Perspectives in small satellite IoT networking

Who am I?

Sebastian, physicist by background, 25+ years wireless networker and developer, Community Networks, IoT, Sustainable Energy, TinyML, Satellite Networking

Research Lab Manager at DASYALab IT University of Copenhagen

Network Trainer and developer at the NSRC

What is new with Satellites?

Satellites as communication platforms have been around for decades (1950s, 1960s)

Starlink is a widely available satellite broadband constellation

The **new qualities** are

low power low cost small size

driven by two developments:

1/ Tiny satellites: Cubesats and smaller 2/ New LPWAN standards, e.g. LoRaWAN

Commercial Companies

LEO
Low earth orbit
200-1000 km

GEO Geostationary 35,700 km

[last update: March 2023]

Asiasat GEO/LEO Astranis GEO Astrocast LFO **Echostar GEO** eSat global GEO Eutelsat GEO/LEO Fleet LEO LORA Globalstar LEO Inmarsat GEO/LEO Iridium LEO Kineis LEO LORA Lacuna LEO LORA Mokolora (?) Myriota **Orbcomm LEO** Skylo GEO **Swarm** LEO Thuraya GEO Wyld

Orbits

LEO
Low earth orbit
200-1000 km

GEO Geostationary 35,786 km

Orbits

LEO

Polar Orbits

Characteristics

For the **node device**

Power consumption:

mW class rather than 10s of Watts (Starlink 20-70W)

Cost:

\$100 class, possibility to build your own

Cost of service:

some \$ per device and month

Size: < 10 cm

Accessibility:

Open Source /

Open Hardware

source: lacuna.space

Impact of LoRa

extreme low power, long distance

LEO satellites can easily be reached by small battery powered nodes (distance to satellite 400 ... 1500+ km)

World record is a bounce off the moon (700,000 km - however strongly amplified)

source: lacuna.space · 8

What makes LoRa so strong?

Due to modulation, Chirp Spread Spectrum and Frequency Hopping Chirp Spread Spectrum,

Receive sensitivities go down to -150 dBm

Choice of frequency: free in principle, most popular: ISM bands at

433 MHz 868/902/915 MHz 2.4 GHz

example 1

Sea Cruise from Denmark's islands to Berlin

example 1

Sea Cruise from Denmark's islands to Berlin

200+ km LoRa links

example 2

Orkney Archipel UK

example 2

Orkney Archipel UK

Nepal would offer fantastic possibilities

because of its topology

But when terrestrial

is not an option

You go up!

Direct-to-satellite or via aggregation gateways

When is Satellite LoRa the right choice?

for extreme remote networking

absence of terrestrial networks

small data

low power

if that s not the case,

go terrestrial or other IoT networks

Three scenarios that are particularly interesting:

Remote mountains
Out at sea
Wildlife tracking

Mountain tracking

Extreme low power GNSS tracking for trekking

Maritime tracking

Fishery Management, Security at Sea, Wildlife Conservation, Environmental Research

Wildlife tracking

From animals to waterholes, nature resources, etc

Tracking at Sea

Swarm satellites

swarm.space

IT UNIVERSITY OF COPENHAGEN

Mapping one Lacuna satellite

Connections up to 1500 km

From an urban fixed location (Copenhagen) ^^^
← and in East Africa

Lacuna test deployments

Lacuna test deployments

. 24

DISCOSAT Danish Student Cubesat Program

https://discosat.dk

DISCOSAT1 (April 2023) flies a Coral TPU into space

DISCOSAT2 (2024) will have multiple LoRa radios on board

Why should NRENs / APAN

support his?

What is needed to make this happen,

and what can NRENs contribute with?

Skills and Capacity

NRENs are optimally positioned to help building this capacity

Terrestrial infrastructure, from networks to data infrastructure

Core competencies of NRENs

Regulations framework

Liaise with Regulators in the interest of Research, Education and Business

A word on regulations

SRD frameworks

Global harmonization around 3-4 frequency bands

A word on regulations

SRD frameworks

A word on regulations

Nepal currently still in progress

Risks of satellite networking

especially in LEO

Lack of global policies Exploding number of constellations

Chance of "Kessler Syndrome" event the collision of satellites/debris leading to a chain reaction

source: https://www.forbes.com/sites/jamiecartereurope/2023/03/09/do-we-need-an-orbital-treaty-there-are-now-100-trillion-bits-of-space-junk-circling-our-planet-and-its-about-to-get-a-lot-worse/?sh=39e6f25a34a5

The way forward

sebastian@nsrc.org

Work towards responsible use of satellite technology in the interest of research and education and humanity at large.

Engage in dialogue with regulators. Build capacity.
Start pilot projects.

