MIL2-Project2

Catherine Young

2024-10-14

```
#load in original dataset
dataset<-read.csv("C:/Users/young/OneDrive/Desktop/DS 4002/IDB_10-07-2024 (1).csv")
head(data)
##
## 1 function (..., list = character(), package = NULL, lib.loc = NULL,
         verbose = getOption("verbose"), envir = .GlobalEnv, overwrite = TRUE)
## 3 {
## 4
        fileExt <- function(x) {</pre>
## 5
             db \leftarrow grepl("\\.[^.]+\\.(gz|bz2|xz)$", x)
## 6
             ans <- sub(".*\\\.", "", x)
#load needed package
library(ggplot2)
#filter the dataset for the years 2019-2021 using the 'Region' column
filtered_data <- dataset[dataset$Year %in% c(2019, 2020, 2021), ]</pre>
#time series plot on pop
ggplot(filtered_data, aes(x=Year, y=Population, color=Name, group=Name)) +
  geom_line(size=1.2) +
  geom_point(size=3) +
 labs(title="Population Trends from 2019-2021",
       x="Year",
       y="Population",
       color="Country") +
  scale_x_continuous(breaks=c(2019, 2020, 2021)) +
  theme minimal() +
 theme(axis.text.x=element_text(angle=45, hjust=1))
## Warning: Using 'size' aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use 'linewidth' instead.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
```



```
#save the graph as image
ggsave("population_trends_2019-2021.png", width = 10, height = 6)
```


#save the graph as image
ggsave("net_migration_rate_2019-2021.png", width = 10, height = 6)

#clean the data. Read in the dataset with values entered for nas
clean_data<-read.csv("C:/Users/young/OneDrive/Desktop/DS 4002/IDB_10-07-2024_clean.csv")
filtered_data_clean<- clean_data[clean_data\$Year %in% c(2019, 2020, 2021),]
head(filtered_data_clean)</pre>

##		Name		Region	GENC	Year	Population		
##	34	China		2019,China	CN	2019	1,400,797,713		
##	35	India		2019,India	IN	2019	1,355,597,153		
##	36	United States	2019,Ur	nited States	US	2019	328,329,953		
##	37	Indonesia	201	19,Indonesia	ID	2019	270,532,675		
##	38	Pakistan	20)19,Pakistan	PK	2019	228,674,451		
##	39	Brazil		2019,Brazil	BR	2019	213,349,354		
##		Total.Fertilit	ty.Rate	${\tt Crude.Birth}$.Rate	Life	.Expectancy.at	.Birth.	.Both.Sexes
##	34		1.45		10.6				77.7
##	35		2.13		17.1				71.5
##	36		2.00		11.4				70.0
##	37		2.11		16.2				72.3
##	38		3.68		27.9				68.8
##	39		1.77		14.1				75.9
##		Crude.Death.Ra	ate Net	.Migration.Ra	ate Ne	et.int	ternational.mig	grants.	.both.sexes
##	34	-	7.2	-(0.1				-180,000
##	35	(6.6	-(0.2				-267,593

```
8.7
                                                                              594,330
## 36
                                        1.8
## 37
                    6.7
                                       -0.8
                                                                             -217,436
## 38
                    6.3
                                       -0.8
                                                                             -187,193
## 39
                    6.4
                                        0.1
                                                                               29,646
```

```
## 'geom_smooth()' using formula = 'y ~ x'
```

Warning: Removed 8 rows containing non-finite values ('stat_smooth()').

Warning: Removed 8 rows containing missing values ('geom_point()').


```
#save the graph as image
ggsave("net_migration_vs_crude_death_rate.png", width= 10, height = 6)
```


#save the graph as image
ggsave("life_expectancy_vs_crude_death_rate.png", width=10, height= 6)

```
## 'geom_smooth()' using formula = 'y ~ x'
## Warning: Removed 8 rows containing non-finite values ('stat_smooth()').
## Removed 8 rows containing missing values ('geom_point()').
#scatterplot on: Total Fertility Rate vs Crude Death Rate
ggplot(clean_data, aes(x=`Crude.Death.Rate`, y=`Total.Fertility.Rate`, color=Name)) +
  geom_point(size=3) +
  geom_smooth(method="lm", se=FALSE, color="black", aes(group=Name)) + #adds line of best fit
  labs(title = "Fertility Rate vs Crude Death Rate",
      x= "Crude Death Rate",
      y= "Fertility Rate",
       color= "Country") +
  theme minimal()
## 'geom_smooth()' using formula = 'y ~ x'
```

Warning: Removed 8 rows containing non-finite values ('stat_smooth()').

Warning: Removed 8 rows containing missing values ('geom_point()').

#save the graph as image ggsave("fertility_rate_vs_crude_death_rate.png", width=10, height=6)

```
## 'geom_smooth()' using formula = 'y ~ x'
## Warning: Removed 8 rows containing non-finite values ('stat_smooth()').
## Removed 8 rows containing missing values ('geom_point()').
```