Heavy Ion Physics at the LHC What's new? What's next?

SPS 1986 - 2003

S and Pb ; up to \sqrt{s} =20 GeV/nucl pair E_{cm}^* = 3200 GeV - 2500 prod. hadrons

LHC: starting 2009

Pb; up to $\sqrt{s} = 5.5 \text{ TeV/nucl pair}$

od. hadrons

QGP: Matter under extreme conditions

- Macroscopic partonic matter ('QCD thermodynamics')
- Deconfinement/Color Conductivity
- Chiral Symmetry Restoration

AGS: 1986 - 2000

Si and Au; up to √s =5 GeV /nucl pair
 E_{cm}* = 600 GeV - 1000 prod. hadrons

RHIC: 2000

Au ; up to \sqrt{s} = 200 GeV /nucl pair E_{cm}^* = 40 TeV - 7500 prod. hadrons

New State of Matter created at CERN

10 Feb 2000

http://press.web.cern.ch/press-releases/2000/02/new-state-matter-created-cern

Based on a (unpublished)

'common assessment' of results from ~ half dozen experiments collected & published over the course of the SPS Pb program (1994 - 2000)

http://arxiv.org/abs/nucl-th/0002042v1

The collected data from the experiments gives compelling evidence that a new state of matter has been created. This state of matter found in heavy ion collisions at the SPS features many of the characteristics of the theoretically predicted quark-gluon plasma...

in today's LHC speak:

'.. a QGP-like state ..'

Main Results from SPS

1.2 1.4

May 2013 Stockholm J. Schukmaft (GeV/c²)

4

RHIC Scientists Serve Up "Perfect" Liquid

New state of matter more remarkable than predicted -- raising many new questions

April 18, 2005

These images contrast the degree of interaction and collective motion, or "flow," among quarks in the predicted gaseous quark-gluon plasma state (Figure A, see <u>mpeg animation</u>) vs. the liquid state that has been observed in gold-gold collisions at RHIC (Figure B, see <u>mpeg animation</u>). The green "force lines" and collective

Based on a (published)

comprehensive (re)analysis of
the first years of RHIC (2000 - 2004)

Nucl.Phys.A757:1-284,2005

.. <u>created a new state</u> of hot, dense matter out of the <u>quarks and gluons</u> .., but it is a state <u>quite different</u> and even <u>more remarkable</u> than had been predicted.

in today's LHC speak:

not

' ..the QGP ..'

but

'.. a QGP ..': sQGP

sQGP: strongly interacting QGP

Main Results from RHIC

Collidge via Harmed training vist

What is left to do at LHC?

- What is different? Same physics with ..
 - \Rightarrow different 'matter:' increased energy (up to factor ~30 in \sqrt{s})
 - QGP will be 'hotter larger longer living'
 - □ large cross section for 'hard probes': high p_T, jets, heavy quarks,...
 - ⇒ different experiments: new generation, large acceptance state-of-the-art detectors
 - Atlas, CMS, Alice, [LHCb, for pA]
- Where is progress@LHC?

(very limited & personal selection)

- **⇒ New Light on Old Problems (NLOP)**
 - hadronisation/particle production \(\to \quad \Q \# 1 \)
 - quarkonia suppression
- ⇒ Towards Precision Measurements (PM) of QGP parameters
 - elliptic flow: viscosity η/s
 - jet quenching: opacity q^
- **⇒** Discoveries
 - the 'Ridge': long range correlations in pp & pA

Q # 2

NLOP I: Particle Production

- Hadronisation is non-pertubative
- phenomenological models ('event generators') with many parameters
 strings or clusters, PPAR(x), x=1,..n
- Statistical ('thermal') models: accurate to O(10%) (no 'a priori' justification)
- \Rightarrow particle with mass m produced in 'heat bath T' according to phase space
- \Rightarrow P(m) ~ e^{-(m/T)}

 T_{ch} : 160-170 MeV γ_s : 0.9-1 (AA), 0.5-0.6 (pp) strangeness enhancement = QGP signal ?

T_{ch} Temperature (ch='chemical')

uh Baryo-chemical potential (baryon conservation)

γ_s Strangeness suppression

particles created per collision

Dynamical Origin of Thermal Ratios?

<u>'born</u> into equilibrium' (e+e-, pp, AA)

at the QCD phase boundary $T_c \approx T_{ch}$ many channels => PS dominates

- ⇒ yields ~ QCD x (hadronic) phase space
- **pp** γ_s < 1 : QCD, m_s
- AA $\gamma_s \approx 1$: thermo-dynamics in parton phase
- \Rightarrow **BUT**: **e**+**e**-, **pp**: why T_c \approx T_{ch} **AA**: why don't we see parton equilibrium ?
- <u>'evolving</u> into equilibrium' (AA)

thermodynamics in hadron phase

- ⇒ arbitrary (eg pp-like) initial hadron ratios + inelastic reactions
- reach equilibrium close to phase boundary (T_{ch} < T_c) A + B <=> C + D + E
- ⇒ BUT: dynamic system (expansion & cooling) => expect sequential freeze-out?
- hadrons with large inelastic σ should freeze out later (lower T)!

In this picture, statistical models work

- in AA by design (thermodynamics),
- in pp/e⁺e⁻ by accident (dominance of PS).

Conceivable, but limited direct evidence...

Particle Ratios at LHC

- pp: Less well described than at lower energies!
 - \Rightarrow fits 2 ratios with 2 parameters (T, μ_B)
 - ⇒ maybe finally 'hard QCD processes' (ME, dynamics) become visible over PS?

Particle Ratios Pb-Pb

Strangeness is enhanced

+30% (K), > factor 3 (Ω)

 $\gamma_s = 1$, like thermal model

 p/π off by factor > 1.5

from predictions!

suppressed, not enhanced, compared to pp initially very surprising result (safest prediction for LHC!)

NLOP I: Current Explanations

- Sequential Freeze-out
- ⇒ hadronic final state reactions
- ⇒ but: more art than science..
- many unknown σ (e.g. $\Lambda + \Omega \rightarrow n\pi + mK$)
- detailed balance (e.g. $p + p \le 5\pi$)

10³

tors)

Questions 1: Hadronisation

- 'F Unanticipated deviations at LHC from the Statistical Model (pp&AA)
- Evidence against the SM ?

 \Rightarrow

- → v Make the 'mysteriously successful' SM more reasonable by showing expected/conceivable deviations? (NLO-corrections)
 - In either case, can we use these results to make progress?

NLOP II: Quarkonia Suppression

Heavy Flavor c<u>c</u> / b<u>b</u>

<u>hard collisions</u> (pQCD@τ ≈ 0)

<u>'diffuse'</u> (colour conductivity)

<u>'melt'</u> (deconfinement)

- J/Ψ suppression similar at RHIC and SPS!
- should depend on Energy (Temperature/Density)
 - 1) No J/ Ψ melting at both SPS & RHIC (T > 1.5 2 T_c)? only weakly bound states (Ψ ' & χ) melt.
 - ② 2) More J/ Y melt at RHIC than at SPS but 'by chance' cancellation from regeneration (cc recombination)?

J/Y: Consistent with Melting + Regeneration!

Y suppression

NLOP II: Quarkonium Suppression

J/Ψ, the HP par excellence: 'well calibrated (pQCD) smoking gun'

Matsui & Satz, 1986:

If high energy heavy ion collisions lead to the formation of a hot quark-gluon plasma, then colour screening prevents $c\bar{c}$ binding in the deconfined interior of the interaction region. To study this effect, the temperature dependence of the screening radius, as obtained from lattice QCD, is compared with the J/ψ radius calculated in charmonium models. The feasibility to detect this effect clearly in the dilepton mass spectrum is examined. It is concluded that J/ψ suppression in nuclear collisions should provide an unambiguous signature of quark-gluon plasma formation.

Questions 2: Quarkonia Production

- Regeneration (if confirmed): Dirt effect or Deconfinement signal?
- Sequential Y suppression: **Settles** the deconfinement case?
- If neither, what else would be needed from experiments? (besides smaller errors)

June 2009 India J. Schukraft

Flow in Heavy Ion Collisions

Elliptic Flow v₂

Fourier analysis: $dN/d\phi = 1 + 2 v_2 \cos(2\phi) + ...$

- Initial Conditions
 - e.g. Geometry

(eccentricity $\varepsilon_2 = (y^2-x^2)/(y^2+x^2)$)

- ⇒ Fluid Properties
 - e.g. shear viscosity η

usually use Viscosity/Entropy (η/s dimensionless)

Anisotropic particle density

Anisotropic flow

QGP: The 'perfect Liquid'

- Perfect liquid \rightarrow Viscosity $\eta/s \approx 0$
 - ⇒ large interaction cross section σ in the liquid
- unexpected result
 - ⇒ QGP though to behave like a gas (i.e. weakly interacting)

- ⇒ closest Theory prediction $\eta/s > 1/4\pi \approx 0.08$
 - ◆ AdS/CFT: ('QCD analogue') (Conformal Field Theory in Anti-de Sitter Space)
 - conjectured Quantum limit:

$$\eta/s = 1/4\pi$$

mfp λ ≈ Compton wavelength

- Pre-LHC limit: η/s < (3-6) x 1/4π
- ⇒ initial conditions
 (pressure/energy distribution)
 not known precisely enough

Initial Conditions

- Around 2010
- ⇒ 2) Event-by-Event fluctuations → more complicated shapes (higher order)
- suggested in 2010 but controversial, higher v_n where not directly 'seen' in the data

2011: First LHC (& new RHIC) data

 overwhelming and unambiguous evidence: complex structures from E-b-E hydro flow

⇒ interference of different harmonics

⇒ all characteristics as expected from hydro: R

strength, mass/centrality/momentum dependence

A most amazing Discovery

- The 'face' of the collision zone, (state-of-art for 20 years) including 'warts & wrinkles' of each event
- \Rightarrow progress in precision measurements of η /s
- higher harmonics large sensitivity to viscosity
- discriminate & constrain models & geometry

TPM-I: Quantum Jump in Exp. & Theory

- From Leading Order .. non-linear limit ⇒ elliptic flow v₂ visc, hvdro Better <u>limit</u>, but not yet good enough. \Rightarrow high Aim for measurement (<30%?) of η/s ! $\eta/S < 1/4\pi =>$ conjectured limit is wrong .. to $\eta/S > 1/4\pi => measure \sigma in QGP$ $\eta/S \approx 1/4\pi => AdS/CFT$ quantum corrections ? O(10-30%) limit[©] ⇒ via o J. Jia http://arxiv.org/pdf/1005.0645.pdf o ⇒ via non-linear interactions in the hydro evolutic (mode mixing) 100 150 200 250 300 350 400 450 $\langle N_{part} \rangle$
- leading to better limits on η/s

TPM-II: Jets & 'Jet-quenching'

- partons loose energy ΔE when traversing a medium
 - \Rightarrow Jet(E) \rightarrow Jet (E' = E- \triangle E) + soft particles(\triangle E)
 - ⇒ QCD energy loss ΔE expected to depend on:
 - • †: 'opacity ' = property of medium ('radiation length of QGP')

 - c_a: parton type (gluon > quark)
 - f(m): quark mass (light q > heavy Q)
 - f(E): jet energy (ΔE = constant or ~ ln(E))

- 1) How much energy is lost? measure jet imbalance E - E'
- 2) Where (and how) is it lost? measure radiated energy ΔE
- 3) Shows expected scaling?

vary L, m, E, ...

Observation of Jet Quenching

- Observed at RHIC in 2001
 - ⇒ via suppression of 'leading fragments' (not enough energy to see jets)
 - qualitative clear effect, quantitative interpretation difficult & model dependent

1) How much Energy is lost?

Di-Jet energy balance A_i

 $<\Delta E> \approx 20 \text{ GeV}$ (wide distribution)

Medium is VERY strongly

interacting ('opaque')

(but within expectations)

2) Energy dependence

roughly as expected (weak dep. on Energy)

(CMS PLB 712 (2012) 176)

2) Where (& how) is it lost?

Di-jet angular correlation $\Delta \phi_{12}$

Unexpected Result:

- jets remain back-to-back like in pp
 (little additional broadening from radiated Energy)
- radiated energy appears in <u>low energy hadrons</u>, <u>far away from the jet</u> (CMS PRC 84 (2011) 024906)

4) Mass & Color Charge Dependence

Measure Heavy Quarks (c,b) versus π

(gluon fragmentation dominates π at LHC)

Expectation:

$$\Delta E(\pi) > \Delta E(D) > \Delta E(B)$$

- qluon ↔ quark
- light ↔ heavy

- hints for the expected hierarchy

less strong than naively expected

Discovery

- The first LHC Discovery (pp, Sept 2010)
 - ⇒ long range rapidity 'ridge' in 2-particle correlations
 - visible in the highest multiplicity pp collisions
 - arguably still the most unexpected LHC discovery

If we are here today it is because we didn't succeed to kill it.

We have therefore submitted the paper to expose our findings to the scrutiny of the scientific community at large.

Origin of the pp 'Ridge'

- Spawned a large number of different explanations
 - mostly rather ad hoc, very speculative, or outright weird

Color Glass Condensate CGC: 'first principles' theory

⇒ classsical FT in high density limit (small x, small Q²)

⇒ 'new state of cold & dense parton matter'

- ⇒ some success describing aspects of ep, pp, eA: geometric scaling, low-x, particle production, ..
 - however, no 'smoking gun' so far...
- Collective flow (Hydro) ?
 - > vaguely similar correlations in nucleus-nucleus

Ridges everywhere..

- Ridge is much stronger in pPb (end 2012)!
 - ⇒ and is, in fact, a 'double ridge'
 - ⇒ even and odd components (v₂, v₃)
 - ⇒ collective multiparticle (i.e., not 'jet' like)
 - ⇒ now also seen in dAu at RHIC! (tbc)
 - ⇒ strength ≈ as **predicted** by <u>some</u> hydro models

Panta Rhei?

- CGC in trouble?
 - \Rightarrow mini-jet like correlation (4 part. << 2 part. ?), no odd harmonics (v_3), ...
- Collective 'Hydro-like' flow in pA (& pp) ??
 - ⇒ energy/particle density quiet comparable to AA (eg high N_{ch} pp@LHC ≈ Cu-Cu mid-central @RHIC)
 - ⇒ system size only few fm³ ??

(presumably << 10 compared to >> 1000)

- however, hydro has no intrinsic size, only ratio's: λ/r , and $\lambda \approx 0$! (from η/s)
 - ,
- a proton@LHC is more like a small nucleus
- (dozens of partons, MPI,..)!

- ⇒ additional measurements should tell
 - \circ mass dependence of ridge (π, K, p)
 - other collective signals (eg radial flow vi
- In either case, more than a curiosity

New State of Matter created at CERN which features many of the characteristics of the theoretically predicted Colour Glass Condensate.

RHIC Scientists found "Colorful Glass"

to serve the Perfect Liquid

- ⇒ <u>CGC</u>
 - discovered a 'new state of matter'
 - smoking gun for new 'first principle' limit of QCD
- ⇒ **Hydro**

stunning: a system the size of a single hadron behaves like 'macroscopic matter'

- 'extra dimension' for QGP study: size!
- finite size effects => correlation & coherence length, time scales,

Rewrite the textbooks

at least change the title from 'Heavy Ion physics' to ..

Question_s **3:** (assuming hydro explanation for ridge)

Similar hadronisation (particle ratios), now signs of collectivity in pp?

pp, pA, AA: What, if anything, is qualitatively different?

- Does this make AA more pp-like? (no 'new state of matter)
- Or pp more AA like? (QGP 'matter' **everywhere** in dense systems > few fm³)

 How small can it get ?
- Is there another smoking gun for CGC in pA at LHC? (should be, x < 10⁻³-10⁻⁵)
- If not, is there still a science case for an electron-ion collider?

The Questions:

Questions 1: Hadronisation

Unanticipated deviations at LHC from the Statistical Model (pp&AA)

- Evidence against the SM?
- Make the 'mysteriously successful' SM more reasonable by showing expected/conceivable deviations? (NLO-corrections)
- In either case, can we use this to make progress?

Questions 2: Quarkonia Production

- Regeneration (if confirmed): Dirt effect or Deconfinement signal?
- Sequential Y suppression: Settles the deconfinement case?
- If neither, what else would be needed from experiments? (besides smaller errors)

Questions 3: (assuming hydro explanation for ridge)

Similar hadronisation (particle ratios), now signs of collectivity in pA (& pp)?

pp, pA, AA: What, if anything, is qualitatively different?

- Does this make AA more pp-like (no 'new state of matter)?
- Or pp more AA like (QGP 'matter' in all dense hadronic systems > few fm³)?
- Is there another smoking gun for CGC in pA at LHC (there should be, x < 10⁻³-10⁻⁵)?
- If not, is there still a science case for an electron-ion collider?

What's next for HI?

- short/medium term at LHC (≈ 5 y)
 - ⇒ complete (& solve ?) the quarkonia puzzle(deconfinement)
 - quantify 'other effects' (pA), measure Ψ', better Y
 - theory: needs progress in calculating melting temperatures!
 - ⇒ **Hydro**: increased precision/sophistication

(e.g. 30% in η /s ??)

- ⇒ solve the 'ridge' mystery (CGC vs Hydro vs ??)
 - any other sign of CGC in pA@LHC ? (e.g. monojets at large y => LHCb)
 - pA at LHC could make (or break ?) the science case for eRHIC/EIC
- medium/longer term LHC (≈ 10 y, including exp/LHC upgrades)
 - ⇒ comprehensive & precise energy loss ("jet-quenching') (needs HF,γ-jet)
 - ⇒ chiral symmetry restoration ? e.g. much better low mass lepton pairs(NA60)
- Outside LHC (not part of this presentation)
 - ⇒ 'Phase Transition Line' & 'Tri-critical Point' where s

where starts the 'normal' (hadronic) matter ?

- ⇒ matter at high baryon density (compression)
 - FAIR@GSI, NICA@DUBNA
 - RHIC energy scan, SPS fixed target

May 2013 Stockholm J. Schukraft

The Questions:

Questions 1: Hadronisation

Unanticipated deviations at LHC from the Statistical Model (pp&AA)

- Evidence against the SM?
- Make the 'mysteriously successful' SM more reasonable by showing expected/conceivable deviations? (NLO-corrections)
- In either case, can we use this to make progress?

Questions 2: Quarkonia Production

- Regeneration (if confirmed): Dirt effect or Deconfinement signal?
- Sequential Y suppression: Settles the deconfinement case?
- If neither, what else would be needed from experiments? (besides smaller errors)

Questions 3: (assuming hydro explanation for ridge)

Similar hadronisation (particle ratios), now signs of collectivity in pA (& pp)?

pp, pA, AA: What, if anything, is qualitatively different?

- Does this make AA more pp-like (no 'new state of matter)?
- Or pp more AA like (QGP 'matter' in all dense hadronic systems > few fm³)?
- Is there another smoking gun for CGC in pA at LHC (there should be, x < 10⁻³-10⁻⁵)?
- If not, is there still a science case for an electron-ion collider?

Spares

A challenge for mode

p_ (GeV/c)

Armesto et al. PRD71 (2005) 054027
Horowitz et al., JPhys G38 (2011) 124114
Alberico et al., Eur.Phys.J C71 (2011) 1666
van Hees et al., PRC73 (2006) 034913
Fochler et al., J.Phys. G38 (2011) 124152
Sharma et al., PRC80 (2009) 054902
He et al., PLB713 (2012) 224

p_ (GeV/c

J/ψ suppression & regeneration?

Inclusive J/ψ suppression measurements both in central and forward regions for $p_{\tau}>0$:

- from N_{part} > 100 suppression independent of centrality
- in central collisions, less suppression than at RHIC
- R_{AA} decreases by 40% from y=2.5 to y=4

Mapping the Phase Boundary

