## BRAC UNIVERSITY

## **BRAC University**

Dept. of Computer Science and Engineering

Assessment: Assignment 4

Due: 11:59 PM 29 November 2023

Full Marks: 40

| Semester:    | Fall 2023 |  |
|--------------|-----------|--|
| Course Code: | CSE251    |  |
| Section:     | 15 - 21   |  |

15 - 21 Student ID: \_\_\_ Electronic Devices and Circuits

| Name:   |     | <br> | <br> |  |
|---------|-----|------|------|--|
| Student | ID: |      |      |  |

| ✓ | Write dowr | n your | student ID | on the | top | right | corner | of | each | of | the | pages | ١. |
|---|------------|--------|------------|--------|-----|-------|--------|----|------|----|-----|-------|----|
|---|------------|--------|------------|--------|-----|-------|--------|----|------|----|-----|-------|----|

Course Name:

- Clearly write the solutions, along with the questions, on white paper with black ink (no need to use color pen, don't use pencils).
- ✓ Use CamScanner, or Adobe Scan, or Microsoft Office Lens, or any other software to scan the pages and make a single PDF file.
- ✓ After creating the PDF, make sure that (a) there are no pages missing, (b) all of the pages are legible, (c) your student ID on each page are visible.
- ✓ Please note, collaboration ≠ copying. You are allowed to discuss the questions and clear confusion you might have, but you have to write your solutions independently and be able to explain your answers during a random viva.
- [Very Important] Rename the PDF in the following format: "A1\_StudentID\_FullNameWithoutSpace.pdf". For example, if my student ID is 12345678 and my name is Shadman Shahid, the filename should be "A1\_12345678\_ShadmanShahid.pdf".
- ✓ Submission Link: Section 15 <a href="https://forms.gle/W5aa69aB87v3e9M28">https://forms.gle/SisEKRxY4vFNJgbDA</a>

Question 1: 12 Marks

The input of a **Full-wave rectifier** is expressed by, Vs(t)=  $7\sin(400\pi t)$ , and the output load resistance is R =  $5 \text{ k}\Omega$ . Silicon diodes are used in this circuit for which the forward drop is  $V_{D0} = 0.3 \text{ V}$ .

| (a) Calculate the input and output wave frequency.                                                          | 1 |
|-------------------------------------------------------------------------------------------------------------|---|
| (b) Show the input and output waveforms.                                                                    | 1 |
| (c) Calculate the DC value of the output voltage.                                                           | 2 |
| Now after connecting a capacitor, C= 100 µF in parallel with the load.                                      |   |
| (d) Calculate the peak-to-peak ripple voltage,                                                              | 2 |
| (e) Calculate the average of the output voltage $V_{\scriptscriptstyle DC}$ after connecting the capacitor. | 2 |
| Compare this with the DC value determined in 'c' and comment on the difference between these two.           |   |
| (f) How can you provide better filtering for the output waves?                                              | 2 |
| (g) What is the frequency of the Ripple voltage?                                                            |   |
|                                                                                                             | 2 |

Question 2: 6 Marks

The input of a **Half-wave rectifier** is a **Square** wave voltage with peak  $V_M$  = 15 V and frequency 0.5 Hz, and the output load resistance is R = 5 k $\Omega$ . Silicon diodes are used in this circuit for which the forward drop is  $V_{D0}$  = 0.7 V.

| i. Show the input and output waveforms.                   | , |
|-----------------------------------------------------------|---|
| ii. Draw the VTC (Voltage Transfer Characteristics) curve |   |

Question 3: 2\*6 Marks



(b) Input of the FW rectifier

**Part 2**: A voltage waveform  $V_i = 15\sin(2000\pi t)$  V is fed into a Half-wave rectifier with a load resistance  $R = 5 \text{ k}\Omega$ . Silicon diodes are used in this circuit for which the forward drop is  $V_{D_0} = 0.7 \text{ V}$ .

- (a) Illustrate the input and output waveforms in separate graphs. Label the graph and indicate the voltage levels properly.
- (b) Calculate the DC/Average value of the output.
- (c) A capacitor is now added to reduce the fluctuation of the output voltage, which makes the peak to peak ripple voltage 4% of the maximum output voltage  $V_P$ . **Deduce** is the value of the capacitor from the given data.[2]
- (d) The input of a Full-wave rectifier is shown in Figure 1(b) above and output load resistance is  $R = 10 \text{ k}\Omega$ . Germanium diodes are used in this circuit for which the forward drop is  $V_{D_0} = 0.3 \text{ V}$ . Show the input and output waveforms

Question 4: 10 Marks

A voltage waveform  $v_i = 10\sin(200\pi t)$  V is fed into a Half-wave rectifier with a load resistor,  $R = 10 \text{ k}\Omega$ . Silicon diodes are used in this circuit where,  $V_{D_0} = 0.7 \text{ V}$ .

- (a) **Draw** the rectifier circuit. **Label** the input and output voltages properly. Briefly **explain** the application of the circuit. [1+1+1]
- (b) Calculate the DC value of the output voltage,  $V_{dc}$  and the output frequency,  $f_o$ . [1+1]
- (c) Draw the Voltage Transfer Characteristics (VTC) of the Half-wave rectifier and label it properly. [2]
- (d) Now, you have to connect a capacitor in parallel with the load resistor. You have two capacitors of 4  $\mu F$  and 7  $\mu F$  at your disposal. Which capacitor will you use? **Explain** briefly with necessary calculations. [3]
- (e) [Bonus] A different input waveform is fed into the half-wave rectifier. The new peak-to-peak ripple voltage is 50% of the previous one calculated from (d) with the 4  $\mu F$  capacitor. The new output frequency is 300 Hz. **Determine** the equation of the input waveform.

[2]

[1]