

Мегафакультет трансляционных информационных технологий Факультет информационных технологий и программирования

	<u> </u>
Группа <u>M32041</u>	К работе допущен
Студент Курепин Даниил Денисович	Работа выполнена
Преподаватель Хустутдинова Наира	_Отчет принят

Рабочий протокол и отчет по лабораторной работе № 3.00

- 1. Цель работы.
 - Изучить работу электронного осциллографа
 - Изучить векторное сложение колебаний
- 2. Задачи, решаемые при выполнении работы.
 - Получение устойчивого синусоидального сигнала на осциллографе
 - Расчет амплитуды, периода и частоты сигнала
 - Сравнение амплитуды и частоты измеренного сигнала с установленной на генераторе
 - Получение устойчивых прямоугольного и импульсного сигналов на осциллографе
 - Измерение длительности импульса сигнала
 - Расчет скважности сигнала
 - Сравнение скважности измеренного сигнала с установленной на генераторе
 - Установка на генераторе синусоидального сигнала для первого и второго каналов
 - Получение устойчивой картины фигуры Лиссажу
- 3. Объект исследования.
 - Электронный осциллограф
 - Векторное сложение колебаний
- 4. Метод экспериментального исследования.
- □ Моделирование
- 5. Рабочие формулы и исходные данные.

$$\mu = \frac{1}{T}$$

$$S = \frac{T}{\tau} = \frac{1}{D}$$

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	осциллограф	цифровой	-	1,5% - 2%

- 7. Результаты прямых измерений и их обработки.
- $\hfill\square$ Синусоидальный сигнал с частотой 1 кГц и амплитудой 2 В.

$$A = 2 B$$

$$T = 10^{-3} \text{ c}$$

$$\mu = \frac{1}{T} = 10^3 \, \mathrm{c}^{-1}$$

На генераторе: A=2 В, $\mu=1$ к Γ ц

На осциллографе A=2 В, $\mu=1$ к Γ ц

$$A_r = A_0$$

$$\mu\Gamma = \mu_0$$

□ Прямоугольный импульсный сигнал с частотой 1 кГц, амплитудой 2,5 В и скважностью 5

$$A = 2,5 \text{ B}$$

$$T = 10^{-3} \text{ c}$$

$$\tau = 200 * 10^{-6} c$$

$$\mu = \frac{1}{T} = 10^3 c^{-1}$$

$$S = \frac{T}{\tau} = 5$$

На генераторе: A=2,5 В, $\mu=1$ к Γ ц, S=5

На осциллографе A=2,5 В, $\mu=1$ к Γ ц, S=5

$$A_r = A_0$$

$$\mu_{\Gamma} = \mu_{0}$$

$$S_r = S_0$$

Сигнал при изменении скважности:

$$S = 2,5$$

S = 0.8

□ Синусоидальный сигнал с частотой 1 кГц для первого и второго каналов

1:1,
$$\varphi = 0$$

2: 3, $\varphi = \pi/2$

3: 1, $\varphi = 0$

Вывод:

В ходе выполнения лабораторной работы я научился получать устойчивый синусоидальный и прямоугольный импульсный сигнал на осциллографе, работать с несколькими каналами данного прибора, измерять амплитуду, период и частоту сигнала, определять его скважность. Так же я научился получать устойчивые картины фигур Лиссажу.