Lecture 18: Newton-Euler equations of motion, Modelica/Dymola: The Multibody library

- Newton-Euler equations of motion
 - Recap
 - Kinetic energy
 - Example
- Software
 - Dymola and the Modelica.Mechanics.Multibody library

Book: 7.3

Newton-Euler equations of motion

Newton's law (for particle k)

$$m_k \vec{a}_k = \vec{F}^{(r)}$$

- Newton-Euler EoM for rigid bodies:
 - Integrate Newton's law over body, define center of mass
 - Define torque/moment and angular momentum to handle forces that give rotation about center of mass
 - Define inertia dyadic/matrix

$$\vec{F}_{bc} = m\vec{a}_c$$

$$\vec{T}_{bc} = \vec{M}_{b/c} \cdot \vec{\alpha}_{ib} + \vec{\omega}_{ib} \times \left(\vec{M}_{b/c} \cdot \vec{\omega}_{ib} \right) \not\sim_{\vec{i}_1}$$

(Here: Referenced to center of mass)

Implemented in e.g. Dymola (Modelica.Multibody library)

 \vec{r}_c

Traits of Newton-Euler EoM

(and a preview: Lagrange EoM)

Newton-Euler EoM:

- Involves working with vectors
 - Lagrange: Algebraic manipulations
- Forces and moments are central
 - Lagrange: Energy and work are central
- All forces in the system must be considered
 - Lagrange: Forces of constraint are implicitly eliminated with the use of generalized coordinates (and generalized forces)

 $\vec{F}_{bc} = m\vec{a}_c$

 $\vec{T}_{bc} = \vec{M}_{b/c} \cdot \vec{\alpha}_{ib} + \vec{\omega}_{ib} \times \left(\vec{M}_{b/c} \cdot \vec{\omega}_{ib} \right)$

- Somewhat complicated to use by hand, but can be implemented in computer systems
 - Lagrange: Easier to do by hand, not suitable for complex systems
- d'Alembert's principle: Elimination of forces of constraint (Ch. 7.7)
 - Can simplify application of Newton-Euler EoM
 - Kane's EoM (Ch. 7.8, 7.9)
 - Starting point for Lagrange EoM (Ch. 8.2)

Inertia matrix

Found for each rigid body by calculating

$$M_{b/c}^b = \int_b (\mathbf{r}^b)^\mathsf{T} \mathbf{r}^b I - \mathbf{r}^b (\mathbf{r}^b)^\mathsf{T} dm = \int_b \begin{pmatrix} y^2 + z^2 & -xy & -xz \\ -xy & x^2 + z^2 & -yz \\ -xz & -yz & x^2 + y^2 \end{pmatrix} dm$$

- Constant in body-fixed coordinate system!
- Not constant in inertial coordinate system

$$M_{b/c}^i = R_b^i M_{b/c}^b (R_b^i)^\mathsf{T}$$

- Books and wikipedia have tables for common geometries, otherwise computer programs calculates, or can be calculated/identified based on experiments
- Typically, axis in body-system chosen as body symmetri axis, giving zeros in inertia matrix. If symmetric about all axis, the inertia matrix becomes diagonal.

Inertia matrix, examples

Homogeneous Disk

$$I_{disk} = \frac{1}{4}mr^2 \begin{bmatrix} 1 + \frac{1}{3}\frac{h}{r^2} & 0 & 0\\ 0 & 1 + \frac{1}{3}\frac{h}{r^2} & 0\\ 0 & 0 & \frac{1}{2} \end{bmatrix}$$

$$I_{disk} = \frac{1}{4}mr^{2} \begin{bmatrix} 1 + \frac{1}{3}\frac{h}{r^{2}} & 0 & 0\\ 0 & 1 + \frac{1}{3}\frac{h}{r^{2}} & 0\\ 0 & 0 & \frac{1}{2} \end{bmatrix} \quad I = \begin{bmatrix} 23 & 0 & 2.97\\ 0 & 15.13 & 0\\ 2.97 & 0 & 16.99 \end{bmatrix} kslug - ft^{2}$$

1 slug = 14.6 kg1 ft = 0.304 m

	Kinematics	Kinetics
	Derivatives of position and orientation as function of velocity and angular velocity	Derivatives of velocity and angular velocity as function of applied forces and torques
wayay ntnu no		TTV 1120 Madeling and Simulation
www.ntnu.no		TTK4130 Modeling and Simulation

Kinematics Derivatives of position and

orientation as function of velocity

Kinetics

3D:

Derivatives of velocity and angular

1D: $m\dot{v} = F$ 3D: $m\dot{\mathbf{v}}_c^i = \mathbf{F}_{bc}^i$

Usually convenient to have forces

and velocities in body system:

velocity as function of applied

forces and torques

3D: Depends on parameterization Rotation matrix:

$$\mathbf{\dot{R}}_{b}^{i}=\mathbf{R}_{b}^{i}\left(oldsymbol{\omega}_{ib}^{b}
ight)^{ imes}$$

Euler angles:

gles.
$$\dot{oldsymbol{\phi}} = \mathbf{E}_d^{-1}(oldsymbol{\phi}) oldsymbol{\omega}_{ib}^b$$

Euler parameters:

rameters.
$$\dot{\eta}=-rac{1}{2}m{\epsilon}^{ op}m{\omega}_{ib}^{b}$$
 $\dot{m{\epsilon}}=rac{1}{2}\left(\eta \mathbf{I}+m{\epsilon}^{ imes}
ight)m{\omega}_{ib}^{b}$

1D:
$$J\dot{\omega}=T$$

3D: $\mathbf{M}_{b/c}^b\dot{\boldsymbol{\omega}}_{ib}^b+\left(\boldsymbol{\omega}_{ib}^b\right)^{ imes}\mathbf{M}_{b/c}^b\boldsymbol{\omega}_{ib}^b=\mathbf{T}_{bc}^b$

Satellite attitude dynamics

$$\vec{F}_{bc} = m\vec{a}_c$$

$$\vec{T}_{bc} = \vec{M}_{b/c} \cdot \vec{\alpha}_{ib} + \vec{\omega}_{ib} \times \left(\vec{M}_{b/c} \cdot \vec{\omega}_{ib} \right)$$

Airplane EoM (from book about airplane dynamics)

$$X - mgS_{\theta} = m(\dot{u} + qw - rv)$$

$$Y + mgC_{\theta}S_{\Phi} = m(\dot{v} + ru - pw)$$

$$Z + mgC_{\theta}C_{\Phi} = m(\dot{w} + pv - qu)$$

$$m\left(\mathbf{\dot{v}}_{c}^{b}+\left(\boldsymbol{\omega}_{ib}^{b}\right)^{\times}\mathbf{v}_{c}^{b}\right)=\mathbf{F}_{bc}^{b}$$

$$L = I_{x}\dot{p} - I_{xz}\dot{r} + qr(I_{z} - I_{y}) - I_{xz}pq$$

$$M = I_{y}\dot{q} + rp(I_{x} - I_{z}) + I_{xz}(p^{2} - r^{2})$$

$$N = -I_{xz}\dot{p} + I_{z}\dot{r} + pq(I_{y} - I_{x}) + I_{xz}qr$$

$$\mathbf{M}_{b/c}^b \dot{oldsymbol{\omega}}_{ib}^b + \left(oldsymbol{\omega}_{ib}^b
ight)^ imes \mathbf{M}_{b/c}^b oldsymbol{\omega}_{ib}^b = \mathbf{T}_{bc}^b$$

$$p = \Phi - \dot{\psi}S_{\theta}$$

$$q = \dot{\theta}C_{\Phi} + \dot{\psi}C_{\theta}S_{\Phi}$$

$$r = \dot{\psi}C_{\theta}C_{\Phi} - \dot{\theta}S_{\Phi}$$

$$\dot{\theta} = qC_{\Phi} - rS_{\Phi}
\dot{\Phi} = p + qS_{\Phi}T_{\theta} + rC_{\Phi}T_{\theta}
\dot{\psi} = (qS_{\Phi} + rC_{\Phi})\sec\theta$$

$$oldsymbol{\dot{\phi}} = \mathbf{E}_d^{-1}(oldsymbol{\phi}) oldsymbol{\omega}_{ib}^b$$

Velocity of aircraft in the fixed frame in terms of Euler angles and body velocity components

$$\begin{bmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \\ \frac{dz}{dt} \end{bmatrix} = \begin{bmatrix} C_{\theta}C_{\psi} & S_{\Phi}S_{\theta}C_{\psi} - C_{\Phi}S_{\psi} & C_{\Phi}S_{\theta}C_{\psi} + S_{\Phi}S_{\psi} \\ C_{\theta}S_{\psi} & S_{\Phi}S_{\theta}S_{\psi} + C_{\Phi}C_{\psi} & C_{\Phi}S_{\theta}S_{\psi} - S_{\Phi}C_{\psi} \\ -S_{\theta} & S_{\Phi}C_{\theta} & C_{\Phi}C_{\theta} \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

$$\mathbf{\dot{r}}_c^i = \mathbf{v}_c^i = \mathbf{R}_b^i \mathbf{v}_c^b$$

Modelica Multibody introduction

Adapted from slides by Andreas Heckmann, DLR

Modelica Multibody: Orientation

Orientation and position of coordinate systems (frames)

```
\vec{i}_3 \vec{v}_{i_1} \vec{b}_3 \vec{b}_2 \vec{b}_1 Body frame
```

```
model ...
import Modelica.Mechanics.MultiBody.Frames;
Frames.Orientation Rib;
Real[3] ui "vector u resolved in frame i";
Real[3] ub "vector u resolved in frame b";
...
equation
...
ui = Frames.resolve1(Rib, ub); // ui = Rib*ub
ub = Frames.resolve2(Rib, ui); // ub = Rib'*ui
```

World frame

- Orientation object \mathbf{R}_b^i
 - Describes orientation of system b wrt i (transforms from b to i)
 - Contains:

```
Real T[3, 3] "Transformation matrix from world frame to local frame";
SI.AngularVelocity w[3]

"Absolute angular velocity of local frame, resolved in local frame";
```

- Can be specified using Euler angles or Euler parameters/quaternions
- Many functions to operate on orientation objects

orientationConstraint angular Velocity 1 f angular Velocity 2 f resolve1 f resolve2 f resolveRelative f)resolveDyade1 f)resolveDyade2 f)nullRotation inverseRotation relativeRotation absoluteRotation planarRotationAngle axisRotation f axesRotations (f)axesRotationsAngles f)smallRotation f from nxv (f)from_nxz (f)from_T (f)from_T2 (f)from_T_inv · (f) from_Q (f)to_T (f)to_T_inv · (f) to_Q f to_vector (f)to_exy (f)axis Quaternions TransformationMatrices Internal

Modelica Multibody: Connectors I

- Connectors: To connect different rigid bodies
 - Position is resolved in world frame
 - Forces and torques are resolved in local frame

"No flow" variables

```
connector Frame
  "Coordinate system fixed to the component with one cut-force and cut-torque (no icon)"
  import SI = Modelica.SIunits;
SI.Position r_0[3]
    "Position vector from world frame to the connector frame origin, resolved in world frame";
Frames.Orientation R
    "Orientation object to rotate the world frame into the connector frame";
Ilow SI.Force f[3] "Sut-force resolved in connector frame";
flow SI.Torque t[3] "Cut-torque resolved in connector frame";
end Frame;
"Flow" variables
```

Modelica Multibody: Connectors II

```
model SpringMass
inner Modelica.Mechanics.MultiBody.World world;
Modelica.Mechanics.MultiBody.Parts.Body body(
    m=1,
    r_CM={0,1,0}, // In frame a
    r_0(fixed=true, start={0,0.5,0})); // In world frame
Modelica.Mechanics.MultiBody.Forces.Spring spring(c=100);
equation
    connect(spring.frame_a, world.frame_b);
    connect(spring.frame_b, body.frame_a);
end SpringMass;
```


Connection rules

- Non-flow variables set equal (that is: frames coincides)
- Flow variables sum to zero (Newton's third law)

Modelica.Multibody: Generic body component

Make SpringMass in Dymola

Show

- Parameters (mass, $r_cm = (0,-0.5,0)$, Inertia matrix)
- Initial values
- Euler angles

Stability Region BDF

Padé approximations to es

m	0	1	2	3
0	$\frac{1}{1}$	$\frac{1+s}{1}$	$\frac{1+s+\frac{1}{2}s^2}{1}$	$\frac{1+s+\frac{1}{2}s^2+\frac{1}{6}s^3}{1}$
1	$\frac{1}{1-s}$	$\frac{1+\frac{1}{2}s}{1-\frac{1}{2}s}$	$\frac{1 + \frac{2}{3}s + \frac{1}{6}s^2}{1 - \frac{1}{3}s}$	$\frac{1 + \frac{3}{4}s + \frac{1}{4}s^2 + \frac{1}{24}s^3}{1 - \frac{1}{4}s}$
2	$\frac{1}{1-s+\frac{1}{2}s^2}$	$\frac{1 + \frac{1}{3}s}{1 - \frac{2}{3}s + \frac{1}{6}s^2}$	$\frac{1 + \frac{1}{2}s + \frac{1}{12}s^2}{1 - \frac{1}{2}s + \frac{1}{12}s^2}$	$\frac{1 + \frac{3}{5}s + \frac{3}{20}s^2 + \frac{1}{60}s^3}{1 - \frac{2}{5}s + \frac{1}{20}s^2}$
3	$\frac{1}{1-s+\frac{1}{2}s^2-\frac{1}{6}s^3}$	$\frac{1 + \frac{1}{4}s}{1 - \frac{3}{4}s + \frac{1}{4}s^2 - \frac{1}{24}s^3}$	$\frac{1 + \frac{2}{5}s + \frac{1}{20}s^2}{1 - \frac{3}{5}s + \frac{3}{20}s^2 - \frac{1}{60}s^3}$	$\frac{1 + \frac{1}{2}s + \frac{1}{10}s^2 + \frac{1}{120}s^3}{1 - \frac{1}{2}s + \frac{1}{10}s^2 - \frac{1}{120}s^3}$
		L-stab	le L-stab	le A-st

- m = 0: Explicit Runge-Kutta methods with $p = \sigma$
- m = k: Gauss, Lobatto IIIA/IIIB (incl. implicit mid-point, trapezoidal)
- m = k+1: Radau-methods (incl. implicit Euler)
- m = k+2: Lobatto IIIC

Stability region for Adams-Moulton

Modelica.Multibody: Rotations

Make simple pendulum

Show body.frame_a.R (rotation object)

Modelica Multibody: Kinematics

- Equations inside the component provide relations between the connector variables on position level
- Example: MultiBody.Parts.FixedTranslation
 - Fixed translation of frame_b with respect to frame_a

```
fixedTranslation

a
r={1.1,0.3,2.1}
```

```
model FixedTranslation
   "Fixed translation of frame_b with respect to frame_a"
   ...
equation

frame_b.r_0 = frame_a.r_0 + Frames.resolve1(frame_a.R, r);
frame_b.R = frame_a.R;

/* Force and torque balance */
zeros(3) = frame_a.f + frame_b.f;
zeros(3) = frame_a.t + frame_b.t + cross(r, frame_b.f);
end FixedTranslation;
```

Dymola differentiates these equations twice for (velocity and) accelerations

Modelica Multibody: Kinetics

- Newton-Euler equations
 - Accelerations

$$\vec{a}_p = \vec{a}_o + \vec{\alpha}_{ib} \times \vec{r} + \vec{\omega}_{ib} \times (\vec{\omega}_{ib} \times \vec{r}), \ \vec{r} \text{ fixed.}$$

Kinetics

$$\vec{F}_{bc} = m\vec{a}_c$$

$$\vec{T}_{bc} = \vec{M}_{b/c} \cdot \vec{\alpha}_{ib} + \vec{\omega}_{ib} \times (\vec{M}_{b/c} \cdot \vec{r})$$


```
model body
  "Rigid body with mass, inertia tensor and one frame connector (12 potential states)"
equation
  // translational kinematic differential equations
 v 0 = der(frame a.r 0);
                                            // r 0, v 0 resolved in world frame
  a a = Frames.resolve2(frame a.R,der(v 0)); // a a resolved in frame a
  // rotational kinematic differential equations
  w_a = Frames.angularVelocity2(frame_a.R);
  z a = der(w a);
  // Newton/Euler equations with respect to center of mass
            a_CM = a_a + cross(z_a, r_CM) + cross(w_a, cross(w_a, r_CM));
            f_CM = m*(a_CM - g_a);
            t CM = I*z a + cross(w a, I*w a);
       frame a.f = f CM
       frame a.t = t CM + cross(r CM, f CM);
end body;
```

Modelica Multibody: Elementary components I

SpringDamperSeries

- Modelica.Mechanics.Multibody.World
 - Defines inertial frame, gravity, animation defaults

- Modelica.Mechanics.MultiBody.Forces
 - External forces and torques, resolved in body- or inertial frame
 - Interface to Real input functions
 - Several spring/damper configurations

Modelica Multibody: Elementary components II

Modelica Multibody: Elementary components II

- Modelica.Mechanics.MultiBody.Parts
 - Fixed, Fixed Translation and Fixed Rotation

 Rigid bodies with predefined geometric shapes

Modelica Multibody: Elementary components II

- Modelica.Mechanics.Multibody.Sensors
 - For control and validation purposes

 Modelica.Blocks.Sources + Modelica.Blocks.Math

Example: Inverted pendulum, modeling

- Box: 0.5m x 0.25m x 0.25m
- Cylinder: L = 1m, r = 0.05m

Example: Inverted pendulum, PD control

