

Instituto Tecnológico de Hermosillo 17 de febrero de 2025

Materia: Robótica

Profesor: Medina Gil Lamadrid, Jesús Iván

Investigar sobre diferentes tipos de sensores

Equipo 4

Fuentes Ochoa, Aislinn Alicia 121330583@hermosillo.tecnm.mx Teléfono: 6371147080

Ceballos Portillo, Patsy 121330551@hermosillo.tecnm-mx Teléfono: 6622968916

Gonzalez Cueto, Alejandra Abigail 121330591@hermosillo.tecnm.mx Teléfono: 6221223887

Peña Encinas Ana Lourdes 121331075@hermosillo.tecnm.mx Teléfono: (6621281812)

I. Sensores

LATEXes una herramienta poderosa para la creación de documentos técnicos y científicos, permitiendo la generación de contenido con alta calidad tipográfica. En este documento se han explorado diferentes aspectos fundamentales para la creación de reportes en LATEX, incluyendo la inserción de imágenes, la organización de tablas y la formulación de ecuaciones matemáticas.

Algo que se puede dar a notar es que las secciones tienen nombres un pcoo diferentes a los que están acostumbrados. Les doy libertad para usar nombres libres o usar nombres clásicos, como marco teórico. También pueden usar una sección llamada marco teórico y subsecciones más específicas como puse en la Sección V: Conclusión.

Aun hay muchas cosas que no se abarcaron en este documento, pero pueden preguntarle a chatGPT, a Deepseek o simplemente googlearlo.

II. Sensores internos

Los sensores internos se dividen en sensores de posición, de velocidad, de aceleración y de fuerza.

II-A. Sensores de posición

Encoder incremental

- ¿Qué hacen? Generan un número específico de pulsos por pulgada o milímetro de movimiento lineal
- Principio de funcionamiento: Tiene 2 salidas básicamente nombradas como A y B que dan las dos ondas, en teoría cuadradas, desfasadas 90 grados cuando hay movimiento.

Ventajas:

- Son inherentemente digitales y por lo tanto, se puede interconectar fácilmente con dispositivos mod
- Son de bajo costo y fácil de usar
- Le dan una buena resolución para el costo
- Su salida digital diferencial hace más inmune al ruido en comparación con otros dispositivos de retr

Desventajas:

- El encoder de cuadratura incremental (sin señales de conmutación) proporciona re-alimentación de
- Si la alimentación de la unidad se pierde entonces la posición se pierde
- Si se compara con una resolución, el rango de temperatura de funcionamiento es menor porque la e

Encoder absoluto

- ¿Qué hacen? Genera mensajes digitales lo cual representa la posición actual del encoder, así como su velocidad y dirección de movimiento.
- Principio de funcionamiento: La resolución de un encoder absoluto es definida como el número de bits por mensaje de salida. Esta salida puede ser directamente en código binario o Gray, el cual produce un cambio de un solo bit en cada paso para reducir errores.

Ventajas:

- Alta resolución se puede lograr con la interpolación dentro de la unidad.
- Se utilizan con encoders Comms para proporcionar señales incrementales.

Desventajas:

- Posición absoluta es desconocida; encoders Sin/Cos sólo se utilizan para incrementos de velocidad y
- Sensible al ruido debido a la naturaleza analógica de la señal de realimentación.

Potenciometro

• ¿Qué hacen? Un sensor de potenciómetro mide la distancia o el desplazamiento de un objeto en un movimiento lineal o rotatorio y lo convierte en una señal eléctrica.

Características:

- Rango: Desde 25 mm hasta 950 mm.
- Linealidad: Desde 0.2 hasta 0.075.
- Salida: Resistiva 1, 5 o 10 kOhm, según modelos.
- Protección: IP63 e IP65, para las series PM y PLS respectivamente.
- Aplicaciones: Medida de distancia y posicionado en general de maquinaria para diferentes industrias, como la madera, cerámica, mármol, etc., en las que no existen grandes distancias y se busca una automatización sencilla.

Sensor LVDT

- ¿Qué hacen? Los LVDT (transformadores diferenciales variables lineales) son sensores de posición lineal. Se utilizan para medir el desplazamiento lineal y la posición en distancias relativamente cortas. En la actualidad, existen LVDT en el mercado que pueden medir movimientos tan pequeños como varias millonésimas de cm (micro pulgadas) o incluso hasta aproximadamente 0,7 metros (27 pulgadas) en el otro extremo.
 - Un LVDT consiste en un tubo que contiene un eje que se mueve libremente (también conocido como armadura). La base del tubo está montada en una posición fija y el extremo de la varilla se fija a un objeto cuya posición se moverá de forma lineal (hacia adelante y hacia atrás).
- Principio de funcionamiento: Dentro de la carcasa del LVDT se encuentra la bobina primaria. A cada lado del conjunto de la bobina hay un par de bobinas secundarias. Excepto por sus posiciones físicas, los tres devanados primarios son idénticos. Sin embargo, están conectados en serie con la oposición, de modo que si se energizan por igual, sus salidas sumarán cero. Tenga en cuenta que estos elementos internos normalmente están construidos de tal manera que
 - Tenga en cuenta que estos elementos internos normalmente están construidos de tal manera que están protegidos contra la humedad y los campos magnéticos externos.

■ Tipos de LVDT o variedades mecánicas

En términos de su construcción de eje / armadura, existen varias variedades básicas disponibles en la actualidad:

- LVDT de armadura libres (no guiados)
- LVDT de armadura cautiva (guiada)
- LVDT de armadura forzada o extendida por resorte

Aplicaciones:

- Herramientas de máquina
- Bancos de prueba de tracción
- Prueba aeroespacial: tren de aterrizaje, actuadores, posicionamiento de la superficie de control, hidr
- Ensayos de automoción y trenes: movimientos de los sistemas de suspensión
- Generación de energía: prueba de turbinas
- Robótica: retroalimentación de posición
- Fabricación: automatización, controles de procesos
- Pulpa y papel posicionamiento de los brazos tensores

Sensor Resólver

• ¿Qué hacen? Un resolver es un sensor analógico de posición rotatoria, que a través de impulsos digitales puede regular la velocidad, la posición o el torque.

El resolver consiste en una parte estacionaria llamada estator y una parte giratoria llamada rotor, que es montada al eje del motor.

- Principio de funcionamiento: El bobinado primario del estator está conectado a una señal sinusoidal de alta frecuencia. Esta señal se transmite al bobinado del rotor, porque el bobinado primario del estator y el bobinado del rotor actúan juntos como un transformador. El campo magnético alternante pulsante del bobinado del rotor ahora induce una voltaje alterna en los bobinados de medición seno y coseno. Sus amplitudes, sin embargo, dependen de la posición angular del rotor. Si el bobinado del rotor y el bobinado de medición están paralelos el uno al otro, el campo del rotor magnético pasa completamente por la bobina de medición y, por lo tanto, el voltaje inducido es máximo. Sin embargo, si el bobinado del rotor y el bobinado de medición están en ángulos rectos el uno con el otro, no se producirá ningún voltaje.
- Aplicaciones: Los resolvers se utilizan en los servo motores para diferentes sectores industriales (Robótica, automoción, packaging, food and beverage, etc...) en los que se utilizan máquinas accionadas eléctricamente para procesos definidos. Ya que son sistemas de realimentación robustos y fiables que controlan el régimen de un servomotor de forma precisa.

Ventajas:

- El propio resolver no contiene componentes electrónicos y por lo tanto puede soportar la temperatu
- Un resolver es el dispositivo ideal retroalimentación confiable para su uso en condiciones ambientale
- El rotor del resolver está montado directamente en el eje del motor, dando un sistema de medición
- También puede alcanzar una velocidad de 90.000 rpm.
- Los resolvers no son susceptibles a la suciedad, aceite o ambientes calientes ya que los circuitos elec

II-B. Sensores de velocidad

Tac'ometro

• ¿Qué hacen? Esencialmente, los tacómetros miden la velocidad de rotación de un elemento, utilizando el principio de que "el voltaje producido es proporcional al índice del acoplamiento inductivo", por lo que el conductor (una bobina) se sujeta al elemento rotativo que gira en un campo magnético (estator), para que así, conforme se incremente la velocidad del eje, también aumente el voltaje producido en las terminales de las bobinas, pudiéndola medir directamente.

Sensor de efecto Hall

■ ¿Qué hacen? En este sub tipo de sensor interno de velocidad, tenemos una pieza plana de material conductivo llamada chip Hall, la cual se sujeta a una diferencia de potencial en sus dos lados opuestos, para que así el voltaje que se genere a través de las caras perpendiculares sea cero.

De esta forma, si un campo magnético se induce en ángulos rectos, el voltaje se generará en las otras 2 caras perpendiculares, por lo que entre más alto sea el valor de campo, más lo será también el nivel de voltaje.

Así mismo, es importante señalar que, prácticamente, cualquier sensor interno de posición puede también medir la velocidad, siempre y cuando se utilicen bajo ciertos límites y parámetros de tiempo.

II-C. Sensores de aceleración

- ¿Qué hacen?
- Principio de funcionamiento:
- Tipos:
 - •

Aplicaciones:

II-D. Sensores de fuerza

Galgas extensiométricas

- ¿Qué hacen? Las galgas extensiométricas son sensores cuya resistencia varía con la fuerza aplicada. Estos sensores convierten la fuerza, presión, tensión, peso, etc, en un cambio de la resistencia eléctrica el cual puede ser medido.
- Principio de funcionamiento: Cuando se aplica una fuerza externa a un objeto estacionario, se produce tensión y estrés sobre él. El estrés se define como las fuerzas internas de resistencia del objeto, y la tensión se define como el desplazamiento y la deformación que se producen. Las galgas extensiométricas son una de las herramientas más importantes en la técnica aplicada de medición eléctrica de magnitudes mecánicas. Como su nombre indica, se utiliza para la medición de tensiones. Se pueden utilizar para medir la expansión y la contracción.

Tipos:

- La Rejilla Karma o Serie K: Rosetas T son para diseños de transductores de deformación axial, materiales Karma de precisión se desempeñan con buena linealidad en temperaturas de -75 a 200°C (-100 a 392°F), tienen un período de fatiga más largo.
- Galgas extensiométricas de Precisión: Propósito general, flexible, mecánicamente fuerte, radio de doblamiento pequeño, marcas de alineación claras, cables de cinta o terminación de soldadura, se puede utilizar con adhesivo frío o caliente; para mediciones de deformación dinámicas o estáticas altamente precisas.
- Galgas extensiométricas Precableadas: Salte el paso de soldadura en el punto de medición con los sensores precableados, sensores lineales de rejillas de 0,3 a 20 mm Rosetas T Rosetas planas de 0°, 45°, o 90° Sensores totalmente encapsulados para proteger el dispositivo de condiciones ambientales.
- Galgas extensiométricas de calidad: La serie SGT de galgas extensiométricas de calidad de transductor tiene rejillas paralelas dobles, para tensión de dobladura o de eje Aplicaciones de corte o torque Aplicaciones de transductor personalizadas de curva doble

Para usar dos imágenes como en Figura 1, se utilizó subfloat.

(b) Gato

Figura 1: Imagen de dos mascotas

III. Sensores externos

Los sensores externos se dividen en sensores de contacto y sensores sin contacto.

III-A. Sensores de contacto

Son aquellos que necesitan tocar físicamente un objeto para detectar su presencia o medir una magnitud.

Interruptores de límite

- ¿Qué hacen? Detectan la presencia o posición de un objeto cuando este activa un mecanismo mecánico.
- Principio de funcionamiento: Consisten en un brazo mecánico o palanca que, al ser presionado, acciona un interruptor eléctrico.
- Aplicaciones: Detección de posición en máquinas CNC y robots industriales. Protección en sistemas de seguridad (por ejemplo, cuando una puerta está abierta o cerrada). Sistemas de final de carrera en actuadores.
- **Ejemplo:** Interruptor de límite tipo microswitch, como los usados en impresoras 3D para el eje

Interruptores neumáticos

- ¿Qué hacen? Detectan la presión de aire o vacío en un sistema neumático.
- Principio de funcionamiento: Usan un diafragma o válvula que se activa con cambios de presión.
- Aplicaciones: Control en sistemas de automatización neumática. Seguridad en prensas neumáticas y sistemas de frenado de emergencia. Sistemas de detección de flujo de aire.
- Ejemplo: Interruptor neumático utilizado en líneas de producción automatizadas.

Sensores piezoeléctricos

- ¿Qué hacen? Detectan presión, fuerza o vibraciones y las convierten en señales eléctricas.
- Principio de funcionamiento: Se basan en el efecto piezoeléctrico, donde ciertos materiales generan un voltaje al ser sometidos a presión mecánica.
- Aplicaciones: Medición de impacto en pruebas de materiales. Sensores de vibración en maquinaria industrial. Micrófonos y captadores de sonido.
- Ejemplo: Sensores piezoeléctricos usados en guitarras eléctricas para captar sonido.

Transductores de presión

- ¿Qué hacen? Miden la presión de un fluido (líquido o gas) y la convierten en una señal eléctrica.
- Principio de funcionamiento: Usan galgas extensométricas o elementos piezoeléctricos para medir la deformación causada por la presión.
- Aplicaciones: Monitoreo de presión en sistemas hidráulicos y neumáticos. Control de presión en motores y sistemas de refrigeración. Aplicaciones médicas (como en esfigmomanómetros digitales).
- Ejemplo: Sensor de presión MPX5700 usado en sistemas de control de presión.

III-B. Sensores sin contacto

Detectan la presencia, distancia o características de un objeto sin tocarlo.

Sensores de proximidad

- ¿Qué hacen? Detectan la presencia de un objeto cercano sin contacto físico.
- Tipos y funcionamiento:

Inductivos: Detectan objetos metálicos mediante un campo electromagnético.

Capacitivos: Detectan objetos metálicos y no metálicos mediante cambios en la capacitancia. Ópticos: Usan luz infrarroja o láser para detectar objetos.

- Aplicaciones: Detección de piezas en bandas transportadoras. Sistemas de seguridad en maquinaria. Sensores de aparcamiento en automóviles.
- **Ejemplo:** Sensor inductivo LJ12A3-4-Z/BX usado en impresoras 3D.

Sensores de efecto Hall

- ¿Qué hacen? Detectan la presencia de campos magnéticos.
- Principio de funcionamiento: Se basan en el efecto Hall, que genera una diferencia de voltaje en un material conductor cuando es atravesado por un campo magnético.
- Aplicaciones: Sensores de velocidad en motores. Controles de proximidad en robótica. Medición de corriente en circuitos eléctricos.
- **Ejemplo:** Sensor de efecto Hall A3144 para detectar imanes.

Sensores de microondas

- ¿Qué hacen? Detectan movimiento mediante la emisión y recepción de ondas electromagnéticas de alta frecuencia.
- Principio de funcionamiento: Utilizan el efecto Doppler: cuando un objeto se mueve, la frecuencia reflejada cambia, lo que permite detectar su presencia y velocidad.
- Aplicaciones: Sensores de movimiento en alarmas de seguridad. Detección de vehículos en semáforos inteligentes. Sensores de radar en autos autónomos.
- Ejemplo: Sensor de microondas RCWL-0516 usado en sistemas de iluminación automática.

Sensores ultasónicos

- ¿Qué hacen? Capturan imágenes y procesan información visual.
- Principio de funcionamiento: Utilizan cámaras con algoritmos de procesamiento de imagen para detectar formas, colores y movimientos.
- Aplicaciones: Inspección de calidad en líneas de producción. Reconocimiento facial en seguridad. Navegación de robots autónomos.
- **Ejemplo:** Cámara Intel RealSense para visión 3D.

Sensores láser

- ¿Qué hacen? Miden distancias con alta precisión mediante un haz de luz láser.
- Principio de funcionamiento: Utilizan el tiempo de vuelo (ToF) de un pulso láser para calcular la distancia.
- Aplicaciones: Mapeo 3D en drones y vehículos autónomos. Medición de distancias en topografía. Sensores de seguridad en máquinas industriales.
- Ejemplo: Sensor LiDAR TFmini usado en robots para navegación autónoma.

Sensores de visión

• ¿Qué hacen? Detectan movimiento mediante la emisión y recepción de ondas electromagnéticas de alta frecuencia.

- Principio de funcionamiento: Utilizan el efecto Doppler: cuando un objeto se mueve, la frecuencia reflejada cambia, lo que permite detectar su presencia y velocidad.
- Aplicaciones: Sensores de movimiento en alarmas de seguridad. Detección de vehículos en semáforos inteligentes. Sensores de radar en autos autónomos.
- Ejemplo: Sensor de microondas RCWL-0516 usado en sistemas de iluminación automática.

Tabla I: Resumen de los tipos de sensores externos.

Sensor	¿Como funciona?	Aplic
Interruptores de límite.	Se activa al contacto.	Máquinas CNC, sis
Interruptores neumáticos.	Detectan presión del aire.	Sistemas neumá
Sensores piezoeléctricos.	Generan voltaje al recibir presión.	Detección de vib
Transductores de presión.	Convierten presión en señal eléctrica.	Control en motores
Sensores de proximidad.	Detectan objetos cercanos sin contacto.	Detección de piezas, si
Sensores de efecto Hall.	Detectan campos magnéticos.	Sensores de velocida
Sensores de microondas	Usa ondas electromagnéticas.	Alarmas, detecc
Sensores ultrasónicos.	Usan ondas de sonido para medir distancias.	Robótica, aparc
Sensores láser.	Emplean luz laser para medir distancias.	LiDAR, segur
Sensores de visión.	Capturan y procesan imágenes.	Reconocimiento facial
Sensores de microondas Sensores ultrasónicos. Sensores láser.	Usa ondas electromagnéticas. Usan ondas de sonido para medir distancias. Emplean luz laser para medir distancias.	Alarmas, de Robótica, ap LiDAR, se

IV. Otros sensores

Giroscopio

- ¿Qué mide? La velocidad angular de un objeto en uno o más ejes y se usa para determinar cambios de orientación sin depender de señales externas.
- Principio de funcionamiento: Basado en la conservación del momento angular. Los giroscopios mecánicos usan un disco giratorio para resistir los cambios de orientación. Los giroscopios MEMS (Microelectromechanical Systems) utilizan vibraciones internas y efectos inerciales para detectar movimientos.
- Aplicaciones: Navegación en drones, aviones y robots autónomos. Estabilización en cámaras y dispositivos móviles. Sistemas de navegación inercial en submarinos y misiles.
- **Ejemplo:** MPU6050 (combinado con acelerómetro).

Acelerómetro

- ¿Qué mide? La aceleración lineal en uno o más ejes (X, Y, Z) y puede detectar vibraciones, inclinaciones y fuerzas de impacto.
- Principio de funcionamiento: Basado en la segunda ley de Newton: F=maF = maF=ma. Los acelerómetros MEMS usan pequeñas masas móviles dentro del sensor que se desplazan con la aceleración, generando una señal eléctrica.
- Aplicaciones: Detección de caídas en dispositivos móviles y wearables. Control de movimiento en robots y videojuegos. Airbags en automóviles (detectan colisiones). Análisis de vibraciones en maquinaria industrial.
- Ejemplo: ADXL345 (digital, de 3 ejes).

Magnetómetro

- ¿Qué mide? La intensidad y dirección de los campos magnéticos y permite determinar la orientación respecto al campo magnético terrestre (como una brújula digital).
- Principio de funcionamiento: Utilizan el efecto Doppler: Utiliza el efecto Hall o materiales magnetorresistivos para detectar cambios en los campos magnéticos. Puede detectar objetos metálicos o variaciones en el campo magnético de la Tierra.

- Aplicaciones: Brújulas digitales en smartphones y GPS. Navegación en vehículos autónomos y drones. Detectores de metales. Exploración geofísica para medir anomalías magnéticas en la Tierra.
- Ejemplo: HMC5883L (popular en drones y navegación).

LiDAR (Light Detection and Ranging)

- ¿Qué mide? Distancias a objetos mediante la emisión y recepción de pulsos láser. Puede generar mapas en 3D con alta precisión.
- Principio de funcionamiento: Emite un pulso de luz láser y mide el tiempo que tarda en reflejarse en un objeto y regresar al sensor.
- Aplicaciones: Vehículos autónomos (detección de obstáculos y mapeo). Topografía y cartografía en 3D. Agricultura de precisión (detección de variaciones en el terreno). Arqueología (descubrimiento de estructuras ocultas bajo vegetación).
- **Ejemplo:** Velodyne LiDAR (usado en coches autónomos). RPLIDAR A1 (más accesible para proyectos de robótica).

V. Conclusión

Solo añadan esta sección si lo consideran necesario. No es deben poner un resumen del contenido ni información importante que no se haya mencionado en una sección principal. Pueden poner la parte en la que más batallaron, el conocimiento más importante que consideran haber obtenido o algún comentario.

V-A. Persona 1

En caso de que haya sido una perspectiva individual, tienen que poner los comentarios de cada integrante y su nombre.

V-B. Persona 2

Esto me dará una retroalimentación desde la perspectiva de diferentes alumnos con diferentes roles.

REFERENCIAS

[1] A. Barrientos, L. F. Peñín, C. Balaguer, and R. Aracil, *Fundamentos de Robótica*, 2nd ed. Madrid, España: McGraw-Hill/Interamericana de España, S.A.U., 2007.