

## • Let's consider the following *inst\_dept* relation

| ID    | пате       | salary | dept_name  | building | budget |
|-------|------------|--------|------------|----------|--------|
| 22222 | Einstein   | 95000  | Physics    | Watson   | 70000  |
| 12121 | Wu         | 90000  | Finance    | Painter  | 120000 |
| 32343 | El Said    | 60000  | History    | Painter  | 50000  |
| 45565 | Katz       | 75000  | Comp. Sci. | Taylor   | 100000 |
| 98345 | Kim        | 80000  | Elec. Eng. | Taylor   | 85000  |
| 76766 | Crick      | 72000  | Biology    | Watson   | 90000  |
| 10101 | Srinivasan | 65000  | Comp. Sci. | Taylor   | 100000 |
| 58583 | Califieri  | 62000  | History    | Painter  | 50000  |
| 83821 | Brandt     | 92000  | Comp. Sci. | Taylor   | 100000 |
| 15151 | Mozart     | 40000  | Music      | Packard  | 80000  |
| 33456 | Gold       | 87000  | Physics    | Watson   | 70000  |
| 76543 | Singh      | 80000  | Finance    | Painter  | 120000 |

#### WHAT ABOUT SMALLER SCHEMAS?

- How would we know to split up (**decompose**) it into instructor and department?
- In *inst\_dept*, because *dept\_name* is not a candidate key, the *building* and *budget* of a department may have to be repeated
  - This indicates the need to decompose *inst\_dept*
- However, not all decompositions are good
- Suppose we decompose
   employee(ID, name, street, city, salary) into
   employee1 (ID, name)
   employee2 (name, street, city, salary)

# LOSSY DECOMPOSITION



| ID                                         | name                     | street                         | city                                           | salary                           |
|--------------------------------------------|--------------------------|--------------------------------|------------------------------------------------|----------------------------------|
| :<br>57766<br>57766<br>98776<br>98776<br>: | Kim<br>Kim<br>Kim<br>Kim | Main<br>North<br>Main<br>North | Perryridge<br>Hampton<br>Perryridge<br>Hampton | 75000<br>67000<br>75000<br>67000 |

#### EXAMPLE OF LOSSLESS JOIN DECOMPOSITION

#### Lossless join decomposition

Decomposition of R = (A, B, C) $R_1 = (A, B)$   $R_2 = (B, C)$ 

| A                                              | B             | C      | A                                              | B         |
|------------------------------------------------|---------------|--------|------------------------------------------------|-----------|
| $\begin{array}{c} \alpha \\ \beta \end{array}$ | $\frac{1}{2}$ | A<br>B | $\begin{array}{c} \alpha \\ \beta \end{array}$ | 1<br>2    |
|                                                | r             |        | $\prod_{A}$                                    | $_{B}(r)$ |

$$egin{array}{|c|c|c|c|} \hline B & C \\ \hline 1 & A \\ 2 & B \\ \hline \Pi_{B,C}(r) \end{array}$$

$$\Pi_{A,B} (r) \bowtie \Pi_{B,C} (r) \qquad \qquad \frac{A \mid B \mid C}{\alpha \mid 1 \mid A} \\
\beta \mid 2 \mid B$$

### 1<sup>ST</sup> NORMAL FORM

- This is mainly used to disallow multivalued attributes, composite attributes and their combination
- Domain is **atomic** if its elements are considered to be indivisible units
  - Examples of non-atomic domains:
    - Set of names, composite attributes
- A relational schema R is in **first normal form** if the domains of all attributes of R are single atomic values

# GOAL- DEVISE A THEORY FOR THE FOLLOWING

- Decide whether a particular relation *r* is in "good" form.
- In the case that a relation r is not in "good" form, decompose it into a set of relations  $\{r_1, r_2, ..., r_n\}$  such that
  - each relation is in good form
  - the decomposition is a lossless-join decomposition
- The theory is based on:
  - functional dependencies
  - multivalued dependencies

#### FUNCTIONAL DEPENDENCY

- Require that the value for a certain set of attributes, determines uniquely the value for another set of attributes
- A functional dependency is a generalization of the notion of a *key*

#### FUNCTIONAL DEPENDENCY

• Let R be a relation schema

$$\alpha \subseteq R \ and \ \beta \subseteq R$$

• The functional dependency

$$\alpha \rightarrow \beta$$

holds on R if and only if for any legal relations r(R), whenever any two tuples  $t_1$  and  $t_2$  of r agree on the attributes  $\alpha$ , they also agree on the attributes  $\beta$ . That is,

$$\forall t_1, t_2 \in r \ \{(t_1[\alpha] = t_2[\alpha]) \Rightarrow (t_1[\beta] = t_2[\beta])\}$$

## EXAMPLE

• Consider r(A,B) with the following instance of r.

| A | В |
|---|---|
| 1 | 4 |
| 1 | 5 |
| 3 | 7 |

• On this instance,  $A \to B$  does **NOT** hold, but  $B \to A$  does hold

#### FUNCTIONAL DEPENDENCY

- K is a *superkey* for relation schema R if and only if K  $\rightarrow R$
- *K* is a *candidate key* for *R* if and only if
  - $K \rightarrow R$ , and
  - for no  $\alpha \subset K$ ,  $\alpha \to R$

- Functional dependencies allow us to express constraints that cannot be expressed using superkeys
- Consider the schema:

```
inst_dept (<u>ID</u>, name, salary, <u>dept_name</u>, building, budget).
```

We expect these functional dependencies to hold:

 $dept\_name \rightarrow building$ 

and

 $ID \rightarrow building$ 

but would not expect the following to hold:

 $dept\_name \rightarrow salary$ 

#### USE OF FUNCTIONAL DEPENDENCY

- We use functional dependencies to:
  - test relations to see if they are legal under a given set of functional dependencies
    - If a relation r is legal under a set F of functional dependencies, we say that r satisfies F
  - specify constraints on the set of legal relations
    - We say that F holds on R if all legal relations on R satisfy the set of functional dependencies F
- Note: A specific instance of a relation schema may satisfy a functional dependency even if the functional dependency does not hold on all legal instances
  - For example, a specific instance of *instructor* may, by chance, satisfy

 $name \rightarrow ID$ 

# FUNCTIONAL DEPENDENCY (CONTD)

- A functional dependency is **trivial** if it is satisfied by all instances of a relation
  - Example:
    - o ID,  $name \rightarrow ID$
    - $\circ$  name  $\rightarrow$  name
  - In general,  $\alpha \to \beta$  is trivial if  $\beta \subseteq \alpha$

# CLOSURE OF A SET OF FUNCTIONAL DEPENDENCY

- Given a set F of functional dependencies, there are certain other functional dependencies that are logically implied by F.
  - For example: If  $A \to B$  and  $B \to C$ , then we can infer that  $A \to C$
- The set of **all** functional dependencies logically implied by *F* is the **closure** of *F*.
- We denote the *closure* of F by  $\mathbf{F}^+$ .
- $\circ$  F<sup>+</sup> is a superset of F.

# CLOSURE OF A SET OF FUNCTIONAL DEPENDENCY

• We can find F<sup>+</sup>, the closure of F, by repeatedly applying

#### **Armstrong's Axioms:**

- if  $\beta \subseteq \alpha$ , then  $\alpha \to \beta$  (reflexivity)
- if  $\alpha \to \beta$ , then  $\gamma \alpha \to \gamma \beta$  (augmentation)
- if  $\alpha \to \beta$ , and  $\beta \to \gamma$ , then  $\alpha \to \gamma$  (transitivity)
- These rules are
  - **sound** (generate only functional dependencies that actually hold), and
  - **complete** (generate all functional dependencies that hold).

#### EXAMPLE

• 
$$R = (A, B, C, G, H, I)$$
  
 $F = \{A \rightarrow B$   
 $A \rightarrow C$   
 $CG \rightarrow H$   
 $CG \rightarrow I$   
 $B \rightarrow H\}$ 

- $\circ$  some members of  $F^+$ 
  - $\bullet \quad A \to H$ 
    - by transitivity from  $A \rightarrow B$  and  $B \rightarrow H$
  - $AG \rightarrow I$ 
    - by augmenting  $A \to C$  with G, to get  $AG \to CG$  and then transitivity with  $CG \to I$
  - $CG \rightarrow HI$ 
    - by augmenting  $CG \to I$  to infer  $CG \to \mathbb{C}GI$ , and augmenting of  $CG \to H$  to infer  $CGI \to HI$ , and then transitivity

## Procedure for computing $F^+$

• To compute the closure of a set of functional dependencies F:

```
repeat
for each functional dependency f in F^+
apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F^+
for each pair of functional dependencies f_1 and f_2 in F^+
if f_1 and f_2 can be combined using transitivity
then add the resulting functional dependency to F^+
until F^+ does not change any further
```

#### CLOSURE OF FDS

- Additional rules which can be inferred from Armstrong's axioms
  - **union**: If  $\alpha \to \beta$  holds and  $\alpha \to \gamma$  holds, then  $\alpha \to \beta \gamma$  holds
  - **decomposition**: If  $\alpha \to \beta \gamma$  holds, then  $\alpha \to \beta$  holds and  $\alpha \to \gamma$  holds
  - **pseudotransitivity**: If  $\alpha \to \beta$  holds and  $\gamma \not \beta \to \delta$  holds, then  $\alpha \gamma \to \delta$  holds

### FUNCTIONAL DEPENDENCY EXAMPLE

- Flight <flight\_no, c\_arr, c\_dept, fl\_type>
- Seats\_free <flight\_no, date, seats\_avl>
- What are some possible valid FDs?
  - $flight\_no \rightarrow c\_arr$
  - $flight\_no \rightarrow c\_dept$
  - $flight\_no \rightarrow fl\_type$
  - $flight\_no, date \rightarrow seats\_avl$

### FUNCTIONAL DEPENDENCY EXAMPLE

- Stud\_addr <name, address>
- o Stud\_grade <name, subject, grade>
- Some possible FDs that hold are
  - $name \rightarrow address$
  - name,  $subject \rightarrow grade$

### • Which FDs hold here?

| X              | Y              | Z              | W              |
|----------------|----------------|----------------|----------------|
| $\mathbf{x}_1$ | $y_1$          | $\mathbf{z}_1$ | $\mathbf{w}_1$ |
| $\mathbf{x}_1$ | $y_2$          | $\mathbf{z}_1$ | $\mathbf{w}_2$ |
| $\mathbf{x}_2$ | $y_2$          | $\mathbf{z}_2$ | $\mathbf{w}_2$ |
| $\mathbf{X}_2$ | $\mathbf{y}_3$ | $\mathbf{z}_2$ | $\mathbf{w}_3$ |
| $\mathbf{x}_3$ | $\mathbf{y}_3$ | $\mathbf{z}_2$ | $\mathbf{w}_4$ |

$$X \rightarrow Z$$
?  
 $X \rightarrow W$ ?  
 $XY \rightarrow W$ ?

### FULL FUNCTIONAL DEPENDENCY

- When the functional dependency is 'minimal' in size (i.e., containing non redundant terms)
- o FD X →A for which there is no proper subset Y of X such that Y  $\rightarrow$ A (A is said to be **fully functionally dependent** on X)

#### CLOSURE OF ATTRIBUTE SETS

- The set of all attributes functionally determined by  $\alpha$  under a set F of FDs
- It is denoted by  $a^+$
- Let's consider a relation r with the following FDs
  - $A \rightarrow BC$
  - $AC \rightarrow D$
  - $D \rightarrow B$
  - $AB \rightarrow D$
- So what is A<sup>+</sup>, B<sup>+</sup>, C<sup>+</sup>, D<sup>+</sup>
  - $A^{+}=\{A,B,C,D\}, B^{+}=\{B\}, ...$

#### COVER OF A SET OF FDS

Let f and g be two FDs on a relation schema R. Then f is a cover of g if  $f^+=g^+$ This is also known as f is equivalent to g

$$f$$

$$A \rightarrow BC$$

$$B \rightarrow C$$

$$A \rightarrow B$$

$$AB \rightarrow C$$

$$g$$
 $A \rightarrow BC$ 
 $B \rightarrow C$ 
 $AB \rightarrow C$ 

Here f<sup>+</sup>=g<sup>+</sup> So g covers f

## MINIMAL COVER OR CANONICAL COVER

- A cover is said to be minimal if it has no redundant terms
- $\circ$  Denoted by  $F_c$
- Example:

$$F$$

$$A \rightarrow BC$$

$$AC \rightarrow D$$

$$D \rightarrow B$$

$$AB \rightarrow D$$

$$\begin{aligned} & Fc \\ & A \to CD \\ & D \to B \end{aligned}$$

#### EXTRANEOUS ATTRIBUTE

- An attribute of a FD is said to be extraneous if we can remove it without changing the closure of the set of FDs
- Formally,
- $\circ$  Consider a set F of FDs and  $\alpha \rightarrow \beta$  in F
  - Attribute A is extraneous in  $\alpha$  if A  $\epsilon$   $\alpha$ , and F logically implies (F-{ $\alpha \rightarrow \beta$ }) U{( $\alpha -A$ )  $\rightarrow \beta$ }
  - Attribute A is extraneous in  $\beta$  if A  $\epsilon$   $\beta$ , and the set of functional dependencies (F- $\{\alpha \to \beta\}$ ) U $\{\alpha \to (\beta A)\}$  logically implies F

#### EXAMPLE

- Find out the extraneous attribute in following FDs
- $\circ$  Case 1:- F:{AB → C and A → C}
  - B is extraneous in  $AB \rightarrow C$
- $\circ$  Case 2:- F:{AB →CD and A →C}
  - C is extraneous in  $AB \rightarrow CD$

### NORMAL FORMS

Included in the definition of relation

- First Normal Form (1NF)
- Second Normal Form (2NF)
- Third Normal Form (3NF)
- Boyce-Codd Normal Form (BCNF)
- Fourth Normal Form (4NF)
- Fifth Normal Form (5NF)
  - Also known as Project Join Normal Form (PJNF)

Defined in terms of FDs

Defined using MVDs

Defined using join dependency

## 2<sup>ND</sup> NORMAL FORM

- Prime attribute: an attribute that is part of any candidate key
- 2NF: A relation schema R is in 2NF if every nonprime attribute A in R is not partially dependent on any candidate key of R

#### EXAMPLE

- Let's consider the following *supplier-parts* database system
- first <sno, status, city, pno, qty>
- Here the only possible candidate key is (sno, pno)
- FDs for relation *first*



# • Instance of relation *first*

| sno | status | city       | pno        | qty |
|-----|--------|------------|------------|-----|
| s1  | 20     | Morrison   | p1         | 300 |
| s1  | 20     | Morrison   | p2         | 200 |
| s1  | 20     | Morrison   | <b>p</b> 3 | 400 |
| s1  | 20     | Morrison   | p4         | 200 |
| s1  | 20     | Morrison   | p5         | 100 |
| s1  | 20     | Morrison   | p6         | 700 |
| s2  | 10     | Centennial | p1         | 200 |
| s2  | 10     | Centennial | p2         | 120 |
| s3  | 10     | Centennial | p2         | 340 |
| s4  | 20     | Morrison   | <b>p</b> 2 | 230 |
| s4  | 20     | Morrison   | p4         | 432 |
| s4  | 20     | Morrison   | p5         | 120 |

#### **ANOMALIES**

#### o Insert:

- Insertion not possible until a supplier supplied some items
- Ex. s5 located in *Denver* cannot be inserted

#### • Delete:

- May loose some additional information
- Ex. if s3, p2 is deleted then we loose the information that s3 is located in Centennial

#### • Update:

- Same city value appears in many places
- Ex. if *s1* moves from *Morrison* to *Aurora* then update is to be done in many places

#### **DECOMPOSITION**

- The relation *first* must be decomposed in such a way so that the decomposed relations satisfy 2NF
- second <sno, status, city> and
- *sp* <*sno*, *pno*, *qty*>
- FDs for the above relations





## EXAMPLE OF 2NF RELATIONS

#### second

| sno | status | city       |
|-----|--------|------------|
| s1  | 20     | Morrison   |
| s2  | 10     | Centennial |
| s3  | 10     | Centennial |
| s4  | 20     | Morrison   |
| s5  | 30     | Denver     |

#### $\mathbf{sp}$

| sno | pno        | qty |
|-----|------------|-----|
| s1  | p1         | 300 |
| s1  | p2         | 200 |
| s1  | <b>p</b> 3 | 400 |
| s1  | p4         | 200 |
| s1  | <b>p</b> 5 | 100 |
| s1  | p6         | 700 |
| s2  | p1         | 200 |
| s2  | p2         | 120 |
| s3  | p2         | 340 |
| s4  | p2         | 230 |
| s4  | p4         | 432 |
| s4  | <b>p</b> 5 | 120 |

- o Thus in r(A,B,C,D) if (A,B) is a candidate key and  $A \rightarrow D$  holds
- Then by 2NF r can be replaced by r1 and r2 as follows
  - r1(A,D) candidate key  $\{A\}$
  - r2(A,B,C) candidate key  $\{A,B\}$  and foreign key A references r1(A)

#### 3NF

- A relation schema R is in 3NF if, whenever a non-trivial functional dependency X→A holds in R, either
  - X is a superkey of R or
  - A is a prime attribute of R

- Addresses two type cases-
  - A proper subset of a key of R functionally determines a non-prime attribute
  - A non-prime attribute determines another non-prime attribute. This is same as addressing the transitive dependency
- Now consider relation second



#### ANOMALIES

#### o Insert:

- A particular city has a particular status
- Ex: any supplier in city *Kersey* has *10* status
- Cannot be inserted until there is actually a supplier located in that city

#### • Delete:

• If we delete S5 then we lose information that Denver has status 30

### • Update:

- The status of a given city appears in many places
- So updating the status value may be problematic

- Now if we decompose the relation *second* into two relations such that they satisfy 3NF
- sc <sno, city>
- cs <city, status>
- The FDs of the above relations are



- If r(A,B,C) and A is a candidate key and  $B \rightarrow C$  holds
- Then by 3NF *r* can be replaced by
  - r1 (B,C) and B is a candidate key
  - r2(A,B) and A is a candidate key and foreign key B references r1(B)

### PROPERTIES OF DECOMPOSITION

- Decomposition1: Relation *second* is decomposed into
  - sc <sno, city>
  - cs <city,status>
- Decomposition2: Relation *second* is decomposed into
  - sc <sno,city>
  - ss <sno,status>
- Which of the above decomposition is lossless and dependency preserving?

# DESIRABLE PROPERTIES OF DECOMPOSITION

#### Lossless join

• When decomposing a relation into number of smaller ones then it is crucial that the decomposition be lossless

#### Dependency preservation

• The system must not create relation that does not satisfy all the given functional dependencies

#### LOSSLESS JOIN

- Let R be a relation schema and F be a set of functional dependencies
- Let R<sub>1</sub> and R<sub>2</sub> form a decomposition of R
- The decomposition will be **lossless** if atleast one of the following functional dependencies is in F<sup>+</sup>

$$R_1 \cap R_2 \rightarrow R_1$$
$$R_1 \cap R_2 \rightarrow R_2$$

In other words,  $R_1 \cap R_2$  forms a super key of either  $R_1$  or  $R_2$ 

### DEPENDENCY PRESERVATION

- Create legal relations preserving the dependencies
- Let F be a set of functional dependencies on a schema R and let  $R_1, R_2, ..., R_n$  be a decomposition of R
- $\bullet$  The restriction of F to  $R_i$  is the set of all functional dependencies in  $F^+$  that include only attributes of  $R_i$
- The set of restrictions  $F_1$ ,  $F_2$ , ...,  $F_n$  is the set of dependencies that can be checked efficiently
- Now we check whether testing only the restrictions is sufficient?

- $\circ$  Let  $F'=F_1 \cup F_2 \cup ... \cup F_n$
- $\circ$  F' is the set of all functional dependencies on schema R but in general F' $\neq$ F
- But if F'+=F+ is satisfied then we say that it is a dependency preserving decomposition

## DEPENDENCY PRESERVING: EXAMPLE

- Example:
  - Suppose F={A  $\rightarrow$ B, B  $\rightarrow$ C} and the original relation is r<A,B,C>
  - And the decompositions are  $r_1 < A, B >$  and  $r_2 < A, C >$
- Is it dependency preserving?

# BOYCE/CODD NORMAL FORM (BCNF)

- A relation schema R is in BCNF, if whenever a non-trivial functional dependency X→A holds in R, then X is a superkey of R.
- BCNF is strictly stronger than 3NF definition. Thus, every relation in BCNF also satisfies 3NF but every relation in 3NF does not necessarily satisfy BCNF

- Let's check whether the following relations are in BCNF
- Relation first <sno, status, city, pno, qty>
  - The left hand sides of FDs– {sno}, {city}, {sno, pno}
  - Only the last one is a superkey
  - So not in BCNF
- Relation second <sno, status, city>
  - The left hand sides of FDs {sno}, {city}
  - Only sno is a superkey
  - So not in BCNF
- Relation *sp* <*sno*, *pno*, *qty*>
  - The left hand sides of FDs -{sno,pno}
  - That is also superkey
  - It is in BCNF