Àlex Batlle Casellas

1. A la família d'afinitats de $\mathbb{A}^2_{\mathbb{R}}$ d'equacions

$$\begin{cases} x' = ax + ay + b \\ y' = ax + 6y + b^2 \end{cases}$$

hi ha quatre homologies els eixos de les quals són els costats d'un paral·lelogram. Determineu els vèrtexs d'aquest paral·lelogram.

Resolució

Podem expressar les afinitats corresponents com

$$f_{a,b}(x,y) = \begin{pmatrix} a & a \\ a & 6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} b \\ b^2 \end{pmatrix} = M \begin{pmatrix} x \\ y \end{pmatrix} + \hat{b}.$$

Aleshores, els punts fixos compleixen $(M - \operatorname{Id}) \begin{pmatrix} x \\ y \end{pmatrix} + \hat{b} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Si escrivim això com a sistema lineal, trobarem valors d'a i b pels quals tenim rectes de punts fixos:

$$\begin{pmatrix} a-1 & a & -b \\ a & 5 & -b^2 \end{pmatrix} \sim \begin{pmatrix} -1 & a-5 & -b+b^2 \\ 0 & a^2-5a+5 & (a-1)b^2-ab \end{pmatrix}$$

Si volem que aquest sistema tingui per solució una recta, la matriu ha de tenir rang 1, i per tant, la segona fila ha de ser tota de zeros. Per tant, resolem les equacions que ens surten d'igualar els elements de la segona fila a zero, és a dir,

$$a^2 - 5a + 5 = 0,$$
 $(a-1)b^2 - ab = 0,$

de les que surten les solucions $a = \frac{5 \pm \sqrt{5}}{2}$, b = 0, $\frac{5 \pm \sqrt{5}}{3 \pm \sqrt{5}}$. En imposar aquests valors, podem agafar-ne exactament quatre combinacions, que fan una recta cada una.

$$r_1: -x + \frac{-5 + \sqrt{5}}{2}y = 0,$$

$$r_2: -x + \frac{-5 - \sqrt{5}}{2}y = 0,$$

$$r_3: -x + \frac{-5 + \sqrt{5}}{2}y = 5 - 2\sqrt{5},$$

$$r_4: -x + \frac{-5 - \sqrt{5}}{2}y = 5 + 2\sqrt{5}.$$

Ara busquem les interseccions de les rectes que no són paral·leles i haurem trobat els vèrtexs del paral·lelogram.

•
$$r_1 \cap r_2 : x = 0, y = 0.$$

•
$$r_1 \cap r_4 : \begin{cases} -x + \frac{-5 + \sqrt{5}}{2}y = 0\\ -x + \frac{-5 - \sqrt{5}}{2}y = 5 + 2\sqrt{5} \end{cases} \implies (\cdots) \implies x = \frac{3\sqrt{5} + 5}{2}, y = -\sqrt{5} - 2.$$

•
$$r_3 \cap r_2 : \begin{cases} -x + \frac{-5 - \sqrt{5}}{2}y = 0 \\ -x + \frac{-5 + \sqrt{5}}{2}y = 5 - 2\sqrt{5} \end{cases} \implies (\cdots) \implies x = \frac{-3\sqrt{5} + 5}{2}, y = \sqrt{5} - 2$$

•
$$r_3 \cap r_4 : \begin{cases} -x + \frac{-5 + \sqrt{5}}{2}y = 5 - 2\sqrt{5} \\ -x + \frac{-5 - \sqrt{5}}{2}y = 5 + 2\sqrt{5} \end{cases} \implies (\cdots) \implies x = -5, y = -4.$$

Per tant, ja hem trobat els quatre vèrtexs, que són

$$A = (0,0)$$

$$B = (\frac{3\sqrt{5} + 5}{2}, -\sqrt{5} - 2)$$

$$C = (\frac{-3\sqrt{5}+5}{2}, \sqrt{5}-2)$$

$$D = (-5, -4).$$

- **2.** Siguin F, A, B tres punts alineats del pla afí. Considerem totes les afinitats del pla que deixen fix F, transformen A en B i tenen una única recta fixa.
 - (a) Trobeu el lloc geomètric de les imatges d'un punt donat per aquestes afinitats.
 - (b) Demostreu que existeix una homotècia tal que les afinitats anteriors són el producte d'aquesta homotècia per les homologies especials d'eix FA.

Resolució

Primer de tot, expressarem les afinitats que ens demanen en equacions amb un sistema de referència $\mathcal{R}_0 = \{F; v_1, \vec{FA}\}$, agafant v_1 qualsevol vector que compleixi $(\tilde{f} - \lambda \operatorname{Id})(v_1) = \vec{FA}$. Per les hipòtesis del problema, $(F, A, B) = \lambda$. Aleshores, tenim la matriu de l'afinitat en coordenades ampliades de la següent forma:

$$M(f_{\lambda}; \mathcal{R}_0) = \begin{pmatrix} \lambda & 0 & 0 \\ 1 & \lambda & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}.$$

Com que només hi ha una recta invariant (fixa), aquesta només pot ser la recta que passa per F, A i B.

- (a) El lloc geomètric de les imatges d'un punt p arbitrari per qualsevol f_{λ} és el conjunt $\{z \equiv (z_1, z_2) \in A \mid \exists \lambda \in \mathbb{R} : z_1 = \lambda p_1 \wedge z_2 = p_1 + \lambda p_2\}$, pràcticament per definició. Fixem-nos en que la primera coordenada depèn de l'afinitat agafada i dels punts donats, doncs el primer vector del sistema de referència depèn de f ja que s'agafa respecte \vec{FA} (ha de complir $(\tilde{f} \lambda \operatorname{Id})(v_1) = \vec{FA}$) i la constant λ és igual a la raó simple entre els tres punts. En canvi, la segona coordenada depèn només dels punts donats F, A, B, ja que el segon vector de la base agafada és \vec{FA} i $\lambda = (F, A, B)$. Per tant, el lloc geomètric resultant és una recta.
- (b) Per demostrar això, veurem que podem trobar la homotècia (h_{α}) en concret per la qual es satisfà el producte per la homologia especial H_{β} . Aquesta homologia especial té per matriu de la part lineal, en la nostra referència,

$$\begin{pmatrix} 1 & 0 \\ \beta & 1 \end{pmatrix}$$
,

i és la que busquem doncs per qualsevol punt de la recta $\langle F, A \rangle$, la seva imatge és ell mateix, i per qualsevol altre punt, no; veiem-ho:

• $p \in \langle F, A \rangle$: Aleshores, $p = F + \mu_p \vec{FA}$, i $H_{\beta}(p) = H_{\beta}(F) + \tilde{H}_{\beta}(\mu_p \vec{FA})$. Calculant per la matriu,

$$H_{\beta}(p) = F + \begin{pmatrix} 1 & 0 \\ \beta & 1 \end{pmatrix} \begin{pmatrix} 0 \\ \mu_p \end{pmatrix} = F + \begin{pmatrix} 0 \\ \mu_p \end{pmatrix} = F + \mu_p \vec{FA} = p.$$

• $p \notin \langle F, A \rangle$: Aleshores, $p = F + \gamma_p v_1 + \mu_p \vec{F} A$, i $H_{\beta}(p) = H_{\beta}(F) + \tilde{H}_{\beta}(\gamma_p v_1 + \mu_p \vec{F} A)$. Calculant per la matriu altre cop,

$$H_{\beta}(p) = F + \begin{pmatrix} 1 & 0 \\ \beta & 1 \end{pmatrix} \begin{pmatrix} \gamma_p \\ 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ \beta & 1 \end{pmatrix} \begin{pmatrix} 0 \\ \mu_p \end{pmatrix} = F + \begin{pmatrix} \gamma_p \\ \beta \gamma_p \end{pmatrix} + \begin{pmatrix} 0 \\ \mu_p \end{pmatrix} \neq p.$$

Per tant, imposem la condició $f_{\lambda}=h_{\alpha}\circ H_{\beta}$. Representant totes aquestes afinitats en coordenades, tenim

$$\begin{pmatrix} \lambda & 0 \\ 1 & \lambda \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \beta & 1 \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ \alpha\beta & \alpha \end{pmatrix},$$

i podem agafar $\alpha=\lambda,\beta=\frac{1}{\lambda}$ i tenim f_λ . $\alpha\neq 0$ per definició d'homotècia, i β el mateix per definició d'homologia.