1 Maßtheorie

Algebra und Maß

- ullet Eine $Algebra\,\mathcal{A}$ auf A ist ein Mengensystem, das A enthält und abgeschlossen/stabil ist bzgl. paarweiser Vereinigung und Komplementbildung.
- Ein $Pr\ddot{a}ma\beta$ auf \mathscr{A} ist eine Funktion $\mu_A: \mathscr{A} \to \overline{\mathbb{R}}_+$, für die $\mu(\emptyset) = 0$ und σ -Additivität gilt.
- Eine σ -Algebra \mathcal{B} auf B ist ein Mengensystem, das B entäkt und abgeschlossen/stabil ist bzgl. abzählbar unendlicher Vereinigung und Komplementbildung.
- Ein $Ma\beta$ auf \mathscr{B} ist eine Funktion $\mu_B: \mathscr{B} \to \overline{\mathbb{R}}_+$, für die $\mu(\emptyset) = 0$ und σ -Additivität gilt.

Eigenschaften

Sei \mathscr{F} σ -Algebra auf Ω , $A \in \mathscr{F}$, (A_n) Folge von Teilmengen von Ω (d.h. $A_n \in \mathscr{F}$) und μ Maß.

```
Messbarer Raum (\Omega, \mathcal{F})

\sigma-Additivität \mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)

\sigma-Stetigkeit \mu(A) = \lim_{n \to \infty} \mu(A_n), wobei A_n \nearrow A, d.h. A_n \subseteq A_{n+1} und \bigcup_n A_n = A

Endliches Maß \mu(\Omega) < \infty

\sigma-endliches Maß \Omega = \bigcup_{n=1}^{\infty} A_n und \mu(A_n) < \infty

W-Maß \mu(\Omega) = 1
```

Messbare Abbildungen

```
Seien (\Omega, \mathcal{F}) und (S, \mathcal{S}) messbare Räume und f: \Omega \to \mathcal{F} eine Abbildung.
```

```
(\mathcal{F}, \mathcal{S})-messbare Abbildung f^{-1}(B) \in \mathcal{F} für alle B \in \mathcal{S}
Borel-messbare Abbildung (S, \mathcal{S}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))
```

Alle stetigen Funktionen sind Borel-messbar.

2 Wahrscheinlichkeitsräume

2.1 Grundlagen

```
Ω
                Ergebnismenge, wobei \omega_i \in \Omega Ergebnis (Grundmenge)
{\mathscr F}
                Ereignissystem, wobei A \in \mathcal{F} Ereignis (\sigma-Algebra über der Grundmenge \Omega, d.h. \mathcal{F} = \sigma(\Omega))
(\Omega, \mathcal{F})
                Ereignisraum (Messraum, messbarer Raum)
                Wahrscheinlichkeitsmaß (Maß)
(\Omega, \mathcal{F}, \mathbb{P})
                Wahrscheinlichkeitsraum (Maßraum)
X
                (S, \mathcal{S})-wertige Zufallsvariable, wobei X: \Omega \to S (Abbidung)
                Messraum mit Grundmenge S und \sigma-Algebra \mathcal{S} = \sigma(S)
(S,\mathcal{S})
                Wahrscheinlichkeitsverteilung (von \mathbb{P} induziertes Maß)
(S, \mathcal{S}, \mathbb{P}^X)
                Maßraum, wobei das enthaltene Maß der Wahrscheinlichkeitsverteilung entspricht
```

Für eine Zufallsvariable X und die σ -Algebren ${\mathscr F}$ und ${\mathscr S}$ gilt:

Für
$$A \in \mathcal{F}$$
 gilt $X(A) \in \mathcal{S}$
Für $B \in \mathcal{S}$ gilt $X^{-1}(B) \in \mathcal{F}$, wobei $X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\}$

Für das Wahrscheinlichkitsmaß \mathbb{P} und die Wahrscheinlichkeitsverteilung \mathbb{P}^X gilt:

$$\begin{split} & \text{F\"{u}r} \quad A \in \mathscr{F} \quad \text{gilt} \quad \mathbb{P}(A) = \mathbb{P}^X \circ X(A) = \mathbb{P}^X(X(A)) \\ & \text{F\"{u}r} \quad B \in \mathscr{S} \quad \text{gilt} \quad \mathbb{P}^\mathbb{X}(B) = \mathbb{P} \circ X^{-1}(B) = \mathbb{P}(X^{-1}(B)) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in B\}) = \mathbb{P}(\{X \in B\}) \overset{kurz}{=} \mathbb{P}(X \in B) \end{split}$$

Zusammengefasst gilt:

$$(S,\mathcal{S},\mathbb{P}^X) \xleftarrow{X^{-1}} (\Omega,\mathcal{F},\mathbb{P}) \stackrel{\mathbb{P}}{\longrightarrow} [0,1]$$

Für den "direkten" Weg unter Verwendung der Wahrscheinlichkeitsverteilung gilt: $(S, \mathcal{S}, \mathbb{P}) \xrightarrow{\mathbb{P}^X} [0, 1]$

2.2 Wahrscheinlichkeitsverteilung, -dichte und Verteilungsfunktion

Diskreter Wahrscheinlichkeitsraum

Diskreter Wahrscheinlichkeitsraum, falls Ω endlich oder abzählbar unendlich.

Sei $\omega \in \Omega$ und $s \in S$, sowie $A \in \mathcal{F}$ und $B \in \mathcal{S}$ dann gilt mit einer Wahrscheinlickeitsdichtefunktion, auch kurz Wahrscheinlichkeitsdichte p bzw. p^X (entspricht Zähldichte im diskreten Fall):

$$\begin{split} \mathbb{P}(\{\omega\}) &= p(\omega) & \text{Zähldichte } p(\omega) \text{ bestimmt } \mathbb{P} \text{ eindeutig bzgl. diskretem Wahrscheinlichkeitsraum} \\ \mathbb{P}(A) &= \sum_{\omega \in A} p(\omega) \mathbb{1}_A(\omega) & \text{Wahrscheinlichkeitsmaß } \mathbb{P} \text{ mit Zähldichte } p(\omega) \text{ und Zählmaß } \mathbb{1}_A(\omega) \\ \mathbb{P}^X(\{s\}) &= p^X(s) & \text{Zähldichte } p^X(s) \text{ bestimmt } \mathbb{P}^X \text{ eindeutig bzgl. diskret verteilter } (S, \mathcal{E}) \text{-wertiger ZV} \\ \mathbb{P}^X(B) &= \sum_{s \in B} p^X(s) \mathbb{1}_A(s) & \text{Wahrscheinlichkeitsverteilung } \mathbb{P}^X \text{ mit Zähldichte } p^X(s) \text{ und Zählmaß } \mathbb{1}_A(s) \end{split}$$

dabei gilt
$$\mathbb{P}(\Omega) = \sum_{\omega \in \Omega} p(\omega) = 1$$
 und $\mathbb{P}^X(S) = \sum_{s \in S} p(s) = 1$

Für eine Zufallsvariable X gilt für die Verteilungsfunktion <math>F:

$$F(B) = \sum_{s \in B} \mathbb{P}(\{X = s\}) = \sum_{s \in B} \mathbb{P}^X(\{s\}) = \sum_{s \in B} p^X(s)$$

Stetiger Wahrscheinlichkeitsraum

Stetiger Wahrscheinlichkeitsraum, falls Ω überabzählbar.

 $A\in \mathcal{F}$ und $B\in \mathcal{S}$ dann gilt mit einer Wahrscheinlickeitsdichtefunktion pbzw. $p^X\colon$

$$\mathbb{P}(A) = \int_A p(\omega) \, \mu(d\omega) \qquad \text{Wahrscheinlichkeitsmaß} \, \mathbb{P} \, \text{mit W-Dichtefkt.} \, p(\omega) \, \text{und Lebesque-Maß} \, \mu$$

$$\mathbb{P}^X(B) = \int_B p^X(s) \, \mu(ds) \qquad \text{Wahrscheinlichkeitsverteilung} \, \mathbb{P}^X \, \text{mit W-Dichtefkt.} \, p^X(s) \, \text{und Lebesque-Maß} \, \mu$$
 dabei gilt $\mathbb{P}(\Omega) = \int_\Omega p(\omega) \mu(d\omega) = 1 \, \text{und} \, \mathbb{P}^X(S) = \int_S p(s) \mu(ds) = 1$

${\bf Stetiger}\ {\bf reeller}\ {\bf Wahrscheinlichkeitsraum}$

Spezialfall $(\Omega, \mathcal{F}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$:

 $(a_1, a_2] \in \mathcal{F}$ und $(b_1, b_2] \in \mathcal{S}$ dann gilt mit einer Wahrscheinlickeitsdichtefunktion f bzw. f^X :

$$\mathbb{P}((a_1,a_2]) = \int_{a_1}^{a_2} f(x) \, dx \qquad \text{Wahrscheinlichkeitsmaß } \mathbb{P} \text{ mit W-Dichtefkt. } f(x)$$

$$\mathbb{P}^X((b_1,b_2]) = \int_{b_1}^{b_2} f^X(x) \, dx \qquad \text{Wahrscheinlichkeitsverteilung } \mathbb{P}^X \text{ mit W-Dichtefkt. } f^X(x)$$

Für eine Zufallsvariable $X \in \mathbb{R}$ gilt für die Verteilungsfunktion F:

$$F(x) = \mathbb{P}(\{X \le x\}) = \mathbb{P}^X((-\infty, x]) = \int_{-\infty}^x f^X(x) \, dx$$

3 Unabhängigkeit

Seien $(\Omega_1, \mathcal{F}_1)$ und $(\Omega_2, \mathcal{F}_2)$ Ereignisräume, sowie (S_1, \mathcal{S}_1) und (S_2, \mathcal{S}_2) messbare Räume, $X_1 : \Omega_1 \longrightarrow S_1$ und $X_2 : \Omega_2 \longrightarrow S_2$ Zufallsvariablen.

Ereignisse A_1 und A_2 unabhängig, wenn $\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2)$ für $A_1, A_2 \in \mathcal{F}_1$ σ -Algebren \mathcal{F}_1 und \mathcal{F}_2 unabhängig, wenn $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$ für alle $A \in \mathcal{F}_1, B \in \mathcal{F}_2$ Zufallsvariablen X_1 und X_2 unabhängig, wenn σ -Algebren $X_1^{-1}(\mathcal{S}_1)$ und $X_2^{-1}(\mathcal{S}_2)$ unabhängig

4 Konvergenzen

Fast sichere Konvergenz $X_n \xrightarrow{f.s.} X \quad \mathbb{P}(\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}) = 1$

Konvergenz im $p\text{-ten Mittel} \qquad X_n \xrightarrow{L_p} X \quad \lim_{n \to \infty} \mathbb{E}[|X_n - X|^p] = 0$

Konvergenz im quadr. Mittel $X_n \xrightarrow{L_2} X$ $\lim_{n \to \infty} \mathbb{E}[(X_n - X)^2] = 0$ (Spezialfall)

Stochastische Konvergenz $X_n \xrightarrow{\mathbb{P}} X \quad \lim_{n \to \infty} \mathbb{P}(\{|X_n - X| > \epsilon\}) = 0$

Konvergenz in Verteilung $X_n \xrightarrow{d} X \lim_{n \to \infty} F_{X_n}(x) = F_X(x)$ bzw. $\lim_{n \to \infty} \mathbb{E}[\varphi(X_n)] = \mathbb{E}[\varphi(X)]$

Beziehungen

Fast sicher \Longrightarrow Stochastisch \Longrightarrow In Verteilung

Im p-ten Mittel \Longrightarrow Stochastisch \Longrightarrow In Verteilung

Fast sicher \iff Im p-ten Mittel