Module 2: Concurrency Basics

Topic 1.1: Processes

Processes

- An instance of a running program
- Things unique to a process
- 1. Memory
 - Code, stack, heap, shared libraries
 - Virtual address space
- 2. Registers
 - Program counter, data regs, stack ptr, ...

Operating Systems

- Allows many processes to execute concurrently
- Processes are switched quickly
 - 20ms
- User has the impression of parallelism
- Operating system must give processes fair access to resources

Task Manager

Module 2: Concurrency Basics

Topic 1.2: Scheduling

Scheduling Processes

- Operating system schedules processes for execution
- Gives the illusion of parallel execution

OS gives fair access to CPU, memory, etc.

Context Switch

- Control flow changes from one process to another
- Process "context" must be swapped

Module 2: Concurrency Basics

Topic 1.3: Threads and Goroutines

Threads vs. Processes

- Many threads can exist in one process
- Threads share some context

Thread 1

OS schedules threads rather than processes

Thread 2

Thread 3

Goroutines

- Like a thread in Go
- Many Goroutines execute within a single OS thread

Process

Go Runtime Scheduler

- Schedules goroutines inside an OS thread
- Like a little OS inside a single OS thread
- Logical processor is mapped to a thread

Module 2: Concurrency Basics

Topic 2.1: Interleavings

Interleavings

- Order of execution within a task is known
- Order of execution between concurrent tasks is unknown
- Interleaving of instructions between tasks is unknown

Task 1

1:
$$a = b + c$$

$$2: d = e + f$$
 $2: u = v + w$

$$3: g = h + i$$

Task 2

$$1: r = s + t$$

$$2: 11 = v + w$$

$$3: x = y + z$$

Possible Interleavings

1: $a = b + c$	
	1: r = s + t
2: d = e + f	
	2: $u = v + w$
3: g = h + i	
	3: x = y + z

1: a = b + c	
2: d = e + f	
3: g = h + i	
	1: r = s + t
	2: u = v + w
	3: x = y + z

- Many interleavings are possible
- Ordering is non-determininstic
- Must consider all possibilities

Race Conditions

 Outcome depends on non-deterministic ordering

1 : x = 1	
	1: print x
2: x = x + 1	

Races occur due to communication

Communication Between Tasks

- Threads are largely independent but not completely independent
- Web server, one thread per client

• Image processing, 1 thread per pixel block

