MTL783: Theory of Computation

Quiz 2

Writing Time: 50 minutes

Total Marks: 14

Maximum Marks: 12.5

Q1. Prove that $L = \{a^{n!}: n > 0\}$ is not Regular using Pumping Lemma.

[3]

Q2. Let $L_1 = \{a^{2k}b^{3j}: k, j > 0\}$ and $L_2 = \{a^{3k}b^{2j}: k, j > 0\}$.

- (i) Find the language $L_1 \cap L_2$.
- (ii) Prove or disprove if it is Regular.

[1+2=3]

Q3. (a) Prove or Disprove: $L = \{a^n b^m : n \le 50 \text{ and } m \ge 100\}$ is Regular.

(b) Can you draw an Automata (Not necessarily FSA) to accept this language?

[2+2=4]

Q4. Consider the problem of counting the number of occurrences of the substring "ab" in any string $w \in (a|b)^*$. The number will be counted as the number of 1's present in the output string of $(0|1)^*$.

- (i) Design it as Moore Machine.
- (ii) Convert the above into a Mealy Machine

[2+2=4]