ML in Aviation How to improve safety

Robert Reynoso

Summary

- Background in Aviation (aeronautics)
- ML in Aviation business cases
 - Forecasting (Ticket sales, profit, etc.)
- What about safety?

Outline

1. Business Problem

2. Data

3. Results

4. Conclusions

Business Problem

Using machine learning (ML) specifically supervised learning.

Can we use classification algorithms to classify past aviation accidents as fatal or non-fatal based on features of that accident?

Data

< AviationData.csv (19.57 MB) ₩ 23 Compact Column 31 of 31 columns V About this file This file contains information from 1962 and later about civil aviation accidents and selected incidents within the United States, its territories and possessions, and in international waters. ▲ Aircraft.Category = A Registration.Num... = Injury Severity the category of airplane, Registration Number or ID airplane, helicopters... Non-Fatal 72% Substantial Fatal(1) Destroyed Other (5687) 7% Other (4146) Other (13156) Other (81390) 95% Other (45084) Fatal Substantial Airplane N13VT Velocity Fatal Destroyed Helicopter N13AT Bell Substantial Airplane N56517 Maule Non-Fatal Substantial Airplane N3477E Cessna Minor Substantial Airplane N8183C Piper Minor Substantial Airplane N7569A Abbett Gerry Fatal Substantial Airplane N8080G Cessna

- The NTSB has a database from accidents since 1962
- Pulled from Kaggle

Final shape (4867,17)

Initial Results

results											
	model	train_precision	train_recall	train_accuracy	train_f1	train_time	test_precision	test_recall	test_accuracy	test_f1	test_time
0	knn	1.000000	1.000000	1.000000	1.000000	0.023560	0.923077	0.957389	0.900148	0.939920	4.634440
1	logistic_regression	0.998683	0.999662	0.998658	0.999173	2.625757	0.998591	0.999597	0.998521	0.999094	0.001482
2	decision_tree	1.000000	1.000000	1.000000	1.000000	0.058102	0.999597	0.999799	0.999507	0.999698	0.002410
3	random_forest	1.000000	1.000000	1.000000	1.000000	0.937998	1.000000	0.999799	0.999836	0.999899	0.043773
4	naive_bayes	0.987394	0.659053	0.716763	0.790484	0.023357	0.988198	0.657903	0.714497	0.789913	0.004797
5	adaboost	1.000000	1.000000	1.000000	1.000000	0.900672	0.999799	0.999799	0.999671	0.999799	0.041151
6	gradient_boosting	1.000000	0.999899	0.999918	0.999949	3.212887	0.999899	0.999799	0.999753	0.999849	0.011706

Analysis Random forest

```
{'model': 'random_forest',
  'train_precision': 1.0,
  'train_recall': 1.0,
  'train_accuracy': 1.0,
  'train_f1': 1.0,
  'train_time': 0.9320237636566162,
  'test_precision': 1.0,
  'test_recall': 0.9997985292636244,
  'test_accuracy': 0.9998356344510191,
  'test_f1': 0.9998992544831755,
  'test_time': 0.04516482353210449}
```

Visualization of my RF model

Model evaluation & improving

Conclusions

- Successfully ran 7 vanilla ML models to learn how we can improve aviation safety.
- 2. The above models returned acceptable model performance.
- 3. Through initial classification modeling, we learned which features are important in classifying a fatal or non-fatal aviation accident.
- 4. Although we can classify a accident with good model performance. Further investigation and feature engineering is required on the fatality_percentage feature.

Next Steps

- Find or create more data specifically in the aircraft_damage category
- 2. Use imputation to replace any unknown data
- 3. Productionize model with prediction function
- 4. Look into multiclass classification

Email: robert@birdstop.io

GitHub: @reynoso811

LinkedIn:

linkedin.com/in/rreynoso8

Thank You!