Tarefa 4 – Gráficos e Método dos Mínimos Quadrados

Gustavo Dias de Oliveira

Matrícula: 202010078511

Descrição da Tarefa

A tarefa se resume em aprender produzir gráficos e analisar dados usando o método dos mínimos quadrados, e fazer a apresentação dos dados e gráficos.

Apresentação da tarefa

Nesta tarefa, iremos utilizar o método dos mínimos quadrados para fazer a análise dos dados a formação dos gráficos e os ajustes lineares de cada situação em que foi dada.

Dados 1 - Movimento Uniforme

Fórmula: $s = s0 + v \cdot t$

s(m)	delta(s)	t(s)	delta(t)
20	15	2	1
35	15	3	1
50	15	4	1
55	15	5	1
70	15	6	1
86	15	7	1
99	15	8	1
115	15	9	1
125	15	10	1
140	15	11	1
150	15	12	1
160	15	13	1
180	15	14	1
195	15	15	1
200	15	16	1

Fazendo s = y e t = x, devido a formula dada, temos o gráfico:

Nesse gráfico A = V (velocidade), que deu 13,08. Bem próximo do valor referência 13 m/s, com uma precisão no resultado de 93%.

E o B = s0 (Distancia inicial), que deu -5,77. Também próximo ao valor referência -5,8 m, com uma precisão no resultado de 254%.

Com estes resultados conseguimos ver que os valores são bem próximo aos referenciais, logo, é um bom gráfico.

Dados 2 - Densidade

Fórmula: $d = \frac{m}{V}$

m (g)	V (cm³)	delta(m)	delta(V)
9	49	5	10
20	108	5	10
28	155	5	10
42	223	5	10
55	290	5	10

Mudando fórmula para: $m \cdot (V) = d \cdot V$

Fazendo m = y e V = x, devido a formula dada, temos o gráfico:

Nesse gráfico A = d (densidade), que deu 0,19. Bem próximo do valor referência 0,2 g/cm³, com uma precisão no resultado de 86%.

E B deveria dar um valor próximo de Zero, o que de fato acontece.

Com estes resultados conseguimos ver que os valores são bem próximo aos referenciais, logo, é um bom gráfico.

Dados 3 - Kepler

T(anos)	R(u.a.)	
0,241	0,387	
0,615	0,723	
1,000	1,000	
1,888	1,524	
11,860	5,204	
29,600	9,580	
83,700	19,140	
165,400	30,200	
248,000	39,400	

Fazendo T = y e R = x , temos o gráfico não linear:

Para fazer um segundo gráfico linear, precisamos fazer y = T^2 e x = R^3 . A ideia é calcular a constante 'K' e, a partir do resultado, obter a constante gravitacional 'G', $K=\frac{4\,\pi^2}{MG}$, onde M é a massa do sol.

Assim, ao fazer o gráfico veremos que ele tem um comportamento linear

Nesse gráfico A = K, que deu 1,004. Bem próximo do valor referência 1 N/m com uma precisão no resultado de 99%.

E B deveria dar um valor próximo de Zero, e considerando o desvio o valor realmente passa sobre o zero.

Com estes resultados conseguimos ver que os valores são bem próximo aos referenciais, logo, é um gráfico razoavelmente bom, mas o experimento deve ser melhorado.

Dados 4 - Massa-Mola

10*T(s)	m(g)	delta(10T)	delta(m)
4	4	1	2
6	9	1	2
7	12	1	2
8	17	1	2
10	26	1	2
13	40	1	2
15	60	1	2
20	100	1	2

Fazendo T = y e m = x, temos o gráfico não linear:

Agora devemos mudar o y para $y = T^2 e o x mantem, x = m$. Ele deve devera ser linear, já que

$$T^2 = \frac{4\pi^2}{k} \cdot m$$
 , A ideia é calcular a constante 'k'.

Assim, ao fazer o gráfico veremos que ele tem um comportamento linear

Nesse gráfico $A=\frac{4\pi^2}{K}$, que deu 3,96 com precisão no resultado de 99%. Fazendo as contas obtive o valor de 9,95 para K, sendo o valor referência igual a 1.

E B deveria dar um valor próximo de Zero, o que de fato ocorre.

Com estes resultados conseguimos ver que os valores mesmo havendo uma pequena diferença, vemos que é um gráfico razoavelmente bom, porem deve-se melhorar os experimentos.

Dados 5 - Capacitor

ddp(V)	delta(ddp)	t(s)	delta(t)
203	1	2	1
195	1	3	1
187	1	4	1
180	1	5	1
173	1	6	1
160	1	8	1
147	1	10	1
136	1	12	1
126	1	14	1
116	1	16	1
99	1	20	1
84	1	24	1
66	1	30	1
54	1	35	1
44	1	40	1
36	1	45	1
30	1	50	1
13	1	70	1
6	1	90	1
3	1	110	1

Fazendo ddp = y e t = x , temos o gráfico não linear

Agora faremos uma mudança na escala y. o motivo da mudança, e pela ddp ter uma tendência exponencial decrescente ao longo do tempo. A expressão comportamental da

$$ddp = V0 \exp\left[\frac{-t}{ddp}\right].$$

V0 é o valor da tensão nos terminais do capacitor no instante t = 0 s

tau é a chamada constante de tempo do circuito RC (tau = RC).

A divisão da expressão por V0 e aplicar logaritmo neperiano em ambos os lados da equação teremos:

$$\ln\left[\frac{ddp}{V0}\right] = \left(\frac{-1}{tau}\right) * t$$

Usando novamente as propriedades logaritmos:

$$\ln[ddp] = \left(\frac{-1}{tau}\right) * t + \ln[V0]$$

Assim, se fizermos uma mudança de escala de tal forma que y = log[ddp], teremos um comportamento linear no gráfico.

Nesse gráfico $A=\frac{-1}{tau}$, que deu -0,039 com precisão no resultado de 100%. Fazendo as contas obtive o valor de 25,25 para tau, sendo o valor referência igual a 25 s.

E B=ln[V0] com precisão no resultado de 99%. Fazendo as contas obtive o valor de 217,84 para V0, sendo o valor referência igual a 218 V.

Com estes resultados conseguimos ver que os valores estão bem próximos aos referenciais, logo, é um bom grafico.