Riemann surfaces and line bundles. X a Riemann surface. $\Omega_{\rm X} =$ the cotangent bundle. Thm: If X is compact and admits a non-constant mer. function, then $\deg\left(\Omega_{x}\right)=29_{x}-2.$ Tautological bundle on IP? let $V \cong \mathbb{C}^{n+1}$ (PV = { Lines in V} \(\text{Y} \quad \{ [X_0:\documents,] | \ai \in \C not $L = \{ (a,v) \mid \alpha \in PV, v \in Line defined by n \}.$ Then $\mathcal{L} \xrightarrow{\pi} PV$, and fibers are lines. Onarts on L: Let Ui C IPV be the set where X; ≠0 Then $\pi^{\dagger}(U_i) = \{ [x_0: \dots; x_n]; \forall \}$ $\stackrel{\sim}{=} \left\{ \left(\frac{20}{x_i}, \dots, \frac{2n}{x_i} ; V_i \right) \right\} \stackrel{\sim}{=} \left(\mathbb{C} \times \mathbb{C} \right)$

Let this be a chart of I. Transition functions.

Let $U_{ij} = {X_i \neq 0}$ and $X_j \neq 0$?

Claim: On
$$P$$
, $deg L = -1$.

PF: L

Wer.

Sec.

 P
 $V_2 \times C \leftarrow \{[a:1], (a, []\}\}$
 $V_2 = C_2 = \{[a:1]\}$

 σ is a holomorphic by non-vanishing section on U_2 . On U_1 .

$$U_{1} = \{ [1:4] \} \xrightarrow{\sigma} \{ [1:4], ([4], ([4], 1) \} \}$$

$$\downarrow 2$$

$$U_{1} \times \mathbb{C}$$

so or has a pole of order 1 at oo.

Notatim:
$$L = O(-1)$$
.
$$O(n) = L^n$$

$$O(1) = L^1 = L^n$$

An element $\lambda \in V$ gives a holomorphic global section of O(1).

$$V = C$$
 $v = C^{n+1}$.
 $V = C^{n+1} = span(i^{th} projection)$.

$$X_i = i^{th}$$
 projection. w) section of $O(1)$.

Xi = Xi & - · · · · · · · · · section of O(d). So hom poly of deg d in $\times 0, \times 0$ section of O(d). Exercise: The map {Hom. poly of deg d in Xo,X,} -> { Global. hol see.} is an iso of vector spaces. (also for IP"). Given a holomorp $\varphi: X \to \mathbb{TP}^n$ we get line bundles $\varphi^* O(n)$ on X. (Aside - recall how to pull back line bundles). Set $L = \varphi^* O(1)$. We also get (n+1) holomorphic sections of 1->X, namely $\sigma_i = \varphi(X_i)$. Conversely, given a line bundle L on X and (nH) sections on, on of L satisfying & we get a hol-morp of X-IP such that $L = \varphi^* O(i)$ & $\sigma_i = \varphi^*(X_i)$ $\varphi: x \mapsto \left[\sigma_{p}(x): \cdots: \sigma_{p}(x)\right]$

Base-point free "

> a \times x \times \sigma_i(a) = 0 \times i.

Guiding goestims of germetry of aly curves (RS.) -
R.S. as abstract \iff R.S. embedded in Pn
(eg. plane curves).
Line bundles By their sections.
C C P smooth plane auve defined by
$F(X_0, X_1, X_2) = 0.$
F homograph degree d . $L = i^* O(i)$.
What is $deg(L)$? Take a section, say $c_0X_0 + c_1X_1 + c_2X_3 = \sigma$ where $C_i \in \mathbb{C}$. Then σ will have exactly d zeros g mult f on X .
80 deg L = d.
Suppose G is a homog. poly of degree C in Xo,X,,X2 not identically O on C
Then $G = section of O(d)$
-) div (G) has degree de. "Bezouts thm."

What is g(C)? [X:Y:Z]

$$C \xrightarrow{\varphi} P^{1}$$
 , $L = O(1)$, X, Y .

Want X, Y not to vanish simult on C ie. [0:0:1] € C.

$$\begin{array}{cccc}
\mathbb{P}^2 & & & & & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & \\
\mathbb{P}^2 & & & & & & & & \\
\mathbb{P}^2 & & & & & & & \\
\mathbb{P}^2 & & & & & & & \\
\mathbb{P}^2 & & & & & & & & \\
\mathbb{P}^2 & & & & & & & \\
\mathbb{P}^2 & & & & & & & \\
\mathbb{P}^2 & & & & & & & \\
\mathbb{P}^2 & & & & & & & \\
\mathbb{P}^2 & & & & & & & \\
\mathbb{P}^2 & & & & & & & \\
\mathbb{P}^2 & & & & & & & \\
\mathbb{P}^2 & & & & & & & \\
\mathbb{P}^2 & & & & & & \\
\mathbb{P}^2 & & & & & & \\
\mathbb{P}^2 & & & & & & & \\
\mathbb{P}^2 & & & & & \\
\mathbb{P}^2 & & & & & & \\
\mathbb{P}^2 & & & & & \\
\mathbb{P}^2 & & & & & \\
\mathbb{P}^2 & & & & & & \\
\mathbb{P}^2 & & & & & & \\
\mathbb{P}^2 & & & & \\
\mathbb{P}^2 & & & & \\
\mathbb{P}^2 & & & & & \\
\mathbb{P}^2$$

Q: What is Ram(q)?

$$C \ni P = [A:B:c] \qquad \text{assume} \quad B \neq 0$$

$$= \begin{bmatrix} A:1:B \end{bmatrix} \in \mathbb{C}^2_{(2,2)}$$

$$= \mathbb{C}^2_{(2,2)}$$

$$C \cap C^{2} \quad \text{def. by} \quad f(x, t) = 0$$

$$\int_{1}^{(x, t)} f(x, t) = F(x, 1, t).$$

$$C \quad \alpha.$$

p is ramified iff
$$\frac{1}{\partial f(\rho)} = 0$$
.

p is ramified iff $\frac{\partial f}{\partial f}(p) = 0$.

$$\underline{\text{More}}: \text{Ord } p(\text{Ram } \phi) = \text{Ord } p \frac{\partial f}{\partial Z} = \text{Ord } p(\frac{\partial F}{\partial Z})$$

So
$$Ram(\varphi) = div(\frac{\partial F}{\partial Z}).$$

Section of $O(d-1)$.

$$\begin{array}{rcl}
40 & 29_c - 2 &=& (-2) \cdot d + d (d-1) \\
&=& d^2 - 3d
\end{array}$$

$$9_{c} = \frac{d^{2}-3d+2}{2}$$

$$9_{c} = \frac{(d-1)(d-2)}{2}$$

- Q.i) Are all compact R.S. of genus (d-1)(d-2)
 Plane curves of degree d?
 - 2) What about R.S. of genus not of this form?
 - 3) What's the "Simplest" way to exhibit a R.S. as a projective curve?