Statistical Learning in a Nutshell

Yangyao CHEN cyy12345678@163.com

A1. Astrophysicists work with them ...

Examples

- Spectral redshift determination
- Galaxy morphological type
- Density initial condition reconstruction

A. Purpose of this mini-talk

Convolutional Neural Networks for Spectroscopic Redshift Estimation on Euclid Data

Radamanthys Stivaktakis^{1,2}, Grigorios Tsagkatakis², Bruno Moraes³,
Filipe Abdalla^{3,4}, Jean-Luc Starck⁵, Panagiotis Tsakalides^{1,2}
Department of Computer Science - University of Crete, Greece¹
Institute of Computer Science - Foundation for Research and Technology (FORTH), Greece²
Department of Physics & Astronomy, University College London, UK³
Department of Physics and Electronics, Rhodes University, South Africa⁴
Astrophysics Department - CEA Saclay, Paris, France⁵

(a) Clean Rest-Frame Spectral Profile

(b) Clean (Randomly) Redshifted Equivalent

(c) Noisy Redshifted Equivalent

A. Purpose of this mini-talk

Galaxy And Mass Assembly: Automatic Morphological Classification of Galaxies Using Statistical Learning

Sreevarsha Sreejith, ¹ Sergiy Pereverzyev Jr., ² Lee S. Kelvin, ^{1,3} Francine Marleau, ¹ Markus Haltmeier, ² Judith Ebner, ² Joss Bland-Hawthorn, ⁴ Simon P. Driver, ^{5,6} Alister W. Graham, ⁷ Benne W. Holwerda, ⁸ A. M. Hopkins, ⁹ J. Liske, ¹⁰ Jon Loveday, ¹¹ Amanda J. Moffett, ¹² K. A. Pimbblet, ^{13,14} Edward N. Taylor, ⁷ Lingyu Wang, ^{15,16} Angus H. Wright ¹⁷

Cosmological Reconstruction From Galaxy Light: Neural Network Based Light-Matter Connection

Chirag Modi,^a Yu Feng,^a Uroš Seljak^{a,b}

^aBerkeley Center for Cosmological Physics and Department of Physics, University of California, Berkeley, CA 94720

bPhysics Division, Lawrence Berkeley National Laboratory, Cyclotron Rd, Berkeley, CA 94720

A2. We are interested in them ...

Regression

Convolution Neural Network for regression (Xiaosheng Zhao)

Classification

- Decision Tree + Random Forest for classification(Cheng Cheng)
- SVM for classification (Kai Wang)

Clustering

- K-Means for clustering(Yangyao Chen)
- Hierarchical Algorithm for clustering(Kai Wang)
- Model Mixture for clustering(Kai Wang)

Sampling

MCMC for sampling(Kai Wang)

A3. Purpose of this mini-talk

An introduction to the Framework of ML Procedure in doing ML Most important things to be considered

Hope that

Find the exact position of topic we have presented/in literature Know what are missing in our previous talk Pick up good ML model in future works

B1. But, what is machine learning?

B. What is machine learning

Neural Networks
(NNs)

Deep NNs (CNNs, RNNs, ...)

Linear/Polynomial Regr (with LS, MLE, MAP), ...

LDA/QDA, logistic Regr, Fisher discriminant, SVMs, KNN, ...

K-Means, Mixture Gaussiam, Hierarchicals, ...

We are always doing this:

Is this a ML process?

What is the data set $\{X, Y\}_{i=1}^{N}$?

What is the model to be built?

Where is objective function?

What is the learning algorithm (to optimize the objective)?

What is the prediction / interpretation?

Find a alternative definition of mean

Consider the square-sum of offset

$$\mathcal{O}(\mathbf{y}_{\mathrm{c}}|\{Y\}) \coloneqq \sum_{i=1}^{N} ||\mathbf{y}_{\mathrm{i}} - \mathbf{y}_{\mathrm{c}}||_{2}^{2}$$

Intuition

If y_c is closer to the 'central' of $\{Y\}$, \mathcal{O} is smaller.

Theorem

minimizing \mathcal{O} gives sample mean:

$$\widehat{\mathbf{y}_{c}} = \operatorname{argmin}_{\mathbf{y}_{c}} \{ \mathcal{O}(\mathbf{y}_{c} | \{Y\}) \} = \operatorname{sample mean}$$

This description seems redundant, but

- can be easily extended
- raises important questions: why use 2-norm? why use square-sum?

Extend the objective function

Consider p norm and power q

$$\mathcal{O}(\mathbf{y}_{\mathrm{c}}|\{Y\},p,q) \coloneqq \sum_{i=1}^{N} \|\mathbf{y}_{\mathrm{i}} - \mathbf{y}_{\mathrm{c}}\|_{p}^{q}$$

Try minimizing the objective

$$\widehat{\mathbf{y}_{c}}(\{Y\}, p, q) = \operatorname{argmin}_{\mathbf{y}_{c}} \{ \mathcal{O}(\mathbf{y}_{c} | \{Y\}, p, q) \}$$

Theorem

- $\widehat{y_c}(\{Y\}, 2, 2) = \text{mean}$
- $\widehat{y_c}(\{Y\}, 2, 1) = \text{median (That is, 50 \% quantile)}$
- $\widehat{y_c}(\{Y\}, 2, 0) = \text{mode}$

Extension

- From 2-norm to p-norm
- From p-norm to other types of metric, e.g. correlationbased distance, hamming distance

B. What is machine learning

B2. General Procedure of building a ML Algorithm

Nonlinearity

- Nonlinear transformations
- Kernel based-methods
- Neural Networks

Co-linearity

Dimension reduction

- Error function (RSS; Error rate; within-class distance, ...)
- Likelihood function
- Bayes posterior function
- Analytical (LS for linear regr,)
- Numerical (maximum-margin for SVMs, EMs for model with latent variables, stochastic/batch gradient descent, Newtonian, error back-propagation for NNs)
- R², MSE, error rate, confusion table and ROC curve
- F, t, χ^2 stats (with p-value)

function

Optimization

Goodness,

prediction/decision

and interpretation/inference

- Data mining/cleaning (missing values, outliers, high leverages ...)
- Type of question
 - Supervised
 - Regression
 - Classification
 - Unsupervised problem
 - Density estimation
 - Clustering
 - Dimension reduction
- Variable coding (one to one, one to the rest, 1-of-K, ...)

Purpose: find y = f(x) that is compatible with observations $\{(x_i, [y_i])\}_{i=1}^N$

- Core problems
 - The bias variance trade-off
 - The prediction-interpretation trade-off
- Parametric vs. non-parametric
- Type of model
 - Generative model (LDA, QDA, ...)
 - Probabilistic discriminative (Linear regr with LS; logistic regr, probit clas., soft-max clas.; Gaussian [Mixture])
 - Discriminant (Least Square Classifier, Fisher discriminant, perceptrons, trees, SVMs; K-Means)
- **Degree of freedom** (curse of dimensionality)
 - Analytical based methods (p-value)
 - Analytical approximation (AIC, BIC, ...)
 - Sampling partition (cross validation)
 - Model Regularization (Bayes prior, MLE regularization)
- Model Combination
 - Model ensemble (bagging, random forest, boosting)
 - Model mixing (Gaussian mixture, Bernoulli mixture, ...)

C. Important issues in ML

C1. Variable Coding Issues

Nonlinearity

- Nonlinear transformations
- Kernel based-methods
- Neural Networks

Co-linearity

Dimension reduction

- Error function (RSS; Error rate; within-class distance, ...)
- Likelihood function
- Bayes posterior function
- Analytical (LS for linear regr,)
- Numerical (maximum-margin for SVMs, EMs for model with latent variables, stochastic/batch gradient descent, Newtonian, error back-propagation for NNs)
- R², MSE, error rate, confusion table and ROC curve
- F, t, χ^2 stats (with p-value)

- **Data mining/cleaning** (missing values, outliers, high leverages ...)
- Type of question
 - Supervised
 - Regression
 - Classification
 - Unsupervised problem
 - Density estimation
 - Clustering
 - Dimension reduction
- Variable coding (one to one, one to the rest, 1-of-K, ...)

Purpose: find y = f(x) that is compatible with observations $\{(x_i, [y_i])_{i=1}^N\}$

- Core problems
 - The bias variance trade-off
 - The prediction-interpretation trade-off
- Parametric vs. non-parametric
- Type of model
 - Generative model (LDA, QDA, ...)
 - Probabilistic discriminative (Linear regr with LS; logistic regr, probit clas., soft-max clas.; Gaussian [Mixture])
 - Discriminant (Least Square Classifier, Fisher discriminant, perceptrons, trees, SVMs; K-Means)
- **Degree of freedom** (curse of dimensionality)
 - Analytical based methods (p-value)
 - Analytical approximation (AIC, BIC, ...)
 - Sampling partition (cross validation)
 - Model Regularization (Bayes prior, MLE regularization)
- Model Combination
 - Model ensemble (bagging, random forest, boosting)
 - Model mixing (Gaussian mixture, Bernoulli mixture, ...)

C1. Variable Coding Issues

Suppose we have different galaxy types (e.g., E, S, SB, ...), we want to study the relation between physical quantities (e.g. SFR) and galaxy type

- Just a regression problem of SFR on discrete variables, say, tSimplest Model: $SFR = w \times t + b$
- But, how to code the galaxy types

Two considerations

- The order of types is not clear
- The spacing between two types is not fixed

C1. Variable Coding Issues

$$E_0 \to \mathbf{t} = (1,0,0,0,0,0,...)$$

$$E_1 \to \mathbf{t} = (0,1,0,0,0,0,...)$$

$$E_2 \to \mathbf{t} = (0,0,1,0,0,0,...)$$
...
$$Sa \to \mathbf{t} = (0,0,0,1,0,0,...)$$

$$Sb \to \mathbf{t} = (0,0,0,0,1,0,0,...)$$
...
$$SBa \to \mathbf{t} = (0,0,0,0,0,0,1,...)$$

And we do the regression on a higher dimensional space

$$SFR = \mathbf{w}^T \mathbf{t} + b$$

Pros and cons

- The order and spacing between variables are disappeared
- But, a higher dimension feature space is introduced.

C. Important issues in ML

C2. Error Function

Nonlinearity

- Nonlinear transformations
- Kernel based-methods
- Neural Networks

Co-linearity

Dimension reduction

- Error function (RSS; Error rate; within-class distance, ...)
- Likelihood function
- Bayes posterior function
- Analytical (LS for linear regr,)
- Numerical (maximum-margin for SVMs, EMs for model with latent variables, stochastic/batch gradient descent, Newtonian, error back-propagation for NNs)
- R², MSE, error rate, confusion table and ROC curve
- F, t, χ^2 stats (with p-value)

- Data mining/cleaning (missing values, outliers, high leverages ...)
- Type of question
 - Supervised
 - Regression
 - Classification
 - Unsupervised problem
 - Density estimation
 - Clustering
 - Dimension reduction
- Variable coding (one to one, one to the rest, 1-of-K, ...)

Purpose: find y = f(x) that is compatible with observations $\{(x_i, [y_i])_{i=1}^N\}$

- Core problems
 - The bias variance trade-off
 - The prediction-interpretation trade-off
- Parametric vs. non-parametric
- Type of model
 - Generative model (LDA, QDA, ...)
 - Probabilistic discriminative (Linear regr with LS; logistic regr, probit clas., soft-max clas.; Gaussian [Mixture])
 - Discriminant (Least Square Classifier, Fisher discriminant, perceptrons, trees, SVMs; K-Means)
- **Degree of freedom** (curse of dimensionality)
 - Analytical based methods (p-value)
 - Analytical approximation (AIC, BIC, ...)
 - Sampling partition (cross validation)
 - Model Regularization (Bayes prior, MLE regularization)
- Model Combination
 - Model ensemble (bagging, random forest, boosting)
 - Model mixing (Gaussian mixture, Bernoulli mixture, ...)

Nonlinearity

- Nonlinear transformations
- Kernel based-methods
- Neural Networks

Co-linearity

Dimension reduction

- Error function (RSS; Error rate; within-class distance, ...)
- Likelihood function
- Bayes posterior function
- Analytical (LS for linear regr,)
- Numerical (maximum-margin for SVMs, EMs for model with latent variables, stochastic/batch gradient descent, Newtonian, error back-propagation for NNs)
- R², MSE, error rate, confusion table and ROC curve
- F, t, χ^2 stats (with p-value)

- **Data mining/cleaning** (missing values, outliers, high leverages ...)
- Type of question
 - Supervised
 - Regression
 - Classification
 - Unsupervised problem
 - Density estimation
 - Clustering
 - Dimension reduction
- Variable coding (one to one, one to the rest, 1-of-K, ...)

Purpose: find y = f(x) that is compatible with observations $\{(x_i, [y_i])_{i=1}^N\}$

- Core problems
 - The bias variance trade-off
 - The prediction-interpretation trade-off
- Parametric vs. non-parametric
- Type of model
 - Generative model (LDA, QDA, ...)
 - Probabilistic discriminative (Linear regr with LS; logistic regr, probit clas., soft-max clas.; Gaussian [Mixture])
 - Discriminant (Least Square Classifier, Fisher discriminant, perceptrons, trees, SVMs; K-Means)
- **Degree of freedom** (curse of dimensionality)
 - Analytical based methods (p-value)
 - Analytical approximation (AIC, BIC, ...)
 - Sampling partition (cross validation)
 - Model Regularization (Bayes prior, MLE regularization)
- Model Combination
 - Model ensemble (bagging, random forest, boosting)
 - Model mixing (Gaussian mixture, Bernoulli mixture, ...)

Review: Least Square Linear Regression

 Model = (Generalized) Linear model, probabilistic discriminative

$$p(y|x) = N(t(x; \mathbf{w})|\mu, \sigma^2)$$
$$t(x; \mathbf{w}) = \sum_{m=0}^{p} w_m x^m$$

• Objective = RSS error function

$$\mathcal{O}(\mathbf{w}|\{x,y\}_{i=1}^N) \coloneqq \sum_i \{y_i - t(x_i; \mathbf{w})\}^2$$

Optimization = analytical

$$\widehat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w}} \{ \mathcal{O}(\mathbf{w} | \{x, y\}_{i=1}^{N}) \}$$

• Goodness of fitting = test MSE

$$MSE = \frac{1}{\#(\text{test set})} \sum_{j \in \text{test set}} \{y_j - t(x_j; \widehat{\mathbf{w}})\}^2$$

Problem: How to choose p ?

Review: KNN classification

• Model: Nonlinear, Discriminant $y(\mathbf{x}|\{\mathbf{x},y\}_{i=1}^{N})$ = $\underset{j \in \text{Neighbor}_{\mathbf{x}}}{\operatorname{argmax}_{C_{k}}} I(y_{j} = C_{k})$

• Goodness of fitting = test Error Rate Error Rate

$$= \frac{1}{\#(\text{test set})} \sum_{j \in \text{test set}} I\{y(\mathbf{x}_j | \{\mathbf{x}, y\}_{i=1}^N) \neq y_j\}$$

Problem: How to choose k ?

Data Set
$$\{\mathbf{x}, y\}_{i=1}^{N}$$

 $y \in \{C_1, C_2, ...\}$

KNN: K=10

KNN: K=1 KNN: K=100

Model set

$$F = \{t(\mathbf{\theta})\}_{\mathbf{\theta} \in \mathrm{Dom}}$$

e.g. for generalized linear regression

$$F = \{t(\mathbf{x}; \mathbf{w})\}_{\mathbf{w} \in \mathbb{R}^p}$$

= all p order polynomials

After trained with data set D, we pick a model from the set to minimize to training error

$$\hat{t} (\boldsymbol{\theta}(D))$$

Consider minimizing the test error $E\{t\}$ (e.g., MSE for regr., Error rate for classif.)

Best model in set F

$$t_*(F) = \operatorname{argmin}_{t \in F} E\{t\}$$

Best model in all possible model (i.e., the Model Universe)

$$t_* = \operatorname{argmin}_t E\{t\}$$

C. Important issues in ML

Always remember

- The competition between bias and variance makes the error a U-shape curve
- When the variance dominates (i.e., a large model is chosen), over-fitting emerges
- Large data set does not guarantee better fitting, if the model set F is wrong.

Many method can be used to find the approximate minimum of the U-curve

- Analytical based methods (p-value)
- Analytical approximation (AIC, BIC, ...)
- Sampling partition (cross validation)
- Model Regularization (Bayes prior, MLE regularization)

C. Important issues in ML

C3. The Prediction-interpretation Trade-off

Nonlinearity

- Nonlinear transformations
- Kernel based-methods
- Neural Networks

Co-linearity

Dimension reduction

- Error function (RSS; Error rate; within-class distance, ...)
- Likelihood function
- Bayes posterior function
- Analytical (LS for linear regr,)
- Numerical (maximum-margin for SVMs, EMs for model with latent variables, stochastic/batch gradient descent, Newtonian, error back-propagation for NNs)
- R², MSE, error rate, confusion table and ROC curve
- F, t, χ^2 stats (with p-value)

- Data mining/cleaning (missing values, outliers, high leverages ...)
- Type of question
 - Supervised
 - Regression
 - Classification
 - Unsupervised problem
 - Density estimation
 - Clustering
 - Dimension reduction
- Variable coding (one to one, one to the rest, 1-of-K, ...)

Purpose: find y = f(x) that is compatible with observations $\{(x_i, [y_i])_{i=1}^N\}$

- Core problems
 - The bias variance trade-off
 - The prediction-interpretation trade-off
- Parametric vs. non-parametric
- Type of model
 - Generative model (LDA, QDA, ...)
 - Probabilistic discriminative (Linear regr with LS; logistic regr, probit clas., soft-max clas.; Gaussian [Mixture])
 - Discriminant (Least Square Classifier, Fisher discriminant, perceptrons, trees, SVMs; K-Means)
- **Degree of freedom** (curse of dimensionality)
 - Analytical based methods (p-value)
 - Analytical approximation (AIC, BIC, ...)
 - Sampling partition (cross validation)
 - Model Regularization (Bayes prior, MLE regularization)
- Model Combination
 - Model ensemble (bagging, random forest, boosting)
 - Model mixing (Gaussian mixture, Bernoulli mixture, ...)

C3. The Prediction-interpretation Trade-off

Recall the classification problem, we have three types of methods

- Generative model (LDA, QDA, ...)
- Probabilistic discriminative (Linear regr with LS; logistic regr, probit clas., soft-max clas.; Gaussian [Mixture])
- Discriminant (Least Square Classifier, Fisher discriminant, perceptrons, trees, SVMs; K-Means)

C3. The Prediction-interpretation Trade-off

Single layer perceptron

Model: Linear Decision Boundary

 $y = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$

Objective: Sum of point-plane distance of

error-assigned points

Optimizing: stochastic gradient descent

C3. The Prediction-interpretation Trade-off

Logistic Regression

Model: conditional class probability

$$p(y = C_1|\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T\mathbf{x})}$$
$$p(y = C_2|\mathbf{x}) = 1 - p(y = C_1|\mathbf{x})$$

Objective: Likelihood function

Optimizing: numeric

Advantage: Allow decision

C3. The Prediction-interpretation Trade-off

Linear Discriminative Analysis (LDA)

Model: Posterior distribution through Bayes

$$p(y = C_k | \mathbf{x}) = \frac{p(y = C_k)p(\mathbf{x}|y = C_k)}{p(\mathbf{x})}$$
$$p(\mathbf{x}|\mathbf{y} = C_k) = N(\mathbf{x}|\boldsymbol{\mu_k}, \boldsymbol{\Sigma})$$

Objective: product of posteriors

Optimizing: analytical

Prediction: $y = C_k$ if $p(y = C_k | \mathbf{x})$ is largest

Advantage:
Allow leverage detection

C3. The Prediction-interpretation Trade-off

C4. Non-linearity

Nonlinearity

- Nonlinear transformations
- Kernel based-methods
- Neural Networks

Co-linearity

Dimension reduction

- Error function (RSS; Error rate; within-class distance, ...)
- Likelihood function
- Bayes posterior function
- Analytical (LS for linear regr,)
- Numerical (maximum-margin for SVMs, EMs for model with latent variables, stochastic/batch gradient descent, Newtonian, error back-propagation for NNs)
- R², MSE, error rate, confusion table and ROC curve
- F, t, χ^2 stats (with p-value)

- **Data mining/cleaning** (missing values, outliers, high leverages ...)
- Type of question
 - Supervised
 - Regression
 - Classification
 - Unsupervised problem
 - Density estimation
 - Clustering
 - Dimension reduction
- Variable coding (one to one, one to the rest, 1-of-K, ...)

Purpose: find y = f(x) that is compatible with observations $\{(x_i, [y_i])_{i=1}^N\}$

- Core problems
 - The bias variance trade-off
 - The prediction-interpretation trade-off
- Parametric vs. non-parametric
- Type of model
 - Generative model (LDA, QDA, ...)
 - Probabilistic discriminative (Linear regr with LS; logistic regr, probit clas., soft-max clas.; Gaussian [Mixture])
 - Discriminant (Least Square Classifier, Fisher discriminant, perceptrons, trees, SVMs; K-Means)
- **Degree of freedom** (curse of dimensionality)
 - Analytical based methods (p-value)
 - Analytical approximation (AIC, BIC, ...)
 - Sampling partition (cross validation)
 - Model Regularization (Bayes prior, MLE regularization)
- Model Combination
 - Model ensemble (bagging, random forest, boosting)
 - Model mixing (Gaussian mixture, Bernoulli mixture, ...)

C4. Non-linearity

Linear separable problem Separation plane : $w_1X_1 + w_2X_2 = 0$ e.g. Support Vector Classifier (soft SVM), logistic, LDA, perceptron ...

Not linear-separable

How to build the model?

C4. Non-linearity

Not linear-separable How to build the model?

- Nonlinear transformations
- Kernel based-methods
- Neural Networks

Original data set:

$$\{(X_1, X_2)_i\}_{i=1}^N$$

Model:

$$y = \operatorname{sign}(w_1 X_1 + w_2 X_2)$$

Parameters to be found:

$$W_1, W_2$$

Optimization problem:

e.g. max-margin at 2-dim space

- Want a non-linear decision boundary
- Keep the advantages of linear methods, e.g., optimization, interpretation

Disadvantages

- Explode at high-dim
- Possible solutions
 Kernel (use symmetry), NNs (use non-linear activation)

C. Important issues in ML

Data set with extended dimension:

$$\{(X_1, X_2, X_1^2, X_2^2, X_1X_2)_i\}_{i=1}^N$$

Model

y
=
$$sign(w_1X_1 + w_2X_2 + w_{12}X_1X_2 + w_{11}X_1^2 + w_{22}X_2^2)$$

Parameters to be found:

$$W_1, W_2, W_{12}, W_{11}, W_{22}$$

Optimization problem: e.g. max-margin at 5-dim space

Decision boundary $w_1X_1 + w_2X_2 + w_{12}X_1X_2 + w_{11}X_1^2 + w_{22}X_2^2 = 0$

Advantages of direct non-linear transform

- Simple for low-dim problem
- Interpretable as linear model
- Same way in regression $y = wx + b \rightarrow y = wx + w'x^2 + b$

Nonlinearity

- Nonlinear transformations
- Kernel based-methods
- Neural Networks

Co-linearity

Dimension reduction

- Error function (RSS; Error rate; within-class distance, ...)
- Likelihood function
- Bayes posterior function
- Analytical (LS for linear regr,)
- Numerical (maximum-margin for SVMs, EMs for model with latent variables, stochastic/batch gradient descent, Newtonian, error back-propagation for NNs)
- R², MSE, error rate, confusion table and ROC curve
- F, t, χ^2 stats (with p-value)

- **Data mining/cleaning** (missing values, outliers, high leverages ...)
- Type of question
 - Supervised
 - Regression
 - Classification
 - Unsupervised problem
 - Density estimation
 - Clustering
 - Dimension reduction
- Variable coding (one to one, one to the rest, 1-of-K, ...)

Purpose: find y = f(x) that is compatible with observations $\{(x_i, [y_i])_{i=1}^N\}$

- Core problems
 - The bias variance trade-off
 - The prediction-interpretation trade-off
- Parametric vs. non-parametric
- Type of model
 - Generative model (LDA, QDA, ...)
 - Probabilistic discriminative (Linear regr with LS; logistic regr, probit clas., soft-max clas.; Gaussian [Mixture])
 - Discriminant (Least Square Classifier, Fisher discriminant, perceptrons, trees, SVMs; K-Means)
- **Degree of freedom** (curse of dimensionality)
 - Analytical based methods (p-value)
 - Analytical approximation (AIC, BIC, ...)
 - Sampling partition (cross validation)
 - Model Regularization (Bayes prior, MLE regularization)
- Model Combination
 - Model ensemble (bagging, random forest, boosting)
 - Model mixing (Gaussian mixture, Bernoulli mixture, ...)

Polynomial curve fitting revisit:

$$y = w_0 + w_1 x^1 + w_2 x^2 + \dots + w_p x^p$$

Objective: RSS

Optimization: Analytical

Question: In polynomial fitting, how to choose a best value p?

In R language:

```
Im.fit = Im(y~poly(x, 6))
xpred = seq(-4, 4, length=100)
ypred = predict(Im.fit, data.frame(x=xpred))
```



```
lm.fit = lm(y\sim poly(x, 1))
summary(lm.fit)
Call:
lm(formula = y \sim poly(x, 1))
Residuals:
     Min
                   Median
                                        Max
-10.1035 -2.7246 -0.6057
                            1.9765 22.8629
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                        0.4606
                                 4.169 6 61e-05 ***
(Intercept) 1.9200
poly(x, 1) -12.4795
                        4.6055
                                -2.710
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.606 on 98 degrees of freedom
Multiple R-squared: 0.0697, Adjusted R-squared: 0.06021
F-statistic: 7.342 on 1 and 98 DF, p-value: 0.007951
```



```
lm.fit = lm(y\sim poly(x, 2))
 summary(lm.fit)
Call:
lm(formula = y \sim poly(x, 2))
Residuals:
    Min
              10
                   Median
                                         Max
-14.0943 -2.3387
                   0.0405
                            1.8061 12.4047
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
             1.9200
                         0.3767
                                  5.097 1.70e-06 ***
                        3.7669
poly(x, 2)1 -12.4795
                                 -3.313
                                         0.0013 **
                         3.7669
                                  7.035 2.83e-10 ***
poly(x, 2)2 26.5001
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.767 on 97 degrees of freedom
Multiple R-squared: 0.384, Adjusted R-squared: 0.3713
F-statistic: 30.23 on 2 and 97 DF, p-value: 6.236e-11
```



```
lm.fit = lm(y\sim poly(x, 3))
2 summary(lm.fit)
 Call:
 lm(formula = y \sim poly(x, 3))
 Residuals:
     Min
              10 Median
                                     Max
 -8.4277 -1.8608 -0.1296 1.7306 7.9533
 Coefficients:
             Estimate Std. Error t value Pr(>|t|)
 (Intercept)
              1.9200
                                   6.564 2.67e-09 ***
                          0.2925
                          2.9252
                                  -4.266 4.66e-05 ***
 poly(x, 3)1 -12.4795
 poly(x, 3)2 26.5001
                          2.9252
                                   9.059 1.56e-14 ***
 poly(x, 3)3 -23.5571
                          2.9252
                                  -8.053 2.19e-12 ***
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 Residual standard error: 2.925 on 96 degrees of freedom
 Multiple R-squared: 0.6324, Adjusted R-squared: 0.6209
 F-statistic: 55.04 on 3 and 96 DF, p-value: < 2.2e-16
```



```
lm.fit = lm(y\sim poly(x, 4))
summary(lm.fit)
Call:
lm(formula = y \sim poly(x, 4))
Residuals:
           10 Median
  Min
                               Max
-8.476 -1.887 -0.131 1.719 7.931
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                  6.531 3.21e-09 ***
(Intercept)
             1.9200
                         0.2940
poly(x, 4)1 -12.4795
                         2.9398
                                 -4.245 5.09e-05 ***
poly(x, 4)2 26.5001
                         2.9398
                                 9.014 2.11e-14 ***
poly(x, 4)3 -23.5571
                         2.9398
                                 -8.013 2.83e-12 ***
poly(x, 4)4 0.6426
                         2.9398
                                  0.219
                                          0.827
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.94 on 95 degrees of freedom
Multiple R-squared: 0.6325, Adjusted R-squared: 0.6171
F-statistic: 40.88 on 4 and 95 DF, p-value: < 2.2e-16
```


Summary on polynomial curve fitting:

- Goodness of fitting can be represented in many ways: F, t, R^2 , MSE, residual sd
- Inference, e.g., hypothesis test for parameters, can be handled with F, t
- By increasing the order p, and observing the p value, we can choose a confident model

What we have talked

Definition of ML

Framework of ML

Bias-variance trade-off

Prediction-interpretability trade-off

Non-linearity

Goodness of fitting

