

Scalar Quantization

Quantization

Quantization:

• a process of representing a large – possibly infinite – set of values with a much smaller set.

Scalar quantization:

• a mapping of an input value *x* into a finite number of output values (*Reconstruction values*)

Quantization is one of the simplest and most general idea in **lossy compression**.

Uniform Scalar Quantizer

- A uniform scalar quantizer partitions the domain of input values into equally spaced intervals. Each Interval is defined by its decision boundaries (AKA Range)
- Each interval is represented by a distinct codeword (AKA Q).
- The output or **reconstruction value** $(AKA Q^{-1})$ corresponding to each interval is taken to be the **midpoint** of the interval.
- The length of each interval is referred to as the step size.

Quantization and De-Quantization

Quantization (Encoding)

De-Quantization (Decoding)

X: Input Value

q: Codeword for X

(Encoded value of X)

X[^]: Output Value

Prof. Khaled Mostafa khaledms@fci-cu.edu.eg (Reconstructed Values of X)

Scalar Quantization - Encoder (Input Output Mapping)

khuneumswice-cu.eum.eg

Scalar Quantization - Decoder (Input Output Mapping)

Q Step = 32, Full Scale =256 No. Of Steps =Full Scale / Step =256 / 32 = 8 Steps (3 Bits) Max Error = 1/2 Step = 16

Range	Q	Q-1
0 31	0	 16
32 63	1	 48
64 →→ 95	2	→80
96 127	3	→ 112
128 159	4	 144
160 191	5	 176
192 223	6	→208
224 225	7	 240

khaledms@fci-cu.edu.eg

Design of Uniform Quantizer for a given number of steps

M/2L

Full Scale: M **Number of Steps:** M/L **Qunatization Step:** Number of bits: Log₂ L M/2L **Max error = Half Step:**

For n Bits Quantizer.

 $L=2^n$

For n=3, $L=2^3 = 8$ levels

Compression Ratio

Log, M: Log, L

For
$$M=256 (2^8)$$
,

$$L = 8 (23)$$

Ratio = 8:3

Scalar Quantizer with positive and negative input values

Q	Range	Q-1
000	[-43[-3.5
001	[-32[-2.5
010	[-21[-1.5
011	[-10[-0.5
100	[01[0.5
101	[12[1.5
110	[23[2.5
111	[34[3.5

Types of Uniform Scalar Quantizers

Two types of uniform scalar quantizers:

- Midrise quantizers have even number of output levels.
- Midtread quantizers have <u>odd</u> number of output levels, <u>including zero</u> as one of them

Types of Uniform Scalar Quantizers

Prof. Khaled Mostafa khaledms@fci-cu.edu.eg

Effect of Increasing number of bits (Number of Levels) On Quantization Error (Decompressed Image Quality)

256 Levels (8 Bits)

32 Levels (5 Bits)

16 Levels (4 Bits)

4 Levels (2 Bits)

2 Levels (1 Bits)

Effect of Increasing number of bits (Number of Levels) On Quantization Error (Decompressed Image Quality)

Original Image 8 bits / Pixel

3 bits / Pixel **Image**

2 bits / Pixel **Image**

Prof. Khaled Mostafa khaledms@fci-cu.edu.eg

1 bit / Pixel **Image**

Is uniform Quantizer the Best?

Original Image

khaledms@fci-cu.edu.eg

2 Bits Uniform Quantizer

Original Image (256 Gray Levels)

Quantized
Image
(4 Gray Levels)

2 Bits Non-Uniform Quantizer

Original Image (256 Gray Levels)

Quantized
Image
(4 Gray Levels)

Comparison Between Uniform and Non Uniform Scalar Quantizers

Original Image 256 Levels (8 Bits)

Prof. Khaled Mostafa khaledms@fci-cu.edu.eg

2 Bits Compressed Image Using Uniform Quantizer

2 Bits Compressed Image Using Non Uniform Quantizer

Both Compressed images are of same size. Compression ratio is 8:2 = 4:1 for both Images

Example of Output Quality of Uniform and Non Uniform Quantizers

Example:

Compress the following Data using 2 bits uniform quantizer with step= 32, Full Scale=127 6, 15, 17, 60, 100, 90, 66, 59, 18, 3, 5, 16, 14, 67, 63, 2, 98, 92.

Calculate MSE (as Distortion Measure)

Range	Q	Q -1				
0 31	0	16				
3263	1	48				
6495	2	80				
96127	3	112				

Origina I	6	15	17	60	100	90	66	59	18	3	5	16	14	67	63	2	98	92
Q	0	0	0	1	3	2	2	1	0	0	0	0	0	2	1	0	3	2
Q ⁻¹	16	16	16	48	112	80	80	48	16	16	16	16	16	80	48	16	112	80
Error	10	1	1	12	12	10	14	11	2	13	11	0	2	13	15	14	14	12
Error ²	100	1	1	144	144	100	196	121	4	169	121	0	4	169	225	196	196	144

Mean Square Error (MSE)= 1/18[100+1+1+144+144+100+196+....]= 2035 /18=113

Prof. Khaled Mostafa khaledms@fci-cu.edu.eg Max Error = 15 $(< \frac{1}{2}$ Step)

Example of Output Quality of Uniform and Non Uniform Quantizers

Example:

Compress the following Data using the following 2 bits Non uniform quantizer 6, 15, 17, 60, 100, 90, 66, 59, 18, 3, 5, 16, 14, 67, 63, 2, 98, 92.

Calculate MSE (as Distortion Measure)

Range	Q	Q -1
010	0	4
1139	1	16
4079	2	63
80127	3	95

Origina I	6	15	17	60	100	90	66	59	18	3	5	16	14	67	63	2	98	92
Q	0	1	1	2	3	3	2	2	1	0	0	1	1	2	2	0	3	3
Q ⁻¹	4	16	16	63	95	95	63	63	16	4	4	16	16	63	63	4	95	95
Error	2	1	1	3	5	5	3	4	2	1	1	0	2	4	0	2	3	3
Error ²	4	1	1	9	25	25	9	16	4	1	1	0	4	16	0	4	9	9

Mean Square Error (MSE)= 1/18[4+1+1+9+25+25+9+16+....] = 138 /18=7.66

Design of Non Uniform Quantizer (using LBG Algorithm with Splitting)

khaledms a fci-cu.edu.eg

Design of Non Uniform Quantizer (using LBG Algorithm with Splitting)

Range	Q	Q-1
[010[0	4
[10 39.5[1	16
[39.579[2	63
[79127]	3	95