Laboratório 10

Configurações de transistores

(Resposta em Frequência de Amplificadores)

I. Objetivos

Familiarização a resposta em frequência (**Sedra/Smith**); Uso do diagrama de Bode.

II. Material

• Software MULTISIM.

III. Parte Prática

1. Amplificador 1º estágio

- 1.1. Dado o circuito da figura 1, aplicar o gerador de funções com uma tensão 1,0 mV e frequência 1 kHz;
- $1.2.\ Medir$ o ganho com o osciloscópio. Para tanto medir a tensão de saída V_s e de entrada V_e .
- 1.3. Usar o Bode Plotter (amplitude) e medir as frequências de corte e o ganho da banda passante em dB (A dB = $20 \log (V_s/V_e)$;
- 1.4. Usar o Bode Plotter (fase) e medir os ângulos nas frequências importantes; Anotar todos os dados obtidos na tabela I.

Figura 1: Circuito elétrico do 1º estágio do amplificador.

2. Amplificador 2º estágio

- 2.1. Dado o circuito figura 2, aplicar o gerador de funções com uma tensão 1,0 mV e frequência 1 kHz;
- 2.2. Medir o ganho com o osciloscópio. Para tanto medir a tensão de saída V_s e de entrada V_e , a relação entre elas será o ganho. Anotar os dados obtidos na tabela I;
- 2.3. Usar o Bode Plotter (amplitude) e medir as frequências de corte e o ganho da banda passante em dB;

2.4. Usar o Bode Plotter (fase) e medir os ângulos nas frequências importantes; Anotar todos os dados obtidos na tabela I.

Figura 2: Circuito elétrico do 2º estágio do amplificador.

3. Amplificador com dois estágios

- 3.1. Dado o circuito abaixo, aplicar o gerador de funções com uma tensão 1,0 mV e frequência 1 kHz;
- 3.2. Medir o ganho com o osciloscópio. Para tanto medir a tensão de saída V_s e de entrada V_e, a relação entre elas será o ganho. Anotar os dados obtidos na tabela 1;
- 3.3. Usar o Bode Plotter (amplitude) e medir as frequências de corte e o ganho da banda passante em dB;

Figura 3: Circuito elétrico do amplificador com dois estágios.

Tabela I

		Circuito 1	Circuito 2	Circuito 3
Osciloscópio	$V_{e}(V_{pp})$			
	$V_{s}(V_{pp})$			
	$A_v (V_s / V_e)$			
Bode Plotter	A _v em frequências médias (dB)			
	frequência 1 a (-3dB)			
	frequência 2 a (-3dB)			

- 4. Analise os resultados apontados na Tabela I e explique:
- 4.1. Por que a frequência de corte inferior (fr1) para o circuito 1 é maior que para o circuito 2?
- 4.2. Por que o ganho, para a faixa de frequências médias, do circuito 1 é bem maior do que o circuito 2?
- 4.3 Explicar um filtro passa baixa, passa alta, rejeita faixa e passa faixa(um exemplo pratico desta aplicação).
- 4.4 Conclusões.