Vowpal Wabbit

A year in review and looking ahead in an LLM world

Agenda

- What is Vowpal Wabbit (a quick overview)
- Learned orchestration with Vowpal Wabbit and LLMs
- Embedding Vowpal Wabbit in your applications
- What is new in Vowpal Wabbit

Scenario: Personalized news recommendation

The contextual bandit problem

- Receive context and possible actions
 - User, location, time of day, etc.
- Pick an action
 - Recommend an article
- Receive reward for that action
 - User clicks or ignores recommendation
- Repeat

The contextual bandit problem

- Receive context and possible actions
 - User, location, time of day, etc.
 - Context provides all the info you have
- Pick an action
 - Recommend an article
 - Action is independent of past and future contexts
- Receive reward for that action
 - User clicks or ignores recommendation
 - No information gained regarding actions not taken
- Repeat
 - Exploration vs exploitation tradeoff

Vowpal Wabbit workflow

How to use Vowpal Wabbit

The Vowpal Wabbit reduction stack

- VW is a sequence of learners
- Examples enter at the top of the stack
- At each layer, a VW learner reduces it to a simpler problem
- Bottom learner implements wellknown algorithms like SGD
- Prediction moves up the stack

What reductions should I use?

• --cb_explore_adf

- Contextual bandits + exploration + action dependent features
- Recommend a news article

• --ccb_explore_adf

- Conditional contextual bandits
- Recommend top 10 news articles

• --slates

- Like CCB, except with disjoint action sets
- Recommend one article for each topic

• --cats

- Continuous action, as opposed to a discrete choice
- Set the temperature on a smart thermostat

Vowpal Wabbit example format

shared |User user=Tom time_of_day=morning

Action article=politics length:100

Action article=sports length:500

Action article=finance length:200

shared | User user=Anna time_of_day=evening

Action article=politics length:100

Action article=sports length:500

0:-1:0.5 | Action article=finance length:200

Shared features: applies to all possible actions

Action dependent features: unique for each action

Namespaces: defines feature groups for interactions

Features: can be strings or numbers

Label: action:cost:probability for the chosen action

Live demo!

https://github.com/VowpalWabbit/workshop/blob/master/ICML2023/tom_and_anna.ipynb

Vowpal Wabbit \heartsuit LLMs

CPU training and inference vs. expensive GPU hardware **Learning from interactions** vs. fixed pretrained models **Intelligent decision making** vs. prompt-driven completions **Fast** vs. slow

Scenario: Personalized news recommendation

Scenario: Personalized content generation

Learned orchestration with VW and LLMs

Demo

AdaptiveChat

Introducing Learned Orchestration

What Is Learned Orchestration?

What Is Learned Orchestration?

RLChain in langchain

- A langchain chain that has VW embedded into to
- Chain selects from a set of variables to inject into the prompt
- Chain learns to inject better variables into the prompt with time

- Learning happens via reward:
 - auto-reward by having the LLM check VW's output
 - user defined reward function for more specific use cases

Example experiments

- Example selector
 - In context examples clarify the objective
 - Natural Language to SQL
 - Using spider dataset, standard benchmark for query translation
 - Use VW to select examples from ~5.5k available examples
 - Uses Large Action Space algorithm

Example experiments

- Prompt Selector
 - Selecting different commands and placing them in different places in the prompt
 - Use VW to learn what prompt variables are better in which places
 - Slates scenario

Example experiments

- Model selection, e.g. pick a query to send to GPT 3.5 or GPT 4 or even a smaller model
- VW learns to select the appropriate model and can save resources

Improved Supervised Learning with Episodic Memory

- A new memory-based classifier we call EMT (Eigen Memory Tree)
 - Online insertions
 - Online learning
 - Logarithmic complexity

https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Eigen-Memory-Trees-(EMT)

Logged Bandit Experiments With Coba 7.0

- Coba is a Python package created to perform CB experiments
 - In version 7.0 Coba now offers support for logged bandit experiments
 - Easy creation of logged data for experiments
 - Off-Policy learning
 - Off-Policy evaluation (IPS, DR, or DM)
 - Unbiased Exploration Evaluation via Logged Data

Non-Stationary Exploration (NSE)

Recap: Tom and Anna

- Epsilon greedy works well
- Can we do better?

- Decaying exploration rate gets better
- Can we do better?

 NSE quickly detects the non-stationary point

• Great! How does NSE work?

https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Epsilon-Decay-(Nonstationary-Exploration)

Contextual Bandits with Large Action Spaces

- > 50 actions
- Efficient exploration by filtering out actions that are similar
 - but use linearity of reward function to update all related actions

Contextual Bandits with Graph Feedback

- Prior information about action relationships
- Constraint optimization problem
 - minimize regret while maximizing the information gathering (less exploration waste) by using the graph feedback leads
- Scenarios:
 - (Spam) filtering (aka apple tasting)

First-price auction bidding

Inventory

Model Merging

Why model merging?

Federated Learning

Wikipedia: Federated learning

Parallel Training

How model merging works

•Several VW models are trained with different data starting from a shared base model

$$VW_{base} + data_1 \Rightarrow VW_1$$
 $VW_{base} + data_2 \Rightarrow VW_2$

•Two models can be "subtracted" to generate a *model delta* object

$$VW_1 - VW_{base} \Rightarrow delta_1$$
 $VW_2 - VW_{base} \Rightarrow delta_2$

•Multiple model deltas can be merged together into a single delta

$$merge(delta_1, delta_2) \Rightarrow delta_{avg}$$

A base model is finally updated by "adding" a merged delta

$$VW_{base} + delta_{avg} \Rightarrow VW_{new}$$

Requirements

- Models share a common base
 - Or approximately a common base
 - Or are trained from scratch
- Model is loaded using the --preserve_performance_counters flag
- All learners used in the model's reduction stack support merging

How to merge models

• CLI

```
vw-merge --output out.vw --base base.vw model1.vw model2.vw
```

C++ API

```
std::unique_ptr<VW::workspace> vw_base, vw1, vw2, vw_merged;
std::vector<const VW::workspace*> models_to_merge {vw1.get(), vw2.get()};
// this will internally subtract vw_base, merge deltas, and add back vw_base
vw_merged = VW::merge_models(vw_base.get(), models_to_merge);
```

Python bindings

```
from vowpal_wabbit_next import calculate_delta, apply_delta, merge_deltas
delta_1 = calculate_delta(vw_base, vw_1)
delta_2 = calculate_delta(vw_base, vw_2)
delta_merged = merge_delta([delta_1, delta_2])
vw_new = apply_delta(vw_base, delta_merged)
```

Interaction Grounded Learning

Motivation

Can We Discover Reward?

IGL

anytime the posterior probability of an action is predicted to be more than twice the prior probability, we deduce r != 0.

use a negative oracle to detect "definitely negative" events, then use extreme event detection to identify r = 1

How To Use It With VW

- --cb_explore_adf --experimental_igl activates the algorithm
- sending feedback instead of reward in json format

```
e.g.
{
   "v": "dislike",
   "_definitely_bad": true
}
```

• optional: label the definitely negative feedback

Learn More

- ICML workshop:
 - Interactive Learning with Implicit Human Feedback, Sat 29 Jul, 9 a.m. HST, Meeting Room 315
- Paper:
 - https://arxiv.org/abs/2211.15823
- Wiki:
 - https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Interaction-Grounded-Learning

Q & A