Skein and Cluster algebras of unpunctured surfaces for spa joint work with Tsukasa Ishibashi

Wataru Yuasa (RIMS/OCAMI)

@ ACA2623 (Online)

§ Introduction

unpunctured surface
$$\Sigma = \begin{array}{c} & & & & \\ & & &$$

M ≥ 2

Theorem (Muller '16)
$$S_{ab,\Sigma}^{2} [\delta^{-1}] = A_{ab,\Sigma}^{2} = U_{ab,\Sigma}^{3}$$

$$A \subseteq S \subseteq U$$

Theorem (Ishibashi-Y. 23)
$$\mathcal{J} = \mathcal{A}_3$$
, $\mathcal{A}_{p,\Sigma}$

$$\mathcal{S}_{g,\Sigma}^{2} \left[\mathcal{J}^{1} \right] \subset \mathcal{A}_{g,\Sigma}^{2}$$

Theorem (Ishibashi - Oya - Shen) + Ishibashi - Y.
$$S_{q,\Sigma}^{1} \left[\delta^{-1} \right] = A_{q,\Sigma}^{1} = U_{q,\Sigma}^{1} = O(A_{G,\Sigma}^{n})$$

Conjecture
$$\mathcal{S}_{g,\Sigma}^{\mathfrak{k}}[\mathfrak{d}'] = \mathcal{A}_{g,\Sigma}^{\mathfrak{k}} = \mathcal{U}_{g,\Sigma}^{\mathfrak{k}} \subset \operatorname{Frac} \mathcal{S}_{g,\Sigma}^{\mathfrak{k}}$$

Question Construct positive bases by using 9-web.

e.g.
$$g = sl_2$$
: { bangle basis } \longrightarrow theta basis band basis \longrightarrow and

general 9: We conjecture that these bases are constructed by substituting "Orbit functions"

§ skein algebra for
$$2pa$$
 [n] = $\frac{2^n - 2^n}{8 - 8^{-1}}$
 $\begin{cases} 8 & \text{gran} = \mathbb{Z}_8 \left[\frac{1}{2} \right] \right] \left\{ \text{tangled } 4pa - 9raphs } \text{ on } \mathbb{Z}_7 \right\} \left\{ \text{skein rel.} \right\}$
 $\mathbb{Z}[2^{2n}]$

$$= v$$

Def. crossroad
$$\times := \times -\frac{1}{12} \times = \times -\frac{1}{12}$$
)

Thm The set of basis webs BWeb is

a.
$$\mathbb{Z}_8 [1/62] - basis$$
 of $\mathbb{Z}_{4p4,E}$.

In crossings no rungs X (have only crosswoods) no elliptic faces

Lem.
$$S_{Apq,E}^{Z_2}$$
 is a Z_2 -subolgebra of $S_{Apq,E}$

$$\times = 2 \cdot (+2^{-1} \times + \times)$$

$$= 2 \cdot (+2^{-1} \times + \times)$$

§ quantum cluster algebra Ag, E

7: a skew-field

$$I = Iuf \sqcup If$$
: index set

D = diag (dilieI)

o quantum seeds $S^{2}=(B,\Pi,\dot{\Lambda},M)$

-
$$\Pi = (\Pi_{ij})_{i,j \in I}$$
: skew-symmetric form on Λ

$$- \mathring{\Lambda} = \bigoplus_{i \in I} \mathbb{Z} f_i \qquad \Pi(f_i, f_k) = \pi_{ik}$$

$$- M: \mathring{\Lambda} \longrightarrow \mathcal{F} \setminus \{o\} \text{ s.t. } M(\alpha) M(\beta) = g^{\frac{\pi(\alpha,\beta)}{2}} M(\alpha + \beta)$$

y = spa

o quantum seeds sa

mutation at $k \in I_{uf}$ $(B, \Pi, \mathring{\Lambda}, M) \stackrel{\mathring{\Lambda}_{k}}{\longleftrightarrow} (B', \Pi', \mathring{\Lambda}', M')$ $A_{k} \longleftarrow A'$

 $A_k A_k' = 2^{\bullet} \prod_{j \in I} A_j^{\lfloor b_{jk} \rfloor_+} + 2^{\bullet} \prod_{j \in I} A_j^{\lfloor -b_{jk} \rfloor_+}$ Quantum exchange relation △ . △ : decorated triangulations

 $S_{\Delta} \longleftrightarrow \cdots \longleftrightarrow S_{\Delta'}$

is realized by 8 mutations.

Def $A_{340,z} = Z_g$ -subalgebra generated by all clusters related to SA

§ Examples: Same [0] CA

 $\emptyset \Sigma = \text{triangle} \quad \mathcal{S}_{4p,\Delta}^{2g}[\partial^{-}] = \mathcal{A}_{4p,\Delta}^{g}$

exchange relation $\triangle \longleftrightarrow \triangle$

- 3 00 many clusters
 - · a flip: 8-mutations

e.g. cluster variables

Conjecture {tree-type webs} = {cluster variables}

§ Strategy to prove
$$S_{M,c}[\partial^{-1}] \subset A_{M,c}$$

(I) Construct quantum seeds (SA) and adjacent seeds in Fi

closped skein elgera

Conspect skein elgera

Conspect skein elgera

Stated skein elgera

Sta

I state-clasp correspondence [IT] $2^{st}(\Sigma) \hookrightarrow \otimes 2^{st}(T)$

(III) $\mathcal{S}_{Apla,\Gamma}^{Z_1}[\partial^{-1}] \subset \mathcal{A}_{Apla,\Gamma}^{Z}$ in \mathcal{F} shein sticking thick

§ sticking trick

Lem Saper is generated by "descending" webs

proof. of S[o] < A

(Fin)

• Other works Le-Sikora, Le-Yu: stated skein alg. & quantum trace gesla

Ishibasi-Kano-Y: skein & cluster with coefficents.

Ishibasi-Sun-Y: bounded spa-lamination etc.