Link to my github

Lab 03-vivado

1. Table SW+LED

SW	SW_PORT	LED	LED_PORT
SW0	J15	LED0	H17
SW1	L16	LED1	K15
SW2	M13	LED2	J13
SW3	R15	LED3	N14
SW4	R17	LED4	R18
SW5	T18	LED5	V17
SW6	U18	LED6	U17
SW7	R13	LED7	U16
SW8	Т8	LED8	V16
SW9	U8	LED9	T15
SW10	R16	LED10	U14
SW11	T13	LED11	T16
SW12	H6	LED12	V15
SW13	U12	LED13	V14
SW14	U11	LED14	V12
SW15	V10	LED15	V11

2. Two-bit wide 4-to-1 multiplexer

VHDL architecture

```
architecture Behavioral of mux_2bit_4to1 is
begin

    f_o <= a_i when (sel_i = "00" ) else
         b_i when (sel_i = "01" ) else
         c_i when (sel_i = "10" ) else
         d_i;
end architecture Behavioral;</pre>
```

VHDL stimulus process

```
p_stimulus : process
begin

s_a <= "00"; s_b <= "01"; s_c <= "10"; s_d <= "11";
s_sel <= "00"; wait for 100 ns;

s_a <= "00"; s_b <= "01"; s_c <= "10"; s_d <= "11";
s_sel <= "10"; wait for 100 ns;

s_a <= "00"; s_b <= "01"; s_c <= "10"; s_d <= "11";
s_sel <= "01"; wait for 100 ns;

s_a <= "00"; s_b <= "01"; s_c <= "10"; s_d <= "11";
s_sel <= "01"; wait for 100 ns;

wait;
end process p_stimulus;</pre>
```

Sreenshot of simulated waveforms

3. Vivado tutorial

Create new projekt

mux Editions

Choose project name and directory

Select project type

Add design/constraint sources

Choose a part

Finish creating

Add Sources (Alt+A)

Run simulation

