Traitement de nuage de points 3D

Thibault Lejemble

Majeure IMAGE - Décembre 2023

Pattern Recognition

1. Segmentation géométrique

- ▶ identifier des groupes de points différents
- partageant des propriétés géométriques similaires
- algorithmes souvent non-supervisés

2. Classification sémantique

- ► identifier des classes d'objet
- ► définition d'une sémantique
- algorithmes souvent supervisés

Segmentation géométrique non-supervisées

- ▶ déterminer des groupes de points 3D (régions, *clusters...*)
- caractéristiques géométriques similaires
- ▶ détection de primitives géométriques 3D 'simples'

Différents niveaux d'abstraction de forme

- 0. nuage de points 3D 'brut'
- 1. morceaux de primitives, régions localisées, détails saillants
- 2. primitives complètes, segmentation de toutes les données
- 3. structure entre primitives, relations géométriques

Familles d'algorithmes de détection de formes

- ► RANSAC
- ▶ transformée de Hough
- clustering
- statistiques locales
- ▶ accroissement de région

RANSAC

1. Segmentation

RAnsom SAmple Consensus

- ► algorithme stochastique
- ajustements aléatoires de plusieurs modèles aux données
- sélection du modèle le plus proche des données (qui fait consensus)

Avantages

- ► robuste au bruit
- robuste aux données aberrantes
- générique car adapté à un grand nombre de modèles
- garanties statistiques

Pseudo code général pour ajuster un modèle

RANSAC(ensemble P)

- ▶ sélectionner aléatoirement k fois n éléments de P
- ▶ ajuster un modèle aux k groupes de n éléments
- lacktriangledown calculer le nombre d'éléments de P inclus dans chaque modèle suivant un seuil au
- ▶ sélectionner le modèle avec le plus grand nombre d'éléments inclus

Paramètres

 $n : nombre \ d'éléments \ nécessaires pour povoir ajuster un modèle (souvent minimal)$

k : nombre d'échantillons aléatoires

 $\tau\;:$ seuil pour considérer si un élément est inclus dans un modèle

Pseudo code général pour ajuster plusieurs modèles

RANSAC(ensemble P)

- ▶ ensemble Q vide
- répéter
 - ▶ sélectionner aléatoirement k fois n éléments de P
 - ▶ ajuster un modèle aux k groupes de n éléments
 - lacktriangle calculer le nombre d'éléments de P inclus dans chaque modèle suivant un seuil au
 - ▶ sélectionner le modèle avec le plus grand nombre d'éléments inclus
 - ▶ les éléments inclus dans ce modèle sont déplacés dans Q

Conditions d'arrêt

- ► tant que P n'est pas vide
- ▶ tant que l'erreur modèle/données ne dépasse pas un certain seuil

Exemple : ajustement d'une droite à des points 2D

- ightharpoonup n=2
- ▶ modèle : fonctione linéaire y = ax + b (formule implicite $n_x x + n_y y + d = 0$)
- ► inclusion calculée sur des distances point/droite

Exemple: ajustement d'un plan à des points 3D

- ▶ n = 3
- ▶ modèle : fonctione linéaire z = ax + by + c (formule implicite $n_x x + n_y y + n_z z + d = 0$)
- ► inclusion calculée sur des distances point/plan

Détection de formes 3D

- ▶ ajustements de plan, cylindre, sphère, tore, cone...
- accroissements de régions
- ► ré-ajustement de modèle
- structures accélératrices (pour l'échantillonnage aléatoire)
- utilisation des normales
- extraction de relation, renforcement des régularités

Classification sémantique

- ► assigner à chaque point une classe
- ► regrouper des points similaires ensemble

Exemples

- ► Voiture autonome : sol, piéton, voiture, infra...
- ► Géographie : terrain, végétation, bâtiment...
- ► Urbanisme : sol, mur, toit, fenêtre...
- ► Ingénierie : tuyau, câble, boulon, vis...
- ► Humain : parties du corps
- ▶ ...

► Voiture autonome : sol, piéton, voiture, infra...

► Géographie : terrain, végétation, bâtiment...

► Ingénierie : tuyau, câble, boulon, vis...

► Humain : parties du corps

Méthodes non-supervisées

- ► Segmentation géométrique + heuristiques
- ► Bag-of-words visuels

Méthodes supervisées

principalement du Deep Learning

Réseau de Deep Learning

- ► neurones = poids + fonction d'activation
- organisés en couches
- ▶ fonction de coût
- ► rétro-propagation de l'erreur lors de l'entraînement

Classification d'image

- couche de convolution
- ► entrée structurée en grille

Problème des nuages de points 3D

- ► pas de structures régulière
- ► invariant par permutation
- ▶ pas d'opération de convolution triviale existante

2	4	9	1	4
2	1	4	4	6
1	1	2	9	2
7	3	5	1	3
2	3	4	8	5

×

Filter / Kernel

Feature

deux solutions 'naïves'

2. Structuration en grille de voxels 3D

- 1. Rendu d'images 2D
 - synthèse d'images
 - ▶ à partir de plusieurs point de vue
 - ► apprentissage sur des images (grilles 2D)
 - re-projection des résultat sur le nuage de points

Problèmes

- définition des point de vue
- ▶ perte d'information 3D
- ► coût de calcul du rendu

- 2. Structuration en grille de voxels 3D
 - ▶ définition d'une grille $N_x \times N_y \times N_z$
 - ▶ 1 point 3D dans un voxel ⇒ 1 (binaire)
 - ightharpoonup n points $\Rightarrow n$ (scalaire)
 - attributs supplémentaires
 - ► convolutions 3D

Problèmes

- ▶ définition des axes
- ► erreur de quantification
- ▶ complexité cubique
- ► limitation de mémoire

Point-Net

- ► application sur un patch de points 3D
- ▶ apprentissage d'une transformation 3D canonique
- ▶ apprentissage d'une transformation des *features*
- ► segmentation ou classification

Classification Network

Autres 'deep' classifier de nuage de points

- ► multi-échelle / hiérarchique
- ► graph neural network
- ► convolution discrète de points

cf. Deep Learning for 3D Point Clouds: A Survey, Guo et al. (2020)