CENTRO UNIVERSITÁRIO SENAC

Diretoria de Graduação

PLANO DE ENSINO - MODALIDADE PRESENCIAL¹

Ano 2015 - 1º Semestre

Data 09/02/2015

Curso: Ciência da Computação		
Disciplina/Componente curricular: A	rquiteturas Paralelas e Distribuída	s
Carga horária: 72 horas presenciais		
Período: Noturno	Turma: 7NA	Unidade: CAS
Dia da semana: 2ª 3ª 4ª	5 ^a ⊠ 6 ^a □ Sábado	
Horário das aulas: 19:10 às 22:45		
Docente responsável: Eduardo Take	o Ueda	
Link para currículo lattes: http://lattes.cnpq.br/83679737252034	<u>46</u>	
Ementa Apresenta a Teoria do Paralelismo, a Paralela: Controle de Tarefas, Comur Avaliação de Desempenho e Comple Vetorização e Algoritmos Clássicos o	nicação e Sincronização. Aborda o xidade de Programas Paralelos, P	os Conceitos Básicos de
Objetivos Capacitar o aluno a caracterizar as a e construção de algoritmos paralelos paralelos e distribuídos e sua implen	e distribuídos. Apresentar uma v	isão geral da área de algoritmos

¹ Este plano está sujeito a alterações no decorrer do semestre em função do resultado da turma e outras necessidades que forem percebidas. Caso ocorram alterações a coordenação será comunicada.

Bibliografia Básica (títulos, periódicos, etc.)

WILKINSON, B.; ALLEN, M. Parallel Programming: Techniques and Applications. 2^a ed. Prentice Hall, 2004.

COULOURIS, F.; DOLLIMORE, J.; KINDBERG, T. Distributed Systems. Addison-Wesley, 2000. SILBERSCHATZ, A., GALVIN, P., GAGNE, G. Sistemas Operacionais Conceitos e Aplicações. Campus, 2000.

Bibliografia Complementar (títulos, periódicos, etc.)

ROSE, C. A. F.; NAVAUX, P. O. Arquiteturas Paralelas. Porto Alegre RS. Sagra Luzzatto, 2003.

TOSCANI, S. S.; OLIVEIRA, R. S.; CARISSIM, A. S. Sistemas Operacionais e Programação Concorrente. Porto Alegre RS. Sagra Luzzatto, 2003.

MORAES, G. S. Programação Avançada em Linux. São Paulo SP. Novatec, 2003.

ORFALI,R., Client Server Survival Guide, 3^a, Jon Wiley & Sons, 1999.

BUYA,R.,High Performance Cluster Computing: Architectures and Systems, 1a, `rentice Hall, 1999.

Processo de avaliação				
Instrumento de avaliação	Período previsto para aplicação	Devolução		
Trabalho individual #1	17/04	1 semana depois		
Trabalho individual #2	12/06	1 semana depois		
Avaliação escrita individual #1	10/04	1 semana depois		
Avaliação escrita individual #2	29/05	1 semana depois		
Avaliação escrita individual #3	12/06	1 semana depois		

Composição da nota semestral

Nota Final (NF) = 0.3(MT) + 0.7(MA)

onde:

MT = Média aritmética simples das notas dos 2 trabalhos individuais

MA = Média aritmética simples das 2 maiores notas das 3 avaliações escritas individuais

Observação: Será aprovado na disciplina o aluno que obtiver Nota Final(NF) maior ou igual a 6 (seis inteiros)

Metodologia

Aulas presenciais expositivas com exemplos e resolução de exercícios.

Data	СН	Conteúdo	Recursos Previstos
1 ^a	4	Apresentação da disciplina (ementa, critério de avaliação, etc). Definição de processamento concorrente, paralelo e distribuído. Exemplos e aplicações.	Laboratório com quadro negro e Datashow
2 ^a	4	Arquiteturas paralelas e taxonomia de Flynn. ADO: Exercícios de fixação.	Compilador GCC com OpenMP e MPI em ambiente Linux
3ª	4	Algoritmos paralelos e o modelo PRAM. ADO: Exercícios de fixação.	
4 ^a	4	Análise de desempenho: speed, eficiência, lei de Amdahl. ADO: Exercícios de fixação.	
5 ^a	4	Programação em memória compartilhada com OpenMP. Enunciado do trabalho individual #1. ADO: Exercícios de fixação.	
6 ^a	4	Mecanismos de sincronização. Programação com OpenMP. ADO: Exercícios de fixação.	
7 ^a	4	Balanceamento de carga. Programação com OpenMP. ADO: Exercícios de fixação.	
8ª	4	Estudo dirigido	
9 ^a	4	Avaliação escrita individual #1.	
10 ^a	4	Algoritmos distribuídos. Comunicação entre processos. Entrega do trabalho individual #1. ADO: Exercícios de fixação.	
11 ^a	4	Programação em memória distribuída com MPI. Enunciado do trabalho individual #2. ADO: Exercícios de fixação.	
12 ^a	4	Estudo dirigido	
13ª	4	Problema de exclusão mútua. Programação com MPI. ADO: Exercícios de fixação.	
14 ^a	4	Problema de eleição do líder. Programação com MPI ADO: Exercícios de fixação.	
15 ^a	4	Problema dos generais bizantinos. Programação com MPI. ADO: Exercícios de fixação.	
16 ^a	4	Avaliação escrita individual #2.	
17 ^a	4	Estudo dirigido.	
18ª	4	Avaliação escrita individual #3. Entrega do trabalho individual #2.	
19 ^a	4	Semana de fechamento/entrega da nota final da disciplina.	

*ADO: Tem como objetivo propiciar e estimular ao discente o processo de ensino-aprendizagem autônomo, criativo, inovador, responsável e ético, para além do ambiente de sala de aula, por meio de exercícios de fixação; da leitura de textos referentes aos conteúdos ministrados nas aulas; da pesquisa em base de dados científicas, bem como em campo ou no mundo do trabalho e; do desenvolvimento de projetos de produtos ou serviços, contribuindo assim, para a ampliação e o aprofundamento dos temas abordados e o desenvolvimento de competências profissionais alinhadas ao componente curricular.

Estas atividades podem ser realizadas em grupo, ou de forma individual, conforme sua natureza e indicação docente, para o melhor aproveitamento das mesmas.

Para tanto, o professor disponibilizará um instrumento de orientação para elaboração da atividade, os quais serão postados previamente via Blackboard ou apresentados em sala de aula. O processo de acompanhamento da ADO ocorrerá conforme programação das datas, via plano de ensino, tanto para aplicação da ADO, bem como sua respectiva devolutiva.