Texto e imagens: Livro Gonzalez & Woods

## Considerações

- Segmentação por Watershed incorpora muitos dos conceitos das outras abordagens
- Muitas vezes produz resultados mais estáveis
- Permite incorporar restrições baseadas em conhecimento.

# Apresentação

- Watershed (bacias hidrográficas)
- Visualizar a imagem em três dimensões



Imagem original (intensidades)



Visão "3D"

# Interpretação topográfica

- Existem 3 tipos de pontos
  - Pontos de mínimo local
  - Pontos em que, caso se despeje uma gota de água, esta se moveria até um local de mínimo local
  - Pontos em que gota d'água possui a mesma probabilidade de cair em mais de um mínimo local

## Interpretação topográfica

- Existem 3 tipos de pontos
  - Pontos de mínimo local +
  - Pontos em que, caso se despeje uma gota de água, esta se moveria até um local de mínimo local -> catchment basin, watershed, bacia hidrográfica
  - Pontos em que gota d'água possui a mesma probabilidade de cair em mais de um mínimo local
     ->Linhas de divisão ou linhas de watershed

 O principal objetivo desse tipo de segmentação é encontrar as linhas de watershed

- Como funciona: suponha que em cada mínimo local tenha um ponto que seja uma fonte de água.
- A água sobe inundando as regiões, de baixo para cima.
- A água sobe em uma taxa uniforme
- As bordas da imagem podem ser consideradas como sendo uma barragem mais alta que a maior montanha.

- Quando a água está prestes a se fundir nas diversas watersheds, uma barragem é construída para impedir a fusão
- A inundação chegará a um ponto em que somente apenas os topos das barragens serão visíveis acima da linha d'àgua
- Essas linhas são as Linhas de divisão ou linhas de Watershed
- Portanto, são as fronteiras conectadas que são extraídas em um algoritmo de segmentação Watershed.















# Construção de barragens





Duas watersheds (antes de grudar) Etapa n-1





Duas *watersheds*Juntas
Etapa *n* 

# Construção de barragens



Em preto -> Segunda dilatação (restrito ao componente conexo da etapa N) A barragem é dada pelos pixels que pertencem ao componente conexo da etapa N e que também fazem parte da segunda dilatação

lest dilution scored dilution

Dam points

- Seja  $M_1, M_2, ..., M_R$  os conjuntos que determinam as coordenadas dos mínimos regionais de uma imagem g(x, y)
- Seja  $C(M_i)$  o conjunto dos pontos na watershed associados com o mínimo regional  $M_i$  (lembre que esse é um componente conexo)
- Seja min o valor mínimo de g(x, y)
- Seja max o valor máximo de g(x, y)

- Digamos que T[n] representa o conjunto de coordenadas (s,t) para os quais g(s,t) < n
- $T[n] = \{(s,t)|g(s,t) < n\}$
- T[n] é o conjunto de coordenadas de g(s,t) situados abaixo do plano g(s,t)=n
- A topografia será inundada em incrementos inteiros, de  $n=\min+1$  para  $n=\max+1$

 $M_i$  - coordenadas dos mínimos  $C(M_i)$  - conjunto de pontos associados a  $M_i$  T[n] - Threshold de valor n  $C_n(M_i) = C(M_i) \cap T[n]$  - Parte Binária associada a  $M_i$ 

- Seja  $C_n(M_i)$  denota o conjunto de coordenadas dos pontos na watershed associados ao mínimo  $M_i$  que são inundados na etapa n
- $C_n(M_i) = C(M_i) \cap T[n]$ 
  - Isolamos a parte da imagem binária em T[n] que está associada ao mínimo regional  $M_i$

 $M_i$  - coordenadas dos mínimos  $C(M_i)$  - conjunto de pontos associados a  $M_i$  T[n] - Threshold de valor n  $C_n(M_i) = C(M_i) \cap T[n]$  - Parte Binária associada a  $M_i$ 

- Seja C[n] a união das watersheds inundadas na etapa n:
- $C[n] = \bigcup_{i=1}^{R} C_n(M_i)$ 
  - Isolamos a parte da imagem binária em T[n] que está associada ao mínimo regional  $M_i$
- Então C[max + 1] é a união de todas as watersheds
  - $-C[\max +1] = \bigcup_{i=1}^{R} C(M_i)$

 $M_i$  - coordenadas dos mínimos  $C(M_i)$  - conjunto de pontos associados a  $M_i$  T[n] - Threshold de valor n  $C_n(M_i) = C(M_i) \cap T[n]$  - Parte Binária associada a  $M_i$ 

- Os elementos tanto em  $C_n(M_i)$  quanto em T[n] nunca são substituídos durante a execução do algoritmo.
- O número de elementos desses conjuntos aumenta ou permanece igual enquanto n aumenta

```
C_n \subset T[n] (\subset -subconjunto)

C[n-1] \subset C[n]

C[n-1] \subset T[n] -> cada componente conectado de C[n-1] está contido em exatamente um componente conectado de C[n]
```

- Inicialização do algoritmo
- C[min + 1] = T[min + 1]
- Obtendo C[n] a partir de C[n-1]
- Seja Q o conjunto de componentes conexos em T[n]. Então, para cada componente conectado  $q \in Q[n]$  existem três possibilidades

- Seja Q o conjunto de componentes conexos em T[n]. Então, para cada componente conectado  $q \in Q[n]$  existem três possibilidades
  - $-q \cap C[n-1]$  é vazia
  - $-q \cap C[n-1]$  contém <u>um</u> componente conectado em C[n-1]
  - $-q \cap C[n-1]$ contém <u>mais de um</u> componente conectado em C[n-1]

- $-q \cap C[n-1]$  é vazia
  - Um novo mínimo é encontrado.
  - Incorpore q a C[n-1] para formar C[n]
- $-q \cap C[n-1]$  contém <u>um</u> componente conectado em C[n-1]
  - q fica dentro de um watershed
  - Incorpore q a C[n-1] para formar C[n]

- $-q \cap C[n-1]$ contém <u>mais de um</u> componente conectado em C[n-1]
  - Duas cristas de watershed se encontrariam e iriam se misturar
  - Barragens devem ser construídas
  - Uma barragem de um pixel de espessura pode ser construída usando a dilatação  $q \cap C[n-1]$  com um elemento estruturante 3x3 de 1s e restringindo a dilação a q.



a b c d

#### **FIGURE 10.56**

- (a) Image of blobs.(b) Image gradient.(c) Watershed lines.
- (d) Watershed lines superimposed on original image. (Courtesy of Dr. S. Beucher,

CMM/Ecole des Mines de Paris.)





a b

#### **FIGURE 10.57**

(a) Electrophoresis image. (b) Result of applying the watershed segmentation algorithm to the gradient image. Oversegmentation is evident. (Courtesy of Dr. S. Beucher, CMM/Ecole des Mines de Paris.)



Segmentação feita dentro de cada região

a b

**FIGURE 10.58** (a) Image showing internal markers (light gray regions) and external markers (watershed lines). (b) Result of segmentation. Note the improvement over Fig. 10.47(b). (Courtesy of Dr. S. Beucher, CMM/Ecole des Mines de Paris.)