H&K Chapter 6

Sohum Banerjea, Andrew Hedding, Lisa Hofmann

February 19, 2017

1 Quantifiers vs. Proper Names

- nothing $\rightsquigarrow \lambda P_{et}.\neg \exists x_e.P(x)$
- $Ann \rightsquigarrow Ann_e (/A_e)$
- $vanish \rightsquigarrow VANISH_{et}$

a. Quantifiers aren't of type e

- Not all quantifiers are upward monotonic (P \wedge Q \rightarrow P)
 - John came yesterday morning. \Rightarrow John came yesterday.
 - $P(x_e) \wedge Q(x_e) \rightarrow P(x_e)$
 - No letter came yesterday morning. \neq No letter came yesterday.
 - $-\neg \exists x_e.P(x) \land Q(x) \not\rightarrow \neg \exists x_e.P(x)$
 - Entailment from a more specific predication (subset) to a more general predication (superset) is not necessarily given under quantification.
 - Quantifiers like 'at most one' and 'no' are downward entailing.
- Not all quantifiers obey the law of contradiction $(\neg P \land \neg P)$
 - Mt. Rainier is on this side of the border and Mt. Rainier is on the other side of the border. \Leftrightarrow \bot
 - $P(x_e)$ ∧ $Q(x_e)$ ↔ \bot , where $P^{\leadsto} \cap Q^{\leadsto} = \emptyset$
 - Some mountains are on this side of the border and some mountains are on the other side of the border.
 - $-\exists x_e.P(x) \land Q(x) \nleftrightarrow \bot$, even if $P^{\leadsto} \cap Q^{\leadsto} = \emptyset$
- Not all quantifiers obey the law of the excluded middle (P $\vee \neg$ P)
- Scope ambiguities

b. Quantifiers aren't of type et

- Should also be upward entailing
- Contradiction, Excluded middle + superset entailment should still hold

2 Semantics of quantifiers

a. Compositional semantics

• Consider an expanded, compositional version of the tree from before.

- no, every, and some need to have type (et)(et)t.
- every $\rightsquigarrow \lambda P_{et} \; \lambda Q_{et} \; \forall x_e \; P(x) \rightarrow Q(x)$
- some $\rightsquigarrow \lambda P_{et} \ \lambda Q_{et} \ \exists x_e \ P(x) \land Q(x)$
- no $\leadsto \lambda P_{et} \lambda Q_{et} \neg \exists x_e \ P(x) \land Q(x)$

b. Relations between sets

3 Presuppositional behaviour of quantifiers