

Ex. 15: (X,A) has HEP if · JA=N W/ N closed, B=N St. A=N/B is o Pen · Jf: B > A homeo, homeo, W/ h/AOB = Id Note:] IXI Tet IX {0}UDIXI BXIXI SBXIX{0}UBUJIUI MfXI ret MfX{0}U (AUB)XI =) (Mf, AUB) has HEP => (N, AUB) has HEP The FRANTSY Take Const Homotopy on X (NB), and extend to N via HEP on (N, AUB).

(16)
Pf of . 19: Let g: Y >> X. be the h.e.
1) g = g1, w/ g/A = 1/A
Let $\mathfrak{g}_{h_t} \to X$ be s.t $f \circ g \simeq_{h_t} 1_X$.
Since fla=IA, htla = flaogla=gdA=IA
Since (Y,A), have HEP, we can extend help to gt: Y-> X. This yields g=gt g1
2) g, of = 11 rel A. The idea here is to send g, back to g, then use the original homotopy gof = ht I
$K_{t}(x) = \begin{cases} g_{1-2t} \circ J & t \leq \frac{1}{2} \\ h_{2t-1} & t = \frac{1}{2} \end{cases}$
$A \longrightarrow X$
This is a continuous map (t=\frac{1}{2}). The issue here
is that ken does not fix A. Thus we add another parameter u E I:
Below V, desine $K_{t,u} = K_t$ $K_{t,u} = K_u$
Γ (X,A) HEP \Rightarrow $(X\times T,A\times I)$ HE

=> Ktn extends to Ktn: X>X W/ Kto=Kt => Left >> Right Top >> Right yie lds Commutative Algebra 9.5=1 rel A.

3) fg,~ I relA: $g_{,\sim}g \Rightarrow fg_{,\sim}fg^{\sim}I_{y}$ Same pf as $z \Rightarrow can be made rel A$ Oct 4 Refer to notes 1, Bottom of pg 7 - Top of pg 10 Oct GAN or Mountain Day: Paths , Homotopy We will Study a Space X by study all of the loops / paths in x mod homotopy Defn a path in X from Xo to X, is a continuous map $p: [0,1]=I \rightarrow X$ 5.t. $p(0) = X_0, p(1) = X_1$ Ex/Let 51 be parameterized by

Ex/Let S^{2} be parameterized by $\Theta \in [0,1]$, $w/\Theta = 0=1$. Equivalently, $S^{1} = \mathbb{R}/\mathbb{Z}$.

Consider $\mathbb{R}^{2} \cdot [0,1] \to S^{1}$ $\mathbb{R}^{2} \times \mathbb{R} \to \mathbb{R}^{2} \times \mathbb{R}$.

Prop 1.2 Pi=P2=P3 => Pi=P3. Thus homotopy of paths is an eq. rel. PS: Standard 2t and 2t-1 trick. Composition: $f \cdot g(t) = \begin{cases} f(zt) & t \leq \frac{1}{2} \\ g(zt-1) & t \geq \frac{1}{2} \end{cases}$ for f a path from Xo to X, and g a path from X, to Xz Consider the set of paths from) called loops at xo in X. REPORT OF THE PROPERTY OF THE ** Defn** The Fundamental Group of X @ X, $\pi_{1}(X,X_{0}) = L(X,X_{0}) / \sim$ where Po-Pi (=> Po~Pi

Propo: Jy(XIXO) is a group under Composition. Pf: Identity: PSB P=Ex= & EDXO Composition of paths is a path: Pior is a continuous map I Inverses exist: Let p be Let (suggestively) p-1=P:[0,1] >X: t -> p(1-t) Note PETG(X,xo), as tHI-t is continuous and $\bar{p}(0) = \bar{p}(1) = x_0$. Consider

