II. IN THE CLAIMS

1	1. (previously amended) In a ROW device using a plurality of data resistors to
2	interconnect a plurality of input word lines with a plurality of output bit lines, a
3	temperature compensation circuit to maintain a current through a selected one of a
4	plurality of data resistors substantially constant comprising:
5	at least one reference resistor, wherein the conductivity of said reference
6	resistors is responsive to changes in temperature;
7	a constant current source coupled to said at least one reference resistor,
8	said constant current source developing a voltage across said at least one
9	reference resistor; and
10	at least one switch connected to said at least one reference resistor to
11	selectively couple said voltage to a plurality of input word lines wherein the ROM
12	device uses said plurality of data resistors to interconnect said plurality of input
13	word lines with a plurality of output bit lines.
1	2. (previously amended) A temperature compensation circuit as recited in Claim 1
2	wherein electrical conductive properties of said reference resistor are selected to
3	be the same as the electrical conductive properties of said data resistors.
1	3. (original) A temperature compensation circuit as recited in Claim 2 wherein said
2	data resistor is selected from a polysilicon material.
1	4. (original) A temperature compensation circuit as recited in Claim 3 wherein said
2	polysilicon material is undoped.

- 5. (original) A temperature compensation circuit as recited in Claim 3 wherein said polysilicon material is doped.
- 6. (original) A temperature compensation circuit as recited in Claim 2 wherein said data resistor is comprised of a metal oxide.
- 7. (previously amended) A temperature compensation circuit as recited in Claim 1
 wherein conductive properties of said reference resistors are selected such that a
 change in electrical conductive properties of said reference resistors matches a
 change in electrical conductive properties of said data resistors.
- 8. (original) A temperature compensation circuit as recited in Claim 7 wherein said data resistor is selected from a polysilicon material.
- 9. (original) A temperature compensation circuit as recited in Claim 8 wherein said polysilicon material is undoped.
- 1 10. (original) A temperature compensation circuit as recited in Claim 8 wherein said polysilicon material is doped.
- 1 11. (original) A temperature compensation circuit as recited in Claim 7 wherein said
 2 data resistor is comprised of a metal oxide.
- 1 12. (original) A temperature compensation circuit as recited in Claim 1 further comprising:
- a plurality of sense amplifiers coupled to said output bit lines, each output
 line having at least one sense amplifier, said sense amplifier receiving said

5	constant current flowing through said data resistors wherein each of said sense
6	amplifier provides a constant output voltage.
1	13. (original) A temperature compensation circuit as recited in Claim 12 wherein said
2	sense amplifier comprises
3	an operational amplifier with a fixed feedback resistor, R, wherein said
4	amplifier output voltage is determined from the value of said constant current and
5	said feedback resistor.
1	14. (original) A temperature compensation circuit as recited in Claim 13 wherein said
2	feedback resistor is temperature independent.
1	15. (original) A temperature compensation circuit as recited in Claim 1 wherein said at
2	least one switch selectively couples said voltage to a selected one of said input
3	word lines when an input to said switch is high.
1	16. (original) A temperature compensation circuit as recited in Claim 1 wherein said at
2	least one switch selectively couples said voltage to a selected one of said input
3	word lines when an input to said switch is low.
1	17. (original) A temperature compensation circuit as recited in Claim 12 wherein said
2	sense amplifier is operated in the non-linear region.
1	18. (original) A temperature compensation circuit as recited in Claim 12 wherein said
2	sense amplifier is operated in the linear region.

1	19. (currently amended) A method to maintain a current through Read-Only
2	Memory (ROM) substantially constant as temperature changes comprising the
3	steps of:
4	selecting a reference resistor wherein said ROM employs a plurality of
5	data resistors to provide electrical interconnections between a plurality of input
6 .	lines and output lines and a change in electrical conductive properties of said
7	reference resistor matches a change in electrical conductive properties of said data
8	resistor;
9	supplying a reference voltage to said input lines, said reference voltage
10	developed by supplying a constant current to said reference resistor, wherein said
11	reference voltage is responsive to a change in temperature and selectively
12	switching said reference voltage to said word line.
1	20. (original) The method as recited in Claim 19 wherein said data resistor is comprised
2	of undoped polysilicon.
1	21. (original) The method as recited in Claim 19 wherein said data resistor is comprised
2	of doped polysilicon.
1	Cancel claim 22.
1	23. (previously amended) In a ROM device, a temperature compensation circuit to
2	maintain a current through a selected one of a plurality of data resistors
3	substantially constant comprising:

4	at least one voltage source producing a voltage that is responsive to
5	changes in temperature; and
6	at least one switch connected to said at least one voltage source to
7	selectively couple said voltage to a plurality of input word lines wherein the ROM
8	device uses said plurality of data resistors to interconnect said plurality of input
9	word lines with a plurality of output bit lines.
1 .	24. (original) A temperature compensation circuit as recited in Claim 23 further
2	comprising:
. 3	a plurality of sense amplifiers coupled to said output bit lines, each output
4	line having at least one sense amplifier, said sense amplifier receiving said
5	constant current flowing through said data resistors wherein each of said sense
6	amplifier provides a constant output voltage.
1	25. (original) A temperature compensation circuit as recited in Claim 24 wherein said
2	sense amplifier comprises
3	an operational amplifier with a fixed feedback resistor, R, wherein said
4	amplifier output voltage is determined from the value of said constant current and
5	said feedback resistor.
1	26. (original) A temperature compensation circuit as recited in Claim 25 wherein said
2	feedback resistor is temperature independent.
1	27. (original) A temperature compensation circuit as recited in Claim 24 wherein said
2	sense amplifier is operated in the non-linear region.

1	28. (original) A temperature compensation circuit as recited in Claim 24 wherein said
2	sense amplifier is operated in the linear region.
1	29. (original) A temperature compensation circuit as recited in Claim 23 wherein said a
2	least one switch selectively couples said voltage to a selected one of said input
3	word lines when an input to said switch is high.
1	30. (original) A temperature compensation circuit as recited in Claim 23 wherein said a
2	least one switch selectively couples said voltage to a selected one of said input
3	word lines when an input to said switch is low.
1	31. (original) A temperature compensation circuit as recited in claim 23 wherein said
2	temperature responsive voltage changes to compensate for changes in voltage
3	across said data resistor.
1	32. (currently amended) A method to maintain a current through Read-Only
2	Memory (ROM) substantially constant as temperature changes, comprising the
3	steps of:
4	supplying a reference voltage that is responsive to changes in temperature
5	to a plurality of input lines, wherein said ROM employs a plurality of data
6	resistors to provide electrical interconnections between said plurality of input
7	lines and a plurality of output lines and said reference voltage changes to maintain
8	said current through said data resistor substantially constant and selectively
)	switching said reference voltage to said word line.

Cancel claim 33.