MA679 Lab1

Notes on h2o installation in R

- 1. H2o official documentation on installation in R: http://docs.h2o.ai/h2o/latest-stable/h2o-docs/downloading.html#install-in-r
- 2. Install JDK link:

version 11 https://www.oracle.com/technetwork/java/javase/downloads/jdk11-downloads-5066655. html

version 13 https://www.oracle.com/technetwork/java/javase/downloads/jdk13-downloads-5672538.html

Notes: If install h2o by using install.packages("h2o"), it doesn't install the latest version of h2o, you need to install JDK 7-12.

If install the latest h2o by install.packages("h2o", type="source", repos=(c("http://h2o-release.s3.amazonaws.com/h2o/latest_stable_R"))), JDK 13.0.2 (2020-01-14) is fine.

Evaluation Model Metrics

Regression

Notations: n denotes sample size, k denotes number of covariates, \hat{L} denotes maximum likelihood.

- R2 (R squared) & Adjusted R2
 - Usage: Goodness of fit.
 - Definition:

$$R^2 = 1 - \frac{RSS}{TSS},$$

$$Adj - R^{2} = 1 - \frac{\frac{RSS}{n - k - 1}}{\frac{TSS}{n - 1}}$$

$$RSS = \sum (y_{i} - \hat{y}_{i})^{2}, \ TSS = \sum (y_{i} - \bar{y})^{2},$$

- Interpretation: An R₂ of 1 indicates that the regression predictions perfectly fit the data.
- Remarks: Adj-R2 is better since it puts penalty on dimension.

• MSE (Mean Squared Error)

- Usage: measures the average of the squares of the errors or deviations.
- Definition:

$$MSE = \frac{1}{n} \sum (y_i - \widehat{y}_i)^2,$$

 Remarks: Sensitivity to outliers: RMSE (root mean squared error)>MSE>MAE (mean absolute error)

AIC & BIC

- Usage: Model selection.
- Definition:

$$AIC = 2k - 2\ln(\hat{L}),$$

$$BIC = \ln(n)k - 2\ln(\hat{L}),$$

- Interpretation:
 - Forward feature selection: choose the feature that after adding it, the AIC/BIC is smallest.
 - Backward feature elimination: eliminate the feature that after eliminating it, the AIC/BIC is largest.
- Remarks: BIC usually gives a smaller set of covariates, since bigger penalty is put on dimension of features when the sample size is large.

Classification

Confusion matrix

		True condition	
	Total population	Condition positive	Condition negative
Predicted	Predicted condition positive	True positive	False positive, Type I error
condition	Predicted condition negative	False negative, Type II error	True negative

Precision, recall, F1 score

- Remarks: With an imbalanced data, use these metrics instead of accuracy.
- Logloss

For logistic regression:

$$logloss = -\frac{1}{n}\sum(y_i \ln(p_i) + (1 - y_i)\ln(1 - p_i))$$

- AUC (Area under ROC curve)
 - TP rate=TP/(TP+FN), FP rate=FP/(FP+TN)

Interpretation: An AUC of 1 indicates a perfect classifier, while an AUC of 0.5 indicates a poor classifier.