Chapitre

Fonctions affines

14

à lire : pour tout $x \in \mathbb{R}$ associe

la valeur mx + p.

Définition 14.1 Soit deux nombres m et p. La fonction

$$f \colon \mathbb{R} \to \mathbb{R}$$

 $x \mapsto f(x) = mx + p$

s'appelle fonction affine.

La représentation graphique de la fonction f est la droite non verticale d'équation réduite D_f : y = mx + p.

Définition 14.2 Si p = 0 on dira que la fonction est **linéaire** : pour tout $x \in \mathbb{R}$ on a f(x) = mx.

La représentation graphique de la fonction f est la droite de pente m qui passe par l'origine du repère D_f : y = mx.

- f(0) = p.
- Pour tout a et $b \in \mathbb{R}$ on a f(a) f(b) = m(a b).

Proposition 14.1 — Conséquences.

① Si f est une fonction affine alors il existe une constante m tel que

pour tout
$$a \neq b$$
 on a $\frac{f(a) - f(b)}{a - b} = m$

- ② Pour une fonction affine f, le couple de nombres m et p est **unique**. On peut dire :
 - p est le terme constant.
 - m est le coefficient de x.
- ③ Si on connait le coefficient m, b et son f(b) par la fonction affine f, on peut calculer l'image par f de toute valeur $a \in \mathbb{R}$:

$$f(a) = m(a - b) + f(b)$$

2 14 Fonctions affines

Donc f est une fonction **strictement croissante**.

Si m<0 , alors pour tout a et $b\in\mathbb{R},$ f(a)-f(b) et a-b sont de signes contraires.

Donc f est une fonction **strictement décroissante**

⑤ Si m=0, alors pour tout a et $b\in\mathbb{R},$ f(a)-f(b)=0. la fonction f est **constante** f(x)=p

Figure 14.1 – m>0 : f est strictement croissante. m<0 : f est strictement décroissante

Année 2021/2022 LG Jeanne d'Arc, 2nd

14.1 Exercices 3

14.1 Exercices

Exercice 1 Dans les cas suivants, déterminer le taux d'accroissement m de la fonction affine f tel que :

a)
$$f(5) = 12$$
 et $f(6) = 2$

b)
$$f(9) = 12$$
 et $f(5) = 2$

c)
$$f(-9) = 12$$
 et $f(5) = 2$

d)
$$f(19) - f(-20) = -117$$

e) $f(-6) - f(5) = 77$
f) $f(2) - f(16) = 49$

e)
$$f(-6) - f(5) = 77$$

f)
$$f(2) - f(16) = 49$$

Exercice 2 Dans les cas suivants, calculer la valeur demandée connaissant le taux d'accroissement mde la fonction affine f:

a) Si
$$m = -1$$
 alors $f(4) - f(-3) = ?$

b)
$$Sim = -1 \text{ alors } f(20) - f(-12) = ?$$

c) Si
$$m = 9$$
 alors $f(-10) - f(16) = ?$

d) Si
$$m = -3$$
 alors $f(20) - f(-18) = ?$

e) Si
$$m = \frac{8}{5}$$
 alors $f(13) - f(-8) = ?$

e) Si
$$m = \frac{8}{5}$$
 alors $f(13) - f(-8) = ?$
f) Si $m = \frac{5}{8}$ alors $f(13) - f(-8) = ?$

Exercice 3

Préciser dans chaque cas si la fonction
$$f$$
 peut être affine :
1) $f(-4) = \frac{25}{4}$, $f(19) = -\frac{159}{4}$ et $f(-15) = \frac{129}{4}$
2) $f(10) = -16$, $f(-18) = \frac{172}{5}$ et $f(20) = -34$.
3) $f(-14) = -\frac{225}{4}$, $f(2) = \frac{31}{4}$ et $f(-17) = -\frac{261}{4}$

2)
$$f(10) = -16$$
, $f(-18) = \frac{172}{5}$ et $f(20) = -34$.

3)
$$f(-14) = -\frac{225}{4}$$
, $f(2) = \frac{31}{4}$ et $f(-17) = -\frac{261}{4}$

4)
$$f(-15) = -55$$
, $f(-18) = -\frac{131}{2}$ et $f(16) = \frac{105}{2}$

5)
$$f(10) = 7$$
, $f(18) = 15$ et $f(11) = 8$

6)
$$f(9) = -23$$
, $f(-19) = 61$ et $f(1) = -1$.

Exercice 4

Déterminer une expression de la fonction affine f dans les cas suivants en précisant m et p.

1)
$$f(1) = 2$$
 et $f(4) = 8$.

2)
$$f(-1) = 4$$
 et $f(2) = 3$.

3)
$$f$$
 est linéaire et $f(3) = -4$.

4)
$$f$$
 est linéaire et $f(-8) = 12$.

5)
$$f$$
 est linéaire et sa courbe représentative passe par $A(-7, -21)$.

6)
$$f(2) = -5$$
 et $f(7) = 3$.

7) sa courbe représentative passe par
$$A(-2;3)$$
 et $B(3;-1)$.

8) sa courbe représentative passe par
$$A(3;-2)$$
 et $B(-1;3)$.

9) sa courbe représentative passe par les points
$$A(-2,1)$$
 et $B(1,3)$.

10)
$$f(-6) = \frac{22}{3}$$
 et f constante.

11) le taux d'accroissement vaut
$$\frac{1}{3}$$
 et $f(15) = 3$

11) le taux d'accroissement vaut
$$\frac{1}{3}$$
 et $f(15) = 3$
12) le taux d'accroissement vaut $\frac{1}{2}$ et $f(-16) = \frac{11}{2}$

13) l'ordonnée à l'origine vaut
$$5 \text{ et}^2 f(-18) = 149$$

4

- 14) l'ordonnée à l'origine vaut $\frac{5}{3}$ et $f(14) = \frac{115}{6}$.
- 15) le taux d'accroissement vaut $\frac{-1}{2}$ et $f(-16) = \frac{11}{2}$
- 16) f(2) = -1 et f(4) f(-2) = -9.

Exercice 5

Pour les fonctions affines suivantes, calculer l'image demandée :

- 1) Si f(3) = 16 et f(13) = 66 alors f(6) = ?
- 2) Si f(15) = 11 et f(-20) = -24 alors f(17) = ?
- 3) Si f(-7) = -56 et f(-20) = -147 alors f(-14) = ?

- 4) Si $f(-4) = \frac{33}{2}$ et $f(1) = -\frac{17}{2}$ alors f(-10) = ?5) Si $f(-3) = \frac{9}{4}$ et $f(17) = -\frac{171}{4}$ alors f(13) = ?6) Si $f(4) = -\frac{27}{10}$ et $f(12) = -\frac{91}{10}$ alors f(15) = ?

Exercice 6

Pour chacune des fonctions affines suivantes dresseur le tableau de variation et le tableau de signe.

x	
variation de $f_1(x)$	
signe de $f_1(x)$	
x	
variation de $f_3(x)$	
signe de $f_3(x)$	

	x	
	variation de $f_2(x)$	
	signe de $f_2(x)$	
Γ		
	x	
	de $f_3(x)$	

Exercice 7

Proposer deux fonctions f_1 et f_2 dont les tableaux de signes vérifient :

1			J I	<i>J</i> 2	
x	$-\infty$		$-\frac{5}{3}$		$+\infty$
signe de $f_1(x)$		_	0	+	

x	$-\infty$		$+\frac{3}{11}$		$+\infty$
signe de		1	0		
$f_2(x)$		+	Ų	_	

Exercice 8

Donner un encadrement de f(x) dans les cas suivants :

- 1. $f: x \mapsto 5x + 1 \text{ et } x \in [4, 9]$
- 2. $f: x \mapsto -x + 7 \text{ et } x \in [-5, -2]$
- 3. $f: x \mapsto 4 5x$ sur l'intervalle [-10; 0]
- 4. $f: x \mapsto 4x 7 \text{ et } x \in [-2; +\infty[$
- 5. $f: x \mapsto 2x + 1 \text{ et } x \in]-\infty; 1]$
- 6. $f: x \mapsto -7x 2 \text{ et } x \in [8; +\infty[$