Methods Homework 10

- 1. The relationship between plasma beta-carotene (the response) and smoking status (current smokers, former smokers, and never smokers).
- a. Obtain the sample size, mean, standard deviation (SD), and standard error of the mean (SE) for plasma beta-carotene levels within each of the three smoking groups.
- b. Fit a "reference cell" linear regression model (MODEL 1) regressing plasma beta-carotene levels, betaplas (the dependent variable) on smoking status (the independent variable). Make the never smokers the reference group. Write down the regression equation.

$$\hat{Y} = \beta_{\text{never}} + \beta_{\text{former}}(I_{\text{former}}) + \beta_{\text{current}}(I_{\text{current}}) = 206.05096 + (-12.58139 * I_{\text{former}}) + (-84.72537 * I_{\text{current}})$$

c. Using MODEL 1, is smoking status significantly associated with plasma beta-carotene levels? Write the null and alternative hypotheses in terms of the appropriate beta coefficient(s) and also in terms of the appropriate means, test the null hypothesis, and state your conclusion.

$$H_0: \beta_{\rm former} = \beta_{\rm current} = 0$$

$$H_0: \mu_{\rm never} = \mu_{\rm former} = \mu_{\rm current}$$

$$H_1: \beta_{\rm former} \neq 0 \text{ or } \beta_{\rm current} \neq 0$$

$$H_1: \mu_{\rm never} \neq \mu_{\rm former} \text{ or } \mu_{\rm never} \neq \mu_{\rm current} \text{ or } \mu_{\rm former} \neq \mu_{\rm current}$$

In MODEL 1, smoking status significantly contributes to plasma beta-carotene levels (p = 0.0254).

d. Using MODEL 1, do plasma beta-carotene levels differ between current smokers and never smokers? Write the null and alternative hypotheses in terms of the appropriate beta coefficient(s) and also in terms of the appropriate means, test the null hypothesis, and state your conclusion.

$$H_0: eta_{ ext{current}} = 0$$

$$H_1: eta_{ ext{current}} \neq 0$$

$$H_0: \mu_{ ext{never}} = \mu_{ ext{current}}$$

$$H_1: \mu_{ ext{never}} \neq \mu_{ ext{current}}$$

According to MODEL 1, never smokers are significantly different from current smokers (p = 0.0070).

e. Using MODEL 1, do plasma beta-carotene levels differ between former smokers and never smokers? Write the null and alternative hypotheses in terms of the appropriate beta coefficient(s) and also in terms of the appropriate means, test the null hypothesis, and state your conclusion.

$$H_0: eta_{ ext{former}} = 0$$

$$H_1: eta_{ ext{former}} \neq 0$$

$$H_0: \mu_{ ext{never}} = \mu_{ ext{former}}$$

$$H_1: \mu_{ ext{never}} \neq \mu_{ ext{former}}$$

According to MODEL 1, never smokers are not significantly different from former smokers (p = 0.5725).

f. Using MODEL 1, do plasma beta-carotene levels differ between current smokers and former smokers? Write the null and alternative hypotheses in terms of the appropriate beta coefficient(s) and also in terms of the appropriate means, test the null hypothesis, and state your conclusion. (USE the variance-covariance matrix for the betas to answer this question).

$$H_0: \beta_{\text{current}} - \beta_{\text{former}} = 0$$

$$H_1: \beta_{\text{current}} - \beta_{\text{former}} \neq 0$$

$$H_0: \mu_{\text{current}} = \mu_{\text{former}}$$

$$H_1: \mu_{\text{current}} \neq \mu_{\text{former}}$$

$$t = \frac{\hat{\beta}_{\text{current}} - \hat{\beta}_{\text{former}}}{\sqrt{Var(\hat{\beta}_{\text{current}}) + Var(\hat{\beta}_{\text{former}}) - 2 * Cov(\hat{\beta}_{\text{current}}, \hat{\beta}_{\text{former}})}} = \frac{-84.72537 + 12.58139}{\sqrt{975.26042464 + 495.94112724 - 2 * (209.6809913)}} = -2.224464$$

```
t <- -2.224464
p <- pt(-abs(t),df = 312)
p
```

[1] 0.01341622

$$-2.224464$$
 t_{312} ; p ≈ 0.013

According to MODEL 1, current smokers are significantly different from former smokers (p < 0.05).

2. Cell means model

a. Fit a "cell means" linear regression model (MODEL 2) predicting plasma beta-carotene levels from smoking status. Write down the regression equation.

$$\hat{Y} = \beta_{\text{never}} I_{\text{never}} + \beta_{\text{former}} I_{\text{former}} + \beta_{\text{current}} I_{\text{current}}$$

$$E[plasma beta-carotene] = 206.05096 * I_{never} + 193.46957 * I_{former} + 121.32558 * I_{current}$$

b. Use the cell means model (MODEL 2) to test if smoking status is significantly associated with plasma beta-carotene levels.

According to MODEL 2, smoking status is significantly associated with plasma beta-carotene levels (F = 117.49, p < 0.0001).

c. Use the cell means model (MODEL 2) to test whether plasma beta-carotene levels differ between current smokers and former smokers. Write the null and alternative hypotheses in terms of the appropriate beta coefficient(s) and also in terms of the appropriate means, test the null hypothesis, and state your conclusion.

$$H_0: \mu_{\text{current}} = \mu_{\text{former}} \text{ or } \beta_{\text{current}} = \beta_{\text{former}}$$

$$H_1: \mu_{\text{current}} \neq \mu_{\text{former}} \text{ or } \beta_{\text{current}} \neq \beta_{\text{former}}$$

There is a significant difference in plasma beta-carotene levels between current and former smokers (p = 0.0268).

d. Use the cell means model (MODEL 2) to test whether plasma beta-carotene levels differ between non-smokers (the average of never smokers and former smokers) and current smokers. Write the null and alternative hypotheses in terms of the appropriate beta coefficient(s) and also in terms of the appropriate means, test the null hypothesis, and state your conclusion.

$$H_0: \frac{157}{272} * \beta_{\text{never}} + \frac{115}{272} * \beta_{\text{former}} - \beta_{\text{current}} = 0$$

$$H_1: \frac{157}{272} * \beta_{\text{never}} + \frac{115}{272} * \beta_{\text{former}} - \beta_{\text{current}} \neq 0$$

$$H_0: \frac{157}{272}*\mu_{\rm never} + \frac{115}{272}*\mu_{\rm former} - \mu_{\rm current} = 0$$

$$H_1: \frac{157}{272} * \mu_{\text{never}} + \frac{115}{272} * \mu_{\text{former}} - \mu_{\text{current}} \neq 0$$

Weighting the average of never smokers and former smokers by sample size, there is a significant difference in plasma beta-carotene levels between smokers and non-smokers (p = 0.0080).

3

3. Perform an independent samples t-test comparing plasma beta-carotene levels in current smokers versus former smokers. Compare your results to those obtained in parts (1F and 2C) and explain any differences.

Overall the t-test is very close to the earlier results, because both found a significant difference between current and former smokers (whether you use a t-test assuming equal or unequal variances). The p-values are slightly different, but I think that's because the linear contrast uses more degrees of freedom when you get a p-value from the t distribution. The means calculated by proc ttest are the same as the parameter estimates in MODEL 2 for current and former smokers, which is also a good sign. There are likely some rounding differences between the two procedures that contribute to the small differences in t values. However, the important thing is that the conclusions are the same for the two approaches.

SAS Output Page 1 of 11

The SAS System

The MEANS Procedure

Analysis Variable : betaplas							
smoke N Obs Mean Std Dev S							
1	157	206.0509554	193.2085626	15.4197220			
2	115	193.4695652	191.6395246	17.8704778			
3	43	121.3255814	78.8116262	12.0186603			

SAS Output Page 2 of 11

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: betaplas

Number of Observations Read	315
Number of Observations Used	315

Analysis of Variance						
Source Sum of Mean Squares Square F Value Pr >						
Model	2	244625	122312	3.72	0.0254	
Error	312	10271014	32920			
Corrected Total	314	10515638				

Root MSE	181.43846	R-Square	0.0233
Dependent Mean	189.89206	Adj R-Sq	0.0170
Coeff Var	95.54821		

Parameter Estimates							
Variable DF Parameter Standard Error t Value Pr							
Intercept	1	206.05096	14.48037	14.23	<.0001		
former	1	-12.58139	22.26974	-0.56	0.5725		
current	1	-84.72537	31.22916	-2.71	0.0070		

Covariance of Estimates						
Variable Intercept former cur						
Intercept	209.6809913	-209.6809913	-209.6809913			
former	-209.6809913	495.94112724	209.6809913			
current	-209.6809913	209.6809913	975.26042464			

SAS Output Page 3 of 11

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: betaplas

SAS Output Page 4 of 11

SAS Output Page 5 of 11

The SAS System

The REG Procedure Model: MODEL2 Dependent Variable: betaplas

Number of Observations Read	315
Number of Observations Used	315

Note: No intercept in model. R-Square is redefined.

Analysis of Variance							
Source Sum of Mean Square F Value Pr > I							
Model	3	11603208	3867736	117.49	<.0001		
Error	312	10271014	32920				
Uncorrected Total	315	21874222					

Root MSE	181.43846	R-Square	0.5305
Dependent Mean	189.89206	Adj R-Sq	0.5259
Coeff Var	95.54821		

Parameter Estimates							
Variable DF Parameter Standard Error t Value Pr >							
never	1	206.05096	14.48037	14.23	<.0001		
former	1	193.46957	16.91922	11.43	<.0001		
current	1	121.32558	27.66911	4.38	<.0001		

SAS Output Page 6 of 11

The SAS System

The REG Procedure Model: MODEL2 Dependent Variable: betaplas

SAS Output Page 7 of 11

SAS Output Page 8 of 11

The SAS System

The REG Procedure Model: MODEL2

Test 1 Results for Dependent Variable betaplas						
Source DF Square F Value Pr >						
Numerator	1	162896	4.95	0.0268		
Denominator	312	32920				

SAS Output Page 9 of 11

The SAS System

The REG Procedure Model: MODEL2

Test 2 Results for Dependent Variable betaplas						
Source DF Mean Square F Value Pr >						
Numerator	1	234324	7.12	0.0080		
Denominator	312	32920				

SAS Output Page 10 of 11

The SAS System

The TTEST Procedure

Variable: betaplas

smoke	Method	N	Mean	Std Dev	Std Err	Minimum	Maximum
2		115	193.5	191.6	17.8705	16.0000	1212.0
3		43	121.3	78.8116	12.0187	25.0000	418.0
Diff (1-2)	Pooled		72.1440	168.8	30.1819		
Diff (1-2)	Satterthwaite		72.1440		21.5361		

smoke	Method	Mean	95% CL Mean		Std Dev	95% CL Std Dev	
2		193.5	158.1	228.9	191.6	169.7	220.2
3		121.3	97.0709	145.6	78.8116	64.9834	100.2
Diff (1-2)	Pooled	72.1440	12.5261	131.8	168.8	152.0	189.9
Diff (1-2)	Satterthwaite	72.1440	29.6010	114.7			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	156	2.39	0.0180
Satterthwaite	Unequal	154.6	3.35	0.0010

Equality of Variances						
Method	Num DF	Den DF	F Value	Pr > F		
Folded F	114	42	5.91	<.0001		

SAS Output Page 11 of 11

