LABORATORIO 18

Out[5]: (45211, 17)

```
In [19]:
         #Importando las librerías necesarias
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          import os
          import model_evaluation_utils as meu
          from graphviz import Source
          from sklearn.model selection import train test split
          from sklearn.model_selection import cross_val_score
          from sklearn.tree import DecisionTreeClassifier, export graphviz, export text, plot tree
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.model selection import GridSearchCV
          from imblearn.under sampling import RandomUnderSampler
          from sklearn.metrics import confusion matrix, auc, roc curve
          from sklearn.preprocessing import label binarize
          from mlxtend.plotting import plot_decision_regions
          #Just in Case
          import warnings
          warnings.filterwarnings('ignore')
          import h2o
          from h2o.estimators import H2ORandomForestEstimator
 In [2]: os.chdir('D:\Social Data Consulting\Python for Data Science\data')
         miArchivo="bank-full.csv"
 In [4]:
          df bank=pd.read csv(miArchivo,sep=';')
          df_bank.head()
 Out[4]:
                                                                            contact day month duration campaign po
             age
                         job
                             marital education default balance housing
                                                                      loan
          0
              58
                  management
                             married
                                        tertiary
                                                        2143
                                                                  yes
                                                                           unknown
                                                                                      5
                                                                                                   261
                                                                                                               1
                                                  nο
                                                                                          mav
                                                                       no
           1
              44
                    technician
                               single
                                     secondary
                                                  no
                                                          29
                                                                  yes
                                                                        no
                                                                           unknown
                                                                                      5
                                                                                          may
                                                                                                   151
                                                                                                               1
                  entrepreneur
                             married
                                                           2
                                                                                                    76
              33
                                     secondary
                                                  no
                                                                  yes
                                                                       yes
                                                                           unknown
                                                                                          may
           3
              47
                    blue-collar
                             married
                                      unknown
                                                        1506
                                                                           unknown
                                                                                      5
                                                                                                    92
                                                                  yes
                                                                                          may
                                                  nο
                                                                       nο
              33
                     unknown
                               single
                                      unknown
                                                  no
                                                           1
                                                                   no
                                                                        no unknown
                                                                                      5
                                                                                          may
                                                                                                   198
 In [5]:
         df_bank.shape
```

```
In [7]:
         columnas=df bank.columns.to list()
         columnas
 Out[7]: ['age',
          'job',
          'marital',
          'education',
          'default',
          'balance'
          'housing',
          'loan',
           'contact',
           'day',
          'month',
          'duration',
          'campaign',
          'pdays',
          'previous',
          'poutcome',
          'y']
         predictores=columnas[0:len(columnas)-1]
         target=columnas[len(columnas)-1]
         print(predictores)
         print(target)
         ['age', 'job', 'marital', 'education', 'default', 'balance', 'housing', 'loan', 'contact', 'da
         y', 'month', 'duration', 'campaign', 'pdays', 'previous', 'poutcome']
         У
         1. Dividir la data en 70% de entrenamiento y lo restante para la data de testeo.
         X=df_bank.iloc[:,0:df_bank.shape[1]-1].values
         y=df_bank.iloc[:,df_bank.shape[1]-1].values
In [18]: xtrain,xtest,ytrain,ytest=train_test_split(X,
                                                     у,
                                                    test_size=0.3,
                                                    stratify=y,
                                                    random_state=2020)
In [29]:
         df_xtrain=pd.DataFrame(xtrain,columns=predictores)
         df_ytrain=pd.DataFrame(ytrain,columns=['y'])
         df_xtest=pd.DataFrame(xtest,columns=predictores)
         df ytest=pd.DataFrame(ytest,columns=['y'])
         df_train=pd.concat([df_xtrain,df_ytrain],axis=1)
         df_test=pd.concat([df_xtest,df_ytest],axis=1)
```

2. Entrenar el modelo con los siguientes parametros 60 arboles,3 de profundidad y 8 folders para la validación cruzada.

```
321) . connected.
          Warning: Your H2O cluster version is too old (4 months and 1 day)! Please download and install t
          he latest version from http://h2o.ai/download/ (http://h2o.ai/download/)
                     H2O_cluster_uptime:
                                                      1 min 08 secs
                   H2O_cluster_timezone:
                                                    America/Bogota
             H2O data parsing timezone:
                                                              UTC
                    H2O_cluster_version:
                                                           3.32.0.4
                                               4 months and 1 day !!!
                H2O_cluster_version_age:
                     H2O cluster name: H2O from python Diego LeÃ3n lu5goh
                H2O_cluster_total_nodes:
               H2O_cluster_free_memory:
                                                          1.973 Gb
                 H2O cluster total cores:
                                                                8
              H2O_cluster_allowed_cores:
                                                                8
                     H2O_cluster_status:
                                                     locked, healthy
                    H2O connection url:
                                                http://localhost:54321
                  H2O_connection_proxy:
                                              {"http": null, "https": null}
                   H2O_internal_security:
                                                             False
                                           Amazon S3, Algos, AutoML,
                   H2O_API_Extensions:
                                         Core V3, TargetEncoder, Core
                        Python version:
                                                         3.8.3 final
In [34]: datah20_train=h2o.H2OFrame(df_train)
          Parse progress: |
                                                                                                100%
In [35]:
          #Instanciamos un objeto de clase H2ORandomForestEstimator
          m=h2o.estimators.H2ORandomForestEstimator(nfolds=8, #particiones para CV
                                                           max_depth=3, #maxima profundidad
                                                           ntrees=60, #número de arboles
                                                           seed=2020) #semilla
In [36]:
          #Hacer que el modelo aprenda de los datos
          m.train(x=predictores,
                  y=target,
                  training_frame=datah20_train)
          drf Model Build progress: |
                                                                                                100%
```

Checking whether there is an H2O instance running at http://localhost:54321 (http://localhost:54

In [33]: h2o.init()

In [37]: #Identificando a las variables más importantes para Random Forest
m.varimp_plot()

3. Encontrar el AUC del modelo de la validación cruzada para los datos de entrenamiento.

In [38]: #Evaluar la performance del modelo con los datos de entrenamiento

performance_train= m.model_performance(datah20_train)
performance_train

ModelMetricsBinomial: drf
** Reported on test data. **

MSE: 0.07684753744374091 RMSE: 0.2772138839303344 LogLoss: 0.26268415169621

Mean Per-Class Error: 0.17503263095226695

AUC: 0.9002002080377263 AUCPR: 0.5599317373296461 Gini: 0.8004004160754525

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.1505349286292729:

		no	yes	Error	Rate
0	no	24634.0	3311.0	0.1185	(3311.0/27945.0)
1	yes	979.0	2723.0	0.2645	(979.0/3702.0)
2	Total	25613.0	6034.0	0.1356	(4290.0/31647.0)

Maximum Metrics: Maximum metrics at their respective thresholds

	metric	threshold	value	idx
0	max f1	0.150535	0.559367	245.0
1	max f2	0.107847	0.666531	276.0
2	max f0point5	0.336490	0.561638	120.0
3	max accuracy	0.336490	0.902392	120.0
4	max precision	0.618973	1.000000	0.0
5	max recall	0.046329	1.000000	394.0
6	max specificity	0.618973	1.000000	0.0
7	max absolute_mcc	0.147361	0.505410	247.0
8	max min_per_class_accuracy	0.099409	0.819827	285.0
9	max mean_per_class_accuracy	0.084928	0.824967	305.0
10	max tns	0.618973	27945.000000	0.0
11	max fns	0.618973	3701.000000	0.0
12	max fps	0.043269	27945.000000	399.0
13	max tps	0.046329	3702.000000	394.0
14	max tnr	0.618973	1.000000	0.0
15	max fnr	0.618973	0.999730	0.0
16	max fpr	0.043269	1.000000	399.0
17	max tpr	0.046329	1.000000	394.0

Gains/Lift Table: Avg response rate: 11.70 %, avg score: 11.70 %

	group	cumulative_data_fraction	lower_threshold	lift	cumulative_lift	response_rate	score	cumulative_r
0	1	0.010017	0.492044	6.984521	6.984521	0.817035	0.541393	
1	2	0.020002	0.433412	6.411467	6.698447	0.750000	0.459361	

	group	cumulative_data_fraction	lower_threshold	lift	cumulative_lift	response_rate	score	cumulative_r
2	3	0.030019	0.385826	5.582223	6.325981	0.652997	0.409420	
3	4	0.040004	0.366046	5.167047	6.036705	0.604430	0.375325	
4	5	0.050021	0.351212	4.503533	5.729683	0.526814	0.358645	
5	6	0.100009	0.303804	4.031146	4.880683	0.471555	0.327336	
6	7	0.149998	0.246676	2.593767	4.118538	0.303413	0.279035	
7	8	0.200019	0.136685	2.705534	3.765175	0.316488	0.193084	
8	9	0.300250	0.088152	1.196592	2.907719	0.139975	0.103097	
9	10	0.400006	0.077722	0.617385	2.336538	0.072220	0.081926	
10	11	0.501153	0.072120	0.288426	1.923171	0.033739	0.074581	
11	12	0.600626	0.066800	0.203668	1.638396	0.023825	0.069348	
12	13	0.704964	0.061673	0.098379	1.410465	0.011508	0.063825	
13	14	0.800139	0.057572	0.034058	1.246744	0.003984	0.059768	
14	15	0.900212	0.051527	0.013496	1.109650	0.001579	0.054765	
15	16	1.000000	0.042766	0.010828	1.000000	0.001267	0.048423	
<								>

Out[38]:

4. Obtener el AUC del modelo con la data de testeo.

In [41]: #Evaluar la performance del modelo con los datos de entrenamiento performance_test= m.model_performance(datah20_test)

performance_test

ModelMetricsBinomial: drf
** Reported on test data. **

MSE: 0.07688627247876095 RMSE: 0.2772837400187053 LogLoss: 0.26243678330722836

Mean Per-Class Error: 0.17040776905999044

AUC: 0.9027133185696866 AUCPR: 0.5620574210835447 Gini: 0.8054266371393732

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.1502812096405597:

		no	yes	Error	Rate
0	no	10610.0	1367.0	0.1141	(1367.0/11977.0)
1	yes	424.0	1163.0	0.2672	(424.0/1587.0)
2	Total	11034.0	2530.0	0.132	(1791.0/13564.0)

Maximum Metrics: Maximum metrics at their respective thresholds

	metric	threshold	value	idx
0	max f1	0.150281	0.564974	237.0
1	max f2	0.094045	0.670413	287.0
2	max f0point5	0.327491	0.558024	116.0
3	max accuracy	0.347943	0.902094	99.0
4	max precision	0.606198	1.000000	0.0
5	max recall	0.051137	1.000000	382.0
6	max specificity	0.606198	1.000000	0.0
7	max absolute_mcc	0.150281	0.510519	237.0
8	max min_per_class_accuracy	0.097318	0.820656	283.0
9	max mean_per_class_accuracy	0.083994	0.829592	304.0
10	max tns	0.606198	11977.000000	0.0
11	max fns	0.606198	1586.000000	0.0
12	max fps	0.043056	11977.000000	399.0
13	max tps	0.051137	1587.000000	382.0
14	max tnr	0.606198	1.000000	0.0
15	max fnr	0.606198	0.999370	0.0
16	max fpr	0.043056	1.000000	399.0
17	max tpr	0.051137	1.000000	382.0

Gains/Lift Table: Avg response rate: 11.70 %, avg score: 11.57 %

	group	cumulative_data_fraction	lower_threshold	lift	cumulative_lift	response_rate	score	cumulative_r
0	1	0.010027	0.477801	6.975815	6.975815	0.816176	0.530204	
1	2	0.020053	0.429942	6.535898	6.755856	0.764706	0.452434	
2	3	0.030006	0.382797	6.014516	6.509957	0.703704	0.405548	
3	4	0.040032	0.366633	5.278995	6.201650	0.617647	0.373852	
4	5	0.050059	0.351145	4.399162	5.840621	0.514706	0.359904	
5	6	0.100044	0.301381	3.882682	4.862373	0.454277	0.325779	
6	7	0.150029	0.243217	2.735526	4.153773	0.320059	0.274564	
7	8	0.200015	0.129436	2.710314	3.793041	0.317109	0.183419	
8	9	0.300059	0.087109	1.158908	2.914781	0.135593	0.101435	
9	10	0.400029	0.077706	0.592487	2.334421	0.069322	0.081552	
10	11	0.503318	0.071546	0.317231	1.920465	0.037116	0.074359	
11	12	0.599971	0.066491	0.208621	1.644693	0.024409	0.069085	
12	13	0.700310	0.061673	0.062799	1.418042	0.007348	0.063695	
13	14	0.802713	0.057235	0.055380	1.244205	0.006479	0.059589	
14	15	0.899956	0.051390	0.006480	1.110466	0.000758	0.054574	
15	16	1.000000	0.042766	0.006298	1.000000	0.000737	0.048505	V
<								>

Out[41]:

In [42]: #Podemos obtener La curva ROC y AUC para los Datos de Testeo
performance_test.plot('roc')


```
In [ ]:
```