数学B問題

(100分)

【必答問題】 数学B受験者は B1, B2, B3 を全問解答せよ。
B1 次の を正しくうめよ。解答欄には答えのみを記入せよ。
(1) $2b^2+b-1$ を因数分解すると の であり, $a^2+3ab+2b^2+b-1$ を因数分解すると
(イ) である。
(2) 方程式 $ x-1 =2$ の解は、 $x=$ 的 である。また、 x を実数とするとき、 $ x-1 =2$
は $x=3$ であるための (x) 。
田 に当てはまるものを、下の①~④のうちから1つ選べ。
① 必要十分条件である ② 必要条件であるが、十分条件ではない ③ 十分条件であるが、必要条件ではない ④ 必要条件でも十分条件でもない ② 2次関数 $f(x)=(x+a)(x+1)$ があり、 $y=f(x)$ のグラフは点 $(2,-3)$ を通る。このと
き,定数 a の値は か であり, $f(x)$ の $0 \le x \le 3$ における最小値は か である。
(4) 先生2人と生徒3人がいる。この5人が円卓に着席する方法は全部で 用 通りあり、
このうち、先生2人が隣り合う方法は全部での通りある。
 (5) 次のデータは、ある月の連続した12日間における各日の最低気温(℃)を並べたものである。 7, 5, 9, 7, 5, 6, 8, 7, 6, 4, 1, 3 このデータの範囲は め (℃)であり、四分位範囲は ロ (℃)である。(配点 20)
B2 袋の中に赤玉が3個,白玉が3個,青玉が3個の合計9個の玉があり,赤玉と白玉には
[D2] 表の下にが玉がる間、白玉がる間、白玉でも間の日間も間の玉があり、が玉と白玉には それぞれ1から3までの数字が1つずつ、青玉には4から6までの数字が1つずつ書かれて
いる。この袋から同時に4個の玉を取り出す。
(1) 赤玉2個と白玉2個を取り出す確率を求めよ。 【4
(2) 取り出した4個の玉の中に、青玉が3個含まれる確率を求めよ。また、取り出した4個
の玉の中に、青玉が2個だけ含まれる確率を求めよ。 2 (4) (3) 取り出した4個の玉に書かれている数字がすべて異なる確率を求めよ。 (配点 20)
(3) 取り出した 4 1回の玉に音がれている奴子が 9 へて共なる唯学を示める。 (印点 20)

- $\mathbf{B3}$ $\triangle ABC$ において、AB=5、 $BC=3\sqrt{5}$ 、 $\tan A=-\frac{3}{4}$ である。
 - (1) cos A の値を求めよ。 C95 A = <u>午</u>
- (2) 辺ACの長さを求めよ。 AC= 2
- (3) $\angle BCD = 90^\circ$ かつ $CD = \frac{\sqrt{5}}{2}$ である点 D を,直線 BC に関して点 A と同じ側にとり,

直線 ACと直線 BDとの交点を Eとする。線分 DEの長さを求めよ。

(配点 20)

数学B受験者は、次の $B4\sim B8$ のうちから2題を選んで解答せよ。 【選択問題】

- $\mathbf{B4}$ x の 3 次式 $P(x)=x^3-4x^2+ax+b$ があり,P(2)=0 である。ただし,a,b は実数の 定数である。
 - (1) $b \in a$ を用いて表せ。 $)=-2a+\delta$
 - (2) P(x) を因数分解せよ。また、方程式 P(x)=0 が 2 つの虚数解をもつような a の値の 範囲を求めよ。 ((Y) = (X-2)(Y-2x-a-4)
 - (3) 方程式 P(x) = 0 が 2 つの虚数解をもち、この 2 つの虚数解が方程式 $x^3 + px^2 + px + 21 = 0$ (p は実数の定数)の解であるとき、a、p の値を求めよ。 Q = (配点 20)
- **B5** Oを原点とする座標平面上に、点 A (1, 3)と 円 $K_1: x^2+y^2+4x+2y=0$ がある。また、 円 K_1 と半径が等しく、点 O を中心とする円を K_2 とする。
 - (1) 円 K₂ の方程式を求めよ。
 - (2) 点Aから円 K_2 に引いた2本の接線と円 K_2 の接点をそれぞれB, Cとする。接点B, Cの座標を求めよ。ただし、点Bのy座標は点Cのy座標より大きいものとする。
 - (3) (2)のとき、直線 BC の方程式を求めよ。また、円 K_1 と中心が同じ円で、直線 BC から 切り取る線分の長さが $2\sqrt{2}$ になる円を K_3 とする。点 P が円 K_3 の周上を動くとき、線 分APの長さの最大値を求めよ。 (配点 20)

$$(1) \mathcal{X}^{2} + \mathcal{J}^{2} = 25$$

$$(2) \mathcal{B}(-1, 2), C(2.1)$$

B6 関数 $y=a\cos^2\theta+4\sqrt{3}\sin\theta\cos\theta+3$ ……① (aは定数) がある。また, $\theta=\frac{\pi}{6}$ のとき,y=3 である。

- (1) aの値を求めよ。 Q = 4
- (2) ①を $y = A\sin 2\theta + B\cos 2\theta + C$ (A, B, Cは定数) の形に表せ。
- (3) $\frac{\pi}{4} \le \theta \le \frac{3}{4}\pi$ における関数①の最大値と最小値、およびそのときの θ の値をそれぞれ 求めよ。 (配点 20)

(2) 4= 2/3 sra20-20as20-+1

 $oxed{B7}$ 等差数列 $\{a_n\}$ があり、 $a_4=6$ 、 $a_{10}=12$ を満たしている。また、数列 $\{b_n\}$ があり、 $b_n=2^{a_n}$ $(n=1,\ 2,\ 3,\ \cdots)$ である。

- (1) 数列 $\{a_n\}$ の一般項 a_n を求めよ。 $\Omega_{\alpha} = \Lambda + 2$
- (2) $S_n = b_1 + b_2 + b_3 + \dots + b_n$ とするとき、 S_n を n を用いて表せ。 $S_N = S_n \left(2^N () \right)$
- (3) 自然数nを4で割った余りを c_n とし、 $T_n = \sum_{k=1}^{4n} b_k c_k$ ($n=1, 2, 3, \dots$) とする。 T_1 の値を求めよ。また、 T_n をnを用いて表せ。

$$T_1 = 136$$
, $T_N = \frac{15}{15}(16^{4}-1)$

f B8 OA=4 である $\triangle OAB$ があり, \overline{OA} , \overline{OB} は内積の関係式 $\overline{OA} \cdot (\overline{OA} + \overline{OB}) = 20$ を満たしている。

- (1) 内積 OA·OB の値を求めよ。 DA OB 4
- (2) $\overrightarrow{OP} = k \overrightarrow{OA}$ (kは実数) である点 P が $\overrightarrow{OA} \perp \overrightarrow{BP}$ を満たすとき、 k の値を求めよ。
- (3) (2)のとき,辺 AB を 2:1 に内分する点を C,直線 OC と直線 BP の交点を D とする。 C このとき, \overline{OD} を \overline{OA} , \overline{OB} を用いて表せ。さらに, $\overline{OD}|=2$ のとき, $\overline{OB}|$ を求めよ。

$$(3100) = 504 + 500, (00) = 217.$$