Introduction To Binary Search Tree

By Yash Gupta

BST Properties

- All items in the left subtree are less than the root.
- All items in the right subtree are greater or equal to the root.
- Each subtree is itself a binary search tree.

BST Properties

- Insertion
- Deletion
- Searching
- Traversal

BST Insertion

BST Deletion

- Case 1: Pure Leaf node case
 - In this case delete the node.
- Case 2 : Only one child
 - Replace the node with only child
- Case 3: Has both children
 - Replace the node with its inorder successor or predecessor

BST Tree Traversal

- Depth first Traversal
 - Pre-order Traversal
 - Post-order Traversal
 - Inorder Traversal
- Breadth-first Traversal

Pre-order (VLR)

Post-Order (LRV)

Inorder (LVR)

Analysis

Operation	Time Complexity		
	BEST	AVERGAE	WORST
INSERT	O(1)	_	O(n)
DELETE	O(1)	O(Log n)	O(n)
SEARCH	O(1)	O(Log n)	O(n)
TRAVERSAL	-	-	O(n)

Generate Tree

• Inorder – Preorder

Inorder- Postorder

• Preorder - Postorder

Contact Info

- trainers@finaldesk.com
- rishabh@finaldesk.com
- nilesh@finaldesk.com
- jignesh@finaldesk.com
- yash@finaldesk.com
- anand@finaldesk.com