Մեղմ նմուշառություն։ III

Արմենակ Պետրոսյան

«Մաթեմափիկա և Կիրառություններ» 4-րդ ամառային դպրոց

29 \nւնիսի, 2017 թ. Ծաղկաձոր

VANDERBILT VUNIVERSITY

Տարց։

Կարող է արդյո՞ք \vec{x} վեկտորի վերլուծությունը միաժամանակ լինել նոսր երկու տարբեր օրթոնորմալ բազիսներում։

Sung:

Կարող է արդյո՞ք \vec{x} վեկտորի վերլուծությունը միաժամանակ լինել նոսր երկու տարբեր օրթոնորմալ բազիսներում։

Սահմանում։

 $\{ec{e}_1,\ldots,ec{e}_N\}$ և $\{ec{v}_1,\ldots,ec{v}_N\}$ բազիսների համար, նրանց կոհերենտություն կոչվում է հետևյալ թիվը

$$C = \max_{1 \leq i, j \leq N} |\langle e_i, v_j \rangle|$$

Antiniu

Kung:

Կարող է արդյո՞ք \vec{x} վեկտորի վերլուծությունը միաժամանակ լինել նոսր երկու տարբեր օրթոնորմալ բազիսներում։

Սաիմանում։

 $\{ec{e}_1,\ldots,ec{e}_N\}$ և $\{ec{v}_1,\ldots,ec{v}_N\}$ բազիսների համար, նրանց կոհերենտություն կոչվում է հետևյալ թիվը

$$C = \max_{1 \leq i, j \leq N} |\langle e_i, v_j \rangle|$$

Թեորեմ։ (Անորոշության սկզբունք)

Եթե $\vec{x} \in \mathbb{R}^N$ վեկտորի վերլուծությունը r-նոսր է $\{\vec{e}_1,\ldots,\vec{e}_N\}$ բազիսում և s-նոսր է $\{\vec{v}_1,\ldots,\vec{v}_N\}$ բազիսում, ապա

$$s \cdot r \geq \frac{1}{C^2} \ (\Rightarrow s + r \geq \frac{2}{C})$$
:

Antiniu

Tung:

Կարող է արդյո՞ք \vec{x} վեկտորի վերլուծությունը միաժամանակ լինել նոսր երկու տարբեր օրթոնորմալ բազիսներում։

Սահմանում։

 $\{ec{e}_1,\dots,ec{e}_N\}$ և $\{ec{v}_1,\dots,ec{v}_N\}$ բազիսների համար, նրանց կոհերենտություն կոչվում է հետևյալ թիվը

$$C = \max_{1 \leq i,j \leq N} |\langle e_i, v_j \rangle|$$

Թեորեմ։ (Անորոշության սկզբունք)

Брћ $\vec{x} \in \mathbb{R}^N$ վեկտորի վերլուծությունը r-նոսր է $\{\vec{e}_1,\ldots,\vec{e}_N\}$ рифипий и s-նոսր է $\{\vec{v}_1,\ldots,\vec{v}_N\}$ рифипий, шиш

$$s \cdot r \geq \frac{1}{C^2} \ (\Rightarrow s + r \geq \frac{2}{C})$$
:

Donoho, Stark (1988, Ֆուրիեյի ձևափոխության համար), Elad, Bruckstein (2002, ընդհանուր դեպք)

Kung:

Կարող է արդյո՞ք \vec{x} վեկտորի վերլուծությունը միաժամանակ լինել նոսր երկու տարբեր օրթոնորմալ բազիսներում։

Սաիմանում։

 $\{\vec{e_1},\ldots,\vec{e_N}\}$ և $\{\vec{v_1},\ldots,\vec{v_N}\}$ բազիսների համար, նրանց կոհերենտություն կոչվում է հետևյալ թիվը

$$C = \max_{1 \leq i,j \leq N} |\langle e_i, v_j \rangle|$$

Թեորեմ։ (Անորոշության սկզբունք)

Брћ $\vec{x} \in \mathbb{R}^N$ վեկտորի վերլուծությունը r-նոսր է $\{\vec{e}_1,\ldots,\vec{e}_N\}$ рифипий и s-նոսր է $\{\vec{v}_1,\ldots,\vec{v}_N\}$ рифипий, шиш

$$s \cdot r \geq \frac{1}{C^2} \ (\Rightarrow s + r \geq \frac{2}{C})$$
:

- Donoho, Stark (1988, Ֆուրիեյի ձևափոխության համար), Elad, Bruckstein (2002, ընդհանուր դեպք)
- Ֆուրիեյի բազիսի (կամ կոսինուսային) ու սփանդարփ բազիսի համար $C=rac{1}{\sqrt{N}}$:

Քովանդակություն

՝ Տիշեցում երեկվանից

Սեղմ նմուշառության խնդրի վերաձևակերպում

Տրված է $A \vec{x} = \vec{b}$ հավասարումը, որտեղ

Տրված է $A \vec{x} = \vec{b}$ հավասարումը, որտեղ

 $lackbox{ }A ext{-}$ $lackbox{ }M imes N$ sumpply $lackbox{ } (M<< N), \ ec{x} \in \mathbb{R}^N, \ ec{b} \in \mathbb{R}^M$

Տրված է $A \vec{x} = \vec{b}$ հավասարումը, որտեղ

- ightharpoonup Α-m ti M imes N մափրից m ti $(M << N), \ ec{x} \in \mathbb{R}^N, \ ec{b} \in \mathbb{R}^M$
- ▶ x̄-ը r-նոսր վեկտոր է

Տրված է $A \vec{x} = \vec{b}$ հավասարումը, որտեղ

- lackbox A-ն M imes N մափրից է $(M << N), \ ec{x} \in \mathbb{R}^N, \ ec{b} \in \mathbb{R}^M$
- ▶ x̄-ը r-նոսր վեկտոր է

Գփնել \vec{x} -ը։

Տրված է $A\vec{x}=\vec{b}$ հավասարումը, որտեղ

- lackbox A-ն M imes N մափրից է $(M << N), \ ec{x} \in \mathbb{R}^N, \ ec{b} \in \mathbb{R}^M$
- ▶ x̄-ր r-նոսր վեկտոր է

Գփնել \vec{x} -ը։

 Սփացանք նոսր վեկտորը միակ ձևով վերականգնելու համար անհրաժեշտ և բավարար պայմաններ

 Սփացանք նոսր վեկտորը միակ ձևով վերականգնելու համար անհրաժեշտ և բավարար պայմաններ

Թեորեմ։

 ∇ եւրևյալ պայմանները համարժեarrho են

 Սփացանք նոսր վեկտորը միակ ձևով վերականգնելու համար անհրաժեշտ և բավարար պայմաններ

Թեորեմ։

ablaերևյալ պայմանները համարժեabla են

(1) $A: \Sigma_r^N \to \mathbb{R}^M$ hüjhlynhil t,

Սփացանք նոսր վեկտորը միակ ձևով վերականգնելու համար անհրաժեշտ
 և բավարար պայմաններ

Թեորեմ։

^Շեւրևյալ պայմանները համարժեք են

- (1) $A: \Sigma_r^N \to \mathbb{R}^M$ hüjülyihil ξ ,
- (2) $\ker(A) \cap \Sigma_{2r}^{N} = \{0\},\$

Սփացանք նոսր վեկտորը միակ ձևով վերականգնելու համար անհրաժեշտ
 և բավարար պայմաններ

Թեորեմ։

Տետևյալ պայմանները համարժեք են

- (1) $A: \Sigma_r^N \to \mathbb{R}^M$ hüjülyihil ξ ,
- (2) $\ker(A) \cap \Sigma_{2r}^{N} = \{0\},\$
- (3) A-ի ցանկացած 2r սյուն գծորեն անկախ են:

Սփացանք նոսր վեկտորը միակ ձևով վերականգնելու համար անհրաժեշտ
 և բավարար պայմաններ

Թեորեմ։

Տետևյալ պայմանները համարժեք են

- (1) $A: \Sigma_r^N \to \mathbb{R}^M$ hlythyphy t,
- (2) $\ker(A) \cap \Sigma_{2r}^{N} = \{0\},\$
- (3) A-ի ցանկացած 2r սյուն գծորեն անկախ են:
 - Անգամ այն դեպքերում, երբ այդ պայմանները բավարաված էին, պարզունակ լուծումը հաշվողական դեսանկյունից իրագործելի չէ

Սփացանք նոսր վեկտորը միակ ձևով վերականգնելու համար անհրաժեշտ
 և բավարար պայմաններ

Թեորեմ։

Տետևյալ պայմանները համարժեք են

- (1) $A: \Sigma_r^N \to \mathbb{R}^M$ hlythyphy t,
- (2) $\ker(A) \cap \Sigma_{2r}^{N} = \{0\},\$
- (3) A-ի ցանկացած 2r սյուն գծորեն անկախ են:
 - Անգամ այն դեպքերում, երբ այդ պայմանները բավարաված էին, պարզունակ լուծումը հաշվողական փեսանկյունից իրագործելի չէ
 - Ավելին, ընդհանուր դեպքում որևէ օպտիմալ լուծում գտնելու հույս չկա, որովհետև խնդիրը NP բարդ է

Նպափակ

Ընդհանուր դեպքում վերականգնման խելամիտ մեթոդ չկա, բայց միգուցե A-ի վրա (որին մենք ենք կառուցում) լրացուցիչ պայմաններ դնալով հնարավոր լինի գտնել այդպիսի մեթոդ։

Բովանդակություն

Տիշեցում երեկվանից

Մեղմ նմուշառության խնդրի վերաձևակերպումը

∖իշեցում

Սահմանում։

$$q>0$$
 pılh u $ec{x}=egin{pmatrix} x_1\ dots\ x_N \end{pmatrix}\in\mathbb{R}^N$ -h hınının umhümütüp

$$\|\vec{x}\|_q = \left(\sum_{k=1}^N |x_k|^q\right)^{\frac{1}{q}}$$
:

∖րշեցում

Մահմանում։

$$q>0$$
 թվի և $ec{x}=egin{pmatrix} x_1\ dots\ x_N \end{pmatrix}\in\mathbb{R}^N$ -ի համար սահմանենք

$$\|\vec{x}\|_q = \left(\sum_{k=1}^N |x_k|^q\right)^{\frac{1}{q}}$$
:

Ինչպես նաև

$$\|\vec{x}\|_0 = \#\{k: 1 \le k \le N \ u \ x_k \ne 0\}$$

որտեղ #-ը բազմություն էլեմենտների քանակն է։

q–գունդը

▶ Միավոր *q*-գունդ

$$B_q^N = \{ \vec{x} \in \mathbb{R}^N : \|\vec{x}\|_q \le 1 \} :$$

q-գունդը

• Միավոր *q*-գունդ

$$B_q^N = \{ \vec{x} \in \mathbb{R}^N : \|\vec{x}\|_q \le 1 \} :$$

 B_q^2 -ն $q=0,\, 0 < q < 1, \, q=1$ և q=2-ի համար

 $A:\Sigma_r^N o\mathbb{R}^M$ ինյեկտիվ է այն և միայն այն դեպքում, երբ ցանկացած $ec x\in\Sigma_r^N$ -ի համար ec x-ը

$$\underset{\vec{u} \in \mathbb{R}^N}{\text{arg min }} \|\vec{u}\|_0 \quad uy \hat{u}u \mu u \ n p \quad A\vec{u} = \vec{b} \tag{P_0}$$

hunph uhuh inidniuh $\vec{b} = A\vec{x}$:

 $A:\Sigma_r^N o\mathbb{R}^M$ ինյեկտիվ է այն և միայն այն դեպքում, երբ ցանկացած $ec x\in\Sigma_r^N$ -ի համար ec x-ը

$$\underset{\vec{u} \in \mathbb{R}^N}{\text{arg min}} \|\vec{u}\|_0 \quad uy \hat{u}u \mu u \, n \mu \quad A \vec{u} = \vec{b} \tag{P_0}$$

 $μιληηλ ιδριμή ιπιδηιιδίλ ξ, ηριμίλη <math>\vec{b} = A\vec{x}$:

 arg min-ը վերադարձնում է արգումենսրի այն արժեքները, որոնց դեպքում արփահայտությունը ընդունում է իր փոքրագույն արժեքը

 $A:\Sigma_r^N o\mathbb{R}^M$ ինյեկտիվ է այն և միայն այն դեպքում, երբ ցանկացած $ec x\in\Sigma_r^N$ -ի համար ec x-ը

$$\underset{\vec{u} \in \mathbb{R}^N}{\text{arg min}} \|\vec{u}\|_0 \quad \text{uyluylu np } A\vec{u} = \vec{b} \tag{P_0}$$

իսնդրի միակ լուծումն է, որտեղ $\vec{b} = A\vec{x}$:

- arg min-ը վերադարձնում է արգումենսրի այն արժեքները, որոնց դեպքում արփահայտությունը ընդունում է իր փոքրագույն արժեքը
- ▶ Այս վերաձևակեպրպումից հետր, *P*₀-ն հիշեցնում է ուռուցիկ օպտիմիզացիայի խնդիրը

 $A:\Sigma_r^N o\mathbb{R}^M$ ինյեկտիվ է այն և միայն այն դեպքում, երբ ցանկացած $ec x\in\Sigma_r^N$ -ի համար ec x-ը

$$\underset{\vec{u} \in \mathbb{R}^N}{\text{arg min}} \|\vec{u}\|_0 \quad \text{uyluylu np } A\vec{u} = \vec{b} \tag{P_0}$$

u μιλημη ιζημιζη $\vec{b} = A\vec{x}$:

- arg min-ը վերադարձնում է արգումենսրի այն արժեքները, որոնց դեպքում արփահայփությունը ընդունում է իր փոքրագույն արժեքը
- ▶ Այս վերաձևակեպրպումից հետր, *P*₀-ն հիշեցնում է ուռուցիկ օպտիմիզացիայի խնդիրը

Ապացույց.

 (\Rightarrow) Եթե \vec{y} -ը (P_0) -ի լուծում է, ապա $\|\vec{y}\|_0 \le \|\vec{x}\|_0$ հետևաբար $\vec{y} \in \Sigma_r^N$ ուստի ինյեկտիվությունից $\vec{x} = \vec{y}$:

 $A:\Sigma_r^N o\mathbb{R}^M$ ինյեկտիվ է այն և միայն այն դեպքում, երբ ցանկացած $ec x\in\Sigma_r^N$ -ի համար ec x-ը

$$\underset{\vec{u} \in \mathbb{R}^N}{\text{arg min}} \|\vec{u}\|_0 \quad \text{uyluylu np } A\vec{u} = \vec{b} \tag{P_0}$$

 $μιμηρη ιίμων [πιδηιιδι ξ, ηριμαη <math>\vec{b} = A\vec{x}$:

- arg min-ը վերադարձնում է արգումենսի այն արժեքները, որոնց դեպքում արփահայտությունը ընդունում է իր փոքրագույն արժեքը
- ▶ Այս վերաձևակեպրպումից հետր, *P*₀-ն հիշեցնում է ուռուցիկ օպտիմիզացիայի խնդիրը

Ապացույց.

 (\Rightarrow) Եթե \vec{y} -ը (P_0) -ի լուծում է, ապա $\|\vec{y}\|_0 \le \|\vec{x}\|_0$ հետևաբար $\vec{y} \in \Sigma_r^N$ ուստի ինյեկտիվությունից $\vec{x} = \vec{y}$:

 (\Leftarrow) Դիցուք $A\vec{y}=A\vec{x}$, որտեղ $\vec{x},\vec{y}\in\Sigma_r^N$ ։ Եթե $\|\vec{x}\|_0<\|\vec{y}\|_0$, ապա \vec{y}_0 -ն $\vec{b}=A\vec{y}$ -ի համար P_0 -ի լուծումը չէ։ Նույն կերպ $\|\vec{x}\|_0>\|\vec{y}\|_0$ չի կարող լինել, ուստի $\|\vec{x}\|_0=\|\vec{y}\|_0$ ։ Քայց քանի որ \vec{x} -ը P_0 -ի միակ լուծումն էր, ուստի $\vec{x}=\vec{y}$:

Ուռուցիկություն

Սահմանում։

 $U\subseteq\mathbb{R}^N$ բազմությունը կոչվում է **ուռուցիկ**, եթե ցանկացած $0\leq\alpha\leq 1$ -ի և $\vec{x},\vec{y}\in U$ -ի համար, $\alpha\vec{x}+(1-\alpha)\vec{y}\in U$:

Ուռուցիկություն

Սահմանում։

 $U\subseteq\mathbb{R}^N$ բազմությունը կոչվում է **ուռուցիկ**, եթե ցանկացած $0\leq\alpha\leq 1$ -ի և $ec{x},ec{y}\in U$ -ի համար, $\alpha ec{x}+(1-\alpha)ec{y}\in U$:

Սահմանում։

 $U\subseteq\mathbb{R}^N$ ուռուցիկ բազմության վրա որոշված $\phi:U\to\mathbb{R}$ ֆունկցիան կոչվում է **ուռուցիկ**, եթե

$$\phi(\alpha \vec{x} + (1 - \alpha)\vec{y}) \le \alpha \phi(\vec{x}) + (1 - \alpha)\phi(\vec{y})$$

guulhugud 0 $\leq \alpha \leq$ 1-h huulup:

Ուռուցիկ օպտիմիզացիայի խնդիրը

Դիցուք $U\subseteq\mathbb{R}^N$ ուռուցիկ բազմություն է և $\phi:C\to\mathbb{R}$ ուռուցիկ ֆունկցիա է: Ուռուցիկ օպտիմիզացիայի խնդիրն է

 $\operatorname*{arg\;min} \phi(\vec{u})$ այնպես որ $\vec{u} \in U$:

Գծային ծրագրավորում

՝ հետևյալ խնդիրը կոչվում է **գծային ծրագրավորում**

$$rg\min_{ec{u}}\phi(ec{u})=c_1u_1+\cdots+c_Nu_N$$
 այնպես որ $C\,ec{u}\leqec{b}$ և $ec{u}\geq0$

որտեղ C-ն ինչ-որ $M \times N$ մափրից է և $\vec{b} \in \mathbb{R}^M$ ։

(Այստեղ ϕ -ն գծային է և U-ն ուռուցիկ բազմանիստ է)։

՝ հետևյալ խնդիրը կոչվում է **գծային ծրագրավորում**

$$rg\min_{ec{u}} \phi(ec{u}) = c_1 u_1 + \dots + c_N u_N$$
 այնպես որ $C ec{u} \leq ec{b}$ և $ec{u} \geq 0$

որտեղ C-ն ինչ-որ $M \times N$ մատրից է և $\vec{b} \in \mathbb{R}^M$ ։

(Այստեղ ϕ –ն գծային է և U–ն ուռուցիկ բազմանիստ է)։ Գծային ծրագրավորման խնդրի լուծման բազմաթիվ արագ ալգորիթմներ կան

՝ հետևյալ խնդիրը կոչվում է **գծային ծրագրավորում**

arg
$$\min_{\vec{u}} \phi(\vec{u}) = c_1 u_1 + \dots + c_N u_N$$
 այնպես որ $C \vec{u} \leq \vec{b}$ և $\vec{u} \geq 0$

որտեղ C-ն ինչ-որ $M \times N$ մափրից է և $\vec{b} \in \mathbb{R}^M$ ։

(Այստեղ ϕ -ն գծային է և U-ն ուռուցիկ բազմանիստ է)։

Գծային ծրագրավորման խնդրի լուծման բազմաթիվ արագ ալգորիթմներ կան

Միմպլեքս մեթոդը (Դանցիգ 1947)

՝ հետևյալ խնդիրը կոչվում է **գծային ծրագրավորում**

arg
$$\min_{\vec{u}} \phi(\vec{u}) = c_1 u_1 + \dots + c_N u_N$$
 այնպես որ $C \vec{u} \leq \vec{b}$ և $\vec{u} \geq 0$

որտեղ C-ն ինչ-որ $M \times N$ մափրից է և $\vec{b} \in \mathbb{R}^M$ ։

(Այստեղ ϕ -ն գծային է և \emph{U} -ն ուռուցիկ բազմանիստ է)։

Գծային ծրագրավորման խնդրի լուծման բազմաթիվ արագ ալգորիթմներ կան

- Սիմպլեքս մեթոդը (Դանցիգ 1947)
- **Էլիպսոիդ մեթոդ** (Խաչիյան, 1979)

՝ հետևյալ խնդիրը կոչվում է **գծային ծրագրավորում**

arg
$$\min_{ec{u}} \phi(ec{u}) = c_1 u_1 + \dots + c_N u_N$$
 այնպես որ $C ec{u} \leq ec{b}$ և $ec{u} \geq 0$

որտեղ C-ն ինչ-որ $M \times N$ մափրից է և $\vec{b} \in \mathbb{R}^M$ ։

(Այստեղ ϕ -ն գծային է և \emph{U} -ն ուռուցիկ բազմանիստ է)։

Գծային ծրագրավորման խնդրի լուծման բազմաթիվ արագ ալգորիթմներ կան

- Սիմպլեքս մեթոդը (Դանցիգ 1947)
- **Էլիպսոիդ մեթոդ** (Խաչիյան, 1979)
- **Ներքին կետի մեթոդ** (Կամարկար, 1984)

arg min
$$\| \vec{u} \|_0$$
 այնպես որ $A \vec{u} = \vec{b}$

խնդրում $\vec{u}\mapsto \|\vec{u}\|_0$ –ն ուռուցիկ չէ, ուստի ուռուցիկ օպտիմիզացիայի մեթոդները կիրառել չենք կարող։

arg min
$$\|\vec{u}\|_0$$
 այնպես որ $A\vec{u} = \vec{b}$

խնդրում $\vec{u}\mapsto \|\vec{u}\|_0$ -ն ուռուցիկ չէ, ուստի ուռուցիկ օպտիմիզացիայի մեթոդները կիրառել չենք կարող։

Պնդում։

 $ec{u}\mapsto \|ec{u}\|_{
ho}$ –ն ուռուցիկ է այն և միայն այն դեպքում, երբ $B_{
ho}^N$ –ը ուռուցիկ է։

arg min
$$\|\vec{u}\|_0$$
 այնպես որ $A\vec{u} = \vec{b}$

խնդրում $\vec{u}\mapsto \|\vec{u}\|_{0}$ -ն ուռուցիկ չէ, ուստի ուռուցիկ օպտիմիզացիայի մեթոդները կիրառել չենք կարող։

Պնդում։

 $\vec{u}\mapsto \|\vec{u}\|_p$ -ն ուռուցիկ է այն և միայն այն դեպքում, երբ B_p^N -ը ուռուցիկ է։

 B_q^2 -ն $q=0,\, 0 < q < 1,\, q=1$ և q=2-ի համար

arg min
$$\|\vec{u}\|_0$$
 այնպես որ $A\vec{u} = \vec{b}$

խնդրում $\vec{u}\mapsto \|\vec{u}\|_{0}$ -ն ուռուցիկ չէ, ուստի ուռուցիկ օպտիմիզացիայի մեթոդները կիրառել չենք կարող։

Պնդում։

 $\vec{u}\mapsto \|\vec{u}\|_p$ -ն ուռուցիկ է այն և միայն այն դեպքում, երբ B_p^N -ը ուռուցիկ է։

$$B_{q}^{2}$$
-ն $q=0,\,0< q<1,\,q=1$ և $q=2$ -ի համար

lacksquare Ուռուցիկ չէ $0 \leq q \leq 1$

arg min
$$\|\vec{u}\|_0$$
 այնպես որ $A\vec{u} = \vec{b}$

խնդրում $\vec{u}\mapsto \|\vec{u}\|_0$ -ն ուռուցիկ չէ, ուստի ուռուցիկ օպտիմիզացիայի մեթոդները կիրառել չենք կարող։

Պնդում։

 $\vec{u}\mapsto \|\vec{u}\|_p$ -ն ուռուցիկ է այն և միայն այն դեպքում, երբ B_p^N -ը ուռուցիկ է։

 B_{q}^{2} -ն $q=0,\,0< q<1,\,q=1$ և q=2-ի համար

- ightharpoonup Ուռուցիկ չէ $0 \le q \le 1$
- ightharpoonup Ուռուցիկ է $q\geq 1$

Դիցուք $\vec{b}=A\vec{x}$ որտեղ $\vec{x}\in \Sigma_r^N$ ։ Կարելի է արդյո՞ք $\|\vec{u}\|_0$ -ն փոխարինել $\|\vec{u}\|_q$ -ով, և փորձել լուծել

arg min
$$\| \vec{u} \|_q$$
 այնպես որ $A \vec{u} = \vec{b}$ (P_q)

խնդիրը այն հույսով որ միգուցե կգտնի անհայտ r-նոսր \vec{x} վեկտորը։

Դիցուք $\vec{b}=A\vec{x}$ որտեղ $\vec{x}\in \Sigma_r^N$ ։ Կարելի է արդյո՞ք $\|\vec{u}\|_0$ -ն փոխարինել $\|\vec{u}\|_q$ -ով, և փորձել լուծել

arg min
$$\| \vec{u} \|_q$$
 այնպես որ $A \vec{u} = \vec{b}$ (P_q)

խնդիրը այն հույսով որ միգուցե կգտնի անհայտ r-նոսր $ec{x}$ վեկտորը։

Ենթադրենք $A: \Sigma_r^N \mapsto \mathbb{R}^M$ ինյեկտիվ է։ Եթե որևէ q-ի համար (P_q) խնդրի լուծումը r-նոսր վեկտոր է, ապա այն կլինի մեր կողմից որոնվող լուծումը։

Դիցուք $\vec{b}=A\vec{x}$ որտեղ $\vec{x}\in \Sigma_r^N$ ։ Կարելի է արդյո՞ք $\|\vec{u}\|_0$ -ն փոխարինել $\|\vec{u}\|_q$ -ով, և փորձել լուծել

arg min
$$\| \vec{u} \|_q$$
 այնպես որ $A \vec{u} = \vec{b}$ (P_q)

խնդիրը այն հույսով որ միգուցե կգտնի անհայտ r-նոսր \vec{x} վեկտորը։

Ենթադրենք $A: \Sigma_r^N \mapsto \mathbb{R}^M$ ինյեկտիվ է։ Եթե որևէ q-ի համար (P_q) խնդրի լուծումը r-նոսր վեկտոր է, ապա այն կլինի մեր կողմից որոնվող լուծումը։

ightharpoonup q < 1 ուռուցիկ չէ

Դիցուք $\vec{b}=A\vec{x}$ որտեղ $\vec{x}\in \Sigma_r^N$ ։ Կարելի է արդյո՞ք $\|\vec{u}\|_0$ -ն փոխարինել $\|\vec{u}\|_q$ -ով, և փորձել լուծել

arg min
$$\| \vec{u} \|_q$$
 այնպես որ $A \vec{u} = \vec{b}$ (P_q)

խնդիրը այն հույսով որ միգուցե կգտնի անհայտ r-նոսր $ec{x}$ վեկտորը։

Ենթադրենք $A: \Sigma_r^N \mapsto \mathbb{R}^M$ ինյեկտիվ է։ Եթե որևէ q-ի համար (P_q) խնդրի լուծումը r-նոսր վեկտոր է, ապա այն կլինի մեր կողմից որոնվող լուծումը։

- ightharpoonup q < 1 ուռուցիկ չէ
- ightarrow q>1-ի համար քիչ սպասելի է, որ գտնված լուծումը կլինի նոսր

Դիցուք $\vec{b}=A\vec{x}$ որտեղ $\vec{x}\in \Sigma_r^N$ ։ Կարելի է արդյո՞ք $\|\vec{u}\|_0$ -ն փոխարինել $\|\vec{u}\|_q$ -ով, և փորձել լուծել

$$\mathop{\operatorname{arg\,min}}_{ec{u} \in \mathbb{R}^N} \|ec{u}\|_q$$
 այնպես որ $Aec{u} = ec{b}$ (P_q)

խնդիրը այն հույսով որ միգուցե կգտնի անհայտ r-նոսր \vec{x} վեկտորը։

Ենթադրենք $A: \Sigma_r^N \mapsto \mathbb{R}^M$ ինյեկտիվ է։ Եթե որևէ q-ի համար (P_q) խնդրի լուծումը r-նոսր վեկտոր է, ապա այն կլինի մեր կողմից որոնվող լուծումը։

- ightharpoonup q < 1 ուռուցիկ չէ
- ightarrow q>1-ի համար քիչ սպասելի է, որ գտնված լուծումը կլինի նոսր
- ightarrow q=1-ի համար պարզվում է, մափրիցների մեծ դասի համար գփնում է նոսը լուծում

Երկրաչափական մեկնաբանություն

Ենթադրենք M=1, N=2 (A-ն 1×2 չափանի մափրից է)։ Այդ դեպքում $A\vec{u}=b$ -ն իրենից ներկայացնում է ուղիղ։

arg min
$$\| \vec{u} \|_q$$
 այնպես որ $A \vec{u} = \vec{b}$

խնդրի լուծումը կլինի առաջին կետը (կետերը), որի հետ հպվում է q-գունդը, երբ նրա շառավիղը զրոյից սկսում ենք մեծացնել։

Այս դեպքում P_q -ն վսփահաբար կգփնի նոսը լուծում, սակայն խնդիրը ուռուցիկ չէ

q>2-ի համար P_q -ն նոսը լուծում չի գտնի դեպքերից շատերում

 P_1 -ը որոշ դեպքերում կգւրնի նոսը լուծում, սակայն մեզ պետք է գւրնել պայմաններ որոնց դեպքում դա երաշխավորված է

Եզրահանգում

Այսպիոսով, եթե ունենք $ec{b} = Aec{x}$ որտեղ $ec{x} \in \Sigma^N_r$

arg min
$$\|\vec{u}\|_0$$
 այնպես որ $A\vec{u}=\vec{b}$ (P_0)

խնդիրը լուծելու փախարեն կլուծենք

arg min
$$\| ec{u} \|_1$$
 այնպես որ $A ec{u} = ec{b}$ (P_1)

Եզրահանգում

Այսպիոսով, եթե ունենք $ec{b} = Aec{x}$ որտեղ $ec{x} \in \Sigma_r^N$

arg min
$$\|\vec{u}\|_0$$
 այնպես որ $A\vec{u}=\vec{b}$ (P_0)

խնդիրը լուծելու փախարեն կլուծենք

arg min
$$\| ec{u} \|_1$$
 այնպես որ $A ec{u} = ec{b}$ (P_1)

Պնդում։

 (P_1) խնդիրը գծային ծրագրավորման խնդիր է։

Եզրահանգում

Այսպիոսով, եթե ունենք $ec{b} = Aec{x}$ որտեղ $ec{x} \in \Sigma_r^N$

$$\mathop{\operatorname{arg\,min}}_{ec{u} \in \mathbb{R}^N} \|ec{u}\|_0$$
 այնպես որ $Aec{u} = ec{b}$ (P_0)

խնդիրը լուծելու փախարեն կլուծենք

arg min
$$\| \vec{u} \|_1$$
 այնպես որ $A \vec{u} = \vec{b}$ (P_1)

Պնդում։

 (P_1) խնդիրը գծային ծրագրավորման խնդիր է։

Ապացույց.

Դիտարկենք հետևյալ խնդիրը

$$rg \min_{ec{u} \in \mathbb{R}^N} (ec{u}_+ + ec{u}_-)$$
 այնպես որ $Aec{u}_+ - Aec{u}_- = ec{b}$ և $ec{u}_+ \geq 0, ec{u}_- \geq 0$

Նկատենք, որ եթե \vec{x}_+, \vec{x}_- -ը նրա լուծումներ են, ապա նրանց կրիչները չհատվող են, քանի որ ցանկացած վեկտորի համար, նրա բոլոր $\vec{x} = \vec{x}_+ - \vec{x}_-$, $\vec{x}_+, \vec{x}_- \geq 0$ ներկայացումների մեջ $\vec{x}_+ + \vec{x}_-$ -ն ամենափոքրն է, երբ կրիչները չեն հատվում։

