Universidad del Norte Facultad de Ciencias Básicas Departamento de Matemáticas Taller de Cálculo II **Examen Final**

Profesor Coordinador: Javier de la Cruz Periodo 30 de 2023

Nombre:	Fecha:
---------	--------

Observación: Recuerden que el texto guía es: Ron Larson y Bruce H. Edwards, Cálculo, novena edición, McGraw-Hill, 2011.

Notación: En el taller C denota convergente y D denota divergente.

Sucesiones

1. Determine si la sucesión converge o diverge. Si converge, calcule el límite.

(a)
$$a_n = \frac{3+5n^2}{n+n^2}$$
. Rta: 5

(e)
$$a_n = \left(1 + \frac{2}{n}\right)^n$$
 Rta: e^2

(a)
$$a_n = \frac{3+5n^2}{n+n^2}$$
. Rta: 5 (e) $a_n = \left(1 + \frac{2}{n}\right)^n$ Rta: e^2 (b) $a_n = \frac{(-1)^{n-1}n}{n^2+1}$ Rta: 0 (f) $a_n = \frac{\ln n}{n^2}$ Rta: 0 (c) $\left\{\frac{(2n-1)!}{(2n+1)!}\right\}$ Rta: 0 (g) $a_n = \frac{e^n}{n}$ Rta: D (d) $\left\{\frac{e^n + e^{-n}}{e^{2n} - 1}\right\}$ Rta: 0 (h) $a_n = \frac{3-2n^2}{n^2 - 1}$ Rta: -2

(f)
$$a_n = \frac{\ln n}{n^2}$$
 Rta: 0

(c)
$$\left\{ \frac{(2n-1)!}{(2n+1)!} \right\}$$

0 (g)
$$a_n$$

$$\left(\mathbf{d}\right) \left\{ \frac{e^n + e^{-n}}{e^{2n} - 1} \right\}$$

(h)
$$a_n = \frac{3-2n^2}{n^2-1}$$

Rta:
$$-2$$

2. Dada la sucesión $\left\{\frac{1-(1-1/n)^a}{1-(1-1/n)^b}\right\}$, donde a y b son constantes con $b\neq 0$, determine si la sucesión converge y halle su límite. **Rta**: $\frac{a}{b}$.

Series númericas

Series telescópicas y geométricas

3. Determine si la serie es convergente o divergente. Si es convergente, calcular su suma.

(a)
$$\sum_{n=1}^{\infty} \frac{2^n}{3^n}$$
 Rta: 2

(f)
$$\sum_{n=1}^{\infty} \frac{(-2)^{n-1}}{3^{n-1}}$$
 Rta: $\frac{3}{5}$

(b)
$$\sum_{n=1}^{\infty} \frac{2^{n-1}}{3^{n-1}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{2^{n-1}}{3^{n-1}}$$
 Rta: 3 (g) $\sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n}$ Rta: 1

(c)
$$\sum_{n=1}^{\infty} \frac{3^n}{2^n}$$
 Rta: D

(d)
$$\sum_{n=1}^{\infty} \frac{(-5)^n}{2^n}$$
 Rta: D

(h)
$$\sum_{n=1}^{\infty} \frac{1}{(-2)^{n-1}}$$
 Rta: $\frac{2}{3}$

(e)
$$\sum_{n=1}^{\infty} \frac{2^{n-1}}{5^{n-1}}$$
 Rta: $\frac{2}{3}$

(i)
$$\sum_{n=1}^{\infty} 2^{-3n}$$
 Rta: $\frac{1}{7}$

4. Determine si la serie es convergente o divergente. Si es convergente, calcular su suma.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 2n}$$

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 2n}$$
 Rta: $\frac{3}{4}$ (l) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3}{2^n}$ Rta: 1

(b)
$$\sum_{n=1}^{\infty} \frac{2}{4n^2-1}$$

(b)
$$\sum_{n=1}^{\infty} \frac{2}{4n^2-1}$$
 Rta: 1 (m) $\sum_{n=1}^{\infty} e^{-n}$ **Rta**: C

(c)
$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)(2n+3)}$$
 Rta: $\frac{1}{2}$

(c)
$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)(2n+3)}$$
 Rta: $\frac{1}{2}$ (n) $\sum_{n=0}^{\infty} \frac{-3}{(n-1)(n-2)}$ Rta: $\frac{3}{2}$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$$
 Rta: $\frac{1}{2}$ (o) $\sum_{n=1}^{\infty} \frac{1}{2^n}$

(o)
$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$

(e)
$$\sum_{n=2}^{\infty} \frac{1}{n^2+n}$$
 Rta: $\frac{1}{2}$ (p) $\sum_{n=0}^{\infty} \frac{2}{5^n}$ Rta: $\frac{5}{2}$

(p)
$$\sum_{n=0}^{\infty} \frac{2}{5^n}$$

(f)
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+4)}$$
 Rta: C (q) $\sum_{n=1}^{\infty} 2^{2n} 3^{1-n}$

(q)
$$\sum_{n=0}^{\infty} 2^{2n} 3^{1-n}$$

Rta: D

(g)
$$\sum_{n=3}^{\infty} \frac{1}{(n+1)(n+4)}$$
 Rta: C (r) $\sum_{n=2}^{\infty} \frac{n^2}{n^2-1}$

(r)
$$\sum_{n=2}^{\infty} \frac{n^2}{n^2-1}$$

Rta: D

(h)
$$\sum_{n=0}^{\infty} \frac{4^{n+1}}{5^n}$$

(s)
$$\sum_{k=1}^{\infty} \frac{1+2^k}{3^k}$$

(i)
$$\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1} \right)$$
 Rta: D (t) $\sum_{n=1}^{\infty} \ln \left(\frac{n^2+1}{2n^2+1} \right)$ Rta: D

(t)
$$\sum_{n=1}^{\infty} \ln \left(\frac{n^2 + 1}{2n^2 + 1} \right)$$

(j)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$$
 Rta: 1

(j)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$$
 Rta: 1 (u) $\sum_{n=1}^{\infty} \left(\frac{1}{e^n} + \frac{1}{n(n+1)}\right)$ Rta: $\frac{e}{e-1}$

(k)
$$\sum_{n=1}^{\infty} \frac{2}{5^{n-1}}$$
 Rta: 5/2

(v)
$$\sum_{n=1}^{\infty} (e^{1/n} - e^{1/(n+1)})$$
Rta: $e-1$

5. Calcule los valores de x para los cuales la serie converge. Determine la suma de la serie para dichos valores de x

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{3^n}$$
 Rta: $-3 < x < 3$; $\frac{x}{3-x}$

(b)
$$\sum_{n=0}^{\infty} 4^n x^n$$
 Rta: $-\frac{1}{4} < x < \frac{1}{4}$; $\frac{1}{1-4x}$ (c) $\sum_{n=0}^{\infty} \frac{\cos^n x}{2^n}$ Rta: $x \in \mathbb{R}$; $\frac{2}{2-\cos x}$ (d) $\sum_{n=1}^{\infty} (x-4)^n 4$ Rta: $3 < x < 5$; $\frac{4-x}{x-5}$

(c)
$$\sum_{n=0}^{\infty} \frac{\cos^n x}{2^n}$$
 Rta: $x \in \mathbb{R}$; $\frac{2}{2-\cos x}$

(d)
$$\sum_{n=1}^{\infty} (x-4)^n 4$$
 Rta: $3 < x < 5$; $\frac{4-x}{x-5}$

(e)
$$\sum_{n=0}^{\infty} \frac{(x+3)^n}{2^n}$$
 Rta: $-5 < x < -1$; $\frac{-2}{x+1}$

6. ¿Cuál es el valor de
$$c$$
 si $\sum_{n=2}^{\infty} (1+c)^{-n} = 2$? Rta: $c = \frac{1}{2}(\sqrt{3}-1)$

7. Encuentre el valor de
$$c$$
 tal que $\sum_{n=0}^{\infty}e^{nc}=10.$ Rta: $c=\ln\frac{9}{10}$

- 8. Ecriba los siguientes decimales periódicos como cociente de dos enteros
 - (a) 0,222222...
 - (b) 3,393939...
 - (c) 1,257257257...
 - (d) 2,352235223522...
- 9. Una pelota se deja caer de una altura de 6 pies y empieza a rebotar. La altura de cada salto es de tres cuartos la altura del salto anterior. Encuentre la distancia vertical total recorrida por la pelota. Rta: 42 pies
- 10. Un objeto rueda 10 metros en el primer segundo. En cada segundo en que dura moviéndose rueda un 80 % de lo que rodó en el segundo anterior debido al fricción. ¿ cuán lejos rodará el objeto? Rta: 50 metros
- 11. Texto guía, Ejercicios 9.2, Página 614, Ejercicios: 25,27,29, 39, 43, 49, 57, 63, 69.

Criterio del término n-ésimo para divergencia y operaciones con series

12. Determine si la serie es convergente o divergente. Si es convergente, calcular su suma.

(a)
$$\sum_{n=1}^{\infty} \left(\frac{1}{2n} + \frac{3}{2^n} \right)$$
 Rta: D (e) $\sum_{n=1}^{\infty} \left(\frac{2}{3^n} + \frac{5}{n(n+1)} \right)$ **Rta**: C

(b)
$$\sum_{n=1}^{\infty} (e^n + e^{-n})$$
 Rta: D (f) $\sum_{n=1}^{\infty} \left(\frac{2^n}{(-5)^n} + \frac{7}{(n+1)(n+2)} \right)$ **Rta**: C (c) $\sum_{n=1}^{\infty} (1 + (-1)^n)$ **Rta**: D (g) $\sum_{n=1}^{\infty} \left(\frac{5^n}{(-2)^n} + \frac{2}{(n+2)(n+3)} \right)$

(c)
$$\sum_{n=1}^{\infty} (1 + (-1)^n)$$
 Rta: D (g) $\sum_{n=1}^{\infty} \left(\frac{5^n}{(-2)^n} + \frac{2}{(n+2)(n+3)} \right)$

(d)
$$\sum_{n=1}^{\infty} \frac{2n+1}{5n+2}$$
 Rta: D (h) $\sum_{n=1}^{\infty} \left(\frac{5}{(-2)^{n+1}} + \ln \frac{n}{(n+1)} \right)$ Rta: D

- 13. Determine el valor de verdad de la afirmación dada o escoja la respuesta correcta
 - (a) La suma de una serie convergente con una serie divergente es conver-
 - (b) Si la suma de dos series es convergente, entonces cada una de ellas es
 - (c) Si la serie $\sum_{n=1}^{\infty} f(n)$ satisface las condiciones del criterio de la integral y la integral $\int_1^\infty f(x)dx$ converge a s, entonces la serie $\sum_{n=1}^\infty f(n)$ converge
 - (d) Si dos series difieren en un número finito de términos, entonces o ambas convergen o ambas divergen.
 - (e) Si una serie es convergente, entonces es absolutamente convergente.
 - (f) Si $\sum_{n=1}^{\infty} a_n$ es divergente y $c \in \mathbb{R}$, entonces $\sum_{n=1}^{\infty} ca_n$ es divergente.
 - (g) Si $\sum_{n=1}^{\infty} a_n$ y $\sum_{n=1}^{\infty} b_n$ son dos series de términos positivos, $a_n \leq b_n$ y $\sum_{n=1}^{\infty} a_n$ es convergente, entonces
 - i. $\sum_{n=1}^{\infty} b_n$ es convergente.
 - ii. $\sum_{n=1}^{\infty} b_n$ es divergente.
 - iii. $\sum_{n=0}^{\infty} b_n$ puede ser convergente o divergente.
 - (h) Si $\sum_{n=1}^{\infty} a_n$ y $\sum_{n=1}^{\infty} b_n$ son dos series de términos positivos, $a_n \leq b_n$ y $\sum_{n=1}^{\infty} b_n$ es convergente, entonces
 - i. $\sum_{n=1}^{\infty} a_n$ es divergente.

ii.
$$\lim_{n\to\infty} a_n = 0$$
.

iii.
$$\lim_{n\to\infty} b_n \neq 0$$
.

Criterio de la integral

14. Usando el criterio de la integral determine si la serie es convergente o divergente.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}}$$

Rta: D

(g)
$$\sum_{n=1}^{\infty} \frac{1}{n^2+4}$$

Rta: C

(b)
$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)^3}$$
 Rta: C

(h)
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n^3}$$

Rta: C

(c)
$$\sum_{n=1}^{\infty} \frac{n}{n^4+1}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n}{n^4+1}$$
 Rta: C (i) $\sum_{n=2}^{\infty} \frac{1}{n \ln(n)}$ Rta: D (d) $\sum_{n=1}^{\infty} n e^{-n}$ Rta: C (j) $\sum_{n=1}^{\infty} \frac{e^{\frac{1}{n}}}{n^2}$ Rta: C

(d)
$$\sum_{n=1}^{\infty} ne^{-n}$$

(j)
$$\sum_{n=1}^{\infty} \frac{e^{\frac{1}{n}}}{n^2}$$

(e)
$$\sum_{n=1}^{\infty} \frac{n+2}{n+1}$$

(e)
$$\sum_{n=1}^{\infty} \frac{n+2}{n+1}$$
 Rta: D (k) $\sum_{n=1}^{\infty} \frac{1}{n^3+n}$

Rta: C

(f)
$$\sum_{n=1}^{\infty} \frac{5-2\sqrt{n}}{n^3}$$
 Rta: C

(l)
$$\sum_{n=1}^{\infty} \frac{3n+2}{n(n+2)}$$

Rta: D

15. Determine los valores de p para los cuales la serie es convergente.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

Rta:
$$p > 1$$
 (c) $\sum_{n=1}^{\infty} n(n^2 + 1)^p$ **Rta**: $p < -1$

(b)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln(n))^p}$$
 Rta: $p > 1$

16. Encuentre todos los valores de c para los que converge la siguiente serie

$$\sum_{n=1}^{\infty} \left(\frac{c}{n} - \frac{1}{n+1} \right) \quad \mathbf{Rta} : c \le 1$$

17. (*) Para un cierto valor real k, la serie dada es convergente. Determinar k.

$$\sum_{n=1}^{\infty} \left(\frac{n}{2n^2 + 2k} - \frac{k}{n+1} \right). \quad \mathbf{Rta} : k = \frac{1}{2}$$

18. (*) Para un cierto valor real k, la serie dada es convergente. Determinar k.

$$\sum_{n=0}^{\infty} \left(\frac{n}{n^2 + 4} - \frac{k}{3n+1} \right). \quad \mathbf{Rta} : k = 3$$

Criterio de comparación directa y criterio de comparación con límite

19. Analice la convergencia de las siguientes series.

(a)
$$\sum_{n=1}^{\infty} \frac{5}{2n^2+4n+3}$$
 Rta: C (h) $\sum_{n=1}^{\infty} \frac{5}{2n^2+4n+3}$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$
 Rta: C (i) $\sum_{n=1}^{\infty} \frac{5 + 2n}{(1 + n^2)^2}$ Rta: C

(c)
$$\sum_{n=1}^{\infty} \frac{9^n}{3+10^n}$$
 Rta: C
 (j) $\sum_{n=1}^{\infty} \frac{1+n+n^2}{\sqrt{1+n^2+n^6}}$ Rta: D

(e)
$$\sum_{n=1}^{\infty} \frac{n^2+1}{n4^n}$$
 Rta: C (k) $\sum_{n=1}^{\infty} \frac{1}{n!}$ Rta: C

(a)
$$\sum_{n=1}^{\infty} \frac{5}{2n^2 + 4n + 3}$$
 Rta: C (h) $\sum_{n=1}^{\infty} \frac{\sqrt{n+2}}{2n^2 + n + 1}$ Rta: C (b) $\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$ Rta: C (i) $\sum_{n=1}^{\infty} \frac{5 + 2n}{(1 + n^2)^2}$ Rta: C (c) $\sum_{n=1}^{\infty} \frac{9^n}{3 + 10^n}$ Rta: C (j) $\sum_{n=1}^{\infty} \frac{1 + n + n^2}{\sqrt{1 + n^2 + n^6}}$ Rta: D (d) $\sum_{n=1}^{\infty} \frac{\cos^2(n)}{n^2 + 1}$ Rta: C (e) $\sum_{n=1}^{\infty} \frac{n - 1}{n4^n}$ Rta: C (f) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 1}}$ Rta: D (l) $\sum_{n=2}^{\infty} \frac{n^3}{n^4 - 1}$ Rta: D

(g)
$$\sum_{n=1}^{\infty} \frac{1+4^n}{1+3^n}$$
 Rta: D (m) $\sum_{n=1}^{\infty} \frac{n^3}{n!}$ **Rta**: C

20. Texto guía, Ejerecicios 9.4, Página 631, Ejercicios: 7, 9, 11, 13, 15, 17, 19, 21, 23.

Criterio de Leibniz o de la serie alternante

21. Analice la convergencia de las siguientes series.

(a)
$$-\frac{1}{3} + \frac{2}{4} - \frac{3}{5} + \frac{4}{6} - \frac{5}{7} + \dots$$

(b)
$$\frac{4}{7} - \frac{4}{8} + \frac{4}{9} - \frac{4}{10} + \frac{4}{11} + \dots$$
 Rta: C

(c)
$$\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} - \frac{1}{\sqrt{5}} + \frac{1}{\sqrt{6}} + \dots$$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+2)}{n(n+1)}$$
 Rta: C (h) $\sum_{n=1}^{\infty} (-1)^n \frac{n}{10^n}$ Rta: C

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+2)}{n(n+1)}$$
 Rta: C (h) $\sum_{n=1}^{\infty} (-1)^n \frac{n}{10^n}$ Rta: C (e) $\sum_{n=1}^{\infty} \frac{n}{(-2)^{n-1}}$ Rta: C (i) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+4}$ Rta: C (f) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n+1}$ Rta: C (j) $\sum_{n=2}^{\infty} (-1)^n \frac{n}{\ln(n)}$ Rta: D (g) $\sum_{n=1}^{\infty} (-1)^n \frac{3n-1}{2n+1}$ Rta: D (k) $\sum_{n=1}^{\infty} (-1)^n \frac{n^n}{n!}$ Rta: D

(f)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n+1}$$
 Rta: C (j) $\sum_{n=2}^{\infty} (-1)^n \frac{n}{\ln(n)}$ **Rta**: D

(g)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3n-1}{2n+1}$$
 Rta: D (k) $\sum_{n=1}^{\infty} (-1)^n \frac{n^n}{n!}$ **Rta**: D

22. ¿Para qué valores de p es convergente la serie?

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p}.$$

23. Texto guía, Ejercicios 9.5, Página 639, Ejercicios: 11, 13, 15, 17, 19, 21, 23, 29, 31.

Convergencia absoluta, convergencia condicional y criterios de la razón y de la raíz

Notación: AC denotará absolutamente Convergente y CC denotará condicionalmente Convergente.

24. Determine si la serie es absolutamente convergente, condicionalmente convergente o divergente.

(a)
$$\sum_{n=0}^{\infty} \frac{(-10)^n}{n!}$$
 Rta: A6

(a)
$$\sum_{n=0}^{\infty} \frac{(-10)^n}{n!}$$
 Rta: AC (g) $\sum_{k=1}^{\infty} k \left(\frac{2}{3}\right)^k$ Rta: AC (b) $\sum_{n=1}^{\infty} \frac{(-1)^n (n+2)}{n(n+1)}$ Rta: CC (h) $\sum_{n=1}^{\infty} \frac{10^n}{(n+1)4^{2n+1}}$ Rta: AC

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+2)}{n(n+1)}$$

(h)
$$\sum_{n=1}^{\infty} \frac{10^n}{(n+1)4^{2n+1}}$$
 Rta: AC

(c)
$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$
 Rta: AC (i) $\sum_{n=1}^{\infty} \left(\frac{n^2+1}{2n^2+1}\right)^n$ Rta: AC (d) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}2^{2n-1}}{n3^n}$ Rta: D (j) $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2}$ Rta: D (e) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n+1)}$ Rta: CC (k) $\sum_{n=1}^{\infty} \frac{2\cdot 4\cdot 6\cdots (2n)}{n!}$ Rta: D

(i)
$$\sum_{n=1}^{\infty} \left(\frac{n^2+1}{2n^2+1} \right)^n$$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2^{2n-1}}{n 3^n}$$

(j)
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2}$$

(e)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n+1)}$$

(k)
$$\sum_{n=0}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{n!}$$

(f)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[4]{n}}$$

(f)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[4]{n}}$$
 Rta: CC (l) $\sum_{n=1}^{\infty} (-1)^n \frac{2^n n!}{5 \cdot 8 \cdot 11 \cdots (3n+2)}$

25. Los términos de una serie se definen en forma recursiva mediante las ecuaciones

$$a_1 = 2$$
 $a_{n+1} = \frac{5n+1}{4n+3}a_n$.

Determine si $\sum a_n$ es convergente o divergente. Rta: D

26. ¿Para cuáles de las series siguientes la prueba de la razón no es concluyente (es decir, no proporciona una respuesta definida)?

7

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^3}.$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{\sqrt{n}}$$
.

(b)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}.$$

(d)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{1+n^2}.$$

Rta: (a) y (d).

27. ¿Para cuáles enteros positivos k la serie siguiente es convergente?

$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(kn)!}.$$

- 28. (a) Demuestre que $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converge para toda x.
 - (b) Deduzca que $\lim_{n\to\infty} \frac{x^n}{n!} = 0$ para toda x.
- 29. (a) Demuestre que $\sum_{n=1}^{\infty} \frac{n^n}{(2n)!}$ converge.
 - (b) Deduzca que $\lim_{n\to\infty} \frac{n^n}{(2n)!} = 0$.
- 30. Aplicar la prueba de la razón, para deducir la convergencia de la serie

$$\sum_{k=1}^{\infty} \frac{2^k}{k!}.$$

Series de potencias (Radios e intervalos de convergencia)

31. Determine el radio de convergencia y el intervalo de convergencia de la serie.

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$$
. **Rta**: 1, [-1, 1)

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$$
. Rta: 1, [-1,1) (f) $\sum_{n=1}^{\infty} \frac{(-2)^n x^n}{\sqrt[4]{n}}$. Rta: $\frac{1}{2}$, $(-\frac{1}{2}, \frac{1}{2}]$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n^3}$$
. Rta: 1, [-1,1]

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n^3}$$
. Rta: 1, [-1,1] (g) $\sum_{n=2}^{\infty} (-1)^n \frac{x^n}{4^n \ln(n)}$. Rta: 4, (-4,4] (c) $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. Rta: ∞ , $(-\infty, \infty)$ (h) $\sum_{n=0}^{\infty} \frac{(x-2)^n}{n^2+1}$. Rta: 1, [1,3]

(c)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
. Rta: ∞ , $(-\infty, \infty)$

(h)
$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{n^2+1}$$
. **Rta**: 1, [1, 3]

(d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2 x^n}{2^n}$$
. Rta: 2, $(-2,2)$

(d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2 x^n}{2^n}$$
. **Rta**: 2, $(-2,2)$ (i) $\sum_{n=1}^{\infty} \frac{3^n (x+4)^n}{\sqrt{n}}$. **Rta**: $\frac{1}{3}$, $\left[-\frac{13}{3}, -\frac{11}{3}\right]$

(e)
$$\sum_{n=0}^{\infty} \frac{n(x+2)^n}{3^{n+1}}$$
. **Rta**: 3, (-5, 1)

(e)
$$\sum_{n=0}^{\infty} \frac{n(x+2)^n}{3^{n+1}}$$
. Rta: 3, $(-5,1)$ (j) $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^n}$. Rta: ∞ , $(-\infty,\infty)$

(k)
$$\sum_{n=1}^{\infty} \frac{n}{b^n} (x-a)^n$$
, $b > 0$ Rta: b , $(a-b, a+b)$

(l)
$$\sum_{n=1}^{\infty} \frac{x^n}{1 \cdot 3 \cdot 5 \cdots (2n-1)}$$
, Rta: ∞ , $(-\infty, \infty)$

(m)
$$\sum_{n=1}^{\infty} \frac{n! x^n}{1 \cdot 3 \cdot 5 \cdots (2n-1)}.$$

32. Si k es un entero positivo, encuentre el radio de convergencia de la serie

$$\sum_{n=0}^{\infty} \frac{(n!)^k}{(kn)!} x^n. \quad \mathbf{Rta} : k^k$$

Series de Taylor y de Maclaurin

- 33. Si $f^n(0) = (n+1)!$ para n = 0, 1, 2, ..., encuentre la serie de Maclaurin para f y su radio de convergencia. Rta: $\sum_{n=0}^{\infty} (n+1)x^n$, R = 1.
- 34. Encuentre la serie de Maclaurin para f(x) usando la definición de la serie de Maclaurin. [Suponga que f tiene un desarrollo en serie de potencias. No demuestre que $R_n(x) \to 0$.] Determine también el radio asociado con la convergencia.

(a)
$$f(x) = (1-x)^{-2}$$
. Rta: $\sum_{n=0}^{\infty} (n+1)x^n$, $R = 1$

(b)
$$f(x) = \sin(\pi x)$$
. Rta: $\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{(2n+1)!} x^{2n+1}$, $R = \infty$

(c)
$$f(x) = e^{5x}$$
. **Rta**: $\sum_{n=0}^{\infty} \frac{5^n}{n!} x^n$, $R = \infty$

(d)
$$f(x) = \sinh(x)$$
. Rta: $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$, $R = \infty$

(e)
$$f(x) = \ln(1+x)$$
 (g) $f(x) = xe^x$

(f)
$$f(x) = \cos(3x)$$
 (h) $f(x) = \cosh(x)$

35. Calcule la serie de Taylor para f(x) centrada en el valor dado de a. [Suponga que f tiene un desarrollo en serie de potencias. No demuestre que $R_n(x) \to 0$.] Determine también el radio asociado con la convergencia.

(a)
$$f(x) = x^4 - 3x^2 + 1$$
, $a = 1$. Rta: $-1 - 2(x - 1) + 3(x - 1)^2 + 4(x - 1)^3 + (x - 1^4)$, $R = \infty$

(b)
$$f(x) = e^x$$
, $a = 3$. Rta: $\sum_{n=0}^{\infty} \frac{e^3}{n!} (x-3)^n$, $R = \infty$

(c)
$$f(x) = \cos(x)$$
, $a = \pi$. Rta: $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{1}{(2n)!} (x-\pi)^{2n}$, $R = \infty$

(c)
$$f(x) = \cos(x), \ a = \pi.$$
 Rta: $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{1}{(2n)!} (x - \pi)^{2n}, \ R = \infty$
(d) $f(x) = \frac{1}{\sqrt{x}}, \ a = 9.$ Rta: $\sum_{n=0}^{\infty} (-1)^n \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^n 3^{2n+1} n!} (x - 9)^n, \ R = 9$
(e) $f(x) = x - x^3, \ a = -2.$ (g) $f(x) = \sin(x), \ a = \frac{\pi}{2}$
(f) $f(x) = \frac{1}{x}, \ a = -3$ (h) $f(x) = x^{-2}, \ a = 1.$

$$\frac{1}{n=0} = 0 \quad \text{i...}$$
(a) $f(x) = x \quad x^3 \quad a = 0 \quad \text{(a)} \quad f(x) = \sin(x) \quad a = \pi$

(f)
$$f(x) = \frac{1}{x}$$
, $a = -3$ (h) $f(x) = x^{-2}$, $a = 1$.

36. Serie Binomial. Si k es cualquier número real y |x| < 1, entonces

$$(1+x)^k = \sum_{n=0}^{\infty} \binom{k}{n} x^n = 1 + kx + \frac{k(k-1)}{2!} x^2 + \frac{k(k-1)(k-2)}{3!} x^3 + \dots, \quad (R=1)$$

Use la serie binomial para expandir la función como una serie de potencias. Exprese el radio de convergencia.

(a)
$$f(x) = \sqrt{1+x}$$
. Rta: $1 + \frac{x}{2} + \sum_{n=2}^{\infty} (-1)^{n-1} \frac{1 \cdot 3 \cdot 5 \cdots (2n-3)}{2^n n!} x^n$, $R = 1$

(b)
$$f(x) = \frac{1}{(2+x)^3}$$
. Rta: $\sum_{n=0}^{\infty} (-1)^n \frac{(n+1)(n+2)}{2^{n+4}n!} x^n$, $R = 2$
(c) $f(x) = (1-x)^{2/3}$. (d) $f(x) = \frac{1}{(1+x)^4}$.

(c)
$$f(x) = (1-x)^{2/3}$$
. (d) $f(x) = \frac{1}{(1+x)^4}$

- 37. Mediante la serie de Maclaurin para e^x calcule $e^{-0.2}$ con cinco posiciones decimales. **Rta**: 0.81873
- 38. Evalúe la integral indefinida como una serie infinita.

(a)
$$\int x \cos(x^3) dx$$
. Rta: $C + \sum_{n=0}^{\infty} (-1)^n \frac{x^{6n+2}}{(6n+2)(2n)!}$, $R = \infty$

(b)
$$\int \frac{\cos x - 1}{x} dx$$
. Rta: $C + \sum_{n=0}^{\infty} (-1)^n \frac{1}{2n(2n)!} x^{2n}$, $R = \infty$

(c)
$$\int \frac{e^x - 1}{x} dx$$
 (d) $\int \arctan(x^2) dx$

39. Utilice series para obtener un valor aproximado de la integral definida con la exactitud indicada.

(a)
$$\int_{0}^{1} x \cos(x^3) dx$$
. (Tres decimales) **Rta**: 0.440

(b)
$$\int_{0}^{0.4} \sqrt{1+x^4} dx$$
. ($|error| < 5 \cdot 10^{-6}$) **Rta**: 0.40102

(c)
$$\int_{0}^{1} e^{-x^2} dx$$
. (Cuatro decimales) **Rta**: 0.7475

40. Mediante las series evalúe el límite.

(a)
$$\lim_{x \to 0} \frac{x - \arctan x}{x^3}$$
. **Rta**: $\frac{1}{3}$ (c) $\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}$. **Rta**: $\frac{1}{2}$

(a)
$$\lim_{x\to 0} \frac{x-\arctan x}{x^3}$$
. Rta: $\frac{1}{3}$ (c) $\lim_{x\to 0} \frac{e^x-1-x}{x^2}$.
(b) $\lim_{x\to 0} \frac{\sin x-x+\frac{1}{6}x^3}{x^5}$. Rta: $\frac{1}{120}$ (d) $\lim_{x\to 0} \frac{1-\cos x}{1+x-e^x}$

41. Calcule la suma de la serie.

(a)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n}}{n!}$$
. **Rta**: e^{-x^4} (c) $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{6^{2n} (2n)!}$.

(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{4^{2n+1}(2n+1)!}$$
. Rta: $\frac{1}{\sqrt{2}}$ (d) $\sum_{n=0}^{\infty} \frac{3^n}{5^n n!}$

(e)
$$3 + \frac{9}{2!} + \frac{27}{3!} + \frac{81}{4!} + \dots$$
 Rta: $e^3 - 1$

(e)
$$3 + \frac{9}{2!} + \frac{27}{3!} + \frac{81}{4!} + \dots$$
 Rta: $e^3 - 1$
(f) $1 - e + \frac{e^2}{2!} - \frac{e^3}{3!} + \frac{e^4}{4!} - \dots$ Rta: e^{-e}

(g)
$$1 - \ln(2) + \frac{(\ln(2)^2)}{2!} - \frac{(\ln(2)^3)}{3!} + \frac{(\ln(2)^4)}{4!} + \dots$$

Ejercicios variados

- (a) (*) Use el hecho que $\sum_{n=0}^{\infty} \frac{1}{n!} = e$, para calcular la suma de la siguiente serie $\sum_{n=1}^{\infty} \frac{n-1}{n!}$. Respuesta: 1
- (b) (*) Calcula el radio de convergencia de la serie $\sum_{n=1}^{\infty} \frac{(2x)^n}{n^2}$. Respuesta: $\frac{1}{2}$
- (c) (*) Verifique el valor de la siguiente serie

$$\sum_{x=1}^{\infty} x p^x = \frac{p}{(1-p)^2}.$$

(d) (*) Una famosa sucesión f_n , llamada sucesión de Fibonacci, en honor de Leonardo Fibonacci, quien la introdujo aproximadamente en el año 1200, se define mediante la fórmula recursiva

$$f_1 = f_2 = 1$$
, $f_{n+2} = f_{n+1} + f_n$

i. Calcule desde f_3 hasta f_{10} .

ii. Sea $\phi=\frac{1}{2}\left(1+\sqrt{5}\right)\approx 1.618034$. Los gringos llamaron a este número razón áurea (razón dorada); afirmaron que un rectángulo cuyas dimensiones estaban es esta razón era perfecto". Se puede demostrar que

$$f_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$
$$= \frac{1}{\sqrt{5}} \left[\phi^n - (-1)\phi^{-n} \right]$$

Verifique que esto da el resultado correcto n=1 y n=2. El resultado general se puede demostrar por inducción (es un buen reto). Use esta fórmula explícita para demostrar que

$$\lim_{n \to \infty} \frac{f_{n+1}}{f_n} = \phi.$$

Estrategia para analizar la convergencia o divergencia de series

- 1. ¿Tiende a 0 el término n-ésimo? Si no es así, la serie diverge.
- 2. ¿Es la serie de alguno de los tipos especiales: geométrica, serie p, telescópica o alternante?
- 3. ¿Se puede aplicar el criterio de la integral, el de la raíz o el cociente?
- 4. ¿Puede compararse la serie favorable o fácilmente con uno de los tipos especiales?

Resumen de criterios para las series					
Criterio	Serie	Condición(es) de la convergencia	Condición(es) de la divergencia	Comentario	
Término n-ésimo	$\sum_{n=1}^{\infty} a_n$		$\lim_{n\to\infty}a_n\neq 0$	Este criterio no sirve para demostrar la con- vergencia	
Series geométricas	$\sum_{n=0}^{\infty} ar^n$	r < 1	r ≥ 1	Suma: $S = \frac{a}{1-r}$	
Series telescópicas	$\sum_{n=1}^{\infty} \left(b_n - b_{n+1} \right)$	$\lim_{n\to\infty}b_n=L$		Suma: $S = b_1 - L$	
Series p	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	p > 1	0 < p ≤ 1		
Series alternadas o alternantes	$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$	$0 < a_{n+1} \le a_n$ $y \lim_{n \to \infty} a_n = 0$		Residuos: $ R_N \le a_{N+1}$	
Integral (f continua, positiva y decreciente)	$\sum_{n=1}^{\infty} a_n, a_n = f(n) \ge 0$	$\int_{1}^{\infty} f(x) dx \text{ converge}$	$\int_{1}^{\infty} f(x) dx \text{ diverge}$	Residuo: $0 < R_N < \int_N^\infty f(x) dx$	
Raíz	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty} \sqrt[n]{ a_n } < 1$	$\lim_{n\to\infty} \sqrt[n]{ a_n } > 1 \text{ o}$ $= \infty$	El criterio no es concluyente si $\lim_{n\to\infty} \sqrt[n]{ a_n } = 1.$	
Cociente	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right < 1$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right > 1 \text{ o}$ $= \infty$	El criterio no es concluyente si $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right = 1.$	
Comparación directa $(a_n, b_n > 0)$	$\sum_{n=1}^{\infty} a_n$	$0 < a_n \le b_n$ $y \sum_{n=1}^{\infty} b_n \text{ converge}$	$0 < b_n \le a_n$ $y \sum_{n=1}^{\infty} b_n \text{ diverge}$		
Comparación en el límite $(a_n, b_n > 0)$	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ $y \sum_{n=1}^{\infty} b_n \text{ converge}$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ $y \sum_{n=1}^{\infty} b_n \text{ diverge}$		