Supplemental material

One-step estimator paths for concave regularization

7 Implementation via coordinate descent

We use Coordinate descent (CD; e.g., Luenberger and Ye, 2008) to minimize (3) at each step along the path. CD is a local optimization algorithm that cycles through minimization of the conditional objective for individual parameters when the remaining parameters are fixed. Algorithms of this type have have become popular in ℓ_1 penalized estimation since the work by Friedman et al. (2007) and Wu and Lange (2008).

Our CD routine, outlined in Algorithm 1, is a solver for penalized weighted-least squares problems as defined in equation (21) below. This applies directly in Gaussian regression, and for non-Gaussian models we follow Friedman et al. (2010) and apply CD inside an outer loop of iteratively re-weighted-least-squares (IRLS; e.g., Green, 1984). Given current parameter values $\hat{\beta}$, the Newton-Raphson update for maximum likelihood estimation is $\beta = \hat{\beta} - \mathbf{H}^{-1}\mathbf{g}$, where \mathbf{H} is the information matrix with elements $h_{jk} = \partial^2 l/\partial \beta_j \partial \beta_k|_{\hat{\beta}}$ and \mathbf{g} is coefficient gradient (see Appendix 8). For exponential family linear models we can write $\mathbf{H} = \mathbf{X}'\mathbf{V}\mathbf{X}$ and $\mathbf{g} = \mathbf{X}'\mathbf{V}(\mathbf{z} - \hat{\boldsymbol{\eta}})$, where $\mathbf{V} = \mathrm{diag}(\mathbf{v})$, $\mathbf{v} = [v_1 \dots v_n]$ are 'weights', $\mathbf{z} = [z_1 \dots z_n]$ are transformed 'response', and $\hat{\eta}_i = \hat{\alpha} + \mathbf{x}_i \hat{\boldsymbol{\beta}}$. In Gaussian regression, $v_i = 1$, $z_i = \hat{\eta}_i - y_i$, and the update is an exact solution. For binomial regression, $v_i = q_i(1 - q_i)$ and $z_i = \hat{\eta}_i - (y_i - q_i)/v_i$, where $q_i = (1 + \exp[-\hat{\eta}_i])^{-1}$ is the estimated probability of success.

This yields $\beta = (\mathbf{X}'\mathbf{V}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}\mathbf{z}$, such that the Newton update solves a weighted-least-squares problem. Adding ℓ_1 costs, the minimization objective from (3) becomes

$$\underset{\alpha,\beta_1...\beta_p \in \mathbb{R}}{\operatorname{argmin}} \sum_{i} \frac{v_i}{2} (\alpha + \mathbf{x}_i' \boldsymbol{\beta} - z_i)^2 + n \sum_{j} \omega_j \lambda |\beta_j|.$$
 (21)

Our solver iterates between CD on (21) and, for non-Gaussian models, updates to \mathbf{v} and \mathbf{z} . Each t^{th} segment IRLS routine initializes $[\hat{\alpha}, \hat{\boldsymbol{\beta}}]$ at solutions for λ^{t-1} , or at $[\hat{\alpha}, \mathbf{0}]$ for t = 1. In the gamlr implementation, a full pass update of all parameters is done only at the first CD iteration; otherwise coordinates with currently inactive (zero) $\hat{\beta}_j$ are not updated. Once the descent converges for this *active set*, IRLS \mathbf{v} and \mathbf{z} are updated and we begin a new CD loop

with a full pass update. The routine stops when maximum squared change in β_j scaled by its information over one of these full pass updates is less than some tolerance threshold, thresh. The default in gamlr uses a relative tolerance of 10^{-7} times null model deviance.

Algorithm 1 Coordinate descent

Set
$$\operatorname{vh}_{\mathtt{j}} = \sum_{i} v_{i} (x_{ij} - \bar{x}_{j})^{2}$$
 and $\operatorname{vx}_{\mathtt{j}} = \sum_{i} v_{i} x_{ij}$ for $j = 1 \dots p$. while $\max_{j=1\dots p} \operatorname{vh}_{\mathtt{j}} \Delta_{j}^{2} > \operatorname{thresh}$: for $\mathtt{j} = 1 \dots p$:
$$\operatorname{set} \operatorname{vg}_{\mathtt{j}} = -\sum_{i} x_{ij} v_{i} (z_{i} - \hat{\eta}_{i}) \text{ and } \operatorname{ghb} = \operatorname{vg}_{\mathtt{j}} - \operatorname{vh}_{\mathtt{j}} \hat{\beta}_{j}$$
 if $|\operatorname{ghb}| < n \lambda^{t} \omega_{j}^{t}$: $\Delta_{j} = -\hat{\beta}_{j}$ else: $\Delta_{j} = -(\operatorname{vg}_{\mathtt{j}} - \operatorname{sign}(\operatorname{ghb}) n \lambda^{t} \omega_{j}^{t}) / \operatorname{vh}_{\mathtt{j}}$.
$$\operatorname{update} \hat{\beta}_{j} \stackrel{\pm}{=} \Delta_{j}, \ \hat{\alpha} \stackrel{\pm}{=} -\operatorname{vx}_{\mathtt{j}} \Delta_{j}, \ \operatorname{and} \ \hat{\boldsymbol{\eta}} = \hat{\alpha} + \mathbf{X}' \hat{\boldsymbol{\beta}}.$$

For distributed data, see Liu et al. (2015) for a stochastic coordinate descent framework.

7.1 Descent convergence

Despite the non-differentiability of $|\beta_j|$ at zero, Tseng (2001) establishes local convergence for CD on (21) as a consequence of penalty separability: the non-differentiable part of our objective is a sum of functions on only a single coordinate. Thus CD solves each weighted-least squares problem, and the full algorithm converges if IRLS does. For non-Gaussian models, convergence of such nested ℓ_1 -penalized IRLS algorithms is shown in Lee et al. (2014).

7.2 Quasi-Newton acceleration

Under high collinearity and large γ , one may wish to accelerate convergence via a quasi-Newton step (e.g., Lange, 2010). Acceleration is applied to $\boldsymbol{\theta} = [\alpha, \beta]$, and a move is accepted only if it leads to a decrease in the objective. Suppose that $\hat{\boldsymbol{\theta}}^{(0)}$, $\hat{\boldsymbol{\theta}}^{(-1)}$, and $\hat{\boldsymbol{\theta}}^{(-2)}$ are the current, previous, and previous-to-previous parameter estimates. Write $M(\hat{\boldsymbol{\theta}}^{(t)})$ as the implied CD update map $\hat{\boldsymbol{\theta}}^{(t)} \to \hat{\boldsymbol{\theta}}^{(t+1)}$, such that the algorithm converges at $\hat{\boldsymbol{\theta}} - M(\hat{\boldsymbol{\theta}}) = \mathbf{0}$. With $\mathbf{u} = \hat{\boldsymbol{\theta}}^{(-1)} - \hat{\boldsymbol{\theta}}^{(-2)}$ and $\mathbf{v} = \hat{\boldsymbol{\theta}}^{(0)} - \hat{\boldsymbol{\theta}}^{(-1)}$, a secant approximation to the gradient of M is $\partial M/\partial \hat{\theta}_l \approx \mathbf{v}_l/\mathbf{u}_l$. An approximate Newton-Raphson step to solve for the root of $\hat{\boldsymbol{\theta}} - M(\hat{\boldsymbol{\theta}})$ updates each coordinate $\hat{\theta}_l \leftarrow \hat{\theta}_l^{(-1)} - (\hat{\theta}_l^{(-1)} - \hat{\theta}_l^{(0)})/(1 - \mathbf{v}_l/\mathbf{u}_l)$ which can be re-written as $\hat{\theta}_l = (1 - \mathbf{w}_l)\hat{\theta}_l^{(-1)} + \mathbf{w}_l\hat{\theta}_l^{(0)}$ where $\mathbf{w}_l = \mathbf{u}_l/(\mathbf{u}_l - \mathbf{v}_l)$.

8 Gradient, curvature, and path starts

The negative log likelihood objective in Gaussian regression is $l(\alpha, \beta) = 0.5 \sum_i (y_i - \eta_i)^2$ with gradient $g_j(\beta) = \partial l/\partial \beta_j = -\sum_i x_{ij} (y_i - \eta_i)$, and coordinate curvature $h_j(\beta) = \partial^2 l/\partial \beta_j^2 = \sum_i x_{ij}^2$. In logistic regression, set $y_i = 1$ for 'success' and $y_i = 0$ for 'failure' and write $q_i = (1 + \exp[-\eta_i])^{-1}$ as the probability of success. Then $l(\alpha, \beta) = \sum_i -y_i \eta_i + \log(1 + \exp[\eta_i])$, $g_j(\beta) = \partial l/\partial \beta_j = -\sum_i x_{ij} (y_i - q_i)$, and $h_j(\beta) = \partial^2 l/\partial \beta_j^2 = \sum_i x_{ij}^2 q_i (1 - q_i)$. In each case, it is implied that $\hat{\alpha}$ has been set to minimize $l(\alpha, \hat{\beta})$.

For ℓ_1 costs $c_j(|\beta_j|) = |\beta_j|$, the infimum λ such that $\hat{\beta} = \mathbf{0}$ is available analytically as $\lambda^1 = n^{-1} \max\{|g_j(\mathbf{0})|, \ j = 1 \dots p\}$, the maximum mean absolute gradient for the null model with $\hat{\beta} = \mathbf{0}$. This formula is used to obtain our starting values for the path algorithms.

9 False Discovery Control

A common goal in high-dimensional estimation is support recovery – having the set $\{j : \hat{\beta}_j \neq 0\}$ of some 'true' β . For standard lasso estimated $\hat{\beta}$, many authors have shown (e.g., Bühlmann and van de Geer, 2011; Zou, 2006) that to get exact support recovery asymptotically or with high probability requires an *irrepresentability condition* which limits the size of least-squares projections from 'true support' onto spurious covariates.

DEFINITION 9.1. The (θ, S, \mathbf{v}) -irrepresentable condition for $\theta \in [0, 1]$ and $\mathbf{v} \in \mathbb{R}^s$ holds that,

$$|\boldsymbol{\chi}_{j}'\mathbf{X}_{S}(\mathbf{X}_{S}'\mathbf{X}_{S})^{-1}\mathbf{v}| \leq \theta \ \forall j \notin S$$
 (22)

This is often presented with $\mathbf{v}=\mathbf{1}$. It can be a strict design restriction; for example, Bühlmann and van de Geer (2011) show a single variable that is highly correlated with many columns of \mathbf{X}_S leading to failure. Much of the literature on concave penalization has focused on achieving support recovery *without* such conditions; see, e.g., Fan et al. (2014) for a recent overview. Our results will require irrepresentable conditions with $\mathbf{v}=\boldsymbol{\omega}_S$, which becomes less restrictive as one is able to shrink weights ω_j for $j \in S$. See the remarks for more discussion.

Our comparison of interest is between $\hat{S} = \{j : \hat{\beta}_j \neq 0\}$, for $\hat{\beta}$ from weighted- ℓ_1 penalized estimation, and $S = \{j : \beta_j^{\nu} \neq 0\}$ for β^{ν} the ℓ_0 penalized estimator from Theorem 3.1. Whether looking to an ℓ_0 oracle or a sparse truth, our experience is that exact support recovery does not occur in practice (e.g., see the simulation in Section 5). Thus, we instead focus on ability of the weighted-lasso to minimize *false discoveries*: $\hat{\beta}_j \neq 0$ when $\beta_j^{\nu} = 0$.

Wainwright (2009) shows that (22) with $\theta = 1$, $\mathbf{v} = \mathbf{1}$ is necessary for lasso sign recovery in the *noiseless* setting.

THEOREM 9.1. Consider the setting of Theorem 3.1. If $\omega_{S^c}^{\min} = 1$ and $\lambda > \sqrt{2\nu}$ then

$$\|\mathbf{X}_{S^c}'\mathbf{X}_S(\mathbf{X}_S'\mathbf{X}_S)^{-1}\boldsymbol{\omega}_S\|_{\infty} \le 1 - \frac{\sqrt{2\nu}}{\lambda_t} \implies \hat{S} \cap S^c = \varnothing.$$
 (23)

The result follows directly from the sign recovery lemma 9.1.

Remarks

- From Theorem 7.4 in Bühlmann and van de Geer (2011), the irrepresentability condition holds with $|\chi'_j \mathbf{X}_S(\mathbf{X}'_S \mathbf{X}_S)^{-1} \boldsymbol{\omega}_S| \leq \frac{\|\boldsymbol{\omega}_S\|}{\sqrt{s}} \theta_{\mathrm{adap}}(S)$ where $\theta_{\mathrm{adap}}(S)$ is their 'adaptive restricted regression' coefficient. Of interest here, they show that $\theta_{\mathrm{adap}}(S) \leq \sqrt{s}/\Lambda_{\min}(S)$ where $\Lambda_{\min}(S)$ is the minimum eigenvalue of $\mathbf{X}'_S \mathbf{X}_S/n$. Thus, (i) can be replaced by the restriction $\Lambda_{\min}(S) \geq \|\boldsymbol{\omega}_S\| (1 \sqrt{2\nu}/(\omega_{S^c}^{\min}\lambda))^{-1} = \sqrt{s}L$, with L from Theorem 3.1, and small values for L appear key in both predictive performance and support recovery.
- Without irrepresentability, limits on false discovery are more pessimistic. Convergence conditions imply that for $j \in S^c \cap \hat{S}$ we have $n\lambda\omega_j = |\chi_j'(\mathbf{X}\hat{\boldsymbol{\beta}} \mathbf{y})| \leq |\chi_j'\mathbf{X}(\hat{\boldsymbol{\beta}} \boldsymbol{\beta}^{\nu})| + |\chi_j'\mathbf{e}^S| \leq n\left(2\|\boldsymbol{\omega}_S\|/\phi(L,S) + \sqrt{2\nu}/\lambda\right) \ \forall \ j.$ Dividing by $n\lambda\omega_j$ and counting yields

$$|S^c \cap \hat{S}| \le \left| \frac{1}{\boldsymbol{\omega}_{S^c \cap \hat{S}}} \right| \left(\frac{2\|\omega_S\|}{\phi(L, S)} + \frac{\sqrt{2\nu}}{\lambda} \right)$$
 (24)

Without the ability to make ω_j very big for $j \in S^c$ (e.g., as in a thresholding procedure like that of Zhou 2009), the result in (24) has little to say about false discovery control.

9.1 Sign Recovery

LEMMA 9.1. Under the setting of Theorem 3.1, with $\hat{S} = \{j : \hat{\beta}_j \neq 0\}$, if $\omega_{S^c}^{\min} \lambda > \sqrt{2\nu}$ then

$$|\chi_{j}'\mathbf{X}_{S}(\mathbf{X}_{S}'\mathbf{X}_{S})^{-1}\boldsymbol{\omega}_{S}| \leq 1 - \frac{\sqrt{2\nu}}{\lambda\omega_{j}} \quad \forall j \in S^{c} \Rightarrow \hat{S} \cap S^{c} = \varnothing.$$
 (25)

If in addition $|(\mathbf{X}_S'\mathbf{X}_S)^{-1}\mathbf{X}_S'\mathbf{y}|_{\infty} > n\lambda |(\mathbf{X}_S'\mathbf{X}_S)^{-1}\boldsymbol{\omega}_S|_{\infty}$, then $\mathrm{sgn}(\hat{\boldsymbol{\beta}}) = \mathrm{sgn}(\boldsymbol{\beta}^{\nu})$.

Proof. The Karush-Kuhn-Tucker (KKT) conditions at weighted- ℓ_1 minimization convergence imply that

$$\mathbf{x}_{i}'\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{\nu}) + \mathbf{x}_{i}'\mathbf{e}^{S} = -n\lambda\zeta_{i} \text{ for } j = 1\dots p$$
 (26)

where $|\zeta_j| = \omega_j$ for $j \in \hat{S}$ and $|\zeta_j| \leq \omega_j$ for $j \in \hat{S}^c$. Following closely related proofs in Wainwright (2006, 2009); Zhou et al. (2009), $\hat{S} \cap S^c = \emptyset$ occurs if and only if these KKT

conditions hold for projections restricted to S,

$$\mathbf{X}_{S}'\mathbf{X}_{S}(\hat{\boldsymbol{\beta}}_{S} - \boldsymbol{\beta}_{S}^{\nu}) + \mathbf{X}_{S}'\mathbf{e}^{S} = -n\lambda\boldsymbol{\zeta}_{S} \implies \hat{\boldsymbol{\beta}}_{S} - \boldsymbol{\beta}_{S}^{\nu} = -n\lambda(\mathbf{X}_{S}'\mathbf{X}_{S})^{-1}\boldsymbol{\zeta}_{S}. \tag{27}$$

Thus all of the spurious regressors in S^c will have $\hat{\beta}_j = 0$ if and only if

$$\boldsymbol{\chi}_{j}^{\prime}\mathbf{X}_{S}(\hat{\boldsymbol{\beta}}_{S}-\boldsymbol{\beta}_{S}^{\nu})-\boldsymbol{\chi}_{j}^{\prime}\mathbf{e}^{S}\leq n\lambda\zeta_{j} \iff 1-\frac{|x_{j}^{\prime}\mathbf{e}^{S}|}{n}\geq 1-\frac{\sqrt{2\nu}}{\lambda\omega_{j}}\geq |\boldsymbol{\chi}_{j}^{\prime}\mathbf{X}_{S}(\mathbf{X}_{S}^{\prime}\mathbf{X}_{S})^{-1}\boldsymbol{\omega}_{S}|. (28)$$

Finally, for sign recovery on $j \in S$ we need $|\beta_j^{\nu}| - |\beta_j^{\nu} - \hat{\beta}_j| > 0 \ \forall j \in S$, and our stated condition follows from $\beta_S^{\nu} = (\mathbf{X}_S' \mathbf{X}_S)^{-1} \mathbf{X}_S' \mathbf{y}$ and $\beta_S^{\nu} - \hat{\beta}_S = n\lambda (\mathbf{X}_S' \mathbf{X}_S)^{-1} \boldsymbol{\zeta}_S$.

10 Extra proofs

10.1 Stagewise Regression

Theorem 3.1 uses the following simple result for stagewise regression – iterative fitting of new covariates to the residuals of an existing linear model (as in, e.g., Goldberger 1961).

LEMMA 10.1. Say $MSE_S = \|\mathbf{X}\boldsymbol{\beta}^S - \mathbf{y}\|^2/n$ and $cov(\boldsymbol{\chi}_j, \mathbf{e}^S) = \boldsymbol{\chi}_j'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}^S)/n$ are sample variance and covariances. Then for any $j \in 1 ... p$,

$$\operatorname{cov}^{2}(\boldsymbol{\chi}_{i}, \mathbf{e}^{S}) \leq \operatorname{MSE}_{S} - \operatorname{MSE}_{S \cup j}$$

Proof. From the well-known property on the correlation coefficient (R^2) for linear models, in-sample correlation and variances are such that

$$\frac{\text{cov}^{2}(\boldsymbol{\chi}_{j}, \mathbf{e}^{S})}{\text{var}(\boldsymbol{\chi}_{j})\text{var}(\mathbf{e}^{S})} = 1 - \frac{\text{var}(\mathbf{e}^{S} - \tilde{\beta}_{j}\boldsymbol{\chi}_{j})}{\text{var}(\mathbf{e}^{S})}$$

where $\tilde{\beta}_j = \chi_j' \mathbf{e}^S/(\chi_j' \chi_j)$ is the stagewise coefficient estimate. Since $\operatorname{var}(\chi_j) = 1$, multiplying everything by $\operatorname{var}(\mathbf{e}^S)$ yields $\operatorname{cov}^2(\chi_j, \mathbf{e}^S) = \operatorname{var}(\mathbf{e}^S) - \operatorname{var}(\mathbf{e}^S - \tilde{\beta}_j \chi_j) \leq \operatorname{var}(\mathbf{e}^S) - \operatorname{var}(\mathbf{e}^{S \cup j})$. The last inequality holds because $\mathbf{e}^{S \cup j}$, residuals from OLS on $\mathbf{X}_{S \cup j}$, have the smallest-possible sum of squares for that set of covariates. With $\operatorname{var}(\mathbf{e}^S) = \operatorname{MSE}_S$, etc, we are done.

10.2 Bayesian MAP

PROPOSITION 10.1. $\hat{\beta}$ solves (14) if and only if it is also in the solution to (13).

Proof. The conditional posterior mode for each τ_j given β_j is $\tau(\beta_j) = \gamma s/(1 + \gamma |\beta_j|)$. Any joint solution $[\hat{\beta}, \hat{\tau}]$ for (13) thus consists of $\hat{\tau}_j = \tau(\hat{\beta}_j)$; otherwise, it is always possible to decrease the objective by replacing $\hat{\tau}_j$. Setting each $\tau_j = \tau(\beta_j)$ in (13) and removing constant terms yields (14). Moreover, the solution to (13) solves (14): otherwise, there would need to be a point on the profile slice of (13) defined by $\tau_j = \tau(\hat{\beta}_j)$ that is lower than its minimum.

For a Bayesian it is odd to be solving for τ rather than marginalizing over its uncertainty. However, recognizing the form of a gamma density in (12), $\pi(\beta_j, \tau_j)$ integrates over τ_j to yield the marginal prior $\pi(\beta_j) = 0.5s \left(1 + \gamma |\beta_j|\right)^{-(s+1)}$. This is the generalized double Pareto density, as in Armagan et al. (2013). Since $-\log \pi(\beta_j) \propto (s+1)\log(1+\gamma|\beta_j|)$, the *profile* MAP solution to (13) is also the *marginal* MAP for β under $\operatorname{Ga}(s-1,1/\gamma)$ priors on each τ_j .

11 Stability

A strong form of stability comes from convexity of the penalized objective in (1). This requires that the minimum eigenvalue of $\mathbf{H}(\boldsymbol{\beta})$, the Hessian matrix of second derivatives of $l(\boldsymbol{\beta})$, is greater than $|c''(\beta_j)| \ \forall j$. For penalized least-squares under log costs, this amounts to requiring that the minimum eigenvalue of $\mathbf{H} = \mathbf{X}'\mathbf{X}$ is greater than $\lambda \gamma^2$. In the simple *standardized* orthogonal covariate case, this has an easy interpretation in the context of our Bayesian model from Section 4.1: for Gaussian regression, $h_j = \sum_i x_{ij}^2 = n$ and the objective is convex if prior variance on each τ_j is less than the number of observations. For logistic regression you need $\operatorname{var}(\tau_j) < n/4$, since \mathbf{H} now depends upon the coefficient values.

In real examples, however, we cannot rely upon objective convexity. A more useful definition of stability requires continuity of the implied coefficient function, $\hat{\beta}(\mathbf{y})$, in an imagined univariate regression problem (or for orthogonal covariates). This is one of the key requirements of concave penalties listed by Fan and Li (2001). Many popular concave cost functions, such as the SCAD and MCP, have been engineered to have this continuity property. Conveniently, Zou and Li (2008) show that OSE LLA solutions have this property even if the target objective does not. For example, even though the log penalty *does not* generally lead to continuous thresholding, their result implies that the GL solutions are continuous for $\gamma < \infty$.

A theoretically richer form of stability is Lipschitz continuity of the implied prediction function, $\hat{\boldsymbol{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}(\mathbf{y})$, which requires that $\|\hat{\mathbf{y}}(\mathbf{y}_1) - \hat{\mathbf{y}}(\mathbf{y}_2)\| \leq L\|\mathbf{y}_1 - \mathbf{y}_2\|$ for some finite constant L on all possible $\mathbf{y}_1, \mathbf{y}_2$. Zou et al. (2007) establish Lipschitz continuity for ℓ_1 estimated

If ν is an eigenvalue of \mathbf{H} , then $(\mathbf{H} - \nu \mathbf{I})\mathbf{v} = 0$ for some nonzero \mathbf{v} ; the negative log posterior Hessian at zero is $\mathbf{H} - \lambda \gamma^2 \mathbf{I}$ and $(\mathbf{H} - \lambda \gamma^2 \mathbf{I} + s \gamma^2 \mathbf{I} - \nu \mathbf{I})\mathbf{v} = 0$ so that $\nu - s \gamma^2$ is an eigenvalue of the minimization objective.

predictors as part of their derivation of a degrees-of-freedom estimator. Thus, conditional upon values for the coefficient-specific weights, POSE and GL are trivially Lipschitz continuous. Unconditionally, we do not believe that the paths have this guarantee. However, we'll see in the next section that a heuristic degrees-of-freedom estimator that takes such stability for granted performs well as the basis for model selection.

Finally, the basic and most important type of stability is practical path continuity: by this, we mean that solutions change slowly enough along the path so that computational costs are kept within budget. A regularization path can be built from a continuous thresholding function, or perhaps even be Lipschitz stable, but none of that matters if it takes too long to fit. For example, Figure 4 shows timings growing rapidly with large γ for the hockey data of Section 6, even though all of these specifications are theoretically stable by some criteria.

Figure 4: Timings for the hockey data path fits of Section 6 on a length-100 grid with $\lambda^{100}=0.01\lambda^1$.

12 Information Criteria

We would like to choose a model that performs well in predicting new data. 'Good prediction' can be measured in a variety of ways. A common and coherent framework is to consider minimizing Kullback-Leibler (KL) divergence. Say $g(\mathbf{y})$ is the true data generating process, and $f(\mathbf{y}; \boldsymbol{\eta}, \phi)$ is the parametric density under study, which we suppose here is a natural exponential family with $\mathbb{E}[\mathbf{y}] = \boldsymbol{\eta}$ and dispersion ϕ . Then we wish to minimize

$$KL(\boldsymbol{\eta}, \phi) = \mathbb{E}_g \log g(\mathbf{y}) - \mathbb{E}_g \log f(\mathbf{y}; \boldsymbol{\eta}, \phi), \tag{29}$$

the expected difference between log true density and our parametric approximation. Since $\mathbb{E}_g \log g(\mathbf{y})$ is constant, this leads one to minimize $Q(\boldsymbol{\eta}, \phi) = -\mathbb{E}_g \log f(\mathbf{y}; \boldsymbol{\eta}, \phi)$, the expected

negative log likelihood. There is no requirement that g is a member of the family defined by f.

If parameters are to be estimated as $[\eta_y, \phi_y]$, functions of random sample $y \sim g$, then $Q(\eta_y, \phi_y)$ is itself a random variable and one chooses estimators to minimize its expectation. Crucially, we imagine a double-sample expectation, where the minimization objective is

$$\mathbb{E}_{\mathbf{y}|g}\mathbb{E}_{\tilde{\mathbf{y}}|g}\log f(\tilde{\mathbf{y}};\boldsymbol{\eta}_{\mathbf{y}},\phi_{\mathbf{y}}). \tag{30}$$

The notation here indicates that inner and outer expectations are based on two *independent* random samples from g: \mathbf{y} for training, upon which $\eta_{\mathbf{y}}$, $\phi_{\mathbf{y}}$ are calculated, and $\tilde{\mathbf{y}}$ for validation.

Information criteria (IC) are analytic approximations to metrics like (30).³ They take the form

$$-2\log f(\mathbf{y}; \boldsymbol{\eta}_{\mathbf{y}}, \phi_{\mathbf{y}}) + c(df) \tag{31}$$

where c(df) is cost of the *degrees-of-freedom* used in $\eta_{\mathbf{y}}$ – e.g., for $\mathbf{y} \sim (\eta, \sigma^2 \mathbf{I})$, Efron et al. (2004) defines $df = \sigma^{-2} \sum_i \operatorname{cov}(\eta_{\mathbf{y}i}, y_i)$.

Consider a Gaussian regression model where η_y is an estimate for $\eta = \mathbb{E}y$ using df degrees of freedom, and set $\phi_y = \sigma_y^2 = \sum_i (y_i - \eta_{yi})^2 / n$. We'll derive

$$df \frac{n}{n - df - 1} \approx \mathbb{E}_{\mathbf{y}|g} \left[\log f(\mathbf{y}; \boldsymbol{\eta}_{\mathbf{y}}, \phi_{\mathbf{y}}) - \mathbb{E}_{\tilde{\mathbf{y}}|g} \log f(\tilde{\mathbf{y}}; \boldsymbol{\eta}_{\mathbf{y}}, \phi_{\mathbf{y}}) \right], \tag{32}$$

such that AICc's complexity penalty is the expected bias that results from taking the fitted log likelihood as an estimate for (30). First, by cancellation the inner term of (32) simplifies as

$$\log f(\mathbf{y}; \boldsymbol{\eta}_{\mathbf{y}}, \phi_{\mathbf{y}}) - \mathbb{E}_{\tilde{\mathbf{y}}|g} \log f(\tilde{\mathbf{y}}; \boldsymbol{\eta}_{\mathbf{y}}, \phi_{\mathbf{y}}) = \frac{\mathbb{E}_{\tilde{\mathbf{y}}|g} \sum_{i} (\tilde{y}_{i} - \eta_{\mathbf{y}i})^{2}}{2\sigma_{\mathbf{y}}^{2}} - \frac{n}{2}.$$
 (33)

Now, assume that the *true* model is linear and that the data were generated from $\mathbf{y} \sim g(\boldsymbol{\eta}, \sigma^2 \mathbf{I})$. The Mallows (1973) C_p formula holds that $n\sigma_{\mathbf{y}}^2 + 2\sigma^2 df$ is an unbiased estimator for expected sum of square errors $\mathbb{E}_{\tilde{\mathbf{y}}|g} \sum_i (\tilde{y}_i - \eta_{\mathbf{y}i})^2 / n$, such that

$$\frac{\mathbb{E}_{\tilde{\mathbf{y}}|g} \sum_{i} (\tilde{y}_{i} - \eta_{\mathbf{y}i})^{2}}{2\sigma_{\mathbf{y}}^{2}} - \frac{n}{2} \approx \frac{n\sigma_{\mathbf{y}}^{2} + 2\sigma^{2}df}{2\sigma_{\mathbf{y}}^{2}} - \frac{n}{2} = df \frac{\sigma^{2}}{\sigma_{\mathbf{y}}^{2}}.$$
 (34)

At this point, we see that the standard AIC approximation results from equating $\sigma^2 \approx \mathbb{E}_{\mathbf{y}|g} \sigma_{\mathbf{y}}^2$, so that $df \mathbb{E}_{\mathbf{y}|g}[\sigma^2/\sigma_{\mathbf{y}}^2] \approx df$. This will underpenalize complexity whenever residual variance

³Not all IC target (30). For example, the 'Bayesian' BIC, with $c(df) = \log(n)df$ (Schwarz, 1978), is derived (Kass and Raftery, 1995) as Laplace approximation to the negative log of the *marginal likelihood*. We include the BIC as a comparator to AIC and AICc in our examples.

 $\sigma^2_{\mathbf{y}}$ tends to be smaller than the true variance σ^2 – that is, whenever the model is overfit. In contrast, AICc applies the chi-squared goodness of fit result $n\sigma^2_{\mathbf{y}}/\sigma^2 \sim \chi^2_{n-df-1}$ to obtain

$$\mathbb{E}_{\mathbf{y}|g}\left[\frac{\sigma^2}{\sigma_{\mathbf{y}}^2}df\right] = n\mathbb{E}_{\mathbf{y}|g}\left[\frac{1}{n\sigma_{\mathbf{y}}^2/\sigma^2}\right]df = \frac{n}{n - df - 1}df.$$
 (35)

Multiplying by -2 and subtracting from $-2 \log f(\mathbf{y}; \boldsymbol{\eta}_{\mathbf{y}}, \sigma_{\mathbf{y}})$ yields the AICc.

13 Full simulation results

Continuous-response data are simulated from a p = 1000 dimensional linear model

$$y \sim N\left(\mathbf{x}'\boldsymbol{\beta}, \sigma^2\right) \text{ where } \beta_j = (-1)^j \exp\left(-\frac{j}{\mathsf{d}}\right) \mathbb{1}_{[j \le J]} \text{ for } j = 1 \dots p$$
 (36)

We consider sample sizes of n=100 and n=1000. For our *dense* simulation models, J=p so that all true coefficients are nonzero. For our *sparse* simulation models, J=n/10. With $\mathbf{z}_i \sim \mathrm{N}\left(\mathbf{0}, \mathbf{\Sigma}\right)$ for $i=1\dots n$, the regression inputs \mathbf{x}_i are generated as either *continuous* $x_{ij}=z_{ij}$ or binary $x_{ij} \stackrel{ind}{\sim} \mathrm{Bern}\left(1/(1+e^{-z_{ij}})\right)$.

Each simulation draws n means $\eta_i = \mathbf{x}_i'\boldsymbol{\beta}$, and two independent response samples $\mathbf{y}, \tilde{\mathbf{y}} \sim \mathrm{N}(\boldsymbol{\eta}, \sigma^2 \mathbf{I})$. Residual variance σ^2 and covariate correlation $\boldsymbol{\Sigma}$ are adjusted across runs. In the first case, we define σ^2 through *signal-to-noise* ratios $\mathrm{sd}(\boldsymbol{\eta})/\sigma$ of 1/2, 1, and 2. In the latter case, multicollinearity is parametrized via $\Sigma_{jk} = \rho^{|j-k|}$, and we consider $\rho = 0, 0.5$, and 0.9. Finally, the coefficient decay rate d controls the effective sparsity: how much $\boldsymbol{\beta}$ is *measurably* different from zero. See Figure 5 for illustration; we consider d of 10, 50, 100, and 200.

Figure 5: The linear model coefficients for our simulation in 36. Vertical lines mark thresholding points for the *sparse* model simulations, at J = 10 for n = 100 and at J = 100 for n = 1000.

References

- Armagan, A., D. B. Dunson, and J. Lee (2013). Generalized Double Pareto Shrinkage. *Statistica Sinica* 23, 119–143.
- Bühlmann, P. and S. van de Geer (2011). Statistics for High-Dimensional Data. Springer.
- Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani (2004). Least Angle Regression. *Annals of Statistics* 32, 407–499.
- Fan, J. and R. Li (2001). Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties. *Journal of the American Statistical Association 96*, 1348–1360.
- Fan, J., L. Xue, and H. Zou (2014). Strong oracle optimality of folded concave penalized estimation. *The Annals of Statistics* 42(3), 819–849.
- Friedman, J., T. Hastie, H. Hofling, and R. Tibshirani (2007). Pathwise coordinate optimization. *The Annals of Applied Statistics* 1, 302–332.
- Friedman, J., T. Hastie, and R. Tibshirani (2010). Regularization paths for generalized linear models via coordinate descent. *Journal of Statistical Software 33*, 1–22.
- Goldberger, A. S. (1961). Stepwise Least Squares: Residual analysis and specification error. *Journal of the American Statistical Association* 56, 998.
- Green, P. J. (1984). Iteratively Reweighted Least Squares for Maximum Likelihood Estimation, and some Robust and Resistant Alternatives. *Journal of the Royal Statistical Society, Series B* 46, 149–192.
- Kass, R. E. and A. E. Raftery (1995). Bayes factors. *Journal of the American Statistical Association* 90, 773–795.
- Lange, K. (2010). Numerical Analysis for Statisticians (2nd ed.). Springer.
- Lee, J., Y. Sun, and M. Saunders (2014). Proximal newton-type methods for minimizing convex objective functions in composite form. *SIAM Journal on Optimization* 24, 1420–1443.
- Liu, J., S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar (2015). An asynchronous parallel stochastic coordinate descent algorithm. *The Journal of Machine Learning Research* 16(1), 285–322.
- Luenberger, D. G. and Y. Ye (2008). *Linear and Nonlinear Programming* (3rd ed.). Springer.
- Mallows, C. L. (1973). Some comments on CP. Technometrics 15, 661–675.
- Schwarz, G. (1978). Estimating the dimension of a model. *The Annals of Statistics* 6, 461–464.

- Tseng, P. (2001). Convergence of a block coordinate descent method for nondifferentiable minimization. *Journal of Optimization Theory and Applications* 109, 475–494.
- Wainwright, M. J. (2006). Sharp thresholds for high-dimensional and noisy recovery of sparsity. *UC Berkeley Technical Report*.
- Wainwright, M. J. (2009). Sharp thresholds for high-dimensional and noisy sparsity recovery using L1-constrained quadratic programming (Lasso). *IEEE Transactions on Information Theory* 55, 2183–2202.
- Wu, T. T. and K. Lange (2008). Coordinate descent algorithms for lasso penalized regression. *The Annals of Applied Statistics* 2, 1–21.
- Zhou, S. (2009). Thresholding procedures for high-dimensional variable selection and statistical estimation. *Advances in Neural Information Processing Systems* 22.
- Zhou, S., S. van de Geer, and P. Bühlmann (2009). Adaptive lasso for high dimensional regression and Gaussian graphical modeling. *arXiv:0903.2515*.
- Zou, H. (2006). The adaptive lasso and its oracle properties. *Journal of the American Statistical Association 101*, 1418–1429.
- Zou, H., T. Hastie, and R. Tibshirani (2007). On the degrees of freedom of the lasso. *The Annals of Statistics* 35, 2173–2192.
- Zou, H. and R. Li (2008). One-step sparse estimates in nonconcave penalized likelihood models. *The Annals of Statistics* 36, 1509–1533.

Detailed simulation tables

PREDICTION MSE

n=1000. Sparse simulation model: Tables 4-11, Dense simulation model: Tables 12-19 n=100. Sparse simulation model: Tables 20-27, Dense simulation model: Tables 28-35

ESTIMATION MSE

n=1000. Sparse simulation model: Tables 36-43, Dense simulation model: Tables 44-51 n=100. Sparse simulation model: Tables 52-59, Dense simulation model: Tables 60-67

FITTED MODEL DIMENSION

n=1000. Sparse simulation model: Tables 68-75, Dense simulation model: Tables 76-83 n=100. Sparse simulation model: Tables 84-91, Dense simulation model: Tables 92-99

SENSITIVITY AND FDR

n=1000. Sparse simulation model: Tables 100-107, Dense simulation model: Tables 108-115 n=100. Sparse simulation model: Tables 116-123, Dense simulation model: Tables 124-131

Table 4: Prediction MSE for n=1000, binary design, dense covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	AL	MCP	CVbest	ICbest	
CV.1se	0.34	0.34	0.33	0.33	0.32			
CV.min	0.32	0.32	0.31	0.32	0.31	0.31		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.32	0.32	0.31	0.32			0.31	$\rho = 0$
AIC	0.42	0.42	0.45	0.32				Oracle: 0.30
BIC	0.35	0.34	0.32	0.33				07466.0.30
CV.1se	0.31	0.30	0.29	0.30	0.29			
CV.min	0.29	0.29	0.28	0.29	0.28	0.28		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.29	0.29	0.28	0.29			0.28	$\rho = 0.5$
AIC	0.37	0.38	0.40	0.29				Oracle: 0.26
BIC	0.32	0.31	0.29	0.30				Oracie : 0.20
CV.1se	0.29	0.29	0.28	0.28	0.27			
CV.min	0.28	0.27	0.26	0.27	0.26	0.26		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.28	0.27	0.26	0.27			0.26	$\rho = 0.9$
AIC	0.35	0.35	0.37	0.27				0 1 025
BIC	0.30	0.29	0.27	0.28				Oracle: 0.25
CV.1se	1.34	1.32	1.29	1.25	1.27			
CV.min	1.26	1.25	1.23	1.28	1.23	1.23		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	1.26	1.25	1.27	1.27			1.26	$\rho = 0$
AIC	1.85	1.87	2.00	1.31				,
BIC	1.35	1.31	1.28	1.27				Oracle: 1.17
CV.1se	1.21	1.18	1.15	1.12	1.13			
CV.min	1.14	1.12	1.1	1.15	1.1	1.10		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	1.14	1.12	1.13	1.13			1.13	$\rho = 0.5$
AIC	1.65	1.67	1.78	1.18			1.13	,
BIC	1.22	1.18	1.15	1.14				Oracle: 1.05
CV.1se	1.14	1.12	1.09	1.06	1.07			
CV.min	1.08	1.06	1.04	1.08	1.04	1.05		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	1.08	1.06	1.07	1.08	1.0.	1.00	1.07	$\rho = 0.9$
AIC	1.55	1.57	1.68	1.11			1.07	,
BIC	1.16	1.12	1.09	1.09				Oracle: 0.99
CV.1se	5.21	5.16	5.11	4.90	5.07			
CV.13c CV.min	4.93	4.89	4.90	5.20	4.89	4.89		$sd(\mu)/\sigma = 0.5$
AICc	4.92	4.89	5.17	5.08	4.02	4.07	4.97	$\rho = 0$
AIC	7.90	8.06	8.55	6.07			7.77	,
BIC	5.13	5.09	5.21	4.95				Oracle: 4.66
CV.1se	4.68	4.62	4.57	4.39	4.53			
CV.1sc CV.min	4.42	4.38	4.38	4.67	4.37	4.38		$sd(\mu)/\sigma = 0.5$
AICc	4.41	4.38	4.62	4.55	4.57	4.30	4.47	$\begin{array}{c c} \operatorname{sd}(\mu)/\delta = 0.5 \\ \rho = 0.5 \end{array}$
AICC				5.44			4.47	$\rho = 0.5$
BIC	7.06 4.62	7.19 4.57	7.62 4.64	5.44 4.46				Oracle: 4.16
					4.20			
CV.1se	4.43	4.38	4.33	4.17	4.28	115		ad()/- 05
CV.min	4.18	4.15	4.16	4.40	4.14	4.15	4.22	$sd(\mu)/\sigma = 0.5$
AICc	4.18	4.15	4.38	4.31			4.23	$\rho = 0.9$
AIC	6.66	6.78	7.20	5.08				Oracle: 3.93
BIC	4.39	4.34	4.41	4.23				

Table 5: Prediction MSE for n=1000, binary design, dense covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	AL	MCP	CVbest	ICbest	
CV.1se	2.22	2.18	2.18	2.15	2.10			
CV.min	2.07	2.03	2.05	2.07	2.01	2.04		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	2.14	2.06	2.04	2.09			2.04	$\rho = 0$
AIC	2.52	2.56	2.73	2.07				Oracle: 1.77
BIC	2.82	2.60	2.38	2.47				07 acc . 1.77
CV.1se	1.99	1.96	1.95	1.95	1.88			
CV.min	1.85	1.82	1.83	1.87	1.79	1.82		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	1.93	1.85	1.82	1.89			1.82	$\rho = 0.5$
AIC	2.25	2.28	2.43	1.87				Oracle: 1.57
BIC	2.63	2.38	2.13	2.27				Oracie . 1.57
CV.1se	1.87	1.84	1.83	1.85	1.77			
CV.min	1.75	1.71	1.72	1.77	1.69	1.72		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	1.82	1.75	1.71	1.79			1.71	$\rho = 0.9$
AIC	2.11	2.14	2.28	1.77				Oracle: 1.48
BIC	2.50	2.27	2.00	2.16				Oracie : 1.46
CV.1se	8.48	8.43	8.71	7.83	8.19			
CV.min	7.81	7.79	8.13	7.85	7.79	7.81		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	7.91	7.76	8.54	7.80			8.32	$\rho = 0$
AIC	10.67	10.91	11.60	8.52				0 1 600
BIC	10.46	9.64	10.63	8.90				Oracle: 6.88
CV.1se	7.64	7.56	7.75	7.05	7.34			
CV.min	7.00	6.96	7.23	7.05	6.98	6.99		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	7.11	6.95	7.54	7.01			7.47	$\rho = 0.5$
AIC	9.49	9.69	10.29	7.65				0 1 611
BIC	9.75	8.86	9.54	8.14				Oracle: 6.11
CV.1se	7.20	7.13	7.36	6.69	6.92			
CV.min	6.61	6.57	6.86	6.67	6.59	6.59		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	6.72	6.56	7.11	6.64			7.05	$\rho = 0.9$
AIC	8.92	9.11	9.68	7.18				,
BIC	9.29	8.44	9.08	7.77				Oracle: 5.75
CV.1se	30.41	30.51	30.62	28.92	30.45			
CV.min	28.91	29.51	30.38	30.23	28.94	29.01		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	28.81	29.04	32.33	29.50			29.02	$\rho = 0$
AIC	44.19	45.58	47.69	36.58				,
BIC	30.59	30.57	30.65	30.31				<i>Oracle</i> : 26.71
CV.1se	27.07	27.11	27.19	25.86	27.08			
CV.min	25.89	26.35	27.03	27.01	25.93	25.96		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	25.77	25.89	29.02	26.38	20.50	20.50	25.88	$\rho = 0.5$
AIC	39.26	40.45	42.30	32.78			20.00	,
BIC	27.17	27.16	27.20	26.98				<i>Oracle</i> : 23.69
CV.1se	25.52	25.57	25.62	24.47	25.56			
CV.13C	24.45	24.87	25.48	25.45	24.47	24.52		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	24.32	24.42	27.06	24.91	21,77	21.32	24.43	$\rho = 0.9$
AIC	36.90	38.04	39.80	30.65			27. 7 3	,
BIC	25.60	25.59	25.63	25.45				Oracle: 22.33
DIC	23.00	43.37	23.03	43.43				

Table 6: Prediction MSE for n=1000, binary design, dense covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	AL	MCP	CVbest	ICbest	
CV.1se	4.93	4.93	5.13	4.95	4.74			
CV.min	4.56	4.55	4.77	4.69	4.54	4.56		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	4.97	4.74	4.69	4.82			4.69	$\rho = 0$
AIC	5.26	5.36	5.71	4.65				Oracle: 3.92
BIC	11.76	7.65	5.74	6.80				07 acic . 3.72
CV.1se	4.43	4.41	4.59	4.50	4.26			
CV.min	4.09	4.06	4.25	4.25	4.06	4.08		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	4.49	4.27	4.16	4.37			4.16	$\rho = 0.5$
AIC	4.68	4.76	5.06	4.19				<i>Oracle</i> : 3.47
BIC	12.00	7.34	5.10	6.48				01 acie . 5.41
CV.1se	4.17	4.16	4.31	4.30	4.00			
CV.min	3.86	3.83	3.99	4.04	3.83	3.84		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	4.24	4.03	3.93	4.17			3.93	$\rho = 0.9$
AIC	4.40	4.47	4.76	3.97				Oracle: 3.27
BIC	11.64	7.13	4.80	6.31				Oracle : 5.21
CV.1se	18.86	19.46	22.40	17.23	18.29			
CV.min	16.91	17.35	20.03	17.04	16.91	16.95		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	17.48	17.08	18.88	17.04			17.83	$\rho = 0$
AIC	21.90	22.52	23.77	18.38				O114-00
BIC	24.64	24.28	24.73	22.96				<i>Oracle</i> : 14.88
CV.1se	17.09	17.59	20.25	15.52	16.55			
CV.min	15.17	15.53	18.18	15.31	15.17	15.21		$sd(\mu)/\sigma = 1$
AICc	15.75	15.30	16.73	15.32			16.25	$\rho = 0.5$
AIC	19.43	19.95	21.04	16.45				0 1 12 17
BIC	21.85	21.67	21.93	20.83				<i>Oracle</i> : 13.17
CV.1se	16.11	16.52	19.24	14.72	15.62			
CV.min	14.32	14.64	17.15	14.48	14.33	14.35		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	14.91	14.44	15.77	14.52			15.32	$\rho = 0.9$
AIC	18.27	18.76	19.80	15.47				1 12 42
BIC	20.60	20.48	20.64	19.70				<i>Oracle</i> : 12.42
CV.1se	61.85	61.95	61.96	59.96	61.90			
CV.min	60.09	61.49	61.94	62.57	60.06	60.24		$sd(\mu)/\sigma = 0.5$
AICc	59.74	61.12	64.65	60.97			60.84	$\rho = 0$
AIC	89.79	93.17	96.87	76.06				·
BIC	61.93	61.94	61.96	61.79				<i>Oracle</i> : 56.30
CV.1se	54.84	54.89	54.90	53.43	54.87			
CV.min	53.63	54.59	54.90	55.72	53.68	53.77		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	53.28	54.24	57.69	54.35			53.99	$\rho = 0.5$
AIC	79.60	82.49	85.78	67.95				•
BIC	54.88	54.89	54.90	54.78				<i>Oracle</i> : 49.87
CV.1se	51.68	51.71	51.72	50.51	51.71			
CV.min	50.61	51.47	51.72	52.52	50.62	50.75		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	50.25	51.16	54.14	51.30			50.95	$\rho = 0.9$
AIC	74.83	77.59	80.74	63.52				·
BIC	51.70	51.70	51.72	51.63				<i>Oracle</i> : 46.94
	51.70	51.70	31.12	51.05				

Table 7: Prediction MSE for n=1000, binary design, dense covariates, and decay 200.

$sd(\mu)/\sigma = 2$ $\rho = 0$ $Pracle : 8.99$ $sd(\mu)/\sigma = 2$ $\rho = 0.5$ $Pracle : 7.97$ $sd(\mu)/\sigma = 2$ $\rho = 0.9$ $Pracle : 7.51$ $sd(\mu)/\sigma = 1$ $\rho = 0$
$\rho = 0$ $Pracle : 8.99$ $sd(\mu)/\sigma = 2$ $\rho = 0.5$ $Pracle : 7.97$ $sd(\mu)/\sigma = 2$ $\rho = 0.9$ $Pracle : 7.51$ $sd(\mu)/\sigma = 1$
oracle: 8.99 $sd(\mu)/\sigma = 2$ $\rho = 0.5$ $oracle: 7.97$ $sd(\mu)/\sigma = 2$ $\rho = 0.9$ $oracle: 7.51$ $sd(\mu)/\sigma = 1$
$sd(\mu)/\sigma = 2$ $\rho = 0.5$ $Dracle : 7.97$ $sd(\mu)/\sigma = 2$ $\rho = 0.9$ $Dracle : 7.51$ $sd(\mu)/\sigma = 1$
$sd(\mu)/\sigma = 2$ $\rho = 0.5$ $Dracle : 7.97$ $sd(\mu)/\sigma = 2$ $\rho = 0.9$ $Dracle : 7.51$ $sd(\mu)/\sigma = 1$
$ ho = 0.5$ $Pracle : 7.97$ $Sd(\mu)/\sigma = 2$ $\rho = 0.9$ $Pracle : 7.51$ $Sd(\mu)/\sigma = 1$
$ ho = 0.5$ $Pracle : 7.97$ $Sd(\mu)/\sigma = 2$ $\rho = 0.9$ $Pracle : 7.51$ $Sd(\mu)/\sigma = 1$
Oracle: 7.97 oracle: 7.97 oracle: 7.97 oracle: 7.97 oracle: 7.97 oracle: 7.97 oracle: 7.97
$sd(\mu)/\sigma = 2$ $\rho = 0.9$ $Pracle: 7.51$ $sd(\mu)/\sigma = 1$
$sd(\mu)/\sigma = 2$ $\rho = 0.9$ $Pracle: 7.51$ $sd(\mu)/\sigma = 1$
$\rho = 0.9$ $Dracle : 7.51$ $sd(\mu)/\sigma = 1$
$\rho = 0.9$ $Dracle : 7.51$ $sd(\mu)/\sigma = 1$
Dracle: 7.51 $sd(\mu)/\sigma = 1$
$\operatorname{sd}(\mu)/\sigma = 1$
$\operatorname{sd}(\mu)/\sigma = 1$
$\rho = 0$
ma ala . 22 79
racle: 32.78
$\operatorname{sd}(\mu)/\sigma = 1$
$\rho = 0.5$
racle: 29.03
$\operatorname{sd}(\mu)/\sigma = 1$
$\rho = 0.9$
1 27 27
racle: 27.37
$(\mu)/\sigma = 0.5$
$\rho = 0$
1 110.06
acle: 118.96
$(\mu)/\sigma = 0.5$
$\rho = 0.5$
•
acle: 105.41
$(\mu)/\sigma = 0.5$
$\rho = 0.9$
,
racle: 99.15

Table 8: Prediction MSE for n=1000, continuous design, dense covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	AL	MCP	CVbest	ICbest	
CV.1se	1.38	1.35	1.31	1.32	1.28			
CV.min	1.30	1.28	1.25	1.27	1.24	1.25		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	1.30	1.28	1.27	1.27			1.27	$\rho = 0$
AIC	1.68	1.69	1.78	1.27				Oracle: 1.18
BIC	1.42	1.37	1.32	1.32				07 acte . 1.16
CV.1se	0.56	0.55	0.51	0.61	0.49			
CV.min	0.53	0.51	0.49	0.59	0.47	0.49		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.53	0.52	0.49	0.59			0.49	$\rho = 0.5$
AIC	0.61	0.61	0.63	0.59				Oracle: 0.45
BIC	0.64	0.60	0.54	0.61				01466.0.43
CV.1se	0.16	0.15	0.14	0.17	0.14			
CV.min	0.15	0.15	0.14	0.17	0.13	0.14		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.15	0.15	0.14	0.17			0.14	$\rho = 0.9$
AIC	0.15	0.14	0.14	0.17				Oracle: 0.12
BIC	0.20	0.19	0.17	0.17				Oracie: 0.12
CV.1se	5.39	5.29	5.15	5.00	5.10			
CV.min	5.08	5.01	4.95	5.13	4.94	4.95		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	5.08	5.02	5.06	5.08			5.05	$\rho = 0$
AIC	7.41	7.50	8.01	5.27				01470
BIC	5.41	5.32	5.32	5.09				Oracle: 4.70
CV.1se	2.19	2.12	2.01	2.08	1.94			
CV.min	2.04	1.99	1.92	2.07	1.88	1.92		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	2.04	1.99	1.94	2.06			1.94	$\rho = 0.5$
AIC	2.69	2.72	2.89	2.07				
BIC	2.34	2.25	2.12	2.23				Oracle: 1.77
CV.1se	0.64	0.61	0.56	0.54	0.54			
CV.min	0.58	0.57	0.54	0.52	0.53	0.54		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.58	0.57	0.55	0.52			0.57	$\rho = 0.9$
AIC	0.61	0.61	0.65	0.52				0 1 0 40
BIC	0.69	0.68	0.68	0.54				Oracle: 0.48
CV.1se	20.93	20.70	20.51	19.70	20.35			
CV.min	19.78	19.65	19.69	20.92	19.64	19.66		$sd(\mu)/\sigma = 0.5$
AICc	19.76	19.76	20.60	20.41			19.76	$\rho = 0$
AIC	31.66	32.29	34.25	24.31				,
BIC	20.61	20.65	21.70	19.92				<i>Oracle</i> : 18.68
CV.1se	8.31	8.18	8.01	7.93	7.74			
CV.min	7.81	7.71	7.65	8.19	7.48	7.65		$sd(\mu)/\sigma = 0.5$
AICc	7.78	7.73	7.97	8.10			7.78	$\rho = 0.5$
AIC	11.66	11.85	12.62	8.89				
BIC	8.21	8.20	8.22	8.11				Oracle: 7.04
CV.1se	2.18	2.17	2.12	2.05	2.15			
CV.min	2.09	2.09	2.08	2.02	2.07	2.08		$sd(\mu)/\sigma = 0.5$
AICc	2.09	2.09	2.08	2.03			2.08	$\rho = 0.9$
AIC	2.66	2.74	3.05	2.03				
BIC	2.10	2.09	2.08	2.07				Oracle: 1.91
								L

Table 9: Prediction MSE for n=1000, continuous design, dense covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$,	AL	MCP	CVbest	ICbest	
CV.1se	8.89	8.75	8.73	8.62	8.46			
CV.min	8.29	8.15	8.22	8.31	8.07	8.19		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	8.58	8.33	8.21	8.36			8.23	$\rho = 0$
AIC	10.11	10.26	10.96	8.32				Oracle: 7.12
BIC	11.38	10.69	10.16	9.86				074666.7.12
CV.1se	3.36	3.26	3.14	3.80	3.02			
CV.min	3.10	3.02	2.95	3.53	2.89	2.95		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	3.36	3.18	2.92	3.60			2.91	$\rho = 0.5$
AIC	3.44	3.46	3.65	3.49				Oracle: 2.44
BIC	7.68	5.31	3.78	5.59				07 acte . 2.44
CV.1se	0.63	0.61	0.58	1.17	0.56			
CV.min	0.59	0.57	0.55	1.10	0.55	0.55		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.65	0.61	0.55	1.10			0.55	$\rho = 0.9$
AIC	0.59	0.57	0.56	1.10				Oma el e . 0 44
BIC	1.67	1.66	1.65	1.25				Oracle: 0.44
CV.1se	34.06	33.85	34.98	31.42	32.94			
CV.min	31.34	31.26	32.68	31.51	31.30	31.33		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	31.83	31.40	33.52	31.27			31.50	$\rho = 0$
AIC	42.77	43.75	46.49	34.15				,
BIC	42.03	40.64	48.29	35.76				Oracle: 27.62
CV.1se	13.53	12.89	13.06	12.68	11.78			
CV.min	11.81	11.55	11.96	12.24	11.26	11.61		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	12.25	11.78	11.53	12.34			11.74	$\rho = 0.5$
AIC	14.53	14.78	15.67	12.45				
BIC	16.62	16.65	16.79	16.24				Oracle: 9.45
CV.1se	2.91	2.78	2.71	2.50	2.29			
CV.min	2.64	2.45	2.48	2.35	2.15	2.39		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	2.67	2.67	2.62	2.35			2.56	$\rho = 0.9$
AIC	2.29	2.32	2.52	2.34				•
BIC	2.84	2.84	2.82	2.79				Oracle: 1.72
CV.1se	122.32	122.70	123.15	116.28	122.44			
CV.min	116.26	118.42	122.17	121.45	116.33	116.64		$sd(\mu)/\sigma = 0.5$
AICc	115.83	118.96	123.27	118.51			115.82	$\rho = 0$
AIC	177.17	182.78	191.21	146.86				,
BIC	123.05	123.19	123.26	121.93				Oracle: 107.15
CV.1se	42.16	42.17	42.17	41.75	42.16			
CV.min	41.82	41.91	42.11	43.03	41.82	41.85		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	41.56	42.03	42.18	42.51	11.02	11.00	41.59	$\rho = 0.5$
AIC	60.25	61.81	64.90	50.74			11.57	•
BIC	42.13	42.15	42.17	42.06				Oracle: 36.65
CV.1se	7.70	7.69	7.67	7.60	7.70			
CV.13C CV.min	7.50	7.49	7.47	7.50	7.46	7.47		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	7.49	7.51	7.49	7.52	7.40	/ • T /	7.48	$\rho = 0.9$
AICC	9.77	10.11	11.15	7.60			7.70	•
BIC	7.53	7.54	7.54	7.48				Oracle: 6.68
DIC	1.33	1.34	1.34	7.40				

Table 10: Prediction MSE for n=1000, continuous design, dense covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$		AL	MCP	CVbest	ICbest	
CV.1se	19.75	19.76	20.62	19.85	19.04			
CV.min	18.30	18.24	19.12	18.83	18.2	18.27		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	19.91	19.17	18.81	19.30			18.89	$\rho = 0$
AIC	21.09	21.49	22.88	18.63				<i>Oracle</i> : 15.73
BIC	46.55	33.24	24.57	27.18				Oracle . 13.73
CV.1se	7.50	7.32	7.19	9.12	7.09			
CV.min	6.74	6.63	6.69	8.03	6.70	6.65		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	8.11	7.40	6.65	8.66			6.65	$\rho = 0.5$
AIC	7.16	7.24	7.62	7.58				<i>Oracle</i> : 5.31
BIC	20.78	20.81	17.61	20.27				07466.5.51
CV.1se	1.32	1.28	1.23	2.70	1.26			
CV.min	1.18	1.16	1.15	2.39	1.19	1.15		$sd(\mu)/\sigma = 2$
AICc	1.51	1.32	1.16	2.40			1.16	$\rho = 0.9$
AIC	1.18	1.14	1.15	2.36				Oma ala . 0.00
BIC	3.33	3.33	3.31	3.28				Oracle: 0.90
CV.1se	75.68	78.22	89.56	69.05	73.29			
CV.min	67.78	69.59	80.16	68.33	67.80	67.97		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	70.19	69.24	77.65	68.32			69.41	$\rho = 0$
AIC	87.75	90.22	95.25	73.65				•
BIC	98.91	98.92	99.42	91.76				<i>Oracle</i> : 59.71
CV.1se	32.61	32.35	33.50	27.99	31.66			
CV.min	27.83	28.32	32.85	26.47	27.79	27.43		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	28.71	27.60	27.00	27.01			27.97	$\rho = 0.5$
AIC	29.61	30.23	31.88	26.46				0 1 2016
BIC	33.51	33.54	33.58	33.30				Oracle: 20.16
CV.1se	5.69	5.68	5.64	5.37	5.66			
CV.min	5.46	5.44	5.46	4.96	5.37	5.43		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	5.41	5.49	5.47	4.92			5.42	$\rho = 0.9$
AIC	4.51	4.59	5.00	4.75				•
BIC	5.51	5.51	5.48	5.47				Oracle: 3.43
CV.1se	248.48	248.75	248.83	240.83	248.64			
CV.min	241.25	246.89	248.80	251.00	241.20	241.96		$sd(\mu)/\sigma = 0.5$
AICc	239.87	247.57	248.98	244.78			239.94	$\rho = 0$
AIC	359.81	373.33	388.16	305.32				•
BIC	248.75	248.83	260.38	248.16				<i>Oracle</i> : 225.74
CV.1se	84.04	84.04	84.04	83.70	84.04			
CV.min	83.75	83.95	84.07	86.35	83.78	83.79		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	83.45	84.01	84.08	85.29	03.70	03.77	83.43	$\rho = 0.5$
AIC	120.66	124.51	130.20	103.48			03.13	•
BIC	84.03	84.04	84.04	83.99				Oracle: 76.23
CV.1se	14.33	14.33	14.33	14.29	14.34			
CV.13c	14.17	14.16	14.17	14.21	14.15	14.15		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	14.17	14.20	14.17	14.25	1 1.13	1-1010	14.14	$\rho = 0.9$
AIC	18.82	19.62	21.33	14.53			11,17	•
BIC	14.23	14.25	14.31	14.17				Oracle: 12.97
DIC	17.43	17.43	17.31	17.1/				

Table 11: Prediction MSE for n=1000, continuous design, dense covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$		AL	MCP	CVbest	ICbest	
CV.1se	44.42	46.71	56.79	46.06	42.76			
CV.min	40.06	41.17	46.59	42.63	39.87	40.10		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	49.74	45.58	43.24	45.76			44.27	$\rho = 0$
AIC	43.49	44.52	47.03	41.20				Oracle : 36.05
BIC	124.28	124.46	72.81	114.38				01466.30.03
CV.1se	20.11	21.43	39.27	23.34	19.23			
CV.min	15.20	15.65	34.29	19.50	15.17	15.14		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	26.86	19.33	15.30	22.13			15.30	$\rho = 0.5$
AIC	14.76	14.97	15.68	16.30				<i>Oracle</i> : 12.09
BIC	41.76	41.80	41.06	41.46				Oracle : 12.09
CV.1se	5.61	5.64	6.78	6.32	6.14			
CV.min	4.01	4.16	6.49	5.32	4.91	3.73		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	6.40	6.11	2.57	5.28			2.57	$\rho = 0.9$
AIC	2.40	2.37	2.43	4.53				0 1 100
BIC	6.66	6.66	6.64	6.60				Oracle: 1.98
CV.1se	169.30	187.88	199.29	149.02	165.35			
CV.min	145.46	163.65	195.22	145.76	145.47	145.65		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	155.35	149.68	176.34	147.26			151.51	$\rho = 0$
AIC	178.00	184.00	193.01	154.99				•
BIC	199.52	199.72	199.19	197.28				<i>Oracle</i> : 131.43
CV.1se	66.93	67.00	67.02	59.80	66.97			
CV.min	64.04	65.70	66.87	55.90	63.97	64.09		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	63.18	65.26	63.30	57.33	00.57	0	63.14	$\rho = 0.5$
AIC	59.68	61.25	64.28	54.73			03.11	•
BIC	66.99	67.02	67.02	66.86				Oracle: 44.09
CV.1se	11.00	11.00	10.99	10.89	11.01			
CV.13C	10.74	10.74	10.76	10.35	10.73	10.72		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	10.65	10.74	10.76	10.27	10.73	10.72	10.65	$\rho = 0.9$
AIC	9.05	9.31	10.04	9.44			10.03	,
BIC	10.86	10.87	10.92	10.78				Oracle: 7.22
CV.1se	499.75	499.92	499.94	490.79	499.87			
CV.1se CV.min	493.73	499.45	500.31	511.49	499.87	492.40		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	488.97	501.61	499.93	498.68	471.07	472.40	488.93	$\rho = 0$
AICC	725.13	757.08	782.66	623.41			400.93	$\rho = 0$
BIC			702.82					Oracle: 476.83
	499.85	499.93		499.40	167.72			
CV.1se	167.73	167.73	167.73	167.37	167.73	167.40		1/)/ 0.5
CV.min	167.35	167.70	167.82	172.56	167.40	167.48	166.00	$sd(\mu)/\sigma = 0.5$
AICc	166.89	167.74	167.73	170.57			166.89	$\rho = 0.5$
AIC	241.13	250.55	260.98	208.44				Oracle: 159.94
BIC	167.72	167.73	169.58	167.68	25.55			
CV.1se	27.55	27.55	27.55	27.53	27.55			1/)/ 2 2 2
CV.min	27.44	27.45	27.50	27.54	27.44	27.44		$sd(\mu)/\sigma = 0.5$
AICc	27.39	27.50	27.54	27.60			27.39	$\rho = 0.9$
AIC	36.95	38.80	41.67	28.31				Oracle: 26.20
BIC	27.52	27.53	27.55	27.47				2. 20.20

Table 12: Prediction MSE for n=1000, binary design, sparse covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	AL	MCP	CVbest	ICbest	
CV.1se	0.34	0.34	0.33	0.33	0.32			
CV.min	0.32	0.32	0.31	0.32	0.31	0.31		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.32	0.32	0.31	0.32			0.31	$\rho = 0$
AIC	0.42	0.42	0.45	0.32				Oracle : 0.31
BIC	0.35	0.34	0.32	0.33				074666.0.31
CV.1se	0.31	0.30	0.29	0.30	0.29			
CV.min	0.29	0.29	0.28	0.29	0.28	0.28		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.29	0.29	0.28	0.29			0.28	$\rho = 0.5$
AIC	0.37	0.38	0.40	0.29				Oracle: 0.28
BIC	0.32	0.31	0.29	0.30				07 acte : 0.26
CV.1se	0.29	0.29	0.28	0.28	0.27			
CV.min	0.28	0.27	0.26	0.27	0.26	0.26		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.28	0.27	0.26	0.27			0.26	$\rho = 0.9$
AIC	0.35	0.35	0.37	0.27				Oracle: 0.26
BIC	0.30	0.29	0.27	0.28				07acte . 0.20
CV.1se	1.34	1.32	1.29	1.25	1.27			
CV.min	1.26	1.25	1.23	1.28	1.23	1.23		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	1.26	1.25	1.27	1.27			1.27	$\rho = 0$
AIC	1.85	1.87	2.00	1.31				Oracle : 1.24
BIC	1.35	1.31	1.29	1.27				07466 . 1.24
CV.1se	1.21	1.18	1.15	1.12	1.13			
CV.min	1.14	1.12	1.1	1.15	1.1	1.10		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	1.14	1.12	1.13	1.14			1.13	$\rho = 0.5$
AIC	1.65	1.67	1.78	1.18				Oracle: 1.11
BIC	1.22	1.18	1.15	1.14				07466.1.11
CV.1se	1.14	1.12	1.09	1.06	1.07			
CV.min	1.08	1.06	1.04	1.08	1.04	1.05		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	1.08	1.06	1.07	1.08			1.07	$\rho = 0.9$
AIC	1.55	1.57	1.68	1.11				Oracle : 1.05
BIC	1.16	1.12	1.09	1.09				Oracle : 1.03
CV.1se	5.21	5.16	5.11	4.90	5.07			
CV.min	4.93	4.89	4.90	5.20	4.89	4.90		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.92	4.89	5.17	5.08			4.97	$\rho = 0$
AIC	7.90	8.06	8.55	6.07				Oracle : 4.98
BIC	5.14	5.09	5.21	4.96				Oracle : 4.98
CV.1se	4.68	4.62	4.56	4.39	4.53			
CV.min	4.42	4.38	4.38	4.67	4.37	4.37		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.41	4.38	4.62	4.55			4.46	$\rho = 0.5$
AIC	7.06	7.19	7.62	5.44				Oma ala . 4.44
BIC	4.62	4.57	4.64	4.46				Oracle : 4.44
CV.1se	4.43	4.38	4.33	4.17	4.28			
CV.min	4.18	4.15	4.16	4.40	4.13	4.15		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.18	4.15	4.38	4.31			4.23	$\rho = 0.9$
AIC	6.65	6.78	7.20	5.08				Oracle : 4.20
BIC	4.39	4.34	4.40	4.23				07 ucie : 4.20

Table 13: Prediction MSE for n=1000, binary design, sparse covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	AL	MCP	CVbest	ICbest	
CV.1se	2.11	2.06	2.02	2.04	1.97			
CV.min	1.98	1.93	1.91	1.97	1.89	1.91		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	2.03	1.95	1.93	1.98			1.93	$\rho = 0$
AIC	2.47	2.50	2.68	1.98				Oracle: 1.66
BIC	2.59	2.38	2.18	2.29				07 acic . 1.00
CV.1se	1.90	1.85	1.81	1.85	1.76			
CV.min	1.78	1.73	1.71	1.78	1.69	1.71		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	1.83	1.76	1.71	1.79			1.72	$\rho = 0.5$
AIC	2.20	2.23	2.38	1.79				Oracle: 1.47
BIC	2.40	2.19	1.95	2.12				07 acte . 1.47
CV.1se	1.79	1.74	1.70	1.76	1.65			
CV.min	1.68	1.64	1.61	1.69	1.59	1.62		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	1.73	1.66	1.62	1.70			1.62	$\rho = 0.9$
AIC	2.07	2.09	2.23	1.69				O11-20
BIC	2.28	2.08	1.84	2.02				Oracle: 1.38
CV.1se	8.24	8.17	8.39	7.62	7.95			
CV.min	7.60	7.57	7.86	7.64	7.58	7.60		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	7.69	7.54	8.30	7.58			8.08	$\rho = 0$
AIC	10.46	10.70	11.38	8.30				,
BIC	10.06	9.29	10.18	8.59				Oracle: 6.62
CV.1se	7.42	7.33	7.47	6.86	7.11			
CV.min	6.82	6.77	6.99	6.87	6.78	6.79		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	6.92	6.76	7.35	6.82			7.26	$\rho = 0.5$
AIC	9.31	9.51	10.10	7.46				,
BIC	9.38	8.53	9.14	7.86				Oracle: 5.88
CV.1se	6.99	6.92	7.11	6.51	6.71			
CV.min	6.44	6.39	6.65	6.49	6.40	6.41		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	6.54	6.38	6.88	6.46			6.83	$\rho = 0.9$
AIC	8.75	8.94	9.50	7.00				,
BIC	8.98	8.13	8.69	7.50				Oracle: 5.54
CV.1se	29.81	29.91	30.03	28.31	29.84			
CV.min	28.31	28.88	29.78	29.60	28.34	28.39		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	28.2	28.41	31.56	28.90			28.40	$\rho = 0$
AIC	43.35	44.71	46.79	35.84				,
BIC	30.01	29.97	30.07	29.69				<i>Oracle</i> : 26.48
CV.1se	26.57	26.62	26.70	25.36	26.60			
CV.min	25.38	25.82	26.53	26.50	25.42	25.44		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	25.25	25.38	28.50	25.87	23.12	23	25.38	$\rho = 0.5$
AIC	38.55	39.72	41.54	32.20			20.00	,
BIC	26.68	26.67	26.72	26.49				Oracle: 23.53
CV.1se	25.05	25.11	25.16	23.99	25.10			
CV.13C CV.min	23.95	24.36	25.10	24.95	23.10	24.03		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	23.85	23.94	26.63	24.43	23.77	27.03	23.94	$\rho = 0.9$
AIC	36.24	37.35	39.09	30.06			20.77	,
BIC	25.15	25.13	25.18	24.98				Oracle: 22.16
БІС	23.13	23.13	23.10	24.90				

Table 14: Prediction MSE for n=1000, binary design, sparse covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	AL	MCP	CVbest	ICbest	
CV.1se	3.76	3.61	3.36	3.65	3.30			
CV.min	3.56	3.43	3.26	3.53	3.26	3.28		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	3.67	3.47	3.35	3.55			3.36	$\rho = 0$
AIC	4.47	4.55	4.87	3.57				Oracle: 2.94
BIC	4.59	4.06	3.62	4.07				07 acic . 2.74
CV.1se	3.38	3.23	2.98	3.31	2.91			
CV.min	3.20	3.08	2.90	3.20	2.88	2.90		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	3.30	3.11	2.98	3.23			2.98	$\rho = 0.5$
AIC	3.98	4.05	4.32	3.23				Oracle: 2.61
BIC	4.23	3.69	3.20	3.78				Oracie . 2.01
CV.1se	3.18	3.04	2.83	3.16	2.76			
CV.min	3.02	2.91	2.75	3.04	2.72	2.76		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	3.12	2.94	2.81	3.07			2.81	$\rho = 0.9$
AIC	3.74	3.81	4.07	3.06				Oracle: 2.46
BIC	4.04	3.51	3.04	3.63				Oracie : 2.40
CV.1se	15.29	15.35	16.83	14.13	14.78			
CV.min	13.96	14.04	15.26	14.06	13.95	13.98		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	14.24	13.96	15.45	14.00			14.51	$\rho = 0$
AIC	18.83	19.34	20.48	15.33				0 1 11 70
BIC	21.17	19.98	21.18	17.90				<i>Oracle</i> : 11.78
CV.1se	13.82	13.84	15.21	12.77	13.33			
CV.min	12.54	12.58	13.66	12.68	12.53	12.54		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	12.85	12.52	13.71	12.65			13.25	$\rho = 0.5$
AIC	16.74	17.18	18.16	13.77				,
BIC	18.86	18.33	18.89	16.72				Oracle: 10.46
CV.1se	13.02	13.04	14.46	12.13	12.59			
CV.min	11.84	11.86	13.02	12.00	11.83	11.83		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	12.15	11.82	12.94	11.98			12.53	$\rho = 0.9$
AIC	15.75	16.16	17.10	12.95				,
BIC	17.80	17.37	17.79	16.04				Oracle: 9.86
CV.1se	53.36	53.48	53.51	51.35	53.41			
CV.min	51.39	52.79	53.45	53.56	51.43	51.55		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	51.14	52.09	55.86	52.29	011.0	01.00	51.95	$\rho = 0$
AIC	77.50	80.32	83.64	65.12			01170	,
BIC	53.49	53.50	53.52	53.31				Oracle: 47.14
CV.1se	47.42	47.49	47.51	45.88	47.46			
CV.13C	46.02	46.99	47.48	47.86	46.06	46.14		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	45.75	46.41	50.02	46.73	40.00	40.14	46.29	$\rho = 0.5$
AIC	68.81	71.22	74.17	58.32			70.27	,
BIC	47.49	47.49	47.51	47.37				Oracle: 41.82
CV.1se	44.74	44.79	44.80	43.44	44.78			
CV.1se CV.min	43.47	44.79	44.80	45.16	43.50	43.59		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	43.47 43.18	44.36	46.92	44.14	45.50	73.37	43.66	$sd(\mu)/\delta = 0.3$ $\rho = 0.9$
AICC	64.73		69.87	54.55			45.00	$\rho = 0.9$
		67.04						Oracle: 39.43
BIC	44.79	44.79	44.81	44.69				

Table 15: Prediction MSE for n=1000, binary design, sparse covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$	$\mathrm{GL}~\gamma=10$	AL	MCP	CVbest	ICbest	
CV.1se	5.50	5.19	4.63	5.29	4.56			
CV.min	5.24	4.99	4.60	5.13	4.55	4.60		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	5.39	5.03	4.76	5.16			4.75	$\rho = 0$
AIC	6.62	6.76	7.25	5.24				Oracle: 4.33
BIC	6.47	5.65	4.98	5.74				01 acie . 4.55
CV.1se	4.93	4.64	4.09	4.81	4.01			
CV.min	4.70	4.46	4.08	4.66	4	4.08		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	4.85	4.51	4.20	4.69			4.20	$\rho = 0.5$
AIC	5.89	6.00	6.43	4.73				012.94
BIC	5.94	5.10	4.38	5.31				Oracle: 3.84
CV.1se	4.65	4.38	3.88	4.59	3.81			
CV.min	4.44	4.22	3.88	4.43	3.78	3.88		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	4.59	4.26	3.97	4.46			3.98	$\rho = 0.9$
AIC	5.54	5.65	6.05	4.49				'
BIC	5.65	4.82	4.15	5.08				Oracle: 3.62
CV.1se	22.82	23.17	26.71	21.08	22.03			
CV.min	20.74	21.00	23.69	20.92	20.74	20.79		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	21.25	20.81	23.26	20.86			21.08	$\rho = 0$
AIC	27.81	28.66	30.26	22.86				,
BIC	31.33	30.68	31.31	28.86				<i>Oracle</i> : 17.32
CV.1se	20.66	20.93	24.44	19.07	19.93			
CV.min	18.64	18.82	21.57	18.87	18.64	18.66		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	19.17	18.65	20.58	18.86	10101	10.00	19.17	$\rho = 0.5$
AIC	24.70	25.42	26.82	20.50			1711	'
BIC	27.83	27.60	27.86	26.46				<i>Oracle</i> : 15.36
CV.1se	19.48	19.76	23.30	18.14	18.83			
CV.min	17.62	17.78	20.53	17.88	17.61	17.62		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	18.13	17.63	19.45	17.89	17.01	17.02	18.14	$\rho = 0.9$
AIC	23.26	23.95	25.28	19.30			10.11	'
BIC	26.26	26.12	26.29	25.22				Oracle: 14.49
CV.1se	78.47	78.59	78.62	75.90	78.53			
CV.13C	76.00	78.08	78.62	79.15	76.01	76.19		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	75.6	77.89	81.00	77.21	70.01	70.17	77.52	$\rho = 0$
AIC	114.01	118.59	123.13	96.44			11.52	, i
BIC	78.59	78.61	78.62	78.42				<i>Oracle</i> : 69.25
CV.1se	69.71	69.78	69.79	67.79	69.75			
CV.13C CV.min	68.02	69.44	69.81	70.68	68.07	68.17		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	67.61	69.22	72.36	68.97	00.07	00.17	68.86	$\rho = 0.5$
AICC	101.21	105.15	109.20	86.21			00.00	'
BIC	69.77	69.78	69.79	69.65				Oracle: 61.43
CV.1se	65.81	65.86	65.86	64.21	65.85			
CV.1se CV.min	64.32	65.58	65.89	66.75	64.36	64.49		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	63.9	65.37	68.08	65.23	04.50	U 1.1 7	65.06	$\rho = 0.9$
AICC	95.28	99.04	102.94	80.65			05.00	$\rho = 0.9$
	93.28 65.85		65.86	65.75				Oracle: 57.96
BIC	05.85	65.85	03.80	05.75				

Table 16: Prediction MSE for n=1000, continuous design, sparse covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	AL	MCP	CVbest	ICbest	
CV.1se	1.38	1.35	1.31	1.32	1.28			
CV.min	1.30	1.28	1.25	1.27	1.24	1.25		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	1.30	1.28	1.27	1.27			1.27	$\rho = 0$
AIC	1.68	1.69	1.79	1.27				Oracle: 1.25
BIC	1.42	1.37	1.32	1.32				Oracie . 1.23
CV.1se	0.56	0.55	0.51	0.61	0.49			
CV.min	0.53	0.51	0.49	0.59	0.47	0.49		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.53	0.52	0.49	0.59			0.49	$\rho = 0.5$
AIC	0.61	0.61	0.63	0.59				Oracle: 0.47
BIC	0.64	0.60	0.54	0.61				07 acte . 0.47
CV.1se	0.16	0.15	0.14	0.17	0.14			
CV.min	0.15	0.15	0.14	0.17	0.13	0.14		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.15	0.15	0.14	0.17			0.14	$\rho = 0.9$
AIC	0.15	0.14	0.14	0.17				Oracle: 0.13
BIC	0.20	0.19	0.17	0.17				Oracie: 0.13
CV.1se	5.39	5.29	5.15	5.00	5.10			
CV.min	5.08	5.01	4.95	5.13	4.94	4.95		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	5.08	5.02	5.06	5.08			5.05	$\rho = 0$
AIC	7.41	7.50	8.01	5.27				0 1 400
BIC	5.42	5.32	5.32	5.09				Oracle: 4.99
CV.1se	2.19	2.12	2.01	2.08	1.94			
CV.min	2.04	1.99	1.92	2.07	1.88	1.92		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	2.04	1.99	1.94	2.06			1.94	$\rho = 0.5$
AIC	2.69	2.72	2.89	2.07				,
BIC	2.34	2.25	2.12	2.23				Oracle: 1.88
CV.1se	0.64	0.61	0.56	0.54	0.54			
CV.min	0.58	0.57	0.54	0.52	0.53	0.54		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.58	0.57	0.55	0.52			0.57	$\rho = 0.9$
AIC	0.61	0.61	0.65	0.52				,
BIC	0.69	0.68	0.68	0.54				Oracle: 0.51
CV.1se	20.93	20.70	20.50	19.70	20.35			
CV.min	19.78	19.65	19.69	20.92	19.64	19.66		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	19.76	19.76	20.60	20.41			19.76	$\rho = 0$
AIC	31.66	32.29	34.25	24.31				·
BIC	20.61	20.65	21.70	19.91				Oracle: 19.97
CV.1se	8.31	8.18	8.01	7.93	7.74			
CV.min	7.82	7.71	7.66	8.19	7.48	7.65		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	7.78	7.74	7.98	8.10	7710	7.00	7.78	$\rho = 0.5$
AIC	11.66	11.85	12.62	8.89			7.70	,
BIC	8.22	8.21	8.22	8.12				Oracle: 7.53
CV.1se	2.18	2.17	2.12	2.05	2.15			
CV.13C	2.09	2.09	2.08	2.02	2.07	2.08		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	2.09	2.09	2.08	2.03	2.07	2.00	2.08	$\rho = 0.9$
AIC	2.66	2.74	3.05	2.03			2.00	
BIC	2.10	2.09	2.08	2.07				Oracle: 2.04
DIC	2.10	4.03	2.00	2.07				

Table 17: Prediction MSE for n=1000, continuous design, sparse covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$,	AL	MCP	CVbest	ICbest	
CV.1se	8.47	8.27	8.11	8.19	7.90			
CV.min	7.94	7.76	7.67	7.92	7.61	7.69		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	8.15	7.88	7.74	7.95			7.76	$\rho = 0$
AIC	9.89	10.03	10.73	7.94				Oracle: 6.65
BIC	10.42	9.81	9.31	9.16				Oracie . 0.03
CV.1se	3.20	3.09	2.93	3.63	2.81			
CV.min	2.98	2.89	2.78	3.38	2.71	2.78		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	3.18	3.01	2.76	3.44			2.76	$\rho = 0.5$
AIC	3.35	3.38	3.57	3.36				Oracle: 2.28
BIC	6.83	4.77	3.50	5.19				Oracie : 2.28
CV.1se	0.61	0.59	0.55	1.14	0.53			
CV.min	0.57	0.55	0.53	1.08	0.52	0.53		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.62	0.58	0.53	1.08			0.53	$\rho = 0.9$
AIC	0.57	0.55	0.54	1.08				0 1 0 10
BIC	1.64	1.64	1.59	1.21				Oracle: 0.42
CV.1se	33.07	32.79	33.77	30.55	31.94			
CV.min	30.50	30.37	31.59	30.66	30.41	30.47		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	30.93	30.49	32.44	30.41			30.59	$\rho = 0$
AIC	41.93	42.89	45.60	33.25				,
BIC	40.50	39.02	47.09	34.53				Oracle: 26.59
CV.1se	13.10	12.48	12.58	12.37	11.41			
CV.min	11.51	11.24	11.59	11.95	10.93	11.30		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	11.92	11.46	11.22	12.03	2000	11.00	11.40	$\rho = 0.5$
AIC	14.26	14.50	15.38	12.16			11.10	,
BIC	16.31	16.34	16.49	15.92				Oracle: 9.11
CV.1se	2.86	2.70	2.63	2.46	2.21			
CV.rise CV.min	2.56	2.37	2.38	2.31	2.09	2.31		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	2.60	2.59	2.53	2.31	2.07	2.31	2.48	$\rho = 0.9$
AIC	2.26	2.28	2.48	2.30			2.40	•
BIC	2.80	2.80	2.78	2.75				Oracle: 1.68
CV.1se	119.93	120.31	120.82	113.86	120.03			
CV.1se CV.min	113.81	115.93	119.70	118.93	113.89	114.14		$sd(\mu)/\sigma = 0.5$
AICc	113.42	116.46	120.93	116.93	113.09	114,14	113.39	$sa(\mu)/\delta = 0.3$ $\rho = 0$
AICC	173.78	179.27	187.58	144.00			113.39	$\rho = 0$
BIC			120.92	119.52				Oracle: 106.35
CV.1se	120.69	120.84			41.40			
	41.42	41.42	41.42	40.99	41.42	41.00		1/)/ 0.5
CV.min	41.07	41.14	41.36	42.25	41.06	41.08	40.00	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	40.82	41.28	41.44	41.71			40.82	$\rho = 0.5$
AIC	59.16	60.69	63.73	49.77				Oracle: 36.43
BIC	41.38	41.40	41.42	41.31	7.60			
CV.1se	7.60	7.59	7.57	7.50	7.60	7.05		1/)/ ^ ~ ~
CV.min	7.40	7.39	7.37	7.40	7.36	7.37	-	$sd(\mu)/\sigma = 0.5$
AICc	7.39	7.41	7.39	7.42			7.38	$\rho = 0.9$
AIC	9.64	9.97	11.00	7.50				Oracle: 6.70
BIC	7.43	7.44	7.43	7.38				

Table 18: Prediction MSE for n=1000, continuous design, sparse covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	AL	MCP	CVbest	ICbest	
CV.1se	15.10	14.47	13.52	14.64	13.24			
CV.min	14.30	13.80	13.11	14.18	13.12	13.17		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	14.72	14.01	13.45	14.25			13.53	$\rho = 0$
AIC	17.93	18.24	19.55	14.33				Oracle: 11.82
BIC	18.30	16.69	14.97	16.28				07acic . 11.02
CV.1se	5.57	5.26	4.71	6.67	4.41			
CV.min	5.32	5.06	4.65	6.10	4.39	4.65		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	5.67	5.23	4.64	6.35			4.64	$\rho = 0.5$
AIC	6.07	6.12	6.49	5.98				Oracle: 4.01
BIC	17.96	17.51	5.13	16.69				07 acte . 4.01
CV.1se	1.01	0.96	0.86	2.24	0.82			
CV.min	0.97	0.92	0.85	2.01	0.81	0.85		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	1.06	0.97	0.85	2.02			0.85	$\rho = 0.9$
AIC	0.96	0.93	0.94	2.01				Oracle: 0.70
BIC	2.91	2.92	2.88	2.82				Oracie: 0.70
CV.1se	61.30	61.63	67.80	56.69	59.40			
CV.min	56.03	56.36	61.20	56.45	56.05	56.08		$sd(\mu)/\sigma = 1$
AICc	57.25	56.51	61.22	56.21			56.57	$\rho = 0$
AIC	75.47	77.53	82.05	61.51				0 1 47 20
BIC	85.09	84.04	85.85	71.78				Oracle: 47.30
CV.1se	26.22	25.20	28.27	23.25	23.48			
CV.min	21.83	21.47	26.06	22.17	21.11	21.36		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	22.98	21.55	21.26	22.50			21.78	$\rho = 0.5$
AIC	25.54	26.06	27.54	22.37				0116.04
BIC	29.05	29.08	29.14	28.80				Oracle: 16.04
CV.1se	5.02	4.99	4.96	4.61	4.79			
CV.min	4.76	4.68	4.79	4.25	4.36	4.69		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	4.74	4.81	4.76	4.23			4.70	$\rho = 0.9$
AIC	3.92	3.98	4.36	4.11				0 1 200
BIC	4.86	4.86	4.83	4.81				Oracle: 2.80
CV.1se	214.42	214.86	215.02	206.23	214.59			
CV.min	206.43	212.06	214.78	214.96	206.33	207.05		$sd(\mu)/\sigma = 0.5$
AICc	205.31	212.39	215.21	209.69			205.37	$\rho = 0$
AIC	310.41	321.76	335.07	261.14				•
BIC	214.89	215.00	217.26	214.16				<i>Oracle</i> : 189.14
CV.1se	72.92	72.92	72.92	72.56	72.92			
CV.min	72.61	72.80	72.95	74.88	72.64	72.66		$sd(\mu)/\sigma = 0.5$
AICc	72.32	72.89	72.96	73.92			72.31	$\rho = 0.5$
AIC	104.61	107.80	112.84	89.35				·
BIC	72.91	72.92	72.92	72.88				<i>Oracle</i> : 64.15
CV.1se	12.72	12.72	12.71	12.66	12.72			
CV.min	12.53	12.53	12.53	12.57	12.51	12.51		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	12.5	12.58	12.60	12.60			12.50	$\rho = 0.9$
AIC	16.60	17.27	18.84	12.81			12.00	·
BIC	12.61	12.62	12.69	12.54				Oracle: 11.20
	12.01	12.02	12.07	14.5⊤				

Table 19: Prediction MSE for n=1000, continuous design, sparse covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$		AL	MCP	CVbest	ICbest	
CV.1se	22.06	20.83	18.60	21.21	18.31			
CV.min	21.02	20.04	18.49	20.59	18.26	18.51		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	21.63	20.28	19.18	20.69			19.29	$\rho = 0$
AIC	26.52	27.07	29.04	21.02				Oracle: 17.37
BIC	26.07	23.17	20.23	23.08				01acic . 11.31
CV.1se	8.07	7.45	6.44	9.77	6.03			
CV.min	7.79	7.30	6.54	8.91	6.04	6.54		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	8.27	7.47	6.47	9.35			6.48	$\rho = 0.5$
AIC	8.98	9.08	9.65	8.69				Oracle: 5.87
BIC	26.50	25.09	6.71	25.92				Oracie . 5.67
CV.1se	1.44	1.33	1.17	3.34	1.09			
CV.min	1.39	1.31	1.18	2.88	1.10	1.19		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	1.51	1.35	1.16	2.90			1.16	$\rho = 0.9$
AIC	1.39	1.34	1.41	2.84				Oracle: 1.01
BIC	4.27	4.28	3.44	4.21				Oracie : 1.01
CV.1se	91.40	92.90	107.18	84.53	88.38			
CV.min	83.20	84.26	95.00	83.92	83.19	83.31		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	85.14	84.21	93.73	83.70			84.23	$\rho = 0$
AIC	111.39	114.82	121.21	91.72				•
BIC	125.83	125.78	126.15	116.17				Oracle: 69.47
CV.1se	40.67	40.08	42.55	34.99	39.34			
CV.min	34.02	34.26	41.87	33.17	33.76	33.38		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	35.81	32.73	32.27	33.80			33.55	$\rho = 0.5$
AIC	37.63	38.50	40.63	33.23				
BIC	42.62	42.64	42.67	42.42				Oracle: 23.49
CV.1se	7.28	7.27	7.23	6.96	7.25			
CV.min	6.96	6.94	6.98	6.41	6.89	6.93		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	6.90	7.03	7.00	6.35			6.89	$\rho = 0.9$
AIC	5.77	5.89	6.45	5.97				•
BIC	7.09	7.11	7.11	7.01				Oracle: 4.03
CV.1se	315.28	315.72	315.85	304.89	315.47			
CV.min	305.33	313.63	315.86	317.57	305.18	306.22		$sd(\mu)/\sigma = 0.5$
AICc	303.58	314.44	315.81	309.81			303.59	$\rho = 0$
AIC	456.70	475.12	493.35	386.66				•
BIC	315.72	315.81	351.65	314.97				Oracle: 277.88
CV.1se	106.78	106.79	106.78	106.40	106.79			
CV.min	106.43	106.70	106.84	109.83	106.46	106.57		$sd(\mu)/\sigma = 0.5$
AICc	106.08	106.77	106.79	108.39	100.10	100.57	106.12	$\rho = 0.5$
AIC	153.36	158.62	165.71	131.58			100.12	•
BIC	106.77	106.78	106.79	106.75				Oracle:93.96
CV.1se	18.33	18.33	18.32	18.28	18.33			
CV.13c	18.14	18.15	18.20	18.18	18.14	18.14		$sd(\mu)/\sigma = 0.5$
AICc	18.1	18.22	18.29	18.23	10.17	10,17	18.10	$\rho = 0.9$
AIC	24.24	25.34	27.45	18.64			10.10	·
BIC	18.25	18.28	18.32	18.18				Oracle: 16.13
DIC	10.23	10.20	10.32	10.10				

Table 20: Prediction MSE for n=100, binary design, dense covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	AL	MCP	CVbest	ICbest	
CV.1se	0.99	0.94	1.06	0.53	0.87			
CV.min	0.59	0.63	0.84	0.51	0.62	0.61		$sd(\mu)/\sigma = 2$
AICc	0.72	0.67	0.54	0.56			0.54	$\rho = 0$
AIC	0.55	0.55	0.56	0.52				Oracle: 0.37
BIC	0.55	0.55	0.56	0.53				01466.0.31
CV.1se	0.97	0.92	0.99	0.49	0.83			
CV.min	0.58	0.60	0.79	0.46	0.59	0.59		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.69	0.64	0.48	0.52			0.48	$\rho = 0.5$
AIC	0.49	0.49	0.50	0.47				Oracle: 0.33
BIC	0.49	0.49	0.50	0.48				Oracle : 0.55
CV.1se	0.93	0.89	0.96	0.47	0.80			
CV.min	0.56	0.59	0.78	0.44	0.58	0.58		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.67	0.63	0.46	0.50			0.46	$\rho = 0.9$
AIC	0.46	0.47	0.47	0.45				0 1 021
BIC	0.46	0.47	0.47	0.46				Oracle: 0.31
CV.1se	2.18	2.18	2.20	1.79	2.17			
CV.min	1.91	2.00	2.13	2.03	1.93	1.92		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	1.91	1.92	2.21	1.73			2.20	$\rho = 0$
AIC	2.21	2.22	2.24	2.15				,
BIC	2.20	2.21	2.24	2.15				Oracle: 1.40
CV.1se	1.98	1.98	1.99	1.64	1.97			
CV.min	1.75	1.82	1.93	1.83	1.77	1.75		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	1.74	1.76	1.97	1.57			1.97	$\rho = 0.5$
AIC	1.98	1.99	2.01	1.93			1.77	,
BIC	1.98	1.98	2.01	1.93				Oracle: 1.26
CV.1se	1.88	1.87	1.88	1.54	1.86			
CV.rise CV.min	1.66	1.72	1.82	1.72	1.67	1.67		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	1.66	1.67	1.86	1.5	1.07	1.07	1.86	$\rho = 0.9$
AIC	1.87	1.88	1.90	1.83			1.00	,
BIC	1.87	1.88	1.90	1.82				Oracle: 1.19
CV.1se	5.67	5.67	5.68	6.91	5.67			
CV.1sc CV.min	5.68	5.70	5.71	8.23	5.72	5.72		$sd(\mu)/\sigma = 0.5$
AICc	5.61	7.11	8.94	6.01	3.12	3.12	8.94	$\rho = 0$
AICC	8.88	8.93	9.00	8.74			0.74	$\rho = 0$
BIC	8.87	8.92	9.00	8.73				Oracle: 5.30
CV.1se	5.08	5.08	5.08	6.21	5.08			
CV.1se CV.min	5.09	5.11	5.11			5.13		$ad(u)/\sigma = 0.5$
AICc	5.09 5.03	6.20	7.98	7.39	5.13	3.13	7.99	$\begin{array}{c c} \operatorname{sd}(\mu)/\sigma = 0.5 \\ \rho = 0.5 \end{array}$
AICC				5.41			1.99	$\rho = 0.5$
	7.93	7.98	8.04	7.81				Oracle: 4.74
BIC	7.93	7.97	8.04	7.81	1.02			
CV.1se	4.82	4.83	4.83	5.84	4.83	4.00		-1()/
CV.min	4.84	4.85	4.86	6.96	4.86	4.89	7.56	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.77	5.83	7.57	5.14			7.56	$\rho = 0.9$
AIC	7.53	7.57	7.63	7.41				<i>Oracle</i> : 4.52
BIC	7.52	7.56	7.63	7.40				

Table 21: Prediction MSE for n=100, binary design, dense covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	AL	MCP	CVbest	ICbest	
CV.1se	7.33	7.44	7.46	3.26	7.34			
CV.min	5.91	6.93	7.27	2.95	5.82	6.07		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	6.28	3.35	3.02	4.31			3.02	$\rho = 0$
AIC	2.98	3.00	3.03	2.94				Oracle: 2.73
BIC	2.98	3.00	3.03	2.94				01 acic . 2.13
CV.1se	6.67	6.68	6.71	2.96	6.66			
CV.min	5.46	6.27	6.57	2.64	5.45	5.56		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	5.70	3.11	2.70	3.86			2.71	$\rho = 0.5$
AIC	2.67	2.68	2.71	2.63				Oracle: 2.45
BIC	2.67	2.68	2.71	2.63				Oracie . 2.43
CV.1se	6.28	6.30	6.35	2.89	6.29			
CV.min	5.24	5.94	6.21	2.51	5.27	5.32		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	5.46	3.15	2.55	3.77			2.55	$\rho = 0.9$
AIC	2.52	2.54	2.56	2.49				0 1 221
BIC	2.52	2.54	2.56	2.49				Oracle: 2.31
CV.1se	12.07	12.11	12.12	10.25	12.07			
CV.min	11.33	11.94	12.07	11.32	11.41	11.48		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	11.31	11.06	12.10	10.12			12.09	$\rho = 0$
AIC	11.96	12.05	12.14	11.78				,
BIC	11.96	12.04	12.14	11.77				Oracle: 9.58
CV.1se	10.82	10.84	10.85	9.17	10.82			
CV.min	10.25	10.69	10.82	10.09	10.33	10.36		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	10.15	9.82	10.78	9.06	10.00	10.00	10.78	$\rho = 0.5$
AIC	10.66	10.73	10.82	10.49			10.70	,
BIC	10.65	10.72	10.82	10.49				Oracle: 8.54
CV.1se	10.25	10.72	10.27	8.73	10.26			
CV.13C CV.min	9.73	10.12	10.23	9.51	9.75	9.80		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	9.66	9.31	10.20	8.66	7.13	7.00	10.21	$\rho = 0.9$
AIC	10.09	10.16	10.24	9.93			10.21	$\rho = 0.3$
BIC	10.08	10.15	10.24	9.93				Oracle: 8.05
CV.1se	30.53	30.55	30.60	37.75	30.56			
CV.1se CV.min	30.55	30.33	30.82	44.89	30.81	30.94		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	30.09	45.69	48.52	32.65	30.61	30.94	48.53	$\rho = 0$
AICC	47.87	48.29	48.60	47.19			40.33	$\rho = 0$
BIC								Oracle: 31.48
CV.1se	47.84 27.31	48.27 27.33	48.60 27.33	47.17 33.73	27.33			
						27.71		-1()/- 0.5
CV.min	27.44	27.49	27.51	39.84	27.55	27.71	12.20	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	27.22	40.56	43.22	29.07			43.30	$\rho = 0.5$
AIC	42.66	43.03	43.30	42.06				Oracle: 28.08
BIC	42.64	43.01	43.30	42.04				
CV.1se	25.85	25.87	25.88	31.38	25.87			
CV.min	26.00	25.97	26.03	37.38	26.07	26.25		$sd(\mu)/\sigma = 0.5$
AICc	25.67	38.25	40.92	27.59			41.08	$\rho = 0.9$
AIC	40.38	40.73	40.99	39.78				Oracle : 26.61
BIC	40.36	40.71	40.99	39.76				2.400.01

Table 22: Prediction MSE for n=100, binary design, dense covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	AL	MCP	CVbest	ICbest	
CV.1se	14.97	15.13	15.17	6.70	15.02			
CV.min	12.62	14.61	14.91	5.99	12.53	12.89		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	13.31	6.05	6.12	9.01			6.14	$\rho = 0$
AIC	6.04	6.08	6.13	5.96				Oracle: 6.12
BIC	6.04	6.08	6.13	5.96				07 acre : 0.12
CV.1se	13.48	13.54	13.55	6.03	13.50			
CV.min	11.56	13.10	13.37	5.35	11.65	11.77		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	11.88	5.49	5.44	8.14			5.46	$\rho = 0.5$
AIC	5.37	5.41	5.45	5.31				Oracle: 5.45
BIC	5.37	5.41	5.45	5.3				01 acte . 5.45
CV.1se	12.74	12.81	12.84	5.92	12.80			
CV.min	10.99	12.38	12.67	5.11	10.93	11.21		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	11.29	5.27	5.17	7.86			5.16	$\rho = 0.9$
AIC	5.10	5.14	5.18	5.04				0
BIC	5.10	5.13	5.18	5.04				<i>Oracle</i> : 5.16
CV.1se	24.48	24.56	24.57	20.88	24.50			
CV.min	23.19	24.40	24.52	22.96	23.24	23.46		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	23.11	23.13	24.53	20.63			24.52	$\rho = 0$
AIC	24.21	24.42	24.58	23.85				,
BIC	24.20	24.41	24.58	23.84				<i>Oracle</i> : 21.34
CV.1se	21.91	21.95	21.95	18.66	21.94			
CV.min	20.91	21.80	21.92	20.46	21.03	21.13		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	20.78	20.54	21.87	18.48			21.87	$\rho = 0.5$
AIC	21.58	21.76	21.91	21.26				,
BIC	21.57	21.76	21.91	21.25				Oracle: 19.00
CV.1se	20.67	20.71	20.72	17.65	20.70			
CV.min	19.66	20.53	20.67	19.21	19.67	19.78		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	19.53	19.34	20.61	17.53	-,,,,,	-,,,,	20.58	$\rho = 0.9$
AIC	20.35	20.51	20.66	20.05				,
BIC	20.34	20.50	20.66	20.04				Oracle: 17.97
CV.1se	61.84	61.86	61.92	76.46	61.85			
CV.min	62.12	62.25	62.34	90.65	62.44	62.36		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	61.54	94.48	98.16	66.07			98.14	$\rho = 0$
AIC	96.74	97.74	98.25	95.38			, 0.11	,
BIC	96.70	97.70	98.25	95.35				<i>Oracle</i> : 64.46
CV.1se	55.33	55.40	55.36	68.27	55.34			
CV.min	55.59	55.77	55.74	80.79	55.83	56.06		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	55.07	83.89	87.52	59.02	22.02	20.00	87.55	$\rho = 0.5$
AIC	86.29	87.15	87.62	85.08			07.55	,
BIC	86.25	87.11	87.62	85.05				<i>Oracle</i> : 57.58
CV.1se	52.31	52.35	52.39	63.43	52.34			
CV.13c	52.51	52.62	52.66	75.65	52.69	52.76		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	51.93	79.08	82.74	55.84	52.07	32.10	82.80	$\rho = 0.9$
AICC	81.57	82.38	82.83	80.38			02.00	,
BIC		82.35	82.83					<i>Oracle</i> : 54.48
DIC	81.52	04.33	04.83	80.28				

Table 23: Prediction MSE for n=100, binary design, dense covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$		AL	MCP	CVbest	ICbest	
CV.1se	30.33	30.56	30.60	13.61	30.38			
CV.min	26.07	29.77	30.17	12.06	25.72	26.61		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	27.01	12.04	12.33	18.27			12.32	$\rho = 0$
AIC	12.15	12.26	12.34	12				<i>Oracle</i> : 12.55
BIC	12.15	12.26	12.34	12				07 acte . 12.33
CV.1se	27.21	27.33	27.35	12.36	27.28			
CV.min	23.89	26.73	27.01	10.79	23.88	24.36		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	24.26	10.74	10.99	16.73			11.03	$\rho = 0.5$
AIC	10.83	10.93	11.00	10.7				<i>Oracle</i> : 11.21
BIC	10.83	10.92	11.00	10.7				Oracie : 11.21
CV.1se	25.68	25.79	25.82	11.97	25.74			
CV.min	22.64	25.13	25.46	10.24	22.44	22.96		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	22.74	10.23	10.38	15.86			10.38	$\rho = 0.9$
AIC	10.24	10.33	10.39	10.12				0110.60
BIC	10.23	10.32	10.39	10.12				Oracle: 10.60
CV.1se	49.21	49.37	49.37	42.14	49.29			
CV.min	46.77	49.09	49.30	46.25	46.84	47.45		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	46.69	47.26	49.34	41.64			49.49	$\rho = 0$
AIC	48.63	49.11	49.40	47.93				•
BIC	48.61	49.09	49.40	47.91				<i>Oracle</i> : 46.19
CV.1se	44.03	44.14	44.15	37.50	44.11			
CV.min	42.08	43.93	44.11	41.17	42.30	42.64		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	41.73	42.04	43.94	37.24			43.91	$\rho = 0.5$
AIC	43.31	43.73	43.99	42.68				•
BIC	43.29	43.72	43.99	42.67				Oracle: 41.04
CV.1se	41.58	41.69	41.70	35.58	41.60			
CV.min	39.52	41.37	41.58	38.66	39.66	39.88		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	39.23	39.74	41.49	35.18			41.47	$\rho = 0.9$
AIC	40.90	41.29	41.54	40.32				•
BIC	40.88	41.27	41.54	40.30				Oracle: 38.90
CV.1se	124.66	124.81	124.79	154.61	124.68			
CV.min	125.32	125.62	125.84	182.91	125.93	126.26		$sd(\mu)/\sigma = 0.5$
AICc	124.15	193.36	198.18	133.05			198.35	$\rho = 0$
AIC	195.19	197.42	198.29	192.44			-, -, -, -	•
BIC	195.11	197.36	198.28	192.34				Oracle: 130.14
CV.1se	111.25	111.38	111.34	136.84	111.28			
CV.min	111.79	112.04	112.02	162.37	112.21	112.54		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	110.75	171.44	176.10	118.55	112.21	112.5	175.96	$\rho = 0.5$
AIC	173.46	175.42	176.20	171.07			175.70	•
BIC	173.39	175.35	176.19	171.01				Oracle: 116.03
CV.1se	105.14	105.23	105.25	127.70	105.21			
CV.13C CV.min	105.14	105.68	105.23	152.09	105.21	105.96		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	103.41	161.77	166.42	112.41	105.75	105.70	166.20	$\rho = 0.9$
AIC	163.88	165.73	166.50	161.47			100.20	•
BIC	163.80	165.66	166.50	161.41				Oracle: 109.94
DIC	103.00	103.00	100.50	101.41				

Table 24: Prediction MSE for n=100, continuous design, dense covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	AL	MCP	CVbest	ICbest	
CV.1se	4.07	3.93	4.31	2.11	3.58			
CV.min	2.44	2.60	3.40	2.03	2.52	2.53		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	2.89	3.36	2.23	2.24			2.39	$\rho = 0$
AIC	2.20	2.21	2.24	2.10				Oracle: 1.48
BIC	2.20	2.20	2.23	2.15				07 acte . 1.40
CV.1se	2.01	1.97	1.89	1.04	1.82			
CV.min	1.54	1.55	1.68	0.84	1.44	1.50		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	1.57	1.81	1.01	1.16			1.26	$\rho = 0.5$
AIC	0.83	0.84	0.84	0.82				Oracle: 0.56
BIC	0.83	0.84	0.84	0.91				07 acre . 0.30
CV.1se	0.40	0.39	0.34	0.29	0.37			
CV.min	0.32	0.32	0.32	0.22	0.31	0.32		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.32	0.35	0.33	0.25			0.32	$\rho = 0.9$
AIC	0.22	0.22	0.22	0.2				Oracle: 0.15
BIC	0.24	0.23	0.22	0.32				Oracie . 0.13
CV.1se	8.82	8.80	8.92	7.23	8.80			
CV.min	7.73	8.04	8.56	8.16	7.76	7.79		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	7.66	8.50	8.88	6.93			8.56	$\rho = 0$
AIC	8.87	8.91	9.00	8.65				0
BIC	8.87	8.91	9.00	8.63				Oracle: 5.62
CV.1se	3.39	3.38	3.36	2.83	3.36			
CV.min	3.11	3.16	3.26	3.07	3.11	3.10		$sd(\mu)/\sigma = 1$
AICc	3.08	3.29	3.31	2.79			3.20	$\rho = 0.5$
AIC	3.35	3.36	3.39	3.28				-
BIC	3.35	3.36	3.39	3.27				Oracle: 2.11
CV.1se	0.84	0.82	0.74	0.72	0.79			
CV.min	0.71	0.71	0.69	0.70	0.69	0.69		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.70	0.74	0.71	0.68			0.70	$\rho = 0.9$
AIC	0.89	0.89	0.91	0.80				
BIC	0.89	0.89	0.91	0.70				Oracle: 0.56
CV.1se	22.83	22.84	22.85	27.74	22.85			
CV.min	22.87	22.91	23.01	33.04	22.94	22.99		$sd(\mu)/\sigma = 0.5$
AICc	22.53	24.53	35.87	24.03			33.38	$\rho = 0$
AIC	35.61	35.81	36.11	35.06				-
BIC	35.59	35.80	36.10	35.04				<i>Oracle</i> : 21.25
CV.1se	8.59	8.59	8.60	10.06	8.59			
CV.min	8.58	8.59	8.64	12.07	8.62	8.65		$sd(\mu)/\sigma = 0.5$
AICc	8.52	8.61	13.38	9.09			11.49	$\rho = 0.5$
AIC	13.39	13.44	13.56	13.17				
BIC	13.38	13.44	13.56	13.15				Oracle: 7.97
CV.1se	2.33	2.32	2.32	2.29	2.32			
CV.min	2.26	2.26	2.29	2.53	2.26	2.26		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	2.24	2.28	3.11	2.34			2.28	$\rho = 0.9$
AIC	3.61	3.62	3.67	3.44				,
BIC	3.60	3.62	3.67	2.66				Oracle: 2.11
								L

Table 25: Prediction MSE for n=100, continuous design, dense covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	AL	MCP	CVbest	ICbest	
CV.1se	29.84	30.21	30.39	13.26	29.97			
CV.min	24.06	28.29	29.64	11.90	24.04	24.66		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	25.41	22.67	12.22	17.14			14.70	$\rho = 0$
AIC	12.07	12.15	12.26	11.89				Oracle: 11.08
BIC	12.07	12.14	12.26	11.88				Oracie . 11.00
CV.1se	10.41	10.41	10.42	5.40	10.39			
CV.min	9.40	9.94	10.30	4.26	9.42	9.43		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	9.31	10.16	4.16	6.64			5.91	$\rho = 0.5$
AIC	4.13	4.15	4.18	4.09				Oracle: 3.78
BIC	4.13	4.14	4.18	4.08				Oracie: 5.78
CV.1se	1.88	1.86	1.83	1.54	1.85			
CV.min	1.60	1.61	1.69	1.12	1.59	1.58		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	1.55	1.78	1.31	1.26			1.53	$\rho = 0.9$
AIC	0.75	0.75	0.76	0.74				01060
BIC	0.75	0.75	0.76	1.38				Oracle: 0.68
CV.1se	48.97	49.08	49.11	41.41	49.03			
CV.min	46.03	48.36	48.95	45.64	46.16	46.53		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	45.69	46.15	48.71	40.67			47.97	$\rho = 0$
AIC	48.15	48.51	48.87	47.37				•
BIC	48.13	48.49	48.86	47.35				Oracle: 38.53
CV.1se	16.82	16.83	16.85	14.38	16.81			
CV.min	16.23	16.58	16.82	15.44	16.19	16.25		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	16.03	16.57	16.64	14.36			16.44	$\rho = 0.5$
AIC	16.54	16.62	16.77	16.30				•
BIC	16.53	16.61	16.76	16.29				Oracle: 13.23
CV.1se	3.06	3.06	3.06	2.82	3.06			
CV.min	2.89	2.90	2.99	2.61	2.88	2.88		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	2.83	3.01	2.98	2.64			2.84	$\rho = 0.9$
AIC	2.99	3.00	3.04	2.88				•
BIC	2.99	3.00	3.04	2.87				Oracle: 2.37
CV.1se	123.67	123.68	123.80	151.41	123.69			
CV.min	124.09	124.31	124.59	180.32	125.12	125.16		$sd(\mu)/\sigma = 0.5$
AICc	122.78	181.19	195.40	131.22			183.19	$\rho = 0$
AIC	192.75	194.48	195.68	189.98				•
BIC	192.67	194.40	195.66	189.91				<i>Oracle</i> : 126.96
CV.1se	42.38	42.39	42.42	49.61	42.42			
CV.min	42.56	42.60	42.70	59.52	42.68	42.99		$sd(\mu)/\sigma = 0.5$
AICc	42.17	50.84	66.80	45.06	.2.00	,,	59.79	$\rho = 0.5$
AIC	66.10	66.57	67.06	65.12			0,.,,	•
BIC	66.07	66.53	67.05	65.09				Oracle: 43.47
CV.1se	7.73	7.73	7.74	7.84	7.73			
CV.rse CV.min	7.71	7.73	7.78	8.64	7.74	7.76		$sd(\mu)/\sigma = 0.5$
AICc	7.66	7.72	12.06	8.10			7.97	$\rho = 0.9$
AIC	11.97	12.05	12.19	11.58			1.21	•
BIC	11.96	12.05	12.13	10.18				Oracle: 7.75
	11.90	12.03	12.10	10.10				

Table 26: Prediction MSE for n=100, continuous design, dense covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	AL	MCP	CVbest	ICbest	
CV.1se	61.16	61.57	61.63	27.47	61.23			
CV.min	51.50	59.56	60.70	24.23	51.80	52.42		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	53.49	32.73	24.78	36.31			29.58	$\rho = 0$
AIC	24.45	24.64	24.82	24.13				<i>Oracle</i> : 24.83
BIC	24.44	24.63	24.82	24.14				07 acte : 21.03
CV.1se	20.83	20.84	20.86	10.87	20.84			
CV.min	19.15	20.19	20.68	8.57	19.09	19.18		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	18.93	18.83	8.35	13.38			11.41	$\rho = 0.5$
AIC	8.26	8.30	8.37	8.18				Oracle: 8.37
BIC	8.25	8.30	8.37	8.21				07acte . 6.57
CV.1se	3.54	3.54	3.53	3.00	3.54			
CV.min	3.20	3.27	3.41	2.17	3.21	3.20		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	3.11	3.48	1.60	2.48			3.07	$\rho = 0.9$
AIC	1.40	1.40	1.42	1.38				Oracle: 1.42
BIC	1.40	1.40	1.42	2.30				Oracle . 1.42
CV.1se	99.62	99.74	99.82	84.51	99.66			
CV.min	94.55	98.98	99.72	92.58	94.75	95.42		$sd(\mu)/\sigma = 1$
AICc	93.78	93.69	99.07	83.67			97.14	$\rho = 0$
AIC	97.75	98.62	99.27	96.27				0196.46
BIC	97.71	98.58	99.26	96.23				<i>Oracle</i> : 86.46
CV.1se	33.64	33.67	33.71	28.79	33.68			
CV.min	32.47	33.31	33.69	30.80	32.52	32.68		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	32.08	32.43	33.36	28.83			33.03	$\rho = 0.5$
AIC	33.02	33.24	33.49	32.55				0 1 20 10
BIC	33.00	33.22	33.49	32.53				<i>Oracle</i> : 29.19
CV.1se	5.73	5.73	5.73	5.38	5.74			
CV.min	5.53	5.59	5.70	4.97	5.53	5.53		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	5.44	5.70	5.62	5.05			5.46	$\rho = 0.9$
AIC	5.58	5.61	5.68	5.42				, , , , , , ,
BIC	5.58	5.61	5.68	5.44				Oracle: 4.90
CV.1se	250.85	250.88	251.03	307.99	251.08			
CV.min	251.92	252.45	253.02	365.30	253.21	254.15		$sd(\mu)/\sigma = 0.5$
AICc	249.33	381.45	396.97	266.84			369.87	$\rho = 0$
AIC	391.16	395.18	397.28	385.61				•
BIC	390.99	395.04	397.25	385.45				<i>Oracle</i> : 260.93
CV.1se	84.75	84.79	84.80	98.73	84.80			
CV.min	85.25	85.31	85.31	118.99	85.26	85.82		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	84.43	117.72	133.55	90.21			120.78	$\rho = 0.5$
AIC	131.83	132.94	133.82	129.89				,
BIC	131.76	132.88	133.81	129.82				<i>Oracle</i> : 87.87
CV.1se	14.44	14.44	14.45	14.67	14.45			
CV.min	14.44	14.49	14.54	16.22	14.49	14.53		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	14.39	14.47	22.61	15.14			15.23	$\rho = 0.9$
AIC	22.32	22.50	22.75	21.62			10.20	,
BIC	22.31	22.50	22.74	18.94				Oracle: 14.79
	22.21	22.30	<i>22,1</i> ¬	10.74				

Table 27: Prediction MSE for n=100, continuous design, dense covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	AL	MCP	CVbest	ICbest	
CV.1se	123.78	124.17	124.38	55.67	123.87			
CV.min	105.81	121.52	122.75	48.79	106.45	108.24		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	109.36	52.25	49.94	74.35			58.01	$\rho = 0$
AIC	49.18	49.63	49.96	48.59				Oracle : 50.89
BIC	49.16	49.61	49.96	48.58				Oracle . 50.69
CV.1se	41.62	41.63	41.66	21.97	41.60			
CV.min	38.52	40.66	41.36	17.13	38.32	38.69		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	37.84	29.69	16.67	26.77			22.67	$\rho = 0.5$
AIC	16.46	16.57	16.70	16.31				<i>Oracle</i> : 17.03
BIC	16.45	16.57	16.69	16.3				Oracle . 17.03
CV.1se	6.86	6.85	6.85	5.93	6.86			
CV.min	6.37	6.53	6.75	4.25	6.36	6.35		$sd(\mu)/\sigma = 2$
AICc	6.19	6.79	2.75	4.94			5.95	$\rho = 0.9$
AIC	2.70	2.71	2.74	2.67				Oracle: 2.80
BIC	2.69	2.71	2.74	4.17				Oracle : 2.80
CV.1se	200.18	200.56	200.62	170.55	200.38			
CV.min	190.91	199.28	200.41	186.30	190.80	193.05		$sd(\mu)/\sigma = 1$
AICc	189.24	191.81	199.68	168.56			197.28	$\rho = 0$
AIC	196.78	198.74	199.88	193.84				0 1 106.60
BIC	196.71	198.66	199.87	193.77				Oracle: 186.60
CV.1se	67.24	67.30	67.34	57.55	67.30			
CV.min	64.84	66.87	67.31	61.27	64.94	65.33		$sd(\mu)/\sigma = 1$
AICc	64.19	63.51	66.78	57.55			66.20	$\rho = 0.5$
AIC	65.93	66.46	66.92	65.00				0162.50
BIC	65.88	66.43	66.91	64.97				Oracle: 62.50
CV.1se	11.08	11.07	11.08	10.48	11.08			
CV.min	10.75	10.89	11.04	9.69	10.77	10.78		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	10.58	11.04	10.92	9.86			10.61	$\rho = 0.9$
AIC	10.79	10.87	10.99	10.50				0 1 10.21
BIC	10.79	10.87	10.99	10.60				Oracle: 10.21
CV.1se	505.57	505.68	505.88	621.63	505.30			
CV.min	507.03	508.25	509.82	736.30	509.71	511.25		$sd(\mu)/\sigma = 0.5$
AICc	502.04	779.80	797.64	536.72			735.78	$\rho = 0$
AIC	787.28	796.26	799.84	776.11				
BIC	786.99	795.99	799.78	775.79				<i>Oracle</i> : 527.53
CV.1se	169.34	169.55	169.49	197.63	169.47			
CV.min	170.16	170.31	170.41	237.39	170.31	171.26		$sd(\mu)/\sigma = 0.5$
AICc	168.77	252.44	267.51	180.60			241.61	$\rho = 0.5$
AIC	263.70	266.29	267.81	259.78				,
BIC	263.52	266.19	267.78	259.63				<i>Oracle</i> : 176.63
					27.84			
						27.95		$sd(\mu)/\sigma = 0.5$
							29.04	
				41.67				-
								<i>Oracle</i> : 28.81
CV.1se CV.min AICc AIC BIC	27.83 27.80 27.75 43.01 42.99	27.83 27.97 28.33 43.43 43.41	27.85 28.03 43.63 43.86 43.84	28.27 31.23 29.27	27.84 27.92	27.95	29.04	$sd(\mu)/\sigma = 0.5$ $\rho = 0.9$ $Oracle: 28.81$

Table 28: Prediction MSE for n=100, binary design, sparse covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	AL	MCP	CVbest	ICbest	
CV.1se	0.64	0.57	0.63	0.4	0.47			
CV.min	0.42	0.4	0.46	0.41	0.4	0.41		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.48	0.43	0.46	0.4			0.45	$\rho = 0$
AIC	0.47	0.47	0.48	0.44				Oracle: 0.27
BIC	0.47	0.47	0.48	0.44				07 acre . 0.27
CV.1se	0.65	0.57	0.63	0.38	0.46			
CV.min	0.40	0.38	0.45	0.38	0.37	0.38		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.47	0.41	0.41	0.39			0.41	$\rho = 0.5$
AIC	0.42	0.42	0.43	0.40				Oracle: 0.24
BIC	0.42	0.42	0.43	0.40				07466.0.24
CV.1se	0.64	0.56	0.63	0.36	0.45			
CV.min	0.39	0.38	0.45	0.36	0.36	0.38		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.46	0.40	0.38	0.38			0.38	$\rho = 0.9$
AIC	0.40	0.40	0.41	0.38				Oracle: 0.23
BIC	0.40	0.40	0.41	0.38				Oracie: 0.23
CV.1se	1.86	1.86	1.89	1.52	1.84			
CV.min	1.58	1.65	1.78	1.74	1.60	1.59		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	1.58	1.60	1.91	1.45			1.91	$\rho = 0$
AIC	1.91	1.92	1.94	1.86				, , , , , , , ,
BIC	1.91	1.92	1.94	1.85				Oracle: 1.09
CV.1se	1.69	1.68	1.70	1.39	1.67			
CV.min	1.46	1.50	1.62	1.57	1.47	1.46		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	1.45	1.46	1.70	1.32			1.70	$\rho = 0.5$
AIC	1.71	1.72	1.74	1.66				, , , , , , ,
BIC	1.71	1.72	1.73	1.66				Oracle: 0.97
CV.1se	1.60	1.60	1.62	1.31	1.58			
CV.min	1.39	1.43	1.54	1.48	1.40	1.39		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	1.39	1.40	1.61	1.26			1.61	$\rho = 0.9$
AIC	1.62	1.63	1.64	1.58				,
BIC	1.62	1.63	1.64	1.57				Oracle: 0.92
CV.1se	4.92	4.92	4.93	5.99	4.92			
CV.min	4.92	4.94	4.97	7.11	4.96	4.96		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.87	5.98	7.74	5.20			7.74	$\rho = 0$
AIC	7.69	7.74	7.80	7.57				,
BIC	7.69	7.73	7.80	7.57				Oracle: 4.35
CV.1se	4.40	4.40	4.41	5.38	4.40			
CV.min	4.41	4.42	4.43	6.39	4.44	4.44		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.36	5.23	6.91	4.66			6.91	$\rho = 0.5$
AIC	6.87	6.91	6.97	6.77			0.71	,
BIC	6.87	6.91	6.97	6.76				Oracle: 3.90
CV.1se	4.18	4.18	4.18	5.02	4.18			
CV.13C	4.18	4.19	4.21	6.00	4.20	4.21		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.13	4.86	6.53	4.42	1.20	1.21	6.54	$\rho = 0.9$
AIC	6.50	6.54	6.59	6.40			0.54	,
BIC	6.50	6.53	6.59	6.39				Oracle: 3.69
DIC	0.50	0.33	0.39	0.39				

Table 29: Prediction MSE for n=100, binary design, sparse covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	AL	MCP	CVbest	ICbest	
CV.1se	1.47	1.35	1.90	0.84	1.13			
CV.min	0.91	0.88	1.34	0.86	0.87	0.87		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	1.06	0.83	0.97	0.86			0.97	$\rho = 0$
AIC	0.98	0.98	1.00	0.93				Oracle : 0.56
BIC	0.98	0.98	1.00	0.92				01 acte . 0.30
CV.1se	1.54	1.43	1.82	0.79	1.17			
CV.min	0.89	0.89	1.39	0.79	0.85	0.86		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	1.07	0.79	0.86	0.83			0.86	$\rho = 0.5$
AIC	0.88	0.88	0.89	0.84				Oracle : 0.50
BIC	0.88	0.88	0.89	0.84				Oracie: 0.30
CV.1se	1.50	1.40	1.78	0.76	1.18			
CV.min	0.87	0.90	1.37	0.76	0.84	0.85		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	1.05	0.79	0.81	0.82			0.82	$\rho = 0.9$
AIC	0.83	0.83	0.84	0.79				01049
BIC	0.83	0.83	0.84	0.79				Oracle: 0.48
CV.1se	3.93	3.96	4.00	3.22	3.93			
CV.min	3.41	3.65	3.89	3.67	3.44	3.45		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	3.43	3.42	3.99	3.09			3.99	$\rho = 0$
AIC	3.97	3.99	4.03	3.87				,
BIC	3.96	3.99	4.03	3.86				Oracle: 2.25
CV.1se	3.54	3.54	3.58	2.93	3.54			
CV.min	3.14	3.32	3.49	3.29	3.17	3.16		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	3.13	3.09	3.55	2.82			3.56	$\rho = 0.5$
AIC	3.54	3.56	3.59	3.46				,
BIC	3.54	3.55	3.59	3.45				Oracle: 2.01
CV.1se	3.34	3.36	3.38	2.77	3.33			
CV.min	2.98	3.15	3.30	3.08	3.00	3.00		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	2.98	2.94	3.35	2.68			3.34	$\rho = 0.9$
AIC	3.34	3.35	3.39	3.26				,
BIC	3.33	3.35	3.39	3.26				Oracle: 1.90
CV.1se	10.17	10.17	10.19	12.43	10.17			
CV.min	10.17	10.22	10.26	14.81	10.28	10.23		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	10.09	14.04	16.09	10.77			16.07	$\rho = 0$
AIC	15.93	16.04	16.16	15.68				,
BIC	15.92	16.03	16.16	15.66				Oracle: 9.00
CV.1se	9.09	9.10	9.11	11.13	9.10			
CV.min	9.13	9.13	9.16	13.22	9.18	9.18		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	9.02	12.34	14.33	9.64	7.10	7.10	14.32	$\rho = 0.5$
AIC	14.20	14.29	14.40	13.98			11.52	,
BIC	14.19	14.29	14.40	13.97				Oracle: 8.05
CV.1se	8.59	8.60	8.60	10.43	8.59			
CV.13C CV.min	8.62	8.64	8.65	12.40	8.66	8.71		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	8.52	11.58	13.53	9.14	0.00	0.71	13.53	$\rho = 0.9$
AICC	13.40	13.49	13.60	13.19			10.00	,
BIC	13.40	13.48	13.59	13.19				Oracle: 7.61
	13.37	13.40	13.37	15.10				

Table 30: Prediction MSE for n=100, binary design, sparse covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	AL	MCP	CVbest	ICbest	
CV.1se	1.64	1.52	2.13	0.93	1.27			
CV.min	1.01	0.98	1.54	0.96	0.97	0.98		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	1.18	0.92	1.08	0.96			1.08	$\rho = 0$
AIC	1.09	1.09	1.11	1.03				Oracle: 0.62
BIC	1.09	1.09	1.11	1.02				07466.0.02
CV.1se	1.73	1.61	2.07	0.88	1.31			
CV.min	1.00	1.00	1.58	0.88	0.95	0.96		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	1.19	0.86	0.96	0.92			0.96	$\rho = 0.5$
AIC	0.97	0.97	0.99	0.93				Oracle : 0.56
BIC	0.97	0.97	0.99	0.93				Oracie: 0.30
CV.1se	1.68	1.57	2.00	0.85	1.33			
CV.min	0.97	1.02	1.56	0.84	0.93	0.95		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	1.17	0.86	0.91	0.90			0.91	$\rho = 0.9$
AIC	0.92	0.92	0.93	0.88				0 1 0.52
BIC	0.92	0.92	0.93	0.88				Oracle: 0.53
CV.1se	4.37	4.39	4.44	3.57	4.36			
CV.min	3.79	4.08	4.32	4.07	3.83	3.85		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	3.81	3.81	4.44	3.44			4.44	$\rho = 0$
AIC	4.41	4.43	4.48	4.30				,
BIC	4.40	4.43	4.48	4.29				Oracle: 2.50
CV.1se	3.93	3.94	3.97	3.25	3.93			
CV.min	3.50	3.70	3.89	3.66	3.54	3.54		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	3.48	3.43	3.95	3.13			3.95	$\rho = 0.5$
AIC	3.93	3.95	3.99	3.84				'
BIC	3.93	3.95	3.99	3.84				Oracle: 2.23
CV.1se	3.72	3.74	3.76	3.08	3.71			
CV.min	3.31	3.52	3.68	3.43	3.34	3.34		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	3.32	3.26	3.73	2.98			3.73	$\rho = 0.9$
AIC	3.71	3.73	3.77	3.63				<i>'</i>
BIC	3.71	3.73	3.77	3.63				Oracle: 2.11
CV.1se	11.29	11.30	11.32	13.82	11.30			
CV.min	11.31	11.36	11.41	16.47	11.43	11.40		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	11.21	15.81	17.90	11.99			17.88	$\rho = 0$
AIC	17.71	17.84	17.97	17.43				,
BIC	17.70	17.83	17.97	17.42				Oracle: 9.99
CV.1se	10.09	10.09	10.10	12.37	10.09			
CV.min	10.15	10.14	10.17	14.68	10.19	10.25		$sd(\mu)/\sigma = 0.5$
AICc	10	13.91	15.92	10.71	10.17	10.25	15.95	$\rho = 0.5$
AIC	15.76	15.87	15.99	15.52			10.50	,
BIC	15.76	15.86	15.99	15.51				Oracle: 8.94
CV.1se	9.54	9.55	9.56	11.59	9.54			
CV.13c CV.min	9.59	9.59	9.61	13.78	9.62	9.66		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	9.39 9.46	13.05	15.04	10.15	7.02	7.00	15.03	$\rho = 0.9$
AIC	14.89	14.99	15.10	14.65			15.05	,
BIC	14.88	14.98	15.10	14.65				Oracle: 8.45
Віс	14.00	14.70	13.10	14.03				

Table 31: Prediction MSE for n=100, binary design, sparse covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$	$\mathrm{GL}\;\gamma=10$	AL	MCP	CVbest	ICbest	
CV.1se	1.73	1.60	2.24	0.98	1.33			
CV.min	1.07	1.04	1.63	1.01	1.03	1.02		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	1.24	0.96	1.14	1.01			1.14	$\rho = 0$
AIC	1.15	1.15	1.17	1.09				Oracle: 0.66
BIC	1.15	1.15	1.17	1.08				07 acic . 0.00
CV.1se	1.83	1.71	2.19	0.92	1.39			
CV.min	1.05	1.06	1.68	0.93	1.00	1.02		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	1.25	0.9	1.02	0.97			1.02	$\rho = 0.5$
AIC	1.03	1.03	1.04	0.98				Oracle: 0.59
BIC	1.03	1.03	1.04	0.98				Oracie: 0.39
CV.1se	1.77	1.66	2.11	0.89	1.41			
CV.min	1.02	1.08	1.65	0.89	0.99	1.01		$sd(\mu)/\sigma = 2$
AICc	1.24	0.90	0.96	0.95			0.96	$\rho = 0.9$
AIC	0.97	0.97	0.99	0.93				<i>Oracle</i> : 0.56
BIC	0.97	0.97	0.99	0.93				Oracie: 0.30
CV.1se	4.60	4.63	4.68	3.77	4.60			
CV.min	4.00	4.31	4.56	4.29	4.04	4.06		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	4.02	4.02	4.68	3.62			4.68	$\rho = 0$
AIC	4.64	4.67	4.72	4.53				-
BIC	4.64	4.67	4.72	4.52				Oracle: 2.63
CV.1se	4.15	4.16	4.20	3.44	4.15			
CV.min	3.69	3.92	4.11	3.86	3.73	3.75		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	3.68	3.62	4.18	3.31			4.18	$\rho = 0.5$
AIC	4.15	4.18	4.22	4.06				0 1 226
BIC	4.15	4.17	4.22	4.06				Oracle: 2.36
CV.1se	3.92	3.95	3.97	3.25	3.91			
CV.min	3.50	3.71	3.88	3.62	3.53	3.53		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	3.51	3.44	3.94	3.14			3.93	$\rho = 0.9$
AIC	3.91	3.94	3.97	3.83				0 1 222
BIC	3.91	3.93	3.97	3.82				Oracle: 2.23
CV.1se	11.92	11.93	11.95	14.58	11.93			
CV.min	11.93	11.99	12.04	17.34	12.05	12.01		$sd(\mu)/\sigma = 0.5$
AICc	11.84	16.71	18.88	12.64			18.88	$\rho = 0$
AIC	18.67	18.80	18.95	18.38				·
BIC	18.66	18.80	18.95	18.37				<i>Oracle</i> : 10.54
CV.1se	10.65	10.66	10.67	13.06	10.65			
CV.min	10.72	10.71	10.73	15.50	10.77	10.78		$sd(\mu)/\sigma = 0.5$
AICc	10.57	14.75	16.82	11.29			16.83	$\rho = 0.5$
AIC	16.65	16.76	16.89	16.39				,
BIC	16.64	16.75	16.89	16.38				Oracle: 9.44
CV.1se	10.06	10.07	10.07	12.21	10.06			
CV.min	10.12	10.13	10.12	14.51	10.13	10.21		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	9.97	13.86	15.85	10.70			15.87	$\rho = 0.9$
AIC	15.69	15.79	15.92	15.44				•
BIC	15.68	15.79	15.91	15.43				Oracle: 8.92
	15.00	10.17	10.71	10.10				

Table 32: Prediction MSE for n=100, continuous design, sparse covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	AL	MCP	CVbest	ICbest	
CV.1se	2.65	2.33	2.63	1.63	1.93			
CV.min	1.71	1.64	1.90	1.64	1.61	1.65		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	1.96	1.96	1.87	1.63			1.85	$\rho = 0$
AIC	1.89	1.89	1.92	1.77				Oracle: 1.09
BIC	1.89	1.89	1.92	1.77				07 acic . 1.07
CV.1se	1.76	1.68	1.59	0.92	1.46			
CV.min	1.27	1.26	1.37	0.75	1.13	1.22		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	1.32	1.51	0.95	1.00			1.08	$\rho = 0.5$
AIC	0.75	0.75	0.76	0.73				Oracle: 0.43
BIC	0.75	0.75	0.76	0.85				01406.0.43
CV.1se	0.38	0.36	0.32	0.26	0.33			
CV.min	0.29	0.29	0.29	0.20	0.28	0.28		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.29	0.33	0.32	0.22			0.29	$\rho = 0.9$
AIC	0.19	0.19	0.20	0.18				Oracle: 0.11
BIC	0.20	0.20	0.20	0.30				Oracie: 0.11
CV.1se	7.53	7.48	7.59	6.10	7.45			
CV.min	6.40	6.61	7.19	6.97	6.46	6.47		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	6.35	7.08	7.66	5.83			7.24	$\rho = 0$
AIC	7.68	7.71	7.80	7.45				,
BIC	7.67	7.71	7.80	7.42				Oracle: 4.37
CV.1se	3.04	3.03	3.00	2.54	3.00			
CV.min	2.76	2.79	2.88	2.75	2.75	2.74		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	2.72	2.92	2.94	2.47			2.85	$\rho = 0.5$
AIC	3.01	3.02	3.05	2.93				,
BIC	3.00	3.01	3.04	2.92				Oracle: 1.71
CV.1se	0.76	0.74	0.68	0.65	0.71			
CV.min	0.65	0.64	0.63	0.62	0.63	0.63		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.64	0.68	0.66	0.61			0.64	$\rho = 0.9$
AIC	0.78	0.78	0.80	0.71				,
BIC	0.78	0.78	0.80	0.64				Oracle: 0.45
CV.1se	19.79	19.80	19.81	23.84	19.80			
CV.min	19.76	19.83	19.97	28.51	19.86	19.92		$sd(\mu)/\sigma = 0.5$
AICc	19.54	20.74	31.03	20.74			28.50	$\rho = 0$
AIC	30.82	30.99	31.25	30.32				,
BIC	30.81	30.98	31.25	30.30				<i>Oracle</i> : 17.46
CV.1se	7.76	7.76	7.77	9.11	7.76			
CV.min	7.76	7.77	7.81	10.85	7.79	7.80		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	7.68	7.76	12.06	8.19	,,,,	7.00	10.37	$\rho = 0.5$
AIC	12.08	12.13	12.24	11.88			10.57	,
BIC	12.07	12.13	12.23	11.86				Oracle: 6.84
CV.1se	2.04	2.04	2.04	2.02	2.04			
CV.13c	2.00	2.00	2.02	2.23	2.00	2.01		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	1.98	2.01	2.75	2.08	2.00	2.01	2.01	$\rho = 0.9$
AIC	3.16	3.17	3.21	3.02			2.01	,
BIC	3.16	3.17	3.21	2.43				Oracle: 1.80
DIC	5.10	5.17	3.41	۷.43				

Table 33: Prediction MSE for n=100, continuous design, sparse covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	AL	MCP	CVbest	ICbest	
CV.1se	6.03	5.47	7.37	3.39	4.50			
CV.min	3.66	3.54	5.12	3.45	3.45	3.51		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	4.24	3.93	3.83	3.46			3.86	$\rho = 0$
AIC	3.93	3.94	4.01	3.72				Oracle: 2.26
BIC	3.93	3.94	4.00	3.71				07 acre . 2.20
CV.1se	3.71	3.68	3.68	1.86	3.59			
CV.min	2.90	3.04	3.39	1.52	2.83	2.85		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	2.94	3.45	1.54	2.11			2.14	$\rho = 0.5$
AIC	1.51	1.51	1.53	1.48				Oracle: 0.86
BIC	1.51	1.51	1.53	1.51				Oracie: 0.80
CV.1se	0.76	0.73	0.66	0.55	0.64			
CV.min	0.55	0.55	0.57	0.41	0.54	0.54		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.56	0.68	0.61	0.47			0.56	$\rho = 0.9$
AIC	0.34	0.34	0.34	0.33				Omasla : 0.10
BIC	0.34	0.34	0.34	0.55				Oracle: 0.19
CV.1se	15.86	15.92	16.11	12.87	15.83			
CV.min	13.74	14.70	15.65	14.59	13.88	13.91		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	13.72	15.18	16.02	12.39			15.45	$\rho = 0$
AIC	15.92	16.01	16.18	15.51				,
BIC	15.91	16.00	16.18	15.49				Oracle: 9.05
CV.1se	6.15	6.15	6.15	5.16	6.14			
CV.min	5.74	5.87	6.06	5.58	5.74	5.75		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	5.67	6.04	6.02	5.09			5.91	$\rho = 0.5$
AIC	6.05	6.07	6.13	5.93				,
BIC	6.05	6.07	6.13	5.92				Oracle: 3.43
CV.1se	1.38	1.37	1.35	1.20	1.34			
CV.min	1.24	1.24	1.28	1.13	1.21	1.21		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	1.22	1.34	1.32	1.13			1.21	$\rho = 0.9$
AIC	1.36	1.37	1.38	1.30				,
BIC	1.36	1.36	1.38	1.25				Oracle: 0.78
CV.1se	41.10	41.10	41.16	49.82	41.10			
CV.min	41.17	41.36	41.49	59.63	41.39	41.46		$sd(\mu)/\sigma = 0.5$
AICc	40.65	49.38	64.74	43.30			59.90	$\rho = 0$
AIC	64.05	64.49	65.00	63.04				,
BIC	64.02	64.47	64.99	63.01				<i>Oracle</i> : 36.24
CV.1se	15.53	15.54	15.54	18.34	15.53			
CV.min	15.56	15.59	15.65	21.83	15.63	15.68		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	15.41	15.84	24.32	16.43			21.33	$\rho = 0.5$
AIC	24.20	24.32	24.53	23.82				,
BIC	24.18	24.31	24.52	23.81				Oracle: 13.70
CV.1se	3.54	3.54	3.54	3.58	3.54			
CV.min	3.52	3.54	3.55	3.95	3.53	3.54		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	3.49	3.53	5.40	3.67	2.22	0.01	3.57	$\rho = 0.9$
AIC	5.47	5.49	5.56	5.28			5.57	,
BIC	5.46	5.49	5.56	4.57				Oracle: 3.12
DIC	5.40	J. 4 7	5.50	7.37				

Table 34: Prediction MSE for n=100, continuous design, sparse covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	AL	MCP	CVbest	ICbest	
CV.1se	6.74	6.11	8.34	3.77	5.04			
CV.min	4.07	3.93	5.96	3.83	3.85	3.91		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	4.70	4.30	4.30	3.84			4.30	$\rho = 0$
AIC	4.38	4.39	4.46	4.14				Oracle: 2.52
BIC	4.37	4.39	4.46	4.13				01 acte . 2.32
CV.1se	4.12	4.10	4.10	2.07	4.02			
CV.min	3.23	3.39	3.79	1.69	3.19	3.20		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	3.30	3.84	1.71	2.35			2.40	$\rho = 0.5$
AIC	1.67	1.68	1.70	1.64				Oracle: 0.95
BIC	1.67	1.68	1.70	1.69				01 acie . 0.93
CV.1se	0.84	0.81	0.74	0.61	0.71			
CV.min	0.61	0.61	0.63	0.46	0.60	0.60		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.62	0.75	0.66	0.51			0.62	$\rho = 0.9$
AIC	0.37	0.37	0.38	0.36				Oracle: 0.21
BIC	0.37	0.38	0.38	0.59				Oracie : 0.21
CV.1se	17.65	17.73	17.88	14.30	17.57			
CV.min	15.29	16.38	17.43	16.22	15.41	15.43		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	15.27	16.82	17.83	13.78			17.13	$\rho = 0$
AIC	17.69	17.80	17.98	17.24				0 1 10.05
BIC	17.68	17.79	17.98	17.21				Oracle: 10.05
CV.1se	6.83	6.83	6.83	5.74	6.82			
CV.min	6.38	6.54	6.74	6.19	6.38	6.39		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	6.30	6.72	6.70	5.66			6.54	$\rho = 0.5$
AIC	6.71	6.74	6.80	6.59				012-00
BIC	6.71	6.73	6.80	6.58				Oracle: 3.80
CV.1se	1.53	1.52	1.50	1.33	1.49			
CV.min	1.37	1.37	1.43	1.25	1.35	1.35		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	1.35	1.49	1.45	1.25			1.35	$\rho = 0.9$
AIC	1.50	1.51	1.53	1.44				0 1 006
BIC	1.50	1.51	1.53	1.40				Oracle: 0.86
CV.1se	45.57	45.59	45.62	55.20	45.57			
CV.min	45.65	45.85	45.98	66.11	45.94	46.01		$sd(\mu)/\sigma = 0.5$
AICc	45.06	56.09	71.78	48.00			66.96	$\rho = 0$
AIC	70.97	71.48	72.03	69.85				
BIC	70.94	71.46	72.01	69.82				Oracle: 40.18
CV.1se	17.26	17.26	17.27	20.38	17.26			
CV.min	17.28	17.32	17.40	24.29	17.37	17.39		$sd(\mu)/\sigma = 0.5$
AICc	17.13	17.71	27.06	18.28			23.99	$\rho = 0.5$
AIC	26.90	27.05	27.27	26.48				,
BIC	26.89	27.04	27.27	26.47				<i>Oracle</i> : 15.23
CV.1se	3.90	3.90	3.90	3.96	3.90			
CV.min	3.89	3.90	3.92	4.37	3.90	3.92		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	3.86	3.90	5.99	4.06			4.01	$\rho = 0.9$
AIC	6.03	6.06	6.14	5.83				
BIC	6.03	6.06	6.13	5.05				Oracle: 3.44

Table 35: Prediction MSE for n=100, continuous design, sparse covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	AL	MCP	CVbest	ICbest	
CV.1se	7.14	6.46	8.81	3.97	5.31			
CV.min	4.29	4.15	6.14	4.04	4.07	4.12		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	5.01	4.53	4.53	4.04			4.51	$\rho = 0$
AIC	4.62	4.63	4.71	4.36				Oracle: 2.65
BIC	4.61	4.62	4.70	4.35				07 acte . 2.03
CV.1se	4.35	4.31	4.32	2.18	4.24			
CV.min	3.40	3.59	4.01	1.78	3.37	3.37		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	3.48	4.06	1.81	2.47			2.54	$\rho = 0.5$
AIC	1.77	1.77	1.79	1.73				Oracle: 1.00
BIC	1.77	1.77	1.79	1.79				Oracie . 1.00
CV.1se	0.89	0.85	0.78	0.65	0.75			
CV.min	0.64	0.64	0.67	0.49	0.63	0.63		$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.66	0.79	0.69	0.54			0.66	$\rho = 0.9$
AIC	0.39	0.40	0.40	0.38				Oracle: 0.23
BIC	0.39	0.40	0.40	0.62				Oracie: 0.23
CV.1se	18.66	18.75	18.91	15.12	18.55			
CV.min	16.14	17.34	18.41	17.11	16.33	16.36		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	16.16	17.75	18.84	14.55			18.25	$\rho = 0$
AIC	18.68	18.80	18.99	18.21				0 1 10.62
BIC	18.67	18.79	18.99	18.18				Oracle: 10.62
CV.1se	7.19	7.19	7.19	6.05	7.19			
CV.min	6.72	6.89	7.10	6.52	6.72	6.74		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	6.63	7.07	7.06	5.96			6.89	$\rho = 0.5$
AIC	7.07	7.10	7.17	6.94				014-01
BIC	7.07	7.10	7.17	6.93				Oracle: 4.01
CV.1se	1.61	1.60	1.58	1.40	1.56			
CV.min	1.45	1.45	1.50	1.32	1.42	1.42		$\operatorname{sd}(\mu)/\sigma = 1$
AICc	1.42	1.57	1.53	1.32			1.43	$\rho = 0.9$
AIC	1.59	1.59	1.61	1.52				0 1 001
BIC	1.58	1.59	1.61	1.47				Oracle: 0.91
CV.1se	48.12	48.15	48.19	58.23	48.13			
CV.min	48.20	48.43	48.57	69.84	48.51	48.58		$sd(\mu)/\sigma = 0.5$
AICc	47.6	59.96	75.78	50.67			70.76	$\rho = 0$
AIC	74.93	75.47	76.04	73.75				1 12 12
BIC	74.89	75.44	76.03	73.72				<i>Oracle</i> : 42.43
CV.1se	18.22	18.22	18.23	21.49	18.22			
CV.min	18.26	18.28	18.35	25.58	18.33	18.34		$sd(\mu)/\sigma = 0.5$
AICc	18.08	18.83	28.56	19.27			24.76	$\rho = 0.5$
AIC	28.38	28.53	28.78	27.94				,
BIC	28.36	28.52	28.77	27.92				<i>Oracle</i> : 16.07
CV.1se	4.11	4.11	4.11	4.17	4.11			
CV.min	4.10	4.11	4.14	4.61	4.11	4.13		$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.07	4.11	6.32	4.28		-	4.19	$\rho = 0.9$
AIC	6.36	6.39	6.47	6.14			-	,
BIC	6.36	6.39	6.47	5.28				Oracle: 3.62
	0.00	0.07	J.17	2.20				

Table 36: Estimation MSE for n=1000, binary design, dense covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0	0	0	0.327	0	
CV.min	0	0	0	0.317	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	0.317		$\rho = 0$
AIC	0	0	0	0.317		Oracle: 0.000
BIC	0	0	0	0.328		Oracie: 0.000
CV.1se	0	0	0	0.295	0	
CV.min	0	0	0	0.286	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	0.286		$\rho = 0.5$
AIC	0	0	0	0.286		,
BIC	0	0	0	0.297		Oracle: 0.000
CV.1se	0	0	0	0.281	0	
CV.min	0	0	0	0.272	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	0.272		$\rho = 0.9$
AIC	0	0	0	0.272		,
BIC	0	0	0	0.283		Oracle: 0.000
CV.1se	0	0	0	1.246	0	
CV.min	0	0	0	1.276	0	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0	0	0	1.266	v	$\rho = 0$
AIC	0.010	0.010	0.013	1.313		,
BIC	0.010	0.010	0.013	1.267		Oracle: 0.000
CV.1se	0	0	0	1.118	0	
CV.13C CV.min	0	0	0	1.146	0	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0	0	0	1.135	v	$\rho = 0.5$
AIC	0.009	0.010	0.011	1.180		$\rho = 0.5$
BIC	0.009	0.010	0.011	1.142		Oracle: 0.000
CV.1se	0	0	0	1.063	0	
CV.1se CV.min	0	0	0	1.003	0	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0	0	0		U	$\begin{array}{c c} \operatorname{sd}(\mu)/\delta = 1\\ \rho = 0.9 \end{array}$
AICC	0.008	0.009	0.010	1.078		$\rho = 0.9$
	0.008		0.010	1.114		Oracle: 0.000
BIC		0	0	1.086	Δ	
CV.1se	0	0		4.898	0	1/)/ 0.5
CV.min	0	0	0	5.206	0	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0	0	0.002	5.084		$\rho = 0$
AIC	0.049	0.060	0.124	6.069		Oracle: 0.000
BIC	0	0	0	4.955		
CV.1se	0	0	0	4.394	0	1/)/
CV.min	0	0	0	4.670	0	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0	0	0.002	4.552		$\rho = 0.5$
AIC	0.044	0.052	0.106	5.443		Oracle: 0.000
BIC	0	0	0	4.459		074660101000
CV.1se	0	0	0	4.169	0	
CV.min	0	0	0	4.402	0	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0	0	0.002	4.310		$\rho = 0.9$
AIC	0.038	0.046	0.093	5.079		Oracle: 0.000
BIC	0	0	0	4.234		Julie . 0.000

Table 37: Estimation MSE for n=1000, binary design, dense covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$		marginal AL		
CV.1se	0.001	0	0.001	2.152	0	
CV.min	0	0	0	2.073	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0.001	2.086		$\rho = 0$
AIC	0.011	0.012	0.021	2.074		Oracle: 0.000
BIC	0.009	0.007	0.003	2.466		
CV.1se	0.001	0	0	1.950	0	
CV.min	0	0	0	1.872	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	1.886		$\rho = 0.5$
AIC	0.010	0.011	0.018	1.871		Oracle: 0.000
BIC	0.010	0.008	0.002	2.266		07 acre : 0.000
CV.1se	0	0	0	1.853	0	
CV.min	0	0	0	1.775	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	1.789		$\rho = 0.9$
AIC	0.010	0.010	0.016	1.771		Oracle: 0.000
BIC	0.010	0.008	0.002	2.165		07acie. 0.000
CV.1se	0.01	0.01	0.012	7.835	0.011	
CV.min	0.01	0.01	0.011	7.853	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.01	0.018	7.797		$\rho = 0$
AIC	0.065	0.081	0.167	8.518		Oma ala . 0.001
BIC	0.018	0.016	0.018	8.899		Oracle: 0.001
CV.1se	0.01	0.01	0.011	7.048	0.01	
CV.min	0.01	0.01	0.01	7.049	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.01	0.015	7.009		$\rho = 0.5$
AIC	0.058	0.071	0.143	7.652		Oma ala . 0 000
BIC	0.019	0.017	0.018	8.140		Oracle: 0.000
CV.1se	0.01	0.01	0.012	6.691	0.01	
CV.min	0.01	0.01	0.01	6.666	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.01	0.014	6.640		$\rho = 0.9$
AIC	0.051	0.063	0.126	7.179		Oma ala . 0 000
BIC	0.019	0.017	0.018	7.765		Oracle: 0.000
CV.1se	0.02	0.02	0.02	28.909	0.02	
CV.min	0.02	0.021	0.022	30.228	0.02	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.02	0.023	0.042	29.490		$\rho = 0$
AIC	0.366	0.541	1.226	36.584		0
BIC	0.02	0.02	0.02	30.299		Oracle: 0.011
CV.1se	0.02	0.02	0.02	25.851	0.02	
CV.min	0.02	0.02	0.021	26.996	0.02	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.02	0.022	0.044	26.364		$\rho = 0.5$
AIC	0.321	0.465	1.038	32.773		Omasla : 0.010
BIC	0.02	0.02	0.02	26.972		Oracle: 0.010
CV.1se	0.02	0.02	0.02	24.469	0.02	
CV.min	0.02	0.02	0.021	25.451	0.02	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.02	0.021	0.037	24.912		$\rho = 0.9$
AIC	0.282	0.409	0.913	30.656		Omasla : 0.010
BIC	0.02	0.02	0.02	25.452		Oracle: 0.010

Table 38: Estimation MSE for n=1000, binary design, dense covariates, and decay 100.

	lasso			marginal AL	sparsenet MCP	
CV.1se	0.012	0.012	0.014	4.956	0.011	
CV.min	0.011	0.011	0.012	4.695	0.011	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.012	0.011	0.014	4.815		$\rho = 0$
AIC	0.028	0.033	0.060	4.645		Oracle: 0.004
BIC	0.038	0.024	0.018	6.801		074666 : 0.004
CV.1se	0.012	0.011	0.013	4.503	0.011	
CV.min	0.011	0.01	0.011	4.251	0.01	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.012	0.011	0.012	4.374		$\rho = 0.5$
AIC	0.025	0.029	0.051	4.189		Oracle: 0.003
BIC	0.044	0.026	0.016	6.478		07466 . 0.003
CV.1se	0.011	0.011	0.012	4.298	0.01	
CV.min	0.01	0.01	0.011	4.038	0.01	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.012	0.01	0.011	4.166		$\rho = 0.9$
AIC	0.022	0.026	0.045	3.966		Oracle: 0.001
BIC	0.045	0.027	0.016	6.314		074666 . 0.001
CV.1se	0.033	0.036	0.047	17.232	0.032	
CV.min	0.029	0.031	0.044	17.042	0.029	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.030	0.031	0.058	17.035		$\rho = 0$
AIC	0.153	0.206	0.438	18.371		Oracle: 0.013
BIC	0.050	0.049	0.050	22.969		Oracic . 0.013
CV.1se	0.034	0.036	0.047	15.520	0.033	
CV.min	0.029	0.030	0.042	15.309	0.029	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.030	0.030	0.052	15.325		$\rho = 0.5$
AIC	0.135	0.178	0.371	16.446		Oracle: 0.012
BIC	0.050	0.050	0.050	20.830		07466.0.012
CV.1se	0.034	0.036	0.047	14.725	0.033	
CV.min	0.029	0.030	0.041	14.478	0.029	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.030	0.029	0.048	14.519		$\rho = 0.9$
AIC	0.119	0.157	0.326	15.468		Oracle : 0.010
BIC	0.050	0.050	0.050	19.694		Oracie: 0.010
CV.1se	0.050	0.050	0.050	59.962	0.050	
CV.min	0.048	0.050	0.051	62.566	0.048	$sd(\mu)/\sigma = 0.5$
AICc	0.047	0.064	0.084	60.970		$\rho = 0$
AIC	0.787	1.298	2.923	76.055		Oracle : 0.035
BIC	0.050	0.050	0.050	61.780		01 acte . 0.055
CV.1se	0.050	0.050	0.050	53.461	0.050	
CV.min	0.048	0.050	0.050	55.742	0.048	$sd(\mu)/\sigma = 0.5$
AICc	0.048	0.059	0.086	54.383		$\rho = 0.5$
AIC	0.685	1.102	2.446	67.971		Oracle : 0.032
BIC	0.050	0.050	0.050	54.813		Oracie: 0.032
CV.1se	0.050	0.050	0.050	50.504	0.050	
CV.min	0.049	0.050	0.050	52.515	0.049	$sd(\mu)/\sigma = 0.5$
AICc	0.048	0.058	0.077	51.289		$\rho = 0.9$
AIC	0.599	0.962	2.148	63.527		Oracle : 0.030
BIC	0.050	0.050	0.050	51.622		Viace . 0.030

Table 39: Estimation MSE for n=1000, binary design, dense covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.045	0.051	0.073	11.519	0.044	
CV.min	0.041	0.045	0.064	10.643	0.041	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.050	0.049	0.063	11.423		$\rho = 0$
AIC	0.073	0.091	0.165	10.286		Oracle: 0.022
BIC	0.100	0.100	0.084	28.560		07 dete : 0.022
CV.1se	0.046	0.050	0.070	10.534	0.044	
CV.min	0.040	0.043	0.061	9.689	0.039	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.051	0.048	0.056	10.446		$\rho = 0.5$
AIC	0.065	0.079	0.141	9.284		Oracle: 0.020
BIC	0.100	0.100	0.086	26.122		07466 . 0.020
CV.1se	0.044	0.048	0.068	10.077	0.042	
CV.min	0.038	0.041	0.057	9.205	0.037	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.051	0.046	0.052	9.991		$\rho = 0.9$
AIC	0.058	0.071	0.125	8.774		Oracle: 0.020
BIC	0.100	0.100	0.085	24.745		Oracle . 0.020
CV.1se	0.085	0.097	0.100	37.260	0.085	
CV.min	0.076	0.092	0.102	36.419	0.076	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.079	0.090	0.174	36.800		$\rho = 0$
AIC	0.341	0.501	1.066	38.733		0
BIC	0.100	0.100	0.100	49.271		Oracle: 0.051
CV.1se	0.088	0.098	0.100	33.534	0.087	
CV.min	0.076	0.090	0.101	32.694	0.076	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.080	0.085	0.155	33.103		$\rho = 0.5$
AIC	0.299	0.430	0.902	34.602		0 1 0046
BIC	0.100	0.100	0.100	43.762		Oracle: 0.046
CV.1se	0.089	0.097	0.100	31.823	0.088	
CV.min	0.075	0.089	0.100	30.897	0.075	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.080	0.083	0.140	31.341		$\rho = 0.9$
AIC	0.263	0.377	0.791	32.503		,
BIC	0.100	0.100	0.100	41.208		Oracle: 0.043
CV.1se	0.1	0.1	0.1	122.287	0.1	
CV.min	0.1	0.101	0.102	127.558	0.1	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.1	0.170	0.142	124.377		$\rho = 0$
AIC	1.633	3.025	6.593	155.355		'
BIC	0.1	0.1	0.263	124.518		Oracle: 0.101
CV.1se	0.1	0.1	0.1	108.720	0.1	
CV.min	0.1	0.101	0.101	113.445	0.1	$sd(\mu)/\sigma = 0.5$
AICc	0.1	0.151	0.136	110.585		$\rho = 0.5$
AIC	1.417	2.558	5.552	138.308		,
BIC	0.1	0.1	0.130	110.289		Oracle: 0.093
CV.1se	0.1	0.1	0.1	102.616	0.1	
CV.min	0.1	0.101	0.101	106.748	0.1	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.1	0.143	0.131	104.334		$\rho = 0.9$
AIC	1.238	2.230	4.877	129.462		,
BIC	0.1	0.1	0.133	103.847		Oracle: 0.088
	V•1	0.1	0.133	102.077		

Table 40: Estimation MSE for n=1000, continuous design, dense covariates, and decay 10.

lasso	$GL \gamma = 1$	$GL \gamma = 10$	marginal AL	sparsenet MCP	
0	0	0	1.315	0	
0	0	0	1.273	0	$\operatorname{sd}(\mu)/\sigma = 2$
0	0	0	1.274		$\rho = 0$
0	0	0	1.273		Oracle : 0.000
0	0	0	1.319		Oracie: 0.000
0	0	0	0.610	0	
0	0	0	0.586	0	$\operatorname{sd}(\mu)/\sigma = 2$
0	0	0	0.586		$\rho = 0.5$
0	0	0	0.586		0 1 0 000
0	0	0	0.606		Oracle : 0.000
0	0	0	0.174	0	
0	0	0		0	$\operatorname{sd}(\mu)/\sigma = 2$
	0	0			$\rho = 0.9$
0	0	0			·
0	0	0			Oracle : 0.000
		0		0	
					$\operatorname{sd}(\mu)/\sigma = 1$
				v	$\rho = 0$
					· ·
					Oracle: 0.000
				0	
					$\operatorname{sd}(\mu)/\sigma = 1$
					$\rho = 0.5$
					,
					Oracle: 0.000
				0	
					$\operatorname{sd}(\mu)/\sigma = 1$
				v	$\rho = 0.9$
					'
					Oracle: 0.000
				0	
					$\operatorname{sd}(\mu)/\sigma = 0.5$
				·	$\rho = 0$
					· ·
					Oracle: 0.000
				0	
					$\operatorname{sd}(\mu)/\sigma = 0.5$
				ŭ	$\rho = 0.8$
					Oracle: 0.000
				0	
-					$\int \operatorname{sd}(\mu)/\sigma = 0.5$
				v	$\rho = 0.9$
0.009	0.010	0.019	2.065		Oracle: 0.000
	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0 0 0 1.315 0 0 0 1.273 0 0 0 1.274 0 0 0 1.319 0 0 0 0.610 0 0 0 0.586 0 0 0 0.586 0 0 0 0.586 0 0 0 0.586 0 0 0 0.586 0 0 0 0.586 0 0 0 0.586 0 0 0 0.586 0 0 0 0.586 0 0 0 0.586 0 0 0 0.666 0 0 0.167 0 0 0 0.167 0 0 0 0.167 0 0 0 0.500 0 0 0 0.500	0 0 0 1.315 0 0 0 0 1.273 0 0 0 0 1.274 0 0 0 0 1.319 0 0 0 0 0.610 0 0 0 0 0.586 0 0 0 0 0.586 0 0 0 0 0.586 0 0 0 0 0.586 0 0 0 0.606 0 0 0 0 0.606 0 0 0 0 0.167 0 0 0 0 0.167 0 0 0 0 0.167 0 0 0 0 0.167 0 0 0 0 0.167 0 0 0 0 0.500 0 0 0 <t< td=""></t<>

Table 41: Estimation MSE for n=1000, continuous design, dense covariates, and decay 50.

$ \begin{array}{c} \mathrm{CV.lsic} 0 & 0 & 0 & 8.620 & 0 \\ \mathrm{AlCc} & 0 & 0 & 0 & 8.311 & 0 & \mathrm{sd}(\mu)/\sigma = 2 \\ \mathrm{AlCc} & 0 & 0 & 0 & 8.361 & \rho = 0 \\ \mathrm{AlC} & 0.010 & 0.010 & 0.018 & 8.317 & Oracle : 0.000 \\ \mathrm{BIC} & 0.009 & 0.007 & 0.004 & 9.857 & Oracle : 0.000 \\ \mathrm{CV.lse} & 0.005 & 0.002 & 0 & 3.801 & 0 \\ \mathrm{CV.min} & 0 & 0 & 0 & 3.595 & \rho = 0.5 \\ \mathrm{AlC} & 0.005 & 0 & 0 & 3.595 & \rho = 0.5 \\ \mathrm{AlC} & 0.002 & 0.003 & 0.010 & 3.490 & Oracle : 0.000 \\ \mathrm{BIC} & 0.016 & 0.011 & 0.006 & 5.592 & Oracle : 0.000 \\ \mathrm{CV.lse} & 0.008 & 0.005 & 0.001 & 1.172 & 0.001 \\ \mathrm{CV.lse} & 0.009 & 0.005 & 0 & 0 & 1.100 & 0 & \mathrm{sd}(\mu)/\sigma = 2 \\ \mathrm{AlCc} & 0.009 & 0.005 & 0 & 1.101 & \rho = 0.9 \\ \mathrm{AlC} & 0.001 & 0 & 0 & 1.101 & \rho = 0.9 \\ \mathrm{AlC} & 0.001 & 0 & 0 & 1.101 & Oracle : 0.000 \\ \mathrm{CV.lse} & 0.002 & 0.020 & 0.020 & 1.249 & Oracle : 0.000 \\ \mathrm{CV.lse} & 0.001 & 0 & 0 & 1.101 & Oracle : 0.000 \\ \mathrm{CV.lse} & 0.001 & 0 & 0 & 1.101 & Oracle : 0.000 \\ \mathrm{CV.lse} & 0.01 & 0.01 & 0.011 & 31.413 & 0.01 \\ \mathrm{CV.min} & 0.01 & 0.01 & 0.012 & 31.267 & \rho = 0 \\ \mathrm{AlC} & 0.052 & 0.065 & 0.133 & 34.153 & Oracle : 0.000 \\ \mathrm{CV.lse} & 0.01 & 0.01 & 0.012 & 31.267 & \rho = 0 \\ \mathrm{AlC} & 0.052 & 0.065 & 0.133 & 34.153 & Oracle : 0.000 \\ \mathrm{CV.lse} & 0.018 & 0.017 & 0.020 & 35.773 & Oracle : 0.000 \\ \mathrm{CV.lse} & 0.012 & 0.014 & 0.013 & 12.681 & 0.011 \\ \mathrm{CV.min} & 0.01 & 0.01 & 0.011 & 12.242 & 0.01 & \mathrm{sd}(\mu)/\sigma = 1 \\ \mathrm{AlCc} & 0.012 & 0.01 & 0.01 & 12.237 & \rho = 0.5 \\ \mathrm{AlC} & 0.026 & 0.030 & 0.058 & 12.454 & Oracle : 0.000 \\ \mathrm{CV.lse} & 0.020 & 0.020 & 0.020 & 16.238 & Oracle : 0.000 \\ \mathrm{CV.lse} & 0.020 & 0.020 & 0.020 & 16.238 & Oracle : 0.000 \\ \mathrm{CV.lse} & 0.020 & 0.020 & 0.020 & 2.786 & Oracle : 0.000 \\ \mathrm{CV.lse} & 0.02 & 0.02 & 0.02 & 116.202 & 0.02 \\ \mathrm{CV.min} & 0.02 & 0.02 & 0.02 & 116.202 & 0.02 \\ \mathrm{CV.min} & 0.02 & 0.02 & 0.02 & 116.202 & 0.02 \\ \mathrm{CV.min} & 0.02 & 0.02 & 0.02 & 118.438 & \rho = 0 \\ \mathrm{AlC} & 0.02 & 0.02 & 0.02 & 116.209 & 0.02 \\ \mathrm{CV.lse} & 0.02 & 0.02 & 0.02 & 41.75$		lasso	$\operatorname{GL} \gamma = 1$		marginal AL	sparsenet MCP	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							$\rho = 0$
Signature Si							$Oracle \cdot 0.000$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							07466.0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							$\rho = 0.5$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							$Oracle \cdot 0.000$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							07 acic . 0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1.172		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0	
BIC 0.020 0.020 0.020 1.249 Oracle : 0.000 CV.1se 0.01 0.01 0.011 31.413 0.01 sd(μ)/σ = 1 AIC 0.01 0.01 0.012 31.267 $\rho = 0$ AIC 0.052 0.065 0.133 34.153 Oracle : 0.000 BIC 0.018 0.017 0.020 35.773 Oracle : 0.000 CV.1se 0.017 0.014 0.013 12.681 0.011 CV.min 0.01 0.01 0.011 12.337 $\rho = 0.5$ AIC 0.026 0.030 0.058 12.454 Oracle : 0.000 CV.1se 0.020 0.020 0.020 16.238 Oracle : 0.000 CV.1se 0.020 0.018 2.504 0.013 cd(μ)/σ = 1 AIC 0.019 0.018 2.504 0.013 cd(μ)/σ = 1 AIC 0.019 0.018 2.504 0.013 cd(μ)/σ = 0.9 CV.se 0.020 <td< td=""><td></td><td>0.009</td><td></td><td></td><td>1.101</td><td></td><td>$\rho = 0.9$</td></td<>		0.009			1.101		$\rho = 0.9$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1.101		Oracle : 0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BIC		0.020	0.020	1.249		07acie . 0.000
AICc 0.01 0.01 0.012 31.267 $\rho = 0$ AIC 0.052 0.065 0.133 34.153 BIC 0.018 0.017 0.020 35.773 CV.1se 0.017 0.014 0.013 12.681 0.011 CV.min 0.01 0.01 0.011 12.242 0.01 $sd(\mu)/\sigma = 1$ AICc 0.012 0.01 0.01 12.337 $\rho = 0.5$ AIC 0.026 0.030 0.058 12.454 BIC 0.020 0.020 0.020 16.238 CV.1se 0.020 0.019 0.018 2.504 0.013 CV.min 0.017 0.015 0.015 2.349 0.011 $sd(\mu)/\sigma = 1$ AICc 0.019 0.018 0.017 2.352 $\rho = 0.9$ AIC 0.019 0.018 0.017 2.352 $\rho = 0.9$ AIC 0.010 0.01 0.017 2.342 BIC 0.020 0.020 0.020 2.786 CV.1se 0.02 0.02 0.02 116.202 0.02 CV.min 0.02 0.02 0.02 116.202 0.02 CV.min 0.02 0.02 0.02 118.438 $\rho = 0$ AIC 0.02 0.02 0.02 118.438 $\rho = 0$ AIC 0.291 0.430 0.972 146.789 BIC 0.02 0.02 0.02 121.842 CV.1se 0.02 0.02 0.02 121.842 CV.1se 0.02 0.02 0.02 41.750 0.02 CV.nin 0.02 0.02 0.02 41.750 0.02 CV.nin 0.02 0.02 0.02 42.506 $\rho = 0.5$ AIC 0.144 0.197 0.433 50.747 BIC 0.02 0.02 0.02 42.506 $\rho = 0.5$ AIC 0.144 0.197 0.433 50.747 BIC 0.02 0.02 0.02 42.506 AIC 0.144 0.197 0.433 50.747 BIC 0.02 0.02 0.02 0.02 42.506 AIC 0.144 0.197 0.433 50.747 BIC 0.02 0.02 0.02 0.02 42.506 CV.1se 0.02 0.02 0.02 7.597 0.02 CV.min 0.02 0.02 0.02 7.597 0.02 CV.min 0.02 0.02 0.02 7.502 0.02 $sd(\mu)/\sigma = 0.5$ AIC 0.144 0.197 0.433 50.747 BIC 0.02 0.02 0.02 0.02 42.059 CV.1se 0.02 0.02 0.02 7.597 0.02 CV.nin 0.02 0.02 0.02 7.501 $\rho = 0.9$ AIC 0.049 0.065 0.150 7.602	CV.1se	0.01	0.01	0.011	31.413	0.01	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CV.min	0.01	0.01	0.01	31.517	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
BIC 0.018 0.017 0.020 35.773 Oracle: 0.000 CV.1se 0.017 0.014 0.013 12.681 0.011 $sd(\mu)/\sigma = 1$ AICc 0.012 0.01 0.01 12.337 $\rho = 0.5$ AIC 0.026 0.030 0.058 12.454 Oracle: 0.000 CV.1se 0.020 0.020 0.020 16.238 Oracle: 0.000 CV.nise 0.020 0.019 0.018 2.504 0.013 CV.min 0.017 0.015 2.349 0.011 $sd(\mu)/\sigma = 1$ AIC 0.019 0.018 0.017 2.352 $\rho = 0.9$ AIC 0.019 0.018 0.017 2.352 $\rho = 0.9$ AIC 0.019 0.018 0.017 2.342 $\rho = 0.9$ BIC 0.020 0.020 0.020 2.786 $\rho = 0.9$ CV.1se 0.02 0.02 0.02 118.438 $\rho = 0.5$ AIC 0.02 0.02	AICc	0.01	0.01	0.012	31.267		$\rho = 0$
BIC 0.018 0.017 0.020 35.7/3 CV.1se 0.017 0.014 0.013 12.681 0.011 CV.min 0.01 0.01 0.011 12.242 0.01 $sd(\mu)/\sigma = 1$ AIC 0.026 0.030 0.058 12.454 Oracle : 0.000 BIC 0.020 0.020 0.020 16.238 Oracle : 0.000 CV.1se 0.020 0.019 0.018 2.504 0.013 CV.min 0.017 0.015 0.015 2.349 0.011 $sd(\mu)/\sigma = 1$ AIC 0.019 0.018 0.017 2.352 $\rho = 0.9$ AIC 0.01 0.01 0.017 2.342 Oracle : 0.000 EV.1se 0.02 0.020 0.020 2.786 Oracle : 0.000 CV.nise 0.02 0.02 0.02 116.202 0.02 CV.min 0.02 0.02 0.02 118.438 $\rho = 0.5$ AIC 0.02 0.02	AIC	0.052	0.065	0.133	34.153		Oma ala . 0 000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BIC	0.018	0.017	0.020	35.773		Oracie : 0.000
AICc 0.012 0.01 0.01 12.337 $ρ = 0.5$ AIC 0.026 0.030 0.058 12.454 $P = 0.5$ Oracle : 0.000 $P = 0.5$ BIC 0.020 0.020 0.020 16.238 $P = 0.5$ Oracle : 0.000 $P = 0.5$ Oracle : 0.010 $P = 0.5$ Ora	CV.1se	0.017	0.014	0.013	12.681	0.011	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CV.min	0.01	0.01	0.011	12.242	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
BIC 0.020 0.020 0.020 16.238 CV.1se 0.020 0.019 0.018 2.504 0.013 CV.min 0.017 0.015 0.015 2.349 0.011 $sd(\mu)/\sigma = 1$ AICc 0.019 0.018 0.017 2.352 $\rho = 0.9$ AIC 0.01 0.01 0.017 2.342 BIC 0.020 0.020 0.020 2.786 CV.1se 0.02 0.02 0.02 116.202 0.02 CV.min 0.02 0.02 0.02 118.438 $\rho = 0.02$ AIC 0.021 0.430 0.972 146.789 BIC 0.02 0.02 0.02 121.842 CV.1se 0.02 0.02 0.02 41.750 0.02 CV.min 0.02 0.02 0.02 43.030 0.02 CV.min 0.02 0.02 0.02 43.030 0.02 CV.min 0.02 0.02 0.02 42.506 AIC 0.144 0.197 0.433 50.747 BIC 0.02 0.02 0.02 42.506 AIC 0.144 0.197 0.433 50.747 BIC 0.02 0.02 0.02 42.506 CV.1se 0.02 0.02 0.02 42.506 AIC 0.144 0.197 0.433 50.747 BIC 0.02 0.02 0.02 5.597 CV.1se 0.02 0.02 0.02 7.597 CV.1se 0.02 0.02 0.02 5.502 AIC 0.049 0.065 0.150 7.602	AICc	0.012	0.01	0.01	12.337		$\rho = 0.5$
BIC 0.020 0.020 16.238 CV.1se 0.020 0.019 0.018 2.504 0.013 CV.min 0.017 0.015 0.015 2.349 0.011 $sd(\mu)/\sigma = 1$ AIC 0.019 0.018 0.017 2.352 $\rho = 0.9$ AIC 0.01 0.01 0.017 2.342 $\rho = 0.9$ BIC 0.020 0.020 0.020 2.786 $\rho = 0.9$ CV.1se 0.02 0.02 0.02 116.202 0.02 CV.min 0.02 0.02 0.02 121.387 0.02 $sd(\mu)/\sigma = 0.5$ AIC 0.02 0.02 0.02 118.438 $\rho = 0.5$ AIC 0.02 0.02 0.02 121.842 $\rho = 0.5$ CV.1se 0.02 0.02 41.750 0.02 $\rho = 0.5$ AIC 0.02 0.02 42.506 $\rho = 0.5$ AIC 0.144 0.197 0.433 50.747 $\rho = 0.5$	AIC	0.026	0.030	0.058	12.454		Omasla . 0 000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BIC	0.020	0.020	0.020	16.238		Oracie: 0.000
AICc 0.019 0.018 0.017 2.352 $\rho = 0.9$ AIC 0.01 0.01 0.017 2.342 $\rho = 0.9$ BIC 0.020 0.020 0.020 2.786 $\rho = 0.9$ CV.1se 0.02 0.02 0.02 116.202 0.02 $\rho = 0.9$ AIC 0.02 0.02 0.02 116.202 $\rho = 0.9$ AIC 0.291 0.430 0.972 146.789 BIC 0.02 0.02 0.02 121.842 $\rho = 0.010$ CV.1se 0.02 0.02 0.02 121.842 $\rho = 0.010$ CV.1se 0.02 0.02 0.02 41.750 0.02 $\rho = 0.010$ CV.1se 0.02 0.02 0.02 42.506 $\rho = 0.5$ AIC 0.144 0.197 0.433 50.747 BIC 0.044 0.197 0.433 50.747 BIC 0.02 0.02 0.02 42.059 $\rho = 0.5$ CV.1se 0.02 0.02 0.02 0.02 42.059 $\rho = 0.5$ AIC 0.144 0.197 0.433 50.747 $\rho = 0.5$ AIC 0.049 0.05 0.02 0.02 7.597 0.02 $\rho = 0.5$ AIC 0.049 0.05 0.02 0.02 7.502 0.02 $\rho = 0.02$ $\rho = 0.9$ AIC 0.049 0.065 0.150 7.602	CV.1se	0.020	0.019	0.018	2.504	0.013	
AIC 0.01 0.02 0.020 0.020 2.786 CV.1se 0.02 0.02 0.02 116.202 0.02 CV.min 0.02 0.02 0.02 118.438 $\rho = 0$ AIC 0.291 0.430 0.972 146.789 BIC 0.02 0.02 0.02 121.842 CV.min 0.02 0.02 0.02 121.842 CV.1se 0.02 0.02 0.02 41.750 0.02 CV.min 0.02 0.02 0.02 43.030 0.02 CV.min 0.02 0.02 0.02 43.030 0.02 CV.min 0.02 0.02 0.02 42.506 $\rho = 0.5$ AIC 0.144 0.197 0.433 50.747 BIC 0.02 0.02 0.02 42.059 CV.1se 0.02 0.02 0.02 42.059 CV.1se 0.02 0.02 0.02 42.059 CV.1se 0.02 0.02 0.02 7.597 0.02 CV.min 0.02 0.02 0.02 7.597 0.02 CV.min 0.02 0.02 0.02 7.502 0.02 $sd(\mu)/\sigma = 0.5$ AIC 0.049 0.065 0.150 7.602	CV.min	0.017	0.015	0.015	2.349	0.011	$\operatorname{sd}(\mu)/\sigma = 1$
BIC 0.020 0.020 0.020 2.786 CV.1se 0.02 0.02 116.202 0.02 CV.min 0.02 0.02 0.021 121.387 0.02 $sd(\mu)/\sigma = 0.5$ AICc 0.02 0.02 0.02 118.438 $\rho = 0$ AIC 0.291 0.430 0.972 146.789 Oracle: 0.010 BIC 0.02 0.02 0.02 121.842 Oracle: 0.010 CV.1se 0.02 0.02 41.750 0.02 $sd(\mu)/\sigma = 0.5$ AICc 0.02 0.02 42.506 $\rho = 0.5$ AIC 0.144 0.197 0.433 50.747 Oracle: 0.010 CV.1se 0.02 0.02 42.556 $\rho = 0.5$ CV.1se 0.02 0.02 7.597 0.02 CV.min 0.02 0.02 7.502 0.02 $sd(\mu)/\sigma = 0.5$ AIC 0.049 0.065 0.150 7.502 0.02 $sd(\mu)/\sigma = 0.5$	AICc	0.019	0.018	0.017	2.352		$\rho = 0.9$
BIC 0.020 0.020 0.020 2.786 CV.1se 0.02 0.02 0.02 0.02 CV.min 0.02 0.02 0.021 121.387 0.02 $sd(\mu)/\sigma = 0.5$ AICc 0.02 0.02 0.02 118.438 $\rho = 0$ AIC 0.291 0.430 0.972 146.789 Oracle: 0.010 BIC 0.02 0.02 0.02 121.842 Oracle: 0.010 CV.1se 0.02 0.02 41.750 0.02 $sd(\mu)/\sigma = 0.5$ AICe 0.02 0.02 42.506 $\rho = 0.5$ AIC 0.144 0.197 0.433 50.747 Oracle: 0.010 CV.1se 0.02 0.02 42.059 Oracle: 0.010 CV.see 0.02 0.02 7.597 0.02 CV.min 0.02 0.02 7.502 0.02 $sd(\mu)/\sigma = 0.5$ AICe 0.049 0.065 0.150 7.502 0.02 $columental materials $	AIC	0.01	0.01	0.017	2.342		010-000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BIC	0.020	0.020	0.020	2.786		Oracie: 0.000
AICc 0.02 0.02 0.02 118.438 $\rho = 0$ AIC 0.291 0.430 0.972 146.789 BIC 0.02 0.02 0.02 121.842 CV.1se 0.02 0.02 0.02 41.750 0.02 CV.min 0.02 0.02 0.02 43.030 0.02 $sd(\mu)/\sigma = 0.5$ AICc 0.02 0.02 0.02 42.506 $\rho = 0.5$ AIC 0.144 0.197 0.433 50.747 BIC 0.02 0.02 0.02 42.059 CV.lse 0.02 0.02 0.02 42.059 CV.lse 0.02 0.02 0.02 7.597 0.02 CV.min 0.02 0.02 0.02 7.597 0.02 CV.min 0.02 0.02 0.02 7.502 0.02 $sd(\mu)/\sigma = 0.5$ AICc 0.049 0.065 0.150 7.602	CV.1se	0.02	0.02	0.02	116.202	0.02	
AIC 0.291 0.430 0.972 146.789 BIC 0.02 0.02 121.842	CV.min	0.02	0.02	0.021	121.387	0.02	$\operatorname{sd}(\mu)/\sigma = 0.5$
BIC 0.02 0.02 0.02 121.842 Oracle : 0.010 CV.1se 0.02 0.02 0.02 41.750 0.02 CV.min 0.02 0.02 0.02 43.030 0.02 $sd(\mu)/\sigma = 0.5$ AICc 0.02 0.02 0.02 42.506 $\rho = 0.5$ AIC 0.144 0.197 0.433 50.747 Oracle : 0.010 BIC 0.02 0.02 0.02 42.059 Oracle : 0.010 CV.1se 0.02 0.02 7.597 0.02 sd(μ)/ σ = 0.5 CV.min 0.02 0.02 7.502 0.02 sd(μ)/ σ = 0.5 AIC 0.049 0.065 0.150 7.602 Oracle : 0.010	AICc	0.02	0.02	0.02	118.438		$\rho = 0$
BIC 0.02 0.02 0.02 121.842 CV.1se 0.02 0.02 0.02 41.750 0.02 CV.min 0.02 0.02 0.02 43.030 0.02 $sd(\mu)/\sigma = 0.5$ AICc 0.02 0.02 0.02 42.506 $\rho = 0.5$ AIC 0.144 0.197 0.433 50.747 Oracle : 0.010 CV.1se 0.02 0.02 0.02 42.059 Oracle : 0.010 CV.1se 0.02 0.02 0.02 7.597 0.02 CV.min 0.02 0.02 0.02 7.502 0.02 $sd(\mu)/\sigma = 0.5$ AIC 0.049 0.065 0.150 7.602 Oracle : 0.010	AIC	0.291	0.430	0.972	146.789		Omasla . 0.010
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BIC	0.02	0.02	0.02	121.842		Oracie: 0.010
AICc 0.02 0.02 0.02 42.506 $\rho = 0.5$ AIC 0.144 0.197 0.433 50.747 BIC 0.02 0.02 0.02 42.059 CV.1se 0.02 0.02 0.02 7.597 0.02 CV.min 0.02 0.02 0.02 7.502 0.02 $sd(\mu)/\sigma = 0.5$ AICc 0.02 0.02 0.02 7.521 $\rho = 0.9$ AIC 0.049 0.065 0.150 7.602	CV.1se	0.02	0.02	0.02	41.750	0.02	
AIC 0.144 0.197 0.433 50.747 BIC 0.02 0.02 0.02 42.059 CV.1se 0.02 0.02 0.02 7.597 0.02 CV.min 0.02 0.02 0.02 7.502 0.02 $sd(\mu)/\sigma = 0.5$ AIC 0.049 0.065 0.150 7.602 $\rho = 0.9$	CV.min	0.02	0.02	0.02	43.030	0.02	$\operatorname{sd}(\mu)/\sigma = 0.5$
BIC 0.02 0.02 0.02 42.059 CV.1se 0.02 0.02 0.02 7.597 0.02 CV.min 0.02 0.02 0.02 7.502 0.02 $sd(\mu)/\sigma = 0.5$ AICc 0.02 0.02 0.02 7.521 $\rho = 0.9$ AIC 0.049 0.065 0.150 7.602 Oracle : 0.010	AICc	0.02	0.02	0.02	42.506		$\rho = 0.5$
BIC 0.02 0.02 0.02 42.059 CV.1se 0.02 0.02 0.02 7.597 0.02 CV.min 0.02 0.02 0.02 7.502 0.02 $sd(\mu)/\sigma = 0.5$ AIC 0.02 0.02 0.02 7.521 $\rho = 0.9$ AIC 0.049 0.065 0.150 7.602 Oracle : 0.010	AIC				50.747		Oma ala : 0.010
CV.min 0.02 0.02 0.02 7.502 0.02 $sd(\mu)/\sigma = 0.5$ AIC 0.02 0.02 0.02 7.521 $\rho = 0.9$ AIC 0.049 0.065 0.150 7.602	BIC	0.02	0.02	0.02			<i>Oracie</i> : 0.010
CV.min 0.02 0.02 0.02 7.502 0.02 $sd(\mu)/\sigma = 0.5$ AICc 0.049 0.065 0.150 7.602 $sd(\mu)/\sigma = 0.5$ $\rho = 0.9$	CV.1se	0.02	0.02	0.02	7.597	0.02	
AICc 0.02 0.02 0.02 7.521 $\rho = 0.9$ AIC 0.049 0.065 0.150 7.602			0.02		7.502		$sd(\mu)/\sigma = 0.5$
AIC 0.049 0.065 0.150 7.602	AICc						. , ,
$+ Dracio \cdot 0 0 0 0$	AIC						·
	BIC	0.02		0.02	7.478		<i>Oracie</i> : 0.010

Table 42: Estimation MSE for n=1000, continuous design, dense covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	0.01	0.01	0.012	19.847	0.01	
CV.min	0.01	0.01	0.01	18.825	0.01	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.01	0.01	0.01	19.301		$\rho = 0$
AIC	0.022	0.027	0.048	18.624		Oracle: 0.001
BIC	0.037	0.025	0.017	27.156		Oracle . 0.001
CV.1se	0.016	0.013	0.011	9.114	0.011	
CV.min	0.01	0.01	0.01	8.028	0.01	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.019	0.014	0.01	8.657		$\rho = 0.5$
AIC	0.011	0.013	0.022	7.574		Oracle: 0.000
BIC	0.050	0.050	0.041	20.270		Oracle . 0.000
CV.1se	0.019	0.015	0.012	2.705	0.012	
CV.min	0.011	0.01	0.01	2.387	0.011	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.023	0.017	0.01	2.399		$\rho = 0.9$
AIC	0.01	0.01	0.01	2.365		0
BIC	0.050	0.050	0.050	3.283		Oracle: 0.000
CV.1se	0.032	0.034	0.045	69.034	0.031	
CV.min	0.027	0.029	0.039	68.319	0.027	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.029	0.029	0.045	68.304		$\rho = 0$
AIC	0.123	0.164	0.346	73.648		,
BIC	0.050	0.050	0.050	91.755		Oracle: 0.010
CV.1se	0.049	0.048	0.050	27.976	0.046	
CV.min	0.039	0.039	0.049	26.470	0.038	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.041	0.037	0.033	27.003		$\rho = 0.5$
AIC	0.064	0.080	0.159	26.460		,
BIC	0.050	0.050	0.050	33.302		Oracle: 0.010
CV.1se	0.050	0.050	0.050	5.369	0.050	
CV.min	0.050	0.050	0.050	4.956	0.049	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.050	0.050	0.050	4.924		$\rho = 0.9$
AIC	0.029	0.031	0.053	4.755		,
BIC	0.050	0.050	0.050	5.466		Oracle: 0.010
CV.1se	0.050	0.050	0.050	240.830	0.050	
CV.min	0.046	0.050	0.050	250.983	0.046	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.045	0.051	0.050	244.772		$\rho = 0$
AIC	0.627	1.030	2.309	305.325		,
BIC	0.050	0.050	0.238	248.166		Oracle: 0.031
CV.1se	0.05	0.05	0.05	83.694	0.05	
CV.rise CV.min	0.05	0.05	0.05	86.330	0.05	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.05	0.05	0.05	85.272	0.02	$\rho = 0.5$
AIC	0.302	0.452	1.008	103.480		,
BIC	0.05	0.432	0.05	83.993		Oracle: 0.021
CV.1se	0.05	0.05	0.05	14.287	0.05	
CV.1sc CV.min	0.05	0.05	0.05	14.208	0.05	$sd(\mu)/\sigma = 0.5$
AICc	0.05	0.05	0.05	14.248	0.03	$\beta d(\mu)/\delta = 0.3$ $\rho = 0.9$
AICC	0.122	0.05	0.399			,
				14.525		Oracle: 0.021
BIC	0.05	0.05	0.05	14.168		

Table 43: Estimation MSE for n=1000, continuous design, dense covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	0.041	0.045	0.065	46.053	0.039	
CV.min	0.036	0.039	0.055	42.622	0.035	$\operatorname{sd}(\mu)/\sigma =$
AICc	0.047	0.044	0.052	45.755		$\rho =$
AIC	0.059	0.072	0.130	41.207		Oracle: 0.02
BIC	0.100	0.100	0.074	114.308		01466.0.02
CV.1se	0.060	0.061	0.095	23.346	0.056	
CV.min	0.041	0.042	0.086	19.498	0.041	$\operatorname{sd}(\mu)/\sigma =$
AICc	0.078	0.058	0.042	22.139		$\rho = 0.$
AIC	0.038	0.042	0.066	16.298		Oracle : 0.01
BIC	0.100	0.100	0.098	41.460		Oracle: 0.01
CV.1se	0.086	0.086	0.100	6.322	0.093	
CV.min	0.064	0.066	0.099	5.325	0.078	$\operatorname{sd}(\mu)/\sigma =$
AICc	0.100	0.094	0.042	5.277		$\rho = 0.$
AIC	0.037	0.033	0.037	4.532		
BIC	0.100	0.100	0.100	6.597		Oracle : 0.01
CV.1se	0.083	0.095	0.100	148.986	0.082	
CV.min	0.07	0.086	0.100	145.735	0.07	$\operatorname{sd}(\mu)/\sigma =$
AICc	0.076	0.080	0.124	147.233	****	$\rho =$
AIC	0.272	0.396	0.843	154.980		,
BIC	0.100	0.100	0.150	197.277		Oracle: 0.04
CV.1se	0.100	0.100	0.100	59.814	0.100	
CV.nse	0.097	0.099	0.100	55.908	0.097	$\operatorname{sd}(\mu)/\sigma =$
AICc	0.096	0.098	0.097	57.338	0.057	$\rho = 0$
AIC	0.145	0.193	0.387	54.755		'
BIC	0.143	0.100	0.100	66.869		Oracle: 0.03
CV.1se	0.100	0.100	0.100	10.892	0.100	
CV.13C CV.min	0.100	0.100	0.100	10.352	0.100	$\operatorname{sd}(\mu)/\sigma =$
AICc	0.100	0.100	0.100	10.332	0.100	$\rho = 0$
AIC	0.100	0.100	0.161	9.447		$\rho = 0$
BIC	0.100	0.009	0.101	10.781		Oracle: 0.02
					0.100	
CV.1se CV.min	0.100 0.098	0.100	0.100 0.101	490.719 511.451	0.100 0.098	$\int \operatorname{sd}(\mu)/\sigma = 0$
		0.101			0.090	(//
AICc	0.098	0.106	0.100	498.621		$\rho =$
AIC	1.303	2.403	5.214	623.452		Oracle: 0.09
BIC	0.100	0.100	3.583	499.327	0.1	
CV.1se	0.1	0.1	0.1	167.371	0.1	1/)/
CV.min	0.1	0.1	0.1	172.579	0.1	$\int \operatorname{sd}(\mu)/\sigma = 0$
AICc	0.1	0.1	0.1	170.568		$\rho = 0$
AIC	0.613	1.017	2.251	208.452		Oracle : 0.06
BIC	0.1	0.1	0.143	167.685		3,400.0.00
CV.1se	0.1	0.1	0.1	27.529	0.1	
CV.min	0.1	0.1	0.1	27.546	0.1	$\int \operatorname{sd}(\mu)/\sigma = 0$
AICc	0.1	0.1	0.1	27.607		$\rho = 0$
AIC	0.278	0.439	0.979	28.306		Oracle : 0.06
	0.1	0.1	0.1	27.474		

Table 44: Estimation MSE for n=1000, binary design, sparse covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	0	0	0	0.328	0	
CV.min	0	0	0	0.317	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	0.317		$\rho = 0$
AIC	0	0	0	0.317		Oracle: 0.000
BIC	0	0	0	0.328		07466.0.000
CV.1se	0	0	0	0.295	0	
CV.min	0	0	0	0.285	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	0.286		$\rho = 0.5$
AIC	0	0	0	0.285		Oracle : 0.000
BIC	0	0	0	0.297		07466 . 0.000
CV.1se	0	0	0	0.281	0	
CV.min	0	0	0	0.272	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	0.272		$\rho = 0.9$
AIC	0	0	0	0.272		Oracle : 0.000
BIC	0	0	0	0.283		Oracie: 0.000
CV.1se	0	0	0	1.246	0	
CV.min	0	0	0	1.276	0	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0	0	0	1.266		$\rho = 0$
AIC	0.010	0.010	0.013	1.313		0 1 0 000
BIC	0	0	0	1.267		Oracle: 0.000
CV.1se	0	0	0	1.118	0	
CV.min	0	0	0	1.146	0	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0	0	0	1.135		$\rho = 0.5$
AIC	0.009	0.010	0.011	1.181		'
BIC	0	0	0	1.142		Oracle: 0.000
CV.1se	0	0	0	1.063	0	
CV.min	0	0	0	1.084	0	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0	0	0	1.078		$\rho = 0.9$
AIC	0.008	0.009	0.010	1.114		'
BIC	0	0	0	1.086		Oracle: 0.000
CV.1se	0	0	0	4.898	0	
CV.min	0	0	0	5.206	0	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0	0	0.002	5.082		$\rho = 0$
AIC	0.049	0.060	0.124	6.067		
BIC	0	0	0	4.957		Oracle: 0.000
CV.1se	0	0	0	4.397	0	
CV.min	0	0	0	4.670	0	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0	0	0.002	4.553		$\rho = 0.5$
AIC	0.044	0.053	0.106	5.446		'
BIC	0	0	0	4.461		Oracle: 0.000
CV.1se	0	0	0	4.172	0	
CV.13C CV.min	0	0	0	4.403	0	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0	0	0.002	4.312	•	$\rho = 0.9$
AIC	0.038	0.046	0.002	5.080		'
BIC	0.030	0.040	0.073	4.236		Oracle: 0.000
— DIC	U	U	U	7.230		

Table 45: Estimation MSE for n=1000, binary design, sparse covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$		marginal AL	sparsenet MCP	
CV.1se	0	0	0	2.042	0	
CV.min	0	0	0	1.974	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	1.981		$\rho = 0$
AIC	0.011	0.011	0.020	1.981		Oracle: 0.000
BIC	0.007	0.002	0.001	2.289		07acie . 0.000
CV.1se	0	0	0	1.853	0	
CV.min	0	0	0	1.786	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	1.795		$\rho = 0.5$
AIC	0.010	0.011	0.017	1.790		Oracle : 0.000
BIC	0.008	0.003	0	2.120		Oracie . 0.000
CV.1se	0	0	0	1.762	0	
CV.min	0	0	0	1.693	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	1.704		$\rho = 0.9$
AIC	0.010	0.010	0.015	1.694		Oracle : 0.000
BIC	0.008	0.003	0	2.016		07 acie . 0.000
CV.1se	0.01	0.01	0.012	7.615	0.01	
CV.min	0.01	0.01	0.011	7.637	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.01	0.017	7.579		$\rho = 0$
AIC	0.064	0.079	0.163	8.292		Oma el e . 0 001
BIC	0.017	0.014	0.017	8.587		Oracle: 0.001
CV.1se	0.01	0.01	0.011	6.857	0.01	
CV.min	0.01	0.01	0.01	6.868	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.01	0.014	6.823		$\rho = 0.5$
AIC	0.056	0.069	0.139	7.467		Omasla . 0 000
BIC	0.018	0.015	0.017	7.855		Oracle: 0.000
CV.1se	0.01	0.01	0.011	6.509	0.01	
CV.min	0.01	0.01	0.01	6.486	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.01	0.013	6.456		$\rho = 0.9$
AIC	0.050	0.061	0.123	6.992		Oracle: 0.000
BIC	0.019	0.016	0.017	7.492		Oracie: 0.000
CV.1se	0.02	0.02	0.02	28.325	0.02	
CV.min	0.02	0.02	0.022	29.614	0.02	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.02	0.022	0.041	28.920		$\rho = 0$
AIC	0.359	0.530	1.206	35.888		Oracle: 0.012
BIC	0.02	0.02	0.02	29.717		07 acie . 0.012
CV.1se	0.02	0.02	0.02	25.373	0.02	
CV.min	0.02	0.02	0.021	26.519	0.02	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.02	0.021	0.043	25.885		$\rho = 0.5$
AIC	0.313	0.454	1.013	32.212		Oracle : 0.011
BIC	0.02	0.02	0.02	26.501		07 acie : 0.011
CV.1se	0.02	0.02	0.02	24.000	0.02	
CV.min	0.02	0.02	0.021	24.954	0.02	$sd(\mu)/\sigma = 0.5$
AICc	0.02	0.021	0.037	24.431		$\rho = 0.9$
AIC	0.276	0.399	0.889	30.063		Oracle : 0.010
BIC	0.02	0.02	0.02	24.987		Oracie : 0.010

Table 46: Estimation MSE for n=1000, binary design, sparse covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	0.010	0.007	0.002	3.649	0.002	
CV.min	0.008	0.004	0.001	3.533	0.001	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.009	0.004	0.002	3.552		$\rho = 0$
AIC	0.022	0.024	0.044	3.574		Oracle: 0.000
BIC	0.010	0.010	0.006	4.076		07 acie . 0.000
CV.1se	0.010	0.007	0.001	3.315	0.001	
CV.min	0.008	0.003	0	3.202	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.010	0.003	0.002	3.227		$\rho = 0.5$
AIC	0.019	0.022	0.038	3.229		Oracle: 0.000
BIC	0.011	0.010	0.004	3.784		07 acie . 0.000
CV.1se	0.010	0.006	0.001	3.162	0	
CV.min	0.008	0.002	0	3.044	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.009	0.003	0.001	3.070		$\rho = 0.9$
AIC	0.017	0.020	0.034	3.060		Oracle : 0.000
BIC	0.011	0.010	0.004	3.628		07 acie . 0.000
CV.1se	0.023	0.024	0.033	14.138	0.022	
CV.min	0.021	0.021	0.028	14.068	0.021	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.021	0.021	0.038	14.009		$\rho = 0$
AIC	0.126	0.166	0.354	15.342		010.007
BIC	0.040	0.038	0.040	17.915		Oracle: 0.007
CV.1se	0.024	0.024	0.032	12.775	0.022	
CV.min	0.02	0.02	0.026	12.685	0.02	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.021	0.02	0.033	12.655		$\rho = 0.5$
AIC	0.111	0.145	0.302	13.777		
BIC	0.040	0.039	0.040	16.729		Oracle: 0.004
CV.1se	0.024	0.024	0.031	12.135	0.022	
CV.min	0.02	0.02	0.025	11.995	0.02	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.02	0.02	0.031	11.980		$\rho = 0.9$
AIC	0.098	0.128	0.267	12.956		
BIC	0.040	0.039	0.040	16.045		Oracle: 0.003
CV.1se	0.040	0.040	0.040	51.327	0.040	
CV.min	0.040	0.041	0.042	53.535	0.040	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.039	0.051	0.071	52.266		$\rho = 0$
AIC	0.669	1.078	2.446	65.105		Oracle : 0.024
BIC	0.040	0.040	0.040	53.281		Oracie : 0.024
CV.1se	0.04	0.04	0.04	45.907	0.04	
CV.min	0.04	0.041	0.041	47.883	0.04	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.04	0.047	0.073	46.753		$\rho = 0.5$
AIC	0.584	0.918	2.046	58.347		Omasla . 0.021
BIC	0.04	0.04	0.04	47.401		Oracle: 0.021
CV.1se	0.04	0.04	0.04	43.426	0.04	
CV.min	0.04	0.04	0.041	45.137	0.04	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.04	0.046	0.064	44.127		$\rho = 0.9$
AIC	0.511	0.804	1.800	54.507		Oracle : 0.019
BIC	0.04	0.04	0.04	44.686		Oracie: 0.019

Table 47: Estimation MSE for n=1000, binary design, sparse covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	0.010	0.010	0.002	5.285	0.001	
CV.min	0.010	0.009	0.002	5.132	0.001	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.010	0.009	0.004	5.157		$\rho = 0$
AIC	0.033	0.038	0.073	5.239		Oracle : 0.000
BIC	0.014	0.010	0.007	5.743		07466.0.000
CV.1se	0.010	0.010	0.001	4.808	0.001	
CV.min	0.010	0.009	0.001	4.658	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.010	0.010	0.002	4.688		$\rho = 0.5$
AIC	0.029	0.033	0.062	4.733		Oracle : 0.000
BIC	0.015	0.010	0.005	5.306		Oracie . 0.000
CV.1se	0.010	0.010	0.001	4.588	0	
CV.min	0.010	0.009	0.001	4.433	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.010	0.009	0.002	4.466		$\rho = 0.9$
AIC	0.026	0.030	0.055	4.489		Oracle: 0.000
BIC	0.015	0.010	0.005	5.083		Oracie: 0.000
CV.1se	0.038	0.041	0.056	21.085	0.036	
CV.min	0.031	0.033	0.050	20.917	0.031	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.032	0.033	0.063	20.861		$\rho = 0$
AIC	0.193	0.267	0.579	22.850		0 1 0010
BIC	0.060	0.059	0.060	28.864		Oracle: 0.010
CV.1se	0.039	0.040	0.055	19.070	0.037	
CV.min	0.031	0.032	0.047	18.874	0.031	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.033	0.032	0.055	18.858		$\rho = 0.5$
AIC	0.170	0.232	0.491	20.495		'
BIC	0.060	0.060	0.060	26.477		Oracle: 0.010
CV.1se	0.038	0.040	0.054	18.124	0.036	
CV.min	0.031	0.031	0.046	17.859	0.031	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.033	0.031	0.050	17.873		$\rho = 0.9$
AIC	0.150	0.203	0.432	19.273		, , , , , , , ,
BIC	0.060	0.060	0.060	25.202		Oracle: 0.010
CV.1se	0.060	0.060	0.060	75.904	0.060	
CV.min	0.059	0.062	0.062	79.163	0.059	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.059	0.086	0.090	77.225		$\rho = 0$
AIC	0.997	1.708	3.825	96.438		· ·
BIC	0.060	0.060	0.060	78.420		Oracle: 0.035
CV.1se	0.06	0.06	0.06	67.803	0.06	
CV.min	0.06	0.061	0.062	70.692	0.06	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.06	0.079	0.092	68.967		$\rho = 0.5$
AIC	0.871	1.455	3.226	86.201		
BIC	0.06	0.06	0.06	69.642		Oracle: 0.030
CV.1se	0.060	0.060	0.060	64.208	0.060	
CV.min	0.060	0.061	0.061	66.746	0.060	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.059	0.076	0.087	65.228		$\rho = 0.9$
AIC	0.761	1.270	2.828	80.641		'
BIC	0.060	0.060	0.060	65.755		Oracle: 0.027
	0.000	0.000	0.000	03.133		

Table 48: Estimation MSE for n=1000, continuous design, sparse covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	0	0	0	1.314	0	
CV.min	0	0	0	1.272	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	1.273		$\rho = 0$
AIC	0	0	0	1.272		Oracle: 0.000
BIC	0	0	0	1.318		07466.0.000
CV.1se	0	0	0	0.610	0	
CV.min	0	0	0	0.586	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	0.587		$\rho = 0.5$
AIC	0	0	0	0.586		Oracle : 0.000
BIC	0	0	0	0.606		07466.0.000
CV.1se	0	0	0	0.174	0	
CV.min	0	0	0	0.167	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	0.167		$\rho = 0.9$
AIC	0	0	0	0.167		Oracle : 0.000
BIC	0	0	0	0.167		07466 . 0.000
CV.1se	0	0	0	5.004	0	
CV.min	0	0	0	5.133	0	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0	0	0	5.083		$\rho = 0$
AIC	0.010	0.010	0.010	5.277		010.000
BIC	0	0	0	5.094		Oracle: 0.000
CV.1se	0	0	0	2.083	0	
CV.min	0	0	0	2.069	0	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0	0	0	2.064		$\rho = 0.5$
AIC	0	0	0.001	2.074		010-000
BIC	0	0	0	2.230		Oracle: 0.000
CV.1se	0	0	0	0.544	0	
CV.min	0	0	0	0.523	0	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0	0	0	0.523		$\rho = 0.9$
AIC	0	0	0	0.523		010-000
BIC	0	0	0	0.537		Oracle: 0.000
CV.1se	0	0	0	19.703	0	
CV.min	0	0	0	20.924	0	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0	0	0	20.419		$\rho = 0$
AIC	0.040	0.048	0.099	24.311		Omasla . 0 000
BIC	0	0	0	19.918		Oracle: 0.000
CV.1se	0	0	0	7.936	0	
CV.min	0	0	0	8.190	0	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0	0	0	8.099		$\rho = 0.5$
AIC	0.019	0.021	0.042	8.896		Omagle : 0.000
BIC	0	0	0	8.117		Oracle: 0.000
CV.1se	0	0	0	2.049	0	
CV.min	0	0	0	2.022	0	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0	0	0	2.025		$\rho = 0.9$
AIC	0.009	0.010	0.019	2.033		0.000
BIC	0	0	0	2.065		Oracle: 0.000
	-	-	-			

Table 49: Estimation MSE for n=1000, continuous design, sparse covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	0	0	0	8.189	0	
CV.min	0	0	0	7.919	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	7.948		$\rho = 0$
AIC	0.010	0.010	0.016	7.945		Oracle: 0.000
BIC	0.006	0.002	0.002	9.162		07acic : 0.000
CV.1se	0.002	0	0	3.630	0	
CV.min	0	0	0	3.381	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.002	0	0	3.442		$\rho = 0.5$
AIC	0.001	0.001	0.009	3.355		Oracle: 0.000
BIC	0.015	0.010	0.003	5.182		07466.0.000
CV.1se	0.006	0.002	0	1.143	0	
CV.min	0	0	0	1.075	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.007	0.002	0	1.076		$\rho = 0.9$
AIC	0	0	0	1.076		Oracle: 0.000
BIC	0.020	0.020	0.019	1.215		Oracie: 0.000
CV.1se	0.01	0.01	0.011	30.539	0.01	
CV.min	0.01	0.01	0.01	30.640	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.01	0.011	30.396		$\rho = 0$
AIC	0.051	0.063	0.129	33.232		,
BIC	0.017	0.016	0.020	34.514		Oracle: 0.000
CV.1se	0.016	0.013	0.013	12.367	0.01	
CV.min	0.01	0.01	0.011	11.947	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.011	0.01	0.01	12.032		$\rho = 0.5$
AIC	0.025	0.029	0.057	12.162		· ·
BIC	0.020	0.020	0.020	15.925		Oracle: 0.000
CV.1se	0.020	0.018	0.017	2.460	0.012	
CV.min	0.017	0.014	0.014	2.310	0.011	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.019	0.017	0.016	2.312		$\rho = 0.9$
AIC	0.01	0.01	0.016	2.303		'
BIC	0.020	0.020	0.020	2.746		Oracle: 0.000
CV.1se	0.02	0.02	0.02	113.819	0.02	
CV.nin	0.02	0.02	0.021	118.880	0.02	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.02	0.02	0.02	116.011	***-	$\rho = 0$
AIC	0.285	0.420	0.948	143.937		· ·
BIC	0.02	0.02	0.02	119.474		Oracle: 0.010
CV.1se	0.02	0.02	0.02	40.987	0.02	
CV.13C	0.02	0.02	0.02	42.254	0.02	$sd(\mu)/\sigma = 0.5$
AICc	0.02	0.02	0.02	41.712	0.02	$\rho = 0.5$
AIC	0.141	0.02	0.422	49.755		$\rho = 0.5$
BIC	0.02	0.172	0.02	41.303		Oracle: 0.009
CV.1se	0.02	0.02	0.02	7.500	0.02	
CV.1se CV.min	0.02		0.02	7.406	0.02	$sd(\mu)/\sigma = 0.5$
		0.02			U.U2	. , ,
AICc	0.02	0.02	0.02	7.422		$\rho = 0.9$
AIC	0.048	0.063	0.147	7.504		Oracle: 0.009
BIC	0.02	0.02	0.02	7.383		

Table 50: Estimation MSE for n=1000, continuous design, sparse covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.010	0.005	0.001	14.641	0	
CV.min	0.007	0.001	0	14.173	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.009	0.002	0	14.250		$\rho = 0$
AIC	0.018	0.020	0.035	14.326		Oracle : 0.000
BIC	0.010	0.010	0.005	16.271		07 acie . 0.000
CV.1se	0.010	0.007	0	6.671	0	
CV.min	0.008	0.001	0	6.102	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.010	0.007	0	6.348		$\rho = 0.5$
AIC	0.010	0.010	0.015	5.976		Oracle : 0.000
BIC	0.040	0.039	0.004	16.698		07 acic . 0.000
CV.1se	0.010	0.009	0.001	2.237	0.001	
CV.min	0.010	0.003	0	2.013	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.010	0.010	0	2.022		$\rho = 0.9$
AIC	0.010	0.002	0	2.010		Oracle: 0.000
BIC	0.040	0.040	0.040	2.821		07 acic . 0.000
CV.1se	0.022	0.023	0.030	56.693	0.021	
CV.min	0.02	0.02	0.024	56.464	0.02	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.02	0.02	0.027	56.219		$\rho = 0$
AIC	0.101	0.133	0.281	61.526		Oracle : 0.004
BIC	0.040	0.040	0.040	71.760		Oracie: 0.004
CV.1se	0.037	0.033	0.038	23.253	0.028	
CV.min	0.025	0.023	0.034	22.171	0.022	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.030	0.024	0.02	22.503		$\rho = 0.5$
AIC	0.052	0.064	0.128	22.379		Omasla . 0 000
BIC	0.040	0.040	0.040	28.805		Oracle: 0.000
CV.1se	0.040	0.040	0.040	4.611	0.038	
CV.min	0.040	0.038	0.040	4.251	0.033	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.040	0.040	0.039	4.227		$\rho = 0.9$
AIC	0.02	0.021	0.039	4.113		Oracle : 0.000
BIC	0.040	0.040	0.040	4.810		Oracie: 0.000
CV.1se	0.040	0.040	0.040	206.405	0.040	
CV.min	0.039	0.040	0.041	215.140	0.039	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.038	0.041	0.041	209.877		$\rho = 0$
AIC	0.533	0.854	1.927	261.313		Oracle : 0.020
BIC	0.040	0.040	0.077	214.307		07466 . 0.020
CV.1se	0.04	0.04	0.04	72.558	0.04	
CV.min	0.04	0.04	0.04	74.881	0.04	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.04	0.04	0.04	73.917		$\rho = 0.5$
AIC	0.259	0.381	0.851	89.410		Oracle : 0.010
BIC	0.04	0.04	0.04	72.874		07 acte : 0.010
CV.1se	0.04	0.04	0.04	12.668	0.04	
CV.min	0.04	0.04	0.04	12.572	0.04	$sd(\mu)/\sigma = 0.5$
AICc	0.04	0.04	0.04	12.607		$\rho = 0.9$
AIC	0.102	0.144	0.330	12.810		Oracle : 0.010
BIC	0.04	0.04	0.04	12.542		01 acie . 0.010

Table 51: Estimation MSE for n=1000, continuous design, sparse covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	0.010	0.010	0.001	21.213	0	
CV.min	0.010	0.009	0	20.593	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.010	0.009	0.002	20.694		$\rho = 0$
AIC	0.027	0.031	0.058	21.019		Oracle: 0.000
BIC	0.013	0.010	0.006	23.085		07acic . 0.000
CV.1se	0.010	0.010	0	9.770	0	
CV.min	0.010	0.008	0	8.912	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.011	0.010	0	9.342		$\rho = 0.5$
AIC	0.012	0.014	0.025	8.684		Oracle : 0.000
BIC	0.060	0.056	0.001	25.915		Oracie . 0.000
CV.1se	0.011	0.010	0	3.342	0	
CV.min	0.010	0.008	0	2.877	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.014	0.010	0	2.898		$\rho = 0.9$
AIC	0.010	0.008	0.008	2.843		Oracle: 0.000
BIC	0.060	0.060	0.044	4.207		Oracie: 0.000
CV.1se	0.035	0.038	0.052	84.516	0.033	
CV.min	0.029	0.030	0.043	83.894	0.029	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.030	0.030	0.046	83.679		$\rho = 0$
AIC	0.155	0.214	0.460	91.688		0 1 0010
BIC	0.060	0.060	0.060	116.109		Oracle: 0.010
CV.1se	0.058	0.056	0.060	35.001	0.054	
CV.min	0.044	0.043	0.059	33.181	0.042	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.051	0.040	0.033	33.805		$\rho = 0.5$
AIC	0.081	0.103	0.211	33.234		,
BIC	0.060	0.060	0.060	42.426		Oracle: 0.001
CV.1se	0.060	0.060	0.060	6.958	0.060	
CV.min	0.060	0.060	0.060	6.412	0.059	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.060	0.060	0.059	6.353		$\rho = 0.9$
AIC	0.034	0.037	0.070	5.966		,
BIC	0.060	0.060	0.060	7.008		Oracle: 0.001
CV.1se	0.060	0.060	0.060	304.998	0.060	
CV.min	0.058	0.061	0.062	317.792	0.058	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.057	0.063	0.060	309.999		$\rho = 0$
AIC	0.794	1.354	3.025	386.824		,
BIC	0.060	0.060	0.633	315.022		Oracle: 0.028
CV.1se	0.06	0.06	0.06	106.431	0.06	
CV.min	0.06	0.06	0.06	109.886	0.06	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.06	0.06	0.06	108.443		$\rho = 0.5$
AIC	0.384	0.595	1.331	131.600		'
BIC	0.06	0.06	0.06	106.781		Oracle: 0.016
CV.1se	0.06	0.06	0.06	18.284	0.06	
CV.min	0.06	0.06	0.06	18.183	0.06	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.06	0.06	0.06	18.231		$\rho = 0.9$
AIC	0.163	0.243	0.557	18.642		,
BIC	0.06	0.06	0.06	18.188		Oracle: 0.016
	0.00	0.00	0.00	10.100		

Table 52: Estimation MSE for n=100, binary design, dense covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0	0	0	0.526	0	
CV.min	0	0	0	0.504	0	$\operatorname{sd}(\mu)/\sigma =$
AICc	0	0	0.003	0.557		ρ =
AIC	0	0.001	0.003	0.523		Oracle: 0.0
BIC	0	0.001	0.003	0.530		Oracie: 0.0
CV.1se	0	0	0	0.485	0	
CV.min	0	0	0	0.458	0	$\operatorname{sd}(\mu)/\sigma$ =
AICc	0	0	0.002	0.520		$\rho =$
AIC	0	0	0.003	0.471		0106
BIC	0	0	0.003	0.478		Oracle: 0.0
CV.1se	0	0	0	0.472	0	
CV.min	0	0	0	0.438	0	$\operatorname{sd}(\mu)/\sigma$ =
AICc	0	0	0.002	0.505		$\rho = 0$
AIC	0	0.001	0.002	0.449		, ,
BIC	0	0.001	0.002	0.457		Oracle: 0.0
CV.1se	0	0	0	1.794	0	
CV.min	0.001	0.001	0.001	2.032	0.001	$\operatorname{sd}(\mu)/\sigma =$
AICc	0	0.003	0.012	1.729	0.001	$\rho = \frac{\rho}{\rho}$
AIC	0.009	0.010	0.012	2.151		
BIC	0.009	0.010	0.012	2.148		Oracle:0.0
CV.1se	0.005	0.010	0.012	1.635	0	
CV.nse CV.min	0	0.001	0.001	1.831	0.001	$\operatorname{sd}(\mu)/\sigma$ =
AICc	0	0.002	0.011	1.573	0.001	$\rho = 0$
AIC	0.008	0.010	0.011	1.930		,
BIC	0.008	0.010	0.011	1.927		Oracle:0.0
CV.1se	0.000	0.010	0.011	1.545	0	
CV.13c	0.001	0.001	0.001	1.724	0.001	$\operatorname{sd}(\mu)/\sigma =$
AICc	0.001	0.001	0.001	1.501	0.001	$\rho = 0$
AIC	0.009	0.001	0.011	1.828		·
BIC	0.009	0.010	0.011	1.824		Oracle:0.0
CV.1se	0.009	0.010	0.011	6.910	0	
CV.1se CV.min	0.002	0.002	0.001	8.222	0.003	$\operatorname{sd}(\mu)/\sigma =$
AICc	0.002	0.002	0.001	6.009	0.003	$\left \begin{array}{c} \operatorname{sd}(\mu)/\sigma = \\ \rho = \end{array}\right $
AIC	0.003	0.014	0.035			ρ =
				8.741		Oracle:0.0
BIC CV.1se	0.014	0.023 0	0.036 0	8.737	0	
				6.196	0	_1()/_
CV.min	0.002	0.002	0.001	7.376	0.003	$\operatorname{sd}(\mu)/\sigma =$
AICc	0.003	0.012	0.032	5.391		$\rho =$
AIC	0.013	0.021	0.032	7.792		Oracle: 0.0
BIC	0.013	0.021	0.032	7.788		
CV.1se	0	0	0	5.855	0	- () (
CV.min	0.002	0.002	0.001	6.969	0.003	$\operatorname{sd}(\mu)/\sigma =$
AICc	0.003	0.011	0.031	5.154		$\rho = 0$
AIC	0.013	0.020	0.031	7.417		Oracle: 0.0
BIC	0.013	0.020	0.031	7.409		

Table 53: Estimation MSE for n=100, binary design, dense covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$		marginal AL		
CV.1se	0.02	0.021	0.021	3.271	0.021	
CV.min	0.022	0.023	0.022	2.949	0.024	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.022	0.037	0.059	4.316		$\rho = 0$
AIC	0.032	0.042	0.059	2.944		Oracle : 0.026
BIC	0.032	0.042	0.059	2.943		07 dete : 0.020
CV.1se	0.02	0.021	0.021	2.960	0.021	
CV.min	0.022	0.022	0.022	2.638	0.023	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.022	0.035	0.055	3.860		$\rho = 0.5$
AIC	0.032	0.041	0.055	2.633		Oracle: 0.022
BIC	0.032	0.041	0.055	2.632		07466 . 0.022
CV.1se	0.02	0.02	0.02	2.894	0.02	
CV.min	0.022	0.022	0.022	2.504	0.023	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.021	0.033	0.054	3.772		$\rho = 0.9$
AIC	0.032	0.039	0.054	2.486		010-021
BIC	0.032	0.039	0.054	2.487		Oracle: 0.021
CV.1se	0.021	0.021	0.021	10.258	0.021	
CV.min	0.024	0.023	0.022	11.337	0.024	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.024	0.057	0.092	10.122		$\rho = 0$
AIC	0.043	0.064	0.092	11.795		,
BIC	0.043	0.064	0.092	11.790		Oracle: 0.031
CV.1se	0.021	0.021	0.021	9.188	0.021	
CV.min	0.024	0.023	0.022	10.122	0.024	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.024	0.053	0.085	9.087		$\rho = 0.5$
AIC	0.042	0.060	0.085	10.520		,
BIC	0.042	0.060	0.085	10.516		Oracle: 0.029
CV.1se	0.021	0.021	0.021	8.725	0.021	
CV.min	0.023	0.022	0.022	9.513	0.024	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.023	0.050	0.079	8.655	0.02.	$\rho = 0.9$
AIC	0.041	0.057	0.079	9.933		,
BIC	0.041	0.057	0.079	9.929		Oracle: 0.026
CV.1se	0.022	0.022	0.023	37.726	0.023	
CV.min	0.026	0.025	0.025	44.850	0.027	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.027	0.144	0.217	32.632	0.027	$\rho = 0$
AIC	0.084	0.153	0.217	47.153		,
BIC	0.084	0.153	0.217	47.137		Oracle: 0.039
CV.1se	0.022	0.022	0.022	33.791	0.022	
CV.nse	0.026	0.024	0.024	39.934	0.026	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.026	0.131	0.196	29.173	0.020	$\rho = 0.5$
AIC	0.078	0.140	0.196	42.191		,
BIC	0.078	0.140	0.196	42.173		Oracle: 0.037
CV.1se	0.078	0.140	0.190	31.349	0.022	
CV.1se CV.min	0.022	0.022	0.022	37.309	0.022	$sd(\mu)/\sigma = 0.5$
AICc	0.026	0.024	0.024	27.516	0.027	$\begin{array}{c c} \operatorname{sd}(\mu)/\delta = 0.3 \\ \rho = 0.9 \end{array}$
AICC	0.026	0.122	0.188	39.711		$\rho = 0.9$
		0.131		39.711		Oracle: 0.034
BIC	0.077	0.131	0.188	39.094		

Table 54: Estimation MSE for n=100, binary design, dense covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.05	0.05	0.05	6.717	0.05	
CV.min	0.051	0.052	0.051	6.017	0.052	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.05	0.091	0.130	9.026		$\rho = 0$
AIC	0.068	0.096	0.130	5.986		Oracle : 296.861
BIC	0.068	0.096	0.130	5.984		07466 . 250.001
CV.1se	0.05	0.05	0.05	6.066	0.05	
CV.min	0.051	0.051	0.051	5.381	0.052	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.05	0.084	0.121	8.156		$\rho = 0.5$
AIC	0.067	0.090	0.121	5.337		Oracle : 6.607
BIC	0.067	0.090	0.121	5.335		01 acie . 0.001
CV.1se	0.05	0.05	0.05	5.905	0.05	
CV.min	0.051	0.051	0.051	5.100	0.052	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.05	0.082	0.116	7.866		$\rho = 0.9$
AIC	0.066	0.088	0.116	5.030		Oracle : 8.065
BIC	0.066	0.088	0.116	5.029		01 acie . 8.003
CV.1se	0.05	0.05	0.05	20.893	0.05	
CV.min	0.052	0.052	0.052	22.993	0.053	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.051	0.133	0.194	20.644		$\rho = 0$
AIC	0.088	0.141	0.194	23.877		0
BIC	0.088	0.141	0.194	23.868		Oracle: 0.122
CV.1se	0.05	0.05	0.05	18.668	0.05	
CV.min	0.052	0.052	0.051	20.455	0.053	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.051	0.124	0.180	18.486		$\rho = 0.5$
AIC	0.086	0.131	0.181	21.260		010100
BIC	0.086	0.131	0.181	21.249		Oracle: 0.100
CV.1se	0.05	0.05	0.05	17.702	0.05	
CV.min	0.052	0.052	0.052	19.251	0.053	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.051	0.118	0.168	17.562		$\rho = 0.9$
AIC	0.084	0.126	0.168	20.094		0 1 0 000
BIC	0.084	0.126	0.168	20.083		Oracle: 0.099
CV.1se	0.05	0.05	0.051	76.347	0.05	
CV.min	0.055	0.054	0.054	90.392	0.057	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.054	0.322	0.461	66.067		$\rho = 0$
AIC	0.170	0.334	0.462	95.261		, , , , , , , , , ,
BIC	0.170	0.334	0.462	95.227		Oracle: 0.080
CV.1se	0.05	0.05	0.05	68.388	0.05	
CV.min	0.054	0.054	0.053	80.836	0.056	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.054	0.288	0.411	58.981		$\rho = 0.5$
AIC	0.158	0.299	0.412	85.029		•
BIC	0.158	0.299	0.412	84.994		Oracle: 0.078
CV.1se	0.05	0.05	0.051	63.175	0.05	
CV.min	0.055	0.054	0.054	75.478	0.056	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.054	0.271	0.391	55.779		$\rho = 0.9$
AIC	0.155	0.283	0.392	80.331		_
BIC	0.155	0.283	0.392	80.236		Oracle: 0.073
						<u> </u>

Table 55: Estimation MSE for n=100, binary design, dense covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.1	0.1	0.1	13.601	0.1	
CV.min	0.103	0.103	0.103	12.016	0.105	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.101	0.199	0.273	18.227		$\rho = 0$
AIC	0.140	0.205	0.273	11.966		Oracle: 3349.772
BIC	0.140	0.205	0.273	11.962		074666.3319.772
CV.1se	0.1	0.1	0.1	12.342	0.1	
CV.min	0.102	0.102	0.102	10.791	0.103	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.101	0.188	0.257	16.688		$\rho = 0.5$
AIC	0.138	0.195	0.258	10.703		Oracle: 1995.095
BIC	0.138	0.195	0.258	10.700		Oracie . 1995.095
CV.1se	0.1	0.1	0.1	11.951	0.1	
CV.min	0.102	0.102	0.102	10.239	0.103	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.101	0.182	0.241	15.861		$\rho = 0.9$
AIC	0.136	0.188	0.242	10.121		Oracle: 353.306
BIC	0.136	0.188	0.242	10.119		Oracie: 555.500
CV.1se	0.1	0.1	0.1	42.180	0.1	
CV.min	0.105	0.104	0.104	46.230	0.106	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.103	0.294	0.404	41.661		$\rho = 0$
AIC	0.180	0.303	0.404	47.906		0 1 1171
BIC	0.180	0.303	0.404	47.889		<i>Oracle</i> : 1.151
CV.1se	0.1	0.1	0.101	37.519	0.1	
CV.min	0.104	0.104	0.103	41.164	0.106	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.103	0.275	0.375	37.226		$\rho = 0.5$
AIC	0.175	0.283	0.375	42.685		,
BIC	0.175	0.283	0.375	42.673		<i>Oracle</i> : 0.666
CV.1se	0.1	0.1	0.1	35.715	0.1	
CV.min	0.104	0.104	0.103	38.820	0.106	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.103	0.259	0.355	35.322		$\rho = 0.9$
AIC	0.172	0.268	0.355	40.488		,
BIC	0.172	0.268	0.355	40.475		Oracle: 0.941
CV.1se	0.101	0.101	0.101	154.796	0.101	
CV.min	0.111	0.108	0.109	182.987	0.115	$sd(\mu)/\sigma = 0.5$
AICc	0.110	0.716	0.957	133.295		$\rho = 0$
AIC	0.342	0.728	0.957	192.590		·
BIC	0.341	0.728	0.957	192.499		Oracle: 0.159
CV.1se	0.101	0.101	0.101	136.826	0.101	
CV.min	0.109	0.108	0.107	162.564	0.114	$sd(\mu)/\sigma = 0.5$
AICc	0.109	0.638	0.846	118.647	0.11.	$\rho = 0.5$
AIC	0.320	0.652	0.846	171.265		,
BIC	0.320	0.652	0.846	171.200		Oracle: 0.156
CV.1se	0.101	0.101	0.101	127.348	0.101	
CV.13C CV.min	0.110	0.101	0.107	151.934	0.114	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.110	0.596	0.799	112.301	0.117	$\rho = 0.9$
AIC	0.109	0.611	0.799	161.486		·
BIC	0.315	0.611	0.799	161.418		Oracle: 0.147
БІС	0.313	0.011	0.799	101.410		

Table 56: Estimation MSE for n=100, continuous design, dense covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\mathrm{GL}~\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	0	0	0	2.108	0	
CV.min	0	0	0	2.030	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0.002	2.237		$\rho = 0$
AIC	0	0	0.002	2.101		Oracle: 0.000
BIC	0	0	0.002	2.146		Oracle . 0.000
CV.1se	0	0	0	1.037	0	
CV.min	0	0	0	0.843	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0.002	1.166		$\rho = 0.5$
AIC	0	0	0.002	0.814		Oracle: 0.000
BIC	0	0	0.002	0.907		Oracle: 0.000
CV.1se	0	0	0	0.289	0	
CV.min	0	0	0	0.222	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	0.247		$\rho = 0.9$
AIC	0	0	0	0.199		Oracle: 0.000
BIC	0	0	0	0.316		Oracie: 0.000
CV.1se	0	0	0	7.245	0	
CV.min	0	0.001	0.001	8.172	0.001	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0	0	0.010	6.939		$\rho = 0$
AIC	0.008	0.010	0.010	8.655		
BIC	0.008	0.010	0.010	8.634		Oracle: 0.000
CV.1se	0	0	0	2.827	0	
CV.min	0	0	0	3.070	0	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0	0	0.009	2.782		$\rho = 0.5$
AIC	0.006	0.008	0.010	3.273		0 1 0 000
BIC	0.006	0.008	0.010	3.264		Oracle: 0.000
CV.1se	0	0	0	0.717	0	
CV.min	0	0	0	0.696	0	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0	0	0	0.682		$\rho = 0.9$
AIC	0	0.001	0.004	0.805		0 1 0 000
BIC	0	0.001	0.004	0.700		Oracle: 0.000
CV.1se	0.001	0.001	0.001	27.723	0.001	
CV.min	0.003	0.002	0.002	33.054	0.003	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.003	0.005	0.031	24.010		$\rho = 0$
AIC	0.012	0.020	0.031	35.085		0 1 0 001
BIC	0.012	0.020	0.031	35.070		Oracle: 0.001
CV.1se	0	0	0	10.083	0	
CV.min	0.001	0.001	0.001	12.084	0.001	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.001	0	0.013	9.107		$\rho = 0.5$
AIC	0.010	0.010	0.013	13.175		,
BIC	0.010	0.010	0.013	13.156		Oracle: 0.000
CV.1se	0	0	0	2.291	0	
CV.min	0	0	0	2.528	0	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0	0	0.006	2.341		$\rho = 0.9$
AIC	0.010	0.010	0.010	3.436		
BIC	0.010	0.010	0.010	2.661		Oracle: 0.001

Table 57: Estimation MSE for n=100, continuous design, dense covariates, and decay 50.

	lasso		$\operatorname{GL} \gamma = 10$	marginal AL		
CV.1se	0.022	0.022	0.022	13.270	0.022	
CV.min	0.023	0.023	0.023	11.890	0.023	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.022	0.028	0.052	17.111		$\rho = 0$
AIC	0.030	0.039	0.052	11.862		Oracle: 0.02
BIC	0.030	0.039	0.052	11.857		07 acte : 0.02
CV.1se	0.02	0.02	0.02	5.378	0.02	
CV.min	0.021	0.021	0.021	4.240	0.021	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.021	0.021	0.034	6.623		$\rho = 0.$
AIC	0.030	0.030	0.034	4.065		Oracle : 0.01
BIC	0.030	0.030	0.034	4.064		074666.0.01
CV.1se	0.02	0.02	0.02	1.542	0.02	
CV.min	0.02	0.02	0.02	1.121	0.02	$\operatorname{sd}(\mu)/\sigma =$
AICc	0.02	0.02	0.024	1.262		$\rho = 0.$
AIC	0.023	0.026	0.029	0.737		010.01
BIC	0.023	0.026	0.029	1.378		Oracle: 0.01
CV.1se	0.023	0.023	0.023	41.467	0.023	
CV.min	0.025	0.025	0.024	45.677	0.026	$\operatorname{sd}(\mu)/\sigma =$
AICc	0.025	0.042	0.080	40.704		$\rho =$
AIC	0.039	0.057	0.080	47.412		'
BIC	0.039	0.057	0.080	47.393		Oracle: 0.02
CV.1se	0.021	0.021	0.021	14.363	0.021	
CV.min	0.022	0.022	0.021	15.423	0.022	$\operatorname{sd}(\mu)/\sigma =$
AICc	0.022	0.022	0.043	14.342	0.022	$\rho = 0.$
AIC	0.030	0.035	0.043	16.291		·
BIC	0.030	0.035	0.043	16.279		Oracle: 0.01
CV.1se	0.02	0.02	0.02	2.822	0.02	
CV.13c	0.02	0.02	0.02	2.616	0.02	$\operatorname{sd}(\mu)/\sigma =$
AICc	0.02	0.02	0.028	2.648	0.02	$\rho = 0.$
AIC	0.029	0.030	0.020	2.884		'
BIC	0.029	0.030	0.030	2.875		Oracle: 0.01
CV.1se	0.025	0.030	0.036	151.728	0.026	
CV.1se CV.min	0.028	0.023	0.020	180.429	0.020	$\operatorname{sd}(\mu)/\sigma = 0.$
AICc	0.028	0.027	0.027	131.418	0.029	$\rho = \frac{\operatorname{sd}(\mu)}{\rho} = 0.$
AIC	0.028			190.125		$\rho =$
BIC	0.074	0.134 0.133	0.188	190.123		Oracle: 0.03
CV.1se			0.188		0.022	
	0.023	0.023	0.023	49.491	0.023	1() / 0
CV.min	0.025	0.024	0.023	59.331	0.025	$\operatorname{sd}(\mu)/\sigma = 0$
AICc	0.025	0.038	0.080	44.999		$\rho = 0$
AIC	0.042	0.059	0.080	64.967		Oracle: 0.02
BIC	0.042	0.059	0.080	64.933		
CV.1se	0.02	0.02	0.02	7.840	0.02	
CV.min	0.021	0.021	0.021	8.639	0.021	$\int \operatorname{sd}(\mu)/\sigma = 0.$
AICc	0.021	0.02	0.039	8.095		$\rho = 0.$
AIC	0.030	0.033	0.039	11.561		Oracle: 0.02
BIC	0.030	0.033	0.039	10.161		1 (1770000 1111)

Table 58: Estimation MSE for n=100, continuous design, dense covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$		marginal AL	1	
CV.1se	0.05	0.05	0.05	27.338	0.05	
CV.min	0.051	0.051	0.051	24.187	0.052	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.05	0.075	0.114	36.340		$\rho = 0$
AIC	0.063	0.087	0.114	24.103		Oracle : 26.263
BIC	0.063	0.087	0.114	24.111		07 acic . 20.203
CV.1se	0.05	0.05	0.05	10.857	0.05	
CV.min	0.05	0.05	0.05	8.558	0.05	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.05	0.051	0.072	13.377		$\rho = 0.5$
AIC	0.055	0.061	0.072	8.167		Oracle: 15.203
BIC	0.055	0.061	0.072	8.199		Oracie . 13.203
CV.1se	0.05	0.05	0.05	3.000	0.05	
CV.min	0.05	0.05	0.05	2.161	0.05	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.05	0.05	0.052	2.478		$\rho = 0.9$
AIC	0.05	0.05	0.053	1.378		Oracle: 12.752
BIC	0.05	0.05	0.053	2.305		Oracie: 12.732
CV.1se	0.05	0.05	0.05	84.513	0.05	
CV.min	0.052	0.052	0.052	92.563	0.052	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.051	0.115	0.170	83.668		$\rho = 0$
AIC	0.081	0.126	0.171	96.284		0 1 0 102
BIC	0.081	0.126	0.171	96.246		Oracle: 0.102
CV.1se	0.05	0.05	0.05	28.764	0.05	
CV.min	0.05	0.05	0.05	30.846	0.05	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.05	0.057	0.091	28.843		$\rho = 0.5$
AIC	0.061	0.074	0.091	32.569		
BIC	0.061	0.074	0.091	32.544		Oracle: 0.067
CV.1se	0.05	0.05	0.05	5.390	0.05	
CV.min	0.05	0.05	0.05	4.976	0.05	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.05	0.05	0.059	5.058		$\rho = 0.9$
AIC	0.051	0.054	0.059	5.416		
BIC	0.051	0.054	0.059	5.438		Oracle: 0.059
CV.1se	0.052	0.052	0.052	308.050	0.052	
CV.min	0.056	0.056	0.056	365.357	0.058	$sd(\mu)/\sigma = 0.5$
AICc	0.055	0.279	0.393	267.155		$\rho = 0$
AIC	0.151	0.290	0.394	385.780		,
BIC	0.151	0.290	0.394	385.622		Oracle: 0.077
CV.1se	0.05	0.05	0.05	99.072	0.05	
CV.min	0.051	0.051	0.051	119.313	0.052	$sd(\mu)/\sigma = 0.5$
AICc	0.051	0.107	0.166	90.468		$\rho = 0.5$
AIC	0.086	0.126	0.167	130.265		
BIC	0.086	0.126	0.167	130.194		Oracle: 0.061
CV.1se	0.05	0.05	0.05	14.671	0.05	
CV.min	0.05	0.05	0.05	16.235	0.05	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.05	0.05	0.078	15.168		$\rho = 0.9$
AIC	0.061	0.068	0.079	21.678		
BIC	0.061	0.068	0.079	18.951		Oracle: 0.059
	0.001	0.000	0.077	10.751		

Table 59: Estimation MSE for n=100, continuous design, dense covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	0.1	0.101	0.101	55.658	0.101	
CV.min	0.103	0.103	0.102	48.708	0.104	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.101	0.178	0.240	74.225		$\rho = 0$
AIC	0.131	0.187	0.240	48.499		Oracle: 1253.554
BIC	0.131	0.187	0.240	48.485		07 dete : 1233.334
CV.1se	0.1	0.1	0.1	21.955	0.1	
CV.min	0.1	0.1	0.1	17.187	0.1	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.1	0.111	0.148	26.781		$\rho = 0.5$
AIC	0.111	0.127	0.148	16.350		Oracle: 708.345
BIC	0.111	0.127	0.148	16.344		07466.700.545
CV.1se	0.1	0.1	0.1	5.936	0.1	
CV.min	0.1	0.1	0.1	4.261	0.1	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.1	0.1	0.109	4.934		$\rho = 0.9$
AIC	0.1	0.105	0.110	2.671		Oracle: 601.732
BIC	0.1	0.105	0.110	4.183		Oracie . 001.732
CV.1se	0.101	0.102	0.102	170.765	0.101	
CV.min	0.105	0.104	0.104	186.404	0.107	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.103	0.261	0.355	168.740		$\rho = 0$
AIC	0.166	0.269	0.356	193.942		On a day 21 621
BIC	0.166	0.269	0.356	193.872		Oracle: 21.631
CV.1se	0.1	0.1	0.1	57.518	0.1	
CV.min	0.101	0.101	0.101	61.288	0.101	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.1	0.135	0.186	57.517		$\rho = 0.5$
AIC	0.123	0.153	0.186	64.989		0 1 12 202
BIC	0.123	0.153	0.186	64.960		<i>Oracle</i> : 13.382
CV.1se	0.1	0.1	0.1	10.467	0.1	
CV.min	0.1	0.1	0.1	9.667	0.1	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.1	0.1	0.119	9.840		$\rho = 0.9$
AIC	0.106	0.111	0.119	10.478		0 1 12 420
BIC	0.106	0.111	0.119	10.572		<i>Oracle</i> : 13.438
CV.1se	0.104	0.105	0.105	621.359	0.104	
CV.min	0.113	0.110	0.112	736.801	0.117	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.112	0.608	0.803	536.105		$\rho = 0$
AIC	0.304	0.620	0.808	776.534		0 1 0 152
BIC	0.304	0.620	0.808	776.223		<i>Oracle</i> : 0.153
CV.1se	0.101	0.101	0.101	197.909	0.101	
CV.min	0.103	0.103	0.103	237.902	0.104	$sd(\mu)/\sigma = 0.5$
AICc	0.103	0.251	0.344	181.025		$\rho = 0.5$
AIC	0.173	0.265	0.345	260.223		0 1 0 124
BIC	0.173	0.265	0.345	260.073		Oracle: 0.124
CV.1se	0.1	0.1	0.1	28.220	0.1	
CV.min	0.1	0.1	0.1	31.225	0.1	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.1	0.101	0.158	29.239		$\rho = 0.9$
AIC	0.121	0.139	0.159	41.667		,
BIC	0.121	0.139	0.159	36.591		Oracle: 0.120

Table 60: Estimation MSE for n=100, binary design, sparse covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0	0	0	0.403	0	
CV.min	0	0	0	0.410	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	0.404		$\rho = 0$
AIC	0	0	0	0.441		Oracle: 0.000
BIC	0	0	0	0.438		07 acre : 0.000
CV.1se	0	0	0	0.375	0	
CV.min	0	0	0	0.376	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	0.385		$\rho = 0.5$
AIC	0	0	0	0.398		Oracle: 0.000
BIC	0	0	0	0.401		07466.0.000
CV.1se	0	0	0	0.364	0	
CV.min	0	0	0	0.359	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	0.377		$\rho = 0.9$
AIC	0	0	0	0.379		Oracle: 0.000
BIC	0	0	0	0.384		07466.0.000
CV.1se	0	0	0	1.524	0	
CV.min	0	0	0.001	1.742	0	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0	0.001	0.010	1.450		$\rho = 0$
AIC	0.004	0.007	0.010	1.860		Oracle : 0.000
BIC	0.004	0.007	0.010	1.855		07466.0.000
CV.1se	0	0	0	1.389	0	
CV.min	0	0	0	1.572	0	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0	0	0.010	1.323		$\rho = 0.5$
AIC	0.004	0.007	0.010	1.663		Oracle: 0.000
BIC	0.004	0.007	0.010	1.660		07466.0.000
CV.1se	0	0	0	1.316	0	
CV.min	0	0	0	1.479	0	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0	0	0.010	1.265		$\rho = 0.9$
AIC	0.003	0.006	0.010	1.579		Oracle: 0.000
BIC	0.003	0.006	0.010	1.576		07466.0.000
CV.1se	0	0	0	5.985	0	
CV.min	0.001	0.001	0.001	7.110	0.002	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.001	0.010	0.030	5.194		$\rho = 0$
AIC	0.012	0.019	0.031	7.571		Oracle: 0.000
BIC	0.012	0.019	0.031	7.567		07 acre : 0.000
CV.1se	0	0	0	5.375	0	
CV.min	0.001	0.001	0.001	6.395	0.001	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.001	0.009	0.027	4.662		$\rho = 0.5$
AIC	0.011	0.017	0.027	6.772		Oracle: 0.000
BIC	0.011	0.017	0.027	6.765		57 acic . 0.000
CV.1se	0	0	0	5.029	0	
CV.min	0.001	0.001	0.001	6.006	0.001	$sd(\mu)/\sigma = 0.5$
AICc	0.001	0.008	0.026	4.423		$\rho = 0.9$
AIC	0.011	0.016	0.026	6.407		Oracle : 0.000
BIC	0.011	0.016	0.026	6.399		<i>Oracie</i> . 0.000

Table 61: Estimation MSE for n=100, binary design, sparse covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.005	0.004	0.008	0.841	0.003	
CV.min	0.001	0.001	0.006	0.863	0.001	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.002	0.001	0.003	0.862		$\rho = 0$
AIC	0.002	0.002	0.003	0.927		Oracle: 0.000
BIC	0.002	0.002	0.003	0.922		074660.0.000
CV.1se	0.007	0.006	0.009	0.790	0.005	
CV.min	0.003	0.002	0.007	0.793	0.002	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.004	0.001	0.003	0.827		$\rho = 0.5$
AIC	0.003	0.002	0.003	0.837		Oracle : 0.000
BIC	0.003	0.002	0.003	0.836		07466 . 0.000
CV.1se	0.008	0.006	0.009	0.762	0.005	
CV.min	0.003	0.003	0.007	0.755	0.003	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.005	0.002	0.004	0.815		$\rho = 0.9$
AIC	0.003	0.002	0.004	0.791		Oracle: 0.000
BIC	0.003	0.002	0.004	0.791		Oracie: 0.000
CV.1se	0.01	0.01	0.01	3.217	0.01	
CV.min	0.01	0.01	0.01	3.664	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.011	0.023	3.088		$\rho = 0$
AIC	0.011	0.014	0.023	3.868		,
BIC	0.011	0.014	0.023	3.862		Oracle: 0.000
CV.1se	0.01	0.01	0.01	2.928	0.01	
CV.min	0.01	0.01	0.01	3.296	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.01	0.021	2.816		$\rho = 0.5$
AIC	0.011	0.014	0.022	3.462		,
BIC	0.011	0.014	0.022	3.459		Oracle: 0.000
CV.1se	0.01	0.01	0.01	2.773	0.01	
CV.min	0.01	0.01	0.01	3.084	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.01	0.021	2.682		$\rho = 0.9$
AIC	0.011	0.013	0.021	3.265		,
BIC	0.011	0.013	0.021	3.261		Oracle: 0.000
CV.1se	0.01	0.01	0.01	12.422	0.01	
CV.min	0.01	0.01	0.011	14.796	0.011	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.01	0.036	0.068	10.768		$\rho = 0$
AIC	0.027	0.044	0.068	15.664		,
BIC	0.027	0.044	0.068	15.651		Oracle: 0.003
CV.1se	0.01	0.01	0.01	11.124	0.01	
CV.min	0.01	0.01	0.01	13.209	0.011	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.01	0.032	0.060	9.630	0.011	$\rho = 0.5$
AIC	0.025	0.032	0.060	13.966		'
BIC	0.025	0.039	0.060	13.954		Oracle: 0.003
CV.1se	0.023	0.039	0.000	10.449	0.01	
CV.1sc CV.min	0.01	0.01	0.01	12.416	0.01	$sd(\mu)/\sigma = 0.5$
AICc	0.01	0.01	0.057	9.146	0.01	$\beta \operatorname{d}(\mu)/\delta = 0.9$ $\rho = 0.9$
AIC	0.01	0.030	0.057	13.205		,
						Oracle: 0.002
BIC	0.025	0.038	0.057	13.199		

Table 62: Estimation MSE for n=100, binary design, sparse covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$,	marginal AL		
CV.1se	0.007	0.005	0.009	0.934	0.004	
CV.min	0.002	0.002	0.007	0.959	0.002	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.003	0.001	0.004	0.959		$\rho = 0$
AIC	0.003	0.002	0.004	1.031		Oracle : 0.000
BIC	0.003	0.002	0.004	1.025		07 acre : 0.000
CV.1se	0.008	0.007	0.009	0.874	0.005	
CV.min	0.004	0.003	0.007	0.879	0.003	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.005	0.002	0.004	0.917		$\rho = 0.5$
AIC	0.004	0.002	0.004	0.928		Oracle : 0.000
BIC	0.004	0.002	0.004	0.928		07 acre : 0.000
CV.1se	0.009	0.007	0.009	0.849	0.006	
CV.min	0.005	0.004	0.008	0.840	0.004	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.006	0.002	0.005	0.903		$\rho = 0.9$
AIC	0.005	0.003	0.005	0.881		Oracle : 0.000
BIC	0.005	0.003	0.005	0.880		07466.0.000
CV.1se	0.01	0.01	0.01	3.578	0.01	
CV.min	0.01	0.01	0.01	4.070	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.012	0.025	3.438		$\rho = 0$
AIC	0.011	0.016	0.026	4.298		Oracle : 0.000
BIC	0.011	0.016	0.026	4.294		07466 . 0.000
CV.1se	0.01	0.01	0.01	3.253	0.01	
CV.min	0.01	0.01	0.01	3.657	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.011	0.024	3.134		$\rho = 0.5$
AIC	0.011	0.016	0.024	3.843		Oracle : 0.000
BIC	0.011	0.016	0.024	3.840		Oracle : 0.000
CV.1se	0.01	0.01	0.01	3.086	0.01	
CV.min	0.01	0.01	0.01	3.431	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.011	0.023	2.981		$\rho = 0.9$
AIC	0.011	0.015	0.023	3.630		Oracle : 0.000
BIC	0.011	0.015	0.023	3.626		Oracle : 0.000
CV.1se	0.01	0.01	0.01	13.819	0.01	
CV.min	0.01	0.011	0.011	16.457	0.011	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.01	0.042	0.075	11.988		$\rho = 0$
AIC	0.030	0.049	0.075	17.413		Oracle : 0.004
BIC	0.030	0.049	0.075	17.404		07466 . 0.004
CV.1se	0.01	0.01	0.01	12.374	0.01	
CV.min	0.01	0.01	0.011	14.684	0.011	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.01	0.037	0.067	10.713		$\rho = 0.5$
AIC	0.027	0.044	0.067	15.531		Oracle : 0.003
BIC	0.027	0.044	0.067	15.519		Oracie: 0.003
CV.1se	0.01	0.01	0.01	11.623	0.01	
CV.min	0.01	0.01	0.011	13.816	0.011	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.01	0.035	0.064	10.184		$\rho = 0.9$
AIC	0.027	0.043	0.064	14.704		Oracle : 0.003
BIC	0.027	0.043	0.064	14.697		01 acie : 0.003
	0.027	0.043	0.004	17.077		

Table 63: Estimation MSE for n=100, binary design, sparse covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$		marginal AL		
CV.1se	0.007	0.006	0.009	0.985	0.004	
CV.min	0.003	0.002	0.007	1.011	0.002	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.004	0.001	0.004	1.011		$\rho = 0$
AIC	0.004	0.002	0.005	1.087		Oracle : 0.000
BIC	0.004	0.002	0.005	1.081		07 acic . 0.000
CV.1se	0.008	0.007	0.009	0.925	0.005	
CV.min	0.004	0.003	0.007	0.931	0.003	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.006	0.002	0.004	0.968		$\rho = 0.5$
AIC	0.005	0.002	0.004	0.982		Oracle : 0.000
BIC	0.005	0.002	0.004	0.982		07 acie . 0.000
CV.1se	0.009	0.007	0.010	0.892	0.006	
CV.min	0.005	0.004	0.008	0.885	0.004	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.007	0.003	0.005	0.952		$\rho = 0.9$
AIC	0.005	0.003	0.005	0.928		Omasla . 0 000
BIC	0.005	0.003	0.005	0.928		Oracle: 0.000
CV.1se	0.01	0.01	0.01	3.769	0.01	
CV.min	0.01	0.01	0.01	4.292	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.013	0.027	3.627		$\rho = 0$
AIC	0.012	0.018	0.027	4.532		,
BIC	0.012	0.018	0.027	4.527		Oracle: 0.000
CV.1se	0.01	0.01	0.01	3.440	0.01	
CV.min	0.01	0.01	0.01	3.871	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.012	0.025	3.309		$\rho = 0.5$
AIC	0.012	0.017	0.026	4.065		,
BIC	0.012	0.017	0.026	4.062		Oracle: 0.000
CV.1se	0.01	0.01	0.01	3.262	0.01	
CV.min	0.01	0.01	0.01	3.629	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.012	0.024	3.148		$\rho = 0.9$
AIC	0.012	0.016	0.024	3.837		,
BIC	0.012	0.016	0.024	3.834		Oracle: 0.000
CV.1se	0.01	0.01	0.01	14.577	0.01	
CV.min	0.011	0.011	0.011	17.364	0.011	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.01	0.044	0.079	12.631		$\rho = 0$
AIC	0.032	0.052	0.080	18.385		,
BIC	0.032	0.052	0.080	18.376		Oracle: 0.005
CV.1se	0.01	0.01	0.01	13.056	0.01	
CV.min	0.011	0.011	0.011	15.485	0.011	$sd(\mu)/\sigma = 0.5$
AICc	0.01	0.039	0.072	11.270	****	$\rho = 0.5$
AIC	0.029	0.046	0.072	16.380		,
BIC	0.029	0.046	0.072	16.367		Oracle: 0.004
CV.1se	0.01	0.01	0.01	12.206	0.01	
CV.nse	0.011	0.011	0.011	14.533	0.011	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.01	0.037	0.067	10.720	0.011	$\rho = 0.9$
AIC	0.029	0.045	0.068	15.447		,
BIC	0.029	0.045	0.068	15.439		Oracle: 0.003
DIC	0.023	0.043	0.000	13.437		

Table 64: Estimation MSE for n=100, continuous design, sparse covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0	0	0	1.632	0	
CV.min	0	0	0	1.640	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	1.632		$\rho = 0$
AIC	0	0	0	1.766		Oracle : 0.000
BIC	0	0	0	1.768		Oracie . 0.000
CV.1se	0	0	0	0.921	0	
CV.min	0	0	0	0.748	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	0.999		$\rho = 0.5$
AIC	0	0	0	0.728		010-000
BIC	0	0	0	0.849		Oracle: 0.000
CV.1se	0	0	0	0.261	0	
CV.min	0	0	0	0.199	0	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0	0	0	0.222		$\rho = 0.9$
AIC	0	0	0	0.177		0 1 0 000
BIC	0	0	0	0.297		Oracle: 0.000
CV.1se	0	0	0	6.095	0	
CV.min	0	0	0	6.960	0	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0	0	0.010	5.824		$\rho = 0$
AIC	0.002	0.006	0.010	7.446		·
BIC	0.002	0.006	0.010	7.412		Oracle: 0.000
CV.1se	0	0	0	2.531	0	
CV.min	0	0	0	2.746	0	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0	0	0.007	2.467		$\rho = 0.5$
AIC	0.001	0.003	0.007	2.933		'
BIC	0.001	0.003	0.007	2.920		Oracle: 0.000
CV.1se	0	0	0	0.646	0	
CV.min	0	0	0	0.621	0	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0	0	0	0.611		$\rho = 0.9$
AIC	0	0	0	0.712		'
BIC	0	0	0	0.639		Oracle: 0.000
CV.1se	0	0	0	23.828	0	
CV.min	0.001	0.001	0.001	28.516	0.002	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.001	0.002	0.026	20.704		$\rho = 0$
AIC	0.010	0.016	0.026	30.325		· ·
BIC	0.010	0.016	0.026	30.303		Oracle: 0.000
CV.1se	0	0	0	9.094	0	
CV.min	0	0	0	10.848	0.001	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0	0	0.011	8.188		$\rho = 0.5$
AIC	0.010	0.010	0.011	11.884		'
BIC	0.010	0.010	0.011	11.864		Oracle: 0.000
CV.1se	0.010	0.010	0	2.028	0	
CV.min	0	0	0	2.238	0	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0	0	0.006	2.079	ŭ	$\rho = 0.9$
AIC	0.006	0.009	0.010	3.023		'
BIC	0.006	0.009	0.010	2.431		Oracle: 0.000
DIC	0.000	0.009	0.010	4. 1 31		

Table 65: Estimation MSE for n=100, continuous design, sparse covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$		marginal AL		
CV.1se	0.005	0.004	0.008	3.384	0.003	
CV.min	0.001	0.001	0.005	3.444	0.001	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.002	0.001	0.003	3.455		$\rho = 0$
AIC	0.001	0.001	0.003	3.711		Oracle: 0.000
BIC	0.001	0.001	0.003	3.701		07 acre : 0.000
CV.1se	0.010	0.010	0.010	1.866	0.010	
CV.min	0.010	0.010	0.010	1.519	0.010	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.010	0.010	0.009	2.116		$\rho = 0.5$
AIC	0.010	0.010	0.009	1.476		Oracle : 0.000
BIC	0.010	0.010	0.009	1.505		07acie . 0.000
CV.1se	0.01	0.01	0.01	0.552	0.01	
CV.min	0.01	0.01	0.01	0.412	0.01	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.01	0.01	0.01	0.468		$\rho = 0.9$
AIC	0.01	0.01	0.01	0.326		Oracle : 0.000
BIC	0.01	0.01	0.01	0.546		Oracie: 0.000
CV.1se	0.01	0.01	0.01	12.877	0.01	
CV.min	0.01	0.01	0.01	14.608	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.01	0.019	12.408		$\rho = 0$
AIC	0.01	0.012	0.020	15.535		1 0 000
BIC	0.01	0.012	0.020	15.515		Oracle: 0.000
CV.1se	0.01	0.01	0.01	5.166	0.01	
CV.min	0.01	0.01	0.01	5.572	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.01	0.011	5.099		$\rho = 0.5$
AIC	0.01	0.01	0.012	5.931		0 1 0 000
BIC	0.01	0.01	0.012	5.921		Oracle: 0.000
CV.1se	0.01	0.01	0.01	1.203	0.01	
CV.min	0.01	0.01	0.01	1.131	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.01	0.01	1.129		$\rho = 0.9$
AIC	0.01	0.01	0.01	1.298		, , , , , , , , ,
BIC	0.01	0.01	0.01	1.251		Oracle: 0.000
CV.1se	0.01	0.01	0.01	49.772	0.01	
CV.min	0.01	0.01	0.011	59.586	0.01	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.01	0.022	0.057	43.221		$\rho = 0$
AIC	0.023	0.038	0.057	62.969		0 1 0 002
BIC	0.023	0.038	0.057	62.940		Oracle: 0.003
CV.1se	0.01	0.01	0.01	18.349	0.01	
CV.min	0.01	0.01	0.01	21.851	0.01	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.01	0.01	0.026	16.449		$\rho = 0.5$
AIC	0.013	0.020	0.027	23.839		,
BIC	0.013	0.020	0.027	23.828		Oracle: 0.000
CV.1se	0.01	0.01	0.01	3.579	0.01	
CV.min	0.01	0.01	0.01	3.949	0.01	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.01	0.01	0.012	3.663		$\rho = 0.9$
AIC	0.01	0.01	0.013	5.273		'
BIC	0.01	0.01	0.013	4.563		Oracle: 0.001

Table 66: Estimation MSE for n=100, continuous design, sparse covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.006	0.005	0.009	3.765	0.004	
CV.min	0.002	0.002	0.006	3.830	0.001	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.003	0.002	0.003	3.830		$\rho = 0$
AIC	0.002	0.001	0.003	4.133		Oracle : 0.000
BIC	0.002	0.001	0.003	4.122		07466.0.000
CV.1se	0.01	0.01	0.01	2.071	0.01	
CV.min	0.01	0.01	0.01	1.685	0.01	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.01	0.01	0.01	2.342		$\rho = 0.5$
AIC	0.01	0.01	0.01	1.640		Oracle : 0.000
BIC	0.01	0.01	0.01	1.680		07466.0.000
CV.1se	0.01	0.01	0.01	0.612	0.01	
CV.min	0.01	0.01	0.01	0.460	0.01	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.01	0.01	0.01	0.515		$\rho = 0.9$
AIC	0.01	0.01	0.01	0.361		Oracle : 0.000
BIC	0.01	0.01	0.01	0.592		Oracie: 0.000
CV.1se	0.01	0.01	0.01	14.293	0.01	
CV.min	0.01	0.01	0.01	16.209	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.01	0.022	13.770		$\rho = 0$
AIC	0.01	0.014	0.022	17.237		0 1 0 000
BIC	0.01	0.014	0.022	17.212		Oracle: 0.000
CV.1se	0.01	0.01	0.01	5.737	0.01	
CV.min	0.01	0.01	0.01	6.183	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.01	0.014	5.655		$\rho = 0.5$
AIC	0.01	0.01	0.014	6.577		'
BIC	0.01	0.01	0.014	6.569		Oracle: 0.000
CV.1se	0.01	0.01	0.01	1.331	0.01	
CV.min	0.01	0.01	0.01	1.250	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.01	0.01	1.251		$\rho = 0.9$
AIC	0.01	0.01	0.01	1.436		'
BIC	0.01	0.01	0.01	1.397		Oracle: 0.000
CV.1se	0.01	0.01	0.01	55.351	0.01	
CV.min	0.01	0.011	0.011	66.260	0.011	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.01	0.025	0.064	48.089		$\rho = 0$
AIC	0.026	0.042	0.064	70.016		0 1 0 002
BIC	0.026	0.042	0.064	69.985		Oracle: 0.003
CV.1se	0.01	0.01	0.01	20.360	0.01	
CV.min	0.01	0.01	0.01	24.284	0.01	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.01	0.011	0.030	18.274		$\rho = 0.5$
AIC	0.017	0.021	0.030	26.493		
BIC	0.017	0.021	0.030	26.479		Oracle: 0.001
CV.1se	0.01	0.01	0.01	3.954	0.01	
CV.min	0.01	0.01	0.01	4.363	0.01	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.01	0.01	0.015	4.053		$\rho = 0.9$
AIC	0.01	0.011	0.016	5.825		
BIC	0.01	0.011	0.016	5.048		Oracle: 0.001
			2.3.0	2.3.0		

Table 67: Estimation MSE for n=100, continuous design, sparse covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$		marginal AL	sparsenet MCP	
CV.1se	0.007	0.005	0.009	3.972	0.004	
CV.min	0.002	0.002	0.006	4.040	0.002	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.003	0.002	0.003	4.047		$\rho = 0$
AIC	0.003	0.002	0.003	4.364		Oracle: 0.000
BIC	0.003	0.002	0.003	4.352		07 dete : 0.000
CV.1se	0.01	0.01	0.01	2.184	0.01	
CV.min	0.01	0.01	0.01	1.776	0.01	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.01	0.01	0.01	2.469		$\rho = 0.5$
AIC	0.01	0.01	0.01	1.731		Oracle: 0.000
BIC	0.01	0.01	0.01	1.784		07 acre : 0.000
CV.1se	0.01	0.01	0.01	0.646	0.01	
CV.min	0.01	0.01	0.01	0.486	0.01	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.01	0.01	0.01	0.544		$\rho = 0.9$
AIC	0.01	0.01	0.01	0.381		Oracle: 0.000
BIC	0.01	0.01	0.01	0.617		Oracie . 0.000
CV.1se	0.01	0.01	0.01	15.128	0.01	
CV.min	0.01	0.01	0.01	17.128	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.01	0.023	14.556		$\rho = 0$
AIC	0.01	0.015	0.023	18.235		Oma ala . 0.000
BIC	0.01	0.015	0.023	18.207		Oracle: 0.000
CV.1se	0.01	0.01	0.01	6.048	0.01	
CV.min	0.01	0.01	0.01	6.528	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.01	0.016	5.956		$\rho = 0.5$
AIC	0.01	0.01	0.016	6.944		Oma ala . 0.000
BIC	0.01	0.01	0.016	6.936		Oracle: 0.000
CV.1se	0.01	0.01	0.01	1.404	0.01	
CV.min	0.01	0.01	0.01	1.319	0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.01	0.01	0.01	1.321		$\rho = 0.9$
AIC	0.01	0.01	0.01	1.514		0 1 0 000
BIC	0.01	0.01	0.01	1.473		Oracle: 0.000
CV.1se	0.01	0.01	0.01	58.216	0.01	
CV.min	0.011	0.011	0.011	69.840	0.011	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.01	0.028	0.068	50.604		$\rho = 0$
AIC	0.027	0.045	0.068	73.731		010-004
BIC	0.027	0.045	0.068	73.701		Oracle: 0.004
CV.1se	0.01	0.01	0.01	21.483	0.01	
CV.min	0.01	0.01	0.01	25.571	0.01	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.01	0.011	0.031	19.296		$\rho = 0.5$
AIC	0.019	0.022	0.032	27.943		,
BIC	0.019	0.022	0.032	27.930		Oracle: 0.001
CV.1se	0.01	0.01	0.01	4.172	0.01	
CV.min	0.01	0.01	0.01	4.606	0.01	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.01	0.01	0.017	4.275		$\rho = 0.9$
AIC	0.01	0.012	0.017	6.141		0.000
BIC	0.01	0.012	0.017	5.281		Oracle: 0.002

Table 68: Nonzero coefficients at n=1000, binary design, dense covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$		marginal AL	sparsenet MCP	
CV.1se	40.29	30.26	20.06	28.88	18.91	
CV.min	103.86	78.52	31.82	53.4	32.61	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	98.7	77.59	49.32	50.55		$\rho = 0$
AIC	610.28	607.78	579.95	51.89		<i>Oracle</i> : 33.33
BIC	30.26	26.24	20.04	25.37		Oracie . 33.33
CV.1se	44.17	32.54	20.14	30.83	18.92	
CV.min	111.63	84.28	33.09	55.46	32.41	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	104.35	81.41	52.45	52.7		$\rho = 0.5$
AIC	610.41	607.82	581.21	53.96		Oracle: 33.31
BIC	30.89	26.5	20	25.76		Oracie . 55.51
CV.1se	46.46	33.38	20.35	31.05	18.88	
CV.min	114.78	86.83	34.4	55.02	33.29	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	106.32	82.36	52.01	52.52		$\rho = 0.9$
AIC	603.04	600.74	573.89	53.5		Oracle: 33.07
BIC	31.48	26.8	19.88	26.37		Oracie: 33.07
CV.1se	24.04	17.97	12.28	37.57	11.93	
CV.min	77.63	53.9	19.1	115.49	26.51	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	79.62	59.8	48.82	98.15		$\rho = 0$
AIC	741.05	735.09	706.78	151.85		0 1 2624
BIC	19.81	16.69	11.64	18.04		<i>Oracle</i> : 26.34
CV.1se	25.49	18.63	12.2	40.99	11.94	
CV.min	82.84	57.87	18.8	119.47	24.93	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	83.24	62.61	48.16	98.94		$\rho = 0.5$
AIC	742.59	736.48	708.61	158.24		,
BIC	19.78	16.56	11.67	18.13		<i>Oracle</i> : 26.43
CV.1se	27.1	19.2	12.26	40.54	11.86	
CV.min	85.99	60.35	19.91	114.82	25.63	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	85.41	64.03	48.92	100.32		$\rho = 0.9$
AIC	736.9	730.77	702.45	151.49		,
BIC	19.93	16.69	11.48	18.45		<i>Oracle</i> : 26.14
CV.1se	8.77	6.95	4.92	41.55	5.06	
CV.min	47.87	28.53	9.83	139.79	22.76	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	57.57	39.53	39.22	105.73		$\rho = 0$
AIC	829.32	820.64	811.42	314.03		,
BIC	8.92	7.28	3.28	10.28		<i>Oracle</i> : 19.71
CV.1se	8.77	7	4.8	45.41	4.88	
CV.min	50.91	31.32	9.68	143.08	20.9	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	59.87	43.09	41.37	105.96		$\rho = 0.5$
AIC	831.55	823.04	812.95	319.27		,
BIC	8.23	6.88	3.21	9.9		<i>Oracle</i> : 19.37
CV.1se	9.12	7.02	4.69	43.14	4.97	
CV.min	53.04	33.09	9.76	136.65	20.59	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	60.92	42.57	42.85	105.45		$\rho = 0.9$
AIC	827.65	819.44	809.05	303.68		,
BIC	8.01	6.63	3.13	9.99		<i>Oracle</i> : 19.73
	5.01	0.05	5.15	7.77		

Table 69: Nonzero coefficients at n=1000, binary design, dense covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	187.94	139.04	74.14	146.74	92.12	
CV.min	291.71	225.47	100.87	213.09	158.64	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	219.14	186.37	173.07	187.93		$\rho = 0$
AIC	746.18	738.06	708.24	255.23		Oracle: 124.19
BIC	93.41	79.6	59.12	85.74		Oracie . 124.19
CV.1se	198.73	146.75	74.36	154.43	88.12	
CV.min	305.62	236.71	102.89	223.18	151.13	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	225.69	192.07	173.83	196.54		$\rho = 0.5$
AIC	751.72	743.47	714.42	268.57		Oracle: 123.77
BIC	91.97	79.48	58.92	86.63		01466.125.11
CV.1se	205.35	151.83	76.5	155.42	90.38	
CV.min	310.8	240.87	106.84	222.72	154.28	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	229.17	195.05	174.06	196.76		$\rho = 0.9$
AIC	748.26	740.18	711.04	267.17		Oracle: 123.58
BIC	93.14	79.97	59.82	88.14		Oracle . 125.56
CV.1se	93.86	62.93	32.51	119.46	63.86	
CV.min	192.97	130.58	51.98	203.89	153.25	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	158.06	135.07	182.65	166.58		$\rho = 0$
AIC	824.28	813.34	804.09	356.82		Oracle: 90.22
BIC	24.33	27.67	10.73	40.98		Oracie : 90.22
CV.1se	97.87	66	32.8	126.4	57.39	
CV.min	202.76	137.52	52.74	209.57	142.98	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	162.27	138.56	181.45	173.6		$\rho = 0.5$
AIC	827.91	817.81	807.78	371.71		Oracle: 90.23
BIC	17.21	24.66	10.35	38.9		Oracie : 90.23
CV.1se	102.12	68.89	32.98	126.27	59.9	
CV.min	205.75	143.69	54.71	207.26	145.74	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	163.21	141.64	181.46	175.05		$\rho = 0.9$
AIC	825.37	814.97	803.91	365.56		Oma ala . 90 22
BIC	15.59	23.61	9.46	38.24		Oracle: 89.22
CV.1se	4.84	1.78	0.27	76.42	3.58	
CV.min	67.74	22.94	3.4	182.61	65.14	$sd(\mu)/\sigma = 0.5$
AICc	73.42	78.11	61.22	134.75		$\rho = 0$
AIC	873.7	862.77	873.73	462.82		Oracle: 56.16
BIC	0.44	0.51	0	2.68		Oracie . 50.10
CV.1se	3.35	1.25	0.14	79.35	2.72	
CV.min	61.22	21.26	2.7	184.1	58.35	$sd(\mu)/\sigma = 0.5$
AICc	69.75	75.45	78.41	136.51		$\rho = 0.5$
AIC	874.96	864.43	874.21	477.01		Oracle: 56.21
BIC	0.27	0.29	0	2.05		07 acte . 50.21
CV.1se	3.16	1.02	0.17	76.28	1.82	
CV.min	62.94	22.13	2.83	179.17	59.51	$sd(\mu)/\sigma = 0.5$
AICc	71.97	76.23	66.45	134.42		$\rho = 0.9$
AIC	872.69	862.02	872.35	471.88		Oracle : 56.5
BIC	0.27	0.33	0	1.82		Oracle . 30.3

Table 70: Nonzero coefficients at n=1000, binary design, dense covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$		marginal AL	sparsenet MCP	
CV.1se	294.74	224.66	128.15	228	238.61	
CV.min	408.34	325.49	175.48	300.71	364.97	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	283.24	251.72	253.6	252.77		$\rho = 0$
AIC	788.18	776.49	752.2	369.07		Oracle: 208.71
BIC	46.61	87.42	98.48	108.5		07466.200.71
CV.1se	305.57	235.05	129.77	235.3	226.11	
CV.min	421.3	339.42	181.28	308.14	350.87	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	289.92	258.65	252.81	259.51		$\rho = 0.5$
AIC	792.48	780.96	756.95	381.33		Oracle: 208.79
BIC	22.87	81.48	100.23	103.41		07466 . 200.79
CV.1se	311.09	238.15	134.29	234.09	232	
CV.min	425.03	341.01	187.11	307.37	356.24	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	291.91	259.85	252.12	258.04		$\rho = 0.9$
AIC	790.06	779.16	754.31	381.4		Oma els . 200 42
BIC	17.89	78.71	103.31	100.59		Oracle: 209.43
CV.1se	117.97	66.72	16.48	162.68	114	
CV.min	242.29	150.86	44.91	252.26	244.73	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	180.21	169.95	232.87	199.96		$\rho = 0$
AIC	845.94	833.3	832.89	447.23		,
BIC	0.76	2.67	0.19	13.48		Oracle: 143.25
CV.1se	115.95	65.9	13.95	167.65	110.69	
CV.min	248.62	157.09	41.49	256.44	248.62	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	180.51	173.18	234.91	204.3		$\rho = 0.5$
AIC	848.75	836.24	834.17	457.89		'
BIC	0.66	1.65	0.03	9.28		Oracle: 144
CV.1se	118.78	69.51	12.47	166.55	110.96	
CV.min	251.2	160.55	41.95	252.97	249.02	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	179.73	174.42	236.68	205.2	,,,_	$\rho = 0.9$
AIC	846.39	833.79	831.4	457.58		
BIC	0.45	1.24	0.13	8.69		<i>Oracle</i> : 143.6
CV.1se	1.75	0.14	0.03	81.17	1.44	
CV.min	50.5	7.13	1.01	194.17	52.22	$sd(\mu)/\sigma = 0.5$
AICc	61.46	92.2	42.85	137.24		$\rho = 0$
AIC	881.85	869.79	887.57	510.94		,
BIC	0.11	0.05	0	0.89		<i>Oracle</i> : 77.92
CV.1se	1.26	0.12	0.02	82.25	1.08	
CV.min	41.82	6.08	0.75	193.11	39.59	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	53.43	85.17	50.76	138.06	37.37	$\rho = 0.5$
AIC	882.18	871.13	887.71	523.07		'
BIC	0.08	0.04	0	0.8		<i>Oracle</i> : 78.04
CV.1se	0.77	0.12	0.01	77.97	0.72	
CV.13C	40.83	5.28	0.77	188.83	39.76	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	54.18	85.55	46.09	134.93	37.10	$\rho = 0.9$
AIC	880.12	868.15	885.31	516.08		
BIC	0.1	0.06	0	0.69		<i>Oracle</i> : 77.5
DIC	0.1	0.00	U	0.07		

Table 71: Nonzero coefficients at n=1000, binary design, dense covariates, and decay 200.

	lasso	$GL \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	383.94	283.47	150.44	298.63	405.93	
CV.min	511.85	408.4	245.72	379.06	544.93	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	309.75	297.8	336.43	300.16		$\rho = 0$
AIC	821.08	804.86	787.57	470.44		Oracle : 293.07
BIC	0.35	1.58	98.03	13.45		Oracie : 293.07
CV.1se	386.54	288.5	148.59	299.91	407.31	
CV.min	519.75	416.18	245.95	379.94	555.02	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	308.44	301.81	337.2	301.94		$\rho = 0.5$
AIC	825.11	809.5	790.08	477.91		Oracle : 293.71
BIC	0.33	0.69	81.75	8.08		Oracie : 293.71
CV.1se	394	292.04	145.63	296.62	412.44	
CV.min	524.47	420.01	245.65	378.06	560.97	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	310.24	301.48	337.78	297.73		$\rho = 0.9$
AIC	822.44	806.85	788.27	478.03		0
BIC	0.31	0.75	77.53	6.91		Oracle: 293.26
CV.1se	99.77	23.82	0.51	186.02	105.59	
CV.min	259.46	100.91	5.01	285.17	263.4	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	167.62	192.74	279.62	211.05		$\rho = 0$
AIC	859.47	844.17	852.09	513.5		
BIC	0.17	0.12	0	2.08		Oracle : 216.99
CV.1se	82.81	14.43	0.27	187.17	85.67	
CV.min	249.8	85.88	3.7	286.65	254.83	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	156.61	191.14	283.4	211.14		$\rho = 0.5$
AIC	861.78	846.79	852.79	520.13		,
BIC	0.14	0.12	0	1.62		Oracle: 214.81
CV.1se	82.72	16.1	0.28	181.5	83.58	
CV.min	249.18	91.76	3.45	279.84	253.07	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	158.92	189.29	279.88	210.19		$\rho = 0.9$
AIC	859.39	844.07	850.26	519.86		,
BIC	0.14	0.08	0	1.45		<i>Oracle</i> : 215.03
CV.1se	0.7	0.01	0.01	81.98	0.76	
CV.min	36.36	2.03	0.47	198.47	36.68	$sd(\mu)/\sigma = 0.5$
AICc	46.73	112.57	22.42	139.26		$\rho = 0$
AIC	885.63	873.54	896.81	537.14		·
BIC	0.07	0.01	23.29	0.52		Oracle: 90.72
CV.1se	0.69	0.02	0	80.73	0.67	
CV.min	29.29	1.66	0.39	197.07	27.85	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	37.82	101.97	23.89	138.07	_,,,,,	$\rho = 0.5$
AIC	885.94	874.09	896.62	543		,
BIC	0.05	0.01	5.37	0.42		<i>Oracle</i> : 91.39
CV.1se	0.18	0.01	0.01	74.07	0.56	
CV.13C	27.58	1.41	0.33	189.77	25.25	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	38.09	99.59	23.41	134.13	20.20	$\rho = 0.9$
AIC	883.15	871.17	893.98	538.49		
BIC	0.06	0.01	6.28	0.45		Oracle: 89.48
DIC	0.00	0.01	0.20	0.73		

Table 72: Nonzero coefficients at n=1000, continuous design, dense covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$		marginal AL	sparsenet MCP	
CV.1se	40.23	30.77	20.09	29.14	18.78	
CV.min	103.76	78.8	31.81	53.81	32.47	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	98.46	71.29	25.58	50.62		$\rho = 0$
AIC	609.88	607.64	580.35	51.92		Oracle : 33.25
BIC	30.07	25.32	18.57	25.45		07 acic . 33.23
CV.1se	85.95	59.01	22.88	35.13	18.98	
CV.min	173.58	132.96	51.72	45.41	30.13	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	146.22	111.74	45.27	45.18		$\rho = 0.5$
AIC	539.76	539.6	515.24	45.28		Oracle: 32.89
BIC	39.09	29.4	16.72	34.08		Oracie . 32.89
CV.1se	150.02	120.25	60.25	11.45	32.54	
CV.min	226.55	191.62	98.54	12.54	58.04	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	190.68	160.9	82.9	12.54		$\rho = 0.9$
AIC	243	239.05	197.57	12.54		Oracle : 30.44
BIC	71.07	57.39	20.73	12.46		Oracie: 30.44
CV.1se	24.05	18.18	12.51	38.68	11.99	
CV.min	77.57	53.9	19.19	117.71	25.94	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	79.04	49.77	13.8	97.49		$\rho = 0$
AIC	741.44	735.3	707.14	154.26		0 1 26 10
BIC	19.89	15.73	10.19	18.04		<i>Oracle</i> : 26.18
CV.1se	45.8	31.51	12.76	65.94	12.36	
CV.min	125.9	93.68	28.08	125.17	23.86	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	115.44	82.27	24.26	112.66		$\rho = 0.5$
AIC	688.78	684	652.99	129.65		,
BIC	19.86	15.23	8.09	24.1		<i>Oracle</i> : 25.84
CV.1se	62.36	64.82	38.31	15.39	24.64	
CV.min	158.96	137.62	66.45	26.62	50.78	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	141.65	114.83	50.41	26.15		$\rho = 0.9$
AIC	377.88	388.6	358.26	26.24		,
BIC	1.36	1.04	1.11	15.95		<i>Oracle</i> : 23.28
CV.1se	8.8	7	4.92	44.83	5.08	
CV.min	48.52	28.86	9.74	141.58	21.95	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	56.72	24.17	4.06	106.35		$\rho = 0$
AIC	829.75	821.38	811.62	313.25		,
BIC	8.98	6.23	1.63	10.14		<i>Oracle</i> : 19.21
CV.1se	4.39	5.4	3.2	52.64	5.18	
CV.min	56.57	45.85	11.03	139.38	16.07	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	66.87	38.72	2.97	114.28		$\rho = 0.5$
AIC	798.28	790.49	773.39	252.81		,
BIC	2.44	1.77	0.96	3.45		Oracle: 18.97
CV.1se	1.01	1	1	12.12	1.22	
CV.nsc CV.min	6.89	5.06	2.4	56.98	10.16	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	12.86	1.84	1	55.73	10.10	$\rho = 0.9$
AIC	533.45	552.92	519.96	64.96		,
BIC	1.36	1.03	1	2.65		<i>Oracle</i> : 16.45
DIC	1.50	1.03	1	2.03		

Table 73: Nonzero coefficients at n=1000, continuous design, dense covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\mathrm{GL}\ \gamma=10$	marginal AL	sparsenet MCP	
CV.1se	189.31	139.46	73.87	147.15	91	
CV.min	294.18	225.93	100.33	214.59	157.98	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	219.73	179.51	129.5	189.09		$\rho = 0$
AIC	744.98	736.27	707.21	254.54		Oracle: 122.78
BIC	92.2	75.5	52.55	86.25		Oracie: 122.78
CV.1se	286.64	223.7	103.06	201.21	92.9	
CV.min	396.96	324.17	154.11	258.04	140.39	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	282.54	240.41	163.36	234.93		$\rho = 0.5$
AIC	725.19	717.34	686.23	275.34		Oracle: 122.51
BIC	47.23	75.62	59.96	85.34		Oracie : 122.31
CV.1se	343.32	289.56	174.1	48.16	139.93	
CV.min	433.1	383.15	223.99	63.04	179.43	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	321.61	289.37	208.99	62.33		$\rho = 0.9$
AIC	439.84	423.48	377.82	62.64		O1110.51
BIC	1.5	1.05	1.75	32.92		Oracle: 119.51
CV.1se	94.13	62.87	32.34	120.57	63.43	
CV.min	194.28	130.79	51.03	205.17	151.64	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	156.58	120.05	91.37	165.97		$\rho = 0$
AIC	823.94	812.81	803.32	357		,
BIC	24.13	21.07	1.31	40.85		Oracle: 90.22
CV.1se	110.61	97.57	41.36	149.28	57.1	
CV.min	247.13	199.81	77.33	228.2	106.15	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	185.73	162.71	130.64	196.87		$\rho = 0.5$
AIC	813.03	804.22	788.13	382.78		
BIC	1.29	0.9	0.12	4.35		Oracle : 89.65
CV.1se	13.2	38.87	28.91	46.86	86.02	
CV.min	91.69	148.19	77.18	90.96	136.18	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	66.79	54.07	51.49	87.81	100.10	$\rho = 0.9$
AIC	567.7	553.16	511.68	94.55		
BIC	1.45	1.05	1	3.31		Oracle: 86.22
CV.1se	4.79	1.67	0.21	79.02	3.63	
CV.min	66.4	24.39	3.5	183.81	65.76	$sd(\mu)/\sigma = 0.5$
AICc	72.26	28.51	0.32	135.4	00.70	$\rho = 0$
AIC	872.68	861.48	872.95	464.25		,
BIC	0.38	0.09	0	2.63		<i>Oracle</i> : 55.94
CV.1se	0.13	0.05	0.01	42.91	0.5	
CV.13C	14.64	7.21	0.83	146.94	13.54	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	30.47	3.29	0.45	112.22	13.54	$\rho = 0.5$
AIC	865.25	855.61	859.09	477.54		
BIC	0.16	0.07	0	0.66		<i>Oracle</i> : 55.62
CV.1se	0.17	0.19	0.27	3.57	0.45	
CV.1se CV.min	7.51	4.62	1.39	50.23	2.88	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	12.82	1.48	0.93	56.12	2.00	$\rho = 0.9$
AIC		675.13	662.68			·
	694.36			99.31		Oracle: 52.3
BIC	1.3	1.01	0.72	1.48		

Table 74: Nonzero coefficients at n=1000, continuous design, dense covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	295.67	224.76	126.9	227.98	237.94	
CV.min	409.33	324.61	174.62	300.53	365.75	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	283.83	244.32	221.26	252.41		$\rho = 0$
AIC	787.27	775.72	750.87	367.77		Oracle: 209.76
BIC	48.51	76.81	94.48	108.98		074666.205.70
CV.1se	381.43	313.85	185.07	258.75	183.17	
CV.min	502.88	427.02	253.3	342.89	238.47	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	326.77	300.72	247.32	282.31		$\rho = 0.5$
AIC	785.69	775.73	749.02	411.89		Oracle: 209.36
BIC	0.79	0.54	34.18	3.68		074666.209.30
CV.1se	424.02	368.39	247.85	61.94	209.98	
CV.min	534.23	478.03	314.91	110.51	258.8	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	346.23	340.85	289.79	106.08		$\rho = 0.9$
AIC	549.23	528.48	478.09	114.49		Oracle: 205.71
BIC	1.48	1.05	1	2.21		07 acic . 203.71
CV.1se	118.11	65.7	17.56	164.9	113.82	
CV.min	245.02	151.66	45.64	252.48	245.91	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	179.45	152.77	172.19	199.51		$\rho = 0$
AIC	845.22	832.26	831.89	447.16		Oracle : 143.47
BIC	0.88	0.61	0.02	14.12		Oracie: 145.47
CV.1se	22.33	21.53	0.62	140.9	25.15	
CV.min	175.27	122.49	6.11	241.24	130.73	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	123.73	133.25	175.33	191.04		$\rho = 0.5$
AIC	843.24	832.53	824.17	488.75		01142.47
BIC	0.29	0.12	0	1.27		Oracle: 143.47
CV.1se	0.66	0.68	0.53	21.21	2.22	
CV.min	9.09	8.97	1.55	88.13	14.64	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	16.5	1.8	1.58	92.84		$\rho = 0.9$
AIC	648.45	629.05	596.25	147.76		1 120 45
BIC	1.46	1.04	0.96	1.54		<i>Oracle</i> : 139.45
CV.1se	1.41	0.22	0.01	84.18	1.24	
CV.min	50.87	7.05	0.99	194.69	51.01	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	60.65	15.8	0.77	139.02		$\rho = 0$
AIC	880.93	869.36	887.1	513.59		
BIC	0.09	0.01	72.43	0.91		<i>Oracle</i> : 77.65
CV.1se	0.03	0.01	0	33.29	0.46	
CV.min	9.02	2.35	0.31	135.51	9.12	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	20.81	0.5	0.54	101.99		$\rho = 0.5$
AIC	871.52	859.96	871.15	515.82		,
BIC	0.06	0.01	0	0.35		<i>Oracle</i> : 77.66
CV.1se	0.03	0.04	0.05	0.93	0.44	
CV.min	6.97	4.16	1.25	33.26	4.64	$sd(\mu)/\sigma = 0.5$
AICc	12.79	1.19	0.34	37.12		$\rho = 0.9$
AIC	746.35	724.68	727.14	91.97		,
BIC	0.72	0.56	0.09	1.17		<i>Oracle</i> : 73.55
				,		L

Table 75: Nonzero coefficients at n=1000, continuous design, dense covariates, and decay 200.

	lasso	$GL \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	387.27	282.37	148.34	299.09	405.88	
CV.min	514.87	409.51	243.47	379.2	546.18	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	308.96	290.14	321.3	300.18		$\rho = 0$
AIC	820.4	803.49	785.31	467.88		Oracle: 293.21
BIC	0.4	0.13	239.99	13.26		Oracie : 293.21
CV.1se	362.56	272.47	21.94	237.95	337.59	
CV.min	545.77	453.54	80.12	341.17	570.23	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	206.92	294.14	346.83	258.82		$\rho = 0.5$
AIC	825.52	811.79	789.99	506.01		Oma ala . 202 09
BIC	0.18	0.06	11.17	1.12		Oracle: 293.08
CV.1se	138.52	113.35	1.64	26.09	58.83	
CV.min	367.65	299.18	8.68	108.77	236.57	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	21.03	49.19	373.04	108.62		$\rho = 0.9$
AIC	655.08	630.68	585.9	205.08		01202.24
BIC	1.43	1.02	0.83	1.57		Oracle: 292.24
CV.1se	100.97	21.71	0.46	188.19	103.56	
CV.min	262.26	97.96	5.38	285.37	264.16	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	164.94	172.26	167.66	211.65		$\rho = 0$
AIC	859.08	842.76	851.85	513.31		
BIC	0.21	0.02	57.73	2.33		Oracle: 215.38
CV.1se	1.16	0.22	0.01	100.15	0.94	
CV.min	43.6	11.7	0.7	220.4	43.56	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	50.78	20.82	92.93	157.62		$\rho = 0.5$
AIC	856.8	842.84	841.34	536.23		
BIC	0.09	0.02	0	0.49		Oracle : 215.2
CV.1se	0.08	0.06	0.12	2.54	0.43	
CV.min	8.94	5.47	1.44	47.71	5.17	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	15.13	1.57	0.61	55.82		$\rho = 0.9$
AIC	719.38	695.56	676.52	227.69		,
BIC	1.02	0.78	0.29	1.44		Oracle: 211.72
CV.1se	0.54	0.02	0.01	84.71	0.61	
CV.min	36.97	1.99	0.41	199.88	34.32	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	46.82	11.92	0	138.77		$\rho = 0$
AIC	885.04	873.33	897.03	543		
BIC	0.07	0	630.51	0.52		<i>Oracle</i> : 91.35
CV.1se	0.02	0	0	29.41	0.44	
CV.min	7.32	1.13	0.21	130.17	7.21	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	17.58	0.3	0	98.87	,,	$\rho = 0.5$
AIC	872.97	860.48	877.79	531.04		,
BIC	0.05	0	16.53	0.3		Oracle: 90.94
CV.1se	0.01	0.01	0.01	0.7	0.43	
CV.rise CV.min	5.43	2.73	0.68	30.47	4.77	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	11.34	0.51	0.04	32.27		$\rho = 0.9$
AIC	778.52	754.45	769.48	99.03		,
BIC	0.19	0.11	0	0.57		<i>Oracle</i> : 87.01
	0.17	0.11		0.57		

Table 76: Nonzero coefficients at n=1000, binary design, sparse covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	40.31	30.25	20.05	28.86	18.91	
CV.min	104.08	78.72	31.83	53.45	32.56	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	98.98	77.6	49.53	50.58		$\rho = 0$
AIC	610.24	607.85	580.06	51.93		Oracle: 100
BIC	30.26	26.27	20.03	25.44		07 acte : 100
CV.1se	44.05	32.41	20.14	30.74	18.92	
CV.min	111.63	84.08	33.12	55.42	32.39	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	104.11	81.17	52.37	52.6		$\rho = 0.5$
AIC	610.47	607.84	581.21	53.89		Oracle: 100
BIC	30.88	26.52	19.98	25.81		07466.100
CV.1se	46.51	33.25	20.37	30.94	18.89	
CV.min	114.65	86.73	34.43	54.94	33.32	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	106.36	82.32	52.09	52.42		$\rho = 0.9$
AIC	603.01	600.65	573.87	53.42		Oracle: 100
BIC	31.45	26.79	19.89	26.34		Oracle: 100
CV.1se	24.12	18	12.28	37.66	11.93	
CV.min	77.65	53.99	19.18	115.31	26.75	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	79.7	60.07	48.95	98.08		$\rho = 0$
AIC	740.95	735.1	706.81	151.88		,
BIC	19.82	16.68	11.65	18.05		Oracle: 100
CV.1se	25.48	18.62	12.19	40.73	11.94	
CV.min	82.88	57.91	18.81	119.38	24.97	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	83.27	62.65	48.1	99		$\rho = 0.5$
AIC	742.55	736.42	708.63	158.35		
BIC	19.8	16.57	11.68	18.14		Oracle: 100
CV.1se	27.06	19.2	12.25	40.53	11.86	
CV.min	85.96	60.33	19.87	114.79	25.6	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	85.49	64.06	48.59	100.28		$\rho = 0.9$
AIC	737.07	730.88	702.58	151.4		,
BIC	19.91	16.68	11.48	18.43		Oracle: 100
CV.1se	8.8	6.95	4.91	41.65	5.07	
CV.min	47.95	28.46	9.81	139.88	22.67	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	57.78	39.55	38.41	105.62		$\rho = 0$
AIC	829.25	820.55	811.29	314.29		,
BIC	8.95	7.28	3.27	10.28		Oracle: 100
CV.1se	8.74	6.96	4.82	45.44	4.89	
CV.min	50.7	31.3	9.68	143.2	20.67	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	59.86	42.8	41.65	105.83		$\rho = 0.5$
AIC	831.69	823.13	813.1	319.72		
BIC	8.24	6.9	3.23	9.92		Oracle: 100
CV.1se	9.09	6.99	4.67	42.87	4.94	
CV.rise CV.min	52.97	32.97	9.71	136.41	20.61	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	60.81	42.54	42.61	105.16	_0.01	$\rho = 0.9$
AIC	827.67	819.49	808.99	303.88		,
BIC	7.99	6.61	3.12	9.98		Oracle: 100
DIC	1.77	0.01	3.14	2.70		

Table 77: Nonzero coefficients at n=1000, binary design, sparse covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\mathrm{GL}\ \gamma=10$	marginal AL	sparsenet MCP	
CV.1se	175.43	131.08	74.19	139.5	83.2	
CV.min	273.32	210.69	97.36	202.52	140	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	212.68	178.18	151.76	181.73		$\rho = 0$
AIC	742.41	733.99	705	242.57		Oracle: 100
BIC	96.16	82.53	61.51	87.36		Oracie: 100
CV.1se	188.41	140.01	74.22	147.32	81.29	
CV.min	289.76	221.83	99.21	213.1	134.08	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	219.83	186.01	157.36	189.56		$\rho = 0.5$
AIC	747.09	739.6	711.53	257.5		Oracle: 100
BIC	96.13	82.15	61.47	87.16		Oracie: 100
CV.1se	194.84	144.12	76.4	148.48	84.21	
CV.min	294.36	226.66	103.29	212.98	137.41	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	224.82	188.63	156.12	190.14		$\rho = 0.9$
AIC	744.2	736.1	707.58	256.68		0 1 100
BIC	98.35	83.67	62.07	89.85		Oracle: 100
CV.1se	92.82	63.09	33.42	116.47	61.88	
CV.min	189.27	129.13	52.46	199.8	146.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	156.92	133.8	177.89	165.06		$\rho = 0$
AIC	822.82	812.25	802.46	349.39		,
BIC	27.09	29.39	12.51	42.5		Oracle: 100
CV.1se	97.71	66.33	34.01	123.65	56.4	
CV.min	200.44	136.59	53.86	206.79	135.58	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	160.48	137.61	178.76	171.72		$\rho = 0.5$
AIC	826.98	816.89	806.41	366.05		
BIC	20.09	26.68	12.12	40.6		Oracle: 100
CV.1se	101.85	69.13	34.08	124.03	58.66	
CV.min	203.2	142.1	54.92	203.48	139.78	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	161.88	139.63	170.51	170.88		$\rho = 0.9$
AIC	824.07	813.66	803.39	359.09		,
BIC	18.13	25.73	11.32	40.25		Oracle: 100
CV.1se	5.14	1.94	0.32	75.75	3.89	
CV.min	68.01	23.77	3.63	181.1	65.78	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	73.78	78.02	58.36	134.92		$\rho = 0$
AIC	873.17	862.19	872.83	460.57		,
BIC	0.42	0.54	0	2.88		Oracle: 100
CV.1se	3.73	1.4	0.22	79.67	2.83	
CV.min	62.83	22.25	2.8	184.49	60.13	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	71.13	76.14	77.37	136.84	*****	$\rho = 0.5$
AIC	874.64	863.95	873.95	476.73		
BIC	0.32	0.31	0	2.06		Oracle: 100
CV.1se	3.54	1.18	0.2	75.93	2.03	
CV.min	64.88	23.58	3.04	178.4	60.99	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	72.02	78.07	69.22	134.39		$\rho = 0.9$
AIC	872.43	861.77	871.47	470.23		
BIC	0.32	0.36	0	2		Oracle: 100
	0.52	0.50	<u> </u>			

Table 78: Nonzero coefficients at n=1000, binary design, sparse covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	215.4	157.96	101.28	173.47	101.32	
CV.min	309.72	229.02	117.87	231.36	130.33	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	237.05	193.49	141.41	206.89		$\rho = 0$
AIC	768.26	758.21	735.21	298.73		Oracle: 100
BIC	134.84	115.96	90.19	124.51		07 acie . 100
CV.1se	231.16	169.53	103.44	185.96	103.13	
CV.min	328.69	242.85	120.28	246.37	127.02	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	249.65	202.7	145.94	218.38		$\rho = 0.5$
AIC	772.58	763.08	739.67	313.69		Oracle: 100
BIC	139.79	120.25	92.05	128.5		Oracie: 100
CV.1se	237.69	173.96	105.44	187.29	107.38	
CV.min	332.46	247.39	124.42	246.92	131.25	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	251.99	205.79	146.88	219.8		$\rho = 0.9$
AIC	769.94	760.51	737.48	314.21		
BIC	141.89	122.11	92.61	130.1		Oracle: 100
CV.1se	119.45	79.11	35.38	148.1	108.55	
CV.min	228.04	153.54	64.93	229.09	220.12	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	181.78	160.48	201.95	189		$\rho = 0$
AIC	839.55	827.34	826	408.19		,
BIC	1.65	10.06	1.15	31.29		Oracle: 100
CV.1se	123.87	82.92	34.86	155.56	107.96	
CV.min	239.32	163.23	67.23	237.8	225.34	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	186.12	166.46	203.71	194.05		$\rho = 0.5$
AIC	842.41	831.19	827.35	420.37		,
BIC	1.13	5.19	0.59	22.8		Oracle: 100
CV.1se	129.01	85.92	34.2	155.18	109.89	
CV.min	243.13	167.63	66.68	233.79	226.19	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	187.36	169.38	204.68	196.69		$\rho = 0.9$
AIC	840	828.47	824.8	420.29		,
BIC	0.91	4.39	0.79	19.91		Oracle: 100
CV.1se	2.57	0.43	0.05	80.47	2.17	
CV.min	59.44	10.68	1.48	189.97	58.18	$sd(\mu)/\sigma = 0.5$
AICc	66.39	89.24	43.93	139.2		$\rho = 0$
AIC	879.35	868.09	884.4	496.45		,
BIC	0.15	0.08	0	1.19		Oracle: 100
CV.1se	1.88	0.18	0.02	82.72	1.39	
CV.min	50.8	9.75	1.01	191.88	50.04	$sd(\mu)/\sigma = 0.5$
AICc	60.04	85.66	54.66	140.12	20.01	$\rho = 0.5$
AIC	880.25	869.19	884.55	509.2		,
BIC	0.12	0.09	0	0.96		Oracle: 100
CV.1se	1.44	0.17	0.02	79.43	0.86	
CV.13C	51.62	9.15	1.13	188.07	49.41	$sd(\mu)/\sigma = 0.5$
AICc	62.19	85.73	48.2	137.21	17,71	$\rho = 0.9$
AIC	878	866.48	882.09	502.58		,
BIC	0.12	0.08	0	0.91		Oracle: 100
DIC	0.12	0.08	U	0.91		

Table 79: Nonzero coefficients at n=1000, binary design, sparse covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$	$\mathrm{GL}\ \gamma=10$	marginal AL	sparsenet MCP	
CV.1se	223.47	154.74	105.41	181.12	102.87	
CV.min	315.85	217.6	114.37	235.72	115.77	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	240.77	186.24	117.42	211.66		$\rho = 0$
AIC	778.83	767.52	748.55	316.97		Oracle: 100
BIC	151.59	123.47	98.71	142.11		07466.100
CV.1se	240.16	164.98	106.23	194.44	103.18	
CV.min	335.75	230.41	115.06	250.41	115.2	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	253.11	194.89	117.28	224.09		$\rho = 0.5$
AIC	782.5	771.91	752.25	331.54		Oracle: 100
BIC	158.26	128.53	99.79	149.37		Oracie: 100
CV.1se	246.41	169.61	108.95	197.57	107.39	
CV.min	338.95	235.48	119.59	252.67	117.65	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	256.47	198	118.41	227.23		$\rho = 0.9$
AIC	779.85	768.82	749.55	334.42		O1100
BIC	161.59	131.61	100.9	152.24		Oracle: 100
CV.1se	129.48	81.48	29.41	161.11	126.39	
CV.min	242.28	157.77	63.88	241.7	243.14	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	189.39	169.39	217.21	199.46		$\rho = 0$
AIC	845.87	832.2	835.41	431.73		,
BIC	0.45	3.82	0.76	16.61		Oracle: 100
CV.1se	134.01	85.2	25.91	169.33	128.57	
CV.min	253.93	168.79	62.37	250.16	251.34	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	196.41	178.87	213.42	206.23		$\rho = 0.5$
AIC	848.39	835.64	836.52	443.43		,
BIC	0.37	1.65	0.13	10.15		Oracle: 100
CV.1se	139.37	87.46	24.14	167.83	130.85	
CV.min	257.87	171.74	60.9	246.36	254.61	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	197.94	180.1	215.47	206.57		$\rho = 0.9$
AIC	845.72	833.26	834.34	441.87		,
BIC	0.39	1.11	0.23	8.32		Oracle: 100
CV.1se	1.88	0.22	0.02	81.93	1.62	
CV.min	54.98	6.41	0.92	193.49	54.94	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	63.37	99.88	29.39	139.5		$\rho = 0$
AIC	881.36	869.27	889.4	509.19		,
BIC	0.11	0.03	0	0.86		Oracle: 100
CV.1se	1.43	0.09	0.01	82.83	1.02	
CV.min	44.69	5.2	0.7	193.75	44.46	$sd(\mu)/\sigma = 0.5$
AICc	54.93	95.46	36.01	139.94	11.10	$\rho = 0.5$
AIC	882.37	870.91	889.49	520.33		
BIC	0.09	0.03	0	0.76		Oracle: 100
CV.1se	0.94	0.05	0.01	79.93	0.68	
CV.13c	45.09	5.03	0.74	191.22	42.83	$sd(\mu)/\sigma = 0.5$
AICc	56.35	95.23	32.88	137.59	12.03	$\rho = 0.9$
AICC	879.67	867.66	886.91	511.9		·
BIC	0.09	0.04	0	0.71		Oracle: 100
БІС	0.09	0.04	U	0.71		

Table 80: Nonzero coefficients at n=1000, continuous design, sparse covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\mathrm{GL}~\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	40.34	30.68	20.09	29.14	18.79	
CV.min	103.9	78.64	31.79	53.91	32.54	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	98.48	71.33	25.64	50.68		$\rho = 0$
AIC	610.08	607.83	580.37	52.03		Oracle: 100
BIC	30.11	25.35	18.6	25.49		07 acic . 100
CV.1se	86.05	59.04	23.03	35.08	19	
CV.min	173.55	132.87	51.75	45.39	30.05	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	146.39	111.64	45.26	45.15		$\rho = 0.5$
AIC	539.81	539.49	515.13	45.25		Oracle: 100
BIC	39.2	29.42	16.74	34.1		07 acte . 100
CV.1se	150.05	120.12	60.24	11.46	32.46	
CV.min	226.55	191.32	98.49	12.56	57.98	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	190.69	161.01	82.82	12.56		$\rho = 0.9$
AIC	243.07	239.05	197.73	12.56		Oracle: 100
BIC	70.99	57.34	20.8	12.47		Oracie: 100
CV.1se	23.98	18.16	12.49	38.71	11.98	
CV.min	77.49	53.9	19.15	117.83	25.81	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	78.84	49.84	13.8	97.65		$\rho = 0$
AIC	741.49	735.39	707.33	154.27		,
BIC	19.86	15.71	10.18	18.01		Oracle: 100
CV.1se	45.77	31.55	12.77	65.81	12.38	
CV.min	125.9	93.66	27.99	125.2	23.83	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	115.2	82.06	24.12	112.61		$\rho = 0.5$
AIC	688.82	683.95	653.03	129.67		,
BIC	19.82	15.2	8.11	24.07		Oracle: 100
CV.1se	62.14	64.79	38.31	15.38	24.64	
CV.min	158.84	137.59	66.38	26.63	50.69	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	141.65	114.91	50.47	26.13		$\rho = 0.9$
AIC	377.46	388.23	358.14	26.22		,
BIC	1.36	1.04	1.11	15.95		Oracle: 100
CV.1se	8.78	6.97	4.92	44.77	5.07	
CV.min	48.42	28.79	9.73	141.49	21.83	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	56.7	24.13	4.05	106.25		$\rho = 0$
AIC	829.74	821.32	811.77	313.14		,
BIC	8.98	6.22	1.64	10.12		Oracle: 100
CV.1se	4.33	5.42	3.21	52.59	5.19	
CV.min	56.94	45.93	11.07	139.54	16.12	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	67.06	38.82	2.93	114.56	10.12	$\rho = 0.5$
AIC	798.16	790.33	773.25	252.9		,
BIC	2.46	1.78	0.96	3.45		Oracle: 100
CV.1se	1.01	1.76	1	12.07	1.21	
CV.13C CV.min	6.85	5.05	2.4	56.99	10.11	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	12.81	1.83	1	55.68	10.11	$\rho = 0.9$
AIC	535.11	553.6	520.08	64.94		,
BIC	1.36	1.03	1	2.67		Oracle: 100
DIC	1.30	1.03	1	2.07		

Table 81: Nonzero coefficients at n=1000, continuous design, sparse covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	177.38	131.7	74.1	139.2	83.5	
CV.min	275.72	210.8	97.57	203.17	139.13	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	212.26	171.93	108.71	182.62		$\rho = 0$
AIC	741.02	732.57	703.83	242.07		Oracle: 100
BIC	95.76	78.13	54.98	87.86		07 acte . 100
CV.1se	284.92	221.99	104.54	200.39	91.86	
CV.min	390.74	318.95	154.52	253.92	139.8	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	283.84	240.7	155.72	232.46		$\rho = 0.5$
AIC	719.34	711.54	681.23	267.94		Oracle: 100
BIC	62.29	84.45	62.49	91.74		Oracie: 100
CV.1se	342.59	289.9	175.27	48.48	139.78	
CV.min	426.59	380.66	224.62	62.76	179.84	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	323.91	291.1	206.31	62.23		$\rho = 0.9$
AIC	432.07	415.11	370.19	62.42		0 1 100
BIC	1.55	1.06	4.77	34.2		Oracle: 100
CV.1se	93.83	63.48	33.21	117.33	61.69	
CV.min	191.52	129.04	51.84	200.59	145.7	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	156.08	118.76	84.3	163.3		$\rho = 0$
AIC	822.66	811.93	802.09	348.76		,
BIC	26.51	23.2	1.76	42.37		Oracle: 100
CV.1se	116.23	101.52	43.51	150.2	57.17	
CV.min	248.97	201.84	79.21	228.54	105.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	188.55	164.27	129.46	198.09		$\rho = 0.5$
AIC	811.45	802.63	786.48	377.81		,
BIC	1.34	0.96	0.16	4.54		Oracle: 100
CV.1se	16.24	49.35	37.22	47.73	92.25	
CV.min	110.88	164.45	92.11	90.68	141.73	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	77.11	65.1	63.49	88.14		$\rho = 0.9$
AIC	564.08	550.45	509.2	94.01		,
BIC	1.46	1.06	1	3.43		Oracle: 100
CV.1se	5.04	1.84	0.27	78.71	3.9	
CV.min	67.7	25	3.78	182.97	65.96	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	73.06	29.17	0.23	135.27		$\rho = 0$
AIC	872.57	861.49	872.49	464.17		,
BIC	0.42	0.1	0	2.77		Oracle: 100
CV.1se	0.13	0.06	0.02	43.35	0.49	
CV.min	14.69	7.95	0.88	147.92	13.99	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	30.49	3.35	0.77	112.34	13.55	$\rho = 0.5$
AIC	864.61	855.17	859.36	476.25		,
BIC	0.17	0.07	0	0.7		Oracle: 100
CV.1se	0.17	0.19	0.28	3.68	0.45	
CV.13C	7.69	4.71	1.41	51.18	2.9	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	12.68	1.51	0.94	56.79	2.7	$\rho = 0.9$
AIC	692.69	673.84	660.71	101.17		
BIC	1.3	1.01	0.74	1.5		Oracle: 100
DIC	1.3	1.01	0.74	1.J		

Table 82: Nonzero coefficients at n=1000, continuous design, sparse covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$		marginal AL	sparsenet MCP	
CV.1se	216.7	158.99	101.3	173.7	101.8	
CV.min	312.77	230.16	117.75	232.7	132.73	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	238.55	186.96	107.23	207.88		$\rho = 0$
AIC	767.5	757.71	734.48	297.7		Oracle: 100
BIC	136.65	112.43	87.7	125.42		07 acte . 100
CV.1se	351.92	280.15	152.5	261.44	138.66	
CV.min	448.81	363.11	190.88	328	170.95	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	332.16	280.87	159.41	287.02		$\rho = 0.5$
AIC	760.54	751.67	726.14	361.97		Oracle: 100
BIC	1.19	6.74	120.59	12.88		Oracle: 100
CV.1se	409.63	353.68	229.43	68.54	198.23	
CV.min	490.29	435.49	269.98	105.81	229.09	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	373.98	338.52	227.04	102.44		$\rho = 0.9$
AIC	496.49	474.8	427.14	106.07		0 1 100
BIC	2.07	1.34	2.69	5.12		Oracle: 100
CV.1se	121.2	79.38	35.15	149.49	107.9	
CV.min	229.92	153.4	64.98	231.73	221.09	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	180.82	144.1	136.48	189.01		$\rho = 0$
AIC	838.97	826.44	824.64	408.23		,
BIC	1.65	2.86	0.11	31.63		Oracle: 100
CV.1se	75.16	77.87	8.87	160.02	77.52	
CV.min	252.28	210.01	41.08	248.98	158.93	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	175.12	184.13	177.3	207.76	150.55	$\rho = 0.5$
AIC	836.61	826.58	817.29	462.59		,
BIC	0.38	0.2	0	1.65		Oracle: 100
CV.1se	1.15	3.51	0.81	32.58	21.48	
CV.13C	19.35	34.54	3.75	97.19	72.07	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	21.41	6.15	13.14	101.16	72.07	$\rho = 0.9$
AIC	626.79	608.57	575.17	142.13		$\rho = 0.3$
BIC	1.67	1.15	0.99	1.86		Oracle: 100
CV.1se	2.53	0.45	0.99	83.46	1.85	
CV.1se CV.min	58.87	10.96	1.34	192.27	60.1	$sd(\mu)/\sigma = 0.5$
AICc	67.63	21.93	1.15	139.02	00.1	$\begin{array}{c c} \operatorname{sd}(\mu)/\rho = 0.3 \\ \rho = 0 \end{array}$
AICC	878.63	867.27	884.18	495.35		$\rho = 0$
BIC	0.16	0.01	16.91	1.21		Oracle: 100
CV.1se		0.01	0	36.25	0.46	
	0.01			30.23 140.85		-1()/- 0.5
CV.min	10.17	3.22	0.36		10.11	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	22.94	0.87	0.43	105.6		$\rho = 0.5$
AIC	870.74	859.63	869.23	510.63		Oracle: 100
BIC	0.06	0.02	0	0.38	0.44	
CV.1se	0.04	0.05	0.08	1.22	0.44	-1()/
CV.min	8.2	4.73	1.42	36.78	4.99	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	14.12	1.34	0.47	40.6		$\rho = 0.9$
AIC	736.73	715.86	715.33	93.56		Oracle: 100
BIC	0.88	0.66	0.14	1.32		

Table 83: Nonzero coefficients at n=1000, continuous design, sparse covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$	$\mathrm{GL}\ \gamma=10$	marginal AL	sparsenet MCP	
CV.1se	224.63	155.19	105.5	181.42	102.74	
CV.min	318.5	217.92	114.43	236.28	116.28	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	241.9	179.16	101.41	213.12		$\rho = 0$
AIC	777.82	767.04	748.05	317.5		Oracle: 100
BIC	150.79	120.13	98.02	141.96		07acie . 100
CV.1se	368.76	279.52	144.89	287.33	113.1	
CV.min	460.6	352.01	163.65	357.34	126.15	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	341.81	272.18	128.97	309.03		$\rho = 0.5$
AIC	776.77	767.31	744.78	401.13		Oracle: 100
BIC	0.52	15.34	123.67	3.36		Oracie : 100
CV.1se	434.56	363.17	226.51	86.17	186.96	
CV.min	518.82	437.77	250.23	144.27	211.49	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	391.51	338.85	201.81	138.83		$\rho = 0.9$
AIC	533.99	511.1	466.14	149.71		Omasla . 100
BIC	2.86	1.9	51.45	2.99		Oracle: 100
CV.1se	132.12	82.35	29.31	162.1	127.28	
CV.min	244.8	158.63	64.23	242.68	244.45	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	192.86	152.89	145.25	200.17		$\rho = 0$
AIC	845.23	831.63	834.85	433.28		,
BIC	0.51	0.42	0.06	16		Oracle: 100
CV.1se	39.08	39.47	0.84	157.52	43.03	
CV.min	217.3	167.02	6.82	252.89	178.42	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	140.57	184.71	200.87	206.66		$\rho = 0.5$
AIC	844.4	833.66	828.74	492.97		,
BIC	0.17	0.07	0	1.01		Oracle: 100
CV.1se	0.76	0.77	0.52	17.07	2.19	
CV.min	15.64	13.74	2.38	88.07	15.8	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	20.44	4.15	9.33	95.41		$\rho = 0.9$
AIC	663.89	643.78	617.88	192.64		,
BIC	2.14	1.41	0.87	2.52		Oracle: 100
CV.1se	1.82	0.18	0.03	84.71	1.36	
CV.min	54.45	6.51	1.01	194.39	54.99	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	63.21	17.4	0	139.85		$\rho = 0$
AIC	880.57	868.78	888.79	509.84		·
BIC	0.1	0	171.44	0.9		Oracle: 100
CV.1se	0.01	0.01	0	34.1	0.45	
CV.min	9.14	2.15	0.33	138.25	9.14	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	20.94	0.44	0	102.34		$\rho = 0.5$
AIC	871.94	859.89	873.45	519.26		,
BIC	0.06	0.01	0	0.29		Oracle: 100
CV.1se	0.03	0.03	0.04	1.03	0.45	
CV.min	8.37	4.41	1.28	32.84	6	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	14.04	1.13	0.16	35.73	Ü	$\rho = 0.9$
AIC	757.48	735.05	742.32	103.11		,
BIC	0.55	0.36	0.03	1.11		Oracle: 100
	0.55	0.50	0.05	1,11		

Table 84: Nonzero coefficients at n=100, binary design, dense covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	'	marginal AL	sparsenet MCP	
CV.1se	10.27	6.8	2.15	40.73	7.02	
CV.min	46.71	25.28	5.6	70.51	34.93	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	20.3	15.31	49.62	26.53		$\rho = 0$
AIC	109.15	96.42	74.5	86.93		<i>Oracle</i> : 21.25
BIC	107.58	94.95	73.11	80.43		Oracic . 21.23
CV.1se	8.49	5.59	1.91	41.74	5.52	
CV.min	41.33	23.91	5.15	72.56	28.29	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	18.79	14.63	50.08	26.91		$\rho = 0.5$
AIC	110.09	97.3	75.5	88.14		Oracle : 20.95
BIC	108.36	95.99	74.14	83.13		Oracie . 20.93
CV.1se	7.83	5.05	1.68	40.55	5.59	
CV.min	40.17	22.04	4.69	70.46	26.4	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	18.22	13.82	49.99	26.66		$\rho = 0.9$
AIC	109.97	97.37	75.89	88.06		0
BIC	108.41	95.98	74.52	82.55		Oracle: 20.71
CV.1se	1.81	0.77	0.25	45.13	1.53	
CV.min	19.6	6.41	1.06	78.51	17.37	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	10.38	12.39	52.62	23.34		$\rho = 0$
AIC	112.87	97.64	75.83	93.21		,
BIC	111.57	95.91	73.99	92.05		<i>Oracle</i> : 14.52
CV.1se	1.2	0.53	0.23	47.02	1.04	
CV.min	16.82	5.74	0.95	79.98	14.55	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	10.03	10.77	52.56	23.15		$\rho = 0.5$
AIC	113.35	98.15	76.48	93.57		,
BIC	112.01	96.85	74.6	92.26		Oracle: 14.39
CV.1se	1.36	0.77	0.26	44.47	1.26	
CV.rise CV.min	16.81	6.04	1.02	77.34	14.41	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	9.84	9.51	51.91	23.51	11.11	$\rho = 0.9$
AIC	113.02	98.35	76.9	93.64		,
BIC	111.6	96.94	74.91	92.05		Oracle: 14.05
CV.1se	0.27	0.05	0.02	48.27	0.55	
CV.1sc CV.min	7.44	1.22	0.02	81.9	7.52	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	5.64	30.06	55.3	20.57	1.52	$\rho = 0$
AIC	115.24	95.81	73.4	96.25		,
BIC	113.24	94.19	73.4	95.64		Oracle: 7.82
CV.1se	0.29	0.1	0.03	48.6	0.5	
CV.1se CV.min	7.52			83.11	7.38	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc		1.27	0.26		7.36	
	5.61	26.75	54.85	21.48		$\rho = 0.5$
AIC	115.25	96.35	74.18	96.43		Oracle: 7.96
BIC	113.81	94.91	72.11	95.78	0.51	
CV.1se	0.38	0.1	0.04	46.61	0.51	-1()/
CV.min	7.59	1.24	0.25	80.87	7.52	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	5.84	25.25	55.49	21.38		$\rho = 0.9$
AIC	115.14	96.36	74.23	96.08		<i>Oracle</i> : 7.57
BIC	114	94.73	72.25	95.28		

Table 85: Nonzero coefficients at n=100, binary design, dense covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	1.34	0.2	0.07	53.16	1.06	
CV.min	17.15	2.34	0.45	85.15	18.97	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	8.05	37.06	55.48	22.98		$\rho = 0$
AIC	113.89	93.58	71.13	95.05		Oracle : 56.85
BIC	112.8	91.86	69.5	94.36		07 acic . 50.65
CV.1se	0.63	0.18	0.06	51.6	0.71	
CV.min	15.5	2.1	0.36	84.16	15.71	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	7.89	35.41	55.16	23.4		$\rho = 0.5$
AIC	114.46	94.27	72.03	95.35		Oracle : 56.18
BIC	113.28	92.48	70.15	94.78		Oracle . 50.16
CV.1se	0.84	0.24	0.05	49.94	0.74	
CV.min	14.96	1.93	0.37	82.39	13.87	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	7.28	33.16	55.39	22.38		$\rho = 0.9$
AIC	114.37	94.58	72.16	95.4		0156.49
BIC	113.12	92.84	70.35	94.57		<i>Oracle</i> : 56.48
CV.1se	0.53	0.06	0.03	50.93	0.68	
CV.min	10.62	1.05	0.24	84.51	9.83	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	6.39	42.84	56.81	22.2		$\rho = 0$
AIC	114.97	92.18	69.79	96.23		
BIC	113.77	90.33	68.38	95.62		<i>Oracle</i> : 31.69
CV.1se	0.27	0.05	0.03	48.97	0.54	
CV.min	9.01	0.9	0.19	84.28	8.51	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	6.15	42.39	56.52	22.08		$\rho = 0.5$
AIC	115.07	93.07	70.49	96.3		'
BIC	113.93	91.11	68.92	95.77		<i>Oracle</i> : 31.41
CV.1se	0.42	0.06	0.04	48.42	0.53	
CV.min	9.6	0.98	0.26	81.83	9.33	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	5.76	41.57	56.68	21	,,,,,	$\rho = 0.9$
AIC	114.81	92.9	70.53	95.92		'
BIC	113.55	90.83	69.07	95.31		Oracle: 31
CV.1se	0.24	0.02	0.04	49.59	0.45	
CV.min	6.35	0.36	0.19	84.57	6.02	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.92	48.6	58.18	20.96	****	$\rho = 0$
AIC	115.61	88.57	66.96	96.64		
BIC	114.23	86.37	66.14	96.13		Oracle: 8.54
CV.1se	0.05	0.03	0.01	49.54	0.44	
CV.min	5.77	0.4	0.17	83.22	5.16	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.98	48.24	58.18	20.31	3.10	$\rho = 0.5$
AIC	115.49	89.44	67.61	96.86		
BIC	114.27	87.47	66.68	96.26		Oracle: 8.87
CV.1se	0.18	0.02	0.02	46.56	0.39	
CV.13C CV.min	6.85	0.36	0.02	80.99	6.62	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	5.24	47.74	58.33	20.57	0.02	$\rho = 0.9$
AICC	115.34	89.16	67.7	96.66		
BIC	113.34	86.87	66.81	96.04		Oracle: 8.11
DIC	114.07	00.07	00.01	7U.U 4		

Table 86: Nonzero coefficients at n=100, binary design, dense covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$		marginal AL	sparsenet MCP	
CV.1se	1.11	0.1	0.05	53.43	0.91	
CV.min	14.36	1	0.29	84.81	16.14	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	6.5	45.45	56.62	22.86		$\rho = 0$
AIC	114.51	90.73	68.48	95.75		<i>Oracle</i> : 78.12
BIC	113.45	88.83	67.4	95.12		07 acre : 70.12
CV.1se	0.56	0.1	0.04	52.87	0.6	
CV.min	12.21	0.9	0.26	85.13	11.88	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	6.6	44.09	56.53	22.42		$\rho = 0.5$
AIC	114.74	91.78	69.18	96.19		<i>Oracle</i> : 77.79
BIC	113.45	89.75	67.9	95.57		Oracic . 11.17
CV.1se	0.64	0.09	0.04	50.46	0.54	
CV.min	12.02	0.88	0.24	83.31	12.45	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	6.38	43.96	56.72	21.71		$\rho = 0.9$
AIC	114.76	91.76	69.19	95.71		Oracle : 77.15
BIC	113.53	89.77	67.95	95.1		01466.77.13
CV.1se	0.41	0.05	0.02	51.4	0.57	
CV.min	9.65	0.48	0.2	84.61	9.83	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	5.79	47.88	57.85	21.65		$\rho = 0$
AIC	115.06	88.95	67.26	96.52		0129.01
BIC	113.92	86.81	66.33	95.9		<i>Oracle</i> : 38.01
CV.1se	0.34	0.05	0.03	49.83	0.46	
CV.min	7.97	0.57	0.16	83.96	8.55	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	5.34	47.05	57.51	21.68		$\rho = 0.5$
AIC	115.16	89.52	67.85	96.67		0 1 26 00
BIC	114.03	87.41	67	95.98		<i>Oracle</i> : 36.88
CV.1se	0.39	0.03	0.03	47.22	0.55	
CV.min	8.78	0.56	0.23	81.79	8.64	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	5.61	46.79	57.81	21.13		$\rho = 0.9$
AIC	115.04	89.73	68.06	96.25		
BIC	113.7	87.74	67.02	95.4		<i>Oracle</i> : 37.12
CV.1se	0.2	0.02	0.02	49.77	0.4	
CV.min	5.81	0.28	0.13	84.14	5.79	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.63	50.71	59.3	20.93		$\rho = 0$
AIC	115.53	84.84	65.39	96.71		0 1 656
BIC	114.32	82.58	64.67	96.11		Oracle: 6.56
CV.1se	0.13	0.03	0.01	49.55	0.47	
CV.min	5.85	0.31	0.14	83.82	5.62	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.95	50.11	58.96	20.32		$\rho = 0.5$
AIC	115.3	85.71	65.69	96.73		,
BIC	114.2	83.42	64.91	96.1		Oracle: 6.85
CV.1se	0.21	0.01	0.03	46.17	0.43	
CV.rise CV.min	6.48	0.31	0.15	81.45	6.37	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	5.47	49.45	59.13	20.78	0.57	$\rho = 0.9$
AIC	115.3	85.99	65.81	96.51		,
BIC	113.86	83.58	65.16	95.7		Oracle: 6.4
DIC	113.00	05.50	05.10	73.1		

Table 87: Nonzero coefficients at n=100, binary design, dense covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$		marginal AL	sparsenet MCP	
CV.1se	0.71	0.07	0.04	53.85	0.87	
CV.min	12.91	0.69	0.25	85.31	14.1	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	6.23	48.41	58.08	22.78		$\rho = 0$
AIC	114.65	87.76	66.3	96.1		Oracle : 91.18
BIC	113.48	85.63	65.6	95.42		07acic . 71.16
CV.1se	0.45	0.04	0.04	52.25	0.53	
CV.min	10.77	0.55	0.25	85.36	10.92	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	6.18	47.28	57.96	22.01		$\rho = 0.5$
AIC	114.85	88.49	66.77	96.21		Oracle : 90.76
BIC	113.71	86.45	65.87	95.66		Oracie . 90.70
CV.1se	0.54	0.06	0.03	50.49	0.56	
CV.min	9.88	0.6	0.24	83.82	10.41	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	6.39	48.25	57.97	21.66		$\rho = 0.9$
AIC	114.67	88.17	66.93	95.97		Oracle : 90.33
BIC	113.42	85.92	66.01	95.25		Oracie: 90.55
CV.1se	0.47	0.03	0.02	51.32	0.48	
CV.min	9.07	0.39	0.21	85.17	8.91	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	5.45	49.11	58.71	21.6		$\rho = 0$
AIC	115.24	85.63	65.62	96.59		,
BIC	114.08	83.57	64.94	96.04		<i>Oracle</i> : 41.56
CV.1se	0.4	0.04	0.03	50.67	0.45	
CV.min	7.8	0.49	0.18	84.22	7.69	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	5.32	49.29	58.67	21.02		$\rho = 0.5$
AIC	115.28	86.49	65.74	96.41		,
BIC	114.05	84.25	65.01	95.97		<i>Oracle</i> : 41.26
CV.1se	0.39	0.02	0.02	48.12	0.54	
CV.min	8.81	0.48	0.2	82.08	8.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	5.9	49.58	58.71	21.5	****	$\rho = 0.9$
AIC	114.88	86.34	66.1	96.19		,
BIC	113.58	83.96	65.35	95.67		Oracle: 40.75
CV.1se	0.18	0.02	0.02	50.14	0.42	
CV.min	5.9	0.25	0.17	83.88	5.82	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.73	52.14	60.03	20.23		$\rho = 0$
AIC	115.4	81.59	64.13	96.8		,
BIC	114.27	79.24	63.4	96.05		Oracle: 5.09
CV.1se	0.19	0.03	0.01	49.14	0.47	
CV.min	6.07	0.26	0.13	83.68	5.63	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.82	51.51	59.88	20.47	3.03	$\rho = 0.5$
AIC	115.43	82.47	64.43	96.7		,
BIC	114.34	79.92	63.69	96.1		Oracle: 5.6
CV.1se	0.18	0.02	0.01	46.55	0.44	
CV.13C	6.6	0.28	0.13	81.7	6.85	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	5.19	51.64	60.11	20.74	0.03	$\rho = 0.9$
AIC	115.45	82.32	64.49	96.47		
BIC	114.16	79.52	63.78	95.85		Oracle: 5.19
DIC	117.10	17.34	03.70	75.05		

Table 88: Nonzero coefficients at n=100, continuous design, dense covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$		marginal AL		
CV.1se	9.38	5.78	2.06	39.46	6.53	
CV.min	42.21	23.33	5.17	69.95	33	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	19.98	8.06	49.38	26.11		$\rho = 0$
AIC	109.18	96.34	74.39	86.92		Oracle : 20.75
BIC	107.66	94.99	72.97	79.99		Oracic . 20.73
CV.1se	1.31	1.14	0.63	37.72	1.69	
CV.min	15.97	10.34	1.86	70.04	10.04	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	9.96	2.15	39.05	21.17		$\rho = 0.5$
AIC	110.04	99.51	79.33	88.83		Oracle : 20.43
BIC	108.73	98.46	78.26	76.73		07466 . 20.43
CV.1se	1.37	1.21	1.03	12.61	1.04	
CV.min	8.59	5.65	1.7	34.12	3.12	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	7.53	1.51	1.07	19.16		$\rho = 0.9$
AIC	103.15	92.8	73.37	55.58		Oracle : 18.27
BIC	83.55	83.5	72.64	3.55		Oracle . 16.27
CV.1se	1.56	0.77	0.25	45.1	1.08	
CV.min	16.67	5.95	1.02	78.33	16.1	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	10.94	1.75	53.61	22.91		$\rho = 0$
AIC	113.1	97.55	75.58	93.22		Oracle: 14.43
BIC	111.76	96.18	74	91.6		Oracie : 14.45
CV.1se	0.51	0.34	0.19	39.43	0.61	
CV.min	9.68	3.89	0.7	72.96	7.51	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	7.04	0.87	51.96	20.33		$\rho = 0.5$
AIC	113.8	100.8	80.71	93.59		Oma ala . 14 10
BIC	112.15	99.36	78.76	90.59		<i>Oracle</i> : 14.19
CV.1se	1.1	0.96	0.9	6.97	0.95	
CV.min	9	5.41	1.56	25.81	3.19	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	7.81	1.47	1.78	13.76		$\rho = 0.9$
AIC	107.62	95.04	76	74.16		Oma ala . 11.62
BIC	105.62	94.71	75.15	4.18		<i>Oracle</i> : 11.62
CV.1se	0.34	0.08	0.03	48.1	0.51	
CV.min	6.94	1.3	0.23	81.96	6.86	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	5.64	7.83	56.31	20.66		$\rho = 0$
AIC	115.31	95.89	73.5	96.41		Oma ala . 7 97
BIC	114.09	94.57	71.52	95.81		<i>Oracle</i> : 7.87
CV.1se	0.09	0.07	0.02	40.22	0.43	
CV.min	5.87	1.58	0.28	74.78	5.28	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	5.28	0.63	55.06	20.2		$\rho = 0.5$
AIC	115.46	99.36	78.25	96.17		0 1 765
BIC	113.7	97.86	76.13	95.21		<i>Oracle</i> : 7.65
CV.1se	0.35	0.26	0.17	8.47	0.51	
CV.min	6.83	3.64	0.81	28.53	5.08	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	6.83	0.59	38.76	14.49		$\rho = 0.9$
AIC	114.01	97.56	79.03	90.1		Oma al - 15.52
BIC	113.06	97.15	78.01	33.12		<i>Oracle</i> : 5.53
						•

Table 89: Nonzero coefficients at n=100, continuous design, dense covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\mathrm{GL}~\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	1.3	0.26	0.08	52	1.09	
CV.min	16.99	2.22	0.38	83.98	18.43	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	8.48	14.96	56.34	23.95		$\rho = 0$
AIC	113.97	93.61	70.8	94.96		Oracle : 57.19
BIC	112.86	92.01	69.16	94.19		07acte : 37.17
CV.1se	0.21	0.09	0.03	41.73	0.53	
CV.min	7.5	1.72	0.24	76.39	7.17	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	5.7	1.12	55.6	20.13		$\rho = 0.5$
AIC	115.07	98.4	77	96.2		Oracle : 56.98
BIC	113.5	96.83	74.87	95.46		Oracie . 30.98
CV.1se	0.51	0.45	0.31	7.67	0.61	
CV.min	7.71	4.6	1.2	27.5	5.56	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	7.44	0.88	25.08	14.94		$\rho = 0.9$
AIC	112.43	96.94	78.26	87.64		Oracle : 54.95
BIC	111.37	96.52	77.03	24.07		Oracie . 34.93
CV.1se	0.43	0.07	0.02	51.02	0.54	
CV.min	10.48	0.92	0.29	84.44	10.15	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	6.5	26.93	57.5	21.65		$\rho = 0$
AIC	114.66	92.06	69.78	96.07		Oracle : 30.65
BIC	113.67	90.44	68.37	95.48		Oracie : 30.03
CV.1se	0.21	0.06	0.02	42.44	0.57	
CV.min	5.87	1.18	0.21	76.85	6.16	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	5.05	3.51	56.35	19.82		$\rho = 0.5$
AIC	115.47	96.49	74.99	96.32		Oracle : 30.42
BIC	113.77	94.61	72.98	95.56		Oracie: 50.42
CV.1se	0.3	0.23	0.11	7.81	0.41	
CV.min	5.86	3.2	0.67	28.37	5.21	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	6.04	0.46	51.2	14.45		$\rho = 0.9$
AIC	114.45	97.04	78.89	91.88		Oma ala . 27.66
BIC	113.37	96.51	77.61	42.4		<i>Oracle</i> : 27.66
CV.1se	0.3	0.04	0.03	48.78	0.43	
CV.min	6.8	0.38	0.17	83.46	6.23	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	5.14	46.46	59.19	20.55		$\rho = 0$
AIC	115.51	88.58	66.99	96.71		<i>Oracle</i> : 8.65
BIC	114.39	86.71	65.95	96.09		Oracie: 8.03
CV.1se	0.22	0.03	0.02	39.8	0.37	
CV.min	5.6	0.6	0.19	74.69	5.09	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.62	21.05	58.6	19.88		$\rho = 0.5$
AIC	115.61	93	71.18	96.54		Omasla . 9 5
BIC	114.2	91.07	69.67	95.76		Oracle: 8.5
CV.1se	0.16	0.06	0.03	7.94	0.4	
CV.min	4.34	1.46	0.25	28.76	3.8	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.41	0.23	62.79	14.46		$\rho = 0.9$
AIC	116.02	94.45	77.16	94.19		Omagle : 7.26
BIC	114.99	93.78	75.88	58.47		<i>Oracle</i> : 7.26
-						

Table 90: Nonzero coefficients at n=100, continuous design, dense covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$		marginal AL	sparsenet MCP	
CV.1se	0.67	0.06	0.04	52.6	0.76	
CV.min	13.65	0.82	0.27	85.39	13.84	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	7.11	34.13	57.96	22.79		$\rho = 0$
AIC	114.54	90.7	68.26	95.72		Oracle: 77.53
BIC	113.41	88.92	67.22	95.01		Oracic . 11.55
CV.1se	0.22	0.09	0.02	41.74	0.41	
CV.min	6.41	1.13	0.19	75.51	6.44	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	4.88	5.81	57.14	20.33		$\rho = 0.5$
AIC	115.39	96.11	73.86	96.26		Oracle: 77.53
BIC	113.81	94.16	71.99	95.3		Oracie . 11.55
CV.1se	0.26	0.15	0.1	8.03	0.38	
CV.min	5.95	2.79	0.59	28.47	4.99	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	5.97	0.39	55.53	15.36		$\rho = 0.9$
AIC	114.85	96.86	78.52	92.57		Oma ala . 76 01
BIC	113.69	96.21	77.41	45.46		<i>Oracle</i> : 76.01
CV.1se	0.3	0.05	0.03	51.64	0.44	
CV.min	8.77	0.44	0.19	83.44	8.33	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	5.87	43.26	58.6	20.88		$\rho = 0$
AIC	115.09	89.05	67.39	96.38		0 1 27 66
BIC	114	87.23	66.38	95.79		<i>Oracle</i> : 37.66
CV.1se	0.23	0.05	0.02	41.34	0.41	
CV.min	6.02	0.75	0.18	76.06	5.42	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	4.92	15.17	58.29	19.95		$\rho = 0.5$
AIC	115.57	94	72.01	96.38		,
BIC	113.99	92	70.37	95.56		<i>Oracle</i> : 37.21
CV.1se	0.13	0.1	0.03	7.66	0.35	
CV.min	4.44	1.82	0.34	29.36	4.55	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	4.79	0.18	61.89	14.63	.,,,,	$\rho = 0.9$
AIC	115.68	95.57	77.87	93.94		,
BIC	114.84	94.91	76.41	53.27		<i>Oracle</i> : 34.56
CV.1se	0.2	0.04	0.02	48.56	0.42	
CV.min	6.36	0.35	0.18	82.92	5.52	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.9	50.95	60.05	20.72		$\rho = 0$
AIC	115.38	84.92	65.25	96.58		,
BIC	114.25	82.92	64.42	95.97		Oracle: 6.81
CV.1se	0.19	0.02	0.01	38.82	0.38	
CV.min	5.61	0.41	0.16	74.96	5.09	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.38	39.49	59.56	19.93	3.07	$\rho = 0.5$
AIC	115.44	89.9	68.67	96.71		,
BIC	113.88	87.92	67.64	95.92		Oracle: 6.7
CV.1se	0.11	0.04	0.02	7.47	0.35	
CV.13C	3.86	0.96	0.22	28.61	3.4	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.23	0.47	64.76	14.1	J.T	$\rho = 0.9$
AIC	116.35	91.88	75.83	94.49		,
BIC	115.4	91.00	74.37	57.59		Oracle: 6.45
БІС	113.4	71.01	14.31	31.39		

Table 91: Nonzero coefficients at n=100, continuous design, dense covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$		marginal AL	sparsenet MCP	
CV.1se	0.39	0.05	0.03	52.15	0.57	
CV.min	12.92	0.49	0.2	85.14	12.66	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	6.57	46.91	58.63	22.66		$\rho = 0$
AIC	114.72	87.92	66.31	96.21		Oracle: 91.12
BIC	113.53	85.95	65.55	95.64		074666.71.12
CV.1se	0.13	0.03	0.02	40.77	0.45	
CV.min	5.82	0.73	0.16	75.21	6.34	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	5.16	20.41	58.08	20.33		$\rho = 0.5$
AIC	115.38	92.81	70.86	96.34		Oracle: 91.12
BIC	113.65	90.95	69.43	95.54		07 acre : 71.12
CV.1se	0.1	0.09	0.04	7.82	0.36	
CV.min	4.77	1.7	0.32	29	4.33	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	5.06	0.24	62.47	15.09		$\rho = 0.9$
AIC	115.24	94.82	77.08	93.74		Oracle : 90.49
BIC	114.18	94.19	75.55	54.71		01466.30.43
CV.1se	0.32	0.05	0.03	50.59	0.45	
CV.min	8.62	0.38	0.2	83.59	9.19	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	5.72	50.11	59.32	21.22		$\rho = 0$
AIC	114.97	85.8	65.3	96.45		Omasla , 41 10
BIC	113.95	83.48	64.34	95.88		Oracle: 41.19
CV.1se	0.19	0.03	0.01	40.32	0.36	
CV.min	5.87	0.44	0.16	75.03	5.34	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	4.63	33.38	59.49	20.09		$\rho = 0.5$
AIC	115.52	90.77	69.29	96.41		O1 41 22
BIC	113.74	88.77	68.06	95.73		<i>Oracle</i> : 41.33
CV.1se	0.11	0.04	0.02	7.11	0.35	
CV.min	3.8	1.17	0.21	28.46	3.72	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	4.36	0.19	63.75	14.38		$\rho = 0.9$
AIC	115.83	92.95	76.28	94.55		
BIC	114.57	92.2	74.93	58.59		<i>Oracle</i> : 39.92
CV.1se	0.17	0.04	0.02	48.98	0.41	
CV.min	6.19	0.27	0.17	83.35	5.93	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.79	53.01	60.14	20.33		$\rho = 0$
AIC	115.2	81.51	64.03	96.69		
BIC	114.26	79.22	63.24	96.1		Oracle: 5.4
CV.1se	0.13	0.03	0.01	38.83	0.35	
CV.min	5.75	0.3	0.13	74.26	5.07	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.8	48.9	60.57	19.92		$\rho = 0.5$
AIC	115.71	86.57	66.78	96.49		,
BIC	113.99	84.52	65.89	95.65		Oracle: 5.46
CV.1se	0.09	0.02	0.01	7.04	0.35	
CV.min	3.32	0.77	0.18	28.68	3.24	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.08	2.02	65.28	14.17		$\rho = 0.9$
AIC	116.06	89.46	74.33	94.64		,
BIC	115.1	88.47	72.94	58.05		Oracle: 5.28
			. = • / •	22.00		

Table 92: Nonzero coefficients at n=100, binary design, sparse covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	15.26	10.62	4.77	34.95	9.61	
CV.min	51.8	31.21	10.08	63.72	26.46	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	23.67	17.33	47.63	27.06		$\rho = 0$
AIC	107.57	95.72	73.55	83.28		Oracle: 10
BIC	105.8	94.27	72.36	70.2		Oracic . 10
CV.1se	13.29	9.46	3.97	37.88	9.27	
CV.min	49.64	31.3	9.03	66.79	25.74	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	22.91	17.68	48.1	27.48		$\rho = 0.5$
AIC	108.01	96.82	74.63	84.59		Oracle: 10
BIC	106.54	95.38	73.26	75.65		Oracle . 10
CV.1se	12.9	9.51	3.65	37.95	9.13	
CV.min	49.97	31.29	8.63	66.12	25.43	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	22.52	17.48	47.23	27.33		$\rho = 0.9$
AIC	108.2	97.07	75.19	84.9		0110
BIC	106.67	95.7	73.7	74.68		Oracle: 10
CV.1se	2.24	1.32	0.37	44.25	1.8	
CV.min	22.92	8.52	1.58	76.86	20.44	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	12.31	10.3	52.27	23.99		$\rho = 0$
AIC	112.3	97.2	75.73	92.06		
BIC	110.82	95.77	74.01	90.62		Oracle:10
CV.1se	1.87	0.97	0.4	45.65	1.34	
CV.min	20.75	8.04	1.29	78.54	17.03	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	11.25	9.71	51.62	23.01		$\rho = 0.5$
AIC	112.86	98.02	76.29	92.45		,
BIC	111.36	96.45	74.48	90.71		Oracle:10
CV.1se	2.07	0.91	0.36	43.34	1.56	
CV.min	20.36	8.18	1.35	75.11	17.3	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	11.44	9.29	51.97	23.82	17.5	$\rho = 0.9$
AIC	112.43	98.3	76.93	92.28		'
BIC	110.79	96.77	75.18	90.7		Oracle:10
CV.1se	0.3	0.05	0.03	48.68	0.51	
CV.13C CV.min	7.54	1.43	0.26	81.23	7.13	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	5.83	26.06	54.48	21.04	7.13	$\rho = 0$
AIC	114.97	96.18	74.3	96.04		,
BIC	113.74	94.86	72.14	95.37		Oracle:10
CV.1se	0.18	0.07	0.03	48.41	0.53	
CV.1sc CV.min	7.54	1.3	0.03	82.65	6.92	$sd(\mu)/\sigma = 0.5$
AICc	5.72	23.47	54.59	21.12	0.92	$\rho = 0.5$
AICC		96.9		96.2		$\rho = 0.5$
	114.94	96.9 95.4	74.9 72.7	90.2 95.47		Oracle:10
BIC	113.77				0.56	
CV.1se	0.46	0.08	0.05	46.13	0.56	-1()/- 0.5
CV.min	7.85	1.39	0.33	80.29	7.45	$\operatorname{sd}(\mu)/\sigma = 0.5$
AIC	5.61	21.6	54.19	21.05		$\rho = 0.9$
AIC	115.04	96.82	74.9	96.08		Oracle:10
BIC	113.73	95.31	72.73	95.3		

Table 93: Nonzero coefficients at n=100, binary design, sparse covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\mathrm{GL}~\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	16.13	10.09	2.67	40.53	14.08	
CV.min	56.2	31.18	8.11	68.24	43.57	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	25.81	19.81	50.58	29.52		$\rho = 0$
AIC	109.45	94.74	71.57	86.29		Oracle:10
BIC	107.59	93.14	70.12	81.32		Oracle . 10
CV.1se	12.85	8.14	2.13	42.89	12.2	
CV.min	52.22	29.99	6.41	72.28	42.91	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	23.98	21.35	50.61	30.33		$\rho = 0.5$
AIC	110	95.56	72.79	88.07		Oracle:10
BIC	108.16	93.96	71.14	85.1		Oracle . 10
CV.1se	12.45	7.88	1.6	43.29	11.43	
CV.min	51.72	28.89	5.45	72.13	41.13	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	23.49	21.43	50.1	29.47		$\rho = 0.9$
AIC	109.97	95.94	73.2	88.1		Oracle: 10
BIC	108.29	94.27	71.58	84.75		Oracie: 10
CV.1se	1.71	0.53	0.18	46.33	1.54	
CV.min	21.83	4.96	0.88	79.69	19.74	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	11.04	21.93	53.84	24.64		$\rho = 0$
AIC	113.3	95.24	72.79	93.32		0 1 10
BIC	111.88	93.85	71.27	92.44		Oracle: 10
CV.1se	1.35	0.49	0.15	48.46	1.05	
CV.min	18.23	4.31	0.76	80.96	17.35	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	10.07	19.99	54.25	23.47		$\rho = 0.5$
AIC	113.55	96.07	74.08	93.89		0 1 10
BIC	112.04	94.68	72.11	93.01		Oracle: 10
CV.1se	1.48	0.45	0.15	46.58	1.43	
CV.min	18.38	4.3	0.72	78.04	16.64	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	9.91	18.8	53.45	23.86		$\rho = 0.9$
AIC	113.5	96.56	74.22	93.69		
BIC	112.07	94.87	72.43	92.51		Oracle: 10
CV.1se	0.19	0.05	0.03	48.89	0.49	
CV.min	7.2	0.78	0.22	82.38	7.36	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	5.69	41.34	56.18	20.81		$\rho = 0$
AIC	115.05	93.33	71.05	96.19		,
BIC	113.79	91.61	69.48	95.57		Oracle: 10
CV.1se	0.15	0.09	0.03	48.92	0.51	
CV.min	6.87	0.75	0.22	83.16	6.76	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	5.32	39.19	56.2	20.6		$\rho = 0.5$
AIC	115.1	93.86	71.59	96.49		,
BIC	113.89	92.23	69.58	95.72		Oracle: 10
CV.1se	0.35	0.08	0.03	47.2	0.51	
CV.min	7.52	0.85	0.23	81.11	7.4	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	5.54	39.18	55.9	21.08		$\rho = 0.9$
AIC	115.04	94.12	71.57	96.28		,
BIC	113.72	92.32	70.03	95.6		Oracle:10
	110.12	72.72	, 0.03	75.0		

Table 94: Nonzero coefficients at n=100, binary design, sparse covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\mathrm{GL}\ \gamma=10$	marginal AL	sparsenet MCP	
CV.1se	16.25	9.9	2.56	40.8	13.89	
CV.min	56.12	30.29	7.09	68.19	43.91	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	25.92	20.1	50.87	29.8		$\rho = 0$
AIC	109.5	94.17	71.06	86.42		Oracle:10
BIC	107.71	92.58	69.35	81.31		Oracle . 10
CV.1se	12.66	7.82	1.83	43.08	12.63	
CV.min	51.74	29.5	5.79	72.42	45.16	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	23.93	21.36	51.14	30.35		$\rho = 0.5$
AIC	110.06	95.36	72.61	88.21		Oracle:10
BIC	108.22	93.81	71.01	85.14		Oracle . 10
CV.1se	12.13	7.54	1.57	43.65	11.08	
CV.min	51.24	27.8	5.46	72.44	42.37	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	23.51	22.16	50.82	29.91		$\rho = 0.9$
AIC	109.96	95.43	72.92	88.15		Oma ala . 10
BIC	108.27	93.79	71.36	84.83		Oracle:10
CV.1se	1.67	0.54	0.17	46.44	1.52	
CV.min	21.94	4.62	0.85	79.58	19.81	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	11.21	25.15	54.4	24.47		$\rho = 0$
AIC	113.21	94.98	72.58	93.3		·
BIC	111.84	93.46	70.87	92.48		Oracle: 10
CV.1se	1.31	0.46	0.16	48.53	1.11	
CV.min	17.75	3.93	0.74	81.02	17.72	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	9.99	22.08	53.71	23.21		$\rho = 0.5$
AIC	113.45	95.41	73.3	93.87		,
BIC	112.21	93.9	71.58	93.07		Oracle: 10
CV.1se	1.48	0.44	0.15	46.94	1.36	
CV.min	18.39	4.36	0.68	78.06	16.65	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	9.9	20.73	54.31	23.77		$\rho = 0.9$
AIC	113.62	95.86	73.83	93.83		
BIC	111.78	94.25	72.08	92.75		Oracle: 10
CV.1se	0.2	0.05	0.03	48.94	0.51	
CV.min	7.25	0.85	0.24	82.54	7.42	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	5.58	42.66	56.7	20.93		$\rho = 0$
AIC	115.13	92.77	70.27	96.11		
BIC	113.8	91.17	68.87	95.44		Oracle: 10
CV.1se	0.13	0.06	0.03	48.89	0.47	
CV.min	7.36	0.71	0.23	82.88	6.72	$sd(\mu)/\sigma = 0.5$
AICc	5.47	40.99	56.27	20.73	***-	$\rho = 0.5$
AIC	115.14	93.36	71.01	96.47		
BIC	114.08	91.68	69.34	95.79		Oracle: 10
CV.1se	0.31	0.06	0.03	46.93	0.54	
CV.nsc	7.5	0.77	0.22	80.97	7.4	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	5.59	40.25	56.13	21.02		$\rho = 0.9$
AIC	115.22	93.28	71.09	96.18		
BIC	113.78	91.46	69.58	95.53		Oracle:10
DIC	113.70	71. 4 0	07.30	75.55		

Table 95: Nonzero coefficients at n=100, binary design, sparse covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$	$\mathrm{GL}\ \gamma=10$	marginal AL	sparsenet MCP	
CV.1se	16.3	9.87	2.6	40.81	13.9	
CV.min	56.43	30.25	7.22	68.21	44.62	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	25.96	20.19	50.51	30.09		$\rho = 0$
AIC	109.46	94.02	70.89	86.51		Oracle:10
BIC	107.7	92.34	69.24	81.5		Oracle . 10
CV.1se	12.64	7.58	1.76	43.12	12.52	
CV.min	51.72	28.7	5.71	72.35	45.49	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	24.19	21.69	51.09	30.58		$\rho = 0.5$
AIC	109.97	95.16	72.22	88.27		Oracle:10
BIC	108.2	93.63	70.63	85.32		Oracle . 10
CV.1se	12.47	7.56	1.56	43.72	11.49	
CV.min	52.07	28.03	5.1	72.34	43.41	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	23.59	22.25	51.31	29.76		$\rho = 0.9$
AIC	110.06	95.27	72.43	88.19		Oracle: 10
BIC	108.38	93.75	70.8	85.2		Oracie: 10
CV.1se	1.67	0.58	0.17	46.52	1.53	
CV.min	21.53	4.46	0.88	79.52	19.68	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	11.19	26.01	54.39	24.47		$\rho = 0$
AIC	113.26	94.75	72.32	93.32		·
BIC	111.88	92.98	70.66	92.52		Oracle:10
CV.1se	1.39	0.49	0.14	48.48	1.08	
CV.min	17.82	3.67	0.7	80.79	16.98	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	9.77	23.42	53.92	23.32		$\rho = 0.5$
AIC	113.55	95.31	73.21	93.9		,
BIC	112.09	93.71	71.35	93.02		Oracle:10
CV.1se	1.49	0.47	0.17	47.01	1.38	
CV.min	18.57	3.81	0.71	78.45	16.48	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	9.44	22.28	54.36	24.04		$\rho = 0.9$
AIC	113.62	95.64	73.58	93.83		
BIC	112.03	93.96	72.05	92.8		Oracle: 10
CV.1se	0.18	0.05	0.04	49.01	0.5	
CV.min	7.3	0.76	0.22	82.27	7.55	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	5.68	42.76	56.51	20.96		$\rho = 0$
AIC	115.05	92.49	70.28	96.17		·
BIC	113.84	90.98	68.77	95.54		Oracle:10
CV.1se	0.13	0.06	0.02	49.06	0.49	
CV.min	7.18	0.72	0.22	82.87	6.86	$sd(\mu)/\sigma = 0.5$
AICc	5.32	41.42	56.52	20.47	0.00	$\rho = 0.5$
AIC	115.25	93.32	70.79	96.45		
BIC	113.97	91.47	69.17	95.78		Oracle:10
CV.1se	0.32	0.09	0.02	47.14	0.5	
CV.13C	7.87	0.81	0.21	81.23	7.48	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	5.56	41.04	56.52	21.18	7.40	$\rho = 0.9$
AIC	115.32	93.22	70.92	96.26		,
BIC	113.95	91.52	69.54	95.46		Oracle:10
DIC	113.73	71.34	09.34	22.40		

Table 96: Nonzero coefficients at n=100, continuous design, sparse covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\mathrm{GL}~\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	14.5	10.37	4.59	34.35	9.08	
CV.min	48.76	30.49	9.09	62.24	25.12	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	23.63	12.69	40.4	27.3		$\rho = 0$
AIC	107.21	95.86	73.11	82.84		Oracle: 10
BIC	105.59	94.62	71.98	68.72		Oracic : 10
CV.1se	1.85	2.03	0.98	34.6	2.43	
CV.min	18.64	13.43	2.57	67.88	10.97	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	11.48	3.33	32.98	21.77		$\rho = 0.5$
AIC	108.62	99.01	78.58	86.94		Oracle: 10
BIC	107.48	98.11	77.47	69.36		Oracic . 10
CV.1se	1.87	1.57	1.21	14.26	1.38	
CV.min	12.42	8.94	2.65	35.64	4.83	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	9.63	2.13	1.09	20.56		$\rho = 0.9$
AIC	103.72	94.2	74.92	59.68		Oracle: 10
BIC	96.42	91.4	74.17	4.16		Oracie: 10
CV.1se	2.32	1.23	0.47	42.95	1.56	
CV.min	21.01	7.68	1.51	75.87	17.68	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	12.34	2.64	52.92	22.95		$\rho = 0$
AIC	112.42	97.36	75.51	91.96		0 1 10
BIC	110.69	96.1	73.51	89.39		Oracle:10
CV.1se	0.65	0.47	0.24	37.69	0.66	
CV.min	10.16	4.68	1	71.7	7.12	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	7.91	1.19	49.4	20.47		$\rho = 0.5$
AIC	112.63	100.66	80.45	92.43		, , , , ,
BIC	110.97	99.28	79.02	88.18		Oracle: 10
CV.1se	1.08	1.02	0.88	8.06	0.92	
CV.min	9.12	6.35	1.86	27.66	4.02	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	8.21	1.51	1.5	14.76		$\rho = 0.9$
AIC	108.8	96.79	77.68	77.15		,
BIC	107.12	96.28	76.8	6.57		Oracle:10
CV.1se	0.43	0.1	0.04	47.17	0.53	
CV.min	7.26	1.51	0.35	81.57	7.12	$sd(\mu)/\sigma = 0.5$
AICc	6.04	5.46	56.14	20.48		$\rho = 0$
AIC	114.91	96.23	74.15	96.17		,
BIC	113.8	95.08	71.87	95.47		Oracle:10
CV.1se	0.19	0.1	0.03	40.1	0.4	
CV.min	6.2	1.96	0.33	73.69	5.92	$sd(\mu)/\sigma = 0.5$
AICc	5.5	0.51	54.56	19.49	3.72	$\rho = 0.5$
AIC	115.31	99.61	78.56	95.89		
BIC	113.74	98.17	76.53	94.87		Oracle:10
CV.1se	0.27	0.21	0.13	8.65	0.47	
CV.13C	6.07	3.78	0.76	29.34	4.84	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	6.02	0.53	39.04	15.1	1.07	$\rho = 0.9$
AIC	114.26	98.77	79.84	91.25		
BIC	113.21	98.77	78.81	40.59		Oracle: 10
БІС	113.41	70.20	/0.01	40.33		

Table 97: Nonzero coefficients at n=100, continuous design, sparse covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$,	marginal AL	sparsenet MCP	
CV.1se	15.25	9.84	2.94	38.53	12.86	
CV.min	52.29	29.7	7.84	65.99	41.23	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	25.49	14.18	48.45	29.4		$\rho = 0$
AIC	108.91	94.44	71.11	85.89		Oracle: 10
BIC	107.15	93.03	69.96	79.75		Oracic . 10
CV.1se	1.13	0.83	0.32	38.6	1.18	
CV.min	15.96	7.85	1.36	71.45	12.66	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	10.31	2.05	51.43	22.39		$\rho = 0.5$
AIC	111.75	99.46	78.84	91.86		Oracle: 10
BIC	110.21	98.12	77.3	88.77		Oracie . 10
CV.1se	2.94	2.39	1.55	11.52	1.8	
CV.min	17.32	11.96	3.39	31.45	5.82	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	12.15	2.92	4.24	17.22		$\rho = 0.9$
AIC	110.52	98.92	79.39	82.52		0 1 10
BIC	109.06	98.51	78.52	16.99		Oracle: 10
CV.1se	1.89	0.68	0.22	45.26	1.47	
CV.min	20.44	4.87	1	77.64	19.27	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	11.4	3.98	55.05	23.7		$\rho = 0$
AIC	112.93	95.4	72.56	93.21		,
BIC	111.49	93.86	71.14	92.01		Oracle:10
CV.1se	0.47	0.15	0.09	40.29	0.5	
CV.min	8.63	3.06	0.5	73.88	8.11	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	6.57	1.17	53.49	20.6	0.11	$\rho = 0.5$
AIC	114.17	99.81	78.69	94.66		,
BIC	112.51	98.2	76.7	92.95		Oracle:10
CV.1se	0.92	0.75	0.43	10.91	0.9	
CV.13c	10.64	7.1	1.62	31.65	6.78	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	8.71	1.03	22.63	16.97	0.76	$\rho = 0.9$
AIC	113.45	99.75	80.37	89.73		,
BIC	112.3	99.73	79.27	36.91		Oracle:10
CV.1se	0.45	0.08	0.04	47.64	0.51	
CV.1se CV.min	7.27	1.09	0.04	83.01	6.88	$sd(\mu)/\sigma = 0.5$
AICc	5.88	21.4	57.22	20.57	0.66	$\begin{array}{c c} \operatorname{sd}(\mu)/\sigma = 0.3 \\ \rho = 0 \end{array}$
AICC	115.22	93.22	70.71	96.37		$\rho = 0$
BIC			69.19	96.37 95.75		Oracle:10
CV.1se	113.89	91.61			0.38	
	0.16		0.01	40.62		-1()/- 0.5
CV.min	5.75	1.27	0.24	74.63	5.47	$sd(\mu)/\sigma = 0.5$
AICc	4.8	2.44	56.44	19.2		$\rho = 0.5$
AIC	115.48	97.16	75.46	96.22		Oracle:10
BIC	113.75	95.41	73.34	95.56	0.41	
CV.1se	0.23	0.1	0.04	9.17	0.41	1/)/ 0.7
CV.min	5.11	2.47	0.36	30.21	4.47	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.77	0.2	59.58	14.71		$\rho = 0.9$
AIC	115.51	97.78	79.39	93.86		Oracle: 10
BIC	114.51	97.09	77.93	56.05		

Table 98: Nonzero coefficients at n=100, continuous design, sparse covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\mathrm{GL}~\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	15.3	9.46	2.79	38.84	13.15	
CV.min	52.74	28.67	7.57	66.14	40.88	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	25.79	14.25	49.58	29.74		$\rho = 0$
AIC	109.07	94.06	70.86	85.87		Oracle:10
BIC	107.23	92.67	69.57	80.39		Oracle. 10
CV.1se	1.15	0.8	0.29	38.82	1.13	
CV.min	15.67	7.55	1.3	71.88	12.83	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	9.99	2.09	51.75	22.65		$\rho = 0.5$
AIC	111.92	99.41	78.36	92.07		Oracle: 10
BIC	110.3	97.87	76.79	88.34		Oracie: 10
CV.1se	3.02	2.37	1.53	11.41	1.84	
CV.min	17.58	11.65	3.21	30.64	6.05	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	12.44	2.96	4.2	17.48		$\rho = 0.9$
AIC	111.28	99.27	79.3	84.13		0 1 10
BIC	110.01	98.5	78.44	19.56		Oracle: 10
CV.1se	1.85	0.68	0.25	45.32	1.5	
CV.min	20.34	4.69	0.94	77.91	19.42	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	11.35	4.96	55.5	23.71		$\rho = 0$
AIC	112.88	94.53	72.26	93.26		·
BIC	111.39	93.22	70.86	92.15		Oracle: 10
CV.1se	0.49	0.15	0.09	40.63	0.55	
CV.min	8.72	2.83	0.49	74.05	7.92	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	6.7	1.08	54.75	20.91		$\rho = 0.5$
AIC	114.18	99.19	78.32	94.66		
BIC	112.37	97.6	76.47	93.35		Oracle: 10
CV.1se	0.93	0.75	0.41	11.31	0.92	
CV.min	10.6	6.93	1.59	31.92	6.93	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	8.87	1	28.15	17.33		$\rho = 0.9$
AIC	113.67	99.58	80.42	90.31		
BIC	112.6	98.96	79.3	38.44		Oracle:10
CV.1se	0.39	0.09	0.03	47.88	0.51	
CV.min	7.02	0.94	0.22	83.05	6.92	$sd(\mu)/\sigma = 0.5$
AICc	6.03	23.93	58.01	20.39		$\rho = 0$
AIC	115.14	92.72	70.33	96.45		·
BIC	113.9	91.32	68.77	95.84		Oracle:10
CV.1se	0.15	0.05	0.01	40.56	0.39	
CV.min	5.64	1.13	0.24	74.59	5.6	$sd(\mu)/\sigma = 0.5$
AICc	4.77	3.34	56.58	18.98	2.0	$\rho = 0.5$
AIC	115.38	96.69	74.79	96.22		
BIC	113.88	95.01	72.91	95.49		Oracle:10
CV.1se	0.22	0.09	0.05	9.07	0.39	
CV.13C CV.min	4.92	2.39	0.35	30.14	4.48	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.99	0.18	60.35	14.89	1.70	$\rho = 0.9$
AICC	115.45	97.52	79.08	94.04		
BIC	114.32	96.92	77.76	56.09		Oracle:10
БІС	114.34	70.74	77.70	30.09		

Table 99: Nonzero coefficients at n=100, continuous design, sparse covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	15.21	9.35	2.77	38.82	13.47	
CV.min	52.82	28.65	7.41	66.02	41.77	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	25.42	14.14	50.04	29.98		$\rho = 0$
AIC	109.08	93.8	70.69	85.97		Oracle: 10
BIC	107.32	92.37	69.39	80.36		Oracie. 10
CV.1se	1.17	0.96	0.3	38.95	1.11	
CV.min	15.91	7.53	1.25	71.91	12.68	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	10.01	1.97	50.99	22.59		$\rho = 0.5$
AIC	111.92	99.13	78.16	92.24		Oracle: 10
BIC	110.31	97.63	76.44	88.11		Oracle: 10
CV.1se	3.06	2.36	1.54	11.34	1.82	
CV.min	17.76	11.56	3.37	30.47	6.11	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	12.36	2.97	5.95	17.28		$\rho = 0.9$
AIC	111.5	99.3	79.39	84.64		Omasla . 10
BIC	110.17	98.8	78.55	21.46		Oracle: 10
CV.1se	1.82	0.61	0.24	45.25	1.42	
CV.min	20.17	4.57	1.05	77.66	19.06	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	11.37	5.38	55.83	23.62		$\rho = 0$
AIC	112.97	94.51	71.98	93.3		,
BIC	111.61	93.11	70.39	91.94		Oracle: 10
CV.1se	0.45	0.14	0.09	40.74	0.56	
CV.min	8.58	2.68	0.51	74.03	7.9	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	6.68	1.07	54.68	20.64		$\rho = 0.5$
AIC	114.12	99.09	78	94.62		,
BIC	112.63	97.48	75.92	93.32		Oracle: 10
CV.1se	0.95	0.75	0.38	11.42	0.88	
CV.min	10.38	6.89	1.56	31.8	6.94	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	8.91	0.97	29.77	17.51		$\rho = 0.9$
AIC	113.75	99.3	80.23	90.54		,
BIC	112.62	98.61	78.95	40.24		Oracle: 10
CV.1se	0.4	0.09	0.03	47.72	0.52	
CV.min	7.16	0.87	0.23	83.11	6.8	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	5.98	25.61	57.58	20.44		$\rho = 0$
AIC	115.19	92.21	69.93	96.41		,
BIC	114	90.72	68.56	95.8		Oracle: 10
CV.1se	0.14	0.05	0.02	40.55	0.38	
CV.min	5.73	1.12	0.24	74.35	5.55	$sd(\mu)/\sigma = 0.5$
AICc	4.63	3.95	56.76	19.17		$\rho = 0.5$
AIC	115.4	96.71	74.93	96.33		,
BIC	113.69	95.06	72.93	95.62		Oracle:10
CV.1se	0.23	0.09	0.04	9.02	0.38	
CV.rise CV.min	4.93	2.29	0.36	30.16	4.45	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	4.92	0.19	60.41	14.85		$\rho = 0.9$
AIC	115.49	97.2	79.11	94.12		
BIC	113.49	96.64	77.64	54.99		Oracle:10
	117,77	70.04	77.04	27.22		

Table 100: FDR | Sensitivity for n=1000, binary design, dense covariates, and decay 10.

	lasso	$GL \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.36 0.74	0.20 0.71	0.01 0.60	0.23 0.65	0.01 0.57	
CV.min	$0.72 \mid 0.85$	0.64 0.82	$0.22 \mid 0.73$	0.54 0.72	0.20 0.71	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	$0.70 \mid 0.84$	0.63 0.82	0.36 0.76	0.52 0.72		$\rho = 0$
AIC	0.95 0.95	0.95 0.95	0.95 0.94	0.53 0.72		<u></u>
BIC	0.22 0.71	0.14 0.69	$0.01 \mid 0.61$	0.17 0.63		$\bar{s}_{Oracle} = 33.3$
CV.1se	0.41 0.74	0.25 0.71	0.02 0.60	0.28 0.65	0.01 0.57	
CV.min	0.74 0.84	0.66 0.82	0.25 0.72	0.56 0.72	0.21 0.71	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.72 0.84	0.65 0.82	0.39 0.77	0.54 0.71		$\rho = 0.5$
AIC	0.95 0.96	0.95 0.95	0.95 0.94	0.55 0.71		- 22.2
BIC	0.24 0.70	0.15 0.68	0.01 0.60	0.20 0.62		$\bar{s}_{Oracle} = 33.3$
CV.1se	0.45 0.74	0.28 0.71	0.03 0.60	0.30 0.64	0.01 0.58	
CV.min	0.75 0.84	0.68 0.82	0.28 0.72	0.57 0.71	0.23 0.71	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.73 0.83	0.66 0.81	0.40 0.76	0.55 0.70	'	$\rho = 0.9$
AIC	0.95 0.96	0.95 0.96	0.95 0.94	0.56 0.71		
BIC	0.27 0.69	0.17 0.68	0.02 0.60	0.22 0.61		$\bar{s}_{Oracle} = 33.1$
CV.1se	0.27 0.64	0.13 0.59	0.01 0.47	0.45 0.67	0.01 0.46	
CV.min	0.72 0.79	0.61 0.76	0.14 0.61	0.81 0.81	0.26 0.65	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.72 0.79	0.63 0.77	0.34 0.67	$0.77 \mid 0.79$	'	$\rho = 0$
AIC	0.97 0.95	0.97 0.95	0.97 0.93	0.85 0.83		,
BIC	0.19 0.61	0.10 0.58	0.00 0.45	0.16 0.57		$\bar{s}_{Oracle} = 26.3$
CV.1se	0.31 0.62	0.16 0.58	0.01 0.47	0.50 0.67	0.01 0.46	
CV.min	0.74 0.78	0.64 0.74	0.15 0.60	0.82 0.80	0.24 0.62	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.73 0.78	0.65 0.75	0.37 0.67	0.78 0.77		$\rho = 0.5$
AIC	0.97 0.95	0.97 0.95	0.96 0.93	0.86 0.82		,
BIC	0.21 0.59	0.12 0.56	0.01 0.45	0.19 0.56		$\bar{s}_{Oracle} = 26.4$
CV.1se	0.35 0.63	0.19 0.58	0.02 0.47	0.51 0.66	0.01 0.46	
CV.min	0.75 0.79	0.66 0.75	0.18 0.60	0.81 0.79	0.27 0.63	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.74 0.79	0.67 0.76	0.39 0.68	0.79 0.77	0.27 0.00	$\rho = 0.9$
AIC	0.97 0.95	0.97 0.95	0.96 0.93	0.85 0.82		,
BIC	0.23 0.59	0.13 0.56	0.01 0.45	0.21 0.56		$\bar{s}_{Oracle} = 26.1$
CV.1se	0.12 0.38	0.06 0.34	0.01 0.26	0.62 0.62	0.01 0.27	
CV.min	0.70 0.66	0.54 0.59	0.14 0.43	0.88 0.79	0.38 0.53	$sd(\mu)/\sigma = 0.5$
AICc	0.73 0.69	0.60 0.63	0.22 0.43	0.85 0.76	0.00 0.00	$\rho = 0$
AIC	0.98 0.94	0.98 0.94	0.98 0.91	0.94 0.88		,
BIC	0.13 0.40	0.06 0.36	0.00 0.18	0.17 0.44		$\bar{s}_{Oracle} = 19.7$
CV.1se	0.14 0.36	0.08 0.33	0.01 0.26	0.66 0.62	0.01 0.26	
CV.min	0.72 0.66	0.59 0.59	0.14 0.42	0.89 0.79	0.36 0.51	$sd(\mu)/\sigma = 0.5$
AICc	0.75 0.68	0.64 0.63	0.26 0.45	0.85 0.75	0.50 0.51	$\rho = 0.5$
AIC	0.98 0.95	0.98 0.94	0.98 0.92	0.95 0.88		
BIC	0.13 0.37	0.07 0.34	0.00 0.18	0.19 0.41		$\bar{s}_{Oracle} = 19.4$
CV.1se	0.16 0.36	0.09 0.32	0.02 0.24	0.65 0.60	0.02 0.26	
CV.min	0.74 0.65	0.61 0.58	0.16 0.40	$0.89 \mid 0.77$	0.37 0.50	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.74 0.03	0.66 0.62	0.10 0.40	0.86 0.73	0.57 0.50	$\rho = 0.9$
AIC	0.76 0.06	0.00 0.02	0.28 0.44	0.86 0.75		,
BIC	0.98 0.93	0.98 0.94	0.98 0.92	0.21 0.40		$\bar{s}_{Oracle} = 19.7$
Біс	0.14 0.33	0.07 0.32	0.00 0.17	0.21 0.40		

Table 101: FDR | Sensitivity for n=1000, binary design, dense covariates, and decay 50.

	lasso	$GL \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.49 0.76	0.36 0.71	0.07 0.56	0.43 0.66	0.15 0.61	
CV.min	0.64 0.83	0.56 0.80	0.19 0.65	0.57 0.74	0.39 0.74	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.55 0.79	0.48 0.77	0.43 0.75	0.53 0.71		$\rho = 0$
AIC	$0.84 \mid 0.94$	0.84 0.94	$0.84 \mid 0.91$	$0.63 \mid 0.77$		_ 124.2
BIC	0.22 0.59	0.13 0.56	0.02 0.47	0.22 0.54		$\bar{s}_{Oracle} = 124.2$
CV.1se	0.52 0.76	0.39 0.71	0.08 0.56	0.47 0.66	0.13 0.60	
CV.min	0.66 0.84	0.58 0.80	0.21 0.65	0.59 0.73	0.38 0.73	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.57 0.78	0.50 0.77	0.44 0.76	0.55 0.71		$\rho = 0.5$
AIC	0.84 0.94	0.84 0.94	0.84 0.92	0.65 0.77		,
BIC	0.23 0.57	0.15 0.55	0.02 0.47	0.25 0.53		$\bar{s}_{Oracle} = 123.8$
CV.1se	0.54 0.76	0.41 0.71	0.10 0.56	0.48 0.65	0.16 0.60	
CV.min	0.67 0.84	0.59 0.80	0.24 0.65	0.60 0.73	0.39 0.73	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.58 0.78	0.51 0.77	0.45 0.75	0.56 0.70	ı	$\rho = 0.9$
AIC	0.84 0.94	0.84 0.94	0.84 0.91	0.65 0.76		,
BIC	0.25 0.56	0.16 0.55	0.03 0.47	0.27 0.52		$\bar{s}_{Oracle} = 123.6$
CV.1se	0.43 0.58	0.27 0.50	0.07 0.34	0.52 0.62	0.26 0.50	
CV.min	0.66 0.73	0.54 0.66	0.20 0.46	0.68 0.73	0.57 0.68	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.60 0.69	0.55 0.67	0.62 0.69	0.62 0.69	0.07 0.00	$\rho = 0$
AIC	0.90 0.94	0.90 0.92	0.90 0.90	0.79 0.82		,
BIC	0.08 0.24	0.06 0.29	0.01 0.12	0.17 0.38		$\bar{s}_{Oracle} = 90.2$
CV.1se	0.46 0.57	0.31 0.49	0.08 0.34	0.55 0.61	0.23 0.46	
CV.rise CV.min	0.67 0.73	0.56 0.66	0.21 0.46	0.69 0.72	0.55 0.66	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.61 0.68	0.56 0.66	0.62 0.69	0.64 0.68	0.00	$\rho = 0.5$
AIC	0.90 0.94	0.90 0.93	0.90 0.90	0.80 0.82		,
BIC	0.06 0.17	0.07 0.26	0.01 0.12	0.18 0.35		$\bar{s}_{Oracle} = 90.2$
CV.1se	0.48 0.57	0.34 0.50	0.10 0.33	0.56 0.61	0.26 0.47	
CV.rise CV.min	0.68 0.73	0.58 0.67	0.24 0.46	0.69 0.71	0.56 0.66	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.62 0.69	0.57 0.67	0.63 0.69	0.65 0.68	0.50 0.00	$\rho = 0.9$
AIC	0.90 0.94	0.90 0.93	0.90 0.90	0.80 0.81		$\rho = 0.5$
BIC	0.06 0.16	0.08 0.24	0.01 0.10	0.20 0.34		$\bar{s}_{Oracle} = 89.2$
CV.1se	0.08 0.06	0.03 0.02	0.00 0.01	0.65 0.44	0.09 0.04	
CV.13C	0.61 0.41	0.03 0.02	0.07 0.05	0.80 0.64	0.59 0.40	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.64 0.43	0.63 0.43	0.07 0.05	0.76 0.57	0.57 0.40	$\rho = 0$
AIC	0.94 0.92	0.94 0.90	0.94 0.90	0.90 0.81		'
BIC	0.01 0.01	0.00 0.01	0.00 0.00	0.06 0.04		$\bar{s}_{Oracle} = 56.2$
CV.1se	0.07 0.04	0.03 0.02	0.00 0.00	0.67 0.42	0.08 0.03	
CV.1sc CV.min	0.60 0.36	0.03 0.02	0.00 0.00	0.81 0.61	0.57 0.35	$sd(\mu)/\sigma = 0.5$
AICc	0.64 0.39	0.63 0.41	0.08 0.04	0.81 0.61	0.57 0.55	$\rho = 0.5$
AIC	0.04 0.39	0.03 0.41	0.29 0.20	0.77 0.33		$\rho = 0.5$
BIC	0.94 0.92	0.94 0.91	0.94 0.90	0.06 0.03		$\bar{s}_{Oracle} = 56.2$
					0.07 0.02	
CV.1se	0.07 0.03	$0.03 \mid 0.01$	$0.00 \mid 0.00$	0.67 0.41	0.07 0.03	ad()/- 05
CV.min	0.61 0.36	0.37 0.18	$0.09 \mid 0.04$	$0.81 \mid 0.60$	0.58 0.34	$sd(\mu)/\sigma = 0.5$
AICc	0.66 0.40	0.64 0.41	0.27 0.19	0.77 0.54		$\rho = 0.9$
AIC	0.94 0.92	0.94 0.91	0.94 0.90	0.90 0.80		$\bar{s}_{Oracle} = 56.5$
BIC	0.01 0.01	0.01 0.01	0.00 0.00	0.07 0.03		

Table 102: FDR | Sensitivity for n=1000, binary design, dense covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.47 0.74	0.36 0.68	0.15 0.52	0.41 0.64	0.38 0.70	
CV.min	0.58 0.82	$0.50 \mid 0.78$	0.26 0.62	$0.51 \mid 0.71$	$0.54 \mid 0.80$	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.46 0.73	$0.41 \mid 0.71$	$0.41 \mid 0.71$	$0.45 \mid 0.67$		$\rho = 0$
AIC	0.75 0.93	0.75 0.92	0.75 0.89	$0.57 \mid 0.76$		ā 208 7
BIC	0.06 0.20	0.09 0.38	0.08 0.43	0.18 0.42		$\bar{s}_{Oracle} = 208.7$
CV.1se	0.49 0.74	0.39 0.68	0.16 0.52	0.44 0.63	0.36 0.68	
CV.min	0.59 0.82	0.52 0.78	0.27 0.62	0.52 0.71	0.52 0.79	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.48 0.72	0.42 0.71	0.40 0.71	0.47 0.66		$\rho = 0.5$
AIC	0.75 0.93	0.75 0.93	0.75 0.90	0.58 0.76		200.0
BIC	0.03 0.10	0.10 0.35	0.09 0.43	0.20 0.39		$\bar{s}_{Oracle} = 208.8$
CV.1se	0.50 0.74	0.40 0.68	0.18 0.52	0.44 0.62	0.38 0.68	
CV.min	0.60 0.82	0.52 0.78	0.29 0.62	0.53 0.70	0.53 0.79	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.48 0.72	0.43 0.71	0.41 0.70	0.47 0.65		$\rho = 0.9$
AIC	0.75 0.93	0.75 0.93	0.75 0.90	0.59 0.75		- 200.4
BIC	0.03 0.08	0.11 0.33	0.11 0.43	0.21 0.38		$\bar{s}_{Oracle} = 209.4$
CV.1se	0.41 0.47	0.25 0.33	0.06 0.10	0.51 0.56	0.40 0.47	
CV.min	0.60 0.67	0.47 0.54	0.18 0.24	0.62 0.67	0.60 0.67	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.53 0.59	0.51 0.58	0.61 0.61	0.56 0.61	'	$\rho = 0$
AIC	0.84 0.92	0.84 0.91	0.85 0.89	0.74 0.80		'
BIC	0.00 0.01	0.01 0.02	0.00 0.00	0.05 0.09		$\bar{s}_{Oracle} = 143.3$
CV.1se	0.42 0.45	0.27 0.32	0.06 0.09	0.53 0.54	0.41 0.44	
CV.min	0.62 0.66	0.49 0.54	0.17 0.22	0.63 0.66	0.61 0.66	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.54 0.57	0.52 0.57	0.61 0.61	0.58 0.60		$\rho = 0.5$
AIC	0.84 0.93	0.84 0.91	0.85 0.89	0.75 0.79		,
BIC	0.00 0.01	0.01 0.01	0.00 0.00	0.05 0.06		$\bar{s}_{Oracle} = 144.0$
CV.1se	0.44 0.45	0.30 0.32	0.06 0.07	0.54 0.53	0.42 0.43	
CV.min	0.62 0.66	0.51 0.54	0.19 0.22	0.63 0.65	0.62 0.66	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.55 0.56	0.53 0.57	0.61 0.61	0.59 0.59	0.02 0.00	$\rho = 0.9$
AIC	0.84 0.93	0.84 0.91	0.85 0.89	0.75 0.79		,
BIC	0.00 0.00	0.00 0.01	0.00 0.00	0.05 0.06		$\bar{s}_{Oracle} = 143.6$
CV.1se	0.04 0.01	0.01 0.00	0.00 0.00	0.67 0.33	0.14 0.01	
CV.min	0.54 0.23	0.20 0.05	0.06 0.01	0.79 0.53	0.54 0.23	$sd(\mu)/\sigma = 0.5$
AICc	0.60 0.27	0.64 0.33	0.15 0.09	0.75 0.44	0.6 . 0.26	$\rho = 0$
AIC	0.92 0.91	0.92 0.89	0.92 0.90	0.88 0.76		'
BIC	0.01 0.00	0.00 0.00	0.00 0.00	0.05 0.01		$\bar{s}_{Oracle} = 77.9$
CV.1se	0.03 0.01	0.00 0.00	0.00 0.00	0.68 0.31	0.15 0.01	
CV.rise CV.min	0.51 0.18	0.19 0.04	0.06 0.01	0.80 0.51	0.51 0.17	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.59 0.23	0.61 0.30	0.17 0.10	0.76 0.43	0.51 0.17	$\rho = 0.5$
AIC	0.92 0.92	0.92 0.90	0.92 0.90	0.89 0.77		
BIC	$0.02 \mid 0.02$	0.00 0.00	0.00 0.00	0.06 0.01		$\bar{s}_{Oracle} = 78.0$
CV.1se	0.00 0.00	0.00 0.00	0.00 0.00	0.69 0.29	0.14 0.01	
CV.1sc CV.min	0.50 0.17	0.01 0.00	0.00 0.00	0.80 0.49	0.52 0.17	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.60 0.17	0.19 0.04	0.07 0.01	0.76 0.41	0.52 0.17	$\rho = 0.9$
AIC	0.00 0.23	0.02 0.29	0.10 0.09	0.70 0.41		,
BIC	0.92 0.91	0.92 0.89	0.92 0.90	0.89 0.70		$\bar{s}_{Oracle} = 77.5$
ыс	0.01 0.00	0.00 0.00	0.00 0.00	0.07 0.01		

Table 103: FDR | Sensitivity for n=1000, binary design, dense covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.44 0.72	0.35 0.62	0.22 0.39	0.39 0.62	0.46 0.75	
CV.min	0.53 0.82	0.46 0.75	0.33 0.55	$0.46 \mid 0.70$	$0.55 \mid 0.84$	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.39 0.65	0.37 0.64	0.42 0.66	0.39 0.62		$\rho = 0$
AIC	0.67 0.93	0.67 0.92	$0.67 \mid 0.88$	$0.52 \mid 0.77$		= -202.1
BIC	0.00 0.00	0.00 0.01	0.13 0.23	0.03 0.04		$\bar{s}_{Oracle} = 293.1$
CV.1se	0.45 0.71	0.37 0.61	0.22 0.38	0.41 0.60	0.46 0.74	
CV.min	0.54 0.82	0.47 0.75	0.33 0.54	0.47 0.69	0.55 0.84	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.40 0.63	0.38 0.64	0.42 0.66	0.41 0.61	,	$\rho = 0.5$
AIC	0.67 0.93	0.67 0.92	0.67 0.89	0.53 0.76		- 202.7
BIC	0.00 0.00	0.00 0.00	0.11 0.19	0.02 0.03		$\bar{s}_{Oracle} = 293.7$
CV.1se	0.46 0.72	0.38 0.61	0.23 0.36	0.41 0.59	0.47 0.74	
CV.min	0.54 0.82	0.47 0.75	0.34 0.54	0.47 0.68	0.56 0.84	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.40 0.63	0.38 0.63	0.42 0.66	0.41 0.59	1	$\rho = 0.9$
AIC	0.67 0.93	0.67 0.92	0.67 0.89	0.53 0.76		,
BIC	0.00 0.00	0.00 0.00	0.11 0.17	0.02 0.02		$\bar{s}_{Oracle} = 293.3$
CV.1se	0.35 0.28	0.12 0.08	0.00 0.00	0.48 0.44	0.36 0.29	
CV.min	0.54 0.54	0.34 0.28	0.05 0.02	0.56 0.57	0.55 0.55	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.46 0.41	0.49 0.45	0.60 0.51	0.51 0.48	0.00 0.00	$\rho = 0$
AIC	0.77 0.91	0.77 0.89	0.78 0.88	0.68 0.75		'
BIC	0.00 0.00	0.00 0.00	0.00 0.00	0.02 0.01		$\bar{s}_{Oracle} = 217.0$
CV.1se	0.33 0.23	0.09 0.05	0.00 0.00	0.50 0.43	0.34 0.24	
CV.13C CV.min	0.55 0.52	0.03 0.03	0.00 0.00	0.58 0.56	0.55 0.52	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.33 0.32	0.50 0.44	$0.60 \mid 0.52$	0.52 0.47	0.55 0.52	$\rho = 0.5$
AIC	0.77 0.91	0.77 0.89	0.78 0.88	0.69 0.75		$\rho = 0.5$
BIC	0.00 0.00	0.00 0.00	0.00 0.00	0.09 0.73		$\bar{s}_{Oracle} = 214.8$
CV.1se	0.34 0.22	0.10 0.05	0.00 0.00	0.02 0.01	0.35 0.23	
CV.1se CV.min	0.54 0.22	0.10 0.03	0.00 0.00	0.51 0.42	0.55 0.52	$ad(u)/\sigma = 1$
AICc	0.33 0.31	0.53 0.24	$0.60 \mid 0.51$		0.55 0.52	$sd(\mu)/\sigma = 1$ $\rho = 0.9$
				0.53 0.46		$\rho = 0.9$
AIC	0.77 0.91	0.77 0.89	0.78 0.88	0.69 0.74		$\bar{s}_{Oracle} = 215.0$
BIC	0.00 0.00	0.00 0.00	0.00 0.00	0.02 0.01	0.22 0.01	
CV.1se	0.03 0.00	0.00 0.00	$0.00 \mid 0.00$	0.72 0.24	0.22 0.01	-1()/- 0.5
CV.min	0.51 0.12	0.16 0.01	$0.07 \mid 0.00$	0.81 0.43	0.54 0.12	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.61 0.15	0.68 0.27	0.07 0.04	0.78 0.35		$\rho = 0$
AIC	0.91 0.91	0.91 0.89	0.91 0.91	0.88 0.71		$\bar{s}_{Oracle} = 90.7$
BIC	0.01 0.00	0.00 0.00	0.02 0.02	0.09 0.00	0.24 0.00	0.4000
CV.1se	0.02 0.00	0.00 0.00	0.00 0.00	0.73 0.23	0.24 0.00	1/)/
CV.min	0.47 0.09	0.15 0.01	0.07 0.00	0.81 0.41	0.52 0.09	$sd(\mu)/\sigma = 0.5$
AICc	0.59 0.12	0.65 0.24	0.07 0.04	0.78 0.33		$\rho = 0.5$
AIC	0.91 0.91	0.91 0.89	0.91 0.91	0.88 0.71		$\bar{s}_{Oracle} = 91.4$
BIC	0.01 0.00	0.00 0.00	0.01 0.01	0.07 0.00		-Oracle >2.1
CV.1se	0.01 0.00	0.00 0.00	$0.00 \mid 0.00$	0.72 0.21	0.24 0.00	
CV.min	0.47 0.09	0.16 0.01	0.06 0.00	0.81 0.40	$0.51 \mid 0.08$	$sd(\mu)/\sigma = 0.5$
AICc	0.58 0.12	0.65 0.24	0.07 0.04	0.79 0.32		$\rho = 0.9$
AIC	0.91 0.90	0.91 0.89	0.91 0.90	$0.88 \mid 0.71$		$\bar{s}_{Oracle} = 89.5$
BIC	0.01 0.00	0.00 0.00	0.01 0.01	0.09 0.00		Oracie - 07.5

Table 104: FDR | Sensitivity for n=1000, continuous design, dense covariates, and decay 10.

	lasso	$GL \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.36 0.74	0.21 0.71	0.02 0.60	0.24 0.65	0.00 0.57	
CV.min	0.72 0.85	0.64 0.83	0.22 0.72	0.55 0.73	0.20 0.71	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.70 0.84	0.60 0.82	0.10 0.67	0.52 0.72		$\rho = 0$
AIC	0.95 0.95	0.95 0.95	0.95 0.94	0.53 0.72		22 2
BIC	0.22 0.70	0.12 0.68	0.00 0.57	0.18 0.63		$\bar{s}_{Oracle} = 33.2$
CV.1se	0.72 0.70	0.61 0.66	0.17 0.56	0.51 0.51	0.04 0.55	
CV.min	0.85 0.81	0.81 0.77	0.53 0.67	0.60 0.55	0.25 0.63	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.82 0.78	0.78 0.75	0.44 0.65	0.60 0.55	,	$\rho = 0.5$
AIC	0.94 0.95	0.94 0.95	0.94 0.94	0.60 0.55		
BIC	0.49 0.59	0.36 0.57	0.05 0.49	0.49 0.51		$\bar{s}_{Oracle} = 32.9$
CV.1se	0.87 0.65	0.85 0.60	0.73 0.50	0.04 0.37	0.48 0.50	
CV.min	0.90 0.76	0.89 0.73	0.81 0.60	0.06 0.39	0.66 0.57	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.89 0.72	0.87 0.68	0.78 0.57	0.06 0.39	'	$\rho = 0.9$
AIC	0.90 0.79	0.90 0.79	0.88 0.77	0.06 0.39		,
BIC	0.80 0.43	0.78 0.40	0.49 0.31	0.06 0.39		$\bar{s}_{Oracle} = 30.4$
CV.1se	0.27 0.64	0.13 0.59	0.01 0.48	0.47 0.68	0.01 0.47	
CV.min	0.72 0.79	0.61 0.76	0.15 0.61	0.81 0.81	0.26 0.65	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.72 0.79	0.57 0.75	0.03 0.52	0.77 0.79	0.20 0.00	$\rho = 0$
AIC	0.97 0.95	0.97 0.95	0.97 0.93	0.85 0.83		,
BIC	0.19 0.61	0.07 0.57	0.00 0.40	0.16 0.58		$\bar{s}_{Oracle} = 26.2$
CV.1se	0.66 0.55	0.53 0.51	0.12 0.42	0.76 0.57	0.07 0.44	
CV.min	0.85 0.72	0.81 0.68	0.43 0.54	0.86 0.67	0.33 0.55	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.84 0.70	0.79 0.66	0.31 0.51	0.85 0.65	0.55 0.55	$\rho = 0.5$
AIC	0.96 0.96	0.96 0.95	0.96 0.94	0.87 0.67		,
BIC	0.41 0.44	0.29 0.41	0.02 0.32	0.51 0.43		$\bar{s}_{Oracle} = 25.8$
CV.1se	0.68 0.31	0.80 0.34	0.77 0.33	0.32 0.44	0.61 0.35	
CV.rise CV.min	0.90 0.59	0.90 0.56	0.84 0.45	0.53 0.54	0.76 0.45	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.91 0.56	0.89 0.51	0.77 0.39	0.53 0.54	0.70 0.15	$\rho = 0.9$
AIC	0.95 0.86	0.95 0.88	0.77 0.35	0.53 0.54		,
BIC	0.08 0.05	0.01 0.04	0.01 0.05	0.34 0.45		$\bar{s}_{Oracle} = 23.3$
CV.1se	0.12 0.38	0.06 0.34	0.01 0.05	0.63 0.64	0.01 0.27	
CV.13C CV.min	0.70 0.67	0.55 0.60	0.01 0.20	0.89 0.81	0.37 0.54	$sd(\mu)/\sigma = 0.5$
AICc	0.73 0.69	0.33 0.60	0.14 0.43	$0.85 \mid 0.81$ $0.85 \mid 0.77$	0.57 0.54	$\rho = 0$
AIC	0.73 0.05	0.43 0.37	0.01 0.22	0.94 0.88		,
BIC	0.13 0.41	0.03 0.33	0.00 0.09	$0.17 \mid 0.44$		$\bar{s}_{Oracle} = 19.2$
CV.1se	0.15 0.41	0.03 0.33	0.00 0.09	0.80 0.42	0.10 0.22	
CV.1se CV.min		0.19 0.13	0.07 0.14	0.80 0.42		$sd(\mu)/\sigma = 0.5$
AICc	0.81 0.46	0.78 0.44		,	0.44 0.37	$\rho = 0.5$
	0.84 0.50		0.04 0.13	$0.90 \mid 0.57$		$\rho = 0.5$
AIC	0.98 0.95	0.98 0.95	0.98 0.93	0.94 0.74 0.17 0.12		$\bar{s}_{Oracle} = 19.0$
BIC	0.10 0.11	0.04 0.09	0.00 0.05		0.01 0.07	
CV.1se	$0.00 \mid 0.07$	$0.00 \mid 0.07$	$0.00 \mid 0.07$	0.45 0.28	$0.01 \mid 0.07$	ad()/- 05
CV.min	0.57 0.09	$0.45 \mid 0.08$	$0.16 \mid 0.07$	0.82 0.64	0.35 0.12	$sd(\mu)/\sigma = 0.5$
AICc	0.70 0.10	0.20 0.07	$0.00 \mid 0.07$	0.81 0.64		$\rho = 0.9$
AIC	0.96 0.86	0.97 0.90	$0.97 \mid 0.88$	0.83 0.68		$\bar{s}_{Oracle} = 16.4$
BIC	0.09 0.07	0.01 0.07	0.00 0.07	0.13 0.12		

Table 105: FDR | Sensitivity for n=1000, continuous design, dense covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.50 0.76	0.36 0.71	0.07 0.56	0.44 0.67	0.15 0.62	
CV.min	$0.65 \mid 0.84$	$0.56 \mid 0.81$	$0.19 \mid 0.65$	$0.58 \mid 0.74$	0.39 0.74	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.55 0.79	$0.47 \mid 0.77$	$0.29 \mid 0.70$	$0.53 \mid 0.72$		$\rho = 0$
AIC	$0.84 \mid 0.94$	$0.84 \mid 0.94$	$0.84 \mid 0.91$	$0.63 \mid 0.77$		$\bar{s}_{Oracle} = 122.8$
BIC	0.21 0.59	$0.11 \mid 0.55$	0.01 0.43	$0.22 \mid 0.55$		SOracle - 122.6
CV.1se	0.68 0.74	0.62 0.70	0.33 0.56	0.65 0.58	0.24 0.55	
CV.min	$0.74 \mid 0.84$	$0.70 \mid 0.80$	$0.47 \mid 0.66$	$0.69 \mid 0.65$	$0.42 \mid 0.64$	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	$0.68 \mid 0.74$	0.63 0.72	$0.48 \mid 0.68$	$0.67 \mid 0.62$		$\rho = 0.5$
AIC	$0.84 \mid 0.95$	0.84 0.94	$0.83 \mid 0.93$	$0.70 \mid 0.67$		_ 122.5
BIC	0.25 0.23	0.35 0.39	$0.15 \mid 0.41$	0.46 0.35		$\bar{s}_{Oracle} = 122.5$
CV.1se	0.74 0.74	0.71 0.70	0.60 0.58	0.56 0.17	0.54 0.54	
CV.min	0.77 0.83	0.75 0.80	0.64 0.67	0.61 0.21	0.59 0.61	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.73 0.72	0.71 0.70	0.62 0.65	0.61 0.20		$\rho = 0.9$
AIC	0.77 0.83	0.77 0.84	0.74 0.84	0.61 0.21		110.5
BIC	0.05 0.01	0.01 0.01	0.00 0.01	0.47 0.14		$\bar{s}_{Oracle} = 119.5$
CV.1se	0.43 0.58	0.27 0.50	0.07 0.33	0.52 0.62	0.26 0.49	
CV.min	0.66 0.73	0.54 0.66	0.19 0.45	0.68 0.73	0.57 0.68	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.60 0.69	0.50 0.65	0.32 0.51	0.62 0.69	'	$\rho = 0$
AIC	0.90 0.93	0.90 0.92	0.90 0.90	0.79 0.82		,
BIC	0.07 0.24	0.03 0.23	0.00 0.01	0.17 0.38		$\bar{s}_{Oracle} = 90.2$
CV.1se	0.62 0.41	0.60 0.41	0.33 0.28	0.71 0.48	0.38 0.37	
CV.min	0.76 0.66	0.72 0.62	0.48 0.42	0.77 0.60	0.54 0.49	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.72 0.57	0.69 0.57	0.59 0.56	0.75 0.55	1	$\rho = 0.5$
AIC	0.90 0.95	0.90 0.94	0.90 0.92	0.82 0.75		,
BIC	0.01 0.01	0.00 0.01	0.00 0.00	0.09 0.04		$\bar{s}_{Oracle} = 89.7$
CV.1se	0.06 0.04	0.18 0.10	0.18 0.10	0.65 0.18	0.61 0.30	
CV.min	0.59 0.20	0.63 0.35	0.43 0.24	0.73 0.29	0.72 0.43	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.67 0.16	0.32 0.14	0.21 0.16	0.73 0.28	***- ****	$\rho = 0.9$
AIC	0.87 0.88	0.86 0.88	0.86 0.85	0.73 0.29		,
BIC	0.06 0.01	0.01 0.01	0.00 0.01	0.11 0.03		$\bar{s}_{Oracle} = 86.2$
CV.1se	0.09 0.06	0.03 0.02	0.00 0.00	0.65 0.45	0.07 0.05	
CV.min	0.61 0.41	0.36 0.23	0.07 0.05	0.81 0.64	0.59 0.40	$sd(\mu)/\sigma = 0.5$
AICc	0.63 0.43	0.30 0.21	0.00 0.00	0.76 0.57		$\rho = 0$
AIC	0.94 0.92	0.94 0.90	0.94 0.90	0.90 0.81		,
BIC	0.01 0.01	0.00 0.00	0.00 0.00	0.06 0.04		$\bar{s}_{Oracle} = 55.9$
CV.1se	0.01 0.00	0.00 0.00	0.00 0.00	0.68 0.16	0.16 0.01	
CV.min	0.44 0.07	0.31 0.04	0.10 0.01	0.85 0.38	0.47 0.07	$sd(\mu)/\sigma = 0.5$
AICc	0.63 0.13	0.11 0.02	0.00 0.00	0.84 0.32	0.17 0.07	$\rho = 0.5$
AIC	0.94 0.94	0.94 0.93	0.94 0.91	0.91 0.74		,
BIC	0.02 0.00	0.00 0.00	0.00 0.00	0.09 0.01		$\bar{s}_{Oracle} = 55.6$
CV.1se	0.00 0.00	0.00 0.00	0.00 0.00	0.14 0.03	0.00 0.01	
CV.1sc CV.min	0.54 0.04	0.44 0.03	0.00 0.01	0.14 0.03	0.00 0.01	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.66 0.05	0.12 0.02	0.00 0.02	0.82 0.10	0.17 0.02	$\rho = 0.9$
AIC	0.00 0.03	0.12 0.02	0.00 0.02	0.84 0.29		,
BIC	0.95 0.88	0.93 0.87	0.94 0.83	0.04 0.29		$\bar{s}_{Oracle} = 52.3$
БІС	0.00 0.02	0.01 0.02	0.00 0.01	0.03 0.03		

Table 106: FDR | Sensitivity for n=1000, continuous design, dense covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\mathrm{GL}\;\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	0.47 0.74	0.36 0.68	0.15 0.52	0.41 0.64	0.38 0.70	
CV.min	$0.58 \mid 0.82$	$0.50 \mid 0.77$	0.26 0.61	$0.51 \mid 0.71$	$0.54 \mid 0.80$	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.46 0.73	$0.40 \mid 0.70$	$0.35 \mid 0.67$	$0.45 \mid 0.67$		$\rho = 0$
AIC	0.75 0.93	$0.75 \mid 0.92$	$0.75 \mid 0.89$	$0.57 \mid 0.76$		$\bar{s}_{Oracle} = 209.8$
BIC	0.06 0.21	0.08 0.34	$0.08 \mid 0.41$	0.19 0.42		SOracle - 209.8
CV.1se	0.60 0.72	0.55 0.67	0.38 0.55	0.58 0.52	0.37 0.55	
CV.min	0.66 0.82	$0.61 \mid 0.79$	$0.46 \mid 0.65$	$0.62 \mid 0.62$	0.44 0.62	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	$0.58 \mid 0.66$	0.54 0.66	$0.44 \mid 0.65$	$0.59 \mid 0.56$		$\rho = 0.5$
AIC	0.75 0.94	$0.75 \mid 0.94$	$0.74 \mid 0.92$	$0.65 \mid 0.69$		$\bar{s}_{Oracle} = 209.4$
BIC	0.01 0.00	$0.00 \mid 0.00$	0.07 0.12	0.05 0.02		SOracle - 209.4
CV.1se	0.65 0.72	0.62 0.68	0.53 0.57	0.57 0.13	0.50 0.51	
CV.min	0.68 0.83	0.66 0.80	0.56 0.68	0.61 0.21	0.53 0.59	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.63 0.62	0.61 0.65	0.54 0.65	0.61 0.20		$\rho = 0.9$
AIC	0.69 0.84	0.68 0.84	0.65 0.83	0.61 0.22		_ 205.7
BIC	0.05 0.01	0.01 0.01	0.00 0.01	0.06 0.01		$\bar{s}_{Oracle} = 205.7$
CV.1se	0.41 0.47	0.25 0.33	0.06 0.11	0.51 0.56	0.40 0.47	
CV.min	0.61 0.67	0.47 0.54	0.18 0.25	0.62 0.67	0.61 0.67	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.53 0.58	0.48 0.55	0.48 0.49	0.56 0.61	'	$\rho = 0$
AIC	0.84 0.92	0.84 0.90	0.85 0.89	0.74 0.80		_ 142.5
BIC	0.00 0.01	0.00 0.00	0.00 0.00	0.06 0.09		$\bar{s}_{Oracle} = 143.5$
CV.1se	0.17 0.06	0.16 0.07	0.01 0.00	0.65 0.34	0.23 0.09	
CV.min	0.61 0.39	0.51 0.31	0.11 0.03	0.71 0.49	0.55 0.33	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.61 0.31	0.52 0.34	0.53 0.45	0.69 0.42	'	$\rho = 0.5$
AIC	0.84 0.94	0.84 0.93	0.84 0.90	0.78 0.74		
BIC	0.01 0.00	0.00 0.00	0.00 0.00	0.06 0.01		$\bar{s}_{Oracle} = 143.5$
CV.1se	0.00 0.00	0.00 0.00	0.00 0.00	0.38 0.05	0.01 0.01	
CV.min	0.48 0.02	0.40 0.02	0.08 0.01	0.71 0.19	0.21 0.04	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.58 0.03	0.11 0.01	0.00 0.01	0.71 0.20	'	$\rho = 0.9$
AIC	0.81 0.87	0.81 0.86	0.81 0.83	0.73 0.29		'
BIC	0.06 0.01	0.01 0.01	0.00 0.01	0.07 0.01		$\bar{s}_{Oracle} = 139.4$
CV.1se	0.04 0.01	0.01 0.00	0.00 0.00	0.67 0.34	0.09 0.01	
CV.min	0.53 0.23	0.20 0.05	0.06 0.01	0.79 0.53	0.54 0.23	$sd(\mu)/\sigma = 0.5$
AICc	0.60 0.27	0.14 0.07	0.00 0.00	0.75 0.45	'	$\rho = 0$
AIC	0.92 0.91	0.92 0.89	0.92 0.90	0.88 0.77		,
BIC	0.01 0.00	0.00 0.00	0.08 0.07	0.05 0.01		$\bar{s}_{Oracle} = 77.7$
CV.1se	0.00 0.00	0.00 0.00	0.00 0.00	0.64 0.09	0.25 0.00	
CV.min	0.38 0.03	0.22 0.01	0.08 0.00	0.84 0.28	0.48 0.03	$sd(\mu)/\sigma = 0.5$
AICc	0.57 0.06	0.05 0.00	0.00 0.00	0.83 0.23	*****	$\rho = 0.5$
AIC	0.92 0.92	0.92 0.91	0.92 0.90	0.89 0.70		
BIC	0.02 0.00	0.00 0.00	0.00 0.00	0.10 0.00		$\bar{s}_{Oracle} = 77.7$
CV.1se	0.00 0.00	0.00 0.00	0.00 0.00	0.07 0.01	0.05 0.01	
CV.rise CV.min	0.49 0.03	0.40 0.02	0.14 0.01	0.81 0.07	0.32 0.02	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.64 0.04	0.11 0.01	0.01 0.01	0.82 0.08	0.02	$\rho = 0.9$
AIC	0.92 0.87	0.92 0.84	0.92 0.82	0.85 0.18		
BIC	0.04 0.01	0.01 0.01	0.00 0.00	0.11 0.01		$\bar{s}_{Oracle} = 73.5$
DIC	0.07 0.01	0.01 0.01	0.00 0.00	0.11 0.01		

Table 107: FDR | Sensitivity for n=1000, continuous design, dense covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.45 0.73	0.35 0.62	0.22 0.38	0.39 0.62	0.46 0.74	
CV.min	0.53 0.82	0.46 0.75	0.33 0.54	$0.46 \mid 0.70$	$0.55 \mid 0.84$	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.39 0.64	0.36 0.63	$0.40 \mid 0.64$	$0.39 \mid 0.62$		$\rho = 0$
AIC	0.67 0.93	0.67 0.91	$0.67 \mid 0.88$	$0.52 \mid 0.77$		$\bar{s}_{Oracle} = 293.2$
BIC	$0.00 \mid 0.00$	$0.00 \mid 0.00$	0.28 0.43	0.02 0.04		SOracle - 293.2
CV.1se	0.51 0.58	0.44 0.48	0.04 0.05	0.51 0.40	0.49 0.57	
CV.min	0.57 0.79	0.53 0.71	$0.16 \mid 0.15$	0.54 0.53	$0.58 \mid 0.80$	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.47 0.36	$0.47 \mid 0.52$	0.46 0.63	0.51 0.43		$\rho = 0.5$
AIC	$0.67 \mid 0.94$	$0.66 \mid 0.93$	$0.66 \mid 0.91$	$0.59 \mid 0.70$		_ 202 1
BIC	$0.00 \mid 0.00$	$0.00 \mid 0.00$	0.01 0.02	$0.04 \mid 0.00$		$\bar{s}_{Oracle} = 293.1$
CV.1se	0.19 0.20	0.17 0.18	0.00 0.00	0.30 0.04	0.10 0.09	
CV.min	0.53 0.50	0.47 0.44	0.08 0.02	0.57 0.16	0.34 0.31	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.47 0.03	0.16 0.08	0.51 0.63	0.56 0.16		$\rho = 0.9$
AIC	$0.62 \mid 0.86$	$0.61 \mid 0.85$	$0.59 \mid 0.83$	0.57 0.30		_ 202.2
BIC	0.05 0.00	0.01 0.00	0.00 0.00	0.06 0.01		$\bar{s}_{Oracle} = 292.2$
CV.1se	0.35 0.28	0.12 0.07	0.00 0.00	0.48 0.45	0.36 0.29	
CV.min	0.55 0.55	0.34 0.27	0.04 0.02	0.57 0.57	0.55 0.55	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.46 0.41	0.47 0.42	0.37 0.32	0.51 0.48		$\rho = 0$
AIC	0.77 0.91	0.77 0.88	0.78 0.88	0.69 0.75		215.4
BIC	0.00 0.00	0.00 0.00	0.06 0.06	0.02 0.01		$\bar{s}_{Oracle} = 215.4$
CV.1se	0.02 0.00	0.01 0.00	0.00 0.00	0.58 0.19	0.14 0.00	
CV.min	0.39 0.08	0.21 0.03	0.06 0.00	0.65 0.36	0.40 0.09	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.48 0.10	0.12 0.04	0.21 0.16	0.63 0.27		$\rho = 0.5$
AIC	0.77 0.92	0.77 0.90	0.77 0.89	0.72 0.70		- 215.2
BIC	0.01 0.00	0.00 0.00	0.00 0.00	0.05 0.00		$\bar{s}_{Oracle} = 215.2$
CV.1se	0.00 0.00	0.00 0.00	0.00 0.00	0.10 0.01	0.01 0.00	
CV.min	0.44 0.02	0.36 0.01	0.10 0.01	0.66 0.07	0.24 0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.53 0.03	0.10 0.01	0.00 0.00	0.67 0.09		$\rho = 0.9$
AIC	0.75 0.85	0.75 0.84	0.75 0.80	0.69 0.33		
BIC	0.04 0.00	0.01 0.00	0.00 0.00	0.09 0.01		$\bar{s}_{Oracle} = 211.7$
CV.1se	0.02 0.00	0.00 0.00	0.00 0.00	0.72 0.25	0.16 0.00	
CV.min	0.50 0.12	0.14 0.01	0.07 0.00	0.81 0.43	0.52 0.12	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.60 0.15	0.09 0.03	0.00 0.00	0.77 0.35		$\rho = 0$
AIC	0.91 0.90	0.91 0.89	0.91 0.91	0.88 0.72		- 01.2
BIC	0.01 0.00	0.00 0.00	0.65 0.64	0.07 0.00		$\bar{s}_{Oracle} = 91.3$
CV.1se	0.00 0.00	0.00 0.00	0.00 0.00	0.64 0.06	0.28 0.00	
CV.min	0.38 0.02	0.20 0.00	0.08 0.00	0.84 0.22	0.50 0.02	$sd(\mu)/\sigma = 0.5$
AICc	0.58 0.04	0.03 0.00	0.00 0.00	0.83 0.18	'	$\rho = 0.5$
AIC	0.91 0.91	0.91 0.89	0.91 0.90	0.89 0.66		
BIC	0.02 0.00	0.00 0.00	0.02 0.02	0.11 0.00		$\bar{s}_{Oracle} = 90.9$
CV.1se	0.00 0.00	0.00 0.00	0.00 0.00	0.07 0.00	0.19 0.00	
CV.min	0.42 0.02	0.31 0.01	0.13 0.01	0.82 0.05	0.44 0.01	$sd(\mu)/\sigma = 0.5$
AICc	0.59 0.03	0.07 0.00	0.00 0.00	0.83 0.06	1	$\rho = 0.9$
AIC	0.91 0.85	0.91 0.82	0.91 0.82	0.85 0.15		
BIC	0.02 0.00	0.01 0.00	0.00 0.00	0.10 0.01		$\bar{s}_{Oracle} = 87.0$
	2.22 0.00	2.22 0.00	2.22 0.00			

Table 108: FDR | Sensitivity for n=1000, binary design, sparse covariates, and decay 10.

	lasso	$GL \gamma = 1$	$GL \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.33 0.26	0.19 0.24	0.01 0.20	0.22 0.22	0.01 0.19	
CV.min	0.67 0.33	0.59 0.31	0.20 0.24	0.51 0.26	0.19 0.24	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.65 0.33	0.58 0.31	0.34 0.27	0.48 0.26		$\rho = 0$
AIC	$0.88 \mid 0.72$	$0.88 \mid 0.72$	$0.88 \mid 0.69$	$0.49 \mid 0.26$		- 100 O
BIC	0.20 0.24	0.13 0.23	0.01 0.20	0.16 0.21		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.38 0.26	0.23 0.24	0.02 0.20	0.26 0.22	0.01 0.19	
CV.min	0.69 0.34	0.62 0.31	0.23 0.24	0.53 0.26	0.19 0.24	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.67 0.33	0.60 0.31	0.37 0.27	0.51 0.25		$\rho = 0.5$
AIC	0.88 0.72	0.88 0.72	0.88 0.69	0.51 0.25		- 100.0
BIC	0.23 0.23	0.14 0.23	0.01 0.20	0.19 0.20		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.41 0.26	0.26 0.24	0.03 0.20	0.28 0.21	0.01 0.19	
CV.min	0.70 0.34	0.63 0.31	0.26 0.24	0.53 0.25	0.21 0.24	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.68 0.33	0.61 0.30	0.38 0.27	0.51 0.25	ı	$\rho = 0.9$
AIC	0.88 0.71	0.88 0.71	0.88 0.69	0.52 0.25		,
BIC	0.25 0.23	0.16 0.22	0.02 0.20	0.21 0.20		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.25 0.17	0.12 0.15	0.01 0.12	0.42 0.19	0.01 0.12	
CV.min	0.66 0.25	0.56 0.22	0.14 0.16	0.74 0.28	0.24 0.17	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.66 0.25	0.59 0.23	0.32 0.20	0.71 0.26	0.2. 0.1.	$\rho = 0$
AIC	0.89 0.79	0.89 0.79	0.89 0.76	0.79 0.32		,
BIC	0.18 0.16	0.09 0.15	0.00 0.12	0.15 0.15		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.29 0.17	0.15 0.15	0.01 0.12	0.46 0.19	0.01 0.12	
CV.13C	0.68 0.25	0.13 0.13	0.14 0.16	0.76 0.28	0.22 0.17	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.68 0.25	0.60 0.23	0.34 0.20	0.70 0.26	0.22 0.17	$\rho = 0.5$
AIC	0.89 0.79	0.89 0.79	0.89 0.76	$0.72 \mid 0.20$ $0.79 \mid 0.32$		$\rho = 0.0$
BIC	0.20 0.15	0.05 0.75	0.00 0.12	0.17 0.15		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.20 0.13	0.17 0.15	0.00 0.12	0.47 0.19	0.01 0.12	
CV.1sc CV.min	0.69 0.25	0.17 0.13	0.02 0.12	0.47 0.19	0.01 0.12	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.69 0.25	0.61 0.22	0.17 0.10	0.73 0.28	0.23 0.17	$\rho = 0.9$
AIC	0.89 0.23	0.89 0.78	0.30 0.20	0.72 0.20		$\rho = 0.9$
BIC	0.89 0.79	0.89 0.78	0.01 0.11	$0.79 \mid 0.31$ $0.19 \mid 0.14$		$\bar{s}_{Oracle} = 100.0$
	<u> </u>				0.01 0.05	
CV.1se	0.11 0.07 0.64 0.15	$0.05 \mid 0.06$	$0.01 \mid 0.05$	0.56 0.14 0.81 0.26	0.01 0.05 0.35 0.11	$ad(u)/\sigma = 0.5$
CV.min		0.50 0.13	$0.13 \mid 0.08$	'	0.33 0.11	$sd(\mu)/\sigma = 0.5$
AICc	0.67 0.17	0.55 0.14	0.20 0.11	0.78 0.22		$\rho = 0$
AIC	0.90 0.85	0.90 0.84	0.90 0.83	0.87 0.42		$\bar{s}_{Oracle} = 100.0$
BIC	0.12 0.08	$0.05 \mid 0.07$	0.00 0.03	0.16 0.08	0.01 0.05	
CV.1se	0.13 0.07	0.07 0.06	0.01 0.05	0.61 0.14	0.01 0.05	1/)/ 0.5
CV.min	0.67 0.15	0.54 0.13	0.14 0.08	0.82 0.25	0.33 0.10	$sd(\mu)/\sigma = 0.5$
AICc	0.69 0.17	0.59 0.14	0.23 0.11	0.78 0.22		$\rho = 0.5$
AIC	0.90 0.85	0.90 0.84	0.90 0.83	0.87 0.42		$\bar{s}_{Oracle} = 100.0$
BIC	0.12 0.07	0.06 0.06	0.00 0.03	0.18 0.08	0.05 0.05	- Or were
CV.1se	0.15 0.07	0.08 0.06	0.02 0.04	0.60 0.14	0.02 0.05	1/ \ / \ 0.5
CV.min	0.68 0.15	0.56 0.13	0.15 0.08	0.81 0.25	0.34 0.10	$sd(\mu)/\sigma = 0.5$
AICc	0.70 0.17	0.60 0.14	0.26 0.11	0.79 0.21		$\rho = 0.9$
AIC	0.90 0.85	0.90 0.84	0.90 0.83	0.86 0.41		$\bar{s}_{Oracle} = 100.0$
BIC	0.13 0.07	0.06 0.06	0.00 0.03	0.19 0.08		Jracic 2000

Table 109: FDR | Sensitivity for n=1000, binary design, sparse covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.50 0.86	0.36 0.82	0.07 0.69	0.44 0.77	0.11 0.72	
CV.min	$0.66 \mid 0.92$	$0.57 \mid 0.89$	$0.19 \mid 0.78$	$0.59 \mid 0.83$	0.36 0.84	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	$0.58 \mid 0.89$	$0.50 \mid 0.88$	$0.40 \mid 0.85$	$0.55 \mid 0.81$		$\rho = 0$
AIC	$0.87 \mid 0.97$	$0.87 \mid 0.96$	$0.87 \mid 0.94$	$0.64 \mid 0.85$		$\bar{s}_{Oracle} = 100.0$
BIC	$0.24 \mid 0.72$	$0.14 \mid 0.70$	$0.02 \mid 0.60$	0.23 0.66		<i>SOracle</i> = 100.0
CV.1se	0.54 0.86	0.40 0.82	0.07 0.68	0.47 0.76	0.10 0.71	
CV.min	0.68 0.92	$0.59 \mid 0.90$	0.20 0.78	0.61 0.82	0.34 0.83	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	$0.59 \mid 0.88$	$0.53 \mid 0.87$	$0.42 \mid 0.86$	0.57 0.81		$\rho = 0.5$
AIC	$0.87 \mid 0.97$	$0.87 \mid 0.97$	$0.87 \mid 0.95$	$0.67 \mid 0.85$		- 100 O
BIC	$0.26 \mid 0.70$	$0.16 \mid 0.69$	$0.03 \mid 0.60$	0.26 0.64		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.55 0.86	0.42 0.82	0.09 0.69	0.48 0.75	0.13 0.72	
CV.min	0.69 0.92	0.60 0.90	0.23 0.78	0.61 0.82	0.36 0.83	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.60 0.88	0.53 0.87	0.42 0.85	0.57 0.80	,	$\rho = 0.9$
AIC	0.87 0.97	0.87 0.97	0.87 0.95	0.67 0.85		- 100.0
BIC	0.28 0.70	0.18 0.68	0.04 0.60	0.28 0.64		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.41 0.53	0.26 0.45	0.07 0.31	0.50 0.56	0.24 0.44	
CV.min	0.64 0.67	0.52 0.60	0.19 0.42	0.66 0.67	0.54 0.62	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.58 0.64	0.53 0.61	0.60 0.63	0.61 0.63	'	$\rho = 0$
AIC	0.89 0.92	0.89 0.91	0.89 0.89	0.78 0.77		,
BIC	0.08 0.24	0.06 0.27	0.01 0.12	0.17 0.35		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.45 0.52	0.30 0.45	0.08 0.31	0.54 0.56	0.21 0.41	
CV.min	0.66 0.67	0.55 0.60	0.20 0.42	0.68 0.66	0.52 0.59	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.60 0.63	0.55 0.60	0.60 0.63	0.63 0.63	0.02 0.02	$\rho = 0.5$
AIC	0.89 0.92	0.89 0.92	0.89 0.89	0.79 0.77		,
BIC	0.06 0.18	0.07 0.24	0.01 0.12	0.18 0.32		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.47 0.52	0.33 0.45	0.10 0.30	0.54 0.55	0.24 0.42	
CV.min	0.66 0.67	0.56 0.60	0.22 0.41	0.68 0.65	0.53 0.59	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.61 0.62	0.56 0.60	0.59 0.62	0.63 0.62	0.00 0.00	$\rho = 0.9$
AIC	0.89 0.93	0.89 0.91	0.89 0.89	0.79 0.76		,
BIC	0.07 0.16	0.08 0.23	0.01 0.11	0.20 0.31		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.08 0.03	0.03 0.01	0.00 0.00	0.59 0.28	0.07 0.03	
CV.min	0.56 0.26	0.31 0.13	0.07 0.03	0.75 0.44	0.55 0.25	$sd(\mu)/\sigma = 0.5$
AICc	0.59 0.27	0.58 0.28	0.21 0.12	0.71 0.38	0.23 0.23	$\rho = 0$
AIC	0.90 0.90	0.90 0.89	0.90 0.89	0.85 0.67		,
BIC	0.01 0.00	0.01 0.01	0.00 0.00	0.05 0.03		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.07 0.02	0.03 0.01	0.00 0.00	0.62 0.27	0.08 0.02	
CV.rise CV.min	0.56 0.23	0.33 0.12	0.07 0.02	0.76 0.43	0.54 0.22	$sd(\mu)/\sigma = 0.5$
AICc	0.59 0.25	0.58 0.26	0.07 0.02	0.70 0.43	0.54 0.22	$\rho = 0.5$
AIC	0.90 0.90	0.90 0.89	0.90 0.89	0.86 0.68		,
BIC	0.00 0.00	0.00 0.00	0.00 0.00	0.05 0.02		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.07 0.02	0.03 0.01	0.00 0.00	0.62 0.26	0.08 0.01	
CV.13C CV.min	0.58 0.23	0.35 0.01	0.00 0.00	0.76 0.42	0.55 0.22	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.58 0.25	0.60 0.26	0.09 0.02	0.70 0.42	0.33 0.22	$\begin{array}{c c} \operatorname{sd}(\mu)/\rho = 0.3 \\ \rho = 0.9 \end{array}$
AICC	0.01 0.23	0.00 0.20	0.20 0.14	0.72 0.30		
		0.90 0.89		,		$\bar{s}_{Oracle} = 100.0$
BIC	0.01 0.00	0.01 0.00	0.00 0.00	0.06 0.02		

Table 110: FDR | Sensitivity for n=1000, binary design, sparse covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.54 0.98	0.37 0.98	0.08 0.93	0.46 0.94	0.07 0.93	
CV.min	$0.68 \mid 0.99$	0.56 0.99	$0.17 \mid 0.97$	$0.58 \mid 0.96$	$0.22 \mid 0.97$	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.58 0.99	$0.48 \mid 0.99$	$0.26 \mid 0.97$	$0.54 \mid 0.95$		$\rho = 0$
AIC	0.87 1.00	$0.87 \mid 0.99$	$0.87 \mid 0.98$	$0.67 \mid 0.97$		$\bar{s}_{Oracle} = 100.0$
BIC	0.30 0.93	0.19 0.93	$0.03 \mid 0.87$	$0.29 \mid 0.87$		<i>SOracle</i> = 100.0
CV.1se	0.57 0.98	0.41 0.98	0.09 0.94	0.49 0.93	0.08 0.94	
CV.min	$0.69 \mid 0.99$	0.59 0.99	$0.19 \mid 0.97$	$0.61 \mid 0.96$	0.21 0.97	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	$0.60 \mid 0.99$	0.51 0.99	$0.28 \mid 0.98$	$0.56 \mid 0.95$		$\rho = 0.5$
AIC	0.87 1.00	0.87 1.00	$0.87 \mid 0.99$	$0.69 \mid 0.97$		_ 100.0
BIC	0.33 0.92	0.22 0.93	$0.04 \mid 0.88$	$0.32 \mid 0.86$		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.58 0.99	0.43 0.98	0.11 0.94	0.50 0.93	0.11 0.95	
CV.min	0.70 0.99	0.59 0.99	0.21 0.97	0.61 0.95	0.23 0.97	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.60 0.99	0.52 0.99	0.29 0.97	0.57 0.94		$\rho = 0.9$
AIC	0.87 1.00	0.87 1.00	0.87 0.99	$0.69 \mid 0.97$		= 100.0
BIC	0.34 0.92	0.24 0.93	0.05 0.88	0.34 0.85		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.43 0.66	0.28 0.55	0.09 0.31	0.51 0.71	0.38 0.65	
CV.min	0.64 0.82	0.51 0.74	0.22 0.49	0.64 0.81	0.62 0.81	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.57 0.77	0.52 0.75	0.59 0.75	0.59 0.77	'	$\rho = 0$
AIC	0.89 0.95	0.89 0.93	0.89 0.91	0.78 0.89		,
BIC	0.00 0.02	0.02 0.09	0.00 0.01	0.10 0.27		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.46 0.65	0.31 0.55	0.10 0.30	0.54 0.70	0.40 0.63	
CV.min	0.65 0.82	0.53 0.74	0.23 0.49	0.66 0.80	0.63 0.81	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.58 0.76	0.54 0.75	0.59 0.76	0.60 0.76	1	$\rho = 0.5$
AIC	0.89 0.95	0.89 0.94	0.89 0.91	0.79 0.89		,
BIC	0.00 0.01	0.01 0.05	0.00 0.01	0.09 0.20		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.48 0.65	0.34 0.54	0.12 0.29	0.55 0.69	0.41 0.62	
CV.min	0.66 0.82	0.55 0.74	0.25 0.47	0.66 0.79	0.64 0.80	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.59 0.76	0.55 0.75	0.60 0.75	0.61 0.75	****	$\rho = 0.9$
AIC	0.89 0.95	0.89 0.94	0.89 0.91	0.79 0.88		,
BIC	0.00 0.01	0.01 0.04	0.00 0.01	0.09 0.17		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.04 0.02	0.01 0.00	0.00 0.00	0.59 0.30	0.08 0.01	
CV.min	0.51 0.24	0.20 0.06	0.05 0.01	0.74 0.49	0.50 0.23	$sd(\mu)/\sigma = 0.5$
AICc	0.55 0.26	0.59 0.30	0.14 0.09	0.69 0.41		$\rho = 0$
AIC	0.90 0.91	0.90 0.89	0.90 0.90	0.85 0.73		,
BIC	0.00 0.00	0.00 0.00	0.00 0.00	0.04 0.01		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.04 0.01	0.00 0.00	0.00 0.00	0.62 0.29	0.08 0.01	
CV.min	0.48 0.20	0.19 0.05	0.04 0.01	0.75 0.47	0.48 0.19	$sd(\mu)/\sigma = 0.5$
AICc	0.55 0.23	0.58 0.28	0.17 0.10	0.71 0.40	01.0 01.15	$\rho = 0.5$
AIC	0.90 0.91	0.90 0.89	0.90 0.90	0.85 0.73		
BIC	0.00 0.00	0.00 0.00	0.00 0.00	0.04 0.01		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.03 0.01	0.01 0.00	0.00 0.00	0.62 0.27	0.10 0.01	
CV.13C	0.51 0.19	0.01 0.00	0.06 0.01	0.75 0.46	0.50 0.19	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.57 0.23	0.59 0.28	0.16 0.09	0.71 0.39	0.50 0.17	$\rho = 0.9$
AIC	0.90 0.91	0.90 0.89	0.90 0.90	0.85 0.72		
BIC	0.90 0.91	0.00 0.00	0.00 0.00	0.06 0.01		$\bar{s}_{Oracle} = 100.0$
DIC	0.01 0.00	0.00 0.00	0.00 0.00	0.00 0.01		

Table 111: FDR | Sensitivity for n=1000, binary design, sparse covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.55 1.00	0.35 1.00	0.06 0.99	0.46 0.98	0.04 0.98	
CV.min	$0.68 \mid 1.00$	0.54 1.00	0.13 1.00	$0.58 \mid 0.99$	0.13 0.99	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	$0.58 \mid 1.00$	$0.46 \mid 1.00$	$0.11 \mid 0.99$	$0.53 \mid 0.98$		$\rho = 0$
AIC	0.87 1.00	0.87 1.00	$0.87 \mid 0.99$	$0.68 \mid 0.99$		$\bar{s}_{Oracle} = 100.0$
BIC	0.34 0.99	$0.20 \mid 0.99$	0.03 0.96	0.33 0.95		<i>SOracle</i> = 100.0
CV.1se	0.58 1.00	0.39 1.00	0.06 0.99	0.49 0.97	0.04 0.99	
CV.min	$0.70 \mid 1.00$	0.56 1.00	0.13 1.00	$0.60 \mid 0.98$	0.13 1.00	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.60 1.00	0.48 1.00	$0.11 \mid 0.99$	$0.56 \mid 0.98$		$\rho = 0.5$
AIC	0.87 1.00	0.87 1.00	0.87 0.99	$0.70 \mid 0.99$		= 100.0
BIC	$0.37 \mid 0.98$	0.23 0.99	$0.03 \mid 0.97$	0.36 0.94		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.59 1.00	0.41 1.00	0.09 0.99	0.51 0.97	0.07 0.99	
CV.min	0.70 1.00	0.57 1.00	0.16 1.00	0.61 0.98	0.15 1.00	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.61 1.00	0.49 1.00	0.12 0.99	0.57 0.98		$\rho = 0.9$
AIC	0.87 1.00	0.87 1.00	0.87 0.99	$0.70 \mid 0.99$		- 100.0
BIC	0.39 0.98	0.25 0.99	0.04 0.97	0.38 0.94		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.43 0.72	0.27 0.57	0.09 0.25	0.51 0.77	0.41 0.72	
CV.min	0.63 0.87	0.49 0.79	0.21 0.48	0.64 0.86	0.63 0.87	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.56 0.82	0.52 0.81	0.60 0.80	0.58 0.82	'	$\rho = 0$
AIC	0.89 0.96	0.89 0.94	0.89 0.91	0.78 0.93		,
BIC	0.00 0.00	0.01 0.04	0.00 0.01	0.05 0.15		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.46 0.70	0.30 0.57	0.09 0.22	0.54 0.76	0.43 0.70	
CV.min	0.65 0.87	0.52 0.79	0.22 0.45	0.66 0.85	0.65 0.87	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.58 0.81	0.54 0.81	0.59 0.81	0.60 0.81		$\rho = 0.5$
AIC	0.89 0.96	0.89 0.95	0.89 0.92	0.79 0.93		,
BIC	0.00 0.00	0.00 0.02	0.00 0.00	0.04 0.09		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.48 0.70	0.33 0.56	0.09 0.20	0.55 0.74	0.45 0.69	
CV.min	0.66 0.87	0.53 0.79	0.23 0.43	0.66 0.84	0.65 0.87	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.58 0.81	0.55 0.81	0.60 0.80	0.61 0.80	0.00 0.07	$\rho = 0.9$
AIC	0.89 0.96	0.89 0.94	0.89 0.92	0.79 0.92		,
BIC	0.00 0.00	0.00 0.01	0.00 0.00	0.04 0.07		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.04 0.01	0.00 0.00	0.00 0.00	0.60 0.30	0.09 0.01	
CV.min	0.49 0.22	0.14 0.04	0.04 0.01	0.73 0.50	0.48 0.22	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.54 0.25	0.60 0.32	0.09 0.06	0.69 0.42	*****	$\rho = 0$
AIC	0.90 0.91	0.90 0.89	0.90 0.90	0.85 0.75		'
BIC	0.00 0.00	0.00 0.00	0.00 0.00	0.04 0.01		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.03 0.01	0.00 0.00	0.00 0.00	0.62 0.29	0.10 0.01	
CV.min	0.45 0.17	0.15 0.03	0.04 0.01	0.74 0.48	0.45 0.17	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.53 0.21	0.59 0.30	0.11 0.07	0.70 0.40	0.15 0.17	$\rho = 0.5$
AIC	0.90 0.91	0.90 0.89	0.90 0.91	0.85 0.75		,
BIC	0.00 0.00	0.00 0.00	0.00 0.00	0.05 0.01		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.03 0.01	0.00 0.00	0.00 0.00	0.63 0.27	0.12 0.01	
CV.rise CV.min	0.47 0.17	0.17 0.03	0.05 0.01	0.75 0.47	0.47 0.16	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.55 0.21	0.60 0.29	0.03 0.01	0.71 0.39	0.17 0.10	$\rho = 0.9$
AIC	0.90 0.91	0.00 0.29	0.10 0.00	0.71 0.39		
BIC	0.90 0.91	0.90 0.89	0.90 0.90	0.06 0.01		$\bar{s}_{Oracle} = 100.0$
DIC	0.01 0.00	0.00 0.00	0.00 0.00	0.00 0.01		

Table 112: FDR | Sensitivity for n=1000, continuous design, sparse covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\mathrm{GL}\;\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	0.33 0.26	0.20 0.24	0.02 0.20	0.22 0.22	0.00 0.19	
CV.min	0.67 0.33	0.59 0.31	0.20 0.24	0.51 0.26	0.19 0.24	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.65 0.33	0.56 0.30	0.09 0.22	0.48 0.26		$\rho = 0$
AIC	0.88 0.72	0.88 0.72	0.88 0.69	0.49 0.26		= 100.0
BIC	0.21 0.23	0.11 0.22	0.00 0.18	0.17 0.21		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.68 0.27	0.57 0.24	0.16 0.18	0.47 0.18	0.04 0.18	
CV.min	0.79 0.36	0.75 0.32	0.49 0.24	0.56 0.20	0.23 0.21	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.77 0.34	0.72 0.30	0.41 0.23	0.56 0.20	•	$\rho = 0.5$
AIC	0.88 0.66	0.88 0.66	0.87 0.65	0.56 0.20		100.0
BIC	0.46 0.20	0.34 0.19	0.04 0.16	0.46 0.18		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.81 0.28	0.79 0.25	0.68 0.18	0.03 0.11	0.45 0.16	
CV.min	0.83 0.37	0.82 0.34	0.75 0.24	0.06 0.12	0.61 0.20	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.82 0.33	0.81 0.30	0.72 0.22	0.06 0.12		$\rho = 0.9$
AIC	0.84 0.39	0.84 0.39	0.81 0.35	0.06 0.12		100.0
BIC	0.74 0.17	0.72 0.15	0.45 0.10	0.05 0.12		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.25 0.17	0.12 0.15	0.01 0.12	0.43 0.19	0.01 0.12	
CV.min	0.66 0.25	0.56 0.22	0.14 0.16	0.75 0.28	0.23 0.17	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.66 0.25	0.52 0.21	0.03 0.13	0.71 0.26	'	$\rho = 0$
AIC	0.89 0.79	0.89 0.79	0.89 0.76	0.79 0.32		,
BIC	0.18 0.16	0.07 0.14	0.00 0.10	0.15 0.15		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.61 0.16	0.49 0.14	0.11 0.11	0.70 0.18	0.06 0.11	
CV.min	0.79 0.26	0.75 0.23	0.40 0.15	0.80 0.25	0.30 0.14	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.78 0.25	0.73 0.21	0.28 0.14	0.79 0.24	'	$\rho = 0.5$
AIC	0.89 0.75	0.89 0.75	0.89 0.72	0.80 0.26		•
BIC	0.38 0.12	0.27 0.11	0.02 0.08	0.47 0.12		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.63 0.11	0.74 0.12	0.71 0.10	0.30 0.10	0.57 0.09	
CV.min	0.83 0.24	0.83 0.22	0.77 0.14	0.49 0.13	0.70 0.13	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.84 0.23	0.82 0.19	0.71 0.12	0.49 0.13	ı	$\rho = 0.9$
AIC	0.87 0.48	0.87 0.49	0.87 0.47	0.49 0.13		,
BIC	0.08 0.01	0.01 0.01	0.01 0.01	0.32 0.10		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.11 0.07	0.05 0.06	0.01 0.05	0.57 0.15	0.01 0.05	
CV.min	0.64 0.16	0.50 0.13	0.12 0.08	0.81 0.26	0.34 0.11	$sd(\mu)/\sigma = 0.5$
AICc	0.67 0.17	0.40 0.12	0.00 0.04	0.78 0.22	ı	$\rho = 0$
AIC	0.90 0.85	0.90 0.84	0.90 0.83	0.87 0.41		,
BIC	0.12 0.08	0.03 0.06	0.00 0.02	0.15 0.08		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.14 0.02	0.17 0.03	0.06 0.03	0.73 0.11	0.09 0.04	
CV.min	0.74 0.12	0.71 0.11	0.33 0.06	0.84 0.22	0.41 0.07	$sd(\mu)/\sigma = 0.5$
AICc	0.77 0.14	0.65 0.10	0.04 0.02	0.83 0.19	ı	$\rho = 0.5$
AIC	0.90 0.83	0.90 0.82	0.90 0.80	0.87 0.33		,
BIC	0.09 0.02	0.04 0.02	0.00 0.01	0.16 0.02		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.00 0.01	0.00 0.01	0.00 0.01	0.41 0.05	0.01 0.01	
CV.min	0.52 0.02	0.41 0.01	0.14 0.01	0.75 0.14	0.32 0.03	$sd(\mu)/\sigma = 0.5$
AICc	0.64 0.03	0.18 0.01	0.00 0.01	0.74 0.14	1 2 2 2	$\rho = 0.9$
AIC	0.88 0.58	0.89 0.60	0.89 0.57	0.76 0.15		
BIC	0.08 0.01	0.01 0.01	0.00 0.01	0.12 0.02		$\bar{s}_{Oracle} = 100.0$
	2.00 0.01	2.01 0.01	2.00 0.01	5.12 0.02		

Table 113: FDR | Sensitivity for n=1000, continuous design, sparse covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.51 0.86	0.36 0.82	0.07 0.69	0.44 0.77	0.11 0.72	
CV.min	0.67 0.91	0.57 0.89	0.19 0.78	0.59 0.83	0.36 0.84	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.58 0.89	$0.49 \mid 0.87$	0.23 0.78	0.55 0.81		$\rho = 0$
AIC	$0.87 \mid 0.97$	$0.87 \mid 0.96$	$0.87 \mid 0.94$	$0.64 \mid 0.85$		<u> </u>
BIC	0.24 0.72	0.12 0.68	0.01 0.54	0.24 0.66		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.70 0.84	0.63 0.80	0.33 0.68	0.67 0.67	0.24 0.67	
CV.min	0.77 0.91	0.72 0.89	0.48 0.78	0.71 0.73	0.42 0.76	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.70 0.84	0.66 0.83	0.47 0.79	0.69 0.71		$\rho = 0.5$
AIC	0.86 0.97	0.86 0.97	0.86 0.96	0.72 0.74		,
BIC	0.32 0.35	0.38 0.50	0.16 0.51	0.49 0.44		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.76 0.82	0.73 0.78	0.61 0.67	0.57 0.20	0.54 0.63	
CV.min	0.79 0.89	0.77 0.88	0.66 0.77	0.61 0.24	0.60 0.70	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.75 0.80	0.73 0.79	0.64 0.74	0.61 0.24	ı	$\rho = 0.9$
AIC	0.79 0.89	0.78 0.90	0.76 0.91	0.61 0.24		,
BIC	0.06 0.01	0.01 0.01	0.02 0.03	0.48 0.17		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.41 0.53	0.26 0.45	0.07 0.30	0.50 0.56	0.24 0.44	
CV.min	0.64 0.67	0.52 0.60	0.18 0.41	0.66 0.67	0.54 0.62	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.58 0.63	0.49 0.59	0.28 0.46	0.60 0.63	0.0 . 0.02	$\rho = 0$
AIC	0.89 0.92	0.89 0.91	0.89 0.89	0.78 0.77		,
BIC	0.08 0.23	0.04 0.22	0.00 0.02	0.17 0.34		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.63 0.39	0.59 0.39	0.33 0.26	0.70 0.44	0.36 0.34	
CV.13C	0.75 0.61	0.71 0.57	0.47 0.39	0.76 0.55	0.53 0.45	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.71 0.53	0.68 0.52	0.57 0.51	0.74 0.51	0.55 0.15	$\rho = 0.5$
AIC	0.89 0.93	0.89 0.93	0.89 0.90	0.81 0.70		$\rho = 0.0$
BIC	0.01 0.01	0.00 0.01	0.00 0.00	0.09 0.04		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.07 0.04	0.22 0.12	0.00 0.00	0.64 0.16	0.63 0.28	
CV.1sc CV.min	0.61 0.23	0.22 0.12	0.48 0.26	0.72 0.25	0.71 0.40	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.67 0.17	0.04 0.33	0.46 0.20	0.72 0.23	0.71 0.40	$\rho = 0.9$
AIC	0.85 0.83	0.85 0.13	0.20 0.18	0.72 0.23		,
BIC	0.06 0.01	0.03 0.03	0.00 0.01	0.72 0.20		$\bar{s}_{Oracle} = 100.0$
	<u> </u>				0.07 0.03	
CV.1se	0.08 0.03 0.56 0.26	$0.03 \mid 0.01$	$0.00 \mid 0.00$	0.60 0.29	0.67 0.03	$ad(u)/\sigma = 0.5$
CV.min	,	0.33 0.14	0.07 0.03	0.75 0.44	0.55 0.25	$sd(\mu)/\sigma = 0.5$
AICc	0.59 0.27	0.28 0.13	$0.00 \mid 0.00$	$0.71 \mid 0.38$		$\rho = 0$
AIC	0.90 0.90	0.90 0.89	0.90 0.89	0.85 0.67		$\bar{s}_{Oracle} = 100.0$
BIC	0.01 0.00	0.00 0.00	0.00 0.00	0.05 0.02	0.16 0.00	
CV.1se	0.00 0.00	$0.00 \mid 0.00$	$0.00 \mid 0.00$	0.65 0.11	0.16 0.00	1/)/ 0.5
CV.min	0.42 0.04	0.30 0.03	0.10 0.01	0.81 0.28	0.45 0.04	$sd(\mu)/\sigma = 0.5$
AICc	0.59 0.08	0.10 0.01	0.00 0.00	0.79 0.23		$\rho = 0.5$
AIC	0.90 0.91	0.90 0.90	0.90 0.89	0.87 0.63		$\bar{s}_{Oracle} = 100.0$
BIC	0.01 0.00	0.00 0.00	0.00 0.00	0.08 0.01	0.00 0.00	
CV.1se	0.00 0.00	0.00 0.00	0.00 0.00	0.13 0.01	0.00 0.00	1/)/ 0.5
CV.min	0.52 0.02	0.40 0.02	0.10 0.01	0.77 0.11	0.16 0.01	$sd(\mu)/\sigma = 0.5$
AICc	0.62 0.03	0.11 0.01	0.00 0.01	0.79 0.12		$\rho = 0.9$
AIC	0.89 0.80	0.88 0.78	0.89 0.75	0.80 0.20		$\bar{s}_{Oracle} = 100.0$
BIC	0.05 0.01	0.01 0.01	0.00 0.01	0.09 0.01		Jracic 2000

Table 114: FDR | Sensitivity for n=1000, continuous design, sparse covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.54 0.98	0.38 0.98	0.08 0.93	0.46 0.94	0.07 0.93	
CV.min	$0.68 \mid 0.99$	$0.56 \mid 0.99$	$0.17 \mid 0.97$	$0.58 \mid 0.96$	0.23 0.97	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.58 0.99	0.47 0.99	0.10 0.94	0.54 0.95		$\rho = 0$
AIC	0.87 1.00	0.87 0.99	0.87 0.98	$0.67 \mid 0.97$		= 100.0
BIC	0.31 0.93	0.17 0.93	0.03 0.85	0.29 0.88		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.72 0.98	0.65 0.98	0.36 0.96	0.68 0.84	0.28 0.96	
CV.min	0.78 1.00	0.72 0.99	0.48 0.99	0.72 0.90	0.41 0.98	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.70 0.98	0.65 0.98	0.38 0.97	0.70 0.87	'	$\rho = 0.5$
AIC	0.87 1.00	0.87 1.00	0.86 1.00	0.74 0.91		,
BIC	0.01 0.01	0.02 0.04	0.26 0.89	0.10 0.09		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.76 0.98	0.72 0.97	0.58 0.95	0.63 0.25	0.52 0.94	
CV.min	0.80 0.99	0.77 0.99	0.63 0.98	0.67 0.35	0.57 0.97	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.74 0.96	0.71 0.97	0.57 0.96	0.66 0.34	0.57 0.57	$\rho = 0.9$
AIC	0.80 0.99	0.79 1.00	0.77 1.00	0.66 0.35		,
BIC	0.00 0.02	0.79 1.00	0.77 1.00	0.00 0.03		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.03 0.02	0.03 0.01	0.01 0.02	0.14 0.03	0.38 0.64	
	,	,	'			ad()/_ 1
CV.min	0.64 0.82	$0.51 \mid 0.74$	0.22 0.49	$0.65 \mid 0.81$	0.62 0.81	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.56 0.77	0.48 0.72	0.42 0.64	0.59 0.77		$\rho = 0$
AIC	0.89 0.95	0.89 0.93	0.89 0.90	0.78 0.89		$\bar{s}_{Oracle} = 100.0$
BIC	0.00 0.02	0.00 0.03	0.00 0.00	0.10 0.27		- Cruete
CV.1se	0.41 0.27	0.42 0.30	0.06 0.05	0.69 0.49	0.43 0.35	
CV.min	0.71 0.67	0.67 0.64	0.25 0.20	0.74 0.64	$0.60 \mid 0.58$	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	$0.68 \mid 0.54$	$0.65 \mid 0.60$	$0.60 \mid 0.66$	$0.72 \mid 0.57$		$\rho = 0.5$
AIC	$0.89 \mid 0.96$	$0.88 \mid 0.96$	$0.89 \mid 0.93$	$0.82 \mid 0.83$		$\bar{s}_{Oracle} = 100.0$
BIC	0.01 0.00	$0.00 \mid 0.00$	$0.00 \mid 0.00$	$0.05 \mid 0.01$		<i>SOracle</i> = 100.0
CV.1se	0.01 0.01	0.02 0.01	0.00 0.01	0.52 0.11	0.11 0.07	
CV.min	0.55 0.05	$0.48 \mid 0.09$	0.14 0.02	0.73 0.26	0.41 0.21	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.63 0.05	0.17 0.03	0.04 0.04	0.73 0.28		$\rho = 0.9$
AIC	0.85 0.93	0.85 0.93	0.84 0.90	0.74 0.36		- 100.0
BIC	0.07 0.01	0.02 0.01	0.00 0.01	0.08 0.01		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.05 0.01	0.01 0.00	0.00 0.00	0.60 0.30	0.07 0.01	
CV.min	0.51 0.24	0.20 0.07	0.04 0.01	0.74 0.49	0.51 0.24	$sd(\mu)/\sigma = 0.5$
AICc	0.56 0.26	0.18 0.09	0.00 0.00	0.69 0.41		$\rho = 0$
AIC	0.90 0.91	0.90 0.89	0.90 0.90	0.85 0.73		,
BIC	0.00 0.00	0.00 0.00	0.02 0.02	0.04 0.01		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.00 0.00	0.00 0.00	0.00 0.00	0.62 0.09	0.22 0.00	
CV.rise CV.min	0.36 0.03	0.21 0.01	0.07 0.00	0.81 0.27	0.45 0.03	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.54 0.06	0.05 0.00	0.00 0.00	0.79 0.21	0.43 0.03	$\rho = 0.5$
AIC	0.90 0.92		0.90 0.90	0.87 0.68		,
BIC	0.90 0.92	0.90 0.90	0.90 0.90	0.87 0.08		$\bar{s}_{Oracle} = 100.0$
	<u> </u>				0.04 0.00	
CV.1se	$0.00 \mid 0.00$	$0.00 \mid 0.00$	$0.00 \mid 0.00$	$0.08 \mid 0.01$	$0.04 \mid 0.00$	ad(u)/= 05
CV.min	$0.51 \mid 0.02$	0.41 0.02	0.13 0.01	0.78 0.07	0.31 0.02	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.63 0.03	0.11 0.01	0.01 0.01	0.79 0.08		$\rho = 0.9$
AIC	0.89 0.84	0.89 0.82	0.89 0.80	0.81 0.17		$\bar{s}_{Oracle} = 100.0$
BIC	0.04 0.01	0.01 0.01	0.00 0.00	0.10 0.01		

Table 115: FDR | Sensitivity for n=1000, continuous design, sparse covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.55 1.00	0.35 1.00	0.06 0.99	0.46 0.98	0.04 0.98	
CV.min	0.68 1.00	0.54 1.00	0.13 1.00	0.58 0.99	0.14 0.99	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.58 1.00	0.44 1.00	0.03 0.98	0.53 0.98		$\rho = 0$
AIC	0.87 1.00	0.87 1.00	0.87 0.99	0.68 0.99		= 100.0
BIC	0.34 0.98	0.18 0.98	0.02 0.96	0.33 0.95		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.73 1.00	0.64 1.00	0.31 1.00	0.68 0.90	0.11 1.00	
CV.min	0.78 1.00	0.71 1.00	0.38 1.00	0.73 0.94	0.19 1.00	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.71 1.00	0.63 1.00	0.22 1.00	0.70 0.92	•	$\rho = 0.5$
AIC	0.87 1.00	0.87 1.00	0.87 1.00	0.76 0.95		100.0
BIC	0.00 0.01	0.04 0.08	0.20 0.99	0.05 0.03		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.77 1.00	0.72 1.00	0.56 1.00	0.63 0.30	0.46 1.00	
CV.min	0.81 1.00	0.77 1.00	0.60 1.00	0.67 0.47	0.52 1.00	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.74 0.99	0.70 1.00	0.51 0.99	0.67 0.46	'	$\rho = 0.9$
AIC	0.81 1.00	0.80 1.00	0.79 1.00	0.67 0.48		- 100.0
BIC	0.14 0.02	0.06 0.02	0.14 0.28	0.13 0.02		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.44 0.72	0.27 0.57	0.09 0.25	0.51 0.77	0.42 0.72	
CV.min	0.64 0.87	0.49 0.79	0.22 0.48	0.64 0.86	0.64 0.87	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.56 0.83	0.48 0.78	0.43 0.67	0.58 0.82	'	$\rho = 0$
AIC	0.89 0.96	0.89 0.94	0.89 0.91	0.78 0.93		,
BIC	0.00 0.01	0.00 0.00	0.00 0.00	0.05 0.14		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.24 0.14	0.22 0.15	0.01 0.01	0.68 0.49	0.28 0.18	
CV.min	0.65 0.60	0.56 0.53	0.10 0.04	0.74 0.66	0.61 0.57	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.63 0.46	0.61 0.62	0.60 0.73	0.71 0.59	'	$\rho = 0.5$
AIC	0.88 0.97	0.88 0.97	0.89 0.94	0.82 0.88		,
BIC	0.01 0.00	0.00 0.00	0.00 0.00	0.05 0.01		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.01 0.01	0.01 0.01	0.01 0.01	0.32 0.06	0.02 0.01	
CV.min	0.57 0.05	0.50 0.04	0.16 0.02	0.73 0.24	0.29 0.05	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.64 0.05	0.20 0.02	0.04 0.04	0.73 0.26	'	$\rho = 0.9$
AIC	0.85 0.96	0.85 0.96	0.85 0.94	0.75 0.47		,
BIC	0.11 0.02	0.04 0.01	0.01 0.01	0.14 0.02		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.04 0.01	0.01 0.00	0.00 0.00	0.60 0.31	0.07 0.01	
CV.min	0.48 0.22	0.15 0.04	0.04 0.01	0.73 0.50	0.49 0.22	$sd(\mu)/\sigma = 0.5$
AICc	0.54 0.25	0.13 0.07	0.00 0.00	0.69 0.42	'	$\rho = 0$
AIC	0.90 0.91	0.90 0.89	0.90 0.90	0.85 0.75		,
BIC	0.00 0.00	0.00 0.00	0.18 0.17	0.04 0.01		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.00 0.00	0.00 0.00	0.00 0.00	0.60 0.08	0.24 0.00	
CV.min	0.34 0.03	0.18 0.01	0.07 0.00	0.81 0.26	0.45 0.03	$sd(\mu)/\sigma = 0.5$
AICc	0.53 0.06	0.03 0.00	0.00 0.00	0.79 0.21		$\rho = 0.5$
AIC	0.90 0.92	0.90 0.90	0.90 0.90	0.86 0.69		,
BIC	0.02 0.00	0.00 0.00	0.00 0.00	0.07 0.00		$\bar{s}_{Oracle} = 100.0$
CV.1se	0.00 0.00	0.00 0.00	0.00 0.00	0.09 0.01	0.08 0.00	
CV.min	0.49 0.02	0.38 0.01	0.14 0.01	0.79 0.06	0.39 0.02	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.62 0.03	0.11 0.01	0.01 0.00	0.79 0.07	0.02	$\rho = 0.9$
AIC	0.89 0.86	0.89 0.83	0.89 0.82	0.81 0.17		,
BIC	0.04 0.01	0.01 0.00	0.00 0.00	0.11 0.01		$\bar{s}_{Oracle} = 100.0$
	3.0. 0.01	3.01 0.00	3.00 0.00	0.11 0.01		

Table 116: FDR | Sensitivity for n=100, binary design, dense covariates, and decay 10.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.3
AICc 0.59 0.37 0.44 0.34 0.82 0.42 0.68 0.40	1.3
AIC 0.89 0.59 0.88 0.55 0.88 0.44 0.87 0.54	1.3
BIC $0.89 \mid 0.58 \mid 0.88 \mid 0.55 \mid 0.88 \mid 0.44 \mid 0.84 \mid 0.52$	
	2
CV.1se 0.29 0.18 0.20 0.17 0.04 0.09 0.76 0.42 0.15 0.18	2
CV.min $0.72 \mid 0.41 0.57 \mid 0.35 0.17 \mid 0.17 0.86 \mid 0.49 0.49 \mid 0.35 sd(\mu)/\sigma = 0.49 \mid 0.35 \mid sd(\mu)/\sigma = 0.49 \mid sd(\mu$	= Z
AICc $0.60 \mid 0.33 0.45 \mid 0.31 0.83 \mid 0.40 0.70 \mid 0.37$	
AIC 0.90 0.57 0.89 0.54 0.89 0.43 0.88 0.52	
BIC 0.90 0.56 0.89 0.54 0.89 0.43 0.86 0.50 $\bar{s}_{Oracle} = 2$	J.9
CV.1se 0.28 0.17 0.19 0.15 0.04 0.08 0.77 0.40 0.17 0.17	
CV.min 0.74 0.39 0.57 0.32 0.16 0.15 0.86 0.47 0.50 0.32 $\operatorname{sd}(\mu)/\sigma$	= 2
AICc 0.62 0.30 0.46 0.29 0.84 0.38 0.72 0.35	
AIC 0.90 0.55 0.89 0.52 0.89 0.41 0.89 0.49	
BIC 0.90 0.55 0.89 0.52 0.89 0.40 0.86 0.48 $\bar{s}_{Oracle} = 2$	ე.7
CV.1se 0.10 0.05 0.06 0.03 0.02 0.02 0.85 0.42 0.16 0.05	
CV.min 0.57 0.25 0.35 0.14 0.12 0.05 0.91 0.49 0.51 0.23 $sd(\mu)/\sigma = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2}\right) + \frac{1}{2} \left(\frac$	= 1
	= 0
AIC 0.94 0.54 0.94 0.46 0.94 0.31 0.93 0.51	
BIC 0.94 0.54 0.54 0.54 0.55 0.51 $\bar{s}_{Oracle} = 1$	4.5
CV.1se 0.08 0.03 0.05 0.02 0.02 0.02 0.86 0.40 0.15 0.04	
CV.min 0.56 0.22 0.34 0.13 0.02 0.02 0.05 0.40 0.13 0.04 $sd(\mu)/\sigma = 0.05 0.20 sd(\mu)/\sigma = 0.05 0.04 0.15 0.04 sd(\mu)/\sigma = 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.05 0.04 0.05$	- 1
AICc 0.56 0.20 0.45 0.17 0.93 0.28 0.80 0.31 $\rho = \frac{33(\mu)}{6}$	
AIC 0.94 0.51 0.94 0.44 0.95 0.30 0.93 0.48 $p = \frac{1}{2}$	J. .
BIC 0.94 0.51 0.94 0.44 0.95 0.30 0.93 0.48 $\bar{s}_{Oracle} = 1$	4.4
CV.1se 0.08 0.03 0.06 0.03 0.02 0.02 0.86 0.38 0.17 0.05	
	_ 1
AICc $0.58 \mid 0.19 0.42 \mid 0.16 0.93 \mid 0.27 0.81 \mid 0.30$ $\rho = 0.04 \mid 0.51 \mid 0.04 \mid 0.42 \mid 0.05 \mid 0.20 \mid 0.02 \mid 0.47$	J.9
AIC 0.94 0.51 0.94 0.43 0.95 0.29 0.93 0.47 $\bar{s}_{Oracle} = 1$	4.1
BIC 0.94 0.51 0.94 0.43 0.93 0.29 0.93 0.47	
CV.1se 0.03 0.01 0.01 0.00 0.01 0.00 0.94 0.34 0.30 0.02	0 -
CV.min 0.43 0.10 0.22 0.03 0.10 0.01 0.96 0.42 0.55 0.10 $\operatorname{sd}(\mu)/\sigma = 0.05$	
	= 0
AIC 0.97 0.46 0.98 0.34 0.98 0.22 0.97 0.44 $\bar{s}_{Oracle} = \bar{s}_{Oracle}$	7.8
BIC 0.97 0.40 0.97 0.34 0.98 0.22 0.97 0.44	
CV.1se 0.03 0.01 0.02 0.01 0.02 0.00 0.94 0.32 0.30 0.01	
CV.min 0.43 0.09 0.23 0.03 0.12 0.01 0.96 0.40 0.58 0.09 $ sd(\mu)/\sigma =$	
AICc $0.56 \mid 0.09 0.75 \mid 0.16 0.98 \mid 0.18 0.90 \mid 0.23$ $\rho =$	0.5
AIC 0.97 0.43 0.98 0.32 0.98 0.20 0.97 0.42 BIC 0.97 0.43 0.98 0.31 0.98 0.20 0.97 0.42 $\bar{s}_{Oracle} =$	8.0
BIC 0.97 0.43 0.96 0.51 0.96 0.20 0.97 0.42	
CV.1se 0.03 0.01 0.03 0.00 0.02 0.00 0.94 0.32 0.31 0.02	
CV.min $0.45 \mid 0.10 0.21 \mid 0.03 0.10 \mid 0.02 0.97 \mid 0.39 0.61 \mid 0.10 \operatorname{sd}(\mu)/\sigma = 0.00 \operatorname{sd}(\mu$	
AICc $0.57 \mid 0.10 0.71 \mid 0.17 0.98 \mid 0.19 0.92 \mid 0.23$ $\rho =$	0.9
AIC 0.97 0.45 0.98 0.33 0.98 0.21 0.97 0.41 $\bar{s}_{Oracle} = \bar{s}_{Oracle}$	7.6
BIC 0.97 0.44 0.98 0.33 0.98 0.20 0.97 0.41	

Table 117: FDR | Sensitivity for n=100, binary design, dense covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.07 0.01	0.02 0.00	0.02 0.00	0.79 0.19	0.21 0.01	
CV.min	0.46 0.07	0.18 0.01	0.08 0.01	0.84 0.25	0.53 0.08	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.47 0.05	0.77 0.12	0.89 0.11	0.72 0.11		$\rho = 0$
AIC	0.86 0.29	0.88 0.21	0.90 0.13	0.85 0.26		= 560
BIC	0.86 0.29	0.88 0.20	0.90 0.13	0.85 0.26		$\bar{s}_{Oracle} = 56.8$
CV.1se	0.05 0.00	0.02 0.00	0.01 0.00	0.80 0.17	0.20 0.01	
CV.min	0.45 0.06	0.20 0.01	0.08 0.00	0.84 0.23	0.50 0.06	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.48 0.04	0.76 0.11	0.89 0.11	0.74 0.11	'	$\rho = 0.5$
AIC	0.87 0.28	0.88 0.20	0.91 0.12	0.86 0.25		·
BIC	0.87 0.28	0.88 0.20	0.91 0.12	0.86 0.25		$\bar{s}_{Oracle} = 56.2$
CV.1se	0.05 0.01	0.03 0.00	0.01 0.00	0.80 0.16	0.22 0.01	
CV.min	0.44 0.06	0.21 0.01	0.10 0.00	0.85 0.22	0.51 0.06	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.48 0.04	0.73 0.10	0.90 0.10	0.76 0.10	ı	$\rho = 0.9$
AIC	0.87 0.27	0.89 0.20	0.91 0.12	0.86 0.24		·
BIC	0.87 0.27	0.89 0.19	0.91 0.12	0.86 0.24		$\bar{s}_{Oracle} = 56.5$
CV.1se	0.04 0.00	0.01 0.00	0.01 0.00	0.88 0.19	0.28 0.01	
CV.min	0.43 0.05	0.18 0.01	0.09 0.00	0.91 0.25	0.55 0.05	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.52 0.04	0.90 0.13	0.94 0.11	0.84 0.11	0.00 0.00	$\rho = 0$
AIC	0.92 0.30	0.94 0.20	0.95 0.12	0.92 0.27		′
BIC	0.92 0.29	0.94 0.20	0.95 0.12	0.92 0.27		$\bar{s}_{Oracle} = 31.7$
CV.1se	0.03 0.00	0.03 0.00	0.01 0.00	0.89 0.17	0.27 0.01	
CV.min	0.43 0.04	0.21 0.01	0.08 0.00	0.92 0.23	0.54 0.04	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.52 0.04	0.90 0.12	0.94 0.11	0.85 0.11	0.0 . 0.0 .	$\rho = 0.5$
AIC	0.93 0.28	0.94 0.19	0.95 0.12	0.92 0.25		·
BIC	0.93 0.28	0.94 0.19	0.95 0.12	0.92 0.25		$\bar{s}_{Oracle} = 31.4$
CV.1se	0.03 0.00	0.02 0.00	0.01 0.00	0.89 0.17	0.26 0.01	
CV.min	0.42 0.04	0.20 0.01	0.10 0.00	0.92 0.23	0.55 0.04	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.52 0.04	0.89 0.12	0.95 0.10	0.86 0.10	0.55 0.01	$\rho = 0.9$
AIC	0.93 0.27	0.94 0.19	0.95 0.10	0.93 0.25		'
BIC	0.93 0.27	0.94 0.18	0.95 0.12	0.93 0.24		$\bar{s}_{Oracle} = 31.0$
CV.1se	0.03 0.00	0.01 0.00	0.02 0.00	0.96 0.19	0.31 0.01	
CV.13C	0.40 0.04	0.16 0.01	0.10 0.00	0.98 0.25	0.61 0.04	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.57 0.04	0.98 0.13	0.98 0.11	0.94 0.11	0.01 0.01	$\rho = 0$
AIC	0.98 0.29	0.98 0.18	0.99 0.12	0.98 0.27		′
BIC	0.98 0.29	0.98 0.17	0.99 0.12	0.98 0.27		$\bar{s}_{Oracle} = 8.5$
CV.1se	0.01 0.00	0.02 0.00	0.01 0.00	0.97 0.18	0.34 0.01	
CV.13C	0.42 0.03	0.16 0.01	0.10 0.00	0.98 0.24	0.59 0.03	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.53 0.03	0.98 0.13	0.98 0.12	0.94 0.11	0.57 0.05	$\rho = 0.5$
AIC	0.98 0.28	0.98 0.18	0.99 0.12	0.98 0.26		·
BIC	0.98 0.28	0.98 0.18	0.98 0.13	0.98 0.26		$\bar{s}_{Oracle} = 8.9$
CV.1se	0.98 0.28	0.98 0.18	0.98 0.13	0.96 0.18	0.33 0.01	
CV.1se CV.min	0.02 0.00	0.01 0.00	0.01 0.00	0.98 0.18	0.62 0.04	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.59 0.04	0.18 0.01	0.10 0.01	0.98 0.23	0.02 0.04	$\begin{array}{c} \operatorname{sd}(\mu)/\delta = 0.3 \\ \rho = 0.9 \end{array}$
AICC	0.39 0.04	0.98 0.13	0.99 0.12	0.93 0.12		·
	0.98 0.29					$\bar{s}_{Oracle} = 8.1$
BIC	0.98 0.29	0.98 0.18	0.99 0.12	0.98 0.27		

Table 118: FDR | Sensitivity for n=100, binary design, dense covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.05 0.00	0.02 0.00	0.01 0.00	0.80 0.13	0.24 0.00	
CV.min	0.42 0.04	$0.16 \mid 0.01$	$0.09 \mid 0.00$	0.83 0.18	0.53 0.04	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.45 0.03	0.83 0.10	$0.88 \mid 0.09$	$0.75 \mid 0.07$		$\rho = 0$
AIC	0.85 0.23	0.87 0.15	$0.89 \mid 0.10$	0.84 0.20		$\bar{s}_{Oracle} = 78.1$
BIC	0.85 0.23	0.87 0.15	$0.89 \mid 0.10$	0.84 0.20		SOracle - 76.1
CV.1se	0.03 0.00	0.02 0.00	0.01 0.00	0.81 0.12	0.22 0.00	
CV.min	0.43 0.03	0.18 0.00	$0.09 \mid 0.00$	$0.84 \mid 0.17$	0.51 0.03	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.47 0.02	0.84 0.09	$0.89 \mid 0.08$	$0.76 \mid 0.07$		$\rho = 0.5$
AIC	0.86 0.21	0.88 0.15	$0.89 \mid 0.10$	$0.85 \mid 0.19$		$\bar{s}_{Oracle} = 77.8$
BIC	0.86 0.21	0.88 0.14	$0.89 \mid 0.10$	$0.85 \mid 0.19$		SOracle - 11.6
CV.1se	0.04 0.00	0.03 0.00	0.01 0.00	0.81 0.12	0.26 0.00	
CV.min	0.44 0.03	0.20 0.00	$0.09 \mid 0.00$	$0.84 \mid 0.17$	0.55 0.03	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.51 0.02	$0.84 \mid 0.09$	$0.89 \mid 0.08$	$0.77 \mid 0.06$		$\rho = 0.9$
AIC	0.86 0.21	$0.88 \mid 0.14$	$0.89 \mid 0.10$	$0.85 \mid 0.19$		_ 77.2
BIC	0.86 0.21	0.88 0.14	$0.89 \mid 0.09$	$0.85 \mid 0.18$		$\bar{s}_{Oracle} = 77.2$
CV.1se	0.04 0.00	0.01 0.00	0.01 0.00	0.90 0.14	0.32 0.00	
CV.min	0.45 0.04	0.16 0.00	0.10 0.00	0.92 0.19	0.60 0.03	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.55 0.03	0.93 0.10	0.94 0.09	0.86 0.07		$\rho = 0$
AIC	0.93 0.23	0.94 0.15	0.95 0.10	0.92 0.21		_ 20.0
BIC	0.93 0.23	0.94 0.14	0.95 0.10	0.92 0.21		$\bar{s}_{Oracle} = 38.0$
CV.1se	0.04 0.00	0.02 0.00	0.02 0.00	0.90 0.13	0.33 0.00	
CV.min	0.42 0.03	0.18 0.00	0.08 0.00	0.92 0.19	0.59 0.03	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.52 0.02	0.93 0.10	0.95 0.09	0.88 0.07		$\rho = 0.5$
AIC	0.93 0.23	0.94 0.15	0.95 0.10	0.93 0.20		26.0
BIC	0.93 0.23	0.94 0.15	0.95 0.10	0.93 0.20		$\bar{s}_{Oracle} = 36.9$
CV.1se	0.03 0.00	0.01 0.00	0.02 0.00	0.90 0.13	0.29 0.01	
CV.min	0.45 0.03	0.19 0.00	0.10 0.00	0.92 0.18	0.58 0.03	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.56 0.02	0.93 0.10	0.95 0.09	0.87 0.07	,	$\rho = 0.9$
AIC	0.93 0.23	0.94 0.15	0.95 0.10	0.93 0.20		- 27.1
BIC	0.93 0.23	0.94 0.15	0.95 0.10	0.93 0.20		$\bar{s}_{Oracle} = 37.1$
CV.1se	0.02 0.00	0.01 0.00	0.02 0.00	0.97 0.15	0.34 0.00	
CV.min	0.41 0.03	0.15 0.00	$0.09 \mid 0.00$	0.98 0.21	0.62 0.03	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.57 0.02	0.99 0.10	0.99 0.09	0.96 0.07	,	$\rho = 0$
AIC	0.99 0.26	0.99 0.14	0.99 0.10	0.98 0.23		
BIC	0.99 0.26	0.99 0.14	0.99 0.10	0.98 0.23		$\bar{s}_{Oracle} = 6.6$
CV.1se	0.02 0.00	0.01 0.00	0.01 0.00	0.97 0.15	0.35 0.01	
CV.min	0.43 0.02	0.15 0.00	0.09 0.00	0.98 0.20	0.61 0.02	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.58 0.03	0.99 0.10	0.99 0.09	0.95 0.09	'	$\rho = 0.5$
AIC	0.99 0.24	0.99 0.14	0.99 0.10	0.98 0.22		,
BIC	0.99 0.24	0.99 0.14	0.99 0.10	0.98 0.22		$\bar{s}_{Oracle} = 6.9$
CV.1se	0.03 0.00	0.01 0.00	0.02 0.00	0.97 0.14	0.34 0.00	
CV.min	0.43 0.03	0.16 0.00	0.09 0.00	0.98 0.20	0.63 0.03	$sd(\mu)/\sigma = 0.5$
AICc	0.60 0.03	0.99 0.11	0.99 0.10	0.96 0.08	1	$\rho = 0.9$
AIC	0.99 0.25	0.99 0.15	0.99 0.11	0.98 0.23		,
BIC	0.99 0.25	0.99 0.15	0.99 0.11	0.98 0.23		$\bar{s}_{Oracle} = 6.4$

Table 119: FDR | Sensitivity for n=100, binary design, dense covariates, and decay 200.

	lasso	$GL \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.05 0.00	0.01 0.00	0.02 0.00	0.83 0.10	0.27 0.00	
CV.min	0.43 0.03	$0.16 \mid 0.00$	$0.09 \mid 0.00$	0.85 0.14	0.57 0.03	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.50 0.02	$0.86 \mid 0.07$	$0.88 \mid 0.07$	$0.79 \mid 0.05$		$\rho = 0$
AIC	$0.86 \mid 0.18$	0.88 0.12	$0.89 \mid 0.08$	0.85 0.16		$\bar{s}_{Oracle} = 91.2$
BIC	$0.86 \mid 0.18$	0.88 0.12	$0.89 \mid 0.08$	0.85 0.15		SOracle - 91.2
CV.1se	0.03 0.00	0.02 0.00	0.02 0.00	0.83 0.09	0.26 0.00	
CV.min	0.42 0.02	0.16 0.00	0.10 0.00	0.85 0.14	0.55 0.02	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.50 0.01	0.87 0.07	0.89 0.07	$0.79 \mid 0.05$		$\rho = 0.5$
AIC	0.86 0.18	0.88 0.12	0.89 0.08	0.86 0.15		- 00.0
BIC	0.86 0.18	0.88 0.12	0.89 0.08	0.86 0.15		$\bar{s}_{Oracle} = 90.8$
CV.1se	0.04 0.00	0.02 0.00	0.02 0.00	0.83 0.09	0.29 0.00	
CV.min	0.44 0.02	0.18 0.00	0.11 0.00	0.85 0.13	0.58 0.02	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.53 0.01	0.87 0.07	0.89 0.07	0.81 0.04	,	$\rho = 0.9$
AIC	0.86 0.17	0.88 0.12	0.89 0.08	0.86 0.15		- 00.2
BIC	0.86 0.17	0.88 0.11	0.89 0.08	0.86 0.15		$\bar{s}_{Oracle} = 90.3$
CV.1se	0.03 0.00	0.01 0.00	0.01 0.00	0.91 0.11	0.34 0.00	
CV.min	0.44 0.03	0.15 0.00	0.10 0.00	0.93 0.16	0.64 0.03	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.55 0.02	0.94 0.08	0.95 0.08	0.90 0.06	ı	$\rho = 0$
AIC	0.94 0.20	0.94 0.12	0.95 0.08	0.93 0.17		,
BIC	0.94 0.20	0.95 0.12	0.95 0.08	0.93 0.17		$\bar{s}_{Oracle} = 41.6$
CV.1se	0.03 0.00	0.02 0.00	0.02 0.00	0.92 0.11	0.32 0.00	
CV.min	0.45 0.02	0.17 0.00	0.09 0.00	0.93 0.16	0.62 0.02	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.56 0.02	0.94 0.08	0.95 0.08	0.90 0.05	ı	$\rho = 0.5$
AIC	0.94 0.20	0.94 0.12	0.95 0.09	0.94 0.17		
BIC	0.94 0.19	0.94 0.12	0.95 0.09	0.94 0.17		$\bar{s}_{Oracle} = 41.3$
CV.1se	0.04 0.00	0.01 0.00	0.01 0.00	0.92 0.11	0.33 0.00	
CV.min	0.46 0.02	0.19 0.00	0.11 0.00	0.93 0.15	0.62 0.02	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.56 0.02	0.94 0.08	0.95 0.08	0.90 0.06	313- 313-	$\rho = 0.9$
AIC	0.94 0.20	0.95 0.13	0.95 0.09	0.94 0.17		,
BIC	0.94 0.20	0.95 0.12	0.95 0.09	0.94 0.17		$\bar{s}_{Oracle} = 40.7$
CV.1se	0.03 0.00	0.01 0.00	0.01 0.00	0.98 0.11	0.35 0.00	
CV.min	0.42 0.02	0.14 0.00	0.09 0.00	0.99 0.18	0.62 0.02	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.57 0.02	0.99 0.08	0.99 0.08	0.97 0.06	ı	$\rho = 0$
AIC	0.99 0.24	0.99 0.11	0.99 0.08	0.99 0.20		,
BIC	0.99 0.24	0.99 0.10	0.99 0.08	0.99 0.20		$\bar{s}_{Oracle} = 5.1$
CV.1se	0.03 0.00	0.01 0.00	0.01 0.00	0.98 0.13	0.36 0.00	
CV.min	0.44 0.02	0.14 0.00	0.08 0.00	0.99 0.18	0.64 0.02	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.57 0.03	0.99 0.09	0.99 0.09	0.97 0.07	****	$\rho = 0.5$
AIC	0.99 0.21	0.99 0.12	0.99 0.09	0.99 0.20		
BIC	0.99 0.21	0.99 0.12	0.99 0.09	0.99 0.20		$\bar{s}_{Oracle} = 5.6$
CV.1se	0.02 0.00	0.01 0.00	0.01 0.00	0.97 0.13	0.35 0.01	
CV.rise CV.min	0.44 0.02	0.17 0.01	0.09 0.00	0.99 0.19	0.65 0.03	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.58 0.03	0.99 0.10	0.99 0.09	0.97 0.07	0.02 0.02	$\rho = 0.9$
AIC	0.99 0.23	0.99 0.13	0.99 0.10	0.99 0.21		
BIC	0.99 0.23	0.99 0.13	0.99 0.10	0.99 0.21		$\bar{s}_{Oracle} = 5.2$
	0.77 0.23	0.77 0.12	0.77 0.10	0.77 0.21		

Table 120: FDR | Sensitivity for n=100, continuous design, dense covariates, and decay 10.

	lasso	$GL \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.29 0.23	0.17 0.19	0.03 0.10	0.73 0.45	0.17 0.20	
CV.min	0.72 0.46	0.54 0.38	$0.15 \mid 0.19$	0.84 0.52	0.52 0.39	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.58 0.37	0.24 0.25	$0.80 \mid 0.41$	$0.67 \mid 0.40$		$\rho = 0$
AIC	0.89 0.59	$0.88 \mid 0.56$	$0.88 \mid 0.44$	$0.87 \mid 0.54$		$\bar{s}_{Oracle} = 20.7$
BIC	0.89 0.59	$0.88 \mid 0.56$	$0.88 \mid 0.44$	0.84 0.53		SOracle - 20.7
CV.1se	0.08 0.03	0.07 0.03	0.02 0.03	0.85 0.19	0.10 0.06	
CV.min	0.62 0.12	0.51 0.10	$0.14 \mid 0.06$	$0.92 \mid 0.25$	0.39 0.12	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.63 0.11	0.17 0.06	0.70 0.18	0.84 0.15		$\rho = 0.5$
AIC	0.94 0.34	0.94 0.32	0.94 0.25	0.94 0.28		- 20.4
BIC	0.94 0.33	0.94 0.32	0.94 0.25	0.86 0.26		$\bar{s}_{Oracle} = 20.4$
CV.1se	0.06 0.06	0.04 0.06	0.01 0.06	0.54 0.16	0.01 0.06	
CV.min	0.63 0.08	0.51 0.07	0.14 0.06	0.81 0.32	0.23 0.06	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.65 0.08	0.14 0.06	0.00 0.06	0.76 0.22	,	$\rho = 0.9$
AIC	0.97 0.19	0.97 0.17	0.97 0.14	0.86 0.44		= 10.2
BIC	0.84 0.16	0.87 0.16	0.97 0.14	0.26 0.09		$\bar{s}_{Oracle} = 18.3$
CV.1se	0.09 0.05	0.05 0.04	0.02 0.02	0.84 0.42	0.12 0.05	
CV.min	0.54 0.24	0.33 0.14	0.10 0.06	0.91 0.50	0.50 0.23	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.57 0.23	0.11 0.07	0.93 0.28	0.78 0.34	'	$\rho = 0$
AIC	0.93 0.55	0.94 0.46	0.94 0.31	0.93 0.51		,
BIC	0.93 0.54	0.94 0.46	0.94 0.30	0.92 0.51		$\bar{s}_{Oracle} = 14.4$
CV.1se	0.04 0.01	0.03 0.01	0.02 0.01	0.89 0.19	0.15 0.03	
CV.min	0.50 0.09	0.37 0.06	0.13 0.03	0.95 0.26	0.47 0.08	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.59 0.09	0.10 0.03	0.94 0.17	0.87 0.14		$\rho = 0.5$
AIC	0.96 0.32	0.96 0.28	0.97 0.20	0.96 0.28		,
BIC	0.96 0.32	0.96 0.28	0.97 0.20	0.95 0.28		$\bar{s}_{Oracle} = 14.2$
CV.1se	0.06 0.08	0.04 0.08	0.01 0.09	0.44 0.14	0.01 0.09	
CV.min	0.64 0.14	0.51 0.11	0.14 0.10	0.86 0.24	0.22 0.11	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.65 0.13	0.13 0.10	0.02 0.10	0.80 0.17	0.22 0.11	$\rho = 0.9$
AIC	0.98 0.23	0.98 0.20	0.98 0.17	0.93 0.49		,
BIC	0.97 0.22	0.98 0.20	0.98 0.16	0.31 0.13		$\bar{s}_{Oracle} = 11.6$
CV.1se	0.03 0.01	0.02 0.01	0.01 0.00	0.93 0.35	0.27 0.02	
CV.nin	0.41 0.10	0.20 0.04	0.10 0.02	0.96 0.43	0.55 0.10	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.53 0.11	0.24 0.06	0.98 0.20	0.90 0.25	0.00 0.10	$\rho = 0$
AIC	0.97 0.47	0.98 0.34	0.98 0.22	0.97 0.45		,
BIC	0.97 0.46	0.98 0.34	0.98 0.21	0.97 0.45		$\bar{s}_{Oracle} = 7.9$
CV.1se	0.02 0.00	0.02 0.00	0.01 0.00	0.94 0.20	0.31 0.01	
CV.min	0.42 0.06	0.26 0.03	0.13 0.01	0.98 0.27	0.60 0.06	$sd(\mu)/\sigma = 0.5$
AICc	0.57 0.07	0.07 0.01	0.98 0.15	0.93 0.15	0.00 0.00	$\rho = 0.5$
AIC	0.98 0.32	0.98 0.26	0.99 0.17	0.98 0.30		,
BIC	0.98 0.31	0.98 0.25	0.99 0.17	0.98 0.30		$\bar{s}_{Oracle} = 7.6$
CV.1se	0.03 0.04	0.03 0.04	0.01 0.05	0.57 0.27	0.15 0.11	
CV.13C	0.51 0.25	0.40 0.21	0.15 0.14	0.92 0.37	0.48 0.24	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.63 0.28	0.40 0.21	0.66 0.24	0.88 0.34	0.40 0.24	$\rho = 0.9$
AIC	0.03 0.28	0.10 0.13	0.00 0.24	0.88 0.34		,
BIC	0.99 0.38	0.99 0.35	0.99 0.31	0.62 0.33		$\bar{s}_{Oracle} = 5.5$
БІС	0.33 0.38	0.33 0.33	0.33 0.31	0.02 0.33		

Table 121: FDR | Sensitivity for n=100, continuous design, dense covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\mathrm{GL}\ \gamma=10$	marginal AL	sparsenet MCP	
CV.1se	0.06 0.01	0.03 0.00	0.01 0.00	0.78 0.19	0.18 0.01	
CV.min	$0.47 \mid 0.08$	0.20 0.01	$0.09 \mid 0.00$	0.83 0.25	0.51 0.07	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.47 0.05	0.36 0.05	0.89 0.11	0.72 0.12		$\rho = 0$
AIC	0.86 0.29	0.88 0.21	0.90 0.13	0.84 0.26		57.2
BIC	0.86 0.29	$0.88 \mid 0.20$	0.90 0.12	0.84 0.26		$\bar{s}_{Oracle} = 57.2$
CV.1se	0.03 0.00	0.03 0.00	0.01 0.00	0.86 0.09	0.25 0.00	
CV.min	0.40 0.02	0.24 0.01	0.09 0.00	0.90 0.13	0.52 0.02	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.52 0.02	0.08 0.00	0.92 0.08	0.85 0.05		$\rho = 0.5$
AIC	0.91 0.18	0.92 0.15	0.93 0.10	0.91 0.16		- 57 0
BIC	0.91 0.18	0.92 0.15	0.93 0.10	0.91 0.16		$\bar{s}_{Oracle} = 57.0$
CV.1se	0.04 0.00	0.04 0.01	0.02 0.01	0.51 0.03	0.08 0.01	
CV.min	0.54 0.03	0.44 0.02	0.18 0.01	0.85 0.06	0.41 0.02	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.62 0.03	0.10 0.01	0.43 0.04	0.81 0.04	'	$\rho = 0.9$
AIC	0.93 0.14	0.93 0.12	0.93 0.10	0.91 0.15		
BIC	0.93 0.14	0.93 0.12	0.93 0.09	0.50 0.05		$\bar{s}_{Oracle} = 55.0$
CV.1se	0.04 0.00	0.02 0.00	0.01 0.00	0.88 0.19	0.25 0.01	
CV.min	0.44 0.05	0.18 0.01	0.10 0.00	0.91 0.25	0.55 0.05	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.54 0.05	0.60 0.08	0.94 0.12	0.84 0.12	3100 3100	$\rho = 0$
AIC	0.93 0.30	0.94 0.20	0.95 0.13	0.92 0.27		,
BIC	0.93 0.30	0.94 0.20	0.95 0.13	0.92 0.27		$\bar{s}_{Oracle} = 30.6$
CV.1se	0.03 0.00	0.02 0.00	0.01 0.00	0.91 0.09	0.30 0.00	
CV.rise CV.min	0.36 0.02	0.23 0.01	0.11 0.00	0.94 0.15	0.56 0.02	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.52 0.02	0.14 0.01	0.96 0.08	0.91 0.06	0.50 0.02	$\rho = 0.5$
AIC	0.95 0.20	0.95 0.15	0.96 0.10	0.95 0.17		,
BIC	0.95 0.19	0.95 0.15	0.96 0.10	0.95 0.17		$\bar{s}_{Oracle} = 30.4$
CV.1se	0.03 0.01	0.03 0.13	0.02 0.00	0.54 0.04	0.17 0.01	
CV.1sc CV.min	0.46 0.04	0.05 0.01	0.02 0.00	0.89 0.09	0.50 0.03	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.40 0.04	0.09 0.01	0.13 0.01	0.85 0.07	0.30 0.03	$\rho = 0.9$
AICC	0.96 0.16	0.09 0.01	0.85 0.08	0.85 0.07		$\rho = 0.9$
BIC	0.96 0.16	0.96 0.14	0.96 0.11			$\bar{s}_{Oracle} = 27.7$
		<u>'</u>			0.20 0.00	
CV.1se	0.03 0.00	0.02 0.00	0.02 0.00	0.96 0.19	0.30 0.00	-1()/- 0.5
CV.min	0.43 0.04	$0.17 \mid 0.00$	$0.10 \mid 0.00$	0.98 0.24	0.60 0.03	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.59 0.03	0.93 0.12	0.98 0.11	0.95 0.11		$\rho = 0$
AIC	0.98 0.29	0.98 0.18	0.99 0.11	0.98 0.26		$\bar{s}_{Oracle} = 8.7$
BIC	0.98 0.29	0.98 0.18	0.99 0.11	0.98 0.26	0.22 0.00	
CV.1se	0.02 0.00	0.01 0.00	0.01 0.00	0.95 0.12	0.32 0.00	1/)/ 0.5
CV.min	0.40 0.02	0.19 0.00	0.11 0.00	0.98 0.17	0.59 0.02	$\int \operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.59 0.03	0.50 0.05	0.99 0.10	0.96 0.08		$\rho = 0.5$
AIC	0.98 0.23	0.99 0.16	0.99 0.11	0.98 0.20		$\bar{s}_{Oracle} = 8.5$
BIC	0.98 0.23	0.99 0.16	0.99 0.11	0.98 0.20		-Oracle
CV.1se	0.01 0.00	0.02 0.00	0.01 0.00	0.58 0.10	0.31 0.01	
CV.min	0.42 0.07	0.27 0.04	0.12 0.01	0.94 0.20	$0.60 \mid 0.07$	$\int \operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.57 0.08	0.07 0.01	0.98 0.18	0.92 0.16		$\rho = 0.9$
AIC	0.99 0.28	0.99 0.23	0.99 0.20	0.98 0.30		$\bar{s}_{Oracle} = 7.3$
BIC	0.99 0.28	0.99 0.23	0.99 0.20	0.84 0.21		Oracle - 7.3

Table 122: FDR | Sensitivity for n=100, continuous design, dense covariates, and decay 100.

	lass	0	GL γ	$\gamma = 1$	GL γ	= 10	margii	nal AL	sparsenet MCP	
CV.1se	0.04 0	0.00	0.01	0.00	0.01	0.00	0.80	0.13	0.22 0.00	
CV.min	0.43	0.04	0.15	0.00		0.00	0.83	0.18	0.51 0.04	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.48	0.03	0.67	0.07	0.88	0.09	0.74	0.07	·	$\rho = 0$
AIC	0.85	0.23	0.87	0.15	0.89	0.10	0.84	0.20		_ 77.5
BIC	0.85	0.22	0.87	0.15	0.89	0.10	0.84	0.20		$\bar{s}_{Oracle} = 77.5$
CV.1se	0.02	0.00	0.01	0.00	0.01	0.00	0.86	0.07	0.26 0.00	
CV.min	0.39		0.20	0.00		0.00	0.89		0.54 0.01	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.51	0.01	0.17	0.01	0.91	0.07	0.85		· ·	$\rho = 0.5$
AIC	0.90		0.90			0.09	0.90			·
BIC	0.90	0.15	0.90			0.09	0.89			$\bar{s}_{Oracle} = 77.5$
CV.1se	0.03		0.03			0.00	0.55	<u> </u>	0.18 0.00	
CV.min	0.45		0.32			0.00		0.04	0.47 0.01	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.56		0.09			0.06	0.82		**** ****	$\rho = 0.9$
AIC	0.91		0.92			0.09		0.12		·
BIC	0.91		0.92			0.09		0.06		$\bar{s}_{Oracle} = 76.0$
CV.1se	0.04		0.02			0.00		0.14	0.26 0.00	
CV.min	0.43		0.17			0.00	0.92		0.57 0.03	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.54		0.86			0.09	0.87		0.57 0.05	$\rho = 0$
AIC	0.93 0		0.94			0.10	0.93			,
BIC	0.93 0		0.94			0.10	0.92			$\bar{s}_{Oracle} = 37.7$
CV.1se	0.03 0		0.02			0.00	0.92		0.32 0.00	
CV.13C CV.min	0.39		0.02			0.00	0.94		0.57 0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.53		0.38			0.07		0.12	0.57 0.01	$\rho = 0.5$
AIC	0.95 0		0.95			0.07	0.95	,		'
BIC	0.95 0		0.95			0.09	0.95			$\bar{s}_{Oracle} = 37.2$
CV.1se	0.93 0		0.93			0.00		0.13	0.26 0.00	
CV.1se CV.min	0.02 0.40 0		0.02						,	$\operatorname{ad}(u)/\sigma = 1$
						0.00	0.92		0.54 0.02	$\operatorname{sd}(\mu)/\sigma = 1$
AICc AIC	0.53 0		0.07			0.08		0.04		$\rho = 0.9$
	0.96		0.96			0.10		0.16		$\bar{s}_{Oracle} = 34.6$
BIC	0.96 0		0.96			0.10		0.09	0.24 0.00	
CV.1se		0.00	0.02			0.00		0.15	0.34 0.00	-1()/- 0.5
CV.min	0.45		0.16			0.00		0.20	0.63 0.02	$sd(\mu)/\sigma = 0.5$
AICc	0.59 0		0.98			0.10	0.96			$\rho = 0$
AIC	0.99 0		0.99			0.10	0.98			$\bar{s}_{Oracle} = 6.8$
BIC	0.98 0		0.99			0.10	0.98		0.24 0.00	
CV.1se	0.03 0		0.01			0.00	0.95		0.34 0.00	1/)/
CV.min	0.39 0		0.18			0.00	0.99		0.63 0.02	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.55 0		0.82			0.09		0.06		$\rho = 0.5$
AIC	0.99 0		0.99			0.10		0.20		$\bar{s}_{Oracle} = 6.7$
BIC	0.99 0		0.99			0.10		0.20		ouracie ou
CV.1se		0.00	0.01			0.00	0.57		0.31 0.00	
CV.min	0.41 0		0.23			0.00		0.16	$0.60 \mid 0.04$	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	$0.56 \mid 0$		0.06			0.15	0.94			$\rho = 0.9$
AIC	$0.99 \mid 0$	0.24	0.99			0.16		0.26		$\bar{s}_{Oracle} = 6.4$
BIC	0.99 0	0.24	0.99	0.20	0.99	0.16	0.86	0.17		Oracle - 0.4

Table 123: FDR | Sensitivity for n=100, continuous design, dense covariates, and decay 200.

	lasso	$GL \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.03 0.00	0.02 0.00	0.01 0.00	0.82 0.10	0.25 0.00	
CV.min	0.43 0.03	0.14 0.00	$0.07 \mid 0.00$	0.85 0.14	0.57 0.03	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.51 0.02	0.83 0.07	$0.89 \mid 0.07$	$0.79 \mid 0.05$		$\rho = 0$
AIC	$0.86 \mid 0.18$	0.88 0.12	$0.89 \mid 0.08$	0.85 0.16		$\bar{s}_{Oracle} = 91.1$
BIC	$0.86 \mid 0.18$	0.88 0.12	$0.89 \mid 0.08$	0.85 0.16		SOracle - 91.1
CV.1se	0.02 0.00	0.02 0.00	0.00 0.00	0.86 0.06	0.27 0.00	
CV.min	0.40 0.01	0.18 0.00	$0.09 \mid 0.00$	$0.88 \mid 0.10$	0.54 0.01	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.51 0.01	0.44 0.03	0.90 0.06	0.85 0.03		$\rho = 0.5$
AIC	0.89 0.14	0.89 0.11	0.90 0.08	0.89 0.12		01 1
BIC	0.89 0.14	0.90 0.10	0.90 0.08	0.89 0.12		$\bar{s}_{Oracle} = 91.1$
CV.1se	0.02 0.00	0.02 0.00	0.01 0.00	0.55 0.01	0.24 0.00	
CV.min	0.42 0.01	0.27 0.00	0.13 0.00	0.86 0.04	0.55 0.01	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.52 0.01	0.07 0.00	0.90 0.07	0.83 0.02		$\rho = 0.9$
AIC	0.90 0.13	0.90 0.10	0.90 0.08	0.90 0.11		- 00.5
BIC	0.90 0.12	0.90 0.10	0.90 0.08	0.75 0.06		$\bar{s}_{Oracle} = 90.5$
CV.1se	0.04 0.00	0.02 0.00	0.02 0.00	0.92 0.11	0.30 0.00	
CV.min	0.42 0.02	0.15 0.00	0.11 0.00	0.93 0.16	0.58 0.02	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.58 0.02	0.94 0.08	0.95 0.08	0.90 0.06	ı	$\rho = 0$
AIC	0.94 0.20	0.94 0.12	0.95 0.08	0.93 0.18		,
BIC	0.94 0.20	0.95 0.12	0.95 0.08	0.93 0.18		$\bar{s}_{Oracle} = 41.2$
CV.1se	0.03 0.00	0.02 0.00	0.01 0.00	0.92 0.06	0.32 0.00	
CV.min	0.41 0.01	0.19 0.00	0.10 0.00	0.94 0.11	0.62 0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.54 0.01	0.71 0.05	0.95 0.07	0.92 0.04	3132 3132	$\rho = 0.5$
AIC	0.95 0.16	0.95 0.11	0.95 0.08	0.95 0.13		,
BIC	0.95 0.16	0.95 0.11	0.95 0.08	0.95 0.13		$\bar{s}_{Oracle} = 41.3$
CV.1se	0.02 0.00	0.02 0.00	0.01 0.00	0.55 0.02	0.29 0.00	
CV.min	0.39 0.01	0.25 0.01	0.10 0.00	0.92 0.06	0.57 0.01	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.54 0.02	0.06 0.00	0.95 0.08	0.89 0.04	0.57 0.01	$\rho = 0.9$
AIC	0.95 0.15	0.95 0.12	0.96 0.10	0.95 0.15		,
BIC	0.95 0.15	0.95 0.12	0.96 0.10	0.80 0.09		$\bar{s}_{Oracle} = 39.9$
CV.1se	0.02 0.00	0.02 0.00	0.02 0.00	0.98 0.12	0.33 0.00	
CV.13C	0.43 0.01	0.14 0.00	0.10 0.00	0.99 0.17	0.64 0.02	$sd(\mu)/\sigma = 0.5$
AICc	0.58 0.02	0.99 0.09	0.99 0.08	0.97 0.06	0.01 0.02	$\rho = 0$
AIC	0.99 0.21	0.99 0.13	0.99 0.08	0.99 0.18		,
BIC	0.99 0.20	0.99 0.12	0.99 0.08	0.99 0.18		$\bar{s}_{Oracle} = 5.4$
CV.1se	0.03 0.00	0.02 0.00	0.01 0.00	0.95 0.09	0.33 0.00	
CV.13C	0.03 0.00	0.02 0.00	0.10 0.00	0.99 0.15	0.63 0.00	$sd(\mu)/\sigma = 0.5$
AICc	0.57 0.01	0.10 0.00	0.10 0.00	0.96 0.05	0.03 0.01	$\rho = 0.5$
AIC	0.99 0.21	0.99 0.12	0.99 0.09	0.99 0.18		$\rho = 0.5$
BIC	0.99 0.21	0.99 0.12	0.99 0.09	0.99 0.18		$\bar{s}_{Oracle} = 5.5$
CV.1se	0.99 0.21	0.99 0.12	0.01 0.00	0.57 0.04	0.33 0.00	
CV.1se CV.min	0.01 0.00	0.01 0.00	0.01 0.00	,	'	$\operatorname{ad}(u)/\sigma = 0.5$
AICc	0.40 0.02	0.23 0.01	0.11 0.00	0.97 0.12 0.94 0.08	0.61 0.03	$\begin{array}{c c} \operatorname{sd}(\mu)/\sigma = 0.5\\ \rho = 0.9 \end{array}$
AICC	0.57 0.03	,		,		,
	,	0.99 0.18 0.99 0.18	0.99 0.15 0.99 0.15	$0.99 \mid 0.22$		$\bar{s}_{Oracle} = 5.3$
BIC	0.99 0.23	0.99 0.18	0.99 0.13	0.86 0.14		

Table 124: FDR | Sensitivity for n=100, binary design, sparse covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.44 0.66	0.28 0.65	0.05 0.44	0.72 0.81	0.17 0.65	
CV.min	$0.80 \mid 0.88$	$0.65 \mid 0.86$	0.21 0.67	$0.85 \mid 0.87$	$0.46 \mid 0.82$	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.64 0.80	$0.47 \mid 0.81$	$0.80 \mid 0.88$	$0.69 \mid 0.79$		$\rho = 0$
AIC	0.91 0.93	$0.90 \mid 0.92$	$0.88 \mid 0.88$	$0.89 \mid 0.88$		$\bar{s}_{Oracle} = 10.0$
BIC	0.91 0.92	$0.90 \mid 0.92$	$0.88 \mid 0.88$	$0.82 \mid 0.85$		SOracle - 10.0
CV.1se	0.42 0.55	0.27 0.56	0.05 0.36	0.76 0.78	0.17 0.60	
CV.min	$0.80 \mid 0.83$	0.66 0.82	0.20 0.60	$0.86 \mid 0.84$	$0.44 \mid 0.80$	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.64 0.74	$0.50 \mid 0.77$	$0.81 \mid 0.86$	$0.71 \mid 0.74$		$\rho = 0.5$
AIC	$0.92 \mid 0.92$	0.91 0.92	$0.88 \mid 0.87$	$0.90 \mid 0.86$		$\bar{s}_{Oracle} = 10.0$
BIC	0.91 0.91	0.90 0.91	$0.88 \mid 0.87$	$0.85 \mid 0.84$		$SO_{racle} = 10.0$
CV.1se	0.42 0.51	0.30 0.52	0.05 0.33	0.77 0.75	0.19 0.57	
CV.min	$0.80 \mid 0.80$	$0.68 \mid 0.78$	$0.22 \mid 0.55$	$0.87 \mid 0.82$	$0.47 \mid 0.75$	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	$0.66 \mid 0.69$	$0.52 \mid 0.72$	$0.81 \mid 0.82$	$0.72 \mid 0.70$		$\rho = 0.9$
AIC	$0.92 \mid 0.89$	0.91 0.89	$0.89 \mid 0.83$	$0.90 \mid 0.84$		_ 10.0
BIC	$0.92 \mid 0.89$	$0.91 \mid 0.89$	$0.89 \mid 0.83$	$0.85 \mid 0.81$		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.12 0.10	0.08 0.07	0.02 0.03	0.84 0.56	0.13 0.10	
CV.min	0.64 0.40	0.39 0.25	0.13 0.10	0.91 0.62	0.54 0.36	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.59 0.35	0.44 0.29	0.92 0.39	0.78 0.48		$\rho = 0$
AIC	0.94 0.66	0.94 0.58	0.94 0.42	0.93 0.64		_ 10.0
BIC	0.94 0.66	0.94 0.58	0.94 0.42	0.93 0.63		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.10 0.07	0.07 0.05	0.03 0.03	0.86 0.51	0.13 0.07	
CV.min	0.62 0.34	0.40 0.22	0.11 0.09	0.92 0.58	0.51 0.30	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.60 0.30	0.43 0.25	0.93 0.38	0.79 0.42		$\rho = 0.5$
AIC	0.94 0.63	0.94 0.56	0.95 0.40	0.94 0.60		= 10.0
BIC	0.94 0.63	0.94 0.55	0.95 0.40	0.93 0.59		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.11 0.07	0.07 0.05	0.02 0.03	0.86 0.48	0.14 0.08	
CV.min	0.62 0.32	0.41 0.21	0.13 0.09	0.92 0.56	0.51 0.28	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.60 0.28	0.43 0.23	0.93 0.36	0.81 0.40	,	$\rho = 0.9$
AIC	0.94 0.61	0.94 0.55	0.95 0.38	0.94 0.58		_ 10.0
BIC	0.94 0.61	0.94 0.54	0.95 0.38	0.93 0.58		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.04 0.00	0.02 0.00	0.01 0.00	0.94 0.26	0.26 0.01	
CV.min	0.42 0.07	0.24 0.02	0.11 0.01	0.96 0.32	0.56 0.07	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.56 0.07	0.73 0.13	0.97 0.15	0.90 0.17	,	$\rho = 0$
AIC	0.97 0.36	0.97 0.27	0.98 0.17	0.96 0.34		_ 10.0
BIC	0.97 0.36	0.97 0.27	0.98 0.17	0.96 0.34		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.02 0.00	0.02 0.00	0.01 0.00	0.93 0.23	0.32 0.01	
CV.min	0.44 0.06	0.24 0.02	0.11 0.01	0.96 0.29	0.59 0.06	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.55 0.06	0.70 0.11	0.97 0.14	0.91 0.15	,	$\rho = 0.5$
AIC	0.97 0.34	0.97 0.25	0.98 0.16	0.97 0.31		,
BIC	0.97 0.33	0.97 0.25	0.98 0.16	0.97 0.31		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.03 0.01	0.02 0.00	0.01 0.00	0.94 0.21	0.30 0.01	
CV.min	0.46 0.06	0.23 0.02	0.12 0.01	0.96 0.27	0.60 0.06	$sd(\mu)/\sigma = 0.5$
AICc	0.56 0.06	0.65 0.10	0.97 0.14	0.92 0.14	1	$\rho = 0.9$
AIC	0.97 0.32	0.97 0.25	0.98 0.16	0.97 0.30		,
BIC	0.97 0.32	0.97 0.24	0.98 0.16	0.97 0.29		$\bar{s}_{Oracle} = 10.0$
	0.02	0,2	2.72 0.20	5.2. 0.2 2		

Table 125: FDR | Sensitivity for n=100, binary design, sparse covariates, and decay 50.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.43 0.69	0.24 0.63	0.05 0.24	0.74 0.92	0.31 0.73	
CV.min	0.79 0.94	0.61 0.91	$0.18 \mid 0.53$	$0.85 \mid 0.95$	0.65 0.93	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	$0.63 \mid 0.88$	$0.47 \mid 0.92$	0.81 0.90	$0.68 \mid 0.88$		$\rho = 0$
AIC	0.91 0.98	$0.90 \mid 0.98$	$0.87 \mid 0.91$	$0.89 \mid 0.96$		$\bar{s}_{Oracle} = 10.0$
BIC	0.91 0.98	$0.90 \mid 0.98$	$0.87 \mid 0.91$	$0.87 \mid 0.95$		SOracle - 10.0
CV.1se	0.37 0.52	0.22 0.48	0.04 0.19	0.77 0.88	0.29 0.61	
CV.min	$0.78 \mid 0.89$	0.60 0.84	0.16 0.42	$0.86 \mid 0.93$	0.62 0.87	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.63 0.79	$0.52 \mid 0.89$	$0.82 \mid 0.88$	$0.71 \mid 0.83$		$\rho = 0.5$
AIC	0.91 0.97	$0.90 \mid 0.97$	$0.88 \mid 0.89$	$0.89 \mid 0.94$		$\bar{s}_{Oracle} = 10.0$
BIC	0.91 0.97	$0.90 \mid 0.97$	$0.88 \mid 0.89$	$0.88 \mid 0.94$		$SO_{racle} = 10.0$
CV.1se	0.37 0.47	0.24 0.43	0.04 0.14	0.78 0.85	0.31 0.55	
CV.min	$0.78 \mid 0.86$	$0.60 \mid 0.77$	0.17 0.36	$0.87 \mid 0.91$	0.63 0.82	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.64 0.75	$0.55 \mid 0.84$	$0.82 \mid 0.83$	$0.72 \mid 0.79$		$\rho = 0.9$
AIC	0.91 0.96	$0.90 \mid 0.95$	$0.89 \mid 0.84$	$0.90 \mid 0.92$		_ 10.0
BIC	0.91 0.95	$0.90 \mid 0.95$	$0.88 \mid 0.84$	$0.89 \mid 0.91$		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.10 0.07	0.04 0.03	0.01 0.01	0.85 0.59	0.16 0.07	
CV.min	0.60 0.38	0.30 0.17	0.11 0.06	0.91 0.67	0.55 0.35	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.56 0.32	0.61 0.36	0.93 0.37	0.78 0.49		$\rho = 0$
AIC	0.94 0.70	0.94 0.57	0.95 0.39	0.93 0.68		_ 10.0
BIC	0.94 0.70	0.94 0.57	0.95 0.38	0.93 0.68		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.08 0.04	0.04 0.03	0.01 0.01	0.86 0.55	0.16 0.05	
CV.min	0.56 0.30	0.28 0.13	0.10 0.05	0.92 0.62	0.54 0.28	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.56 0.27	0.60 0.31	0.94 0.33	0.79 0.43		$\rho = 0.5$
AIC	0.94 0.67	0.94 0.55	0.95 0.35	0.93 0.64		= 10.0
BIC	0.94 0.67	0.94 0.54	0.95 0.35	0.93 0.64		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.08 0.04	0.04 0.02	0.02 0.01	0.87 0.51	0.19 0.06	
CV.min	0.56 0.28	0.29 0.12	0.11 0.04	0.92 0.59	0.56 0.26	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.57 0.25	0.59 0.28	0.94 0.33	0.81 0.41	,	$\rho = 0.9$
AIC	0.94 0.65	0.94 0.53	0.95 0.35	0.93 0.62		_ 10.0
BIC	0.94 0.65	0.94 0.53	0.95 0.35	0.93 0.61		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.02 0.00	0.02 0.00	0.01 0.00	0.93 0.26	0.29 0.01	
CV.min	0.44 0.06	0.20 0.01	0.10 0.01	0.96 0.32	0.56 0.06	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.54 0.06	0.92 0.17	0.97 0.14	0.91 0.16	,	$\rho = 0$
AIC	0.97 0.37	0.97 0.25	0.98 0.15	0.96 0.34		_ 10.0
BIC	0.97 0.36	0.97 0.25	0.98 0.15	0.96 0.34		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.02 0.00	0.02 0.00	0.01 0.00	0.94 0.23	0.32 0.01	
CV.min	0.43 0.05	0.19 0.01	0.10 0.01	0.96 0.30	0.59 0.05	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.55 0.05	0.89 0.15	0.98 0.13	0.91 0.15	'	$\rho = 0.5$
AIC	0.97 0.34	0.97 0.23	0.98 0.15	0.97 0.32		,
BIC	0.97 0.34	0.97 0.23	0.98 0.14	0.97 0.32		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.03 0.00	0.03 0.00	0.01 0.00	0.94 0.21	0.30 0.01	
CV.min	0.46 0.06	0.21 0.01	0.10 0.01	0.96 0.28	0.61 0.05	$sd(\mu)/\sigma = 0.5$
AICc	0.58 0.05	0.90 0.14	0.98 0.13	0.92 0.14	1	$\rho = 0.9$
AIC	0.97 0.33	0.98 0.23	0.98 0.15	0.97 0.30		,
BIC	0.97 0.33	0.98 0.22	0.98 0.15	0.97 0.30		$\bar{s}_{Oracle} = 10.0$
	0.00	0.22	2.7 2 0.20	2.2 . 0.2 0		

Table 126: FDR | Sensitivity for n=100, binary design, sparse covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.43 0.68	0.23 0.62	0.05 0.23	0.74 0.92	0.32 0.72	
CV.min	0.79 0.94	$0.60 \mid 0.90$	0.16 0.49	$0.85 \mid 0.96$	$0.65 \mid 0.92$	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	$0.63 \mid 0.88$	0.47 0.93	$0.82 \mid 0.90$	$0.69 \mid 0.89$		$\rho = 0$
AIC	0.91 0.98	$0.90 \mid 0.98$	$0.87 \mid 0.90$	$0.89 \mid 0.96$		$\bar{s}_{Oracle} = 10.0$
BIC	0.91 0.98	$0.89 \mid 0.98$	$0.87 \mid 0.90$	$0.87 \mid 0.96$		SOracle - 10.0
CV.1se	0.37 0.51	0.21 0.47	0.04 0.16	0.77 0.89	0.29 0.61	
CV.min	$0.77 \mid 0.88$	0.59 0.83	0.15 0.40	$0.86 \mid 0.94$	$0.64 \mid 0.87$	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.63 0.79	0.51 0.90	$0.82 \mid 0.87$	$0.71 \mid 0.83$		$\rho = 0.5$
AIC	0.91 0.97	$0.90 \mid 0.97$	$0.88 \mid 0.88$	$0.89 \mid 0.94$		$\bar{s}_{Oracle} = 10.0$
BIC	0.91 0.97	$0.90 \mid 0.97$	$0.88 \mid 0.88$	$0.88 \mid 0.94$		$SO_{racle} = 10.0$
CV.1se	0.37 0.46	0.22 0.41	0.04 0.14	0.78 0.86	0.30 0.54	
CV.min	$0.78 \mid 0.86$	$0.59 \mid 0.76$	0.16 0.34	$0.87 \mid 0.91$	$0.64 \mid 0.83$	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	$0.64 \mid 0.75$	$0.55 \mid 0.85$	$0.83 \mid 0.82$	$0.72 \mid 0.80$		$\rho = 0.9$
AIC	0.91 0.96	$0.90 \mid 0.95$	$0.89 \mid 0.83$	$0.90 \mid 0.92$		_ 10.0
BIC	0.91 0.95	$0.90 \mid 0.95$	$0.88 \mid 0.83$	$0.88 \mid 0.92$		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.10 0.06	0.04 0.03	0.01 0.01	0.85 0.60	0.17 0.07	
CV.min	0.59 0.38	0.29 0.15	0.11 0.05	0.91 0.67	0.56 0.34	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.55 0.32	0.65 0.38	0.93 0.37	0.78 0.49		$\rho = 0$
AIC	0.94 0.71	0.94 0.57	0.95 0.38	0.93 0.69		_ 10.0
BIC	0.94 0.71	0.94 0.57	0.95 0.38	0.93 0.68		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.07 0.04	0.04 0.03	0.01 0.01	0.86 0.55	0.18 0.05	
CV.min	0.56 0.30	0.27 0.12	0.10 0.05	0.92 0.63	0.55 0.28	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.56 0.27	0.62 0.33	0.94 0.34	0.79 0.44		$\rho = 0.5$
AIC	0.94 0.67	0.94 0.54	0.95 0.36	0.93 0.64		= 10.0
BIC	0.94 0.67	0.94 0.54	0.95 0.36	0.93 0.64		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.08 0.04	0.04 0.02	0.02 0.01	0.87 0.52	0.17 0.05	
CV.min	0.56 0.28	0.28 0.12	0.09 0.04	0.92 0.59	0.55 0.26	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.57 0.24	0.61 0.30	0.94 0.33	0.81 0.41		$\rho = 0.9$
AIC	0.94 0.65	0.94 0.52	0.95 0.35	0.93 0.62		_ 10.0
BIC	0.94 0.65	0.94 0.52	0.95 0.34	0.93 0.61		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.03 0.00	0.02 0.00	0.01 0.00	0.93 0.26	0.30 0.01	
CV.min	0.44 0.06	0.21 0.01	0.10 0.01	0.96 0.32	0.57 0.06	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.54 0.06	0.93 0.17	0.97 0.14	0.91 0.16	,	$\rho = 0$
AIC	0.97 0.37	0.97 0.24	0.98 0.15	0.96 0.34		_ 10.0
BIC	0.97 0.36	0.97 0.24	0.98 0.15	0.96 0.34		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.02 0.00	0.02 0.00	0.01 0.00	0.94 0.23	0.30 0.01	
CV.min	0.43 0.05	0.18 0.01	0.10 0.01	0.96 0.30	0.59 0.05	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.56 0.05	0.92 0.15	0.98 0.13	0.91 0.15	'	$\rho = 0.5$
AIC	0.97 0.34	0.97 0.24	0.98 0.15	0.97 0.32		,
BIC	0.97 0.34	0.97 0.23	0.98 0.14	0.97 0.32		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.02 0.00	0.02 0.00	0.01 0.00	0.94 0.21	0.31 0.01	
CV.min	0.46 0.05	0.20 0.01	0.10 0.01	0.96 0.28	0.61 0.05	$sd(\mu)/\sigma = 0.5$
AICc	0.57 0.05	0.91 0.14	0.98 0.13	0.92 0.14	1	$\rho = 0.9$
AIC	0.97 0.33	0.98 0.22	0.98 0.14	0.97 0.30		,
BIC	0.97 0.33	0.98 0.22	0.98 0.14	0.97 0.30		$\bar{s}_{Oracle} = 10.0$
	2.2. 0.00	0.22	2.72 0.21	2.2 . 0.2 0		

Table 127: FDR | Sensitivity for n=100, binary design, sparse covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.43 0.69	0.23 0.61	0.05 0.23	0.74 0.92	0.32 0.72	
CV.min	$0.79 \mid 0.94$	$0.59 \mid 0.90$	$0.17 \mid 0.50$	$0.85 \mid 0.96$	$0.65 \mid 0.92$	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	$0.63 \mid 0.88$	0.47 0.93	$0.82 \mid 0.89$	$0.69 \mid 0.89$		$\rho = 0$
AIC	0.91 0.98	$0.90 \mid 0.98$	$0.87 \mid 0.90$	$0.89 \mid 0.96$		$\bar{s}_{Oracle} = 10.0$
BIC	0.91 0.98	$0.89 \mid 0.98$	$0.87 \mid 0.90$	$0.87 \mid 0.96$		SOracle - 10.0
CV.1se	0.36 0.52	0.20 0.46	0.03 0.16	0.77 0.89	0.29 0.61	
CV.min	$0.77 \mid 0.89$	0.58 0.82	0.15 0.40	$0.86 \mid 0.94$	$0.64 \mid 0.88$	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	$0.63 \mid 0.80$	0.51 0.91	$0.82 \mid 0.88$	$0.71 \mid 0.84$		$\rho = 0.5$
AIC	0.91 0.97	$0.90 \mid 0.97$	$0.88 \mid 0.88$	$0.89 \mid 0.94$		$\bar{s}_{Oracle} = 10.0$
BIC	0.91 0.97	$0.90 \mid 0.97$	$0.87 \mid 0.88$	$0.88 \mid 0.94$		$SO_{racle} = 10.0$
CV.1se	0.38 0.47	0.22 0.42	0.04 0.14	0.78 0.86	0.30 0.55	
CV.min	$0.78 \mid 0.86$	0.59 0.76	0.16 0.34	$0.87 \mid 0.91$	0.64 0.83	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.64 0.74	0.55 0.85	0.83 0.82	$0.72 \mid 0.80$		$\rho = 0.9$
AIC	0.91 0.96	$0.90 \mid 0.95$	$0.89 \mid 0.83$	$0.90 \mid 0.92$		_ 10.0
BIC	0.91 0.95	0.90 0.95	0.88 0.83	0.89 0.92		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.10 0.07	0.04 0.03	0.02 0.01	0.85 0.59	0.17 0.07	
CV.min	0.59 0.38	0.28 0.15	0.11 0.06	0.91 0.67	0.55 0.34	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.55 0.32	0.67 0.38	0.93 0.37	0.78 0.49	,	$\rho = 0$
AIC	0.94 0.71	0.94 0.57	0.95 0.38	0.93 0.68		_ 10.0
BIC	0.94 0.70	0.94 0.57	0.95 0.38	0.93 0.68		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.08 0.04	0.04 0.03	0.02 0.01	0.87 0.54	0.17 0.05	
CV.min	0.55 0.30	0.27 0.12	0.10 0.04	0.92 0.62	0.53 0.28	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.56 0.26	0.64 0.33	0.94 0.34	0.79 0.43	,	$\rho = 0.5$
AIC	0.94 0.67	0.94 0.54	0.95 0.35	0.93 0.64		
BIC	0.94 0.67	0.94 0.54	0.95 0.35	0.93 0.64		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.08 0.04	0.04 0.02	0.02 0.01	0.87 0.52	0.19 0.05	
CV.min	0.56 0.28	0.28 0.11	0.10 0.04	0.92 0.60	0.56 0.25	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.56 0.24	0.64 0.30	0.94 0.33	0.81 0.41	'	$\rho = 0.9$
AIC	0.94 0.65	0.94 0.52	0.95 0.35	0.93 0.62		,
BIC	0.94 0.65	0.94 0.52	0.95 0.34	0.93 0.61		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.03 0.00	0.02 0.00	0.02 0.00	0.94 0.26	0.28 0.01	
CV.min	0.43 0.06	0.20 0.01	0.10 0.01	0.96 0.32	0.58 0.06	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.54 0.06	0.94 0.17	0.97 0.14	0.91 0.16	1	$\rho = 0$
AIC	0.97 0.37	0.97 0.24	0.98 0.15	0.96 0.34		,
BIC	0.97 0.36	0.97 0.23	0.98 0.15	0.96 0.34		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.02 0.00	0.02 0.00	0.01 0.00	0.94 0.23	0.31 0.01	
CV.min	0.43 0.05	0.18 0.01	0.10 0.01	0.96 0.30	0.58 0.05	$sd(\mu)/\sigma = 0.5$
AICc	0.56 0.05	0.92 0.15	0.98 0.13	0.91 0.15		$\rho = 0.5$
AIC	0.97 0.34	0.97 0.23	0.98 0.15	0.97 0.32		
BIC	0.97 0.34	0.97 0.23	0.98 0.14	0.97 0.32		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.02 0.00	0.02 0.00	0.01 0.00	0.94 0.21	0.31 0.01	
CV.min	0.46 0.05	0.21 0.01	0.10 0.01	0.96 0.28	0.61 0.06	$sd(\mu)/\sigma = 0.5$
AICc	0.58 0.05	0.92 0.15	0.98 0.12	0.92 0.14	0.01 0.00	$\rho = 0.9$
AIC	0.97 0.33	0.98 0.22	0.98 0.12	0.97 0.30		,
BIC	0.97 0.33	0.98 0.22	0.98 0.14	0.97 0.30		$\bar{s}_{Oracle} = 10.0$
	0.71 0.33	0.70 0.22	0.70 0.14	0.57 0.50		

Table 128: FDR | Sensitivity for n=100, continuous design, sparse covariates, and decay 10.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL}\gamma=10$	marginal AL	sparsenet MCP	
CV.1se	0.42 0.64	0.26 0.63	0.05 0.42	0.72 0.81	0.16 0.64	
CV.min	$0.78 \mid 0.87$	0.64 0.85	$0.18 \mid 0.64$	$0.85 \mid 0.87$	0.44 0.81	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.63 0.79	0.34 0.73	$0.65 \mid 0.81$	$0.69 \mid 0.79$		$\rho = 0$
AIC	0.91 0.92	0.90 0.92	$0.88 \mid 0.88$	$0.89 \mid 0.88$		$\bar{s}_{Oracle} = 10.0$
BIC	0.91 0.92	0.90 0.92	$0.88 \mid 0.88$	0.81 0.85		SOracle - 10.0
CV.1se	0.11 0.07	0.11 0.09	0.03 0.08	0.85 0.34	0.10 0.16	
CV.min	0.69 0.26	0.57 0.24	0.16 0.16	0.93 0.44	0.39 0.29	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.66 0.24	0.22 0.15	$0.61 \mid 0.35$	$0.84 \mid 0.29$		$\rho = 0.5$
AIC	$0.95 \mid 0.57$	0.94 0.57	$0.94 \mid 0.48$	$0.94 \mid 0.48$		<u> </u>
BIC	0.95 0.57	0.94 0.56	$0.94 \mid 0.48$	0.83 0.42		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.12 0.10	0.09 0.10	0.04 0.11	0.64 0.24	0.04 0.12	
CV.min	0.71 0.15	0.61 0.14	0.23 0.13	0.86 0.42	0.32 0.15	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.72 0.14	0.21 0.11	0.02 0.10	0.82 0.31		$\rho = 0.9$
AIC	0.97 0.28	0.97 0.26	$0.97 \mid 0.23$	$0.90 \mid 0.56$		= -100
BIC	0.93 0.27	0.95 0.26	0.97 0.23	0.34 0.13		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.11 0.10	0.07 0.07	0.02 0.04	0.84 0.55	0.11 0.09	
CV.min	0.61 0.38	0.39 0.25	0.12 0.10	0.91 0.61	0.51 0.34	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.60 0.36	0.14 0.14	0.92 0.41	0.77 0.47		$\rho = 0$
AIC	0.94 0.66	0.94 0.57	0.94 0.42	0.93 0.63		_ 10.0
BIC	0.94 0.65	0.94 0.57	0.94 0.42	0.92 0.63		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.05 0.02	0.05 0.02	0.02 0.02	0.89 0.24	0.15 0.04	
CV.min	0.54 0.12	0.40 0.09	0.15 0.05	0.95 0.31	0.46 0.11	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.63 0.13	0.13 0.05	0.91 0.22	0.88 0.19	'	$\rho = 0.5$
AIC	0.96 0.39	0.97 0.34	0.97 0.26	0.96 0.35		,
BIC	0.96 0.38	0.97 0.34	0.97 0.25	0.94 0.34		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.07 0.06	0.07 0.07	0.03 0.08	0.51 0.12	0.04 0.08	
CV.min	0.66 0.12	0.56 0.11	0.20 0.10	0.89 0.20	0.28 0.11	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.68 0.12	0.16 0.10	0.03 0.09	0.84 0.14	ı	$\rho = 0.9$
AIC	0.98 0.24	0.98 0.22	0.98 0.18	0.95 0.41		·
BIC	0.97 0.24	0.98 0.22	0.98 0.18	0.38 0.12		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.04 0.01	0.02 0.00	0.01 0.00	0.93 0.25	0.27 0.01	
CV.min	0.43 0.07	0.24 0.03	0.12 0.01	0.96 0.31	0.58 0.07	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.54 0.08	0.19 0.03	0.97 0.15	0.90 0.17	ı	$\rho = 0$
AIC	0.97 0.36	0.97 0.27	0.98 0.17	0.96 0.33		,
BIC	0.97 0.35	0.97 0.26	0.98 0.17	0.96 0.33		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.03 0.00	0.03 0.00	0.01 0.00	0.93 0.13	0.29 0.01	
CV.min	0.43 0.03	0.29 0.02	0.14 0.01	0.97 0.18	0.60 0.03	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.57 0.04	0.08 0.01	0.98 0.11	0.93 0.09	0.00 0.00	$\rho = 0.5$
AIC	0.98 0.23	0.98 0.19	0.98 0.13	0.98 0.21		
BIC	0.98 0.23	0.98 0.18	0.98 0.13	0.98 0.21		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.03 0.01	0.03 0.01	0.01 0.01	0.58 0.07	0.18 0.02	
CV.rise CV.min	0.48 0.06	0.39 0.05	0.16 0.03	0.93 0.13	0.51 0.06	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.61 0.07	0.10 0.03	0.69 0.09	0.89 0.10	0.02	$\rho = 0.9$
AIC	0.98 0.21	0.98 0.18	0.98 0.14	0.97 0.25		·
BIC	0.98 0.21	0.98 0.18	0.98 0.14	0.67 0.13		$\bar{s}_{Oracle} = 10.0$
	0.70 0.21	0.70 0.10	0.70 0.14	0.07 0.13		

Table 129: FDR | Sensitivity for n=100, continuous design, sparse covariates, and decay 50.

	lass	0	GL γ	$\gamma = 1$	GL γ	= 10	margii	nal AL	sparsenet MCP	
CV.1se	0.41	0.65	0.23	0.61	0.05	0.26	0.73	0.91	0.28 0.71	
CV.min	$0.78 \mid 0$	0.93	0.59	0.90	0.17	0.56	0.84	0.94	0.61 0.91	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.63	0.87	0.33	0.83	0.76	0.89	0.68	0.88		$\rho = 0$
AIC	0.91	0.97	0.90	0.97	0.87	0.90	0.89	0.95		= 10.0
BIC	0.91	0.97	0.90	0.97	0.87	0.90	0.86	0.94		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.07	0.04	0.06	0.04	0.02	0.03	0.86	0.39	0.15 0.07	
CV.min	0.60		0.44	0.17		0.08		0.49	0.49 0.22	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.63		0.14			0.36		0.32	1	$\rho = 0.5$
AIC	0.95		0.94			0.40		0.53		,
BIC	0.95		0.94			0.40		0.52		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.26		0.23			0.12		0.19	0.12 0.14	
CV.min	0.78		0.73			0.15		0.26	0.34 0.18	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.77		0.32			0.14	0.84		0.51 0.10	$\rho = 0.9$
AIC	0.97		0.97			0.14	0.95			,
BIC	0.97 0		0.97			0.23		0.19		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.10		0.05			0.23		0.19	0.15 0.07	
CV.1se CV.min			0.03			0.02			0.13 0.07	$\operatorname{ad}(u)/\sigma = 1$
	0.58 0							0.66	0.34 0.34	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.57 0		0.16			0.38	0.77			$\rho = 0$
AIC	0.94 0		0.94			0.39	0.93			$\bar{s}_{Oracle} = 10.0$
BIC	0.94 0		0.94			0.39	0.92		0.10 0.02	
CV.1se	0.04 0		0.03			0.01		0.26	0.19 0.02	1/)/ 1
CV.min	0.48 0		0.32			0.02		0.34	0.55 0.09	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.57 0		0.12			0.19		0.20		$\rho = 0.5$
AIC	0.96		0.97			0.22	0.96			$\bar{s}_{Oracle} = 10.0$
BIC	0.96		0.97			0.22	0.96			-Oracle
CV.1se	0.09 0		0.09			0.03		0.13	0.17 0.05	
CV.min	$0.60 \mid 0$		0.54			0.07		0.20	0.50 0.11	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	$0.68 \mid 0.68 \mid $	0.12	0.16	0.05	0.46	0.10	0.88	0.16		$\rho = 0.9$
AIC	$0.98 \mid 0$	0.28	0.98	0.24	0.98	0.19	0.96	0.32		ē - 10 0
BIC	$0.97 \mid 0$	0.28	0.98	0.24	0.97	0.19	0.68	0.17		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.03 0	0.01	0.02	0.00	0.02	0.00	0.93	0.25	0.25 0.01	
CV.min	0.42 0	0.07	0.21	0.02	0.11	0.01	0.96	0.32	$0.55 \mid 0.06$	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.55 0	0.07	0.51	0.09	0.97	0.14	0.90	0.17		$\rho = 0$
AIC	0.97	0.36	0.97	0.25	0.98	0.16	0.96	0.34		= 10.0
BIC	0.97	0.36	0.97	0.25	0.98	0.15	0.96	0.34		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.02	0.00	0.02	0.00	0.01	0.00	0.93	0.13	0.28 0.01	
CV.min	0.44		0.26			0.00	0.97		0.59 0.03	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.56		0.12			0.10	0.93		1	$\rho = 0.5$
AIC	0.98		0.98			0.12	0.98			,
BIC	0.98		0.98			0.12	0.98			$\bar{s}_{Oracle} = 10.0$
CV.1se	0.03		0.02			0.00		0.05	0.30 0.01	
CV.rise CV.min	0.45		0.33			0.01	0.94		0.61 0.03	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.60		0.08			0.01	0.91		0.01 0.05	$\rho = 0.9$
AIC	0.98 0		0.08			0.11		0.20		'
BIC	0.98 0		0.98			0.13	0.98			$\bar{s}_{Oracle} = 10.0$
DIC	0.30 1	U. Z I	0.20	0.17	0.70	0.13	0.04	0.13		

Table 130: FDR | Sensitivity for n=100, continuous design, sparse covariates, and decay 100.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.41 0.66	0.22 0.61	0.04 0.25	0.73 0.91	0.29 0.72	
CV.min	0.78 0.94	$0.58 \mid 0.89$	$0.17 \mid 0.52$	$0.84 \mid 0.94$	0.62 0.91	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.63 0.87	0.33 0.84	$0.78 \mid 0.89$	$0.69 \mid 0.89$		$\rho = 0$
AIC	0.91 0.97	$0.90 \mid 0.97$	$0.87 \mid 0.90$	$0.89 \mid 0.95$		$\bar{s}_{Oracle} = 10.0$
BIC	0.91 0.97	$0.90 \mid 0.97$	$0.87 \mid 0.90$	$0.86 \mid 0.95$		SOracle - 10.0
CV.1se	0.07 0.04	0.06 0.04	0.02 0.02	0.86 0.39	0.16 0.06	
CV.min	0.59 0.23	0.43 0.17	$0.14 \mid 0.07$	0.93 0.50	0.50 0.22	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	$0.62 \mid 0.22$	0.14 0.09	0.91 0.36	$0.83 \mid 0.33$		$\rho = 0.5$
AIC	0.95 0.60	0.94 0.55	0.95 0.39	$0.94 \mid 0.54$		$\bar{s}_{Oracle} = 10.0$
BIC	$0.95 \mid 0.60$	0.94 0.55	0.95 0.39	0.93 0.52		$s_{Oracle} = 10.0$
CV.1se	0.27 0.10	0.24 0.11	0.13 0.11	0.69 0.19	0.14 0.14	
CV.min	0.79 0.20	0.73 0.17	0.33 0.15	0.89 0.26	0.37 0.18	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.77 0.20	0.33 0.14	0.20 0.15	0.84 0.22	•	$\rho = 0.9$
AIC	0.97 0.32	0.97 0.29	0.97 0.23	0.95 0.42		_ 10.0
BIC	0.97 0.32	0.97 0.29	0.97 0.23	0.64 0.20		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.10 0.07	0.04 0.04	0.02 0.02	0.84 0.59	0.14 0.07	
CV.min	0.58 0.37	0.28 0.16	0.10 0.06	0.91 0.66	0.54 0.34	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.57 0.33	0.18 0.12	0.93 0.37	0.77 0.49	ı	$\rho = 0$
AIC	0.94 0.70	0.94 0.56	0.95 0.39	0.93 0.67		,
BIC	0.94 0.69	0.94 0.56	0.94 0.39	0.93 0.67		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.04 0.01	0.03 0.01	0.02 0.01	0.91 0.26	0.25 0.02	
CV.min	0.47 0.09	0.30 0.05	0.13 0.02	0.95 0.34	0.56 0.09	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.57 0.10	0.11 0.02	0.96 0.19	0.88 0.20	0.00	$\rho = 0.5$
AIC	0.96 0.40	0.97 0.34	0.97 0.21	0.96 0.37		,
BIC	0.96 0.40	0.97 0.33	0.97 0.21	0.96 0.37		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.09 0.02	0.10 0.02	0.05 0.03	0.70 0.13	0.22 0.05	
CV.rise CV.min	0.59 0.11	0.53 0.09	0.25 0.06	0.92 0.20	0.54 0.11	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.68 0.12	0.17 0.04	0.56 0.12	0.88 0.16	0.51 0.11	$\rho = 0.9$
AIC	0.97 0.28	0.98 0.24	0.98 0.12	0.96 0.31		$\rho = 0.3$
BIC	0.97 0.28	0.98 0.24	0.98 0.19	0.69 0.18		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.03 0.01	0.02 0.00	0.02 0.00	0.93 0.25	0.26 0.01	
CV.13C CV.min	0.42 0.06	0.02 0.00	0.10 0.01	0.96 0.32	0.57 0.06	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.56 0.07	0.56 0.10	0.97 0.14	0.90 0.17	0.57 0.00	$\rho = 0$
AIC	0.97 0.36	0.97 0.25	0.98 0.14	0.96 0.34		$\rho = 0$
BIC	0.97 0.36	0.97 0.23	0.98 0.15	0.96 0.34		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.02 0.00	0.02 0.00	0.01 0.00	0.93 0.12	0.30 0.00	
CV.1se CV.min	'	0.02 0.00	0.01 0.00		0.61 0.03	$sd(\mu)/\sigma = 0.5$
AICc	0.43 0.03 0.56 0.03	0.25 0.01		$0.97 \mid 0.18$	0.01 0.03	$\rho = 0.5$
		,	$0.98 \mid 0.10$	$0.93 \mid 0.08$		$\rho = 0.5$
AIC BIC	0.98 0.23 0.98 0.23	0.98 0.18 0.98 0.18	0.98 0.12 0.98 0.11	0.98 0.21 0.98 0.21		$\bar{s}_{Oracle} = 10.0$
	<u> </u>				0.20 0.01	
CV.1se	0.02 0.00	$0.02 \mid 0.00$	0.02 0.00	0.62 0.05	0.28 0.01	-1()/- 05
CV.min	0.45 0.03	0.33 0.02	$0.14 \mid 0.01$	0.94 0.11	0.59 0.03	$sd(\mu)/\sigma = 0.5$
AICc	0.60 0.03	$0.07 \mid 0.00$	0.97 0.11	$0.91 \mid 0.07$		$\rho = 0.9$
AIC	0.98 0.21	0.98 0.17	0.98 0.13	0.98 0.20		$\bar{s}_{Oracle} = 10.0$
BIC	0.98 0.21	0.98 0.17	0.98 0.13	0.83 0.13		

Table 131: FDR | Sensitivity for n=100, continuous design, sparse covariates, and decay 200.

	lasso	$\operatorname{GL} \gamma = 1$	$\operatorname{GL} \gamma = 10$	marginal AL	sparsenet MCP	
CV.1se	0.41 0.65	0.21 0.61	0.04 0.25	0.73 0.91	0.29 0.72	
CV.min	$0.79 \mid 0.94$	$0.58 \mid 0.90$	$0.16 \mid 0.54$	$0.84 \mid 0.95$	0.61 0.91	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.63 0.87	0.32 0.84	$0.79 \mid 0.90$	$0.69 \mid 0.89$		$\rho = 0$
AIC	0.91 0.98	$0.90 \mid 0.97$	$0.87 \mid 0.91$	$0.89 \mid 0.95$		ā - 100
BIC	$0.91 \mid 0.97$	$0.89 \mid 0.97$	$0.87 \mid 0.91$	$0.86 \mid 0.95$		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.07 0.04	0.06 0.04	0.02 0.03	0.86 0.39	0.16 0.06	
CV.min	0.59 0.23	0.42 0.16	0.14 0.07	0.93 0.50	0.49 0.21	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.62 0.22	0.14 0.09	0.91 0.35	0.83 0.33		$\rho = 0.5$
AIC	0.95 0.60	0.94 0.55	0.95 0.38	0.94 0.54		= 10.0
BIC	0.95 0.60	0.94 0.54	0.95 0.38	0.92 0.52		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.28 0.10	0.24 0.11	0.13 0.11	0.69 0.20	0.14 0.14	
CV.min	0.79 0.20	0.72 0.17	0.33 0.15	0.89 0.26	0.37 0.18	$\operatorname{sd}(\mu)/\sigma = 2$
AICc	0.77 0.20	0.34 0.14	0.23 0.15	0.84 0.22	'	$\rho = 0.9$
AIC	0.97 0.32	0.97 0.29	0.97 0.23	0.95 0.41		_ 10.0
BIC	0.97 0.32	0.97 0.29	0.97 0.23	0.64 0.21		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.10 0.07	0.04 0.04	0.01 0.02	0.84 0.59	0.15 0.07	
CV.min	0.58 0.38	0.28 0.16	0.11 0.06	0.91 0.66	0.53 0.35	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.56 0.33	0.19 0.13	0.93 0.37	0.77 0.49	3.00 3.00	$\rho = 0$
AIC	0.94 0.70	0.94 0.56	0.95 0.39	0.93 0.67		,
BIC	0.94 0.70	0.94 0.56	0.94 0.38	0.92 0.67		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.04 0.01	0.03 0.01	0.02 0.01	0.90 0.26	0.23 0.02	
CV.rise CV.min	0.48 0.10	0.30 0.05	0.13 0.02	0.95 0.34	0.56 0.09	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.58 0.10	0.10 0.02	0.96 0.19	0.88 0.20	0.50 0.05	$\rho = 0.5$
AIC	0.96 0.41	0.10 0.02	0.97 0.21	0.96 0.37		$\rho = 0.8$
BIC	0.96 0.40	0.97 0.34	0.97 0.21	0.96 0.37		$\bar{s}_{Oracle} = 10.0$
CV.1se	0.09 0.02	0.09 0.02	0.05 0.03	0.70 0.13	0.22 0.05	
CV.1sc CV.min	0.59 0.02	0.03 0.02	0.05 0.05	0.70 0.13	0.53 0.11	$\operatorname{sd}(\mu)/\sigma = 1$
AICc	0.68 0.11	0.33 0.10	0.23 0.00	0.92 0.20	0.33 0.11	$\rho = 0.9$
AICC	0.08 0.12	0.17 0.04	0.98 0.12	0.86 0.17		$\rho = 0.9$
BIC	0.97 0.28	0.98 0.24	0.98 0.20	0.72 0.18		$\bar{s}_{Oracle} = 10.0$
		<u>'</u>			0.25 0.01	
CV.1se	0.03 0.01 0.42 0.06	$0.02 \mid 0.00$	$0.01 \mid 0.00$	0.93 0.25		ad()/- 05
CV.min		0.20 0.02	$0.10 \mid 0.01$	0.96 0.32	0.56 0.06	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	$0.55 \mid 0.07$	0.58 0.11	0.97 0.14	0.90 0.17		$\rho = 0$
AIC	0.97 0.36	0.97 0.24	0.98 0.15	0.96 0.34		$\bar{s}_{Oracle} = 10.0$
BIC	0.97 0.36	0.97 0.24	0.98 0.15	0.96 0.34	0.20 0.00	
CV.1se	0.02 0.00	0.02 0.00	0.01 0.00	0.93 0.12	0.30 0.00	1/)/ 0.5
CV.min	0.43 0.03	0.25 0.01	0.13 0.00	0.97 0.18	0.62 0.03	$sd(\mu)/\sigma = 0.5$
AICc	0.56 0.03	0.16 0.01	0.98 0.10	0.93 0.08		$\rho = 0.5$
AIC	0.98 0.23	0.98 0.18	0.98 0.11	0.98 0.21		$\bar{s}_{Oracle} = 10.0$
BIC	0.98 0.23	0.98 0.17	0.98 0.11	0.98 0.21	0.001.004	
CV.1se	0.03 0.00	0.02 0.00	0.01 0.00	0.61 0.05	0.28 0.01	
CV.min	0.45 0.03	0.33 0.02	0.15 0.01	0.93 0.10	0.60 0.03	$\operatorname{sd}(\mu)/\sigma = 0.5$
AICc	0.60 0.03	$0.08 \mid 0.00$	0.97 0.11	0.91 0.07		$\rho = 0.9$
AIC	0.98 0.20	0.98 0.17	0.98 0.13	0.98 0.20		$\bar{s}_{Oracle} = 10.0$
BIC	0.98 0.20	0.98 0.17	0.98 0.12	0.83 0.12		Oracle 10.0