Cálculo Numérico - Relatório 1ª Unidade

Giovanni Rosário

2019.1

1 Lista 1

Figura 1: Exercício 1

Figura 2: Exercício 2

Figura 3: Exercício 3

2 Lista 2

Exercício 1

its = Número de iterações

BISECTION	NEWTON	SECANT	REGULA
			FALSI
-2.10000 - 19 its	4.80000 - 11 its -	-2.10000 - 14 its	-2.09998 - 33 its
-1.00000 - 19 its	2.10000 - 19 its -	-1.00000 - 8 its	-1.00000 - 14 its
4.80000 - 21 its	1.00000 - 4 its	4.80000 - 7 its	4.80000 - 7 its

O método do Ponto fixo foi implementado porém não consegui encontrar uma função ponto fixado que produzisse resultado válido.

Exercício 2

Resultado: 6.00373 segundos. Encontrado com o método da Bisseção e palpites iniciais de 0 e 20.

Exercício 3 Seja h1 a altura em que a escada x1 encosta na parede, e seja h2 a altura em que a escada x2 encosta na parede. Pelo teorema de Pitágoras temos:

$$x1^2 = h1^2 + L^2$$
$$x2^2 = h2^2 + L^2$$

Subtraindo as funções para eliminar L, e com o Teorema das Escadas Cruzadas 1/h1+1/h2=8 temos as funções :

$$h1^{2} - 2Ah1^{3} + (A - h1)^{2}(x1^{2} - x2^{2}) = 0$$

$$h2^{2} - 2Ah2^{3} + (A - h2)^{2}(x2^{2} - x1^{2}) = 0$$

Após encontrar as raizes pelo método da bisseção, 5.94459 e 11.71183 oara a primeira função; 25.24217 e -23.13738 para a segunda. Usamos 25.24217 com o teorema de Pitágoras inicial, temos:

$$30^2 = 25.24217^2 + L^2$$

 $\mathbf{L} = \mathbf{16.21285}$

3 Lista 3

Implementados os algoritmos da eliminação de Gauss com e sem pivotamento parcial.

Referências

http://mathworld.wolfram.com/CrossedLaddersTheorem.html