Preliminaries

Madiba Hudson-Quansah

CONTENTS

CHAPTER 1	\mathbb{R}^n	Page 2
1.1	Vector Arithmetic	2
1.2	Linear Transformations	2
1.3	The Matrix of a linear Transformation	3
1.4	The geometry of the dot product	3

Chapter 1

\mathbb{R}^n

 \mathbb{R}^n denotes the set of real numbers / scalars. If n is a positive integer then \mathbb{R}^n is defined to be the set of all sequences \mathbf{x} of n real numbers

$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$

Multivariable calculus studies functions that act on these sets, functions in the form of

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

or more accurately

$$f:A\to\mathbb{R}^m$$

Where *A* is a subset of \mathbb{R}^n .

1.1 Vector Arithmetic

Every vector $\mathbf{x} = (x_1, x_2, \dots, x_n)$ in \mathbb{R}^n can be decomposed as a sum along the coordinate directions

$$\mathbf{x} = (x_1, 0, \dots, 0) + (0, x_2, 0, \dots, 0) + (0, \dots, x_n)$$

= $x_1 (1, 0, \dots, 0) + x_2 (0, 1, 0, \dots, 0) + x_n (0, \dots, 1)$

The vectors $\mathbf{e}_1 = (1, 0, \dots, 0)$, $\mathbf{e}_2 = (0, 1, \dots, 0)$, $\mathbf{e}_n = (0, \dots, 1)$, with a 1 in a single component corresponding to the value of n and zeros everywhere else, are called the **standard basis vectors**. I.e.:

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \ldots + x_n \mathbf{e}_n$$

Where the scalar coefficients x_i are the coordinates of **x**.

1.2 Linear Transformations

Definition 1.2.1: Linear Transformation

A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if:

- $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$
- $T(c\mathbf{x}) = cT(\mathbf{x})$

 $\forall c \in \mathbb{R} \text{ and } \forall \mathbf{x} \in \mathbb{R}^n \land \forall \mathbf{y} \in \mathbb{R}^n$

1.3 The Matrix of a linear Transformation

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Thus:

$$T(\mathbf{x}) = T(x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + \dots + x_n\mathbf{e}_n)$$

= $x_1T(\mathbf{e}_1) + x_2T(\mathbf{e}_2) + \dots + x_nT(\mathbf{e}_n)$
= $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n$

Where $\mathbf{a}_j = T\left(\mathbf{e}_j\right)$ for j = 1, 2, ..., n. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is completely determined by the vectors $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$

Definition 1.3.1: Dot Product

Given $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ in \mathbb{R}^n , the dot product, denoted by $\mathbf{x} \cdot \mathbf{y}$, is defined by:

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n$$

We have shown the every real valued linear transformation, $T: \mathbb{R}^n \to \mathbb{R}$ has the form

$$T(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x}$$

Where $\mathbf{a} = (a_1, a_2, \dots, a_n)$ in \mathbb{R}^n . Generalizing for the case $T : \mathbb{R}^n \to \mathbb{R}^m$, the objects in \mathbf{a} are now vectors in \mathbb{R}^m , i.e. $\mathbf{a}_j = T(\mathbf{e}_j)$, \mathbf{a} then becomes the matrix A, thus we have the form:

$$T(\mathbf{x}) = A\mathbf{x}$$

Example 1.3.1

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the counter-clockwise rotation by $\frac{\pi}{3}$ about the origin. Then T rotates the vector $\mathbf{e}_1 = (1,0)$ to the vector on the unit circle that makes an angle of $\frac{\pi}{3}$ with the positive x_1 -axis. That is $T(\mathbf{e}_1) = \left(\cos(\frac{\pi}{3}), \sin(\frac{\pi}{3})\right) = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$. Similarly, $T(\mathbf{e}_2) = \left(\cos(\frac{5\pi}{6}), \sin(\frac{5\pi}{6})\right) = \left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$. Hence the matrix of T with respect to the standard bases is:

$$A = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

Example 1.3.2

If $T: \mathbb{R}^3 \to \mathbb{R}^2$ is the projection of the $x_1x_2x_3$ space onto the x_1x_2 -plane, then $T(\mathbf{e}_1) = T(1,0,0) = (1,0)$, $T(\mathbf{e}_2) = T(0,1,0) = (0,1)$, and $T(\mathbf{e}_3) = T(0,0,0) = (0,0)$, therefore:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

1.4 The geometry of the dot product

Definition 1.4.1: Norm / Magnitude

Denoted by $\|\mathbf{x}\|$ is defined as:

$$\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$$

3

Proposition 1.1 |
$$\mathbf{x} \in \mathbb{R}^n$$
, then $\mathbf{x} \cdot \mathbf{x} = \|\mathbf{x}\|^2$
Proof. Both sides equal $x_1^2 + x_2^2 + \ldots + x_n^2$

⊜

Examining these notions in \mathbb{R}^2 , If $\mathbf{x} = (x_1, x_2)$, then $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2}$. By the Pythagorean theorem, this is the length of the hypotenuse of a right triangle with legs $|x_1|$ and $|x_2|$. If we think of \mathbf{x} as an arrow originating from the origin, then $\|\mathbf{x}\|$ is the length of the arrow, if instead we think of \mathbf{x} as point $\|\mathbf{x}\|$ is the distance from the point to the origin.

Given two points x and y in \mathbb{R}^2 , the distance between them is the length of the arrow that connects them $\vec{yx} = x - y$, Hence:

$$dist(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$$