ЭЛЕМЕНТЫ ТЕХНИЧЕСКОГО ЗРЕНИЯ ПРТС

ОБЩИЕ ПОНЯТИЯ

ОСОБЕННОСТИ РЕШЕНИЯ ИНЖЕНЕРНЫХ ЗАДАЧ

- Практическая направленность
 - Конкретный результат

ОСОБЕННОСТИ РЕШЕНИЯ ИНЖЕНЕРНЫХ ЗАДАЧ

Значительный объём вычислений

Метод конечных элементов

Задачи обработки сигналов

СЛОЖНЫЕ MATEMATUЧЕСКИЕ МОДЕЛИ

- Численные методы
- Необходимость сглаживания и фильтрации
- Спектральные характеристики
- •

РЕШАЮТСЯ ИНЖЕНЕРАМИ

ЭТАПЫ РЕШЕНИЯ ЗАДАЧИ

ПОГРЕШНОСТЬ В РЕШЕНИИ

• Получить точное решение невозможно

$$u(x,\alpha) = y + \delta y$$

• У погрешности – несколько составляющих

$$\delta y = \delta_{\rm H} y + \delta_{\rm M} y + \delta_{\rm B} y$$

- Ограничения связаны с дискретизацией
- Разберём на примере десятеричной системы счисления:
 - 6 разрядов после запятой

$$x_1 = 7.235673456 x_2 = 7.235672954 \} => x^* = 7.235673$$

– Абсолютная погрешность

$$\Delta x = |x - x^*|$$

- Относительная погрешность

$$\delta x = \frac{\Delta x}{|x|} = \frac{\Delta |x - x^*|}{|x|}$$

- Погрешность операций:
 - **–** Сложение c = a + b

$$c^* = a^* + b^* = a + b + \Delta a + \Delta b$$
$$\Delta c = c^* - c = \Delta a + \Delta b$$
$$\delta c = \frac{\Delta c}{|c|} = \frac{|\Delta a| + |\Delta b|}{|a + b|}$$

– Вычитание c = a - b

$$c^* = a^* - b^* = a - b + \Delta a - \Delta b$$
$$\Delta c = c^* - c = |\Delta a| + |\Delta b|$$
$$\delta c = \frac{\Delta c}{|c|} = \frac{|\Delta a| + |\Delta b|}{|a - b|}$$

- Погрешность операций
 - Умножение $c = a \cdot b$

$$c^* = a^* \cdot b^* = a \cdot b + a \cdot \Delta b + b \cdot \Delta a + \Delta a \cdot \Delta b$$
$$\Delta c = a\Delta b + b\Delta a \le \Delta(a, b) \cdot \max(a, b)$$
$$\delta c = \frac{\max(\Delta a, \Delta b)}{\min(a, b)} \approx \max(\delta a, \delta b)$$

– Деление $c=rac{a}{b}$ – аналогично

$$\Delta c \approx \Delta(a, b) \cdot \max(a, \frac{1}{b})$$
$$\delta c = \frac{\max(\Delta a, \Delta b)}{\min(a, b)} \approx \max(\delta a, \delta\left(\frac{1}{b}\right))$$

- В реальных задачах:
 - Переменные двоичные
 - Дробные числа с плавающей запятой
 - Возникает проблема переполнения

- Например, double 15 знаков мантиссы:
- A=3.141592653589793 // π
- B=0.7853981633974483 $//\frac{\pi}{4}$
- C=3.9269908[698724] // A+B

```
#include <iostream>
#define USE_MATH_DEFINES
#include <cmath>
#include inits>
using namespace std;
int main(int argc, char *argv[])
             float summ1 = 0, summ2 = 0;
             double q = 0.999;
             int maxStep = 100000; // Просто большое число
             for (int i=0; i<= maxStep; i++)</pre>
                          summ1 += pow(q, i);
             cout.precision(std::numeric limits<float>::digits10);
             cout << "Summ1 = " << summ1 << " should be " << 1.0/(1-q) << endl;
             for (int i=maxStep; i>=0; i--)
                          summ2 += pow(q, i);
             cout << "Summ2 = " << summ2 << " should be " << 1.0/(1-q) << endl;
             return 0;
```

Ещё один (надуманный) пример

РЕЗУЛЬТАТ ВЫПОЛНЕНИЯ

- Мы рассматриваем геометрическую прогрессию с основанием 0.999
- Точность получившейся суммы, в теории, определяется количеством слагаемых
- Суммы одинаковы, но отличаются порядком суммирования
- Summ I = 999.978 and should be 1000
- Summ2 = 1000 and should be 1000

КОРРЕКТНОСТЬ ВЫЧИСЛИТЕЛЬНОЙ ЗАДАЧИ

Х – множество допустимых входных данных

Ү – множество возможных решений

Вычислительная задача корректна, если

- **1**. Решение $y \in Y$ существует при $x \in X$
- 2. Решение единственно
- 3. Решение устойчиво по возмущениям Х

КОРРЕКТНОСТЬ - СУЩЕСТВОВАНИЕ

- Естественное ограничение
- Нет решения:
 - Неправильная модель
 - Неправильная постановка задачи

$$x^2 + b \cdot x + c = 0$$

Решения $x \in D$ существуют только при

$$b^2 - 4ac \ge 0$$

КОРРЕКТНОСТЬ - ЕДИНСТВЕННОСТЬ

- Для математической задачи решение может быть неединственым
- Для вычислительной вводятся дополнительные ограничения
 - Например, для квадратного уравнение два корня

КОРРЕКТНОСТЬ - УСТОЙЧИВОСТЬ

• Непрерывная зависимость по входным данным

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x^* : \Delta(x^*) < \delta => \Delta(y^*) < \varepsilon$$

- В этом случае можно получить достаточно точное решение, увеличивая точность входных данных
- Это требование часто не выполняется!!!

ОБУСЛОВЛЕННОСТЬ ЗАДАЧИ

• Очень похожа на требование устойчивости:

$$\Delta(y^*) \le M\Delta(x^*)$$

• М – число обусловленности

$$(y-1)^4 = 0 => y = 1$$

Внесём погрешность:

$$(y-1)^4 = 10^{-8} =>$$

 $y = (1 \pm 0.01, 1 \pm 0.01i)$
 $\Delta x = 10^{-8}, \Delta y = 10^{-2}$

- Классы методов:
 - Эквивалентных преобразований
 - Аппроксимации
 - Прямые (точные)
 - Итерационные
 - Статистических испытаний

- Методы аппроксимации
 - Решение задачи, решение которой близко к исходной
 - Погрешность аппроксимации
 - Вообще говоря, не всегда сходится
 - Например, вычисление интегралов

- Прямые методы
 - Конечное число элементарных операций
 - Точны в смысле отсутствия погрешности метода
 - Однако часто очень чувствительны к погрешности

– Решение квадратных уравнений

$$x_{1,2} = -\frac{b \pm \sqrt{D}}{2a}$$

- Метод Гаусса
- **–** ..

- Итерационные методы
 - Построение последовательных приближений
 - Однотипные набор действий
 - Точное решение получить невозможно
 - Априорная оценка погрешности
 - Не всегда сходятся

Например, метод половинного деления

- Методы статистических испытаний
 - Поиск решения на основе построения статистики
 - Ресурсоёмки
 - Точное решение получить невозможно
 - Позволяют моделировать очень большие системы

ВЫЧИСЛИТЕЛЬНЫЙ АЛГОРИТМ

- Точное описание последовательности действий для преобразования входных данных в результат
- Корректен, если:
 - Реализуется за конечное число действий
 - Устойчив по входным данным
 - Вычислительно устойчив

ВЫЧИСЛИТЕЛЬНАЯ УСТОЙЧИВОСТЬ

Вычислим

$$\int_0^1 x^n e^{1-x} dx$$

для различных значений п

$$I_n = \int_0^1 x^n d(-e^{1-x}) = -x^n e^{1-x} \Big|_0^1 + \int_0^1 x^{n-1} e^{1-x} dx = nI_{n-1} - 1$$

$$I_0 = \int_0^1 e^{1-x} dx = e - 1 \approx 1.71828$$

ВЫЧИСЛИТЕЛЬНАЯ УСТОЙЧИВОСТЬ

• Кажется, всё хорошо, но

$$I_n = nI_{n-1} - 1 = n((n-1)I_{n-2} - 1) - 1 = \cdots$$

=> $\Delta I_n \sim n! \Delta I_0$

• Небольшая ошибка в вычислении растёт как факториал

ТРЕБОВАНИЯ К ВЫЧИСЛИТЕЛЬНЫМ АЛГОРИТМАМ

- 1. Экономичность
- 2. Точность
- 3. Экономия памяти
- 4. Простота

TOHATHE $O(\cdot)$

• Понятие, относящееся к скорости роста функций

•
$$f(n), g(n), f(n) = O(g(n))$$
 если $\exists c : f(n) \le cg(n)$

• Например, $3n^2 + 10n - 4$ имеет порядок $O(n^2)$, n > 1, потому, что

• $3n^2 + 10n - 4 \le 4n^2$, в этом случае c = 4

При этом с может быть, вообще говоря, большим

TOHATUE $\Omega(\cdot)$, $\Theta(\cdot)$

- Аналогично
- $f(n), g(n), f(n) = \Omega(g(n))$ если $\exists c : f(n) \ge cg(n)$
- To есть $f(n) = \Omega(g(n)) \Leftrightarrow g(n) = O(f(n))$
- $\Theta(\cdot)$ если одновременно $\Omega(\cdot)$ и $O(\cdot)$
- Мы будем использовать эти понятия в двух ситуациях:
- 1. Оценивая количество действий алгоритма, т.е. экономичность
- 2. Оценивая величину погрешности, т.е. точность

ЗКОНОМИЧНОСТЬ АЛГОРИТМОВ

- Число элементарных операций
- Как правило, говорят об порядке количества операций
- Правило Крамера

$$Ax = b$$

$$x_i = \frac{\Delta_i}{\Delta}$$

Для вычисления x_i нужно посчитать (n+1) определитель порядка n

Общее количество вычислений (n+1)!

Для решения системы из 21 уравнения нужно 507 лет

ТРЕБОВАНИЯ К РЕАЛИЗАЦИИ ВЫЧИСЛИТЕЛЬНЫХ АЛГОРИТМОВ

- 1. Экономичность
- 2. Точность
- 3. Экономия памяти
- 4. Простота
- 5. Надёжность
- 6. Работоспособность
- 7. Переносимость
- 8. Поддерживаемость

ЗАДАЧА

- Попробуйте применить метод половинного деления для отыскания минимума функции
- Какие ограничения есть у этого метода?
- Какой это метод прямой или итерационный?
- Сможете ли вы оценить количество действий?

Для оценки работоспособности используйте функцию

$$f(x) = x^4 + 4x^3 + 6x^2 + 4x + 1, x \in [-2,2]$$

