Preguta 1! Sea $f_n: \mathbb{R} \longrightarrow \mathbb{R}$, para cada $n \in \mathbb{N}$ $f \in \mathbb{N}$ que $ f'_n(x) \le 1$ $\forall x \in \mathbb{R}$. FD: ii $f_n \longrightarrow \mathbb{S}$ puritualmente extonces $g \in Cont.nva$. Denorhación: Sea $E > 0$. $ f'_n(x) \le 1 \Rightarrow \int_{y}^{x} f'_n(x) dx \le \int_{y}^{x} dx \Rightarrow \int_{y}^{x} f'_n(x) dx \le (x-y) \Rightarrow f'_n(x) dx S(x-y) \Rightarrow f_n(x) - f_n(y) \le (x-y) \times x-y $ $tomeros \delta = E$. $xi x-y < \delta$ entonces: $ f_n(x) - f_n(y) \le x-y < \delta = E$ $ f_n(x) - f_n(y) \le x-y < \delta = E$		an Owaldo Carbajal Aldara
FD: ii $f_n \xrightarrow{\longrightarrow} \emptyset$ puntualmente. endonces $g \in Continuon$. Denostración: lea $E > 0$. $ f_n(x) \le 1 \Rightarrow \int_y^x f_n(x) dx \le \int_y^x dx = \int_y^x f_n(x) dx \le (x-y) = \int_y^x f_n(x) dx \le (x-y) \Rightarrow f_n(x) - f_n(y) \le (x-y) \times x-y $ tomeror $\delta = E$ ii $ x-y < \delta = E$ $ f_n(x) - f_n(y) \le x-y < \delta = E$ $ f_n(x) - f_n(y) < E$	Preguta 1!	189186
FD: ii $f_n \xrightarrow{\longrightarrow} \emptyset$ puntualmente. endonces $g \in Continuon$. Denostración: lea $E > 0$. $ f_n(x) \le 1 \Rightarrow \int_y^x f_n(x) dx \le \int_y^x dx = \int_y^x f_n(x) dx \le (x-y) = \int_y^x f_n(x) dx \le (x-y) \Rightarrow f_n(x) - f_n(y) \le (x-y) \times x-y $ tomeror $\delta = E$ ii $ x-y < \delta = E$ $ f_n(x) - f_n(y) \le x-y < \delta = E$ $ f_n(x) - f_n(y) < E$	Sea fn: R - 7 R, para	cada ne N tal
g es continua. Denostració: sea $\varepsilon > 0$. Itn'(x) =1=) $\int_{y}^{x} f'_{n}(x) dx \leq \int_{y}^{x} dx = \int_{y}^{x} f'_{n}(x) dx \leq (x-y) = \int_{y}^{x} f'_{n}(x) dx = \int_{y}^{x} f'_{n$		
$ f_{n}(x) \leq 1 \Rightarrow \int_{y}^{x} f_{n}(x) dx \leq \int_{y}^{x} dx = \int_{y}^{x} f_{n}(x) dx \leq (x-y) \Rightarrow$ $ f_{n}(x) \leq 1 \Rightarrow \int_{y}^{x} f_{n}(x) dx \leq (x-y) = \int_{y}^{x} f_{n}(x) dx \leq (x-$	g es continua.	
	$ f_{n}(x) \leq 1 \Rightarrow \int_{y}^{x} f_{n}(x) dx \leq \int_{y}^{x} dx \Rightarrow 0$	$\int_{1}^{x} f_{n}(x) dx \leq (x-y) = 0$
$ f_{n}(x) - f_{n}(y) \le x - y < \delta = \epsilon$ =7 $ f_{n}(x) - f_{n}(y) < \epsilon$	$\Rightarrow \int_{y}^{x} f_{n}(x) dx \leq (x-y) \Rightarrow \int_{y}^{x} f_{n}(x)$	$-1_{n}(y) \leq (x-y) \leq (x-y)$
$=7$ $ f_n(x) - f_n(y) < \varepsilon$	tomenos $\delta = \varepsilon$ si $ x - y < \delta$	ent on ces:
		$ \langle \delta \rangle = \epsilon$
. todas las $(f_n)_{n=1}^{\infty}$ tal que $ f'_n(x) \leq 1$, $\forall x \in \mathbb{R}$ son	. todas las $(f_n)_{n=1}^{\infty}$ tal que $ f'_n(x) $	$ \leq 1$ $\forall x \in \mathbb{R}$ son
Miformenente continuas. Alemas, como for -> 9 puntualmente tenemos que:	Miformenente continuas. Alenas, como In -> 9 puntual n	uent e tenemos que:
$ g(x) - g(y) \le f_n(x) - g(x) + f_n(y) - g(y) + f_n(x) - f_n(y) \le 3\varepsilon$	$ g(x) - g(y) \le f_n(x) - g(x) + f_n(y) - g(x) $	3(y) + + (x) - fn(y) < 3E