Consider the following system:

$$\frac{dx}{dt} = x^2 + y^2 - 6 \qquad \frac{dy}{dt} = x^2 - y$$

• Determine the roots as $\sqrt{2}$, with eigen values as -2.96, 4.78 and $-\sqrt{2}$, with eigen values as $-1.91\pm3.24i$ resulting in one saddle and one stable spiral

Vector space:

- Consists of a set of vectors V and a set of scalars S.
- Sum of any two vectors must be an element of V. Any vector multiplied by a scalar is also an element of V.
- S is the set of all the real numbers "real vector space". Similarly define complex vector space
- Smallest number of the vectors required to define a vector in a vector space is the basis.
- Dimension of a vector space is the no. vector in the basis.

- Norm of a vector is the dot/inner product with itself $||v|| = \sqrt{\bar{v}\bar{v}} \equiv v^T v$
- For any vector \overline{v} and \overline{w} $cos\theta = \frac{v.w}{\|v\| \|w\|}$
- \overline{v} and \overline{w} are orthogonal if \overline{v} . $\overline{w}=0$
- They are orthonormal if magnitude of each vector is $\frac{\overline{v}}{\|v\|}$ and $\frac{\overline{w}}{\|w\|}$

• $\widehat{n_1}$, $\widehat{n_2}$form the orthonormal basis if they are normal to each other i.e. projection onto one another is zero magnitude and projection onto itself is unit magnitude.

- A vector is usually decomposed into its components $\overline{v} = a_1 \widehat{n_1} + a_2 \widehat{n_2} \dots \dots$
- $\widehat{n_1}$ is unit vector in particular direction, a_1 is projection of \overline{v} on $\widehat{n_1}$, $\widehat{n_2}$.
- Eg in 3D space: \hat{i} , \hat{j} , \hat{k} form orthonormal basis

$$\bar{v} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 4 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\hat{i} \qquad \hat{j} \qquad \hat{k}$$

- 3,4,5 are projections of the vector on the basis vectors i.e. $\hat{\imath}$, $\hat{\jmath}$, \hat{k}
- Likewise a function can also perhaps be decomposed into its components