MANUAL DE USUARIO PRACTICA 3

PEDRO MIGUEL ELGUERA MORA 19110148

CETI COLOMOS VISION ARTIFICIAL 7E1

MANUAL DE USUARIO

EVIDENCIA

APP

Esta es la vista principal de la aplicación.

Entre cada operación en las imágenes es cerrar la ventana e ira cambiando una a una, cambiara el título de la etiqueta y la operación realizada.

Git:

https://github.com/PedroElgueraCeti/Practica-3-VisionArtificial.git

Code:

```
#Pedro Miguel Elguera Mora 19110148
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import pylab
import cv2
from numpy.core.fromnumeric import size #Opencv
import skimage
from skimage import io
import math
import PIL
import imutils
from PIL import ImageTk
from PIL import Image as Im
fila = 4
columna = 3
#Imágenes Iniciales
img1 = cv2.imread('mustang.jpg', 1)
img2 = cv2.imread('camaro.jpg', 1)
#Dimencionamiento en bruto
Redimg1 = cv2.resize(img1, (300, 200))
Redimg2 = cv2.resize(img2, (300, 200))
#De matriz BGR a RGB
Redimg1 = cv2.cvtColor(Redimg1, cv2.COLOR_BGR2RGB)
Redimg2 = cv2.cvtColor(Redimg2, cv2.COLOR BGR2RGB)
def graficar(operacion, redimg1, redimg2, redimgop):
    global fila
    global columna
    fig = plt.figure(figsize=(10,7), constrained layout=True)
```

```
fig.add subplot(fila,columna,1)
plt.imshow(redimg1)
plt.axis('off')
plt.title("Imagen 1")
fig.add subplot(fila,columna,4)
color = ('g','b','r')
for i, c in enumerate(color):
    hist = cv2.calcHist([redimg1], [i], None, [256], [0, 256])
    plt.plot(hist, color = c)
    plt.xlim([0,256])
plt.title("Histograma img 1")
fig.add subplot(fila,columna,7)
img to yuv = cv2.cvtColor(Redimg1,cv2.COLOR RGB2YUV)
img_to_yuv[:,:,0] = cv2.equalizeHist(img_to_yuv[:,:,0])
equaimg1 = cv2.cvtColor(img to yuv, cv2.COLOR YUV2RGB)
color = ('g','b','r')
for i, c in enumerate(color):
    hist = cv2.calcHist([equaimg1], [i], None, [256], [0, 256])
    plt.plot(hist, color = c)
    plt.xlim([0,256])
plt.title("Histograma img 1 Ecualizada")
fig.add_subplot(fila,columna,10)
plt.imshow(equaimg1)
plt.axis('off')
plt.title("Imagen 1 Ecualizada")
               ---2da Imagen--
fig.add_subplot(fila,columna,3)
plt.imshow(redimg2)
plt.axis('off')
plt.title("Imagen 1")
fig.add_subplot(fila,columna,6)
color = ('g','b','r')
for i, c in enumerate(color):
    hist = cv2.calcHist([redimg2], [i], None, [256], [0, 256])
    plt.plot(hist, color = c)
    plt.xlim([0,256])
plt.title("Histograma img 1")
fig.add_subplot(fila,columna,9)
img_to_yuv = cv2.cvtColor(Redimg2,cv2.COLOR_RGB2YUV)
img_to_yuv[:,:,0] = cv2.equalizeHist(img_to_yuv[:,:,0])
equaimg2 = cv2.cvtColor(img_to_yuv, cv2.COLOR_YUV2RGB)
color = ('g','b','r')
for i, c in enumerate(color):
    hist = cv2.calcHist([equaimg2], [i], None, [256], [0, 256])
    plt.plot(hist, color = c)
    plt.xlim([0,256])
plt.title("Histograma img 1 Ecualizada")
fig.add_subplot(fila,columna,12)
plt.imshow(equaimg2)
plt.axis('off')
plt.title("Imagen 1 Ecualizada")
```

```
------Operacion-----
    fig.add subplot(fila,columna,2)
    plt.imshow(redimgop)
    plt.axis('off')
    plt.title("Imagen 2:"+operacion)
    fig.add subplot(fila,columna,5)
    color = ('g','b','r')
    for i, c in enumerate(color):
        hist = cv2.calcHist([redimgop], [i], None, [256], [0, 256])
        plt.plot(hist, color = c)
        plt.xlim([0,256])
    plt.title("Histograma: "+operacion)
    fig.add subplot(fila,columna,8)
    img_to_yuv = cv2.cvtColor(redimgop,cv2.COLOR_RGB2YUV)
    img to yuv[:,:,0] = cv2.equalizeHist(img to yuv[:,:,0])
    equaimgOp = cv2.cvtColor(img to yuv, cv2.COLOR YUV2RGB)
    color = ('g','b','r')
    for i, c in enumerate(color):
        hist = cv2.calcHist([equaimgOp], [i], None, [256], [0, 256])
        plt.plot(hist, color = c)
        plt.xlim([0,256])
    plt.title("Histograma img Ecualizada:"+operacion)
    fig.add_subplot(fila,columna,11)
    plt.imshow(equaimgOp)
    plt.axis('off')
    plt.title("Imagen Ecualizada: "+operacion)
    plt.show()
operacion="Suma"
Redimgop=cv2.add(Redimg1,Redimg2)
graficar(operacion, Redimg1, Redimg2, Redimgop)
plt.close()
operacion="Resta"
Redimgop=cv2.subtract(Redimg1, Redimg2)
graficar(operacion, Redimg1, Redimg2, Redimgop)
plt.close()
operacion="Multiplicacion"
Redimgop=cv2.multiply(Redimg1, Redimg2)
graficar(operacion, Redimg1, Redimg2, Redimgop)
plt.close()
operacion="Division"
Redimgop=cv2.divide(Redimg1, Redimg2)
graficar(operacion, Redimg1, Redimg2, Redimgop)
operacion="Raiz cuadrada"
Redimgop=Redimg1
Redimgop=np.sqrt(Redimgop)
Redimgop=np.asarray(Redimgop, dtype = int)
cv2.imwrite("resultSQRT.jpg",Redimgop)
Redimgop = cv2.imread('resultSQRT.jpg', 1)
graficar(operacion, Redimg1, Redimg2, Redimgop)
plt.close()
operacion="Potencia"
Redimgop=Redimg1
Redimgop=np.power(Redimgop,2)
Redimgop=np.asarray(Redimgop, dtype = int)
cv2.imwrite("resultPower.jpg",Redimgop)
```

```
Redimgop = cv2.imread('resultPower.jpg', 1)
graficar(operacion, Redimg1, Redimg2, Redimgop)
plt.close()
operacion="Conjuncion"
Redimgop=cv2.bitwise and(Redimg1,Redimg2)
graficar(operacion, Redimg1, Redimg2, Redimgop)
operacion="Disyuncion"
Redimgop=cv2.bitwise_or(Redimg1,Redimg2)
graficar(operacion, Redimg1, Redimg2, Redimgop)
plt.close()
operacion="Negacion"
Redimgop=Redimg1
Redimgop=image= 255-Redimgop
graficar(operacion, Redimg1, Redimg2, Redimgop)
plt.close()
operacion="Translacion"
ancho = Redimg1.shape[1] #columnas
alto = Redimg1.shape[0] #fila
M = np.float32([[1,0,2],[0,1,2]])
Redimgop = cv2.warpAffine(img1,M,(ancho,alto))
graficar(operacion, Redimg1, Redimg2, Redimgop)
plt.close()
operacion="Escalado"
Redimgop= imutils.resize(Redimg1,height=400)
graficar(operacion,Redimg1,Redimg2,Redimgop)
plt.close()
operacion="Rotacion"
ancho = Redimg1.shape[1] #columnas
alto = Redimg1.shape[0] #fila
M = cv2.getRotationMatrix2D((ancho//2,alto//2),15,1)
Redimgop = cv2.warpAffine(img1,M,(ancho,alto))
graficar(operacion,Redimg1,Redimg2,Redimgop)
plt.close()
```