Esercizi Capitolo 5 - Alberi

Alberto Montresor

19 Agosto, 2014

Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle rispettive soluzioni tramite collegamenti ipertestuali. Altrimenti, fate riferimento ai titoli degli esercizi. Ovviamente, si consiglia di provare a risolvere gli esercizi personalmente, prima di guardare la soluzione.

Per molti di questi esercizi l'ispirazione è stata presa dal web. In alcuni casi non è possibile risalire alla fonte originale. Gli autori originali possono richiedere la rimozione di un esercizio o l'aggiunta di una nota di riconoscimento scrivendo ad alberto.montresor@unitn.it.

1 Problemi

1.1 Larghezza (Esercizio 5.4 del libro)

La larghezza di un albero ordinato è il numero massimo di nodi che stanno tutti al medesimo livello. Si fornisca una funzione che calcoli in tempo ottimo la larghezza di un albero ordinato T di n nodi.

Soluzione: Sezione 2.1

1.2 Visite (Esercizio 5.5 del libro)

Gli ordini di visita di un albero binario di 9 nodi sono i seguenti:

- A, E, B, F, G, C, D, I, H (anticipato)
- B, G, C, F, E, H, I, D, A (posticipato)
- B, E, G, F, C, A, D, H, I (simmetrico).

Si ricostruisca l'albero binario e si illustri brevemente il ragionamento.

Soluzione: Sezione 2.2

1.3 Albero inverso (Esercizio 5.9 del libro)

Dato un albero binario, i cui nodi contengono elementi interi, si scriva una procedura di complessità ottima per ottenere l'albero inverso, ovvero un albero in cui il figlio destro (con relativo sottoalbero) è scambiato con il figlio sinistro (con relativo sottoalbero).

Soluzione: Sezione 2.3

1.4 Aggiungi un figlio (Esercizio 5.10 del libro)

Dato un albero binario i cui nodi contengono interi, si vuole aggiungere ad ogni foglia un figlio contenente la somma dei valori che appaiono nel cammino dalla radice a tale foglia. Si scriva una procedura ricorsiva di complessità ottima.

1 PROBLEMI 2

Soluzione: Sezione 2.4

1.5 Albero binario completo (Esercizio 5.12 del libro)

Un albero binario completo di altezza k è un albero binario in cui tutti i nodi, tranne le foglie, hanno esattamente due figli, e tutte le foglie si trovano al livello k. Si dimostri per induzione che, in un albero binario completo di altezza k, il numero dei nodi è $2^{k+1} - 1$ ed il numero delle foglie è 2^k .

Soluzione: Sezione 2.5

1.6 Visite iterative (Esercizio 5.13 del libro)

Utilizzando le pile, si scrivano tre procedure iterative di complessità ottima per effettuare, rispettivamente, le visite anticipata, differita e simmetrica di un albero binario.

Soluzione: Sezione 2.6

1.7 Altezza minimale

Dato un albero binario T, definiamo altezza minimale di un nodo v la minima distanza di v da una delle foglie del suo sottoalbero.

- Descrivere un algoritmo che riceve in input un nodo v e restituisce la sua altezza minimale.
- Calcolare la complessità in tempo dell'algoritmo proposto.

Soluzione: Sezione 2.7

1.8 Alberi binari strutturalmente diversi

Due alberi binari si dicono "strutturalmente" diversi se disegnando correttamente i figli destri e sinistri, si ottengono figure diverse. Ad esempio, un nodo radice con un figlio destro è diverso da un nodo radice con un figlio sinistro.

- 1. Si dica quanti sono i possibili alberi binari strutturalmente diversi composti da 1, 2, 3 e 4 nodi.
- 2. Dare una formula di ricorrenza per il caso generale di n nodi.
- 3. Data la ricorrenza al punto 2) trovare il più stretto limite asintotico inferiore che riuscite a trovare. Suggerimento: la formula risultante non vi ricorda nulla? Guardate negli appunti.

Soluzione: Sezione 2.8

1.9 Alberi pieni

Un albero binario "pieno" è un albero binario in cui tutti i nodi hanno esattamente 0 o 2 figli, e nessun nodo ha 1 figlio. Scrivere un programma ricorsivo che valuti P_n , ovvero il numero di alberi binari strutturalmente diversi che si possono ottenere con n nodi. Si valuti la complessità dell'algoritmo risultante.

Soluzione: Sezione 2.9

1.10 Altezza specificata

Dato un albero binario con radice T e un intero k, scrivere un algoritmo in pseudocodice che restituisca il numero di nodi di T che hanno altezza k. Calcolare la complessità in tempo e in spazio dell' algoritmo proposto.

Bertossi, Montresor. Algoritmi e Strutture di Dati. ©2010 De Agostini Scuola

PROBLEMI 3

Figura 1: Un albero con lunghezza di cammino 10

Soluzione: Sezione 2.10

1.11 Lunghezza di cammino

In un albero binario, definiamo lunghezza di cammino come la somma delle distanze dei nodi dalla radice. Ad esempio, la lunghezza del cammino dell'albero in Figura 1 è pari a 10.

Scrivere un algoritmo in pseudo-codice per calcolare la lunghezza di cammino in un albero binario t. Discutere la complessità in tempo dell'algoritmo proposto in funzione del numero di nodi dell'albero.

Soluzione: Sezione 2.11

1.12 Larghezza di livello

Dato un albero binario T e un intero k, scrivere un algoritmo che restituisca il numero di nodi presenti nel livello k.

Soluzione: Sezione 2.12

2 Soluzioni

Larghezza (Esercizio 5.4 del libro)

È possibile modificare semplicemente un algoritmo di visita in ampiezza per assegnare un livello ad ognuno dei nodi, e contare quanti nodi appartengono allo stesso livello. Il costo dell'algoritmo risultante è ovviamente O(n), oltre ad utilizzare una quantità di memoria aggiuntiva O(n) per associare un livello ad ogni nodo.

```
integer larghezza(TREE t)
  if t = nil then return 0
  integer larghezza \leftarrow 1
  integer level \leftarrow 1
  integer count \leftarrow 1
  QUEUE Q \leftarrow \mathsf{Queue}()
  Q.\mathsf{enqueue}(t)
  t.level \leftarrow 0
  while not Q.isEmpty() do
       Tree u \leftarrow Q.dequeue()
       if u.level \neq level then
            level \leftarrow u.level
         \_count \leftarrow 0
       count \leftarrow count + 1
       if count > larghezza then larghezza \leftarrow count
       Tree v \leftarrow u.leftmostChild()
       while v \neq \text{nil do}
            v.level \leftarrow u.level + 1
            Q.\mathsf{enqueue}(v)
           v \leftarrow v.rightSibling()
  return larghezza
```

Alcuni studenti hanno proposto invece una versione basata su DFS, che si appoggia su un vettore dinamico, indicizzato sui livelli, per contare il numero di nodi per livello, e poi selezionare il valore massimo. La complessità in tempo è sempre O(n), la complessità in spazio è sempre O(n), il codice è leggermente più semplice. Per variare, ne vediamo una versione basata su alberi binari.

```
integer larghezza(TREE t)
 Vector count \leftarrow \mathbf{new} \ Vector
 larghezza(t, count, 0)
 return max(count)
```

```
larghezza(Tree t, Vector count, integer level)
 if t \neq \text{nil then}
      count[level] \leftarrow count[level] + 1
```

```
larghezza(t.left, count, level + 1)
larghezza(t.right, count, level + 1)
```

Uno studente, Mattia Morandi, ha proposto la versione seguente, che sfrutta ancora meglio la visita per livelli, notando che quando tutti i nodi di un livello vengono estratti dalla coda, la coda contiene solo e unicamente i nodi del livello successivo. Basta quindi utilizzare la dimensione della coda come misuratore della larghezza del livello, e confrontarla con la larghezza massima trovata fino ad ora. Non solo, il valore

della larghezza può essere copiato nella variabile count, e utilizzato per scoprire quando sarà terminato il prossimo livello. Il costo di questa funzione, più elegante della precedente, è sempre O(n), ma in questo caso non è richiesta memoria aggiuntiva pari ad O(n), ma solo pari a $O(\ell)$, dove ℓ è la massima larghezza.

```
integer larghezza(TREE t)
 if t = nil then return 0
 integer count \leftarrow 1
                                 % Numero di nodi da visitare del livello corrente; inizialmente la radice
 integer larghezza \leftarrow 1
                                                % Massimo larghezza trovata finora; inizialmente la radice
 QUEUE Q \leftarrow \mathsf{Queue}()
 Q.\mathsf{enqueue}(t)
 while not Q.isEmpty() do
      TREE u \leftarrow Q.dequeue()
     TREE v \leftarrow u.leftmostChild()
      while v \neq \text{nil do}
          Q.\mathsf{enqueue}(v)
        v \leftarrow v.rightSibling()
      count \leftarrow count - 1
     if count = 0 then
                                                                                                % Nuovo livello
          count = Q.size()
          larghezza \leftarrow \max(larghezza, count)
 return larghezza
```

2.2 Visite (Esercizio 5.5 del libro)

L'albero risultante è mostrato in Figura 2. È possibile ragionare nel modo seguente:

- A è la radice, perchè visitata per prima nell'ordine anticipato;
- A ha figlio sinistro e destro, perchè B,E,G,F,C appartengono al suo sottoalbero sinistro e D,H,I al suo sottoalbero destro (per la visita in ordine simmetrico);
- E è il figlio sinistro di A, perchè il primo ad essere visitato dopo A nella visita anticipata;
- B ha figlio sinistro e destro, perchè B appartiene al sottoalbero sinistro di E e G,F,C al suo sottoalbero destro (per la visita in ordine simmetrico);
- B è figlio sinistro di E (per la visita in ordine simmetrico);
- Fè figlio destro di E (per la visita in ordine anticipato);
- G e C sono figli sinistri e destro di F (per la visita in ordine simmetrico);
- Dè figlio destro di A (in quanto primo ad essere esaminato dopo il sottoalbero sinistro di A nell'ordine anticipato);
- Restano H e I; poichè I viene visitato prima di H nell'ordine anticipato, I deve essere padre di H e figlio di D;
- poichè I non viene visitato prima di D nell'ordine simmetrico, non può essere suo figlio sinistro; è quindi figlio destro di D;
- poichè H è visitato prima di I nell'ordine simmetrico, H deve essere figlio sinistro di I;

Figura 2: Albero risultante

2.3 Albero inverso (Esercizio 5.9 del libro)

L'algoritmo, molto semplicemente, scambia il sottoalbero destro e sinistro, e lavora ricorsivamente su di essi allo stesso modo. Il tempo di calcolo è O(n).

2.4 Aggiungi un figlio (Esercizio 5.10 del libro)

La procedura seguente risolve il problema in tempo O(n). La chiamata iniziale è addChild(t,0).

2.5 Albero binario completo (Esercizio 5.12 del libro)

Si procede per induzione su k. Sia T_k un albero completo di altezza k; sia n_k il numero di nodi contenuti in T_k . Per k=0, T_0 è formato da un solo nodo, quindi $n_0=2^{k+1}-1=1$ è banalmente vero; inoltre, questo nodo è foglia, quindi il numero di foglie corrisponde a $2^0=1$.

È possibile notare che ogni foglia in T_{k-1} ha due figli foglia in T_k . Ragionando per induzione, sappiamo che il numero di nodi in T_k è pari a $2^k - 1$ nodi, di cui 2^{k-1} sono al livello k - 1. Il numero di foglie in T_k

è quindi pari a $2^{k-1} \cdot 2 = 2^k$; sommato ai nodi di T_{k-1} abbiamo $2^k - 1 + 2^k = 2^{k+1} - 1$, come volevasi dimostrare.

2.6 Visite iterative (Esercizio 5.13 del libro)

Questo è un esempio di pre-visita iterativa basata su stack.

Nel caso della postvisita e della invisita, è necessario aggiungere un flag ai nodi; quando vengono inseriti per la prima volta, il flag viene settato a **false**; quando vengono estratti con flag a **false**, vengono re-inseriti con flag a **true**, avendo premura di intervallare i nodi figli e il nodo padre nel modo corretto. Quando un nodo viene estratto con flag a **true**, la visita viene eseguita effettivamente.

```
\begin{array}{l} \textbf{precondition: } t \neq \textbf{nil} \\ \textbf{STACK } S \leftarrow \textbf{Stack}() \\ S.\texttt{push}(\langle t, \textbf{false} \rangle) \\ \textbf{while not } S.\texttt{isEmpty}() \textbf{ do} \\ & \langle u, f \rangle \leftarrow S.\texttt{pop}() \\ \textbf{if } f \textbf{ then} \\ & | v \texttt{isita del nodo } u \\ \textbf{else} \\ & | S.\texttt{push}(\langle u, \textbf{true} \rangle) \\ & | \textbf{if } u.right \neq \textbf{nil then } S.\texttt{push}(\langle u.right, \textbf{false} \rangle) \\ & | \textbf{if } u.left \neq \textbf{nil then } S.\texttt{push}(\langle u.left, \textbf{false} \rangle) \\ \end{array}
```

```
\begin{array}{l} \textbf{precondition: } t \neq \textbf{nil} \\ \textbf{STACK } S \leftarrow \textbf{Stack}() \\ S.\texttt{push}(\langle t, \textbf{false} \rangle) \\ \textbf{while not } S.\texttt{isEmpty}() \textbf{ do} \\ & \langle u, f \rangle \leftarrow S.\texttt{pop}() \\ & \textbf{if } f \textbf{ then} \\ & | v \texttt{isita del nodo } u \\ & \textbf{else} \\ & | \textbf{if } u.right \neq \textbf{nil then } S.\texttt{push}(\langle u.right, \textbf{false} \rangle) \\ & S.\texttt{push}(\langle u, \textbf{true} \rangle) \\ & | \textbf{if } u.left \neq \textbf{nil then } S.\texttt{push}(\langle u.left, \textbf{false} \rangle) \\ \end{array}
```

2.7 Altezza minimale

L'altezza minimale del nodo radice di un albero è pari al minimo delle altezze minimali dei due sottoalberi, aumentata di 1. Quindi un semplice algoritmo ricorsivo per calcolare l'altezza minimale è il seguente:

L'algoritmo risultante viene eseguito in tempo O(n), in quanto deve visitare tutti i nodi.

2.8 Alberi strutturalmente diversi

Ottieniamo una risposta per la domanda (1) risolvendo la domanda (2) e applicando poi la formula.

Per definire una ricorrenza, ci basiamo sulla seguente osservazione. Un albero di n nodi ha sicuramente una radice; i restanti n-1 nodi possono essere distribuiti nei sottoalberi destro e sinistro della radice. Ad esempio, un albero di 4 nodi può avere 3 nodi nel sottoalbero destro e 0 nel sinistro; oppure 2 nodi nel destro e 1 nel sinistro; oppure 1 nel destro e 2 nel sinistro; oppure 2 nel sinistro.

Detto quindi k il numero di nodi nell'albero sinistro, una formula ricorsiva per calcolare il numero di nodi P(n) è la seguente:

$$P(n) = \sum_{k=0}^{n-1} P(k)P(n-1-k)$$

I casi base sono rappresentati da P(0) = 1 e P(1) = 1.

I valori per n = 1, 2, 3, 4, 5 corrispondono a 1, 2, 5, 14, 42.

È possibile dimostrare che P(n) è $\Omega(2^n)$, ovvero che $\exists c > 0, m \ge 0 : P(n) \ge c2^n, \forall n \ge m$:

• Passo induttivo: supponiamo la proprietà dimostrata per i valori inferiori ad n ($P(n') \ge c2^{n'}$, $\forall n' < n$), e dimostriamo che vale per il valore n.

L'ultima condizione è vera per $c \ge \frac{2}{n}$.

• Casi base:

$$P(0) = 1 \ge c \cdot 2^0 \Leftrightarrow c \le 1$$

$$P(1) = 1 \ge c \cdot 2^1 \Leftrightarrow c \le \frac{1}{2}$$

Qui abbiamo un problema: la condizione è vera per n=0,1 se $c\leq \frac{1}{2}$, ed è vera per $n\geq 2$ se $c\geq 1$; questi due valori non sono compatibili. Dobbiamo quindi valutare cosa succede estendendo l'insieme

di casi base:

$$P(2) = 2 \ge c \cdot 2^2 \Leftrightarrow c \le \frac{1}{2}$$

$$P(3) = 5 \ge c \cdot 2^3 \Leftrightarrow c \le \frac{5}{8}$$

$$P(4) = 14 \ge c \cdot 2^4 \Leftrightarrow c \le \frac{14}{16}$$

$$P(5) = 42 \ge c \cdot 2^5 \Leftrightarrow c \le \frac{42}{32}$$

Fino a n=3, la condizione è rispettatta da qualunque valore di $c\leq 1/2$. A partire da n=4, la condizione è rispettata per qualunque valore $c\geq \frac{2}{n}\geq \frac{2}{4}=\frac{1}{2}, \forall n\geq 4$.

In altre parole, il valore $c=\frac{1}{2}$ è un valore adatto a soddisfare la nostra condizione per tutti i valori di $n \geq 1$.

Questa sequenza corrisponde all'*n*-esimo numero catalano (vedi programmazione dinamica), per il quale un limite asintotico più stretto è:

$$\Omega(\frac{4^n}{n^{3/2}})$$

2.9 Alberi pieni

Il numero di alberi pieni strutturalmente diversi è calcolato nel modo seguente. Innanzitutto, è impossibile costruire un albero pieno se n è pari. Questo perché gli alberi pieni si ottengono partendo dalla radice e aggiungendo via via coppie di figli. Per i valori dispari, il numero di nodi pieni è ottenuto ricorsivamente partendo dal caso base n=1 (che corrisponde ad un albero solo). Per n>1, si crea una radice e poi si dividono i rimanenti n-1 figli fra il sottoalbero destro e il sottoalbero sinistro. Se i nodi vanno a destra, $1 \le i \le n-2$, (n-1)-i nodi vanno a sinistra.

$$T[n] = \left\{ \begin{array}{ll} 0 & \text{se } n \text{ \`e pari} \\ 1 & \text{se } n = 1 \\ \sum_{i=1}^{n-2} T(i) \cdot T((n-1)-i) \end{array} \right.$$

È possibile calcolare il valore con un semplice programma ricorsivo, ma questo avrebbe complessità superpolinomiale. Per velocizzare l'algoritmo, è opportuno utilizzare la programmazione dinamica.

La complessità di questo algoritmo è $O(n^2)$.

return D[n]

2.10 Altezza specificata

Ricordiamo che in un albero T, l'altezza di un nodo v è la massima distanza di v da una sua foglia. Vogliamo descrivere un algoritmo che calcoli l'altezza di v, per ogni nodo v dell'albero T. È chiaro che l'altezza di una foglia è 0; invece, l'altezza di un nodo interno v si calcola facilmente una volta note le altezze dei suoi figli: è sufficiente considerare la massima tra queste e incrementarla di 1.

Definiamo una procedura ricorsiva visita(v) che, su input v, restituisce l'altezza di v. Tale procedura restituisce il valore 0 se v è una foglia; altrimenti richiama se stessa sui figli di v determinando il valore massimo ottenuto, incrementa di 1 tale valore e lo assegna alla variabile h. Se inoltre h coincide con k si incrementa un opportuno contatore rappresentato da una variabile globale s (inizialmente posta a 0). Il valore finale di s sarà l'output dell'algoritmo.

Il costo della visita postordine O(n).

```
\begin{array}{l} \textbf{integer countK}(\texttt{TREE}\ v) \\ s \leftarrow 0 \\ \texttt{visita}(v) \\ \textbf{return}\ s \end{array}
```

```
\begin{array}{l} \textbf{integer Visita}(\texttt{TREE}\ v) \\ \textbf{integer}\ L \leftarrow \mathsf{iif}(v.left = \mathbf{nil}, -1, \mathsf{visita}(v.left)) \\ \textbf{integer}\ R \leftarrow \mathsf{iif}(v.right = \mathbf{nil}, -1, \mathsf{visita}(v.right)) \\ \textbf{integer}\ h \leftarrow \mathsf{max}(L,R) + 1 \\ \textbf{if}\ h = k\ \textbf{then} \\ \  \  \, \bot\ s \leftarrow s + 1 \\ \textbf{return}\ h \end{array}
```

2.11 Lunghezza di cammino

La soluzione è una semplice procedura ricorsiva di costo O(n). La chiamata iniziale è lunghezza Cammino(t,0).

```
\begin{split} & \textbf{integer} \ \mathsf{lunghezzaCammino}(\mathsf{TREE}\ t, \mathbf{integer}\ v) \\ & \textbf{if}\ t = \mathbf{nil}\ \mathbf{then} \\ & \  \  \, \bot \ \mathbf{return}\ 0 \\ & \mathbf{return}\ v + \mathsf{lunghezzaCammino}(t.\mathit{left}, v+1) + \mathsf{lunghezzaCammino}(t.\mathit{right}, v+1) \end{split}
```

2.12 Larghezza di livello

Dato un nodo T, il numero di nodi a livello k è pari alla somma del numero di nodi a livello k-1 nel sottoalbero radicato nei figli sinistro e destro di T. Al solito, l'algoritmo risultante è una visita (post-visita) il cui costo computazionale è O(n).

```
\begin{split} & \textbf{integer} \ \mathsf{depth}(\mathsf{TREE} \ v, \ \mathsf{integer} \ k) \\ & \textbf{if} \ t = \mathbf{nil} \ \mathsf{then} \ \ \mathsf{return} \ 0 \\ & \textbf{if} \ k = 0 \ \mathsf{then} \ \ \mathsf{return} \ 1 \\ & \textbf{return} \ \mathsf{depth}(T.\mathsf{left}(), k - 1) + \mathsf{depth}(T.\mathsf{right}(), k - 1) \end{split}
```

3 PROBLEMI APERTI 11

3 Problemi aperti

3.1 Raggruppa le foglie con 0 e 1 (Esercizio 5.8 del libro)

Dato un albero binario le cui foglie contengono 0 od 1 e i cui nodi interni contengono solo 0, si vuole cambiare il contenuto delle foglie in modo che, visitandole da sinistra verso destra, si incontrino prima tutti gli 0 e poi tutti gli 1. Si scriva una procedura ricorsiva di complessità ottima.

3.2 Discendenti specificati

Dato un albero con radice t e un intero k, scrivere un algoritmo che restituisca il numero di nodi in t il cui numero di discendenti è pari a k.

3.3 Potatura

Dato un albero binario completo, con radice T, rappresentato con puntatori primo figlio/fratello, scrivere un algoritmo che "poti" l'albero, ovvero elimini tutti i nodi foglia.