PATENT ABSTRACTS OF JAPAN

(11) Publication number:

60-217343

(43) Date of publication of application: 30.10.1985

(51) Int. CI.

G02F 1/133

1/133 G02F

(21) Application number: 59-074024

(71) Applicant : MATSUSHITA ELECTRIC IND CO

LTD

(22) Date of filing:

13.04.1984

(72) Inventor: KAWASAKI KIYOHIRO

(54) LIQUID CRYSTAL DISPLAY DEVICE AND ITS PREPARATION

(57) Abstract:

PURPOSE: To achieve even and uniform display by forming a grating-shaped uneven pattern by irradiating an orienting film between a pair of electrode substrate with interference fringes formed by two fluxes of laser light and arranging a columnar spacer to the region other than a picture element and a switching element.

CONSTITUTION: The laser light flux from a laser light source 15 is reflected by mirrors 16, 17, passes through a condenser lens 18 and a pinhole 19, collimated 20, reflected 21, and then incident in a beam splitter 22. Isolated light flux 22 is reflected by mirrors 23, 24, and the incident light into a photosensitive resin 13 coated on an electrode substrate 2(4) forms interference fringes by the two light fluxes forming a grating pattern on a polyimide resin 12. A spacer of an electrode substrate 2

(4) is provided to the region other than the picture element region and switching element region not illustrated in the Figure. By this constitution, satisfactory display contg. no unevenness is achieved. Further, color display is made possible if a picture element is combined with color filters.

LEGAL STATUS

[Date of request for examination] [Date of sending the examiner's decision of rejection] [Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for

⑩ 日本国特許庁(JP)

⑪特許出願公開

⑩ 公 開 特 許 公 報 (A) 昭60-217343

alint Ci.4

識別記号

厅内整理看号

❷公開 昭和60年(1985)10月30日

G 02 F 1/133

1 2 3 1 1 8 1 1 9

8205-2H 8205-2H

未請求 発明の数 2 (全7頁) 審査請求

液晶表示装置およびその製造方法

昭59-74024 到特

昭59(1984)4月13日 29出

砂発 明

清 弘

門真市大字門真1006番地 松下電器產業株式会社内

⑦出 顛 松下電器產業株式会社

門真市大字門真1006番地

中尾 敏男 何代 理

外1名

1、発明の名称 液晶表示裝置およびその製造方法

2、特許請求の範囲

- (1) 一対の電極基板間に、その表面にレーザ光の 2 光東干砂糖の照射によるグレーティング状の 凹凸を有する配向膜を介して液晶を充填し、絵 素部とスイッチング素子を除いた領域に柱状ス ペーサが配置されていることを特徴とする液晶 表示装置。
- (2) いずれかの電極基板の表面にカラーフィルタ が配置されているととを特徴とする特許請求の 節囲第1項に記載の液晶表示裝置。
- (3) カラーフィルタの表面に透明導電層が全面に わたって形成されているととを特徴とする特許 請求の範囲第2項記載の液晶表示裝置。
- (4) カラーフィルタ上の透明導電層が絵条に対応 してスイッチング素子に接続され独立している ととを特徴とする特許請求の範囲第2項記載の 液晶表示装置。

- (5) 一対の電極基板間に、その表面にレーザ光の 2 光東干渉額の照射によるグレーティング状の 凹凸を有する配向膜を介して液晶を充填してな る液晶表示裝置の製造に際し、いずれか一方の 電極基板表面上で絵素部とスイッテング素子を 除いた領域に柱状の絶縁層を形成する工程を有 するととを特徴とする液晶表示裝置の製造方法。
- (6) 柱状の絶縁層が感光性ポリイミド樹脂である ことを特徴とする特許請求の範囲第 5 項に記載 の液晶表示裝置の製造方法。
- (7) 柱状の絶縁層の形成が、廐光性樹脂の現像液 に溶解可能なポリイミド樹脂を塗布する工程と、 - 膨光性樹脂を塗布する工程と、選択的露光工程 と、前記感光性樹脂を現像する工程とからなる ことを特徴とする特許請求の範囲第5項に記載 の液晶表示装置の製造方法。
- (8) 柱状の絶縁層の形成に先立ち、いずれか一方 の電極基板表面上にカラーフィルタが形成され ることを特徴とする特許請求の範囲第5項に記 配の液晶表示装置の製造方法。

- (e) カラーフィルタ上に透明等電層が形成される ことを特徴とする特許請求の範囲第8項に記載 の液晶表示装置の製造方法。
- (10) カラーフィルタに開口部を形成する工程と、 絵素に対応してカラーフィルタ上に透明等電層 を形成する工程と、前記絵素内のスイッチング 素子と前記透明等電層とを接続する工程とを有 することを特徴とする特許請求の範囲第8項に 記載の液晶表示装置の製造方法。
- 3、発明の詳細な説明

産業上の利用分野

本発明は文字あるいは画像表示用の液晶表示装置かよびその製造方法に関し、とくに電極基板表面に新規な方法で液晶セル厚の精度向上機能を賦与した構造の液晶表示装置かよびその製造方法を提供するものである。

従来例の構成とその問題点

液晶表示裝置の基本構成は、一対の電極基板間 に液晶を充填したパネルに優光板を超み合わせた もので初期配向した液晶分子と電極に電圧を印加

5 ページ

る。

さらに画像表示用の液晶パネルで、多数の絵楽 の一つ一つに対応して薄膜トランジスタをどのス イッチング素子が電極基板に構成されたものでは、 基板表面に必らず凹凸がありラビング法による配 向ではとの凹凸の段差近傍で配向のむらを生じる ことがあり、とくに段差が大きいほど顕著である。 加えてラビングによる帯電によってスイッチング 素子やその他の素子を静電破壊させてしまりこと も少なくない。

そして配向処理が終了した後は、配向膜表面にいかなる化学的処理をしてもならないという大きな制約があることも特記すべき事項であろう。有機容材による洗滌はもちろんのこと、水洗のみの処理であってもラビングによる配向処理はほぼ確実に失なわれ、液晶分子の初期配向は実現されない。精々、乾燥窒素ガスの吹きつけによるラビング布の脱落した線維を吹き飛ばす位の処理しか追加できない。

との大きた制約が液晶セルの厚みを精密あるい

した状態で再配列した液晶分子との複屈折性の差により、液晶表示装置を速過する光の濃淡を制御するものである。液晶を初期配向させるには通常液晶の接するパネル内壁に配向処理と呼ばれる一連の処理が施される。

配向処理の一例は有機が対象には、約20円の間ででは、約20円のでは、約20円のでは、約20円ででは、約20円ででは、約20円ででは、約20円ででは、約20円ででは、約20円ででは、約20円ででは、10円では、10円ででは、10円ででは、10円ででは、10円では、

6 × 3

は任意に制御するための最大の障害となっている。 液晶セルに液晶を注入する工程で、一対の電極基 板で構成される空間はシール材の併用により液圧 される。そして減圧の解除とともに液晶が注入さ れるのである。減圧状態では大気圧によって一対 の電極基板は押し曲げられて近づきありので、何 らかのスペーサが電極基板間に必要である。との スペーサが適当量存在すれば電極基板が接近しす ぎるととは防止され、液晶セルのギャップ厚は精 度が保証される。

化したり、配向の不均一を生じるたどの欠点があ

ところが先述したように、ラピングによる配向 処理が終了した後はいかなる化学処理も許された いことから、電極基板の一方上に適当な形状のス ペーサを散布することしかギャップ厚の制御はで きない。そして簡単な液晶パネル、すたわち透明 電極しか電極基板上に存在しないような液晶の改善 ルでは、電極基板上には高々O.1 /# 取 程度の改善 しか存在したいので絶縁性の適当な整径を有する ポールまたはファイバを飲布することにより極め て高精度のギャップ厚が実現されている。

しかしながら膵臓トランジスタなどのスイッチ ング素子を電極基板上に組みこんだ液晶パネルで は、通常1μπ 以上の段差が存在する。 したがっ てギャップ厚を制御する目的でスペーサ材を飲布 すると、スペーサ材は結局電極基板上の一番高い 所に位置するものがギャップ厚の調整に寄与する ことになり、電極基板上の低い所に位置するスペ - サ材はパネルに組み立てられた状態では一対の 電極基板間の液晶 中を漂い、何の役目も果さたい ことが分るであろう。電極基板上の高い所という のは、スイッチング素子や走査線あるいは信号線 が存在する領域であり、これらの領域にスペーサ 材があれば、当然ある程度の圧力がスペーサ材を 介してかかるととは言うまでもたい。とくにスイ 旋の増大するものが少たくたい。そりすると圧力 の分散を助長するために大量のスペーサ材を散布 せねばならなくたり、余分に漂うスペーサが液晶 セルの光学的諧量を低下させるととになる。

スペーサ材としては圧力の集中が生じたいよう

9 ~~;

実施例の説明

第1 図は本発明による液晶表示パネルの構成図を表わし、多数の画素に対応した透明電極1を有するもう一方の電極基板2と全面透明電極3をイナるもう一方の電極基板4との間に液晶5をシール6で周囲を封止してある。この液晶セルでは2 枚の偏光板8 および9 に挟まれており、外光を何らかの方法で利用するか、あるいは面光源体1 〇を加え、全体として画像表示用の透過型液晶表示装置またはパネル1 1 を構成している。

液晶 5 を初期配向させるためには下側の電極基板 2 の電極面側かよびも 5 一方の電極基板 4 の電極面側に配向膜を塗布し、さらに配向処理が必要であるが、本発明においては 5 ピング法では 左くレーザ 光の 2 光東干渉 積を用いる。 そして、本発明においてはポリイミド 満脂を配向膜に用い、配向処理材として感光性 指脂を用いた例を述べる。

前記電極基板 2 かよび 4 にポリイミド病脂 1 2 を薄く(0.1~0.2 μπ) 塗布し、200℃以上 の加熱によりキュナする。その後ポジ型感光性病 に、結局はファイバが使用されるのであるが、その の 直径を任意の値で多数 準備しておくことは不可 能である。

発明の目的

本発明はこのようた従来の配向膜およびギャップ厚の調整方法の欠点を改善し、新規な方法で配向処理した配向膜、および配向膜に影響を与えない柱状スペーサを有する液晶表示パネルおよびその製造方法を提供するものであり、また本発明の別の目的は任意のギャップ厚を達成しうるパネル構造の提供にある。

発明の構成

本祭明においては、従来のラビング法のように 配向膜表面に原子あるいは分子的規模の弱い痕跡 を形成するのではなく、レーザ光の2光東干渉箱 によって配向膜表面に接い構を形成する点で新規 性を有し、またとの接い構を破壊することなく柱 状スペーサを形成ならしめた点に進歩性を有する ものであり、以下図面とともに本発明の実施例に ついて説明する。

10 4 2

脂13、例えばシップレイ社のL2一1350を やはり輝く(O.1~O.2 μm) 塗布 しブリペーク を行なった後、第2図に示すよりにレーザ光の2 光東干渉線の照射を行なり。 レーザ光源 1 5を出 た光線は反射鏡16,1でを経て集光レンズ18 **に入射し、ピンホール19を通過後、コリメータ** レンス20を通って光束の拡がった平行光線とた る。その後、さらにとの平行光線は反射鏡21で 反射された後ビームスプリッタ22で2分割され、 反射鏡23および24で反射されて電極基板2(4) 上に塗布された感光性樹脂13に入財する。2分 割されたレーザ平行光の2光束は、との試料付近 の空間で干砂を生じ、試料面上にスリット状の干 夢藤を生ぜしめる。第2図では2光束の光軸が試 料面の法線方向に対して等角度で入射した場合を 示しており、この時の試料表面の光強度分布と、 感光性樹脂の現像後に得られる断面パターンを第 3 図に示す。:断面パターンは先強度分布に対応し て凹凸状のグレーティング(格子)13′とたる。 - その後必要に応じてポストペークを行ない、例え

ば02プラズマ中で感光性樹脂パターンを除去するとともにポリイミド樹脂を食刻すれば第4図に示すよりにグレーティング状の凹凸を有するポリイミドの樹脂パターン12′が得られる。

さらに2光束の光軸を試料面に対して傾いた角度で入射すると、試料表面に形成される感光性機脂の断面パターンは鋸歯状になるので、ボリイミト機脂の断面パターンを鋸歯状にするととも可能である。あるいは感光性樹脂の断面パターンが鋸歯状でなくとも、ボリイミト機脂の食刻に方向性のあるRIBK(反応性イオンビーム食刻)などを採用すれば、ボリイミト機脂の断面パターンを

が最適であることが分る。なぜならは通常であることが分る。なぜならは通常であることが分る。なぜならは通常で下地上にある。ないなど、在は一世のでで、ながならないなどがないなどがない。ないである。ないでは、10 電極基板 2 とだがる。ないでは、20 では、20 では、20 では、20 ででは、20 でもない。第6 図は同じく斜視図である。などののでは、20 では、20 では、

さて柱状スペーサの形成方法であるが、既に述べたように本発明ではポリイミド樹脂による配向膜12′が形成されているので、十分をキュア処理が施されているととは言うまでもなく、感光性ポリイミド、例えば東レ製フォトニースUR-3100の塗布・露光・現像によって選択的に形成される。あるいはポシ型感光性樹脂とSP-910の組み合わせては感光性機能の現像時にポリイミド系荷

鋸歯状に形成するととは容易をととである。との よりに配向膜となるポリイミト樹脂の断面パター ンに非対称性を持たせることは、液晶表示装置の 表示性能に指向性をつけたり、逆ティルトによる 濃淡の部分的をむらを防止したりする点で効果的 である。

次に本発明のもう一つの要点である柱状スペーサの導入について説明する。第6図は多数の絵案電電1に対応して薄膜トランジスタと信号線25と走査線26とが形成された一方の電極基板2の平面図を示す。薄膜トランジスタは走査線26を兼ねるグートと、信号線25を兼ねるソース(ドレイン)とドレイン(ソース)27と絵案電電1はゲート絶縁腹31に形成された開口部28を介して接続されている。た お29は島状の半導体層である。

既に述べたように液晶の表示性能を低下させたいこと、薄膜トランシスタの動作に影響を与えたいことを考慮すると柱状スペーサ30の配置場所としては走査線26を含む場所

14% 9

脂SP-91〇も同時にバターン出しされるので、現像後にIPA中MBK などの有機溶材を用いてポッ型感光性樹脂を除去すればSP-91〇の柱状スペーサが形成される。これら一連の化学処理に対してキュア化したポリイミト樹脂よりなる配向膜12′は密解したり組成が変化することはない。したがって柱状スペーサ3〇の形成後に2〇〇℃以上の加熱処理を与えて柱状スペーサ3〇をキュア化して本発明による液晶表示装置の電極基板が完成する。配向膜12′には追加キュアが与えられるが、それによる物理的および化学的変化は全く生じない。

柱状スペーサの高さは前配ポリイミト系樹脂の 粘度および回転塗布時の回転数を調整することに より○1~1○月mまでの任意の値を選ぶことが できるし、また柱状スペーサの数も各絵素毎に配 置する必要はなく適宜減少させられる。

なお症状スペーサ30を多数の絵葉管框1を配置した電極基板2上ではなく、一主面上に全面に透明導電層3と配向膜12²を形成されたもう一方

の電極基板 4 上に設けることも可能であるが、との場合には液晶 セルアの組立にあたっては一対の電極基板 2 と 4 との接着時に位置合わせが必要と なる。

以上述べた液晶表示装置をカラー化するためにはカラーフィルタが必要であり、電極基板の厚みにより光路差の拡散が生じるのを防止するためカラーフィルタは電極基板2,液晶5,電極基板4で構成される空間に配置される。本発明の他の実施例はカラーフィルタの配置に応じてたされるものであり、カラーフィルタを

- (b) 全面に透明導電層を有するもう一方の電極基 板4

の上のいずれかに配置するものである。そしてカラーフィルタの介入によって液晶層 5 K 印加される電圧が低下するのを防ぐためには、透明等電層と配向膜は当然のごとくカラーフィルタ上に形成される。そして(4)の場合にはカラーフィルタに形

成された開口部を介してカラーフィルタ上に形成された透明電極とスイッチング素子とを接続する 手段が与えられる。柱上スペーサは(a),(b)いずれ に対しても容易に形成可能であり、またカラーフ ィルタが導入されると一対の電極基板2と4とは 必らず位置合わせが必要となる。

なお、電極基板材は透明性と絶縁性を必要とし例えばガラスなどが好適であるが、スイッチング 素子の形成方法によっては石英や樹脂も使用されるし、スイッチング素子もMISトランジスタに 限定されるものではない。

発明の効果

以上述べたととく本発明によれば、配向処理をフォトファフリケーション技術で行なりため、従来の機械的な表面のとすりによっていた場合に問題となった表面の各種欠陥や異常スクラッテが生じるともなく、配向の巨視的,微視的むらの少ない均一な配向品質が得られ、表示品質の優れた液晶表示装置を提供するものである。また素子の静電破壊が生じる恐れは皆無である。

17 K- 9

さらに、表示品質を損なりことなく液晶層の厚みを非常に高い精度で設定することができるのでカラー化した場合に色純度を保つことが容易となるなどの多くの利点がある。

4、図面の簡単な説明

第1図は本発明にかかる液晶表示装置の分解図、 第2図はレーザ光の2光束干渉装置のシステム図、 第3図は2光束干渉照射を受けた電極基板の断面 図、第4図は本発明による配向膜の断面図、第6 6図は本発明による液晶表示装置の要部平面図か よび斜視図である。

1 …… 絵素電框、 2 , 4 …… 電極基板、 3 …… 透明導電層、 5 …… 液晶、 7 …… 液晶 セル、 B , 9 …… 偏光板、 1 2 , 1 2 …… ポリイミ * 満脂、 1 3 , 1 3 …… 底光性 横脂、 1 5 …… レーザ 光原、 2 5 …… 信 ラ 線、 2 6 …… 走 査 線、 3 0 …… 柱状

代理人の氏名 弁理士 中 尾 敏 男 ほか1名

第 3 図

第 4 图

