

Detailed Course 2.0 on Function of One and Several Variable - IIT JAM, 23

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Detailed Course on Group Theory For CSIR NET 2023

Gajendra Purohit

November 3

Enroll Now

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

Save up to 20% on your IIT JAM Subscriptions!*

Now available at the lowest prices!*

Plus

Duration	Current Price	Price Drop	What you Pay	What you save
3 Months	₹ 6,807	₹ 1,361	₹ 5,446	20%

Subscribe Now

Use code GPSIR Call 8585858585 for more details

^{*}T&C apply, as available on the platform.

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Riemann Integration

Interval:

- (1) Open Interval: Let $S \subseteq R$ and $S = \{x \mid a < x < b \}$. It is denoted by (a, b)
- (2) Closed Interval: Let $S \subseteq R$ and $S = \{x \mid a \le x \le b\}$. It is denoted by [a, b]

Partition:

Let [a, b] be a closed and bounded interval. A partition of [a, b] is a finite order set $P = \{a = x_0, x_1, \dots, x_r, x_n = b \mid x_0 < x_1 < \dots < x_n\}$

Subinterval: Let P be a partition of [a, b], then $[x_0, x_1]$, $[x_1, x_2]$, $[x_{n-1}, x_n]$ are called subinterval.

Norm of partition :

Let the greatest length of subinterval $[x_{r-1}, x_r]$ partition P is called norm of partition P and denoted by ||P||.

Refinement of partition:

Let P_1 and P_2 are two partition of [a, b] s.t. $P_1 \subset P_2$, then P_2 is called refinement of partition P_1 .

Note: Let P_1 and P_2 are two partition of [a,b] then $P_1 \cup P_2$ is called a common refinement of P_1 & P_2 .

Supremum and infimum of a function:

Let f(x) be a function defined on [a, b] then supremum of function is subinterval $[x_{r-1}, x_r]$ is maxi mum value of function in $[x_{r-1}, x_r]$

Similarly infimum of this function in $[x_{r-1}, x_r]$ is minimum value of this function in $[x_{r-1}, x_r]$

(i) Upper Riemann sum:

Let M_r is supremum of function in $[x_{r-1}, x_r]$

And Δx_r is length of interval $[x_{r-1}, x_r]$, then

$$U(P,f)=\sum_{r=1}^{n} Mr\Delta xr = M_1\Delta x_1 + M_2\Delta x_2 + \dots M_n\Delta x_n$$

(ii) Lower Reimann Sum :

Let mr is infimum of function in $[x_{r-1}, x_r]$, then

$$L(p, f) = m_1 \Delta x_1 + m_2 \Delta x_2 + \dots + m_n \Delta x_n$$

$$L(P,f)=\sum_{r=1}^{n} mr\Delta xr$$

is called lower Riemann sum.

Upper and Lower integral:

- (i) Upper integral: The infimum of the set of the upper sup U(P, f) is called upper integral of f over [a, b] and is denoted by $\int_a^b f(x)dx$
 - i.e. $\int_a^b f(x)dx = \inf\{U(P,f): P \text{ is a partition of } [a, b]\}.$
- (ii) Lower integral: The supremum of the set of the upper sum U(P, f) is called upper integral of f over [a, b] and is denoted by $\int_a^b f(x)dx$
 - b] and is denoted by $\int_a^b f(x)dx$ i.e. $\int_{\underline{a}}^b f(x)dx = \sup \{L(P, f) : P \text{ is a partition of } [a, b]\}.$

Riemann integration:

A function is Riemann integration if

$$\int_{\underline{a}}^{b} f(x) dx \neq \int_{a}^{\overline{b}} f(x) dx$$

Q.1. Let $f(x) = x^3$ is defined on [0, a], then

(a)
$$\int_0^a f(x) dx = \frac{a^4}{3}$$

(b)
$$\int_{\underline{0}}^{a} f(x) dx = \frac{a^4}{4}$$

(c)
$$\int_0^{\overline{a}} f(x) dx = \frac{a^3}{4}$$

(d)
$$\int_0^{\overline{a}} f(x) dx = a^4$$

Q.2. Function f: [0, 1] $\to R$ s.t. $f(x) = \begin{cases} 0 & x \in Q^c \\ 1 & x \in Q \end{cases}$

Then

- (a) f is R.I.
- (c) $\int_0^1 f(x) dx = 1$

- (b) fis not R.I.
- (d) None of these

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Q.3. Define f on [0, 1] by $f(x) = \begin{cases} x^2 & \text{if } x \text{ is rational} \\ x^3 & \text{if } x \text{ is irrational} \end{cases}$

Then, CSIR NET JUNE 2016

- (a) f is not Riemann integrable on [0, 1]
- (b) f is Riemann integrable and $\int_0^1 f(x) dx = \frac{1}{4}$.
- (c) f is Riemann integrable and $\int_0^1 f(x) dx = \frac{1}{3}$.
- (d) $\frac{1}{4} = \int_{\underline{0}}^{1} f(x) dx < \int_{0}^{\overline{1}} f(x) dx = \frac{1}{3}$ where $\int_{\underline{0}}^{1} f(x) dx$ and $\int_{\underline{0}}^{\overline{1}} f(x) dx$ are the lower and upper Riemann integrals of f.

Q.4. Consider the identity function f(x) = x on I := [0, 1].

Let P_n be the partition that divides I into n equal parts. If $U(f, P_n)$ and $L(f, P_n)$ are the upper and lower Riemann sums, respectively,& $A_n = U(f, P_n) - L(f, P_n)$ then CSIR NET NOV 2020

(a)
$$\lim_{n\to\infty} nA_n = 0$$

(b)
$$\sum_{n=1}^{\infty} A_n$$
 is convergent

(c) An is strictly monotonically decreasing.

(d)
$$\sum_{n=1}^{\infty} A_n A_{n+1} = 1$$

Q.5. Define a function
$$[0, \pi/2] \rightarrow \mathbb{R}$$
 by $g(x) = \begin{cases} \cos^2 x & \text{if } x \in Q \\ 0 & \text{otherwise} \end{cases}$. Then

- (a) The lower integral, $\int_{-0}^{\pi/2} g = 1$.
- (b) The lower integral, $\int_{-0}^{\pi/2} g = 0.$
- (c) The lower integral $\int_{-0}^{\pi/2} g = \frac{1}{2}$.
- (d) None of these

Q.6. If $f(x) = x^2$ on I = [0, 1] then find the value of lower Reimann Integral?

(a)
$$(n+1)(n-1)$$

(b)
$$(n+1)(n-1)^2$$

(c)
$$\frac{(n-1)(2n-1)}{6n^2}$$

(d)
$$\frac{(n-2)(2n-1)}{n^2}$$

Detailed Course on Group Theory For CSIR NET 2023

Gajendra Purohit

November 3

Enroll Now

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 • 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR