ChIP-seq analysis

M. Defrance, C. Herrmann, D. Puthier, M. Thomas. Chollier

- Tuesday:
- quick introduction to ChIP-seq and peak-calling (Presentation + tutorial)
- Wednesday:
- ChIP-peaks functional annotation (Presentation + Practical)
- motif discovery in ChIP-seq peaks (Practical)

7/10/2014

Carl Herrmann - Ecole Aviesan Roscoff 2014

Datasets used

ExpName	CellLine	Replicate	SampleID	SRAExpID	Selected
siNT_ER_E2_r1	MCF-7	r1	GSM986059	SRX176856	X
siGATA_ER_E2_r1	MCF-7	r1	GSM986060	SRX176857	X
siNT_ER_E2_r2	MCF-7	r2	GSM986061	SRX176858	X
siGATA_ER_E2_r2	MCF-7	r2	GSM986062	SRX176859	X
siNT_ER_E2_r3	MCF-7	r3	GSM986063	SRX176860	X
siGATA_ER_E2_r3	MCF-7	r3	GSM986064	SRX176861	X
siNT_FOXA1_Veh_r1	MCF-7	r1	GSM986065	SRX176862	
siGATA_FOXA1_Veh_r1	MCF-7	r1	GSM986066	SRX176863	
GATA3_E2_r1	MCF-7	r1	GSM986067	SRX176864	
GATA3_Veh_r1	MCF-7	r1	GSM986068	SRX176865	
GATA3_E2_r2	MCF-7	r2	GSM986069	SRX176866	
GATA3_Veh_r2	MCF-7	r2	GSM986070	SRX176867	
GATA3_E2_r3	MCF-7	r3	GSM986071	SRX176868	
GATA3_Veh_r3	MCF-7	r3	GSM986072	SRX176869	
GATA3_E2_r4	MCF-7	r4	GSM986073	SRX176870	
GATA3_Veh_r4	MCF-7	r4	GSM986074	SRX176871	
GATA3_E2_r5	MCF-7	r5	GSM986075	SRX176872	
GATA3_Veh_r5	MCF-7	r5	GSM986076	SRX176873	
siNT_H3K27ac_E2_r1	MCF-7	r1	GSM986077	SRX176874	
siGATA_H3K27ac_E2_r1	MCF-7	r1	GSM986078	SRX176875	
siNT_H3K27ac_Veh_r1	MCF-7	r1	GSM986079	SRX176876	
siGATA_H3K27ac_Veh_r1	MCF-7	r1	GSM986080	SRX176877	
siNT_H3K4me1_E2_r1	MCF-7	r1	GSM986081	SRX176878	X
siGATA_H3K4me1_E2_r1	MCF-7	r1	GSM986082	SRX176879	X
siNT_H3K4me1_Veh_r1	MCF-7	r1	GSM986083	SRX176880	
siGATA_H3K4me1_Veh_r1	MCF-7	r1	GSM986084	SRX176881	
siNT_p300_E2_r2	MCF-7	r2	GSM986085	SRX176882	
siGATA_p300_E2_r2	MCF-7	r2	GSM986086	SRX176883	
siNT_p300_Veh_r2	MCF-7	r2	GSM986087	SRX176884	
siGATA_p300_Veh_r2	MCF-7	r2	GSM986088	SRX176885	
ZR751_siNT_ER_E2_r1	ZR751	r1	GSM986089	SRX176886	
ZR751_siGATA_ER_E2_r1	ZR751	r1	GSM986090	SRX176887	
MCF-7_input_r3	MCF-7	r3	GSM986091	SRX176888	X
ZR751_input_r1	ZR751	r1	GSM986092	SRX176889	
ZR751 input r1	ZR751	r1	GSM986092	SRX176889	

- ESR1 ChIP-seq in WT & siGATA3 conditions (3 replicates = 6 datasets)
- H3K4me1 in WT & siGATA3 conditions (1 replicate = 2 datasets)
- Input dataset in MCF-7 (1 replicate = 1 dataset)
- p300 before estrogen stimulation
- GATA3/FOXA1 ChIP-seq before/after estrogen stimulation
- microarray expression data, etc ...

Datasets used

GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility

Vasiliki Theodorou, 1 Rory Stark, 2 Suraj Menon, 2 and Jason S. Carroll 1,3,4 ¹Nuclear Receptor Transcription Lab, ²Bioinformatics Core, Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 ORE, United Kingdom; ³ Department of Oncology, University of Cambridge, Cambridge CB2 OXZ, United Kingdom

- estrogen-receptor (ESR1) is a key factor in **breast cancer** developement
- goal of the study: understand the dependency of ESR1 binding on presence of co-factors, in particular GATA3, which is mutated in breast cancers
- approaches: GATA3 silencing (siRNA), ChIP-seq on ESR1 in wt vs. siGATA3 conditions, chromatin profiling

7/10/2014

Carl Herrmann - Ecole Aviesan Roscoff 2014

Carl Herrmann – Ecole Aviesan Roscoff 2014

Keys aspects of ChIP-seq analysis

- (1) Determine signal **coverage**
- (2) Modelling **noise** levels
- (3) Scaling/**normalizing** datasets
- (4) Detecting enriched **peak** regions
- (5) Performing **differential** analysis

7/10/2014 Carl Herrmann - Ecole Aviesan Roscoff 2014

Principle of ChIP-seq

Strand asymetry is blurred when multiple proteins bind or in case of histone modifications ChIP

VIIDanks & Faccioti PLoS One (2010)]
7/10/2014 Carl Herrmann – Ecole Aviesan Roscoff 2014

Principle of ChIP-seq Sense strand ChIP enriched fragm ChIP enriched fragm ChIP enriched fragm The binding site itself is generally not sequenced! We expect to see a typical strand asymetry in read densities → ChIP peak recognition pattern

1. from reads to coverage

- to visualize the data, we use **coverage plots** (=density of fragments per genomic region)
- need to reduce BAM file to more compact format
- → bigWig/bedGraph

1. from reads to coverage

1. from reads to coverage

- Reads are extended to 3' to fragment length
- Read counts are computed for each bin
- Counts are normalized
- reads per genomic content → normalize to 1x coverage

$$SD = \frac{n_{mapped \ reads} \times L}{G_{eff}}$$

• reads per kilobase per million reads per bin

$$RPKM = \frac{n_{reads/bin} \times W_{bin}}{n_{mapped reads}}$$

7/10/2014

2. signal to noise

- Mappability issue: alignability track shows, how many times a read from a given position of the genome would align
- a=1 → read from this position ONLY aligns to this position
- = a=1/n → read from this position could align to n locations
- \rightarrow we usually only keep uniquely aligned reads : positions with a < 1 have no reads left

7/10/2014

Carl Herrmann

Ecole Aviesan Roscoff 2014

3. modelling background level

- **naïve subtraction** treatment input is not possible, because both libraries have different sequencing depth!
- **Solution 1**: before subtraction, scale both libraries by total number of reads (library size)
- RPGC

$$SD = \frac{n_{mapped reads} \times L}{G_{off}}$$

RPKM

$$RPKM = \frac{n_{reads/bin} \times W_{bin}}{n_{manned reads}}$$

2014 Carl Herrmann – Ecole Aviesan Roscoff 2014

2. signal to noise

The availability of a control sample in mandatory!

- → mock IP with unspecific antibody
- → sequencing of input (=naked) DNA

14 Carl Herrmann – Ecole Aviesan Roscoff 2014

3. modelling background level

Problem: signal influences scaling factor
More signal (but equal noise) → artificial noise over-estimation

7/10/2014

3. modelling background level

- more advanced : linear regression by exclusing peak regions (PeakSeg)
- read counts in 1Mb regions in input and treatment

excluding enriched (=signal) regions

PeakSeq enables systematic scoring of ChIP-seq

3. modelling background level

Alternative strategy

(deepTools → Diaz et al.)

- 1. bin genome into *n* 10 kb windows
- 2. count reads in each window for input (*X_i*) and treatment (*Y_i*)
- 3. total number of reads is N_x and N_y
- 4. order Y_i from less to most enriched $\rightarrow Y_{ij}$
- 5. define and plot

$$p_j = \sum_{i=1}^{j} Y_{(i)} / M_{\gamma}; q_j = \sum_{i=1}^{j} X_{(i)} / M_{\chi}$$

 p_j = proportion of reads in the j less enriched windows

7/10/2014

Carl Herrmann

Ecole Aviesan Roscoff 2014

Carl Herrmann - Ecole Aviesan Roscoff 2014

eils#labs

4. from reads to peaks

• Tag shifting vs. extension

- positive/negative strand read peaks do not represent the true location of the binding site
- fragment length is d and can be estimated from strand asymmetry
- reads can be **elongated** to a size of d
- reads can be **shifted** by d/2
 → increased resolution

e carcifications the three Avieta brosson for the ads in this

4. from reads to peaks

- random distribution of reads in a window of size w modelled using a theoretical distribution
- Poisson distribution
- 1 parameter:
- λ = expected number of reads in window

$$P(X=k)=e^{-k}\frac{\lambda^k}{k!}$$

- Binomial distribution
- 2 parameters:

7/10/2014

- p = probability to start a read at a particular position
- *n* = number of positions in the window ~ window size (assumes no duplicates!)
- *np* = expected number of reads in window

$$P(X=k)=C_n^k p^k (1-p)^{n-k}$$

Carl Herrmann - Ecole Aviesan Roscoff 2014

	Profile	Peak criteria ^a	Tag shift	Control data ^b	Rank by	FDR	User input parameters	filtering: strand-based duplicates		
CisGenome v1.1	Strand-specific window scan	1: Number of reads in window 2: Number of ChIP reads minus control reads in window	Average for highest ranking peak pairs	Conditional binomial used to estimate FDR	Number of reads under peak	1: Negative binomial 2: conditional binomial	Target FDR, optional window width, window interval	Yes / Yes		
ERANGE v3.1	Tag aggregation	1: Height cutoff High quality peak astimate, per- region estimate, or input	High quality peak estimate, per-region estimate, or input	Used to calculate fold enrichment and optionally P values	P value	1: None 2: # control # ChIP	Optional peak height, ratio to background	Yes / No		
FindPeaks v3.1.9.2	Aggregation of overlapped tags	Height threshold	Input or estimated	NA	Number of reads under peak	1: Monte Carlo simulation 2: NA	Minimum peak height, subpeak valley depth	Yes / Yes		
F-Seq v1.82	Kernel density estimation (KDE)	5 s.d. above KDE for 1: random background, 2: control	Input or estimated	KDE for local background	Peak height	1: None 2: None	Threshold s.d. value, KDE bandwidth	No./No		
GLITR	Aggregation of overlapped tags	Classification by height and relative enrichment	User Input tag extension	Multiply sampled to estimate background class values	Peak height and fold enrichment	2: # control # ChIP	Target FDR, number nearest neighbors for clustering	No / No		
MACS v1.3.5	Tags shifted then window scan	Local region Poisson P value	Estimate from high quality peak pairs	Used for Poisson fit when available	P value	1: None 2: # control # ChIP	P-value threshold, tag length, mfold for shift estimate	No / Yes		
PeakSeq	Extended tag aggregation	Local region binomial P value	Input tag extension length	Used for significance of sample enrichment with binomial distribution	g value	1: Poisson background assumption 2: From binomial for sample plus control	Target FDR	No / No		
QuEST v2.3	Kernel density estimation	2: Height threshold, background ratio	Mode of local shifts that maximize strand cross- correlation	KDE for enrichment and empirical FDR estimation	q value	2: NA 2: # control # ChIP as a function of profile threshold	KDE bandwidth, peak height, subpeak valley depth, ratio to background	Yes / Yes		
SICER v1.02	Window scan with gaps allowed	P value from random background model, enrichment relative to control	Input	Linearly rescaled for candidate peak rejection and P values	q value	1: None 2: From Poisson P values	(with control) or F-value	No / Yes	D37.4	
SiSSRs v1.4	Window scan	N ₊ - N ₋ sign change, N ₊ + N ₋ threshold in region [†]	Average nearest paired tag distance	Compu studie:		n ior	GniP-s	eq and	RNA-seq	
spp v1.0	Strand specific window scan	Poisson P value (paired peaks only)	Maximal strand cross- correlation	Shirley Pepke ¹ , Barbara Wold ² & Ali Mortazavi ²						

4. from reads to peaks

- Determining "enriched" regions
- sliding window across the genome
- at each location, evaluate the enrichement of the signal wrt. expected background based on the distribution
- retain regions with P-values below threshold
- evaluate FDR

5. MACS [Zhang et al. Genome Biol. 2008] Step 1: estimating fragment length d slide a window of size BANDWIDTH retain top regions with MFOLD enrichment of treatment vs. input plot average +/- strand read densities → estimate d

6. differential analysis • given ChIP-set datasets in different conditions, we want to find differential binding events between 2 conditions binding vs. no binding → qualitative analysis weak binding vs. strong binding → quantitative analysis **Condition A Condition B** stronger stronger binding in B binding in A no difference binding binding no binding in A no binding in B in B in A 7/10/2014 Carl Herrmann - Ecole Aviesan Roscoff 2014

6. differential analysis

- quantitative approach
- select regions which have signal (union of all peaks)
- in these regions, perform quantitative analysis of differential binding based on **read counts**

- _

- statistical model
- without replicates : assume simple Poisson model (\rightarrow SICER-df)
- with replicates: perform differential test using DE tools from RNA-seq (diffBind using EdgeR, DESeq,...) based on read counts

7/10/2014

6. differential analysis

without replicates (sicer-df)

- consider one condition to be the reference (condition A)
- call peaks on each condition independently
- take union of peaks
- assume Poisson model based on expected number of reads in region

$$\lambda_i = w_i N_A / L_{eff}$$

compute P-value, log(fold-change)

7/10/2014

Carl Herrmann -

nn – Ecole Avie

Possoff 2014

Program of the Practical Session

Step 0 : Find datasets on Gene Expression Omnibus

Step 1 : Import datasets into your Galaxy history

Step 2 : data inspection : coverage plots, correlation,...

Step 3 : peak calling using MACS

Step 5 : differential analysis

Step 6: visualizing results in IGV

7/10/2014 Carl Herrmann – Ecole Aviesan Roscoff 2014

6. differential analysis

• with replicates (diffBind)

- provide list of peaks for replicates A and replicates B
- determine consensus peakset based on presence in at least n datasets
- compute read counts in each consensus peak in each dataset
- run DESeq / EdgeR to determine differential peaks between condition
 A and B (negative binomial model, variance estimated on replicates)

