Fairness and Explainability

TOP: Data Clustering 076/091

Instructor: Sayan Bandyapadhyay

Portland State University

Outline

- 1 Introduction
- 2 The Fair Model
- 3 An Algorithm
- 4 Explainability
- 5 Explainable Clustering

Factors of Importance

In ML/Algorithms, what are the most important factors that drive technological innovation?

Factors of Importance

In ML/Algorithms, what are the most important factors that drive technological innovation?

- Running time
- Query time
- Update time
- Storage and handling of big data
- Computational power of hardware
- Quality
- Privacy and security

Factors of Importance

In ML/Algorithms, what are the most important factors that drive technological innovation?

- Running time
- Query time
- Update time
- Storage and handling of big data
- Computational power of hardware
- Quality
- Privacy and security

Recent challenges

- Fairness
- Explainability

DE GRUYTER OPEN

Proceedings on Privacy Enhancing Technologies 2015; 2015 (1):92-112

Amit Datta*, Michael Carl Tschantz, and Anupam Datta

Automated Experiments on Ad Privacy Settings

A Tale of Opacity, Choice, and Discrimination

ANITA BORG INSTITUTE

GRACE HOPPER CELEBRATION OF WOMEN IN COMPUTING

Recommending Dream Jobs in a Biased Real World

Nadia FAWAZ

LinkedIn Corporation nfawaz@linkedin.com

The ML Pipeline

Training Stage

Training the classifier: feature engineering/labeling of samples

Outline

- 1 Introduction
- 2 The Fair Model
- 3 An Algorithm
- 4 Explainability
- 5 Explainable Clustering

Fair Clustering

(Proportionally) Fair k-center Clustering

- Given colored points in \mathbb{R}^d
- Find a set C of k points (cluster centers) in \mathbb{R}^d that
 - \blacksquare minimizes cost(C); and
 - each cluster is fair or color-balanced

Fair *k*-center Clustering

- Given *n* red and *n* blue points in \mathbb{R}^d
- Find a set C of k points (cluster centers) in \mathbb{R}^d that
 - minimizes $\max_{c \in C} \text{radius}(c)$; and
 - each cluster has equal number of red and blue points.

Fair Clustering

Outline

- 1 Introduction
- 2 The Fair Model
- 3 An Algorithm
- 4 Explainability
- 5 Explainable Clustering

How to address fairness?

We know how to solve regular k-center problem

Observations

Consider the bipartite graph between red and blue points (vertices)

Observations

- Consider the bipartite graph between red and blue points (vertices)
- There is a perfect matching in this graph

Observations

- Consider the bipartite graph between red and blue points (vertices)
- There is a perfect matching in this graph
- Each edge has length at most 2·OPT

Compute a bipartite graph G between red and blue points (vertices) by adding edges of length at most $2 \cdot OPT$

Compute a perfect matching in *G* (orange edges)

Compute a 2-approximate *k*-center clustering of the red points

Assign each blue point to the cluster of the red point matched to it

Expand each ball by 2OPT to cover all points assigned to the cluster

Outline

- 1 Introduction
- 2 The Fair Model
- 3 An Algorithm
- 4 Explainability
- 5 Explainable Clustering

Black Magic of Black Boxes

Explainable AI

Explaining a Clustering

Pre-modeling Explainability¹

Inherent explainability via decision tree

¹Moshkovitz et al. ICML 2020

Post-modeling Explainability

Remove a subset of points to explain the given clustering

Outline

- 1 Introduction
- 2 The Fair Model
- 3 An Algorithm
- 4 Explainability
- 5 Explainable Clustering

Clustering Explanation

Remove *s* points to explain the given clustering

A cut might separate a cluster

A cut might separate multiple clusters - 2^k choices to make

You have 2(n-1) choices for vertical and horizontal cuts -

You have 2(n-1) choices for vertical and horizontal cuts $-2(n-1)2^k$ = choices for selecting the first cut

For k clusters, we need k-1 cuts

For k clusters, we need k-1 cuts $\rightarrow (2(n-1)2^k))^{k-1} = O(n^k 2^{k^2})$ choices in total

Several choices for cuts

Several choices for cuts

Greedily pick the cut that removes the minimum number of points: remove the smaller chunk for each cluster

Runs in poly-time – (k - 1)-approximation

