Symbol	Usage
~	Separates response variables on the left from the explanatory variables on the right. For example, a prediction of y from x, z, and w would be coded y \sim x + z + w.
+	Separates predictor variables.
:	Denotes an interaction between predictor variables. A prediction of y from x, z, and the interaction between x and z would be coded y \sim x + z + x:z.
*	A shortcut for denoting all possible interactions. The code y \sim x * z * w expands to y \sim x + z + w + x:z + x:w + z:w + x:z:w.
^	Denotes interactions up to a specified degree. The code y $\sim (x + z + w)^2$ expands to y $\sim x + z + w + x \cdot z + x \cdot w + z \cdot w$.
	A placeholder for all other variables in the data frame except the dependent variable. For example, if a data frame contained the variables x, y, z, and w, then the code y \sim . would expand to y \sim x + z + w.
-	A minus sign removes a variable from the equation. For example, $y \sim (x + z + w)^2 - x \cdot w$ expands to $y \sim x + z + w + x \cdot z + z \cdot w$.
-1	Suppresses the intercept. For example, the formula y $\sim x$ -1 fits a regression of y on x, and forces the line through the origin at x=0.

Symbol	Usage
I()	Elements within the parentheses are interpreted arithmetically. For example, $y \sim x + (z + w)^2$ would expand to $y \sim x + z + w + z$: w. In contrast, the code $y \sim x + I((z + w)^2)$ would expand to $y \sim x + h$, where h is a new variable created by squaring the sum of z and w.
function	Mathematical functions can be used in formulas. For example, $\log{(y)} \sim x + z + w$ would predict $\log{(y)}$ from x, z, and w.