Low Power Design in CMOS

Why worry about power? -- Heat Dissipation

microprocessor power dissipation

Evolution in Power Dissipation

Digital Integrated Circuits

Low Power Design

© Prentice Hall 1995

Why worry about power – Portability

Multimedia Terminals
Laptop Computers
Digital Cellular Telephony

Expected Battery Lifetime increase over next 5 years: 30-40%

Where Does Power Go in CMOS?

Dynamic Power Consumption

Charging and Discharging Capacitors

Short Circuit Currents

Short Circuit Path between Supply Rails during Switching

Leakage

Leaking diodes and transistors

Dynamic Power Consumption

Energy/transition = $C_L * V_{dd}^2$

Power = Energy/transition * $f = C_L * V_{dd}^2 * f$

- Not a function of transistor sizes!
- ullet Need to reduce C_L, V_{dd}, and f to reduce power.

Dynamic Power Consumption - Revisited

Power = Energy/transition * transition rate

=
$$C_L * V_{dd}^2 * f_{0 \to 1}$$

= $C_L * V_{dd}^2 * P_{0 \to 1} * f$
= $C_{EFF} * V_{dd}^2 * f$

Power Dissipation is Data Dependent Function of Switching Activity

 C_{EFF} = Effective Capacitance = $C_L * P_{0 \rightarrow 1}$

Power Consumption is Data Dependent

Example: Static 2 Input NOR Gate

A	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

Truth Table of 2 input NOR gate

Assume:

$$P(A=1) = 1/2$$

$$P(B=1) = 1/2$$

Then:

$$P(Out=1) = 1/4$$

 $P(O \rightarrow 1)$
= $P(Out=0).P(Out=1)$
= $3/4 \times 1/4 = 3/16$

$$C_{EFF} = 3/16 * C_{L}$$

Transition Probabilities for Basic Gates

	$P_{0\rightarrow 1}$
AND	$(1-P_AP_B)P_AP_B$
OR	$(1-P_A)(1-P_B)(1-(1-P_A)(1-P_B))$
EXOR	$(1 - (P_A + P_B - 2P_A P_B))(P_A + P_B - 2P_A P_B)$

Switching Activity for Static CMOS

$$P_{0\rightarrow 1} = P_0 \cdot P_1$$

Transition Probability of 2-input NOR Gate

$$p_1 = (1 - p_a) \ (1 - p_b)$$

$$p_{0 \to 1} = p_0 \ p_1 = (1 - (1 - p_a) \ (1 - p_b)) \ (1 - p_a) \ (1 - p_b)$$

 \bullet $\alpha_{0->1}$ is a strong function of signal statistics

Problem: Reconvergent Fanout

$$P(Z=1) = P(B=1) \cdot P(X=1 | B=1)$$

Becomes complex and intractable real fast

How about Dynamic Circuits?

Power is Only Dissipated when Out=0!

$$C_{EFF} = P(Out=0).C_L$$

4-input NAND Gate

Example: Dynamic 2 Input NOR Gate

A	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

Truth Table of 2 input NOR gate

Assume:

$$P(A=1) = 1/2$$

$$P(B=1) = 1/2$$

Then:

$$P(Out=0) = 3/4$$

$$C_{EFF} = 3/4 * C_L$$

Switching Activity Is Always Higher in Dynamic Circuits

Transition Probabilities for Dynamic Gates

	$P_{0\rightarrow 1}$	
AND	$(1-P_AP_B)$	
OR	$(1-P_{A})(1-P_{B})$	
EXOR	$(1 - (P_A + P_B - 2P_A P_B))$	

Switching Activity for Precharged Dynamic Gates

$$P_{0\rightarrow 1} = P_0$$

Glitching in Static CMOS

also called: dynamic hazards

Observe: No glitching in dynamic circuits

Example 1: Chain of NOR Gates

Example 2: Adder Circuit

Digital Integrated Circuits Low Power Design © Prentice Hall 1995

How to Cope with Glitching?

Equalize Lengths of Timing Paths Through Design

Short Circuit Currents

Impact of rise/fall times on short-circuit currents

Large capacitive load

Small capacitive load

Short-circuit energy as a function of slope ratio

The power dissipation due to short circuit currents is minimized by matching the rise/fall times of the input and output signals.

Static Power Consumption

$$P_{\text{stat}} = P_{(\text{In}=1)} \cdot V_{\text{dd}} \cdot I_{\text{stat}}$$

- Dominates over dynamic consumption
- Not a function of switching frequency

Leakage

Sub-Threshold Current Dominant Factor

Sub-Threshold in MOS

Lower Bound on Threshold to Prevent Leakage

Digital Integrated Circuits Low Power Design © Prentice Hall 1995

Power Analysis in SPICE

Equivalent Circuit for Measuring Power in SPICE

$$C\frac{dP_{av}}{dt} = ki_{DD}$$

$$or$$

$$P_{av} = \frac{k}{C} \int_{0}^{t} DD^{dt}$$

Design for Worst Case

Here it is assumed that $R_p = R_n$

Reducing V_{dd}

$$P \times t_d = E_t = C_L * V_{dd}^2$$

$$\frac{E(Vdd=2)}{E(Vdd=5)} = \frac{(C_L) * (2)^2}{(C_L) * (5)^2}$$

$$E(Vdd=2) \approx 0.16 E(Vdd=5)$$

- Strong function of voltage (V² dependence).
- Relatively independent of logic function and style.
- ullet Power Delay Product Improves with lowering V_{DD} .

Lower V_{dd} Increases Delay

$$T_{d} = \frac{C_{L} * V_{dd}}{I}$$

$$I \sim (V_{dd} - V_t)^2$$

$$\frac{T_{d(Vdd=2)}}{T_{d(Vdd=5)}} = \frac{(2) * (5 - 0.7)^{2}}{(5) * (2 - 0.7)^{2}}$$

$$\approx 4$$

Relatively independent of logic function and style.

Lowering the Threshold

Reduces the Speed Loss, But Increases Leakage

Interesting Design Approach: $DESIGN FOR P_{Leakage} == P_{Dynamic}$

Transistor Sizing for Power Minimization

- Larger sized devices are useful only when interconnect dominated.
- Minimum sized devices are usually optimal for low-power.

Digital Integrated Circuits Low Power Design © Prentice Hall 1995

Transistor Sizing for Fixed Throughput

HIGH PERFORMANCE

 $W/L \gg C_P / (K C_{MIN})$

LOW POWER

 $W/L = 2 C_P / (K C_{MIN})$ (if $C_P \ge K C_{MIN}$)

ELSE W/L = 1

 C_{MIN} = Minimum sized gate (W/L=1) W /L after sizing

 $\alpha = C_P / (K C_{MIN})$

Low Power Design

© Prentice Hall 1995

Reducing Effective Capacitance

Global bus architecture

Local bus architecture

Shared Resources incur Switching Overhead

Summary

- Power Dissipation is becoming Prime Design Constraint
- Low Power Design requires Optimization at all Levels

• Sources of Power Dissipation are well characterized

• Low Power Design requires operation at lowest possible voltage and clock speed