R language and data analysis: summary statistics

Qiang Shen

Dec 26, 2017

outline

- discriptive statistics
- Frequency and contingency tables
- correlation
- t test

outline

- discriptive statistics
- Frequency and contingency tables
- correlation
- t test

sample

sample

```
str(sample)
n1=100; n2=20
str(sample)
set.seed(1234)
y<-round(100*runif(20))
x<-sample(1:n1,size=n2,replace=F)## change to T for display
 ## apply
x;y
sort(x)
x[order(x)] ##
z=c(10,3,8,1); order(z)
```

average summation (with missing value)

```
set.seed(1234)
str(sample)
x<-sample(1:100,replace=F)
mean(x)
sum(x)/length(x)
mean(x)
y<-x
n=100
y[sample(1:n,size=20)] < -NA
У
mean(y,na.rm=T)
```

weighted summation

Data-based quantity	Equivalent mathematical quantity	limit as n→∞	
Relative frequency of x_j	Probability that $\mathbf{X} = x_j, \ \text{Pr}\{\mathbf{X} = x_j\}$	$\hat{p}_i \rightarrow p_i$	
$\hat{p}_i = f_i / n$	p_i	P1 'P1	
Mean $\overline{x} = \frac{1}{n} \sum f_i x_i$	Expected value of X , E(X) $ \label{eq:power_power} \mathscr{L} = \sum p_i x_i $	$\bar{x} \to \mu$	
Variance $s^2 = \frac{1}{n-1} \sum f_i (x_i - \overline{x})^2$	Variance of X , Var(X) $ \sigma^2 = \sum p_i \big(x_i - \mu \big)^2 $	$s^2 o \sigma^2$	

weighted.mean(grades, weights) ## same as the expectation or sum(grades*weights)

variance and standard deviation

Sample Variance =
$$s^2 = \frac{\Sigma(X - \overline{X})^2}{n-1}$$

```
x <- c(1, 2, 3, 4, 5, 6, 7, 8)
var(x)
sd(x) ##sample standard deviation.

n <- length(x)
meanx <- sum(x)/n
css <- sum((x - meanx)**2)
sdx <- sqrt(css / (n-1)) #adjustment of degree of freedom.
sdx</pre>
```

basic function

```
x <- sample(1:100,8,replace=T)
var(x,na.rm=T)
sd(x,na.rm=T)
min(x)
max(x)
median(x)
quantile(x)
quantile(x,c(0.1,0.9))</pre>
```

descriptive stats via summary

```
vars <- c("mpg", "hp", "wt")
head(mtcars[vars])
summary(mtcars[vars])
sapply(mtcars[vars],median)
sapply(mtcars[vars],function(x) quantile(x,0.5))
sapply(mtcars[vars],quantile,0.5)</pre>
```

descriptive stats via sapply()

```
mystats <- function(x,na.omit = FALSE) {</pre>
                 if (na.omit)
          x \leftarrow x[!is.na(x)]
          m \leftarrow mean(x)
          n <- length(x)
            s \leftarrow sd(x)
            skew <- sum((x - m)^3/s^3)/n
           kurt <- sum((x - m)^4/s^4)/n - 3
           return(c(n = n, mean = m, stdev = s, skew = skew, kurtos)
vars <- c("mpg", "hp", "wt")</pre>
sapply(mtcars[vars], mystats,na.omit=T)
mtcars mpg[2] < -NA; mtcars pg[c(3,4)] < -NA; mtcars pg[c(6:9)] < -NA
# sapply(mtcars[vars], mystats)
# sapply(mtcars[vars], mystats,na.omit=T)
```

function explanation

```
a < -c(1,2,3,NA)
mystats <- function(x,na.rm=F) {</pre>
  if (na.rm) x \leftarrow x[!is.na(x)]
  return(x)
mystats(a)
[1] 1 2 3 NA
mystats(a,na.rm=T)
[1] 1 2 3
```

Descriptive statistics (psych package)

- The SD quantifies scatter how much the values vary from one another.
- The SE quantifies how precisely you know the true mean of the population. It takes into account both the value of the SD and the sample size.

```
library(psych)
vars <- c("mpg", "hp", "wt")
describe(mtcars[vars])
sd(mtcars$hp)/sqrt(dim(mtcars)[1])</pre>
```

Descriptive statistics by group with aggregate()

```
vars <- c("mpg", "hp", "wt")
aggregate(mtcars[vars], by = list(am = mtcars$am), mean)
aggregate(mtcars[vars], by = list(am = mtcars$am), sd)</pre>
```

Summary statistics by group (psych package)

```
library(psych)
vars <- c("mpg", "hp", "wt")
describeBy(mtcars[vars], mtcars$am)</pre>
```

outline

- discriptive statistics
- Frequency and contingency tables
- correlation
- t test

Frequency table

Table 7.1 Functions for creating and manipulating contingency tables

Function	Description
table(var1, var2,, varN)	Creates an <i>N</i> -way contingency table from <i>N</i> categorical variables (factors)
xtabs(formula, data)	Creates an <i>N</i> -way contingency table based on a formula and a matrix or data frame
<pre>prop.table(table, margins)</pre>	Expresses table entries as fractions of the marginal table defined by the ${\tt margins}$
margin.table(table, margins)	Computes the sum of table entries for a marginal table defined by the ${\tt margins}$
addmargins(table, margins)	Puts summary margins (sums by default) on a table
ftable(table)	Creates a compact, "flat" contingency table

One-way table

```
library(vcd)
mytable <- with(Arthritis, table(Improved))
mytable
prop.table(mytable)
prop.table(mytable)*100</pre>
```

Two-way table

```
table(Arthritis$Treatment,Arthritis$Improved)
mytable<-xtabs(~ Treatment+Improved, data=Arthritis)
mytable</pre>
```

margin.table

Joint	Pro	bak	sility	of	R	ጲ	Q
JOHN	110	Dui	JIIII Y	O.	1	œ	V

Probabilities	Event P	Event Q	Total
Event R	a/n	b/n	(a+b)/n
Event S	c/n	d/n	(c+d)/n
Total	(a+c)/n	(b+d)/n	1

Marginal Probability of P

$$P(Q) = P(R,Q) + P(S,Q) = P[(R \cap Q) \cup P(S \cap Q)]$$

library(vcd)
mytable<-xtabs(~ Treatment+Improved, data=Arthritis)
prop.table(mytable)</pre>

Improved

Treatment None Some Marked Placebo 0.34523810 0.08333333 0.08333333 Treated 0.15476190 0.08333333 0.25000000

equation

$$p(A|B) = \frac{P(AB)}{P(B)}$$

margin.table

```
library(vcd)
mytable<-xtabs(~ Treatment+Improved, data=Arthritis)</pre>
## marginal probability by row
mytable
margin.table(mytable, 1)
prop.table(mytable, 1) # conditional probability
## marginal probability by column
margin.table(mytable, 2)
prop.table(mytable, 2)
#joint probability
prop.table(mytable)
addmargins (mytable)
##contingency table
addmargins(prop.table(mytable))
#conditional probability
0.34523810/0.51190476: 0.34523810/0.50000000
## conditional probability.
```

xtabs

```
library(datasets)
UCB.df<-as.data.frame(UCBAdmissions)
UCB.df</pre>
```

```
Admit Gender Dept Freq
  Admitted
            Male
                   A 512
  Rejected Male A 313
2
3
  Admitted Female A
                      89
4
  Rejected Female A 19
5
  Admitted
            Male
                   B 353
                   B 207
6
  Rejected
            Male
  Admitted Female
                   В
                      17
                   B 8
8
  Rejected Female
9
  Admitted
            Male
                     120
10 Rejected Male
                     205
11 Admitted Female
                    202
12 Rejected Female
                     391
```

Three-way contingency table

```
mytable <- xtabs(~ Treatment+Sex+Improved, data=Arthritis)
mytable
ftable(mytable)
# margin.table(mytable, 1)
# margin.table(mytable, 2)
# margin.table(mytable, 3)
# margin.table(mytable, c(1,3))
# ftable(prop.table(mytable, c(1, 2)))
# ftable(addmargins(prop.table(mytable, c(1, 2)), 3))
# ftable(addmargins(prop.table(mytable, c(1, 2)), 3)) * 10</pre>
```

Frequency and contingency tables

- table()
- prop.table()
- xtabs()
- margin.table()
- addmargin()

converting a table into a flat file via table2flat

```
table2flat <- function(mytable) {</pre>
  df <- as.data.frame(mytable)</pre>
  rows <- dim(df)[1]
  cols \leftarrow dim(df)[2]
  x <- NUI.I.
  for (i in 1:rows) {
    for (j in 1:df$Freq[i]) {
       row <- df[i, c(1:(cols - 1))]
       x \leftarrow rbind(x, row)
  row.names(x) \leftarrow c(1:dim(x)[1])
  return(x)
```

Using table2flat with published data

```
treatment <- rep(c("Placebo", "Treated"), 3)
improved <- rep(c("None", "Some", "Marked"), each = 2)
Freq <- c(29, 13, 7, 7, 7, 21)
mytable <- as.data.frame(cbind(treatment, improved, Freq))
mytable
mydata <- table2flat(mytable)
mydata</pre>
```

outline

- discriptive statistics
- Frequency and contingency tables
- correlation
- t test

Correlation

- what is correlation?
- correlation coefficient
- statistical inference
- correlation vs. regression
- correlation coeffcient extended
- correlation table and visualization
- missing values
- output of correlation table
- correlation vs. casuality

correlation

co- relation

correlation example 1

correlation example 2

correlation example 3

correlation

equation

$$\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sqrt{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}\sum_{i=1}^{n}(y_{i}-\bar{y})^{2}}}$$

```
a<-c(2,3,5,8,9,11,5,3,12,7)
b<-c(7,4,10,17,13,14,2,7,15,12)
n<-length(a)
mean_a<-mean(a);mean_b<-mean(b)
sum((a-mean_a)*(b-mean_b))/(n-1)/sqrt(var(a)*var(b))
## covariance vs. correlation
sum((a-mean_a)*(b-mean_b))/(n-1);cov(a,b)
cov(a,b)/(sd(a)*sd(b))
cor(a,b)</pre>
```

statistical test: cor.test

```
a<-c(2,3,5,8,9,11,5,3,12,7)
b<-c(7,4,10,17,13,14,2,7,15,12)
cor.test(a,b,method = 'spearman')
```

Spearman's rank correlation rho

direction.

direction.

- direction.
- qualitative or quantitative.

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

```
\hat{\beta}_1 = r \frac{S_y}{S_x}
x < -c(2,3,5,8,9,11,5,3,12,7)
y < -c(7,4,10,17,13,14,2,7,15,12)
summary(lm(y~x))$coe
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.821198 2.2782106 1.238340 0.250694326
x 1.119816 0.3126415 3.581789 0.007169592
```

```
cor(x,y)*sd(y)/sd(x)
```

[1] 1.119816

correlation coeffcient extended

```
str(cor)
a<-c(2,3,5,8,9,11,5,3,12,7)
b<-c(7,4,10,17,13,14,2,7,15,12)
cor(a,b,method='pearson')
cor(a,b,method='spearman')
cor(a,b,method='kendall')</pre>
```

example

```
require(ggplot2)
head(economics)
?economics
# pce:personal consumption expenditures
# pop:total population, in thousands
# psavert:personal savings rate
# unemploy:number of unemployed in thousands
# median duration of unemployment, in week
```

example

```
library(ggplot2)
with(economics,cor(pce,psavert)) #significance
```

[1] -0.837069

from correlation table to visualization

single correlation—>correlation table

```
library(ggplot2)
cor(economics[,c(2,4:6)])
```

```
uempmed
                                           unemploy
               рсе
                      psavert
                               0.7273492
                                          0.6139997
         1.0000000 -0.8370690
рсе
psavert -0.8370690
                    1.0000000 -0.3874159 -0.3540073
uempmed 0.7273492 -0.3874159
                               1.0000000
                                          0.8694063
unemploy
         0.6139997 -0.3540073
                               0.8694063
                                          1.0000000
```

from correlation table to visualization

• single correlation—>correlation table—>data visualization

from correlation table to visualization

• single correlation—>correlation table->data visualization

```
library(ggplot2)
pairs(economics[,c(2,4:6)], pch = 21) ##base
```

Plot: GGally

Plot: GGally

```
library(ggplot2)
library(GGally,quietly=T)
# GGally::ggpairs(economics[,c(2,4:6)],params=list(labelSi.ggpairs(economics[,c(2,4:6)])
with(economics,plot(pce,psavert))
# data(tips,package='reshape2')
# head(tips)
# GGally::ggpairs(tips)
```

Plot: corrplot

Plot: corrplot

```
library('corrplot')
econCor<-cor(economics[,c(2,4:6)])
corrplot(econCor, method = "circle") #plot matrix</pre>
```

visualization summary

- base::pairs
- GGally::ggpairs
- corrplot::corrplot

missing value

```
str(cor)
m < -c(9.9.NA.3.NA.5.8.1.10.4)
n < -c(2.NA.1.6.6.4.1.1.6.7)
p < -c(8,4,3,9,10,NA,3,NA,9,9)
q < -c(10,10,7,8,4,2,8,5,5,2)
r < -c(1.9.7.6.5.6.2.7.9.10)
theMat<-cbind(m,n,p,q,r)
theMat
cor(theMat)
cor(theMat,use='everything')
cor(theMat,use='all.obs')
cor(theMat,use='complete.obs')
cor(theMat,use='na.or.complete')
data<-na.omit(theMat)
data
cor(data)
class(data)
```

missing value

```
m<-c(9,9,NA,3,NA,5,8,1,10,4)
n<-c(2,NA,1,6,6,4,1,1,6,7)
p<-c(8,4,3,9,10,NA,3,NA,9,9)
q<-c(10,10,7,8,4,2,8,5,5,2)
r<-c(1,9,7,6,5,6,2,7,9,10)
theMat<-cbind(m,n,p,q,r)
cor(theMat,use="pairwise.complete.obs")
cor(theMat[,c('m','n')],use='complete.obs')
cor(theMat[,c('m','p')],use='complete.obs')</pre>
```

statistical inference

• single correlation—>correlation table

```
Call:corr.test(x = iris[, 1:4], use = "complete")
Correlation matrix
            Sepal.Length Sepal.Width Petal.Length Petal.W
Sepal.Length
                  1.00
                             -0.12
                                           0.87
                             1.00
                                        -0.43
Sepal.Width
               -0.12
                  0.87 -0.43
Petal.Length
                                          1.00
                           -0.37
                                          0.96
Petal.Width
                   0.82
Sample Size
[1] 150
Probability values (Entries above the diagonal are adjusted
            Sepal.Length Sepal.Width Petal.Length Petal.Wi
Sepal.Length
                   0.00
                              0.15
Sepal.Width
                   0.15
                             0.00
Petal.Length
                   0.00
                             0.00
Petal.Width
                   0.00
                              0.00
                                              0
```

statistical inference

• single correlation—>correlation table

```
# cor.test(iris[,1:4])
library(psych)
corr.test(iris[,1:4], use = "complete")
```

output

library	(xtable)	;kable	(corstarsl	(swiss[, <mark>1:4</mark>])))
---------	----------	--------	------------	-------------------------------	---

	Fertility	Agriculture	Examination
Fertility			
Agriculture	0.35*		
Examination	-0.65***	-0.69***	
Education	-0.66***	-0.64***	0.70***

output

```
source("corstart1.R");corstars1(economics[,c(2,4:6)])
xtable(corstars1(swiss[,1:4]))
```

correlation vs. causality.

correlation example 3

correlation vs. causality.

correlation vs. causality.

"A zillion things can correlate with each other, depending on how you structure the data and what you compare. To discern meaningful correlations from meaningless ones, you often have to rely on some causal hypothesis about what is leading to what. You wind up back in the land of human theorizing." —David Brooks

equation

- cor(a,b)
- cov(a,b)
- pairs
- o cor.test(a,b) vs.psych::corr.test()

correlation

- what is correlation?
- correlation coefficient
- statistical inference
- correlation vs. regression
- correlation coeffcient extended
- correlation table and visualization
- missing values
- output of correlation table
- correlation vs. casuality

outline

- discriptive statistics
- Frequency and contingency tables
- correlation
- t test

t test

- single sample t test
- independent sample t test
- paired t test

sample data

```
extra group ID
 0.7 1 1
2 -1.6 1 2
3 -0.2 1 3
4 -1.2 1 4
5 -0.1 1 5
6 3.4 1 6
```

```
'data.frame': 20 obs. of 3 variables:
$ extra: num 0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0 2 ...
$ group: Factor w/ 2 levels "1", "2": 1 1 1 1 1 1 1 1 1 1
```

\$ ID : Factor w/ 10 levels "1", "2", "3", "4", ...: 1 2 3 4 !

one-sample t test

• t.test

```
head(sleep)
```

```
extra group ID

1 0.7 1 1

2 -1.6 1 2

3 -0.2 1 3

4 -1.2 1 4

5 -0.1 1 5

6 3.4 1 6
```

```
t.test(sleep$extra,mu=0)
```

One Sample t-test

independent two-sample t-test

```
# library(tidyr);sleep_wide<-spread(sleep, group, extra)
library(reshape2)
sleep_wide<-dcast(sleep, ID~group, value.var = "extra")</pre>
names(sleep_wide)<-c('ID', 'group1', 'group2')</pre>
## Welch t-test
 #long format
t.test(extra ~ group, sleep) # tilde
 #wide format
t.test(sleep_wide$group1, sleep_wide$group2)
# Student t-test
t.test(extra ~ group, sleep, var.equal=TRUE)
```

Paired-sample t-test

```
# wide format
# library(tidyr);sleep_wide<-spread(sleep, group, extra)
library(reshape2)
sleep_wide<-dcast(sleep, ID~group, value.var = "extra")</pre>
names(sleep_wide)<-c('ID', 'group1', 'group2')</pre>
t.test(sleep_wide$group1, sleep_wide$group2, paired=TRUE)
# long format
# Sort by group then ID
sleep <- sleep[order(sleep$group, sleep$ID), ]</pre>
sleep
# Paired t-test
t.test(extra ~ group, sleep, paired=TRUE)
## equivalent to testing whether difference between
## each pair of observations has a population mean of 0.
t.test(sleep_wide$group1 - sleep_wide$group2, mu=0,
```

t test

- single sample t test
- independent sample t test
- paired t test

summary

- discriptive statistics
- Frequency and contingency tables
- correlation
- t test