1DA2223 - Python programming and data analysis

Exercise 6 - Part 1 (Complete 2022L) Ostatnia modyfikacja: R. Szmurło 26.04.2022 07:59

Linear Regression - Project Exercise

Data links:

- L06_Ecommerce_Customers.csv
- Salaries.csv
- titanic.csv

Instruction

Imagine an Ecommerce company based in New York City that sells clothing online but they also have in-store style and clothing advice sessions. Cut the store, have sessions/meetings with a personal stylist, then they can go home and order either on a mobile app or website for the clothes they war

The company is trying to decide whether to focus their efforts on their mobile app experience or their website.

Just follow the steps below to analyze the customer data.

Imports

** Import pandas, numpy, matplotlib,and seaborn. Then set %matplotlib inline (You'll import sklearn as you need it.)**

Get the Data

We'll work with the L06_Ecommerce_Customers.csv file attached to the exrecise. It has Customer info, such as Email, Address, and their color Avata numerical value columns:

- Avg. Session Length: Average session of in-store style advice sessions.
- Time on App: Average time spent on App in minutes
- Time on Website: Average time spent on Website in minutes
- Length of Membership: How many years the customer has been a member.

Check the head of customers, and check out its info() and describe() methods.

. . .

No.	Email	Address	Avatar	Avg. Session Length	Time on App	Time on Website	Length Members
0	mstephenson@fernandez.com	835 Frank Tunnel\nWrightmouth, MI 82180-9605	Violet	34.497268	12.655651	39.577668	4.082621
1	hduke@hotmail.com	4547 Archer Common\nDiazchester, CA 06566-8576	DarkGreen	31.926272	11.109461	37.268959	2.664034
2	pallen@yahoo.com	24645 Valerie Unions Suite 582\nCobbborough, D	Bisque	33.000915	11.330278	37.110597	4.104543
3	riverarebecca@gmail.com	1414 David Throughway\nPort Jason, OH 22070-1220	SaddleBrown	34.305557	13.717514	36.721283	3.120179
4	mstephens@davidson- herman.com	14023 Rodriguez Passage\nPort Jacobville, PR 3	MediumAquaMarine	33.330673	12.795189	37.536653	4.446308

. .

^{**} Read in the Ecommerce Customers csv file as a DataFrame called customers.**

Measure	Avg. Session Length	Time on App	Time on Website	Length of Membership	Yearly Amount Spent
count	500.000000	500.000000	500.000000	500.000000	500.000000
mean	33.053194	12.052488	37.060445	3.533462	499.314038
std	0.992563	0.994216	1.010489	0.999278	79.314782
min	29.532429	8.508152	33.913847	0.269901	256.670582
25%	32.341822	11.388153	36.349257	2.930450	445.038277
50%	33.082008	11.983231	37.069367	3.533975	498.887875
75%	33.711985	12.753850	37.716432	4.126502	549.313828
max	36.139662	15.126994	40.005182	6.922689	765.518462

. . .

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 8 columns):
                        500 non-null object
Email
Address
                        500 non-null object
                        500 non-null object
Avatar
Avg. Session Length
                       500 non-null float64
Time on App
                        500 non-null float64
                        500 non-null float64
Time on Website
Length of Membership
                        500 non-null float64
Yearly Amount Spent
                        500 non-null float64
dtypes: float64(5), object(3)
memory usage: 31.3+ KB
```

Exploratory Data Analysis

Use seaborn to create a jointplot to compare the Time on Website and Yearly Amount Spent columns. Does the correlation make sense?

^{**} Do the same but with the Time on App column instead. **

. . .

** Use jointplot to create a 2D hex bin plot comparing Time on App and Length of Membership.**

Let's explore these types of relationships across the entire data set. Use pairplot to recreate the plot below.(Don't worry about the the colo

. . .

Based off this plot what looks to be the most correlated feature with Yearly Amount Spent?

^{**}Create a linear model plot (using seaborn's Implot) of Yearly Amount Spent vs. Length of Membership. **

Training and Testing Data

^{**} Set a variable X equal to the numerical features of the customers and a variable y equal to the "Yearly Amount Spent" column. **

^{**} Use model_selection.train_test_split from sklearn to split the data into training and testing sets. Set test_size=0.3 and random_state=101**

Training the Model

Now its time to train our model on our training data!

** Import LinearRegression from sklearn.linear_model **

Create an instance of a LinearRegression() model named Im.

** Train/fit Im on the training data.**

. . .

Print out the coefficients of the model

. . .

Coefficients:

```
[ 25.98154972 38.59015875 0.19040528 61.27909654]
```

Predicting Test Data

Now that we have fit our model, let's evaluate its performance by predicting off the test values!

- ** Use Im.predict() to predict off the X_test set of the data.**
- ** Create a scatterplot of the real test values versus the predicted values. **

• • •

Evaluating the Model

Let's evaluate our model performance by calculating the residual sum of squares and the explained variance score (R^2).

** Calculate the Mean Absolute Error, Mean Squared Error, and the Root Mean Squared Error. Refer to the lecture or to Wikipedia for the formulas**

. . .

MAE: 7.22814865343 MSE: 79.813051651 RMSE: 8.93381506698

Residuals

Plot a histogram of the residuals and make sure it looks normally distributed. Use either seaborn distplot, or just plt.hist().

. . .

Conclusion

We still want to figure out the answer to the original question, do we focus our efforts on mobile app or website development? Or maybe that doesn't and Membership Time is what is really important. Let's see if we can interpret the coefficients at all to get an idea.

** Recreate the dataframe below. **

. . .

Coeffecient	
Avg. Session Length	25.981550
Time on App	38.590159
Time on Website	0.190405
Length of Membership	61.279097

^{**} How can you interpret these coefficients? **

Do you think the company should focus more on their mobile app or on their website?

Answer?