Ontology Matching Through Absolute Orientation of Embedding Spaces

Jan Portisch¹, Guilherme Costa¹, Karolin Stefani¹, Katharina Kreplin¹, Michael Hladik¹, Heiko Paulheim²

¹SAP SE, Walldorf, Germany {jan.portisch, guilherme.costa, karolin.stefani, katharina.kreplin, michael.hladik}@sap.com

² Data and Web Science Group, University of Mannheim, Germany {jan, heiko}@informatik.uni-mannheim.de

Motivation

- Ontology matching is a core task when creating interoperable and linked open datasets.
- Ontology matching has applications in various fields such as data integration, data transfer, and data preparation.
- Graph embeddings encode the ontological structure.

Research Questions and Goals

 Can we leverage knowledge graph embeddings and rotation operations for ontology matching tasks?

Approach

- Given two ontologies, train separate knowledge graph embeddings using RDF2vec [1].
- Given a set of anchor points, use the *Absolute Orientation* [2] to rotate the embedding spaces onto each other.
- Match closest nodes.

Results

- Approach was evaluated on <u>synthetic experiments</u> with different training size, alignment noise, and graph heterogeneity levels: It works <u>particularly well on similarly structured graphs, it</u> handles alignment noise better than size and structural differences.
- On the OAEI multifarm dataset German-English test case, with a sampling rate of 20%, our approach achieves micro scores of P = 0.376, R = 0.347, and $F_1 = 0.361$
- Approach is particularly promising in combination with non-structural matching components.

References