Øving 6

Oppgave 1

Oppgave 2

Stoff nummer 2 vil reagere fortest for det kan danne tertiert karbokation. OH

Oppgave 3

Oppgave 4

1: E1 mekanisme

$$\begin{array}{c} CH_3 \\ \hline \\ \end{array} \begin{array}{c} H \\ \end{array} \begin{array}{c} CH_3 \\ \end{array} \begin{array}{c} + H^+ \end{array}$$

2: E2 mekanisme

$$\begin{array}{c} CH_3 \\ \hline \\ H \end{array} \begin{array}{c} CH_3 \\ \hline \\ H \end{array} \begin{array}{c} + HBr \end{array}$$

Oppgave 5

Optisk aktiv:

Optisk inaktiv (meso):

Oppgave 6

a)

b)

c)

Oppgave 7

I Stoffet vil metylgruppen stå aksialt og hvis begge ringene er stolkomfirmert vil det bare være en mulighet for diaksiale bindinger på karbonatomene i dobbeltbindingen, siden det ikke på noen fornuftig måte er mulig å omkomfirmere den bisykliske ringen og endre hvilke bindinger som er aksial og ekvatorial. Det stabile produktet er da:

