Tarea 3 Macroeconomia I

Cristóbal Meneses

1.-Economía de Pedro

Pedro vive para siempre y evalua sus decisiones de consumo de acuerdo a la siguiente funcion de utilidad,

$$U = \sum_{t=1}^{\infty} \beta^t log(c_t)$$

Pedro tiene como una fuente de consumo un queque de tamaño 1 que le dieron al principio de su vida adulta, con lo que $k_0 = 1$. Cada vez que Pedro le da una mordida, el queque se hace mas pequeño, pero de otra forma dura para siempre en el refrigerador.

• a)Defina el problema de Pedro, incluyendo la restriccion de presupuesto

Pedro quiere maximizar su utilidad, lo que significa encontrar la distribucion del pastel en el tiempo que, sujeto a la restricción presupuestaria. Esta restricción corresponde a la idea de que cada cosa que consume tiene que tener un origen,

$$A_{t+1} + c_t = A_t + w_t L_t$$

 $w_t L_t$ es cero en este ejemplo pues Pedro no sabe cocinar. La restriccion es tal que en cada periodo, Pedro dividirá su pastel entre consumo y ahorro futuro. A esta condición, se le suman restricciones que aseguran la logica del ejecicio: Pedro no puede prestar ni recibir pastel de otros individuos ni puede "des-comerlo". Estas reglas se convierten en que $0 \le c_t$, $0 \le A_t$ y que

$$\sum_{t=1}^{\infty} c_t = 1$$

Que significa que cuando el pastel se acabe, se acaba para siempre.Con todas estas restricciones, el Problema de Pedro (PP) se expresa como

$$MaxU = Max_{c_{t}A_{t+1}} \sum_{t=1}^{\infty} \beta^{t} log(c_{t})$$

$$s.a: A_{t+1} = A_t - c_t$$

$$\sum_{t=1}^{\infty} c_t = 1$$

$$A_t \ge 0$$

$$c_t \ge 0$$

Para todo periodo de tiempo.

• b) Obtener C.P.O.

Primero, constuimos un Lagrangiano para el PP.

$$L = \sum_{t=1}^{\infty} \beta^{t} u(c_{t}) + \sum_{t=1}^{\infty} \Lambda_{t} (A_{t} - c_{t} - A_{t+1})$$

A la que le podemos aplicar una transformación lineal tal que $\lambda_t = \Lambda_t/\beta_t$ para generar

$$L = \sum_{t=1}^{\infty} (\beta^{t} u(c_{t}) + \lambda_{t} (A_{t} - c_{t} - A_{t+1}))$$

Esta notación implica que las restricción presupuestaria esta siendo probada cada periodo distinto, por lo que al encontrar las condiciones de primer orden, el periodo donde se está midiendo importa. Las condiciones de primer orden son:

- (1) $\partial L/\partial c_t = 0 ==> u'(c_t) \lambda_t = \beta^t * (c_t^{-1} \lambda_t) = 0$
- (2) $\partial L/\partial A_{t+1} = 0 ==> \beta^{t+1} \lambda_{t+1} \beta^t \lambda_t = 0$
- (3) $\partial L/\partial \lambda_t = 0 ==> A_t A_{t+1} c_t = 0$

Podemos ver que de (1), nace que $\beta^{t+1}\lambda_{t+1} = \beta^{t+1} * c_{t+1}^{-1}$, por lo que, reemplazando en (2), tenemos que

$$\lambda_t/\lambda_{t+1} = \beta$$

$$\beta^t/c_t = \beta^{t+1}/c_{t+1}$$

por lo que

$$c_{t+1}/c_t = (c_t/c_{t+1})^{-1} = \beta$$

que tambien se puede expresar como la ecuación de euler $c_t^{-1} = c_{t+1}^{-1} \beta$.

• c)Interpre la ecuacion de Euler. ¿Que nos dice respecto a como cambia el consumo en el tiempo?

Podemos ver muchas relaciones al manejar las condiciones de primer orden del PP, partiendo por la ecuación de Euler $c_t^{-1} = c_{t+1}^{-1}\beta$. Esta nos muestra que cada periodo se consumirá una proporción de lo consumido el periodo anterior. A su vez, vemos que $\lambda_t/\lambda_{t+1} = \beta$, por lo que la condicion se constriñe mas cada periodo, pues se hace mas complicado para Pedro maximizar su utilidad. Otra interpretacion del lambda seria que si se relajase ligeramente la restricción presupuestaria en cada t, este crecimiento marginal sería equivalente β . Este relajo podria interpretarse como permiso de prestamo o producción. Tambien significa que cada periodo Pedro obtiene β veces lo que obtuvo el periodo anterior. Observando la restricción de completitud,

$$\sum_{t=1}^{\infty} c_t = 1$$

$$c_1 \sum_{t=0}^{\infty} \beta^t = 1$$

$$c_1 * (1/(1 - \beta)) = 1$$

que significa que $\beta = 1 - c_1$, por loque β esta en [0,1] .Asi, cada periodo Pedro se come un pedazo menor del queque, hasta el infinito.

2. Economia de Cass-Koopmans

Tenemos una Economia donde el capital puede ser usado de manera mas o menos intensiva. Una utilizacion mas intensiva del capital aumenta el producto, pero tambien hace que este se deprecie mas rapido. La funcion de produccion es,

$$Y_t = A(k_t u_t)^{\alpha}$$

donde u_t es la variable de utilizacion del capital. La depreciacion es, $\delta^t = \delta(u_t)$ con $\delta(u_t)$ > 0 y $\delta(u_t)$ > 0

• a) Plantee el problema de la firma y obtenga las condiciones de primer orden.

La firma intenta maximizar su beneficio. Los ingresos de la firma son la funcion de produccion $Y_t = A(k_t u_t)^{\alpha}$, mientras que los costos son el arriendo (o el costo de oportunidad de no arrendar) del capital r_t y la depreciación del capital veces el capital acumulado. Así el problema de la firma es:

$$Max_{k_t,u_t}\pi_t = A(k_tu_t)^{\alpha} - r_tk_t - \delta(u_t)k_t.$$

Vemos las condiciones de primer orden:

- (1) $\partial \pi / \partial k_t = \alpha A(k_t u_t)^{\alpha 1} u_t r_t \delta(u_t) = 0$
- (2) $\partial \pi / \partial u_t = \alpha A(k_t u_t)^{\alpha 1} k_t \delta'(u_t) k_t = 0$

de (2) vemos que en el optimo de uso de capital, $\alpha A(k_t u_t)^{\alpha-1} k_t = \delta'(u_t) k_t$, o sea que el producto marginal del capital y la depreciación del capital se igualan.

• b)Usando los resultados del punto anterior, explique que efectos tiene en la tasa de interes una utilizacion intensiva del shock de capital.

Uno puede notar, reordenando (2), que en un optimo $r = Y_k - \delta(u_t)$, por lo que el retorno debe ser positivo (una extensión de que $p \ge 0$). Otra interpretación es que cuando uno paga por capital, ese capital extra producirá mas de lo que se depreciará. Si ademas recordamos que en el optimo la producción marginal de k_t es igual a la depreciacón marginal, podemos reemplazar (2) en (1) tal que :

$$\delta'(u_t)u_t - r_t - \delta(u_t) = 0$$

(3)
$$r_t = \delta'(u_t)u_t - \delta(u_t)$$

Que significa que, en el optimo, el uso de t esta condicionado por la tasa de interés r, tal que se debe cumplir que la tasa de interés crece cuando aumenta el uso de k_t pues aumenta el producto marginal. Es mas,la derivada de r_t en u_t

$$\partial r_t/\partial u_t = \delta''(u_t)u_t + \delta'(u_t) - \delta'(u_t) = \delta''(u_t)u_t > 0$$

que siempre es positiva. Digamos que el uso del capital es una tasa que va de 0 a 1. Esto significa que cuando el uso de capital llega a la completitud, este se deprecia a una enorme tasa, y el costo de comprar capital tambien se dispara, mas el costo sube mas rapido que la depreciación pues la subida del costo del capital implica que tambien aumenta su productividad marginal. Si en un momento se ve que el capital se esta depreciando mas rapido de lo que produce, se disminuiría el uso hasta que se cumpla la CPO (2), a su vez bajando el valor de uso del capital (la tasa de interés).

Otra forma de interpretar esta ecuación es que existe un grado "Permisible" de uso de capital tal que siempre se produzca mas de lo que se desgasta por usarlo. Esta tasa representa a su vez lo rentable del proyecto.

Si reordenamos la ecuacion (3), podemos obtener que

$$u_t = (r_t + \sigma(u_t))/\sigma'(u_t)$$

Que señala que en equilibrio, con conocer la función de depreciación se puede encontrar en nivel optimo de uso. Esta ecuación es la tasa de interés real sobre la velocidad de crecimiento de la depreciación.

• c)Plantee el problema del hogar representativo y obtenga las condiciones de primer orden.

Un hogar maximiza su consumo en valor presente en una cantidad infinita de periodos sujeto a que todos los recursos que consuma tengan un origen, y en cada period tenga la desición de ahorrar y consumir tal que $c_t + A_{t+1} = A_t(1 + r_t) + L_t w_t$ Con esto, el problema queda expresado como

$$Max_{c_t, A_t} = \sum_{t=1}^{\infty} \beta^t u(c_t)$$

$$s.a. : c_t + A_{t+1} = A_t(1 + r_t) + L_t w_t$$

$$c_t, A_t, w_t \ge 0$$

con el lagrangeano

$$L = \sum_{t=1}^{\infty} \beta^{t}(u(c_{t}) - \lambda_{t}(c_{t} + A_{t+1} - A_{t}(1 + r_{t}) - L_{t}w_{t}))$$

y las CPO

(4)
$$\partial L/\partial c_t = \beta^t (u'(c_t) - \lambda_t) = 0$$

(5) $\partial L/\partial A_{t+1} = -\beta^t \lambda_t + \beta^{t+1} \lambda_{t+1} (1 + r_{t+1}) = 0$
(6) $\partial L/\partial \lambda_t = (c_t + A_{t+1} - A_t (1 + r_t) - L_t w_t = 0$

Luego, de (4) tenemos que, en equilibrio, la utilidad marginal del consumo es igual a λ . De (5) tenemos que $\lambda_t = \beta \lambda_{t+1} (1+r_t)$ (ecuacion de euler), que nos dice como cambia el consumo intertemporal. Esta ecuación no nos asegura ni un aumento ni una disminución del consumo de un periodo a otro pues no se puede saber si $\beta * (1+r_t)$ es mayor o menor a 1.

3.-Problema de Optimizacion

Un consumidor elige entre tres bienes, con precios que dependen de la cantidad demandada de cada bien. El problema es,

$$max_{x_1,x_2,x_3}x_1^{\rho} + 2x_2^{\rho} + (1/3)x_3^{\rho}$$

$$s.a.: p_1x_1 + p_2x_2 + p_3x_3 = 1$$

$$p_1 = 1/(5\sqrt{x_1})$$

$$p_2 = 1/(4\sqrt{x_2})$$

$$p_3 = 1/(6\sqrt{x_3})$$

• a) Exprese el problema como uno de maximizacion en dos variables sin restricciones.

Para expresar este problema en función de dos variables, vamos a la restricción:

$$0.2\sqrt{x_1} + 0.25\sqrt{x_2} + 0.1666\sqrt{x_3} = 1$$
$$x_1 = (5 - 1.25\sqrt{x_2} + 0.833\sqrt{x_3})^2$$

luego, reemplazamos dentro de la funcison de isobeneficio:

$$u = (5 - (1.25)\sqrt(x_2) - (0.833)\sqrt(x_3))^{(2\rho)} + 2x_2^{\rho} + (0.333) * x_3^{\rho}$$

• b)Resuelva el problema modificado en el punto anterior usando el algoritmo de Newton cuando $\rho = 0, 3$.

```
%f = X^{(rho)}+2*Y^{(rho)}+(1/3)*(((6/5)*sqrt(X) + (6/4)*sqrt(Y))-6)^{(2*rho)};
f =(5-(5/4)*sqrt(X)-(5/6)*sqrt(Y))^(2*rho)+2*X^rho+(1/3)*Y^rho;
assume(X >=0 & Y>=0);
```

```
% Punto inicial
x(1) = 0.001;
y(1) = 0.001;
e = 10^(-10); % criterio de convergencia
i = 1; % contador de iteracion
He = hessian(f,[X,Y])
```

He =

$$\begin{pmatrix} \frac{3}{16 \, X^{3/2} \, \sigma_2} - \frac{3}{32 \, X \, \sigma_1} - \frac{21}{50 \, X^{17/10}} & -\frac{1}{16 \, \sqrt{X} \, \sqrt{Y} \, \sigma_1} \\ -\frac{1}{16 \, \sqrt{X} \, \sqrt{Y} \, \sigma_1} & \frac{1}{8 \, Y^{3/2} \, \sigma_2} - \frac{1}{24 \, Y \, \sigma_1} - \frac{7}{100 \, Y^{17/10}} \end{pmatrix}$$

where

$$\sigma_1 = \left(5 - \frac{5\sqrt{Y}}{6} - \frac{5\sqrt{X}}{4}\right)^{7/5}$$

$$\sigma_2 = \left(5 - \frac{5\sqrt{Y}}{6} - \frac{5\sqrt{X}}{4}\right)^{2/5}$$

```
% Computación del hessiano y gradiente
df_dx = diff(f, X);
df_dy = diff(f, Y);
J = [subs(df_dx,[X,Y], [x(1),y(1)]) subs(df_dy, [X,Y], [x(1),y(1)])]; % Gradiente
ddf_ddx = diff(df_dx,X);
ddf_ddy = diff(df_dy,Y);
ddf_dxdy = diff(df_dx,Y);
ddf_ddx_1 = subs(ddf_ddx, [X,Y], [x(1),y(1)]);
ddf_ddy_1 = subs(ddf_ddy, [X,Y], [x(1),y(1)]);
ddf_dxdy_1 = subs(ddf_dxdy, [X,Y], [x(1),y(1)]);
H = [ddf_ddx_1, ddf_dxdy_1; ddf_dxdy_1, ddf_ddy_1]; % Hessiano
S = inv(H);

%Condicion de optimizacion:
u = 0.1 %Factor de descuento para ayudar a convergencia
```

0.1000000000000000

```
rho=0.3;
while norm(J) > e
    I = [x(i),y(i)]';
    x(i+1) = I(1)-u*S(1,:)*J';
    y(i+1) = I(2)-u*S(2,:)*J';
    i = i+1;
    J = [subs(df_dx,[X,Y], [x(i),y(i)]) subs(df_dy, [X,Y], [x(i),y(i)])]; % Updated Jacobian ddf_ddx_1 = subs(ddf_ddx, [X,Y], [x(i),y(i)]);
    ddf_ddy_1 = subs(ddf_ddy, [X,Y], [x(i),y(i)]);
```

```
ddf_dxdy_1 = subs(ddf_dxdy, [X,Y], [x(i),y(i)]);
    H = [ddf_ddx_1, ddf_dxdy_1; ddf_dxdy_1, ddf_ddy_1]; % Updated Hessian
    S = inv(H); % New Search Direction
end
% Tabla de resultados:`
Iter = 1:i;
X_coordinate = x';
Y_coordinate = y';
Iterations = Iter';
T = table(Iterations, X_coordinate, Y_coordinate);
% Grafico:
fcontour(f, 'Fill', 'On');
hold on;
plot(x,y,'*-r');
grid on;
% Output:
fprintf('Valor\ inicial\ de\ función\ objetivo:\ %d\n\n',subs(f,[X,Y],\ [x(1),y(1)]));
```

Valor inicial de función objetivo: 3

```
fprintf('Numero de Iteraciones: %d\n\n', i);
```

Numero de Iteraciones: 269

```
fprintf('Punto de máximo: [%d,%d]\n\n', x(i), y(i));
```

Punto de máximo: [9.953123e+00,9.719847e-03]

```
fprintf('Maximo de funcion objetivo despues de iteraciones: %f\n\n', subs(f,[X,Y], [x(i),y(i)])
```

Máximo de funcion objetivo despues de iteraciones: 5.052404

disp(T)

Iterations	X_coordinate	Y_coordinate
1	0.001	0.001
2	0.00113921525213243	0.00112489814602483
3	0.00129768982328376	0.0012647348357381
4	0.00147806653226206	0.00142118289135798
5	0.00168334699628931	0.00159608261706826
6	0.00191693964410473	0.00179145502521083
7	0.00218271402537622	0.00200951543449137
8	0.00248506221791038	0.00225268729716558
9	0.00282896823150098	0.00252361607088439
10	0.00322008641549218	0.00282518290262122
11	0.00366482999727524	0.00316051783618344
12	0.00417047101205544	0.00353301219055662
13	0.00474525303142912	0.00394632968315442
14	0.00539851826073418	0.00440441578948918
15	0.00614085075392042	0.00491150473857703
16	0.00698423769094876	0.00547212344157306
17	0.00794225087752809	0.00609109154012048
18	0.00903025086129119	0.00677351664164783
19	0.0102656163130823	0.00752478368300894
20	0.0116680015974215	0.00835053723396771
21	0.0132596257526198	0.00925665542173048

22	0.0150655964181782	0.0102492140320315
23	0.017114272584106	0.0113344392278384
24	0.0194376703919348	0.0125186472321612
25	0.0220719165876966	0.0138081692575613
26	0.0250577546088399	0.0152092599451379
27	0.0284411086741167	0.0167279876161399
28	0.0322737116298191	0.0183701047589182
29	0.0366138026766039	0.0201408973945468
30	0.0415269014442809	0.022045012310501
31	0.0470866651788864	0.0240862616495912
32	0.0533758360333402	0.0262674050179881
33	0.0604872855796826	0.0285899101577318
34	0.0685251636489186	0.0310536943381674
35	0.0776061584055535	0.0336568499728915
36	0.0878608741174992	0.0363953595682034
37	0.0994353323127626	0.0392628069429865
38	0.112492600828679	0.0422500936923362
39	0.127214553541836	0.0453451720318093
40	0.143803761175148	0.0485328073525004
41	0.162485510338833	0.051794385893048
42	0.18350994366274	0.0551077847009867
43	0.207154308262778	0.0584473222758131
44	0.23372529254769	0.0617838086863518
45	0.263561422150518	0.0650847132424502
46	0.297035474136213	0.0683144656906119
47	0.334556854103068	0.0714349031567509
48	0.376573862809204	0.0744058695344797
49	0.423575756913572	0.0771859667222075
50	0.476094481693362	0.0797334482572777
51	0.53470592157059	0.0820072359319145
52	0.600030476418474	0.0839680296076083
53	0.672732727585369	0.0855794705981641
54	0.7535199073904	0.0868093107365752
55	0.84313883012713	0.0876305336599894
56	0.942370882911268	0.0880223728684087
57	1.05202461397827	0.087971173329961
58	1.1729253992518	0.0874710499240627
59	1.30590162295463	0.0865243063646514
60	1.45176678627972	0.0851415914007233
61	1.61129697605188	0.0833417835937211
62	1.78520320501399	0.0811516101680178
63	1.97409830521133	0.0786050177675866
64	2.17845834981712	0.0757423222696205
65	2.39857903324666	0.0726091705747211
66	2.63452808741696	0.0692553497342247
67	2.88609567098446	0.0657334788371612
68	3.15274572219385	0.0620976182663628
69	3.43357244052332	0.0584018309931186
70	3.72726719917294	0.0546987330764591
71	4.0321020284242	0.0510380763415729
72	4.34593599240226	0.0474654150076388
73	4.66624991222736	0.0440209179166346
74	4.99021265046695	0.040738395471764
75	5.31477850467581	0.03764461087666
76	5.63681053402076	0.034758934486036
77	5.9532197431018	0.0320933758556344
78	6.26110622330614	0.0296529920676422
79	6.55788684506203	0.0274366291970958
80	6.84139562079074	0.0254379156097982
81	7.10994722333539	0.0236464004715233
82	7.3623602289697	0.0220487243003754
83	7.59794283069955	0.02062972088221
84	7.81644853855019	0.019373376313072
85	8.01801189839902	0.0182636033363164
86	8.20307447919395	0.0172848197360701

87	8.37230987650423	0.0164223430912007
88	8.52655408643998	0.015662628700082
89	8.66674506998406	0.0149933836261882
90	8.79387315302512	0.0144035897160304
91	8.90894231478957	0.0138834645714352
92	9.01294142098125	0.0134243839166228
93	9.10682395559892	0.013018783041327
94	9.19149465564305	0.0126600498506965
95	9.26780152232667	0.012342417860713
96	9.33653186660605	0.0120608642925364
97	9.39841127434005	0.0118110161306117
98	9.45410460376057	0.0115890654466713
99	9.50421833240083	0.0113916942791503
100	9.54930374291218	0.011216008741145
101	9.58986057600467	0.0110594816869905
102	9.62634088691487	0.0109199031054255
103	9.65915292390652	0.0107953373598154
104	9.68866490826306	0.0106840864171187
105	9.71520863959346	0.0105846582665092
106	9.73908288194528	0.0104957398059465
107	9.76055650837924	0.0104161735581746
108	9.77987139680937	0.0103449376593193
109	9.79724507997246	0.0102811286394288
110	9.81287315880828	0.0102239465830614
111	9.82693149237941	0.0101726823187299
112	9.83957817952542	0.0101267063388001
113	9.85095534829706	0.0100854591968419
114		
	9.8611907692619	0.0100484431681783
115	9.87039930830081	0.01001521499226
116	9.87868423372771	0.00998537954329297
117	9.88613839160185	0.00995858429898583
118	9.8928452620586	0.00993451449701826
119	9.89887990842243	0.00991288888543368
120	9.90430982982681	0.00989345598712165
121	9.90919572707387	0.00987599081030704
122	9.91359219053666	0.00986029194685875
	9.9175483180453	
123		0.009846179008576
124	9.92110826990807	0.00983349035865773
125	9.92431176749755	0.00982208110152325
126	9.92719454117825	0.00981182129920675
127	9.9297887327614	0.00980259438684238
128	9.93212325713985	0.00979429576341316
129	9.93422412727712	0.00978683153705768
130	9.93611474629448	0.00978011740689898
131	9.93781617001369	0.00977407766565081
132	9.93934734296707	0.00976864430922629
133	9.9407253105762	0.00976375624127245
134	9.94196540992271	0.00975935856202228
135	9.94308144128545	0.00975540193212789
136	9.94408582239542	0.00975184200324353
137	9.94498972715951	0.009748638908089
138	9.94580321042556	0.0097457568035639
139	9.94653532020002	0.00974316346121721
140	9.94719419858609	0.00974082990002026
141	9.94778717258079	0.00973873005695666
142	9.94832083575378	0.0097368404914395
143	9.94880112172688	0.00973514012000509
144	9.94923337028006	0.00973360997811904
145	9.94962238682599	0.00973223300627306
146	9.94997249592017	0.00973099385785388
147	9.95028758940625	0.00972987872653464
148	9.95057116973561	0.00972887519117767
149	9.95082638894587	0.00972797207644994
150	9.95105608373417	0.00972715932754147
151	9.95126280701703	0.00972642789754502

152	9.95144885632944	0.00972576964620574
153	9.95161629938	0.00972517724888325
154	9.9517669970474	0.00972464411468833
155	9.95190262407454	0.00972416431286326
156	9.95202468769125	0.00972373250657059
157	9.95213454437291	0.00972334389334068
150	0 05222241402100	0 00072200415150405
158	9.95223341492188	0.00972299415150495
159	9.95232239803962	0.00972267939201048
160	9.9524024825407	0.00972239611507324
161	9.95247455834468	0.00972214117118203
162	9.95253942636819	0.00972191172601533
162		
163	9.95259780742725	0.00972170522887698
164	9.95265035024909	0.00972151938429692
165	9.95269763868239	0.0097213521264789
166	9.95274019818619	0.00972120159630895
167	9.95277850166981	0.00972106612066767
168	9.95281297474853	0.00972094419381497
169	9.95284400047357	0.00972083446063936
170	9.95287192358901	0.00972073570158469
171	9.95289705436285	0.00972064681908621
172	9.95291967203496	0.00972056682536467
173	9.95294002792014	0.00972049483144224
174	9.95295834820083	0.00972043003725787
175	9.95297483644051	0.00972037172277206
176	9.95298967584574	0.00972031923996173
177	9.95300303130196	0.00972027200561622
178	9.95301505120568	0.00972022949485413
179	9.95302586911346	0.00972019123528882
180	9.95303560522595	0.00972015680177773
181	9.95304436772354	0.00972012581169685
182	9.9530522539684	0.00972009792068815
183	9.95305935158638	0.00972007281883222
184	9.95306573944062	0.00972005022720393
185	9.95307148850786	0.00972002989477253
186	9.95307666266711	0.00972001159561185
187	9.9530813194094	0.00971999512638959
188	9.95308551047662	0.00971998030410765
189	9.95308928243644	0.00971996696406856
190	9.95309267719973	0.00971995495804526
191	9.95309573248625	0.0097199441526339
192	9.95309848224376	0.00971993442777148
193	9.95310095702522	0.0097199256754016
194	9.9531031843283	0.00971991779827383
195	9.95310518890089	0.00971991070886297
196	9.95310699301605	0.00971990432839655
197	9.95310861671958	0.0097198985859795
198	9.95311007805265	0.00971989341780634
199	9.95311139325234	0.00971988876645229
200	9.95311257693198	0.00971988458023508
201	9.95311364224361	0.00971988081264076
202	9.95311460102404	0.00971987742180683
203	9.95311546392638	0.00971987437005705
204	9.95311624053846	0.00971987162348287
205	9.95311693948931	0.00971986915156661
206	9.95311756854506	0.00971986692684239
207	9.95311813469521	0.00971986492459092
208	9.95311864423034	0.00971986312256486
209	9.95311910281195	0.00971986150074163
210	9.95311951553538	0.0097198600411009
211	9.95311988698647	0.00971985872742438
212	9.95312022129244	0.00971985754511563
213	9.95312052216781	0.00971985648103784
214	9.95312079295564	0.00971985552336791
215	9.95312103666469	0.00971985466146504
Z T D	ッ・フンンエムエビンロロロ4ロソ	40C041G04C0C1/C0G+G
0.4.6		
216	9.95312125600283	0.0097198538857525

```
0.00971985318761126
217
              9.95312145340715
                                   0.00971985255928417
218
              9.95312163107104
219
              9.95312179096854
                                   0.00971985199378981
                                   0.00971985148484492
220
              9.95312193487628
221
              9.95312206439326
                                   0.00971985102679453
222
              9.95312218095853
                                   0.00971985061454919
223
              9.95312228586728
                                    0.0097198502435284
224
              9.95312238028515
                                    0.0097198499096097
225
              9.95312246526123
                                   0.00971984960908288
226
              9.95312254173971
                                   0.00971984933860874
227
              9.95312261057033
                                   0.00971984909518202
228
               9.9531226725179
                                   0.00971984887609798
              9.95312272827071
229
                                   0.00971984867892234
230
              9.95312277844823
                                   0.00971984850146427
231
              9.95312282360801
                                   0.00971984834175202
232
               9.9531228642518
                                   0.00971984819801098
233
              9.95312290083122
                                   0.00971984806864406
234
               9.9531229337527
                                   0.00971984795221382
              9.95312296338202
                                   0.00971984784742661
235
236
              9.95312299004842
                                   0.00971984775311813
237
              9.95312301404817
                                   0.00971984766824049
              9.95312303564795
                                   0.00971984759185061
238
              9.95312305508775
239
                                   0.00971984752309973
              9.95312307258358
                                   0.00971984746122393
240
241
              9.95312308832982
                                   0.00971984740553571
242
              9.95312310250143
                                   0.00971984735541632
243
              9.95312311525588
                                   0.00971984731030886
244
              9.95312312673489
                                   0.00971984726971215
245
                9.953123137066
                                   0.00971984723317511
                9.953123146364
                                   0.00971984720029178
246
247
              9.95312315473219
                                   0.00971984717069677
              9.95312316226357
                                   0.00971984714406127
248
249
              9.95312316904181
                                   0.00971984712008932
250
              9.95312317514223
                                   0.00971984709851457
251
               9.9531231806326
                                   0.00971984707909729
252
              9.95312318557394
                                   0.00971984706162173
253
              9.95312319002114
                                   0.00971984704589374
254
              9.95312319402363
                                   0.00971984703173854
255
              9.95312319762586
                                   0.00971984701899886
              9.95312320086787
                                   0.00971984700753315
256
257
              9.95312320378568
                                   0.00971984699721401
258
              9.95312320641171
                                   0.00971984698792679
259
              9.95312320877514
                                   0.00971984697956829
              9.95312321090222
                                   0.00971984697204563
260
261
              9.95312321281659
                                   0.00971984696527525
                                    0.0097198469591819
262
              9,95312321453953
263
              9.95312321609018
                                   0.00971984695369789
264
              9.95312321748576
                                   0.00971984694876227
265
              9.95312321874178
                                   0.00971984694432022
               9.9531232198722
                                   0.00971984694032238
266
267
              9.95312322088957
                                   0.00971984693672432
268
              9.95312322180521
                                   0.00971984693348606
269
              9.95312322262929
                                   0.00971984693057163
```

$x1 = (5-(5/4)*sqrt(x(end))-(5/6)*sqrt(y(end)))^(2)$

x1 = 0.949203801899108

```
producto = 0.2*sqrt(x1)+0.25*sqrt(x(i))+(1/6)*sqrt(y(i))
```

producto =

c) Resuelva el problema para ρ de 0,2 a 0,8. Grafique los precios pagados y las cantidades consumidas de cada bien.

```
for ro = 0.2, 0.3, 0.4 %es problematico que no se puede asegurar convergencia con todos los val
    x(1) = 0.001;
y(1) = 0.001;
e = 10^(-10); % criterio de convergencia
i = 1; % contador de iteracion
f = (5-(5/4)*sqrt(X)-(5/6)*sqrt(Y))^(2*ro)+2*X^ro+(1/3)*Y^ro;
assume(X >= 0 & Y >= 0);
df dx = diff(f, X);
df_dy = diff(f, Y);
J = [subs(df_dx,[X,Y], [x(1),y(1)]) subs(df_dy, [X,Y], [x(1),y(1)])]; % Gradiente
ddf ddx = diff(df dx,X);
ddf ddy = diff(df dy,Y);
ddf_dxdy = diff(df_dx,Y);
ddf_ddx_1 = subs(ddf_ddx, [X,Y], [x(1),y(1)]);
ddf_ddy_1 = subs(ddf_ddy, [X,Y], [x(1),y(1)]);
ddf_dxdy_1 = subs(ddf_dxdy, [X,Y], [x(1),y(1)]);
H = [ddf_ddx_1, ddf_dxdy_1; ddf_dxdy_1, ddf_ddy_1]; % Hessiano
S = inv(H);
while norm(J) > e
    R = [x(i),y(i)]';
    x(i+1) = I(1)-u*S(1,:)*J';
   y(i+1) = I(2)-u*S(2,:)*J';
    i = i+1;
    J = [subs(df_dx,[X,Y], [x(i),y(i)]) subs(df_dy, [X,Y], [x(i),y(i)])]; % Updated Jacobian
    ddf_ddx_1 = subs(ddf_ddx, [X,Y], [x(i),y(i)]);
    ddf_ddy_1 = subs(ddf_ddy, [X,Y], [x(i),y(i)]);
    ddf dxdy 1 = subs(ddf_dxdy, [X,Y], [x(i),y(i)]);
   H = [ddf_ddx_1, ddf_dxdy_1; ddf_dxdy_1, ddf_ddy_1]; % Updated Hessian
    S = inv(H); % New Search Direction
end
ix = ro*10-1
xR(ix) = x(end)
yR(ix) = y(end)
zR(ix) = (5-(5/4)*sqrt(x(end))-(5/6)*sqrt(y(end)))^(2)
IR(ix) = 0.2*sqrt(x1)+0.25*sqrt(x(i))+(1/6)*sqrt(y(i))
end
ans =
  0.3000000000000000
ans =
  0.4000000000000000
Tbl = table(xR, yR, zR, IR)
display(Tbl)
```