Universidad Autónoma de Aguascalientes Circuitos Lógicos II I CD

Profesor:

Gerardo Leyva Hernández gleyvah@correo.uaa.mx

Mayo de 2010

- Introducción
- LCD numérico
- LCD alfanumérico
- LCD gráfico
- Bibliografía

 Una pantalla de cristal líquido o LCD (acrónimo del inglés Liquid Crystal Display) es una pantalla delgada y plana formada por un número de píxeles en color o monocromos colocados delante de una fuente de luz o reflectora[1].

 Una pantalla de cristal líquido o LCD (acrónimo del inglés Liquid Crystal Display) es una pantalía delgada y plana formada por un número de píxeles en color o monocromos colocados delante de una fuente de luz o reflectora.

- A menudo se utiliza en dispositivos electrónicos de pilas, ya que utiliza cantidades muy pequeñas de energía eléctrica[1].
- Los LCD están ganando rápidamente popularidad y son usados en una gran variedad de aplicaciones.

 Los LCD de efecto de campo tienen dos pantallas de cristal dentro de las cuales contienen materiales conductivos. La distancia entre las dos pantallas es ajustada entre 10 y 30 micrómetros[2].

Usados en relojes, calculadoras, equipos de medición, entre otros.

Ejemplo: LCD modelo FE0502 del fabricante AND

- Cada segmento se compone de dos conexiones: FP y BP, donde este último es común a todos los segmentos de la pantalla.
- •Para que el segmento se encienda se requiere que entre FP y BP exista un voltaje de CA de preferencia de 5 Vrms y 32 Hz, sin componente de CD.

 Ya que los dispositivos lógicos sólo entregan señales '1' ó '0', es necesario hacer un arreglo en el que se pueda entregar corriente alterna; el más comúnmente utilizado es con compuerta

- Cada segmento se compone de dos conexiones: FP y BP, donde este último es común a todos los segmentos de la pantalla.
- •Para que el segmento se encienda se requiere que entre FP y BP exista un voltaje de CA de preferencia de 5 Vrms y 32 Hz, sin componente de CD.

- •Se requerirá un arreglo como el anterior por cada segmento individual de la pantalla.
- Para desarrollar la interfaz propiamente, se tendrán dos partes principales.
 - Arreglo de compuertas XOR
 - Conjunto de registros en los cuáles el microcontrolador pueda escribir usando las señales del bus de datos, el bus de direcciones y WR.

- •Se requerirá un arreglo como el anterior por cada segmento individual de la pantalla.
- Para desarrollar la interfaz propiamente, se tendrán dos partes principales.
 - Arreglo de compuertas XOR
 - Conjunto de registros en los cuáles el microcontrolador pueda escribir usando las señales del bus de datos, el bus de direcciones y WR.

- También se puede hacer uso de circuitos integrados para el manejo de displays numéricos:
 - CD4055A,
 - CD4056A,
 - MC14543
 - CD4054A también usado para displays simbólicos que incluyan punto decimal, coma, signo más, entre otros

FE0203

Displays alfanuméricos

Actualmente los LCD alfanuméricos son utilizados en un amplio rango de aplicaciones, incluyendo displays para máquinas de fax, juguetes electrónicos de mano, teléfonos fijos y celulares, entre otros

Displays alfanuméricos

- •Se especifican por número de caracteres y número de línea: por ejemplo 16x2, 16x4, 40x2 [3].
- Controlados por chips (situados en la parte posterior del display) que realizan las funciones básicas:
 - encendido de pixeles
 - fijan los modos de operación del display
 - almacenan la información que será enviada al display para cada carácter.

Displays alfanuméricos Asignación de pines

PIN	SEÑAL	FUNCION
1	GND	TIERRA
2	VDD	+5V
3	Vo	VOLTAJE DE AJUSTE
4	RS	H. ENTRADA DE DATOS
		L. ENTRADA DE INSTRUC.
5	R/W	H. LECTURA
		L. ESCRITURA
6	E	HABILITACION (ENABLE)

Displays alfanuméricos Asignación de pines

PIN	SEÑAL	FUNCION
7	DB0	BUS DE DATOS 0
8	DB1	BUS DE DATOS 1
9	DB2	BUS DE DATOS 2
		••
15*	LED	ANODO LED (OPCIONAL)
16*	LED	CATODO LED (OPCIONAL)

Displays alfanuméricos Posición y dirección caracter

AND731

Character Position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
DD RAM (Hex) Add.	00	01	02	03	04	05	06	07	08	09	0A	OB	0C	0D	0E	0F
Character Position	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
DD RAM (Hex) Add.	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F

Displays alfanuméricos Lectura de datos

Timing Characteristics (Data Read)

Displays alfanuméricos Escritura de datos

Timing Characteristics (Data Write)

Displays alfanuméricos Lista de instrucciones

22

2000		200		Co	mma	nd Co	de				200	Execution	Execution
Command	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO	Description	Time (Max.) ⁽¹⁾	Time (Max.) ⁽²⁾
Clear display ⁽³⁾	0	0	0	0	0	0	0	0	0	1	Clear display and return cursor to home position (Address 0).	1.64ms	4.9ms
Return Home	0	0	0	0	0	0	0	0	1	х	Return cursor to home position (Address 0). Also return display being shifted to original position. DD RAM contents remain the same.	1.64ms	4.8ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Set cursor move direction and specify whether to shift display. These operations are performed during data write.	40μs	120µs
Display ON/OFF Control	0	0	0	0	0	0	1	D	С	В	Set ON/OFF of entire display (D), dresser ON/OFF (C), and blinking of cursor position B	40μs	120µs
Cursor and Display Shift ⁽⁴⁾	0	0	0	0	0	1	S/C	R/L	Х	Х	Move cursor and shift display without changing DD RAM contents.	40µs	120µs
Function Set	0	0	0	0	1	DL	N	F	Х	Х	Set interface data length (DL) number of display lines (L) and character font (F).	40µs	120µs
Set RAM Address	0	0	0	1			A	CG			Set CG RAM address, CG RAM data is sent and received after this setting.	40µs	120µs
Set DD RAM Address	0	0	1			-	ADD	VIII.			Set DD RAM address. DD RAM data is sent and received after this setting.	40µs	120µs
Read Busy Flag & Address	0	1	BF				AC				Read Busy flag (BF) indicating internal operation is being performed and reads address counter contents.	40μs	120µs
Write Data to CG or DD RAM	1	0			Write Data Write Data from DD RAM or CG RAM.				Write Data from DD RAM or CG RAM.	40µs	120µs		
Read Data to CG or DD RAM	1	1			Read Data						Read Data from DD RAM or CG RAM.	40µs	120µs

Displays alfanuméricos Lista de instrucciones

7	I/D = 1	: Increment	I/D = 0 Decrement		
	S = 1	: Accompanies of		DD RAM	: Display Data RAM
	S/C = 1 R/L = 1		S/C = 0 Cursor move	CG RAM ACG	: Character Gen RAM : CG RAM Address
	R/L = 0	: Shift to the left		ADD	: DD RAM Address corre-
	DL = 1 N =1	: 8 bits : 2 lines	DL = 0: 4 bits N = 0: 1 line	AC	sponds to Cursor Address : Address Counter used for
	F = 1 BF = 1	: 5 x 10 dots : Internally oper	F = 0: 5 x 7 dots ating	8.86	DD and CG RAM Address.
	BF = 0	: Can accept ins	truction		

X = Don't Gare

Displays alfanuméricos Función de los registros

- Registro de instrucciones (IR).
 - Almacena órdenes tales como
 - CLEAR
 - HOME
 - CURSOR SHIFT
 - INFORMACION DE DIRECCIONES
 - Puede ser escrito pero no leído por la CPU

Displays alfanuméricos Función de los registros

- Registro de datos (DR).
 - Almacena temporalmente los datos que serán escritos al CGRAM y al DDRAM
 - Cuando una dirección es escrita al IR, los datos son transferidos automáticamente desde el DR al DDRAM o CGRAM como una operación interna
 - Cuando la CPU lee el DR, los datos son transferidos desde el DDRAM o CGRAM
 - El selector de registros (RS) permite la lectura y escritura

Displays alfanuméricos Selector de los registros

Selector de registros(SR)

RS	RW	OPERACIÓN
0	0	Escribir en el IR
0	1	Leer en el IR
1	0	Escribir en el DR
1	1	Leer el DR

Displays alfanuméricos Contador de dirección (AC)

- Indica la dirección donde se leerá o escribirá en el DDRAM O CGRAM
- Cuando se leen/escriben datos de/en DDRAM CGRAM, el AC se incrementa o decrementa automáticamente de acuerdo al modo de entrada (Entry Mode Set)

- Limpiar display (CLEAR)
 - Borra el display, el cursor es puesto en DDRAM= 00h y si el display ha sdo desplazado lo regresa a su posición original

RS	RW	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	1

- Cursor en Home (return home)
 - Borra el display, el cursor es puesto en la DDRAM= 00h y regresa el display a su posición original si ha sido desplazado. Los datos en DDRAM no cambian

RS	RW	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	1	X

- Modo de entrada (Entry mode set)
 - I/D=0. Decremento automático de AC al escribir.
 - I/D=1. Incremento automático del AC al escribir
 - S=0. El display se desplaza al escribir un nuevo caracter
 - S=1. El display no se desplaza al escribir un nuevo caracter

RS	RW	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	1	I/D	S

- Control del display (ON/OFF CONTROL)
 - B=0. Cursor sin parpadeo
 - B=1. Cursor parpadeante
 - C=0. Cursor apagado
 - C=1. Cursor encendido
 - D=0. Display apagado
 - D=1. Display encendido

RS	RW	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	1	D	С	В

- Desplazamiento del cursor display (Shift)
 - S/C, R/L= 00. Desplaza cursor izq. AC= AC-1
 - S/C, R/L= 01. Desplaza cursor der. AC= AC+1
 - S/C, R/L= 10. Desplaza display y cursor izq.
 - S/C, R/L= 11. Desplaza display y cursor der.

RS	RW	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	S/C	R/L	X	X

- Declara función (FUNCTION SET)
 - DL=0. Control con bus de 4 bits
 - DL=1. Control con bus de 8 bits
 - N,F= 10. Display 2 líneas, carácter 5x7 pixeles

RS	RW	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	DL	1	0	X	X

- Poner dirección en CGRAM (SET CGRAM)
 - El registro AC queda apuntando a la CGRAM en la dirección AAAAAA.

RS	RW	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	A	A	A	A	A	Α

- Poner dirección en DDRAM (SET DDRAM)
 - El registro AC queda apuntando a la DDRAM en la dirección AnAAAAAA.
 - Si An=0, AC apunta a la primera línea
 - Si An=1, AC apunta a la segunda línea

RS	RW	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	An	Α	A	A	Α	Α	Α

- Lectura del IR y bandera de ocupado (Read address and busy flag)
 - Lee BF y dirección AAAAAAA.
 - BF=0. Display acepta un nueva orden
 - BF=1. Display ocupado. No deben darse nuevas instrucciones hasta que BF=0.

RS	RW	D7	D6	D5	D4	D3	D2	D1	D0
0	1	BF	Α	Α	Α	Α	Α	Α	А

- Escritura de DR (Write data to CGRAM o DDRAM)
 - Escribe datos al CGRAM o DDRAM previamente seleccionado

RS	RW	D7	D6	D5	D4	D3	D2	D1	D0
1	0	D	D	D	D	D	D	D	D

- Lectura de DR (Read data from CGRAM o DDRAM)
 - Lee datos desde el CGRAM o DDRAM previamente seleccionado

RS	RW	D7	D6	D5	D4	D3	D2	D1	D0
1	1	D	D	D	D	D	D	D	D

Displays alfanuméricos Secuencia de encendido

UAA. SIST. ELECTRONICOS

Displays alfanuméricos Ejemplo con CPLD

Conexión entre el CPLD y el LCD

LCD	E	RW	RS	D3	D2	DI	D0
CPLD	E	RW	RS	D3	D2	D1	D0

- http://es.wikipedia.org/wiki/LCD
- 2. AND application notes.
- 3. AND Intelligent alphanumeric application notes.

Circuitos Lógicos 2

¡Gracias por su atención!

¿Preguntas?

