CACHE DESIGN (II) https://tutorcs.com

Lecturer: Hui Annie Guo We Chat: cstutorcs

h.guo@unsw.edu.au

K17-501F

Lecture overview

Topics

- Cache operations and control
 - Block placement
 - · Block idensificationent Project Exam Help

 - Block replacement
 Write strategy https://tutorcs.com

WeChat: cstutorcs

- Suggested reading
 - H&P Chapter 5.4

Recall: Cache (cont.)

- For control of the operation of cache, four issues should be addressed
 - Where to put a memory block in cache?
 - · Block placement steate Project Exam Help
 - How to find a memory block in cache?
 - Block identification://tutorcs.com
 - If there are no free spaces in cache, which block can be replaced by a new themory block?
 - Block replacement
 - When memory data is updated, how is cache involved in write?
 - Write strategy

Block placement

- How to determine the cache location for a memory block?
- Based on memory block address and cache structures: Assignment Project Exam Help
 - Direct mappehttps://tutorcs.com
 - A memory block can be placed in one and only one location in the cache WeChat: cstutorcs
 - Fully associative
 - A memory block can be placed in any location in the cache
 - Set associative
 - A memory block can be placed in any location in a set (one and only one) of the cache

Example (1)

• For a memory block with the block address 28, where can it be placed in a <u>direct mapped</u> cache of **Spigniss** Project Exam Help

https://tutorcs.com

Example (2)

• For a memory block with the block address 28, where can it placed in a <u>fully associative</u> cache of **Spigsken**t Project Exam Help

https://tutorcs.com
Block 01234567
WeChat: cstutorcs

Example (3)

• For a memory block with the block address 28, where can it placed in a 2-way set associative cacherof blocks? Help

Block identification

- How to identify whether a memory block is cached? And where?
 - **Based on the memory block address**
 - Tag field Assignment Project Exam Help
 - Set-index field
 - Specifying the possible cache locations
 - Field size • 0 bit → fully associative cache

 - n bit \rightarrow 2ⁿ sets
 - If the entry with the matched tag is found and is valid, the block is cached.

Block Address	Block
Tag	Offset

In-class exercise (1)

- Given the memory address format as shown below and a cache of B blocks,
 - (a) What is the minimal size of Set Index?
 - (b) What is the maximum size of Set index?

https://tutorcs.com

WeChat: cstutorcs

Block Address	Block	
Tag	Set Index	Offset

In-class exercise (2)

- A 4-way set associative cache contains 2ⁿ blocks.
 - How many bits are used to index a memory block in the cache ssignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Block replacement

- When cache is full, which cache block is replaced by the new memory block?
 - For direct mapped
 - Only one spignment Project Exam Help
 - Fixed location
 - The related battle Siocky S Q Ways Ceptaced
 - For set associative or fully associative hat: cstutores
 - Multiple options
 - Two typical approaches
 - Random
 - Randomly select one of the multiple optional locations for replacement
 - LRU (Least Recently Used)
 - Select the block that is least recently used

- For a 4-way set associative cache,
 - (a) what is the probability that a block is replaced by a new memory block if the random replacement policy is Aseignment Project Exam Help

https://tutorcs.com

• (b) can you determine the probability when the LRU policy is applied?

Comparison of two replacement policies

Experiment results: cache miss rate of different cache configurations

associ.	Assignment Pro	ject Exway Help	8-way
cache size	LEUtipsandulen	CS QOTRandom	LRU Random
16 KB	WeChat: cs 5.2% 5.7%	tutores 4.7% 5.3%	4.4% 5.0%
64 KB	1.9% 2.0%	1.5% 1.7%	1.4% 1.5%
256 KB	1.15% 1.17%	1.13% 1.13%	1.12% 1.12%

What conclusion can you draw from the experiment data?

Write strategy

- When memory data is updated, how is the cache affected? How is the data saved?
- Four write policies

 Assignment Project Exam Help
 When the write has a cache hit
 - - Write thoughtps://tutorcs.com
 - Write back
 - · When the write has a cache mes
 - Write allocate
 - Write not allocate

Policies on write hit

- Write through (WT)
 - Data is written to both cache and memory.
- Write back (WB)
 - Data is where growing Praise Exam Help
 - The modified cache block is written to memory only when it is replaced.
 - Additional dirty bithist requireds
 - A block is dirty if data in the block has been modified; otherwise, the block is clean and no need to be written back when it is replaced.

Policies on write hit (cont.)

- Pros and Cons of WT and WB
 - WT
 - + read misses don't result in writes
 - potentialsy is ignored Project african Help
 - performance degradation https://tutorcs.com
 - WB
 - + less memoty achasses utorcs
 - no memory writes needed for repeated processor writes
 - cache coherence issue
 - to be discussed in the multiprocessor design

Improve design with write buffer

- Assignment Project Exam Help

 To reduce the impact of slow memory access on the performanicepa/write buffer can be used
- For a write-to-memory operation, we char, estutores
 - Processor: writes data to the write buffer
 - Memory controller: writes contents of the buffer to memory
- Write buffer is just a FIFO (First In First Out)
 - Small, typical number of entries: 4
 - Works fine if processor write frequency << 1 / DRAM write cycle.

Improve design with write buffer (cont.)

- If processor write frequency > 1 / DRAM write cycle,
 - Write buffer will overflow (aka write buffer saturation)ssignment Project Exam Help
- Solution for write buffers saturation
 - Add a second level (L2) cache WeChat: cstutorcs

Policies on write miss

- Write Allocate
 - Allocates a cache block in cache for the write operation and has two ways
 - Fetch-on Aversife nment Project Exam Help
 - Read in the whole block from the memory to the cache, then write the newhelets to the cache, then
 - Not-fetch-on-write
 - Write to cache mediately stutores
 - The cache block is invalid, except for the data word that is written
- Write Not Allocate
 - No block in the cache is used for the data written
 - write misses direct go to the next lower level.

Types of cache misses

- Cache performance is closely related to the cache misses.
- There are three types cache misses
 - · Compuls des in the contract of the contract
 - First access to a block and the block has never been cached.
 https://tutorcs.com
 - Conflict miss (aka collision miss)
 - In a non-fully associative cache
 - Due to competition for an entry in a set
 - Capacity miss
 - Due to limited cache size
 - Related to fully associative cache

Recall: Example

- The following memory locations need to be accessed in sequence: 10110, 11010, 10000, 00010. How is the cache updated?
 - After power on Project Exam Help

	https://tutorcs.com					
Index	V	Tag	Data			
000	N	WeChat	yestutores			
001	N		" Ore			
010	N		Comp			
011	N		Compulsory misses!			
100	N		mica			
101	N		2262\			
110	N					
111	N					

Recall: Class exercise

• If the cache shown in the previous slide is restructured into two blocks with the same cache size, how are the cache contents changed? Assignment Project Exam Help

Trade-offs in the cache design

 Impact of cache size, associativity, and block size on cache performance

Design changesign	nentificologie Exam	Hegative performance effect
Increase cache size		

Trade-off should be played in the cache design

Cache interface

A typical example

Cache controller

- Handles the memory read/write request
 - By using a FSM

Cache controller FSM – an example

Recall: Impact of the speed gap on performance

- Suppose a processor executes at
 - clock rate = 2 GHz
 - CPI = 1.1
 - 50% arith/kogic 30% ld/pt 20% control Help
- Suppose data memory operations get 50 cycle penalty https://tutorcs.com
 - Pipeline has to wait 50 cycles for each memory access WeChat: cstutorcs
- CPI
 - = ideal CPI + average stalls per instruction
 = 1.1 + 0.30 x 50
 = 16.1
- Because of the slowness of memory, on average, the pipeline outputs every 16 clock cycles!

Improvement on Performance with cache

- Suppose a processor executes at
 - Clock Rate = 200 MHz (5 ns per cycle)
 - CPI = 1.1
 - 50% arith/logic; 30% ld/st, 20% eqntrol am Help
- Suppose that 10% of data memory operations get 50 cycle miss penaltys://tutorcs.com
 - Pipeline has to wait 50 cycles for each memory access WeChat: cstutorcs
- CPI
 - = ideal CPI + average stalls per instruction
 = 1.1 + 0.1 x 0.30 x 50
 = 1.1 cycle + 1.5 cycle
 = 2.6
- The performance is improved.

Given a sequence of word address references (written in decimal): 1, 4, 8, 5, 20, 17, 19, 9, 11, 4, 5, 6

(a) Assuming a direct-mapped cache with 8 one-word blocks and the cache is initially empty, label each reference in the list as a hit or miss and show the final contents of the cache.

		ent Project)
Cache block	Access #1	Access #2	Access #3	Final Contents
0	8(miss)ps	://tutorcs.c	om	(8)
1	1(miss)	hat (miss)	rcs ⁹ (miss)	(9)
2				N/A
3	19(miss)	11(miss)		(11)
4	4(miss)	20(miss)	4(miss)	(4)
5	5(miss)	5(hit)		(5)
6	6(miss)			(6)
7				(N/A)

Given a sequence of word address references (written in decimal): 1, 4, 8, 5, 20, 17, 19, 9, 11, 4, 5, 6

(b) Show the hits and misses and the final contents for a direct-mapped with 2-word blocks and a total size of 8 words. Assume blocks are aligned with even addresses

Cache block	word	Acques #1g	1 4FFP®114 2]	P470955#8 I	Acess #4	Appess #5	Final contents
0	0	0(line) h	t e ovise/tu	tog(tipe)CC	m³(line)		8
0	1	1(miss)	9(line)	17(miss)	9(miss)		9
1	0	18(line)	10(line)	CStutor			10
1	1	19(miss)	11(miss)				11
2	0	4(miss)		20(miss)	4(miss)		4
2	1	5(line)	5(hit)	21(line)	5(line)	5(hit)	5
3	0	6(miss)					6
3	1	7(line)					7

Given a sequence of address references (written in decimal format): 1, 4, 8, 5, 20, 17, 19, 9, 11, 4, 5, 6

(c) Show the hits and misses and the final contents for a two-way setassociative cache with one-word blocks and a total size of 8 words. Assume LRU Replacement.

set block	A ssig	Marento 1	Pargies#2	exerp#H	சிநி contents
0	0 h	4(miss) ttps://tu	20(miss) torcs.co	om	20
1	0	8(miss) VeChat:	4(miss)	O.C.	4
0	1	1(miss)	CStutor 17(miss)	5(miss)	5
1	1	5(miss)	9(miss)		9
0	2	6(miss)			6
1	2				N/A
0	3	19(miss)			19
1	3	11(miss)			11

Given a sequence of address references (written in decimal format): 1, 4, 8, 5, 20, 17, 19, 9, 11, 4, 5, 6

(d) Show the hits and misses for a fully associative cache with one-word blocks and a total size of 8 words. Assume LRU Replacement.

cache block	Assigti n	ACPPS PROM) fece ts#3x	a Final Tebetents
0	1(miss)	11(miss) S.//tuto	rcs.com	
1	4(miss)	4(hit)	.44	
2	8(miss)	6(miss)	stutores	
3	5(miss)	5(hit)		
4	20(miss)			
5	17(miss)			
6	19(miss)			
7	9(miss)			

Given a sequence of address references (written in decimal format): 1, 4, 8, 5, 20, 17, 19, 9, 11, 4, 5, 6

(e) Show the hits and misses for a fully associative cache with two-word blocks and a total size of 8 words. Assume LRU Replacement.

cache block	Access#1g	n agen #2[Project3E	Xum Help	Final contents
0	0(line) h	ttps://inetu	t olois sco	m	
0	1(miss)	17(miss) VeChat:	5(line)	5(hit)	
1	4(miss)	echat.	Cstutoro 8(line)	S	
1	5(line)	5(hit)	9(miss)		
2	8(miss)	18(line)	6(miss)		
2	9(line)	19(miss)	7(line)		
3	20(miss)	10(line)			
3	21(line)	11(miss)			