# Descriptive Statistics

STAT 330 - Iowa State University

## Outline

In this lecture students will be introduced to descriptive statistics. We begin with the definition of a statistic, and describe various numerical summaries of data such as:

- 1. the sample mean
- 2. the sample variance
- 3. the sample median
- 4. sample quantiles

# **Statistics**

## **Statistics**

**Definition: Statistics** 

A *statistic*,  $T(X_1, ..., X_n)$  is a function of random variables.

Start with taking a <u>simple random sample (SRS)</u> of size n
 from some population/distribution.

$$X_1,\ldots,X_n\stackrel{iid}{\sim}f_X(x)$$

- We can then obtain *statistics* based on  $X_1, \ldots, X_n$
- Since a statistic is a function T(·) of random variables, the statistic is also a random variable. ★
- Thus, the statistic will have its own distribution called the sampling distribution of the statistic (more on this later!)

#### Statistics Cont.

#### **Definition: Observed Statistics**

The observed statistics,  $T(x_1, \ldots, x_n)$  is the statistic function with observed values plugged in.

- Descriptive statistics: Describing what our sample data looks like (graphically or numerically)
- Inferential statistics: Use the statistic to infer/learn about the "true" distribution,  $f_X(x)$ , that generated the data.

## Note:

- LLLR.V world • Use capital letters  $(X, \bar{X}, S^2, \text{ etc})$  to represent random variables. 616
- Use small letters  $(x, \bar{x}, s^2, \text{ etc})$  to represent observations and observed statistics. Number 5



# Sample Mean and Variance

Let 
$$X_1, \ldots, X_n \stackrel{iid}{\sim} f_X(x)$$
 where  $E(X_i) = \widehat{\mu}$  and  $Var(X_i) = \widehat{\sigma}^2$ 

- Sample mean is defined as  $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ 
  - $\rightarrow$  estimates the population mean  $\mu$ .
- Sample variance is defined as  $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X}_n)^2$ 
  - $\rightarrow$  estimates the population variance  $\sigma^2$
  - $\rightarrow$  an estimate of the  $Var(X) = E[(X E(X))^2]$  can be found as

$$\# \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

- $\rightarrow$  typically, *n* in the above denominator is replaced with n-1 to get  $S^2$  (more on this later)
- Sample standard deviation is  $S = \sqrt{S^2}$

**Note:** The quantities above are R.V's since they are functions of  $R.V's X_1...X_n$ 

# **Observed Sample Mean and Variance**

• To obtain the *observed sample mean* and *observed sample* variance, plug in observed data values  $(x_1, \ldots, x_n)$  into sample mean and variance formulas

$$\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$

$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$$

$$s = \sqrt{s^2}$$

**Note:** The quantities above are not random variables since you have plugged in data values. They are values such as 2.4, 100, etc.

Quantiles

## Quantiles

# Definition: Quantiles ( population)

The  $q^{th}$  quantile of a distribution,  $f_X(x)$ , is a value x such that P(X < x) < q and P(X > x) < 1 - q.

This is also called the  $100 \cdot q^{th}$  percentile.

 $Q_1=0.25^{th}$  quantile,  $Q_2=0.5^{th}$  quantile (median), and  $Q_3=0.75^{th}$  quantile

## **Definition: Quantile Function**

The *quantile function* is defined as:

$$F_X^{-1}(q) = \min\{x : F_X(x) \ge q\}$$



### Median

The *median* is the  $0.5^{th}$  quantile (or  $50^{th}$  percentile)



 $\rightarrow$  can be written as  $F_X^{-1}(0.5)$ 

The <u>sample median</u> is calculated by:

1. Order sampled values in increasing order:  $X_{(1)}, \dots, X_{(n)}$ 

Smallest largest Value value

 $\begin{array}{c} \overbrace{\uparrow}, \overbrace{\flat}, \overbrace{\uparrow}, \overbrace{\uparrow}, \overbrace{\uparrow}, \overbrace{\uparrow}, \overbrace{\uparrow}, \overbrace{\uparrow}, \overbrace{\downarrow}, \overbrace{\uparrow}, \overbrace{\downarrow}, \overbrace{\uparrow}, \overbrace{\downarrow}, {\downarrow}, \overbrace{\downarrow}, \overbrace{\downarrow},$ 

• If n is even, average the two middle values  $\rightarrow$  median =  $\frac{X_{\frac{n}{2}} + X_{\frac{n}{2}+1}}{2}$   $l_{(3)}$ 

**Note:** Since the above values are functions of R.V's, they are R.Vs. Obtain the *observed sample median* by plugging in the observed values  $(x_1, \ldots, x_n)$  from data.

# $Q_1$ and $Q_3$

Other sample quantiles we are typically interested in are

- $Q_1 = 0.25^{th}$  quantile
- $Q_3 = 0.75^{th}$  quantile

Many ways to calculate quantiles. Our method for a general  $q^{th}$  sample quantile is . . .

- 1. Compute  $(n+1) \cdot q$ 
  - If this value is an integer, use  $(n+1)q^{th}$  ordered value
  - Else, use the average of the 2 surrounding values

# **E**xample

Example 1: A sample 
$$X_1, \ldots, X_n \stackrel{iid}{\sim} f_X(x)$$
 was taken where  $X_i =$  CPU time for a randomly chosen task. The ordered observed values are 15, 34, 35, 36, 43, 48, 49, 62, 70, 82 (secs)

The production  $X_i = X_i = X_i$ 

The production  $X_i = X_i$ 

The production  $X_i$ 

@ 3

# **Example Cont.**

Right now, we're only using these statistics to describe the sample of CPU speeds.

- ullet sample mean and median  $(Q_2)$  tell us "typical" values
- sample variance tells us how "spread out" / how variable the data are
- $Q_1$  and  $Q_3$  "rank" where values fall in our sample

# Mode, Range, IQR

# Mode, Range, and IQR

Other common descriptive statistics to describe the data:

- Mode: The most frequent value in our sample. Can have multiple modes in data set
- Range: Max Min =  $X_{(n)} X_{(1)}$ 
  - ightarrow describes the "total" variability of the data
- Interquartile Range (IQR):  $Q_3 Q_1$ 
  - ightarrow describes the variability of the middle 50% of data

## **Robust Statistics**

Evample 2

- With all the different options for statistics, how do we choose which ones to use?
  - $\rightarrow$  It depends on your data set
- Statistics that are not affected by extreme values are called robust statistics

  Mean to median ((enter)

| Example 2:<br>Stats | pre-BRZOS | Post-Bezos      | pobust? |
|---------------------|-----------|-----------------|---------|
| mean                | \$ 60k    | way - sigger    | NO      |
| median              | \$ 60k    | Slightly Bigger | Yes     |
| 9+d. Dev            | \$ 10k    | Way Bigger      | No      |
| IQC                 | \$ 25k    | Slightly Bigger | Yes     |

## Recap

Students should now be familiar with the concept of a statistic. They should be able to distinguish between random statistics and observed statistics. They should be able to calculate some observed statistics such as the sample mean, sample variance, and others.