

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 204 302
A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 86107491.2

(51) Int. Cl.: C 12 N 15/00
C 12 P 21/02, A 61 K 37/02

(22) Date of filing: 03.06.86

(30) Priority: 03.06.85 US 740776
25.04.86 US 856615

(71) Applicant: MELOY LABORATORIES, INC.
6715 Electronic Drive
Springfield Virginia 22151(US)

(43) Date of publication of application:
10.12.86 Bulletin 86/50

(72) Inventor: Drohan, William N.
5232 Perth Court
Springfield Virginia(US)

(84) Designated Contracting States:
AT BE CH DE FR GB IT LI LU NL SE

(72) Inventor: Jaye, Michael C.
3017 South Second Street
Arlington Virginia(US)

(72) Inventor: Terranova, Victor P.
14404 Falling Leaf Drive
Gaithersburg Maryland(US)

(74) Representative: Patentanwälte Grünecker, Kinkeldey,
Stockmair & Partner
Maximilianstrasse 58
D-8000 München 22(DE)

(54) Laminin and the production thereof.

(57) It is now possible to obtain large quantities of pure human laminin using the application of recombinant DNA technology to prepare cloning vehicles encoding for the laminin protein, and screening/isolating procedures for recovering the laminin. Also disclosed are expression vectors capable of expressing human laminin. The use of laminin for cosmetic purposes as well as in the treatment of damaged or degenerated epithelium is disclosed.

EP 0 204 302 A2

1

LAMININ AND THE PRODUCTION THEREOF

This invention relates to the production of laminin. More particularly, this invention relates 5 to human laminin and its recombinant DNA-directed synthesis, and laminin's use in the treatment of basement membrane damage or degeneration.

Laminin is a major component of basement membranes. Basement membranes are highly organized 10 structures which support and regulate the passage of macromolecules across the epithelium. Laminin is a large glycoprotein (molecular weight of 1,000,000) which is synthesized by epithelial cells and localized to basement membranes.

15 As the major noncollagenous component of the basement membrane, laminin is believed to have several major functions. First, it regulates the formation of the basement membrane. Second, it influences the types of cells which abut the membrane by encouraging epithelial 20 cell attachment and inhibiting fibroblast attachment. Third, laminin provides an environment for the continuing survival of epithelial cells by its attachment, growth

25

30

35

1 factor, and mitogenic properties toward epithelial cells.
A review of the evidence supporting these postulated in
vivo properties and the mechanisms thereof can be found in
"The Role of Laminin in Basement Membranes and in the
5 Growth, Adhesion, and Differentiation of Cells," by
Kleinman, et al., The Role of Extracellular Matrix in
Development, pages 123-143, 1984; (Alan R. Liss, Inc., New
York, New York) and the references contained therein.

In general, recombinant DNA techniques are
10 known, See Methods In Enzymology, (Academic Press)
Volumes 65 and 68 (1979); 100 and 101 (1983) and the
references cited therein, all of which are incorporated
herein by reference. An extensive technical discussion
15 embodying most commonly used recombinant DNA methodologies
can be found in Maniatis, et al., Molecular Cloning, Cold
Spring Harbor Laboratory (1982). Genes coding for various
polypeptides may be cloned by incorporating a DNA fragment
coding for the polypeptide in a recombinant DNA vehicle,
e.g., bacterial or viral vectors, and transforming a
20 suitable host. This host is typically an Escherichia coli
(E. coli) cell line, however, depending upon the desired
product, eukaryotic hosts may be utilized. Clones
incorporating the recombinant vectors are isolated and may
be grown and used to produce the desired polypeptide on a
25 large scale.

Mixtures of mRNA from eukaryotic cells employing
a series of three enzymatic reactions to synthesize
double-stranded DNA copies of entire genes which are
complementary to this mRNA mixture have been isolated. In
30 the first reaction, mRNA is transcribed to form a
single-stranded complementary DNA (cDNA) by an
RNA-directed DNA polymerase, also called reverse
transcriptase. Reverse transcriptase synthesizes DNA in
the 5' -3' direction, utilizes deoxyribonucleoside.

1 5'-triphosphates as precursors, and requires both a
template and a primer strand, the latter of which must
have a free 3'-hydroxyl terminus. Reverse transcriptase
products, whether partial or complete copies of the mRNA
template, often possess short, partially double-stranded
hairpins ("loops") at their 3' termini. In the second
reaction, these "hairpin loops" can be exploited as
primers for DNA polymerases. Preformed DNA is required
both as a template and as a primer in the action of DNA
polymerase. The DNA polymerase requires the presence of a
DNA strand having a free 3'-hydroxyl group, to which new
nucleotides are added to extend the chain in the 5' - 3'
direction. The products of such sequential reverse
transcriptase and DNA polymerase reactions still possess a
loop at one end. The apex of the loop or "fold-point" of
the double-stranded DNA, which has thus been created, is
substantially a single-strand segment. In the third
reaction, this single-strand segment is cleaved with the
single-strand specific nuclease S1 to generate a
20 "blunt-end" duplex DNA segment. This general method is
applicable to any mRNA mixture, and is described by Buell,
et al., J. Biol. Chem., 253:2483 (1978).

25 The resulting double-stranded cDNA mixture
(ds-cDNA) is inserted into cloning vehicles by any one of
many known techniques, depending at least in part on the
particular vehicle being used. Various insertion methods
are discussed in considerable detail in Methods In
Enzymology, 68:16-18, and the references cited therein.

30 Once the DNA segments are inserted, the cloning
vehicle is used to transform a suitable host. These
cloning vehicles usually impart an antibiotic resistance
trait on the host. Such hosts are generally prokaryotic
or eukaryotic cells. At this point, only a few of the

1 transformed or transfected hosts contain the desired
cDNA. The sum of all transformed or transfected hosts
constitutes a gene "library". The overall ds-cDNA library
created by this method provides a representative sample of
5 the coding information present in the mRNA mixture used as
the starting material.

If an appropriate oligonucleotide sequence is
available, it can be used to identify clones of interest
in the following manner. Individual transformed or
10 transfected cells are grown as colonies on nitrocellulose
filter paper. These colonies are lysed; the DNA released
is covalently attached to the filter paper by heating.
The sheet is then incubated with a labeled oligonucleotide
15 probe which is complementary to the structural gene of
interest. The probe hybridizes with the cDNA for which it
is complementary, and this is identified by
autoradiography. The corresponding clones are
characterized in order to identify one, or a combination
of clones which contain all of the structural information
20 for the desired protein. The nucleic acid sequence coding
for the protein of interest is isolated and reinserted
into an expression vector. The expression vector brings
the cloned gene under the regulatory control of a specific
25 prokaryotic or eukaryotic control element which allows the
efficient expression (transcription and translation) of
the cloned ds-cDNA. Thus, this general technique is only
applicable to those proteins for which at least a portion
of their amino acid or DNA sequence is known and for which
an oligonucleotide probe is available. See, generally,
30 Maniatis, et al., supra.

More recently, methods have been developed to
identify specific clones by probing bacterial colonies
with antibodies specific for the encoded protein of

0204302

1 interest. This method can only be used with "expression
vector" cloning vehicles since elaboration of the product
protein is required. The structural gene is inserted into
the vector adjacent to regulatory gene sequences that
5 control expression of the protein. The cells are lysed,
either by the vector or by chemical methods, and the
protein detected by the specific antibody and a labeling
system such as enzyme immunoassay. An example of this is
the lambda gt₁₁ system described by Young and Davis,
10 Proc. Nat'l. Acad. Sci. USA. 80:1194-1198 (1983) and Young
and Davis, Science, 22:778 (1983).

15

20

25

30

35

0204302

1 The present invention has made it possible to
provide readily available large quantities of human
laminin or laminin subunits. This has been achieved with
antibodies which react specifically with the laminin
5 protein molecule, or subunits thereof, the application of
recombinant DNA technology to preparing cloning vehicles
encoding for the laminin protein, and screening/isolating
procedures for recovering human laminin protein
essentially free of other proteins of human origin.

10 Accordingly, the present invention provides
human laminin or its subunits and fragments essentially
free of other proteins of human origin. Characteristically,
the laminin protein is glycosylated
but may be in the unglycosylated form. Laminin
15 is produced by recombinant DNA techniques in host
cells or other self-replicating systems and is
provided in essentially pure form.

The invention further provides replicable
expression vectors incorporating a DNA sequence
20 encoding human laminin and a self-replicating host
cell system transformed or transfected thereby.

The host system is usually a prokaryotic, e.g.,
E. coli, B. subtilis, or eukaryotic cells.
The invention further provides a cDNA sequence
25 which when correctly combined with an expression
vector is capable of directing the synthesis of
a polypeptide which is immunologically reactive
with antibodies prepared against human laminin.

The human laminin is produced by a process
30 which comprises (a) preparing a replicable expression
vector capable of expressing the DNA sequence encoding

1 human laminin or fragments thereof in a suitable
host cell system; (b) transforming said host system
to obtain a recombinant host system; (c) maintaining
said recombinant host system under conditions
5 permitting expression of said laminin encoding
DNA sequence to produce human laminin protein;
and (d) recovering said human laminin protein.
Preferably, the laminin-encoding replicable expression
vector is made by preparing a double-stranded complementary
10 DNA (ds-cDNA) preparation representative of laminin
mRNA and incorporating the ds-cDNA into replicable
expression vectors. The preferred mode of recovering
the human laminin comprises reacting the proteins
expressed by the recombinant host system with
15 a reagent composition comprising at least one binding
protein specific for laminin.

Laminin or its fragments may be used
as a therapeutic agent in the treatment of damaged
or degenerated skin and other epithelial membranes.

20 The cloned cDNA coding for human laminin
is also useful as a DNA probe for the specific
identification and/or recovery of laminin DNA sequences
from a mixture containing same.

25

30

35

1 Figure 1 illustrates a general procedure for
enzymatic reactions to produce cDNA clones.

5 Figure 2 illustrates the production of a library
containing DNA fragments inserted into lambda gt₁₁.

10 Figure 3 illustrates elaboration and
purification of a human laminin cDNA clone from a lambda
gt₁₁ recombinant library.

15 a. Portion of the nitrocellulose filter, after
incubation in HRP color development solution, showing
a positive color reaction (Lam12).

20 b. Portion of the nitrocellulose filter after
replating and rescreening of a 4 mm diameter plug
(From Step A., above) at the position of Lam12.

25 c. Portion of the nitrocellulose filter after
replating and rescreening of a 4 mm diameter plug
(From Step B., above) at the position of Lam12.

30 Figure 4 illustrates the nucleotide sequence
obtained at the 5' end of Lam12.

35 Figure 5 illustrates the nucleotide sequence
obtained at the 3' end of Lam12.

40 Figure 6 illustrates a comparison of mouse and
human laminin B1 chains. The amino acid sequence deduced
from the cDNA sequence of a mouse laminin B1 chain is
shown in the top line [Barlow, D.P., Green, N.M.,
Kurkinen, M., and Hogan, B.L.M., EMBO Journal, 3:2355-2362
(1984)].

1

The amino acid sequence deduced from the cDNA sequence of Laml2 is shown in the bottom line. Asterisks indicate non-homologous amino acids. A homology of 91.6% is observed between mouse and human laminin B1 chains.

5

10

15

20

25

30

35

Figure 7 illustrates the complete nucleotide and deduced amino acid sequence of Laml2, a partial cDNA clone for the human B1 laminin chain. The nucleotide sequence at the 5' and 3' ends of Laml2 is shown in Figures 4 and 5. The complete nucleotide sequence of Lam 12, shown here, includes and joins the nucleotide sequences at the 5' and 3' ends of Laml2. Nucleotide sequence was determined by the chain termination method [Sanger et al., Proc. Natl. Acad. Sci. USA, 74:5463-5467 (1977)]. Nucleotide 146 in Figure 5 is erroneously reported as A, the actual nucleotide is G.

1 As used herein, "laminin" denotes human
laminin or its subunits or fragments thereof produced
by cell or cell-free culture systems, in bioactive
forms having the capacity to influence cellular
5 adhesion, growth, differentiation, and migration
in vivo as does laminin native to the human basement
membrane and to react with antibodies raised to
human laminin.

10 Different alleles of laminin may exist in
nature. These variations may be characterized by
difference(s) in the nucleotide sequence of the structural
gene coding for proteins of identical biological
function. In addition, the location and degree of
glycosylation as well as other post-translational
15 modifications may vary and will depend to a degree upon
the nature of the host and environment in which the
protein is produced. It is possible to produce analogs
having single or multiple amino acid substitutions,
deletions, additions, or replacements. All such allelic
20 variations, modifications, and analogs resulting in
derivatives of human laminin which retain the biologically
active properties of native human laminin are included
within the scope of this invention.

25 "Expression vectors" refer to vectors which are
capable of transcribing and translating DNA sequences
contained therein, where such sequences are linked to
other regulatory sequences capable of effecting their
expression. These expression vectors must be replicable
in the host organisms or systems either as episomes,
30 bacteriophage, or as an integral part of the chromosomal
DNA. One expression vector which is particularly suitable
for producing laminin is the bacteriophage, viruses which

1 normally inhabit and replicate in bacteria. Particularly
desirable phages for this purpose are the lambda gt₁₀
and gt₁₁ phage, described by Young and Davis, supra.
Lambda gt₁₁ is a general recombinant DNA expression
5 vector capable of producing polypeptides specified by the
inserted DNA.

To minimize degradation, upon induction with a synthetic analogue of lactose (IPTG), foreign proteins or portions thereof are synthesized fused to the prokaryotic protein B-galactosidase. The use of host cells defective in protein degradation pathways may also increase the lifetime of novel proteins produced from the induced lambda gt₁₁ clones. Proper expression of foreign DNA in lambda gt₁₁ clones depends upon the proper orientation and reading frame of the inserted DNA with respect to the B-galactosidase promoter and ribosome binding site.

Another form of expression vector useful in recombinant DNA techniques is the plasmid - a circular, unintegrated (extra-chromosomal), double-stranded DNA loop. Any other form of expression vector which serves an equivalent function is suitable for use in the process of this invention.

Recombinant vectors and methodology disclosed herein are suitable for use in host cells covering a wide range of prokaryotic and eukaryotic organisms.

Prokaryotics are preferred for the cloning of DNA sequences and in the construction of vectors. For example, E. coli K12 strain HB101 (ATCC No. 33694), is particularly useful. Of course, other microbial strains may be used. Vectors containing replication and control sequence which are derived from species compatible with the host cell or system are used in connection with these hosts. The vector ordinarily carries an origin of

1 replication, as well as characteristics capable of
providing phenotypic selection in transformed cells. For
example, E. coli can be transformed using the vector
PBR322, which contains genes for ampicillin and
5 tetracycline resistance [Bolivar, et al., Gene, 2:95
(1977)].

These antibiotic resistance genes provide a means
of identifying transformed cells. The expression vector
may also contain control elements which can be used by the
10 vector for expression of its own proteins. Common
prokaryotic control elements used for expression of
foreign DNA sequences in E. coli include the promoters and
regulatory sequences derived from the β -galactosidase and
tryptophan (trp) operons of E. coli, as well as the pR and
15 pL promoters of bacteriophage lambda. Combinations of
these elements have also been used (e.g., TAC, which is a
fusion of the trp promoter with the lactose operator).
Other promoters have also been discovered and utilized,
and details concerning their nucleotide sequences have
20 been published enabling a skilled worker to combine and
exploit them functionally.

In addition to prokaryotes, eukaryotic microbes,
such as yeast cultures, may also be used. Saccharomyces
cerevisiae, or common baker's yeast, is the most commonly
25 used among eukaryotic microorganisms, although a number of
other strains are commonly available. Suitable promoting
sequences in yeast vectors include the promoters of
3-phosphoglycerate kinase or other glycolytic enzymes.
Suitable expression vectors may contain termination
signals which provide for the polyadenylation and
30 termination of the cloned gene's mRNA. Any vector
containing a yeast-compatible promoter, origin of
replication, and appropriate termination sequence is
suitable for expression of laminin.

1 In addition to microorganisms, cultures of cells
derived from multicellular organisms may also be used as
hosts. In principle, any such cell culture is workable,
whether from a vertebrate or invertebrate source.

5 However, interest has been greatest in vertebrate cells,
and propagation of vertebrate cells in culture (tissue
culture) has become a routine procedure in recent years.
Examples of such useful hosts are the VERO, HeLa, mouse
10 C127, Chinese hamster ovary (CHO), WI38, BHK, COS-7, and
MDCK cell lines. Expression vectors for such cells
ordinarily include an origin of replication, a promoter
located in front of the gene to be expressed, along with
any necessary ribosome binding sites, RNA splice sites,
polyadenylation site, and transcriptional terminatory
15 sequence.

For use in mammalian cells, the control functions
on the expression vectors are often provided by viral
material. For example, commonly used promoters are
derived from polyoma, Adenovirus 2, and most frequently,
20 Simian Virus 40 (SV40). Further, it is also possible, and
often desirable, to utilize promoter or control sequence
naturally associated with the desired gene sequence,
provided such control sequences are compatible with the
host system. To increase the rate of transcription,
25 eukaryotic enhancer sequences can also be added to the
construction. These sequences can be obtained from a
variety of animal cells or oncorna viruses such as the
mouse sarcoma virus.

30 An origin of replication may be provided either
by construction of the vector to include an exogenous
origin, such as that provided by SV40 or other viral
sources, or may be provided by the host cell chromosomal
replication mechanism. If the vector is integrated into
the host cell chromosome, the latter is sufficient.

1 Host cells can prepare human laminin proteins
which can be of a variety of chemical compositions. The
protein is produced having methionine as its first amino
acid (present by virtue of the ATG start signal codon
5 naturally existing at the origin of the structural gene
or inserted before a segment of the structural gene). The
protein may also be intra- or extracellularly cleaved,
giving rise to the amino acid which is found naturally at
the amino terminus of the protein. The protein may be
10 produced together with either its signal polypeptide or a
conjugated protein other than the conventional signal
polypeptide, the signal polypeptide of the conjugate being
specifically cleavable in an intra- or extracellular
environment. Finally, laminin may be produced by direct
15 expression in mature form without the necessity of
cleaving away any extraneous polypeptide.

Recombinant host cells which have been
transformed with vectors constructed using recombinant
DNA techniques. As defined herein, laminin is
20 produced as a consequence of this transformation.
Laminin or its subunits or fragments thereof produced
by such cells are referred to as "recombinant laminin".

The procedures below are but some of a wide
variety of well established procedures to produce specific
25 reagents useful in this invention. The general procedure
for obtaining a messenger RNA (mRNA) mixture is to prepare
an extract from a tissue sample or to culture cells
producing the desired protein, and to extract the mRNA by
a process such as that disclosed by Chirgwin, et al.,
30 Biochemistry, 18:5294 (1979). The mRNA is enriched for
poly(A) mRNA-containing material by chromatography on

1 oligo (dT) cellulose or poly(U) Sepharose, followed by
elution of the poly(A) containing mRNA-enriched fraction.

5 The above poly(A) containing mRNA-enriched fraction is used to synthesize a single-strand complementary cDNA (ss-cDNA) using reverse transcriptase. As a consequence of DNA synthesis, a hairpin loop is formed at the 3' end of the DNA which will initiate second strand DNA synthesis. Under appropriate conditions, this hairpin loop is used to effect synthesis of the second strand in the presence of DNA polymerase and nucleotide triphosphates.

10 The resultant double-strand cDNA (ds-cDNA) is inserted into the expression vector by any one of many known techniques. In general, methods, etc., can be found in Maniatis, supra, and Methods In Enzymology, Vol. 65 and 68 (1980); and Vol. 100 and 101 (1983). In general, the vector is linearized by at least one restriction endonuclease, which will produce at least two blunt or cohesive ends. The ds-cDNA is ligated with or joined to the vector insertion site.

15 If prokaryotic cells or other cells which contain substantial cell wall material are employed, the most common method of transformation with the expression vector is calcium chloride pretreatment as described by Cohen, R.N., et al., Proc. Nat'l. Sci. USA, 69:2110 (1972). If cells without cell wall barriers are used as host cells, transfection is carried out by the calcium phosphate precipitation method described by Graham and Van der Eb, Virology, 62:456 (1973). Other methods for introducing DNA into cells such as nuclear injection or protoplast fusion, have also been successfully used. The organisms are then cultured on selective media and proteins for which the expression vector encodes are produced.

1 Clones containing part or the entire gene for
laminin are identified with specific binding protein
directed against part or all of the laminin protein. The
specific binding protein may preferably be a primary
5 antibody. For example, these primary antibodies include
both a polyclonal antibody or a monoclonal antibody. This
method of identification requires that the ds-cDNA be
inserted into a vector containing appropriate regulatory
nucleic acid sequences adjacent to the insertion site.
10 These regulatory sequences initiate transcription and
translation of those ds-cDNA molecules inserted in the
vector. Those clones containing laminin cDNA sequences
correctly positioned relative to the regulatory sequences
synthesize part or all of the laminin protein. Such
15 clones are detected using appropriately specific
antibodies. Such a cloning system is the lambda gt₁₁
system first described by Young and Davis, supra.

Clones containing the entire sequence of laminin
are identified using as probe the cDNA insert of the
20 laminin recombinant isolated during immunoassay screening
of the recombinant lambda gt₁₁ human endothelial cDNA
library. Nucleotide sequencing techniques are used to
determine the sequence of amino acids encoded by the cDNA
fragments. This information may be used to determine the
25 identity of cDNA clones as specific for human laminin by
comparison to the amino acid sequence of isolated laminin
chains. Alternatively, identification may be confirmed by
employing techniques such as Northern blot analysis and
hybrid-selected translation or by comparison to laminin
30 clones isolated from other species, e.g., mouse and rat.

1

EXAMPLE

A. Preparation of Total RNA

Total RNA (messenger, ribosomal, and transfer) was extracted from fresh human umbilical vein endothelial cells essentially as described by Chirgwin, supra, (1979). Cell pellets were homogenized in 5 volumes of a solution containing 4 M guanidine thiocyanate, 25 mM sodium citrate at pH 7.0, 0.5% N-laurylsarcosine, 0.1 M 2-mercaptoethanol, and 0.2% Antifoam A (Sigma Chemical Co., St. Louis, MO). The homogenate was centrifuged at 6,000 rpm in a Sorvall GSA rotor for 15 minutes at 10°C. The supernatant fluid was adjusted to pH 5.0 by addition of acetic acid and the RNA precipitated by 0.75 volumes of ethanol at -20°C. for two hours. RNA was collected by centrifugation and dissolved in 7.5 M guanidine hydrochloride containing 2 mM sodium citrate and 5 mM dithiothreitol. Following two additional precipitations using 0.5 volumes of ethanol, the residual guanidine hydrochloride was extracted from the precipitate with absolute ethanol. RNA was dissolved in sterile water, insolvable material removed by centrifugation, and the pellets were re-extracted with water. The RNA was adjusted to 0.2 M potassium acetate and precipitated by addition of 2.5 volumes of ethanol at -20°C. overnight.

25

B. Preparation of Poly(A)-containing RNA

30

35

The total RNA precipitate, prepared as described above, was dissolved in 20 mM Hepes buffer (pH 7.2) containing 10 mM EDTA and 1% SDS, heated at 65°C. for 10 minutes, then quickly cooled to 25°C. The RNA solution was then diluted with an equal volume of water and NaCl was added to bring the final concentration to 300 mM NaCl. Samples containing up to 240 A₂₆₀ units of RNA were chromatographed on poly(U)-sepharose using standard

1 procedures. Poly(A)-containing RNA was eluted with 70%
formamide containing 1 mM Hepes buffer (pH 7.2), and 2mM
EDTA. The eluate was adjusted to 0.24 M NaCl and the RNA
was precipitated by 2.5 volumes of ethanol at -20°C.

5 C. Construction of cDNA Clones in Lambda gt₁₁

The procedure followed for the enzymatic reaction
is shown in Figure 1. The mRNA (20 ug) was copied into
ds-cDNA with reverse transcriptase and DNA polymerase I
exactly as described by Buell, et al., supra, and
10 Wilkensen, et al., J. Biol. Chem., 253:2483 (1978). The
ds-cDNA was desalted on Sephadex G-50 and the void volume
fractions further purified on an Elutip-D column,
(Schleicher & Schuell, Keene, NH), following the
manufacturer's directions. The ds-cDNA was made
15 blunt-ended by incubation with S1 nuclease, Ricca, et al.,
J. Biol. Chem. 256 : 10362 (1981). The reaction mixture
consisted of 0.2 M sodium acetate (pH 4.5), 0.4 sodium
chloride, 2.5 mM zinc acetate and 0.1 unit of S1 nuclease
per ng of ds-cDNA, made to a final reaction volume of
20 100 ~~M~~l. The ds-cDNA was incubated at 37°C. for one
hour, extracted with phenol:chloroform, and then desalted
on a Sephadex G-50 column as described above.

The double-stranded cDNA was then treated with
Eco RI methylase and DNA polymerase I (Klenow) using
25 reaction conditions described in Maniatis, Molecular
Cloning, supra. The cDNA was again desalted on Sephadex
G-50 as described above and then ligated to 0.5/₄ g of
phosphorylated Eco RI linkers using T₄ DNA ligase
(Maniatis, supra). The mixture was then cleaved with Eco
30 RI and fractionated on an 8% acrylamide gel in Tris-Borate
buffer (Maniatis, supra). DNA with a size greater than 1
kilobase was eluted from the gel and recovered by binding
to an Elutip-D column, eluted with 1 M NaCl and then
collected by ethanol precipitation.

1 As shown in Figure 2 the DNA fragments were then
inserted into Eco RI cleaved and phosphatase-treated
lambda gt₁₁, using T₄ DNA ligase. A library of
approximately five hundred thousand recombinant phage was
5 produced. The library was amplified by producing plate
stocks at 4°C. on E. coli Y1083 [supE SupF metB trpR
hsdR⁻ hsdM⁺ tonA21 strA~~Δ~~ lacU169 proc::Tn5 (pMC9)].
Amplification procedures are described in Maniatis,
10 supra. Important features of this strain, described by
Young and Davis, include (1) supF (required suppression of
the phage amber mutation in the S gene), (2). hsdR⁻
hsdM⁺ (necessary to prevent restriction of foreign DNA
prior to host modification, (3)~~Δ~~ lacU169 (a deletion of
15 the lac operon which reduces host-phage recombination and
which is necessary to distinguish between lambda gt₁₁
recombinants and non-recombinants), and (4) pMC9 (a
lacI-bearing pBR322 derivative which represses, in the
absence of an inducer, the expression of foreign genes
that may be detrimental to phage and/or cell growth).

20

D. Identification of Clones Containing Laminin Sequence

To screen the library for laminin antigenic
determinant-producing clones, 500,000 lambda gt₁₁
recombinant phage were plated on a lawn of E. coli Y1090
25 [~~Δ~~ lacU169 proA⁺~~Δ~~ lon araD139 strA supF (trpC22::Tn10)
(pMC9)] and incubated at 42°C. for 4 hours. This host
is deficient in the lon protease, thereby reducing the
degradation of expressed foreign protein. A nitro-
cellulose filter, previously saturated with 10 mM
30 isopropyl thio-β-D-galactopyranoside (IPTG) and dried, was
overlaid on the plates. The plates were then incubated at
37°C. overnight. Since IPTG is an inducer of lacZ
transcription, the expression of foreign DNA inserts in

35

1 lambda gt₁₁ is under common control with lacZ
transcription, and, as such, is also induced. The
position of the filter was marked with a needle, the
filter removed, washed in TBS buffer (20 mM Tris, pH 7.5,
5 500 mM NaCl), and incubated in TBS plus 3% gelatin for 60
minutes at room temperature.

The filter was then incubated at room temperature
overnight in a 1:100 dilution of a rabbit polyclonal
antibody directed against rat laminin in a buffer
10 consisting of 1% gelatin in TBS. After 2 thirty-minute
washes with TBS at room temperature, 20 ml of a 1:2000
dilution of horseradish peroxidase (HRP) conjugated goat
anti-rabbit antisera (Bio-Rad, Richmond, CA) was added.
The filters were then incubated for 2 hours at room
15 temperature, and then washed 2 times for thirty minutes in
TBS. The filters were then incubated at room temperature
in HRP color development solution as described in the
Bio-Rad (supra) accompanying literature.

A 4 mm diameter plug at the position of each of
20 the color development signals (Fig. 3) was removed from
the plates and incubated in 10 mM Tris HCl, pH 7.5, and 10
mM MgSO₄ for one hour. Approximately 10³ plaque-
forming units (PFU) were replated on 90 mm plates and
rescreened as described above. This replating and
25 rescreening process was repeated until all plaques on the
plate produced a signal.

The cDNA insert from Laml2 was excised
using the restriction enzyme Eco RI. The cDNA insert
(approximately 1.4 Kb in length) was subcloned
30 into the Eco RI site of pUC9. Recombinant plasmids
are called pMJ5. This construction was used to
transform an E.coli host and the resulting transformant
was deposited with the American Type Culture Collection,
12301 Parklawn Drive, Rockville, MD 20852 on May
35 9, 1986 in accordance with the provisions of the

0204302

1 Budapest treaty. After viability testing, the
accession number ATCC 67112 was assigned. The
cDNA insert was also subcloned into the Eco RI
site of M13mpl1. The recombinant phage were isolated
5 and subjected to nucleic acid sequence analysis
as described by Sanger. [Sanger, et al., Proc.
Natl. Acad. Sci. USA. 74:5463 (1977)].

The sequences obtained at the 5' and 3' ends of
Lam12 are shown in Figures 4 & 5, respectively at Lines
10 a. Lines b show the amino acid sequence of laminin, which
can be deduced from the nucleotide sequence. Lines c show
the amino acid sequence deduced from the sequencing of a
mouse laminin B chain cDNA, and Lines d show the nucleic
acid sequence of the mouse laminin cDNA [Barlow, D.P.,
15 N.M. Green, M. Kurkinen, and B.L.M. Hogan, (1984) EMBO
Journal, 3:2355-2362]. The data indicate that Lam12 cDNA
encodes a COOH-terminal portion of the human laminin B1
chain. The amino acid sequences deduced from the human
and mouse clones share 92% homology, while the nucleotide
20 sequences share 90% homology. These homologies show that
Lam12 is a cDNA clone of the human laminin B chain, and
suggest extreme conservation of this protein in nature.

A pharmaceutical or cosmetic preparation
containing the laminin of this invention may be prepared
25 according to methods well known in the art for the
treatment of epithelial damage or degeneration. The
therapeutic preparation which contains the laminin of this
invention may be conveniently mixed with a non-toxic
pharmaceutical organic carrier or a non-toxic
30 pharmaceutical inorganic carrier. The pharmaceutical
carrier of choice may take the form of a gel or cream. In
general, the formulations of this invention utilize only

1 an effective amount of laminin which for pharmaceutical
preparations is somewhat higher than for cosmetic
preparations. A therapeutically effective amount of
laminin may be about 1 to 5 micrograms per milliliter of
5 carrier.

Thus, this example describes experimental
procedures which provide human laminin essentially free of
other proteins of human origin from a human tissue
extract containing laminin-specific mRNA in a
10 heterogeneous mRNA population. It should be appreciated
that the present invention is not to be construed as being
limited by the illustrative embodiment. It is possible to
produce still other embodiments without departing from the
inventive concepts herein disclosed. Such embodiments are
15 within the ability of those skilled in the art.

20

25

30

35

1 WHAT IS CLAIMED IS:

- 1 1. A cDNA sequence which when correctly combined with an expression vector is capable of directing the synthesis of a polypeptide which is immunologically reactive with antibodies prepared against human laminin.
- 5 2. The cDNA sequence according to Claim 1 having the polynucleotide sequence according to Figure 7.
- 10 3. The expression vector according to Claim 1 or 2 derived from a vector selected from the group consisting of lambda gt₁₀, lambda gt₁₁, and pBR322.
- 15 4. The cDNA sequence according to Claim 1 or 2 which when correctly combined with a cloning vector forms a self-replicating recombinant system upon transformation of an appropriate host.
- 20 5. The self-replicating recombinant system according to Claim 4 wherein the host is E. coli.
- 25 6. The self-replicating recombinant system according to Claim 4 or 5 having the identifying characteristics of ATCC 67112.
- 30 7. A process for preparing human laminin from a heterogeneous mRNA mixture containing mRNA for said protein, comprising preparing a heterogeneous ds-cDNA population complementary to a heterogeneous mRNA mixture, incorporating said ds-cDNA into a bacteriophage direct expression vector, providing a bacteriophage direct expression vector capable of incorporating said ds-cDNA population, expressing human laminin from said ds-cDNA-containing bacteriophage, and isolating and recovering human laminin.

1 8. The process according to Claim 7
wherein recovering said human laminin comprises
reaction of the proteins expressed by the recombinant
host system with a reagent composition comprising
5 at least one binding protein specific for laminin.

9. The process according to Claim 8
wherein the specific binding protein is a primary
antibody.

10 10. The process according to Claims 8
or 9 wherein the antibody is polyclonal antibody.

11. The process according to Claims 8
or 9 wherein the antibody is a monoclonal antibody.

15 12. Human laminin or fragments thereof
essentially free of other proteins of human origin,
in glycosylated or unglycosylated form, when made
by the process of Claim 7.

13. A composition comprising a therapeutically
effective amount of human laminin in a mixture
with an acceptable carrier.

20 14. The use of laminin according to
Claim 13 for treatment of epithelial damage or
degeneration or for the preparation of pharmaceutical
or cosmetic compositions useful in such treatment.

25 15. An essentially pure laminin fragment
having the deduced amino acid sequence illustrated
in Figure 7.

Fig. 1.

Fig. 2.

1. TRANSFER ANTIGEN TO IPTG-SATURATED NITROCELLULOSE
2. PROBE NITROCELLULOSE FILTER WITH ANTIBODY
3. PROBE FIRST ANTIBODY WITH HRP-COUPLED SECOND ANTIBODY

DEVELOP WITH CHROMOGENIC SUBSTRATE

0204302

3 / 7

—T i n g E.

a

b

c

Tiq. 4.

a. ACA GCC AAA GAA CTG GAT TCT CTA CAG ACA GAA GCC GAA AGC CTA	45
b. T A K E L D S L Q T E A E S L	15
c.	
d. GCA GAG AGC CTT	

a. GAC AAC ACT GTG AAA GAA CTT GCT GAA CAA CTG GAA TTT ATC AAA	90
b. D N T V K E L A E Q L E F I K	30
c. D K T V K E L A E Q L E F I K	
d. GAC AAG ACC GTG AAG GAG CTG GCA GAA CAG CTG GAG TTT ATC AAA	

a. AAC TCA GAT ATT CGG GGT GCC TTG GAT AGC ATT ACC AAG TAT TTC	135
b. N S D I R G A L D S I T K Y F	45
c. N S D I Q G A L D S I T K Y F	
d. AAC TCC GAT ATT CAG GGC GCC TTG GAT AGC ATC ACC AAG TAT TTC	

a. CAG ATG TCT CTT GAG GCA GAG GAG AGG GTG AAT GCC TCC ACC ACA	180
b. Q M S L E A E E R V N A S T T	60
c. Q M S L E A E E K R V N A S T T	
d. CAG ATG TCT CTT GAG GCA GAG AAG CGG GTG AAT GCC TCC ACC ACA	

line a. nucleotide sequence of human laminin cDNA clone 5' end
 (preliminary).

line b. deduced amino acid sequence of human laminin.

line c. deduced amino acid sequence of mouse laminin B1 chain.*

line d. nucleotide sequence of mouse laminin B1 chain cDNA. *

*Barlow, D.P., Green, N.M., Kurkinen, M., and Hosan B.L.M.,
 (1984) EMBO Journal 3, 2355-2362.

T i q. S.

a. ATC AGC GAG TTA GAG AGG AAT GTG GAA GAA CTT AAG CGG AAA GCT	45
b. I S E L E R N V E E L K R K A	15
c. I S K L E R N V E E L K R K A	
d. ATC AGC AAG CTT GAG AGG AAC GTG GAA GAG CTT AAG CGT AAA GCT	

a. GCC CAA AAC TCC GGG GAG GCA GAA TAT ATT GAA AAA GTA GTA TAT	90
b. A Q N S G E A E Y I E K V V Y	30
c. A Q N S G E A E Y I E K V V Y	
d. GCC CAG AAC TCT GGG GAG GCA GAA TAT ATC GAA AAA GTA GTA TAT	

a. ACT GTG AAG CAA AGT GCA GAA GAT GTT AAG AAG ACT TTA GAT GGT	135
b. T V K Q S A E D Y K K T L D G	45
c. S V K Q N A D D V K K T L D C	
d. TCT GTA AAA CAG AAT GCA GAC GAT GTT AAG AAG ACT CTA GAT TGC	

a. GAA CTT GAT GAA AAG TAT AAA AAA GTA GAA AAT TTA AT	
b. E L D E K Y K K V E Q L	
c. E L D E K Y K K V E S L I	
d. GAA CTT GAT GAA AAG TAT AAG AAG GTA GAA AGT TTA ATT GCC	

line a. nucleotide sequence of human laminin cDNA 3' end
(preliminary).

line b. deduced amino acid sequence of human laminin.

line c. deduced amino acid sequence of mouse laminin B1 chain.*

line d. nucleotide sequence of mouse laminin B1 chain cDNA.**

*Barlow, D.P., Green, N. M., Kurkinen, M., and Hosan, B.L.M.,
(1984) EMBO Journal 3, 2355-2362.

6 / 7

*
AESLDKTVKELAEGLEFIKNSDIOGALDSITKYQMSLEAEKVRNSTTIDPNSTVEQSALTDRVEDMLERESPKEQQEEQARLLELAGKLQSLDSAA
EFSQSNSTAKELDSLQTEASLDNTVKELAEGLEFIKNSDIRGALDSITKYQMSLEAEVNASTTEFNPSTVEQSALMRDRVEDMWERESQFKEKQQEEQARLLEAGKLQSLDSAA

AGMTGTPGADCSECEGGPNCRDTEGEKKCGPPGCCGLVTWAHSQAMDFDQDVLSALAEVEQLSKMVSEAKVRDAEKQNAQDVLLKTNATKEKVDK
AEHJCGTPGASCSETECGGPNCRDIQEGERKCGPPGCCGLVTYAHMNAWQAMLDQDVLSALAEVEQLSKHVSSEAKVRDAEKQSAEDILLKTNATKEKMD

* * * * *
SNE DRN LIKO IRN FL TD SAD OLDS IAE VANE VL KMEMP ST PQQL QNL T ED I RVER ELS QVE VL QL S AAD I AR AE L LL EAKRASKSA T DV KV TAD M VKE
SNE DRN LIKO IRN FL TD SAD OLDS IAE VANE VL KMEMP ST PQQL QNL T ED I RVER ELS QVE VL QL S AAD I AR AE M LL EAKRASKSA T DV KV TAD M VKE

ALEEAEKAQVAEEKAIKQADEDIQGTQMLLTSIESETAASETILNASQRISKLERNVEELKRKAQNSGEAEYEIKWVYSVQNADEVKKILDCELOEYK
ALEEAEKAQVAEEKAIKQADEDIQGTQMLLTSIESETAASETILNASQRISELERNVEELKRKAQNSBEAEYEIKWVYVQSAEVKKILDGELOGYK

* * * * *

KVESLIAQKTEESADARRKAELLQEAKTLLAQANSKLQLELDLERKYENNQKYLEDKAQLVRLEGEVRSLLKDISEKWAVYSTCL
KVENLIAKKTE

FIG. 6

TCCCAAAGCACAGGCCAAAGGAACTGGATTCTTACAGACAGAACACTGTGCTGAACA
 SerGlnSerAsnSerThrAlaLysGluLeuAspSerLeuGlnSerGluLeuAspSerLeuAsp
 120

GGTGCCTGGATAGCATACCAGTTTCAGATGCTCTTGAGGCAGGGGGTGAATGCCTC
 GlyAlaLeuAspSerIleThrLysTyrPheGlnMetSerLeuGlnIleGluIleArgVal
 240

GTAGAGACGTGATGGGGAGAAATCCCAGTTCCAGGAACTGCTCAAGGAA
 ValGluAspValNetGluArgGluSerGlnPheLysGlnGluGlnIleArgLeuAsp
 360

ATGACCCTGGAAACAGCCATGGGACTCTCGGAACTGCTGAGGAAACAGCT
 MetThrCysGlyThrProGlyAlaSerCysSerGlnIleGluIleAspGlnAspVal
 480

GTTGCACACACGCCCTGGGAAACAGCTCAAGAAGGAGGGAGGAGGAGGAGG
 ValAlaAlaAsnAlaIleGluIleAspLeuAspGlnAspValLeuSerIleAsp
 600

AACAAAGTGTGAAGACAAATGCTACCAAGAAAGGAAATGGGAAAGGAA
 LysGlnSerAlaGluAspIleLeuIleLysThrAsnAlaThrLysMetGluIleAsp
 720

GGTGATTGGACAGCATGGAGCTGCTTAATGAAGTATGAGATGGAGATGCCTAGC
 AlaAspLeuAspSerIleGluIleAsnGluValIleAsnGluIleAspLeuAsp
 840

CAAGTAGGGTTATCTCAGGATAGTGGCTGCTGACATTGGCAGAGCTGAGA
 GlnValGluValIleLeuGlnIleSerAlaAspIleAlaArgAlaGluMetGlu
 960

AAGGAAGCTCTGGAAAGGAGAAAGGCCAAATTAAACAAAGGAAAGCAGATGAGA
 LysGluIleAsnIleGluIleAspIleGluIleAspLeuAspIleGluIleAsp
 1080

GCTCTGAGGAACCTGTCACGGGTCAGGTCAGGAAAGCTGAGGAAAGAA
 AlaSerGluGluThrLeuPheAsnAlaSerGlnArgIleSerGluIleAsn
 1200

GATATAACTGGAGGAAAGGAGAGATGTTAGATGGAAACTGAGGAAAGTGA
 ValIleThrValIleAspValIleAspGlyGluLeuAspGlyGluLeuAsp
 1302

FIG. 7

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 204 302
A3

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 86107491.2

(51) Int. Cl.³: C 12 N 15/00

(22) Date of filing: 03.06.86

C 12 P 21/02, A 61 K 37/02

(30) Priority: 03.06.85 US 740776
25.04.86 US 856615

(71) Applicant: MELOY LABORATORIES, INC.
6715 Electronic Drive
Springfield Virginia 22151(US)

(43) Date of publication of application:
10.12.86 Bulletin 86/50

(72) Inventor: Drohan, William N.
5232 Perth Court
Springfield Virginia(US)

(88) Date of deferred publication of search report: 26.10.88

(72) Inventor: Jaye, Michael C.
3017 South Second Street
Arlington Virginia(US)

(84) Designated Contracting States:
AT BE CH DE FR GB IT LI LU NL SE

(72) Inventor: Terranova, Victor P.
14404 Falling Leaf Drive
Gaithersberg Maryland(US)

(64) Laminin and the production thereof.

(74) Representative: Patentanwälte Grünecker, Kinkeldey,
Stockmair & Partner
Maximilianstrasse 58
D-8000 München 22(DE)

(57) It is now possible to obtain large quantities of pure human laminin using the application of recombinant DNA technology to prepare cloning vehicles encoding for the laminin protein, and screening/isolating procedures for recovering the laminin. Also disclosed are expression vectors capable of expressing human laminin. The use of laminin for cosmetic purposes as well as in the treatment of damaged or degenerated epithelium is disclosed.

EP 0 204 302 A3

FIG. 7

PARTIAL EUROPEAN SEARCH REPORT
 which under Rule 45 of the European Patent Convention
 shall be considered, for the purposes of subsequent
 proceedings, as the European search report.

Application number:

EP 86 10 7491

DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.4)
D,X	THE EMBO JOURNAL, vol. 3, no. 10, 1984, pages 2355-2362, IRL Press, Oxford, GB D.P. BARLOW et al.: "Sequencing of laminin B chain cDNAs reveals C-terminal regions of coiled-coil alpha-helix" * Whole article *	--	C 12 N 15/20 C 12 P 21/02 A 61 K 37/02
Y	--	1,3-5	
Y	JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 258, no. 20, October 25, 1983, pages 12654-12660, US U. WEWER et al.: "Human laminin isolated in a nearly intact, biologically active form from placenta by limited proteolysis" * Whole article *	7-12,15	
T	--	7-12,15	
	CHEMICAL ABSTRACTS, vol. 108, no. 3, January 18, 1988, ref.no. 17088f, Columbus, Ohio, US;		
			TECHNICAL FIELDS SEARCHED (Int. Cl.4)
			C 12 N C 12 P

INCOMPLETE SEARCH

./.

The Search Division considers that the present European patent application does not comply with the provisions of the European Patent Convention to such an extent that it is not possible to carry out a meaningful search into the state of the art on the basis of some of the claims.

Claims searched completely: 1-13,15

Claims searched incompletely: 14

Claims not searched:

Reason for the limitation of the search:

Method for treatment of the human or animal body by surgery or therapy (see art. 52(4) of the European Patent Convention).

Place of search The Hague	Date of completion of the search 23-06-1988	Examiner HUBER-MACK
CATEGORY OF CITED DOCUMENTS		
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technical background O : non-written disclosure P : intermediate document	T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons R : member of the same patent family, corresponding document	

PARTIAL EUROPEAN SEARCH REPORT

- 2 -

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int Cl 4)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
	M. JAYE et al.: "Isolation of a cDNA clone for the human laminin-B1 chain and its gene localization" & AM. J. HUM. GENET. 1987, 41(4), 605-15. -----		
			TECHNICAL FIELDS SEARCHED (Int Cl 4)