1 Independance to dominated references

1.1 Hypothesis

Let $F = \{f_1, ..., f_k, ..., f_q\}$ be a set of criteria.

Let R be a set of r reference profiles, $A = \{a_1, ..., a_i, a_j, ...a_n\}$ a set of alternatives and $R_i = R \cup \{a_i\}$.

We consider the following inequality:

$$\phi_{R_i}(a_i) \ge \phi_{R_i}(a_j)$$

. Lets consider $R_i^{'} = R_i \cup \{r_h\} \mid f_k(r_h) < min(x)$ with $x \in R_i \cup A$

1.2 Thesis

$$\phi'_{R_i}(a_i) \ge \phi'_{R_i}(a_j) \ \forall \ i \ne j$$

1.3 Demonstration

$$f(a_i) > f(r_h)$$

$$\iff d(a_i, r_h) > 0$$

$$\iff P(a_i, r_h) \ge 0$$
and $\phi'_{R_i}(a_i) = \frac{1}{r+1} \sum_{x \in R_i} \sum_{k=1}^q w_k (P_k(a_i, x) - P_k(x, a_i)) + \sum_{k=1}^q w_k (P_k(a_i, r_h) - P_k(r_h, a_i))$

Though,
$$\phi_{R_i}(a_i) = \frac{1}{r} \sum_{x \in R_i} \sum_{k=1}^q w_k (P_k(a_i, x) - P_k(x, a_i))$$

Therefore, $\phi_{R_i}'(a_i) = \frac{r}{r+1} \phi_{R_i}(a_i) + \sum_{k=1}^q w_k (P_k(a_i, r_h) - P_k(r_h, a_i))$
where $P_k(r_h, a_i) = 0$

Considering alternative a_j , we come to the same conclusion. We thus have the 2 following expressions:

$$\phi_{R_i}^{'}(a_i) = \frac{r}{r+1}\phi_{R_i}(a_i) + \sum_{k=1}^{q} w_k P_k(a_i, r_h)$$
$$\phi_{R_j}^{'}(a_j) = \frac{r}{r+1}\phi_{R_j}(a_j) + \sum_{k=1}^{q} w_k P_k(a_j, r_h)$$

Furthermore, $\phi_{R_i}(a_i) \geq \phi_{R_j}(a_j)$ (by hypothesis). The inequality between $\phi'_{R_i}(a_i)$ and $\phi'_{R_j}(a_j)$ is thus determined by the inequality between $P_k(a_i, r_h)$ and $P_k(a_i, r_h)$.

2 situations have to be considered:

1.3.1 $f_k(a_i) \ge f_k(a_i)$:

In this case : $P_k(a_i, r_h) \ge P_k(a_j, r_h) \ \forall k$, thus $\phi_{R_i}'(a_i) \ge \phi_{R_i}'(a_j) \ \forall i \ne j$

1.3.2 \exists at least one $k : f_k(a_i) < f_k(a_j)$:

Here there are 3 sub-situations to consider because the inequality $P_k(a_i, r_h) > P_k(a_j, r_h)$ is not verified $\forall k$:

a):
$$\sum_{k=1}^{q} w_k P_k(a_i, r_h) > \sum_{k=1}^{q} w_k P_k(a_j, r_h) \iff \phi_{R_i}^{'}(a_i) > \phi_{R_j}^{'}(a_j)$$

b) :
$$\sum_{k=1}^{q} w_k P_k(a_i, r_h) < \sum_{k=1}^{q} w_k P_k(a_j, r_h) \iff \phi'_{R_i}(a_i) < \phi'_{R_j}(a_j)$$

The thesis is thus invalidated in this case

c):
$$\sum_{k=1}^{q} w_k P_k(a_i, r_h) = \sum_{k=1}^{q} w_k P_k(a_j, r_h) \iff \phi'_{R_i}(a_i) = \phi'_{R_j}(a_j)$$

1.4 Conclusion

We can see that independence to dominated reference is guaranteed for all cases excepted the 1.3.2 b).