Основна формула на сферичната тригонометрия

Сферичната тригонометрия е развита основно за нуждите на небесната механика.

Всяко въртене около нулата в \mathbb{R}^3 се представя еднозначно като композиция на:

- завъртане на ъгъл q около оста Oz, $q \in [0, 2\pi)$
- завъртане на ъгъл i около оста $Ox, i \in [0, \pi]$
- завъртане на ъгъл θ около оста $Oz, \theta \in [0, 2\pi)$.

По дефиниция, групата $SO(3,\mathbb{R})$ се състой от (3×3) ортогонални матрици Qс реални коефициенти и с детерминанта равна на едно.

Теорема. Всяка матрица $Q \in SO(3,\mathbb{R})$ може да се представи аналитично във вида:

$$Q = \begin{pmatrix} \cos \theta - \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos i - \sin i \\ 0 & \sin i & \cos i \end{pmatrix} \begin{pmatrix} \cos g - \sin g & 0 \\ \sin g & \cos g & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\updownarrow \qquad \qquad \updownarrow \qquad \qquad \updownarrow$$

ротация на ъгъл

ротация на ъгъл ротация на ъгъл θ около оста Oz i около оста Ox g около оста Oz

$$= \begin{pmatrix} \cos\theta\cos g - \sin\theta\sin g\cos i & -\cos\theta\sin g - \sin\theta\cos g\cos i & \sin\theta\sin i\\ \sin\theta\cos g + \cos\theta\sin g\cos i & -\sin\theta\sin g + \cos\theta\cos g\cos i & -\cos\theta\sin i\\ \sin g\sin i & \cos g\sin i & \cos i \end{pmatrix}$$
(1)

κσθεπο $\theta, g \in [0, 2\pi)$ $u i \in [0, \pi]$.

Доказателство. Ортогонална е тази матрица, която умножена по транспонираната си матрица дава единичната матрица. Q е ортогонална матрица, защото е произведение на ортогонални матрици.

Последователно определяме ъглите i, θ и g.

1. Най-напред определяме i:

$$Q_{33} = \cos i ,$$

откъдето еднозначно определяме ъгъла $i \in [0, \pi]$, а от там ще знаем и $\pm \sin i$. От дефиницията на ортогонална матрица имаме, че:

$$Q_{13}^2 + Q_{23}^2 + Q_{33}^2 = 1$$
,

откъдето следва, че $Q_{33} \in [-1, 1]$.

2. След това определяме g:

$$Q_{32} = \cos g \cdot \sin i ,$$

откъдето определяме еднозначно $\cos g$ при така намереното $\sin i$. От

$$Q_{31} = \sin g \cdot \sin i$$

еднозначно определяме $\sin g$.

От $\cos g.\sin g$ определяме еднозначно ъгъл $g\in[0,2\pi)$. Но $\cos g$ и $\sin g$ трябва да са такива числа, сумата от квадратите на които трябва да е единица. От уравнението

$$Q_{13}^2 + Q_{23}^2 + Q_{33}^2 = 1$$

следва, че

$$\cos^2 g + \sin^2 g = 1.$$

Следователно те са коректни.

3. От Q_{23} и от вече намереното $\sin i$, можем да намерим $-\cos \theta$. От Q_{13} можем да намерим и $\sin \theta$, откъдето следва, че знаем и ъгъл θ .

Така доказахме, че ако имаме ортогонална матрица, то тя се записва еднозначно по указания начин. Остана да докажем, че

$$\det Q = 1$$
.

От (1) следва, че детерминантата на всяка една от тези три матрици е равна на единица. Произведение на матрици с детерминанта, равна на единица, е пак единица:

$$\det Q = \det Q(\theta) \cdot \det Q(i) \cdot \det Q(g) = 1.1.1 = 1.$$

Теоремата е доказана.

Радослава Димова, email: radoslavadim@abv.bg Кристина Кръстева Юлиана Лешова