Due Date: 04/29 At the beginning of class

These problems test a variety of skills, including your knowledge of, and ability to calculate properties of antennas.

Hertzian Dipole

- 1. A dipole antenna has the following parameters:
 - Antenna length $l = 0.02\lambda$
 - Current magnitude $I_o = 3 A$
 - Operating frequency f = 400 MHz
 - Radiation range r = 60 m

Determine the following:

- a. the magnitude of the electric field intensity at $\theta=90^\circ$
- b. the magnitude of the magnetic field intensity at $\theta = 90^{\circ}$
- c. the radiation resistance
- d. the radiated power

Half-Wave Dipole

2. A car radio antenna $1\,m$ long operates in the AM frequency of $1.5\,MHz$. How much current is required to transmit $4\,W$ of power?

Antenna Characteristics

3. An antenna located at the origin has a far-field electric field given:

$$\vec{E} = \frac{\cos 2\theta}{r} e^{-j\beta r} \hat{\theta} \qquad V/m$$

- a. Obtain the corresponding \overrightarrow{H} field
- b. Determine the power radiated
- c. What fraction of the total power is radiate in the belt $60^{\circ} < \theta < 120^{\circ}$?

Aperture Antenna

- 4. Consider an antenna with a circular aperture with a circular beam having a beam width of 4° at 15 GHz
 - a. What is the antenna directivity in dB?
 - b. If the antenna area is increased by 50%, what will be the new directivity and new beamwidth?
 - c. If the aperture is kept the same as in (a), but the frequency is doubled to 30 GHz, what will the directivity and beamwidth then become?

Antenna Array

- 5. An array comprises two dipoles that are separated by one wavelength. If the dipoles are fed by currents of the same magnitude and phase,
 - a. Find the array factor
 - b. Calculate the angles where the nulls of the pattern occur
 - c. Determine the angles where the maxima of the pattern occur
 - d. Sketch the group pattern in the plane containing the elements