Assessment Schedule – 2023

Calculus: Apply integration methods in solving problems (91579)

Evidence Statement

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
ONE (a)	$= \frac{3x^2}{2} + 2x + \frac{1}{3}\ln(3x+2) + c$	• Correct integral + c not required.		
(b)	$d = \int \sec^2 t dt$ $\Rightarrow d = \tan t + c$ $t = 0 \text{ and } d = 3 \text{ give } 3 = \tan 0 + c$ $\Rightarrow c = 3$ i.e. $d = \tan t + 3$ $t = \frac{\pi}{4} \Rightarrow d = \tan \frac{\pi}{4} + 3$ $d = 1 + 3 = 4 \text{ km}$	Correct solution, with evidence of correct integration.		
(c)	For point of intersection between the two curves, solve $\sqrt{x} = \frac{x^2}{8}$, Giving $x = 0$ and $x = 4$. Area $= \int_0^4 \left(\sqrt{x} - \frac{x^2}{8} \right) dx$ $= \left[\frac{2}{3} x^{\frac{3}{2}} - \frac{x^3}{3 \times 8} \right]_0^4$ $= \left[\frac{16}{3} - \frac{64}{24} \right] - \left[0 \right] = \frac{8}{3} \text{ units}^2$	Correct integral.	Correct solution, with evidence of correct integration.	
(d)	$\frac{dy}{dx} = y(2x - 3x^2)$ Separating the variables gives: $\int \frac{1}{y} dy = \int (2x - 3x^2) dx$ $\ln y = x^2 - x^3 + c \qquad \text{#(1)}$ $x = 2 \text{ and } y = 1 \text{ gives :}$ $\ln 1 = 4 - 8 + c \Rightarrow c = 4$ i.e. $\ln y = x^2 - x^3 + 4$ $x = 1 \Rightarrow \ln y = 1 - 1 + 4$ $\Rightarrow \ln y = 4$ $y = e^4 = 54.6$	• Reaching stage #(1) of the solution.	Correct solution, with evidence of correct integration.	

(e)	Intersection points are (1,3) and (10,0).	 Correct integration of 	Correct evaluation of	E 7
	Area of Triangle A = $\frac{1}{2} \times 1 \times 3 = 1.5$	one of the	Area B and C.	Solution with one minor error.
	2	expressions.		minor error.
	(or by integration)			E 8
	Area of B = $\int_{1}^{10} \sqrt{10 - x} dx$			Correct area, with
	1 1			evidence of correct
	$= \int_{1}^{10} (10 - x)^{\frac{1}{2}} dx$			integrations.
	$= \left[-\frac{2}{3} (10 - x)^{\frac{3}{2}} \right]^{10}$			
	$=-\frac{2}{3}[0-27]=18$			
	Area of C = $\int_0^{10} -\sin\frac{\pi x}{10} dx$			
	$= \left[\frac{10}{\pi} \cos \frac{\pi x}{10}\right]_0^{10}$			
	$ = \frac{10}{\pi} \left[\cos \pi - \cos 0 \right] $			
	$=\frac{10}{\pi}\left[-1-1\right]$			
	$=-\frac{20}{100}$			
	π			
	i.e. Actual area will be $\frac{20}{\pi}$.			
	Total area $1.5 + 18 + \frac{20}{\pi}$			
	=25.866 units ²			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	lr	2r	1t with minor error(s).	1t

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
TWO (a)	$\int 4e^{2x-1} \mathrm{d}x = 2e^{2x-1} + c$	• Correct integral, +c not required.		
(b)	$y = \int (4x+1)^{-\frac{1}{2}} dx$ $y = \frac{1}{4} \frac{(4x+1)^{\frac{1}{2}}}{\frac{1}{2}} + c$ $y = \frac{1}{2} (4x+1)^{\frac{1}{2}} + c$ $x = 6 \text{ and } y = 7.5 \text{ gives:}$ $7.5 = \frac{1}{2} \times 25^{\frac{1}{2}} + c \Rightarrow c = 5$ i.e. $y = \frac{1}{2} (4x+1)^{\frac{1}{2}} + 5$	Correct solution, with evidence of correct integration.		
(c)	$\int_{2}^{k} \left(3 + \frac{6}{2x - 3}\right) dx = 3k$ $\Rightarrow \left[3x + 3\ln(2x - 3)\right]_{2}^{k} = 3k$ $\Rightarrow 3k + 3\ln(2k - 3) - 6 = 3k$ $\Rightarrow 3\ln(2k - 3) = 6$ $\Rightarrow \ln(2k - 3) = 2$ $\Rightarrow 2k - 3 = e^{2}$ $\Rightarrow k = \frac{e^{2} + 3}{2} = 5.1945$	Correct integral.	Correct solution, with evidence of correct integration.	
(d)	$= -\frac{1}{2} \int \frac{-2\cos 2x - 2\sin 2x}{\cos 2x - \sin 2x} dx$ $= -\frac{1}{2} \times \ln(\cos 2x - \sin 2x) + c$	• Integral, but with missing negative sign.	Correct integral.	

(e)	$\frac{\mathrm{d}v}{\mathrm{d}t} = -kv^2$	• Reaching stage #(1) of the	• Finding the value of <i>k</i> , in	E 7 Reaching stage
	$\int \frac{1}{v^2} dv = \int -k dt$	solution.	terms of p . OR	#(2) of the solution.
	$\int_{V^2} dv = \int_{V^2} dv$		Finding the	OR Solution with one
	$\int v^{-2} \mathrm{d}v = \int -k \mathrm{d}t$		value of d, in terms of <i>p</i> .	minor error
	$\frac{v^{-1}}{-1} = -kt + c $ #(1)		terms or p.	E 0
	$\frac{-1}{v} = -kt + c$			E 8 Correct volume of
				chocolate initially,
	$\frac{1}{v} = kt + d$			with evidence of correct
	t = 1 and $v = p$ gives:			integrations.
	$\frac{1}{p} = k + d \qquad \text{eq}(1)$			
	$t = 2$ and $v = \frac{4}{5}p$ gives:			
	J. Control of the con			
	$\frac{1}{\frac{4}{5}p} = 2k + d$			
	$\frac{5}{4p} = 2k + d \qquad \text{eq}(2)$			
	$\operatorname{eq}(2) - \operatorname{eq}(1) \Longrightarrow \frac{5}{4p} - \frac{1}{p} = k$			
	i.e. $k = \frac{1}{4p}$			
	Then eq(1) gives $\frac{1}{p} = \frac{1}{4p} + d$			
	$d = \frac{3}{4p}$			
	i.e. $\frac{1}{v} = \frac{1}{4p}t + \frac{3}{4p}$			
	$t = 0$ gives $\frac{1}{v} = 0 + \frac{3}{4p}$ #(2)			
	i.e. $v = \frac{4}{3}p$			
	i.e. The container had $\frac{4}{3}p$ litres of chocolate			
	initially.			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	1r	2r	1t with minor error(s).	1t

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
THREE (a)	Area $\approx \frac{1}{3} \times 3 \times [10 + 14 + 4(13 + 15) + 2(16)]$ = $1 \times [24 + 112 + 32]$ = 168 m^2 Units not required.	Correct solution.		
(b)	$= \int \left(1 - \frac{3}{x^{\frac{1}{2}}}\right) dx$ $= \int \left(1 - 3x^{-\frac{1}{2}}\right) dx$ $= x - \frac{3x^{\frac{1}{2}}}{\frac{1}{2}} + c$ $= x - 6x^{\frac{1}{2}} + c$	• Correct integral, +c not required.		
(c)	$= \int_0^{\frac{\pi}{3}} 5\sin 3x \sin x dx$ $= \frac{5}{2} \int_0^{\frac{\pi}{3}} 2\sin 3x \sin x dx$ $= \frac{5}{2} \int_0^{\frac{\pi}{3}} \cos 2x - \cos 4x dx$ $= \frac{5}{2} \left[\frac{1}{2} \sin 2x - \frac{1}{4} \sin 4x \right]_0^{\frac{\pi}{3}}$ $= \frac{5}{2} \left[0.6495 - 0 \right]$ $= \frac{5}{2} \times 0.6495$ $= 1.6238 \text{ units}^2 \text{ or } \frac{15\sqrt{3}}{16}$	Correct integral.	Correct area, with evidence of correct integration.	
(d)	$v = \int \frac{e^{2t}}{4e^{2t} - 3} dt$ $v = \frac{1}{8} \int \frac{8e^{2t}}{4e^{2t} - 3} dt$ $v = \frac{1}{8} \ln(4e^{2t} - 3) + c$ $t = 0 \text{ and } v = 5 \text{ gives}$ $5 = \frac{1}{8} \ln 1 + c \Rightarrow c = 5$ i.e. $v = \frac{1}{8} \ln(4e^{2t} - 3) + 5$ $t = 4 \text{ gives}$ $v = 6.1732 \text{ m s}^{-1}$	• Correct equation for v , with evidence of correct integration.	Correct solution, with evidence of correct integration.	

(e)	$\int \frac{1+y}{1-y^2} dy = -\int \frac{1-x}{1-x^2} dx$ $\int \frac{1+y}{(1-y)(1+y)} dy = -\int \frac{1-x}{(1-x)(1+x)} dx$ $\int \frac{1}{(1-y)} dy = -\int \frac{1}{(1+x)} dx$ $-\ln(1-y) = -\ln(1+x) + c $	• Correct integral for either of the two integrals at stage #(1) of the solution.	• Correct solution of the differential equation, i.e. stage #(2) of the solution.	E 7 Solution with one minor error. E 8 Correct solution, with evidence of correct integrations.
	OR Alternative solution from $\#(2)$ onwards			
	$-\ln(1-y) = -\ln(1+x) + 1.09863$ $\ln(1-y) = \ln(1+x) - 1.09863$			
	$\ln(1-y) = \ln(1+x) - 1.09863$ $\ln(1-y) - \ln(1+x) = -1.09863$			
	$\ln\left(\frac{1-y}{1+x}\right) = -1.09863$			
	$\frac{1-y}{1+x} = e^{-1.09863} $ #(3)			
	$\frac{1-y}{1+x} = \frac{1}{3}$			
	$y = \frac{2 - x}{3}$			
	$x = 6 \text{ gives } y = \frac{-4}{3}$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	lr	2r	1t with minor error(s).	1t

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0 – 6	7 – 12	13 – 8	19 – 24