Séries de Fourier

Table des matières

	Séries trigonométriques. 1.1. Définitions.	1 1
	2.1. Convergence uniforme.	2
3.	2.2. Une série fondamentale. Séries de Fourier.	3 4
	3.1. Récupération des coefficients d'une série trigonométrique.	4
	3.2. Développement en série de Fourier.3.3. Convergence.	6 7
	3.4. Convergence des coefficients de Fourier.	8
	Formule de Parseval.	
5.	Prolongement Dirichlet · · · · · · · · · · · · · · · · · · ·	10

1. Séries trigonométriques.

1.1. Définitions.

Définition 1.1.1 (Série trigonométrique.): Une série trigonométrique est une série de la forme

$$a_0 + \sum_{n \geq 1} a_n \cos(nx) + b_n \sin(nx), a_n, b_n \in \mathbb{C}.$$

Remarque: Si cette série converge au point x, on note S(x) sa somme. En notant E l'ensemble de ces points j'obtiens une fonction $S: E \to \mathbb{C}; x \mapsto S(x)$.

Remarque: S est 2π -périodique signifie $S(x+2\pi)=S(x)$.

Remarque (Autre notation): On peut noter

$$\begin{cases} c_0 = a_0 \\ c_n = \frac{a_n - ib_n}{2} \\ c_{-n} = \frac{a_n + ib_n}{2} \end{cases} \Leftrightarrow \begin{cases} a_n = c_n + c_{-n} \\ b_n = i(c_n - c_{-n}) \end{cases}.$$

Ainsi, on a

$$\begin{split} a_0 + \sum_{n=1}^N a_n \cos(nx) + b_n \sin(nx) &= c_0 + \sum_{n=1}^N (c_n + c_{-n}) \cos(nx) + i(c_n - c_{-n}) \sin(nx) \\ &= c_0 + \sum_{n=1}^N c_n (\cos(nx) + i \sin(nx)) + c_{-n} (\cos(nx) + i \sin(nx)) \\ &= c_0 e^{i0x} + \sum_{n=1}^N c_n e^{inx} + c_{-n} e^{-inx} = \sum_{n=-N}^N c_n e^{inx}. \end{split}$$

2. Critères de convergence.

2.1. Convergence uniforme.

Remarque: $\sup_{x \in \mathbb{R}} (|a_n \cos(nx) + b_n \sin(nx)|) \le |a_n| + |b_n|$.

Théorème 2.1.1: Soit $A=\sum a_n\cos(nx)+b_n\sin(nx)$ une série trigonométrique telle que $\sum |a_n|+|b_n|$ converge. Alors A converge uniformément sur $\mathbb R$ et S(x) est continue.

Démonstration: Soit $x \in \mathbb{R}$, on a

$$\left|\sum a_n \cos(nx) + b_n \sin(nx)\right| \leq \sum |a_n| \cdot 1 + |b_n| \cdot 1 \leq \sum |a_n| + |b_n|.$$

Exemple: $\sum_{n=1}^{+\infty}\frac{\cos(nx)}{n^2}=\frac{x^2}{4}-\pi\frac{x}{2}+\frac{\pi^2}{6}$ si $x\in[0,2\pi].$

Théorème 2.1.2: Soit $(c_n)_{n\in\mathbb{N}}, (d_n)_{n\in\mathbb{N}}$ deux suites dans $\mathbb{C}, C_n=\sum c_n, D_n=\sum d_n$. Pour tous $N\leq M$, on a

$$\sum_{n=N}^{M} c_n d_n = C_M D_M - C_N D_{N-1} + \sum_{n=N}^{M-1} \bigl(c_n - c_{n+1} D_n \bigr).$$

Démonstration: Pour le voir poser $d_n = D_n - D_{n-1}$.

Corollaire 2.1.1: Si la suite $(D_n)_{n\in\mathbb{N}}$ est bornée par un nombre D>0 et $(C_n)_{n\in\mathbb{N}}$ est décroissante, alors

$$\begin{split} \left| \sum_{n=N}^{M} c_n d_n \right| &\leq |C_M D_M| + \sum_{n=N}^{M-1} \left| c_n - c_{n+1} D_n \right| + |C_n D_{n-1}| \\ &\leq D \left(|C_M| \sum_{n=N}^{M-1} (c_n - c_{n+1}) + c_N \right). \end{split}$$

Si de plus $(c_n) \in \mathbb{R}_+, \left| \sum_{n=N}^M c_n d_n \right| \leq 2DC_N$

 $\begin{array}{l} \textbf{Th\'eor\`eme 2.1.3} \ (\ \text{Crit\`ere d'Abel} \) \colon \text{Soit} \ (a_n)_{n \in \mathbb{N}} \ \text{une suite positive \`a valeurs r\'eelles d\'ecroissante} \\ \text{et} \ \left(b_n \right)_{n \in \mathbb{N}} \ \text{une suite dans} \ \mathbb{C} \ \text{telle que} \ \exists D \in \mathbb{R}, \forall n \in \mathbb{N}, \forall m > n, \left| b_n + b_{n+1} + \ldots + b_m \right| < D. \\ \text{Alors} \ \sum a_n b_n \ \text{converge et} \ \forall n \in \mathbb{N}, \sum_{n=N}^M a_n b_n \leq 2Dc_N. \end{array}$

Exemple:

$$\begin{split} \sum_{k=0}^n e^{ik\theta} &= \sum_{k=0}^n e^{(i\theta)^k} \\ &= \frac{\left(e^i\theta\right)^{n+1}-1}{e^{i\theta}-1} = \cdot_{\text{passage par l'angle moiti\'e}} \cdot = \frac{\sin\left(\frac{n+1}{2}\theta\right)}{\sin\left(\frac{\theta}{2}\right)} e^{in\theta}. \end{split}$$

D'où

$$\sum_{k=0}^{n} \cos(k\theta) = \Re\left(\sum_{k=0}^{n} e^{ik\theta}\right) = \frac{\sin\left(\frac{n+1}{2}\theta\right)}{\sin\left(\frac{\theta}{2}\right)} \cos\left(n\frac{\theta}{2}\right)$$

et abs $\left(\sum_{k=0}^n \cos(k\theta)\right) \leq \frac{1}{\sin(\frac{\theta}{2})}$

Proposition 2.1.1: Soit $(a_n)_n \in \mathbb{N}$ une suite positive décroissante, $A = \sum a_n \cos(nx)$, $B = \sum a_n \cos(nx)$ $\sum a_n \sin(nx)$ deux séries trigonométriques. Alors A et B convergent uniformément sur $[arepsilon, 2\pi$ — ε , $\forall \varepsilon > 0$. En particulier leurs sommes sont continues sur $]0, 2\pi[$.

Exemple: 1.
$$\sum_{n\geq 1} \frac{\cos(nx)}{n} = -\ln(2\sin(\frac{x}{2})) \sin [0,2\pi[$$

2.2. Une série fondamentale.

Lemme 2.2.1: Soit $f : [a, b] \to \mathbb{R}$ une fonction continue. Alors,

$$\lim_{A\to +\infty} \int_a^b f(t) \sin(At) \, \mathrm{d}t = 0, \lim_{A\to +\infty} \int_a^b f(t) \cos(At) \, \mathrm{d}t = 0$$

Démonstration: EN EXO.

Exercice 1: Montrer que $\sum_{n=1}^{+\infty} \frac{\sin(nx)}{n} = \frac{\pi-x}{2} \text{ en posant } D_n(x) = 1 + 2\cos x + 2\cos(2x) + \ldots + 2\cos(nx) = \frac{\sin\left((n+\frac{1}{2})x\right)}{\sin\left(\frac{x}{2}\right)}$

$$\begin{split} D_n(x) &= \sum_{k=-n}^n e^{ikx} = q^{-n} + q^{-n+1} + \ldots + q^{-1} + 1 + q^1 + \ldots + q^n \\ &= q^{-n} \big(1 + q + q^2 + \ldots + q^{2n} \big) = q^{-n} \frac{q^{2n+1} - 1}{q - 1} = \frac{q^{n+1} - q^{-n}}{q - 1} \\ &= \frac{e^{(i(n+1)x) - e^{-inx}}}{e^{ix} - 1} = \frac{2\sin \big(\big(n + \frac{1}{2} \big) x \big)}{2\sin \big(\frac{x}{2} \big)} \frac{e^{i\frac{x}{2}}}{e^{i\frac{x}{2}}} \\ &= \frac{\sin \big(\big(n + \frac{1}{2} \big) x \big)}{\sin \big(\frac{x}{2} \big)} \end{split}$$

Proposition 2.2.1:

$$\sum_{n=1}^{+\infty} \frac{\sin(nx)}{n} = \frac{\pi - x}{2}, x \in]0, 2\pi[.$$

Démonstration: Soit $x \in]0, 2\pi[$.

$$\begin{split} \int_{\pi}^{x} D_{n(t)} \, \mathrm{d}t &= \int_{\pi}^{x} \left(1 + 2 \sum_{k=1}^{n} \cos(kx) \right) \mathrm{d}t \\ &= (x - \pi) + 2 \sum_{k=1}^{n} \left[\frac{\sin(kt)}{k} \right]_{\pi}^{x} = (x - \pi) + 2 \sum_{k=1}^{n} \frac{\sin(kx)}{k} \\ & \text{Donc} &= \sum_{k=1}^{+\infty} \frac{\sin(kx)}{k} = \frac{\pi - x}{2} \right) + \frac{1}{2} \int_{\pi}^{x} \frac{\sin\left(\left(n + \frac{1}{2}\right)t\right)}{\sin\left(\frac{t}{2}\right)} \, \mathrm{d}t \end{split}$$

Or $t\mapsto \frac{1}{\sin(\frac{t}{2})}$ est continue sur $[\pi,x]$ donc

$$\lim_{n \to +\infty} \int_{\pi}^{x} \frac{\sin\left(\left(n + \frac{1}{2}\right)t\right)}{\sin\left(\frac{t}{2}\right)} \, \mathrm{d}t = 0$$

d'après le Lemme 2.2.1

3. Séries de Fourier.

3.1. Récupération des coefficients d'une série trigonométrique.

Remarque (Calcul préliminaire):

$$\begin{split} \int_0^{2\pi} e^{inx} \, \mathrm{d}x & \stackrel{n \neq 0}{=} \left[\frac{e^{inx}}{in} \right]_0^{2\pi} = \frac{e^{in2\pi} - e^{in0}}{in} = 0 \\ \mathrm{et} & = \int_0^{2\pi} e^{i0} \, \mathrm{d}x = 2\pi \end{split}$$

Donc

$$\int_0^{2\pi} e^{inx} \, \mathrm{d}x = \begin{cases} 0 \text{ si } n \neq 0 \\ 1 \text{ si } n = 0 \end{cases}$$

Proposition 3.1.1: Soit A une série trigonométrique uniformément convergente de somme $f(x) := a_0 + \sum a_n \cos(nx) + b_n \sin(nx) = \sum_{n=-\infty} c_n e^{inx}$. Alors a_0, a_n, b_n sont donnés par:

$$\begin{cases} a_0 = c_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) \, \mathrm{d}x \\ a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) \, \mathrm{d}x \text{ et } c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx}. \\ b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) \, \mathrm{d}x \end{cases}$$

Démonstration: Par convergence uniforme, on peut intervertir \int et \sum Donc

$$\frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} \, \mathrm{d}x = \sum_{k=-\infty}^{+\infty} c_k \int_0^{2\pi} e^{ikx} e^{-inx} = \begin{cases} 0 \text{ si } k \neq n \\ 1 \text{ si } k = n \end{cases} = c_n$$

Donc

$$c_n = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} \, \mathrm{d}x, n \in \mathbb{Z}$$

et donc

$$\begin{split} a_0 &= c_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) \, \mathrm{d}x, a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) \, \mathrm{d}\\ b_n &= \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) \, \mathrm{d}x. \end{split}$$

Remarque: Dans nos calcul on peut toujours remplacer l'intervalle $[0,2\pi]$ par un autre intervalle de longueur 2π car on travaille avec des fonctions 2π périodique. Cela peut permettre de faciliter certains calculs.

Exemple: On a que la somme d'une certaine série trigo uniformément convergente est $f(x) = x^2$. Quels sont ses coeffs ?

$$\begin{split} a_0 &= \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 \, \mathrm{d}x = \frac{1}{2\pi} \left[\frac{x^3}{3} \right]_{-\pi}^{\pi} = \frac{1}{2\pi} \frac{\pi^3 + \pi^3}{3} = \frac{\pi^2}{3} \\ b_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \sin(nx) \, \mathrm{d}x = 0 \text{ (car c'est une fonction impaire or f est paire)} \\ a_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos(nx) \, \mathrm{d}x = \frac{2}{\pi} \int_{0}^{\pi} x^2 \cos(nx) \, \mathrm{d}x \\ &\stackrel{\mathrm{ipp}}{=} \frac{2}{\pi} \left(\left[\frac{x^2 \sin(nx)}{n} \right]_{0}^{\pi} - 2 \int_{0}^{\pi} \frac{x \sin(nx)}{n} \, \mathrm{d}x \right) = -\frac{4}{\pi} \int_{0}^{\pi} \frac{x \sin(nx)}{n} \, \mathrm{d}x \\ &= -\frac{4}{\pi} \left(\left[\frac{-x \cos(nx)}{n^2} \right]_{0}^{\pi} + \int_{0}^{\pi} \frac{\cos(nx)}{n^2} \, \mathrm{d}x \right) = -\frac{4}{\pi} \left(\frac{-\pi \cos(n\pi)}{n^2} \right) + \frac{4}{\pi} \left[\frac{\sin(nx)}{n^3} \right]_{0}^{\pi} \\ &= 4 \frac{\cos(n\pi)}{n^2} = 4 \frac{(-1)^n}{n^2} \end{split}$$

Ainsi, $f(x) = \frac{\pi^2}{3} + 4\sum \frac{(-1)^n}{n^2}\cos(nx)$ Donc sur] $-\pi,\pi[$,

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} \cos(nx) = \frac{1}{4} \left(x^2 - \frac{\pi^2}{3} \right) \Rightarrow \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}$$

non démontré pour l'instant.

Théorème 3.1.1: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction 2π -périodique et C^1 par morceaux. Alors pour tout $n \in \mathbb{N} \setminus 0$,

$$c_n(f) = \frac{1}{in}c_n(f').$$

Démonstration: Soit $n \in \mathbb{Z}$, on a

$$\begin{split} c_n(f) &= \frac{1}{2\pi} \int_0^{2\pi} f'(t) e^{-int} \, \mathrm{d}t = \frac{1}{2\pi} \big[f(t) e^{-int} \big]_0^{2\pi} + \frac{1}{in} \int_0^{2\pi} f(t) e^{-int} \, \mathrm{d}t \\ &= \frac{1}{in} c_n(f) \, \operatorname{car} \, t \mapsto f(t) e^{-int} 2\pi \text{-p\'eriodique}. \end{split}$$

Corollaire 3.1.1: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction 2π -périodique et C^1 par morceaux. Alors pour tout $n \in \mathbb{N} \setminus 0$,

$$\begin{cases} a_n(f) = \frac{-b_n(f')}{n} \\ b_n(f) = \frac{a_n(f')}{n} \end{cases}.$$

Démonstration:

$$\begin{split} a_n(f) &= c_n(f) + c_{-n}(f) = \frac{1}{in} c_n(f') - \frac{1}{in} c_{-n}(f') = -\frac{i}{n} (c_n(f') - c_{-n}(f')) = \frac{-b_n(f')}{n} \\ b_n(f) &= i (c_n(f) - c_{-n}) = \frac{1}{in} c_n(f') + \frac{1}{in} c_{-n}(f') = \frac{a_n(f')}{n}. \end{split}$$

3.2. Développement en série de Fourier.

Définition 3.2.1: Soit $f: \mathbb{R} \to \mathbb{C}$, une fonction 2π -périodique et continue par morceaux. On appelle série de Fourier de f la série $a_0 + \sum a_n \cos(nx) + b_n \sin(nx) = \sum c_n e^{inx}$ avec a_0, a_n, b_n définit par la Proposition 3.1.1.

Remarque: Vulgairement, cela signifie que la série de fourier sera égale à f aux points continus, et différente aux autres points.

Théorème 3.2.1: Soit f une fonction paire alors ses coefficients de Fourier vérifient les propriétés suivantes :

$$a_n = \frac{2}{\pi} \int_0^\pi f(x) \cos(nx) \text{ et } b_n = \frac{1}{\pi} \int_{-\pi}^\pi f(x) \sin(nx) \, \mathrm{d}x = 0.$$

Théorème 3.2.2: Soit f une fonction impaire alors ses coefficients de Fourier vérifient les propriétés suivantes :

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, \mathrm{d}x = 0 \text{ et } b_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin(nx).$$

3.3. Convergence.

Lemme 3.3.1: Soit $f:]a,b[\to\mathbb{R}$ une fonction continue et dérivable. On suppose que $f(c^+)=\lim_{x\to c^+}f(x)$ et $f'(c^+)=\lim_{x\to c^+}f'(x)$ existent dans \mathbb{R} . Alors:

$$f'(c^+) = \lim_{x \to c^+} \frac{f(x) - f(c^+)}{x - c}$$

Démonstration: Utiliser le théorème des accroissements finis.

 $\begin{array}{l} \textbf{D\'efinition 3.3.1: Soit } f:[a,b] \to \mathbb{R}. \text{ On dit que } f \text{ est de classe } C^k \text{ par morceaux sur } [a,b] \text{ s'il existe une subdivision } P = \{a=t_0 < t_1 < \ldots < t_n = b\} \text{ de } [a,b] \text{ telle que pour tout } i \in \{0,-,n-1\}, \\ f_i := f_{|_{t_i,t_{i+1}|}} \text{ soit de classe } C^k \text{ sur }]t_i,t_{i+1}[\text{ et pour tout } k \in \{0,-,n\}, \\ \end{array}$

$$\lim_{x \to t_i^+} f_i^{(k)}(x) \in \mathbb{R} \text{ et} \lim_{x \to t_{i-1}^-} f_i^{(k)}(x) \in \mathbb{R}.$$

Définition 3.3.2: Soit $f:[a,b]\to\mathbb{C}$. On dit que f est de classe C^k si sa partie réelle et sa partie imaginaire sont C^k par morceaux.

Remarque: Dans le TD, « f est de classe C^k » sous-entend sur \mathbb{R} .

Exemple:

1. f(x) = |x| est C^0 mais pas C^1 mais est C^1 par morceaux car

$$\mathbb{R}\ni \lim_{x\to 0^+}f(x)=-1\neq \lim_{x\to 0^-}f(x)=1\in \mathbb{R}.$$

2. $f(x) = \sqrt{|x|}$ n'est pas C^1 par morceaux.

Définition 3.3.3: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction 2π -périodique. On dit que f est C^k par morceaux si $f_{|_{[0,2\pi]}}$ est C^k par morceaux.

Théorème 3.3.1 (de Dirichlet): Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction 2π -périodique et de classe C^1 par morceaux. Alors pour tout $x \in \mathbb{R}$, la série de Fourier de f est convergente et

$$S(x) = \frac{f(x^{-}) + f(x^{+})}{2}.$$

Démonstration: $S_N(x)=\sum_{n=-N}^N c_n e^{inx}$ avec $c_n=\frac{1}{2\pi}\int_{-\pi}^\pi f(t)e^{-int}\,\mathrm{d}t.$ On a

$$S_{N(x)} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \sum_{n=-N}^{N} e^{in(x-t)} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) D_{N(x-t)} dt,$$

$$D_N(y) = 1 + 2\cos y + \ldots + 2\cos(ny) = \begin{cases} \frac{\sin((n+\frac{1}{2})y)}{\sin(\frac{y}{2})} \text{ si } y \notin 2\pi\mathbb{Z} \\ 1 + 2N \text{ si } y \in 2\pi\mathbb{Z} \end{cases}$$

Or D_n est une fonction paire d'où $\int_{-\pi}^{\pi} D_{n(y)} \, \mathrm{d}y = 2\pi$ (calcul) et $\frac{1}{\pi} \int_0^{\pi} D_N(y) \, \mathrm{d}y = 1$. De plus, en posant t = x + u,

$$\begin{split} S_N(x) &= \frac{1}{2\pi} \int_{-\pi-x}^{\pi-x} f\Big(x + u D_{N(-u)}\Big) \, \mathrm{d}u = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+u) D_N(u) \, \mathrm{d}u, \text{car } 2\pi\text{-p\'eriodique} \\ &= \frac{1}{2} \frac{1}{\pi} \int_0^{\pi} f(x+u) D_N(u) \, \mathrm{d}u + \frac{1}{\pi} \int_{-\pi}^0 f(x+u) D_N(u) \, \mathrm{d}u. \end{split}$$

On pose $I = \frac{1}{\pi} \int_0^{\pi} f(x+u) D_N(u) du$ et on a:

$$\begin{split} I - f(x^+) &= I - f(x^+) \frac{1}{\pi} \int_0^\pi D_N(u) \, \mathrm{d}u = \frac{1}{\pi} \int_0^\pi (f(x+u) - f(x^+)) D_N(u) \, \mathrm{d}u \\ &= \frac{1}{\pi} \int_0^\pi \frac{f(x+u) - f(x^+)}{\sin\left(\frac{u}{2}\right)} \sin\left(\left(n + \frac{1}{2}\right)u\right) \mathrm{d}u. \end{split}$$

Posons $g(x)=rac{f(x+u)-f(x^+)}{\sin(rac{u}{2})}.$ g est continue par morceaux sur $]0,\pi],$ on a $\sin(rac{u}{2})\underset{u o 0}{\sim} rac{u}{2}$ Donc

$$\frac{f(x+u)-f(x^+)}{\sin(\frac{u}{2})}\sim 2\frac{f(x+u)-f(x^+)}{u}\longrightarrow 2f'(x^+)$$

Ainsi, g se prolonge par continuité en 0 et d'après le Lemme 2.2.1, $\lim_{N\to+\infty}I-f(x^+)=0$; On traite II de la meme manière et on obtient le résultat du théorème.

Exemple: $f(x) = x^2$. pour $x \in [-\pi, \pi]$ que l'on prolonge par 2π -périodicité. On a vu que $a_0 = \frac{\pi^2}{3}$, $a_n = \frac{4}{n^2}(-1)^n$, $b_n = 0$

De plus, f est C^1 par morceaux. D'où, par Dirichlet:

$$\pi^2 + \int_{n=1}^{+\infty} 4 \frac{(-1)^n}{n^2} \cos(nx) = \frac{f(x^+) + f(x^-)}{2} = f(x) = x^2.$$

Avec x = 0, on trouve

$$\frac{\pi^2}{3} + 4\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} = 0 \Rightarrow \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} = \frac{\pi^2}{12}.$$

3.4. Convergence des coefficients de Fourier.

Proposition 3.4.1: Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction 2π -périodique.

- 1. Si f est continue par morceaux alors $\lim_{n\to\pm\infty}c_n=0$ i.e $\lim_{n\to+\infty}a_n=\lim_{n\to+\infty}b_n=0$. 2. Si f est C^k , et C^{k+1} par morceaux, $\lim_{n\to\pm\infty}n^{k+1}|c_n|=0$ i.e $\lim n^{k+1}a_n=\lim n^{k+1}b_n=0$.

Démonstration: Voir moodle

Idée: I: $a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) \, \mathrm{d}x \xrightarrow[n \to +\infty]{} 0$ et $b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) \, \mathrm{d}x \xrightarrow[n \to +\infty]{} 0$ par Lemme 2.2.1 II: On montre d'abord que si f est C^k et C^{k+1} par morceaux alors $c_n(f) = \frac{1}{(in)^{k+1}} c_n f^{(k+1)}$

Corollaire 3.4.1: Soit $f: \mathbb{R} \to \mathbb{C}$ 2π -périodique de classe C^1 , et C^2 par morceaux alors la série de Fourier de f converge normalement vers f.

 $\begin{array}{l} \textit{D\'{e}monstration:} \ \ \text{D\'{a}pr\`{e}s} \ \text{la Proposition 3.4.1}, c_n = o\left(\frac{1}{n^2}\right) \ \text{donc} \ \sum_{n \in \mathbb{Z}} c_n e^{inx} \ \text{est normalement convergente car} \ \exists K \in \mathbb{R}, \sup_{x \in \mathbb{R}} \left| c_n e^{inx} \right| = |c_n| \leq \frac{K}{n^2}. \\ \text{De plus, par Th\'{e}or\`{e}me 3.3.1}, \sum c_n e^{inx} = \frac{f(x^+) + f(x^-)}{2} = f(x) \ \text{car} \ f \ \text{est continue.} \end{array}$

Définition 3.4.1: Soit $a_0 \in \mathbb{C}$, $(a_n)_{n \in \mathbb{N}}$, $(b_n)_{n \in \mathbb{N}} \in \mathbb{C}$. On appelle polynome trigonométrique toute expression de la forme :

$$P(x) \coloneqq a_0 + \sum_{n=1}^N a_n \cos(nx) + b_n \sin(nx)$$

Exemple: La N-ième somme partielle d'une fonction f est un polynome trigonométrique.

Corollaire 3.4.2: Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction 2π -périodique continue par morceaux. Pour tout $\varepsilon > 0$, il existe P(x), un polynome trigonométrique tel que

$$\frac{1}{2\pi} \int_0^{2\pi} |f(x) - P(x)|^2 \,\mathrm{d}x \le \varepsilon.$$

Démonstration:

Etape 1: Si f est C^{∞} sur \mathbb{R} , alors S_N converge uniformément vers f. donc il existe $N \in \mathbb{N}$ tel que $\sup_{x \in \mathbb{R}} |S_N(x) - f(x)| \leq \sqrt{\varepsilon}$. Alors

$$\frac{1}{2\pi} \int_0^{2\pi} \left| S_N(x) - f(x) \right|^2 \mathrm{d}x \leq \frac{1}{2\pi} \int_0^{2\pi} \sqrt{\varepsilon} \, \mathrm{d}x = \varepsilon$$

Etape 2: poly.

4. Formule de Parseval.

Théorème 4.1 (Inégalité de Bessel): Soit $f:\mathbb{R}\to\mathbb{C}$ une fonction 2π -périodique et continue par morceaux

$$\sum_{n=-\infty}^\infty |c_n|^2 \leq \frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 \,\mathrm{d}x$$

Théorème 4.2 (de Parseval): Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction 2π -périodique et continue par morceaux, Les coefficients de Fourier de f satisfont

$$\frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 \, \mathrm{d}x = \sum_{n=-\infty}^{+\infty} |c_n|^2 = |a_0|^2 + \frac{1}{2} \sum_{n=1}^{+\infty} |a_n|^2 + |b_n|^2.$$

Exercice 2: Vérification de la formule de parseval avec les suites a_n et b_n . On a :

$$\begin{cases} a_n = c_n + c_{-n} \\ b_n = i(c_n - c_{-n}) \end{cases}$$

$$\begin{split} &\left|a_{n}\right|^{2} = \left|c_{n} + c_{-n}\right| = \left|c_{n}\right|^{2} + 2\Re(c_{n}\overline{c_{-n}}) + \left|c_{n}\right|^{2} \\ &\left|b_{n}\right|^{2} = \left|c_{n} - c_{-n}\right| = \left|c_{n}\right|^{2} - 2\Re(c_{n}\overline{c_{-n}}) + \left|c_{n}\right|^{2}. \\ &\operatorname{Donc}\left|a_{n}\right|^{2} + \left|b_{n}\right|^{2} = 2\left(\left|c_{n}\right|^{2} + \left|c_{-n}\right|^{2}\right) \operatorname{et}\left|a_{0}\right| = \left|c_{0}\right| \end{split}$$

Exemple:
1.
$$f(x) = \begin{cases} \frac{x}{2} & \text{sur}] - \pi, \pi [\\ 0 & \text{si } x = \pi \end{cases}$$

$$\frac{1}{2} \sum_{n=1}^{+\infty} b_n^2 = \frac{1}{2} \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \frac{\pi^2}{6}$$

2. $f(x) = \frac{\pi}{2} - x \text{ sur } [0, \pi] + \text{paire } +2\pi - \text{p\'eriodique}$. On a $b_n = 0, a_n = \begin{cases} 0 & \text{si } n \text{ pair } \\ \frac{4}{\pi n^2} & \text{si } n \text{ impair } \end{cases}$ Parseval:

$$\begin{split} \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 &= \frac{1}{2} \sum_{n=1}^{+\infty} |a_n|^2 = \frac{1}{\pi} \int_{0}^{\pi} \left(\frac{\pi}{2} - x\right)^2 \mathrm{d}x \underset{y = \frac{\pi}{2} - x}{=} \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} y^2 \, \mathrm{d}y \\ &= \frac{1}{\pi} \left[\frac{y^3}{3}\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{1}{3\pi} \cdot 2 \cdot \frac{\pi^3}{8} = \frac{\pi^2}{12}. \end{split}$$

D'où,

$$\frac{\pi^2}{12} = \frac{1}{2} \sum_{(n=1),(n \text{ impair})}^{+\infty} \frac{16}{\pi^2 n^4}$$

d'où $\sum_{n=1}^{+\infty} \frac{1}{(2n+1)^4} = \frac{\pi^4}{12} * 8 = \frac{\pi^4}{96}$. En déduire $\sum_{n=1}^{+\infty} \frac{1}{n^4} = ??$

5. Prolongement Dirichlet

Remarque: Lorsqu'on rajoute l'hypothèse de continuité au théorème de dirchlet, il y a continuité uniforme.

Proposition 5.1: Soit $a_1,-,a_n\in\mathbb{R},b_1,-,b_n\in\mathbb{R}.$ On a

$$\left|\sum_{k=1}^n a_k b_k\right| \leq \sqrt{\sum_{k=1}^n a_k^2 \sum_{k=1}^n b_k^2}$$

avec égalité si et seulement si $(a_1,-,a_n)$ et $(b_1,-,b_n)$ sont liés.

Exercice 3: Soit $x_1, -, x_n > 0$ avec $\sum_{k=1}^n x_k = 1$ Montrer que $\sum_{k=1}^n \frac{1}{x_k} \ge n^2$ et déterminer les cas d'égalité.

Proposition 5.2 (Dirchlet bis): Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction 2π -périodique, continue et C^1 par morceaux. Alors $\sum_{n \in \mathbb{Z}} |c_n|$ est convergente et la série de Fourier de f converge uniformément vers f.

 $D\'{e}monstration$: Soit $f:\mathbb{R}\to\mathbb{C}$ une fonction 2π -périodique, continue et C^1 par morceaux. On sait que $c_n(f)=\frac{1}{in}c_n(f')$ D'après Parseval, $\sum_{n=-\infty}^{+\infty}\left|c_n(f')\right|^2$ converge. En appliquant Cauchy-Schwarz, $n\neq 0$

$$\sum_{n=-\infty}^{+\infty} |c_n(f)| = \sum_{n=-N}^{N} \left| \frac{c_n(f')}{in} \right| = \sum_{n=-N}^{N} \frac{1}{n} |c_n(f')| \leq \sqrt{\sum_{n=-N}^{N} \frac{1}{n^2} \cdot \sum_{n=-N}^{N} \left| c_n(f') \right|^2}$$

D'où

$$\sum_{n=-\infty}^{+\infty} \lvert c_n(f) \rvert \leq \sqrt{2 \sum_{n=1}^{+\infty} \frac{1}{n^2} \cdot \left(\sum_{n=-\infty}^{+\infty} \lvert c_n(f') \rvert^2 \right)_{\in \mathbb{R}}}$$

, D'où $\sum_{n=-\infty}^{+\infty} \lvert c_n(f) \rvert$ est convregente

Théorème 5.1 (de Fejer): Soit $f: \mathbb{R} \to \mathbb{C}$ 2π -périodique, continue telle que $\sum (|c_n(f)|)$ est convergente alors la série de Fourier de f converge uniformément vers f.