LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Michael Alexandre Costa

Prof. Dr. André Rauber Du Bois (Orientador)

Mestrado em Computação Centro de Desenvolvimento Tecnológico Universidade Federal de Pelotas macosta@inf.ufpel.edu.br

16 de junho de 2021

Conclusão

1 Introdução

Introdução

- 2 Memórias Transacionais
- 3 Escalonadores
- 4 Arquiteturas
- 5 LTMS
- **6** Experimentos
- Resultados
- 8 Conclusão

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Memórias Transacionais Escalonadores

s Arquiteturas

Experimentos

Conclusão

Introdução

Motivação

- Programação Paralela;
- Memórias Transacionais;
- Escalonadores de Transações; e
- Arquiteturas NUMA.

Memórias Transacionais Escalonadores Arquiteturas LTMS Experimentos Resultados

Introdução

Introdução

Objetivos

Investigar escalonadores de Memórias Transacionais em NUMA.

Contribuições

- Projeto de um escalonador de STM intitulado LTMS;
- Prototipação do escalonador LTMS; e
- Análise de desempenho do LTMS comparado a TinySTM.

Conclusão

Escalonadores A

Experimentos

Conclusão

Introdução

Introdução

Características

- Mecanismo para leitura da arquitetura e criação de filas;
- Duas diferentes heurísticas de distribuição inicial de threads;
- Mecanismo que em tempo de execução coleta informações sobre as threads;
- Mecanismo de migração de threads entre as filas de execução; e
- Duas heurísticas de migração.

Escalonadores

Memórias Transacionais

Características

Introdução

- Fornece abstração de código;
- Reuso de código; e
- Ausência de deadlocks.

Transações

- Atomicidade;
- Consistência; e
- Isolamento.

Conclusão

Memórias Transacionais

Problemas

Introdução

- Somente reinicia a transação conflitante;
- Não evita que conflitos futuros aconteçam; e

Escalonadores

Em ambientes de alta contenção, tende a perder desempenho.

Escalonadores

Arquiteturas

Introdução

Escalonadores de Transações

- Buscam reduzir os números de conflitos;
- Utilizam diferentes Heurísticas de escalonamento; e
- Serializa as transações conflitantes.

Experimentos

Conclusão

Introdução

Classificação das técnicas

- Baseado em Heurística:
 - · Feedback:
 - Predição;
 - · Reativo; e
 - Heurística Mista.
- Baseado em Modelo:
 - Aprendizado de Máquina;
 - Modelo Analítico; e
 - Modelo Misto.

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Escalonadores

Introdução

Tabela: Comparativo entre os escalonadores apresentados

Escalonadores	LTMS	STMap	ATS	Shrink	LUTS	ProVIT	CAR-STM
Distribuição inicial de threads	Sim	Não	Não	Não	Sim	Não	Não
Coleta de dados por threads	Sim	Sim	Não	Sim	Não	Não	Não
Migração entre filas	Sim	Não	Não	Não	Não	Não	Sim
Avalia a arquitetura	Sim	Sim	Não	Não	Não	Não	Não
NUMA	Sim	Sim	Não	Não	Não	Não	Não
Técnica de escalonamento	Reativo	Predição	Feedback	Predição	Mista	Mista	Reativo

Escalonadores Arquiteturas

Conclusão

Arquiteturas

UMA

Introdução

- Uniform Memory access;
- Possui um único barramento de acesso à memória; e
- Único custo de acesso à memória.

NUMA

- Non-uniform Memory access;
- Possui mais de um barramento de acesso à memória; e
- O custo de acesso à memória é diferente conforme o núcleo utilizado.

Memórias Transacionais Escalonadores Arquiteturas LTMS Experimentos Resultados Conclusão

LTMS

Introdução

Estágios

- Inicialização do sistema;
- Coleta de dados em tempo de execução; e
- Migração de Threads.

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Defesa de Mestrado

Introdução

Figura: Fluxograma do LTMS

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Defesa de Mestrado

Conclusão

LTMS - Estágio 1

Introdução

Inicialização do sistema

- · Criação de filas; e
- Distribuição das threads.

Heurísticas de Distribuição

- Sequential; e
- Chunks.

Introdução

Escalonadores Arquiteturas

LTMS

Conclusão

LTMS - Heurísticas

Figura: Heurística Sequential

15

Memórias Transacionais Escalonadores Arquiteturas LTMS Experimentos

LTMS - Heurísticas

Introdução

Figura: Heurística Chunks

16

Resultados

Conclusão

Escalonadores

Arquiteturas

Experimentos

Conclusão

Introdução

Coleta de dados em tempo de execução

- Aborts e Commits;
- Matriz de Comunicação; e
- Matriz de Endereços.

17

Experimentos

Conclusão

Introdução

Matriz de Comunicação

- Quantidade de comunicação entre pares de threads;
- Eventos de Comunicação; e
- 1 evento a cada 100 acessos.

18

Escalonadores

Arquiteturas

Experimentos

Conclusão

Introdução

Matriz de Endereços

- Endereço mais acessado entre pares de threads;
- Tabela Hash;
- Endereços de memória; e
- Quantidade de acessos recebidos.

19

Escalonadores Arquiteturas

LTMS

Conclusão

Introdução

Migração de Threads

- Abort;
- Identificar a melhor fila; e
- Heurísticas de migração.

Introdução

Escalonadores

Arquiteturas

Experimentos

Conclusão

Escolha das filas

- Identificação das threads conflitantes; e
- Matriz de comunicação.

21

Escalonadores

Conclusão

LTMS - Heurísticas

Threshold

Introdução

- Nível de contenção (Abort/Commit);
- Maior contenção;
- Menor contenção; e
- Limiar de 0.8 (80% de contenção).

22

Escalonadores

Conclusão

LTMS - Heurísticas

Latency

Introdução

- Matriz de endereços;
- Nodos NUMA;
- Bancos de memória; e
- Latência.

Escalonadores Arquiteturas

Conclusão

Experimentos

Introdução

Aplicação

- TinySTM 1.0.5; e
- STMAP 0.9.10.

Arquitetura

- Intel Xeon E5-4650;
- 96 núcleos e 192 threads:
- 468Gb de memória RAM.

Conclusão

Experimentos

Testes

Introdução

- Cenários de threads:
 - 1, 2, 4, 8, 16, 32, 64, 128, 256, e 512;
- Heurísticas de Distribuição-Migração:
 - Sequential-Threshold;
 - Chunks-Threshold:
 - · Sequential-Latency;
 - Chunks-Latency;
- TinySTM; e
- Baterias de 30 execuções.

25

Escalonadores Arquiteturas

LTN

Conclusão

Resultados

Introdução

Benchmarks

- Bayes;
- Intruder;
- Kmeans; e
- · Labyrinth, Vacation, Yada.

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Introdução

Escalonadores

Conclusão

Tempo de execução

Introdução

Escalonadores

Conclusão

Tempo de execução

28

Introdução

Escalonadores

Conclusão

Tempo de execução

Tiny Latency-Sequential Latency-Chunks Threshold-Sequential Threshold-Chunks

29

Memórias Transacionais **Escalonadores Arquiteturas** Experimentos Resultados Conclusão

Aborts

Introdução

Tiny Latency-Sequential Latency-Chunks Threshold-Sequential Threshold-Chunks

Memórias Transacionais Escalonadores Arquiteturas LTMS Experimentos Resultados

Aborts

Introdução

Tiny ■ Latency-Sequential ■ Latency-Chunks ■ Threshold-Sequential ■ Threshold-Chunks

Conclusão

Escalonadores

Experimentos

Aborts

Introdução

Tiny Latency-Sequential Latency-Chunks Threshold-Sequential Threshold-Chunks

Escalonadores

Experimentos

Introdução

Analise

- Aplicações com conjunto pequeno de leitura e escrita;
- Transação com tempo longo, médio, ou baixo;
- Contenção alta, média ou baixa;
- Redução de 96% no tempo de execução; e
- Redução de 99% na ocorrencia de aborts.

33

Escalonadores

Experimentos

Conclusão

Introdução

Trabalhos futuros

- Novas Heurísticas de distribuição;
- Heurísticas de migração híbrida; e
- Impacto energético dos escalonadores de STM.

Introdução

Experimentos

Conclusão

Michael Alexandre Costa

Prof. Dr. André Rauber Du Bois (Orientador)

Mestrado em Computação Centro de Desenvolvimento Tecnológico Universidade Federal de Pelotas macosta@inf.ufpel.edu.br

16 de junho de 2021

35