Banded DP

Υ:	1.1	0	C	U	R	R	A	N	C	E	
X:''	0	1	2	3	4	5	6	7	8	9	
0	1	0	1	2	3	4	5	6	7	8	
C	2	1	0	1	2	3	4	5	6	7	
C	3	2	1	1	2	3	4	5	5	6	
U	4	3	2	1	2	3	4	5	6	6	
R	5	4	3	2	1	2	3	4	5	6	
R	6	5	4	3	2	1	2	3	4	5	
E	7	6	5	4	3	2	2	3	4	4	
N	8	7	6	5	4	3	3	2	3	4	

$$P_{1}$$

$$P_{2}$$

$$P_{3}$$

$$P_{4}$$

$$P_{5}$$

$$x_{1} = 1$$

$$x_{1} = 0$$

$$x_{2} = 1$$

$$x_{2} = 0$$

$$\{P_{2}, P_{4}, P_{5}\}$$

AAA

BBB

CCC

GreedyIntervalScheduling(CourseSet)

- 1: while $CourseSet \neq \emptyset$ do
- 2: Select the course *C* with **earliest finishing time**;
- 3: Remove *C* and related courses from *CourseSet*;
- 4: end while

NNINTERVALSCHEDULING(CourseSet)

- 1: while $CourseSet \neq \emptyset$ do
- Select the course C with highest score by NN(CourseSet);
- 3: Remove C and related courses from

Coin

Longest path

Lec7 Array

8 10 6 25 4

Lec7 Linked list

Lec1 Tree

Tree

Union-Find path compression

Lec6 DP 1

Binomial tree BkBk-1

Binomial tree B0123 Insert 1

Binomial tree B0123 Insert 1

Binomial tree B0123 Insert 9 again

Union-Find tree

rank 0.

Links with group id

 B_0

 F_0

Fibonacci Heap Original

Fibonacci Heap: Decrease 13 to 2

Fibonacci Heap: Decrease 18 to 6

Fibonacci Heap: Decrease 19 to 3

Fibonacci Heap Original

Fibonacci Heap Decrease 19 to 3

Fibonacci Heap Decrease 15 to 2

Fibonacci Heap Decrease 12 to 8

Fibonacci Heap Decrease 14 to 1

Fibonacci Heap Decrease 16 to 9

Fibonacci Heap ExtractMin

Fibonacci Heap ExtractMin2

Binomial tree B0123 Union 1 Results

Fibonacci tree Fk

L8-LP example 3D step1

x2

CHART 1

	-	<i>S</i> 1	S2	S3	S4	S5	
-	0	0	0	0	0	0	
T1	0-	(1)	2	3	4	5	6
T2	0	2	Q	4	5	6	7
<i>T</i> 3	0	3	4	(Z)	6	7	8
T4	0	4	5	6	R	8	9
T5	0	5	6	7	8	9	10

CHART 2

AAA

-0.3	0.1	0.4	0.6	0.4	0.6	0.4	0.6	0.4	0.6

-0.3	0.1	0.4	0.7	0.9	1.1	1.3	1.5	1.7	1.9
	1.3	1.7	2.0	2.3	2.5	2.7	2.9	3.1	3.3
		0.9	1.3	1.6	1.9	2.1	2.3	2.5	2.7
			0.6	1.0	1.3	1.6	1.8	2.0	2.2
				0.4	0.8	1.2	1.4	1.7	1.9
					0.6	1.0	1.3	1.6	1.8
						0.4	0.8	1.2	1.4
							0.6	1.0	1.3

Hischberg's algorithm: step 1

Υ:	1.1	0	C	U	
X: ''	0	1	2	3	
0	1	0	1	2	
C	2	1	0	1	
C	3	2	1	1	
U	4	3	2	1	
В	5	4	3	2	Γ

R.

8 7

R

5 4

R

R

Ē

Ē

2 3

Hischberg's algorithm: step 2

Hischberg's algorithm: step 3

Tree

X:C

