BNCmatmul User's Guide

Tomonori Kouya
https://github.com/tkouya/bncmatmul

Version 0.21: May 31, 2023

Contents

Chapter 1

What's BNCmatmul?

BNCmatmul is one of optimized BLAS(Basic Linear Algebra Subprograms) libaries supporting multiple precision arithmetics such as double(binary64), DD(double-double), TD(triple-double), QD(quadruple-double), and arbitrary precision floating point arithmetic of MPFR.

Now that MPLAPACK/MPBLAS, a library for extended multiple precision linear computation, provides the basis for a standard multiple precision numerical computing environment, there is a growing demand for an optimized library that provides faster basic linear computation. Standard optimization methods include the use of SIMD instructions and parallelization with OpenMP, but for multiple precision matrix multiplication, optimization with algorithms such as divide-and-conquer method and Ozaki scheme are also available. We have developed new version of BNCmatmul that can use all of these optimization methods and supports both fixed-precision computation using the multi-component way and arbitrary-precision computation using the multi-digit way. In this paper, we describe its software structure and present the results of performance evaluation of optimized matrix-vector multiplication and matrix multiplication.

We are developing BNCmatmul on the following environment: Xeon and EPYC. On other x86_64 linux environment with Intel OneAPI or GNU Compiler Collection, our library can probably be available.

EPYC AMD EPYC 7402P 24 cores, Ubuntu 18.04.6 LTS, Intel Compiler version 2021.4.0, MPLAPACK 1.0.1, MPFR 4.1.0

Xeon Intel Xeon W-2295 3.0GHz 18 cores, Ubuntu 20.04.3 LTS, Intel Compiler version 2021.5.0, MPLA-PACK 1.0.1, MPFR 4.1.0

1.1 Copyright and condition for distribution

BNCmatmul is originated by Tomonori Kouya (https://na-inet.jp/), and including this document is distributed under [GPL] version 2 or later.

[GPL]: https://www.gnu.org/copyleft/gpl.html

1.2 How to compile BNCmatmul

BNCmatmul can be compiled with Intel OneAPI Compiler (ICC) or GNU Compiler Collection (GCC) as follows:

- 1. Git clone at your home directory from https://github.com/tkouya/bncmatmul.
- 2. Edit bncmatmul.inc to select ICC or GCC for compilation.
- 3. Run "make all" to build libbncmatmul*.a and python/libncmatmul*.so.
- 4. Compile some iterative refinement C++ programs in "test" directory with BNCmatmul and MPLA-PACK/MPBLAS.

1.3 Mathematical notation

Here, we define \mathbb{F}_{bS} and \mathbb{F}_{bL} as sets of the S- and L-bit mantissas of floating-point numbers, respectively. For instance, \mathbb{F}_{b24} and \mathbb{F}_{b53} refer to sets of IEEE754-1985 binary32 and binary64 floating-point numbers, whereas \mathbb{F}_{b106} , \mathbb{F}_{b159} , and \mathbb{F}_{b212} represent examples of DD, TD, and QD precision floating-point numbers, respectively. Although any mantissa length can be selected in MPFR arithmetic, the set of MPFR numbers is expressed as \mathbb{F}_{bM} , which is primarily defined as M-bit using the mpfr_set_default_prec function

Moreover, we use $(\mathbf{x})_i (=x_i)$ as the *i*-th element of the *n*-dimensional vector $\mathbf{x} = [x_i]_{i=1,2,...,n} \in \mathbb{R}^n$, and $(A)_{ij} (=a_{ij})$ as the (i,j)-th element of $A = [a_{ij}]_{i=1,2,...,m,j=1,2,...,n} \in \mathbb{R}^{m \times n}$.

1.4 Why do we require a multiple-precision floating-point arithmetic library?

The following is a brief explanation regarding the need for multiple-precision calculations with a mantissa exceeding binary64. First, users may seek to use floating-point arithmetic to obtain a value F(x) from an input value x represented by a floating-point number. Ultimately, F(x) must maintain at least U significant digits. Intuitively, in numerical computations, the initial error due to rounding is assumed to be included in the input value. Suppose the number of mantissa digits for the floating-point arithmetic to be L(>U). Then, the number of significant digits of F(x) is U-R, where R denotes the digits lost in the process of computing F(x). Furthermore, it is assumed that the algorithm cannot be modified to ensure accuracy with an L-digit computation.

Unless the calculation algorithm for F(x) is modified, the error propagation minimally changes irrespective of the number of mantissa digits. Therefore, we can increase the number of mantissa digits, slightly exceeding R with some slack of α digits, to $L+R+\alpha$ digits. If the initial error can be significantly minimized, F(x) with U or more significant digits can be subsequently obtained. This process illustrates how multiple-precision calculations are used to ensure accuracy.

In contrast, the multi-fold calculation method proposed by Rump and Ogita [?] [?] prevents an increase in the initial error by suppressing the rounding error generated by arithmetic operations to the lower digits using error-free transformation techniques. The computational manner of the error-free transformation process is almost the same as that of multiple-precision calculations. Moreover, in this process, floating-point arithmetic with L or more digits is not used. Accordingly, there is no need to perform renormalization procedures. This offers the advantage of reducing computational complexity compared to that of a multi-component approach that uses error-free transformation techniques.

A conceptual diagram of the two aforementioned approaches is presented in Fig. ??.

Currently, not all algorithms used in numerical computation can be applied using multi-fold arithmetic, especially with nonlinear calculations. Therefore, it is necessary to employ a combination of multi-fold and multiple-precision calculations, where the basic linear calculation part, such as explicit extrapolation process solving initial value problems of ordinary differential equations, uses multi-fold calculations to reduce computational time.

The Ozaki scheme, a matrix multiplication algorithm that we incorporated into our library, is a technique based on the multi-fold calculation approach. By leveraging the speed of existing binary32 and binary64 xGEMM algorithms, it significantly optimizes multiple-precision matrix multiplication under certain conditions, as revealed in our benchmark and previous studies[?][?]. We are confident that the acceleration of multiple-precision linear computation libraries will remain an important theme in guaranteeing the accuracy of broader numerical computation algorithms, following the development trend of multiple-precision numerical algorithms.

1.5 Algorithms and performance of optimized matrix multiplication

We focused on the optimization of multiple-precision matrix multiplication, starting with MPI support for arbitrary-precision numerical calculations[?]. Subsequently, owing to current popularity of multi-core

Fig. 1.1 Extended precision and multi-fold precision arithmetics

CPUs, we accelerated multiple-precision matrix multiplication via parallelization support using OpenMP. As far as multiple-precision calculations are concerned, no other such results have been achieved by incorporating divide-and-conquer methods, such as the Strassen and Winograd algorithms. Although limited to multi-component methods, our proposed method is the only approach that supports AVX2 and has been converted to OpenMP for achieving higher speeds. However, the current code does not improve performance beyond eight threads for OpenMP acceleration, and a drastic reformulation is necessary to further improve parallelization performance. Algorithm ?? is the Strassen matrix multiplication.

Algorithm 1 Strassen algorithm for matrix multiplication

```
Input: A = [A_{ij}]_{i,j=1,2} \in \mathbb{R}^{m \times l}, \ A_{ij} \in \mathbb{R}^{m/2 \times l/2}, \ B = [A_{ij}]_{i,j=1,2} \in \mathbb{R}^{l \times n}, \ B_{ij} \in \mathbb{R}^{l/2 \times n/2}
Output: C := \operatorname{Strassen}(A, B) = AB \in \mathbb{R}^{m \times n}
if m < m_0 && n < n_0 then
C := AB
end if
P_1 := \operatorname{Strassen}(A_{11} + A_{22}, B_{11} + B_{22})
P_2 := \operatorname{Strassen}(A_{21} + A_{22}, B_{11})
P_3 := \operatorname{Strassen}(A_{21} + A_{22}, B_{11})
P_3 := \operatorname{Strassen}(A_{11}, B_{12} - B_{22})
P_4 := \operatorname{Strassen}(A_{22}, B_{21} - B_{11})
P_5 := \operatorname{Strassen}(A_{21} + A_{12}, B_{22})
P_6 := \operatorname{Strassen}(A_{21} - A_{11}, B_{11} + B_{12})
P_7 := \operatorname{Strassen}(A_{21} - A_{22}, B_{21} + B_{22})
C_{11} := P_1 + P_4 - P_5 + P_7; \ C_{12} := P_3 + P_5
C_{21} := P_2 + P_4; \ C_{22} := P_1 + P_3 - P_2 + P_6
C := [C_{ij}]_{i,j=1,2}
```

The usefulness of the Ozaki scheme is also clear at multiple-precision levels owing to the success of Mukunoki et al. in accelerating the float128 precision matrix multiplication[?]. The float128 arithmetic supported by GCC features TD to QD precision performance for addition and multiplication and is likewise expected to be sufficient for this precision range.

The Ozaki scheme is an algorithm that aims to simultaneously accelerate performance and improve accuracy by dividing matrices into more matrices with elements represented by shorter digits. Similarly to the "Split" method used in the error-free transformation technique, this approach leverages on the speed of optimized short-precision matrix multiplication (xGEMM) functions. For a given matrix $A \in \mathbb{R}^{m \times l}$ and $B \in \mathbb{R}^{l \times n}$, to obtain a matrix product $C := AB \in \mathbb{R}^{m \times n}$ of long L-bit precision, A and B are divided using the Ozaki scheme, where $D \in \mathbb{N}$ is the maximum number of divisions of short S-bit precision matrices (S << L), as depicted in Algorithm ??. The S-bit arithmetic is used for calculations where no particular description is given, and the L-bit arithmetic is used only where high-precision operations are required.

Algorithm 2 Ozaki scheme for multiple-precision matrix multiplication

```
Input: A \in \mathbb{F}_{bL}^{m \times l}, B \in \mathbb{F}_{bL}^{l \times n}
  Output: C \in \mathbb{F}_{hL}^{m \times n}
A^{(S)} := A, B^{(S)} := B : A^{(S)} \in \mathbb{F}_{bS}^{m \times l}, B^{(S)} \in \mathbb{F}_{bS}^{l \times n}
\mathbf{e} := [1 \ 1 \dots 1]^T \in \mathbb{F}_{bS}^l
\alpha := 1
while \alpha < D do
      \mu_A := [\max_{1 
      \begin{aligned} & \mu_{A} := [\max_{1 \leq g \leq l} |(I^{S})_{qj}|]_{j=1,2,...,m} \in \mathbb{F}_{bS}^{n} \\ & \mu_{B} := [\max_{1 \leq g \leq l} |(B^{(S)})_{qj}|]_{j=1,2,...,n} \in \mathbb{F}_{bS}^{n} \\ & \tau_{A} := [2^{\lceil \log_{2}((\mu_{A})_{i}) \rceil + \lceil (S + \log_{2}(l))/2 \rceil}]_{i=1,2,...,m} \in \mathbb{F}_{bS}^{m} \\ & \tau_{B} := [2^{\lceil \log_{2}((\mu_{B})_{j}) \rceil + \lceil (S + \log_{2}(l))/2 \rceil}]_{j=1,2,...,n} \in \mathbb{F}_{bS}^{n} \end{aligned}
       S_A := \boldsymbol{\tau}_A \mathbf{e}^T
     S_{B} := \mathbf{e}\boldsymbol{\tau}_{B}^{T}
A_{\alpha} := (A^{(S)} + S_{A}) - S_{A} \colon A_{\alpha} \in \mathbb{F}_{bS}^{m \times l}
B_{\alpha} := (B^{(S)} + S_{B}) - S_{B} \colon B_{\alpha} \in \mathbb{F}_{bS}^{l \times n}
A = B - B_{\alpha} \colon L\text{-bit } \mathbf{F}
       A := A - A_{\alpha}, B := B - B_{\alpha} : L-bit FP arithmetic
       A^{(S)} := A, B^{(S)} := B
       \alpha := \alpha + 1
end while
A_D := A^{(S)}, B_D := B^{(S)}
C := O
for \alpha = 1, 2, ..., D do
       for \beta = 1, 2, ..., D - \alpha + 1 do
             C_{\alpha\beta} := A_{\alpha}B_{\beta}
       end for
       C := C + \sum_{\beta=1}^{D-\alpha+1} C_{\alpha\beta} : L-bit FP arithmetic
end for
```

Fig. ?? illustrates an example of the Ozaki scheme when A and $B \in \mathbb{R}^{3\times 3}$ are divided into three short-digit matrices. The most important feature of the Ozaki scheme is that the matrices A and B are divided into A_1 , A_2 , A_3 , B_1 , B_2 , and B_3 to fit within a short precision, thereby avoiding rounding errors in fast, low-precision matrix multiplication. An error-free matrix product $C_{ij} := A_i B_j (i, j = 1, 2, 3)$ can be obtained as a result, and a highly accurate matrix product C can be obtained using a multiple-precision matrix addition operation for $C := \sum_{i,j} C_{ij}$. Although the number of divisions of A and B is finite, it is difficult to determine the minimum number of divisions required to guarantee a certain accuracy threshold. As a result, benchmark tests must be performed to determine if the algorithm can be executed faster than other multiplication algorithms.

1.6 Software layer of BNCmatmul

We have already used QD[?] as multi-component-type fixed precision C++ class library, CAMPARY[?] as multi-component-type arbitrary precision library, and MPFR[?] based on GNU MP[?]'s MPN kernel. MPLAPACK/MPBLAS[?] is greeding these all reliable MP libraries and providing the coresponding APIs of LAPACK/BLAS[?]. Our BNCmatmul developed aims to get better performance than MPBLAS

Fig. 1.2 Matrix multiplication based on Ozaki scheme when the matrices are divided into three components

as ATLAS, OpenBLAS and Intel Math Kernel, and it has the following features:

- Core functions and macros are written in the traditional way of ANSI C, not C++.
- Supporting native multi-component-type DD, TD, and QD precision arithmetic, and also accelelating vector and matrix computation like BLAS with AVX2. AVX-512 is partly implemented but not recommended to use.
- Direct use of MPFR functions to avoid overhead due to mpreal class library.
- Supporting partly shared-memory-type parallelization based on OpenMP.
- Implementing three algorightms of matrix multiplication: simple triple-loop, blocking (tiling), and Strassen or Winograd algorithm. Ozaki scheme can be used as trial optimization.

The software layer of BNCmatmul except parallelization is shown as Fig. ??.

Fig. 1.3 Software layer of BNCmatmul library

Basic DD, TD, and QD precision arithmetic are defined as C inline functions in c_dd_qd.h and are

defined as macros in rdd.h. To use the Python environment, rdd.c, which is based on rdd.h, is compiled as librdd.so. The DD, TD, and QD classes on Python use the functions defined in librdd.so.

BNCmatmul, which is also built on rdd.h and c_dd_qd.h, includes block and Strassen matrix multiplications that provide more efficient performance than simple triple-loop matrix multiplication. These have been accelerated using SIMDized functions with AVX2 defined in bncavx2.h. The LU decomposition has also been accelerated with AVX2.

These functions that are defined in BNCmatmul (Fig. ??) can be used from libbncmatmul-0.21.so without any SIMDization techniques and libbncmatmul-0.21_avx2.so with SIMDization of AVX2. As these two DLLs have the same function names, so users do not need to modify their codes when selecting the BNCmatmul DLLs.

1.7 History of Version and Todo list

■ History of Version

Version 2.0: 2016-06-08 Firstly opening sources at https://na-inet.jp/na/bnc/bncmatmul-0.2.tar.bz2, which provides only artibrary matrix multiplication based on MPFR.

Version 2.1: 2023-05-31 Secondly opening sources including DD, TD, QD and MPFR precision real BLAS functions at https://github.com/tkouya/bncmatmul/blob/main/bncmatmul-0.21.tar.bz2.

■Todo list

- 1. Appending complex BLAS functions with DD, TD, QD, and MPFR(MPC)
- 2. Appending complex LU decomposition and related functions
- 3. Appending sparse matrix-vector multiplication
- 4. Showing more sample sources in this manual using BNCmatmul and MPLAPACK/BLAS

Chapter 2

Basic datatypes and arithmetic

In this chapter, we present and describe all basic data types and functions defined in BNCmatmul, and show how to use them in order to construct your programs including multiple-precsion computing.

As shown in Chapter 1, all basic datatype and functions are written in ANSI C, not C++ way.

2.1 c_dd_qd.h

```
(Macro) DFMA(a, b, c) returns a \times b + c in double precision (Macro) SFMA(a, b, c) returns a \times b + c in single precision (Macro) QD_FMA(a, b, c) the same as DFMA(a, b, c) (Macro) QD_FMS(a, b, c) returns a \times b - c in double precision (Macro) DDSIZE is 2, the number of binary64(double) variables in DD (Macro) TDSIZE is 3, the number of binary64 variables in TD (Macro) QDSIZE is 4, the number of binary64 variables in QD
```

2.1.1 DD (double-double): 106-bit (53bits \times 2) precision floating-point number

```
(Macro) DD_HI(a) is a[0].
(Macro) DD_LOW(a) is a[1].
(Macro) DD_TRUE is 1UL.
(Macro) TD TRUE
(Macro) QD_TRUE
(Macro) DD FALSE is 0UL.
(Macro) TD FALSE
(Macro) QD FALSE
(Macro) DD_ISNAN(a) checks if a includes NAN.
(Macro) TD_ISNAN(a)
(Macro) QD_ISNAN(a)
(Macro) DD_ISINF(a) checks if a includes INF.
(Macro) TD_ISINF(a)
(Macro) QD_ISINF(a)
(Macro) DD_ISZERO(a) checks if a is zero.
(Macro) TD_ISZERO(a)
(Macro) QD_ISZERO(a)
(Macro) DD_ISONE(a) checks if a is one.
(Macro) TD ISONE(a)
(Macro) QD ISONE(a)
(Macro) DD_ISNEGATIVE(a) checks if a < 0.
(Macro) TD_ISNEGATIVE(a)
```

(Macro) QD_ISNEGATIVE(a)

```
(Macro) DD_NAN is FP\_NAN.
(Macro) TD_NAN
(Macro) QD_NAN
```

2.2 Error-free transformation

- double quick_two_sum(double a, double b, double * err) · · · Computes fl(a + b) and err(a + b). Assumes $|a| \ge |b|$.
- double quick_two_diff(double a, double b, double * err) · · · Computes f(a b) and err(a b). Assumes |a| >= |b|.
- double two_sum(double a, double b, double * err) · · · Computes f(a+b) and err(a+b).
- double two_diff(double a, double b, double * err) \cdots Computes f(a-b) and err(a-b).
- void split(double a, double *hi, double *lo) \cdots divide a to hi and lo without error.
- double two_prod(double a, double b, double * err) \cdots Computes f(ab) and err(ab).
- double two_sqr(double a, double * err) \cdots Computes $fl(a^2)$ and $err(a^2)$. Faster than the above method.

2.3 Double-double precision arithmetic

- dd_bool dd_is_zero(const double * x) · · · Check if *x is zero.
- dd_bool dd_is_one(const double * x) · · · Check if *x is one.
- void c_dd_set(const double * x, double *ret) · · · ret := x
- void c_dd_set_dd_d(const double x, double * ret) · · · ret := (double)x
- void c_dd_set0(double * ret) · · · ret := 0
- void c_dd_setnan(double * ret) \cdots ret := NaN
- void c_dd_neg(const double * a, double * b) \cdots b := -a
- dd_bool dd_is_positive(const double * x) ··· *x > 0 ?
- dd_bool dd_is_negative(const double * x) \cdots *x < 0 ?
- void c_dd_comp(const double * a, const double * b, int * result) · · · Compare with a and b, and store 0 if a == b, +1 else if a > b, -1 else if a < b.
- void c_dd_comp_dd_d(const double * a, double b, int * result)
- void c dd comp d dd(double a, const double * b, int * result)
- void c_dd_pi(double * a)
- void c_d_add(double a, double b, double * c) · · · double-double := double + double
- void c_dd_add(const double * a, const double * b, double * c) \cdots c := a + b
- void c_dd_add_sloppy(const double * a, const double * b, double * c)
- void c_dd_add_dd(const double * a, double b, double * c)
- void c_dd_add_d_dd(double a, const double * b, double * c)
- void $c_d_sub(double a, double b, double * c) · · · double-double = double double$
- void c_dd_sub(const double * a, const double * b, double * c) \cdots c := a b
- void c_dd_sub_sloppy(const double * a, const double * b, double * c)
- void c_dd_sub_dd_d(const double * a, double b, double * c)
- void c_dd_sub_d_dd(double a, const double * b, double * c)
- void c_d_mul(double a, double b, double * c) · · · double-double := double * double
- void $c_{dd_mul}(const double * a, const double * b, double * c)$
- void c_dd_mul_dd_d(const double * a, double b, double * c)
- void c_dd_mul_d_dd(double a, const double * b, double * c)
- void c_d_div(double a, double b, double * c) \cdots c := a/b
- void c_dd_div(const double * a, const double * b, double * c) \cdots c := a/b
- void c_dd_sloppy_div(double * a, double * b, double * c)
- void c_dd_div_dd_d(const double * a, double b, double * c)

```
• void c_dd_div_d_dd(double a, const double * b, double * c)
```

- void $c_{dd}_{copy}(const double * a, double * b) <math>b := a$
- void c_dd_copy_d(double a, double * b)
- void c_d_sqr(double a, double * b) \cdots $b := a^2$
- void c_dd_sqr_d(double a, double * ret)
- void c_dd_sqr(const double * a, double * b)
- void c_dd_sqrt(const double * a, double * b) \cdots $b := \sqrt{a}$
- void c_dd_abs(const double * a, double * b) \cdots b := |a|
- void c_dd_floor(const double * a, double * b) · · · b := floor(a)
- void c_dd_ceil(const double * a, double * b) \cdots b := ceil(a)

2.4 Quadruple-double precision arithmetic

- void c_qd_copy(const double * a, double * b) \cdots b := a
- void c_qd_copy_dd(const double * a, double * b)
- void c_qd_copy_d(double a, double * b)
- void quick_renorm(double * c0, double * c1, double * c2, double * c3, double * c4) · · · Renormalize c0 ...
- void renorm(double * c0, double * c1, double * c2, double * c3)
- void renorm4(double * c0, double * c1, double * c2, double * c3, double * c4)
- void three_sum(double * a, double * b, double * c)
- void three_sum2(double * a, double * b, double * c)
- void c_qd_add_qd_dd(const double * a, const double * b, double * c) \cdots c := a + b
- void c_qd_add(const double * a, const double * b, double * c)
- void c_qd_add_sloppy(const double * a, const double * b, double * c) \cdots not so accurate but fast addition c := a + b
- void c_td_addq(const double * a, const double * b, double * c) \cdots triple double addition based on quad-double way
- void c_qd_selfadd(const double * a, double * b) \cdots b := b + a
- void c_qd_selfadd_dd(const double * a, double * b)
- void c_qd_selfadd_d(double a, double * b)
- void c_qd_neg(const double * a, double * b) \cdots b := -a
- void c_qd_neg_dd(const double * a, double * b)
- void c_qd_neg_d(const double a, double * b)
- void c_qd_sub(const double * a, const double * b, double * c) \cdots c := a b
- void c_qd_sub_qd_dd(const double * a, const double * b, double * c)
- void c_qd_sub_dd_qd(const double * a, const double * b, double * c)
- void $c_qd_sub_qd_d(const double * a, double b, double * c)$
- void c qd sub d qd(double a, const double * b, double * c)
- void c_qd_selfsub(const double * a, double * b) \cdots b := b + (-a) = b a
- void $c_qd_selfsub_dd(const double * a, double * b)$
- void c_qd_selfsub_d(double a, double * b)
- void c_qd_mul(const double * a, const double * b, double * c) \cdots $c := a \times b$
- void c_qd_mul_qd_dd(const double * a, const double * b, double * c)
- void c_qd_mul_dd_qd(const double * a, const double * b, double * c)
- void c_qd_mul_qd_d(const double * a, double b, double * c)
- void c_qd_mul_d_qd(double a, const double * b, double * c)
- void c_qd_mul_sloppy(const double * a, const double * b, double * c)
- void c_qd_sqr(const double * a, double * c) \cdots $c = a^2$
- void c_qd_selfmul(const double * a, double * b) \cdots b := a * b
- void c_qd_selfmul_dd(const double * a, double * b)
- void c_qd_selfmul_d(double a, double * b)

- void c_qd_div_accurate(const double * a, const double * b, double * c) \cdots c := a/b
- void c_qd_div_sloppy(const double * a, const double * b, double * c) · · · not so accurate but fast division (default)

(Macro) USE_QD_DIV_ACCURATE()··· use accurate qd division if true

- void c_qd_div_qd_dd(const double * a, const double * b, double * c)
- void c_qd_div_qd_d(const double * a, double b, double * c)
- void c qd div d qd(double a, const double * b, double * c)
- void c_qd_selfdiv(const double * a, double * b) \cdots b := b/a
- void c_qd_selfdiv_dd(const double * a, double * b)
- void c_qd_selfdiv_d(double a, double * b)
- void c_qd_mul_pwr2(const double * a, double b, double * c) \cdots c := (a[0]*b, a[1]*b, a[2]*b, a[3]*b)
- void c_qd_set(const double * x, double * qdval) \cdots qdval := c
- void c_qd_setOdouble *qdval() \cdots qdval := 0
- void c_qd_sqrt(const double * a, double * b) \cdots $b := \sqrt{a}$
- void c_qd_abs(const double * a, double * b) \cdots b := |a|

(Macro) $nint(a) \cdots round(a)$ as integer

- void c_qd_nint(const double * a, double * b)
- void $c_{qd}floor(const double * a, double * b) <math>\cdots b := floor(a)$
- void c_qd_ceil(const double * a, double * b) \cdots b := ceil(a)
- void c_qd_comp(const double * a, const double * b, int * result) \cdots return -1 if a < b, 0 if a == b, and +1 if a > b.
- void c_qd_comp_qd_d(const double * a, double b, int * result)
- void c_qd_comp_d_qd(double a, const double * b, int * result)

2.5 Triple-double precision arithmetic

- void c_td_copy(const double * a, double * b) \cdots b := a
- void c_qd_copy_td(const double * a, double * c)
- void c_td_copy_qd(const double * a, double * b)
- void c_td_copy_dd(const double * a, double * b)
- void c_td_copy_d(double a, double * b)
- void vec_sum(double *e, const double * x, int n) \cdots $e[n] := vec_sum(x[n])$
- void vseb(double * y, int ny, const double * e, int ne) $\cdots y[n] := vec \ sum \ err \ branch(vseb)(k)(e[n])$
- void c_to_td(double * r, double a, double b, double c) \cdots $r[3] := to_td(a, b, c)$
- void merge(double * c, double * a, int na, double * b, int nb) \cdots Merge a[na] and b[nb] into c[na + nb]
- void c_td_add(double * a, double * b, double * c) \cdots c := a + b
- void c_td_add_td_d(double * a, double b, double * c)
- void c_td_neg(const double * a, double * c) \cdots c := -a
- void c_td_sub(double * c, double * a, double * b) \cdots c := a b
- void c_td_sub(double * a, double * b, double * c)
- void c_td_subq(const double * a, const double * b, double * c)
- void c_td_sub_d_td(double a, double * b, double * c) //
- void c_td_sub_td_d(double * c, double * a, double b)
- void c_td_sub_td_d(double * a, double b, double * c)
- void c_td_mul_accurate(double * a, double * b, double * c) \cdots $c := a \times b$
- void c_td_mul_sloppy(double * a, double * b, double * c) \cdots not so accurate but fast $c := a \times b$

(Macro) USE_TD_MUL_ACCURATE() · · · Use accurate td multiplication if true

- void c_td_mul_dd_td_sloppy(double * a, double * b, double * c)
- void c_td_mul_dd_td_accurate(double * a, double * b, double * c)
- (Macro) USE_TD_MUL_DD_TD_ACCURATE() · · · Use accurate td-dd multiplication if true

- void c_td_mul_d_td(const double a, const double * b, double * c)
- void c_td_mul_td_d(const double * a, const double b, double * c)
- void c_td_abs(const double * a, double * b) \cdots b := |a|
- void c_td_comp(const double * a, const double * b, int * result) \cdots return -1 if a < b, 0 if a == b, and +1 if a > b.
- void c_td_comp_td_d(const double * a, double b, int * result)
- void c_td_comp_d_td(double a, const double * b, int * result)
- void c_td_2mtw_dd_td(double a[DDSIZE], double b[TDSIZE], double c[TDSIZE])
- (Macro) ONE_P_2DBL_EPS() $\cdots 1 + 2 \times DBL$ EPSILON = (1.0000000000000000044e + 00)
- (Macro) ONE_M_2DBL_EPS() \cdots 1 2× DBL EPSILON = (9.9999999999999556e 01)
 - void c_td_reci(double * a, double * c)
 - void c_td_divt(double * a, double * b, double * c)

(Macro) c_td_div() · · · the same as c_td_divtq

- void c_td_divq(const double * a, const double * b, double * c) · · · td division based on quad-double division.
- void c_td_div_td_d(double * a, double b, double * c)
- void c td sgrt(double * a, double * c) \cdots $c := \sqrt{a}$
- void c_td_sqrt_d(double a, double * c)
- void c_td_sqr(double * a, double * c) \cdots $c := a^2$

2.6 rdd.h

```
// ddfloat, tdfloat, qdfloat typedef struct { double val[DDSIZE]; } ddfloat; // 53 * 2 = 106 typedef struct { double val[TDSIZE]; } tdfloat; // 53 * 3 = 159 typedef struct { double val[QDSIZE]; } qdfloat; // 53 * 4 = 212 (Macro) SETO_DD(val) \cdots val := 0 val[0] = (double)0.0; val[1] = (double)0.0; (Macro) SETO_TD(val) (Macro) SETO_DD(val)
```

- void rdd_out_str_base(FILE * fp, int base, int length, double val[DDSIZE]) · · · DD print(no appending CR)
- int rdd_cmp(double a[DDSIZE], double b[DDSIZE]) \cdots return -1 if a < b, 0 if a == b, and -1 if a < b.
- int rdd cmp d(double a[DDSIZE], double b)
- void rdd_sqrt_d(double ret[DDSIZE], double a) \cdots return \sqrt{ret}
- void rdd_fma(double ret[DDSIZE], double a[DDSIZE], double b[DDSIZE], double c[DDSIZE]) \cdots $ret := a \times b + c$
- $\bullet \ \ void \ \ rdd_pow(double \ \ ret[DDSIZE], \ \ double \ \ base[DDSIZE], \ \ double \ \ power[DDSIZE]) \ \cdots \ \ ret := base^{power}$
- void rqd_out_str_base(FILE *fp, int base, int length, double val[QDSIZE]) · · · print(no appending CR)
- int rqd_cmp(double a[QDSIZE], double b[QDSIZE]) \cdots return -1 if a < b, 0 if a == b, and -1 if a < b.
- int rqd_cmp_d(double a[QDSIZE], double b)
- void rqd_sqrt_d(double ret[QDSIZE], double a) \cdots return \sqrt{ret}
- void rqd_fma(double ret[QDSIZE], double a[QDSIZE], double b[QDSIZE], double c[QDSIZE]) \cdots $ret := a \times b + c$
- $\begin{array}{lll} \bullet \ \ void & rqd_pow(double & ret[QDSIZE], & double & base[QDSIZE], & double & power[QDSIZE]) & \cdots \\ ret := base^{power} & \end{array}$
- void rtd_out_str_base(FILE *fp, int base, int length, double val[TDSIZE])
- int rtd_cmp(double a[TDSIZE], double b[TDSIZE]) \cdots return -1 if a < b, 0 if a == b, and -1 if

```
• int rtd_cmp_d(double a[TDSIZE], double b)
      • void rtd sgrt d(double ret[TDSIZE], double a) · · · return \sqrt{ret}
      • void rtd_fma(double ret[TDSIZE], double a[TDSIZE], double b[TDSIZE], double c[TDSIZE]) · · ·
        ret := a \times b + c
      • void rtd pow(double ret[TDSIZE], double base[TDSIZE], double power[TDSIZE]) ...
        ret := base^{power}
(Macro) set0_dd(val) val := 0
(Macro) rdd_set0(val)
(Macro) rdd add(ret, a, b) ret := a + b
(Macro) rdd_sub(ret, a, b) ret := a - b
(Macro) rdd_mul(ret, a, b) ret := a \times b
(Macro) rdd_div(ret, a, b) ret := a/b
(Macro) rdd_sqrt(ret, a) ret := \sqrt{a}
(Macro) rdd_sqrt_d(ret, a)
(Macro) rdd sgrt ui(ret, a)
(Macro) rdd get d(a)
(Macro) rdd_set_d(ret, d) ret := d
(Macro) rdd_set_ui(ret, d)
(Macro) rdd_set(ret, d)
(Macro) rdd_neg(ret, a) ret := -a
(Macro) rdd_abs(ret, a) ret := |a|
(Macro) rdd_{cmp_ui}(a, b) return -1 if a > b, 0 if a == b, and -1 if a < b
(Macro) rdd_ui_div(ret, a, b) ret := a/b
(Macro) rdd_ui_sub(ret, a, b) ret := a - b
(Macro) rdd_div_d(ret, a, b) ret := a/b
(Macro) rdd_add_d(ret, a, b) ret := a + b
(Macro) rdd_sub_d(ret, a, b) ret := a - b
(Macro) rdd mul d(ret, a, b) ret := a \times b
(Macro) rdd_div_ui(ret, a, b) ret := a/b
(Macro) rdd_add_ui(ret, a, b) ret := a + b
(Macro) rdd_sub_ui(ret, a, b) ret := a - b
(Macro) rdd mul ui(ret, a, b) ret := a \times b
(Macro) set0_td(val) SET0_TD(val)
(Macro) rtd_set0(val) SET0_TD(val)
(Macro) rtd_add(ret, a, b) ret := a + b
(Macro) rtd_addt(ret, a, b)
(Macro) rtd_addq(ret, a, b)
(Macro) rtd_sub(ret, a, b) ret := a - b
(Macro) rtd_subt(ret, a, b) ret := a - b
(Macro) rtd_subq(ret, a, b) ret := a - b
(Macro) rtd_mul(ret, a, b) ret := a \times b
(Macro) rtd_divt(ret, a, b) ret := a/b
(Macro) rtd_divtq(ret, a, b)
(Macro) rtd_divq(ret, a, b)
(Macro) rtd_div(ret, a, b)
(Macro) rtd_sqrt(ret, a) ret := \sqrt{a}
(Macro) rtd sqrt d(ret, a)
(Macro) rtd sqrt ui(ret, a)
(Macro) rtd_get_d(a) return (double)a
(Macro) rtd_set_d(ret, d) ret := d
(Macro) rtd set ui(ret, d)
```

a < b.

```
(Macro) rtd_set(ret, d)
(Macro) rtd_neg(ret, a) ret := -a
(Macro) rtd_abs(ret, a) ret := |a|
(Macro) \mathtt{rtd\_cmp\_ui}(\mathbf{a},\,\mathbf{b}) return -1 if a>b,\,0 if a==b,\,\mathrm{and}\,-1 if a< b
(Macro) rtd_ui_div(ret, a, b) ret := a/b
(Macro) rtd_ui_sub(ret, a, b) ret := a - b
(Macro) rtd_div_d(ret, a, b) \cdots c := a/b
(Macro) rtd_add_d(ret, a, b) \cdots c := a + b
(Macro) rtd_sub_d(ret, a, b) \cdots c := a - b
(Macro) rtd_mul_d(ret, a, b) \cdots c := a \times b
(Macro) rtd_div_ui(ret, a, b) \cdots c := a/b
({\rm Macro}) \ \mathtt{rtd\_add\_ui}({\rm ret}, \, {\rm a}, \, {\rm b}) \, \cdots \, c := a + b
(Macro) rtd_sub_ui(ret, a, b) \cdots c := a - b
(Macro) rtd_mul_ui(ret, a, b) \cdots c := a \times b
(Macro) set0_qd(val) \cdots val := 0
(Macro) rqd_set0(val)
(Macro) rgd add(ret, a, b) \cdots c := a + b
(Macro) rgd sub(ret, a, b) \cdots c := a - b
(Macro) rgd mul(ret, a, b) \cdots c := a \times b
(Macro) rqd_div(ret, a, b) \cdots c := a/b
(Macro) rqd_sqrt(ret, a) \cdots ret := \sqrt{a}
(Macro) rqd_sqrt_d(ret, a) ret := \sqrt{a}
(Macro) rqd_sqrt_ui(ret, a)
(Macro) rqd_get_d(a) return (double)a
(Macro) rqd_set_d(ret, d) ret := d
(Macro) rqd_set_ui(ret, d)
(Macro) rqd_set(ret, d)
(Macro) rqd_neg(ret, a) ret := -a
(Macro) rqd_abs(ret, a) ret := |a|
(Macro) rgd cmp ui(a, b) return -1 if a > b, 0 if a == b, and -1 if a < b
(Macro) rqd_ui_div(ret, a, b) ret := a/b
(Macro) rqd_ui_sub(ret, a, b) ret := a - b
(Macro) rqd_div_d(ret, a, b) \cdots c := a/b
(Macro) rqd_add_d(ret, a, b) \cdots c := a + b
(Macro) rqd_sub_d(ret, a, b) \cdots c := a - b
(Macro) rqd_mul_d(ret, a, b) \cdots c := a \times b
(Macro) rqd_div_ui(ret, a, b) \cdots c := a/b
(Macro) rgd add ui(ret, a, b) \cdots c := a + b
(Macro) rqd_sub_ui(ret, a, b) \cdots c := a - b
(Macro) rqd_mul_ui(ret, a, b) \cdots c := a \times b
```

2.7 AVX2

2.7.1 float

```
• __m256 _bncavx2_fabsf(__m256 val8) \cdots val8 := \max(val8, 0 - val8)
```

- __m256 _bncavx2_fneg(__m256 a) \cdots return -a
- void _bncavx2_ffma(float ret[], float a[], float b[], float c[], int dim) \cdots ret := $a \times b + c$
- void _bncavx2_fmul(float ret[], float a[], float b[], int dim) \cdots ret := $a \times b$

2.7.2 double

- $\bullet \ __\texttt{m256d _bncavx2_fabs}(__\texttt{m256d val4}) \cdots \ val4 := \max(val4, -val4)$
- __m256d _bncavx2_dneg(__m256d a) \cdots -a
- void $brcavx2_dfma(double ret[], double a[], double b[], double c[], int dim) <math>\cdots$ ret := $a \times b + c$
- void _bncavx2_dmul(double ret[], double a[], double b[], int dim) \cdots ret := $a \times b$
- void bncavx2 ddiv(double ret[], double a[], double b[], int dim) \cdots ret := a/b
- void $bncavx2_dadd(double ret[], double a[], double b[], int dim) <math>\cdots ret := a + b$
- void $bncavx2_dsub(double ret[], double a[], double b[], int dim) <math>\cdots$ ret := a-b
- double _bncavx2_ddotp(double a[], double b[], int dim) \cdots ret := $\sum_{i=0}^{\dim -1} a[i] \times b[i]$

2.7.3 Error-free transformation

- __m256d _bncavx2_dquick_two_sum(__m256d a, __m256d b, __m256d * err) \cdots Computes $\mathrm{fl}(a+b)$ and $\mathrm{err}(a+b)$. Assume $|a|>\geq |b|$.
- __m256d _bncavx2_dquick_two_diff(__m256d a, __m256d b, __m256d * err) \cdots Computes $\mathrm{fl}(a-b)$ and $\mathrm{err}(a-b)$. Assume $|a| \geq |b|$.
- __m256d _bncavx2_dtwo_sum(__m256d a, __m256d b, __m256d * err) \cdots Computes fl(a+b) and err(a+b).
- __m256d _bncavx2_dtwo_diff(__m256d a, __m256d b, __m256d * err) \cdots Computes fl(a-b) and err(a-b).
- __m256d _bncavx2_dtwo_prod(__m256d a, __m256d b, __m256d * err) \cdots Computes fl $(a \times b)$ and err $(a \times b)$.

2.7.4 Double-double precision arithmetic

- void $bncavx2_set0_dd(\underline{}m256d) ret[DDSIZE] \cdots ret := 0$
- (Macro) _bncavx2_rdd_set0(ret) · · · is the same as _bncavx2_set0_dd(ret)
 - void _bncavx2_get_dd_m256d_i(ddfloat *ret, ___m256d ret4[DDSIZE], int avx_index) · · · ret := ret4[[avx_index]
 - void _bncavx2_rdd_sum256d(double ret[DDSIZE], ___m256d ret4[DDSIZE]) \cdots ret := ret4[0] + ret4[1] + ret4[2] + ret4[3]
 - void _bncavx2_rdd_abssum256d(double ret[DDSIZE], __m256d ret4[DDSIZE]) \cdots ret := |ret4[0]| + |ret4[1]| + |ret4[2]| + |ret4[3]|
 - void _bncavx2_rdd_absmax256d(double ret[DDSIZE], __m256d ret4[DDSIZE]) \cdots ret := $\max(|\text{ret4}[0]|, |\text{ret4}[1]|, |\text{ret4}[2]|, |\text{ret4}[3]|)$
 - void _bncavx2_rdd_norm256d(double ret[DDSIZE], __m256d ret4[DDSIZE]) \cdots ret := $\|\text{ret4}[0]^2 + \text{ret4}[1]^2 + \text{ret4}[2]^2 + \text{ret4}[3]^2\|_2$
 - void _bncavx2_rdd_add(__m256d ret [DDSIZE], __m256d a [DDSIZE], __m256d b [DDSIZE]) \cdots ret := a+b
 - void _bncavx2_rdd_sub(__m256d ret[DDSIZE], __m256d a[DDSIZE], __m256d b[DDSIZE]) \cdots ret := a-b
 - void _bncavx2_rdd_mul(__m256d ret[DDSIZE], __m256d a[DDSIZE], __m256d b[DDSIZE]) \cdots ret := $a\times b$
 - void _bncavx2_rdd_div(__m256d ret[DDSIZE], __m256d a[DDSIZE], __m256d b[DDSIZE]) \cdots ret := a/b
 - void _bncavx2_rdd_abs(__m256d ret[DDSIZE], __m256d a[DDSIZE]) \cdots ret := |a|

2.7.5 Triple-double precision arithmetic

```
• void _bncavx2_set0_td(__m256d ret[TDSIZE]) · · · ret := 0
```

- void _bncavx2_get_td_m256d_i(tdfloat * ret, ___m256d ret4[TDSIZE], int avx_index) \cdots ret := ret4[][avx_index]
- void _bncavx2_rtd_sum256d(double ret[TDSIZE], ___m256d ret4[TDSIZE]) ··· ret := ret4[0] + ret4[1] + ret4[2]
- void bncavx2 rtd abs(m256d ret[TDSIZE], m256d a[TDSIZE]) \cdots ret := |a|
- void _bncavx2_rtd_abssum256d(double ret [TDSIZE] , __m256d ret4 [TDSIZE]) // ret := |ret4[0]| + |ret4[1]| + |ret4[2]| + |ret4[3]|
- void _bncavx2_rtd_absmax256d(double ret[TDSIZE], __m256d ret4[TDSIZE]) // ret := $\max(|\text{ret4}[0]|, |\text{ret4}[1]|, |\text{ret4}[2]|, |\text{ret4}[3]|)$
- void _bncavx2_rtd_norm256d(double ret[TDSIZE], ___m256d ret4[TDSIZE])
- void _bncavx2_vec_sum($\underline{\hspace{0.5cm}}$ m256d e[], const $\underline{\hspace{0.5cm}}$ m256d x[], int n) \cdots e := vec_sum(x)
- void $bncavx2_vseb(\underline{m256d} y[], int ny, const <math>\underline{m256d} e[], int ne) \cdots y := vec \underline{sum} err \underline{branch}(vseb)(k)(e)$
- void _bncavx2_merge(__m256d c[], __m256d a[], int na, __m256d b[], int nb) \cdots Merge a[na] & b[nb] into c[na + nb]

(Macro) _bncavx2_rtd_add() _bncavx2_rtd_addq

- void _bncavx2_rtd_addq(__m256d ret[TDSIZE], __m256d a[TDSIZE], __m256d b[TDSIZE]) \cdots ret := a+b
- void _bncavx2_rtd_addt(__m256d ret[TDSIZE], __m256d a[TDSIZE], __m256d b[TDSIZE])
- void _bncavx2_rtd_mulq(__m256d ret[TDSIZE], __m256d a[TDSIZE], __m256d b[TDSIZE]) \cdots ret := $a \times b$
- void _bncavx2_rtd_mul(___m256d ret[TDSIZE], ___m256d a[TDSIZE], ___m256d b[TDSIZE])
- void _bncavx2_rtd_neg(__m256d c[TDSIZE], __m256d a[TDSIZE]) \cdots c := -a
- void _bncavx2_rtd_sub(__m256d c[TDSIZE], __m256d a[TDSIZE], __m256d b[TDSIZE]) \cdots c:=a-b
- void _bncavx2_rtd_subq(__m256d c[TDSIZE], __m256d a[TDSIZE], __m256d b[TDSIZE])
- void _bncavx2_rtd_divq(__m256d ret[TDSIZE], __m256d a[TDSIZE], __m256d b[TDSIZE]) $\cdots c := a/b$
- void _bncavx2_to_td(__m256d r[TDSIZE], __m256d a, __m256d b, __m256d c) \cdots r := TD(a,b,c)
- void _bncavx2_rtd_mul_d(__m256d c[TDSIZE], __m256d a, __m256d b[TDSIZE]) \cdots $c := a \times b$
- void _bncavx2_rtd_mul_dd(__m256d c[TDSIZE], __m256d a[DDSIZE], __m256d b[TDSIZE]) $\cdots c := a \times b$

$({\rm Macro}) \ {\tt _bncavx2_rtd_div}() \cdots \ {\tt _bncavx2_rtd_divtq}$

- void _bncavx2_rtd_divt(__m256d ret[TDSIZE], __m256d a[TDSIZE], __m256d b[TDSIZE]) $\cdots c := a/sb$
- void _bncavx2_rtd_divtq(__m256d ret[TDSIZE], __m256d a[TDSIZE], __m256d b[TDSIZE])

2.7.6 Quadruple-double precision arithmetic

- void $bncavx2_set0_qd(\underline{}m256d ret[QDSIZE]) \cdots ret := 0$
- void _bncavx2_get_qd_m256d_i(qdfloat * ret, ___m256d ret4[QDSIZE], int avx_index) ret := ret4[$[avx_index]$
- void _bncavx2_rqd_sum256d(double ret[QDSIZE], __m256d ret4[QDSIZE]) \cdots ret := mmval[0] + ... + mmval[7]
 - $void_bncavx2_rqd_abs__m256d ret[QDSIZE], __m256d a[QDSIZE] \cdots ret := |a|$
- void _bncavx2_rqd_abssum256d(double ret [QDSIZE] , __m256d ret4 [QDSIZE]) \cdots ret := |ret4[0]| + |ret4[1]| + |ret4[2]| + |ret4[3]|
- void _bncavx2_rqd_absmax256d(double ret[QDSIZE], ___m256d ret4[QDSIZE]) ··· ret :=

- $\max(|\text{ret4}[0]|, |\text{ret4}[1]|, |\text{ret4}[2]|, |\text{ret4}[3]|)$
- void _bncavx2_rqd_norm256d(double ret[QDSIZE], __m256d ret4[QDSIZE]) \cdots ret := $\|\mathrm{ret4[0]}^2 + \mathrm{ret4[1]}^2 + \mathrm{ret4[2]}^2 + \mathrm{ret4[3]}^2\|_2$
- void _bncavx2_renorm(__m256d * c0, __m256d * c1, __m256d * c2, __m256d * c3) · · · renorm(double *c0, double *c1, double *c2, double *c3)
- void _bncavx2_renorm4(__m256d * c0, __m256d * c1, __m256d * c2, __m256d * c3, __m256d * c4) ··· renorm4(double *c0, double *c1, double *c2, double *c3, double *c4)
- void _bncavx2_three_sum(__m256d * a, __m256d * b, __m256d * c) · · · three_sum(double *a, double *b, double *c)
- void _bncavx2_three_sum2(__m256d * a, __m256d * b, __m256d * c) · · · void three_sum2(double *a, double *b, double *c)
- void _bncavx2_rqd_add(__m256d ret[QDSIZE], __m256d a[QDSIZE], __m256d b[QDSIZE]) \cdots ret := a+b
- void _bncavx2_rtd_addq(__m256d ret[TDSIZE], __m256d a[TDSIZE], __m256d b[TDSIZE]) \cdots ret := a+b
- void _bncavx2_rtd_mulq(__m256d ret[TDSIZE], __m256d a[TDSIZE], __m256d b[TDSIZE]) \cdots ret := $a\times b$
- void _bncavx2_rqd_mul(__m256d ret[QDSIZE], __m256d a[QDSIZE], __m256d b[QDSIZE]) \cdots ret := $a\times b$
- void _bncavx2_rqd_sub(__m256d c[QDSIZE], __m256d a[QDSIZE], __m256d b[QDSIZE]) \cdots ret := a-b
- void _bncavx2_rqd_mul_d(__m256d c[QDSIZE], const __m256d a[QDSIZE], __m256d b) \cdots ret := $a \times b$
- void _bncavx2_rtd_divq(__m256d c[TDSIZE], __m256d a[TDSIZE], __m256d b[TDSIZE]) \cdots c := a/b
- void _bncavx2_rqd_div(__m256d c[QDSIZE], __m256d a[QDSIZE], __m256d b[QDSIZE])

Chapter 3

Basic linear computation

typedef struct{

3.1 Detatypes of D, DD, TD, QD and MPFR vector and matrix

Vector datatypes of DD, TD, QD and MPFR precision are shown as follows: DDVector, TDVector, QDVector typedef struct long int dim; // dim <= real_dim</pre> long int real_dim; // multiplier of _BNC_D_WIDTH double *element[DDSIZE]; // [TDSIZE] and [QDSIZE] used as TDVector and → QDVector } ddvector; typedef *DDVector; // DDVector, TDVector, QDVector are pointers. **MPFVector** typedef struct{ unsigned long int prec; // default precision of element mpf_t *element; long int dim; long int real_dim; } mpfvector; typedef mpfvector *MPFVector; // MPFVector is a pointer. Matrix datatypes of DD, TD, QD and MPFR precision are shown as follows: DDMatrix, TDMatrix, QDMatrix // DD matrix typedef struct{ long int row_dim, col_dim; long int real_row_dim, real_col_dim; // multiplier of _BNC_D_WIDTH double *element[DDSIZE]; } ddmatrix; typedef *DDMatrix; $\mathsf{MPFMatrix}$

```
unsigned long int prec;
mpf_t *element;
long int row_dim, col_dim;
long int real_row_dim, real_col_dim;
void *element_block; // mantissa block
} mpfmatrix;

typedef mpfmatrix *MPFMatrix;
```

3.2 Vector arithmetic

- ddfloat get_ddvector_i_ddfloat(DDVector vec, long int index) · · · Get index-th element of vec as ddfloat datatype.
- tdfloat get_tdvector_i_tdfloat(TDVector vec, long int index)
- qdfloat get_qdvector_i_qdfloat(QDVector vec, long int index)
- (Macro) GET_DDVECTOR_I(vec, index) · · · Get index-th element as pointer to ddfloat.
- (Macro) get_ddvector_i(vec, index)
- (Macro) GET TDVECTOR I(vec, index) · · · Get index-th element as pointer to tdfloat.
- (Macro) get tdvector i(vec, index)
- (Macro) GET_QDVECTOR_I(vec, index) · · · Get index-th element as pointer to qdfloat.
- (Macro) get_qdvector_i(vec, index)
- (Macro) GET_MPFVECTOR_I(vec, index) · · · Get index-th element as pointer to mpf_t (mpfr_t).
- (Macro) get_mpfvector_i(vec, index)
 - void set_ddvector_i(DDVector vec, long int index, double * val) · · · Store val to index-th element of vec.
- (Macro) SET_DDVECTOR_I(vec, index, val)
 - void set_tdvector_i(TDVector vec, long int index, double * val)
- (Macro) SET_TDVECTOR_I(vec, index, val)
 - void set_qdvector_i(QDVector vec, long int index, double * val)
- (Macro) SET_QDVECTOR_I(vec, index, val)
 - void set_qdvector_i(QDVector vec, long int index, double * val)
- $({\rm Macro}) \ {\tt SET_QDVECTOR_I}({\rm vec,\ index,\ val})$
 - void set_ddvector_i_d(DDVector vec, long int index, double val) · · · Store val to index-th element of vec as double.
- (Macro) SET_DDVECTOR_I_D(vec, index, val)
 - void set_tdvector_i_d(TDVector vec, long int index, double val)
- $({\rm Macro}) \ {\tt SET_TDVECTOR_I_D}({\rm vec,\ index,\ val})$
 - void set qdvector i d(QDVector vec, long int index, double val)
- (Macro) SET_QDVECTOR_I_D(vec, index, val)
 - void set0_ddvector_i(DDVector vec, long int index) · · · Store zero to index-th element of vec.
- (Macro) SETO_DDVECTOR_I(vec, index)
 - void set0_tdvector_i(TDVector vec, long int index)
- (Macro) SETO_TDVECTOR_I(vec, index)
 - void set0_qdvector_i(QDVector vec, long int index)
- (Macro) SETO_QDVECTOR_I(vec, index)
 - DDVector init_ddvector(in dimension) · · · Allocate and initialize a vector and set it as zero vector.
 - TDVector init_tdvector(in dimension)
 - QDVector init_qdvector(in dimension)
 - MPFVector init_mpfvector(in dimension) · · · Allocate and initialize a MPFVector in default precision in bits with bnc_set_default_prec and set it as zero vector.

- MPFVector init2_mpfvector(int dimension, unsigned long prec) · · · Initialize a MPFVector in prec bits and set it as zero vector.
- void free_ddvector(DDVector vec) · · · Free vec.
- void free_tdvector(TDVector vec)
- void free_qdvector(QDVector vec)
- void free_mpfvector(MPFVector vec)
- void set_ddfloat_ddvec(ddfloat ret[], int ret_dim, DDVector vec) · · · · Convert vec to ddfloat array.
- void set_tdfloat_tdvec(tdfloat ret[], int ret_dim, TDVector vec) · · · · Convert vec to tdfloat array.
- void set_qdfloat_qdvec(qdfloat ret[], int ret_dim, QDVector vec) · · · · Convert vec to qdfloat array.
- void set_ddvector_ddfloat(DDVector ret, ddfloat array[], int array_dim) · · · Convert ddfloat array to DDVector ret.
- void set_tdvector_tdfloat(TDVector ret, tdfloat array[], int array_dim) · · · Convert tdfloat array to TDVector ret.
- void set_qdvector_qdfloat(QDVector ret, qdfloat array[], int array_dim) · · · Convert qdfloat array to QDVector ret.
- void print_ddvector(DDVector vec) · · · Print vec.
- void print_tdvector(TDVector vec)
- void print_qdvector(QDVector vec)
- void print_mpfvector(MPFVector vec)
- void set0_ddvector(DDVector vec) · · · Set vec as zero vector.
- void set0_tdvector(TDVector vec)
- void set0_qdvector(QDVector vec)
- void set0_mpfvector(MPFVector vec)
- void set_ddvector_i_str(DDVector vec, long int index, const char * str) · · · Set *str expressed in decimal to index-th element of vec.
- void set_tdvector_i_str(TDVector vec, long int index, const char * str)
- void set_qdvector_i_str(QDVector vec, long int index, const char * str)
- void set_mpfvector_i_str(MPFVector vec, long int index, const char * str)
- void add_ddvector(DDVector c, DDVector a, DDVector b) \cdots c := a + b
- void add_tdvector(TDVector c, TDVector a, TDVector b)
- void add_qdvector(QDVector c, QDVector a, QDVector b)
- void add_mpfvector(MPFVector c, MPFVector a, MPFVector b)
- void add2_ddvector(DDVector c, DDVector a) cdots c := c + a
- void add2_tdvector(TDVector c, TDVector a)
- void add2 gdvector(TDVector c, QDVector a)
- void add2_mpfvector(MPFVector c, MPFVector a)
- void $sub_ddvector(DDVector\ c,\ DDVector\ a,\ DDVector\ b)$ \cdots c:=a-b
- void sub_tdvector(TDVector c, TDVector a, TDVector b)
- void sub_qdvector(QDVector c, QDVector a, QDVector b)
- void sub_mpfvector(MPFVector c, MPFVector a, MPFVector b)
- void sub2_ddvector(DDVector c, DDVector a) \cdots c-=a
- void sub2_tdvector(TDVector c, TDVector a)
- void sub2_qdvector(QDVector c, QDVector a)
- void sub2_mpfvector(MPFVector c, MPFVector a)
- void cmul_ddvector(DDVector c, double val[DDSIZE], DDVector a) $\cdots c := val \times a$
- void cmul_tdvector(TDVector c, double val[TDSIZE], TDVector a)
- void cmul_qdvector(QDVector c, double val[QDSIZE], QDVector a)
- void cmul_mpfvector(MPFVector c, mpf_t val, MPFVector a)
- void cmul2_ddvector(DDVector c, double val[DDSIZE]) \cdots $c := val \times c$
- void cmul2 ddvector(TDVector c, double val[TDSIZE])

- void cmul2_ddvector(QDVector c, double val[QDSIZE])
- void cmul2_ddvector(MPFVector c, mpf_t val)
- void add_cmul_ddvector(DDVector c, DDVector a, double val[DDSIZE], DDVector b) \cdots c := a + val * b
- void add_cmul_tdvector(TDVector c, TDVector a, double val[TDSIZE], TDVector b)
- void add_cmul_qdvector(QDVector c, QDVector a, double val [QDSIZE], QDVector b)
- void add_cmul_mpfvector(MPFVector c, MPFVector a, mpf_t val, MPFVector b)
- void ip_ddvector(double ret[DDSIZE], DDVector a, DDVector b) \cdots Calculate the dot product of a and b
- void ip_tdvector(double ret[TDSIZE], TDVector a, TDVector b)
- void ip_qdvector(double ret[QDSIZE], QDVector a, QDVector b)
- void ip_mpfvector(mpf_t ret, MPFVector a, MPFVector b)
- void neg_ddvector(DDVector c, DDVector a) \cdots c := -a
- void neg_tdvector(TDVector c, TDVector a)
- $void neg_qdvector(QDVector c, QDVector a)$
- void neg_mpfvector(MPFVector c, MPFVector a)
- void norm1 ddvector(double ret[DDSIZE], DDVector a) $\cdots \|a\|_1$
- void norm1_tdvector(double ret[TDSIZE], TDVector a)
- void norm1_qdvector(double ret[QDSIZE], QDVector a)
- void norm1_mpfvector(mpf_t ret, MPFVector a)
- void normi_ddvector(double ret[DDSIZE], DDVector a) $\cdots \|a\|_{\infty}$
- void normi_tdvector(double ret[TDSIZE], TDVector a)
- void normi_qdvector(double ret[QDSIZE], QDVector a)
- void normi_mpfvector(mpf_t ret, MPFVector a)
- void norm2_ddvector(double ret[DDSIZE], DDVector vec) $\cdots \|a\|_2$
- void norm2_tdvector(double ret[TDSIZE], TDVector vec)
- void norm2_qdvector(double ret[QDSIZE], QDVector vec)
- void norm2_mpfvector(mpf_t ret, MPFVector vec)

3.3 Matrix arithmetic

- ddfloat get_ddmatrix_ij_ddfloat(DDMatrix mat, long int i, long int j) \cdots Get the (i, j)-th element of mat.
- (Macro) GET_DDMATRIX_IJ(mat, i, j) ((get_ddmatrix_ij_ddfloat((mat), (i), (j)).val))
- (Macro) get_ddmatrix_ij(mat, i, j) ((get_ddmatrix_ij_ddfloat((mat), (i), (j)).val))
 - tdfloat get_tdmatrix_ij_tdfloat(TDMatrix mat, long int i, long int j)
- (Macro) GET_TDMATRIX_IJ(mat, i, j) ((get_tdmatrix_ij_tdfloat((mat), (i), (j)).val))
- (Macro) get_tdmatrix_ij(mat, i, j) ((get_tdmatrix_ij_tdfloat((mat), (i), (j)).val))
 - qdfloat get_qdmatrix_ij_qdfloat(QDMatrix mat, long int i, long int j)
- (Macro) GET_QDMATRIX_IJ(mat, i, j) ((get qdmatrix ij qdfloat((mat), (i), (j)).val))
- (Macro) get_qdmatrix_ij(mat, i, j) ((get_qdmatrix_ij_qdfloat((mat), (i), (j)).val))
- (Macro) GET_MPFMATRIX_IJ(mat, i, j) ((get_mpfmatrix_ij((mat), (i), (j))))
 - GEI_MPFMAIRIX_IJ(mat, 1, j) ((get_mpimatrix_ij((mat), (1), (j))))
 mpf_ptr get_mpfmatrix_ij(MPFMatrix mat, long int i, long int j)
 - void set_ddmatrix_ij(DDMatrix mat, long int i, long int j, double * val)
- (Macro) SET_DDMATRIX_IJ(mat, i, j, val) set_ddmatrix_ij((mat), (i), (j), (val))
 - void set_tdmatrix_ij(TDMatrix mat, long int i, long int j, double * val)
- (Macro) SET_TDMATRIX_IJ(mat, i, j, val) set_tdmatrix_ij((mat), (i), (j), (val))
 - void set_qdmatrix_ij(QDMatrix mat, long int i, long int j, double * val)
- (Macro) SET_QDMATRIX_IJ(mat, i, j, val) set_qdmatrix_ij((mat), (i), (j), (val))
 - $\bullet \ \ \mathsf{void} \ \mathsf{set_mpfmatrix_ij}(\mathsf{MPFMatrix} \ \mathsf{mat}, \ \mathsf{long} \ \mathsf{int} \ \mathsf{i}, \ \mathsf{long} \ \mathsf{int} \ \mathsf{j}, \ \mathsf{mpf_t} \ \mathsf{val})\\$
- (Macro) SET_MPFMATRIX_IJ(mat, i, j, val) set_mpfmatrix_ij((mat), (i), (j), (val))
 - void set ddmatrix ij d(DDMatrix mat, long int i, long int j, double val)

```
(Macro) SET_DDMATRIX_IJ_D(mat, i, j, val) set_ddmatrix_ij_d((mat), (i), (j), (val))
```

- (Macro) SET_DDMATRIX_IJ_UI(mat, i, j, val) set_ddmatrix_ij_d((mat), (i), (j), (double)(val))
- (Macro) set_ddmatrix_ij_ui(mat, i, j, val) set_ddmatrix_ij_d((mat), (i), (j), (double)(val))
 - void set0_ddmatrix_ij(DDMatrix mat, long int i, long int j)

(Macro) SETO_DDMATRIX_IJ(mat, i, j) setO_ddmatrix_ij((mat), (i), (j))

- void set0_ddmatrix(DDMatrix mat) · · · set mat as zero matrix
- void set0 tdmatrix(TDMatrix mat)
- void set0_qdmatrix(QDMatrix mat)
- void set0_mpfmatrix(MPFMatrix mat)
- DDMatrix init_ddmatrix(long int row_dim, long int col_dim) · · · Initialize DDMatrix.
- TDMatrix init_tdmatrix(long int row_dim, long int col_dim) · · · Initialize TDMatrix.
- QDMatrix init_qdmatrix(long int row_dim, long int col_dim) · · · Initialize QDMatrix.
- MPFMatrix init_mpfmatrix(long int row_dim, long int col_dim) · · · Initialize MPFMatrix.
- MPFMatrix init2_mpfmatrix(long int row_dim, long int col_dim, unsigned long prec) · · · Initialize MPFMatrix as prec-bit precision.
- void free_ddmatrix(DDMatrix mat) · · · Free mat
- void free tdmatrix(TDMatrix mat)
- void free_qdmatrix(QDMatrix mat)
- void free_mpfmatrix(MPFMatrix mat)
- void print_ddmatrix(DDMatrix mat) · · · Print mat.
- void print_tdmatrix(TDMatrix mat)
- void print_qdmatrix(QDMatrix mat)
- void print_mpfmatrix(MPFMatrix mat)
- void set_ddfloat_ddmat(ddfloat ret[], int ret_dim, DDMatrix mat) · · · Convert DDMatrix mat to ddfloat array.
- void set_tdfloat_tdmat(tdfloat ret[], int ret_dim, DDMatrix mat) \cdots Convert TDMatrix mat to tdfloat array.
- void set_qdfloat_qdmat(qdfloat ret[], int ret_dim, DDMatrix mat) · · · Convert QDMatrix mat to qdfloat array.
- void set_ddmatrix_ddfloat(DDMatrix ret, ddfloat array[], int array_dim) \cdots Convert ddfloat array to DDMatrix.
- void set_tdmatrix_tdfloat(TDMatrix ret, tdfloat array[], int array_dim) \cdots Convert tdfloat array to TDMatrix.
- void set_qdmatrix_qdfloat(QDMatrix ret, qdfloat array[], int array_dim) · · · Convert qdfloat array to QDMatrix
- void mul_ddmatrix(DDMatrix ret, DDMatrix a, DDMatrix b) · · · Simple matrix multiplication.
- void mul_tdmatrix(TDMatrix ret, TDMatrix a, TDMatrix b)
- void mul_qdmatrix(QDMatrix ret, QDMatrix a, QDMatrix b)
- void mul_mpfmatrix(MPFMatrix ret, MPFMatrix a, MPFMatrix b)
- void normf_ddmatrix(double ret[DDSIZE], DDMatrix mat) · · · Get the value of Frobenius norm of mat
- void normf_tdmatrix(double ret[TDSIZE], TDMatrix mat)
- void normf_qdmatrix(double ret[QDSIZE], QDMatrix mat)
- void normf_mpfmatrix(mpf_t ret, MPFMatrix mat)
- void print_normf_ddmatrix(const char * str, DDMatrix mat) · · · print the Frobenius norm of mat.
- void normi_ddmatrix(double ret[DDSIZE], DDMatrix mat) · · · Infinity norm of matrix.
- void normi_tdmatrix(double ret[TDSIZE], TDMatrix mat)
- void normi_qdmatrix(double ret[QDSIZE], QDMatrix mat)
- $\bullet \ \, \mathsf{void} \ \, \mathsf{normi_mpfmatrix}(\mathsf{mpf_t} \ \mathsf{ret}, \, \mathsf{TDMatrix} \ \mathsf{mat})\\$
- void norm1_ddmatrix(double ret[DDSIZE], DDMatrix mat) · · · 1-norm of matrix.
- void norm1_tdmatrix(double ret[TDSIZE], TDMatrix mat)
- void norm1 qdmatrix(double ret[QDSIZE], QDMatrix mat)

- void norm1_mpfmatrix(mpf_t ret, MPFMatrix mat)
- void add_ddmatrix(DDMatrix c, DDMatrix a, DDMatrix b) \cdots c := a + b
- void add_tdmatrix(TDMatrix c, TDMatrix a, TDMatrix b)
- void add_qdmatrix(QDMatrix c, QDMatrix a, QDMatrix b)
- void add_mpfmatrix(MPFMatrix c, MPFMatrix a, MPFMatrix b)
- void sub_ddmatrix(DDMatrix c, DDMatrix a, DDMatrix b) $\cdots c := a b$
- void sub_tdmatrix(TDMatrix c, TDMatrix a, TDMatrix b)
- void sub_qdmatrix(QDMatrix c, QDMatrix a, QDMatrix b)
- void sub_mpfmatrix(MPFMatrix c, MPFMatrix a, MPFMatrix b)
- void cmul_ddmatrix(DDMatrix c, double sc[DDSIZE], DDMatrix a) $\cdots c := sc \times a$
- void cmul_tdmatrix(TDMatrix c, double sc[TDSIZE], TDMatrix a)
- void cmul_ddmatrix(QDMatrix c, double sc[QDSIZE], QDMatrix a)
- void cmul_mpfmatrix(MPFMatrix c, mpf_t sc, MPFMatrix a)
- void transpose_ddmatrix(DDMatrix c, DDMatrix a) \cdots $c := a^T$
- void transpose_tdmatrix(TDMatrix c, TDMatrix a)
- void transpose_qdmatrix(QDMatrix c, QDMatrix a)
- void transpose_mpfmatrix(MPFMatrix c, MPFMatrix a)
- void subst_ddmatrix(DDMatrix c, DDMatrix a) \cdots c := a
- void subst_tdmatrix(TDMatrix c, TDMatrix a)
- void subst_qdmatrix(QDMatrix c, QDMatrix a)
- void subst_mpfmatrix(MPFMatrix c, MPFMatrix a)
- void setI_ddmatrix(DDMatrix c) \cdots c := I
- void setI_tdmatrix(TDMatrix c)
- void setI_qdmatrix(QDMatrix c)
- void setI_mpfmatrix(MPFMatrix c)
- void mul_ddmatrix_ddvec(DDVector v, DDMatrix a, DDVector vb) $\cdots v := a * vb$
- void mul_tdmatrix_tdvec(TDVector v, TDMatrix a, TDVector vb)
- void mul_qdmatrix_qdvec(QDVector v, QDMatrix a, QDVector vb)
- void mul_mpfmatrix_mpfvec(MPFVector v, MPFMatrix a, MPFVector vb)
- void mul_ddmatrixt_ddvec(DDVector v, DDMatrix a, DDVector vb) \cdots $v := a^T * vb$
- void mul_tdmatrixt_tdvec(TDVector v, TDMatrix a, TDVector vb)
- void mul_qdmatrixt_qdvec(QDVector v, QDMatrix a, QDVector vb)
- void mul_mpfmatrixt_mpfvec(MPFVector v, MPFMatrix a, MPFVector vb)
- void inv_ddmatrix(DDMatrix a) \cdots $a := a^{-1}$ (only for square matrix)
- void inv_tdmatrix(TDMatrix a)
- void inv_qdmatrix(QDMatrix a)
- void inv_mpfmatrix(MPFMatrix a)
- void subst_mpfvector_ddvec(MPFVector c, DDVector a) \cdots c := (mpf)a
- void subst_ddvector_mpfvec(DDVector c, MPFVector MPFVector a) \cdots c := (dd)a
- void subst_mpfmatrix_ddmat(MPFMatrix c, DDMatrix a) \cdots c := (mpf)a
- void subst_ddmatrix_mpfmat(DDMatrix c, MPFMatrix a) \cdots c := (dd)a
- void relerr_ddvector_mpfvec(double relerr[DDSIZE], DDVector approx_vec, MPFVector true_vec, int norm_type) · · · Norm relative error of vector.
- void relerr_element_ddvector_mpf(double max_relerr[DDSIZE], double min_relerr[DDSIZE], double norm_relerr[DDSIZE], DDVector approx_vec, MPFVector true_vec, int norm_type) · · · E lementwise relative errors of vector.
 - /* c := (dd)a */
- void subst_ddvector_dvec(DDVector c, DVector sa) \cdots c := (dd)a /* c := (d)a */
- void subst_dvector_ddvec(DVector c, DDVector a) \cdots c := (double)a /* c := (dd)a */
- void ${\tt subst_ddmatrix_dmat}({\tt DDMatrix}\ {\tt c},\ {\tt DMatrix}\ {\tt a})$ \cdots c:=(dd)a

```
/* c := (d)a */
```

- void subst_dmatrix_ddmat(DMatrix c, DDMatrix a) \cdots c := (double)a
- void relerr_ddvector(double relerr[DDSIZE], DDVector approx_vec, DDVector true_vec, int norm_type) · · · Norm relative error of vector.
- void relerr_element_ddvector(double max_relerr[DDSIZE], double min_relerr[DDSIZE], double norm_relerr[DDSIZE], DDVector approx_vec, DDVector true_vec, int norm_type) · · · E lementwise relative errors of vector.
- void row_swap_ddmatrix(DDMatrix mat, long int row_index0, long int row_index1, long int col_start, long int col_end) ··· Exchange a(row_index0, col_start:col_end) to a(row_index1, col_start:col_end)

3.4 File I/O with matrix and vector

- void fread_ddmatrix(FILE * fp, DDMatrix mat) · · · Read matrix elements from fp and store theme
 in mat.
- void fread_tdmatrix(FILE * fp, TDMatrix mat)
- void fread_qdmatrix(FILE * fp, QDMatrix mat)
- void fread_mpfmatrix(FILE * fp, QDMatrix mat)
- void fread_ddmatrix_fname(const char * fname, DDMatrix mat) · · · Read matrix elements from fname and store theme in mat.
- void fread_tdmatrix_fname(const char * fname, TDMatrix mat)
- void fread_qdmatrix_fname(const char * fname, QDMatrix mat)
- void fread_mpfmatrix_fname(const char * fname, MPFMatrix mat)
- void fwrite_ddmatrix(FILE * fp, DDMatrix mat) · · · Write matrix elements of mat to fp.
- void fwrite_tdmatrix(FILE * fp, TDMatrix mat)
- void fwrite_qdmatrix(FILE * fp, QDMatrix mat)
- void fwrite_mpfmatrix(FILE * fp, MPFMatrix mat)
- void fwrite_ddmatrix_fname(const char * fname, DDMatrix mat) · · · Write matrix elements of mat to fname.
- void fwrite_tdmatrix_fname(const char * fname, TDMatrix mat)
- void fwrite_qdmatrix_fname(const char * fname, QDMatrix mat)
- void fwrite_mpfmatrix_fname(const char * fname, MPFMatrix mat)
- void fread_ddvector(FILE * fp, DDVector vec) · · · Read vector elements from fp and store theme in vec.
- void fread_tdvector(FILE * fp, TDVector vec)
- void fread_qdvector(FILE * fp, QDVector vec)
- void fread_mpfvector(FILE * fp, MPFVector vec)
- void fread_ddvector_fname(const char * fname, DDVector vec) · · · Read vector elements from fname and store theme in vec.
- void fread_tdvector_fname(const char * fname, TDVector vec)
- void fread_qdvector_fname(const char * fname, QDVector vec)
- void fread_mpfvector_fname(const char * fname, MPFVector vec)
- void fwrite_ddvector(FILE * fp, DDVector vec) · · · Write vector elements of vec to fp.
- void fwrite_tdvector(FILE * fp, TDVector vec)
- void fwrite_qdvector(FILE * fp, QDVector vec)
- void fwrite_mpfvector(FILE * fp, MPFVector vec)
- void fwrite_ddvector_fname(const char * fname, DDVector vec) · · · Write vector elements of vec to fname.
- void fwrite_tdvector_fname(const char * fname, TDVector vec)
- void fwrite_qdvector_fname(const char * fname, QDVector vec)
- void fwrite_mpfvector_fname(const char * fname, MPFVector vec)
- void read test linear eq dd(DDMatrix A, DDVector true x, DDVector b, long int dim , const

- char * fname_A, const char * fname_true_x, const char * fname_b) · · · Read the coefficient matrix A from fname A, the true x from fname true x, and the vector b from fname b.
- void read_test_linear_eq_td(TDMatrix A, TDVector true_x, TDVector b, long int dim , const char * fname_A, const char * fname_true_x, const char * fname_b)
- void read_test_linear_eq_qd(QDMatrix A, QDVector true_x, QDVector b, long int dim , const char * fname_A, const char * fname_true_x, const char * fname_b)
- void read_test_linear_eq_mpf(MPFMatrix A, MPFVector true_x, MPFVector b, long int dim, const char * fname_A, const char * fname_true_x, const char * fname_b)

3.5 Generating test matrices

The following functions provide various test matrices for benhmark tests.

- void hilbert ddmatrix(DDMatrix a, long int dim) · · · Hilbert matrix.
- void hilbert tdmatrix(TDMatrix a, long int dim)
- void hilbert_qdmatrix(QDMatrix a, long int dim)
- void hilbert_mpfmatrix(MPFMatrix a, long int dim)
- void lotkin ddmatrix(DDMatrix a, long int dim) · · · Lotkin matrix.
- void lotkin_tdmatrix(TDMatrix a, long int dim)
- void lotkin_qdmatrix(QDMatrix a, long int dim)
- void lotkin_mpfmatrix(MPFMatrix a, long int dim)
- void frank_ddmatrix(DDMatrix a, long int dim) · · · Symmetric Frank matrix.
- void frank_tdmatrix(TDMatrix a, long int dim)
- void frank_qdmatrix(QDMatrix a, long int dim)
- void frank_mpfmatrix(MPFMatrix a, long int dim)
- void tridiag_ddmatrix(DDMatrix a, DDVector low_subdiag, DDVector diag, DDVector up_subdiag, long int dim) · · · Triagonal matrix.
- void tridiag_tdmatrix(DDMatrix a, TDVector low_subdiag, TDVector diag, TDVector up_subdiag, long int dim)
- $\bullet \ void \ tridiag_qdmatrix (DDMatrix \ a, \ QDVector \ low_subdiag, \ QDVector \ diag, \ QDVector \ up_subdiag, \ long \ int \ dim)$
- void tridiag_mpfmatrix(DDMatrix a, MPFVector low_subdiag, MPFVector diag, MPFVector up_subdiag, long int dim)
- void int_sym_rand_ddmatrix(DDMatrix mat, long int max, long int seed, long int dim) · · · Integer Symmetrix Random Matrix.
- void int_sym_rand_tdmatrix(TDMatrix mat, long int max, long int seed, long int dim)
- void int_sym_rand_qdmatrix(QDMatrix mat, long int max, long int seed, long int dim)
- void int_sym_rand_mpfmatrix(MPFMatrix mat, long int max, long int seed, long int dim)
- void int_unsym_rand_ddmatrix(DDMatrix mat, long int max, long int seed, long int dim) · · · Integer Unsymmetrix Random Matrix.
- void int_unsym_rand_tdmatrix(TDMatrix mat, long int max, long int seed, long int dim) · · · Integer Unsymmetrix Random Matrix.
- void int_unsym_rand_qdmatrix(QDMatrix mat, long int max, long int seed, long int dim) · · · Integer Unsymmetrix Random Matrix.
- void int_unsym_rand_mpfmatrix(MPFMatrix mat, long int max, long int seed, long int dim) · · · Integer Unsymmetrix Random Matrix.
- void diag_ddmatrix(DDMatrix mat, DDVector diag, long int dim) · · · Real Diagonal Matrix.
- void diag_tdmatrix(TDMatrix mat, TDVector diag, long int dim)
- void diag qdmatrix(QDMatrix mat, QDVector diag, long int dim)
- void diag_mpfmatrix(MPFMatrix mat, MPFVector diag, long int dim)
- void toeplitz_ddmatrix(DDMatrix mat, double gamma_param[DDSIZE], long int dim) · · · Toeplitz matrix.

- void toeplitz_tdmatrix(TDMatrix mat, double gamma_param[TDSIZE], long int dim)
- void toeplitz_qdmatrix(QDMatrix mat, double gamma_param[QDSIZE], long int dim)
- void toeplitz_mpfmatrix(MPFMatrix mat, mpf_t gamma_param, long int dim)
- void pascal_ddmatrix(DDMatrix ret, long int dim) · · · Pascal matrix.
- void pascal_tdmatrix(TDMatrix ret, long int dim)
- void pascal_qdmatrix(QDMatrix ret, long int dim)
- void pascal_mpfmatrix(MPFMatrix ret, long int dim)
- void $im_rand_ddmatrix(DDMatrix ret, unsigned long seed) <math>\cdots I-random$
- void im_rand_tdmatrix(TDMatrix ret, unsigned long seed)
- void im_rand_qdmatrix(QDMatrix ret, unsigned long seed)
- void im_rand_mpfmatrix(MPFMatrix ret, unsigned long seed)

3.6 Simple, block, and Strassen matrix multiplication and related functions

(Macro) $\mathtt{mul_ddmatrix_simple}(c, a, b) \cdots \mathtt{mul_ddmatrix}c, a, b \cdots \mathtt{Matrix}$ multiplication based on simple triple-loop way

(Macro) mul_tdmatrix_simple(c, a, b) · · · mul_tdmatrixc, a, b

 $(Macro) \ mul_qdmatrix_simple(c, a, b) \cdots mul_qdmatrixc, a, b$

- void mul_mpfmatrix_simple(MPFMatrix c, MPFMatrix a, MPFMatrix b)
- void mul_dmatrix_strassen(DMatrix ret, DMatrix mat_a, DMatrix mat_b, long int min_dim) · · · · Matrix multiplication based on Strassen or Winograd algorithms
- void mul_ddmatrix_strassen(DDMatrix ret, DDMatrix mat_a, DDMatrix mat_b, long int min_dim)
- void mul_tdmatrix_strassen(TDMatrix ret, TDMatrix mat_a, TDMatrix mat_b, long int min_dim)
- void mul_qdmatrix_strassen(QDMatrix ret, QDMatrix mat_a, QDMatrix mat_b, long int min_dim)
- void mul_mpfmatrix_strassen(MPFMatrix ret, MPFMatrix mat_a, MPFMatrix mat_b, long int min_dim)
- void mul_dmatrix_block(DMatrix ret, DMatrix mat_a, DMatrix mat_b, long int min_dim) · · · Block matrix multiplicaiton
- void mul_ddmatrix_block(DDMatrix ret, DDMatrix mat_a, DDMatrix mat_b, long int min_dim)
- void mul tdmatrix block(TDMatrix ret, TDMatrix mat a, TDMatrix mat b, long int min dim)
- void mul_qdmatrix_block(QDMatrix ret, QDMatrix mat_a, QDMatrix mat_b, long int min_dim)
- void mul_mpfmatrix_block(MPFMatrix ret, MPFMatrix mat_a, MPFMatrix mat_b, long int min_dim)
- void mul_dmatrix_strassen_even(DMatrix ret, DMatrix mat_a, DMatrix mat_b, long int min_dim) · · · Strassen's Algorithm (even dimension)
- void mul_ddmatrix_strassen_even(DDMatrix ret, DDMatrix mat_a, DDMatrix mat_b, long int min_dim)
- void mul_tdmatrix_strassen_even(TDMatrix ret, TDMatrix mat_a, TDMatrix mat_b, long int min_dim)
- void mul_qdmatrix_strassen_even(QDMatrix ret, QDMatrix mat_a, QDMatrix mat_b, long int min_dim)
- void mul_mpfmatrix_strassen_even(MPFMatrix ret, MPFMatrix mat_a, MPFMatrix mat_b, long int min_dim)
- void mul_dmatrix_winograd_even(DMatrix ret, DMatrix mat_a, DMatrix mat_b, long int min_dim) ... Winograd Variant of Strassen's Algorithm
- void mul_ddmatrix_winograd_even(DDMatrix ret, DDMatrix mat_a, DDMatrix mat_b, long int min_dim)
- void mul_tdmatrix_winograd_even(TDMatrix ret, TDMatrix mat_a, TDMatrix mat_b, long int min_dim)

- void mul_qdmatrix_winograd_even(QDMatrix ret, QDMatrix mat_a, QDMatrix mat_b, long int min_dim)
- void mul_mpfmatrix_winograd_even(MPFMatrix ret, MPFMatrix mat_a, MPFMatrix mat_b, long int min_dim)
- void inv_ddmatrix_strassen_even(DDMatrix ret, DDMatrix mat_a, long int min_dim) · · · Computattion of Inverse Matrix by using Strassen's Algorithm
- void inv_tdmatrix_strassen_even(TDMatrix ret, TDMatrix mat_a, long int min_dim)
- void inv_qdmatrix_strassen_even(QDMatrix ret, QDMatrix mat_a, long int min_dim)

3.6.1 OpenMP

- $(Macro) \ \underline{\texttt{bncomp_mul_ddmatrix_simple}}(c, a, b) \ \underline{\texttt{bncomp_mul_ddmatrix}}(c, a, b) \cdots \ Parallelized \ simple \ matrix \ multiplication,$
- $(Macro) \verb| _bncomp_mul_tdmatrix_simple(c, a, b) _bncomp_mul_tdmatrix(c, a, b)$
- (Macro) _bncomp_mul_qdmatrix_simple(c, a, b) _bncomp_mul_qdmatrix(c, a, b)
- (Macro) _bncomp_mul_mpfdmatrix_simple(c, a, b) _bncomp_mul_mpfdmatrix(c, a, b)
 - void _bncomp_mul_ddmatrix_block(DDMatrix ret, DDMatrix mat_a, DDMatrix mat_b, long int min_dim) · · · Parallelized block matrix multiplication.
 - void _bncomp_mul_tdmatrix_block(TDMatrix ret, TDMatrix mat_a, TDMatrix mat_b, long int min_dim)
 - void _bncomp_mul_qdmatrix_block(QDMatrix ret, QDMatrix mat_a, QDMatrix mat_b, long int min_dim)
 - void _bncomp_mul_mpfmatrix_block(MPFMatrix ret, MPFMatrix mat_a, MPFMatrix mat_b, long int min_dim)
 - void _bncomp_mul_ddmatrix_strassen(DDMatrix ret, DDMatrix mat_a, DDMatrix mat_b, long int min_dim) · · · Parallelized Strassen and Winograd matrix multiplication (limited performance due to poor coding)
 - void _bncomp_mul_tdmatrix_strassen(TDMatrix ret, TDMatrix mat_a, TDMatrix mat_b, long int min_dim)
 - void _bncomp_mul_qdmatrix_strassen(QDMatrix ret, QDMatrix mat_a, QDMatrix mat_b, long int min_dim)
 - void _bncomp_mul_mpfmatrix_strassen(MPFMatrix ret, MPFMatrix mat_a, MPFMatrix mat_b, long int min_dim)

3.7 Getting relative errors of vector and matrix

- void relerr3_dvector(double * max_relerr, double * min_relerr, double * norm_relerr, DVector vec, DVector vec_true, int kind_of_norm) · · · Relative errors of vec.
- void relerr3_ddvector(double max_relerr[DDSIZE], double min_relerr[DDSIZE], double norm_relerr[DDSIZE], DDVector vec, DDVector vec_true, int kind_of_norm)
- void relerr3_tdvector(double max_relerr[TDSIZE]) , double min_relerr[TDSIZE], double norm_relerr[TDSIZE], TDVector vec, TDVector vec_true, int kind_of_norm
- void relerr3_qdvector(double max_relerr[QDSIZE]) , double min_relerr[QDSIZE], double norm_relerr[QDSIZE], QDVector vec, QDVector vec_true, int kind_of_norm
- void relerr3_mpfvector(mpf_t max_relerr, mpf_t min_relerr, mpf_t norm_relerr, MPFVector vec, MPFVector vec_true, int kind_of_norm)
- void relerr3_dmatrix(double * max_relerr, double * min_relerr, double * norm_relerr, DMatrix mat, DMatrix mat_true, int kind_of_norm) · · · Relative errors of mat.
- void relerr3_ddmatrix(double max_relerr[DDSIZE], double min_relerr[DDSIZE], double norm_relerr[DDSIZE], DDMatrix mat, DDMatrix mat_true, int kind_of_norm)
- void relerr3_tdmatrix(double max_relerr[TDSIZE], double min_relerr[TDSIZE], double

- norm_relerr[TDSIZE], TDMatrix mat, TDMatrix mat_true, int kind_of_norm)
- void relerr3_qdmatrix(double max_relerr[QDSIZE], double min_relerr[QDSIZE], double norm_relerr[QDSIZE], QDMatrix mat, QDMatrix mat_true, int kind_of_norm)
- void relerr3_mpfmatrix(mpf_t max_relerr, mpf_t min_relerr, mpf_t norm_relerr, MPFMatrix mat, MPFMatrix mat_true, int kind_of_norm)

3.8 Ozaki scheme and related functions

These following functions are necessary for Ozaki scheme and multi-fold precision arithmetic.

- void extract_dvector(DVector ret_high_vec, DVector ret_low_vec, DVector org_vec, double num_bits) · · · ret_high + ret_low = org_vec
- void split_dmatrix(DMatrix ret_high_mat , DMatrix ret_low_mat, DMatrix org_mat) · · · split org mat to ret high mat and ret low mat in row direction
- void split_dmatrix_t(DMatrix ret_high_mat ,DMatrix ret_low_mat, DMatrix org_mat) · · · split org_mat to ret_high_mat and ret_low_mat in column direction
- int split_ddvector_dvec(DVector ret_vec[], int num_div, DDVector org_vec) · · · Split org_vec to ret_vec[0] + ret_vec[1] +...+ ret_vec[num_div 1]
- int split_tdvector_dvec(DVector ret_vec[], int num_div, TDVector org_vec)
- void absmax_ddvector(double ret[DDSIZE], long int * max_index, DDVector vec) · · · get absolutely maximum of elements in vec.
- void absmax_tdvector(double ret[TDSIZE], long int * max_index, TDVector vec)
- void absmax_qdvector(double ret[QDSIZE], long int * max_index, QDVector vec)
- void absmax_mpfvector(mpf_t ret, long int * max_index, MPFVector vec)
- void add_ddvector_dvec(DDVector c, DDVector a, DVector b) \cdots c := a + (double)b
- void add_tdvector_dvec(TDVector c, TDVector a, DVector b)
- void add_qdvector_dvec(QDVector c, QDVector a, DVector b)
- void add_mpfvector_dvec(MPFVector c, MPFVector a, DVector b);
- void sub_ddvector_dvec(DDVector c, DDVector a, DVector b) \cdots c := a (double)b
- void sub_tdvector_dvec(TDVector c, TDVector a, DVector b)
- void sub_qdvector_dvec(QDVector c, QDVector a, DVector b)
- void sub_mpfvector_dvec(MPFVector c, MPFVector a, DVector b)
- void subst_dvector_qdvec(DVector c, QDVector a) \cdots c := (DDVector)a
- void absmax_row_ddmatrix(double mu[DDSIZE], long int * max_j, long int row_index, DDMatrix mat) · · · Return the absolutely maximum element in the max_j-th row.
- void absmax_row_tdmatrix(double mu[TDSIZE], long int * max_j, long int row_index, TDMatrix mat)
- void absmax_row_qdmatrix(double mu[QDSIZE], long int * max_j, long int row_index, QDMatrix mat)
- void absmax_row_mpfmatrix(mpf_t mu, long int * max_j, long int row_index, MPFMatrix mat)
- void add_ddmatrix_dmat(DDMatrix c, DDMatrix a, DMatrix b) \cdots c := a + (DMatrix)b
- void add_tdmatrix_dmat(TDMatrix c, TDMatrix a, DMatrix b)
- void add_qdmatrix_dmat(QDMatrix c, QDMatrix a, DMatrix b)
- void add_mpfmatrix_dmat(MPFMatrix c, MPFMatrix a, DMatrix b)
- void sub_ddmatrix_dmat(DDMatrix c, DDMatrix a, DMatrix b) \cdots c := a (DMatrix)b
- void sub_tdmatrix_dmat(TDMatrix c, TDMatrix a, DMatrix b)
- void sub_qdmatrix_dmat(QDMatrix c, QDMatrix a, DMatrix b)
- void sub_mpfmatrix_dmat(MPFMatrix c, MPFMatrix a, DMatrix b)
- int split_ddmatrix_dmat(DMatrix ret_mat[], int num_div, DDMatrix org_mat) cdots Split org_mat to ret_mat[] in row direction and return real number of divisions
- int split_tdmatrix_dmat(DMatrix ret_mat[], int num_div, TDMatrix org_mat)
- int split_qdmatrix_dmat(DMatrix ret_mat[], int num_div, QDMatrix org_mat)

- int split_mpfmatrix_dmat(DMatrix ret_mat[], int num_div, MPFMatrix org_mat)
- void absmax_col_ddmatrix(double mu[DDSIZE], long int * max_i, long int col_index, DDMatrix mat) \cdots return absolutely maximum element and its (i, j)-index in each column of mat.
- void absmax_col_tdmatrix(double mu[TDSIZE], long int * max_i, long int col_index, TDMatrix mat)
- void absmax_col_qdmatrix(double mu[QDSIZE], long int * max_i, long int col_index, QDMatrix-mat)
- void absmax_col_mpfmatrix(mpf_t mu, long int * max_i, long int col_index, MPFMatrix mat)
- int split_ddmatrix_t_dmat(DMatrix ret_mat[], int num_div, DDMatrix org_mat) · · · Split org_mat to ret_mat[] in column direction and return real number of divisions.
- int split_tdmatrix_t_dmat(DMatrix ret_mat[], int num_div, TDMatrix org_mat)
- int split_qdvector_dvec(DVector ret_vec[], int num_div, QDVector org_vec)
- int split_qdmatrix_t_dmat(DMatrix ret_mat[], int num_div, QDMatrix org_mat)
- int split_mpfmatrix_t_dmat(DMatrix ret_mat[], int num_div , MPFMatrix org_mat)
- void subst_qdmatrix_dmat(QDMatrix c, DMatrix a)
- void subst_dmatrix_qdmat(DMatrix c, QDMatrix a)
- void mul_ddmatrix_oz(DDMatrix ret, DDMatrix a, int max_num_div_a, DDMatrix b, int max_num_div_b) cdots Matrix multiplication based on Ozaki scheme
- void mul_tdmatrix_oz(TDMatrix ret, TDMatrix a, int max_num_div_a, TDMatrix b, int max_num_div_b)
- void mul_qdmatrix_oz(QDMatrix ret, QDMatrix a, int max_num_div_a, QDMatrix b, int max_num_div_b)
- void mul_mpfmatrix_oz(MPFMatrix ret, MPFMatrix a, int max_num_div_a, MPFMatrix b, int max_num_div_b)
- void mul_ddmatrix_ddvec_oz(DDVector ret, DDMatrix a, int max_num_div_a, DDVector vb, int max_num_div_vb) ··· Matrix-Vector multiplication based on Ozaki scheme
- void mul_tdmatrix_tdvec_oz(TDVector ret, TDMatrix a, int max_num_div_a, TDVector vb, int max_num_div_vb)
- void mul_qdmatrix_qdvec_oz(QDVector ret, QDMatrix a, int max_num_div_a, QDVector vb, int max_num_div_vb)
- void mul_mpfmatrix_dvec_oz(MPFVector ret, MPFMatrix a, int max_num_div_a, MPFVector vb, int max_num_div_vb)

Chapter 4

LU decomposition

BNCmatmul has various LU decompositions and solvers for the corresponding decomposed linear system of equations.

4.1 List of functions

- int DLUdecomp(DMatrix A) \cdots LU decompose the matrix A without any types of pivoting.
- int DDLUdecomp(DDMatrix A)
- int TDLUdecomp(TDMatrix A)
- int QDLUdecomp(QDMatrix A)
- int MPFLUdecomp(MFPMatrix A)
- int SolveDLS(DVector \mathbf{x} , DMatrix LU, DVector \mathbf{b}) · · · Solve $(LU)\mathbf{x} = \mathbf{b}$ for \mathbf{x} .
- int SolveDDLS(DDVector \mathbf{x} , DDMatrix LU, DDVector \mathbf{b})
- int SolveTDLS(TDVector x, TDMatrix LU, TDVector b)
- int SolveQDLS(QDVector x, QDMatrix 1LU, QDVector b)
- int SolveMPFLS(MPFVector x, MPFMatrix LU, MPFVector b)
- int DLUdecompP(DMatrix A, long int ch[]) ··· LU decompose the matrix A with partial pivoting, order of rows is stored in ch[].
- int DDLUdecompP(DDMatrix A, long int ch[])
- int TDLUdecompP(TDMatrix A, long int ch[])
- int QDLUdecompP(DDMatrix A, long int ch[])
- int MPFLUdecompP(MPFMatrix A, long int ch[])
- int SolveDLSP(DVector \mathbf{x} , DMatrix LU, DVector \mathbf{b} , long int ch[]) · · · Solve $(LU)\mathbf{x} = \mathbf{b}$ for \mathbf{x} using ch[] as row numbering.
- int SolveDDLSP(DDVector \mathbf{x} , DDMatrix LU, DDVector \mathbf{b} , long int ch[])
- int SolveTDLSP(TDVector x, TDMatrix LU, TDVector b, long int ch[])
- int SolveQDLSP(DDVector x, QDMatrix LU, QDVector b, long int ch[])
- int SolveMPFLSP(MPFVector x, MPFMatrix LU, MPFVector b, long int ch[])
- int DLUdecompC(DMatrix A, long int row_ch[], long int col_ch[]) ··· LU decompose the matrix A with complete pivoting, order of rows is stored in row_ch[], and order of columns in col_ch[].
- int DDLUdecompC(DDMatrix A, long int row_ch[], long int col_ch[])
- int TDLUdecompC(TDMatrix A, long int row_ch[], long int col_ch[])
- int QDLUdecompC(QDMatrix A, long int row_ch[], long int col_ch[])
- int MPFLUdecompC(MPFMatrix A, long int row_ch[], long int col_ch[])
- int SolveDLSC(DVector \mathbf{x} , DMatrix LU, DVector \mathbf{b} , long int row_ch[], long int col_ch[]) \cdots Solve $(LU)\mathbf{x} = \mathbf{b}$ for \mathbf{x} using row_ch[] and col_ch[] as row and column numbering, respectively.
- int SolveDDLSC(DDVector x, DDMatrix LU, DDVector b, long int row_ch[], long int col_ch[])
- int SolveTDLSC(TDVector x, TDMatrix LU, TDVector b, long int row_ch[], long int col_ch[])
- int SolveQDLSC(QDVector x, QDMatrix LU, QDVector b, long int row_ch[], long int col_ch[])
- int SolveMPFLSC(MPFVector x, MPFMatrix LU, MPFVector b, long int row_ch[], long int col_ch[])

- int DLUdecomp_strassen(DMatrix A, long int min_dim) \cdots LU decompose, using Strassen matrix multiplication.
- int DDLUdecomp_strassen(DDMatrix A, long int min_dim)
- int TDLUdecomp_strassen(TDMatrix A, long int min_dim)
- int QDLUdecomp_strassen(QDMatrix A, long int min_dim)
- int MPFLUdecomp_strassen(MPFMatrix A, long int min_dim)
- int DLUdecomp_strassenPM(DMatrix A, long int ch[], long int min_dim) \cdots LU decompose, using Strassen matrix multiplication, the matrix A with partial pivoting, order of rows is stored in ch[].
- int DDLUdecomp_strassenPM(DDMatrix A, long int ch[], long int min_dim)
- int TDLUdecomp_strassenPM(TDMatrix A, long int ch[], long int min_dim)
- int QDLUdecomp_strassenPM(QDMatrix A, long int ch[], long int min_dim)
- int MPFLUdecomp_strassenPM(MPFMatrix A, long int ch[], long int min_dim)
- int DLUdecomp_oz(DMatrix A, long int min_dim, int max_num_div) · · · LU decompose, using Ozaki scheme setting max_num_div as maximum number of divisions.
- int DDLUdecomp_oz(DDMatrix A, long int min_dim, int max_num_div)
- int TDLUdecomp_oz(DMatrix A, long int min_dim, int max_num_div)
- int QDLUdecomp oz(DMatrix A, long int min dim, int max num div)
- int MPFLUdecomp_oz(MPFMatrix A, long int min_dim, int max_num_div)
- int DLUdecomp_ozPM(DMatrix A, long int ch[], long int min_dim, int max_num_div) ··· LU decompose, using partial pivoting and Ozaki scheme setting max_num_div as maximum number of divisions.
- int DDLUdecomp_ozPM(DMatrix A, long int ch[], long int min_dim, int max_num_div)
- int $\mathtt{TDLUdecomp_ozPM}(\mathsf{DMatrix}\ A, \mathsf{long}\ \mathsf{int}\ \mathsf{ch}[], \mathsf{long}\ \mathsf{int}\ \mathsf{min_dim}, \mathsf{int}\ \mathsf{max_num_div})$
- int QDLUdecomp_ozPM(DMatrix A, long int ch[], long int min_dim, int max_num_div)
- int MPFLUdecomp_ozPM(MPFMatrix A, long int ch[], long int min_dim, int max_num_div)

Bibliography

- [1] D.H. Bailey. QD. https://www.davidhbailey.com/dhbsoftware/.
- [2] T. Granlaud and GMP development team. The GNU Multiple Precision arithmetic library. https://gmplib.org/.
- [3] M. Jolders, J. M. Muller, V. Popescu, and W.Tucker. Campary: Cuda mutiple precision arithmetic library and applications. 5th ICMS, 2016.
- [4] Tomonori Kouya. BNCpack. https://na-inet.jp/na/bnc/.
- [5] LAPACK. http://www.netlib.org/lapack/.
- [6] MPLAPACK/MPBLAS. Multiple precision arithmetic LAPACK and BLAS. https://github.com/nakatamaho/mplapack.
- [7] Daichi Mukunoki, Katsuhisa Ozaki, Takeshi Ogita, and Toshiyuki Imamura. Accurate matrix multiplication on binary128 format accelerated by ozaki scheme. In 50th International Conference on Parallel Processing, ICPP 2021, New York, NY, USA, 2021. Association for Computing Machinery.
- [8] MPFR Project. The MPFR library. https://www.mpfr.org/.
- [9] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation part I: Faithful rounding. SIAM Journal on Scientific Computing, Vol. 31, No. 1, pp. 189–224, 2008.
- [10] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation part II: Sign, k-fold faithful and rounding to nearest. *SIAM Journal on Scientific Computing*, Vol. 31, No. 2, pp. 1269–1302, 2008.
- [11] Taiga Utsugiri and Tomonori Kouya. Acceleration of multiple precision matrix multiplication using ozaki scheme, 2023.