Johnson-Lindenstrauss Theorem

Isometry: L_2 -norm

Given a $\mathcal{E} \in (0,1)$ a map $f: \mathbb{R}^d \to \mathbb{R}^h$ is called an \mathcal{E} -isometry if $\forall a, a' \in A$. $(1-\mathcal{E}) \|a-a\|^2 \leq \|f(a)-f(a')\|^2 \leq (1+\mathcal{E}) \|a-a'\|^2$ $|\mathcal{L}(c_1 a + c_2 b) = c_1 \cdot \mathcal{L}(a) + c_2 \mathcal{L}(b)$ $T(v_1 + v_2) = T(v_1) + T(v_2)$

* Which k?

- Choose vectors randomly.
- concentration estimates: that my points meanly concentrate around the mean.

 If I assign a gaussian measure on my entire space and

- I take a big space, in each coordinate I assign gaussian.

- * unit variance > gaussian measure
- k for wow
- each.

ind.
$$Xii$$
 $i=1,\ldots, K$ and $j=1,\ldots, d$.

$$E[X_{ij}] = 0 \quad \text{var}(X_{ij}) = 1$$

$$\text{Vector} \quad \text{vec}(X_{ij}) = 1$$

$$E[||\pi(v)||^{2} = \left[\sum_{i=1}^{k} ||\pi(v)||^{2}\right] = E\left[\sum_{i=1}^{k} \sum_{j=1}^{d} ||\pi(v)||^{2}\right] = K||v||^{2}$$

$$E[||\pi(v)||^{2} = \sum_{i=1}^{k} ||\pi(v)||^{2}] = \sum_{i=1}^{k} ||\pi(v)||^{2}$$

$$= \sum_{i=1}^{k} ||T_{i}(u)||^{2} = \sum_{i=1}^{k} \sum_{j=1}^{d} |u_{j}|^{2} \times |u_{j}|^{2} + 2\sum_{i=1}^{k} \sum_{\substack{j=1 \text{odd} \\ \text{e+m}}} |u_{j}|^{2} \times |$$

Distribution -

which gives the concentration around the mean =) Gaussian.

Gaussian (centered) - Same machinery can be used. $M_{\times}(t) = e^{t^2/2}$, Sub-gaussian $M_{\times}(t) \le e^{t^2/2}$

* Gaussian Annulus Theorem:

For a d-dim'l spherical Gaussian with unit variance in each direction for $\beta \le \sqrt{d}$, all but at most $3e^{-x\beta^2}$ of the prob. mass is in the annulus $\sqrt{d} - \beta \le ||x|| \le \sqrt{d} + \beta$, c is a fixed true number

Y=11×11 (a-B < 8 < \(\overline{1} \) > \(\overline{1} \)

1:= X; 2-4 , 82-d= 11+12+...+1d.

17,+12+ ... + 4d13 pla ECYi]= 0

 $- \neq_{or} |x| \le 1$ $|x| \le 1$ |x| = 1 |x| =

 $E(\gamma_i) = 0$ $Var(\gamma_i) \le 2^2 \cdot 2! = 8$

W:= 1: , Var (Wiles , E[wis] < 25!

Var(w) = 0.2 = 2 n = d

$$\frac{8^2 d}{|x|^2 2}$$
3e $|x|^2 2$

* The order will not change

Theorem: (Random Projection Theorem) (R.P. Theorem) Fix ve Rd. Define TT as above Ic > 0 s.t YE € (0,1), P[|ITT(U)|- TE |VII > ETE |VI] ≤ 3e - CLE2

- T(U) is a random spherical. Gaussian with unit variance K=d.

(?) Johnson - Lindenstrauss Theorem: for $0 < \varepsilon < 1$ and any integer d >> 1 with $k >> \frac{3}{c \varepsilon^2} \ln N$. N is the number of points for TT: Rd -> RK WP 1-3.

(1-E) √E | v; -v; | ≤ | Tr(v;) - Tr(v;) | ≤ (1+E) √E | v; -v; | ∀v; v; 'EREd

(_ distance between query and data is smaller than & in lower-dim'L space.

$$e^{-c \mathcal{E}^{2}} \stackrel{3}{\underset{c \in \mathcal{E}^{3}}{=}} \ln N$$

$$= \ln N^{-3}$$

$$= \frac{1}{N^{3}}$$

- query & douta lie in any dimension. (even in co-dim.)
- 00 dimension version of Euclidean norm. = Hilbert's space
- Square-integrable function. ->?