Student Information

Full Name : Mustafa Ozan ALPAY

Id Number: 2309615

Answer 1

Let $f: A \to B$ and $g: B \to C$. Prove the following:

- a) If $C_0 \subseteq C$, show that $(g \circ f)^{-1}(C_0) = f^{-1}(g^{-1}(C_0))$.
 - 1. Let's assume that $(g \circ f)^{-1}(C_0) = f^{-1} \circ (g^{-1}(C_0))$ holds for any C_0 that is inside C.

$$\begin{array}{lll} ((g \circ f)^{-1} \circ (g \circ f))(C_0) & = & ((f^{-1} \circ g^{-1}) \circ (g \circ f))(C_0) \\ & = & (((f^{-1} \circ g^{-1}) \circ g) \circ f)(C_0) \\ & = & ((f^{-1} \circ (g^{-1} \circ g)) \circ f)(C_0) \\ & = & ((f^{-1} \circ I_B) \circ f)(C_0) \\ & = & (f^{-1} \circ f)(C_0) \\ & = & I_A(C_0) \\ & = & C_0 \end{array}$$

2. Similarly,

$$((g \circ f) \circ (g \circ f)^{-1})(C_0) = ((g \circ f) \circ (f^{-1} \circ g^{-1}))(C_0)$$

$$= (((g \circ f) \circ f^{-1}) \circ g^{-1})(C_0)$$

$$= (g \circ (f \circ f^{-1})) \circ g^{-1})(C_0)$$

$$= ((g^{-1} \circ I_A) \circ g)(C_0)$$

$$= (g^{-1} \circ g)(C_0)$$

$$= I_B(C_0)$$

$$= C_0$$

3. Thus,

(a)
$$((g \circ f)^{-1} \circ (g \circ f))(C_0) = C_0$$
 and

(b)
$$((g \circ f) \circ (g \circ f)^{-1})(C_0) = C_0$$

proves that our assumption is correct.

- b) If $g \circ f$ is injective, what can be said about the injectivity of f and g?
 - 1. It is known that $g \circ f$ is injective.
 - 2. Let us assume, $\exists x_1, x_2 \in A$, which satisfies $f(x_1) = f(x_2)$.
 - 3. By using our assumption, we can say that $(g \circ f)(x_1) = g(f(x_1)) = g(f(x_2)) = (g \circ f)(x_2)$.

- 4. Since $g \circ f$ is injective, previous statement implies that $x_1 = x_2$. Therefore f is injective.
- 5. However we cannot say anything regarding the injectivity of g.
- c) If $g \circ f$ is surjective, what can be said about the surjectivity of f and g?
 - 1. It is known that $g \circ f$ is surjective.
 - 2. Let $z \in C$.
 - 3. Since $g \circ f$ is surjective, $\exists x \in A$ such that $(g \circ f)(x) = g(f(x)) = z$
 - 4. Let f(x) = y and $y \in B$, then g(y) = z.
 - 5. Therefore g is surjective.
 - 6. However we cannot say anything regarding the surjectivity of f.

- a) Show that if f has a left inverse, f is injective; and if f has a right inverse, f is surjective.
 - 1. (a) Let us assume that f is injective.
 - (b) If we choose $x_0 \in A$, the range of f^{-1} would have exactly one element from B.
 - (c) Let us select an arbitrary $b \in f(A)$. In that case, g(b) would be the only element of f^{-1} , while if $b \notin f(A)$, the set $g(b) = x_0$.
 - (d) Since $\forall x \in A \to \exists f(x) \in f(A)$, we can summarize this as $\forall x \in A, g(f(x)) = x$
 - (e) Therefore, if g is a left inverse for f, f must be injective.
 - 2. (a) Let us have an arbitrary $b \in B$.
 - (b) We would like to find such an $a \in A$ such that f(a) = b.
 - (c) In order to do so, let us set a = g(b) and that the right inverse condition implies f(a) = f(g(b)) = b as desired.
 - (d) Therefore, f is surjective.
- b) Can a function have more than one left inverse? What about right inverses?
 - 1. A function can have more than one left inverse.
 - (a) Let us set an arbitrary function as following; $f(x) = x^2$
 - (b) The inverse of f can take two different values, which are $f^{-1}(x) = +\sqrt{x}$ and $f^{-1}(x) = -\sqrt{x}$
 - (c) Therefore it is possible to have more than one left inverse.
 - 2. A function can also have more than one right inverse.
 - (a) Let us set an arbitrary function that holds the followings; f(1) = f(2) = 1

(b) The inverse of f can take two different values, which are

$$f^{-1}(1) = 2$$
 and $f^{-1}(1) = 1$

- (c) Therefore it is possible to have more than one right inverse.
- c) Show that if f has both a left inverse g and a right inverse h, then f is bijective and $g = h = f^{-1}$.
 - 1. Since g is a left inverse, we can state that

$$(g \circ f)(x) = x$$

2. By using the proof that on the part (a) of question 1, we can rewrite the second equation as following,

$$(f \circ g)^{-1}(x) = x$$

 $g^{-1} \circ (f^{-1}(x)) = x$
 $g \circ g^{-1} \circ (f^{-1}(x)) = g(x)$

3. Since $g \circ g^{-1} = I_B$,

$$f^{-1}(x) = g(x)$$

4. Likewise, since h is a right inverse, we can state that

$$(f \circ h)(x) = x$$

5. By using the proof that on the part (a) of question 1, we can rewrite the second equation as following,

$$(f \circ h)^{-1}(x) = x$$

 $h^{-1} \circ (f^{-1}(x)) = x$
 $h \circ h^{-1} \circ (f^{-1}(x)) = h(x)$

6. Since $h \circ h^{-1} = I_B$,

$$f^{-1}(x) = h(x)$$

7. By combining the results on 3^{rd} and 6^{th} lines, we can say that

$$g(x) = f^{-1}(x) = h(x)$$

Answer 3

Answer 4

- The definition of Θ is, a function f is $\Theta(g)$ if and only if there are constants C_1 and C_2 such that $C_1g(n) \leq f(n) \leq C_2g(n)$.
- If $n \ln n = \Theta(k)$, we can rewrite this as the following;

$$C_1 k \le n \ln n \le C_2 k$$

• Since $\ln k \neq 0$, dividing this inequality by $\ln k$ is possible.

$$C_1 \frac{k}{\ln k} \le n \frac{\ln n}{\ln k} \le C_2 \frac{k}{\ln k}$$

• By applying the limit rules,

$$\lim_{k \to \infty} \frac{\ln n}{\ln k} = 0$$

- Therefore we can keep C_1 as the lower bound to show that $n = \Theta(\frac{k}{\ln k})$.
- By using $C_1 k \le n \ln n \le C_2 k$ again, we can say that $C_1 k \le n \ln n < n^2$ for any large n.
- By taking the natural logarithm of each side, $\ln C_1 + \ln k < 2 \ln n$
- By rearranging the inequality,

$$\frac{\ln k}{\ln n} < 2 - \frac{\ln C_1}{\ln n} < 2$$
 for any large n

• If we rewrite n and use the equations that we derived above, we can get

$$n = n \frac{\ln k}{\ln n} \frac{\ln n}{\ln k} < 2C_2 \frac{k}{\ln k}$$

• Finally, by combining our calculations, we can say that,

$$C_1 \frac{k}{\ln k} \le n \le 2C_2 \frac{k}{\ln k}$$
 for large k values.

• By the definition of Θ , we can conclude that $n = \Theta(\frac{k}{\ln k})$

- a) Show that 6 and 28 are perfect.
 - The set of positive divisors of 6 are $\{1, 2, 3, 6\}$. The sum of all its positive divisors excluding itself is 1 + 2 + 3 = 6, thus making it a perfect number.
 - The set of positive divisors of 28 are $\{1, 2, 4, 7, 14, 28\}$. The sum of all its positive divisors excluding itself is 1 + 2 + 4 + 7 + 14 = 28, thus making it a perfect number.
 - **b)** Show that $2^{p-1}(2^p-1)$ is a perfect number when 2^p-1 is prime.
 - Since $2^p 1$ is prime, the prime divisors of $2^{p-1}(2^p 1)$ would be only 2 and $2^p 1$. By using this information, we can denote the set of all positive divisors of $2^{p-1}(2^p 1)$ as $\{1, 2, ..., 2^{p-1}, 1 * (2^p 1), 2 * (2^p 1), ..., 2^{p-1} * (2^p 1)\}$

• To sum all the positive divisors, we can write the following;

$$\sum_{n=0}^{p-1} 2^n + (2^p - 1) \sum_{n=0}^{p-1} 2^n$$

• Since the summation operator has associativity, we can rearrange the equation as;

$$= (2^p) * \sum_{n=0}^{p-1} 2^n$$

• By using the formula

$$=\sum_{n=0}^{x} 2^n = 2^{x+1} - 1$$

• We can rearrange the equation;

$$= (2^p) * \sum_{n=0}^{p-1} 2^n = (2^p) * (2^p - 1)$$

• Since this summation includes all positive divisors, we need to subtract the actual number from it.

$$(2^p) * (2^p - 1) - (2^{p-1}) * (2^p - 1) = (2^{p-1}) * (2^p - 1)$$

• Therefore, from this formula, we can see that the sum of all positive divisors excluding the number itself is equal to the number if and only if $2^p - 1$ is prime and the number is $2^{p-1}(2^p - 1)$.

- a) Given $x \equiv c_1 \pmod{m}$ and $x \equiv c_2 \pmod{n}$ where c_1, c_2, m, n are integers with m > 0, n > 0 show that the solution x exists if and only if $gcd(m, n)|c_1 c_2$.
 - Let us say that the system has a solution x.
 - We can say that $t = \gcd(m, n)$ exists.
 - By using the properties of the modulo, we can say that $x c_1 = m \cdot \alpha$, which is also a multiple of t.
 - Similarly, for the second statement, we can say that $x c_2 = n \cdot \beta$, which is again a multiple of t.
 - Therefore, $c_1 c_2 = (x c_2) (x c_1)$ is also a multiple of t.
 - Thus, $t|(c_1-c_2)$, which is $gcd(m,n)|c_1-c_2$.