Table of Symbols

0 1 1	
Symbol	Meaning
$a,b,c,lpha,eta,\gamma$	
$\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}$	Vectors are bold lowercase
$\boldsymbol{A},\boldsymbol{B},\boldsymbol{\overset{\boldsymbol{C}}{\boldsymbol{C}}}$	Matrices are bold uppercase
$\boldsymbol{x}^\top, \boldsymbol{A}^\top$	Transpose of a vector or matrix
$oldsymbol{A}^{-1}$	Inverse of a matrix
$\langle \boldsymbol{x}, \boldsymbol{y} \rangle$	Inner product of x and y
$oldsymbol{x}^{ op}oldsymbol{y}$	Dot product of x and y
$[\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}]$	Matrix of column vectors stacked horizontally
$(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})$	(Ordered) tuple
\mathbb{R}^n	<i>n</i> -dimensional vector space of real numbers
a := b	a is defined as b
a =: b	b is defined as a
$a \propto b$	a is proportional to b , i.e., $a = \text{const.} \cdot b$
$g \circ f$	Function composition; " g after f "
${\mathfrak L}$	Lagrangian
${\cal L}$	Negative log-likelihood
\dim	Dimensionality of vector space
$\mathrm{rk}(oldsymbol{A})$	Rank of matrix $oldsymbol{A}$
${ m Im}(\Phi)$	Image of linear mapping Φ
$\ker(\Phi)$	Kernel (null space) of a linear mapping Φ
$\mathrm{span}[\boldsymbol{b}_1]$	Span (generating set) of $oldsymbol{b}_1$
$\det(\boldsymbol{A})$	determinant of A
$tr(oldsymbol{A})$	trace of A
•	Absolute value
	Norm; Euclidean unless specified
\mathcal{A},\mathcal{C}	Sets
\mathcal{B}	Basis set
Ø	Empty set
λ	Eigenvalue
E_{λ}	Eigenspace of eigenvalue λ
$oldsymbol{e}_i$	Standard/canonical vector (where i is the component that is 1)
D	Number of dimensions; indexed by $d = 1, \dots, D$
N	Number of data points; indexed by $n = 1,, N$
$oldsymbol{ heta}$	Parameter vector
$oldsymbol{I}_m$	identity matrix of size $m \times m$
$0_{m,n}$	matrix of zeros of size $m \times n$
$1_{m,n}$	matrix of ones of size $m \times n$
$V[\cdot]$	Variance of argument
$\mathbb{E}[\cdot]$	Expectation of argument
$\operatorname{Cov}[\cdot]$	Covariance of the argument
$\mathcal{N}(oldsymbol{\mu},oldsymbol{\Sigma})$	Gaussian distribution with mean μ and covariance Σ
$\mathrm{Ber}(\mu)$	Bernoulli distribution with parameter μ
$\underbrace{\frac{\operatorname{Bin}(N,\mu)}{\overset{\text{@2018 Marc Peter D}}{x \sim p(\theta)}}}$	Binomial distribution with parameters μ,N Deisenroth, A. Aldo Faisal, Cheng Soon Ong. To be published by Cambridge University Press Random variable x is distributed according to $p(\theta)$

578

Table of Acronyms

	Acronym	Meaning	Comments
	\iff	if and only if	
	\Longrightarrow	implies	
	a := f(x)	a is defined as $f(x)$	
579	$ \frac{\partial f}{\partial x} \\ \frac{\mathrm{d}f}{\mathrm{d}x} $	Partial derivative of f with respect to x	
	$\frac{\mathrm{d}\hat{f}}{\mathrm{d}x}$	Total derivative of f with respect to x	
	MLE	Maximum Likelihood Estimation	
	PCA	Principal Component Analysis	
	PPCA	Probabilistic Principal Component Analysis	
	SVM	Support Vector Machines	