Filtros en el dominio espacial

Dr. Pablo Alvarado Moya

MP6123 Procesamiento Digital de Imágenes Programa de Maestría en Electrónica Énfasis en Procesamiento Digital de Señales Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

II Cuatrimestre 2012

Contenido

- 1 Operaciones sobre los valores de vecindades
- Teoría de sistemas y filtrado espacial
 - Linealidad e Invarianza a la traslación
 - Convolución
 - Separabilidad
 - Correlación

Operaciones espaciales

- Operaciones geométricas
- Operaciones sobre valores de píxeles
- 3 Transformaciones de dominio
- Operaciones sobre los valores de vecindades

Operaciones sobre los valores de vecindades

Para imagen de entrada \mathcal{A} , la imagen de salida \mathcal{B} es

$$\mathcal{B} = \{ \mathbf{b} \mid \mathbf{b} = \langle \underline{\mathbf{x}}, \underline{\mathbf{d}} \rangle, \quad \underline{\mathbf{d}} = T(\mathsf{val}(\mathcal{N}(\mathbf{a}))), \quad \mathbf{a} = \langle \underline{\mathbf{x}}, \underline{\mathbf{c}} \rangle \in \mathcal{A} \}$$

Teoría de sistemas Tres tareas básicas

- **1** Simulación de sistemas: T y a conocidos, determinar b
- Reconstrucción de señales: T y b conocidos, determinar a
- **3** Identificación de sistemas: a y b conocidos, determinar T

Diferencias de PDI con PDS tradicional

- 1 la señales se definen en el espacio y no en el tiempo
- ② dos variables independientes espaciales en vez de una temporal.

Linealidad

Si
$$b_i(x,y) = T[a_i(x,y)]$$
 entonces

$$T[k_1a_1(x,y) + k_2a_2(x,y)] = k_1T[a_1(x,y)] + k_2T[a_2(x,y)]$$

o en general

$$T\left[\sum_{k=1}^{N} k_i a_i(x, y)\right] = \sum_{k=1}^{N} k_i T[a_i(x, y)] = \sum_{k=1}^{N} k_i b_i(x, y)$$

Invarianza a la traslación

Si
$$b(x, y) = T[a(x, y)]$$
 entonces:

$$b(x - x_0, y - y_0) = T[a(x - x_0, y - y_0)]$$

Sistemas LTS

LTS: Linear and Shift Invariant (Equivalente de sistemas LTI en el espacio)

Impulso unitario bidimensional

$$\delta(x,y) = \delta(x)\delta(y) = \begin{cases} 1 & \text{si } x = y = 0 \\ 0 & \text{en el resto} \end{cases}$$

Propiedad de muestreo:

Píxel en posición (u, v): $f(x, y)\delta(x - u, y - v)$

Imagen como suma de píxeles

$$f(x,y) = \sum_{(u,v)} f(u,v)\delta(x-u,y-v) = f(x,y) * \delta(x,y)$$

Convolución

Sea T un sistema LSI

$$g(x,y) = T[f(x,y)] = T\left[\sum_{(u,v)} f(u,v)\delta(x-u,y-v)\right]$$

$$= \sum_{(u,v)} T[f(u,v)\delta(x-u,y-v)]$$

$$= \sum_{(u,v)} f(u,v)T[\delta(x-u,y-v)]$$

$$= \sum_{(u,v)} f(u,v)h(x-u,y-v)$$

$$= f(x,y) * h(x,y)$$

con respuesta al impulso $h(x, y) = T[\delta(x, y)]$

Función de dispersión puntual

La respuesta al impulso $h(x,y) = T[\delta(x,y)]$ llamada en PDI también **función de dispersión puntual** o PSF por *point spread* function

Pasos de la convolución

$$f(x,y) * h(x,y) = \sum_{(u,v)} f(u,v)h(x-u,y-v)$$

Cuatro pasos:

- Invertir h tanto en x como en y (rotación en 180°)
- 2 Trasladar origen de h invertida a píxel de interés en (x, y)
- Multiplicar punto a punto h invertida y trasladada con x
- Sumar todos los productos anteriores y asignarlos al resultado g(x, y).

Otra interpretación Convolución

$$f(x,y) * h(x,y) = \sum_{(u,v)} f(u,v)h(x-u,y-v)$$

superposición de la PSF desplazada a cada (u, v) y amplificada por el respectivo f(u, v) (sistema LSI).

Propiedades Convolución

Conmutatividad:

$$a(x,y)*b(x,y)=b(x,y)*a(x,y)$$

Asociatividad:

$$a(x, y) * b(x, y) * c(x, y) = [a(x, y) * b(x, y)] * c(x, y)$$

= $a(x, y) * [b(x, y) * c(x, y)]$

Distributividad:

$$a(x,y)*(b(x,y)+c(x,y)) = a(x,y)*b(x,y)+a(x,y)*c(x,y)$$

Costo de la convolución

- Imagen f(x, y) tiene R filas y C columnas
- h(x, y) (kernel, núcleo, máscara, PSF) tiene N filas y M columnas con $x \in \{x_i, \dots, x_f\}$, $y \in \{y_i, \dots, y_f\}$, $N = y_f y_i + 1$, $M = x_f x_i + 1$
- La convolución se puede reescribir

$$f(x,y) * h(x,y) = \sum_{v=y-y_f}^{y-y_i} \sum_{u=x-x_f}^{x-x_i} f(u,v)h(x-u,y-v)$$

para recorrer la máscara.

- Tamaño máscara: K = NM, tamaño imagen: S = RC
- Cada píxel: K productos, K-1 sumas
- Total operaciones: SK productos, S(K-1) sumas

Filtro separable

Kernel h(x, y) separable si

$$h(x,y) = h_h(x)h_v(y)$$

Convolución con filtro separable

$$f(x,y) * h(x,y) = \sum_{v=y-y_f}^{y-y_i} \sum_{u=x-x_f}^{x-x_i} f(u,v) h_h(x-u) h_v(y-v)$$
$$= \sum_{v=y-y_f}^{y-y_i} h_v(y-v) \sum_{u=x-x_f}^{x-x_i} f(u,v) h_h(x-u)$$

La suma interna $g_x(x, v) = \sum_{u=x-x_f}^{x-x_f} f(u, v) h_h(x-u)$ es un filtrado unidimensional para cada fila v de f(x, y), y así:

$$f(x,y) * h(x,y) = \sum_{v=y-y_f}^{y-y_i} h(y-v)g_x(x,v)$$

Costo de convolución separable

- Píxel en una fila: M productos, M 1 sumas (Producto punto)
- Fila: MC productos y C(M-1) sumas
- Todas las filas MRC = MS productos, RC(M-1) = S(M-1) sumas.
- Píxel en una columna: N productos, N-1 sumas.
- Columna: NR productos y R(N-1) sumas.
- Todas las columnas NRC = NS productos, RC(N-1) = S(N-1) sumas.
- Gran total: S(N+M) productos, S(N+M-2) sumas

Comparación de máscaras separables y no separables

- Asúmase N = M, R = C (máscara e imagen cuadradas)
- Máscara no separable: R^2N^2 productos, $R^2(N^2-1)$
- Máscara separable: R^22N productos, $R^2(2N-2)$ sumas
- $\mathcal{O}(N^2)$ contra $\mathcal{O}(N)$

Correlación

Correlación:

$$f(x,y) \circ h(x,y) = f(x,y) * h(-x,-y) = \sum_{u,v} f(u,v) h(x+u,y+v)$$

- La máscara no se rota, como la convolución
- Se utiliza para buscar patrones similares a h

Resumen

- 1 Operaciones sobre los valores de vecindades
- Teoría de sistemas y filtrado espacial
 - Linealidad e Invarianza a la traslación
 - Convolución
 - Separabilidad
 - Correlación