Simulation Monte Carlo

TP 3: Simulation de variable aléatoire Normale

Irina Kortchemski, CY Tech

Théorie

Théorème 2

Soit $\Phi = (X, Y)$ un vecteur aléatoire et X et Y deux variables aléatoires Normales centrées réduites indépendantes. Définissons le vecteur aléatoire $\Psi = (R, \Theta)$ dont les coordonnées polaires liés avec (X, Y) par les formules:

$$X = R\cos(\theta); \quad Y = R\sin(\Theta)$$

avec $R \geq 0$ et $\Theta \in [0, 2\pi]$. Alors

- R^2 et Θ sont deux variables aléatoires indépendantes
- R^2 suit la loi exponentielle de paramètre $\lambda = 1/2$
- Θ suit la loi uniforme sur $[0, 2\pi]$.

Algorithme de Box-Muller

- Algorithme de simulation de deux v.a. Normales indépendantes
 - function[X, Y]=Box_Muller()
 - \circ Generate U_1 et $U_2 \in \mathsf{Uniforme}[0,1]$
 - \circ Set $\Theta = 2\pi U_1$
 - \circ set $R = \sqrt{-2ln(U_2)}$
 - \circ set $X = R\cos(\Theta)$
 - \circ set $Y = R\sin(\Theta)$
 - endfunction

Algorithme de Marsiglia

- Algorithme de simulation de deux v.a. Normales indépendantes
 - function[X, Y]= Marsiglia()
 - \circ Set S=2
 - \circ While S > 1
 - \circ Generate U_1 et U_2
 - \circ Set $V_1 = 2U_1 1$, $V_2 = 2U_2 1$, $S = V_1^2 + V_2^2$
 - o endWhile
 - \circ Set $X = \sqrt{\frac{-2lnS}{S}} \cdot V_1$
 - \circ Set $Y = \sqrt{\frac{-2lnS}{S}} \cdot V_2$
 - endfunction

Simulation de la loi Normale $\mathbb{N}(\mu, \sigma^2)$

Pour obtenir une variable aléatoire de loi $\mathbb{N}(\mu, \sigma^2)$ vous simuler d'abord v.a. X centré réduite. Il reste à multiplier X par l'écart type σ et ajouter la moyenne μ

$$Z = \mu + \sigma X$$

• v.a. Z suit la loi $\mathbb{N}(\mu, \sigma^2)$

Travail à faire pour v.a. Normale

- lacksquare Simuler les v.a. Normales centrées réduites X et Y par l'algorithme de Box-Muller
 - Soient $N_{mc} = 10000$
 - Calculer l'espérance et la variance empiriques, les comparer avec les valeurs théoriques $\mathbb{E}(X)=0, \quad \mathbb{V}ar(X)=1$
 - Tracer les fonctions de repartition de X et Y: $[a,b] = [-5,5], \Delta = 0.1, N_x = 100$
 - Tracer les fonctions de densité de X et Y: $[a,b]=[-5,5], \Delta=0.1, N_x=100$
- ullet Simuler la v.a. Normale centrée réduite X par l'algorithme de Marsiglia
 - Calculer l'espérance et la variance empiriques, les comparer avec les valeurs théoriques
 - Tracer sa fonction de repartition
 - Tracer sa fonction de densité
- Simuler la v.a. Normale $\mathbb{N}(\mu, \sigma^2)$
 - $\mu = 2, \sigma = 3$
 - ullet Calculer l'espérance et la variance empiriques, les comparer avec les valeurs théoriques $\mathbb{E}(X)=\mu,\quad \mathbb{V}ar(X)=\sigma^2$
 - Tracer sa fonction de repartition: $[a, b] = [-3, 7], \Delta = 0.1, N_x = 100$
 - Tracer sa fonction de densité: $[a,b] = [-3,7], \Delta = 0.1, N_x = 100$

Algo de Marsiglia et v.a. S

- ullet Montrer que la v.a. $S=V_1^2+V_2^2$ suit la loi uniforme[0,1]
- On simule une seule v.a. S
 - function[S]= V_A_S()
 - \circ Set S=2
 - \circ While S > 1
 - \circ Generate U_1 et U_2
 - \circ Set $V_1 = 2U_1 1$, $V_2 = 2U_2 1$, $S = V_1^2 + V_2^2$
 - o endWhile
 - endfunction
- lacktriangle On répète l'algorithme N_{mc} fois pour simuler un échantillon de N_{mc} valeurs de S
- ightharpoonup Algorithme de simulation d'une chaîne de valeurs de v.a. continue S
 - function [S]= Chaine_valeurs_V_A_Discrete ()
 - \circ for $n=1:N_{mc}$
 - $\circ S(n)=V_A_S()$
 - end
 - endfunction

Algo de Marsiglia et v.a. S

- Tracer sur l'intervalle [a,b] la fonction de densité de v.a. simulée S
 - [S]= Chaine_valeurs_V_A_Discrete()
- $[a,b] = [-1,2], \Delta = 0.03, N_x = 100, N_{mc} = 10000$
 - function[Densite]= Densite_empirique(S)