Decision Tree: Income Prediction

In this lab, we will build a decision tree to predict the income of a given population, which is labelled as <=50K and >50K. The attributes (predictors) are age, working class type, marital status, gender, race etc.

In the following sections, we'll:

- · clean and prepare the data,
- build a decision tree with default hyperparameters,
- · understand all the hyperparameters that we can tune, and finally
- choose the optimal hyperparameters using grid search cross-validation.

df = pd.read_csv('adult_dataset.csv')

Understanding and Cleaning the Data

In [2]: # Importing the required libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

In [3]: # To ignore warnings
import warnings
warnings.filterwarnings("ignore")
In [4]: # Reading the csv file and putting it into 'df' object.
```

In [5]: # Let's understand the type of values in each column of our dataframe 'df'. df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):
                  32561 non-null int64
workclass
                  32561 non-null object
                  32561 non-null int64
fnlwgt
education
                  32561 non-null object
                  32561 non-null int64
education.num
                  32561 non-null object
marital.status
                  32561 non-null object
occupation
relationship
                  32561 non-null object
                  32561 non-null object
race
                  32561 non-null object
sex
                  32561 non-null int64
capital.gain
capital.loss
                  32561 non-null int64
                  32561 non-null int64
hours.per.week
native.country
                  32561 non-null object
income
                  32561 non-null object
dtypes: int64(6), object(9)
```

memory usage: 3.7+ MB

In [6]: # Let's understand the data, how it look like. df.head()

Out[6]:

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	relatio
0	90	?	77053	HS-grad	9	Widowed	?	Not-in-f
1	82	Private	132870	HS-grad	9	Widowed	Exec- managerial	Not-in-f
2	66	?	186061	Some- college	10	Widowed	?	Unmarr
3	54	Private	140359	7th-8th	4	Divorced	Machine- op-inspct	Unmarr
4	41	Private	264663	Some- college	10	Separated	Prof- specialty	Own-ch

You can observe that the columns workclass and occupation consist of missing values which are represented as '?' in the dataframe.

On looking a bit more closely, you will also find that whenever workclass is having a missing value, occupation is also missing in that row. Let's check how may rows are missing.

```
In [7]: # rows with missing values represented as'?'.
df_1 = df[df.workclass == '?']
df_1
```

Out[7]:

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	re
0	90	?	77053	HS-grad	9	Widowed	?	No
2	66	?	186061	Some- college	10	Widowed	?	Ur
14	51	?	172175	Doctorate	16	Never-married	?	No
24	61	?	135285	HS-grad	9	Married-civ- spouse	?	Нι
44	71	?	100820	HS-grad	9	Married-civ- spouse	?	Нι
48	68	?	192052	Some- college	10	Married-civ- spouse	?	W
49	67	?	174995	Some- college	10	Married-civ- spouse	?	Нι
76	41	?	27187	Assoc-voc	11	Married-civ- spouse	?	Нι
114	72	?	118902	Doctorate	16	Married-civ- spouse	?	Нι
133	65	?	240857	Bachelors	13	Married-civ- spouse	?	Нι
136	68	?	257269	Bachelors	13	Married-civ- spouse	?	Нι
153	43	?	152569	Assoc-voc	11	Widowed	?	No
202	65	?	143118	HS-grad	9	Widowed	?	Ur
213	63	?	234083	HS-grad	9	Divorced	?	No
227	63	?	83043	Bachelors	13	Married-civ- spouse	?	Нι
230	66	?	177351	Bachelors	13	Married-civ- spouse	?	Нι
237	60	?	141221	Bachelors	13	Married-civ- spouse	?	Нι
291	26	?	131777	Bachelors	13	Married-civ- spouse	?	Нι
301	19	?	241616	HS-grad	9	Never-married	?	Ur
310	55	?	123382	HS-grad	9	Separated	?	No
320	21	?	40052	Some- college	10	Never-married	?	No

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	re
511	26	?	370727	Bachelors	13	Married-civ- spouse	?	W
646	31	?	85077	Bachelors	13	Married-civ- spouse	?	w
691	61	?	202106	HS-grad	9	Married-civ- spouse	?	Н
713	50	?	204577	Bachelors	13	Married-civ- spouse	?	Нι
739	28	?	123147	Some- college	10	Married-civ- spouse	?	W
822	42	?	212206	Masters	14	Married-civ- spouse	?	W
946	60	?	191118	HS-grad	9	Married-civ- spouse	?	Нι
987	66	?	213149	Some- college	10	Married-civ- spouse	?	Ηι
994	20	?	114746	11th	7	Married- spouse-absent	?	Oı
32084	62	?	178764	HS-grad	9	Married-civ- spouse	?	Нι
32103	24	?	108495	HS-grad	9	Never-married	?	O۱
32121	26	?	375313	Some- college	10	Never-married	?	O
32128	18	?	97474	HS-grad	9	Never-married	?	O۱
32131	65	?	192825	7th-8th	4	Married-civ- spouse	?	Нι
32133	27	?	147638	Masters	14	Never-married	?	No
32138	21	?	155697	9th	5	Never-married	?	O۱
32141	51	?	43909	HS-grad	9	Divorced	?	Ur
32146	21	?	78374	HS-grad	9	Never-married	?	Ot rel
32149	62	?	263374	Assoc-voc	11	Married-civ- spouse	?	Н
32158	34	?	330301	7th-8th	4	Separated	?	Ur

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	re
32232	19	?	204868	HS-grad	9	Married-civ- spouse	?	Wi
32243	49	?	113913	HS-grad	9	Married-civ- spouse	?	Wi
32247	72	?	96867	5th-6th	3	Widowed	?	No
32303	20	?	99891	Some- college	10	Never-married	?	Oı
32319	59	?	120617	Some- college	10	Never-married	?	No
32335	21	?	205939	Some- college	10	Never-married	?	Ov
32341	63	?	126540	Some- college	10	Divorced	?	No
32359	18	?	156608	11th	7	Never-married	?	O١
32366	66	?	93318	HS-grad	9	Widowed	?	Ur
32440	20	?	203992	HS-grad	9	Never-married	?	O١
32483	49	?	114648	12th	8	Divorced	?	Ot rel
32496	60	?	134152	9th	5	Divorced	?	No
32500	82	?	403910	HS-grad	9	Never-married	?	No
32528	81	?	120478	Assoc-voc	11	Divorced	?	Ur
32533	35	?	320084	Bachelors	13	Married-civ- spouse	?	Wi
32534	30	?	33811	Bachelors	13	Never-married	?	No
32541	71	?	287372	Doctorate	16	Married-civ- spouse	?	Нι
32543	41	?	202822	HS-grad	9	Separated	?	No
32544	72	?	129912	HS-grad	9	Married-civ- spouse	?	Нι

1836 rows × 15 columns

Now we can check the number of rows in df_1.

```
In [8]: df_1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1836 entries, 0 to 32544
Data columns (total 15 columns):
                   1836 non-null int64
age
workclass
fnlwgt
education
                   1836 non-null object
                  1836 non-null int64
                  1836 non-null object
education.num
                  1836 non-null int64
marital.status
                   1836 non-null object
occupation
relationship
                  1836 non-null object
                  1836 non-null object
                   1836 non-null object
race
                   1836 non-null object
sex
capital.gain
capital.loss
                   1836 non-null int64
                  1836 non-null int64
hours.per.week
                  1836 non-null int64
native.country
                  1836 non-null object
                  1836 non-null object
income
dtypes: int64(6), object(9)
memory usage: 229.5+ KB
```

There are 1836 rows with missing values, which is about 5% of the total data. We choose to simply drop these rows.

```
In [9]: # dropping the rows having missing values in workclass
df = df[df['workclass'] != '?']
df.head()
```

Out[9]: _____

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	relatio
1	82	Private	132870	HS-grad	9	Widowed	Exec- managerial	Not-in-f
3	54	Private	140359	7th-8th	4	Divorced	Machine- op-inspct	Unmarr
4	41	Private	264663	Some- college	10	Separated	Prof- specialty	Own-ch
5	34	Private	216864	HS-grad	9	Divorced	Other- service	Unmarr
6	38	Private	150601	10th	6	Separated	Adm- clerical	Unmarr

Let's see whether any other columns contain a "?". Since "?" is a string, we can apply this check only on the categorical columns.

```
In [10]: # select all categorical variables
         df categorical = df.select dtypes(include=['object'])
         # checking whether any other columns contain a "?"
         df categorical.apply(lambda x: x=="?", axis=0).sum()
Out[10]: workclass
                              0
         education
                              0
         marital.status
                              0
         occupation
                              7
         relationship
                              0
         race
                              0
         sex
                              0
         native.country
                            556
         income
         dtype: int64
```

Thus, the columns occupation and native.country contain some "?"s. Let's get rid of them.

```
In [11]: # dropping the "?"s
    df = df[df['occupation'] != '?']
    df = df[df['native.country'] != '?']
```

Now we have a clean dataframe which is ready for model building.

```
In [12]: # clean dataframe
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 30162 entries, 1 to 32560
         Data columns (total 15 columns):
         age
                           30162 non-null int64
         workclass
                           30162 non-null object
                           30162 non-null int64
         fnlwgt
         education
                           30162 non-null object
         education.num
                           30162 non-null int64
                           30162 non-null object
         marital.status
                           30162 non-null object
         occupation
         relationship
                           30162 non-null object
                           30162 non-null object
         race
                           30162 non-null object
         sex
         capital.gain
                           30162 non-null int64
                           30162 non-null int64
         capital.loss
         hours.per.week
                           30162 non-null int64
         native.country
                           30162 non-null object
         income
                           30162 non-null object
         dtypes: int64(6), object(9)
         memory usage: 3.7+ MB
```

Data Preparation

There are a number of preprocessing steps we need to do before building the model.

Firstly, note that we have both categorical and numeric features as predictors. In previous models such as linear and logistic regression, we had created **dummy variables** for categorical variables, since those models (being mathematical equations) can process only numeric variables.

All that is not required in decision trees, since they can process categorical variables easily. However, we still need to **encode the categorical variables** into a standard format so that sklearn can understand them and build the tree. We'll do that using the LabelEncoder() class, which comes with sklearn.preprocessing.

You can read the documentation of LabelEncoder http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html).

```
In [13]: from sklearn import preprocessing

# encode categorical variables using Label Encoder

# select all categorical variables
df_categorical = df.select_dtypes(include=['object'])
df_categorical.head()
```

Out[13]:

	workclass	education	marital.status	occupation	relationship	race	sex	native.c
1	Private	HS-grad	Widowed	Exec- managerial	Not-in-family	White	Female	United-S
3	Private	7th-8th	Divorced	Machine- op-inspct	Unmarried	White	Female	United-S
4	Private	Some- college	Separated	Prof- specialty	Own-child	White	Female	United-S
5	Private	HS-grad	Divorced	Other- service	Unmarried	White	Female	United-S
6	Private	10th	Separated	Adm- clerical	Unmarried	White	Male	United-S

```
In [14]: # apply Label encoder to df_categorical
le = preprocessing.LabelEncoder()
df_categorical = df_categorical.apply(le.fit_transform)
df_categorical.head()
```

Out[14]:

	workclass	education	marital.status	occupation	relationship	race	sex	native.count
1	2	11	6	3	1	4	0	38
3	2	5	0	6	4	4	0	38
4	2	15	5	9	3	4	0	38
5	2	11	0	7	4	4	0	38
6	2	0	5	0	4	4	1	38

```
In [15]: # concat df_categorical with original df
df = df.drop(df_categorical.columns, axis=1)
df = pd.concat([df, df_categorical], axis=1)
df.head()
```

Out[15]:

	age	fnlwgt	education.num	capital.gain	capital.loss	hours.per.week	workclass	edı
1	82	132870	9	0	4356	18	2	11
3	54	140359	4	0	3900	40	2	5
4	41	264663	10	0	3900	40	2	15
5	34	216864	9	0	3770	45	2	11
6	38	150601	6	0	3770	40	2	0

```
In [16]: # Look at column types
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 30162 entries, 1 to 32560
         Data columns (total 15 columns):
                           30162 non-null int64
         age
         fnlwgt
                           30162 non-null int64
         education.num
                           30162 non-null int64
         capital.gain
                           30162 non-null int64
         capital.loss
                           30162 non-null int64
         hours.per.week
                           30162 non-null int64
         workclass
                           30162 non-null int64
         education
                           30162 non-null int64
                           30162 non-null int64
         marital.status
         occupation
                           30162 non-null int64
                           30162 non-null int64
         relationship
                           30162 non-null int64
         race
                           30162 non-null int64
         sex
                           30162 non-null int64
         native.country
         income
                           30162 non-null int64
         dtypes: int64(15)
         memory usage: 3.7 MB
In [17]: # convert target variable income to categorical
         df['income'] = df['income'].astype('category')
```

Now all the categorical variables are suitably encoded. Let's build the model.

Model Building and Evaluation

Let's first build a decision tree with default hyperparameters. Then we'll use cross-validation to tune them.

```
In [18]: # Importing train-test-split
from sklearn.model_selection import train_test_split

In [19]: # Putting feature variable to X
X = df.drop('income',axis=1)
# Putting response variable to y
y = df['income']
```

Out[20]:

	age	fnlwgt	education.num	capital.gain	capital.loss	hours.per.week	workclass
24351	42	289636	9	0	0	46	2
15626	37	52465	9	0	0	40	1
4347	38	125933	14	0	0	40	0
23972	44	183829	13	0	0	38	5
26843	35	198841	11	0	0	35	2

```
In [21]: # Importing decision tree classifier from sklearn library
from sklearn.tree import DecisionTreeClassifier

# Fitting the decision tree with default hyperparameters, apart from
# max_depth which is 5 so that we can plot and read the tree.
dt default = DecisionTreeClassifier(max depth=5)
```

In [24]: # Let's check the evaluation metrics of our default model

dt_default.fit(X_train, y_train)

Importing classification report and confusion matrix from sklearn metrics from sklearn.metrics import classification_report, confusion_matrix, accuracy_score

```
# Making predictions
y_pred_default = dt_default.predict(X_test)
```

Printing classification report
print(classification_report(y_test, y_pred_default))

support	f1-score	recall	precision	
6867	0.91	0.95	0.86	0
2182	0.63	0.52	0.78	1
9049	0.84	0.85	0.84	avg / total

```
In [25]: # Printing confusion matrix and accuracy
print(confusion_matrix(y_test,y_pred_default))
print(accuracy_score(y_test,y_pred_default))

[[6553 314]
    [1039 1143]]
0.850480716101
```

Plotting the Decision Tree

To visualise decision trees in python, you need to install certain external libraries. You can read about the process in detail here: http://scikit-learn.org/stable/modules/tree.html (http://scikit-learn.org/stable/modules/tree.html)

We need the graphviz library to plot a tree.

```
In [26]: # Importing required packages for visualization
          from IPython.display import Image
          from sklearn.externals.six import StringIO
          from sklearn.tree import export_graphviz
          import pydot, graphviz
          # Putting features
          features = list(df.columns[1:])
          features
Out[26]: ['fnlwgt',
           'education.num',
           'capital.gain',
           'capital.loss',
           'hours.per.week',
           'workclass',
           'education',
           'marital.status',
           'occupation',
           'relationship',
           'race',
           'sex',
           'native.country',
           'income']
```

Note:

Python requires library pydot and an external software graphviz to visualize the decision tree. If you are on wondows, you'll need to specify the path for the pydot library to access dot file from graphviz.

Please read the downloadable instructions to install graphviz. For Mac users, one way is to:

- Install the python graphviz module: conda install python-graphviz
- Then install the Graphviz software on Mac, you do this using homebrew:
 - Install homebrew: https://docs.brew.sh/lnstallation)
 - brew install graphviz

Hyperparameter Tuning

The default tree is quite complex, and we need to simplify it by tuning the hyperparameters.

First, let's understand the parameters in a decision tree. You can read this in the documentation using help(DecisionTreeClassifier).

- **criterion** (Gini/IG or entropy): It defines the function to measure the quality of a split. Sklearn supports "gini" criteria for Gini Index & "entropy" for Information Gain. By default, it takes the value "gini".
- **splitter**: It defines the strategy to choose the split at each node. Supports "best" value to choose the best split & "random" to choose the best random split. By default, it takes "best" value.
- max_features: It defines the no. of features to consider when looking for the best split. We can input integer, float, string & None value.
 - If an integer is inputted then it considers that value as max features at each split.
 - If float value is taken then it shows the percentage of features at each split.
 - If "auto" or "sqrt" is taken then max features=sqrt(n features).
 - If "log2" is taken then max features= log2(n features).
 - If None, then max_features=n_features. By default, it takes "None" value.
- max_depth: The max_depth parameter denotes maximum depth of the tree. It can take any integer value or None. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples split samples. By default, it takes "None" value.
- min_samples_split: This tells above the minimum no. of samples reqd. to split an internal node. If an integer value is taken then consider min_samples_split as the minimum no. If float, then it shows percentage. By default, it takes "2" value.
- min_samples_leaf: The minimum number of samples required to be at a leaf node. If an integer value
 is taken then consider -min_samples_leaf as the minimum no. If float, then it shows percentage. By
 default, it takes "1" value.
- max_leaf_nodes: It defines the maximum number of possible leaf nodes. If None then it takes an unlimited number of leaf nodes. By default, it takes "None" value.
- **min_impurity_split**: It defines the threshold for early stopping tree growth. A node will split if its impurity is above the threshold otherwise it is a leaf.

Tuning max_depth

Let's first try to find the optimum values for max_depth and understand how the value of max_depth affects the decision tree.

Here, we are creating a dataframe with max_depth in range 1 to 80 and checking the accuracy score corresponding to each max_depth.

To reiterate, a grid search scheme consists of:

```
an estimator (classifier such as SVC() or decision tree)
a parameter space
a method for searching or sampling candidates (optional)
a cross-validation scheme, and
a score function (accuracy, roc_auc etc.)
```

In [29]: # scores of GridSearch CV
scores = tree.cv_results_
pd.DataFrame(scores).head()

Out[29]:

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_de
0	0.011095	0.001951	0.747738	0.747738	1
1	0.014384	0.001419	0.819969	0.819969	2
2	0.019318	0.001629	0.834273	0.834510	3
3	0.027667	0.001569	0.840193	0.842088	4
4	0.036721	0.002027	0.843888	0.846386	5

5 rows × 21 columns

Now let's visualize how train and test score changes with max_depth.

You can see that as we increase the value of max_depth, both training and test score increase till about max-depth = 10, after which the test score gradually reduces. Note that the scores are average accuracies across the 5-folds.

Thus, it is clear that the model is overfitting the training data if the max_depth is too high. Next, let's see how the model behaves with other hyperparameters.

Tuning min_samples_leaf

The hyperparameter min_samples_leaf indicates the minimum number of samples required to be at a leaf.

So if the values of min_samples_leaf is less, say 5, then the will be constructed even if a leaf has 5, 6 etc. observations (and is likely to overfit).

Let's see what will be the optimum value for min samples leaf.

```
In [31]: # GridSearchCV to find optimal max depth
         from sklearn.model selection import KFold
         from sklearn.model selection import GridSearchCV
         # specify number of folds for k-fold CV
         n_folds = 5
         # parameters to build the model on
         parameters = {'min_samples_leaf': range(5, 200, 20)}
         # instantiate the model
         dtree = DecisionTreeClassifier(criterion = "gini",
                                         random state = 100)
         # fit tree on training data
         tree = GridSearchCV(dtree, parameters,
                             cv=n folds,
                             scoring="accuracy")
         tree.fit(X_train, y_train)
Out[31]: GridSearchCV(cv=5, error score='raise',
                estimator=DecisionTreeClassifier(class weight=None, criterion='gini',
         max depth=None,
                     max features=None, max leaf nodes=None,
                     min impurity decrease=0.0, min impurity split=None,
                     min_samples_leaf=1, min_samples_split=2,
                     min weight fraction leaf=0.0, presort=False, random state=100,
                     splitter='best'),
                fit params=None, iid=True, n jobs=1,
                param_grid={'min_samples_leaf': range(5, 200, 20)},
                pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
                scoring='accuracy', verbose=0)
```

```
In [32]: # scores of GridSearch CV
scores = tree.cv_results_
pd.DataFrame(scores).head()
```

Out[32]:

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_min_sa
0	0.076940	0.002072	0.823663	0.913785	5
1	0.070042	0.002049	0.844172	0.869180	25
2	0.055783	0.001711	0.848529	0.861554	45
3	0.061370	0.002087	0.846114	0.857067	65
4	0.051622	0.002022	0.845451	0.854320	85

5 rows × 21 columns

You can see that at low values of min_samples_leaf, the tree gets a bit overfitted. At values > 100, however, the model becomes more stable and the training and test accuracy start to converge.

Tuning min_samples_split

The hyperparameter **min_samples_split** is the minimum no. of samples required to split an internal node. Its default value is 2, which means that even if a node is having 2 samples it can be furthur divided into leaf nodes.

```
In [34]: # GridSearchCV to find optimal min samples split
         from sklearn.model selection import KFold
         from sklearn.model selection import GridSearchCV
         # specify number of folds for k-fold CV
         n folds = 5
         # parameters to build the model on
         parameters = {'min_samples_split': range(5, 200, 20)}
         # instantiate the model
         dtree = DecisionTreeClassifier(criterion = "gini",
                                         random state = 100)
         # fit tree on training data
         tree = GridSearchCV(dtree, parameters,
                              cv=n folds,
                             scoring="accuracy")
         tree.fit(X_train, y_train)
Out[34]: GridSearchCV(cv=5, error_score='raise',
                estimator=DecisionTreeClassifier(class weight=None, criterion='gini',
         max depth=None,
                     max features=None, max leaf nodes=None,
                     min impurity decrease=0.0, min impurity split=None,
                     min samples leaf=1, min samples split=2,
                     min_weight_fraction_leaf=0.0, presort=False, random_state=100,
                     splitter='best'),
                fit params=None, iid=True, n jobs=1,
                param grid={'min samples split': range(5, 200, 20)},
                pre dispatch='2*n jobs', refit=True, return train score='warn',
                scoring='accuracy', verbose=0)
```

```
In [35]: # scores of GridSearch CV
scores = tree.cv_results_
pd.DataFrame(scores).head()
```

Out[35]:

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_min_sa
0	0.083918	0.001904	0.811775	0.969865	5
1	0.087892	0.002155	0.826742	0.907569	25
2	0.079704	0.002158	0.834841	0.891062	45
3	0.084147	0.002347	0.840714	0.882928	65
4	0.078208	0.002643	0.844645	0.877919	85

5 rows × 21 columns

This shows that as you increase the min samples split, the tree overfits lesser since the model is less complex.

Grid Search to Find Optimal Hyperparameters

We can now use GridSearchCV to find multiple optimal hyperparameters together. Note that this time, we'll also specify the criterion (gini/entropy or IG).

```
In [37]: # Create the parameter grid
         param_grid = {
              'max depth': range(5, 15, 5),
              'min samples leaf': range(50, 150, 50),
              'min_samples_split': range(50, 150, 50),
              'criterion': ["entropy", "gini"]
         }
         n folds = 5
         # Instantiate the grid search model
         dtree = DecisionTreeClassifier()
         grid search = GridSearchCV(estimator = dtree, param grid = param grid,
                                    cv = n folds, verbose = 1)
         # Fit the grid search to the data
         grid_search.fit(X_train,y_train)
         Fitting 5 folds for each of 16 candidates, totalling 80 fits
         [Parallel(n jobs=1)]: Done 80 out of 80 | elapsed:
                                                                  4.3s finished
Out[37]: GridSearchCV(cv=5, error score='raise',
                estimator=DecisionTreeClassifier(class weight=None, criterion='gini',
         max depth=None,
                     max features=None, max leaf nodes=None,
                     min_impurity_decrease=0.0, min_impurity_split=None,
                     min samples leaf=1, min samples split=2,
                     min weight fraction leaf=0.0, presort=False, random state=None,
                     splitter='best'),
                fit params=None, iid=True, n jobs=1,
                param_grid={'criterion': ['entropy', 'gini'], 'min_samples_split': ran
         ge(50, 150, 50), 'min samples leaf': range(50, 150, 50), 'max depth': range
         (5, 15, 5)},
                pre dispatch='2*n jobs', refit=True, return train score='warn',
                scoring=None, verbose=1)
```

```
In [38]: # cv results
    cv_results = pd.DataFrame(grid_search.cv_results_)
    cv_results
```

Out[38]:

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_criteri
0	0.038060	0.001683	0.841804	0.843296	entropy
1	0.036670	0.001513	0.841804	0.843296	entropy
2	0.042220	0.002639	0.841614	0.843142	entropy
3	0.049321	0.001518	0.841614	0.843142	entropy
4	0.062581	0.001753	0.849903	0.854083	entropy
5	0.058499	0.001862	0.849903	0.854083	entropy
6	0.053737	0.001614	0.848956	0.851312	entropy
7	0.058195	0.002408	0.848956	0.851312	entropy
8	0.028285	0.001407	0.844409	0.846055	gini
9	0.030749	0.001483	0.844409	0.846055	gini
10	0.029885	0.001636	0.843177	0.845143	gini
11	0.029095	0.001720	0.843177	0.845143	gini
12	0.059498	0.002442	0.851466	0.855563	gini

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_criteri
13	0.049704	0.001789	0.851466	0.855563	gini
14	0.048904	0.001591	0.846493	0.851336	gini
15	0.058167	0.002185	0.846493	0.851336	gini

16 rows × 24 columns

Running the model with best parameters obtained from grid search.

```
In [41]: # accuracy score
    clf_gini.score(X_test,y_test)

Out[41]: 0.85092275389545802

In [42]: # plotting the tree
    dot_data = StringIO()
    export_graphviz(clf_gini, out_file=dot_data,feature_names=features,filled=True
    ,rounded=True)
    graph = pydot.graph_from_dot_data(dot_data.getvalue())
    Image(graph[0].create_png())

Out[42]:
```

You can see that this tree is too complex to understand. Let's try reducing the max_depth and see how the tree looks.

```
In [43]: # tree with max depth = 3
           clf_gini = DecisionTreeClassifier(criterion = "gini",
                                                  random state = 100,
                                                  max depth=3,
                                                  min samples leaf=50,
                                                  min samples split=50)
           clf_gini.fit(X_train, y_train)
           print(clf_gini.score(X_test,y_test))
          0.839319261797
In [44]:
          # plotting tree with max_depth=3
           dot data = StringIO()
           export_graphviz(clf_gini, out_file=dot_data,feature_names=features,filled=True
           , rounded=True)
           graph = pydot.graph_from_dot_data(dot_data.getvalue())
           Image(graph[0].create_png())
Out[44]:
                                        capital.gain <= 12.5
gini = 0.497
samples = 8825
value = [4768, 4057]
```

gini = 0.43 samples = 2216 value = [693, 1523]

apital.loss <= 5095 gini = 0.387 samples = 2648 value = [694, 1954

capital.loss <= 5095.5 gini = 0.449

gini = 0.425 samples = 5860 value = [4068, 1792] samples = 6177 alue = [4074, 2103]

gini = 0.498 samples = 901 value = [476, 425]

```
In [45]: # classification metrics
    from sklearn.metrics import classification_report,confusion_matrix
    y_pred = clf_gini.predict(X_test)
    print(classification_report(y_test, y_pred))
```

```
precision
                           recall f1-score
                                               support
          0
                  0.85
                             0.96
                                        0.90
                                                  6867
          1
                  0.77
                             0.47
                                        0.59
                                                  2182
                             0.84
                                        0.82
                                                  9049
avg / total
                  0.83
```

```
In [46]: # confusion matrix
print(confusion_matrix(y_test,y_pred))
```

```
[[6564 303]
[1151 1031]]
```