Electrónica Digital Clase 8

TRANSISTOR BJT
TRANSISTOR MOSFET
RELÉ

Transistor para actuadores DC

- La intención de una interfaz para actuadores DC es convertir una señal de control en una señal de potencia.
- Existen tres interfaces clásicas para esta tarea:

BJT

(Bipolar Junction Transistor)

- Requiere de una resistencia calculada para operar correctamente.
- Controlado por corriente.
- Económico.
- Permite operar a altas velocidades (PWM).
- No es aislado.

MOSFET

(Metal Oxide Field Effect Transistor)

- Fácil de implementar.
- Consume menos que el BJT.
- Controlado por voltaje.
- Mas tolerante al calor.
- No es aislado.

Transistor como suiche

- Dispositivo electrónico perteneciente a la familia de los semiconductores.
- Bajo ciertos parámetros, funcionan como un suiche común y corriente "comandado" por una señal eléctrica en vez de una acción mecánica.
- Permiten manejar elementos de potencia utilizando señales de control provenientes de un Arduino por ejemplo.
- Hay diferentes tipos de transistor dependiendo de la corriente que se quiera manejar en la parte de potencia.
- Para esta materia usaremos configuración NPN (El 2N2222 o el TIP122), es decir, se activan con un "1" en su base.
- El transistor realmente puede estar en tres estados:
 - Corte (cuando no tienen corriente en su base $I_B = 0$).
 - Pegión Activa (zona de amplificación de corriente, necesitan un poco corriente para estar en este estado) (Zona análoga).
 - Saturación (cuando se le pone una corriente elevada en su base, permitiendo el máximo paso de corriente como si fuera un suiche).

Tipos de transistor

Transistor PNP

Transistor NPN

Diseño de transistores como suiches

 El circuito básico para manejar un transistor como suiche se muestra a continuación:

Algunas consideraciones para el transistor como suiche:

$$I_C \approx I_E$$

 $V_{BE(sat)} = 0.8 V$ (Voltaje entre base y emisor cuando el transistor se encuentra saturado).

 $V_{CE(sat)} = 0.2 V$ (Voltaje entre colector y emisor cuando el transistor se encuentra en región activa).

 $\beta=\frac{I_{C(act)}}{I_{B(act)}}$ (β es el factor de amplificación del transistor, típicamente es 100). Esta formula solo aplica para el transistor en región activa.

 $I_{B(min)} = \frac{I_{C(sat)}}{\beta}$ (La corriente de base mínima para que el transistor trabaje es la corriente del colector en saturación sobre el beta)

Diseño de transistores como suiches

La formula para calcular R_B es:

Suponiendo LOAD como una carga resistiva:

$$LOAD = R_{LOAD}$$

$$V_{LOAD} = V_{cc} - V_{CE(sat)}$$

Por ley de ohm y sabiendo que $I_{C(sat)} = I_{LOAD}$:

$$I_{C(sat)} = \frac{V_{LOAD}}{R_{LOAD}}$$

Por el β del transistor podemos calcular la corriente de base mínima:

$$I_{B(min)} = \frac{I_{C(sat)}}{\beta}$$

$$I_{B(min)} = \frac{V_{cc} - V_{CE(sat)}}{R_{LOAD} \cdot \beta}$$

Ahora procedemos a reemplazar en la primera ecuación

$$\frac{V_{cc} - V_{CE(sat)}}{R_{LOAD} \cdot \beta} \ll \frac{V_{in} - V_{BE(sat)}}{R_B}$$

Despejamos R_B :

$$R_B \ll \frac{R_{LOAD} \cdot \beta (V_{in} - V_{BE(sat)})}{V_{cc} - V_{CE(sat)}}$$

Se cuenta con un motor cuyo voltaje máximo de operación es de 12 VDC, cuya resistencia interna es de $R_M = 100 \, \Omega$. Se desea poder prender y apagar este motor utilizando un Arduino cuyas salidas digitales son 0V ó 5V, diseñe un circuito con transistores como suiche (Nota: Utilice un transistor estándar con $\beta = 100$, $V_{BE(sat)} = 0.8 \, V$, $V_{CE(sat)} = 0.2 \, V$). Además se cuenta con una fuente de $V_{cc} = 12 \, VDC$ para poder suministrar la potencia requerida al motor.

Solución:

Recordar que:

$$I_{B(min)} \ll I_{B(sat)}$$
 (1)

Circuito del colector en región activa:

$$V_M = V_{cc} - V_{CE(sat)}$$

 $V_M = 12 V - 0.2 V = 11.8 V$

Por ley de ohm y sabiendo que $I_{C(sat)} = I_M$:

$$I_{C(sat)} = \frac{V_M}{R_M} = \frac{11.8 \, V}{100 \, \Omega} = 0.118 \, A$$

Por el β del transistor podemos calcular la corriente de base mínima:

$$I_{B(min)} = \frac{I_{C(sat)}}{\beta}$$

$$I_{B(min)} = \frac{0.118 A}{100} = 0.00118 A (2)$$

Circuito de la base en región de saturación:

$$V_{R_B} = V_{in} - V_{BE(sat)}$$

 $V_{R_B} = 5 V - 0.8 V = 4.2 V$

Por ley de ohm:

$$I_{B(sat)} = \frac{V_{R_B}}{R_B} = \frac{4.2 V}{R_B}$$

$$I_{B(sat)} = \frac{\frac{4.2 V}{R_B}}{\frac{4.2 V}{R_B}}$$
(3)

Ahora procedemos a reemplazar (2) y (3) en (1)

$$\frac{I_{B(min)} \ll I_{B(sat)}}{V_{cc} - V_{CE(sat)}} \ll \frac{V_{in} - V_{BE(sat)}}{R_B}$$

$$0.00118 A \ll \frac{4.2 V}{R_B}$$

Despejamos R_B :

$$R_{B} \ll \frac{R_{M} \cdot \beta \left(V_{in} - V_{BE(sat)}\right)}{V_{cc} - V_{CE(sat)}}$$

$$R_{B} \ll \frac{4.2 V}{0.00118 A}$$

$$R_{B} \ll 3559 \Omega$$

Como bien sabemos, el ARDUINO solo puede manejar por pin una corriente de $40\,mA$ como máximo, Calculemos cual es la resistencia mínima que podríamos usar con el ARDUINO:

$$I_{pinArd} = I_{B(sat)} < 40 \text{ mA}$$

$$\frac{5 \text{ V} - 0.8 \text{ V}}{R_B} < 40 \text{ mA}$$

Despejamos R_B :

$$R_B > \frac{4.2 V}{40 mA}$$

$$R_B > 105 \Omega$$

Por el calculo anterior del transistor, el rango de R_B es:

$$105 \Omega < R_B \ll 3559 \Omega$$

Para que sea una resistencia comercial usaremos:

$$R_B = 1000 \Omega$$

Se desea manejar un LED de alta potencia cuya corriente máxima es de $350\,mA$. Se desea poder prender y apagar este LED utilizando un Arduino cuyas salidas digitales son 0V ó 5V. Diseñe un circuito con transistores como suiche (Nota: Utilice un transistor estándar con $\beta=100$, $V_{BE(sat)}=0.8\,V$, $V_{CE(act)}=0.2\,V$). Además solo se cuenta con una batería de 12V DC para prender este LED debido a que se requiere que el producto sea portable (El Arduino también esta conectado a la misma batería).

Circuito del colector en región activa:

Como conocemos ya la corriente que debe pasar por el colector en saturación, solo debemos convertir esta corriente desde el colector a la de base mínima por medio del Beta:

$$I_{B(min)} = \frac{I_{C(sat)}}{\beta} = \frac{350 \text{ mA}}{100}$$

$$I_{B(min)} = 0.0035 \text{ A} (2)$$

Circuito de la base en región de saturación:

$$V_{R_B} = V_{in} - V_{BE(sat)}$$

 $V_{R_B} = 5 V - 0.8 V = 4.2 V$

Por ley de ohm:

$$I_{B(sat)} = \frac{V_{R_B}}{R_B} = \frac{4.2 \text{ V}}{R_B}$$

$$I_{B(sat)} = \frac{4.2 \text{ V}}{R_B}$$

$$(3)$$

Ahora procedemos a reemplazar (2) y (3) en (1)

$$I_{B(min)} \ll I_{B(sat)}$$

$$0.0035 A \ll \frac{V_{in} - V_{BE(sat)}}{R_B}$$

$$0.0035 A \ll \frac{4.2 V}{R_B}$$

Despejamos R_B :

$$R_B \ll rac{4.2 \ V}{0.0035 \ A}$$
 $R_B \ll 1200 \ \Omega$

Como bien sabemos, el ARDUINO solo puede manejar por pin una corriente de $40\,mA$ como máximo, Calculemos cual es la resistencia mínima que podríamos usar con el ARDUINO:

$$I_{pinArd} = I_{B(sat)} < 40 \text{ mA}$$

$$\frac{5 \text{ V} - 0.8 \text{ V}}{R_B} < 40 \text{ mA}$$

Despejamos R_B :

$$R_B > \frac{4.2 V}{40 mA}$$

$$R_B > 105 \Omega$$

Por el calculo anterior del transistor, el rango de R_B es:

$$105 \Omega < R_B \ll 1200 \Omega$$

Para que sea una resistencia comercial usaremos:

$$R_B = 330 \Omega$$

Interfaz para actuadores DC - MOSFET

- Dispositivo electrónico perteneciente a la familia de los semiconductores.
- Se comandan por voltaje
- El MOSFET puede estar en tres estados:
 - **Corte (OFF)**: Cuando el voltaje en su "gate" es inferior al de "threshold" $(V_{GS} < V_{GS(th)})$.
 - Región Lineal (Zona análoga).
 - Saturación (ON) (Cuando el voltaje en su "gate" es lo suficientemente grande para que el MOSFET permita todo el paso de corriente).
- Algunas referencias comunes son el IRF630 y el IRFP250 (Altas corrientes).

Interfaz para actuadores DC - MOSFET

El circuito básico para manejar un MOSFET se muestra a continuación:

no inversora para esta labor.

Relé

- Es un suiche comandado por un electroimán.
- Permiten manejar dispositivos digitales (ON-OFF) de mas potencia tales como:
 - Bombillas de 110 VAC.
 - Motores de potencia.
 - Resistencias eléctricas de 110VAC para calentar.
- Se pueden adquirir diferentes tipos de bobinas con diferentes voltajes, entre ellos las mas comunes son:
 - 5 VDC, 12 VDC, 24 VDC, 110 VAC y 220 VAC.

	1	Bobina
	2	Armadura
	3	Terminal móvil (Pata Común)

Símbolo

Nota Importante: No es aconsejable conectar directamente al ARDUINO un relé (recordar que las patas de I/O máximo soportan 40 mA por pin). Para ello se aconseja poner un transistor que maneje en su colector al relé.

Conexión básica del relé

- Se le agrega un diodo en paralelo a la bobina (debido a que estas almacenan corriente y después de almacenar mucha pueden liberarla y dañar otros dispositivos, el diodo previene esto garantizando que esta corriente se descargue por si misma). El diodo mas comúnmente usado para estos es el 1N4007. NOTA: Este diodo también se le debe poner a los motores puesto que también tienen una bobina internamente.
- La carga y el voltaje de la carga son "suicheados" a través del electroimán, logrando encender o apagar la potencia.

Interfaz control - potencia

- Para manejar un relé con un microcontrolador (como un ARDUINO):
 - Cargas como motores de alta potencia usando AC.
 - Bombillas de 110 VAC.
 - Resistencias eléctricas para calentar 110
 VAC.-

- Para manejar:
 - Motores DC hasta 24 VDC.
 - LEDs de potencia.
 - Cintas de LEDs.

Nota: No olvidar que si se usan cargas inductivas (como bobinas o motores) se debe poner un diodo en paralelo a esta que apunte hacia la fuente.

Bibliografia

- Agarwal, A., & Lang, J. H. (2008). Foundations of Analog and Digital Electronic Circuits. Massachusetts, Estados Unidos: Elsevier.
- Boylestad, R. L. (2007). Introductory Circuit Analysis (11 ed.).
 Upper Saddle River: Pearson Prentice Hall.
- digikey. (27 de Marzo de 2013). digikey.com. Obtenido de http://www.digikey.com/en/articles/techzone/2013/mar/a n-introduction-to-brushless-dc-motor-control
- OscarLiang.net. (12 de Octubre de 2013). OscarLiang.net.
 Obtenido de http://blog.oscarliang.net/bjt-vs-mosfet/

MUCHAS GRACIAS