Business Understanding

Downtime for heavy machinery costs a lot of money in the manufacturing industry, both in terms of idle time wasted due to maintenance work and in terms of repair costs. It would be a significant boost to the bottom line if firms could be proactive and undertake routine maintenance activities proactively, as well as predict concerns ahead of time using previous data. Instead, enterprises typically use IOT (Internet of Things) sensors to monitor and collect data from a variety of telemetric sensors. A predictive model can be constructed by combining telemetry data and failure reports to anticipate future heavy machinery fault occurrences.

Business Goal

The end goal is to create a proactive maintenance strategy that tries to predict future failures of various components in heavy machines. As mentioned earlier, it benefits the businesses by reducing operational costs, long term maintenance costs and maximizing production hours.

Importing Required python modules

```
In [15]:
         # Importing required modules
             import pandas as pd
             import numpy as np
             from sklearn.ensemble import ExtraTreesClassifier
             from sklearn.ensemble import RandomForestClassifier
             from sklearn.preprocessing import StandardScaler
             from sklearn.model selection import train test split
             # for measuring accuracy, precision, recall, f1 and auc scores
             from sklearn.metrics import accuracy_score,precision_score, recall_score, f1_
             from sklearn.model_selection import cross_val_score
             from sklearn.metrics import classification report
             from sklearn.metrics import roc curve, auc
             from sklearn.metrics import confusion_matrix
             from sklearn.model_selection import GridSearchCV
             from sklearn.model selection import RandomizedSearchCV
             # for model deployment
             import joblib
             import matplotlib.pyplot as plt
             import seaborn as sns
             get ipython().run line magic('matplotlib', 'inline')
             from datetime import datetime as dt
```

Data Understanding

The following data sources were considered for building this Predictive Maintenance Model.

- **Telemetry**: Time series data consisting of various measurements like Voltage, Rotation, Pressure and Vibration readings from various machines.
- Machines: Information about machines.
- · Failures: Records of failed components.
- **Maintenance**: Maintenance historical records of machines involving component replacements due to regular maintenance activity or due to failures.
- Errors: Historical errors thrown by the machines.

Importing Data Sources

```
In [17]: # creating data file directory
import os
##cwd = os.getcwd()
os.chdir('C:/Users/14802/OneDrive/Desktop/DSC 680-PROJECTS/Projects/Week1/Cod
cwd = os.getcwd()
print(cwd)
```

C:\Users\14802\OneDrive\Desktop\DSC 680-PROJECTS\Projects\Week1\Code

```
In [18]:  # creating data file directory
import os
  cwd = os.getcwd()
  print(cwd)

projdir = os.path.dirname(cwd)
  datadir = os.path.join(projdir, 'Data')

# r=root, d=directories, f = files

print("\nThe directory contains below files : \n")
  for r, d, f in os.walk(datadir):
    for file in f:
        print(file)
```

C:\Users\14802\OneDrive\Desktop\DSC 680-PROJECTS\Projects\Week1\Code

The directory contains below files :

errors.csv failures.csv machines.csv maint.csv telemetry.csv

```
In [19]: # importing telemetry data

telemetryfile = os.path.join(datadir, 'telemetry.csv')

telemetry_df = pd.read_csv(telemetryfile)
telemetry_df.head()
```

Out[19]:

	datetime	e machineID vol		rotate	pressure	vibration
0	1/1/2015 6:00:00 AM	1	176.217853	418.504078	113.077935	45.087686
1	1/1/2015 7:00:00 AM	1	162.879223	402.747490	95.460525	43.413973
2	1/1/2015 8:00:00 AM	1	170.989902	527.349825	75.237905	34.178847
3	1/1/2015 9:00:00 AM	1	162.462833	346.149335	109.248561	41.122144
4	1/1/2015 10:00:00 AM	1	157.610021	435.376873	111.886648	25.990511

In [20]: ▶ # importing machines data

```
machinesfile = os.path.join(datadir, 'machines.csv')
machines_df = pd.read_csv(machinesfile)
machines_df.head()
```

Out[20]:

	machineID	model	age
0	1	model3	18
1	2	model4	7
2	3	model3	8
3	4	model3	7
4	5	model3	2

In [21]: # importing errors data

```
errorsfile = os.path.join(datadir, 'errors.csv')
errors_df = pd.read_csv(errorsfile)
errors_df.head()
```

Out[21]:

errorID	machineID	datetime	
error1	1	1/3/2015 7:00:00 AM	0
error3	1	1/3/2015 8:00:00 PM	1
error5	1	1/4/2015 6:00:00 AM	2
error4	1	1/10/2015 3:00:00 PM	3
error4	1	1/22/2015 10:00:00 AM	4

```
In [22]:  # importing failures data

failuresfile = os.path.join(datadir, 'failures.csv')

failures_df = pd.read_csv(failuresfile)
failures_df.head()
```

Out[22]:

	datetime	machineID	failure
(1/5/2015 6:00:00 AM	1	comp4
1	3/6/2015 6:00:00 AM	1	comp1
2	4/20/2015 6:00:00 AM	1	comp2
3	6/19/2015 6:00:00 AM	1	comp4
4	9/2/2015 6:00:00 AM	1	comp4

```
In [23]: ▶ failures_df.shape
```

Out[23]: (761, 3)

In [24]: ▶ # importing maintenance data

maintfile = os.path.join(datadir, 'maint.csv')
maint_df = pd.read_csv(maintfile)
maint_df.head()

Out[24]:

comp	machineID	datetime	
comp2	1	6/1/2014 6:00:00 AM	0
comp4	1	7/16/2014 6:00:00 AM	1
comp3	1	7/31/2014 6:00:00 AM	2
comp1	1	12/13/2014 6:00:00 AM	3
comp4	1	1/5/2015 6:00:00 AM	4

Exploratory Data Analysis

```
▶ telemetry_df.info()
In [26]:
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 876100 entries, 0 to 876099
             Data columns (total 6 columns):
                 Column Non-Null Count
                                             Dtype
                 ----
                            -----
                 datetime 876100 non-null object
             0
                 machineID 876100 non-null int64
             1
              volt 876100 non-null float64
rotate 876100 non-null float64
                 pressure 876100 non-null float64
                 vibration 876100 non-null float64
             dtypes: float64(4), int64(1), object(1)
             memory usage: 40.1+ MB
```

In [27]: ▶ telemetry_df.describe()

Out[27]:

	machineID	nachineID volt		pressure	vibration	
count	876100.000000	876100.000000	876100.000000	876100.000000	876100.000000	
mean	50.500000	170.777736	446.605119	100.858668	40.385007	
std	28.866087	15.509114	52.673886	11.048679	5.370361	
min	1.000000	97.333604	138.432075	51.237106	14.877054	
25%	25.750000	160.304927	412.305714	93.498181	36.777299	
50%	50.500000	170.607338	447.558150	100.425559	40.237247	
75%	75.250000	181.004493	482.176600	107.555231	43.784938	
max	100.000000	255.124717	695.020984	185.951998	76.791072	

Checking for missing values

```
In [28]:
          # checking heat map for missing values
             plt.figure(figsize=(16, 6))
             sns.heatmap(telemetry_df.isnull(),yticklabels=False,cbar=False,cmap='viridis'
   Out[28]: <AxesSubplot:>
                  datetime
                              machineID
                                            volt
                                                         rotate
                                                                     pressure
                                                                                  vibration
In [29]:
          # Checking for blank values for each column of dataframe
             telemetry nullcols = telemetry df.isnull().sum()
             print(telemetry_nullcols)
             datetime
                          0
             machineID
                          0
             volt
                          0
                          0
             rotate
                          0
             pressure
                          0
             vibration
             dtype: int64
print(len(telemetry_df))
             print(telemetry_df.shape)
             876100
             (876100, 6)
         from datetime import datetime as dt dt.strftime(to datetime['datetime'])
          | telemetry_df['DT'] = pd.to_datetime(telemetry_df['datetime'])
In [31]:

    # date range of telemetric data

In [32]:
             np.min(telemetry_df['DT']), np.max(telemetry_df['DT'])
```

Out[32]: (Timestamp('2015-01-01 06:00:00'), Timestamp('2016-01-01 06:00:00'))


```
In [35]: N sns.set(style="darkgrid")
   plt.figure(figsize=(16, 6))
   sns.distplot(telemetry_df.volt, kde=True,color="b")

plt.xlabel("Volt", fontdict=labelfont)
   plt.ylabel("Count", fontdict=labelfont)
   plt.title("Voltage distribution", fontdict=titlefont)
```

Out[35]: Text(0.5, 1.0, 'Voltage distribution')


```
In [36]: N sns.set(style="darkgrid")
   plt.figure(figsize=(16, 6))
   sns.distplot(telemetry_df.rotate, kde=True,color="b")

plt.xlabel("Rotate", fontdict=labelfont)
   plt.ylabel("Count", fontdict=labelfont)
   plt.title("Rotate distribution", fontdict=titlefont)
```

Out[36]: Text(0.5, 1.0, 'Rotate distribution')


```
In [37]: N sns.set(style="darkgrid")
   plt.figure(figsize=(16, 6))
   sns.distplot(telemetry_df.pressure, kde=True,color="b")

plt.xlabel("Pressure", fontdict=labelfont)
   plt.ylabel("Count", fontdict=labelfont)
   plt.title("Pressure distribution", fontdict=titlefont)
```

Out[37]: Text(0.5, 1.0, 'Pressure distribution')


```
In [38]: N sns.set(style="darkgrid")
   plt.figure(figsize=(16, 6))
   sns.distplot(telemetry_df.vibration, kde=True,color="b")

plt.xlabel("Vibration", fontdict=labelfont)
   plt.ylabel("Count", fontdict=labelfont)
   plt.title("Vibration distribution", fontdict=titlefont)
```

Out[38]: Text(0.5, 1.0, 'Vibration distribution')


```
In [39]:
```

count of records by month

telemetry_month_df = telemetry_df[['machineID', 'DT']]
telemetry_month_df['month'] = pd.DatetimeIndex(telemetry_df['DT']).month
telemetry_month_df['yeat'] = pd.DatetimeIndex(telemetry_df['DT']).year
telemetry_month_df.head(5)

<ipython-input-39-6b6cef4bbe5f>:4: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

telemetry_month_df['month'] = pd.DatetimeIndex(telemetry_df['DT']).month
<ipython-input-39-6b6cef4bbe5f>:5: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

telemetry_month_df['yeat'] = pd.DatetimeIndex(telemetry_df['DT']).year

Out[39]:

	machineID	DT	month	yeat
0	1	2015-01-01 06:00:00	1	2015
1	1	2015-01-01 07:00:00	1	2015
2	1	2015-01-01 08:00:00	1	2015
3	1	2015-01-01 09:00:00	1	2015
4	1	2015-01-01 10:00:00	1	2015

In [40]:

telemetry_month_df2 = telemetry_month_df.groupby(['month'])['machineID'].cour telemetry_month_df2.head()

Out[40]:

	month	machineID
0	1	74500
1	2	67200
2	3	74400
3	4	72000
4	5	74400

Out[41]: Text(0.5, 1.0, 'Count of Records by Month')

(100, 3)


```
In [42]: # print number of records and shape of Machines data frame
print(len(machines_df))
print(machines_df.shape)
100
```

```
In [43]: # Checking for blank values for each column of dataframe
machines_nullcols = machines_df.isnull().sum()
print(machines_nullcols)
```

machineID 0
model 0
age 0
dtype: int64

```
In [44]: N sns.set(style="darkgrid")
plt.figure(figsize=(16, 6))
sns.distplot(machines_df.age, kde=True,color="b")

plt.xlabel("Age of Machines", fontdict=labelfont)
plt.ylabel("Count", fontdict=labelfont)
plt.title("Age distribution", fontdict=titlefont)
```

C:\Users\14802\anaconda3\lib\site-packages\seaborn\distributions.py:2551: F utureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-le vel function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[44]: Text(0.5, 1.0, 'Age distribution')


```
In [45]: ▶ machines_df.columns
```

Out[45]: Index(['machineID', 'model', 'age'], dtype='object')

Out[46]: Text(0.5, 1.0, 'Count of machines by models')


```
In [47]: # print number of records and shape of Errors data frame
print(len(errors_df))
print(errors_df.shape)
3919
(3919, 3)
```

```
In [48]:
          ▶ # Checking for blank values for each column of dataframe
             errors_nullcols = errors_df.isnull().sum()
             print(errors_nullcols)
             datetime
                          0
             machineID
                          0
             errorID
                          0
             dtype: int64
In [49]:  ▶ | errors_df.columns
   Out[49]: Index(['datetime', 'machineID', 'errorID'], dtype='object')
In [50]:
          # Draw count plot
             sns.set(style="darkgrid")
             plt.figure(figsize=(10, 6))
             ax = sns.countplot(x="errorID", data=errors_df)
             plt.xlabel("Errors", fontdict=labelfont)
             plt.ylabel("Count", fontdict=labelfont)
             plt.title("Count of Errors", fontdict=titlefont)
```

Out[50]: Text(0.5, 1.0, 'Count of Errors')


```
In [51]:
         # print number of records and shape of Failure data frame
            print(len(failures_df))
            print(failures_df.shape)
             761
             (761, 3)
         # Checking for blank values for each column of dataframe
In [52]:
            failures_nullcols = failures_df.isnull().sum()
            print(failures_nullcols)
                         0
             datetime
             machineID
                         0
             failure
             dtype: int64
In [53]: ▶ failures_df.columns
```

Out[53]: Index(['datetime', 'machineID', 'failure'], dtype='object')

Out[54]: Text(0.5, 1.0, 'Count of Failures')

Count of Failures


```
In [55]: # print number of records and shape of Maintenance data frame
print(len(maint_df))
print(maint_df.shape)
3286
(3286, 3)
```

In [56]: # Checking for blank values for each column of dataframe
maint_nullcols = maint_df.isnull().sum()
print(maint_nullcols)

datetime 0
machineID 0
comp 0
dtype: int64

Out[58]: Text(0.5, 1.0, 'Count of Components')

In []: ▶

Data Preparation

Feature Engineering

```
# converting all date time fields into Date Time Format
In [59]:
              errors df['DT'] = pd.to datetime(errors df['datetime'])
              failures df['DT'] = pd.to datetime(failures df['datetime'])
              maint df['DT'] = pd.to datetime(maint df['datetime'])
           ▶ telemetry df.columns
In [60]:
    Out[60]: Index(['datetime', 'machineID', 'volt', 'rotate', 'pressure', 'vibration',
                      'DT'],
                     dtype='object')
          for dt in telemetry df['DT']: print(dt.strftime("%X"))
In [61]:
              telemetry_df['time'] = [dt.strftime("%H") for dt in telemetry_df['DT']]
              telemetry_df.head(5)
    Out[61]:
                  datetime
                                machineID volt
                                                     rotate
                                                                           vibration
                                                                                     DT
                                                                                               time
                                                                 pressure
                                                                                      2015-01-
                       1/1/2015
               0
                                        1 176.217853 418.504078 113.077935 45.087686
                                                                                                06
                                                                                           01
                     6:00:00 AM
                                                                                      06:00:00
                                                                                      2015-01-
                       1/1/2015
               1
                                        1 162.879223 402.747490
                                                                 95.460525 43.413973
                                                                                                07
                                                                                           01
                     7:00:00 AM
                                                                                      07:00:00
                                                                                      2015-01-
                       1/1/2015
               2
                                                                 75.237905 34.178847
                                        1 170.989902 527.349825
                                                                                                80
                                                                                           01
                     8:00:00 AM
                                                                                      08:00:00
                                                                                      2015-01-
                       1/1/2015
               3
                                        1 162.462833 346.149335 109.248561 41.122144
                                                                                                09
                                                                                           01
                     9:00:00 AM
                                                                                      09:00:00
                                                                                      2015-01-
                       1/1/2015
                                        1 157.610021 435.376873 111.886648 25.990511
                                                                                           01
                                                                                                10
                    10:00:00 AM
                                                                                      10:00:00
               for time in telemetry df['time'][0:5]:
In [62]:
                       print(type(int(time)))
              <class 'int'>
              <class 'int'>
              <class 'int'>
              <class 'int'>
              <class 'int'>
```

Out[63]:

	datetime	machineID	volt	rotate	pressure	vibration	DT	time	hrbuck
0	1/1/2015 6:00:00 AM	1	176.217853	418.504078	113.077935	45.087686	2015- 01-01 06:00:00	06	
1	1/1/2015 7:00:00 AM	1	162.879223	402.747490	95.460525	43.413973	2015- 01-01 07:00:00	07	
2	1/1/2015 8:00:00 AM	1	170.989902	527.349825	75.237905	34.178847	2015- 01-01 08:00:00	08	
3	1/1/2015 9:00:00 AM	1	162.462833	346.149335	109.248561	41.122144	2015- 01-01 09:00:00	09	
4	1/1/2015 10:00:00 AM	1	157.610021	435.376873	111.886648	25.990511	2015- 01-01 10:00:00	10	

In [64]: #telemetry_df['weekday'] = [dt.weekday() for dt in telemetry_df['DT']]
telemetry_df['weekday'] = [dt.strftime("%A") for dt in telemetry_df['DT']]
telemetry_df['date'] = [dt.strftime("%x") for dt in telemetry_df['DT']]
telemetry_df.head(5)

Out[64]:

	datetime	machinelD	volt	rotate	pressure	vibration	DT	time	hrbuck
0	1/1/2015 6:00:00 AM	1	176.217853	418.504078	113.077935	45.087686	2015- 01-01 06:00:00	06	
1	1/1/2015 7:00:00 AM	1	162.879223	402.747490	95.460525	43.413973	2015- 01-01 07:00:00	07	
2	1/1/2015 8:00:00 AM	1	170.989902	527.349825	75.237905	34.178847	2015- 01-01 08:00:00	08	
3	1/1/2015 9:00:00 AM	1	162.462833	346.149335	109.248561	41.122144	2015- 01-01 09:00:00	09	
4	1/1/2015 10:00:00 AM	1	157.610021	435.376873	111.886648	25.990511	2015- 01-01 10:00:00	10	
4									•

In [65]: # grouping data by machineID, date and hrbucket calculating mean of metrics
 telemetry_df2 = telemetry_df.groupby(['machineID','date', 'hrbucket']).aggreg

telemetry_df2.head()

Out[65]:

				DT		volt	rotate	pressure	vibration
machi	neID	date	hrbucket						
	1	01/01/15	2	20	015-01-01 08:00:00	6.721032	67.849599	18.934956	5.874970
			3	20	015-01-01 11:00:00	7.596570	50.120452	8.555032	7.662229
			4	20	015-01-01 14:00:00	10.124584	55.084734	5.909721	5.169304
			5	20	015-01-01 17:00:00	4.673269	42.047278	4.554047	2.106108
			6	20	015-01-01 20:00:00	14.752132	47.048609	4.244158	2.207884

In [66]: # grouping data by machineID, date and hrbucket calculating mean of metrics
 telemetry_df2 = telemetry_df.groupby(['machineID','date', 'hrbucket']).aggreg
 telemetry_df2.head()

Out[66]:

	machinelD	date	hrbucket	DT	volt		rotate		pres
				max	mean	std	mean	std	mea
0	1	01/01/15	2	2015- 01-01 08:00:00	170.028993	6.721032	449.533798	67.849599	94
1	1	01/01/15	3	2015- 01-01 11:00:00	164.192565	7.596570	403.949857	50.120452	105
2	1	01/01/15	4	2015- 01-01 14:00:00	168.134445	10.124584	435.781707	55.084734	107
3	1	01/01/15	5	2015- 01-01 17:00:00	165.514453	4.673269	430.472823	42.047278	101
4	1	01/01/15	6	2015- 01-01 20:00:00	168.809347	14.752132	437.111120	47.048609	90

In [67]: # grouping data by machineID, date and hrbucket calculating mean of metrics
 telemetry_df2 = telemetry_df.groupby(['machineID','date', 'hrbucket']).aggreg
 telemetry_df2.head()

Out[67]:

		machinelD	date	hrbucket	DT	volt		rotate		pres
					max	mean	std	mean	std	mea
-	0	1	01/01/15	2	2015- 01-01 08:00:00	170.028993	6.721032	449.533798	67.849599	94
	1	1	01/01/15	3	2015- 01-01 11:00:00	164.192565	7.596570	403.949857	50.120452	105
	2	1	01/01/15	4	2015- 01-01 14:00:00	168.134445	10.124584	435.781707	55.084734	107
	3	1	01/01/15	5	2015- 01-01 17:00:00	165.514453	4.673269	430.472823	42.047278	101
	4	1	01/01/15	6	2015- 01-01 20:00:00	168.809347	14.752132	437.111120	47.048609	90

↓

Out[68]:

	machinelD	date	hrbucket	DT	volt		rotate		pres
				m_DT	m_volt	sd_volt	m_rotate	sd_rotate	m_ţ
	0 1	01/01/15	2	2015- 01-01 08:00:00	170.028993	6.721032	449.533798	67.849599	94
	1 1	01/01/15	3	2015- 01-01 11:00:00	164.192565	7.596570	403.949857	50.120452	10{
:	2 1	01/01/15	4	2015- 01-01 14:00:00	168.134445	10.124584	435.781707	55.084734	107
;	3 1	01/01/15	5	2015- 01-01 17:00:00	165.514453	4.673269	430.472823	42.047278	10 ⁻
	4 1	01/01/15	6	2015- 01-01 20:00:00	168.809347	14.752132	437.111120	47.048609	9(

```
▶ telemetry_df2.columns
In [69]:
                                                      ''),
    Out[69]: MultiIndex([('machineID',
                                 'date',
                                                      ''),
                             'hrbucket',
                                   'DT',
                                                  'm_DT'),
                                 'volt',
                                                'm_volt'),
                                               'sd_volt'),
                                 'volt',
                               'rotate',
                                              'm_rotate'),
                               'rotate',
                                             'sd_rotate'),
                             'pressure',
                                           'm_pressure'),
                             'pressure',
                                           'sd_pressure'),
                           ('vibration',
                                          'm vibration'),
                           ('vibration', 'sd_vibration')],
```

Out[71]:

	machineID	date	hrbucket	DT	m_volt	sd_volt	m_rotate	sd_rotate	m_t
0	1	01/01/15	2	2015- 01-01 08:00:00	170.028993	6.721032	449.533798	67.849599	94
1	1	01/01/15	3	2015- 01-01 11:00:00	164.192565	7.596570	403.949857	50.120452	10{
2	1	01/01/15	4	2015- 01-01 14:00:00	168.134445	10.124584	435.781707	55.084734	107
3	1	01/01/15	5	2015- 01-01 17:00:00	165.514453	4.673269	430.472823	42.047278	10 ⁻
4	1	01/01/15	6	2015- 01-01 20:00:00	168.809347	14.752132	437.111120	47.048609	9(
4									•

Calculate mean and standard deviation of metrics for a rolling 24 hour windows

```
In [74]:
         ▶ rotate_mean_24 = pd.pivot_table(telemetry_df,
                                            index='DT',
                                            columns='machineID',
                                            values='rotate').rolling(window=24).mean().res
             rotate_std_24 = pd.pivot_table(telemetry_df,
                                            index='DT',
                                            columns='machineID',
                                            values='rotate').rolling(window=24).std().resa
In [75]:
         pressure_mean_24 = pd.pivot_table(telemetry_df,
                                            index='DT',
                                            columns='machineID',
                                            values='pressure').rolling(window=24).mean().r
             pressure_std_24 = pd.pivot_table(telemetry_df,
                                            index='DT',
                                            columns='machineID',
                                            values='pressure').rolling(window=24).std().re
In [76]:
         vibration_mean_24 = pd.pivot_table(telemetry_df,
                                            index='DT',
                                            columns='machineID',
                                            values='vibration').rolling(window=24).mean().
             vibration_std_24 = pd.pivot_table(telemetry_df,
                                            index='DT',
                                            columns='machineID',
                                            values='vibration').rolling(window=24).std().r
```

In [77]: ▶	_	_24df = p	od.concat(_	ate_mean_24 1)	,rotate_	std_24 ,	pres
	4								•
Out[77]:			0	1	2	3	4	5	6
	machinelD	DT							
	1	2015-01- 01 09:00:00	NaN	NaN	Na	ıN NaN	NaN	NaN	
		2015-01- 01 12:00:00	NaN	NaN	Na	ıN NaN	NaN	NaN	
		2015-01- 01 15:00:00	NaN	NaN	Na	ıN NaN	NaN	NaN	
		2015-01- 01 18:00:00	NaN	NaN	Na	ıN NaN	NaN	NaN	
		2015-01- 01 21:00:00	NaN	NaN	Na	ıN NaN	NaN	NaN	
		2015-01- 02 00:00:00	NaN	NaN	Na	ıN NaN	NaN	NaN	
		2015-01- 02 03:00:00	NaN	NaN	Na	ıN NaN	NaN	NaN	
		2015-01- 02 06:00:00	169.733809	11.233120	445.17986	65 48.717395	96.797113	10.079880	40.3
		2015-01- 02 09:00:00	170.614862	12.519402	446.36485	59 48.385076	96.849785	10.171540	39.7
		2015-01- 02 12:00:00	169.893965	13.370357	447.00940	07 42.432317	97.715600	9.471669	39.4
	4								•
In [78]: ▶	telemetry_	_24df.co	lumns						

Out[78]: RangeIndex(start=0, stop=8, step=1)

Out[79]:

	machinelD	DT	volt_mean_24	volt_std_24	rotate_mean_24	rotate_std_24	pressure_m
0	1	2015- 01-01 09:00:00	NaN	NaN	NaN	NaN	
1	1	2015- 01-01 12:00:00	NaN	NaN	NaN	NaN	
2	1	2015- 01-01 15:00:00	NaN	NaN	NaN	NaN	
3	1	2015- 01-01 18:00:00	NaN	NaN	NaN	NaN	
4	1	2015- 01-01 21:00:00	NaN	NaN	NaN	NaN	
5	1	2015- 01-02 00:00:00	NaN	NaN	NaN	NaN	
6	1	2015- 01-02 03:00:00	NaN	NaN	NaN	NaN	
7	1	2015- 01-02 06:00:00	169.733809	11.233120	445.179865	48.717395	96
8	1	2015- 01-02 09:00:00	170.614862	12.519402	446.364859	48.385076	96.
9	1	2015- 01-02 12:00:00	169.893965	13.370357	447.009407	42.432317	97.

```
N volt_mean_3 = pd.pivot_table(telemetry_df,
In [80]:
                                             columns='machineID',
                                             values='volt').rolling(window=3).mean().resamp
             volt_std_3 = pd.pivot_table(telemetry_df,
                                             index='DT',
                                             columns='machineID',
                                             values='volt').rolling(window=3).std().resampl
             rotate_mean_3 = pd.pivot_table(telemetry_df,
                                             index='DT',
                                             columns='machineID',
                                             values='rotate').rolling(window=3).mean().resa
             rotate_std_3 = pd.pivot_table(telemetry_df,
                                             index='DT',
                                             columns='machineID',
                                             values='rotate').rolling(window=3).std().resar
             pressure_mean_3 = pd.pivot_table(telemetry_df,
                                             index='DT',
                                             columns='machineID',
                                             values='pressure').rolling(window=3).mean().re
             pressure_std_3 = pd.pivot_table(telemetry_df,
                                             index='DT',
                                             columns='machineID',
                                             values='pressure').rolling(window=3).std().res
             vibration_mean_3 = pd.pivot_table(telemetry_df,
                                             index='DT',
                                             columns='machineID',
                                             values='vibration').rolling(window=3).mean().r
             vibration_std_3 = pd.pivot_table(telemetry_df,
                                             index='DT',
                                             columns='machineID',
```

Out[81]:

		0	1	2	3	4	5	6
machinelD	DT							
1	2015-01- 01 09:00:00	170.028993	6.721032	449.533798	67.849599	94.592122	18.934956	40.
	2015-01- 01 12:00:00	165.443986	4.807415	425.415550	92.702671	93.315664	17.106476	39.
	2015-01- 01 15:00:00	162.223630	8.919370	454.923953	38.316408	106.523125	9.176711	34.
	2015-01- 01 18:00:00	172.355243	3.056496	423.041389	33.200513	105.491224	4.843754	40.
	2015-01- 01 21:00:00	160.226142	6.853823	440.413573	54.501054	95.424693	8.931082	41.
	2015-01- 02 00:00:00	178.513887	7.084050	440.859804	53.461091	90.827785	4.388335	44.
	2015-01- 02 03:00:00	167.989524	14.910036	481.173775	33.823675	94.103572	2.705111	37.
	2015-01- 02 06:00:00	165.002124	5.959072	456.438211	54.613403	87.673270	7.623486	41.
	2015-01- 02 09:00:00	193.164359	10.459846	448.652619	46.294659	101.438946	11.281152	38.
	2015-01- 02 12:00:00	159.676811	11.972868	430.571937	51.632304	100.242184	12.041639	37.

Out[82]:

	machinelD	DT	volt_mean_3	volt_std_3	rotate_mean_3	rotate_std_3	pressure_mean_
0	1	2015- 01-01 09:00:00	170.028993	6.721032	449.533798	67.849599	94.59212
1	1	2015- 01-01 12:00:00	165.443986	4.807415	425.415550	92.702671	93.31566
2	1	2015- 01-01 15:00:00	162.223630	8.919370	454.923953	38.316408	106.52312
3	1	2015- 01-01 18:00:00	172.355243	3.056496	423.041389	33.200513	105.49122
4	1	2015- 01-01 21:00:00	160.226142	6.853823	440.413573	54.501054	95.42469
5	1	2015- 01-02 00:00:00	178.513887	7.084050	440.859804	53.461091	90.82778
6	1	2015- 01-02 03:00:00	167.989524	14.910036	481.173775	33.823675	94.10357
7	1	2015- 01-02 06:00:00	165.002124	5.959072	456.438211	54.613403	87.67327
8	1	2015- 01-02 09:00:00	193.164359	10.459846	448.652619	46.294659	101.43894
9	1	2015- 01-02 12:00:00	159.676811	11.972868	430.571937	51.632304	100.24218

Out[83]:

	machinelD	DT	volt_mean_3	volt_std_3	rotate_mean_3	rotate_std_3	pressure_mean_
0	1	2015- 01-01 09:00:00	170.028993	6.721032	449.533798	67.849599	94.59212
1	1	2015- 01-01 12:00:00	165.443986	4.807415	425.415550	92.702671	93.31566
2	1	2015- 01-01 15:00:00	162.223630	8.919370	454.923953	38.316408	106.52312
3	1	2015- 01-01 18:00:00	172.355243	3.056496	423.041389	33.200513	105.49122
4	1	2015- 01-01 21:00:00	160.226142	6.853823	440.413573	54.501054	95.42469
5	1	2015- 01-02 00:00:00	178.513887	7.084050	440.859804	53.461091	90.82778
6	1	2015- 01-02 03:00:00	167.989524	14.910036	481.173775	33.823675	94.10357
7	1	2015- 01-02 06:00:00	165.002124	5.959072	456.438211	54.613403	87.67327
8	1	2015- 01-02 09:00:00	193.164359	10.459846	448.652619	46.294659	101.43894
9	1	2015- 01-02 12:00:00	159.676811	11.972868	430.571937	51.632304	100.24218

Creating summary data for errors_df

Out[85]:

	machinelD	DT	errorID	
				count
0	1	2015-01-03 07:00:00	error1	1
1	1	2015-01-03 20:00:00	error3	1
2	1	2015-01-04 06:00:00	error5	1
3	1	2015-01-10 15:00:00	error4	1
4	1	2015-01-22 10:00:00	error4	1

Out[87]:

errorID	machineID	DT	error1	error2	error3	error4	error5
2874	81	2015-01-01 06:00:00	1	0	0	0	0
836	24	2015-01-01 06:00:00	1	0	0	0	0
2579	73	2015-01-01 06:00:00	0	0	0	1	0
1497	43	2015-01-01 07:00:00	0	0	1	0	0
2683	76	2015-01-01 08:00:00	0	0	0	0	1

```
In [88]: ▶ print(len(errorcounts_ctdf))
```

In [89]: # joining error and telemetry data based on date time and machine ID
telemetry_dts = telemetry_df[['machineID','DT']]
telemetry_dts.head(5)

Out[89]:

	machineID	DT
0	1	2015-01-01 06:00:00
1	1	2015-01-01 07:00:00
2	1	2015-01-01 08:00:00
3	1	2015-01-01 09:00:00
4	1	2015-01-01 10:00:00

Out[90]:

	machineID	DT	error1	error2	error3	error4	error5
0	1	2015-01-01 06:00:00	0.0	0.0	0.0	0.0	0.0
1	1	2015-01-01 07:00:00	0.0	0.0	0.0	0.0	0.0
2	1	2015-01-01 08:00:00	0.0	0.0	0.0	0.0	0.0
3	1	2015-01-01 09:00:00	0.0	0.0	0.0	0.0	0.0
4	1	2015-01-01 10:00:00	0.0	0.0	0.0	0.0	0.0

```
In [91]:
         # summarize the errors for every 3 hours to includes errors occured in the la
             error1_count = pd.pivot_table(errorcounts_dtdf,
                                            index='DT',
                                            columns='machineID',
                                            values='error1').rolling(window=24).sum().resa
             error2_count = pd.pivot_table(errorcounts_dtdf,
                                            index='DT',
                                            columns='machineID',
                                            values='error2').rolling(window=24).sum().resa
             error3_count = pd.pivot_table(errorcounts_dtdf,
                                            index='DT',
                                            columns='machineID',
                                            values='error3').rolling(window=24).sum().resa
             error4_count = pd.pivot_table(errorcounts_dtdf,
                                            index='DT',
                                            columns='machineID',
                                            values='error4').rolling(window=24).sum().resa
             error5_count = pd.pivot_table(errorcounts_dtdf,
                                            index='DT',
                                            columns='machineID',
                                            values='error5').rolling(window=24).sum().resa
```

Out[92]:

0 1 2 3 4

mac	hina	חו	DT
IIIac	HIHE	שוי	וט

1	2015-01-01 09:00:00	NaN	NaN	NaN	NaN	NaN
	2015-01-01 12:00:00	NaN	NaN	NaN	NaN	NaN
	2015-01-01 15:00:00	NaN	NaN	NaN	NaN	NaN
	2015-01-01 18:00:00	NaN	NaN	NaN	NaN	NaN
	2015-01-01 21:00:00	NaN	NaN	NaN	NaN	NaN
	2015-01-02 00:00:00	NaN	NaN	NaN	NaN	NaN
	2015-01-02 03:00:00	NaN	NaN	NaN	NaN	NaN
	2015-01-02 06:00:00	0.0	0.0	0.0	0.0	0.0
	2015-01-02 09:00:00	0.0	0.0	0.0	0.0	0.0
	2015-01-02 12:00:00	0.0	0.0	0.0	0.0	0.0

Out[93]:

	machinelD	DT	error1_count	error2_count	error3_count	error4_count	error5_count
0	1	2015- 01-01 09:00:00	0.0	0.0	0.0	0.0	0.0
1	1	2015- 01-01 12:00:00	0.0	0.0	0.0	0.0	0.0
2	1	2015- 01-01 15:00:00	0.0	0.0	0.0	0.0	0.0
3	1	2015- 01-01 18:00:00	0.0	0.0	0.0	0.0	0.0
4	1	2015- 01-01 21:00:00	0.0	0.0	0.0	0.0	0.0
5	1	2015- 01-02 00:00:00	0.0	0.0	0.0	0.0	0.0
6	1	2015- 01-02 03:00:00	0.0	0.0	0.0	0.0	0.0
7	1	2015- 01-02 06:00:00	0.0	0.0	0.0	0.0	0.0
8	1	2015- 01-02 09:00:00	0.0	0.0	0.0	0.0	0.0
9	1	2015- 01-02 12:00:00	0.0	0.0	0.0	0.0	0.0

Featuring Eningeering of Maintenance data

```
In [94]:  M maint_df.columns
Out[94]: Index(['datetime', 'machineID', 'comp', 'DT'], dtype='object')
```

Out[95]:

	machineID	datetime	comp	DT	comp
					compcount
0	1	1/20/2015 6:00:00 AM	comp1	2015-01-20 06:00:00	1
1	1	1/20/2015 6:00:00 AM	comp3	2015-01-20 06:00:00	1
2	1	1/5/2015 6:00:00 AM	comp1	2015-01-05 06:00:00	1
3	1	1/5/2015 6:00:00 AM	comp4	2015-01-05 06:00:00	1
4	1	10/17/2015 6:00:00 AM	comp2	2015-10-17 06:00:00	1

Out[97]:

comp	machineID	datetime	DT	comp1	comp2	comp3	comp4
0	1	1/20/2015 6:00:00 AM	2015-01-20 06:00:00	1	0	1	0
1	1	1/5/2015 6:00:00 AM	2015-01-05 06:00:00	1	0	0	1
2	1	10/17/2015 6:00:00 AM	2015-10-17 06:00:00	0	1	0	1
3	1	10/2/2015 6:00:00 AM	2015-10-02 06:00:00	1	0	0	1
4	1	11/1/2015 6:00:00 AM	2015-11-01 06:00:00	0	1	0	1

In [98]: ▶ telemetry_dts.head(5)

Out[98]:

	machineID	DT
0	1	2015-01-01 06:00:00
1	1	2015-01-01 07:00:00
2	1	2015-01-01 08:00:00
3	1	2015-01-01 09:00:00
4	1	2015-01-01 10:00:00

```
In [99]: # merging with telemetry datetimes

maintcounts_dtdf = pd.merge(telemetry_dts,maint_df3, left_on = ['machineID',' right_on = ['machineID','DT'], how='outer').fillna(0)

maintcounts_dtdf.head(15)
```

Out[99]:

	machinelD	DT	datetime		comp2	comp3	comp4
876101	1	2014-06-01 06:00:00	6/1/2014 6:00:00 AM	0.0	1.0	0.0	0.0
876102	1	2014-07-16 06:00:00	7/16/2014 6:00:00 AM	0.0	0.0	0.0	1.0
876103	1	2014-07-31 06:00:00	7/31/2014 6:00:00 AM	0.0	0.0	1.0	0.0
876100	1	2014-12-13 06:00:00	12/13/2014 6:00:00 AM	1.0	0.0	0.0	0.0
0	1	2015-01-01 06:00:00	0	0.0	0.0	0.0	0.0
1	1	2015-01-01 07:00:00	0	0.0	0.0	0.0	0.0
2	1	2015-01-01 08:00:00	0	0.0	0.0	0.0	0.0
3	1	2015-01-01 09:00:00			0.0	0.0	0.0
4	1	2015-01-01 10:00:00	0	0.0	0.0	0.0	0.0
5	1	2015-01-01 11:00:00	0	0.0	0.0	0.0	0.0
6	1	2015-01-01 12:00:00	0	0.0	0.0	0.0	0.0
7	1	2015-01-01 13:00:00	0	0.0	0.0	0.0	0.0
8	1	2015-01-01 14:00:00	0	0.0	0.0	0.0	0.0
9	1	2015-01-01 15:00:00	0	0.0	0.0	0.0	0.0
10	1	2015-01-01 16:00:00	0	0.0	0.0	0.0	0.0

```
In [101]:
           ▶ maintcounts_dtdf_comp1_lpdf = pd.merge(maintcounts_dtdf_comp1, maintcounts_dt
                                                    left_on = ['machineID', 'comp1rank'], r
                                                    how = 'outer')
              maintcounts_dtdf_comp1_lpdf.columns
   Out[101]: Index(['machineID', 'DT x', 'datetime x', 'comp1 x', 'comp1rank x',
                     'comp1prevrank_x', 'DT_y', 'datetime_y', 'comp1_y', 'comp1rank_y',
                     'comp1prevrank_y'],
                    dtype='object')
          maintcounts_dtdf_comp1_lpdf = maintcounts_dtdf_comp1_lpdf.drop([ 'comp1prevra
In [102]:
                     'comp1prevrank_y'], axis = 1)
              maintcounts_dtdf_comp1_lpdf.columns
   Out[102]: Index(['machineID', 'DT_x', 'datetime_x', 'comp1_x', 'comp1rank_x', 'DT_
              y'], dtype='object')
In [103]:
          maintcounts_dtdf_comp1_lpdf.columns = ['machineID', 'DT', 'datetime_x', 'comp
              maintcounts_dtdf_comp1_lpdf['comp1Lastreplaceddt'] = maintcounts_dtdf_comp1_l
                                                                          .fillna(method =
              maintcounts dtdf comp1 lpdf.head()
```

Out[103]:

	machineID	DT	datetime_x	comp1_x	comp1rank_x	comp1Lastreplaceddt
0	1	2014-12-13 06:00:00	12/13/2014 6:00:00 AM	1.0	1.0	2014-12-13 06:00:00
1	1	2015-01-05 06:00:00	1/5/2015 6:00:00 AM	1.0	2.0	2014-12-13 06:00:00
2	1	2015-01-20 06:00:00	1/20/2015 6:00:00 AM	1.0	3.0	2015-01-05 06:00:00
3	1	2015-03-06 06:00:00	3/6/2015 6:00:00 AM	1.0	4.0	2015-01-20 06:00:00
4	1	2015-03-21 06:00:00	3/21/2015 6:00:00 AM	1.0	5.0	2015-03-06 06:00:00

Out[104]:

	machineID	DT	datetime_x	comp2_x	comp2rank_x	comp2Lastreplaceddt
0	1	2014-06-01 06:00:00	6/1/2014 6:00:00 AM	1.0	1.0	2014-06-01 06:00:00
1	1	2015-04-20 06:00:00	4/20/2015 6:00:00 AM	1.0	2.0	2014-06-01 06:00:00
2	1	2015-05-05 06:00:00	5/5/2015 6:00:00 AM	1.0	3.0	2015-04-20 06:00:00
3	1	2015-05-20 06:00:00	5/20/2015 6:00:00 AM	1.0	4.0	2015-05-05 06:00:00
4	1	2015-07-04 06:00:00	7/4/2015 6:00:00 AM	1.0	5.0	2015-05-20 06:00:00

Out[105]:

	machinelD	DT	datetime_x	comp3_x	comp3rank_x	comp3Lastreplaceddt
0	1	2014-07-31 06:00:00	7/31/2014 6:00:00 AM	1.0	1.0	2014-07-31 06:00:00
1	1	2015-01-20 06:00:00	1/20/2015 6:00:00 AM	1.0	2.0	2014-07-31 06:00:00
2	1	2015-02-04 06:00:00	2/4/2015 6:00:00 AM	1.0	3.0	2015-01-20 06:00:00
3	1	2015-02-19 06:00:00	2/19/2015 6:00:00 AM	1.0	4.0	2015-02-04 06:00:00
4	1	2015-04-05 06:00:00	4/5/2015 6:00:00 AM	1.0	5.0	2015-02-19 06:00:00

Out[106]:

	machineID	DT	datetime_x	comp4_x	comp4rank_x	comp4Lastreplaceddt
0	1	2014-07-16 06:00:00	7/16/2014 6:00:00 AM	1.0	1.0	2014-07-16 06:00:00
1	1	2015-01-05 06:00:00	1/5/2015 6:00:00 AM	1.0	2.0	2014-07-16 06:00:00
2	1	2015-02-04 06:00:00	2/4/2015 6:00:00 AM	1.0	3.0	2015-01-05 06:00:00
3	1	2015-06-19 06:00:00	6/19/2015 6:00:00 AM	1.0	4.0	2015-02-04 06:00:00
4	1	2015-09-02 06:00:00	9/2/2015 6:00:00 AM	1.0	5.0	2015-06-19 06:00:00

Out[107]:

	machinelD	DT	datetime	comp1	comp2	comp3	comp4	datetime_x_x	comp1
0	1	2014- 06-01 06:00:00	6/1/2014 6:00:00 AM	0.0	1.0	0.0	0.0	NaN	Nŧ
1	1	2014- 07-16 06:00:00	7/16/2014 6:00:00 AM	0.0	0.0	0.0	1.0	NaN	Nŧ
2	1	2014- 07-31 06:00:00	7/31/2014 6:00:00 AM	0.0	0.0	1.0	0.0	NaN	Nŧ
3	1	2014- 12-13 06:00:00	12/13/2014 6:00:00 AM	1.0	0.0	0.0	0.0	12/13/2014 6:00:00 AM	1
4	1	2015- 01-01 06:00:00	0	0.0	0.0	0.0	0.0	NaN	Nŧ
5	1	2015- 01-01 07:00:00	0	0.0	0.0	0.0	0.0	NaN	Nŧ
6	1	2015- 01-01 08:00:00	0	0.0	0.0	0.0	0.0	NaN	Nŧ
7	1	2015- 01-01 09:00:00	0	0.0	0.0	0.0	0.0	NaN	Nŧ
8	1	2015- 01-01 10:00:00	0	0.0	0.0	0.0	0.0	NaN	Nŧ
9	1	2015- 01-01 11:00:00	0	0.0	0.0	0.0	0.0	NaN	Nŧ
10	1	2015- 01-01 12:00:00	0	0.0	0.0	0.0	0.0	NaN	Nŧ
11	1	2015- 01-01 13:00:00	0	0.0	0.0	0.0	0.0	NaN	Nŧ

	machinelD	DT	datetime	comp1	comp2	comp3	comp4	datetime_x_x	comp1
	12 1	2015- 01-01 14:00:00	0	0.0	0.0	0.0	0.0	NaN	Nŧ
	13 1	2015- 01-01 15:00:00	0	0.0	0.0	0.0	0.0	NaN	Nŧ
	14 1	2015- 01-01 16:00:00	0	0.0	0.0	0.0	0.0	NaN	Nŧ
	15 rows × 23 cc	olumns							*
In [108]: ▶	maint_summary	/df.colum	nns						
Out[108]:	'date 'date 'date 'date	time_x_x time_x_y time_x_x	', 'comp1_ ', 'comp2_ ', 'comp3_ ', 'comp4_	x', 'cc x', 'cc x', 'cc	omp1ran omp2ran omp3ran	k_x',' k_x',' k_x','	comp1Lacomp2Lacomp3La	comp3', 'co astreplacedd astreplacedd astreplacedd astreplacedd	t', t', t',
In [109]: ▶	'date	ime_x_y ime_x_x	int_summar ', 'comp2_ ', 'comp3_ ', 'comp4_	x', 'cc x', 'cc	omp2ranl omp3ranl	k_x', k_x',			, 'comp1r

Out[110]:

	machinelD	DT	datetime	comp1	comp2	comp3	comp4	comp1Lastreplaceddt	com
4	1	2015- 01-01 06:00:00	0	0.0	0.0	0.0	0.0	NaT	
5	1	2015- 01-01 07:00:00	0	0.0	0.0	0.0	0.0	NaT	
6	1	2015- 01-01 08:00:00	0	0.0	0.0	0.0	0.0	NaT	
7	1	2015- 01-01 09:00:00	0	0.0	0.0	0.0	0.0	NaT	
8	1	2015- 01-01 10:00:00	0	0.0	0.0	0.0	0.0	NaT	
9	1	2015- 01-01 11:00:00	0	0.0	0.0	0.0	0.0	NaT	
10	1	2015- 01-01 12:00:00	0	0.0	0.0	0.0	0.0	NaT	
11	1	2015- 01-01 13:00:00	0	0.0	0.0	0.0	0.0	NaT	
12	1	2015- 01-01 14:00:00	0	0.0	0.0	0.0	0.0	NaT	
13	1	2015- 01-01 15:00:00	0	0.0	0.0	0.0	0.0	NaT	
14	1	2015- 01-01 16:00:00	0	0.0	0.0	0.0	0.0	NaT	
15	1	2015- 01-01 17:00:00	0	0.0	0.0	0.0	0.0	NaT	
16	1	2015- 01-01 18:00:00	0	0.0	0.0	0.0	0.0	NaT	
17	1	2015- 01-01 19:00:00	0	0.0	0.0	0.0	0.0	NaT	
18	1	2015- 01-01 20:00:00	0	0.0	0.0	0.0	0.0	NaT	

```
In [111]: Maint_summarydf = pd.merge(telemetry_dts,maint_summarydf, on = ['machineID',
    # forward-fill the most-recent date of component change
    maint_summarydf['comp1Lastreplaceddt'] = maint_summarydf['comp1Lastreplaceddt
    maint_summarydf['comp2Lastreplaceddt'] = maint_summarydf['comp2Lastreplaceddt
    maint_summarydf['comp3Lastreplaceddt'] = maint_summarydf['comp4Lastreplaceddt
    maint_summarydf['comp4Lastreplaceddt'] = maint_summarydf['comp4Lastreplaceddt']
    maint_summarydf[maint_summarydf['comp1Lastreplaceddt'] != ''].head(150)
```

Out[111]:

	machinelD	DT	datetime	comp1	comp2	comp3	comp4	comp1Lastreplaceddt	COI
0	1	2015- 01-01 06:00:00	0	0.0	0.0	0.0	0.0	NaT	
1	1	2015- 01-01 07:00:00	0	0.0	0.0	0.0	0.0	NaT	
2	1	2015- 01-01 08:00:00	0	0.0	0.0	0.0	0.0	NaT	
3	1	2015- 01-01 09:00:00	0	0.0	0.0	0.0	0.0	NaT	
4	1	2015- 01-01 10:00:00	0	0.0	0.0	0.0	0.0	NaT	
145	1	2015- 01-07 07:00:00	0	0.0	0.0	0.0	0.0	2014-12-13 06:00:00	
146	1	2015- 01-07 08:00:00	0	0.0	0.0	0.0	0.0	2014-12-13 06:00:00	
147	1	2015- 01-07 09:00:00	0	0.0	0.0	0.0	0.0	2014-12-13 06:00:00	
148	1	2015- 01-07 10:00:00	0	0.0	0.0	0.0	0.0	2014-12-13 06:00:00	
149	1	2015- 01-07 11:00:00	0	0.0	0.0	0.0	0.0	2014-12-13 06:00:00	
150 r	ows × 11 co	lumns							

back filling the first date

```
maint_summarydf['comp1Lastreplaceddt'] =
maint_summarydf['comp1Lastreplaceddt'].fillna(method='bfill')
maint_summarydf['comp2Lastreplaceddt'] =
maint_summarydf['comp2Lastreplaceddt'].fillna(method='bfill')
maint_summarydf['comp3Lastreplaceddt'] =
maint_summarydf['comp4Lastreplaceddt'].fillna(method='bfill')
maint_summarydf['comp4Lastreplaceddt'].fillna(method='bfill')
```

Out[112]:

0						•	•	comp1Lastreplaceddt
	1	2015- 01-01 06:00:00	0	0.0	0.0	0.0	0.0	NaT
1	1	2015- 01-01 07:00:00	0	0.0	0.0	0.0	0.0	NaT
2	1	2015- 01-01 08:00:00	0	0.0	0.0	0.0	0.0	NaT
3	1	2015- 01-01 09:00:00	0	0.0	0.0	0.0	0.0	NaT
4	1	2015- 01-01 10:00:00	0	0.0	0.0	0.0	0.0	NaT
5	1	2015- 01-01 11:00:00	0	0.0	0.0	0.0	0.0	NaT
6	1	2015- 01-01 12:00:00	0	0.0	0.0	0.0	0.0	NaT
7	1	2015- 01-01 13:00:00	0	0.0	0.0	0.0	0.0	NaT
8	1	2015- 01-01 14:00:00	0	0.0	0.0	0.0	0.0	NaT
9	1	2015- 01-01 15:00:00	0	0.0	0.0	0.0	0.0	NaT
10	1	2015- 01-01 16:00:00	0	0.0	0.0	0.0	0.0	NaT
11	1	2015- 01-01 17:00:00	0	0.0	0.0	0.0	0.0	NaT
12	1	2015- 01-01 18:00:00	0	0.0	0.0	0.0	0.0	NaT
13	1	2015- 01-01 19:00:00	0	0.0	0.0	0.0	0.0	NaT

	machineID	DT	datetime	comp1	comp2	comp3	comp4	comp1Lastreplaceddt	•
14	1	2015- 01-01 20:00:00	0	0.0	0.0	0.0	0.0	NaT	~
4									

Out[113]:

	machineID	DT	datetime	comp1	comp2	comp3	comp4	comp1Lastreplaceddt
289113	34	2015- 01-01 06:00:00	1/1/2015 6:00:00 AM	1.0	1.0	0.0	0.0	2014-07-31 06:00:00
438050	51	2015- 01-01 06:00:00	1/1/2015 6:00:00 AM	1.0	0.0	1.0	0.0	2014-09-14 06:00:00
113893	14	2015- 01-01 06:00:00	1/1/2015 6:00:00 AM	1.0	0.0	0.0	0.0	2014-07-31 06:00:00
560704	65	2015- 01-01 06:00:00	1/1/2015 6:00:00 AM	1.0	0.0	0.0	0.0	2014-09-14 06:00:00
630816	73	2015- 01-02 06:00:00	1/2/2015 6:00:00 AM	1.0	0.0	1.0	0.0	2014-07-16 06:00:00
587011	68	2015- 01-02 06:00:00	1/2/2015 6:00:00 AM	1.0	0.0	0.0	0.0	2014-09-14 06:00:00
700904	81	2015- 01-02 06:00:00	1/2/2015 6:00:00 AM	1.0	0.0	1.0	0.0	2014-07-16 06:00:00
201527	24	2015- 01-02 06:00:00	1/2/2015 6:00:00 AM	1.0	1.0	0.0	0.0	2014-09-14 06:00:00
762279	88	2015- 01-04 06:00:00	1/4/2015 6:00:00 AM	1.0	0.0	0.0	0.0	2014-08-30 06:00:00
96	1	2015- 01-05 06:00:00	1/5/2015 6:00:00 AM	1.0	0.0	0.0	1.0	2014-12-13 06:00:00
595844	69	2015- 01-05 06:00:00	1/5/2015 6:00:00 AM	1.0	1.0	0.0	0.0	2014-11-28 06:00:00
552039	64	2015- 01-05 06:00:00	1/5/2015 6:00:00 AM	1.0	0.0	0.0	1.0	2014-08-30 06:00:00
96515	12	2015- 01-07 06:00:00	1/7/2015 6:00:00 AM	1.0	1.0	0.0	0.0	2014-11-13 06:00:00
648458	75	2015- 01-07 06:00:00	1/7/2015 6:00:00 AM	1.0	0.0	0.0	0.0	2014-09-29 06:00:00
744853	86	2015- 01-08 06:00:00	1/8/2015 6:00:00 AM	1.0	0.0	0.0	1.0	2014-12-28 06:00:00

```
In [114]:
           ▶ maint summarydf.columns
   Out[114]: Index(['machineID', 'DT', 'datetime', 'comp1', 'comp2', 'comp3', 'comp4',
                     'comp1Lastreplaceddt', 'comp2Lastreplaceddt', 'comp3Lastreplaceddt',
                     'comp4Lastreplaceddt', 'comp1_repgapdays', 'comp2_repgapdays',
                     'comp3_repgapdays', 'comp4_repgapdays'],
                    dtype='object')
           maint_sum_df = maint_summarydf[['machineID', 'DT','comp1_repgapdays', 'comp2_
In [115]:
                     'comp3_repgapdays', 'comp4_repgapdays']]
In [116]:
           print(maint_sum_df.dtypes)
              machineID
                                           int64
              DT
                                  datetime64[ns]
              comp1_repgapdays
                                         float64
                                         float64
              comp2_repgapdays
              comp3_repgapdays
                                         float64
              comp4_repgapdays
                                         float64
              dtype: object
```

Merging all datasets

In [118]: ▶ # merging machine meta data

Alldata = pd.merge(Alldata, machines_df, on = ['machineID'], how = 'left')
Alldata.head(15)

Out[118]:

	machinelD	DT	volt_mean_3	volt_std_3	rotate_mean_3	rotate_std_3	pressure_mean
0	1	2015- 01-01 09:00:00	170.028993	6.721032	449.533798	67.849599	94.5921
1	1	2015- 01-01 12:00:00	165.443986	4.807415	425.415550	92.702671	93.3156
2	1	2015- 01-01 15:00:00	162.223630	8.919370	454.923953	38.316408	106.5231
3	1	2015- 01-01 18:00:00	172.355243	3.056496	423.041389	33.200513	105.4912
4	1	2015- 01-01 21:00:00	160.226142	6.853823	440.413573	54.501054	95.4246
5	1	2015- 01-02 00:00:00	178.513887	7.084050	440.859804	53.461091	90.8277
6	1	2015- 01-02 03:00:00	167.989524	14.910036	481.173775	33.823675	94.1035
7	1	2015- 01-02 06:00:00	165.002124	5.959072	456.438211	54.613403	87.6732
8	1	2015- 01-02 09:00:00	193.164359	10.459846	448.652619	46.294659	101.4389
9	1	2015- 01-02 12:00:00	159.676811	11.972868	430.571937	51.632304	100.2421
10	1	2015- 01-02 15:00:00	173.019460	12.377689	432.717201	17.368725	98.1268
11	1	2015- 01-02 18:00:00	168.747581	14.479508	456.696379	62.025493	98.2974
12	1	2015- 01-02 21:00:00	158.339642	11.343408	471.026837	40.271733	113.8168
13	1	2015- 01-03 00:00:00	161.744699	21.532893	430.977304	16.196129	100.4871
14	1	2015- 01-03 03:00:00	178.488928	13.001405	452.939230	44.300607	91.9648

In [119]: ▶ print(Alldata.dtypes)

int64
datetime64[ns]
float64
object
int64

Merging Failure data set

```
In [120]: # merging machine meta data
Alldata = pd.merge(Alldata, failures_df, on = ['machineID', 'DT'], how = 'lef
```

#Alldata.drop([], axis = 1)
Alldata.head(15)

Out[120]:

:		machineID	DT	volt_mean_3	volt_std_3	rotate_mean_3	rotate_std_3	pressure_m
•	0	1	2015- 01-01 09:00:00	170.028993	6.721032	449.533798	67.849599	94.5
	1	1	2015- 01-01 12:00:00	165.443986	4.807415	425.415550	92.702671	93.3
	2	1	2015- 01-01 15:00:00	162.223630	8.919370	454.923953	38.316408	106.5
	3	1	2015- 01-01 18:00:00	172.355243	3.056496	423.041389	33.200513	105.4
	4	1	2015- 01-01 21:00:00	160.226142	6.853823	440.413573	54.501054	95.4
	5	1	2015- 01-02 00:00:00	178.513887	7.084050	440.859804	53.461091	90.8
	6	1	2015- 01-02 03:00:00	167.989524	14.910036	481.173775	33.823675	94.1
	7	1	2015- 01-02 06:00:00	165.002124	5.959072	456.438211	54.613403	87.6
	8	1	2015- 01-02 09:00:00	193.164359	10.459846	448.652619	46.294659	101.4
	9	1	2015- 01-02 12:00:00	159.676811	11.972868	430.571937	51.632304	100.2
	10	1	2015- 01-02 15:00:00	173.019460	12.377689	432.717201	17.368725	98.1
	11	1	2015- 01-02 18:00:00	168.747581	14.479508	456.696379	62.025493	98.2
	12	1	2015- 01-02 21:00:00	158.339642	11.343408	471.026837	40.271733	113.8
	13	1	2015- 01-03 00:00:00	161.744699	21.532893	430.977304	16.196129	100.4

mac	hineID	DT	volt_mean_3	volt_std_3	rotate_mean_3	rotate_std_3	pressure_m
14	1	2015- 01-03 03:00:00	178.488928	13.001405	452.939230	44.300607	91.9
15 rows ×	31 co	lumns					
4							•

Alldata = Alldata.fillna('none') Alldata.head(5)

Out[121]:

	machineID	DT	volt_mean_3	volt_std_3	rotate_mean_3	rotate_std_3	pressure_mean_
0	1	2015- 01-01 09:00:00	170.028993	6.721032	449.533798	67.849599	94.59212
1	1	2015- 01-01 12:00:00	165.443986	4.807415	425.415550	92.702671	93.31566
2	1	2015- 01-01 15:00:00	162.223630	8.919370	454.923953	38.316408	106.52312
3	1	2015- 01-01 18:00:00	172.355243	3.056496	423.041389	33.200513	105.49122
4	1	2015- 01-01 21:00:00	160.226142	6.853823	440.413573	54.501054	95.42469

5 rows × 31 columns

```
In [122]: # checking values for failure with comp2
Alldata[Alldata['failure'] == 'comp2'].head(5)
```

Out[122]:

	machineID	DT	volt_mean_3	volt_std_3	rotate_mean_3	rotate_std_3	pressure_mea
864	1	2015- 04-19 09:00:00	173.349101	15.556185	365.217244	39.847454	96.194
865	1	2015- 04-19 12:00:00	169.871094	13.210808	409.578214	100.008800	101.059
866	1	2015- 04-19 15:00:00	163.731593	12.711748	401.293490	43.833759	108.851
867	1	2015- 04-19 18:00:00	188.938118	11.086738	342.800783	47.889011	97.269
868	1	2015- 04-19 21:00:00	166.184120	8.689331	343.129904	116.932877	100.234

5 rows × 31 columns

```
In [124]:
           # checking values for failure with comp2
              Alldata[Alldata['comp2_repgapdays'] == 'none'].head(5)
              # dropping this records
              Alldata.drop(Alldata[Alldata['comp2 repgapdays'] == 'none'].index, inplace =
              Alldata[Alldata['comp2_repgapdays'] == 'none'].head(5)
   Out[124]:
                 machinelD DT volt_mean_3 volt_std_3 rotate_mean_3 rotate_std_3 pressure_mean_3 pre
              0 rows × 31 columns
In [125]:
           print(Alldata.dtypes)
              machineID
                                              int64
              DT
                                    datetime64[ns]
              volt_mean_3
                                            float64
              volt_std_3
                                            float64
              rotate_mean_3
                                            float64
              rotate_std_3
                                            float64
              pressure_mean_3
                                            float64
              pressure std 3
                                            float64
              vibration_mean_3
                                            float64
              vibration_std_3
                                            float64
              volt_mean_24
                                            float64
              volt_std_24
                                            float64
              rotate_mean_24
                                            float64
              rotate std 24
                                            float64
              pressure mean 24
                                            float64
              pressure_std_24
                                            float64
              vibration_mean_24
                                            float64
                                            float64
              vibration_std_24
              error1_count
                                            float64
              error2 count
                                            float64
              error3_count
                                            float64
                                            float64
              error4_count
              error5_count
                                            float64
                                            object
              comp1_repgapdays
              comp2_repgapdays
                                             object
                                             object
              comp3_repgapdays
                                             object
              comp4 repgapdays
              model
                                             object
                                              int64
              age
              datetime
                                             object
              failure
                                             object
              dtype: object
```

```
In [126]: # converting object type to float
Alldata['comp1_repgapdays'] = Alldata['comp1_repgapdays'].fillna(0).astype(fl
Alldata['comp2_repgapdays'] = Alldata['comp2_repgapdays'].fillna(0).astype(fl
Alldata['comp3_repgapdays'] = Alldata['comp3_repgapdays'].fillna(0).astype(fl
Alldata['comp4_repgapdays'] = Alldata['comp4_repgapdays'].fillna(0).astype(fl
print(Alldata.dtypes)
```

machineID int64 DT datetime64[ns] volt_mean_3 float64 volt std 3 float64 rotate_mean_3 float64 rotate_std_3 float64 pressure_mean_3 float64 pressure_std_3 float64 vibration_mean_3 float64 vibration std 3 float64 volt_mean_24 float64 volt_std_24 float64 rotate_mean_24 float64 rotate std 24 float64 pressure_mean_24 float64 pressure std 24 float64 vibration_mean_24 float64 vibration_std_24 float64 error1 count float64 error2 count float64 error3_count float64 float64 error4 count error5_count float64 comp1_repgapdays float64 comp2_repgapdays float64 float64 comp3_repgapdays comp4_repgapdays float64 model object int64 age datetime object failure object dtype: object

```
In [127]:
                                                                                                               Alldata.groupby('failure').count()
                             Out[127]:
                                                                                                                                                                              machineID DT
                                                                                                                                                                                                                                                                                                                volt_mean_3 volt_std_3 rotate_mean_3 rotate_std_3 pressure_mean_std_3 pressure_mean_st
                                                                                                                        failure
                                                                                                                                                                                                                 1528
                                                                                                                                                                                                                                                                         1528
                                                                                                                                                                                                                                                                                                                                                                  1528
                                                                                                                                                                                                                                                                                                                                                                                                                                             1528
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1528
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1528
                                                                                                                         comp1
                                                                                                                         comp2
                                                                                                                                                                                                                 2009
                                                                                                                                                                                                                                                                         2009
                                                                                                                                                                                                                                                                                                                                                                  2009
                                                                                                                                                                                                                                                                                                                                                                                                                                             2009
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2009
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2009
                                                                                                                         comp3
                                                                                                                                                                                                                        978
                                                                                                                                                                                                                                                                               978
                                                                                                                                                                                                                                                                                                                                                                       978
                                                                                                                                                                                                                                                                                                                                                                                                                                                   978
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        978
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                978
                                                                                                                         comp4
                                                                                                                                                                                                                 1256
                                                                                                                                                                                                                                                                         1256
                                                                                                                                                                                                                                                                                                                                                                  1256
                                                                                                                                                                                                                                                                                                                                                                                                                                             1256
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1256
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1256
                                                                                                                                  none
                                                                                                                                                                                                    285506 285506
                                                                                                                                                                                                                                                                                                                                                   285506
                                                                                                                                                                                                                                                                                                                                                                                                                               285506
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   285506
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            285506
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2
                                                                                                                 5 rows × 30 columns
```

Predictive Modelling

Generally for predictive modelling splitting the data randomly would suffifee, but for time series data, splitting data based on time is a better approach build, validate and test the model.

```
Splitting data into 3 samples for building and validation pd.to_datetime('2015-07-31 01:00:00'), pd.to_datetime('2015-08-01 01:00:00') pd.to_datetime('2015-08-31 01:00:00'), pd.to_datetime('2015-09-01 01:00:00') pd.to_datetime('2015-09-30 01:00:00'), pd.to_datetime('2015-10-01 01:00:00')
```

Out[128]:

	train_lastdate	test_tirstdate
0	2015-07-31 01:00:00	2015-08-01 01:00:00
1	2015-08-31 01:00:00	2015-09-01 01:00:00
2	2015-09-30 01:00:00	2015-10-01 01:00:00

```
In [129]:
           # remove unnecessary columns from Alldata
              Alldata.columns
   Out[129]: Index(['machineID', 'DT', 'volt_mean_3', 'volt_std_3', 'rotate_mean_3',
                     'rotate_std_3', 'pressure_mean_3', 'pressure_std_3', 'vibration_mean
              _3',
                     'vibration_std_3', 'volt_mean_24', 'volt_std_24', 'rotate_mean_24',
                     'rotate_std_24', 'pressure_mean_24', 'pressure_std_24',
                     'vibration_mean_24', 'vibration_std_24', 'error1_count', 'error2_cou
              nt',
                     'error3_count', 'error4_count', 'error5_count', 'comp1_repgapdays',
                     'comp2_repgapdays', 'comp3_repgapdays', 'comp4_repgapdays', 'model',
                     'age', 'datetime', 'failure'],
                    dtype='object')
In [130]:
          ▶ | Alldata = Alldata.drop(['datetime'], axis = 1)
           # Create random forest classifier object
In [131]:
              randomforest = RandomForestClassifier(random_state=1,
                                                                              # for consist
                                                        n estimators = 100,
                                                                                  # number
                                                        oob_score=True,
                                                                                   # 00B Scc
                                                        bootstrap=True,
                                                                                  # for usi
                                                        n jobs=-1,
                                                        class weight="balanced"
                                                                                  # for han
```

Splitting data into test and train data sets based on the dates

```
In [133]:
            ▶ Alldata.shape
              Alldata.columns
              print(Alldata.dtypes)
              machineID
                                              int64
              DT
                                    datetime64[ns]
              volt_mean_3
                                            float64
               volt_std_3
                                            float64
               rotate_mean_3
                                            float64
               rotate std 3
                                            float64
               pressure_mean_3
                                            float64
               pressure_std_3
                                            float64
              vibration_mean_3
                                            float64
               vibration_std_3
                                            float64
               volt_mean_24
                                            float64
               volt_std_24
                                            float64
               rotate_mean_24
                                            float64
               rotate_std_24
                                            float64
               pressure_mean_24
                                            float64
              pressure_std_24
                                            float64
               vibration_mean_24
                                            float64
               vibration_std_24
                                            float64
                                            float64
               error1_count
               error2_count
                                            float64
              error3_count
                                            float64
               error4_count
                                            float64
               error5_count
                                            float64
                                            float64
               comp1_repgapdays
                                            float64
               comp2_repgapdays
               comp3_repgapdays
                                            float64
               comp4_repgapdays
                                            float64
              model
                                             object
              age
                                              int64
              failure
                                             object
              dtype: object
In [134]:

► X_train.shape
```

Train and predict using the model, storing results for later

Out[134]: (216569, 30)

```
In [135]:
           # Train model
              model = randomforest.fit(X_train, y_train)
              #models.append(model)
              #Predicting the target variable - class
              y_predfailure = model.predict(X_test)
              #y_predfailure_results.append(y_predfailure)
              # Get predicted probabilities
             y_prob_failure = model.predict_proba(X_test)[:,1]
              #y_probfailure_results.append(y_prob_failure)
In [136]:
          # Calculate feature importances
              impfeatures = model.feature importances
              impfeatures
   Out[136]: array([0.04497048, 0.00121934, 0.02804014, 0.00131188, 0.05332834,
                     0.00118739, 0.0288036 , 0.00159807, 0.09213923, 0.00487745,
                     0.05200369, 0.0037463 , 0.08992738, 0.00510137, 0.07695131,
                     0.00469673, 0.09917478, 0.0912101, 0.07247695, 0.08575873,
```

0.11000311, 0.00863172, 0.00563759, 0.00615114, 0.00682065, 0.01187266, 0.0026542, 0.00187385, 0.00472435, 0.00310749])

```
In [137]:
          indices = np.argsort(impfeatures)[::-1]
              # Print the feature ranking
              print("Feature ranking:")
              for f in range(X_train.shape[1]):
                  print("%d. feature %d (%f)" % (f + 1, indices[f], impfeatures[indices[f]]
              Feature ranking:
              1. feature 20 (0.110003)
              2. feature 16 (0.099175)
              3. feature 8 (0.092139)
              4. feature 17 (0.091210)
              5. feature 12 (0.089927)
              6. feature 19 (0.085759)
              7. feature 14 (0.076951)
              8. feature 18 (0.072477)
              9. feature 4 (0.053328)
              10. feature 10 (0.052004)
              11. feature 0 (0.044970)
              12. feature 6 (0.028804)
              13. feature 2 (0.028040)
              14. feature 25 (0.011873)
              15. feature 21 (0.008632)
              16. feature 24 (0.006821)
              17. feature 23 (0.006151)
              18. feature 22 (0.005638)
              19. feature 13 (0.005101)
              20. feature 9 (0.004877)
              21. feature 28 (0.004724)
              22. feature 15 (0.004697)
              23. feature 11 (0.003746)
              24. feature 29 (0.003107)
              25. feature 26 (0.002654)
              26. feature 27 (0.001874)
              27. feature 7 (0.001598)
              28. feature 3 (0.001312)
              29. feature 1 (0.001219)
              30. feature 5 (0.001187)
```

Converting feature importance metric into a data frame for easy read

Plotting Cummulative Importance

```
In [139]: # Cumulative importances
impfeatdf = impfeatdf.drop(['index'], axis = 1)
impfeatdf['cum_imp'] = np.cumsum(impfeatdf.featureimportance)
impfeatdf
```

Out[139]:

featureimportance		featurename	cum_imp
0	0.110003	error5_count	0.110003
1	0.099175	error1_count	0.209178
2	0.092139	volt_mean_24	0.301317
3	0.091210	error2_count	0.392527
4	0.089927	pressure_mean_24	0.482455
5	0.085759	error4_count	0.568213
6	0.076951	vibration_mean_24	0.645165
7	0.072477	error3_count	0.717642
8	0.053328	pressure_mean_3	0.770970
9	0.052004	rotate_mean_24	0.822974
10	0.044970	volt_mean_3	0.867944
11	0.028804	vibration_mean_3	0.896748
12	0.028040	rotate_mean_3	0.924788
13	0.011873	age	0.936660
14	0.008632	comp1_repgapdays	0.945292
15	0.006821	comp4_repgapdays	0.952113
16	0.006151	comp3_repgapdays	0.958264
17	0.005638	comp2_repgapdays	0.963902
18	0.005101	pressure_std_24	0.969003
19	0.004877	volt_std_24	0.973880
20	0.004724	model_model3	0.978605
21	0.004697	vibration_std_24	0.983301
22	0.003746	rotate_std_24	0.987048
23	0.003107	model_model4	0.990155
24	0.002654	model_model1	0.992809
25	0.001874	model_model2	0.994683
26	0.001598	vibration_std_3	0.996281
27	0.001312	rotate_std_3	0.997593
28	0.001219	volt_std_3	0.998813
29	0.001187	pressure_std_3	1.000000

Out[140]: Text(0.5, 1.0, 'Cumulative Importances')

The following variables appear to be more important to the model as these variables could explain more than 90% of the variance in model:

```
error1_count
error5_count
error2_count
error4_count
volt_mean_24
```

```
pressure_mean_24
vibration_mean_24
error3_count
pressure_mean_3
rotate_mean_24
volt_mean_3
vibration_mean_3
```

Model Evaluation

```
# Get accuracy score
In [141]:
             randomforest.score(X_test, y_test)
   Out[141]: 0.9989852248741679
In [142]:
         # Create confusion matrix
             y_pred = model.predict(X_test)
             matrix = confusion_matrix(y_test, y_pred)
             matrix
                                            2,
   Out[142]: array([[
                      284,
                             5,
                                     0,
                                                  24],
                             555,
                                                  3],
                        1,
                                     0,
                                            0,
                           0,
                        1,
                                   206,
                                            2,
                                                  10],
                                          273,
                        2,
                               3, 0,
                                                   5],
                                            3, 72515]], dtype=int64)
                       14,
                               0,
                                     0,
```

Confusion Matrix

		00.	The second second		
0	2.8e+02	5	0	2	24
-	1	5.6e+02	0	0	3
True Class	1	0	2.1e+02	2	10
ю	2	3	0	2.7e+02	5
4	14	0	0	3	7.3e+04
	0	^	ာ Predicted Class	ზ	b

```
In [144]:
           # printing classification report
              print(classification report(y test, y pred))
                                          recall f1-score
                             precision
                                                              support
                                  0.94
                                            0.90
                                                      0.92
                                                                  315
                      comp1
                                  0.99
                                            0.99
                                                      0.99
                                                                  559
                      comp2
                                            0.94
                                                      0.97
                      comp3
                                  1.00
                                                                  219
                                  0.97
                                            0.96
                                                      0.97
                                                                  283
                      comp4
                      none
                                  1.00
                                            1.00
                                                      1.00
                                                                72532
                                                      1.00
                                                                73908
                  accuracy
                                  0.98
                                            0.96
                                                      0.97
                                                                73908
                 macro avg
                                                                73908
              weighted avg
                                  1.00
                                            1.00
                                                      1.00

▶ | def fn_multiclass_metrics(actual_label, predicted_label):

In [145]:
                  function that takes acutal labels and predicted labels and returns
                  accuracy, auc, precision, recall and f1 scores
                  average = 'weighted' for multi class classification
                  accuracy = accuracy_score(actual_label, predicted_label)
                  precision = precision score(actual label, predicted label, average = 'wei
                  recall = recall score(actual label, predicted label, average = 'weighted'
                  f1 = f1 score(actual label, predicted label, average = 'weighted')
                  return (accuracy, precision, recall, f1)
In [146]:

  | acc, prec, recall, f1 = fn_multiclass_metrics(y_test, y_pred)

              acc, prec, recall, f1
   Out[146]: (0.9989852248741679,
               0.9989746911742967,
               0.9989852248741679,
```

In preventive maintenance prediction, the most important metric to evaluate the model is recall, which conveys the actual number of failures predicted by the model. Here in the model built. it is around 99.8%. I suspect this could be due to large portion of failure = 'none'. I am sure, model could be further tweaked to nullify this bias with the help of domain experts.

Deployment

0.9989752956297505)

Create the model with best parameters obtained from tuning.

Save the model using joblib module as a pickle.

Deploy the pickle on the server and use it for fitting new unseen data.

```
In [147]:
              cwd = os.getcwd()
              print(cwd)
              projdir = os.path.dirname(cwd)
              modeldir = os.path.join(projdir, 'Model')
              # importing telemetry data
              modelfile = os.path.join(modeldir, 'predictivemodel.pkl')
              C:\Users\14802\OneDrive\Desktop\DSC 680-PROJECTS\Projects\Week1\Code
In [148]:
           # Save the model as a pickle in a file
              joblib.dump(model, modelfile)
   Out[148]: ['C:\\Users\\14802\\OneDrive\\Desktop\\DSC 680-PROJECTS\\Projects\\Week1\\M
              odel\\predictivemodel.pkl']
In [149]:
              # Load the model from the file
              tunedmodel from joblib = joblib.load(modelfile)
In [150]:
           ▶ # Fitting deployed model on new data ( assume here X_train and y_train are ne
              deployed model = tunedmodel from joblib.fit(X train, y train)
```

Conslusion

The accuracy of the model appears to be around 99 percent, which is incredible. I am confident that the model can be improved further by reducing bias and other factors. Another way to improve is to develop and train the model using the essential feature variables listed above. Building a predictive model for preventive maintenance, like any other predictive modeling, necessitates a great deal of domain knowledge and the creation of several feature variables. In this model, I used rolling mean for the last 24 hours and last 3 hours for each 3 hour window to produce telemetry feature variables. We may need to explore longer windows for these rolling computations at times. However, feature engineering is a large task, and data scientists in this preventative maintenance use case will need some help from domain experts.