MATHEMATICAL REASONING Chapter 18

3th
SECONDA
RY

Conteo de Figuras

HELICO MOTIVATION

FIGURAS CON DOBLE SIGNIFICADO

¿Qué observas tú?

CONTEO DE FIGURAS

Mecanismo que consiste en determinar la máxima cantidad de figuras de cierto tipo, que se encuentran presentes en una figura dada.

MÉTODOS DE CONTEO

POR OBSERVACION:

Consiste en asignar números y/o letras a todas las figuras simples, luego se procede al conteo creciente y ordenado de figuras; De1 letra o número, al unir 2 letras o números, al unir 3 letras o números, y así sucesivamente.

Ejemplo1:

Calcule el total de cuadriláteros

□s de 2 letras: ab,bc,ad,

de,ef,cf, \longrightarrow 6

□s de 3 letras:

dab,abc,bcf

ade,def,efc ------ 6

.•. TOTAL

12

CONTEO DE FIGURAS

Ejemplo 2:

Calcula el total de triángulos

Resolución:

 \triangle s de 1 letra: a,b,c,d, \longrightarrow 4

 \triangle s de 2 letras: ab,ac,be \longrightarrow 3

 \triangle s de 3 letras: acd \longrightarrow 1

△s de 5 letras: abcde → 1

• TOTAL

Aplica para figuras recurrentes ya sea en líneas y/o vértices.

Segmentos:

Número de segmentos:

$$\frac{n(n+1)}{2}$$

n = número de segmentos simples

Ejemplo:

Calcule el total de segmentos:

Total segmentos:

$$\frac{4(5)}{2} + \frac{2(3)}{2} + \frac{3(4)}{2}$$

$$10 + 3 + 6 = 19$$

CONTEO POR FÓRMULA

Triángulos:

Número de triángulos:

$$\frac{n(n+1)}{2}$$

Número de triángulos:

$$\frac{n(n+1)}{2}$$
 x k

Total de triángulos:

$$TOTAL = A + B + C + D$$

Ejemplo 1: Calcule el total de triángulos

$$\frac{40(41)}{2}$$
 x 5

TOTAL: (820)5 = 4100

Ejemplo 2: Calcule el total de triángulos

Total triángulos:

$$6+10+10+15=41$$

41

Cuadriláteros:

1 2 3 4 ... *n*

N° de cuadriláteros:

$$\frac{n(n+1)}{2}$$

Ejemplo 1:

1 2 3 4 5 6 7 8 9

Total cuadriláteros:

$$\frac{9(10)}{2} = 45$$

Cuadriláteros:

1	2	3	 n
2			
m			

Total cuadriláteros:

verticales: horizontales:
$$\frac{n(n+1)}{2} \times \frac{m(m+1)}{2}$$

Ejemplo 2:

Calcule el total de cuadriláteros

1	2	3	4
2			
3			
4			
5			

Total cuadriláteros:

verticales: horizontales:

$$\frac{4(5)}{2}$$
 x $\frac{5(6)}{2}$

$$10 \quad X \quad 15 = 150$$

Cuadrados:

1	2	3	4	 a
2				
b				

Total cuadrados:

$$(a \times b) + (a - 1)(b - 1) + (a - 2)(b - 2) + \dots + ()()$$

Hasta que aparezca la unidad en uno de ellos.

Ejemplo 1: Calcule el total cuadrados

1	2	3	4	5	6	7	8
2							
3							
4							

Total cuadrados:

$$8 \times 4 = 32$$
 $7 \times 3 = 21$
 $6 \times 2 = 12$
 $5 \times 1 = 5$

70

Cuadrados: (caso especial)

1	2	 n	
2			
•••			
n			

Total cuadrados

$$\frac{n(n+1)(2n+1)}{6}$$

Ejemplo 2: Calcule el total cuadrados

1	2	3	 20
2			
3			
20			

Total cuadrados

$$\frac{20(21)(41)}{6}$$
 = 2870

Triángulos:

Total de triángulos:

$$\frac{a\mathbf{x}b\mathbf{x}(a+b)}{2}$$

Ejemplo:

Total de triángulos:

$$\frac{8x20x(8+20)}{2} \longrightarrow \frac{8x20x(28)}{2}$$

$$8(280) = 2240$$

Triángulos:

Total triángulos

$$\frac{n(n+1)(2n+1)}{6}$$

Ejemplo: Calcule el total de triángulos

Total triángulos

$$\frac{7(8)(15)}{6} = 140$$

RESOLUCIÓN DE LA PRÁCTICA

Rosa está postulando a la Universidad Nacional Federico Villarreal y tiene dificultad con este problema:

Halle el número total de cuadriláteros en:

Halle el número total de segmentos en la siguiente figura.

Recordemos:

Número de segmentos:

$$\frac{n(n+1)}{2}$$

n = número de espacios

Resolución:

Total de segmentos:

Horizontales: Verticales:

$$3\left(\frac{3(4)}{2}\right) + 2\left(\frac{4(5)}{2}\right)$$

$$3(6) + 2(10)$$
 $18 + 20$

📩 Total :

¿Cuántos triángulos hay en total?.

Recordemos:

Número de triángulos:

$$\left(\frac{n(n+1)}{2}\right)(pisos)$$

n = número de espacios

Total triángulos:

$$\left(\frac{5(6)}{2}\right)^4$$

$$(15)4 = 60$$

.. Total :

Roberto es el profesor de Razonamiento Matemático y propone el siguiente problema a sus alumnos:

¿Cuántos triángulos hay en total?

Total triángulos: 66+45+28+15+6+1= 161

¿Cuántos triángulos hay en total?.

Recordemos:

Número de triángulos:

$$\left(\frac{n(n+1)}{2}\right)$$

n = número de espacios

Resolución:

Total triángulos:

$$3+6+6+10=25$$

... *Total* : 25

Calcule la diferencia entre el número de cuadriláteros y cuadrados.

Recordemos:

Número de cuadriláteros:

$$\left(\frac{n(n+1)}{2}\right)$$

n = número de espacios

Resolución:

1	2	3	4	5	6	7	8
2							
3							
4							
5							

Recordemos:

$$(a)(b)$$
 +
 $(a-1)(b-1)$ $(a-2)(b-2)$ $(a-3)(b-3)$ \vdots \vdots

Hasta que aparezca la unidad en uno de ellos

Total cuadriláteros:

verticales: horizontales:

$$\frac{8(9)}{2}$$
 x $\frac{5(6)}{2}$

$$36 \times 15 = 540$$

Piden:

$$540 - 100 = 440$$

Total cuadrados:

$$8 \times 5 = 40$$
 $7 \times 4 = 28$
 $6 \times 3 = 18$
 $5 \times 2 = 10$
 $4 \times 1 = 4$

Halle el máximo número de diagonales que pueden trazarse en:

Número de diagonales(D)

D = 2(número de cuadriláteros)

Resolución:

1	2	3	4	5
2				
3				
4				
5				

Total cuadriláteros:

verticales: horizontales:

$$\frac{5(6)}{2}$$
 x $\frac{5(6)}{2}$ 15 x 15

225

Máximo número de diagonales(D):

$$D = 2(225)$$

$$D = 450$$

David está en la playa y dibuja en la arena una figura y se propone contar el número de hexágonos que hay en total. Si el dibujo que hizo en la arena es el siguiente:

...podría usted decir, ¿cuántos hexágonos contó Daniel?

Resolución:

Total hexágonos

$$\frac{6(7)}{2} = 21$$

Recordemos:

Número de hexágonos:

$$\left(\frac{n(n+1)}{2}\right)$$

n = número de espacios (forma de L)

