UTS Model Deployment Carrissa Gloria Herman 2702322411 Dataset A

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

In [2]: pd.set_option('display.max_rows', None)

EDA Data

Load dataset

```
In [3]: df = pd.read_csv("Dataset_A_loan.csv")
    df.head()
```

Out[3]:		person_age	person_gender	person_education	person_income	person_emp_exp	person_hon
	0	22.0	female	Master	71948.0	0	_
	1	21.0	female	High School	12282.0	0	
	2	25.0	female	High School	12438.0	3	
	3	23.0	female	Bachelor	79753.0	0	
	4	24.0	male	Master	66135.0	1	

- In [4]: df.shape
- Out[4]: (45000, 14)
- In [5]: df.columns

```
In [6]: | df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 45000 entries, 0 to 44999
        Data columns (total 14 columns):
         #
             Column
                                             Non-Null Count Dtype
             -----
                                              -----
                                             45000 non-null float64
         0
             person_age
         1
             person_gender
                                             45000 non-null object
                                             45000 non-null object
         2
             person_education
         3
             person_income
                                             42750 non-null float64
                                             45000 non-null int64
         4
             person_emp_exp
         5
             person_home_ownership
                                             45000 non-null object
                                             45000 non-null float64
         6
             loan amnt
         7
             loan_intent
                                             45000 non-null object
                                             45000 non-null float64
         8
             loan_int_rate
                                             45000 non-null float64
         9
             loan_percent_income
            cb_person_cred_hist_length
                                             45000 non-null float64
         11 credit_score
                                             45000 non-null int64
         12
             previous_loan_defaults_on_file 45000 non-null object
         13
             loan status
                                             45000 non-null int64
        dtypes: float64(6), int64(3), object(5)
        memory usage: 4.8+ MB
In [7]: for i in df.columns:
            print(df[i].value_counts())
            print("")
        Streaming output truncated to the last 5000 lines.
        4252.0
                      1
        11651.0
                      1
                      1
        7665.0
        7362.0
                      1
        13725.0
                      1
        9942.0
                      1
        29274.0
        2697.0
                      1
        5569.0
                      1
        18330.0
        10495.0
        7769.0
                      1
        11869.0
                      1
                      1
        14814.0
        2106.0
                      1
        1665.0
                      1
```

Hal yang perlu diperbaiki:

1

1

7717.0

10886.0

1002 0

Menyamakan penulisan gender "male", "female", "Male", dan "fe male"

Dataset Splitting

dtype: int64

```
In [9]: from sklearn.model_selection import train_test_split
    x = df.drop('loan_status', axis=1).copy()
    y = df['loan_status'].copy()
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size =0.2, rance)
```

Missing Values

```
In [10]: df.isna().sum()
Out[10]:
                                             0
                              person_age
                           person_gender
                                             0
                        person_education
                                             0
                          person_income
                                          2250
                         person_emp_exp
                                             0
                 person_home_ownership
                                             0
                               loan_amnt
                                             0
                              loan_intent
                                             0
                             loan_int_rate
                                             0
                     loan_percent_income
                                             0
              cb_person_cred_hist_length
                                             0
                             credit_score
                                             0
            previous_loan_defaults_on_file
                              loan_status
```

dtype: int64

Sebelum impute missing value pada column 'person_income', kita perlu melakukan outlier detection untuk mengetahui cara terbaik untuk melakukan impute missing value dan memperbaiki value-value yang tidak masuk akal.

```
In [11]: x_train.boxplot('person_income')
Out[11]: <Axes: >
```


Buat function untuk mendeteksi outlier berdasarkan peraturan IQR

```
In [12]:
         outliers = []
         def detect_outliers_iqr(data):
             data = sorted(data)
             q1 = np.nanpercentile(data, 25)
             q3 = np.nanpercentile(data, 75)
             IQR = q3-q1
             lower_bound = q1-(1.5*IQR)
             upper_bound = q3+(1.5*IQR)
             for i in data:
                 if (i < lower bound or i > upper bound):
                     outliers.append(i)
             return outliers
         income_outlier = detect_outliers_iqr(x_train['person_income'])
         print("Outliers di column 'person_income:", income_outlier)
         print("Jumlah outliers di column 'person_income:", len(income_outlier))
```

0828.0, 180796.0, 187978.0, 216043.0, 217059.0, 225400.0, 265119.0, 1808 75.0, 241296.0, 300951.0, 192853.0, 193082.0, 205048.0, 361012.0, 174124 3.0, 725801.0, 180805.0, 192954.0, 214863.0, 2139143.0, 174957.0, 24092 1.0, 205019.0, 181065.0, 174103.0, 187107.0, 219900.0, 361101.0, 180907. 0, 180753.0, 199016.0, 181597.0, 195394.0, 228588.0, 270665.0, 181175.0, 179235.0, 198890.0, 217017.0, 279664.0, 172215.0, 168844.0, 187973.0, 19 3046.0, 234964.0, 168746.0, 169240.0, 181052.0, 187011.0, 193036.0, 1957 89.0, 224427.0, 265048.0, 421619.0, 325368.0, 400383.0, 1076036.0, 18096 0.0, 280535.0, 216944.0, 176144.0, 217336.0, 180638.0, 180936.0, 204871. 0, 240491.0, 181151.0, 217061.0, 220872.0, 181118.0, 360630.0, 238525.0, 179061.0, 240659.0, 247174.0, 264950.0, 390999.0, 420852.0, 211093.0, 27 0644.0, 169228.0, 175787.0, 181022.0, 181108.0, 204788.0, 274421.0, 3488 90.0, 193233.0, 173781.0, 246870.0, 169229.0, 180946.0, 192956.0, 25269 9.0, 258024.0, 180871.0, 201823.0, 301183.0, 172318.0, 181002.0, 184678. 0, 190083.0, 211272.0, 222975.0, 170147.0, 234318.0, 259694.0, 241222.0, 288930.0, 319355.0, 331037.0, 252929.0, 212397.0, 184703.0, 190098.0, 19 2792.0, 169181.0, 181267.0, 187273.0, 262431.0, 168690.0, 233498.0, 3125 53.0, 403758.0, 210982.0, 228016.0, 241002.0, 516892.0, 172618.0, 17471 8.0, 376616.0, 222629.0, 369446.0, 190978.0, 320081.0, 432619.0, 300983. 0, 169127.0, 205028.0, 329417.0, 180823.0, 185652.0, 241073.0, 241172.0,

In [13]: pd.set_option('display.float_format', '{:.0f}'.format)
x_train['person_income'].describe()

Out[13]: person income

	person_income
count	34181
mean	80112
std	71186
min	8000
25%	47087
50%	67002
75%	95698
max	5556399

dtype: float64

```
In [14]: print('Min outlier:', pd.DataFrame(income_outlier).min()[0])
    print('Max outlier:', pd.DataFrame(income_outlier).max()[0])
    print('Mean outlier:', pd.DataFrame(income_outlier).mean()[0])
```

Min outlier: 168633.0 Max outlier: 5556399.0

Mean outlier: 259862.46978672987

In [15]: x_train['person_income'].hist(bins=20) plt.show()


```
In [16]: x_train['person_income'].hist(bins=50)
    plt.xlim(0, 300000)
    plt.show()
```


Kita bisa melihat bahwa nilai min max, dan mean outlier jauh lebih besar daripada nilai min, max, dan mean dataset seluruhnya. Oleh karena itu, kita bisa menganggap bahwa nilai-nilai yang terdapat pada list outlier berupa true outlier dan harus di handle terlebih dahulu. Selain itu, lewat histogram, kita bisa melihat bahwa data 'person_income' sangat skewed dan jumlah outliernya sangat banyak (2112). Maka, outlier akan di-impute dengan nilai median dari training dataset.

```
In [17]: income_median = x_train['person_income'].median()
income_median
```

Out[17]: 67002.0

Cari tahu lower dan upper bound untuk outlier berdasarkan x_train

```
In [18]: def lower_upper(data):
    q1 = np.nanpercentile(data, 25)
    q3 = np.nanpercentile(data, 75)
    IQR = q3-q1
    lower_bound = q1-(1.5*IQR)
    upper_bound = q3+(1.5*IQR)
    return lower_bound, upper_bound
```

```
In [19]: income_lower_bound, income_upper_bound = lower_upper(x_train['person_income'])
    print(income_lower_bound)
    print(income_upper_bound)

-25829.5
168614.5
```

Impute outlier pada semua dataset dengan median dari training dataset (income_median)

```
In [20]: def impute_outlier(data, lower_bound, upper_bound, median):
    for i in data:
        if (i < lower_bound or i > upper_bound):
            data = data.replace(i, median)
        return data

x_train['person_income'] = impute_outlier(x_train['person_income'], income_low x_test['person_income'] = impute_outlier(x_test['person_income'], income_lower
```

```
In [21]: x_train['person_income'].describe()
```

Out[21]: person_income

	person_income
count	34181
mean	70588
std	31562
min	8000
25%	47087
50%	67002
75%	88433
max	168591

dtype: float64

```
In [22]: x_test['person_income'].describe()
```

Out[22]:

	person_income
count	8569
mean	71087
std	31926
min	8000
25%	47850
50%	67002
75%	89438
max	167935

dtype: float64

Missing value handling untuk column 'person_income'. In

```
In [23]: x_train['person_income'].hist(bins=50)
```

Out[23]: <Axes: >

Karena dataset setelah handling outlier pun masih skewed, maka kita akan impute missing value dengan median.

```
In [24]: new_income_median = x_train['person_income'].median()
    x_train['person_income'] = x_train['person_income'].fillna(new_income_median)
    x_test['person_income'] = x_test['person_income'].fillna(new_income_median)
```

```
In [25]:
          x_train.isna().sum()
Out[25]:
                                        0
                                        0
                            person_age
                         person_gender 0
                       person_education 0
                         person_income 0
                        person_emp_exp 0
                person_home_ownership 0
                             loan_amnt 0
                             loan_intent 0
                           loan_int_rate 0
                    loan_percent_income 0
              cb_person_cred_hist_length 0
                            credit_score 0
           previous_loan_defaults_on_file 0
          dtype: int64
          x_test.isna().sum()
In [26]:
Out[26]:
                                        0
                            person_age
                                        0
                         person_gender 0
                       person_education 0
                         person_income 0
                        person_emp_exp 0
                person_home_ownership 0
                             loan_amnt 0
                             loan_intent 0
                           loan_int_rate 0
                    loan_percent_income 0
              cb_person_cred_hist_length 0
                            credit_score 0
           previous_loan_defaults_on_file 0
          dtype: int64
          y_train.isna().sum()
Out[27]: np.int64(0)
```

```
In [28]: y_test.isna().sum()
Out[28]: np.int64(0)
```

Outlier Detection

Kita perlu melakukan outlier detection terhadap column/variabel numerical lain yang belum di testing. Categorical variabel tidak perlu dilakukan outlier detection karena outlier detection dilakukan saat value counts di awal notebook.

List numerical variabel:

- 1. person_age
- 2. person_emp_exp
- 3. loan amnt
- 4. loan int rate
- 5. loan percent income
- 6. cb_person_cred_hist_length
- 7. credit_score

```
In [29]: pd.reset_option('display.float_format')
In [30]: x_train.boxplot('person_age')
Out[30]: <Axes: >

140
120
100
80
60
40
20
person_age
```

In [31]: x_train.boxplot(['person_emp_exp', 'loan_int_rate', 'cb_person_cred_hist_lengt

Out[31]: <Axes: >

Out[32]: <Axes: >


```
In [33]: x_train.boxplot('loan_percent_income')
```

Out[33]: <Axes: >

Out[34]: <Axes: >

Semua numerical variable memiliki banyak outlier yang perlu di handle

person_age

```
In [35]: age_outlier = detect_outliers_iqr(x_train['person_age'])
    print("Outliers di column 'person_age:", age_outlier)
    print("Jumlah outliers di column 'person_age:", len(age_outlier))
```

Outliers di column 'person_age: [270972.0, 171265.0, 183548.0, 205046.0, 211005.0, 356880.0, 177269.0, 199596.0, 216897.0, 301158.0, 420652.0, 49 3048.0, 173294.0, 180646.0, 180875.0, 192674.0, 207525.0, 207697.0, 2169 23.0, 241075.0, 180643.0, 611327.0, 204962.0, 210914.0, 180752.0, 24115 3.0, 301151.0, 422975.0, 193097.0, 228303.0, 289054.0, 180670.0, 322597. 0, 178601.0, 209393.0, 291800.0, 360959.0, 240642.0, 180868.0, 276922.0, 198957.0, 179877.0, 181221.0, 241041.0, 203531.0, 211022.0, 253004.0, 57 7186.0, 169439.0, 181014.0, 181110.0, 231450.0, 169438.0, 241966.0, 2707 97.0, 180986.0, 193014.0, 193168.0, 270875.0, 173345.0, 217215.0, 28639 7.0, 168827.0, 169315.0, 170578.0, 181214.0, 181353.0, 210555.0, 226751. 0, 217115.0, 223194.0, 186971.0, 202682.0, 240810.0, 241092.0, 725242.0, 187709.0, 193124.0, 238837.0, 175387.0, 168935.0, 180846.0, 194828.0, 27 1193.0, 184645.0, 361181.0, 363682.0, 185905.0, 213645.0, 226664.0, 2935 25.0, 174825.0, 182130.0, 188387.0, 209988.0, 228907.0, 270729.0, 30084 3.0, 321623.0, 366786.0, 735661.0, 266203.0, 178602.0, 304778.0, 169127. 0, 174836.0, 180416.0, 360969.0, 391019.0, 173423.0, 251992.0, 210903.0, 241005.0, 313076.0, 241278.0, 174919.0, 178777.0, 206229.0, 181692.0, 19 2841.0, 228928.0, 169058.0, 213479.0, 226517.0, 361226.0, 217194.0, 1807 79.0, 241245.0, 178447.0, 282277.0, 177226.0, 199013.0, 249925.0, 17391

Karena data distributionnya skewed, kita impute outlier dengan median.

```
In [37]: age_median = x_train['person_age'].median()
age_median
```

Out[37]: 26.0

Cari tahu lower dan upper bound untuk outlier berdasarkan x train

```
In [38]: age_lower_bound, age_upper_bound = lower_upper(x_train['person_age'])
    print(age_lower_bound)
    print(age_upper_bound)
```

15.0 39.0

Impute outlier pada semua dataset dengan median dari training dataset

```
In [39]: x_train['person_age'] = impute_outlier(x_train['person_age'], age_lower_bound,
    x_test['person_age'] = impute_outlier(x_test['person_age'], age_lower_bound, a
```

```
In [40]: x_train['person_age'].hist(bins=50)
plt.show()
```


person_emp_exp

In [41]: emp_exp_outlier = detect_outliers_iqr(x_train['person_emp_exp'])
 print("Outliers di column 'person_emp_exp:", emp_exp_outlier)
 print("Jumlah outliers di column 'person_emp_exp:", len(emp_exp_outlier))

Outliers di column 'person_emp_exp: [270972.0, 171265.0, 183548.0, 20504 6.0, 211005.0, 356880.0, 177269.0, 199596.0, 216897.0, 301158.0, 420652. 0, 493048.0, 173294.0, 180646.0, 180875.0, 192674.0, 207525.0, 207697.0, 216923.0, 241075.0, 180643.0, 611327.0, 204962.0, 210914.0, 180752.0, 24 1153.0, 301151.0, 422975.0, 193097.0, 228303.0, 289054.0, 180670.0, 3225 97.0, 178601.0, 209393.0, 291800.0, 360959.0, 240642.0, 180868.0, 27692 2.0, 198957.0, 179877.0, 181221.0, 241041.0, 203531.0, 211022.0, 253004. 0, 577186.0, 169439.0, 181014.0, 181110.0, 231450.0, 169438.0, 241966.0, 270797.0, 180986.0, 193014.0, 193168.0, 270875.0, 173345.0, 217215.0, 28 6397.0, 168827.0, 169315.0, 170578.0, 181214.0, 181353.0, 210555.0, 2267 51.0, 217115.0, 223194.0, 186971.0, 202682.0, 240810.0, 241092.0, 72524 2.0, 187709.0, 193124.0, 238837.0, 175387.0, 168935.0, 180846.0, 194828. 0, 271193.0, 184645.0, 361181.0, 363682.0, 185905.0, 213645.0, 226664.0, 293525.0, 174825.0, 182130.0, 188387.0, 209988.0, 228907.0, 270729.0, 30 0843.0, 321623.0, 366786.0, 735661.0, 266203.0, 178602.0, 304778.0, 1691 27.0, 174836.0, 180416.0, 360969.0, 391019.0, 173423.0, 251992.0, 21090 3.0, 241005.0, 313076.0, 241278.0, 174919.0, 178777.0, 206229.0, 181692. 0, 192841.0, 228928.0, 169058.0, 213479.0, 226517.0, 361226.0, 217194.0, 180779.0, 241245.0, 178447.0, 282277.0, 177226.0, 199013.0, 249925.0, 17

Karena data distributionnya skewed, kita impute outlier dengan median.

```
In [43]: emp_exp_median = x_train['person_emp_exp'].median()
emp_exp_median
```

Out[43]: 4.0

Cari tahu lower dan upper bound untuk outlier berdasarkan x_train

-9.5 18.5

Impute outlier pada semua dataset dengan median dari training dataset

```
In [45]: x_train['person_emp_exp'] = impute_outlier(x_train['person_emp_exp'], emp_exp_
x_test['person_emp_exp'] = impute_outlier(x_test['person_emp_exp'], emp_exp_lc
```

```
In [46]: x_train['person_emp_exp'].hist(bins=20)
plt.show()
```


loan_amnt

```
In [47]: amnt_outlier = detect_outliers_iqr(x_train['loan_amnt'])
    print("Outliers di column 'loan_amnt:", amnt_outlier)
    print("Jumlah outliers di column 'loan_amnt:", len(amnt_outlier))
```

Outliers di column 'loan_amnt: [270972.0, 171265.0, 183548.0, 205046.0, 211005.0, 356880.0, 177269.0, 199596.0, 216897.0, 301158.0, 420652.0, 49 3048.0, 173294.0, 180646.0, 180875.0, 192674.0, 207525.0, 207697.0, 2169 23.0, 241075.0, 180643.0, 611327.0, 204962.0, 210914.0, 180752.0, 24115 3.0, 301151.0, 422975.0, 193097.0, 228303.0, 289054.0, 180670.0, 322597. 0, 178601.0, 209393.0, 291800.0, 360959.0, 240642.0, 180868.0, 276922.0, 198957.0, 179877.0, 181221.0, 241041.0, 203531.0, 211022.0, 253004.0, 57 7186.0, 169439.0, 181014.0, 181110.0, 231450.0, 169438.0, 241966.0, 2707 97.0, 180986.0, 193014.0, 193168.0, 270875.0, 173345.0, 217215.0, 28639 7.0, 168827.0, 169315.0, 170578.0, 181214.0, 181353.0, 210555.0, 226751. 0, 217115.0, 223194.0, 186971.0, 202682.0, 240810.0, 241092.0, 725242.0, 187709.0, 193124.0, 238837.0, 175387.0, 168935.0, 180846.0, 194828.0, 27 1193.0, 184645.0, 361181.0, 363682.0, 185905.0, 213645.0, 226664.0, 2935 25.0, 174825.0, 182130.0, 188387.0, 209988.0, 228907.0, 270729.0, 30084 3.0, 321623.0, 366786.0, 735661.0, 266203.0, 178602.0, 304778.0, 169127. 0, 174836.0, 180416.0, 360969.0, 391019.0, 173423.0, 251992.0, 210903.0, 241005.0, 313076.0, 241278.0, 174919.0, 178777.0, 206229.0, 181692.0, 19 2841.0, 228928.0, 169058.0, 213479.0, 226517.0, 361226.0, 217194.0, 1807 79.0, 241245.0, 178447.0, 282277.0, 177226.0, 199013.0, 249925.0, 17391

Karena data distributionnya skewed, kita impute outlier dengan median.

```
In [49]: amnt_median = x_train['loan_amnt'].median()
amnt_median
```

Out[49]: 8000.0

23125.0

Cari tahu lower dan upper bound untuk outlier berdasarkan x_train

```
In [50]: amnt_lower_bound, amnt_upper_bound = lower_upper(x_train['loan_amnt'])
    print(amnt_lower_bound)
    print(amnt_upper_bound)
```

Impute outlier pada semua dataset dengan median dari training dataset

```
In [52]: x_train['loan_amnt'].hist(bins=50)
plt.show()
```


loan_int_rate

In [53]: int_rate_outlier = detect_outliers_iqr(x_train['loan_int_rate'])
 print("Outliers di column 'loan_int_rate:", int_rate_outlier)
 print("Jumlah outliers di column 'loan_int_rate:", len(int_rate_outlier))

Outliers di column 'loan_int_rate: [270972.0, 171265.0, 183548.0, 20504 6.0, 211005.0, 356880.0, 177269.0, 199596.0, 216897.0, 301158.0, 420652. 0, 493048.0, 173294.0, 180646.0, 180875.0, 192674.0, 207525.0, 207697.0, 216923.0, 241075.0, 180643.0, 611327.0, 204962.0, 210914.0, 180752.0, 24 1153.0, 301151.0, 422975.0, 193097.0, 228303.0, 289054.0, 180670.0, 3225 97.0, 178601.0, 209393.0, 291800.0, 360959.0, 240642.0, 180868.0, 27692 2.0, 198957.0, 179877.0, 181221.0, 241041.0, 203531.0, 211022.0, 253004. 0, 577186.0, 169439.0, 181014.0, 181110.0, 231450.0, 169438.0, 241966.0, 270797.0, 180986.0, 193014.0, 193168.0, 270875.0, 173345.0, 217215.0, 28 6397.0, 168827.0, 169315.0, 170578.0, 181214.0, 181353.0, 210555.0, 2267 51.0, 217115.0, 223194.0, 186971.0, 202682.0, 240810.0, 241092.0, 72524 2.0, 187709.0, 193124.0, 238837.0, 175387.0, 168935.0, 180846.0, 194828. 0, 271193.0, 184645.0, 361181.0, 363682.0, 185905.0, 213645.0, 226664.0, 293525.0, 174825.0, 182130.0, 188387.0, 209988.0, 228907.0, 270729.0, 30 0843.0, 321623.0, 366786.0, 735661.0, 266203.0, 178602.0, 304778.0, 1691 27.0, 174836.0, 180416.0, 360969.0, 391019.0, 173423.0, 251992.0, 21090 3.0, 241005.0, 313076.0, 241278.0, 174919.0, 178777.0, 206229.0, 181692. 0, 192841.0, 228928.0, 169058.0, 213479.0, 226517.0, 361226.0, 217194.0, 180779.0, 241245.0, 178447.0, 282277.0, 177226.0, 199013.0, 249925.0, 17

Karena data distributionnya skewed, kita impute outlier dengan median.

```
In [55]: int_rate_median = x_train['loan_int_rate'].median()
int_rate_median
```

Out[55]: 11.01

Cari tahu lower dan upper bound untuk outlier berdasarkan x_train

1.98999999999993 19.59

Impute outlier pada semua dataset dengan median dari training dataset

```
In [57]: x_train['loan_int_rate'] = impute_outlier(x_train['loan_int_rate'], int_rate_]
x_test['loan_int_rate'] = impute_outlier(x_test['loan_int_rate'], int_rate_low
```


loan_percent_income

In [59]: loan_percent_outlier = detect_outliers_iqr(x_train['loan_percent_income'])
 print("Outliers di column 'loan_percent_income:", loan_percent_outlier)
 print("Jumlah outliers di column 'loan_percent_income:", len(loan_percent_outlier)

Outliers di column 'loan_percent_income: [270972.0, 171265.0, 183548.0, 205046.0, 211005.0, 356880.0, 177269.0, 199596.0, 216897.0, 301158.0, 42 0652.0, 493048.0, 173294.0, 180646.0, 180875.0, 192674.0, 207525.0, 2076 97.0, 216923.0, 241075.0, 180643.0, 611327.0, 204962.0, 210914.0, 18075 2.0, 241153.0, 301151.0, 422975.0, 193097.0, 228303.0, 289054.0, 180670. 0, 322597.0, 178601.0, 209393.0, 291800.0, 360959.0, 240642.0, 180868.0, 276922.0, 198957.0, 179877.0, 181221.0, 241041.0, 203531.0, 211022.0, 25 3004.0, 577186.0, 169439.0, 181014.0, 181110.0, 231450.0, 169438.0, 2419 66.0, 270797.0, 180986.0, 193014.0, 193168.0, 270875.0, 173345.0, 21721 5.0, 286397.0, 168827.0, 169315.0, 170578.0, 181214.0, 181353.0, 210555. 0, 226751.0, 217115.0, 223194.0, 186971.0, 202682.0, 240810.0, 241092.0, 725242.0, 187709.0, 193124.0, 238837.0, 175387.0, 168935.0, 180846.0, 19 4828.0, 271193.0, 184645.0, 361181.0, 363682.0, 185905.0, 213645.0, 2266 64.0, 293525.0, 174825.0, 182130.0, 188387.0, 209988.0, 228907.0, 27072 9.0, 300843.0, 321623.0, 366786.0, 735661.0, 266203.0, 178602.0, 304778. 0, 169127.0, 174836.0, 180416.0, 360969.0, 391019.0, 173423.0, 251992.0, 210903.0, 241005.0, 313076.0, 241278.0, 174919.0, 178777.0, 206229.0, 18 1692.0, 192841.0, 228928.0, 169058.0, 213479.0, 226517.0, 361226.0, 2171 94.0, 180779.0, 241245.0, 178447.0, 282277.0, 177226.0, 199013.0, 24992

Karena data distributionnya skewed, kita impute outlier dengan median.

In [61]: loan_percent_median = x_train['loan_percent_income'].median()
loan_percent_median

Out[61]: 0.12

Cari tahu lower dan upper bound untuk outlier berdasarkan x_train

-0.1099999999999999

0.37

Impute outlier pada semua dataset dengan median dari training dataset

In [63]: x_train['loan_percent_income'] = impute_outlier(x_train['loan_percent_income']
x_test['loan_percent_income'] = impute_outlier(x_test['loan_percent_income'],

In [64]: x_train['loan_percent_income'].hist(bins=20)
plt.show()

cb_person_cred_hist_length

In [65]: cred_hist_outlier = detect_outliers_iqr(x_train['cb_person_cred_hist_length'])
 print("Outliers di column 'cb_person_cred_hist_length:", cred_hist_outlier)
 print("Jumlah outliers di column 'cb_person_cred_hist_length:", len(cred_hist_

Outliers di column 'cb_person_cred_hist_length: [270972.0, 171265.0, 183 548.0, 205046.0, 211005.0, 356880.0, 177269.0, 199596.0, 216897.0, 30115 8.0, 420652.0, 493048.0, 173294.0, 180646.0, 180875.0, 192674.0, 207525. 0, 207697.0, 216923.0, 241075.0, 180643.0, 611327.0, 204962.0, 210914.0, 180752.0, 241153.0, 301151.0, 422975.0, 193097.0, 228303.0, 289054.0, 18 0670.0, 322597.0, 178601.0, 209393.0, 291800.0, 360959.0, 240642.0, 1808 68.0, 276922.0, 198957.0, 179877.0, 181221.0, 241041.0, 203531.0, 21102 2.0, 253004.0, 577186.0, 169439.0, 181014.0, 181110.0, 231450.0, 169438. 0, 241966.0, 270797.0, 180986.0, 193014.0, 193168.0, 270875.0, 173345.0, 217215.0, 286397.0, 168827.0, 169315.0, 170578.0, 181214.0, 181353.0, 21 0555.0, 226751.0, 217115.0, 223194.0, 186971.0, 202682.0, 240810.0, 2410 92.0, 725242.0, 187709.0, 193124.0, 238837.0, 175387.0, 168935.0, 18084 6.0, 194828.0, 271193.0, 184645.0, 361181.0, 363682.0, 185905.0, 213645. 0, 226664.0, 293525.0, 174825.0, 182130.0, 188387.0, 209988.0, 228907.0, 270729.0, 300843.0, 321623.0, 366786.0, 735661.0, 266203.0, 178602.0, 30 4778.0, 169127.0, 174836.0, 180416.0, 360969.0, 391019.0, 173423.0, 2519 92.0, 210903.0, 241005.0, 313076.0, 241278.0, 174919.0, 178777.0, 20622 9.0, 181692.0, 192841.0, 228928.0, 169058.0, 213479.0, 226517.0, 361226. 0, 217194.0, 180779.0, 241245.0, 178447.0, 282277.0, 177226.0, 199013.0,

Karena data distributionnya skewed, kita impute outlier dengan median.

Out[67]: 4.0

Cari tahu lower dan upper bound untuk outlier berdasarkan x_train

-4.5

15.5

Impute outlier pada semua dataset dengan median dari training dataset

```
In [69]: x_train['cb_person_cred_hist_length'] = impute_outlier(x_train['cb_person_cred_k
x_test['cb_person_cred_hist_length'] = impute_outlier(x_test['cb_person_cred_k
```


credit_score

In [71]: credit_score_outlier = detect_outliers_iqr(x_train['credit_score'])
 print("Outliers di column 'credit_score:", credit_score_outlier)
 print("Jumlah outliers di column 'credit_score:", len(credit_score_outlier))

Outliers di column 'credit_score: [270972.0, 171265.0, 183548.0, 205046. 0, 211005.0, 356880.0, 177269.0, 199596.0, 216897.0, 301158.0, 420652.0, 493048.0, 173294.0, 180646.0, 180875.0, 192674.0, 207525.0, 207697.0, 21 6923.0, 241075.0, 180643.0, 611327.0, 204962.0, 210914.0, 180752.0, 2411 53.0, 301151.0, 422975.0, 193097.0, 228303.0, 289054.0, 180670.0, 32259 7.0, 178601.0, 209393.0, 291800.0, 360959.0, 240642.0, 180868.0, 276922. 0, 198957.0, 179877.0, 181221.0, 241041.0, 203531.0, 211022.0, 253004.0, 577186.0, 169439.0, 181014.0, 181110.0, 231450.0, 169438.0, 241966.0, 27 0797.0, 180986.0, 193014.0, 193168.0, 270875.0, 173345.0, 217215.0, 2863 97.0, 168827.0, 169315.0, 170578.0, 181214.0, 181353.0, 210555.0, 22675 1.0, 217115.0, 223194.0, 186971.0, 202682.0, 240810.0, 241092.0, 725242. 0, 187709.0, 193124.0, 238837.0, 175387.0, 168935.0, 180846.0, 194828.0, 271193.0, 184645.0, 361181.0, 363682.0, 185905.0, 213645.0, 226664.0, 29 3525.0, 174825.0, 182130.0, 188387.0, 209988.0, 228907.0, 270729.0, 3008 43.0, 321623.0, 366786.0, 735661.0, 266203.0, 178602.0, 304778.0, 16912 7.0, 174836.0, 180416.0, 360969.0, 391019.0, 173423.0, 251992.0, 210903. 0, 241005.0, 313076.0, 241278.0, 174919.0, 178777.0, 206229.0, 181692.0, 192841.0, 228928.0, 169058.0, 213479.0, 226517.0, 361226.0, 217194.0, 18 0779.0, 241245.0, 178447.0, 282277.0, 177226.0, 199013.0, 249925.0, 1739

Karena data distributionnya skewed, kita impute outlier dengan median.

Out[73]: 640.0

Cari tahu lower dan upper bound untuk outlier berdasarkan x_train

500.0

772.0

Impute outlier pada semua dataset dengan median dari training dataset

```
In [75]: x_train['credit_score'] = impute_outlier(x_train['credit_score'], credit_score
x_test['credit_score'] = impute_outlier(x_test['credit_score'], credit_score_]
```


Encoding

```
In [77]: x_train.info()
```

<class 'pandas.core.frame.DataFrame'>
Index: 36000 entries, 42205 to 39200
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype			
0	person_age	36000 non-null	float64			
1	person_gender	36000 non-null	object			
2	person_education	36000 non-null	object			
3	person_income	36000 non-null	float64			
4	person_emp_exp	36000 non-null	int64			
5	person_home_ownership	36000 non-null	object			
6	loan_amnt	36000 non-null	float64			
7	loan_intent	36000 non-null	object			
8	loan_int_rate	36000 non-null	float64			
9	<pre>loan_percent_income</pre>	36000 non-null	float64			
10	cb_person_cred_hist_length	36000 non-null	float64			
11	credit_score	36000 non-null	int64			
12	<pre>previous_loan_defaults_on_file</pre>	36000 non-null	object			
<pre>dtypes: float64(6), int64(2), object(5)</pre>						
memo	memory usage: 3.8+ MB					

Lakukan encoding pada variabel yang masih memiliki dtype object

```
In [78]:
         from sklearn.preprocessing import LabelEncoder
         le_gender = LabelEncoder()
         le_edu = LabelEncoder()
         le hownership = LabelEncoder()
         le intent = LabelEncoder()
         le_prev_loan = LabelEncoder()
         x_train['person_gender'] = le_gender.fit_transform(x_train['person_gender'])
         x_train['person_education'] = le_edu.fit_transform(x_train['person_education']
         x train['person home ownership'] = le hownership.fit transform(x train['person
         x_train['loan_intent'] = le_intent.fit_transform(x_train['loan_intent'])
         x_train['previous_loan_defaults_on_file'] = le_prev_loan.fit_transform(x_train)
         x_test['person_gender'] = le_gender.fit_transform(x_test['person_gender'])
         x_test['person_education'] = le_edu.fit_transform(x_test['person_education'])
         x_test['person_home_ownership'] = le_hownership.fit_transform(x_test['person_k'
         x_test['loan_intent'] = le_intent.fit_transform(x_test['loan_intent'])
         x_test['previous loan_defaults_on_file'] = le_prev_loan.fit_transform(x_test['
         # lihat kembali hasilnya
         x_train.head(5)
```

Out[78]:

	person_age	person_gender	person_education	person_income	person_emp_exp	person _.
42205	25.0	1	3	67002.0	1	
42935	23.0	0	3	71677.0	0	
10748	24.0	1	0	48829.0	2	
30883	36.0	1	0	42940.0	15	
33233	30.0	1	1	95344.0	8	
4 4						

Scaling

Scaling tidak perlu dilakukan karena model yang ingin dibuat itu random forest dan xgboosting dan keduanya tidak butuh scaled data. Scale data yang berbeda tidak berpengaruh terhadap efisiensi model.

Random Forest

```
In [79]: from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV

parameters = {
    'criterion': ['gini', 'entropy', 'log_loss'],
    'min_samples_split': [5,8,10],
    'max_depth': [3,5,7]
}
```

```
In [80]: Random_forest_class= GridSearchCV(RandomForestClassifier(), param_grid = param
```

```
In [81]: Random_forest_class.fit(x_train,y_train)
    print("Tuned Hyperparameters :", Random_forest_class.best_params_)
    print("Accuracy score :",Random_forest_class.best_score_)
```

```
Tuned Hyperparameters : {'criterion': 'log_loss', 'max_depth': 7, 'min_sampl
es_split': 5}
Accuracy score : 0.912416666666668
```

```
In [82]: Random_forest_class_best = RandomForestClassifier(criterion = 'entropy', max_c
Random_forest_class_best.fit(x_train, y_train)
```

Out[82]: RandomForestClassifier(criterion='entropy', max_depth=7, min_samples_split= 5,

random_state=0)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Classification Report Random Forest Model

	precision	recall	f1-score	support
0	0.92	0.98	0.95	6995
1	0.91	0.69	0.78	2005
accuracy			0.91	9000
macro avg	0.91	0.83	0.86	9000
weighted avg	0.91	0.91	0.91	9000

XGBoost

```
In [84]: import xgboost as xgb
         # set hyperparameters untuk tuning
         parameters = {
             'eta': [0.2, 0.3, 0.5],
             'gamma': [0, 0.1, 0.3, 0.5],
             'max_depth': [3,5,7]
         }
In [85]: | xgb_class = xgb.XGBClassifier()
         grid_xgb_class = GridSearchCV(xgb_class, param_grid = parameters, scoring= 'a
         grid_xgb_class.fit(x_train,y_train)
In [86]:
         print("Tuned Hyperparameters :", grid_xgb_class.best_params_)
         print("Accuracy score :",grid_xgb_class.best_score_)
         Tuned Hyperparameters : {'eta': 0.2, 'gamma': 0.1, 'max_depth': 7}
         Accuracy score : 0.928444444444443
In [87]:
         xgb_class_best = xgb.XGBClassifier(eta = 0.2, gamma = 0.1, max_depth = 7)
         xgb_class_best.fit(x_train, y_train)
Out[87]: XGBClassifier(base_score=None, booster=None, callbacks=None,
                       colsample_bylevel=None, colsample_bynode=None,
                       colsample_bytree=None, device=None, early_stopping_rounds=Non
         e,
                       enable_categorical=False, eta=0.2, eval_metric=None,
                       feature types=None, gamma=0.1, grow policy=None,
                       importance_type=None, interaction_constraints=None,
                       learning rate=None, max bin=None, max cat threshold=None,
                       max_cat_to_onehot=None, max_delta_step=None, max_depth=7,
                       max leaves=None, min child weight=None, missing=nan,
                       monotone_constraints=None, multi_strategy=None, n_estimators=N
         one,
                       n_jobs=None, num_parallel_tree=None, ...)
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Classification Report XG Boosting model

	precision	recall	f1-score	support
0	0.94	0.97	0.96	6995
1	0.88	0.80	0.84	2005
accuracy			0.93	9000
macro avg	0.91	0.88	0.90	9000
weighted avg	0.93	0.93	0.93	9000

Hasil weighted avg dari XG Boosting model 0.02 lebih baik dari weighted avg dari random forest model dari ketiga kriteria (precision, recall, dan f-1 score). Maka, model yang akan digunakan adalah XG Boosting model dengan parameter:

eta: 0.2, gamma: 0.1,

max_depth: 7