NOTES ON PARALLELIZATION

Jesús Fernández-Villaverde David Zarruk Valencia

October 2, 2016

TABLE OF CONTENTS

- 1. MOTIVATION
- 2. The Model
- 3. PARALLELIZATION LIMITS
- 4. Parallelization
 - 4.1. Julia
 - 4.2. Python
 - 4.3. R
 - 4.4. Matlab
 - 4.5. C++ and OpenMP
 - 4.6. Rcpp and OpenMP
- 5. Comparisons

WHY PARALLEL?

- Moore's Law (1965): transistor density of semiconductor chips would double roughly every 18 months.
- Problems when transistor size falls by a factor x:
 - 1. Electricity consumption goes up by x^4 .
 - 2. Heat goes up.
 - 3. Manufacturing costs go up.
- ▶ Inherent limits on serial machines imposed by the speed of light (30 cm/ns) and transmission limit of copper wire (9 cm/ns): virtually impossible to build a serial Teraflop machine with current approach.
- ► Furthermore, real bottleneck is often memory access (RAM latency has only improved around 10% a year).
- Alternative: having more processors!

Number of transistors

Cray-1, 1975

SUNWAY TAIHULIGHT, 2016

PARALLEL PROGRAMMING

- ► Main idea⇒divide complex problem into easier parts:
 - 1. Numerical computation.
 - 2. Data handling (MapReduce and Hadoop).
- ► Two issues:
 - 1. Algorithms.
 - 2. Coding.

SOME REFERENCES

- Parallel Programming for Multicore and Cluster Systems by Thomas Rauber and Gudula Rünger.
- ► An Introduction to Parallel Programming by Peter Pacheco.
- ► Principles of Parallel Programming by Calvin Lin and Larry Snyder.
- Structured Parallel Programming: Patterns for Efficient Computation by Michael McCool, James Reinders, and Arch Robison.
- ► Introduction to High Performance Computing for Scientists and Engineers by Georg Hager and Gerhard Wellein.

When do we parallelize? I

- Scalability:
 - 1. Strongly scalable: problems that are inherently easy to parallelize.
 - 2. Weakly scalable: problems that are not.
- Granularity:
 - 1. Coarse: more computation than communication.
 - 2. Fine: more communication.
- Overheads and load balancing.

GRANULARITY

When do we parallelize? II

- ▶ Whether or not the problem is easy to parallelize may depend on the way you set it up.
- ► Taking advantage of your architecture.
- ► Trade off between speed up and coding time.
- Debugging and profiling may be challenging.
- ▶ You will need a good IDE, debugger, and profiler.

EXAMPLE I: VALUE FUNCTION ITERATION

$$V(k) = \max_{k'} \{ u(c) + \beta V(k') \}$$
$$c = k^{\alpha} + (1 - \delta) k - k'$$

- 1. We have a grid of capital with 100 points, $k \in [k_1, k_2, ..., k_{100}]$.
- 2. We have a current guess $V^{n}(k)$.
- 3. We can send the problem:

$$\max_{k'} \left\{ u(c) + \beta V^{n}(k') \right\}$$

$$c = k_1^{\alpha} + (1 - \delta) k_1 - k'$$

to processor 1 to get $V^{n+1}(k_1)$.

- 4. We can send similar problem for each k to each processor.
- 5. When all processors are done, we gather the $V^{n+1}(k_1)$ back.

EXAMPLE II: RANDOM WALK METROPOLIS-HASTINGS

- ▶ Draw $\theta \sim P(\cdot)$
- ► How?
 - 1. Given a state of the chain θ_{n-1} , we generate a proposal:

$$\theta^* = \theta_{n-1} + \lambda \varepsilon, \ \varepsilon \sim \mathcal{N}(0, 1)$$

2. We compute:

$$\alpha = \min \left\{ 1, \frac{P(\theta^*)}{P(\theta_{n-1})} \right\}$$

3. We set:

$$\theta_n = \theta^* w.p. \alpha$$
 $\theta_n = \theta_{n-1} w.p. 1 - \alpha$

- ▶ Problem: to generate θ^* we need to θ_{n-1} .
- ▶ No obvious fix (parallel chains violate the asymptotic properties of the chain).

TABLE OF CONTENTS

- 1. MOTIVATION
- 2. The Model
- 3. PARALLELIZATION LIMITS
- 4. Parallelization
 - 4.1. Julia
 - 4.2. Python
 - 4.3. R
 - 4.4. Matlab
 - 4.5. C++ and OpenMP
 - 4.6. Rcpp and OpenMP
- 5. Comparisons

LIFE-CYCLE MODEL

Households solve:

$$V(t,e,x) = \max_{\{c,x'\}} u(c) + \beta \mathbb{E} V(t+1,e',x')$$
 s.t.
$$c+x' \leq (1+r)x + ew$$

$$\mathbb{P}(e'|e) = \Gamma(e)$$

$$t \in \{1,\ldots,T\}$$

Firms solve:

$$\max_{K,L} f(K,L) - wL - rK$$

COMPUTING THE MODEL

1. Choose grids for shocks $X = \{x_1, \dots, x_{n_x}\}$ and assets $E = \{e_1, \dots, e_{n_e}\}$.

2. Backwards induction:

2.1 For t = T and every $x_i \in X$ and $e_j \in E$, solve the static problem:

$$V(t, e_j, x_i) = \max_{\{c\}} u(c)$$
 s.t. $c \leq (1+r)x_i + e_j w$

2.2 For $t = T - 1, \dots, 1$, use $V(t + 1, e_j, x_i)$ to solve:

$$V(T-1,e_j,x_i) = \max_{\{c,x'\in X\}} u(c) + \beta \mathbb{E}V(T,e',x') \quad s.t.$$

$$c+x' \leq (1+r)x_i + e_j w$$

$$\mathbb{P}(e' \in E|e_i) = \Gamma(e_i)$$

```
for(age = T:-1:1)
 for(ix = 1:nx)
   for(ie = 1:ne)
     VV = -10^3:
     for(ixp = 1:nx)
       expected = 0.0;
       if(age < T)
         for(iep = 1:ne)
           expected = expected + P[ie, iep]*V[age+1, ixp, iep];
         end
       end
       cons = (1 + r)*xgrid[ix] + egrid[ie]*w - xgrid[ixp];
       utility = (cons^(1-ssigma))/(1-ssigma) + bbeta*expected;
       if(cons <= 0)
        utility = -10^5;
       end
       if(utility >= VV)
         VV = utility;
       end
     end
     V[age, ix, ie] = VV;
   end
 end
end
```

IN PARALLEL

- 1. Set t = T.
- 2. Given t, the computation of $V(t, e_j, x_i)$ is independent of the computation of $V(t, e_{j'}, x_{i'})$, for $i \neq i'$, $j \neq j'$.
- 3. One processor can compute $V(t, e_j, x_i)$ while another processor computes $V(t, e_{i'}, x_{i'})$.
- 4. When the different processors are done at computing $V(t, e_j, x_i)$, $\forall x_i \in X$ and $\forall e_i \in E$, set t = t 1.
- 5. Go to 1.

Note that the problem is not parallelizable on t. The computation of V(t,e,x) depends on V(t+1,e,x)!

IN PARALLEL

PARALLEL EXECUTION OF THE CODE

MANY WORKERS INSTEAD OF ONE

FIGURE: 1 Core Used for Computation

FIGURE: 8 Cores Used for Computation

COMPUTATIONAL FEATURES OF THE MODEL

- 1. The simplest life-cycle model.
- 2. Three state variables:
 - 2.1 Age.
 - 2.2 Assets.
 - 2.3 Productivity shock.
- 3. Parallelizable only on assets and shock, not on age.
- 4. May become infeasible to estimate:
 - 4.1 With more state variables:
 - Health.
 - Housing.
 - Money.
 - Different assets.
 - 4.2 If embedded in a general equilibrium.

TABLE OF CONTENTS

- 1. MOTIVATION
- 2. The Model

3. Parallelization Limits

4. PARALLELIZATION

- 4.1. Julia
- 4.2. Python
- 4.3. R
- 4.4. Matlab
- 4.5. C++ and OpenMP
- 4.6. Rcpp and OpenMP

5. Comparisons

COSTS OF PARALLELIZATION

▶ Amdahl's Law: the speedup of a program using multiple processors in parallel computing is limited by the time needed for the sequential fraction of the program.

- Costs:
 - Starting a thread or a process/worker.
 - Transferring shared data to workers.
 - Synchronizing.
- ▶ Load imbalance: for large machines, it is often difficult to use more than 10% of its computing power.

PARALLELIZATION LIMITS ON A LAPTOP

- ► Newest processors have:
 - 4 physical cores + 4 virtual cores = 8 logical cores

Multi-core Processors

KNOW YOUR LIMITS!

- Spend some time getting to know you laptop's limits and the problem to parallelize.
- ▶ In our life-cycle problem with many grid points, parallelization improves performance almost linearly, up to the number of physical cores.
- Parallelizing over different threads of the same physical core does not improve speed if each thread uses 100% of core capacity.
- For computationally heavy problems, adding more threads than cores available may even reduce performance.

YOUR LAPTOP IS NOT THE LIMIT!

- ► Many other resources:
 - ► Tesla server:
 - ▶ 61 Cores
 - ► Hawk server:
 - ▶ 72 Cores
 - Amazon Web Services EC2:
 - ► Almost as big as you want!

AMAZON WEB SERVICES

- ▶ Replace a large initial capital cost for a variable cost (use-as-needed).
- ► Check: https://aws.amazon.com/ec2/pricing/
 - ▶ 8 processors with 32Gb, general purpose: \$0.479 per hour.
 - ▶ 64 processors with 256Gb, compute optimized: \$3.83 per hour.

RUNNING AN INSTANCE ON AWS

- ► Go to: https://console.aws.amazon.com/
- Click on EC2.
- Click on Launch Instance and follow the window links (for example, Ubuntu Server 14.04).
- ▶ Public key:
 - Create a new key pair.
 - Download key.
 - ► Store it in a secure place (usually ~./ssh/).
- Run instance.

WORKING ON AWS INSTANCE

On Ubuntu terminal:

► Transfer folder from local to instance with scp:

```
$ scp -i "/path/PUBLICKEY.pem" -r
    "/pathfrom/FOLDER/" ubuntu@52.3.251.249:~
```

Make sure key is not publicly available:

```
$ chmod 400 "/path/PUBLICKEY.pem"
```

Connect to instance with ssh:

```
$ ssh -i "/path/PUBLICKEY.pem" ubuntu@52.3.251.249
```

TABLE OF CONTENTS

- 1. MOTIVATION
- 2. The Model
- 3. Parallelization Limits
- 4. Parallelization
 - 4.1. Julia
 - 4.2. Python
 - 4.3. R
 - 4.4. Matlab
 - 4.5. C++ and OpenMP
 - 4.6. Rcpp and OpenMP
- 5. Comparisons

TWO WAYS OF PARALLELIZING

1. for loop:

Adding a statement before a for loop that wants to be parallelized.

2. Map and reduce:

- Create a function that depends on the state variables over which the problem can be parallelized:
 - In our example, we have to create a function that computes the value function for a given set of state variables.
- Map computes in parallel the function at a vector of states.
- Reduce combines the values returned by map in the desired way.

TABLE OF CONTENTS

- 1. MOTIVATION
- 2. The Model
- 3. Parallelization Limits

4. Parallelization

- 4.1. Julia
- 4.2. Python
- 4.3. R
- 4.4. Matlab
- 4.5. C++ and OpenMP
- 4.6. Rcpp and OpenMP
- 5. Comparisons

PARALLELIZATION IN JULIA - for LOOPS

▶ Parallelization of *for* loops is worth for "small tasks."

- ▶ "Small task" == "few computations on each parallel iteration":
 - ► Few control variables.
 - Few grid points on control variables.
 - Our model is a "small task."

PARALLELIZATION IN JULIA - for LOOPS

1. Set number of workers:

```
addprocs(6)
```

 Variables are not observable by workers ⇒ Declare the variables inside the parallel for loop that are not modified inside parallel iterations to be global:

```
@everywhere T = 10;
#...
@everywhere gridx = zeros(nx);
```

3. Declare the variables inside the parallel *for* loop that <u>are</u> modified inside parallel iterations as <u>SharedArray</u>:

```
V = SharedArray(Float64, (T, nx, ne),
    init = V -> V[Base.localindexes(V)] =
        myid());
```

4. For paralellizing a for loop, add @parallel before the for statement:

```
@parallel for(ix = 1:1:nx)
    # ...
end
```

5. To synchronize before the code continues its execution, add @sync before the @parallel for statement:

```
@sync @parallel for(ix = 1:1:nx)
# ...
end
```

▶ Choose appropriately the dimension(s) to parallelize:

```
nx = 350;
ne = 9;
for(ie = 1:ne)
   @sync @parallel for(ix = 1:nx)
    # ...
   end
end
```

```
nx = 350;
ne = 9;
for(ix = 1:nx)
    @sync @parallel for(ie = 1:ne)
    # ...
end
end
```

▶ The first one is much faster, as there is less communication.

▶ OR convert the problem so all state variables are computed by iterating over a one-dimensional loop:

```
@sync @parallel for(ind = 1:(ne*nx))
    ix = convert(Int, ceil(ind/ne));
    ie = convert(Int, floor(mod(ind-0.05, ne))+1);
    # ...
end
```

Communication time is minimized!

PARALLELIZATION IN JULIA - PERFORMANCE

	Cores										
	1	2	3	4	5	6	7	8			
Time (secs)	84.16	40.80	27.48	22.31	33.99	29.99	26.46	25.24			
Improvement	1.00	2.06	3.06	3.77	2.48	2.81	3.18	3.33			

▶ Our problem is "small" ⇒ improvements are huge.

- ▶ Speed decreases with the number of global variables used.
- Very sensible to the use of large SharedArray objects.
- ► Can be faster without paralellization than with large shared objects.
- ► See examples 1 and 2 on github

PARALLELIZATION IN JULIA - Map

- Problems with more computations per iteration.
- ▶ Value function/life-cycle models with more computations per state:
 - Many control variables.
 - Discrete choice (marry-not marry, accept-reject work offer, default-repay, etc.).
- ▶ If problem is "small", using *map* for parallelization is slower.
- See examples 3 and 4 on github.

PARALLELIZATION IN JULIA - Map

1. Initialize number of workers:

```
addprocs(6)
```

2. To avoid declaring all variables as global (makes computation slower), define a structure of inputs:

```
@everywhere type modelState
   ix::Int64
   age::Int64
   # ...
end
```

PARALLELIZATION IN JULIA - Map

3. Define a function that computes value function for a given state:

```
@everywhere function value(currentState::modelState)
   ix = currentState.ix;
   age = currentState.age;
   # ...
   VV = -10^3;
   for(ixp = 1:nx)
     # ...
   end
   return(VV);
end
```

Parallelization in Julia - Map

4. The function pmap(f,s) computes the function f at every element of s in parallel:

```
for(age = T:-1:1)
    pars = [modelState(ix, age, ..., w, r) for ix in 1:nx];
    s = pmap(value,pars);
    for(ind = 1:nx)
        V[age, ix, ie] = s[ix];
    end
end
```

PARALLELIZATION IN JULIA - PERFORMANCE

	Cores									
	1	2	3	4	5	6	7	8		
Time (secs)	11.09	7.28	5.30	6.10	7.02	6.84	7.08	7.07		
Improvement	1.00	1.52	2.09	1.82	1.58	1.62	1.57	1.57		

▶ Our problem is "small" ⇒ not much improvement.

PARALLELIZATION IN JULIA - FINAL ADVICE

► Assess size of problem, but usually problem grows as paper evolves!

Wrapping value function computation for every state might significantly increase speed (even more than parallelizing).

TABLE OF CONTENTS

- 1. MOTIVATION
- 2. The Model
- 3. Parallelization Limits
- 4. Parallelization
 - 4.1. Julia
 - 4.2. Python
 - 4.3. R
 - 4.4. Matlab
 - 4.5. C++ and OpenMP
 - 4.6. Rcpp and OpenMP
- 5. Comparisons

PARALLELIZATION IN PYTHON - Map

1. Use joblib package

```
from joblib import Parallel, delayed
import multiprocessing
```

2. Define a parameter structure for value function computation:

```
class modelState(object):
    def __init__(self, age, ix, ...):
        self.age = age
        self.ix = ix
# ...
```

PARALLELIZATION IN PYTHON

3. Define a function that computes value for a given input *states* of type *modelState*:

```
def value_func(states):
    nx = states.nx
    age = states.age
    # ...
    VV = math.pow(-10, 3)
    for ixp in range(0,nx):
        # ...
    return[VV];
```

PARALLELIZATION IN PYTHON

4. The function Parallel:

```
results = Parallel(n_jobs=num_cores)(delayed(value_func)
          (modelState(ix, age, ..., w, r)) for ind in
          range(0,nx*ne))
```

maps the function value_func at every element of modelState(ix, age, ..., w, r) in parallel using num_cores cores.

PARALLELIZATION IN PYTHON

5. Life-cycle model:

```
for age in reversed(range(0,T)):
    results =
        Parallel(n_jobs=num_cores)(delayed(value_func)
        (modelState(ix, age, ..., w, r)) for ix in
        range(0,nx))
    for ix in range(0,nx):
        V[age, ix] = results[ix][0];
```

PARALLELIZATION IN PYTHON - PERFORMANCE

	Cores									
	1	2	3	4	5	6	7	8		
Time (secs)	163.97	126.64	85.60	67.78	62.68	60.15	58.00	56.32		
Improvement	1.00	1.29	1.92	2.42	2.62	2.73	2.83	2.91		

TABLE OF CONTENTS

- 1. MOTIVATION
- 2. The Model
- 3. PARALLELIZATION LIMITS

4. Parallelization

- 4.1. Julia
- 4.2. Python
- 4.3. R
- 4.4. Matlab
- 4.5. C++ and OpenMP
- 4.6. Rcpp and OpenMP
- 5. Comparisons

PARALLELIZATION IN R - Map

1. Use package parallel:

```
library("parallel")
```

2. Create the structure of parameters for the function that computes the value for a given state as a *list*:

```
states = lapply(1:nx, function(x) list(age=age,ix=x,
...,r=r))
```

PARALLELIZATION IN R

3. Create the function that computes the value for a given state:

```
value = function(x){
   age = x$age
   ix = x$ix
   VV = -10^3;
   for(ixp in 1:nx){
      # ...
   }
   return(VV);
```

PARALLELIZATION IN R

4. Define the cluster with desired number of cores:

```
cl <- makeCluster(no_cores)
```

5. Use function parLapply(cl, states, value) to compute value at every state in states with cl cores:

```
for(age in T:1){
    states = lapply(1:nx, ...)
    for(ix in 1:nx){
        V[age, ix] = s[[ix]][1]
    }
}
```

PARALLELIZATION IN R - PERFORMANCE

	Cores										
	1	2	3	4	5	6	7	8			
Time (secs)	360.97	214.54	152.99	122.97	151.24	136.26	124.21	119.22			
Improvement	1.00	1.68	2.36	2.94	2.39	2.65	2.91	3.03			

TABLE OF CONTENTS

- 1. MOTIVATION
- 2. The Model
- 3. Parallelization Limits

4. Parallelization

- 4.1. Julia
- 4.2. Python
- 4.3. R

4.4. Matlab

- 4.5. C++ and OpenMP
- 4.6. Rcpp and OpenMP
- 5. Comparisons

PARALLELIZATION IN MATLAB - for LOOP

Using the parallel toolbox:

1. Initialize number of workers with parpool():

```
parpool(6)
```

2. Replace the for loop with parfor:

PARALLELIZATION IN MATLAB - PERFORMANCE

	Cores									
	1	2	3	4	5	6	7	8		
Time (secs)	3.35	2.38	2.43	1.88	2.29	2.30	2.48	2.62		
Improvement	1.00	1.41	1.38	1.79	1.46	1.45	1.35	1.28		

PARALLELIZATION IN MATLAB

- Extremely easy.
- Also simple to extend to GPU.
- lacktriangle There is no free lunch \Longrightarrow very poor performance.

TABLE OF CONTENTS

- 1. MOTIVATION
- 2. The Model
- 3. PARALLELIZATION LIMITS

4. Parallelization

- 4.1. Julia
- 4.2. Python
- 4.3. R
- 4.4. Matlab
- 4.5. C++ and OpenMP
- 4.6. Rcpp and OpenMP
- 5. Comparisons

OPENMP I

- ▶ Open specifications for multi-processing.
- It has been around for two decades. Current version 4.5.
- Official web page: http://openmp.org/wp/
- Tutorial: https://computing.llnl.gov/tutorials/openMP/
- ► Using OpenMP: Portable Shared Memory Parallel Programming by Barbara Chapman, Gabriele Jost, and Ruud van der Pas.
- ► Fast to learn, reduced set of instructions, easy to code, but you need to worry about contention and cache coherence.

OPENMP II

- ► API for multi-processor/core, shared memory machines defined by a group of major computer hardware and software vendors.
- ▶ C++ and Fortran. Extensions to other languages.
- ► For example, you can have OpenMP in Mex files in Matlab.
- Supported by major compilers (GCC) and IDEs (Eclipse).
- ► Thus, it is usually straightforward to start working with it.

OPENMP III

- Multithreading with fork-join.
- ▶ Rule of thumb: One thread per processor.
- ▶ Job of the user to remove dependencies and syncronize data.
- Heap and stack (LIFO).
- Race conditions: you can impose fence conditions and/or make some data private to the thread.
- ▶ Remember: synchronization is expensive and loops suffer from overheads.

FORK-JOIN

OPENMP IV

Compiler directives to tell what to parallelize:

```
#pragma omp parallel default(shared) private(beta,pi)
```

- Compiler generates explicitly threaded code when OpenMP flag is invoked (-fopenmp).
- ▶ We can always recompile without the flag and compiler directives are ignored.
- Most implementations (although not the standard!) allow for nested parallelization and dynamic thread changes.

PARALLELIZATION IN C++ USING OPENMP

1. At compilation, add flag:

```
-fopenmp
```

2. Set environmental variable OMP_NUM_THREADS:

```
export OMP_NUM_THREADS=32
```

3. Add line before loop:

```
#pragma omp parallel for shared(V, ...)
    private(VV, ...)
for(int ix=0; ix<nx; ix++){
    // ...
}</pre>
```

PARALLELIZATION IN C++ - PERFORMANCE

	Cores									
	1	2	3	4	5	6	7	8		
Time (secs)	0.85	0.45	0.32	0.25	0.35	0.29	0.26	0.26		
Improvement	1.00	1.89	2.65	3.38	2.44	2.89	3.24	3.24		

TABLE OF CONTENTS

- 1. MOTIVATION
- 2. The Model
- 3. Parallelization Limits

4. Parallelization

- 4.1. Julia
- 4.2. Python
- 4.3. R
- 4.4. Matlab
- 4.5. C++ and OpenMP
- 4.6. Rcpp and OpenMP
- 5. Comparisons

PARALLELIZATION IN RCPP USING OPENMP

1. Write your code in C++, adding the parallelization statement

```
#pragma omp parallel for shared(...) private(...)
```

2. In the C++ code, add the following line to any function that you want to import from R:

```
// [[Rcpp::export]]
```

3. In R, load the Rcpp package:

```
library("Rcpp")
```

PARALLELIZATION IN RCPP USING OPENMP

4. Set the environmental variable OMP_NUM_THREADS using the Sys.setenv() function:

```
Sys.setenv("OMP_NUM_THREADS"="8")
```

5. Add the -fopenmp flag using Sys.setenv() function:

```
Sys.setenv("PKG_CXXFLAGS"=" -fopenmp")
```

6. Compile and import using sourceCpp:

```
sourceCpp("my_file.cpp")
```

TABLE OF CONTENTS

- 1. MOTIVATION
- 2. The Model
- 3. PARALLELIZATION LIMITS
- 4. PARALLELIZATION
 - 4.1. Julia
 - 4.2. Python
 - 4.3. R
 - 4.4. Matlab
 - 4.5. C++ and OpenMP
 - 4.6. Rcpp and OpenMP
- 5. Comparisons

PERFORMANCE COMPARISONS

- All results are specific to this example.
- ▶ There are other ways to improve speed on each language:
 - Function wrapping in Julia.
 - Vectorizing in Matlab.
 - ► Etc.

	Cores										
	1	2	3	4	5	6	7	8			
C++	3.2	1.7	1.2	1.0	1.3	1.1	1.0	1.0			
Matlab	12.8	9.1	9.3	7.2	8.8	8.8	9.5	10.0			
Julia - pmap	42.4	27.9	20.3	23.4	26.9	26.2	27.1	27.1			
Julia - for	322.0	156.1	105.1	85.4	130.0	114.7	101.3	96.6			
Python	627.4	484.6	327.6	259.4	239.8	230.1	221.9	215.5			
R	1381.2	820.9	585.4	470.6	578.7	521.4	475.3	456.2			

JULIA

Good

- Fast to execute.
- ► Easy to code.
- ▶ A lot of people use it in the department.
- Almost copy-paste from Matlab.
- Sargent and Stachurski's Quantitative Economic's website: http://lectures.quantecon.org/

Bad

- ▶ Very new language \Rightarrow small community:
 - Not many examples.
 - Few Stack Overflow forums.
 - ▶ Frequent version changes \Rightarrow code might not be stable.

PYTHON

Good

- Easy to code.
- Sargent and Stachurski's Quantitative Economic's website: http://lectures.quantecon.org/
- ► A lot of:
 - Documentation/
 - Packages.
 - ► Forums.

Bad

Slow to execute.

Good

- Easy to code.
- ► A lot of:
 - Documentation.
 - Packages (literally, for everything!)
 - Forums.
- ▶ Very easy to combine with C++.
- ightharpoonup \Rightarrow Easy to make the transition to lower level language.

Bad

Slow to execute.

MATLAB

Good

- Easy to code.
- ► A lot of:
 - Documentation.
 - ► Forums.

Bad

▶ Not open source ⇒ limited number of packages available.

C++

${\sf Good}$

- ► Fast to execute.
- ► Easy to parallelize.
- ► A lot of:
 - ▶ Documentation.
 - Forums.

Bad

▶ Not as easy to code and debug.

COMPARISONS

► The comparisons regarding parallelization are specific to the packages used on these slides:

	Community	Speed	Paral	lelization	Time to	Debug
			Difficulty	Improvement	program	
Matlab	Large	Medium	Easy	Low	Fast	Easy
Julia	Very small	Fast	Medium	High	Fast	Easy
R	Large	Slow	Medium	High	Fast	Easy
Python	Large	Slow	Medium	High	Fast	Easy
C++	Large	Fast	Easy	High	Slow	Difficult

ADVICE

► Short-run: MATLAB, Python, Julia or R

Medium-run:

Rcpp

► Long-run:

C++ or CUDA