Astro 507; Problem Set 3

Tom Wagg

February 22, 2022

1. FIRAS

2a. Entropy

Let's derive the entropy for an ideal, non-relativistic Fermi gas (in terms of V, z and T). For this I will follow Lecture 10. The entropy is defined as

$$S = \frac{U + PV - N\mu}{T},\tag{1}$$

so we just need to use definitions of U, P, N and μ . The definitions of μ is trivial when using the fugacity

$$\mu = k_B T \ln z \tag{2}$$

For the others, I refer to lecture 10 where we can find the definition of n on slide 5

$$N = nV = \frac{2(2s+1)}{\pi^{1/2}\lambda^3} V F_{1/2}(z)$$
(3)

and the definition of P on slide 7

$$P = \frac{4(2s+1)}{3\pi^{1/2}} k_B T \lambda^{-3} F_{3/2}(z) \tag{4}$$

For the total energy, we don't have it from the slides but we can derive it in the same way using Fermi-Dirac integrals. It starts in the same way as n but with an extra factor of ϵ in the numerator, then we use the substitution $w = \epsilon/k_BT$

$$U = (2s+1)\frac{V}{h^3} \int \frac{\epsilon}{e^{\frac{\epsilon-\mu}{k_B T}} + 1} d\vec{\mathbf{p}}$$
 (5)

$$U = \frac{4\pi(2s+1)}{2h^3} (2mk_BT)^{3/2} k_B T \int_0^\infty dw \, \frac{w^{3/2}}{e^w z^{-1} + 1}$$
 (6)

$$U = \frac{2(2s+1)}{\pi^{1/2}\lambda^3} V k_B T F_{3/2}(z)$$
 (7)

Now it's simply a matter of plugging all of these into the entropy expression.

$$S = \frac{U + PV - N\mu}{T} \tag{8}$$

$$= \frac{1}{T} \left[\frac{2(2s+1)}{\pi^{1/2} \lambda^3} V k_B T F_{3/2}(z) + \frac{4(2s+1)}{3\pi^{1/2}} V k_B T \lambda^{-3} F_{3/2}(z) + \frac{2(2s+1)}{\pi^{1/2} \lambda^3} V k_B T \ln z F_{1/2}(z) \right]$$
(9)

$$= \frac{2(2s+1)Vk_BT}{\pi^{1/2}\lambda^3} \left[F_{3/2}(z) + \frac{2}{3}F_{3/2}(z) + \ln zF_{1/2}(z) \right]$$
 (10)

$$S = \frac{2(2s+1)Vk_BT}{\pi^{1/2}\lambda^3} \left[\frac{5}{3} F_{3/2}(z) + F_{1/2}(z) \ln z \right]$$
(11)

2b. Expanding pressure

$$\frac{P}{nk_BT} = \frac{4(2s+1)}{3\pi^{1/2}} k_B T \lambda^{-3} F_{3/2}(z) \left[\frac{2(2s+1)}{\pi^{1/2} \lambda^3} k_B T F_{1/2}(z) \right]^{-1}$$
(12)

$$=\frac{2F_{3/2}(z)}{3F_{1/2}(z)}\tag{13}$$

TODO: come back to this on Thursday

3. Brown Dwarf

3a. Fugacity

The general goal here is to find the number density based on the central temperature and density and then solve for the Fermi-Dirac integral and we can then invert that to find the fugacity. To start, we know that

$$\rho = m_e n_e + m_{\rm H} n_{\rm H} + m_{\rm He} n_{\rm He} \tag{14}$$

We can rewrite this (and neglect the electron term) as

$$\rho = n_{\rm H} \left(m_{\rm H} + m_{\rm He} \frac{n_{\rm He}}{n_{\rm H}} \right) \tag{15}$$

Now we can plug in the masses of hydrogen and helium as well as their relative abundance (given as 0.1 in the problem description).

$$n_{\rm H} = \frac{\rho_c}{1.4m_p} \tag{16}$$

Now we just relate this to the electron number density simply as

$$n = \left(2\frac{n_{\text{He}}}{n_{\text{H}}} + 1\right)n_{\text{H}} \tag{17}$$

And combining the two gives an expression for the number density in terms of the central density

$$n = \frac{1.2\rho_c}{1.4m_p} \tag{18}$$

The other part that we need is the de-Broglie wavelength which depends on the central temperature as

$$\lambda = \frac{h}{\sqrt{2\pi m k_B T_c}} \tag{19}$$

Now let's use this with the equation for the number density from Lecture 10 and solve for the Fermi-Dirac integral (plugging in values in the final equation).

$$n = \frac{2(2s+1)}{n\pi^{1/2}\lambda^3} F_{1/2}(z) \tag{20}$$

$$n = \frac{2(2s+1)}{n\pi^{1/2}\lambda^3} F_{1/2}(z)$$

$$F_{1/2}(z) = \frac{n\pi^{1/2}\lambda^3}{2(2s+1)}$$
(20)

$$F_{1/2}(z) = \frac{\pi^{1/2}}{2(2s+1)} \frac{1.2\rho_c}{1.4m_p} \left(\frac{h}{\sqrt{2\pi m k_B T_c}}\right)^3$$
 (22)

$$F_{1/2}(z) = 2.08 (23)$$

I took this value and inverted it using the approximate analytic expressions from the paper (Aymerich-Humet+1981) to find the fugacity.

$$\boxed{z = 1.65} \tag{24}$$