In []: #Data Wrangling, I

Perform the following operations using Python on any open source dataset (e.g.

- 1. Import all the required Python Libraries.
- 2. Locate an open source data **from** the web (e.g., https://www.kaggle.com). Prodescription of the data **and** its source (i.e., URL of the web site).
- 3. Load the Dataset into pandas dataframe.
- 4. Data Preprocessing: check **for** missing values in the data using pandas isnul function to get some initial statistics. Provide variable descriptions. Types Check the dimensions of the data frame.
- 5. Data Formatting and Data Normalization: Summarize the types of variables by the data types (i.e., character, numeric, integer, factor, and logical) of the data set. If variables are not in the correct data type, apply proper type cor 6. Turn categorical variables into quantitative variables in Python.

In addition to the codes and outputs, explain every operation that you do in texplain everything that you do to import/read/scrape the data set.

```
In [1]: import numpy as np
import pandas as pd
```

```
In [2]: csv_url = 'https://archive.ics.uci.edu/ml/
machine-learning-databases/iris/iris.data'
```

```
In [3]: iris = pd.read_csv(csv_url, header = None)
```

```
In [5]: iris = pd.read_csv(csv_url, names = col_names)
```

```
In [6]: df=pd.DataFrame(iris)
```

In [7]: df

Out[7]:

	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

Data preprocessing

In [8]: df.head()

Out[8]:

	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

```
In [9]: df.head(n=7)
```

Out[9]:

	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
5	5.4	3.9	1.7	0.4	Iris-setosa
6	4.6	3.4	1.4	0.3	Iris-setosa

In [10]: df.tail()

Out[10]:

	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width	Species
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

```
In [11]: df.index
```

Out[11]: RangeIndex(start=0, stop=150, step=1)

In [12]: df.columns

In [13]: df.shape

Out[13]: (150, 5)

In [14]: df.dtypes

Out[14]: Sepal_Length float64
 Sepal_Width float64
 Petal_Length float64
 Petal_Width float64
 Species object
 dtype: object

```
In [15]: df.describe()
```

Out[15]:

	Sepai_Length	Sepai_width	Petal_Length	Petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

```
In [16]: df['Sepal_Length']
Out[16]: 0 5.1
```

```
1 4.9
2 4.7
3 4.6
4 5.0
...
145 6.7
146 6.3
147 6.5
148 6.2
```

149

5.9

Name: Sepal_Length, Length: 150, dtype: float64

In [17]: df.sort_values(by="Sepal_Length")

Out[17]:

	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width	Species
13	4.3	3.0	1.1	0.1	Iris-setosa
42	4.4	3.2	1.3	0.2	Iris-setosa
38	4.4	3.0	1.3	0.2	Iris-setosa
8	4.4	2.9	1.4	0.2	Iris-setosa
41	4.5	2.3	1.3	0.3	Iris-setosa
122	7.7	2.8	6.7	2.0	Iris-virginica
118	7.7	2.6	6.9	2.3	Iris-virginica
117	7.7	3.8	6.7	2.2	Iris-virginica
135	7.7	3.0	6.1	2.3	Iris-virginica
131	7.9	3.8	6.4	2.0	Iris-virginica

150 rows × 5 columns

iloc is used to select first n rows from dataframe

Species Iris-setosa Name: 5, dtype: object

In [19]: df[0:3]

Out[19]:

	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa

checking is there any null value

In [20]: df.isnull()

Out[20]:

	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width	Species
0	False	False	False	False	False
1	False	False	False	False	False
2	False	False	False	False	False
3	False	False	False	False	False
4	False	False	False	False	False
			•••		
145	False	False	False	False	False
146	False	False	False	False	False
147	False	False	False	False	False
148	False	False	False	False	False
149	False	False	False	False	False

150 rows × 5 columns

In [21]: df.isna()

Out[21]:

	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width	Species
0	False	False	False	False	False
1	False	False	False	False	False
2	False	False	False	False	False
3	False	False	False	False	False
4	False	False	False	False	False
145	False	False	False	False	False
146	False	False	False	False	False
147	False	False	False	False	False
148	False	False	False	False	False
149	False	False	False	False	False

150 rows × 5 columns

data formatting

```
In [22]: df.dtypes
Out[22]: Sepal_Length
                           float64
          Sepal Width
                           float64
          Petal_Length
                           float64
                           float64
          Petal Width
          Species
                            object
          dtype: object
In [23]: |df['Petal_Length']=df['Petal_Length'].astype("int")
In [24]: df.dtypes
Out[24]: Sepal_Length
                           float64
          Sepal Width
                           float64
                             int32
          Petal Length
          Petal_Width
                           float64
          Species
                            object
          dtype: object
          data normalization
In [25]: from sklearn import preprocessing
          df.head()
In [26]:
Out[26]:
             Sepal_Length Sepal_Width Petal_Length Petal_Width
                                                               Species
           0
                      5.1
                                                1
                                                          0.2 Iris-setosa
                                  3.5
           1
                      4.9
                                  3.0
                                                1
                                                          0.2 Iris-setosa
           2
                      4.7
                                  3.2
                                                          0.2 Iris-setosa
           3
                      4.6
                                  3.1
                                                1
                                                          0.2 Iris-setosa
           4
                      5.0
                                  3.6
                                                1
                                                          0.2 Iris-setosa
In [27]: min_max_scaler = preprocessing.MinMaxScaler()
In [28]: x=df.iloc[:,:4]
In [29]: | x_scaled = min_max_scaler.fit_transform(x)
In [30]: | df_normalized = pd.DataFrame(x_scaled)
```

```
In [31]: df normalized
Out[31]:
                  0
                          1
                             2
                                     3
           0 0.222222 0.625000 0.0 0.041667
           1 0.166667 0.416667 0.0 0.041667
             0.111111 0.500000 0.0 0.041667
            145 0.666667 0.416667 0.8 0.916667
         146 0.555556 0.208333 0.8 0.750000
         147 0.611111 0.416667 0.8 0.791667
         148 0.527778 0.583333 0.8 0.916667
         149 0.444444 0.416667 0.8 0.708333
```

150 rows × 4 columns

Turn categorical variables into quantitative variables

```
In [32]: df['Species'].unique()
Out[32]: array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)
In [33]: label_encoder = preprocessing.LabelEncoder()
In [34]: df['Species']= label_encoder.fit_transform(df['Species'])
In [35]: df['Species'].unique()
Out[35]: array([0, 1, 2])
```

In [36]: df

Out[36]:

	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width	Species
0	5.1	3.5	1	0.2	0
1	4.9	3.0	1	0.2	0
2	4.7	3.2	1	0.2	0
3	4.6	3.1	1	0.2	0
4	5.0	3.6	1	0.2	0
145	6.7	3.0	5	2.3	2
146	6.3	2.5	5	1.9	2
147	6.5	3.0	5	2.0	2
148	6.2	3.4	5	2.3	2
149	5.9	3.0	5	1.8	2

150 rows × 5 columns

In []: