北京航空航天大学 2014-2015 学年 第二学期期中

$\langle\langle$ 工科数学分析 (2) $\rangle\rangle$

	班号	学号	姓名	成绩
--	----	----	----	----

题 号	_	1 1	111	四	五.	六	七	总分
成绩								
阅卷人								
校对人								

2015年5月16日

选择题(每题4分,满20分)

1. 设 $\{f_n(x)\}$ 是定义在点集D上的函数列,与"函数项级数 $\sum_{n=0}^{\infty} f_n(x)$ 在点集D

上一致收敛"等价的论断是下述的(B

- A. $\forall \varepsilon > 0$, ∃正整数 N, 当 $m > n \ge N$, 对于一切 $x \in D$ 都有 $|f_m(x) f_n(x)| < \varepsilon$.
- B. $\forall \varepsilon > 0$, ∃正整数 N, 当 $m > n \ge N$, 对于一切 $x \in D$ 都有 $|\sum_{k=1}^{m} f_k(x)| < \varepsilon$.
- C. 函数列 $\{f_n(x)\}$ 在点集D上一致收敛于0.
- D. 对于每一个 $x \in D$, $\forall \varepsilon > 0$, ∃正整数N, 当 $m > n \ge N$, $|\sum_{k=1}^{m} f_k(x)| < \varepsilon$.
- 2. 幂级数 $\sum_{n=0}^{\infty} \frac{3^n + (-2)^n}{n} (x-1)^n$ 的收敛域为(B)
- A. $(\frac{2}{3}, \frac{4}{3})$; B. $[\frac{2}{3}, \frac{4}{3})$; C. (-3,3); D. (-2,4).

- 3. 函数 e^{-x-y} 的二阶 Maclaurin 公式为(C)
- A. $1-(x+y)+\frac{(x+y)^2}{2}+o(x+y)$; B. 1-(x+y)+o(x+y);
- C. $1-(x+y)+\frac{(x+y)^2}{2}+o(x^2+y^2)$; D. $1+(x+y)+\frac{(x+y)^2}{2}+o(x^2+y^2)$.
- 函数 z = f(x, y) 在点 (x_0, y_0) 处具有偏导数是它在该点存在全微分的(A)
- A. 必要而非充分条件;
- B. 充分而非必要条件;

C. 充分必要条件;

- D. 既非充分又非必要条件.
- 5. 已知二元函数 $f(x,y) = \frac{x^2y}{x^4 + y^2}$, 下面命题正确的是(C)
- ① $\lim_{x\to 0} \lim_{y\to 0} f(x, y) = \lim_{y\to 0} \lim_{x\to 0} f(x, y) = 0$;
- ② $\lim_{x\to 0} \lim_{y\to 0} f(x,y)$, $\lim_{y\to 0} \lim_{x\to 0} f(x,y)$ 不存在;
- ③ $\lim_{\substack{x\to 0\\y\to 0}} f(x,y) = 0$, ④ $\lim_{\substack{x\to 0\\y\to 0}} f(x,y)$ 不存在.
- A. 13
- B. (2)(3)
- C. 14
- (2)(4)

二、(每题6分,满分30分)

1. 设z = F(x+z, y), 求方程所确定的隐函数的偏导数 z_x , z_{xy} .

2. 求函数u = xyz 在点M(1,1,1),沿方向 $\vec{l} = (2,-1,3)$ 的方向导数与梯度。

3. 求球面 $x^2 + y^2 + z^2 = 50$ 与平面 x + y + z = 0 的交线在点 **(5, 0, -5)** 点处的切线与法平面方程。

4. 将函数 $f(x) = x^2$ 在 $[-\pi, \pi]$ 展开为 Fourier 级数,并由此求级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 的和。

5. 判断级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} (1 + \frac{x}{n})^n$ 在区间 [0,1] 上的一致收敛性。

三、(本题 10 分)

判断级数 $\sum_{n=1}^{\infty} (-1)^n \frac{\cos^2 n}{n} \arctan(3+n)$ 是否收敛,若收敛,判别它是绝对收敛还是条件收敛。

解: 因为
$$\cos^2 n = \frac{1 + \cos 2n}{2}$$
,所以

$$\sum_{n=1}^{\infty} (-1)^n \frac{\cos^2 n}{n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{2n} + \sum_{n=1}^{\infty} (-1)^n \frac{\cos 2n}{2n}.$$

又因为
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2n}$$
收敛,且 $\sum_{n=1}^{\infty} (-1)^n \frac{\cos 2n}{2n} = \sum_{n=1}^{\infty} \frac{\cos (2n+2\pi)}{2n}$. ------2分

又因为
$$\left|\sum_{k=1}^{n}\cos(2+\pi)k\right| \leq \frac{1}{\sin\frac{2+\pi}{2}}$$
,即级数 $\sum_{n=1}^{\infty}\cos(2n+2\pi)$ 的部分和有界,

而 $\frac{1}{n}$ 单调 $n \to \infty$ 时趋近于 0,由 Dirichlet 判别法, $\sum_{n=1}^{\infty} \frac{\cos(2n+2\pi)}{2n}$ 收敛,

即
$$\sum_{n=1}^{\infty} (-1)^n \frac{\cos 2n}{2n}$$
 收敛; ----2 分

又 $\arctan(3+n)$ 单调有界,由 Abel 判别法知级数 $\sum_{n=1}^{\infty} (-1)^n \frac{\cos^2 n}{n} \arctan(3+n)$ 收敛。 -----2 分

$$\overrightarrow{m} \left| \frac{\cos^2 n}{n} \arctan(3+n) \right| = \frac{1+\cos 2n}{2n} \arctan(3+n), \underline{\mathbb{R}}$$

$$\sum_{n=1}^{\infty} \frac{\cos 2n}{2n} \arctan(3+n)$$
 收敛,
$$\sum_{n=1}^{\infty} \frac{1}{2n} \arctan(3+n)$$
 发散,

所以
$$\sum_{n=1}^{\infty} \left| \frac{\cos^2 n}{n} \arctan(3+n) \right|$$
 发散,从而 $\sum_{n=1}^{\infty} (-1)^n \frac{\cos^2 n}{n} \arctan(3+n)$ 条件收敛。

四、(本题8分)

证明函数项级数 $S(x) = \sum_{n=1}^{\infty} (\frac{1}{n} + x)^n$ 在区间 (0,1) 上连续。

证明: 对于任意点 $x_0 \in (0,1)$, 存在 0 < r < 1, 使得 $x_0 \in [r,1)$, 只需要证明该级数在 [r,1) 上一 致收敛(内闭一致收敛)。 -------2 分 因为

$$\left| \left(\frac{1}{n} + x \right)^n \right| \le \left(\frac{1}{n} + r \right)^n, x \in [r, 1).$$

又因为存在N,使得当n > N时有

$$(\frac{1}{n}+r)^n \le q^n, 0 < q < 1.$$

根据 M-判别法,可知该级数在 [r,1) 上一致收敛。 ------2 分

所以S(x)在 [r,1)上连续,所以S(x) 在 x_0 点连续。

由 $x_0 \in (0,1)$ 的任意性,所以 $S(x) = \sum_{n=1}^{\infty} (\frac{1}{n} + x)^n$ 在区间 (0,1) 上连续。 ----2 分

五、(本题 10 分)

讨论函数
$$f(x,y) = \begin{cases} \frac{x^2y}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 在 $(0,0)$ 点的连续性、可偏导性和可微性.

1) 解:由于
$$\left| \frac{x^2 y}{\sqrt{x^2 + y^2}} \right| \le |x| \sqrt{xy}$$
, 所以 $\lim_{(x,y) \to (0,0)} f(x,y) = \emptyset$ (从而函数 $f(x,y)$ 在(0点连续.

2) 由偏导数的定义

$$f_{x}(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{0}{\Delta x} = 0,$$

$$f_{y}(0,0) = \lim_{\Delta y \to 0} \frac{f(0,\Delta y) - f(0,0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{0}{\Delta y} = 0.$$

即函数 f(x,y)在(0,0) 点偏导数存在,且值为 0. -------2 5

3) $\exists z = f(x, y)$, $\bigcup \Delta z - dz = f(\Delta x, \Delta y) - f(0, 0) - f_x(0, 0) \cdot \Delta x - f_y(0, 0) \cdot \Delta y$

$$\frac{\Delta z - dz}{\rho} = \frac{\frac{\Delta x^2 \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}}}{\rho} = \frac{\Delta x^2 \cdot \Delta y}{\Delta x^2 + \Delta y^2} \qquad -----3 \text{ fb}$$

$$\overrightarrow{m} \left| \frac{\Delta x^2 \cdot \Delta y}{\Delta x^2 + \Delta y^2} \right| \le \frac{1}{2} |\Delta x|$$

所以
$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\Delta z - dz}{\rho} = 0$$
,所以函数 $f(x, y)$ 在 $(0,0)$ 处可微. -----2 分

六、(本题 10 分)

某工厂生产一批长方体无盖盒子,要求其体积为 $1\,m^3$ 。问:如何设定盒子的长、宽、高 才能使得用料最省?

七、(本题12分)

设 $S(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}, 0 \le x \le 1$,证明对 $\forall x \in (0,1)$,有

(1) $S(x) + S(1-x) + \ln x \cdot \ln(1-x) = C(常数)$;

(2)
$$C = S(1) = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
.

证明: (1) 令 $g(x) = S(x) + S(1-x) + \ln x \cdot \ln(1-x)$, 则 g'(x) 在 (0,1) 内可导,且

$$g'(x) = S'(x) - S'(1-x) + \frac{1}{x}\ln(1-x) - \frac{1}{1-x}\ln x$$

$$= \sum_{n=1}^{\infty} \frac{x^{n-1}}{n} - \sum_{n=1}^{\infty} \frac{(1-x)^{n-1}}{n} + \frac{1}{x}\ln(1-x) - \frac{1}{1-x}\ln x$$

$$= -\frac{1}{x}\ln(4x + \frac{1}{1-x}) + \frac{1}{x}\ln(4x + \frac{1}{1-x}) + \frac{1}{x}\ln(4x + \frac{1}{1-x})$$

$$= 0.$$

于是

$$g(x) = C, x \in (0,1).$$
 ----3 \mathcal{D}

其中C为常数。

(2) 由罗比达法则可知,

$$\lim_{n \to \Gamma} \ln x \cdot \ln(1-x) = 0.$$

于是

$$C = \lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{-}} [S(x) + S(1 - x) + \ln x \cdot \ln(1 - x)] = S(1),$$

从而

$$C = S(1) = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
.