

Introducción a la Ingeniería Electrónica (86.02)

Circuitos básicos

Repaso

Divisor de tensión

Principio de superposición

Sistema

Sistema

Supongamos un sistema de tres entradas y una salida

Sistema

¿Qué sucede si sólo aplicamos una entrada a la vez?

Sistema

¿Qué sucede si sólo aplicamos una entrada a la vez?

Sistema

¿Qué sucede si sólo aplicamos una entrada a la vez?

Sistema

¿Podríamos obtener la salida total como una función de las salidas parciales?

$$Y = Y|_{X1}$$

$$Y|_{X2}$$

$$Y|_{X3}$$

Sistema

¿Podríamos obtener la salida total como una función de las salidas parciales?

$$SI$$

$$Y = Y|_{X1} + Y|_{X2} + Y|_{X3}$$

Sistema

¿Podríamos obtener la salida total como una función de las salidas parciales?

$$Y = Y|_{X1} + Y|_{X2} + Y|_{X3}$$

pero...

¿Cuándo es posible aplicar esto?

Sistema

Sólo cuando el sistema es "LINEAL"

Sistema

Sólo cuando el sistema es "LINEAL"

$$Y = Y|_{X1} + Y|_{X2} + Y|_{X3}$$

Sistema

Sólo cuando el sistema es "LINEAL"

$$Y = Y|_{X1} + Y|_{X2} + Y|_{X3}$$

Se cumple el

Principio de superposición

Principio de superposición

Principio de superposición

Establece que el efecto que producen dos o más entradas sobre un sistema lineal es igual a la suma de los efectos que produce cada entrada por separado

Principio de superposición

¿Para qué sirve?

Principio de superposición

¿Para qué sirve?

Permite resolver un problema complejo como la suma de varios problemas sencillos

Principio de superposición

¿Para qué sirve?

Permite resolver un problema complejo como la suma de varios problemas sencillos

¿Cuándo es posible aplicarlo?

Principio de superposición

¿Para qué sirve?

Permite resolver un problema complejo como la suma de varios problemas sencillos

¿Cuándo es posible aplicarlo?

Cuando el problema está modelado como un sistema lineal en términos de las variables que lo conforman

Principio de superposición

Superposición en circuitos eléctricos

```
V1=20 V ; V2= 5 V ;
R1= 3,6 kΩ ; R2= 1,8 kΩ ; R3= 3,6 kΩ
```


Circuito con dos fuentes

Sistema

VR1 = I1 R1

VR2 = I2 R2

VR3 = I3 R3

I1 = I2 + I3

V1 - VR1 - VR3 = 0

VR3 - VR2 - V2 = 0

Incógnitas (salidas)

VR1 VR2 VR3 I1 I2 I3

Datos (entradas)

V1 V2

Circuito con dos fuentes

Sistema

VR1 = I1 R1

VR2 = I2 R2

VR3 = I3 R3

I1 + I2 = I3

V1 - VR1 - VR3 = 0

VR3 + VR2 - V2 = 0

Incógnitas (salidas)

VR1 VR2 VR3 I1 I2 I3

Datos (entradas)

V1 V2

¿Podemos aplicar el principio de superposición?

Incógnitas (salidas)

VR1 VR2 VR3 I1 I2 I3

Datos (entradas) V1 V2

Circuit

¿Podemos aplicar el principio de superposición?

SÍ, porque es un sistema lineal (leyes de Kirchhoff y Ohm son lineales)

Incógnitas (salidas)

VR1 VR2 VR3 I1 I2 I3

Datos (entradas)

V1 V2

Queremos hallar:

$$VA = VA|_{V1} + VA|_{V2}$$

Queremos hallar:

$$VA = VA|_{V1} + VA|_{V2}$$

¿Cómo calculamos VA|_{V1} y VA|_{V2}?

Método

- Pasivamos V2 y calculamos VA|_{V1}
- Pasivamos V1 y calculamos VA|_{v2}

- Pasivamos V2 y calculamos VA|_{V1}
- Pasivamos V1 y calculamos VA|_{v2}

¿Qué significa pasivar una fuente de tensión?

Método

¿Qué significa pasivar una fuente de tensión?

¿Qué significa pasivar una fuente de tensión?

Anular el efecto de la fuente haciendo que su valor sea cero

$$= \frac{1}{T} V2 = 0V$$

Ahora apliquemos el método...

- 1. Pasivamos V2 (=0V)
- 2. Calculamos VA|_{V1}

- 1. Pasivamos V2 (=0V)
- 2. Calculamos VA|_{V1}

- 1. Pasivamos V2 (=0V)
- 2. Calculamos VA|_{V1}

- 1. Pasivamos V2 (=0V)
- 2. Calculamos VA|_{V1}

- 1. Pasivamos V2 (=0V)
- 2. Calculamos VA|_{V1}

- 1. Pasivamos V2 (=0V)
- 2. Calculamos VA_{V1}

Método

- 1. Pasivamos V2 (=0V)
- 2. Calculamos $VA|_{V1}$

$$Req = R2//R3$$

Resistencia equivalente en paralelo

- 1. Pasivamos V2 (=0V)
- 2. Calculamos VA|_{V1}

- 1. Pasivamos V2 (=0V)
- 2. Calculamos VA|_{V1}

Método

$VA|_{V1}$

Divisor de tensión

$$VA|_{v_1} = \frac{Req}{Req + R1}V1$$

- 1. Pasivamos V2 (=0V)
- 2. Calculamos VA|_{V1}

Reemplazamos la Req

$$VA|_{v_1} = \frac{R2//R3}{R2//R3 + R1}V1$$

- 1. Pasivamos V1 (=0V)
- 2. Calculamos VA_{V2}

- 1. Pasivamos V1 (=0V)
- 2. Calculamos VA_{V2}

- 1. Pasivamos V1 (=0V)
- 2. Calculamos VA_{V2}

- 1. Pasivamos V1 (=0V)
- 2. Calculamos VA_{V2}

- 1. Pasivamos V1 (=0V)
- 2. Calculamos VA_{V2}

Método

- Pasivamos V1 (=0V)
- Calculamos VA|_{V2}

en paralelo

- 1. Pasivamos V1 (=0V)
- 2. Calculamos VA_{V2}

Método

- 1. Pasivamos V1 (=0V)
- 2. Calculamos $VA|_{V2}$

Divisor de tensión

$$VA|_{v_2} = \frac{Req}{Req + R2}V2$$

Método

- Pasivamos V1 (=0V)
- Calculamos VA|_{V2}

$$VA|_{v_2} = \frac{Req}{Req + R2}V_2$$

Reemplazamos la Reg

$$VA|_{v_2} = \frac{R1//R3}{R1//R3 + R2}V2$$

$$VA = VA|_{v_1} + VA|_{v_2}$$

$$VA = VA|_{v_1} + VA|_{v_2}$$

$$VA|_{v_1} = \frac{R2//R3}{R2//R3 + R1}V1$$

$$VA = VA|_{v_1} + VA|_{v_2}$$

$$VA|_{v_1} = \frac{R2//R3}{R2//R3 + R1}V1$$

$$VA|_{v_2} = \frac{R1//R3}{R1//R3 + R2}V_2$$

Método

$$VA = VA|_{v_1} + VA|_{v_2}$$

$$VA|_{v_1} = \frac{R2//R3}{R2//R3 + R1}V1$$

$$VA|_{v_2} = \frac{R1//R3}{R1//R3 + R2}V2$$

Tensión VA como la suma de los aportes de V1 y V2

$$VA = \frac{R2//R3}{R2//R3 + R1}V1 + \frac{R1//R3}{R1//R3 + R2}V2$$

$$VA = \frac{R2//R3}{R2//R3 + R1}V1 + \frac{R1//R3}{R1//R3 + R2}V2$$

```
V1=20 V ; V2= 5 V ;
R1= 3,6 kΩ ; R2= 1,8 kΩ ; R3= 3,6 kΩ
```


$$VA = \frac{R2//R3}{R2//R3 + R1}V1 + \frac{R1//R3}{R1//R3 + R2}V2$$

$$VA = \frac{1,2 k\Omega}{1,2 k\Omega + 3,6 k\Omega}V1 + \frac{1,8 k\Omega}{1,8 k\Omega + 1,8 k\Omega}V2$$

$$VA = \frac{R2//R3}{R2//R3 + R1}V1 + \frac{R1//R3}{R1//R3 + R2}V2$$

$$VA = \frac{1.2 \text{ k}\Omega}{1.2 \text{ k}\Omega + 3.6 \text{ k}\Omega}V1 + \frac{1.8 \text{ k}\Omega}{1.8 \text{ k}\Omega + 1.8 \text{ k}\Omega}V2$$

$$VA = 0.25 \text{ V}1 + 0.5 \text{ V}2$$

Método

$$VA = \frac{R2//R3}{R2//R3 + R1}V1 + \frac{R1//R3}{R1//R3 + R2}V2$$

$$VA = \frac{1.2 \text{ k}\Omega}{1.2 \text{ k}\Omega + 3.6 \text{ k}\Omega}V1 + \frac{1.8 \text{ k}\Omega}{1.8 \text{ k}\Omega + 1.8 \text{ k}\Omega}V2$$

$$VA = 0.25 \text{ V}1 + 0.5 \text{ V}2$$

VA = 7.5 V

Método

VA = 7.5 V

```
V1=20 V ; V2= 5 V ; 
R1= 3,6 k\Omega ; R2= 1,8 k\Omega ; R3= 3,6 k\Omega
```


$$VA = 7.5 V$$

$$VR3 = VA = 7,5 V$$

V1=20 V ; V2= 5 V ;
R1= 3,6 k
$$\Omega$$
 ; R2= 1,8 k Ω ; R3= 3,6 k Ω

$$VA = 7.5 V$$

$$VR3 = VA = 7,5 V$$

$$VR1 = V1 - VA = 12,5 V$$

$$VA = 7.5 V$$

$$VR3 = VA = 7.5 V$$

$$VR1 = V1 - VA = 12,5 V$$

$$VR2 = VA - V2 = 2,5 V$$

V1=20 V ; V2= 5 V ;
R1= 3,6 k
$$\Omega$$
 ; R2= 1,8 k Ω ; R3= 3,6 k Ω

$$VA = 7.5 V$$

$$VR3 = VA = 7.5 V$$

$$VR1 = V1 - VA = 12,5 V$$

$$VR2 = VA - V2 = 2,5 V$$

$$I3 = VR3/R3 = 2,08 \text{ mA}$$

$$VA = 7.5 V$$

$$VR3 = VA = 7.5 V$$

$$VR1 = V1 - VA = 12,5 V$$

$$VR2 = VA - V2 = 2,5 V$$

$$I3 = VR3/R3 = 2,08 \text{ mA}$$

$$I1 = VR1/R1 = 3,47 \text{ mA}$$

V1=20 V ; V2= 5 V ;
R1= 3,6 k
$$\Omega$$
 ; R2= 1,8 k Ω ; R3= 3,6 k Ω

$$VA = 7.5 V$$

$$VR3 = VA = 7.5 V$$

$$VR1 = V1 - VA = 12,5 V$$

$$VR2 = VA - V2 = 2,5 V$$

$$I3 = VR3/R3 = 2,08 \text{ mA}$$

$$I1 = VR1/R1 = 3,47 \text{ mA}$$

$$I2 = VR2/R2 = 1,39 \text{ mA}$$

Resumen

Método

Buscamos VA|_{V1}

Método

Pasivamos V2

Calculamos resistencia paralelo

Req = R2//R3

Aplicamos el divisor de tensión

$$VA|_{v_1} = \frac{R2//R3}{R2//R3 + R1}V1$$

Método

Buscamos VA|_{V2}

Método

Pasivamos V1

Método

Calculamos resistencia en paralelo

Req = R1//R3

Método

Aplicamos el divisor de tensión

$$VA|_{v_2} = \frac{R1//R3}{R1//R3 + R2}V2$$

Obtenemos la VA final mediante superposición

$$VA = \frac{R2//R3}{R2//R3 + R1}V1 + \frac{R1//R3}{R1//R3 + R2}V2$$

¿Preguntas?