Math 109 HW4

Neo Lee

02/22/2023

Problem 8.1

 $\textbf{Proposition 1.} \ g(x,y) = \begin{cases} x & if x \geq y \\ y & if x \leq y \end{cases} \ \text{is well defined for} \ g: \mathbb{R}^2 \rightarrow \mathbb{R}.$

Proof. For all $(x, y) \in \mathbb{R}^2$, it is exclusively that x > y, x < y, or x = y. If x > y, g(x, y) is uniquely defined as $x \in \mathbb{R}$. If x < y, g(x, y) is uniquely defined as $y \in \mathbb{R}$. \square

Proposition 2. Let $f(x,y) = \frac{x+y}{2} + \frac{|x-y|}{2}$ for $f: \mathbb{R}^2 \to \mathbb{R}$, f = g.

Proof. If
$$x > y$$
, $f(x,y) = \frac{x+y}{2} + \frac{x-y}{2} = x$. If $x < y$, $f(x,y) = \frac{x+y}{2} + \frac{y-x}{2} = y$. If $x = y$, $f(x,y) = \frac{x+x}{2} + \frac{x-x}{2} = x = y$. Hence, $f(x,y) = g(x,y)$ for all $(x,y) \in \mathbb{R}^2$.

Problem 8.2

(i)
$$f \circ f = f(f(x)) = f(x^3) = x^{3^3} = x^9 \text{ for } \mathbb{R} \to \mathbb{R}.$$

(ii)
$$f \circ g = f(g(x)) = f(1-x) = (1-x)^3$$
 for $\mathbb{R} \to \mathbb{R}$

(iii)
$$g \circ f = g(f(x)) = g(x^3) = 1 - x^3 \text{ for } \mathbb{R} \to \mathbb{R}.$$

(iv)
$$g \circ g = g(g(x)) = g(1-x) = 1 - (1-x) = x \text{ for } \mathbb{R} \to \mathbb{R}.$$

 $fg(x) = gf(x) \Leftrightarrow (1-x^3) = 1 - x^3 \Leftrightarrow 1 - 3x + 3x^2 - x^3 = 1 - x^3 \Leftrightarrow x(x-1) = 0 \Leftrightarrow x = 0 \text{ or } x = 1.$ Hence, $\{x \in \mathbb{R} | fg(x) = gf(x)\} = \{0,1\}.$

Problem 8.3

(i)
$$f_1(x) = x$$
 for $\mathbb{R} \to \mathbb{R}$.

(ii)
$$f_2(x) = |x|$$
 for $\mathbb{R} \to \mathbb{R}$.

(iii)
$$f_3(x) = \begin{cases} x & if x \notin \mathbb{Z} \\ 0.1 & if x \in \mathbb{Z} \end{cases}$$
 for $\mathbb{R} \to \mathbb{R}$.

(iv)
$$f_4(x) = |x|$$
 for $\mathbb{R} \to \mathbb{R}$.

Problem 8.5 (i) and (iv) are graphs of a function $f: X \to Y$.

\boldsymbol{x}	$f_i(x)$	$f_{iv}(x)$
a	z	y
b	y	z
c	z	w
d	\boldsymbol{x}	x

For (ii), $\{c\} \times Y$ contains no elements, which means not every element in X is mapped to Y. For (iii), $\{b\} \times Y$ contains more than one element, which mean f(x) is not uniquely defined in Y for x = b.

- Problem 9.1
- Problem 9.2
- Problem 9.3
- Problem 9.4
- Problem 9.6
- Problem 14
- Problem 15
- Problem 16