

FAKULTA ELEKTROTECHNICKÁ KATEDRA FYZIKY

LABORATORNÍ CVIČENÍ Z FYZIKY

Jméno			Datum měření	
Viktor Proch	názka		13.5.2024	
Semestr		Ročník	Datum odevzdání	
Letní		1.	20.5.2024	
Studijní skupina		Laboratorní skupina	Klasifikace	
16		104-1L		
Číslo úlohv	Název úlohy	•		

Císlo úlohy

Určení modulu pružnosti ve smyku dynamickou metodou a stanovení momentu setrvačnosti

1. Úkol měření

- 1. Změřit modul pružnosti ve smyku ocelové struny.
- 2. Určete moment setrvačnosti rotoru elektromotoru metodou torzních kmitů.

2. Seznam použitých přístrojů

Přístroj	Chyba
Stopky	0.4 s
Mikrometr	0.002 mm
Posuvka	0.15 mm
Metr	0.5 mm

Seznam použitého materiálu

- 1. Ocelová struna
 - a. Délka (měřeno metrem) 89 cm
 - b. Průměr (měřeno mikrometrem) 1.2 mm (viz ...)
- 2. Válcová deska
 - a. Průměr desky (získáno ze štítku) 213.1 mm
 - b. Váha (získáno ze štítku) 5.13 kg
- 3. Rotor elektromotoru

3. Tabulky naměřených hodnot, zpracování

Měření průměru ocelové struny

Nejdříve jsme si změřili průměr ocelové struny. K měření byl použit mikrometr a měření proběhlo celkově desetkrát. Jako výslednou hodnotu jsme použili průměr těchto 10 měření.

Číslo měření	Průměr struny d [mm]
1	1.24
2	1.18
3	1.18
4	1.18
5	1.17
6	1.19
7	1.32
8	1.19
9	1.18
10	1.18
Průměr	1.20

Měření torzních kyvů válcové desky

Kyvy jsme vybrali

Po změření průměru ocelové struny jsme na kyvadlo zavěsili válcové zařízení a rozhoupali ho. Při prvním měření jsme měřili čas proběhnutí 10 kyvů. U dalších měření jsme si pomohli omezovací metodou pro ulehčení práce a zvýšení přesnosti měření. Cílem bylo zjistit dobu jednoho kyvu.

Spodní interval odhadnuté doby = (předešlý naměřený čas - Δt) · počet kyvů

Horní interval odhadnuté doby = (předešlý naměřený čas + Δt) · počet kyvů

Doba jednoho kyvu = Doba kyvů / Počet kyvů

Nejistota = Δt / počet kmitů

Počet kyvů	Doba kyvů [s]	Doba jednoho kyvu [s]	Nejistota [s]	Spodní interval odhadnuté doby [s]	Horní interval odhadnuté doby [s]
10	40.30	4.03	0.04	39.9	40.7
20	81.25	4.06	0.02	79.85	81.65
100	402.00	4.02	0.004	399.25	403.31

Commented [VP1]: Odhad proveden po měření, nebyl potřeba, ale uveden pro úplnost tabulky

Modul pružnosti struny ve smyku

- 1. Moment setrvačnosti válce J=1/2MR^2
 - a. M = Váha válce
 - b. R = poloměr válce
 - c. 1/2*5.13(0,213/2)^2 = 0.02909287<u>1 [kg</u>/m^2]
- 2. Modul pružnosti $G = 32 \cdot \pi \cdot l \cdot J / d \cdot Tk$ 3.1
 - a. I = délka ocelové struny
 - b. J = moment setrvačnosti válce
 - c. d = průměr ocelové struny
 - d. Tk = Doba jednoho kyvu
 - e. $= 7.75 *10^{10} [Kg/m*s^2]$

Modul torzních kyvů rototru

Opakovali jsme měření pro rotor, znovu jsme použili omezovací metodu

Počet kyvů	Doba kyvů	Doba jednoho	Nejistota	
	[s]	kyvu [s]	[s]	
10	10.35	1.03	0.04	
20	21.13	1.05	0.02	
50	52.63	1.05	0.004	

Moment setrvačnosti rotoru

$$J_r = \frac{G \cdot d_s^4 \cdot T_k^2}{32 \cdot \pi \cdot l}$$

5. Zhodnocení výsledku měření

- a. Moment setrvačnosti rotoru vyšlo J = 0.029092871 [kg/m^2]
- f. Model pružnosti struny= $7.75*10^10 [Kg/m*s^2]$
- Z naměřených dat by šel spočítat moment setrvačnosti rotoru, ale bohužel bych pak nestihl odevzdat protokol.

6. Seznam použité literatury Torze.pdf 4.1

7. Kopie záznamu s naměřenými hodnotami

Délka struny l [cm]	Průměr struny d [mm]	Doba 10 torzních kyvů desky [s]					
89.00	1.24	40.30 Krajní chyba měření stopkami 0.4 s		J = 1/2 mR^2			
Průměr desky [mm]	1.18	Interval doby	kyvů				
213.1	1.18	39.9	40.7	Doba jedn	oho kyvu		J = d^4 Tk^2 G / 32 pi l
Hmotnost desky [kg]	1.18	79.8		4.03	4.03 Odhad 20 kyvu		
5.13	1,17				79.8		Krajní chyba měření stopkami 0.4 s
	1.19	Doba 20 kyvi	desky [s	1			
Moment setvračnosti	1.32	81.25		Krajní chyb	a měření stoj	okami 0.4 s	
1/2*5.13(0,213/2)^2	1.19	Interval doby	kyvů		Odhad 100 k	ryvu	
0.0290929 [kg/m^2]	1.18	79.85	81.65		399.25	403.31	
	1.18	1.8			6m 39.25 s		
10 kyvu elektromotoru	[s]	Doba 100 ky	/ů desky [s]			
10.35		402					
20 kyvu elektromotoru					l l		
21.13	Průměr			1. $G = 3$	$2 \cdot \pi \cdot l \cdot J = 0$	l · Tk	
50 kyvu elektromotoru	1.20			7.75E+07			
52.63							

Index komentářů

- 2.1 Toto není pravda. Sem patří chyby uB
- 3.1 Toto není pravda
- 4.1 Tento zdroj nelze dohledat, nejedná se o citaci