知乎

CPK制程能力指标

是大家 🛂

伦敦国王学院 工程与管理硕士

赞同 77

CPK是什么

Cpk (Process Capability Index,制程能力指标)是统计制程管制(SPC, Statistical Process Control)里一个非常重要的专有名词,了解了Cpk就等于了解一大半的SPC观念。相信你也经常听人家说Cpk最好要管控在1.33以上,但你有没有想过为什么是Cpk>1.33而不是其他的数字呢?想了解Cpk=1.33这个管控数字是怎么来的之前,我们得先了解一下何谓Cpk?这Cpk又是怎么算出来的呢?

Cpk的计算公式有两种方法,但基本上结果都是一样的 第一种Cpk的计算公式要先计算Ck(又称Ca)与Cp,然后才算出Cpk,简单整理如下:

 \underline{Ck} = (M-X)/(T/2),M: 规格中心值,X: 量测数据平均值,T: 规格宽度 \underline{Cp} = T/6 σ ,T: 规格宽度, σ : 量测数据的标准差 \underline{Cpk} = (1-Ck) x Cp

第二种Cpk的计算公式分别使用规格上下限来计算取最小值就是Cpk:

Cpu (管制上限) = (USL-u)/3σ,

USL:规格上限, u:量测数据平均值, σ: 量测数据的标准差

Cpl (管制下限) = (u-LSL)/3σ,

LSL:规格下限, u:量测数据平均值, σ: 量测数据的标准差

Cpk = min {Cpl, Cpu},

也就是算出Cpu, Cpl后, 取两者中的最小值就是Cpk。

这里有一组数字,可以试着用这两种方法来计算一下其Cpk,算出来的结果应该会一样,请注意:如果有负数出现要取绝对值。

Spec.: 0.5+/-0.2mm

USL: 0.7 T: 0.4 LSL: 0.3 M: 0.5

Measurement 30 pcs data as below:

	Marie Control of the Control								
0.575	0.593	0.564	0.587	0.607	0.582	0.588	0.630	0.615	0.632
0.627	0.624	0.624	0.624	0.602	0.623	0.619	0.597	0.582	0.598
0.620	0.580	0.614	0.562	0.621	0.634	0.558	0.603	0.625	0.627

为什么Cpk>1.33

好了,现在来看看为什么是Cpk>1.33,而不是Cpk>1.11或Cpk>1.77

这是因为Cpk可以换算成不良率(换算表可以参考【Cpk、Sigma与不良率PPM换算对照表】),请注意看第二种Cpk的算法有除以一个3 σ ,所以如果将1.33的Cpk乘以3,理论上就会变成3.99 σ (\approx 4.0 σ),也就是说当Cpk=1.33时,即表示品质已经达到了4 σ 的能力,而这时候的不良率只要查常态分配机率表,就可得:

P(Z>3.99)=0.000066074=0.006607%=66.07ppm, P(Z>4.00)=0.000063342=0.006334%=63.34ppm,

什么是ppm? ppm(百万分率)/ppb

◆ 赞同 77▼ ● 6 条评论✓ 分享● 喜欢◆ 收藏△ 申请转载

知平

每生产一百万个产品的不良率大概只会有63~66个左右。

如果我们取Cpk>1.11,则其不良率将会大于868.46ppm,不良率似乎稍微偏大。如果我们改取Cpk>1.77,虽然不良率会下降到0.1096ppm以下,但可能需要花费非常高的投资成本才能达到这个标准。

A

在衡量品质损失与投资成本的两个翘翘板平衡的情况下,于是取了Cpk>1.33这个折衷值来当标准,想知道更多关于Cpk的判断标准可以参考【制程能力介绍 — Cpk之统计制程能力解释】一文。

CPK等级评估

- 曲线A应该拥有最佳制程能力,因为其制程中心与规格中心刚好重叠,而且分布又窄,只需要持续观察即可,不需要做任何的调整。
- 曲线B的制程中心虽然也落在规格中心点,但其分布有点宽,几乎快超出规格的上、下界限了,需要密切观察或进行改善。
- 曲线C的制程中心虽然偏掉了,但分布比曲线B来得窄,所以只要稍微调整一下制程,让制程中 心可以接近规格中心就可以解决问题。

А			Cpk	≥	2.00	製程能力 很足夠, 不必特別 檢查,即 可達 ppm(百萬 分之一)的 水準。 Cpk=2.0 時不良率 為 0.0020pp m。
В	2.00	>	Cpk	2	1.33	製程能力 足,不必 檢查,維 持現狀即 可。 Cpk=1.66 時不良率 約為 0.6358pp m。
С	1.33	>	Cpk	All .	1.00	製程能力 普通,可 維持2個 月現狀, 需尋找改 善對策,

知乎

					勢是否變差。 Cpk=1 時 約有 2700ppm 不良率; Cpk=1.33 時不良率 為 66.08ppm
D	1.00	>	Cpk		製程能力 不足,需 急速尋,此 改善,需全 數檢查。

编辑于 2022-08-18 11:51

自身能力

推荐阅读

Cpk为什么要大于1.33?

CPK是每个质量人的必备技能,它是衡量生产过程能力高低的数据,对质量工作非常重要。 今天karli带大家简单认识一下~ 今日文章福利: 【西格玛和过程能力的换算及判断】自动计算表格。前100...

karli谈质量

过程能力指标:Cpk vs Ppk

Minitab Users Group

零件生产过程中的CPK怎么理解,计算?详解来了

在产品生产过程中,我们经常会用到CPK来验证过程能力,但是很多人对CPK不了解或者是不知道,本篇文章就对CPK进行简单的介绍。若是想了解CPK,首先需要了解正态分布,在零件生产过程中,我…尺寸小世界