8.4

5

value(F) = 6.

6

value(F) = 6

7

value(F) = 13.

value(F) = 5

value(F) = 16.

10 value(F) = 13

11

value(F) = 7.

14 符合题意即可

$$\{(2,5), (3,5), (6,8), (7,8)\}.$$

20

21

 $\{(2, 4), (5, 7)\}$ with capacity 7.

8.5

4. 值为 13,参考答案如下:

5. value(F) = 17.

8.一个最大匹配是:

 $M(a_1)=b_1$, $M(a_2)=b_2$, $M(a_3)=b_3$, $M(a_4)=b_4$.

10.一个最大匹配是:

 $M(a_1)=b_1$, $M(a_2)=b_2$, $M(a_3)=b_3$, $M(a_4)=b_4$, $M(a_5)=b_5$, $M(a_6)=b_6$.

- 14. 设 S 为 A 的任意子集, E 为以 S 为开始节点的边的集合,则有,k|S|=|E|。每条边的结束节点必定在 R(S)中,最多有 k|R(S)|个这样的节点。k|S|=|E|≤k|R(S)|,则有|S|≤|R|.由 Hall 婚姻定理,存在 A,B,R 的完全匹配。
- 15. Let S be any subset of A and E the set of edges that begin in S. Then $k|S| \le |E|$. Each edge in E must terminate in a node of R(S). There are at most j|R(S)| such nodes. Since $j \le k$, $j|S| \le k|S| \le j|R(S)|$ and $|S| \le |R(S)|$. By Hall's Marriage theorem, there is a complete matching for A, B, and R.
- 16.因为 A,B 和 R 的网络中,每一个节点的度数至少为 n/2,则图中存在一条哈密顿回路,因为每一条边的两点必定属于 A,B 两个不同的集合,所以 A 中的每个点都至少有一条边与 B 中的某点相连,所以存在一个完全匹配。
 - **17.** (a) No, vertices 1, 2, and 6 must be in different subsets, but there are only two sets in the partition.
 - **(b)** Yes, {{1, 3, 5, 7}, {2, 4, 6, 8}}.
 - (a) 答案有误。可分为{{1,3,5}, {2,4,6}}
- 18.用 0,1 标记每个顶点,设一个顶点有 k 个 1, n-k 个 0,则它与只有一位不同的点相连,所以将有 0 个 1,2 个 1......n 个 1/n-1 个 1 的点的集合划为一部分,剩下的点划为一部分,两部分的集合大小相等,且集合内部无边,所以该图是哈塞图。

19. A triangle is formed by edges (u, v), (v, w), and (w, u). If u and v are placed in different subsets by a two-set partition, neither subset can contain w.

8.6

15.
$$P_G(x) = x(x-1)(x-2)(x-3)$$
; $\chi(G) = 4$.

16.
$$P_G(x) = x(x-1)^3(x-2)^2$$
; $\chi(G) = 3$

19.
$$P_G(x) = x(x-1)^3(x-2)^2$$
; $\chi(G) = 3$

$$P_G(x) = P_{G_e}(x) - P_{G^e}(x) = x(x-1)^4(x-2) - x(x-1)^3(x-2) = x(x-1)^3(x-2)^2$$

23. (Outline) Basis step: n = 1 P(1): $P_{L_1}(x) = x$ is true, because L_1 consists of a single vertex. Induction step: We use P(k) to show P(k + 1). Let $G = L_{k+1}$ and e be an edge {u, v} with deg(v) = 1. Then G_e has two components, L_k and v. Using Theorem 1 and P(k), we have $P_{G_e}(x) = x \cdot x(x-1)^{k-1}$. Merging v with u gives $G^e = L_k$. Thus $P_{G^e}(x) = x(x-1)^{k-1}$. By Theorem 2, $P_{L_{k+1}}(x) = x^2(x-1)^{k-1} - x(x-1)^{k-1} = x(x-1)^{k-1}(x-1)$ or $x(x-1)^k$.

26.

- (a) 边连接的两门课程考试时间冲突(存在两门都要考的学生),不能安排在同一时间段
- (b)考试时间段
- (c) 至少安排几个时间段考试使得所有学生能顺利参加全部的考试。
- 27. Label the vertices with the fish species. An edge connects two vertices if one species eats the other. The colors represent the tanks, so $\chi(G)$ will be the minimum number of tanks needed.