NEURAL DATA ANALYSIS

ALEXANDER ECKER, PHILIPP BERENS, MATTHIAS BETHGE

COMPUTATIONAL VISION AND NEUROSCIENCE GROUP

ASSESSING SPIKE SORTING RESULTS

TASK 3

OUTLIERS

MIXTURES OF T-DISTRIBUTIONS

- Sometimes spike clusters have longer tails than Normal distribution
- More than one mixture component per cluster

$$(1-\epsilon)N(\mu,\Sigma)+\epsilon N(\mu,c\Sigma)$$

Generalisation: Multivariate T-distribution

$$T(\mu, \Sigma, \nu) = \frac{\Gamma(\frac{\nu+p}{2})|\Sigma|^{-\frac{1}{2}}}{\sqrt{\pi\nu}^{p}\Gamma(\frac{\nu}{2})} \left(1 + \frac{1}{\nu}(\mathbf{x} - \mu)^{T}\Sigma^{-1}(\mathbf{x} - \mu)\right)^{-1/2(\nu+p)}$$
For $\nu \to \infty$, $T(\mu, \Sigma, \nu) \to N(\mu, \Sigma)$

CURRENT STAGE: SORTED SPIKES

INTERPRETING CLUSTERING RESULTS

Not all clusters represent the spikes of a single neuron

- Single unit: a cluster with one neuron's spikes
- Multi unit: a cluster with multiple neurons' spikes

Tools for evaluating clustering:

- Scatter plot of the clusters
- Visual inspection of spike waveforms
- Temporal structure of the spike trains
 - → refractory period
- Quantify cluster separation

CROSS/AUTO-CORRELOGRAM

Cross correlation function

$$R_{ss}(\tau) = \int s(t)s(t-\tau)dt$$

Cross-correlogram (or Cross Correlation Histogram)

- Discrete estimate
- Histogram of all $\Delta t = t_i t_j$ for all spike times t_i and t_j .

CROSS-Correlograms

Time relative to a spike (ms)

EXAMPLES

- Poisson process
- Oscillations
- Refractory period
- Coupled neurons

PAIRWISE CLUSTER SEPARATION

Tool for visual inspection

Project clusters onto one dimension

LINEAR DISCRIMINANT

$$w \propto S^{-1}(\mu_2 - \mu_1) \qquad S = \Sigma_1 + \Sigma_2$$

