# **Introduction to Machine Learning**

# Regularization Lasso vs. Ridge





#### Learning goals

- Properties of ridge vs. lasso
- Coefficient paths
- What happens with corr. features
- Why we need feature scaling

#### LASSO VS. RIDGE GEOMETRY I

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left( y^{(i)} - f\left( \mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right) \right)^{2} \qquad \text{s.t. } \|\boldsymbol{\theta}\|_{p}^{p} \leq t$$



- In both cases (and for sufficiently large  $\lambda$ ), the solution which minimizes  $\mathcal{R}_{reg}(\theta)$  is always a point on the boundary of the feasible region.
- As expected,  $\hat{\theta}_{\text{lasso}}$  and  $\hat{\theta}_{\text{ridge}}$  have smaller parameter norms than  $\hat{\theta}$ .
- For lasso, solution likely touches a vertex of constraint region.
  Induces sparsity and is a form of variable selection.
- For p > n: lasso selects at most n features Zou and Hastie 2005

#### COEFFICIENT PATHS AND 0-SHRINKAGE I

#### **Example 1: Motor Trend Car Roads Test (mtcars)**

We see how only lasso shrinks to exactly 0.



NB: No real overfitting here, as data is so low-dim.



#### **COEFFICIENT PATHS AND 0-SHRINKAGE II**

Example 2: High-dim., corr. simulated data: p = 50; n = 100

$$y = 10 \cdot (x_1 + x_2) + 5 \cdot (x_3 + x_4) + 1 \cdot \sum_{j=5}^{14} x_j + \epsilon$$

36/50 vars are noise;  $\epsilon \sim \mathcal{N}\left(0,1\right)$ ;  $\mathbf{x} \sim \mathcal{N}\left(\mathbf{0},\Sigma\right)$ ;  $\Sigma_{k,l} = 0.7^{|k-l|}$ 





#### REGULARIZATION AND FEATURE SCALING I

- Typically we omit  $\theta_0$  in penalty  $J(\theta)$  so that the "infinitely" regularized model is the constant model (but can be implementation-dependent).
- Unregularized LM has rescaling equivariance, if you scale some features, can simply "anti-scale" coefs and risk does not change.
- Not true for Reg-LM: if you down-scale features, coeffs become larger to counteract. They are then penalized stronger in  $J(\theta)$ , making them less attractive without any relevant reason.
- So: usually standardize features in regularized models, whether linear or non-linear!



## REGULARIZATION AND FEATURE SCALING II

- ullet Let the DGP be  $y=\sum_{j=1}^5 heta_j x_j + arepsilon$  for  $oldsymbol{ heta}=(1,2,3,4,5)^{ op}, arepsilon \sim \mathcal{N}(0,1)$
- Suppose  $x_5$  was measured in m but we change the unit to cm ( $\tilde{x}_5 = 100 \cdot x_5$ ):

| Method       | $\hat{	heta}_1$ | $\hat{	heta}_{	extsf{2}}$ | $\hat{	heta}_3$ | $\hat{	heta}_{	extsf{4}}$ | $\hat{	heta}_{	extsf{5}}$ | MSE   |
|--------------|-----------------|---------------------------|-----------------|---------------------------|---------------------------|-------|
| OLS          | 0.984           | 2.147                     | 3.006           | 3.918                     | 5.205                     | 0.812 |
| OLS Rescaled | 0.984           | 2.147                     | 3.006           | 3.918                     | 0.052                     | 0.812 |

- Estimate  $\hat{\theta}_5$  gets scaled by 1/100 while other estimates and MSE are invariant
- Running ridge regression with  $\lambda=10$  on same data shows that rescaling of of  $x_5$  does not result in inverse rescaling of  $\hat{\theta}_5$  (everything changes!)
- This is because  $\hat{\theta}_5$  now lives on small scale while L2 constraint stays the same. Hence remaining estimates can "afford" larger magnitudes.

| Method         | $\hat{	heta}_1$ | $\hat{	heta}_{	extsf{2}}$ | $\hat{	heta}_3$ | $\hat{	heta}_{	extsf{4}}$ | $\hat{	heta}_{	extsf{5}}$ | MSE   |
|----------------|-----------------|---------------------------|-----------------|---------------------------|---------------------------|-------|
| Ridge          | 0.709           | 1.874                     | 2.661           | 3.558                     | 4.636                     | 1.366 |
| Ridge Rescaled | 0.802           | 1.943                     | 2.675           | 3.569                     | 0.051                     | 1.08  |

 For lasso, especially for very correlated features, we could arbitrarily force a feature out of the model through a unit change.



### **CORRELATED FEATURES:** L1 VS L2 I

Simulation with n = 100:

$$y = 0.2x_1 + 0.2x_2 + 0.2x_3 + 0.2x_4 + 0.2x_5 + \epsilon$$

 $x_1$ - $x_4$  are independent, but  $x_4$  and  $x_5$  are strongly correlated.



- L1 removes  $x_5$  early, L2 has similar coeffs for  $x_4$ ,  $x_5$  for larger  $\lambda$
- Also called "grouping property": for ridge highly corr. features tend to have equal effects; lasso however "decides" what to select
- L1 selection is somewhat "arbitrary"



#### **CORRELATED FEATURES:** L1 VS L2 II

**More detailed answer**: The "random" decision is in fact a complex deterministic interaction of data geometry (e.g., corr. structures), the optimization method, and its hyperparamters (e.g., initialization). The theoretical reason for this behavior relates to the convexity of the penalties • Zou and Hastie 2005.



Considering perfectly collinear features  $x_4 = x_5$  in the last example, we can obtain some more formal intuition for this phenomenon:

• Because L2 penalty is strictly convex:

$$x_4 = x_5 \implies \hat{\theta}_{4,ridge} = \hat{\theta}_{5,ridge}$$
 (grouping prop.)

• *L*1 penalty is not *strictly* convex. Hence, no unique solution exists if  $x_4 = x_5$ , and sum of coefficients can be arbitrarily allocated to both features while remaining minimizers (no grouping property!): For any solution  $\hat{\theta}_{4,lasso}$ ,  $\hat{\theta}_{5,lasso}$ , equivalent minimizers are given by

$$\tilde{\theta}_{4,\textit{lasso}} = s \cdot (\hat{\theta}_{4,\textit{lasso}} + \hat{\theta}_{5,\textit{lasso}}) \text{ and } \tilde{\theta}_{5,\textit{lasso}} = (1-s) \cdot (\hat{\theta}_{4,\textit{lasso}} + \hat{\theta}_{5,\textit{lasso}}) \, \forall s \in [0,1]$$

#### SUMMARY Tibshirani 1996 Zou and Hastie 2005

- Neither ridge nor lasso can be classified as better overall
- Lasso can shrink some coeffs to zero, so selects features; ridge usually leads to dense solutions, with smaller coeffs
- Lasso likely better if true underlying structure is sparse ridge works well if there are many (weakly) influential features
- Lasso has difficulties handling correlated predictors; for high correlation, ridge dominates lasso in performance
- Lasso: for (highly) correlated predictors, usually an "arbitrary" one is selected, with large coeff, while the others are (nearly) zeroed
- Ridge: coeffs of correlated features are similar

