

Equitable Equations: Boxplots

Problem 1

The following table shows 20 observations of gas mileages of 20 cars from model year 1974.

					I	I		18.7	
19.2	21.0	21.0	21.4	22.8	22.8	27.3	30.4	32.4	33.9

- (a) Compute the five-number summary and IQR.
- (b) Should any of these observations be considered outliers? Apply the standard from class.
- (c) Sketch a boxplot for this data.

Problem 2

Refer to the rock_sample data set, available on Moodle.

- (a) Compute the five-number summary and IQR for the area variable. The sort command may be helpful. Do NOT use more advanced tools (even the median function).
- (b) Should any of these observations be considered outliers? Apply the standard from class.
- (c) Sketch a boxplot for this data.

Problem 3

Refer to the iris data set, which is built-in in R.

- (a) Compute the five-number summary and interquartile range for the variable Sepal. Width using one command each (no arithmetic or sorting needed).
- (b) Should any of these observations be considered outliers? Apply the standard from class.
- (c) Sketch a boxplot for this data.

1.

A) Min:10.4

Q1:15.5

M: 19.2

Q3: 22.8

Max:33.9

IQR:7.3

1.5x1QK=10.95

2.

A) Min: 1016

Q1: 5,256.5

M:7416

Q3: 8871

1.5x1QR=5421.75

Max: 12212

IQR: 3614.5

IQR: 3614.5 No oviliers
B) Outliers include 1016, 1468, 1651

B)Outliers include 10.4, 30.4, 32.4 and

3.

A) Min: 2

Q1:2.8

M:3

Q3: 3.4

Max: 4.4

1.5x19K=0.75

IQR:0.5

B) anything below 2. or above is an outlier

C)

