Covariance matrix

$$S = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(x_i - \overline{x})^{T}$$

$$= \frac{1}{n-1} \widetilde{X}^{T} \widetilde{X}$$

$$S = \bigvee \bigwedge \bigvee^{T} (\bigwedge = \frac{D^{2}}{n-1})$$

- let PC maximizes aTS a st. aTa=1
=> a=X, V=(V1,...,Vp)
- kth PC maximizes aTS a s.t. aTa=1 and aTX;=0 for j=1,...,k-1
- Principal component scores:

columns of XV

- Principal components leadings: columns of V=(Vi,...,Ve)

Hopefully, PC Scores are easily interpretable

Example: Atheletics records (Blackboard) 8 records 55 countries

P(A on correlation matrix (X antred & scaled) $\lambda_1 = 0.79$ $\lambda_2 = 0.11$ $\lambda_3 = 0.04$ $\lambda_1 + \lambda_2 + \lambda_3 = 0.94$

Loadings 100 m 200 m 400 m 800 m 1500 m 10000 m marathen	PC#1 -0.33 -0.34 -0.36 -0.38 -0.37 -0.37 -0.33	PC#2 -0.54 -0.47 -0.25 0 0.13 0.31 0.35 0.47	PC#2 is a	a measure of overall streng a measure of contrast a shorter events.
P / 0	, ~		es versus 2nd Po argest two singula Vi ^T Vi ^T 2×P	C scores volves
·Plot U1 vs · (d.v. d.v.) P×2 - length of	Uz (plot represent reutor represent	of 1st 2 PC	of this matrix by	
Find y,, Define D= Special Case: d(u,v)=[$\sum_{j=1}^{n} (u_{j} - v_{j})$	symmet imensional) such Xi Zj)) Xi Zn know	rred ric matrix of that d(yi.yi)=	distances d(x:.xi) = d(xi.xi) = = Euclidean distance
Define X=	xy ^T xy ecover dij	and $\beta = XX^T$ $= d(X_i, X_i)$	from e-lements of + b _{ij} -2b _{ij}	

~ result is nxn

- suggests that best of dimensional distance preserving transformation is first or columns of U