import time
st_time = time.time()

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

from sklearn.preprocessing import StandardScaler ,RobustScaler

from sklearn.pipeline import Pipeline, make_pipeline

from sklearn.model_selection import train_test_split

from sklearn import preprocessing

from sklearn import utils

df = pd.read_csv('/content/drive/MyDrive/hotel_100_2022.csv', encoding="ISO-8859-1")
df

	Hotel	Location	Country	Region	Company	Score	Rank	Rooms	
0	Rosewood Castiglion del Bosco	Montalcino	Italy	Europe	Massimo and Chiara Ferragamo	99.25	1	53	Cou
1	Grace Hotel	Santorini	Greece	Europe	Auberge Resorts Collection	99.22	2	20	
2	Waldorf Astoria Maldives Ithaafushi	Ithaafushi Island	Maldives	Southeast Asia	Hilton	99.11	3	119	
3	Pickering House Inn	Wolfeboro	United States	North America	Peter and Patty Cooke	98.95	4	10	E
4	One&Only Reethi Rah	North Malé Atoll	Maldives	Southeast Asia	Kerzner International	98.93	5	130	
96	Casa San Agustín	Cartagena	Colombia	Latin America	Casa San Agustín	95.79	97	31	E
97	The Connaught	London	England	Europe	Maybourne Hotel Group	95.79	97	121	Conte
98	Wentworth Mansion	Charleston	United States	North America	Richard Widman	95.78	99	21	
99	Taj Lands End	Mumbai	India	Southeast Asia	Indian Hotels Company Limited	95.73	100	488	Conte

df.describe()

	Score	Rank	Rooms	Year	2021	Past_rank
count	101.000000	101.000000	101.000000	101.000000	101.000000	101.000000
mean	97.061980	50.752475	94.554455	1962.910891	0.247525	10.584158
std	0.955555	29.244967	108.379839	72.785177	0.433727	23.687662
min	95.730000	1.000000	6.000000	1592.000000	0.000000	0.000000
25%	96.360000	25.000000	32.000000	1928.000000	0.000000	0.000000
50%	96.800000	51.000000	63.000000	1996.000000	0.000000	0.000000
75%	97.600000	75.000000	116.000000	2011.000000	0.000000	0.000000
mav	aa 250000	100 000000	702 000000	2021 000000	1 000000	100 000000

df.isnull().sum()

Hotel 0 Location Country Region Company Score Rank Rooms Theme 0 0 Year 2021 0 Past_rank dtype: int64

df = df.drop(['Hotel','Rank','Past_rank','Company'], axis=1)
df

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 101 entries, 0 to 100
Data columns (total 8 columns):
    Column
             Non-Null Count Dtype
              -----
    Location 101 non-null object
0
1
    Country
             101 non-null object
2
    Region
             101 non-null
                          object
3
    Score
             101 non-null
                            float64
4
             101 non-null
                            int64
    Rooms
5
    Theme
             101 non-null
                            object
             101 non-null
                           int64
6
    Year
7
    2021
            101 non-null
                           int64
dtypes: float64(1), int64(3), object(4)
memory usage: 6.4+ KB
           ıvıuıııvaı
                          IIIula Juliibasi Asia 30.10
                                                   400 Contemporary
```

df.isnull().any()

Location False Country False Region False Score False Rooms False False Theme Year False False 2021 dtype: bool

categorical_features=[feature for feature in df.columns if df[feature].dtypes=='0']
print('number of categorical variables:',len(categorical_features))
df[categorical_features].head()

number of categorical variables: 4

	Location	Country	Region	Theme	•
0	Montalcino	Italy	Europe	Countryside	
1	Santorini	Greece	Europe	Coastal	
2	Ithaafushi Island	Maldives	Southeast Asia	Island	
3	Wolfeboro	United States	North America	Boutique	
4	North Malé Atoll	Maldives	Southeast Asia	Island	

```
y = df['Score']
y = pd.DataFrame(y)
y
```

	Score	7
0	99.25	
1	99.22	
2	99.11	
3	98.95	
4	98.93	
96	95.79	
97	95.79	
98	95.78	
99	95.73	

x = df

	Location	Country	Region	Score	Rooms	Theme	Year	202
0	Montalcino	Italy	Europe	99.25	53	Countryside	2000	
1	Santorini	Greece	Europe	99.22	20	Coastal	2000	
2	Ithaafushi Island	Maldives	Southeast Asia	99.11	119	Island	2019	
3	Wolfeboro	United States	North America	98.95	10	Boutique	1813	
4	North Malé Atoll	Maldives	Southeast Asia	98.93	130	Island	2005	
96	Cartagena	Colombia	Latin America	95.79	31	Boutique	1700	
97	London	England	Europe	95.79	121	Contemporary	1897	
98	Charleston	United States	North America	95.78	21	Manor	1886	
99	Mumbai	India	Southeast Asia	95.73	488	Contemporary	1999	
100	Hermanus	South Africa	Africa	95.73	11	Coastal	1952	

101 rows × 8 columns

```
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
x['Location'] = encoder.fit_transform(x['Location'])
x['Country'] = encoder.fit_transform(x['Country'])
x['Region'] = encoder.fit_transform(x['Region'])
x['Theme'] = encoder.fit_transform(x['Theme'])
```

Χ

	Location	Country	Region	Score	Rooms	Theme	Year	2021
0	46	14	3	99.25	53	4	2000	0
1	71	11	3	99.22	20	2	2000	1
2	29	16	8	99.11	119	5	2019	1
3	82	31	6	98.95	10	1	1813	1
4	56	16	8	98.93	130	5	2005	0
96	11	5	4	95.79	31	1	1700	0
97	40	8	3	95.79	121	3	1897	0
98	13	31	6	95.78	21	7	1886	0
99	49	12	8	95.73	488	3	1999	0
100	25	24	0	95.73	11	2	1952	0

101 rows × 8 columns

x = x.drop(['Theme','Region','Country','Location'],axis=1)

Χ

	Score	Rooms	Year	2021	1
0	99.25	53	2000	0	
1	99.22	20	2000	1	
2	99.11	119	2019	1	
3	98.95	10	1813	1	
4	98.93	130	2005	0	
96	95.79	31	1700	0	
97	95.79	121	1897	0	
98	95.78	21	1886	0	
99	95.73	488	1999	0	
100	95.73	11	1952	0	

101 rows × 4 columns

np.isfinite(x).sum()

Score 101 Rooms 101

```
101
     Year
     2021
              101
     dtype: int64
np.isnan(x).sum()
     Score
              0
     Rooms
              0
     Year
     2021
     dtype: int64
# lab_enc = preprocessing.OneHotEncoder()
# x = lab_enc.fit_transform(x)
x_train,x_test,y_train,y_test = train_test_split(x,y,train_size=0.8,shuffle = True)
from sklearn.svm import SVR, LinearSVR
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score
from sklearn.preprocessing import StandardScaler ,RobustScaler
x_train.shape, x_test.shape, y_train.shape, y_test.shape
     ((80, 4), (21, 4), (80, 1), (21, 1))
def my_modelfit(my_model,my_x_train,my_y_train):
 my_model.fit(my_x_train, my_y_train)
def my predict(my model, my x test):
 y_pred = my_model.predict(my_x_test)
 return y pred
def my_r2_score(my_y_test,my_y_pred):
 r2 = r2_score(my_y_test, my_y_pred)
 return r2
clf1 = SVR(kernel= 'linear',C=5)
clf2 = KNeighborsRegressor(n neighbors=5)
clf3 = DecisionTreeRegressor()
clf4 = RandomForestRegressor()
clf5 = SVR(kernel= 'rbf',C=5)
clf5 = LinearSVR()
Sscaler = StandardScaler()
Rscaler = RobustScaler()
```

```
my_modelfit(clf1, x_train, y_train)
y_pred_res1 = my_predict(clf1,x_test)
print(my_r2_score(y_test,y_pred_res1))
my_modelfit(clf2, x_train, y_train)
y_pred_res2 = my_predict(clf2,x_test)
print(my_r2_score(y_test,y_pred_res2))
my_modelfit(clf3, x_train, y_train)
y_pred_res3 = my_predict(clf3,x_test)
print(my_r2_score(y_test,y_pred_res3))
my modelfit(clf4, x train, y train)
y_pred_res4 = my_predict(clf4,x_test)
print(my_r2_score(y_test,y_pred_res4))
my_modelfit(clf5, x_train, y_train)
y_pred_res5 = my_predict(clf5,x_test)
print(my_r2_score(y_test,y_pred_res5))
     0.9990892843490367
     0.017108530757033336
     0.9976605719108942
     0.99751381950702
     -12.528700907474681
end_time = time.time()
print(end_time-st_time)
     0.9920618534088135
```

✓ 0 sn. tamamlanma zamanı: 22:00

X