

Training Data: Keep or Discard?

- Parametric methods (linear/nonlinear) so far:
 - Learn parameter vector **w** or posterior distribution $p(\mathbf{w}|\mathcal{D})$
 - Discard training data D
- Non-parametric methods:
 - Parzen probability density model: set of kernel functions centered on training data points
 - Nearest neighbors technique: closest example(s) from the training set
 - Memory-based methods: similar examples from the training set
- Kernel methods:
 - Prediction is based on linear combinations of a kernel function evaluated at the training data points

Kernel Functions

For models based on feature space mapping $\phi(x)$:

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{\phi}(\mathbf{x})^{\mathsf{T}} \mathbf{\phi}(\mathbf{x}')$$

- Symmetric function: $k(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}', \mathbf{x})$
- simple example linear kernel: $\phi(x) = x$
- stationary kernel: $k(\mathbf{x}, \mathbf{x}') = k(\mathbf{x} \mathbf{x}')$
- homogeneous kernel: $k(\mathbf{x}, \mathbf{x}') = k(||\mathbf{x} \mathbf{x}'||)$

Algorithm, expressed in terms of scalar products can be reformulated using kernel substitution: PCA, nearest-neighbor classifiers, Fisher discriminant

4/18/2022

6

Dual Representation

Many linear models for regression and classification can be reformulated in terms of a dual representation in which the kernel function arises naturally.

Linear regression model ($\lambda \geq 0$):

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} {\{\mathbf{w}^{\mathsf{T}} \mathbf{\phi}(\mathbf{x}_n) - t_n\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}}$$

Set the gradient to zero: $\Phi^{T} = [\phi(\mathbf{x}_1) \quad \cdots \quad \phi(\mathbf{x}_N)]$ (design matrix)

$$\mathbf{w} = -\frac{1}{\lambda} \sum_{n=1}^{N} \{ \mathbf{w}^{\mathsf{T}} \mathbf{\phi}(\mathbf{x}_n) - t_n \} \mathbf{\phi}(\mathbf{x}_n) = \sum_{n=1}^{N} a_n \mathbf{\phi}(\mathbf{x}_n) = \mathbf{\Phi}^{\mathsf{T}} \mathbf{a}$$

• Substitute w and define the Gram matrix $K = \Phi \Phi^{T}$

$$K_{nm} = \mathbf{\phi}(\mathbf{x}_n)^{\mathsf{T}} \mathbf{\phi}(\mathbf{x}_m) = k(\mathbf{x}_n, \mathbf{x}_m)$$

Solution for Dual Problem

In terms of new parameter vector a:

$$J(\mathbf{a}) = \frac{1}{2} \mathbf{a}^{\mathsf{T}} \mathbf{K} \mathbf{K} \mathbf{a} - \mathbf{a}^{\mathsf{T}} \mathbf{K} \mathbf{t} + \frac{1}{2} \mathbf{t}^{\mathsf{T}} \mathbf{t} + \frac{\lambda}{2} \mathbf{a}^{\mathsf{T}} \mathbf{K} \mathbf{a}$$

Set the gradient to zero:

$$\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{t}$$

Prediction for a new input x

$$y(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{\phi}(\mathbf{x}) = \mathbf{a}^{\mathsf{T}} \mathbf{\Phi} \mathbf{\phi}(\mathbf{x}) = \mathbf{k}(\mathbf{x})^{\mathsf{T}} (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{t}$$

where

$$\mathbf{k}(\mathbf{x}) = (k(\mathbf{x}_1, \mathbf{x}), \cdots, k(\mathbf{x}_N, \mathbf{x}))$$

• Inverting $N \times N$ matrix instead of $M \times M$

4/18/2022

Constructing Kernels - First Approach

• Choose feature space mapping $\phi(x)$

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{\phi}(\mathbf{x})^{\mathsf{T}} \mathbf{\phi}(\mathbf{x}') = \sum_{i=1}^{M} \phi_i(\mathbf{x}) \phi_i(\mathbf{x}')$$

Constructing Kernels - Second Approach

- Construct kernel function directly and verify its validity
- Simple example

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\mathsf{T}} \mathbf{z})^2$$

in 2-D case corresponds to

$$k(\mathbf{x}, \mathbf{z}) = \mathbf{\phi}(\mathbf{x})^{\mathsf{T}} \mathbf{\phi}(\mathbf{z})$$

with
$$\mathbf{\phi}(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^{\mathsf{T}}$$

To test validity without having to construct the function $\phi(x)$ explicitly, one can use the condition:

Function $k(\mathbf{x}, \mathbf{x}')$ is a valid kernel $\iff \mathbf{K} \ge 0 \quad \forall \{x_n\}$

10

Combining Kernels

• Given valid kernels $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$ the following kernels will also be valid:

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_3(\phi(\mathbf{x}), \phi(\mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}'$$

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$$

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a)k_b(\mathbf{x}_b, \mathbf{x}'_b)$$

with corresponding conditions on $c, f, q, \phi, k_3, \mathbf{A}, \mathbf{x}_a, \mathbf{x}_b, k_a, k_b^{\text{process}}$

Examples

Polynomial kernels:

$$k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^{\mathsf{T}} \mathbf{x}')^2$$
 contains only terms of degree 2 $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^{\mathsf{T}} \mathbf{x}' + c)^2, \ c > 0$ $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^{\mathsf{T}} \mathbf{x}')^M$ contains only terms of degree M $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^{\mathsf{T}} \mathbf{x}' + c)^M, \ c > 0$

Gaussian kernel:

$$k(\mathbf{x}, \mathbf{x}') = \exp(-\|\mathbf{x} - \mathbf{x}'\|^2 / 2\sigma^2)$$

- Note: can substitute $\mathbf{x}^{\mathsf{T}}\mathbf{x}'$ with a nonlinear kernel $\kappa(\mathbf{x},\mathbf{x}')$
- Kernel on nonvectorial space: $k(A_1, A_2) = 2^{|A_1 \cap A_2|}$
- Sigmoid kernel: $k(\mathbf{x}, \mathbf{x}') = \tanh(a\mathbf{x}^{\mathsf{T}}\mathbf{x}' + b)$

4/18/2022

10

Probabilistic Generative Models

• Kernel for generative model $p(\mathbf{x})$:

$$k(\mathbf{x}, \mathbf{x}') = p(\mathbf{x})p(\mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = \sum_{i} p(\mathbf{x}|i)p(\mathbf{x}'|i)p(i)$$

$$k(\mathbf{x}, \mathbf{x}') = \int p(\mathbf{x}|z)p(\mathbf{x}'|z)p(z)dz$$

Kernel for HMM:

$$k(\mathbf{X}, \mathbf{X}') = \sum_{\mathbf{Z}} p(\mathbf{X}|\mathbf{Z}) p(\mathbf{X}'|\mathbf{Z}) p(\mathbf{Z})$$

• $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_L\}$ – observations

• $\mathbf{Z} = \{\mathbf{z}_1, \dots, \mathbf{z}_L\}$ – hidden states

Fisher Kernel

- Parametric generative model $p(\mathbf{x}|\mathbf{\theta})$
- Fisher score:

$$\mathbf{g}(\mathbf{\theta}, \mathbf{x}) = \nabla_{\mathbf{\theta}} \ln p(\mathbf{x}|\mathbf{\theta})$$

Fisher kernel and information matrix:

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{g}(\mathbf{\theta}, \mathbf{x})^{\mathsf{T}} \mathbf{F}^{-1} \mathbf{g}(\mathbf{\theta}, \mathbf{x}')$$

$$\mathbf{F} = \mathbb{E}_{\mathbf{x}}[\mathbf{g}(\mathbf{\theta}, \mathbf{x})\mathbf{g}(\mathbf{\theta}, \mathbf{x})^{\mathsf{T}}]$$

- Note: the kernel is invariant under $\theta \to \psi(\theta)$
- Simplify matrix calculation:

$$\mathbf{F} \simeq \frac{1}{N} \sum_{n=1}^{N} \mathbf{g}(\mathbf{\theta}, \mathbf{x}) \mathbf{g}(\mathbf{\theta}, \mathbf{x})^{\mathsf{T}}$$

Or simply omit the Fisher information matrix

4/18/2022

14

Radial Basis Functions

• Consider basis function depends only on the radial distance (typically Euclidean) from a center μ_i

$$\phi_i(\mathbf{x}) = h(\|\mathbf{x} - \mathbf{\mu}_i\|)$$

• Originally were introduced for the problem of exact function interpolation $f(\mathbf{x}_n) = t_n$:

$$f(\mathbf{x}) = \sum_{n=1}^{N} w_n h(\|\mathbf{x} - \mathbf{x}_n\|)$$

Interpolation problem with noisy inputs \mathbf{x}_n

$$E = \frac{1}{2} \sum_{n=1}^{N} \int \{y(\mathbf{x}_n + \boldsymbol{\xi}) - t_n\}^2 \nu(\boldsymbol{\xi}) d\boldsymbol{\xi}$$

 $\nu(\xi)$: input noise distribution

Interpolation With Noisy Inputs

Sum of squares function

$$E = \frac{1}{2} \sum_{n=1}^{N} \int \{y(\mathbf{x}_n + \boldsymbol{\xi}) - t_n\}^2 \nu(\boldsymbol{\xi}) d\boldsymbol{\xi}$$

Optimal value

$$y(\mathbf{x}_n) = \sum_{n=1}^{N} t_n h(\mathbf{x} - \mathbf{x}_n)$$

with basis functions given by normalized functions

$$h(\mathbf{x} - \mathbf{x}_n) = \frac{\nu(\mathbf{x} - \mathbf{x}_n)}{\sum_{n=1}^{N} \nu(\mathbf{x} - \mathbf{x}_n)}$$

If noise distribution $\nu(\xi)$ is isotropic, basis functions would be radial

4/18/2022

1.4

Normalization effect

 Avoids regions in an input space where all of the basis functions take small values

Reducing Size of the Basis

- Keep number of basis functions M smaller than input data size N
- Center locations μ_i are determined based on the input data $\{\mathbf{x}_n\}$ alone
- \blacksquare Coefficients $\{w_i\}$ are determined by least squares
- Choice of centers:
 - Random
 - orthogonal least squares greatest error reduction
 - using clustering algorithms

4/18/2022

1 0

Parzen Density Estimator

- Prediction of linear regression model linear combination of t_n with "equivalent kernel" values
- Same result starting from Parzen density estimator

$$p(\mathbf{x},t) = \frac{1}{N} \sum_{n=1}^{N} f(\mathbf{x} - \mathbf{x}_n, t - t_n)$$

Regression function

$$y(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}] = \int_{-\infty}^{\infty} tp(t|\mathbf{x})dt = \frac{\int tp(\mathbf{x},t)dt}{\int p(\mathbf{x},t)dt}$$
$$= \frac{\sum_{n} \int tf(\mathbf{x} - \mathbf{x}_{n}, t - t_{n})dt}{\sum_{m} \int f(\mathbf{x} - \mathbf{x}_{m}, t - t_{m})dt}$$

Nadaraya-Watson Model

Assume that the component density functions have zero mean so that

$$\int_{-\infty}^{\infty} t f(\mathbf{x}, t) dt = 0$$

for all values of x. Then by variable change

$$y(\mathbf{x}) = \frac{\sum_{n} g(\mathbf{x} - \mathbf{x}_{n})t_{n}}{\sum_{m} g(\mathbf{x} - \mathbf{x}_{m})} = \sum_{n} k(\mathbf{x}, \mathbf{x}_{n})t_{n}$$
(Nadaraya-Watson Model)

with $g(\mathbf{x}) = \int_{-\infty}^{\infty} f(\mathbf{x}, t) dt$ and $k(\mathbf{x}, \mathbf{x}_n)$ given by

$$k(\mathbf{x}, \mathbf{x}_n) = \frac{g(\mathbf{x} - \mathbf{x}_n)}{\sum_{m} g(\mathbf{x} - \mathbf{x}_m)}$$

4/18/2022

20

Illustration of the Nadaraya-Watson Model

single input variable x in which f(x,t) is a zero-mean isotropic Gaussian with variance σ^2

Conditional distribution

$$p(t|\mathbf{x}) = \frac{p(\mathbf{x}, t)}{\int p(\mathbf{x}, t)dt} = \frac{\sum_{n} f(\mathbf{x} - \mathbf{x}_{n}, t - t_{n})}{\sum_{m} \int f(\mathbf{x} - \mathbf{x}_{m}, t - t_{m})dt}$$

is given by a mixture of Gaussians

Gaussian Processes: Key Idea

 The idea is similar to linear regression with a fixed set of basis functions (Chapter 3):

$$y(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{\phi}(\mathbf{x})$$

- However, we forget about the parametric model
- Instead we take an infinite number of basis functions given by a probability distribution over functions
- Might look difficult to handle, but it is not... we only have to consider the values of the functions at training/test data points

4/18/2022

22

Linear Regression Revisited

 Model defined by linear combination of M fixed basis functions:

$$y(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{\Phi}(\mathbf{x})$$

A Gaussian prior distribution over the weight vector w

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w} | \mathbf{0}, \alpha^{-1} \mathbf{I})$$

governed by the hyperparameter α (precision) of the distribution.

• $p(\mathbf{w})$ induces a probability distribution over functions $y(\mathbf{x})$.

Linear Regression Revisited

- Evaluating $y(\mathbf{x})$ for a set of training data points $\mathbf{x}_1, ..., \mathbf{x}_N$, we have a joint distribution $\mathbf{y} = \mathbf{\Phi} \mathbf{w}$, with elements $y_n = y(\mathbf{x}_n) = \mathbf{w}^{\mathsf{T}} \mathbf{\phi}(\mathbf{x}_n)$, where $\mathbf{\Phi}$ is the design matrix with elements $\Phi_{nk} = \phi_k(\mathbf{x}_n)$.
- Since $\mathbf{y} = \mathbf{\Phi} \mathbf{w}$ is a linear combination of Gaussina distributed variables \mathbf{w} , $p(\mathbf{y})$ is also Gaussian, with mean and covariance:

$$\mathbb{E}[\mathbf{y}] = \mathbf{0}$$
$$\mathsf{Cov}[\mathbf{y}] = \frac{1}{\alpha} \mathbf{\Phi} \mathbf{\Phi}^{\mathsf{T}} = \mathbf{K}$$

where K is the Gram matrix with elements

$$K_{mn} = k(\mathbf{x}_m, \mathbf{x}_n) = \frac{1}{\alpha} \mathbf{\phi}(\mathbf{x}_n)^{\mathsf{T}} \mathbf{\phi}(\mathbf{x}_m)$$

and $k(\mathbf{x}, \mathbf{x}')$ is the kernel function

Up to now we only took data points + prior, but no target values

24

Linear Regression Revisited: Summary

- The model we have seen is one example for a Gaussian process
- "Gaussian process is defined as a probability distribution over functions $y(\mathbf{x})$ such that the set of values of $y(\mathbf{x})$ evaluated at an arbitrary set of points $\mathbf{x}_1, \dots, \mathbf{x}_N$ jointly have a Gaussian distribution"
- Key point: the joint distribution is specified completely by secondorder statistics (mean, covariance)
- Note, usually the mean is taken to be zero, then we only need the covariance, i.e., the kernel-function:

$$\mathbb{E}[y(\mathbf{x}_n)y(\mathbf{x}_m)] = k(\mathbf{x}_n, \mathbf{x}_m)$$

 Actually, instead of choosing (a limited number of) basis functions, we can directly choose a kernel function (which may result in an infinite number of basis functions)

Examples of Gaussian Processes

Samples from Gaussian processes for a 'Gaussian' kernel (left) and an exponential kernel (right).

1.5 0 -1.5 -3 -1 -0.5 0 0.5 1

 $k(\mathbf{x}, \mathbf{x}') = \exp(-\|\mathbf{x} - \mathbf{x}'\|^2 / 2\sigma^2)$

 $k(\mathbf{x}, \mathbf{x}') = \exp(-\theta \|\mathbf{x} - \mathbf{x}'\|)$ _{4/18/2022}

26

Gaussian Process Regression (1/3)

To use Gaussian processes for regression, we need to model noise

$$t_n = y_n + \varepsilon_n$$
 with $y_n = y(\mathbf{x}_n)$

For noise processing with a Gaussian distribution we obtain

$$p(t_n|y_n) = \mathcal{N}(t_n|y_n, \beta^{-1})$$

- The joint distribution for $\mathbf{t} = (t_1, ..., t_N)^{\mathsf{T}}$ and $\mathbf{y} = (y_1, ..., y_N)^{\mathsf{T}}$ is then $p(\mathbf{t}|\mathbf{y}) = \mathcal{N}(\mathbf{t}|\mathbf{y}, \beta^{-1}\mathbf{I}_N)$
- /From the definition of a Gaussian process we have $p(y) = \mathcal{N}(y|0, K)$
 - The kernel function k is chosen to express the property that points that are more similar (given) will be stronger correlated.
 - For the marginal distribution $p(\mathbf{t})$, we need to integrate over \mathbf{v}

$$p(\mathbf{t}) = \int p(\mathbf{t}|\mathbf{y})p(\mathbf{y})d\mathbf{y} = \mathcal{N}(\mathbf{t}|\mathbf{0},\mathbf{C})$$
 with $\mathbf{C} = \mathbf{K} + \beta^{-1}\mathbf{I}$

Making Predictions

- So far we have a model for the joint probability distribution over sets of data points
- For predictions of a new input variable \mathbf{x}_{N+1} , we need to evaluate the predictive distribution $p(t_{N+1}|\mathbf{t})$
- By partitioning (see Section 2.3.1) the joint Gaussian distribution over $\mathbf{x}_1, \dots, \mathbf{x}_N, \mathbf{x}_{N+1}$, we obtain $p(t_{N+1}|\mathbf{t})$ given by its mean and covariance:

$$m(\mathbf{x}_{N+1}) = \mathbf{k}^{\mathsf{T}} \mathbf{C}_{N}^{-1} \mathbf{t}$$

$$\sigma^{2}(\mathbf{x}_{N+1}) = c - \mathbf{k}^{\mathsf{T}} \mathbf{C}_{N}^{-1} \mathbf{k}$$

$$\mathbf{k} = (k(\mathbf{x}_{1}, \mathbf{x}_{N+1}), \dots, k(\mathbf{x}_{N}, \mathbf{x}_{N+1}))^{\mathsf{T}}$$

$$c = k(\mathbf{x}_{N+1}, \mathbf{x}_{N+1}) + \beta^{-1}$$

4/18/2022

30

Making Predictions: $p(t_{N+1}|\mathbf{t})$

Illustration of the mechanism of Gaussian process regression for the case of one training point and one test point, in which the red ellipses show contours of the joint distribution $p(t_1, t_2)$. Here t_1 is the training data point, and conditioning on the value of t_1 , corresponding to the vertical blue line, we obtain $p(t_2|t_1)$ shown as a function of t_2 by the green curve.

Learning Hyperparameters θ

- In practice, it can be preferable not to fix parameters, but to infer them from the data
- Parameters θ are, e.g.: length scale of correlations, precision of noise (β)
- Simplest approach:
 - Maximizing the log-likelihood $\ln p(\mathbf{t}|\boldsymbol{\theta})$ w.r.t. $\boldsymbol{\theta}$ (maximum likelihood)
 - Problem: $\ln p(\mathbf{t}|\mathbf{\theta})$ is in general non-convex and can have multiple maxima
- Introduce a prior $p(\theta)$ and maximize the log-posterior (maximum a posteriori): $\ln p(\mathbf{t}|\theta) + \ln p(\theta)$
- To be Bayesian, we need the actual distribution and have to marginalize; this is not tractable ⇒ approximations

The noise might not be additive but dependent on x

A second Gaussian process can be introduced to represent the dependency of β on x

Automatic Relevance Detection (ARD)

In practice, it is preferable to infer parameters from the data

$$k(\mathbf{x}_n, \mathbf{x}_m) = \theta_0 \exp\left\{-\frac{1}{2} \sum_{i=1}^D \eta_i (x_{ni} - x_{mi})^2\right\} + \theta_2 + \theta_3 \mathbf{x}_n^\mathsf{T} \mathbf{x}_m$$

- Hyperparameter optimization by maximum likelihood allows a different weighting of each dimension
- Irrelevant dimensions (with small weights) can be detected and discarded

Illustration of automatic relevance determination in a Gaussian process for a synthetic problem having three inputs $x_1, x_2,$ and x_3 , for which the curves show the corresponding values of the hyperparameters η_1 (red), η_2 (green), and η_3 (blue) as a function of the number of iterations when optimizing the marginal likelihood. Details are given in the text. Note the logarithmic scale on the vertical axis.

4/18/2022

0.4

Gaussian Process for Classification (1/3)

- Objective: model posterior probabilities of the target variable
- Problem: we need to map values to interval (0, 1)
- Solution: use a Gaussian process together with a non-linear activation function (e.g., sigmoid)

Figure 6.11 The left plot shows a sample from a Gaussian process prior over functions $a(\mathbf{x})$, and the right plot shows the result of transforming this sample using a logistic sigmoid function.

Gaussian Process for Classification (2/3)

• Consider two-class problem with target values $t \in \{0, 1\}$. Define a Gaussian process over a function $a(\mathbf{x})$ and transform a using the logistic sigmoid to

$$y = \sigma(a(\mathbf{x}))$$

Similar to before, we need to predict the conditional distribution:

$$p(t_{N+1} = 1|\mathbf{t}) = \int p(t_{N+1} = 1|a_{N+1})p(a_{N+1}|\mathbf{t})da_{N+1}$$
$$= \int \sigma(a_{N+1})p(a_{N+1}|\mathbf{t})da_{N+1}$$

 However, the integral is analytically intractable. Approximations can be of numerical or analytical nature.

4/18/2022

Gaussian Process for Classification (3/3)

- Problem 1: we need to compute a weird integral
- Solution 1: we know how to compute the convolution of an Gaussian and a sigmoid function (Eq. (4.153)) approximate the posterior distribution $p(a_{N+1}|\mathbf{t})$ as Gaussian
- Problem 2: But how do we approximate the posterior?
- Solution 2: the Laplace approximation (among others)

Laplace Approximation (1/2)

• We can rewrite the posterior over a_{N+1} using Bayes' theorem:

$$p(a_{N+1}|\mathbf{t}) = \int p(a_{N+1}, \mathbf{a}|\mathbf{t}) d\mathbf{a} = \dots = \int p(a_{N+1}|\mathbf{a}) p(\mathbf{a}|\mathbf{t}) d\mathbf{a}$$

We know how to compute the mean and covariance for $p(a_{N+1}|\mathbf{a}).$

$$p(a_{N+1}|\mathbf{a}) = \mathcal{N}(a_{N+1}|\mathbf{k}^{\mathsf{T}}\mathbf{C}_{N}^{-1}\mathbf{a}, c - \mathbf{k}^{\mathsf{T}}\mathbf{C}_{N}^{-1}\mathbf{k})$$

Now we have to find a Gaussian approximation only for $p(\mathbf{a}|\mathbf{t})$. This is done noting that $p(\mathbf{a}|\mathbf{t}) \propto p(\mathbf{t}|\mathbf{a})p(\mathbf{a})$, thus

$$\Psi(\mathbf{a}) = \ln p(\mathbf{a}|\mathbf{t}) = \ln p(\mathbf{t}|\mathbf{a}) + \ln p(\mathbf{a}) + \text{const}$$

4/18/2022

38

Laplace Approximation (2/2)

- We can use the iterative reweighted least squares (IRLS) algorithm (Sec. 4.3.3) to find the mode of $\Psi(a)$ (first and second derivative have to be evaluated)
- It can be shown that $\Psi(\mathbf{a})$ is convex and thus has only one mode
- The mode position a* and the Hessian matrix H at this position define our Gaussian approximation

$$q(\mathbf{a}) = \mathcal{N}(\mathbf{a} | \mathbf{a}^*, \mathbf{H}^{-1})$$

Now we can go back to the formulas and compute the integrals and finally also $p(a_{N+1}|\mathbf{t})$ from

$$p(t_{N+1}|\mathbf{t}) = \int p(t_{N+1}|a_{N+1})p(a_{N+1}|\mathbf{t})da_{N+1}$$

Learning Hyperparameters

 To determine the parameters, we can maximize the likelihood function:

$$p(\mathbf{t}|\mathbf{\theta}) = \int p(\mathbf{t}|\mathbf{a})p(\mathbf{a}|\mathbf{\theta})d\mathbf{a}$$

- Again, the integral is analytically intractable, so the Laplace approximation can be applied again
- We need an expression for the gradient of the logarithm of

4/18/2022

Example Kernels

■Linear kernel

$$k(\mathbf{x}, \mathbf{z}) = \mathbf{x}^{\mathsf{T}} \mathbf{z}$$

■Gaussian (Radial basis function) kernel

$$k(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{z})^{\mathsf{T}}\Sigma^{-1}(\mathbf{x} - \mathbf{z})\right)$$

Sigmoid kernel

$$k(\mathbf{x}, \mathbf{z}) = \tanh(a \cdot \mathbf{x}^{\mathsf{T}} \mathbf{z} + b)$$

Kernel

 $-k(\cdot,\cdot)$ a legal definition of inner product:

$$\exists \boldsymbol{\phi}: \mathbf{x} \to R^N$$

s.t. $k(\mathbf{x}, \mathbf{z}) = \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{z})$

Why Kernels Matter?

- Many algorithms interact with data only via dotproducts
- Replace $\mathbf{x}^{\mathsf{T}}\mathbf{z}$ with $k(\mathbf{x},\mathbf{z}) = \mathbf{\phi}(\mathbf{x})^{\mathsf{T}}\mathbf{\phi}(\mathbf{z})$
- Act **implicitly** as if data was in the higherdimensional **φ**-space

Example

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\mathsf{T}} \mathbf{z})^2$$
 corresponds to $(x_1, x_2) \to \mathbf{\phi}(\mathbf{x}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$

$$\mathbf{\phi}(\mathbf{x})^{\mathsf{T}}\mathbf{\phi}(\mathbf{z}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)(z_1^2, z_2^2, \sqrt{2}z_1z_2)^{\mathsf{T}}$$

$$= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1x_2z_1z_2 = (x_1z_1 + x_2z_2)^2$$

$$= (\mathbf{x}^{\mathsf{T}}\mathbf{z})^2 = k(\mathbf{x}, \mathbf{z})$$

Example

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\mathsf{T}} \mathbf{z})^2$$
 corresponds to $(x_1, x_2) \to \mathbf{\phi}(\mathbf{x}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$

Constructing New Kernels Positive scaling $k(\mathbf{x}, \mathbf{z}) = ck_1(\mathbf{x}, \mathbf{z}), c > 0$ Exponentiation $k(\mathbf{x}, \mathbf{z}) = \exp(k_1(\mathbf{x}, \mathbf{z}))$ Addition $k(\mathbf{x}, \mathbf{z}) = k_1(\mathbf{x}, \mathbf{z}) + k_2(\mathbf{x}, \mathbf{z})$ Multiplication with function $k(\mathbf{x}, \mathbf{z}) = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{z})f(\mathbf{z})$ Multiplication $k(\mathbf{x}, \mathbf{z}) = k_1(\mathbf{x}, \mathbf{z})k_2(\mathbf{x}, \mathbf{z})$

Connection to Neural Networks

Neural Networks

- The range of representable functions is governed by the number M of hidden units
- Within the maximum likelihood framework, they overfit as M comes close to the number of training samples

Bayesian Neural Networks

- The prior over w in conjunction with the network function $f(\mathbf{x}, \mathbf{w})$ produces a prior distribution over functions from $y(\mathbf{x})$
- The distribution of functions will tend to a Gaussian process in the limit $M \to \infty$
- The property that the outputs share hidden units (and thus "borrow statistical strength" from each other) is lost in this limit