Imposing a Weight Norm Constraint for Neuro-Adaptive Control IEEE European Control Conference (ECC) 2025

Myeongseok Ryu¹, Jiyun Kim², and Kyunghwan Choi¹

¹Department of Mechanical and Robotics Engineering Gwangju Institute of Science and Technology

²Al Graduate School Gwangju Institute of Science and Technology

Outline

- **Background and Contributions**
- Introduction to Neuro-Adaptive Control
- Literature Review Contributions
- **Proposed Method**
- Architecture of the Proposed Method
- Problem Formulation
- Adaptation Law Derivation
- Stability Analysis .
- **Experimental Validation**
 - Simulation Setup
- Simulation Results
- Conclusion
- Conclusion and Future Work

Introduction to Neuro-Adaptive Control What is Neuro-Adaptive Control?

Neuro-Adaptive Control

- Neuro-adaptive control (NAC) is a control strategy that combines neural networks (NNs) with adaptive control [1].
- Features of both NNs and adaptive control can be found in NAC.

Introduction to Neuro-Adaptive Control What is Neuro-Adaptive Control?

Advantages of Neuro-Adaptive Control

- Adaptability: NAC adapts to changing environments and system dynamics.
- Stability Guarantee: The closed-loop stability is ensured using Lyapunov stability theory.
- Online Learning Capability: NAC adapts in real-time to new data with stability guarantees.
- Robustness: NAC handles uncertainties and disturbances effectively with adaptive control techniques.

Figure: General framework of neuro-adaptive control (NAC).

Introduction to Neuro-Adaptive Control Existing Challenges in NAC

1. Weight Boundedness:

- The NN weights can grow unbounded, leading to instability.
- Unbounded weights can cause the NN to produce large control inputs, which may lead to following challenges.

Figure: Unbounded NN weights.

2. Unpredictable Amplitude of Control Input:

- The NN outputs are unpredictable and not interpretable.
- This feature and unbounded NN weights can lead to control input saturation.

Figure: Unpredictable amplitude of NN outputs.

Literature Review

- 1. Projection Operator for weight boundednss
 - Projects the NN weights onto a convex set.
 - Ensures that the weights remain within a predefined bound.

$$\widehat{\theta} \leftarrow \mathsf{Proj}_{\overline{\theta}}(\widehat{\theta})$$
 (1)

- 2. ϵ -modification, and σ -modification for weight boundednss
 - Add a stabilizing term to adaptation law.
 - Invariance set of the NN weights can be ensured.

$$\frac{\mathrm{d}}{\mathrm{d}t}\widehat{\boldsymbol{\theta}} \leftarrow \frac{\mathrm{d}}{\mathrm{d}t}\widehat{\boldsymbol{\theta}} - \rho \|\widehat{\boldsymbol{\theta}}\| \tag{2}$$

- 3. Additional Control Inputs for control saturation
 - Conventional controllers are used to address control input saturation.
 - Barrier Lyapunov function or auxiliary system-based control inputs.
 - These methods do not guarantee the stability of the system.

Limitation 1: Lack of Optimality

- The existing methods do not guarantee the optimality of the control input.
- ...

Limitation 2: Disruption of Learning Process by Additional Control Inputs

- Feedback tracking error for learning is disrupted by additional control inputs.
 - The feedback error does not reflect the error induced by the NN, directly.

Contributions

Contribution 1: Unified Optimization Framework

Contribution 2: Online Learning Capability (Stabiltiy Guarantees)

•

Contribution 3: Weight and Control Input Constraint Handling

•

Architecture of the Proposed Method

Target Two-link Robotic Manipulator System:

- \bullet Control input saturation function sat(\cdot).
- Desired trajectory \boldsymbol{q}_d is given.

$$M\ddot{q} + V_m \dot{q} + F + G + \tau_d = \operatorname{sat}(\tau)$$
 (3)

Control Input:

- ullet NN's output ullet is used as the control input.
- Consists of the estimated NN weights $\widehat{\theta}$.

$$\boldsymbol{\tau} := \boldsymbol{\Phi}(\boldsymbol{q}_n; \widehat{\boldsymbol{\theta}}) \tag{4}$$

Deep Neural Network (DNN):

- k layers with $\widehat{\theta}_i := \text{vec}(\widehat{\boldsymbol{W}}_i)$.
- Activation function: $\phi(\cdot) := tanh(\cdot)$.

$$\Phi(\mathbf{q}_n; \widehat{\boldsymbol{\theta}}) := \begin{cases} \widehat{\mathbf{W}}_i^{\top} \phi_i(\widehat{\boldsymbol{\Phi}}_{i-1}), & i \in \{1, \dots, k\}, \\ \widehat{\mathbf{W}}_0^{\top} \mathbf{q}_n, & i = 0, \end{cases}$$
(5)

Figure: Architecture of the proposed method.

Figure: Architecture of the DNN.

Notations: $q \in \mathbb{R}^n$: Joint position, M: Inertia matrix, C: Coriolis matrix, G: Gravity vector, τ : Control input, $\widehat{\theta}$: Estimated NN weights, $\widehat{\theta}$: Estimated NN weights, $\widehat{\theta}$: Tracking error, τ_d : Disturbance, sat(\cdot): Saturation function.

Optimization Problem Statement:

- Find NN weights $\widehat{\theta}$,
- That **minimize** objective function $J(\cdot)$,

$$J(\mathbf{r};\widehat{\boldsymbol{\theta}}) := \frac{1}{2} \mathbf{r}^{\top} \mathbf{r}. \tag{6}$$

- where $r:=\frac{\mathrm{d}}{\mathrm{d}t}e+\Lambda e$ is the filtered tracking error.
- while satisfying the following constraints:
 - Boundedness of the NN weights $\widehat{\theta}$.
 - Saturation of the control input au.

Considered Constraints

• Weight Boundedness for Each Layer:

$$c_{\theta_i}(\widehat{\theta}) := \|\widehat{\theta}_i\|^2 - \overline{\theta_i}^2 \le 0, \forall i \in \{0, \dots, k\}$$
 (7)

- Convex control Input Saturation:
 - Input bound constraint:

$$c_{\overline{\tau}_i}(\widehat{\theta}) := \tau_i - \overline{\tau_i} \le 0, \quad c_{\underline{\tau}_i}(\widehat{\theta}) := \underline{\tau_i} - \tau_i \le 0$$
 (8)

• Input norm constraint:

$$c_{\tau}(\widehat{\boldsymbol{\theta}}) := \|\boldsymbol{\tau}\|^2 - \overline{\tau}^2 \le 0 \tag{9}$$

(10)

Original Optimization Problem

- Constrained optimization problem to minimize the tracking error.
- Inequality constraints $c_i(\widehat{\theta}) \leq 0$ for $j \in \mathcal{I}$.

$$\min_{\widehat{\boldsymbol{\theta}}} J(\boldsymbol{r}; \widehat{\boldsymbol{\theta}})$$

s.t. $c_j(\widehat{\boldsymbol{\theta}}) \leq 0, \forall j \in \mathcal{I}$

Define Lagrangian Function

$$L(\mathbf{r},\widehat{\boldsymbol{\theta}},[\lambda_j]_{j\in\mathcal{I}}) := J(\mathbf{r};\widehat{\boldsymbol{\theta}}) + \sum_{j\in\mathcal{I}} \lambda_j c_j(\widehat{\boldsymbol{\theta}})$$
(11)

Dual Problem

- The dual problem is to minimize the Lagrangian function with respect to the NN weights $\widehat{\theta}$, while maximizing the Lagrange multipliers λ_j .
- ullet The Lagrange multipliers $\dot{\lambda}_j$ are non-negative, i.e., $\lambda_j \geq 0$.

$$\min_{\widehat{\boldsymbol{\theta}}} \max_{[\lambda_j]_{j \in \mathcal{I}}} L(\boldsymbol{r}, \widehat{\boldsymbol{\theta}}, [\lambda_j]_{j \in \mathcal{I}})$$

(12)

Adaptation Law Derivation Gradient Descent/Ascent Method

To solve the dual problem,

$$\min_{\widehat{\boldsymbol{\theta}}} \max_{[\lambda_j]_{j \in \mathcal{I}}} L(\boldsymbol{r}, \widehat{\boldsymbol{\theta}}, [\lambda_j]_{j \in \mathcal{I}}), \tag{13}$$

the first-order gradient descent/ascent method is used to derive the adaptation law.

Adaptation Law

Gradient Descent Method for $\widehat{\theta}$:

$$\frac{\mathrm{d}}{\mathrm{d}t}\widehat{\boldsymbol{\theta}} = -\alpha \frac{\partial L}{\partial \widehat{\boldsymbol{\theta}}} = -\alpha \left(\frac{\partial J}{\partial \widehat{\boldsymbol{\theta}}} + \sum_{j \in \mathcal{I}} \lambda_j \frac{\partial c_j}{\partial \widehat{\boldsymbol{\theta}}} \right), \tag{14}$$

Gradient Ascent Method for $\lambda_j, \forall j \in \mathcal{I}$:

$$\frac{\mathrm{d}}{\mathrm{d}t}\lambda_j = \beta_j \frac{\partial L}{\partial \lambda_j} = \beta_j c_j, \tag{15}$$

For non-negativity of the Lagrange multipliers,

$$\lambda_j \leftarrow \max(\lambda_j, 0).$$
 (16)

Stability Analysis Lyapunov Stability Analysis

Theorem 1 [2]

For the dynamical system described in (3), the neuro-adaptive controller in (4) with the weight adaptation laws in (14), (15) and (16) ensure the boundedness of the filtered error r and the weight estimate $\hat{\theta}$, under the control input constraints satisfying Assumption 1 and 2. This holds under the weight norm constraint (7).

The constraint functions $c_i(\widehat{\theta}), \forall i \in \mathcal{I}$, are convex in the τ -space and satisfy $c_i(\widehat{\theta}) < 0$ and $c_i(\theta^*) < 0$.

Assumption 2. Linear Independence Constraint Qualification (LICQ)

The selected constraints satisfy the Linear Independence Constraint Qualification (LICQ) [3, Chap. 12 Def. 12.1].

Proof of Theorem 1 is omitted due to space limitations. The detailed proof can be found in [2].

Target System:

$$M\ddot{q} + V_m\dot{q} + F + G + \tau_d = \tau$$

Figure: Two-link robotic manipulator model.

Desired Trajectory:

$$\boldsymbol{q}_{d} = \begin{pmatrix} q_{d1} \\ q_{d2} \end{pmatrix} = \begin{pmatrix} +\cos(\frac{\pi}{2}t) + 1 \\ -\cos(\frac{\pi}{2}t) - 1 \end{pmatrix}. \tag{17}$$

System Model Parameters:

Table: System model parameters.

Symbol	Description	Link 1	Link 2
m_p	Mass	23.902 kg	3.88 kg
I_p	Length	0.45 m	0.45 m
I _{cp}	COM	0.091 m	0.048 m
b_p	Viscous coef.	2.288 Nms	0.172 Nms
f_{cp}	Friction coef.	7.17 Nm	1.734 Nm

Simulation Setup Controllers for Comparative Study

- NAC-CO denotes the proposed controller based on constrained optimization.
- For NAC-L2 and NAC-eMod, the stabilizing terms $-\lambda \hat{\theta}$ and $\rho \|\tilde{\mathbf{z}}\| \hat{\theta}$ ensures the boundedness of the NN weights

Name	Description	Adaptation Law	
NAC-CO (proposed)	Constrained Optimization-based NAC	$\frac{\mathrm{d}}{\mathrm{d}t}\widehat{\boldsymbol{\theta}} = -\alpha \left(\frac{\partial L}{\partial \widehat{\boldsymbol{\theta}}} + \sum_{j \in \mathcal{I}} \lambda_j \frac{\partial c_j}{\partial \widehat{\boldsymbol{\theta}}} \right)$	
	$(eta_j$ determines λ_j adaptation speed)	$rac{\mathrm{d}}{\mathrm{d}t}\lambda_j = eta_j c_j, \lambda_j \leftarrow max(\lambda_j, 0)$	
NAC-L2	NAC with L_2 -regularization	$\frac{\mathrm{d}}{\mathrm{d}t}\widehat{\boldsymbol{\theta}} = -\alpha \left(\frac{\partial J}{\partial \widehat{\boldsymbol{\theta}}} + \lambda \widehat{\boldsymbol{\theta}} \right)$	
	$(\lambda \in \mathbb{R}_{>0} \; stabilizes \; \widehat{ heta} \; towards \; origin)$		
NAC-eMod	NAC with ϵ -modification	$\frac{\mathrm{d}}{\mathrm{d}t}\widehat{\boldsymbol{\theta}} = -\alpha \left(\frac{\partial J}{\partial \widehat{\boldsymbol{\theta}}} + \rho \ \widetilde{\boldsymbol{z}}\ \widehat{\boldsymbol{\theta}} \right)$	
	$(ho$ stabilizes proportionally to the error $\tilde{\mathbf{z}})$		

Simulation Objective

By varying the parameters, i.e., β_i , λ , and ρ , the parameter dependencies will be investigated.

Parameter Dependencies Investigation:

- The parameters ranged from 0.001 to 1 across 10 samples.
- NAC-CO (proposed) shows the best performance and low variance.
- NAC-L2 shows the worst performance with high variance.

Figure: Parameter dependencies of the proposed method.

	NAC-L2	NAC-eMod	NAC-CO (proposed)
Maximum	11.1753×10^{-3}	0.5603×10^{-3}	0.3439×10^{-3}
Median	0.5898×10^{-3}	0.5519×10^{-3}	0.3240×10^{-3}
Minimum	0.5434×10^{-3}	0.5434×10^{-3}	0.3235×10^{-3}

Squared root of the tracking error ISE (Integral of Squared Error) is used, i.e., $\sqrt{\int_0^T \|r\|^2} \, dt$, where T denotes a simulation termination

Figure: Weight norms of NAC-CO

Figure: Weight norms of NAC-L2

Figure: Weight norms of NAC-eMod

- NAC-CO (proposed) showed the weight norms are bounded under pre-defined constraint $\overline{\theta}=20$.
- NAC-L2 and NAC-eMod showed the bounded weight norms, but they depended on the parameters λ and ρ , respectively.
- As the parameters λ and ρ increase, the weight norms of NAC-L2 and NAC-eMod biased towards the origin, which may lead to suboptimal performance.
- In addition, NAC-CO tracked the desired trajectory with a smaller weight norm than NAC-L2 and NAC-eMod.

Simulation Results Tracking Performance

Figure: Tracking error of NAC-CO

Figure: Tracking error of NAC-L2

Figure: Tracking error of NAC-eMod

- NAC-CO (proposed) outperformed NAC-L2 and NAC-eMod in terms of tracking performance.
- As the weights are biased towards the origin, the tracking performance of NAC-L2 and NAC-eMod deteriorated.

Summary of Contributions

- Proposed a novel constrained optimization-based neuro-adaptive control (CONAC) method.
- Adaptation laws are derived using constrained optimization method.
- The proposed method guarantees the stability of the system and the boundedness of the NN weights.
- Feasibility of the proposed method is validated through numerical simulations and real-time experiments.

Future Work

- Extend the proposed method to state constraints.
- Enhance the robustness and flexibility of the proposed method for various systems.

Thank you for your attention!

- J. A. Farrell and M. M. Polycarpou, Adaptive Approximation Based Control: Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches (Adaptive and Learning Systems for Signal Processing, Communications and Control Series). USA: Wiley-Interscience, 2006. [Online]. Available: https://doi.org/10.1002/0471781819
- [2] M. Ryu, N. Monzen, P. Seitter, K. Choi, and C. M. Hackl, "Constrained optimization-based neuro-adaptive control (conac) for synchronous machine drives under voltage constraints," TechRxiv, Preprint, Apr. 2025. [Online]. Available: http://dx.doi.org/10.36227/techrxiv.174585949.94234666/v1
- [3] J. Nocedal and S. Wright, *Numerical optimization*, 2nd ed., ser. Springer series in operations research and financial engineering. New York, NY: Springer, 2006. [Online]. Available: https://doi.org/10.1007/978-0-387-40065-5