Vorlage

N. Egger

30. Juli 2018

Inhaltsverzeichnis

T	Kiss	-		2
	1.1	Zugel	ement	2
2		natieru		3
	2.1	Quers	Chnittsanalysen, reine Biegung	3
		2.1.1	Rechteckquerschnitt ohne Druckbewehrung	3
		2.1.2	Rechteckquerschnitt mit Druckbewehrung	3
		2.1.3	Plattenbalkenquerschnitt	3
	2.2	Biegui	ng mit Normalkraft	4
			Druck, kleine Exzentrizität	
		2.2.2	Zug mit kleiner Ausmitte	4
		2.2.3	Druck und Zug, grosse Exzentrizität	4
3	Sch	wingur	ngen	5
	3.1	Eigenf	frequenz	5
4	Dicl	htheit		6
5	Veri	formun	gen	6
	5.1	Verfor	mung am Zugstab	6

Vorlage (V1.1) Seite 2 von 6

1 Risse

Ursachen:

- zu rasches Austrocknen
- Temperatureinwirkungen
- Schwinden
- Lasteinwirkung
- Aufgezwungene oder behinderte Verformung
- Frosteinwirkung

Anforderungen

• Normale Anforderungen: bei Erreichen von f_{ctd} : $\sigma_s \leq f_{sd} \rightarrow$ sprödes Versagen verhindern (Mindestbewehrung) & aufgezwungene und behindernde Verformungen begrenzen

1.1 Zugelement

- Erhöhte Anforderungen (gute Rissverteiung): $\sigma_s \leq f_{sd} \rightarrow$ Mindestbewehrung & $\sigma_s \leq f_{sd} 80N/mm^2 \rightarrow$ Fliessen der Bewehrung häufiger Lastfälle verhindern & $\sigma_s \leq \sigma_{s,adm} \rightarrow$ um Rissbreiten (w_{nom} = 0.5 mm) aufgezwungener und behinderter Verformungen oder qs Lasten begrenzen
- Hohe Anforderungen (Rissbreitenbegrenzung für ständige & qs Lastfälle): $\sigma_s \leqslant f_{sd} \rightarrow$ Mindestbewehrung & $\sigma_s \leqslant f_{sd} 80N/mm^2 \rightarrow$ Fliessen der Bewehrung häufiger Lastfälle verhindern & $\sigma_s \leqslant \sigma_{s,adm} \rightarrow$ um Rissbreiten ($w_{nom} = 0.2$ mm) aufgezwungener und behinderter Verformungen oder qs Lasten begrenzen

L'ubertragungant Bigung

Bemerkung	Formel	Einheit	W = Esm. Sm Stab = 200 stabs
Bewehrungsquerschnitt	$A_s = n_s \cdot \pi \cdot \frac{\bigcirc^2}{4}$	[mm]	h _{eff} = s
Bewehrungsgehalt	$\rho = \frac{A_s}{A}$		1 3
Betonquerschnitt	$A_c = A - A_s = A \cdot (1 - \rho)$	[mm]	$A_c = s \cdot h_{eff} \approx s \cdot s$
Querschnittsbeiwert	$n=\alpha=\frac{E_s}{E_c}$		\rightarrow je höher f_{ck} (f_{ct}) ,
Ideellerquerschnitt	$A_i = (A - A_s) + n \cdot A_s = A_s$	[mm]	desto höher $A_{s,min}$ $(A_{s,Riss})$
Rissbreite	$\begin{vmatrix} A_c + n \cdot A_s = A \cdot (1 + \rho \cdot (n - 1)) \\ w = \int (\varepsilon_s - \varepsilon_c) dx \approx \frac{\emptyset}{8 \cdot \rho} \frac{f_{ct}}{E_s} \end{vmatrix}$	[mm]	Rissbildung an der schwächsten Stelle
\rightarrow mit $\rho = \frac{f_{ct}}{\sigma_s^{II}}$	$w = \frac{\emptyset}{8} \frac{\sigma_s^{\text{Li} \cdot 2}}{f_{ct} \cdot E_s}$	[mm]	→ mehr Bewehrung
	$\Rightarrow \sigma_s = \sqrt{\frac{8 \cdot f_{ck} \cdot E_s \cdot w}{\bigcirc}}$	$\left[\frac{kN}{mm^2}\right]$	\Rightarrow kleienr l_b , kleiner w , mehr kleine Risse
Rissabstand	$ 1l_b \leqslant S_r \leqslant 2l_b $	[mm]	pro Meter grosse ⊘ weniger ef-
Risslast	$N_r = f_{ct} \cdot A_i$	[kN]	fektiv → gr. Rissbreite
\rightarrow erf. $A_{s,min}$			

N. Egger 30. Juli 2018

Seite 3 von 6

Vorlage (V1.1)

1.2 Querschnittsanalysen, reine Biegung

1.2.2 Rechteckquerschnitt mit Druckbewehrung

 $\frac{\varepsilon_s}{\varepsilon_c} = \frac{d-x}{x} \implies \varepsilon_s = \frac{d-x}{x} \varepsilon_c$

 $E_{s} \cdot \varepsilon_{s} = \sigma_{s} = E_{s} \cdot \varepsilon_{c} \frac{d-x}{x} = n \cdot \sigma_{c} \frac{d-x}{x}$ $\sigma_{s} = n \frac{M}{I_{i}} (d-x)$

1.2.3 Plattenbalkenquerschnitt

Bemerkung	Formel
abklären ob $x \leq h_f$ oder $x > h_f$	
	$\begin{vmatrix} S_i(x = h_f) = b \\ d') - n \cdot A_s(d - h_s) \end{vmatrix}$

2
$$S_i$$
 (x = h_f) < 0
→ Berechnen am
Plattenbalken QS
(Druck bis in Steg)

١	falls	Plattenbalken:
/	Statis	sches Moment

$$S_i = 0 = (b - b_w)h_f\left(x - \frac{h_f}{2}\right) + \frac{b_w \cdot x^2}{2} + n \cdot A_s'(x - d') - n \cdot A_s(d - x) \rightarrow x$$

Flächenmoment
$$I_i = (b - b_w) \frac{h_f^3}{12} + (b - b_w) h_f \left(x - \frac{h_f}{2}\right)^2 + \frac{b_w \cdot x^3}{3} + n \cdot A_s' (x - d')^2 + n \cdot A_s (d - x)^2$$
 Verträglichkeitsbe-
$$\frac{\varepsilon_s}{\varepsilon_c} = \frac{d - x}{x} \Rightarrow \varepsilon_s = \frac{d - x}{x} \varepsilon_c$$

dingung

 $\sigma_s = n \frac{M}{L} (d - x)$

Stahlspannung

1.2.1 Rechteckquerschnitt ohne Druckbe-

wehrung		Bemerkung	Formel
Bemerkung	Formel	Spannungsberech-	$E_{cm\infty} = \frac{E_{cm,0}}{1+\varphi}$ und $n = \frac{E_s}{E_{cm\infty}}$
Spannungsberech- nung	$E_{cm\infty} = \frac{E_{cm,0}}{1+\varphi}$ und $n = \frac{E_s}{E_{cm\infty}}$	$\left[\frac{kN}{mm^2}\right]$ Statisches Moment	$n = \frac{1}{E_{cm\infty}}$ $S_i = 0 = b \cdot x \cdot \frac{x}{2} + n \cdot A'_s(x - d') - (d - x) \cdot A'_s(x - d')$
Statisches Moment	$S_i = 0 = b \cdot x \cdot \frac{x}{2} - $	[mm ³]	$n \cdot A_s$
S _i der ideellen Flä- che muss bez. der neutralen Achse	$(d-x)\cdot n\cdot A_s$	S _i der ideellen Flä- che muss bez. der neutralen Achse Null sein	
Null sein		Druckzonenhöhe	$x = n \cdot$
Druckzonenhöhe	$ \frac{x}{\frac{A_s}{b}} \left(\sqrt{1 + \frac{2bd}{nA_s}} - 1 \right) $	[mm]	$\frac{x}{\frac{A_s + A_s'}{b}} = \frac{n}{\sqrt{1 + \frac{2bd}{n} \frac{A_s + A_s'}{(A_s + A_s')}}}$
\rightarrow aus Bedigung $S_i=0$		\rightarrow aus Bedigung $S_i=0$	
Flächenmoment	$ \begin{vmatrix} I_{Rechteck,i} &= & \frac{b \cdot x^3}{3} + \\ nA_s(d-x)^2 & \end{vmatrix} $	[mm ⁴] Flächenmoment	$I_{Rechteck,i} = \frac{b \cdot x^3}{3} + n \cdot A_s'(x - d')^2 + n \cdot A_s(d - d')^2 + n \cdot A_s(d - d')^2$
Verträglichkeitsbedingung	$\begin{vmatrix} \underline{\varepsilon_s} \\ \underline{\varepsilon_c} \\ \frac{d-x}{x} \\ \varepsilon_c \end{vmatrix} \Rightarrow \varepsilon_s =$	Verträglichkeitsbe-	$\frac{\varepsilon_{s}}{\varepsilon_{c}} = \frac{d-x}{x} \implies \varepsilon_{s} = \frac{d-x}{x}$

$$\begin{cases} \frac{\varepsilon_{s}}{\varepsilon_{c}} = \frac{d-x}{x} \Rightarrow \varepsilon_{s} = \\ \frac{d-x}{x}\varepsilon_{c} \end{cases}$$

$$E_{s} \cdot \varepsilon_{s} = \sigma_{s} = E_{s} \cdot \varepsilon_{c}$$

$$\varepsilon_{c} \frac{d-x}{x} = n \cdot \sigma_{c} \frac{d-x}{x}$$

$$\sigma_{s} = n \frac{M}{I_{i}} (d - x)$$

$$\sigma_s = n \frac{M}{I_i} (d - x)$$

$$\sigma_s = \frac{M}{0.9 \cdot d \cdot A_s}$$

$$-x$$
) $\left[\frac{kN}{mm^2}\right]$

dingung

Stahlspannung

d' ₊	A's	×
d		<u>≪M</u>
•	As	

Stahlspannung

Vorlage (V1.1) Seite 4 von 6

1.3 Biegung mit Normalkraft

Kernweiten:
$$k_{1/2} = \frac{I_i}{A_i \cdot y_{2/1}} = \frac{W_y}{A} = \frac{\frac{b \cdot h^2}{6}}{b \cdot h}$$
 [m] Exzentrizität: $e = -\frac{M}{N}$ [mm]

1.3.1 Druck, kleine Exzentrizität

Greift N im Kern an, kann die Ausmitte vernachlässigt werden \rightarrow zentrischer Druck

Bemerkung	Formel	Einheit
Spannung	$ \sigma_c = \varepsilon_c \cdot E_c = \frac{N}{A_i} \pm \frac{M}{I_i} y $	$\left[\frac{kN}{mm^2}\right]$
	$ \begin{aligned} \alpha_s &= \epsilon_s \cdot E_s \\ n \cdot \sigma_c \end{aligned} = $	$\left[\frac{kN}{mm^2}\right]$
Steifigkeit	$ EI = E_{cm} \cdot I_i = EI^1 $	

1.3.2 Zug mit kleiner Ausmitte

falls N innerhalb Bewehrungslagen \rightarrow Steifigkeit allein durch Stahl bestimmt

Bemerkung	Formel	Einheit
Steifigkeit	$EI = E_s \cdot I_s = EI^{II}$	
Spannung	$\sigma_s = \frac{N}{A_s} \frac{a'}{a+a'}$	$\left[\frac{kN}{mm^2}\right]$
	$\sigma_s' = \frac{N}{A_s'} \frac{a'}{a+a'}$	$\left[\frac{kN}{mm^2}\right]$

1.3.3 Druck und Zug, grosse Exzentrizität

Greift N nicht im Kern an, kann die Ausmitte nicht vernachlässigt werden \rightarrow e>k

Bemerkung	Formel	Einheit
Lage der Nullachse	$r + x = \frac{I_i}{S_i}$	[mm]
	→ Gleich nach x auflösen, so dass $S_i = 0$	
Für Rechteck	$r + x = \frac{\frac{b \cdot x^3}{3} + n \cdot A_s (d - x)^2}{\frac{b \cdot x^2}{2} - n \cdot A_s (d - x)}$	[mm]
Spannung	$\sigma_c = \varepsilon_c \cdot E_c = \frac{N(r+x)}{I_i} \cdot x$	$\left[\frac{kN}{mm^2}\right]$
	$\sigma_s = \varepsilon_s \cdot E_s = n \cdot \frac{N(r+x)}{I_i} \cdot (d-x)$	$\left[\frac{kN}{mm^2}\right]$
Steifigkeit	$EI = E_{cm} \cdot I_i = EI^{II}$	

N. Egger 30. Juli 2018

2 Schwingungen

2.1 Eigenfrequenz

Balken mit konstanter Biegesteifigkeit

$f = \frac{\omega}{2\pi}$	$[Hz][\frac{1}{s}]$	Frequenz	
$\omega = \frac{i^2 \pi^2}{l^2} \sqrt{\frac{EI}{m}}$	[<u>rad</u>]	Kreisfrequenz	_1. Schwingungsform i = 1
·		i = Schwingungsform	1. Comminguity of the control of the
		EI = K = Federsteifigkeit	2. Schwingungsform = 2
		m = Masse pro Längenein- heit $m = \frac{g[kN/m']}{9.61[m/s^2]}$	

Balken mit gleichmässig verteilter Masse

1. Schwingungsform

2. Schwingungsform

Balken mit verteilter Masse und konzentrierter Einzelmasse

- + Eigenfrequenz, je mehr Freiheitsgrade der Auflager blockiert
- Systemlänge geht quadratisch ein → Verkürzung des Systems = höhere Eigenfrequenz
- Biegesteifigkeit geht als Wurzel ein → höhere Biegesteifigkeit EI = nur kleine Erhöhung der Eigenfrequenz

N. Egger 30. Juli 2018

Vorlage (V1.1) Seite 6 von 6

3 Dichtheit

Verformungen 4

Verformung am Zugstab

Gerissen: $(N > N_r)$

 $\varepsilon^{II} = \frac{N}{A_s \cdot n \cdot E_c}$ Dehnung (Grenzfall im Riss):

 $\Delta l = l_0 \varepsilon^{II}$ Verformung (obere Schranke):

Mitwirkung zwischen den Rissen

Kriechen: kein Einfluss, da

keine Druckbeanspruchung im

Beton

Ungerissen: $(N < N_r)$

 $\varepsilon = \frac{N}{A_i \cdot E_c}$ Dehnung:

Verformung: $\Delta l = l_0 \varepsilon$

Schwinden: Verformung

Vorlesung 07, Folie 5 (Kriechen. Schwinden, Tension Stiffening, Durchbiegung), SIA 260 Durchbiegung berechnen

30. Juli 2018 N. Egger