1. feladatsor: Számelmélet

Maradékos osztási maradék

1. Az alábbi példákban osszuk el maradékosan a-t b-vel és határozzuk meg a hányadost és a maradékot:

- (a) a = 20, b = 6
- (b) a = -71, b = 5
- (c) a = 102, b = -7

- (d) a = -68, b = -11
- (e) a = 5, b = 12
- (f) a = -104, b = 8

(g) a = -327, b = -42

(h) a = -3, b = 12

2. (a) Legyenek a és b egészek, melyekre $a \mod 7 = 3$ és $b \mod 7 = 6$. Határozzuk meg a következőket, igazolva is állításunkat:

- (i) $a+b \mod 7$
- (ii) $a b \mod 7$
- (iii) $ab \mod 7$

(b) Legyenek a, b és $m \neq 0$ egészek. Bizonyítsuk be, hogy

- (i) $a+b \mod m$
- (ii) $a b \mod m$
- (iii) $ab \mod m$

meghatározható csupán $(a \mod m)$ és $(b \mod m)$ függvényeként (a és b pontos értékének ismerete nélkül is).

3. Határozzuk meg a következőket:

- (a) $2019^3 \mod 6$
- (b) $2019^{32} \mod 7$
- (c) $2019^{288} \mod 7$
- (d) 1017677⁸³⁸ utolsó számjegye (10-es számrendszerben)

Számrendszerek

4. Írjuk fel a következő, 10-es alapú számrendszerben megadott számokat (i) 2-es alapú (ii) 3-as alapú (iii) 5-ös alapú számrendszerben

a) 674

- b) 1864
- c) 376529

5. Végezzük el a megadott műveleteket az adott számrendszerben:

- (a) $1001100_{(2)} + 10101101_{(2)}$
- (b) $1001_{(2)} \cdot 1101_{(2)}$
- (c) $1221_{(3)} \cdot 112_{(3)}$

- (d) $1234_{(5)} + 4321_{(5)}$
- (e) $1234_{(5)} \cdot 4321_{(5)}$
- (f) $1236_{(7)} + 6321_{(7)}$

(g) $10011001_{(2)}: 101_{(2)}$

(h) $12011_{(3)}:201_{(3)}$

Oszthatósággal kapcsolatos feladatok

Az alábbi, oszthatósággal kapcsolatos feladatoknál használhatjátok a középiskolában tanultakat is:

- 6. Bizonyítsuk be, hogy 6 osztója az n(n+1)(2n+1)-nek, ahol n egész szám.
- 7. Jelöljön m egész számot. Bizonyítsuk be, hogy m^5-m oszható 30-cal.
- 8. Bizonyítsuk be, hogy ha a 4-gyel nem osztható páros szám, akkor $a(a^2-1)(a^2-4)$ osztható 960-nal.
- ${\bf 9.}~~$ Bizonyítsuk be, hogy három egymást következő egész szám köbének összege osztható

a) a középső szám 3-szorosával

b) 9-cel

- 10. Bizonyítsuk be, hogy ha a tizes számrendszerben ábrázolt bármelyik háromjegy természetes számot kétszer egymás mellé írjuk, akkor az így kapott hatjegyű szám osztható 7-tel, 11-gyel és 13-mal.
- 11. Lássuk be, hogy két páratlan szám négyzetének különbsége mindig osztható 8-cal.
- 12. Melyek igazak az alábbi állítások közül? Bizonyítsuk is állításunkat az oszthatóság definíciója, illetve ellenpélda segítségvel:

a) $c|a+b \Rightarrow c|a \wedge c|b$;

b) $c|a+b \wedge c|a \Rightarrow c|b$; c) $c|a+b \wedge c|a-b \Rightarrow c|a \wedge c|b$;

d) $c|a \wedge d|a \Rightarrow cd|a$;

e) $c|ab \Rightarrow c|a \lor c|b;$ f) $c|a \land d|b \Rightarrow cd|ab;$

g) $c|2a + 5b \wedge c|3a + 7b \Rightarrow c|a \wedge c|b$

További feladatok

- 13. Tegyük fel, hogy az (a, b, c számjegyekbol álló) abc háromjegyu szám osztató 37-tel. Igazoljuk, hogy ekkor a bca szám is osztható 37-tel.
- 14. Bizonyítsuk be, hogy ha 5a + 9b osztható 23-mal, akkor 3a + 10b is osztható 23-mal.
- **15.** Mely c egészekre lesz $(c^6 3) = (c^2 + 2)$ is egész szám?
- **16.** Igazoljuk, hogy minden n természetes számra $133|11^{n+2}+12^{2n+1}$.
- 17. Létezik-e olyan szám, amelyben csak az 1 és 2 számjegyek fordulnak elo, és amely osztható 2^{1000} -nel?
- 18. Adjunk szabályt annak eldöntésére, hogy egy szám osztható-e az alábbiakkal és bizonyítsuk is be azt:

1. 7-tel;

2. 11-gyel

3. 13-mal;

4. 17-tel;

5. 19-cel.

- 19. A szultán 100 cellájában száz rab raboskodik. A szultán leküldi egymás után 100 emberét. A k-adik alkalommal leküldött ember minden k-adik cella zárján állít egyet, ha nyitva volt, bezárja, ha zárva volt, akkor kinyitja. Kezdetben minden cella zárva volt. Mely sorszámú cellák lesznek a végén nyitva?
- 20. Bizonyítsuk be, hogy öt egymást követo szám négyzetének összege sosem lesz négyzetszám.
- **21.** Bebizonyítható, hogy tetszoleges b<-1 egész esetén bármely a egész felírható b alapú számrendszerben, azaz $a=\sum_{i=0}^k a_i b^i$ alakban, ahol $\forall 0\leq i\leq k$ -ra: $0\leq a_i\leq |b|-1$. Írjuk fel az alábbi számokat -5 alapú számrendszerben: a) -121 b) 127 c) 2636