Optimization Assignment

Hugues Talbot

16 novembre 2023

1 Sudoku

In this tutorial we shall use Python. The objective is to solve the puzzle Sudoku for any size (a.k.a order), using integer programming.

1.1 Formulation

To formulate the problem, propose answers to the following questions:

- Using only binary variables, how can we specify that a given number k is located in position (i, j) in the grid?
- What variables should we use?
- How do we express the line, column and square constraints?
- How do we express the fact that only a single number can be located at any location (i, j)?
- How do we express the known numbers as constraints?

1.2 Resolution using Python

- One of the best toolbox for optimisation in Python is cvxopt
- In particular, cvxopt.glpk has an integer programming solver:

```
import numpy as np
import cvxopt
import cvxopt.glpk
```

To use the help on cvxopt.glpk.ilp, which is the integer linear programming solver, use:

```
cvxopt.glpk.ilp?
```

— you have to use the cvxopt "matrix" object

```
from cvxopt import matrix
b = matrix(np.ones(...))
```

To help, a python notebook is available.

	2	4		
			2	td 2006.
3				Sudoku L
	1	3		(c) Daily Sudoku Ltd 2006.

1.3 Test

Solve the following sudokus.

	8		9		1		5			
		2	6	8	7	3				
		3				6				
3	9						6	5		
6			4	7	5			3		
5	7						8	4		
		9				8				
		5	1	2	4	9				
	4		8		3		2			
(cimple)										

(simple)

7						4				
	2			7			8			
		3			8			9		
			5			3				
	6			2			9			
		1			7			6		
			3			9				
	3			4			6			
		9			1			5		
(17 11)										

(Very hard)

8	F		C						Α						6
			Α				F				В	7	4	D	
В		4				D	6		7			0		5	
1							0	3		9	2				
					1	F	D		3	0			Е	7	4
	1		6				С		В			Α		3	
	С		D			6	3		5			9	2		
9		3	4	Е		2				7	D				
				5	7				8		С	3	0		Α
		Ε	2			4		7	1			F		6	
	5		3			8		9				Ε		С	
7	0	6			С	9		О	Е	3					
				D	Ε		4	0							2
	7		8			С		4	2				В		5
	2	9	Ε	В				5				4			
6						7						1		8	3

Special version for computer scientists