{8}{5} t^{5/2} - 2t^{-1/2}\right]_{1}^{3} = \frac{32\pi}{15} \left(103\sqrt{3} + 3\right)$$