Craig Interpolation in SAT and SMT

Philipp Rümmer Uppsala University

Philipp.Ruemmer@it.uu.se

July 12, 2014 SAT/SMT Summer School

Outline

General introduction

Computation of interpolants

Generalised forms of interpolation

Controlling interpolation

Basics, Application

Bit of history

- W. Craig (1957a), Linear reasoning. A new form of the Herbrand-Gentzen theorem
 — (1957b), Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory
- P. D. Bacsich. 1975. Amalgamation properties and interpolation theorems for equational theories. Algebra Universalis 5 (1975), 45–55.

Bit of history (2)

- D. Mundici, A lower bound for the complexity of Craig's interpolants in sentential logic. Archiv. Math. Logik 23 (1983) 27–36.
- J. Krajcek. Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. The Journal of Symbolic Logic, 62(2):457–486, 1997.
- P. Pudlak. Lower bounds for resolution and cutting plane proofs and monotone a computations. The Journal of Symbolic Logic, 62(3):981–998, 1997.

Bit of history (3)

- Kenneth L. McMillan: Interpolation and SAT-Based Model Checking. CAV 2003: 1-13
- Kenneth L. McMillan: An interpolating theorem prover. Theor. Comput. Sci. 345(1): 101-121 (2005)

Some basic notions

- Signatures Σ
 - Functions, predicates, constants
- First-order formulae; clauses

$$\bullet \ \top, \bot, \land, \lor, \neg, \rightarrow, \forall, \exists, =, p(\bar{t}), f(\bar{t})$$

- Model semantics
- Entailment ⊨
- Theories $T = (\Sigma_T, Ax_T)$
 - Interpreted symbols Σ_T , axioms Ax_T

Binary interpolants

Definition

Suppose an implication $A \rightarrow C$ in some logic. A *Craig interpolant* is a formula I such that

- $A \rightarrow I$ and $I \rightarrow C$ are valid, and
- ullet every non-logical symbol of I occurs in both A and C.
 - "Non-logical" symbols: variables, uninterpreted functions, etc.
 - Clearly, if I exists, then the implication $A \rightarrow C$ is valid
 - Converse?

Craig's theorem

Theorem [Craig, 1957] Suppose $A \to C$ is a valid (closed) implication in first-order logic. Then there is a Craig interpolant I for $A \to C$.

- Same result for many fragments:
 - Propositional formulae
 - Quantifier-free first-order formulae

Example

$$\underbrace{\left(f(a) = b \land p(f(a))\right)}_{A} \to \underbrace{\left(b = c \to p(c)\right)}_{C}$$

Local symbols in A: f, aLocal symbols in C: cGlobal/shared symbols: p, b

Interpolant: p(b)

Reverse interpolants

Definition

Suppose a conjunction $A \wedge B$ is given. A reverse interpolant is a formula I such that

- $A \rightarrow I$ and $B \rightarrow \neg I$ are valid, and
- every non-logical symbol of I occurs in both A and B.
 - Reverse interpolants for $A \wedge B$ = Ordinary interpolants for $A \rightarrow \neg B$
 - From now on: interpolant := reverse interpolant

Craig's theorem (2)

Existence of an interpolant if conjunction $A \wedge B$ is unsatisfiable.

Proof sketch (constructive):

- 1. Clausify A, B
- 2. By Herbrand + compactness, there are finite sets A', B' of ground instances such that $A' \wedge B'$ is unsat.
- 3. Compute ground interpolant I' for $A' \wedge B'$ (\rightarrow later)
- 4. Abstract by introducing quantifiers \rightarrow interpolant I

Applications

• Safety for finite-state systems: Transition system: $I(\bar{s}), T(\bar{s}, \bar{s}')$ Property: $P(\bar{s})$

Bounded model checking:

```
I(\bar{s}_0) \wedge \neg P(\bar{s}_0) ?
I(\bar{s}_0) \wedge T(\bar{s}_0, \bar{s}_1) \wedge \neg P(\bar{s}_1) ?
I(\bar{s}_0) \wedge T(\bar{s}_0, \bar{s}_1) \wedge T(\bar{s}_1, \bar{s}_2) \wedge \neg P(\bar{s}_2) ?
\vdots
```

Interpolation-based MC (simp.)

[McMillan, 2003]

```
If Init(\bar{s}) \wedge \neg P(\bar{s}) is satisfiable
     return Unsafe
R = Init(\bar{s}_{-1})
while (true) {
     A = R \wedge T(\bar{s}_{-1}, \bar{s})
     B = T(\bar{s}, \bar{s}_1) \wedge (\neg P(\bar{s}) \vee \neg P(\bar{s}_1))
     if A \wedge B is satisfiable {
         return Unknown
     } else {
        R' = R \vee \mathsf{ltp}(A, B)[\bar{s}/\bar{s}_{-1}]
         if R == R'
            return Safe
         else
           R = R'
```


Further applications

- Beth's theorem
- Synthesis
 - Database queries
 - Programs

Theories

 Depending on domain, interpolation queries are often formulated over some theories

General theory interpolation

Theorem [Kovacs, Voronkov, 2009] Suppose $A \wedge B$ is an unsatisfiable conjunction in first-order logic modulo T. Then there is an interpolant I such that

- $\bullet A \models_T I$
- $\bullet B \models \neg I$
- ullet every non-logical symbol of I occurs in both A and B.
 - Symmetric case possible: $A \models I, B \models_T \neg I$
 - However: even if A and B are quantifier-free, I might contain quant.

Plain quantifier-free interpolation

Definition [Bruttomesso, Ghilardi, Ranise, 2013] A theory $T = (\Sigma_T, Ax_T)$ admits *plain* quantifier-free interpolation if for every quantifier-free T-unsat. conjunction $A \wedge B$ over Σ_T (with arbitrary free variables) there is a quantifier-free I such that

- $\bullet A \models_T I$
- $\bullet B \models_T \neg I$
- ullet I only contains variables common to A and B .

Properties

- Theories that admit quantifier
 elimination also admit plain
 quantifier-free interpolation. E.g.
 - Presburger arithmetic
 - Real arithmetic
- Strongest interpolant: $\exists \bar{x}. \ A[\bar{x}]$ Weakest interpolant: $\forall \bar{y}. \ \neg B[\bar{y}]$
- Converse?
 - E.g., EUF

General quantifier-free interpol.

Definition [Bruttomesso, Ghilardi, Ranise, 2013] A theory $T = (\Sigma_T, Ax_T)$ admits **general** quantifier-free interpolation if for every **closed q-f** T-unsat. conjunction $A \wedge B$ over $\Sigma_T \cup \Sigma$ there is a quantifier-free I such that

- $\bullet A \models_T I$
- $\bullet B \models_T \neg I$
- I only contains Σ -symbols common to A and B .

Plain vs. general

- General q-f interpolation is strictly stronger a requirement than plain q-f interpolation
- E.g., Presburger arithmetic
 - Division/modulo operator needed for general q-f interpolation

Computation of Interpolants

Interpolation paradigms

- Extraction from proofs
- Constraint-based
- Beautiful

Interpolants from proofs

Propositional resolution

Definition

A resolution proof for a set of clauses $\mathcal C$ is a directed acyclic graph (V,E), where V is a set of clauses, such that

- the root is the empty clause;
- for every $c \in V$, either
 - $c \in \mathcal{C}$, and c is a leaf; or
 - c is resolvent of exactly two parents c_1 and c_2 .

$$\frac{}{c} \quad c \in \mathcal{C} \qquad \frac{v \vee c \quad \neg v \vee d}{c \vee d}$$

Example

$$\mathcal{C} = \{ \overline{b}, \overline{a} \lor b \lor c, a, \overline{a} \lor \overline{c} \}$$

Interpolants from proofs [McMillan, 2003]

- Suppose sets of clauses A, B, and a resolution proof for $A \cup B$
- Annotate clauses in the proof with partial interpolants (Boolean formulae):

$$c$$
 $[p_c]$

Augmented proof rules [McMillan, 2003]

• For a clause c, write g(c) for the sub-clause with only global variables

$$\frac{\overline{c} \quad [g(c)]}{c} \quad c \in A \qquad \qquad \overline{c} \quad [\top] \quad c \in B$$

$$\frac{v \vee c \quad [I_1]}{c \vee d} \quad [I_2] \quad v \text{ local to } A$$

$$\frac{v \vee c \quad [I_1] \quad \neg v \vee d \quad [I_2]}{c \vee d \quad [I_1 \wedge I_2]} \quad v \text{ not local to } A$$

Example (2)

$$A = \{\bar{b}, \bar{a} \lor b \lor c, a\} \qquad B = \{\bar{a} \lor \bar{c}\}$$

Correctness

Lemma

In an annotated proof for A,B, for every node c $[p_c]$ it is the case that

$$A \models p_c \lor (c \setminus g(c))$$

 $B, p_c \models g(c)$
 p_c only contains global symbols

• In particular, in root $c = \square!$

Integration of theories (lazy) [McMillan, 2005], [Cimatti et al, 2010]

Central idea: add theory-specific partial interpolants for theory lemmas

$$\frac{}{\phi \quad [I_{\phi}]} \phi \text{ is } T\text{-valid}$$

where again

$$\neg(\phi \setminus g(\phi)) \models I_{\phi}
\neg g(\phi), I_{\phi} \models \bot
I_{\phi} \text{ only contains global symbols}$$

→ Interpolating theory solvers

- Linear arithmetic
- EUF

Well understood

- Bit-vectors
- Arrays
- Nonlinear arithmetic

Challenging

etc.

Similar interpolation systems

- Sequent proofs for linear rational arithmetic, uninterpreted functions [McMillan, 2005]
- First-order resolution
 [McMillan, 2008], [Kovacs, Voronkov, 2009]
- Tableaux, Gentzen-style systems [Maehara, 1961], [Fitting, 1996], [Brillout et al, 2010]

etc.

Feasible interpolation

Definition

A proof system has the *feasible interpolation property* if interpolants can be extracted in polynomial time (in the size of a proof).

- Example: Cutting plane proofs for integers (Presburger arithmetic):
 - Again, need division/modulo for feasible interpolation property

Constraint-based interpolation [Rybalchenko et al, 2010]

Generalising Interpolants

Motivation

- "Binary" interpolants are often insufficient for applications
- More general forms include
 - Interpolant sequences
 - Tree interpolants
- Computation
 - by repeated binary interpolation; or
 - extraction from a single proof

Software model checking [McMillan, 2006]

```
L = 0;
do {
    assert(L==0);
    L = 1;
    old = new;
    if (*) {
        L = 0;     } unlock()
        new++;
    }
} while (new!=old);
```


Interpolant sequence

Definition

Suppose a conjunction $T_1 \wedge \cdots \wedge T_n$. An *interpolant sequence* is a sequence I_0, \ldots, I_n of formulae such that

- $\bullet I_0 = \top$
- $\bullet I_n = \bot$
- $I_{i-1}, T_i \vdash I_i$ for each $i = 1, \ldots, n$
- for each $i=1,\ldots,n$, the formula I_i only contains symbols common to $T_1\wedge\cdots\wedge T_i$ and $T_{i+1}\wedge\cdots\wedge T_n$

In the example

$$T_1: L_0 = 0$$

$$T_2: \quad L_0 = 0$$

$$T_3: L_1=1$$

$$T_4: old_1 = new_0$$

$$T_5: \quad \top$$

$$T_6: new_0 \neq old_1$$

$$T_7: L_1 \neq 0$$

$$I_0: \quad \top$$

$$I_1: \quad \top$$

$$I_2: \quad \top$$

$$I_3: \quad \top$$

$$I_4: old_1 = new_0$$

$$I_5: old_1 = new_0$$

$$I_6: \perp$$

$$I_7: \perp$$

Computation of sequence int.

Lemma

If a logic/theory admits binary interpolants, it also admits sequence interpolants.

Proof:

Solve a sequence of binary interpolation problems:

$$I_0 := \top$$

$$(I_0 \wedge T_1) \wedge (T_2 \wedge \cdots \wedge T_n) \quad \rightsquigarrow \quad I_1$$

$$(I_1 \wedge T_2) \wedge (T_3 \wedge \cdots \wedge T_n) \quad \rightsquigarrow \quad I_2$$

$$\vdots$$

$$(I_{i-1} \wedge T_i) \wedge (T_{i+1} \wedge \cdots \wedge T_n) \quad \rightsquigarrow \quad I_i$$

Computation of sequence int. (2)

- In practice:
 - Compute a single SAT/SMT proof
 - Extract a sequence of interpolants directly from this proof
 - Meta-argument: this yields actual interpolant sequence

Procedure calls, recursion [Heizmann et al, 2010]

```
L = 0;
do {
   lock();
   old = new;
   if (*){
     L = 0;
     new++;
} while (new!=old);
void lock() {
  assert(L==0);
  L = 1;
```


Tree interpolants

Definition

Suppose (V, E) is a finite directed tree (E(v, w)) means that w is a direct child of v). Further, let ϕ be a labelling of nodes $v \in V$ with formulae $\phi(v)$.

A *tree interpolant* I is a mapping from nodes $v \in V$ to formulae such that

- $I(v_0) = \bot$ for the root node $v_0 \in V$;
- for any node $v \in V$, it holds that

$$\phi(v) \land \bigwedge_{(v,w) \in E} I(w) \vdash I(v) ;$$

• any non-logical symbol in I(v) occurs both in some $\phi(w)$ with $E^*(v,w)$, and in some $\phi(w')$ with $\neg E^*(v,w')$

In the example

Computation of tree int.

Lemma

If a logic/theory admits binary interpolants, it also admits tree interpolants.

Proof:

Solve a sequence of binary interpolation problems, starting from the leaves of the tree.

Further schemata

- Symmetric interpolants
- Disjunctive interpolants
- (restricted/unrestricted)
 DAG interpolants

and some more

Classification using Horn clauses

- Recently proposed as intermediate language for verification tasks
- Recursion-free fragment is useful for characterising Craig interpolation

(Constrained) Horn clauses

Definition

Suppose

- £ is some constraint language (e.g., Presburger a.);
- R is a set of relation symbols;
- \mathcal{X} is a set of first-order variables.

Then a *Horn clause* is a formula $C \wedge B_1, \dots, B_n \rightarrow H$ where

- C is a constraint in \mathcal{L} (without symbols from \mathcal{R});
- each B_i is a literal of the form $r(t_1, \ldots, t_m)$;
- ullet H is either \bot , or of the same form as the B_i .

Solvability

Definition

A set C of Horn clauses is *syntactically/symbolically* solvable if the R-symbols can be replaced with constraints such that all clauses become valid.

Examples

$$x \ge 3 \to p(x)$$
$$p(0) \to \bot$$

$$e.g., \ p(x) \equiv x \ge 2$$

$$le(x,y) \equiv x < y$$

$$\begin{array}{l} \top \to le(x,x+1) \\ le(x,y) \wedge le(y,z) \to le(x,z) \\ le(x,x) \to \bot \\ p(x,y) \to le(x,y) \\ \top \to p(2,0) \end{array} \right)$$

unsolvable

Recursive Horn clauses

- Dependency graph $(\mathcal{R}, D_{\mathcal{R}})$ on set \mathcal{R} of relation symbols:
 - $(p,q) \in D_{\mathcal{R}}$ if there is a clause with p in the head and q in the body

In the examples

Recursive Horn clauses (2)

- Cyclic dependencies →
 "Recursive" Horn clauses:
 Resemble a programming language;
 solvability undecidable
- Acyclic graph →
 "Recursion-free" Horn clauses:
 Resemble a program path;
 solvability decidable, equivalent to
 Craig interpolation

Binary interpolation vs. Horn clauses

Definition

Suppose a conjunction $A \wedge B$.

A reverse interpolant is a formula I such that

- A o I and $B o \neg I$ are valid, and
- every non-logical symbol of I occurs in both A and B.
 - Equivalent Horn clauses:
 - Let \bar{x} be a vector of common variables in A,B
 - Encode implications as: $A \to r(\bar{x})$ $B, r(\bar{x}) \to \bot$

Interpolant sequence

$$T_1 \wedge \cdots \wedge T_n$$

General picture

Horn fragments

- Linear: at most one literal per body
- Head-disjoint: no relation symbol occurs in more than one head
- Body-disjoint: no relation symbol occurs more than once in a body
- Tree-like: head-disjoint + body-disjoint

Linear

```
p_1(x_1)
if (*) { // p_1
 x = x + 1;
} else {
  x = x + 2;
if (*) { // p_2
                                       p_2(x_2)
 x = x + 3;
                             x_3 = x_2 + 3 x_3 = x_2 + 4
} else {
 x = x + 4;
               // p_3
                                       p_3(x_3)
[...]
                   p_1(x) \to p_2(x+1)
                   p_1(x) \rightarrow p_2(x+2)
```

 $p_2(x) \rightarrow p_3(x+3)$

 $p_2(x) \rightarrow p_3(x+4)$

Tree-like

$$T_2:$$
 $T_1:$ $L_0=0$ $T_3:$ $T_4:$ o $T_5:$ $old_1=new_0$

$$L_{0} = 0 \to p_{1}(L_{0})$$

$$L_{0} = 0 \to p_{2}(L_{0})$$

$$L_{1} = 1 \to p_{3}(L_{0}, L_{1})$$

$$p_{1}(L_{1}) \land p_{3}(L_{0}, L_{1}) \to p_{4}$$

$$\vdots$$

Head-disjoint

Interpolant Quality

Motivation

- Interpolation queries can have many solutions
- Performance of model checkers highly depends on quality interpolants
 - Small + simple enough
 - General enough

How can interpolation be controlled?

Example

```
i = 0;
x = j;
while (i < 50) {
    i++;
    x++;
}
if (j == 0)
    assert (x >= 50);
```


Interpolant lattice

Controlling interpolants ...

- Ad-hoc
- Strength
- Syntactically
- Beautifully
- Semantically

Ad-hoc: useful tricks

- First compute unsatisfiable cores of interpolation problem $A \wedge B$
 - One interpolant can be obtained per core → bigger chance to get something useful

- Rewrite equations s=t to inequalities $s \leq t, s \geq t$
 - Tend to be more general

Interpolant strength

[D'Silva et al, 2010]

- Observation: there are many ways to extract interpolants from a proof
- McMillan's interpolation system Itp_M :

$$\frac{\overline{c} \quad [g(c)]}{c} \quad c \in A \qquad \overline{c} \quad [T] \quad c \in B$$

$$\frac{v \lor c \quad [I_1]}{c \lor d} \quad [I_2]}{c \lor d} \quad v \text{ local to } A$$

$$\frac{v \lor c \quad [I_1]}{c \lor d} \quad [I_1 \lor I_2]}{c \lor d} \quad v \text{ not local to } A$$

Interpolant strength (2)

[D'Silva et al, 2010]

• Inverse McMillan Itp_M^{-1} :

$$\frac{c}{c} [\bot] c \in A \qquad \overline{c} [\neg g(c)] c \in B$$

$$\frac{v \lor c}{c \lor d} [I_1] \qquad \neg v \lor d \qquad [I_2] \qquad v \text{ local to } B$$

$$\frac{v \lor c}{c \lor d} [I_1] \qquad \neg v \lor d \qquad [I_2] \qquad v \text{ not local to } B$$

$$\frac{v \lor c}{c \lor d} [I_1] \qquad \neg v \lor d \qquad [I_2] \qquad v \text{ not local to } B$$

Interpolant strength (3) [D'Silva et al, 2010]

- Observation: Itp_M interpolants are always **at least** as strong as those from Itp_M^{-1} (when working with same proof)
- Further systems:
 - Symmetric interpolation system
 - Labelled interpolation
 - → Strength can be controlled

Does strength affect MC?

 So far, no conclusive results correlating strength with MC convergence (for analysis of hardware designs)

 Principal problem: Interpolants from a single proof are not too diverse

In the example

74/98

Syntactic restrictions [Jhala, McMillan, 2006]

 Idea: restrict interpolant language to enforce generation of right proof

Definition

An L-restricted interpolant for a conjunction $T_1 \wedge \cdots \wedge T_n$ is an interpolant sequence I_0, \ldots, I_n such that $I_i \in L$ for every $i = 0, \ldots, n$

Syntactic restrictions (2) [Jhala, McMillan, 2006]

- Define an ascending chain $L_0 \subseteq L_1 \subseteq \cdots$ of *finite* interpolant languages, such that $\bigcup_i L_i$ includes all formulae
- E.g., L_k only contains formulae with coefficients in [-k,k]
- Verification loop:

Syntactic restrictions (3) [Jhala, McMillan, 2006]

Lemma

The verification loop is *complete:* if predicates exist to verify safety of a program, the algorithm will find them eventually.

Problems:

- Computation of restricted interpolants is difficult
- Completeness is of limited value in practice

Term abstraction

[Alberti et al, 2012]

 Idea: occurrence of symbols in interpolants can be prevented by renaming

```
i = 0;
x = j;
while (i < 50) {
    i++;
    x++;
}
if (j == 0)
    assert (x >= 50);
```

• Problem: very coarse-grained

In the example

Interpolation abstractions

[Rümmer et al, 2013]

• *Idea:* prevent occurrences of x, i in interpolant, but still include term x-i

Definition

Suppose an interpolation problem $A[\bar{s}_A, \bar{s}] \wedge B[\bar{s}, \bar{s}_B]$ An *interpolation abstraction* is a pair $(R_A[\bar{s}', \bar{s}], R_B[\bar{s}, \bar{s}''])$ of formulae with the property that $R_A[\bar{s}, \bar{s}]$ and $R_B[\bar{s}, \bar{s}]$ are valid.

An abstract interpolation problem is an interpolation query

$$(A[\bar{s}_A, \bar{s}'] \wedge R_A[\bar{s}', \bar{s}]) \wedge (R_B[\bar{s}, \bar{s}''] \wedge B[\bar{s}'', \bar{s}_B])$$

In the example

$$i_0 = 0 \land x_0 = j' \land \land i_0 < 50 \land i'_1 = i_0 + 1 \land x'_1 = x_0 + 1 \land$$

$$A[i_0, x_0; i'_1, x'_1, j']$$

Resulting interpolant:

$$x_1 - i_1 \ge j$$

$$R_A[i_1', x_1', j'; i_1, x_1, j]$$

$$R_B[i_1, x_1, j; i_1'', x_1'', j'']$$

$$i_1'' \ge 50 \land$$
 $j'' = 00 \land$
 $x_1'' < 50$

$$\succ B[i_1'', x_1'', j]'']$$

Semantic view

Syntactic view

Only consider interpolants that can be constructed from templates $\{j, x-i\}$

Abstraction search

- 1.Define a base set of interesting templates; e.g., $\{i_1, j, x_1 i_1\}$ \rightarrow apply domain knowledge
- 2.Search for maximum feasible abstractions $(R_A[\bar{s}',\bar{s}],R_B[\bar{s},\bar{s}''])$ definable using the templates; e.g., $\{i_1\}, \{j,x_1-i_1\}$
- 3.(Prioritise abstractions using costs)
- 4. Compute an interpolant for each abstraction

In the lattice

Interpolants for $\{i_1\}$

Some results on software programs

Benchmark	Eld	arica	Eldari	ca-ABS	Flata	Z3
	N	sec	N	sec	sec	sec
C programs						
boustrophedon (C)	*	*	10	10.7	*	0.1
boustrophedon_expansed (C)	*	*	11	7.7	*	0.1
halbwachs (C)	*	*	53	2.4	*	0.1
gopan (C)	17	22.2	62	57.0	0.4	349.5
rate_limiter (C)	11	2.7	11	19.1	1.0	0.1
anubhav (C)	1	1.7	1	1.6	0.9	*
cousot (C)	*	*	3	7.7	0.7	*
bubblesort (E)	1	2.8	1	2.3	77.6	0.3
insdel (C)	1	0.9	1	0.9	0.7	0.0
insertsort (E)	1	1.8	1	1.7	1.3	0.1
listcounter (C)	*	*	8	2.0	0.2	*
listcounter (E)	1	0.9	1	0.9	0.2	0.0
listreversal (C)	1	1.9	1	1.9	4.9	*
mergesort (E)	1	2.9	1	2.6	1.1	0.2
selectionsort (E)	1	2.4	1	2.4	1.2	0.2
rotation_vc.1 (C)	7	2.0	7	0.3	1.9	0.2
rotation_vc.2 (C)	8	2.7	8	0.2	2.2	0.3
rotation_vc.3 (C)	0	2.3	0	0.2	2.3	0.0
rotation.1 (E)	3	1.8	3	1.8	0.5	0.1
split_vc.1 (C)	18	3.9	17	3.2	*	1.1
split_vc.2 (C)	*	*	18	1.1	*	0.2
split_vc.3 (C)	0	2.8	0	1.5	*	0.0
Recursive Horn SMT-LIB Bend	hmarks					
addition (C)	1	0.7	1	0.8	0.4	0.0
bfprt (C)	*	*	5	8.3	-	0.0
binarysearch (C)	1	0.9	1	0.9	-	0.0
buildheap (C)	*	*	*	*	-	*
countZero (C)	2	2.0	2	2.0	-	0.0
disjunctive (C)	10	2.4	5	5.0	0.2	0.3
floodfill (C)	*	*	*	*	41.2	0.1
gcd (C)	4	1.2	4	2.0	-	*
identity (C)	2	1.1	2	2.1	-	0.1
merge-leq (C)	3	1.1	7	7.0	15.7	0.1

Some results on Petri nets

Benchmark	nchmark Eldarica ABS (1)			ABS (2)		ABS (3)		ABS-all				
Benchmark												Fast
		N	sec	N	sec	N	sec	N	sec	N	sec	sec
Bounded Petri nets												
Basic ME	U	3	1.3	3	1.55	3		3	1.3	3	1.7	<1
IFIP	U	12	2.3	2	1.7	12	4.3	10	4.6	2	1.8	<1
L6000	U	*	*	17	16.5	8	4.7	*	*	3	4.0	<1
Long 1	U	*	*	1	1.2	7	7.1	*	*	1	1.2	<1
Long 2	U	*	*	1	1.4	10	11.1	13	15.4	1	1.4	<1
Long 3	U	*	*	*	*	10	11.5	8	8.2	11	19.2	<1
Long 4	U	*	*	1	2.8	9	11.2	103	79.6	1	3.0	<1
Manufacturing 3	U	*	*	323	802	441	2635	675	1946	354	1588	2.4
Manufacturing 9	R	*	*	232	801	264	632	560	3053	295	1515	10.8
Unbounded Petri n	ets											
Alternating bit prot.	R	64	14.8	16	10.5	44	17.5	35	15.2	16	14.7	4.5
FMS	R	25	20.5	23	28.4	25	27.3	17	24.7	23	32.4	98.4
**	U	18	9.8	2	7.0	13	17.6	18	10.7	2	6.7	37.4
FinkelKM	R	16	5.8	15	8.9	16	11.6	17	11.6	15	22.7	5.7
**	U	14	5.7	3	2.4	6	6.5	7	3.4	3	2.5	5.7
Finkel Counterex.	R	12	2.3	10	3.5	12	2.3	12	2.6	10	3.6	<1
Kanban	R	28	33.3	19	35.8	29	70.0	22	41.5	25	67.3	*
,,	U	*	*	1	3.9	*	*	*	*	1	3.8	*
Mesh 2x2	R	75	52.3	64	82.9	60	56.6	68	102	65	105	97
,,	U	186	170	18	33.7	*	*	*	*	18	37.8	97
Multipool	U	56	423	1	5.4	*	*	*	*	1	5.0	*
Pingpong	U	3	1.4	2	1.5	2	1.4	2	1.3	2	1.5	<1
PNCSA Cover	R	32	15.0	17	16.5	32	14.5	26	16.4	17	17.7	*
Exponential	U	*	*	8	3.9	8	3.4	6	5.1	5	5.2	*
Language inclusion	U	*	*	*	*	5	3.7	2	1.7	6	9.0	<1

Summary

- New interpolation procedures for various theories still interesting
 - E.g., arrays, bit-vectors

Central concern at this point:
 Control form of interpolants

For many purposes
 Craig interpolation =
 recursion-free Horn solving

- E. W. Beth (1953), "On Padoa's method in the theory of definition"
- William Craig: Linear Reasoning. A New Form of the Herbrand-Gentzen Theorem. J. Symb. Log. 22(3): 250-268 (1957)
- S. Maehara. On the interpolation theorem of Craig (in Japanese). Sugaku, 12:235–237, 1961.
- J. Krajcek. Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. J. Symbolic Logic, 62(2):457–486, June 1997.

- Kenneth L. McMillan: Interpolation and SAT-Based Model Checking. CAV 2003: 1-13
- Kenneth L. McMillan: An interpolating theorem prover. Theor. Comput. Sci. 345(1): 101-121 (2005)
- Kenneth L. McMillan: Quantified Invariant Generation Using an Interpolating Saturation Prover. TACAS 2008: 413-427
- Vijay D'Silva, Daniel Kroening, Mitra Purandare, Georg Weissenbacher: Interpolant Strength.
 VMCAI 2010: 129-145

- Melvin Fitting: First-Order Logic and Automated Theorem Proving, Second Edition. Graduate Texts in Computer Science, Springer 1996, ISBN 978-1-4612-7515-2, pp. I-XVI, 1-326
- Angelo Brillout, Daniel Kroening, Philipp Rümmer, Thomas Wahl: An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic. IJCAR 2010: 384-399
- Alessandro Cimatti, Alberto Griggio, Roberto Sebastiani: Efficient generation of Craig interpolants in satisfiability modulo theories. ACM Trans. Comput. Log. 12(1): 7 (2010)

- Andrey Rybalchenko, Viorica Sofronie-Stokkermans: Constraint solving for interpolation. J. Symb. Comput. 45(11): 1212-1233 (2010)
- Aws Albarghouthi, Kenneth L. McMillan: Beautiful Interpolants. CAV 2013: 313-329

- Laura Kovács, Andrei Voronkov: Interpolation and Symbol Elimination. CADE 2009: 199-213
- Roberto Bruttomesso, Silvio Ghilardi, Silvio Ranise: Quantifier-free interpolation in combinations of equality interpolating theories. ACM Trans. Comput. Log. 15(1): 5 (2014)
- Kenneth L. McMillan: Lazy Abstraction with Interpolants. CAV 2006: 123-136
- Matthias Heizmann, Jochen Hoenicke, Andreas Podelski: Nested interpolants. POPL 2010: 471-482

- Philipp Rümmer, Hossein Hojjat, Viktor Kuncak: Disjunctive Interpolants for Horn-Clause Verification. CAV 2013: 347-363
- Philipp Rümmer, Hossein Hojjat, Viktor Kuncak: Classifying and Solving Horn Clauses for Verification. VSTTE 2013: 1-21
- Arie Gurfinkel, Simone Fulvio Rollini, Natasha Sharygina: Interpolation Properties and SAT-Based Model Checking. ATVA 2013: 255-271
- Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, Andrey Rybalchenko: Synthesizing software verifiers from proof rules. PLDI 2012: 405-416

- Ranjit Jhala, Kenneth L. McMillan: A Practical and Complete Approach to Predicate Refinement. TACAS 2006: 459-473
- Francesco Alberti, Roberto Bruttomesso, Silvio Ghilardi, Silvio Ranise, Natasha Sharygina: Lazy Abstraction with Interpolants for Arrays. LPAR 2012: 46-61
- Philipp Rümmer, Pavle Subotic: Exploring interpolants. FMCAD 2013: 69-76
- Viktor Kuncak, Régis Blanc: Interpolation for synthesis on unbounded domains. FMCAD 2013: 93-96

- David Toman and Grant E. Weddell.
 Fundamentals of Physical Design and Query
 Compilation. Synthesis Lectures on Data
 Management. Morgan & Claypool Publishers,
 2011
- Aws Albarghouthi, Arie Gurfinkel, Marsha Chechik: Craig Interpretation. SAS 2012: 300-316