Exame A $05 \cdot 02 \cdot 2014$

Cálculo LEI 2013/2014

Duração: 2 horas e 30 minutos

Nome: Número:

Grupo I

Para cada questão deste grupo, assinale qual das afirmações é verdadeira. Cada resposta certa vale 1 valor; nenhuma afirmação selecionada vale 0 valores; cada resposta errada ou nula vale -0.25 valores. A cotação mínima neste grupo é de 0 valores.

Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ a função definida por $f(x) = \operatorname{sh}(x)$. Então f é uma função Questão 1

a) bijetiva.

- c) não injetiva e sobrejetiva.
- b) injetiva e não sobrejetiva.
- d) não injetiva e não sobrejetiva.

Questão 2 A expressão arctg
$$\left(-2+\operatorname{tg}\left(\frac{5}{4}\pi\right)\right)$$
 é igual a a) $-\frac{\pi}{4}$. b) 0. c) $\frac{\pi}{4}$.

a)
$$-\frac{\pi}{4}$$
.

c)
$$\frac{\pi}{4}$$
.

Questão 3 Seja
$$f$$
 a função definida por $f(x) = \left\{ \begin{array}{ll} 0 & \text{se} \quad x < -1, \\ x^2 + 1 & \text{se} \quad -1 \leq x \leq 0, \\ \frac{2}{\pi} \operatorname{arctg} \left(\frac{1}{x}\right) & \text{se} \quad x > 0. \end{array} \right.$

Então f é uma função

a) contínua.

- c) continua em $\mathbb{R} \setminus \{0\}$.
- b) continua em $\mathbb{R} \setminus \{-1\}$.
- d) contínua em $\mathbb{R} \setminus \{-1, 0\}$.

Seja f a função definida por $f(x) = \begin{cases} 0 & \text{se } x < 0, \\ \sqrt{x} & \text{se } x \ge 0. \end{cases}$ Questão 4

Então

a) existe f'(0).

c) existe $f'_{+}(0)$.

b) não existe $f'_{-}(0)$.

d) não existe f'(0).

A equação $x = \cos(x)$ Questão 5

- a) não tem soluções no intervalo $[0, \pi/2]$.
- b) tem uma única solução no intervalo $[0, \pi/2]$.
- c) tem exatamente duas soluções distintas no intervalo $[0, \pi/2]$.
- d) tem, pelo menos, duas soluções no intervalo $[0, \pi/2]$.

Questão 6 O valor de $\int_{-\pi/2}^{\pi/2} \! |\operatorname{sen}(x)| \, dx$ é igual a

- d) 4.

Questão 7 Seja $f:[-3,2] \longrightarrow \mathbb{R}$ uma função contínua tal que $\int_{-3}^{0} f(x) \, dx = 10$ e

- $\int_0^2 f(x) dx = -4$. Então o valor de $\int_{-3}^2 (1 2f(x)) dx$ é igual a

Questão 8 Sejam $u_n=\frac{8}{3\sqrt{n}}$ e $v_n=\frac{1}{4^n}$, com $n\in\mathbb{N}$. Então:

- a) $\sum_{n=0}^{+\infty} u_n$ e $\sum_{n=0}^{+\infty} v_n$ são convergentes. c) $\sum_{n=0}^{+\infty} u_n$ é convergente e $\sum_{n=0}^{+\infty} v_n$ é divergente.
- b) $\sum_{n=1}^{+\infty} u_n$ e $\sum_{n=1}^{+\infty} v_n$ são divergentes. d) $\sum_{n=1}^{+\infty} u_n$ é divergente e $\sum_{n=1}^{+\infty} v_n$ é convergente.

Grupo II

Responda, no próprio enunciado, às seguintes questões indicando os cálculos que tiver que efetuar bem como as respetivas justificações.

Questão 9 Considere a função real de variável real definida por [3 valores]

$$f(x) = -2\pi + 3\arccos(2-5x).$$

Determine o domínio e o contradomínio da função f.

b) Caraterize a função inversa de f.

c) Determine os zeros da função f.

Questão 10 [2 valores] Calcule

a)
$$\int \frac{e^{\mathsf{arctg}(x)}}{1+x^2} \, dx.$$

b)
$$\int x \cos(x) \, dx.$$

Questão 11 [1.5 valores] Esboce a região do plano limitada pelas curvas de equação

$$y = |x| - 1$$
 e $y = 1 - |x|$

e determine a sua área.

Questão 12 [1.5 valores] Diga se o integral

$$\int_{-\infty}^{-1} \frac{1}{1+x^2} \ dx$$

é convergente ou divergente e, em caso de convergência, determine o seu valor.

Questão 13 [2 valores] Mostre que a série

$$\sum_{n=1}^{+\infty} (-1)^n \; \frac{1}{n+1}$$

é convergente mas não é absolutamente convergente.

Questão 14 [2 valores] Considere a série de potências

$$\sum_{n=1}^{+\infty} 2^n (x-1)^n.$$

a) Justifique porque é que a série é divergente para x=1/2 e para x=3/2.

b) Determine o intervalo de convergência da série dada.

(FIM)