LYT-NET: LIGHTWEIGHT YUV TRANSFORMER-BASED NETWORK FOR LOW-LIGHT IMAGE ENHANCEMENT TEAM MEMBERS TAMILARASEE SETHURAJ - A20553416 KAVIN RAJ KARUPPUSAMY RAMASAMY - A20564249

PROBLEM OVERVIEW

- Low-light images often suffer from a loss of details and contrast, making them visually unappealing and problematic for computer vision tasks.
- Existing Low-Light Image Enhancement (LLIE) methods often have high
 computational complexity and may compromise the final image quality,
 particularly in terms of contrast and color fidelity.
- Goal of LYT-Net: Develop a computationally efficient model that reduces parameters and improves the clarity and contrast of enhanced images.
- Datasets used
 - LOL vI 500 images
 - LOL v2 Real 789 images
 - · LOL v2 Synthetic 1000 images

IMPLEMENTATION

Hybrid loss

$$\mathbf{L} = \mathbf{L}_{S} + \alpha_{1} \mathbf{L}_{Perc} + \alpha_{2} \mathbf{L}_{Hist} + \alpha_{3} \mathbf{L}_{PSNR} + \alpha_{4} \mathbf{L}_{Color} + \alpha_{5} \mathbf{L}_{MS-SSIM}$$

- The model uses an Interpolation-based upsampling method instead of transposed convolutions, reducing the number of parameters while maintaining performance.
- Hyperparameters:
 - Alpha coefficients in the loss function control the contribution of each component in the hybrid loss.
 - Filter/Stride choices in convolution layers and MHSA num of heads were tuned to achieve the best performance.

RESULTS

Model	Epoch	Param(M)	LOLv1		LOLv2 - Real		LOLv2 - Synthetic	
			PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
Paper	1000	0.045	27.23	0.853	27.80	0.873	29.38	0.940
Ours	10	0.054	19.69	0.785	18.08	0.781	21.10	0.868

CHALLENGES

- Parameter Reduction: LYT-Net's lightweight design was achieved by minimizing parameters through choices like interpolation-based upsampling and careful tuning of filter/stride sizes in convolution layers
- YUV Color Space Split: Early versions of the model produced outputs with inconsistent color dominance. This issue was resolved by fine-tuning the Channel-Wise Denoiser block and adjusting the alpha coefficients in the hybrid loss function to ensure balanced color representation.

Conclusion

- LYT-Net successfully enhances low-light images with significantly fewer parameters compared to other state-of-the-art methods, while achieving comparable or superior performance on standard LLIE benchmarks.
- The use of the YUV color space and lightweight transformer blocks ensures that the model is both computationally efficient and effective at improving image clarity and contrast
- Future Work: Further optimizations for real-time video enhancement and extending the model for other low-light scenarios such as nighttime video processing.

THANK YOU!

REFERENCES

- Alexandru Brateanu, Raul Balmez, Adrian Avram, Ciprian Orhei, and Cosmin Ancuti, "LYT-Net: Lightweight YUV Transformer-based Network for Low-Light Image Enhancement"
- C. Wei, W. Wang, W. Yang, and J. Liu, "<u>Deep retinex decomposition for low-light enhancement</u>", in Proceedings of the British Machine Vision Conference (BMVC), 2018
- S. Park, S.Yu, B.Moon, S.Ko, and J. Paik, "Low-light image enhancement using variational optimization-based retinex model", IEEE Transactions on Consumer Electronics, vol. 63(2), 2017
- Shansi Zhang, Nan Meng and Edmund Y. Lam, "LRT: An Efficient Low-Light Restoration Transformer for Dark Light Field Images", IEEE Transactions on Image Processing, vol. 32, 2023