

The last the

NON AFFECTED CONTROLS=76 >65 YEARS PSA<4 ASSOCIATION STUDIES (FIRST SCREENING) SPORADIC CASES FAMILIAL CASES AFFECTED CASES= 112 POPULATION CHARACTERISTICS POPULATION SAMPLE SIZE

FIG.2

AND THE PROPERTY OF THE PARTY O

4.111

ASSOCIATION STUDIES (ZOOM)

UNAFFECTED	CONTROLS (104)	>65 YEARS	PSA<4	
AFFECTED	CASES (185)	47 SPORADIC CASES	+138 FAMILIAL CASES	
		CHARACTERISTICS	OF POPULATIONS	

continuated by the property of the property of

FIG.3

HAPLOTYPE FREQUENCY ANALYSIS

POPULATIONS

	AFFECIED	UNAFFECIEU
	CASES 2 (281)	CONTROLS 3 (130)
CHARACTERISTICS	143 SPORADIC CASES	>65 YEARS
OF POPULATIONS	+138 FAMILIAL CASES	PSA<4

			PVALUE			9,00E-04 ***	6,00E-05 ***	1,00E-05****	10,06 9,00E-07****	2,00E-05****	2,00E-05****	4,00E-05****	2,00E-04***	1,00E-04**	3,00E-04***	6,00E-04***
			RELATIVE	RISK		4,42	6,46	6,78	10,06	5,17	4,78	2,33	2,17	2,32	2,01	2,05
	HAPLOTYPE	FREQUENCIES		CASES CONTROLS		5 0,018	5 0,016	6 0,019	0,117 0,013	7 0,025	0,117 0,027	0,222 0,109	1 0,134	0,226 0,112	0,256 0,146	0,233 0,129
		FRE				0,075	0,095	0,116	0,11	0,117	0,11	0,22	0,251	0,22	0,25	0,23
99-135	80725812			2,005-0	>100KB<	A	۷									
99-221				7,00E-01	<29KB>	A	٧	A	٧	A	Ā					
4-14 4-77 99-217 4-67 99-213 99-221 99-135				,00E-01 2,00E-02 2,00E-02 6,00E-04 9,00E-02 7,00E-012,00E-01	<15KB> <29KB>>100KB<	9	ပ	9	ပ	ပ	9	9		ပ		9
4-67	B0463F01		Å	6,00E-04 ***	<88KB> <22KB> <17KB>	⊢	F	⊢	ь	<u>-</u>	۰	1	F	 -	T	1
99-217		53	PG1 —	2,00£-02	<22KB>	⊢	-	⊢	 - -	-	Ь	_	L	_	-	
4-77		11453	¥	2,00E-02 **	<88KB>	ပ	ဌ	ပ	ပ	9		9	9			
	B0189E08			1,00E-01	<15KB>	ပ	ပ	ပ	ပ							
4-26				,00E-01	<18KB>	⋖	¥	⋖								
99-123 4-26	H0287809			2,00E-011,00E-011	~	ပ										
MARKERS	BACS	CONTIGS	GENES	P VALUE	DISTANCE BETWEEN MARKERS(KB)	IAPLOTYPE 8>304KB<	IAPLOTYPE 7>286KB<	HAPLOTYPE 6<186KB>	HAPLOTYPE 5<171KB>	HAPLOTYPE 4<83KB>	HAPLOTYPE 3.1<54KB>	HAPLOTYPE 3.2<54KB>	HAPLOTYPE 2.2<39KB>	HAPLOTYPE 2<32KB>	HAPLOTYPE 1.1<17KB>	HAPLOTYPE 1.2<15KB>

FIG.4

HAPLOTYPE SIMULATIONS (100 ITERATIONS)

THE PART OF THE PARTY OF THE PA

FIG.5A

HAPLOTYPE SIMULATIONS (100 ITERATIONS)

						HAPLOTYPE	PLOTYPE FREQUENCIES	RELATIV	1111111111
RKERS 4-144-7799-2174-67 99-21399-221 CASES	-7799-	-217	4-67	99-213	199-221	CASES	CONTROLS	RISK	FVALUE
LOTYPE C (<u> </u>	—	ပ	4	0,117	0,013	10,06	9,00E-07

children der merken betreitet in der 100

FIG.5B

*	F	~	~	~	~	₹		₹	7
ICROSEQ. OLIGOS POSITIONS	OMPLEMENTARY	OMPLEMENTARY	COMPLEMENTARY	COMPLEMENTARY	COMPLEMENTARY	OMPLEMENTARY	COMPLEMENTARY	OMPLEMENTARY	COMPLEMENTARY
9	2	\simeq	~	~		<u>~</u>	<u>~</u>	~	~
MICROSEQ.	1-23 25-47	1-23 25-47	1-23 25-47	1-23 25-4	1-73 25-4	1-23 25-4	1-23 25-4	1-23 25-4	1-23 25-47
BASE	1/3	\\G	_\	0/S	, \ , \	, , ,	, , ,	V.\C.	A/G
POLYMORPHISM POSITION*	24	24	24	24	24	24	24	24	24
SEQ ID	48	49	50	51	52	53	54	55	56
RP SEQUENCE	TATTCAGAAGGAGTGGG	TGAGGACTGCTAGGAAAG	GACTGTATCCTTTGATGCAC	GGAAAGGTACTCATTCATAG	GTTTATTTGTGTGAGCTTTG	TGAAAGAGTTTATTCTCTGG	TTATTGCCCCACATGCTTGAG	TCATTCGTCTGGCTAGGTC	AAACACCTCCCATTGTGC
SEQ ID	39	40	4	42	43	44	45	46	47
PU SEQUENCE	AAAGCCAGGACTAGAAGG	TACAGCCCTGTAAGACAC	TCTAACCTCTCATCCAAC	TGTTGATTTACAGGCGGC	GGTGGGAATTTACTATATG	AAGTICACCTICTCAAGC	ATACTGGCAGCGTGTGCTTC	CCCTTTTCTTCACTGTTC	
SEQ ID N°(MUT)	30	34	32	33	34	35	36	37	38
SEQ ID	21	22	23	24	25	26	27	28	29
MARKER	89-123	4-26	4-14	4-77	99-217	4-67	99-213	99-221	99-135
BAC	228	189	228/189	189/463	463	189/463	463	463	725

FIG.6A

*: POSITIONS ARE GIVEN RELATIVE TO THE SEQUENCE OF THE CORRESPONDING MARKER (i.e. SEQ ID Nº 21-38 AND 57-62)

to effethermoralism) in

1-23 25-47 (COMPLEMENTARY)	, , , ,	24	88	TGGCTCTGCATTTCTTCC	65		62	59	4-65	463
A/C 1-23 25-47 (COMPLEMENTARY) G/C 1-23 25-47 (COMPLEMENTARY)	ეე }ე	24	99 67	ACAAATCTATATAAGGCTGG CTCTTGGTTAAACAGCAGTG	63 64	ATCAAATCAGTGAAGTCTGAG ATCGCTGGAACATTCTGG	60 61	57 58	99-1482	189/463 463
SEQ ID POLYMORPHISM BASE MICROSEQ. OLIGOS POSITIONS*	BASE	POLYMORPHISM POSITION*	SEQ ID	RP SEQUENCE	SEQ ID	PU SEQUENCE	SEQ ID N*(MUT)	SEQ ID	MARKER	BAC

FIG.6B

*: POSITIONS ARE GIVEN RELATIVE TO THE SEQUENCE OF THE CORRESPONDING MARKER (i.e. SEQ ID Nº 21-38 AND 57-62)

EXON Phase	START	END	5' SPsite	PHASE	3' SPsite
Ex1 +0	2001	2216			GTGAGC
Ex2 +1	18196	18265	TAG	+0	GTTTGTA
Ex3 ·	23717	23832	CAG	+2	GTAACT
Ex4 +0	25571	25660	CAG	+0	GTAAGA
Ex5 +2	34669	34759	CAG	+0	GTAAGT
Ex6 +1	40688	40846	TAG	+1	GTAAGT
Ex7 +2	48070	48193	TAG	+2	GTGAGT
Ex8	50182	54523	TAG	+1	
ATG codon	2031	2033			
STOP codon	50405	50407			
POLY Ad site	54445	54450			

FIG. 7

THE PROPERTY OF THE PROPERTY OF

		box 1	box 2	box 3
PG1	Hs	NHQ 81-83	FPEGTR 160-165	LDAIYDVTV 211-219
AF003136 (Genbank)	Ce	NHQ 630-632	FPEGTR 712-717	LDAIYDVTV 762-770
Z72511 (Genbank)	Ce	48 NHR 50	FPEGTD 129-134	VEYIYDITI 204-212
P38226 (Swissport	Sc :)	111 NHQ 113	FPEGTN 223-228	IESLYDITI 271-279
P33333 (Swissport	Sc :)	81 NHQ 83	FPEGTR 154-159	-
Z49770 (Genbank)	Sc	116 NHQ 118	FPEGTN 215-220	LDAIYDVTI 265-273
P26647 (Swissport	Ec)	72 NHQ 74	FPEGTR 145-150	-
Z49860 (Genbank)	Bn	-	FVEGTR 90-95	VPAIYDMTV 138-146
U89336 (Genbank)	Hs	95 NHQ 97	FPEGTR 168-173	-
U56417 (Genbank)	Hs	103 NHQ 105	FPEGTR 176-181	-
AB005623 (Genbank)	Mm	100 NHQ 102	FPEGTR 173-178	
Z29518 (Genbank)	Zm	91 NHR 93	FVEGTR 170-175	VPAIYDTTV 218-226

Hs = Homo sapiens, Ce = Caenorabibitis elegans, Ec = Escherichia coli; Sc = Saccharomyces cerevisiae, Bn = Brassica napus, Zm = Zea maize, Mm = Mus Musculus

Note: Funcitional acyl glycerol transferases all contain boxes 1 and 2 and not box 3. Proteins most related to PG1 contain the 3 boxes with a high degree of conservation.

FIG. 9

^{- =} pattern absent from protein sequence

FIG. 10

PERINUCLEAR

A STATE OF STREET STREET, STRE

PERINUCLEAR

PNT2 PG1 1-4

FIG. 11

PG1 1-5 1-5

PNT2 PG1 1-5

GFP

Ы

PNT2 PG1 mut229

FIG. 13

-

FIG. 14A

Alternative splicing

FIG. 14B

FIG. 14A

FIG. 14

elitikal kalitikali is

FIG. 14B

· NET THE REPORT OF THE PROPERTY OF THE PROPER

Combination of exons of PG1 gene discovered by PCR with primers specific for exon borders

		- 1																												
		9				.nCaPFCG	NCaPJMB																					7	3	*
Printer	es	prostat	۲	8	2	пΡ	P.	2	Du145		2	9	7	8	6	ECP10	11	ECP12	ECP13	14	ECP15	ECP16	17	ECP18	19	ECP20	ECP21	ECP22	.7	27
Ë	Clones	ros	PNT	PNT1B	PNT	nC	2	CoHPV	Ĺ	PC3	ECP5	ECP6	ECP7	ECP8	ECP9	СР	ECP11	CP	СР	ECP1	S	CP	ECP1	S	ECP1	2	5	C	ECP2.	CP
ط ا	ပ	Ь	Д	٦	۵.	_	_	ပ		Р	ш	ш	ш	W	ш	W	البا	LLI	777	777	<u>لدا</u>	<i>777</i>	777	<u> </u>	222	<i>7777</i>	ш 7777	-		
PG1exon13																X)														
PG1exon14	1	20		22			2	2	2	2	2	2	Ź	ŹŹ	22	22	2	22	20	22	200	22	200	22	2/2	22	2012	200	20	222
PG1exon15	+	-	_	_	_	_	-	NT	_	_	+	_	-	_	-	_	_	_	-	_	_	_	_	-	<u> </u>	_	<u> </u>	_	\dashv	\vdash
PG1exon16	-	+	_	+	+	-	_	NT	_	_	_	_	+	_	_	_	_	_	_	<u>-</u>	-	_	1 -		_	_	+	_	+	
PG1exon17	+	+	+	+	+	+	+	NT	+	+	_	_	+	_	_	_	+	+	+	+	+	+	+	_	_	+	+	_	_	\vdash
PG1exon18	+	+	+	+	+	- 7777	-	NT	+	+	-	-	 777	-	-	<u>-</u>	- 770	- 700	-	- ()()	+	- 720	- 70	- 020	- VZ	720	700	///	740	720
PG1exon24		22	22	22	2/2	2012	2/2	2/	22	200	200	200	21/2	22	222	01/2	27/2	200	201/2	<i>[]</i> []	<i>7</i> 7/2 +	77/2		01/2	77/	22/2	<i>72.</i> 2	2/2	+	<i>///</i>
PG1exon25	+	+	-	+	+	-	 777	NT	+	- ////	-	-	 ((()	770	70	- ///	+	780	720	70	T [][]	- V10	- 720		1/10	740	740	740	740	740
PG1exon26			772	2/2	22/2	20	2012	<u> </u>	22	22/2	200	200	27/2	200	07/2	ØZ/	01/2	<i>7</i> 22	<i>0</i> 74		<i>7</i> 2/2		<i>(M)</i>	<i>()[</i> ()	<i>()</i> //	<i>////</i>	<i>////</i>	<i>-</i>	+	+
PG1exon27	_	1	_	+	+	_	_	NT	+	_		_	_	_	_	_	_	_	_	_	T		_			_	_	_	<u>.</u>	
PG1exon28	_	_	+	-	_	-	_	NT	_	_	_	_	_	_	_	_	_	+	_	+	+	<u> </u>	_		+	+	+	+		\exists
PG1exon35	-	+	+	+	+	+	7777	NT	+	+	- (/(/)	77	- 770	- ((()	70	- ///	+	T 720	730	70	T 720	720	- 130	720	120	720	747	140	140	740
PG1exon36	11/2	20	2/2	22	200	200	1111	M	200	200	200	M	2	01/	224	27/4	77/2	07/2	NA.	M	<i>0</i> 1/2	<i>(X)</i>	<i>014</i>	01/2	222	2/2	/////	7/2	22	224
PG1exon37	_	_	_	_	_	-	_	NT	_	_	_	_	_	_	_	_	_	_	_	_	_					_	+	_		\exists
PG1exon38	_	-	_	-	- 7777	- 7777	-	NT	-	+	- (/(/	- 777	- ////	-	<u>-</u>	-	- (///	- (130)	- (/()	- 00	T	720	700	120	_ VZ	100	72	720	730	72
PG1exon46																														
PG1exon47	22	22/	2	2		22	22/	<u> </u>	20	200	200		27/2	080	2002	27/4	01/2	08/	774	<i>7</i> 72	<i>0</i> 14	01/	<i>[]</i> []	22	2//	2/2	////	///	22	
PG1exon48	-	-	<u> </u>	-	+	-	-	NT	- ////	-	 (7()	- (10)	+	-	_ ///	-	70	- 00	00	720	- 720	02	70	1	120	1/4/	747	140	740	7
PG1exon57	20	M	25/2	22/	200	22	2//	<u> </u>	200	200	200	000	M	070	27/2	27/	010	01/2	07/	<i>0</i> 10	0 <u>X</u> 0	01/	(Y/)	22	2//		7//	+	7/2	
PG1exon58	_	_	_	二	-	+	+	NT	-	<u>-</u>	_	_	_	-	_	_	-	_	+	+	_	Ξ	+	_	_	_	+	<u> </u>	+	+
PG1exon68	-	+	+	<u> </u>	+	+	+	NT	+	+	_	_	_	+	+	+	+	+	+	+	_	_	+	_	_	+	+	+	<u>:</u>	+
PG1exon11b	+	+	+	+	+	+	+	NT	+	+	_	+	_	+	_	+	+	+	+	<u>+</u>	_		+	_	_	+	+	+	_	+
PG1exon1b2	+	+	+	+	+	+	+	NT	+	+	- 00	700	-	T	+	T 70	T 730	T [][]	72	720	180	140	1	720	140	140	14	14	740	
PG1exon1b3		22/	772	2/2	22	27/	22	222	27/	22	27/	200	774	200	<i>7</i> 72	N_{\perp}	010	0 <u>Y</u> 0	7//	+	+	+	+	2//	+	+	_	-	+	_
PG1exon1b4	ــــ	+	=	+	+	+	+	+	+	+	_	_	+	_	T	+	+	+		<u> </u>	+	_	+	=	<u> </u>	+	+	+	+	
PG1exon1b5	777	+	<u>-</u>	1/1/	+	+	+	NT	+	+	77	7(1)	+	///		- []]]	T		- VZ	100	140	140	744	144	140	14	74	Ż	140	
PG1exon1b6		2	<i>Y 22</i> 2	22	27/	2	22	PXX NIT	72/	27/2	22/	27/	Œ.	77/	77/2	<i>77/</i>	<i>7</i> 2/2		()Y/)	(YZ)		<i>////</i>	//// -	////	-	-	-	<i>777</i>	-	-
PG1exon1b7	ļ	+	ᆮ	+	+	+	+	NT	+	+	+	+	Ξ	_		_	_				_	-	_	_	_	-	_	=		
PG1exon1b8	1777	- ////	- 777	+	770	+	-	NT	70	-	00	+	//		00			- 	VZ/	VI	720	1/4/	744	140	14	140	140	140	(40)	W.
PG1exon3b4	2			77	2	27/	22/	N.T.	27/	200	27/2	<i>(7</i> 1/2	<i>(2</i> 72	ØZ	07/	ØZ.	01/		///	-	///	<i>-</i>	7//	_	-	_	_	_	_	-
PG1exon3b5	1777	<u>-</u>	770	+	+	-	-	NT	- ///	70	70	- ///	732	76		74	00	VZ	/Z/	100	740	120	144	140	120	140	144	140	(46)	4
PG1exon3b6	1///	/ 2/2	Y	1 22	(2 <u>/</u> 2/	1	222	727	ØZ.	2012	<i>(2</i> 7/2	77/	01/2	DY)	77/	07/	77/			7//	1///	<i>Y///</i>	////	7//	1///		<i>////</i>	<i>////</i>	<i>-</i>	- -
PG1exon3b7	ļ	+	-	+	+	_		NI		+	_	-	_	_				_	_	_	_	-	_	_	 	=	_	_	_	
PG1exon3b8	 	Ļ	<u> </u>	-	_	-		NT	_	Ţ	<u> </u>	1.	_		_		<u> </u>	+	_	_	_	_	-	-	_	-	_	=	-	
PG1exon5b6	+		+	-	-					+	=	+	E	=	=	E	=	_	Ī	_	_	+	_	-	-	-	-	-	-	
PG1exon5b7	\vdash	+	-	+	+	-	-		-		-	E	E	=	=			Ē		_	_	-	_	-	_	-	_	-	_	
PG1exon5b8	100	1/6	7///	100	+					- 		1/2	00	10	10	10	12	10	1/1/2	10	144	1/4/	144	144	14	XX	14	V.V.	141	
PG1exon56b	<i>*************************************</i>		XXX	Y.				9 33																						
PG1exon46b	<i>W.</i>							4 XX							V.V.															
PG1exon36b	<i>W.</i>							1 22												¥										
PG1exon26b	<i>\\\\\</i>																					14								
PG1exon16b	1//	XX	<u>X/Y</u> /	XX	XX	1/2/	100	22/2	XX	XX	XX		X/X/	1///	VY/	17//			<u>X/X</u>	X/Y/	X/Z	X///	VII.	X/Z/	X///	X/Z/	<u> </u>	MIL	VIL	V//A

[+] alternative splicing form with combination of exons 13478 instead of 1345678

FIG. 15

Other of the broaden mentanium of the fall of the control of the c

FIG. 17

ASSOCIATION STUDIES PG1 (8p23)

THE REPORT OF THE PROPERTY OF THE PARTY OF

ASSOCIATION STUDIES

FIG. 18A

PG1 (8p23)

SNOITA III A DA		AFFECTED N= [275;491]		UNAFFECTED N=[130;313]
	ALL CASES	SPORADIC CASES	FAMILIAL CASES	CONTROLS
characteristics of populations	<=491 all cases	<=491 all cases <=294 sporadics cases <=197 familial cases	<=197 familial cases	<28 unaffected (65 years or older) & <=289 controls (65 years or older with PSA<4)

is religible to a second of the second of th

Attributable Risk	17.58	Q	ON.	13.15	18.16	18.64	13.25	26.76	QN	QN	9.32	QN	QN	Q	8.46	18.40	QN	13.16	10.97
Freq(randoms)	0.29	\$QN	QN	0.41	0.31	0.28	0.31	0.52	QN	QN	0.28	QN	QN	QN	0.28	0.24	QN	0.24	0.24
Pvalue	2.53E-02	9.64E-03	6.93E-02	1.57E-01	1.35E-02	1.43E-02	9.43E-02	7.29E-03	8.33E-02	4.83E-02	1.68E-01	2.69E-02	7.52E-01	7.29E-03	1.07E-01	3.18E-03	0,527§	4.68E-03	2.39E-02
Odd Ratio	1.44	1.51	1.37	1.23	1.43	1.49	1.29	1.48	1.30	1.36	1.25	1.44	1.01	1.55	1.20	1.72	1.76	1.43	1.33
abs diff % (fq(cases)— (fq(controls))	7.4	10.1	5.8	2	7.4	8.3	5.7	9.7	6.2	7	4.4	7.4	0.3	9.2	3.8	9.2	0.3	6.2	6.4
Freq(controls)	0.24	0.42	0.22	0.38	0.26	0.26	0.30	0.42	0.37	0.30	0.25	0.25	0.34	0.25	0.28	0.17	0.00	0.19	0.20
Freq(cas)	0.32	0.52	0.28	0.43	0.34	0.34	92.0	0.52	0.43	0.37	0.29	0.33	0.34	0.35	0.31	0.27	0.01	0.25	0.25
Polym.	L/*9	C/T	C/T	G/A	ე/ე	9/v	9/v	ე/9	, G/A	A/T	A/C	A/G	1/A	G/A	1/c	ე/9	G/A	c/T	1/0
PG1	prom	in 1	in 1	in1	in1	in1	in1	in1	in1	in1	in2	in2	in3	in4	in4	ju6	3'UTR	3'UTR	3'UTR
name of markers	99-1485/251	99-622/95	99-619/141	4-76/222	4-77/151	4-71/233	4-72/127	4-73/134	99-610/250	89-609/225	4-90/283	99-602/258	99-600/492	99-598/130	99-217/277	99-576/421	4-61/269	4-66/145	4-67/40

§ Test Fisher—\$ ND: Not done —* disease associated allele / not associated allele

FIG. 18B

FIG. 19A HAPLOTYPE FREQUENCY ANALYSIS

POPULATIONS	AFFECTED	UNAFFECTED
sample sizes	CASES (n=491)	CONTROLS (n=317)
characteristics of populations	294 sporadic cases + 197 familial cases	28 unaffected (65 years or older) + 289 controls (65 years or older with PSA<4)

				T		T
		_	4-14/240	99-217/277	4-66/145	99-221/377
PG1 (8	lp23)		in4	3'UTR	
distance bet	ween	mks	<100	Okb> <17	kb> <43	kb>
size (cases v			481 vs 305	481 vs 302	481 vs 300	481 vs 303
		controls)	65,7/62,1(C)	31,3/27,5(C)	25,1/19(C)	42,7/42,91 (A)
abs diff freq. all.	cases	-controls)	3.6	3.8	6.2	0
pvalı	16		1.47E-01	1.07E-01	4.68E-03	7.52E-01
Hardy Weindeberg		cases	5.84E-01	6.55E-01	2.54E-01	5.84E-01
Disequilibrium	(controls	4.80E-01	2.21E-01	3.71E-01	2.54E-01
HAP 1 <43kb>		451 vs 297			//// \$ ////	//// / \////
HAP 2 <17kb>		451 vs 296				
HAP 3 <117kb>		452 vs 299	C.			
HAP 4 <100kb>		479 vs 302	(//// % /////	49.4 %		
HAP 5 <60kb>		476 vs 300				
HAP 6 <160kb>	PT2	476 vs 303		<u> 1400 h - 140</u>		
HAP 7 <160kb>		447 vs 297		m. 14. 14		
HAP 8 <60kb>		446 vs 294				
HAP 9 <117kb>		450 vs 296	(//// C /////	/// T		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
HAP 10 <160kb>	PT3	474 vs 300		11. 11. 11. 11.		
HAP 11 <160kb>	PT4	445 vs 294	(11/1 % (11/1)	97 19 .V 997	//// /\$ //////	

	otype encies				
cases	controls	Odd ratio	Chi-S	Pvali	ue
0.116	0.067	1.83	9.85	(1.7e-03)	***
0.243	0.183	1.43	7.49	(6.2e-03)	**
0.182	0.130	17:49	7.18	(7.3e-03)	**
0.217	0.188	1.20	1.88	(1.7e-01)	*
0.155	0.132	1.20	1.54	(2.1e-01)	*
0.373	0.346	1.12	1.16	(2.7e-01)	*
0.095	0.042	2.39	14.62	(1.3e-04)	****
0.117	0.065	1.93	11.33	(7.3e-04)	***
0.178	0.125	1.53	7.80	(5.2e-03)	**
0.114	0.089	1.32	2.44	(1.1e-01)	*
0.095	0.032	/ /3:18/	21.59	(3.4e-06)	*****

FIG. 19B

HAPLOTYPE FREQUENCY ANALYSIS PG1 (8p23)

markers of haplotype Max	4-14/240	99-217/277 in4	4-66/145 9	99-221/377
	ပ	L	0	A
distance between mks	<10(<100kb> <17	<17kb> <	<43kb>

	sample sizes	haplotype frequencies	fype ncies	odd ratio	chi-S	P value	alue
PG1	cases vs control	Sespo	controls				
cases vs control	455 vs 294	0.095	0.032	3.18	21.59	3.40E-06	****
cases (<=65 years) vs controls	171 vs 294	0.105	0.032	3.56	20.91	4.60E-06	****
cases (>65 years) vs control	271 vs 294	0.079	0.032	2.60	12.13	4.80E-04	**
sporadic cases vs controls	266 vs 294	960.0	0.032	3.23	19.73	8.60E-06	****
sporadic cases (<=65 years) vs controls	85 vs 294	0.095	0.032	3.20	12.04	5.00E-04	****
sporadic cases (>65 years) vs controls	178 vs 294	0.085	0.032	2.82	12.75	3.50E-04	***
informative sporadic cases vs controls	67 vs 294	0.062	0.032	2.00	2.70	9.40E-02	*
familial cases vs controls	179 vs 294	0.098	0.032	3.32	18.33	1.80E-05	****
familial cases (<=65 years) vs controls	86 vs 294	0.112	0.032	3.83	17.98	2.20E-05	****
familial cases (>65 years) vs controls	93 vs 294	0.075	0.032	2.48	6.59	1.00E-02	**
familial cases (>=3 caP) vs controls	79 vs 294	0.123	0.032	4.26	21.33	3.70E-06	****
							l

FIG. 20

HAPLOTYPE FREQUENCY ANALYSIS (PG1)

OG1 G/T C/G A/G C/G A/G C/G cols) 336 vs 108 363 vs 173 336 vs 129 352 vs 129 352 vs 129 / controls) ND 31 (G) 28 (A) 52 (G) / controls) ND 31 (G) 28 (A) 52 (G) / controls) 10.1 7.4 8.3 9.7 / controls) 1.51 1.43E-02 7.29E-03 / controls) 1.51 1.43E-02 7.29E-03 / controls) 1.51 1.43E-02 7.52E-01 / controls) 1.51 1.43E-02 7.52E-01 / controls) 1.52E-01 7.52E-01 / controls 4.93E-01 7.52E-01 / controls 1.21E-01 7.52E-01	A/G	C/G in6 355 vs 129 27/17 (G) 24 (G) 9.2 3.18E-03 	25/145 C/T 3**UTR 456 vs 306 25/19 (C) 24 (C) 6.2 4.68E-03	hapi	haplotype				
See vs controls Size vs 108 Size vs 130 Size vs 129	A/G in4 347 vs 126 35/25 (G) ND 8.2 7.29E-03	┈┈╎┈╏┈╎┈╏┈╏	3'UTR 456 vs 306 26/19 (C) 24 (C) 6.2 4.68E-03	frequ					
Interpolation Interpolatio	in4 347 vs 126 35/25 (G) ND 9.2 7.29E-03		3'UTR 456 vs 306 25/19 (C) 24 (C) 6.2 4.68E-03	fredu		-			
Sample Risk % Sample Risk	347 vs 126 35/25 (G) ND 9.2 7.29E-03		25/19 (C) 24 (C) 6.2 4.68E-03		frequencies				-
S2/42 (G) 34/26 (G) 34/26 (A) S2/42 (B) S2/42 (B	35/25 (G) ND 9.2 7.29E-03	24 (G) 9.2 9.2 3.18E-03	24 (C) 6.2 4.68E-03						
ND 31 (G) 28 (A) 10.1 7.4 8.3 10.1 7.4 8.3 10.1 7.4 8.3 10.1 7.4 8.3 10.1 7.4 8.3 10.1 7.4 8.3 10.1 10.1 10.2 10.3 10.	9.2 7.29E-03	9.2 9.2 3.18E-03 	24 (C) 6.2 4.68E-03						-
Marcass 10.1 7.4 8.3 1.38	9.2 7.29E-03	9.2 3.18E-03 	6.2 4.68E-03						
1.35E-02 1.43E-02 1.43E-02 1.43E-02 1.43E-02 1.43E-02 1.43E-02 1.49E-03 1.49E-04 1.43E-04 1.49E-04 1.49E-04 1.49E-04 1.49E-04 1.49E-04 1.49E-04 1.40E-04 1.40E-04	7.29E-03	3.18E-03	4.68E-03	cases	controis	ppo	Attributable	Pvalue	
cases vs controls)	: ,	1.72				Ratio	Risk %	(cases vs controls)	rols)
Odd Ratio 1.51 1.43 149 Dutable Risk % ND 18 16 18 64 cases 7.52E-01 7.52E-01 5.84E-01 controls 4.39E-01 4.03E-01 1.21E-01	1 55	1.72	:				_		
outable Risk % ND 18 16 18 64 cases 7.52E-01 7.52E-01 5.84E-01 controls 4 39E-01 4 03E-01 1.21E-01	3		1.43						
cases 7.52E-01 7.52E-01 5.84E-01 controls 4.39E-01 4.03E-01 1.21E-01	QN	8 46	13.16	-					
controls 4 39E-01 4.03E-01 1.21E-01	7.52E-01	7.52E-01	3.43E-01						
	6.52E-02	7.52E-01	1.29E-01						
2 MKS 339 vs 16/				0.263	0.152	1.99	18.55	_	****
3 MKS 330 vs 122				0.259	0.147	2 02	QN	(3.9e-04)	
+		1		0.259	0.147	2 02	Q.	(4.19-04)	
+	36			0.26	0.148	2.01	QN	(4.8e-04)	
+				0.258	0 149	2	QN	(5.39-04)	I
haplotype 5 b MKS 309 vs 121				0 255	0 146	2	Q	(1 6e-03)	

FIG. 21

Comparison of Pvalue between nb of mks for haplotype (19 mks of PG1)

GENE	# of markers	# of 2 mks combinations	# of 3 mks combinations	# of mks combinations
PG1	19	171	696	3876

