CSCI 5525 Homework #2

Noah Hendrickson

Problem #1:

Problem #2:

Eta Vals	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	Std
0.000001	0.0373	0.0438	0.0750	0.0125	0.0750	0.0688	0.0750	0.0625	0.0625	0.1132	0.0625	0.0256
0.00001	0.0186	0.0063	0.0188	0.0063	0.0188	0.0188	0.0188	0.0000	0.0188	0.0377	0.0625	0.0256
0.0001	0.0124	0.0063	0.0188	0.0063	0.0188	0.0125	0.0063	0.0000	0.0063	0.0314	0.0163	0.0098
0.001	0.0124	0.0188	0.0188	0.0063	0.0188	0.0125	0.0125	0.0000	0.0125	0.0314	0.0119	0.0086
0.01	0.0248	0.0125	0.0125	0.0063	0.0188	0.0125	0.0125	0.0000	0.0125	0.0377	0.0150	0.0098

The best eta value was 0.0001 and the resulting error from that run through the training and testing data was 0.005 using zero-one error.

Problem #3:

Problem #3: find grad wit w; (again)
$$f(\omega) = \frac{1}{2} \|\omega\|_{2}^{2} + \left(\sum_{i}^{n} \max(0, 1 - y_{i}(\omega^{T} x_{i} + b)) \right)$$

$$= \frac{1}{2} \sum_{k}^{n} \omega_{k}^{2} + \left(\sum_{i}^{n} \max(0, 1 - y_{i}(\omega^{T} x_{i} + b)) \right)$$
two cases:

hinge loss of 0
$$= \frac{1}{2} \sum_{k}^{n} \omega_{k}^{2} - \frac{\partial}{\partial \omega_{j}} = \omega_{j}^{n} \text{ because all other a values will go}$$

$$= \frac{1}{2} \sum_{k}^{n} \omega_{k}^{2} - \frac{\partial}{\partial \omega_{j}} = \omega_{j}^{n} \text{ to 0 and } \left(\frac{1}{2} \omega_{j}^{n} \right)^{j} = \omega_{j}^{n} \right)$$
hinge loss of $1 - y_{i}(\omega^{T} x_{i} + b)$

$$= \frac{1}{2} \sum_{k}^{n} \omega_{k}^{2} + \left(\sum_{i}^{n} (1 - y_{i}(\omega^{T} x_{i} + b)) \right)$$

$$\frac{\partial}{\partial \omega_{j}} = \omega_{j}^{n} + Cy_{i}^{n} x_{i}^{n}$$
thus, $\frac{\partial}{\partial \omega_{j}} = \omega_{j}^{n} + \sum_{i}^{n} (0, 1 - y_{i}(\omega^{T} x_{i} + b))$

$$\frac{\partial}{\partial \omega_{j}} = \omega_{j}^{n} + Cy_{i}^{n} x_{i}^{n}$$
thus, $\frac{\partial}{\partial \omega_{j}} = \omega_{j}^{n} + \sum_{i}^{n} (0, 1 - y_{i}(\omega^{T} x_{i} + b))$

$$\frac{\partial}{\partial \omega_{j}} = \omega_{j}^{n} + Cy_{i}^{n} x_{i}^{n}$$
thus, $\frac{\partial}{\partial \omega_{j}} = \omega_{j}^{n} + \sum_{i}^{n} (0, 1 - y_{i}(\omega^{T} x_{i} + b))$

$$\frac{\partial}{\partial \omega_{j}} = \omega_{j}^{n} + Cy_{i}^{n} x_{i}^{n}$$
Thus, $\frac{\partial}{\partial \omega_{j}} = \omega_{j}^{n} + \sum_{i}^{n} (0, 1 - y_{i}(\omega^{T} x_{i} + b))$

$$\frac{\partial}{\partial \omega_{j}} = \omega_{j}^{n} + Cy_{i}^{n} x_{i}^{n}$$
Thus, $\frac{\partial}{\partial \omega_{j}} = \omega_{j}^{n} + \sum_{i}^{n} (0, 1 - y_{i}(\omega^{T} x_{i} + b))$

$$\frac{\partial}{\partial \omega_{j}} = \omega_{j}^{n} + \sum_{i}^{n} (0, 1 - y_{i}(\omega^{T} x_{i} + b))$$

$$\frac{\partial}{\partial \omega_{j}} = \omega_{j}^{n} + \sum_{i}^{n} (0, 1 - y_{i}(\omega^{T} x_{i} + b))$$
Thus, $\frac{\partial}{\partial \omega_{j}} = \omega_{j}^{n} + \sum_{i}^{n} (0, 1 - y_{i}(\omega^{T} x_{i} + b))$
Thus, $\frac{\partial}{\partial \omega_{j}} = \omega_{j}^{n} + \sum_{i}^{n} (0, 1 - y_{i}(\omega^{T} x_{i} + b))$
Thus, $\frac{\partial}{\partial \omega_{j}} = 0$

Problem #4:

Eta Vala	C	Fold 1	Fold 2	Fold 3	Eald 1	Fold 5	Eald 6	Cold 7	Fold 8	Fold 9	Fold 10	Maan	Ctddov
Eta Vals	Vals	roid i	roiu z	roid 3	FOIG 4	roid 5	roia 6	Fold 7	roid o	roid 9	roid iu	Mean	Stddev
0.00001	0.01	0.0186	0.1625	0.3813	0.0313	0.0938	0.0313	0.4688	0.0625	0.0813	0.4340	0.1765	0.1702
0.00001	0.1	0.0745	0.1313	0.1375	0.0500	0.0938	0.0750	0.1313	0.1000	0.0875	0.1761	0.1057	0.0358
0.00001	1	0.0124	0.0063	0.0188	0.0063	0.0188	0.0188	0.0125	0.0000	0.0125	0.0314	0.0138	0.0083
0.00001	10	0.0124	0.0063	0.0188	0.0063	0.0188	0.0125	0.0125	0.0000	0.0063	0.0314	0.0125	0.0084
0.00001	100	0.0124	0.0125	0.0188	0.0063	0.0125	0.0125	0.0125	0.0000	0.0125	0.0314	0.0131	0.0077
0.0001	0.01	0.4596	0.1250	0.5625	0.5563	0.4938	0.5688	0.5938	0.5188	0.1813	0.5723	0.4632	0.1602
0.0001	0.1	0.0186	0.0063	0.0313	0.0063	0.0188	0.0125	0.0438	0.0188	0.0125	0.0629	0.0232	0.0171
0.0001	1	0.0373	0.0313	0.0250	0.0188	0.0625	0.0688	0.0250	0.0188	0.0313	0.0377	0.0356	0.0163
0.0001	10	0.3292	0.0188	0.0188	0.1188	0.0188	0.0125	0.0188	0.4313	0.0125	0.0314	0.1011	0.1446
0.0001	100	0.0124	0.4938	0.3750	0.0063	0.0125	0.0125	0.0188	0.4375	0.0125	0.0377	0.1419	0.1941
0.001	0.01	0.5466	0.1438	0.5625	0.5563	0.5438	0.5688	0.5938	0.5188	0.5313	0.5723	0.5138	0.1250
0.001	0.1	0.5466	0.5125	0.4438	0.5563	0.5438	0.5688	0.4063	0.4813	0.5313	0.4277	0.5018	0.0553
0.001	1	0.5528	0.5250	0.4375	0.5563	0.5500	0.5688	0.4125	0.4938	0.5375	0.4403	0.5074	0.0546
0.001	10	0.5528	0.5250	0.4438	0.5563	0.5500	0.5688	0.4063	0.4938	0.5375	0.4403	0.5074	0.0550
0.001	100	0.5528	0.5250	0.4438	0.5563	0.5500	0.5688	0.4125	0.4938	0.5375	0.4403	0.5081	0.0538

The best eta and C value pair from this set was eta = 1e-5 and C = 10. Running a SVM with those values on the test and train data, we get an error rate of 0.005 using zero-one error.