

CENTRAL INTELLIGENCE AGENCY
SECURITY INFORMATION
INFORMATION REPORT

REPORT NO. [REDACTED]

CD NO.

25X1A

COUNTRY USSR

DATE DISTR. 17 June 1952

SUBJECT Leaflets on Soviet Electric Cables

NO. OF PAGES 1

PLACE ACQUIRED [REDACTED] 25X1A

NO. OF ENCLS.
(LISTED BELOW) 4

DATE ACQUIRED [REDACTED] 25X1C

SUPPLEMENT TO
REPORT NO. 25X1X

The following leaflets in Russian on Soviet electric cables, obtained at the World Economic Conference at Moscow, are being sent to you for retention in the belief that they may be of interest.

- a. Kabeli, Provoda, i Shnury Silnogo Toka s Rezinovoy Izolyatsiei, Tom III (High Tension Cables, Conductors, and Cords with Rubber Insulation, Part issued by Promsyreimport.
- b. Kabeli Svyazi (Communications Cables), issued by Promsyreimport, Moscow
- c. Silovyye Kabeli s Bumazhnay Propitannoy Izolyatsiei (Power Cables with Treated Paper Insulation), issued by Promsyreimport.
- d. Telefonnyye Kabeli dlya Mestnykh Setey (Telephone Cables for Local Net) issued by Promsyreimport.

25X1A

25X1A

DO NOT CIRCULATE

Okanee
Reiter

CLASSIFICATION RESTRICTED

STATE	NAVY	NSRB	DISTRIBUTION	31	SPR	X			
ARMY	AIR								

25 May 1952

THIS IS AN ENCLURE TO

DO NOT DETACH

ВСЕСОЮЗНОЕ ОБЪЕДИНЕНИЕ «ПРОСТОВИДЕОИМПОРТ»

25X1A

CPYRGHT

RESTRICTED

КАБЕЛИ СВЯЗИ

РАЗДЕЛ II

МОСКВА

КАБЕЛИ СВЯЗИ

Общая часть

НАЗНАЧЕНИЕ

Кабели связи служат для передачи: телефонных разговоров, телеграмм и фототелеграмм, программ радиовещания и программ телевидения.

Таблица 1

ОСНОВНЫЕ ТИПЫ КАБЕЛЕЙ СВЯЗИ

Наименование типов	Марки	Назначение кабелей	Диаметр токопроводящих жил, мм	Вид изоляции	Система скрутки жил в группы
Кабели местной связи					
Городские телефонные кабели (магистральные)	ТГ, ТА, ТБГ, ТБ, ТП, ТК	Для передачи телефонных разговоров на расстоянии до 5 км	0,5—0,6 —0,7	Воздушно-бумажная	Парная и в звездную четверку
Телефонные распределительные кабели	ТРК, ТРКШ	Для линейного монтажа распределительных абонентских сетей	0,5	Комбинированная изоляция из слоя эмали и слоя пропитанной хлопчатобумажной пряжи.	Парная
Телефонные стационарные кабели	ТСШ, ТСО	Для монтажа телефонных станций	0,5	Комбинированная изоляция из слоя эмали и слоя пропитанной хлопчатобумажной пряжи	В пары, тройки, четверки
Кабели дальней связи					
Однородные кабели со звездной скруткой (неэкранированные и экранированные)	ТЗГ, ТЗБ, ТЗБГ, ТЗП, ТЗПГ, ТЗК, ТЗЭГ, ТЗЭБ, ТЗЭБГ, ТЗЭП, ТЗЭПГ, ТЗЭК	Для соединительных линий между АТС; для кабелирования вводов и переходов воздушных линий связи через жел. дороги, реки и т. п.	0,8—0,9 1,0—1,2 —1,4	Воздушно-бумажная и кордельно-бумажная	В звездную четверку
Комбинированные кабели, состоящие из неоднородных групп	ТДСГ, ТДСБ, ТДСЛ, ТДСК, ТДСБК, ТДСПК	Для самостоятельных кабельных линий, включающих различные виды современной электрической связи	0,7—1,0 1,2—1,4	Кордельно-бумажная	В пары, в четверки—"звездой" и в шестерки

ОСНОВНЫЕ ТИПЫ КАБЕЛЕЙ СВЯЗИ

Наименование типов	Марки	Назначение кабелей	Диаметр токопроводящих жил, мм	Вид изоляции	Система скрутки жил в группы
Кабели для систем многоканального телефонирования и телеграфирования в диапазоне частот до 60 кгц: А. Непупинизированные	МКГ, МКБ, МКП, МКК	Для междугородных магистралей, включающих различные виды современной электрической связи	0,9—1,2 —1,4	Кордельно-бумажная	В пары и в звездные четверки
Б. Частопупинизированные	ТЗСГ, ТЗСБ, ТЗСП, ТЗСК			Кордельно-стирофлексная	В звездные четверки
Кабели для сигнализации и блокировки	СОГ, СОА, СОБ, СОБГ, СОП, СОК, СОПГ	Для сигнальных линий (пожарная и др. сигнализация), для автоблокировки на жел. дорогах и для коротких телеграфных линий (до 5 км), работающих на постоянном токе	1,0	Пропитанная кабельная бумага	Жилы кабеля используются по однопроводной системе

В зависимости от условий прокладки и эксплуатации кабели связи разделяются на подземные, подводные и воздушные.

Типовая схема линий связи между абонентами, находящимися в различных городах, показана на рис. 1.

От районной (городской) автоматической или ручной телефонной станции (АТС), располагаемой в центре телефонной нагрузки района, до распределительных шкафов (РШ) прокладываются магистральные кабели 3, а от распределительных шкафов до пяти- или десятипарных распределительных коробок (РК) отходят распределительные кабели 2.

Индивидуальные абоненты подключаются к домовой распределительной коробке посредством однопарного распределительного (абонентского) кабеля 1.

Районные телефонные станции связаны между собой, а также с междугородней телефонной станцией соединительными линиями.

Для соединительных линий используются однородные кабели звездной скрутки 4 с воздушно-бумажной или кордельно-бумажной изоляцией.

Кабели звездной скрутки применяются также для каблирования телефонно-телеграфных стационарных узлов воздушных линий связи (вводные кабели), для каблирования речевых и прочих специальных переходов на трассах воздушных линий.

Несмотря на то, что длины соединительных линий исчисляются величинами порядка 10—20 км, кабели звездной скрутки отнесены к группе кабелей дальней связи, так как по своей конструкции, по требованиям, предъявляемым к их электрическим характеристикам, и по методике испытаний эти кабели имеют больше общего с кабелями дальней связи.

Для каблирования междугородних трасс применяются кабели дальней связи:

а) комбинированные 5, т. е. состоящие из разнородных как по системе скрутки, так и по диаметрам токоведущих жил групп с кордельно-бумажной изоляцией; эти кабели разделяются на низкочастотные и высокочастотные;

б) однородные кабели звездной скрутки с кордельно-стирофлексной изоляцией (высокочастотные).

Для соединения радиостанции с радиоцентром (радиостудией) и для включения последнего в общегородскую радиотрансляционную сеть применяются также комбинированные кабели дальней связи 5.

Рис. 1.

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- | | | |
|-----|-------------------------------------|--|
| АБ | — телефонный абонент, | — 1 — распределительные однопарные кабели (абонентские), |
| РК | — распределительная коробка, | — 2 — распределительные многопарные кабели, |
| РШ | — распределительный шкаф, | — 3 — магистральные городские (телефонные) кабели, |
| ATC | — районная телефонная станция, | — 4 — кабели дальней связи однородные, |
| МТС | — междугородняя телефонная станция, | — 5 — кабели дальней связи комбинированные, |
| РР | — разноцентр (радиостудия), | радиостанция. |

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Электрические характеристики кабелей зависят от материала проводника, рода изоляции жил, конструкции кабеля и его геометрических размеров.

ПЕРЕДАВАЕМЫЕ ЧАСТОТЫ

Для хорошего воспроизведения человеческой речи, пения и музыки требуется осуществить неискаженную передачу всех частот в пределах от 30 до 10 000 гц .

Передача полосы частот от 50 до 6 400 гц является достаточной для удовлетворительного воспроизведения музыки и совершение приятной речи.

Для осуществления телефонных разговоров рекомендуется использовать полосу эффективно передаваемых частот от 300 до 3 400 гц . В случае телефонной связи под эффективно передаваемой по цепи частотой принимается частота, при которой остаточное затухание не превышает остаточного затухания при частоте 800 гц более чем на 1 непер (8,7 децибел).

УПЛОТНЕНИЕ ЦЕПЕЙ

Широкое распространение в технике дальней связи получили системы многоканального телефонирования и телеграфирования.

Сущность многоканальной связи состоит в том, что по одной двухпроводной цепи одновременно передается несколько телефонно-телефрафных сообщений. Для этого телефонный разговор из спектра тональных частот необходимо перенести в спектр высоких частот („модуляция“), передать по линии токи высоких частот и затем на приемном конце линии преобразовать токи высоких частот в токи тональных частот исходного телефонного разговора („демодуляция“).

РАСШИРЕНИЕ СПЕКТРА ПЕРЕДАВАЕМЫХ ЧАСТОТ

Количество телефонных разговоров, или каналов связи, которыми уплотняется одна двухпроводная цепь, определяет общую ширину спектра высоких частот, необходимого для осуществления передачи.

Для передачи телефонных разговоров на каждый высокочастотный канал связи отводится полоса частот шириной 4 000 гц .

Наиболее широкое распространение получила 12-канальная система связи с рабочим спектром передаваемых частот от 12 до 60 кгц .

При 24-канальной системе по кабелям могут передаваться частоты от 12 до 108 кгц .

При уплотнении цепей системами многоканальной связи экономичность кабельной линии повышается в несколько раз по сравнению с обычными пучинизированными линиями дальней связи.

Таблица 2
ЧАСТОТНЫЕ ДИАПАЗОНЫ РАЗЛИЧНЫХ ВИДОВ СОВРЕМЕННОЙ ПРОВОДНОЙ СВЯЗИ

Вид связи		Частоты	Количество каналов связи
Телеграфирование	Подтональное	от 0 до 80 - 130 гц	1
	Тональное	от 300 до 3 400 гц	18
Фото-телеграфирование		от 50 до 4 000 - 6 000 гц	1
Широковещание (радиотрансляция)		от 50 до 8 000 гц	1
Телефонирование	Тональное	от 300 до 3 400 гц	1
	Высокочастотное	от 12 000 до 60 000 гц	12
		от 12 000 до 108 000 гц	24
		от 60 гц до 1 000 гц	200
		от 60 гц до 3 Мгц	660
Телевидение	Черно-белое	от 0 до 4 - 5 Мгц	1
	Цветное	от 0 до 12 - 15 Мгц	1

В качестве измерительной и расчетной частоты в тональном спектре (300 - 3 000 гц) стандартизована частота $f = 800$ гц.

Круговая частота $\omega = 2\pi f$ приближенно принята равной 5 000.

СОПРОТИВЛЕНИЕ ЖИЛ ПОСТОЯННОМУ ТОКУ

Величина омического сопротивления одиночной медной жилы на длине 1 км определяется по формуле:

$$R_{\infty} = \frac{\rho}{q} \cdot k \cdot \left[\frac{\text{ом}}{\text{км}} \right],$$

где ρ - удельное сопротивление отожженной медной проволоки, равное при температуре + 20° 17,54 ом·мм²/км;

q - номинальное сечение токопроводящей жилы, мм²;

k - коэффициент укрутики, равный 1,02 - 1,03.

Токопроводящие жилы кабеля расположены не продольно, а скручены, поэтому фактически длина проволок несколько превышает длину самого кабеля, что и учитывается при определении активного сопротивления жил коэффициентом укрутики.

Измеренное значение омического сопротивления жилы при температуре t° приводится к + 20° по формуле:

$$R_{20^{\circ}} = \frac{R_t}{1 + \alpha(t - 20)} [\text{ом}],$$

где α - температурный коэффициент, равный для меди 0,004.

СОПРОТИВЛЕНИЕ ЖИЛ ПЕРЕМЕННОМУ ТОКУ (КАБЕЛИ ДЛЯ МНОГОКАНАЛЬНОЙ СВЯЗИ)

При передаче по линии переменного тока сопротивление проводников увеличивается с возрастанием частоты тока вследствие поверхностного эффекта, эффекта сближения и потерь на вихревые токи в свинцовой оболочке кабеля.

При передаче по кабелям связи полосы тональных частот (300—3 400 гц) величина активного сопротивления R_f считается неизменной, равной величине омического сопротивления жил постоянному току R_0 , и вычисляется по формуле, выведенной для постоянного тока.

При передаче по кабелям связи токов высоких частот (свыше 10 000—12 000 гц) вычисление величины R_f производится с учетом указанных выше факторов.

На рис. 2 показаны частотные зависимости отдельных составляющих и суммарной величины активного сопротивления переменному току для 32-парного кабеля дальней связи с диаметром токоведущих жил 1,2 мм .

При частоте 60 кгц сопротивление переменному току R_f превышает омическое сопротивление постоянному току R_0 в 1,6 раза, а при частоте 100 кгц — более чем в 2 раза.

Рис. 2. Частотная зависимость омического сопротивления жил кабеля МКБ 32×2.

Величина активного сопротивления двухпроводной цепи переменному току вычисляется по следующей приближенной формуле, выведенной применительно к кабелям звездной скрутки с кордально-бумажной и кордально-стирофлексной изоляцией, применяемых для систем многоканальной связи:

$$R_f = 2R_0 [1 + F(x) + 0,4 G(x)] \frac{\text{ом}}{\text{км}},$$

где $2R_0$ — величина омического сопротивления постоянному току шлейфа проводов, т. с. прямого и обратного провода одной разговорной пары;

$F(x)$ — коэффициент, учитывающий увеличение сопротивления, вследствие поверхностного эффекта;

$G(x)$ — коэффициент, учитывающий увеличение сопротивления вследствие эффекта сближения;

0,4 — поправочный коэффициент, характеризующий конструкцию кабеля.

Значения коэффициентов $F(x)$ и $G(x)$ в зависимости от параметра x приведены в табл. 3.

Величина параметра x зависит от диаметра токоведущего проводника d_0 и от частоты передаваемого тока f и в случае медных проводников определяется по формуле:

$$x = 0,0105d_0 \sqrt{f},$$

где d_0 — в мм и f — в гц .

Погрешность приближенной формулы в диапазоне частот до 200 кгц не превышает 1% при расчете кабелей с кордально-стирофлексной изоляцией и составляет не более 4—5% при расчете кабелей с кордально-бумажной изоляцией.

ЗАВИСИМОСТЬ КОЭФФИЦИЕНТОВ $F(x)$ И $G(x)$ ОТ x

Таблица 3

x	$F(x)$	$G(x)$	x	$F(x)$	$G(x)$
0,0	0	0	2,7	0,228	0,3412
0,1	0,0	x^4 64	2,8	0,256	0,3632
0,2	0,0	x^4 64	2,9	0,286	0,3814
0,3	0,0	x^4 64	3,0	0,318	0,4049
0,4	0,0	x^4 64	3,1	0,351	0,4247
0,5	0,0	0,00097	3,2	0,385	0,4439
0,6	0,001	0,00202	3,3	0,420	0,4626
0,7	0,001	0,00373	3,4	0,456	0,4807
0,8	0,002	0,00632	3,5	0,492	0,4987
0,9	0,003	0,01006	3,6	0,529	0,5160
1,0	0,005	0,01519	3,7	0,566	0,5333
1,1	0,008	0,0220	3,8	0,603	0,5503
1,2	0,011	0,0306	3,9	0,640	0,5673
1,3	0,015	0,0413	4,0	0,678	0,5842
1,4	0,020	0,0541	4,1	0,715	0,6010
1,5	0,026	0,0691	4,2	0,752	0,6179
1,6	0,033	0,0863	4,3	0,789	0,6348
1,7	0,042	0,1055	4,4	0,826	0,6517
1,8	0,052	0,1265	4,5	0,863	0,6687
1,9	0,061	0,1489	4,6	0,899	0,6858
2,0	0,078	0,1724	4,7	0,935	0,7030
2,1	0,094	0,1967	4,8	0,971	0,7203
2,2	0,111	0,2214	4,9	1,007	0,7376
2,3	0,131	0,2462	5,0	1,043	0,7550
2,4	0,152	0,2708	5,1	1,114	0,7902
2,5	0,175	0,2919	5,2	1,184	0,8255
2,6	0,201	0,3184	5,3	1,254	0,8609
			5,4	1,324	0,8962
			5,5	1,394	0,9316
			5,6		
			5,7		
			5,8		
			5,9		
			6,0		

Потери на вихревые токи учитываются прибавлением к величине R сопротивления ΔR_f согласно табл. 4.

Таблица 4

ЗНАЧЕНИЯ ДОПОЛНИТЕЛЬНОГО СОПРОТИВЛЕНИЯ ΔR_f ПРИ ЧАСТОТЕ ПЕРЕДАВАЕМОГО ТОКА $f = 200 \text{ кгц}$

Число четверок в кабеле	Дополнительное сопротивление цепи, $\text{ом}/\text{км}$							
	от смежных четверок				от свинцовой оболочки			
	1 повив	2 повив	3 повив	4 повив	1 повив	2 повив	3 повив	4 повив
1	0	—	—	—	22	—	—	—
1 + 6	8	7,5	—	—	1,5	5,5	—	—
1 + 6 + 12	8	7,5	7,5	—	0	0	1,0	—
1 + 6 + 12 + 18	8	7,5	7,5	7,5	0	0	0	1,0

Пересчет величины дополнительного сопротивления для другой частоты производится по следующей эмпирической формуле:

$$\Delta R_{f_1} = \Delta R_f \sqrt{\frac{f_1}{200\,000}} \frac{\text{ом}}{\text{км}},$$

где ΔR_f — табличное значение дополнительного сопротивления.

ИНДУКТИВНОСТЬ

Величина индуктивности двухпроводной цепи зависит от диаметра жил и от системы их скрутки и в современных кабелях связи колеблется в пределах $0,6 \cdot 10^{-3} - 0,8 \cdot 10^{-3} \text{ гн}/\text{км}$.

Для практических расчетов индуктивность двухпроводной цепи кабеля определяется по следующей упрощенной формуле:

$$L = \left(9,2 \lg \frac{2a}{d_0} + 1 \right) 10^{-4} \frac{\text{гн}}{\text{км}},$$

где d_0 — диаметр токоведущего проводника, мм ,

a — расстояние между центрами жил разговорной пары, мм .

При парной скрутке жил $a = d_1$, при скрутке жил в звездную четверку $a = 1,4 d_1$, где d_1 — диаметр изолированной жилы.

Величину отношения $\frac{2a}{d_0}$ в кабелях различных типов следует принять равной:

в магистральных (городских) телефонных кабелях парной скрутки с воздушно-бумажной и бумажно-массной изоляцией (ТГ, ТБ и т. п.) — 3;

в однородных и комбинированных кабелях дальней связи с кордально-бумажной изоляцией (ТЗГ, ТДСБ и др.) — от 4,6 до 5,2 (в среднем 5);

в кабелях звездной скрутки с кордально-бумажной и кордально-стирофлексной изоляцией, предназначенных для систем многоканальной связи — 6.

Таблица 5

ЗНАЧЕНИЯ ИНДУКТИВНОСТИ РАЗЛИЧНЫХ ТИПОВ КАБЕЛЕЙ СВЯЗИ

Наименование	Марка	Диаметр жил, мм	Величина $L \left(\frac{2\pi}{\kappa} \right)$
Кабели парной скрутки с воздушно-бумажной изоляцией	ТГ, ТВ и т. п.	0,5 -- 0,7	$0,60 -- 0,55 \times 10^{-3}$
Кабели звездной скрутки с кордально-бумажной изоляцией	ТЗГ, ТЗЭБ, ТДСГ, ТДСБ и т. п.	0,8 -- 1,4	$0,75 -- 0,70 \times 10^{-3}$ *
Кабели звездной скрутки для систем многоканальной связи	МКГ, МКБ, ТЗСГ, ТЗСБ и т. п.	1,2	$0,82 -- 0,78 \times 10^{-3}$ **

* Уменьшается при увеличении диаметра токопроводящих жил.

** Уменьшается при возрастании частоты.

ЭЛЕКТРИЧЕСКАЯ ЕМКОСТЬ

В многонаряных кабелях связи различают:

рабочую емкость, т. е. емкость между обеими жилами одной разговорной цепи;

емкость отдельной жилы по отношению ко всем остальным, соединенным между собой и с заземленной свинцовой оболочкой кабеля;

частичную емкость, т. е. собственную емкость между отдельными жилами.

На рис. 3 показано распределение частичных емкостей в звездной четверке жил, окруженной свинцовой оболочкой. Емкости C_{12} , C_{34} , C_{23} , C_{14} , C_{13} и C_{24} называются частичными емкостями между жилами, а емкости C_{10} , C_{20} , C_{30} , C_{40} частичными емкостями по отношению к земле.

Рис. 3. Распределение частичных емкостей в звездной четверке.

Величина рабочей емкости измеряется между двумя жилами разговорной пары; при этом все остальные жилы кабеля соединяются вместе и присоединяются к заземленной свинцовой оболочке.

Для ускорения процесса испытаний кабелей местной связи измеряется величина не рабочей емкости, а находящаяся с ней в определенной зависимости величина емкости отдельных жил по отношению ко всем остальным.

Во всех типах кабелей дальней связи производится измерение электрической рабочей емкости разговорных пар на переменном токе (принятая частота тока $f = 800 \text{ гц}$).

Для определенного типа изоляции и определенной системы скрутки жил в группы практикой установлены примерные соотношения между значениями рабочей емкости C_p и емкости отдельной жилы C_0 .

Для магистральных телефонных кабелей парной скрутки с воздушно-бумажной изоляцией (марки ТГ, ТБ и т. д.):

$$\frac{C_p}{C_0} = 0,62 \div 0,67.$$

При практических расчетах емкости кабелей парной и звездной скрутки можно пользоваться следующей приближенной формулой:

$$C_p = \frac{\varepsilon \cdot 10^{-6}}{36 \ln \frac{0,75 D}{d_0}} \left[\frac{\Phi}{\text{км}} \right],$$

где ε — диэлектрическая проницаемость комбинированной (воздушно-бумажной, кордально-бумажной, кордально-стирофлексной) изоляции (см. табл. 6);

d_0 — диаметр медной проволоки токопроводящей жилы, мм;

D — диаметр скрученной группы кабеля (пары, четверки), мм.

При парной скрутке жил $D = 1,65 d_1$;

при скрутке жил в звездную четверку $D = 2,41 d_1$,

где d_1 — диаметр изолированной жилы, мм;

0,75 — поправочный коэффициент.

На основании данных практики для кабелей с различными видами изоляции установлены средние приближенные значения диэлектрической проницаемости ε (табл. 6).

Таблица 6
ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ ИЗОЛЯЦИИ КАБЕЛЕЙ СВЯЗИ

Тип и назначение кабелей	Марки кабелей	Вид изоляции	Величина ε	
			пределы изменения	среднее значение
Кабели для систем много-канальной связи	ТЗСГ, ТЗСВ МКГ, МКВ	Кордально-стирофлексная Кордально-бумажная	1,20 — 1,30 1,35 — 1,45	1,25 1,40
Кабели дальней связи однородные и комбинированные	ТЗГ, ТЗБ, ТДСГ, ТДСБ и т. п.	Кордально-бумажная	1,45 — 1,55	1,50
Кабели местной связи магистральные (городские телефонные кабели)	ТГ, ТБ	Воздушно-бумажная Бумажно-массовая	1,55 — 1,65 1,65 — 1,75	1,60 1,70

ПРОВОДИМОСТЬ ИЗОЛЯЦИИ

Проводимость изоляции, характеризующая утечку тока через диэлектрик и равная обратной величине сопротивления изоляции, при постоянном токе весьма мала и составляет $10^{-9} — 10^{-10}$ сименс на километр.

Проводимость изоляции при передаче по кабелю переменного тока является суммой двух величин:

$$G = G_0 + G_p,$$

где G — полная проводимость изоляции жил кабеля при переменном токе;

$G_0 = \frac{1}{R_{iz}}$ проводимость изоляции жил кабеля при постоянном токе;
 $G_f = \omega C_p \operatorname{tg} \delta$ — проводимость изоляции жил кабеля, обусловленная диэлектрическими потерями.

Величиной $G_0 = \frac{1}{R_{iz}}$ (где R_{iz} — сопротивление изоляции постоянному току) можно во всех случаях пренебречь, так как отношение G_0/G_f очень мало (порядка 10^{-8} — 10^{-4}).

Поэтому в кабелях связи величина проводимости при передаче переменного тока определяется по формуле:

$$G = \omega C \operatorname{tg} \delta \frac{c_{sum}}{K_M},$$

где C — рабочая емкость кабеля в фарадах;
 $\operatorname{tg} \delta$ — тангенс угла диэлектрических потерь изоляции;
 ω — круговая частота.

Величина проводимости изоляции находится в прямой зависимости от частоты передаваемого тока.

Кроме того, $\operatorname{tg} \delta$ изоляции в свою очередь возрастает с увеличением частоты (рис. 4).

Рис. 4. Частотная зависимость тангенса угла потерь.

ВОЛНОВОЕ СОПРОТИВЛЕНИЕ

При передаче спектра тональных частот $R > \omega L$, а при передаче высоких частот, наоборот, $\omega L > R$, где R — активное сопротивление шлейфа разговорной пары, т. е. удвоенная величина активного сопротивления жилы;

L — индуктивность двухпроводной цепи;
 ω — круговая частота передаваемого тока.

При условии $R > \omega L$ волновое сопротивление Z выражается следующей приближенной формулой:

$$Z = V \sqrt{\frac{R}{\omega C}} \text{ ом},$$

где C — рабочая емкость кабеля.

При условии $\omega L > R$:

$$Z = V \sqrt{\frac{L}{C}} \text{ ом}.$$

В табл. 7 указана относительная погрешность формул в зависимости от величин отношений $R/\omega L$ или $\omega L/R$.

Таблица 7

Величина отношения $R/\omega L$ или $\omega L/R$	От 2 до 3	От 3 до 4	Свыше 5
Относительная погрешность $\Delta Z\%$	5%	3%	1%

Полученные по приближенным формулам величины Z всегда меньше истинных значений.

Приближенными формулами не следует пользоваться при определении волнового сопротивления цепей, по которым передаются частоты, лежащие выше тонального спектра, например, радиовещательных пар ($f=30-8000 \text{ гц}$), а также при определении волнового сопротивления цепей кабелей для многоканальной связи с диаметром жил менее 1,2 мм при частоте ниже 25000 гц .

КИЛОМЕТРИЧЕСКОЕ ЗАТУХАНИЕ

Качество передачи сигналов связи (разговорной речи, музыки, телевизионных изображений и пр.) зависит от величины потерь, определяемых собственным затуханием линии „ β “, которое измеряется в неперах

$$\beta = \frac{1}{2} \ln \frac{P_o}{P_e} \text{ неп.}$$

(1 непер = 8,7 децибела).

Величина затухания линии, отнесенная к длине кабеля в 1 км, называется „километрическим затуханием“ (обозначается β и измеряется в км).

От величины километрического затухания кабеля зависит максимально-допустимая дальность связи.

Допустимая длина участка

$$l_{\text{доп}} = \frac{\beta'}{\beta} \text{ км},$$

где β' — норма затухания на данный участок трассы в неперах (рис. 5).

Рис. 5. Распределение норм затухания на участках междугородней линии связи.

Для определения километрического затухания линии выведены две приближенные формулы, каждая из которых применима в определенном частотном диапазоне.

Для спектра тональных частот (300—3400 гц):

$$\beta = \sqrt{\frac{\omega CR}{2}} \text{ неп. км},$$

где C — рабочая емкость кабеля, $\Phi/\text{км}$;

R — активное сопротивление шлейфа разговорной цепи, ом/км ;

$\omega = 2\pi$ — круговая частота тока, гц .

При передаче высоких частот (свыше 20000 гц):

$$\beta = \frac{R}{2} \sqrt{\frac{C}{L} + \frac{G}{2}} \sqrt{\frac{L}{C}} = \frac{R}{2Z} + \frac{GZ}{2} \text{ неп. км}.$$

КОЭФФИЦИЕНТЫ ЭЛЕКТРОМАГНИТНЫХ СВЯЗЕЙ

При передаче телефонных разговоров по кабелям часто наблюдаются помехи или подслушивание, заключающееся в том, что когда по какой-либо цепи передается телефонный разговор, то в соседних цепях возникают различной силы шумы, а иногда слышатся обрывки чужого разговора.

Мешающие токи называются „переходными“.

Причиной перехода тока с одной разговорной цепи на другую является наличие между цепями различного вида связей, главным образом, **емкостных и индуктивных**.

Возникновение **емкостной связи** между двумя цепями объясняется асимметрией **частичных емкостей** между жилами обеих цепей. На рис. 6 изображена схема распределения частичных емкостей между жилами двух разговорных цепей одной звездной четверки.

Рис. 6. Емкостная асимметрия в звездной четверке.

В случае неравенства (асимметрии) частичных емкостей четверки в цепи 1—2 (цепь, подверженная влиянию) появится переходной ток ($I_{\text{перех.}}$), величина которого в числе прочих факторов будет зависеть от амплитуды основного тока ($I_{\text{осн.}}$), протекающего по влияющей цепи 3—4, а также от коэффициента емкостной связи k .

Для двух основных цепей одной звездной четверки k приближенно выражается через частичные емкости следующим образом:

$$k \approx (C_{13} + C_{24}) - (C_{23} + C_{14}).$$

При взаимном равенстве всех частичных емкостей $C_{13} = C_{23} = C_{14} = C_{24}$ значения коэффициента емкостной связи (k) и, следовательно, обусловленного им переходного тока ($I_{\text{перех.}}$) будут равны нулю, т. е. мешающих влияний в цепи 1—2 не будет.

Между цепями существуют также коэффициенты асимметрии частичных емкостей C_{10} , C_{20} , C_{30} и C_{40} по отношению к земле (рис. 3), обозначаемые буквой e .

Коэффициент емкостной асимметрии на землю между жилами любой из основных разговорных цепей равен разности соответствующих частичных емкостей:

$$e_1 = C_{10} - C_{20}; \quad e_2 = C_{30} - C_{40}.$$

Асимметрия **взаимных индуктивностей** между жилами обуславливает наличие **магнитной связи** между цепями.

Коэффициенты индуктивной или магнитной связи обозначаются буквой m .

Для количественной оценки мешающих влияний между цепями кабеля служит суммарный „коэффициент электромагнитной связи“ K , который выражается через активные и реактивные составляющие емкостных и магнитных связей следующим образом:

$$K = \left[\left(\frac{g}{4\omega} \pm \frac{r}{\omega Z^2} \right) + j \left(\frac{k}{4} \pm \frac{m}{Z^2} \right) \right],$$

где g — активная составляющая емкостной связи (диэлектрическая связь);

k — реактивная составляющая емкостной связи (емкостная связь);

r — активная составляющая магнитной связи (гальваническая связь);

m — реактивная составляющая магнитной связи (магнитная связь).

Четыре указанных вида связей в различной степени отражаются на величине выываемого ими переходного тока.

При передаче по кабелям спектра тональных частот преобладающее значение имеет емкостная связь k ; коэффициент электромагнитной связи равняется $K = \frac{k}{4}$.

Остальные виды связи в этом случае настолько малы, что ими можно пренебречь.

В кабелях, используемых для передачи только тональных частот, т. е. в кабелях, не уплотняемых высокими частотами, нормируются и измеряются лишь коэффициенты емкостных связей k .

При увеличении передаваемой частоты сильно возрастает роль магнитных связей.

На рис. 7 показаны зависимости отдельных составляющих общей электромагнитной связи от передаваемой частоты.

Рис. 7. Частотные зависимости составляющих электромагнитной связи

В кабелях для многоканальной системы связи, наряду с коэффициентами емкостной связи k , нормируются и измеряются также комплексные выражения коэффициентов магнитной связи M .

Коэффициент гальванической связи r вследствие сго относительно малой величины непосредственно не нормируется.

Во избежание чрезмерного увеличения коэффициента гальванической связи r в кабелях дальней связи нормируется величина омической асимметрии ($\Delta R^0\%$) обеих жил одной разговорной пары

$$\Delta R = \frac{2(R_1 - R_2)}{R_1 + R_2} \cdot 100\%.$$

Величина диэлектрической связи g настолько мала, что не учитывается даже при передаче высоких частот.

Коэффициенты емкостных связей k обычно выражаются в пикофарадах ($1 \text{ пкФ} = 1 \mu\text{k} \text{ мкФ} = 10^{-12} \text{ ф}$), а коэффициенты магнитных связей m в паногеири ($1 \text{ нгн} = 10^{-9} \text{ гн}$).

В зависимости от того, между какими цепями в кабеле определяется мешающее влияние, принято различать 12 коэффициентов емкостных, магнитных, гальванических и динамических связей.

Таблица 8

ОБОЗНАЧЕНИЯ КОЭФФИЦИЕНТОВ СВЯЗЕЙ

Связь	Между какими цепями определяется влияние	Принятые обозначения	
		Коэффициент связи	Переходное затухание
Внутри одной четверки	Основной цепью I и основной цепью II Искусственной цепью I II	$K_1; M_1 = r_1 + j \omega m_1$ $K_2; M_2 = r_2 + j \omega m_2$ $K_3; M_3 = r_3 + j \omega m_3$	B_1 B_2 B_3
Между искусственными (phantomными) цепями двух соседних четверок		$K_4; M_4$ и т. д.	B_4
Между основными цепями одной четверки (A) и искусственными цепями соседних четверок (B)	Основной цепью IA и искусственной цепью Б IA Б IB A III A	$K_5; M_5$ $K_6; M_6$ $K_7; M_7$ $K_8; M_8$	B_5 B_6 B_7 B_8
Между основными цепями соседних четверок (A и B)	Основной цепью IA и основной цепью IB IA IB IIIA IB IIIA IIIB	$K_9; M_9$ $K_{10}; M_{10}$ $K_{11}; M_{11}$ $K_{12}; M_{12}$	B_9 B_{10} B_{11} B_{12}
Емкостная асимметрия на землю внутри одной четверки	Основной цепью I и землей II Искусственной цепью и землей	e_1 e_2 e_3	

ЗАТУХАНИЕ ПЕРЕХОДНЫХ ТОКОВ

Степень защищенности цепей связи от взаимных влияний (помех) оценивается величиной "затухания переходных токов" ("переходного затухания"), которое обозначается буквой B с соответствующими индексами.

По аналогии с собственным линейным затуханием цепей кабеля, затухание переходных токов B определяется как половина логарифма натурального отношения основной мощности полезного сигнала, передаваемой по влияющей цепи ($P_{осн}$), к мощности помех, наведенных в цепи, подверженной влиянию ($P_{перех}$):

$$B = \frac{1}{2} \ln \frac{P_{осн}}{P_{перех}} - [\text{кел}].$$

При расчетах и измерениях различают (рис. 8) переходное затухание на ближнем (передающем) конце кабеля B_o и переходное затухание на дальнем (приемном) конце кабеля

$$B_o, B_o = \frac{1}{2} \ln \frac{P_{20}}{P_{2e}}; B_e = \frac{1}{2} \ln \frac{P_{10}}{P_{2e}}.$$

Принято нормировать и измерять один из видов переходного затухания B_o либо B_e , в зависимости от конкретных условий эксплуатации кабельной линии.

Рис. 8. Взаимное влияние между цепями на ближнем и на дальнем концах кабеля.

СООТНОШЕНИЯ МЕЖДУ ПЕРЕХОДНЫМИ ЗАТУХАНИЯМИ И КОЭФФИЦИЕНТАМИ ЭЛЕКТРОМАГНИТНОЙ СВЯЗИ

Зависимость переходных затуханий на ближнем и на дальнем концах кабеля от коэффициента электромагнитных связей выражается следующими формулами:

$$B_0 = \ln \left[-\frac{2}{\omega Z K_0} \right] \text{ nep}; \quad B_e = \ln \left[-\frac{2}{\omega Z K_e} \right] \text{ nep}.$$

По аналогии с B_0 и B_e различают:

коэффициент электромагнитной связи на ближнем конце кабеля K_0 и коэффициент электромагнитной связи на дальнем конце кабеля K_e .

При передаче спектра тональных частот, когда преобладают только емкостные связи,

$$K_0 = K_e = \frac{k}{4} \quad \text{и}$$

$$B_0 = B_e = \ln \frac{8}{\omega Z K} \text{ nep}.$$

В зависимости от того, между какими цепями в кабеле рассматривается взаимное влияние, установлено 12 наименований переходных затуханий как на ближнем, так и на дальнем концах кабеля (табл. 8).

Таблица 9

**ОСНОВНЫЕ ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ КАБЕЛЕЙ СВЯЗИ С ВОЗДУШНО-БУМАЖНОЙ И СТИРОФЛЕКСНО-ВОЗДУШНОЙ ИЗОЛЯЦИЕЙ ПРИ ЧАСТОТЕ ТОКА $f = 800$ Гц
(ПРИВЕДЕНЫ СРЕДНИЕ ЗНАЧЕНИЯ)**

Характеристика, ее обозначение и размерность	Кабели местной связи ТГ, ТБ			Кабели дальней связи ТЗГ, ТЗЭГ, ТДСГ и т. п.				Кабели для систем многоканальной связи		
	Диаметр токо проводящих жил в мм									
	0,5	0,6	0,7	0,8	0,9	1,0	1,2	1,4	1,2	1,2
Активное сопротивление шлейфа R , ом/км	< 190	131,6	96,0	72,2	57,0	47,0	32,8	23,8	< 31,9	< 31,9
Индуктивность шлейфа L , мГн/км	0,55 — 0,60				0,70 — 0,75				0,80	
Рабочая емкость C_p , нФ/км	< 50	< 41	< 42			33 — 36			26,5	23,5
Диэлектрическая прони- цаемость ϵ	1,55 — 1,65 (воз- душно-бумажная изоляция)					1,45 — 1,55			1,35 — 1,45	1,20 — 1,30
	1,65 — 1,75 (бу- мажно-массовая изоляция)									
Проводимость изоляции G , мксим к.м	1,25		1,0			< 0,8			< 0,5 — 0,55	< 0,02 — 0,03
Сопротивление изоляции постоянному току R_{iz} , Мом·км		2000				> 10 000			> 10 000	> 10 000
Климатическое затуха- ние β , мнсп/км	161	116	101	80	71,5	65	51,5	46,2	46,0	43,1
Модуль волнового сопро- тивления Z , ом	870	800	675	630	555	510	425	365	485	525

ХАРАКТЕРИСТИКА КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ

ТОКОПРОВОДЯЩАЯ ЖИЛА

Токопроводящие жилы кабелей связи изготавливают из мягкой отожженной медной проволоки марки ММ, соответствующей ГОСТ 2112-46.

Таблица 10

ДИАМЕТРЫ, ДОПУСКИ, СЕЧЕНИЯ И ВЕС МЕДНОЙ ПРОВОЛОКИ

Номинальный диаметр, мм	Допуск на диаметр, мм	Площадь поперечного сечения, мм ²	Вес, кг/км
0,50	± 0,010	0,19635	1,7456
0,60	± 0,010	0,28274	2,5136
0,70	± 0,015	0,38484	3,4212
0,80	± 0,015	0,50265	4,4686
0,90	± 0,015	0,63617	5,6556
1,00	± 0,015	0,78540	6,9822
1,20	± 0,020	1,13100	10,0546
1,40	± 0,020	1,53940	13,6853

изоляция

Телефонная бумага, употребляемая для изоляции жил, состоит из сульфатной небеленой целлюлозы и соответствует ГОСТ 3553—47. Бумага изготавливается четырех цветов:

красного — марка КТК,
синего — марка КТС,
зеленого — марка КТЗ,
натурального — марка КТН.

Таблица 11

СВОЙСТВА ТЕЛЕФОННОЙ БУМАГИ

Название показателей	Единица измерения	Норма
Толщина	мм	$0,05 \pm 0,0025$
Объемный вес, не более	$\text{г}/\text{см}^3$	0,82
Разрывной груз полоски шириной 15 мм в продольном направлении, не менее	кг	5,5
в поперечном направлении, не менее	кг	2,4
Удлинение: в продольном направлении, не менее	%	2,0
в поперечном направлении, не менее	%	4,0
Число двойных перегибов по каждому из направлений, не менее		500
Влажность	%	7 ± 1
Зольность, не более	%	1

Кабельная бумага соответствует ГОСТ 645-41 и представляет по своему составу чистую сульфатную небеленую целлюлозу.

Бумага выпускается трех толщин и в зависимости от толщины обозначается:

K-0,8 при толщине 0,08 мм

K-12 " 0,12 мм

K-17 " 0,17 мм

Наиболее распространена кабельная бумага марки K-12.

Таблица 12
СВОЙСТВА КАБЕЛЬНОЙ БУМАГИ

Название показателей	Единица измерения	Норма и допускаемые отклонения		
		K-0,8	K-12	K-17
Толщина	мм	0,08 ± 0,005	0,12 ± 0,007	0,17 ± 0,01
Объемный вес, не менее	г/см ³	0,70	0,70	0,70
Разрывной груз полоски шириной 15 мм, не менее:				
в продольном направлении	кг	9,0	16,0	22,0
в поперечном направлении	кг	4,5	7,0	11,0
Удлинение, не менее:				
в продольном направлении	кг	2,0	2,0	2,0
в поперечном направлении	кг	6,0	6,0	6,0
Число двойных перегибов в продольном и поперечном направлении, не менее		2 000	2 000	2 000
Воздухопроницаемость, не более	мл	25	25	25
Влажность	%	6 - 9	6 - 9	6 - 9

Бумажный кордэль. Для изолирования жил кабелей связи применяется бумажный кордэль, представляющий собой пряжу, скрученную из кабельной бумаги.

ТАБЛИЦА 13
СОРТАМЕНТ И РАЗРЫВНАЯ ПРОЧНОСТЬ БУМАЖНОГО КОРДЕЛЯ

Номер корделя	Диаметр, мм	Допуск на диаметр, мм	Разрывная прочность, г
18 2	0,40	± 0,02	880
12 2	0,49	± 0,03	1 180
8 2	0,60	± 0,03	1 650
5 2	0,76	± 0,04	2 550
4 2	0,85	± 0,05	3 850
4 3	1,04	± 0,05	4 600

Номер корделя показывает количество метров нити на 1 г веса.

Стирофлексный кордэль и стирофлексная лента являются продуктом термической и механической переработки полистирола, обладающего весьма высокими диэлектрическими свойствами в широком диапазоне частот.

Минеральное масло, применяемое как составная часть пропиточного компаунда, отвечает требованиям технических условий Министерства нефтяной промышленности.

Подсочная сосновая канифоль, применяемая в качестве присадки к минеральному маслу для увеличения его вязкости, отвечает требованиям ГОСТ 797—41.

СВИНЦОВАЯ ОБОЛОЧКА

Свинцовая оболочка изготавливается из свинца марки СЗ, соответствующего ГОСТ 3778—47.

Для увеличения механической прочности свинцовой оболочки кабелей с непропитанной (сухой) изоляцией и для ее предохранения от растрескивания при вибрациях к свинцу добавляют 0,4—0,8% сурьмы.

К свинцовой оболочке предъявляются требования абсолютной герметичности. Снятая с кабеля свинцовая оболочка, не разрываясь, выдерживает растяжение до 1,3—1,5 первоначального диаметра.

ОПЛЕТКА

Оплетка из хлопчатобумажной пряжи служит для защиты от умеренных механических воздействий и от влияния света на изоляцию.

Оплетка представляет собой покрытие провода хлопчатобумажной пряжей в два слоя, идущих в противоположных направлениях, причем нити обоих слоев переплетаются между собою в определенном закономерном порядке.

Плотность оплетки, т. е. отношение площади, занимаемой материалом оплетки к площади поверхности провода, должна быть не менее 85%.

Для повышения стойкости против вредных влияний атмосферы и прямого солнечного света оплетку пропитывают специальным составом.

ДОПОЛНИТЕЛЬНЫЕ ЗАЩИТНЫЕ ПОКРОВЫ ОСВИНЦОВАННЫХ КАБЕЛЕЙ

Подушку бронированных кабелей выполняют из последовательно наложенных концентрических слоев:

- 1) вязкого компаунда,
- 2) предварительно пропитанной кабельной бумаги,
- 3) мало-вязкого компаунда,
- 4) кабельной пряжи (джута) или предварительно пропитанной кабельной бумаги,
- 5) вязкого компаунда.

Наружный покров бронированных кабелей выполняют из последовательно наложенных слоев:

- 1) мало-вязкого компаунда,
- 2) кабельной пряжи (джута),
- 3) вязкого компаунда,
- 4) мелового покрытия.

Битум, употребляемый для пропитки защитных покровов кабелей, отвечает требованиям ГОСТ 1544—46 (марки III и V).

Битум марки III употребляется для пропитки внутренних слоев защитных покровов, а более вязкий битум марки V для поливки по свинцу и для пропитки верхнего покрова из кабельной пряжи.

При температуре +40° пропиточные составы из кабеля не вытекают.

Кабельная пряжа (джут), идущая для защитных покровов, изготавливается из коротких лубяных волокон методом короткого прядения и должна отвечать требованиям ГОСТ № 905—41.

В зависимости от назначения и размера кабельная пряжа изготавливается трех номеров: 0,3; 0,45 и 0,6.

СВОЙСТВА КАБЕЛЬНОЙ ПРЯЖИ

Таблица 14

Показатели	Единица измерения	Норма для №		
		0,3	0,45	0,6
Средняя крепость, не менее	кг	17	13	9
Среднее число скруток на 1 м, не более	—	55	65	75
Закострениность, не более	%	2	2	2
Неравномерность по номеру	%	7	7	7
Кондиционная влажность	%	14	14	14

Для изготовления защитных покровов применяется кабельная пряжа в пропитанном виде.

Лента для бронирования кабелей изготавливается из низкоуглеродистой стали следующих размеров:

0,3 × 15 мм	0,5 × 25 мм	0,5 × 45 мм	0,8 × 45 мм
0,3 × 20 мм	0,5 × 30 мм	0,5 × 60 мм	0,8 × 60 мм
0,5 × 20 мм	0,5 × 35 мм		

Лента имеет свойства, предусмотренные требованиями ГОСТ 3559-47. Она должна иметь предел прочности не менее 30 кг/мм² и относительное удлинение при растяжении (при длине образца 100 мм) не менее 20%.

Плоская и круглая проволока для бронирования кабелей изготавливается в соответствии с ГОСТ 1526-42 и имеет следующие размеры:

круглая (диаметр) 1,4; 1,8; 4 и 6 мм плоская 5 × 4 × 1,5 и 6 × 5 × 1,7 мм.

На кабели с плоской проволочной броней, не имеющие верхнего джутового покрова, для скрепления повива проволок должно быть наложено не менее двух оцинкованных проволок или одна стальная оцинкованная или освинцовавшаяся лента толщиной не менее 0,5 мм.

Во избежание коррозии проволока для брони оцинковывается.

МЕХАНИЧЕСКИЕ СВОЙСТВА БРОНЕПРОВОЛОКИ

Таблица 15

Профиль и размер проволоки	Предел прочности, кг/мм ²	Относительное удлинение при растяжении (на длине 200 мм), %
Круглая диаметром 1,4 и 1,8 мм	35—50	8
Круглая диаметром 4 и 6 мм	35—50	12
Плоская 5 × 4 × 1,5 мм	32—50	8
Плоская 6 × 5 × 1,7 мм	32—50	8

Мел, идущий для изготовления раствора, которым поливается кабель, отвечает требованиям ГОСТ 1498-42 на молотый природный мел марки А.

УПАКОВКА КАБЕЛЕЙ

Освинцованные кабели поставляются на прочных деревянных барабанах, надежно обшитых досками и отвечающих требованиям нормали Главкабеля.

Кабель ТСО поставляется как на барабанах, так и в бухтах, упакованных в плотные ящики, выложенные внутри пропитанной бумагой.

Для возможности испытания кабелей, намотанных на барабаны, их нижние концы выводят наружу и надежно защищают деревянной коробкой или металлическим щитком. Верхний конец кабеля прикрепляют к внутренней стороне щеки барабана.

Концы освинцованных кабелей надежно запаивают свинцовым сплавом. Концы кабеля ТСО тщательно замотаны резиновой или прорезиненной лентой.

Таблица 16

ОСНОВНЫЕ РАЗМЕРЫ И ВЕС КАБЕЛЬНЫХ БАРАБАНОВ

№ бара- бана	Диаметр щеки, мм	Диаметр шайки, мм	Длина шайки, мм	Ориентировоч- ный вес барабана, кг		№ бара- бана	Диаметр щеки, мм	Диаметр шайки, мм	Длина шайки, мм	Ориентировоч- ный вес барабана, кг	
				без об- шивки	с об- шивкой					без об- шивки	с об- шивкой
I	400	200	200	10	13	VII	1 700	900	750	300	400
II	500	200	230	12	16	VIII	1 850	1 100	900	440	560
III	550	200	250	16	21	IX	2 000	1 200	1 000	690	850
IVa	780	550	230	38	46	X	2 200	1 350	1 000	950	1 250
IV	800	450	400	42	58	XI	2 450	1 500	1 300	1 400	1 800
Va	1 000	500	500	70	96	XII	2 600	1 500	1 500	1 650	2 250
V	1 150	600	500	97	135	XIIa	2 450	1 800	1 500	1 500	1 900
VIIa	1 400	900	460	140	190	XIII	3 000	1 800	1 800	2 650	3 500
VI	1 400	750	700	170	230						

На каждом барабане должны быть нанесены несмыываемой краской нижеперечисленные обозначения (или прикреплен металлический щигок с теми же обозначениями):

наименование завода-изготовителя; марка кабеля; число пар или жил; диаметр токопроводящих жил, мм; длина кабеля, м; вес брутто, кг; заводской номер барабана; стрелка с указанием направления вращения барабана при его перекатывании; надпись „Не бросать и не класть плашмя“; дата изготовления; номер стандарта или ВТУ, которым соответствует данный кабель.

ПРАВИЛА ХРАНЕНИЯ И ПЕРЕВОЗКИ

Готовый запаянный и обшитый досками кабель может храниться в открытом складе.

При длительном хранении необшитых барабанов с кабелем необходимо предохранять кабель от прямого попадания солнечных лучей.

Кабели ТСО должны храниться в закрытых складах.

Концы кабеля могут оставаться незапаянными не более трех часов, однако при этом их следует защищать от возможного попадания влаги. При тумане и дожде вскрывать запаянные концы кабеля не рекомендуется.

Перед прокладкой кабеля следует проверить целость его свинцовой оболочки путем приложения избыточного газового давления. Если обнаружится утечка газа, то следует найти дефектное место свинцовой оболочки и запаять его. В этом случае перед прокладкой целесообразно проверить величину сопротивления изоляции кабеля.

Спуск барабанов с железнодорожных платформ и автомашин при отсутствии подъемных сооружений должен производиться осторожным скатыванием. Сбрасывать барабаны с кабелем с железнодорожных платформ и автомашин категорически воспрещается.

Перекатка барабанов с кабелем должна производиться по направлению стрелок, указанных на наружной щеке барабанов.

При снятии с барабанов обшивки следует произвести внешний осмотр кабеля. Если обнаружены отверстия в свинцовой оболочке или отсутствие запайки концов кабеля, то кабель перед прокладкой следует испытать путем проверки сопротивления изоляции.

Издано в Советском Союзе

ВСЕСОЮЗНОЕ ОБЪЕДИНЕНИЕ «ПРОМСЫРЬЕИМПОРТ»

КАБЕЛИ, ПРОВОДА и ШНУРЫ
СИЛЬНОГО ТОКА
С РЕЗИНОВОЙ ИЗОЛЯЦИЕЙ

CPYRGH
T

РАЗДЕЛ III

RESTRICTED

МОСКВА

КАБЕЛИ, ПРОВОДА И ШНУРЫ СИЛЬНОГО ТОКА С РЕЗИНОВОЙ ИЗОЛЯЦИЕЙ

Общая часть

Кабели, провода и шнуры сильного тока с резиновой изоляцией занимают большое место в производстве кабельных изделий.

Гибкость, малогабаритность, относительно небольшой вес, удобство в монтаже и другие преимущества обуславливают широкое применение этих изделий в промышленности, сельском хозяйстве, на транспорте, в строительстве и в быту.

К кабелям и проводам сильного тока с резиновой изоляцией относятся следующие основные группы изделий:

1. Установочные кабели, провода и шнуры для передачи и распределения электрической энергии во вторичных сетях при неподвижной прокладке, а также для присоединения подвижных установок.
2. Силовые кабели для неподвижной прокладки в сетях электрического тока.
3. Контрольные кабели для присоединения к электрическим приборам и аппаратам в электрических распределительных устройствах.
4. Шланговые гибкие кабели и провода для присоединения разнообразных подвижных токоприемников к электрическим сетям.
5. Морские кабели и провода для прокладки на морских и речных судах.
6. Кароттажные кабели для производства разведывательных работ по добыче нефти, руды и других геофизических работ.
7. Провода для электроподвижного состава электрифицированного транспорта.
8. Самолетные, автомобильные и тракторные провода для соединения в приборах зажигания двигателей внутреннего сгорания и для монтажа электрической сети в самолетах, автомобилях и тракторах.

КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ

Основными конструктивными элементами кабельных изделий с резиновой изоляцией являются:

ТОКОПРОВОДЯЩАЯ ЖИЛА

Токопроводящие жилы изготавливают сечением от 0,5 до 625 мм^2 . Гибкость токопроводящей жилы определяется числом и диаметром проволок, из которых она составлена.

Токопроводящие жилы кабельных изделий с резиновой изоляцией могут содержать в одном сечении от 1 до 703 проволок диаметром от 0,15 до 2,85 мм.

В зависимости от назначения кабельные изделия изготавливают с числом жил от 1 до 37.

Токопроводящие жилы изготавляются из проволок электролитической меди или алюминия.

В некоторых случаях для увеличения механической прочности в конструкцию токопроводящей жилы вводят стальные проволоки.

Медная проволока соответствует ГОСТ 2112-46, алюминиевая проволока — ВТУ МЭП 697-47.

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕДНОЙ И АЛЮМИНИЕВОЙ МЯГКОЙ ПРОВОЛОКИ

Диаметр, мм	Медная проволока		Алюминиевая проволока	
	предел прочности, кг/мм ² не более	относительное удлинение, % не менее	предел прочности, кг/мм ² не менее	относительное удлинение, % не менее
До 0,59	28	18	—	—
0,6 — 0,99	27	25	—	—
1,0 — 2,0	27	25	7,5	12
2,1 — 2,49	27	25	7,5	15
2,5 — 3,0	26	30	7,5	15

ДОПУСКАЕМЫЕ ОТКЛОНЕНИЯ ОТ НОМИНАЛЬНЫХ ДИАМЕТРОВ МЕДНОЙ И АЛЮМИНИЕВОЙ МЯГКОЙ ПРОВОЛОКИ

Медная проволока		Алюминиевая проволока	
диаметр	допускаемые отклонения	диаметр	допускаемые отклонения
<i>мм</i>			
0,1 — 0,25	± 0,005	1,0 — 1,99	± 0,03
0,26 — 0,69	± 0,01	2,0 — 3,0	± 0,04
0,7 — 1,0	± 0,015	—	—
1,01 — 1,67	± 0,02	—	—
1,68 — 2,10	± 0,025	—	—
2,11 — 2,83	± 0,03	—	—

Для изоляции проводов и кабелей применяют в основном теплостойкую бессернистую изоляционную резину, поэтому токопроводящие жилы этих изделий не нуждаются в антакоррозионной защите.

В отдельных случаях, когда применяют нормальную сернистую резину, паружный повив жилы защищают от воздействия серы антакоррозионным покрытием.

В качестве антакоррозионной защиты обычно применяют лужение оловянно-свинцовыми сплавами. Вместо лужения можно применять сплошную обмотку хлопчатобумажной пряжей, кабельной бумагой, целофаном и другими равноценными материалами.

Система скруток. Токопроводящая жила состоит из одной или нескольких проволок, скрученных между собой.

Многопроволочная жила составляется из скрученных между собой проволок или стренг. Стринг состоят из 7, 12 или 19 проволок.

Токопроводящие жилы скручивают правильной или пучковой („дикой“) скруткой.

При правильной скрутке линии, соединяющие центры сечений проволок, образуют правильный многоугольник.

СИСТЕМА СКРУТКИ КАБЕЛЯ

Скрутка повивами

Скрутка стренгами

Пучковая скрутка отличается тем, что проволоки, составляющие жилу, скручиваются в одну сторону пучка и их центры в сечении повива не образуют правильного многоугольника.

Стрениги обычно скручивают в жилу правильной скруткой.

Для жил, состоящих из очень большого числа проволок, отдельные стренги изготавливают пучковой скруткой.

При пучковой скрутке допускается обмотка жилы слоем пряжи, служащей скрепляющим бандажом.

При скрутке жил допускается пайка отдельных проволок и стренг. Пайку производят без применения кислот.

Типы и конструкции жил. Токопроводящие жилы кабельных изделий с резиновой изоляцией, изготовленные из медных проволок, различаются по степени гибкости. В соответствии с ГОСТ В 1956 - 43 установлены три типа токопроводящих жил:

II — нормальная;

Г — гибкая;

ОГ — особо гибкая.

Жилы указанных типов применяются:

II — в проводах и кабелях для неподвижной прокладки;

Г — в проводах и кабелях для неподвижной прокладки, когда требуется повышенная гибкость при монтаже, а также в переносных проводах и кабелях;

ОГ — в переносных шнурах, проводах и кабелях.

КОНСТРУКТИВНЫЕ ДАННЫЕ ЖИЛ ТИПА Н

Номинальное сечение, $мм^2$	Фактическое сечение, $мм^2$	Число проволок	Диаметр проволоки, $мм$	Диаметр жилы, $мм$
0,5	0,49	1	0,79	0,79
0,75	0,74	1	0,97	0,97
1	1	1	1,13	1,13
1,5	1,47	1	1,37	1,37
2,5	2,43	1	1,76	1,76
4	3,94	1	2,24	2,24
6	5,85	1	2,73	2,73
10	9,72	7	1,33	3,99
16	15,52	7	1,68	5
25	24,48	7	2,11	6,33
35	34,09	7	2,49	7,47
50	49,89	19	1,81	9,05
70	68,34	19	2,14	10,7
95	92,52	19	2,49	12,45
120	117,41	37	2,01	14,07
150	145,81	37	2,24	15,68
185	180,17	37	2,49	17,43
240	234	61	2,21	19,89
300	292,29	61	2,47	22,23
400	389,14	61	2,85	25,65
500	486,87	91	2,61	28,71
625	608,53	127	2,47	32,11

КОНСТРУКТИВНЫЕ ДАННЫЕ ЖИЛ ТИПА Г

Номинальное сечение, мм^2	Фактическое сечение, мм^2	Число проволок	Диаметр проволоки, мм	Диаметр жилы, мм
0,5	0,49	7	0,3	0,9
0,5*	0,53	10	0,26	1,04
0,75	0,75	7	0,37	1,11
0,75*	0,78	11	0,3	1,24
1	1,02	7	0,43	1,29
1*	0,99	14	0,3	1,32
1,5	1,49	7	0,52	1,56
2,5	2,51	19	0,41	2,05
4	4,04	19	0,52	2,6
6	6,11	19	0,64	3,2
10	9,92	19	0,82	4,1
16	15,76	49	0,64	5,76
25	25,89	98	0,58	7,67
35	35,14	133	0,58	8,7
50	48,3	133	0,68	10,2
70	68,63	189	0,68	12,55
95	94,06	259	0,68	14,28
120	117,5	259	0,76	15,96
150	144,51	336	0,74	18,09
185	183,64	427	0,74	19,98
240	242,3	427	0,85	22,95
300	291,1	513	0,85	26,14
400	398,9	703	0,85	29,75
500	498,3	703	0,95	33,25

Звездочкой отмечено номинальное сечение жил, конструкции которых предусмотрены стандартом или техническими условиями на готовое изделие.

КОНСТРУКТИВНЫЕ ДАННЫЕ ЖИЛ ТИПА ОГ

Номинальное сечение, мм^2	Фактическое сечение, мм^2	Число проволок	Диаметр проволоки, мм	Диаметр жилы, мм
0,5	0,5	16	0,2	0,94
0,75	0,79	19	0,23	1,15
0,75*	0,75	24	0,2	1,2
1	1,01	19	0,26	1,3
1*	1,01	32	0,2	1,3
1,5	1,53	19	0,32	1,6
2,5	2,6	49	0,26	2,34
2,5*	2,47	35	0,3	2,1
4	3,94	49	0,32	2,88
4*	3,96	30	0,41	2,62
6	5,85	49	0,39	3,51
10	10,41	49	0,52	4,68
16	15,84	84	0,49	6,1
25	25,08	133	0,49	7,35

Звездочкой отмечено номинальное сечение жил, конструкции которых предусмотрены стандартом или техническими условиями на готовое изделие.

Если по условиям монтажа и эксплуатации жилы проводов и кабелей должны обладать гибкостью, промежуточной между типами Н и Г, жилы этих проводов и кабелей имеют конструкцию, приведенную в таблице.

КОНСТРУКТИВНЫЕ ДАННЫЕ ЖИЛ С ПРОМЕЖУТОЧНОЙ ГИБКОСТЬЮ

Номинальное сечение, мм^2	Фактическое сечение, мм^2	Число проволок	Диаметр проволоки, мм	Диаметр жилы, мм
2,5	2,54	7	0,68	2,04
4	3,97	7	0,85	2,55
6	5,83	7	1,03	3,09
10	9,72	7	1,33	3,99
16	15,83	19	1,03	5,51
25	24,45	19	1,28	6,4
35	34,01	19	1,51	7,55
50	49,14	49	1,13	10,17
70	70,12	49	1,35	12,15
95	95,0	84	1,2	14,94
120	119,7	133	1,07	16,05

РЕЗИНОВАЯ ИЗОЛЯЦИЯ

В зависимости от требований к кабельным изделиям в качестве изоляции применяют резину различных классов и типов, изготавляемую на основе натурального и синтетического каучука (ГОСТ 2068 - 43).

КЛАССЫ И ТИПЫ ИЗОЛЯЦИОННОЙ РЕЗИНЫ

Класс	Тип	Класс	Тип
Изоляционная нормальная	РН-1 РН-2 РН-3	Изоляционная теплостойкая	РТИ-1 РТИ-2 РТИ-3

Теплостойкая резина отличается от нормальной тем, что она не содержит серы.

ФИЗИКО-МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ РЕЗИНЫ

Предел прочности на разрыв и относительное удлинение при разрыве, а также пределы снижения этих величин после искусственного старения приведены ниже.

МЕХАНИЧЕСКИЕ СВОЙСТВА ИЗОЛЯЦИОННОЙ РЕЗИНЫ

Тип	Предел прочности на разрыв, кг/см ² не менее	Относительное удлинение при разрыве, % не менее	Допустимое снижение первоначальных фактических величин после искусственного теплового старения	
			прочности на разрыв, % не более	относительного удлинения при разрыве, % не более
РН-1	35	250		
РН-2	30	200	15	40
РН-3	20	200		
РТИ-1	40	300		
РТИ-2	35	250	50	50
РТИ-3	20	200		

Прочность на разрыв и относительное удлинение резины при разрыве определяют по ГОСТ 269--41 и 270--41.

Испытание резины на тепловое старение в соответствии с ГОСТ 271--41 производят путем выдерживания образцов в термостате в течение 96 часов при температуре:

изоляционной нормальной $70 \pm 2^\circ$;
 изоляционной теплостойкой $120 \pm 3^\circ$.

Снижение величины прочности на разрыв после старения определяют по формуле:

$$K_c = \frac{\sigma_z - \sigma'_z}{\sigma_z} \cdot 100,$$

где: K_c — снижение прочности на разрыв в процентах;
 σ_z — прочность на разрыв до старения;
 σ'_z — прочность на разрыв после старения.

Снижение величины относительного удлинения при разрыве после старения определяют аналогичным путем.

Для определения электроизоляционных свойств резины образцы подвергают испытанию по ГОСТ 2068—43.

После 24-часового пребывания образцов в воде при комнатной температуре резина отвечает требованиям, указанным в таблице.

СРАВНЕНИЕ МЕХАНИЧЕСКИХ ПОКАЗАТЕЛЕЙ ИЗОЛЯЦИОННОЙ РЕЗИНЫ

ЭЛЕКТРОНЗОЛЯЦИОННЫЕ СВОЙСТВА РЕЗИНЫ

Тип	Удельное объемное сопротивление ρ_v ом·см не менее	Диэлектрические потери $\operatorname{tg} \delta$ не более	Пробивная прочность, кв/мм не менее
РИ-1	$1 \cdot 10^{13}$	0,1	20
РИ-2	$1 \cdot 10^{13}$	0,2	15
РИ-3	не нормируется	не нормируется	10
РТИ-1	$1 \cdot 10^{13}$	0,1	20
РТИ-2	$1 \cdot 10^{12}$	0,2	15
РТИ-3	не нормируется	не нормируется	10

Удельный вес резины в зависимости от состава колеблется в следующих пределах:

РИ-1 и РТИ-1	1,45 — 1,50
РИ-2 и РТИ-2	1,55 — 1,65
РИ-3 и РТИ-3	1,70 — 1,83

Толщина резиновой изоляции зависит от номинального сечения токопроводящей жилы и номинального рабочего напряжения кабельных изделий.

Для толщины изоляции установлено только нижнее предельное отклонение — до 10% от номинального. Положительное отклонение не нормируется.

ТОЛЩИНА РЕЗИНОВОЙ ИЗОЛЯЦИИ

ЗАЩИТНЫЕ ПОКРОВЫ

У кабельных изделий с резиновой изоляцией основными видами защитных покровов служат: свинцовая оболочка, шланговая оболочка или оплетка. В некоторых случаях освинцованные кабели имеют дополнительные защитные покровы (броню).

Для изготовления **свинцовой оболочки** применяют свинец марки С3 по ГОСТ 3778—47. В некоторых случаях свинцовую оболочку изготавливают с присадкой сурьмы.

ТОЛЩИНА СВИНЦОВОЙ ОБОЛОЧКИ

ДИАМЕТР КАБЕЛЯ ПОД СВИНЦОВОЙ ОБОЛОЧКОЙ

Для изготовления **шланговых оболочек** кабелей и проводов применяют резину или полихлорвиниловый пластикат. Шланговую оболочку гибких кабелей и проводов изготавливают из резины, соответствующей ГОСТ 2068—43.

КЛАССЫ И ТИПЫ ШЛАНГОВОЙ РЕЗИНЫ

Класс	Тип
Шланговая нормальная	РШ-1
Шланговая маслостойкая и бензиностойкая	РСШ-1

Для изготовления профилированных сердечников кабелей, а также для заполнения пространств между жилами применяют резину следующих классов и типов:
 в кабелях на напряжение до 3 000 в — шланговую РШ-1 или РСШ-1;
 " " " " " 3 000 в и выше — изоляционную РИ-2 или РТИ-2.

МЕХАНИЧЕСКИЕ СВОЙСТВА ШЛАНГОВОЙ РЕЗИНЫ

Тип	Предел прочности на разрыв, кг/см ² не менее	Относительное удлинение при разрыве, % не менее	Допустимое снижение первоначальных фактических величин после искусственного теплового старения	
			прочности на разрыв, % не более	относительного удлинения при разрыве, % не более
РШ-1	50	200	15	40
РСШ-1	60	300	15	40

Прочность на разрыв, относительное удлинение при разрыве и снижение этих величин после искусственного теплового старения определяют так же, как и для изоляционной резины.

СРАВНЕНИЕ МЕХАНИЧЕСКИХ ПОКАЗАТЕЛЕЙ ШЛАНГОВОЙ РЕЗИНЫ И ПЛАСТИКАТА

Испытание на тепловое старение шланговой резины производят при температуре $70 \pm 2^\circ$ так же, как и для изоляционной нормальной резины.

Набухание масло-бензостойкой резины РСШ-1 после пребывания в жидкости в течение 24 часов при температуре 20 ± 2 не должно превышать:

в авиационном бензине — 22%,
в машинном масле — 4%.

Испытание резины на сопротивление набуханию производят по ГОСТ 421-41. Показатель сопротивления набуханию определяют по изменению веса образца.

Резина РСШ-1 не должна распространять горения. Испытание на сопротивление распространению горения производят по ГОСТ 2068-43 при помощи паяльной лампы или газовой горелки.

Шланговый полихлорвиниловый пластикат, являющийся продуктом классификации полихлорвиниловой смолы, представляет собой термопластическую массу.

Шланговый пластикат имеет следующие показатели механических свойств:

предел прочности на разрыв — не менее $100 \text{ кг}/\text{см}^2$;
относительное удлинение при разрыве — не менее 100% .

Шланговый пластикат негорюч и обладает хорошей влагостойкостью и стойкостью к агрессивным химическим средам.

В зависимости от рецептов удельный вес шланговой резины и шланговых пластиков колеблется в пределах:

резина РИ-1	— 1,25 — 1,35,
" РСИ-1	— 1,40 — 1,50,
пластикат	— 1,30 — 1,55.

Толщина шланговой оболочки в зависимости от диаметра кабеля может быть от 1 до 8 мм.

ТОЛЩИНА ШЛАНГОВОЙ ОБОЛОЧКИ

Оплетка

Оплетка представляет собой переплетение двух направленных в разные стороны слоев из хлопчатобумажных прядей, льняных нитей или проволок, покрывающих поверхность изделия с определенной плотностью.

Плотность оплетки, т. е. отношение площади, занимаемой материалом оплетки, к площади поверхности провода, находится в пределах от 70 до 100% .

Плотность оплетки для проводов с цепронитанной оплеткой составляет 100% .

Плотность оплетки определяют по формуле:

$$P = (2 p_1 - p_1^2) \cdot 100,$$

где $p_1 = \frac{a \cdot n \cdot d}{h \cos \alpha}$;

a — половина числа прядей;

n — число нитей или проволок в пряди;

d — кроющая ширина нити в миллиметрах (диаметр проволоки — в миллиметрах);

h — шаг оплетки в миллиметрах;

α — угол оплетки.

Шаг оплетки определяют по формуле:

$$\operatorname{tg} \alpha = \frac{h}{\pi (D + \delta)}$$

где D — диаметр под оплеткой в миллиметрах;
 δ — толщина оплетки в миллиметрах.

Оплетка из хлопчатобумажной пряжи служит для защиты резиновой изоляции от влияния света и незначительных механических воздействий.

Если кабели и провода при эксплоатации подвергают многократной перемотке, то для них применяют оплетку из льняной пряжи.

ТИПЫ БРОНЕПОКРОВОВ

a — покров из асфальтированной кабельной пряжки; *b* — броня из двух стальных лент с подушкой из пропитанной бумаги или кабельной пряжи (джута); *c* — броня из двух стальных лент с подушкой из пропитанной бумаги или кабельной пряжи (джута) и наружный покров из последовательно наложенных слоев кабельной пряжи (джута) и вязкого компаунда; *d* — то же — броня из плоской стальной проволоки; *e* — то же броня из круглой стальной проволоки.

Для защиты хлопчатобумажной пряжи от действия влаги оплетку проводов, работающих в сырых местах, пропитывают противогнилостным составом.

Для защиты резиновой изоляции от воздействия масел и бензина оплетку покрывают лаковой пленкой.

Оплетку проводов и шнурков, предназначенных для работы в помещениях, не подверженных действию влаги, не пропитывается.

Оплетку из стальной проволоки применяют в проводах, от которых одновременно с гибкостью требуется повышенная стойкость к механическим повреждениям.

Когда оплетка нужна как электрический экран и заземляющий провод, ее изготавливают из медной проволоки, защищенной антикоррозионным покрытием.

Дополнительные защитные покровы

Для защиты свинцовой оболочки от механического воздействия и от воздействия сильнодействующих химических сред и блуждающих токов предусмотрены дополнительные бронепокровы.

В зависимости от марки кабеля броню выполняют из стальных лент, стальных оцинкованных плоских или круглых проволок.

Бронированные кабели всех марок имеют под броней подушку, которая состоит из нескольких последовательно наложенных концентрических слоев компаунда и пропитанной кабельной бумаги, а в некоторых случаях — кабельной пряжи (джута).

Наружный покров бронированных кабелей состоит

ТОЛЩИНА ЗАЩИТНЫХ ПОКРОВОВ

Диаметр кабеля поверх свинцовой оболочки	Толщина				
	подушка	Броня из стальных лент	Броня из оцин- кованных сталь- ных плоских проводок	Броня из оцин- кованных сталь- ных круглых проводок	наружный покров
м.м.					
До 13	1,5	$2 \times 0,3$	—	—	1,5
Свыше 13, 23	1,5	$2 \times 0,5$	1,5	4	1,5
, 23, 37	2,0	$2 \times 0,5$	1,5	4	2,0
, 37	2,0	$2 \times 0,5$	1,7	4	2,0

из нескольких последовательно наложенных концентрических слоев компаунда, кабельной пряжи (джута), мелового покрытия и пропитанной кабельной бумаги.

Взамен брони из стальных лент $2 \times 0,3$ мм можно применять броню из стальных оцинкованных проволок диаметром 1,4—1,8 мм.

Кабели, бронированные стальной лентой без наружного покрова, имеют поверх брони слой лака или компаунда.

Кабели, бронированные стальной оцинкованной плоской проволокой без наружного покрова, имеют поверх брони две или три оцинкованные стальные проволоки толщиной 1,4 мм или одну стальную оцинкованную или освинцовую ленту толщиной 0,5 мм.

Предельное допускаемое уменьшение толщины подушки и наружного покрова установлено только отрицательное — 20% от номинального.

УСЛОВИЯ ПРИМЕНЕНИЯ ОСВИНЦОВАННЫХ И БРОНИРОВАННЫХ КАБЕЛЕЙ

Бронированные кабели с наружным покровом применяют для прокладки:

- а) в особо ответственных установках при нагрузках первой категории;
- б) в установках, прекращение действия которых может создать угрозу для жизни работающих или вызвать длительную остановку предприятия, порчу оборудования и т. п. (вентиляция взрывоопасных и газоопасных помещений, разливочные краны марганцевых и бессемеровских цехов и т. п.);
- в) в шахтных установках (вентиляция, подъемники, подземные выработки).

Бронированные кабели без наружного покрова предназначены для прокладки непосредственно по стенам и потолкам, в каналах и тоннелях:

- 1) во взрывоопасных и пожароопасных помещениях;
- 2) в случаях, когда может произойти повреждение свинцовой оболочки кабеля;
- 3) при необходимости экранирования кабелей;
- 4) по поверхностям, подвергающимся вибрациям и сотрясениям;
- 5) в помещениях, где возможно повреждение свинцовых оболочек кабелей грызунами.

Освинцованные асфальтированные кабели применяют для прокладки во всех случаях, перечисленных в п. п. 1—5, а также в помещениях сырых, особо сырых, с едкими парами или газами (непосредственно по стенам и потолкам, в каналах и тоннелях) при условии, что кабели не будут подвержены механическим повреждениям.

Освинцованные голые кабели предназначены для прокладки в помещениях (непосредственно по стенам и потолкам, в каналах и тоннелях) со средой, нейтральной по отношению к свинцу, при отсутствии возможности механических повреждений.

Выбор брони кабелей (из плоских лент или проволоки) зависит от величины ожидаемых растягивающих усилий.

Монтаж кабелей с защитной винилитовой оболочкой разрешается производить при температуре не ниже -10° .

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Удельное активное сопротивление токопроводящей жилы (отнесенное к 1 мм^2 номинального поперечного сечения) при температуре +20° должно быть не более:

0,0184 $\text{ом} \cdot \text{мм}^2/\text{м}$ для медной жилы,
0,0295 $\text{ом} \cdot \text{мм}^2/\text{м}$ для алюминиевой жилы.

Пересчет сопротивления R_t при температуре t° на сопротивление R_{20} при 20° производят по формуле:

$$R_{20} = R_t + 0,068 (20 - t) \text{ для медной жилы,}$$

$$R_{20} = R_t [1 + 0,004 (20 - t)] \text{ для алюминиевой жилы.}$$

Допустимая температура длительного нагрева жилы не должна превышать:

55° для изделий, изолированных нормальной резиной РИ-1, РИ-2 и РИ-3;

65° для изделий, изолированных теплостойкой резиной РТИ-1, РТИ-2 и РТИ-3.

ЭЛЕКТРИЧЕСКИЕ ИСПЫТАНИЯ

Все кабельные изделия перед сдачей на склад подвергают электрическим испытаниям.

Кабельные изделия для рабочего напряжения до 380 в испытывают на аппаратах сухого испытания при скорости прохождения жилы через аппарат не более 210 м в минуту напряжением:

1 000 в	для толщины изоляции 0,6 мм
1 500 в	" " " 0,8 "
2 000 в	" " " 1,0 "
3 000 в	" " " 1,2 "

Кабельные изделия для рабочего напряжения до 500 в в течение 5 мин. подвергают испытаниям напряжением 2 000 в переменного тока частотой 50 гц после шестичасового пребывания кабеля в воде или на аппаратах сухого испытания напряжением:

6 000 в	для толщины изоляции 1,0 мм
7 000 в	" " " 1,2 "
8 000 в	" " " 1,4 "
9 000 в	" " " 1,6 мм и больше.

Кабельные изделия для рабочего напряжения 3 000 и 6 000 в в течение 5 мин. подвергают испытаниям напряжением соответственно 6 000 и 10 000 в переменного тока частотой 50 гц после шестичасового пребывания в воде.

Все кабельные изделия с металлическими оболочками, а также многожильные кабели и провода подвергают испытаниям на электрическую прочность между жилами и между жилами и металлической оболочкой.

При наличии специфических условий эксплуатации отдельных видов кабельных изделий производят специальные испытания, которые предусмотрены в стандартах и технических условиях.

СХЕМА ЭЛЕКТРИЧЕСКИХ ИСПЫТАНИЙ

Число жил	Схема	Способ соединения при испытании	
		с металлической оболочкой	без металлической оболочки
Одножильный		1 против металлическая оболочка	—
Двухжильный		a) 1 против 2 + металлическая оболочка б) 2 против 1 + металлическая оболочка	1 против 2
Трехжильный		a) 1 против 2 + 3 + металлическая оболочка б) 2 против 1 + 3 + металлическая оболочка в) 3 против 2 + 1 + металлическая оболочка или: а) 1 против 2 2 против 3 3 против 1 б) 1 + 2 + 3 против металлической оболочки	a) 1 против 2 + 3 б) 2 против 1 + 3 в) 3 против 2 + 1
Четырехжильный		a) 1 + 3 против 2 + 4 б) 2 + 1 против 4 + 3 в) 1 + 2 + 3 + 4 против металлической оболочки	a) 1 + 3 против 2 + 4 б) 2 + 1 против 4 + 3
Многожильный		а) четные жилы против нечетных каждого повива + металлическая оболочка б) нечетные жилы против четных каждого повива + металлическая оболочка	четные жилы против нечетных каждого повива

УПАКОВКА И МАРКИРОВКА

Кабели, провода и шнуры с резиновой изоляцией в зависимости от диаметра и веса поставляют на деревянных барабанах или бухтах.

Кабели в свинцовой оболочке поставляют только на деревянных барабанах, шнуры -- в бухтах.

Намотку кабеля или провода на барабан производят плотно, без ослабления витков.

Барабаны обшивают досками, причем гвозди обшивки пробивают сквозь стальную ленту или обвивающую гвозди стальную проволоку.

Обшивку барабанов с бронированными и шланговыми кабелями можно производить с просветом в половину ширины доски обшивки.

Концы кабеля должны быть надежно защищены от повреждений и доступны для испытаний.

Концы освинцованных кабелей запаивают, а концы остальных кабелей и проводов обматывают резиновой лентой.

Бухты проводов и шнуроов с непропитанной оплёткой и с оплёткой, покрытой лаком, обертыают упаковочным материалом и перевязывают в трех местах.

Бухты проводов и шнуроов, имеющих пропитанную оплётку или общую резиновую шланговую оболочку, поставляют без упаковки, но перевязывают в трех местах.

ЭСКИЗ БАРАБАНА

РАЗМЕРЫ И ВЕС БАРАБАНОВ

№ барабана	Диаметр щеки D , мм	Диаметр шейки d , мм	Ширина шейки A , мм	Расчетный вес, кг	
				без обшивки	с обшивкой
I	400	200	200	10	13
II	500	200	230	12	16
III	550	200	250	16	21
IVa	780	550	230	38	46
IV	800	450	400	42	58
Va	1 000	500	500	70	96
V	1 150	600	500	97	135
VIa	1 400	900	460	140	190
VI	1 400	750	700	170	230
VII	1 700	900	750	300	400
VIII	1 850	1 100	900	440	560
IX	2 000	1 200	1 000	690	850
X	2 200	1 350	1 000	950	1 250
XI	2 450	1 500	1 300	1 400	1 800
XII	2 600	1 500	1 500	1 650	2 250
XIIIa	2 450	1 800	1 500	1 500	1 900
XIII	3 000	1 800	1 800	2 650	3 500

Вес бухты не должен превышать 50 кг.

К каждой бухте прикреплен ярлык, на котором указаны:

1. Товарный знак завода-изготовителя.
2. Марка кабельного изделия.
3. Число жил и номинальное сечение в миллиметрах квадратных.
4. Длина в метрах.
5. Вес брутто в килограммах.
6. Дата изготовления (год, месяц).
7. Номер стандарта или ВТУ.

На барабане наносятся те же обозначения и, кроме того, стрелка, указывающая направление вращения барабана при перекатывании.

Все кабельные изделия имеют опознавательный знак завода-изготовителя — бумажную ленту, на которой обозначены наименование завода и год изготовления, или цветную нитку (каждому заводу присвоен определенный цвет).

Бумажную ленту или цветную нитку пропускают по всей длине изделия под защитной оболочкой. В некоторых случаях цветную нитку пропускают в оплетку.

УСЛОВИЯ ХРАНЕНИЯ И ПЕРЕВОЗКИ

Кабельные изделия необходимо хранить в помещениях, не подверженных действию атмосферных осадков и прямому воздействию солнечного света. Барабаны с кабелем нужно хранить в общитом виде.

Хранение проводов и шнуров производят в сухих помещениях на стеллажах.

Барабаны с кабелями и проводами при перевозке и хранении запрещается класть плашмя на щеку барабана.

Запрещается сбрасывать барабаны с кабелем или проводом при выгрузке из вагонов, автомашин и т. п.

Перекатывание барабанов необходимо производить в направлении стрелки, обозначенной на щеке барабана.

При перевозке освинцованных кабелей по железной дороге на расстояние свыше 1 500 км под борты барабанов кладут амортизаторы.

Издано в Советском Союзе

THIS IS AN ENCLURE TO THE
ВСЕСОЮЗНОЕ ОБЪЕДИНЕНИЕ «ЭЛЕКТРОИМПОРТ»

25X1A

RESTRICTED

СИЛОВЫЕ
КАБЕЛИ

С БУМАЖНОЙ
ПРОПИТАННОЙ
ИЗОЛЯЦИЕЙ

8101

СИЛОВЫЕ КАБЕЛИ С БУМАЖНОЙ ПРОПИТАННОЙ ИЗОЛЯЦИЕЙ

CPYRGH

T

Силовые кабели с бумажной пропитанной изоляцией предназначены в основном для передачи и распределения электрической энергии по кабельным линиям на напряжение от 1 000 до 35 000 в.

Силовые кабели для электрофильтров выпускаются на напряжение 75 000 в постоянного тока.

В зависимости от типа защитных покровов силовые кабели предназначаются для прокладки в земле, в воде, на открытом воздухе, а также в каналах, тоннелях и внутри зданий.

КЛАССИФИКАЦИЯ И СОРТАМЕНТ

Силовые кабели различаются:

- по числу токопроводящих жил;
- по сечению токопроводящей жилы;
- по конструкции кабеля;
- по типам защитных покровов;
- по номинальному напряжению.

По числу токопроводящих жил кабели выпускаются 1-, 2-, 3- и 4-жильными.

Одножильные силовые кабели во избежание больших потерь в металлических защитных покроях применяются обычно в сетях постоянного тока для соединения высоковольтных генераторов с воздушными и кабельными линиями.

Наложение бумажной изоляции на жилу высоковольтного кабеля

Одножильные силовые кабели с одной или двумя контрольными жилами применяются в сетях, где по условиям эксплоатации требуется производить измерение падения напряжения вдоль по кабелю, защиты кабеля от коротких замыканий, измерения температуры, развиваемой на жиле кабеля, и других эксплоатационных характеристик.

Двухжильные силовые кабели предназначаются для передачи постоянного и однофазного переменного тока.

Трехжильные силовые кабели, являющиеся самым распространенным типом силового кабеля, применяются во всех трехфазных сетях переменного тока, в основном, при прокладке фидерных линий от источника тока к подстанциям, а также в распределительных сетях для присоединения электродвигателей и генераторов к распределительным щитам.

Четырехжильные силовые кабели, в которых имеется одна жила уменьшенного сечения (40—60%, а иногда 30% сечения основных жил), применяются для прокладок в сетях трехфазного тока с заземленной нейтралью.

Четырехжильные силовые кабели, в основном, применяются в смешанных сетях, где имеется силовая и световая нагрузки.

По сечению токопроводящих жил кабели изготавливаются от 1,5 до 800 мм^2 .

По конструкции кабели бывают: с поясной изоляцией и с отдельно освинцованными изолированными жилами.

Кабели для вертикальной прокладки подвергаются на заводе-изготовителе дополнительной технологической операции — осушению изоляции. Это предохраняет свинцовую оболочку от расширения и разрушения, могущих произойти при прокладке кабеля по круто наклонным и вертикальным участкам трассы, от воздействия статического столба массы в кабеле.

По типам защитных покровов кабели изготавляются:

в свинцовой оболочке, без брони (голые);

асфальтированные;

бронированные стальной ленточной броней с наружным покровом из пропитанной кабельной пряжи и без него;

бронированные плоскими стальными оцинкованными проволоками с наружным покровом из пропитанной кабельной пряжи и без него;

бронированные круглыми стальными оцинкованными проволоками с наружным покровом из пропитанной кабельной пряжи.

По номинальному напряжению кабели изготавливаются на 1 000, 3 000, 6 000, 10 000, 20 000 и 35 000 в переменного тока и 75 000 в постоянного тока.

Силовые кабели на напряжение до 10 000 в (включительно) изготавливаются с одинаковой толщиной изоляции для сетей с заземленной и незаземленной нейтралью, а на напряжение 20 000 и 35 000 в — с различной толщиной изоляции для сетей с заземленной и незаземленной нейтралью.

Кабели для вертикальных прокладок на напряжение 6 000 и 10 000 в изготавливаются по специальным техническим условиям.

Одножильные силовые кабели изготавливаются на напряжение 1, 3, 6, 10, 20 и 35 кв и сечением токопроводящих жил от 1,5 до 800 мм^2 .

Двухжильные силовые кабели изготавливаются на напряжение 1,3 и 6 кв и сечением токопроводящих жил от 1,5 до 150 мм^2 .

Жилы сечением 25 мм^2 и более изготавливаются уплотненными в виде сегмента.

Трехжильные силовые кабели изготавливаются на напряжение 1, 3, 6, 10, 20 и 35 кв и сечением от 1,5 до 240 мм^2 .

Трехжильные кабели на напряжение 1—10 кв включительно изготавливаются, как правило, в виде кабеля с поясной изоляцией, т. е. поверх трех скрученных изолированных жил накладывается общий поясной слой изоляции.

Трехжильные кабели на напряжение 20 и 35 кв изготавливаются с отдельно изолированными и освинцованными жилами.

Четырехжильные силовые кабели изготавливаются на напряжение 1 кв, сечением токопроводящих основных жил от 2,5 до 185 мм^2 .

Сечение нулевой жилы четырехжильных кабелей, как правило, берется в зависимости от сечения основной жилы.

СЕЧЕНИЕ НУЛЕВОЙ ЖИЛЫ ЧЕТЫРЕХЖИЛЬНЫХ КАБЕЛЕЙ

Номинальное сечение основной жилы, мм^2	2,5	4	6	10	16	25	35	50	70	95	120	150	185
Номинальное сечение нулевой жилы, мм^2	1,5	2,5	4	6	10	16	16	25	35	47,5	50	70	70

Для специальных целей, например, когда необходимо предусмотреть переключение питания приемников с переменного на постоянный ток, четырехжильные кабели могут быть изготовлены сечением 70-185 мм^2 и на напряжение 6000 и 10000 в с жилами одинакового сечения, но по особо согласованным техническим условиям.

Кабели с контрольными жилами. Силовые кабели с одной или двумя контрольными жилами изготавливаются на напряжение 1000 в, сечением токопроводящих жил от 120 до 800 мм^2 .

Контрольная жила, скрученная из трех тонких проволок, имеет свою самостоятельную изоляцию по отношению к основной жиле. Изолированная контрольная жила скручивается с медными проволоками основной жилы в общую круглую жилу.

МАРКИ КАБЕЛЕЙ

Марка	Наименование
СГ	Кабель силовой с бумажной пропитанной изоляцией в свинцовой оболочке, голый
СА	Кабель силовой с бумажной пропитанной изоляцией в свинцовой оболочке, асфальтированный
СБ	Кабель силовой с бумажной пропитанной изоляцией в свинцовой оболочке, бронированный двумя стальными лентами, с наружным покровом из кабельной пряжи
СБГ	Кабель силовой с бумажной пропитанной изоляцией в свинцовой оболочке, бронированный двумя стальными лентами, без наружного покрова
СП	Кабель силовой с бумажной пропитанной изоляцией в свинцовой оболочке, бронированный плоскими стальными проволоками, с наружным покровом из кабельной пряжи
СПГ	Кабель силовой с бумажной пропитанной изоляцией в свинцовой оболочке, бронированный плоскими стальными проволоками, без наружного покрова
СК	Кабель силовой с бумажной пропитанной изоляцией в свинцовой оболочке, бронированный круглыми стальными проволоками, с наружным покровом из кабельной пряжи
ОСБ	Кабель силовой, скрученный из трех отдельно изолированных и освинцованных жил, бронированный двумя стальными лентами, с наружным покровом из кабельной пряжи
ОСК	Кабель силовой, скрученный из трех отдельно изолированных и освинцованных жил, бронированный круглыми стальными проволоками, с наружным покровом из кабельной пряжи
СБ-1к, СБ-2к СБГ-1к, СБГ-2к	Кабели СБ и СБГ с одной или двумя контрольными жилами
СБУ, СБГУ, СПУ и СПГУ	Кабели СБ, СБГ, СП и СПГ с тонкой свинцовой оболочкой
СБВ, СБГВ, СПВ, СПГВ, СКВ	Кабели СБ, СБГ, СП, СПГ и СК с осущеной пропитанной изоляцией для вертикальных прокладок

СОРТАМЕНТ КАБЕЛЕЙ ПО МАРКАМ, СЕЧЕНИЯМ, ЧИСЛУ ЖИЛ И НАПРЯЖЕНИЮ

Число жил	Марка кабеля	Номинальное напряжение кабеля, в							
		1 000	3 000	6 000	10 000	20 000		35 000	
						нейтраль заземлена	нейтраль не заземлена	нейтраль заземлена	нейтраль не заземлена
Номинальное сечение жилы, мм ²									
1	СГ, СА	1,5—800	4—800	10—800	16—625	25—400	25—400	70—300	70—300
	СВ, СБГ	4—800	4—800	10—800	16—625	—	—	—	—
	СК	4—800	4—800	10—800	16—625	25—400	25—400	70—300	70—300
	СП, СПГ	4—800	4—800	—	—	—	—	—	—
	СБ-1к, СБ-2к СБГ-1к, СБГ-2к	120—800	—	—	—	—	—	—	—
2	СГ, СА, СВ, СБГ	1,5—150	4—120	10—95	—	—	—	—	—
	СП, СПГ	1,5—150	4—120	—	—	—	—	—	—
3	СГ, СА, СВ, СБГ	1,5—240	4—240	10—240	10—240	—	—	—	—
	СП, СПГ	1,5—240	4—240	10—240	16—240	—	—	—	—
	СК	10—240	10—240	16—240	16—240	—	—	—	—
	ОСБ	—	—	—	—	25—185	25—185	70—185	70—150
	ОСК	—	—	—	—	25—185	25—185	70—150	70—95
4	СГ, СА, СВ, СБГ	2,5—185	—	70—185*	70—185*	—	—	—	—
	СП, СПГ	2,5—185	—	—	—	—	—	—	—
1, 2, 3 и 4	СБВ, СБГВ, СПВ, СПГВ СКВ	4—120	4—120	—	—	—	—	—	—

* Все четыре жилы этих кабелей имеют одинаковое сечение.

РАСЧЕТНЫЕ НАГРУЗКИ

Горизонтальная прокладка. Для кабелей напряжением до 35 000 в (включительно), проложенных горизонтально, длительные расчетные нагрузки приняты в соответствии с допустимыми температурами нагрева жил.

Длительные расчетные нагрузки для кабелей, проложенных одиночно в земле при окружающей температуре +15°, и для кабелей, проложенных в любом количестве на открытом воздухе при окружающей температуре +25° и в воде при окружающей температуре +15°, не должны превышать значений, приведенных в таблицах.

Вертикальная прокладка. Для вертикально проложенных кабелей всех марок на напряжение 1 000 и 3 000 в с осущеной изоляцией длительно допустимые расчетные нагрузки уменьшаются до 0,95 нагрузки на такие же кабели с нормально пропитанной изоляцией. Допускается превышение нагрузки на 10% от расчетных величин.

Определение нагрузок для кабелей, находящихся в эксплуатации, в зависимости от рода прокладки и характеристики почвы, может быть произведено опытным путем; допустимые температуры нагрева токопроводящих жил кабелей не должны при этом превышать установленных величин.

Смешанная прокладка. При смешанной прокладке кабелей определение длительно допустимых нагрузок должно производиться по участку трассы с наихудшими тепловыми условиями.

Длительно допустимые нагрузки на кабели приняты для прокладки в нормальных почвах с расчетным удельным тепловым сопротивлением почвы 120 тепловых $\text{ом} \cdot \text{см}$ на глубине 0,7–1,0 м, не более одного кабеля в траншее при расчетной температуре почвы +15°.

Прокладка кабелей в земле с расстоянием между кабелями менее 100 мм не рекомендуется.

При определении длительно допустимых нагрузок резервные кабели в числе рядом лежащих кабелей не учитываются.

При прокладке кабелей на открытом воздухе внутри, вне зданий и в тоннелях нагрузки рассчитаны при расстоянии между кабелями не менее 35 мм, а в каналах — при расстоянии между кабелями не менее 50 мм, при температуре воздуха +25° и при любом числе прокладываемых кабелей.

Под расчетной температурой воздуха следует понимать: вне помещений — наибольшую среднюю суточную температуру для данного района, повторяющуюся не менее трех раз в году; внутри помещений — наибольшую среднюю суточную температуру помещения в месте прокладки. При отсутствии данных принимать температуру внутри и вне помещений +25°.

Кабели, прокладываемые открыто вне зданий, должны быть защищены от прямых солнечных лучей.

ДЛИТЕЛЬНО ДОПУСТИМЫЕ РАСЧЕТНЫЕ НАГРУЗКИ ДЛЯ КАБЕЛЕЙ, ПРОКЛАДЫВАЕМЫХ НЕПОСРЕДСТВЕННО В ЗЕМЛЕ ПРИ ТЕМПЕРАТУРЕ ПОЧВЫ +15°

Номинальное сечение жилы, мм^2	Длительно допустимая сила тока в амперах для кабелей:					
	одножильных	двухжильных	трехжильных с поясной изоляцией			четырехжильных
	при напряжении, в					
	1 000	1 000	1 000–3 000	6 000	10 000	1 000
при максимально допустимой температуре жил кабеля, градусы						
	80	80	80	65	60	80
1,5	15	35	30	—	—	—
2,5	30	15	40	—	—	35
4	80	60	55	—	—	50
6	105	80	70	—	—	60
10	140	105	95	80	70	85
16	175	110	120	105	95	115
25	235	185	160	135	120	150
35	285	220	190	160	150	175
50	360	270	235	200	180	215
70	440	325	290	245	215	265
95	520	380	340	295	265	310
120	595	435	390	310	310	350
150	675	500	435	390	355	395
185	755	—	490	410	400	450
240	880	—	570	510	460	—
300	1 000	—	—	—	—	—
400	1 220	—	—	—	—	—
500	1 400	—	—	—	—	—
625	1 520	—	—	—	—	—
800	1 700	—	—	—	—	—

Примечание. Сила тока для одножильных кабелей дана для работы при постоянном токе.

**ДЛИТЕЛЬНО ДОПУСТИМЫЕ РАСЧЕТНЫЕ НАГРУЗКИ ДЛЯ КАБЕЛЕЙ, ПРОКЛАДЫВАЕМЫХ
В ВОДЕ ПРИ ТЕМПЕРАТУРЕ +15°**

Номинальное сечение жилы, mm^2	Длительно допустимая сила тока в амперах для кабелей:			
	одножильных		трехжильных с поясной изоляцией	
	при напряжении, в			
	1 000	1 000 — 3 000	6 000	10 000
при максимально допустимой температуре жил кабеля, градусы				
	80	80	65	60
10	—	120	—	—
16	—	155	135	120
25	—	210	170	150
35	370	250	205	180
50	460	305	255	220
70	570	375	310	275
95	675	440	375	340
120	775	505	430	395
150	880	565	500	450
185	990	615	545	510
240	1 140	715	625	585
300	1 300	—	—	—
400	1 580	—	—	—
500	1 820	—	—	—
625	1 970	—	—	—

Примечание. Сила тока для одножильных кабелей дана для работы при постоянном токе.

**ДЛИТЕЛЬНО ДОПУСТИМЫЕ РАСЧЕТНЫЕ НАГРУЗКИ ДЛЯ КАБЕЛЕЙ, ПРОКЛАДЫВАЕМЫХ
НА ОТКРЫТОМ ВОЗДУХЕ ПРИ ТЕМПЕРАТУРЕ +25°**

Номинальное сечение жилы, mm^2	Длительно допустимая сила тока в амперах для кабелей:					
	одножильных		двуухильных		трехжильных с поясной изоляцией	
	при напряжении, в					
	1 000	1 000	1 000 — 3 000	6 000	10 000	1 000
при максимально допустимой температуре жил кабеля, градусы						
	80	80	80	65	60	80
1,5	30	25	15	—	—	—
2,5	40	30	25	—	—	30
4	55	40	35	—	—	35
6	75	55	45	—	—	45
10	100	75	60	54	53	60
16	120	100	80	67	66	80
25	160	130	105	90	90	100
35	200	150	125	110	105	120
50	245	185	155	145	135	150
70	305	225	200	175	170	185
95	360	275	245	215	200	215
120	415	320	285	250	240	260
150	470	375	330	290	270	300
185	525	—	375	325	305	340
240	610	—	430	375	350	—
300	720	—	—	—	—	—
400	880	—	—	—	—	—
500	1 020	—	—	—	—	—
625	1 180	—	—	—	—	—
800	1 400	—	—	—	—	—

Примечание. Сила тока для одножильных кабелей дана для работы при постоянном токе.

ДЛИТЕЛЬНО ДОПУСТИМЫЕ РАСЧЕТНЫЕ НАГРУЗКИ ДЛЯ ТРЕХЖИЛЬНЫХ КАБЕЛЕЙ С ОТДЕЛЬНО ОСВИНЦОВАННЫМИ ЖИЛАМИ ПРИ ЗАЗЕМЛЕННОЙ НЕЙТРАЛИ

Номинальное сечение жилы, мм^2	Длительно допустимая сила тока в амперах при максимально допустимой температуре жил $+50^\circ$					
	при напряжении 20 000 в			при напряжении 35 000 в		
	Прокладка					
	в земле	в воде	в воздухе	в земле	в воде	в воздухе
25	110	125	85	—	—	—
35	135	150	95	—	—	—
50	165	190	120	—	—	—
70	205	210	150	200	225	145
95	215	290	175	240	275	175
120	285	310	200	280	325	200
150	320	375	230	315	380	230
185	370	430	260	365	—	260

Примечание. Указанные нагрузки относятся к кабелям, прокладываемым в земле и в воде при температуре $+15^\circ$ и на открытом воздухе при $+25^\circ$.

ДЛИТЕЛЬНО ДОПУСТИМЫЕ РАСЧЕТНЫЕ НАГРУЗКИ ДЛЯ ТРЕХЖИЛЬНЫХ КАБЕЛЕЙ С ОТДЕЛЬНО ОСВИНЦОВАННЫМИ ЖИЛАМИ ПРИ НЕЗАЗЕМЛЕННОЙ НЕЙТРАЛИ

Номинальное сечение жилы, мм^2	Длительно допустимая сила тока в амперах при максимально допустимой температуре жил $+50^\circ$					
	при напряжении 20 000 в			при напряжении 35 000 в		
	Прокладка					
	в земле	в воде	в воздухе	в воздухе	в воде	в земле
25	110	120	85	—	—	—
35	135	115	95	—	—	—
50	165	180	120	—	—	—
70	200	225	150	195	210	145
95	240	275	175	235	255	175
120	275	315	200	270	—	200
150	315	350	230	310	—	230
185	355	390	260	—	—	—

Примечание. Указанные нагрузки относятся к кабелям, прокладываемым в земле и в воде при температуре $+15^\circ$ и на открытом воздухе при $+25^\circ$.

ДЛИТЕЛЬНО ДОПУСТИМЫЕ РАСЧЕТНЫЕ НАГРУЗКИ ДЛЯ ОДНОЖИЛЬНЫХ НЕБРОНИРОВАННЫХ КАБЕЛЕЙ, ПРОКЛАДЫВАЕМЫХ НА ОТКРЫТОМ ВОЗДУХЕ ПРИ ТЕМПЕРАТУРЕ +25° И РАБОТАЮЩИХ НА ПЕРЕМЕННОМ ТОКЕ ПРИ НЕЗАЗЕМЛЕННОЙ НЕЙТРАЛИ

Номинальное сечение жилы, мм^2	Длительно допустимая сила тока в амперах				
	при напряжении, в				
	1 000 — 3 000	6 000	10 000	20 000	35 000
при максимально допустимой температуре жил кабеля, градусы					
	80	65	60	50	50
10	80	76	—	—	—
16	120	110	—	—	—
25	150	135	125	105	—
35	170	165	145	125	—
50	215	200	190	155	—
70	260	235	215	180	180
95	300	275	265	220	215
120	325	300	285	240	235
150	360	325	315	265	260
185	385	350	335	290	285
240	425	390	380	315	315
300	460	420	405	345	340

Примечание. Указанные нагрузки относятся к следующим условиям: свинцовые оболочки соединены между собой и заземлены на обоих концах; три кабеля лежат рядом при расстоянии между ними в свету не более 125 мм и не менее 35 мм .

ДЛИТЕЛЬНО ДОПУСТИМЫЕ РАСЧЕТНЫЕ НАГРУЗКИ ДЛЯ ЧЕТЫРЕЖИЛЬНЫХ КАБЕЛЕЙ С РАВНЫМ СЕЧЕНИЕМ ЖИЛ

Номинальное сечение жилы, мм^2	Длительно допустимая сила тока в амперах			
	при напряжении 6 000 в		при напряжении 10 000 в	
	при максимально допустимой температуре жил кабеля, градусы			
	65		60	
П р о к л а д к а				
	в земле	в воздухе	в земле	в воздухе
70	225	180	210	165
95	265	200	245	190
120	305	235	280	220
150	345	270	320	255
185	390	310	365	295

Примечание. Указанные нагрузки относятся к кабелям, прокладываемым в земле при температуре +15° и на открытом воздухе при +25°.

ПОПРАВОЧНЫЕ КОЭФФИЦИЕНТЫ

При расчетной температуре почвы и воды, отличной от $+15^{\circ}$, и температуре воздуха, отличной от $+25^{\circ}$, принимаются поправочные коэффициенты, приведенные в таблицах.

ПОПРАВОЧНЫЕ КОЭФФИЦИЕНТЫ НА ТЕМПЕРАТУРУ ПОЧВЫ И ВОДЫ

Для кабелей, работающих при максимальной температуре жилы, градусы	Значение поправочного коэффициента при температуре почвы и воды, градусы									
	- 5	0	+ 5	+ 10	+ 15	+ 20	+ 25	+ 30	+ 35	+ 40
80	1,14	1,11	1,08	1,04	1,0	0,96	0,92	0,88	0,83	0,78
65	1,18	1,14	1,10	1,05	1,0	0,95	0,89	0,84	0,77	0,71
60	1,20	1,15	1,12	1,06	1,0	0,94	0,88	0,82	0,75	0,67
50	1,25	1,20	1,14	1,07	1,0	0,93	0,84	0,76	0,66	0,54

ПОПРАВОЧНЫЕ КОЭФФИЦИЕНТЫ НА ТЕМПЕРАТУРУ ВОЗДУХА

Для кабелей, работающих при максимальной температуре жилы, градусы	Значение поправочного коэффициента при температуре воздуха, градусы									
	5	0	+ 5	+ 10	+ 15	+ 20	+ 25	+ 30	+ 35	+ 40
80	1,24	1,20	1,17	1,13	1,09	1,04	1,0	0,95	0,90	0,85
65	1,32	1,28	1,23	1,17	1,12	1,06	1,0	0,94	0,86	0,80
60	1,37	1,31	1,27	1,21	1,14	1,07	1,0	0,93	0,85	0,76
50	1,48	1,41	1,34	1,26	1,18	1,09	1,0	0,89	0,77	0,63

Для кабелей напряжением до 10 000 в включительно допустимые кратковременные перегрузки (длительностью до двух часов) определяются путем введения нижеследующих коэффициентов к нагрузкам, приведенным в таблицах:

для кабелей до 3 000 в включительно — 1,10;

для кабелей 6 000 и 10 000 в — 1,15.

При прокладке кабелей в трубах без искусственной вентиляции допустимые расчетные нагрузки понижаются путем умножения на соответствующие коэффициенты:

для кабелей напряжением до 10 000 в включительно и сечением до 95 мм^2 — 0,90;

для тех же кабелей, по сечением от 120 до 185 мм^2 включительно — 0,85;

для кабелей других напряжений и сечений — 0,80.

При прокладке в земле нескольких труб допустимые расчетные нагрузки дополнительно снижаются путем введения коэффициентов, приведенных в таблице.

ПОПРАВОЧНЫЕ КОЭФФИЦИЕНТЫ НА ЧИСЛО РАБОТАЮЩИХ КАБЕЛЕЙ, ПРОЛОЖЕННЫХ РЯДОМ В ЗЕМЛЕ

Расстояние между кабелями в свете, мм	Число кабелей					
	1	2	3	4	5	6
100	1,0	0,90	0,85	0,80	0,78	0,75
200	1,0	0,92	0,87	0,84	0,82	0,81
300	1,0	0,93	0,90	0,87	0,86	0,85

ДОПУСТИМЫЕ ТЕМПЕРАТУРЫ НАГРЕВА ЖИЛ КАБЕЛЯ ПРИ ДЛИТЕЛЬНОЙ ПЕРЕГРУЗКЕ

Номинальное напряжение кабеля, в	Допустимая рабочая температура, градусы	Допустимая температура при перегрузках длительностью не более 2 часов, градусы
До 3 000	80	85
, 6 000	65	85
, 10 000	60	80

Предельно допустимая расчетная температура нагрева при коротком замыкании принимается: 250° для жил кабелей на напряжение до 10 000 в включительно и 175° для жил кабелей на напряжение 20 000 и 35 000 в.

ЭЛЕКТРИЧЕСКИЕ ИСПЫТАНИЯ

Каждый конец выпущенного силового кабеля подвергается заводским испытаниям на следующие электрические характеристики:

- активное (омическое) сопротивление токопроводящих жил кабеля;
- сопротивление изоляции отдельных жил;
- электрическая прочность кабеля;
- диэлектрические потери.

Удельное активное сопротивление токопроводящей жилы силовых кабелей, отнесенное к 1 мм^2 номинального поперечного сечения, при температуре $+20^\circ$ должно быть не более $0,0184 \text{ ом} \cdot \text{мм}^2/\text{м}$.

Испытанию на активное сопротивление подвергаются все жилы каждого выпущенного конца силового кабеля для всех напряжений.

Сопротивление изоляции отдельных жил, пересчитанное на 1 км длины кабеля и температуру $+20^\circ$, должно быть не менее 100 Мом/км для кабелей на номинальное напряжение 6 кв и выше; не менее 50 Мом/км на номинальное напряжение 1 и 3 кв.

Сопротивление изоляции измеряется на строительной длине каждого отрезка кабеля для всех напряжений методом сравнения после 1 минуты приложения напряжения постоянного тока 100—200 в.

Испытанию на **электрическую прочность** кабеля напряжением переменного тока частотой 50 гц подвергается каждый отрезок выпускаемого кабеля по схеме, приведенной на рисунке.

Величина испытательного напряжения и время приложения напряжения в зависимости от типа и числа жил кабеля производится в соответствии с таблицей.

**НАПРЯЖЕНИЕ И ВРЕМЯ ВЫДЕРЖКИ ПРИ ИСПЫТАНИИ ЭЛЕКТРИЧЕСКОЙ ПРОЧНОСТИ
ИЗОЛЯЦИИ СИЛОВЫХ КАБЕЛЕЙ**

Номинальное напряжение кабеля, в	Испытательное напряжение переменного тока частотой 50 гц				
	одножильный		многожильный		
	в	мин	в	двухжильный	трех- и четырехжильный
1,0	3 000	20	3 200	15	10
3,0	8 250	20	7 200	15	10
6,0	16 500	20	14 200	15	10
10,0	27 500	20	23 000	—	10
20,0					
с заземленной нейтралью	38 500	20	—		
20,0					
с незаземленной нейтралью	40 000	20			
35,0					
с заземленной нейтралью	55 500	20	—		
35,0					
с незаземленной нейтралью	65 000	20	—		

Электрическая прочность изоляции контрольных жил одножильных кабелей марок СБ-1к, СБГ-1к, СБ-2к и СБГ-2к между жилой и свинцом проверяется приложением напряжения 3 000 в однофазного тока частотой 50 гц, а между контрольной и основной жилой — напряжением в 1 250 в в течение 20 мин.

Трехжильные кабели испытываются однофазным или трехфазным током.

Тангенс угла диэлектрических потерь проверяется у кабелей на напряжение 6 000 в и выше. Этому испытанию подвергаются 10% общего количества концов кабеля на 6 000 в и все кабели на 10 000, 20 000 и 35 000 в. Измерение тангенса угла диэлектрических потерь производится мостиком Шернига на строительных длинах.

Тангенс угла диэлектрических потерь при испытательном напряжении не должен превышать следующих значений:

для кабеля на номинальное напряжение 6 000 в	— 0,025
” ” ” ” ” ” 10 000 в	— 0,020
” ” ” ” ” ” 20 000 в	— 0,015
” ” ” ” ” ” 35 000 в	— 0,015

Приращение тангенса угла диэлектрических потерь при изменении напряжения от 0,3 номинального напряжения (но не ниже 4 000 в) до испытательного напряжения не должно превышать:

для кабеля на номинальное напряжение 6 000 в, с поясной изоляцией	— 0,01
” ” ” ” ” ” 6 000 в, одножильного	— 0,008
” ” ” ” ” ” 10 000 в, с поясной изоляцией	— 0,008
” ” ” ” ” ” 10 000 в, одножильного	— 0,005
” ” ” ” ” ” 20 000 и 35 000 в, с отдельно освинцованными жилами и одножильного	— 0,003

СХЕМА ИСПЫТАНИЙ КАБЕЛЕЙ НАПРЯЖЕНИЕМ

ОДНОЖИЛЬНЫЙ

1 против свинцовой оболочки.

ДВУХЖИЛЬНЫЙ

- а) 1 против 2 + свинцовая оболочка;
б) 2 против 1 + свинцовая оболочка.

ТРЕХЖИЛЬНЫЙ

- а) 1 против 2 + 3 + свинцовая оболочка;
б) 2 против 1 + 3 + свинцовая оболочка;
в) 3 против 2 + 1 + свинцовая оболочка.

ЧЕТЫРЕХЖИЛЬНЫЙ

- а) 1 + 4 против 2 + 3 + свинцовая оболочка;
б) 2 + 3 против 1 + 4 + свинцовая оболочка;
в) 1 + 2 против 3 + 4 + свинцовая оболочка;
г) 3 + 4 против 1 + 2 + свинцовая оболочка.

С ОТДЕЛЬНО ОСВИНЦОВАНН. ЖИЛАМИ

- а) 1 против свинцовой оболочки;
б) 2 против свинцовой оболочки;
в) 3 против свинцовой оболочки.

Кабели на напряжение 6 000, 10 000, 20 000 и 35 000 в подвергаются также испытаниям повышенным напряжением, после изгиба, а кабели напряжением 20 000 и 35 000 в — дополнительным испытаниям для определения влияния нагрева на свойства изоляции.

Испытанию повышенным напряжением после изгиба подвергаются: кабели напряжением 6 000 и 10 000 в — один барабан; напряжением 20 000 и 35 000 в — два барабана от каждого 100 выпущенных барабанов.

Испытанию на влияние нагрева на свойства кабеля подвергаются два барабана от каждого 100 выпущенных барабанов.

Для испытания повышенным напряжением после изгиба отрезают кусок кабеля длиной 5 м, который после освобождения от защитных покровов (кроме свинцовой оболочки) навертывают на цилиндр. Для двух-, трех- и четырехжильных кабелей берут цилиндр 15-кратного диаметра по отношению к диаметру кабеля по свинцовой оболочке, для отдельных жил кабелей марок ОСБ и ОСК и одножильных кабелей — цилиндр 25-кратного диаметра. После развертывания и выпрямления образца кабеля его снова навертывают на цилиндр, но в обратном направлении и вновь выпрямляют.

После трех циклов изгибания и распрямления кабель подвергают испытанию повышенным напряжением переменного тока частотой 50 гц согласно приведенной таблице.

РЕЖИМ ИСПЫТАНИЯ ПОВЫШЕННЫМ НАПРЯЖЕНИЕМ

Номинальное напряжение кабеля, в	Испытательное напряжение, кв		Время приложения напряжения, мин.
	нейтраль заземлена	нейтраль не заземлена	
6 000	30	30	15
10 000	50	50	15
20 000	60	75	120
35 000	100	115	120

Испытание влияния нагрева на свойства изоляции кабеля производится на отрезках освинцованных жил длиной 5 м.

Образец подвергают нагреванию, равномерному по всей толщине изоляции, до температуры + 50° в течение двух часов, затем охлаждают до температуры окружающей среды.

До нагрева и после охлаждения до окружающей температуры снимают ионизационную кривую кабеля (от 0,3 номинального напряжения до величины испытательного напряжения).

Значения тангенса угла диэлектрических потерь не должны превышать указанных выше пределов. Максимальное расхождение кривых (в зависимости от напряжения), снятых до нагрева и после охлаждения, не должно превышать 20%.

Все испытания кабелей, приведенные в настоящем разделе, должны производиться при температуре от + 10 до + 25°.

КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ И ОСНОВНЫЕ КОНСТРУКТИВНЫЕ ДАННЫЕ

В таблицах приведены необходимые данные токопроводящих жил, изоляции, свинцовой оболочки, дополнительных защитных покровов и конструкции отдельных марок кабелей.

ТОКОПРОВОДЯЩАЯ ЖИЛА

КОНСТРУКЦИЯ И ВЕС КРУГЛЫХ ТОКОПРОВОДЯЩИХ ЖИЛ: ДЛЯ ОДНОЖИЛЬНЫХ КАБЕЛЕЙ

Номинальное сечение, мм^2	Фактическое сечение, мм^2	Конструкция токопроводящей жилы		Диаметр жилы d , мм	Вес меди, $\text{кг}/\text{км}$
		Число проволок	Диаметр проволоки, мм		
1,5	1,47	1	1,37	1,37	12,9
2,5	2,43	1	1,76	1,76	21,6
4	3,9	1	2,23	2,23	34,5
6	5,85	1	2,73	2,73	51,7
10	9,73	1	3,52	3,52	36,2
16	15,55	1	4,45	4,45	138
25	24,25	1 + 6	2,10	6,3	218
35	33,95	1 + 6	2,49	7,5	305
50	48,5	1 + 6 + 12	1,81	9,1	436
70	67,9	1 + 6 + 12	2,14	10,7	611
95	92,15	1 + 6 + 12	2,49	12,5	829
120	116,4	1 + 6 + 12	2,80	14,0	1 047
150	145,5	1 + 6 + 12	3,13	15,7	1 308
185	179,5	1 + 6 + 12 + 18	2,49	17,4	1 614
240	232,8	1 + 6 + 12 + 18	2,83	19,8	2 094
300	291,0	1 + 6 + 12 + 18	3,17	22,2	2 617
400	388,0	1 + 6 + 12 + 18	3,66	25,6	3 489
500	485,6	1 + 6 + 12 + 18 + 24	3,18	28,6	4 362
625	606,0	1 + 6 + 12 + 18 + 24	3,56	32,0	5 452
800	776,0	1 + 6 + 12 + 18 + 24 + 30	3,30	36,3	6 978

Для кабелей марок ОСБ и ОСК вес меди для данного сечения следует умножать на 3,007.

**КОНСТРУКЦИЯ И ВЕС КРУГЛЫХ ОДНОПРОВОЛОЧНЫХ И СЕГМЕНТНЫХ УПЛОТНЕННЫХ ЖИЛ
ДЛЯ ДВУХЖИЛЬНЫХ КАБЕЛЕЙ**

Номинальное сечение, мм^2	Конструкция токопроводящей жилы		Высота уплотненной сегментной жилы h , мм	Вес меди, $\text{кг}/\text{км}$
	число проволок	диаметр проволоки, мм		
1,5	1	1,37	—	26,0
2,5	1	1,76	—	43,4
4	1	2,23	—	69,4
6	1	2,73	—	104
10	1	3,52	—	174
16	1	4,45	—	278
25	7 + 13	1,28	4,2	440
35	7 + 13	1,51	5,0	615
50	7 + 13	1,80	6,0	879
70	7 + 13	2,13	7,2	1 231
95	9 + 15	2,25	8,5	1 670
120	9 + 15	2,53	9,6	2 110
150	9 + 15 + 21	2,07	10,9	2 637

КОНСТРУКЦИЯ И ВЕС СЕКТОРНЫХ УПЛОТНЕННЫХ ЖИЛ ДЛЯ ТРЕХЖИЛЬНЫХ КАБЕЛЕЙ

Номинальное сечение, мм^2	Конструкция токопроводящей жилы		Высота уплотненной секторной жилы h , мм	Вес меди, $\text{кг}/\text{км}$
	число проволок	диаметр проволоки, мм		
1,5	1	1,36	—	39,1
2,5	1	1,76	—	65,1
4	1	2,23	—	104
6	1	2,73	—	156
10	1	3,52	—	260
16	1	4,45	—	417
25	6 + 12	1,34	4,9	659
35	6 + 12	1,59	5,8	923
50	6 + 12	1,9	7,0	1 319
70	6 + 12	2,25	8,3	1 846
95	6 + 12	2,62	9,8	2 505
120	9	2,62	—	—
	15	2,40	11,2	3 164
150	6 + 15 + 21	2,07	12,8	3 956
185	9 + 15 + 21	2,29	14,2	4 878
240	9 + 15 + 21	2,62	15,4	6 329

**КОНСТРУКЦИЯ И ВЕС СЕКТОРНЫХ УПЛОТНЕННЫХ И КРУГЛЫХ ТОКОПРОВОДЯЩИХ ЖИЛ
ДЛЯ ЧЕТЫРЕЖИЛЬНЫХ КАБЕЛЕЙ**

Номинальное сечение, мм^2		Конструкция токопроводящей жилы				Высота секторной жилы h , мм		Вес меди, $\text{кг}/\text{км}$	
основной жила	нулевой жила	основной		нулевой		основной	нулевой		
		число проволок	диаметр проволоки, мм	число проволок	диаметр проволоки, мм				
3 × 2,5	1 × 1,5	1	1,76	1	1,37	—	—	78,1	
3 × 4	1 × 2,5	1	2,23	1	1,76	—	—	126	
3 × 6	1 × 4	1	2,73	1	2,23	—	—	191	
3 × 10	1 × 6	1	3,52	1	2,73	—	—	312	
3 × 16	1 × 10	1	4,45	1	3,52	—	—	504	
3 × 25	1 × 16	6 + 12	1,34	1	4,45	5,3	—	798	
3 × 35	1 × 16	6 + 12	1,59	1	4,45	6,5	—	1 062	
3 × 50	1 × 25	6 + 12	1,9	6 + 12	1,34	7,7	6,4	1 539	
3 × 70	1 × 35	6 + 12	2,25	6 + 12	1,59	9,2	7,9	2 154	
3 × 95	1 × 47,5	9	2,32	6 + 12	1,85	11,0	8,5	2 923	
		15	2,14						
3 × 120	1 × 50	9	2,62	1 + 6 + 12	1,81	12,4	9,1	3 604	
		15	2,40						
3 × 150	1 × 70	9+15+21	2,07	6 + 12	2,25	13,7	10,3	4 571	
3 × 185	1 × 70	9+15+21	2,29	1 + 6 + 12	2,14	15,2	10,7	5 493	

Нулевая жила у кабелей 3 × 120 + 1 × 50 и 3 × 185 + 1 × 70 изготавливается круглой из неуплотненных проволок.

**КОНСТРУКЦИЯ И ВЕС ТОКОПРОВОДЯЩИХ ЖИЛ ОДНОЖИЛЬНЫХ КАБЕЛЕЙ
С ОДНОЙ И ДВУМЯ КОНТРОЛЬНЫМИ ЖИЛАМИ**

Номинальное сечение, мм ²	Конструкция основной жилы				Диаметр жилы d, мм		Вес меди, кг/км	
	с одной контрольной жилой		с двумя контрольными жилами		с одной кон- трольной жилой	с двумя кон- трольными жилами	с одной кон- трольной жилой	с двумя кон- трольными жилами
	число проволок	диаметр прово- локи, мм	число проволок	диаметр прово- локи, мм				
120	1 + 6 + 11	2,87	1 + 6 + 10	2,96	11,4	11,8	1 050	1 073
150	1 + 6 + 11	3,21	1 + 6 + 10	3,30	16,1	16,5	1 321	1 334
185	3 + 9 + 14	2,99	3 + 9 + 13	3,03	18,4	18,7	1 627	1 640
240	1 + 6 + 12 + 17	2,87	1 + 6 + 12 + 16	2,91	20,1	20,4	2 107	2 120
300	1 + 6 + 12 + 17	3,21	1 + 6 + 12 + 16	3,26	22,5	22,8	2 630	2 643
400	1 + 6 + 12 + 17	3,71	1 + 6 + 12 + 16	3,76	26,0	26,3	3 502	3 515
500	1 + 6 + 12 + 17	4,14	1 + 6 + 12 + 16	4,20	29,0	29,4	4 375	4 388
625	1 + 6 + 12 + 18 + 23	3,59	1 + 6 + 12 + 18 + 22	3,62	32,3	32,6	5 465	5 478
800	1 + 6 + 12 + 18 + 23	4,06	1 + 6 + 12 + 18 + 22	4,10	36,5	36,9	6 991	7 004

Контрольная жила скручивается из трех проволок диаметром 0,79 мм каждая и имеет диаметр 1,7 мм.

Одна контрольная жила на 1 000 м кабеля весит 13,2 кг, две контрольные жилы — 26,4 кг.

ИЗОЛЯЦИЯ

ТОЛЩИНА ИЗОЛЯЦИИ ОДНОЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ И КАБЕЛЕЙ МАРОК ОСБ и ОСК

Номинальное напряжение кабеля, в	Номинальное сечение жил, мм ²	Толщина изоляции, мм	
1 000	1,5—16	1,5	
	25—120		1,7
	150—185		2,0
	240—400		2,2
	500—800		2,5
3 000	4—185	2,2	
	240—400		2,5
	500—800		2,7
6 000	10—240	3,7	
	300—800		4,0
10 000	16—625	5,0	
20 000	с заземленной нейтралью		с незаземленной нейтралью
	25—95	6,0	8,0
	120—400	6,0	7,0
35 000	70—95	9,0	12,0
	120—300	9,0	10,0

ТОЛЩИНА ИЗОЛЯЦИИ МНОГОЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ

Номинальное напряжение кабеля, в	Номинальное сечение жил, мм ²	Толщина изоляции, мм	
		на жиле (фазовая)	поясная
1 000	1,5—16	0,75	0,50
	25—95	0,85	0,50
	120—150	0,95	0,50
	185—240	1,05	0,50
3 000	4—240	1,25	0,95
6 000	10—240	2,2	1,05
10 000	16—240	3,0	1,4

Зависимость толщины изоляции от номинального напряжения показана на рисунках.

РАДИАЛЬНАЯ ТОЛЩИНА ИЗОЛЯЦИИ ОДНОЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
И КАБЕЛЕЙ МАРОК ОСБ И ОСК

РАДИАЛЬНАЯ ТОЛЩИНА ИЗОЛЯЦИИ МНОГОЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
С ПОЯСНОЙ ИЗОЛЯЦИЕЙ

СВИНЦОВАЯ ОБОЛОЧКА

Толщина свинцовой оболочки, в зависимости от диаметра кабеля по паяной изоляции (под свинцом) и марки кабеля, показана в таблице.

Минимальная толщина не относится к местам свинцовой оболочки, соответствующим установкам пресса в процессе освинчивания кабелей.

ТОЛЩИНА СВИНЦОВОЙ ОБОЛОЧКИ

Диаметр кабеля по свинцовой оболочке, мм	Различные номинальные и минимальные толщины свинцовой оболочки для различных кабелей, мм							
	СЛ, СЛГ, СБ, СБУ, СН, СНГ, СБ-1к, СБ-1к, СБ-2к, СБ-2к		ОСБ		СК		ОСК	
	НОМЕР НАЧАЛЬНЫЙ	МИНИ- МАЛЬНАЯ	НОМЕР НАЧАЛЬНЫЙ	МИНИ- МАЛЬНАЯ	НОМЕР НАЧАЛЬНЫЙ	МИНИ- МАЛЬНАЯ	НОМЕР НАЧАЛЬНЫЙ	МИНИ- МАЛЬНАЯ
До 100	—	—	—	—	—	—	—	—
100-125	0,5	0,9	—	—	1,4	1,7	—	—
125-150	0,5	0,9	—	—	1,5	1,9	—	—
150-175	1,15	1,9	1,4	1,7	1,6	1,1	1,7	1,5
175-200	1,25	2,0	1,7	1,9	1,7	1,6	1,8	1,6
200-225	1,4	2,2	1,6	1,9	1,8	1,7	1,95	1,7
225-250	1,4	2,2	1,6	1,9	1,97	1,7	2,05	1,8
250-275	1,5	2,3	1,7	2,0	2,0	1,8	2,15	1,9
275-300	1,6	2,4	1,8	2,1	2,15	1,9	2,3	2,0
300-325	1,6	2,4	1,95	2,2	2,3	2,0	2,3	2,0
325-350	1,7	2,5	—	—	2,3	2,0	—	—
350-375	1,7	2,5	—	—	2,4	2,1	—	—
375-400	1,8	2,6	—	—	2,5	2,1	—	—
400-425	1,8	2,6	—	—	2,6	2,3	—	—
425-450	1,9	2,7	—	—	2,7	2,4	—	—
450-475	1,9	2,7	—	—	2,8	2,5	—	—

ДОПОЛНИТЕЛЬНЫЕ ЗАЩИТНЫЕ ПОКРОВЫ

Толщина наружных защитных покровов, в зависимости от диаметра кабеля поверх свинцовой оболочки и марки кабеля, приведена в таблице.

ТОЛЩИНА ЗАЩИТНЫХ ПОКРОВОВ

Диаметр кабеля до свинцовой оболочки или по скрутке гиб- ки кабелей широк- ой ОСК и ОСК мм	Номинальная толщина защитных покровов, мм								
	СА	СЛ, СЛГ, СБ-1к, СБ-2к, СН, СНГ, СБ-1к, СБ-2к, ОСБ				СК, ОСК			
		Наруж- ный покров	По штукам	Броня из лист- овых брони	Броня из оцинко- ванных проводок	Наруж- ный покров	По- штукам	Броня из круглых оцинкованных проводок	Нар- уж- ный покров
До 1	—	—	—	—	—	—	—	—	—
0,1-1	1,5	1,5	2 + 0,3	—	1,4-1,8	1,5	2,5	—	1,5
1-2	1,5	1,5	2 + 0,5	—	—	2,0	2,5	4	2,0
2-3	2,0	2,0	2 + 0,5	—	—	2,0	2,5	4	2,0
3-4	2,0	2,0	2 + 0,5	—	—	2,0	2,5	6	2,0
4-5	2,0	2,0	2 + 0,8	—	—	2,0	2,5	6	2,0
5-6	2,0	2,0	2 + 0,8	—	—	2,0	2,5	6	2,0
6-100	2,0	2,0	2 + 0,8	—	—	2,0	—	—	—

СВИНЦОВАЯ ОБОЛОЧКА

Толщина свинцовой оболочки, в зависимости от диаметра кабеля по поясной изоляции (под свинцом) и марки кабеля, показана в таблице.

Минимальная толщина не относится к местам свинцовой оболочки, соответствующим остановкам пресса в процессе освинцовывания кабелей.

ТОЛЩИНА СВИНЦОВОЙ ОБОЛОЧКИ

Диаметр сило- вого кабеля под свинцовой оболочкой, <i>мм</i>	Расчетная (номинальная) и минимальная толщина свинцовой оболочки для силовых кабелей, <i>мм</i>							
	СГ, СА, СБ, СБГ, СП, СПГ, СБ-1к, СБГ-1к, СБ-2к, СБГ-2к		ОСБ		СК		ОСК	
	номи- нальная	мини- мальная	номи- нальная	мини- мальная	номи- нальная	мини- мальная	номи- нальная	мини- мальная
До 13 включит.	1,05	0,9	—	—	1,4	1,2	—	—
" 16 "	1,05	0,9	—	—	1,5	1,3	—	—
" 20 "	1,15	1,0	1,4	1,2	1,6	1,4	1,7	1,5
" 23 "	1,25	1,1	1,5	1,3	1,7	1,5	1,8	1,6
" 26 "	1,4	1,2	1,6	1,4	1,8	1,6	1,95	1,7
" 30 "	1,4	1,2	1,6	1,4	1,95	1,7	2,05	1,8
" 33 "	1,5	1,3	1,7	1,5	2,05	1,8	2,15	1,9
" 36 "	1,6	1,4	1,8	1,6	2,15	1,9	2,3	2,0
" 40 "	1,6	1,4	1,95	1,7	2,3	2,0	2,3	2,0
" 43 "	1,7	1,5	—	—	2,3	2,0	—	—
" 46 "	1,7	1,5	—	—	2,4	2,1	—	—
" 50 "	1,8	1,6	—	—	2,5	2,2	—	—
" 53 "	1,8	1,6	—	—	2,6	2,3	—	—
" 56 "	1,95	1,7	—	—	2,7	2,4	—	—
" 60 "	1,95	1,7	—	—	2,8	2,5	—	—

ДОПОЛНИТЕЛЬНЫЕ ЗАЩИТНЫЕ ПОКРОВЫ

Толщина наружных защитных покровов, в зависимости от диаметра кабеля поверх свинцовой оболочки и марки кабеля, приведена в таблице.

ТОЛЩИНА ЗАЩИТНЫХ ПОКРОВОВ

Диаметр кабеля по свинцовой оболочке или по скрутке для кабелей марок ОСБ и ОСК, <i>мм</i>	Номинальная толщина защитных покровов, <i>мм</i>								
	СА	СБ, СБГ, СБ-1к, СБ-2к, СП, СПГ, СБГ-1к, СБГ-2к, ОСБ					СК, ОСК		
		Наруж- ный покров	По- душка	Броня из двух стальных лент	Броня из оцинко- ванных проволок плоских	Броня из оцинко- ванных проволок круглых	Наруж- ный покров	По- душка	Броня из круглых оцинкованных проводок
До 13	1,5	1,5	2×0,3	—	1,4	1,5	—	—	—
От 13,1 " 23	1,5	1,5	2×0,5	1,5	1,4—1,8	1,5	2,5	4	1,5
" 23,1 " 37	2,0	2,0	2×0,5	1,5	—	2,0	2,5	4	2,0
" 37,1 " 50	2,0	2,0	2×0,5	1,7	—	2,0	2,5	4	2,0
" 50,1 " 58	2,5	2,5	2×0,8	1,7	—	2,0	2,5	6	2,0
" 58,1 " 75	2,5	2,5	2×0,8	—	—	2,0	2,5	6	2,0
" 75,1 " 100	2,5	2,5	2×0,8	—	—	2,0	—	—	—

**КАБЕЛЬ СИЛОВОЙ С БУМАЖНОЙ ПРОПИТАННОЙ ИЗОЛЯЦИЕЙ
В СВИНЦОВОЙ ОБОЛОЧКЕ, ГОЛЫЙ**

Марка СГ

ГОСТ 340—41

- Конструкция:
1. Токопроводящая жила из медных проволок.
 2. Изоляция из пропитанной кабельной бумаги.
 3. Скрутка жил с заполнением для двухжильных, трехжильных и четырехжильных кабелей.
 4. Поясная изоляция из пропитанной кабельной бумаги.
 5. Свинцовая оболочка.

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ОДНОЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРКИ СГ НА НАПРЯЖЕНИЕ 1 000 — 10 000 в**

Номинальное сечение жилы, мм ²	Номинальное напряжение, в							
	1 000	3 000	6 000	10 000	1 000	3 000	6 000	10 000
	Расчетный наружный диаметр, мм				Расчетный вес кабеля, кг/км			
1,5	6,5	—	—	—	250	—	—	—
2,5	6,9	—	—	—	278	—	—	—
4	7,3	8,7	—	—	310	386	—	—
6	7,8	9,2	—	—	350	428	—	—
10	8,6	10,0	13,0	—	422	503	693	—
16	9,6	11,0	14,0	16,6	522	606	803	993
25	11,8	12,8	15,8	18,6	716	782	992	1 264
35	13,0	14,0	17,0	19,8	863	931	1 152	1 435
50	14,6	15,6	18,8	21,4	1 076	1 148	1 451	1 681
70	16,2	17,2	20,4	23,2	1 331	1 408	1 728	2 056
95	18,0	19,2	22,2	25,0	1 642	1 794	2 064	2 410
120	19,7	20,7	23,9	26,8	2 011	2 099	2 470	2 892
150	22,0	22,6	25,9	28,5	2 423	2 544	2 995	3 293
185	23,9	24,3	27,6	30,2	2 916	2 957	3 429	3 738
240	27,0	27,6	30,0	32,6	3 740	3 808	4 094	4 417
300	29,4	30,0	33,2	35,2	4 430	4 503	5 003	5 274
400	32,8	33,6	36,8	38,8	5 541	5 744	6 296	6 591
500	36,8	37,2	39,8	41,8	6 984	7 043	7 424	7 741
625	49,2	40,6	43,2	45,4	8 350	8 411	8 823	9 321
800	44,7	45,1	47,7	—	10 399	10 466	10 916	—

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ОДНОЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРКИ СГ НА НАПРЯЖЕНИЕ 20 000 И 35 000 в**

Номинальное сечение жилы, мм ²	Номинальное напряжение, в								
	20 000		35 000		20 000		35 000		
	Нейтраль заземлена	Нейтраль не заземлена	Нейтраль заземлена	Нейтраль не заземлена	Нейтраль заземлена	Нейтраль не заземлена	Нейтраль заземлена	Нейтраль не заземлена	
Расчетный наружный диаметр, мм								Расчетный вес кабеля, кг/км	
25	20,9	25,1	—	—	1 465	1 941	—	—	
35	22,1	26,6	—	—	1 644	2 287	—	—	
50	23,9	28,2	—	—	1 988	2 572	—	—	
70	25,5	29,8	31,8	38,2	2 292	2 900	3 148	4 237	
95	27,6	31,6	33,8	40,0	2 812	3 294	3 677	4 679	
120	29,1	31,1	35,3	37,5	3 160	3 404	4 053	4 476	
150	30,8	32,8	37,2	39,2	3 572	3 823	4 636	4 934	
185	32,5	34,7	38,9	40,9	4 026	4 417	5 131	5 436	
240	35,1	37,3	41,3	43,5	4 850	5 271	5 878	6 360	
300	37,7	39,7	43,9	45,9	5 740	6 040	6 836	7 174	
400	41,1	43,1	—	—	6 941	7 262	—	—	

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ДВУХЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРКИ СГ НА НАПРЯЖЕНИЕ 1 000 — 6 000 в**

Номинальное сечение жилы, мм ²	Номинальное напряжение, в					
	1 000		3 000		6 000	
	Расчетный наружный диаметр, мм					
Расчетный вес кабеля, кг/км						
1,5	8,9	—	—	—	384	—
2,5	9,6	—	—	—	439	—
4	10,6	13,5	—	—	515	701
6	11,6	14,5	—	—	611	793
10	13,1	16,0	20,2	—	758	953
16	15,0	17,9	22,1	—	966	1 167
25	14,9	17,4	21,6	—	1 100	1 283
35	16,5	19,2	23,4	—	1 357	1 621
50	18,7	21,2	25,4	—	1 798	2 008
70	21,1	23,8	28,1	—	2 285	2 597
95	23,9	26,7	30,7	—	2 962	3 363
120	26,8	28,9	—	—	3 730	—
150	29,4	—	—	—	4 440	—

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ТРЕХЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРКИ СГ НА НАПРЯЖЕНИЕ 1 000 — 10 000 в**

Номинальное сечение жилы, $мм^2$	Номинальное напряжение, в							
	1 000	3 000	6 000	10 000	1 000	3 000	6 000	10 000
	Расчетный наружный диаметр, мм				Расчетный вес кабеля, кг/км			
1,5	9,3	—	—	—	418	—	—	—
2,5	10,1	—	—	—	489	—	—	—
4	11,1	14,2	—	—	579	780	—	—
6	12,2	15,3	—	—	692	896	—	—
10	13,9	17,0	21,5	26,1	884	1 098	1 502	2 131
16	15,9	19,2	23,7	28,1	1 163	1 464	1 909	2 478
25	17,3	20,0	24,2	28,6	1 454	1 730	2 189	2 773
35	19,4	21,9	26,4	30,5	1 890	2 114	2 747	3 213
50	22,0	24,6	28,9	33,2	2 440	2 770	3 351	3 983
70	25,0	27,7	31,7	36,0	3 223	3 638	4 115	4 778
95	28,5	30,9	35,1	39,3	4 251	4 544	5 176	5 888
120	32,0	34,1	38,2	42,3	5 185	5 563	6 253	6 865
150	35,6	37,7	41,6	45,9	6 383	6 797	7 384	8 188
185	39,2	40,7	44,7	48,8	7 739	7 975	8 748	9 426
240	44,2	45,6	49,4	53,7	9 776	10 025	10 720	11 642

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ЧЕТЫРЕХЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРКИ СГ НА НАПРЯЖЕНИЕ 1 000 в**

Номинальное сечение жилы, $мм^2$	Номинальное напряжение, 1 000 в		
	Расчетный наружный диаметр, мм	Расчетный вес кабеля, кг/км	
3 × 2,5 + 1 × 1,5	10,8		537
3 × 4 + 1 × 2,5	11,9		641
3 × 6 + 1 × 4	13,1		779
3 × 10 + 1 × 6	14,9		994
3 × 16 + 1 × 10	17,1		1 312
3 × 25 + 1 × 16	19,1		1 756
3 × 35 + 1 × 16	21,3		2 168
3 × 50 + 1 × 25	24,2		2 935
3 × 70 + 1 × 35	27,8		3 892
3 × 95 + 1 × 47,5	31,7		4 945
3 × 120 + 1 × 50	35,5		6 065
3 × 150 + 1 × 70	38,5		7 400
3 × 185 + 1 × 70	42,3		8 679

**КАБЕЛЬ СИЛОВОЙ С БУМАЖНОЙ ПРОПИТАННОЙ ИЗОЛЯЦИЕЙ
В СВИНЦОВОЙ ОБОЛОЧКЕ, АСФАЛЬТИРОВАННЫЙ**

Марка СА

ГОСТ 340—41

- Конструкция:**
1. Токопроводящая жила из медных проволок.
 2. Изоляция из пропитанной кабельной бумаги.
 3. Скрутка жил с заполнением для двухжильных, трехжильных и четырехжильных кабелей.
 4. Поясная изоляция из пропитанной кабельной бумаги.
 5. Свинцовая оболочка.
 6. Защитный покров из трех лент пропитанной кабельной бумаги и одного слоя пропитанной кабельной пряжи.

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ОДНОЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРКИ СА НА НАПРЯЖЕНИЕ 1 000—10 000 в**

Номинальное сечение жилы, мм ²	Номинальное напряжение, в							
	1 000	3 000	6 000	10 000	1 000	3 000	6 000	10 000
	Расчетный наружный диаметр, мм				Расчетный вес кабеля, кг/км			
1,5	10,3	--	--	--	357	--	--	--
2,5	10,7	--	--	--	390	--	--	--
4	11,1	12,5	--	--	427	521	--	--
6	11,6	13,0	--	--	473	569	--	--
10	12,4	13,8	16,8	20,4	556	654	882	--
16	13,4	14,8	17,8	22,4	668	770	1 005	1 228
25	15,6	16,6	19,6	23,6	890	969	1 217	1 524
35	16,8	17,8	20,8	23,6	1 052	1 133	1 392	1 711
50	18,4	19,4	22,6	25,2	1 286	1 371	1 714	1 977
70	20,0	21,0	24,2	28,0	1 561	1 651	2 011	2 454
95	21,8	23,0	26,0	29,8	1 895	2 062	2 370	2 838
120	23,5	24,5	28,7	31,6	2 286	2 386	2 879	3 347
150	25,8	26,4	30,7	33,3	2 726	2 855	3 435	3 774
185	28,7	29,1	32,4	35,0	3 325	3 374	3 895	4 246
240	31,8	32,4	34,8	37,4	4 198	4 274	4 598	4 963
300	34,2	34,8	38,0	40,0	4 923	5 007	5 557	5 859
400	37,6	38,1	41,6	43,6	6 088	6 305	6 906	7 232
500	41,6	42,0	44,6	46,6	7 595	7 658	8 080	8 428
625	45,0	45,4	48,0	50,2	9 014	9 079	9 533	10 065
800	49,5	49,9	52,5	--	11 131	11 206	11 695	--

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ОДНОЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРКИ СА НА НАПРЯЖЕНИЕ 20 000 — 35 000 в**

Номинальное сечение жилы, $мм^2$	Номинальное напряжение, в								
	20 000		35 000		20 000		35 000		
	Нейтраль заземлена	Нейтраль не заземлена	Нейтраль заземлена	Нейтраль не заземлена	Нейтраль заземлена	Нейтраль не заземлена	Нейтраль заземлена	Нейтраль не заземлена	
Расчетный наружный диаметр, мм								Расчетный вес кабеля, кг/км	
25	24,7	29,9	—	—	1 755	2 369	—	—	
35	25,9	31,4	—	—	1 949	2 738	—	—	
50	28,7	33,0	—	—	2 397	3 050	—	—	
70	30,3	34,6	33,6	43,0	2 727	3 401	3 677	4 867	
95	32,4	36,4	38,6	44,8	3 278	3 822	4 239	5 340	
120	33,9	35,9	40,1	42,3	3 649	3 925	4 641	5 098	
150	35,6	37,6	42,0	44,0	4 088	4 370	5 251	5 580	
185	37,3	39,5	43,7	45,7	4 568	4 994	5 772	6 109	
240	39,9	42,1	46,1	48,3	5 446	5 889	6 557	7 074	
300	42,5	44,5	48,7	50,7	6 363	6 696	7 557	7 926	
400	45,9	47,9	—	—	7 620	7 968	—	—	

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ДВУХЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРКИ СА НА НАПРЯЖЕНИЕ 1 000 — 6 000 в**

Номинальное сечение жилы, $мм^2$	Номинальное напряжение, в					
	1 000	3 000	6 000	1 000	3 000	6 000
	Расчетный наружный диаметр, мм	—	—	—	Расчетный вес кабеля, кг/км	—
1,5	12,7	—	—	521	—	—
2,5	13,4	—	—	585	—	—
4	14,4	17,3	—	674	897	—
6	15,4	18,3	—	783	1 001	—
10	16,9	19,8	24,0	949	1 181	1 592
16	18,8	21,7	25,9	1 181	1 418	1 876
25	18,7	21,2	25,4	1 314	1 528	1 968
35	20,3	23,0	28,2	1 591	1 889	2 444
50	22,5	25,0	30,2	2 060	2 301	2 887
70	24,9	28,6	32,9	2 577	3 006	3 620
95	28,7	31,5	35,5	3 370	3 814	4 323
120	31,6	33,7	—	4 185	4 449	—
150	34,2	—	—	4 933	—	—

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ТРЕХЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРКИ СА НА НАПРЯЖЕНИЕ 1 000 -- 10 000 в**

Номинальное сечение жилы, мм^2	Номинальное напряжение, в							
	1 000	3 000	6 000	10 000	1 000	3 000	6 000	10 000
	Расчетный наружный диаметр, мм				Расчетный вес кабеля, кг/км			
1,5	13,1	—	—	—	560	—	—	—
2,5	13,9	—	—	—	642	—	—	—
4	14,9	18,0	—	—	744	985	—	—
6	16,0	19,1	—	—	871	1 114	—	—
10	17,7	20,8	25,3	30,9	1 085	1 338	1 873	2 574
16	19,7	23,0	28,5	32,5	1 389	1 732	2 314	2 952
25	21,1	23,8	29,0	33,4	1 698	2 008	2 602	3 254
35	23,2	25,7	31,2	35,3	2 161	2 417	3 195	3 725
50	25,8	29,1	33,7	38,0	2 743	3 190	3 837	4 537
70	29,8	32,5	36,5	40,8	3 651	4 108	4 646	5 375
95	33,3	35,7	39,9	44,1	4 732	5 063	5 760	6 535
120	36,8	38,9	43,0	47,1	5 720	6 132	6 883	7 559
150	40,4	42,5	46,4	50,7	6 975	7 420	8 068	8 940
185	44,0	45,5	49,5	53,6	8 385	8 646	9 480	10 224
240	49,0	50,4	54,2	59,6	10 501	10 772	11 525	12 687

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ЧЕТЫРЕХЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРКИ СА НА НАПРЯЖЕНИЕ 1 000 в**

Номинальное сечение жилы, мм^2	Номинальное напряжение 1 000 в	
	Расчетный наружный диаметр, мм	Расчетный вес кабеля, кг/км
3 × 2,5 + 1 × 1,5	14,6	688
3 × 4 + 1 × 2,5	15,7	827
3 × 6 + 1 × 4	16,9	970
3 × 10 + 1 × 6	18,7	1 208
3 × 16 + 1 × 10	20,9	1 553
3 × 25 + 1 × 16	22,9	2 022
3 × 35 + 1 × 16	25,1	2 463
3 × 50 + 1 × 25	29,0	3 268
3 × 70 + 1 × 35	32,6	4 270
3 × 95 + 1 × 47,5	36,5	5 373
3 × 120 + 1 × 50	40,3	6 542
3 × 150 + 1 × 70	43,3	7 914
3 × 185 + 1 × 70	47,1	9 242

**КАБЕЛЬ СИЛОВОЙ С БУМАЖНОЙ ПРОПИТАННОЙ ИЗОЛЯЦИЕЙ В СВИНЦОВОЙ
ОБОЛОЧКЕ, БРОНИРОВАННЫЙ ДВУМЯ СТАЛЬНЫМИ ЛЕНТАМИ,
С НАРУЖНЫМ ПОКРОВОМ ИЗ КАБЕЛЬНОЙ ПРЯЖИ**

Марка СБ

ГОСТ 340—41

- Конструкция:
1. Токопроводящая жила из медных проволок.
 2. Изоляция из пропитанной кабельной бумаги.
 3. Скрутка жил с заполнением для двухжильных, трехжильных и четырехжильных кабелей.
 4. Поясная изоляция из пропитанной кабельной бумаги.
 5. Свинцовая оболочка.
 6. Подушка из пропитанной кабельной бумаги или кабельной пряжи.
 7. Броня из двух стальных лент.
 8. Покровная оболочка из пропитанной кабельной пряжи.

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ОДНОЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРКИ СБ НА НАПРЯЖЕНИЕ 1 000—10 000 в**

Номинальное сечение жилы, мм ²	Номинальное напряжение, в							
	1 000	3 000	6 000	10 000	1 000	3 000	6 000	10 000
	Расчетный наружный диаметр, мм				Расчетный вес кабеля, кг/км			
4	15,5	16,9	—	—	639	753	—	—
6	16,0	17,4	—	—	691	808	—	—
10	16,8	18,2	21,2	23,0	785	905	1 177	—
16	17,8	19,2	23,0	25,6	914	1 035	1 451	1 729
25	20,0	21,0	24,8	27,6	1 167	1 261	1 701	2 067
35	21,2	23,0	26,0	28,8	1 347	1 579	1 902	2 280
50	23,6	24,6	27,8	30,4	1 745	1 849	2 261	2 579
70	25,2	26,2	29,4	33,2	2 053	2 164	2 591	3 108
95	27,0	28,2	31,2	35,0	2 424	2 618	2 990	3 531
120	28,7	29,7	33,9	36,8	2 752	2 973	3 548	4 077
150	31,0	31,6	35,9	38,5	3 341	3 483	4 147	4 541
185	33,9	34,3	37,6	40,2	3 994	4 051	4 643	5 048
240	37,0	37,6	40,0	42,6	4 932	5 022	5 397	5 816
300	39,4	40,0	43,2	45,2	5 711	5 805	6 422	6 766
400	42,8	43,6	46,8	48,8	6 938	7 178	7 848	8 216
500	46,8	47,2	49,8	51,8	8 536	8 611	9 085	9 476
625	50,2	50,6	53,2	55,4	10 026	10 102	10 609	11 188
800	54,7	55,1	57,7	—	12 239	12 322	12 866	—

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ДВУЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРКИ СБ НА НАПРЯЖЕНИЕ 1000—6 000 в**

Номинальное сечение жилы, мм ²	Номинальное напряжение, в					
	1 000	3 000	6 000	1 000	3 000	6 000
	Расчетный наружный диаметр, мм			Расчетный вес кабеля, кг/км		
1,5	17,1	—	—	756	—	—
2,5	17,8	—	—	831	—	—
4,0	18,8	22,5	—	934	1 332	—
6	19,8	23,5	—	1 056	1 459	—
10	22,1	25,0	29,2	1 385	1 669	2 169
16	24,0	26,9	31,1	1 618	1 947	2 493
25	23,9	26,4	30,6	1 779	2 046	2 575
35	25,5	28,2	33,4	2 090	2 448	3 104
50	27,7	30,2	35,4	2 605	2 900	3 588
70	30,1	33,8	38,1	3 173	3 577	4 378
95	33,9	36,7	40,7	4 040	4 442	5 136
120	36,8	38,9	—	4 915	5 114	—
150	39,4	—	—	5 721	—	—

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ТРЕЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРКИ СБ НА НАПРЯЖЕНИЕ 1000—10 000 в**

Номинальное сечение жилы, мм ²	Номинальное напряжение, в							
	1 000	3 000	6 000	10 000	1 000	3 000	6 000	10 000
	Расчетный наружный диаметр, мм				Расчетный вес кабеля, кг/км			
1,5	17,5	—	—	—	801	—	—	—
2,5	18,3	—	—	—	894	—	—	—
4	19,3	23,2	—	—	1 011	1 435	—	—
6	20,4	24,3	—	—	1 154	1 588	—	—
10	22,9	26,0	30,5	36,1	1 529	1 848	2 403	3 290
16	24,9	28,2	33,7	38,1	1 875	2 288	2 977	3 709
25	26,3	29,0	34,2	38,6	2 214	2 581	3 277	4 023
35	28,4	30,9	36,4	40,6	2 720	3 029	3 917	4 536
50	31,0	34,6	38,9	43,2	3 358	3 874	4 614	5 402
70	35,0	37,7	41,7	46,0	4 344	4 857	5 479	6 301
95	38,5	40,9	45,1	49,3	5 499	5 880	6 683	7 530
120	42,0	44,1	48,2	52,3	6 560	7 016	7 858	8 618
150	45,6	47,7	51,6	55,9	7 891	8 383	9 111	10 072
185	49,2	50,7	54,7	58,8	9 380	9 670	10 588	11 418
240	54,2	55,6	59,4	64,9	11 598	11 898	11 733	14 559

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ЧЕТЫРЕХЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРКИ СБ НА НАПРЯЖЕНИЕ 1 000 в**

Номинальное сечение жил, мм ²	Номинальное напряжение 1 000 в	
	Расчетный наружный диаметр, мм	Расчетный вес кабеля, кг/км
3 × 2,5 + 1 × 1,5	19,0	960
3 × 4 + 1 × 2,5	20,1	1 095
3 × 6 + 1 × 4	22,1	1 397
3 × 10 + 1 × 6	23,9	1 673
3 × 16 + 1 × 10	26,1	2 065
3 × 25 + 1 × 16	28,1	2 576
3 × 35 + 1 × 16	30,3	3 062
3 × 50 + 1 × 25	34,2	4 023
3 × 70 + 1 × 35	37,8	5 114
3 × 95 + 1 × 47,5	41,7	6 309
3 × 120 + 1 × 50	45,5	7 570
3 × 150 + 1 × 70	48,5	9 015
3 × 185 + 1 × 70	52,3	10 532

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ОДНОЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРОК СБ-1к и СБ-2к НА НАПРЯЖЕНИЕ 1 000 в**

Номинальное сечение жилы, мм ²	СБ-1к		СБ-2к	
	Номинальное напряжение 1 000 в			
	Расчетный наруж- ный диаметр, мм	Расчетный вес кабеля, кг/км	Расчетный наруж- ный диаметр, мм	Расчетный вес кабеля, кг/км
120	29,1	2 924	29,5	2 967
150	31,6	3 492	32,0	3 557
185	34,9	4 125	35,2	4 180
240	37,3	4 986	37,6	5 039
300	39,7	5 767	40,0	5 824
400	43,4	7 050	43,7	7 210
500	47,2	8 616	47,6	8 693
625	50,5	10 087	50,8	10 152
800	54,9	12 402	55,3	12 380

**КАБЕЛЬ СИЛОВОЙ С БУМАЖНОЙ ПРОПИТАННОЙ ИЗОЛЯЦИЕЙ В СВИНЦОВОЙ
ОБОЛОЧКЕ, БРОНИРОВАННЫЙ ДВУМЯ СТАЛЬНЫМИ ЛЕНТАМИ,
БЕЗ НАРУЖНОГО ПОКРОВА**

Марка СБГ

ГОСТ 340—41

- Конструкция:
1. Токопроводящая жила из медных проволок.
 2. Изоляция из пропитанной кабельной бумаги.
 3. Скрутка жил с заполнением для двухжильных, трехжильных и четырехжильных кабелей.
 4. Поясная изоляция из пропитанной кабельной бумаги.
 5. Свинцовая оболочка.
 6. Подушка из пропитанной кабельной бумаги или кабельной пряжи.
 7. Броня из двух стальных лент.

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ОДНОЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРКИ СБГ НА НАПРЯЖЕНИЕ 1000—10 000 в**

Номинальное сечение жилы, мм ²	Номинальное напряжение, в							
	1 000	3 000	6 000	10 000	1 000	3 000	6 000	10 000
	Расчетный наружный диаметр, мм				Расчетный вес кабеля, кг/км			
4	13,5	14,9	—	—	532	637	—	—
6	14,0	15,4	—	—	581	688	—	—
10	14,8	16,2	19,2	—	670	779	1 030	—
16	15,8	17,2	21,0	23,6	791	903	1 291	1 550
25	18,0	19,0	22,8	25,6	1 029	1 115	1 527	1 875
35	19,2	21,0	24,0	26,8	1 200	1 419	1 720	2 078
50	21,6	22,6	25,8	28,4	1 580	1 678	2 068	2 367
70	23,2	24,2	27,4	30,2	1 878	1 982	2 387	2 790
95	25,0	26,2	29,2	32,0	2 237	2 421	2 772	3 193
120	26,7	27,7	30,9	33,8	2 652	2 767	3 223	3 724
150	29,0	29,6	32,9	35,5	3 125	3 263	3 803	4 170
185	30,9	31,3	34,6	37,2	3 669	3 721	4 281	4 661
240	34,0	34,6	37,0	39,6	4 576	4 660	5 011	5 404
300	36,4	37,0	40,2	42,2	5 331	5 420	6 006	6 331
400	39,8	40,6	43,8	45,8	6 533	6 757	7 396	7 744
500	43,8	44,2	46,8	48,8	8 084	8 154	8 603	8 976
625	47,2	47,6	50,2	52,4	9 541	9 613	10 094	10 651
800	51,7	52,1	54,7	—	11 700	11 787	12 307	—

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ДВУХЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ МАРКИ СБГ НА
НАПРЯЖЕНИЕ 1 000 — 6 000 в**

Номинальное сечение жилы, мм^2	Номинальное напряжение, в					
	1 000	3 000	6 000	1 000	3 000	6 000
	Расчетный наружный диаметр, мм			Расчетный вес кабеля, кг/км		
1,5	15,1	—	—	639	—	—
2,5	15,8	—	—	708	—	—
4	16,8	20,5	—	804	1 176	—
6	17,8	21,5	—	920	1 294	—
10	20,1	23,0	27,2	1 231	1 495	1 966
16	22,0	24,9	29,1	1 481	1 760	2 277
25	21,9	24,4	28,6	1 612	1 863	2 362
35	23,5	26,2	30,4	1 913	2 251	2 783
50	25,7	28,2	32,4	2 412	2 690	3 249
70	28,1	30,8	35,1	2 963	3 347	4 012
95	30,9	33,7	37,7	3 715	4 191	4 743
120	33,8	35,9	—	4 562	4 850	—
150	36,4	—	—	5 341	—	—

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ТРЕХЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ МАРКИ СБГ НА
НАПРЯЖЕНИЕ 1 000 — 10 000 в**

Номинальное сечение жилы, мм^2	Номинальное напряжение, в							
	1 000	3 000	6 000	10 000	1 000	3 000	6 000	10 000
	Расчетный наружный диаметр, мм				Расчетный вес кабеля, кг/км			
1,5	15,5	—	—	—	680	—	—	—
2,5	16,3	—	—	—	767	—	—	—
4	17,3	21,2	—	—	878	1 273	—	—
6	18,4	22,3	—	—	1 013	1 418	—	—
10	20,9	24,0	28,5	33,1	1 369	1 666	2 191	2 943
16	22,9	26,2	30,7	35,1	1 702	2 091	2 657	3 346
25	24,3	27,0	31,2	35,6	2 030	2 379	2 950	3 652
35	26,4	28,9	33,4	37,5	2 522	2 813	3 567	4 144
50	29,0	31,6	35,9	40,2	3 142	3 542	4 238	4 986
70	32,0	34,7	38,7	43,0	4 006	4 494	5 077	5 856
95	35,5	37,9	42,1	46,3	5 128	5 485	6 247	7 055
120	39,0	41,1	45,2	49,3	6 156	6 590	7 390	8 112
150	42,6	44,7	48,6	52,9	7 450	7 921	8 611	9 531
185	46,6	47,7	51,7	55,8	8 904	9 179	10 059	10 848
240	51,2	52,6	56,4	61,9	11 073	11 359	12 157	13 936

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ЧЕТЫРЕХЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРКИ СБГ НА НАПРЯЖЕНИЕ 1000 в**

Номинальное сечение жилы, мм ²	Номинальное напряжение 1000 в	
	Расчетный наружный диаметр, мм	Расчетный вес кабеля, кг/км
3 × 2,5 + 1 × 1,5	17,0	831
3 × 4 + 1 × 2,5	18,1	956
3 × 6 + 1 × 4	20,1	1 243
3 × 10 + 1 × 6	21,9	1 506
3 × 16 + 1 × 10	24,1	1 883
3 × 25 + 1 × 16	26,1	2 380
3 × 35 + 1 × 16	28,3	2 851
3 × 50 + 1 × 25	31,2	3 696
3 × 70 + 1 × 35	34,8	4 750
3 × 95 + 1 × 47,5	38,7	5 907
3 × 120 + 1 × 50	42,5	7 130
3 × 150 + 1 × 70	45,5	8 545
3 × 185 + 1 × 70	49,3	9 926

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ОДНОЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРОК СБГ-1к И СБГ-2к НА НАПРЯЖЕНИЕ 1000 в**

Номинальное сечение жилы, мм ²	СБГ-1к		СБГ-2к	
	Номинальное напряжение 1000 в			
	Расчетный наруж- ный диаметр, мм	Расчетный вес кабеля, кг/км	Расчетный наруж- ный диаметр, мм	Расчетный вес кабеля, кг/км
120	27,1	2 720	27,5	2 761
150	29,6	3 272	30,0	3 334
185	31,9	3 791	32,2	3 842
240	34,3	4 627	34,6	4 679
300	36,7	5 384	37,0	5 439
400	40,4	6 631	40,7	6 789
500	44,2	8 159	44,6	8 233
625	47,5	9 600	47,8	9 661
800	51,9	11 871	52,3	11 843

**КАБЕЛЬ СИЛОВОЙ С БУМАЖНОЙ ПРОПИТАННОЙ ИЗОЛЯЦИЕЙ В СВИНЦОВОЙ
ОБОЛОЧКЕ, БРОНИРОВАННЫЙ ПЛОСКИМИ СТАЛЬНЫМИ ПРОВОЛОКАМИ,
С НАРУЖНЫМ ПОКРОВОМ ИЗ КАБЕЛЬНОЙ ПРЯЖИ**

Марка СП

ГОСТ 340-41

- Конструкция:
1. Токопроводящая жила из медных проволок.
 2. Изоляция из пропитанной кабельной бумаги.
 3. Скрутка жил с заполнением для двух-, трех- и четырехжильных кабелей.
 4. Поясная изоляция из пропитанной кабельной бумаги.
 5. Свинцовая оболочка.
 6. Подушка из пропитанной кабельной бумаги или кабельной пряжи.
 7. Броня из плоских стальных оцинкованных проволок.
 8. Покровная оболочка из пропитанной кабельной пряжи.

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ОДНОЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРКИ СП НА НАПРЯЖЕНИЕ 1 000—3 000 в**

Номинальное сечение жилы, мм ²	Номинальное напряжение, в			
	1 000	3 000	1 000	3 000
	Расчетный наружный диаметр, мм		Расчетный вес кабеля, кг/км	
4	17,1	18,5	837	972
6	17,6	19,0	897	1 036
10	18,4	19,8	1 007	1 134
16	19,4	20,8	1 148	1 280
25	21,1	22,1	1 380	1 486
35	22,2	23,4	1 565	1 822
50	23,8	24,8	1 959	2 095
70	25,3	26,3	2 289	2 434
95	26,9	27,9	2 667	2 817
120	28,5	29,5	3 104	3 262
150	32,0	32,6	3 763	3 894
185	34,9	35,3	4 441	4 491
240	38,0	38,6	5 437	5 515
300	40,4	41,0	6 230	6 369
400	43,8	44,6	7 516	7 790
500	47,8	48,6	9 201	9 501
625	51,6	52,0	10 944	11 089
800	56,1	56,5	13 308	13 384

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ДВУХЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРКИ СП НА НАПРЯЖЕНИЕ 1000—3000 в**

Номинальное сечение жилы, мм^2	Номинальное напряжение, в			
	1 000	3 000	1 000	3 000
	Расчетный наружный диаметр, мм		Расчетный вес кабеля, кг/км	
1,5	18,7	—	974	—
2,5	19,4	—	1 065	—
4	20,4	23,5	1 169	1 627
6	21,4	24,5	1 307	1 735
10	23,1	26,0	1 622	1 975
16	25,0	27,9	1 916	2 275
25	24,9	27,4	2 048	2 333
35	26,5	29,2	2 386	2 805
50	28,7	31,2	2 975	3 280
70	31,1	34,8	3 556	4 122
95	32,9	37,7	4 317	4 999
120	37,8	39,9	5 366	5 753
150	40,4	—	9 240	—

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ТРЕХЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРКИ СП НА НАПРЯЖЕНИЕ 1000—10 000 в**

Номинальное сечение жилы, мм^2	Номинальное напряжение, в							
	1 000	3 000	6 000	10 000	1 000	3 000	6 000	10 000
	Расчетный наружный диаметр, мм				Расчетный вес кабеля, кг/км			
1,5	19,1	—	—	—	1 027	—	—	—
2,5	19,9	—	—	—	1 135	—	—	—
4	20,9	24,2	—	—	1 266	1 773	—	—
6	22,0	25,3	—	—	1 423	1 907	—	—
10	23,9	27,0	31,5	—	1 816	2 191	2 849	—
16	25,9	29,2	34,7	39,1	2 183	2 648	3 434	4 250
25	27,3	30,0	35,2	39,6	2 552	2 983	3 722	4 558
35	29,4	31,9	37,4	41,5	3 133	3 453	4 434	5 087
50	32,0	35,6	39,9	44,2	3 780	4 365	5 141	6 020
70	36,0	38,7	42,7	47,0	4 827	5 348	6 068	6 926
95	39,5	41,9	46,1	50,7	6 033	6 427	7 306	8 464
120	43,0	45,1	49,6	53,7	7 141	7 618	8 730	9 574
150	46,6	49,1	53,0	57,3	8 521	9 265	10 079	11 121
185	50,2	52,1	56,1	60,2	10 308	10 656	11 657	12 569
210	55,2	57,0	60,8	65,1	12 593	12 951	13 872	15 033

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ЧЕТЫРЕХЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ
МАРКИ СП НА НАПРЯЖЕНИЕ 1000 в**

Номинальное сечение жилы, <i>мм²</i>	Номинальное напряжение 1000 в	
	Расчетный наружный диаметр, <i>мм</i>	Расчетный вес кабеля, <i>кг/км</i>
3 × 2,5 + 1 × 1,5	20,6	1 207
3 × 4 + 1 × 2,5	21,7	1 354
3 × 6 + 1 × 4	23,1	1 698
3 × 10 + 1 × 6	24,9	1 998
3 × 16 + 1 × 10	27,1	2 407
3 × 25 + 1 × 16	29,1	2 994
3 × 35 + 1 × 16	31,3	3 498
3 × 50 + 1 × 25	35,2	4 468
3 × 70 + 1 × 35	38,8	5 602
3 × 95 + 1 × 47,5	42,7	6 898
3 × 120 + 1 × 50	46,5	8 203
3 × 150 + 1 × 70	49,9	9 962
3 × 185 + 1 × 70	53,7	11 388

**КАБЕЛЬ СИЛОВОЙ С БУМАЖНОЙ ПРОПИТАННОЙ ИЗОЛЯЦИЕЙ В СВИНЦОВОЙ
ОБОЛОЧКЕ, БРОНИРОВАННЫЙ ПЛОСКИМИ СТАЛЬНЫМИ ОЦИНКОВАННЫМИ
ПРОВОЛОКАМИ, БЕЗ НАРУЖНОГО ПОКРОВА**

Марка СПГ

ГОСТ 340-41

- Конструкция:
1. Токопроводящая жила из медных проволок.
 2. Изоляция из пропитанной кабельной бумаги.
 3. Скрутка жил с заполнением для двух-, трех- и четырехжильных кабелей.
 4. Поясная изоляция из пропитанной кабельной бумаги.
 5. Свинцовая оболочка.
 6. Подушка из пропитанной кабельной бумаги или кабельной пряжи.
 7. Броня из плоских стальных оцинкованных проволок.
 8. Открытая спираль из одной стальной освинцовкой ленты или двух стальных оцинкованных проволок.

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ОДНОЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ МАРКИ СПГ
НА НАПРЯЖЕНИЕ 1000 и 3000 в**

Номинальное сечение жилы, мм ²	Номинальное напряжение, в					
	1 000	3 000	1 000		3 000	
	Расчетный наружный диаметр, мм		Сpirаль из ленты	Сpirаль из проволоки	Сpirаль из ленты	Сpirаль из проволоки
Расчетный вес кабеля, кг/км						
4	14,1	15,5		687		810
6	14,6	16,0		743		868
10	15,5	16,8		845		960
16	16,4	17,8		977		1 096
25	18,6	19,6		1 236		1 333
35	19,8	22,0		1 416	1 755	1 730
50	22,6	23,6	1 963	1 935	2 036	2 013
70	24,2	25,2	2 292	2 256	2 381	2 340
95	26,0	27,2	2 680	2 635	2 846	2 795
120	27,7	28,7	3 125	3 071	3 224	3 165
150	30,0	30,6	3 619	3 554	3 747	3 679
185	31,9	32,3	4 190	4 115	4 236	4 159
240	35,0	35,6	5 161	5 071	5 236	5 143
300	37,4	38,0	5 935	5 833	6 071	5 966
400	40,8	41,6	7 197	7 078	7 465	7 342
500	44,8	45,6	8 854	8 715	9 148	9 005
625	48,6	49,0	10 567	10 409	10 710	10 550
800	53,1	53,5	12 900	12 719	12 971	12 788

РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ДВУХЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ МАРКИ СПГ
НА НАПРЯЖЕНИЕ 1 000 и 3 000 в

Номинальное сечение жилы, мм^2	Номинальное напряжение, в					
	1 000	3 000	1 000		3 000	
	Расчетный наружный диаметр, мм		Сpirаль из ленты	Сpirаль из проволоки	Сpirаль из ленты	Сpirаль из проволоки
Расчетный вес кабеля, кг/км						
1,5	15,7	—		809	—	—
2,5	16,4	—		894	—	—
4	17,4	21,5		989	1 520	1 497
6	18,4	22,5		1 117	1 623	1 595
10	21,1	24,0	1 516	1 495	1 856	1 821
16	23,0	25,9	1 802	1 788	2 148	2 103
25	22,9	25,4	1 935	1 105	2 258	2 216
35	24,5	27,2	2 266	2 228	2 673	2 622
50	26,7	29,2	2 844	2 795	3 138	3 078
70	29,1	31,8	3 415	3 354	3 869	3 795
95	30,9	34,7	4 168	4 098	4 725	4 636
120	34,8	36,9	5 092	5 003	5 463	5 363
150	37,4	—	5 945	5 843	—	—

РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ТРЕХЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ МАРКИ СПГ НА НАПРЯЖЕНИЕ 1000—10 000 в

Номи- наль- ное сече- ние жилы, м.м ²	Номинальное напряжение, в													
	1 000	3 000	6 000	10 000	1 000		3 000		6 000		10 000			
	Расчетный наружный диаметр, м.м				Бро- ни из ленты	Бро- ни из про- волоки	Бро- ни из ленты	Бро- ни из про- волоки	Бро- ни из ленты	Бро- ни из про- волоки				
					Расчетный вес кабеля, кг/км									
1,5	16,1	—	—	—	859									
2,5	16,9	—	—	—	960									
4	17,9	22,2	—	—	1 081									
6	19,0	23,3	—	—	1 228									
10	21,9	25,0	29,5	—	1 708	1 683	2 068	2 028	2 693	2 630	—	—	—	—
16	23,9	27,2	31,7	36,1	2 065	2 030	2 516	2 465	3 180	3 106	3 969	3 873	—	—
25	25,3	28,0	32,2	36,6	2 428	2 386	2 847	2 792	3 466	3 390	4 269	3 171	—	—
35	27,4	29,9	34,4	38,5	2 999	2 948	3 308	3 244	4 161	4 074	4 787	4 680	—	—
50	30,0	32,6	36,9	41,2	3 636	3 571	4 111	4 036	4 851	4 751	5 699	5 579	—	—
70	33,0	35,7	39,7	44,0	4 565	4 485	5 066	4 973	5 760	5 616	6 581	6 447	—	—
95	36,5	38,9	43,1	47,7	4 746	5 648	6 122	6 013	6 971	6 840	8 094	7 941	—	—
120	40,0	42,1	46,6	50,7	6 832	6 717	7 288	7 164	8 371	8 223	9 183	9 016	—	—
150	43,6	46,1	50,0	54,3	8 181	8 051	8 905	8 762	8 694	9 529	10 700	10 516	—	—
185	47,6	49,1	53,1	57,2	9 945	9 792	10 273	10 115	11 249	11 068	12 127	11 929	—	—
210	52,6	54,0	57,8	62,1	12 194	12 016	12 531	12 350	13 429	13 225	14 553	14 331	—	—

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ЧЕТЫРЕХЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ МАРКИ СПГ
НА НАПРЯЖЕНИЕ 1 000 в**

Номинальное сечение жил, мм^2	Номинальное напряжение 1 000 в		
	Расчетный наружный диаметр, мм	Броня из ленты	Броня из проволоки
		Расчетный вес кабеля, $\text{кг}/\text{км}$	
3 × 2,5 + 1 × 1,5	17,6	1 025	
3 × 4 + 1 × 2,5	18,7	1 162	
3 × 6 + 1 × 4	21,1	1 592	1 572
3 × 10 + 1 × 6	22,9	1 885	1 855
3 × 16 + 1 × 10	25,1	2 284	2 243
3 × 25 + 1 × 16	27,1	2 863	2 812
3 × 35 + 1 × 16	29,3	3 355	3 294
3 × 50 + 1 × 25	32,2	4 211	4 136
3 × 70 + 1 × 35	35,8	5 320	5 228
5 × 95 + 1 × 47,5	39,7	6 588	6 476
3 × 120 + 1 × 50	43,5	7 861	7 731
3 × 150 + 1 × 70	46,9	9 595	9 448
3 × 185 + 1 × 70	50,7	10 996	10 830

**КАБЕЛЬ СИЛОВОЙ С БУМАЖНОЙ ПРОПИТАННОЙ ИЗОЛЯЦИЕЙ В СВИНЦОВОЙ
ОБОЛОЧКЕ, БРОНИРОВАННЫЙ КРУГЛЫМИ СТАЛЬНЫМИ ПРОВОЛОКАМИ,
С НАРУЖНЫМ ПОКОРОВОМ ИЗ КАБЕЛЬНОЙ ПРЯЖИ**

Марка СК

ГОСТ 340—41

- Конструкция:
1. Токопроводящая жила из медных проволок.
 2. Изоляция из пропитанной кабельной бумаги.
 3. Скрутка жил с заполнением для двухжильных, трехжильных и четырехжильных кабелей.
 4. Поясная изоляция из пропитанной кабельной бумаги.
 5. Свинцовая оболочка.
 6. Подушка из пропитанной кабельной пряжи.
 7. Броня из круглых стальных оцинкованных проволок.
 8. Покровная оболочка из пропитанной кабельной пряжи.

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ОДНОЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ МАРКИ СК
НА НАПРЯЖЕНИЕ 1 000 — 10 000 в**

Номинальное сечение жилы, мм^2	Номинальное напряжение, в							
	1 000	3 000	6 000	10 000	1 000	3 000	6 000	10 000
	Расчетный наружный диаметр, мм				Расчетный вес кабеля, кг/км			
10	—	—	30,2	—	—	—	3 018	—
16	—	—	31,2	34,0	—	—	3 268	3 831
25	—	30,0	33,2	35,3	—	3 100	3 696	4 152
35	30,2	31,2	34,4	36,0	3 188	3 396	4 007	4 287
50	31,8	33,0	36,2	37,2	3 564	3 842	4 481	4 608
70	33,6	34,6	37,8	38,8	4 153	4 269	5 027	5 020
95	35,4	36,6	40,6	41,6	4 640	4 945	5 657	5 794
120	37,1	38,1	42,3	43,4	5 079	5 412	6 241	6 332
150	39,4	41,0	44,2	45,1	5 889	6 152	6 902	6 938
185	42,3	42,7	45,9	46,8	6 687	6 744	7 610	7 513
210	45,3	45,9	48,6	48,8	7 795	7 989	8 661	8 418
300	48,0	48,6	51,8	51,2	8 970	9 070	10 029	9 314
400	51,4	52,2	55,4	53,8	10 448	10 792	11 702	10 502
500	55,4	55,8	58,7	57,4	12 390	12 572	13 520	12 296
625	59,2	59,5	62,1	60,7	14 470	14 553	15 302	14 046
800	63,4	63,8	66,6	64,1	16 886	16 971	17 945	15 842

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ОДНОЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ МАРКИ СК
НА НАПРЯЖЕНИЕ 20 000 и 35 000 в**

Номинальное сечение жилы, мм^2	Номинальное напряжение, в								
	20 000		35 000		20 000		35 000		
	Нейтраль заземлена	Нейтраль не заземлена	Нейтраль заземлена	Нейтраль не заземлена	Нейтраль заземлена	Нейтраль не заземлена	Нейтраль заземлена	Нейтраль не заземлена	
Расчетный наружный диаметр, мм								Расчетный вес кабеля, кг/км	
25	38,3	43,5	—	—	4 787	5 864	—	—	
35	39,5	44,9	—	—	5 116	6 324	—	—	
50	42,3	46,5	—	—	5 760	6 780	—	—	
70	43,9	48,4	50,4	56,8	6 234	7 459	8 007	9 811	
95	45,9	50,2	52,4	58,9	6 993	8 143	8 733	10 783	
120	47,7	49,7	53,9	56,1	7 685	8 130	9 184	9 835	
150	49,4	51,4	55,8	57,8	8 282	8 730	10 163	10 658	
185	51,1	53,3	57,5	59,8	8 919	9 618	10 841	11 589	
240	53,7	55,9	60,2	62,2	10 111	10 800	12 156	12 682	
300	56,3	58,6	62,6	64,6	11 290	12 128	13 176	13 822	
400	60,0	62,0	—	—	13 108	13 735	—	—	

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ТРЕХЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ МАРКИ СК
НА НАПРЯЖЕНИЕ 1000—10 000 в**

Номинальное сечение жилы, мм^2	Номинальное напряжение, в							
	1 000	3 000	6 000	10 000	1 000	3 000	6 000	10 000
	Расчетный наружный диаметр, мм				Расчетный вес кабеля, кг/км			
10	31,1	34,4	—	—	3 346	3 953	—	—
16	33,3	36,6	42,1	46,4	3 808	4 620	5 671	6 681
25	34,7	37,4	42,6	46,9	4 320	4 913	5 970	6 996
35	36,8	39,3	44,7	49,1	5 047	5 579	6 771	7 925
50	39,4	43,0	47,5	51,8	5 906	6 669	7 866	9 008
70	43,4	46,0	50,3	54,6	7 145	7 827	8 969	10 145
95	46,8	49,5	53,7	58,2	8 464	9 259	10 396	11 852
120	50,6	52,7	56,8	61,2	10 052	10 635	11 827	13 193
150	54,2	56,3	60,5	64,6	11 630	12 266	13 679	14 833
185	57,8	59,6	63,4	71,7	13 463	14 117	15 235	18 861
240	62,9	64,3	72,3	76,8	16 238	16 654	20 190	22 125

КАБЕЛЬ СИЛОВОЙ, СКРУЧЕННЫЙ ИЗ ТРЕХ ОДЕЛЬНО ИЗОЛИРОВАННЫХ И ОСВИНЦОВАННЫХ ЖИЛ, БРОНИРОВАННЫЙ ДВУМЯ СТАЛЬНЫМИ ЛЕНТАМИ, С НАРУЖНЫМ ПОКРОВОМ ИЗ КАБЕЛЬНОЙ ПРЯЖИ

Марка ОСБ

ГОСТ 340—41

- Конструкция:
1. Токопроводящая жила из медных проволок.
 2. Изоляция из пропитанной кабельной бумаги.
 3. Экран из одной металлизированной ленты.
 4. Свинцовая оболочка.
 5. Скрутка трех освинцованных жил с заполнением.
 6. Подушка из одной миткалевой ленты и пропитанной кабельной пряжи.
 7. Броня из двух стальных лент.
 8. Покровная оболочка из пропитанной кабельной пряжи.

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ТРЕХЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ МАРКИ ОСБ
НА НАПРЯЖЕНИЕ 20 000 и 35 000 в**

Номинальное сечение жилы, $мм^2$	Номинальное напряжение, в							
	20 000		35 000		20 000		35 000	
	Нейтраль заземлена	Нейтраль не заземлена	Нейтраль заземлена	Нейтраль не заземлена	Нейтраль заземлена	Нейтраль не заземлена	Нейтраль заземлена	Нейтраль не заземлена
	Расчетный наружный диаметр, мм							
25	57,2	68,4	—	—	7 767	10 922	—	—
35	59,8	71,5	—	—	8 509	12 107	—	—
50	65,9	74,9	—	—	10 822	13 303	—	—
70	69,3	78,3	82,6	96,4	12 066	14 627	15 102	20 508
95	73,6	82,2	86,9	101	13 897	16 198	17 092	23 028
120	76,8	81,1	90,2	94,9	15 262	16 422	18 533	21 088
150	80,5	84,8	94,2	98,5	16 870	18 062	20 675	22 862
185	84,1	88,9	97,9	—	18 606	20 274	22 521	—

КАБЕЛЬ СИЛОВОЙ СКРУЧЕННЫЙ ИЗ ТРЕХ ОТДЕЛЬНО ИЗОЛИРОВАННЫХ И ОСВИНЦОВАННЫХ ЖИЛ, БРОНИРОВАННЫЙ КРУГЛЫМИ СТАЛЬНЫМИ ПРОВОЛОКАМИ С НАРУЖНЫМ ПОКРОВОМ ИЗ КАБЕЛЬНОЙ ПРЯЖИ

Марка ОСК

ГОСТ 340-41

Конструкция: 1. Токопроводящая жила из медных проволок.

2. Изоляция из пропитанной кабельной бумаги.
3. Экран из одной металлизированной ленты.
4. Свинцовая оболочка.
5. Скрутка трех освинцованных жил с заполнением.
6. Подушка из одной миткалевой ленты и пропитанной кабельной пряжи.
7. Броня из круглых стальных оцинкованных проволок.
8. Покровная оболочка из пропитанной кабельной пряжи.

**РАЗМЕРЫ И РАСЧЕТНЫЙ ВЕС ТРЕХЖИЛЬНЫХ СИЛОВЫХ КАБЕЛЕЙ МАРКИ ОСК
НА НАПРЯЖЕНИЕ 20 000 и 35 000 в**

Номинальное сечение жилы, мм ²	Номинальное напряжение, в							
	20 000		35 000		20 000		35 000	
	Нейтраль заземлена	Нейтраль не заземлена	Нейтраль заземлена	Нейтраль не заземлена	Нейтраль заземлена	Нейтраль не заземлена	Нейтраль заземлена	Нейтраль не заземлена
Расчетный наружный диаметр, мм				Расчетный вес кабеля, кг/км				
25	72,9	82,0	—	—	14 872	18 233	—	—
35	75,5	85,2	—	—	16 058	19 772	—	—
50	79,4	88,6	—	—	17 687	21 354	—	—
70	82,8	92,5	96,8	111	19 355	23 512	25 166	31 467
95	87,8	96,4	101	115	21 783	25 361	27 650	33 695
120	91,0	95,3	104	—	23 721	25 563	29 344	—
150	94,7	99,0	109	—	26 011	27 655	32 214	—
185	98,3	103	—	—	27 971	30 312	—	—

СИЛОВОЙ КАБЕЛЬ ДЛЯ ЭЛЕКТРОФИЛЬТРОВ

Силовой кабель для электрофильтров на напряжение 75 000 в постоянного тока применяется для улавливания угольной пыли в металлургической и других отраслях промышленности, а также на электростанциях.

По роду изоляции и защитным покровам этот силовой кабель совершенно одинаков с силовым кабелем марки СБ на напряжение 35 000 в переменного тока с незаземленной нейтралью.

Требования к кабелям для электрофильтров те же, что и к кабелям на напряжение 35 000 в.

Основные сечения для этого кабеля — 70 и 88 мм², причем жила может быть выполнена из меди или алюминия.

Кабель изготавливается в одножильном исполнении.

КОНСТРУКТИВНЫЕ ДАННЫЕ КАБЕЛЕЙ ДЛЯ ЭЛЕКТРОФИЛЬТРОВ МАРКИ СБЭ

Наименование	Размеры, мм	
	при сечении, мм^2	
	70	88
Конструкция токопроводящей жилы	19 × 2,14	19 × 2,43
Диаметр жилы	10,7	12,2
Толщина изоляции на жилах	12,0	12,0
Экран из металлизированной бумаги	0,15	0,15
Толщина свинцовой оболочки	2,0	2,0
Диаметр кабеля по свинцу	39,0	40,5
Толщина защитных покровов	5,0	5,0
Наружный диаметр кабеля	49,0	50,5
Вес 1 км кабеля	5 800 кг	6 680 кг

Издано в Советском Союзе

ВСЕСОЮЗНОЕ ОБЪЕДИНЕНИЕ «ПРОМСЫРЬЕИМПОРТ»

ТЕЛЕФОННЫЕ КАБЕЛИ ДЛЯ МЕСТНЫХ СЕТЕЙ

8211

ГОРОДСКИЕ ТЕЛЕФОННЫЕ КАБЕЛИ

Городские телефонные кабели с воздушно-бумажной изоляцией предназначены для связи абонентских линий с телефонными станциями в городских и местных телефонных сетях. Они изготавляются в соответствии с ГОСТ В 1176—41.

Городские телефонные кабели различаются:
по диаметру проволоки токопроводящей жилы;
по числу разговорных пар;
по роду и конструкции защитных покровов.

МАРКИ КАБЕЛЕЙ

25

Марки кабелей и условия прокладки приведены в таблице.

Марка	Наименование	Условия прокладки
ТГ	Кабель городской телефонный в свинцовой оболочке голый.	Для прокладки в подземной канализации и подвески к стальным тросам
ТА	Кабель городской телефонный, в свинцовой оболочке, асфальтированный	Для прокладки в подземной канализации и подвески к стальным тросам при наличии вредных воздействий на свинцовую оболочку
ТБГ	Кабель городской телефонный в свинцовой оболочке, бронированный двумя стальными лентами, без защитного покрова	Для открытой прокладки в пожароопасных местах
ТБ	Кабель городской телефонный в свинцовой оболочке, бронированный двумя стальными лентами с наружным покровом из кабельной пряжи	Для прокладки в земле при уклонах не более 45° и при отсутствии растягивающих нагрузок на кабель
ТП	Кабель городской телефонный, в свинцовой оболочке, броцированый плоскими стальными оцинкованными проволоками с наружным покровом из кабельной пряжи	Для прокладки в земле при возможности возникновения растягивающих усилий, т. с. при уклонах больше 45°, для вертикальной подвески в шахтах, для прокладки в болотах и несудоходных водных бассейнах
ТК	Кабель городской телефонный в свинцовой оболочке, броцированный круглыми стальными оцинкованными проволоками с наружным покровом из кабельной пряжи	Для прокладки в водных бассейнах с организованным судоходством

КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ

Одиночные жилы городских телефонных кабелей изолируются путем обмотки бумажной лентой или наложением сплошного слоя бумажной массы.

Изолированные жилы скручены в **пары** или **звездные четверки**.

Жилы, составляющие пару или четверку, отличаются цветом изолирующей бумаги или бумажной массы. Каждая пара или четверка обматывается спиралью из хлопчатобумажной пряжи.

Пары и четверки скручены концентрическими слоями. Скрутка соседних слоев произведена в противоположные стороны. В каждом слое содержится не менее одной счетной пары, отличающейся от всех других пар данного слоя расцветкой не менее одной из жил. Смежные слои пар или четверок отделены друг от друга открытой спиральной обмоткой из хлопчатобумажной пряжи.

Скрученный кабель обмотан двумя слоями бумажной ленты или одним слоем тканевой ленты.

На высушеннную сердцевину кабеля накладывают герметичную **свинцовую оболочку**, защищающую изоляцию от проникновения влаги. Для увеличения механической прочности свинцовой оболочки и для ее предохранения от растрескивания при вибрациях к свинцу добавляют 0,4 - 0,6% сурьмы.

ТОЛЩИНА СВИНЦОВОЙ ОБОЛОЧКИ

Диаметр кабеля под свинцовой оболочкой, мм	Толщина свинцовых оболочек кабелей марок, мм					
	ТГ		ТБ, ТБГ, ТА, ТН		ТК	
	минимальная	расчетная	минимальная	расчетная	минимальная	расчетная
До 6	1,0	1,15	1,0	1,15	—	—
— 8	1,1	1,25	1,0	1,15	—	—
— 13	1,2	1,4	1,1	1,25	1,8	2,05
— 16	1,3	1,5	1,2	1,4	1,8	2,05
— 20	1,4	1,6	1,3	1,5	1,9	2,15
— 23	1,5	1,7	1,3	1,5	2,0	2,3
— 26	1,6	1,8	1,4	1,6	2,0	2,3
— 30	1,7	1,95	1,5	1,7	2,1	2,4
— 33	1,8	2,05	1,6	1,8	2,1	2,4
— 36	1,9	2,15	1,6	1,8	2,2	2,5
— 40	2,0	2,3	1,8	2,05	2,2	2,5
— 43	2,1	2,4	1,8	2,05	2,3	2,6
— 46	2,2	2,5	1,9	2,15	2,4	2,7
— 50	2,3	2,6	2,0	2,3	2,5	2,8
— 53	2,4	2,7	2,0	2,3	2,5	2,8
— 56	2,5	2,8	2,1	2,4	2,6	2,9
— 60	2,6	2,9	2,2	2,5	2,7	3,0
Свыше 60	2,7	3,0	2,3	2,6	2,8	3,1

Защитные покровы состоят из подушки, брони и верхних покровов.

ТОЛЩИНА ЗАЩИТНЫХ ПОКРОВОВ

Диаметр кабеля поверх свинцовой оболочки, мм	Расчетная толщина защитных покровов					Внешний покров			
	Подушка	Броня из:			оцинкованных стальных проволок				
		стальных лент	оцинкованных стальных проволок						
			плоских	круглых					
До 13	1,5	2 × 0,3	—	—	—	1,5			
— 23	1,5	2 × 0,5	1,5	—	—	2,0			
— 37	2,0	2 × 0,5	1,5	4 — 6	—	2,0			
Свыше 37	2,0	2 × 0,5	1,7	6	—	2,0			

Подушка состоит из последовательно наложенных на кабель слоев: битума, двух-трех лент пропитанной кабельной бумаги, битума, пропитанной кабельной пряжи или трех лент пропитанной кабельной бумаги.

Броня состоит из двух стальных лент, наложенных таким образом, что промежутки между витками нижней ленты покрываются верхней или из повива плоских или круглых оцинкованных проволок.

Верхние защитные покровы состоят из последовательно наложенных на кабель слоев: битума, пропитанной кабельной пряжи, битума, мелового раствора.

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Омическое сопротивление токоведущих жил на длине кабеля 1 км при температуре -10° должно быть не более:

95,0 *ом* для проволоки диаметром 0,5 *мм*;
65,8 *ом* для проволоки диаметром 0,6 *мм*;
48,0 *ом* для проволоки диаметром 0,7 *мм*.

Сопротивление изоляции каждой жилы по отношению ко всем остальным жилам, соединенным со свинцовой оболочкой, приведенное к температуре $+20^{\circ}$, должно быть не менее 2000 *Мом* на 1 км кабеля.

Электрическая емкость. В кабелях различают:

а) емкость отдельной жилы по отношению ко всем остальным, соединенным со свинцовой оболочкой;

б) рабочую емкость или емкость, измеренную между жилами одной пары; при этом все остальные пары, кроме измеряемой, должны быть соединены с заземленной свинцовой оболочкой кабеля.

ЭЛЕКТРИЧЕСКАЯ ЕМКОСТЬ ГОРОДСКИХ ТЕЛЕФОННЫХ КАБЕЛЕЙ

Диаметр проволоки, <i>мм</i>	Для кабелей до 50 пар включительно				Для кабелей более 50 пар			
	рабочая емкость, <i>мкф/км</i>		емкость отдельных жил, <i>мкф/км</i>		рабочая емкость, <i>мкф/км</i>		емкость отдельных жил, <i>мкф/км</i>	
	средняя	максимальная	средняя	максимальная	средняя	максимальная	средняя	максимальная
0,5	0,050	0,055	0,083	0,091	0,050	0,055	0,083	0,091
0,6	0,041	0,045	0,068	0,075	0,039	0,043	0,065	0,072
0,7	0,042	0,046	0,070	0,077	0,040	0,044	0,067	0,073

ИСПЫТАНИЯ

Омическое сопротивление проверяется с помощью моста Уитстона или Томсона. Проверке подвергается каждая строительная длина кабеля. В кабелях 5×2 и 10×2 проверяются все жилы, в кабелях от 20×2 до $50 \times 2 - 20\%$ одиночных жил, для всех остальных кабелей -50% одиночных жил, но не менее 30.

Сопротивление изоляции измеряют методом сравнения после 1 мин. приложения напряжения постоянного тока не менее 100 в.

Проверка подвергается каждая строительная длина кабеля. В кабелях 5×2 и 10×2 проверяются все жилы, в кабелях от 20×2 до 50×2 – 20% одиночных жил, для всех остальных кабелей – 5% одиночных жил, но не менее 30.

Емкость одиночных жил измеряют методом сравнения после 1 мин. приложения напряжения постоянного тока не менее 100 в.

Проверка подвергается каждая строительная длина кабеля. В кабелях 5×2 и 10×2 проверяются все жилы, в кабелях с числом пар от 20 до 50 – 20% одиночных жил, для всех остальных кабелей – 5% одиночных жил, но не менее 30.

Рабочую емкость пар измеряют с помощью специального моста при частоте 800 гц.

При испытании телефонных кабелей, скрученных из пар, вместо рабочей емкости можно измерять емкость одиночных жил.

Прочность свинцовой оболочки кабеля на растяжение проверяется путем насадки куска свинцовой оболочки на конус с отношением диаметра основания к высоте 1:5.

Измерение толщины свинцовой оболочки производят с помощью микрометра, имеющего одну губку в форме полусфера.

Герметичность свинцовой оболочки проверяется путем приложения избыточного газового давления 3 атм.

Проверка отсутствия металлических контактов и обрывов жил производится с помощью телефона, электрического звонка (позвонка), электрической лампы и т. п.

ОСНОВНЫЕ КОНСТРУКТИВНЫЕ ДАННЫЕ

Число пар в телефонных кабелях, диаметр применяемых проволок, разбивки пар по новирам, число гарантированных запасных пар приведены в таблицах.

ЧИСЛО ПАР И ДИАМЕТР МЕДНЫХ ПРОВОЛОК

Марка	Диаметр проволоки, мм		
	0,5	0,6	0,7
	число пар		
ТГ	от 5 до 1200	от 5 до 1000	от 5 до 600
ТА, ТВ, ТБГ, ТП	от 5 до 600	от 5 до 600	от 5 до 600
ТК	от 20 до 600	от 20 до 600	от 20 до 600

**РАЗБИВКА ПАР ПО ПОВИВАМ, ЧИСЛО ГАРАНТИРОВАННЫХ ЗАПАСНЫХ ПАР
И ДИАМЕТРЫ КАБЕЛЕЙ ПОД СВИНЦОВОЙ ОБОЛОЧКОЙ**

Число пар	Центральные пары	Н о м е р а п о в и в о в																	Диаметр неосвинцованных кабеля, мм					
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	при диаметре проволоки, мм	0,5	0,6	0,7
		номинальное	фактическое																					
5	5	0	5																		4,8	5,7	7,0	
10	10	2	8																		6,7	7,6	9,7	
20	20	1	6	13																	9,2	10,5	13,4	
30	30	4	10	16																	11,2	12,9	16,4	
40	40	1	7	13	9																12,7	14,7	18,7	
50	50	4	10	15	21																14,2	16,4	20,8	
70	70	2	8	14	20	26															16,7	19,2	24,3	
80	80	4	10	16	22	28															17,7	20,4	25,7	
100	101	2	8	14	20	26	31														19,7	22,7	28,5	
150	151	4	10	16	22	28	33	38													23,7	27,8	28,5	
200	201	4	10	16	22	28	34	40	47												27,2	32,1	40,0	
300	302	8	15	21	28	34	40	46	52	58											33,7	39,1	48,7	
400	402	1	7	13	19	25	31	37	43	48	54	60	64								38,6	44,7	56	
500	503	3	9	15	21	27	33	39	45	51	57	62	67	74							43,1	50,4	69,5	
600	603	5	11	17	23	29	35	40	46	52	58	64	69	74	80						47,1	55,2	68,4	
700	704	1	6	12	17	28	29	35	41	47	53	59	65	70	76	82	88				50,6	59,5	—	
800	804	6	12	18	24	30	36	42	48	54	59	65	70	76	82	88	94				54,1	63,6	—	
900	905	6	12	18	24	30	36	42	48	54	59	65	70	76	82	88	94	101			57,6	67,4	—	
1 000	1 005	6	12	17	23	29	35	41	47	53	59	65	71	77	82	88	94	100	106		60,6	71,0	—	
1 200	1 206	4	10	16	22	28	34	40	46	52	58	64	70	76	82	87	93	99	105	109	111	66,1	—	—

КАБЕЛЬ ГОРОДСКОЙ ТЕЛЕФОННЫЙ В СВИНЦОВОЙ ОБОЛОЧКЕ, ГОЛЫЙ

Марка ТГ

ГОСТ В1176-41

Конструкция: 1. Токопроводящая жила из медной проволоки.
 2. Изоляция из бумаги или бумажной массы.
 3. Скрутка в пары или в четверки.
 4. Общая скрутка пар или четверок в кабель.
 5. Обмотка телефонной или кабельной бумагой.
 6. Свинцовая оболочка.

РАЗМЕРЫ И ВЕС КАБЕЛЕЙ МАРКИ ТГ

Поми- нальное число пар в кабеле	При диаметре проволоки, мм								
	0,5			0,6			0,7		
	макси- мальный наруж- ный диа- метр, м.м	вес меди, кг/км	макси- мальный общий вес, кг/км	макси- мальный наруж- ный диа- метр, м.м	вес меди, кг/км	макси- мальный общий вес, кг/км	макси- мальный наруж- ный диа- метр, м.м	вес меди, кг/км	макси- мальный общий вес, кг/км
5	8,0	18,4	310	9,0	25,4	370	9,4	34,6	390
10	10,0	36,9	430	11,0	50,8	520	12,3	69,2	590
20	12,0	73,7	670	14,0	102	780	16,2	139	900
30	14,0	115	820	16,7	152	940	19,6	215	1 270
40	16,0	152	940	18,7	203	1 160	22,1	284	1 560
50	17,0	191	1 130	20,6	264	1 390	24,2	361	1 780
70	19,0	265	1 360	22,6	366	1 690	28,1	499	2 340
80	20,0	302	1 460	23,8	412	1 820	29,5	569	2 520
100	23,0	376	1 680	26,3	518	2 110	32,5	707	2 980
150	27,0	565	2 310	31,8	772	3 020	39,2	1 061	4 100
200	31,0	752	2 980	36,5	1 041	3 890	44,8	1 415	5 220
300	39,0	1 124	4 150	43,9	1 541	5 330	51,1	2 115	7 330
400	43,0	1 497	5 130	49,9	2 063	6 760	61,8	2 815	9 260
500	48,0	1 870	6 280	56	2 576	8 270	68,5	3 516	10 750
600	52,0	2 241	7 450	61	3 089	9 560	74,4	4 216	12 393
700	57,0	2 614	8 430	65,5	3 597	10 810	—	—	—
800	60,0	2 992	9 440	69,5	4 120	11 810	—	—	—
900	64,0	3 365	10 240	73,4	4 635	12 850	—	—	—
1 000	67,0	3 730	11 210	77	5 146	13 810	—	—	—
1 200	72,0	4 476	12 680	—	—	—	—	—	—

**КАБЕЛЬ ГОРОДСКОЙ ТЕЛЕФОННЫЙ В СВИНЦОВОЙ ОБОЛОЧКЕ, БРОНИРОВАННЫЙ
ДВУМЯ СТАЛЬНЫМИ ЛЕНТАМИ С НАРУЖНЫМ ПОКРОВОМ ИЗ КАБЕЛЬНОЙ ПРЯЖИ**

Марка ТБ

ГОСТ В1176-41

- Конструкция:
1. Токопроводящая жила из медной проволоки.
 2. Изоляция из бумаги или бумажной массы.
 3. Скрутка в пары или в четверки.
 4. Общая скрутка пар или четверок в кабель.
 5. Обмотка телефонной или кабельной бумагой.
 6. Свинцовая оболочка.
 7. Подушка.
 8. Броня из двух стальных лент.
 9. Наружный покров.

РАЗМЕРЫ И ВЕС КАБЕЛЕЙ МАРКИ ТБ

Номинальное число пар в кабеле	При диаметре проволоки, мм								
	0,5			0,6			0,7		
	макси- мальный наруж- ный диа- метр, м.м.	вес меди, кг/км	макси- мальный общий вес, кг/км	макси- мальный наруж- ный диа- метр, м.м.	вес меди, кг/км	макси- мальный общий вес, кг/км	макси- мальный наруж- ный диа- метр, м.м.	вес меди, кг/км	макси- мальный общий вес, кг/км
5	16,2	18,4	660	17,1	25,4	740	17,4	34,6	760
10	18,1	36,9	820	19	50,8	890	20,1	69,2	980
20	21,6	73,7	1 190	22,9	102	1 320	24,8	139	1 510
30	23,6	115	1 400	25,3	152	1 570	29	215	1 990
40	25,1	152	1 550	27,3	203	1 830	31,5	284	2 340
50	26,8	191	1 790	30	264	2 130	33,6	361	2 620
70	29,3	265	2 090	32	366	2 490	37,5	499	3 290
80	30,3	302	2 220	33,2	412	2 640	38,9	569	3 500
100	32,5	376	2 560	35,7	518	3 070	41,9	707	4 040
150	36,7	565	3 240	41,2	772	4 060	48,4	1 061	5 210
200	40,6	752	4 010	45,7	1 041	4 930	54	1 415	6 460
300	47,3	1 124	5 240	53,1	1 544	6 560	62,9	2 115	8 780
400	52,4	1 497	6 340	59,1	2 063	8 110	71,8	2 815	10 860
500	57,3	1 870	7 600	65	2 576	9 580	78,7	3 516	12 970
600	61,7	2 241	8 740	71	3 089	11 150	84,6	4 216	14 560

**КАБЕЛЬ ГОРОДСКОЙ ТЕЛЕФОННЫЙ В СВИНЦОВОЙ ОБОЛОЧКЕ, БРОНИРОВАННЫЙ
ПЛОСКИМИ СТАЛЬНЫМИ ОЦИНКОВАННЫМИ ПРОВОЛОКАМИ С НАРУЖНЫМ
ПОКРОВОМ ИЗ КАБЕЛЬНОЙ ПРЯЖИ**

Марка ТП

ГОСТ В1176-41

- Конструкция:
1. Токопроводящая жила из медной проволоки.
 2. Изоляция из бумаги или бумажной массы.
 3. Скрутка в пары или в четверки.
 4. Общая скрутка пар или четверок в кабель.
 5. Обмотка телефонной или кабельной бумагой.
 6. Свинцовая оболочка.
 7. Подушка.
 8. Броня из плоских стальных оцинкованных проволок.
 9. Наружный покров.

РАЗМЕРЫ И ВЕС КАБЕЛЕЙ МАРКИ ТП

Номи- нальное число пар в кабеле	При диаметре проволоки, мм								
	0,5			0,6			0,7		
	макси- мальный наруж- ный диа- метр, мм	вес меди, кг/км	макси- мальный общий вес, кг/км	макси- мальный наруж- ный диа- метр, мм	вес меди, кг/км	макси- мальный общий вес, кг/км	макси- мальный наруж- ный диа- метр, мм	вес меди, кг/км	макси- мальный общий вес, кг/км
5	17,8	18,4	870	18,7	25,4	1 050	19	34,6	1 010
10	18,7	36,9	1 040	20,6	50,8	1 140	21,7	69,2	1 240
20	22,6	73,7	1 530	23,9	102	1 630	25,8	139	1 890
30	24,6	115	1 750	26,3	152	1 850	30	215	2 410
40	26,1	152	1 930	28,3	203	2 230	32,5	284	2 840
50	27,8	191	2 200	31	264	2 500	34,6	361	3 130
70	30,3	265	2 490	33	366	2 970	38,5	499	3 840
80	31,3	302	2 650	34,2	412	3 160	39,9	569	4 090
100	33,5	376	3 040	36,7	518	3 600	42,9	707	4 690
150	37,7	565	3 810	42,2	772	4 660	49,8	1 061	6 080
200	41,6	752	4 620	47,1	1 011	5 780	55,4	1 415	7 470
300	48,7	1 124	6 130	54,5	1 511	7 580	64,3	2 115	9 930
400	53,8	1 497	7 300	60,5	2 063	9 260	72,4	2 815	12 250
500	58,7	1 870	8 710	66,4	2 576	10 240	80,1	3 516	14 480
600	63,1	2 241	9 960	72,1	3 089	12 480	86	4 216	16 200

**КАБЕЛЬ ГОРОДСКОЙ ТЕЛЕФОННЫЙ В СВИНЦОВОЙ ОБОЛОЧКЕ, БРОНИРОВАННЫЙ
КРУГЛЫМИ СТАЛЬНЫМИ ОЦИНКОВАННЫМИ ПРОВОЛОКАМИ, С НАРУЖНЫМ
ПОКРОВОМ ИЗ КАБЕЛЬНОЙ ПРЯЖИ**

Марка ТК

ГОСТ В1176-41

- Конструкция:**
1. Токопроводящая жила из медной проволоки.
 2. Изоляция из бумаги или бумагой массы.
 3. Скрутка в пары или в четверки.
 4. Общая скрутка пар или четверок в кабель.
 5. Обмотка телефонной или кабельной бумагой.
 6. Свинцовая оболочка.
 7. Подушка.
 8. Броня из круглых стальных оцинкованных проволок.
 9. Наружный покров.

РАЗМЕРЫ И ВЕС КАБЕЛЕЙ МАРКИ ТК

Номинальное число пар в кабеле	При диаметре проволоки, мм								
	0,5			0,6			0,7		
	максимальный наружный диаметр, мм	вес меди, кг/км	максимальный общий вес, кг/км	максимальный наружный диаметр, мм	вес меди, кг/км	максимальный общий вес, кг/км	максимальный наружный диаметр, мм	вес меди, кг/км	максимальный общий вес, кг/км
10	—	—	—	—	—	—	28,7	69,2	2 680
20	29,4	73,7	2 750	30,7	102	2 980	32,8	139	3 470
30	31,6	115,0	3 210	33,3	152	3 490	36,2	215	4 150
40	33,1	152	3 470	35,3	203	3 860	38,7	284	4 740
50	34,8	191	3 820	37,2	264	4 350	40,8	361	5 140
70	36,5	265	4 210	39,2	366	4 820	44,7	499	6 150
80	37,5	302	4 430	40,4	412	5 070	46,1	569	6 470
100	39,7	376	4 890	42,9	518	5 710	53,1	707	8 950
150	43,9	565	5 890	52,4	772	8 840	59,6	1 061	10 700
200	51,8	752	8 790	56,9	1 041	10 190	65	1 415	12 275
300	58,5	1 124	10 730	64,1	1 544	12 360	74,3	2 115	15 750
400	63,5	1 497	12 150	70,1	2 063	14 620	—	—	—
500	68,3	1 870	13 870	76	2 576	16 540	—	—	—
600	72,7	2 241	15 510	80,8	3 089	18 400	—	—	—

Издано в Советском Союзе.