

WHAT IS CLAIMED IS:

1 1. A method for detecting inactivation of a *CASP8* gene, comprising detecting
2 a modification of genomic DNA comprising the *CASP8* gene, wherein such a modification results
3 in inactivation of a *CASP8* gene.

Sub C1 2. The method according to claim 1, wherein the modification of genomic
DNA resulting in inactivation of a *CASP8* gene is detected by detecting the absence of a *CASP8*
protein in a sample from a cell.

Sub C2 3. The method according to claim 2, wherein the absence of a *CASP8* protein
is detected by a method selected from the group consisting of immunoassay and biochemical
assay.

Sub C3 4. The method according to claim 1, wherein the modification of genomic
DNA resulting in inactivation of a *CASP8* gene is methylation of *CASP8* promoter.

1 5. The method according to claim 4, wherein methylation of the *CASP8*
2 promoter is detected by methylation polymerase chain reaction (PCR) assay.

Sub C4 6. The method according to claim 1, wherein the modification of genomic
DNA resulting in inactivation of a *CASP8* gene is a mutation in the *CASP8* genomic gene.

- 1 7. The method according to claim 6, wherein the mutation is selected from the
2 group consisting of an insertion in the gene, a deletion of the gene, a truncation of the gene, a
3 nonsense mutation, a frameshift mutation, a splice-site mutation, and a missense mutation.
- 1 8. The method according to claim 6, wherein the mutation is a deletion in the
2 *CASP8* gene.
- 1 9. The method according to claim 8, wherein deletion of the *CASP8* gene is
2 detected with a labeled nucleic acid probe
- 1 10. A method for diagnosis or prognosis of a cancer comprising detecting
2 inactivation of a *CASP8* gene, wherein inactivation of the *CASP8* gene is indicative of the
3 presence of a cancer or a poor prognosis.
- 1 11. The method according to claim 10, wherein the cancer is a tumor in which
2 a *myc* gene is amplified.
- 1 12. The method according to claim 10, wherein the cancer is a neuroblastoma.
- 1 13. The method according to claim 10, wherein the modification of genomic
2 DNA resulting in inactivation of a *CASP8* gene is detected by detecting the absence of a *CASP8*
3 protein in a sample from a cell.

1 14. The method according to claim 13, wherein the absence of a CASP8
2 protein is detected by a method selected from the group consisting of immunoassay and
3 biochemical assay.

1 15. The method according to claim 10, wherein the modification of genomic
2 DNA resulting in inactivation of a *CASP8* gene is methylation of *CASP8* promoter.

1 16. The method according to claim 15, wherein methylation of the *CASP8*
2 promoter is detected by methylation polymerase chain reaction (PCR) assay.

1 17. The method according to claim 10, wherein the modification of genomic
2 DNA resulting in inactivation of a *CASP8* gene is a mutation in the *CASP8* genomic gene.

1 18. The method according to claim 17, wherein the mutation is selected from
2 the group consisting of an insertion in the gene, a deletion of the gene, a truncation of the gene, a
3 nonsense mutation, a frameshift mutation, a splice-site mutation, and a missense mutation.

1 19. The method according to claim 17, wherein the mutation is a deletion in the
2 *CASP8* gene.

1 20. The method according to claim 19, wherein deletion of the *CASP8* gene is
2 detected with a labeled nucleic acid probe.

1 21. A nucleic acid comprising at least a part of the genomic gene encoding
2 *CASP8*, wherein the nucleic acid is selected from the group consisting of:

- 3 a) a *CASP8* genomic DNA;
4 b) a *CASP8* promoter;
5 c) a nucleic acid amplified by primers that correspond to a sequence
6 selected from the group consisting of SEQ ID NOS: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12,
7 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, and 28;
8 d) a *CASP8* exon;
9 e) a *CASP8* intron;
10 f) a nucleic acid having at least 15 bases and hybridizable under
11 stringent conditions to a *CASP8* non-coding sequence.

1 22. The nucleic acid according to claim 21 which is a *CASP8* genomic DNA
2 having a nucleic acid sequence as depicted in SEQ ID NO: 3, 4, 5, 6, 7, 8, 9, or 10.

1 23. The nucleic acid according to claim 21 which is a *CASP8* promoter having
2 a nucleic acid sequence as depicted in SEQ ID NO: 1 or 2.

1 24. The nucleic acid according to claim 21 which is an oligonucleotide that
2 hybridizes to the *CASP8* promoter, wherein the oligonucleotide is a PCR primer for the promoter.

1 25. The nucleic acid according to claim 21 which is an oligonucleotide having
2 at least 15 bases and hybridizable under stringent conditions to a *CASP8* non-coding sequence,
3 which oligonucleotide is labeled.

1 26. A kit for detecting inactivation of a *CASP8* gene comprising a detection
2 assay for inactivation of a *CASP8* gene.

2 27. The kit of claim 26, wherein the detection assay is an immunoassay.

1 28. The kit of claim 26, wherein the detection assay comprises oligonucleotide
2 PCR primers for amplification of at least a part of *CASP8* genomic DNA.

1 29. The kit of claim 26, wherein the detection assay comprises a labeled
2 oligonucleotide of at least 15 bases that specifically hybridizes to *CASP8* genomic DNA.

1 30. A method of treating a cancer in a subject comprising administering an
2 amount of a vector that expresses a gene encoding functional *CASP8* effective to express a
3 functional level of *CASP8* into cells of the subject.

1 31. The method according to claim 30, wherein the cancer is a tumor in which
2 a *myc* gene is amplified.

1 32. The method according to claim 30, wherein the cancer is a neuroblastoma.

1 33. The method according to claim 30, wherein a *CASP8* gene is inactivated in
2 tumor cells of the cancer.

34. The method according to claim 30, wherein the vector comprises a promoter that provides for high level expression operatively associated with the gene encoding a functional *CASP8*, whereby the functional *CASP8* is expressed at high levels.

35. The method according to claim 30, wherein the vector is selected from the group consisting of a defective herpes virus (HSV) vector, a defective adenovirus vector, and a non-viral vector.

1 36. A vector that expresses a gene encoding functional human *CASP8* in
2 human target cells.

1 37. The vector of claim 36 comprising a promoter that provides for high level
2 expression operatively associated with the gene encoding a functional *CASP8*, whereby the
3 functional *CASP8* is expressed at high levels.

1 B27
2 38. A pharmaceutical composition for treating a cancer comprising the vector
of claim 32 and a pharmaceutically acceptable carrier.

1 39. A method of screening for a candidate compound that induces death-
2 receptor-mediated apoptosis in cells where a *CASP8* gene is inactivated, comprising contacting
3 cells in which a *CASP8* gene is inactivated with a candidate compound and detecting whether the
4 cell undergoes apoptosis.

1 40. The method according to claim 39, wherein the cell comprises a genetically
2 modified death receptor of the Fas/TNFR receptor family operably associated with a reporter
gene, whereby activation of the death receptor results in expression of the reporter gene.

1 41. The method according to claim 40, wherein the death receptor is DR3.

1 42. The method according to claim 40, wherein the reporter gene is a green
2 fluorescent protein (GFP).

1 43. The method according to claim 39, wherein inactivation of the *CASP8* gene
2 results from methylation of *CASP8* promoter.

1 44. The method according to claim 39, wherein inactivation of the *CASP8* gene

1 results from a mutation in the *CASP8* genomic gene.

1 45. A kit for screening for a candidate compound that induces death-receptor-
2 mediated apoptosis in cells where a *CASP8* gene is inactivated, comprising cells in which a
3 *CASP8* gene is inactivated and a detection assay for whether the cell undergoes apoptosis.

1 46. The kit of claim 45, wherein inactivation of the *CASP8* gene results from
2 methylation of *CASP8* promoter.

1 47. The kit of claim 45, wherein inactivation of the *CASP8* gene results from a
2 mutation in the *CASP8* genomic gene.

Add
C8