第二章映射

陈建文

定义1.1

设X和Y为两个非空集合。一个从X到Y的<mark>映射</mark>f为一个法则,根据f,对X中的每个元素x都有Y中唯一确定的元素y与之对应。从X到Y的映射f常记为 $f: X \to Y$ 。

定义1.1

设X和Y为两个非空集合。一个从X到Y的<mark>映射</mark>f为一个法则,根据f,对X中的每个元素x都有Y中唯一确定的元素y与之对应。从X到Y的映射f常记为 $f: X \to Y$ 。

定义1.2

设X和Y为两个非空集合。一个从X到Y的映射为一个满足以下两个条件的 $X \times Y$ 的子集f:

- 1. 对X的每一个元素x,存在一个 $y \in Y$,使得 $(x,y) \in f$;
- 2. 若 $(x,y) \in f$, $(x,y') \in f$, 则 $y = y' \circ (x,y) \in f$ 记为 $y = f(x) \circ$

定义1.1

设X和Y为两个非空集合。一个从X到Y的<mark>映射</mark>f为一个法则,根据f,对X中的每个元素x都有Y中唯一确定的元素y与之对应。从X到Y的映射f常记为 $f: X \to Y$ 。

定义1.2

设X和Y为两个非空集合。一个从X到Y的映射为一个满足以下两个条件的 $X \times Y$ 的子集f:

- 1. 对X的每一个元素x,存在一个 $y \in Y$,使得 $(x,y) \in f$;
- 2. 若 $(x,y) \in f$, $(x,y') \in f$, 则 $y = y' \circ (x,y) \in f$ 记为 $y = f(x) \circ$

定义1.3

定义1.4

设 $f: X \to Y$, $A \subseteq X$, 当把f的定义域限制在A上时,就得到了一个 $\phi: A \to Y$, $\forall x \in A$, $\phi(x) = f(x)$ 。 ϕ 称为f在A上的限制,并且常用f|A来表示 ϕ 。反过来,我们也称f为 ϕ 在X上的扩张。

定义1.4

设 $f: X \to Y$, $A \subseteq X$, 当把f的定义域限制在A上时,就得到了一个 $\phi: A \to Y$, $\forall x \in A$, $\phi(x) = f(x)$ 。 ϕ 称为f在A上的限制,并且常用f|A来表示 ϕ 。反过来,我们也称f为 ϕ 在X上的扩张。

定义1.5

设 $f: A \to Y, A \subseteq X, 则称f为X上的一个部分映射。$

定义1.4

设 $f: X \to Y$, $A \subseteq X$, 当把f的定义域限制在A上时,就得到了一个 $\phi: A \to Y$, $\forall x \in A$, $\phi(x) = f(x)$ 。 ϕ 称为f在A上的限制,并且常用f|A来表示 ϕ 。反过来,我们也称f为 ϕ 在X上的扩张。

定义1.5

设 $f: A \to Y, A \subseteq X, 则称f为X上的一个部分映射。$

定义1.6

两个映射f与g称为是<mark>相等</mark>的当且仅当f和g都为从X到Y的映射, 并且 $\forall x \in X$ 总有f(x) = g(x)。

定义1.4

设 $f: X \to Y$, $A \subseteq X$, 当把f的定义域限制在A上时,就得到了一个 $\phi: A \to Y$, $\forall x \in A$, $\phi(x) = f(x)$ 。 ϕ 称为f在A上的限制,并且常用f|A来表示 ϕ 。反过来,我们也称f为 ϕ 在X上的扩张。

定义1.5

设 $f: A \to Y, A \subseteq X, 则称f为X上的一个部分映射。$

定义1.6

两个映射f与g称为是<mark>相等</mark>的当且仅当f和g都为从X到Y的映射, 并且 $\forall x \in X$ 总有f(x) = g(x)。

定义1.7

设 $f: X \to X$,如果 $\forall x \in X, f(x) = x$,则称f为X上的恒等映射。X上的恒等映射常记为 f_X 。

1.映射

定义1.8

设 $f: X \to Y$,如果 $\forall x_1, x_2 \in X$,只要 $x_1 \neq x_2$,就有 $f(x_1) \neq f(x_2)$,则称f为从X到Y的<mark>单射</mark>。

定义1.9

设 $f: X \to Y$, 如果 $\forall y \in Y$, $\exists x \in X$ 使得f(x) = y, 则称f为从X到Y的满射。

定义1.10

设 $f: X \to Y$,如果f既是单射又是满射,则称f为从X到Y的<mark>双</mark>射,或者称f为从X到Y的——对应。

定理2.1 (鸽笼原理)

如果把n+1个物体放到n个盒子里,则必有一个盒子里至少放了两个物体。

定理2.1 (鸽笼原理)

如果把n+1个物体放到n个盒子里,则必有一个盒子里至少放了两个物体。

例:

已知m个整数 a_1, a_2, \ldots, a_m ,试证:存在两个整数k,l, $0 \le k < l \le m$,使得 $a_{k+1} + a_{k+2} + \ldots + a_l$ 能被m整除。

定理2.2 (鸽笼原理的强形式)

设 q_1 , q_2 , ..., q_n 为n个正整数。如果把 $q_1 + q_2 + \cdots + q_n - n$ +1 个物体放到n个盒子中,则或者第一个盒子中至少含有 q_1 个物体,或者第二个盒子中至少含有 q_2 个物体,..., 或者第n个盒子中至少含有 q_n 个物体。

定理2.2 (鸽笼原理的强形式)

设 q_1 , q_2 , ..., q_n 为n个正整数。如果把 $q_1 + q_2 + \cdots + q_n - n$ +1 个物体放到n个盒子中,则或者第一个盒子中至少含有 q_1 个物体,或者第二个盒子中至少含有 q_2 个物体,..., 或者第n个盒子中至少含有 q_n 个物体。

推论2.1

如果把n(r-1)+1个物体放入n个盒子里,则至少有一个盒子里放了不少于r个物体。

定理2.2 (鸽笼原理的强形式)

设 q_1 , q_2 , ..., q_n 为n个正整数。如果把 $q_1 + q_2 + \cdots + q_n - n + 1$ 个物体放到n个盒子中,则或者第一个盒子中至少含有 q_1 个物体,或者第二个盒子中至少含有 q_2 个物体,..., 或者第n个盒子中至少含有 q_n 个物体。

推论2.1

如果把n(r-1)+1个物体放入n个盒子里,则至少有一个盒子里放了不少于r个物体。

推论2.2

如果把n个正整数 m_1, m_2, \ldots, m_n 的平均值

$$\frac{m_1+m_2+\ldots+m_n}{n}>r-1,$$

则 m_1, m_2, \ldots, m_n 中至少有一个正整数不小于r。

定义3.1

设 $f: X \to Y$, $A \subseteq X$, A在f下的\$定义为

$$f(A) = \{f(x)|x \in A\}$$

定义3.1

设 $f: X \to Y$, $A \subseteq X$, A在f下的\$定义为

$$f(A) = \{f(x)|x \in A\}$$

例:

定义3.2 设
$$f: X \to Y, B \subset Y, B$$
在 f 下的原象定义为

$$f^{-1}(B) = \{x \in X | f(x) \in B\}$$

设
$$f: X \to Y$$
, $B \subseteq Y$, $B \times f$ 下的原象定义为

$$f^{-1}(B) = \{x \in X | f(x) \in B\}$$

例:

设
$$f: \{-1,0,1\} \to \{-1,0,1\}, \ f(x) = x^2, \ \text{则} f^{-1}(\{-1,0\}) = ?$$

定理3.1

设 $f: X \to Y$, $A \subseteq Y$, $B \subseteq Y$, 则

- (1) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$
- (2) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$
- (3) $f^{-1}(A^c) = (f^{-1}(A))^c$
- (4) $f^{-1}(A \triangle B) = f^{-1}(A) \triangle f^{-1}(B)$

定理3.2

设 $f: X \to Y, A \subseteq X, B \subseteq X,$ 则

- (1) $f(A \cup B) = f(A) \cup f(B)$
- (2) $f(A \cap B) \subseteq f(A) \cap f(B)$
- (3) $f(A \triangle B) \supseteq f(A) \triangle f(B)$

4. 映射的合成

定义4.1

设 $f: X \to Y, g: Y \to Z$ 为映射,映射f = g的合成

 $g \circ f: X \to Z$ 定义为

$$(g\circ f)(x)=g(f(x))$$

4. 映射的合成

定义4.1

设 $f: X \to Y$, $g: Y \to Z$ 为映射, 映射f与g的<mark>合成</mark> $g \circ f: X \to Z$ 定义为

$$(g\circ f)(x)=g(f(x))$$

定理4.1

设 $f: X \to Y, \ g: Y \to Z, \ h: Z \to W$ 为映射,则 $(h \circ g) \circ f = h \circ (g \circ f)$

定义5.1

设 $f: X \to Y$ 为双射,f的<mark>逆映射 $f^{-1}: Y \to X$ 定义为:对任意的 $y \in Y$,存在唯一的x使得f(x) = y,则 $f^{-1}(y) = x$ 。</mark>

定义5.1

设 $f: X \to Y$ 为双射,f的<mark>逆映射</mark> $f^{-1}: Y \to X$ 定义为:对任意的 $y \in Y$,存在唯一的x使得f(x) = y,则 $f^{-1}(y) = x$ 。

定义5.1'

设 $f: X \to Y$ 为一个映射。如果存在一个映射 $g: Y \to X$ 使得

$$f \circ g = I_Y \underline{\perp} g \circ f = I_X$$

则称映射f为可逆的,而g称为f的<mark>逆映射</mark>。

定理5.1

定义5.1与定义5.1′是等价的。

定理5.2

设 $f: X \to Y$ 为可逆映射,则 $(f^{-1})^{-1} = f$ 。

定理5.2

设 $f: X \to Y$ 为可逆映射,则 $(f^{-1})^{-1} = f$ 。

定理5.3

设 $f: X \to Y$, $g: Y \to Z$ 都为可逆映射,则 $g \circ f$ 也为可逆映射并且 $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ 。

定义5.2

设 $f: X \to Y$ 为一个映射,如果存在一个映射 $g: Y \to X$ 使得 $g \circ f = I_X$,则称f为左可逆的,g称为f的左逆映射;如果存在一个映射 $h: Y \to X$ 使得 $f \circ h = I_Y$,则称f为右可逆的,h称为f的右逆映射。

定义5.2

设 $f: X \to Y$ 为一个映射,如果存在一个映射 $g: Y \to X$ 使得 $g \circ f = I_X$,则称f为<mark>左可逆</mark>的,g称为f的左逆映射;如果存在一个映射 $h: Y \to X$ 使得 $f \circ h = I_Y$,则称f为<mark>右可逆</mark>的,h称为f的右逆映射。

定理5.4

设 $f: X \to Y$ 为一个映射,则

- 1. f左可逆当且仅当f为单射;
- 2. f右可逆当且仅当f为满射。

定义6.1

有穷集合S到自身的一一对应称为S上的一个<mark>置换</mark>。如果|S| = n,则S上的置换就说成是n次置换。

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ k_1 & k_2 & \dots & k_n \end{pmatrix}$$

例:

设 $S = \{1, 2, 3, 4\}$, $\sigma(1) = 3$, $\sigma(2) = 2$, $\sigma(3) = 4$, $\sigma(4) = 1$,则 σ 可以表示为

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$$

这里, 列的次序无关紧要, 例如, σ 还可以表示为

$$\sigma = \begin{pmatrix} 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

定义6.2

设 α 与 β 为集合 $S=\{1,2,3,4\}$ 上的两个置换,则 α 与 β 为两个从S到S的双射,讨论置换时,我们用 $\alpha\beta$ 表示 α 与 β 的合成 $\beta\circ\alpha\circ$ 注意这里 α 与 β 的次序,从运算的角度看有一定的便利性,但也有的教材中采用相反的顺序。按照我们的写法,讨论置换时,如果 $i\in S$,则用 $(i)\alpha$ 表示i在 α 下的像,简记为 $i\alpha\circ$

例:

设 $S = \{1, 2, 3\}$, α 和 β 为S上的两个置换,

$$\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

,则

$$\alpha\beta = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ②

例:

设 $S = \{1, 2, 3\}$, $\alpha \pi \beta 为 S$ 上的两个置换,

$$\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

,则

$$\alpha\beta = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

,

定义6.3

设 σ 为S上的一个n次置换,若 $i_1\sigma=i_2$, $i_2\sigma=i_3$,···, $i_{k-1}\sigma=i_k$, $i_k\sigma=i_1$,而 $\forall i\in S\setminus\{i_1,i_2,\ldots,i_k\}$, $i\sigma=i$,则称 σ 为一个k循环置换,记为 $(i_1i_2\cdots i_k)$ 。2-循环置换称为对换。

例:

设
$$S = \{1, 2, 3, 4, 5\},$$

则
$$(1,2,3) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix}, (2,3) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 2 & 4 & 5 \end{pmatrix}$$

定理6.1

每个置换都能被分解成若干个没有共同数字的循环置换的乘积。如果不计这些循环置换的顺序以及略去的1-循环置换,这个分解是唯一的。

定理6.2

当 $n \ge 2$ 时,每个n次置换都能被分解成若干个对换的乘积。

定理6.3

如果把置换分解成若干个对换的乘积,则对换个数的奇偶性是不变的。

定理6.3

如果把置换分解成若干个对换的乘积,则对换个数的奇偶性是不变的。

定义6.4

能被分解为偶数个对换的乘积的置换称为<mark>偶置换</mark>;能被分解为奇数个对换的乘积的置换称为<mark>奇置换</mark>。

定理6.3

如果把置换分解成若干个对换的乘积,则对换个数的奇偶性是不变的。

定义6.4

能被分解为偶数个对换的乘积的置换称为<mark>偶置换</mark>;能被分解为奇数个对换的乘积的置换称为<mark>奇置换</mark>。

定理6.4

当 $n \ge 2$ 时,n次奇置换的个数与n次偶置换的个数相等,都等于 $\frac{n!}{2}$ 。

定义7.1

定理7.1

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = x + (-x) = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x*(y+z) = x*y + x*z
- 10. (y + z) * x = y * x + z * x

定理8.1

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = x + (-x) = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x*(y+z) = x*y + x*z
- 10. (y + z) * x = y * x + z * x

定理8.1

设 $x, y, z \in \mathbb{R}$,则

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = x + (-x) = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x*(y+z) = x*y + x*z
- 10. (y + z) * x = y * x + z * x

定义8.1

设X, Y, Z为任意三个非空集合。一个从 $X \times Y$ 到Z的映射 ϕ 称为X与Y到Z的一个二元(代数)运算。当X = Y = Z时,则称 ϕ 为X上的二元(代数)运算。

定理7.1

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x * (y + z) = x * y + x * z
- 10. (y + z) * x = y * x + z * x

定理7.1

设 $x, y, z \in \mathbb{R}$,则

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x * (y + z) = x * y + x * z
- 10. (y + z) * x = y * x + z * x

定义8.2

从集合X到Y的任一映射称为 从X到Y的一元(代数)运算。如 果X = Y,则从X到X的映射称 为X上的一元(代数)运算。

定理7.1

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x * (y + z) = x * y + x * z
- 10. (y + z) * x = y * x + z * x

定理7.1

设 $x, y, z \in \mathbb{R}$,则

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x * (y + z) = x * y + x * z
- 10. (y + z) * x = y * x + z * x

定义8.3

设 A_1, A_2, \cdots, A_n, D 为非空集合。一个 从 $A_1 \times A_2 \times \cdots \times A_n$ 到D的映射 ϕ 称为 A_1, A_2, \cdots, A_n 到D的一个n元(代数)运算。如果 $A_1 = A_2 = \cdots = A_n = D = A$,则称 ϕ 为A上的n元代数运算。

定理7.1

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x * (y + z) = x * y + x * z
- 10. (y + z) * x = y * x + z * x

定理7.1

设 $x, y, z \in \mathbb{R}$,则

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x*(y+z) = x*y + x*z
- 10. (y + z) * x = y * x + z * x

定义8.4

设"。"为集合X上的一个二元代数运算。如果 $\forall a,b \in X$,恒有 $a \circ b = b \circ a$,则称二元代数运算"。"满足<mark>交换律</mark>。

定理7.1

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x * (y + z) = x * y + x * z
- 10. (y + z) * x = y * x + z * x

定理7.1

设 $x, y, z \in \mathbb{R}$,则

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x*(y+z) = x*y + x*z
- 10. (y + z) * x = y * x + z * x

定义8.5

设"o"为集合X上的一个二元代数运算。如果 $\forall a,b,c\in X$,恒有 $(a\circ b)\circ c=a\circ (b\circ c)$,则称二元代数运算"o"满足<mark>结合律</mark>。

定理7.1

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x * (y + z) = x * y + x * z
- 10. (y + z) * x = y * x + z * x

定理7.1

设 $x, y, z \in \mathbb{R}$,则

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x * (y + z) = x * y + x * z
- 10. (y + z) * x = y * x + z * x

定义8.6

设"+"与"o"为集合X上的两个 二元代数运算。

如果 $\forall a, b, c \in X$,恒有

$$a\circ(b+c)=a\circ b+a\circ c,$$

则称二元代数运算"o"对"+"满足左分配律。

如果 $\forall a, b, c \in X$,恒有

$$(b+c)\circ a=b\circ a+c\circ a,$$

则称二元代数运算 "o"对 "+"满足右分配律。

定理7.1

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x*(y+z) = x*y + x*z
- 10. (y + z) * x = y * x + z * x

定理7.1

设 $x, y, z \in \mathbb{R}$,则

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x * (y + z) = x * y + x * z
- 10. (y + z) * x = y * x + z * x

定义8.7

设 (X, \circ) 为一个代数系。如果存在一个元素 $e \in X$ 使得对任意的 $x \in X$ 恒有 $e \circ x = x \circ e = x$,则称e为" \circ "的单位元素。

定理7.1

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x*(y+z) = x*y + x*z
- 10. (y + z) * x = y * x + z * x

定理7.1

设 $x, y, z \in \mathbb{R}$,则

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 0 + x = x + 0 = x
- 4. (-x) + x = (-x) + x = 0
- 5. x * y = y * x
- 6. (x * y) * z = x * (y * z)
- 7. 1 * x = x * 1 = x
- 8. $x^{-1} * x = x * x^{-1} = 1$
- 9. x * (y + z) = x * y + x * z
- 10. (y + z) * x = y * x + z * x

定义8.8

设 (X, \circ) 为一个代数系,"o"有单位元素 $e, a \in X$,如果 $\exists b \in X$ 使得

$$a \circ b = b \circ a = e$$
,

则称b为a的<mark>逆元素</mark>。

定义8.9

设(S,+)与 (T,\oplus) 为两个代数系。如果存在一个一一对 $\phi: S \to T$,使得 $\forall x, y \in S$,有

$$\phi(x+y)=\phi(x)\oplus\phi(y),$$

则称代数系(S,+)与 (T,\oplus) 同构,并记为 $S \cong T$, ϕ 称为这两个代数系之间的一个同构。

定义8.10

设 $(S,+,\circ)$ 与 $(T,\oplus,*)$ 为两个代数系。如果存在一个一一对应 $\phi:S\to T$,使得 $\forall x,y\in S$,有

$$\phi(x+y) = \phi(x) \oplus \phi(y),$$

$$\phi(x \circ y) = \phi(x) * \phi(y),$$

则称代数系 $(S, +, \circ)$ 与 $(T, \oplus, *)$ 同构,并记为 $S \cong T, \phi$ 称为这两个代数系之间的一个同构。

р	q	$p \wedge q$
T	Т	Т
T	F	F
F	Т	F
F	F	F

8. 集合的特征函数

定义9.1

设X为一个集合, $E \subseteq X$ 。E的特征函数 $\chi_E : X \to \{0,1\}$ 定义为

$$\chi_E(x) = \begin{cases} 1 & \text{m} \mathbb{R} x \in E, \\ 0 & \text{m} \mathbb{R} x \notin E. \end{cases}$$

8. 集合的特征函数

定义9.2

$$\Leftrightarrow Ch(X) = \{\chi | \chi : X \to \{0, 1\}\} \circ \forall \chi, \chi' \in Ch(X) \not \boxtimes x \in X,
(\chi \lor \chi')(x) = \chi(x) \lor \chi'(x)
(\chi \land \chi')(x) = \chi(x) \land \chi'(x)
\bar{\chi}(x) = \overline{\chi(x)}$$
(1)

定理9.1

设X为一个集合,则代数系 $(2^X, \cup, \cap, ^c)$ 与 $(Ch(X), \vee, \wedge, ^-)$ 同构。

习题

习题1

习题2

设
$$f: X \to Y$$
, $C \subseteq Y$, $D \subseteq Y$, 证明 $f^{-1}(C \setminus D) = f^{-1}(C) \setminus f^{-1}(D)$

习题3

设
$$f: X \to Y, A \subseteq X, B \subseteq X$$
, 证明 $f(A \setminus B) \supseteq f(A) \setminus f(B)$

习题4

设
$$f: X \to Y, A \subseteq X, 则(f(A))^c \subseteq f(A^c)$$
成立吗? $f(A^c) \subseteq (f(A))^c$ 成立吗?

习题

习题5

设 $f: X \to Y$, 证明: f为满射当且仅当 $\forall E \in 2^Y$, $f(f^{-1}(E)) = E$ 。

习题6

设 $f: X \to Y$, 证明: f为单射当且仅 当 $\forall F \in 2^X, f^{-1}(f(F)) = F$ 。

习题7

设 $f: X \to Y, g: Y \to Z, A \subseteq Z,$ 证明: $(gf)^{-1}(A) = f^{-1}(g^{-1}(A))$ 。

习题8

设 $N = \{1, 2, ...\}$,试构造两个映射 $f: N \to N$ 与 $g: N \to N$,使得 $fg = I_N$,但 $gf \neq I_N$ 。

习题

习题9

设 $f: X \to Y$,

- (1) 如果存在唯一的一个映射 $g: Y \to X$,使得 $gf = I_X$,那么f是否可逆呢?
- (2) 如果存在唯一的一个映射 $g: Y \to X$,使得 $fg = I_Y$,那么f是否可逆呢?

习题10

是否存在一个从集合X到X的一一对应,使得 $f=f^{-1}$,但 $f\neq I_X$?