Concepts for operating ground based rescue robots using virtual reality

Bachelor thesis by Jingyi Jia Date of submission: June 22, 2021

1. Review: Prof. Dr. Max Mühlhäuser

2. Review: Julius von Willich

Darmstadt

Computer Science Department Telekooperation

Prof. Dr. Max Mühlhäuser

Erklärung zur Abschlussarbeit gemäß §22 Abs. 7 und §23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Jingyi Jia, die vorliegende Bachelorarbeit ohne Hilfe Dritter und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Fall eines Plagiats (§38 Abs. 2 APB) ein Täuschungsversuch vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte elektronische Fassung gemäß §23 Abs. 7 APB überein.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische Fassung dem vorgestellten Modell und den vorgelegten Plänen.

Darmstadt, 22. Juni 2021	
,	Jingyi Jia

Contents

1	Abstract	4
2	Introduction	5
3	Related Work	6
4	Implementation 4.1 Overview 4.2 System Architecture 4.3 Interaction techniques 4.3.1 Handle Mode 4.3.2 Lab Mode 4.3.3 Remote Mode 4.3.4 UI Mode 4.4 Test Scene	7 7 7 7 7
5	Evaluation of User Experience	8
6	Conclusion	g

1 Abstract

2 Introduction

In recent years, natural disasters such as earthquakes, tsunamis and potential nuclear, chemical, biological and explosives have seriously threatened the safety of human life and property. While the number of various disasters has increased, their severity, diversity and complexity have also gradually increased. The 72h after a disaster is the golden rescue time, but the unstructured environment of the disaster site makes it difficult for rescuers to work quickly, efficiently and safely.

Rescue robots have the advantages of high mobility and handling breaking capacity, can work continuously to improve the efficiency of search and rescue, and can achieve the detection of graph, sound, gas and temperature within the ruins by carrying a variety of sensors, etc. Moreover, the robot rescue can assist or replace the rescuers to avoid the injuries caused by the secondary collapse and reduce the risk of rescuers. Therefore, rescue robots have become an important development direction.

In fact, rescue robots have been put to use in a number of disaster scenarios. The Center for Robot-Assisted Search and Rescue (CRASAR) used rescue robots for Urban Search and Rescue (USAR) task during the World Trade Center collapse in 2001 [1] and has employed rescue robots at multiple disaster sites in the years since to assist in finding survivors, inspecting buildings and scouting the site environment etc [2]. Anchor Diver III was utilized as underwater support to search for bodies drowned at sea after the 2011 Tohoku Earthquake and Tsunami [3].

Considering the training time and space constraints for rescuers [4], and the goal of efficiency and fluency collaboration [5], the appropriate human-robot interaction approach deserves to be investigated. Some of the existing human-computer interaction methods are Android software [6] [7], gesture recognition[8] [9] [10], facial voice recognition [11], adopting eye movements [12], Augmented Reality(AR)[13] and Virtual Reality(VR), etc.

5

3 Related Work

4 Implementation

4.1 Overview	
4.2 System Architecture	
4.3 Interaction techniques	
4.3.1 Handle Mode	
4.3.2 Lab Mode	
4.3.3 Remote Mode	
4.3.4 UI Mode	
1 1 Test Scene	

5 Evaluation of User Experience

6 Conclusion

Bibliography

- [1] J. Casper and R. R. Murphy. "Human-robot interactions during the robot-assisted urban search and rescue response at the World Trade Center". In: *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)* 33.3 (2003), pp. 367–385. DOI: 10.1109/TSMCB.2003.811794.
- [2] R. R. Murphy. "A decade of rescue robots". In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2012, pp. 5448–5449. ISBN: 2153-0866. DOI: 10.1109/IROS.2012.6386301.
- [3] Ya-Wen Huang et al. "Operation of underwater rescue robot anchor diver III during the 2011 Tohoku Earthquake and Tsunami". In: *OCEANS'11 MTS/IEEE KONA*. 2011, pp. 1–6. ISBN: 0197-7385. DOI: 10.23919/0CEANS.2011.6107198.
- [4] R. R. Murphy. "Human-robot interaction in rescue robotics". In: *IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)* 34.2 (2004), pp. 138–153. DOI: 10.1109/TSMCC. 2004.826267.
- [5] Guy Hoffman and Cynthia Breazeal. "Effects of Anticipatory Action on Human-Robot Teamwork Efficiency, Fluency, and Perception of Team". In: *Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction*. HRI '07. Arlington, Virginia, USA: Association for Computing Machinery, 2007, pp. 1–8. ISBN: 9781595936172. DOI: 10.1145/1228716.1228718. URL: https://doi.org/10.1145/1228716.1228718.
- [6] S. Sarkar et al. "Earthquake rescue robot: A purview to life". In: 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT). 2017, pp. 1–7. DOI: 10.1109/ICECCT.2017.8118044.
- [7] F. Faisal and S. A. Hossain. "DOORMOR: A Functional Prototype of a Manual Search and Rescue Robot". In: 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT). 2019, pp. 1–6. DOI: 10.1109/ICASERT.2019.8934515.
- [8] Patrick Sousa et al. *Human-Robot Interaction Based on Gestures for Service Robots*. Vol. 27. Oct. 2017, pp. 700–709. ISBN: 978-3-319-68194-8. DOI: 10.1007/978-3-319-68195-5{_}76.
- [9] Alessandro Giusti et al. "Human-Swarm Interaction through Distributed Cooperative Gesture Recognition". In: *Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction*. HRI '12. Boston, Massachusetts, USA: Association for Computing Machinery, 2012, pp. 401–402. ISBN: 9781450310635. DOI: 10.1145/2157689.2157818. URL: https://doi.org/10.1145/2157689.2157818.
- [10] J. Nagi et al. "Human-swarm interaction using spatial gestures". In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2014, pp. 3834–3841. ISBN: 2153-0866. DOI: 10.1109/IROS.2014.6943101.
- [11] S. Pourmehr et al. ""You two! Take off!": Creating, modifying and commanding groups of robots using face engagement and indirect speech in voice commands". In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2013, pp. 137–142. ISBN: 2153-0866. DOI: 10.1109/IROS.2013. 6696344.

10

- [12] J. Ma et al. "A Novel EOG/EEG Hybrid Human–Machine Interface Adopting Eye Movements and ERPs: Application to Robot Control". In: *IEEE Transactions on Biomedical Engineering* 62.3 (2015), pp. 876–889. DOI: 10.1109/TBME.2014.2369483.
- [13] João Soares, Alberto Vale, and Rodrigo Ventura. "A Multi-purpose Rescue Vehicle and a human-robot interface architecture for remote assistance in ITER". In: Fusion Engineering and Design 98-99 (2015). Proceedings of the 28th Symposium On Fusion Technology (SOFT-28), pp. 1656–1659. ISSN: 0920-3796. DOI: https://doi.org/10.1016/j.fusengdes.2015.06.148. URL: https://www.sciencedirect.com/science/article/pii/S092037961530199X.