Warm-Up

• Claim: For every $n \in \mathbb{N}$, $\sum_{i=0}^{n-1} 2^i = 2^n - 1$

Proof by Induction:

CS3000: Algorithms & Data Drew van der Poel

Lecture 2:

Stable Matching: the Gale-Shapley Algorithm

January 9/10, 2020

Outline

Last class: student counting, proof by induction

Next class: Asymptotic analysis, divide and conquer, sorting numbers (mergesort)

Labor Markets

- Most labor markets are frustrating
 - Not everyone can get their favorite job
 - The market is decentralized
 - This leads to potential chaos

- Decentralized labor markets are confusing
 - You get an offer from your 2nd choice what should you do?

Centralized Labor Markets

What if we could just assign jobs?

What information would we want?

How would we choose the assignment?

Centralized Labor Markets

- What if we could just assign jobs?
 - What information would we want?
 - Employer & employee preferences
 - How many of each

How would we choose the assignment?

Centralized Labor Markets

- What if we could just assign jobs?
 - What information would we want?
 - Employer & employee preferences
 - How many of each

- How would we choose the assignment?
 - Maximizing overall happiness would be nice, but hard
 - What about a stable assignment?

Matchings

- We are given the following information
 - n doctors $d_1 \dots d_n$
 - n hospitals $h_1 \dots h_n$
 - each doctor's ranking of hospitals (e.g. $d_1: h_2 > h_3 > h_1$)
 - each hospital's ranking of doctors (e.g. $h_1: d_1 > d_3 > d_2$)

	1st	2nd	3rd	4th	5th
MGH	Bob	Alice	Dorit	Ernie	Clara
BW	Dorit	Bob	Alice	Clara	Ernie
BID	Bob	Ernie	Clara	Dorit	Alice
МТА	Alice	Dorit	Clara	Bob	Ernie
СН	Bob	Dorit	Alice	Ernie	Clara

	1st	2nd	3rd	4th	5th
Alice	СН	MGH	BW	MTA	BID
Bob	BID	BW	MTA	MGH	СН
Clara	BW	BID	MTA	СН	MGH
Dorit	MGH	СН	MTA	BID	BW
Ernie	MTA	BW	СН	BID	MGH

Matchings

- A matching M is a (non-empty) set of doctorhospital pairs where no doctor/hospital appears twice
 - $e.g. M = \{ (d_1, h_2), (d_2, h_3) \}$
 - perfect matching: every doctor/hospital appears once
 - "d is matched to h": $(d,h) \in M$
 - "d is matched": $(d, h) \in M$ for some h

Stable Matchings

 A matching M is unstable if some doctor-hospital pair prefer one another to their mate in M

Instabilities

- 1. d, h such that d is matched to h', h is unmatched, but d: h > h'
- 2. d, h such that h is matched to d', d is unmatched, but h: d > d'
- 3. d, h such that d is matched to h', h is matched to d', h but d: h > h' and h: d > d'

If a matching M is perfect and not unstable it is stable

• Problems: counting students, stable matching

• Alg. techniques:

Analysis:

Proof techniques: induction

Ask the Audience

• Either find a stable matching or convince yourself that there is no stable matching

	1st	2nd	3rd
MGH	Alice	Bob	Clara
BW	Bob	Clara	Alice
BID	Alice	Clara	Bob

	1st	2nd	3rd
Alice	BW	BID	MGH
Bob	BID	MGH	BW
Clara	MGH	BID	BW

• Solution:

Ask the Audience

 Either find a stable matching or convince yourself that there is no stable matching

	1st	2nd	3rd
MGH	Alice	Bob	Clara
BW	Bob	Clara	Alice
BID	Alice	Clara	Bob

	1st	2nd	3rd
Alice	BW	BID	MGH
Bob	BID	MGH	BW
Clara	MGH	BID	BW

- Some solution(s):
 - (Alice, BW), (Bob, BID), (Clara, MGH)
 - (Alice, BID), (Bob, MGH), (Clara, BW)

Gale-Shapley Algorithm

- National system for matching US medical school graduates to medical residencies
 - Roughly 40,000 doctors per year
 - Assignment is almost entirely algorithmic

David Gale (1921-2008) PROFESSOR, UC BERKELEY

Lloyd Shapley
PROFESSOR EMERITUS, UCLA

Alvin Roth PROFESSOR, STANFORD

Gale-Shapley Algorithm

```
    Let M be empty

    While (some hospital h is unmatched):

   • If (h has offered a job to everyone): break
     Else: let d be the highest-ranked doctor to
     which h has not yet offered a job

    h makes an offer to d:

      • If (d is unmatched):

    d accepts, add (d,h) to M

    ElseIf (d is matched to h' & d: h' > h):

    d rejects, do nothing

    ElseIf (d is matched to h' & d: h > h'):

    d accepts, remove (d,h') from M and

            add (d,h) to M

    Output M
```

"job _____

Gale-Shapley Demo

	1st	2nd	3rd	4th	5th
MGH	Bob	Alice	Dorit	Ernie	Clara
BW	Dorit	Bob	Alice	Clara	Ernie
BID	Bob	Ernie	Clara	Dorit	Alice
МТА	Alice	Dorit	Clara	Bob	Ernie
СН	Bob	Dorit	Alice	Ernie	Clara
	1st	2nd	3rd	4th	5th
Alice	СН	MGH	BW	MTA	BID
Bob	BID	BW	MTA	MGH	СН
Clara	BW	BID	MTA	СН	MGH
Dorit	MGH	СН	MTA	BID	BW
Ernie	MTA	BW	СН	BID	MGH

Hospitals make offers in descending order

Doctors that get a job never become unemployed

Doctors accept offers in ascending order

- Hospitals make offers in descending order
 - If (d, h) ∈ M at some point, h will never be w/ a doctor it prefers to d

Doctors that get a job never become unemployed

Doctors accept offers in ascending order

- Hospitals make offers in descending order
 - If (d, h) ∈ M at some point, h will never be w/ a doctor it prefers to d

- Doctors that get a job never become unemployed
 - If *d* is matched at some point, it is matched forever

Doctors accept offers in ascending order

- Hospitals make offers in descending order
 - If (d, h) ∈ M at some point, h will never be w/ a doctor it prefers to d

- Doctors that get a job never become unemployed
 - If *d* is matched at some point, it is matched forever

- Doctors accept offers in ascending order
 - If (d, h) ∈ M at some point, d would only leave h for a hospital it prefers to h

Gale-Shapley Algorithm

- Questions about the Gale-Shapley Algorithm:
 - Will this algorithm terminate?
 - Does it output a perfect matching?
 - Does it output a stable matching?
 - How do we implement this algorithm efficiently?

GS Algorithm: Termination

• Claim: The GS algorithm terminates after at most n^2 iterations of the main loop (n^2 job offers).

GS Algorithm: Termination

• Claim: The GS algorithm terminates after at most n^2 iterations of the main loop (n^2 job offers).

- Each hospital offers each doctor at most once
- There are n of each $\rightarrow n^2$ total offers

Gale-Shapley Algorithm

- Questions about the Gale-Shapley Algorithm:
 - Will this algorithm terminate?

 Yes!
 - Does it output a perfect matching?
 - Does it output a stable matching?
 - How do we implement this algorithm efficiently?

GS Algorithm: Perfect Matching

 Claim: The GS algorithm returns a perfect matching (all doctors/hospitals are matched)

Proof by Contradiction

- Important: No claim/proposition can be both true and false
- Assume the claim C that you want to prove true is false (not-C is true)
- Then show the claim being false implies contradictory assertions (that both an assertion Q and not-Q are true)
- Since Q and not-Q cannot both be true, C must be true

"one of a mathematician's finest weapons" – G. H. Hardy

• Problems: counting students, stable matching

• Alg. techniques:

Analysis:

• Proof techniques: induction, contradiction

GS Algorithm: Perfect Matching

 Claim: The GS algorithm returns a perfect matching (all doctors/hospitals are matched)

GS Algorithm: Perfect Matching

Claim: The GS algorithm returns a perfect matching (all doctors/hospitals are matched)

- Suppose GS does not return a perfect matching
 - Thus, some h is unmatched (also some d is unmatched)
 - Note: h must have offered d, otherwise alg wouldn't have terminated
 - Case a: d accepted h's offer -> d is matched (by obs. 2) $\Rightarrow \Leftarrow$
 - Case b: d rejected h's offer -> d only rejects if currently matched, thus d is matched (by obs. 2) $\Rightarrow \Leftarrow$

Gale-Shapley Algorithm

- Questions about the Gale-Shapley Algorithm:
 - Will this algorithm terminate?

 Yes!
 - Does it output a perfect matching?
 - Does it output a stable matching?
 - How do we implement this algorithm efficiently?

- Stability: GS algorithm outputs a stable matching
- Proof by contradiction:
 - Suppose there is an instability (d, h'), (d', h)
 - That is given a matching which includes (d, h'), (d', h),
 d prefers h to h' and h prefers d to d'

- Stability: GS algorithm outputs a stable matching
- Proof by contradiction:
 - Suppose there is an instability (d, h'), (d', h)

- We know h made an offer to d before d' (by obs. 1)
 - Case 1
 - Case 2

- Stability: GS algorithm outputs a stable matching
- Proof by contradiction:
 - Suppose there is an instability (d, h'), (d', h)

- We know h made an offer to d before d' (by obs. 1)
 - Case 1 d rejected
 - Case 2 d accepted

- Stability: GS algorithm outputs a stable matching
- Proof by contradiction:
 - Suppose there is an instability (d, h'), (d', h)
 - We know h made an offer to d before d'
 - Case 1 d rejected the offer

- Stability: GS algorithm outputs a stable matching
- Proof by contradiction:
 - Suppose there is an instability (d, h'), (d', h)
 - We know h made an offer to d before d'
 - Case 1 d rejected the offer

d was matched with h* when it rejected h's offer, thus d prefers h* to h

Because "doctors only get happier" (obs. 3), d prefers h' to h^* , and thus h' to $h \implies \Leftarrow$

- Stability: GS algorithm outputs a stable matching
- Proof by contradiction:
 - Suppose there is an instability (d, h'), (d', h)
 - We know h made an offer to d before d'
 - Case 2 *d* accepted the offer

- Stability: GS algorithm outputs a stable matching
- Proof by contradiction:
 - Suppose there is an instability (d, h'), (d', h)
 - We know h made an offer to d before d'
 - Case 2 *d* accepted the offer

Because "doctors only get happier" (obs. 3), d prefers h' to $h \Rightarrow \Leftarrow$

Gale-Shapley Algorithm

Questions about the Gale-Shapley Algorithm:

Will this algorithm terminate?

Does it output a perfect matching?

Does it output a stable matching?

Yes!

How do we implement this algorithm efficiently?

Running Time:

• A straightforward implementation requires $\approx n^3$ operations in the worst case, $\approx n^2$ space

```
    Let M be empty

    While (some hospital h is unmatched):

   • If (h has offered a job to everyone): break
     Else: let d be the highest-ranked doctor to
     which h has not yet offered a job
   h makes an offer to d:
      • If (d is unmatched):

    d accepts, add (d,h) to M

    ElseIf (d is matched to h' & d: h' > h):

    d rejects, do nothing

    ElseIf (d is matched to h' & d: h > h'):

    d accepts, remove (d,h') from M and

           add (d,h) to M
• Output M
```

"job offer"

```
    Let M be empty

    While (some hospital h is unmatched):

   • If (h has offered a job to everyone): break
     Else: let d be the highest-ranked doctor to
     which h has not yet offered a job
   h makes an offer to d:
      • If (d is unmatched):

    d accepts, add (d,h) to M

     • ElseIf (d is matched to h' & d: h' > h):

    d rejects, do nothing

    ElseIf (d is matched to h' & d: h > h'):

    d accepts, remove (d,h') from M and

           add (d,h) to M
 Output M
```

- Loop runs $\leq n^2$ times; $\leq n$ operations to find h, h' in d's preferences
- n^2 offers * n operations = n^3 total operations

"job

Running Time:

• A careful implementation requires just $\approx n^2$ operations in the worst case and $\approx n^2$ space

Running Time:

- A careful implementation requires just $\approx n^2$ operations in the worst case and $\approx n^2$ space
- Create an array of doctor x hospital in n^2 steps

	1st	2nd	3rd	4th	5th
Alice	СН	MGH	BW	MTA	BID
Bob	BID	BW	MTA	MGH	СН
Clara	BW	BID	MTA	СН	MGH
Dorit	MGH	СН	MTA	BID	BW
Ernie	MTA	BW	СН	BID	MGH

	MGH	BW	BID	MTA	СН
Alice	2 nd	3 rd	5 th	4 th	1 st
Bob	4 th	2 nd	1 st	3 rd	5 th
Clara	5 th	1 st	2 nd	3 rd	4 th
Dorit	1 st	5 th	4 th	3 rd	2 nd
Ernie	5 th	2 nd	4 th	1 st	3 rd

Running Time:

- A careful implementation requires just $\approx n^2$ operations in the worst case and $\approx n^2$ space
- n^2 operations to convert doctor x rank -> doctor x hospital
- Loop runs ≤ n² times; 2 operations to find h & h' in d's preferences
- $\approx n^2$ total operations

Real World Impact

TABLE I
STABLE AND UNSTABLE (CENTRALIZED) MECHANISMS

Market	Stable	Still in use (halted unraveling)
American medical markets		
NRMP	yes	yes (new design in '98)
Medical Specialties	yes	yes (about 30 markets)
British Regional Medical Markets		
Edinburgh ('69)	yes	yes
Cardiff	yes	yes
Birmingham	no	no
Edinburgh ('67)	no	no
Newcastle	no	no
Sheffield	no	no
Cambridge	no	yes
London Hospital	no	yes
Other healthcare markets		
Dental Residencies	yes	yes
Osteopaths (<'94)	no	no
Osteopaths (≥'94)	yes	yes
Pharmacists	yes	yes
Other markets and matching process	es	
Canadian Lawyers	yes	yes (except in British Columbia since 1996)
Sororities	yes (at equilibrium)	yes

Table 1. Reproduced from Roth (2002, Table 1).

Real World Impact

- - Have to deal with two-body problems
 - Have to make sure doctors do not game the system
- - Not all matches are feasible (blood types)
 - Certain pairs must be matched
- - Siblings, walking zones, diversity

