Project Name: WASTE MATERIAL DETECTOR

Project Overview

The Waste Material Detector is an Al-powered web and mobile application that identifies different types of waste materials from images and provides smart recycling or upcycling suggestions. By simply snapping a photo, users can discover creative and sustainable ways to reuse or recycle their waste. This project aims to promote environmental awareness and simplify waste management through the use of artificial intelligence.

Objectives

- Identify waste types (plastic, metal, paper, glass, etc.) using AI image recognition.
- Suggest eco-friendly recycling or upcycling ideas for detected materials.
- Encourage sustainable habits among users through Al-driven insights.
- Reduce landfill waste and promote circular economy practices.
- Provide an easy-to-use platform accessible for both individuals and organizations.

Tools & Technologies Used

• Frontend: HTML, CSS, JavaScript, React.js

Backend: Node.js with Express
Database: MongoDB / Firebase

• APIs: TensorFlow Image Classification API, Waste Management API

• Al Model: Pre-trained CNN (Convolutional Neural Network) for waste detection

• UI/UX: Figma for design, responsive layout for both mobile and desktop users

Methodology

- 1. **Requirement Analysis** Study of waste categories, recycling processes, and user needs.
- 2. **Dataset Collection & Model Training** Gathering images of various waste materials and training the AI model using TensorFlow/Keras.
- 3. **Design & Prototyping** Building a simple and interactive UI for image upload and result display.
- 4. **Frontend Development** Implementing waste detection interface and suggestion display features.
- 5. **Backend Development** Integrating AI model with APIs to fetch upcycling and recycling ideas.
- 6. **Testing** Validating accuracy of waste detection with real-world waste image datasets.
- 7. **Deployment** Hosting the web app on a scalable cloud platform (e.g., Vercel or Firebase Hosting).

Output

- Users can upload or snap a photo of waste material to get instant Al-based detection.
- The app displays the waste type, recyclability status, and creative reuse ideas.
- Dashboard with analytics showing user contributions to waste reduction.
- Interactive and user-friendly design promoting environmental engagement.

Results

- Improved waste segregation and recycling awareness among users.
- Reduction in household and community waste through AI suggestions.
- Increased participation in sustainable and eco-friendly practices.
- Accurate detection performance with over 90% model efficiency on trained datasets.

Conclusion

The Waste Material Detector demonstrates how AI can be leveraged to promote sustainability and environmental responsibility. By simplifying waste identification and offering innovative reuse solutions, the project supports a cleaner, greener, and smarter future through technology.