Measure Theory

Kaizhao Liu

September 4, 2025

Contents

1	Real Analysis	5
	1.1	
	Abstract Measure Theory 2.1	7

4 CONTENTS

Chapter 1

Real Analysis

1.1

1.2 Differentiation and Integration

For conceptual simplicity, we study \mathbb{R} instead of \mathbb{R}^n in this section. Let us first recall what we learned in elementary calculus.

Theorem 1.2.1. Let f be a continuous function on [a,b], and F be the function defined, for all x in [a,b], by

$$F(x) = \int_{a}^{x} f(t) dt.$$

Then F is uniformly continuous on [a,b] and differentiable on (a,b), and

$$F'(x) = f(x).$$

Theorem 1.2.2 (Newton-Leibniz). Let f be a Riemann integrable function on [a,b], and F a continuous function on [a,b] which is an antiderivative of f in (a,b):

$$F'(x) = f(x).$$

Then

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Definition 1.2.3 (Total Variation). The total variation of a function f defined on [a,b] is the quantity

$$V_a^b(f) = \sup_{P \in \mathcal{P}} \sum_{i=0}^{n_P - 1} |f(x_{i+1}) - f(x_i)|,$$

where

 $\mathcal{P} = \{P = \{x_0, \cdots, x_{n_P}\} | P \text{ is a partition of } [a, b] \text{ satisfying } x_i \leq x_{i+1} \text{ for } 0 \leq i \leq n_P - 1\}.$

If $V_a^b(f) < +\infty$, then f is said to be of bounded variation on [a, b].

Example 1.2.4. The continuous function

$$f(x) = \begin{cases} 0, & x = 0\\ x \sin(\frac{1}{x}), & x \neq 0 \end{cases}$$

is not of bounded variation on $[0, 2/\pi]$. Just consider the partition

$$P = \{0, \frac{2}{2n-1}, \frac{2}{2n-3}, \cdots, \frac{2}{3}, 1\}.$$

Theorem 1.2.5 (Jordan Decomposition Theorem).

$$f(x) = g(x) - h(x)$$

where g(x) and h(x)

Bounded variable functions says that it has a length

Bounded variable functions are a.e. differentiable But it does not satisfies the desirable property: Length is equal to the integral of derivative, which is also known as the **fundamental theorem of calculus**. It turns out that absolute continuous functions is exactly the set of functions that satisfies this property.

Example 1.2.6.

Definition 1.2.7 (Absolute Continuity). A function $f : [a, b] \to \mathbb{R}$ is absolutely continuous if for every positive number ϵ , there is a positive number δ such that whenever a finite sequence of pairwise disjoint sub-intervals (x_k, y_k) satisfies

$$\sum_{k=1}^{N} (y_k - x_k) < \delta$$

then

$$\sum_{k=1}^{N} |f(y_k) - f(x_k)| < \epsilon.$$

Absolutely continuous functions are of bounded variation.

Proposition 1.2.8. *If* $f : [a,b] \to \mathbb{R}$ *is absolutely continuous, then it is of bounded variation on* [a,b].

Theorem 1.2.9. If f is absolute continuous function on [a, b], then

$$f(x) - f(a) = \int_{a}^{x} f'(t)dt, \quad x \in [a, b].$$

It is beneficial to compare it with the "classical" version (Theorem 1.2.2).

Chapter 2

Abstract Measure Theory

2.1

In this section, we are working on a set E.

Definition 2.1.1 (σ -algebra).

Remark 2.1.2. Greek letters σ and δ are often used when countable unions and countable intersections are involved. For example, topologists call F_{σ} every countable union of closed sets in a topological space (F standing possibly for the French word fermé, closed) and G_{δ} every countable intersection of open sets (G standing for the German word Gebiet, domain, connected open set). The letters σ and δ are often given as Greek abbreviations of German words: σ as S in Summe for sum (in the sense of sum of sets, that is, union) and δ as D in Durchschnitt for intersection, both countable. Thus, in the context of measure theory, the letter σ refers to the stability of a collection of subsets by countable union.

Definition 2.1.3 (generator of σ -algebra).

$$\sigma(\mathcal{A}) = \{ A \subset E : A \in \mathcal{E} \quad \forall \mathcal{E} \supset \}$$

Example 2.1.4. Borel σ -algebra

Definition 2.1.5 (π -system). \mathcal{A} is a collection of subsets of E. Then \mathcal{A} is called a π -system if

- 1. $\emptyset \in \mathcal{A}$;
- 2. $A, B \in \mathcal{A}$, then $A \cap B \in \mathcal{A}$.

Definition 2.1.6 (*d*-system). A is a collection of subsets

- 1. $E \in \mathcal{A}$;
- 2. $A, B \in \mathcal{A}, A \subset B$, then $B \setminus A \in \mathcal{A}$;
- 3. If $A_n \subset \mathcal{A}$ such that $A_n \subset A_{n+1}$, then $\cup_n A_n \in \mathcal{A}$.

Remark 2.1.7. d-system is also referred as λ -system.

Proposition 2.1.8. A is a σ -algebra if and only if it is a π -system and a d-system.

Proof. A σ -algebra is a π system because Conversely,

Lemma 2.1.9 (Dynkin's π -system lemma). Let \mathcal{A} be a π -system. Then any d-system that contains \mathcal{A} also contains $\sigma(\mathcal{A})$.

This lemma can reduce the problem of studying a σ -algebra to the study of a π -system.

Proof. Let \mathcal{D} be the intersection of all d-system containing \mathcal{A} . We now prove that \mathcal{D} is a σ -algebra. As \mathcal{D} is already a d-system, by Proposition 2.1.8, we only need to prove that \mathcal{D} is a π -system.

(i) First we show the following property for \mathcal{D} : If $B \in \mathcal{D}$ and $A \in \mathcal{A}$, then $B \cap A \subset \mathcal{D}$. Let

$$\mathcal{D}' = \{ B \in \mathcal{D} : B \cap A \in \mathcal{D} \mid \forall A \in \mathcal{A} \}.$$

To show that $\mathcal{D}' = \mathcal{D}$, we only need to check that \mathcal{D}' is a d-system containing \mathcal{A} . As \mathcal{A} is a π -system, $\mathcal{D}' \supset \mathcal{A}$. Now, we can check

- $E \in \mathcal{D}'$; this is because $\mathcal{A} \subset \mathcal{D}$.
- $B_1, B_2 \in \mathcal{D}'$, $B_1 \subset B_2$, then $B_2 \setminus B_1 \in \mathcal{D}'$; this is because for any $A \in \mathcal{A}$, $(B_2 \setminus B_1) \cap A = (B_2 \cap A) \setminus (B_1 \cap A) \in \mathcal{D}$.
- If $B_n \subset \mathcal{D}'$ such that $B_n \subset B_{n+1}$, then $\bigcup_n B_n \in \mathcal{D}'$; this is because for any $A \in \mathcal{A}$, $(\bigcup_n B_n) \cap A = \bigcup_n (B_n \cap A) \in \mathcal{D}$.
- (ii) If $A, B \in \mathcal{D}$, then $B \cap A \in \mathcal{D}$. Let

$$\mathcal{D}'' = \{ B \in \mathcal{D} : B \cap A \in \mathcal{D} \quad \forall A \in \mathcal{D} \}.$$

One can see that \mathcal{D}'' is a d-system by noting that the argument holds for any $\mathcal{A} \subset \mathcal{D}$. The fact that \mathcal{D}'' contains \mathcal{A} follows from property (i). Therefore, $\mathcal{D}'' = \mathcal{D}$ and \mathcal{D} is a π -system.

Definition 2.1.10 (set function). \mathcal{A} be a collection of subsets of E with $\emptyset \in \mathcal{A}$. A set function $\mu : \mathcal{A} \to [0, \infty]$ is a function such that $\mu(\emptyset) = 0$.

Definition 2.1.11 (increasing set function). $A \subset B$, we have $\mu(A) \leq \mu(B)$.