

Tesi in Metodi per il Ritrovamento dell'informazione Sustainability of RecSys

Relatore: Prof. Pasquale Lops Relatore: Prof. Cataldo Musto Laureando: Emanuele Fontana

Università degli Studi di Bari Aldo Moro

Sostenibilità e Al

- Soddisfare bisogni senza compromettere il futuro
- Mira a garantire un futuro migliore (es. Agenda 2030 dell'ONU).
- La Green Al sviluppo di modelli Al che considerano il costo computazionale e l'impatto ambientale.
- La Red Al sviluppo di modelli sempre più complessi senza considerare le risorse impiegate.

RecSys - Introduzione

- Software che suggerisce all'utente elementi di interesse basandosi sulle preferenze e i comportamenti passati.
- Migliorano l'esperienza utente
- Utilizzano Al

Figura: Alcuni famose piattaforme che utilizzano sistemi di raccomandazione

RecSys - Tipologie

- Collaborative Filtering: basato sulle preferenze degli utenti (user-user, item-item)
- Content-based Filtering: basato sul contenuto degli item.
- Knowledge-based: basato su conoscenza esterna (es. knowledge graph)
- **Hybrid**: combinazione delle precedenti.

Reserch Questions

- RQS1: Qual è il trade-off tra emissioni e performance dei modelli di RecSys?
- RQS2: Lavorare con un criterio di early-stopping basato anche sulle emissioni migliora il trade-off?
- RQS3: Quali criteri possono essere utilizzati per migliorare il trade-off?

Lavoro svolto

Per rispondere alle domande di ricerca sono state svolte le seguenti attività:

- Benchmarking: Addestramento di modelli di RecSys e misurazione delle emissioni
- Addestramento sostenibile: Studio del criterio di early-stopping
- Criteri di miglioramento: Studio di criteri per migliorare il trade-off

Sono state utilizzate le librerie RecBole e CodeCarbon.

$$emission = CI \cdot PC$$

$$CI = \sum_{s \in S} e_s \cdot p_s$$

Dataset Utilizzati

- MovieLens: dataset di recensioni di film (1M,10M)
- Amazon-Books: dataset di recensioni di libri
- LastFM: dataset di ascolti musicali

Modelli SOTA Utilizzati

- Modelli di raccomandazione generali CF: BPR,CFKG, DMF, KGNNLS, LINE, MultiDAE, LightGCN, ItemKNN
- Modelli di raccomandazione basati su conoscenza: CKE, KGCN, NFCF, DGCF

Benchmarking - Risultati emissioni

Tabella: Emissioni di CO2 per i vari modelli

Benchmarking - Trade Off

Figura: Esempio di trade-off tra emissioni e performance

Addestramento sostenibile - Introduzione

Approssimazione della derivata della curva:

$$\frac{f(x_{i+1})-f(x_i)}{x_{i+1}-x_i}$$

Addestramento sostenibile - Esplorazione

- Scopo: capire se è possibile addestrare un modello di raccomandazione in modo sostenibile
- Esperimento 1: MovieLens1M con soglia 50 e 5 epoche
- Esperimento 2: LastFM con soglia 30 e 7 epoche
- Esperimento 3: Amazon_Books con soglia 40 e 6 epoche
- Conclusioni: Alcuni modelli (es. DGCF) sono molto sensibili al nuovo criterio, altri (es. DMF) meno

Addestramento sostenibile - Esempi di risultati

ATIS Performance decrease

Addestramento sostenibile - Confronto criteri

- Scopo: confrontare i criteri di addestramento sostenibile (dataset MovieLens1M)
- Esperimento 1: Soglia 40, 5 epoche
- Esperimento 2: Soglia 30, 5 epoche
- Esperimento 3: Soglia 40, 6 epoche
- Esperimento 4: Soglia 30, 6 epoche
- Esperimento 5: Soglia 40, 7 epoche
- Esperimento 6: Soglia 30, 7 epoche

Addestramento sostenibile - Esempio sensibilità

Figura: Sensibilità dei parametri con metrica Recall@10

Addestramento sostenibile - Risultati confronto criteri

Modello	Parametro più impattante	Migliori risultati	
BPR	Soglia	Soglia 40 e 6 epoche	
CFKG	Soglia	Soglia 40 e 6 epoche	
CKE	Epoche consecutive	Soglia 40 e 6 epoche	
DMF	Nessuno predominante	Soglia 40 e 7 epoche	
KGCN	Epoche consecutive	Soglia 40 e 5 epoche	
KGNNLS	Soglia	Soglia 40 e 5 epoche	
LINE	Soglia	Soglia 40 e 7 epoche	
MultiDAE	Soglia	Soglia 40 e 7 epoche	
LightGCN	Soglia	Soglia 40 e 6 epoche	
NGCF	Epoche consecutive	Soglia 40 e 5 epoche	
DGCF	Epoche consecutive	Soglia 40 e 6 epoche	

Tabella: Parametri più impattanti e migliori risultati per ciascun modello

Tipo di Modello	Parametro predominante	Numero di Modelli	Modelli
Collaborative Filtering	Soglia	5	BPR, DMF, LightGCN, MultiDAE, LINE
Collaborative Filtering	Epoche	2	NGCF, DGCF
Knowledge Aware	Soglia	2	CFKG, KGNNLS
Knowledge Aware	Epoche	2	CKE, KGCN

Conclusioni

Benchmarking

Si dimostra come pesso i modelli più complessi hanno emissioni maggiori non giustificate da un miglioramento delle performance elevato.

Addestramento sostenibile

E' possibile ridurre le emissioni di un modello di raccomandazione senza perdere in modo significativo di performance

Sviluppi futuri

Benchmarking

E' necessario effettuare più esperimenti variando dataset, modelli e hardware per avere una visione più completa del problema.

Addestramento sostenibile

Eseguire più esperimenti con altri dataset e altri hardware per confermare o meno i risultati ottenuti.

Iperparametri

Tutti gli esperimenti sono stati effettuati con iperparametri di default. Dunque tutta la fase di benchmarking e di addestramento sostenibile potrebbe essere rivista anche in termini di ricerca degli iperparametri migliori.

Grazie per l'attenzione!

Relatore: Prof. Pasquale Lops Relatore: Prof. Cataldo Musto Laureando: Emanuele Fontana

Università degli Studi di Bari Aldo Moro