Universidade Federal de Alfenas - UNIFAL-MG

Disciplina: Matemática Discreta Período: 2025/1

Professor: Anderson José de Oliveira

Lista de Exercícios 7 - Revisão P2

1. Prove por indução sobre n que $(a^m)^n = a^{m,n}$, para quaisquer $a, m, n \in \mathbb{N}, a \neq 0$.

2. Prove por indução que:

$$\sum_{i=1}^{n-1} i(i+1) = \frac{n \cdot (n-1) \cdot (n+1)}{3}, \quad n \ge 2$$

3. Seja a sequência a_1, a_2, a_3, \dots definida como: $a_1 = 3, a_k = 7a_{k-1}, \forall k \geq 2$. Prove por indução matemática que $a_n = 3 \cdot 7^{n-1}$ para todos os inteiros $n \geq 1$.

4. Prove por indução que $7^n + 2$ é divisível por $3, n \in \mathbb{N}$.

5. Um progressão aritmética (PA) é uma sequência de números reais (a_n) tal que a_1 é dado e, para todo $n \in \mathbb{N}^*$, tem-se que:

$$a_{n+1} = a_n + r,$$

onde r é um número real fixo chamado razão.

- (a) Mostre que $a_n = a_1 + (n-1)r$;
- (b) Se $S_n = a_1 + \cdots + a_n$, mostre que:

$$S_n = na_1 + \frac{n(n-1)}{2}r = \frac{(a_1 + a_n)n}{2}.$$

6.

- (a) Prove que sendo R uma relação em um conjunto A, R é transitiva se, e somente se, R^{-1} é transitiva.
- (b) Prove que sendo R uma relação em um conjunto A, R é simétrica se, e somente se, $R = R^{-1}$.

7.

(a) Prove que a relação de congruência módulo m (m um inteiro positivo qualquer) é uma relação de equivalência em \mathbb{Z} .

- (b) Considere a relação de equivalência congruência módulo 2 em \mathbb{Z} . Explicite as classes de equivalência de 0 e 1.
- (c) Apresente a partição de Z nas classes de equivalência do item anterior e explique as propriedades dessa partição.
- **8.** Seja R uma relação definida por: $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} | x \leq y\}.$
- (a) Prove que essa relação é de ordem.
- (b) Essa relação é ordem total?
- (c) Represente parcialmente o diagrama de Hasse dessa relação.

9.

- (a) Seja A um conjunto ordenado segundo a relação " \preceq " e $B\subset A$ um subconjunto não-vazio. Apresente a definição de máximo e mínimo de B.
- (b) Se B é um subconjunto de um conjunto ordenado (A, \preceq) e existe um máximo (mínimo) de B, prove que esse máximo (mínimo) é único.
- 10. Sejam $A = \mathbb{N}$ e $B = \{\text{números pares}\}$, obtenha: limitante superior, limitante inferior, máximo, mínimo, supremo e ínfimo.

Sugestão: Faça uma revisão geral da teoria estudada até o momento: princípios da indução finita, relações e suas principais propriedades, relações de equivalência e de ordem.

Bom trabalho! Entregar até dia 22/05/2025, antes da aplicação da prova 2.