Inorganic Chemistry (CY11001)

Bonding in coordination compounds: CFT

Books to Refer:

Inorganic Chemistry by Shriver & Atkins Inorganic Chemistry by James E. Huheey

Prof. Madhab Chandra Das
Department of Chemistry
High Pressure Lab (Ground Floor)
Ph: 03222-282894

Email: mcdas@chem.iitkgp.ernet.in

Bonding in coordination compounds: CFT

- Introduction....1704 (PB)...1799 (CoCl₃. *n*NH₃) by Tassaert)
- Nobel prize 1913

- Jorgensen....
- Alfred Werner 1893
- VBT : Pauling & Slater (1935)
- To LEARN: Crystal Field Theory (CFT): Hans Bethe
- Modified CFT/ Ligand Field Theory / MOT van Vleck (1935)

 $[Fe(H_2O)_6]^{3+} \qquad [Ni(H_2O)_6]^{2+} \qquad [Zn(H_2O)_6]^{2+} \\ [Co(H_2O)_6]^{2+} \qquad [Cu(H_2O)_6]^{2+}$

Gemstone owe their color from trace transition-metal ions

- Mineral of Al: Colorless
- Cr → Al : Ruby
- Fe → Al: Topaz
- Ti &Co → Al: Sapphire
- Cr → Al : Emerald
- Fe → AI : Aquamarine

How & Why?

Werner's theory can't predict the geometry of the complex

Valance Bond Theory

Basic Principle

A covalent bond forms when the orbtials of two atoms overlap and are occupied by a pair of electrons that have the highest probability of being located between the nuclei.

covalent bond/ coordinate covalent bond

Linus Carl Pauling (1901-1994)

Nobel prizes: 1954, 1962

Limitations of VB theory

Cannot account for colour of complexes

Cannot account for spectrochemical series

Crystal Field Theory

• The relationship between colors and complex metal ions

Crystal Field Model

- No orbital overlap, no existence of covalent bonding.
- **A purely** *ionic* model for transition metal complexes.
- Ligands are considered as point charge.
- Predicts the pattern of splitting of d-orbitals.
- Used to rationalize spectroscopic and magnetic properties.

predicts the geometry of the complex

Octahedral Field

- •The ligands are approaching along the axes
- •The orbitals directed along the axes will experience more repulsive force
- •Thus, $d_{X_2-Y_2}$ & d_2 will experience stronger repulsion than.....

Oct CF Splitting

Crystal Field Stabilization Energy

d¹, d², d³...only one arrangement possible

 $d^4 d^5 d^6 d^7$

- In weak/low field (HS): $\Delta_0 < P$, => $t_{2g}^3 e_g^{-1}$
- In strong/high field (LS) $\Delta_O > P$, => t_{2g}^4
- P: paring energy

How about electronic arrangement d⁸, d⁹, d¹⁰? (Do It Yourself)

What is the crystal field stabilization energy (CFSE) of $[Fe(CN)_6]^{3-}$?

 $C.N. = 6 : O_h$

Fe(III) :: d^5

h.s.

CFSE = 3 x - 0.4
$$\Delta_{o}$$

+ 2 x 0.6 Δ_{o} = 0

CFSE =
$$5 \times -0.4 \Delta_0 + 2P = -2.0 \Delta_0 + 2P$$

If the CFSE of $[Co(H_2O)_6]^{2+}$ is -0.8 Δ_{oct} , what spin state is it in?

$$C.N. = 6 : O_h \quad Co(II) : d^7$$

H2011

H₂O

QΗ₂

OH₂

2+

h.s.

CFSE =
$$(5 \times -0.4 \Delta_0)$$

+ $(2 \times 0.6 \Delta_0)$ = $-0.8 \Delta_0$

l.s.

CFSE =
$$(6 \times -0.4 \Delta_0)$$

+ $(0.6 \Delta_0)$ + P= - 1.8 Δ_0 + P

Atkins: pp476

In Tetrahedral Field

- •The directions x,y,z point to the face centres
- • dx^2 - y^2 & dz^2 point along x,y,z directions
- •Others point in between x,y,z directions i.e. towards corners

Distortion in Octahedral Complex (Jahn-Teller Theorem)

1937: Hermann Jahn and Edward Teller

In an electronically degenerate state, a nonlinear molecule undergoes distortion to remove the degeneracy by lowering the symmetry and thus by lowering the energy.

Symmetrically occupied orbitals——>non-degenerate state——>NO J-T Distortion

Type of Distortion An octahedral complex with a d² electronic configuration:

Elongation distortion/Z-out

Flattening distortion/Z-in

we have gained -2/3 δ^2 of additional stabilization energy

we have gained -1/3 δ^2 of additional stabilization energy

Did we remove degeneracy?

General Question: Can we tell how big a Jahn-Teller distortion will be?

To an extent

The black and white lobes refer to the alternating sign of the wavefunction

 ι_{2g}

 e_g

Condition of Distortion:

Magnitude of Δ_0

Oxidation state of the metal ion

 $[Ru(H_2O)_6]^{2+}$ 19800 cm⁻¹

 $[Ru(H_2O)_6]^{3+}$ 28600 cm⁻¹

+2 to +3: 50%

+3 to +4: 30%

Nature of the metal ion

Down the group: 3d to 4d:: area of 4d>3d:: hence higher repulsion

 $[\text{Co(NH}_3)_6]^{3+}$ 23000 cm⁻¹ $[\text{Rh(NH}_3)_6]^{3+}$ 34000 cm⁻¹ $[\text{Ir(NH}_3)_6]^{3+}$ 41000 cm⁻¹

Nature of the ligand (weak vs strong field ligand)

Expt determined series by Tsuchida in 1938:

I'<S²-<SCN'-<Cl'-<NO₃'-<N₃'-<F'-<OH'-<C₂O₄²-<H₂O<.....CN'-<CO

NH₃ is stronger than H₂O: couldn't be explained by CFT

Uses of CFSE Values

Hydration Enthalpy of M^{2+} ions (H_2O is weak field ligand, the complexes are high spin).

$$M^{2+}(g) + 6 H_2O(1) = [M(H_2O)_6]^{2+}(aq) + Hydration Energy$$

Plotting the enthalpy across the first transition series

Applications of CFT

F = weak field ligand

E required to break the crystals into its constituents ions or molecules

Ground-state Electronic Configuration, Magnetic Properties and Colour

[Mn(H₂O)₆]³⁺ **Weak Field Complex** the total spin is $4 \times \frac{1}{2} = 2$ **High Spin Complex**

[Mn(CN)₆]³⁻ **Strong field Complex** total spin is $2 \times \frac{1}{2} = 1$ **Low Spin Complex**

Placing electrons in d orbitals

The origin of the color of the transition metal compounds

$$\Delta E = E_2 - E_1 = hv$$

Ligands influence Δ_0 , therefore the colour

The optical absorption spectrum of $[Ti(H_2O)_6]^{3+}$

Assigned transition:

$$\mathbf{t_{2g}} \longrightarrow \mathbf{e_g}$$

This corresponds to the energy gap

$$\Delta_0 = 243 \text{ kJ mol}^{-1}$$

490 nm

complementary color chart

observed color

absorbed color

 Spectrochemical Series: An order of ligand field strength based on experiment:

Weak Field I- < Br< S^{2-<} SCN-< Cl-< $NO_3^- < F^- < C_2O_4^2 < H_2O < NCS^- <$ CH₃CN< NH₃< en < bipy< phen< **NO**₂ < **PPh**₃ < **CN** < **CO Strong Field**

Ethylenediamine (en)

2,2'-bipyridine (bipy) 1.10 - penanthroline (phen)

Spectrochemical Series

Or more simply:

 $I^- < CI^- < F^- < OH^- < H_2O < SCN^- < NH_3 < en < NO_2^- < CN^- < CO$

WEAKER FIELD STRONGER FIELD

SMALLER A LARGER A

LONGER λ SHORTER λ

As Cr^{3+} goes from being attached to a weak field ligand to a strong field ligand, Δ increases and the color of the complex changes from green to yellow.

Colourless?

• For example, although scandium is a member of the d block, its ion (Sc³⁺) hasn't got any d electrons left to move around.

• In the zinc case, the 3d level is completely full - there aren't any gaps to promote an electron in to. Zinc complexes are also colourless.

Magnetism

Each electron has a magnetic moment owing to its:

spin angular momentum

orbital angular momentum

Orbital motion of e generates current and magnetic field

Spin motion of e about its own Axis also generates a magnetic field n = no. of unpaired electrons; spin quantum number S

$$\mu = \{n(n+2)\}^{1/2} \mu_B$$

$$\mu \text{ (spin only)} = 2\{S(S+1)\}^{1/2}$$

Ion	n	S	μ/μ _Β	Experimental
			Calculate	
			d	
Ti ³⁺	1	1/2	1.73	1.7 - 1.8
\mathbf{V}^{3+}	2	1	2.83	2.7 - 2.9
Cr ³⁺	3	3/2	3.87	3.8
Mn ³⁺	4	2	4.90	4.8 – 4.9
Fe ³⁺	5	5/2	5.92	5.3

Similar Calculation can be done for Low-spin Complex

orbital contribution is ignored

Limitations of CFT

- •Considers Ligand as Point charge/dipole only
- •Does not take into account of the overlap of ligand and metal orbitals and can't explain partial covalent character of M-L bond
- •too much emphasis on metal d orbital but ignore s & p orbitals as well as ligand pi orbitals
- •Can't explain the relative position of ligand in spectrochemical series which is expt determined (OH $^{-}$ is weaker than H_2O)

Consequence

e.g. Fails to explain why CO is stronger ligand than CN⁻ in complexes having metal in low oxidation state (will be discussed in Organometallics)