Iris Species Classification

Import dataset

```
In [20]: import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [21]: df= pd.read_csv('Iris.csv')
    df.head(10)
```

Out[21]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
5	6	5.4	3.9	1.7	0.4	Iris-setosa
6	7	4.6	3.4	1.4	0.3	Iris-setosa
7	8	5.0	3.4	1.5	0.2	Iris-setosa
8	9	4.4	2.9	1.4	0.2	Iris-setosa
9	10	4.9	3.1	1.5	0.1	Iris-setosa

```
In [22]: # delete a column
df= df.drop(columns=['Id'])
df.head()
```

Out[22]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

```
In [23]: df.shape
```

Out[23]: (150, 5)

In [24]: #To display statistics about data
df.describe()

Out[24]:

	SepailengthCm	SepaiwidthCm	PetaiLengthCm	PetalwidthCm
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [25]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	SepalLengthCm	150 non-null	float64
1	SepalWidthCm	150 non-null	float64
2	PetalLengthCm	150 non-null	float64
3	PetalWidthCm	150 non-null	float64
4	Species	150 non-null	object

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

In [26]: df.sample(5)

Out[26]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
75	6.6	3.0	4.4	1.4	Iris-versicolor
32	5.2	4.1	1.5	0.1	Iris-setosa
73	6.1	2.8	4.7	1.2	Iris-versicolor
6	4.6	3.4	1.4	0.3	Iris-setosa
96	5.7	2.9	4.2	1.3	Iris-versicolor

Preprocessing the dataset

In [27]: #Check for null values
df.isnull().sum()

Out[27]: SepalLengthCm 0

SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0

dtype: int64

Exploratory Data Analysis

```
In [30]: df['Species'].value_counts().plot(kind='bar')
Out[30]: <Axes: xlabel='Species'>
```


In [31]: df['SepalLengthCm'].hist()

Out[31]: <Axes: >

In [32]: df['SepalWidthCm'].hist()

Out[32]: <Axes: >

In [33]: df['PetalLengthCm'].hist()

Out[33]: <Axes: >

In [34]: df['PetalWidthCm'].hist()

Out[34]: <Axes: >

In [35]: sns.distplot(df['SepalWidthCm'])

C:\Users\DELL\AppData\Local\Temp\ipykernel_12948\3402425195.py:1: UserWarn
ing:

`distplot` is a deprecated function and will be removed in seaborn v0.14. 0.

Please adapt your code to use either `displot` (a figure-level function with

similar flexibility) or `histplot` (an axes-level function for histogram
s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(df['SepalWidthCm'])

Out[35]: <Axes: xlabel='SepalWidthCm', ylabel='Density'>


```
In [36]: sns.boxplot(df['SepalLengthCm'])
```

Out[36]: <Axes: >

Out[37]: <Axes: >


```
In [64]: sns.lineplot(data=df, x='SepalLengthCm', y='PetalLengthCm')
```

Out[64]: <Axes: xlabel='SepalLengthCm', ylabel='PetalLengthCm'>


```
In [38]: #scatterplot
    colors = {'Iris-setosa': 'red', 'Iris-versicolor': 'blue', 'Iris-virginica':
    # Create a scatterplot
    plt.scatter(df['SepalLengthCm'], df['SepalWidthCm'], c=[colors[species] for

# Add Labels
    plt.xlabel('Sepal Length')
    plt.ylabel('Sepal Width ')
    plt.legend()

# Show the plot
    plt.show()
```



```
In [65]: sns.lineplot(data=df, x='SepalWidthCm', y='PetalWidthCm')
```

Out[65]: <Axes: xlabel='SepalWidthCm', ylabel='PetalWidthCm'>


```
In [39]: colors = {'Iris-setosa': 'red', 'Iris-versicolor': 'blue', 'Iris-virginica':
    # Create a scatterplot
    plt.scatter(df['PetalLengthCm'], df['PetalWidthCm'], c=[colors[species] for

# Add Labels
    plt.xlabel('Petal Length')
    plt.ylabel('Petal Width ')
    plt.legend()
```

Out[39]: <matplotlib.legend.Legend at 0x22e4d625f50>


```
In [40]: plt.scatter(df['PetalLengthCm'], df['PetalWidthCm'], c=[colors[species] for
    plt.xlabel("Sepal Width")
    plt.ylabel("Petal Width")

plt.show()
```


Coorelation Matrix

A correlation matrix is a table showing correlation coefficients between variable .Each cell in the table shows the correlation between two variables. The value is in the range of -1 to 1. If two variable have high correlation, we can neglect one variable from those two.

```
In [ ]: df.corr()
```

```
In [42]: corr = df.select_dtypes(include=['float64']).corr()
fig, ax = plt.subplots(figsize=(10, 10))
sns.heatmap(corr, annot=True, ax=ax)
```

Out[42]: <Axes: >


```
In [43]: corr = df.select_dtypes(include=['float64']).corr()
fig, ax = plt.subplots(figsize=(5,4))
sns.heatmap(corr, annot=True, ax=ax,cmap='coolwarm')
```

Out[43]: <Axes: >

Label Encoder

```
In [44]: from sklearn.preprocessing import LabelEncoder
le= LabelEncoder()
```

```
In [45]: df['Species']=le.fit_transform(df['Species'])
    df.head()
```

Out[45]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

Model Training

```
from sklearn.model_selection import train_test_split
In [46]:
         #train-70
         #test-30
         x=df.drop(columns=['Species'])
         y=df['Species']
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30)
In [47]: | model=LogisticRegression()
In [48]: | model.fit(x_train,y_train)
Out[48]:
          ▶ LogisticRegression
In [49]: #print metric to get performance
         print("Accuracy:",model.score(x_test,y_test)*100)
         Accuracy: 97.7777777777777
In [50]: |#knn- k-nearest neighbours
         from sklearn.neighbors import KNeighborsClassifier
In [51]: |model.fit(x_train,y_train)
Out[51]:
          ▶ LogisticRegression
In [52]: |#print metric to get performance
         print("Accuracy:", model.score(x_test,y_test)*100)
         Accuracy: 97.7777777777777
In [53]: #decision tree
         from sklearn.tree import DecisionTreeClassifier
         model=DecisionTreeClassifier()
         model.fit(x_train,y_train)
Out[53]:
          DecisionTreeClassifier
In [57]: #Random forest Regression
         from sklearn.ensemble import RandomForestClassifier
         model = RandomForestClassifier()
         model.fit(x train,y train)
         print("Accuracy:",model.score(x_test,y_test)*100)
         Accuracy: 93.33333333333333
```

```
In [63]: from sklearn.ensemble import ExtraTreesClassifier
    from sklearn.model_selection import cross_val_score
    model = ExtraTreesClassifier()
    model.fit(x_train, y_train)
    print('Accuracy:', model.score(x_test, y_test))

# Now define and use X and y for cross-validation
    score = cross_val_score(model, x_train,y_train, cv=5)
    print('CV Score:', np.mean(score))
```

Accuracy: 0.95555555555556 CV Score: 0.9523809523809523

In []: