Finite-Volume Second Order Solution to Steady-State Temperature Distribution of Uniformly Heated Disc

William Zhang Georgia Institute of Technology

December 4, 2024

Outline

- 1. Problem Introduction and Background
- 2. Numerical Methods
- 3. Validation and Convergence Studies
- 4. Key Results
- 5. Conclusions

Problem Introduction and Brief Background

- ► Finite-Volume methods form using Gauss-Divergence Theorem, and one part of this is information from nearby cell(s) to get a flux estimate.
- First-order approximations are limited to nearest-neighbor cells for flux adjustments, leading to over-diffusion.
- Neglected flux contributions from further neighbors (k = 2, 3, 4, ...).
- Goal: Use a second-order finite volume solver to improve accuracy.
- Method: Use uniformly heated disc as a comparison and benchmark.

Numerical Methods – Formulation

PDE transformed to Finite-Volume form using Gauss-Divergence Theorem:

$$T_{i} = \frac{\sum_{j \in \mathcal{N}_{k}(i)} \frac{T_{j}}{d_{ij}} l_{ij} - \frac{Q_{i}A_{i}}{\lambda}}{\sum_{j \in \mathcal{N}_{k}(i)} \frac{l_{ij}}{d_{ij}}}$$

- ► Neighbor levels:
 - Level 1 (k = 1): Weight = 1
 - ► Level 2 (k = 2): Weight = $-\frac{4}{3}$
 - ► Level 3 (k = 3): Weight = $\frac{1}{3}$
- ▶ If Level 3 does not exist (I.e. near edge of circle), switch to 1st order methods for approximation
- For this disc, Q = 1, 2000 elements in a R = 1 radius
- Gauss SOR to resolve iterations

Numerical Methods – FV Elements (1st order)

Figure: Illustration of FV elements, *j*-th neighbor cells up to k = 1 levels.

Numerical Methods – FV Elements (2nd order)

Figure: Illustration of FV elements, *j*-th neighbor cells up to k = 3 levels.

Numerical Methods - BC

▶ BC from the ghost cell – Dirichlet conditions:

$$T_{ghost} = -T_i$$

▶ 1st order for BC – k-neighbors is k = 1.

Numerical Methods – Benchmark and Validation

The analytical Laplace solution for a uniformly heated disc is:

$$T_i = \frac{Q}{4\lambda} \left(R - r_i^2 \right)$$

This will be used for comparison and benchmarking in numerical results.

Results (Numerical vs Analytical) – Key Results

100 0.75 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0

Analytical Temperature Distribution Per Element

Figure: Numerical Solution (2nd order)

Figure: Analytical Solution

Both similar, but the edges are not satisfied properly k = 3 levels influence from cells near edge.

Results (Comparison)

Figure: 1st order forward-difference

Figure: 2nd order forward-difference

Results (Comparison)

Figure: Error vs. Iterations (2nd order)

Figure: Error vs. Iterations (1st order)

There is not much difference between 1st and 2nd order iterations required for convergence (tol = 1E - 5)

Conclusions

- Improved accuracy with second-order finite volume solver.
- ► Reduction in over-diffusion and better alignment with the analytical solution.
- ➤ 2nd order closely matched 1st order iteration count, but did take more time.