Session de Janvier 2014 Module : Chimie générale I

Correction de l'épreuve de Thermochimie (SMPC1)

A- Question de cours : (6 points)

On réalise une compression réversible isotherme ($\mathbf{T} = 300 \text{ K}$) de 5 moles d'un gaz parfait, de $\mathbf{P_1} = 4 \text{ atm}$ jusqu'à $\mathbf{P_2} = 20 \text{ atm.}$ On donne : $\mathbf{R} = 8,31 \text{ J mol}^{-1} \text{ K}^{-1}$

Calculer le travail échangé W et déduire la chaleur échangée Q, pendant cette transformation.
 (2,5 pt)

Premier principe de la thermodynamique : $\Delta U = W + Q$

Pour un gaz parfait, U ne dépend que de T : isotherme, on a $\Delta U = W + Q = 0 \Rightarrow W = -Q$

Pour une transformation réversible : $\delta W_{rév} = -P_{ext}$.dV avec $P_{ext} = P_{gaz} = n R T/V$ (variable)

$$\begin{split} W_{r\acute{e}v} = -\int\limits_{V1}^{V2} \frac{n \; R \; T}{V} \; dV = - n \; R \; T \; Ln \Big(\frac{V2}{V1} \Big) = - n \; R \; T \; Ln \Big(\frac{P1}{P2} \Big) \quad car \; P_1 V_1 = \; P_2 V_2 = Cte \\ Q_{r\acute{e}v} = - W_{r\acute{e}v} = \; n \; R \; T \; Ln \Big(\frac{P1}{P2} \Big) \\ AN: \; W_{r\acute{e}v} = -5 \; *8,31 * \; 300 \; Ln \Big(\frac{4}{20} \Big) = 20061 \; J \; (\; ou \; 20,61 \; kJ) \\ Q_{r\acute{e}v} = -20061 \; J \; (\; ou \; -20,61 \; kJ) \end{split}$$

2) Calculer la variation de l'entropie ΔS relative à cette transformation. Que peut-on conclure ? (2 pt)

D'après le deuxième principe : $dS = \delta Q_{r\acute{e}v}/T$ et puisque la température est constante (isotherme), on

aura :
$$\Delta S = Q_{r\acute{e}v}/T = -W_{r\acute{e}v}/T = n R Ln(P_1/P_2)$$

Application numérique : $\Delta S = -20061/300 = -66,87 \text{ J/K}$

Conclusion : $\Delta S < 0 \Rightarrow$ donc le désordre diminue lors de cette transformation

3) Calculer la variation de l'enthalpie libre ΔG relative à cette transformation. (1,5pt)

$$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$$

Pour un gaz parait H dépend que de T \Rightarrow Isotherme : $\Delta H = 0$

$$\Delta G = -T \Delta S = -T (Orév/T) = -Orév = Wrév = -n R T Ln (P_1/P_2)$$

 $\Delta G = 20061 \text{ J} \text{ (ou } 20,061 \text{ kJ)} > 0 \text{ (Cette transformation nécessite une intervention du milieu extérieur)}$

B- Problème: (14 points)

On considère la réaction suivante, réalisée entre des gaz supposés parfaits, sous une pression constante d'une atmosphère.

$$H_2O(g) + CO(g) \rightarrow H_2(g) + CO_2(g)$$

Données thermochimiques relatives aux substances gazeuses sous P = 1 atm et T = 298°K

	$H_2O(g)$	CO (g)	$\mathbf{H}_{2}\left(\mathbf{g}\right)$	CO ₂ (g)
$\Delta H_{f}^{0}(kJ \text{ mol}^{-1})$	- 241,8	- 110,5	0,00	- 393,5
S ⁰ (J mol ⁻¹ K ⁻¹)	150,8	235,6	130,5	213,6

1) Calculer les variations de l'enthalpie $\Delta \mathbf{H_r^0}$ et de l'entropie $\Delta \mathbf{S_r^0}$ à $\mathbf{T} = \mathbf{298}$ K. Que peut-on déduire à partir de ces valeurs numériques ? (3pt)

La loi de Hess :
$$\Delta H^0_r = \Delta H^\circ_f(CO_2,g) + \Delta H^\circ_f(H_2,g) - \Delta H^\circ_f(CO,g) - \Delta H^\circ_f(H_2O,g)$$

$$\Delta H_{r}^{0} = -393.5 + 0 + 110.5 + 241.8 = -41.2 \text{ kJ/mol}$$

 $\Delta H_0^0 < 0$: réaction exothermique

$$\Delta S^{0}_{r} = S^{\circ}(CO_{2},g) + S^{\circ}(H_{2},g) - S^{\circ}(CO,g) - S^{\circ}(H_{2}O,g)$$

$$\Delta S^{0}_{r}$$
 = 213,6 +130,5 - 235,6 -150,8 = -42,3 J/Kmol

 $\Delta S_r^0 < 0$: Au cours de cette transformation le désordre diminue

On considère que ces grandeurs ΔH^0_r et ΔS^0_r sont constantes et n'évoluent pas en fonction de la température.

2) Donner l'expression de la variation de l'enthalpie libre ΔG^0_r en fonction de la température T. (2pt)

$$\Delta G_{r}(T) = \Delta H_{r} - T \Delta S_{r}$$

$$\Delta G_{r}^{0}(T) = -41.2 + (0.0423 * T)$$
 en kJ/mol Ou

$$\Delta G_{r}^{0}(T) = -41200 + (42,3 * T)$$
 en k/mol

3) Calculer la valeur ΔG^0_r à la température T=298 K. Que peut-on conclure ? (2pt)

$$\Delta G_{r}^{0}$$
 (298 K) = -41,2 + (0,0423 * 298) = -28,59 kJ/mol

 ΔG^{0}_{r} (298 K) < 0 \Rightarrow à T = 298 K la réaction est totale irréversible (spontanée)

4) Déterminer la valeur de la température $T_{\acute{e}q}$ pour laquelle la réaction évolue vers un état d'équilibre. (2pt)

$$\Delta G_{r}^{0}(T_{eq}) = -41.2 + 0.0423 * T_{eq} = 0$$

 $T_{eq} = 41.2 / 0.0423 = 974 \text{ K (ou 701 °C)}$

5) Déduire l'intervalle de température pour lequel la réaction est impossible et l'intervalle de température pour lequel la réaction est totale irréversible. (3 pt)

$$\frac{R\acute{e}action\ irr\acute{e}versible}{\text{Donc}\ ,\ \ -41,2\ +\ 0,0423\ ^*\ T\ <\ 0\ \Rightarrow\ T\ <\ T\acute{e}q=974\ K\ \ (\ \text{Basse temp\'erature}\)}$$

6) Dans quel domaine de température peut on se placer pour produire le gaz hydrogène H_2 dans des bonnes conditions pratiques. (2pt)

Pour produire le gaz H_2 dans des <u>bonnes conditions pratiques</u>, il faut se placer à des températures inférieures à $T_{\text{équ}} = 974 \text{ K}$ et supérieures à 373 K pour que l'eau soit à l'état vapeur et que la réaction se fait avec une vitesse acceptable.