CS F364: Design & Analysis of Algorithm

Knapsack Problem Greedy Algorithm

Jan 29, 2021

Dr. Kamlesh Tiwari

Assistant Professor, Department of CSIS, BITS Pilani, Pilani Campus, Rajasthan-333031 INDIA

(Campus @ BITS-Pilani Jan-May 2021)

http://ktiwari.in/algo

Activity Selection Problem

Activity Selection Problem:

- Consider a set $S = \{1, 2, 3, ..., n\}$ of n activities that can happen one activity at a time. Activity i takes place during interval $[s_i, f_i)$.
- Activity i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap
 - Select maximum size set of mutually comparable activities.

Consider following set of activity

- {3, 9, 11} is a compatible activity
- {1, 4, 8, 11} is larger compatible activity. In fact it is the largest
- Another largest compatible activity is {2, 4, 9, 11}

Activity Selection Problem

Greedy Algorithm

- Strategy to solve constrained optimization problem
- Make sequence of choices [with] What looks best at the moment
 - Incremental thus Efficient
- A greedy algorithm makes a locally optimal choice in the hope that the choice will lead to a globally optimal solution
 - Caution: does NOT always yields optimal solutions •
- Determine the problem has optimal substructure

Key ingredients

- Greedy-choice property: we can assemble a globally optimal solution by making locally optimal (greedy) choices. 9
 - Optimal substructure: if an optimal solution to the problem contains within it optimal solutions to subproblems.

Activity Selection Problem

Assume that activities are in increasing order of their finishing time. If not, then sort it in $O(n \lg n)$ time.

Knapsack Problem

e-06(Jan 29, 2021) 3/8

- A thief robbing a store finds n items.
- The ith item is worth v, dollars and weighs w_i pounds. The thief wants to take as valuable a load as possible, but he can carry at most W pounds in his knapsack (consider v_i, w_i, and W as integer)
 - Which items should he take?

Fractional knapsack problem: He can take fraction of an items

He can either take complete 0-1 knapsack problem:

- Fractional knapsack problem can be solved with greedy
 - 0-1 knapsack problem needs Dynamic Programming

$$V(i, w) = max(V(i-1, w), V(i-1, w-w[i]) + P[i])$$

0-1 knapsack problem needs DP

Let knapsack can have 50kg 3 items of wt 10, 20, 30 of price Rs 60, 100 and 120 respectively

\$120

9\$

Thank You!

Thank you very much for your attention! (Reference¹) Queries?

Lecture-06(Jan 29, 2021) 8/8 | 11 Book - Introduction to Algorithm, By THOMAS H. CORMEN, CHARLES E. LEISERSON, RONALD L. RIVEST, CLIFFORD STEIN

CLIFFORD STEIN

Lecture-06(Jan 29, 2021)

M.W.F (3-4PM) online@BITS-Pitni

Lecture-06(Jan 29, 2021)