

TIMING SIDE-CHANNEL ATTACK

Using linear correlation to reveal secrets

A. Anselmo, S.A. Chiaberto, F. Chiatante, G. Roggero

Supervisor: Prof. Renaud Pacalet 21st June, 2019

Outline

Introduction

Hypothesis

Possibilities

Graphics

Useful Hints

Countermeasures

Introduction

- in several algorithms used for security purposes some optimizations are introduced
- these optimizations lead to a linear dependency between time and the data encrypted
- knowing information regarding the time-data pair, it is possible to find a correlation
- this correlation can be used to unveal part of the secret

Hypothesis

Tools needed

In order to successfully extract the secret through the correlation, we have to make a list of assumptions:

- timing for a sufficiently large number of cyphertexts is known
- cyphertexts are known
- secret is the same for all cyphertexts
- the HW/SW implementation is known to the attacker
- a timing model can be built

Titlepage settings

by changing settings in

header_footer.sty

you can choose whether and where you want a second logo to be positioned on the titlepage:

- small logo can be placed on the bottom right
- big logo can be placed on the top right
- spaces and graphics dimensions will have to be adjusted depending on your logo

Outline

- divide the presentation, using the command section (as it is usually done in LATEX)
- other divisions, just as chapter or part are not supported
- the sections are are listed on the top of each slide, the section the recent slide belongs to is highlighted
- you can automatically receive an outline out of this section by the command

\tableofcontents

Itemize

- black circle is the default; other possibilities are:
 - ball
 - ► triangle
- the color of the items can also be changed
- all this settings have to be done in the preamble of the presentation.tex file

• its possible to build slides succesively

- its possible to build slides succesively
- to do so use the command onslide

- its possible to build slides succesively
- to do so use the command onslide
- other useful commands are uncover and only

- its possible to build slides succesively
- to do so use the command onslide
- other useful commands are uncover and only
- this works also very nice to "develop" formulas:

- its possible to build slides succesively
- to do so use the command onslide
- other useful commands are uncover and only
- this works also very nice to "develop" formulas:

$$f(x \mid \mu, \sigma^2) =$$

- its possible to build slides succesively
- to do so use the command onslide
- other useful commands are uncover and only
- this works also very nice to "develop" formulas:

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}}$$

- its possible to build slides succesively
- to do so use the command onslide
- other useful commands are uncover and only
- this works also very nice to "develop" formulas:

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \cdot \exp \left\{$$

- its possible to build slides succesively
- to do so use the command onslide
- other useful commands are uncover and only
- this works also very nice to "develop" formulas:

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \cdot \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

Pimp up your presentation

- an easy way to include pictures is by using \includegraphics[width=...,height=...]{file}
- in connection with pdflatex this supports a wider range of graphic formats, including GIF, PNG, JPG

Useful hints

 if you use a verbatim environment on a slide, declare that slide fragile:

\begin{frame}[fragile]

 bibliography actually works as usual, just keep in mind that not all bibliography styles are supported by the *beamer* package, maybe you have to include some other packages to get your preferred style working

Possible solution

Blinding

Test

linding the messages before encryption.

References

- Bansal, M., Kumar, A., Devrari, A., Bhat, A., UTU, D., and Dehradun, U. (2015). Implementation of modular exponentiation using montgomery algorithms. *International Journal of Scientific & Engineering Research*, 6(11):1272–1277.
- Crockett, L. H., Elliot, R. A., Enderwitz, M. A., and Stewart, R. W. (2014). The Zynq Book: Embedded Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000 All Programmable Soc. Strathclyde Academic Media.
- Kocher, P. C. (1996). Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems. In Annual International Cryptology Conference, pages 104–113. Springer.
- Walter, C. D. (1999). Montgomery exponentiation needs no final subtractions. *Electronics letters*, 35(21):1831–1832.
- Xilinx (2015). Zynq-7000 All Programmable SoC Software Developers Guide. Xilinx.

