

Statistical Demography

Bayesian inference, population dynamics, ageing research

EvoDemoS Workshop Bayesian Demographic Trajectory analysis: BaSTA and BaFTA

Fernando Colchero

Statistical Demography Research Group, Department of Primate Behavior and Evolution

Why do we care?

Demographic rates

Survival: $S(x) = \Pr[X > x]$, where X is a random variable for ages at death and $x \ge 0$.

Mortality: $\mu(x)$ hazard rate $(S(x) = \exp\left[-\int_0^x \mu(t)dt\right])$

Demographic rates

Survival: $S(x) = \Pr[X > x]$, where X is a random variable for ages at death and $x \ge 0$.

Mortality:
$$\mu(x)$$
 hazard rate $(S(x) = \exp\left[-\int_0^x \mu(t)dt\right])$

Fertility: $E[Y_x] = m(x)$ where Y_x is a random variable for the number of offspring produced by adults of age x.

Demography in nature

One size doesn't fit all...

Jones et al. (2014) Nature

Population Dynamics

Implications for population dynamics

Colchero et al. (2019) Ecol Lett

Fitness and demography (stable populations)

- Intrinsic rate of population increase, r (or $\lambda = e^r$), real root of Lotka's (1913) renewal equation

$$\int_0^\infty e^{-rx} S(x) m(x) dx = 1$$

- Population reproductive value (Fisher 1930, Leslie 1948), $V=\int_0^\infty v(x)/v_0 dx$ where

$$v(x) = \frac{e^{rx}}{S(x)} \int_{x}^{\infty} e^{-rt} S(t) m(t) dt.$$

Fitness and demography (stochastic environments)

Long-run population growth rate (Tuljapurkar 1982, 1990)

$$a = \tilde{r} - V_s - V_c + S$$

where $\tilde{\lambda}=e^{\tilde{r}}$ is the growth rate from average demographic rates, and V_s,V_c account for the variances and covariances between demographic rates, and S for serial autocorrelation.

Population Dynamics in Variable Environments

Shripad Tuljapurkar 85

Demographic aging rates

Rate of reproductive vs actuarial aging

Olive baboons (*P. anubis*) and Chimpanzees (*P. troglodytes*), Gombe Ntl. Park, Tanzania Hadza, Tanzania Packer *et al.* (1998), Muller *et al.* (2020), Colchero *et*

al. (2021)

Post-reproductive representation (PrR)

Studies on menopause

Olive baboons (*P. anubis*) and Chimpanzees (*P. troglodytes*), Gombe Ntl. Park, Tanzania Hadza, Tanzania Packer *et al.* (1998), Muller *et al.* (2020), Colchero *et al.* (2021)

Unknown times of birth and death

Missing births to temporal disappearances

Limited functional forms for age-specific mortality and fertility

Bayesian Survival Trajectory Analysis

BaSTA - Inference for datasets with incomplete ages

Hazard rate or mortality function

$$\mu(x) = \lim_{\Delta x \to 0} \frac{\Pr[x < X < x + \Delta x | X > x]}{\Delta x},$$

where
$$S(x) = \exp[-\int_0^x \mu(t)dt]$$
.

Colchero & Clark (2012) J Anim Ecol, Colchero et al. (2012) MEE, Colchero et al. (2021) Nat Comms

Soay sheep mortality

Bayesian Fertility Trajectory Analysis

BaFTA - Inference on aggregated and individual level data

 W_x random variable for the number of offspring born from n_x adults alive at age x, where

$$W_x \sim NB(n_x \alpha, \rho),$$

where $\alpha > 0$ and $\rho = \alpha/[b(x) + \alpha]$.

Colchero (2025) Biometrics

BaFTA

Studies on age-specific fertility

limited to a single model (i.e., quadratic)

Quadratic:

The most common given by

$$g(x) = \alpha - \beta(x - \kappa)^2,$$

where

- $\alpha \geq 0$ is the maximum fertility,
- $\beta \ge 0$ is the rate of increase decrease,
- $\kappa > 0$ is the age at maximum fertility.

Quadratic:

The most common given by

$$g(x) = \alpha - \beta(x - \kappa)^2,$$

where

- $\alpha \geq 0$ is the maximum fertility,
- $\beta \ge 0$ is the rate of increase decrease,
- $\kappa > 0$ is the age at maximum fertility.

Exponential - quadratic:

Given by

$$g(x) = \alpha e^{-\beta(x-\kappa)^2},$$

It is symmetric around κ .

Peristera and Kostaki (2007)

$$g(x) = \alpha \exp\left[-\left(\frac{x-\kappa}{\beta(x)}\right)^2\right],$$

where $\alpha > 0$, $\kappa \ge 0$ and $\beta(x) > 0$, with $\beta(x) = \beta_{11}$ for $x \le \kappa$ and $\beta(x) = \beta_{12}$ for $x > \kappa$.

(Note: Exponential quadratic is a special case.)

Mixture-density based models

Mixture models

((Chandola et al. 1999)

$$g(x) = R \left[m \ f_1(x|\theta_1) + (1-m)f_2(x|\theta_2) \right],$$

where $m \in [0, 1]$ is the mixture parameter and $f_1(x|\boldsymbol{\theta}_1)$ and $f_2(x|\boldsymbol{\theta}_2)$ are two distributions with parameter vectors $\boldsymbol{\theta}_1$ and $\boldsymbol{\theta}_2$.

Inference

Traditionally, least squares on the average offspring per parents of a given age.

Inference

Traditionally, least squares on the average offspring per parents of a given age.

Ignores relative contributions per age (i.e., lower sample sizes at older ages are over-represented).

Inference

Traditionally, least squares on the average offspring per parents of a given age.

Ignores relative contributions per age (i.e., lower sample sizes at older ages are over-represented).

Solution... make an R package