NIG O 8 TOTA DE TRADEMENT

A-378CIP5.ST25.txt SEQUENCE LISTING

RECEIVED AUG 1 0 2001 TECH CENTER 1600/2900

```
<110>
       BOYLE, WILLIAM J.
       LACEY, DAVID LEE
       CALZONE, FRANK J.
       CHANG, MING-SHI
       SENALDI, GIORGIO
<120>
       COMBINATION THERAPY FOR CONDITIONS LEADING TO BONE LOSS
<130>
         378CIP5
<140>
       US 09/613,591
       2000\07-10
<141>
<150>
       US 09/457,647
       1999-12 \ 09
<151>
<150>
       US 09/350\670
       1999-07-09
<151>
       US 08/706,94
<150>
<151>
       1986-09-03
<150>
       US 08/577,788
<151>
       1995-12-22
       168
<160>
       PatentIn version 3
<170>
<210>
       1
<211>
       36
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223> Not I restriction site
<220>
<221> misc_feature
<222>
      (28)..(35)
<223> N = any random nucleic acid
<400> 1
aaaggaagga aaaaagcggc cgctacannn nnnnpt
                                                                         36
<210> 2
<211>
       16
<212>
<213>
      Artificial Sequence
<220>
<223>
      Not I restriction site
<400> 2
tcgacccacg cgtccg
                                                                         16
<210>
<211>
      12
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Not I restriction site
```

Page 1

A-378CIP5.ST25.txt <400> 3 12 gggtgcgcag gc <210> <211> <212> DNA Artificial Sequence <213> <220> <223> Not I kestriction site <400> 4 tgtaaaacga cggccagt 18 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Not I restriction site <400> 5 caggaaacag ctatgac 18 <210> 20\ <211> <212> DNA <213> Artificial Sequence <220> <223> Not I restriction site <400> 6 caattaaccc tcactaaagg 20 <210> <211> 23 <212> DNA <213> Rattus rattus <400> 7 gcattatgac ccagaaaccg gac 23 <210> 8 <211> 23 <212> DNA <213> Rattus rattus <400> 8 aggtagcgcc cttcctcaca ttc 23 <210> <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer <400> 9 Page 2


```
A-378CIP5.ST25.txt
<212
       DNA
<213>
       Rattus rattus
<400>
taacttttac agaagagcat cagc
                                                                         24
<210>
       17
<211>
       33
<212>
       DNA
<213>
       Rattus Pattus
<400> 17
agcgcggccg catgaadaag tggctgtgct gcg
                                                                         33
<210>
       18
<211>
       31
<212>
       DNA
<213>
       Rattus rattus
<400> 18
agctctagag aaacagccca gtgaccattc c
                                                                         31
<210>
<211>
       24
<212>
       DN/A
<213>
       Raktus rattus
<400> 19
gtgaagctgt gcaagaacct gatg
                                                                         24
<210>
       20
<211>
       24
<212>
       DNA
<213> Rattus rattus
<400> 20
atcaaaggca gggcatactt cctg
                                                                         24
<210>
       21
<211>
       24
<212>
       DNA
<213> Homo sapiens
<400> 21
cagatcctga agctgctcag tttg
                                                                         24
<210>
       22
<211>
       33
<212> DNA
<213> Homo sapiens
                                                                         33
agcgcggccg cggggaccac aatgaacaag trg
<210>
       23
<211>
       33
<212> DNA
<213> Homo sapiens
agctctagaa ttgtgaggaa acagctcaat ggc
                                                                         33
                                       Page 4
```

	24 39 DNA Artificial Sequence	
<220> <223>	Not I restriction site	
<400> atagcgg	24 gccg ctgagcccaa atcttgtgac aaaactcac	39
<210><211><211><212><213>		
<220> <223>	Not I restriction site	
<400> tctagag	25 ytcg acttatcatt tacccggaga cagggagagg ctctt	45
<210><211><211><212><213>	38	
<400> cctctga	26 agct caagcttccg aggaccacaa tgaacaag	38
<211> <212>		
<400> cctctgc	27 eggc egetaageag ettattttea eggattgaae etg	43
<211> <212>	28 38 DNA Mus musculus	
<400> cctctga	28 gct caagcttccg aggaccacaa tgaacaag	38
	29 24 DNA Homo sapiens	
<400> tccgtaa	29 gaa acagcccagt gacc	24
<210><211><211><212><213>	30 31 DNA Mus musculus	
<400>	30	

	A-378CIP5.ST25.txt	
cctctg	egge egetgttgea titeettiet g	31
<210> <211> <212> <213>	31 19 PRT Mus musculus	
<400>	31	
Glu Thi	r Leu Pro Pro Lys Tyr Leu His Tyr Asp Pro Glu Thr Gly His 5 10 15	
Gln Le	ı Leu	
<210> <211> <212> <213>	32 21 DNA Mus musculus	
<400> tccctto	32 geod tgaccactot t	21
<210><211><211><212><213>	33 34 DNA Mus musculus	
<400> cctctgd	33 egge egcacacacg ttgtcatgtg ttge	34
<210><211><211><212><213>	34 21 DNA Mus musculus	
<400> tccctto	34 gece tgaccactet t	21
<210><211><211><212><213>	35 34 DNA Mus musculus	
<400> cctctgd	35 egge egeettttge gtggettete tgtt	34
<210> <211> <212> <213>	36 37 DNA Homo sapiens	
<400> cctctga	36 agct caagcttggt ttccggggac cacaatg	37
<210><211><212><213>	37 38 DNA Homo sapiens	

<400> 37 cctctgcggc cgctaagcag cttattttta ctgaatgg	38
<210> 38 <211> 37 <212> DNA <213> Homo sapiens	
<400> 38 cctctgagct caagcttggt ttccggggac cacaatg	37
<210> 39 <211> 33 <212> DNA <213> Homo sapiens	
<400> 39 cctctgcggc cgccagggta acatctattc cac	33
<210> 40 <211> 35 <212> DNA <213> Mus musculus	
<400> 40 ccgaagcttc caccatgaac aagtggctgt gctgc	35
<210> 41 <211> 40 <212> DNA <213> Mus musculus	
<400> 41 cctctgtcga ctattataag cagcttattt tcacggattg	40
<210> 42 <211> 21 <212> DNA <213> Mus musculus	
<400> 42 tcccttgccc tgaccactct t	21
<210> 43 <211> 35 <212> DNA <213> Mus musculus	
<400> 43 cctctgtcga cttaacacac gttgtcatgt gttgc	35
<210> 44 <211> 21 <212> DNA <213> Mus musculus	
<400> 44 tcccttgccc tgaccactct t	21
<210> 45	

			A-378CIP5.S	Γ25.txt		
<211><212><213>	35 DNA Mus musculu	s				
<400> cctctg	45 tcga cttactt	ttg cgtggcttct	ctgtt			35
<210><211><211><212><213>	46 1548 DNA Artificial	Sequence				
<220> <223>	pAMG21					
<400>	46					
		tac cagaggggta				60
		gct ttctgacccg				120
gcgagag	ggac tcatcct	gtt taggcggccc	: tcgcctaaac	ttgcaacgct	tcgttgccgg	180
gcctcc	cacc gcccgtc	ctg cgggcggtat	ttgacggtcc	gtagtttaat	tcgtcttccg	240
gtagga	ctgc ctaccgg	aaa aacgcaaaga	tgtttgagaa	aacaaataaa	aagatttatg	300
taagtt	tata cctgcag	cat gaattgaaaa	tttcataccc	gttagttaac	gaggacaatt	360
ttaacga	aaat ctttatg	aaa ccgtcgccaa	acaacataac	tcaaagtaaa	cgcgtaacca	420
atttaco	cttt cactggc	acg cgaatgatgt	cggattataa	aaactttata	gggttctcga	480
aaaagga	aagc gtacggg	tgc gatttgtaag	aaaaagagaa	aaccaattta	gcaacaaact	540
aaataa	taaa cgatata	aat aaaaagctat	taatagttga	tctcttcctt	gttaattacc	600
atacaag	gtat gtgcgta	cat ttttatttga	tagatatatc	aacagaaaga	gacttacacg	660
ttttgai	ttcg taaggct	tcg gtaataatcg	tcatacttat	ccctttgatt	tgggtcacta	720
ttctgga	acta ctaaagc	gaa gaaattaatg	taaacctcta	aaaaataaat	gtcgtaacaa	780
aagttta	atat aaggtta	att agccacttac	taacctcaat	cttattagat	gatatcctag	840
tataaaa	ataa tttaatc	gca gtagtattat	aacggaggta	aaaaatccca	ttaataggtc	900
ttaact	ttat agtctaa	att ggtatcttac	tcctatttac	tagcgctcat	ttattataag	960
tgttaca	atgg taaaatc	agt atagtctatt	cgtaactaat	tatagtaata	acgaagatgt	1020
ccgaaat	ttaa aataatt	aat aagacattca	cagcagccgt	aaatacagaa	agtatgggta	1080
gagaaat	tagg aatggata	aac aaacagcgtt	caaaacgcac	aatatatagt	aattttgcca	1140
ttatcta	aact gtaaact	aag attatttaac	ctaaaaacag	tgtgataata	tagcgaactt	1200
tatgtta	aaca aattgta	ttc atggacatco	tagcatgtcc	aaatgcgttc	ttttaccaaa	1260
		cta aactaagato				1320
		cct taagctcgag		_		1380
		gee tttettette				1440
		act cgttattgat				1500
		ctt tcctccttgg				1548
			Page 8			23.0

<210> <211> <212> <213>	47 48 DNA Homo	o sapiens					
<400> ccggcgg	47 gaca	tttatcacac	agcagctgat	gagaagtttc	ttcatcca		48
<210><211><211><212><213>		ficial Sequ	ıence			·	
<220> <223>	DMAq	321					
<400> cgatttg	48 gatt	ctagaaggag	gaataacata	tggttaacgc	gttggaattc	ggtac	55
<210><211><211><212><213>	49 49 DNA Arti	ficial Sequ	ıence				
<220> <223>	DMAq	321					
<400> taaacta	49 aaga	tcttcctcct	tattgtatac	caattgcgca	accttaagc		49
<210><211><211><212><213>	DNA	ficial Sequ	ıence				
<220> <223>	pAMG	:21					
<220><221><222><222><223>	(1,	:_feature 2, 1545). pue AatII ar	.(1546) nd SacII sti	icky ends			
<400> gcgtaac	50 cgta	tgcatggtct	ccccatgcga	gagtagggaa	ctgccaggca	tcaaataaaa	60
cgaaagg	gctc	agtcgaaaga	ctgggccttt	cgttttatct	gttgtttgtc	ggtgaacgct	120
ctcctga	agta	ggacaaatcc	gccgggagcg	gatttgaacg	ttgcgaagca	acggcccgga	180
gggtgg	cggg	caggacgccc	gccataaact	gccaggcatc	aaattaagca	gaaggccatc	240
ctgacgg	gatg	gcctttttgc	gtttctacaa	actcttttgt	ttatttttct	aaatacattc	300
aaatato	ggac	gtcgtactta	acttttaaag	tatgggcaat	caattgctcc	tgttaaaatt	360
gctttag	gaaa	tactttggca	gcggtttgtt	gtattgagtt	tcatttgcgc	attggttaaa	420
tggaaag	gtga	ccgtgcgctt	actacagcct	aatatttttg	aaatatccca	agagcttttt	480
ccttcac	cato	cccacactaa	acattettt	tctcttttaa	ttaaatcott	gtttgattta	540

		7	∆-378CIP5.ST	125 tvt		
ttattt	gcta tatttattt		-		taatggtatg	600
ttcata	cacg catgtaaaaa	taaactatct	atatagttgt	ctttctctga	atgtgcaaaa	660
ctaagc	attc cgaagccatt	attagcagta	tgaataggga	aactaaaccc	agtgataaga	720
cctgat	gatt tegettettt	aattacattt	ggagattttt	tatttacagc	attgttttca	780
aatata	ttcc aattaatcgg	tgaatgattg	gagttagaat	aatctactat	aggatcatat	840
tttatt	aaat tagcgtcatc	ataatattgc	ctccattttt	tagggtaatt	atccagaatt	900
gaaata	tcag atttaaccat	agaatgagga	taaatgatcg	cgagtaaata.	atattcacaa	960
tgtacc	attt tagtcatatc	agataagcat	tgattaatat	cattattgct	tctacaggct	1020
ttaatt	ttat taattattct	gtaagtgtcg	tcggcattta	tgtctttcat	acccatctct	1080
ttatcc	ttac ctattgtttg	tcgcaagttt	tgcgtgttat	atatcattaa	aacggtaata	1140
gattga	catt tgattctaat	aaattggatt	tttgtcacac	tattatatcg	cttgaaatac	1200
aattgt	ttaa cataagtacc	tgtaggatcg	tacaggttta	cgcaagaaaa	tggtttgtta	1260
tagtcg	atta atcgatttga	ttctagattt	gttttaacta	attaaaggag	gaataacata	1320
tggtta	acgc gttggaattc	gagctcacta	gtgtcgacct	gcagggtacc	atggaagctt	1380
actcga	ggat ccgcggaaag	aagaagaaga	agaagaaagc	ccgaaaggaa	gctgagttgg	1440
ctgctg	ccac cgctgagcaa	taactagcat	aaccccttgg	ggcctctaaa	cgggtcttga	1500
ggggtt	tttt gctgaaagga	ggaaccgctc	ttcacgctct	tcacgc		1546
<210> <211> <212> <213> <223>	51 47 DNA Artificial Sequ	ıence				
<400> tatgaa	51 acat catcaccatc	accatcatgc	tagcgttaac	gcgttgg		47
<210><211><211><212><213>	49	ıence				
<220> <223>	pAMG22					
<400> actttg	52 tagt agtggtagtg	gtagtacgat	cgcaattgcg	caaccttaa		49
<210><211><211><212><213>	DNA	ience				
<220> <223>	pAMG22					
<400>	53		Page 1	· 0		

	-378CIP5.SI			
ctaattccgc tctcacctac caaacaatgc	cccctgcaa	aaaataaatt	catataaaaa	60
acatacagat aaccatctgc ggtgataaat	tatctctggc	ggtgttgaca	taaataccac	120
tggcggtgat actgagcaca t				141
<210> 54 <211> 147 <212> DNA <213> Artificial Sequence				
<220> <223> pAMG22				
<400> 54 tgcagattaa ggcgagagtg gatggtttgt	tacgggggga	cgttttttat	ttaagtatat	60
tttttgtatg tctattggta gacgccacta	tttaatagag	accgccacaa	ctgtatttat	120
ggtgaccgcc actatgactc gtgtagc				147
<210> 55 <211> 55 <212> DNA <213> Artificial Sequence				
<220> <223> pAMG22				
<400> 55 cgatttgatt ctagaaggag gaataacata	tggttaacgc	gttggaattc	ggtac	55
<210> 56 <211> 49 <212> DNA <213> Artificial Sequence				
<220> <223> pAMG22				
<400> 56 taaactaaga tcttcctcct tattgtatac o	caattgcgca	accttaagc		49
<210> 57 <211> 668 <212> DNA <213> Artificial Sequence				
<220> <223> pAMG22				
<400> 57 tgcacgcatt gcatacgtac cagaggggta	cgctctcatc	ccttgacggt	ccgtagttta	60
ttttgctttc cgagtcagct ttctgacccg g	gaaagcaaaa	tagacaacaa	acagccactt	120
gcgagaggac tcatcctgtt taggcggccc	tcgcctaaac	ttgcaacgct	tcgttgccgg	180
gcctcccacc gcccgtcctg cgggcggtat	ttgacggtcc	gtagtttaat	tcgtcttccg	240
gtaggactgc ctaccggaaa aacgcaaaga	tgtttgagaa	aacaaataaa	aagatttatg	300
taagtttata cctgcagagt attaaaaatt	ttttaagtaa	actgtttacg	attttaagaa	360

ctaattataa	gagttaacac		378CIP5.ST taaatagcta		taaactcaat	420
tgattaattt	cctccttatt	gtataccaat	tgcgcaacct	taagctcgag	tgatcacagc	480
tggacgtccc	atggtacctt	cgaatgagct	cctaggcgcc	tttcttcttc	ttcttcttct	540
ttcgggcttt	ccttcgactc	aaccgacgac	ggtggcgact	cgttattgat	cgtattgggg	600
aaccccggag	atttgcccag	aactccccaa	aaaacgactt	tcctccttgg	cgagaagtgc	660
gagaagtg						668
<210> 58 <211> 726 <212> DNA <213> Art:	ificial Sequ	lence				
<220> <223> pAM	G22					
<400> 58 gcgtaacgta	tgcatggtct	ccccatgcga	gagtagggaa	ctgccaggca	tcaaataaaa	60
cgaaaggctc	agtcgaaaga	ctgggccttt	cgttttatct	gttgtttgtc	ggtgaacgct	120
ctcctgagta	ggacaaatcc	gccgggagcg	gatttgaacg	ttgcgaagca	acggcccgga	180
gggtggcggg	caggacgccc	gccataaact	gccaggcatc	aaattaagca	gaaggggcct	240
cccaccgccc	gtcctgcggg	cggtatttga	cggtccgtag	tttaattcgt	cttcgccatc	300
ctgacggatg	gcctttttgc	gtttctacaa	actcttttgt	ttatttttct	aaatacattc	360
aaatatggac	gtctcataat	ttttaaaaaa	ttcatttgac	aaatgctaaa	attcttgatt	420
aatattctca	attgtgagcg	ctcacaattt	atcgatttga	ttctagattt	gttttaacta	480
attaaaggag	gaataacata	tggttaacgc	gttggaattc	gagctcacta	gtgtcgacct	540
gcagggtacc	atggaagctt	actcgaggat	ccgcggaaag	aagaagaaga	agaagaaagc	600
ccgaaaggaa	gctgagttgg	ctgctgccac	cgctgagcaa	taactagcat	aaccccttgg	660
ggcctctaaa	cgggtcttga	ggggttttt	gctgaaagga	ggaaccgctc	ttcacgctct	720
tcacgc						726
<210> 59 <211> 44 <212> DNA <213> Home	o sapiens					
<400> 59 tacgcactgg	atccttataa	gcagcttatt	tttactgatt	ggac		44
<210> 60 <211> 27 <212> DNA <213> Home	o sapiens					
<400> 60 gtcctcctgg	tacctaccta	aaacaac				27

<211>	54	
<212>	DNA	
<213>	Homo sapiens	
<400>	61	
tatggat	gaa gaaacttete ateagetget gtgtgataaa tgteegeegg gtae	54
<210>	62	
<211>	19	
<212>	PRT	
<213>	Homo sapiens	
<400>	62	
Met Asr	o Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro	
1	5 10 15	
Gly Thr	r Twr	
019 1111	· *y*	
<210>	63	
<211>	84	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	pAMG21	
<400>	63	
	aact tttcctccaa aatatcttca ttatgatgaa gaaacttctc atcagctgct	60
gtgtgat	caaa tgtccgccgg gtac	84
<210>	64	
<211>	78	
<212> <213>	DNA Artificial Sequence	
	metriciar pequence	
<220>		
<223>	pAMG21	
<400>	64	
ccggcgg	gaca tttatcacac agcagctgat gagaagtttc ttcatcataa tgaagatatt	60
ttaaaaa	gaaa agtttcca	78
ccggagg	gada agittica	70
010		
	65 44	
<212>		
	Artificial Sequence	
-220s		
<220> <223>	pAMG21-MuOPG	
<400>	65	A A
Lacgcac	ctgg atccttataa gcagcttatt ttcacggatt gaac	44
<210>	66	
<211> <212>		
	Artificial Sequence	

<220> <223>	pAMG21-MuOPG	
<400> gtgctc	66 ctgg tacctaccta aaacagcact gcacagtg	38
<210><211><212><213>	67 84 DNA Artificial Sequence	
<220> <223>	pAMG21-MuOPG	
<400> tatgga	67 aact ctgcctccaa aatacctgca ttacgatccg gaaactggtc atcagctgct	60
gtgtga	taaa tgtgctccgg gtac	84
<210><211><211><212><213>	68 78 DNA Artificial Sequence	
<220> <223>	pAMG21-MuOPG	
<400> ccggag	68 caca tttatcacac agcagctgat gaccagtttc cggatcgtaa tgcaggtatt	60
ttggag	gcag agtttcca	78
<210><211><211><212><213>	69 54 DNA Mus musculus	
<400> tatgga	69 ccca gaaactggtc atcagctgct gtgtgataaa tgtgctccgg gtac	54
<210><211><212><212><213>	70 48 DNA Mus musculus	
<400> ccggage	70 caca tttatcacac agcagctgat gaccagtttc tgggtcca	48
<210><211><211><212><213>	71 87 DNA Artificial Sequence	
<220> <223>	pAMG21	
<400> tatgaa	71 agaa actctgcctc caaaatacct gcattacgat ccggaaactg gtcatcagct	60
gctgtg	tgat aaatgtgctc cgggtac	87

<211>	81		. So. che		
<212>	DNA				
<213>	Artificial Sequence				
<220> <223>	pAMG21				
<400> ccggago	72 caca tttatcacac agcagctgat	gaccagtttc	cggatcgtaa	tgcaggtatt	60
ttggagg	gcag agtttctttc a				81
<210> <211> <212> <213>	73 71 DNA Artificial Sequence				
<220> <223>	pAMG21				
<400> gttctcc	73 ctca tatgaaacat catcaccatc	accatcatga	aactctgcct	ccaaaatacc	60
tgcatta	acga t				71
<210><211><211><212><213>	74 43 DNA Mus musculus				
<400> gttctcc	74 etca tatgaaagaa actetgeete	caaaatacct	gca		43
<210><211><211><212><213>	75 76 DNA Mus musculus				
<400> tacgcac	75 etgg atccttaatg atggtgatgg	tgatgatgta	agcagcttat	tttcacggat	60
tgaacct	tgat teceta				76
<211> <212>	76 47 DNA Mus musculus				
<400> gttctcc	76 ctca tatgaaatac ctgcattacg	atccggaaac	tggtcat		47
	77 43 DNA Homo sapiens				
<400> gttctcc	77 Stat taatgaaata tetteattat	gatgaagaaa	ctt		43
<210><211><212>	78 40 DNA				

```
<213> Homo sapiens
<400> 78
tacgcactgg atccttataa gcagcttatt tttactgatt
                                                                      40
<210>
      79
<211> 40
<212> DNA
<213> Mus musculus
<400> 79
gttctcctca tatggaaact ctgcctccaa aatacctgca
                                                                      40
<210>
      80
<211> 43
<212> DNA
<213> Mus musculus
<400> 80
tacgcactgg atccttatgt tgcatttcct ttctgaatta gca
                                                                      43
<210> 81
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> pAMG21
<400> 81
ccggaaacag ataatgag
                                                                      18
<210> 82
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> pAMG21
<400> 82
gatcctcatt atctgttt
                                                                      18
<210> 83
<211>
      30
<212> DNA
<213> Artificial Sequence
<220>
<223> pAMG21
<400> 83
ccggaaacag agaagccacg caaaagtaag
                                                                      30
<210> 84
<211>
      30
<212>
      DNA
<213> Artificial Sequence
<220>
<223> pAMG21
```

	84 tact tttgcgtggc ttctctgttt	30
<210><211><211><212><213>		
<220> <223>	pAMG21	
<400> tatgtt	85 aatg ag	12
<210><211><211><212><213>		
<220> <223>	pAMG21	
<400> gatcct	86 catt aaca	14
<210><211><212><212><213>	87 21 DNA Artificial Sequence	
<220> <223>	pAMG21	
	87 ccgg aaacagttaa g	21
<210><211><211><212><213>	88 23 DNA Artificial Sequence	
<220> <223>	pAMG21	
<400> gatcct	88 taac tgtttccgga aca	23
<210><211><212><212><213>	89 36 DNA Artificial Sequence	
<220> <223>	pAMG21	
<400> tatgtt	89 ccgg aaacagtgaa tcaactcaaa aataag	36
<210><211><212><212><213>	90 38 DNA Artificial Sequence	

```
<220>
<223> pAMG21
<400>
       90
gatccttatt tttgagttga ttcactgttt ccggaaca
                                                                       38
<210>
       91
<211>
      100
<212>
      DNA
<213> Artificial Sequence
<220>
<223> pAMG21
<400> 91
ctagcgacga cgacgacaaa gaaactctgc ctccaaaata cctgcattac gatccggaaa
                                                                       60
ctggtcatca gctgctgtgt cataaatgtg ctccgggtac
                                                                      100
<210>
       92
<211>
       92
<212>
      DNA
<213> Artificial Sequence
<220>
<223> pAMG21
<400> 92
ccggagcaca tttatcacac agcagctgat gaccagtttc cggatcgtaa tgcaggtatt
                                                                       60
ttggaggcag agtttctttg tcgtcgtcgt cg
                                                                       92
<210>
       93
<211>
      26
<212> DNA
<213> Artificial Sequence
<220>
<223> pAMG21-huOPG
<400> 93
acaaacacaa tcgatttgat actaga
                                                                       26
<210>
       94
<211>
       50
<212>
      DNA
<213> Artificial Sequence
<220>
<223> pAMG21-huOPG
<400> 94
tttgttttaa ctaattaaag gaggaataaa atatgagagg atcgcatcac
                                                                       50
<210>
       95
<211>
      50
<212>
      DNA
<213> Artificial Sequence
<220>
<223> pAMG21-huOPG
```

A-378CIP5.ST25.txt <400> 95 catcaccatc acgaaacctt cccgccgaaa tacctgcact acgacgaaga 50 <210> 96 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> pAMG21-huOPG <400> 96 aacctcccac cagctgctgt gcgacaaatg cccgccgggt acccaaaca 49 <210> 97 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> pAMG21-huOPG <400> 97 tgtttgggta cccggcgggc atttgt 26 <210> 98 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> pAMG21-huOPG <400> 98 cgcacagcag ctggtgggag gtttcttcgt cgtagtgcag gtatttcggc 50 <210> 99 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> pAMG21-huOPG <400> 99 gggaaggttt cgtgatggtg atggtgatgc catcctctca tattttatt 49 <210> 100 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> pAMG21-huOPG <400> 100 cctcctttaa ttagttaaaa caaatctagt atcaaatcga ttgtgtttgt 50

Page 19

<210> 101 <211>

<212>

59

DNA <213> Homo sapiens

<400> acaaac	101 acaa tcgatttgat actagatttg ttttaactaa ttaaaggagg aataaaatg	59
<210><211><212><212><213>	102 48 DNA Homo sapiens	
<400> ctaatt	102 aaag gaggaataaa atgaaagaaa cttttcctcc aaaatatc	48
<210><211><212><212><213>	103 31 DNA Homo sapiens	
<400> tgtttg	103 ggta cccggcggac atttatcaca c	31
<210><211><212><212><213>	104 59 DNA Homo sapiens	
<400> acaaac	104 acaa tcgatttgat actagatttg ttttaactaa ttaaaggagg aataaaatg	59
<210><211><212><212><213>	105 54 DNA Homo sapiens	
<400> ctaatt	105 aaag gaggaataaa atgaaaaaaa aagaaacttt teeteeaaaa tate	54
<210><211><211><212><213>	106 31 DNA Homo sapiens	
<400> tgtttg	106 ggta cccggcggac atttatcaca c	31
<210><211><212><212><213>	107 44 DNA Artificial Sequence	
<220> <223>	PCR primer for FchOPG fusion protein.	
<400> cagccc	107 gggt aaaatggaaa cgtttcctcc aaaatatctt catt	44
<210><211><212><212><213>		
<220>		

Page 20

A-378CIP5.ST25.txt PCR primer for FchOPG fusion protein. <223> <400> 108 cgtttccatt ttacccgggc tgagcgagag gctcttctgc gtgt 44 <210> 109 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Fc/muOPG <400> 109 cgctcagccc gggtaaaatg gaaacgttgc ctccaaaata cctgc 45 <210> 110 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Fc/muOPG <400> 110 39 ccattttacc cgggctgagc gagaggctct tctgcgtgt <210> 111 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> muOPG <400> 111 gaaaataaga tgcttagctg cagctgaacc aaaatc 36 <210> 112 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> muOPG <400> 112 cagctgcagc taagcagctt attttcacgg attg 34 <210> 113 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> huOPG <400> 113 aaaaataagc tgcttagctg cagctgaacc aaaatc 36 <210> 114 <211> 35

<212> <213>	DNA Artificial Sequence	
<220> <223>	huOPG	
<400> cagctg	114 cagc taagcagctt atttttactg attgg	35
<210><211><211><212><213>	115 102 DNA Artificial Sequence	
<220> <223>	pAMG21-huOPG	
<220> <221> <223>	misc_feature Linker with XbaI and KpnI sites inserted into human sequence.	
<400> ctagaa	115 ggag gaataacata tggaaacttt tgctccaaaa tatcttcatt atgatgaaga	60
aactag	tcat cagctgctgt gtgataaatg tccgccgggt ac	102
<210><211><211><212><213>	116 94 DNA Artificial	
<400> ccggcg	116 gaca tttatcacac agcagctgat gactagtttc ttcatcataa tgaagatatt	60
ttggag	caaa agtttccata tgttattcct cctt	94
<210><211><211><212><213>	117 62 DNA Artificial Sequence	
<220> <223>	huOPG	
<400> ctagaa	117 ggag gaataacata tggaaacttt tcctgctaaa tatcttcatt atgatgaaga	60
aa		62
<210><211><211><212><213>	118 62 DNA Artificial Sequence	
<220> <223>	huOPG	
<400> ctagtt	118 tctt catcataatg aagatattta gcaggaaaag tttccatatg ttattcctcc	60
tt		62

<21 <21 <21 <21	1> 2>	119 51 PRT Homo	sap	iens				A-3 /	OCII		25.					
<40	0>	119														
Tyr 1	His	Tyr	Tyr	Asp 5	Gln	Asn	Gly	Arg	Met 10	Cys	Glu	Glu	Cys	His 15	Met	
Cys	Gln	Pro	Gly 20	His	Phe	Leu	Val	Lys 25	His	Cys	Lys	Gln	Pro 30	Lys	Arg	
Asp	Thr	Val 35	Cys	His	Lys	Pro	Cys 40	Glu	Pro	Gly	Val	Thr 45	Tyr	Thr	Asp	
Asp	Trp 50	His														
<21: <21: <21: <21:	1> 2>	120 2432 DNA Rattı	us ra	attus	5											
<222 <222	<213> Rattus rattus <220> <221> CDS <222> (124)(1326) <223>															
	<400> 120 atcaaaggca gggcatactt cctgttgccc agaccttata taaaacgtca tgttcgcctg 60															
			gggca	atact	t co	ctgtt	gcc	c aga	acct	tata	taaa	aacgt	tca t	gtto	cgcctg	60
atca	aaag	gca (·-	_	_				_		_	egcetg aggace	60 120
atca ggca	aaag agca atg	gca (aagca aag	accta tgg	ag ca	actgo tgc	gccca tgt	gca	ggcto ctc	gccg ctg	cctg	gaggt ttc	ttt (ccaga gac	aggacc atc	
ggca aca att	agca agca atg Met 1	gca g gag a aac	aagca aag Lys aca	tgg Trp acc	ag ca ctg Leu 5 cag	tgc Cys gaa	tgt Cys acc	gca Ala	ggctg ctc Leu cct	ctg Leu 10	ccto gtg Val	gaggt ttc Phe tac	ttg Leu ttg	gac Asp	aggacc atc Ile 15	120
atca ggca aca att Ile	agca agca atg Met 1 gaa Glu	gca g gag a aac Asn tgg	aagca aag Lys aca Thr	tgg Trp acc Thr 20	ctg Leu 5 cag Gln	tgc Cys gaa Glu	tgt Cys acc Thr	gca Ala ttt Phe	ctc Leu cct Pro 25	ctg Leu 10 cca Pro	gtg Val aaa Lys	gaggt ttc Phe tac Tyr	ttg Leu ttg Leu	gac Asp cat His 30	aggacc atc Ile 15 tat Tyr	120 168
atca ggca aca att Ile gac Asp	agcadage agcadage Met 1 gaa Glu cca Pro	gag a aac Asn tgg Trp	aagca aag Lys aca Thr acc Thr 35	tgg Trp acc Thr 20 gga Gly	ctg Leu 5 cag Gln cgt Arg	tgc Cys gaa Glu cag Gln	tgt Cys acc Thr ctc Leu	gca Ala ttt Phe ttg Leu 40	ctc Leu cct Pro 25 tgt Cys	ctg Leu 10 cca Pro gac Asp	gtg Val aaa Lys aaa Lys	gaggt ttc Phe tac Tyr tgt Cys	ttg Leu ttg Leu gct Ala 45	gac Asp cat His 30 cct Pro	aggacc atc Ile 15 tat Tyr ggc Gly	120 168 216
ggca aca att Ile gac Asp acc Thr	agcadagga atg Met 1 gaa Glu cca Pro tac Tyr	gag a aac Asn tgg Trp gaa Glu cta Leu	aagca aag Lys aca Thr acc Thr 35 aaa Lys	tgg Trp acc Thr 20 gga Gly cag Gln	ctg Leu 5 cag Gln cgt Arg	tgc Cys gaa Glu cag Gln tgc Cys	tgt Cys acc Thr ctc Leu aca Thr 55	gca Ala ttt Phe ttg Leu 40 gtc Val	ctc Leu cct Pro 25 tgt Cys agg Arg	ctg Leu 10 cca Pro gac Asp agg Arg	gtg Val aaa Lys aaa Lys	gagge ttc Phe tac Tyr tgt Cys aca Thr 60	ttg Leu ttg Leu gct Ala 45 ctg Leu	gac Asp cat His 30 cct Pro tgt Cys	aggacc atc Ile 15 tat Tyr ggc Gly gtc Val	120 168 216 264
ggca aca att Ile gac Asp acc Thr	agcadage agc	gca (gag a aac Asn tgg Trp gaa Glu cta Leu 50 cct	aagca aag Lys aca Thr acc Thr 35 aaa Lys gac Asp	tgg Trp acc Thr 20 gga Gly cag Gln tac Tyr	ctg Leu 5 cag Gln cgt Arg cac His tct Ser	tgc Cys gaa Glu cag Gln tgc Cys tat Tyr 70	tgt Cys acc Thr ctc Leu aca Thr 55 aca Thr	gca Ala ttt Phe ttg Leu 40 gtc Val gac Asp	ctc Leu cct Pro 25 tgt Cys agg Arg	ctg Leu 10 cca Pro gac Asp agg Arg	gtg Val aaa Lys aaa Lys aag Lys cac His 75	gagge ttc Phe tac Tyr tgt Cys aca Thr 60 acg Thr	ttg Leu ttg Leu gct Ala 45 ctg Leu agt Ser	gac Asp cat His 30 cct Pro tgt Cys gat Asp aaa	aggacc atc Ile 15 tat Tyr ggc Gly gtc Val gaa Glu cag	120 168 216 264 312
atca ggca aca att Ile gac Asp acc Thr cct Pro tgc Cys 80 gag	agcadage agc	gag a aac Asn tgg Trp gaa Glu cta Leu 50 cct Pro	aagca aag Lys aca Thr acc Thr 35 aaa Lys gac Asp	tgg Trp acc Thr 20 gga Gly cag Gln tac Tyr agc Ser	ctg Leu 5 cag Gln cgt Arg cac His tct Ser ccc Pro 85	tgc Cys gaa Glu cag Gln tgc Cys tat Tyr 70 gtg Val	tgt Cys acc Thr ctc Leu aca Thr 55 aca Thr	gca Ala ttt Phe ttg Leu 40 gtc Val gac Asp aag Lys	ctc Leu cct Pro 25 tgt Cys agg Arg agc Ser gaa Glu	ctg Leu 10 cca Pro gac Asp agg Trp ctg Leu 90 gaa	gtg Val aaa Lys aaa Lys cac His 75 cag Gln	gaggt ttc Phe tac Tyr tgt Cys aca Thr 60 acg Thr acc Thr	ttg Leu ttg Leu gct Ala 45 ctg Leu agt Ser gtg Val	gac Asp cat His 30 cct Pro tgt Cys gat Asp aaa Lys ggg	aggacc atc Ile 15 tat Tyr ggc Gly gtc Val gaa Glu cag Gln 95 cgc	120 168 216 264 312 360

m	T	C1	T	C1	Dh -	C	T ~	A-37					D~-	D~-	C1	
Tyr	Leu	GIU	Leu 115	GIU	rne	Cys	ьeu	Lys 120	HIS	Arg	ser	cys	125	Pro	GTÄ	
						Gly ggg										552
						ttc Phe 150										600
						tgc Cys										648
						gac Asp										696
						gat Asp										744
						aag Lys										792
						acc Thr 230										840
						tcg Ser										888
ctg Leu	tgg Trp	aag Lys	cat His	caa Gln 260	aac Asn	aga Arg	gac Asp	cag Gln	gaa Glu 265	atg Met	gtg Val	aag Lys	aag Lys	atc Ile 270	atc Ile	936
						gaa Glu										984
						cag Gln										1032
						gac Asp 310										1080
						ctg Leu										1128
						ttg Leu										1176
						ccc Pro										1224
						agc Ser										1272
ctc	ttt	cta	gaa	atg	ata	ggg	aat	cag	_	caa ge 2		gtg	aag	ata	agc	1320

Leu	Phe	Leu	Glu	Met	Ile	Gly	Asn	Gln	Val	Gln	Ser	Val	Lys	Ile	Ser
	385					390					395				

tgc tta tag Cys Leu 400	yttaggaa tgg	ytcactgg gct	gtttctt caç	ggatgggc caa	acactgat	1376
ggagcagatg	gctgcttctc	cggctcttga	aatggcagtt	gattcctttc	tcatcagttg	1436
gtgggaatga	agatcctcca	gcccaacaca	cacactgggg	agtctgagtc	aggagagtga	1496
ggcaggctat	ttgataattg	tgcaaagctg	ccaggtgtac	acctagaaag	tcaagcaccc	1556
tgagaaagag	gatattttta	taacctcaaa	cataggccct	ttccttcctc	tccttatgga	1616
tgagtactca	gaaggcttct	actatcttct	gtgtcatccc	tagatgaagg	cctcttttat	1676
ttatttttt	attcttttt	tcggagctgg	ggaccgaacc	cagggccttg	cgcttgcgag	1736
gcaagtgctc	taccactgag	ctaaatctcc	aacccctgaa	ggcctctttc	tttctgcctc	1796
tgatagtcta	tgacattctt	ttttctacaa	ttcgtatcag	gtgcacgagc	cttatcccat	1856
ttgtaggttt	ctaggcaagt	tgaccgttag	ctatttttcc	ctctgaagat	ttgattcgag	1916
ttgcagactt	ggctagacaa	gcaggggtag	gttatggtag	tttatttaac	agactgccac	1976
caggagtcca	gtgtttcttg	ttcctctgta	gttgtaccta	agctgactcc	aagtacattt	2036
agtatgaaaa	ataatcaaca	aattttattc	cttctatcaa	cattggctag	ctttgtttca	2096
gggcactaaa	agaaactact	atatggagaa	agaattgata	ttgcccccaa	cgttcaacaa	2156
cccaatagtt	tatccagctg	tcatgcctgg	ttcagtgtct	actgactatg	cgccctctta	2216
ttactgcatg	cagtaattca	actggaaata	gtaataataa	taatagaaat	aaaatctaga	2276
ctccattgga	tctctctgaa	tatgggaata	tctaacttaa	gaagctttga	gatttcagtt	2336
gtgttaaagg	cttttattaa	aaagctgatg	ctcttctgta	aaagttacta	atatatctgt	2396
aagactatta	cagtattgct	atttatatcc	atccag			2432

<210> 121 <211> 401 <212> PRT <213> Rattus rattus

<400> 121

Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Phe Leu Asp Ile Ile

Glu Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20

Pro Glu Thr Gly Arg Gln Leu Leu Cys Asp Lys Cys Ala Pro Gly Thr

Tyr Leu Lys Gln His Cys Thr Val Arg Arg Lys Thr Leu Cys Val Pro 50 55

Cys Pro Asp Tyr Ser Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Page 25

A-378CIP5.ST25.txt 70 80 65 Val Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Thr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Glu Glu Gly Arg Tyr Leu Glu Leu Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Leu Gly Val Leu Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys 155 150 Arg Lys His Thr Asn Cys Ser Ser Leu Gly Leu Leu Leu Ile Gln Lys 170 Gly Asn Ala Thr His Asp Asn Val Cys Ser Gly Asn Arg Glu Ala Thr 185 190 Gln Asn Cys Glu Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Ile Ile Pro Asn Trp Leu Ser Val Leu Val Asp Ser Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile

Lys Arg Arg His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 255

Trp Lys His Gln Asn Arg Asp Gln Glu Met Val Lys Lys Ile Ile Gln 260 265 270

Asp Ile Asp Leu Cys Glu Ser Ser Val Gln Arg His Ile Gly His Ala 275 280 285

Asn Leu Thr Thr Glu Gln Leu Arg Ile Leu Met Glu Ser Leu Pro Gly 290 300

Lys Lys Ile Ser Pro Asp Glu Ile Glu Arg Thr Arg Lys Thr Cys Lys 305 310 315 320

Pro Ser Glu Gln Leu Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 335

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met Tyr Ala Leu Lys His Leu Page 26

350

450

345

Lys Ala Tyr His Phe Pro Lys Thr Val Thr His Ser Leu Arg Lys Thr 360 355 Ile Arg Phe Leu His Ser Phe Thr Met Tyr Arg Leu Tyr Gln Lys Leu 375 Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 390 400 Leu <210> 122 <211> 1325 <212> DNA <213> Mus musculus <220> <221> CDS (91)..(1293) <222> <223> <220> misc_feature <221> <222> (11)..(11)At position 11, R is a purine. <223> <400> 122 ccttatataa racgtcatga ttgcctgggc tgcagagacg cacctagcac tgacccagcg 60 114 gctgcctcct gaggtttccc gaggaccaca atg aac aag tgg ctg tgc tgc gca Met Asn Lys Trp Leu Cys Cys Ala 162 ctc ctg gtg ctc ctg gac atc att gaa tgg aca acc cag gaa acc ctt Leu Leu Val Leu Leu Asp Ile Ile Glu Trp Thr Thr Gln Glu Thr Leu 210 ctt cca aag tac ttg cat tat gac cca gaa act ggt cat cag ctc ctg Leu Pro Lys Tyr Leu His Tyr Asp Pro Glu Thr Gly His Gln Leu Leu 35 258 tgt gac aaa tgt gct cct ggc acc tac cta aaa cag cac tgc aca gtg Cys Asp Lys Cys Ala Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Val agg agg aag aca ttg tgt gtc cct tgc cct gac cac tct tat acg gac 306 Arg Arg Lys Thr Leu Cys Val Pro Cys Pro Asp His Ser Tyr Thr Asp 60 age tgg cac ace agt gat gag tgt gtg tat tge age eea gtg tge aag 354 Ser Trp His Thr Ser Asp Glu Cys Val Tyr Cys Ser Pro Val Cys Lys gaa ctg cag tcc gtg aag cag gag tgc aac cgc acc cac aac cga gtg 402 Glu Leu Gln Ser Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val 100 95

tgt gag tgt gag gaa ggg cgt tac ctg gag atc gaa ttc tgc ttg aag

Page 27

	~ 1	_	0 1	~ 3	~1	3 -		A-37					~	.	. .	
Cys 105	Glu	Cys	Glu	G1u	Gly 110	Arg	Tyr	Leu	Glu	Ile 115	GIu	Phe	Cys	Leu	Lys 120	
cac His	cgg Arg	agc Ser	tgt Cys	ccc Pro 125	ccg Pro	ggc Gly	tcc Ser	ggc	gtg Val 130	gtg Val	caa Gln	gct Ala	gga Gly	acc Thr 135	cca Pro	498
								tgt Cys 145								546
								ata Ile								594
ttt Phe	ggc Gly 170	ctc Leu	ctg Leu	cta Leu	att Ile	cag Gln 175	aaa Lys	gga Gly	aat Asn	gca Ala	aca Thr 180	cat His	gac Asp	aac Asn	tgt Cys	642
tgt Cys 185	tcc Ser	gga Gly	aac Asn	aga Arg	gaa Glu 190	gcc Ala	acg Thr	caa Gln	aag Lys	tgt Cys 195	gga Gly	ata Ile	gat Asp	gtc Val	acc Thr 200	690
								ttt Phe								738
cca Pro	aat Asn	tgg Trp	ctg Leu 220	agt Ser	gtt Val	ttg Leu	gtg Val	gac Asp 225	agt Ser	ttg Leu	cct Pro	Gly ggg	acc Thr 230	aaa Lys	gtg Val	786
aat Asn	gcc Ala	gag Glu 235	agt Ser	gta Val	gag Glu	agg Arg	ata Ile 240	aaa Lys	cgg Arg	aga Arg	cac His	agc Ser 245	tca Ser	caa Gln	gag Glu	834
caa Gln	acc Thr 250	ttc Phe	cag Gln	ctg Leu	ctg Leu	aag Lys 255	ctg Leu	tgg Trp	aaa Lys	cat His	caa Gln 260	aac Asn	aga Arg	gac Asp	cag Gln	882
gaa Glu 265	atg Met	gtg Val	aag Lys	aag Lys	atc Ile 270	atc Ile	caa Gln	gac Asp	att Ile	gac Asp 275	ctc Leu	tgt Cys	gaa Glu	agc Ser	agc Ser 280	930
gtg Val	cag Gln	cgg Arg	cat His	ctc Leu 285	ggc Gly	cac His	tcg Ser	aac Asn	ctc Leu 290	acc Thr	aca Thr	gag Glu	cag Gln	ctt Leu 295	ctt Leu	978
gcc Ala	ttg Leu	atg Met	gag Glu 300	agc Ser	ctg Leu	cct Pro	Gly ggg	aag Lys 305	aag Lys	atc Ile	agc Ser	cca Pro	gaa Glu 310	gag Glu	att Ile	1026
gag Glu	aga Arg	acg Thr 315	aga Arg	aag Lys	acc Thr	tgc Cys	aaa Lys 320	tcg Ser	agc Ser	gag Glu	cag Gln	ctc Leu 325	ctg Leu	aag Lys	cta Leu	1074
ctc Leu	agt Ser 330	tta Leu	tgg Trp	agg Arg	atc Ile	aaa Lys 335	aat Asn	ggt Gly	gac Asp	caa Gln	gac Asp 340	acc Thr	ttg Leu	aag Lys	ggc	1122
ctg Leu 345	atg Met	tat Tyr	gcc Ala	ctc Leu	aag Lys 350	cac His	ttg Leu	aaa Lys	aca Thr	tcc Ser 355	His	ttt Phe	ccc Pro	aaa Lys	act Thr 360	1170
gtc Val	acc Thr	cac His	agt Ser	ctg Leu 365	agg Arg	aag Lys	acc Thr	atg Met	agg Arg 370	ttc Phe	ctg Leu	cac His	agc Ser	ttc Phe 375	Thr	1218
atg	tac	aga	ctg	tat	cag	aag	ctc	ttt	tta Pa	gaa .ge 2	atg 8	ata	ggg	aat	cag	1266

A-378CIP5.ST25.txt Met Tyr Arg Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln 390 385

gtt caa tcc gtg aaa ata agc tgc tta taactaggaa tggtcactgg Val Gln Ser Val Lys Ile Ser Cys Leu

1313

gctgtttctt ca

1325

<210> 123

<211> 401 <212> PRT

<213> Mus musculus

<220>

<221> misc_feature

<222> (11)..(11)

At position 11, R is a purine. <223>

<400> 123

Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Leu Leu Asp Ile Ile

Glu Trp Thr Thr Gln Glu Thr Leu Leu Pro Lys Tyr Leu His Tyr Asp

Pro Glu Thr Gly His Gln Leu Leu Cys Asp Lys Cys Ala Pro Gly Thr

Tyr Leu Lys Gln His Cys Thr Val Arg Arg Lys Thr Leu Cys Val Pro

Cys Pro Asp His Ser Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 70

Val Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Ser Val Lys Gln Glu

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Glu Glu Gly Arg Tyr

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Ser

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys 130 135

Cys Pro Asp Gly Phe Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys 145

Ile Lys His Thr Asn Cys Ser Thr Phe Gly Leu Leu Leu Ile Gln Lys 165

Gly Asn Ala Thr His Asp Asn Cys Cys Ser Gly Asn Arg Glu Ala Thr 190 185 Page 29

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Ile Ile Pro Asn Trp Leu Ser Val Leu Val Asp Ser Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 230 Lys Arg Arg His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 250 Trp Lys His Gln Asn Arg Asp Gln Glu Met Val Lys Lys Ile Ile Gln 260 265 Asp Ile Asp Leu Cys Glu Ser Ser Val Gln Arg His Leu Gly His Ser 280 Asn Leu Thr Thr Glu Gln Leu Leu Ala Leu Met Glu Ser Leu Pro Gly 295 Lys Lys Ile Ser Pro Glu Glu Ile Glu Arg Thr Arg Lys Thr Cys Lys Ser Ser Glu Gln Leu Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met Tyr Ala Leu Lys His Leu 340 Lys Thr Ser His Phe Pro Lys Thr Val Thr His Ser Leu Arg Lys Thr Met Arg Phe Leu His Ser Phe Thr Met Tyr Arg Leu Tyr Gln Lys Leu 375 Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 400 Leu <210> 124 <211> 1356 <212> DNA <213> Homo sapiens <220> <221> CDS (95)..(1297) <222> <223>

50

Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg

gtg tgc gaa tgc aag gaa ggg cgc tac ctt gag ata gag ttc tgc ttg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu

aaa cat agg agc tgc cct cct gga ttt gga gtg gtg caa gct gga acc Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr

cca gag cga aat aca gtt tgc aaa aga tgt cca gat ggg ttc ttc tca Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser

aat gag acg tca tct aaa gca ccc tgt aga aaa cac aca aat tgc agt Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser

gtc ttt ggt ctc ctg cta act cag aaa gga aat gca aca cac gac aac

Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn 175

ata tgt tcc gga aac agt gaa tca act caa aaa tgt gga ata gat gtt Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val

acc ctg tgt gag gag gca ttc ttc agg ttt gct gtt cct aca aag ttt Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe

acg cct aac tgg ctt agt gtc ttg gta gac aat ttg cct ggc acc aaa

Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys

210

Page 31

110

190

205

185

200

60

115

163

211

259

307

355

403

451

499

547

595

643

691

739

787

215

<220> <221> misc_feature <222> (63)..(63) At position 63, Y is a pyrimidine. <400> 124 qtatatataa cgtgatgagc gtacgggtgc ggagacgcac cggcgcgctc gcccagccgc cgyctccaag cccctgaggt ttccggggac caca atg aac aag ttg ctg tgc tgc Met Asn Lys Leu Leu Cys Cys gcg ctc gtg ttt ctg gac atc tcc att aag tgg acc acc cag gaa acg Ala Leu Val Phe Leu Asp Ile Ser Ile Lys Trp Thr Thr Gln Glu Thr 10 ttt cct cca aag tac ctt cat tat gac gaa gaa acc tct cat cag ctg Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu 3.0 ttg tgt gac aaa tgt cct cct ggt acc tac cta aaa caa cac tgt aca Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr 45 gca aag tgg aag tcc gtg tgc gcc cct tgc cct gac cac tac tac aca Ala Lys Trp Lys Ser Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr gac agc tgg cac acc agt gac gag tgt cta tac tgc agc ccc gtg tgc Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys aag gag ctg cag tac gtc aag cag gag tgc aat cgc acc cac aac cgc

230

	aac Asn															835
	cag Gln															883
	gat Asp 265															931
ago Ser 280	gtg Val	cag Gln	cgg Arg	cac His	att Ile 285	gga Gly	cat His	gct Ala	aac Asn	ctc Leu 290	acc Thr	ttc Phe	gag Glu	cag Gln	ctt Leu 295	979
	agc Ser															1027
att Ile	gaa Glu	aaa Lys	aca Thr 315	ata Ile	aag Lys	gca Ala	tgc Cys	aaa Lys 320	ccc Pro	agt Ser	gac Asp	cag Gln	atc Ile 325	ctg Leu	aag Lys	1075
ctg Lev	ctc Leu	agt Ser 330	ttg Leu	tgg Trp	cga Arg	ata Ile	aaa Lys 335	aat Asn	ggc Gly	gac Asp	caa Gln	gac Asp 340	acc Thr	ttg Leu	aag Lys	1123
ggo Gly	cta Leu 345	atg Met	cac His	gca Ala	cta Leu	aag Lys 350	cac His	tca Ser	aag Lys	acg Thr	tac Tyr 355	cac His	ttt Phe	ccc Pro	aaa Lys	1171
act Thr 360	gtc Val	act Thr	cag Gln	agt Ser	cta Leu 365	aag Lys	aag Lys	acc Thr	atc Ile	agg Arg 370	ttc Phe	ctt Leu	cac His	agc Ser	ttc Phe 375	1219
aca Thi	atg Met	tac Tyr	aaa Lys	ttg Leu 380	tat Tyr	cag Gln	aag Lys	tta Leu	ttt Phe 385	tta Leu	gaa Glu	atg Met	ata Ile	ggt Gly 390	aac Asn	1267
cag Glr	gtc Val	caa Gln	tca Ser 395	Val	aaa Lys	ata Ile	agc Ser	tgc Cys 400	tta Leu	taa	ctgg	aaa	tggc	catt	ga	1317
gct	gttt	cct	caca	attg	gc g	agat	ccca	t gg	atga	taa						1356
<2: <2:	.1> .2>	125 401 PRT Homo	sap	iens												
<22 <22	22>		(6	3)		Y is	aη	vrim	idin	e.						

<223> At position 63, Y is a pyrimidine.

<400> 125

Met Asn Lys Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Ser Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys 165 Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 200 Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val 220 215 Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Ala Gln Asp Ile Val Lys Lys Ile Ile Gln 265 Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala 280 Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 290

Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys 305 310 315 320

Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser 340 345

Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 355 360 365

Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 370 380

Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 385 395 400

Leu

<210> 126

<211> 139

<212> PRT

<213> Homo sapiens

<400> 126

Cys Pro Gln Gly Lys Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys 1 10 15

Thr Lys Cys His Lys Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro 20 25 30

Gly Gln Asp Thr Asp Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala 35 40 45

Ser Glu Asn His Leu Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys 50 55 60

Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr 65 70 75 80

Val Cys Gly Cys Arg Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn 85 90 95

Leu Phe Gln Cys Phe Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His

Leu Ser Cys Gln Glu Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly

Phe Phe Leu Arg Glu Asn Glu Cys Val Ser Cys 130

<210> 127

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> huOPG

<400> 127

acctacttct ttgaagagta gtcgacgaca cactatttac aggcggcc

48

<210> 128

<211> 219

<212> PRT

<213> Rattus rattus

<400> 128

Met Leu Gly Ile Trp Thr Leu Leu Pro Leu Val Leu Thr Ser Val Ala 1 5 10 15

Arg Leu Ser Ser Lys Ser Val Asn Ala Gln Val Thr Asp Ile Asn Ser 20 25 30

Lys Gly Leu Glu Leu Arg Lys Thr Val Thr Thr Val Glu Thr Gln Asn $35 \hspace{1cm} 40 \hspace{1cm} 45$

Leu Glu Gly Leu His His Asp Gly Gln Phe Cys His Lys Pro Cys Pro 50 60

Pro Gly Glu Arg Lys Ala Arg Asp Cys Thr Val Asn Gly Asp Glu Pro 65 70 75 80

Asp Cys Val Pro Cys Gln Glu Gly Lys Glu Tyr Thr Asp Lys Ala His 85 90 95

Phe Ser Ser Lys Cys Arg Arg Cys Arg Leu Cys Asp Glu Gly His Gly 100 105 110

Leu Glu Val Glu Ile Asn Cys Thr Arg Thr Gln Asn Thr Lys Cys Arg 115 120 125

Cys Lys Pro Asn Phe Phe Cys Asn Ser Thr Val Cys Glu His Cys Asp 130 135 140

Pro Cys Thr Lys Cys Glu His Gly Ile Ile Lys Glu Cys Thr Leu Thr 145 150 155 160

Ser Asn Thr Lys Cys Lys Glu Glu Gly Ser Arg Ser Asn Leu Gly Trp 165 170 175

Leu Cys Leu Leu Leu Pro Ile Pro Leu Ile Val Trp Val Lys Arg Page 35

190

Lys Glu Val Gln Lys Thr Cys Arg Lys His Arg Lys Glu Asn Gln Gly 195 200 205

Ser His Glu Ser Pro Thr Leu Asn Pro Glu Thr 210 215

<210> 129

<211> 281

<212> PRT

<213> Rattus rattus

<400> 129

Met Gly Leu Ser Thr Val Pro Asp Leu Leu Pro Leu Val Leu Leu 1 10 15

Glu Leu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu Val Pro 20 25 30

His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro Gln Gly Lys 35 40 45

Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys 50 55 60

Gly Thr Tyr Leu Thr Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr 65 70 75 80

Asp Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His 85 90 95

Leu Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln 100 105 110

Val Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys Gly Cys 115 120 125

Arg Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu Phe Gln Cys 130 140

Phe Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln 145 150 155 160

Glu Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg 165 170 175

Glu Asn Glu Cys Val Ser Cys Ser Asn Cys Lys Lys Ser Leu Glu Cys 180 185 190

Thr Lys Leu Cys Leu Pro Gln Ile Glu Asn Val Lys Gly Thr Glu Asp 195 200 205

Page 36

Ser Gly Thr Thr Val Leu Leu Pro Leu Val Ile Phe Phe Gly Leu Cys 210 220

Leu Leu Ser Leu Leu Phe Ile Gly Leu Met Thr Arg Thr Gln Arg Trp 225 230 235 240

Lys Ser Lys Leu Tyr Ser Ile Val Cys Gly Lys Ser Thr Pro Glu Lys 245 250 255

Glu Gly Glu Leu Glu Gly Thr Thr Lys Pro Leu Ala Pro Asn Pro 260 265 270

Ser Phe Ser Pro Thr Pro Gly Phe Thr 275 280

<210> 130

<211> 207

<212> PRT

<213> Rattus rattus

<400> 130

Met Leu Arg Leu Ile Ala Leu Leu Val Cys Val Val Tyr Val Tyr Gly
1 10 15

Asp Asp Val Pro Tyr Ser Ser Asn Gln Gly Lys Cys Gly Gly His Asp 20 25 30

Tyr Glu Lys Asp Gly Leu Cys Cys Ala Ser Cys His Pro Gly Phe Tyr 35 40 45

Ala Ser Arg Leu Cys Gly Pro Gly Ser Asn Thr Val Cys Ser Pro Cys 50 60

Glu Asp Gly Thr Phe Thr Ala Ser Thr Asn His Ala Pro Ala Cys Val 65 70 75 80

Ser Cys Arg Gly Pro Cys Thr Gly His Leu Ser Glu Ser Gln Pro Cys 85 90 95

Asp Arg Thr His Asp Arg Val Cys Asn Cys Ser Thr Gly Asn Tyr Cys
100 105 110

Leu Leu Lys Gly Gln Asn Gly Cys Arg Ile Cys Ala Pro Gln Thr Lys 115 120 125

Cys Pro Ala Gly Tyr Gly Val Ser Gly His Thr Arg Ala Gly Asp Thr 130 135 140

Leu Cys Glu Lys Cys Pro Pro His Thr Tyr Ser Asp Ser Leu Ser Pro 145 150 155 160

Thr Glu Arg Cys Gly Thr Ser Phe Asn Tyr Ile Ser Val Gly Phe Asn 165 170 175

Leu Tyr Pro Val Asn Glu Thr Ser Cys Thr Thr Thr Ala Gly His Asn 180 185 190

Glu Val Ile Lys Thr Lys Glu Phe Thr Val Thr Leu Asn Tyr Thr 195 200 205

<210> 131

<211> 227

<212> PRT

<213> Rattus rattus

<400> 131

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu 1 10 15

Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr
20 25 30

Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Thr Thr Asp Gln 35 40 45

Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys 50 55 60

Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp 65 70 75 80

Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys 85 90 95

Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg 100 105 110

Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu 115 120 125

Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg 130 140

Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val 145 150 155 160

Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr 165 170 175

Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly 180 185 190

Asn Ala Ser Arg Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser

Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser 210 220

Gln His Thr

<210> 132

<211> 197

<212> PRT

<213> Rattus rattus

<400> 132

Met Val Ser Leu Pro Arg Leu Cys Ala Leu Trp Gly Cys Leu Leu Thr 1 5 10 15

Ala Val His Leu Gly Gln Cys Val Thr Cys Ser Asp Lys Gln Tyr Leu 20 25 30

His Asp Gly Gln Cys Cys Asp Leu Cys Gln Pro Gly Ser Arg Leu Thr 35 40 45

Ser His Cys Thr Ala Leu Glu Lys Thr Gln Cys His Pro Cys Asp Ser 50

Gly Glu Phe Ser Ala Gln Trp Asn Arg Glu Ile Arg Cys His Gln His 65 75 80

Arg His Cys Glu Pro Asn Gln Gly Leu Arg Val Lys Lys Glu Gly Thr

Ala Glu Ser Asp Thr Val Cys Thr Cys Lys Glu Gly Gln His Cys Thr

Ser Lys Asp Cys Glu Ala Cys Ala Gln His Thr Pro Cys Ile Pro Gly 115 120

Phe Gly Val Met Glu Met Ala Thr Glu Thr Thr Asp Thr Val Cys His

Pro Cys Pro Val Gly Phe Phe Ser Asn Gln Ser Ser Leu Phe Glu Lys 145 150 155 160

Cys Tyr Pro Trp Thr Ser Cys Glu Asp Lys Asn Leu Glu Val Leu Gln
165 170 1V5

Lys Gly Thr Ser Gln Thr Asn Val Ile Cys Gly Leu Lys Ser Arg Met

Arg Ala Leu Leu Val

195 <210> 133 <211> 208 <212> PRT <213> Rattus rattus <400> 133 Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Phe Leu Asp Ile Ile Glu Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 Pro Glu Thr Gly Arg Gln Leu Cys Asp Lys Cys Ala Pro Gly Thr Val Arg Arg Lys Thr Leu Cys Val Pro Tyr Leu Lys Gln His Cys Thr Cys Pro Asp Tyr Ser Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Cys Lys Glu ben Gln Thr Val Lys Gln Glu Val Tyr Cys Ser Pro Val Val Cys Glu Cys Glu Glu Gly Arg Tyr Cys Asn Arg Thr His Asn Arg 105 100 Leu Lys His Arg Ser Cys Pro Pro Gly Leu Leu Glu Leu Glu Phe Cys' Gly Val Leu Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Gly Glu Thr Ser Sen Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Ser Leu Gly Leu Leu Leu Ile Gln Lys Gly Asn Ala Thr His Asp Asn Val Cys Ser Gly Asn Arg Glu Ala Thr 180 Gln Asn Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 200 <210> 134 <211> 224 <212> PRT<213> Rattus rattus <400> 134

Page 40

Met Gly Ala Gly Ala Thr Gly Arg Ala Met Asp Gly Pro Arg Leu Leu Leu Leu Leu Leu Cly Val Ser Leu Gly Gly Ala Lys Glu Ala Cys Pro Thr Gly Leu Tyk Thr His Ser Gly Glu Cys Cys Lys Ala Cys Asn 40 Leu Gly Glu Gly Val Ala Gln Pro Cys Gly Ala Asn Gln Thr Val Cys Glu Pro Cys Leu Asp Ser Val Thr Phe Ser Asp Val Val Ser Ala Thr Glu Pro Cys Lys Pro Cys Thr Glu Cys Val Gly Leu Gln Ser Met Ser Ala Pro Cys Val Glu Ala Asp Asp\Ala Val Cys Arg Cys Ala Tyr Gly Tyr Tyr Gln Asp Glu Thr Thr Gly Ang Cys Glu Ala Cys Arg Val Cys 120 Glu Ala Gly Ser Gly Leu Val Phe Ser Cys Gln Asp Lys Gln Asn Thr 140 Val Cys Glu Glu Cys Pro Asp Gly Thr Tyr Ser Asp Glu Ala Asn His Val Cys Glu Asp Thr Glu Arg Gln 170 175 Val Asp Pro Cys Leu Pro Cys Thr Leu Arg Glu Cys Thr Arg Trp Ala Ash Ala Glu Cys Glu Glu Ile Pro Gly Arg Trp Ile Thr Arg Ser Thr Pro Pro Glu Gly Ser Asp Ser Thr Ala Pro Ser Thr Gln Glu Pro Glu Ala Pro Pro Glu Gln Asp Leu Ile 220 215 <210> 135 <211> 205 <212> PRT <213> Rattus rattus <400> 135 Met Tyr Val Trp Val Gln Gln Pro Thr Ala Phe Leu Leu Gly 10

Page 41

```
A-378CIP5.ST25.txt
Ser Leu GIN Val Thr Val Lys Leu Asn Cys Val Lys Asp Thr Tyr Pro
Ser Gly His Ly& Cys Cys Arg Glu Cys Gln Pro Gly His Gly Met Val
Ser Arg Cys Asp Has Thr Arg Asp Thr Val Cys His Pro Cys Glu Pro
Gly Phe Tyr Asn Glu Ala Val Asn Tyr Asp Thr Cys Lys Gln Cys Thr
Gln Cys Asn His Arg Ser Gly Ser Glu Leu Lys Gln Asn Cys Thr Pro
Thr Glu Asp Thr Val Cys App Pro Gly Thr Gln Pro Arg Gln
Asp Ser Ser His Lys Leu Gly Wal Asp Cys Val Pro Cys Pro Pro Gly
His Phe Ser Pro Gly Ser Asn Gla Ala Cys Lys Pro Trp Thr Asn Cys
Thr Leu Ser Gly Lys Glm Ile Arg His Pro Ala Ser Asn Ser Leu Asp
                        Ser Leu Leu Ala Thr Leu Leu Trp Glu Thr
Thr Val Cys Glu Asp
                   Arg
                165
Gln Arg Thr Thr Phe Arg Pro Thr Thr Val Pro Ser Thr Thr Val Trp
                                185
            180
Pro Arg Thr Ser Gln Leu Pro Ser Thr Pro The Leu Val
                            (200
        195
<210>
      136
<211>
       191
<212>
       PRT
<213>
      Rattus rattus
<400> 136
Met Gly Asn Asn Cys Tyr Asn Val Val Val Ile Val Leu\Leu Leu Val
Gly Cys Glu Lys Val Gly Ala Val Gln Asn Ser Cys Asp Asn Cys Gln
Pro Gly Thr Phe Cys Arg Lys Tyr Asn Pro Val Cys Lys Ser Cys Pro
Pro Ser Thr Phe Ser Ser Ile Gly Gly Gln Pro Asn Cys Asn Ile Cys
```

55

Arg Val Cys Ala Gly Tyr Phe Arg Phe Lys Lys Phe Cys Ser Ser Thr 65 70 75 80

His Asn Ala Glu Cys Glu Cys Ile Glu Gly Phe His Cys Leu Gly Pro 85 90 95

Gln Cys Thr Arg Cys Glu Lys Asp Cys Arg Pro Gly Gln Glu Leu Thr $100 \,$ $105 \,$ $110 \,$

Lys Gln Gly Cys Lys Thr Cys Ser Leu Gly Thr Phe Asn Asp Gln Asn 115 120 125

Gly Thr Gly Val Cys Arg Pro Trp Thr Asn Cys Ser Leu Asp Gly Arg 130 135 140

Ser Val Leu Lys Thr Gly Thr Thr Glu Lys Asp Val Val Cys Gly Pro 145 150 155 160

Pro Val Val Ser Phe Ser Pro Ser Thr Thr Ile Ser Val Thr Pro Glu 165 170 175

Gly Gly Pro Gly Gly His Ser Leu Gln Val Leu Thr Leu Phe Leu 180 185 190

<210> 137

<211> 54 <212> DNA

<213> Artificial Sequence

<220>

<223> huOPG

<400> 137

tatggatgaa gaaacttctc atcagctgct gtgtgataaa tgtccgccgg gtac

<210> 138

<211> 284

<212> PRT <213> Mus musculus

<400> 138

Cys Leu Lys His Arg Ser Cys Pro Pro Gly Ser Gly Val Val Gln Ala 1 5 10 15

Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Lys Cys Pro Asp Gly Phe 20 25 30

Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys Ile Lys His Thr Asn 40 45

Cys Ser Thr Phe Gly Leu Leu Leu Ile Gln Lys Gly Asn Ala Thr His $50 \hspace{1cm} 55 \hspace{1cm} 60 \hspace{1cm}$ Page $43 \hspace{1cm}$

54

Asp 65	Asn	Val	Cys	Ser	Gly 70	Asn	Arg	Glu	Ala	Thr 75	Gln	Lys	Cys	Gly	Ile 80
Asp	Val	Thr	Leu	Cys 85	Glu	Glu	Ala	Phe	Phe 90	Arg	Phe	Ala	Val	Pro 95	Thr
Lys	Ile	Ile	Pro 100	Asn	Trp	Leu	Ser	Val 105	Leu	Val	Asp	Ser	Leu 110	Pro	Gly
Thr	Lys	Val 115	Asn	Ala	Glu	Ser	Val 120	Glu	Arg	Ile	Lys	Arg 125	Arg	His	Ser
Ser	Gln 130	Glu	Gln	Thr	Phe	Gln 135	Leu	Leu	Lys	Leu	Trp 140	Lys	His	Gln	Asn
Arg 145	Asp	Gln	Glu	Met	Val 150	Lys	Lys	Ile	Ile	Gln 155	Asp	Ile	Ala	Leu	Cys 160
Glu	Ser	Ser	Val	Gln 165	Arg	His	Leu	Gly	His 170	Ser	Asn	Leu	Thr	Thr 175	Glu
Gln	Leu	Leu	Ala 180	Leu	Met	Glu	Ser	Leu 185	Pro	Gly	Lys	Lys	Ile 190	Ser	Pro
Glu	Glu	Ile 195	Glu	Arg	Thr	Arg	Lys 200	Thr	Cys	Lys	Ser	Ser 205	Glu	Gln	Leu
Leu	Lys 210		Leu	Ser	Leu	Trp 215	Arg	Ile	Lys	Asn	Gly 220	Asp	Gln	Asp	Thr
Leu 225		Gly	Leu	Met	Tyr 230	Ala	Leu	Lys	His	Leu 235	Lys	Thr	Ser	His	Phe 240
Pro	Lys	Thr	Val	Thr 245		Ser	Leu	Arg	Lys 250	Thr	Met	Arg	Phe	Leu 255	His
Ser	Phe	Thr	Met 260		Arg	Leu	Tyr	Gln 265	Lys	Leu	Phe	Leu	Glu 270	Met	Ile
Gly	Asn	Gln 275		Gln	Ser	Val	Lys 280		Ser	Cys	Leu				
<21 <21 <21 <21	.1> .2>	139 380 PRT Homo	sap	iens	:										
<40	00>	139													
Glu 1	ı Thr	Phe	Pro	Pro 5	Lys	Tyr	Leu	His	Tyr 10	· Asp	Glu	Glu	Thr	Ser 15	His

								A-J,	OCIL	J. 51	23.0	ΛC			
Gln	Leu	Leu	Cys 20	Asp	Lys	Cys	Pro	Pro 25	Gly	Thr	Tyr	Leu	Lys 30	Gln	His
Cys	Thr	Ala 35	Lys	Trp	Lys	Thr	Val 40	Cys	Ala	Pro	Cys	Pro 45	Asp	His	Tyr
Tyr	Thr 50	Asp	Ser	Trp	His	Thr 55	Ser	Asp	Glu	Cys	Leu 60	Tyr	Cys	Ser	Pro
Val 65	Cys	Lys	Glu	Leu	Gln 70	Tyr	Val	Lys	Gln	Glu 75	Cys	Asn	Arg	Thr	His 80
Asn	Arg	Val	Cys	Glu 85	Cys	Lys	Glu	Gly	Arg 90	Tyr	Leu	Glu	Ile	Glu 95	Phe
Cys	Leu	Lys	His 100	Arg	Ser	Cys	Pro	Pro 105	Gly	Phe	Gly	Val	Val 110	Gln	Ala
Gly	Thr	Pro 115	Glu	Arg	Asn	Thr	Val 120	Cys	Lys	Arg	Cys	Pro 125	Asp	Gly	Phe
Phe	Ser 130	Asn	Glu	Thr	Ser	Ser 135	Lys	Ala	Pro	Cys	Arg 140	Lys	His	Thr	Asn
Cys 145	Ser	Val	Phe	Gly	Leu 150	Leu	Leu	Thr	Gln	Lys 155	Gly	Asn	Ala	Thr	His 160
Asp	Asn	Ile	Cys	Ser 165	Gly	Asn	Ser	Glu	Ser 170	Thr	Gln	Lys	Cys	Gly 175	Ile
Asp	Val	Thr	Leu 180	Cys	Glu	Glu	Ala	Phe 185	Phe	Arg	Phe	Ala	Val 190	Pro	Thr
Lys	Phe	Thr 195	Pro	Asn	Trp	Leu	Ser 200	Val	Leu	Val	Asp	Asn 205	Leu	Pro	Gly
Thr	Lys 210	Val	Asn	Ala	Glu	Ser 215		Glu	Arg	Ile	Lys 220	Arg	Gln	His	Ser
Ser 225	Gln	Glu	Gln	Thr	Phe 230	Gln	Leu	Leu	Lys	Leu 235	Trp	Lys	His	Gln	Asn 240
Lys	Ala	Gln	Asp	Ile 245	Val	Lys	Lys	Ile	Ile 250	Gln	Asp	Ile	Asp	Leu 255	Cys
Glu	Asn	Ser	Val 260		Arg	His	Ile	Gly 265		Ala	Asn	Leu	Thr 270		Glu
Gln	Leu	Arg 275		Leu	Met	Glu	Ser 280		Pro	Gly	Lys	Lys 285	Val	Gly	Ala
	Page 45														

Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile 290 295 300	
Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr 305 310 315 320	
Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Lys His Phe 325 330 335	
Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His 340 345 350	
Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile 355 360 365	
Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu 370 375 380	
<210> 140 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> huOPG	
<400> 140	30
<210> 141 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> huOPG	
<400> 141 gtcataatga aggtacttct gggtggtcca	30
<210> 142 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> huOPG	
<400> 142 ggaccaccca gcttcattat gacgaagaaa c	31
<210> 143 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> huOPG	

	143 cgt cataatgaag ctgggtggtc c	31
	144 29 DNA Artificial Sequence	
<220> <223>	huOPG	
<400> gtggacc	144 cacc caggacgaag aaacctctc	29
<210><211><211><212><213>	145 29 DNA Artificial Sequence	
<220> <223>	huOPG	
<400> gagaggt	145 ttc ttcgtcctgg gtggtccac	29
<210><211><212><213>	146 29 DNA Artificial Sequence	
<220> <223>	huOPG	
<220> <221> <223>	misc_feature PCR primer for mutant analogue.	
<400> cgtttco	146 ctcc aaagttcctt cattatgac	29
<210><211><212><212><213>	147 29 DNA Artificial Sequence	
<220> <223>	huOPG	
<400> gtcata	147 atga aggaactttg gaggaaacg	29
<210><211><211><212><213>	148 32 DNA Artificial Sequence	
<220> <223>	huOPG	
<400> ggaaac	148 gttt cctgcaaagt accttcatta tg Page 47	32

1

<210><211><212><212><213>	149 32 DNA Artificial Sequence	•
<220> <223>	huOPG	
<400> cataato	149 gaag gtactttgca ggaaacgttt cc	32
<210><211><211><212><213>	150 27 DNA Artificial Sequence	
<220> <223>	muOPG	
<400> cacgcaa	150 aaag tcgggaatag atgtcac	27
<210><211><211><212><213>	151 27 DNA Artificial Sequence	
<220> <223>	muOPG	
<400> gtgaca	151 tcta ttcccgactt ttgcgtg	27
<210><211><211><212><213>	152 25 DNA Artificial Sequence	
<220> <223>	muOPG ,	
<400> caccct	152 gtcg gaagaggcct tcttc	25
<210><211><211><212><213>	153 25 DNA Artificial Sequence	
<220> <223>	muOPG	
<400> gaagaa	153 **** aggec tettecgaca gggtg	25
<210><211><211><212><213>	154 24 DNA : Artificial Sequence	
<220>	ine one	

<223>	muOPG	
<400> tgaccto	154 etcg gaaagcagcg tgca	24
<210><211><211><212><213>	155 24 DNA Artificial Sequence	
<220> <223>	muOPG	
<400> tgcacgo	155 ctgc tttccgagag gtca	24
<210><211><211><212><213>	156 24 DNA Artificial Sequence	
<220> <223>	muOPG	
<400> cctcgaa	156 aatc gagcgagcag ctcc	24
<210><211><212><212><213>	157 25 DNA Artificial Sequence	
<220> <223>	muOPG	
<400> cgattt	157 cgag gtctttctcg ttctc	25
<210><211><211><212><213>	158 33 DNA Artificial Sequence	
<220> <223>	muOPG	
<400> ccgtga	158 aaat aagctcgtta taactaggaa tgg	33
<210><211><211><212><213>	159 33 DNA Artificial Sequence	
<220> <223>	muOPG	
<400> ccatto	159 cctag ttataacgag cttattttca cgg	33
<210> <211>	160 · 38	

```
A-378CIP5.ST25.txt
<212>
       DNA
<213>
      Artificial Sequence
<220>
K223>
      muOPG
<\100> 160
                                                                         38
cdtctgagct caagcttccg aggaccacaa tgaacaag
<210
       161
<211>
       44
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       mu\PG
<400>
       161
                                                                         44
cctctctcga gacaggtgac atctattcca cacttttgcg tggc
<210>
       162
<211>
       38
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
      muOPG
<400> 162
                                                                         38
cctctgagct caagcttccg aggaccacaa tgaacaag
<210> ·163
<211>
       38
<212>
       DNA
       Artificial Sequence
<213>
<220>
      PCR primer for deletion mutant
<223>
<400> 163
                                                                         38
cctctctcga gtcaaggaac agcaaacctg aagaaggc
<210>
       164
<211>
       38
<212> DNA
<213> Artificial Sequence
<220>
<223> muOPG
<400> 164
                                                                         38
cctctgagct caagcttccg aggaccacaa tgaacaag
<210>
       165
<211>
       38
<212> DNA
<213>
       Artificial Sequence
<220>
<223>
       muOPG:
<400> 165 4
                                                                          38
cctctctcga gtcactctgt ggtgaggttc gagtggcc
```

ţ

```
<210>
      166
<211>
       38
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223>
       muOPG
<400> 166
                                                                        38
cctctgagct caagcttccg aggaccacaa tgaacaag
<210>
       167
<211>
       38
<212>
       DNA
       Artificial
<213>
                  Sequence
<220>
<223>
      muOPd
<400>
      167
                                                                        38
cctctctcga gtcaggatgt tttcaagtgc
                                  ktgagggc
<210>
       168
<211>
       16
<212>
       PRT
<213>
       Artificial Sequence
<220>
<223>
       pAMG22
<400> 168
Met Lys His His His His His His Ala Ser Val Asn Ala Leu Glu
                                     10
```