EECS 376: Foundations of Computer Science

Chris Peikert

1 February 2023

Today's Agenda

- * Recap: Turing Machines, Church-Turing thesis
- * Deciders (vs "loopers") and decidability
- * Diagonalization and an undecidable language

Turing Machines: Essential Features

- 1. Finite alphabets: input & tape
- 2. Finite "brain"/logic/"code": state machine
- 3. *Infinite* storage: "tape"
- 4. Sequence of *local* computations, specified by the code:
 - Read a single symbol
 - Write a single symbol
 - Move a single cell
 - Update active state
- 5. Runs until it enters a *terminal* state—if ever!

Decision Programs

- * Q: Suppose we run a TM M on string x. What are the possible outcomes?
 - * M(x) either: (i) accepts, (ii) rejects, or (iii) "loops" (forever)
- * **Definition:** A TM M decides language L if M:
 - 1. accepts every string $x \in L$ ("M(x) accepts"), and
 - 2. <u>rejects</u> every string $x \notin L$ ("M(x) rejects").

We say that M is a **decider** (for L), and L is **decidable**.

* Note: By definition, M does not loop on any input!

More Generally: Language of a TM

- * **Definition:** The **language** of a TM M is $L(M) := \{x : M \text{ accepts } x\}$.
- * Question: What if $x \notin L(M)$? (M(x) does not accept.)
- * Answer: Then M either rejects x, or loops on x.
- * Conclusion: TM M decides language L iff L(M) = L and M halts on every input.
- * Definition: TM M recognizes language L if L(M) = L (regardless of whether M ever loops!).
- * More on this later...

Code vs TMs

- * Claim: <u>Any</u> TM can be simulated by a "Boolean" function on strings, written in FPL code (e.g., C++).
- * Q: Can any "Boolean" function on strings written in FPL code be simulated by a TM?
- * A: Yes: implement an FPL 'interpreter' with a TM.

Key Idea: $TM \equiv$ "bool M(string x)"

simulateM(string x):

// simulates TM $\bf M$ on string x

// - hard-coded transition function

// - maintain state & tape cells

return accept/reject according to M

Summary So Far

- * General: Any finite object (integer, graph, PDF, C++ code) can be encoded as a finite string. A TM takes a finite string as input.
- * Church-Turing thesis:
 - "Anything that is computable by some mechanical device (a 'computer') is computable by some **Turing machine**."
- * In short: Turing Machines ≡ computer programs.
- * Implication: If a problem <u>is not</u> decidable by a TM, it <u>cannot</u> be solved by <u>any</u> computer! (including future/alien technology)

Can <u>every</u> decision problem be decided by some TM?

Proving Decidability

- * Q: To prove that a language L is decidable, must we design a TM?
- * A: No! Simulation lets us write an algorithm in our FPL.
- * Example: $L = \{(a, b) : a, b \in \mathbb{N}, \gcd(a, b) = 1\}$
- * M(a,b):
 - * Compute Euclid(a, b)
 - * If Euclid(a, b) = 1, accept, else reject
- * Analysis (Correctness):
 - * $(a,b) \in L \implies \gcd(a,b) = 1 \implies \operatorname{Euclid}(a,b) = 1 \implies M(a,b)$ accepts
 - * $(a,b) \notin L \implies \gcd(a,b) \neq 1 \implies \operatorname{Euclid}(a,b) \neq 1 \implies M(a,b) \text{ rejects}$

Another Example

- * Claim: If L is decidable, then $L' = L \cup \{\varepsilon\}$ is decidable.
- * **Proof:** By hypothesis, there is some TM D that decides L. We use it to define another TM D' that decides L':
- * D'(x):
 - 1. If $x = \varepsilon$, accept.
 - 2. Run D(x) and output the same answer.
- * Analysis (correctness, incl. halting):
 - * D(x) halts (because D is a decider) $\Longrightarrow D'(x)$ halts
 - * $x \in L' \iff x = \varepsilon \text{ or } x \in L \iff x = \varepsilon \text{ or } D(x) \text{ accepts } \iff D'(x) \text{ accepts}$
- * Conclusion: D' is a decider for L'.

Undecidable Languages?

- * **Definition:** A language L is **decidable** if there exists a TM (program) M that decides L.
- * Question: Do there exist <u>undecidable</u> languages? I.e., are there problems that no computer can solve?
- * Idea: Let ${\mathscr L}$ be the set of all languages, ${\mathscr M}$ be the set of all TMs.
- * If we could show that $\left| \mathcal{M} \right| < \left| \mathcal{L} \right|$, we would be done!
- st Why: Each TM M decides at most 1 language.
- * Problem: Both $\mathcal M$ and $\mathcal Z$ are infinite! Can we do anything about it?

Functions and Set Cardinality

- * A function $f: A \to B$ maps each element $a \in A$ to an element $f(a) \in B$.
- * A function is *injective* (1-to-1) if each element $a \in A$ is mapped to a *different* element $f(a) \in B$.
 - * Formally: $\forall a_1, a_2 \in A$. $a_1 \neq a_2 \Longrightarrow f(a_1) \neq f(a_2)$.

* If an injective $f: A \to B$ exists, " $|A| \le |B|$ "

Countable Sets

- * Informal Def: A set S is *countable* if it is "no larger than" the naturals $\mathbb{N} = \{0,1,2,\ldots\}$, i.e., " $S \le \mathbb{N}$ ".
- * Formal Def: S is countable if there exists an injective function $f: S \to \mathbb{N}$. [f says: "s is the ith element of S"]
- * Claim: Any finite set is countable.
- * Proof: Let $S = \{s_1, s_2, ..., s_n\}$ be a set with n elements. Then $f(s_i) = i$ is an injection from S to \mathbb{N} .
- * Q: Which *infinite* sets are countable ("countably infinite")?

Proving Countability

- * S is countable if there is an injective $f: S \to \mathbb{N}$.
- * We can prove that a set S is countable by explicitly defining such a function.
- * Or, we can show how to <u>list</u> elements of S so that each element $s \in S$ appears <u>somewhere</u> in the list.
 - * This implicitly defines an injective $f: S \to \mathbb{N}$:

Countably Infinite Sets

```
* \wedge By Definition: 0 1 2 ...
```

*
$$\mathbb{Z}$$
 Try: 0 1 2 3 ... -1 -2

* Does not work! we will never get beyond "..."

*
$$\mathbb{Z}$$
 Try: 0 1 -1 2 -2 ...

* \mathbb{Q} :? List x/y where x + y = 1, then x + y = 2, etc..

	1	2	3	4	•••
1	1/1	1/2	1/3	1/4	:
2	2/1	2/2	2/3	2/4	
3	3/1	3/2	3/3	3/4	•••
4	4/1	4/2	4/3	4/4	
					

Finite Binary Strings

- * Let $S = \{0,1\}^*$ be the set of all (finite) binary strings.
- * Claim: S is countable.
- * Proof: List the elements of S in lexicographic order: by length, and then character by character
 - * ε ,0,1,00,01,10,11,000,001,...
- * Every element $s \in S$ appears on the list: s appears in the block of all strings of length $|s| \in \mathbb{N}$.

Uncountable Sets

- * Q: How do we show that a set S is <u>uncountable</u>?
- * A: Prove that <u>no</u> injective $f: S \to \mathbb{N}$ exists.
- * How? Proof by contradiction! Template:
 - 1. Assume there exists a list of elements of S such that every $s \in S$ appears <u>somewhere</u> in the list.
 - 2. Use it to 'construct' some $s^* \in S$ that is <u>not</u> in the list.
 - 3. Contradiction! So, no such list can exist.
- * Diagonalization is the usual technique for this.

Diagonalization

- * Let S be the set of <u>infinite-length</u> binary sequences.
- * Suppose there is some list X in which every element of S appears. Represent it in a table.
- * Take the 'diagonal' bits and flip them:

$$s^* = \overline{s_1[1]} \, \overline{s_2[2]} \, \overline{s_3[3]} \cdots$$

	s 1	0	1	1	0	1	0	•••
	s2	1	0	0	0	0	0	• • •
\boldsymbol{X}	s3	0	1	1	1	0	1	• • •
	s 4	0	0	0	0	0	0	• • •
	s 5	1	1	1	1	1	1	• • •
	•••	• • •	• • •	• • •	• • •	• • •	• • •	•••

~ *	1	1	\cap	1	^		
5	1	1	U	1	U	• • •	

Diagonalization

- * Claim: $s^* = \overline{s_1[1]} \, \overline{s_2[2]} \, \overline{s_3[3]} \cdots$ is not in the list X. Formally: $s^* \neq s_i$ for every i.
- * This is because $s^*[i] \neq s_i[i]$, i.e., s^* and s_i differ in their ith positions, by construction.
- st This contradicts the assumption that list X exists!

	s 1	0	1	1	0	1	0	•••
	s2	1	0	0	0	0	0	• • •
\boldsymbol{X}	s3	0	1	1	1	0	1	• • •
	s 4	0	0	0	0	0	0	• • •
	s 5	1	1	1	1	1	1	• • •
	•••	•••	• • •	•••	• • •	•••	•••	•••

s *	1	1	0	1	0	• • •	

Back to Our Question

- * Conclusion: The set of all *infinite* binary sequences is uncountable.
- * Diagonalization Summary: For any candidate list of such sequences, there is a sequence <u>not</u> in that list.
- * Recall: Let $\mathscr L$ be the set of all languages, $\mathscr M$ be the set of all TMs. Can we show that $|\mathscr M| < |\mathscr L|$?
- * Q1: Is \mathcal{M} countable?
- * A: Yes. (We'll see.)
- * Q2: Is £ countable?
- * A: No! (We'll see.)

An Undecidable Language (1/3)

- * Claim: The set of deciders is countable.
- * Idea: Use lex. ordering on <u>source code</u> $\in \{0,1\}^*$. (Every TM has an encoding as a string!)

```
\langle M_1 \rangle = "bool A(string x): return F" \langle M_2 \rangle = "bool A(string x): return T" \langle M_3 \rangle = "bool A(string x): for i=1...x: ..." \langle M_4 \rangle = "bool A(string x): let x=x-1 ..."
```


An Undecidable Language (2/3)

- * Claim: Any language L is $\underline{\textit{equivalent}}$ to an $\underline{\textit{infinite}}$ binary sequence.
- * Idea: List $\Sigma^* = \{s_1, s_2, s_3, s_4, \dots\}$.
 - * Then $L \equiv x_1 x_2 x_3 x_4 \cdots$, where $x_i \in \{0,1\}$ indicates if $s_i \in L$.
- * Example: suppose $\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, \dots\}$.

```
Language decided by "bool M(string x): \equiv 1\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 0\cdots return (|x| is even)"
```


An Undecidable Language (3/3)

- * Take list of languages (sequences) $L(M_i)$ for deciders M_i .
- * There is a language L^* that is <u>not in the list</u>: 'flip the diagonal'.
- * Claim: No TM decides L^* . Every decider M_i appears in the list, but 'behaves incorrectly' on string s_i !

		s1	s2	s3	s4	s5	s6	• • •
	M 1	1	0	0	1	1	0	• • •
	M2	0	1	1	0	0	0	• • •
\boldsymbol{X}	M 3	1	1	1	1	1	1	• • •
	M4	0	0	0	0	0	0	
	M5	1	0	1	0	0	0	
	•••	•••	•••	•••	•••			•••

L*	0	0	0	1	1	•••	

Conclusion

- * Theorem: There exists an undecidable language L^* .
- * Interpretation: There is a problem that no computer program can solve correctly (on all inputs).
- * Question: What problem does L^* represent? Do we care about it? Would it be useful to solve?
- * Answer: We do not know, since the proof is 'non-constructive': only shows existence of L^* !
- * Next time: Some "useful" undecidable languages.

Extra

The Reals are Uncountable

- * Proof: A real in [0,1) is represented by an infinite sequence of digits. Assume there were a complete list of reals [0,1).
- * Task: Find a real in [0,1) that is not on the list and we are done!

- * Formally: Let r^* be any real that differs from r_k in the κ^{th} digit.
- * Question: Is r^* on the list?
- * Answer: No. r^* is on the list $\Longrightarrow \exists k$ s.t. $r^* = r_k$ but $r^* \neq r_k!$