/* Takes study data ({@link mrmc.core.InputFile#keyedData}, {@link mrmc.core.InputFile#truthVals}) * and creates data for {@link mrmc.core.CovMRMC} * --t-matrices: reader scores * ---- {@link #t0 modAA}, {@link #t0 modAB}, {@link #t0 modBB}: signal-absent scores [Nnormal][Nreader][2 modalities] * ---- {@link #t1_modAA}, {@link #t1_modAB}, {@link #t1_modBB}: signal-present scores [Ndisease][Nreader][2 modalities] * --d-matrices: study design * ---- {@link #d0_modAA}, {@link #d0_modAB}, {@link #d0_modBB}: signal absent indicator [Nnormal][Nreader][2 modalities] {@link #d1_modAA}, {@link #d1_modAB}, {@link #d1_modBB}: signal present scores [Ndisease][Nreader][2 modalities] * --fully crossed status * ---- {@link #fullyCrossedA}, {@link #fullyCrossedB}, {@link #fullyCrossedAB} * CALLED BY: {@link mrmc.gui.InputFileCard.varAnalysisListener} */ t0_modAB = new double[(int) Nnormal][(int) Nreader][2]; t1_modAB = new double[(int) Ndisease][(int) Nreader][2]; t0_modBB = new double[(int) Nnormal][(int) Nreader][2]; t1_modAA = new double[(int) Ndisease][(int) Nreader][2]; t1_modAA = new double[(int) Ndisease][(int) Nreader][2]; t0_modAA = new int[(int) Nnormal][(int) Nreader][2]; d1_modAA = new int[(int) Ndisease][(int) Nreader][2]; d1_modBB = new int[(int) Ndisease][(int) Nreader][2]; d0_modAB = new int[(int) Nnormal][(int) Nreader][2]; d1_modAB = new int[(int) Ndisease][(int) Nreader][2]; int PresentModA; int PresentModB; // signal-absent case counter // signal-present case counter // reader counter InputFileStat.keyedD ata.keySet()) End End for // For all readers and cases, determine which had observations End for InputFileStat.keyedData. InputFileStat.keyedD ata.get(r).keySet()) get(r).get(c).containsKey .get(c).containsKey(c)? (modA) Yes No ScoreModA = -1000000; ScoreModB = -1000000; PresentModA = 0; ScoreModB = -1000000; PresentModB = 0; fullyCrossedB = false; InputFileStat.keyedData.get (r).get(c).containsKey(modB) coreModB = InputFileStat.keyedData.get(r).get(c).get(modB); InputFileStat.truthVals.get(c) == 0 No-// Fill in the score and design matrices Yes t0_modAB[m][k][1] = ScoreModA; t0_modAA[m][k][0] = ScoreModA; t0_modAA[m][k][1] = ScoreModA; t0_modBB[m][k][0] = ScoreModB; t0_modBB[m][k][1] = ScoreModB; t1_modAB[n][k][1] = ScoreModA; t1_modAA[n][k][0] = ScoreModA; t1_modAA[n][k][1] = ScoreModA; t1_modBB[n][k][0] = ScoreModB; t1_modBB[n][k][1] = ScoreModB; d0_modAB[m][k][0] = PresentModA; d0_modAB[m][k][1] = PresentModB; d0_modAA[m][k][0] = PresentModA; d0_modAA[m][k][1] = PresentModA; d0_modBB[m][k][0] = PresentModB; d1_modAB[n][k][0] = PresentModA; d1_modAB[n][k][1] = PresentModB; d1_modAA[n][k][0] = PresentModA; d1_modAA[n][k][1] = PresentModB; d1_modBB[n][k][0] = PresentModB; d0_modBB[m][k][1] = PresentModB; d1_modBB[n][k][1] = PresentModB;