THỐNG KÊ MÁY TÍNH & ỨNG DỤNG – 18HCB BÀI TẬP 1

Câu 1. (1.5 đ). Thực hiện thí nghiệm tung một đồng xu đồng chất 4 lần. Gọi A là biến cố "được mặt sấp nhiều hơn mặt ngửa".

- a) Cho biết các phần tử của không gian mẫu và biến cố A
 - > Các phần tử của không gian mẫu là:

Gọi 1, 2, 3, 4 lần lượt là lần gieo đồng xu thứ I, II, III, IV

Gọi S là gieo đồng xu được mặt sấp

Gọi N là gieo đồng xu được mặt ngửa

→ Ta có bảng sau thể hiện không gian mẫu

1	2	3	4
S	S	S	S
S	S	S	Z
S	S	Ν	S
S	S	Ν	Ν
S	Ν	S	S
S	Ν	S	Z
S	Ν	Ν	S
S	Ν	Ν	Z
N	S	S	S
N	S	S	N

N	S	N	S
N	S	Ν	N
N	N	S	S
N	N	S	N
N	N	N	S
N	N	N	N

Các phần tử của biến cố A:

1	2	3	4
S	S	S	S
S	S	S	N
S	S	N	S
S	N	S	S
N	S	S	S

b) Tính xác suất của A

$$P(A) = \frac{5}{16}$$

Câu 2. (2.5 đ). Thực hiện thí nghiệm gieo một xúc xắc đồng chất 2 lần. Tính xác suất các biến cố:

Thí nghiệm: "Tung hai xúc xắc đồng chất"

- → Không gian mẫu: $Ω = \{(i,j) : i,j \in \{1,2,...,5,6\}\} = \{1,2,...,5,6\}^2$
- \Rightarrow Số phần tử không gian mẫu: $|\Omega| = 6^2 = 36$

a) Tổng số chấm của hai lần là 7

- Gọi A là biến cố "Tổng số chấm của hai lần là 7"
- Tổng số chấm của hai lần là 7 \Rightarrow Phải gieo được các cặp mặt sau: (1,6) (6,1) (2,5) (5,2) (3, 4) (4,3) $\Rightarrow A = \{(i,j): i,j \in \Omega: i+j=7\} \Rightarrow |A| = 6$
- Vì đây là mô hình xác xuất đơn giản nên ta có xác xuất của A là:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{6}{36} = \frac{1}{6}$$

b) Tổng số chấm của hai lần không quá 4

- Gọi B là biến cố "Tổng số chấm của hai lần không quá 4"
- Tổng số chấm của hai lần không quá 4 $\Rightarrow B = \{(i,j): i,j \in \Omega: i+j \leq 4\} \Rightarrow |B| = 6$
- Vì đây là mô hình xác xuất đơn giản nên ta có xác xuất của B là:

$$P(B) = \frac{|B|}{|\Omega|} = \frac{6}{36} = \frac{1}{6}$$

	I	П	Ш	IV	V	VI
I	2	3	4	5	6	7
II	3	4	5	6	7	8
Ш	4	5	6	7	8	9
IV	5	6	7	8	9	10
V	6	7	8	9	10	11
VI	7	8	9	10	11	12

c) Số chấm của lần thứ nhất là lẻ

- Gọi C là biến cố "Số chấm của lần thứ nhất là lẻ"
- Số chấm của lần thứ nhất là lẻ $\Rightarrow C = \{(i,j): i \in \{1,3,5,\}, j \in \Omega\} \Rightarrow |C| = 18$
- Vì đây là mô hình xác xuất đơn giản nên ta có xác xuất của C là:

$$P(C) = \frac{|C|}{|\Omega|} = \frac{18}{36} = \frac{1}{2}$$

	I	III	V	I, II, III, IV, V, VI : Là các mặt của xúc xắc thỏa
ı				
II				
III				
IV				
V				
VI				

d) Số chấm của hai lần là như nhau

- Gọi D là biến cố "Số chấm của hai lần là như nhau"
- Số chấm của hai lần là như nhau

$$\Rightarrow D = \{(i,j): i, j \in \Omega: i = j\} \Rightarrow |C| = 6$$

• Vì đây là mô hình xác xuất đơn giản nên ta có xác xuất của D là:

$$P(D) = \frac{|D|}{|\Omega|} = \frac{6}{36} = \frac{1}{6}$$

	I	П	Ш	IV	V	VI	I, II, III, IV, V, VI : Là các mặt của xúc xắc
I	Х						0,1,2,3,4,5: Là hiệu của hai mặt xúc xắc (Lấy trị tuyệt đối) Như vậy các cặp số thỏa biến cố là (x màu đỏ):
Ш		х					(I, I)
Ш			X				(II, II)
IV				X			(III, III) (IV, IV)
V					X		(V, V)
VI						X	(VI, VI)

e) Số chấm của lần thứ nhất là lẻ nhưng số chấm của lần thứ hai là chẵn

- Gọi E là biến cố "Số chấm của lần thứ nhất là lẻ nhưng số chấm của lần thứ hai là chẵn"
- Số chấm của lần thứ nhất là lẻ nhưng số chấm của lần thứ hai là chẵn $\Rightarrow E = \{(i,j): i \in \{1,3,5,\}, j \in \{2,4,6,\}\} \Rightarrow |E| = 9$
- Vì đây là mô hình xác xuất đơn giản nên ta có xác xuất của E là:

$$P(E) = \frac{|E|}{|\Omega|} = \frac{9}{36} = \frac{1}{4}$$

	I	III	V	I, II, III, IV, V, VI : Là các mặt của xúc xắc thỏa
II				
IV				
VI				

Câu 3. (2 đ). Rút ngẫu nhiên 4 lá bài từ bộ bài Tây 52 lá. Tính xác suất các biến cố:

Thí nghiệm: "Rút ngẫu nhiên 4 lá bài từ bộ bài Tây 52 lá"

- → Mỗi kết quả của thí nghiệm là một tổ hợp chập 4 của 52 phần tử
- \Rightarrow Số phần tử không gian mẫu: $|\Omega| = C_{52}^4 = 270725$

a) Được một tứ quí

- Gọi A là biến cố "Rút được một tứ quý"
- Ta có một bộ bài có 13 tứ quý từ 2 đến A

$$\Rightarrow |A| = 13$$

Ta có xác xuất của A là:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{13}{270725} = \frac{1}{20825}$$

b) Được một sảnh

- Gọi B là biến cố "Rút được một sảnh bốn quân"
- Một bộ bài có 4 chất cơ, rô, chuồn, bích ứng với 13 quân bài 2, 3, 4, ..., J, Q, K, A.
 - \Rightarrow Để chọn được một quân bài phân biệt thì ta có $\mathcal{C}_4^1=4$ cách chọn
 - \Rightarrow Để hình thành một sảnh bốn thì ta có $\mathcal{C}_4^1 \times \mathcal{C}_4^1 \times \mathcal{C}_4^1 \times \mathcal{C}_4^1 = 4^4 = 256$ cách chọn
- Thứ tự rút 4 quân để hình thành sảnh bốn là một hoán vị
 - ⇒ Ta có 4! cách chon
 - ✓ Xét theo cách chơi bài tiến lên thì thứ tự các quân bài từ 3, 4, 5, ..., J, Q, K, A, 2 (2 không được tính vào sảnh). Từ sảnh 3,4,5,6 đến sảnh J, Q, K, A
 - ⇒ Các sảnh có thể có là 9 sảnh:

3	4	5	6	7	8	9	10	J	Q	K	А	2
3	4	5	6									
	4	5	6	7								
		5	6	7	8							
			6	7	8	9						
				7	8	9	10					
					8	9	10	J				
						9	10	J	Q			
							10	J	Q	K		
								J	Q	K	А	

Vậy số phần tử của biến cố B là $|B|=4^4 \times 4! \times 9=55296$

Ta có xác xuất của A là:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{55296}{270725}$$

- ✓ Xét theo thứ tự bộ bài 2, 3, 4, ..., J, Q, K, A. Từ sảnh 2,3,4,5 đến sảnh J, Q, K, A
 - ⇒ Các sảnh có thể có là 10 sảnh:

2	3	4	5	6	7	8	9	10	J	Q	K	А
2	3	4	5									
	3	4	5	6								
		4	5	6	7							
			5	6	7	8						
				6	7	8	9					
					7	8	0	10				
						8	0	10	J			
							0	10	J	Q		
								10	J	Q	K	
									J	Q	K	А

Vậy số phần tử của biến cố B là $|B|=4^4\times 4!\times 10=61440$

Ta có xác xuất của A là:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{61440}{270725}$$

Câu 4. (2 đ). Hai biến cố A, B được gọi là độc lập nếu $P(A \cap B) = P(A)P(B)$. Xét thí nghiệm tung một đồng xu đồng chất 3 lần, kiểm tra xem các cặp biến cố sau đây có độc lập không:

- Kí hiệu N là đồng xu ngửa, S là đồng xu sấp
- Khi đó không gian mẫu:

$$\Omega = \{(S, S, S); (S, N, S); (S, S, N); (S, N, N); (N, S, S); (N, N, S); (N, S, N); (N, N, N)\}$$

	S	N	
S	S, S, S	S, N, S	S
3	S, S, N	S, N, N	N
NI	N, S, S	N, N, S	S
N	N, S, N	N, N, N	N

$$\Rightarrow |\Omega| = 8$$

a) A: lần 1 được mặt ngửa, B: lần 2 và lần 3 được mặt sấp.

• $A = \{(N,S,S); (N,N,S); (N,S,N); (N,N,N)\}$

$$\Rightarrow P(A) = \frac{4}{8} = \frac{1}{2}$$

• $B = \{(S, S, S); (N, S, S)\}$

$$\Rightarrow P(B) = \frac{2}{8} = \frac{1}{4}$$

 $\bullet \quad A \cap B = \{(N, S, S)\}$

$$\Rightarrow P(A \cap B) = \frac{1}{8}$$

- Ta có $\frac{1}{4} \times \frac{1}{2} = \frac{1}{8} \Rightarrow P(A)P(B) = P(A \cap B)$
 - ⇒ A, B độc lập với nhau

- b) A: lần 1 được mặt ngửa, B: có đúng 2 lần được mặt sấp.
 - $A = \{(N, S, S); (N, N, S); (N, S, N); (N, N, N)\}$

$$\Rightarrow P(A) = \frac{4}{8} = \frac{1}{2}$$

• $B = \{(S, N, S); (S, S, N); (N, S, S)\}$

$$\Rightarrow P(B) = \frac{3}{8}$$

• $A \cap B = \{(N, S, S)\}$

$$\Rightarrow P(A \cap B) = \frac{1}{8}$$

- Ta có $\frac{3}{8} \times \frac{1}{2} \neq \frac{3}{16} \Rightarrow P(A)P(B) \neq P(A \cap B)$
 - ⇒ A, B không độc lập với nhau
- c) A: lần 1 được mặt ngửa, B: có đúng 2 lần liên tiếp được mặt sấp.
 - $A = \{(N, S, S); (N, N, S); (N, S, N); (N, N, N)\}$

$$\Rightarrow P(A) = \frac{4}{8} = \frac{1}{2}$$

• $B = \{(S, S, N); (N, S, S)\}$

$$\Rightarrow P(B) = \frac{2}{8} = \frac{1}{4}$$

• $A \cap B = \{(N, S, S)\}$

$$\Rightarrow P(A \cap B) = \frac{1}{8}$$

- Ta có $\frac{1}{4} \times \frac{1}{2} = \frac{1}{8} \Rightarrow P(A)P(B) = P(A \cap B)$
 - ⇒ A, B độc lập với nhau

d) A: lần 2 được mặt ngửa, B: có đúng 2 lần liên tiếp được mặt sấp.

•
$$A = \{(S, N, S); (S, N, N); (N, N, S); (N, N, N)\}$$

$$\Rightarrow P(A) = \frac{4}{8} = \frac{1}{2}$$

•
$$B = \{(S, S, N); (N, S, S)\}$$

$$\Rightarrow P(B) = \frac{2}{8} = \frac{1}{4}$$

•
$$A \cap B = \{\emptyset\}$$

$$\Rightarrow P(A \cap B) = \frac{0}{8} = 0$$

• Ta có
$$\frac{1}{4} \times \frac{1}{2} \neq 0 \Rightarrow P(A)P(B) \neq P(A \cap B)$$

⇒ A, B không độc lập với nhau

Câu 5. (2 đ). Một lớp học có các học sinh được phân bố như bảng sau:

Số lượng	Nam	Nữ
Nội thành	8	16
Ngoại thành	12	4

Chọn ngẫu nhiên một học sinh trong lớp. Ký hiệu các biến cố:

A: học sinh được chọn là học sinh nội thành.

B: học sinh được chọn là học sinh nam.

Cho biết A, B có độc lập không? Tại sao?

- Số phần tử không gian mẫu = 8 + 16 + 12 + 4 = 40
- Số học sinh nội thành = 8 + 16 = 24

$$\Rightarrow P(A) = \frac{|A|}{|\Omega|} = \frac{24}{40} = \frac{3}{5}$$

• Số học sinh nam = 8 + 12 = 20

$$\Rightarrow P(B) = \frac{|B|}{|\Omega|} = \frac{20}{40} = \frac{1}{2}$$

Gọi C là biến cố "Học sinh được chọn là nam và ở nội thành"
 Số học sinh là nam và ở nội thành = 8

$$\Rightarrow P(C) = \frac{|C|}{|\Omega|} = \frac{8}{40} = \frac{1}{5}$$

- Ta có $\frac{3}{5} \times \frac{1}{2} \neq \frac{1}{5} \Rightarrow P(A)P(B) \neq P(A \cap B)$
 - ⇒ A, B không độc lập với nhau