Simulation with Missing data

Anaranya Basu

November 2023

 $\hat{\mu}^{cc}$ is unbiased under Missing Completely at Random case but may be biased under Missing at Random Case.

Solution:

Consider observations $y_i = (y_{i1}, y_{i2}, \dots, y_{ip})'$ Define R_i where $R_{ij} = I(y_{ij} \in y_i^{obs})$ i.e. $R_{ij} = \mathbf{1}$ if y_{ij} is observed and $\mathbf{0}$ if missing. Now, we have generated 100 random samples of observations(y) from Bernoulli distribution with mean(μ) as 0.5 Observations are as follows:

Now, we have generated another random sample (op) of 100 binary values with a lower mean (0.1) to simulate a binary indicator for missingness.

Now creating a new vector y_1 that retains the values from y where (op) is not equal to 1 (indicating observed data) and assigns NA to y_1 where op is 1 (indicating missing data).

[1]	0	1	0	1	0	0 1	ΙA	0	1	NA	1	0	0	0	1	0	1	1	1	1	1
[22]	0	0	0	1	1	0	0	1	1	. 0	0	1	0	1	0	NA	1	1	1	1	1
[43]	NA	0	1	1	1	0	0	1	0	0	1	1	0	0	0	1	0	1	0	1	0
[64]	0	1	NA	1	1	0	0	0	1	. 0	1	1	1	0	1	0	0	1	1	0	0
Г851	NA	NA	1	0	1	0	1	0	1	. 0	0	1	1	0	1	1					

Using the summary (y_1) in R we have detected 7 positions which are completely missing at random. The output is as below-

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.0000 0.0000 1.0000 0.5161 1.0000 1.0000 7

Finally, we calculated the mean of the modified data set y_1 , but this time, the **na.rm** = **TRUE** argument is used to exclude the missing values when computing the mean i.e.

$$\hat{\mu}^{MCAR} = 0.516129 \approx 0.5(\mu^{cc})$$

Now using Missing at Random mechanism where the missingness depends on the observed values we will see:

similarly we generated random samples from Bernoulli distribution with mean (0.5)

Now generated (op1) with a probability that depends on the logistic function (**plogis**) of the difference between y and 0.5. This simulates a MAR mechanism.

Now we created y2 with missing data by setting elements to NA where op1 is equal to 1 and we get -

Now the true mean(μ) is 0.5 and the estimated mean for complete case analysis($\hat{\mu}^{cc}$) came out as 0.25 i.e.

$$E(\hat{\mu}^{cc}) \neq \hat{\mu}^{MAR}$$

Appendix

```
##Missing completely at random case###
set.seed(1345)
y = rbinom(100, 1, 0.5)
mu = mean(y)
op = rbinom(100, 1, 0.1)
op
y1 = y
y1[op == 1] = NA
summary(y1)
mu_mcar = mean(y1, na.rm = TRUE)
mu_mcar
##Missing at random case##
y \leftarrow rbinom(100, 1, 0.5)
op1 <- rbinom(100, 1, plogis(y - 0.5))
y2 <- y
y1[op1 == 1] <- NA
true_mean <- mean(y, na.rm = TRUE)</pre>
mean_y2 \leftarrow mean(y2, na.rm = TRUE)
```