

Adjoint of a Square Matrix:
Af A = [a, b, c, a b, c, a, b, c, a, b, c]

Confactor of a,

Adj. A = transpose of $\begin{bmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_2 \end{bmatrix} = \begin{bmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{bmatrix}$

Properties of Adjoint!
(i) A (Adj A) = (Adj A) A = IAI In

(ii) Adj (AB) = (Adj B). (Adj A)

Inverse of a Square Matrix:- $A^{\dagger} = \frac{Adj A}{|A|} : |A| \neq 0$

Properties of Inverse!

(i) (A")" = A

(ii) (AB)" = B"A"

(iii) (A')" = (A")"

(iv) Only a non-singular square matrix

can have an inverse.

Example: - 9f A = $\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$, then find A.

Solution:

Adj A = $\begin{bmatrix} 1 & -2 & -2 \\ -1 & 3 & 3 \\ 0 & -4 & -3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$

|A| = 3(-3+4)+3(2)-4(-2) = 1 $|A| = \frac{Adj}{|A|} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$

Elementary Matrices!
The matrix obtained from a unit matrix I by subjecting it to one of E-operations is called an elementary matrix.

Rank of a Matrix:
Let A be any mxn matrix. It

has square sub-matrices of different orders. The

determinants of these square sub-matrices are called

minors of A.

A matrix is said to be of rank r, if!—

(i) It has atleast one non-zero minor of order r.

(ii) All the minors of order (r+1) or higher than

r are zero.

Rank of A = & is written as p(a) = x.

If A is a non-singular non matrix, then
P(a) = n

Eckelon form method of finding rank!—

In this form of the matrix, each of the first r elements of the leading diagonal is 1 and every element below the diagonal / the row is zero.

The rank of the matrix is equal to the no. of non-zero diagonal elements when it has been reduced to Eckelon form.

	(C rage		(S) grade C
Salutio	n of a System of Linear Equations!	Linear	Dependence and Linear Independence of Vectors !-
Les le se	# A system of equations having no-solution is called an inconsistent system of equations.		A set of a n-vectors X1, X2) - X2 is said to be linearly dependent if there exist a scalars (number) R1, R2,, R2, not all zero, such that:-
400	# A system of equations having one or more solution is called a consistent system of equations.		$k_1 \times k_2 \times k_2 + k_2 \times k_3 = 0$
1 1/2	For a system of non-homogeneous linear equations AX = B!	,els./	It is called linearly independent if every relation of the type:
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	(1) if $p[A:B] \neq p(A)$, the system is inconsistent (ii) if $p[A:B] = p(A) = number of unknowns,$ the system has a unique solution.		$f_1 \times_1 + f_2 \times_2 + \dots + f_k \times_r = 0$ implies $f_1 - f_2 = \dots - f_r = 0$
	(iii) if ρ[A:B] = ρ(A) < number of unknowns, the system has an infinite number of salutions.		teristic Equation! 4 A is a square matrix of order n,
si)	For a system of Romogeneous linear equations AX = 0:-		we can form the matrix (A-1I), where I is a scalar and I is the unit matrix of order n.
A 15	(i) $X=0$ is always a solution (Trival Solution). (ii) if $P(A) = number$ of unknowns, the system has only the trivial solution.		The determinant of this matrix equated to general
64	has an infinite number of whenowns the system	21.4	A-II = air air-1 air = 0 is called the an an an an characteristic equation of A.
6.7 (# Homogeneous System is always consistent	-	· · · · · · · · · · · · · · · · · · ·
4130	to new Affil the temperature of the second o		# The roots of this equation are called the characteristic roots or eigen values of A.
			trans to the market one was to be an extent

Eigen Vectors and Eigen Values :-Consider a square

matrix A of size (nxh), then a column vector X of size (nx1) is called the

Eigen Vector of A, if !-

 $AX = \lambda X$

 $AX - \lambda X = 0$

.-0 (A-AI)X=0

where it is a nonzero scalar

The characteristic roots of equation-1 are called the Eigen Values.

Example: - Find the eigen values and eigen vectors of the motion! $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$

Solution: The characteristic equation of the given matrix is !- | A - 1 | = 0

a Eigen Valo $\Rightarrow (\lambda+3)(\lambda+3)(\lambda-5)=0 \Rightarrow \lambda=-3,-3,5$

Corresponding to $\lambda = -3$, the eigen vectors are given by !- $(A + 3I) X_1 = 0$

Here, we got only one independent equation'-

let x = k, and x = k, then x = 3k, - 2k.

$$X_{i} = \begin{bmatrix} 3k_{i} - 2k_{i} \\ k_{i} \\ k_{i} \end{bmatrix} = k_{i} \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} + k_{i} \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$$

Corresponding to 1=5, the eigen vectors are given (A-51) X2 = 0

$$\Rightarrow \begin{bmatrix} -7 & 2 & -3 \\ 2 & -4 & -6 \\ -1 & -2 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

> x, - k, x = 2k, x = -k,

$$\times X_2 = \hat{K}_3 \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

Properties of Eigen Vectors and Eigen Values !-

(1) The sum of the eigen values of a matrix A is equal to trace of A

(2) The product of the eigen values of a matrix A is equal to its determinant

(3) If h is an eigenvalue of an orthogonal matrix, then 1/2 is also its eigen value

(4) The eigen values of an idempotent matrix are either zero or unity.

The trace or spur of a square matrix is the sum of its diagonal elements.

www.ankurgupta.net

		2 tank
(11) (a)	sin 2x =	1 + tan2x
+ 1 10-	5.4 4.5	1 - tank

(b) cos 2x = 1- tan x

Limits!-

Some important expensions to be used !-

(i)
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots$$

(ii)
$$\left(\frac{x^{h}-a^{h}}{x-a}\right) = \left(x^{h-1}+ax^{h-2}+a^{1}x^{h-3}+ + a^{h-1}\right)$$

(iii)
$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

(iv)
$$a^{x} = 1 + x \log_{e} a + \frac{(x \log_{e} a)^{2}}{2!} + \dots$$

(v)
$$\log (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

(vi)
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

(vi)
$$\cos x = 1 - \frac{\chi^2}{2!} + \frac{\chi^4}{4!} - \frac{\chi^6}{6!} + \dots$$

(viii)
$$\tan x = x + \frac{3}{x^3} + \frac{15}{2} x^5 + \dots$$

Some Important Theorems on Limits :-

(ii)
$$\lim_{x\to 0} \left(\frac{e^{x}-1}{x}\right) = 1$$
, (iii) $\lim_{x\to 0} \left(\frac{a^{x}-1}{x}\right) = \log_e a$

(iv)
$$\lim_{x\to\infty} (1+x)^k = e$$
 $\lim_{x\to\infty} \left(\frac{\sin x}{x}\right) = 0$

(v)
$$\lim_{k\to 0} \frac{\log(1+k)}{k} = 1$$
 $\lim_{k\to \infty} \left(\frac{\cos k}{k}\right) = 0$

Continuity and Differentiability:-

A function is continuous, if its graph is a single unbroken curve with no holes or jumps.

A function is differentiable, if its graph is relatively smooth, and does not contain any breaks, or bends.

A differentiable function is always continuous, but a continuous function need not be differentiable.

Differentiation! -

Some important formulaes !-

(v)
$$\frac{d}{dx} conx = -sinx$$
, (vi) $\frac{d}{dx} (tanx) = sec^2x$

(xi)
$$\frac{d}{dx}(\sin^2 x) = \frac{1}{\sqrt{1-x^2}}$$
, (xii) $\frac{d}{dx}(\cos^2 x) = \frac{-1}{\sqrt{1-x^2}}$

$$-(xiii)\frac{d}{dx}(tan^{-1}x) = \frac{1}{1+x^2}, \quad (xiv)\frac{d}{dx}(cot^{-1}x) = \frac{-1}{1+x^2}$$

(xr)
$$\frac{d}{dx}$$
 (sec'x) = $\frac{1}{x\sqrt{x^2-1}}$, (xri) $\frac{d}{dx}$ (conec'x) = $\frac{-1}{x\sqrt{x^2-1}}$

$$(x \times iii) \frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{g(x) f(x) - f(x) g(x)}{\left[g(x) \right]^2} \frac{dx}{dx} \frac{dx}{dx} = \frac{1}{x \cdot \log x}$$

	classmate	
0	Celo	
12	Fegn	

Integration

Fundamental Integration Formulas:

(i)
$$\int x^n dx = \frac{x^{n+1}}{(n+1)}$$
 (ii) $\int \frac{1}{x} dx = \log x + c$

(iii)
$$\int e^{k} dx = e^{k} + c$$
 (iv) $\int a^{k} dx = \frac{a^{k}}{\log_{e} a} + c$

$$(xi)$$
 $\int \cot x \, dx = \log(\sin x) + c \quad (xii) \int \tan x \, dx = -\log(\cos x) + c$

$$(xr) \int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^2\left(\frac{x}{a}\right) + C \quad (xri) \int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^2\left(\frac{x}{a}\right) + C$$

$$(xvii) \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + c \cdot (xviii) \int \frac{-1}{a^2 + x^2} dx = \frac{1}{a} \cot^{-1} \left(\frac{x}{a} \right) + c$$

$$(xix)\int \frac{dx}{x\sqrt{x^2-a^2}} = \frac{1}{a} \sec^{-1}\left(\frac{x}{a}\right) + c, \quad (xx)\int \frac{-dx}{x\sqrt{x^2-a^2}} = \frac{1}{a} \csc^{-1}\left(\frac{x}{a}\right) + c$$

Integration by Substitution! -

$$I = \int f(g(x)) \cdot g'(x) dx, \quad \text{let } g(x) = t$$

$$\Rightarrow I = \int f(t) dt \qquad \Rightarrow g'(x) dx = dt$$

Note:-

www.ankuogupta.net

11 100 1 1 2 100 100 1

.

+

Classmate Date

www.ankingupta.net

Numerical Integration:

(1) Trapezoidal Rule:- x_0+nR $\int f(x) dx = \frac{R}{2} [(y_0+y_n) + 2(y_1+y_2+ - - + y_{n-1})]$

(2) Simpson's One-Third Rule! - x_0+nR $\int f(x) dx = \frac{h}{3} \left[(y_0+y_0) + 4(y_1+y_3+ - - + y_{n-1}) \right] + 2(y_1+y_4+ - + y_{n-2})$

(3) Simpson's Three-Eighth Rule:

xu+nh $f(x)dx = \frac{3h}{8} \left((y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_6 + \dots + y_{n-3}) + 2(y_3 + y_6 + \dots + y_{n-3}) \right)$

Here h is the interval, and n is the no. of intervals.

yo = f(xo), y = f(xo+R), y = f(xo+2R) __ and so on.

For Simpson's One-third rule, n is even.

For Simpson's three-eighth rule, n should be multiple of 3.

Error in Trapezoidal Rule:
Error $\leq \frac{(b-a)^3}{12 n^2} \max |f(x)|$ or $\leq \frac{(b-a)}{12} R^2 \max |f(x)|$ Error in Simpson's Rule: -

 $E_{inv} \leq \frac{(b-a)}{180} R^4 \max \left\{ \frac{(4)}{(1)} \right\}$

Here, $a = x_0$, $b = x_0 + nR$, $h = \frac{b-a}{n}$

and s'(") 4 f(x) refers to the values taken on [a, b]

Simpson's rule provides exact results for any polynomial f of degree three or less.

Tropozoidal rule gives exact results for any polynomial f of degree one