EXERCISE 25 A [Pg. No.: 1071]

1. Prove that

(i)
$$\begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \end{bmatrix} = \begin{bmatrix} \hat{j} & \hat{k} & \hat{i} \end{bmatrix} = \begin{bmatrix} \hat{k} & \hat{j} & \hat{i} \end{bmatrix} = 1$$
 (ii) $\begin{bmatrix} \hat{i} & \hat{k} & \hat{j} \end{bmatrix} = \begin{bmatrix} \hat{k} & \hat{j} & \hat{i} \end{bmatrix} = \begin{bmatrix} \hat{j} & \hat{i} & \hat{k} \end{bmatrix} = 1$

Sol. (i).
$$\begin{bmatrix} i & j & k \end{bmatrix} = \begin{bmatrix} i \times j \end{bmatrix} \cdot k$$

$$=\hat{\mathbf{k}}\cdot\hat{\mathbf{k}}=1$$
....(i)

$$[\hat{j} \hat{k} \hat{i}] = (\hat{j} \times \hat{k}) \cdot \hat{i}$$

$$=\hat{i}\cdot\hat{i}=1$$
(ii)

$$\begin{bmatrix} \hat{k} & \hat{j} & \hat{i} \end{bmatrix} = \begin{bmatrix} \hat{k} \times \hat{j} \end{bmatrix} \cdot \hat{i}$$

$$= \hat{i} - \hat{i} = 1$$
(iii)

from (i), (ii) and (iii), we have. $[\hat{i} \ \hat{j} \ \hat{k}] = [\hat{j} \ \hat{k} \ \hat{i}] = [\hat{k} \ \hat{i} \ \hat{j}] = 1$

(ii)
$$\begin{bmatrix} \hat{i} & \hat{k} & \hat{j} \end{bmatrix} = \begin{pmatrix} \hat{i} \times \hat{k} \end{pmatrix} \cdot \hat{j}$$

$$=$$
 $-\hat{\mathbf{j}}\cdot\hat{\mathbf{j}}=-1....,(i)$

$$[\hat{k} \ \hat{j} \ \hat{i}] = [\hat{k} \times \hat{j}] \cdot \hat{i} = -\hat{i} \cdot \hat{i} = -1 \dots (ii)$$

$$[\hat{j} \ \hat{i} \ \hat{k}] = [\hat{j} \times \hat{i}] \cdot \hat{k} = -\hat{k} \cdot \hat{k} = -1 \dots (iii)$$

from (i), (ii) and (iii), we have, $[\hat{i} \ \hat{k} \ \hat{j}] = [\hat{k} \ \hat{j} \ \hat{i}] = [\hat{j} \ \hat{i} \ \hat{k}] = -1$ Proved

2. Find $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$, when

(i)
$$\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$$
, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$

(ii)
$$\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}, \vec{b} = \hat{i} + 2\hat{j} + \hat{k}$$
 and $\vec{c} = 3\hat{i} - \hat{j} + 2\hat{k}$

(iii)
$$\vec{a} = 2\hat{i} - 3\hat{j}$$
, $\vec{b} = \hat{i} + \hat{j} - \hat{k}$ and $\vec{c} = 3\hat{i} - \hat{k}$

Sol. (i) Given:
$$-\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$$
 $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ $\vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$

Now,
$$[\vec{a}\ \vec{b}\ \vec{c}] = \begin{vmatrix} 2 & 1 & 3 \\ -1 & 2 & 2 \\ 3 & 1 & 2 \end{vmatrix}$$

$$= \begin{vmatrix} 0 & 1 & 0 \\ -5 & 2 & -5 \\ 1 & 1 & -1 \end{vmatrix} \begin{cases} c_1 \rightarrow c_1 - 2c_2 \\ c_3 \rightarrow c_3 - 3c_2 \end{cases} = = \begin{vmatrix} -5 & -5 \\ 1 & -1 \end{vmatrix} \begin{cases} extanding \\ by c_2 \end{cases}$$

$$=-1(5+5)=-10$$

(ii) Given :
$$\rightarrow \vec{a} = 2\vec{i} - 3\vec{j} + 4\vec{k}$$
 $\vec{b} = \vec{i} + 2\vec{j} - \vec{k}$ $\vec{c} = 3\vec{i} - \vec{j} + \vec{k}$

Now,
$$[\vec{a} \ \vec{b} \ \vec{c}]$$

$$\begin{vmatrix} 2 & -3 & 4 \\ 1 & 2 & -1 \\ 3 & -1 & 2 \end{vmatrix} = -\begin{vmatrix} 1 & 2 & -1 \\ 2 & -3 & 4 \\ 3 & -1 & 2 \end{vmatrix} \left\{ R_1 \leftrightarrow R_2 = -\begin{vmatrix} 1 & 2 & -1 \\ 0 & -7 & 6 \\ 0 & -7 & 5 \end{vmatrix} \left\{ R_3 \to R_3 - 3R_1 \right\}$$

$$= -\begin{vmatrix} -7 & 2 \\ -7 & 5 \end{vmatrix} \left\{ \text{expanding by } c_1 = -(-35 + 42) = -7 \right\}$$

(iii)
$$\vec{a} = 2\hat{i} - 3\hat{j}$$
, $\vec{b} = \hat{i} + \hat{j} - \hat{k}$, $\vec{c} = 3\hat{i} - \hat{k}$

Now $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$

$$= \begin{vmatrix} 2 & -3 & 0 \\ 1 & 1 & -1 \\ 3 & 0 & -1 \end{vmatrix} = 2 \begin{vmatrix} 1 & -1 \\ 0 & -1 \end{vmatrix} + \begin{vmatrix} 1 & -1 \\ 3 & -1 \end{vmatrix}$$
 {by R₁} = 2(-1-0)+(-1+3)=-2+6=4

3. Find the volume of the parallelepiped whose coterminous edges are represented by vectors

(i)
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = \hat{i} - \hat{j} + \hat{k}, \vec{c} = \hat{i} + 2\hat{j} - \hat{k}$$

(ii)
$$\vec{a} = -3\hat{i} + 7\hat{j} + 5\hat{k}$$
, $\vec{b} = -5\hat{i} + 7\hat{j} - 3\hat{k}$, $\vec{c} = 7\hat{i} - 5\hat{j} - 3\hat{k}$

(iii)
$$\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \vec{b} = 2\hat{i} + \hat{j} - \hat{k}, \vec{c} = \hat{j} + \hat{k}$$
 (iv) $\vec{a} = 6\hat{i}, \vec{b} = 2\hat{j}, \vec{c} = 5\hat{i}$

Sol. (i) Volume of parallelepiped = $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$

Now
$$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 2 & -1 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 1 \\ 0 & -1 & 1 \\ 2 & 2 & -1 \end{vmatrix} = 2 \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix}$$
 {expanding by c_1

$$=2(1+1)=4$$

Hence required value = 4 cubic units

(ii) volume of parallelepiped = $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$

Now
$$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \begin{vmatrix} -3 & 7 & 5 \\ -5 & 7 & -3 \\ 7 & -5 & -3 \end{vmatrix} = -3 \begin{vmatrix} 7 & -3 \\ -5 & -3 \end{vmatrix} + 5 \begin{vmatrix} 7 & 5 \\ -5 & -3 \end{vmatrix} + 7 \begin{vmatrix} 7 & 5 \\ 7 & -3 \end{vmatrix}$$
 { by c_1

$$= -3\{-21-15\} + 5\{-21+25\} + 7\{-21-35\} = -3 \times (-36) + 5 \times 4 + 7 \times (-56)$$

Here, required value = 264 cubic units.

(iii) Given:-

$$\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$$

$$\vec{b} = 2\vec{i} + \hat{j} - \hat{k}$$

$$\vec{c} = \hat{j} + \hat{k}$$

Now, $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$

$$=\begin{vmatrix} 1 & -2 & 3 \\ 2 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} - 2 \begin{vmatrix} -2 & 3 \\ 1 & 1 \end{vmatrix}$$
 {by $c_1 = (1+1) - 2((-2-3) = 2 + 10 = 12$

Here, volume of parallelepiped = 12 which units

(iv) Value of parallelepiped $= |\vec{a} \vec{b} \vec{c}|$ cubic units

$$=|[\hat{6i} \ \hat{2j} \ \hat{5i}]| \ \text{cubic} \ \text{units} \ =|(\hat{6i} \times \hat{2j}) \cdot \hat{5i}| \ \text{cubic} \ \text{units} \ =|\hat{12k} \cdot \hat{5i}| \ \text{cubic} \ \text{units}$$

= 0 cubic units Here,
$$\overrightarrow{a}$$
, \overrightarrow{b} & \overrightarrow{c} are co-planar.

Show that the vectors \vec{a} , \vec{b} , \vec{c} are coplanar, when

(i)
$$\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \vec{b} = -2\hat{i} + 3\hat{j} - 4\hat{k}$$
 and $\vec{c} = \hat{i} - 3\hat{j} + 5\hat{k}$

(ii)
$$\vec{a} = \hat{i} + 3\hat{j} + \hat{k}$$
, $\vec{b} = 2\hat{i} - \hat{j} - \hat{k}$ and $\vec{c} = 7\hat{j} + 3\hat{k}$

(iii)
$$\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k}$$
, $\vec{b} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{c} = 3\hat{i} - 4\hat{j} + 7\hat{k}$

Sol. (i) Given:-

$$\overrightarrow{a} = \overrightarrow{i} - 2\overrightarrow{j} + 3\overrightarrow{k}$$

$$\overrightarrow{b} = -2\overrightarrow{i} + 3\overrightarrow{i} - 4\overrightarrow{k}$$

$$\vec{c} = \vec{i} - 3\vec{j} + 5\vec{k}$$

Now,
$$[\vec{a} \ \vec{b} \ \vec{c}] = \begin{vmatrix} 1 & -2 & 3 \\ -2 & 3 & -4 \\ 1 & -3 & 5 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & -1 & 1 \\ -2 & 1 & -1 \\ 1 & -2 & -2 \end{vmatrix} \begin{cases} R_2 \to R_2 + R_1 \\ R_3 + R_3 - 2R_1 \end{vmatrix} = \begin{vmatrix} 1 & -1 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 0 \end{vmatrix} \begin{cases} R_2 \to R_3 + R_2 \end{cases}$$

$$= 0$$

$$\therefore [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = 0$$

Hence, a b and c are Co-planar.

(ii) Given:
$$\vec{a} = \hat{i} + 3\hat{j} + \hat{k}$$
 $\vec{b} = 2\hat{i} - \hat{j} - \hat{k}$ $\vec{c} = 7\hat{j} + 3\hat{k}$

(ii) Given:
$$\vec{a} = \hat{i} + 3\hat{j} + \hat{k}$$
, $\vec{b} = 2\hat{i} - \hat{j} - \hat{k}$, $\vec{c} = 7\hat{j} + 3\hat{k}$
Now, $[\vec{a} \ \vec{b} \ \vec{c}] = \begin{vmatrix} 1 & 3 & 1 \\ 2 - 1 & -1 \\ 0 & 7 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 3 - 1 \\ 0 - 7 - 3 \\ 0 & 7 & 3 \end{vmatrix}$ $\{R_2 + R_2 - 2R_1\}$

Hence, R₂ Proportional R₃ ∴ [a b c]=0

Hence, a, b and c are Co-planar.

(iii) Given:-

$$\overrightarrow{a} = 2\overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}$$

$$\vec{b} = \vec{i} + 2\vec{j} - 3\vec{k}$$

$$\overrightarrow{c} = 3\overrightarrow{i} - 4\overrightarrow{i} + 7\overrightarrow{k}$$

Now,
$$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \begin{bmatrix} 2 & -1 & 2 \\ 1 & 2 & -3 \\ 3 & -4 & 7 \end{bmatrix} = \begin{bmatrix} 2 & -1 & -2 \\ -3 & 4 & -7 \\ 3 & -4 & 7 \end{bmatrix} \{ R_2 \to R_2 - 2R_1 = \begin{bmatrix} 2 & -1 & 2 \\ -3 & 4 & -7 \\ 0 & 0 & 0 \end{bmatrix} \{ R_3 + R_3 + R_2 = 0 \}$$

Hence, a, b & c are coplanar.

5. Find the value of λ for which the vectors \vec{a} , \vec{b} , \vec{c} are coplanar, where

(i)
$$\vec{a} = (2\hat{i} - \hat{j} + \hat{k}), \vec{b} = (\hat{i} + 2\hat{j} + 3\hat{k})$$
 and $\vec{c} = (3\hat{i} + \lambda\hat{j} + 5\hat{k})$

(ii)
$$\vec{a} = \lambda \hat{i} - 10\hat{j} - 5\hat{k}$$
, $\vec{b} = -7\hat{i} - 5\hat{j}$ and $\vec{c} = \hat{i} - 4\hat{j} - 3\hat{k}$

(iii)
$$\vec{a} = \hat{i} - \hat{j} + \hat{k}$$
, $\vec{b} = 2\hat{i} + \hat{j} - \hat{k}$ and $\vec{c} = \lambda \hat{i} - \hat{j} + \lambda \hat{k}$

Sol. (i) \therefore a, b & c are coplanar.

 $\Rightarrow 20 + 5\lambda - 30 = 0 \Rightarrow 5\lambda - 10 = 0 \Rightarrow \lambda = 2 \text{ Ans}$

(ii) :: a. b and c are co-planar

$$\therefore [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = 0$$

$$\Rightarrow \begin{vmatrix} \lambda & -10 & -5 \\ -7 & -5 & 0 \\ 1 & -4 & -3 \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} -5 & -0 \\ -4 & -3 \end{vmatrix} + 10 \begin{vmatrix} -7 & -0 \\ 1 & -3 \end{vmatrix} - 5 \begin{vmatrix} -7 & -5 \\ 1 & -4 \end{vmatrix} = 0$$

$$\Rightarrow$$
 15 λ + 210 - 5 (28 + 5) = 0 \Rightarrow 15 λ + 210 - 165 = 0 \Rightarrow 15 λ + 45 = 0 \Rightarrow λ = -3 Ans.

(iii) ∵ a, b and c are co-planar

$$\therefore [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = 0$$

$$\Rightarrow \begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ \lambda & = 1 & \lambda \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} 0 & -1 & 1 \\ 3 & 1 & -1 \\ 0 & -1 & \lambda \end{vmatrix} = 0 \quad \{c_1 + c_1 - c_3 \Rightarrow -3 \begin{vmatrix} -1 & 1 \\ -1 & \lambda \end{vmatrix} = 0 \Rightarrow -3 \ (-\lambda + 1) = 0 \Rightarrow \lambda = 1 \text{ Ans}$$

6. If $\vec{a} = (2\hat{i} - \hat{j} + \hat{k})$, $\vec{b} = (\hat{i} - 3\hat{j} - 5\hat{k})$ and $\vec{c} = (3\hat{i} - 4\hat{j} - \hat{k})$, find $[\vec{a} \ \vec{b} \ \vec{c}]$ and interpret the result

$$= \begin{vmatrix} 2 & -1 & 1 \\ 1 & -3 & -5 \\ 3 & -4 & -1 \end{vmatrix} = \begin{vmatrix} -3 & -5 \\ -4 & -1 \end{vmatrix} - 1 \begin{vmatrix} -1 & 1 \\ -4 & -1 \end{vmatrix} + 3 \begin{vmatrix} -1 & -1 \\ -3 & -5 \end{vmatrix}$$
 {expanding by c₁

$$= 2(3-20)-(1+4)+3((5+3)=-34-5+24=-15$$

7. the volume of the parallelepiped whose edges are $(-12\hat{i} + \lambda\hat{k})$, $(3\hat{j} - \hat{k})$ and $(2\hat{i} + \hat{j} - 15\hat{k})$ is 546 cubic units. Find the value of λ

Sol. Volume of parallelepiped = 546 cube units.

$$\Rightarrow \begin{vmatrix} -12 & 0 & \lambda \\ 0 & 3 & -1 \\ 2 & 1 & -15 \end{vmatrix} = \pm 546 \Rightarrow -12 \begin{vmatrix} 3 & -1 \\ 1 & -15 \end{vmatrix} + \lambda \begin{vmatrix} 0 & 3 \\ 2 & 1 \end{vmatrix} = \pm 546$$

$$\Rightarrow$$
 -12(-45 + 1) + λ (0 - 6) = \pm 546 \Rightarrow 528 - 6 λ = \pm 546 \Rightarrow 528 - 6 λ = 546

or,
$$528 - 6\lambda = -546$$

$$\Rightarrow$$
 -6 λ = 18 or -6 λ = -1074 $\Rightarrow \lambda$ = -3 or λ = 179 Ans.

Show that the vectors $\vec{a} = (\hat{i} + 3\hat{j} + \hat{k}), \vec{b} = (2\hat{i} - \hat{j} - \hat{k})$ and $\vec{c} = (7\hat{j} + 3\hat{k})$ are parallel to the same

Hints show that $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 0$

Sol. Given:
$$\overrightarrow{a} = \overrightarrow{i} + 3\overrightarrow{j} + \overrightarrow{k}$$
, $\overrightarrow{b} = 2\overrightarrow{i} - \cancel{j} - \cancel{k}$ and $\overrightarrow{c} = 7\overrightarrow{j} + 3\overrightarrow{k}$

Now, $[a \ b \ c]$

$$\begin{vmatrix} 1 & 3 & 1 \\ 2 & -1 & -1 \\ 0 & 7 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 3 & 1 \\ 0 & -7 & -3 \\ 0 & 7 & 3 \end{vmatrix} \{ R_2 \to R_2 - 2R_1 = \begin{vmatrix} -7 & -3 \\ 7 & 3 \end{vmatrix} = -21 + 21 = 0$$

Hence, a, b & c ar ll to the same plane

9. If the vectors
$$(a\hat{i} + a\hat{j} + c\hat{k}), (\hat{i} + \hat{k})$$
 and $(c\hat{i} + x\hat{j} + b\hat{k})$ be coplanar, show that $c^2 = ab$

Sol. Since, the three given vectors are co-planar,

$$\Rightarrow \begin{vmatrix} a & a & c \\ 1 & 0 & 1 \\ c & c & b \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} 0 & a & c \\ 1 & 0 & 1 \\ 0 & c & b \end{vmatrix} = 0 \ \{R_1 \to R_1 - R_2\}$$

Expanding by c1, we have

$$\Rightarrow -1\begin{vmatrix} a & c \\ c & b \end{vmatrix} = 0 \Rightarrow ab - c^2 = 0 \Rightarrow c^2 = ab \text{ proved}$$

10. show that the four points position vectors $(4\hat{i}+8\hat{j}+12\hat{k})$, $(2\hat{i}+4\hat{j}+6\hat{k}), (3\hat{i},5\hat{j},4\hat{k})$ $(5\hat{i} + 8\hat{j} + 5\hat{k})$ are coplanar

Sol. Let, position vector of
$$A = 4i + 8j + 12k$$
 Let, position vector of $B = 2i + 4j + 6k$

Let, position vector of
$$B = 2i + 4j + 6k$$

Let, position vector of
$$C = 3i + 5j + 4k$$
 Let, position vector of $D = 5i + 8j + 5k$

Let, position vector of
$$D = 5i + 8j + 5k$$

Now,
$$\overrightarrow{AB} = P.V. \text{ of } B - P.V \text{ of } A$$

$$=(2\hat{i}+4\hat{j}+6\hat{k})-(4\hat{i}+8\hat{j}+12\hat{k}=-2\hat{i}-4\hat{j}-6\hat{k}$$

$$\overrightarrow{BC} = P.V \text{ of } C - P.V \text{ of } B$$

$$=(3i+5j+4k)-(2i+4j+6k=i+j-2k)$$

$$\overrightarrow{AD} = P.V \text{ of } D - P.V \text{ of } A = (5\hat{i} + 8\hat{j} + 5\hat{k}) - (4\hat{i} + 8\hat{j} + 12\hat{k}) = (-7\hat{k})$$

Now, [AB BC AD]

$$\begin{vmatrix} -2 & -4 & -6 \\ 1 & 1 & -2 \\ 1 & 0 & -7 \end{vmatrix} = \begin{vmatrix} 0 & -4 & -20 \\ 0 & 1 & 5 \\ 1 & 0 & -7 \end{vmatrix} \begin{cases} R_1 \rightarrow R_1 + 2R_3 \\ R_2 \rightarrow R_1 - R_3 \end{cases} = - \begin{vmatrix} -4 & -20 \\ 1 & 5 \end{vmatrix} = -20 + 20 = 0$$

Hence, AB, BC and AD are coplanar.

11. Show that the four points with position vectors
$$(6\hat{i}-7\hat{j}), (16\hat{i}-19\hat{j}-4\hat{k}), (3\hat{j}-6\hat{k})$$
 and $(2\hat{i}-5\hat{j}+10\hat{k})$ are coplanar

Sol. Let, position vector of
$$A = 6i - 7j$$

position vector of B =
$$16\hat{i}$$
- $19\hat{j}$ - $4\hat{k}$

position vector of $C = 3\hat{i} - 6\hat{k}$

position vector of D = 2i - 5j + 10k

Now,
$$\overrightarrow{AB} = P.V.$$
 of $B - P.V$ of A

$$\Rightarrow \overrightarrow{AB} = (16\hat{i} - 19\hat{j} - 4\hat{k}) - (16\hat{i} - 7\hat{j}) \Rightarrow \overrightarrow{AB} = 10\hat{i} - 12\hat{j} - 4\hat{k}$$

$$\overrightarrow{BC} = P.V \text{ of } C - P.V \text{ of } B = (3\hat{j} - 6\hat{k}) - (16\hat{i} - 19\hat{j} - 4\hat{k}) = -16\hat{i} + 22\hat{j} - 2\hat{k}$$

An
$$\overrightarrow{AD} = P.V \text{ of } D - P.V \text{ of } A$$

$$=(2i-5j+10k)-(6i-7j)=-4i+2j+10k$$

Now, [AB BC AD]

$$= \begin{vmatrix} 10 & -12 & -4 \\ -16 & 22 & -2 \\ -4 & 2 & 10 \end{vmatrix} = 10 \begin{vmatrix} 22 & -2 \\ 2 & 10 \end{vmatrix} + 16 \begin{vmatrix} -12 & -4 \\ 2 & 10 \end{vmatrix} - 4 \begin{vmatrix} -12 & -4 \\ 22 & -2 \end{vmatrix}$$

$$= 10(220+4)+16(-120+8)-4(24+88)=2240-1792-448=0$$

Hence, AB, BC and AD are co-planar.

i.e. A, B, C & D are co-planar.

- 12. Find the value of λ for which the four points with position vectors $(\hat{i}+2\hat{j}+3\hat{k}), (3\hat{i}-\hat{j}+2\hat{k}), (-2\hat{i}+\lambda\hat{j}+\hat{k})$ and $(6\hat{i}-4\hat{j}+2\hat{k})$ are coplanar
- Sol. Let, P.V of $A = \hat{i} + 2\hat{j} + 3\hat{k}$

$$P.V \text{ of } B = 3\hat{i} - \hat{j} + 2\hat{k}$$

P.V of C =
$$-2\hat{i}+\lambda\hat{j}+\hat{k}$$

Let, P.V of D =
$$6i - 4i + 12k$$

Now,
$$\overrightarrow{AB} = (3-1)i + (-1-2)i + (2-3)k = 2i - 3i - 3k$$

$$\overrightarrow{BC} = (-2-3)\hat{i} + (\lambda+1)\hat{j} + (1-2)\hat{k} = -5\hat{i} + (\lambda+1)\hat{j} - \hat{k}$$

$$\overrightarrow{AD} = (6-1)\hat{i} + (-4-2)\hat{j} + (2-3)\hat{k} = 5\hat{i} - 6\hat{j} - \hat{k}$$

Since, A, B, C and D are coplanar,

$$\Rightarrow \begin{vmatrix} 2 & -3 & -1 \\ -5 & \lambda + 1 & -1 \\ 5 & -6 & -1 \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} -3 & 3 & 0 \\ -10 & \lambda + 7 & 0 \\ 5 & -6 & -1 \end{vmatrix} = 0 \begin{cases} R_1 \rightarrow R_1 - R_3 \\ R_2 \rightarrow R_2 - R_3 \end{cases}$$

$$\Rightarrow -1\begin{vmatrix} -3 & 3 \\ -10 & \lambda + 7 \end{vmatrix} = 0 \Rightarrow -3\lambda - 21 + 30 = 0 \Rightarrow -3\lambda + 9 = 0 \Rightarrow \lambda = 3 \text{ Ans}$$

- 13. Find the value of λ for which the four points with position vectors $(-\hat{j}+\hat{k}), (2\hat{i}-\hat{j}-\hat{k}), (\hat{i}+\lambda\hat{j}+\hat{k})$ and $(3\hat{j}+3\hat{k})$ are coplanar
- Sol. Let, Position vector of $A = -\hat{j} + \hat{k}$

Let, Position vector of $B = 2\hat{i} - \hat{j} - \hat{k}$

Let, Position vector of $C = \hat{i} + \lambda \hat{j} + \hat{k}$

Let, Position vector of D = 3j + 3k

Now, $\overrightarrow{AB} = P.V \text{ of } B - P.V \text{ of } A = 2i - 2k$

$$\overrightarrow{BC} = P.V \text{ of } C - P.V \text{ of } B = -\hat{i} + (\lambda + 1)\hat{j} + 2\hat{k}$$

$$\overrightarrow{AD} = P.V \text{ of } D - P.V \text{ of } A = 4i + 2k$$

: A, B, C and D are Co-planer

$$\Rightarrow$$
 [AB BC AD] = 0

$$\Rightarrow \begin{vmatrix} 2 & 0 & -2 \\ -1 & \lambda + 1 & 2 \\ 4 & 0 & 2 \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} 2 & 0 & 0 \\ -1 & \lambda + 1 & 3 \\ 4 & 0 & 6 \end{vmatrix} = 0 \quad \{C_3 \to C_3 + C_1 \Rightarrow 2 \begin{vmatrix} \lambda + 1 & 3 \\ 0 & 6 \end{vmatrix} = 0$$

$$\Rightarrow$$
 6 (λ + 1) - 0 = 0 \Rightarrow 6 λ + 6 = 0 \Rightarrow λ = -1

14. Using vector method show that the points A(4,5,1), B(0,-1,-1), C(3,9,4) and D(-4,4,4) are coplanar

Sol.
$$\overrightarrow{AB} = (0-4)\hat{i} + (-1-5)\hat{j} + (-1-1)\hat{k} = -4\hat{i} - 6\hat{j} - 2\hat{k}$$

$$\overrightarrow{BC} = (3-0)\overrightarrow{i} + (9+1)\overrightarrow{j} + (4+1)\overrightarrow{k} = 3\overrightarrow{i} + 10\overrightarrow{j} + 5\overrightarrow{k}$$

$$\overrightarrow{AD} = (-4 - 4)\hat{i} + (4 - 5)\hat{j} + (4 - 1)\hat{k} = -8\hat{i} - \hat{j} + 3\hat{k}$$

Now, [AB BC AD]

$$\begin{vmatrix} -4 & -6 & -2 \\ 3 & 10 & 5 \\ -8 & -1 & 3 \end{vmatrix} = \begin{vmatrix} 0 & 0 & -2 \\ -7 & -5 & 5 \\ -14 & -10 \end{vmatrix} = \begin{pmatrix} C_1 \rightarrow C_1 - 2C_3 \\ C_2 \rightarrow C_2 - 3C_3 \end{vmatrix}$$
$$= \begin{vmatrix} -7 & -5 \\ -14 & -10 \end{vmatrix} = -2(70 - 70) = 0$$

 $\Rightarrow \overrightarrow{AB}$, \overrightarrow{BC} and \overrightarrow{AD} are co-planar \Rightarrow A, B, C and D are co-planar

- 15. Find the value of λ for which the points $A(3,2,1), B(4,\lambda,5), C(4,2,-2)$ and D(6,5,-1) are coplanar
- Sol. Given points A (3, 2, 1)

B
$$(4, \lambda, 5)$$
, C $(4, 2, -2)$ and D $(6, 5, -1)$ are co-planar.

Now,
$$\overrightarrow{AB} = (4-3)\hat{i} + (\lambda-2)\hat{j} + (5-1)\hat{k} = \hat{i} + (\lambda-2)\hat{j} + 4\hat{k}$$

$$\overrightarrow{BC} = (4-4)\hat{i} + (2-\lambda)\hat{j} + (-2-5)\hat{k} = (2-\lambda)\hat{j} - 7\hat{k}$$

$$\overrightarrow{AD} = (6-3)\hat{i} + (5-2)\hat{j} + (-1-1)\hat{k} = 3\hat{i} + 3\hat{j} - 2\hat{k}$$

Now, $[\overrightarrow{AB} \ \overrightarrow{BC} \ \overrightarrow{AD}] = 0$

$$= \begin{vmatrix} 1 & \lambda - 2 & 4 \\ 0 & 2 - \lambda & -7 \\ 3 & 3 & -2 \end{vmatrix} = 0$$

Expanding by C₁

$$=\begin{vmatrix}2-\lambda & -7\\3 & -2\end{vmatrix} + 3\begin{vmatrix}\lambda-2 & 4\\2-\lambda & -7\end{vmatrix} = 0$$

$$\Rightarrow$$
 -4+2 λ +21+3(-7 λ +14-8+4 λ)=0 \Rightarrow 2 λ +17-9 λ +18=0

$$\Rightarrow$$
 -7 λ + 35 = 0 \Rightarrow λ = 5 Ans.

.

EXERCISE 25 B [Pg. No.: 1073]

- 1. If $\vec{d} = (\sqrt{2}\hat{i} + \sqrt{3}\hat{j} \sqrt{5}\hat{k})\vec{a} = x\hat{i} + 2\hat{j} z\hat{k}$ and $\vec{b} = 3\hat{i} y\hat{j} + \hat{k}$ are two equal vectors then x + y + z = ?
- Sol. $\vec{x} = \vec{b}$ $\Rightarrow \vec{x} = \vec{i} + \vec{2} = \vec{j} - \vec{z} = \vec{i} - \vec{y} = \vec{i} + \vec{k} \Rightarrow \vec{x} = \vec{3}, \ \vec{y} = -2 \text{ and } \vec{z} = \vec{1} \Rightarrow \vec{x} + \vec{y} + \vec{z} = \vec{3} + (-2) + (-1)$ $\Rightarrow \vec{x} = \vec{y} + \vec{z} = \vec{0}$
- 2. Write a unit vector in the direction of the sum of the vectors $\vec{a} = (2\hat{i} + 2\hat{j} 5\hat{k})$ and $\vec{b} = (2\hat{i} + \hat{j} 7\hat{k})$
- Sol. Given:-

$$\overrightarrow{a} = 2\overrightarrow{i} + 2\overrightarrow{j} - 5\overrightarrow{k}$$

$$\vec{b} = 2\vec{i} + 2\vec{j} - 7\vec{k}$$

Now,
$$\overrightarrow{a} + \overrightarrow{b} = 4\overrightarrow{i} + 3\overrightarrow{j} - 12\overrightarrow{k}$$

unit vector along $\overrightarrow{a} + \overrightarrow{b}$ is,

$$\hat{r} = \frac{\vec{a} + \vec{b}}{|\vec{a} + \vec{a}|} = \frac{4\hat{i} + 3\hat{j} - 12\hat{k}}{\sqrt{4^2 + 3^2 + (-12)^2}} = \frac{1}{13} \left(4\hat{i} + 3\hat{j} - 12\hat{k} \right)$$

- 3. Write the value of λ so that the vectors $\vec{a} = (2\hat{i} + \lambda\hat{j} + \hat{k})$ and $\vec{b} = (\hat{i} 2\hat{j} + 3\hat{k})$ are perpendicular to each other
- Sol. $\vec{a} \perp r\vec{b}$ $\Rightarrow \vec{a} \cdot \vec{b} = 0 \Rightarrow \left(2\vec{i} + \lambda \hat{j} + \hat{k}\right) \cdot (\hat{i} - 2\vec{j} + 3\hat{k}) = 0 \Rightarrow 2 - 2\lambda + 3 = 0 \Rightarrow -2\lambda = -5 \Rightarrow \lambda = \frac{5}{2}$
- 4. Find the value of p for which the vectors $\vec{a} = (3\hat{i} + 2\hat{j} + 9\hat{k})$ and $\vec{b} = (\hat{i} 2p\hat{j} + 3\hat{k})$ are parallel
- Sol. $\overrightarrow{a} \parallel \overrightarrow{b}$ $\Rightarrow \frac{3}{1} = \frac{2}{-2P} = \frac{9}{3} \Rightarrow 3 = -\frac{1}{P} \Rightarrow P = -\frac{1}{3}$
- 5. Find the value of λ when the projection of $\vec{a} = (\lambda \hat{i} + \hat{j} + 4\hat{k})$ on $\vec{b} = (2\hat{i} + 6\hat{j} + 3\hat{k})$ is 4 units
- Sol. Projection of \vec{a} on $\vec{b} = 4$

$$\Rightarrow \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|} = 4 \Rightarrow \frac{2\lambda + 6 + 12}{\sqrt{2^2 + 6^2 + 3^2}} = 4 \Rightarrow 2\lambda + 18 = 4 \times 7 \Rightarrow 2\lambda = 28 - 18 \Rightarrow \lambda = \frac{10}{2} = 5$$

- 6. If \vec{a} and \vec{b} are perpendicular vectors such that $|\vec{a} + \vec{b}| = 13$ and $|\vec{a}| = 5$, find the value of $|\vec{b}|$
- Sol. We have, $|\overrightarrow{a} + \overrightarrow{b}|^2 = |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 + 2\overrightarrow{a} \cdot \overrightarrow{b}$

$$\Rightarrow 13^2 = 5^2 + |\overrightarrow{b}|^2 + 2 \times 0 \quad \left\{ \overrightarrow{a} \perp \overrightarrow{r} \overrightarrow{b} \quad \overrightarrow{a} \cdot \overrightarrow{b} = 0 \right\}$$

$$\Rightarrow$$
 169 = 25 + $|\overrightarrow{\mathbf{b}}|^2 \Rightarrow |\overrightarrow{\mathbf{b}}|^2 = 144 \Rightarrow |\overrightarrow{\mathbf{b}}| = 12$

7. If
$$\vec{a}$$
 is a unit vector such that $(\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 15$, find $|\vec{x}|$

8. Find the sum of the vectors
$$\vec{a} = (\hat{i} - 3\hat{k}), \vec{b} = (2\hat{j} - \hat{k})$$
 and $\vec{c} = (2\hat{i} - 3\hat{j} + 2\hat{k})$

Sol.
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

= $\overrightarrow{i} - 3\overrightarrow{j} + 2\overrightarrow{j} - \overrightarrow{k} + 2\overrightarrow{i} - 3\overrightarrow{j} + 2\overrightarrow{k} \Rightarrow 3\overrightarrow{i} - \overrightarrow{i} - 2\overrightarrow{k}$

9. Find the sum of the vectors
$$\vec{a} = (\hat{i} - 2\hat{j}), \vec{b} = (2\hat{i} - 3\hat{j})$$
 and $\vec{c} = (2\hat{i} + 3\hat{k})$.

Sol.
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

= $\overrightarrow{i} - 2\overrightarrow{i} + 2\overrightarrow{i} - 3\overrightarrow{j} + 2\overrightarrow{i} + 3\overrightarrow{k} \Rightarrow 5\overrightarrow{i} - 5\overrightarrow{j} + 3\overrightarrow{k}$

10. Write the projection of the vector
$$(\hat{i} + \hat{j} + \hat{k})$$
 along the vector \hat{j}

Sol. Proj. of
$$(\hat{i}+\hat{j}+\hat{k})$$
 on \hat{j}

$$= \frac{(\hat{i}+\hat{j}+\hat{k})\cdot\hat{j}}{|\hat{i}|} = \frac{0+1+0}{1} = 1$$

11. Write the projection of the vector
$$(7\hat{i} + \hat{j} - 4\hat{k})$$
 on the vector $(2\hat{i} + 6\hat{j} + 3\hat{k})$

Sol. let,
$$\overrightarrow{a} = 7 \hat{i} + \hat{j} - 4 \hat{k}$$

 $\overrightarrow{b} = 2 \hat{i} + 6 \hat{j} + 3 \hat{k}$

Projection of a on b

$$= \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \frac{14 + 6 - 12}{\sqrt{2^2 + 6^2 + 3^2}} = \frac{6}{7} \text{ Ans}$$

12. Find
$$\vec{a} \cdot (\vec{b} \times \vec{c})$$
 when $\vec{a} = (2\hat{i} + \hat{j} + 3\hat{k}), \vec{b} = (-\hat{i} + 2\hat{j} + \hat{k})$ and $\vec{c} = (3\hat{i} + \hat{j} + 2\hat{k})$

Sol.
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = [\vec{a} \ \vec{b} \ \vec{c}]$$

$$= \begin{vmatrix} 2 & 1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & 2 \end{vmatrix} = 2 \begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix} + 1 \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} + 3 \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix}$$

$$= 2(4-1) + (2-3) + 3(1-6) = 2 \times 3 - 1 + 3 \times (-5) = 6 - 1 - 15 = -10$$

13. Find a vector in the direction of
$$(2\hat{i} - 3\hat{j} + 6\hat{k})$$
 which has magnitude 21 units

Sol. Let,
$$\overrightarrow{a} = 2\overrightarrow{i} - 3\overrightarrow{j} + 6\overrightarrow{k}$$

A vector of magnitude 21 in the direction of \overrightarrow{a} is given by,

$$\vec{b} = 21 \cdot \frac{\vec{a}}{|\vec{a}|} =$$

$$\Rightarrow \vec{b} = 21 \cdot \frac{\vec{2i-3j+6k}}{\sqrt{2^2 + (-3)^2 + 6^2}} = \Rightarrow \vec{b} = \frac{21}{7} \left(2\vec{i-3j+6k} \right)$$

$$\Rightarrow \vec{b} = 3 \left(2\vec{i-3j+6k} \right) \Rightarrow \vec{b} = 6\vec{i-9j+18k}$$

14. If $\vec{a} = (2\hat{i} + 2\hat{j} + 3\hat{k}), \vec{b} = (-\hat{i} + 2\hat{j} + \hat{k})$ and $\vec{c} = (3\hat{i} + j)$ are such that $(\vec{a} + \lambda \vec{b})$ is perpendicular to \vec{c} then find the value of λ

Sol. Given:
$$\rightarrow \vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$$

 $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$
& $\vec{c} = 3\hat{i} + \hat{j}$
 $\therefore \vec{a} + \lambda \vec{b} \perp \vec{c}$
 $\Rightarrow (\vec{a} + \lambda \vec{b}) \vec{c} = 0 \Rightarrow \{2\hat{i} + 2\hat{j} + 3\hat{k} + \lambda(-\hat{i} + 2\hat{j} + \hat{k})\} \cdot (3\hat{i} + \hat{j}) = 0$
 $\Rightarrow 6 - 3\lambda + 2 + 2\lambda = 0 \Rightarrow 8 - \lambda = 0 \Rightarrow \lambda = 8$

15. Write a vector of magnitude 15 units in the direction of vector $(\hat{i} - 2\hat{j} + 2\hat{k})$

Sol. Let,
$$\overrightarrow{a} = (i-2j+2k)$$

A vector of magnitude 15 units in the direction of $\vec{a} = (\hat{i} - 2\hat{j} + 2\hat{k})$ is given by,

$$\overrightarrow{b} = 15 \cdot \frac{\overrightarrow{a}}{|\overrightarrow{a}|}$$

$$\Rightarrow \overrightarrow{b} = 15 \cdot \frac{(\widehat{i} - 2\widehat{j} + 2\widehat{k})}{\sqrt{1 + 4 + 4}} \Rightarrow \overrightarrow{b} = 5 \cdot (\widehat{i} - 2\widehat{j} + 2\widehat{k}) \text{ Ans.}$$

16. If $\vec{a} = (\hat{i} + \hat{j} + \hat{k})$, $\vec{b} = (4\hat{i} - 2\hat{j} + 3\hat{k})$ and $\vec{c} = (\hat{i} - 2\hat{j} + \hat{k})$, find a vector of magnitude 6 units which is parallel to the vector $(2\vec{a} - \vec{b} + 3\vec{c})$

Sol.
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$

$$\Rightarrow 2\vec{a} = 2\hat{i} + 2\hat{j} + 2\hat{k} \Rightarrow \vec{b} = 4\hat{i} - 2\hat{j} + 3\hat{k} \Rightarrow -\vec{b} = -4\hat{i} + 2\hat{j} - 3\hat{k}$$
and, $\vec{c} = \hat{i} - 2\hat{j} + \hat{k}$

$$\Rightarrow 3\vec{c} = 3\hat{i} - 6\hat{j} + 3\hat{k}$$

Now,
$$2\vec{a} - \vec{b} + 3\vec{c} = \hat{i} - 2\hat{j} + 2\hat{k} \Rightarrow |\vec{a} - \vec{b} + 3\vec{c}| = \sqrt{1^2 + (-2)^2 + 2^2} = 3$$

A vector of mag. 6 units parallel to the vector $2\vec{a} - \vec{b} + 3\vec{c}$ is,

$$\overrightarrow{r} = 6 \cdot \frac{2\overrightarrow{a} - \overrightarrow{b} + 3\overrightarrow{c}}{|2a - \overrightarrow{b} + 3\overrightarrow{c}|} \Rightarrow \overrightarrow{r} = 6 \cdot \frac{(\widehat{i} - 2\widehat{j} + 2\widehat{k})}{3} \Rightarrow \overrightarrow{r} = 2\widehat{i} - 4\widehat{j} + 4\widehat{k}$$

- 17. Write the projection of the vector $(\hat{i} \hat{j})$ on the vector $(\hat{i} + \hat{j})$
- Sol. Projection of $\hat{i}-\hat{j}$ on $\hat{i}+\hat{j}$

$$=\frac{\binom{\hat{i}-\hat{j}}{\hat{j}}\cdot\binom{\hat{i}+\hat{j}}{\hat{i}+\hat{j}}}{\binom{\hat{i}+\hat{j}}{\hat{i}+\hat{j}}}=\frac{1-1}{\sqrt{2}}=0\;,$$

- 18. Write the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and $\vec{2}$ respectively having $\vec{a} \cdot \vec{b} = \sqrt{6}$
- Sol. Let θ be the angle b/ω a and \vec{b}

$$\theta = \cos^{-1} \frac{\overrightarrow{a \cdot b}}{\overrightarrow{|a||b|}}$$

$$\Rightarrow \theta = \cos^{-1} \frac{\sqrt{6}}{\sqrt{3} \cdot 2} \Rightarrow \theta = \cos^{-1} \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{4}$$

- 19. If $\vec{a} = (\vec{i} 7\hat{j} + 7\hat{k})$ and $\vec{b} = (3\hat{i} 2\hat{j} + 2\hat{k})$ then find $|\vec{a} \times \vec{b}|$
- Sol. Given:→

$$\overrightarrow{a} = \overrightarrow{i} - 7\overrightarrow{j} + 7\overrightarrow{k}$$

$$\vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$$

Now,
$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -7 & 7 \\ 3 & -2 & 2 \end{vmatrix}$$

$$=\begin{vmatrix} -7 & 7 \\ -2 & 2 \end{vmatrix} \hat{i} - \begin{vmatrix} 1 & 7 \\ 3 & 2 \end{vmatrix} \hat{j} + \begin{vmatrix} 1 & -7 \\ 3 & -2 \end{vmatrix} \hat{k} = 19\hat{i} + 19\hat{k} \implies |\vec{a} \times \vec{b}| = \sqrt{19^2 + 19^2} = 19\sqrt{2} \text{ Ans}$$

- 20. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes 1 and 2 respectively when $|\vec{a} \times \vec{b}| = \sqrt{3}$
- Sol. Let, θ is the angle between

$$\overrightarrow{a}$$
 and \overrightarrow{b}

Now,
$$\sin\theta = \frac{\overrightarrow{a \times b}}{\overrightarrow{a \parallel b}} \Rightarrow \sin\theta = \frac{\sqrt{3}}{1 \times 2} \Rightarrow \sin\theta = \frac{\sqrt{3}}{2} \Rightarrow \theta = \frac{\pi}{3} \text{ or, } 2\frac{\pi}{3}.$$

- 21. What conclusion can you draw about vectors \vec{a} and \vec{b} when $\vec{a} \times \vec{b} = \vec{0}$ and $\vec{a} \cdot \vec{b} = 0$?
- Sol. If, $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 0$

then,
$$\overrightarrow{a} = \overrightarrow{0}$$
 or $\overrightarrow{b} = \overrightarrow{0}$

$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$$

$$\Rightarrow |\overrightarrow{a}| = 0$$
 or, $|\overrightarrow{b}| = 0$ or, $|\overrightarrow{a}| |\overrightarrow{b}| = 0$...(i)

and,
$$\overrightarrow{a} \cdot \overrightarrow{b} - 0$$

$$\Rightarrow |\stackrel{\rightarrow}{a}| = 0 \text{ or, } |\stackrel{\rightarrow}{b}| = 0 \text{ or } \stackrel{\rightarrow}{a} \perp \stackrel{\rightarrow}{b} \dots (ii)$$

from (i) and (ii)

$$\overrightarrow{a} = \overrightarrow{0}$$
 or $\overrightarrow{b} = \overrightarrow{0}$

22. Find the value of λ when the vectors $\vec{a} = (\hat{i} + \lambda \hat{j} + 3\hat{k})$ and $\vec{b} = (3\hat{i} + 2\hat{j} + 9\hat{k})$ are parallel

Sol.
$$\therefore \vec{a} \parallel \vec{b}$$

$$\Rightarrow \frac{1}{3} = \frac{\lambda}{2} = \frac{3}{9} \Rightarrow \lambda = \frac{2}{3}.$$

23. Write the value of $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$

Sol.
$$\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$$

= $\hat{i} \cdot \hat{i} + \hat{j} \cdot (-\hat{j}) + \hat{k} \cdot \hat{k} = 1 - 1 + 1 = 1$ Ans.

24. Find the volume of the parallelepiped whose edges are represented by the vectors $\vec{a} = (2\hat{i} - 3\hat{j} + 4\hat{k})$, $\vec{b} = (\hat{i} + 2\hat{j} - \hat{k})$ and $\vec{c} = (3\hat{i} - 2\hat{j} + 2\hat{k})$

Sol. Volume of parallelepiped $= |\vec{a} \vec{b} \vec{c}|$

Now,
$$[\vec{a} \ \vec{b} \ \vec{c}] = \begin{vmatrix} 2 & -3 & 4 \\ 1 & 2 & -1 \\ 3 & -2 & 2 \end{vmatrix}$$

$$\Rightarrow [\vec{a} \ \vec{b} \ \vec{c}] = \begin{vmatrix} 0 & -7 & 6 \\ 1 & 2 & -1 \\ 0 & -8 & 5 \end{vmatrix} \begin{cases} R_1 + R_1 - 2R_2 \\ R_3 + R_3 - 3R_2 \end{cases}$$

$$\Rightarrow \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = -1 \begin{vmatrix} -7 & 6 \\ -8 & 5 \end{vmatrix} = -(-35 + 48) = -13 \qquad \Rightarrow |\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}| = |-13| = 13$$

Hence, volume of parallelepiped - 13. cubic units

25. If $\vec{a} = (-2\hat{i} - 2\hat{j} + 4\hat{k})$, $\vec{b} = (-2\hat{i} + 4\hat{j} - 2\hat{k})$ and $\vec{c} = (4\hat{i} - 2\hat{j} - 2\hat{k})$ then prove that \vec{a}, \vec{b} and \vec{c} are coplanar

Sol. Given:-

$$\overrightarrow{a} = -2\overrightarrow{i} - 2\overrightarrow{j} + 4\overrightarrow{k}$$

$$\overrightarrow{b} = -2 \, \overrightarrow{i} + 4 \, \overrightarrow{j} - 2 \, \overrightarrow{k}$$

$$\overrightarrow{a} = 4\overrightarrow{i} - 2\overrightarrow{j} - 2\overrightarrow{k}$$

Now, $[a \ b \ a]$

$$\begin{vmatrix} -2 & -2 & 4 \\ -2 & 4 & -2 \\ 4 & -2 & -2 \end{vmatrix} = \begin{vmatrix} -4 & 2 & 2 \\ -2 & 4 & -2 \\ 4 & -2 & -2 \end{vmatrix} \left\{ R_1 \to R_1 + R_2 \right\} = \begin{vmatrix} 0 & 0 & 0 \\ -2 & 4 & -2 \\ 4 & -2 & -2 \end{vmatrix} \left\{ R_1 \to R_1 + R_3 \right\}$$

Hence, a, b & c are co-planer.

26. if
$$\vec{a} = (2\hat{i} + 6\hat{j} + 27\hat{k})$$
 and $\vec{b} = (\hat{i} + \lambda\hat{j} + \mu\hat{k})$ are such that $\vec{a} \times \vec{b} = \vec{0}$ then find the values of λ and μ

Sol.
$$\vec{a} \times \vec{b} = \vec{0}$$

 $\Rightarrow \vec{a} \parallel \vec{b} \Rightarrow \frac{2}{1} = \frac{6}{\lambda} = \frac{27}{r} \Rightarrow 2\lambda = 6 \text{ and } 2r = 27 \Rightarrow \lambda = 3 \text{ and } r = \frac{27}{2} \text{ Ans.}$

27. If
$$\theta$$
 is the angle between \vec{a} and \vec{b} , and $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$ then what is the value of θ ?

Sol.
$$\vec{a} \cdot \vec{b} = |\vec{b} \times \vec{b}|$$

$$\Rightarrow |\vec{a}| |\vec{b}| \cos \theta = |\vec{a}| |\vec{b}| \sin \theta \Rightarrow \tan \theta = 1 \Rightarrow \theta = \frac{\pi}{4}$$

28. When does
$$|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}|$$
 holds

Sol. If,
$$|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}|$$

$$\Rightarrow |\vec{a} + \vec{b}|^2 - \{|\vec{a}| + |\vec{b}|\}^2 \Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}| |\vec{b}| \cos\theta = |\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}| |\vec{b}|$$

$$\Rightarrow 2|\vec{a}| |\vec{b}| \cos\theta = 2|\vec{a}| |\vec{b}| \Rightarrow \cos\theta = 1 \Rightarrow \theta = 0$$
Hence, If, $|\vec{a}| = |\vec{b}| + |\vec{b}| = |\vec{a}| + |\vec{b}|$

29. Find the direction cosines of a vector which is equally inclined to the x-axis y-axis and z-axis

Sol. Let,
$$\theta$$
 = Indignation of vector with axes.

Here direction cosines are, $\ell = \cos \theta$, $m = \cos \theta$ and $n = \cos \theta$

We have,
$$\ell^2 + m^2 + n^2 = 1$$

$$\Rightarrow \cos^2\theta + \cos^2\theta + \cos^2\theta = 1 \Rightarrow 3\cos^2\theta = 1 \Rightarrow \cos^2\theta = \frac{1}{3} \Rightarrow \cos\theta = \pm \frac{1}{\sqrt{3}}$$

Hence, d cosines are $\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}$

30. If P(1,5,4) and Q(4,1,-2) be the position vectors of two points P and Q find the direction rations of \overrightarrow{PO}

Sol.
$$\overrightarrow{PQ} = (4-1)\hat{i} + (1-5)\hat{j} + (-2-4)\hat{k}$$

$$\Rightarrow \overrightarrow{PQ} = 3\hat{i} - 4\hat{j} - 6\hat{k}$$

Here, Direction ratios are 3, -4. -6

31. Find the direction cosines of the vector $\vec{a} = (\hat{i} + 2\hat{j} + 3\hat{k})$

Sol. Given:
$$\overrightarrow{a} = \overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}$$

Direction of a are 1, 2, 3

Direction cosines of a are,

$$\ell = \frac{1}{\sqrt{1^2 + 2^2 + 3^2}} = \frac{1}{\sqrt{14}}$$
$$m = \frac{2}{\sqrt{1^2 + 2^2 + 3^2}} = \frac{2}{\sqrt{14}}$$

and,
$$n = \frac{3}{\sqrt{1^2 + 2^2 + 3^2}} = \frac{3}{\sqrt{14}}$$

32. If \hat{a} and \hat{b} are unit vectors such that $(\hat{a}+\hat{b})$ is a unit vector, what is the angle between \hat{a} and \hat{b} ?

Sol.
$$\because (\hat{a} + \hat{b})$$
 is a unit vector.

$$\Rightarrow |\hat{a} + \hat{b}| = 1 \Rightarrow |\hat{a} + \hat{b}|^2 = 1 \Rightarrow |\hat{a}|^2 + |\hat{b}|^2 + 2|\hat{a}||\hat{b}|\cos\theta = 1$$

$$\Rightarrow 1 + 1 + 2\cos\theta = 1 \quad \Rightarrow \cos\theta = -\frac{1}{2} \Rightarrow \theta = 2 \cdot \frac{\pi}{2}$$