Folha 3.1 – Estática

Estática da Partícula

Questões:

1. Considere o sistema da Figura 1. Sendo as massas $m_1 = 300 \text{ kg}$ e $m_2 = 150 \text{ kg}$, calcule o ângulo θ e a tensão na corda AB.

Figura 1

2. Para os dois casos representados na Figura 2, determinar as tensões nas cordas 1 e 2, sabendo que os sistemas estão em equilíbrio estático.

Figura 2

3. Considere o sistema representado na Figura 3, no qual um corpo de massa m=2 kg se encontra sobre um plano inclinado que faz um ângulo $\alpha=30^\circ$ com a horizontal. Sabendo que não há atrito entre o corpo e o plano inclinado, determine a intensidade da força \vec{F} , que faz um ângulo $\theta=20^\circ$ com a superfície do plano inclinado, de modo a que o corpo de massa m esteja em equilíbrio, bem como a intensidade da força que o bloco exerce perpendicularmente sobre o plano inclinado.

Biomecânica Folha 3.1 – Estática (Estática da Partícula)

Figura 3

4. Considere o sistema representado na Figura 4. O atrito entre o plano inclinado e o corpo A e nas roldanas é desprezável. A corda AC é horizontal e a corda AB é paralela ao plano. A massa do corpo A é $m_A = 100 \, \mathrm{kg}$, e a massa do corpo Q é $m_Q = 10 \, \mathrm{kg}$. Calcule:

- a) A massa do corpo P necessária para manter o equilíbrio do sistema.
- b) A reacção normal do plano sobre o corpo A.

Soluções:

1. $\theta \simeq 26,6^{\circ} \text{ e } T_{AB} \simeq 3288,0 \text{ N}$.

2.

a)
$$T_1 = \frac{\cos(\phi)}{\sin(\phi + \theta)} P e T_2 = \frac{\cos(\theta)}{\sin(\phi + \theta)} P.$$

b)
$$T_1 = P \cot(\theta)$$
 e $T_2 = P \csc(\theta)$.

3.
$$F \simeq 10,43 \text{ N} \text{ e } N \simeq 13,41 \text{ N}$$

4.

a)
$$m \approx 58,66 \text{ kg}$$
.

b)
$$N \simeq 81,60 \, kgf$$
.