

Institut Mines-Telecom

Ensemble methods

Florence d'Alché-Buc, florence.dalche@telecom-paristech.fr

Outline

Motivation

Bagging

Random forests

Boosting

AdaBoost as a Greedy Scheme General Boosting Gradient Boosting Stochastic Gradient Boosting

References

Outline

Motivation

Bagging

Random forests

Boosting

References

Ensemble methods and meta-learning

- ▶ Improve upon a single predictor by building an ensemble of predictors (with no hyperparameter)
- ▶ → meta-learning : the parameter of the *meta-learning* algorithm is those of the base learner and the size of the ensemble

Ensemble methods

Let f_t , t = 1, ..., T be T different regressors. Notations :

$$\epsilon_t(x) = y - f_t(x)
MSE(f_t) = \mathbb{E}[\epsilon_t(x)^2]
f_{ens}(x) = \frac{1}{T} \sum_t f_t(x)
= y - \frac{1}{T} \sum_t \epsilon_t(x).$$

Encourage the diversity of base predictors

$$MSE(f_{ens}) = \mathbb{E}[(y - f_{ens}(x))^2]$$

If ϵ_t are mutually independent with zero mean, then we have :

$$MSE(f_{ens}) = \frac{1}{T^2} \mathbb{E}[\sum_t \epsilon_t(x)^2]$$

The more diverse are the classifiers, the more we reduce the mean square error!

Ensemble methods

- Encourage the diversity of base predictors by :
 - using bootstrap samples (Bagging and Random forests)
 - using randomized predictors (ex: Random forests)
 - using weighted version of the current sample (Boosting) with weights dependent on the previous predictor (adaptive sampling)

Ensemble methods at a glance

▶ 1995 : Boosting, Freund and Schapire

▶ 1996 : Bagging, Breiman

▶ 2001 : Random forests, Breiman

Outline

Motivation

Bagging

Random forests

Boosting

References

Decomposition bias/variance in regression

Given x,

$$\mathbb{E}_{S}\mathbb{E}_{y|x}(y - f_{S}(x))^{2} = \operatorname{noise}(x) + \operatorname{bias}^{2}(x) + \operatorname{variance}(x)$$
 (1)

$$noise(x)$$
: $E_{y|x}[(y - E_{y|x}(y))^2]$:

quantifies the error made by the Bayes model $(E_{v|x}(y))$

$$bias^2(x) = (E_{v|x}(y) - E_S[f_S(x)])^2$$

measures the difference between minimal error (Bayes error) and the average model

$$variance(x) = E_S[(f_S(x) - E_S[f_S(x)])^2]$$

measures how much $h_5(x)$ varies from one training set to another

Introduction to bagging (regression) - f 1

Assume we can generate several training samples $\mathcal{S}_1,\dots,\mathcal{S}_{\mathcal{T}}$ from P(x,y).

A first algorithm:

- ▶ draw T training samples $\{S_1, ..., S_T\}$
- learn a model $f_t \in \mathcal{F}$ from each training sample \mathcal{S}_t : $t = 1, \ldots, T$
- ▶ compute the average model : $f_{ens}(x) = \frac{1}{T} \sum_{t=1}^{T} f_t(x)$

Introduction to bagging - 2

The bias remains the same:

$$bias(x) = E_{S_1,...,S_T}[f_{ens}(x)] = \frac{1}{T} \sum_t E_{S_t}[f_t(x)] = E_{S}[f_t(x)]$$

The variance is divided by T:

$$E_{S_1,...,S_T}[(f_{ens}(x) - E_{S_1,...,S_T}[f_{ens}(x)])^2] = \frac{1}{T}E_S[f_S(x) - E_S[f_S(x))^2]$$

Bagging (Breiman 1996)

In practice, we do not know P(x,y) and we have only one training sample \mathcal{S} .

Bagging = Bootstrap Aggregating :

- ▶ draw T bootstrap samples $\{\mathcal{B}_1,\ldots,\mathcal{B}_T\}$ from \mathcal{S}
- ▶ Learn a model f_t for each \mathcal{B}_t
- ▶ Build the average model : $f_{bag}(x) = \frac{1}{T} \sum_t f_t(x)$

Example of bagged trees

[Book : The elements of statistical learning, Hastie, Tibshirani, Friedman, 2001]

Example of bagged trees

[Book: The elements of statistical learning, Hastie, Tibshirani, Friedman, 2001]

Bagging in practise

- \blacktriangleright Variance is reduced but the bias can increase a bit (the effective size of a bootstrap sample is 30% smaller than the original training set $\mathcal S$
- ► The obtained model is however more complex than a single model
- ▶ Bagging works for unstable predictors (neural nets, trees)
- ▶ In supervised classification, bagging a good classifier usually makes it better but bagging a bad classifier can make it worse

Outline

Motivation

Bagging

Random forests

Boosting

References

Other ensemble methods

- Perturbe and combine algorithms
 - Perturbe the base predictor
 - Combine the perturbed predictors

REFS: Random forests: Breiman 2001

Geurts, Ernst, Wehenkel, Extra-trees, 2006

| Random forests : Breiman 2001

Random forests algorithm

- ▶ INPUT : candidate feature splits F, \mathcal{S}_{train}
- ▶ for t=1 to T
 - $m \mathcal{S}_{train}^{(t)}$ m instance randomly drawn with replacement from \mathcal{S}_{train}
 - lacksquare $h_{tree}^{(t)} \leftarrow$ randomized decision tree learned from $\mathcal{S}_{train}^{(t)}$
- ▶ OUTPUT : $H^T = \frac{1}{T} h_{tree}^{(t)}$

Random forests:

Learning a single randomized tree :

- ▶ To select a split at a node :
 - ▶ $R_f(F)$ ← randomly select (without replacement) f feature splits from F with f << |F|
 - ▶ Choose the best split in $R_f(F)$ (consider the different cut-points)
- Do not prune this tree

Randomized tree:

Learning a single randomized tree :

- ▶ To select a split at a node :
 - ▶ $R_K(F)$ ← randomly select (without replacement) f feature splits from F with f << |F|
 - ▶ Choose the best split in $R_f(F)$ (consider the different cut-points)
- Do not prune this tree

Extra-trees : Geurts et al. 2006

Extra-trees

- ▶ INPUT : candidate feature splits F, S_{train}
- ▶ for t=1 to T
 - ightharpoonup Always use \mathcal{S}_{train}
 - $m{h}_{tree}^{(t)}
 ightarrow$: randomized decision tree learned from \mathcal{S}_{train}
- ▶ OUTPUT : $H^T = \frac{1}{T} h_{tree}^{(t)}$

Learning a single randomized tree in extra-trees :

- ► To select a split at a node :
 - ▶ randomly select (without replacement) K feature splits from F with K << |F|</p>
 - ▶ Draw K splits using the procedure Pick-a-random-split(S,i):
 - ▶ let a_{max}^i and a_{min}^i denote the maximal and minimal value of x_i in S
 - ▶ Draw uniformly a cut-point a_c in $[a_{max}^i, a_{min}^i]$
- ▶ Choose the best split among the *K* previous splits

Do not prune this tree

Random forest

Example of decision frontier:

Spam Data

Comparison (just an example)

[Book: The elements of statistical learning, Hastie, Tibshirani, Friedman, 2001]

AdaBoost as a Greedy Scheme General Boosting Gradient Boosting Stochastic Gradient Boosting

Outline

Motivation

Bagging

Random forests

Boosting

AdaBoost as a Greedy Scheme General Boosting Gradient Boosting Stochastic Gradient Boosting

AdaBoost

- ▶ Idea : learn a sequence of predictors trained on weighted dataset with weights depending on the loss so far.
- ▶ Iterative scheme proposed by Schapire and Freund :

Boosting a linear classifier

Source Jiri Matas (Oxford U.)

Boosting a linear classifier

Source Jiri Matas (Oxford U.)

General Boosting
Gradient Boosting
Stochastic Gradient Boosting

Boosting a linear classifier

Jiri Matas (Oxford U.)

Source

t

Boosting a linear classifier

Source Jiri Matas (Oxford U.)

t

AdaBoost as a Greedy Scheme General Boosting

Gradient Boosting
Stochastic Gradient Boosting

Boosting a linear classifier

Source Jiri Matas (Oxford U.)

Boosting a linear classifier

Source Jiri Matas (Oxford U.)

Boosting a linear classifier

Source Jiri Matas (Oxford U.)

AdaBoost (Freund and Schapire 1996)

 \mathcal{H} : a chosen class of "weak" binary classifiers

► Set
$$w_1(i) = 1/n$$
; $t = 0$ and $f_0 = 0$

For
$$t = 1$$
 to T

▶
$$t = t + 1$$

$$h_t = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n \epsilon_t(h)$$

With
$$\epsilon_t = \sum_{i=1}^n w_t(i) \ell^{0/1}(y_i, h(x_i))$$

Set $\alpha_t = \frac{1}{2} \log \frac{1-\epsilon_t}{\epsilon_t}$

• Set
$$\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$$

let
$$w_i(t+1) = \frac{w_t(i)e^{-\alpha_t y_i h_t(x_i)}}{Z_{t+1}}$$
 where Z_{t+1} is a renormalization constant such that $\sum_{i=1}^n w_i(t+1) = 1$

$$f_t = f_{t-1} + \alpha_t h_t$$

• Use
$$f_T = \sum_{i=1}^T \alpha_t h_t$$

Intuition : $w_i(t)$ measures the difficulty of learning the sample i at step t...

Exponential Stagewise Additive Modeling (Friedman, Hastie, Tibshirani 1999)

- Greedy optimization of a classifier as a linear combination of T classifier for the exponential loss.
 - ▶ Set t = 0 and $f_t = 0$.
 - For t = 1 to T,
 - $h_t, \alpha_t) = \arg\min_{h,\alpha} \sum_{i=1}^n e^{-y_i(f_{t-1}(x_i) + \alpha h(x_i))}$
 - $f_t = f_{t-1} + \alpha_t h_t$
 - Use $f_T = \sum_{t=1}^T \alpha_t h_t$
- Adaboost and this algorithm are equivalent

Boosting

- ▶ Iterative scheme with only two parameters : the class \mathcal{H} of weak classifier and the number of step T.
- ▶ In the literature, one can read that Adaboost does not overfit! This not true (see work of Vayatis et al.) and *T* should be chosen with care...

Boosting

- General greedy optimization strategy to obtain a linear combination of weak predictor
 - \blacktriangleright Set t=0 and f=0
 - For t = 1 to T.
 - $(h_t, \alpha_t) = \arg\min_{h,\alpha} \sum_{i=1}^n \ell'(y_i, f(x_i) + \alpha h(x_i))$
 - $f = f + \alpha_t h_t$
 - Use $f = \sum_{t=1}^{T} \alpha_t h_t$
- Forward Stagewise Additive Modeling :
 - AdaBoost with $\ell'(y,h) = e^{-yh}$
 - ▶ LogitBoost with $\ell'(y, h) = \log(1 + e^{-yh})$
 - ▶ L_2 Boost with $\ell'(y,h) = (y-h)^2$ (Matching pursuit)
 - ▶ L_1 Boost with $\ell'(y,h) = |y-h|$
 - HuberBoost with

$$\ell'(y,h) = |y-h|^2 \mathbf{1}_{|y-h|<\epsilon} + (2\epsilon|y-h|-\epsilon^2) \mathbf{1}_{|y-h|\geq \epsilon}$$

Simple principle but no easy numerical scheme except for AdaBoost and L_2 Boost...

AdaBoost as a Greedy Scheme General Boosting Gradient Boosting Stochastic Gradient Boosting

Gradient Boosting I

▶ At each boosting step, one need to solve

$$(h_t, \alpha_t) =_{h,\alpha} \sum_{i=1}^n \ell'(y_i, f(x_i) + \alpha h) = L(y, f + \alpha h)$$

- ▶ Gradient approximation $L(y, f + \alpha h) \sim L(y, f) + \alpha \langle \nabla f, h \rangle$.
- Gradient boosting : replace the minimization step by a gradient descent type step :
 - ▶ Choose h_t as the best possible descent direction in \mathcal{H}
 - Choose α_t that minimizes $L(y, f + \alpha h_t)$ (line search)
- ▶ Easy if finding the best descent direction is easy!

AdaBoost as a Greedy Scheme General Boosting Gradient Boosting Stochastic Gradient Boosting

Stochastic Gradient Boosting

- ▶ Variation of the Boosting scheme
- Idea : change the learning set at each step.
- Two possible reasons :
 - Optimization over all examples too costly
 - Add variability to use a averaged solution
- ▶ Two different samplings :
 - Use sub-sampling, if you need to reduce the complexity
 - Use re-sampling, if you add variability...
- ▶ Stochastic Gradient name mainly used for the first case...

Outline

Motivation

Bagging

Random forests

Boosting

References

References

- ▶ Perrone, Cooper, When classifiers disagree, 1992
- ► Tumer and Gosh, 1996
- Breiman, Bagging predictors, 1996
- ▶ Buhlman and Yu, Analyzing bagging, Annals of stats., 2002
- Breiman, Random Forests, Machine Learning, 2001.
- ► Geurts, Ernst, Wehenekl, Extra-trees, JMLR, 2006
- Boosting :
 - ► Freund and Schapire, 1996
 - Greedy function approximation, Friedman, 1999.
 - ▶ MarginBoost and AnyBoost : Mason et al. 1999.

