INSTRUCTIONS GENERALES

- ✓ L'utilisation de la calculatrice non programmable est autorisée ;
- ✓ Le candidat peut traiter les exercices de l'épreuve suivant l'ordre qui lui convient ;
- ✓ L'utilisation de la couleur rouge lors de la rédaction des solutions est à éviter.

COMPOSANTES DU SUJET

L'épreuve est composée de trois exercices et un problème indépendants entre eux et répartis suivant les domaines comme suit :

Exercice 1	fonctions numériques	2 points
Exercice 2	suites numériques	4 points
Exercice 3	Nombres complexes	5 points
Problème	Etude de fonctions numériques et calcul intégral	9 points

- ✓ On désigne par \overline{z} le conjugué du nombre complexe z
- ✓ In désigne la fonction logarithme népérien

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2021 – الموضوع - مادة: الرياضيات- شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية (خيار فرنسية)		
Exercice 1: (2 points)		
0.5 1) a) Résoudre dans \mathbb{R} l'équation : $e^{2x} - 4e^x + 3 = 0$		
0.5 b) Résoudre dans \mathbb{R} l'inéquation : $e^{2x} - 4e^x + 3 \le 0$		
c) Calculer $\lim_{x\to 0} \frac{e^{2x} - 4e^x + 3}{e^{2x} - 1}$		
2) Montrer que l'équation $e^{2x} + e^x + 4x = 0$ admet une solution dans l'intervalle $\begin{bmatrix} -1, 0 \end{bmatrix}$		
Exercice 2: (4 points)		
Soit (u_n) la suite numérique définie par : $u_0 = \frac{1}{2}$ et $u_{n+1} = \frac{u_n}{3 - 2u_n}$ pour tout n de IN		
0.25 1) Calculer u_1		
0.5 2) Montrer par récurrence que pour tout n de IN , $0 < u_n \le \frac{1}{2}$		
0.5 3) a) Montrer que pour tout n de IN , $\frac{u_{n+1}}{u_n} \le \frac{1}{2}$		
0.5 b) En déduire la monotonie de la suite (u_n)		
0.75 4) a) Montrer que pour tout n de IV , $0 < u_n \le \left(\frac{1}{2}\right)^{n+1}$; puis calculer la limite de la suite (u_n)		
0.5 b) On pose $v_n = \ln(3 - 2u_n)$ pour tout n de IN , calculer $\lim v_n$		
0.5 S) a) Vérifier que pour tout n de IN , $\frac{1}{u_{n+1}} - 1 = 3\left(\frac{1}{u_n} - 1\right)$		
0.5 b) En déduire u_n en fonction de n pour tout n de $I\!N$		
Exercice 2: (5 points)		
0.75 1) Résoudre dans l'ensemble \mathbb{C} des nombres complexes, l'équation : $z^2 - \sqrt{3}z + 1 = 0$		
2) Soient les nombres complexes $a = e^{i\frac{\pi}{6}}$ et $b = \frac{3}{2} + i\frac{\sqrt{3}}{2}$		
0.25 a) Ecrire a sous forme algébrique.		
0.5 b) Vérifier que $\overline{a}b=\sqrt{3}$		
Dans le plan complexe rapporté à un repère orthonormé direct $(O,ec{u},ec{v})$, on considère les		
points A , B et C d'affixes respectives a , b et \overline{a} .		
0.5 3) Montrer que le point B est l'image du point A par une homothétie h de centre O dont on		
déterminera le rapport.		

الصفحة	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2021 - الموضوع - مادة: الرياضيات- شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك العلوم الفيزيانية (خيار فرنسية)		
4) Soient z l'affixe d'un point M du plan et z' l'affixe du point M' image de M par la			
	rotation R de centre A et d'angle $\frac{\pi}{2}$		
0.5	a) Ecrire z' en fonction de z et a .		
0.25	b) Soit d l'affixe du point D image de C par la rotation R , montrer que $d=a+1$		
0.5	c) Soit I le point d'affixe le nombre 1 , montrer que $ADIO$ est un losange .		
0.75	5)a) Vérifier que $d-b=\frac{\sqrt{3}-1}{2}(1-i)$; en déduire un argument du nombre $d-b$		
0.5	b) Ecrire le nombre $1-b$ sous forme trigonométrique.		
0.5	c) Déduire une mesure de l'angle $\left(\widehat{\overrightarrow{BI},\overrightarrow{BD}}\right)$		
	Problème : (9 points)		
	Soit la fonction f définie sur $[0, +\infty[$ par : $f(0) = 0$ et $f(x) = 2x \ln x - 2x$ si $x > 0$		
	et (C) sa courbe représentative dans un repère orthonormé $\left(O,ec{i},ec{j} ight)$ (unité : 1cm)		
0.5	1) Montrer que f est continue à droite au point 0.		
0.5	2)a) Calculer $\lim_{x \to +\infty} f(x)$		
0.5	b) Calculer $\lim_{x \to +\infty} \frac{f(x)}{x}$ puis interpréter géométriquement le résultat		
0.75	3) a) Calculer $\lim_{x\to 0^+} \frac{f(x)}{x}$ et interpréter géométriquement le résultat		
0.5	b) Calculer $f'(x)$ pour tout x de $]0,+\infty[$		
0.5	c) Dresser le tableau de variations de la fonction f sur $\begin{bmatrix} 0 \\ +\infty \end{bmatrix}$		
0.5	4) a) Résoudre dans l'intervalle $]0, +\infty[$ les équations $f(x) = 0$ et $f(x) = x$		
1	b) Construire la courbe (C) dans le repère (O, \vec{i}, \vec{j}) (on prend $e^{\frac{3}{2}} \approx 4.5$)		
0.5	5) a) En utilisant une intégration par parties, montrer que $\int_{1}^{e} x \ln x dx = \frac{1 + e^2}{4}$		
0.5	b) En déduire : $\int_1^e f(x) dx$		
0.25	6)a) Déterminer le minimum de f sur $]0,+\infty[$		
0.5	b) En déduire que pour tout x de $]0,+\infty[$, $\ln x \ge \frac{x-1}{x}$		

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2021 - الموضوع - مادة: الرياضيات- شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية (خيار فرنسية)			
7) Soit g la restriction de la fonction f à l'intervalle $[1,+\infty[$			
0.5	a) Montrer que la fonction g admet une fonction réciproque g^{-1} définie sur un intervalle J		
0.75	qu'on déterminera. b) Construire dans le même repère (O, \vec{i}, \vec{j}) la courbe représentative de la fonction g^{-1}		
	8) on considère la fonction h définie sur \mathbb{R} par $\begin{cases} h(x) = x^3 + 3x & ; x \le 0 \\ h(x) = 2x \ln x - 2x & ; x > 0 \end{cases}$		
0.5	a) Etudier la continuité de h au point 0		
0.5	b) Etudier la dérivabilité de la fonction h à gauche au point 0 puis interpréter géométriquement le résultat.		
0.25	c) La fonction h est-elle dérivable au point 0 ? justifier.		
	I .		