RELACIONES METRICAS EN LA CIRCUNFERENCIA

1. TEOREMA DE LAS CUERDAS

¿QUÉ ES CUERDA?

AB: Es cuerda (segmento que une 2 puntos de la circunferencia).

AB y CD son cuerdas:

 $a \times b = m \times n$

Ejemplo: Hallar "x"

2. TEOREMA DE LA TANGENTE

¿QUÉ ES UNA TANGENTE?

AB: Es tangente, (Recta que corta a la circunferencia en un solo punto).

x : Tangente a : Secante

b : Parte externa de la secante

Ejemplo: Hallar "x"

3. TEOREMA DE LAS SECANTES

¿QUÉ ES UNA SECANTE?

AB : Es una secante.
(Recta que intersecta a la circunferencia en 2 puntos)

a, x: Secantes

b , y : Partes externas de las secantes.

www.RecursosDidacticos.org	
2	
В	
D	
Ejemplo: Hallar "x"	
Cjempio. Flandi X	
- TEODEMA DE LA TANCENTE	
2. TEOREMA DE LA TANGENTE	
Ejemplos: Halla "x" en los siguientes	
casos:	

EJERCICIOS DE APLICACIÓN

1. Hallar: "r"; "O" es centro.

2. Hallar: "x"; "O" es centro.

3. EF biseca
a AB; EQ
= 4, QF =
9. Hallar:
"AB"

b) 12 c) 9 d) 14 e) 10

a) 8

4. Indicar la relación correcta:

- a) ab = cd
- b) ac = bd
- c) a + b = c + d
- d) a + c = b + d
- e) $\frac{a^2}{b^2} \square \frac{c^2}{d^2} \square 1$

- 5. Hallar: "x"
 - a) 3
 - b) 4
 - c) 5
 - d) 2
 - e) 1
- 6. Si: "O" y " O_1 " son centros, hallar: "AQ"

- a) 14b) 13
- c) 10
- d) 15
- e) 12

7. Hallar: "x"

- b) √5
- c) 6
- d) 3
- e) 4
- Hallar: AB; BC = 12; r = 8. "O" es centro

- b) 2
- c) 3
- d) 4
- e) 5

9. Hallar: "x"

- a) √20
- b) $\sqrt{22}$
- c) 4
- d) 3
- e) 2

- 10. AB, BC, AQ y FE son valores enteros consecutivos. Hallar: AE
 - a) 6
 - b) 13
 - c) 10
 - d) 15
 - e) 5

ΑE

11. Hallar: (x . y); AB = 4, BC = 5; CD = 3

Q

- b) 8√6
- c) 12 \(\sqrt{6} \)
- d) 12√3
- e) 8[√]3
- 12. Hallar: "AC"; MC = 2, AR = 8, PR = 5
 - a) 4
 - b) 8
 - c) 5
 - d) 10 e) 6

13. Hallar: CD; AB = 2, PC = 3, PA = 4

14. Hallar: "CL"; AO = OB = BC = R

- a) 2
- b) 3
- c) 4
- d) 5
- e) 6
- a) R 5
- b)

15. Hallar: "PQ"; PB □ √6

- a) 5
- b) 2,5
- c) 25
- d)

TAREA DOMICILIARIA Nº6

1. Hallar: "x"

- b) 2
- c) 3
- d) 4
- e) 5

2. Hallar: "R"; DB = 2, AB = 4, BC = 5

3. Hallar: "AB"

- b) 8
- c) 5
- d) 6
- e) 7

4. Hallar: "R"

- b) 22
- c) 23
- d) 20
- e) 19

5. Hallar: "x"

- b) 2
- c) 3
- d) 4
- e) 5

- 6. Hallar: "x"
 - a) 2√3
 - b) 2√2
 - c) 2
 - d) 3
 - e) 4
- 7. Hallar: "x"
 - a) 6
 - b) $6\sqrt{2}$
 - c) $6\sqrt{3}$
 - d) 7
 - e) 8

- a) 5
- b) 4
- c) 3
- d) 3√3
- e) 3√2 8. Hallar: "x"
- 9. Hallar: "AB"; r = 16, BC = 24
 - a) 2
 - b) 10
 - c) 4
 - d) 6
 - e) 8

10. Hallar: "CD"; AB = 6, BC = 2

- a) 1
- b) 2
- c) 3
- d) 4
- e) 6

- 11. Hallar: "x"
 - a) 8
 - b) 12
 - c) 6
 - d) 10

 - e) 9
- 12. Hallar: "x"

13

13. Hallar: <u>AB</u>

- a) 1
- b) 2
- c) 3
- d) 4
- e) 5

- 14. Hallar: "x"
 - a) √a
 - b) √2a
 - c) √3a
 - d) 2√a
 - e) a√3

15. Hallar: "x"

c) 3

e) 5

