	Solid	Thin-walled	Thin-walled
Bending		Open	Closed
Direct stress	$\sigma_z = \frac{M_y I_x}{I_{xy}^2}$	$\frac{I_{xx} + M_x I_{xy}}{-I_{xx} I_{yy}} x + \frac{M_x I_{yy}}{I_{xx} I_y}$	$\frac{+M_y I_{xy}}{yy - I_{xy}^2} y$
Shear	$\tau_{zy} = \frac{S_y}{I \ b_1} \int_{y_1}^h y \ dA \qquad -q$	$g_{s}^{\text{open}} = \left(\frac{S_{x} I_{xx} + S_{y} I_{xy}}{I_{xy}^{2} - I_{xx} I_{yy}}\right) \int_{0}^{s} x t^{2}$	$ds + \left(\frac{S_y I_{yy} + S_x I_{xy}}{I_{xx} I_{yy} - I_{xy}^2}\right) \int_0^s y t ds$
Shear stress / Shear flow			$-q_s^{\text{closed}} = -q_s^{\text{open}} + q_0$ $q_0 = \frac{\oint q_s^{\text{open}} ds}{\oint ds}$
Shear centre	- Intersection of lines of symmetry - Numerical methods	- Intersection of lines of symmetry - 'Inspection' of 2-member sections $S_y \ e_x - S_x \ e_y = \int r_s \ q_s \ \mathrm{d}s$	- Intersection of lines of symmetry - From shear flow: $S_y e_x - S_x e_y = \oint q_s^{\text{open}} r_s \mathrm{d}s + 2 A q_0$
Twist	$\frac{\mathrm{d}\theta}{\mathrm{d}z} = \frac{M_z}{GJ}$	$J = \frac{1}{3} \int t^3 \mathrm{d}s = \sum \left(\frac{b_i t_i^3}{3} \right)$	$\frac{\mathrm{d}\theta}{\mathrm{d}z} = \frac{1}{2A} \oint \frac{q_s}{G t} \mathrm{d}s J = \frac{4 A^2}{\oint \frac{\mathrm{d}s}{t}}$
Warp		$w_s = -\frac{\mathrm{d}\theta}{\mathrm{d}z} \int_0^s r_s \mathrm{d}s$ $w_t = s \cdot n \cdot \frac{\mathrm{d}\theta}{\mathrm{d}z}$	$\int_{0}^{s} \frac{q_{s}^{\text{open}}}{G t} ds - \frac{A_{s}}{A} \oint \frac{q_{s}^{\text{open}}}{G t} ds$
Torsion Shear stress / Shear flow	- St Venant's torsion: $\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} + \frac{\mathrm{d}^2 \psi}{\mathrm{d}y^2} = 0$ $\tau_{zx} = G \frac{\mathrm{d}\theta}{\mathrm{d}z} \left(\frac{\mathrm{d}\psi}{\mathrm{d}x} - y \right)$ $\tau_{zy} = G \frac{\mathrm{d}\theta}{\mathrm{d}z} \left(\frac{\mathrm{d}\psi}{\mathrm{d}y} - x \right)$	$\tau_{zs} = 2 G n \frac{d\theta}{dz}$ $\tau_{zn} = 0$	$T = M_z = \bar{q} \oint r_s \mathrm{d}s = 2 A \bar{q}$
Twist $J = \iint \left[\left(\frac{\mathrm{d}\psi}{\mathrm{d}y} \right) \right]$	$\frac{d\theta}{dz} = \frac{T}{GJ}$ $(x + x)x - \left(\frac{d\psi}{dx} + y\right)y dx dy$	$J = \frac{1}{3} \int t^3 \mathrm{d}s = \sum \left(\frac{b_i t_i^3}{3} \right)$	$\boxed{\frac{\mathrm{d}\theta}{\mathrm{d}z} = \frac{T}{4 A^2} \oint \frac{\mathrm{d}s}{G t}} J = \frac{4 A^2}{\oint \frac{\mathrm{d}s}{t}}$
Warp	$w = \frac{\mathrm{d}\theta}{\mathrm{d}z}\psi(x,y)$	$w_s = -\frac{\mathrm{d}\theta}{\mathrm{d}z} \int_0^s r_s \mathrm{d}s$ $w_t = s \cdot n \cdot \frac{\mathrm{d}\theta}{\mathrm{d}z}$	$\overline{q} \left(\int_0^s \frac{\mathrm{d}s}{G t} - \frac{A_s}{A} \oint \frac{\mathrm{d}s}{G t} \right)$