

درس رقم

درس الدوال الأصلية

I. دالة أصلية لدالة عددية:

• تقديم دالة أصلية لدالة :

- $f(x) = 4x^2 5x + 3$: نشاط: لنعتبر الدالة : a
- $\mathbb{F}(x) = \mathbf{f}(x)$ على $\mathbf{F}(x)$ على $\mathbf{F}(x)$
 - 2) إذا كان الجواب بنعم أكتب صيغة الدالة (£).

b. مفردات:

الصفحة

f(x) تسمى دالة الدالة F'(x) = f(x) تسمى دالة أصلية للدالة

c. تعریف :

لتكن f دالة معرفة على مجال I . نقول إن دالة F هي

 $\forall x \in I : F'(x) = f(x)$ و I : F'(x) = f(x) و I : F'(x) = f(x)

أمثلة:

- $F(x)=2x^2+2x$ هي \mathbb{R} على \mathbb{R} دالة أصلية للدالة f(x)=4x+2 على الدالة الدالة f(x)=6
- $F(x) = \sin x$ هي \mathbb{R} على $f(x) = \cos x$ دالة أصلية للدالة $f(x) = \cos x$

12. تحديد جميع الدوال الأصلية لدالة f:

. $F: x \to x^2 + 3x$ هي \mathbb{R} هي $f: x \to 2x + 3$ نشاط: دالة أصلية للدالة

هل هناك دالة أخرى G(x) حيث G دالة أصلية للدالة ؟

خاصية:

لتكن f دالة عددية تقبل دالة أصلية F على مجال I.

مجموعة الدوال الأصلية للدالة f على I هي المجموعة المكونة من الدوال التي هي على شكل: f(x) + c مع $c \in \mathbb{R}$

مثال:

نعتبر الدالة f(x) = 10x - 2 المعرفة على \mathbb{R} .

- \mathbb{R} على $\mathbf{f}(x) = 10x 2$ هل الدالة : $\mathbf{F}(x) = 5x^2 2x + 3$ هل الدالة : $\mathbf{f}(x) = 5x^2 2x + 3$
 - 2) حدد جميع الدوال الأصلية للدالة f على R.

$.G(x_0) = y_0$ حيث: G(x) الدالة الأصلية (G(x)

- f(x) = 2x + 3: نشاط: لنعتبر الدالة العددية المعرفة ب
 - 1) حدد الدوال الأصلية ل 1:
- G(1) = 7 حدد دوال الأصلية G ل f ل إذا كان ممكن حيث 2
 - 3) كم من دالة تحقق ذلك ؟
 - 2. خاصية

 $G(x_0) = y_0$: على المجال I حيث: G للدالة G على المجال ا

.0 عند $f(x) = x^3 - 2x + 3$ على $g(x) = x^3 - 2x + 3$ و التي تأخذ القيمة $g(x) = x^3 - 2x + 3$

درس رقم

2

درس الدوال الأصلية

140. الاتصال و الدوال الأصلية:

1. خاصية:

كل دالة متصلة f على مجال I تقبل دالة أصلية F على I.

2. أمثلة: مثال 1: كل دالة حدودية تقبل دالة أصلية على \mathbb{R} . مثال 2: كل دالة جذرية تقبل دالة أصلية على مجموعة تعريفها . $f(x) = \sqrt{x}$ مثال 3: $f(x) = \sqrt{x}$.

 α دالة أصلية: لمجموع دالتين - جداء دالة في عدد حقيقي 0.5

- 1. نشاط: F دالة أصلية للدالة f على G .I دالة أصلية للدالة g على I.
 - $. \alpha \times f$ مدد دالة أصلية لدالة f+g . f+g دد دالة أصلية لدالة (1
 - 2. خاصية

 $\alpha\in\mathbb{R}$ و G دالتين أصليتين للدالتين f و g على مجال G على التوالي و R

- $\mathbf{f} + \mathbf{g}$ هي دالة أصلية ل $\mathbf{F} + \mathbf{G}$.
- $\alpha \times f$ هي دالة أصلية ل $\alpha \times F$ هي دالة
- $h(x) = 3x + 2\cos(x)$ و f(x) = 3x و $g(x) = \cos(x)$.

	f at a		
III جدول دوال أصلية لدوال اعتيادية			
الدوال الأصلية ل f	اندانة f	دالة الأصلية ل h هي F	الدالة h
$\mathbf{F}(\mathbf{x}) = \mathbf{a}\mathbf{x} + \mathbf{c}$	$f(x) = a; (a \in \mathbb{R})$	$\mathbf{F} = \mathbf{f} + \mathbf{g}$	h=f'+g'
$F(x) = \frac{1}{2}x^2 + c$	f(x) = x	$\mathbf{F} = \alpha \mathbf{f}$	h = \af
$F(x) = \frac{1}{n+1}x^{n+1} + c$	$f(x) = x^n; (n \in \mathbb{Z} \setminus \{-1\})$	$\mathbf{F} = \mathbf{f} \times \mathbf{g}$	$h = f' \times g + f \times g'$
$F(x) = \frac{1}{r+1}x^{r+1} + c$	$f(x) = x^r; (r \in \mathbb{Q} \setminus \{-1\})$	$\mathbf{F} = \frac{1}{\mathbf{g}}$	$\mathbf{h} = -\frac{\mathbf{g'}}{\mathbf{g^2}}$
$F(x) = 2\sqrt{x} + c$	$f(x) = \frac{1}{\sqrt{x}}$	$\mathbf{F} = \frac{\mathbf{f}}{\mathbf{g}}$	$h = \frac{f' \times g - f \times g'}{g^2}$
$F(x) = -\cos(x) + c$	$f(x) = \sin(x)$	$\mathbf{F} = \frac{1}{\mathbf{n} + 1} \mathbf{f}^{\mathbf{n} + 1}$	n≠−1 مع h=f'×f"
$F(x) = -\frac{1}{a}\cos(ax+b) + c$	$f(x) = \sin(ax + b) \ a \neq 0$	$\mathbf{F} = \frac{1}{\mathbf{r} + 1} \mathbf{f}^{\mathbf{r} + 1}$	h = f '× f ^r مع 1
$F(x) = \sin(x) + c$	$f(x) = \cos(x)$	$\mathbf{F} = \mathbf{g} \circ \mathbf{f}$	$\mathbf{h} = \mathbf{f} ' \times \mathbf{g}' \circ \mathbf{f}$
$F(x) = \frac{1}{a}\sin(ax+b) + c$	$f(x) = \cos(ax + b) \ a \neq 0$	$\mathbf{F} = \frac{1}{\mathbf{a}} \mathbf{f} \left(\mathbf{a} \mathbf{x} + \mathbf{b} \right)$	a ≠ 0 مع h = f'(ax+b)
$F(x) = \tan(x) + c$	$f(x) = 1 + \tan^2(x)$		
$F(x) = 2\sqrt{f(x)} + c$	$f(x) = \frac{f'(x)}{\sqrt{f(x)}}$	arctan(u(x))+c	$\frac{u'(x)}{1+u^2(x)}$
$\mathbf{F}(\mathbf{x}) = -\frac{1}{\mathbf{x}} + \mathbf{c}$	$f(x) = \frac{1}{x^2}$	ملحوظة: c عدد حقيقي.	