Quadratic Surfaces

Curves in \mathbb{R}^2

Say we have a constant C and $Q(x) = x^T A x$ where $A \in \mathbb{R}^{2 \times 2}$. Then,

$$C = x^T A x$$

Is a curve in \mathbb{R}^2 .

Say
$$A=egin{bmatrix} 2 & 1 \ 1 & 2 \end{bmatrix}$$
 . Then $Q(x)=2x^2+2y^2+2xy=C$.

If C = 1 we can plot,

Here is it plotted when we changed C from 1 to 10.

Curves in \mathbb{R}^3

Say we have z=Q(x) , $z=x^2+y^2=x^Tegin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}x$

We can graph this,

Definitions

Word	Definition	Eigenvalues
Positive Definite	If $Q>0$ for all $ec{x} eq 0$	all eigenvalues are positive
Negative Definite	If $Q < 0$ for all $ec{x} eq 0$	all eigenvalues are negative
Positive Semidefinite	If $Q \geq 0$ for all $ec{x}$	
Negative Semidefinite	If $Q \leq 0$ for all $ec{x}$	
Indefinite	If Q takes on positive and negative values for $\vec{x} \neq 0$	at least one negative and one positive