```
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model selection import train test split
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.model selection import train test split
from sklearn.metrics import accuracy_score
from matplotlib import pyplot as plt
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy score, confusion matrix
from google.colab import files
uploaded = files.upload()
\rightarrow
     Choose Files drug.csv

    drug.csv(text/csv) - 6029 bytes, last modified: 3/24/2025 - 100% done

     Saving drug.csv to drug.csv
df = pd.read csv('drug.csv')
df
```


		Age	Sex	ВР	Cholesterol	Na_to_K	Drug	
	0	23	F	HIGH	HIGH	25.355	drugY	11.
	1	47	M	LOW	HIGH	13.093	drugC	+0
	2	47	M	LOW	HIGH	10.114	drugC	
	3	28	F	NORMAL	HIGH	7.798	drugX	
	4	61	F	LOW	HIGH	18.043	drugY	
1	95	56	F	LOW	HIGH	11.567	drugC	
1	96	16	M	LOW	HIGH	12.006	drugC	
1	97	52	М	NORMAL	HIGH	9.894	drugX	
1	98	23	M	NORMAL	NORMAL	14.020	drugX	
1	99	40	F	LOW	NORMAL	11.349	drugX	

200 rows × 6 columns

Next steps: Generate code with df

View recommended plots

New interactive sheet

```
df['Sex'] = df['Sex'].map({'F': 0, 'M': 1})
df['BP'] = df['BP'].map({'LOW': 0, 'NORMAL': 1, 'HIGH': 2})
df['Cholesterol'] = df['Cholesterol'].map({'NORMAL': 0, 'HIGH': 1})
```

df

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug				
0	23	0	2	1	25.355	drugY	11.			
1	47	1	0	1	13.093	drugC	+/			
2	47	1	0	1	10.114	drugC				
3	28	0	1	1	7.798	drugX				
4	61	0	0	1	18.043	drugY				
195	56	0	0	1	11.567	drugC				
196	16	1	0	1	12.006	drugC				
197	52	1	1	1	9.894	drugX				
198	23	1	1	0	14.020	drugX				
199	40	0	0	0	11.349	drugX				
200 roug y C columns										

200 rows × 6 columns

Next steps: Generate code with df

(View recommended plots

New interactive sheet

```
X = df.drop(columns=['Drug']) # Assuming 'Drug' is the target column
y = df['Drug']
```

df

```
Next steps: 2Generate 2ode with df

1 47 1 0 1 13.093 drugC

from sklearn.tree import DecisionTreeClassifier
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Create and train the DecisionTree model
model = DecisionTreeClassifier()
model.fit(X_train, y_train)

# Predict on test data
y_pred = model.predict(X_test)
```