

Metrology and Sensing

Lecture 6-2: Wavefront sensors

2020-12-08

Herbert Gross

Winter term 2020 www.iap.uni-jena.de

Content

Hartmann-Sensor

- Principle
- Properties

- Similar to Hastmann Shack Method with simple hole mask and two measuring planes
- Measurement of spot center position as geometrical transverse aberrations
- Problems: broadening by diffraction

$$s'_{y} = s'_{1} + (s'_{2} - s'_{1}) \cdot \frac{y_{1}}{y_{1} + y_{2}}$$

Hartmann Method

 Schematic drawing of transverse aberrations

- Distance of planes limited: overlap of spots
- Coherent coupling of sub-aperture fields, interference induces errors of centroid

Hartmann Method: Pinhole Array Geometry

b) cartesian

- Possible geometry of the pinholes:
 - number of pinholes,
 - size of holes

a) polar

- distance / geometry
- Parameters determine the accuracy

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Hartmann Method Properties

- z-positions critical for large spots diameters
- No dependence on spectral range and polarization
- Coherence is critical, interference for overlapping pinhole images
- Apodization not critical
- Averaging gives stable data evaluation

- Real pinhole pattern with signal
- Problems with cross talk and threshold

Separated spots in case of diffraction

$$d_{s}^{'(gesamt)} = \frac{d_{2}}{d_{1}} \cdot d_{s} + (d_{1} + d_{2}) \cdot \frac{D_{obj}}{f} + (d_{1} + d_{2}) \cdot \frac{2.44 \cdot \lambda}{d_{s}}$$

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Hartmann Method in Case of Apodization

- Apodized beam: centroid rays pass through the perfect image point
- A cetroid error is eliminated

Reconstruction of the transverse aberrations delivers the wave aberration

$$W(x, y) = -\frac{1}{R} \int_{0}^{x} \Delta x' dx$$

Hartmann Sensor

Small power transmission

Problem: diffraction spreading of light pencils

Hartmann Sensor

Problem: diffraction spreading of light pencils

