

c'd PCT/PTO 25 JUN 2004
P CT R U 02/ 00555

РОССИЙСКОЕ АГЕНТСТВО
ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(РОСПАТЕНТ)

ФЕДЕРАЛЬНЫЙ ИНСТИТУТ
ПРОМЫШЛЕННОЙ СОБСТВЕННОСТИ

Бережковская наб., 30, корп. 1, Москва, Г-59, ГСП-5, 123995
Телефон 240 60 15. Телекс 114818 ПДЧ. Факс 243 33 37

Наш № 20/12-161

«1» апреля 2003 г.

С П Р А В К А

Федеральный институт промышленной собственности (далее – Институт) настоящим удостоверяет, что приложенные материалы являются точным воспроизведением первоначального описания, формулы, реферата и чертежей (если имеются) заявки № 2001135068 на выдачу патента на изобретение, поданной в Институт в декабре месяце 26 дня 2001 года (26.12.2001).

Название изобретения:

Способ нанесения алюминиевых покрытий на изделия из чугуна и стали

Заявитель:

Закрытое акционерное общество «Межотраслевое юридическое агентство «Юрпромконсалтинг»
ВОЛКОВ Юрий Сергеевич
МАРУТЬЯН Сергей Васильевич

Действительные авторы:

ВОЛКОВ Юрий Сергеевич
МАРУТЬЯН Сергей Васильевич

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

Заведующий отделом 20

А.Л.Журавлев

2001135068

МПК C23C 1/08

СПОСОБ НАНЕСЕНИЯ АЛЮМИНИЕВЫХ ПОКРЫТИЙ НА ИЗДЕЛИЯ ИЗ ЧУГУНА И СТАЛИ

Изобретение относится к области нанесения алюминиевых покрытий погружением в расплав и может быть использовано для защиты от коррозии проката и изделий из чугуна и стали.

Известны способы нанесения алюминиевых покрытий на стальные изделия погружением в расплав алюминия, содержащий цинк и магний.

Ближайшим аналогом изобретения является способ нанесения алюминиевых покрытий на изделия из чугуна и стали, включающий подготовку поверхности изделия и последующее погружение его в алюминиевый расплав, легированный цинком и кремнием (GB, № 1440328, МПК C23 C1/00, 1976г.).

В качестве недостатка ближайшего аналога можно отметить невозможность нанесения алюминиевого покрытия на изделия из чугуна и стали при температуре ниже 715°C без применения флюсов, а наличие слоя интерметаллидов достаточно большой толщины (10-15 мкм) делает покрытие хрупким, что не позволяет в дальнейшем деформировать стальное изделие с алюминиевым покрытием.

Технический результат, на достижение которого направлено изобретение, заключается в снижении температуры расплава алюминия, при которой обеспечивается формирование достаточно пластичного защитного покрытия без применения флюса, позволяющее деформировать прокат и изделия с алюминиевым покрытием.

Указанный технический результат достигается тем, что в способе нанесения алюминиевых покрытий на изделия из чугуна и стали, включающем подготовку поверхности изделия и последующее погружение его в алюминиевый расплав, легированный цинком и кремнием, проводят

струйно-абразивную подготовку изделия, а алюминиевый расплав легируют цинком, кремнием, магнием и оловом при следующем содержании масс.%:

цинк	7.0 – 10.0
кремний	3.0 – 5.0
магний	0.5 – 1.5
олово	0.2 – 0.5,

при этом температура расплава лежит в пределах от 660 до 680 град. С.

Результаты нанесения алюминиевых покрытий на образцы при струйно-абразивной подготовки поверхности в расплавах с различными химическими составами, изучение структуры и эксплуатационных свойств получаемых покрытий приведены в Таблице 1.

Пластичность покрытий оценивается с помощью пробы образца с покрытием на изгиб вокруг цилиндрической оправки. В Таблице 1 приведен минимальный диаметр оправки, при навивке на которую покрытие на образце не разрушается. Коррозионные свойства покрытий оценивается по результатам ускоренных испытаний образцов при воздействии фазовой пленки влаги, содержащей хлор-ион (имитация морской атмосферы).

Электрохимические исследования получаемых покрытий показали, что легирование алюминиевого расплава, содержащего цинк, кремний, магний оловом приводит к значительному повышению воспроизводимости результатов измерения электродного потенциала покрытия, что свидетельствует о высокой однородности химического состава поверхностных слоев покрытия.

Алюминиевые покрытия наносили на образцы после струйно-абразивной подготовки поверхности при различных температурно-временных режимах погружением в расплав следующего химического состава: алюминий – основа, цинк - 8,0%, кремний - 4,5%, магний - 1,1%, олово - 0,4%. Результаты исследований полученных покрытий приведены в Таблице 2.

Исследования показали, что в температурном интервале 660-680 град. С происходит формирование сплошного и равномерного по толщине алюминиевого покрытия без применения флюса, эти покрытия отличаются высокой коррозионной стойкостью и пластичностью.

Анализ результатов алюминирования в расплавах различного химического состава и по различным режимам (Табл.1,2) показал, что алюминирование стальных образцов со струйно-абразивной подготовкой поверхности в расплаве содержащем алюминий - основа, цинк - 7,0-10,0%, кремний 3,0-5,0%, магний - 0,5-1,5%, олово - 0,2-0,5% при температуре 660-680 град. С приводит к достижению поставленной цели. Алюминирование в предлагаемом расплаве без применения флюсов по приведенным режимам способствует формированию равномерных по толщине и структуре пластичных покрытий с высокой коррозионной стойкостью без применения флюсов.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ нанесения алюминиевых покрытий на изделия из чугуна и стали, включающий подготовку поверхности изделия и последующее погружение его в алюминиевый расплав, легированный цинком и кремнием, отличающийся тем, что проводят струйно-абразивную подготовку изделия, а алюминиевый расплав легируют цинком, кремнием, магнием и оловом при следующем содержании масс.%:

цинк	7.0 – 10.0
кремний	3.0 – 5.0
магний	0.5 – 1.5
олово	0.2 – 0.5,

при этом температура расплава лежит в пределах от 660 до 680 град. С.

Таблица 1.

**Основные характеристики алюминиевых покрытий,
сформированных в расплатах различного химического состава.**

Состав расплата	Температура нанесения, град. С	Время выдержки в распылении, сек.	Толщина покрытия, мкм	Толщина переходной зоны, мкм	Мин. диаметр оправки, мм	Коррозионные потери покрытия, мкм	Характер коррозии
Алюминий - основа, Кремний - 2,0%, Марганец - 0,5%	720-740	40	70	50	-	-	Язвенный
Алюминий - основа, Кремний - 7,0%, Марганец - 0,5%	730-750	70	40	20	20	-	Язвенный
Алюминий - основа, Цинк - 5,0%, Кремний - 2,0%	690-710	60	50	25	15	-	Общий, местный
Алюминий - основа, Цинк - 7,0%, Кремний - 5,0%	680-700	60	70	20	10	-	Общий, местный
Алюминий - основа, Цинк - 10,0%, Кремний - 5,0%	670-690	70	60	20	10	-	Общий, местный
Алюминий - основа, Цинк - 10,0%, Кремний - 5,0%, Магний - 1,0%	660-680	70	70	10	10	-	Общий
Алюминий - основа, Цинк - 10,0%, Кремний - 5,0%, Магний - 1,0%, Олово - 0,5%	660-680	70	70	5	10	-	Общий

Таблица 2.

Основные характеристики алюминиевых покрытий,
сформированных в расплаве предлагаемого химического состава.

Состав расплава	Температура нанесения, град.	Время выдержки в расплаве, сек.	Толщина покрытия, мкм	Толщина переходной зоны, мкм	Мин. диаметр оправки, мм	Коррозионные потери покрытия, мкм	Характер коррозии
Алюминий - основа, Цинк - 8,0%, Кремний - 4,5%, Магний - 1,1%, Олово - 0,4%	650 660 670 680 690 700 710	120 80 70 70 70 70 80	80 70 60 60 70 70 90	10 5 5 5 10 10 20	15 10 10 10 20 25 30		Общий Общий Общий Общий Местный Местный Местный

РЕФЕРАТ

СПОСОБ НАНЕСЕНИЯ АЛЮМИНИЕВЫХ ПОКРЫТИЙ НА ИЗДЕЛИЯ ИЗ ЧУГУНА И СТАЛИ

Изобретение относится к области нанесения алюминиевых покрытий погружением в расплав и может быть использовано для защиты от коррозии проката и изделий из чугуна и стали.

Технический результат, на достижение которого направлено изобретение, заключается в снижении температуры расплава алюминия, при которой обеспечивается формирование достаточно пластичного защитного покрытия без применения флюса, позволяющее деформировать прокат и изделия с алюминиевым покрытием.

Способ нанесения алюминиевых покрытий на изделия из чугуна и стали включает струйно-абразивную подготовку изделия, а алюминиевый расплав легируют цинком, кремнием, магнием и оловом при следующем содержании масс.%:

цинк	7.0 – 10.0
кремний	3.0 – 5.0
магний	0.5 – 1.5
олово	0.2 – 0.5.

Температура расплава лежит в пределах от 660 до 680 град. С.