Contrôle Terminal INFO1 - Semestre 2

Ressource R2.09 – Méthodes numériques

Nom Responsable	Godin Thibault
Date contôle	14/06
Durée contrôle	1h30
Nombre total de pages	4
Impression	recto/verso
Documents autorisés	1 feuille A4 notes personnelles
Calculatrice autorisée	NON
Réponses	sur l'énoncé et copies

Les réponses doivent être justifiées et les raisonnements, calculs et théorèmes doivent apparaître clairement. La qualité de la rédaction et les efforts de recherche seront pris en compte.

Copie 1

Exercice 1:

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_{n+1}=\frac{3u_n}{1+2u_n}$ et $u_0=\frac{1}{2}$

- 1. Calculer u_1 et u_2 .
- 2. On pose $w_n = \frac{u_n}{1-u_n}$
 - (a) Montrer que $(w_n)_{n\in\mathbb{N}}$ est une suite géométrique dont on précisera la raison.
 - (b) Donner une formule explicite pour w_n en fonction de n. En déduire une formule pour u_n .
 - (c) Conclure quant à la convergence de la suite $(u_n)_{n\in\mathbb{N}}$. Préciser la limite de la suite si elle existe.
- 3. Montrer, par récurrence, que pour tout entier $n, u_n > 0$.

Copie 2

Exercice 2:

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_{n+1}=f(u_n)$ avec $f:\mathbb{R}\to\mathbb{R}$, $x\mapsto \frac{1}{3}(x^2-x)$ et $u_0=\frac{1}{2}$

- 1. (a) Calculer f'.
 - (b) En déduire le tableau de variation de f sur [0,1].
 - (c) Donner les points fixes de f.

Les deux questions suivantes ont pour but de montrer le même résultat-la convergence de la suite-de deux manières différentes.

- 2. (a) Montrer que l'intervalle $[0,\frac{1}{2}]$ est stable par f. Qu'en déduit-on pour $(u_n)_n$?
 - (b) Montrer que la suite est décroissante.
 - (c) En déduire que la suite est convergente et donner sa limite.
- 3. (a) Montrer que l'intervalle [0,1] est stable par f. Qu'en déduit-on pour $(u_n)_n$?
 - (b) Montrer que f est contractante sur l'intervalle [0,1], avec comme coefficient de contraction $k=\frac{1}{2}$.
 - (c) En déduire que la suite est convergente, donner sa limite ℓ .
 - (d) Donner une majoration de l'erreur $|u_n \ell|$.

Exercice 3 : QCM Cocher la ou les bonnes réponses.

Il peut y avoir plusieurs bonnes réponses. Attention aux points négatifs en cas de réponse fausse.

1. La limite de la suite $(u_n)_n$ définie par $u_n = 3n + 2$ vaut :

a. 0

b. $\frac{2}{3}$

c. $+\infty$

d. n'existe pas

2. La limite de la suite $(u_n)_n$ définie par $u_n = 7(-\frac{1}{5})^n$ vaut :

a. 0

b. $-\frac{7}{5}$

c. $+\infty$

d. n'existe pas

3. La limite de la suite $(u_n)_n$ définie par $u_0 = 7, u_{n+1} = u_n + 2$ vaut :

a. 0

b. 2

c. $+\infty$

d. n'existe pas

4. L'image de l'intervalle [-2,1] par la fonction $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2 - 3$ est

a. [0, 4]

b. [-2,1]

c. [-3, 1]

d. [1, -2]

5. Si $x \in [-5, 1]$, alors

a. $x^2 \in [0, 25]$

b. $x^2 \in [25, 1]$

c. $x^2 \in [1, 25]$

d. $x^2 \in [-25, 1]$

6. $\lim_{n \to +\infty} \frac{2n^3 + n}{7n^5 + 3n^2 + 1}$

a. vaut 0

b. vaut $\frac{2}{7}$

c. vaut $+\infty$

d. n'existe pas

7. Considérons l'extrait de code suivant :

```
i=0
cpt=0
while i>-1:
    i = 3*i**2 + 2
    cpt = cpt+1

print(cpt)
```

a. Le programme bouclera à l'infini

b. Le programme termine et affiche 5302

c. La variable i est une suite géométrique

d. La variable cpt est une suite arithmétique

Exercice 4:

À l'aide des méthodes vues en TD et et TP, étudier la suite correspondant au code python suivant. On s'intéressera en particulier aux variations et à la convergence de la suite. Les réponses doivent être justifier théoriquement, vous ne pouvez pas vous contenter d'observation telle que "la suite semble ..."

```
def f(x):
    return 3-4/(x+2)

def un(n):
    if n==0:
        return 1
    else:
        return f(un(n-1))
```

```
rg = range(0, 9)

s1 = [un(n) for n in rg]

>> [1, 1.66667, 1.90909, 1.97674, 1.99415, 1.99853, 1.99963, 1.99990, 1.99998]
```

```
plt.title('Suite definie par recurrence')
plt.plot(rg, s1, 'ro', markersize=3)
plt.show()
```


