CPDS

Concurrency Parallelism Distributed Systems

Course Presentation

Facultat d'Informàtica de Barcelona (FIB) Universitat Politècnica de Catalunya (UPC) 2019/2020 Q1

Course coordinator

Name: Jordi Guitart

E-mail: jguitart@ac.upc.edu

• Office: C6-205

• Office Hours: Wednesday 11:00am — 13:00pm

Wednesday 15:00pm — 17:00pm

Friday 15:00pm — 17:00pm

Arrange an appointment by mail

Objectives

- Overall goal:
 - Present computing as a <u>collection of tasks</u>
 that execute <u>simultaneously</u> and potentially <u>interacting with each other</u>
- Competences:
 - Provide the foundations
 - Understand the challenges
 - Learn about models, algorithms, systems

Objectives

 Focus on three main aspects, which are organized as three elective modules:

A. Module 1: Concurrency

Multiple simultaneous computations interacting with each other

B. Module 2: Parallelism

Execution on multiple cores or processors

C. Module 3: Distributed Systems

 Execution on multiple independent computers across a network

Structure

- A. Introductory part for all the students (6h)
 - Understanding Concurrency
 - Understanding Parallelism
 - Concepts of Distributed Systems
- B. Elective parts are presented as 3 different itineraries of 2 modules each (20h+20h)
 - 1. Concurrency + Parallelism
 - 2. Concurrency + Distributed Systems
 - 3. Parallelism + Distributed Systems
 - Each student must choose and follow one itinerary

Structure

- The three modules are scheduled <u>in parallel</u> in the same time slot
- Modules can run once or twice per semester (in one or two <u>sequential iterations</u>)
- Each module will run in one iteration during one semester and two iterations during the next one
- M2 and M3 will run in two iterations in Q1
- M1 will run in two iterations in Q2

- After the introductory part, students must express their preference for a given itinerary
- Coordinators of each specialization have recommended some itineraries for their students, as some modules provide relevant concepts for them
- Some topics in the modules overlap with subjects in the FIB bachelor degree
 - a) Module 2 overlaps with PAR subject
 - b) Module 3 has some overlap with SDX subject

- 'Advanced Computing'
 - ⇒ Itinerary 1 is recommended
- 'Computer Graphics & Virtual Reality'
 - ⇒ Itinerary 1 or 3 is recommended
- 'Computer Networks & Distributed Systems'
 - ⇒ Itinerary 2 or 3 is recommended
- 'High Performance Computing' (no FIB)
 - ⇒ Itinerary 3 is recommended
- 'Data Science', 'High Performance Computing' (FIB), non-MIRI students can take any itinerary

- Number of students per module and iteration is <u>limited</u>
- Students will be distributed between the two iterations of the 3 itineraries depending on:
 - Number of student requests for each itinerary
 - Maximum capacity of each module
 - Student's specialization
 - Student's origin university and degree
 - Student's expertise

- Send an e-mail to jguitart@ac.upc.edu
- A. State in the subject your preferred itinerary:
 - CPDS itinerary selection: Itinerary X Your Name
- B. Write in the body of the message:
 - Your MIRI specialization
 - Your origin university and degree
 - Your expertise (regarding the chosen itinerary)
 - Why you selected that itinerary
- <u>Deadline</u>: September 24th

Course organization

- Each module iteration includes lectures and practical classes
- Lecture classes
 - Objective: Acquisition of theoretical knowledge
 - Slide-based lectures
 - Exercises (from previous exams)
 - Online quizzes: Quizizz
 - http://quizizz.com/
 - Register if you want to keep your history of quizzes

Course organization

- Practical sessions
 - Objective: Apply in practice theoretical concepts
 - Preparation: Read assignment and additional docs
 - You will use your own laptops to do the practicals
 - Lab work in teams
- Each module has an exam preparation class and an exam (common for the two iterations)
 - M1 exam preparation: 10/12; exam: 17/01
 - M2 exam preparation: 13/12; exam: 10/01
 - M3 exam preparation: 17/12; exam: 14/01

Calendar

		Tuesday		Friday		
09/09 - 13/09	(10/9) INTRO CPDS			(13/9) INTRO M1		
16/09 - 20/09	(17/9) INTRO M2			(20/9) INTRO M3		
23/09 - 27/09		HOLIDAY		(27/09) M1 (1st IT)	(27/09) M2 (1st IT)	(27/09) M3 (1st IT)
30/09 - 04/10	(01/10) M1 (1st IT)	(01/10) M2 (1st IT)	(01/10) M3 (1st IT)	(04/10) M1 (1st IT)	(04/10) M2 (1st IT)	(04/10) M3 (1st IT)
07/10 - 11/10	(08/10) M1 (1st IT)	(08/10) M2 (1st IT)	(08/10) M3 (1st IT)	(11/10) M1 (1st IT)	(11/10) M2 (1st IT)	(11/10) M3 (1st IT)
14/10 - 18/10	(15/10) M1 (1st IT)	(15/10) M2 (1st IT)	(15/10) M3 (1st IT)	(18/10) M1 (1st IT)	(18/10) M2 (1st IT)	(18/10) M3 (1st IT)
21/10 - 25/10	(22/10) M1 (1st IT)	(22/10) M2 (1st IT)	(22/10) M3 (1st IT)	(25/10) M1 (1st IT)	(25/10) M2 (1st IT)	(25/10) M3 (1st IT)
28/10 - 01/11	(29/10) M1 (1st IT)	(29/10) M2 (1st IT)	(29/10) M3 (1st IT)		(31/10) M2 (2n IT)	(31/10) M3 (2n IT)
04/11 - 08/11		(05/11) M2 (2n IT)	(05/11) M3 (2n IT)		(08/11) M2 (2n IT)	(08/11) M3 (2n IT)
11/11 - 15/11		(12/11) M2 (2n IT)	(12/11) M3 (2n IT)		(15/11) M2 (2n IT)	(15/11) M3 (2n IT)
18/11 - 22/11		(19/11) M2 (2n IT)	(19/11) M3 (2n IT)		(22/11) M2 (2n IT)	(22/11) M3 (2n IT)
25/11 - 29/11		(26/11) M2 (2n IT)	(26/11) M3 (2n IT)		(29/11) M2 (2n IT)	(29/11) M3 (2n IT)
02/12 - 06/12		(03/12) M2 (2n IT)	(03/12) M3 (2n IT)	HOLIDAY		
09/12 - 13/12	(10/12) EXAM PREPARATION M1			(13/12) EXAM PREPARATION M2		
16/12 - 20/12	(17/12) EXAM PREPARATION M3					
· · · · · · · · · · · · · · · · · · ·						
06/01 - 10/01				(10/01) EXAM M2		
13/01 - 17/01	(14/01) EXAM M3			(17/01) EXAM M1		

Course material

- https://mwiki.fib.upc.edu/cpds-miri
 - Lecture slides
 - Practical assignments
 - Supporting documentation and references
- You have to log in using the same credentials as when you log into 'Racó'
 - Use VPN to connect from outside the UPC network
 - https://www.fib.upc.edu/en/fib/it-services/vpn-upclink

Grading

- Final Grade for CPDS:
 - 1st module in itinerary: 50%
 - 2nd module in itinerary: 50%
- On each module:
 - Practical assignments: 40%
 - Exam: 60%

Module 1: Concurrency

- Basics on concurrency
 - Modeling concurrent interaction with finite state processes (FSP)
 - Deadlock, mutual exclusion, safety and liveness analysis
- Programming paradigms
 - Shared memory: Threads and monitors (Java)
 - No shared memory: Asynchronous message passing. Massive parallelism (Introduction to Erlang)

Instructors

Name: Joaquim Gabarro

E-mail: gabarro@cs.upc.edu

• Office: Omega-216

• Office Hours: Friday 12:00pm — 13:00pm

Name: Jorge Castro

E-mail: castro@cs.upc.edu

Office: Omega-S121

Office Hours: Arrange an appointment by mail

Module 2: Parallelism

- Introductory course on parallel programming covering 3 different programming models:
 - 1. Shared-memory programming using **OpenMP**
 - 2. Distributed-memory programming using MPI
 - 3. Programming GPU devices for computation acceleration using **CUDA**
- Lab assignments for each model
 - Using C programming language
 - Performed in a Linux-based environment
 - Students have access to a shared memory parallel architecture, including several GPUs in the system

Instructor

Name: Marc Gonzalez

E-mail: marc@ac.upc.edu

• Office: C6-E207

• Office Hours: Monday 16:00pm — 18:00pm

Wednesday 11:00am — 13:00pm

Arrange an appointment by mail

Module 3: Distributed Systems

1. Distributed algorithms

- A. Time and global states: clock synchronization, logical clocks, distributed snapshot, predicates
- B. Coordination and agreement: leader election, (ordered) reliable multicast, consensus (Paxos)

2. Distributed shared data

- A. Distributed transactions: concurrency control and commit protocols
- B. Replication and consistency (models & protocols)
- Practical assignments in Erlang

Instructor

Name: Jordi Guitart

• E-mail: jguitart@ac.upc.edu

• Office: C6-205

• Office Hours: Wednesday 11:00am — 13:00pm

Wednesday 15:00pm — 17:00pm

Friday 15:00pm — 17:00pm

Arrange an appointment by mail

Bibliography

Basic textbooks

- A. S. Tanenbaum, M. van Steen. *Distributed Systems: Principles and Paradigms*, 2nd edition, Prentice Hall, 2007
- G. Coulouris, J. Dollimore, T. Kindberg, G. Blair. *Distributed Systems: Concepts & Design*, 5th ed., Addison-Wesley, 2011
- J. Magee, J. Kramer, Concurrency: State Models & Java Programming, 2nd edition, John Wiley & Sons, 2006
- B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, D. Lea,
 Java Concurrency In Practice, Addison-Wesley, 2006
- A. Grama, G. Karypis, V. Kumar, A. Gupta, *Introduction to Parallel Computing*, Pearson Education, 2003
- J. Armstrong. Programming Erlang: Software for a Concurrent World, 2nd edition, Pragmatic Programmers, 2013

Bibliography

Additional books

- S. Ghost. Distributed Systems: An Algorithmic Approach,
 Second Edition, Chapman and Hall/CRC, 2014
- F. Cesarini, S. Thompson. *Erlang Programming: A Concurrent Approach to Software Development*, O'Reilly, 2009
- F. Hebert. Learn You Some Erlang for Great Good!, No Starch Press, 2013
- M. Herlihy, N. Shavit, The Art of Multiprocessor Programming, O'Reilly, 2006

