Wordnet y Deep Learning: Una posible unión

Autor: Raquel Leandra Pérez Arnal

Directores: Dario Garcia Gasulla y Claudio Ulises Cortés García

Universidad Politécnica de Cataluña raquelpa93@gmail.com

22/01/18

Tabla de contenidos

- Conocimientos Previos
 - Redes Neuronales
 - Redes Convolucionales
 - Transfer Learning
- 2 Trabajo Relacionado
 - Full-Network Embedding
 - Wordnet
 - Imagenet
- 3 Enfoque
 - Objetivos
 - Estadísticas e Hipótesis iniciales
- Análisis
 - De Wordnet a Full-Network Embedding
 - Synset
 - De Full-Network Embedding a Wordnet
- Conclusiones

- Conocimientos Previos
 - Redes Neuronales
 - Redes Convolucionales
 - Transfer Learning
- 2 Trabajo Relacionado
 - Full-Network Embedding
 - Wordnet
 - Imagenet
- 3 Enfoque

Conocimientos Previos

- Objetivos
- Estadísticas e Hipótesis iniciales
- 4 Análisis
 - De Wordnet a Full-Network Embedding
 - Svnset
 - De Full-Network Embedding a Wordnet
- Conclusiones

0000

Una Neurona

Pesos Entrada

Figura: Ejemplo de una neurona

Redes Neuronales

0000

Red Neuronal

Figura: Ejemplo de red neuronal compuesta por capas completas

0000

Redes Convolucionales

Figura: Ejemplo de convolución y de feature

Transfer Learning

Transfer Learning

Definición

Transfer learning es campo de estudio que reutiliza el lenguaje de representación de un problema (que llamaremos problema origen o *Source*) para resolver otro (que llamaremos objetivo o *Target*).

- Fine Tuning
- Feature Extraction

Figura: Estructura básica que se suele utilizar en feature extraction

- O Constitution Design
 - Redes Neuronales
 - Redes Convolucionales
 - Transfer Learning
- 2 Trabajo Relacionado
 - Full-Network Embedding
 - Wordnet
 - Imagenet
- 3 Enfoque

Conocimientos Previos

- Objetivos
- Estadísticas e Hipótesis iniciales
- Análisis
 - De Wordnet a Full-Network Embedding
 - Synset
 - De Full-Network Embedding a Wordnet
- Conclusiones

Full-Network Embedding

Partes del algoritmo:

- Fordward Pass
- Spatial Pooling
- Feature Standarization
- Feature Discretization

Figura: Estructura del full-network embedding

Wordnet

Wordnet

Figura: Ejemplo de las relaciones sintácticas de Wordnet

Imagenet

Imagenet

- Conocimientos Previos Trabajo Relacion
 - Conocimientos Previos
 - Redes Neuronales
 - Redes Convolucionales
 - Transfer Learning
 - 2 Trabajo Relacionado
 - Full-Network Embedding
 - Wordnet
 - Imagenet
 - 3 Enfoque
 - Objetivos
 - Estadísticas e Hipótesis iniciales
 - 4 Análisis
 - De Wordnet a Full-Network Embedding
 - Synset
 - De Full-Network Embedding a Wordnet
 - Conclusiones

Datos iniciales

Conv 1	Conv 2	Conv 3	Conv 4		Conv 5	Fc 1	Fc 2	
) 1	28 3	84 1	1152	2688	3 42	224 83	320	12416

Figura: La disposición de las características por capas

Figura: Conjuntos de synsets que estudiaremos

• Analizar el *embedding* dado y el comportamiento de las *features* en las distintas capas.

Objetivos

 Analizar si hay alguna relación entre el embedding y los synsets seleccionados.

Figura: Muestra de una sección del embedding.

Estadísticas del embedding

Figura: Cantidad de features de cada categoría

Estadísticas del embedding

Figura: Distribución del número de *features* con los distintos valores categóricos, para las 50,000 imágenes

Distribución de los synsets en el embeding

Figura: Cantidad de imágenes de cada synset respecto al embedding total

Hipótesis

- Las características se distribuyen de diferente manera en las capas convolucionales y los completos.
- 2 Cuanto más profundo es el layer, debería haber más *features* representativas, tanto por ausencia como por presencia.
- Quanto más concreto es un synset, debería haber más features representativas, tanto por ausencia como por presencia, es decir, mayor proporción de -1 y 1 respecto a los 0.
- Se puede ver una relación entre los embeddings de synsets hipónimos. La idea sería que dada una imagen perteneciente a un synset, compartiría features características con sus hipónimos.

- Conocimientos Previos
 - Redes Neuronales
 - Redes Convolucionales
 - Transfer Learning
- 2 Trabajo Relacionado
 - Full-Network Embedding
 - Wordnet
 - Imagenet
- 3 Enfoque

Conocimientos Previos

- Objetivos
- Estadísticas e Hipótesis iniciales
- Análisis
 - De Wordnet a Full-Network Embedding
 - Synset
 - De Full-Network Embedding a Wordnet
- 5 Conclusiones

Conclusiones

Distribución por tipo de capa

Figura: Distribución del número de features con los distintos valores categóricos distinguiendo las capas convolucionales de las fully-connected

Comportamiento respecto a la profundidad

	conv1	conv2	conv3	conv4	conv5	fc6	fc7
Proporción de -1	0.47	0.44	0.46	0.49	0.55	0.77	0.76
Proporción de 0	0.18	0.17	0.17	0.17	0.17	0.05	0.06
Proporción de 1	0.36	0.39	0.37	0.34	0.28	0.18	0.18

Figura: Cantidad de features de cada categoría por capa

Sub-matriz

Figura: Ejemplo de una sub-matriz de un synset.

Figura: Distribución del número de *features* con los distintos valores categóricos distinguiendo las capas convolucionales de las *fully-connected* del *synset* seres vivos

Figura: Cantidad de features de cada categoría por synset

	Ser Vivo	Mamífero	Perro	Perro de Caza	Artefacto	Instrumento	Transporte	Vehículo
-1	0.69	0.69	0.70	0.70	0.66	0.67	0.66	0.65
0	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
1	0.22	0.22	0.21	0.21	0.24	0.24	0.25	0.26

Representante

Figura: Ejemplo de un representante de synset.

Figura: Cantidad de *features* de cada tipo de los representantes de los distintos *synsets*

Figura: Cantidad de *features* de cada tipo del representante del *synset* Vehículo por capa.

Matrices de cambio

Figura: Matriz de cambios general

Instrumento

Ejemplo

Figura: Matrices de cambio de Ser Vivo

Vehículo

de Caza

Pseudo-Métrica

$$T = C_{(1,-1)}(s_1, s_2) + C_{(1,0)}(s_1, s_2) + C_{(1,1)}(s_1, s_2) + C_{(1,1)}(s_1, s_2) + C_{(0,1)}(s_1, s_2) + C_{(-1,1)}(s_1, s_2)$$

$$d(s_1, s_2) = 1 - \frac{C_{(1,1)}(s_1, s_2)}{T}$$

	Instrumento	Vehículo	Perro de Caza
Ser Vivo	0.9965	0.9333	0.5520
Perro	0.9671	0.8753	0.1614
Transporte	0.2201	0.2192	0.9124

De Full-Network Embedding a Wordnet

(a) Perro a Perro de

caza

Figura: Matrices de cambio

(b) Transporte a

Vehículo

(c) Perro de caza a

Vehículo

Ejemplos

(a) Spaniel

(b) Greyhound

(c) Water Spaniel

Figura: Ejemplos de razas

	Spaniel	Grayhound	Water Spaniel
Spaniel	0	0.7371	0.6442
Grayhound	0.7371	0	0.8330
Water Spaniel	0.6442	0.8330	0

Figura: Ejemplo de Árbol del synset perro.

- Conocimientos Previos
 - Redes Neuronales
 - Redes Convolucionales
 - Transfer Learning
- 2 Trabajo Relacionado
 - Full-Network Embedding
 - Wordnet
 - Imagenet
- 3 Enfoque

Conocimientos Previos

- Objetivos
- Estadísticas e Hipótesis iniciales
- 4 Análisis
 - De Wordnet a Full-Network Embedding
 - Svnset
 - De Full-Network Embedding a Wordnet
- 5 Conclusiones

Conclusiones

- Las capas fully-connected tienen una distribución diferente de las convolucionales, tanto a nivel general como por synset.
- Todas las features contienen información que caracteriza el espacio de representación.
- Las proporciones de las features características por ausencia se mantienen respecto a las profundidad de las capas.
- La proporción de las features características por ausencia, presencia o no características se mantiene respecto a los diferentes synsets. Sin embargo, en las capas convolucionales cuanto más concreto es el synset o más profunda es la capa más se agrupan las features características por presencia en features concretas.
- El embedding detecta similitud a nivel de synset.
- Utilizando la pseudo-métrica definida podemos medir esta distancia y representarla gráficamente.

Gracias por vuestra atención.

Podéis encontrar el código utilizado en el trabajo en: github.com/RaquelLeandra/TFG-WordnetDeepLearning

