

Lecture: Deep Learning in SAS Viya

Dr. Goutam Chakraborty

SAS® Professor of Marketing Analytics

Director of MS in Business Analytics and Data Science* (http://analytics.okstate.edu/mban/)

Director of Graduate Certificate in Business Data Mining (http://analytics.okstate.edu/certificate/grad-data-mining/)

Director of Graduate Certificate in Marketing Analytics (http://analytics.okstate.edu/certificate/grad-marketing-analytics/)

- · *Name change pending internal approval.
- · Note some of these slides are copyrighted by SAS® and used with permission. Reuse or redistribution is prohibited.
- · Some of the slides were developed by Mr. Sanjoy Dey, used with permission.

Outline

- Using SAS Studio to build DNN
 - > Explain codes and options
- Important pointers:
 - > Data for both demo and exercises will be loaded for you in SAS Viya so you can use it
 - You don't have to upload them again
 - Codes will be made variable so you can run them to replicate demos and then make appropriate modifications to do exercise
 - First log-in to SAS Viya: https://stwsasviya01.it.okstate.edu/SASDrive/
 - > Then log in to SAS Studio in Viya: https://stwsasviya01.it.okstate.edu/SASStudio/

SAS Cloud Analytic Services Actions

• Example:

Building a Deep Neural Network

```
PROC CAS < exc > < noqueue >;
BuildModel / modeltable={name="< model table name >"} type ="DNN";

AddLayer /
modeltable="< model table name >"
name="< name of layer >"
layer={type="layer type"
n="< number of hidden units >"
act="< type of activation transformation >"
init="< weight initialization method >"}
srcLayers={"< previous layer name >"};
QUIT;
```

Example of Some Layers			
Туре	Details	Example	
INPUT	Input Layer	layer={type='input'}	
CONVO/CONVOLUTION	Convolutional Layer	layer={type='convolution' nFilters=32 width=5 height=5 stride=1 act='tanh' }	
POOLING	Pooling Layer	layer={type='pooling' width=2 height=2 stride=2}	
FC/FULLCONNECT	Fully connected Layer	layer={type='fullconnect' n=50 act='sigmoid' }	
OUTPUT	Output Layer	layer={type='output' act='softmax'}	
RESIDUAL	Residual Layer	layer={type='residual' }	
BATCHNORM	Batch Normalization	layer={type='batchnorm' act='ELU'}	
CONCAT	Concatination Layer	layer={type='concat'}	
FCMP	FCMP Layer	<pre>layer={type='FCMP', forwardFunc='forward_prop', backwardFunc='back_prop', height=1, width=40, depth=1, nweights=1280}</pre>	
RECURRENT	Recurrent Layer	layer={type='recurrent' n=50 act='sigmoid' mnType='gru'}	
TRANSCONVO	Transpose Convolution Layer	layer={type='transconvon' Filters=32 width=5 height=5 stride=2 act='tanh' }	

Training a Deep Learning CAS Action Model

The parameters of the dlTrain action can be found at this link:

https://go.documentation.sas.com/?docsetId=casdlpg&docsetTarget=cas-deeplearn-dltrain.htm&docsetVersion=8.4&locale=en

Demo: Basics of Deep Learning SAS Viya

Dr. Goutam Chakraborty

SAS® Professor of Marketing Analytics

Director of MS in Business Analytics and Data Science* (http://analytics.okstate.edu/mban/)

Director of Graduate Certificate in Business Data Mining (http://analytics.okstate.edu/certificate/grad-data-mining/)

Director of Graduate Certificate in Marketing Analytics (http://analytics.okstate.edu/certificate/grad-marketing-analytics/)

- · *Name change pending internal approval.
- · Note some of these slides are copyrighted by SAS® and used with permission. Reuse or redistribution is prohibited.
- Some of the slides were developed by Mr. Sanjoy Dey, used with permission.

c

Outline

Important pointers:

- > Data for both demo and exercises will be loaded for you in SAS Viya so you can use it
 - You don't have to upload them again
- > Codes will be made variable so you can run them to replicate demos and then make appropriate modifications to do exercise
- > First log-in to SAS Viya: https://stwsasviya01.it.okstate.edu/SASDrive/
- > Then log in to SAS Studio in Viya: https://stwsasviya01.it.okstate.edu/SASStudio/
- 3 different demos in SAS Viya

Demonstrations

Data: Develop (split intro train, valid and test)

- > Data and variable descriptions on a separate handout
- Code files:
 - > DLMS01D01a.sas
 - > DLMS01D01b.sas
 - > DLMS01D02a.sas
 - DLMS01D02b.sas
- Plan:
 - > Run each code and explain results

1

Demo 1: Traditional NN with 7 Hidden Layers

First open and run DLMS01D01a.sas (modify local library details, I used GC)

- Promote 3 data sets to CAS (loading to memory)
- Second, open and run DLMS01D01b.sas (no modifications needed)
- Explore results

Demo2: Building and Training DL Network using CASL Code

Open and run DLMS01D02a.sas (no modifications needed)

Explore results

11

Demo3: Using batch Normalization, TanH instead of RELU, Xavier weight initialization

Open and run DLMS01D02b.sas (no modifications needed)

Explore results

Self Study Autoencoders

Dr. Goutam Chakraborty

SAS® Professor of Marketing Analytics

Director of MS in Business Analytics and Data Science* (http://analytics.okstate.edu/mban/)

Director of Graduate Certificate in Business Data Mining (http://analytics.okstate.edu/certificate/grad-data-mining/)

Director of Graduate Certificate in Marketing Analytics (http://analytics.okstate.edu/certificate/grad-marketing-analytics/)

- *Name change pending internal approval.
- Note some of these slides are copyrighted by SAS® and used with permission. Reuse or redistribution is prohibited.
- Some of the slides were developed by Mr. Sanjoy Dey, used with permission.

15

Outline

- Introduce autoencoders.
- > Explain how to sparse and denoise autoencoders.

Building Autoencoders

PROC CAS;

dlTrain /

table=' CAS-libref.data-table'
modeltable=' model name, specified in buildmodel action'
bestweights={name=' Name of output table containing best
model weights' }
inputs={' List of ALL input variables'}
nominals={' List of nominal input variables'}
validtable={name=' Name of validation data table'}

RUN;

• Omit the TARGET parameter to train an autoencoder using dlTrain.

Autoencoders use a feed-forward neural network. > Unsupervised learning technique. > Can be linear or nonlinear, but nonlinear are likely more useful. **Total Company of the Company

