Pendolo a Torsione

FRANCESCO FORCHER

Davide Chiappara

Università di Padova, Facoltà di Fisica francesco.forcher@studenti.unipd.it Matricola 1073458 Università di Padova, Facoltà di Fisica davide.chiappara@studenti.unipd.it Matricola 1070160

SIMONE FRAU

Università di Padova, Facoltà di Fisica simone.frau@studenti.unipd.it Matricola 1074028

10 giugno 2014

$$pV = nRT$$

Sommario

INDICE

I	Apparato strumentale	2
II	Metodologia di misura	2
III	I Presentazione dei dati	3
	I Tabelle	3
	II Grafici	5
IV	Analisi dei dati	23
V	Conclusioni	23
VI	I Codice	23

I. Apparato strumentale

II. METODOLOGIA DI MISURA

Come detto nella descrizione dell'apparato strumentale, il tasso di rilevamento dei dati è di 20 al secondo. Questo corrisponde a una frequenza di campionamento di 20 Hertz, di molto superiore al Nyquist rate necessario per il pendolo (il doppio della massima frequenza necessaria), dato che come verificabile a vista ha una frequenza dell'ordine di 1 Hz. Non ci sono quindi problemi di aliasing e sottocampionamento. Per quanto riguarda l'offset, è stato rifatta la calibrazione prima di ogni presa dati (inizio giornata) e si può vedere che era calibrato da un'evidente simmetria rispetto all'asse delle ascisse. Per il calcolo dei massimi è stato utilizzato un programma che riconoscesse i punti di massimo e minimo approssimando la funzione come una parabola in un intorno dei dati "stazionari" (dati massimi e minimi locali) usando il dato precedente e il successivo, vincolando la parabola a passare per questi 3 punti e trovandone il vertice. L'errore legato all'utilizzo di questa approssimazione è $o(x^3)$, come noto dallo sviluppo di Taylor delle funzioni goniometriche.

Per una stima delle ampiezze legate alle frequenze di oscillazione sono stati presi i valori medi...

Una stima della pulsazione di risonanza è stata fatta con un processo di esplorazione iniziale che ha permesso, attraverso il metodo di bisezione, di concentrarsi sull'area nella quale l'ampiezza era più alta. Il valore finale trovato risulta di... Per stimare il coefficiente di smorzamento legato al movimento dell'acqua è stato L'ampiezza massima della forzante è stata regolata a 10 milligiri perché... La pulsazione di smorzamento è stata ottenuta attraverso una media pesata delle pulsazioni ottenute dallo studio dei periodi dei grafici durante la fase di smorzamento (vedasi tabella...) La pulsazione propria è stata trovata attraverso la formula $\omega_0 = \sqrt{\omega_s^2 + \gamma^2}$ Gli errori sono stati stimati a partire da una stima diretta, infatti... Per trovare i punti nel quale il seno è uguale a 1... I grafici rivelano che, entro gli errori di...

III. Presentazione dei dati

I. Tabelle

Tabella 1: Pulsazioni smorzate

Frequenza forzante [Hz]	Pulsazione smorzante [Hz]	Errore [Hz]
0.900	6	1
0.920	6.1	0.2
0.940	6.1	0.2
0.960	6.08	0.03
0.961	6.1	0.1
0.962	6.07	0.06
0.963	6.08	0.06
0.964	6	1
0.965	5	2
0.970	6.08	0.08
0.975	6.0	0.6
0.980	6.08	0.06
0.990	6.1	0.1
1.000	6	1
1.020	6.1	0.5
1.060	5	2
1.080	6	1

Tabella 2: E qui che ci va?

? [Hz]	Errore [Hz]
5.60284	1.44761
6.08644	0.17285
6.0824	0.177594
6.08033	0.0348561
6.07687	0.101719
6.07834	0.0629002
6.07957	0.0586595
5.56536	1.51853
5.45496	1.61467
6.07941	0.0777019
6.00214	0.622782
6.08003	0.0596418
6.09417	0.140632
5.93056	0.880998
6.08308	0.454521
5.11824	1.78116
5.62074	1.49249
-	

II. Grafici

Grafico 1 Grafico 0.900dgdecad.tex

Dati decadimento 0.900d Massimi e minimi 0.03 0.02 Ampiezza [???] 0.01 0 -0.01 -0.02 -0.03 5 15 20 0 10 Tempo [s]

Grafico 2 Grafico 0.900greg.tex

Grafico 3 Grafico 0.920dgdecad.tex

Dati decadimento 0.920d

Grafico 4 Grafico 0.920greg.tex

Grafico 5 Grafico 0.940dgdecad.tex

Grafico 6 Grafico 0.940greg.tex

Dati a regime0.940

Grafico 7 Grafico 0.960dgdecad.tex

Dati decadimento 0.960d

Grafico 8 Grafico 0.960greg.tex

Grafico 9 Grafico 0.965dgdecad.tex

Grafico 10 Grafico 0.965greg.tex

Dati a regime0.965

Grafico 11 Grafico 0.966dgdecad.tex

Grafico 12 Grafico 0.966greg.tex

Grafico 13 Grafico 0.967dgdecad.tex

Dati decadimento 0.967d

Grafico 14 Grafico 0.967greg.tex

Grafico 15 Grafico 0.968dgdecad.tex

Dati decadimento 0.968d

Grafico 16 Grafico 0.968greg.tex

Grafico 17 Grafico 0.969dgdecad.tex

Dati decadimento 0.969d

Grafico 18 Grafico 0.969greg.tex

Grafico 19 Grafico 0.970dgdecad.tex

Dati decadimento 0.970d

Grafico 20 Grafico 0.970greg.tex

Grafico 21 Grafico 0.975dgdecad.tex

Dati decadimento 0.975d

Grafico 22 Grafico 0.975greg.tex

Grafico 23 Grafico 0.980dgdecad.tex

Grafico 24 Grafico 0.980greg.tex

Grafico 25 Grafico 1.000dgdecad.tex

Grafico 26 Grafico 1.000greg.tex

Grafico 27 Grafico 1.020dgdecad.tex

Dati decadimento 1.020d

Grafico 28 Grafico 1.020greg.tex

Dati a regime1.020

Grafico 29 Grafico 1.060dgdecad.tex

Grafico 30 Grafico 1.060greg.tex

Grafico 31 Grafico 1.080dgdecad.tex

Dati decadimento 1.080d

Grafico 32 Grafico 1.080greg.tex

Dati a regime1.080

Grafico 33 Grafico 1.100dgdecad.tex

Grafico 34 Grafico 1.100greg.tex

Grafico 35 Grafico frequenza.tex

IV. Analisi dei dati

Come detto nella descrizione dell'apparato strumentale, il tasso di rilevamento dei dati è di 20 al secondo. Questo corrisponde a una frequenza di campionamento di 20 Hertz, di molto superiore al Nyquist rate necessario per il pendolo (il doppio della massima frequenza necessaria), dato che come verificabile a vista ha una frequenza dell'ordine di 1 Hz. Non ci sono quindi problemi di aliasing e sottocampionamento. Per quanto riguarda l'offset, è stato rifatta la calibrazione prima di ogni presa dati (inizio giornata) e si può vedere che era calibrato da un'evidente simmetria rispetto all'asse delle ascisse. Per il calcolo dei massimi è stato utilizzato un programma che riconoscesse i punti di massimo e minimo approssimando la funzione come una parabola in un intorno dei dati stazionari (dati massimi e minimi locali) usando il dato precedente e il successivo, vincolando la parabola a passare per questi 3 punti e trovandone il vertice. L'errore legato all'utilizzo di questa approssimazione è $o(x^3)$, come noto dallo sviluppo di Taylor delle funzioni goniometriche.

Per una stima delle ampiezze legate alle frequenze di oscillazione sono stati presi i valori medi...

Una stima della pulsazione di risonanza è stata fatta con un processo di esplorazione iniziale che ha permesso, attraverso il metodo di bisezione, di concentrarsi sull'area nella quale l'ampiezza era più alta. Il valore finale trovato risulta di... Per stimare il coefficiente di smorzamento legato al movimento dell'acqua è stato L'ampiezza massima della forzante è stata regolata a 10 milligiri perché... La pulsazione di smorzamento è stata ottenuta attraverso una media pesata delle pulsazioni ottenute dallo studio dei periodi dei grafici durante la fase di smorzamento (vedasi tabella...) La pulsazione propria è stata trovata attraverso la formula $\omega_0 = \sqrt{\omega_s^2 + \gamma^2}$ Gli errori sono stati stimati a partire da una stima diretta, infatti... Per trovare i punti nel quale il seno è uguale a 1... I grafici rivelano che, entro gli errori di...

V. Conclusioni

VI. Codice

Sec. VI