

Gathering and Designing a Multi-Disciplinary Surgical Clinical Ward Handover System at the SAN Hospital

Patrick Mumme 310262135

COMP5703 Information Technologies Project Semester 1, 2012

> under the direction of Prof. Jon Patrick June 12th, 2012

Surgical Clinical Ward Handover System

Abstract

Acknowledgements

Contents

ΑŁ	ostrac	ct	2			
GI	ossar	у	5			
1.	Introduction					
	1.1.	Client Profile	9			
	1.2.	Project Description and Scope	10			
		1.2.1. Project Description	10			
		1.2.2. Scope	10			
	1.3.	Project Objectives	11			
		1.3.1. Risks	11			
		1.3.2. Assumptions	11			
		1.3.3. Issues	11			
	1.4.	Anticipated Outcomes / Results for the Project	12			
		1.4.1. First Draft Computerised Handover Form	12			
		1.4.2. Understanding of IT/IS within the Health Domain	12			
		1.4.3. Requirements Analysis Complete	12			
	1.5.	Benefits of the Project	12			
		1.5.1. Technology Evangelisation	12			
		1.5.2. Pilot Project	13			
		1.5.3. End-User Driven Development	13			
		1.5.4. Trialing Designer Tool	13			
2.	Prod	cess	14			
	2.1.	Overview	14			
	2.2.	Tools and Skills	14			
2.3. Literature Review		Literature Review	15			
	2.4.	Scope and Schedule	15			
3.	Syst	tem Design	16			
	3.1.	Requirements Analysis	16			
	3.2.	Form Gathering	16			
			16			

SANSURGIMS

4.	Eval	luation	17
	4.1.	Testing Procedures	17
	4.2.	Interpretation of Results	17
5.	Futu	ure Work	18
6.	Refl	ection	19
	6.1.	Contribution	19
	6.2.	Difficulties	19
	6.3.	Lessons Learned	19
	6.4.	Future Suggestions	19
7.	Con	clusion	20
	7.1.	Concluding Remarks	20
	7.2.	Strengths and Weaknesses	20
	7.3.	A Second Time	20
	7.4.	Future Work	20
Δ	Δnn	andiv	21

Glossary

A Infection by Airbourne.

ACAT Age Care Assessment Team.

AD As Desired Diet (anything the patients wants to eat).

AIN Assistant in Nursing.

AMO Accredited Medical Officer.

Analgesia pain medication.

Anti-emetic medication against nausea.

Arthroplasty plastic surgery of a joint.

B Bowels.

BD twice a day.

BGL Blood Glucose Level.

Bolus a rounded mass of food or pharmaceutical preparation ready to swallow, or such a mass passing through the gastrointestinal tract.

BP Blood Pressure.

BSL Blood Sugar Level.

C infection by contact.

CF Clear Fluids.

CMO Career Medical Officer (doctor on call).

Comorbidity other illnesses that a patient has that are not part of the diagnosis but affect the health of the patient and possibly the treatment (ie. Diabetes, Hypertension).

Cont Continence (bowels).

CVC Central Venus Catheter.

D infection by droplet.

DW Dry Weight (weight of patient before breakfast).

Dx diagnosis.

EDD Estimated Date of Discharge.

EEN Endorsed Enrolled Nurse. Have completed further medication endorsement. Allowed to administer Schedule 2,3, and 8 medications via all routes except intravenous, epidural, intraventriuclar and intrathecal. Any medication which requires checking prior to administration must be checked with a RN or Midwife. Excluded also from administering fluids or medications via CVC, PICC and femoral lines as well implanted devices or arterial lines.

EN Enrolled Nurse. Nurses undertook 18/24 month course at TAFE or related health facilities). Even more restricted than EEN.

FF Full Fluids incl. milky drinks.

HITH Hospital in the Home.

Hx history.

iCIMS integrated Clinical Information Management System. A design application developed at the University of Sydney allowing the creation of information systems without the necessity of programming experience.

IDC In-Dwelling Catheter.

IM Intramuscular (routed into muscle tissue).

IVC/F Intravenous Cannula (a catheter that is inserted into a vein for supplying medications or nutrients directly into the bloodstream) / Intravenous Fluids (fluids given through a vein inserted catheter.

L Light Diet.

LOS Length of Stay of a patient.

MO Medical Officer.

MRN Medical Record Number.

MRO Methacilin Resistant Organism; an organism that shows resistance to Methicillin, a very strong antibiotic.

MRSA Multi Resistant Staphylococcus Aureus; any strain of Staphylococcus aureus that has developed resistance to beta-lactam antibiotics, which include the penicillins (methicillin, dicloxacillin, nafcillin, oxacillin, etc.).

N Neutropenic (very low white blood cell count). Caution must be taken by staff as they could pass something to a patient.

NBM Nil By Mouth.

NCR Nurse Care Record.

ND night shift.

NFR Not For Resuscitation.

NG Nasal-Gastric Tube.

NP Nurse Practitioner is a RN educated and authorised to function autonomously and collaboratively in an advanced and extended clinical role. Requires addition 1.5-2 years of study.

NUM Nursing Unit Manager.

OT Occupational Therapist.

PAC Pressure Area Care.

Palliative relieving or soothing the symptoms of a disease or disorder with effecting a cure.

PEG Percutaneous Endoscopic Gastrostomy tube; tube that is inserted into the stomach to give nutrition.

PICC Peripherally Inserted Central Catheter.

PRN as required medication; these are not part of the patients regular medications).

QID four times a day.

RN Registered Nurse. a graduate nurse who has been legally authorized (registered) to practice after examination by a state board of nurse examiners or similar regulatory authority, and who is legally entitled to use the designation RN..

Rx treatment pertaining to medication / subscriptions.

S strict precaution (Infection Risk).

SC Shower Comode (in chair).

SC Fluids Subcutaneous Fluids; fluids administered just under the skin and not into a vein.

SH shower.

SP sponge bath in bed.

SPC Supra Pubic Catheter.

ST shower with trolley.

TB Towel Bath.

TDS three times a day.

TEDS brand of Anti-embolic Stockings that are used to prevent blood clots.

TKVO To Keep Vein Open.

TL Team Leader.

TPN Total Parenteral Nutrition; all nutrition is given through a catheter.

Trainee Consultant/Registrar doctor learning his or her speciality.

U Urine **OR** MRO Risk (Unknown Status) mean a risk assumption has been made but not proven.

VTE Venous Thromboembolism; i.e. blood clot in the vein.

Warfarin anticoagulant medicine; nurses need to be aware of patients receiving this due to higher risk of bleeding and in case of bleeds.

1. Introduction

1.1. Client Profile

Originally opened in Wahroonga on January 1 1903 as a 70 bed Sanitarium, the Sydney Adventist Hospital (SAH), known to the local residents as 'The San', is a not-for-profit hospital of the South Pacific Division of the Seventh-day Adventist Church. Today, the hospital is a private hospital offering acute care and currently has 358 licensed overnight beds. SAH is the largest single campus private hospital within NSW and was the first of its kid to be accredited by the Australian Council on Healthcare Standards. SAH is proud to have won the Australian Private Hospitals Association Award for Clinical Excellence in the category 70 beds and over in 2006.

The San prides itself on being the single biggest employer within the Hornsby-Kruing-gai area employing over 2,2200 staff and around 700 accredited medical pactitioners. Together, the SAN staff care for more than 50,000 inpatients and about 160,000 outpatients. The San is also known for its maternity wards and is proud to be bringing over 2,000 babies a year into the world. The SAN, being one of few private hospitals to offer emergency care, admits over 20,000 patients annualy making it NSW's largest and busiest emergency care department among private hospitals. The SAN offers medical services ranging from acute surgical, medical and obstetric care to complex cardiac and orthopaedic procedures. The SAN boasts cutting edge facilities that include a dozen operation theatre suites, 3 state-of-the-art Cardiac Catheterisation Laboratories and Australias first dual source CT scanner. The SAN is also responsible for operating the San Day Surgery Hornsby and Dalcross Adventist Hospital, located in Killara.

Having the mission statement "Christianity in Action", the SAN not only offers world class care to the patients within the hospital, but also to disadvantaged third world men, women and children as part of its HealthCare Outreach program. Since its inception in 1986, the HealthCare Outreach program has undertaken 100 trips to 13 different countries culminating in over 2,800 surgeries and lives saved.

1.2. Project Description and Scope

1.2.1. Project Description

The SAN Hospital Information System has to service many different clinical specialities and environments. This project will develop a prototype application in the form of a simulator of a novel HIT system for surgical patients. These patients typically have specific and predictable post-surgical outcomes and hospitalisation time-frames, as outlined in various surgical clinical pathways (e.g. Urology such as, Greenlight Laser Prostatectomy, Ear, Nose and Throat (ENT) and Plastics). Caring for these patients requires multidisciplinary nursing and allied health staff information systems. Constructing a requirements document will be a complex task but gives students the richest possible experience in understanding all the stages of requirements gathering, systems design and systems implementation. The project will use a research technology simulator that enables the process of requirements gathering and system design to be integrated as a single process and thereby enable validation of requirements by their implementation into a design simulator.

1.2.2. Scope

The project will commence with the gathering of requirements by meeting and interviewing various clinical staff fulfilling a variety of roles on the surgical ward, level 11. The student will also gather all paper based forms in use on the ward as references during the design process. Upon completion of the first phase of requirements gathering, a requirements document will be created and will represent the basis for design decisions. Throughout the rest of the semester, the student will update the requirements document as necessary. The student will design forms including the clinical handover in the simulator as well as obtain end user feedback during the majority of the semester. Towards the end of the semester, the student will undertake user acceptance testing as well as evaluations of the work done. The project will conclude with a first draft of the clinical handover form and a presentation to SAN staff. The project will finish at the end of the academic semester.

1.3. Project Objectives

- Collect the requirements for a Clinical Handover for use by nurses, allied health and medical staff in the care of surgical patients
- Produce an accurate record of the information each worker needs access to in the form of a requirements document including process flows
- Design and develop a prototype which simulates an electronic clinical information system with handover processes for nurses, doctors and other clinical staff

1.3.1. Risks

Ref #	Probability	Impact	Description	Mitigation
R.1	High	Medium	Reduced performance through	Increase allotted tool
			use of new technology	usage time
R.2	Low	High	Unable to complete project	frequent comm-
			objectives due to simulator	unication with
			issues	simulator developers
R.3	Medium	Medium	Scope creep	Clearly outline scope
				at outset of project

1.3.2. Assumptions

Ref #	Description	
A.1	The simulator will not need to connect to existing SAN applications	
A.2	We will have access to a simulator developer	
A.3	A project manager will be available to use to assist us in our work at the hospital	
A.4	We are not developing a system for actual use	

1.3.3. Issues

Ref #	Priority	Description	Owner
I.1	High	Simulator bugs & issues	Simulator Developer
I.2	Medium	Exposed to immense amount of information	Student
I.3	Medium	Sporadic staff availability	Student & PM
I.4	Low	Time constraints due to university courses	Student

1.4. Anticipated Outcomes / Results for the Project

1.4.1. First Draft Computerised Handover Form

At the conclusion of this project, the student should have designed a first draft of a computerised handover form. This draft does not need to contain all information required but should focus on the most important pieces of information especially in regards to nurses. It should convey all relevant design decisions and be capable of representing patients with varying degrees of complexity, the degree to which a patient is ill.

1.4.2. Understanding of IT/IS within the Health Domain

The student will have gained a general understanding of not only the health domain but also the role of IT IS systems within a hospital setting. The student should see the advantages of using computerised information systems to support the clinical staff in their daily work.

1.4.3. Requirements Analysis Complete

By the end of the semester, the student should have completed the requirements analysis for the project. This should include all relevant requirements up to the end of the academic semester. As part of the requirements analysis, the student should have creating as-is and to-be process diagrams for the nurse to nurse handover.

1.5. Benefits of the Project

1.5.1. Technology Evangelisation

Through the project, the student will be able to show the advantages and abilities of computerised information systems to clinical staff in particular nursing staff. Although the clinical staff at the SAN are using applications to record information already, not all aspects of their daily work are digitised; this includes handover. By working with staff throughout the semester, the student will be able to generate end-user buy-in and support for a computerised clinical handover.

1.5.2. Pilot Project

This project constitutes a pilot project in the sense that future students can build upon the achievements of this project. The foundation, both in regards to system design as well as enduser exposure, will provide future students with a lower entry barrier into the clinical domain and into the SAN.

1.5.3. End-User Driven Development

Mention the use of the methodology here

1.5.4. Trialing Designer Tool

This project allowed the student to use a novice health information system application developed at the University of Sydney called iCIMS. The project can thus be seen as a trial for the designer tool enabling the student to not only use a new technology but also to document bugs and suggest enhancements to the system. In essence, the student ran the application through its paces and noted shortcomings as well as possible additional features allowing the application to go through a maturation process.

- 2. Process
- 2.1. Overview
- 2.2. Tools and Skills

2.3. Literature Review

2.4. Scope and Schedule

3. System Design

mention that you chose to focus on nurse to nurse handover as the whole of multi-disciplinary handover is an immense undertaking

- 3.1. Requirements Analysis
- 3.2. Form Gathering
- 3.3. Designing

4. Evaluation

- 4.1. Testing Procedures
- 4.2. Interpretation of Results

5. Future Work

- 6. Reflection
- 6.1. Contribution
- 6.2. Difficulties
- 6.3. Lessons Learned
- 6.4. Future Suggestions

7. Conclusion

think about taking out future work and moving concluding remarks to the end.

- 7.1. Concluding Remarks
- 7.2. Strengths and Weaknesses
- 7.3. A Second Time
- 7.4. Future Work

A. Appendix

Include the following:

- Roles at SAN wiki page
- Scans of original questionnaires
- Screenshots of SANSURGIMS (Web and Designer)
- Scans of important forms (Nursing Care Record & Patient History)