MatIntroNat - Ugeopgave 6

Opgave 6.1

Beregn

$$\frac{\mathrm{d}^2 f}{\mathrm{d}y \mathrm{d}x}(x,y)$$

for funktionen $f(x,y) = y^2(1+xy)$. Beregn endvidere

$$\frac{\mathrm{d}^2 f}{\mathrm{d}x \mathrm{d}y}(x,y)$$

Gør det samme for $g(x,y) = xy + \cos(2x + y)$ og $h(x,y) = x\ln(x^2 - 2y)$. Tegner der sig et mønster?

En skal løses med Maple og en skal løses uden.

For f(x,y) starter vi med at differentiere for x først.

$$\frac{\mathrm{d}f}{\mathrm{d}x}(x,y) = \frac{\mathrm{d}}{\mathrm{d}x}(y^2(1+xy)) = \frac{\mathrm{d}}{\mathrm{d}x}(y^2+xy^3)$$

Vi kigger kun på leddene indholdende x, og derfor er

$$\frac{\mathrm{d}f}{\mathrm{d}x}(x,y) = y^3$$

Herefter differentieres resultatet efter y, og der fås at

$$\frac{\mathrm{d}^2 f}{\mathrm{d}y \mathrm{d}x}(x, y) = 3y^2$$

Herefter skal $\frac{\mathrm{d}^2 f}{\mathrm{d}x\mathrm{d}y}(x,y)$ beregnes. Vi differentierer efter yførst

$$\frac{\mathrm{d}f}{\mathrm{d}y}(x,y) = \frac{\mathrm{d}}{\mathrm{d}y}(y^2 + xy^3) = 2y + 3xy^2$$

Og resultatet differentieres for x, så vi finder det endelig resultat

$$\frac{\mathrm{d}^2}{\mathrm{d}x\mathrm{d}y}(y^2(1+xy)) = \frac{\mathrm{d}^2}{\mathrm{d}x}(2y+3xy^2) = 3y^2$$

Nikolaj Dybdahl Rathcke (rfq695)

Vi løser nu
$$\frac{\mathrm{d}^2 g}{\mathrm{d}y\mathrm{d}x}(x,y)$$
 i Maple $g(x,y) \coloneqq x \cdot y + \cos(2x + y);$ $(x,y) \rightarrow xy + \cos(2x + y)$ $\mathrm{d}iff(g(x,y),x,y);$ $1 - 2\cos(2x + y)$ og herefter $\frac{\mathrm{d}^2 g}{\mathrm{d}x\mathrm{d}y}(x,y)$ $\mathrm{d}iff(g(x,y),y,x);$ $1 - 2\cos(2x + y)$ Det samme gøres nu for $h(x,y) = x \ln(x^2 - 2y)$ med Maple, først $\frac{\mathrm{d}^2 h}{\mathrm{d}y\mathrm{d}x}(x,y)$ $h(x,y) \coloneqq x \cdot \ln(x^2 - 2y);$ $(x,y) \rightarrow x \ln(x^2 - 2y)$ $\mathrm{d}iff(h(x,y),x,y);$ $-\frac{2}{x^2 - 2y} + \frac{4x^2}{(x^2 - 2y)^2}$ Og herefter $\frac{\mathrm{d}^2 h}{\mathrm{d}x\mathrm{d}y}(x,y)$ $\mathrm{d}iff(h(x,y),y,x);$ $-\frac{2}{x^2 - 2y} + \frac{4x^2}{(x^2 - 2y)^2}$

Vi ser altså at rækkefølgen vi differentierer x og y i ikke betyder noget for de anvendte funktioner, da resultatet er det samme.

Opgave 6.2

Opgaven besvares uden Maple. Definer $h: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ ved

$$h(x,y) = \frac{\cos x - \cos y}{x^2 + y^2}$$

Bestem

$$H(x) := \lim_{y \to 0} h(x, y), x \in \mathbb{R},$$

for alle $x \in \mathbb{R}$. Er H en kontinuert funktion af x?

Hvad siger dette om mulighederne for at vælge en værdi c = h(0,0) sådan at h bliver kontinuert i hele \mathbb{R}^2 ?

Vi starter med at udregne $\lim_{y\to 0} h(x,y)$ for $x\neq 0$.

$$\lim_{y \to} h(x,y) = \frac{\cos x - \cos(0)}{x^2 + 0} = \frac{\cos x - 1}{x^2}, \ x \neq 0$$

Herefter beregnes $\lim_{y\to 0} h(0,y)$

$$lim_{y\to 0}h(0,y) = lim_{y\to 0}\frac{1-cosy}{y^2}$$

Dette giver et $\frac{0}{0}$ udtryk og vi benytter os derfor af L'Hôpitals regel

$$\lim_{y\to 0} h(0,y) = \lim_{y\to 0} \frac{1-\cos y}{y^2} = \lim_{y\to 0} \frac{\sin y}{2y}$$

Da dette stadig er et $\frac{0}{0}$ udtryk bruger vi $\mathrm{L'H\hat{o}pitals}$ regel igen

$$lim_{y\to 0}h(0,y) = lim_{y\to 0}\frac{siny}{2y} = lim_{y\to 0}\frac{cosy}{2} = \frac{cos(0)}{2} = \frac{1}{2}$$

Og vi har den endelige grænseværdi for $y \to 0$ for $x \neq 0$ Vi har nu funktionen

$$H(x) = \begin{cases} \frac{\cos x - 1}{x^2} & \text{if } x \neq 0\\ \frac{1}{2} & \text{if } x = 0 \end{cases}$$

For at kunne sige at H(x) er kontinuert for x skal de have samme værdi i sammenfletningen, altså for x = 0. Det vil sige at grænseværdien (fra begge sider) skal være lige $\frac{1}{2}$.

$$lim_{x\to 0^-}H(x) = \frac{1}{2} \wedge lim_{x\to 0^+}H(x) = \frac{1}{2}$$

Da cos(x) nærmer sig 1 for $x\to 0$ lige meget hvilken side vi nærmer os fra, og at x^2 nærmer sig 0 for $x\to 0$ lige meget hvilken side vi nærmer os fra behøver vi ikke tage højde for hvilken side vi nærmer os fra det det giver samme resultat, altså skal vi blot finde

$$lim_{x\to 0} \frac{cos x - 1}{x^2}$$

Dette er et $\frac{0}{0}$ udtryk of vi benytter os derfor af L'Hôpitals regel.

$$\lim_{x\to 0} H(x) = \lim_{x\to 0} \frac{-\sin x}{2x}$$

Dette er stadig et $\frac{0}{0}$ udtryk bruger vi L'Hôpital endnu en gang.

$$\lim_{x\to 0} H(x) = \lim_{x\to 0} \frac{-\cos x}{2} = -\frac{1}{2}$$

Da dette $-\frac{1}{2} \neq \frac{1}{2}$ er H(x) altså ikke en kontinuert funktion for x. Dette vil sige at det ikke er muligt at vælge en værdi c = h(0,0) så h er kontinuert i hele \mathbb{R}^2 , da afhængigt af hvilken vinkel vi nærmer os h(0,0) fra kan vi få en vilkårlig c-værdi mellem $-\frac{1}{2}$ og $\frac{1}{2}$.