Fractal Geometry

Alex Rutar* University of Waterloo

Winter 2020[†]

^{*}arutar@uwaterloo.ca

[†]Last updated: January 13, 2020

Contents

Chapte	er I	Topics in Fractal Geometry
1	Dime	nsion Theory
	1.1	The Cantor Set
	1.2	Box Dimensions
	1.3	Constructing Measures in Metric Spaces
	1.4	Hausdorff Measure and Dimension
Chapte	er II	Stochastic Calculus
2	Marti	ngale Theory

I. Topics in Fractal Geometry

1 Dimension Theory

1.1 THE CANTOR SET

Define maps $f_i : \mathbb{R} \to \mathbb{R}$ for i = 1, 2 given by $f_1(x) = x/3$ and $f_2(x) = x/3 + 2/3$. Let $C_0 = [0, 1]$; given some C_k , define $C_{k+1} = f_1(C_k) \cup f_2(C_k)$; since the f_i are linear, C_k is compact. We thus define $C_{1/3} = \bigcap_{n=0}^{\infty} C_n$, the classical **Cantor set**.

If $x \in C_{1/3}$, then x is an accumulation point: given $\epsilon > 0$, get N so that $3^{-N} < \epsilon$ then and thus some endpoint of C_N disjoint from x is within distance ϵ of x. Thus $C_{1/3}$ is a perfect set and therefore uncountable. Another way to see that the Cantor set is uncountable is to note that $C_{1/3}$ is homeomorphic to $\{0,1\}^{\mathbb{N}}$ with the product topology (via ternary expansions). Moreover, since $\lambda(C_{1/3}) \leq \lambda(C_n) = \frac{2^n}{3^n}$ for any $n \in \mathbb{N}$ we see that $\lambda(C_{1/3}) = 0$.

More generally, we may define C_r where $r \in (0,1/2)$ by the above process with the functions $f_1(x) = rx$ and $f_2(x) = rx + 1 - r$. Again, $C_r \cong \{0,1\}^{\mathbb{N}}$ topologically and $\lambda(C_r) = 0$; but already, we see that our classical analytic perspectives (topological, Lebesgue-measure-theoretic, cardinality) are insufficient to distinguish the C_r for distinct r.

1.2 Box Dimensions

Definition. Let $E \subseteq \mathbb{R}^n$ be a bounded Borel set, and for each $\delta > 0$, let $N_{\delta}(E)$ be the least number of closed balls of diameter δ . We then define the **upper box dimension** of E

$$\overline{\dim}_B E = \limsup_{\delta \to 0} \frac{\log N_{\delta}(E)}{|\log \delta|}$$

and similarly $\underline{\dim}_B E$ (the **lower box dimension**) with a liminf in place of limsup. If $\underline{\dim}_B E = \overline{\dim}_B E$, then we define the **box dimension** to be this shared quantity.

If *I* is any interval, it is easy to see that $\dim_B I = 1$. [**TODO**: include proof of invariance on choice of ball] Note that if $N_{\delta}(E) \sim \delta^{-s}$, then $\dim_B E = S$.

Example. Let's show that the box dimension of $C_{1/3}$ exists, and compute it. Given some $\delta > 0$, let n be so that $3^{-n} \le \delta < 3^{-(n-1)}$. Certainly we can cover $C_{1/3}$ by Cantor intervals of level n, so that $N_{\delta}(C_{1/3}) \le 2^n$. Moreover, the endpoints of Cantor inversals of level n-1 are distance at least $3^{-(n-1)} > \delta$ apart. Thus $N_{\delta}(C_{1/3})$ is at least the number of endpoints of level n-1, i.e. $N_{\delta}(C_{1/3}) \ge 2^n$. Thus $N_{\delta}(C_{1/3}) = 2^n$, so that

$$\frac{\log 2}{\log 3} = \frac{\log 2^n}{\log 3^n} \le \frac{\log N_{\delta}(C_{1/3})}{|\log \delta|} \le \frac{\log 2^n}{\log 3^{n-1}} = \frac{n}{n-1} \cdot \frac{\log 2}{\log 3}$$

and, as $\delta \to 0$, $n \to \infty$ so that the $C_{1/3} = \frac{\log 2}{\log 3}$.

More generally, using the same technique, we may compute $C_r = \frac{\log 2}{\log 1/r}$.

However, the box dimension has poor properties: for example, we may verify $\dim_B\{0,1,1/2,1/3,\ldots\} = \frac{1}{2}$. But this is very concerning from a measure theoretic perspective, since this is a countable set with larger "dimension" than some uncountable sets (e.g. C_r for small r).

1.3 Constructing Measures in Metric Spaces

Let *X* be a metric space.

Definition. Given $A, B \subseteq X$, say $d(A, B) = \inf\{d(a, b) : a \in A, b \in B\}$. Say A, B have **positive** separation if d(A, B) > 0.

If A, B are compact and disjoint, then they have positive separation. We say that an outer measure μ^* is a **metric outer measure** if $\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$ when A, B have positive separation.

Example. The Lebesgue outer measure is a metric outer measure. [TODO: prove]

1.1 Theorem. μ^* is a metric outer measure if and only if every Borel set is μ^* -measurable (in the sense of Caratheodory).

Proof [TODO: prove this (homework), and find a proof of the converse? (may not be true)]

Suppose $A \subseteq \mathcal{B}$ are both covers of X containing \emptyset and $\mathcal{C} : \mathcal{B} \to [0, \infty]$ with $\mathcal{C}(\emptyset)$. Let μ_A^* and μ_B^* be the corresponding extensions of \mathcal{C} and $\mathcal{C}|_A$. Then by definition, $\mu_B^*(E) \le \mu_A^*(E)$ for all $E \in \mathcal{P}(X)$.

Let X be a metric space, \mathcal{A} cover X containing \emptyset . Suppose for each $x \in X$ and $\delta > 0$, there exists $A \in \mathcal{A}$ such that $x \in A$ and $A \leq \delta$. Let $\mathcal{C} : \mathcal{A} \to [0, \infty]$ with $\mathcal{C}(\emptyset) = 0$. Set $\mathcal{A}_{\epsilon} = \{A \in \mathcal{A} : (A) \leq \epsilon\}$, and define μ_{ϵ}^* by extending $\mathcal{C}|_{\mathcal{A}_{\epsilon}}$. In particular, as ϵ decreases, μ_{ϵ}^* increases, and define

$$\mu^*(E) = \sup_{\epsilon} \mu_{\epsilon}^*(E) = \lim_{\epsilon \to 0} \mu_{\epsilon}^*(E)$$

1.2 Theorem. As defined above, μ^* is a metric outer measure.

Proof [TODO: prove this, homework]

Example. The Lebesgue measure arises this way; in fact, the μ_{ϵ}^* are all the same outer measure.

1.4 Hausdorff Measure and Dimension

For the remainder of this chapter, if X is a metric space and $U \subseteq X$, we denote |U| = (U). **Definition.** A δ -cover of a set $F \subseteq X$ is any countable collection $\{U_n\}_{n=1}^{\infty}$ such that $\bigcup_{n=1}^{\infty} U_n \supseteq F$ and $|U_n| \le \delta$.

Let $A = \mathcal{P}(X)$, and $A_{\delta} = \{A \subseteq X : |A| \le \delta\}$. For $\delta \ge 0$, put $\mathcal{C}_s(A) = |A|^s$. Then for $s \ge 0$, $\delta > 0$, and $E \subseteq$, we define

$$H_{\delta}^{s}(E) = \inf \left\{ \sum_{n=1}^{\infty} |U_{n}|^{s} : \{U_{n}\} \text{ is a } \delta \text{-cover of } E \right\}$$
$$= \inf \left\{ \sum_{n=1}^{\infty} C_{s}(U_{n}) : \bigcup_{n=1}^{\infty} U_{n} \supseteq E, U_{n} \in \mathcal{A}_{\delta} \right\}$$

This is the outer measure as constructed in **??** with covering family A_{δ} and function C_s . In particular, as $\delta \to 0$, H^s_{δ} increases; in particular, by Theorem 1.2, $H^s(E) = \sup_{\delta} H^s_{\delta}(E)$ is a

metric outer measure. Then apply Caratheodory (??) to get the s-dimensional Hausdorff measure, which is a complete Borel measure.

xample. (i) H^0 is the counting measure on any metric space. (ii) Take $X = \mathbb{R}$ and s = 1. Then H^1 is the Lebesgue measure (on Borel sets). To see this, we have

$$\lambda(E) = \inf \left\{ \sum_{n=1}^{\infty} |I_n| : \bigcup_{n=1}^{\infty} I_n \supseteq E, |I_n| \le \delta \right\}$$

$$\ge H_{\delta}^{1}(E)$$

for any $\delta > 0$; and conversely, take any δ -cover of E, say $\{U_n\}_{n=1}^{\infty}$ and set $I_n = \overline{\operatorname{conv} U_n}$ so $|I_n| = |U_n| \le \delta$. Thus $\sum_{n=1}^{\infty} |U_n| = \sum_{n=1}^{\infty} |I_n| \ge \lambda(E)$ for any such cover, so $\lambda(E) = H_{\delta}^1(E)$ for any $\delta > 0$. Thus $\lambda(E) = H^1(E)$ for any Borel set E.

(iii) More generally, if $X = \mathbb{R}^n$ and s = n, then $\lambda = \pi_n \cdot H^n$ where π_n is the n-dimensional volume of the ball of diameter 1. [TODO: this is annoying exercise]

Suppose s < t. Then $H^s(E) \ge H^t(E)$.