

### INTERNATIONAL QUALIFICATIONS

| Please write clearly in | ı block capitals.              |
|-------------------------|--------------------------------|
| Centre number           | Candidate number               |
| Surname                 |                                |
| Forename(s)             |                                |
| Candidate signature     | I declare this is my own work. |

# INTERNATIONAL A-LEVEL **PHYSICS**

Unit 3 Fields and their consequences

Tuesday 27 May 2025

07:00 GMT

Time allowed: 2 hours

### **Materials**

For this paper you must have:

- a Data and Formulae Booklet as a loose insert
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate
- a protractor.

## Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- · All working must be shown.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want

# to be marked.

### Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

| For Exam | iner's Use |
|----------|------------|
| Question | Mark       |
| 1        |            |
| 2        |            |
| 3        |            |
| 4        |            |
| 5        |            |
| 6        |            |
| 7        |            |
| 8–22     |            |
| TOTAL    |            |

### **Section A**

Answer all questions in this section.

**Figure 1** shows a current-carrying coil inside a uniform magnetic field. The coil rotates about an axis that is perpendicular to the direction of the field.

Figure 1



The coil experiences a magnetic force at point **P** as shown in **Figure 1**.

0 1. 1 Annotate **Figure 1** with an arrow to show the direction of the current in the coil at **P**. [1 mark]

The uniform magnetic field has a horizontal magnetic flux density of 75 mT.

**0 1 . 2** The coil has a length of 13 cm, a width of 5.0 cm and 66 turns.

Determine the couple acting on the coil at the instant shown in **Figure 1**.

current in the coil = 1.5 A

[3 marks]

couple = N m

0 1 . 3

The coil is removed.

Figure 2 shows a vertical metal rod of length 8.75 cm inside the magnetic field.

Figure 2



The rod has a constant velocity of  $2.3\ m\ s^{-1}$  perpendicular to the magnetic flux density.

Calculate the emf induced between the ends of the rod.

[2 marks]

emf = V

not to scale

Turn over for the next question



| 0 2   | Vanadium-52 has a decay constant of $3.08\times 10^{-3}\ s^{-1}.$                           |  |
|-------|---------------------------------------------------------------------------------------------|--|
|       | A sample of vanadium-52 has an initial activity of 121 GBq.                                 |  |
| 0 2.1 | Determine the time taken for the activity to fall to $51~\mathrm{GBq}.$ [2 marks]           |  |
|       |                                                                                             |  |
|       |                                                                                             |  |
|       |                                                                                             |  |
|       | time = s                                                                                    |  |
| 0 2.2 | Calculate the mass of vanadium- $52$ in the sample when its activity is $51~\mathrm{GBq}$ . |  |
|       | mass of one mole of vanadium-52 atoms = $0.052\ kg$ [3 marks]                               |  |
|       |                                                                                             |  |
|       |                                                                                             |  |
|       |                                                                                             |  |
|       |                                                                                             |  |
|       |                                                                                             |  |
|       |                                                                                             |  |
|       |                                                                                             |  |
|       | mass = kg                                                                                   |  |
|       |                                                                                             |  |
|       |                                                                                             |  |



| 0 2.3 | The decay of vanadium-52 is random.                                                                                                                 | Do not write outside the box |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|       | Suggest how this affects the ability to make an accurate prediction of:                                                                             |                              |
|       | <ul> <li>the activity of the sample 1 ms after its activity was 51 GBq</li> <li>whether a nucleus will decay in a time interval of 1 ms.</li> </ul> |                              |
|       | [2 marks]                                                                                                                                           |                              |
|       |                                                                                                                                                     |                              |
|       |                                                                                                                                                     |                              |
|       |                                                                                                                                                     |                              |
|       |                                                                                                                                                     |                              |
|       |                                                                                                                                                     |                              |
|       |                                                                                                                                                     | 7                            |

Turn over for the next question



0 3 Figure 3 shows a person riding a bike on a horizontal track.

The bike and rider have a centre of mass at point  ${\bf C}$ .  ${\bf C}$  moves in a circle about point  ${\bf O}$ . The circle has a radius of 22.5 m.

Figure 3



The total mass of the bike and rider is  $79.5\ kg.$  The bike and rider travel at a constant speed of  $14.2\ m\ s^{-1}.$ 

The total frictional force acting on the bike is at its maximum value.  $F_1$  is the horizontal component of the frictional force acting towards  ${\bf O}$ .

**0** 3. **1** Show that  $F_1$  is approximately 710 N.

[1 mark]



A different cycling track is at an angle to the horizontal as shown in Figure 4.

The bike and rider travel in a horizontal circle about **O** on this track.

Figure 4



not to scale

- 0 3. 2 Annotate **Figure 4** with labelled arrows to show:
  - the normal contact force N from the track on the bike
  - the combined weight **W** of the bike and rider
  - the resultant force R.

[2 marks]

Question 3 continues on the next page



The track in **Figure 4** is at an angle of  $42.4^{\circ}$  to the horizontal.

**C** moves around **O** in a horizontal circle of radius 22.5 m.

0 3 .

The bike and rider are travelling at a constant speed of  $14.2~\mathrm{m\ s^{-1}}$  and experience a normal contact force of 1040 N.

 $F_2$  is the horizontal component of the frictional force acting on the bike.

Show that the magnitude of  ${\cal F}_2$  is less than the magnitude of  ${\cal F}_1.$ 

[3 marks]



| 0 3 . 4 | The bike and rider now travel in a circle of radius $22.5~\mathrm{m}$ on the track in <b>Figure 4</b> at a constant speed greater than $14.2~\mathrm{m~s^{-1}}$ .                                 |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|         | At this speed, the frictional force between the bike's tyres and the track is at its maximum value.                                                                                               |  |  |
|         | Explain why the bike and rider can travel at a greater speed on the track in <b>Figure 4</b> than on the track in <b>Figure 3</b> .  You should refer to the forces acting on the bike and rider. |  |  |
|         | [4 marks]                                                                                                                                                                                         |  |  |
|         |                                                                                                                                                                                                   |  |  |
|         |                                                                                                                                                                                                   |  |  |
|         |                                                                                                                                                                                                   |  |  |
|         |                                                                                                                                                                                                   |  |  |
|         |                                                                                                                                                                                                   |  |  |
|         |                                                                                                                                                                                                   |  |  |
|         |                                                                                                                                                                                                   |  |  |
|         |                                                                                                                                                                                                   |  |  |
|         |                                                                                                                                                                                                   |  |  |
|         |                                                                                                                                                                                                   |  |  |

Turn over for the next question







| 0 4 . 1 Define gravitational potential at a p |
|-----------------------------------------------|
|-----------------------------------------------|

[2 marks]

**Figure 5** shows a binary star system consisting of two stars **A** and **B**. **A** and **B** each have the same mass and their centres are separated by a distance of  $3.0 \times 10^{12}$  m. **O** is the point midway between **A** and **B**.

Figure 5



x is the distance from **O** along a line perpendicular to **AB**.  $V_{\rm T}$  is the total gravitational potential due to both **A** and **B**.

**0 4 . 2** When x = 0 the value of  $V_T$  is  $-0.711 \text{ GJ kg}^{-1}$ .

Calculate the mass of A.

[2 marks]

mass of  $\mathbf{A} = kg$ 

Question 4 continues on the next page



**Figure 6** shows the variation of  $V_{\rm T}$  with x.





The magnitude of the resultant gravitational field strength due to  ${\bf A}$  and  ${\bf B}$  is  $g_{\rm T}$ .

**0 4 . 3** State the value of x at which  $g_T$  has its maximum value on **Figure 6**. Go on to estimate this value of  $g_T$ .

Annotate Figure 6 to support your calculation.

[3 marks]

$$x =$$
 m

maximum value of  $g_{\rm T}$  =  $N~{\rm kg^{-1}}$ 

 $oxed{0}$   $oxed{4}$ .  $oxed{4}$  Describe the variation of  $g_{\mathrm{T}}$  with x shown in **Figure 6**.

[2 marks]

**O** 4. **5** Figure 7 shows the variation of  $\ln g_{\rm T}$  with  $\ln x$  for larger values of x than those shown in Figure 6.

Figure 7

The variation of  $g_{\rm T}$  with x follows an inverse-square law when x is greater than a minimum value  $x_{\rm min}$ .

Determine  $x_{min}$ .

Annotate Figure 7 to support your answer.

[3 marks]

 $x_{\mathsf{min}} =$  m

12



| 0 5   | This question is about a single proton as it moves through a linear accelerator.                                                                                                                        |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | In the linear accelerator, the proton is accelerated by a uniform electric field. The uniform electric field is created by a potential difference $\it V$ that acts across a distance of $2.0~\rm cm$ . |
|       | The electric field strength is $13.3~\mathrm{MN}~\mathrm{C}^{-1}$ .                                                                                                                                     |
| 0 5.1 | Calculate $V$ . Give your answer to an appropriate number of significant figures.  [3 marks]                                                                                                            |
|       |                                                                                                                                                                                                         |
|       |                                                                                                                                                                                                         |
|       |                                                                                                                                                                                                         |
|       | V = V                                                                                                                                                                                                   |
|       |                                                                                                                                                                                                         |
| 0 5.2 | Calculate the acceleration of the proton.                                                                                                                                                               |
|       | mass of proton = $1.67 \times 10^{-27} \text{ kg}$ [3 marks]                                                                                                                                            |
|       |                                                                                                                                                                                                         |
|       |                                                                                                                                                                                                         |
|       |                                                                                                                                                                                                         |
|       |                                                                                                                                                                                                         |
|       |                                                                                                                                                                                                         |
|       |                                                                                                                                                                                                         |
|       | $acceleration = \underline{\hspace{1cm}} m \; s^{-2}$                                                                                                                                                   |
|       |                                                                                                                                                                                                         |
|       |                                                                                                                                                                                                         |
|       |                                                                                                                                                                                                         |



In the linear accelerator the proton travels through a series of hollow metal cylinders.

Figure 8 shows the first two hollow metal cylinders C1 and C2.

V is applied between **C1** and **C2** to accelerate the proton as it moves from **C1** to **C2**.

Figure 8



The surface of **C1** is at a potential of  $\frac{+V}{2}$  and the surface of **C2** is at a potential of  $\frac{-V}{2}$ .

The linear accelerator is inside a vacuum.

| 0 5 . 3 | Explain why the acceleration of the proton is zero inside C1 and inside C2. | [3 marks] |
|---------|-----------------------------------------------------------------------------|-----------|
|         |                                                                             |           |
|         |                                                                             |           |
|         |                                                                             |           |
|         |                                                                             |           |
|         |                                                                             |           |

Question 5 continues on the next page



| 0 5 . 4  | The proton takes the same time to pass through each metal cylinder. |           | Do not write<br>outside the<br>box |
|----------|---------------------------------------------------------------------|-----------|------------------------------------|
| <u> </u> |                                                                     |           |                                    |
|          | Explain why the length of C2 is greater than the length of C1.      | [2 marks] |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           | 11                                 |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |
|          |                                                                     |           |                                    |



Do not write outside the

0 6 Figure 9 shows a capacitor circuit.

### Figure 9



The battery has an emf of  $6.0~\mathrm{V}$  and negligible internal resistance. Initially, the capacitor is fully discharged.

The switch is moved to position **A** at time t = 0

[1 mark]

voltmeter reading emf of the battery =

Question 6 continues on the next page



The switch is moved to position **B** at time t = 7.0 s.

**Figure 10** shows the variation of the milliammeter reading with t.

Figure 10



**0 6 . 2** Show that the resistance of the resistor is approximately  $1000 \ \Omega$ .

[2 marks]



| Do not write |
|--------------|
| outside the  |
| hov          |

| 0 6.3 | Determine the time constant and the capacitance of the capacitor in this circuit. | arks] |
|-------|-----------------------------------------------------------------------------------|-------|
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       | time constant =                                                                   | s     |
|       | capacitance =                                                                     | _ F   |
|       |                                                                                   |       |
|       | Question 6 continues on the next page                                             |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |
|       |                                                                                   |       |



| 0 6 . 4 | Explain the shape of the graph in <b>Figure 10</b> .                                                                                                                                                                                                                             |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | In your answer you should refer to:                                                                                                                                                                                                                                              |
|         | <ul> <li>the changes in the voltmeter reading from t = 0 to t = 7.0 s</li> <li>the relationship between the voltmeter and milliammeter readings from t = 0 to t = 7.0 s</li> <li>the changes in the voltmeter and milliammeter readings when t is greater than 7.0 s.</li> </ul> |
|         | No calculations are required.  [6 marks]                                                                                                                                                                                                                                         |
|         |                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                  |



12

**The Second of Schools Figure 11** shows a simple pendulum used in an experiment to measure the acceleration *g* due to gravity.

Figure 11 also shows a card marked with a vertical line.

Figure 11



 $oxed{0\ \ 7}$  .  $oxed{1}$  Annotate **Figure 11** with a double-headed arrow to show the length L of the pendulum.

[1 mark]

Draw the card in a suitable position on **Figure 11**. Go on to explain why you have chosen this position.

| [2 marks |
|----------|
|----------|

Question 7 continues on the next page



Do not write outside the box

| 0 7.3 | Describe <b>two</b> other techniques that can be used to minimise the uncertainty in $T$ . <b>[2 marks]</b> |
|-------|-------------------------------------------------------------------------------------------------------------|
|       | 1                                                                                                           |
|       |                                                                                                             |
|       |                                                                                                             |
|       | 2                                                                                                           |
|       |                                                                                                             |
|       |                                                                                                             |
|       |                                                                                                             |
|       |                                                                                                             |
|       |                                                                                                             |
|       |                                                                                                             |
|       |                                                                                                             |
|       |                                                                                                             |
|       |                                                                                                             |
|       |                                                                                                             |
|       |                                                                                                             |
|       |                                                                                                             |
|       |                                                                                                             |
|       |                                                                                                             |
|       |                                                                                                             |
|       |                                                                                                             |



0 7 . 4

A student varies L and attempts to measure the period T for each value of L.

Figure 12 shows the student's graph of their  $T^2$  against L.

Figure 12



Due to a mistake in their measurement of T, the student obtains a value for g of  $39.1~{\rm m~s^{-2}}$ .

Suggest the mistake made by the student.

Go on to determine the correct value for g for the student's data.

[2 marks]

= \_\_\_\_ m  $m s^{-2}$ 

END OF SECTION A



#### Section B

Each of the questions in this section is followed by four responses, A, B, C and D.

For each question select the best response.

Only **one** answer per question is allowed.

For each question, completely fill in the circle alongside the appropriate answer.

CORRECT METHOD



WRONG METHODS



If you want to change your answer you must cross out your original answer as shown.



If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked. Do not use additional pages for this working.

0 8 An object moves with simple harmonic motion of amplitude  $0.80~\mathrm{m}$  and period  $9.0~\mathrm{s}$ .

What is the speed of the object when its displacement is 0.60 m?

[1 mark]

- **A**  $0.14 \text{ m s}^{-1}$
- **B**  $0.20 \text{ m s}^{-1}$
- $\mathbf{C} \ 0.37 \ \mathrm{m \ s^{-1}}$
- **D**  $0.42 \text{ m s}^{-1}$

A damped oscillator is set into forced vibrations by a periodic driving force of frequency f. 0 9 Graphs A, B, C and D are drawn to the same scale. Which graph shows the heaviest damping? [1 mark] amplitude 4 of vibration Α 0 amplitude of vibration В 0 amplitude 1 of vibration С 0 amplitude 1 of vibration D 0



**1 0** A satellite orbits the Earth at a constant orbital speed of v. The radius of the orbit is R.

The satellite is moved to a new orbit of the Earth where it has a constant orbital speed of 2v.

What is the radius of the new orbit?

[1 mark]

- A  $\frac{R}{4}$
- 0
- $\mathbf{B} \; \frac{R}{2}$
- 0
- **c** 2*R*
- 0
- **D** 4*R*
- 0
- 1 1 Four point charges are placed at the corners of a square as shown.



The electric potential is zero at the centre of the square.

What is the charge of **Q**?

[1 mark]

- **A** −9.0 nC
- 0
- **B** −3.0 nC
- 0
- **C** 3.0 nC
- 0
- **D** 9.0 nC
- 0

1 2 Which is equivalent to the farad?

[1 mark]

- $\mathbf{A} \ \mathbf{A} \ \mathbf{S} \ \mathbf{V}^{-1}$
- **B** A  $s^{-1} V^{-1}$
- **C** C J<sup>-1</sup>
- $\mathbf{D} \ \mathbf{V} \ \mathbf{C}^{-1} \qquad \bigcirc$
- 1 3 A student wants to construct a capacitor using two sheets of copper and a sheet of dielectric material. All of the sheets have the same area.



A sheet of dielectric material is inserted into the space between the sheets of copper so that the sheets of copper are in contact with the material.

The student has four sheets of dielectric material **A**, **B**, **C** and **D**, each with a different thickness and relative permittivity.

Which sheet produces a capacitor with the largest capacitance?

[1 mark]

|   | Thickness / mm | Relative permittivity |
|---|----------------|-----------------------|
| A | 0.04           | 1.5                   |
| В | 0.06           | 2.4                   |
| С | 0.08           | 3.6                   |
| D | 0.16           | 6.2                   |



| 1 4 | A sample of radioactive radium-222 contains $1.00\times10^{20}$ atoms. Radium-222 has a half-life of $3.82$ days.                                                                           |                 |            |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|
|     | How many radium-222 atoms decay in 10 days?                                                                                                                                                 | ]               | 1 mark]    |
|     | <b>A</b> $3.42 \times 10^{13}$                                                                                                                                                              |                 |            |
|     | <b>B</b> $1.76 \times 10^{14}$                                                                                                                                                              |                 |            |
|     | <b>C</b> $1.63 \times 10^{19}$                                                                                                                                                              |                 |            |
|     | <b>D</b> $8.37 \times 10^{19}$                                                                                                                                                              |                 |            |
| 1 5 | Which graph is <b>not</b> a straight line for a radioactive nuclide?                                                                                                                        | ]               | 1 mark]    |
|     | A number of nuclei that decay every second against number of ur                                                                                                                             | ndecayed nuclei | 0          |
|     | <b>B</b> ln(number of decayed nuclei) against ln(time)                                                                                                                                      |                 | 0          |
|     | C activity against number of nuclei that decay every second                                                                                                                                 |                 | 0          |
|     | <b>D</b> ln(activity) against ln(number of undecayed nuclei)                                                                                                                                |                 | 0          |
| 1 6 | A particle with charge $Q$ is travelling with speed $v$ as it enters a unit The field has a magnetic flux density $B$ . The particle experiences a magnetic force that is vertically upward | _               |            |
|     | Which statement must <b>always</b> be correct?                                                                                                                                              | г               | 1 mark]    |
|     |                                                                                                                                                                                             | <u> </u>        | i ilialikj |
|     | <b>A</b> The force on the particle is $BQv$ .                                                                                                                                               | 0               |            |
|     | <b>B</b> The kinetic energy of the particle is constant.                                                                                                                                    | 0               |            |
|     | <b>C</b> The magnetic force on the particle remains vertically upwards.                                                                                                                     | 0               |            |
|     | <b>D</b> The particle follows a circular path.                                                                                                                                              | 0               |            |
|     |                                                                                                                                                                                             |                 |            |
|     |                                                                                                                                                                                             |                 |            |
|     |                                                                                                                                                                                             |                 |            |
|     |                                                                                                                                                                                             |                 |            |



A coil with 100 turns has a length of 35 mm and a width of 20 mm. The coil is placed in a uniform magnetic field of magnetic flux density 0.40 T.



The flux linkage in the coil is  $1.0 \times 10^{-2}$  Wb when the angle is  $\theta$ .  $\theta$  is shown in the diagram.

What is  $\theta$ ?

[1 mark]

- **A** 1.2°
- **B** 21°

0

- **C** 69°
- **D** 89°
- **1 8** A single-turn rectangular coil of area A rotates at frequency f in a uniform magnetic field. The peak value of the induced emf is  $\varepsilon$ .

A second single-turn rectangular coil rotates in the same magnetic field and has the same peak induced emf  $\varepsilon$ .

Which row shows the area and frequency of rotation of the second coil?

[1 mark]

|   | Area of coil | Frequency of rotation |   |
|---|--------------|-----------------------|---|
| Α | 4.4          | 0.5 <i>f</i>          | 0 |
| В | 2.4          | 2 <i>f</i>            | 0 |
| С | 2.4          | 0.5 <i>f</i>          | 0 |
| D | 0.25A        | 2 <i>f</i>            | 0 |



1 9 The diagram shows three identical magnets P, Q and R.



The magnets are released from the same height, at the same time, and fall to the ground.

**P** falls directly to the ground.

**Q** falls through the centre of a thick conducting ring.

**R** falls through an identical ring that has a gap cut in it.

Which gives the order that the magnets reach the ground?

[1 mark]

- A P and R arrive at the same time, followed by Q.
- **B P** and **Q** arrive at the same time, followed by **R**.
- C P arrives first, followed by Q and then R.
- D P, Q and R arrive at the same time.
- $oxed{2}$  An ac supply transfers energy to a resistor. An rms current of 8 A and a direct current I transfer energy at the same rate in the resistor.

What is I?

[1 mark]

- **A**  $2\sqrt{2}$  A
- **B** 4 A
- **C**  $4\sqrt{2}$  A
- **D** 8 A



15

| 2 1 |                                         | is $2000$ turns on the primary coil and $900$ turns on the secondary of produces a current of $0.10~\rm A$ in the primary coil. The current in $0.21~\rm A$ .        |               |  |
|-----|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
|     | All of the flux pro                     | duced by the primary coil links the secondary coil.                                                                                                                  |               |  |
|     | What is the efficient                   | ency of the transformer?                                                                                                                                             | [1 mark]      |  |
|     | <b>A</b> 45%                            |                                                                                                                                                                      |               |  |
|     | <b>B</b> 48%                            |                                                                                                                                                                      |               |  |
|     | <b>C</b> 95%                            |                                                                                                                                                                      |               |  |
|     | <b>D</b> 100%                           |                                                                                                                                                                      |               |  |
| 2 2 | oscilloscope. The <i>y</i> -gain of the | al with an $\rm rms$ voltage of $80~V$ is connected across the inputs of a oscilloscope is $40~V~cm^{-1}.$ itude of the sinusoidal waveform displayed on the screen? | n<br>[1 mark] |  |
|     | <b>A</b> 1.4 cm                         |                                                                                                                                                                      |               |  |
|     | <b>B</b> 2.0 cm                         | 0                                                                                                                                                                    |               |  |
|     | <b>C</b> 2.8 cm                         | 0                                                                                                                                                                    |               |  |
|     | <b>D</b> 5.6 cm                         | 0                                                                                                                                                                    |               |  |
|     |                                         |                                                                                                                                                                      |               |  |
|     |                                         | END OF QUESTIONS                                                                                                                                                     |               |  |
|     |                                         |                                                                                                                                                                      |               |  |
|     |                                         |                                                                                                                                                                      |               |  |
|     |                                         |                                                                                                                                                                      |               |  |
|     |                                         |                                                                                                                                                                      |               |  |
|     |                                         |                                                                                                                                                                      |               |  |
|     |                                         |                                                                                                                                                                      |               |  |







| Question number | Additional page, if required. Write the question numbers in the left-hand margin. |
|-----------------|-----------------------------------------------------------------------------------|
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |



| Question number | Additional page, if required. Write the question numbers in the left-hand margin. |  |
|-----------------|-----------------------------------------------------------------------------------|--|
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |
|                 |                                                                                   |  |



| Question number | Additional page, if required. Write the question numbers in the left-hand margin. |
|-----------------|-----------------------------------------------------------------------------------|
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |
|                 |                                                                                   |



There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqa.com

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2025 OxfordAQA International Examinations and its licensors. All rights reserved.





IB/G/Jun25/PH03

Do not write outside the