Unsupervised Learning - K-mean Clustering

Abhirup Sen

11/06/2021

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

```
set.seed(256)
# Load iris dataset into a new variable iris2
data(iris)
str(iris)

## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1 1 1 1 1 ...
#Remove the initial label of Species from original dataset
iris2 <- iris[,-5]
iris2</pre>
```

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
##	1	5.1	3.5	1.4	0.2
##	2	4.9	3.0	1.4	0.2
##	3	4.7	3.2	1.3	0.2
##	4	4.6	3.1	1.5	0.2
##	5	5.0	3.6	1.4	0.2
##	6	5.4	3.9	1.7	0.4
##	7	4.6	3.4	1.4	0.3
##	8	5.0	3.4	1.5	0.2
##	9	4.4	2.9	1.4	0.2
##	10	4.9	3.1	1.5	0.1
##	11	5.4	3.7	1.5	0.2
##	12	4.8	3.4	1.6	0.2
##	13	4.8	3.0	1.4	0.1
##	14	4.3	3.0	1.1	0.1
##	15	5.8	4.0	1.2	0.2
##	16	5.7	4.4	1.5	0.4

##	17	5.4	3.9	1.3	0.4
##	18	5.1	3.5	1.4	0.3
##	19	5.7	3.8	1.7	0.3
##	20	5.1	3.8	1.5	0.3
##	21	5.4	3.4	1.7	0.2
##	22	5.1	3.7	1.5	0.4
##	23	4.6	3.6	1.0	0.2
##	24	5.1	3.3	1.7	0.5
##	25	4.8	3.4	1.9	0.2
##	26	5.0	3.0	1.6	0.2
##	27	5.0	3.4	1.6	0.4
##	28	5.2	3.5	1.5	0.2
##	29	5.2	3.4	1.4	0.2
##	30	4.7	3.2	1.6	0.2
##	31	4.8	3.1	1.6	0.2
##	32	5.4	3.4	1.5	0.4
##	33	5.2	4.1	1.5	0.1
##	34	5.5	4.2	1.4	0.2
##	35	4.9	3.1	1.5	0.2
##	36	5.0	3.2	1.2	0.2
##	37	5.5	3.5	1.3	0.2
##	38	4.9	3.6	1.4	0.1
##	39	4.4	3.0	1.3	0.2
##	40	5.1	3.4	1.5	0.2
##	41	5.0	3.5	1.3	0.3
##	42	4.5	2.3	1.3	0.3
##	43	4.4	3.2	1.3	0.2
##	44	5.0	3.5	1.6	0.6
##	45	5.1	3.8	1.9	0.4
##	46	4.8	3.0	1.4	0.3
##	47	5.1	3.8	1.6	0.2
##	48	4.6	3.2	1.4	0.2
##	49	5.3	3.7	1.5	0.2
##	50	5.0	3.3	1.4	0.2
##	51	7.0	3.2	4.7	1.4
##	52	6.4	3.2	4.5	1.5
##		6.9	3.1	4.9	1.5
##	54	5.5	2.3	4.0	1.3
##	55	6.5	2.8	4.6	1.5
##	56	5.7	2.8	4.5	1.3
##	57	6.3	3.3	4.7	1.6
##	58	4.9	2.4	3.3	1.0
##	59	6.6	2.9	4.6	1.3
##	60	5.2	2.7	3.9	1.4
##	61	5.0	2.0	3.5	1.0
##	62	5.9	3.0	4.2	1.5
##	63	6.0	2.2	4.0	1.0
##	64	6.1	2.9	4.7	1.4
##	65	5.6	2.9	3.6	1.3
##	66	6.7	3.1	4.4	1.4
##	67	5.6	3.0	4.4	1.5
##	68	5.8	2.7	4.5	1.0
##	69	6.2	2.7	4.1	1.5
	70	5.6	2.5	3.9	
##	10	0.0	۷. ن	J. J	1.1

##	71	5.9	3.2	4.8	1.8
##	72	6.1	2.8	4.0	1.3
##	73	6.3	2.5	4.9	1.5
##	74	6.1	2.8	4.7	1.2
##	75	6.4	2.9	4.3	1.3
##	76	6.6	3.0	4.4	1.4
##	77	6.8	2.8	4.8	1.4
	78	6.7	3.0	5.0	1.7
	79	6.0	2.9	4.5	1.5
	80	5.7	2.6	3.5	1.0
	81	5.5	2.4	3.8	1.1
##		5.5	2.4	3.7	1.0
##		5.8	2.7	3.9	1.2
##		6.0	2.7	5.1	1.6
	85	5.4	3.0	4.5	1.5
		6.0		4.5	
	86		3.4		1.6
	87	6.7	3.1	4.7	1.5
##		6.3	2.3	4.4	1.3
##		5.6	3.0	4.1	1.3
##		5.5	2.5	4.0	1.3
##		5.5	2.6	4.4	1.2
##		6.1	3.0	4.6	1.4
##		5.8	2.6	4.0	1.2
##		5.0	2.3	3.3	1.0
##		5.6	2.7	4.2	1.3
	96	5.7	3.0	4.2	1.2
	97	5.7	2.9	4.2	1.3
	98	6.2	2.9	4.3	1.3
	99	5.1	2.5	3.0	1.1
##	100	5.7	2.8	4.1	1.3
##	101	6.3	3.3	6.0	2.5
##	102	5.8	2.7	5.1	1.9
##	103	7.1	3.0	5.9	2.1
##	104	6.3	2.9	5.6	1.8
##	105	6.5	3.0	5.8	2.2
##	106	7.6	3.0	6.6	2.1
##	107	4.9	2.5	4.5	1.7
##	108	7.3	2.9	6.3	1.8
##	109	6.7	2.5	5.8	1.8
##	110	7.2	3.6	6.1	2.5
##	111	6.5	3.2	5.1	2.0
##	112	6.4	2.7	5.3	1.9
##	113	6.8	3.0	5.5	2.1
##	114	5.7	2.5	5.0	2.0
##	115	5.8	2.8	5.1	2.4
##	116	6.4	3.2	5.3	2.3
##	117	6.5	3.0	5.5	1.8
##	118	7.7	3.8	6.7	2.2
##	119	7.7	2.6	6.9	2.3
##	120	6.0	2.2	5.0	1.5
##	121	6.9	3.2	5.7	2.3
##	122	5.6	2.8	4.9	2.0
##	123	7.7	2.8	6.7	2.0
##	124	6.3	2.7	4.9	1.8

```
## 125
                6.7
                                         5.7
                            3.3
                                                     2.1
## 126
                7.2
                            3.2
                                         6.0
                                                     1.8
## 127
                6.2
                            2.8
                                         4.8
                                                     1.8
## 128
                6.1
                            3.0
                                         4.9
                                                     1.8
## 129
                6.4
                            2.8
                                         5.6
                                                     2.1
## 130
                7.2
                            3.0
                                         5.8
                                                     1.6
## 131
                7.4
                            2.8
                                         6.1
                                                     1.9
## 132
                7.9
                            3.8
                                         6.4
                                                     2.0
## 133
                6.4
                            2.8
                                         5.6
                                                     2.2
## 134
                6.3
                                         5.1
                            2.8
                                                     1.5
## 135
                6.1
                            2.6
                                         5.6
                                                     1.4
## 136
                7.7
                                                     2.3
                            3.0
                                         6.1
## 137
                6.3
                            3.4
                                         5.6
                                                     2.4
## 138
                                         5.5
                6.4
                            3.1
                                                     1.8
## 139
                6.0
                            3.0
                                         4.8
                                                     1.8
## 140
                6.9
                            3.1
                                         5.4
                                                     2.1
## 141
                6.7
                            3.1
                                         5.6
                                                     2.4
## 142
                6.9
                            3.1
                                         5.1
                                                     2.3
## 143
               5.8
                            2.7
                                         5.1
                                                     1.9
## 144
                6.8
                            3.2
                                         5.9
                                                     2.3
## 145
               6.7
                            3.3
                                         5.7
                                                     2.5
## 146
               6.7
                            3.0
                                         5.2
                                                     2.3
## 147
                            2.5
                6.3
                                         5.0
                                                     1.9
## 148
                6.5
                            3.0
                                         5.2
                                                     2.0
## 149
                6.2
                                                     2.3
                            3.4
                                         5.4
## 150
               5.9
                            3.0
                                         5.1
                                                     1.8
```

Apply K-mean clustering to understand the Species from other attributes ?kmeans

```
## starting httpd help server ... done
```

```
kmeans.result <- kmeans(iris2, centers = 3, nstart = 20)
kmeans.result</pre>
```

```
## K-means clustering with 3 clusters of sizes 50, 38, 62
## Cluster means:
  Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1
    5.006000
           3.428000
                 1.462000
                         0.246000
## 2
    6.850000
           3.073684
                  5.742105
                         2.071053
## 3
           2.748387
    5.901613
                  4.393548
                         1.433871
##
## Clustering vector:
  ## [149] 2 3
##
## Within cluster sum of squares by cluster:
## [1] 15.15100 23.87947 39.82097
## (between_SS / total_SS = 88.4 %)
```

```
##
## Available components:
##
## [1] "cluster"
             "centers"
                      "totss"
                                        "tot.withinss"
                               "withinss"
## [6] "betweenss"
             "size"
                      "iter"
                               "ifault"
# See the cluster identification for each observation
kmeans.result$cluster
##
   ## [149] 2 3
# Compare with original label
table(iris$Species, kmeans.result$cluster)
##
##
            2
         50
            0
##
   setosa
##
          0
           2 48
   versicolor
##
   virginica
          0 36 14
# Visualizing and interpreting results of k-means()
plot(iris2[c("Sepal.Length", "Sepal.Width")])
```


plot(iris2[c("Sepal.Length", "Sepal.Width")], col = kmeans.result\$cluster, main = "K-Means with 3 clust

K-Means with 3 clusters


```
# plot cluster centers
kmeans.result$centers
     Sepal.Length Sepal.Width Petal.Length Petal.Width
##
## 1
         5.006000
                     3.428000
                                   1.462000
                                               0.246000
## 2
         6.850000
                     3.073684
                                   5.742105
                                               2.071053
## 3
         5.901613
                      2.748387
                                   4.393548
                                               1.433871
kmeans.result$centers[,c("Sepal.Length", "Sepal.Width")]
     Sepal.Length Sepal.Width
## 1
         5.006000
                     3.428000
## 2
         6.850000
                      3.073684
## 3
         5.901613
                     2.748387
#points(kmeans.result$centers[,c("Sepal.Length", "Sepal.Width")], col = 1:3,pch = 8, cex=3)
```

```
shade = TRUE,
color = TRUE,
labels = 2,
plotchar = FALSE,
span = TRUE,
main = paste('Clusters of iris'),
xlab = 'Sepal.Length',
ylab = 'Sepal.Width')
```

Clusters of iris

These two components explain 100 % of the point variability.

```
type = "b",
main = paste('The Elbow Method'),
xlab = "Number of Clusters",
ylab = "WCSS")
```

The Elbow Method

Set k equal to the number of clusters corresponding to the elbow location
k <-3

Fitting K-Means to the dataset
set.seed(29)
kmeans.result <- kmeans(iris2, centers = 3, nstart = 20)
y_kmeans = kmeans.result\$cluster</pre>