

Representation & Description-II

- On completion the students will learn and be able to implement
 - Boundary based descriptors
 - Fourier descriptor
 - Boundary straightness
 - Bending energy
 - Region based shape descriptors
 - Eccentricity
 - Elongatedness
 - Rectangularity
 - Compactness
 - Moments etc.

DFT of S(k) K=0.1,... N-1. $a(w) = \frac{1}{N} \sum_{k=1}^{N-1} s(k) e^{-j\frac{2\pi}{N}} uk$ K = 0 IDF N-1 of a(u) - Fourier Description 1 (x) = \(\sum a(u) e

$$\frac{M}{s} \left(\begin{array}{c} N \\ N \\ M \end{array} \right) = \sum_{u=0}^{\infty} \alpha(u)e^{i\frac{2\pi u}{N}} \\
N \\
N \\
N \\
N$$

Other boundary Descriptons Boundary Straightness => no. of pixels where direction of Lovendary changes abruftly Total no. of boundary points

Other boundary Descriptors Boundary Straightness => no. of pixels where direction of toundary changes abruftly Total no. of boundary por

Bending Energy c (K)

Region based Shaper Describtors Area -> total no. of pixels belonging to the region. tuler no.

Horizontal & Vertical Projections.

Images as Point Sets

Eccentricity

Elongatedness

Elongatedness

Rectangularity vatio of region area and the area of a bounding rectangle which is maximum. Rectan quelarity 2 Fus

Compactness perimeter 2 (211 x)~ 4TT