Quantitative Data Analysis SOCI

SOCIOL 212B Winter 2025

Lecture 4. Data-Driven Selection of an Estimator

Learning goals for today

By the end of class, you will be able to

- Use individual prediction error as a metric to choose an algorithm that makes good group-level estimates
- ► Understand why we predict out of sample
- Carry out a sample split
- Explain the idea of cross-validation

On a different topic, we will close with a writing task.

Model player salaries this year as a linear function of team average salaries last year

$$E(Salary \mid Team) = \alpha + \beta(Team Average Salary Last Season)$$

Individual Prediction Errors Randomly selected players highlighted for illustration

Limiting cases:

- ightharpoonup 1 = perfect prediction
- ightharpoonup 0 = predicted same value for all cases

This example: $R^2 = 0.058$

What if the goal is to estimate for subgroups instead of to predict for individuals?

Group-Level Estimation Errors

Dots are true team mean salaries, excluding players from the learning sample in which the line was estimated

$$R_{\mathsf{Group}}^2 = 1 - \frac{\mathsf{V}\left(\hat{\mathsf{Y}}_{\mathsf{Team}} - \bar{\mathsf{Y}}_{\mathsf{Team}}\right)}{\mathsf{V}(\bar{\mathsf{Y}}_{\mathsf{Team}})}$$

Variance of team-level prediction errors over variance of team-level means¹

In this example: $R_{\text{Group}}^2 = 0.672$

 $^{{}^{1}}R_{Group}^{2}$ is not widely used, but I think it is useful here.

Individual prediction and subgroup estimation: Two very different goals?

$$R^2 = 0.058$$

$$R_{\rm Group}^2 = 0.672$$

Expected squared prediction error

Individual-level errors

$$\underbrace{\mathsf{ESPE}(\hat{f})}_{\mathsf{Expected Squared}} = \mathsf{E}\left[\left(Y - \hat{f}(\vec{X})\right)^{2}\right]$$
Expected Squared Prediction Error

In words:

The squared prediction error that occurs on average for a unit sampled at random from the population

Expected squared estimation error

Errors for estimating subgroup means

$$\underbrace{\mathsf{ESEE}(\hat{f})}_{\mathsf{Expected Squared}} = \mathsf{E}\left[\left(\mathsf{E}(Y\mid\vec{X}) - \hat{f}(\vec{X})\right)^{2}\right]$$
Expected Squared Estimation Error

In words:

The squared error when estimating conditional means given \vec{X} , averaged over the distribution of the predictors \vec{X}

Within-group variance

Spread of individual outcomes within groups

$$\mathsf{E}\left[\mathsf{V}\left(Y\mid\vec{X}\right)\right)\right]$$

In words:

Within each subgroup defined by \vec{X} , outcomes vary. This is the average value of the within-group variance, with the average taken over \vec{X}

$$\underbrace{\mathsf{ESPE}(\hat{f})}_{\mathsf{Expected Squared}} = \underbrace{\mathsf{ESEE}(\hat{f})}_{\mathsf{Expected Squared}} + \underbrace{\mathsf{E}\left[\mathsf{V}(Y\mid\vec{X})\right]}_{\mathsf{Expected Within-Group Variance}}$$

$$\underbrace{\mathsf{ESPE}(\hat{f})}_{\mathsf{Expected Squared}} = \underbrace{\mathsf{ESEE}(\hat{f})}_{\mathsf{Expected Squared}} + \underbrace{\mathsf{E}\left[\mathsf{V}(Y\mid\vec{X})\right]}_{\mathsf{Expected Within-Group Variance}}$$

$$\underbrace{\mathsf{ESPE}(\hat{f})}_{\mathsf{Expected Squared}} = \underbrace{\mathsf{ESEE}(\hat{f})}_{\mathsf{Expected Squared}} + \underbrace{\mathsf{E}\left[\mathsf{V}(Y\mid\vec{X})\right]}_{\mathsf{Expected Within-Group Variance}}$$

Suppose \hat{f}_1 and \hat{f}_2 are prediction functions

$$\underbrace{\mathsf{ESPE}(\hat{f})}_{\mathsf{Expected Squared}} = \underbrace{\mathsf{ESEE}(\hat{f})}_{\mathsf{Expected Squared}} + \underbrace{\mathsf{E}\left[\mathsf{V}(Y\mid\vec{X})\right]}_{\mathsf{Expected Within-Group Variance}}$$

Suppose \hat{f}_1 and \hat{f}_2 are prediction functions Suppose $\mathsf{ESPE}(\hat{f}_1) < \mathsf{ESPE}(\hat{f}_2)$

$$\underbrace{\mathsf{ESPE}(\hat{f})}_{\mathsf{Expected Squared}} = \underbrace{\mathsf{ESEE}(\hat{f})}_{\mathsf{Expected Squared}} + \underbrace{\mathsf{E}\left[\mathsf{V}(\mathsf{Y}\mid\vec{X})\right]}_{\mathsf{Expected Within-Group Variance}}$$

Suppose
$$\hat{f}_1$$
 and \hat{f}_2 are prediction functions Suppose $\mathsf{ESPE}(\hat{f}_1) < \mathsf{ESPE}(\hat{f}_2)$ Then
$$\mathsf{ESEE}(\hat{f}_1) \ ? \ \mathsf{ESEE}(\hat{f}_2)$$

$$\underbrace{\mathsf{ESPE}(\hat{f})}_{\mathsf{Expected Squared}} = \underbrace{\mathsf{ESEE}(\hat{f})}_{\mathsf{Expected Squared}} + \underbrace{\mathsf{E}\left[\mathsf{V}(Y\mid\vec{X})\right]}_{\mathsf{Expected Within-Group Variance}}$$

Suppose
$$\hat{f}_1$$
 and \hat{f}_2 are prediction functions Suppose $\mathsf{ESPE}(\hat{f}_1) < \mathsf{ESPE}(\hat{f}_2)$ Then
$$\mathsf{ESEE}(\hat{f}_1) \ < \ \mathsf{ESEE}(\hat{f}_2)$$

$$\underbrace{\mathsf{ESPE}(\hat{f})}_{\mathsf{Expected Squared}} = \underbrace{\mathsf{ESEE}(\hat{f})}_{\mathsf{Expected Squared}} + \underbrace{\mathsf{E}\left[\mathsf{V}(Y\mid\vec{X})\right]}_{\mathsf{Expected Within-Group Variance}}$$

Suppose
$$\hat{f}_1$$
 and \hat{f}_2 are prediction functions
Suppose $\mathsf{ESPE}(\hat{f}_1) < \mathsf{ESPE}(\hat{f}_2)$
Then $\mathsf{ESEE}(\hat{f}_1) < \mathsf{ESEE}(\hat{f}_2)$

Strategy:

$$\underbrace{\mathsf{ESPE}(\hat{f})}_{\mathsf{Expected Squared}} = \underbrace{\mathsf{ESEE}(\hat{f})}_{\mathsf{Expected Squared}} + \underbrace{\mathsf{E}\left[\mathsf{V}(Y\mid\vec{X})\right]}_{\mathsf{Expected Within-Group Variance}}$$

Suppose
$$\hat{f}_1$$
 and \hat{f}_2 are prediction functions Suppose $\mathsf{ESPE}(\hat{f}_1) < \mathsf{ESPE}(\hat{f}_2)$ Then
$$\mathsf{ESEE}(\hat{f}_1) < \mathsf{ESEE}(\hat{f}_2)$$

Strategy:

lacktriangle With many candidate algorithms $\hat{f}_1,\hat{f}_2,\ldots$

$$\underbrace{\mathsf{ESPE}(\hat{f})}_{\mathsf{Expected Squared}} = \underbrace{\mathsf{ESEE}(\hat{f})}_{\mathsf{Expected Squared}} + \underbrace{\mathsf{E}\left[\mathsf{V}(Y\mid\vec{X})\right]}_{\mathsf{Expected Within-Group Variance}}$$

Suppose
$$\hat{f}_1$$
 and \hat{f}_2 are prediction functions Suppose $\mathsf{ESPE}(\hat{f}_1) < \mathsf{ESPE}(\hat{f}_2)$ Then
$$\mathsf{ESEE}(\hat{f}_1) < \mathsf{ESEE}(\hat{f}_2)$$

Strategy:

- ▶ With many candidate algorithms $\hat{f}_1, \hat{f}_2, \dots$
- choose the one that minimizes ESPE (individual prediction)

$$\underbrace{\mathsf{ESPE}(\hat{f})}_{\mathsf{Expected Squared}} = \underbrace{\mathsf{ESEE}(\hat{f})}_{\mathsf{Expected Squared}} + \underbrace{\mathsf{E}\left[\mathsf{V}(Y\mid\vec{X})\right]}_{\mathsf{Expected Within-Group Variance}}$$

Suppose
$$\hat{f}_1$$
 and \hat{f}_2 are prediction functions Suppose $\mathsf{ESPE}(\hat{f}_1) < \mathsf{ESPE}(\hat{f}_2)$ Then $\mathsf{ESEE}(\hat{f}_1) < \mathsf{ESEE}(\hat{f}_2)$

Strategy:

- ▶ With many candidate algorithms $\hat{f}_1, \hat{f}_2, \dots$
- choose the one that minimizes ESPE (individual prediction)
- ► It will also minimize ESEE (group estimation)

Prediction and Estimation

Why Out-of-Sample Prediction

Sample Splitting

Cross Validation

Writing Task

Prediction and Estimation

Why Out-of-Sample Prediction

Sample Splitting

Cross Validation

Writing Task

k-nearest neighbors

10 sampled players per team

- Dodger sample mean might be noisy
- ► Could pool with similar teams defined by past mean salary
 - ▶ Dodgers: 8.39m
 - ► 1st-nearest neighbor. NY Mets: 8.34m
 - ► 2nd-nearest neighbor. NY Yankees: 7.60m
 - ► 3rd-nearest neighbor. Philadelphia: 6.50m
- How does performance change with the number of neighbors included?
 - measured by mean squared prediction error

Why Out-of-Sample Prediction

Sample Splitting

Cross Validation

Why Out-of-Sample Prediction

Sample Splitting

Cross Validation

You have one sample. How do you estimate out-of-sample performance?

Exercise: Conduct a sample split in code

- 1. Sample 10 players per team
- 2. Take a 50-50 sample split stratified by team
- 3. Fit a linear regression in the train set
- 4. Predict in the test set
- 5. Report mean squared error

Sample splitting for parameter tuning: Ridge regression

$$\begin{split} \mathsf{E}(\mathsf{Player}\;\mathsf{Salary}\;|\;\mathsf{Team} = t) &= \alpha + \beta_t \\ \left\{\hat{\alpha}, \hat{\vec{\beta}}\right\} &= \arg\min_{\tilde{\alpha}, \tilde{\vec{\beta}}} \underbrace{\sum_{i=1}^n \left(Y_i - \left(\tilde{\alpha} + \tilde{\beta}_{t(i)}\right)\right)}_{\mathsf{Prediction}\;\mathsf{Error}} + \underbrace{\lambda \sum_t \tilde{\beta}_t^2}_{\mathsf{Penalty}} \end{split}$$

How do we choose λ ?

Why Out-of-Sample Prediction

Sample Splitting

Cross Validation

Why Out-of-Sample Prediction

Sample Splitting

Cross Validation

A train test split loses lots of data to testing.

Is there a way to bring it back?

Randomize to 5 folds

Randomize to 5 folds

Randomize to 5 folds Fold 1 Train Fold 2 **Train** Fold 3 **Train** Fold 4 **Train** Fold 5 Test

Randomize to 5 folds

Fold 1	Train	Train		
Fold 2	Train	Train		
Fold 3	Train	Train		
Fold 4	Train	Test		
Fold 5	Test	Train		

Randomize to 5 folds

Fold 1	
Fold 2	
Fold 3	
Fold 4	
Fold 5	

Randomize to 5 folds

Fold 1	Train	Train	Train	Train	
Fold 2	Train	Train	Train	Test	
Fold 3	Train	Train	Test	Train	
Fold 4	Train	Test	Train	Train	
Fold 5	Test	Train	Train	Train	

Randomize to 5 folds

20 0 10103					
Fold 1	Train	Train	Train	Train	Test
Fold 2	Train	Train	Train	Test	Train
Fold 3	Train	Train	Test	Train	Train
Fold 4	Train	Test	Train	Train	Train
Fold 5	Test	Train	Train	Train	Train

Randomize to 5 folds

Iteratively use each as the test set

Fold 1	Train	Train	Train	Train	Test
Fold 2	Train	Train	Train	Test	Train
Fold 3	Train	Train	Test	Train	Train
Fold 4	Train	Test	Train	Train	Train
Fold 5	Test	Train	Train	Train	Train

Average prediction error over folds

Out-of-sample predictive performance is not just for tuning parameters.

It can help you choose your algorithm.

Why Out-of-Sample Prediction

Sample Splitting

Cross Validation

Why Out-of-Sample Prediction

Sample Splitting

Cross Validation

Writing Task: A possible abstract

Imagine that your results came out really amazing. Write the abstract of your paper with these imaginary results.

- ► Minimize jargon. Write for a New York Times reader.
- ► Emphasize big claims, not buried in statistics

Goal is to ask a high-impact question.

If possible, also write the abstract if results were opposite.

If your abstract is not compelling, you might consider finding a new research question.

Learning goals for today

By the end of class, you will be able to

- Use individual prediction error as a metric to choose an algorithm that makes good group-level estimates
- ► Understand why we predict out of sample
- Carry out a sample split
- Explain the idea of cross-validation

On a different topic, we will close with a writing task.