Foundations of Data Science: Hypothesis testing - p-values

Principle of p-values

Observed data => Downdary of rejection region

Determining p-values from probability dists.

Binomial distribution

Nomel distribution

$$N_{\sigma} = N_{\sigma} p(1-p)$$
 $N_{\sigma} = N_{\sigma} p(1-p)$
 $N_{\sigma} = N$

P-values computed by various methods

	t_0	Simulation	Binomial	Normal
0	8	0	4.73e-06	2.03e-05
1	15	0.0067	0.0061	0.0061
2	20	0.1020	0.1030	0.0857

Definition of p-value

The p-value is the probability, calculated assuming the null hypothesis is true, of obtaining a value of the test statistic at least as contradictory to H_0 as the value calculated from the available sample. (*Modern Mathematical Statistics with Applications*, p. 456)

THE AMERICAN STATISTICIAN 2016, VOL. 70, NO. 2, 129–133 http://dx.doi.org/10.1080/00031305.2016.1154108

EDITORIAL

The ASA's Statement on p-Values: Context, Process, and Purpose

What p-values are

P-values can indicate how incompatible the data are with a specified statistical model...

The smaller the *p*-value, the greater the statistical incompatibility of the data with the null hypothesis, if the underlying assumptions used to calculate the *p*-value hold. This incompatibility can be interpreted as casting doubt on or providing evidence against the null hypothesis or the underlying assumptions. (*ASA Statement on Statistical Significance and P-values*)

What p-values are not

P-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone.

Researchers often wish to turn a p-value into a statement about the truth of a null hypothesis, or about the probability that random chance produced the observed data. The p-value is neither. It is a statement about data in relation to a specified hypothetical explanation, and is not a statement about the explanation itself. (ASA Statement on Statistical Significance and P-values)

"Statistical significance"

$$p < 0.05 \Rightarrow$$
 "Statistly significant"

* significant at the $p < 0.05$ level

**

"" $p < 0.01$ "

Statistical significance

In February 2014, George Cobb, Professor Emeritus of Mathematics and Statistics at Mount Holyoke College, posed these questions to an ASA discussion forum:

Q: Why do so many colleges and grad schools teach p = 0.05?

A: Because that's still what the scientific community and journal editors use.

Q: Why do so many people still use p = 0.05?

A: Because that's what they were taught in college or grad school.