EPPS 6313 : Recitation Session #10

Problem 1

reg lexp gnppc popgrowth

Source	SS	df	MS		Number of obs	= 63
+-					F(,) =	(?)
Model	777.530873	(?) 38	88.765436		Prob > F	= Test ?
Residual	644.405635	(?) 10	.7400939		R-squared	= (?)
					Adj R-squared	= 0.5317
Total	(?)	62 22.9	344598		Root MSE	= 3.2772
lexp	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
+-						
gnppc	.000293	.0000419	6.99	0.000	.0002092	.0003769
popgrowth	9833919	.485387	(?)	Test ?	-1.95431	0124734
_cons	70.67366	.8071596	87.56	0.000	69.0591	72.28822

(1) Report the regression model with estimated coefficients from above STATA result

(2) Fill the blanks

(3) Do t-test for popgrowth and F-test with correct null hypotheses

EPPS 6316 : Recitation Session #10

Problem 1

Choose all correct statements for Autocorrelation in the below list.

- 1. If you find it, you can change the specification of the model to fix it.
- 2. If Durbin-Watson d is close to 2, you need to worry about autocorrelation
- 3. In AR(1), if $|\rho| < 1$, it is called stationary.
- 4. Autocorrelation means the effect of random shocks persists more than one time period.

Problem 2

ccorrgram Y

					-1 0 1	-1 0 1
LAG	AC	PAC	Q	Prob>Q	[Autocorrelation]	[Partial Autocor]
1	0.9480	0.9589	132.14	0.0000		
2	0.8756	-0.3298	245.65	0.0000		
3	0.8067	0.2018	342.67	0.0000		-
4	0.7526	0.1450	427.74	0.0000		-
5	0.7138	0.2585	504.8	0.0000		
6	0.6817	-0.0269	575.6	0.0000		
7	0.6629	0.2043	643.04	0.0000		-
8	0.6556	0.1561	709.48	0.0000		-

(1) From above STATA result, Can we say this is the first-order autocorrelation and Why?

(2) From above STATA result, Can we say that Durbin-Watson d will be much less than 2 and Why?