SEQUENCE LISTING

	<110>	Monaci, Paolo	
5		Nuzzo, Maurizio	
		La Monica, Nicola	
		Ciliberto, Gennaro	
		Lahm, Armin	
10	<120>	RHESUS HER2/NEU, NUCLEOTIDES ENCODING	
	SAM	E AND USES THEREOF	
	<130>	ITR0043YP	
15	<1.40>	Ma Da Basismad	
15	<140>	To Be Assigned	
	<141 <i>></i>	<i>></i>	
	<150>	PCT/EP03/14997	
		2003-12-29	
20			
	<150>	60/437,846	
	<151>	2003-01-03	
	<160>	43	
25			
	<170>	FastSEQ for Windows Version 4.0	
	<210>	1	
	<211>		
30	<212>		
	<213>	Rhesus Monkey	
	<400>		
25		getgg eggeetggta eegetggggg eteeteeteg eeetettgee eeeeggaget 60	
35		caccc aagtgtgcac cggcacagac atgaagctgc ggctccctgc cagtcccgag 120 cctgg acatgctccg ccacctctac cagggctgcc aggtggtgca gggtaacctg 180	
		cacct acctgoccac caatgocago ctotoottoo tgcaggatat ccaggaggtg 240	
		ctacg tgctcatcgc tcacaaccaa gtgaggcagg tcccactgca gaggctgcgg 300	

```
attgtgcgag gcacccagct ctttgaggac aactatgccc tggccgtgct agacaatgga 360
    gacctgctga acaataccac ccctgtcaca ggggcctccc caggaggcct gcgggagctg 420
    cagettegaa geeteacaga gatettgaaa ggaggggtet tgateeageg gaaceeccag 480
    ctctgctacc aggacacgat tttgtggaag gacatcttcc ataagaacaa ccagctggct 540
5
    ctcacactga tcgacaccaa ccgctctcgg gcctgccacc cctgttctcc agtgtgtaag 600
    ggctcccgct gctggggaga gagttctgag gattgtcaga gcctgacgcg cactgtctgt 660
    gccggtggct gtgcccgctg caaggggcca ctgcccactg actgctgcca tgagcagtgt 720
    getgeegget geaegggeee caageactet gaetgeetgg eetgeeteea etteaaceae 780
    ageggeatet gtgaretgea etgeecagee etggteacet acaacacaga eacetttgag 840
10
    tecatgeeca acceegaggg ceggtataca tteggegeea getgtgtgae tgeetgteee 900
    tacaactacc tttctacgga cgtgggatcc tgcaccctcg tctgccccct gcacaaccaa 960
    gaggtgacag cggaggacgg aacacagcga tgtgagaagt gcagcaagcc ctgtgcccga 1020
    gtgtgctatg gtctgggcat ggagcacttg cgagaggtga gggcggtcac cagtgccaat 1080
    atccaggagt ttgctggctg caagaagatc tttgggagct tggcatttct gccagagagc 1140
15
    tttgatggcg acccagecte caacacegee eegetteage eggageaget eegagtgttt 1200
    gagactetgg aagagateae aggttaeeta taeateteag eatggeeaga eageetgeet 1260
    gacettageg teeteeagaa eetgeaagta ateeggggae gaattetgea caatggegee 1320
    tactcactga ccctgcaagg gctgggcatc agctggctgg ggctgcgctc gctgagggaa 1380
    ctgggcagtg gactggccct catccaccat aacaccegcc tctgctttgt gcacacggtg 1440
20
    ccctgggacc agetetteeg gaaccegeae caageeetge tecacaetge caaceggeea 1500
    gaggacgagt gtgtgggcga gggcctggcc tgccaccagc tgtgcgcccg agggcactgc 1560
    tggggtccag ggcccaccca gtgtgtcaac tgcagccagt tccttcgggg ccaggagtgc 1620
    gtggaggaat gccgagtact gcaggggctc cccagggagt atgtgaatgc cagacactgt 1680
    ttgccgtgcc accctgagtg tcagccccag aatggctcag tgacatgttt tggaccggag 1740
25
    gctgaccagt gtgtggcctg tgcccactat aaggaccctc ccttctgcgt ggcccgctgc 1800
    cccagcggtg tgaaacctga cctctcctac atgcccatct ggaagtttcc agatgaggag 1860
    ggcacgtgcc agtcttgccc catcaactgc acceactect gtgtggacet ggatgacaag 1920
    ggctgccccg ccgagcagag agccagccct ctgacgtcca tcatctctgc tgtggtgggc 1980
    attetgetgg tegtggtett gggggtggte tttggaatee teateaageg aeggeageag 2040
30
    aagatccgga agtacacgat gcggaggctg ctgcaggaaa cggagctggt ggagccactg 2100
    acaccgagtg gagcgatgcc caaccaggcg cagatgcgga tcctgaaaga gacggagctg 2160
    aggaaggtga aggtgcttgg atctggagct tttggcacag tctacaaggg catctggatc 2220
    cctgatgggg agaatgtgaa aattccagtg gccatcaaag tgttgaggga aaacacatcc 2280
    cccaaagcca acaaagaaat cttagacgaa gcatatgtga tggctggtgt gggctcccca 2340
35
    tatgtctccc gcctcctggg catctgcctg acatccacgg tgcagctggt gacacagctt 2400
    atgecetatg getgeetett agaccatgte egagaaaace geggaegeet gggeteecag 2460
    gacctgctga actggtgtat gcagattgcc aaggggatga gctacctgga ggatgtgcgg 2520
    ctcgtacaca gggacttggc tgctcggaac gtgctggtca agagtcccaa ccatgtcaaa 2580
```

attacagact ttgggctggc tcggctgctg gacattgacg agacagagta ccatgcagat 2640 gggggcaagg tgcccatcaa gtggatggcg ctggagtcca ttctccgacg gcggttcacc 2700 caccagagtg atgtgtggag ttatggtgtg actgtgtggg agctgatgac ttttggggcc 2760 aaaccttacg atgggatccc agcccgggag atccctgacc tgctggaaaa gggggagcgg 2820 5 ctgccccagc ccccatctg caccattgat gtctacatga tcatggtcaa atgttggatg 2880 attgactctg aatgtcggcc gagattccgg gagttggtgt cggaattctc ccgcatggcc 2940 agggaccccc agcgctttgt ggtcatccag aatgaggact tgggcccagc cagtcccttg 3000 gacagcacct totaccgctc actgctggag gacgatgaca tgggggacct ggtggatgct 3060 gaggagtate tggtacecca geagggette ttetgteeag accetgeece gggeaetggg 3120 10 qqcatqqtcc accacaqqca ccqcaqctca tctaccaqqa qtqqcqqtqq qqacctqacq 3180 ctagggctgg agccctctga agaggaggcc cccaggtctc cacgggcacc ctccgaaggg 3240 actggctctg atgtatttga tggtgaccta ggaatggggg cagccaaggg gctgcaaagc 3300 ctccccgcac atgaccccag ccctctacag cggtacagtg aggaccccac ggtacccctg 3360 ccttctgaga ctgacggcta cgttgccccc ctgacctgca gtccccagcc cgaatatgtg 3420 15 aaccagccag atgttcggcc acagccccct tcgccccaag agggccctct gtctcctgcc 3480 cgacctactg gtgccactct ggaaaggccc aagactctct ccccagggaa gaatggggtt 3540 gtcaaagacg tttttgcctt tgggggtgct gtggagaacc ccgagtactt ggcaccccgg 3600 ggaggagctg cccctcagcc ccaccttcct cctgccttca gcccagcctt cgacaacctc 3660 tattactggg accaggaccc atcagagcgg ggggctccac ctagcacctt caaagggaca 3720 20 3768 cctacqqcaq aqaacccaqa qtacctqqqt ctqqacqtqc caqtqtga

<210> 2

<211> 1255

<212> PRT

25 <213> Rhesus Monkey

<400> 2

35

Met Glu Leu Ala Ala Trp Tyr Arg Trp Gly Leu Leu Leu Ala Leu Leu

1 5 10 15

30 Pro Pro Gly Ala Ala Gly Thr Gln Val Cys Thr Gly Thr Asp Met Lys
20 25 30

Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His
35 40 45

Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr

50 55 60
Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asn Ile (

Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val 65 70 75 80

Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu

					85					90					95	
	Gln	Arg	Leu	Arg	Ile	Val	Arg	Gly	Thr	Gln	Leu	Phe	Glu	Asp	Asn	Tyr
				100					105					110		
	Ala	Leu	Ala	Val	Leu	Asp	Asn	Gly	Asp	Leu	Leu	Asn	Asn	Thr	Thr	Pro
5			115					120					125			
	Val	Thr	Gly	Ala	Ser	Pro	Gly	Gly	Leu	Arg	Glu	Leu	Gln	Leu	Arg	Ser
		130					135					140				
	Leu	Thr	Glu	Ile	Leu	Lys	Gly	Gly	Val	Leu	Ile	Gln	Arg	Asn	Pro	Gln
	145					150					155					160
10	Leu	Cys	Tyr	Gln	Asp	Thr	Ile	Leu	Trp	Lys	Asp	Ile	Phe	His	Lys	Asn
					165					170					175	
	Asn	Gln	Leu	Ala	Leu	Thr	Leu	Ile	Asp	Thr	Asn	Arg	Ser	Arg	Ala	Cys
				180					185					190		
	His	Pro	Cys	Ser	Pro	Val	Cys	Lys	Gly	Ser	Arg	Cys	Trp	Gly	Glu	Ser
15			195					200					205			
	Ser	Glu	Asp	Cys	Gln	Ser	Leu	Thr	Arg	Thr	Val	Cys	Ala	Gly	Gly	Cys
		210					215					220				
	Ala	Arg	Cys	Lys	Gly	Pro	Leu	Pro	Thr	Asp	Cys	Cys	His	Glu	Gln	Cys
	225					230					235					240
20	Ala	Ala	Gly	Cys	Thr	Gly	Pro	Lys	His	Ser	Asp	Cys	Leu	Ala	Cys	Leu
					245					250					255	
	His	Phe	Asn	His	Ser	Gly	Ile	Cys	Glu	Leu	His	Cys	Pro	Ala	Leu	Val
				260					265					270		
	Thr	Tyr	Asn	Thr	Asp	Thr	Phe	Glu	Ser	Met	Pro	Asn	Pro	Glu	Gly	Arg
25			275					280					285			
	Tyr	Thr	Phe	Gly	Ala	Ser	Cys	Val	Thr	Ala	Cys	Pro	Tyr	Asn	Tyr	Leu
		290					295					300				
	Ser	Thr	Asp	Val	Gly	Ser	Cys	Thr	Leu	Val	Cys	Pro	Leu	His	Asn	Gln
	305					310					315					320
30	Glu	Val	Thr	Ala	Glu	Asp	Gly	Thr	Gln	Arg	Cys	Glu	Lys	Cys	Ser	Lys
					325					330					335	
	Pro	Cys	Ala	Arg	Val	Cys	Tyr	Gly	Leu	Gly	Met	Glu	His	Leu	Arg	Glu
				340					345					350		
	Val	Arg	Ala	Val	Thr	Ser	Ala	Asn	Ile	Gln	Glu	Phe	Ala	Gly	Суѕ	Lys
35			355					360					365			
	Lys	Ile	Phe	Gly	Ser	Leu	Ala	Phe	Leu	Pro	Glu	Ser	Phe	Asp	Gly	Asp
		370					375					380				
	Pro	Ala	Ser	Asn	Thr	Ala	Pro	Leu	Gln	Pro	Glu	Gln	Leu	Arg	Val	Phe

·- ;

	385					390					395					400
	Glu	Thr	Leu	Glu	Glu	Ile	Thr	Gly	Tyr	Leu	Tyr	Ile	Ser	Ala	Trp	Pro
					405					410					415	
	Asp	Ser	Leu	Pro	Asp	Leu	Ser	Val	Leu	Gln	Asn	Leu	Gln	Val	Ile	Arg
5				420					425					430		
	Gly	Arg	Ile	Leu	His	Asn	Gly	Ala	Tyr	Ser	Leu	Thr	Leu	Gln	Gly	Leu
			435					440					445			
	Gly	Ile	Ser	Trp	Leu	Gly	Leu	Arg	Ser	Leu	Arg	Glu	Leu	Gly	Ser	Gly
		450					455					460				
10	Leu	Ala	Leu	Ile	His	His	Asn	Thr	Arg	Leu	Cys	Phe	Val	His	Thr	Val
	465					470					475					480
	Pro	Trp	Asp	Gln	Leu	Phe	Arg	Asn	Pro	His	Gln	Ala	Leu	Leu	His	Thr
					485					490					495	
	Ala	Asn	Arg	Pro	Glu	Asp	Glu	Cys	Val	Gly	Glu	Gly	Leu	Ala	Cys	His
15				500					505					510		
	Gln	Leu	Cys	Ala	Arg	Gly	His	Cys	Trp	Gly	Pro	Gly	Pro	Thr	Glņ	Cys
			515				•	520					525			
	Val	Asn	Cys	Ser	Gln	Phe	Leu	Arg	Gly	Gln	Glu	Cys	Val	Glu	Glu	Cys
		530					535					540				
20	Arg	Val	Leu	Gln	Gly	Leu	Pro	Arg	Glu	Tyr	Val	Asn	Ala	Arg	His	Cys
	545					550					555					560
	Leu	Pro	Cys	His	Pro	Glu	Cys	Gln	Pro	Gln	Asn	Gly	Ser	Val	Thr	Cys
					565					570					575	
	Phe	Gly	Pro	Glu	Ala	Asp	Gln	Cys	Val	Ala	Cys	Ala	His	Tyr	Lys	Asp
25				580					585					590		
	Pro	Pro	Phe	Cys	Val	Ala	Arg	_	Pro	Ser	Gly	Val		Pro	Asp	Leu
			595					600					605			
	Ser		Met	Pro	Ile	Trp		Phe	Pro	Asp	Glu		Gly	Thr	Cys	Gln
		610					615					620				
30		Cys	Pro	Ile	Asn		Thr	His	Ser	Cys		Asp	Leu	Asp	Asp	
	625					630					635					640
	Gly	Cys	Pro	Ala		Gln	Arg	Ala	Ser		Leu	Thr	Ser	Ile		Ser
					645					650					655	
	Ala	Val	Val	Gly	Ile	Leu	Leu	Val		Val	Leu	Gly	Val		Phe	Gly
35				660					665					670		
	Ile	Leu		Lys	Arg	Arg	Gln		Lys	Ile	Arg	Lys		Thr	Met	Arg
			675					680					685			
	Arg	Leu	Leu	Gln	Glu	Thr	Glu	Leu	Val	Glu	Pro	Leu	Thr	Pro	Ser	Gly

		690					695					700				
	Ala	Met	Pro	Asn	Gln	Ala	Gln	Met	Arg	Ile	Leu	Lys	Glu	Thr	Glu	Leu
	705					710					715					720
	Arg	Lys	Val	Lys	Val	Leu	Gly	Ser	Gly	Ala	Phe	Gly	Thr	Val	Tyr	Lys
5					725					730					735	
	Gly	Ile	Trp	Ile	Pro	Asp	Gly	Glu	Asn	Val	Lys	Ile	Pro	Val	Ala	Ile
				740					745					750		
	Lys	Val	Leu	Arg	Glu	Asn	Thr	Ser	Pro	Lys	Ala	Asn	Lys	Glu	Ile	Leu
			755					760					765			
10	Asp	Glu	Ala	Tyr	Val	Met	Ala	Gly	Val	Gly	Ser	Pro	Tyr	Val	Ser	Arg
		770					775					780				
	Leu	Leu	Gly	Ile	Cys	Leu	Thr	Ser	Thr	Val	Gln	Leu	Val	Thr	Gln	Leu
	785					790					795					800
	Met	Pro	Tyr	Gly	Cys	Leu	Leu	Asp	His	Val	Arg	Glu	Asn	Arg	Gly	Arg
15					805					810					815	
	Leu	Gly	Ser		Asp	Leu	Leu	Asn	Trp	Cys	Met	Gln	Ile		Lys	Gly
				820					825				_	830		
	Met	Ser	_	Leu	Glu	Asp	Val		Leu	Val	His	Arg		Leu	Ala	Ala
20		_	835	_	1	_	~	840	_		1	_	845	m)		701
20	Arg		Val	Leu	Val	Lys		Pro	Asn	His	vaı		IIe	Thr	Asp	Pne
	G1	850	71.	7	T 0.11	T 0.11	855	T1.	7.00	C1.,	mb ∞	860	т	Uio	7.1.	7 00
	_	ьeu	Ala	Arg	reu	870	ASP	ile	Asp	GIU	875	Giu	ıyı	птъ	АІа	880
	865	C1.v	Tvc	Wal	Pro		Tue	Trn	Met	7.1.5		Glu	Sar	Tlo	Leu	
25	GIY	GLY	гу	vai	885	116	пуз	iip	Met	890	пеи		561	116	895	ALG
23	Ara	Δra	Phe	Thr		Gln	Ser	Asn	Val		Ser	Tur	Glv	Val		Val
	**** 9	*****9		900		01	001	1101	905			-1-	V-J	910		,
	Trp	Glu	Leu		Thr	Phe	Glv	Ala		Pro	Tvr	Asp	Glv		Pro	Ala
			915				-	920	-		•	-	925			
30	Arg	Glu		Pro	Asp	Leu	Leu		Lys	Gly	Glu	Arg	Leu	Pro	Gln	Pro
	,	930			-		935		_	_		940				
	Pro	Ile	Cys	Thr	Ile	Asp	Val	Tyr	Met	Ile	Met	Val	Lys	Cys	Trp	Met
	945					950					955					960
	Ile	Asp	Ser	Glu	Cys	Arg	Pro	Arg	Phe	Arg	Glu	Leu	Val	Ser	Glu	Phe
35					965					970					975	
	Ser	Arg	Met	Ala	Arg	Asp	Pro	Gln	Arg	Phe	Val	Val	Ile	Gln	Asn	Glu
				980					985					990		
	Asp	Leu	Gly	Pro	Ala	Ser	Pro	Leu	Asp	Ser	Thr	Phe	Tyr	Arg	Ser	Leu

			995					1000)				1005	5		
	Leu	Glu	Asp	Asp	Asp	Met	Gly	Asp	Leu	Val	Asp	Ala	Glu	Glu	Tyr	Leu
		1010)				1015	5				1020)			
	Val	Pro	Gln	Gln	Gly	Phe	Phe	Cys	Pro	Asp	Pro	Ala	Pro	Gly	Thr	Gly
5	1025	5				1030)				1035	5				1040
	Gly	Met	Val	His	His	Arg	His	Arg	Ser	Ser	Ser	Thr	Arg	Ser	Gly	Gly
					1045	5				1050)				1055	5
	Gly	Asp	Leu	Thr	Leu	Gly	Leu	Glu	Pro	Ser	Glu	Glu	Glu	Ala	Pro	Arg
				1060)				1065	5				1070)	
10	Ser	Pro	Arg	Ala	Pro	Ser	Glu	Gly	Thr	Gly	Ser	Asp	Val	Phe	Asp	Gly
			1075	5				1080)				1085	5		
	Asp	Leu	Gly	Met	Gly	Ala	Ala	Lys	Gly	Leu	Gln	Ser	Leu	Pro	Ala	His
		1090)				1095	5				1100)			
	Asp	Pro	Ser	Pro	Leu	Gln	Arg	Tyr	Ser	Glu	Asp	Pro	Thr	Val	Pro	Leu
15	1105	5				1110)				1115	5				1120
	Pro	Ser	Glu	Thr	Asp	Gly	Tyr	Val	Ala	Pro	Leu	Thr	Cys	Ser	Pro	Gln
					1125	5				1130)				1135	5
	Pro	Glu	Tyr	Val	Asn	Gln	Pro	Asp	Val	Arg	Pro	Gln	Pro	Pro	Ser	Pro
				1140)				1145	5				1150)	
20	Gln	Glu	Gly	Pro	Leu	Ser	Pro	Ala	Arg	Pro	Thr	Gly	Ala	Thr	Leu	Glu
			1155	5				1160)				1169	5		
	Arg	Pro	Lys	Thr	Leu	Ser	Pro	Gly	Lys	Asn	Gly	Val	Val	Lys	Asp	Val
		1170)				1175	5				1180)			
	Phe	Ala	Phe	Gly	Gly	Ala	Val	Glu	Asn	Pro	Glu	Tyr	Leu	Ala	Pro	Arg
25	1185	5				1190)				1195	5				1200
	Gly	Gly	Ala	Ala	Pro	Gln	Pro	His	Leu	Pro	Pro	Ala	Phe	Ser	Pro	Ala
					1205	5				1210)				1215	5
	Phe	Asp	Asn	Leu	Tyr	Tyr	Trp	Asp	Gln	Asp	Pro	Ser	Glu	Arg	Gly	Ala
				1220)				1225	5				1230)	
30	Pro	Pro	Ser	Thr	Phe	Lys	Gly	Thr	Pro	Thr	Ala	Glu	Asn	Pro	Glu	Tyr
			1239	5				124)				1245	5		
	Leu	Gly	Leu	Asp	Val	Pro	Val									
		1250)				125	5								

35

<210> 3

<211> 21

<212> DNA

	<213> Artificial Sequence	
	<220>	
	<223> PCR Primer	
5		
	<400> 3	
	agccatgggg ccggagccgc a	21
	<210> 4	
10	<211> 26	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
15	<223> PCR Primer	
	<400> 4	
	agggctgggc agtgcagctc acagat	26
20	<210> 5	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
25.	<220>	
	<223> PCR Primer	
	<400> 5	
	ctgcgggagc tgcagcttcg aag	23
30		
	<210> 6	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
35		
	<220>	
	<223> PCR Primer	

	<400> 6	
	ccaaagatct tcttgcagcc	20
	<210> 7	
5	<211> 26	
	<212> DNA	
	<213> Artificial Sequence	
1.0	<220>	
10	<223> PCR Primer	
	<400> 7	
	atctgtgagc tgcactgccc agccct	26
15	<210> 8	
	<211> 19	
	<212> DNA	
	<213> Artificial Sequence	
•		
20	<220>	
	<223> PCR Primer	
	<400> 8	
	gagegeagee ceageeage	19
25		
	<210> 9	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
30		
	<220>	
	<223> PCR Primer	
	<400> 9	
35	ggctgcaaga agatctttgg	20
	<210> 10	
	<211> 20	

	<212> DNA	
	<213> Artificial Sequence	
	<220>	
5	<223> PCR Primer	
	<400> 10	
	tgggtgcagt tgatggggca	20
10	<210> 11	
	<211> 44	
	<212> DNA	
	<213> Artificial Sequence	
15	<220>	
	<223> PCR Primer	
	<400> 11	
	ccagtttaaa catttaaatg ccgccaccat ggagctggcg gcct	44
20		
	<210> 12	
	<211> 26	
	<212> DNA	
	<213> Artificial Sequence	
25		
	<220>	
	<223> PCR Primer	
20	<400> 12	26
30	tgctggggtc cagggcccac ccagtg	26
	<210> 13	
	<211> 23	
	<212> DNA	
35	<213> Artificial Sequence	
,,	7210% WITTIGIAT Deduction	
	<220>	
	<223> PCR Primer	

	<400> 13	
	tcagggatct cccgggctgg gat	23
5	<210> 14	
_	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
10	<220>	
	<223> PCR Primer	
	<400> 14	
1.5	gtggaggaat gccgagtact gcag	24
15	<210> 15	
	<211> 39	
	<212> DNA	
	<213> Artificial Sequence	
20		
	<220>	
	<223> PCR Primer	
	<400> 15	
25	tgtgttttcc ctcaacacgg cgatggccac tggaatttt	39
	<210> 16	
	<211> 39	
	<212> DNA	
30	<213> Artificial Sequence	
	<220>	
	<223> PCR Primer	
35	<400> 16	
	aaaattccag tggccatcgc cgtgttgagg gaaaacaca	39
	<210> 17	

	<211>	23	
	<212>	DNA	
	<213>	Artificial Sequence	
5	<220>		
	<223>	PCR Primer	
	<400>	17	
	ctgggc	catct gcctgacatc cac	23
10			
	<210>		
	<211>	22	
	<212>	DNA	
	<213>	Artificial Sequence	
15			
	<220>		
	<223>	PCR Primer	
• •	<400>		
20	ggtttc	caggg acagtctctg aa	22
	2010 \$	10	
	<210>		
	<211>		
25	<212>	Artificial Sequence	
23	(213)	Archicial Sequence	
	<220>		
		PCR Primer	
	(223)	TON TITIMET	
30	<400>	19	
		cgact ttacatggca cgtccagacc ca	32
	J J -		
	<210>	20	
	<211>		
35	<212>		
		Artificial Sequence	
	<220>		
		- 12 -	

	<223> PCR Primer	
	<223> PCR PIIMEI	
	<400> 20	
	cttcatgtct gtgccggt	18
5		
	<210> 21	
	<211> 22	
	<212> DNA	
	<213> Artificial Sequence	
10		
	<220>	
	<223> PCR Primer	
	<400> 21	
15	ggccggagcc gcagtgagca cc	22
	<210> 22	
	<211> 23	
	<212> DNA	
20	<213> Artificial Sequence	
	<220>	
	<223> PCR Primer	
	(223) FCK FITMEL	
25	<400> 22	
	cttcgaagct gcagctcccg cag	23
	<210> 23	
	<211> 25	
30	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> PCR Primer	
35		
	<400> 23	
	atggagetgg eggeettgtg eeget	25

	<210> 24	
	<211> 18	
	<212> DNA	
	<213> Artificial Sequence	
5		
	<220>	
	<223> PCR Primer	
	<400> 24	
10	accggcacag acatgaag	18
	<210> 25	
	<211> 26	
	<211> 20 <212> DNA	
15	<213> Artificial Sequence	
	•	
	<220>	
	<223> PCR Primer	
20	<400> 25	
	cactgggtgg gccctggacc ccagca	26
	<210> 26	
	<211> 23	
25	<212> DNA	
	<213> Artificial Sequence	
	<2205	
	<220> <223> PCR Primer	
30	VZZJV FCK FIIMEI	
50	<400> 26	
	gatecaagea cetteacett eet	23
	<210> 27	
35	<211> 19	
	<212> DNA	
	<213> Artificial Sequence	

	<220>	
	<223> PCR Primer	
	<400> 27	
5	gctggctggg gctgcgctc	19
	<210> 28	
	<211> 23	
	<212> DNA	
10	<213> Artificial Sequence	
	(220)	
	<220> <223> PCR Primer	
	(223) FCR FIIMEI	
15	<400> 28	
	gggatccaga tgcccttgta gac	23
	<210> 29	
	<211> 20	
20	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> PCR Primer	
25		
	<400> 29	20
	tgccccatca actgcaccca	20
	<210> 30	
30	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
35	<223> PCR Primer	
	<400> 30	
	atamatatca gacagatace cag	23

	<210> 31	
	<211> 23	
	<212> DNA	
5	<213> Artificial Sequence	
	<220>	
	<223> PCR Primer	
10	<400> 31	
	aggaaggtga aggtgcttgg atc	23
	(010) 20	
	<210> 32	
15	<211> 26 <212> DNA	
13	<213> Artificial Sequence	
	V213/ Altilitial Sequence	
	<220>	
	<223> PCR Primer	
20		
	<400> 32	
	taaggtttgg ccccaaaagt catcag	26
	<210> 33	
25	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
30	<223> PCR Primer	
	<400> 33	
	gtctacaagg gcatctggat ccc	23
35	<210> 34	
J J	<210> 34 <211> 23	
	<211> 23 <212> DNA	
	<213> Artificial Sequence	
	12107 INCITIONAL DOQUENCE	

	<220>	
	<223> PCR Primer	
5	<400> 34	
	ggctgggggc tgcaggtcag ggg	23
	<210> 35	
	<211> 26	
10	<212> DNA	
	<213> Artificial Sequence	
	<220>	
1.5	<223> PCR Primer	
15	<400> 35	
	ctgatgactt ttggggccaa acctta	26
	Cigalyacii iiggggccaa accita	20
	<210> 36	
20	<211> 22	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
25	<223> PCR Primer	
	<400> 36	
	ttctgcggac ttggccttct gg	22
30	<210> 37	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
35	<220>	
-	<223> PCR Primer	
	<400> 37	

	atcccagccc gggagatccc tga	23
	<210> 38	
	<211> 17	
5	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> PCR Primer	
10		
	<400> 38	
	tggcaggttc ccctgga	17
	<210> 39	
15	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
20	<223> PCR Primer	
	<400> 39	
	cccctgacct gcagccccca gcc	23
25	<210> 40	
	<211> 3768	
	<212> DNA	
	<213> Rhesus Monkey	
30	<400> 40	
	atggagetgg eggeetggta eegetggggg etecteeteg eeetettgee eeeeggaget	60
	gcgggcaccc aagtgtgcac cggcacagac atgaagctgc ggctccctgc cagtcccgag	120
	acceaectgg acatgeteeg ceaectetae eagggetgee aggtggtgea gggtaacetg	180
	gaactcacct acctgcccac caatgccage ctctccttcc tgcaggatat ccaggaggtg	240
35	cagggctacg tgctcatcgc tcacaaccaa gtgaggcagg tcccactgca gaggctgcgg	300
	attgtgcgag gcacccagct ctttgaggac aactatgccc tggccgtgct agacaatgga	360
	gacccgctga acaataccac ccctgtcaca ggggcctccc caggaggcct gcgggagctg	420
	cagcttcgaa gcctcacaga gatcttgaaa ggaggggtct tgatccagcg gaacccccag	480

aaaccttacg atgggatccc agcccgggag atccctgacc tgctggaaaa gggggagcgg 2820 ctgccccagc cccccatctg caccattgat gtctacatga tcatggtcaa atgttggatg 2880 attgactctg aatgtcggcc gagattccgg gagttggtgt cggaattctc ccgcatggcc 2940 agggacccc agggctttgt ggtcatccag aatgaggact tgggcccagc cagtcccttg 3000 5 qacagcacct tctaccgctc actgctggag gacgatgaca tgggggacct ggtggatgct 3060 gaggagtate tggtacecca geagggette ttetgteeag accetgeece gggeactggg 3120 qqcatqqtcc accacaggca ccgcagctca tctaccagga gtggcggtgg ggacctgacg 3180 ctagggctgg agccctctga agaggaggcc cccaggtctc cacrggcacc ctccgaaggg 3240 actggctctg atgtatttga tggtgaccta ggaatggggg cagccaaggg gctgcaaagc 3300 10 ctccccgcac atgaccccag ccctctacag cggtacagtg aggaccccac ggtacccctg 3360 ccttctgaga ctgacggcta cgttgccccc ctgacctgca gyccccagcc cgaatatgtg 3420 aaccagccag atgttcggcc acagccccct tcgccccaag agggccctct gtctcctgcc 3480 cgacctactg gtgccactct ggaaaggccc aagactctct ccccagggaa gaatggggtt 3540 gtcaaagacg tttttgcctt tgggggtgct gtggagaacc ccgagtactt ggcaccccgg 3600 ggaggagetg ecceteagee ceacetteet eetgeettea geceageett egacaacete 3660 15 tattactggg accaggaccc atcagagcgg ggggctccac ctagcacctt caaagggaca 3720 3768 cctacggcag agaacccaga gtacctgggt ctggacgtgc cagtgtga

<210> 41

20 <211> 1255

<212> PRT

<213> Rhesus Monkey

<220>

25 <221> VARIANT

<222> 517, 647, 1075

<223> Xaa = Any Amino Acid

<400> 41

30 Met Glu Leu Ala Ala Trp Tyr Arg Trp Gly Leu Leu Leu Ala Leu Leu

1 5 10 15

Pro Pro Gly Ala Ala Gly Thr Gln Val Cys Thr Gly Thr Asp Met Lys
20 25 30

Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His

35 35 40 45

Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr
50 55 60

Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val

<211> 3768

<212> DNA

<213> Rhesus Monkey

5 <400> 42

	atggagctgg	cggcctggta	ccgctggggg	ctcctcctcg	ccctcttgcc	ccccggagct	60
	gcgggcaccc	aagtgtgcac	cggcacagac	atgaagctgc	ggctccctgc	cagtcccgag	120
	acccacctgg	acatgctccg	ccacctctac	cagggctgcc	aggtggtgca	gggtaacctg	180
	gaactcacct	acctgcccac	caatgccagc	ctctccttcc	tgcaggatat	ccaggaggtg	240
10	cagggctacg	tgctcatcgc	tcacaaccaa	gtgaggcagg	tcccactgca	gaggctgcgg	300
	attgtgcgag	gcacccagct	ctttgaggac	aactatgccc	tggccgtgct	agacaatgga	360
	gacctgctga	acaataccac	ccctgtcaca	ggggcctccc	caggaggcct	gcgggagctg	420
	cagcttcgaa	gcctcacaga	gatcttgaaa	ggaggggtct	tgatccagcg	gaacccccag	480
	ctctgctacc	aggacacgat	tttgtggaag	gacatcttcc	ataagaacaa	ccagctggct	540
15	ctcacactga	tcgacaccaa	ccgctctcgg	gcctgccacc	cctgttctcc	agtgtgtaag	600
	ggctcccgct	gctggggaga	gagttctgag	gattgtcaga	gcctgacgcg	cactgtctgt	660
	gccggtggct	gtgcccgctg	caaggggcca	ctgcccactg	actgctgcca	tgagcagtgt	720
	gctgccggct	gcacgggccc	caagcactct	gactgcctgg	cctgcctcca	cttcaaccac	780
	agcggcatct	gtgaactgca	ctgcccagcc	ctggtcacct	acaacacaga	cacctttgag	840
20	tccatgccca	accccgaggg	ccggtataca	ttcggcgcca	gctgtgtgac	tgcctgtccc	900
	tacaactacc	tttctacgga	cgtgggatcc	tgcaccctcg	tctgccccct	gcacaaccaa	960
	gaggtgacag	cggaggacgg	aacacagcga	tgtgagaagt	gcagcaagcc	ctgtgcccga	1020
	gtgtgctatg	gtctgggcat	ggagcacttg	cgagaggtga	gggcggtcac	cagtgccaat	1080
	atccaggagt	ttgctggctg	caagaagatc	tttgggagct	tggcatttct	gccagagagc	1140
25	tttgatggcg	acccagcctc	caacaccgcc	ccgcttcagc	cggagcagct	ccgagtgttt	1200
	gagactctgg	aagagatcac	aggttaccta	tacatctcag	catggccaga	cagcctgcct	1260
	gaccttagcg	tcctccagaa	cctgcaagta	atccggggac	gaattctgca	caatggcgcc	1320
	tactcactga	ccctgcaagg	gctgggcatc	agctggctgg	ggctgcgctc	gctgagggaa	1380
	ctgggcagtg	gactggccct	catccaccat	aacacccgcc	tctgctttgt	gcacacggtg	1440
30	ccctgggacc	agctcttccg	gaacccgcac	caagccctgc	tccacactgc	caaccggcca	1500
	gaggacgagt	gtgtgggcga	gggcctggcc	tgccaccagc	tgtgcgcccg	agggcactgc	1560
	tggggtccag	ggcccaccca	gtgtgtcaac	tgcagccagt	tccttcgggg	ccaggagtgc	1620
	gtggaggaat	gccgagtact	gcaggggctc	cccagggagt	atgtgaatgc	cagacactgt	1680
	ttgccgtgcc	accctgagtg	tcagccccag	aatggctcag	tgacatgttt	tggaccggag	1740
35	gctgaccagt	gtgtggcctg	tgcccactat	aaggaccctc	ccttctgcgt	ggcccgctgc	1800
	cccagcggtg	tgaaacctga	cctctcctac	atgcccatct	ggaagtttcc	agatgaggag	1860
	ggcacgtgcc	agtcttgccc	catcaactgc	acccactcct	gtgtggacct	ggatgacaag	1920
	ggctgccccg	ccgagcagag	agccagccct	ctgacgtcca	tcatctctgc	tgtggtgggc	1980


```
attetgetgg tegtggtett gggggtggte tttggaatee teateaageg aeggeageag 2040
     aagatccgga agtacacgat gcggaggctg ctgcaggaaa cggagctggt ggagccactg 2100
    acaccgagtg gagcgatgcc caaccaggcg cagatgcgga tcctgaaaga gacggagctg 2160
    aggaaggtga aggtgcttgg atctggagct tttggcacag tctacaaggg catctggatc 2220
5
    cctgatgggg agaatgtgaa aattccagtg gccatcaaag tgttgaggga aaacacatcc 2280
    cccaaagcca acaaagaaat cttagacgaa gcatatgtga tggctggtgt gggctcccca 2340
     tatgtetece geeteetggg catetgeetg acatecaegg tgeagetggt gacaeagett 2400
    atgecetatg getgeetett agaceatgte egagaaaaee geggaegeet gggeteeeag 2460
    gacctgctga actggtgtat gcagattgcc aaggggatga gctacctgga ggatgtgcgg 2520
10
    ctcgtacaca gggacttggc tgctcggaac gtgctggtca agagtcccaa ccatgtcaaa 2580
    attacagact ttgggctggc tcggctgctg gacattgacg agacagagta ccatgcagat 2640
    gggggcaagg tgcccatcaa gtggatggcg ctggagtcca ttctccgacg gcggttcacc 2700
    caccagagtg atgtgtggag ttatggtgtg actgtgtggg agctgatgac tttttggggcc 2760
    aaaccttacg atgggatece ageeegggag atecetgace tgetggaaaa gggggagegg 2820
15
    ctgccccagc ccccatctg caccattgat gtctacatga tcatggtcaa atgttggatg 2880
    attgactctg aatgtcggcc gagattccgg gagttggtgt cggaattctc ccgcatggcc 2940
    agggaccccc agcgctttgt ggtcatccag aatgaggact tgggcccagc cagtcccttg 3000
    gacageacet tetacegete aetgetggag gacgatgaca tgggggacet ggtggatget 3060
    gaggagtate tggtacecca geagggette ttetgteeag accetgeece gggeactggg 3120
20
    ggcatggtcc accacaggca ccgcagctca tctaccagga gtggcggtgg ggacctgacg 3180
    ctagggctgg agccctctga agaggaggcc cccaggtctc cacgggcacc ctccgaaggg 3240
    actggctctg atgtatttga tggtgaccta ggaatggggg cagccaaggg gctgcaaagc 3300
    ctccccgcac atgaccccag ccctctacag cggtacagtg aggaccccac ggtacccctg 3360
    cettetgaga etgaeggeta egttgeecee etgaeetgea gteeceagee egaatatgtg 3420
25
    aaccagccag atgttcggcc acagccccct tcgccccaag agggccctct gtctcctgcc 3480
    cgacctactg gtgccactct ggaaaggccc aagactctct ccccagggaa gaatggggtt 3540
    gtcaaagacg tttttgcctt tgggggtgct gtggagaacc ccgagtactt ggcaccccgg 3600
    ggaggagetg ecceteagee ceacetteet eetgeettea geecageett egacaacete 3660
    tattactggg accaggaccc atcagagcgg ggggctccac ctagcacctt caaagggaca 3720
30
                                                                       3768
    cctacggcag agaacccaga gtacctgggt ctggacgtgc cagtgtga
```

<210> 43

<211> 3768

<212> DNA

35 <213> Rhesus Monkey

<400> 43

atggagetgg eggeetggta eegetggggg etecteeteg eeetettgee eeeeggaget 60

gtcaaagacg tttttgeett tgggggtget gtggagaace eegagtaett ggeaceeegg 3600 ggaggagetg eeeeteagee eeacetteet eetgeettea geeeageett egacaacete 3660 tattaetggg accaggace ateagagegg ggggeteeae etageacett eaaagggaca 3720

3768

cctacggcag agaacccaga gtacctgggt ctggacgtgc cagtgtga