Trabajo Práctico N°1:Conjuntos finitos e infinitos. Relaciones. Inducción. Lenguajes Formales

PARTE I: Conjuntos Finitos e Infinitos

- 1. Expresar por extensión los siguientes conjuntos:
 - (a) $\{x \in \mathbb{Z} \mid x = 6i, i \in \mathbb{N} \land 4i + 1 < 9\}$
 - (b) $\left\{ n \mid n = \frac{1}{5} m \operatorname{para} \operatorname{alg\'un} m \operatorname{en} \mathbb{N} \wedge m \operatorname{impar} < 6 \right\}$
 - (c) $\{n \mid n \in \mathbb{Z} \land n = n 4\}$
- 2. Expresar por comprensión los siguientes conjuntos
 - (a) $\{64, 128, 256, 512, 1024, 2048\}$
 - (b) $\{1, 2, 3, 5, 8, 13, 21, ...\}$
 - (c) El conjunto que contiene los números 1,30,50,...,100
- 3. Calcular los conjuntos potencia de los siguientes conjuntos:
 - (a) $\{x, y, z\}$
 - (b) $\{\emptyset, 4, 7\}$
 - (c) {}
 - (d) $\{\{w,z\},t,\{z\}\}$
 - (e) $\{\emptyset, \{\emptyset\}\}$
- 4. Sean los conjuntos $A = \{1, 2, 3, 4\}$ y $B = \{3, 5, 9\}$. Calcular las siguientes operaciones
 - (a) $(A \cup B) [(A \cap B) \{5\}]$
 - (b) $A (\{1, 2, 3, 4, 5, 6, 7\} \cap B)$
 - (c) 2^{A-B}
 - (d) $2^B \cap 2^{\{9\}}$
- 5. Propocione un ejemplo de dos conjuntos disjuntos, no vacíos, A y B tales que:
 - (a) $|A| < |B| < |A \cup B|$
 - (b) $|A| < |B| = |A \cup B|$

PARTE II: Relaciones e Inducción Matemática

1. Sean los conjuntos $A = \{2, 4, 6, 9, 10\}$

- (a) Una relación en AxA
- (b) Una función $A \to A$
- (c) Una relación en AxA que no sea función. Si la que propuso en el incisio (a) no es función, piense otro ejemplo.
- 2. De ejemplos de relaciones que cumplan las siguientes premisas:
 - (a) Que sea simétrica y transitiva, pero no reflexiva.
 - (b) Que sea reflexiva y simétrica, pero no transitiva
 - (c) Que sea reflexiva y transitiva, pero no simétrica.
- 3. Dado el conjunto $A = \{(a, b), (b, c), (d, a), (a, c)\}$ obtener:
 - (a) La clausura transitiva de A.
 - (b) La clausura reflexiva y transitiva de A.
 - (c) La clausura simétrica de A.
- 4. Defina Relación de Equivalencia y Clases de Equivalencia
- 5. En el conjunto de los números naturales se establece la siguiente relación:
 - El cero está relacionado sólo con el cero.
 - El uno está relacionado sólo con el uno.
 - Un número se relaciona con otro sólo si ambos son primos.
 - Un número se relaciona con otro sólo si ambos son compuestos.
 - (a) ¿La relación forma una partición de los naturales?
 - (b) Si la respuesta anterior es afirmativa demuestre que es una relación de equivalencia.
- 6. Dado el conjunto $\mathbb{N} \times \mathbb{N}$, se establece la relación entre dos elementos del conjunto $(a, b)R(m, n) \Leftrightarrow a.n = m.b.$
 - (a) Demuestre que la relación es de equivalencia.
 - (b) Encuentre la partición que produce la relación.
- 7. Probar por inducción en naturlaes las siguientes igualdades:

(a)
$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

(b)
$$\sum_{i=0}^{n} i^3 = \left(\sum_{i=0}^{n} i\right)^2$$

8. Muestre que el conjunto de los números naturales pares tiene la misma cardinalidad que el conjunto de número naturales impares.

2

9. Muestre que el conjunto de todos los números reales es incontable.

- 10. Dado un conjunto A, demuestre que $\mid 2^A \mid = 2^{|A|}$ (El cardinal del conjunto potencia de A es igual a 2 elevado al cardinal de A)
- 11. Presente una lista de todos los elementos de $2^{\{x,y\}}$. Luego genere la lista de todos los elementos de $2^{2^{\{x,y\}}}$. Muestre que $|\{x,y\}| \le |2^{\{x,y\}}| \le |2^{2^{\{x,y\}}}|$

PARTE III: Lenguajes Formales

- 1. Teniendo en cuenta el concepto de Alfabeto, se pide:
 - (a) Defina alfabeto.
 - (b) ¿Los elementos de los siguientes conjuntos pueden constituir símbolos de un alfabeto?
 - i. $\{a,b,...,z,A,B,..Z\}$.
 - ii. $\{1,1,2,3,5,8,13,\dots\}$.
 - iii. {Class,Object,Method,Atributte,Message}.
 - iv. $\{ \#, \in, \%, \&, /, ! \}$.
- 2. Teniendo en cuenta el concepto de cadena, se pide:
 - (a) Defina Cadena, longitud de una cadena. Brinde ejemplos de cada concepto
 - (b) Defina Prefijo v Sufijo
 - (c) Dada la cadena "Avanzar" conteste los siguientes ítems:
 - i. ¿Cuál es el conjunto más pequeño que puede ser considerado alfabeto?
 - ii. Indique cuales son los prefijos de la cadena, señalando cuales son propios
 - iii. Haga los mismo para los sufijos
 - (d) Defina subcadena y obtener las subcadenas de longitud mayor o igual a 4, en caso de ser posible, de las siguientes cadenas:
 - i. Oro
 - ii. Vinería
 - iii. Literatura
- 3. Teniendo en cuenta el concepto de lenguaje, se pide:
 - (a) Defina Lenguaje, Lenguaje Vacío
 - (b) Determine si los siguientes conjuntos, pueden ser considerados lenguajes:
 - i. $\mathbb{N} = \{0, 1, 2, ...\}.$
 - ii. $X = \{\lambda, |, ||, |||, \dots\}$.

En caso de respuesta afirmativa explique cual sería el alfabeto y cuales las reglas de formación.

- 4. Sobre el alfabeto $\Sigma = \{4, 5, 6, 7, 8\}$ brinde ejemplos de un lenguaje:
 - (a) Finito por extensión.
 - (b) Finito por comprensión.

- (c) Infinito, distinto de Σ^* .
- 5. Defina Potencia del lenguaje, cerradura de Kleene. Brinde ejemplos para cada concepto.
- 6. Dados los lenguajes $L_1=\{\varepsilon\},\, L_2=\{aa,b,bd\}$ y $L_3=\{\}$
 - (a) Muestre $L_1 \cdot L_2$.
 - (b) Muestre $L_1^* \cup (L_2 \cap L_3)$.
 - (c) Muestre $(L_1 \cap L_2)^*$.