Intron evolution in Fungi

Jason Stajich
Taylor Lab

Evolutionary genomics

Evolution & Organismal

Phenotype
Population structure
Ecological adaptation
Niche changes
Phylogeny

Comparative Genomics

Molecular evolution
Gene order
Gene families
Gene and genome
structure
Gene content
Conserved elements
Rates of molecular

evolution

Model Systems

Genetic tools
Gene function &
expression
Regulatory networks
Pathways
Molecular & cellular
biology
Disease models

Fungal comparative genomics

Central dogma of eukaryotic biology

Orthologs and Paralogs

Genome annotation

- Many of the fungal genomes were only assembled genomic sequence.
- Automated annotation pipeline was built to generate to get systematic gene prediction.
- Several gene prediction programs were trained and results were combined to produce composite gene calls

http://fungal.genome.duke.edu

Evolution of gene structure

- Present day introns
 - Recent insertions?
 - Introns late hypothesis
 - Formed in eukaryotic ancestor?
 - Introns early hypothesis / exon theory of genes
 - Mixture of two?

Previous work on intron evolution

- Rogozin et al. 2003
 - 7 genomes
 - 684 genes, 7236 positions
- Other methods
 - Roy and Gilbert. 2005
 - Csũrös. 2005
 - Nguyen et al. 2006

Calculating intron densities across a phylogeny

Intron frequency varies among the fungi

Analysis of whole genomes

- 25 entire genomes
 - 21 fungi, 3 vertebrates, 1 plant
- Largest dataset ever assembled for intron analysis
- I 160 orthologous genes
- 7533 intron positions
- 4.15 Mb coding sequence (CDS) per genome

Analysis Methods

Intron phase

Conserved intron positions

Patterns of conservation

7533 Intron positions

Introns early(ier)

Intron positions shared with animals or plants

Phylogenetic signal in intron positions

Reconstruction of ancestral intron densities

Exon length of 214 bp

Conclusions

- Early eukaryotic crown genes were complex
 - Ancestor had 70% of the introns in vertebrates
 - More introns than previously reported
- Intron loss has dominated among the fungi
 - Hemiascomycota experienced loss
- Sampling can bias interpretations all fungi are not equal.

Mechanism of intron loss

- S. cerevisiae and Hemiascomycota have undergone intron loss.
- How are introns lost from the genome?
 - Are they lost independently?
 - Are they lost many at a time?
- Molecular mechanism of loss

Models of intron loss

- All introns in S. cerevisiae are in 5' end of gene
- G. Fink proposed transcripts recombine with genome 3' -> 5' explaining 5' retention bias.
- In S. cerevisiae most intron loss events occurred too long ago so little evidence supporting any mechanism

Sequenced Cryptococcus genomes

Screen for intron changes

- Annotate 3 Cryptococcus genomes (var. grubii and 2 var. gattii genomes)
- Identify and align 4-way orthologous genes
 - 5298 orthologous genes (out of ~6500)
- Identify intron position changes

Intron loss in var. grubii

Intron loss was a precise excision

Other examples of loss

Conclusions

- Intron loss via homologous recombination with spliced transcript
 - Large losses are all adjacent introns
 - Precise deletion
- Loss biased towards the middle of gene not 3'

Acknowledgements

Fred Dietrich Scott Roy

Sequencing centers
Broad Institute
Duke University
Joint Genome Institute
Génolevures
Stanford University
(NIH and NSF)