Pricing

(Stochastic Processes and Financial Applications)

Hélyette GEMAN

Lecture 3 (22 Jan. 2013)

1 Recapitulation

For a given stock S, the first derivatives that we can build are the forward contracts with expiry T', whose price we denote $f^{T'}(t)$, and the future contracts with expiry T', whose price we denote $F^{T'}(t)$. Due to the absence of arbitrage, we can assert the relation of their price at maturity $f^{T'}(T') = S(T') = F^{T'}(T')$. The primary differences are:

Forwards	Futures
over-the-counter	exchange-traded
sparse quotes	continuously observed prices
customised	standardized
no deposit	margin deposits
no interim cash flows	daily cash flows (margin calls) of $F^{T'}(t+1) - F^{T'}(t)$

We would like to understand the relation of $f^{T'}(t)$ and $F^{T'}(t)$ before maturity, i.e. at t < T'. We recall:

Theorem 1 (Cox Ingersoll Ross (1981)). Assuming no credit risk in the economy, and

- 1. constant interest rates, then $F^{T'}(t) = f^{T'}(t)$
- 2. stochastic interest rates, then $F^{T'}(t) = f^{T'}(t)$ as long as there is no correlation between S and the interest rate

2 Effect of Interest Rates

Let us consider the assets and situations we have seen to date:

- 1. In the Black-Scholes (1976) setting, interest rates are constant and $F^{T'}(t) = f^{T'}(t)$
- 2. If interest rates are stochastic, and T' >> t, i.e. we are sufficiently far from maturity for interest rates to matter:
 - (a) If the underlying S is a commodity such as wheat or corn, then we can safely say that Corr(S, r) = 0, and then $F^{T'}(t) = f^{T'}(t)$.
 - (b) If S is a stock, then changes in the stock price are inversely correlated to the interest rate (when interest rates decrease, stock prices increase), so $F^{T'}(t) \neq f^{T'}(t)$.

 $Remark\ 1.$ In banks, there is frequently a desk called "Delta One" (i.e. all derivatives must have $\Delta=1$) that deals with this: they trade forwards and futures knowing their price differs and trying to identify mispricings. The \$6 billion loss incurred by Jérôme Kerviel at Société Générale occured while he was working on the Delta One desk. Theoretically he was hedged, long $F^{T'}$ and short $f^{T'}$, but in reality he did not have a position in $f^{T'}$.

- (c) If S is a currency, then as exchange rate differentials are highly correlated to interest rate differentials, $Corr(S, r) \neq 0$, so $F^{T'}(t) \neq f^{T'}(t)$.
- 3. If we incorporate credit risk into the analysis, then if the long counterparty has a better credit profile we will have $F^{T'}(t) > f^{T'}(t)$. The difference between the two will increase with the credit spread.
- 4. In the situation of stochastic interest rates and any general asset S, then $F^{T'}(t) \neq f^{T'}(t)$.

We mentioned last week (with no proof) the "spot-forward" relationship in the case of the constant interest rate. We will now extend it to stochastic interest rates.

Theorem 2. Let S be a generic risky asset (with no cash flows and making no assumptions on the dynamics of S(t)) and let $B^{T'}$ be a zero-coupon bond paying \$1 at date $B^{T'}$ (with price $B^{T'}(t)$ at time t). Then

$$f^{T'}(t) = \frac{S(t)}{B^{T'}(t)}$$

and, since $B^{T'}(t) < 1$ when t < T'

$$f^{T'}(t) < S(t)$$

Proof. We will invoke the no-arbitrage condition and, as always, build a replicating portfolio. At time t, we sell a forward contract written on S expiring at time T'. We buy S and have negative cash flow of -S(t). We finance this by borrowing S(t). At time T', we deliver S, receive our forward price $f^{T'}(t)$, and repay our loan with interest, $\frac{S(t)}{B^{T'}(t)}$. Our cash flow (and portfolio value) looks like this:

at time t		at time T'		
action	cash flow	action	cash flow	
borrow cash	+S(t)	repay loan	$-\frac{S(t)}{B^{T'}(t)}$	
buy stock	-S(t)	deliver stock	0 `	
write a forward	0	recive forward price	$f^{T'}(t)$	
total $V_p(t)$	0	total $V_p(T')$	$f^{T'}(t) - \frac{S(t)}{B^{T'}(t)}$	

Since the value of our portfolio at time t is zero, and we have no interim cash flows, then we known by no arbitrage that the value of our portfolio at time T' > t also must be zero. Therefore

$$f^{T'}(t) - \frac{S(t)}{B^{T'}(t)} = 0 \qquad \Longrightarrow \qquad f^{T'}(t) = \frac{S(t)}{B^{T'}(t)}$$

We can now consider variations of this argument, with the same starting assumptions, for different assets:

1. Let S be a stock paying a continuous dividend q under stochastic interest rates. Recall that when you own S over the period (t, t + dt) you receive the dividend amount $g dt \cdot S(t)$. We immediately reinvest this dividend, i.e. purchase more shares of S at the prevaling price S(t + dt). The number of shares owned thus grows at the rate g; i.e., if we start at date t with one share, than at T' we will have $e^{q(T'-t)}$ shares.

Our replicating portfolio works as follows: at time t, we buy $e^{-q(T'-t)}$ shares for each share of S we need to deliver according to the contract f, and have negative cash flow of $-S(t)e^{-q(T'-t)}$. We finance this by borrowing $S(t)e^{-q(T'-t)}$, and sell a forward contract written on S expiring at time T'. At time T', we deliver the resulting shares of S, receive our forward price $f^{T'}(t)$, and repay our loan. Our cash flow looks like this:

at time t		at time T'		
action	cash flow	action	cash flow	
borrow cash	$+S(t)e^{-q(T'-t)}$ $-S(t)e^{-q(T'-t)}$	repay loan	$-\frac{S(t)e^{-q(T'-t)}}{B^{T'}(t)}$	
buy stock	$-S(t)e^{-q(T'-t)}$	deliver stock	0	
write a forward	0	recive forward price	$f^{T'}(t)$	
total $V_p(t)$	0	total $V_p(T')$	$f^{T'}(t) - \frac{S(t)e^{-q(T'-t)}}{B^{T'}(t)}$	

As before, the initial portfolio value is zero, so we can invoke the no-arbitrage condition to get:

$$f^{T'}(t) = \frac{S(t)e^{-q(T'-t)}}{B^{T'}(t)}$$

2. Let S be a commodity under stochastic interest rates. Ownership of a commodity gives you the benefit of a convenience yield y (Kaldoz 1949). Under stochastic interest rates we can consider y to be equivalent to the dividend yield of a stock, and so by the above argument:

$$f^{T'}(t) = \frac{S(t)e^{-y(T'-t)}}{B^{T'}(t)}$$

3. Let S be a currency under stochastic interest rates. We need to consider which economy of the currency pair we are in. As an example, let the domestic currency be U.S. dollars (\$) and the foreign currency be Japanese yen (\mathbb{Y}). Let X(t) be the number of dollars I need at date t to buy one unit of yen. If I need to make a payment in yen in 6 months (at T'), I can either buy the yen today in the spot market or I can buy a forward contract with maturity T'. Under no-arbitrage, these two transactions should have the same price:

$$f^{T'}(t) = \frac{X(t)B_{\text{foreign}}^{T'}(t)}{B_{\text{domestic}}^{T'}(t)}$$

That is, the currency behaves like a dividend-paying *domestic* stock with the dividend rate equal to the short-term rate in the *foreign* economy.

3 Valuing Risky Cash Flows Under Stochastic Interest Rates

Recall we showed that in the Black-Scholes setting, under the assumption of no arbitrage, we were able to construct a probability measure \mathbb{Q} , equivalent to \mathbb{P} , such that the discounted prices $S_j(t)e^{-rt}$ of the primitive securities S_j (including the money market account S_0) were \mathbb{Q} -martingales.

Recall also that the assumption of "constant rates" in the Black-Scholes setting was sloppy. In continuous time, we should specify that the interest rate of significance is the short-term (or overnight) rate r(t) prevailing on $(t, t + \mathrm{d}t)$. This rate is also the base rate against which other variable rates (such as mortgages) are defined, and which is affected by monetary policy.

Consider the money market account:

$$M(t + dt) = M(t) + r(t)M(t) dt$$
 \Longrightarrow $dM(t) = r(t)M(t) dt$

In the particular case when the short-term rate is constant, r(t) = r, we have the ODE

$$dM(t) = rM(t) dt$$

which has solution

$$M(t) = e^{rt}M(0)$$
 or $M(t) = e^{rt}$

if, as usual, we define M(0) = 1.

For the general case r(t) is not constant: it evolves randomly over time. The solution then becomes

$$M(t) = M(0) \exp \left\{ \int_0^t r(s) ds \right\}$$
 or $M(t) = \exp \left\{ \int_0^t r(s) ds \right\}$

if M(0) = 1. At time 0, this quantity is unknown, and so the money market account is no longer risk-free. Hence, results need to be adjusted.

Let $\widetilde{\Phi}_T$ denote a contingent claim paying a unique cashflow at date T that is *attainable*, that is, it has at least one replicating portfolio build from primitive securities. We will show that

$$V_t(\widetilde{\Phi}_T) = \mathbb{E}_{\mathbb{Q}} \left[\widetilde{\Phi}_T e^{-\int_t^T r(s)ds} \middle/ \mathcal{F}_t \right]$$

Consider two particular cases:

- 1. Return for a second to constant interest rates. Then clearly the discount factor can be moved outside the expectation (see the second proof of the Black-Scholes formula).
- 2. Consider the case when $\widetilde{\Phi}_T$ is constant. Assume that $\widetilde{\Phi}_T = 1$. Then by no-arbitrage we have:

$$V_t(\widetilde{\Phi}_T) = \mathbb{E}_{\mathbb{Q}}\left[1 \cdot e^{-\int_t^T r(s)ds} \middle/ \mathcal{F}_t\right] = B^T(t)$$

where B^T are short-term bonds, and by definition

$$B^{T}(t) = \mathbb{E}_{\mathbb{Q}} \left[e^{-\int_{t}^{T} r(s)ds} \middle/ \mathcal{F}_{t} \right]$$

 B^T has beautiful properties:

- (a) It appears in the equation as a discount factor with no assumptions about interest rates.
- (b) It is actively and continuously traded in the market, and remarkably liquid.
- (c) At maturity, $B^T(T) = 1$.

We see that in contrast,

$$M(T) = M(t) \mathbb{E}_{\mathbb{Q}} \left[e^{\int_{t}^{T} r(s)ds} \middle/ \mathcal{F}_{t} \right]$$

so there is nothing remarkable about M(T), and we prefer to use B_T in this case.

Recall our FFTAP,¹ which stated that by the no-arbitrage condition, $S_j e^{-rt}$ are \mathbb{Q} -martingales. In fact, assuming M(0) = 1, then

$$S_j(t)e^{-rt} = \frac{S_j(t)}{M(t)}$$

under the constant interest rate.

4 Change of Measure to Handle Stochastic Interest Rates

Recall that by the Cameron-Martin-Girsanov theorem, we could transform the measure \mathbb{P} into the measure \mathbb{Q} , that absorbed the market price of equity risk λ .

Now under stochastic interest rates we have

$$V_t(\widetilde{\Phi}_T) = \mathbb{E}_{\mathbb{Q}} \left[\widetilde{\Phi}_T e^{-\int_t^T r(s)ds} \middle/ \mathcal{F}_t \right]$$

Consider the case when the two components are independent. Then the expectation of the product is the product of the expectations,

$$V_{t}(\widetilde{\Phi}_{T}) = \mathbb{E}_{\mathbb{Q}}\left[\widetilde{\Phi}_{T} \middle/ \mathcal{F}_{t}\right] \mathbb{E}_{\mathbb{Q}}\left[e^{-\int_{t}^{T} r(s)ds} \middle/ \mathcal{F}_{t}\right] = \mathbb{E}_{\mathbb{Q}}\left[\widetilde{\Phi}_{T} \middle/ \mathcal{F}_{t}\right] B^{T}(t)$$

If they are not, then we need to separate the terms in some other way. We can do this by changing the measure on $(\Omega, \sigma(\Omega))$. Consider the Radon-Nikodym derivative defining a new measure \mathbb{Q}_T with respect to \mathbb{Q} that removes the interest rate term:

$$\frac{\mathrm{d}\mathbb{Q}_T}{\mathrm{d}\mathbb{Q}} = e^{-\int_t^T r(s)ds} \qquad \Longrightarrow \qquad \mathbb{E}_{\mathbb{Q}}\left[\frac{\mathrm{d}\mathbb{Q}_T}{\mathrm{d}\mathbb{Q}}\right] = \mathbb{E}_{\mathbb{Q}}\left[e^{-\int_t^T r(s)ds}\right] = B^T(t)$$

It will be more convenient for us to have $\mathbb{E}_{\mathbb{Q}}\left[\frac{d\mathbb{Q}_T}{d\mathbb{Q}}\right]=1$ and so we define

$$\frac{\mathrm{d}\mathbb{Q}_T}{\mathrm{d}\mathbb{Q}} = \frac{e^{-\int_t^T r(s)ds}}{B^T(t)}$$

¹First Fundamental Theorem of Asset Pricing

We can use this to rewrite

$$V_t(\widetilde{\Phi}_T) = \mathbb{E}_{\mathbb{Q}} \left[\widetilde{\Phi}_T e^{-\int_t^T r(s)ds} \middle/ \mathcal{F}_t \right] = \mathbb{E}_{\mathbb{Q}} \left[\widetilde{\Phi}_T B^T(t) \frac{\mathrm{d}\mathbb{Q}_T}{\mathrm{d}\mathbb{Q}} \middle/ \mathcal{F}_t \right]$$

But $B^T(t)$ is observed and known at time t:

$$V_t(\widetilde{\Phi}_T) = B^T(t) \, \mathbb{E}_{\mathbb{Q}} \left[\widetilde{\Phi}_T \frac{\mathrm{d}\mathbb{Q}_T}{\mathrm{d}\mathbb{Q}} \middle/ \mathcal{F}_t \right]$$

Knowing that

$$\mathbb{E}_{\mathbb{Q}}\left[X\right] = \int_{\Omega} X \, \mathrm{d}\mathbb{Q}$$

We can now change the measure of our expectation:

$$\mathbb{E}_{\mathbb{Q}}\left[\widetilde{\Phi}_{T}\frac{\mathrm{d}\mathbb{Q}_{T}}{\mathrm{d}\mathbb{Q}}\middle/\mathcal{F}_{t}\right] = \int_{\Omega}\widetilde{\Phi}_{T}\frac{\mathrm{d}\mathbb{Q}_{T}}{\mathrm{d}\mathbb{Q}}\,\mathrm{d}\mathbb{Q} = \int_{\Omega}\widetilde{\Phi}_{T}\,\mathrm{d}\mathbb{Q}_{T} = \mathbb{E}_{\mathbb{Q}_{T}}\left[\widetilde{\Phi}_{T}\middle/\mathcal{F}_{t}\right]$$

And we end up with:

$$V_t(\widetilde{\Phi}_T) = B^T(t) \, \mathbb{E}_{\mathbb{Q}_T} \left[\widetilde{\Phi}_T \middle/ \mathcal{F}_t \right]$$

Let us apply the result to a non-dividend-paying stock S. Specifically, in the above formula, we substitute $\widetilde{\Phi}_T = S(T)$. By no-arbitrage and the above result,

$$S(t) = V_t(S(T)) = B^T(t) \mathbb{E}_{\mathbb{O}_T}[S(T)/\mathcal{F}_t]$$

so

$$\frac{S(t)}{B^T(t)} = \mathbb{E}_{\mathbb{Q}_T} \left[S(T) \middle/ \mathcal{F}_t \right] = \mathbb{E}_{\mathbb{Q}_T} \left[\frac{S(T)}{1} \middle/ \mathcal{F}_t \right] = \mathbb{E}_{\mathbb{Q}_T} \left[\frac{S(T)}{B_T(T)} \middle/ \mathcal{F}_t \right]$$

Remark 2 (Geman 1989). We recall that $\frac{S(t)}{B^T(t)}$ is the T-forward price of S at time t, $f^T(t)$. Thus

$$f^{T}(t) = \mathbb{E}_{\mathbb{O}_{T}} \left[f_{T}(T) / \mathcal{F}_{t} \right]$$

That is, the T-forward price of S is a \mathbb{Q}_T -martingale, and we call \mathbb{Q}_T the T-forward measure .