## ? VARIATIONS D'UNE FONCTION

## EXERCICE 1

- 1. a. Tracer le tableau de variations de la fonction carré sur ℝ.
- **2.** L'objectif de cette question est de prouver les affirmations de la question **1. b.**. Pour cela, on considère  $x, y \in \mathbb{R}$  tels que  $x \le y$ .
  - **a.** Développer et simplifier (y-x)(y+x). .....
  - **b.** Quelle est le signe de y x?
  - **c.** Supposons dans un premier temps  $x, y \le 0$ . Expliquer pourquoi (y x)(y + x) est négatif, et conclure que la fonction carré est décroissante sur  $] \infty; 0]$ .

**d.** Supposons maintenant  $x, y \ge 0$ . Montrer de même que la fonction carré est croissante sur  $[0; +\infty[$ .

## EXERCICE 2

Une joueuse de handball lance une balle devant elle. Au bout de x mètres parcourus au sol, la hauteur de la balle (en mètres) avant qu'elle ne touche le sol est donnée par  $h(x) = -0.05x^2 + 0.9x + 2$ .

- **1. a.** Représenter la fonction *h* dans le repère ci-contre.
  - **b.** Dresser le tableau de variations de h sur [-2;20].



**3. a.** Montrer que  $h(x) = -0.05(x-9)^2 + 6.05$  pour tout  $x \in \mathbb{R}$ .

**b.** Démontrer que  $h(x) \le 6,05$ .

| EXERCICE 3                                                                                                                                                                         |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Le but de cet exercice est de démontrer que la fonction $]0; +\infty[$ . Supposons par l'absurde qu'elle admet un mis la plus petite valeur atteinte par $f$ sur $]0; +\infty[$ ). |  |
| 1. Dresser le tableau de variations de $f$ sur ]0; $+\infty$ [.                                                                                                                    |  |
|                                                                                                                                                                                    |  |
|                                                                                                                                                                                    |  |
|                                                                                                                                                                                    |  |
| <b>2.</b> Comparer $f(a)$ et $f(a+1)$ en justifiant                                                                                                                                |  |
|                                                                                                                                                                                    |  |

**3.** Pourquoi obtient-on une contradiction? .....