

Teste de Desempenho Contínuo Orientado por Visão Computacional Continuous Performance Testing Guided by Computer Vision.

Amanda de Oliveira Costa { amanda.costa47 Arthur Ribeiro Dias Fudali { arthur.fudali@ Diego Baltazar de Souza Claudio { diego.claudio@ Giovana da Silva Albanês Santos { giovana.santos3@ Igor Leite Gomes { igor.gomes4@

{ amanda.costa47@fatec.sp.gov.br } { arthur.fudali@fatec.sp.gov.br } { diego.claudio@fatec.sp.gov.br} { giovana.santos30@fatec.sp.gov.br } { igor.gomes4@fatec.sp.gov.br }

RESUMO

O Transtorno de Déficit de Atenção (TDA) é uma condição neuropsicológica que pode afetar significativamente o desempenho de adultos em diversas esferas da vida, como trabalho, estudos e relações interpessoais. O diagnóstico tradicional envolve avaliações clínicas e testes padronizados, os quais nem sempre estão disponíveis de forma acessível ou apresentam dados objetivos suficientes para um rastreio inicial eficaz. Este estudo propõe uma abordagem tecnológica que integra uma plataforma digital gamificada, baseada no Teste de Desempenho Contínuo (TDC), com técnicas de rastreamento ocular em tempo real. A proposta tem como objetivo identificar possíveis indícios de TDA em adultos por meio da análise de desempenho atencional durante a execução de tarefas gamificadas. O sistema registra dados como tempo de reação, erros de omissão e comissão, variabilidade nas respostas e padrões de fixação ocular, os quais são processados automaticamente. Com base na comparação com bases de dados normativas, o sistema fornece um feedback interpretativo ao usuário, podendo contribuir como ferramenta complementar de triagem inicial. A acessibilidade da plataforma, que roda diretamente no navegador, e seu caráter lúdico e autônomo tornam a solução promissora para ampliar o acesso ao rastreamento precoce de indícios do transtorno. A proposta está alinhada ao terceiro Objetivo de Desenvolvimento Sustentável (ODS) da Agenda 2030 da ONU, que visa garantir saúde e bem-estar para todas as pessoas, promovendo inovações tecnológicas para uma saúde mais inclusiva, eficiente e orientada por dados objetivos.

PALAVRAS-CHAVE: TDA; atenção; rastreamento ocular; gamificação; ODS 3.

ABSTRACT

Attention Deficit Disorder (ADD) is a neuropsychological condition that can significantly affect adults' performance in various areas of life, such as work, studies, and interpersonal relationships. Traditional diagnosis involves clinical evaluations and standardized tests, which are not always accessible or provide sufficient objective data for effective initial screening. This study proposes a technological approach that integrates a gamified digital platform, based on the Continuous Performance Test (CPT), with real-time eye tracking techniques. The proposal aims to identify possible signs of ADD in adults by analyzing attentional performance during the execution of gamified tasks. The system records data such as reaction time, omission and commission errors, response variability, and eye fixation patterns, which are processed automatically. Based on comparison with normative databases, the system provides interpretative feedback to the user, and can contribute as a complementary tool for initial screening. The accessibility of the platform, which runs directly in the browser, and its playful and autonomous nature make it a promising solution for expanding access to early screening for signs of the disorder. The proposal is aligned with the third Sustainable Development Goal (SDG) of the UN 2030 Agenda, which aims to ensure health and well-being for all people, promoting technological innovations for more inclusive, efficient health care guided by objective data.

KEYWORDS: ADHD; attention; eye tracking; gamification; SDG 3.

INTRODUÇÃO

A Organização das Nações Unidas (ONU) é uma instituição que visa estabelecer a paz, segurança e desenvolvimento global. A ONU conta com 193 países membros que formam a Assembleia Geral, responsável por desenvolver as políticas da organização. Em 2015, como parte da Agenda 2030 para o Desenvolvimento Sustentável, foram criados 17 objetivos que abrangem desde a melhoria da indústria até o aprimoramento da saúde da população. Esse conjunto de metas constitui um plano

de ação ambicioso para as pessoas, o planeta e a prosperidade. Este trabalho visa contribuir para o terceiro objetivo, que busca garantir o acesso à saúde e promover o bem estar, ao desenvolver uma plataforma digital gamificada com o objetivo de auxiliar nos possíveis indícios do Transtorno de Déficit de Atenção (TDA) em adultos.

O Transtorno do Déficit de Atenção é uma condição neurobiológica de causas genéticas, que afeta milhões de pessoas em todo o mundo. É caracterizada por sintomas de desatenção, impulsividade, e, em alguns casos, hiperatividade, afetando significativamente o desempenho acadêmico, profissional e social dos afetados. Embora o diagnóstico clínico do TDA seja baseado tradicionalmente em entrevistas e questionários subjetivos, avanços tecnológicos têm permitido o uso de ferramentas mais robustas e quantitativas para apoiar esse processo. Saúde (2014) Entre essas ferramentas, destaca-se o eye tracking (ou rastramento ocular), esta é uma técnica que consiste em usar o posicionamento dos olhos de uma pessoa para obter informações sobre onde ela está olhando. Isso pode ser feito usando luzes infravermelhas, que calculam exatamente onde a pessoa está olhando com base nas reflexões da luz na retina, ou por meio de câmeras que monitoram visualmente a posição dos olhos e identificam sua direção.

Em ambientes controlados, o teste com eye tracking envolve a realização de tarefas padronizadas, nas quais o comportamento visual do participante é monitorado sem interferência direta de um moderador. Essa abordagem objetiva permite uma coleta mais confiável de dados, reduzindo o viés associado ao autorrelato e aumentando a credibilidade da análise. Além disso, a comparação dos dados obtidos com padrões normativos permite identificar desvios significativos no desempenho visual atencional, muitas vezes imperceptíveis a métodos tradicionais.

Quando aplicada em um teste diagnóstico, a técnica permite acompanhar com precisão os movimentos dos olhos de um indivíduo durante a realização de tarefas específicas, fornecendo dados objetivos e detalhados sobre onde, por quanto tempo e em que sequência uma pessoa fixa seu olhar em determinados estímulos visuais. Estudos demonstram que pessoas com TDA apresentam menor tempo de fixação e padrão visual mais disperso ao realizarem testes de desempenho, sugerindo dificuldade em manter a atenção sustentada e filtragem de estímulos irrelevantes Yoo et al. (2024).

O Teste de Desempenho Contínuo (TDC) é uma medida padronizada amplamente utilizada na neuropsicologia para avaliar métricas de atenção sustentada, impulsividade, tempo de resposta e variabilidade dos tempos de reação. Trata-se de uma tarefa computadorizada na qual o usuário responde e reage a estímulos apresentados sequencialmente, permitindo medidas de desempenho atencional ao longo do tempo. Os serious games, ou jogos sérios, são aplicações digitais desenvolvidas com finalidades que vão além do entretenimento, como educação, treinamento ou reabilitação cognitiva. No contexto ne análises neuropsicológicas, eles vêm sendo utilizados como ferramentas complementares aos testes tradicionais, oferecendo ambientes imersivos e interativos que auxiliam no engajamento do usuário e a mensuração de habilidades cognitivas.

Com isso, a aplicação do eye tracking em algo como os jogos sérios, podem servir não apenas como ferramentas para complementar o diagnóstico clínico, mas também como um potencial instrumento de triagem inicial. A análise dos dados pode indicar o grau de desatenção apresentado por um indivíduo em diferentes contextos e contribuir para decisões clínicas mais embasadas. Assim, propomos por meio deste estudo a criação de um software gamificado, que usa as informações obtidas pelo rastreamento ocular de possíveis afetados pelo TDA e as processa, usando as métricas do TDC para gerar um resultado médio do desempenho geral, fornecendo uma possível indicação para o transtorno.

OBJETIVO

Desenvolver uma plataforma digital gamificada, acessível por navegador, que utiliza rastreamento ocular e métricas de desempenho atencional para auxiliar na triagem inicial de indícios do Transtorno de Déficit de Atenção (TDA) em crianças de 10 a 12 anos.

OBJETIVOS ESPECÍFICOS

- Integrar o Teste de Desempenho Contínuo (TDC) a um jogo digital com tarefas que simulam desafios atencionais.
- Aplicar técnicas de rastreamento ocular em tempo real para registrar padrões de atenção durante a execução das tarefas.
- Processar automaticamente os dados coletados e compará-los com parâmetros normativos para gerar feedback ao usuário.
- Promover uma solução acessível, autônoma e alinhada ao ODS 3 da ONU, que amplie o acesso à triagem inicial de TDA.

ESTADO DA ARTE

O diagnóstico do Transtorno de Déficit de Atenção (TDA) em adultos continua sendo um desafio clínico significativo. Tradicionalmente, o processo diagnóstico baseia-se em entrevistas e testes clínicos, autorrelato e relatos de informantes, instrumentos que, embora úteis, podem ser afetados por viés retrospectivo, subjetividade do paciente, e simulação dos testes, resultando em casos de falsos positivos ou negativos. Dessa forma, o interesse por abordagens objetivas e tecnologicamente assistidas, que combinem dados neuropsicológicos e comportamentais com técnicas de análises automatizadas, aumentou. Estudos recentes têm investigado o uso de jogos digitais sérios como ferramentas de avaliação e treinamento cognitivo, com foco na atenção contínua. Nascimento e Menezes (2020) exploraram a relação entre a prática regular de videogames e o desempenho em atenção sustentada, avaliado pelo Conners' Continuous Performance Test II (CPT II), uma versão amplamente utilizada do Teste de Desempenho Contínuo (TDC). Embora não tenham encontrado diferenças de performance entre jogadores de videogames de ação, não ação e não jogadores, os autores identificaram o sexo como uma variável relevante, pois notara diferença entre tempo de reação e número de erros. O estudo destaca a complexidade das interações entre fatores individuais e experiências digitais, sugerindo que a aplicação de jogos, mesmo quando classificados como serious games, precisam de cuidados na metodologia e no controle de variáveis, com o fim de evitar interferências no desempenho atencional.

Nesse contexto, Elbaum et al. (2020) exploraram o potencial diagnóstico da integração entre o MOXO-dCPT (um teste de desempenho contínuo com fases estruturadas de distração auditiva e visual) e dados de rastreamento ocular (eye tracking). O estudo contou com uma amostra de 85 adultos (43 com diagnóstico formal de TDAH e 42 controles saudáveis) e analisou o padrão de atenção visual ao longo de diferentes partes do teste. Os resultados demonstraram que indivíduos com TDAH apresentaram maior tempo de fixação em áreas irrelevantes da tela, particularmente em condições com distrações visuais, o que os autores interpretaram como uma medida direta de distratibilidade atencional objetiva. Essa métrica comportamental demonstrou maior poder discriminativo em comparação às melhores pontuações tradicionais do MOXO. Além disso, os autores propuseram que as partes do teste com distrações visuais poderiam ser utilizadas isoladamente, reduzindo o tempo do teste e mantendo a precisão.

Avançando nesse campo, Wiebe et al. (2024) criaram uma solução diagnóstica que envolve um ambiente de realidade virtual (VR), onde os participantes realizavam um teste de desempenho imersivo sob a ocorrência de distrações simuladas em um ambiente 3D. Durante a tarefa, foram coletados dados simultâneos de eye tracking, movimentos da cabeça, eletroencefalograma (EEG) e desempenho atencional. O modelo de IA foi treinado em um conjunto de 50 participantes e testado de forma independente em outro conjunto de 36 indivíduos. O modelo final, com apenas 11 variáveis selecionadas, alcançou 81% de acurácia, 78% de sensibilidade e 83% de especificidade no conjunto de teste.

Os estudos indicam que a utilização de tecnologias de rastreamento ocular, tarefas cognitivas com análises embasadas dos dados representam um avanço significativo em relação aos métodos tradicionais de diagnóstico. O uso de serious games para coleta de dados de desempenho também é eficaz, como mostra o trabalho de Nascimento e Menezes. O trabalho de Elbaum et al. oferece um modelo aplicável e eficiente ao integrar eye tracking em um teste comercial já existente, o estudo de Wiebe et al. diferencia a proposta ao incorporar realidade virtual, aprendizado de máquina e validação externa em amostras independentes. Juntos, os estudos reforçam a ideia de que sistemas digitais automatizados podem melhorar a precisão diagnóstica do TDAH em adultos.

METODOLOGIA

A landing page do projeto foi desenvolvida em HTML, responsável pela estrutura do conteúdo, CSS, utilizado para o estilo visual, e JavaScript, empregado na implementação da interatividade e do dinamismo da navegação. O sistema de rastreamento ocular foi implementado em JavaScript, utilizando a biblioteca WebGazer.js, que contém um modelo capaz de se autocalibrar ao observar a interação dos visitantes com a página, treinando um mapeamento entre as características do olhar e as posições na tela (Papoutsaki et al., 2016). O tratamento das coordenadas oculares recebidas do frontend foi realizado em JavaScript, com o uso do Node.js e do Socket.IO, possibilitando a comunicação em tempo real com o frontend, uma vez que depende das coordenadas enviadas por ele. Essa parte do backend é responsável por analisar as métricas TDC (acertos e erros), dados que serão utilizados para compor o feedback individual de cada usuário. Por fim, o jogo web foi desenvolvido em TypeScript, utilizando o framework Next.js, o que proporcionou um código mais robusto, organizado e uma experiência de uso moderna e fluida.

A metodologia fundamenta-se na aplicação adaptada do TDC. A principal diferença do presente trabalho está na integração do teste com o rastreamento ocular em tempo real, permitindo a coleta de dados visuais complementares durante a execução das tarefas.

O experimento é estruturado como um jogo digital de temática espacial, composto por três fases com níveis crescentes de dificuldade. A mecânica de jogo foi desenhada para simular os princípios do TDC, promovendo a exposição contínua a estímulos visuais por períodos prolongados e exigindo respostas rápidas e consistentes por parte do participante. Ao longo de cada fase, o sistema registra métricas relacionadas à atenção, como erros de omissão (quando o participante não responde a um estímulo-alvo), erros de comissão (quando não mantém foco por tempo suficiente no alvo), tempo de reação e variabilidade temporal das respostas. COLOCAR REF

Durante toda a experiência, o rastreamento ocular é realizado em segundo plano, utilizando a biblioteca *WebGazer* para capturar os pontos de fixação visual do usuário por meio da *webcam*. Esses dados permitem identificar padrões de atenção ou desatenção de acordo com nossa base de dados em cada etapa da atividade. Todas as fases contam com música de fundo, cuja intensidade e ritmo são ajustados conforme o nível de dificuldade, de forma a potencializar a sobrecarga sensorial e dificultar a concentração.

Após o realizar login, o participante é direcionado para a página de instruções, onde são apresentadas a sequência de como calibrar o olhar para poder prosseguir para o jogo. Antes de cada fase, exitem as instruções da própria fase. Em seguida, o usuário inicia a primeira fase do teste.

ENCONTRE E FIXE D OLHO NOS S FILVOS DURIENTE S SECULADOS

Figura 1 - Primeira fase

Fonte: Autoria Própria (2024)

Na primeira fase, o participante deve fixar o olhar por cinco segundos em cinco alvos estáticos, representados por estrelas, enquanto elementos animados surgem ao redor. Após os 5 segundos, cada estrela desaparece da tela. A música de fundo nesta etapa apresenta um ritmo moderado. O objetivo é avaliar a capacidade de manter a atenção em um ponto fixo durante um tempo determinado, ignorando estímulos visuais e auditivos periféricos.

Figura 2 – Segunda fase Fonte: Autoria Própria (2024)

Na segunda fase, são apresentadas cinco estrelas estáticas que brilham individualmente em sequência. Simultaneamente, três planetas transitam pela tela, atuando como estímulos secundários que o participante deve reconhecer. Ao término desta fase, o usuário responde a um formulário utilizando botões IoT, cada um correspondente a um planeta específico. O objetivo é que o participante aperte o botão do planeta X se, e somente se, o tiver observado em trânsito. Essa etapa visa mensurar a capacidade de identificar alvos dinâmicos (os planetas) enquanto o participante mantém o foco em estímulos estáticos (as estrelas). A trilha sonora, que se torna mais intensa e acelerada, tem o propósito de aumentar o nível de exigência atencional e avaliar a concentração diante de múltiplos estímulos visuais e auditivos.

Figura 3 – Terceira fase Fonte: Autoria Própria (2024) Na terceira fase, a demanda cognitiva é intensificada pela necessidade de alternância rápida do foco visual entre diferentes regiões da tela, caracterizadas por menor previsibilidade espacial. Nessa etapa, uma estrela surge de forma estática, exigindo resposta ocular imediata do participante. Simultaneamente, um segundo estímulo estático é apresentado, alternando entre os estados ligado e desligado em intervalos regulares. Quando esse estímulo é ativado (ascende), o participante deve manter o olhar fixo sobre ele até que se apague, o que permite avaliar a atenção sustentada e o controle do direcionamento ocular. A trilha sonora atinge seu nível máximo de intensidade e agitação, contribuindo para aumentar a complexidade da tarefa. O desempenho do participante nesta fase é utilizado como indicador da agilidade atencional e da capacidade de redirecionamento e manutenção do foco visual diante de estímulos dinâmicos.

Ao término das três fases, o sistema apresenta ao participante um resumo dos resultados com base nas métricasa TDC. Para isso, são utilizados os três registros mais recentes de rastreamento ocular, que correspondem às três fases concluídas pelo jogador. Com base nesses dados, o sistema gera um feedback textual interpretativo, apresentando mensagens como: "Sua atenção está conforme o esperado", "Sua atenção está acima do esperado" ou "Sua atenção está abaixo do esperado.", de acordo com o desempenho observado.

A plataforma é desenvolvida com tecnologias *web*, permitindo acesso remoto e execução direta em *browsers* modernos. O teste é realizado de forma autônoma pelo usuário, em ambiente silencioso e seguindo instruções fornecidas pela própria plataforma.

No projeto atual, IA será utilizada para comparar os dados coletados durante o jogo, referentes aos erros e acertos, com uma base de dados previamente formada por indivíduos diagnosticados com TDA e por outros sem o transtorno. Entretanto, nesta fase inicial de desenvolvimento, é necessário testar a viabilidade do sistema. Inicialmente, dez crianças com TDA serão convidadas a participar do experimento, com o objetivo de coletar dados iniciais que servirão como base para o treinamento do modelo de IA. Em seguida, três crianças com TDA e três sem o transtorno (não podem ser as dez iniciais) serão convidadas para uma nova etapa experimental, destinada a validar a eficácia do sistema na identificação de indícios de desatenção. O objetivo é garantir que a acurácia do sistema seja satisfatória antes de ampliar a base de dados e aperfeiçoar o modelo de IA. Após a conclusão da fase de validação, o sistema estará apto a ser utilizado por um público mais amplo, contribuindo para a identificação precoce do TDA em crianças e reforçando seu potencial como ferramenta de apoio ao diagnóstico.

No que se refere à retroalimentação da IA, o sistema dispõe de um modo de treinamento, que pode ser ativado ou desativado exclusivamente pelo administrador. A mecânica dessa funcionalidade é empregada sempre que houver necessidade de alimentar a base de dados com novos registros. Essa etapa só pode ser executada na presença de ao menos um administrador, a fim de garantir a integridade e a qualidade dos dados inseridos. Caso contrário, a criança participa normalmente do jogo apenas para avaliar seu nível de atenção. Quando o modo de treinamento está habilitado, o sistema armazena as métricas TDC coletadas durante as partidas em uma base de dados, permitindo que o módulo de treinamento da IA realize a análise comparativa entre os dados do indivíduo e a base existente. Esse processo tem como objetivo retroalimentar o modelo e aperfeiçoar continuamente o desempenho da IA.

Para uma melhor compreensão do funcionamento do sistema, a Figura ?? apresenta o fluxograma do processo, que descreve a sequência lógica das operações realizadas pelo sistema até o término das três partidas. Na etapa 1, ocorre a calibração dos olhos do jogador, processo em que o sistema identifica e ajusta os pontos de fixação ocular do usuário antes do início do jogo, garantindo a precisão do rastreamento. Em seguida, é executada a coleta das métricas TDC, que

ocorre automaticamente durante as três fases do jogo. Nessa etapa, o sistema processa e registra parâmetros como número de acertos, erros de omissão, erros de comissão, tempo de reação e variabilidade temporal das respostas. Concluída a coleta, o sistema entra em um ponto de decisão para verificar o modo de execução selecionado. Na etapa 2, caso o modo de treinamento esteja habilitado, o sistema armazena as métricas TDC em uma base de dados, permitindo que o módulo de treinamento da IA realize a análise comparativa entre os dados do indivíduo e a base existente. Esse processo visa aprimorar o modelo e gerar um pré-diagnóstico personalizado. Já na etapa 3, quando o modo de treinamento não está ativado, o sistema realiza diretamente a geração e exibição do pré-diagnóstico, utilizando as métricas coletadas durante a execução do jogo.

Figura 4 – Fluxograma do jogo Fonte: Autoria Própria (2024)

Optou-se pela utilização do banco de dados não relacional *MongoDB*, o qual armazena informações em documentos no formato *JSON*, possibilitando a criação de estruturas dinâmicas e aninhadas, adequadas ao armazenamento dos dados provenientes dos testes de rastreamento ocular. Sua flexibilidade e escalabilidade o tornam mais apropriado que bancos relacionais para o tratamento de grandes volumes de dados sensoriais. O gerenciamento do banco foi realizado por meio do *MongoDB Compass*, ferramenta que facilita a execução de consultas, validação de esquemas e análise de desempenho.

REFERÊNCIAS

ELBAUM, Tomer et al. Attention-Deficit/Hyperactivity Disorder (ADHD): Integrating the MOXO-dCPT with an Eye Tracker Enhances Diagnostic Precision. **Sensors**, v. 20, n. 21, 2020. ISSN 1424-8220. DOI: 10.3390/s20216386.

Disponível em: https://www.mdpi.com/1424-8220/20/21/6386

.

NASCIMENTO, Lucas Martins; MENEZES, Carolina Baptista. A RELAÇÃO ENTRE A PRÁTICA REGULAR DE VIDEOGAMES E ATENÇÃO SUSTENTADA. **Ciências & Cognição**, v. 25, n. 1, p. 141–156, dez. 2020.

Disponível em:

https://revista.cienciasecognicao.org/index.php/cec/article/view/1661

•

PAPOUTSAKI, Alexandra et al. WebGazer: Rastreamento ocular escalável via webcam usando interações do usuário. In: ANAIS da 25ª Conferência Internacional Conjunta sobre Inteligência Artificial (IJCAI). [S. I.: s. n.], jul. 2016.

Disponível em: https://webgazer.cs.brown.edu/

.

SAÚDE, Ministerio da. **Transtorno do déficit de atenção com hiperatividade - TDAH**. [S. l.: s. n.], 2014.

Disponível em: https://bvsms.saude.gov.br/transtorno-do-deficit-de-atencao-com-hiperatividade-tdah/

.

WIEBE, Annika et al. Virtual reality-assisted prediction of adult ADHD based on eye tracking, EEG, actigraphy and behavioral indices: a machine learning analysis of independent training and test samples. **Translational Psychiatry**, v. 14, n. 1, p. 508, 2024. ISSN 2158-3188. DOI: 10.1038/s41398-024-03217-y.

Disponível em: https://doi.org/10.1038/s41398-024-03217-y

.

YOO, Jae Hyun et al. Development of an innovative approach using portable eye tracking to assist ADHD screening: a machine learning study. **Frontiers in Psychiatry**, v. 15, 2024. ISSN 1664-0640. DOI: 10.3389/fpsyt.2024.1337595.

Disponível em: https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2024.1337595

.