17	Дана целочисленная прямоугольная матрица размером n*m. Опреде-		
	лить номер строки, в которой находится самая длинная серия одина-		
	ковых элементов. Пример строки с серией из четырех чисел 3: 1 2 3 3		
	3 3 5.		
18	Дан массив из п элементов целого типа. Преобразовать массив следу-		
	ющим образом, чтобы сначала располагались все элементы равные 0,		
	затем все остальные.		

11.2. Практическая работа 2

Тема: «Эмпирический анализ простых алгоритмов сортировки».

Задание 1. Оценить эффективность простого алгоритма сортировки на массиве, заполненном случайными числами (в среднем случае).

- 1. Составить программу сортировки (функцию) одномерного целочисленного массива A[n], используя алгоритм согласно варианту индивидуального задания Алгоритм задания I (см. табл. 14). Провести тестирование и отладку программы на исходном массиве из 10 элементов, сформированном значениями с клавиатуры.
- 2. Провести контрольные прогоны программы для размеров массива n=100, 1000, 10000, 100000 и 1000000 элементов (сформированные с использованием генератора псевдослучайных чисел):
 - а. с вычислением времени выполнения T(n) в мс. Полученные результаты свести в таблицу A по формату табл. 13.
 - b. с подсчетом фактического количества операций сравнения C_{φ} и количества операций перемещения M_{φ} . Полученные результаты суммы $T_{\pi}(n) = C_{\varphi} + M_{\varphi}$ вставить в сводную таблицу A.

таолица тэ. Сводная таолица результатов				
Т (n), мс	$T_{\Pi}(n)=C_{\phi}+M_{\phi}$			

n	Т (n), мс	$T_{\pi}(n)=C_{\phi}+M_{\phi}$
100		
1000		
10000		
100000		
1000000		

- 3. Построить график зависимости практической $T_n(n) = (C_{\varphi} + M_{\varphi})$ вычислительной сложности алгоритма от размера n массива, оси координат должны быть соответствующим образом подписаны.
- 4. Определить ёмкостную сложность алгоритма (объём памяти V от n).
- 5. Проанализировать полученные результаты, сделать соответствующие выводы.

- **Задание 2.** Оценить эффективность алгоритма простой сортировки в случаях строгой упорядоченности по возрастанию и убыванию.
- 1. Получить формулы для функции роста $T_{\scriptscriptstyle T}(n)$ с подсчетом количества операций сравнения С и количества операций перемещения М для теоретической оценки вычислительной сложности алгоритма сортировки в двух случаях строгого возрастания и строгого убывания значений в массиве.
- 2. Провести контрольные прогоны программы на массивах длиной 100, 1000, 10000, 100000 и 1000000 элементов, отсортированных:
- А) строго в убывающем порядке значений элементов, результаты представить в сводной таблице В по формату табл. 13 (с добавлением столбца $T_{\tau}(n)$ =C+M и соответствующими расчётными значениями);
- Б) строго в возрастающем порядке значений элементов, результаты представить в сводной таблице С по формату табл. 13 (с добавлением столбца $T_{\tau}(n)$ =C+M и соответствующими расчётными значениями);
- 3. Сравнить результаты этих случаев с результатами задания 1. Построить график зависимости практической вычислительной сложности алгоритма T(n) от размера n массива во всех трёх рассмотренных случаях (случайное заполнение, строгое убывание, строгое возрастание).
- 4. Сделать вывод о зависимости (или независимости) алгоритма сортировки от исходной упорядоченности массива.

Задание 3. Сравнить эффективность двух алгоритмов простых сортировок

- **1.** Выполнить разработку и программную реализацию *Алгоритма задания 3* вашего индивидуального варианта (см. табл. 14). Провести тестирование и отладку программы на исходном массиве из 10 элементов, сформированном значениями с клавиатуры.
- **2.** Сформировать таблицы с результатами прогонов программы в соответствии с форматом табл. 13 на тех же массивах, что и в задании 2.
- 3. На основе анализа кода алгоритма определить формулы $T_{\scriptscriptstyle T}(n)$ функций роста в лучшем и худшем случае.
- 4. Добавьте в таблицы для лучшего и худшего случаев столбец $T_{\scriptscriptstyle T}(n)$ =C+M и заполните соответствующими расчётными значениями.
- 5. Определить ёмкостную сложность алгоритма (объём памяти V от n), сравнить её с ёмкостной сложностью первого алгоритма.
- **6.** Построить сравнительные графики $T_{\pi}(n)$: один для случая строгого возрастания и второй для строгого убывания значений в массиве.
- 7. Сделать итоговый вывод о вычислительной сложности алгоритмов.

Таблица 14. Варианты индивидуальных заданий.

№	Алгоритм задания 1	Алгоритм задания 3
1	Простой вставки (Insertion sort)	Простого выбора (Selection sort)
2	Простого обмена (Exchange sort)	Простой вставки (Insertion sort)
3	Простого выбора (Selection sort)	Простого обмена (Exchange sort)

Отчёт:

В отчёте по каждой сортировке необходимо привести словесное описание алгоритма и его блок-схему, а также программный код (с комментариями), результаты тестирования на массиве n=10 и контрольных прогонов на массивах длиной 100, 1000, 10000, 100000 и 1000000 элементов.

По каждому пункту в заданиях 1-3 приведите полученные результаты в виде таблиц A, B и C и графиков.

По итогам каждого задания сформулируйте соответствующие выводы.

В выводах по всей работе опишите, какие знания, умения и практические навыки получены в ходе выполнения практической работы.

11.3. Практическая работа 3

Тема: «Асимптотический анализ эффективности на примерах алгоритмов сортировки».

Задание 1. Эмпирическая оценка эффективности алгоритмов в среднем случае. Требования по выполнению задания

1. Разработать алгоритм ускоренной сортировки, определенной в варианте (табл. 17), реализовать код на языке С++. Сформировать таблицу 1.1 результатов эмпирической оценки сложности сортировки по формату табл. 15 для массива, заполненного случайными числами. Определить ёмкостную сложность алгоритма.

Таблица 15. Сводная таблица результатов

n	Т(п), мс	$T_{II}(n)=C_{\phi}+M_{\phi}$
100		
1000		
10000		
100000		
1000000		

1. Разработать алгоритм быстрой сортировки, определенной в варианте (приложение 1), реализовать код на языке C++. Сформировать таблицу 2.1 результатов эмпирической оценки сортировки по формату табл. 15 для массива, заполненного случайными числами. Определить ёмкостную сложность алгоритма.