INTRODUCTION TO COMPUTER SCIENCE

Week 12-1: Binary Search Trees

Giulia Alberini, Fall 2020

Slides adapted from Michael Langer's

WHAT ARE WE GOING TO DO IN THIS VIDEO?

■ Binary Search Arseignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

BSTNode

The keys are "comparable" <, =, >
 e.g. numbers, strings.
 Assignment Project Exam Help

```
https://powcoder.com
class BSTNode<K>{
    K Add;WeChat powcoder
    BSTNode<K> leftchild;
    BSTNode<K> rightchild;
   :
}
```

BINARY SEARCH TREE DEFINITION

binary tree

Assignment Project Exam Help

keys are comparable, and unique (no duplicates) https://powcoder.com

Add WeChat powcoder for each node, all descendents in left subtree are less than the node, and all descendents in the node's right subtree are greater than the node (comparison is based on node key)

EXAMPLE

THIS IS NOT A BST. WHY NOT?

BST - TRAVERSALS

BINARY SEARCH TREE ADT

find(key)

• findMin()

findMax()

add(key)

remove(key)

We can define the Assignment Project Exam Helpst without

https://powcoder.com implemented. (ADT)

Add WeChat powcoder

Let's next look at some recursive algorithms for implementing them.

FIND() – IMPLEMENTATION

FIND() – IMPLEMENTATION

FINDMIN() - IMPLEMENTATION

FINDMIN() - IMPLEMENTATION

FINDMAX()

FINDMAX()

FINDMAX() – IMPLEMENTATION


```
Assignment Project Exam Helpeturns root node if (root == null)
    https://powcoder.com/ BSTnode(key)
    else if (key < root.key) {
    WeChat poweoder add (root.left, key)</pre>
           else if (key > root.key) {
               root.right = add(root.right, key)
            return root
```

Q: What happens if root.key == key? A: Nothing!

REMOVE() remove (\mathbf{c}) \rightarrow this is one way to do it Assignment Project Exam Help https://powcoder.com Add WeChat powcoder

REMOVE() remove (\mathbf{c}) \rightarrow the following algorithm does this: Assignment Project Exam Help https://powcoder.com Add WeChat powcoder m


```
remove(root, key) { // returns root node
           if ( root == null )
                 return null
Assignment Project Exam Helpmove (root.left, key)
    https://powcoder.comt = remove(root.right, key)
    else if (root.left == null)

Add WeChatopowcoder.right
           else if (root.right == null)
                 root = root.left
           return root
```

```
remove(root, key) { // returns root node
           if ( root == null )
                 return null
Assignment Project Exam Helpmove (root.left, key)
    https://powcoder.comt = remove(root.right, key)
    else if (root.left == null)

Add WeChatopowcoder.right
           else if (root.right == null)
                 root = root.left
           return root
```

```
remove(root, key) { // returns root node
       if ( root == null )
             return null
Assignment Project Exam Help (root.left, key)
    else if ( key > root.key )
https://powcoder.com remove(root.right, key)
       else if (root.left == null)
    Add WeChat powcoderght
       else if (root.right == null)
             root = root.left
       else {
             root.key = findMin(root.right).key
             root.right = remove(root.right, root.key)
       return root
```

REMOVE() - EXAMPLE

REMOVE() - EXAMPLE

BALANCED VS UNBALANCED

best case worst case

findMin Assignment Project Exam Help

findMax() https://powcoder.com

Add WeChat powcoder

find(key)

add(key)

remove(key)

best case worst case findMin(Assignment Project Exam Holp) https://powcoder.com findMax() Add WeChat powcoder find(key) add(key) remove(key)

```
best case worst case
findMin(Assignment Project Exam Holp)
         https://powcoder.com
findMax()
           Add WeChat powcoder
find(key)
add(key)
remove(key)
```


BINARY SEARCH (TREES)

When a binary search tree is balanced, then finding a key is very similar to a binary search.

BALANCED BINARY SEARCH TREES

(COMP 251: AVL TREES, RED-BLACK TREES)

best case worst case findMinAssignment Project Exam Help(log n) https://powcoder.com O(log n) findMax() $O(\log n)$ Add WeChat powcoder find(key) $O(\log n)$ O(1)add(key) $O(\log n)$ $O(\log n)$ $O(\log n)$ remove(key) $O(\log n)$

Assignment Project Exam Help In the next videos:

https://powcoder.com

Heaps

Add WeChat powcoder