Assignment -2

Data Visualization and Pre-processing

Assignment Date	28 September 2022
Student Name	Nithish.E
Student Roll Number	820419104045
Maximum Marks	2 Marks

1.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Matplotlib is building the font cache; this may take a moment.

2. Load the dataset.

Solution:

data = pd.read_csv("Churn_Modelling.csv")
data.head()

Output:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10

3. Perform Below Visualizations. Univariate Analysis

Solution:

 ${\tt data.boxplot(column=['EstimatedSalary'],\ grid=} \textbf{False},\ {\tt color='blue'})$

Output:

<AxesSubplot:>

 ${\tt data.hist} (column = {\tt 'EstimatedSalary'}, \ grid = \textbf{False}, \ edgecolor = {\tt 'black'})$

Output:

array([[<AxesSubplot:title={'center':'EstimatedSalary'}>]], dtype=object)

sns.kdeplot(data['EstimatedSalary'])

Output:

<AxesSubplot:xlabel='EstimatedSalary', ylabel='Density'>

data.hist(column='Balance', grid=False, edgecolor='black')
Output:

array([[<AxesSubplot:title={'center':'Balance'}>]], dtype=object)

import seaborn as sns
sns.kdeplot(data['Balance'])

<AxesSubplot:xlabel='Balance', ylabel='Density'>

Bi - Variate Analysis

Solution:

plt.scatter(data.CustomerId, data.Balance)

Output:

<matplotlib.collections.PathCollection at 0xc33f130>

data.corr()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary	Exited
RowNumber	1.000000	0.004202	0.005840	0.000783	-0.006495	-0.009067	0.007246	0.000599	0.012044	-0.005988	-0.016571
CustomerId	0.004202	1.000000	0.005308	0.009497	-0.014883	-0.012419	0.016972	-0.014025	0.001665	0.015271	-0.006248
CreditScore	0.005840	0.005308	1.000000	-0.003965	0.000842	0.006268	0.012238	-0.005458	0.025651	-0.001384	-0.027094
Age	0.000783	0.009497	-0.003965	1.000000	-0.009997	0.028308	-0.030680	-0.011721	0.085472	-0.007201	0.285323
Tenure	-0.006495	-0.014883	0.000842	-0.009997	1.000000	-0.012254	0.013444	0.022583	-0.028362	0.007784	-0.014001
Balance	-0.009067	-0.012419	0.006268	0.028308	-0.012254	1.000000	-0.304180	-0.014858	-0.010084	0.012797	0.118533
NumOfProducts	0.007246	0.016972	0.012238	-0.030680	0.013444	-0.304180	1.000000	0.003183	0.009612	0.014204	-0.047820
HasCrCard	0.000599	-0.014025	-0.005458	-0.011721	0.022583	-0.014858	0.003183	1.000000	-0.011866	-0.009933	-0.007138
IsActiveMember	0.012044	0.001665	0.025651	0.085472	-0.028362	-0.010084	0.009612	-0.011866	1.000000	-0.011421	-0.156128
Estimated Salary	-0.005988	0.015271	-0.001384	-0.007201	0.007784	0.012797	0.014204	-0.009933	-0.011421	1.000000	0.012097
Exited	-0.016571	-0.006248	-0.027094	0.285323	-0.014001	0.118533	-0.047820	-0.007138	-0.156128	0.012097	1.000000

Multi - Variate Analysis

Solution:

pd.plotting.scatter_matrix(data.loc[:, "CustomerId":"Balance"],
diagonal="kde",figsize=(20,15))
plt.show()

4. Perform descriptive statistics on the dataset

Solution:

data[['CreditScore', 'Balance', 'EstimatedSalary']].mean()

Output:

CreditScore 650.528800 Balance 76485.889288 EstimatedSalary 100090.239881

dtype: float64

data[['CreditScore', 'Balance', 'EstimatedSalary']].median()

Output:

CreditScore 652.000
Balance 97198.540
EstimatedSalary 100193.915

dtype: float64

data[['CreditScore', 'Balance', 'EstimatedSalary']].mode()
Output:

	CreditScore	Balance	Estimated Salary
0	850	0.0	24924.92

data[['CreditScore', 'Balance', 'EstimatedSalary']].quantile()
Output:

CreditScore 652.000
Balance 97198.540
EstimatedSalary 100193.915
Name: 0.5, dtype: float64

data[['CreditScore', 'Balance', 'EstimatedSalary']].std()

Output:

 CreditScore
 96.653299

 Balance
 62397.405202

 EstimatedSalary
 57510.492818

dtype: float64

data[['CreditScore', 'Balance', 'EstimatedSalary']].min()

```
CreditScore 350.00
Balance 0.00
EstimatedSalary 11.58
```

dtype: float64

data[['CreditScore', 'Balance', 'EstimatedSalary']].max()

Output:

: CreditScore 850.00 Balance 250898.09 EstimatedSalary 199992.48

dtype: float64

data[['CreditScore', 'Balance', 'EstimatedSalary']].skew()

Output:

CreditScore -0.071607
Balance -0.141109
EstimatedSalary 0.002085

dtype: float64

data.info()

Output:

data.shape

(10000, 14)

data.describe()

Output:

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000

5. Handle the Missing values.

Solution:

There is no missing values data.isnull().sum()

Output:

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

6. Find the outliers and replace the outliers.

Solution:

data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000

numeric_col =
['RowNumberCustomerId','CreditScore','Age','Tenure','Balance','NumOfProducts','HasCrCar
d','IsActiveMember','EstimatedSalary','Exited']
categorical_col = ['Surname', 'Geography', 'Gender']
print(data['CreditScore'].skew())
data['CreditScore'].describe()

Output:

-0.07160660820092675

count 10000.000000 mean 650.528800 std 96.653299 min 350.000000 25% 584.000000 650% 652.000000 75% 718.000000 max 850.000000

Name: CreditScore, dtype: float64

Q1 = data.quantile(0.25) Q3 = data.quantile(0.75) IQR = Q3 - Q1 print(IQR) Output:

RowNumber	4999.5000					
CustomerId	124705.5000					
CreditScore	134.0000					
Age	12.0000					
Tenure	4.0000					
Balance	127644.2400					
NumOfProducts	1.0000					
HasCrCard	1.0000					
IsActiveMember	1.0000					
EstimatedSalary	98386.1375					
Exited	0.0000					
dtype: float64						

plt.boxplot(data["CreditScore"]) plt.show()

Output:

print(data['CreditScore'].quantile(0.50)) print(data['CreditScore'].quantile(0.95)) $\label{eq:core} data['CreditScore'] = np.where(data['CreditScore'] > 325, 140, data['CreditScore'])$ data.describe()

652.0 812.0										
	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary
count	10000.00000	1.000000e+04	10000.0	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	140.0	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881
std	2886.89568	7.193619e+04	0.0	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818
min	1.00000	1.556570e+07	140.0	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000
25%	2500.75000	1.562853e+07	140.0	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000
50%	5000.50000	1.569074e+07	140.0	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000
75%	7500.25000	1.575323e+07	140.0	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500
max	10000.00000	1.581569e+07	140.0	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000

7. Check for Categorical columns and perform encoding

Solution:

```
X = data.iloc[:, 10:20].values
y = data.iloc[:, 13].values

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.compose import ColumnTransformer

labelencoder_X_1 = LabelEncoder()
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1])
labelencoder_X_2 = LabelEncoder()
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2])

# remove categorical_features, it works 100% perfectly
onehotencoder = OneHotEncoder()
X = onehotencoder.fit_transform(X).toarray()
X = X[:, 1:]
```

8. Split the data into dependent and independent variables.

Solution:

```
X= data.iloc[:,3:-1]
y=data.iloc[:,-1]
X.head()
Output:
```

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimated Salary
0	140	France	Female	42	2	0.00	1	1	1	101348.88
1	140	Spain	Female	41	1	83807.86	1	0	1	112542.58
2	140	France	Female	42	8	159660.80	3	1	0	113931.57
3	140	France	Female	39	1	0.00	2	0	0	93826.63
4	140	Spain	Female	43	2	125510.82	1	1	1	79084.10

```
X = data.iloc[:, 10:20].values
y = data.iloc[:, 13].values
```

```
print(X)
```

```
[[1.0000000e+00 1.0000000e+00 1.0134888e+05 1.0000000e+00]
[0.0000000e+00 1.0000000e+00 1.1254258e+05 0.0000000e+00]
[1.0000000e+00 0.0000000e+00 1.1393157e+05 1.0000000e+00]
...
[0.0000000e+00 1.0000000e+00 4.2085580e+04 1.0000000e+00]
[1.0000000e+00 0.0000000e+00 9.2888520e+04 1.0000000e+00]
[1.0000000e+00 0.0000000e+00 3.8190780e+04 0.0000000e+00]]
```

```
print(y)
[1 0 1 ... 1 1 0]
```

9. Scale the independant variables

Solution:

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()x_train = sc.fit_transform(x_train)x_test =
sc.fit_transform(x_test)
x_train = pd.DataFrame(x_train)x_train.head()
Output:
```

	0	1	2	3
0	-1.553624	-1.034460	-1.640810	1.976962
1	0.643657	-1.034460	-0.079272	-0.505827
2	0.643657	0.966688	-0.996840	-0.505827
3	0.643657	0.966688	-1.591746	1.976962
4	0.643657	0.966688	1.283302	-0.505827

10. Split the data into training and testing

Solution:

```
from sklearn.model_selection import train_test_splitx_train, x_test, y_train, y_test =
train_test_split(X, y, test_size = 0.25, random_state = 0)
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
```

```
(7500, 4)
(7500,)
(2500, 4)
(2500,)
```