Multimodal Unsupervised Image-to-Image Translation

Ming-Yu Liu NVIDIA

Supervised vs Unsupervised

Supervised/Paired/Aligned/Registered

Image Domain Transfer

Image

Translator

Given an input image in one domain

Summer image domain

Output a corresponding image in a differerent domain

Winter image domain

Example Applications

Low-res to high-res

Blurry to sharp

Image to painting

LDR to HDR

Synthetic to real

Thermal to color

Day to night

Summer to winter

Noisy to clean

Generative Adversarial Networks (GANs)

Goodfellow et al. 2014

Plain GAN for Unsupervised Image-to-Image Translation

CycleGAN and UNIT

• CycleGAN (cycle consistency) [Zhu et al. 2017]

• UNIT (shared latent space) [Liu et al. 2017]

shared latent space \Rightarrow cycle consistency

Unimodality

Towards Multimodality

Shake do at test test post control at la low multilition dad the ty

Disentangling the Latent Space

- UNIT
 - ullet A single **shared**, **domain-invariant** latent space $\mathcal Z$

Disentangling the Latent Space

- Multimodal UNIT (MUNIT)
 - A content space $\mathcal C$ that is shared, domain-invariant
 - Two style spaces S_1 , S_2 that are unshared, domain-specific

Training

- Notations:
 - *x*: images
 - c: content
 - *s*: style
- Loss:
 - Bidirectional reconstruction loss
 - Image reconstruction loss
 - Latent reconstruction loss
 - GAN loss

Wichios-schomainmetramstatuotion

Bidirectional Reconstruction Loss: Image Reconstruction x_1

Notations:

• x: images

• *c*: content

• *s*: style

Bidirectional Reconstruction Loss: Latent Reconstruction x_1

Notations:

• x: images

• c: content

• *s*: style

GAN Loss

Notations:

• x: images

• *c*: content

• *s*: style

Background: Instance Normalization (IN)

Feedforward transfer of a single style

Content feature: c

$$IN(c) = \gamma \left(\frac{c - \mu(c)}{\sigma(c)}\right) + \beta$$

Adaptive Instance Normalization (AdaIN)

Feedforward transfer of arbitrary styles

AdalN in a Generative Network

$$AdaIN(c,s) = \sigma(s) \left(\frac{c - \mu(c)}{\sigma(c)}\right) + \mu(s) \qquad AdaIN(c,s) = \gamma \left(\frac{c - \mu(c)}{\sigma(c)}\right) + \beta$$

$$\begin{array}{c} \wedge \\ \wedge \\ S \end{array} \begin{array}{c} \\ \wedge \\ \\ \end{array} \begin{array}{c} \\ \beta, \\ \\ \end{array} \begin{array}{c} \\ \text{AdalN} \end{array}$$

AdaIN
$$(c, s) = \gamma \left(\frac{c - \mu(c)}{\sigma(c)}\right) + \beta$$

AdaIN in style transfer

AdaIN in a generative network

AdalN in a Generative Network

$$AdaIN(c,s) = \sigma(s) \left(\frac{c - \mu(c)}{\sigma(c)}\right) + \mu(s) \qquad AdaIN(c,s) = \gamma \left(\frac{c - \mu(c)}{\sigma(c)}\right) + \beta$$

AdaIN
$$(c, s) = \gamma \left(\frac{c - \mu(c)}{\sigma(c)}\right) + \beta$$

AdaIN in style transfer

AdaIN in a generative network

Architectural Implementation

Sketches <-> Photo

Input Outputs

$\mathsf{Cats} \leftrightarrow \mathsf{Dogs}$

Input Outputs

Synthetic ↔ Real

Input Outputs

Summer ↔ Winter

Input Outputs

Example-guided Translation

Example-guided Translation

Content Style AdaIN Ours Gatys et al.

Conclusion

- Translate one input image to multiple corresponding images in the target domain.
- Content and style decomposition via the AdaIN design
- ECCV 2018
- MUNIT code: https://github.com/nvlabs/munit/
- Paper: https://arxiv.org/abs/1804.04732

Xun Huang NVIDIA, Cornell

Ming-Yu Liu NVIDIA

Serge Belongie Cornell

Jan Kautz NVIDIA