Review Exercise

Tentukan solusi dari Sistem Persamaan Linear (SPL) di bawah ini

$$x_1 + 2x_2 + x_3 = 6$$
$$x_1 + 3x_2 + 2x_3 = 9$$
$$2x_1 + x_2 + 2x_3 = 12$$

Dengan aturan cramer, eliminasi Gauss, dan Gauss Jordan

Aturan Cramer

• Jika diketahui dari persamaan $A \cdot x = B$ dengan matriks persamaan sendiri adalah

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

maka nilai determinannya adalah

$$|A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$
$$= a(ei - hf) - b(di - gf) + c(dh - ge)$$

Aturan Cramer

Penyelesaian dengan aturan cramer

$$x_1 = \frac{|A_1|}{|A|}$$
 $x_2 = \frac{|A_2|}{|A|}$ $x_3 = \frac{|A_3|}{|A|}$

Dimana

 A_1 = Matriks kolom 1 diganti dengan matriks hasil A_2 = Matriks kolom 2 diganti dengan matriks hasil A_3 = Matriks kolom 3 diganti dengan matriks hasil

Contoh Soal

Tentukan solusi dari Sistem Persamaan Linear (SPL) di bawah ini

$$4x_1 + 3x_2 + x_3 = 35$$
$$3x_1 + 11x_2 + 2x_3 = 85$$
$$2x_1 + 8x_2 + 5x_3 = 79$$

Dengan aturan cramer

Matriks A diperoleh

$$A = \begin{bmatrix} 4 & 3 & 1 \\ 3 & 11 & 2 \\ 2 & 8 & 5 \end{bmatrix}$$

Determinan matriks A

$$|A| = \begin{vmatrix} 4 & 3 & 1 \\ 3 & 11 & 2 \\ 2 & 8 & 5 \end{vmatrix} = 4 \begin{vmatrix} 11 & 2 \\ 8 & 5 \end{vmatrix} - 3 \begin{vmatrix} 3 & 2 \\ 2 & 5 \end{vmatrix} + 1 \begin{vmatrix} 3 & 11 \\ 2 & 8 \end{vmatrix} = 125$$

Determinan untuk matriks A₁, A₂, dan A₃

$$|A_{1}| = \begin{vmatrix} 35 & 3 & 1 \\ 85 & 11 & 2 \\ 79 & 8 & 5 \end{vmatrix} = 35 \begin{vmatrix} 11 & 2 \\ 8 & 5 \end{vmatrix} - 85 \begin{vmatrix} 3 & 2 \\ 2 & 5 \end{vmatrix} + 79 \begin{vmatrix} 3 & 11 \\ 2 & 8 \end{vmatrix} = 375$$

$$|A_{2}| = \begin{vmatrix} 4 & 35 & 1 \\ 3 & 85 & 2 \\ 2 & 79 & 5 \end{vmatrix} = 4 \begin{vmatrix} 85 & 2 \\ 79 & 5 \end{vmatrix} - 35 \begin{vmatrix} 3 & 2 \\ 2 & 5 \end{vmatrix} + 1 \begin{vmatrix} 3 & 85 \\ 2 & 79 \end{vmatrix} = 750$$

$$|A_{3}| = \begin{vmatrix} 4 & 3 & 35 \\ 3 & 11 & 85 \\ 2 & 8 & 79 \end{vmatrix} = 4 \begin{vmatrix} 11 & 85 \\ 8 & 79 \end{vmatrix} - 3 \begin{vmatrix} 3 & 85 \\ 2 & 79 \end{vmatrix} + 35 \begin{vmatrix} 3 & 11 \\ 2 & 8 \end{vmatrix} = 625$$

Sehingga nilai x_1 , x_2 , dan x_3

$$x_1 = \frac{|A_1|}{|A|} = \frac{375}{125} = 3$$
 $x_3 = \frac{|A_3|}{|A|} = \frac{625}{125} = 5$

$$x_2 = \frac{|A_2|}{|A|} = \frac{750}{125} = 6$$

Eliminasi Gauss

 Dengan eliminasi Gauss, mengubah matriks [AB] menjadi matriks baru berupa matriks upper

$$AB = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & u_{12} & u_{13} & c_1 \\ 0 & 1 & u_{23} & c_2 \\ 0 & 0 & 1 & c_3 \end{bmatrix}$$

$$\begin{vmatrix} x_3 = c_3 \\ x_2 + u_{23} \cdot x_3 = c_2 \end{vmatrix}$$

$$x_1 + u_{12} \cdot x_2 + u_{13} \cdot x_3 = c_1$$

Contoh Soal

Tentukan solusi dari Sistem Persamaan Linear (SPL) di bawah ini

$$4x_1 + 3x_2 + x_3 = 35$$
$$3x_1 + 11x_2 + 2x_3 = 85$$
$$2x_1 + 8x_2 + 5x_3 = 79$$

Dengan eliminasi Gauss

Persamaan dituliskan ke dalam matriks

• Baris kedua dikurang nilai baris pertama dikali 3/4

Baris ketiga dikurang nilai baris pertama dikali 1/2

• Baris ketiga dikurang nilai baris kedua dikali 6.5/8.75

```
      [4
      3
      1
      35

      [0
      8.75
      1.25
      58.75

      [0
      0
      3.5714
      17.8571
```

Nilai x₁, x₂, dan x₃ dapat diketahui

$$x_3 = 17.8571/3.5714 = 5$$
 $x_1 = (35 - 3*6 - 5)/4 = 3$

$$x_2 = (58.75 - 1.25 * 5)/8.75 = 6$$

Solusi dari SPL $x_1=3$, $x_2=6$, dan $x_3=5$

Gauss Jordan

 Dengan Gauss Jordan, mengubah matriks [AB] menjadi matriks identitas

$$AB = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & d_1 \\ 0 & 1 & 0 & d_2 \\ 0 & 0 & 1 & d_3 \end{bmatrix}$$

$$x_1 = d_1$$

$$x_2 = d_2$$

$$x_3 = d_3$$

Contoh Soal

Tentukan solusi dari Sistem Persamaan Linear (SPL) di bawah ini

$$4x_1 + 3x_2 + x_3 = 35$$
$$3x_1 + 11x_2 + 2x_3 = 85$$
$$2x_1 + 8x_2 + 5x_3 = 79$$

Dengan Gauss Jordan

Dari hasil eliminasi gauss

$\lceil 4 \rceil$	3	1	35
0	8.75	1.25	58.75
0	0	3.5714	17.8571

 Baris pertama dibagi 4, kedua dibagi 8.75 dan ketiga dibagi 3.5714

$\lceil 1$	0.75	0.25	8.75
0	1	0.1429	6.7143
0	0	1	5 _

Baris kedua dikurang baris ketiga dikali 0.1429

$$\begin{bmatrix} 1 & 0.75 & 0.25 & 8.75 \\ 0 & 1 & 0 & 5.998 \\ 0 & 0 & 1 & 5 \end{bmatrix}$$

Baris pertama dikurang baris ketiga dikali 0.25

Baris pertama dikurang baris kedua dikali 0.75

Solusi dari SPL x_1 =3.0015, x_2 =5.998, dan x_3 =5

Tugas

 Tentukan solusi dari Sistem Persamaan Linear (SPL) di bawah ini

$$x_1 + 2x_2 + x_3 = 6$$
$$x_1 + 3x_2 + 2x_3 = 9$$
$$2x_1 + x_2 + 2x_3 = 12$$

Dengan aturan cramer, eliminasi Gauss, dan Gauss Jordan

Tugas

 Apabila diketahui suatu rangkaian listrik seperti Gambar, maka carilah besar arus untuk masingmasing hambatan (dengan aturan cramer, eliminasi Gauss dan Gauss Jordan)

