Algebraic and Semi-Algebraic Reasoning For Formal Methods

Lecture 3 - Gröbner Bases and Nullstellensatz

Sriram Sankaranarayanan

So far

- $\bullet \ \ \mathrm{Ideals:} \ I \subseteq K[x_1, \dots, x_n]$
 - $\bullet \quad p_1, p_2 \in I \ \Rightarrow \ p_1 + p_2 \in I.$
 - $p \in I, q \in \mathbb{R}[\vec{x}], pq \in I.$
- Varieties: Set of all points defined by common zeros of polynomials.

Ideal Membership Testing

- Input Generators of an ideal $\langle p_1,\dots,p_m \rangle$, $p \in K[\vec{x}]$
- $\bullet \quad \textbf{Output} \ p \in I?$

Monomial Ordering

- We will impose a ordering relation over monomials.
- For a single variable, this is easy:

$$x^0 \prec x^1 \prec x^2 \prec \cdots \prec x^n \prec \cdots$$

What about multiple variables?

Requirements:

- \bullet \prec is a total order over monomials.
- $p \prec q$ implies forall $w, pw \prec qw$.
- ≺ is well order: every non-empty set has a least element.

Monomial ordering

- We can view it as an order between monomials \vec{x}^{α} .
- Alternatively, ordering over \mathbb{N}^n .

$$\vec{x}^{\alpha_1} \prec \vec{x}^{\alpha_2} \ \Rightarrow \ \alpha_1 \prec \alpha_2$$

Lexicographic Ordering

- Fix a rank among variables $x_1 > x_2 > \dots > x_n$.
- Write each monomial as a vector $(\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$.
 - Variables arranged in decreasing rank.
- Use lexicographic comparison:

$$(\vec{\alpha} \prec \vec{\beta}) \text{ iff } \alpha_1 = \beta_1, \cdots, \alpha_{i-1} = \beta_{i-1}, \ \alpha_i < \beta_i$$

 $\bullet \quad \mathsf{Take} \ x > y.$

Lexicographic Ordering

- Fix a rank among variables $x_1 > x_2 > \dots > x_n$.
- Write each monomial as a vector $(\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$.
 - Variables arranged in decreasing rank.
- Use lexicographic comparison:

$$(\vec{\alpha} \prec \vec{\beta}) \text{ iff } \alpha_1 = \beta_1, \cdots, \alpha_{i-1} = \beta_{i-1}, \ \alpha_i < \beta_i$$

- $\bullet \quad \mathsf{Take} \ x > y.$
- $\qquad xy^{100} \prec x^2y^{10}$

Lexicographic Ordering

- Fix a rank among variables $x_1 > x_2 > \dots > x_n$.
- Write each monomial as a vector $(\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$.
 - Variables arranged in decreasing rank.
- Use lexicographic comparison:

$$(\vec{\alpha} \prec \vec{\beta}) \text{ iff } \alpha_1 = \beta_1, \cdots, \alpha_{i-1} = \beta_{i-1}, \ \alpha_i < \beta_i$$

- $\bullet \quad \mathsf{Take} \ x > y.$
- $xy^{100} \prec x^2y^{10}$
- $xy^2 \prec xy^4$

$$\vec{lpha} \prec \vec{eta}$$
 iff

 \bullet Either $|\vec{\alpha}|_1 < |\vec{\beta}|_1$, OR

$$\vec{\alpha} \prec \vec{\beta}$$
 iff

- Either $|\vec{\alpha}|_1 < |\vec{\beta}|_1$, OR

$$\vec{lpha} \prec \vec{eta}$$
 iff

- Either $|\vec{\alpha}|_1 < |\vec{\beta}|_1$, OR
- $\quad \quad |\vec{\alpha}|_1 = |\vec{\beta}|_1 \ \land \ \vec{\alpha} \prec_{\mathsf{lex}} \vec{\beta}.$
- $\bullet \quad \mathsf{Take} \ x > y.$

$$\vec{lpha} \prec \vec{eta}$$
 iff

- Either $|\vec{\alpha}|_1 < |\vec{\beta}|_1$, OR
- $\bullet \quad |\vec{\alpha}|_1 = |\vec{\beta}|_1 \ \land \ \vec{\alpha} \prec_{\mathsf{lex}} \vec{\beta}.$
- Take x > y.

$$\vec{\alpha} \prec \vec{\beta}$$
 iff

- Either $|\vec{\alpha}|_1 < |\vec{\beta}|_1$, OR
- $|\vec{\alpha}|_1 = |\vec{\beta}|_1 \wedge \vec{\alpha} \prec_{\mathsf{lex}} \vec{\beta}.$
- Take x > y.
- $x^2y^{10} \prec xy^{15}$
- $xy^2 \prec xy^4$

$$\vec{lpha} \prec \vec{eta}$$
 iff

- Either $|\vec{\alpha}|_1 < |\vec{\beta}|_1$, OR
- $|\vec{\alpha}|_1 = |\vec{\beta}|_1 \wedge \vec{\alpha} \prec_{\mathsf{lex}} \vec{\beta}.$
- $\bullet \quad \mathsf{Take} \ x > y.$
- $x^2y^{10} \prec xy^{15}$
- $xy^2 \prec xy^4$
- $y^3 \prec xy^2 \prec x^2y \prec x^3$

Let \prec be a monomial oder and p be a polynomial.

• LT(p): the term in p

$$p = 2xy + y^2 + 3x^2 + y^3$$

- Take \prec to be lexicographic order with x > y.
- $LT(p) = 3x^2$, $LM(p) = x^2$.
- How does the answer change if we used graded lex ordering?

Let \prec be a monomial oder and p be a polynomial.

- LT(p): the term in p
 - $c_{\alpha}x^{\alpha}$, wherein α is the greatest among all monomials in the \prec ordering.

$$p = 2xy + y^2 + 3x^2 + y^3$$

- Take \prec to be lexicographic order with x > y.
- $LT(p) = 3x^2$, $LM(p) = x^2$.
- How does the answer change if we used graded lex ordering?

Let \prec be a monomial oder and p be a polynomial.

- LT(p): the term in p
 - $c_{\alpha}x^{\alpha}$, wherein α is the greatest among all monomials in the \prec ordering.
- LM(p): the monomial in p

$$p = 2xy + y^2 + 3x^2 + y^3$$

- Take \prec to be lexicographic order with x > y.
- $LT(p) = 3x^2$, $LM(p) = x^2$.
- How does the answer change if we used graded lex ordering?

Let \prec be a monomial oder and p be a polynomial.

- LT(p): the term in p
 - $c_{\alpha}x^{\alpha}$, wherein α is the greatest among all monomials in the \prec ordering.
- LM(p): the monomial in p
 - x^{α} , wherein α is the greatest among all monomials in the \prec ordering.

$$p = 2xy + y^2 + 3x^2 + y^3$$

- Take \prec to be lexicographic order with x > y.
- $LT(p) = 3x^2$, $LM(p) = x^2$.
- How does the answer change if we used graded lex ordering?

$$(3x^3 - 2x^2 + 5) \div (x - 2)?$$

- $p = (3x^3 2x^2 + 5), q = 0.$
- \bullet First multiply dividend by $3x^2$ and subtract:

$$(3x^3 - 2x^2 + 5) \div (x - 2)?$$

- $p = (3x^3 2x^2 + 5), q = 0.$
- First multiply dividend by $3x^2$ and subtract:
 - $p = p 3x^2(x-2) = 4x^2 + 5$

$$(3x^3 - 2x^2 + 5) \div (x - 2)?$$

- $p = (3x^3 2x^2 + 5), q = 0.$
- First multiply dividend by $3x^2$ and subtract:
 - $p = p 3x^2(x-2) = 4x^2 + 5$
 - $q = q + 3x^2$

$$(3x^3 - 2x^2 + 5) \div (x - 2)?$$

- $p = (3x^3 2x^2 + 5), q = 0.$
- First multiply dividend by $3x^2$ and subtract:
 - $p = p 3x^2(x 2) = 4x^2 + 5$
 - $q = q + 3x^2$
- Multiply dividend by 4x and subtract.

$$(3x^3 - 2x^2 + 5) \div (x - 2)?$$

- $p = (3x^3 2x^2 + 5), q = 0.$
- First multiply dividend by $3x^2$ and subtract:

$$p = p - 3x^2(x-2) = 4x^2 + 5$$

- $q = q + 3x^2$
- Multiply dividend by 4x and subtract.
 - p = p 4x(x 2) = 8x + 5

$$(3x^3 - 2x^2 + 5) \div (x - 2)?$$

- $p = (3x^3 2x^2 + 5), q = 0.$
- First multiply dividend by $3x^2$ and subtract:
 - $p = p 3x^2(x-2) = 4x^2 + 5$
 - $q = q + 3x^2$
- Multiply dividend by 4x and subtract.
 - p = p 4x(x 2) = 8x + 5
 - $q = q + 4x = 3x^2 + 4x$

$$(3x^3 - 2x^2 + 5) \div (x - 2)?$$

- $p = (3x^3 2x^2 + 5), q = 0.$
- First multiply dividend by $3x^2$ and subtract:

$$p = p - 3x^2(x - 2) = 4x^2 + 5$$

$$q = q + 3x^2$$

• Multiply dividend by 4x and subtract.

•
$$p = p - 4x(x - 2) = 8x + 5$$

•
$$q = q + 4x = 3x^2 + 4x$$

Multiply div. by 8 and subtract.

$$(3x^3 - 2x^2 + 5) \div (x - 2)?$$

- $p = (3x^3 2x^2 + 5), q = 0.$
- First multiply dividend by $3x^2$ and subtract:

$$p = p - 3x^2(x - 2) = 4x^2 + 5$$

- $q = q + 3x^2$
- Multiply dividend by 4x and subtract.

•
$$p = p - 4x(x - 2) = 8x + 5$$

•
$$q = q + 4x = 3x^2 + 4x$$

- Multiply div. by 8 and subtract.
 - p = p 8(x 2) = 21

$$(3x^3 - 2x^2 + 5) \div (x - 2)?$$

- $p = (3x^3 2x^2 + 5), q = 0.$
- First multiply dividend by $3x^2$ and subtract:

$$p = p - 3x^2(x - 2) = 4x^2 + 5$$

$$q = q + 3x^2$$

• Multiply dividend by 4x and subtract.

•
$$p = p - 4x(x - 2) = 8x + 5$$

•
$$q = q + 4x = 3x^2 + 4x$$

Multiply div. by 8 and subtract.

•
$$p = p - 8(x - 2) = 21$$

$$q = q + 8 = 3x^2 + 4x + 8.$$

$$(3x^3 - 2x^2 + 5) \div (x - 2)?$$

- $p = (3x^3 2x^2 + 5), q = 0.$
- First multiply dividend by $3x^2$ and subtract:

$$p = p - 3x^2(x - 2) = 4x^2 + 5$$

- $q = q + 3x^2$
- Multiply dividend by 4x and subtract.

•
$$p = p - 4x(x - 2) = 8x + 5$$

•
$$q = q + 4x = 3x^2 + 4x$$

- Multiply div. by 8 and subtract.
 - p = p 8(x 2) = 21
 - $q = q + 8 = 3x^2 + 4x + 8.$
- No more division possible.

$$(3x^3 - 2x^2 + 5) \div (x - 2)?$$

- $p = (3x^3 2x^2 + 5), q = 0.$
- First multiply dividend by $3x^2$ and subtract:

$$p = p - 3x^2(x - 2) = 4x^2 + 5$$

- $q = q + 3x^2$
- Multiply dividend by 4x and subtract.

•
$$p = p - 4x(x - 2) = 8x + 5$$

•
$$q = q + 4x = 3x^2 + 4x$$

- Multiply div. by 8 and subtract.
 - p = p 8(x 2) = 21
 - $q = q + 8 = 3x^2 + 4x + 8.$
- No more division possible.
 - $q = 3x^2 + 4x + 8, r = 8.$

Univariate Division

Let $f, g \in K[x]$ for field K.

```
• We can write f = qg + r,
```

• $\deg(r) < \deg(g)$.

```
divide (f : K[x], g : K[x])
  p := f
  q := 0
  while (LT(g) divides LT(p) ):
     p := p - (LT(p)/LT(g)) g
     q := q + LT(p)/LT(g)
  r := p
```

Divide
$$f: 2x^2y + 6y^2 + 4xy - 2x$$
 by

- $\quad \bullet \quad g_1:(y-2) \text{ and }$
- $f_1 = f 2y(x^2 + 3y) = 4xy 2x$

Divide $f: 2x^2y + 6y^2 + 4xy - 2x$ by

- $\quad \bullet \quad g_1:(y-2) \text{ and }$
- $\quad \bullet \ \ g_2:(x^2+3y).$
- $f_1 = f 2y(x^2 + 3y) = 4xy 2x$
- $\bullet \ f_2 = f_1 4x(y-2) = 6x.$

Divide $f: 2x^2y + 6y^2 + 4xy - 2x$ by

- $\quad \bullet \quad g_1:(y-2) \text{ and }$
- $f_1 = f 2y(x^2 + 3y) = 4xy 2x$
- $\bullet \ f_2 = f_1 4x(y-2) = 6x.$
- No more divisions possible.

Divide $f: 2x^2y + 6y^2 + 4xy - 2x$ by

- $\quad \bullet \quad g_1:(y-2) \text{ and }$
- $f_1 = f 2y(x^2 + 3y) = 4xy 2x$
- $f_2 = f_1 4x(y-2) = 6x$.
- No more divisions possible.
- $f = 2yg_1 + 4xg_2 + 6x$.

Rewriting System

$$f \xrightarrow{g_i} f'$$

- Choose a term t in f.
 - *LT*(*q_i*) must divide *t*.
- $f' = f \frac{t}{LT(q_i)} g_i$
- Gets rid of t, replacing it with smaller terms.

$$f: \ 2x^2y + 6y^2 + 4xy - 2x$$

$$f \xrightarrow{y-2} (2x^2y + 6y^2 + 4xy - 2x) - 2x^2(y-2)$$
$$= 4x^2 + 6y^2 + 4xy - 2x$$

Rewriting System

Polynomial division: f with $g_1,\dots,g_m.$

$$\quad \bullet \quad f \xrightarrow{g_1} f_1 \xrightarrow{g_2} f_2 \cdots \xrightarrow{g_i} \cdots f_m.$$

Rewriting System

Polynomial division: f with g_1,\ldots,g_m .

- $\quad \bullet \quad f \xrightarrow{g_1} f_1 \xrightarrow{g_2} f_2 \cdots \xrightarrow{g_i} \cdots f_m.$
- Terminating? Yes, how do we prove it?

Rewriting System

Polynomial division: f with $g_1,\dots,g_m.$

- Terminating? Yes, how do we prove it?
- Confluent? (i.e, unique normal form?)

Rewriting System

Polynomial division: f with $g_1,\dots,g_m.$

- Terminating? Yes, how do we prove it?
- Confluent? (i.e, unique normal form?)
 - Not necessarily.

Multivariate Division

- Result is not unique
- It depends on the order in which we divide.

Divide f by g_1,\dots,g_m (in $K[x_1,\dots,x_n]$):

Fix monomial order ≺.

- Fix monomial order ≺.
- $\blacksquare \ \ \text{Initialize} \ p=f, q_1=0,\dots,q_m=0, r=0.$

- Fix monomial order ≺.
- Initialize $p = f, q_1 = 0, \dots, q_m = 0, r = 0.$
- While $p \neq 0$:

- Fix monomial order ≺.
- Initialize $p = f, q_1 = 0, \dots, q_m = 0, r = 0.$
- While $p \neq 0$:
 - if $\exists i, LT(g_i) \mid LT(p)$ then:

- Fix monomial order ≺.
- Initialize $p = f, q_1 = 0, \dots, q_m = 0, r = 0.$
- While $p \neq 0$:
 - $\qquad \text{if } \exists i, LT(g_i) \mid LT(p) \text{ then:} \\$
 - $\bullet \quad p := p (LT(p)/LT(g_i))g_i$

- Fix monomial order ≺.
- Initialize $p = f, q_1 = 0, \dots, q_m = 0, r = 0.$
- While $p \neq 0$:
 - if $\exists i, LT(g_i) \mid LT(p)$ then:
 - $\bullet \quad p := p (LT(p)/LT(g_i))g_i$
 - $\quad \bullet \quad q_i := q_i + LT(p)/LT(g_i)$

- Fix monomial order ≺.
- Initialize $p = f, q_1 = 0, \dots, q_m = 0, r = 0.$
- While $p \neq 0$:
 - if $\exists i, LT(g_i) \mid LT(p)$ then:
 - $\bullet \quad p := p (LT(p)/LT(g_i))g_i$
 - $\quad \bullet \quad q_i := q_i + LT(p)/LT(g_i)$
 - else:

- Fix monomial order ≺.
- Initialize $p = f, q_1 = 0, \dots, q_m = 0, r = 0.$
- While $p \neq 0$:
 - if $\exists i, LT(g_i) \mid LT(p)$ then:
 - $\bullet \quad p := p (LT(p)/LT(g_i))g_i$
 - $\quad \bullet \quad q_i := q_i + LT(p)/LT(g_i)$
 - else:
 - $\quad \mathbf{p} := p LT(p)$

- Fix monomial order ≺.
- Initialize $p = f, q_1 = 0, \dots, q_m = 0, r = 0.$
- While $p \neq 0$:
 - if $\exists i, LT(g_i) \mid LT(p)$ then:
 - $\bullet \quad p := p (LT(p)/LT(g_i))g_i$
 - $\quad \bullet \quad q_i := q_i + LT(p)/LT(g_i)$
 - else:
 - p := p LT(p)
 - $\quad \bullet \quad r := r + LT(p)$

- Fix monomial order ≺.
- $\bullet \ \ \text{Initialize} \ p=f, q_1=0,\dots,q_m=0, r=0.$
- While $p \neq 0$:
 - if $\exists i, LT(g_i) \mid LT(p)$ then:
 - $\bullet \quad p := p (LT(p)/LT(g_i))g_i$
 - $\quad \bullet \quad q_i := q_i + LT(p)/LT(g_i)$
 - else:
 - p := p LT(p)
 - r := r + LT(p)
- $\bullet \ \ \mathsf{return} \ q_1, \dots, q_m, r$

Reminder Properties

Divide
$$f$$
 by g_1,\dots,g_m (in $K[x_1,\dots,x_n]$):
$$f=q_1g_1+\dots+q_mg_m+r$$

What can we say about q_i, r ?

 $\bullet \quad \text{No term in } r \text{ is divisible by } LT(g_i) \text{ for any } i.$

Reminder Properties

Divide
$$f$$
 by g_1,\dots,g_m (in $K[x_1,\dots,x_n])$:

$$f=q_1g_1+\cdots+q_mg_m+r$$

What can we say about q_i, r ?

- No term in r is divisible by $LT(g_i)$ for any i.
- $\qquad \text{If } q_ig_i \neq 0 \text{, then } LT(q_ig_i) \preceq LT(f).$

Reminder Properties

Divide
$$f$$
 by g_1,\dots,g_m (in $K[x_1,\dots,x_n]$):

$$f = q_1 g_1 + \dots + q_m g_m + r$$

What can we say about q_i, r ?

- No term in r is divisible by $LT(g_i)$ for any i.
- If $q_ig_i \neq 0$, then $LT(q_ig_i) \leq LT(f)$.
 - Let's call this no higher degree cancellation property.

Ideal Membership Problem

Input $\langle g_1,\dots,g_m \rangle, \ f \in k[x_1,\dots,x_n].$

Output $f \in \langle g_1, \dots, g_m \rangle$.

$$f = q_1 g_1 + \dots + q_m g_m + r$$

Claim If r=0 then $f \in \langle g_1, \dots, g_m \rangle$.

Q: Does the converse hold?

Take
$$I = \langle xy^2 - x - y, x^2y - x - y \rangle$$
.

- Let ≺ be graded lex ordering.
- $\begin{array}{ll} & y^2-x^2\in I \text{ since} \\ & (y^2-x^2)=x\times (xy^2-x-y)-y\times (x^2y-x-y). \end{array}$

Take
$$I = \langle xy^2 - x - y, x^2y - x - y \rangle$$
.

- Let ≺ be graded lex ordering.
- Reminder upon dividing $y^2 x^2$ w.r.t $xy^2 x y, x^2y x y$?

Take
$$I = \langle xy^2 - x - y, x^2y - x - y \rangle$$
.

- Let ≺ be graded lex ordering.
- $\begin{array}{ll} & y^2-x^2\in I \text{ since} \\ & (y^2-x^2)=x\times (xy^2-x-y)-y\times (x^2y-x-y). \end{array}$
- Reminder upon dividing $y^2 x^2$ w.r.t $xy^2 x y$, $x^2y x y$?
 - $\bullet \quad \text{Answer } r=y^2-x^2.$

Take
$$I = \langle xy^2 - x - y, x^2y - x - y \rangle$$
.

- Let ≺ be graded lex ordering.
- $\begin{array}{ll} & y^2-x^2\in I \text{ since} \\ & (y^2-x^2)=x\times (xy^2-x-y)-y\times (x^2y-x-y). \end{array}$
- Reminder upon dividing $y^2 x^2$ w.r.t $xy^2 x y$, $x^2y x y$?
 - $\bullet \quad \text{Answer } r = y^2 x^2.$
- Issue : Proving membership of y^2-x^2 requires higher degree term cancellation.

Take
$$I = \langle xy^2 - x - y, x^2y - x - y \rangle$$
.

- Let ≺ be graded lex ordering.
- $\begin{array}{ll} & y^2-x^2\in I \text{ since}\\ & (y^2-x^2)=x\times (xy^2-x-y)-y\times (x^2y-x-y). \end{array}$
- Reminder upon dividing $y^2 x^2$ w.r.t $xy^2 x y$, $x^2y x y$?
 - Answer $r = y^2 x^2$.
- Issue : Proving membership of $y^2 x^2$ requires higher degree term cancellation.
- However, remember polynomial division has the no higher degree cancellation property.

 Formulated by Büchberger in 1965: Named after his PhD advisor Wolfgang Gröbner!

- Formulated by Büchberger in 1965: Named after his PhD advisor Wolfgang Gröbner!
- Es un gran ganga!

- Formulated by Büchberger in 1965: Named after his PhD advisor Wolfgang Gröbner!
- Es un gran ganga!
- $\bullet \ \ \text{We are given an ideal} \ I=\langle g_1,\dots,g_m\rangle.$

- Formulated by Büchberger in 1965: Named after his PhD advisor Wolfgang Gröbner!
- Es un gran ganga!
- We are given an ideal $I = \langle g_1, \dots, g_m \rangle$.
- Polynomial division is unable to test for membership.

- Formulated by Büchberger in 1965: Named after his PhD advisor Wolfgang Gröbner!
- Es un gran ganga!
- We are given an ideal $I = \langle g_1, \dots, g_m \rangle$.
- Polynomial division is unable to test for membership.
 - Due to higher degree cancellation problem.

- Formulated by Büchberger in 1965: Named after his PhD advisor Wolfgang Gröbner!
- Es un gran ganga!
- $\bullet \ \ \mbox{We are given an ideal } I=\langle g_1,\dots,g_m\rangle.$
- Polynomial division is unable to test for membership.
 - Due to higher degree cancellation problem.
- Compute a different basis $\langle p_1, \dots, p_K \rangle \equiv \langle g_1, \dots, g_m \rangle.$

- Formulated by Büchberger in 1965: Named after his PhD advisor Wolfgang Gröbner!
- Es un gran ganga!
- $\bullet \ \ \mbox{We are given an ideal } I=\langle g_1,\dots,g_m\rangle.$
- Polynomial division is unable to test for membership.
 - Due to higher degree cancellation problem.
- Compute a different basis $\langle p_1, \dots, p_K \rangle \equiv \langle g_1, \dots, g_m \rangle$.
 - Generates the same ideal.

- Formulated by Büchberger in 1965: Named after his PhD advisor Wolfgang Gröbner!
- Es un gran ganga!
- $\bullet \ \ \mbox{We are given an ideal } I=\langle g_1,\ldots,g_m\rangle.$
- Polynomial division is unable to test for membership.
 - Due to higher degree cancellation problem.
- Compute a different basis $\langle p_1,\ldots,p_K\rangle \equiv \langle g_1,\ldots,g_m\rangle.$
 - Generates the same ideal.
- Guarantee: $f \in I$ if and only if polynomial division of f w.r.t p_1, \ldots, p_K yields remainder 0.

Gröbner Basis and Büchberger's

Algorithm

- $\bullet \quad I \subseteq K[x_1, \dots, x_n],$
- Closed under addition:

•
$$f_1, f_2 \in I \implies f_1 + f_2 \in I$$
.

- Closed under multiplication with any element:
 - $f \in I, g \in K[\vec{x}] \Rightarrow gf \in I$.
- $\langle g_1, \dots, g_m \rangle = \{\sum_{i=1}^m \lambda_i g_i \mid \lambda_i \in K[\vec{x}]\}.$

- $\bullet \quad I \subseteq K[x_1, \dots, x_n],$
- Closed under addition:

$$f_1, f_2 \in I \Rightarrow f_1 + f_2 \in I.$$

- Closed under multiplication with any element:
 - $f \in I, g \in K[\vec{x}] \Rightarrow gf \in I$.
- $\langle g_1,\ldots,g_m\rangle=\{\sum_{i=1}^m\lambda_ig_i\mid \lambda_i\in K[\vec{x}]\}.$
- \bullet Can any ideal I be written as $I=\langle g_1,\dots,g_l\rangle$ for a finite l?

- $\bullet \quad I \subseteq K[x_1, \dots, x_n],$
- Closed under addition:
 - $\bullet \quad f_1, f_2 \in I \ \Rightarrow \ f_1 + f_2 \in I.$
- Closed under multiplication with any element:
 - $f \in I, g \in K[\vec{x}] \Rightarrow gf \in I$.
- $\langle g_1, \dots, g_m \rangle = \{ \sum_{i=1}^m \lambda_i g_i \mid \lambda_i \in K[\vec{x}] \}.$
- \bullet Can any ideal I be written as $I=\langle g_1,\dots,g_l\rangle$ for a finite l?
 - Si se puede!

- $\bullet \quad I \subseteq K[x_1, \dots, x_n],$
- Closed under addition:
 - $\bullet \quad f_1, f_2 \in I \ \Rightarrow \ f_1 + f_2 \in I.$
- Closed under multiplication with any element:
 - $f \in I, g \in K[\vec{x}] \Rightarrow gf \in I$.
- $\langle g_1, \dots, g_m \rangle = \{ \sum_{i=1}^m \lambda_i g_i \mid \lambda_i \in K[\vec{x}] \}.$
- Can any ideal I be written as $I = \langle g_1, \dots, g_l \rangle$ for a finite l?
 - Si se puede!
 - Hilbert's finite basis theorem.

Hilbert's Finite Basis Theorem

Hilbert, David (1890). "Über die Theorie der algebraischen Formen". Mathematische Annalen. 36 (4): 473–534.

Any ideal I over $K[x_1,\ldots,x_n]$, where K is a field, can be written $I=\langle g_1,\ldots,g_m\rangle$ for a finite set of generators.

Corollary: Any increasing chain of ideals converges:

$$I_1\subseteq I_2\subseteq I_3\subseteq\cdots I_N\subseteq\cdots$$

- $\quad \blacksquare \ \exists j \geq 1 \text{ such that } I_j = I_{j+1} = \cdots.$
- Modern terminology $K[x_1, \dots, x_n]$ is a Noetherian Ring.

- ullet Consider the set of all leading terms of I.
 - $J = \{ LT(p) \mid p \in I \}.$
 - ullet Consider the ideal generated by J.

Example:
$$I = \{x^2, x^2y, 2x^3, \frac{1}{2}x^2y^2 + x^2 + x^2y, \cdots \}$$

•
$$LT(I) = \{x^2, x^2y, x^3, \frac{1}{2}x^2y^2, \cdots\}$$

- Consider the set of all leading terms of I.
 - $J = \{ LT(p) \mid p \in I \}.$
 - ullet Consider the ideal generated by J.

Example:
$$I = \{x^2, x^2y, 2x^3, \frac{1}{2}x^2y^2 + x^2 + x^2y, \cdots \}$$

- $LT(I) = \{x^2, x^2y, x^3, \frac{1}{2}x^2y^2, \cdots\}$
- Since K is a field, the coefficients can be set to 1.

- ullet Consider the set of all leading terms of I.
 - $J = \{ LT(p) \mid p \in I \}.$
 - ullet Consider the ideal generated by J.

Example:
$$I = \{x^2, x^2y, 2x^3, \frac{1}{2}x^2y^2 + x^2 + x^2y, \cdots \}$$

- $\qquad LT(I) = \{x^2, x^2y, x^3, \tfrac{1}{2}x^2y^2, \cdots \}$
- Since K is a field, the coefficients can be set to 1.
- Monomial ideal: ideal generated by a set of monomials.

Dickson's Lemma

- Every monomial ideal is finitely generated.
- TODO: include a nice picture visualizing this.
 - Monomial ideals as a subset of points in \mathbb{N}^n .
 - Closed under addition.

ullet Consider the set of all leading terms of I.

- Consider the set of all leading terms of *I*.
 - $\quad \blacksquare \quad J = \{LT(p) \mid p \in I\}.$

- Consider the set of all leading terms of *I*.
 - $J = \{LT(p) \mid p \in I\}.$
 - ullet Consider the ideal generated by J.

- Consider the set of all leading terms of I.
 - $J = \{LT(p) \mid p \in I\}.$
 - ullet Consider the ideal generated by J.
 - Dickson's Lemma J is finitely generated.

$$\langle J \rangle = \langle m_1, \dots, m_k \rangle$$

- Consider the set of all leading terms of I.
 - $J = \{ LT(p) \mid p \in I \}.$
 - Consider the ideal generated by J.
 - **Dickson's Lemma** *J* is finitely generated.

$$\langle J \rangle = \langle m_1, \dots, m_k \rangle$$

- Consider the basis $g_1,\dots,g_k\in I$ such that $LT(g_i)=m_i.$

- ullet Consider the set of all leading terms of I.
 - $J = \{ LT(p) \mid p \in I \}.$
 - ullet Consider the ideal generated by J.
 - Dickson's Lemma J is finitely generated.

$$\langle J \rangle = \langle m_1, \dots, m_k \rangle$$

- Consider the basis $g_1,\dots,g_k\in I$ such that $LT(g_i)=m_i.$
- $\bullet \quad \mathsf{Claim} \colon I = \langle g_1, \dots, g_k \rangle$

Claim:
$$I = \langle g_1, \dots, g_k \rangle$$

 $\bullet \ \langle g_1,\ldots,g_k\rangle\subseteq I \text{, since } g_1,\ldots,g_k\in I.$

Claim:
$$I = \langle g_1, \dots, g_k \rangle$$

- $\bullet \ \langle g_1,\ldots,g_k\rangle\subseteq I \text{, since } g_1,\ldots,g_k\in I.$
- $\bullet \ \ \text{To prove:} \ I\subseteq \langle g_1,\dots,g_k\rangle.$

Claim:
$$I = \langle g_1, \dots, g_k \rangle$$

- $\langle g_1,\ldots,g_k\rangle\subseteq I$, since $g_1,\ldots,g_k\in I$.
- To prove: $I \subseteq \langle g_1, \dots, g_k \rangle$.
 - $\qquad \text{Contradiction: let } p \in I \text{ but } p \notin \langle g_1, \dots, g_k \rangle.$

Claim:
$$I = \langle g_1, \dots, g_k \rangle$$

- $\langle g_1,\ldots,g_k\rangle\subseteq I$, since $g_1,\ldots,g_k\in I$.
- To prove: $I \subseteq \langle g_1, \dots, g_k \rangle$.
 - $\bullet \quad \text{Contradiction: let } p \in I \text{ but } p \notin \langle g_1, \dots, g_k \rangle.$
 - ${\color{red} \bullet}$ Consider polynomial division of p w.r.t $g_1,\ldots,g_k.$

Claim:
$$I = \langle g_1, \dots, g_k \rangle$$

- $\langle g_1,\ldots,g_k\rangle\subseteq I$, since $g_1,\ldots,g_k\in I$.
- To prove: $I \subseteq \langle g_1, \dots, g_k \rangle$.
 - $\qquad \text{Contradiction: let } p \in I \text{ but } p \notin \langle g_1, \dots, g_k \rangle.$
 - ${\color{red} \bullet}$ Consider polynomial division of p w.r.t $g_1,\ldots,g_k.$
 - $p = \sum_{i=1}^k q_i g_i + r$, where $r \neq 0$.

Claim:
$$I = \langle g_1, \dots, g_k \rangle$$

- $\langle g_1,\ldots,g_k\rangle\subseteq I$, since $g_1,\ldots,g_k\in I$.
- To prove: $I \subseteq \langle g_1, \dots, g_k \rangle$.
 - $\bullet \quad \text{Contradiction: let } p \in I \text{ but } p \notin \langle g_1, \dots, g_k \rangle.$
 - ${\color{red} \bullet}$ Consider polynomial division of p w.r.t $g_1,\ldots,g_k.$
 - $p = \sum_{i=1}^k q_i g_i + r$, where $r \neq 0$.
 - $r = \left(p \sum_{i=1}^k q_i g_i\right) \in I.$

Claim:
$$I = \langle g_1, \dots, g_k \rangle$$

- $\langle g_1, \dots, g_k \rangle \subseteq I$, since $g_1, \dots, g_k \in I$.
- To prove: $I \subseteq \langle g_1, \dots, g_k \rangle$.
 - $\bullet \quad \text{Contradiction: let } p \in I \text{ but } p \notin \langle g_1, \dots, g_k \rangle.$
 - ${\color{red} \bullet}$ Consider polynomial division of p w.r.t $g_1,\ldots,g_k.$
 - $p = \sum_{i=1}^{k} q_i g_i + r$, where $r \neq 0$.
 - $r = \left(p \sum_{i=1}^k q_i g_i\right) \in I.$
 - $\ \ \,$ However, LT(r) is not divisible by $LT(g_i).$

Claim:
$$I = \langle g_1, \dots, g_k \rangle$$

- $\langle g_1,\ldots,g_k\rangle\subseteq I$, since $g_1,\ldots,g_k\in I$.
- To prove: $I \subseteq \langle g_1, \dots, g_k \rangle$.
 - $\bullet \quad \text{Contradiction: let } p \in I \text{ but } p \notin \langle g_1, \dots, g_k \rangle.$
 - ${\color{red} \bullet}$ Consider polynomial division of p w.r.t $g_1,\ldots,g_k.$
 - $p = \sum_{i=1}^{k} q_i g_i + r$, where $r \neq 0$.
 - $r = \left(p \sum_{i=1}^k q_i g_i \right) \in I.$
 - $\ \ \,$ However, LT(r) is not divisible by $LT(g_i).$
 - $r \notin I$.

Claim:
$$I = \langle g_1, \dots, g_k \rangle$$

- $\langle g_1, \dots, g_k \rangle \subseteq I$, since $g_1, \dots, g_k \in I$.
- To prove: $I \subseteq \langle g_1, \dots, g_k \rangle$.
 - $\bullet \quad \text{Contradiction: let } p \in I \text{ but } p \notin \langle g_1, \dots, g_k \rangle.$
 - ${\color{red} \bullet}$ Consider polynomial division of p w.r.t $g_1,\ldots,g_k.$
 - $p = \sum_{i=1}^{k} q_i g_i + r$, where $r \neq 0$.

 - However, LT(r) is not divisible by $LT(g_i)$.
 - $r \notin I$.
 - Contradiction!

Consider ideal $I \subseteq K[x_1, \dots, x_n]$.

Let $G = \langle g_1, \dots, g_m \rangle$ such that

$$\langle LT(g_1), \dots, LT(g_m) \rangle = \langle LT(I) \rangle$$

lacksquare G appeared in the proof of Hibert's theorem.

Consider ideal $I \subseteq K[x_1, \dots, x_n]$.

$$\langle LT(g_1), \dots, LT(g_m) \rangle = \langle LT(I) \rangle$$

- G appeared in the proof of Hibert's theorem.
- $\bullet \ \ \mathrm{Let} \ p \in I \text{, consider } r \text{ reminder of } p \text{ divided by } g_1, \dots, g_m.$

Consider ideal $I \subseteq K[x_1, \dots, x_n]$.

$$\langle LT(g_1), \dots, LT(g_m) \rangle = \langle LT(I) \rangle$$

- G appeared in the proof of Hibert's theorem.
- $\bullet \ \ {\rm Let} \ p \in I \mbox{, consider } r \mbox{ reminder of } p \mbox{ divided by } g_1, \ldots, g_m.$
 - Claim: r = 0.

Consider ideal $I \subseteq K[x_1, \dots, x_n]$.

$$\langle LT(g_1), \dots, LT(g_m) \rangle = \langle LT(I) \rangle$$

- G appeared in the proof of Hibert's theorem.
- Let $p \in I$, consider r reminder of p divided by g_1, \dots, g_m
 - Claim: r = 0.
- \bullet Contradiction: $r = (p \sum_{i=1}^m q_i g_i) \in I.$

Consider ideal $I \subseteq K[x_1, \dots, x_n]$.

$$\langle LT(g_1), \dots, LT(g_m) \rangle = \langle LT(I) \rangle$$

- G appeared in the proof of Hibert's theorem.
- Let $p \in I$, consider r reminder of p divided by $g_1, \dots, g_m.$
 - Claim: r = 0.
- \bullet Contradiction: $r = (p \sum_{i=1}^m q_i g_i) \in I.$
 - $\ \ \,$ However, LT(r) is not divisible by $LT(g_i).$

Consider ideal $I \subseteq K[x_1, \dots, x_n]$.

$$\langle LT(g_1), \dots, LT(g_m) \rangle = \langle LT(I) \rangle$$

- G appeared in the proof of Hibert's theorem.
- Let $p \in I$, consider r reminder of p divided by $g_1, \dots, g_m.$
 - Claim: r = 0.
- Contradiction: $r = (p \sum_{i=1}^{m} q_i g_i) \in I$.
 - $\bullet \quad \text{However, } LT(r) \text{ is not divisible by } LT(g_i).$
 - $\quad \blacksquare \quad r \in I \text{, } LT(r) \in LT(I) \text{ but } LT(r) \notin \langle LT(g_1), \dots, LT(g_m) \rangle.$

Consider ideal $I \subseteq K[x_1, \dots, x_n]$.

$$\langle LT(g_1), \dots, LT(g_m) \rangle = \langle LT(I) \rangle$$

- G appeared in the proof of Hibert's theorem.
- Let $p \in I$, consider r reminder of p divided by $g_1, \dots, g_m.$
 - Claim: r = 0.
- Contradiction: $r = (p \sum_{i=1}^{m} q_i g_i) \in I$.
 - \bullet However, LT(r) is not divisible by $LT(g_i).$
 - $\bullet \quad r \in I \text{, } LT(r) \in LT(I) \text{ but } LT(r) \not\in \langle LT(g_1), \dots, LT(g_m) \rangle.$
 - Contradiction!

Consider ideal $I \subseteq K[x_1, \dots, x_n]$.

$$\langle LT(g_1), \dots, LT(g_m) \rangle = \langle LT(I) \rangle$$

- G appeared in the proof of Hibert's theorem.
- $\ \ \, \text{Let}\; p \in I \text{, consider}\; r \; \text{reminder of}\; p \; \text{divided by}\; g_1, \ldots, g_m.$
 - Claim: r = 0.
- Contradiction: $r = (p \sum_{i=1}^{m} q_i g_i) \in I$.
 - \bullet However, LT(r) is not divisible by $LT(g_i).$
 - $r \in I$, $LT(r) \in LT(I)$ but $LT(r) \notin \langle LT(g_1), \dots, LT(g_m) \rangle$.
 - Contradiction!
- G is called a Gröbner basis of I.

S-Polynomials

Take two polynomials g_1, g_2 .

$$S(g_1,g_2) = \frac{L(g_1,g_2)}{LT(g_1)}g_1 - \frac{L(g_1,g_2)}{LT(g_2)}g_2$$

- $\bullet \ L(g_1,g_2)$ is the smallest degree monomial divisible by both $LT(g_1)$ and $LT(g_2).$
- $LT(g_1) = a_1 x^{\alpha_1}, LT(g_2) = a_2 x^{\alpha_2}.$
 - $\quad \blacksquare \ L(g_1,g_2) = x^{\max(\alpha_1,\alpha_2)}.$
- Forces cancellation of the leading terms.

• $g_1 = xy^2 - x - y, g_2 = x^2y - x - y.$

•
$$g_1 = xy^2 - x - y, g_2 = x^2y - x - y.$$

$$\quad L(g_1,g_2) = x^2 y^2.$$

- $g_1 = xy^2 x y, g_2 = x^2y x y.$
- $L(g_1, g_2) = x^2 y^2.$
- $\qquad \qquad \qquad S(g_1,g_2) = \frac{x^2y^2}{xy^2}(g_1) \frac{x^2y^2}{x^2y}(g_2)$

•
$$g_1 = xy^2 - x - y, g_2 = x^2y - x - y.$$

•
$$L(g_1, g_2) = x^2 y^2$$
.

$$S(g_1, g_2) = \frac{x^2 y^2}{xy^2} (g_1) - \frac{x^2 y^2}{x^2 y} (g_2)$$

$$= x^2y^2 - x^2 - xy - x^2y^2 + xy + y^2$$

•
$$g_1 = xy^2 - x - y, g_2 = x^2y - x - y.$$

•
$$L(g_1, g_2) = x^2 y^2$$
.

$$S(g_1,g_2) = \frac{x^2y^2}{xy^2}(g_1) - \frac{x^2y^2}{x^2y}(g_2)$$

$$= x^2y^2 - x^2 - xy - x^2y^2 + xy + y^2$$

$$\bullet = y^2 - x^2.$$

S-Polynomials (cont)

 $\, \blacksquare \,$ S-polynomials capture the result of cancellation:

S-Polynomials (cont)

- S-polynomials capture the result of cancellation:
- $\qquad \qquad \text{Suppose } LM(p_i) = \vec{x}^\delta \text{ for } i=1,\ldots,m.$

S-Polynomials (cont)

- S-polynomials capture the result of cancellation:
- Suppose $LM(p_i) = \vec{x}^\delta$ for $i = 1, \dots, m$.
- However, $LM(\sum_{i=1}^m p_i) \prec \vec{x}^{\delta}$,

S-Polynomials (cont)

- S-polynomials capture the result of cancellation:
- Suppose $LM(p_i) = \vec{x}^{\delta}$ for $i = 1, \dots, m$.
- However, $LM(\sum_{i=1}^m p_i) \prec \vec{x}^\delta$,
 - It follows that $\sum_{i=1}^{n} \hat{p}_i = \sum_{i=1}^m \sum_{j>i} c_{i,j} S(p_i,p_j)$, for some $c_{i,j} \in K$.

Büchberger's Criterion

A basis $I = \langle g_1, \dots, g_m \rangle$ is a Gröbner basis if and only if

- For every $g_i, g_j, \ (i \neq j)$, reminder of $S(g_i, g_j)$ upon division by g_1, \dots, g_m is 0.
- \bullet Previously, $I=\langle xy^2-x-y,x^2y-x-y\rangle$, not a Gröbner basis.
- $x^2 y^2 \in I$ but reminder of $x^2 y^2$ is non-zero.
- However, $I = \langle y^3 x y, x^2 y^2, xy^2 x y \rangle$ is a Gröbner basis.

```
import sympy as sp
from sympy.abc import x, y

F = [x * y**2 -x - y , x**2*y -x -y]
G = sp.Groebner(F, x, y, order='grlex',domain='C')
print(G)
```

Result:
$$\langle y^3 - x - y, x^2 - y^2, xy^2 - x - y \rangle$$
.

- $S(x^2 y^2, xy^2 x y) = y^4 x^2 xy$
 - $= y \times (y^3 x y) + 1 \times (x^2 y^2) + 0.$
 - Reminder is zero √.
- $S(y^3 x y, x^2 y^2) = y^5 x^3 x^2y$
 - $= y^2(y^3 x y) (x + y)(x^2 y^2) + 0.$
 - Reminder is zero ✓.

- An algorithm for constructing Gröbner basis.
 - Input $I = \langle g_1, \dots, g_m \rangle$
 - Monomial order ≺.
 - ${\color{red} \bullet}$ Output $\langle f_1, \dots, f_K \rangle$ Gröbner basis for I.
- $\bullet \ I_0 = \langle g_1, \dots, g_m \rangle.$

- An algorithm for constructing Gröbner basis.
 - $\bullet \ \ \mathsf{Input} \ I = \langle g_1, \dots, g_m \rangle$
 - Monomial order ≺.
 - \bullet Output $\langle f_1,\dots,f_K\rangle$ Gröbner basis for I.
- $\bullet \ I_0 = \langle g_1, \dots, g_m \rangle.$
- $\bullet \ \ \operatorname{Let} \ I_j = \langle p_1, \dots, p_l \rangle.$

- An algorithm for constructing Gröbner basis.
 - $\bullet \ \ \mathsf{Input} \ I = \langle g_1, \dots, g_m \rangle$
 - Monomial order ≺.
 - ${\color{red} \bullet}$ Output $\langle f_1, \dots, f_K \rangle$ Gröbner basis for I.
- $\bullet \quad I_0 = \langle g_1, \dots, g_m \rangle.$
- $\bullet \ \ \mathsf{Let} \ I_j = \langle p_1, \dots, p_l \rangle.$
- Check if current basis is Gröbner.

- An algorithm for constructing Gröbner basis.
 - $\bullet \ \ \mathsf{Input} \ I = \langle g_1, \dots, g_m \rangle$
 - Monomial order ≺.
 - ${\color{red} \bullet}$ Output $\langle f_1, \dots, f_K \rangle$ Gröbner basis for I.
- $\bullet \ I_0 = \langle g_1, \dots, g_m \rangle.$
- Let $I_j = \langle p_1, \dots, p_l \rangle$.
- Check if current basis is Gröbner.
 - $\qquad \hbox{Compute } S(p_i,p_j) \text{ for each } i \neq j.$

- An algorithm for constructing Gröbner basis.
 - $\bullet \ \ \operatorname{Input} \ I = \langle g_1, \dots, g_m \rangle$
 - Monomial order ≺.
 - ${\color{red} \bullet}$ Output $\langle f_1, \dots, f_K \rangle$ Gröbner basis for I.
- $\bullet \ I_0 = \langle g_1, \dots, g_m \rangle.$
- Let $I_j = \langle p_1, \dots, p_l \rangle$.
- Check if current basis is Gröbner.
 - $\blacksquare \ \ \text{Compute} \ S(p_i,p_j) \ \text{for each} \ i \neq j.$
 - ${\color{red} \bullet}$ Compute reminder of $S(p_i,p_j)$ wrt $p_1,\ldots,p_l.$

- An algorithm for constructing Gröbner basis.
 - $\bullet \ \ \mathsf{Input} \ I = \langle g_1, \dots, g_m \rangle$
 - Monomial order ≺.
 - ${\color{red} \bullet}$ Output $\langle f_1, \dots, f_K \rangle$ Gröbner basis for I.
- $\bullet \ I_0 = \langle g_1, \dots, g_m \rangle.$
- Let $I_j = \langle p_1, \dots, p_l \rangle$.
- Check if current basis is Gröbner.
 - $\qquad \hbox{Compute } S(p_i,p_j) \text{ for each } i \neq j.$
 - ${\color{red} \bullet}$ Compute reminder of $S(p_i,p_j)$ wrt $p_1,\dots,p_l.$
 - $I_{j+1} = \langle p_1, \dots, p_l, r_{i,j} \rangle.$

- An algorithm for constructing Gröbner basis.
 - $\bullet \quad \text{Input } I = \langle g_1, \dots, g_m \rangle$
 - Monomial order ≺.
 - ${\color{red} \bullet}$ Output $\langle f_1, \dots, f_K \rangle$ Gröbner basis for I.
- $\bullet \quad I_0 = \langle g_1, \dots, g_m \rangle.$
- Let $I_j = \langle p_1, \dots, p_l \rangle$.
- Check if current basis is Gröbner.
 - $\blacksquare \ \ \text{Compute} \ S(p_i,p_j) \ \text{for each} \ i \neq j.$
 - ${\color{red} \bullet}$ Compute reminder of $S(p_i,p_j)$ wrt $p_1,\ldots,p_l.$
 - $I_{j+1} = \langle p_1, \dots, p_l, r_{i,j} \rangle.$
- If all S-polynomials leave a reminder of 0, then we have a Gröbner basis.

- An algorithm for constructing Gröbner basis.
 - $\bullet \quad \mathsf{Input} \ I = \langle g_1, \dots, g_m \rangle$
 - Monomial order ≺.
 - ${\color{red} \bullet}$ Output $\langle f_1, \dots, f_K \rangle$ Gröbner basis for I.
- $\bullet \ I_0 = \langle g_1, \dots, g_m \rangle.$
- Let $I_j = \langle p_1, \dots, p_l \rangle$.
- Check if current basis is Gröbner.
 - Compute $S(p_i, p_j)$ for each $i \neq j$.
 - ${\color{red} \bullet}$ Compute reminder of $S(p_i,p_j)$ wrt $p_1,\dots,p_l.$
 - $I_{j+1} = \langle p_1, \dots, p_l, r_{i,j} \rangle.$
- If all S-polynomials leave a reminder of 0, then we have a Gröbner basis.
- Termination?

Complexity of Gröbner Basis

- Ideal membership is known to be EXPSPACE-complete.
 - Ernst Mayr, Journal of Complexity, 1997.
- Gröbner basis can be quite expensive.
 - Bound on the degree of polynomials is very high.
 - See Thomas Dube, SIAM J. of Comp. 1990.
- Büchberger Algorithm complexity bounded in EXPSPACE (?).

Gröbner Basis

- Expensive computation in the worst case.
 - Best algorithms include Faguere's F5 algorithm.
- It is implemented in most computer algebra systems.
- Ideas to speed up:
 - Dynamically alter the monomial ordering on the fly.
 - Avoid unnecessary S-polynomial reductions.
 - .

Weak Nullstellensatz

- Let $p_1=0,\dots,p_m=0$ represent an inconsistent set of polynomial inequalities.
- $\quad \bullet \quad 1 \in \langle p_1, \dots, p_m \rangle.$

Corollary (Reduced) Gröbner basis must be $\langle 1 \rangle$.

Nullstellensatz

$$p_1=0,\dots,p_m=0\models p=0$$

Hilbert's Nullstellensatz:

$$p^r \in \langle p_1, \dots, p_m \rangle$$

- Rabinowitsch trick:
 - \bullet Compute Grobner basis of $\langle p_1, \dots, p_n, (1-yp) \rangle$
 - \bullet Claim: Entailment holds iff $1 \in \langle p_1, \dots, p_n, (1-yp) \rangle$

Rabinowitsch Trick

- $\quad \quad \mathbf{p}^r \in \langle p_1, \dots, p_m \rangle \text{ for some } r \in \mathbb{N}$
- $\bullet \ 1 \in \langle p_1, \dots, p_n, (1-yp) \rangle$

Proof See chapter 3 of book/during lecture.

Operations on Varieties

- ullet Algebraic Variety V
 - ullet Representation: Gröbner basis of the ideal $\operatorname{Id}(V)$.
- Intersection of varieties:
- $\bullet \ \ V_1 \cap V_2 \mathsf{Groebner}(G_1 \cup G_2)$
- Union of varieties:
 - $\bullet \quad V_1 \cup V_2 G_1 \otimes G_2.$

- Inclusion Checking: $V_1 \subseteq V_2$
 - Check that every generator in G_1 belongs to $\langle G_2 \rangle$
- Image computation:
 - Assertion: $\varphi:g_1(\vec{x})=0 \ \land \ \cdots \ \land \ g_m(\vec{x})=0$
 - Transition relation $\rho: p_1(\vec{x}, \vec{x}') = 0 \land \cdots p_m(\vec{x}, \vec{x}') = 0.$
 - $\qquad \text{Post-Condition: } (\exists \ \vec{x}) \ \varphi[\vec{x}] \land \ \rho[\vec{x},\vec{x}']$

Let
$$I:\langle p_1,\dots,p_m\rangle$$
 be an ideal in $K[x_1,\dots,x_n,y_1,\dots,y_m].$

ullet Compute Gröbner basis G under an elimination order

Let $I:\langle p_1,\dots,p_m\rangle$ be an ideal in $K[x_1,\dots,x_n,y_1,\dots,y_m].$

- ullet Compute Gröbner basis G under an elimination order
 - \blacksquare Eg., lexicographic ordering: $x_1 > \cdots > x_n > y_1 > \cdots > y_m$

Let $I:\langle p_1,\dots,p_m\rangle$ be an ideal in $K[x_1,\dots,x_n,y_1,\dots,y_m].$

- ullet Compute Gröbner basis G under an elimination order
 - \bullet Eg., lexicographic ordering: $x_1>\cdots>x_n>y_1>\cdots>y_m$
- Take all polynomials involving y_1, \dots, y_m :

Let
$$I:\langle p_1,\dots,p_m\rangle$$
 be an ideal in $K[x_1,\dots,x_n,y_1,\dots,y_m].$

- Compute Gröbner basis G under an elimination order
 - \bullet Eg., lexicographic ordering: $x_1 > \cdots > x_n > y_1 > \cdots > y_m$
- Take all polynomials involving y_1, \dots, y_m :
 - $\bullet \ \widehat{G} = G \cap K[y_1, \dots, y_m]$

Let
$$I:\langle p_1,\dots,p_m\rangle$$
 be an ideal in $K[x_1,\dots,x_n,y_1,\dots,y_m].$

- ullet Compute Gröbner basis G under an elimination order
 - \bullet Eg., lexicographic ordering: $x_1 > \cdots > x_n > y_1 > \cdots > y_m$
- Take all polynomials involving y_1, \dots, y_m :
 - $\bullet \ \widehat{G} = G \cap K[y_1, \dots, y_m]$
- $\bullet \quad \mathsf{Claim} \colon I \cap K[y_1, \dots, y_m] = \langle \widehat{G} \rangle.$

Next Session

- Tuesday the 15th.
- Will try to show some calculations for programs and differential equations.
- Move on to talking about inequalities/semi-algebraic sets.