Electronic Circuits Homework 4

1. Determine the total inductance of each circuit in Figure 1. (11-12)

Figure 1

- 2. Determine the time constant for each of the following series RL combinations:
 - (a) $R=100\Omega$, $L=100\mu H$ (b) $R=4.7k\Omega$, L=10mH (c) $R=1.5M\Omega$, L=3H (11-13)
- 3. In the circuit of Figure 2, there is initially no current. Determine the inductor voltage at the following times after the switch is closed:

(a)
$$10\mu s$$
 (b) $20\mu s$ (c) $30\mu s$ (d) $40\mu s$ (e) $50\mu s$ (11-15)

Figure 2

Figure 3

5. Draw the waveforms for V_s , V_R , and V_L in Figure 4. Show the proper phase relationships. (12-13)

Figure 4

6. Plot the response curve for the circuit in Figure 5. Show the output voltage versus frequency in 1 kHz increments from 0 Hz to 5 kHz. (12-30)

Figure 5

7. A certain series RLC circuit operates at a frequency of 5 kHz and has the following values:

 $R=10\Omega$, $C=0.047\mu F$, and L=5mH. Determine the impedance and phase angle. What is the total reactance? (13-1)

8. For the RLC circuit in Figure 6, determine the resonant frequency and the cutoff frequencies. (13-11)

Figure 6

9. Determine f_r and BW for each filter in Figure 7. (13-15)

Figure 7

- 10. Determine the following quantities in Figure 8:
 - (a) secondary voltage
 - (b) secondary current
 - (c) primary current
 - (d) power in the load

2:1 0 V 300 Ω

(7th14-18)

Figure 8

11. In Figure 9, what is the maximum power in watts delivered to the speaker? (7th14-24)

12. Determine the output voltage for the circuit in Figure 10. A single-pulse input is applied as shown. (14-16)

Figure 10

(14-18)

Figure 11