Студент: Кирилл Яценко

Группа: Яндекс

Дата: 16 сентября 2023 г.

№1 Эквивалентны ли следующие утверждения?

- 1. $f(n) = \Theta(g(n))$
- 2. $\exists c, 0 < c < +\infty : \lim_{n \to \infty} \frac{f(n)}{g(n)}$

Решение:

- 1. Из утверждения №1 $\Rightarrow \exists c_1 > 0, c_2 > 0, N : \forall n > N \Rightarrow c_1 g(n) < f(n) < c_2 g(n)$
- 2. Отсюда для отношения $\frac{f(n)}{g(n)}$ получим оценку:

$$c_1 < \frac{f(n)}{g(n)} < c_2$$

- 3. По условию утверждения №1 c_1, c_2 не обязанны быть равными, поэтому при переходе в пределе отношение $\frac{f(n)}{g(n)}$ не обязанно иметь
- 4. Например возьмем $g(n) = 1, f(n) = \{1, n \mod 2 = 0\}$

№1 Эквивалентны ли следующие утверждения?

№1 Эквивалентны ли следующие утверждения?

№4 Решите рекурренту (найдите точную оценку асимптотики и докажите)

$$T(n) = 3T(\sqrt{n}) + \log_2 n$$
 Здесь можно считать, что $T(n \leq 1) = 1.$

№5 Заполните табличку и поясните

A	B	Ø	0	Θ	ω	Ω
n	n^2	+	+	_	_	_
$\log^k n \\ n^k$	n^{ϵ}					
n^k	c^n					
\sqrt{n}	$n^{\sin n}$					
$\frac{\sqrt{n}}{2^n}$	$2^{n/2}$					
$n^{\log m}$	$m^{\log n}$					
$\log(n!)$	$\log(n^n)$					

№1 Эквивалентны ли следующие утверждения?