Introduction

Business problem

Our company is keen on investing in the movie industry. We have decided to create a new movie studio but do not know anything about creating movies. We are tasked with exploring the types of films currently doing the best at the box office. We must then translate those findings into actionable insights that the head of our company's new movie studio can use to help decide what type of films to create.

Project Goals

- Examine historical box office performance across various genres, budgets, revenues and release dates.
- Identify key trends that contribute to a movie's commercial success.
- Recommend data-driven strategies to guide the creation and marketing of new films.

Data Understanding

The data source for this aanalysis was gotten tn.movie_budgets.csv

We will:

- · Import the relevant libraries
- Load the data into a dataframe
- . Explore and extract data for my analysis
- Data Visualization interpratation
- Provide Recommendations

Import libraries

```
import pandas as pd
import csv
import sqlite3
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import pearsonr
```

Load Data

Create a data frame named movie_budgets

```
In [19]:
movie_budgets = pd.read_csv('tn.movie_budgets.csv', index_col=0 )
movie_budgets.head()
Out[19]:
```

release_date movie production_budget domestic_gross worldwide_gross id 1 Dec 18, 2009 Avatar \$425,000,000 \$760,507,625 \$2,776,345,279 2 May 20, 2011 Pirates of the Caribbean: On Stranger Tides \$410,600,000 \$241,063,875 \$1,045,663,875

```
        3 release 2019
        Dark Planswis
        production
        domestic Gains
        world trade Gains

        id
        May 1, 2015
        Avengers: Age of Ultron
        $330,600,000
        $459,005,868
        $1,403,013,963

        5
        Dec 15, 2017
        Star Wars Ep. VIII: The Last Jedi
        $317,000,000
        $620,181,382
        $1,316,721,747
```

```
In [23]:
```

```
movie_gross = pd.read_csv('bom.movie_gross.csv', index_col=0 )
movie_gross.head()
```

Out[23]:

studio domestic_gross foreign_gross year

title

Toy Story 3	BV	415000000.0	652000000 2010
Alice in Wonderland (2010)	BV	334200000.0	691300000 2010
Harry Potter and the Deathly Hallows Part 1	WB	296000000.0	664300000 2010
Inception	WB	292600000.0	535700000 2010
Shrek Forever After	P/DW	238700000.0	513900000 2010

Data Cleaning

In [82]:

```
# finding missing value for movie_budgets
missing_value = movie_budgets.isna().sum()/len(movie_budgets)*100
missing_value
```

Out[82]:

```
release date
                     0.0
                     0.0
movie
production budget
                     0.0
                     0.0
domestic gross
worldwide gross
                     0.0
foreign gross
                     0.0
profit
                     0.0
profit billions
                     0.0
roi
                     0.0
                     0.0
foreign profit
                     0.0
domestic profit
release month
                     0.0
dtype: float64
```

In [84]:

```
# finding missing value for movie_gross
missing_value = movie_gross.isna().sum()/len(movie_gross)*100
missing_value
```

Out[84]:

```
      studio
      0.148104

      domestic_gross
      0.829384

      foreign_gross
      39.662322

      year
      0.000000

      dtype: float64
```

In [86]:

```
# find duplicates for movie_budgets
movie_budgets.duplicated().sum()
```

Out[86]:

```
In [88]:
# find duplicates for movie gross
movie gross.duplicated().sum()
Out[88]:
In [33]:
# remove duplicates
movie gross.drop duplicates(keep='first', inplace=True)
In [35]:
# proof there are no more duplicates
movie gross.duplicated().any()
Out[35]:
False
In [37]:
# Convert our strings to numeric values
currency columns = ['worldwide gross', 'domestic gross', 'production budget']
currency columns = ['worldwide gross', 'domestic gross', 'production budget']
movie budgets[currency columns] = (
    movie budgets[currency columns]
    .replace(r'[\$,]', '', regex=True)
    .apply(pd.to_numeric))
In [39]:
# create foreign gross column
movie budgets['foreign gross'] = movie budgets['worldwide gross'] - movie budgets['domest
ic gross']
print(movie budgets.head())
                                                        movie \
    release date
id
1
    Dec 18, 2009
                                                       Avatar
2
   May 20, 2011 Pirates of the Caribbean: On Stranger Tides
3
   Jun 7, 2019
                                                 Dark Phoenix
4
    May 1, 2015
                                      Avengers: Age of Ultron
5
   Dec 15, 2017
                            Star Wars Ep. VIII: The Last Jedi
    production_budget domestic_gross worldwide_gross foreign_gross
id
            425000000
                            760507625
                                            2776345279
1
                                                           2015837654
2
            410600000
                            241063875
                                            1045663875
                                                           804600000
3
            350000000
                                                            107000000
                            42762350
                                             149762350
4
            330600000
                            459005868
                                            1403013963
                                                            944008095
5
            317000000
                            620181382
                                            1316721747
                                                            696540365
```

Exploratory Data Analysis

Most Profitable Movie Genres

In [43]:

We are looking at the most profitable movie genres of all time

```
# create profit column
movie_budgets['profit'] = movie_budgets['worldwide_gross'] - movie_budgets['production_bu
```

```
dget']
print(movie budgets.head())
   release date
                                                        movie \
id
   Dec 18, 2009
1
2
   May 20, 2011
                 Pirates of the Caribbean: On Stranger Tides
3
    Jun 7, 2019
                                                 Dark Phoenix
4
    May 1, 2015
                                      Avengers: Age of Ultron
5
   Dec 15, 2017
                            Star Wars Ep. VIII: The Last Jedi
   production_budget domestic_gross worldwide_gross foreign_gross \
id
1
            425000000
                            760507625
                                            2776345279
                                                           2015837654
2
            410600000
                            241063875
                                            1045663875
                                                           804600000
3
           350000000
                            42762350
                                            149762350
                                                            107000000
           330600000
                            459005868
                                            1403013963
                                                           944008095
5
           317000000
                           620181382
                                           1316721747
                                                           696540365
       profit
id
1
   2351345279
2
    635063875
3
   -200237650
   1072413963
5
    999721747
```

In [45]:

```
# top 10 most profitable movies
most_profitable = movie_budgets.sort_values(by='profit', ascending=False).head(10)
most_profitable
```

Out[45]:

	release_date	movie	production_budget	domestic_gross	worldwide_gross	foreign_gross	profit
id							
1	Dec 18, 2009	Avatar	425000000	760507625	2776345279	2015837654	2351345279
43	Dec 19, 1997	Titanic	20000000	659363944	2208208395	1548844451	2008208395
7	Apr 27, 2018	Avengers: Infinity War	30000000	678815482	2048134200	1369318718	1748134200
6	Dec 18, 2015	Star Wars Ep. VII: The Force Awakens	306000000	936662225	2053311220	1116648995	1747311220
34	Jun 12, 2015	Jurassic World	215000000	652270625	1648854864	996584239	1433854864
67	Apr 3, 2015	Furious 7	190000000	353007020	1518722794	1165715774	1328722794
27	May 4, 2012	The Avengers	225000000	623279547	1517935897	894656350	1292935897
61	Jul 15, 2011	Harry Potter and the Deathly Hallows: Part II	125000000	381193157	1341693157	960500000	1216693157
42	Feb 16, 2018	Black Panther	20000000	700059566	1348258224	648198658	1148258224
13	Jun 22, 2018	Jurassic World: Fallen Kingdom	170000000	417719760	1305772799	888053039	1135772799

In [90]:

```
# Convert the 'profit' column from millions to billions
movie_budgets['profit_billions'] = movie_budgets['profit'] / 1_000_000_000
movie_budgets
```

Out[90]:

	release_date	movie	production_budget	domestic_gross	worldwide_gross	foreign_gross	profit	profit_billions
id								
1	2009-12-18	Avatar	425000000	760507625	2776345279	2015837654	2351345279	2.351345

id	release_date	Pira neyis the	production_budget	domestic_gross	worldwide_gross	foreign_gross	profit	profit_billions
2	2011-05-20	Caribbean: On Stranger Tides	410600000	241063875	1045663875	804600000	635063875	0.635064
3	2019-06-07	Dark Phoenix	350000000	42762350	149762350	107000000	-200237650	-0.200238
4	2015-05-01	Avengers: Age of Ultron	330600000	459005868	1403013963	944008095	1072413963	1.072414
5	2017-12-15	Star Wars Ep. VIII: The Last Jedi	317000000	620181382	1316721747	696540365	999721747	0.999722
78	2018-12-31	Red 11	7000	0	0	0	-7000	-0.000007
79	1999-04-02	Following	6000	48482	240495	192013	234495	0.000234
80	2005-07-13	Return to the Land of Wonders	5000	1338	1338	0	-3662	-0.000004
81	2015-09-29	A Plague So Pleasant	1400	0	0	0	-1400	-0.000001
82	2005-08-05	My Date With Drew	1100	181041	181041	0	179941	0.000180

5782 rows × 12 columns

10 most profitable movies

```
In [106]:
```

```
sns.set style("whitegrid")
plt.figure(figsize=(16, 8))
ax = sns.barplot(
   data=most_profitable,
   x="movie",
   y="profit billions",
   hue="movie",
   palette="viridis",
   legend=False
for index, value in enumerate(most_profitable["profit_billions"]):
   ax.text(index, value + 0.05, f"{value:.2f}B", ha="center", fontsize=12, fontweight="
bold")
plt.title("Top 10 Most Profitable Movies", fontsize=18, fontweight="bold")
plt.ylabel("Profit in Billions ($)", fontsize=14)
plt.xlabel("Movie Name", fontsize=14)
plt.xticks(rotation=30, ha="right", fontsize=12)
sns.despine()
```


Conclusion: The most profitable genre is Action Sci-Fi

Return on Investment(ROI)

We are looking at the movies with highest return on investments

```
In [110]:
```

```
# Calculate ROI
movie budgets["roi"] = (movie budgets["profit"] / movie budgets["production budget"])
# Show top 5 movies by ROI
print(movie budgets.sort values("roi", ascending=False).head())
                                   movie production budget domestic gross
  release date
id
46
    1972-06-30
                             Deep Throat
                                                       25000
                                                                    45000000
                                 Mad Max
14
    1980-03-21
                                                      200000
                                                                     8750000
93
    2009-09-25
                     Paranormal Activity
                                                      450000
                                                                   107918810
80
    2015-07-10
                             The Gallows
                                                      100000
                                                                    22764410
    1999-07-14 The Blair Witch Project
                                                      600000
                                                                   140539099
                                     profit profit billions
   worldwide gross foreign gross
                                                                         roi
id
46
           45000000
                                     44975000
                                                      0.044975 1799.000000
                                 0
                                    99550000
                          91000000
14
          99750000
                                                      0.099550
                                                                497.750000
93
          194183034
                          86264224 193733034
                                                      0.193733
                                                                 430.517853
80
           41656474
                          18892064
                                    41556474
                                                      0.041556
                                                                  415.564740
7
          248300000
                         107760901 247700000
                                                      0.247700
                                                                  412.833333
    foreign profit domestic profit release month
id
                           44975000
46
            -25000
                                                  6
          90800000
                            8550000
                                                  3
14
93
                                                  9
          85814224
                          107468810
                                                  7
80
                           22664410
         18792064
                                                  7
7
         107160901
                          139939099
```

Visualisation

Conclusion: high ROI means strong audience interest and/or repeat viewing or great marketing while low ROI means poor reception, low audience engagement or poor marketing

Analysing between foreign and domestic audience trends

We are analysing the most profitable audience

```
In [115]:
```

```
#analyzing between foreign and domestic audience trends, the most profitable audience
#foreign profit margin
movie budgets['foreign profit'] = movie budgets['foreign gross'] - movie budgets['product
ion budget']
movie budgets['domestic profit'] = movie budgets['domestic gross'] - movie budgets['produ
ction budget']
# Compare Average Foreign and Domestic Profit
profit comparison = movie budgets[["foreign profit", "domestic profit"]].mean()
# Display Profit Comparison Values
print(profit comparison)
foreign profit
                  1.802638e+07
domestic profit
                 1.028557e+07
dtype: float64
In [123]:
sns.set style("whitegrid")
```

```
plt.figure(figsize=(8,6))
ax = sns.barplot(
   data=profit comparison.reset index(),
   x="index",
   y=0,
   hue="index",
   palette=["green", "orange"],
   legend=False
for index, value in enumerate(profit comparison.values):
    ax.text(index, value + 0.03 * value, f"${value/1e6:,.1f}M", ha="center", fontsize=12
, fontweight="bold")
plt.xlabel("Market Audience", fontsize=12)
plt.ylabel("Avg. Profit ($)", fontsize=12)
plt.title("Most Profitable Audience: Domestic vs Foreign", fontsize=14, fontweight="bold"
ax.yaxis.set major formatter(mtick.FuncFormatter(lambda x, : f"${x/le6:,.0f}M"))
plt.grid(axis="y", linestyle="--", alpha=0.7)
sns.despine()
plt.tight layout()
plt.show()
```


Conclusion: Foreign markets are more profitable than domostic markets. This is because foreign profit is significantly higher than domestic profit. This means movies make more money internationally

Relase Month vs Revenue

We are analysing how the month a movie is released affects revenue

In [65]:

```
# Convert release_date to datetime and extract month
movie_budgets['release_date'] = pd.to_datetime(movie_budgets['release_date'])
movie_budgets['release_month'] = movie_budgets['release_date'].dt.month

# Group by month and calculate mean revenue
monthly_revenue = movie_budgets.groupby('release_month')['worldwide_gross'].mean().reset
_index()
monthly_revenue
```

Out[65]:

	release_month	worldwide_gross
0	1	4.656382e+07
1	2	7.154453e+07
2	3	8.063337e+07
3	4	5.992026e+07
4	5	1.622680e+08
5	6	1.425230e+08
6	7	1.409636e+08
7	8	6.097841e+07
8	9	4.669369e+07
9	10	4.946456e+07
10	11	1.357416e+08

11 release_month worldwide_gross

In [67]:

```
# Arrange worldwide_gross in descending order
monthly_revenue = monthly_revenue.sort_values(by='worldwide_gross',ascending=False)
monthly_revenue
```

Out[67]:

	release_month	worldwide_gross
4	5	1.622680e+08
5	6	1.425230e+08
6	7	1.409636e+08
10	11	1.357416e+08
11	12	1.016932e+08
2	3	8.063337e+07
1	2	7.154453e+07
7	8	6.097841e+07
3	4	5.992026e+07
9	10	4.946456e+07
8	9	4.669369e+07
0	1	4.656382e+07

In [69]:

```
# visualise
plt.figure(figsize=(12, 6))
sns.barplot(data=monthly_revenue, x='release_month', y='worldwide_gross', palette='virid
is')
plt.title("Average Movie Revenue by Release Month", fontsize=16)
plt.xlabel("Month", fontsize=12)
plt.ylabel("Revenue ($ Millions)", fontsize=12)
plt.xticks(ticks=range(12), labels=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep
','Oct','Nov','Dec'])
plt.show()
C:\Users\USER\AppData\Local\Temp\ipykernel_8336\1610366053.py:3: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. A
ssign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(data=monthly_revenue, x='release_month', y='worldwide_gross', palette='viridis')
```


Conclusion: Movies do well in summer and holiday seasons which are May to July and November to December respectively

Correlation Between Budget and Revenue

We are analysing the correlation betweer production_budget and worldwide_grossrevenue

In [73]:

```
# Analyze correlation between Production Budget and Worldwide Gross Revenue
correlation_coefficient, p_value = pearsonr(movie_budgets["production_budget"], movie_bud
gets["worldwide_gross"])
print(f"Correlation Coefficient (R-value): {correlation_coefficient}")

# Scatter plot to visualize correlation
plt.figure(figsize=(12,8))
sns.scatterplot(x=movie_budgets["production_budget"], y=movie_budgets["worldwide_gross"],
alpha=0.5)
plt.xlabel("Production Budget ($)")
plt.ylabel("Worldwide Gross Revenue ($)")
plt.title("Correlation Between Budget")
```

Correlation Coefficient (R-value): 0.7483059765694755

Out[73]:

Text(0.5, 1.0, 'Correlation Between Budget')

Conclusion: Higher budgets may lead to higher revenue. However, it can be affected by other factors like

marketing, resease time and addictive reception

CONCLUSION

We have explored the movie industry and provided insights for our company interested in launching a new movie studio.

- We identified that Action / Sci-Fi are the most profitable genres.
- The company should look into creating movies with more foreign appeal
- The company must have enough budget to handle production and marketing, this is because high budget films give good returns but must factor good marketing and release timings.
- The best time to release movies is during holidays and summers and we should also avoid releasing movies alongside popular block busters.

In []: