Прудников А.М.

Текст лекций по курсу

Методы оптимизации

Версия: 0.1

Оглавление

1	Пон	ятие математической оптимизации	3						
	1.1	Исследование операций и место методов оптимизации в данной дисциплине							
	1.2	2 Понятие оптимизации							
		1.2.1 Задача коммивояжера	4						
		1.2.2 Задача размещения производства	5						
		1.2.3 Построение математической модели	5						
	1.3	.3 Общий вид однокритериальной оптимизационной задачи							
	1.4	4 Особенности задачи математического программирования							
	1.5	.5 Классификация задач математического программирования							
	1.6	.6 Классификация методов решения задач оптимизации							
	1.7	Условия окончания поиска	Ć						
2	Нелинейное программирование								
	2.1	Безусловная оптимизация функций одной переменной	10						
3	3 Линейное программирование								
4 Комбинаторная оптимизация									
5	5 Стохастическая оптимизация								
Лı	итера	тура	15						

Понятие математической оптимизации

1.1 Исследование операций и место методов оптимизации в данной дисциплине

Исследование операций – математическая дисциплина, занимающаяся построением, разработкой и применением математических моделей принятия оптимальных решений во всех областях человеческой деятельности.

Операция – это всякое мероприятие (система действий), объединенное единым замыслом и направленное к достижению какой-то цели.

Пусть необходимо выполнить какое-либо мероприятие для достижения определенной цели (операцию). Обычно существует свобода выбора в том, как это мероприятие организовать (например, выбор техники, распределение ресурсов и т.д.). «Решение» – это какой-то выбор из ряда допустимых возможностей.

Краеугольным камнем исследования операций является **математическое моделирова- ние**. Данные, полученные при исследовании математических моделей, являются основой для принятия решений. Но общих способов построения математических моделей и методов их решения не существует. В каждом конкретном случае модель выбирается исходя из вида операции, ее целевой направленности, с учетом задачи исследования.

Наиболее известными методами исследования операций (являющимися, зачастую, самостоятельными математическими дисциплинами), являются:

- Математическое программирование теория и методы решения задач о нахождении экстремумов функций на множествах векторного пространства, определяемых линейными и нелинейными ограничениями (равенствами и неравенствами). (Присутствие в названии термина «программирование» объясняется тем, что первые исследования оптимизационных задач были в сфере экономики, а в английском языке слово «ргоgramming» означает планирование, составление планов или программ).
- Сетевые модели решение оптимизационных задач с использованием графов.
- Марковские процессы метод решения стохастических задач, где процесс принятия

решений можно представить конечным числом состояний.

- Теория игр методы изучения оптимальных стратегий в играх. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.
- Теория массового обслуживания (теория очередей) раздел теории вероятностей, целью исследований которого является рациональный выбор структуры системы обслуживания и процесса обслуживания на основе изучения потоков требований на обслуживание, длительности ожидания и длины очередей.
- Имитационное моделирование метод исследования, при котором изучаемая система заменяется компьютерной моделью, с достаточной точностью описывающей реальную систему, и с ней проводятся эксперименты с целью получения информации об этой системе. Экспериментирование с моделью называют имитацией.

В данном курсе будет изучаться математическое программирование, методы которого и являются так называемыми методами оптимизации.

1.2 Понятие оптимизации

Оптимизация в самом широком смысле - это выбор наилучшего варианта из множества возможных. Рассмотрим некоторые классические примеры оптимизационных задач.

1.2.1 Задача коммивояжера

Дано некоторое количество городов и расстояния между ними. Коммивояжер должен посетить каждый город и вернуться к месту отправления. Какой маршрут он должен выбрать? Зададим расстояния между городами (допустим, их пять) в виде следующей таблицы:

	1	2	3	4	5
1	_	1	7	2	8
2	2	_	10	3	1
3	7	10	_	2	6
4	2	3	2	_	4
5	8	1	6	4	_

Проложим несколько маршрутов и посчитаем расстояние для них:

- Маршрут $5 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$, расстояние 8+1+10+2+4=25
- Маршрут $5 \to 2 \to 1 \to 4 \to 3 \to 5$, расстояние 1 + 1 + 2 + 2 + 6 = 12

Каким же образом (исключая полный перебор) следует выбрать кратчайший маршрут?

1.2.2 Задача размещения производства

Пусть в некотором регионе имеется ряд потребителей некоторой продукции. Нужно определить, как разместить в этом регионе заводы по производству данной продукции.

Существует два крайних решения:

- 1. Можно разместить только один завод; в этом случае производственные затраты будут минимальны, но станут максимальными затраты на доставку продукции потребителям (транспортные затраты).
- 2. Можно разместить большое количество заводов (рядом с каждым потребителем); в этом случае транспортные затраты будут минимальны, но станут максимальными про-изводственные затраты.

Очевидно, что оптимальное решение заключается в минимизации суммарных затрат $C_{\text{общ}} = C_{\text{произв}} + C_{\text{трансп}} o \min.$

1.2.3 Построение математической модели

Как было сказано выше, для решения любых задач исследования операций (и, соответственно, задач математического программирования) необходимо формализовать решаемую задачу, построив ее математическую модель. В самых общих чертах процесс построения математической модели можно представить следующим образом:

- 1. Определение неизвестных параметров (элементов решения).
- 2. Выражение условий задачи через введенные на первом шаге неизвестные.
- 3. Выбор критерия оптимальности.

Попробуем выполнить описанные выше шаги для построения математической модели задачи размещения производства (см. раздел 1.2.2).

На шаге **определения неизвестных параметров** введем переменные x_{ij} - объем перевозимой продукции с i-го завода j-му потребителю; здесь $i=\overline{1,m}$ - количество заводов, $j=\overline{1,n}$ - количество потребителей.

Теперь выразим условия задачи через эти переменные:

- 1. Очевидно, что количество перевозимой продукции не может быть отрицательно: $x_{ij} \ge 0$.
- 2. Если обозначить известный нам объем заказов (потребления) продукции j-м потребителем через b_j , то на объем перевозок можно наложить ограничение $\sum_{i=1}^m x_{ij} = b_j$ (не следует везти к потребителю продукции больше, чем он заказывает).
- 3. Если обозначить известные нам удельные транспортные затраты на перевозку изделий от i-го завода j-му потребителю через c_{ij} , то можно составить уравнение для транспортных затрат: $C_{\text{трансп}} = \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij}$.

4. Если обозначить известную нам стоимость производства на i-ом заводе (которая, вообще говоря, зависит от объемов производства) через $f_i(x_i)$, то можно составить уравнение для производственных затрат: $C_{\text{произв}} = \sum_{i=1}^m f_i(\sum_{j=1}^n x_{ij})$.

Осталось выбрать критерий оптимальности, однако это мы уже сделали в п. 1.2.2: суммарные затраты должны быть минимальны.

Таким образом, в результате формализации задачи мы построили ее математическую оптимизационную модель следующего вида:

$$\min\left\{\sum_{i=1}^{m} f_i(\sum_{j=1}^{n} x_{ij}) + \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}\right\}$$
(1.1)

при ограничениях

$$\begin{cases} \sum_{i=1}^{m} x_{ij} = b_j \\ x_{ij} \ge 0 \end{cases} \qquad i = \overline{1, m}, j = \overline{1, n}$$

$$(1.2)$$

Опираясь на полученный результат, можно попробовать записать постановку оптимизационной задачи в общем виде.

1.3 Общий вид однокритериальной оптимизационной задачи

В общем виде задача математического программирования ставится следующим образом: найти максимум (минимум) функции

$$f(x_1, x_2, \dots, x_n) = f(\bar{x})$$
 (1.3)

при ограничениях

$$\begin{cases} g_i(x_1, x_2, \dots, x_n) \le b_i, i = \overline{1, m} \\ x_j \ge 0, j = \overline{1, n} \end{cases}$$

$$(1.4)$$

Здесь:

- \bullet $f(\bar{x})$ целевая функция;
- система неравенств и условия неотрицательности переменных (1.4) система ограничений.

Всякое решение задачи с учетом системы ограничений называется допустимым решением. Допустимое решение, максимизирующее (минимизирующее) целевую функцию, называется оптимальным решением. Таким образом, задача математического программирования заключается в нахождении оптимального решения, которое по определению обеспечивает максимальное (минимальное) значение целевой функции с учетом заданных ограничений.

Версия: 0.1

1.4 Особенности задачи математического программирования

- 1. Если требуется найти минимум $f(\bar{x})$, то это эквивалентно поиску максимума $-f(\bar{x})$.
- 2. В любом случае можно добиться условия неотрицательности переменных, то есть, если задано ограничение $x_j \geq x_{j_min}$, то можно сделать замену переменных $x_j' = x_j x_{j_min} \geq 0$.
- 3. Если заданы ограничения вида $g_i(\bar{x}) \geq b_i$, то простой заменой знака приходим к первоначальной форме $-g_i(\bar{x}) \leq -b_i$.
- 4. Функция $f(\bar{x})$ может иметь несколько экстремумов, а именно локальные экстремумы и глобальный экстремум. Функция $f(\bar{x})$, определенная на области D, достигает на ней глобального максимума $\bar{x}^* \in D$, если неравенство $f(\bar{x}) \leq f(\bar{x}^*)$ справедливо для любой точки $\bar{x} \in D$. Функция $f(\bar{x})$, определенная на области D, достигает на ней локального максимума $\bar{x}^* \in D$, если неравенство $f(\bar{x}) \leq f(\bar{x}^*)$ справедливо для точек из некоторой окрестности \bar{x}^* .
- 5. В математическом анализе для нахождения экстремумов функций используются производные (это классические методы оптимизации). Такие методы применяют лишь для сравнительно простых задач из-за следующих недостатков:
 - для использования таких методов нужно, чтобы функции $f(\bar{x})$ и $g_i(\bar{x})$ были непрерывны и имели частные производные по крайней мере до 2-го порядка;
 - с помощью классических методов можно найти экстремум только внутри области; если оптимальная точка находится на границе области, то эти методы бессильны;
 - \bullet на переменные x_i не должны быть наложены условия целочисленности.

1.5 Классификация задач математического программирования

В зависимости от вида функций, входящих в критерий оптимальности и систему ограничений, а также допустимой области изменения переменных, задачи математического программирования разделяются на следующие классы:

- 1. Линейное программирование целевая функция и ограничения являются линейными. Область допустимых значений многогранник, а оптимальное решение находится в одной из его вершин.
- 2. Нелинейное программирование или целевая функция, или какое-либо ограничение содержит нелинейную зависимость.

3. Дискретное программирование - переменные могут принимать только целочисленные значения.

1.6 Классификация методов решения задач оптимизации

Особенность задач оптимизации состоит в том, что вычисление значений целевой функции и значений ограничивающих функций может требовать больших затрат времени. В связи с этим возникает проблема решения задач оптимизации при наименьшем числе испытаний. Испытанием называется операция однократного вычисления функций $f(\bar{x})$ и $g_i(\bar{x})$ (и, в некоторых случаях, их производных) в некоторой точке \bar{x} . Далее будем говорить, что задача оптимизации решается с помощью поискового метода оптимизации, если используется следующая процедура поиска оптимального решения \bar{x}^* :

• по очереди при $r=0,1,2,\ldots,N-1$ производятся испытания в точках

$$\bar{x}^{r+1} = \Psi_{r+1} \left(\bar{x}^0, f(\bar{x}^0), g_i(\bar{x}^0), \dots, \bar{x}^r, f(\bar{x}^r), g_i(\bar{x}^r) \right)$$
(1.5)

• в качестве решения задачи берется точка \bar{x}^* , которая находится из условия $f(\bar{x}^*) = \min_{r \in [0;N]} f(\bar{x}^r)$.

Здесь:

- r текущий номер испытания;
- N число испытаний;
- ullet $ar{x}^0$ начальное приближение:
- ullet Ψ_r алгоритм поисковой оптимизации на r-ом шаге.

В общем случае **алгоритмом поисковой оптимизации** называется способ выбора начального приближения \bar{x}^0 и конкретная совокупность функций $\{\Psi_r\}$. Таким образом, понятие алгоритма является более частным по сравнению с понятием метода (одному и тому же методу могут соответствовать разные алгоритмы).

Теперь проведем классификацию методов решения с учетом введенным понятий.

- 1. **Классификация по наличию или отсутствию системы ограничений**. Если в задаче отсутствует система ограничений, то она решается методами **безусловной** оптимизации; в противном случае методами **условной** оптимизации.
- 2. **Классификация по размерности вектора** \bar{x} . Если \bar{x} на самом деле скаляр, то применяются **одномерные** методы оптимизации; в противном случае **многомерные**.

- 3. **Классификация по характеру искомого решения**. Если метод поиска гарантирует отыскание только локального экстремума, то это метод **локальной** оптимизации. Если делается попытка отыскать глобальный экстремум, то это метод **глобальной** оптимизации. Следует отметить, что удовлетворительных с точки зрения вычислительной эффективности методов глобальной оптимизации не существует.
- 4. **Классификация по характеру функций** Ψ_r . Если функции Ψ_r являются детерминированными, то метод оптимизации называется **детерминированным**. Если же функции Ψ_r содержат случайные параметры, то метод оптимизации называется **стохастическим**.
- 5. **Классификация по способу выбора точек** \bar{x}^r . Если все точки \bar{x}^r назначаются заранее (до проведения испытаний), то метод оптимизации называется **пассивным**. Если же очередная точка \bar{x}^{r+1} определяется на основе всей или части информации об испытаниях в точках $\bar{x}^0, \ldots, \bar{x}^r$, то метод называется **последовательным**.
- 6. **Классификация по количеству предыдущих учитываемых шагов**. Если в последовательном методе при определении точки \bar{x}^{r+1} учитывается информация только о предыдущем испытании, то метод называется **одношаговым**. Если же используется информация о s>1 предыдущих испытаниях, то метод называется многошаговым (конкретнее, s-шаговым).
- 7. **Классификация по виду функций** Ψ_r . Если функция Ψ_r при всех N испытаниях одинакова, то метод называется **итерационным**. Если же функции Ψ_r меняются от испытания к испытанию, то метод является **неитерационным**.
- 8. **Классификация по порядку используемых производных**. Если при вычислении значений функций Ψ_r производные не используются, то метод называется **прямым** (или **нулевого порядка**). Если же используются производные k-го порядка, то метод называется методом k-го порядка (методы 1-го порядка также называются **градиентными**).

1.7 Условия окончания поиска

Выбор условия (критерия) окончания поиска является еще одной важной проблемой при решении оптимизационных задач. Наиболее широко используемыми являются следующие критерии:

- $\|\bar{x}^{r+1} \bar{x}^r\| \le \epsilon_x$, где ϵ_x требуемая точность решения по \bar{x} , $\|\cdot\|$ некоторая векторная норма (например, евклидова);
- $|f(\bar{x}^{r+1}) f(\bar{x}^r)| \leq \epsilon_f$, где ϵ_f требуемая точность решения по f.

Нелинейное программирование

2.1 Безусловная оптимизация функций одной переменной

Оптимизация функций одной переменной является, как правило, необходимым элементом методов оптимизации функций многих переменных. На первый взгляд кажется, что эта задача достаточно проста и решается с помощью дифференцирования (классический метод оптимизации). Однако для широкого класса функций это не так, поскольку задача решения уравнения f'(x) = 0 может оказаться весьма сложной (или даже невозможной, если f(x) не дифференцируема).

Как уже было упомянуто выше, существование локальных экстремумов функции почти всегда затрудняет поиск глобального экстремума. Поэтому многие методы оптимизации применимы только тогда, когда любой локальный экстремум является одновременно и глобальным; это дает гарантию сходимости метода. Если же таких сведений о функции нет, то методы применять можно, но без гарантии сходимости.

Одним из классов функций, удовлетворяющих указанному условию, является класс **унимодальных (одноэкстремальных)** функций. Дадим определение такой функции для задачи поиска минимума (для задачи поиска максимума определение строится аналогичным образом).

Функция f(x) называется **унимодальной** на отрезке [a,b], если она непрерывна¹ на [a,b] и существуют такие α и β ($a \le \alpha \le \beta \le b$), что:

- 1. на отрезке $[a,\alpha]$ при $a<\alpha f(x)$ монотонно убывает;
- 2. на отрезке $[\beta,b]$ при $\beta < bf(x)$ монотонно возрастает;
- 3. существует минимум f(x) при $x \in [\alpha, \beta]$.

Примеры унимодальных функций приведены на рисунке 2.1.

¹В общем случае это не так, но мы под унимодальной функцией будем подразумевать непрерывную унимодальную функцию.

Рис. 2.1. Примеры унимодальных функций

Прежде чем приступить к процедуре оптимизации, следует по возможности установить принадлежность целевой функции классу, для которого гарантирована сходимость процесса.

Заметим, что предположение об унимодальности функции в окрестности точки экстремума весьма естественно. Получение информации о таком промежутке является важным предварительным этапом процедуры оптимизации.

Линейное программирование

Комбинаторная оптимизация

Стохастическая оптимизация

Литература