New Light Technologies FEMA and GA Lifeline Categorization & Flood Hazard

John Wertz Magnus Bigelow

Megha Zavar Scott Resengrants

Inspiration from: https://github.com/micahluedtke/FEMA_lifelines

The Economic and Human Impact of Disasters* in the last 12 years

Colorado Natural Disasters A look into the last 7 astounding natural disasters in Colorado Colorado broke record of 100 years when Largest snowfall across the state, including experienced a largest 5.3 magnitude Denver, dropping 45-plus inches of snow. Hayman Fire -Pike National Forest earthquake that rippled across Trinidad. 1913 Woodstock, Colorado was the victim to a A cold front stalled over Colorado. Tornado that ripped across Windsor Fort Collins was host to a hail storm that delivering a series of torrential horrendous avalanche. created a 38 mile trail that accumulated delivered grapefruit sized chunks. floods until early 2014. \$125 million in damages.

Megha Zavar

Project Goals

1. Find and categorize FEMA lifelines in Denver

Calculate flood risk for census tracts around Denver

Risk = Hazard x (Vulnerability - Resources)

Our Process

Data Wrangling Visualization Data Gathering **Business locations** Mapping to FEMA Mapping Visuals: lifelines Business types Businesses Elevation of collected Elevations Assigning zones to collections of lifelines businesses Census tract Vulnerability score boundaries Lifeline zones

DATA Gathering

Multiple components and subcomponents establish the parameters of the lifeline; component-level assessment is required to determine the condition of each lifeline.

1. Safety and Security

- Law Enforcement/Security
- Fire Service
- Search and Rescue
- Government Service
- Community Safety

2. Food, Water, Shelter

- Food
- Water
- Shelter
- Agriculture

3. Health and Medical

- Medical Care
- Public Health
- Patient Movement
- Medical Supply Chain
- Fatality Management

4. Energy

- Power Grid
- Fuel

5. Communications

- Infrastructure
- Responder Communications
- Alerts, Warnings, and Messages
- Finance
- 911 and Dispatch

6. Transportation

- Highway/Roadway/Motor Vehicle
- Mass Transit
- Railway
- Aviation
- Maritime

7. Hazardous Material

- Facilities
- HAZMAT, Pollutants, Contaminants

ASSESSMENT					
Status	"What?"				
Impact	"So What?"				
Actions	"Now What?"				
Limiting Factors	"What's the Gap?"				
ETA to Green	"When?"				

DATA Gathering

Cleaning and Evaluate:

Dropped unnecessary columns

Remove duplicate rows

Extract latitude and longitude data from geometry data

Calculate distance from point of origin

Clean up type data

Data Wrangling

Map the lifelines category and number to each business by business type

Developed a hierarchy to prevent duplicates across multiple lifelines

Saved cleaned data downstream for zone assignment

Zones

Data:

Hospitals were selected from the lifeline zones list, they were considered one of the most important but limited lifelines

Execution:

DBSCAN (unsupervised machine learning algorithm) was used to cluster hospitals together into zones based on their proximity to one another

Results:

Zones in the shape of circles were created. Each zone is approximately 6.9 miles to the center or 14 miles wide. Lifelines could then be associated with each zone, the zones could then be scored

Zones

Zones

Resource Score

Scores for each zone are based on the **lifelines they contain** multiplied by the **weight** assigned to each lifeline and then divided by the **total population** in the zone.

This gives a resource score that indicates the availability of lifelines based on the population density within a zone.

The resource score was then applied to each census tract

Weight	Lifeline			
0.2	Safety & Security			
0.2	Food, Water, Shelter			
0.3	Health & Medical			
0.1	Energy			
0.1	Communication			
0.1	Transportation			
n/a	Hazardous Materials			

Vulnerability

Data: Gathered directly from the CDC's Social Vulnerability Index (SVI)

Implementation: Directly took the census tract percentile rank (national comparison 0-1 with 1 being high vulnerability)

Note: Some tracts (such as the Rocky Mountain Arsenal National Wildlife Refuge) have no people and are assigned a -999 for SVI, we assigned these tracts a 0 i.e. no vulnerability

Flood Hazard

Data:

Took 20 random points within each census tract and called the Google Elevation API to get the elevation for each census tract in the Denver area

Execution:

- Calculated mean, median and min of each set of 20 elevation points
- Compared minimum altitude in the tract to the minimum altitude in the tracts in a 3km radius
- Standardized minimum altitude difference to a 0-1 scale and converted to 1-10 flood risk rating with 10 being the highest risk

Results:

Provides quite an accurate view of flood risk in urban areas with a high density of census tracts but is not meaningful in more rural areas

Flood Hazard

Flood Hazard - Comparison with FEMA

Comprehensive Risk Score

	FIPS	zone	hazard	vulnerability	zone_score	CALC	risk_score	risk_score_round
274	08013013401	20	9.5	0.9749	0.3893	0.58555	5.5627	6.0
630	08001008802	20	9.3	0.9911	0.3893	0.60175	5.5963	6.0
181	08005081800	20	8.8	0.9684	0.3893	0.57905	5.0956	5.0
47	08001008801	20	9.0	0.9765	0.3893	0.58715	5.2844	5.0
45	08001008706	20	9.4	0.9473	0.3893	0.55795	5.2447	5.0

Hazard x (Vulnerability - Resources) = Risk

Visualizations

Next Steps

- Further research lifelines and resource score calculation
 - Refine resource zoning
- Improve flood hazard calculation
 - Bring in flood plains from FEMA directly
- Build production code that can be utilized for any municipality
 - Convert GeoPandas code to cython
- Build tool that can take in a location and output final dashboard

References

https://github.com/micahluedtke/FEMA_lifelines

https://svi.cdc.gov/

https://www.aprestoration.com/the-history-of-natural-disasters-in-colorado/

https://www.fema.gov/lifelines

https://developers.google.com/maps