

Introduction to HPC on CURC

Be Boulder.

Introduction to HPC on Blanca

- Me: Andrew Monaghan (<u>Andrew.Monaghan@Colorado.edu</u>)
- RC Homepage: https://www.colorado.edu/rc
- RC Docs: https://www.colorado.edu/rc
- Courses and Office Hours: https://www.colorado.edu/crdds/events
- For this lecture, slides and examples available for download at: https://github.com/ResearchComputing/CHEM4555 Spring 2022/

Outline for this presentation

- Intro to CURC resources
- Linux basics and navigating the CURC system
- Software
- Scheduling batch and interactive jobs on Summit
- CURC JupyterHub, CURC EnginFrame (Demo)
- Data transfers (Globus, scp) (Demo)

What is Research Computing?

- Provide services for researchers that include:
 - Large scale computing
 - Data storage
 - High speed data transfer
 - Data management support
 - Consulting
 - Training
- We are likely best known for:
 - Summit Supercomputer (~12,000 cores)
 - Blanca "condo" cluster (~4,000 cores)
 - PetaLibrary storage

Hardware - Summit Supercomputer

- 450+ compute nodes (mostly Intel Xeon Haswell)
- 24 cores per "shas" (general compute) node, different core counts for other node types
- High-speed network fabric between nodes
- 1.2 PB scratch storage
- 67% CU, 23% CSU, 10% RMACC

What Would I Use Summit For?

Solving large problems that require more:

- Memory than you have on your personal computer
- Cores/nodes/power than you have on your personal computer
- Blanca is set up for both shared memory (single node) and distributed memory (multi-node) parallelization.
 - Can also use Summit for"big" distributed memory parallelization

Shared memory

Distributed memory

Source: https://images.slideplayer.com/25/7599921/slides/slide 4.jpg

Typical Summit Workflow

shas0101 shas0201 shas0301 shas0102 shas0202 shas0302 shas0203 shas0103 shas0303 shas0104 shas0204 shas0304 shas0401 shas0601 shas0501 shas0402 shas0502 shas0602 shas0403 shas0503 shas0603 shas0404 shas0404 shas0604

Logging In

- ssh <identikey>@login.rc.colorado.edu
- Enter your identikey_password

- Authenticate by accepting the Duo push to your smartphone
 - Can also authenticate by text message, phone call, or token
- More info here: https://curc.readthedocs.io/en/latest/access/logging-in.html

Basic Linux commands

- Is lists the contents of a directory (1s −1 gives detailed listing)
- pwd prints full path to current directory
- cd changes directory; can use full or relative path as target
- mkdir creates a subdirectory in the current directory
- rm removes a file (rm –r removes a directory and all of its contents)
- cp copies a file
- mv moves (or renames) a file or directory
- more displays a file one screen at a time
- head prints the first few lines of a file
- tail prints the last few lines of a file

File editing with nano

- To edit a file:
 - nano myfile.txt
- From within Nano:
 - Ctrl+o save (need to confirm filename)
 - Ctrl+x exit
 - Ctrl+k cut
 - Ctrl+u paste
- Other population Linux editors: vi, emacs

Your personal directories on CURC

- /home/<username>
 - Very small: 2GB.
 - Backed up daily.
 - Good for 'can't lose' files
- /projects/<username>
 - 250 GB
 - Backed up regularly
 - Good for storing scripts, self-installed software, some data
- /scratch/summit/<username>
 - 10 TB (we can expand if you need)
 - Good for jobs with lots of I/O
 - Not backed up
 - Temporary: data deleted 90 days from creation.

Software

- Common software is available to everyone on the systems
- Research Computing uses modules to manage software
 - You load modules to prepare your environment for using software
 - Modules set any environment variables, paths, etc.
 - Set environment so application can find appropriate libraries, etc.
- You can also install your own software
 - It is best if you are responsible for support
 - We are happy to assist

Using Modules

- Must be on a compute node to browse the modules (e.g, bnode0501)
- To set up your environment to use a software package, type module load <package>/<version>
- Some modules might require a specific hierarchy to load
 - For some modules, you may need to specify a specific version
 - For example, module load intel/17.4 impi lammps/290ct20
- To find dependencies for a module, type module spider
 <package>
- To find out what software is available, you can type module avail

Using Anaconda for Python, R

 Many users prefer to use conda to manage python (and R, etc) packages and environments.

- We have Anaconda python installed on our system!
 - (but it isn't a module...)
- Documentation on use: https://curc.readthedocs.io/en/latest/software/python.html

Next topic: Job scheduling

- Job a system allotment of resources that run a particular application.
- Slurm -- resource manager
- Because Summit and Blanca are shared resources among a variety of groups on campus, users must run their applications through jobs.
 - Ensures everyone can utilize the system
 - No one person taking up too much of the system!

Two types of jobs

Interactive Jobs

- Interactive allotments or resources where user run their applications manually
- Useful for:
 - Debugging Applications
 - Running GUI Applications

Batch Jobs

- Non-interactive allotment of resources that run applications in the background
- Think "baking a batch of cookies"
- Useful for:
 - Applications that take a substantial amount of time
 - Non-interactive Applications

Scheduling an interactive job

- To work with a program interactively, we request time from Summit
- When the resources become available the job starts
- Commands to run:

```
sinteractive --reservation=chem4555 --time=00:10:00
```

*note "--reservation=chem4555" is only for this workshop

Once we receive a prompt, then:

```
module load gaussian
g16
```

Once we finish we must exit! (job will time out eventually)

Scheduling Batch Jobs

- sbatch command: schedule a batch job with Slurm
- The sbatch command usually takes in 1 parameter: A job script.
 - Job scripts provide all information on what is needed for the job.
 - Parameters can be overwritten or added externally by specifying the parameter as a flag.
- Example:

```
sbatch test.sh
```

or

sbatch test.sh --time=02:00:00

Anatomy of a job script

#!/bin/bash

```
Job parameters
         #SBATCH --ntasks=1
                                                  # Number of requested tasks
         #SBATCH --time=0:01:00
                                                  # Max wall time
         #SBATCH --partition=shas # Specify APPM nodes
         #SBATCH --qos=normal # Specify you are student
         #SBATCH --output=test %j.out # Rename standard output file
         # Now run job (commands below here)
Your job commands
         # Purge and load needed modules
         module purge
         module load R
         # Run commands
         Rscript myscript.R
```


Job Parameters

```
Allocation: --account=<account-name>
```

```
Partition: --partition=<partition-name>
```

FYI: You do NOT actually type <> above - this designates something specific you as a user must enter about your job

Available Partitions

Partition	Description	# of nodes	cores/node	GPUs/node
shas	General Compute (Haswell)	380	24	0
sgpu	GPU-enabled nodes	10	24	effectively 4
smem	High-memory nodes	5	48	0
sknl	Phi (Knights Landing) nodes	20	68	0

Quality of Service

QoS	Description	Maxwall	Max jobs/user	Max nodes/user
normal	Default QoS	Derived from partition	n/a	256
testing	For quick turnaround when testing	30 Min	1	2/user; max 12 cores/node
interactive	For interactive jobs (command or GUI)	4 Hours	1	1 core
long	For jobs needing longer wall times	7 D	n/a	20
condo	For groups who have contributed to the Summit condo	7 D	n/a	n/a

Let's schedule a batch job

```
cd /projects/$USER
git clone https://github.com/researchcomputing/CHEM4555_Spring_2022
cd CHEM4555_Spring_2022/example_scripts/lammps
sbatch --reservation=chem4555 testscript_lammps.sh
```

Other topics

CURC JupyterHub

Website: https://jupyter.rc.colorado.edu

Docs: https://curc.readthedocs.io/en/latest/gateways/jupyterhub.html

CURC EnginFrame Remote Desktop:

Website: https://viz.rc.colorado.edu

Docs: https://curc.readthedocs.io/en/latest/gateways/enginframe.html

Data Transfers to/from CURC:

https://curc.readthedocs.io/en/latest/compute/data-transfer.html

Thanks!

- Please fill out the survey: http://tinyurl.com/curc-survey18
- Contact: rc-help@Colorado.edu, Andrew.Monaghan@Colorado.edu
- Course materials for today:
 - https://github.com/ResearchComputing/CHEM4555 Spring 2022
- CURC documentation: https://curc.readthedocs.io
- Learning materials: https://www.colorado.edu/crdds/learning-materials
- Courses and Office Hours: https://www.colorado.edu/crdds/events

