DE HIM Day - 37375B22029

$$\Theta$$
 CI = $\overline{\chi} \pm z \frac{s}{\sqrt{n}}$

Sample mean = 3.15

. For a 95% CT:

$$C\overline{I} = 3.15 \pm 1.9 \left(\frac{0.1}{\sqrt{5}} \right) = 3.15 \pm 0.098$$

· For a 99% CI:

$$CI = 3.15 \pm 2.58 \left(\frac{0.1}{\sqrt{5}} \right) = 8.15 \pm \frac{0.115}{800}$$

$$n = \left(\frac{2.\sigma}{E}\right)^2 = 34.5744 = 35$$

$$(5)$$
 $n=9$

1.0056 - 2.896
$$\frac{0.0246}{\sqrt{9}} < \mu < 10056 + \frac{28960000}{\sqrt{9}} = p \pm z \cdot SE$$

o : popularian standard dariation = 11.3

n: Sample size = 81

 \overline{x} : Sample mean = 74.6

2x = Critical 2-value (Two-timed) = ± 1.645

$$74.6 \pm (1.695) \frac{11.3}{\sqrt{81}} \approx 74.6 \pm 2.065$$

$$s = 696g$$

$$E = T_{X/2} \frac{S}{\sqrt{n}} = 1.984 \cdot \frac{696}{\sqrt{186}} = 100.025$$

standard evrov (SE) =
$$\sqrt{\frac{P(1-P)}{n}} = 0.014$$

$$n = \left(\frac{2.58}{0.05}\right)^2 \times 0.228 \times 0.772$$

$$X = 72$$
 (sample mean)

 $S^2 = 16$ (Sample variance)

Assuming the scored to be normally distributed 98% considerce interval for C^2 (Formula)

 C^2 (Formula)

 C^2 (Formula)

 C^2 (C^2 (C^2)

 C

(7) n = 20 (Sample size)

8	observi	X	χ²
3	1	140	19600
	2	136	18496
	2 3 4 5 6	150	22500
]		20736
	6	148	23104
	7	138	19044
	7 8 9	141	19881
	9	143	20449
	10	15/ 1	2801
	Sum =	1443	208515
9	1		

$$\frac{(19 \times 16)}{36.1908} < \sigma^{2} < \frac{19 \times 16}{7.4327}$$

$$8.3555 < \sigma^{2} < 35.8286$$

$$= \frac{1}{n-1} \left(\sum x^{2} - \frac{1}{n} \left(\sum x^{2} \right)^{2} \right)$$

$$= \frac{1}{9} \left(208515 - \frac{1463}{10} \right)$$

$$= 32.2333$$

$$b) = 2.2333$$

$$c = 2.233$$

$$c = 2.23$$

$$c = 2.23$$