Practice Problems 3

Office Hours: Tuesdays, Thursdays from 3:30 to 4:30 at SS 7218 (TA Preparation Room). <u>E-mail:</u> mpark88@wisc.edu

MISCELLANEOUS

- 1. * (Manipulating Subscripts) We say a random variable X follows a Poisson distribution if $p(X=x) = exp(-\lambda)\frac{\lambda^x}{x!}, x \in \{0\} \cup \mathbb{N}$, given a parameter λ . Show that $E(X) = \lambda$. (hint: Use $E(X) = \sum_{x=0}^{\infty} xexp(-\lambda)\frac{\lambda^x}{x!}$, and $\sum_{x=0}^{\infty} p(X=x) = \sum_{x=0}^{\infty} exp(-\lambda)\frac{\lambda^x}{x!} = 1$)
- 2. * If a set A contains n elements, the number of different subsets of A is equal to 2^n .

CONTRACTION MAPPING, FIXED POINT THEOREM

- Contraction Mapping Theorem If (S, ρ) is a complete metric space and $T: S \to S$ is a contraction mapping with modulus $\beta \in \mathbb{R}$, then
 - (a) T has exactly one fixed point v^* in S, and
 - (b) for any $v_0 \in S$, $\rho(T^n(v_0), v^*) \leq \beta^n \rho(v_0, v^*)$, n = 0, 1, 2, ...
- Contraction Mapping Theorem in R^n (We know that R^n is complete, so) If $f: R^n \to R^n$ is a contraction mapping with modulus $c \in \mathbb{R}$, then
 - (a) f has exactly one fixed point x^* in \mathbb{R}^n , and
 - (b) for any $x_0 \in \mathbb{R}^n$, $|f^n(x_0), x^*| \le c^n |x_0, x^*|$
- 3. * Find a fixed point for given functions $f: \mathbb{R} \to \mathbb{R}$.
 - (a) $f(x) = \sqrt{x}$
 - (b) $f(x) = x^2$
 - (c) $f(x) = \frac{1}{2}x + 1$
 - (d) f(x) = 2x 1
- 4. * Show that the given function is a contraction mapping, if not, disprove it.
 - (a) $f(x) = \frac{1}{2}x + 1$
 - (b) f(x) = 2x 1

OPEN AND CLOSED AND COMPACT SETS

- 5. * Is (0,1) a open set in \mathbb{R} ? What about \mathbb{R}^2 ?
- 6. * Disprove that [0,1) is closed in \mathbb{R} . Is it open?
- 7. Prove that $[0,1] \in \mathbb{R}$ is a closed set.

- 8. Is $A = [0,1)^2$ an open set in \mathbb{R}^2 ?
- 9. * For each of the following subsets of \mathbb{R}^2 , draw the set and determine whether it is open, closed, and bounded. Give reasons for your answers
 - (a) $\{(x,y); x=0, y \ge 0\}$
 - (b) $\{(x,y); 1 \le x^2 + y^2 < 2\}$
 - (c) $\{(x,y); 1 \le x \le 2\}$
 - (d) $\{(x,y); x = 0 \text{ or } y = 0, \text{ but not both}\}$

CONTINUITY

10. Prove or disprove: Let $X,Y\in\mathbb{R}$. $f:X\to Y$ is continuous if $A\subset X$ open implies $f(A)\subset Y$ is open.