Linear Algebrea - Opdracht 5

Luc Veldhuis

Maart 2017

1. Zij
$$A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$$
. Bepaal een matrix B en C , zodat $B^2 = A$ en $C^3 = A$.

We zien direct dat
$$A = A^*$$
, want $A^* = \overline{A}^T = \begin{pmatrix} \overline{3} & \overline{-1} \\ \overline{-1} & \overline{3} \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix} = A$. Dan weten

we nu uit de spectraal stelling dat er een unitaire matrix U bestaat zodat $U^{-1}AU = D$ met D een diagonaal matrix. Om de unitaire matrix U te construeren gebruiken we dat we uit de eigenvectoren van A een orthogonale basis kunnen maken.

We zoeken eerst de eigenwaardes met behulp van de karakteristieke vergelijking:

det
$$(A - \lambda I_2) = 0$$
. Dit geeft $(3 - \lambda)^2 - (-1)(-1) = 0$

$$\lambda^2 - 6\lambda + 8 = 0$$

$$(\lambda - 4)(\lambda - 2) = 0$$

Dit geeft eigenwaardes: $\lambda_1 = 4$ en $\lambda_2 = 2$

We berekenen de eigenvector voor λ_1 :

$$(A - 4I_2)v_1 = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix} - \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} v_1 = \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix} v_1 = 0$$

Dit geeft
$$v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

We berekenen de eigenvector voor λ_2 :

$$(A - 2I_2)v_2 = \left(\begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \right)v_2 = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}v_2 = 0$$

Dit geeft
$$v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

We zien ook dat $\langle v_1, v_2 \rangle = 1 \cdot 1 + 1 \cdot -1 = 0$ dus $v_1 \perp v_2$.

Dit betekend dat $\{v_1, v_2\}$ een orthogonale basis is, maar we willen een orthonormale basis. Dus we berekenen: $b_1 = \frac{1}{\|v_1\|} v_1$ en $b_2 = \frac{1}{\|v_2\|} v_2$

Dit geeft
$$b_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 en $b_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Nu kunnen we U construeren:

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

We kunnen A nú uitdrukken in U en de diagonaal matrix. De diagonaal matrix heeft de eigenwaardes van A op de diagonaal.

$$U^{-1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

$$A = UDU^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$

We proberen nu een B kunnen vinden, zodat $B^2 = A$. Hiervoor nemen we $B = U\sqrt{D}U^{-1}$, waarbij \sqrt{D} een matrix met de wortel van de waardes op dezelfde plek uit D. Omdat D een diagonaal matrix is, en \sqrt{D} dus ook, geldt $\sqrt{D}\sqrt{D} = D$. We weten nu $B^2 = U\sqrt{D}U^{-1}U\sqrt{D}U^{-1} = D$

$$U\sqrt{D}I\sqrt{D}U^{-1} = U\sqrt{D}\sqrt{D}U^{-1} = UDU^{-1} = A$$
 Dit geeft: $B = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}\begin{pmatrix} \sqrt{2} & 0 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ Op dezelfde manier construeren we $C = U\sqrt[3]{D}U^{-1}$. Want $C^3 = U\sqrt[3]{D}U^{-1}U\sqrt[3]{D}U^{-1}U\sqrt[3]{D}U^{-1} = U\sqrt[3]{D}U\sqrt[3]{$

- 2. Zij V een unitaire vectorruimte en $T:V\to V$ een zelfgeadjungeerde lineaire afbeelding. Bewijs dat de volgende twee uitspraken equivalent zijn:
 - (a) alle eigenwaarden van T zijn reëel en positief.
 - (b) $\langle Tv, v \rangle$ is reëel en positief voor iedere $v \neq 0$ in V.

We bewijzen eerst dat $\langle Tv, v \rangle$ reëel is voor iedere $v \neq 0 \in V$.

Er is gegeven dat T zelfgeadjungeerd is, dus $T = T^*$. Dan geldt $\langle Tv, v \rangle = \langle v, T^*v \rangle = \langle v, Tv \rangle = \langle Tv, v \rangle$. Dit kan alleen als $\langle Tv, v \rangle$ reëel is.

Bewijs dat alle eigenwaarden van T reëel zijn.

Neem $v \neq 0 \in V$ een eigenvector en laat $Tv = \lambda v$. Dan geldt $\langle Tv, v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle$. Omdat $v \neq 0$ geldt $0 \neq \langle v, v \rangle \in \mathbb{R}$. $\langle Tv, v \rangle = \lambda \langle v, v \rangle$ is reëel, dus $\lambda \in \mathbb{R}$.

Nu het bewijs voor $b \Rightarrow a$:

We hebben nu dat $\langle Tv,v\rangle\in\mathbb{R}$ en $\langle Tv,v\rangle>0$ $\forall v\in V$ met $v\neq 0$. Dus dan geldt dit ook voor een v waarvoor geldt dat $Tv=\lambda v$. Dan hebben we $\langle Tv,v\rangle=\langle \lambda v,v\rangle=\lambda \langle v,v\rangle>0$. Uit de definitie van een inwendig product (dictaat bladzijde 10) halen we dat moet gelden $\langle v,v\rangle>0$ als $v\neq 0$. Dus $\lambda\langle v,v\rangle>0\in\mathbb{R}$ is alleen waar als ook $\lambda>0\in\mathbb{R}$.

Alle eigenwaarden van T zijn nu reëel en positief.

Bewijs voor $a \Rightarrow b$

Neem aan dat alle eigenwaarden van T positief zijn voor iedere $v \neq 0$. Omdat T zelfgeadjungeerd is, volgt uit de spectraal stelling dat er een orthogonale basis B bestaat uit de eigenvectoren van T. Dit betekent dat $v = \sum_{i=1}^{n} \frac{\langle b_i, v \rangle}{\langle b_i, b_i \rangle} b_i$, met $b_i \in B$. Omdat elke b_i nu een eigenvector is, en

T een lineaire afbeelding, geldt dat $Tv = T \sum_{i=1}^{n} \frac{\langle b_i, v \rangle}{\langle b_i, b_i \rangle} b_i = \sum_{i=1}^{n} \frac{\langle b_i, v \rangle}{\langle b_i, b_i \rangle} Tb_i = \sum_{i=1}^{n} \frac{\langle b_i, v \rangle}{\langle b_i, b_i \rangle} \lambda_i b_i$ met λ_i de bijbehorende eigenwaarde voor b_i .

Dus
$$\langle Tv, v \rangle = \langle \sum_{i=1}^{n} \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \lambda_i b_i, v \rangle = \sum_{i=1}^{n} \langle \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \lambda_i v, b_i \rangle = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \langle b_i, v \rangle = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, bi \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle b_i, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle v, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle v, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i=1}^{n} \lambda_i \frac{\langle v, b_i \rangle}{\langle v, b_i \rangle} \overline{\langle v, b_i \rangle} = \sum_{i$$

 $\sum_{i=1}^{n} \lambda_{i} |\langle v, b_{i} \rangle|^{2} \frac{1}{\langle b_{i}, b_{i} \rangle}.$ We weten weer uit de definitie van inwendig product dat $\langle b_{i}, b_{i} \rangle > 0$. Ook weten we dat $|\langle v, b_{i} \rangle|^{2} > 0$ en we hebben aangenomen dat $\lambda_{i} > 0 \ \forall i \in I$. Dus $\lambda_{i} |\langle v, b_{i} \rangle|^{2} \frac{1}{\langle b_{i}, b_{i} \rangle} > 0$

$$\forall i \in I$$
. En dus ook $\sum_{i=1}^n \lambda_i |\langle v, b_i \rangle|^2 \frac{1}{\langle b_i, b_i \rangle} = \langle Tv, v \rangle > 0$