

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería Mecánica Automotriz

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
Electromagnetismo		

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Tercer	311034	102

OBJETIVO(S) GENERAL(ES)DE LA ASIGNATURA

Al finalizar el curso el estudiante tendrá los conocimientos, habilidades y aptitudes necesarios para comprender los fenómenos eléctricos y magnéticos, así como resolver problemas prácticos en la ingeniería y la física relacionados con el diseño y funcionamiento de dispositivos eléctricos y electrónicos.

TEMAS Y SUBTEMAS

1. Campo eléctrico y Potencial eléctrico

- 1.1Ley de Coulomb
- 1.2El Campo eléctrico E
- 1.3Partículas cargadas en un campo eléctrico
- 1.4Flujo eléctrico
- 1.5Ley de Gauss
- 1.6Diferencia de potencial y potencial eléctrico
- 1.70btención de E a partir del potencial eléctrico
- 1.8Experimento de Milikan
- 1.9Aplicaciones de la electrostática

2. Capacitancia y corriente eléctrica

- 2.1Calculo de la capacitancia
- 2.2Combinación de capacitores
- 2.3Energía almacenada en un capacitor
- 2.4Corriente eléctrica
- 2.5Resistencia y ley de Ohm
- 2.6Energía eléctrica y potencia
- 2.7Fuerza electromotriz
- 2.8Resistencias en serie y en paralelo
- 2.9Reglas de Kirchhoff
- 2.10Circuitos RC

3. Campos Magnéticos

- 3.1Fuerza magnética sobre un conductor conduciendo corriente
- 3.2Aplicaciones de movimiento de partículas cargadas en un campo magnético
- 3.3El efecto Hall
- 3.4Ley de Biot-Savart
- 3.5Aplicaciones de fuerza magnética
- 3.6La ley de Ampere
- 3.7Flujo magnético
- 3.8La ley de Gauss en el magnetismo

4. Inducción electromagnética e Inductancia

- 4.1 Ley de Inducción de Faraday
- 4.2 Fem de movimiento
- 4.3 Ley de Lenz
- 4.4 Generadores y motores
- 4.5 Autoinductancia
- 4.6 Circuitos RL
- 4.7 Energía en un campo magnético
- 4.8 Inductancia mutua
- 4.9 El circuito RLC
- 4.10 Aplicaciones a transformadores

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora y proyector.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá otro 50%, la suma de estos dos porcentajes dará la calificación final

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

Básica:

Física, vol. 2. Resnik, R. y Halliday, D. CECSA, 1999. Cuarta edición. México.

Física, vol 2. Serway, R., Faughn, J. S. Pearson Educación, 2001. Quinta edición. México.

Física, vol. 2: Campos y Ondas. Alonso, M y Finn, E. Fondo educativo Interamericana. 1990. México.

Física, vol. 2. Tipler, P. A. Edit. Reverté. 1994. Tercera edición. España.

Consulta:

Fundamentos de Física II. Bueche, F. McGraw-Hilll, 1991. Tercera edición. México.

University Physics. Young, H. D. Addison Wesley. 1992. 8a Edición. USA.

Física Universitaria, vol 2. Sears, F. W.; Zemansky, M. W.; Young, H. D. y Freedman, R. A. Pearson Addison Wesley. 2004. 11a edición. México

PERFIL PROFESIONAL DEL DOCENTE

Maestría o doctorado en física o en Ingeniería eléctrica.

M.C. VÍCTOR MANUEL CRUZ MARTÍNEZ
JEFE DE CARRERA

DR. AGUSTINISANTIAGO ALVARADO-VICE-RECTOR ACADÉMICO

AUTORIZÓ

JEFATURA DE CARRERA
DE INGENIERÍA MECÁNICA
AUTOMOTRIZ