- 1 import pandas as pd
- 2 import numpy as np
- 3 import time
- 1 from google.colab import drive
- 2 drive.mount('/content/drive/')

Drive already mounted at /content/drive/; to attempt to forcibly remount, call drive.mou

→

Injesting The Data

- 1 train_data = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/data/benz/train.csv')
- 2 test data = pd.read csv('/content/drive/MyDrive/Colab Notebooks/data/benz/test.csv')

Data Analysis

- 1 train_data.shape
- (4209, 378)
- 1 train data.head()

	ID	У	X0	X1	X2	Х3	Х4	X5	X6	X8	• • •	X375	X376	X377	X378	X379	X380	X
0	0	130.81	k	٧	at	а	d	u	j	0		0	0	1	0	0	0	
1	6	88.53	k	t	av	е	d	У	1	0		1	0	0	0	0	0	
2	7	76.26	az	W	n	С	d	Χ	j	Х		0	0	0	0	0	0	
3	9	80.62	az	t	n	f	d	Χ		е		0	0	0	0	0	0	
4	13	78.02	az	٧	n	f	d	h	d	n		0	0	0	0	0	0	
5 rows × 378 columns																		
4																		•

1 train_data['y'].plot(figsize=(12,7), title="The Graph of the 'y' Column");

The Graph of the 'y' Column

1 test_data.head()

	ID	X0	X1	X2	Х3	X4	X5	Х6	X8	X10	• • •	X375	X376	X377	X378	X379	X380	X382
0	1	az	V	n	f	d	t	а	W	0		0	0	0	1	0	0	(
1	2	t	b	ai	а	d	b	g	У	0		0	0	1	0	0	0	(
2	3	az	٧	as	f	d	а	j	j	0		0	0	0	1	0	0	(
3	4	az	1	n	f	d	Z	I	n	0		0	0	0	1	0	0	(
4	5	W	S	as	С	d	У	i	m	0		1	0	0	0	0	0	(
5 rc	5 rows × 377 columns																	
4																		•

1 train_data.dtypes

ID	int64	
У	float64	
X0	object	
X1	object	
X2	object	
X380	int64	
X382	int64	
X383	int64	
X384	int64	
X385	int64	
Length:	378, dtvpe:	obiect

	ID	У	X10	X11	X12	X13	X1.		
count	4209.000000	4209.000000	4209.000000	4209.0	4209.000000	4209.000000	4209.00000		
mean	4205.960798	100.669318	0.013305	0.0	0.075077	0.057971	0.42813		
std	2437.608688	12.679381	0.114590	0.0	0.263547	0.233716	0.49486		
min	0.000000	72.110000	0.000000	0.0	0.000000	0.000000	0.00000		
25%	2095.000000	90.820000	0.000000	0.0	0.000000	0.000000	0.00000		
50%	4220.000000	99.150000	0.000000	0.0	0.000000	0.000000	0.00000		
75%	6314.000000	109.010000	0.000000	0.0	0.000000	0.000000	1.00000		
max	8417.000000	265.320000	1.000000	0.0	1.000000	1.000000	1.00000		
8 rows × 370 columns									
4							>		

1 test_data.dtypes

ID int64 X0 object object X1 X2 object Х3 object . . . X380 int64 X382 int64 X383 int64 X384 int64 X385 int64

Length: 377, dtype: object

1 test_data.describe()

			ID		X10		X11		X12	X13	X14	
	count	4209.00	00000	4209.0	00000	4209.0	000000	4209.	000000	4209.000000	4209.000000	4209.
Chec	king Nu	ıll Values	S									
	อเน	Z4ZJ.U1	0920	U. I	აღაღა	0.0	110414	U.	ZUZJ34	U.Z354U0	U.43403Z	U.
1	train_d	lata.isn	ull().	.sum()								
	ID	0										
	У	0										
	X0	0										
	X1	0										
	X2	0										
		• •										
	X380	0										
	X382	0										
	X383	0										
	X384	0										
	X385	0 378, d	4	:+. < 1								
1 te		.isnull	().sum	n()								
	ID	0										
	X0	0										
	X1	0										
	X2	0										
	Х3	0										
	X380	0										
	X382	0										
	X383	0										
	X384	0										
	X385	0										
	Length:	377, d	type:	int64								
1 tr	rain_dat	a.descr	ibe(ir	nclude=	'objec	t')						
		VO	VA	Va	٧a	VA	VF	VC	VO	***		
		X0	X1	X2	Х3	X4	X5	Х6	X8	7)+		

count	4209	4209	4209	4209	4209	4209	4209	4209
unique	47	27	44	7	4	29	12	25
top	Z	aa	as	С	d	W	g	j
freq	360	833	1659	1942	4205	231	1042	277

Separating categorical and numeric feature

Finding and removing features with zero variance

```
1 da=[]
2 count=0
3 for i in dictionary['num']:
  if(np.var(train data[i])==0):
     da.append(i)
6 print(da)
   ['X11', 'X93', 'X107', 'X233', 'X235', 'X268', 'X289', 'X290', 'X293', 'X297', 'X330',
1 z=['ID','y']
2 da.extend(z)
3 print(da)
   ['X11', 'X93', 'X107', 'X233', 'X235', 'X268', 'X289', 'X290', 'X293', 'X297', 'X330',
1 y train=train data['y'].values
2 ID train=train_data['ID'].values
3 ID_test=test_data['ID'].values
1 da test=['X11', 'X93', 'X107', 'X233', 'X235', 'X268', 'X289', 'X290', 'X293', 'X297', '>
1 X train=train data.drop(da,axis=1)
2 X test=test data.drop(da test,axis=1)
1 X train.shape
```

```
(4209, 364)

1 X_test.shape
(4209, 364)
```

Applying Label encoding on the categorical variables

```
1 from sklearn.preprocessing import LabelEncoder
1 #Train dataset
2 le0=LabelEncoder()
3 le1=LabelEncoder()
4 le2=LabelEncoder()
5 le3=LabelEncoder()
6 le4=LabelEncoder()
7 le5=LabelEncoder()
8 le6=LabelEncoder()
9 le8=LabelEncoder()
```

```
1 le0.fit(X_train['X0'])
2 le1.fit(X_train['X1'])
3 le2.fit(X_train['X2'])
4 le3.fit(X_train['X3'])
5 le4.fit(X_train['X4'])
6 le5.fit(X_train['X5'])
7 le6.fit(X_train['X6'])
8 le8.fit(X_train['X8'])
```

LabelEncoder()

```
1 #Test Dataset
2 let0=LabelEncoder()
3 let1=LabelEncoder()
4 let2=LabelEncoder()
5 let3=LabelEncoder()
6 let4=LabelEncoder()
7 let5=LabelEncoder()
8 let6=LabelEncoder()
9 let8=LabelEncoder()
```

```
1 #Test Dataset
2 let0.fit(X_test['X0'])
3 let1.fit(X_test['X1'])
4 let2.fit(X_test['X2'])
5 let3.fit(X_test['X3'])
```

```
6 let4.fit(X_test['X4'])
7 let5.fit(X_test['X5'])
8 let6.fit(X_test['X6'])
9 let8.fit(X_test['X8'])

LabelEncoder()
```

Transforming and replacing the categorical variables into 0s and 1s

```
1 #Train dataset
2 X train['X0'] = le0.transform(X train['X0'])
3 X train['X1'] = le1.transform(X train['X1'])
4 X train['X2'] = le2.transform(X train['X2'])
5 X train['X3'] = le3.transform(X train['X3'])
6 X train['X4'] = le4.transform(X train['X4'])
7 X train['X5'] = le5.transform(X train['X5'])
8 X train['X6'] = le6.transform(X train['X6'])
9 X train['X8'] = le8.transform(X train['X8'])
1 #Test dataset
2 X_test['X0'] = let0.transform(X_test['X0'])
3 X test['X1'] = let1.transform(X test['X1'])
4 X test['X2'] = let2.transform(X test['X2'])
5 X_test['X3'] = let3.transform(X_test['X3'])
6 X test['X4'] = let4.transform(X test['X4'])
7 X_test['X5'] = let5.transform(X_test['X5'])
8 X test['X6'] = let6.transform(X test['X6'])
9 X test['X8'] = let8.transform(X test['X8'])
```

1 X_train.head()

	X0	X1	X2	Х3	Х4	X5	Х6	X8	X10	X12		X375	X376	X377	X378	X379	X380	X38
0	32	23	17	0	3	24	9	14	0	0		0	0	1	0	0	0	
1	32	21	19	4	3	28	11	14	0	0		1	0	0	0	0	0	
2	20	24	34	2	3	27	9	23	0	0		0	0	0	0	0	0	
3	20	21	34	5	3	27	11	4	0	0		0	0	0	0	0	0	
4	20	23	34	5	3	12	3	13	0	0		0	0	0	0	0	0	
5 rc	5 rows × 364 columns																	
4																		•

1 X_test.head()

	X0	X1	X2	Х3	Х4	X5	Х6	X8	X10	X12	• • •	X375	X376	X377	X378	X379	X380	X38
0	21	23	34	5	3	26	0	22	0	0		0	0	0	1	0	0	
1	42	3	8	0	3	9	6	24	0	0		0	0	1	0	0	0	
2	21	23	17	5	3	0	9	9	0	0		0	0	0	1	0	0	
3	21	13	34	5	3	31	11	13	0	0		0	0	0	1	0	0	
4	45	20	17	2	3	30	8	12	0	0		1	0	0	0	0	0	

```
Perform dimensionality reduction on Train dataset
1 from sklearn.decomposition import PCA
2 pca = PCA(n_components=0.7)
3 pca.fit(X train)
    PCA(n components=0.7)
1 pca.explained variance ratio
    array([0.38334782, 0.21388033, 0.13261866])
1 X_train_transformed = pca.transform(X_train)
2 X_test_transformed = pca.transform(X_test)
1 X_train_transformed.shape, X_test_transformed.shape
    ((4209, 3), (4209, 3))
1 pca.inverse_transform(X_train_transformed).shape
     (4209, 364)
Split the datasets
1 from sklearn.model_selection import train_test_split
2 X_train, X_test, y_train, y_test = train_test_split(X_train_transformed,y_train , random_
1 print(X train.shape)
2 print(X_test.shape)
3 print(y_train.shape)
4 print(y_test.shape)
     (3156, 3)
     (1053, 3)
```

```
(3156,)
(1053,)
```

Evaluate with ensemble learning algorithms

```
1 import xgboost
 2 from sklearn.ensemble import GradientBoostingRegressor
 3 from sklearn.metrics import mean squared error
 1 #Using XGBoost - The most powerful ensemble learning algorithm
 2 start = time.time()
 3 xgbr = xgboost.XGBRegressor()
 4 xgbr.fit(X train, y train)
 6 y pred= xgbr.predict(X test)
 7 score = mean squared error(y pred, y test)
 8 print('Score : ', score)
 9 end = time.time()
11 print('\nRunTime : ', end - start)
    [02:53:42] WARNING: /workspace/src/objective/regression obj.cu:152: reg:linear is now de
    Score: 110.00614368130348
    RunTime: 0.1572103500366211
 1 #Using GradientBoost
 2 start = time.time()
 3 gbr = GradientBoostingRegressor()
 4 gbr.fit(X train, y train)
 6 y_pred= gbr.predict(X_test)
 7 score = mean_squared_error(y_pred, y_test)
 8 print('Score : ', score)
 9 end = time.time()
10
11 print('\nRunTime : ', end - start)
    Score: 111.54442824296098
    RunTime: 0.3748013973236084
```

As seen above, XGBoost performs more efficiently than GradientBoost

✓ 0s completed at 10:53 PM