TABLE 4-1 Ordinate and area for the normal (Gaussian) error curve, $y = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$

MARIA MARIANE								
z "	y	Area ^b	z	y	Area	z	y	Area
0.0	0.398 9	0.000 0	1.4	0.149 7	0.419 2	2,8	0.007 9	0.497 4
0.1	0.397 0	0,039 8	1.5	0.129 5	0.433 2	2.9	0.006 0	0.498 1
0.2	0.391 0	0.079 3	1.6	0.1109	0.445 2	3.0	0.004.4	0,498 650
0.3	0.381 4	0.1179	1.7	0.094 1	0.455 4	3.1	0.003 3	0.499 032
0.4	0.368 3	0.155 4	1.8	0.079 0	0.464 1	3.2	0,002 4	0.499 313
0.5	0.352 1	0.191.5	1.9	0.065 6	0.471 3	3,3	0.001 7	0.499 517
0.6	0.333 2	0.225 8	2.0	0.054 0	0.477.3	3.4	0.001 2	0.499 663
0.7	0.312 3	0.258 0	2.1	0.044 0	0.482 1	3.5	0.000 9	0.499 767
0.8	0.2897	0.288 1	2.2	0.035 5	0.486 1	3.6	0.000 6	0.499 841
0.9	0.266 1	0.315 9	2.3	0.028 3	0.489 3	3.7	0.000 4	0.499 904
1.0	0.242 0	0.341.3	2.4	0.022 4	0.4918	3.8	0.000 3	0.499 928
1.1	0.2179	0.364 3	2.5	0.017 5	0.493 8	3,9	0.000 2	0.499 952
1.2	0.194 2	0.384 9	2.6	0.013 6	0.495 3	4.0	0.000 1	0.499 968
1.3	0.171 4	0.403 2	2.7	0.010 4	0.496 5	00	0	0.5
1.3	0.1/17	0.10.7 &	···/	V,010 T	0.1700	<u> </u>		

Table 4-4 Critical values of $F = s^2/s^2$ at 95% confidence level

Degrees o	f					Degrees of freedom for s ₁				
freedom for s ₂	2	3	4	5	6	7	8	9	10	
2	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	
3	9.55	9,28	9.12	9.01	8.94	8,89	8.84	8.81	8.79	
4	6.94	6.59	6.39	6.26	6.16	6,09	6.04	6.00	5.96	
5	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	
6	5.14	4.76	4.53	4.39	4.28	4,21	4.15	4.10	4.06	
7	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	
8	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	
9	4.26	3.86	3.63	3.48	3.37	3.29	3,23	3.18	3.14	
10	4.10	3.71	3.48	3.33	3,22	3.14	3.07	3.02	2.98	

TABLE 4-5 Critical values of G for rejection of outlier

Number of	G
observations	(95% confidence)
4	1.463
5	1.672
6	1,822
7	1.938
8	2.032
9	2,110
10	2.176
11	2.234
12	2.285
15	2.409
20	2.557

TABLE 4-2 Values of Student's t

Damene		90	Confidence level (%)			
Degrees of freedom	50		95	98	99	
I	1.000	6.314	12,705	31.821	63.656	
2	0.816	2,920	4,303	6.965	9.925	
3	0.765	2.353	3.182	4.541	5.841	
4	0.741	2.132	2.776	3,747	4,604	
5	0.727	2.015	2.571	3.365	4,032	
6	0.718	1.943	2.447	3,143	3,707	
7	0.711	1.895	2.365	2.998	3,500	
8	0.706	1.860	2,306	2.896	3,355	
9	0.703	1.833	2.262	2.821	3.250	
10	0.7(10)	1.812	2,228	2.764	3,169	
15	0.691	1.753	2.131	2,602	2.947	
20	0.687	1.725	2,086	2.528	2.845	

$$F_{\text{calc}} = \frac{S_1^2}{S_2^2}$$

$$s_{\text{pooled}} = \sqrt{\frac{s_1^2 (n_1 - 1) + s_2^2 (n_2 - 1)}{n_1 + n_2 - 2}}$$

$$t_{calc} = \frac{\sqrt{s_1^2 / n_1} + s_2^2}{\sqrt{s_1^2 / n_1} + s_2^2}$$

$$t_{\text{calc}} = \frac{\left|\overline{x}_1 - \overline{x}_2\right|}{s_{\text{pooled}}} \sqrt{\frac{n_1 n_2}{n_1 + n_2}}$$

d.o.f. =
$$\begin{cases} \frac{\left(s_1^2 / + s_2^2 / \right)^2}{\left(n_1 + n_2\right)^2} \\ \frac{\left(s_1^2 / n_1\right)^2 + \left(s_2^2 / n_2\right)^2}{\left(n_1 + n_2\right)^2} \end{cases} - 2$$

$$d.o.f = n_1 + n_2 - 2$$