LOBRAKENI - VYUKITI

- **3.21** Je dána kružnice k(S;r) a bod A ($A \notin k$). Určete množinu všech
- **3.22** Jestliže ve čtyřúhelníku ABCD platí $AB \parallel CD$ a $AB \cong CD$, je čtyřúhelník rovnoběžník. Dokažte
- 3.23 Je dán trojúhelník ABC a jeho vnitřní bod M. Sestrojte všechny trojúhelníku úsečky XY se středem M a s krajními body X, Y na hranici
- **3.24** Jsou dány dvě kružnice $k_1,\,k_2,\,$ které se protínají ve dvou bodech
- a) Bodem Q veďte přímku, která vytíná na obou kružnicích tětivy stejné délky
- Sestrojte trojúhelník RST tak, aby $S \in k_1, T \in k_2$ a bod Q by středem strany ST.
- **3.25** Je dána přímka p, kružnice k(S;r) a body A_1 , B_1 ($A_1 \neq B_1$, $A_1 \notin$ $\notin p, A_1 \notin k, B_1 \notin p, B_1 \notin k$). Sestrojte trojúhelník ABC tak, aby $A \in p, \, B \in k$ a body A_1 a B_1 byly po řadě středy stranBCa AC
- Jsou dány tři různé body $M,\,N,\,S,\,$ které neleží v přímce. Sestrojte a bod N na přímce CD. čtverec ABCD se středem S tak, aby bod M ležel na přímce AB
- 3.27Jsou dány čtyři kružnice k_1 , k_2 , k_3 , k_4 a bod S. Sestrojte rovnona kružnicích k_1 , k_2 , k_3 , k_4 . běžník ABCD se středem S, jehož vrcholy A,B,C,D leží po řadě
- 3.28Je dána úsečka AA_1 ($|AA_1| = 5$ cm). Sestrojte všechny trojúhel níky ABC, pro které je AA_1 těžnicí t_a a pro které platí
- a) c = 4 cm, b = 7 cm;
- b) $\gamma = 45^{\circ}$, $\beta = 60^{\circ}$;
- c) $b = 6 \text{ cm}, \beta = 45^{\circ};$
- d) $b = 6 \text{ cm}, t_b = 6 \text{ cm}$

bodů X takových, že bod A je středem úsečky XY a $Y \in k$.

3.31 Je dána kružnice k(S;r), přímky p,q $(p \not\mid q)$ a na přímce q úsečka strojte všechny úsečky XY, pro které platí: $X \in k_1, Y \in k_2$ $XY \parallel S_1 S_2, \mid XY \mid = \frac{1}{2} |S_1 S_2|$

3.30 Jsou dány kružnice $k_1(S_1; 3 \text{ cm}), k_2(S_2; 2 \text{ cm}), |S_1S_2| = 7 \text{ cm}$. Se-

- platilo $PK \parallel q, |PK| = a$. délky a. Určete na přímce p bod P a na kružnici k bod K tak, aby
- Jsou dány dvě různoběžky $a,\ b$ a úsečka $M\!N$. Sestrojte čtverec ABCD, pro který platí $A \in a$, $B \in b$, $AB \parallel MN$, |AB| = |MN|.
- **3.33** Jsou dány dvě různé rovnoběžky a, b, bod M $(M \notin a, M \notin b)$ a úsečka délky d (d > |ab|). Veďte bodem M všechny přímky, které protínají přímky $a,\,b$ v bodech $A,\,B$ tak, že |AB|=d.
- **3.34** Je dána kružnice k(S;r), její dvě tečny $t_1 \parallel t_2$ a úsečka délky astrany a tak, aby $A \in t_1$, $B \in t_2$, $C \in k$. (a>2r). Sestrojte všechny rovnostranné trojúhelníky ABC o délce
- Úlohu 2.38 řešte užitím posunutí
- ${\bf 3.36}\,$ Jsou dány dvě různoběžky $a,\,b$ a úsečka délky r. Sestrojte všechny b vytínají tětivu délky r. kružnice k se středem na přímce a, poloměrem r, které na přímce
- *3.37 Jsou dány dvě různé rovnoběžky a, b a bod M uvnitř pásu (a, b)Sestrojte všechny úsečky AB kolmé k přímkám a, b s krajními body A, B na přímkách a, b, které z bodu M vidíme pod úhlem 60° .
- Je dána kružnice k(S;r) a ve vnitřní oblasti kružnice k bod $A \neq S$. Sestrojte všechny rovnoběžníky ABCD, jejichž vrcholy B, C, D leží na kružnici k a strana AB má délku r.
- *3.39 Vyhledejte místo na řece šířky d, ve kterém by měl stát most ve směru kolmém na tok řeky tak, aby cesta z obce A do obce B, které leží na různých stranách řeky mimo její břehy, byla nejkratší
- **3.40** Sestrojte rovnoběžník ABCD, je-li dáno $a=5\,\mathrm{cm},\,b=3\,\mathrm{cm},\,\varepsilon=$ = 120°, kde $\varepsilon = | \star ASB|$, S je průsečík úhlopříček.
- Sestrojte lichoběžník ABCD ($AB \parallel CD$), je-li dáno $a=6,5\,\mathrm{cm}$ b = 4 cm, c = 3 cm, d = 3 cm.
- *3.42 Sestrojte čtyřúhelník ABCD, je-li dáno $a=5\,\mathrm{cm},\ c=3,5\,\mathrm{cm},$ $e=6\,\mathrm{cm},\,f=5,5\,\mathrm{cm},\,\varepsilon=120^\circ,\,\mathrm{kde}\;\varepsilon=|\star AEB|,\,E$ je průsečík úhlopříček.

- **3.43** Načrtněte čtverec ABCD a uveďte všechny orientované úhly s vrcholem A a rameny procházejícími zbývajícími vrcholy čtverce Určete jejich základní velikosti.
- $\bf 3.44\,$ a) Určete velikost úhlu otočení malé (velké) hodinové ručičky od $\bf 6.30\,h$ do $14.15\,h$ téhož dne.
- b) Určete velikost orientovaného úhlu, který svírá velká a malá hodinová ručička ve smyslu chodu v 5 h, ve 3.15 h, v 7.45 h.
- **3.45** Je dána polopřímka VA. Narýsujte orientovaný úhel s počátečním ramenem VA, je-li jedna jeho velikost a) 570°, b) -675°.
- **3.46** Je dán pětiúhelník ABCDE. Určete jeho obraz v otočení $R(S,\varphi)$ je-li
- a) S vnitřním bodem pětiúhelníku, $\varphi = \frac{1}{3}\pi$;
-) $S = A, \varphi = -120^{\circ};$
- c) $S \in AB$, $\varphi = 90^{\circ}$;
- d) S leží vně pětiúhelníku, $\varphi = -675^{\circ}$.
- **3.47** Do kružnice k(S;r) je vepsán rovnostranný trojúhelník ABC. Sestrojte trojúhelník A'B'C' jako obraz trojúhelníku ABC v otočení $R(S,60^\circ)$. Vznikne šesticípá hvězda dvanáctiúhelník. Určete velikosti jeho vnitřních úhlů.
- 3.48 Úlohu 1.42 řešte užitím otočení.
- 3.49 Ve kterém otočení je samodružný
- a) rovnostranný trojúhelník,
- b) čtverec,
- c) kružnice?
- $\bf 3.50\,$ Do daného rovnoběžníku KLMNvepište čtverecABCDtak, aby $A\in KL,\, B\in LM,\, C\in MN,\, D\in KN.$
- **3.51** Jsou dány dvě soustředné kružnice $k_1(S; 4 \text{ cm}), k_2(S; 3 \text{ cm})$ a bod A (|SA| = 2 cm). Sestrojte všechny
- a) rovnostranné trojúhelníky ABC tak, aby $B \in k_1, C \in k_2$,
- b) čtverce ABCD tak, aby $B \in k_1, D \in k_2$.
- **3.52** Jsou dány tři různé rovnoběžky a, b, c a bod $C \in c$. Sestrojte všechny rovnostranné trojúhelníky ABC tak, aby $A \in a, B \in b$.
- **3.53** Je dán bod C, přímka p a kružnice $k(S;3\,\mathrm{cm});\ |Sp|=4\,\mathrm{cm},\ |Cp|=2\,\mathrm{cm},\ |CS|=5\,\mathrm{cm},\ a$ body C, S leží v téže polorovině s hraniční přímkou p. Sestrojte všechny pravoúhlé rovnoramenné trojúhelníky $ABC\ (| *C| = 90^\circ)$ tak, aby $A \in p, B \in k$.

- 3.54 Jsou dány dvě nesoustředné kružnice $k_1(S_1; r_1), k_2(S_2; r_2), r_1 \neq r_2$, které se protínají v bodech C, Q. Sestrojte všechny rovnoramenné trojúhelníky ABC (AB je základna), pro které platí $A \in k_1$, $B \in k_2$, $| *ACB | = 120^\circ$.
- **3.55** Je dána kružnice $k(S;3\ {\rm cm})$ a bod $A\ (|SA|=1,5\ {\rm cm})$. Sestrojte všechny tětivy XY kružnice k o délce 5,5 cm, které procházejí bodem A.
- *3.56 Je dána kružnice k(S;r), bod B a úsečka délky d (d < 2r). Sestrojte tětivu XY kružnice k délky d tak, aby byla vidět z bodu B pod úhlem 60° .
- **3.79** Zvolte libovolný trojúhelník ABC, sestrojte jeho těžiště T a kružnici k trojúhelníku opsanou. Zobrazte kružnici k ve stejnolehlosti $H(T, -\frac{1}{2})$. Kterými body trojúhelníku ABC kružnice k' prochází?
- *3.80 Dokažte, že uvnitř čtverce o straně délky a lze sestrojit rovnostranný trojúhelník se stranou délky a.
- **3.81** Je dán bod M, přímka p a kružnice $k(S;3\,\mathrm{cm}), |Sp|=4\,\mathrm{cm},$ $|Mp|=1\,\mathrm{cm}, |MS|=7\,\mathrm{cm},$ body M, S leží v opačných polorovinách s hraniční přímkou p. Sestrojte všechny přímky XY tak, aby platilo: $X\in p, Y\in k, M\in \leftrightarrow XY, |MY|=2|MX|$.
- 3.82 Ulohu 1.55 řešte užitím stejnolehlosti.
- **3.83** Je dán čtverec ABCD ($|AB|=5\,\mathrm{cm}$) a bod M uvnitř čtverce $(M\in BD, |MB|=2\,\mathrm{cm})$. Sestrojte všechny úsečky XY, které mají krajní body X,Y na hranici čtverce tak, aby platilo |MX|:|MY|=4:3.
- *3.84 Jsou dány dvě kružnice se stejnými poloměry $k_1(O_1;r)$, $k_2(O_2;r)$, které se protínají. Bod O je středem úsečky O_1O_2 . Veďte bodem O přímku tak, aby její průsečíky s kružnicemi k_1 , k_2 byly krajními body tří shodných úseček.
- 85 Je dán konvexní úhel AVB a bod M, který leží uvnitř daného úhlu. Bodem M veďte přímku m, která protíná ramena VA, VB úhlu AVB po řadě v bodech X, Y a přitom platí: |VX|:|VY|=2:3.

- 3.86 Sestrojte trojúhelník ABC, je-li dáno
- a) a: c = 4: 7, $\beta = 45^{\circ}$, $t_c = 4.5$ cm;
- b) $a:b:c=7:4:5, v_b=4 \text{ cm};$
- c) $\alpha=45^\circ,\,\beta=60^\circ,\,r=5$ cm, kde r je poloměr opsané kružnice; *d) b+c=14 cm, $\alpha=75^\circ,\,\gamma=45^\circ.$
- **3.87** Sestrojte kosočtverec ABCD, je-li dáno $e: f=3:4, a=5,5\,\mathrm{cm}.$
- 3.88 Sestrojte kosodélník ABCD, je-li dáno a:b=5:3, $\alpha=75^{\circ},$ $f=6\,\mathrm{cm}.$
- ${\bf 3.89}\,$ Do půlkruhu s průměrem ABvepište čtverec XYUVtak, aby jeho strana XYležela na průměru AB.
- **3.90** Do kružnice $k(S; 4\,\mathrm{cm})$ vepište obdélník ABCD, pro který platí: |AB|:|BC|=3:4.
- *3.91 Jsou dány dvě různoběžky a,b a kružnice l(O;r) ležící uvnitř jednoho úhlu určeného přímkami a,b. Sestrojte kružnici, která se dotýká přímek a,b a s kružnicí l má dotyk
- a) vnitřní,
- b) vnější.
- *3.92 VrcholAtrojúhelníku ABCleží mimo nákresnu. Určete střed strany AB.
- *3.93 Sestrojte střed úsečky AB, je-li bod B nepřístupný průsečík přímek p, q.

