Theorem (1601). Let χ and ζ be integers. If χ and ζ are odd, then $\chi + \zeta$ is even.*Proof.* By the definition for odd numbers, there exists integers μ and ν such that $\chi = 2\mu + 1$ and $\zeta = 2\nu + 1$. Hence, $\chi + \zeta = \left[\left\langle 2\mu + 1 \right\rangle + \left\langle 2\nu + 1 \right\rangle \right] = \left[2\left\langle \mu + \nu + 1 \right\rangle \right]$ Integers are closed under addition. Thus, the factor $\langle \mu + \nu + 1 \rangle$ is an integer. It follows that $\chi + \zeta$ is even, by the definition for even numbers.

Theorem (1602). Let χ and ζ be integers. If χ and ζ are even, then $\chi + \zeta$

Proof. By the definition for even numbers, there exist integers μ and ν such

 $\chi + \zeta = \left[\left\langle 2\mu \right\rangle + \left\langle 2\nu \right\rangle \right] = \left[2 \left\langle \mu + \nu \right\rangle \right]$

1.6 Introduction to Proofs

is even.

that $2\mu = \chi$ and $2\nu = \zeta$. Hence,

Integers are closed under addition. Thus, the factor $\langle \mu + \nu \rangle$ is an integer. It follows that $\chi + \zeta$ is even, by the definition for even numbers. **Theorem** (1603). If χ is an even integer, then χ^2 is an even integer. *Proof.* By the definition for even numbers, there exists an integer η such that $\chi = 2\eta$. Hence, $\left\langle 2\eta\right\rangle ^{2}=4\eta^{2}=2\left\langle 2\eta^{2}\right\rangle$ Integers are closed under multiplication. Thus, the factor $\langle 2\eta^2 \rangle$ is an integer.

It follows that χ^2 is even, by the definition for even numbers. **Theorem** (1604). The additive inverse of an even number is an even number. *Proof.* Let χ be an even number. There exists an integer η such that $\chi = 2\eta$, by the definition for even numbers. The additive inverse for χ is, $-1\langle\chi\rangle = -1\langle2\eta\rangle$ By commutativity of multiplication that is, $-1\langle 2\eta \rangle = 2\langle -\eta \rangle$ Since integers are closed under multiplication, the factor $\langle -\eta \rangle$ is an integer. It follows that the additive inverse of χ is an even number, by the definition for even numbers.

Theorem (1605). Let μ , ζ , and π be integers. If $\mu + \zeta$ and $\zeta + \pi$ are even, then $\mu + \pi$ is even. *Proof.* By the hypothesis, there exist integers σ and ϵ such that $\mu + \zeta = 2\sigma$, and $\zeta + \pi = 2\epsilon$. Hence, $\langle \mu + \zeta \rangle + \langle \zeta + \pi \rangle = 2\sigma + 2\epsilon$

Subtracting 2ζ from both sides, by the subtraction property of equality for equations, produces $\langle \mu + \pi \rangle = \langle 2\sigma + 2\epsilon - 2\zeta \rangle = [2\langle \sigma + \epsilon - \zeta \rangle]$ σ and ϵ are integers, by the definition for even numbers, and ζ is an integer by the hypothesis. Since addition and subtraction are closed on integers, the factor $\langle \sigma + \epsilon - \zeta \rangle$ is an integer. It follows that $\mu + \pi$ is an even, by the definition for even numbers. **Theorem** (1606). The product of two odd numbers is odd. *Proof.* Suppose that μ and ζ are odd numbers. By the definition for odd numbers, there exist integers σ and ϵ such that $\mu=2\sigma+1$ and $\zeta=2\epsilon+1$. Thus, the product of odd numbers $\mu\zeta$ is, $\mu \zeta = \left\lceil \left\langle 2\sigma + 1 \right\rangle \left\langle 2\epsilon + 1 \right\rangle \right\rceil = \left\lceil 2\sigma 2\epsilon + 2\sigma + 2\epsilon + 1 \right\rceil = \left\lceil 2\left\langle \sigma\epsilon + \sigma + \epsilon \right\rangle + 1 \right\rceil$

The factor
$$\langle \sigma \epsilon + \sigma + \epsilon \rangle$$
 is an integer because σ and ϵ are integers by definition, and integers are closed on addition. Therefore, $\mu \zeta$ is odd by the definition for odd numbers.

Theorem (1609). The sum of an irrational number and a rational number is irrational.

Proof. By contradiction. Suppose that μ and ζ are rational numbers, and let χ be an irrational number. For the purpose of contradiction, assume the negation

irrational.be an irrational number. For the purpose of contradiction, assume the negation of the hypothesis. That is, the proposition $\neg p$: the sum of an irrational number and a rational number is rational. Hence, $\chi + \mu = \zeta$, by the assumption $\neg p$. Thus, $\chi = \zeta + \langle -\mu \rangle$, by the additive

Theorem (1610). The product of two rational numbers is rational numbers,
$$\chi = \zeta + \langle -\mu \rangle$$
, by the additive equality property for equations. But rational numbers are closed under addition by the closure property for rational numbers. So $\neg p$ implies χ is rational, and χ is irrational; a contradiction.

Theorem (1610). The product of two rational numbers is rational.

Proof. Let μ and ζ be rational numbers. By the definition for rational numbers, there exist integers α , β , γ , and δ such that $\mu = \frac{\alpha}{\beta}$ and $\zeta = \frac{\gamma}{\delta}$. The product of μ and ζ is $\frac{\alpha\gamma}{\beta\delta}$. Since integers are closed under multiplication, $\alpha\gamma$ and $\beta\delta$ are integers. Thus $\mu\zeta$ is rational by definition.

Theorem (1608). If η is a perfect square, then $\eta + 2$ is not a perfect square. *Proof.* Let η be a perfect square. Assume $\eta + 2$ is a perfect square for the purpose of contradiction. By the definition of perfect square, $\sqrt{\eta}$ has to be an integer, and by our assumption there exists an integer ζ such that $\zeta^2 = \eta + 2$. So the equivalence $\zeta^2 - \langle \sqrt{\eta} \rangle^2 = 2$ must be the difference of squares $\langle \zeta + \sqrt{\eta} \rangle \langle \zeta - \sqrt{\eta} \rangle = 2$. Since integers are closed on addition and subtraction, it follows that the factors of 2, $\langle \zeta + \sqrt{\eta} \rangle$ and $\langle \zeta - \sqrt{\eta} \rangle$, have to be integers. be integers. Because 2 is prime, those integer factors can only be elements in the set $\{-2, -1, 1, 2\}$. Thus, there are exactly two possibilities: (i) $\zeta^2 - \langle \sqrt{\eta} \rangle^2 = \langle 2 \rangle \langle 1 \rangle$, or (ii) $\zeta^2 - \langle \sqrt{\eta} \rangle^2 = \langle -1 \rangle \langle -2 \rangle$. In case (i), without loss of generality, we have a system of linear equa-

tions in two variables
$$\boldsymbol{\zeta}$$
 and $\sqrt{\boldsymbol{\eta}}$:
$$\boldsymbol{\zeta} + \sqrt{\boldsymbol{\eta}} = 2$$

$$\boldsymbol{\zeta} - \sqrt{\boldsymbol{\eta}} = 1$$
 The matrix of coefficients $\boldsymbol{\Psi} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, the inverse for which is $\boldsymbol{\Psi}^{-1} = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & -0.5 \end{bmatrix}$. The product of $\boldsymbol{\Psi}^{-1}$ and the matrix of solutions yields $\boldsymbol{\zeta} = 1.5$, which is not in \mathbb{Z} ; contradicting the assumption that $\boldsymbol{\zeta}^2$ was a perfect square. In case (ii) , we are presented with a similar system of linear equations. The only difference in this system compared to (i) is the matrix of solutions $\boldsymbol{\Phi} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$. $\boldsymbol{\Psi}^{-1}\boldsymbol{\Phi}$ yields $\boldsymbol{\zeta} = -1.5$, which is not in \mathbb{Z} , a contradiction. Thus, the assumption that $\boldsymbol{\zeta}^2$ was a perfect square must be false in this case, as well. Since the assumption proves false in all possible cases, it is not possible

that both $\eta + 2$, and η are perfect squares. **Theorem** (1612). The product of a nonzero rational number and an irrational number is irrational. *Proof.* For the purpose of contradiction, assume the negation of the hypothesis; the proposition $\neg p$: the product of a nonzero rational number and an irrational number is rational Let α , β , γ , and δ be integers such that $\alpha \neq 0$, and let χ be an irrational number. Then the proposition $\neg p$ states $\left(\frac{\alpha}{\beta} \cdot \chi\right) = \left(\frac{\gamma}{\delta}\right)$

By the multiplicative equality property for equations, that is
$$\left(\chi\right) = \left(\frac{\gamma}{\delta} \cdot \frac{\beta}{\alpha}\right) = \left(\frac{\gamma\beta}{\delta\alpha}\right)$$
 By Theorem 1610 (the closure property for multiplication on rational numbers,) χ is rational. Thus, $\neg p$ implies χ is rational and irrational.

Theorem (1618). Let γ be an integer. If $3\gamma + 2$ is even, then γ is even.

Proof. By the contrapositive. Suppose γ were odd. By the definition of odd numbers, there exist an integer μ such that $\gamma = 2\mu + 1$. Thus, $\langle 3[2\mu+1]+2\rangle = \langle 6\mu+5\rangle = \langle 6\mu+4+1\rangle = \langle 2[3\mu+2]+1\rangle$

The factor
$$[3\mu + 2]$$
 is an integer, since integers are closed on addition and multiplication. Thus, $3\gamma + 2$ is odd, by definition.

Theorem (1613). If χ is an irrational number, then $\frac{1}{\chi}$ is irrational.

Proof. By the contrapositive. Suppose that $\frac{1}{\chi}$ is a rational number. By the definition for rational numbers, there exist integers α and γ such that $\frac{1}{\chi} = \frac{\alpha}{\gamma}$. Note that α is nonzero (because $\frac{1}{\chi}$ is nonzero.) By the multiplicative property of equality for equations,

$$\left\{\left(\chi \cdot \frac{1}{\chi}\right) = \left(\chi \cdot \frac{\alpha}{\gamma}\right)\right\} \equiv \left\{\left(\frac{\chi}{\chi} \cdot \frac{\gamma}{\alpha}\right) = \left(\frac{\chi\alpha}{\gamma} \cdot \frac{\gamma}{\alpha}\right)\right\} \equiv \left\{\frac{\gamma}{\alpha} = \chi\right\}$$

Theorem (1613). If χ is an irrational number, then $\frac{1}{\chi}$ is irrational. of equality for equations, $\frac{\gamma}{\alpha} = \chi$ is rational, by definition. Thus, if $\frac{1}{\chi}$ is rational, then χ is rational.

Proof. Let α and γ be nonzero integers. $\chi = \frac{\alpha}{\gamma}$, by the definition for rational

Theorem (1614). If χ is a rational number and $\chi \neq 0$, then $\frac{1}{\chi}$ is rational. numbers. By the multiplicative property of equality for equations

 $\left\{ \left(\frac{1}{\chi} \cdot \chi \right) = \left(\frac{1}{\chi} \cdot \frac{\alpha}{\gamma} \right) \right\} \equiv \left\{ \left(\frac{\chi}{\chi} \cdot \frac{\gamma}{\alpha} \right) = \left(\frac{\alpha}{\chi \gamma} \cdot \frac{\gamma}{\alpha} \right) \right\} \equiv \left\{ \frac{\gamma}{\alpha} = \frac{1}{\chi} \right\}$

 $\frac{\gamma}{\alpha} = \frac{1}{\chi}$ is rational, by definition. Thus, if χ is a rational number and $\chi \neq 0$, then $\frac{1}{\chi}$ is rational.

Theorem (1615). Let χ and ζ be real numbers. If $\chi + \zeta \geq 2$, then $\langle \chi \geq$ $1\rangle \vee \langle \zeta \geq 1\rangle.$ *Proof.* By the contrapositive. Suppose the negation of the consequent:

 $\langle \chi < 1 \rangle \land \langle \zeta < 1 \rangle$

 $\langle \chi + \zeta \rangle < \langle 1 + 1 \rangle = \langle 2 \rangle$ This is the logical negation of the direct hypothesis. Thus concludes the proof.

By the order axioms

Theorem (1616). Let μ and ζ be integers. If the product $\mu\zeta$ is even, then μ is even or ζ is even. *Proof.* For the purpose of contraposition, suppose the negation of the consequent $\neg q: \mu \text{ is odd and } \zeta \text{ is odd.}$ By definition, there exist integers σ and ϵ such that $\mu = 2\sigma + 1$ and $\zeta = 2\epsilon + 1$. Thus,

 $\mu \zeta = \left[\langle 2\sigma + 1 \rangle \langle 2\epsilon + 1 \rangle \right] = \left[2\langle \sigma\epsilon + \sigma + \epsilon \rangle + 1 \right]$

The factor $\langle \sigma \epsilon + \sigma + \epsilon \rangle$ is an integer, because integers are closed under addition and multiplication. Thus, the product $\mu\zeta$ is odd, by definition.

Theorem (1617). Let ζ be an integer. If $\zeta^3 + 5$ is odd, then ζ is even. *Proof.* By the contrapositive. Suppose that ζ were odd. By the definition for odd numbers, there exists an integer γ such that $\zeta = 2\gamma + 1$. By the Binomial

 $\left\{ \left\langle 2\gamma + 1 \right\rangle^3 + 5 \right\} = \left\{ 5 + \sum_{i=0}^{3} \binom{3}{i} 2\gamma^{\langle 3 - \iota \rangle} \right\} = \left\{ 2\left\langle 4\gamma^3 - 6\gamma^2 + 3\gamma + 3\right\rangle \right\}$

The factor $\langle 4\gamma^3 - 6\gamma^2 + 3\gamma + 3 \rangle$ is an integer because integers are closed on addition and multiplication. Thus, $\zeta^3 + 5$ is even, by definition.

Theorem (1625). There does not exist a rational number ρ such that ρ^3 + $\rho + 1 = 0.$ *Proof.* For the purpose of contradiction, assume that there exists a rational number ho satisfying the equation $ho^3 +
ho + 1 = 0$. By the definition for rational

numbers, there exist integers α and β (β is nonzero,) such that $\left(\rho^3 + \rho + 1\right) = \left(\frac{\alpha^3}{\beta^3} + \frac{\alpha}{\beta} + 1\right) = 0$

 $\frac{\alpha^3}{\beta^3} = \left(-1 - \frac{\alpha}{\beta}\right)$

By the additive equality property for equations, that is It is possible to derive ρ^2 from ρ^3 by multiplying ρ^3 by the multiplicative inverse

for ρ . By the multiplicative equality property for equations, $\frac{\alpha^3}{\beta^3} \cdot \frac{\beta}{\alpha} = \left(-1 - \frac{\alpha}{\beta}\right) \cdot \frac{\beta}{\alpha} = \left\{\frac{-\beta}{\alpha} - \frac{\alpha\beta}{\beta\alpha}\right\}$

Thus, by the field axioms, ρ^2 is

 $\left\{ \frac{-\beta}{\alpha} - \frac{\alpha\beta}{\beta\alpha} \right\} = \left(\frac{-\beta - \alpha}{\alpha} \right) = -1 \cdot \left(\frac{\beta + \alpha}{\alpha} \right)$

 $\sqrt{\frac{\alpha^2}{\beta^2}} = \sqrt{-1 \cdot \left(\frac{\beta + \alpha}{\alpha}\right)} = i \cdot \sqrt{\left(\frac{\beta + \alpha}{\alpha}\right)}$

ho is imaginary and rational. Thus, the negation of the hypothesis implies a contradiction. In other words, ho does not exist.

Applying the square root to ρ^2 gives the identity for ρ