Linear Algebra

(Lecture 6) Problem Set 1.

Basis and dimension.

Theorem: Let V be a vector space that is generaled by a Set G1 with exactly n vectors and let L be a subset of V containing m linearly independent vectors. Then m < n and there exists a subset H of G1 containing exactly n-m vectors such that LUH generate V. Proof: Proof is by induction on m.

Let M=0; $L=\phi$, take H=G.

Let us suppose that the theorem is true for some integer m > 0.

We want to prove that the theorem is true for mH.

Let $V = \{u_1, u_2, ..., u_{m+1}\}$ be a linearly independent subset \mathcal{Z} V.

→ {U, U2, ..., Um} is also linearly independent. We can apply the theorem on this set.

The induction hypothesis says m≤n, f there exists a subset
there exists a subset
Zu, u2,, un-mg of Gr such that
(201,02,, vm3) {u1,u2,, un-m} generati
the vector space V.
This means that there are scalars
a,, an, b,,, bn-m such that
Umti = a1V1++ amum + b1U1++ bn-m Un-m
Notice that n-m >0.
It not, then remain will be a linear
combination of vi,, um which contradiction assumption that L is a linearly
the assumption that Lis a linearly
independent set.
$\Rightarrow \gamma \geq m+1.$
Further, at least one of the bi's has to
MON-2020.
If not, we arrive at the same contradiction.
WLOG let by #0.

Then from (1) $U_1 = -\frac{\alpha_1}{b_1} U - \frac{\alpha_m}{b_1} v_m + \frac{1}{b_1} v_{m+1}$ - bz Uz+.... bm-m Un-m H = { U2, ---, Un-m?, Then U, E Span (LUH) Trivially, {u, ..., 2m, U2, ..., un-m} Span & LUH) > {v1, ..., vm, 4, , ---, un-m} cspan(LVH) => span {u,...,um,u,...,un-m} espan {LUH} Induction. This proves the theorem.

Example: $V = \mathbb{R}^3$ $G = \{ (3), (5), (7) \}$

L =
$$\{(1)\}$$

Can you construct H as in the theorem so that LUH = $1R^3$.
Ho = $\{(1), (0)\}$
Ho = $\{(1), (0)\}$
Span $\{(1), (1)\}$
Span $\{(1), (0)\}$
H₁UL = $\{(1), (0)\}$
This H₁ works as span(H₁UL) = $1R^3$
H₂ = $\{(1), (1)\}$

This H_2 also works as span $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} = 1$

Corollary: Let V be a vector. space with dimension or Then every linearly independent subset of V can be extended to a basis of V.

Let $\{(1)\}\subseteq \mathbb{R}^2$.

Complete it to a basis & R2.

one option $\{(1),(1)\}$

 $\{(1), (1)\}$ for $a,b \in \mathbb{R}$ and $b \neq 0$.

