

Unit 10

——Analysis of Clocked Sequential Circuits 张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

时序逻辑电路分析——示例3: 异步时序

① 输入方程

$$\begin{cases} J_4 = Y_3^n Y_2^n \\ K_4 = 1 \\ J_3 = K_3 = 1 \\ J_2 = \overline{Y_4}^n, K_2 = 1 \\ J_1 = K_1 = 1 \end{cases}$$

② 次态方程

$$\begin{cases} Y_{4}^{n+1} = J_{4}\overline{Y_{4}}^{n} + \overline{K_{4}}Y_{4}^{n} = \overline{Y_{4}}^{n}Y_{3}^{n}Y_{2}^{n} & CP_{4} = Y_{1} \downarrow \\ Y_{3}^{n+1} = J_{3}\overline{Y_{3}}^{n} + \overline{K_{3}}Y_{3}^{n} = \overline{Y_{3}}^{n} & CP_{3} = Y_{2} \downarrow \\ Y_{2}^{n+1} = J_{2}\overline{Y_{2}}^{n} + \overline{K_{2}}Y_{2}^{n} = \overline{Y_{4}}^{n}\overline{Y_{2}}^{n} & CP_{2} = Y_{1} \downarrow \\ Y_{1}^{n+1} = J_{1}\overline{Y_{1}}^{n} + \overline{K_{1}}Y_{1}^{n} = \overline{Y_{1}}^{n} & CP_{1} \downarrow \end{cases}$$

时序逻辑电路分析——异步时序示例3

② 次态方程

$$\begin{cases} Y_{4}^{n+1} = J_{4}\overline{Y_{4}}^{n} + \overline{K_{4}}Y_{4}^{n} = \overline{Y_{4}}^{n}Y_{3}^{n}Y_{2}^{n} & CP_{4} = Y_{1} \downarrow \\ Y_{3}^{n+1} = J_{3}\overline{Y_{3}}^{n} + \overline{K_{3}}Y_{3}^{n} = \overline{Y_{3}}^{n} & CP_{3} = Y_{2} \downarrow \\ Y_{2}^{n+1} = J_{2}\overline{Y_{2}}^{n} + \overline{K_{2}}Y_{2}^{n} = \overline{Y_{4}}^{n}\overline{Y_{2}}^{n} & CP_{2} = Y_{1} \downarrow \\ Y_{1}^{n+1} = J_{1}\overline{Y_{1}}^{n} + \overline{K_{1}}Y_{1}^{n} = \overline{Y_{1}}^{n} & CP_{1} \downarrow \end{cases}$$

④ 状态图

8421 BCD 码异步加法计数器

③ 状态转换表

● 小心 村状化											
	现			次态				时钟			
Y ₄ n	Y ₃ n	Y ₂ n	Y ₁ n	Y ₄ n+1	Y ₃ n+1	Y ₂ n+1	Y ₁ n+1	cp ₄	cp ₃	cp ₂	cp₁
0	0	0	0	0	0	0	1	无	无	无	\downarrow
0	0	0	1	0	0	1	0	\downarrow	无	\downarrow	\downarrow
0	0	1	0	0	0	1	1	无	无	无	\downarrow
0	0	1	1	0	1	0	0	\downarrow	\downarrow	\downarrow	\downarrow
0	1	0	0	0	1	0	1	无	无	无	\downarrow
0	1	0	1	0	1	1	0	\downarrow	无	\downarrow	↓
0	1	1	0	0	1	1	1	无	无	无	↓
0	1	1	1	1	0	0	0	\downarrow	\downarrow	\downarrow	↓
1	0	0	0	1	0	0	1	无	无	无	↓
1	0	0	1	0	0	0	0	\downarrow	无	\downarrow	\downarrow
1	0	1	0	1	0	1	1	无	无	无	\downarrow
1	0	1	1	0	1	0	0	\downarrow	\downarrow	\downarrow	↓
1	1	0	0	1	1	0	1	无	无	无	↓
1	1	0	1	0	1	0	0	\downarrow	无	↓	↓
1	1	1	0	1	1	1	1	无	无	无	↓
1	1	1	1	0	0	0	0	↓	\downarrow	↓	↓

时序逻辑电路分析——异步时序总结

异步时序逻辑电路分析方法总结

确定系统变量(输入变量、输出变量、状态变量)

- ① 确定每个触发器的时钟由谁供给?
- ② 列写三组方程:
 - 驱动方程(控制函数)、状态方程(次态方程)、输出方程(输出函数)
- ③ 列写状态转换表:
 - 首先,从假定(或给定)的某一个初始状态开始,每来一个外输入及外接时钟脉冲,确定与之对应的触发器次态及输出;
 - 其次,确定该触发器的状态改变能否给其它触发器提供需要的时钟边沿。若能,则与 之相应的其它触发器动作。否则,与之相应的其它触发器保持;重复该步骤,直到所 有触发器的次态都确定为止。
 - 接着,该次态成为新的现态,来一个外输入及外接时钟脉冲,重复上述操作,直到所有的2ⁿ个现态到次态的转换都已计算完毕;从表中第一行开始,寻找状态转换规律;
- ③ 画出完整的状态图; ④ 得出电路功能,并说明能否自启动