SEQUENCE LISTING

<110> SALON, JOHN A

<pre><110> SALON, JOHN A LAZ, THOMAS M NAGORNY, RAISA WILSON, AMY E</pre>	
<120> DNA ENCODING A HUMAN MELANIN CONCENTRATING HORMONE RECEPTOR (MCH USES THEREOF	1) AND
<130> 1795/57453-A-PCT-US	
<140> 09/885,478	
<141> 2001-06-20	
<150> PCT/US99/31169 <151> 1999-12-30	
<160> 28	
<170> PatentIn version 3.1	
<210> 1	
<211> 1269 <212> DNA	
<213> HOMO SAPIENS	
<400> 1 atgtcagtgg gagccatgaa gaagggagtg gggagggcag ttgggcttgg aggcggcagc 6	0
ggctgccagg ctacggagga agaccccctt cccgactgcg gggcttgcgc tccgggacaa 12	0
ggtggcaggc gctggaggct gccgcagcct gcgtgggtgg aggggagctc agctcggttg 18	0
tgggagcagg cgaccggcac tggctggatg gacctggaag cctcgctgct gcccactggt 24	0
cccaatgcca gcaacacctc tgatggcccc gataacctca cttcagcagg atcacctcct 30	0
cgcacgggga gcatctccta catcaacatc atcatgcctt cggtgttcgg caccatctgc 36	0
ctcctgggca tcatcgggaa ctccacggtc atcttcgcgg tcgtgaagaa gtccaagctg 42	0
cactggtgca acaacgtccc cgacatette atcateaace teteggtagt agateteete 48	0
tttctcctgg gcatgccctt catgatccac cagctcatgg gcaatggggt gtggcacttt 54	0
ggggagacca tgtgcaccct catcacggcc atggatgcca atagtcagtt caccagcacc 60	0
tacatectga eegecatgge cattgacege tacetggeea etgtecacee catetettee 66	C
acgaagttcc ggaagccctc tgtggccacc ctggtgatct gcctcctgtg ggccctctcc 72	C
ttcatcagca tcacccctgt gtggctgtat gccagactca tccccttccc aggaggtgca 78)
gtgggctgcg gcatacgcct gcccaaccca gacactgacc tctactggtt caccctgtac 84)
cagtttttcc tggcctttgc cctgcctttt gtggtcatca cagccgcata cgtgaggatc 900)
ctgcagcgca tgacgtcctc agtggccccc gcctcccagc gcagcatccg gctgcggaca 960)
aagagggtga cccgcacagc catcgccatc tgtctggtct tctttgtgtg ctgggcaccc 1020)
tactatgtgc tacagctgac ccagttgtcc atcagccycc cgaccctcac ctttgtctac 1080)

ttatacaato cooccatcao ettopoetat pocaacaot poetaaago ettopo
ttatacaatg cggccatcag cttgggctat gccaacagct gcctcaaccc ctttgtgtac
atcgtgctct gtgagacgtt ccgcaaacgc ttggtcctgt cggtgaagcc tgcagcccag
gggcagcttc gcgctgtcag caacgctcag acggctgacg aggagaggac agaaagcaaa
ggcacctga
<210> 2 <211> 422 <212> PRT <213> HOMO SAPIENS
<400> 2
Met Ser Val Gly Ala Met Lys Lys Gly Val Gly Arg Ala Val Gly Leu 1 5 10 15
Gly Gly Gly Ser Gly Cys Gln Ala Thr Glu Glu Asp Pro Leu Pro Asp 20 25 30
Cys Gly Ala Cys Ala Pro Gly Gln Gly Gly Arg Arg Trp Arg Leu Pro 35 40 45
Gln Pro Ala Trp Val Glu Gly Ser Ser Ala Arg Leu Trp Glu Gln Ala 50 55 60
Thr Gly Thr Gly Trp Met Asp Leu Glu Ala Ser Leu Leu Pro Thr Gly 65 70 75 80
Pro Asn Ala Ser Asn Thr Ser Asp Gly Pro Asp Asn Leu Thr Ser Ala 85 90 95
Gly Ser Pro Pro Arg Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile Met 100 105 110
Pro Ser Val Phe Gly Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser 115 120 125
Thr Val Ile Phe Ala Val Val Lys Lys Ser Lys Leu His Trp Cys Asn 130 135 140
Asn Val Pro Asp Ile Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu 145 150 155 160
Phe Leu Leu Gly Met Pro Phe Met Ile His Gln Leu Met Gly Asn Gly 165 170 175
Val Trp His Phe Gly Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp 180 185 190

Ala Asn Ser Gln Phe Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile Asp Arg Tyr Leu Ala Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Val Ala Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser Phe Ile Ser Ile Thr Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp Phe Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu Pro Phe Val Val Ile Thr Ala Ala Tyr Val Arg Ile Leu Gln Arg Met Thr Ser Ser Val Ala Pro Ala Ser Gln Arg Ser Ile Arg Leu Arg Thr Lys Arg Val Thr Arg Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val Cys Trp Ala Pro Tyr Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser Arg Pro Thr Leu Thr Phe Val Tyr Leu Tyr Asn Ala Ala Ile Ser Leu Gly Tyr Ala Asn Ser Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys Glu Thr Phe Arg Lys Arg Leu Val Leu Ser Val Lys Pro Ala Ala Gln Gly Gln Leu Arg Ala Val Ser Asn Ala Gln Thr Ala Asp Glu Glu Arg Thr Glu Ser Lys Gly Thr

<210> 3

<211> 1214 <212> DNA <213> RATTUS NORVEGICUS <400> 3 gcaggcgacc tgcaccggct gcatggatct gcaaacctcg ttgctgtcca ctggccccaa 60 tgccagcaac atctccgatg gccaggataa tctcacattg ccggggtcac ctcctcgcac 120 agggagtgtc tcctacatca acatcattat gccttccgtg tttggtacca tctgtctcct 180 gggcatcgtg ggaaactcca cggtcatctt tgctgtggtg aagaagtcca agctacactg 240 gtgcagcaac gtccccgaca tcttcatcat caacctctct gtggtggatc tgctcttcct 300 gctgggcatg cctttcatga tccaccagct catggggaac ggcgtctggc actttggga 360 aaccatgtgc accetcatca cagecatgga egecaacagt cagtteacta geacetacat 420 cctgactgcc atgaccattg accgctactt ggccaccgtc caccccatct cctccaccaa 480 gttccggaag ccctccatgg ccaccctggt gatctgcctc ctgtgggcgc tctccttcat 540 cagtatcacc cctgtgtggc tctacgccag gctcattccc ttcccagggg gtgctgtggg 600 ctgtggcatc cgcctgccaa acccggacac tgacctctac tggttcactc tgtaccagtt 660 tttcctggcc tttgcccttc cgtttgtggt cattaccgcc gcatacgtga aaatactaca 720 780 gegeatgacg tetteggtgg ecceageete ecaaegeage ateeggette ggacaaagag ggtgacccgc acggccattg ccatctgtct ggtcttcttt gtgtgctggg caccctacta 840 tgtgctgcag ctgacccagc tgtccatcag ccgcccgacc ctcacgtttg tctacttgta 900 960 caacgcggcc atcagcttgg gctatgctaa cagctgcctg aacccctttg tgtacatagt 1020 gctctgtgag acctttcgaa aacgcttggt gttgtcagtg aagcctgcag cccaggggca gctccgcacg gtcagcaacg ctcagacagc tgatgaggag aggacagaaa gcaaaggcac 1080 ctgacaattc cccagtcgcc tccaagtcag gccaccccat caaaccgtgg ggagagatac tgagattaaa cccaaggcta ccctgggaga atgcagaggc tggaggctgg gggcttgtag 1200 caaccacatt ccac 1214 <210> 4 <211> 353 <212> PRT <213> RATTUS NORVEGICUS <400> 4 Met Asp Leu Gln Thr Ser Leu Leu Ser Thr Gly Pro Asn Ala Ser Asn 10 15

Ile Ser Asp Gly Gln Asp Asn Leu Thr Leu Pro Gly Ser Pro Pro Arg

25

Thr Gly Ser Val Ser Tyr Ile Asn Ile Ile Met Pro Ser Val Phe Gly Thr Ile Cys Leu Leu Gly Ile Val Gly Asn Ser Thr Val Ile Phe Ala Val Val Lys Lys Ser Lys Leu His Trp Cys Ser Asn Val Pro Asp Ile Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu Phe Leu Leu Gly Met Pro Phe Met Ile His Gln Leu Met Gly Asn Gly Val Trp His Phe Gly Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp Ala Asn Ser Gln Phe Thr Ser Thr Tyr Ile Leu Thr Ala Met Thr Ile Asp Arg Tyr Leu Ala Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Met Ala Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser Phe Ile Ser Ile Thr Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp Phe Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu Pro Phe Val Val Ile Thr Ala Ala Tyr Val Lys Ile Leu Gln Arg Met Thr Ser Ser Val Ala Pro Ala Ser Gln Arg Ser Ile Arg Leu Arg Thr Lys Arg Val Thr Arg Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val Cys Trp Ala Pro Tyr Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser Arg Pro Thr Leu Thr

Phe	Val 290	Tyr	Leu	Tyr	Asn	Ala 295	Ala	Ile	Ser	Leu	Gly 300	Tyr	Ala	Asn	Ser		
Cys 305	Leu	Asn	Pro	Phe	Val 310	Tyr	Ile	Val	Leu	Cys 315	Glu	Thr	Phe	Arg	Lys 320		
Arg	Leu	Val	Leu	Ser 325	Val	Lys	Pro	Ala	Ala 330	Gln	Gly	Gln	Leu	Arg 335	Thr		
Val	Ser	Asn	Ala 340	Gln	Thr	Ala	Asp	Glu 345	Glu	Arg	Thr	Glu	Ser 350	Lys	Gly		
Thr																	
<210 <211 <212 <213	L> : 2> :	5 26 DNA ARTI	FICI	AL S	EQUE	NCE											
<220 <223		PRIMI	ER														
)> aact	5 cca (cggt	catc	tt c	gcgg [,]	t										26
<210 <211 <212 <213	l> 2>	6 26 DNA ARTI	FICI	AL S	EQUE	NCE											
<220> <223> PRIMER																	
	0> cggt	6 caa	tggc	catg	gc g	gtca	g										26
<212	1> 2>	7 45 DNA ARTI	FICI.	AL S	EQUE	NCE											
<220 <22		PROB	E														
<400 ctc	_	7 gca	tgcc	cttc	at g	atcc	acca	g ct	catg	ggca	atg	gg					45
<21 <21 <21 <21	1> 2>	8 25 DNA ARTI	FICI	AL S	EQUE	NCE											
<22	0>		•														

<223>	PRIMER	
<400> cttctac	8 ggcc tgtacggaag tgtta	25
<210><211><211><212><213>	27	
<220> <223>	PRIMER	
<400> gttgtg	9 gttt gtccaaactc atcaatg	27
<211> <212>	10 37 DNA ARTIFICIAL SEQUENCE	
<220> <223>	PRIMER	
<400> cgcgga	10 toca ttatgtotgo actoogaagg aaatttg	37
<212>	11 38 DNA ARTIFICIAL SEQUENCE	
<220> <223>	PRIMER	
<400> cgcgaa	11 ttct tatgtgaagc gatcagagtt catttttc	38
<211> <212>	12 34 DNA ARTIFICIAL SEQUENCE	
<220> <223>	PRIMER	
<400> gcggga	12 tccg ctatggctgg tgattctagg aatg	34
<210><211><211><212><213>	13 29 DNA ARTIFICIAL SEQUENCE	
<220> <223>	PRIMER	
<400>	13	

ccggaattcc	cctca	acacc	g ag	cccc	ctgg									29
<210> 14 <211> 20 <212> DNA <213> ART	IFICIA	AL SE	QUEN	CE										
<220> <223> PRI	MER													
<400> 14 tcagctcggt	tgtgg	ggagc	a											20
<210> 15 <211> 18 <212> DNA <213> ART	IFICI <i>F</i>	AL SE	QUEN	CE										
<220> <223> PRI	MER													
<400> 15 cttggacttc	ttcac	cgac												18
<210> 16 <211> 100 <212> PRT <213> ART		AL SE	QUEN	CE										
<220> <223> MUT	ATION	CLON	E											
<400> 16														
Met Ser Va 1	l Gly	Ala i 5	Met 1	Lys	Lys	Gly	Val 10	Gly	Thr	Ala	Val	Gly 15	Leu	
Gly Gly Gl	y Ser 20	Gly	Cys (Gln	Ala	Thr 25	Glu	Glu	Asp	Pro	Leu 30	Pro	Asp	
Cys Gly Al 35	_	Ala	Pro (Gly	Gln 40	Gly	Gly	Arg	Arg	Trp 45	Arg	Leu	Pro	
Gln Pro Al 50	~			_		Ser		_		Trp	Glu	Gln	Ala	
Thr Gly Th 65	r Gly		Ala A 70	Asp	Leu	Glu	Ala	Ser 75	Leu	Leu	Pro	Thr	Gly 80	
Pro Asn Al	a Ser	Asn 85	Thr S	Ser	Asp	Gly	Pro 90	Asp	Asn	Leu	Thr	Ser 95	Ala	
Gly Ser Pr	o Pro 100													

Page 8

<210> 17

```
<211> 100
<212>
       PRT
<213>
       ARTIFICIAL SEQUENCE
<220>
<223>
       MUTATION CLONE
<400>
      17
Met Ser Val Gly Ala Ala Lys Lys Gly Val Gly Arg Ala Val Gly Leu
Gly Gly Gly Ser Gly Cys Gln Ala Thr Glu Glu Asp Pro Leu Pro Asp
Cys Gly Ala Cys Ala Pro Gly Gln Gly Gly Arg Arg Trp Arg Leu Pro
Gln Pro Ala Trp Val Glu Gly Ser Ser Ala Arg Leu Trp Glu Gln Ala
    50
                        55
Thr Gly Thr Gly Trp Ala Asp Leu Glu Ala Ser Leu Leu Pro Thr Gly
65
                    70
                                        75
                                                             80
Pro Asn Ala Ser Asn Thr Ser Asp Gly Pro Asp Asn Leu Thr Ser Ala
                85
                                    90
                                                        95
Gly Ser Pro Pro
            100
<210> 18
<211> 31
<212>
      DNA
<213> ARTIFICIAL SEQUENCE
<220>
<223> PRIMER
<400> 18
cggcactggc tgggcggacc tggaagcctc g
                                                                       31
<210> 19
<211>
      31
<212> DNA
<213> ARTIFICIAL SEQUENCE
<220>
<223>
      PRIMER
<400> 19
                                                                       31
cgaggcttcc aggtccgccc agccagtgcc g
```

Page 9

<210> <211> <212> <213>		
<220> <223>	PRIMER	
<400> atgtca	20 gtgg gagccgcgaa gaagggagtg gg	32
<210><211><211><212><213>		
<220> <223>	PRIMER	
<400> cccact	21 ccct tcttcgcggc tcccactgac at	32
<210><211><211><212><213>		
<220> <223>	PRIMER	
<400> taatgt	22 gtct aggtggcgtc agtgggagcc atg	33
<210><211><211><212><213>		
<220> <223>	PRIMER	
<400> catggc	23 tccc actgacgcca cctagacaca tta	33
<210><211><211><212><213>		
<220> <223>	PRIMER	
<400> tgacac	24 taag cttcactggc tggatggacc tggaagc	37
<210> <211>		

```
<212>
       DNA
<213>
      ARTIFICIAL SEQUENCE
<220>
<223>
      PRIMER
<400>
      25
gcccaggaga aagaggagat ctac
<210>
      26
<211> 422
<212> PRT
<213>
      ARTIFICIAL SEQUENCE
<220>
<223>
      MUTATED MCH RECEPTOR
<400>
      26
Met Ser Val Gly Ala Met Lys Lys Gly Val Gly Arg Ala Val Gly Leu
                                    10
Gly Gly Gly Ser Gly Cys Gln Ala Thr Glu Glu Asp Pro Leu Pro Asp
            20
                                25
Cys Gly Ala Cys Ala Pro Gly Gln Gly Gly Arg Arg Trp Arg Leu Pro
        35
                                                45
Gln Pro Ala Trp Val Glu Gly Ser Ser Ala Arg Leu Trp Glu Gln Ala
    50
                        55
Thr Gly Thr Gly Trp Ala Asp Leu Glu Ala Ser Leu Leu Pro Thr Gly
                    70
                                        75
                                                            80
65
Pro Asn Ala Ser Asn Thr Ser Asp Gly Pro Asp Asn Leu Thr Ser Ala
                             90 95
Gly Ser Pro Pro Arg Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile Met
                                105
            100
                                                    110
Pro Ser Val Phe Gly Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser
                            120
        115
                                                125
Thr Val Ile Phe Ala Val Val Lys Lys Ser Lys Leu His Trp Cys Asn
    130
                        135
                                            140
Asn Val Pro Asp Ile Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu
                    150
                                        155
                                                            160
145
Phe Leu Leu Gly Met Pro Phe Met Ile His Gln Leu Met Gly Asn Gly
                165
                                    170
                                                        175
```

Val Trp His Phe Gly Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp Ala Asn Ser Gln Phe Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile Asp Arg Tyr Leu Ala Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Val Ala Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser Phe Ile Ser Ile Thr Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp Phe Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu Pro Phe Val Val Ile Thr Ala Ala Tyr Val Arg Ile Leu Gln Arg Met Thr Ser Ser Val Ala Pro Ala Ser Gln Arg Ser Ile Arg Leu Arg Thr Lys Arg Val Thr Arg Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val Cys Trp Ala Pro Tyr Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser Arg Pro Thr Leu Thr Phe Val Tyr Leu Tyr Asn Ala Ala Ile Ser Leu Gly Tyr Ala Asn Ser Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys Glu Thr Phe Arg Lys Arg Leu Val Leu Ser Val Lys Pro Ala Ala Gln Gly Gln Leu Arg Ala Val Ser Asn Ala Gln Thr Ala Asp Glu Glu Arg Thr Glu Ser Lys Gly Thr

<210> 27 <211> 422 <212> PRT <213> ARTIFICIAL SEQUENCE <220> <223> MUTATED MCH RECEPTOR <400> 27 Met Ser Val Gly Ala Ala Lys Lys Gly Val Gly Arg Ala Val Gly Leu Gly Gly Gly Ser Gly Cys Gln Ala Thr Glu Glu Asp Pro Leu Pro Asp 20 Cys Gly Ala Cys Ala Pro Gly Gln Gly Gly Arg Arg Trp Arg Leu Pro Gln Pro Ala Trp Val Glu Gly Ser Ser Ala Arg Leu Trp Glu Gln Ala 50 55 Thr Gly Thr Gly Trp Ala Asp Leu Glu Ala Ser Leu Leu Pro Thr Gly 65 70 Pro Asn Ala Ser Asn Thr Ser Asp Gly Pro Asp Asn Leu Thr Ser Ala 85 90 95 Gly Ser Pro Pro Arg Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile Met 100 105 110 Pro Ser Val Phe Gly Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser 120 125 Thr Val Ile Phe Ala Val Val Lys Lys Ser Lys Leu His Trp Cys Asn 130 135 140 Asn Val Pro Asp Ile Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu 145 150 155 160 Phe Leu Leu Gly Met Pro Phe Met Ile His Gln Leu Met Gly Asn Gly 165 170 175 Val Trp His Phe Gly Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp 180 185

Ala Asn Ser Gln Phe Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile

200

195

190

Asp Arg Tyr Leu Ala Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Val Ala Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser Phe Ile Ser Ile Thr Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp Phe Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu Pro Phe Val Val Ile Thr Ala Ala Tyr Val Arg Ile Leu Gln Arg Met Thr Ser Ser Val Ala Pro Ala Ser Gln Arg Ser Ile Arg Leu Arg Thr Lys Arg Val Thr Arg Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val Cys Trp Ala Pro Tyr Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser Arg Pro Thr Leu Thr Phe Val Tyr Leu Tyr Asn Ala Ala Ile Ser Leu Gly Tyr Ala Asn Ser Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys Glu Thr Phe Arg Lys Arg Leu Val Leu Ser Val Lys Pro Ala Ala Gln Gly Gln Leu Arg Ala Val Ser Asn Ala Gln Thr Ala Asp Glu Glu Arg

Thr Glu Ser Lys Gly Thr

<210> 28

<211>

<212> PRT

ARTIFICIAL SEQUENCE <213>

<220>

<223> MUTATED MCH RECEPTOR

<400> 28

Met Asp Leu Glu Ala Ser Leu Leu Pro Thr Gly Pro Asn Ala Ser Asn 1 5 10

Thr Ser Asp Gly Pro Asp Asn Leu Thr Ser Ala Gly Ser Pro Pro Arg 20 25 30

Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile Met Pro Ser Val Phe Gly 35 40

Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser Thr Val Ile Phe Ala 50 55 60

Val Val Lys Lys Ser Lys Leu His Trp Cys Asn Asn Val Pro Asp Ile
65 70 75 80

Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu Phe Leu Leu Gly Met 85 90 95

Pro Phe Met Ile His Gln Leu Met Gly Asn Gly Val Trp His Phe Gly 100 105 110

Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp Ala Asn Ser Gln Phe 115 120 125

Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile Asp Arg Tyr Leu Ala 130 135 140

Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Val Ala 145 150 155 160

Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser Phe Ile Ser Ile Thr 165 170 175

Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val 180 185 190

Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp Phe
195 200 205

Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu Pro Phe Val Val Ile 210 215 220

Thr Ala Ala Tyr Val Arg Ile Leu Gln Arg Met Thr Ser Ser Val Ala 225 230 235 240

Pro Ala Ser Gln Arg Ser Ile Arg Leu Arg Thr Lys Arg Val Thr Arg 255

Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val Cys Trp Ala Pro Tyr 260 270

Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser Arg Pro Thr Leu Thr 275 280 285

Phe Val Tyr Leu Tyr Asn Ala Ala Ile Ser Leu Gly Tyr Ala Asn Ser 290 295 300

Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys Glu Thr Phe Arg Lys 305 310 315 320

Arg Leu Val Leu Ser Val Lys Pro Ala Ala Gln Gly Gln Leu Arg Ala 325 330 335

Val Ser Asn Ala Gln Thr Ala Asp Glu Glu Arg Thr Glu Ser Lys Gly 340 345 350

Thr