		(오른쪽) 위성 이상 현상 진단 70
그림	2-43.	극궤도에서 관측된 위성 이상 현상 진단 중에서 확인이 가능한 이
		벤트의 발생지역. 빨간 점이 대부분 남아메리카 상공에 위치해 있
		으며 그 이외의 지역에 표시된 부분은 GCR에 의한 영향으로 추
		정70
그림	2-44.	(왼쪽) 정지궤도 위성에서 위성 관측되어진 위성 이상 현상 분류와
		(오른쪽) 위성 이상 현상의 원인 진단 결과71
그림	2-45.	정지궤도위성에서 발생한 모든 위성 이상 현상 이벤트가 발생한
		지역시 (local time)과 이벤트 발생 횟수 72
그림	2-46.	정지궤도위성에서 발생한 위성 이상 현상 이벤트의 발생 기간과
		이벤트 발생 기간 동안의 전자플럭스 75
그림	2-47.	정지궤도에서의 전자플럭스와 위성 이상 현상 이벤트 발생 횟수 75
그림	2-48.	정지궤도에서 발생한 정전기적 방전으로 인한 위성 이상 현상에
		대한 위성 위치별 지자기 지수와 관련된 발생 빈도. (a)는 Kp 지
		수, (b)는 Dst 지수와 (c)는 AE 지수와의 관계를 나타냄 77
그림	2-49.	1973년부터 1994년까지 각 지수 구간에 대한 ESD 발생 빈도 ·· 78
그림	2-50.	1973년부터 1994년까지 각 지수 별 기록 빈도 79
그림	2-51.	1973년부터 1994년까지 각 지수 별 기록빈도를 포함시킨 ESD 발
		생 횟수 80
그림	2-52.	GCR, SEP 와 속박 하전입자를 예측하고 그로인한 위성 이상 현
		상을 계산하기 위한 모델의 블록 다이어그램 82
그림	2-53.	TOP 모델의 자기장 속박입자 계산 방법. 주황색 선은 정상상태에
		서의 전자플럭스를 나타내고 빨간색은 플럭스가 변한 정도를 나타
		냄. 파란색은 플럭스가 변한 후 다시 정상상태로 되돌아오기까지
		걸린 시간을 나타냄 83
그림	2-54.	(왼쪽) TOP 모델의 자기장 속박입자 계산 결과로서 에너지에 따른
		플럭스의 변화와 (오른쪽) 시간에 따른 플럭스 변화 84
그림	2-55.	전체 시스템 구성도85
그림	2-56.	웹 페이지 구성86
그림	2-57.	3D 기반 상황판 87