※ 等

Análise

Ficha de exercícios 0 — 2019/2020 — 2019/2

ullet Vetores em \mathbb{R}^2 e em \mathbb{R}^3

- 1. Interprete a equação química $2NH_2+H_2=2NH_3$ como uma relação na álgebra de pares ordenados, pensando na molécula N_xH_y (x átomos de nitrogéneo, y átomos de hidrogéneo) representada pelo par ordenado (x,y).
- **2.** Considere os vetores $\overrightarrow{u}=(3,2)$ e $\overrightarrow{v}=(2,0)$. Represente graficamente $\overrightarrow{u}+\overrightarrow{v}$ e $-2\overrightarrow{u}$.
- **3.** Considere os vetores $\overrightarrow{v}=(2,1)$ e $\overrightarrow{w}=(1,2)$. Esboce os vetores \overrightarrow{v} e \overrightarrow{w} e também $-\overrightarrow{v}$, $\overrightarrow{v}+\overrightarrow{w}$ e $\overrightarrow{v}-\overrightarrow{w}$.
- **4.** (a) Esboce graficamente o vetor $-2\overrightarrow{v}$, onde \overrightarrow{v} tem componentes (-1,2,3).
 - (b) Se \overrightarrow{v} e \overrightarrow{w} são quaisquer dois vetores, mostre que $\overrightarrow{v} \frac{1}{3}\overrightarrow{w}$ e $3\overrightarrow{v} \overrightarrow{w}$ são paralelos.
- **5.** Expresse o vetor $\overrightarrow{v}=(e,\pi,-\sqrt{3})$ na base canónica.
- **6.** Repita o exercício anterior agora para os vetores $\overrightarrow{v} = (2, 3, -6)$ e $\overrightarrow{w} = (-1, 1, 1)$.
- 7. (a) Determine as componentes do vetor de (3,5) para (4,7).
 - (b) Adicione o vetor \overrightarrow{v} de (-1,0) para (2,-3) com o vetor \overrightarrow{w} de (2,0) para (1,1).
- **8.** Determine a equação da reta no plano que passa no ponto (1,-6) e tem direção de $\overrightarrow{5i}-2\overrightarrow{j}$.
- **9.** Determine as equações da reta ℓ no espaço que passa no ponto (1,0,0) e que tem a direção do vetor $\overrightarrow{j}=(0,1,0)$.
- **10.** Determine as equações da reta ℓ que passa nos pontos (-1, -1, -1) e (1, -1, 2).
- 11. Qual a direção da reta de equações $x=-3t+2, y=-2(t-1), z=8t+2, t\in\mathbb{R}$?
- 12. Determine as equações do plano que passa pela origem e é gerado pelos vetores $\overrightarrow{v}=(2,7,0)$ e $\overrightarrow{w}=(0,2,7)$.

• Produto escalar, norma e distância

- **13.** Se $\overrightarrow{a} = 3\overrightarrow{i} + \overrightarrow{j} 2\overrightarrow{k}$ e $\overrightarrow{b} = \overrightarrow{i} \overrightarrow{j} + \overrightarrow{k}$, calcule $\overrightarrow{a} \cdot \overrightarrow{b}$, $\|\overrightarrow{a}\|$ e $\|\overrightarrow{b}\|$.
- **14.** Calcule $\overrightarrow{u} \cdot \overrightarrow{v}$, onde $\overrightarrow{u} = (3, -2, 22)$ e $\overrightarrow{v} = \overrightarrow{u} / \| \overrightarrow{u} \|$.
- **15.** Verifique que o vetor $\overrightarrow{v}=(2,3,-1)$ é ortogonal ao vetor $\overrightarrow{u}=(-2,3,5)$. Normalize os vetores \overrightarrow{v} e \overrightarrow{u} .
- **16.** Encontre dois vetores não paralelos ambos ortogonais ao vetor $\overrightarrow{v}=(1,1,1)$.
- 17. Determine a distância entre os pontos (1,0,0) e (0,1,0).

• Matrizes, determinantes e produto vetorial

- **18.** Calcule os seguintes determinantes: $\begin{vmatrix} 1 & 2 & 1 \\ 3 & 0 & 1 \\ 2 & 0 & 2 \end{vmatrix}$, $\begin{vmatrix} 2 & -1 & 0 \\ 4 & 3 & 2 \\ 3 & 0 & 1 \end{vmatrix}$ **e** $\begin{vmatrix} 1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25 \end{vmatrix}$.
- **19.** Determine $\overrightarrow{u} \times \overrightarrow{v}$, onde $\overrightarrow{u} = (1, -2, 1)$ e $\overrightarrow{v} = (2, 1, 1)$.
- **20.** Calcule $\overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w})$, onde \overrightarrow{u} e \overrightarrow{v} são os vetores do exercício anterior e $\overrightarrow{w} = (3, -1, 2)$.
- **21.** Determine um vetor unitário ortogonal aos vetores $\overrightarrow{i} + \overrightarrow{j}$ e $\overrightarrow{j} + \overrightarrow{k}$.
- 22. Determine a área do parelelogramo formado pelos vetores do exercício 19.
- 23. Determine a área do parelelogramo formado pelos vetores $\overrightarrow{d} = (1,2,3)$ e $\overrightarrow{b} = (0,-1,-1)$.
- **24.** Determine a equação do plano que é perpendicular ao vetor $\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ e que contém o ponto (1,0,0).
- **25.** Determine a equação do plano que contém os pontos P = (1,1,1), Q = (2,0,0) e R = (1,1,0).