ZADANIE 1.

Rozważmy sytuację z Example 1. Proszę sparwdzić czy KB \mid = α 2 gdzie α 2 reprezentuje [2, 2] jest bezpieczne.

ZADANIE 2.

Sprawdź, czy podane zdania są logicznie równoważne. $\neg(pV(\neg p \land q))$ i $\neg p \land \neg q$.

р	q	¬p∧q	¬(p∨(¬p∧q))	¬p∧¬q
0	0	0	1	1
0	1	1	0	0
1	0	0	0	0
1	1	0	0	0

Zatem zdania są logicznie równoważne.

ZADANIE 3.

Sprawdź, czy poniższe zdanie jest spełnialne.

(i)(p
$$\Rightarrow$$
 q) \Rightarrow (¬p \Rightarrow ¬q)
(ii) (p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow q)

(i)

р	q	$p \Rightarrow q$	¬p ⇒ ¬q	$(p \Rightarrow q) \Rightarrow (\neg p \Rightarrow \neg q)$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	1
1	1	1	1	1

Z tabeli wynika, że dla niektórych kombinacji wartości p i q zdanie (i) jest prawdziwe. Zatem zdanie (i) jest spełnialne.

	,			
1	1	ı	I	1
ı	1	,	ı	,

<u>' </u>						
р	Ф	٦	$p \Rightarrow q$	pΛr	$(p \land r) \Rightarrow q$	$(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow q)$
0	0	0	1	0	1	1
0	0	1	1	0	1	1
0	1	0	1	0	1	1
0	1	1	1	0	1	1
1	0	0	0	0	1	1
1	0	1	0	1	0	1
1	1	0	1	0	1	1
1	1	1	1	1	1	1

Z tabeli wynika, że dla wszystkich kombinacji wartości p, q i r zdanie (ii) jest prawdziwe. Zatem zdanie (ii) jest spełnialne.

ZADANIE 4.

Używając tabeli prawdziwości sprawdź czy $(p \Rightarrow q) = ((p \land r) \Rightarrow q)$.

р	q	r	$p \Rightarrow q$	$(p \land r) \Rightarrow q$
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	1
1	0	1	0	0
1	1	0	1	1
1	1	1	1	1

Dla V₈ (p \Rightarrow q) i ((p \land r) \Rightarrow q) wartości wynoszą 1. Zatem konsekwencja sematyczna zachodzi.

ZADANIE 5.

Używając tabeli prawdziwości znajdź CNF i DNF dla zdań w zadaniu 3.

(i)
$$(p \Rightarrow q) \Rightarrow (\neg p \Rightarrow \neg q)$$
:

CNF: p ∨ ¬q

DNF: $(\neg p \land \neg q) \lor (p \land \neg q) \lor (p \land q)$

(ii)
$$(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow q)$$
:

CNF: nie istnieje

DNF: $(\neg p \land \neg q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (p \land \neg q \land \neg r) \lor (p \land \neg q \land r) \lor (p \land q \land r) \lor (p \land q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r)$