Single Linkage Clustering

Parismita Das 15 March 2017

Single Linkage Criterion

In Single Linlage Criterion of Agglomerative Hierarchical clustering, The distance between the elements of each cluster is minimised. As the Naive single linkage clustering has a worst case time complexity of $O(N^3)$. It becomes useless for large data which are frequency used in the field of bioinformatics.

Here by restricting the data to h-band similarity matrix and using min-heap we reduce the time complexity to O(plogp + ph)

The Input

The input is taken as Cosine Similarity matrix which is then converted into Distance Matrix in file adjClust-Band_heap.R

```
matL < - .toMatLeft(xt, p, h)  ## a matrix p x h (with zeros at the bottom) of the LD values dissim <- as.numeric(1 - matL)  ## cosine distance metric
```

The Output

The output is a helust object with details of gain, height, label, merge data, order etc.

Algorithm 8 The optimized algorithm of the SLINK constrained hierarchical clustering applied to a h-band similarity matrix

```
procedure C SLINK (\mathbf{X} \in \mathbb{R}^{n \times p}, Sim, h)
    Initialize the chained array Tab
    heap \leftarrow buildHeap(1:(p-1), D)
                                                                                         \triangleright \mathcal{O}(p \log(p))
    jj \leftarrow p
    for step = 1 to p - 1 do
        while (!Tab[valid, heap[1]]) do
             heap \leftarrow deleteMin(heap)
                                                                                           ▶ O(log(p))
        end while
        posMin \leftarrow heap[1]
        i^* \leftarrow Tab[Cl1, posMin]
        heap \leftarrow deleteMin(heap)
                                                                                           ▷ O(log(p))
        d_1 \leftarrow D(C_{i^*-1}, C_{i^*} \cup C_{i^*+1})
                                                                                                 ▷ O(ph)
        d_2 \leftarrow D(C_{i^*} \cup C_{i^*+1}, C_{i^*+2})
        Add the distances d_1 and d_2 to Tab
        heap \leftarrow insertHeap(heap, jj, D)
                                                                                           ▷ O(log(p))
        heap \leftarrow insertHeap(heap, jj + 1, D)
                                                                                           ▷ O(log(p))
        Update the neighbors of C_{i^*-1} and C_{i^*+2} in Tab
        Set Tab[valid, posMin], Tab[valid, posL]
           and Tab[valid, posR] to FALSE
        jj \leftarrow jj + 2
    end for
end procedure
```

Computation of Minimum Distance via SLINK

```
for(int i=mini;i<=maxi;i++)
{
  for(int j=minj-i;(j<=maxj-i)&&(j<=h);j++)
  {
  res = MIN(DIS(i,j,p),res);
  }</pre>
```

Where the number of items in cluster I is mini - maxi and cluster J is minj - maxj. In loop-2 the constrain that the difference between index of item must not exceed h is applied.

Comparision with Rioja

}

Taking parameter h as the width of the matrix we get similar results as cholust function of rioja with conslink method.

• The output by rioja chclust (conslink)

• The output by adjClustBand_heap

Comparing the Merge Data of both the functions we get same values initially and it deviates a little at higher heights.

• The Merge Data by chclust (conslink)

#Recalculating the similarity matrix as $s_re = 2-2*s'$ and rechecking the rioja cluster value $s_re <-2 - 2*s_scaled$

```
#rioja hclust object
diss <- as.dist(s_re)
clust <- chclust(diss, method = "conslink")
View(cbind(clust$merge ,height = clust$height))</pre>
```

	V1 •	V2	height [‡]
1	-28	-29	0.002128967
2	-30	-31	0.002615371
3	-40	-41	0.004994196
4	-3	-4	0.005459483
5	-35	-36	0.007343047
6	-2	4	0.008036101
7	-23	-24	0.009361021
8	-130	-131	0.011009329
9	-127	-128	0.011422277

```
# hclust object using adjClustBand_heap function
# where s_scaled is the similatrity matrix
h<- ncol(s_scaled)
fit <- chaclust(s_scaled,h,f = 1)
plot(fit)
View(cbind(fit$merge ,height = fit$height))</pre>
```

-			
	V1 ‡	V2 ‡	height [‡]
1	-28	-29	0.001064484
2	-30	-31	0.002372169
3	-40	-41	0.004869267
4	-3	-4	0.007599009
5	-35	-36	0.011270532
6	-2	4	0.015288583
7	-23	-24	0.019969093
8	-130	-131	0.025473758
9	-128	-129	0.031184896

Though the Height is different,	the overall height of	f dendrogran is	s almost same	around ~ 0.4	and the	merge
data of clusters are same as sh	own in the data table	е.				

References:

- $\bullet \ \ http://www.geeksforgeeks.org/greedy-algorithms-set-5-prims-minimum-spanning-tree-mst-2/$