The FMB Algorithm

P. Baillehache

January 21, 2020

Abstract

This paper introduces how to perform intersection detection of pair of static/dynamic cuboid/tetrahedron in 2D/3D by using the Fourier-Motzkin elimination method.

Contents

1	The 1.1 1.2 1.3	Problem as a system of linear inequations Notations and definitions	4 4 5 8
2			11
	2.1 2.2	Application of the Fourier-Motzkin method to the intersection	1113
	2.3	1	13
3	Alg	orithms of the solution	15
	3.1	2D static	16
	3.2	3D static	22
	3.3	2D dynamic	29
	3.4	3D dynamic	36
4	Imp	elementation of the algorithms in C	45
	4.1	Frames	45
		4.1.1 Header	45
		4.1.2 Body	48
	4.2	FMB	69
		4.2.1 2D static	69
		4.2.2 3D static	78
		4.2.3 2D dynamic	89
			99
5	Min	nimal example of use	10
	5.1	2D static	11
	5.2	3D static	12
	5.3	2D dynamic	14
	5.4	3D dynamic	
6	Uni	t tests 1	17
	6.1	Code	17
		6.1.1 2D static	17
		6.1.2 3D static	29
		6.1.3 2D dynamic	37
		6.1.4 3D dynamic	43
	6.2	· ·	1Ω

		6.2.1	2D s	static	·															 					148
		6.2.2	3D s	static	·															 					153
		6.2.3	2D	dynai	mic															 					156
		6.2.4		dynai																					
7	Vali	dation	aga	inst	$\mathbf{S}\mathbf{A}$	\mathbf{T}																			159
	7.1	Code .																		 					160
		7.1.1	2D s	static	·															 					160
		7.1.2	3D s	static	·																				163
		7.1.3	2D	dynai	mic																				166
		7.1.4	3D	dynai	mic																				170
	7.2	Results	s																						173
		7.2.1	Fail	ures																					173
		7.2.2	2D s	static	·																				174
		7.2.3	2D	dynai	mic																				174
		7.2.4	3D s	static	·															 					174
		7.2.5	3D	dynai	mic			•		•				٠	٠		•	•		 				•	174
8	Qua	lificati	on a	gain	st S	$\mathbf{S} A$	ľ	٦.																	175
	8.1	Code .																							175
		8.1.1	2D s	static	·																				175
		8.1.2	3D s	static	·															 					186
		8.1.3	2D (dynai	mic															 					197
		8.1.4		dynai																					
	8.2	Results	s																	 					220
		8.2.1	2D s	static	·																				221
		8.2.2	3D s	static	·															 					226
		8.2.3	2D	dynai	mic																				231
		8.2.4	3D	dynai	mic															 					236
9	Con	nments	s abo	out t	he	qı	ua	li	fic	a	tic	n	r	es	ul	lts	3								241
10	Con	clusior	า																						241
10	Con	.crusioi	.1																						4 41
11	Ann																								241
		Runtin																							
	11.2	SAT in	_																						
		11.2.1																							
	11 0	11.2.2		•																					
	11.3	Makefi							•	•	•		•	•	٠	•	•	•			•	•	•	•	264 267
		1131	711	こせっせいひ																					7h /

	11.3.2	3Ds	static .														267
	11.3.3	2D (dynam	ic													268
	11.3.4	3D (dynam	ic													269
	11.3.5	Doc															270
11.4	Dynan	nic ar	nalysis														270

Introduction

This paper introduces the FMB (Fourier-Motzkin-Baillehache) algorithm which can be used to perform intersection detection of moving and resting parallelepipeds and triangles in 2D, and cuboids and tetrahedrons in 3D.

The detection result is returned has a boolean (intersection / no intersection), and if there is intersection, a bounding box of the intersection.

The two first sections introduce how the problem can be expressed as a system of linear inequation, and its resolution using the Fourier-Motzkin method.

The algorithm of the solution and its implementation in the C programming language are detailed in the three following sections.

The last three sections introduce the validation and qualification in term of relative performance of the FMB algorithm against the SAT algorithm.

1 The problem as a system of linear inequations

1.1 Notations and definitions

- $[M]_{r,c}$ is the component at column c and row r of the matrix M
- $[V]_r$ is the r-th component of the vector \overrightarrow{V}
- the term "Frame" is used indifferently for parallelepiped, triangle, cuboid and tetrahedron.

1.2 Static case

The two Frames are represented as a vector origin and a number of component vectors equal to the dimension D of the space where live the Frames. Each vector is of dimension equal to D.

Let's call $\mathbb A$ and $\mathbb B$ the two Frames tested for intersection. If $\mathbb A$ and $\mathbb B$ are two cuboids:

$$\mathbb{A} = \left\{ \begin{array}{c} \overrightarrow{X} \in [0.0, 1.0]^D \\ \overrightarrow{O}_{\mathbb{A}} + C_{\mathbb{A}}. \overrightarrow{X} \end{array} \right\}$$
 (1)

$$\mathbb{B} = \left\{ \begin{array}{c} \overrightarrow{X} \in [0.0, 1.0]^D \\ \overrightarrow{O}_{\mathbb{B}} + C_{\mathbb{B}}. \overrightarrow{X} \end{array} \right\}$$
 (2)

where $\overrightarrow{O}_{\mathbb{A}}$ is the origin of \mathbb{A} and $C_{\mathbb{A}}$ is the matrix of the components of \mathbb{A} (one component per column). Idem for $\overrightarrow{O}_{\mathbb{B}}$ and $C_{\mathbb{B}}$.

If \mathbb{A} and \mathbb{B} are two tetrahedrons:

$$\mathbb{A} = \left\{ \begin{array}{c} \overrightarrow{X} \in [0.0, 1.0]^D \\ \sum_{i=0}^{D-1} [X]_i \leq 1.0 \\ \overrightarrow{O}_{\mathbb{A}} + C_{\mathbb{A}} . \overrightarrow{X} \end{array} \right\}$$
(3)

$$\mathbb{B} = \left\{ \begin{array}{c} \overrightarrow{X} \in [0.0, 1.0]^D \\ \sum_{i=0}^{D-1} [X]_i \leq 1.0 \\ \overrightarrow{O_{\mathbb{B}}} + C_{\mathbb{B}}.\overrightarrow{X} \end{array} \right\}$$
(4)

I'll assume the Frames are well formed, i.e. their components matrix is invertible. It is then possible to express $\mathbb B$ in $\mathbb A$'s coordinates system, noted as $\mathbb B_{\mathbb A}$. If $\mathbb B$ is a cuboid:

$$\mathbb{B}_{\mathbb{A}} = \left\{ \begin{array}{c} \overrightarrow{X} \in [0.0, 1.0]^{D} \\ \overrightarrow{C_{\mathbb{A}}}^{-1} \cdot (\overrightarrow{O_{\mathbb{B}}} - \overrightarrow{O_{\mathbb{A}}} + C_{\mathbb{B}} \cdot \overrightarrow{X}) \end{array} \right\}$$
 (5)

If \mathbb{B} is a tetrahedron:

$$\mathbb{B}_{\mathbb{A}} = \left\{ \begin{array}{c} \overrightarrow{X} \in [0.0, 1.0]^{D} \\ \sum_{\substack{i=0 \ C_{\mathbb{A}}^{-1}}} [X]_{i} \leq 1.0 \\ C_{\mathbb{A}}^{-1} . (\overrightarrow{O}_{\mathbb{B}} - \overrightarrow{O}_{\mathbb{A}} + C_{\mathbb{B}} . \overrightarrow{X}) \end{array} \right\}$$
(6)

A in its own coordinates system becomes, for a cuboid:

$$\mathbb{A}_{\mathbb{A}} = \left\{ \overrightarrow{X} \in [0.0, 1.0]^D \right\} \tag{7}$$

and for a tetrahedron:

$$\mathbb{A}_{\mathbb{A}} = \left\{ \begin{array}{c} \overrightarrow{X} \in [0.0, 1.0]^D \\ \sum_{i=0}^{D-1} [X]_i \le 1.0 \end{array} \right\}$$
 (8)

The intersection of \mathbb{A} and \mathbb{B} in \mathbb{A} 's coordinates sytem, $\mathbb{A}_{\mathbb{A}} \cap \mathbb{B}_{\mathbb{A}}$, can then be expressed as follow.

If \mathbb{A} and \mathbb{B} are two cuboids:

$$\mathbb{A}_{\mathbb{A}} \cap \mathbb{B}_{\mathbb{A}} = \left\{ \begin{array}{c} \overrightarrow{X} \in [0.0, 1.0]^{D} \\ C_{\mathbb{A}}^{-1} \cdot \left(\overrightarrow{O}_{\mathbb{B}} - \overrightarrow{O}_{\mathbb{A}} + C_{\mathbb{B}} \cdot \overrightarrow{X}\right) \cap [0.0, 1.0]^{D} \end{array} \right\}$$
(9)

If \mathbb{A} is a cuboid and \mathbb{B} is a tetrahedron:

$$\mathbb{A}_{\mathbb{A}} \cap \mathbb{B}_{\mathbb{A}} = \left\{ \begin{array}{c} \overrightarrow{X} \in [0.0, 1.0]^{D} \\ \sum_{i=0}^{D-1} [X]_{i} \leq 1.0 \\ C_{\mathbb{A}}^{-1} \cdot \left(\overrightarrow{O}_{\mathbb{B}} - \overrightarrow{O}_{\mathbb{A}} + C_{\mathbb{B}} \cdot \overrightarrow{X}\right) \cap [0.0, 1.0]^{D} \end{array} \right\}$$
(10)

If \mathbb{A} is a tetrahedron and \mathbb{B} is a cuboid:

$$\mathbb{A}_{\mathbb{A}} \cap \mathbb{B}_{\mathbb{A}} = \left\{ \begin{array}{c} \overrightarrow{X} \in [0.0, 1.0]^{D} \\ C_{\mathbb{A}}^{-1} \cdot \left(\overrightarrow{O}_{\mathbb{B}} - \overrightarrow{O}_{\mathbb{A}} + C_{\mathbb{B}} \cdot \overrightarrow{X}\right) \cap [0.0, 1.0]^{D} \\ \sum_{i=0}^{D-1} \left[C_{\mathbb{A}}^{-1} \cdot \left(\overrightarrow{O}_{\mathbb{B}} - \overrightarrow{O}_{\mathbb{A}} + C_{\mathbb{B}} \cdot \overrightarrow{X}\right) \right]_{i} \leq 1.0 \end{array} \right\}$$

$$(11)$$

If \mathbb{A} and \mathbb{B} are two tetrahedrons:

$$\mathbb{A}_{\mathbb{A}} \cap \mathbb{B}_{\mathbb{A}} = \left\{ \begin{array}{c} \overrightarrow{X} \in [0.0, 1.0]^{D} \\ \sum_{i = 0}^{D-1} [X]_{i} \leq 1.0 \\ C_{\mathbb{A}}^{-1} \cdot (\overrightarrow{O}_{\mathbb{B}} - \overrightarrow{O}_{\mathbb{A}} + C_{\mathbb{B}} \cdot \overrightarrow{X}) \cap [0.0, 1.0]^{D} \\ \sum_{i = 0}^{D-1} \left[C_{\mathbb{A}}^{-1} \cdot \left(\overrightarrow{O}_{\mathbb{B}} - \overrightarrow{O}_{\mathbb{A}} + C_{\mathbb{B}} \cdot \overrightarrow{X} \right) \right]_{i} \leq 1.0 \end{array} \right\}$$

$$(12)$$

These can in turn be expressed as systems of linear inequations as follow, given the two shortcuts $\overrightarrow{O_{\mathbb{B}_{\mathbb{A}}}} = C_{\mathbb{A}}^{-1}.(\overrightarrow{O_{\mathbb{B}}} - \overrightarrow{O_{\mathbb{A}}})$ and $C_{\mathbb{B}_{\mathbb{A}}} = C_{\mathbb{A}}^{-1}.C_{\mathbb{B}}$.

If \mathbb{A} and \mathbb{B} are two cuboids:

$$\begin{cases}
[X]_{0} \leq 1.0 \\
... \\
[X]_{D-1} \leq 1.0 \\
-[X]_{0} \leq 0.0
\end{cases}$$

$$\vdots \\
-[X]_{D-1} \leq 0.0 \\
... \\
-[X]_{D-1} \leq 0.0 \\
\sum_{i=0}^{D-1} [C_{\mathbb{B}_{A}}]_{0,i} \cdot [X]_{i} \leq 1.0 - [O_{\mathbb{B}_{A}}]_{0}$$

$$\vdots \\
\sum_{i=0}^{D-1} [C_{\mathbb{B}_{A}}]_{D-1,i} \cdot [X]_{i} \leq 1.0 - [O_{\mathbb{B}_{A}}]_{D-1} \\
-\sum_{i=0}^{D-1} [C_{\mathbb{B}_{A}}]_{0,i} \cdot [X]_{i} \leq [O_{\mathbb{B}_{A}}]_{0}$$

$$\vdots \\
-\sum_{i=0}^{D-1} [C_{\mathbb{B}_{A}}]_{D-1,i} \cdot [X]_{i} \leq [O_{\mathbb{B}_{A}}]_{D-1}$$

If \mathbb{A} is a cuboid and \mathbb{B} is a tetrahedron:

$$\begin{cases}
-[X]_{0} \leq 0.0 \\
... \\
-[X]_{D-1} \leq 0.0 \\
\sum_{i=0}^{D-1} [C_{\mathbb{B}_{\mathbb{A}}}]_{0,i} \cdot [X]_{i} \leq 1.0 - [O_{\mathbb{B}_{\mathbb{A}}}]_{0} \\
... \\
\sum_{i=0}^{D-1} [C_{\mathbb{B}_{\mathbb{A}}}]_{D-1,i} \cdot [X]_{i} \leq 1.0 - [O_{\mathbb{B}_{\mathbb{A}}}]_{D-1} \\
-\sum_{i=0}^{D-1} [C_{\mathbb{B}_{\mathbb{A}}}]_{0,i} \cdot [X]_{i} \leq [O_{\mathbb{B}_{\mathbb{A}}}]_{0} \\
... \\
-\sum_{i=0}^{D-1} [C_{\mathbb{B}_{\mathbb{A}}}]_{D-1,i} \cdot [X]_{i} \leq [O_{\mathbb{B}_{\mathbb{A}}}]_{D-1} \\
\sum_{i=0}^{D-1} [X]_{i} \leq 1.0
\end{cases} (14)$$

If \mathbb{A} is a tetrahedron and \mathbb{B} is a cuboid:

$$\begin{cases}
[X]_{0} \leq 1.0 \\
... \\
[X]_{D-1} \leq 1.0 \\
-[X]_{0} \leq 0.0
\end{cases}$$

$$\vdots$$

$$-[X]_{D-1} \leq 0.0 \\
-[X]_{D-1} \leq 0.0$$

$$-\sum_{i=0}^{D-1} [C_{\mathbb{B}_{\mathbb{A}}}]_{0,i} \cdot [X]_{i} \leq [O_{\mathbb{B}_{\mathbb{A}}}]_{0}$$

$$\vdots$$

$$-\sum_{i=0}^{D-1} [C_{\mathbb{B}_{\mathbb{A}}}]_{D-1,i} \cdot [X]_{i} \leq [O_{\mathbb{B}_{\mathbb{A}}}]_{D-1}$$

$$\sum_{j=0}^{D-1} \left(\left(\sum_{i=0}^{D-1} [C_{\mathbb{B}_{\mathbb{A}}}]_{j,i} \right) \cdot [X]_{i} \right) \leq 1.0 - \sum_{j=0}^{D-1} [O_{\mathbb{B}_{\mathbb{A}}}]_{j}$$
(15)

If \mathbb{A} and \mathbb{B} are two tetrahedrons:

$$\begin{cases}
-[X]_{0} \leq 0.0 \\
... \\
-[X]_{D-1} \leq 0.0 \\
-\sum_{i=0}^{D-1} [C_{\mathbb{B}_{\mathbb{A}}}]_{0,i} \cdot [X]_{i} \leq [O_{\mathbb{B}_{\mathbb{A}}}]_{0} \\
... \\
-\sum_{i=0}^{D-1} [C_{\mathbb{B}_{\mathbb{A}}}]_{D-1,i} \cdot [X]_{i} \leq [O_{\mathbb{B}_{\mathbb{A}}}]_{D-1} \\
\sum_{i=0}^{D-1} [X]_{i} \leq 1.0 \\
\sum_{j=0}^{D-1} \left(\left(\sum_{i=0}^{D-1} [C_{\mathbb{B}_{\mathbb{A}}}]_{j,i}\right) \cdot [X]_{i}\right) \leq 1.0 - \sum_{j=0}^{D-1} [O_{\mathbb{B}_{\mathbb{A}}}]_{j}
\end{cases}$$
(16)

1.3 Dynamic case

If the frames \mathbb{A} and \mathbb{B} are moving linearly along the vectors $\overrightarrow{V}_{\mathbb{A}}$ and $\overrightarrow{V}_{\mathbb{B}}$ respectively during the interval of time $t \in [0.0, 1.0]$, the above definition of the problem is modified as follow.

If \mathbb{A} and \mathbb{B} are two cuboids:

$$\mathbb{A} = \left\{ \begin{array}{c} \overrightarrow{X} \in [0.0, 1.0]^D \\ t \in [0.0, 1.0] \\ \overrightarrow{O_{\mathbb{A}}} + C_{\mathbb{A}} \cdot \overrightarrow{X} + \overrightarrow{V_{\mathbb{A}}} \cdot t \end{array} \right\}$$
(17)

$$\mathbb{B} = \left\{ \begin{array}{c} \overrightarrow{X} \in [0.0, 1.0]^D \\ t \in [0.0, 1.0] \\ \overrightarrow{O}_{\mathbb{B}} + C_{\mathbb{B}} . \overrightarrow{X} + \overrightarrow{V}_{\mathbb{B}} . t \end{array} \right\}$$

$$(18)$$

where $\overrightarrow{O}_{\mathbb{A}}$ is the origin of \mathbb{A} and $C_{\mathbb{A}}$ is the matrix of the components of \mathbb{A} (one component per column). Idem for $\overrightarrow{O}_{\mathbb{B}}$ and $C_{\mathbb{B}}$.

If \mathbb{A} and \mathbb{B} are two tetrahedrons:

$$\mathbb{A} = \left\{ \begin{array}{l} \overrightarrow{X} \in [0.0, 1.0]^{D} \\ t \in [0.0, 1.0] \\ \sum_{i=0}^{D-1} [X]_{i} \leq 1.0 \\ \overrightarrow{O}_{\mathbb{A}} + C_{\mathbb{A}} \cdot \overrightarrow{X} + \overrightarrow{V}_{\mathbb{A}} \cdot t \end{array} \right\}$$
(19)

$$\mathbb{B} = \left\{ \begin{array}{l} \overrightarrow{X} \in [0.0, 1.0]^{D} \\ t \in [0.0, 1.0] \\ \sum_{i=0}^{D-1} [X]_{i} \leq 1.0 \\ \overrightarrow{O}_{\mathbb{B}} + C_{\mathbb{B}} . \overrightarrow{X} + \overrightarrow{V}_{\mathbb{B}} . t \end{array} \right\}$$
 (20)

If \mathbb{B} is a cuboid, $\mathbb{B}_{\mathbb{A}}$ becomes:

$$\mathbb{B}_{\mathbb{A}} = \left\{ \begin{array}{c} \overrightarrow{X} \in [0.0, 1.0]^{D} \\ t \in [0.0, 1.0] \\ C_{\mathbb{A}}^{-1} \cdot \left(\overrightarrow{O}_{\mathbb{B}} - \overrightarrow{O}_{\mathbb{A}} + C_{\mathbb{B}} \cdot \overrightarrow{X} + \left(\overrightarrow{V}_{\mathbb{B}} - \overrightarrow{V}_{\mathbb{A}}\right) \cdot t\right) \end{array} \right\}$$
(21)

If \mathbb{B} is a tetrahedron, $\mathbb{B}_{\mathbb{A}}$ becomes:

$$\mathbb{B}_{\mathbb{A}} = \left\{ \begin{array}{c} \overrightarrow{X} \in [0.0, 1.0]^{D} \\ t \in [0.0, 1.0] \\ \sum_{i=0}^{D-1} [X]_{i} \leq 1.0 \\ C_{\mathbb{A}}^{-1} \cdot \left(\overrightarrow{O}_{\mathbb{B}} - \overrightarrow{O}_{\mathbb{A}} + C_{\mathbb{B}} \cdot \overrightarrow{X} + \left(\overrightarrow{V}_{\mathbb{B}} - \overrightarrow{V}_{\mathbb{A}}\right) \cdot t\right) \end{array} \right\}$$
(22)

 $\mathbb A$ in its own coordinates system has the same definition as in the static case. For a cuboid:

$$\mathbb{A}_{\mathbb{A}} = \left\{ \overrightarrow{X} \in [0.0, 1.0]^D \right\} \tag{23}$$

and for a tetrahedron:

$$\mathbb{A}_{\mathbb{A}} = \left\{ \begin{array}{c} \overrightarrow{X} \in [0.0, 1.0]^{D} \\ \sum_{i=0}^{D-1} [X]_{i} \le 1.0 \end{array} \right\}$$
 (24)

The intersection of \mathbb{A} and \mathbb{B} in \mathbb{A} 's coordinates sytem, $\mathbb{A}_{\mathbb{A}} \cap \mathbb{B}_{\mathbb{A}}$, can then be expressed as follow.

If \mathbb{A} and \mathbb{B} are two cuboids:

$$\mathbb{A}_{\mathbb{A}} \cap \mathbb{B}_{\mathbb{A}} = \left\{ \begin{array}{c} \overrightarrow{X} \in [0.0, 1.0]^{D} \\ t \in [0.0, 1.0] \\ C_{\mathbb{A}}^{-1} \cdot \left(\overrightarrow{O}_{\mathbb{B}} - \overrightarrow{O}_{\mathbb{A}} + C_{\mathbb{B}} \cdot \overrightarrow{X} + \left(\overrightarrow{V}_{\mathbb{B}} - \overrightarrow{V}_{\mathbb{A}}\right) \cdot t\right) \cap [0.0, 1.0]^{D} \end{array} \right\} (25)$$

If \mathbb{A} is a cuboid and \mathbb{B} is a tetrahedron:

$$\mathbb{A}_{\mathbb{A}} \cap \mathbb{B}_{\mathbb{A}} = \left\{ \begin{array}{c} \overrightarrow{X} \in [0.0, 1.0]^{D} \\ t \in [0.0, 1.0] \\ \sum_{i=0}^{D-1} [X]_{i} \leq 1.0 \\ C_{\mathbb{A}}^{-1} \cdot \left(\overrightarrow{O}_{\mathbb{B}} - \overrightarrow{O}_{\mathbb{A}} + C_{\mathbb{B}} \cdot \overrightarrow{X} + \left(\overrightarrow{V}_{\mathbb{B}} - \overrightarrow{V}_{\mathbb{A}}\right) \cdot t\right) \cap [0.0, 1.0]^{D} \end{array} \right\} (26)$$

If \mathbb{A} is a tetrahedron and \mathbb{B} is a cuboid:

$$\mathbb{A}_{\mathbb{A}} \cap \mathbb{B}_{\mathbb{A}} = \left\{ \begin{array}{c} \overrightarrow{X} \in [0.0, 1.0]^{D} \\ t \in [0.0, 1.0] \\ C_{\mathbb{A}}^{-1} \cdot \left(\overrightarrow{O}_{\mathbb{B}} - \overrightarrow{O}_{\mathbb{A}} + C_{\mathbb{B}} \cdot \overrightarrow{X} + \left(\overrightarrow{V}_{\mathbb{B}} - \overrightarrow{V}_{\mathbb{A}}\right) \cdot t\right) \cap [0.0, 1.0]^{D} \\ \sum_{i=0}^{D-1} \left[C_{\mathbb{A}}^{-1} \cdot \left(\overrightarrow{O}_{\mathbb{B}} - \overrightarrow{O}_{\mathbb{A}} + C_{\mathbb{B}} \cdot \overrightarrow{X} + \left(\overrightarrow{V}_{\mathbb{B}} - \overrightarrow{V}_{\mathbb{A}}\right) \cdot t\right) \right]_{i} \leq 1.0 \end{array} \right\}$$

$$(27)$$

If \mathbb{A} and \mathbb{B} are two tetrahedrons:

$$\mathbb{A}_{\mathbb{A}} \cap \mathbb{B}_{\mathbb{A}} = \left\{ \begin{array}{c} \overrightarrow{X} \in [0.0, 1.0]^{D} \\ t \in [0.0, 1.0] \\ \sum_{i=0}^{D-1} [X]_{i} \leq 1.0 \\ C_{\mathbb{A}}^{-1} \cdot \left(\overrightarrow{O_{\mathbb{B}}} - \overrightarrow{O_{\mathbb{A}}} + C_{\mathbb{B}} \cdot \overrightarrow{X} + \left(\overrightarrow{V_{\mathbb{B}}} - \overrightarrow{V_{\mathbb{A}}}\right) \cdot t\right) \cap [0.0, 1.0]^{D} \\ \sum_{i=0}^{D-1} \left[C_{\mathbb{A}}^{-1} \cdot \left(\overrightarrow{O_{\mathbb{B}}} - \overrightarrow{O_{\mathbb{A}}} + C_{\mathbb{B}} \cdot \overrightarrow{X} + \left(\overrightarrow{V_{\mathbb{B}}} - \overrightarrow{V_{\mathbb{A}}}\right) \cdot t\right) \right]_{i} \leq 1.0 \end{array} \right\}$$

$$(28)$$

These lead to the following systems of linear inequations, given the three shortcuts $\overrightarrow{O_{\mathbb{B}_{\mathbb{A}}}} = C_{\mathbb{A}}^{-1}.(\overrightarrow{O_{\mathbb{B}}} - \overrightarrow{O_{\mathbb{A}}}), \ \overrightarrow{V_{\mathbb{B}_{\mathbb{A}}}} = C_{\mathbb{A}}^{-1}.(\overrightarrow{V_{\mathbb{B}}} - \overrightarrow{V_{\mathbb{A}}}) \ \text{and} \ C_{\mathbb{B}_{\mathbb{A}}} = C_{\mathbb{A}}^{-1}.C_{\mathbb{B}}.$ If \mathbb{A} and \mathbb{B} are two cuboids:

$$\begin{cases} t & \leq 1.0 \\ -t & \leq 0.0 \\ [X]_0 & \leq 1.0 \end{cases} \\ \vdots \\ [X]_{D-1} & \leq 1.0 \\ -[X]_0 & \leq 0.0 \end{cases} \\ \vdots \\ [V_{\mathbb{B}_{\mathbb{A}}}]_0 \cdot t + \sum_{i=0}^{D-1} [C_{\mathbb{B}_{\mathbb{A}}}]_{0,i} [X]_i & \leq 1.0 - [O_{\mathbb{B}_{\mathbb{A}}}]_0 \\ \vdots \\ [V_{\mathbb{B}_{\mathbb{A}}}]_{D-1} \cdot t + \sum_{i=0}^{D-1} [C_{\mathbb{B}_{\mathbb{A}}}]_{D-1,i} [X]_i & \leq 1.0 - [O_{\mathbb{B}_{\mathbb{A}}}]_{D-1} \\ -[V_{\mathbb{B}_{\mathbb{A}}}]_0 \cdot t - \sum_{i=0}^{D-1} [C_{\mathbb{B}_{\mathbb{A}}}]_{0,i} [X]_i & \leq [O_{\mathbb{B}_{\mathbb{A}}}]_0 \\ \vdots \\ -[V_{\mathbb{B}_{\mathbb{A}}}]_{D-1} \cdot t - \sum_{i=0}^{D-1} [C_{\mathbb{B}_{\mathbb{A}}}]_{D-1,i} [X]_i & \leq [O_{\mathbb{B}_{\mathbb{A}}}]_{D-1} \end{cases}$$

If \mathbb{A} is a cuboid and \mathbb{B} is a tetrahedron:

If \mathbb{A} is a tetrahedron and \mathbb{B} is a cuboid:

$$\begin{cases} & t \leq 1.0 \\ -t \leq 0.0 \\ [X]_0 \leq 1.0 \\ & \cdots \\ [X]_{D-1} \leq 1.0 \\ & -[X]_0 \leq 0.0 \\ & \cdots \\ & -[X]_{D-1} \leq 0.0 \\ & -[X]_{D-1} \leq 0.0 \\ & -[V_{\mathbb{B}_{\mathbb{A}}}]_0 .t - \sum_{i=0}^{D-1} [C_{\mathbb{B}_{\mathbb{A}}}]_{0,i} [X]_i \leq [O_{\mathbb{B}_{\mathbb{A}}}]_0 \\ & \cdots \\ & -[V_{\mathbb{B}_{\mathbb{A}}}]_{D-1} .t - \sum_{i=0}^{D-1} [C_{\mathbb{B}_{\mathbb{A}}}]_{D-1,i} [X]_i \leq [O_{\mathbb{B}_{\mathbb{A}}}]_{D-1} \\ \sum_{j=0}^{D-1} \left([V_{\mathbb{B}_{\mathbb{A}}}]_j .t + \sum_{i=0}^{D-1} [C_{\mathbb{B}_{\mathbb{A}}}]_{j,i} [X]_i \right) \leq 1.0 - \sum_{j=0}^{D-1} [O_{\mathbb{B}_{\mathbb{A}}}]_j \end{cases}$$

If \mathbb{A} and \mathbb{B} are two tetrahedrons:

$$\begin{cases} t & \leq 1.0 \\ -t & \leq 0.0 \\ -[X]_0 & \leq 0.0 \end{cases} \\ -[X]_{D-1} & \leq 0.0 \\ -[X]_{D-1} & \leq 0.0 \\ -[X]_{D-1} & \leq [O_{\mathbb{B}_{A}}]_{0} \end{cases} \\ -[V_{\mathbb{B}_{A}}]_0 \cdot t - \sum_{i=0}^{D-1} [C_{\mathbb{B}_{A}}]_{0,i} [X]_i & \leq [O_{\mathbb{B}_{A}}]_0 \\ \cdots \\ -[V_{\mathbb{B}_{A}}]_{D-1} \cdot t - \sum_{i=0}^{D-1} [C_{\mathbb{B}_{A}}]_{D-1,i} [X]_i & \leq [O_{\mathbb{B}_{A}}]_{D-1} \\ \sum_{i=0}^{D-1} [X]_i & \leq 1.0 \\ \sum_{j=0}^{D-1} \left([V_{\mathbb{B}_{A}}]_j \cdot t + \sum_{i=0}^{D-1} [C_{\mathbb{B}_{A}}]_{j,i} [X]_i \right) & \leq 1.0 - \sum_{j=0}^{D-1} [O_{\mathbb{B}_{A}}]_j \end{cases}$$

2 Resolution of the problem by Fourier-Motzkin method

2.1 The Fourier-Motzkin elimination method

The Fourier-Motzkin elimination method has been introduced by J.J.-B. Fourier in 1827 [1], and described in the Ph.D. thesis of T.S. Motzkin in 1936 [2]. This is a generalization of the Gaussian elimination method to linear systems of inequalities. This method consists of eliminating one variable of the system and rewrite a new system accordingly. Then the elimination operation is repeated on another variable in the new system, and so on until we obtain a trivial system with only one variable. From there, a solution

for each variable can be obtained if it exists. The variable elimination is performed as follow.

Lets write the linear system \mathcal{I} of m inequalities and n variables as

$$\begin{cases}
 a_{11}.x_1 + a_{12}.x_2 + \cdots + a_{1n}.x_n \leq b_1 \\
 a_{21}.x_1 + a_{22}.x_2 + \cdots + a_{2n}.x_n \leq b_2 \\
 \vdots \\
 a_{m1}.x_1 + a_{m2}.x_2 + \cdots + a_{mn}.x_n \leq b_m
\end{cases}$$
(33)

with

$$i \in 1, 2, ..., m$$

 $j \in 1, 2, ..., n$
 $x_i \in \mathbb{R}$
 $a_{ij} \in \mathbb{R}$
 $b_j \in \mathbb{R}$ (34)

To eliminate the first variable x_1 , lets multiply each inequality by $1.0/|a_{i1}|$ where $a_{i1} \neq 0.0$. The system becomes

$$\begin{cases}
x_1 + a'_{i2}.x_2 + \cdots + a'_{in}.x_n \leq b'_i & (i \in \mathcal{I}_+) \\
a_{i2}.x_2 + \cdots + a_{in}.x_n \leq b_i & (i \in \mathcal{I}_0) \\
-x_1 + a'_{i2}.x_2 + \cdots + a'_{in}.x_n \leq b'_i & (i \in \mathcal{I}_-)
\end{cases}$$
(35)

where

$$\mathcal{I}_{+} = \{i : a_{i1} > 0.0\}$$

$$\mathcal{I}_{0} = \{i : a_{i1} = 0.0\}$$

$$\mathcal{I}_{-} = \{i : a_{i1} < 0.0\}$$

$$a'_{ij} = a_{ij}/|a_{i1}|$$

$$b'_{i} = b_{i}/|a_{i1}|$$

Then $x_1, x_2, \dots, x_n \in \mathbb{R}^n$ is a solution of \mathcal{I} if and only if

$$\begin{cases}
\sum_{j=2}^{n} ((a'_{kj} + a'_{lj}).x_j) \leq b'_k + b'_l & (k \in \mathcal{I}_+, l \in \mathcal{I}_-) \\
\sum_{j=2}^{n} (a_{ij}.x_j) \leq b_i & i \in \mathcal{I}_0
\end{cases}$$
(36)

and

$$\max_{l \in \mathcal{I}_{-}} (\sum_{j=2}^{n} (a'_{lj}.x_j) - b'_l) \le x_1 \le \min_{k \in \mathcal{I}_{+}} (b'_k - \sum_{j=2}^{n} (a'_{kj}.x_j))$$
(37)

The same method is then applied on this new system to eliminate the second variable x_2 , and so on until we reach the inequality

$$\max_{l \in \mathcal{I}''_{-} \dots'} (-b''_{l} \dots') \le x_n \le \min_{k \in \mathcal{I}''_{+} \dots'} (b''_{k} \dots')$$

$$\tag{38}$$

If this inequality has no solution, then neither the system \mathcal{I} . If it has a solution, the minimum and maximum are the bounding values for the variable x_n . One can get a particular solution to the system \mathcal{I} by choosing a value for x_n between these bounding values, which allows to set a particular value for the variable x_{n-1} , and so on back up to x_1 .

2.2 Application of the Fourier-Motzkin method to the intersection problem

The Fourier-Motzkin method can be directly applied to the inequality systems of the previous section, to obtain the bounding box of the intersection, if the system has a solution. If the system has no solution, the method will eventually reach an inconsistent inequality, meaning there is no intersection between the two Frames.

One coordinate \overrightarrow{S} , or (\overrightarrow{S},t) in dynamic case, within the bounds obtained by the resolution of the system is expressed in the Frame \mathbb{B} 's coordinates system. One can get the equivalent coordinates \overrightarrow{S}' , or (\overrightarrow{S},t) , in the real world's coordinates system as follow:

$$\overrightarrow{S}' = \overrightarrow{O}_{\mathbb{B}} + C_{\mathbb{B}}.\overrightarrow{S} \tag{39}$$

$$(\overrightarrow{S'},t) = \left(\overrightarrow{O_{\mathbb{B}}} + C_{\mathbb{B}}.\overrightarrow{S} + \overrightarrow{V}_{\mathbb{B}}.t,t\right)$$

$$(40)$$

Only one inconsistent inequality is sufficient to prove the absence of solution, and then the non intersection of the Frames. Thus, one shall check the inconsistence of each inequality as soon as possible during the resolution of the system to optimize the speed of the algorithm.

A sufficient condition for one inequality $\sum_i a_i X_i \leq Y$ to be inconsistent is, given that $\forall i, X_i \in [0.0, 1.0]$:

$$Y < \sum_{i \in I^{-}} a_i \tag{41}$$

where $I^- = \{i, a_i < 0.0\}.$

2.3 About the size of the system of linear inequations

During implementation in languages where the developper needs to manage memory itself the size of the systems (35) resulting from variable elimination is necessary but cannot be forecasted. Instead, a maximum size can be calculated as follow.

Let's call n_- , n_+ and n_0 , each in $[0, \mathbb{N}]$, the size of, respectively, \mathcal{I}_- , \mathcal{I}_+ and \mathcal{I}_0 , and N the number of inequalities in the original system and N' the number inequalities in the resulting system. We have:

$$n_{-} + n_{+} + n_{0} = N (42)$$

and

$$n_{-}.n_{+} + n_{0} = N' \tag{43}$$

Now let's define $K = N - n_0$, then we have:

$$n_{-} + n_{+} = K \tag{44}$$

then,

$$n_{-}.n_{+} = n_{-}.(K - n_{-}) \tag{45}$$

then,

$$n_{-}.n_{+} = K.n_{-} - n_{-}^{2} \tag{46}$$

The right part is a polynomial whose maximum is reached for $n_{-} = K/2$. Then,

$$n_{-}.n_{+} \le K^{2}/2 - K^{2}/4 \tag{47}$$

or,

$$n_{-}.n_{+} \le K^{2}/4 \tag{48}$$

and putting back the definition of K

$$n_{-}.n_{+} \le (N - n_{0})^{2}/4 \tag{49}$$

which is also

$$n_{-}.n_{+} \le N^{2}/4 \tag{50}$$

From (43) we get,

$$N' \le N^2/4 + n_0 \tag{51}$$

and finally,

$$N' \le N^2/4 + N \tag{52}$$

The maximum number of inequations in the initial system is defined for each case (2D/3D, static/dynamic) in the previous section. This leads to the following maximum number of inequations:

	N	N'	N''	N'''
2Dstatic	8	24		
2Ddynamic	10	35	342	
3Dstatic	12	48	624	
3Ddynamic	14	63	1056	279840

However, these values are much higher than the ones encountered in the case of the systems corresponding to the intersection problem. It can be noticed that n_0 can be better estimated as the inequations corresponding to the constraints $0.0 \le x \le 1.0$ leads to, for N', $n_0 \in \{D-1, 2(D-1)\}$ in static case and $n_0 \in \{D+1, 2D+1\}$ in dynamic case. Thus we can reduce N' to:

	N	N'
2Dstatic	8	14
2Ddynamic	10	16
3Dstatic	12	27
3Ddynamic	14	29

and so on for N'' and N'''. In practice, the maximum number of inequations encountered during validation were:

	N	N'	N''	N'''
2Dstatic	8	11		
2Ddynamic	10	13	21	
3Dstatic	12	20	55	
3Ddynamic	14	22	57	560

3 Algorithms of the solution

In this section I introduce the algorithms of the solution of the previous section for each case (static/dynamic and 2D/3D), and the algorithms to manipulate the structure used to represent the Frames.

Algorithms are given in pseudo code, and consequently without any optimization based on properties of one given language. One can refer to the C implementation in the following section for possible optimization in this language.

Algorithms are also given independently from each other. Code commonalization may be possible if one plans to use several cases together, but this is dependant of the implementation and thus left to the developper responsibility.

3.1 2D static

```
ENUM FrameType
 FrameCuboid,
  {\tt FrameTetrahedron}
END ENUM
STRUCT AABB2D
  // x,y
  real min[2]
  real max[2]
END STRUCT
STRUCT Frame2D
 FrameType type
  real orig[2]
 // comp[iComp][iAxis]
  real comp[2][2]
  AABB2D bdgBox
 real invComp[2][2]
END STRUCT
FUNCTION powi(base, exp)
  res = 1
  FOR i=0 TO (exp - 1)
   res = res * base
  END FOR
  RETURN res
END FUNCTION
FUNCTION Frame2DPrint(that)
  IF that.type == FrameTetrahedron
    PRINT "T"
  ELSE IF that.type == FrameCuboid
    PRINT "C"
  END IF
  PRINT "o("
  FOR i = 0 TO 1
    PRINT that.orig[i]
    IF i < 1
      PRINT ","
    END IF
  END FOR
  comp = ["x","y"]

FOR j = 0 TO 1

PRINT ") ", comp[j], "("

FOR i = 0 TO 1
      PRINT that.comp[j][i]
      IF i < 1
        PRINT ","
      END IF
    END FOR
  END FOR
  PRINT ")"
END FUNCTION
```

```
FUNCTION AABB2DPrint(that)
  PRINT "minXY("
  FOR i = 0 TO 1
    PRINT that.min[i]
    IF i < 1
      PRINT ","
    END IF
  END FOR
  PRINT ")-maxXY("
  FOR i = 0 TO 1
    PRINT that.max[i]
    IF i < 1
      PRINT ","
    END IF
  END FOR
  PRINT ")"
END FUNCTION
{\tt FUNCTION\ Frame 2DExportBdgBox(that,\ bdgBox,\ bdgBoxProj)}
  FOR i = 0 TO 1
    bdgBoxProj.max[i] = that.orig[i]
FOR j = 0 TO 1
      bdgBoxProj.max[i] =
        bdgBoxProj.max[i] + that.comp[j][i] * bdgBox.min[j]
    END FOR
    bdgBoxProj.min[i] = bdgBoxProj.max[i]
  END FOR
  nbVertices = powi(2, 2)
  FOR iVertex = 1 TO (nbVertices - 1)
    FOR i = 0 TO 1
      IF BITWISEAND(iVertex, powi(2, i)) <> 0
        v[i] = bdgBox.max[i]
      ELSE
        v[i] = bdgBox.min[i]
      END IF
    END FOR
    FOR i = 0 TO 1
      w[i] = that.orig[i]
      FOR j = 0 TO 1
       w[i] = w[i] + that.comp[j][i] * v[j]
      END FOR
    END FOR
    FOR i = 0 TO 1
      IF bdgBoxProj.min[i] > w[i]
        bdgBoxProj.min[i] = w[i]
      END IF
      IF bdgBoxProj.max[i] < w[i]</pre>
        bdgBoxProj.max[i] = w[i]
      END IF
    END FOR
  END FOR
END FUNCTION
{\tt FUNCTION\ Frame2DImportFrame(P,\ Q,\ Qp)}
  FOR i = 0 TO 1
    v[i] = Q.orig[i] - P.orig[i]
  END FOR
  FOR i = 0 TO 1
    Qp.orig[i] = 0.0
    FOR j = 0 TO 1
      Qp.orig[i] = Qp.orig[i] + P.invComp[j][i] * v[j]
```

```
Qp.comp[j][i] = 0.0
      FOR k = 0 TO 1
        Qp.comp[j][i] = Qp.comp[j][i] + P.invComp[k][i] * Q.comp[j][k]
    END FOR
  END FOR
END FUNCTION
FUNCTION Frame2DUpdateInv(that)
  \texttt{det} = \texttt{that.comp}[0][0] * \texttt{that.comp}[1][1] -
    that.comp[1][0] * that.comp[0][1]
  that.invComp[0][0] = that.comp[1][1] / det
that.invComp[0][1] = -that.comp[0][1] / det
  that.invComp[1][0] = -that.comp[1][0] / det
  that.invComp[1][1] = that.comp[0][0] / det
END FUNCTION
FUNCTION Frame2DCreateStatic(type, orig, comp)
  that.type = type
FOR iAxis = 0 TO 1
    that.orig[iAxis] = orig[iAxis]
    FOR iComp = 0 TO 1
      that.comp[iComp][iAxis] = comp[iComp][iAxis]
    END FOR
  END FOR
  FOR iAxis = 0 TO 1
    min = orig[iAxis]
    max = orig[iAxis]
    FOR iComp = 0 TO 1
      IF that.type == FrameCuboid
        IF that.comp[iComp][iAxis] < 0.0
          min = min + that.comp[iComp][iAxis]
        IF that.comp[iComp][iAxis] > 0.0
          max = max + that.comp[iComp][iAxis]
        END IF
      ELSE IF that.type == FrameTetrahedron
        IF that.comp[iComp][iAxis] < 0.0 AND
           min > orig[iAxis] + that.comp[iComp][iAxis]
           min = orig[iAxis] + that.comp[iComp][iAxis]
        END IF
        IF that.comp[iComp][iAxis] > 0.0 AND
          max < orig[iAxis] + that.comp[iComp][iAxis]</pre>
          max = orig[iAxis] + that.comp[iComp][iAxis]
        END IF
      END IF
    END FOR
    that.bdgBox.min[iAxis] = min
    that.bdgBox.max[iAxis] = max
  END FOR
  Frame2DUpdateInv(that)
  RETURN that
END FUNCTION
FUNCTION Sgn(v)
  IF 0.0 < v
   a = 1
  ELSE
    a = 0
  END IF
  IF v < 0.0
    b = 1
```

```
ELSE
   b = 0
  END IF
  RETURN A - B
END FUNCTION
FUNCTION Neg(x)
  IF x < 0.0
   RETURN x
  ELSE
   RETURN 0.0
  END IF
END FUNCTION
FST_VAR = 0
SND_VAR = 1
{\tt FUNCTION\ ElimVar2D(M,\ Y,\ nbRows,\ nbCols,\ Mp,\ Yp,\ nbRemainRows)}
  nbRemainRows = 0
  FOR iRow = 0 TO (nbRows - 2)
    IF M[iRow][0] <> 0.0
      FOR jRow = (iRow + 1) TO (nbRows - 1)
        IF sgn(M[iRow][0]) <> sgn(M[jRow][0]) AND
            M[jRow][0] <> 0.0
          sumNegCoeff = 0.0
           jCol = 0
          FOR iCol = 1 TO (nbCols - 1)
            Mp[nbRemainRows][jCol] =
              M[iRow][iCol] / ABS(M[iRow][0]) +
              M[jRow][iCol] / ABS(M[jRow][0])
            sumNegCoeff = sumNegCoeff + neg(Mp[nbRemainRows][jCol])
            jCol = jCol + 1
          END FOR
          Yp[nbRemainRows] =
            Y[iRow] / ABS(M[iRow][0]) +
Y[jRow] / ABS(M[jRow][0])
          IF Yp[nbRemainRows] < sumNegCoeff</pre>
            RETURN TRUE
          END IF
          nbRemainRows = nbRemainRows + 1
        END IF
      END FOR
    END IF
  END FOR
  FOR iRow = 0 TO (nbRows - 1)
    IF M[iRow][0] == 0.0
      jCol = 0
      FOR iCol = 1 TO (nbCols - 1)
        Mp[nbRemainRows][jCol] = M[iRow][iCol]
        jCol = jCol + 1
      END FOR
      Yp[nbRemainRows] = Y[iRow]
      nbRemainRows = nbRemainRows + 1
    END IF
  END FOR
  RETURN FALSE
END FUNCTION
FUNCTION GetBoundLastVar2D(iVar, M, Y, nbRows, bdgBox)
  bdgBox.min[iVar] = 0.0
  bdgBox.max[iVar] = 1.0
  FOR jRow = 0 TO (nbRows - 1)
```

```
IF M[jRow][0] > 0.0
      y = Y[jRow] / M[jRow][0]
      IF bdgBox.max[iVar] > y
        bdgBox.max[iVar] = y
      END IF
    ELSE IF M[jRow][0] < 0.0
      y = Y[jRow] / M[jRow][0]
      IF bdgBox.min[iVar] < y</pre>
        bdgBox.min[iVar] = y
      END IF
    END IF
  END FOR
END FUNCTION
FUNCTION GetBoundVar2D(iVar, M, Y, nbRows, nbCols, bdgBox)
  bdgBox.min[iVar] = 0.0
  bdgBox.max[iVar] = 1.0
 FOR iRow = 0 .. TO (nbRows - 1)
IF M[iRow][0] <> 0.0
      min = -1.0 * Y[iRow]
      max = Y[iRow]
      FOR iCol = 1 ... TO (nbCols - 1)
        IF M[iRow][iCol] > 0.0
          min = min + M[iRow][iCol] * bdgBox.min[iCol + iVar]
          max = max - M[iRow][iCol] * bdgBox.min[iCol + iVar]
        ELSE IF M[iRow][iCol] < 0.0</pre>
          min = min + M[iRow][iCol] * bdgBox.max[iCol + iVar]
          max = max - M[iRow][iCol] * bdgBox.max[iCol + iVar]
        END IF
      END FOR
      min = min / (-1.0 * M[iRow][0])
max = max / M[iRow][0]
      IF bdgBox.min[iVar] > min
        bdgBox.min[iVar] = min
      END IF
      IF bdgBox.max[iVar] < max</pre>
        bdgBox.max[iVar] = max
      END IF
    END IF
  END FOR
END FUNCTION
FUNCTION FMBTestIntersection2D(that, tho, bdgBox)
  {\tt Frame2DImportFrame(that, tho, thoProj)}
  M[0][0] = -thoProj.comp[0][0]
  M[0][1] = -thoProj.comp[1][0]
  Y[0] = thoProj.orig[0]
  IF Y[0] < neg(M[0][0]) + neg(M[0][1])</pre>
   RETURN FALSE
  END IF
  M[1][0] = -thoProj.comp[0][1]
  M[1][1] = -thoProj.comp[1][1]
  Y[1] = thoProj.orig[1]
  IF Y[1] < neg(M[1][0]) + neg(M[1][1])</pre>
   RETURN FALSE
  END IF
  nbRows = 2
  IF that.type == FrameCuboid
    M[nbRows][0] = thoProj.comp[0][0]
    M[nbRows][1] = thoProj.comp[1][0]
    Y[nbRows] = 1.0 - thoProj.orig[0]
    IF Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1])</pre>
```

```
RETURN FALSE
    END IF
    nbRows = nbRows + 1
    M[nbRows][0] = thoProj.comp[0][1]
    M[nbRows][1] = thoProj.comp[1][1]
    Y[nbRows] = 1.0 - thoProj.orig[1]
    IF Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1])</pre>
      RETURN FALSE
    END IF
    nbRows = nbRows + 1
  ELSE
    M[nbRows][0] = thoProj.comp[0][0] + thoProj.comp[0][1]
    M[nbRows][1] = thoProj.comp[1][0] + thoProj.comp[1][1]
    Y[nbRows] = 1.0 - thoProj.orig[0] - thoProj.orig[1]
    IF Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1])</pre>
     RETURN FALSE
    END IF
    nbRows = nbRows + 1
  IF tho.type == FrameCuboid
    M[nbRows][0] = 1.0
    M[nbRows][1] = 0.0
    Y[nbRows] = 1.0
    nbRows = nbRows + 1
    M[nbRows][0] = 0.0
    M[nbRows][1] = 1.0
    Y[nbRows] = 1.0
    nbRows = nbRows + 1
  ELSE
    M[nbRows][0] = 1.0
    M[nbRows][1] = 1.0
    Y[nbRows] = 1.0
    nbRows = nbRows + 1
  END IF
  M[nbRows][0] = -1.0
  M[nbRows][1] = 0.0
  Y[nbRows] = 0.0
  nbRows = nbRows + 1
  M[nbRows][0] = 0.0
  M[nbRows][1] = -1.0
  Y[nbRows] = 0.0
  nbRows = nbRows + 1
  inconsistency = ElimVar2D(M, Y, nbRows, 2, Mp, Yp, nbRowsP)
  IF inconsistency == TRUE
    RETURN FALSE
  END IF
  {\tt GetBoundLastVar2D}\,({\tt SND\_VAR}\,,\,\,{\tt Mp}\,,\,\,{\tt Yp}\,,\,\,{\tt nbRowsP}\,,\,\,{\tt bdgBoxLocal})
  IF bdgBoxLocal.min[SND_VAR] >= bdgBoxLocal.max[SND_VAR]
   RETURN FALSE
    GetBoundVar2D(FST_VAR, M, Y, nbRows, 2, bdgBoxLocal)
    bdgBox = bdgBoxLocal
  END IF
 RETURN TRUE
END FUNCTION
origP2D = [0.0, 0.0]
compP2D = [
  [1.0, 0.0],
  [0.0, 1.0]]
P2D = Frame2DCreateStatic(FrameCuboid, origP2D, compP2D)
origQ2D = [0.0, 0.0]
```

```
compQ2D = [
  [1.0, 0.0],
  [0.0, 1.0]]
Q2D = Frame2DCreateStatic(FrameCuboid, origQ2D, compQ2D)
isIntersecting2D = FMBTestIntersection2D(P2D, Q2D, bdgBox2DLocal)
IF isIntersecting2D == TRUE
  PRINT "Intersection detected."
  Frame2DExportBdgBox(Q2D, bdgBox2DLocal, bdgBox2D);
  AABB2DPrint(bdgBox2D)
ELSE
  PRINT "No intersection."
END IF
```

3.2 3D static

```
ENUM FrameType
  FrameCuboid,
  {\tt FrameTetrahedron}
END ENUM
STRUCT AABB3D
 // x,y,z
  real min[3]
  real max[3]
END STRUCT
STRUCT Frame3D
  FrameType type
  real orig[3]
  // comp[iComp][iAxis]
  real comp[3][3]
  AABB3D bdgBox
  real invComp[3][3]
END STRUCT
FUNCTION powi(base, exp)
  FOR i=0 TO (exp - 1)
   res = res * base
  END FOR
  RETURN res
END FUNCTION
FUNCTION Frame3DPrint(that)
  IF that.type == FrameTetrahedron
   PRINT "T"
  ELSE IF that.type == FrameCuboid
   PRINT "C"
  END IF
  PRINT "o("
  FOR i = 0 TO 2
    PRINT that.orig[i]
    IF i < 2
     PRINT ","
    END IF
  END FOR
  comp = ["x","y","z"]
  FOR j = 0 TO 2
    PRINT ") ", comp[j], "("
    FOR i = 0 TO 2
      PRINT that.comp[j][i]
```

```
IF i < 2
        PRINT ","
      END IF
    END FOR
  END FOR
  PRINT ")"
END FUNCTION
FUNCTION AABB3DPrint(that)
  PRINT "minXYZ("
  FOR i = 0 TO 2
    PRINT that.min[i]
    IF i < 2
     PRINT ","
    END IF
  END FOR
  PRINT ")-maxXYZ("
  FOR i = 0 TO 2
    PRINT that.max[i]
    IF i < 2
      PRINT ","
    END IF
  END FOR
  PRINT ")"
END FUNCTION
FUNCTION Frame3DExportBdgBox(that, bdgBox, bdgBoxProj)
  FOR i = 0 TO 2
    bdgBoxProj.max[i] = that.orig[i]
    FOR j = 0 TO 2
      bdgBoxProj.max[i] =
        bdgBoxProj.max[i] + that.comp[j][i] * bdgBox.min[j]
    END FOR
    bdgBoxProj.min[i] = bdgBoxProj.max[i]
  END FOR
  nbVertices = powi(2, 3)
FOR iVertex = 1 TO (nbVertices - 1)
    FOR i = 0 TO 2
      IF BITWISEAND(iVertex, powi(2, i)) \iff 0
        v[i] = bdgBox.max[i]
      ELSE
        v[i] = bdgBox.min[i]
      END IF
    END FOR
    FOR i = 0 TO 2
      w[i] = that.orig[i]
      FOR j = 0 TO 2
w[i] = w[i] + that.comp[j][i] * v[j]
      END FOR
    END FOR
    FOR i = 0 TO 2
      IF bdgBoxProj.min[i] > w[i]
        bdgBoxProj.min[i] = w[i]
      END IF
      IF bdgBoxProj.max[i] < w[i]</pre>
        bdgBoxProj.max[i] = w[i]
      END IF
    END FOR
  END FOR
END FUNCTION
FUNCTION Frame3DImPortFrame(P, Q, Qp)
```

```
FOR i = 0 TO 2
   v[i] = Q.orig[i] - P.orig[i]
  END FOR
 FOR i = 0 TO 2
   Qp.orig[i] = 0.0
   FOR j = 0 TO 2
     Qp.orig[i] = Qp.orig[i] + P.invComp[j][i] * v[j]
     Qp.comp[j][i] = 0.0
     FOR k = 0 TO 2
       END FOR
 END FOR
END FUNCTION
FUNCTION Frame3DUpdateInv(that)
 det =
   that.comp[0][0] * (that.comp[1][1] * that.comp[2][2] -
    that.comp[1][2] * that.comp[2][1])
   that.comp[1][0] * (that.comp[0][1] * that.comp[2][2] -
   that.comp[0][2] * that.comp[2][1]) +
   that.comp[2][0] * (that.comp[0][1] * that.comp[1][2] -
   that.comp[0][2] * that.comp[1][1])
  that.invComp[0][0] = (that.comp[1][1] * that.comp[2][2] -
    that.comp[2][1] * that.comp[1][2]) / det
  that.invComp[0][1] = (that.comp[2][1] * that.comp[0][2] -
   that.comp[2][2] * that.comp[0][1]) / det
  that.invComp[0][2] = (that.comp[0][1] * that.comp[1][2] -
   that.comp[0][2] * that.comp[1][1]) / det
  that.invComp[1][0] = (that.comp[2][0] * that.comp[1][2] -
   that.invComp[1][1] = (that.comp[0][0] * that.comp[2][2] -
   that.comp[2][0] * that.comp[0][2]) / det
  that.invComp[1][2] = (that.comp[0][2] * that.comp[1][0] -
   that.comp[1][2] * that.comp[0][0]) / det
  that.invComp[2][0] = (that.comp[1][0] * that.comp[2][1] -
   that.comp[2][0] * that.comp[1][1]) / det
  that.invComp[2][1] = (that.comp[0][1] * that.comp[2][0] -
   \verb| that.comp[2][1] * that.comp[0][0]) / det
  that.invComp[2][2] = (that.comp[0][0] * that.comp[1][1] -
   \verb|that.comp[1][0] * \verb|that.comp[0][1]| / \verb|det||
END FUNCTION
FUNCTION Frame3DCreateStatic(type, orig, comp)
  that.type = type
 FOR iAxis = 0 TO 2
   that.orig[iAxis] = orig[iAxis]
   FOR iComp = 0 TO 2
     that.comp[iComp][iAxis] = comp[iComp][iAxis]
   END FOR
  END FOR
 FOR iAxis = 0 TO 2
   min = orig[iAxis]
   max = orig[iAxis]
   FOR iComp = 0 TO 2
     IF that.type == FrameCuboid
       IF that.comp[iComp][iAxis] < 0.0</pre>
         min = min + that.comp[iComp][iAxis]
       END IF
       IF that.comp[iComp][iAxis] > 0.0
         max = max + that.comp[iComp][iAxis]
       END IF
```

```
ELSE IF that.type == FrameTetrahedron
        IF that.comp[iComp][iAxis] < 0.0 AND
          min > orig[iAxis] + that.comp[iComp][iAxis]
min = orig[iAxis] + that.comp[iComp][iAxis]
        END IF
        IF that.comp[iComp][iAxis] > 0.0 AND
          max < orig[iAxis] + that.comp[iComp][iAxis]</pre>
          max = orig[iAxis] + that.comp[iComp][iAxis]
        END IF
      END IF
    END FOR
    that.bdgBox.min[iAxis] = min
    that.bdgBox.max[iAxis] = max
  END FOR
  Frame3DUpdateInv(that)
  RETURN that
END FUNCTION
FUNCTION Sgn(v)
  IF 0.0 < v
   a = 1
  ELSE
    a = 0
  END IF
  IF v < 0.0
   b = 1
  ELSE
   b = 0
  END IF
  RETURN A - B
END FUNCTION
FUNCTION Neg(x)
  IF x < 0.0
   RETURN x
  ELSE
    RETURN 0.0
  END IF
END FUNCTION
FST_VAR = 0
SND_VAR = 1
THD_VAR = 2
FUNCTION ElimVar3D(M, Y, nbRows, nbCols, Mp, Yp, nbRemainRows)
  nbRemainRows = 0
  FOR iRow = 0 TO (nbRows - 2)
    IF M[iRow][0] <> 0.0
      FOR jRow = (iRow + 1) TO (nbRows - 1)
        IF sgn(M[iRow][0]) <> sgn(M[jRow][0]) AND
            M[jRow][0] <> 0.0
          sumNegCoeff = 0.0
           jCol = 0
          FOR iCol = 1 TO (nbCols - 1)
            Mp[nbRemainRows][jCol] =
              M[iRow][iCol] / ABS(M[iRow][0]) +
               M[jRow][iCol] / ABS(M[jRow][0])
            sumNegCoeff = sumNegCoeff + neg(Mp[nbRemainRows][jCol])
            jCol = jCol + 1
          END FOR
          Yp[nbRemainRows] =
            Y[iRow] / ABS(M[iRow][0]) +
```

```
Y[jRow] / ABS(M[jRow][0])
          IF Yp[nbRemainRows] < sumNegCoeff</pre>
            RETURN TRUE
          END IF
          nbRemainRows = nbRemainRows + 1
        END IF
      END FOR
    END IF
  END FOR
  FOR iRow = 0 TO (nbRows - 1)
    IF M[iRow][0] == 0.0
      jCol = 0
      FOR iCol = 1 TO (nbCols - 1)
        Mp[nbRemainRows][jCol] = M[iRow][iCol]
        jCol = jCol + 1
      END FOR
      Yp[nbRemainRows] = Y[iRow]
      nbRemainRows = nbRemainRows + 1
    END IF
  END FOR
  RETURN FALSE
END FUNCTION
FUNCTION GetBoundLastVar3D(iVar, M, Y, nbRows, bdgBox)
  bdgBox.min[iVar] = 0.0
  bdgBox.max[iVar] = 1.0
  FOR jRow = 0 TO (nbRows - 1)
    IF M[jRow][0] > 0.0
y = Y[jRow] / M[jRow][0]
      IF bdgBox.max[iVar] > y
        bdgBox.max[iVar] = y
      END IF
    ELSE IF M[jRow][0] < 0.0
      y = Y[jRow] / M[jRow][0]
      IF bdgBox.min[iVar] < y</pre>
        bdgBox.min[iVar] = y
      END IF
    END IF
  END FOR
END FUNCTION
FUNCTION GetBoundVar3D(iVar, M, Y, nbRows, nbCols, bdgBox)
  bdgBox.min[iVar] = 0.0
  bdgBox.max[iVar] = 1.0
  FOR iRow = 0 .. TO (nbRows - 1)
    IF M[iRow][0] <> 0.0
      min = -1.0 * Y[iRow]
      max = Y[iRow]
      FOR iCol = 1 \dots TO \text{ (nbCols - 1)}
        IF M[iRow][iCol] > 0.0
          min = min + M[iRow][iCol] * bdgBox.min[iCol + iVar]
          max = max - M[iRow][iCol] * bdgBox.min[iCol + iVar]
        ELSE IF M[iRow][iCol] < 0.0</pre>
          min = min + M[iRow][iCol] * bdgBox.max[iCol + iVar]
          max = max - M[iRow][iCol] * bdgBox.max[iCol + iVar]
        END IF
      END FOR
      min = min / (-1.0 * M[iRow][0])
      max = max / M[iRow][0]
      IF bdgBox.min[iVar] > min
       bdgBox.min[iVar] = min
      END IF
```

```
IF bdgBox.max[iVar] < max</pre>
        bdgBox.max[iVar] = max
      END IF
    END IF
  END FOR
END FUNCTION
FUNCTION FMBTestIntersection3D(that, tho, bdgBox)
  Frame3DImportFrame(that, tho, thoProj)
  M[0][0] = -thoProj.comp[0][0]
  M[0][1] = -thoProj.comp[1][0]
  M[0][2] = -thoProj.comp[2][0]
  Y[0] = thoProj.orig[0]
  IF Y[0] < neg(M[0][0]) + neg(M[0][1]) + neg(M[0][2])
   RETURN FALSE
  END IF
 M[1][0] = -thoProj.comp[0][1]
  M[1][1] = -thoProj.comp[1][1]
  M[1][2] = -thoProj.comp[2][1]
  Y[1] = thoProj.orig[1]
  IF Y[1] < neg(M[1][0]) + neg(M[1][1]) + neg(M[1][2])
   RETURN FALSE
  END IF
 M[2][0] = -thoProj.comp[0][2]
 M[2][1] = -thoProj.comp[1][2]
 M[2][2] = -thoProj.comp[2][2]
  Y[2] = thoProj.orig[2]
  IF Y[2] < neg(M[2][0]) + neg(M[2][1]) + neg(M[2][2])
   RETURN FALSE
  END IF
  nbRows = 3
  IF that.type == FrameCuboid
    M[nbRows][0] = thoProj.comp[0][0]
    M[nbRows][1] = thoProj.comp[1][0]
    M[nbRows][2] = thoProj.comp[2][0]
    Y[nbRows] = 1.0 - thoProj.orig[0]
    IF Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +</pre>
                    neg(M[nbRows][2])
      RETURN FALSE
    END IF
    nbRows = nbRows + 1
    M[nbRows][0] = thoProj.comp[0][1]
    M[nbRows][1] = thoProj.comp[1][1]
    M[nbRows][2] = thoProj.comp[2][1]
    Y[nbRows] = 1.0 - thoProj.orig[1]
    IF Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +</pre>
                    neg(M[nbRows][2])
      RETURN FALSE
    END IF
    nbRows = nbRows + 1
    M[nbRows][0] = thoProj.comp[0][2]
    M[nbRows][1] = thoProj.comp[1][2]
    M[nbRows][2] = thoProj.comp[2][2]
    Y[nbRows] = 1.0 - thoProj.orig[2]
    IF Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +</pre>
                    neg(M[nbRows][2])
      RETURN FALSE
    END IF
    nbRows = nbRows + 1
  ELSE
    M[nbRows][0] =
      thoProj.comp[0][0] + thoProj.comp[0][1] + thoProj.comp[0][2]
```

```
M[nbRows][1] =
    thoProj.comp[1][0] + thoProj.comp[1][1] + thoProj.comp[1][2]
  M[nbRows][2] =
    thoProj.comp[2][0] + thoProj.comp[2][1] + thoProj.comp[2][2]
  Y[nbRows] =
    1.0 - thoProj.orig[0] - thoProj.orig[1] - thoProj.orig[2]
  IF Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +</pre>
                   neg(M[nbRows][2])
    RETURN FALSE
  END IF
  nbRows = nbRows + 1
END IF
IF tho.type == FrameCuboid
  M[nbRows][0] = 1.0
  M[nbRows][1] = 0.0
  M[nbRows][2] = 0.0
  Y[nbRows] = 1.0
  nbRows = nbRows + 1
  M[nbRows][0] = 0.0
  M[nbRows][1] = 1.0
  M[nbRows][2] = 0.0
  Y[nbRows] = 1.0
  nbRows = nbRows + 1
  M[nbRows][0] = 0.0
  M[nbRows][1] = 0.0
  M[nbRows][2] = 1.0
  Y[nbRows] = 1.0
  nbRows = nbRows + 1
FISE
  M[nbRows][0] = 1.0
  M[nbRows][1] = 1.0
  M[nbRows][2] = 1.0
  Y[nbRows] = 1.0
  nbRows = nbRows + 1
END IF
M[nbRows][0] = -1.0
M[nbRows][1] = 0.0
M[nbRows][2] = 0.0
Y[nbRows] = 0.0
nbRows = nbRows + 1
M[nbRows][0] = 0.0
M[nbRows][1] = -1.0
M[nbRows][2] = 0.0
Y[nbRows] = 0.0
nbRows = nbRows + 1
M[nbRows][0] = 0.0
M[nbRows][1] = 0.0
M[nbRows][2] = -1.0
Y[nbRows] = 0.0
nbRows = nbRows + 1
inconsistency =
 ElimVar3D(M, Y, nbRows, 3, Mp, Yp, nbRowsP)
IF inconsistency == TRUE
 RETURN FALSE
END IF
inconsistency =
  {\tt ElimVar3D\,(Mp\,,\ Yp\,,\ nbRowsP\,,\ 2\,,\ Mpp\,,\ Ypp\,,\ nbRowsPP)}
IF inconsistency == TRUE
  RETURN FALSE
END IF
GetBoundLastVar3D(THD_VAR, Mpp, Ypp, nbRowsPP, bdgBoxLocal)
IF bdgBoxLocal.min[THD_VAR] >= bdgBoxLocal.max[THD_VAR]
```

```
RETURN FALSE
  ELSE
    GetBoundVar3D(SND_VAR, Mp, Yp, nbRowsP, 2, bdgBoxLocal)
    GetBoundVar3D(FST_VAR, M, Y, nbRows, 3, bdgBoxLocal)
    bdgBox = bdgBoxLocal
  END IF
 RETURN TRUE
END FUNCTION
origP3D = [0.0, 0.0, 0.0]
compP3D = [
  [1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
  [0.0, 0.0, 1.0]]
P3D = Frame3DCreateStatic(FrameTetrahedron, origP3D, compP3D)
origQ3D = [0.0, 0.0, 0.0]
compQ3D = [
  [1.0, 0.0, 0.0],
 [0.0, 1.0, 0.0],
[0.0, 0.0, 1.0]]
Q3D = Frame3DCreateStatic(FrameTetrahedron, origQ3D, compQ3D)
isIntersecting3D = FMBTestIntersection3D(P3D, Q3D, bdgBox3DLocal)
IF isIntersecting3D == TRUE
 PRINT "Intersection detected."
 {\tt Frame3DExportBdgBox(Q3D, bdgBox3DLocal, bdgBox3D)}
 AABB3DPrint(bdgBox3D)
ELSE
 PRINT "No intersection."
END IF
```

3.3 2D dynamic

```
ENUM FrameType
  FrameCuboid,
  FrameTetrahedron
END ENUM
STRUCT AABB2DTime
  // x,y,t
  real min[3]
  real max[3]
END STRUCT
STRUCT Frame2DTime
  FrameType type
  real orig[2]
  // comp[iComp][iAxis]
  real comp[2][2]
  AABB2DTime bdgBox
  real invComp[2][2]
 real speed[2]
END STRUCT
FUNCTION powi(base, exp)
  res = 1
  FOR i=0 TO (exp - 1)
   res = res * base
  END FOR
  RETURN res
END FUNCTION
```

```
FUNCTION Frame2DTimePrint(that)
  IF that.type == FrameTetrahedron
   PRINT "T"
  ELSE IF that.type == FrameCuboid
    PRINT "C"
  END IF
  PRINT "o("
  FOR i = 0 TO 1
    PRINT that.orig[i]
    IF i < 1
     PRINT ","
    END IF
  END FOR
  PRINT ") s("
  FOR i = 0 TO 1
    PRINT that.speed[i]
    IF i < 1
      PRINT ","
    END IF
  END FOR
  comp = ["x", "y"]
  FOR j = 0 TO 1
   PRINT ") ", comp[j], "("
    FOR i = 0 TO 1
      PRINT that.comp[j][i]
      IF i < 1
        PRINT ","
      END IF
    END FOR
  END FOR
  PRINT ")"
END FUNCTION
{\tt FUNCTION} \  \  {\tt AABB2DTimePrint(that)}
  PRINT "minXYT("
  FOR i = 0 TO 2
    PRINT that.min[i]
    IF i < 2
     PRINT ","
    END IF
  END FOR
  PRINT ")-maxXYT("
  FOR i = 0 TO 2
    PRINT that.max[i]
    IF i < 2
     PRINT ","
    END IF
  END FOR
  PRINT ")"
END FUNCTION
FUNCTION Frame2DTimeExportBdgBox(that, bdgBox, bdgBoxProj)
  bdgBoxProj.min[2] = bdgBox.min[2]
  bdgBoxProj.max[2] = bdgBox.max[2]
  FOR i = 0 TO 1
    bdgBoxProj.max[i] = that.orig[i] + that.speed[i] * bdgBox.min[2]
    FOR j = 0 TO 1
      bdgBoxProj.max[i] =
        bdgBoxProj.max[i] + that.comp[j][i] * bdgBox.min[j]
    END FOR
    bdgBoxProj.min[i] = bdgBoxProj.max[i]
  END FOR
```

```
nbVertices = powi(2, 2)
  FOR iVertex = 1 TO (nbVertices - 1)
    FOR i = 0 TO 1
      IF BITWISEAND(iVertex, powi(2, i)) \iff 0
        v[i] = bdgBox.max[i]
      ELSE
        v[i] = bdgBox.min[i]
      END IF
    END FOR
    FOR i = 0 TO 1
      w[i] = that.orig[i]
      FOR j = 0 TO 1
w[i] = w[i] + that.comp[j][i] * v[j]
    END FOR
    FOR i = 0 TO 1
      IF bdgBoxProj.min[i] > w[i] + that.speed[i] * bdgBox.min[2]
        bdgBoxProj.min[i] = w[i] + that.speed[i] * bdgBox.min[2]
      IF bdgBoxProj.min[i] > w[i] + that.speed[i] * bdgBox.max[2]
        bdgBoxProj.min[i] = w[i] + that.speed[i] * bdgBox.max[2]
      END IF
      IF bdgBoxProj.max[i] < w[i] + that.speed[i] * bdgBox.min[2]</pre>
        bdgBoxProj.max[i] = w[i] + that.speed[i] * bdgBox.min[2]
      END IF
      IF bdgBoxProj.max[i] < w[i] + that.speed[i] * bdgBox.max[2]</pre>
        bdgBoxProj.max[i] = w[i] + that.speed[i] * bdgBox.max[2]
      END IF
    END FOR
  END FOR
END FUNCTION
FUNCTION Frame2DTimeImPortFrame(P, Q, Qp)
  FOR i = 0 TO 1
    v[i] = Q.orig[i] - P.orig[i]
    s[i] = Q.speed[i] - P.speed[i]
  END FOR
  FOR i = 0 TO 1
    Qp.orig[i] = 0.0
    Qp.speed[i] = 0.0
    FOR j = 0 TO 1
      Qp.orig[i] = Qp.orig[i] + P.invComp[j][i] * v[j]
      Qp.speed[i] = Qp.speed[i] + P.invComp[j][i] * s[j]
      Qp.comp[j][i] = 0.0
      FOR k = 0 TO 1
          Qp.comp[j][i] = Qp.comp[j][i] + P.invComp[k][i] * Q.comp[j][k] 
      END FOR
    END FOR
  END FOR
END FUNCTION
FUNCTION Frame2DTimeUpdateInv(that)
  det = that.comp[0][0] * that.comp[1][1] -
    that.comp[1][0] * that.comp[0][1]
  that.invComp[0][0] = that.comp[1][1] / det
  that.invComp[0][1] = -that.comp[0][1] / det
  that.invComp[1][0] = -that.comp[1][0] / det
  that.invComp[1][1] = that.comp[0][0] / det
END FUNCTION
FUNCTION Frame2DTimeCreateStatic(type, orig, comp)
  that.type = type
```

```
FOR iAxis = 0 TO 1
    that.orig[iAxis] = orig[iAxis]
that.speed[iAxis] = speed[iAxis]
    FOR iComp = 0 TO 1
      that.comp[iComp][iAxis] = comp[iComp][iAxis]
    END FOR
  END FOR
  FOR iAxis = 0 TO 1
    min = orig[iAxis]
    max = orig[iAxis]
    FOR iComp = 0 TO 1
      IF that.type == FrameCuboid
        IF that.comp[iComp][iAxis] < 0.0
         min = min + that.comp[iComp][iAxis]
        END IF
        IF that.comp[iComp][iAxis] > 0.0
         max = max + that.comp[iComp][iAxis]
        END IF
      ELSE IF that.type == FrameTetrahedron
        IF that.comp[iComp][iAxis] < 0.0 AND
          min > orig[iAxis] + that.comp[iComp][iAxis]
          min = orig[iAxis] + that.comp[iComp][iAxis]
        END IF
        IF that.comp[iComp][iAxis] > 0.0 AND
          max < orig[iAxis] + that.comp[iComp][iAxis]</pre>
          max = orig[iAxis] + that.comp[iComp][iAxis]
        END IF
      END IF
    END FOR
    IF that.speed[iAxis] < 0.0</pre>
      min = min + that.speed[iAxis]
    END IF
    IF that.speed[iAxis] > 0.0
     max = max + that.speed[iAxis]
    END IF
    that.bdgBox.min[iAxis] = min
    that.bdgBox.max[iAxis] = max
  END FOR
  that.bdgBox.min[2] = 0.0
  that.bdgBox.max[2] = 1.0
  Frame2DTimeUpdateInv(that)
 RETURN that
END FUNCTION
FUNCTION Sgn(v)
  IF 0.0 < v
   a = 1
  ELSE
   a = 0
  END IF
  IF v < 0.0
   b = 1
  ELSE
   b = 0
  END IF
 RETURN A - B
END FUNCTION
FUNCTION Neg(x)
  IF x < 0.0
  RETURN x
  ELSE
```

```
RETURN 0.0
  END IF
END FUNCTION
FST_VAR = 0
SND_VAR = 1
THD_VAR = 2
FUNCTION ElimVar2DTime(M, Y, nbRows, nbCols, Mp, Yp, nbRemainRows)
  nbRemainRows = 0
  FOR iRow = 0 TO (nbRows - 2)
    IF M[iRow][0] <> 0.0
      FOR jRow = (iRow + 1) TO (nbRows - 1)
        IF sgn(M[iRow][0]) <> sgn(M[jRow][0]) AND
          M[jRow][0] <> 0.0
sumNegCoeff = 0.0
          jCol = 0
          FOR iCol = 1 TO (nbCols - 1)
             Mp[nbRemainRows][jCol] =
              M[iRow][iCol] / ABS(M[iRow][0]) +
M[jRow][iCol] / ABS(M[jRow][0])
             sumNegCoeff = sumNegCoeff + neg(Mp[nbRemainRows][jCol])
             jCol = jCol + 1
          END FOR
          Yp[nbRemainRows] =
             Y[iRow] / ABS(M[iRow][0]) +
             Y[jRow] / ABS(M[jRow][0])
          IF Yp[nbRemainRows] < sumNegCoeff</pre>
            RETURN TRUE
          END IF
          nbRemainRows = nbRemainRows + 1
        END IF
      END FOR
    END IF
  END FOR
  FOR iRow = 0 TO (nbRows - 1)
    IF M[iRow][0] == 0.0
      jCol = 0
      FOR iCol = 1 TO (nbCols - 1)
        Mp[nbRemainRows][jCol] = M[iRow][iCol]
        jCol = jCol + 1
      END FOR
      Yp[nbRemainRows] = Y[iRow]
      nbRemainRows = nbRemainRows + 1
    END IF
  END FOR
  RETURN FALSE
END FUNCTION
FUNCTION GetBoundLastVar2DTime(iVar, M, Y, nbRows, bdgBox)
  bdgBox.min[iVar] = 0.0
  bdgBox.max[iVar] = 1.0
  FOR jRow = 0 TO (nbRows - 1)
    IF M[jRow][0] > 0.0
      y = Y[jRow] / M[jRow][0]
      IF bdgBox.max[iVar] > y
        bdgBox.max[iVar] = y
      END IF
    ELSE IF M[jRow][0] < 0.0
      y = Y[jRow] / M[jRow][0]
      IF bdgBox.min[iVar] < y</pre>
        bdgBox.min[iVar] = y
```

```
END IF
    END IF
  END FOR
END FUNCTION
FUNCTION GetBoundVar2DTime(iVar, M, Y, nbRows, nbCols, bdgBox)
  bdgBox.min[iVar] = 0.0
  bdgBox.max[iVar] = 1.0
 FOR iRow = 0 .. TO (nbRows - 1)
IF M[iRow][0] <> 0.0
      min = -1.0 * Y[iRow]
      max = Y[iRow]
      FOR iCol = 1 \dots TO \text{ (nbCols - 1)}
        IF M[iRow][iCol] > 0.0
          min = min + M[iRow][iCol] * bdgBox.min[iCol + iVar]
          max = max - M[iRow][iCol] * bdgBox.min[iCol + iVar]
        ELSE IF M[iRow][iCol] < 0.0</pre>
          min = min + M[iRow][iCol] * bdgBox.max[iCol + iVar]
          max = max - M[iRow][iCol] * bdgBox.max[iCol + iVar]
        END IF
      END FOR
      min = min / (-1.0 * M[iRow][0])
      max = max / M[iRow][0]
      IF bdgBox.min[iVar] > min
       bdgBox.min[iVar] = min
      END IF
      IF bdgBox.max[iVar] < max</pre>
        bdgBox.max[iVar] = max
      END IF
    END IF
  END FOR
END FUNCTION
FUNCTION FMBTestIntersection2DTime(that, tho, bdgBox)
  Frame2DTimeImportFrame(that, tho, thoProj)
  M[0][0] = -thoProj.comp[0][0]
 M[0][1] = -thoProj.comp[1][0]
  M[0][2] = -thoProj.speed[0]
  Y[0] = thoProj.orig[0]
  IF (Y[0] < neg(M[0][0]) + neg(M[0][1]) + neg(M[0][2]))
   RETURN FALSE
  END IF
  M[1][0] = -thoProj.comp[0][1]
 M[1][1] = -thoProj.comp[1][1]
M[1][2] = -thoProj.speed[1]
  Y[1] = thoProj.orig[1]
  IF (Y[1] < neg(M[1][0]) + neg(M[1][1]) + neg(M[1][2]))
   RETURN FALSE
  END IF
  nbRows = 2
  IF that.type == FrameCuboid
    M[nbRows][0] = thoProj.comp[0][0]
    M[nbRows][1] = thoProj.comp[1][0]
    M[nbRows][2] = thoProj.speed[0]
    Y[nbRows] = 1.0 - thoProj.orig[0]
    IF Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +</pre>
                     neg(M[nbRows][2])
      RETURN FALSE
    END IF
    nbRows = nbRows + 1
    M[nbRows][0] = thoProj.comp[0][1]
    M[nbRows][1] = thoProj.comp[1][1]
```

```
M[nbRows][2] = thoProj.speed[1]
  Y[nbRows] = 1.0 - thoProj.orig[1]
  IF Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +</pre>
                   neg(M[nbRows][2])
    RETURN FALSE
  END IF
  nbRows = nbRows + 1
ELSE
  M[nbRows][0] = thoProj.comp[0][0] + thoProj.comp[0][1]
M[nbRows][1] = thoProj.comp[1][0] + thoProj.comp[1][1]
  M[nbRows][2] = thoProj.speed[0] + thoProj.speed[1]
  Y[nbRows] = 1.0 - thoProj.orig[0] - thoProj.orig[1]
IF Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +
                    neg(M[nbRows][2])
    RETURN FALSE
  END IF
 nbRows = nbRows + 1
END IF
IF tho.type == FrameCuboid
  M[nbRows][0] = 1.0
  M[nbRows][1] = 0.0
  M[nbRows][2] = 0.0
  Y[nbRows] = 1.0
  nbRows = nbRows + 1
  M[nbRows][0] = 0.0
  M[nbRows][1] = 1.0
  M[nbRows][2] = 0.0
  Y[nbRows] = 1.0
  nbRows = nbRows + 1
  M[nbRows][0] = 1.0
  M[nbRows][1] = 1.0
  M[nbRows][2] = 0.0
  Y[nbRows] = 1.0
  nbRows = nbRows + 1
END IF
M[nbRows][0] = -1.0
M[nbRows][1] = 0.0
M[nbRows][2] = 0.0
Y[nbRows] = 0.0
nbRows = nbRows + 1
M[nbRows][0] = 0.0
M[nbRows][1] = -1.0
M[nbRows][2] = 0.0
Y[nbRows] = 0.0
nbRows = nbRows + 1
M[nbRows][0] = 0.0
M[nbRows][1] = 0.0
M[nbRows][2] = 1.0
Y[nbRows] = 1.0
nbRows = nbRows + 1
M[nbRows][0] = 0.0
M[nbRows][1] = 0.0
M[nbRows][2] = -1.0
Y[nbRows] = 0.0
nbRows = nbRows + 1
inconsistency =
  ElimVar2DTime(M, Y, nbRows, 3, Mp, Yp, nbRowsP)
IF inconsistency == TRUE
 RETURN FALSE
END IF
inconsistency =
```

```
ElimVar2DTime(Mp, Yp, nbRowsP, 2, Mpp, Ypp, nbRowsPP)
  IF inconsistency == TRUE
    RETURN FALSE
  END IF
  {\tt GetBoundLastVar2DTime(THD\_VAR\,,\ Mpp\,,\ Ypp\,,\ nbRowsPP\,,\ bdgBoxLocal)}
  IF bdgBoxLocal.min[THD_VAR] >= bdgBoxLocal.max[THD_VAR]
    RETURN FALSE
  ELSE
    {\tt GetBoundVar2DTime} \, ({\tt SND\_VAR} \, , \, \, {\tt Mp} \, , \, \, {\tt Yp} \, , \, \, {\tt nbRowsP} \, , \, \, {\tt 2} \, , \, \, {\tt bdgBoxLocal})
    GetBoundVar2DTime(FST_VAR, M, Y, nbRows, 3, bdgBoxLocal)
    bdgBox = bdgBoxLocal
  END IF
  RETURN TRUE
END FUNCTION
origP2DTime = [0.0, 0.0]
speedP2DTime = [0.0, 0.0]
compP2DTime = [
  [1.0, 0.0],
  [0.0, 1.0]]
P2DTime =
  Frame2DTimeCreateStatic(
    FrameCuboid, origP2DTime, speedP2DTime, compP2DTime)
origQ2DTime = [0.0,0.0]
speedQ2DTime = [0.0,0.0]
compQ2DTime = [
  [1.0, 0.0],
  [0.0, 1.0]]
Q2DTime =
  Frame2DTimeCreateStatic(
    FrameCuboid, origQ2DTime, speedQ2DTime, compQ2DTime)
isIntersecting2DTime =
 FMBTestIntersection2DTime(P2DTime, Q2DTime, bdgBox2DTimeLocal)
IF isIntersecting2DTime == TRUE
  PRINT "Intersection detected."
  Frame2DTimeExportBdgBox(Q2DTime, bdgBox2DTimeLocal, bdgBox2DTime)
  AABB2DTimePrint(bdgBox2DTime)
 PRINT "No intersection."
END IF
```

3.4 3D dynamic

```
ENUM FrameType
  FrameCuboid,
  FrameTetrahedron
END ENUM
STRUCT AABB3DTime
  // x,y,z,t
  real min[4]
 real max[4]
END STRUCT
STRUCT Frame3DTime
  FrameType type
  real orig[3]
  // comp[iComp][iAxis]
  real comp[3][3]
  AABB3DTime bdgBox
  real invComp[3][3]
```

```
real speed[3]
END STRUCT
FUNCTION powi(base, exp)
  res = 1
  FOR i=0 TO (exp - 1)
   res = res * base
  END FOR
 RETURN res
END FUNCTION
FUNCTION Frame3DTimePrint(that)
  IF that.type == FrameTetrahedron
   PRINT "T"
  ELSE IF that.type == FrameCuboid PRINT "C"
  END IF
  PRINT "o("
  FOR i = 0 TO 2
   PRINT that.orig[i]
    IF i < 2
     PRINT ","
    END IF
  END FOR
  PRINT " s("
  FOR i = 0 TO 2
   PRINT that.speed[i]
    IF i < 2
     PRINT ","
    END IF
  END FOR
  comp = ["x", "y", "z"]

FOR j = 0 TO 2

PRINT " ", comp[j], "("

FOR i = 0 TO 2
      PRINT that.comp[j][i]
      IF i < 2
        PRINT ","
      END IF
    END FOR
  END FOR
 PRINT ")"
END FUNCTION
FUNCTION AABB3DTimePrint(that)
  PRINT "minXYZT("
  FOR i = 0 TO 3
    PRINT that.min[i]
    IF i < 3
      PRINT ","
    END IF
  END FOR
  PRINT ")-maxXYZT("
  FOR i = 0 TO 3
   PRINT that.max[i]
    IF i < 3
      PRINT ","
    END IF
  END FOR
  PRINT ")"
END FUNCTION
```

```
FUNCTION Frame3DTimeExportBdgBox(that, bdgBox, bdgBoxProj)
  bdgBoxProj.min[3] = bdgBox.min[3]
  bdgBoxProj.max[3] = bdgBox.max[3]
  FOR i = 0 TO 2
    bdgBoxProj.max[i] = that.orig[i] + that.speed[i] * bdgBox.min[3]
    FOR j = 0 TO 2
      bdgBoxProj.max[i] =
        bdgBoxProj.max[i] + that.comp[j][i] * bdgBox.min[j]
    END FOR
    bdgBoxProj.min[i] = bdgBoxProj.max[i]
  END FOR
  nbVertices = powi(2, 3)
  FOR iVertex = 1 TO (nbVertices - 1)
    FOR i = 0 TO 2
      IF BITWISEAND(iVertex, powi(2, i)) <> 0
        v[i] = bdgBox.max[i]
      ELSE
        v[i] = bdgBox.min[i]
      END IF
    END FOR
    FOR i = 0 TO 2
      w[i] = that.orig[i]
      FOR j = 0 TO 2
        w[i] = w[i] + that.comp[j][i] * v[j]
      END FOR
    END FOR
    FOR i = 0 TO 2
      IF bdgBoxProj.min[i] > w[i] + that.speed[i] * bdgBox.min[3]
        bdgBoxProj.min[i] = w[i] + that.speed[i] * bdgBox.min[3]
      IF bdgBoxProj.min[i] > w[i] + that.speed[i] * bdgBox.max[3]
        bdgBoxProj.min[i] = w[i] + that.speed[i] * bdgBox.max[3]
      IF bdgBoxProj.max[i] < w[i] + that.speed[i] * bdgBox.min[3]</pre>
        bdgBoxProj.max[i] = w[i] + that.speed[i] * bdgBox.min[3]
      END IF
      IF bdgBoxProj.max[i] < w[i] + that.speed[i] * bdgBox.max[3]</pre>
        bdgBoxProj.max[i] = w[i] + that.speed[i] * bdgBox.max[3]
      END IF
    END FOR
  END FOR
END FUNCTION
FUNCTION Frame3DTimeImPortFrame(P, Q, Qp)
  FOR i = 0 TO 2
    v[i] = Q.orig[i] - P.orig[i]
    s[i] = Q.speed[i] - P.speed[i]
  END FOR
  FOR i = 0 TO 2
    Qp.orig[i] = 0.0
    Qp.speed[i] = 0.0
    FOR j = 0 TO 2
      Qp.orig[i] = Qp.orig[i] + P.invComp[j][i] * v[j]
      Qp.speed[i] = Qp.speed[i] + P.invComp[j][i] * s[j]
      Qp.comp[j][i] = 0.0
      FOR k = 0 TO 2
        Qp.comp[j][i] = Qp.comp[j][i] + P.invComp[k][i] * Q.comp[j][k]
      END FOR
    END FOR
  END FOR
END FUNCTION
```

```
FUNCTION Frame3DTimeUpdateInv(that)
  det =
    that.comp[0][0] *
    (that.comp[1][1] * that.comp[2][2] - that.comp[1][2] * that.comp[2][1])
    that.comp[1][0] *
    (that.comp[0][1] * that.comp[2][2] - that.comp[0][2] * that.comp[2][1])
    that.comp[2][0] *
    (that.comp[0][1] * that.comp[1][2] - that.comp[0][2] * that.comp[1][1])
  that.invComp[0][0] = (that.comp[1][1] * that.comp[2][2] -
    that.comp[2][1] * that.comp[1][2]) / det
  that.invComp[0][1] = (that.comp[2][1] * that.comp[0][2] -
    that.comp[2][2] * that.comp[0][1]) / det
  that.invComp[0][2] = (that.comp[0][1] * that.comp[1][2] -
    that.comp[0][2] * that.comp[1][1]) / det
  that.invComp[1][0] = (that.comp[2][0] * that.comp[1][2] -
    \verb| that.comp[2][2] * that.comp[1][0]) / det
  that.invComp[1][1] = (that.comp[0][0] * that.comp[2][2] -
    \label{eq:that.comp} \begin{array}{ll} \hbox{\tt [2][0] * that.comp[0][2]) / det} \end{array}
  that.invComp[1][2] = (that.comp[0][2] * that.comp[1][0] -
    that.comp[1][2] * that.comp[0][0]) / det
  that.invComp[2][0] = (that.comp[1][0] * that.comp[2][1] -
    that.comp[2][0] * that.comp[1][1]) / det
  that.invComp[2][1] = (that.comp[0][1] * that.comp[2][0] -
    \verb|that.comp[2][1] * \verb|that.comp[0][0]| / \verb|det||
  that.invComp[2][2] = (that.comp[0][0] * that.comp[1][1] -
    that.comp[1][0] * that.comp[0][1]) / det
END FUNCTION
FUNCTION Frame3DTimeCreateStatic(type, orig, comp)
  that.type = type
  FOR iAxis = 0 TO 2
    that.orig[iAxis] = orig[iAxis]
    that.speed[iAxis] = speed[iAxis]
    FOR iComp = 0 TO 2
      that.comp[iComp][iAxis] = comp[iComp][iAxis]
    END FOR
  END FOR
  FOR iAxis = 0 TO 2
    min = orig[iAxis]
    max = orig[iAxis]
    FOR iComp = 0 TO 2
      IF that.type == FrameCuboid
        IF that.comp[iComp][iAxis] < 0.0
          min = min + that.comp[iComp][iAxis]
        END IF
        IF that.comp[iComp][iAxis] > 0.0
         max = max + that.comp[iComp][iAxis]
        END IF
      ELSE IF that.type == FrameTetrahedron
        IF that.comp[iComp][iAxis] < 0.0 AND</pre>
          min > orig[iAxis] + that.comp[iComp][iAxis]
          min = orig[iAxis] + that.comp[iComp][iAxis]
        END IF
        IF that.comp[iComp][iAxis] > 0.0 AND
          max < orig[iAxis] + that.comp[iComp][iAxis]</pre>
          max = orig[iAxis] + that.comp[iComp][iAxis]
        END IF
      END IF
    END FOR
    IF that.speed[iAxis] < 0.0</pre>
```

```
min = min + that.speed[iAxis]
    END IF
    IF that.speed[iAxis] > 0.0
     max = max + that.speed[iAxis]
    END IF
    that.bdgBox.min[iAxis] = min
    that.bdgBox.max[iAxis] = max
  END FOR
  that.bdgBox.min[3] = 0.0
  that.bdgBox.max[3] = 1.0
  {\tt Frame3DTimeUpdateInv(that)}
  RETURN that
END FUNCTION
FUNCTION Sgn(v)
  IF 0.0 < v
   a = 1
  ELSE
   a = 0
  END IF
  IF v < 0.0
   b = 1
  ELSE
    b = 0
  END IF
 RETURN A - B
END FUNCTION
FUNCTION Neg(x)
  IF x < 0.0
    RETURN x
  ELSE
    RETURN 0.0
 END IF
END FUNCTION
FST_VAR = 0
SND_VAR = 1
THD_VAR = 2
FOR_VAR = 3
{\tt FUNCTION\ ElimVar3DTime(M,\ Y,\ nbRows,\ nbCols,\ Mp,\ Yp,\ nbRemainRows)}
  nbRemainRows = 0
  FOR iRow = 0 TO (nbRows - 2)
    IF M[iRow][0] <> 0.0
      FOR jRow = (iRow + 1) TO (nbRows - 1)
        IF sgn(M[iRow][0]) <> sgn(M[jRow][0]) AND
    M[jRow][0] <> 0.0
          sumNegCoeff = 0.0
          jCol = 0
          FOR iCol = 1 TO (nbCols - 1)
            Mp[nbRemainRows][jCol] =
              M[iRow][iCol] / ABS(M[iRow][0]) +
              M[jRow][iCol] / ABS(M[jRow][0])
            sumNegCoeff = sumNegCoeff + neg(Mp[nbRemainRows][jCol])
            jCol = jCol + 1
          END FOR
          Yp[nbRemainRows] =
            Y[iRow] / ABS(M[iRow][0]) +
            Y[jRow] / ABS(M[jRow][0])
          IF Yp[nbRemainRows] < sumNegCoeff</pre>
            RETURN TRUE
```

```
END IF
          nbRemainRows = nbRemainRows + 1
        END IF
      END FOR
    END IF
  END FOR
  FOR iRow = 0 TO (nbRows - 1)
    IF M[iRow][0] == 0.0
      jCol = 0
      FOR iCol = 1 TO (nbCols - 1)
        Mp[nbRemainRows][jCol] = M[iRow][iCol]
        jCol = jCol + 1
      END FOR
      Yp[nbRemainRows] = Y[iRow]
      nbRemainRows = nbRemainRows + 1
    END IF
  END FOR
  RETURN FALSE
END FUNCTION
FUNCTION GetBoundLastVar3DTime(iVar, M, Y, nbRows, bdgBox)
  bdgBox.min[iVar] = 0.0
  bdgBox.max[iVar] = 1.0
  FOR jRow = 0 TO (nbRows - 1)
    IF M[jRow][0] > 0.0
y = Y[jRow] / M[jRow][0]
      IF bdgBox.max[iVar] > y
       bdgBox.max[iVar] = y
      END IF
    ELSE IF M[jRow][0] < 0.0
      y = Y[jRow] / M[jRow][0]
      IF bdgBox.min[iVar] < y</pre>
        bdgBox.min[iVar] = y
      END IF
    END IF
  END FOR
END FUNCTION
FUNCTION GetBoundVar3DTime(iVar, M, Y, nbRows, nbCols, bdgBox)
  bdgBox.min[iVar] = 0.0
  bdgBox.max[iVar] = 1.0
  FOR iRow = 0 .. TO (nbRows - 1)
    IF M[iRow][0] <> 0.0
      min = -1.0 * Y[iRow]
      max = Y[iRow]
      FOR iCol = 1 \dots TO \text{ (nbCols - 1)}
        IF M[iRow][iCol] > 0.0
          min = min + M[iRow][iCol] * bdgBox.min[iCol + iVar]
          max = max - M[iRow][iCol] * bdgBox.min[iCol + iVar]
        ELSE IF M[iRow][iCol] < 0.0
          min = min + M[iRow][iCol] * bdgBox.max[iCol + iVar]
          max = max - M[iRow][iCol] * bdgBox.max[iCol + iVar]
        END IF
      END FOR
      min = min / (-1.0 * M[iRow][0])
      max = max / M[iRow][0]
      IF bdgBox.min[iVar] > min
       bdgBox.min[iVar] = min
      END IF
      IF bdgBox.max[iVar] < max</pre>
       bdgBox.max[iVar] = max
      END IF
```

```
END IF
 END FOR
END FUNCTION
FUNCTION FMBTestIntersection3DTime(that, tho, bdgBox)
 Frame3DTimeImportFrame(that, tho, thoProj)
M[0][0] = -thoProj.comp[0][0]
  M[0][1] = -thoProj.comp[1][0]
  M[0][2] = -thoProj.comp[2][0]
  M[0][3] = -thoProj.speed[0]
  Y[0] = thoProj.orig[0]
  IF Y[0] < neg(M[0][0]) + neg(M[0][1]) + neg(M[0][2]) + neg(M[0][3])
    RETURN FALSE
  END IF
  M[1][0] = -thoProj.comp[0][1]
  M[1][1] = -thoProj.comp[1][1]
 M[1][2] = -thoProj.comp[2][1]
  M[1][3] = -thoProj.speed[1]
  Y[1] = thoProj.orig[1]
  IF Y[1] < neg(M[1][0]) + neg(M[1][1]) + neg(M[1][2]) + neg(M[1][3])
    RETURN FALSE
  END IF
  M[2][0] = -thoProj.comp[0][2]
  M[2][1] = -thoProj.comp[1][2]
 M[2][2] = -thoProj.comp[2][2]
  M[2][3] = -thoProj.speed[2]
  Y[2] = thoProj.orig[2]
  IF Y[2] < neg(M[2][0]) + neg(M[2][1]) + neg(M[2][2]) + neg(M[2][3])
   RETURN FALSE
  END IF
  nbRows = 3
  IF that.type == FrameCuboid
    M[nbRows][0] = thoProj.comp[0][0]
    M[nbRows][1] = thoProj.comp[1][0]
    M[nbRows][2] = thoProj.comp[2][0]
    M[nbRows][3] = thoProj.speed[0]
    Y[nbRows] = 1.0 - thoProj.orig[0]
    IF Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +</pre>
                   neg(M[nbRows][2]) + neg(M[nbRows][3])
      RETURN FALSE
    END IF
    nbRows = nbRows + 1
    M[nbRows][0] = thoProj.comp[0][1]
    M[nbRows][1] = thoProj.comp[1][1]
    M[nbRows][2] = thoProj.comp[2][1]
    M[nbRows][3] = thoProj.speed[1]
    Y[nbRows] = 1.0 - thoProj.orig[1]
    IF Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +</pre>
                   neg(M[nbRows][2]) + neg(M[nbRows][3])
      RETURN FALSE
    END IF
    nbRows = nbRows + 1
    M[nbRows][0] = thoProj.comp[0][2]
    M[nbRows][1] = thoProj.comp[1][2]
    M[nbRows][2] = thoProj.comp[2][2]
    M[nbRows][3] = thoProj.speed[2]
    Y[nbRows] = 1.0 - thoProj.orig[2]
    IF Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +</pre>
                   neg(M[nbRows][2]) + neg(M[nbRows][3])
      RETURN FALSE
    END IF
    nbRows = nbRows + 1
```

```
ELSE
  M[nbRows][0] =
    thoProj.comp[0][0] + thoProj.comp[0][1] + thoProj.comp[0][2]
  M[nbRows][1] =
    thoProj.comp[1][0] + thoProj.comp[1][1] + thoProj.comp[1][2]
  M[nbRows][2] =
    tho Proj. comp [2] [0] + tho Proj. comp [2] [1] + tho Proj. comp [2] [2] \\
  M[nbRows][3] = thoProj.speed[0] + thoProj.speed[1] + thoProj.speed[2]
  Y[nbRows] = 1.0 - thoProj.orig[0] - thoProj.orig[1] - thoProj.orig[2]
  IF Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +</pre>
                 neg(M[nbRows][2]) + neg(M[nbRows][3])
    RETURN FALSE
  END IF
  nbRows = nbRows + 1
END IF
IF tho.type == FrameCuboid
  M[nbRows][0] = 1.0
  M[nbRows][1] = 0.0
  M[nbRows][2] = 0.0
  M[nbRows][3] = 0.0
  Y[nbRows] = 1.0
  nbRows = nbRows + 1
  M[nbRows][0] = 0.0
  M[nbRows][1] = 1.0
  M[nbRows][2] = 0.0
  M[nbRows][3] = 0.0
  Y[nbRows] = 1.0
  nbRows = nbRows + 1
  M[nbRows][0] = 0.0
  M[nbRows][1] = 0.0
  M[nbRows][2] = 1.0
  M[nbRows][3] = 0.0
  Y[nbRows] = 1.0
  nbRows = nbRows + 1
ELSE
  M[nbRows][0] = 1.0
  M[nbRows][1] = 1.0
  M[nbRows][2] = 1.0
  M[nbRows][3] = 0.0
  Y[nbRows] = 1.0
  nbRows = nbRows + 1
END IF
M[nbRows][0] = -1.0
M[nbRows][1] = 0.0
M[nbRows][2] = 0.0
M[nbRows][3] = 0.0
Y[nbRows] = 0.0
nbRows = nbRows + 1
M[nbRows][0] = 0.0
M[nbRows][1] = -1.0
M[nbRows][2] = 0.0
M[nbRows][3] = 0.0
Y[nbRows] = 0.0
nbRows = nbRows + 1
M[nbRows][0] = 0.0
M[nbRows][1] = 0.0
M[nbRows][2] = -1.0
M[nbRows][3] = 0.0
Y[nbRows] = 0.0
nbRows = nbRows + 1
M[nbRows][0] = 0.0
M[nbRows][1] = 0.0
```

```
M[nbRows][2] = 0.0
  M[nbRows][3] = 1.0
  Y[nbRows] = 1.0
  nbRows = nbRows + 1
  M[nbRows][0] = 0.0
  M[nbRows][1] = 0.0
  M[nbRows][2] = 0.0
  M[nbRows][3] = -1.0
  Y[nbRows] = 0.0
  nbRows = nbRows + 1
  inconsistency =
    ElimVar3DTime(M, Y, nbRows, 4, Mp, Yp, nbRowsP)
  IF inconsistency == TRUE
    RETURN FALSE
  END IF
  inconsistency =
   ElimVar3DTime(Mp, Yp, nbRowsP, 3, Mpp, Ypp, nbRowsPP)
  IF inconsistency == TRUE
    RETURN FALSE
  END IF
  inconsistency =
  RETURN FALSE
  END IF
  {\tt GetBoundLastVar3DTime} \, ({\tt FOR\_VAR} \, , \, \, {\tt Mppp} \, , \, \, {\tt Yppp} \, , \, \, {\tt nbRowsPPP} \, , \, \, {\tt bdgBoxLocal})
  IF bdgBoxLocal.min[FOR_VAR] >= bdgBoxLocal.max[FOR_VAR]
    RETURN FALSE
  ELSE
    GetBoundVar3DTime(THD_VAR, Mpp, Ypp, nbRowsPP, 2, bdgBoxLocal)
GetBoundVar3DTime(SND_VAR, Mp, Yp, nbRowsP, 3, bdgBoxLocal)
GetBoundVar3DTime(FST_VAR, M, Y, nbRows, 4, bdgBoxLocal)
    bdgBox = bdgBoxLocal
  END IF
  RETURN TRUE
END FUNCTION
origP3DTime = [0.0, 0.0, 0.0]
speedP3DTime = [0.0, 0.0, 0.0]
compP3DTime = [
  [1.0, 0.0, 0.0],
  [0.0, 1.0, 0.0]
  [0.0, 0.0, 1.0]]
P3DTime =
  Frame3DTimeCreateStatic(
    FrameCuboid, origP3DTime, speedP3DTime, compP3DTime)
origQ3DTime = [0.0, 0.0, 0.0]
speedQ3DTime = [0.0, 0.0, 0.0]
compQ3DTime = [
  [1.0, 0.0, 0.0],
  [0.0, 1.0, 0.0],
  [0.0, 0.0, 1.0]]
Q3DTime =
  Frame3DTimeCreateStatic(
    {\tt FrameCuboid} \;,\; {\tt origQ3DTime} \;,\; {\tt speedQ3DTime} \;,\; {\tt compQ3DTime})
isIntersecting3DTime =
  FMBTestIntersection3DTime(P3DTime, Q3DTime, bdgBox3DTimeLocal)
IF isIntersecting3DTime == TRUE
  PRINT "Intersection detected."
  Frame3DTimeExportBdgBox(Q3DTime, bdgBox3DTimeLocal, bdgBox3DTime)
  AABB3DTimePrint(bdgBox3DTime)
ELSE
```

```
PRINT "No intersection." END IF
```

4 Implementation of the algorithms in C

In this section I introduce an implementation of the algorithms of the previous section in the C language.

4.1 Frames

4.1.1 Header

```
#ifndef __FRAME_H_
#define __FRAME_H_
// ----- Includes -----
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
// ----- Macros -----
// ----- Enumerations -----
typedef enum {
  FrameCuboid,
  {\tt FrameTetrahedron}
} FrameType;
// ----- Data structures -----
// Axis aligned bounding box structure
typedef struct {
  // x,y
  double min[2];
 double max[2];
} AABB2D;
typedef struct {
  // x,y,z
  double min[3];
  double max[3];
} AABB3D;
typedef struct {
  // x,y,t
  double min[3];
  double max[3];
} AABB2DTime;
typedef struct {
  // x,y,z,t
  double min[4];
  double max[4];
} AABB3DTime;
```

```
// Axis unaligned cuboid and tetrahedron structure
typedef struct {
  FrameType type;
  double orig[2];
  double comp[2][2];
  // AABB of the frame % \left( 1\right) =\left( 1\right) ^{2}
  AABB2D bdgBox;
  // Inverted components used during computation
  double invComp[2][2];
} Frame2D;
typedef struct {
  FrameType type;
  double orig[3];
  double comp[3][3];
  // AABB of the frame
  AABB3D bdgBox;
  // Inverted components used during computation
  double invComp[3][3];
} Frame3D;
typedef struct {
  FrameType type;
  double orig[2];
  double comp[2][2];
  // AABB of the frame
  AABB2DTime bdgBox;
  // Inverted components used during computation
  double invComp[2][2];
  double speed[2];
} Frame2DTime;
typedef struct {
  FrameType type;
  double orig[3];
  double comp[3][3];
  // AABB of the frame
  AABB3DTime bdgBox;
  // Inverted components used during computation
  double invComp[3][3];
  double speed[3];
} Frame3DTime;
// ----- Functions declaration -----
// Print the AABB that on stdout
// Output format is
// (min[0], min[1], min[2], min[3])-(max[0], max[1], max[2], max[3])
void AABB2DPrint(const AABB2D* const that);
void AABB3DPrint(const AABB3D* const that);
void AABB2DTimePrint(const AABB2DTime* const that);
void AABB3DTimePrint(const AABB3DTime* const that);
// Print the Frame that on stdout
// Output format is
// T/C <- type of Frame
// o(orig[0], orig[1], orig[2])
// s(speed[0], speed[1], speed[2])
// x(comp[0][0], comp[0][1], comp[0][2])
// y(comp[1][0], comp[1][1], comp[1][2])
// z(comp[2][0], comp[2][1], comp[2][2])
```

```
void Frame2DPrint(const Frame2D* const that);
void Frame3DPrint(const Frame3D* const that);
void Frame2DTimePrint(const Frame2DTime* const that);
void Frame3DTimePrint(const Frame3DTime* const that);
// Create a static Frame structure of FrameType type,
// at position orig with components comp ([iComp][iAxis])
// and speed
Frame2D Frame2DCreateStatic(
  const FrameType type;
     const double orig[2]
     const double comp[2][2]);
Frame3D Frame3DCreateStatic(
  const FrameType type,
     const double orig[3]
     const double comp[3][3]);
Frame2DTime Frame2DTimeCreateStatic(
  const FrameType type,
     const double orig[2],
     const double speed[2]
     const double comp[2][2]);
Frame3DTime Frame3DTimeCreateStatic(
  const FrameType type,
     const double orig[3],
     const double speed[3],
     const double comp[3][3]);
// Project the Frame Q in the Frame P's coordinates system and // memorize the result in the Frame \ensuremath{\mathtt{Qp}}
void Frame2DImportFrame(
  const Frame2D* const P,
  const Frame2D* const Q,
        Frame2D* const Qp);
void Frame3DImportFrame(
  const Frame3D* const P,
  const Frame3D* const Q,
        Frame3D* const Qp);
void Frame2DTimeImportFrame(
  const Frame2DTime* const P,
  const Frame2DTime* const Q,
        Frame2DTime* const Qp);
void Frame3DTimeImportFrame(
  const Frame3DTime* const P,
  const Frame3DTime* const Q,
        Frame3DTime* const Qp);
// Export the AABB bdgBox from that's coordinates system to
// the real coordinates system and update bdgBoxProj with the resulting
// AABB
void Frame2DExportBdgBox(
  const Frame2D* const that,
   const AABB2D* const bdgBox,
         AABB2D* const bdgBoxProj);
void Frame3DExportBdgBox(
  const Frame3D* const that,
   const AABB3D* const bdgBox,
         AABB3D* const bdgBoxProj);
void Frame2DTimeExportBdgBox(
  const Frame2DTime* const that,
   void Frame3DTimeExportBdgBox(
```

```
const Frame3DTime* const that,
   const AABB3DTime* const bdgBox,
         AABB3DTime* const bdgBoxProj);
// Power function for integer base and exponent
// Return base^exp
int powi(
          int base,
  unsigned int exp);
#endif
4.1.2
       Body
#include "frame.h"
// ----- Macros -----
#define EPSILON 0.000001
// ----- Functions declaration -----
// Update the inverse components of the Frame that
void Frame2DUpdateInv(Frame2D* const that);
void Frame3DUpdateInv(Frame3D* const that);
void Frame2DTimeUpdateInv(Frame2DTime* const that);
void Frame3DTimeUpdateInv(Frame3DTime* const that);
// ----- Functions implementation -----
// Create a static Frame structure of FrameType type,
// at position orig with components comp and speed
// arrangement is comp[iComp][iAxis]
Frame2D Frame2DCreateStatic(
  const FrameType type,
    const double orig[2],
    const double comp[2][2]) {
  // Create the new Frame
  Frame2D that;
  that.type = type;
  for (int iAxis = 2;
      iAxis--;) {
   that.orig[iAxis] = orig[iAxis];
   for (int iComp = 2;
         iComp --;) {
     that.comp[iComp][iAxis] = comp[iComp][iAxis];
   }
  // Create the bounding box
  for (int iAxis = 2;
      iAxis--;) {
    double min = orig[iAxis];
   double max = orig[iAxis];
```

```
for (int iComp = 2;
         iComp--;) {
      if (that.type == FrameCuboid) {
        if (that.comp[iComp][iAxis] < 0.0) {</pre>
          min += that.comp[iComp][iAxis];
        if (that.comp[iComp][iAxis] > 0.0) {
          max += that.comp[iComp][iAxis];
      } else if (that.type == FrameTetrahedron) {
        if (that.comp[iComp][iAxis] < 0.0 &&</pre>
          min > orig[iAxis] + that.comp[iComp][iAxis]) {
          min = orig[iAxis] + that.comp[iComp][iAxis];
        if (that.comp[iComp][iAxis] > 0.0 &&
          max < orig[iAxis] + that.comp[iComp][iAxis]) {</pre>
          max = orig[iAxis] + that.comp[iComp][iAxis];
        }
      }
    }
    that.bdgBox.min[iAxis] = min;
    that.bdgBox.max[iAxis] = max;
  }
  // Calculate the inverse matrix
  Frame2DUpdateInv(&that);
  // Return the new Frame
  return that;
}
Frame3D Frame3DCreateStatic(
  const FrameType type,
     const double orig[3],
     const double comp[3][3]) {
  // Create the new Frame
  Frame3D that;
  that.type = type;
  for (int iAxis = 3;
       iAxis--;) {
```

```
that.orig[iAxis] = orig[iAxis];
  for (int iComp = 3;
       iComp--;) {
    that.comp[iComp][iAxis] = comp[iComp][iAxis];
 }
}
// Create the bounding box
for (int iAxis = 3;
     iAxis--;) {
  double min = orig[iAxis];
  double max = orig[iAxis];
  for (int iComp = 3;
    iComp--;) {
    if (that.type == FrameCuboid) {
      if (that.comp[iComp][iAxis] < 0.0) {</pre>
        min += that.comp[iComp][iAxis];
      if (that.comp[iComp][iAxis] > 0.0) {
        max += that.comp[iComp][iAxis];
    } else if (that.type == FrameTetrahedron) {
      if (that.comp[iComp][iAxis] < 0.0 &&</pre>
        min > orig[iAxis] + that.comp[iComp][iAxis]) {
        min = orig[iAxis] + that.comp[iComp][iAxis];
      if (that.comp[iComp][iAxis] > 0.0 &&
        max < orig[iAxis] + that.comp[iComp][iAxis]) {</pre>
        max = orig[iAxis] + that.comp[iComp][iAxis];
      }
    }
  that.bdgBox.min[iAxis] = min;
  that.bdgBox.max[iAxis] = max;
}
```

```
// Calculate the inverse matrix
  Frame3DUpdateInv(&that);
  // Return the new Frame
  return that;
}
Frame2DTime Frame2DTimeCreateStatic(
  const FrameType type,
     const double orig[2],
     const double speed[2],
     const double comp[2][2]) {
  // Create the new Frame
  Frame2DTime that;
  that.type = type;
  for (int iAxis = 2;
       iAxis--;) {
    that.orig[iAxis] = orig[iAxis];
that.speed[iAxis] = speed[iAxis];
    for (int iComp = 2;
         iComp --;) {
      that.comp[iComp][iAxis] = comp[iComp][iAxis];
    }
  }
  // Create the bounding box
  for (int iAxis = 2;
       iAxis--;) {
    double min = orig[iAxis];
    double max = orig[iAxis];
    for (int iComp = 2;
         iComp --;) {
      if (that.type == FrameCuboid) {
        if (that.comp[iComp][iAxis] < 0.0) {</pre>
           min += that.comp[iComp][iAxis];
        if (that.comp[iComp][iAxis] > 0.0) {
          max += that.comp[iComp][iAxis];
      } else if (that.type == FrameTetrahedron) {
        if (that.comp[iComp][iAxis] < 0.0 &&
          min > orig[iAxis] + that.comp[iComp][iAxis]) {
           min = orig[iAxis] + that.comp[iComp][iAxis];
```

```
}
        if (that.comp[iComp][iAxis] > 0.0 &&
          max < orig[iAxis] + that.comp[iComp][iAxis]) {</pre>
          max = orig[iAxis] + that.comp[iComp][iAxis];
        }
      }
    }
    if (that.speed[iAxis] < 0.0) {</pre>
      min += that.speed[iAxis];
    if (that.speed[iAxis] > 0.0) {
      max += that.speed[iAxis];
    }
    that.bdgBox.min[iAxis] = min;
    that.bdgBox.max[iAxis] = max;
  }
  that.bdgBox.min[2] = 0.0;
  that.bdgBox.max[2] = 1.0;
  // Calculate the inverse matrix
  Frame2DTimeUpdateInv(&that);
  // Return the new Frame
  return that;
}
Frame3DTime Frame3DTimeCreateStatic(
  const FrameType type,
     const double orig[3],
     const double speed[3],
     const double comp[3][3]) {
  // Create the new Frame
  Frame3DTime that;
  that.type = type;
for (int iAxis = 3;
       iAxis--;) {
    that.orig[iAxis] = orig[iAxis];
    that.speed[iAxis] = speed[iAxis];
    for (int iComp = 3;
         iComp --;) {
      that.comp[iComp][iAxis] = comp[iComp][iAxis];
```

```
}
// Create the bounding box
for (int iAxis = 3;
    iAxis--;) {
  double min = orig[iAxis];
  double max = orig[iAxis];
  for (int iComp = 3;
       iComp --;) {
    if (that.type == FrameCuboid) {
      if (that.comp[iComp][iAxis] < 0.0) {
        min += that.comp[iComp][iAxis];
      if (that.comp[iComp][iAxis] > 0.0) {
        max += that.comp[iComp][iAxis];
    } else if (that.type == FrameTetrahedron) {
      if (that.comp[iComp][iAxis] < 0.0 &&</pre>
        min > orig[iAxis] + that.comp[iComp][iAxis]) {
        min = orig[iAxis] + that.comp[iComp][iAxis];
      }
      if (that.comp[iComp][iAxis] > 0.0 &&
        max < orig[iAxis] + that.comp[iComp][iAxis]) {</pre>
        max = orig[iAxis] + that.comp[iComp][iAxis];
      }
    }
  if (that.speed[iAxis] < 0.0) {</pre>
    min += that.speed[iAxis];
  if (that.speed[iAxis] > 0.0) {
    max += that.speed[iAxis];
  that.bdgBox.min[iAxis] = min;
```

```
that.bdgBox.max[iAxis] = max;
  that.bdgBox.min[3] = 0.0;
  that.bdgBox.max[3] = 1.0;
  // Calculate the inverse matrix
  Frame3DTimeUpdateInv(&that);
  // Return the new Frame
 return that;
// Update the inverse components of the Frame that
void Frame2DUpdateInv(Frame2D* const that) {
  // Shortcuts
 double (*tc)[2] = that->comp;
double (*tic)[2] = that->invComp;
  double det = tc[0][0] * tc[1][1] - tc[1][0] * tc[0][1];
  if (fabs(det) < EPSILON) {
    fprintf(stderr,
      "FrameUpdateInv: det == 0.0\n");
    exit(1);
 tic[0][0] = tc[1][1] / det;
 tic[0][1] = -tc[0][1] / det;
 tic[1][0] = -tc[1][0] / det;
 tic[1][1] = tc[0][0] / det;
void Frame3DUpdateInv(Frame3D* const that) {
  // Shortcuts
  double (*tc)[3] = that->comp;
  double (*tic)[3] = that->invComp;
  // Update the inverse components
  double det =
    tc[0][0] * (tc[1][1] * tc[2][2] - tc[1][2] * tc[2][1]) -
    tc[1][0] * (tc[0][1] * tc[2][2] - tc[0][2] * tc[2][1]) +
  tc[2][0] * (tc[0][1] * tc[1][2] - tc[0][2] * tc[1][1]);
if (fabs(det) < EPSILON) {</pre>
   fprintf(stderr,
      "FrameUpdateInv: det == 0.0\n");
    exit(1);
 tic[0][2] = (tc[0][1] * tc[1][2] - tc[0][2] * tc[1][1]) / det;
 tic[1][0] = (tc[2][0] * tc[1][2] - tc[2][2] * tc[1][0]) / det;
tic[1][1] = (tc[0][0] * tc[2][2] - tc[2][0] * tc[0][2]) / det;
  tic[1][2] = (tc[0][2] * tc[1][0] - tc[1][2] * tc[0][0]) / det;
 tic[2][0] = (tc[1][0] * tc[2][1] - tc[2][0] * tc[1][1]) / det;
tic[2][1] = (tc[0][1] * tc[2][0] - tc[2][1] * tc[0][0]) / det;
  tic[2][2] = (tc[0][0] * tc[1][1] - tc[1][0] * tc[0][1]) / det;
```

```
}
// Update the inverse components of the Frame that
void Frame2DTimeUpdateInv(Frame2DTime* const that) {
  // Shortcuts
  double (*tc)[2] = that->comp;
  double (*tic)[2] = that->invComp;
  double det = tc[0][0] * tc[1][1] - tc[1][0] * tc[0][1];
  if (fabs(det) < EPSILON) {</pre>
    fprintf(stderr,
      "FrameUpdateInv: det == 0.0\n");
    exit(1):
  tic[0][0] = tc[1][1] / det;
  tic[0][1] = -tc[0][1] / det;
  tic[1][0] = -tc[1][0] / det;
  tic[1][1] = tc[0][0] / det;
}
void Frame3DTimeUpdateInv(Frame3DTime* const that) {
  // Shortcuts
  double (*tc)[3] = that->comp;
double (*tic)[3] = that->invComp;
  // Update the inverse components
  double det =
    tc[0][0] * (tc[1][1] * tc[2][2] - tc[1][2] * tc[2][1]) -
    tc[1][0] * (tc[0][1] * tc[2][2] - tc[0][2] * tc[2][1]) +
    tc[2][0] * (tc[0][1] * tc[1][2] - tc[0][2] * tc[1][1]);
  if (fabs(det) < EPSILON) {
    fprintf(stderr,
      "FrameUpdateInv: det == 0.0\n");
    exit(1);
  }
  tic[0][0] = (tc[1][1] * tc[2][2] - tc[2][1] * tc[1][2]) / det;
  tic[0][1] = (tc[2][1] * tc[0][2] - tc[2][2] * tc[0][1]) / det;
  tic[0][2] = (tc[0][1] * tc[1][2] - tc[0][2] * tc[1][1]) / det;
tic[1][0] = (tc[2][0] * tc[1][2] - tc[2][2] * tc[1][0]) / det;
  tic[1][1] = (tc[0][0] * tc[2][2] - tc[2][0] * tc[0][2]) / det;
  tic[1][2] = (tc[0][2] * tc[1][0] - tc[1][2] * tc[0][0]) / det;
tic[2][0] = (tc[1][0] * tc[2][1] - tc[2][0] * tc[1][1]) / det;
  tic[2][1] = (tc[0][1] * tc[2][0] - tc[2][1] * tc[0][0]) / det;
  tic[2][2] = (tc[0][0] * tc[1][1] - tc[1][0] * tc[0][1]) / det;
// Project the Frame Q in the Frame P's coordinates system and
// memorize the result in the Frame Qp
void Frame2DImportFrame(
  const Frame2D* const P,
  const Frame2D* const Q,
         Frame2D* const Qp) {
  // Shortcuts
  const double* qo = Q->orig;
```

```
double* qpo = Qp->orig;
const double* po = P->orig;
   const double (*pi)[2] = P->invComp;
    double (*qpc)[2] = Qp->comp;
const double (*qc)[2] = Q->comp;
   // Calculate the projection
   double v[2];
   for (int i = 2;
        i--;) {
     v[i] = qo[i] - po[i];
   }
   for (int i = 2;
        i--;) {
     qpo[i] = 0.0;
      for (int j = 2;
           j--;) {
        qpo[i] += pi[j][i] * v[j];
        qpc[j][i] = 0.0;
        for (int k = 2; k--;) {
           qpc[j][i] += pi[k][i] * qc[j][k];
     }
}
 void Frame3DImportFrame(
   const Frame3D* const P,
   const Frame3D* const Q,
          Frame3D* const Qp) {
   // Shortcuts
   const double* qo = Q->orig;
    double* qpo = Qp->orig;
const double* po = P->orig;
   const double (*pi)[3] = P->invComp;
   double (*qpc)[3] = Qp->comp;
const double (*qc)[3] = Q->comp;
   // Calculate the projection
   double v[3];
   for (int i = 3;
         i--;) {
     v[i] = qo[i] - po[i];
   for (int i = 3;
         i--;) {
```

```
qpo[i] = 0.0;
      for (int j = 3; j--;) {
         qpo[i] += pi[j][i] * v[j];
qpc[j][i] = 0.0;
          for (int k = 3;
                k--;) {
             qpc[j][i] += pi[k][i] * qc[j][k];
     }
  }
}
void Frame2DTimeImportFrame(
   const Frame2DTime* const P,
   const Frame2DTime* const Q,
    Frame2DTime* const Qp) {
   // Shortcuts
   const double* qo = Q->orig;
    double* qpo = Qp->orig;
const double* po = P->orig;
   const double* qs = Q->speed;
     double* qps = Qp->speed;
const double* ps = P->speed;
   const double (*pi)[2] = P->invComp;
    double (*qpc)[2] = Qp->comp;
const double (*qc)[2] = Q->comp;
   // Calculate the projection
   double v[2];
   double s[2];
   for (int i = 2;
          i--;) {
      v[i] = qo[i] - po[i];
s[i] = qs[i] - ps[i];
   for (int i = 2;
          i--;) {
      qpo[i] = 0.0;
qps[i] = 0.0;
      for (int j = 2; j--;) {
         qpo[i] += pi[j][i] * v[j];
qps[i] += pi[j][i] * s[j];
qpc[j][i] = 0.0;
          for (int k = 2;
```

```
k--;) {
           qpc[j][i] += pi[k][i] * qc[j][k];
       }
     }
}
 \verb"void Frame3DTimeImportFrame" (
   const Frame3DTime* const P,
   const Frame3DTime* const Q,
Frame3DTime* const Qp) {
   // Shortcuts
   const double* qo = Q->orig;
           double* qpo = Qp->orig;
   const double* po = P->orig;
   const double* qs = Q->speed;
    double* qps = Qp->speed;
const double* ps = P->speed;
   const double (*pi)[3] = P->invComp;
   double (*qpc)[3] = Qp->comp;
const double (*qc)[3] = Q->comp;
   // Calculate the projection
   double v[3];
   double s[3];
   for (int i = 3;
         i--;) {
      v[i] = qo[i] - po[i];
s[i] = qs[i] - ps[i];
   }
   for (int i = 3;
         i--;) {
      qpo[i] = 0.0;
      qps[i] = 0.0;
      for (int j = 3;
           j--;) {
        qpo[i] += pi[j][i] * v[j];
qps[i] += pi[j][i] * s[j];
        qpc[j][i] = 0.0;
        for (int k = 3;
              k--;) {
           qpc[j][i] += pi[k][i] * qc[j][k];
     }
  }
// Export the AABB bdgBox from that's coordinates system to
```

```
// the real coordinates system and update bdgBoxProj with the resulting
// AABB
void Frame2DExportBdgBox(
  const Frame2D* const that,
   const AABB2D* const bdgBox,
         AABB2D* const bdgBoxProj) {
  // Shortcuts
  const double* to
                      = that->orig;
  const double* bbmi = bdgBox->min;
  const double* bbma = bdgBox->max;
        double* bbpmi = bdgBoxProj->min;
double* bbpma = bdgBoxProj->max;
  const double (*tc)[2] = that->comp;
  // Initialise the coordinates of the result AABB with the projection
  // of the first corner of the AABB in argument
  for (int i = 2;
       i--;) {
    bbpma[i] = to[i];
    for (int j = 2;
        j--;) {
      bbpma[i] += tc[j][i] * bbmi[j];
    bbpmi[i] = bbpma[i];
  // Loop on vertices of the AABB
  // skip the first vertex which is the origin already computed above
  int nbVertices = powi(2, 2);
  for (int iVertex = nbVertices;
       iVertex -- && iVertex;) {
    // Declare a variable to memorize the coordinates of the vertex in
    // 'that' 's coordinates system
    double v[2];
    // Calculate the coordinates of the vertex in
    // 'that' 's coordinates system
    for (int i = 2;
         i--;) {
      v[i] = ((iVertex & (1 << i)) ? bbma[i] : bbmi[i]);</pre>
    // Declare a variable to memorize the projected coordinates
    // in real coordinates system
    double w[2];
    // Project the vertex to real coordinates system
    for (int i = 2;
         i--;) {
      w[i] = to[i];
```

```
for (int j = 2;
          j--;) {
        w[i] += tc[j][i] * v[j];
   }
    // Update the coordinates of the result {\tt AABB}
    for (int i = 2;
         i--;) {
      if (bbpmi[i] > w[i]) {
        bbpmi[i] = w[i];
      if (bbpma[i] < w[i]) {</pre>
        bbpma[i] = w[i];
     }
   }
  }
}
void Frame3DExportBdgBox(
  const Frame3D* const that,
  // Shortcuts
  const double* to
                     = that->orig;
  const double* bbmi = bdgBox->min;
  const double* bbma = bdgBox->max;
        double* bbpmi = bdgBoxProj->min;
        double* bbpma = bdgBoxProj->max;
  const double (*tc)[3] = that->comp;
  // Initialise the coordinates of the result AABB with the projection
  // of the first corner of the AABB in argument
  for (int i = 3;
      i--;) {
    bbpma[i] = to[i];
    for (int j = 3;
        j--;) {
      bbpma[i] += tc[j][i] * bbmi[j];
    }
    bbpmi[i] = bbpma[i];
  // Loop on vertices of the AABB
  // skip the first vertex which is the origin already computed above
```

```
int nbVertices = powi(2, 3);
  for (int iVertex = nbVertices;
       iVertex -- && iVertex;) {
    // Declare a variable to memorize the coordinates of the vertex in
    // 'that' 's coordinates system
    double v[3];
    // Calculate the coordinates of the vertex in
    // 'that' 's coordinates system
    for (int i = 3;
         i--;) {
      v[i] = ((iVertex & (1 << i)) ? bbma[i] : bbmi[i]);</pre>
    // Declare a variable to memorize the projected coordinates
    // in real coordinates system
    double w[3];
    // Project the vertex to real coordinates system
    for (int i = 3;
         i--;) {
      w[i] = to[i];
      for (int j = 3; j--;) {
        w[i] += tc[j][i] * v[j];
     }
   }
    // Update the coordinates of the result {\tt AABB}
    for (int i = 3;
      if (bbpmi[i] > w[i]) {
        bbpmi[i] = w[i];
      if (bbpma[i] < w[i]) {</pre>
        bbpma[i] = w[i];
      }
   }
 }
void Frame2DTimeExportBdgBox(
  \verb|const| Frame2DTime*| const| that,
  const AABB2DTime* const bdgBox,
          AABB2DTime* const bdgBoxProj) {
  // Shortcuts
  const double* to
                       = that->orig;
  const double* ts
                      = that->speed;
```

}

```
const double* bbmi = bdgBox->min;
const double* bbma = bdgBox->max;
      double* bbpmi = bdgBoxProj->min;
      double* bbpma = bdgBoxProj->max;
const double (*tc)[2] = that->comp;
// The time component is not affected
bbpmi[2] = bbmi[2];
bbpma[2] = bbma[2];
// Initialise the coordinates of the result AABB with the projection
// of the first corner of the AABB in argument
for (int i = 2;
  bbpma[i] = to[i] + ts[i] * bbmi[2];
 for (int j = 2;
    bbpma[i] += tc[j][i] * bbmi[j];
 }
 bbpmi[i] = bbpma[i];
}
// Loop on vertices of the AABB
// skip the first vertex which is the origin already computed above
int nbVertices = powi(2, 2);
for (int iVertex = nbVertices;
    iVertex -- && iVertex;) {
 // Declare a variable to memorize the coordinates of the vertex in
 // 'that' 's coordinates system
 double v[2];
 // Calculate the coordinates of the vertex in
  // 'that' 's coordinates system
 for (int i = 2;
      i--;) {
    v[i] = ((iVertex & (1 << i)) ? bbma[i] : bbmi[i]);</pre>
 }
  // Declare a variable to memorize the projected coordinates
  // in real coordinates system
 double w[2];
  // Project the vertex to real coordinates system
  for (int i = 2;
      i--;) {
    w[i] = to[i];
    for (int j = 2;
        j--;) {
      w[i] += tc[j][i] * v[j];
```

```
}
    }
    // Update the coordinates of the result AABB
    for (int i = 2;
          i--;) {
       if (bbpmi[i] > w[i] + ts[i] * bbmi[2]) {
         bbpmi[i] = w[i] + ts[i] * bbmi[2];
       if (bbpmi[i] > w[i] + ts[i] * bbma[2]) {
         bbpmi[i] = w[i] + ts[i] * bbma[2];
       if (bbpma[i] < w[i] + ts[i] * bbmi[2]) {</pre>
         bbpma[i] = w[i] + ts[i] * bbmi[2];
       if (bbpma[i] < w[i] + ts[i] * bbma[2]) {</pre>
         bbpma[i] = w[i] + ts[i] * bbma[2];
    }
  }
}
void Frame3DTimeExportBdgBox(
  \verb"const Frame3DTime*" const that",
   const AABB3DTime* const bdgBox,
          AABB3DTime* const bdgBoxProj) {
  // Shortcuts
  const double* to
                        = that->orig;
  const double* ts
                        = that->speed;
  const double* bbmi = bdgBox->min;
const double* bbma = bdgBox->max;
         double* bbpmi = bdgBoxProj->min;
  double* bbpma = bdgBoxProj->max;
const double (*tc)[3] = that->comp;
  // The time component is not affected
  bbpmi[3] = bbmi[3];
bbpma[3] = bbma[3];
  // Initialise the coordinates of the result AABB with the projection
  // of the first corner of the AABB in argument
  for (int i = 3;
    bbpma[i] = to[i] + ts[i] * bbmi[3];
    for (int j = 3;
       bbpma[i] += tc[j][i] * bbmi[j];
```

```
bbpmi[i] = bbpma[i];
// Loop on vertices of the AABB
// skip the first vertex which is the origin already computed above
int nbVertices = powi(2, 3);
for (int iVertex = nbVertices;
     iVertex -- && iVertex;) {
  // Declare a variable to memorize the coordinates of the vertex in
  // 'that' 's coordinates system
  double v[3];
  // Calculate the coordinates of the vertex in
  \begin{subarray}{lll} \end{subarray} // & \end{subarray} \begin{subarray}{lll} \end{subarray} that ` & \end{subarray} s coordinates system \end{subarray}
  for (int i = 3;
       i--;) {
    v[i] = ((iVertex & (1 << i)) ? bbma[i] : bbmi[i]);</pre>
  }
  \ensuremath{//} Declare a variable to memorize the projected coordinates
  // in real coordinates system
  double w[3];
  // Project the vertex to real coordinates system
  for (int i = 3;
       i--;) {
    w[i] = to[i];
    for (int j = 3;
         j--;) {
      w[i] += tc[j][i] * v[j];
    }
  }
  // Update the coordinates of the result AABB
  for (int i = 3;
       i--;) {
    if (bbpmi[i] > w[i] + ts[i] * bbmi[3]) {
      bbpmi[i] = w[i] + ts[i] * bbmi[3];
    if (bbpmi[i] > w[i] + ts[i] * bbma[3]) {
      bbpmi[i] = w[i] + ts[i] * bbma[3];
    if (bbpma[i] < w[i] + ts[i] * bbmi[3]) {</pre>
      bbpma[i] = w[i] + ts[i] * bbmi[3];
    }
```

```
if (bbpma[i] < w[i] + ts[i] * bbma[3]) {</pre>
        bbpma[i] = w[i] + ts[i] * bbma[3];
      }
   }
  }
}
// Print the AABB that on stdout
// Output format is (min[0], min[1], ...)-(max[0], max[1], ...)
void AABB2DPrint(const AABB2D* const that) {
  printf("minXY(");
  for (int i = 0;
       i < 2;
       ++i) {
    printf("%f", that->min[i]);
    if (i < 1)
      printf(",");
  printf(")-maxXY(");
  for (int i = 0;
       i < 2;
       ++i) {
    printf("%f", that->max[i]);
    if (i < 1)
      printf(",");
  printf(")");
}
void AABB3DPrint(const AABB3D* const that) {
  printf("minXYZ(");
  for (int i = 0;
       i < 3;
       ++i) {
    printf("%f", that->min[i]);
    if (i < 2)
      printf(",");
  printf(")-maxXYZ(");
  for (int i = 0;
       i < 3;
       ++i) {
    printf("%f", that->max[i]);
    if (i < 2)
      printf(",");
  printf(")");
```

```
void AABB2DTimePrint(const AABB2DTime* const that) {
  printf("minXYT(");
  for (int i = 0;
        i < 3;
        ++i) {
    printf("%f", that->min[i]);
    if (i < 2)
      printf(",");
  printf(")-maxXYT(");
  for (int i = 0;
       i < 3;
        ++i) {
    printf("%f", that->max[i]);
    if (i < 2)
      printf(",");
  printf(")");
}
void AABB3DTimePrint(const AABB3DTime* const that) {
  printf("minXYZT(");
  for (int i = 0;
       i < 4;
        ++i) {
    printf("%f", that->min[i]);
    if (i < 3)
       printf(",");
  printf(")-maxXYZT(");
  for (int i = 0;
       i < 4;
        ++i) {
    printf("%f", that->max[i]);
    if (i < 3)
      printf(",");
  printf(")");
}
\ensuremath{//} Print the Frame that on stdout
// Output format is
// T/C <- type of Frame
// o(orig[0], orig[1], orig[2])
// s(speed[0], speed[1], speed[2])
// x(comp[0][0], comp[0][1], comp[0][2])
// y(comp[1][0], comp[1][1], comp[1][2])
// z(comp[2][0], comp[2][1], comp[2][2])
```

```
void Frame2DPrint(const Frame2D* const that) {
  if (that->type == FrameTetrahedron) {
   printf("T");
  } else if (that->type == FrameCuboid) {
   printf("C");
  printf("o(");
  for (int i = 0;
     i < 2;
       ++i) {
    printf("%f", that->orig[i]);
    if (i < 1)
     printf(",");
  }
  char comp[2] = {'x', 'y'};
  for (int j = 0;
      j < 2;
       ++j) {
    printf(") %c(", comp[j]);
    for (int i = 0;
        i < 2;
        ++i) {
      printf("%f", that->comp[j][i]);
      if (i < 1)
        printf(",");
   }
  }
  printf(")");
}
void Frame3DPrint(const Frame3D* const that) {
  if (that->type == FrameTetrahedron) {
   printf("T");
  } else if (that->type == FrameCuboid) {
   printf("C");
  printf("o(");
  for (int i = 0;
      i < 3;
       ++i) {
    printf("%f", that->orig[i]);
    if (i < 2)
     printf(",");
  char comp[3] = {'x', 'y', 'z'};
  for (int j = 0;
      j < 3;
       ++j) {
    printf(") %c(", comp[j]);
    for (int i = 0;
        i < 3;
         ++i) {
      printf("%f", that->comp[j][i]);
      if (i < 2)
```

```
printf(",");
 }
  printf(")");
void Frame2DTimePrint(const Frame2DTime* const that) {
  if (that->type == FrameTetrahedron) {
   printf("T");
 print( 1 /;
} else if (that->type == FrameCuboid) {
  printf("C");
}
  printf("o(");
  for (int i = 0;
      i < 2;
       ++i) {
    printf("%f", that->orig[i]);
    if (i < 1)
     printf(",");
  }
  printf(") s(");
  for (int i = 0;
      i < 2;
       ++i) {
    printf("%f", that->speed[i]);
    if (i < 1)
      printf(",");
  char comp[2] = {'x', 'y'};
  for (int j = 0;
j < 2;
    ++j) {
printf(") %c(", comp[j]);
    for (int i = 0;
        i < 2;
         ++i) {
      printf("\%f", that->comp[j][i]);\\
      if (i < 1)
        printf(",");
   }
  }
  printf(")");
void Frame3DTimePrint(const Frame3DTime* const that) {
  if (that->type == FrameTetrahedron) {
   printf("T");
  } else if (that->type == FrameCuboid) {
 printf("C");
}
  printf("o(");
  for (int i = 0;
      i < 3;
```

```
++i) {
    printf("%f", that->orig[i]);
    if (i < 2)
      printf(",");
  printf(") s(");
  for (int i = 0;
       i < 3;
       ++i) {
    printf("%f", that->speed[i]);
    if (i < 2)
      printf(",");
  char comp[3] = {'x', 'y', 'z'};
  for (int j = 0;
j < 3;
       ++j) {
    printf(") %c(", comp[j]);
for (int i = 0;
         i < 3;
         ++i) {
      printf("%f", that->comp[j][i]);
      if (i < 2)
        printf(",");
   }
  printf(")");
// Power function for integer base and exponent
// Return base exp
int powi(
           int base,
  unsigned int exp) {
    int res = 1;
    for (;
         exp;
         --exp) {
      res *= base;
    }
    return res;
4.2
       FMB
4.2.1
        2D static
Header
#ifndef __FMB2D_H_
#define __FMB2D_H_
```

```
#include <stdbool.h>
#include "frame.h"
// ----- Functions declaration -----
\ensuremath{//} Test for intersection between Frame that and Frame tho
// Return true if the two Frames are intersecting, else false
// If the Frame are intersecting the AABB of the intersection
// is stored into bdgBox, else bdgBox is not modified
// If bdgBox is null, the result AABB is not memorized (to use if
// unnecessary and want to speed up the algorithm) \,
// The resulting AABB may be larger than the smallest possible AABB
// The resulting AABB of FMBTestIntersection(A,B) may be different
// of the resulting AABB of FMBTestIntersection(B,A)
// The resulting AABB is given in tho's local coordinates system
bool FMBTestIntersection2D(
  const Frame2D* const that,
  const Frame2D* const tho,
         AABB2D* const bdgBox);
#endif
   Body
#include "fmb2d.h"
// ----- Macros -----
// Return 1.0 if v is positive, -1.0 if v is negative, 0.0 else
#define sgn(v) (((0.0 < (v)) ? 1 : 0) - (((v) < 0.0) ? 1 : 0))
// Return x if x is negative, 0.0 else
#define neg(x) (x < 0.0 ? x : 0.0)
#define FST_VAR 0
#define SND_VAR 1
#define EPSILON 0.000001
// ----- Functions declaration -----
// Eliminate the first variable in the system M.X \le Y
// using the Fourier-Motzkin method and return
// the resulting system in Mp and Yp, and the number of rows of
// the resulting system in nbRemainRows
// Return false if the system becomes inconsistent during elimination,
// else return true
bool ElimVar2D(
  const double (*M)[2],
  const double* Y,
     const int nbRows,
     const int nbCols,
       double (*Mp)[2],
        double* Yp,
    int* const nbRemainRows);
// Get the bounds of the iVar-th variable in the nbRows rows
// system M.X \le Y which has been reduced to only one variable
// and store them in the iVar-th axis of the
// AABB bdgBox
// (M arrangement is [iRow][iCol])
```

```
// May return inconsistent values (max < min), which would
// mean the system has no solution
void GetBoundLastVar2D(
     const int iVar
  const double (*M)[2],
  const double* Y,
     const int nbRows,
   AABB2D* const bdgBox);
// Get the bounds of the iVar-th variable in the nbRows rows
// system M.X \le Y where the iVar-th variable is on the first column
// and store them in the iVar-th axis of the AABB bdgBox \,
// (M arrangement is [iRow][iCol])
void GetBoundVar2D(
     const int iVar
  const double (*M)[2],
  const double* Y,
     const int nbRows,
     const int nbCols,
   AABB2D* const bdgBox);
// ----- Functions implementation -----
// Eliminate the first variable in the system M.X \le Y
// using the Fourier-Motzkin method and return
\ensuremath{//} the resulting system in Mp and Yp, and the number of rows of
// the resulting system in nbRemainRows
// (M arrangement is [iRow][iCol])
// Return true if the system becomes inconsistent during elimination,
// else return false
bool ElimVar2D(
  const double (*M)[2],
  const double* Y,
     const int nbRows,
     const int nbCols,
        double (*Mp)[2],
        double* Yp,
    int* const nbRemainRows) {
  // Initialize the number of rows in the result system
  int nbResRows = 0;
  // First we process the rows where the eliminated variable is not null
  // For each row except the last one
  for (int iRow = 0;
       iRow < nbRows - 1;
       ++iRow) {
    // Shortcuts
    const double fabsMIRowIVar = fabs(M[iRow][0]);
    // If the coefficient for the eliminated vairable is not null
    // in this row
    if (fabsMIRowIVar > EPSILON) {
      // Shortcuts
      const double* MiRow = M[iRow];
      const int sgnMIRowIVar = sgn(MiRow[0]);
      const double YIRowDivideByFabsMIRowIVar = Y[iRow] / fabsMIRowIVar;
      // For each following rows
```

```
for (int jRow = iRow + 1;
         jRow < nbRows;</pre>
         ++ jRow) {
      // If coefficients of the eliminated variable in the two rows have
      // different signs and are not null
      if (sgnMIRowIVar != sgn(M[jRow][0]) &&
          fabs(M[jRow][0]) > EPSILON) {
        // Shortcuts
        const double* MjRow = M[jRow];
        const double fabsMjRow = fabs(MjRow[0]);
        // Declare a variable to memorize the sum of the negative
        // coefficients in the row
        double sumNegCoeff = 0.0;
        // Add the sum of the two normed (relative to the eliminated \,
        // variable) rows into the result system. This actually
        ^{\prime\prime} eliminate the variable while keeping the constraints on
        // others variables
        for (int iCol = 1;
             iCol < nbCols;
             ++iCol ) {
          Mp[nbResRows][iCol - 1] =
            MiRow[iCol] / fabsMIRowIVar +
            MjRow[iCol] / fabsMjRow;
          // Update the sum of the negative coefficient
          sumNegCoeff += neg(Mp[nbResRows][iCol - 1]);
        // Update the right side of the inequality
        Yp[nbResRows] =
          YIRowDivideByFabsMIRowIVar +
          Y[jRow] / fabsMjRow;
        // If the right side of the inequality if lower than the sum of
        // negative coefficients in the row
        // (Add epsilon for numerical imprecision)
        if (Yp[nbResRows] < sumNegCoeff - EPSILON) {</pre>
          // Given that X is in [0,1], the system is inconsistent
          return true;
        // Increment the nb of rows into the result system
        ++nbResRows;
      }
    }
  }
}
// Then we copy and compress the rows where the eliminated
// variable is null
```

```
// Loop on rows of the input system
  for (int iRow = 0;
       iRow < nbRows;
       ++iRow) {
    // Shortcut
    const double* MiRow = M[iRow];
    // If the coefficient of the eliminated variable is null on
    // this row
    if (fabs(MiRow[0]) < EPSILON) {</pre>
      // Shortcut
      double* MpnbResRows = Mp[nbResRows];
      // Copy this row into the result system excluding the eliminated
      // variable
      for (int iCol = 1;
           iCol < nbCols;</pre>
           ++iCol) {
        MpnbResRows[iCol - 1] = MiRow[iCol];
      Yp[nbResRows] = Y[iRow];
      // Increment the nb of rows into the result system
      ++nbResRows;
    }
  }
  // Memorize the number of rows in the result system
  *nbRemainRows = nbResRows;
  // If we reach here the system is not inconsistent
  return false;
}
// Get the bounds of the iVar-th variable in the nbRows rows
// system M.X<=Y which has been reduced to only one variable
// and store them in the iVar-th axis of the
// AABB bdgBox
// (M arrangement is [iRow][iCol])
// May return inconsistent values (max < min), which would
// mean the system has no solution
void GetBoundLastVar2D(
     const int iVar,
  const double (*M)[2],
  const double* Y,
    const int nbRows,
   AABB2D* const bdgBox) {
  // Shortcuts
  double* min = bdgBox->min + iVar;
  double* max = bdgBox->max + iVar;
  // Initialize the bounds to their maximum maximum and minimum minimum
```

```
*min = 0.0;
  *max = 1.0;
  // Loop on rows
  for (int jRow = 0;
        jRow < nbRows;</pre>
        ++ jRow) {
    // Shortcut
    double MjRowiVar = M[jRow][0];
    // If this row has been reduced to the variable in argument
    \ensuremath{//} and it has a strictly positive coefficient
    if (MjRowiVar > EPSILON) {
      // Get the scaled value of Y for this row
      double y = Y[jRow] / MjRowiVar;
      // If the value is lower than the current maximum bound
      if (*max > y) {
        // Update the maximum bound
        *max = y;
      }
    // Else, if this row has been reduced to the variable in argument
    // and it has a strictly negative coefficient } else if (MjRowiVar < -EPSILON) {
      // \ensuremath{\mathsf{Get}} the scaled value of Y for this row
      double y = Y[jRow] / MjRowiVar;
      \ensuremath{//} If the value is greater than the current minimum bound
      if (*min < y) {
        // Update the minimum bound
         *min = y;
      }
    }
  }
}
// Get the bounds of the iVar-th variable in the nbRows rows
// system M.X \le Y where the iVar-th variable is on the first column
// and store them in the iVar-th axis of the AABB bdgBox
// (M arrangement is [iRow][iCol])
void GetBoundVar2D(
     const int iVar
  const double (*M)[2],
  const double* Y,
     const int nbRows,
     const int nbCols,
   AABB2D* const bdgBox) {
  // Shortcuts
  double* bdgBoxMin = bdgBox->min;
  double* bdgBoxMax = bdgBox->max;
```

```
// Initialize the bounds
  bdgBoxMin[iVar] = 0.0;
  bdgBoxMax[iVar] = 1.0;
  // Loop on the rows
  for (int iRow = 0;
       iRow < nbRows;
       ++iRow) {
    // Shortcuts
    const double* MIRow = M[iRow];
double fabsMIRowIVar = fabs(MIRow[0]);
    // If the coefficient of the first variable on this row is not null
    if (fabsMIRowIVar > EPSILON) {
      // Declare two variables to memorize the min and max of the
      // requested variable in this row
      double min = -1.0 * Y[iRow];
      double max = Y[iRow];
      // Loop on columns except the first one which is the one of the
      // requested variable
      for (int iCol = 1;
           iCol < nbCols;</pre>
           ++iCol) {
        if (MIRow[iCol] > EPSILON) {
          min += MIRow[iCol] * bdgBoxMin[iCol + iVar];
          max -= MIRow[iCol] * bdgBoxMin[iCol + iVar];
        } else if (MIRow[iCol] < EPSILON) {</pre>
          min += MIRow[iCol] * bdgBoxMax[iCol + iVar];
          max -= MIRow[iCol] * bdgBoxMax[iCol + iVar];
      }
      min /= -1.0 * MIRow[0];
      max /= MIRow[0];
      if (bdgBoxMin[iVar] > min) {
        bdgBoxMin[iVar] = min;
      if (bdgBoxMax[iVar] < max) {</pre>
        bdgBoxMax[iVar] = max;
      }
    }
  }
}
// Test for intersection between Frame that and Frame tho
// Return true if the two Frames are intersecting, else false
// If the Frame are intersecting the AABB of the intersection
// is stored into bdgBox, else bdgBox is not modified
// If bdgBox is null, the result AABB is not memorized (to use if
```

```
// unnecessary and want to speed up the algorithm)
// The resulting AABB may be larger than the smallest possible AABB
// The resulting AABB of FMBTestIntersection(A,B) may be different
// of the resulting AABB of FMBTestIntersection(B,A)
// The resulting AABB is given in tho's local coordinates system
bool FMBTestIntersection2D(
  const Frame2D* const that,
  const Frame2D* const tho,
         AABB2D* const bdgBox) {
  // Get the projection of the Frame 'tho' in Frame 'that' coordinates
  // system
  Frame2D thoProj;
  Frame2DImportFrame(that, tho, &thoProj);
  // Declare two variables to memorize the system to be solved M.X <= Y
  // (M arrangement is [iRow][iCol])
  double M[8][2];
  double Y[8];
  // Create the inequality system
  // -sum_iC_j,iX_i <= 0_j
  M[0][0] = -thoProj.comp[0][0];
  M[0][1] = -thoProj.comp[1][0];
  Y[0] = thoProj.orig[0];
  if (Y[0] < neg(M[0][0]) + neg(M[0][1]))
   return false;
 M[1][0] = -thoProj.comp[0][1];
  M[1][1] = -thoProj.comp[1][1];
  Y[1] = thoProj.orig[1];
  if (Y[1] < neg(M[1][0]) + neg(M[1][1]))
    return false;
  // Variable to memorise the nb of rows in the system
  int nbRows = 2;
  if (that->type == FrameCuboid) {
    // sum_iC_j, iX_i <= 1.0-0_j
    M[nbRows][0] = thoProj.comp[0][0];
M[nbRows][1] = thoProj.comp[1][0];
    Y[nbRows] = 1.0 - thoProj.orig[0];
if (Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]))
      return false;
    ++nbRows;
    M[nbRows][0] = thoProj.comp[0][1];
    M[nbRows][1] = thoProj.comp[1][1];
    Y[nbRows] = 1.0 - thoProj.orig[1];
    if (Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]))</pre>
      return false;
    ++nbRows;
  } else {
    // sum_j(sum_iC_j,iX_i)<=1.0-sum_iO_i
    M[nbRows][0] = thoProj.comp[0][0] + thoProj.comp[0][1];
    M[nbRows][1] = thoProj.comp[1][0] + thoProj.comp[1][1];
Y[nbRows] = 1.0 - thoProj.orig[0] - thoProj.orig[1];
    if (Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]))</pre>
```

```
return false;
  ++nbRows;
}
if (tho->type == FrameCuboid) {
  // X_i <= 1.0
  M[nbRows][0] = 1.0;
M[nbRows][1] = 0.0;
  Y[nbRows] = 1.0;
  ++nbRows;
  M[nbRows][0] = 0.0;
  M[nbRows][1] = 1.0;
  Y[nbRows] = 1.0;
  ++nbRows;
} else {
  // sum_iX_i <= 1.0
  M[nbRows][0] = 1.0;
  M[nbRows][1] = 1.0;
  Y[nbRows] = 1.0;
  ++nbRows;
}
// -X_i <= 0.0
M[nbRows][0] = -1.0;
M[nbRows][1] = 0.0;
Y[nbRows] = 0.0;
++nbRows;
M[nbRows][0] = 0.0;
M[nbRows][1] = -1.0;
Y[nbRows] = 0.0;
++nbRows;
// Solve the system
// Declare a AABB to memorize the bounding box of the intersection
// in the coordinates system of tho
AABB2D bdgBoxLocal = {
  .min = \{0.0, 0.0\},
  .max = \{0.0, 0.0\}
};
// Declare variables to eliminate the first variable
\ensuremath{//} The size of the array given in the doc is a majoring value.
// Instead I use a smaller value which has proven to be sufficient
// during tests, validation and qualification, to avoid running
// into the heap limit and to optimize slightly the performance
//double Mp[24][2];
//double Yp[24];
double Mp[11][2];
double Yp[11];
int nbRowsP;
// Eliminate the first variable
bool inconsistency =
  ElimVar2D(
```

```
Μ,
                      Υ,
                      nbRows,
                      2,
                      Mp,
                      Υp,
                     &nbRowsP);
       // If the system is inconsistent
       if (inconsistency == true) {
               // The two Frames are not in intersection
              return false;
       }
        // Get the bounds for the remaining second variable
        GetBoundLastVar2D(
              SND_VAR,
              {\tt Mp},
              Yp,
              nbRowsP,
              &bdgBoxLocal);
        // If the bounds are inconsistent
        \label{eq:condition} \mbox{if $(bdgBoxLocal.min[SND_VAR]) <= bdgBoxLocal.max[SND_VAR]) } \  \  \{ \mbox{} \m
              \ensuremath{//} The two Frames are not in intersection
              return false;
       // Else, if the bounds are consistent here it means
        // the two Frames are in intersection.
       // If the user has requested for the resulting bounding box
       } else if (bdgBox != NULL) {
              \ensuremath{//} Get the bounds of the first variable from the bounds of the
              // second one
              GetBoundVar2D(
                        FST_VAR,
                        Μ,
                        Υ,
                         nbRows,
                        &bdgBoxLocal);
              // Memorize the result
*bdgBox = bdgBoxLocal;
       }
       // If we've reached here the two Frames are intersecting
       return true;
}
```

4.2.2 3D static

Header

```
#ifndef __FMB3D_H_
#define __FMB3D_H_
#include <stdbool.h>
#include "frame.h"
// ----- Functions declaration -----
// Test for intersection between Frame that and Frame tho
\ensuremath{//} Return true if the two Frames are intersecting, else false
// If the Frame are intersecting the AABB of the intersection
// is stored into bdgBox, else bdgBox is not modified
// If bdgBox is null, the result AABB is not memorized (to use if
// unnecessary and want to speed up the algorithm)
// The resulting AABB may be larger than the smallest possible AABB
// The resulting AABB of FMBTestIntersection(A,B) may be different
// of the resulting AABB of FMBTestIntersection(B,A)
// The resulting AABB is given in tho's local coordinates system
bool FMBTestIntersection3D(
  const Frame3D* const that,
  const Frame3D* const tho,
         AABB3D* const bdgBox);
#endif
   Body
#include "fmb3d.h"
// ----- Macros -----
// Return 1.0 if v is positive, -1.0 if v is negative, 0.0 else #define sgn(v) (((0.0 < (v)) ? 1 : 0) - (((v) < 0.0) ? 1 : 0))
// Return x if x is negative, 0.0 else
#define neg(x) (x < 0.0 ? x : 0.0)
#define FST_VAR O
#define SND_VAR 1
#define THD_VAR 2
#define EPSILON 0.0000001
// ----- Functions declaration -----
// Eliminate the first variable in the system M.X \le Y
// using the Fourier-Motzkin method and return
// the resulting system in Mp and Yp, and the number of rows of
// the resulting system in nbRemainRows
// Return false if the system becomes inconsistent during elimination,
// else return true
bool ElimVar3D(
  const double (*M)[3],
  const double* Y,
     const int nbRows,
     const int nbCols,
        double (*Mp)[3],
        double* Yp,
    int* const nbRemainRows);
// Get the bounds of the iVar-th variable in the nbRows rows
// system M.X<=Y which has been reduced to only one variable
```

```
// and store them in the iVar-th axis of the
// AABB bdgBox
// (M arrangement is [iRow][iCol])
// May return inconsistent values (max < min), which would
// mean the system has no solution
void GetBoundLastVar3D(
     const int iVar,
  const double (*M)[3],
  const double* Y,
     const int nbRows,
   AABB3D* const bdgBox);
// Get the bounds of the iVar-th variable in the nbRows rows
// system M.X<=Y where the iVar-th variable is on the first column
// and store them in the iVar-th axis of the AABB bdgBox
// (M arrangement is [iRow][iCol])
void GetBoundVar3D(
     {\tt const\ int\ iVar}
  const double (*M)[3],
  const double* Y,
     const int nbRows,
     const int nbCols,
   AABB3D* const bdgBox);
// ----- Functions implementation -----
// Eliminate the first variable in the system M.X \le Y
// using the Fourier-Motzkin method and return
// the resulting system in Mp and Yp, and the number of rows of
// the resulting system in nbRemainRows
// (M arrangement is [iRow][iCol])
\ensuremath{//} Return true if the system becomes inconsistent during elimination,
// else return false
bool ElimVar3D(
  const double (*M)[3],
  const double* Y,
     const int nbRows,
     const int nbCols,
        double (*Mp)[3],
        double* Yp,
    int* const nbRemainRows) {
  // Initialize the number of rows in the result system
  int nbResRows = 0;
  // First we process the rows where the eliminated variable is not null
  // For each row except the last one
  for (int iRow = 0;
       iRow < nbRows - 1;
       ++iRow) {
    // Shortcuts
    const double fabsMIRowIVar = fabs(M[iRow][0]);
    // If the coefficient for the eliminated vairable is not null
    // in this row
    if (fabsMIRowIVar > EPSILON) {
      // Shortcuts
      const double* MiRow = M[iRow];
      const int sgnMIRowIVar = sgn(MiRow[0]);
```

```
// For each following rows
    for (int jRow = iRow + 1;
         jRow < nbRows;</pre>
         ++ jRow) {
      // If coefficients of the eliminated variable in the two rows have
      // different signs and are not null
      if (sgnMIRowIVar != sgn(M[jRow][0]) &&
          fabs(M[jRow][0]) > EPSILON) {
        // Shortcuts
        const double* MjRow = M[jRow];
        const double fabsMjRow = fabs(MjRow[0]);
        // Declare a variable to memorize the sum of the negative
        \ensuremath{//} coefficients in the row
        double sumNegCoeff = 0.0;
        // Add the sum of the two normed (relative to the eliminated
        // variable) rows into the result system. This actually
        ^{\prime\prime} eliminate the variable while keeping the constraints on
        // others variables
        for (int iCol = 1;
             iCol < nbCols;</pre>
             ++iCol ) {
          Mp[nbResRows][iCol - 1] =
            MiRow[iCol] / fabsMIRowIVar +
            MjRow[iCol] / fabsMjRow;
          // Update the sum of the negative coefficient
          sumNegCoeff += neg(Mp[nbResRows][iCol - 1]);
        // Update the right side of the inequality
        Yp[nbResRows] =
          YIRowDivideByFabsMIRowIVar +
          Y[jRow] / fabsMjRow;
        // If the right side of the inequality if lower than the sum of
        // negative coefficients in the row
        // (Add epsilon for numerical imprecision)
        if (Yp[nbResRows] < sumNegCoeff - EPSILON) {</pre>
          // Given that X is in [0,1], the system is inconsistent
          return true;
        }
        // Increment the nb of rows into the result system
        ++nbResRows;
      }
    }
  }
}
```

const double YIRowDivideByFabsMIRowIVar = Y[iRow] / fabsMIRowIVar;

```
// Then we copy and compress the rows where the eliminated % \left( 1\right) =\left( 1\right) +\left( 1\right) 
          // variable is null
          // Loop on rows of the input system
          for (int iRow = 0;
                                iRow < nbRows;
                                ++iRow) {
                   // Shortcut
                   const double* MiRow = M[iRow];
                  // If the coefficient of the eliminated variable is null on
                  // this row
                  if (fabs(MiRow[0]) < EPSILON) {</pre>
                            // Shortcut
                            double* MpnbResRows = Mp[nbResRows];
                            // Copy this row into the result system excluding the eliminated
                            // variable
                            for (int iCol = 1;
                                                 iCol < nbCols;
                                                  ++iCol) {
                                    MpnbResRows[iCol - 1] = MiRow[iCol];
                            Yp[nbResRows] = Y[iRow];
                            // Increment the nb of rows into the result system
                            ++nbResRows;
                  }
          }
          // Memorize the number of rows in the result system
          *nbRemainRows = nbResRows;
          // If we reach here the system is not inconsistent
         return false;
}
// Get the bounds of the iVar-th variable in the nbRows rows
 // system M.X \le Y which has been reduced to only one variable
 // and store them in the iVar-th axis of the
 // AABB bdgBox
 // (M arrangement is [iRow][iCol])
 // May return inconsistent values (max < min), which would
 // mean the system has no solution
 void GetBoundLastVar3D(
                      const int iVar
          const double (*M)[3],
          const double* Y,
                      const int nbRows,
              AABB3D* const bdgBox) {
          // Shortcuts
          double* min = bdgBox->min + iVar;
```

```
// Initialize the bounds to their maximum maximum and minimum minimum
  *min = 0.0;
  *max = 1.0;
  // Loop on rows
  for (int jRow = 0;
       jRow < nbRows;
       ++ j Row ) {
    // Shortcut
    double MjRowiVar = M[jRow][0];
    // If this row has been reduced to the variable in argument
    // and it has a strictly positive coefficient
    if (MjRowiVar > EPSILON) {
      // Get the scaled value of Y for this row
      double y = Y[jRow] / MjRowiVar;
      // If the value is lower than the current maximum bound
      if (*max > y) {
        // Update the maximum bound
        *max = y;
    // Else, if this row has been reduced to the variable in argument
    // and it has a strictly negative coefficient
    } else if (MjRowiVar < -EPSILON) {</pre>
      // Get the scaled value of Y for this row
      double y = Y[jRow] / MjRowiVar;
      \ensuremath{//} If the value is greater than the current minimum bound
      if (*min < y) {
        // Update the minimum bound
        *min = y;
      }
    }
  }
}
// Get the bounds of the iVar-th variable in the nbRows rows
// system M.X \le Y where the iVar-th variable is on the first column
// and store them in the iVar-th axis of the AABB bdgBox
// (M arrangement is [iRow][iCol])
void GetBoundVar3D(
     const int iVar
  const double (*M)[3],
  const double* Y,
     const int nbRows,
     const int nbCols,
   AABB3D* const bdgBox) {
```

double* max = bdgBox->max + iVar;

```
// Shortcuts
  double* bdgBoxMin = bdgBox->min;
  double* bdgBoxMax = bdgBox->max;
  // Initialize the bounds
  bdgBoxMin[iVar] = 0.0;
  bdgBoxMax[iVar] = 1.0;
  // Loop on the rows
  for (int iRow = 0;
       iRow < nbRows;
       ++iRow) {
    // Shortcuts
    const double* MIRow = M[iRow];
double fabsMIRowIVar = fabs(MIRow[0]);
    // If the coefficient of the first variable on this row is not null
    if (fabsMIRowIVar > EPSILON) {
      // Declare two variables to memorize the min and max of the
      // requested variable in this row
      double min = -1.0 * Y[iRow];
      double max = Y[iRow];
      // Loop on columns except the first one which is the one of the
      // requested variable
      for (int iCol = 1;
            iCol < nbCols;</pre>
            ++iCol) {
        if (MIRow[iCol] > EPSILON) {
          min += MIRow[iCol] * bdgBoxMin[iCol + iVar];
           max -= MIRow[iCol] * bdgBoxMin[iCol + iVar];
        } else if (MIRow[iCol] < EPSILON) {</pre>
          min += MIRow[iCol] * bdgBoxMax[iCol + iVar];
max -= MIRow[iCol] * bdgBoxMax[iCol + iVar];
      }
      min /= -1.0 * MIRow[0];
max /= MIRow[0];
      if (bdgBoxMin[iVar] > min) {
        bdgBoxMin[iVar] = min;
      if (bdgBoxMax[iVar] < max) {</pre>
        bdgBoxMax[iVar] = max;
      }
    }
  }
// Test for intersection between Frame that and Frame tho
// Return true if the two Frames are intersecting, else false
```

}

```
// If the Frame are intersecting the AABB of the intersection
// is stored into bdgBox, else bdgBox is not modified
// If bdgBox is null, the result AABB is not memorized (to use if
// unnecessary and want to speed up the algorithm) \,
// The resulting AABB may be larger than the smallest possible AABB
// The resulting AABB of FMBTestIntersection(A,B) may be different
// of the resulting AABB of FMBTestIntersection(B,A)
// The resulting AABB is given in tho's local coordinates system
bool FMBTestIntersection3D(
  const Frame3D* const that,
  const Frame3D* const tho,
         AABB3D* const bdgBox) {
  // Get the projection of the Frame 'tho' in Frame 'that' coordinates
  // system
  Frame3D thoProj;
  Frame3DImportFrame(that, tho, &thoProj);
  // Declare two variables to memorize the system to be solved M.X <= Y
  // (M arrangement is [iRow][iCol])
  double M[12][3];
  double Y[12];
  // Create the inequality system
  // -sum_iC_j,iX_i \le 0_j
  M[0][0] = -thoProj.comp[0][0];
  M[0][1] = -thoProj.comp[1][0];
 M[0][2] = -thoProj.comp[2][0];
 Y[0] = thoProj.orig[0];
  if (Y[0] < neg(M[0][0]) + neg(M[0][1]) + neg(M[0][2]))
    return false;
 M[1][0] = -thoProj.comp[0][1];
  M[1][1] = -thoProj.comp[1][1];
 M[1][2] = -thoProj.comp[2][1];
  Y[1] = thoProj.orig[1];
  if (Y[1] < neg(M[1][0]) + neg(M[1][1]) + neg(M[1][2]))
    return false;
 M[2][0] = -thoProj.comp[0][2];
 M[2][1] = -thoProj.comp[1][2];
  M[2][2] = -thoProj.comp[2][2];
  Y[2] = thoProj.orig[2];
  if (Y[2] < neg(M[2][0]) + neg(M[2][1]) + neg(M[2][2]))
    return false;
  // Variable to memorise the nb of rows in the system
  int nbRows = 3;
  if (that->type == FrameCuboid) {
    // sum_iC_j,iX_i <= 1.0-0_j
    M[nbRows][0] = thoProj.comp[0][0];
    M[nbRows][1] = thoProj.comp[1][0];
    M[nbRows][2] = thoProj.comp[2][0];
    Y[nbRows] = 1.0 - thoProj.orig[0];
    if (Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +
                    neg(M[nbRows][2]))
      return false;
    ++nbRows;
```

```
M[nbRows][0] = thoProj.comp[0][1];
  M[nbRows][1] = thoProj.comp[1][1];
  M[nbRows][2] = thoProj.comp[2][1];
  Y[nbRows] = 1.0 - thoProj.orig[1];
  if (Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +</pre>
                  neg(M[nbRows][2]))
    return false;
  ++nbRows;
  M[nbRows][0] = thoProj.comp[0][2];
  M[nbRows][1] = thoProj.comp[1][2];
  M[nbRows][2] = thoProj.comp[2][2];
  Y[nbRows] = 1.0 - thoProj.orig[2];
  if (Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +</pre>
                  neg(M[nbRows][2]))
    return false;
  ++nbRows;
} else {
  // sum_j(sum_iC_j,iX_i) <=1.0-sum_iO_i
  M[nbRows][0] =
    thoProj.comp[0][0] + thoProj.comp[0][1] + thoProj.comp[0][2];
  M[nbRows][1] =
    thoProj.comp[1][0] + thoProj.comp[1][1] + thoProj.comp[1][2];
  M[nbRows][2] =
    thoProj.comp[2][0] + thoProj.comp[2][1] + thoProj.comp[2][2];
  Y[nbRows] =
    1.0 - thoProj.orig[0] - thoProj.orig[1] - thoProj.orig[2];
  if (Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +</pre>
                  neg(M[nbRows][2]))
    return false;
  ++nbRows;
}
if (tho->type == FrameCuboid) {
  // X_i <= 1.0
  M[nbRows][0] = 1.0;
  M[nbRows][1] = 0.0;
  M[nbRows][2] = 0.0;
  Y[nbRows] = 1.0;
  ++nbRows;
  M[nbRows][0] = 0.0;
  M[nbRows][1] = 1.0;
  M[nbRows][2] = 0.0;
  Y[nbRows] = 1.0;
  ++nbRows;
  M[nbRows][0] = 0.0;
  M[nbRows][1] = 0.0;
  M[nbRows][2] = 1.0;
  Y[nbRows] = 1.0;
  ++nbRows;
} else {
  // sum_iX_i <= 1.0
  M[nbRows][0] = 1.0;
  M[nbRows][1] = 1.0;
```

```
M[nbRows][2] = 1.0;
  Y[nbRows] = 1.0;
  ++nbRows;
}
// -X_i <= 0.0
M[nbRows][0] = -1.0;
M[nbRows][1] = 0.0;
M[nbRows][2] = 0.0;
Y[nbRows] = 0.0;
++nbRows;
M[nbRows][0] = 0.0;
M[nbRows][1] = -1.0;
M[nbRows][2] = 0.0;
Y[nbRows] = 0.0;
++nbRows;
M[nbRows][0] = 0.0;
M[nbRows][1] = 0.0;
M[nbRows][2] = -1.0;
Y[nbRows] = 0.0;
++nbRows;
// Solve the system
// Declare a AABB to memorize the bounding box of the intersection
// in the coordinates system of tho
AABB3D bdgBoxLocal = {
  .min = \{0.0, 0.0, 0.0\}, \\ .max = \{0.0, 0.0, 0.0\}
// Declare variables to eliminate the first variable
// The size of the array given in the doc is a majoring value.
// Instead I use a smaller value which has proven to be sufficient
// during tests, validation and qualification, to avoid running
// into the heap limit and to optimize slightly the performance
//double Mp[48][3];
//double Yp[48];
double Mp[20][3];
double Yp[20];
int nbRowsP;
// Eliminate the first variable in the original system
bool inconsistency =
  ElimVar3D(
    М,
    Υ,
    nbRows,
    З,
    Mp,
    Ϋ́р,
    &nbRowsP);
// If the system is inconsistent
if (inconsistency == true) {
  // The two Frames are not in intersection
  return false;
```

```
// Declare variables to eliminate the second variable
// The size of the array given in the doc is a majoring value.
// Instead I use a smaller value which has proven to be sufficient
// during tests, validation and qualification, to avoid running
// into the heap limit and to optimize slightly the performance
//double Mpp[624][3];
//double Ypp[624];
double Mpp[55][3];
double Ypp[55];
int nbRowsPP;
// Eliminate the second variable (which is the first in the new system)
inconsistency =
  ElimVar3D(
    Мр,
    Yp,
    nbRowsP,
    2,
    Mpp,
    Ypp,
    &nbRowsPP);
// If the system is inconsistent
if (inconsistency == true) {
  // The two Frames are not in intersection
  return false;
// Get the bounds for the remaining third variable
GetBoundLastVar3D(
  THD_VAR,
  \texttt{Mpp},
  Ypp,
  nbRowsPP,
  &bdgBoxLocal);
// If the bounds are inconsistent
if (bdgBoxLocal.min[THD_VAR] >= bdgBoxLocal.max[THD_VAR]) {
  // The two Frames are not in intersection
  return false;
// Else, if the bounds are consistent here it means
// the two Frames are in intersection.
// If the user has requested for the resulting bounding box
} else if (bdgBox != NULL) {
  // Get the bounds of the other variables
  GetBoundVar3D(
     SND_VAR,
     Mp,
     Υp,
     nbRowsP,
     &bdgBoxLocal);
  GetBoundVar3D(
```

```
FST_VAR,
       Υ,
       nbRows,
       &bdgBoxLocal);
    // Memorize the result
    *bdgBox = bdgBoxLocal;
  }
  // If we've reached here the two Frames are intersecting
  return true;
}
4.2.3
       2D dynamic
Header
#ifndef __FMB2DT_H_
#define __FMB2DT_H_
#include <stdbool.h>
#include "frame.h"
// ----- Functions declaration -----
\ensuremath{//} Test for intersection between Frame that and Frame tho
// Return true if the two Frames are intersecting, else false
// If the Frame are intersecting the AABB of the intersection
// is stored into bdgBox, else bdgBox is not modified
// If bdgBox is null, the result AABB is not memorized (to use if
// unnecessary and want to speed up the algorithm)
// The resulting AABB may be larger than the smallest possible AABB
// The resulting AABB of FMBTestIntersection(A,B) may be different
// of the resulting AABB of FMBTestIntersection(B,A) \,
// The resulting AABB is given in tho's local coordinates system
bool FMBTestIntersection2DTime(
  const Frame2DTime* const that,
  #endif
   Body
#include "fmb2dt.h"
// ----- Macros -----
// Return 1.0 if v is positive, -1.0 if v is negative, 0.0 else #define sgn(v) (((0.0 < (v)) ? 1 : 0) - (((v) < 0.0) ? 1 : 0))
// Return x if x is negative, 0.0 else
#define neg(x) (x < 0.0 ? x : 0.0)
```

#define FST_VAR 0
#define SND_VAR 1

```
#define THD_VAR 2
#define EPSILON 0.000001
// ----- Functions declaration -----
// Eliminate the first variable in the system M.X \le Y
// using the Fourier-Motzkin method and return
// the resulting system in Mp and Yp, and the number of rows of
// the resulting system in nbRemainRows
// Return false if the system becomes inconsistent during elimination,
// else return true
bool ElimVar2DTime(
 const double (*M)[3],
 const double* Y,
     const int nbRows,
     const int nbCols,
       double (*Mp)[3]
       double* Yp,
    int* const nbRemainRows);
// Get the bounds of the iVar-th variable in the nbRows rows
// system M.X \le Y which has been reduced to only one variable
// and store them in the iVar-th axis of the
// AABB bdgBox
// (M arrangement is [iRow][iCol])
// May return inconsistent values (max < min), which would
// mean the system has no solution
void GetBoundLastVar2DTime(
    const int iVar,
  const double (*M)[3],
  const double* Y,
    const int nbRows,
   AABB2DTime* const bdgBox);
// Get the bounds of the iVar-th variable in the nbRows rows
// system M.X<=Y where the iVar-th variable is on the first column
// and store them in the iVar-th axis of the AABB bdgBox
// (M arrangement is [iRow][iCol])
void GetBoundVar2DTime(
    const int iVar,
  const double (*M)[3],
  const double* Y,
     const int nbRows,
    const int nbCols,
   AABB2DTime* const bdgBox);
// ----- Functions implementation -----
// Eliminate the first variable in the system M.X \le Y
// using the Fourier-Motzkin method and return
^{\prime\prime} the resulting system in Mp and Yp, and the number of rows of
// the resulting system in nbRemainRows
// (M arrangement is [iRow][iCol])
// Return true if the system becomes inconsistent during elimination,
// else return false
bool ElimVar2DTime(
 const double (*M)[3],
  const double* Y,
    const int nbRows,
     const int nbCols,
       double (*Mp)[3],
```

```
double* Yp,
  int* const nbRemainRows) {
// Initialize the number of rows in the result system
int nbResRows = 0;
// First we process the rows where the eliminated variable is not null
// For each row except the last one
for (int iRow = 0;
     iRow < nbRows - 1;
     ++iRow) {
  // Shortcuts
  const double fabsMIRowIVar = fabs(M[iRow][0]);
  // If the coefficient for the eliminated vairable is not null
  // in this row
  if (fabsMIRowIVar > EPSILON) {
    // Shortcuts
    const double* MiRow = M[iRow];
    const int sgnMIRowIVar = sgn(MiRow[0]);
    const double YIRowDivideByFabsMIRowIVar = Y[iRow] / fabsMIRowIVar;
    // For each following rows
    for (int jRow = iRow + 1;
         jRow < nbRows;</pre>
         ++ jRow) {
      // If coefficients of the eliminated variable in the two rows have
      // different signs and are not null
      if (sgnMIRowIVar != sgn(M[jRow][0]) &&
          fabs(M[jRow][0]) > EPSILON) {
        // Shortcuts
        const double* MjRow = M[jRow];
        const double fabsMjRow = fabs(MjRow[0]);
        // Declare a variable to memorize the sum of the negative
        // coefficients in the row
        double sumNegCoeff = 0.0;
        /\!/ Add the sum of the two normed (relative to the eliminated /\!/ variable) rows into the result system. This actually
        // eliminate the variable while keeping the constraints on
        // others variables
        for (int iCol = 1;
             iCol < nbCols;
             ++iCol ) {
          Mp[nbResRows][iCol - 1] =
            MiRow[iCol] / fabsMIRowIVar +
            MjRow[iCol] / fabsMjRow;
          // Update the sum of the negative coefficient
          sumNegCoeff += neg(Mp[nbResRows][iCol - 1]);
        // Update the right side of the inequality
        Yp[nbResRows] =
```

```
YIRowDivideByFabsMIRowIVar +
          Y[jRow] / fabsMjRow;
        // If the right side of the inequality if lower than the sum of
        // negative coefficients in the row
        // (Add epsilon for numerical imprecision)
        if (Yp[nbResRows] < sumNegCoeff - EPSILON) {</pre>
          // Given that X is in [0,1], the system is inconsistent
          return true;
        // Increment the nb of rows into the result system
        ++nbResRows;
      }
    }
  }
}
// Then we copy and compress the rows where the eliminated
// variable is null
// Loop on rows of the input system
for (int iRow = 0;
     iRow < nbRows;
     ++iRow) {
  // Shortcut
  const double* MiRow = M[iRow];
  // If the coefficient of the eliminated variable is null on
  // this row
  if (fabs(MiRow[0]) < EPSILON) {</pre>
    // Shortcut
    double* MpnbResRows = Mp[nbResRows];
    // Copy this row into the result system excluding the eliminated
    // variable
    for (int iCol = 1;
         iCol < nbCols;</pre>
         ++iCol) {
      MpnbResRows[iCol - 1] = MiRow[iCol];
    }
    Yp[nbResRows] = Y[iRow];
    // Increment the nb of rows into the result system
    ++nbResRows;
  }
}
// Memorize the number of rows in the result system
```

```
*nbRemainRows = nbResRows;
  // If we reach here the system is not inconsistent
  return false;
}
// Get the bounds of the iVar-th variable in the nbRows rows
// system M.X \le Y which has been reduced to only one variable
// and store them in the iVar-th axis of the
// AABB bdgBox
// (M arrangement is [iRow][iCol])
// May return inconsistent values (max < min), which would</pre>
// mean the system has no solution
void GetBoundLastVar2DTime(
     const int iVar
  const double (*M)[3],
  const double* Y,
     const int nbRows,
   AABB2DTime* const bdgBox) {
  // Shortcuts
  double* min = bdgBox->min + iVar;
  double* max = bdgBox->max + iVar;
  // Initialize the bounds to there maximum maximum and minimum minimum
  *min = 0.0;
  *max = 1.0;
  // Loop on rows
  for (int jRow = 0;
       jRow < nbRows;</pre>
       ++ jRow) {
    // Shortcut
    double MjRowiVar = M[jRow][0];
    // If this row has been reduced to the variable in argument
    // and it has a strictly positive coefficient
    if (MjRowiVar > EPSILON) {
      // Get the scaled value of Y for this row
      double y = Y[jRow] / MjRowiVar;
      // If the value is lower than the current maximum bound
      if (*max > y) {
        // Update the maximum bound
        *max = y;
      }
    // Else, if this row has been reduced to the variable in argument
    // and it has a strictly negative coefficient
    } else if (MjRowiVar < -EPSILON) {</pre>
      // Get the scaled value of Y for this row
      double y = Y[jRow] / MjRowiVar;
      // If the value is greater than the current minimum bound
      if (*min < y) {
```

```
// Update the minimum bound
        *min = y;
      }
    }
  }
}
// Get the bounds of the iVar-th variable in the nbRows rows
// system M.X \le Y where the iVar-th variable is on the first column
// and store them in the iVar-th axis of the AABB bdgBox
// (M arrangement is [iRow][iCol])
void GetBoundVar2DTime(
    const int iVar,
  const double (*M)[3],
const double* Y,
     const int nbRows,
     const int nbCols,
   AABB2DTime* const bdgBox) {
  // Shortcuts
  double* bdgBoxMin = bdgBox->min;
double* bdgBoxMax = bdgBox->max;
  // Initialize the bounds
  bdgBoxMin[iVar] = 0.0;
  bdgBoxMax[iVar] = 1.0;
  // Loop on the rows
  for (int iRow = 0;
       iRow < nbRows;</pre>
       ++iRow) {
    // Shortcuts
    const double* MIRow = M[iRow];
    double fabsMIRowIVar = fabs(MIRow[0]);
    // If the coefficient of the first variable on this row is not null
    if (fabsMIRowIVar > EPSILON) {
      // Declare two variables to memorize the \min and \max of the
      // requested variable in this row
      double min = -1.0 * Y[iRow];
      double max = Y[iRow];
      // Loop on columns except the first one which is the one of the
      // requested variable
      for (int iCol = 1;
           iCol < nbCols;
           ++iCol) {
        if (MIRow[iCol] > EPSILON) {
          min += MIRow[iCol] * bdgBoxMin[iCol + iVar];
          max -= MIRow[iCol] * bdgBoxMin[iCol + iVar];
        } else if (MIRow[iCol] < EPSILON) {</pre>
          min += MIRow[iCol] * bdgBoxMax[iCol + iVar];
          max -= MIRow[iCol] * bdgBoxMax[iCol + iVar];
```

```
min /= -1.0 * MIRow[0];
      max /= MIRow[0];
      if (bdgBoxMin[iVar] > min) {
        bdgBoxMin[iVar] = min;
      if (bdgBoxMax[iVar] < max) {</pre>
        bdgBoxMax[iVar] = max;
      }
    }
  }
}
// Test for intersection between Frame that and Frame tho
// Return true if the two Frames are intersecting, else false
// If the Frame are intersecting the AABB of the intersection
// is stored into bdgBox, else bdgBox is not modified
// If bdgBox is null, the result AABB is not memorized (to use if
// unnecessary and want to speed up the algorithm)
// The resulting AABB may be larger than the smallest possible AABB // The resulting AABB of FMBTestIntersection(A,B) may be different
// of the resulting AABB of FMBTestIntersection(B,A)
// The resulting AABB is given in tho's local coordinates system
bool FMBTestIntersection2DTime(
  const Frame2DTime* const that,
  \verb"const Frame2DTime*" const tho",
          AABB2DTime* const bdgBox) {
  // Get the projection of the Frame 'tho' in Frame 'that' coordinates
  // system
  Frame2DTime thoProj;
  Frame2DTimeImportFrame(that, tho, &thoProj);
  // Declare two variables to memorize the system to be solved M.X <= Y \,
  // (M arrangement is [iRow][iCol])
  double M[10][3];
  double Y[10];
  // Create the inequality system
  // -V_jT-sum_iC_j,iX_i <= 0_j
  M[0][0] = -thoProj.comp[0][0];
  M[0][1] = -thoProj.comp[1][0];
  M[0][2] = -thoProj.speed[0];
  Y[0] = thoProj.orig[0];
  if (Y[0] < neg(M[0][0]) + neg(M[0][1]) + neg(M[0][2]))
    return false;
  M[1][0] = -thoProj.comp[0][1];
M[1][1] = -thoProj.comp[1][1];
  M[1][2] = -thoProj.speed[1];
  Y[1] = thoProj.orig[1];
  if (Y[1] < neg(M[1][0]) + neg(M[1][1]) + neg(M[1][2]))
    return false;
```

```
// Variable to memorise the {\tt nb} of rows in the system
int nbRows = 2;
if (that->type == FrameCuboid) {
  // V_jT+sum_iC_j, iX_i \le 1.0-0_j
  M[nbRows][0] = thoProj.comp[0][0];
  M[nbRows][1] = thoProj.comp[1][0];
  M[nbRows][2] = thoProj.speed[0];
  Y[nbRows] = 1.0 - thoProj.orig[0];
  if (Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +</pre>
                   neg(M[nbRows][2]))
    return false;
  ++nbRows;
  M[nbRows][0] = thoProj.comp[0][1];
  M[nbRows][1] = thoProj.comp[1][1];
  M[nbRows][2] = thoProj.speed[1];
  Y[nbRows] = 1.0 - thoProj.orig[1];
  if (Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +</pre>
                   neg(M[nbRows][2]))
    return false;
  ++nbRows;
} else {
  // sum_j(V_jT+sum_iC_j,iX_i) \le 1.0-sum_iO_i
  M[nbRows][0] = thoProj.comp[0][0] + thoProj.comp[0][1];
  M[nbRows][1] = thoProj.comp[1][0] + thoProj.comp[1][1];
  M[nbRows][2] = thoProj.speed[0] + thoProj.speed[1];
Y[nbRows] = 1.0 - thoProj.orig[0] - thoProj.orig[1];
  if (Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +
                   neg(M[nbRows][2]))
    return false;
  ++nbRows;
if (tho->type == FrameCuboid) {
  // X_i <= 1.0
  M[nbRows][0] = 1.0;
  M[nbRows][1] = 0.0;
  M[nbRows][2] = 0.0;
  Y[nbRows] = 1.0;
  ++nbRows;
  M[nbRows][0] = 0.0;
  M[nbRows][1] = 1.0;
  M[nbRows][2] = 0.0;
  Y[nbRows] = 1.0;
  ++nbRows;
} else {
  // sum_iX_i <= 1.0
  M[nbRows][0] = 1.0;
  M[nbRows][1] = 1.0;
  M[nbRows][2] = 0.0;
  Y[nbRows] = 1.0;
  ++nbRows;
```

```
}
// -X_i <= 0.0
M[nbRows][0] = -1.0;
M[nbRows][1] = 0.0;
M[nbRows][2] = 0.0;
Y[nbRows] = 0.0;
++nbRows;
M[nbRows][0] = 0.0;
M[nbRows][1] = -1.0;
M[nbRows][2] = 0.0;
Y[nbRows] = 0.0;
++nbRows;
// 0.0 <= t <= 1.0
M[nbRows][0] = 0.0;
M[nbRows][1] = 0.0;
M[nbRows][2] = 1.0;
Y[nbRows] = 1.0;
++nbRows;
M[nbRows][0] = 0.0;
M[nbRows][1] = 0.0;
M[nbRows][2] = -1.0;
Y[nbRows] = 0.0;
++nbRows;
// Solve the system
// Declare a AABB to memorize the bounding box of the intersection
// in the coordinates system of tho
AABB2DTime bdgBoxLocal = {
  .min = \{0.0, 0.0, 0.0\}, \\ .max = \{0.0, 0.0, 0.0\}
}:
// Declare variables to eliminate the first variable
// The size of the array given in the doc is a majoring value.
// Instead I use a smaller value which has proven to be sufficient
\ensuremath{//} during tests, validation and qualification, to avoid running
// into the heap limit and to optimize slightly the performance
//double Mp[35][3];
//double Yp[35];
double Mp[13][3];
double Yp[13];
int nbRowsP;
// Eliminate the first variable in the original system
bool inconsistency =
  ElimVar2DTime(
    М,
    Υ,
    nbRows,
    3,
    Mр,
    Yp,
    &nbRowsP);
// If the system is inconsistent
if (inconsistency == true) {
```

```
// The two Frames are not in intersection
  return false;
}
\ensuremath{//} Declare variables to eliminate the second variable
// The size of the array given in the doc is a majoring value.
// Instead I use a smaller value which has proven to be sufficient
\ensuremath{//} during tests, validation and qualification, to avoid running
// into the heap limit and to optimize slightly the performance
//double Mpp[342][3];
//double Ypp[342];
double Mpp[21][3];
double Ypp[21];
int nbRowsPP;
// Eliminate the second variable (which is the first in the new system)
inconsistency =
  ElimVar2DTime(
    Мр,
    Ϋ́р,
    nbRowsP,
    2,
    Mpp,
    Ypp,
    &nbRowsPP);
// If the system is inconsistent
if (inconsistency == true) {
  // The two Frames are not in intersection
  return false;
// Get the bounds for the remaining third variable
GetBoundLastVar2DTime(
  THD_VAR,
  Mpp,
  Ypp,
  nbRowsPP,
  &bdgBoxLocal);
// If the bounds are inconsistent
if (bdgBoxLocal.min[THD_VAR] >= bdgBoxLocal.max[THD_VAR]) {
  // The two Frames are not in intersection
  return false;
// Else, if the bounds are consistent here it means
// the two Frames are in intersection.
// If the user has requested for the resulting bounding box
} else if (bdgBox != NULL) {
  // Get the bounds of the other variables
  GetBoundVar2DTime(
     SND_VAR,
     Mp,
     Yp,
     nbRowsP,
```

```
2,
       &bdgBoxLocal);
    GetBoundVar2DTime(
       FST_VAR,
       М,
       Υ.
       nbRows,
       З,
       &bdgBoxLocal);
    // Memorize the result
*bdgBox = bdgBoxLocal;
  }
  // If we've reached here the two Frames are intersecting
  return true;
}
4.2.4
        3D dynamic
Header
#ifndef __FMB3DT_H_
#define __FMB3DT_H_
#include <stdbool.h>
#include "frame.h"
// ----- Functions declaration -----
// Test for intersection between Frame that and Frame tho
// Return true if the two Frames are intersecting, else false
// If the Frame are intersecting the AABB of the intersection
// is stored into bdgBox, else bdgBox is not modified
// If bdgBox is null, the result AABB is not memorized (to use if
// unnecessary and want to speed up the algorithm)
// The resulting AABB may be larger than the smallest possible AABB
// The resulting AABB of FMBTestIntersection(A,B) may be different
// of the resulting AABB of FMBTestIntersection(B,A)
^{\prime\prime} // The resulting AABB is given in tho's local coordinates system
\verb|bool| FMBTestIntersection3DTime(|
  const Frame3DTime* const that,
  const Frame3DTime* const tho,
          AABB3DTime* const bdgBox);
#endif
   Body
#include "fmb3dt.h"
// ----- Macros -----
// Return 1.0 if v is positive, -1.0 if v is negative, 0.0 else #define sgn(v) (((0.0 < (v)) ? 1 : 0) - (((v) < 0.0) ? 1 : 0))
```

// Return x if x is negative, 0.0 else

```
#define neg(x) (x < 0.0 ? x : 0.0)
#define FST_VAR 0
#define SND_VAR 1
#define THD_VAR 2
#define FOR_VAR 3
#define EPSILON 0.000001
// ----- Functions declaration -----
// Eliminate the first variable in the system M.X \le Y
// using the Fourier-Motzkin method and return
// the resulting system in Mp and Yp, and the number of rows of
// the resulting system in nbRemainRows
// Return false if the system becomes inconsistent during elimination,
// else return true
bool ElimVar3DTime(
  const double (*M)[4],
  const double* Y,
     const int nbRows,
     const int nbCols,
       double (*Mp)[4],
        double* Yp,
    int* const nbRemainRows);
// Get the bounds of the iVar-th variable in the nbRows rows
// system M.X \le Y which has been reduced to only one variable
// and store them in the iVar-th axis of the
// AABB bdgBox
// (M arrangement is [iRow][iCol])
// May return inconsistent values (max < min), which would
// mean the system has no solution
void GetBoundLastVar3DTime(
    const int iVar
  const double (*M)[4],
  const double* Y,
     const int nbRows,
   AABB3DTime* const bdgBox);
// Get the bounds of the iVar-th variable in the nbRows rows
// system M.X \le Y where the iVar-th variable is on the first column
// and store them in the iVar-th axis of the AABB bdgBox
// (M arrangement is [iRow][iCol])
void GetBoundVar3DTime(
    const int iVar,
  const double (*M)[4],
  const double* Y,
    const int nbRows,
     const int nbCols,
   AABB3DTime* const bdgBox);
// ----- Functions implementation -----
// Eliminate the first variable in the system M.X \le Y
// using the Fourier-Motzkin method and return
// the resulting system in Mp and Yp, and the number of rows of
// the resulting system in nbRemainRows
// (M arrangement is [iRow][iCol])
// Return true if the system becomes inconsistent during elimination,
// else return false
bool ElimVar3DTime(
```

```
const double (*M)[4],
const double* Y,
   const int nbRows,
   const int nbCols,
      double (*Mp)[4]
      double* Yp,
  int* const nbRemainRows) {
// Initialize the number of rows in the result system
int nbResRows = 0;
// First we process the rows where the eliminated variable is not null
// For each row except the last one
for (int iRow = 0;
     iRow < nbRows - 1;
     ++iRow) {
  const double fabsMIRowIVar = fabs(M[iRow][0]);
  // If the coefficient for the eliminated vairable is not null
  // in this row
  if (fabsMIRowIVar > EPSILON) {
    // Shortcuts
    const double* MiRow = M[iRow];
    const int sgnMIRowIVar = sgn(MiRow[0]);
    const double YIRowDivideByFabsMIRowIVar = Y[iRow] / fabsMIRowIVar;
    // For each following rows
    for (int jRow = iRow + 1;
         jRow < nbRows;</pre>
         ++ jRow) {
      // If coefficients of the eliminated variable in the two rows have
      // different signs and are not null
      if (sgnMIRowIVar != sgn(M[jRow][0]) &&
          fabs(M[jRow][0]) > EPSILON) {
        // Shortcuts
        const double* MjRow = M[jRow];
        const double fabsMjRow = fabs(MjRow[0]);
        // Declare a variable to memorize the sum of the negative
        // coefficients in the row
        double sumNegCoeff = 0.0;
        // Add the sum of the two normed (relative to the eliminated
        \ensuremath{//} variable) rows into the result system. This actually
        // eliminate the variable while keeping the constraints on
        // others variables
        for (int iCol = 1;
             iCol < nbCols;</pre>
             ++iCol ) {
          Mp[nbResRows][iCol - 1] =
            MiRow[iCol] / fabsMIRowIVar +
MjRow[iCol] / fabsMjRow;
          // Update the sum of the negative coefficient
          sumNegCoeff += neg(Mp[nbResRows][iCol - 1]);
```

```
}
        // Update the right side of the inequality
        Yp[nbResRows] =
          YIRowDivideByFabsMIRowIVar +
          Y[jRow] / fabsMjRow;
        // If the right side of the inequality if lower than the sum of
        // negative coefficients in the row
        // (Add epsilon for numerical imprecision)
        if (Yp[nbResRows] < sumNegCoeff - EPSILON) {</pre>
          // Given that X is in [0,1], the system is inconsistent
          return true;
        // Increment the nb of rows into the result system
        ++nbResRows:
      }
    }
 }
}
// Then we copy and compress the rows where the eliminated
// variable is null
// Loop on rows of the input system
for (int iRow = 0;
     iRow < nbRows;
     ++iRow) {
  // Shortcut
  const double* MiRow = M[iRow];
 // If the coefficient of the eliminated variable is null on
 // this row
 if (fabs(MiRow[0]) < EPSILON) {</pre>
    // Shortcut
    double* MpnbResRows = Mp[nbResRows];
    // Copy this row into the result system excluding the eliminated
    // variable
    for (int iCol = 1;
         iCol < nbCols;</pre>
         ++iCol) {
      MpnbResRows[iCol - 1] = MiRow[iCol];
    }
    Yp[nbResRows] = Y[iRow];
    // Increment the nb of rows into the result system
    ++nbResRows;
```

```
}
  // Memorize the number of rows in the result system
  *nbRemainRows = nbResRows;
  // If we reach here the system is not inconsistent
  return false;
}
// Get the bounds of the iVar-th variable in the nbRows rows
// system M.X<=Y and store them in the iVar-th axis of the
// AABB bdgBox
// (M arrangement is [iRow][iCol])
// The system is supposed to have been reduced to only one variable
\ensuremath{//} per row, the one in argument
// May return inconsistent values (max < min), which would
// mean the system has no solution
void GetBoundLastVar3DTime(
    const int iVar,
  const double (*M)[4],
  const double* Y,
     const int nbRows,
   AABB3DTime* const bdgBox) {
  // Shortcuts
  double* min = bdgBox->min + iVar;
  double* max = bdgBox->max + iVar;
  // Initialize the bounds to there maximum maximum and minimum minimum
  *min = 0.0;
  *max = 1.0;
  // Loop on rows
  for (int jRow = 0;
       jRow < nbRows;</pre>
       ++ jRow) {
    // Shortcut
    double MjRowiVar = M[jRow][0];
    // If this row has been reduced to the variable in argument
    // and it has a strictly positive coefficient
    if (MjRowiVar > EPSILON) {
      // Get the scaled value of Y for this row
      double y = Y[jRow] / MjRowiVar;
      // If the value is lower than the current maximum bound
      if (*max > y) {
        // Update the maximum bound
        *max = y;
    // Else, if this row has been reduced to the variable in argument
    // and it has a strictly negative coefficient
    } else if (MjRowiVar < -EPSILON) {</pre>
```

```
// Get the scaled value of Y for this row
      double y = Y[jRow] / MjRowiVar;
      // If the value is greater than the current minimum bound
      if (*min < y) {
        // Update the minimum bound
        *min = y;
      }
    }
  }
}
// Get the bounds of the iVar-th variable in the nbRows rows
// system M.X \le Y where the iVar-th variable is on the first column
// and store them in the iVar-th axis of the AABB bdgBox
// (M arrangement is [iRow][iCol])
void GetBoundVar3DTime(
     const int iVar,
  const double (*M)[4],
  const double* Y,
     const int nbRows,
     const int nbCols,
   AABB3DTime* const bdgBox) {
  // Shortcuts
  double* bdgBoxMin = bdgBox->min;
double* bdgBoxMax = bdgBox->max;
  // Initialize the bounds
  bdgBoxMin[iVar] = 0.0;
  bdgBoxMax[iVar] = 1.0;
  // Loop on the rows
  for (int iRow = 0;
       iRow < nbRows;</pre>
       ++iRow) {
    const double* MIRow = M[iRow];
    double fabsMIRowIVar = fabs(MIRow[0]);
    ^{\prime\prime} If the coefficient of the first variable on this row is not null
    if (fabsMIRowIVar > EPSILON) {
      // Declare two variables to memorize the min and max of the
      // requested variable in this row
      double min = -1.0 * Y[iRow];
      double max = Y[iRow];
      // Loop on columns except the first one which is the one of the
      // requested variable
      for (int iCol = 1;
           iCol < nbCols;
           ++iCol) {
        if (MIRow[iCol] > EPSILON) {
          min += MIRow[iCol] * bdgBoxMin[iCol + iVar];
```

```
max -= MIRow[iCol] * bdgBoxMin[iCol + iVar];
        } else if (MIRow[iCol] < EPSILON) {</pre>
          min += MIRow[iCol] * bdgBoxMax[iCol + iVar];
          max -= MIRow[iCol] * bdgBoxMax[iCol + iVar];
      }
      min /= -1.0 * MIRow[0];
      max /= MIRow[0];
      if (bdgBoxMin[iVar] > min) {
        bdgBoxMin[iVar] = min;
      if (bdgBoxMax[iVar] < max) {</pre>
        bdgBoxMax[iVar] = max;
      }
    }
  }
}
// Test for intersection between Frame that and Frame tho
// Return true if the two Frames are intersecting, else false
// If the Frame are intersecting the AABB of the intersection
// is stored into bdgBox, else bdgBox is not modified
// If bdgBox is null, the result AABB is not memorized (to use if
// unnecessary and want to speed up the algorithm)
// The resulting AABB may be larger than the smallest possible AABB
// The resulting AABB of FMBTestIntersection(A,B) may be different
// of the resulting AABB of FMBTestIntersection(B,A)
// The resulting AABB is given in tho's local coordinates system
bool FMBTestIntersection3DTime(
  const Frame3DTime* const that,
  const Frame3DTime* const tho,
         AABB3DTime* const bdgBox) {
  // Get the projection of the Frame 'tho' in Frame 'that' coordinates
  // system
  Frame3DTime thoProj;
  Frame3DTimeImportFrame(that, tho, &thoProj);
  // Declare two variables to memorize the system to be solved M.X <= Y \,
  // (M arrangement is [iRow][iCol])
  double M[14][4];
  double Y[14];
  // Create the inequality system
  // \ -V_jT-sum_iC_j, iX_i <= 0_j
  M[0][0] = -thoProj.comp[0][0];
  M[0][1] = -thoProj.comp[1][0];
  M[0][2] = -thoProj.comp[2][0];
  M[0][3] = -thoProj.speed[0];
  Y[0] = thoProj.orig[0];
  if (Y[0] < neg(M[0][0]) + neg(M[0][1]) + neg(M[0][2]) + neg(M[0][3]))
    return false;
```

```
M[1][0] = -thoProj.comp[0][1];
M[1][1] = -thoProj.comp[1][1];
M[1][2] = -thoProj.comp[2][1];
M[1][3] = -thoProj.speed[1];
Y[1] = thoProj.orig[1];
if (Y[1] < neg(M[1][0]) + neg(M[1][1]) + neg(M[1][2]) + neg(M[1][3]))
  return false;
M[2][0] = -thoProj.comp[0][2];
M[2][1] = -thoProj.comp[1][2];
M[2][2] = -thoProj.comp[2][2];
M[2][3] = -thoProj.speed[2];
Y[2] = thoProj.orig[2];
if (Y[2] < neg(M[2][0]) + neg(M[2][1]) + neg(M[2][2]) + neg(M[2][3]))
  return false;
// Variable to memorize the {\tt nb} of rows in the system
int nbRows = 3;
if (that->type == FrameCuboid) {
  // V_jT+sum_iC_j, iX_i <= 1.0-0_j
  M[nbRows][0] = thoProj.comp[0][0];
  M[nbRows][1] = thoProj.comp[1][0];
  M[nbRows][2] = thoProj.comp[2][0];
  M[nbRows][3] = thoProj.speed[0];
  Y[nbRows] = 1.0 - thoProj.orig[0];
  if (Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +</pre>
                   neg(M[nbRows][2]) + neg(M[nbRows][3]))
    return false;
  ++nbRows;
  M[nbRows][0] = thoProj.comp[0][1];
  M[nbRows][1] = thoProj.comp[1][1];
  M[nbRows][2] = thoProj.comp[2][1];
  M[nbRows][3] = thoProj.speed[1];
  Y[nbRows] = 1.0 - thoProj.orig[1];
  if (Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +</pre>
                   neg(M[nbRows][2]) + neg(M[nbRows][3]))
    return false;
  ++nbRows;
  M[nbRows][0] = thoProj.comp[0][2];
M[nbRows][1] = thoProj.comp[1][2];
  M[nbRows][2] = thoProj.comp[2][2];
  M[nbRows][3] = thoProj.speed[2];
  Y[nbRows] = 1.0 - thoProj.orig[2];
  if (Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +</pre>
                   neg(M[nbRows][2]) + neg(M[nbRows][3]))
    return false;
  ++nbRows;
} else {
  // sum_j(V_jT+sum_iC_j,iX_i)<=1.0-sum_iO_i
  M[nbRows][0] =
    thoProj.comp[0][0] + thoProj.comp[0][1] + thoProj.comp[0][2];
  M[nbRows][1] =
    thoProj.comp[1][0] + thoProj.comp[1][1] + thoProj.comp[1][2];
  M[nbRows][2] =
    thoProj.comp[2][0] + thoProj.comp[2][1] + thoProj.comp[2][2];
```

```
M[nbRows][3] = thoProj.speed[0] + thoProj.speed[1] + thoProj.speed[2];
Y[nbRows] = 1.0 - thoProj.orig[0] - thoProj.orig[1] - thoProj.orig[2];
  if (Y[nbRows] < neg(M[nbRows][0]) + neg(M[nbRows][1]) +</pre>
                   neg(M[nbRows][2]) + neg(M[nbRows][3]))
    return false;
  ++nbRows;
}
if (tho->type == FrameCuboid) {
  // X_i <= 1.0
M[nbRows][0] = 1.0;
  M[nbRows][1] = 0.0;
  M[nbRows][2] = 0.0;
  M[nbRows][3] = 0.0;
  Y[nbRows] = 1.0;
  ++nbRows;
  M[nbRows][0] = 0.0;
  M[nbRows][1] = 1.0;
  M[nbRows][2] = 0.0;
  M[nbRows][3] = 0.0;
  Y[nbRows] = 1.0;
  ++nbRows;
  M[nbRows][0] = 0.0;
  M[nbRows][1] = 0.0;
  M[nbRows][2] = 1.0;
  M[nbRows][3] = 0.0;
  Y[nbRows] = 1.0;
  ++nbRows;
} else {
  // sum_iX_i <= 1.0
  M[nbRows][0] = 1.0;
  M[nbRows][1] = 1.0;
  M[nbRows][2] = 1.0;
  M[nbRows][3] = 0.0;
  Y[nbRows] = 1.0;
  ++nbRows;
}
// -X_i <= 0.0
M[nbRows][0] = -1.0;
M[nbRows][1] = 0.0;
M[nbRows][2] = 0.0;
M[nbRows][3] = 0.0;
Y[nbRows] = 0.0;
++nbRows;
M[nbRows][0] = 0.0;
M[nbRows][1] = -1.0;
M[nbRows][2] = 0.0;
M[nbRows][3] = 0.0;
Y[nbRows] = 0.0;
++nbRows;
M[nbRows][0] = 0.0;
M[nbRows][1] = 0.0;
```

```
M[nbRows][2] = -1.0;
M[nbRows][3] = 0.0;
Y[nbRows] = 0.0;
++nbRows:
// 0.0 <= t <= 1.0
M[nbRows][0] = 0.0;
M[nbRows][1] = 0.0;
M[nbRows][2] = 0.0;
M[nbRows][3] = 1.0;
Y[nbRows] = 1.0;
++nbRows;
M[nbRows][0] = 0.0;
M[nbRows][1] = 0.0;
M[nbRows][2] = 0.0;
M[nbRows][3] = -1.0;
Y[nbRows] = 0.0;
++nbRows;
// Solve the system
// Declare a AABB to memorize the bounding box of the intersection
// in the coordinates system of that
AABB3DTime bdgBoxLocal = {
  .min = \{0.0, 0.0, 0.0, 0.0\},
  .max = \{0.0, 0.0, 0.0, 0.0\}
// Declare variables to eliminate the first variable
// The size of the array given in the doc is a majoring value.
// Instead I use a smaller value which has proven to be sufficient
// during tests, validation and qualification, to avoid running
// into the heap limit and to optimize slightly the performance
//double Mp[63][4];
//double Yp[63];
double Mp[22][4];
double Yp[22];
int nbRowsP;
// Eliminate the first variable in the original system
bool inconsistency =
  ElimVar3DTime(
   М,
    Υ,
    nbRows,
    4,
    Mp,
    Yp,
    &nbRowsP);
// If the system is inconsistent
if (inconsistency == true) {
  // The two Frames are not in intersection
  return false;
}
// Declare variables to eliminate the second variable
// The size of the array given in the doc is a majoring value.
// Instead I use a smaller value which has proven to be sufficient
```

```
// during tests, validation and qualification, to avoid running
 // into the heap limit and to optimize slightly the performance
 //double Mpp[1056][4];
 //double Ypp[1056];
 double Mpp[57][4];
 double Ypp[57];
int nbRowsPP;
 // Eliminate the second variable (which is the first in the new system)
 inconsistency =
          ElimVar3DTime(
                   Mp,
                   Yp,
                   nbRowsP,
                   3,
                   Mpp,
                   Ypp,
                   &nbRowsPP);
 // If the system is inconsistent
if (inconsistency == true) {
         // The two Frames are not in intersection
        return false;
// Declare variables to eliminate the third variable % \left( 1\right) =\left( 1\right) \left( 1\right) 
 // The size of the array given in the doc is a majoring value.
// Instead I use a smaller value which has proven to be sufficient
\ensuremath{//} during tests, validation and qualification, to avoid running
 // into the heap limit and to optimize slightly the performance
//double Mppp[279840][4];
 //double Yppp[279840];
 double Mppp[560][4];
double Yppp[560];
int nbRowsPPP;
// Eliminate the third variable (which is the first in the new system)
inconsistency =
         ElimVar3DTime(
                  Mpp,
                   Ypp,
                   nbRowsPP,
                   2.
                   Mppp,
                   Yppp,
                   &nbRowsPPP);
 // If the system is inconsistent
if (inconsistency == true) {
          // The two Frames are not in intersection
         return false;
}
 // Get the bounds for the remaining fourth variable
 GetBoundLastVar3DTime(
         FOR_VAR,
         Mppp,
         Yppp,
```

```
nbRowsPPP,
  &bdgBoxLocal);
// If the bounds are inconsistent
if (bdgBoxLocal.min[FOR_VAR] >= bdgBoxLocal.max[FOR_VAR]) {
  // The two Frames are not in intersection
  return false;
// Else, if the bounds are consistent here it means
// the two Frames are in intersection.
// If the user has requested for the resulting bounding box \mbox{\ } else if (bdgBox != NULL) {
  // Get the bounds of the other variables
  GetBoundVar3DTime(
     THD_VAR,
     Mpp,
     Ypp,
     nbRowsPP,
     &bdgBoxLocal);
  GetBoundVar3DTime(
     {\tt SND\_VAR} ,
     Мр,
     Yp,
     nbRowsP,
     &bdgBoxLocal);
  GetBoundVar3DTime(
     FST_VAR,
     М,
     Υ,
     nbRows,
     &bdgBoxLocal);
  // Memorize the result
  *bdgBox = bdgBoxLocal;
}
// If we've reached here the two Frames are intersecting
return true;
```

5 Minimal example of use

In this section I give a minimal example for each case of how to use the code given in the previous section.

5.1 2D static

```
// Include standard libraries
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
// Include the FMB algorithm library \verb|#include| "fmb2d.h"
// Main function
int main(int argc, char** argv) {
  // Create the two objects to be tested for intersection
  double origP2D[2] = {0.0, 0.0};
double compP2D[2][2] = {
  {1.0, 0.0}, // First component
{0.0, 1.0}}; // Second component
Frame2D P2D =
     {\tt Frame 2DC reate Static} \, (
       FrameCuboid,
       origP2D,
       compP2D);
  double origQ2D[2] = \{0.0, 0.0\};
  double compQ2D[2][2] = {
  {1.0, 0.0},
{0.0, 1.0}};
Frame2D Q2D =
     {\tt Frame 2DC reate Static} \, (
       FrameCuboid,
       origQ2D.
       compQ2D);
  \slash\hspace{-0.5em} // Declare a variable to memorize the result of the intersection
  // detection
  AABB2D bdgBox2DLocal;
  // Test for intersection between P and Q
  bool isIntersecting2D =
     FMBTestIntersection2D(
       &P2D,
       &Q2D,
       &bdgBox2DLocal);
  // If the two objects are intersecting
  if (isIntersecting2D) {
     printf("Intersection detected in AABB");
     // Export the local bounding box toward the real coordinates
     // system
     AABB2D bdgBox2D;
     Frame2DExportBdgBox(
       &Q2D,
       &bdgBox2DLocal,
       &bdgBox2D);
     // Clip with the AABB of 'Q2D' and 'P2D' to improve results for (int iAxis = 2;
           iAxis--;) {
```

```
if (bdgBox2D.min[iAxis] < P2D.bdgBox.min[iAxis]) {</pre>
         bdgBox2D.min[iAxis] = P2D.bdgBox.min[iAxis];
       if (bdgBox2D.max[iAxis] > P2D.bdgBox.max[iAxis]) {
         bdgBox2D.max[iAxis] = P2D.bdgBox.max[iAxis];
       }
       if (bdgBox2D.min[iAxis] < Q2D.bdgBox.min[iAxis]) {</pre>
         bdgBox2D.min[iAxis] = Q2D.bdgBox.min[iAxis];
       if (bdgBox2D.max[iAxis] > Q2D.bdgBox.max[iAxis]) {
         bdgBox2D.max[iAxis] = Q2D.bdgBox.max[iAxis];
       }
    AABB2DPrint(&bdgBox2D);
    printf("\n");
  // Else, the two objects are not intersecting
  } else {
    printf("No intersection.\n");
  }
  return 0;
5.2
        3D static
// Include standard libraries
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
// Include the FMB algorithm library
#include "fmb3d.h"
// Main function
int main(int argc, char** argv) {
  // Create the two objects to be tested for intersection double origP3D[3] = \{0.0, 0.0, 0.0\};
  double compP3D[3][3] = {
    {1.0, 0.0, 0.0}, // First component {0.0, 1.0, 0.0}, // Second component {0.0, 0.0, 1.0}}; // Third component
  Frame3D P3D =
    Frame3DCreateStatic(
       {\tt FrameTetrahedron}\;,
```

```
origP3D,
    compP3D);
double origQ3D[3] = \{0.0, 0.0, 0.0\};
double compQ3D[3][3] = {
  {1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
  {0.0, 0.0, 1.0}};
Frame3D Q3D =
  Frame3DCreateStatic(
   FrameTetrahedron,
    origQ3D,
    compQ3D);
// Declare a variable to memorize the result of the intersection
// detection
AABB3D bdgBox3DLocal;
// Test for intersection between P and {\tt Q}
bool isIntersecting3D =
  {\tt FMBTestIntersection3D(}
    &P3D,
    &Q3D,
    &bdgBox3DLocal);
// If the two objects are intersecting
if (isIntersecting3D) {
  printf("Intersection detected in AABB ");
  // Export the local bounding box toward the real coordinates
  // system
  AABB3D bdgBox3D;
  Frame3DExportBdgBox(
    &Q3D,
    &bdgBox3DLocal,
    &bdgBox3D);
  // Clip with the AABB of 'Q3D' and 'P3D' to improve results
  for (int iAxis = 3;
       iAxis--;) {
    if (bdgBox3D.min[iAxis] < P3D.bdgBox.min[iAxis]) {</pre>
      bdgBox3D.min[iAxis] = P3D.bdgBox.min[iAxis];
    if (bdgBox3D.max[iAxis] > P3D.bdgBox.max[iAxis]) {
      bdgBox3D.max[iAxis] = P3D.bdgBox.max[iAxis];
    if (bdgBox3D.min[iAxis] < Q3D.bdgBox.min[iAxis]) {</pre>
      bdgBox3D.min[iAxis] = Q3D.bdgBox.min[iAxis];
    if (bdgBox3D.max[iAxis] > Q3D.bdgBox.max[iAxis]) {
      bdgBox3D.max[iAxis] = Q3D.bdgBox.max[iAxis];
```

```
}
    AABB3DPrint(&bdgBox3D);
    printf("\n");
  // Else, the two objects are not intersecting
  } else {
    printf("No intersection.\n");
 return 0;
5.3
       2D dynamic
// Include standard libraries
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
// Include the FMB algorithm library
#include "fmb2dt.h"
// Main function
int main(int argc, char** argv) {
  // Create the two objects to be tested for intersection
  double origP2DTime[2] = {0.0, 0.0};
double speedP2DTime[2] = {0.0, 0.0};
  double compP2DTime[2][2] = {
    {1.0, 0.0}, // First component {0.0, 1.0}}; // Second component
  Frame2DTime P2DTime =
    Frame2DTimeCreateStatic(
      FrameCuboid,
      origP2DTime,
      speedP2DTime,
      compP2DTime);
  double origQ2DTime[2] = {0.0,0.0};
  double speedQ2DTime[2] = {0.0,0.0};
  double compQ2DTime[2][2] = {
    {1.0, 0.0},
    {0.0, 1.0}};
  Frame2DTime Q2DTime =
    {\tt Frame2DTimeCreateStatic} (
      FrameCuboid,
      origQ2DTime,
      speedQ2DTime,
      compQ2DTime);
  // Declare a variable to memorize the result of the intersection
  // detection
  AABB2DTime bdgBox2DTimeLocal;
  // Test for intersection between P and Q
  bool isIntersecting2DTime =
```

```
FMBTestIntersection2DTime(
    &P2DTime,
    &Q2DTime,
    &bdgBox2DTimeLocal);
// If the two objects are intersecting
if (isIntersecting2DTime) {
  printf("Intersection detected in AABB ");
  // Export the local bounding box toward the real coordinates
  // system
  AABB2DTime bdgBox2DTime;
  \label{lem:frame2DTimeExportBdgBox} \begin{tabular}{ll} \hline Frame2DTimeExportBdgBox ( \end{tabular}
    &Q2DTime,
    &bdgBox2DTimeLocal,
    &bdgBox2DTime);
  // Clip with the AABB of 'Q2DTime' and 'P2DTime' to improve results
  for (int iAxis = 3;
        iAxis--;) {
    if (bdgBox2DTime.min[iAxis] < P2DTime.bdgBox.min[iAxis]) {</pre>
       bdgBox2DTime.min[iAxis] = P2DTime.bdgBox.min[iAxis];
    if (bdgBox2DTime.max[iAxis] > P2DTime.bdgBox.max[iAxis]) {
       bdgBox2DTime.max[iAxis] = P2DTime.bdgBox.max[iAxis];
    if (bdgBox2DTime.min[iAxis] < Q2DTime.bdgBox.min[iAxis]) {</pre>
       bdgBox2DTime.min[iAxis] = Q2DTime.bdgBox.min[iAxis];
    if (bdgBox2DTime.max[iAxis] > Q2DTime.bdgBox.max[iAxis]) {
       bdgBox2DTime.max[iAxis] = Q2DTime.bdgBox.max[iAxis];
    }
  AABB2DTimePrint(&bdgBox2DTime);
  printf("\n");
// Else, the two objects are not intersecting
} else {
  printf("No intersection.\n");
}
return 0;
```

5.4 3D dynamic

```
// Include standard libraries
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
// Include the FMB algorithm library
#include "fmb3dt.h"
// Main function
int main(int argc, char** argv) {
  // Create the two objects to be tested for intersection
  double origP3DTime[3] = {0.0, 0.0, 0.0};
  double speedP3DTime[3] = {0.0, 0.0, 0.0};
  double compP3DTime[3][3] = {
    {1.0, 0.0, 0.0}, // First component {0.0, 1.0, 0.0}, // Second component {0.0, 0.0, 1.0}}; // Third component
  Frame3DTime P3DTime =
    Frame3DTimeCreateStatic(
      FrameCuboid,
      origP3DTime,
      speedP3DTime,
      compP3DTime);
  double origQ3DTime[3] = {0.0, 0.0, 0.0};
double speedQ3DTime[3] = {0.0, 0.0, 0.0};
  double compQ3DTime[3][3] = {
    {1.0, 0.0, 0.0},
    {0.0, 1.0, 0.0},
    {0.0, 0.0, 1.0}};
  Frame3DTime Q3DTime =
    Frame3DTimeCreateStatic(
      FrameCuboid,
      origQ3DTime,
      speedQ3DTime,
      compQ3DTime);
  // Declare a variable to memorize the result of the intersection
  // detection
  AABB3DTime bdgBox3DTimeLocal;
  // Test for intersection between P and {\tt Q}
  bool isIntersecting3DTime =
    FMBTestIntersection3DTime(
      &P3DTime,
      &Q3DTime,
      &bdgBox3DTimeLocal);
  // If the two objects are intersecting
  if (isIntersecting3DTime) {
    printf("Intersection detected in AABB ");
    // Export the local bounding box toward the real coordinates
    // system
    AABB3DTime bdgBox3DTime;
    Frame3DTimeExportBdgBox(
      &Q3DTime,
      &bdgBox3DTimeLocal,
      &bdgBox3DTime);
```

```
// Clip with the AABB of 'Q3DTime' and 'P3DTime' to improve results
  for (int iAxis = 3;
       iAxis--;) {
    if (bdgBox3DTime.min[iAxis] < P3DTime.bdgBox.min[iAxis]) {</pre>
      bdgBox3DTime.min[iAxis] = P3DTime.bdgBox.min[iAxis];
    if (bdgBox3DTime.max[iAxis] > P3DTime.bdgBox.max[iAxis]) {
      bdgBox3DTime.max[iAxis] = P3DTime.bdgBox.max[iAxis];
    if (bdgBox3DTime.min[iAxis] < Q3DTime.bdgBox.min[iAxis]) {</pre>
      bdgBox3DTime.min[iAxis] = Q3DTime.bdgBox.min[iAxis];
    if (bdgBox3DTime.max[iAxis] > Q3DTime.bdgBox.max[iAxis]) {
      bdgBox3DTime.max[iAxis] = Q3DTime.bdgBox.max[iAxis];
  AABB3DTimePrint(&bdgBox3DTime);
  printf("\n");
// Else, the two objects are not intersecting
  printf("No intersection.\n");
}
return 0;
```

6 Unit tests

In this section I introduce the code I've used to test the algorithm and its implementation. The test consists of running the algorithm on a set of cases for which the solution has been computed by hand. The code of the implementation of the SAT algorithm is given in annex (p.243)

6.1 Code

6.1.1 2D static

```
// Include standard libraries
#include <stdlib.h>
#include <stdio.h>
```

```
#include <stdbool.h>
// Include the FMB algorithm library
#include "fmb2d.h"
// Epslon for numerical precision
#define EPSILON 0.0001
// Helper structure to pass arguments to the UnitTest function
typedef struct {
  FrameType type;
  double orig[2];
double comp[2][2];
} Param2D;
// Unit test function
\ensuremath{//} Takes two Frame definitions, the correct answer in term of
// intersection/no intersection and the correct bounding box
// Run the FMB intersection detection alogirhtm on the Frames
\ensuremath{//} and check against the correct results
void UnitTest2D(
        const Param2D paramP,
const Param2D paramQ,
         const bool correctAnswer,
  const AABB2D* const correctBdgBox) {
  // Create the two Frames
  Frame2D P =
    Frame2DCreateStatic(
      paramP.type,
      paramP.orig,
      paramP.comp);
  Frame2D Q =
    Frame2DCreateStatic(
      paramQ.type,
      paramQ.orig,
      paramQ.comp);
  // Declare a variable to memorize the resulting bounding box
  AABB2D bdgBoxLocal;
  // Helper variables to loop on the pair (that, tho) and (tho, that)
  Frame2D* that = &P;
Frame2D* tho = &Q;
  // Loop on pairs of Frames
  for (int iPair = 2;
       iPair --;) {
    // Display the tested frames
    Frame2DPrint(that);
    printf("\nagainst\n");
    Frame2DPrint(tho);
    printf("\n");
    // Run the FMB intersection test
    bool isIntersecting =
      FMBTestIntersection2D(
        that,
        tho.
        &bdgBoxLocal);
```

```
// If the test hasn't given the expected answer about intersection
if (isIntersecting != correctAnswer) {
  // Display information about the failure
 printf(" Failed\n");
  printf("Expected : ");
  if (correctAnswer == false)
   printf("no ");
  printf ("intersection \n");\\
  printf("Got : ");
  if (isIntersecting == false)
   printf("no ");
  printf("intersection\n");
  exit(0);
// Else, the test has given the expected answer about intersection
} else {
  // If the Frames were intersecting
  if (isIntersecting == true) {
    AABB2D bdgBox;
    {\tt Frame 2DExport Bdg Box}\,(
      tho,
      &bdgBoxLocal,
      &bdgBox);
    for (int iAxis = 2;
        iAxis--;) {
      if (bdgBox.min[iAxis] < that->bdgBox.min[iAxis]) {
        bdgBox.min[iAxis] = that->bdgBox.min[iAxis];
      if (bdgBox.max[iAxis] > that->bdgBox.max[iAxis]) {
       bdgBox.max[iAxis] = that->bdgBox.max[iAxis];
      if (bdgBox.min[iAxis] < tho->bdgBox.min[iAxis]) {
       bdgBox.min[iAxis] = tho->bdgBox.min[iAxis];
      if (bdgBox.max[iAxis] > tho->bdgBox.max[iAxis]) {
       bdgBox.max[iAxis] = tho->bdgBox.max[iAxis];
    }
    // Check the bounding box
    bool flag = true;
    for (int i = 2;
        i--;) {
      if (bdgBox.min[i] > correctBdgBox->min[i] + EPSILON ||
          bdgBox.max[i] < correctBdgBox->max[i] - EPSILON) {
        flag = false;
      }
    }
    // If the bounding box is the expected one
    if (flag == true) {
```

```
// Display information
                                                                   printf("Succeed\n");
                                                                   AABB2DPrint(&bdgBox);
                                                                  printf("\n");
                                                     // Else, the bounding box wasn't the expected one
                                                     } else {
                                                                   // Display information
                                                                 printf("Failed\n");
printf("Expected : ");
                                                                   AABB2DPrint(correctBdgBox);
                                                                 printf("\n");
printf(" Got : ");
                                                                   AABB2DPrint(&bdgBox);
                                                                   \ensuremath{//} Terminate the unit tests
                                                                   exit(0);
                                                    }
                                        // Else the Frames were not intersected,
                                        // no need to check the bounding box \,
                                        } else {
                                                     // Display information
                                                     printf(" Succeed (no inter)\n");
                                       }
                         printf("\n");
                          // Flip the pair of Frames
                         that = &Q;
tho = &P;
            }
}
void Test2D(void) {
             // Declare two variables to memozie the arguments to the
             // Validation function
             Param2D paramP;
             Param2D paramQ;
             // Declare a variable to memorize the correct bounding box % \left( 1\right) =\left( 1\right) \left( 1\right) \left
             AABB2D correctBdgBox;
             // Execute the unit test on various cases
             paramP = (Param2D)
                         {.type = FrameCuboid,
                                .orig = {0.0, 0.0},
.comp =
                                        {{1.0, 0.0},
{0.0, 1.0}}
```

```
paramQ = (Param2D)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0\},
   .comp =
     {{1.0, 0.0},
{0.0, 1.0}}
correctBdgBox = (AABB2D)
{.min = {0.0, 0.0},
   .max = {1.0, 1.0}
UnitTest2D(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
// -----
paramP = (Param2D)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0\},
   .comp =
    {{1.0, 0.0},
      {0.0, 1.0}}
  };
paramQ = (Param2D)
  {.type = FrameCuboid,
   .orig = \{0.5, 0.5\},
   .comp =
    {{1.0, 0.0},
      {0.0, 1.0}}
correctBdgBox = (AABB2D)
  {.min = {0.5, 0.5},
.max = {1.0, 1.0}
UnitTest2D(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
// -----
paramP = (Param2D)
  {.type = FrameCuboid,
   .orig = \{-0.5, -0.5\},
   .comp =
     {{1.0, 0.0},
      {0.0, 1.0}}
  };
paramQ = (Param2D)
  {.type = FrameCuboid,
   .orig = \{0.5, 0.5\},
   .comp =
     {{1.0, 0.0},
      {0.0, 1.0}}
  };
UnitTest2D(
  paramP,
  paramQ,
  false,
  NULL);
```

```
// -----
paramP = (Param2D)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0\},
   .comp =
    {{1.0, 0.0},
      {0.0, 1.0}}
 };
paramQ = (Param2D)
  {.type = FrameCuboid,
   .orig = \{0.25, -0.25\},
   .comp =
    {{0.5, 0.0},
      {0.0, 2.0}}
correctBdgBox = (AABB2D)
  \{.min = \{0.25, 0.0\}, \\ .max = \{0.75, 1.0\}
 };
UnitTest2D(
 paramP,
  paramQ,
  true,
  &correctBdgBox);
// -----
paramP = (Param2D)
  {.type = FrameCuboid,
  .orig = \{0.0, 0.0\},
   .comp =
     \{\{1.0, 0.0\},
      {0.0, 1.0}}
 };
paramQ = (Param2D)
  {.type = FrameCuboid,
   .orig = \{-0.25, 0.25\},
   .comp =
     \{\{2.0, 0.0\},\
      {0.0, 0.5}}
 };
correctBdgBox = (AABB2D)
  \{.min = \{0.0, 0.25\},\
  max = \{1.0, 0.75\}
  };
UnitTest2D(
  paramP ,
  paramQ,
  true,
  &correctBdgBox);
paramP = (Param2D)
  {.type = FrameCuboid,
   .orig = {0.0, 0.0},
.comp =
     {{1.0, 1.0},
      {-1.0, 1.0}}
paramQ = (Param2D)
  {.type = FrameCuboid,
  .orig = \{0.0, 0.0\},
```

```
.comp =
     {{1.0, 0.0},
{0.0, 1.0}}
  };
correctBdgBox = (AABB2D)
{.min = {0.0, 0.0},
   .max = {1.0, 1.0}
UnitTest2D(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
// -----
paramP = (Param2D)
  {.type = FrameCuboid,
   .orig = \{-0.5, -0.5\},
   .comp =
     {{1.0, 1.0},
      {-1.0, 1.0}}
  };
paramQ = (Param2D)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0\},
   .comp =
     {{1.0, 0.0},
      {0.0, 1.0}}
correctBdgBox = (AABB2D)
  \{.\min = \{0.0, 0.0\}, \\ .\max = \{0.5, 1.0\}
  };
{\tt UnitTest2D}\,(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
// -----
paramP = (Param2D)
  {.type = FrameCuboid,
   .orig = \{1.5, 1.5\},
   .comp =
     \{\{1.0, -1.0\},
      {-1.0, -1.0}}
  };
paramQ = (Param2D)
  {.type = FrameCuboid,
   .orig = \{1.0, 0.0\},
   .comp =
     {{-1.0, 0.0},
      {0.0, 1.0}}
  };
correctBdgBox = (AABB2D)
  \{.min = \{0.5, 0.0\}, \\ .max = \{1.0, 1.0\}
  };
UnitTest2D(
  paramP,
  paramQ,
  true,
```

```
&correctBdgBox);
paramP = (Param2D)
  {.type = FrameCuboid,
   .orig = \{1.0, 0.5\},
   .comp =
     \{\{-0.5, 0.5\},
      \{-0.5, -0.5\}
  };
paramQ = (Param2D)
  {.type = FrameCuboid,
   .orig = \{0.0, 1.0\},
   .comp =
     {{1.0, 0.0},
{0.0, -1.0}}
correctBdgBox = (AABB2D)
{.min = {0.0, 0.0},
   .max = {1.0, 1.0}
  };
UnitTest2D(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
paramP = (Param2D)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0\},
   .comp =
     {{1.0, 0.0},
       {1.0, 1.0}}
paramQ = (Param2D)
  {.type = FrameCuboid,
   .orig = \{2.0, -1.0\},
   .comp =
     \{\{0.0, 1.0\},
       \{-0.5, 1.0\}
  };
correctBdgBox = (AABB2D)
{.min = {1.5, 0.5},
   .max = {1.5 + 0.5 / 3.0, 1.0}
  };
UnitTest2D(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
// -----
paramP = (Param2D)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0\},
   .comp =
      {{1.0, 0.5},
       {0.5, 1.0}}
  };
paramQ = (Param2D)
  {.type = FrameCuboid,
```

```
.orig = \{1.0, 1.0\},
    .comp =
      {{-0.5, -0.5},
{0.0, -1.0}}
  };
correctBdgBox = (AABB2D)
  \{.\min = \{0.5, 0.25\}, \\ .\max = \{1.0, 1.0\}
  };
UnitTest2D(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
// -----
paramP = (Param2D)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0\},
    .comp =
     {{1.0, 0.5},
{0.5, 1.0}}
  };
paramQ = (Param2D)
  {.type = FrameCuboid,
    .orig = {1.0, 2.0}, .comp =
      {{-0.5, -0.5},
{0.0, -1.0}}
  };
correctBdgBox = (AABB2D)
{.min = {0.5, 0.75},
    .max = {1.0, 1.25}
  };
UnitTest2D(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
paramP = (Param2D)
  {.type = FrameTetrahedron,
    .orig = \{0.0, 0.0\},
    .comp =
      {{1.0, 0.5},
       {0.5, 1.0}}
paramQ = (Param2D)
  {.type = FrameCuboid,
   .orig = \{1.0, 2.0\},
    .com\bar{p} =
      {{-0.5, -0.5},
{0.0, -1.0}}
correctBdgBox = (AABB2D)
{.min = {0.5, 0.5},
.max = {0.75, 1.0}
UnitTest2D(
  paramP ,
  paramQ,
```

```
true,
  &correctBdgBox);
// -----
paramP = (Param2D)
  {.type = FrameCuboid,
   .orig = {0.0, 0.0}, .comp =
     {{1.0, 0.5}, {0.5, 1.0}}
  };
paramQ = (Param2D)
  {.type = FrameTetrahedron,
   .orig = \{1.0, 2.0\},
   .comp =
     \{\{-0.5, -0.5\},
       {0.0, -1.0}}
  };
correctBdgBox = (AABB2D)
  \begin{cases} \text{.min} = \{0.5 + 1.0 / 3.0, 1.0\}, \\ \text{.max} = \{1.0, 1.0 + 1.0 / 3.0\} \end{cases}
  };
UnitTest2D(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
// -----
paramP = (Param2D)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0\},
   .comp =
     {{1.0, 0.0},
{0.0, 1.0}}
paramQ = (Param2D)
  {.type = FrameTetrahedron,
   .orig = \{0.0, 0.0\},
   .comp =
     {{1.0, 0.0},
{0.0, 1.0}}
correctBdgBox = (AABB2D)
{.min = {0.0, 0.0},
   max = \{1.0, 1.0\}
  };
{\tt UnitTest2D}\,(
 paramP,
  paramQ,
  true,
  &correctBdgBox);
// -----
paramP = (Param2D)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0\},
   .comp =
     \{\{1.0, 0.0\},
       {0.0, 1.0}}
  };
paramQ = (Param2D)
```

```
{.type = FrameTetrahedron,
   .orig = \{0.0, -0.5\},
   .comp =
    {{1.0, 0.0},
      {0.0, 1.0}}
  };
correctBdgBox = (AABB2D)
  {.min = {0.0, 0.0},
.max = {0.5, 0.5}
UnitTest2D(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
paramP = (Param2D)
  {.type = FrameCuboid,
   .orig = \{0.5, 0.5\},
   .comp =
    {{-0.5, 0.0}, {0.0, -0.5}}
paramQ = (Param2D)
  {.type = FrameTetrahedron,
   .orig = \{0.0, -0.5\},
   .comp =
     {{1.0, 0.0},
      {0.0, 1.0}}
  };
correctBdgBox = (AABB2D)
  \{.min = \{0.0, 0.0\},\
  .max = \{0.5, 0.5\}
UnitTest2D(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
// -----
paramP = (Param2D)
  {.type = FrameCuboid,
   .orig = \{0.5, 0.5\},
   .comp =
    {{1.0, 0.0},
{0.0, 1.0}}
 };
paramQ = (Param2D)
  {.type = FrameTetrahedron,
   .orig = \{0.0, 0.0\},
   .comp =
    {{1.0, 0.0},
{0.0, 1.0}}
  };
UnitTest2D(
  paramP,
  paramQ,
  false,
  NULL);
```

```
// -----
paramP = (Param2D)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0\},
   .comp =
     {{1.0, 0.0},
{0.0, 1.0}}
paramQ = (Param2D)
  {.type = FrameTetrahedron,
  .orig = \{1.5, 1.5\},
   .comp =
     \{\{-1.5, 0.0\},\
      {0.0, -1.5}}
 };
correctBdgBox = (AABB2D)
{.min = {0.5, 0.5},
   .max = \{1.0, 1.0\}
UnitTest2D(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
// -----
paramP = (Param2D)
  {.type = FrameTetrahedron,
   .orig = \{0.0, 0.0\},
   .comp =
     \{\{1.0, 0.0\},\
      {0.0, 1.0}}
paramQ = (Param2D)
   crameTetrahed:
.orig = {1.01, 1.01},
.comp =
  {.type = FrameTetrahedron,
     {{-1.0, 0.0},
{0.0, -1.0}}
  };
UnitTest2D(
  paramP,
  paramQ,
  false,
  NULL);
// -----
paramP = (Param2D)
  {.type = FrameTetrahedron,
   .orig = \{0.0, 0.0\},
   .comp =
    {{1.0, 0.5},
      {0.5, 1.0}}
 };
paramQ = (Param2D)
  {.type = FrameTetrahedron,
   .orig = \{1.0, 1.0\},
   .comp =
     {{-0.5, -0.5}, {0.0, -1.0}}
correctBdgBox = (AABB2D)
```

```
\{.min = \{0.5, 0.5 - 1.0 / 6.0\},\
     .max = \{1.0, 0.75\}
  UnitTest2D(
    paramP,
    paramQ,
    true,
    &correctBdgBox);
  paramP = (Param2D)
    {.type = FrameTetrahedron,
     .orig = \{0.0, 0.0\},
     .comp =
       {{1.0, 0.5},
{0.5, 1.0}}
  paramQ = (Param2D)
    {.type = FrameTetrahedron,
     .orig = \{1.01, 1.5\},
      .comp =
       {{-0.5, -0.5}, {0.0, -1.0}}
    };
  UnitTest2D(
    paramP ,
    paramQ,
    false,
    NULL);
  // If we reached here, it means all the unit tests succeed printf("All unit tests 2D have succeed.\n");
}
// Main function
int main(int argc, char** argv) {
  Test2D();
  return 0;
6.1.2 3D static
// Include standard libraries
#include <stdlib.h>
#include <stdbool.h>
// Include the FMB algorithm library
#include "fmb3d.h"
// Epslon for numerical precision
#define EPSILON 0.0001
// Helper structure to pass arguments to the UnitTest function
typedef struct {
  FrameType type;
  double orig[3];
double comp[3][3];
```

```
} Param3D;
// Unit test function
\ensuremath{//} Takes two Frame definitions, the correct answer in term of
// intersection/no intersection and the correct bounding box
// Run the FMB intersection detection alogirhtm on the Frames
// and check against the correct results
void UnitTest3D(
        const Param3D paramP,
        const Param3D paramQ,
         const bool correctAnswer,
  const AABB3D* const correctBdgBox) {
  // Create the two Frames
  Frame3D P =
    Frame3DCreateStatic(
      paramP.type,
      paramP.orig,
      paramP.comp);
  Frame3D Q =
    Frame3DCreateStatic(
      paramQ.type,
      paramQ.orig,
      paramQ.comp);
  // Declare a variable to memorize the resulting bounding box
  AABB3D bdgBoxLocal;
  // Helper variables to loop on the pair (that, tho) and (tho, that)
  Frame3D* that = &P;
Frame3D* tho = &Q;
  // Loop on pairs of Frames
  for (int iPair = 2;
       iPair --;) {
    // Display the tested frames
    Frame3DPrint(that);
    printf("\nagainst\n");
    Frame3DPrint(tho);
    printf("\n");
    // Run the FMB intersection test
    bool isIntersecting =
      FMBTestIntersection3D(
        that,
        tho,
        &bdgBoxLocal);
    // If the test hasn't given the expected answer about intersection
    if (isIntersecting != correctAnswer) {
      // Display information about the failure
      printf(" Failed\n");
      printf("Expected : ");
      if (correctAnswer == false)
        printf("no ");
      printf("intersection\n");
      printf("Got : ");
      if (isIntersecting == false)
        printf("no ");
```

```
printf("intersection\n");
  exit(0);
// Else, the test has given the expected answer about intersection
} else {
  // If the Frames were intersecting
  if (isIntersecting == true) {
    AABB3D bdgBox;
    Frame3DExportBdgBox(
      tho,
      &bdgBoxLocal,
      &bdgBox);
    for (int iAxis = 3;
         iAxis--;) {
      if (bdgBox.min[iAxis] < that->bdgBox.min[iAxis]) {
        bdgBox.min[iAxis] = that->bdgBox.min[iAxis];
      if (bdgBox.max[iAxis] > that->bdgBox.max[iAxis]) {
       bdgBox.max[iAxis] = that->bdgBox.max[iAxis];
      if (bdgBox.min[iAxis] < tho->bdgBox.min[iAxis]) {
        bdgBox.min[iAxis] = tho->bdgBox.min[iAxis];
      if (bdgBox.max[iAxis] > tho->bdgBox.max[iAxis]) {
        bdgBox.max[iAxis] = tho->bdgBox.max[iAxis];
    }
    // Check the bounding box
    bool flag = true;
    for (int i = 3;
         i--;) {
      if (bdgBox.min[i] > correctBdgBox->min[i] + EPSILON ||
          bdgBox.max[i] < correctBdgBox->max[i] - EPSILON) {
        flag = false;
      }
    }
    \ensuremath{//} If the bounding box is the expected one
    if (flag == true) {
      // Display information
      printf("Succeed\n");
      AABB3DPrint(&bdgBox);
      printf("\n");
    // Else, the bounding box wasn't the expected one
    } else {
      // Display information
      printf("Failed\n");
      printf("Expected : ");
      AABB3DPrint(correctBdgBox);
      printf("\n");
```

```
printf("
                         Got : ");
            AABB3DPrint(&bdgBox);
            printf("\n");
            \ensuremath{//} Terminate the unit tests
            exit(0);
         }
       \ensuremath{//} Else the Frames were not intersected,
       // no need to check the bounding box
       } else {
         // Display information
         printf(" Succeed (no inter)\n");
    printf("\n");
    // Flip the pair of Frames that = &Q; tho = &P;
  }
}
void Test3D(void) {
  // Declare two variables to memozie the arguments to the
  // Validation function
  Param3D paramP;
Param3D paramQ;
  // Declare a variable to memorize the correct bounding box
  AABB3D correctBdgBox;
  \ensuremath{//} Execute the unit test on various cases
  // -----
  paramP = (Param3D)
    {.type = FrameCuboid,
      .orig = \{0.0, 0.0, 0.0\},
      .comp =
        {{1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
{0.0, 0.0, 1.0}}
    };
  paramQ = (Param3D)
    {.type = FrameCuboid,
     .orig = {0.0, 0.0, 0.0},
      .comp =
        {{1.0, 0.0, 0.0},
         {0.0, 1.0, 0.0},
{0.0, 0.0, 1.0}}
  correctBdgBox = (AABB3D)
{.min = {0.0, 0.0, 0.0},
.max = {1.0, 1.0, 1.0}
```

```
UnitTest3D(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
// -----
paramP = (Param3D)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0, 0.0\},
   .comp =
     {{1.0, 0.0, 0.0}, {0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}}
  };
paramQ = (Param3D)
  {.type = FrameCuboid,
   .orig = \{0.5, 0.5, 0.5\},
   .comp =
     {{1.0, 0.0, 0.0},
      {0.0, 1.0, 0.0},
{0.0, 0.0, 1.0}}
  };
correctBdgBox = (AABB3D)
  \{.min = \{0.5, 0.5, 0.5\}, .max = \{1.0, 1.0, 1.0\}
UnitTest3D(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
// -----
paramP = (Param3D)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0, 0.0\},
   .comp =
     \{\{1.0, 0.0, 0.0\},\
      {0.0, 1.0, 0.0},
{0.0, 0.0, 1.0}}
  };
paramQ = (Param3D)
  {.type = FrameCuboid,
   .orig = \{-0.5, -0.5, -0.5\},
   .comp =
     {{1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
{0.0, 0.0, 1.0}}
  };
correctBdgBox = (AABB3D)
  \{.min = \{0.0, 0.0, 0.0\},\
   max = \{0.5, 0.5, 0.5\}
  };
UnitTest3D(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
// -----
paramP = (Param3D)
```

```
{.type = FrameCuboid,
   .orig = \{0.0, 0.0, 0.0\},
   .comp =
      {{1.0, 0.0, 0.0},
       {0.0, 1.0, 0.0},
{0.0, 0.0, 1.0}}
  };
paramQ = (Param3D)
  {.type = FrameCuboid,
   .orig = \{1.5, 1.5, 1.5\},
   .comp =
      {{-1.0, 0.0, 0.0},
{0.0, -1.0, 0.0},
       {0.0, 0.0, -1.0}}
  };
correctBdgBox = (AABB3D)
{.min = {0.5, 0.5, 0.5},
   .max = \{1.0, 1.0, 1.0\}
UnitTest3D(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
paramP = (Param3D)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0, 0.0\},
   .comp =
     {{1.0, 0.0, 0.0}, {0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}}
  };
paramQ = (Param3D)
  {.type = FrameCuboid,
   .orig = \{0.5, 1.5, -1.5\},
   .comp =
      \{\{1.0, 0.0, 0.0\},\
       {0.0, -1.0, 0.0},
{0.0, 0.0, 1.0}}
  };
UnitTest3D(
  paramP,
  paramQ,
  false,
  NULL);
// -----
paramP = (Param3D)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0, 0.0\},
   .comp =
     {{1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
       \{0.0, 0.0, -1.0\}\}
  };
paramQ = (Param3D)
  {.type = FrameCuboid,
   .orig = \{0.5, 1.5, -1.5\},\
   .comp =
     \{\{1.0, 0.0, 0.0\},
```

```
{0.0, -1.0, 0.0},
      {0.0, 0.0, 1.0}}
  };
correctBdgBox = (AABB3D)
  \{.min = \{0.5, 0.5, -1.0\},\ .max = \{1.0, 1.0, -0.5\}
  };
UnitTest3D(
 paramP,
  paramQ,
  true,
  &correctBdgBox);
// -----
paramP = (Param3D)
  {.type = FrameCuboid,
   .orig = \{-1.01, -1.01, -1.01\},
   .comp =
     {{1.0, 0.0, 0.0},
      {1.0, 1.0, 1.0},
      {0.0, 0.0, 1.0}}
  };
paramQ = (Param3D)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0, 0.0\},
   .comp =
     {{1.0, 0.0, 0.0},
      {0.0, 1.0, 0.0},
{0.0, 0.0, 1.0}}
  };
UnitTest3D(
  paramP,
  paramQ,
  false,
  NULL);
// -----
paramP = (Param3D)
  {.type = FrameCuboid,
   .orig = \{-1.0, -1.0, -1.0\},
   .comp =
     {{1.0, 0.0, 0.0},
      {1.0, 1.0, 1.0},
{0.0, 0.0, 1.0}}
  };
paramQ = (Param3D)
  {.type = FrameCuboid,
   .orig = \{0.0, -0.5, 0.0\},
   .comp =
     {{1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
{0.0, 0.0, 1.0}}
  };
correctBdgBox = (AABB3D)
  \{.min = \{0.0, -0.5, 0.0\},\
   \max = \{1.0, 0.0, 1.0\}
  };
{\tt UnitTest3D}(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
```

```
// -----
paramP = (Param3D)
  {.type = FrameTetrahedron,
    .orig = \{-1.0, -1.0, -1.0\},
    .comp =
      \{\{1.0, 0.0, 0.0\},\
       {1.0, 1.0, 1.0},
{0.0, 0.0, 1.0}}
  };
paramQ = (Param3D)
  {.type = FrameCuboid,
    .orig = \{0.0, -0.5, 0.0\},
    .comp =
      {{1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
{0.0, 0.0, 1.0}}
  };
UnitTest3D(
  paramP ,
  paramQ,
  false,
  NULL);
paramP = (Param3D)
  {.type = FrameCuboid,
    .orig = \{-1.0, -1.0, -1.0\},
    .comp =
     {{1.0, 0.0, 0.0},
       {1.0, 1.0, 1.0},
{0.0, 0.0, 1.0}}
  };
paramQ = (Param3D)
  {.type = FrameTetrahedron,
    .orig = \{0.0, -0.5, 0.0\},
    .com\bar{p} =
      {{1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
       {0.0, 0.0, 1.0}}
  };
correctBdgBox = (AABB3D)
{.min = {0.0, -0.5, 0.0},
.max = {0.75, 0.0, 0.75}
  };
UnitTest3D(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
paramP = (Param3D)
  {.type = FrameTetrahedron,
    .orig = \{-1.0, -1.0, -1.0\},
    .comp =
      {{1.0, 0.0, 0.0},
{1.0, 1.0, 1.0},
       {0.0, 0.0, 1.0}}
  };
paramQ = (Param3D)
  {.type = FrameTetrahedron,
```

```
.orig = \{0.0, -0.5, 0.0\},
      .comp =
        {{1.0, 0.0, 0.0},
         {0.0, 1.0, 0.0},
         {0.0, 0.0, 1.0}}
    };
  UnitTest3D(
    paramP,
    paramQ,
    false,
    NULL);
  // -----
  paramP = (Param3D)
    {.type = FrameTetrahedron,
      .orig = \{-0.5, -1.0, -0.5\},
      .comp =
        {{1.0, 0.0, 0.0},
{1.0, 1.0, 1.0},
{0.0, 0.0, 1.0}}
    };
  paramQ = (Param3D)
    {.type = FrameTetrahedron,
     .orig = \{0.0, -0.5, 0.0\},
      .comp =
        {{1.0, 0.0, 0.0},
         {0.0, 1.0, 0.0},
{0.0, 0.0, 1.0}}
    };
  correctBdgBox = (AABB3D)
    \begin{cases} \text{.min} = \{0.0, -0.5, 0.0\}, \\ \text{.max} = \{0.5, -1.0 / 3.0, 0.5\} \end{cases}
    };
  {\tt UnitTest3D} \, (
    paramP,
    paramQ,
    true,
    &correctBdgBox);
  \ensuremath{//} If we reached here, it means all the unit tests succeed
  printf("All unit tests 3D have succeed.\n");
}
// Main function
int main(int argc, char** argv) {
  Test3D();
  return 0;
6.1.3 2D dynamic
// Include standard libraries
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
// Include the FMB algorithm library
```

```
#include "fmb2dt.h"
// Epslon for numerical precision
#define EPSILON 0.0001
// Helper structure to pass arguments to the UnitTest function
typedef struct {
  FrameType type;
  double orig[2];
double comp[2][2];
  double speed[2];
} Param2DTime;
// Unit test function
\ensuremath{//} Takes two Frame definitions, the correct answer in term of
// intersection/no intersection and the correct bounding box
// Run the FMB intersection detection alogirhtm on the Frames
// and check against the correct results
void UnitTest2DTime(
        const Param2DTime paramP,
        const Param2DTime paramQ,
         const bool correctAnswer,
  const AABB2DTime* const correctBdgBox) {
  // Create the two Frames
  Frame2DTime P =
    Frame2DTimeCreateStatic(
      paramP.type,
      paramP.orig,
      paramP.speed,
      paramP.comp);
  Frame2DTime Q =
    {\tt Frame2DTimeCreateStatic} (
      paramQ.type,
      paramQ.orig,
      paramQ.speed,
      paramQ.comp);
  // Declare a variable to memorize the resulting bounding box
  AABB2DTime bdgBoxLocal;
  // Helper variables to loop on the pair (that, tho) and (tho, that)
  Frame2DTime* that = &P;
  Frame2DTime* tho = &Q;
  // Loop on pairs of Frames
  for (int iPair = 2;
       iPair --;) {
    // Display the tested frames
    Frame2DTimePrint(that);
    printf("\nagainst\n");
    Frame2DTimePrint(tho);
    printf("\n");
    // Run the FMB intersection test
    bool isIntersecting =
      FMBTestIntersection2DTime(
        that,
        tho.
        &bdgBoxLocal);
```

```
// If the test hasn't given the expected answer about intersection
if (isIntersecting != correctAnswer) {
  // Display information about the failure
  printf(" Failed\n");
  printf("Expected : ");
  if (correctAnswer == false)
   printf("no ");
  printf("intersection\n");
  printf("Got : ");
  if (isIntersecting == false)
    printf("no ");
  printf("intersection\n");
  exit(0);
// Else, the test has given the expected answer about intersection
} else {
  // If the Frames were intersecting
  if (isIntersecting == true) {
    AABB2DTime bdgBox;
    {\tt Frame2DTimeExportBdgBox(}
      tho,
      &bdgBoxLocal,
      &bdgBox);
    // Check the bounding box
    bool flag = true;
for (int i = 3;
         i--;) {
      if (bdgBox.min[i] > correctBdgBox->min[i] + EPSILON ||
          bdgBox.max[i] < correctBdgBox->max[i] - EPSILON) {
        flag = false;
      }
    }
    \ensuremath{//} If the bounding box is the expected one
    if (flag == true) {
      // Display information
      printf("Succeed\n");
      AABB2DTimePrint(&bdgBox);
      printf("\n");
    // Else, the bounding box wasn't the expected one
    } else {
      // Display information
      printf("Failed\n");
printf("Expected : ");
      AABB2DTimePrint(correctBdgBox);
      AABB2DTimePrint(&bdgBox);
      printf("\n");
      // Terminate the unit tests
```

```
exit(0);
                                         \ensuremath{//} Else the Frames were not intersected,
                                         // no need to check the bounding box
                                         } else {
                                                      // Display information
                                                      printf(" Succeed (no inter)\n");
                          printf("\n");
                           // Flip the pair of Frames
                          that = &Q;
tho = &P;
             }
}
void Test2DTime(void) {
              // Declare two variables to memozie the arguments to the
               // Validation function
              Param2DTime paramP;
             Param2DTime paramQ;
              // Declare a variable to memorize the correct bounding box % \left( 1\right) =\left( 1\right) \left( 1\right) \left
              AABB2DTime correctBdgBox;
              // Execute the unit test on various cases
              // -----
              paramP = (Param2DTime)
                           {.type = FrameCuboid,
                                 .orig = \{0.0, 0.0\},
                                   .comp =
                                             {{1.0, 0.0},
                                                     {0.0, 1.0}},
                                   .speed = \{0.0, 0.0\}
              paramQ = (Param2DTime)
                           {.type = FrameCuboid,
                                 .orig = \{-1.0, 0.0\},
                                  .comp =
                                 {{1.0, 0.0},
{0.0, 1.0}},
.speed = {-1.0, 0.0}
                           };
              UnitTest2DTime(
                           paramP ,
                           paramQ,
                           false,
                           NULL);
              paramP = (Param2DTime)
                          {.type = FrameCuboid,
```

```
.orig = \{0.0, 0.0\},
   .comp =
     \{\{1.0, 0.0\},
   {0.0, 1.0}},
.speed = {0.0, 0.0}
  };
paramQ = (Param2DTime)
  {.type = FrameCuboid,
   .orig = \{-1.01, -1.01\},
   .comp =
     {{1.0, 0.0},
   {0.0, 1.0}},
.speed = {1.0, 0.0}
  };
{\tt UnitTest2DTime}\,(
  paramP,
  paramQ,
  false,
  NULL);
// -----
paramP = (Param2DTime)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0\},
   .comp =
     {{1.0, 0.0},
      {0.0, 1.0}},
   .speed = \{0.0, 0.0\}
paramQ = (Param2DTime)
  {.type = FrameCuboid,
   .orig = \{-1.0, 0.0\},
   .comp =
   {{1.0, 0.0},
{0.0, 1.0}},
.speed = {1.0, 0.0}
  };
correctBdgBox = (AABB2DTime)
  \{.\min = \{0.0, 0.0, 0.0\},\\ .\max = \{1.0, 1.0, 1.0\}
  };
{\tt UnitTest2DTime(}
 paramP,
  paramQ,
  true,
  &correctBdgBox);
// -----
paramP = (Param2DTime)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0\},
   .com\bar{p} =
   {{1.0, 0.0},
{0.0, 1.0}},
.speed = {0.0, 0.0}
  };
paramQ = (Param2DTime)
  {.type = FrameCuboid,
   .orig = \{-1.0, 0.25\},
   .com\bar{p} =
     {{0.5, 0.0},
      {0.0, 0.5}},
```

```
.speed = \{4.0, 0.0\}
  };
correctBdgBox = (AABB2DTime)
  \{.min = \{0.0, 0.25, 0.125\},\
   max = \{1.0, 0.75, 0.5\}
  };
UnitTest2DTime(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
// -----
paramP = (Param2DTime)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0\},
   .com\bar{p} =
   {{1.0, 0.0},
{0.0, 1.0}},
.speed = {0.0, 0.0}
  };
paramQ = (Param2DTime)
  {.type = FrameCuboid,
   .orig = \{0.25, -1.0\},
   .comp =
     {{0.5, 0.0},
      {0.0, 0.5}},
   .speed = \{0.0, 4.0\}
correctBdgBox = (AABB2DTime)
  \{.\min = \{0.25, 0.0, 0.125\}, \\.\max = \{0.75, 1.0, 0.5\}
{\tt UnitTest2DTime(}
  paramP,
  paramQ,
  true,
  &correctBdgBox);
// -----
paramP = (Param2DTime)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0\},
   .comp =
     {{1.0, 0.0},
      {0.0, 1.0}},
   .speed = \{0.0, 0.0\}
paramQ = (Param2DTime)
  {.type = FrameCuboid,
   .orig = \{0.9, -1.0\},
   .comp =
   {{0.5, 0.0},
{0.0, 0.5}},
.speed = {0.0, 4.0}
  };
correctBdgBox = (AABB2DTime)
{.min = {0.9, 0.0, 0.125},
    .max = {1.0, 1.0, 0.5}
UnitTest2DTime(
  paramP,
```

```
paramQ,
    true,
    &correctBdgBox);
  // If we reached here, it means all the unit tests succeed
  printf("All unit tests 2DTime have succeed.\n");
}
// Main function
int main(int argc, char** argv) {
  Test2DTime();
  return 0;
6.1.4 3D dynamic
// Include standard libraries
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
// Include the FMB algorithm library
#include "fmb3dt.h"
// Epslon for numerical precision
#define EPSILON 0.0001
// Helper structure to pass arguments to the UnitTest function
typedef struct {
  FrameType type;
  double orig[3];
  double comp[3][3];
  double speed[3];
} Param3DTime;
// Unit test function
// Takes two Frame definitions, the correct answer in term of
// intersection/no intersection and the correct bounding box // Run the FMB intersection detection alogirhtm on the Frames
// and check against the correct results
void UnitTest3DTime(
         const Param3DTime paramP,
         const Param3DTime paramQ,
          \verb"const" bool correctAnswer",
  const AABB3DTime* const correctBdgBox) {
  // Create the two Frames
  Frame3DTime P =
    Frame3DTimeCreateStatic(
      paramP.type,
      paramP.orig,
      paramP.speed,
      paramP.comp);
  Frame3DTime Q =
    {\tt Frame3DTimeCreateStatic} (
      paramQ.type,
      paramQ.orig,
```

```
paramQ.speed,
   paramQ.comp);
// Declare a variable to memorize the resulting bounding box
AABB3DTime bdgBoxLocal;
// Helper variables to loop on the pair (that, tho) and (tho, that)
Frame3DTime* that = &P;
Frame3DTime* tho = &Q;
// Loop on pairs of Frames
// Display the tested frames
  Frame3DTimePrint(that);
 printf("\nagainst\n");
 Frame3DTimePrint(tho);
 printf("\n");
  // Run the FMB intersection test
  bool isIntersecting =
   FMBTestIntersection3DTime(
     that,
     tho,
     &bdgBoxLocal);
 // Display information about the failure
   printf(" Failed\n");
   printf("Expected : ");
   if (correctAnswer == false)
     printf("no ");
   printf("intersection\n");
   printf("Got : ");
   if (isIntersecting == false)
     printf("no ");
   printf("intersection\n");
   exit(0);
  // Else, the test has given the expected answer about intersection
  } else {
   // If the Frames were intersecting
   if (isIntersecting == true) {
     AABB3DTime bdgBox;
     Frame3DTimeExportBdgBox(
       tho,
       &bdgBoxLocal,
       &bdgBox);
     // Check the bounding box
     bool flag = true;
for (int i = 4;
          i--;) {
       if (bdgBox.min[i] > correctBdgBox->min[i] + EPSILON ||
           bdgBox.max[i] < correctBdgBox->max[i] - EPSILON) {
         flag = false;
```

```
}
                                                    // If the bounding box is the expected one
                                                    if (flag == true) {
                                                                  // Display information
                                                                  printf("Succeed\n");
                                                                  AABB3DTimePrint(&bdgBox);
                                                                 printf("\n");
                                                    // Else, the bounding box wasn't the expected one
                                                    } else {
                                                                  // Display information
                                                                printf("Failed\n");
printf("Expected : ");
                                                                  AABB3DTimePrint(correctBdgBox);
                                                                 printf("\n");
printf(" Got : ");
                                                                  AABB3DTimePrint(&bdgBox);
                                                                  printf("\n");
                                                                  \ensuremath{//} Terminate the unit tests
                                                                  exit(0);
                                        \ensuremath{//} Else the Frames were not intersected,
                                        // no need to check the bounding box
                                        } else {
                                                    // Display information
                                                    printf(" Succeed (no inter)\n");
                                       }
                         printf("\n");
                          // Flip the pair of Frames
                          that = &Q;
tho = &P;
             }
}
 void Test3DTime(void) {
              // Declare two variables to memozie the arguments to the
              // Validation function
              Param3DTime paramP;
             Param3DTime paramQ;
              // Declare a variable to memorize the correct bounding box % \left( 1\right) =\left( 1\right) \left( 1\right) \left
              AABB3DTime correctBdgBox;
              // Execute the unit test on various cases
```

```
// -----
paramP = (Param3DTime)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0, 0.0\},
    .comp =
     {{1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
       {0.0, 0.0, 1.0}},
   .speed = \{0.0, 0.0, 0.0\}
paramQ = (Param3DTime)
  {.type = FrameCuboid,
   .orig = \{-1.0, 0.0, 0.0\},
   .comp =
     {{1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
{0.0, 0.0, 1.0}},
   .speed = \{-1.0, 0.0, 0.0\}
UnitTest3DTime(
  paramP,
  paramQ,
  false,
  NULL);
// -----
paramP = (Param3DTime)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0, 0.0\},
   .comp =
     {{1.0, 0.0, 0.0}, {0.0}, {0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}},
   .speed = \{0.0, 0.0, 0.0\}
paramQ = (Param3DTime)
  {.type = FrameCuboid,
   .orig = \{-1.01, -1.01, 0.0\},\
   .comp =
     {{1.0, 0.0, 0.0}, 
{0.0, 1.0, 0.0}, 
{0.0, 0.0, 1.0}},
   .speed = \{1.0, 0.0, 0.0\}
  };
UnitTest3DTime(
  paramP,
  paramQ,
  false,
  NULL);
paramP = (Param3DTime)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0, 0.0\},
   .comp =
   {{1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
{0.0, 0.0, 1.0}},
.speed = {0.0, 0.0, 0.0}
  };
paramQ = (Param3DTime)
  {.type = FrameCuboid,
```

```
.orig = \{-1.0, 0.0, 0.0\},
    .comp =
      {{1.0, 0.0, 0.0},
       {0.0, 1.0, 0.0},
       \{0.0, 0.0, 1.0\}\},\
    .speed = \{1.0, 0.0, 0.0\}
correctBdgBox = (AABB3DTime)
{.min = {0.0, 0.0, 0.0, 0.0},
   .max = {1.0, 1.0, 1.0, 1.0}
UnitTest3DTime(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
// -----
paramP = (Param3DTime)
  {.type = FrameCuboid,
   .orig = \{0.0, 0.0, 0.0\},
    .comp =
      {{1.0, 0.0, 0.0},
       {0.0, 1.0, 0.0},
{0.0, 0.0, 1.0}},
    .speed = \{0.0, 0.0, 0.0\}
paramQ = (Param3DTime)
  {.type = FrameCuboid,
   .orig = \{-1.0, 0.25, 0.0\},
    .comp =
      \{\{0.5, 0.0, 0.0\},\
       {0.0, 0.5, 0.0},
   \{0.0, 0.0, 1.0\}\},
.speed = \{4.0, 0.0, 0.0\}
correctBdgBox = (AABB3DTime)
{.min = {0.0, 0.25, 0.0, 0.125},
   .max = {1.0, 0.75, 1.0, 0.5}
UnitTest3DTime(
  paramP,
  paramQ,
  true,
  &correctBdgBox);
paramP = (Param3DTime)
  {.type = FrameCuboid,
    .orig = \{0.0, 0.0, 0.0\},
    .comp =
      {{1.0, 0.0, 0.0},
   {0.0, 1.0, 0.0},

{0.0, 0.0, 1.0}},

.speed = {0.0, 0.0, 0.0}
paramQ = (Param3DTime)
  {.type = FrameCuboid,
   .orig = \{0.25, -1.0, 0.0\},\
    .comp =
      \{\{0.5, 0.0, 0.0\},\
       {0.0, 0.5, 0.0},
```

```
{0.0, 0.0, 1.0}},
      .speed = \{0.0, 4.0, 0.0\}
  correctBdgBox = (AABB3DTime)
    \{.min = \{0.25, 0.0, 0.0, 0.125\}, \\ .max = \{0.75, 1.0, 1.0, 0.5\}
  UnitTest3DTime(
    paramP,
    paramQ,
    true,
    &correctBdgBox);
  // -----
  paramP = (Param3DTime)
    {.type = FrameCuboid,
     .orig = \{0.0, 0.0, 0.0\},
      .comp =
        {{1.0, 0.0, 0.0},
         {0.0, 1.0, 0.0},
         \{0.0, 0.0, 1.0\}\},\
      .speed = \{0.0, 0.0, 0.0\}
    };
  paramQ = (Param3DTime)
    {.type = FrameCuboid,
      .orig = \{0.9, -1.0, 0.0\},
     .comp =
       {{0.5, 0.0, 0.0},
{0.0, 0.5, 0.0},
         {0.0, 0.0, 1.0}},
      .speed = \{0.0, 4.0, 0.0\}
  correctBdgBox = (AABB3DTime)
    \{.min = \{0.9, 0.0, 0.0, 0.125\}, \\ .max = \{1.0, 1.0, 1.0, 0.5\}
  UnitTest3DTime(
    paramP,
    paramQ,
    true,
    &correctBdgBox);
  // If we reached here, it means all the unit tests succeed
  printf("All unit tests 3DTime have succeed.\n");
}
// Main function
int main(int argc, char** argv) {
  Test3DTime();
  return 0;
6.2
        Results
```

6.2.12D static

Co(0.000000,0.000000) x(1.000000,0.000000) y(0.000000,1.000000) against

```
Co(0.000000, 0.000000) \times (1.000000, 0.000000) \times (0.000000, 1.000000)
Succeed
minXY(0.000000,0.000000)-maxXY(1.000000,1.000000)
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
against
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
minXY(0.000000,0.000000)-maxXY(1.000000,1.000000)
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
against
Co(0.500000, 0.500000) x(1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
minXY(0.500000,0.500000)-maxXY(1.000000,1.000000)
Co(0.500000,0.500000) x(1.000000,0.000000) y(0.000000,1.000000)
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
minXY(0.500000,0.500000)-maxXY(1.000000,1.000000)
Co(-0.500000, -0.500000) x(1.000000, 0.000000) y(0.000000, 1.000000)
against
C_0(0.500000, 0.500000) x(1.000000, 0.000000) y(0.000000, 1.000000)
 Succeed (no inter)
Co(0.500000, 0.500000) \times (1.000000, 0.000000) y (0.000000, 1.000000)
against
Co(-0.500000, -0.500000) \times (1.000000, 0.000000) y (0.000000, 1.000000)
Succeed (no inter)
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
against
Co(0.250000, -0.250000) \times (0.500000, 0.000000) y(0.000000, 2.000000)
Succeed
minXY(0.250000,0.000000)-maxXY(0.750000,1.000000)
Co(0.250000, -0.250000) x(0.500000, 0.000000) y(0.000000, 2.000000)
against
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
minXY(0.250000,0.000000)-maxXY(0.750000,1.000000)
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
against
Co(-0.250000, 0.250000) x(2.000000, 0.000000) y(0.000000, 0.500000)
Succeed
minXY(0.000000,0.250000)-maxXY(1.000000,0.750000)
C_0(-0.250000, 0.250000) x(2.000000, 0.000000) y(0.000000, 0.500000)
against
Co(0.000000, 0.000000) x(1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
minXY(0.000000,0.250000)-maxXY(1.000000,0.750000)
Co(0.000000, 0.000000) x(1.000000, 1.000000) y(-1.000000, 1.000000)
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
minXY(0.000000,0.000000)-maxXY(1.000000,1.000000)
```

```
Co(0.000000, 0.000000) \times (1.000000, 0.000000) \times (0.000000, 1.000000)
Co(0.000000, 0.000000) \times (1.000000, 1.000000) y(-1.000000, 1.000000)
Succeed
minXY(0.000000,0.000000)-maxXY(1.000000,1.000000)
C_0(-0.500000, -0.500000) \times (1.000000, 1.000000) y (-1.000000, 1.000000)
against
Co(0.000000, 0.000000) x(1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
minXY(0.000000,0.000000)-maxXY(0.500000,1.000000)
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
against
C_0(-0.500000, -0.500000) \times (1.000000, 1.000000) y(-1.000000, 1.000000)
Succeed
minXY(0.000000,0.000000)-maxXY(0.500000,1.000000)
Co(1.500000,1.500000) x(1.000000,-1.000000) y(-1.000000,-1.000000)
against
Co(1.000000, 0.000000) \times (-1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
minXY(0.500000,0.000000)-maxXY(1.000000,1.000000)
Co(1.000000, 0.000000) \times (-1.000000, 0.000000) y(0.000000, 1.000000)
Co(1.500000, 1.500000) \times (1.000000, -1.000000) y(-1.000000, -1.000000)
Succeed
minXY(0.500000,0.000000)-maxXY(1.000000,1.000000)
Co(1.000000, 0.500000) \times (-0.500000, 0.500000) y (-0.500000, -0.500000)
Co(0.000000, 1.000000) \times (1.000000, 0.000000) y(0.000000, -1.000000)
Succeed
minXY(0.000000,0.000000)-maxXY(1.000000,1.000000)
Co(0.000000,1.000000) x(1.000000,0.000000) y(0.000000,-1.000000)
against
Co(1.000000, 0.500000) x(-0.500000, 0.500000) y(-0.500000, -0.500000)
Succeed
minXY(0.000000,0.000000)-maxXY(1.000000,1.000000)
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y (1.000000, 1.000000)
against
Co(2.000000, -1.000000) x(0.000000, 1.000000) y(-0.500000, 1.000000)
Succeed
minXY(1.500000,0.000000)-maxXY(1.666667,1.000000)
Co(2.000000, -1.000000) \times (0.000000, 1.000000) y(-0.500000, 1.000000)
against
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y (1.000000, 1.000000)
Succeed
minXY(1.500000,0.500000)-maxXY(2.000000,1.000000)
Co(0.000000,0.000000) x(1.000000,0.500000) y(0.500000,1.000000)
Co(1.000000, 1.000000) \times (-0.500000, -0.500000) \times (0.000000, -1.000000)
Succeed
minXY(0.500000,0.000000)-maxXY(1.000000,1.000000)
Co(1.000000, 1.000000) \times (-0.500000, -0.500000) y(0.000000, -1.000000)
against
```

```
Co(0.000000, 0.000000) \times (1.000000, 0.500000) \times (0.500000, 1.000000)
Succeed
minXY(0.500000,0.000000)-maxXY(1.000000,1.000000)
Co(0.000000, 0.000000) \times (1.000000, 0.500000) y(0.500000, 1.000000)
against
\texttt{Co} \hspace{0.04cm} (1.000000, 2.000000) \hspace{0.3cm} \texttt{x} \hspace{0.04cm} (-0.500000, -0.500000) \hspace{0.3cm} \texttt{y} \hspace{0.04cm} (0.000000, -1.000000)
minXY(0.500000,0.500000)-maxXY(1.000000,1.500000)
Co(1.000000, 2.000000) \times (-0.500000, -0.500000) y(0.000000, -1.000000)
against
Co(0.000000, 0.000000) \times (1.000000, 0.500000) y(0.500000, 1.000000)
Succeed
minXY(0.500000,0.500000)-maxXY(1.000000,1.500000)
To(0.000000, 0.000000) x(1.000000, 0.500000) y(0.500000, 1.000000)
against
Co(1.000000, 2.000000) \times (-0.500000, -0.500000) y(0.000000, -1.000000)
Succeed
minXY(0.500000,0.500000)-maxXY(1.000000,1.000000)
\texttt{Co} \hspace{0.04cm} (1.000000\hspace{0.04cm}, 2.000000) \hspace{0.4cm} \texttt{x} \hspace{0.04cm} (-0.500000\hspace{0.04cm}, -0.500000) \hspace{0.4cm} \texttt{y} \hspace{0.04cm} (0.000000\hspace{0.04cm}, -1.000000)
against
T_0(0.000000, 0.000000) \times (1.000000, 0.500000) \times (0.500000, 1.000000)
Succeed
minXY(0.500000,0.500000)-maxXY(1.000000,1.000000)
Co(0.000000, 0.000000) \times (1.000000, 0.500000) \times (0.500000, 1.000000)
against
To (1.000000, 2.000000) x (-0.500000, -0.500000) y (0.000000, -1.000000)
Succeed
minXY(0.500000,1.000000)-maxXY(1.000000,1.500000)
To (1.000000, 2.000000) x(-0.500000, -0.500000) y(0.000000, -1.000000)
against
C_0(0.000000, 0.000000) \times (1.000000, 0.500000) y (0.500000, 1.000000)
Succeed
\mathtt{minXY} \, (\mathtt{0.500000}\,\mathtt{,1.000000}) \, \mathtt{-maxXY} \, (\mathtt{1.000000}\,\mathtt{,1.500000})
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
against
To (0.000000, 0.000000) x (1.000000, 0.000000) y (0.000000, 1.000000)
Succeed
minXY(0.000000,0.000000)-maxXY(1.000000,1.000000)
To(0.000000,0.000000) x(1.000000,0.000000) y(0.000000,1.000000)
against
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
minXY(0.000000,0.000000)-maxXY(1.000000,1.000000)
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
against
To(0.000000, -0.500000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
minXY(0.000000,0.000000)-maxXY(1.000000,0.500000)
To(0.000000, -0.500000) x(1.000000, 0.000000) y(0.000000, 1.000000)
against
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
```

```
minXY(0.000000,0.000000)-maxXY(1.000000,0.500000)
C_0(0.500000, 0.500000) \times (-0.500000, 0.000000) \times (0.000000, -0.500000)
against
T_0(0.000000, -0.500000) \times (1.000000, 0.000000) y (0.000000, 1.000000)
Succeed
minXY(0.000000,0.000000)-maxXY(0.500000,0.500000)
To(0.000000,-0.500000) x(1.000000,0.000000) y(0.000000,1.000000)
against
Co(0.500000, 0.500000) \times (-0.500000, 0.000000) y(0.000000, -0.500000)
Succeed
minXY(0.000000,0.000000)-maxXY(0.500000,0.500000)
Co(0.500000, 0.500000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
against
T_0(0.000000, 0.000000) \times (1.000000, 0.000000) \times (0.000000, 1.000000)
 Succeed (no inter)
To(0.000000, 0.000000) x(1.000000, 0.000000) y(0.000000, 1.000000)
Co(0.500000, 0.500000) \times (1.000000, 0.000000) y (0.000000, 1.000000)
 Succeed (no inter)
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
To(1.500000, 1.500000) x(-1.500000, 0.000000) y(0.000000, -1.500000)
Succeed
minXY(0.000000,0.500000)-maxXY(1.000000,1.000000)
To (1.500000, 1.500000) x (-1.500000, 0.000000) y (0.000000, -1.500000)
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
minXY(0.000000,0.500000)-maxXY(1.000000,1.000000)
To (0.000000, 0.000000) x (1.000000, 0.000000) y (0.000000, 1.000000)
against
 \texttt{To} \ (1.010000 \ , 1.010000) \ \ \texttt{x} \ (-1.000000 \ , 0.000000) \ \ \texttt{y} \ (0.000000 \ , -1.000000) 
 Succeed (no inter)
To(1.010000,1.010000) x(-1.000000,0.000000) y(0.000000,-1.000000)
against
T_0(0.000000, 0.000000) \times (1.000000, 0.000000) y (0.000000, 1.000000)
 Succeed (no inter)
To(0.000000,0.000000) x(1.000000,0.500000) y(0.500000,1.000000)
against
To(1.000000, 1.000000) \times (-0.500000, -0.500000) \times (0.000000, -1.000000)
Succeed
minXY(0.500000,0.000000)-maxXY(1.000000,1.000000)
To (1.000000, 1.000000) x(-0.500000, -0.500000) y(0.000000, -1.000000)
against
To(0.000000,0.000000) x(1.000000,0.500000) y(0.500000,1.000000)
Succeed
minXY(0.500000,0.000000)-maxXY(1.000000,1.000000)
To(0.000000, 0.000000) x(1.000000, 0.500000) y(0.500000, 1.000000)
against
To(1.010000, 1.500000) x(-0.500000, -0.500000) y(0.000000, -1.000000)
 Succeed (no inter)
```

```
To (1.010000,1.500000) x(-0.500000,-0.500000) y(0.000000,-1.000000) against To (0.000000,0.000000) x(1.000000,0.500000) y(0.500000,1.000000) Succeed (no inter)
```

All unit tests 2D have succeed.

6.2.2 3D static

```
Co(0.000000,0.000000,0.000000) x(1.000000,0.000000,0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
against
C_{0}(0.000000, 0.000000, 0.000000) x (1.000000, 0.000000, 0.000000) y
    (0.000000, 1.000000, 0.000000) \ z (0.000000, 0.000000, 1.000000)
Succeed
minXYZ(0.000000,0.000000,0.000000)-maxXYZ(1.000000,1.000000,1.000000)
Co(0.000000, 0.000000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
Co(0.000000, 0.000000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000, 1.000000, 0.000000) z(0.000000, 0.000000, 1.000000)
minXYZ(0.000000.0.000000.0.000000)-maxXYZ(1.000000.1.000000.1.000000)
Co(0.000000, 0.000000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
against
Co(0.500000, 0.500000, 0.500000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
minXYZ(0.500000,0.500000,0.500000)-maxXYZ(1.000000,1.000000,1.000000)
Co(0.500000,0.500000,0.500000) x(1.000000,0.000000,0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
Co(0.000000, 0.000000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
minXYZ(0.500000,0.500000,0.500000)-maxXYZ(1.000000,1.000000,1.000000)
Co(0.000000,0.000000,0.000000) x(1.000000,0.000000,0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
against
Co(-0.500000, -0.500000, -0.500000) \times (1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
minXYZ(0.000000,0.000000,0.000000)-maxXYZ(0.500000,0.500000,0.500000)
Co(-0.500000, -0.500000, -0.500000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
against
Co(0.000000, 0.000000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
minXYZ(0.000000,0.000000,0.000000)-maxXYZ(0.500000,0.500000,0.500000)
Co(0.000000,0.000000,0.000000) x(1.000000,0.000000,0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
against
```

```
Co(1.500000, 1.500000, 1.500000) x(-1.000000, 0.000000, 0.000000) y
    (0.000000,-1.000000,0.000000) z(0.000000,0.000000,-1.000000)
Succeed
minXYZ(0.500000.0.500000.0.500000)-maxXYZ(1.000000.1.000000.1.000000)
Co(1.500000, 1.500000, 1.500000) x(-1.000000, 0.000000, 0.000000) y
    (0.000000, -1.000000, 0.000000) z(0.000000, 0.000000, -1.000000)
C_{0}(0.000000, 0.000000, 0.000000) x (1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
Succeed
minXYZ(0.500000.0.500000.0.500000)-maxXYZ(1.000000.1.000000.1.000000)
Co(0.000000, 0.000000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
against
C_0(0.500000, 1.500000, -1.500000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,-1.000000,0.000000) z(0.000000,0.000000,1.000000)
 Succeed (no inter)
Co(0.500000, 1.500000, -1.500000) x(1.000000, 0.000000, 0.000000) y
    (0.000000, -1.000000, 0.000000) z(0.000000, 0.000000, 1.000000)
against
Co(0.000000,0.000000,0.000000) x(1.000000,0.000000,0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
 Succeed (no inter)
Co(0.000000, 0.000000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,-1.000000)
against
Co(0.500000, 1.500000, -1.500000) \times (1.000000, 0.000000, 0.000000) y
    (0.000000,-1.000000,0.000000) z(0.000000,0.000000,1.000000)
Succeed
minXYZ(0.500000,0.500000,-1.000000)-maxXYZ(1.000000,1.000000,-0.500000)
Co(0.500000, 1.500000, -1.500000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,-1.000000,0.000000) z(0.000000,0.000000,1.000000)
against
Co(0.000000,0.000000,0.000000) x(1.000000,0.000000,0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,-1.000000)
Succeed
minXYZ(0.500000,0.500000,-1.000000)-maxXYZ(1.000000,1.000000,-0.500000)
Co(-1.010000,-1.010000,-1.010000) x(1.000000,0.000000,0.000000) y
    (1.000000,1.000000,1.000000) z(0.000000,0.000000,1.000000)
against
C_{0}(0.000000, 0.000000, 0.000000) x (1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
 Succeed (no inter)
Co(0.000000,0.000000,0.000000) x(1.000000,0.000000,0.000000) y
    (0.000000.1.000000.0.000000) z(0.000000.0.000000.1.000000)
against
Co(-1.010000, -1.010000, -1.010000) x(1.000000, 0.000000, 0.000000) y
    (1.000000,1.000000,1.000000) z(0.000000,0.000000,1.000000)
 Succeed (no inter)
\texttt{Co(-1.000000,-1.000000,-1.000000)} \quad \texttt{x(1.000000,0.000000,0.000000)} \quad \texttt{y}
    (1.000000, 1.000000, 1.000000) z(0.000000, 0.000000, 1.000000)
against
Co(0.000000, -0.500000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
```

```
Succeed
minXYZ(0.000000,-0.500000,0.000000)-maxXYZ(1.000000,0.000000,1.000000)
\texttt{Co} \, (\texttt{0.000000}\,, \texttt{-0.500000}\,, \texttt{0.0000000}) \, \, \, \texttt{x} \, (\texttt{1.000000}\,, \texttt{0.0000000}\,, \texttt{0.0000000}) \, \, \, \texttt{y} \, \, \\
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
against
Co(-1.000000, -1.000000, -1.000000) x(1.000000, 0.000000, 0.000000) y
    (1.000000, 1.000000, 1.000000) z(0.000000, 0.000000, 1.000000)
Succeed
minXYZ(0.000000,-0.500000,0.000000)-maxXYZ(1.000000,0.000000,1.000000)
To(-1.000000, -1.000000, -1.000000) x(1.000000, 0.000000, 0.000000) y
    (1.000000,1.000000,1.000000) z(0.000000,0.000000,1.000000)
against
Co(0.000000, -0.500000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
 Succeed (no inter)
Co(0.000000, -0.500000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000, 1.000000, 0.000000) z(0.000000, 0.000000, 1.000000)
against
To(-1.000000, -1.000000, -1.000000) \times (1.000000, 0.000000, 0.000000)
    (1.000000,1.000000,1.000000) z(0.000000,0.000000,1.000000)
 Succeed (no inter)
C_0(-1.000000, -1.000000, -1.000000) x(1.000000, 0.000000, 0.000000) y
    (1.000000,1.000000,1.000000) z(0.000000,0.000000,1.000000)
against
To(0.000000, -0.500000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000, 1.000000, 0.000000) z(0.000000, 0.000000, 1.000000)
Succeed
minXYZ(0.000000,-0.500000,0.000000)-maxXYZ(1.000000,0.000000,0.750000)
 \texttt{To} \, (0.000000\,, -0.500000\,, 0.000000) \, \, \texttt{x} \, (1.000000\,, 0.000000\,, 0.000000) \, \, \texttt{y} \, 
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
against
C_0(-1.000000, -1.000000, -1.000000) x(1.000000, 0.000000, 0.000000) y
    (1.000000, 1.000000, 1.000000) z(0.000000, 0.000000, 1.000000)
Succeed
minXYZ(0.000000,-0.500000,0.000000)-maxXYZ(1.000000,0.000000,1.000000)
 To (-1.000000, -1.000000, -1.000000) \ x (1.000000, 0.000000, 0.000000) \ y 
    (1.000000, 1.000000, 1.000000) z(0.000000, 0.000000, 1.000000)
against
To(0.000000,-0.500000,0.000000) x(1.000000,0.000000,0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
 Succeed (no inter)
To(0.000000, -0.500000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000, 1.000000, 0.000000) \ z (0.000000, 0.000000, 1.000000)
against
T_{0}(-1.000000, -1.000000, -1.000000) x (1.000000, 0.000000, 0.000000) y
    (1.000000,1.000000,1.000000) z(0.000000,0.000000,1.000000)
 Succeed (no inter)
T_0(-0.500000, -1.000000, -0.500000) \times (1.000000, 0.000000, 0.000000) y
    (1.000000,1.000000,1.000000) z(0.000000,0.000000,1.000000)
against
To(0.000000,-0.500000,0.000000) x(1.000000,0.000000,0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
Succeed
minXYZ(0.000000,-0.500000,0.000000)-maxXYZ(0.500000,0.000000,0.500000)
```

```
(0.000000,1.000000)
against
Co(-1.000000, 0.000000) s(-1.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000,1.000000)
Succeed (no inter)
Co(-1.000000, 0.000000) s(-1.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000,1.000000)
against
Co(0.000000, 0.000000) s(0.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000,1.000000)
Succeed (no inter)
Co(0.000000, 0.000000) s(0.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000,1.000000)
against
Co(-1.010000,-1.010000) s(1.000000,0.000000) x(1.000000,0.000000) y
    (0.000000,1.000000)
Succeed (no inter)
Co(-1.010000, -1.010000) s(1.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000, 1.000000)
against
Co(0.000000, 0.000000) s(0.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000, 1.000000)
Succeed (no inter)
Co(0.000000, 0.000000) s(0.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000,1.000000)
against
Co(-1.000000, 0.000000) s(1.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000,1.000000)
Succeed
minXYT(-1.000000,0.000000,0.000000)-maxXYT(2.000000,1.000000,1.000000)
Co(-1.000000, 0.000000) s(1.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000,1.000000)
against
Co(0.000000, 0.000000) s(0.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000,1.000000)
Succeed
minXYT(-1.000000,0.000000,0.000000)-maxXYT(1.000000,1.000000,1.000000)
Co(0.000000,0.000000) s(0.000000,0.000000) x(1.000000,0.000000) y
    (0.000000,1.000000)
against
Co(-1.000000, 0.250000) s(4.000000, 0.000000) x(0.500000, 0.000000) y
```

```
(0.000000,0.500000)
Succeed
minXYT(-1.500000,0.000000,0.125000)-maxXYT(2.500000,1.000000,0.500000)
Co(-1.000000, 0.250000) s(4.000000, 0.000000) x(0.500000, 0.000000) y
           (0.000000,0.500000)
against
Co(0.000000, 0.000000) s(0.000000, 0.000000) x(1.000000, 0.000000) y
          (0.000000,1.000000)
Succeed
minXYT(-0.500000,0.000000,0.125000)-maxXYT(1.500000,1.000000,0.500000)
Co(0.000000, 0.000000) s(0.000000, 0.000000) x(1.000000, 0.000000) y
           (0.000000,1.000000)
against
Co(0.250000, -1.000000) s(0.000000, 4.000000) x(0.500000, 0.000000) y
           (0.000000,0.500000)
Succeed
minXYT(0.000000,-1.500000,0.125000)-maxXYT(1.000000,2.500000,0.500000)
Co(0.250000, -1.000000) s(0.000000, 4.000000) x(0.500000, 0.000000) y
           (0.000000,0.500000)
against
Co(0.000000, 0.000000) s(0.000000, 0.000000) x(1.000000, 0.000000) y
           (0.000000,1.000000)
Succeed
minXYT(0.000000,-0.500000,0.125000)-maxXYT(1.000000,1.500000,0.500000)
Co(0.000000, 0.000000) s(0.000000, 0.000000) x(1.000000, 0.000000) y
           (0.000000,1.000000)
against
Co(0.900000, -1.000000) s(0.000000, 4.000000) x(0.500000, 0.000000) y
           (0.000000,0.500000)
Succeed
minXYT(0.000000,-1.500000,0.125000)-maxXYT(1.400000,2.500000,0.500000)
Co(0.900000, -1.000000) s(0.000000, 4.000000) x(0.500000, 0.000000) y
           (0.000000, 0.500000)
against
Co(0.000000, 0.000000) s(0.000000, 0.000000) x(1.000000, 0.000000) y
          (0.000000,1.000000)
Succeed
minXYT(0.000000,-0.500000,0.125000)-maxXYT(1.400000,1.500000,0.500000)
All unit tests 2DTime have succeed.
6.2.4 3D dynamic
Co(0.000000, 0.000000, 0.000000) s(0.000000, 0.000000, 0.000000) x
           (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
           (0.000000,0.000000,1.000000)
against
\texttt{Co} \hspace{0.1cm} (-1.000000 \hspace{0.1cm}, 0.000000 \hspace{0.1cm}, 0.000000) \hspace{0.1cm} \hspace{0.1cm} \texttt{s} \hspace{0.1cm} (-1.000000 \hspace{0.1cm}, 0.000000 \hspace{0.1cm}, 0.000000) \hspace{0.1cm} \hspace{0.1cm
           (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
           (0.000000,0.000000,1.000000)
  Succeed (no inter)
 \texttt{Co(-1.000000,0.000000,0.000000)} \;\; \texttt{s(-1.000000,0.000000,0.000000)} \;\; \texttt{x} 
           (1.000000, 0.000000, 0.000000) \ y (0.000000, 1.000000, 0.000000) \ z
           (0.000000,0.000000,1.000000)
```

against

```
Co(0.000000,0.000000,0.000000) s(0.000000,0.000000,0.000000) x
    (1.000000, 0.000000, 0.000000) \ y (0.000000, 1.000000, 0.000000) \ z
    (0.000000,0.000000,1.000000)
Succeed (no inter)
Co(0.000000, 0.000000, 0.000000) s(0.000000, 0.000000, 0.000000) x
    (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
    (0.000000,0.000000,1.000000)
against
\texttt{Co}\left(-1.010000,-1.010000,0.000000\right) \;\; \texttt{s}\left(1.000000,0.000000,0.000000\right) \;\; \texttt{x}
    (1.000000, 0.000000, 0.000000) \ y (0.000000, 1.000000, 0.000000) \ z
    (0.000000,0.000000,1.000000)
Succeed (no inter)
Co(-1.010000,-1.010000,0.000000) s(1.000000,0.000000,0.000000) x
    (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
    (0.000000,0.000000,1.000000)
against
\texttt{Co}(0.000000, 0.000000, 0.000000) \texttt{s}(0.000000, 0.000000, 0.000000) \texttt{x}
    (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
    (0.000000,0.000000,1.000000)
Succeed (no inter)
\texttt{Co}(0.000000, 0.000000, 0.000000) \texttt{s}(0.000000, 0.000000, 0.000000) \texttt{x}
    (1.000000, 0.000000, 0.000000) \ y (0.000000, 1.000000, 0.000000) \ z
    (0.000000, 0.000000, 1.000000)
against
Co(-1.000000,0.000000,0.000000) s(1.000000,0.000000,0.000000) x
    (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
    (0.000000,0.000000,1.000000)
minXYZT(-1.000000,0.000000,0.000000,0.000000)-maxXYZT
    (2.000000,1.000000,1.000000,1.000000)
Co(-1.000000,0.000000,0.000000) s(1.000000,0.000000,0.000000) x
    (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
    (0.000000,0.000000,1.000000)
against
C_0(0.000000, 0.000000, 0.000000) s(0.000000, 0.000000, 0.000000) x
    (1.000000, 0.000000, 0.000000) \ y (0.000000, 1.000000, 0.000000) \ z
    (0.000000,0.000000,1.000000)
Succeed
minXYZT(-1.000000,0.000000,0.000000,0.000000)-maxXYZT
    (1.000000, 1.000000, 1.000000, 1.000000)
Co(0.000000,0.000000,0.000000) s(0.000000,0.000000,0.000000) x
    (1.000000, 0.000000, 0.000000) \ y (0.000000, 1.000000, 0.000000) \ z
    (0.000000,0.000000,1.000000)
against
\texttt{Co(-1.000000,0.250000,0.000000)} \;\; \texttt{s(4.000000,0.000000,0.000000)} \;\; \texttt{x}
    (0.500000,0.000000,0.000000) y(0.000000,0.500000,0.000000) z
    (0.000000, 0.000000, 1.000000)
Succeed
minXYZT(-1.500000,0.000000,0.000000,0.125000)-maxXYZT
    (2.500000,1.000000,1.000000,0.500000)
Co(-1.000000, 0.250000, 0.000000) s(4.000000, 0.000000, 0.000000) x
    (0.500000, 0.000000, 0.000000) \ y (0.000000, 0.500000, 0.000000) \ z
    (0.000000,0.000000,1.000000)
against
Co(0.000000,0.000000,0.000000) s(0.000000,0.000000,0.000000) x
    (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
```

```
(0.000000,0.000000,1.000000)
Succeed
minXYZT(-0.500000,0.000000,0.000000,0.125000)-maxXYZT
    (1.500000,1.000000,1.000000,0.500000)
Co(0.000000, 0.000000, 0.000000) s(0.000000, 0.000000, 0.000000) x
    (1.000000, 0.000000, 0.000000) \ y (0.000000, 1.000000, 0.000000) \ z
    (0.000000,0.000000,1.000000)
against
\texttt{Co} \, (\texttt{0.250000}\,, \texttt{-1.000000}\,, \texttt{0.000000}) \, \, \, \texttt{s} \, (\texttt{0.000000}\,, \texttt{4.000000}\,, \texttt{0.000000}) \, \, \, \texttt{x} \, \, \, \\
    (0.500000, 0.000000, 0.000000) \ y (0.000000, 0.500000, 0.000000) \ z
    (0.000000,0.000000,1.000000)
Succeed
minXYZT (0.000000, -1.500000, 0.000000, 0.125000) -maxXYZT
    (1.000000, 2.500000, 1.000000, 0.500000)
Co(0.250000, -1.000000, 0.000000) s(0.000000, 4.000000, 0.000000) x
    (0.500000, 0.000000, 0.000000) \ y (0.000000, 0.500000, 0.000000) \ z
    (0.000000,0.000000,1.000000)
against
\texttt{Co}(0.000000, 0.000000, 0.000000) \texttt{s}(0.000000, 0.000000, 0.000000) x
    (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
    (0.000000, 0.000000, 1.000000)
minXYZT(0.000000,-0.500000,0.000000,0.125000)-maxXYZT
    (1.000000,1.500000,1.000000,0.500000)
Co(0.000000, 0.000000, 0.000000) s(0.000000, 0.000000, 0.000000) x
    (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
    (0.000000,0.000000,1.000000)
against
Co(0.900000, -1.000000, 0.000000) s(0.000000, 4.000000, 0.000000) x
    (0.500000, 0.000000, 0.000000) y (0.000000, 0.500000, 0.000000) z
    (0.000000,0.000000,1.000000)
Succeed
minXYZT(0.000000,-1.500000,0.000000,0.125000)-maxXYZT
    (1.400000,2.500000,1.000000,0.500000)
Co(0.900000, -1.000000, 0.000000) s(0.000000, 4.000000, 0.000000) x
    (0.500000, 0.000000, 0.000000) \ y (0.000000, 0.500000, 0.000000) \ z
    (0.000000,0.000000,1.000000)
against
\texttt{Co}(0.000000, 0.000000, 0.000000) \texttt{s}(0.000000, 0.000000, 0.000000) x
    (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
    (0.000000,0.000000,1.000000)
Succeed
minXYZT(0.000000,-0.500000,0.000000,0.125000)-maxXYZT
    (1.400000,1.500000,1.000000,0.500000)
All unit tests 3DTime have succeed.
```

7 Validation against SAT

In this section I introduce the code I've used to validate the algorithm and its implementation. The validation consists of running the FMB algorithm on randomly generated pairs of Frame and check that its result is equal to the one of running the SAT algorithm on the same pair of Frames. The code of the implementation of the SAT algorithm is given in annex (p.243)

7.1 Code

7.1.1 2D static

```
// Include standard libraries
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <time.h>
// Include FMB and SAT algorithm library
#include "fmb2d.h"
#include "sat.h"
// Epsilon to detect degenerated triangles
#define EPSILON 0.1
// Range of values for the random generation of Frames
#define RANGE_AXIS 100.0
// Nb of tests of the validation
#define NB_TESTS 1000000
// Helper macro to generate random number in [0.0, 1.0]
#define rnd() (double)(rand())/(double)(RAND_MAX)
// Global variables to count nb of tests resulting in intersection
// and no intersection
unsigned long int nbInter;
unsigned long int nbNoInter;
// Helper structure to pass arguments to the Validation function
typedef struct {
  FrameType type;
  double orig[2];
double comp[2][2];
} Param2D;
// Validation function
// Takes two Frame definition as input, run the intersection test on
// them with FMB and SAT, and check the results are identical
void ValidationOnePair2D(
  const Param2D paramP,
  const Param2D paramQ) {
  // Create the two Frames
  Frame2D P =
    Frame2DCreateStatic(
      paramP.type,
      paramP.orig,
      paramP.comp);
  Frame2D Q =
    Frame2DCreateStatic(
      paramQ.type,
      paramQ.orig,
      paramQ.comp);
  // Helper variables to loop on the pair (that, tho) and (tho, that)
```

```
Frame2D* that = &P;
Frame2D* tho = &Q;
// Loop on pairs of Frames \,
for (int iPair = 2;
     iPair --;) {
  // Test intersection with FMB
  bool isIntersectingFMB =
    {\tt FMBTestIntersection2D} \, (
      that,
      tho,
      NULL);
  // Test intersection with {\tt SAT}
  bool isIntersectingSAT =
    SATTestIntersection2D(
      that,
      tho);
  \ensuremath{//} If the results are different
  if (isIntersectingFMB != isIntersectingSAT) {
    // Print the disagreement
    printf("Validation2D has failed\n");
    Frame2DPrint(that);
    printf(" against ");
    Frame2DPrint(tho);
    printf("\n");
    printf("FMB : ");
    if (isIntersectingFMB == false)
     printf("no ");
    printf("intersection\n");
    printf("SAT : ");
    if (isIntersectingSAT == false)
     printf("no ");
    printf("intersection\n");
    // Stop the validation
    exit(0);
  \ensuremath{//} If the Frames are in intersection
  if (isIntersectingFMB == true) {
    // Update the number of intersection
    nbInter++;
  \ensuremath{//} If the Frames are not in intersection
  } else {
    // Update the number of no intersection
    nbNoInter++;
 }
  // Flip the pair of Frames \,
  that = &Q;
tho = &P;
}
```

```
}
void Validate2D(void) {
            // Initialise the random generator
           srandom(time(NULL));
           // Declare two variables to memorize the arguments to the
           // Validation function
           Param2D paramP;
           Param2D paramQ;
           // Initialize the number of intersection and no intersection
           nbInter = 0;
           nbNoInter = 0;
           // Loop on the tests % \left( 1\right) =\left( 1\right) \left( 1
           for (unsigned long iTest = NB_TESTS;
                                     iTest--;) {
                      // Create two random Frame definitions
                      Param2D* param = &paramP;
for (int iParam = 2;
                                                iParam --;) {
                                 // 50% chance of being a Cuboid or a Tetrahedron
                                 if (rnd() < 0.5)
                                         param -> type = FrameCuboid;
                                 else
                                         param -> type = FrameTetrahedron;
                                 for (int iAxis = 2;
                                                           iAxis--;) {
                                           param -> orig[iAxis] = -RANGE_AXIS + 2.0 * rnd() * RANGE_AXIS;
                                           for (int iComp = 2;
                                                                     iComp--;) {
                                                     param -> comp[iComp][iAxis] =
                                                                 -RANGE_AXIS + 2.0 * rnd() * RANGE_AXIS;
                                           }
                                 }
                                 param = &paramQ;
                      }
                      // Calculate the determinant of the Frames' components matrix
                      double detP =
                                 paramP.comp[0][0] * paramP.comp[1][1] -
                                paramP.comp[1][0] * paramP.comp[0][1];
                      double detQ =
                                paramQ.comp[0][0] * paramQ.comp[1][1] -
paramQ.comp[1][0] * paramQ.comp[0][1];
                      // If the determinants are not null, ie the Frame are not degenerate
                      if (fabs(detP) > EPSILON && fabs(detQ) > EPSILON) {
```

```
// Run the validation on the two Frames
      ValidationOnePair2D(
        paramP,
        paramQ);
    }
  }
  // If we reached it means the validation was successfull
  // Print results
  printf("Validation2D has succeed.\n");
  printf("Tested %lu intersections ", nbInter);
  printf("and %lu no intersections\n", nbNoInter);
int main(int argc, char** argv) {
  printf("===== 2D static ======\n");
  Validate2D();
 return 0;
7.1.2 3D static
// Include standard libraries
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <time.h>
// Include FMB and SAT algorithm library
#include "fmb3d.h"
#include "sat.h"
// Epsilon to detect degenerated triangles
#define EPSILON 0.1
// Range of values for the random generation of Frames \texttt{\#define} RANGE_AXIS 100.0
// Nb of tests of the validation
#define NB_TESTS 1000000
// Helper macro to generate random number in [0.0, 1.0]
#define rnd() (double)(rand())/(double)(RAND_MAX)
// Global variables to count nb of tests resulting in intersection
// and no intersection
unsigned long int nbInter;
unsigned long int nbNoInter;
// Helper structure to pass arguments to the Validation function
typedef struct {
  FrameType type;
  double orig[3];
double comp[3][3];
} Param3D;
// Validation function
```

```
// Takes two Frame definition as input, run the intersection test on
\ensuremath{//} them with FMB and SAT, and check the results are identical
void ValidationOnePair3D(
 const Param3D paramP,
  const Param3D paramQ) {
  // Create the two Frames
  Frame3D P =
    Frame3DCreateStatic(
      paramP.type,
      paramP.orig,
      paramP.comp);
  Frame3D Q =
    Frame3DCreateStatic(
      paramQ.type,
      paramQ.orig,
      paramQ.comp);
  // Helper variables to loop on the pair (that, tho) and (tho, that)
  Frame3D* that = &P;
  Frame3D* tho = &Q;
  // Loop on pairs of Frames
  for (int iPair = 2;
       iPair--;) {
    // Test intersection with {\tt FMB}
    bool isIntersectingFMB =
      FMBTestIntersection3D(
        that,
        tho,
        NULL);
    // Test intersection with SAT
    bool isIntersectingSAT =
      SATTestIntersection3D(
        that,
        tho);
    // If the results are different
    if (isIntersectingFMB != isIntersectingSAT) {
      // Print the disagreement
      printf("Validation3D has failed\n");
      Frame3DPrint(that);
      printf(" against ");
      Frame3DPrint(tho);
      printf("\n");
      printf("FMB : ");
      if (isIntersectingFMB == false)
        printf("no ");
      printf("intersection\n");
      printf("SAT : ");
      if (isIntersectingSAT == false)
       printf("no ");
      printf("intersection\n");
      // Stop the validation
      exit(0);
    }
```

```
\ensuremath{//} If the Frames are in intersection
    if (isIntersectingFMB == true) {
      // Update the number of intersection
      nbInter++;
    // If the Frames are not in intersection
    } else {
      // Update the number of no intersection
      nbNoInter++;
    // Flip the pair of Frames
    that = &Q;
    tho = \&P;
  }
}
void Validate3D(void) {
  \ensuremath{//} Initialise the random generator
  srandom(time(NULL));
  // Declare two variables to memorize the arguments to the
  // Validation function
  Param3D paramP;
  Param3D paramQ;
  // Initialize the number of intersection and no intersection
  nbInter = 0;
nbNoInter = 0;
  // Loop on the tests
  for (unsigned long iTest = NB_TESTS;
       iTest--;) {
    // Create two random {\tt Frame} definitions
    Param3D* param = &paramP;
for (int iParam = 2;
          iParam--;) {
      // 50% chance of being a Cuboid or a Tetrahedron
      if (rnd() < 0.5)
        param -> type = FrameCuboid;
      else
        param -> type = FrameTetrahedron;
      for (int iAxis = 3;
            iAxis--;) {
        param -> orig[iAxis] = -RANGE_AXIS + 2.0 * rnd() * RANGE_AXIS;
        for (int iComp = 3;
              iComp--;) {
           param -> comp[iComp][iAxis] =
             -RANGE_AXIS + 2.0 * rnd() * RANGE_AXIS;
```

```
}
                           }
                           param = &paramQ;
                  }
                  // Calculate the determinant of the Frames' components matrix
                  double detP =
                           paramP.comp[0][0] * (paramP.comp[1][1] * paramP.comp[2][2]-
                           paramP.comp[1][2] * paramP.comp[2][1])
                           paramP.comp[1][0] * (paramP.comp[0][1] * paramP.comp[2][2]-
                           paramP.comp[0][2] * paramP.comp[2][1]) +
                           paramP.comp[2][0] * (paramP.comp[0][1] * paramP.comp[1][2]-
                           paramP.comp[0][2] * paramP.comp[1][1]);
                  double detQ =
                           paramQ.comp[0][0] * (paramQ.comp[1][1] * paramQ.comp[2][2]-
                           paramQ.comp[1][2] * paramQ.comp[2][1]) -
                           paramQ.comp[1][0] * (paramQ.comp[0][1] * paramQ.comp[2][2]-
                           paramQ.comp[0][2] * paramQ.comp[2][1]) +
paramQ.comp[2][0] * (paramQ.comp[0][1] * paramQ.comp[1][2]-
                           paramQ.comp[0][2] * paramQ.comp[1][1]);
                  // If the determinants are not null, ie the Frame are not degenerate
                  if (fabs(detP) > EPSILON && fabs(detQ) > EPSILON) {
                            // Run the validation on the two Frames
                           ValidationOnePair3D(
                                    paramP,
                                    paramQ);
                  }
         }
         // If we reached it means the validation was successfull % \left( 1\right) =\left( 1\right) \left( 
          // Print results
          printf("Validation3D has succeed.\n");
         printf("Tested %lu intersections ", nbInter);
        printf("and %lu no intersections\n", nbNoInter);
int main(int argc, char** argv) {
         printf("===== 3D static =====\n");
         Validate3D();
       return 0;
7.1.3 2D dynamic
// Include standard libraries
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <time.h>
```

```
// Include the FMB and SAT algorithm library
#include "fmb2dt.h"
#include "sat.h"
// Epsilon to detect degenerated triangles
#define EPSILON 0.1
// Range of values for the random generation of Frames
#define RANGE_AXIS 100.0
// Nb of tests of the validation
#define NB_TESTS 1000000
// Helper macro to generate random number in [0.0, 1.0]
#define rnd() (double)(rand())/(double)(RAND_MAX)
// Global variables to count nb of tests resulting in intersection
// and no intersection
unsigned long int nbInter;
unsigned long int nbNoInter;
// Helper structure to pass arguments to the Validation function
typedef struct {
 FrameType type;
  double orig[2];
  double comp[2][2];
  double speed[2];
} Param2DTime;
// Validation function
// Takes two Frame definition as input, run the intersection test on
// them with FMB and SAT, and check the results are identical
void ValidationOnePair2DTime(
 const Param2DTime paramP,
  const Param2DTime paramQ) {
  // Create the two Frames
  Frame2DTime P =
    Frame2DTimeCreateStatic(
      paramP.type,
      paramP.orig,
      paramP.speed,
      paramP.comp);
  Frame2DTime Q =
    Frame2DTimeCreateStatic(
      paramQ.type,
      paramQ.orig,
      paramQ.speed,
      paramQ.comp);
  // Helper variables to loop on the pair (that, tho) and (tho, that)
  Frame2DTime* that = &P;
  Frame2DTime* tho = &Q;
  // Loop on pairs of Frames
  for (int iPair = 2;
       iPair --;) {
    // Test intersection with FMB
    bool isIntersectingFMB =
      {\tt FMBTestIntersection2DTime(}
        that,
```

```
tho,
        NULL);
    // Test intersection with SAT
    bool isIntersectingSAT =
      SATTestIntersection2DTime(
        that.
        tho);
    // If the results are different
    if (isIntersectingFMB != isIntersectingSAT) {
      // Print the disagreement
      printf("Validation2D has failed\n");
      Frame2DTimePrint(that);
      printf(" against ");
      Frame2DTimePrint(tho);
      printf("\n");
      printf("FMB : ");
      if (isIntersectingFMB == false)
        printf("no ");
      printf("intersection\n");
      printf("SAT : ");
      if (isIntersectingSAT == false)
        printf("no ");
      printf("intersection\n");
      \ensuremath{//} Stop the validation
      exit(0);
   }
    // If the Frames are in intersection
    if (isIntersectingFMB == true) {
      // Update the number of intersection
      nbInter++;
    // If the Frames are not in intersection
    } else {
      // Update the number of no intersection
      nbNoInter++;
    // Flip the pair of Frames
    that = &Q;
    tho = &P;
  }
void Validate2DTime(void) {
  // Initialise the random generator
  srandom(time(NULL));
  // Declare two variables to memorize the arguments to the
  // Validation function
  Param2DTime paramP;
```

}

```
Param2DTime paramQ;
// Initialize the number of intersection and no intersection
nbInter = 0;
nbNoInter = 0;
// Loop on the tests
for (unsigned long iTest = NB_TESTS;
     iTest--;) {
  // Create two random Frame definitions
  Param2DTime* param = &paramP;
  for (int iParam = 2;
       iParam --;) {
    // 50% chance of being a Cuboid or a Tetrahedron
    if (rnd() < 0.5)
      param -> type = FrameCuboid;
      param -> type = FrameTetrahedron;
    for (int iAxis = 2;
         iAxis--;) {
      param -> orig[iAxis] = -RANGE_AXIS + 2.0 * rnd() * RANGE_AXIS;
      param -> speed[iAxis] = -RANGE_AXIS + 2.0 * rnd() * RANGE_AXIS;
      for (int iComp = 2;
    iComp --;) {
        param -> comp[iComp][iAxis] =
           -RANGE_AXIS + 2.0 * rnd() * RANGE_AXIS;
      }
    param = &paramQ;
  // Calculate the determinant of the Frames' components matrix
  double detP =
    paramP.comp[0][0] * paramP.comp[1][1] - paramP.comp[1][0] * paramP.comp[0][1];
  double detQ =
    paramQ.comp[0][0] * paramQ.comp[1][1] -
paramQ.comp[1][0] * paramQ.comp[0][1];
  // If the determinants are not null, ie the Frame are not degenerate
  if (fabs(detP) > EPSILON && fabs(detQ) > EPSILON) {
    // Run the validation on the two Frames
    ValidationOnePair2DTime(
      paramP,
      paramQ);
 }
}
```

```
// If we reached it means the validation was successfull
  // Print results
  printf("Validation2DTime has succeed.\n");
  printf("Tested %lu intersections ", nbInter);
  printf("and %lu no intersections\n", nbNoInter);
int main(int argc, char** argv) {
  printf("===== 2D dynamic =====\n");
  Validate2DTime();
 return 0;
7.1.4 3D dynamic
// Include standard libraries
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <time.h>
// Include the FMB and SAT algorithm library \,
#include "fmb3dt.h"
#include "sat.h"
// Epsilon to detect degenerated triangles
#define EPSILON 0.1
\ensuremath{//} Range of values for the random generation of Frames
#define RANGE_AXIS 100.0
// Nb of tests of the validation
#define NB_TESTS 1000000
// Helper macro to generate random number in [0.0, 1.0]
#define rnd() (double)(rand())/(double)(RAND_MAX)
// Global variables to count nb of tests resulting in intersection
// and no intersection
unsigned long int nbInter;
unsigned long int nbNoInter;
// Helper structure to pass arguments to the Validation function
typedef struct {
  FrameType type;
  double orig[3];
  double comp[3][3];
  double speed[3];
} Param3DTime;
// Validation function
\ensuremath{//} Takes two Frame definition as input, run the intersection test on
// them with FMB and SAT, and check the results are identical
void ValidationOnePair3DTime(
  const Param3DTime paramP,
  const Param3DTime paramQ) {
  // Create the two Frames
  Frame3DTime P =
    Frame3DTimeCreateStatic(
```

```
paramP.type,
    paramP.orig,
    paramP.speed,
    paramP.comp);
Frame3DTime Q =
  {\tt Frame3DTimeCreateStatic} (
    paramQ.type,
    paramQ.orig,
    paramQ.speed,
    paramQ.comp);
// Helper variables to loop on the pair (that, tho) and (tho, that)
Frame3DTime* that = &P;
Frame3DTime* tho = &Q;
// Loop on pairs of Frames
for (int iPair = 2;
     iPair--;) {
  // Test intersection with {\tt FMB}
  bool isIntersectingFMB =
    {\tt FMBTestIntersection3DTime(}
      that,
      tho,
      NULL);
  // Test intersection with {\tt SAT}
  bool isIntersectingSAT =
    SATTestIntersection3DTime(
      that,
      tho);
  // If the results are different
  if (isIntersectingFMB != isIntersectingSAT) {
    // Print the disagreement
    printf("Validation3D has failed\n");
    Frame3DTimePrint(that);
    printf(" against ");
    Frame3DTimePrint(tho);
    printf("\n");
    printf("FMB : ");
    if (isIntersectingFMB == false)
  printf("no ");
    printf("intersection\n");
    printf("SAT : ");
    if (isIntersectingSAT == false)
     printf("no ");
    printf("intersection\n");
    // Stop the validation
    exit(0);
  // If the Frames are in intersection
  if (isIntersectingFMB == true) {
    // Update the number of intersection
    nbInter++;
```

```
// If the Frames are not in intersection
                       } else {
                                   // Update the number of no intersection
                                   nbNoInter++;
                      // Flip the pair of Frames
                       that = &Q;
tho = &P;
           }
}
void Validate3DTime(void) {
             // Initialise the random generator
            srandom(time(NULL));
            // Declare two variables to memorize the arguments to the
            // Validation function
            Param3DTime paramP;
           Param3DTime paramQ;
            // Initialize the number of intersection and no intersection
            nbInter = 0;
            nbNoInter = 0;
            // Loop on the tests % \left( 1\right) =\left( 1\right) \left( 1
            for (unsigned long iTest = NB_TESTS;
                                       iTest--;) {
                        // Create two random Frame definitions
                       Param3DTime* param = &paramP;
                       for (int iParam = 2;
                                                    iParam --;) {
                                   // 50% chance of being a Cuboid or a Tetrahedron
                                   if (rnd() < 0.5)
                                          param -> type = FrameCuboid;
                                    else
                                             param -> type = FrameTetrahedron;
                                   for (int iAxis = 3;
                                                              iAxis--;) {
                                              param -> orig[iAxis] = -RANGE_AXIS + 2.0 * rnd() * RANGE_AXIS;
                                              param -> speed[iAxis] = -RANGE_AXIS + 2.0 * rnd() * RANGE_AXIS;
                                              for (int iComp = 3;
                                                                         iComp--;) {
                                                         param -> comp[iComp][iAxis] =
                                                                     -RANGE_AXIS + 2.0 * rnd() * RANGE_AXIS;
                                              }
                                   }
                                   param = &paramQ;
```

```
}
    // Calculate the determinant of the Frames' components matrix
    double detP =
      paramP.comp[0][0] * (paramP.comp[1][1] * paramP.comp[2][2]-
      paramP.comp[1][2] * paramP.comp[2][1]) -
paramP.comp[1][0] * (paramP.comp[0][1] * paramP.comp[2][2]-
      paramP.comp[0][2] * paramP.comp[2][1]) +
      paramP.comp[2][0] * (paramP.comp[0][1] * paramP.comp[1][2]-
      paramP.comp[0][2] * paramP.comp[1][1]);
    double detQ =
      paramQ.comp[0][0] * (paramQ.comp[1][1] * paramQ.comp[2][2]-
      paramQ.comp[1][2] * paramQ.comp[2][1]) -
      paramQ.comp[1][0] * (paramQ.comp[0][1] * paramQ.comp[2][2]-
      paramQ.comp[0][2] * paramQ.comp[2][1]) +
      paramQ.comp[2][0] * (paramQ.comp[0][1] * paramQ.comp[1][2]-
      paramQ.comp[0][2] * paramQ.comp[1][1]);
    // If the determinants are not null, ie the Frame are not degenerate
    if (fabs(detP) > EPSILON && fabs(detQ) > EPSILON) {
      // Run the validation on the two Frames
      ValidationOnePair3DTime(
        paramP,
        paramQ);
    }
  }
  // If we reached it means the validation was successfull
  // Print results
  printf("Validation3DTime has succeed.\n");
  printf("Tested %lu intersections ", nbInter);
  printf("and %lu no intersections\n", nbNoInter);
}
int main(int argc, char** argv) {
  printf("===== 3D dynamic =====\n");
  Validate3DTime();
  return 0;
```

7.2 Results

7.2.1 Failures

Validation has failed in one case: when one or both of the frame are degenerated (at least two of there components are colinear). An example is given below for reference:

```
===== 2D static ======
Validation2D has failed
```

FMB : intersection
SAT : no intersection

This case can be detected and avoided prior to the intersection test by checking the determinant of the frame: degenerated frames have a null determinant. In the example above the determinant of the first frame is equal to -0.001667.

7.2.2 2D static

==== 2D static ===== Validation2D has succeed. Tested 469212 intersections and 1530724 no intersections

7.2.3 2D dynamic

===== 2D dynamic ======= Validation2DTime has succeed. Tested 743642 intersections and 1256258 no intersections

7.2.4 3D static

==== 3D static ===== Validation3D has succeed. Tested 315722 intersections and 1684278 no intersections

7.2.5 3D dynamic

```
===== 3D dynamic =======
Validation3DTime has succeed.
Tested 523914 intersections and 1476084 no intersections
```

8 Qualification against SAT

In this section I introduce the code I've used to qualify the algorithm and its implementation. The qualification consists of running the FMB algorithm on randomly generated pairs of Frame, and check its execution time against the one of running the SAT algorithm on the same pair of Frames.

8.1 Code

8.1.1 2D static

```
// Include standard libraries
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <time.h>
#include <sys/time.h>
// Include FMB and SAT algorithm library
#include "fmb2d.h"
#include "sat.h"
// Epsilon to detect degenerated triangles
#define EPSILON 0.1
// Range of values for the random generation of Frames
#define RANGE_AXIS 100.0
// Nb of run
#define NB_RUNS 9
// Nb of tests per run
#define NB_TESTS 100000
// Nb of times the test is run on one pair of frame, used to
// slow down the processus and be able to measure time
#define NB_REPEAT_2D 1500
// Helper macro to generate random number in [0.0, 1.0]
#define rnd() (double)(rand())/(double)(RAND_MAX)
// Helper structure to pass arguments to the Qualification function
typedef struct {
  FrameType type;
  double orig[2];
  double comp[2][2];
} Param2D;
// Global variables to count nb of tests resulting in intersection
// and no intersection, and min/max/total time of execution for each
double minInter;
double maxInter;
double sumInter;
unsigned long countInter;
double minNoInter;
```

```
double maxNoInter;
double sumNoInter;
unsigned long countNoInter;
double minInterCC;
double maxInterCC;
double sumInterCC;
unsigned long countInterCC;
double minNoInterCC;
double maxNoInterCC;
double sumNoInterCC;
unsigned long countNoInterCC;
double minInterCT;
double maxInterCT;
double sumInterCT;
unsigned long countInterCT;
double minNoInterCT;
double maxNoInterCT;
double sumNoInterCT;
unsigned long countNoInterCT;
double minInterTC;
double maxInterTC;
double sumInterTC;
unsigned long countInterTC;
double minNoInterTC;
double maxNoInterTC;
double sumNoInterTC;
unsigned long countNoInterTC;
double minInterTT;
double maxInterTT;
double sumInterTT;
unsigned long countInterTT;
double minNoInterTT;
double maxNoInterTT;
double sumNoInterTT;
unsigned long countNoInterTT;
// Qualification function
// Takes two Frame definition as input, run the intersection test on
// them with FMB and SAT, and measure the time of execution of each
void Qualification2DStatic(
        const Param2D paramP,
        const Param2D paramQ) {
  // Create the two Frames
  Frame2D P =
    {\tt Frame 2DC reate Static} \, (
      paramP.type,
      paramP.orig,
      paramP.comp);
  Frame2D Q =
    Frame2DCreateStatic(
      paramQ.type,
      paramQ.orig,
      paramQ.comp);
  // Helper variables to loop on the pair (that, tho) and (tho, that)
  Frame2D* that = &P;
```

```
Frame2D* tho = &Q;
// Loop on pairs of Frames
for (int iPair = 2;
     iPair--;) {
  \ensuremath{//} Declare an array to memorize the results of the repeated
  // test on the same pair,
  // to prevent optimization from the compiler to remove the for loop
  bool isIntersectingFMB[NB_REPEAT_2D] = {false};
  // Start measuring time
  struct timeval start;
  gettimeofday(&start, NULL);
  // Run the FMB intersection test
  for (int i = NB_REPEAT_2D;
      i--;) {
    isIntersectingFMB[i] =
      FMBTestIntersection2D(
        that,
        tho.
        NULL);
  // Stop measuring time
  struct timeval stop;
  gettimeofday(&stop, NULL);
  // Calculate the delay of execution
  unsigned long deltausFMB = 0;
  if (stop.tv_sec < start.tv_sec) {</pre>
    printf("time warps, try again\n");
    exit(0);
  if (stop.tv_sec > start.tv_sec + 1) {
    printf("deltausFMB >> 1s, decrease NB_REPEAT\n");
    exit(0);
  if (stop.tv_usec < start.tv_usec) {</pre>
    deltausFMB = stop.tv_sec - start.tv_sec;
    deltausFMB += stop.tv_usec + 1000000 - start.tv_usec;
  } else {
    deltausFMB = stop.tv_usec - start.tv_usec;
  // Declare an array to memorize the results of the repeated
  // test on the same pair,
  // to prevent optimization from the compiler to remove the for loop
  bool isIntersectingSAT[NB_REPEAT_2D] = {false};
  // Start measuring time
  gettimeofday(&start, NULL);
  \ensuremath{//} Run the FMB intersection test
  for (int i = NB_REPEAT_2D;
       i--;) {
    isIntersectingSAT[i] =
      {\tt SATTestIntersection2D} \, (
        that,
```

```
tho);
// Stop measuring time
gettimeofday(&stop, NULL);
// Calculate the delay of execution
unsigned long deltausSAT = 0;
if (stop.tv_sec < start.tv_sec) {</pre>
 printf("time warps, try again\n");
  exit(0);
if (stop.tv_sec > start.tv_sec + 1) {
  printf("deltausSAT >> 1s, decrease NB_REPEAT\n");
  exit(0);
if (stop.tv_usec < start.tv_usec) {</pre>
  deltausSAT = stop.tv_sec - start.tv_sec;
deltausSAT += stop.tv_usec + 1000000 - start.tv_usec;
} else {
  deltausSAT = stop.tv_usec - start.tv_usec;
// If the delays are greater than 10ms
if (deltausFMB >= 10 && deltausSAT >= 10) {
  // If FMB and SAT disagrees
  if (isIntersectingFMB[0] != isIntersectingSAT[0]) {
    printf("Qualification \ has \ failed\n");\\
    Frame2DPrint(that);
    printf(" against ");
    Frame2DPrint(tho);
    printf("\n");
printf("FMB : ");
    if (isIntersectingFMB[0] == false)
     printf("no ");
    printf("intersection\n");
    printf("SAT : ");
    if (isIntersectingSAT[0] == false)
     printf("no ");
    printf("intersection\n");
    \ensuremath{//} Stop the qualification test
    exit(0);
  }
  // Get the ratio of execution time
  double ratio = ((double)deltausFMB) / ((double)deltausSAT);
  // If the Frames intersect
  if (isIntersectingSAT[0] == true) {
    // Update the counters
    if (countInter == 0) {
      minInter = ratio;
      maxInter = ratio;
    } else {
```

```
if (minInter > ratio)
    minInter = ratio;
  if (maxInter < ratio)</pre>
    maxInter = ratio;
sumInter += ratio;
++countInter;
if (paramP.type == FrameCuboid &&
    paramQ.type == FrameCuboid) {
  if (countInterCC == 0) {
    minInterCC = ratio;
    maxInterCC = ratio;
  } else {
    if (minInterCC > ratio)
      minInterCC = ratio;
    if (maxInterCC < ratio)</pre>
      maxInterCC = ratio;
  sumInterCC += ratio;
  ++countInterCC;
} else if (paramP.type == FrameCuboid &&
           paramQ.type == FrameTetrahedron) {
  if (countInterCT == 0) {
    minInterCT = ratio;
    maxInterCT = ratio;
  } else {
    if (minInterCT > ratio)
      minInterCT = ratio;
    if (maxInterCT < ratio)</pre>
      maxInterCT = ratio;
  sumInterCT += ratio;
  ++countInterCT;
} else if (paramP.type == FrameTetrahedron &&
           paramQ.type == FrameCuboid) {
  if (countInterTC == 0) {
    minInterTC = ratio;
    maxInterTC = ratio;
  } else {
    if (minInterTC > ratio)
     minInterTC = ratio;
    if (maxInterTC < ratio)
      maxInterTC = ratio;
```

```
sumInterTC += ratio;
    ++countInterTC;
  } else if (paramP.type == FrameTetrahedron && paramQ.type == FrameTetrahedron) {
    if (countInterTT == 0) {
      minInterTT = ratio;
      maxInterTT = ratio;
    } else {
      if (minInterTT > ratio)
        minInterTT = ratio;
       if (maxInterTT < ratio)</pre>
        maxInterTT = ratio;
    sumInterTT += ratio;
    ++countInterTT;
// Else, the Frames do not intersect
} else {
  // Update the counters
  if (countNoInter == 0) {
    minNoInter = ratio;
    maxNoInter = ratio;
  } else {
    if (minNoInter > ratio)
      minNoInter = ratio;
    if (maxNoInter < ratio)</pre>
      maxNoInter = ratio;
  sumNoInter += ratio;
  ++countNoInter;
  if (paramP.type == FrameCuboid && paramQ.type == FrameCuboid) {
    if (countNoInterCC == 0) {
       minNoInterCC = ratio;
      maxNoInterCC = ratio;
    } else {
       if (minNoInterCC > ratio)
      minNoInterCC = ratio;
if (maxNoInterCC < ratio)</pre>
         maxNoInterCC = ratio;
    }
```

```
sumNoInterCC += ratio;
     ++countNoInterCC;
  } else if (paramP.type == FrameCuboid && paramQ.type == FrameTetrahedron) {
     if (countNoInterCT == 0) {
       minNoInterCT = ratio;
maxNoInterCT = ratio;
     } else {
        if (minNoInterCT > ratio)
        minNoInterCT = ratio;
if (maxNoInterCT < ratio)
          maxNoInterCT = ratio;
     sumNoInterCT += ratio;
     ++countNoInterCT;
   } else if (paramP.type == FrameTetrahedron &&
                paramQ.type == FrameCuboid) {
     if (countNoInterTC == 0) {
       minNoInterTC = ratio;
maxNoInterTC = ratio;
     } else {
        if (minNoInterTC > ratio)
          minNoInterTC = ratio;
        if (maxNoInterTC < ratio)</pre>
          maxNoInterTC = ratio;
     sumNoInterTC += ratio;
     ++countNoInterTC;
  } else if (paramP.type == FrameTetrahedron && paramQ.type == FrameTetrahedron) {
     if (countNoInterTT == 0) {
       minNoInterTT = ratio;
maxNoInterTT = ratio;
     } else {
        if (minNoInterTT > ratio)
          minNoInterTT = ratio;
        if (maxNoInterTT < ratio)</pre>
          maxNoInterTT = ratio;
     sumNoInterTT += ratio;
     ++countNoInterTT;
}
```

```
// Else, if time of execution for FMB was less than a 10\,\mathrm{ms}
     } else if (deltausFMB < 10) {</pre>
       printf("deltausFMB < 10ms, increase NB_REPEAT\n");</pre>
       exit(0);
     // Else, if time of execution for SAT was less than a 10ms
    } else if (deltausSAT < 10) {</pre>
       printf("deltausSAT < 10ms, increase NB_REPEAT\n");</pre>
       exit(0);
    // Flip the pair of Frames
    that = &Q;
    tho = &P;
  }
void Qualify2DStatic(void) {
  // Initialise the random generator
  srandom(time(NULL));
  // Open the files to save the results
  FILE* fp = fopen("../Results/qualification2D.txt", "w");
  FILE* fpCC = fopen("../Results/qualification2DCC.txt", "w");
FILE* fpCT = fopen("../Results/qualification2DCT.txt", "w");
FILE* fpCT = fopen("../Results/qualification2DCT.txt", "w");
FILE* fpTC = fopen("../Results/qualification2DTC.txt", "w");
  FILE* fpTT = fopen("../Results/qualification2DTT.txt", "w");
  // Loop on runs
  for (int iRun = 0;
        iRun < NB_RUNS;</pre>
        ++iRun) {
     // Ratio intersection/no intersection for the displayed results
    double ratioInter = 0.1 + 0.8 * (double)iRun / (double)(NB_RUNS - 1);
    // Initialize counters
    minInter = 0.0:
    maxInter = 0.0;
     sumInter = 0.0;
     countInter = 0;
    minNoInter = 0.0;
    maxNoInter = 0.0;
     sumNoInter = 0.0;
    countNoInter = 0;
    minInterCC = 0.0;
    maxInterCC = 0.0;
     sumInterCC = 0.0;
     countInterCC = 0;
    minNoInterCC = 0.0;
     maxNoInterCC = 0.0;
     sumNoInterCC = 0.0;
     countNoInterCC = 0;
```

```
minInterCT = 0.0;
maxInterCT = 0.0;
sumInterCT = 0.0;
countInterCT = 0;
minNoInterCT = 0.0;
maxNoInterCT = 0.0;
sumNoInterCT = 0.0;
countNoInterCT = 0;
minInterTC = 0.0;
maxInterTC = 0.0;
sumInterTC = 0.0;
countInterTC = 0;
minNoInterTC = 0.0;
maxNoInterTC = 0.0;
sumNoInterTC = 0.0;
countNoInterTC = 0;
minInterTT = 0.0;
maxInterTT = 0.0;
sumInterTT = 0.0;
countInterTT = 0;
minNoInterTT = 0.0;
maxNoInterTT = 0.0;
sumNoInterTT = 0.0;
countNoInterTT = 0;
// Declare two variables to memorize the arguments to the
\begin{tabular}{ll} // & {\tt Qualification} & {\tt function} \\ \end{tabular}
Param2D paramP;
Param2D paramQ;
// Loop on the number of tests
for (unsigned long iTest = NB_TESTS;
     iTest--;) {
  // Create two random Frame definitions
  Param2D* param = &paramP;
for (int iParam = 2;
       iParam--;) {
    // 50% chance of being a Cuboid or a Tetrahedron \,
    if (rnd() < 0.5)
      param -> type = FrameCuboid;
    else
      param -> type = FrameTetrahedron;
    for (int iAxis = 2;
          iAxis--;) {
      param -> orig[iAxis] = -RANGE_AXIS + 2.0 * rnd() * RANGE_AXIS;
      for (int iComp = 2;
            iComp --;) {
         param -> comp[iComp][iAxis] =
           -RANGE_AXIS + 2.0 * rnd() * RANGE_AXIS;
      }
    }
```

```
param = &paramQ;
   // Calculate the determinant of the Frames' components matrix
   double detP =
      paramP.comp[0][0] * paramP.comp[1][1] -
      paramP.comp[1][0] * paramP.comp[0][1];
   double detQ =
      paramQ.comp[0][0] * paramQ.comp[1][1] -
paramQ.comp[1][0] * paramQ.comp[0][1];
   // If the determinants are not null, ie the Frame are not degenerate
   if (fabs(detP) > EPSILON && fabs(detQ) > EPSILON) {
      // Run the validation on the two Frames
      Qualification2DStatic(
         paramP,
         paramQ);
   }
}
// Display the results
if (iRun == 0) {
   fprintf(fp, "percPairInter,");
   fprintf(fp, "countInterTo, countNoInterTo,");
   fprintf(fp, "minInterTo, avgInterTo, maxInterTo,");
   fprintf(fp, "minNoInterTo, avgNoInterTo, maxNoInterTo,");
   fprintf(fp, "minTotalTo, avgTotalTo, maxTotalTo\n");
  fprintf(fpCC, "percPairInter,");
fprintf(fpCC, "countInterCC,countNoInterCC,");
fprintf(fpCC, "minInterCC,avgInterCC,maxInterCC,");
fprintf(fpCC, "minNoInterCC,avgNoInterCC,maxNoInterCC,");
fprintf(fpCC, "minTotalCC,avgTotalCC,maxTotalCC\n");
   fprintf(fpCT, "percPairInter,");
fprintf(fpCT, "countInterCT,countNoInterCT,");
   fprintf(fpCT, "minInterCT, avgInterCT, maxInterCT,");
fprintf(fpCT, "minNoInterCT, avgNoInterCT, maxNoInterCT,");
   fprintf(fpCT, "minTotalCT, avgTotalCT, maxTotalCT\n");
   fprintf(fpTC, "percPairInter,");
   fprintf(fpTC, "countInterTC, countNoInterTC,");
  fprintf(fpTC, "minInterTC, avgInterTC, maxInterTC,");
fprintf(fpTC, "minNoInterTC, avgNoInterTC, maxNoInterTC,");
fprintf(fpTC, "minTotalTC, avgTotalTC, maxTotalTC\n");
   fprintf(fpTT, "percPairInter,");
fprintf(fpTT, "countInterTT,countNoInterTT,");
  fprintf(fpTT, "minInterTT, avgInterTT, maxInterTT,");
fprintf(fpTT, "minNoInterTT, avgNoInterTT, maxNoInterTT,");
fprintf(fpTT, "minTotalTT, avgTotalTT, maxTotalTT\n");
fprintf(fp, "%.1f,", ratioInter);
```

```
fprintf(fp, "%lu,%lu,", countInter, countNoInter);
double avgInter = sumInter / (double)countInter;
fprintf(fp, "%f,%f,%f,", minInter, avgInter, maxInter);
double avgNoInter = sumNoInter / (double)countNoInter;
fprintf(fp, "%f,%f,", minNoInter, avgNoInter, maxNoInter);
double avg =
  ratioInter * avgInter + (1.0 - ratioInter) * avgNoInter;
fprintf(fp, "%f,%f,%f",
  (minNoInter < minInter ? minNoInter : minInter),</pre>
  (maxNoInter > maxInter ? maxNoInter : maxInter));
if (iRun < NB_RUNS - 1) {</pre>
  fprintf(fp, "\n");
fprintf(fpCC, "%.1f,", ratioInter);
fprintf(fpCC, "%lu,%lu,", countInterCC, countNoInterCC);
double avgInterCC = sumInterCC / (double)countInterCC;
fprintf(fpCC, "%f,%f,%f,", minInterCC, avgInterCC, maxInterCC);
double avgNoInterCC = sumNoInterCC / (double)countNoInterCC;
fprintf(fpCC, "%f,%f,%f,", minNoInterCC, avgNoInterCC, maxNoInterCC);
double avgCC =
(minNoInterCC < minInterCC ? minNoInterCC : minInterCC),</pre>
  avgCC,
  (maxNoInterCC > maxInterCC ? maxNoInterCC : maxInterCC));
if (iRun < NB_RUNS - 1) {</pre>
  fprintf(fpCC, "\n");
fprintf(fpCT, "%.1f,", ratioInter);
fprintf(fpCT, "%lu, %lu,", countInterCT, countNoInterCT);
double avgInterCT = sumInterCT / (double)countInterCT;
fprintf(fpCT, "%f,%f,", minInterCT, avgInterCT, maxInterCT);
double avgNoInterCT = sumNoInterCT / (double)countNoInterCT;
fprintf(fpCT, "%f,%f,%f,", minNoInterCT, avgNoInterCT, maxNoInterCT);
double avgCT =
(minNoInterCT < minInterCT ? minNoInterCT : minInterCT),</pre>
  avgCT,
  (maxNoInterCT > maxInterCT ? maxNoInterCT : maxInterCT));
if (iRun < NB_RUNS - 1) {</pre>
  fprintf(fpCT, "\n");
fprintf(fpTC, "%.1f,", ratioInter);
fprintf(fpTC, "%lu, %lu,", countInterTC, countNoInterTC);
double avgInterTC = sumInterTC / (double)countInterTC;
fprintf(fpTC, "%f,%f,", minInterTC, avgInterTC, maxInterTC);
double avgNoInterTC = sumNoInterTC / (double)countNoInterTC;
fprintf(fpTC, "%f,%f,%f,", minNoInterTC, avgNoInterTC, maxNoInterTC);
double avgTC =
ratioInter * avgInterTC + (1.0 - ratioInter) * avgNoInterTC;
fprintf(fpTC, "%f,%f,%f",
  (minNoInterTC < minInterTC ? minNoInterTC : minInterTC),</pre>
  avgTC,
  (maxNoInterTC > maxInterTC ? maxNoInterTC : maxInterTC));
if (iRun < NB_RUNS - 1) {
  fprintf(fpTC, "\n");
```

```
fprintf(fpTT, "%.1f,", ratioInter);
fprintf(fpTT, "%lu,%lu,", countInterTT, countNoInterTT);
    double avgInterTT = sumInterTT / (double)countInterTT;
    fprintf(fpTT, "%f,%f,%f,", minInterTT, avgInterTT, maxInterTT);
    double avgNoInterTT = sumNoInterTT / (double)countNoInterTT;
    fprintf(fpTT, "%f,%f,%f,", minNoInterTT, avgNoInterTT, maxNoInterTT);
    double avgTT =
    ratioInter * avgInterTT + (1.0 - ratioInter) * avgNoInterTT;
fprintf(fpTT, "%f,%f,%f",
      (minNoInterTT < minInterTT ? minNoInterTT : minInterTT),</pre>
      avgTT,
      (maxNoInterTT > maxInterTT ? maxNoInterTT : maxInterTT));
    if (iRun < NB_RUNS - 1) {</pre>
      fprintf(fpTT, "\n");
  }
  // Close the files
  fclose(fp);
  fclose(fpCC);
  fclose(fpCT);
  fclose(fpTC);
  fclose(fpTT);
}
int main(int argc, char** argv) {
  Qualify2DStatic();
 return 0;
8.1.2 3D static
// Include standard libraries
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <time.h>
#include <sys/time.h>
// Include FMB and SAT algorithm library
#include "fmb3d.h"
#include "sat.h"
// Epsilon to detect degenerated triangles
#define EPSILON 0.1
// Range of values for the random generation of Frames
#define RANGE_AXIS 100.0
// Nb of run
#define NB_RUNS 9
// Nb of tests per run
#define NB_TESTS 100000
// Nb of times the test is run on one pair of frame, used to
// slow down the processus and be able to measure time
#define NB_REPEAT_3D 800
// Helper macro to generate random number in [0.0, 1.0]
```

```
#define rnd() (double)(rand())/(double)(RAND_MAX)
// Helper structure to pass arguments to the Qualification function
typedef struct {
  FrameType type;
 double orig[3];
double comp[3][3];
} Param3D;
// Global variables to count nb of tests resulting in intersection
// and no intersection, and min/max/total time of execution for each
double minInter;
double maxInter;
double sumInter;
unsigned long countInter;
double minNoInter;
double maxNoInter;
double sumNoInter;
unsigned long countNoInter;
double minInterCC;
double maxInterCC;
double sumInterCC;
unsigned long countInterCC;
double minNoInterCC;
double maxNoInterCC;
double sumNoInterCC;
unsigned long countNoInterCC;
double minInterCT;
double maxInterCT;
double sumInterCT;
unsigned long countInterCT;
double minNoInterCT;
double maxNoInterCT;
double sumNoInterCT;
unsigned long countNoInterCT;
double minInterTC;
double maxInterTC;
double sumInterTC;
unsigned long countInterTC;
double minNoInterTC;
double maxNoInterTC;
double sumNoInterTC;
unsigned long countNoInterTC;
double minInterTT;
double maxInterTT;
double sumInterTT;
unsigned long countInterTT;
double minNoInterTT;
double maxNoInterTT;
double sumNoInterTT;
unsigned long countNoInterTT;
// Qualification function
// Takes two Frame definition as input, run the intersection test on
// them with FMB and SAT, and measure the time of execution of each
void Qualification3DStatic(
        const Param3D paramP,
        const Param3D paramQ) {
```

```
// Create the two Frames
Frame3D P =
  Frame3DCreateStatic(
    paramP.type,
    paramP.orig,
    paramP.comp);
Frame3D Q =
  {\tt Frame3DCreateStatic} (
   paramQ.type,
    paramQ.orig,
    paramQ.comp);
// Helper variables to loop on the pair (that, tho) and (tho, that)
Frame3D* that = &P;
Frame3D* tho = &Q;
// Loop on pairs of Frames
for (int iPair = 2;
     iPair--;) {
  // Declare an array to memorize the results of the repeated
  // test on the same pair,
  // to prevent optimization from the compiler to remove the for loop
  bool isIntersectingFMB[NB_REPEAT_3D] = {false};
  // Start measuring time
  struct timeval start;
  gettimeofday(&start, NULL);
  // Run the FMB intersection test
  for (int i = NB_REPEAT_3D;
      i--;) {
    isIntersectingFMB[i] =
      FMBTestIntersection3D(
        that,
        tho.
        NULL);
  // Stop measuring time
  struct timeval stop;
  gettimeofday(&stop, NULL);
  // Calculate the delay of execution
  unsigned long deltausFMB = 0;
  if (stop.tv_sec < start.tv_sec) {</pre>
    printf("time warps, try again\n");
    exit(0);
  if (stop.tv_sec > start.tv_sec + 1) {
    printf("deltausFMB >> 1s, decrease NB_REPEAT\n");
    exit(0);
  }
  if (stop.tv_usec < start.tv_usec) {</pre>
    deltausFMB = stop.tv_sec - start.tv_sec;
    deltausFMB += stop.tv_usec + 1000000 - start.tv_usec;
  } else {
    deltausFMB = stop.tv_usec - start.tv_usec;
```

```
// Declare an array to memorize the results of the repeated
// test on the same pair,
// to prevent optimization from the compiler to remove the for loop
bool isIntersectingSAT[NB_REPEAT_3D] = {false};
// Start measuring time
gettimeofday(&start, NULL);
// Run the FMB intersection test
for (int i = NB_REPEAT_3D;
     i--;) {
  isIntersectingSAT[i] =
    SATTestIntersection3D(
      that,
      tho);
// Stop measuring time
gettimeofday(&stop, NULL);
// Calculate the delay of execution
unsigned long deltausSAT = 0;
if (stop.tv_sec < start.tv_sec) {</pre>
  printf("time warps, try again\n");
  exit(0);
if (stop.tv_sec > start.tv_sec + 1) {
  printf("deltausSAT >> 1s, decrease NB_REPEAT\n");
  exit(0);
if (stop.tv_usec < start.tv_usec) {</pre>
  deltausSAT = stop.tv_sec - start.tv_sec;
deltausSAT += stop.tv_usec + 1000000 - start.tv_usec;
} else {
  deltausSAT = stop.tv_usec - start.tv_usec;
// If the delays are greater than 10ms
if (deltausFMB >= 10 && deltausSAT >= 10) {
  // If FMB and SAT disagrees
  if (isIntersectingFMB[0] != isIntersectingSAT[0]) {
    printf("Qualification has failed\n");
    Frame3DPrint(that);
    printf(" against ");
    Frame3DPrint(tho);
    printf("\n");
    printf("FMB : ");
    if (isIntersectingFMB[0] == false)
     printf("no ");
    printf("intersection\n");
    printf("SAT : ");
    if (isIntersectingSAT[0] == false)
      printf("no ");
    printf("intersection\n");
    // Stop the qualification test
    exit(0);
```

```
}
\ensuremath{//} Get the ratio of execution time
double ratio = ((double)deltausFMB) / ((double)deltausSAT);
// If the Frames intersect
if (isIntersectingSAT[0] == true) {
  // Update the counters
  if (countInter == 0) {
    minInter = ratio;
    maxInter = ratio;
  } else {
    if (minInter > ratio)
      minInter = ratio;
    if (maxInter < ratio)</pre>
      maxInter = ratio;
  sumInter += ratio;
  ++countInter;
  if (paramP.type == FrameCuboid &&
      paramQ.type == FrameCuboid) {
    if (countInterCC == 0) {
      minInterCC = ratio;
      maxInterCC = ratio;
    } else {
      if (minInterCC > ratio)
        minInterCC = ratio;
      if (maxInterCC < ratio)</pre>
        maxInterCC = ratio;
    sumInterCC += ratio;
    ++countInterCC;
  } else if (paramP.type == FrameCuboid &&
             paramQ.type == FrameTetrahedron) {
    if (countInterCT == 0) {
      minInterCT = ratio;
      maxInterCT = ratio;
    } else {
      if (minInterCT > ratio)
      minInterCT = ratio;
if (maxInterCT < ratio)
        maxInterCT = ratio;
    sumInterCT += ratio;
```

```
++countInterCT;
  } else if (paramP.type == FrameTetrahedron &&
              paramQ.type == FrameCuboid) {
    if (countInterTC == 0) {
      minInterTC = ratio;
      maxInterTC = ratio;
    } else {
      if (minInterTC > ratio)
        minInterTC = ratio;
      if (maxInterTC < ratio)</pre>
        maxInterTC = ratio;
    }
    sumInterTC += ratio;
    ++countInterTC;
 } else if (paramP.type == FrameTetrahedron && paramQ.type == FrameTetrahedron) {
    if (countInterTT == 0) {
      minInterTT = ratio;
      maxInterTT = ratio;
    } else {
      if (minInterTT > ratio)
        minInterTT = ratio;
      if (maxInterTT < ratio)</pre>
        maxInterTT = ratio;
    }
    sumInterTT += ratio;
    ++countInterTT;
// Else, the Frames do not intersect
} else {
  // Update the counters
  if (countNoInter == 0) {
    minNoInter = ratio;
    maxNoInter = ratio;
  } else {
    if (minNoInter > ratio)
     minNoInter = ratio;
    if (maxNoInter < ratio)</pre>
     maxNoInter = ratio;
  sumNoInter += ratio;
  ++countNoInter;
```

```
if (paramP.type == FrameCuboid &&
     paramQ.type == FrameCuboid) {
  if (countNoInterCC == 0) {
     minNoInterCC = ratio;
     maxNoInterCC = ratio;
  } else {
     if (minNoInterCC > ratio)
     minNoInterCC = ratio;
if (maxNoInterCC < ratio)</pre>
       maxNoInterCC = ratio;
  sumNoInterCC += ratio;
  ++countNoInterCC;
} else if (paramP.type == FrameCuboid && paramQ.type == FrameTetrahedron) {
  if (countNoInterCT == 0) {
     minNoInterCT = ratio;
     maxNoInterCT = ratio;
  } else {
     if (minNoInterCT > ratio)
     minNoInterCT = ratio;
if (maxNoInterCT < ratio)
       maxNoInterCT = ratio;
  sumNoInterCT += ratio;
  ++countNoInterCT;
} else if (paramP.type == FrameTetrahedron && paramQ.type == FrameCuboid) {
  if (countNoInterTC == 0) {
    minNoInterTC = ratio;
maxNoInterTC = ratio;
  } else {
     if (minNoInterTC > ratio)
       minNoInterTC = ratio;
     if (maxNoInterTC < ratio)</pre>
       maxNoInterTC = ratio;
  sumNoInterTC += ratio;
  ++countNoInterTC;
} else if (paramP.type == FrameTetrahedron && paramQ.type == FrameTetrahedron) {
  if (countNoInterTT == 0) {
```

```
minNoInterTT = ratio;
              maxNoInterTT = ratio;
           } else {
              if (minNoInterTT > ratio)
                minNoInterTT = ratio;
              if (maxNoInterTT < ratio)</pre>
                maxNoInterTT = ratio;
           sumNoInterTT += ratio;
           ++countNoInterTT:
        }
       }
    // Else, if time of execution for FMB was less than a 10\,\mathrm{ms}
    } else if (deltausFMB < 10) {</pre>
       printf("deltausFMB < 10ms, increase NB_REPEAT\n");</pre>
       exit(0);
    // Else, if time of execution for SAT was less than a 10\,\mathrm{ms}
    } else if (deltausSAT < 10) {</pre>
       printf("deltausSAT < 10ms, increase NB_REPEAT\n");</pre>
       exit(0);
    }
    // Flip the pair of Frames
    that = &Q;
    tho = \&P;
  }
void Qualify3DStatic(void) {
  // Initialise the random generator
  srandom(time(NULL));
  // Open the files to save the results
  FILE* fp = fopen("../Results/qualification3D.txt", "w");
  FILE* fpCC = fopen("../Results/qualification3DCC.txt", "w");
FILE* fpCT = fopen("../Results/qualification3DCT.txt", "w");
FILE* fpTC = fopen("../Results/qualification3DTC.txt", "w");
  FILE* fpTT = fopen("../Results/qualification3DTT.txt", "w");
  // Loop on runs
  for (int iRun = 0;
        iRun < NB_RUNS;</pre>
        ++iRun) {
    // Ratio intersection/no intersection for the displayed results
    double ratioInter = 0.1 + 0.8 * (double)iRun / (double)(NB_RUNS - 1);
    // Initialize counters
    minInter = 0.0;
    maxInter = 0.0;
```

```
sumInter = 0.0;
countInter = 0;
minNoInter = 0.0;
maxNoInter = 0.0;
sumNoInter = 0.0;
countNoInter = 0;
minInterCC = 0.0;
maxInterCC = 0.0;
sumInterCC = 0.0;
countInterCC = 0;
minNoInterCC = 0.0;
maxNoInterCC = 0.0;
sumNoInterCC = 0.0;
countNoInterCC = 0;
minInterCT = 0.0;
maxInterCT = 0.0;
sumInterCT = 0.0;
countInterCT = 0;
minNoInterCT = 0.0;
maxNoInterCT = 0.0;
sumNoInterCT = 0.0;
countNoInterCT = 0;
minInterTC = 0.0;
maxInterTC = 0.0;
sumInterTC = 0.0;
countInterTC = 0;
minNoInterTC = 0.0;
maxNoInterTC = 0.0;
sumNoInterTC = 0.0;
countNoInterTC = 0;
minInterTT = 0.0;
maxInterTT = 0.0;
sumInterTT = 0.0;
countInterTT = 0;
minNoInterTT = 0.0;
maxNoInterTT = 0.0;
sumNoInterTT = 0.0;
countNoInterTT = 0;
// Declare two variables to memorize the arguments to the
// Qualification function
Param3D paramP;
Param3D paramQ;
// Loop on the number of tests
for (unsigned long iTest = NB_TESTS;
     iTest--;) {
  // Create two random Frame definitions
  Param3D* param = &paramP;
  for (int iParam = 2;
       iParam--;) {
    // 50% chance of being a Cuboid or a Tetrahedron
    if (rnd() < 0.5)
     param -> type = FrameCuboid;
    else
      param -> type = FrameTetrahedron;
```

```
for (int iAxis = 3;
          iAxis--;) {
       param -> orig[iAxis] = -RANGE_AXIS + 2.0 * rnd() * RANGE_AXIS;
       for (int iComp = 3;
            iComp --;) {
         param -> comp[iComp][iAxis] =
           -RANGE_AXIS + 2.0 * rnd() * RANGE_AXIS;
       }
    }
    param = &paramQ;
  // Calculate the determinant of the Frames' components matrix
  double detP =
    paramP.comp[0][0] * (paramP.comp[1][1] * paramP.comp[2][2]-
    paramP.comp[1][2] * paramP.comp[2][1]) -
    paramP.comp[1][0] * (paramP.comp[0][1] * paramP.comp[2][2]-
    paramP.comp[0][2] * paramP.comp[2][1]) +
    paramP.comp[2][0] * (paramP.comp[0][1] * paramP.comp[1][2]-
    paramP.comp[0][2] * paramP.comp[1][1]);
  double detQ =
    paramQ.comp[0][0] * (paramQ.comp[1][1] * paramQ.comp[2][2]-
    paramQ.comp[1][2] * paramQ.comp[2][1]) -
    paramQ.comp[1][0] * (paramQ.comp[0][1] * paramQ.comp[2][2]-
    paramQ.comp[0][2] * paramQ.comp[2][1]) +
    paramQ.comp[2][0] * (paramQ.comp[0][1] * paramQ.comp[1][2]-
    paramQ.comp[0][2] * paramQ.comp[1][1]);
  // If the determinants are not null, ie the Frame are not degenerate
  if (fabs(detP) > EPSILON && fabs(detQ) > EPSILON) {
    // Run the validation on the two Frames
    {\tt Qualification 3DS tatic} (
      paramP,
       paramQ);
  }
// Display the results
if (iRun == 0) {
  fprintf(fp, "percPairInter,");
fprintf(fp, "countInterTo,countNoInterTo,");
  fprintf(fp, "minInterTo, avgInterTo, maxInterTo,");
fprintf(fp, "minNoInterTo, avgNoInterTo, maxNoInterTo,");
fprintf(fp, "minTotalTo, avgTotalTo, maxTotalTo\n");
  fprintf(fpCC, "percPairInter,");
fprintf(fpCC, "countInterCC, countNoInterCC,");
fprintf(fpCC, "minInterCC, avgInterCC, maxInterCC,");
  fprintf(fpCC, "minNoInterCC, avgNoInterCC, maxNoInterCC,");
```

```
fprintf(fpCC, "minTotalCC, avgTotalCC, maxTotalCC\n");
  fprintf(fpCT, "percPairInter,");
fprintf(fpCT, "countInterCT,countNoInterCT,");
  fprintf(fpCT, "minInterCT, avgInterCT, maxInterCT,");
  fprintf(fpCT, "minNoInterCT, avgNoInterCT, maxNoInterCT,");
fprintf(fpCT, "minTotalCT, avgTotalCT, maxTotalCT\n");
  fprintf(fpTC, "percPairInter,");
fprintf(fpTC, "countInterTC,countNoInterTC,");
  fprintf(fpTC, "minInterTC, avgInterTC, maxInterTC,");
  fprintf(fpTC, "minNoInterTC, avgNoInterTC, maxNoInterTC,");
fprintf(fpTC, "minTotalTC, avgTotalTC, maxTotalTC\n");
  fprintf(fpTT, "percPairInter,");
fprintf(fpTT, "countInterTT,countNoInterTT,");
  fprintf(fpTT, "minInterTT, avgInterTT, maxInterTT,");
  fprintf(fpTT, "minNoInterTT, avgNoInterTT, maxNoInterTT,");
fprintf(fpTT, "minTotalTT, avgTotalTT, maxTotalTT\n");
fprintf(fp, "%.1f,", ratioInter);
fprintf(fp, "%lu,%lu,", countInter, countNoInter);
double avgInter = sumInter / (double)countInter;
\label{finite} \texttt{fprintf(fp, "\%f,\%f,", minInter, avgInter, maxInter);}
double avgNoInter = sumNoInter / (double)countNoInter;
double avg =
  ratioInter * avgInter + (1.0 - ratioInter) * avgNoInter;
fprintf(fp, "%f,%f,%f",
  (minNoInter < minInter ? minNoInter : minInter),</pre>
  (maxNoInter > maxInter ? maxNoInter : maxInter));
if (iRun < NB_RUNS - 1) {
 fprintf(fp, "\n");
fprintf(fpCC, "%.1f,", ratioInter);
fprintf(fpCC, "%lu, %lu, ", countInterCC, countNoInterCC);
double avgInterCC = sumInterCC / (double)countInterCC;
\label{fpcc} \texttt{fprintf(fpCC, "\%f,\%f,\%f,", minInterCC, avgInterCC, maxInterCC);}
double avgNoInterCC = sumNoInterCC / (double)countNoInterCC;
fprintf(fpCC, "%f,%f,%f,", minNoInterCC, avgNoInterCC, maxNoInterCC);
double avgCC =
  ratioInter * avgInterCC + (1.0 - ratioInter) * avgNoInterCC;
fprintf(fpCC, "%f,%f,%f",
  (minNoInterCC < minInterCC ? minNoInterCC : minInterCC),</pre>
  avgCC,
  (maxNoInterCC > maxInterCC ? maxNoInterCC : maxInterCC));
if (iRun < NB_RUNS - 1) {
  fprintf(fpCC, "\n");
fprintf(fpCT, "%.1f,", ratioInter);
fprintf(fpCT, "%lu,%lu,", countInterCT, countNoInterCT);
double avgInterCT = sumInterCT / (double)countInterCT;
\label{eq:fpct} fprintf(\bar{fpCT}\,,\,\,\text{"%f,%f,", minInterCT}\,,\,\,avgInterCT\,,\,\,maxInterCT);
double avgNoInterCT = sumNoInterCT / (double)countNoInterCT;
double avgCT =
  ratioInter * avgInterCT + (1.0 - ratioInter) * avgNoInterCT;
```

```
fprintf(fpCT, "%f,%f,%f",
      (minNoInterCT < minInterCT ? minNoInterCT : minInterCT),</pre>
      avgCT,
      (maxNoInterCT > maxInterCT ? maxNoInterCT : maxInterCT));
    if (iRun < NB_RUNS - 1) {
      fprintf(fpCT, "\n");
    fprintf(fpTC, "%.1f,", ratioInter);
fprintf(fpTC, "%lu,%lu,", countInterTC, countNoInterTC);
    double avgInterTC = sumInterTC / (double)countInterTC;
    \label{eq:fptc}  fprintf(fpTC\,, \ \ \text{\ensuremath{\tt "\%f\,,\%f\,,\%f\,,"}\,, \ \ minInterTC\,, \ \ avgInterTC\,, \ \ maxInterTC)};
    double avgNoInterTC = sumNoInterTC / (double)countNoInterTC;
    fprintf(fpTC, "%f,%f,%f,", minNoInterTC, avgNoInterTC, maxNoInterTC);
    double avgTC =
      ratioInter * avgInterTC + (1.0 - ratioInter) * avgNoInterTC;
    fprintf(fpTC, "%f,%f,%f",
      (minNoInterTC < minInterTC ? minNoInterTC : minInterTC),</pre>
      avgTC,
      (maxNoInterTC > maxInterTC ? maxNoInterTC : maxInterTC));
    if (iRun < NB_RUNS - 1) {
      fprintf(fpTC, "\n");
    fprintf(fpTT, "%.1f,", ratioInter);
fprintf(fpTT, "%lu,%lu,", countInterTT, countNoInterTT);
    double avgInterTT = sumInterTT / (double)countInterTT;
    double avgNoInterTT = sumNoInterTT / (double)countNoInterTT;
    fprintf(fpTT, "%f,%f,%f,", minNoInterTT, avgNoInterTT, maxNoInterTT);
    double avgTT =
      ratioInter * avgInterTT + (1.0 - ratioInter) * avgNoInterTT;
    fprintf(fpTT, "%f,%f,%f",
      (minNoInterTT < minInterTT ? minNoInterTT : minInterTT),</pre>
      avgTT,
      (maxNoInterTT > maxInterTT ? maxNoInterTT : maxInterTT));
    if (iRun < NB_RUNS - 1) {
      fprintf(fpTT, "\n");
  // Close the files
  fclose(fp);
  fclose(fpCC);
  fclose(fpCT);
  fclose(fpTC);
  fclose(fpTT);
int main(int argc, char** argv) {
  Qualify3DStatic();
 return 0;
8.1.3
        2D dynamic
// Include standard libraries
```

```
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <time.h>
#include <sys/time.h>
// Include FMB and SAT algorithm library
#include "fmb2dt.h"
#include "sat.h"
// Epsilon to detect degenerated triangles
#define EPSILON 0.1
// Range of values for the random generation of Frames
#define RANGE_AXIS 100.0
// Nb of run
#define NB_RUNS 9
// Nb of tests per run
#define NB_TESTS 100000
// Nb of times the test is run on one pair of frame, used to
// slow down the processus and be able to measure time
#define NB_REPEAT_2D 1500
// Helper macro to generate random number in [0.0, 1.0]
#define rnd() (double)(rand())/(double)(RAND_MAX)
// Helper structure to pass arguments to the Qualification function \ensuremath{\mathcal{C}}
typedef struct {
  FrameType type;
  double orig[2];
  double comp[2][2];
  double speed[2];
} Param2DTime;
// Global variables to count nb of tests resulting in intersection
// and no intersection, and min/max/total time of execution for each
double minInter;
double maxInter;
double sumInter;
unsigned long countInter;
double minNoInter;
double maxNoInter;
double sumNoInter;
unsigned long countNoInter;
double minInterCC;
double maxInterCC;
double sumInterCC;
unsigned long countInterCC;
double minNoInterCC;
double maxNoInterCC;
double sumNoInterCC;
unsigned long countNoInterCC;
double minInterCT;
double maxInterCT;
double sumInterCT;
unsigned long countInterCT;
double minNoInterCT;
double maxNoInterCT;
double sumNoInterCT;
unsigned long countNoInterCT;
```

```
double minInterTC;
double maxInterTC;
double sumInterTC;
unsigned long countInterTC;
double minNoInterTC;
double maxNoInterTC;
double sumNoInterTC;
unsigned long countNoInterTC;
double minInterTT;
double maxInterTT;
double sumInterTT;
unsigned long countInterTT;
double minNoInterTT;
double maxNoInterTT;
double sumNoInterTT;
unsigned long countNoInterTT;
// Qualification function
// Takes two Frame definition as input, run the intersection test on
// them with FMB and SAT, and measure the time of execution of each \,
void Qualification2DDynamic(
        const Param2DTime paramP,
        const Param2DTime paramQ) {
  // Create the two Frames
  Frame2DTime P =
    Frame2DTimeCreateStatic(
      paramP.type,
      paramP.orig,
      paramP.speed,
      paramP.comp);
  Frame2DTime Q =
    Frame2DTimeCreateStatic(
      paramQ.type,
      paramQ.orig,
      paramQ.speed,
      paramQ.comp);
  // Helper variables to loop on the pair (that, tho) and (tho, that)
  Frame2DTime* that = &P;
  Frame2DTime* tho = &Q;
  // Loop on pairs of Frames
  for (int iPair = 2;
       iPair--;) {
    // Declare an array to memorize the results of the repeated
    // test on the same pair,
    // to prevent optimization from the compiler to remove the for loop
    bool isIntersectingFMB[NB_REPEAT_2D] = {false};
    // Start measuring time
    struct timeval start;
    gettimeofday(&start, NULL);
    // Run the FMB intersection test
    for (int i = NB_REPEAT_2D;
         i--;) {
      isIntersectingFMB[i] =
```

```
FMBTestIntersection2DTime(
      that,
      tho,
      NULL);
}
// Stop measuring time
struct timeval stop;
gettimeofday(&stop, NULL);
// Calculate the delay of execution
unsigned long deltausFMB = 0;
if (stop.tv_sec < start.tv_sec) {</pre>
  printf("time warps, try again\n");
  exit(0);
if (stop.tv_sec > start.tv_sec + 1) {
  printf("deltausFMB >> 1s, decrease NB_REPEAT\n");
  exit(0);
if (stop.tv_usec < start.tv_usec) {</pre>
  deltausFMB = stop.tv_sec - start.tv_sec;
deltausFMB += stop.tv_usec + 1000000 - start.tv_usec;
  deltausFMB = stop.tv_usec - start.tv_usec;
\ensuremath{//} Declare an array to memorize the results of the repeated
// test on the same pair,
// to prevent optimization from the compiler to remove the for loop
bool isIntersectingSAT[NB_REPEAT_2D] = {false};
// Start measuring time
gettimeofday(&start, NULL);
// Run the FMB intersection test
for (int i = NB_REPEAT_2D;
     i--;) {
  isIntersectingSAT[i] =
    SATTestIntersection2DTime(
      that,
      tho);
// Stop measuring time
gettimeofday(&stop, NULL);
// Calculate the delay of execution
unsigned long deltausSAT = 0;
if (stop.tv_sec < start.tv_sec) {</pre>
  printf("time warps, try again\n");
  exit(0);
if (stop.tv_sec > start.tv_sec + 1) {
  printf("deltausSAT >> 1s, decrease NB_REPEAT\n");
  exit(0);
if (stop.tv_usec < start.tv_usec) {</pre>
  deltausSAT = stop.tv_sec - start.tv_sec;
  deltausSAT += stop.tv_usec + 1000000 - start.tv_usec;
```

```
} else {
  deltausSAT = stop.tv_usec - start.tv_usec;
// If the delays are greater than 10\,\mathrm{ms}
if (deltausFMB >= 10 && deltausSAT >= 10) {
  // If FMB and SAT disagrees
  if (isIntersectingFMB[0] != isIntersectingSAT[0]) {
    printf("Qualification has failed\n");
    Frame2DTimePrint(that);
    printf(" against ");
    Frame2DTimePrint(tho);
    printf("\n");
printf("FMB : ");
    if (isIntersectingFMB[0] == false)
     printf("no ");
    printf("intersection\n");
    printf("SAT : ");
    if (isIntersectingSAT[0] == false)
     printf("no ");
    printf("intersection\n");
    // Stop the qualification test
    exit(0);
  // Get the ratio of execution time
  double ratio = ((double)deltausFMB) / ((double)deltausSAT);
  // If the Frames intersect
  if (isIntersectingSAT[0] == true) {
    // Update the counters
    if (countInter == 0) {
      minInter = ratio;
      maxInter = ratio;
    } else {
      if (minInter > ratio)
        minInter = ratio;
      if (maxInter < ratio)</pre>
        maxInter = ratio;
    sumInter += ratio;
    ++countInter;
    if (paramP.type == FrameCuboid &&
        paramQ.type == FrameCuboid) {
      if (countInterCC == 0) {
        minInterCC = ratio;
        maxInterCC = ratio;
      } else {
```

```
if (minInterCC > ratio)
      minInterCC = ratio;
    if (maxInterCC < ratio)</pre>
      maxInterCC = ratio;
  sumInterCC += ratio;
  ++countInterCC;
} else if (paramP.type == FrameCuboid &&
           paramQ.type == FrameTetrahedron) {
  if (countInterCT == 0) {
    minInterCT = ratio;
maxInterCT = ratio;
  } else {
    if (minInterCT > ratio)
      minInterCT = ratio;
    if (maxInterCT < ratio)</pre>
      maxInterCT = ratio;
  sumInterCT += ratio;
  ++countInterCT;
} else if (paramP.type == FrameTetrahedron &&
           paramQ.type == FrameCuboid) {
  if (countInterTC == 0) {
    minInterTC = ratio;
    maxInterTC = ratio;
  } else {
    if (minInterTC > ratio)
      minInterTC = ratio;
    if (maxInterTC < ratio)</pre>
      maxInterTC = ratio;
  sumInterTC += ratio;
  ++countInterTC;
} else if (paramP.type == FrameTetrahedron &&
           paramQ.type == FrameTetrahedron) {
  if (countInterTT == 0) {
    minInterTT = ratio;
    maxInterTT = ratio;
  } else {
    if (minInterTT > ratio)
      minInterTT = ratio;
    if (maxInterTT < ratio)</pre>
      maxInterTT = ratio;
```

```
sumInterTT += ratio;
    ++countInterTT;
\ensuremath{//} Else, the Frames do not intersect
} else {
  // Update the counters
  if (countNoInter == 0) {
    minNoInter = ratio;
    maxNoInter = ratio;
  } else {
    if (minNoInter > ratio)
    minNoInter = ratio;
if (maxNoInter < ratio)</pre>
      maxNoInter = ratio;
  sumNoInter += ratio;
  ++countNoInter;
  if (paramP.type == FrameCuboid &&
      paramQ.type == FrameCuboid) {
    if (countNoInterCC == 0) {
      minNoInterCC = ratio;
      maxNoInterCC = ratio;
    } else {
      if (minNoInterCC > ratio)
        minNoInterCC = ratio;
      if (maxNoInterCC < ratio)</pre>
        maxNoInterCC = ratio;
    sumNoInterCC += ratio;
    ++countNoInterCC;
  } else if (paramP.type == FrameCuboid &&
              paramQ.type == FrameTetrahedron) {
    if (countNoInterCT == 0) {
      minNoInterCT = ratio;
      maxNoInterCT = ratio;
      if (minNoInterCT > ratio)
      minNoInterCT = ratio;
if (maxNoInterCT < ratio)</pre>
        maxNoInterCT = ratio;
    sumNoInterCT += ratio;
```

```
++countNoInterCT;
    } else if (paramP.type == FrameTetrahedron &&
                paramQ.type == FrameCuboid) {
      if (countNoInterTC == 0) {
        minNoInterTC = ratio;
        maxNoInterTC = ratio;
      } else {
         if (minNoInterTC > ratio)
          minNoInterTC = ratio;
         if (maxNoInterTC < ratio)</pre>
           maxNoInterTC = ratio;
      }
      sumNoInterTC += ratio;
      ++countNoInterTC;
    } else if (paramP.type == FrameTetrahedron &&
                paramQ.type == FrameTetrahedron) {
      if (countNoInterTT == 0) {
        minNoInterTT = ratio;
        maxNoInterTT = ratio;
      } else {
         if (minNoInterTT > ratio)
          minNoInterTT = ratio;
         if (maxNoInterTT < ratio)</pre>
           maxNoInterTT = ratio;
      }
      sumNoInterTT += ratio;
      ++countNoInterTT;
    }
  }
// Else, if time of execution for FMB was less than a 10ms \} else if (deltausFMB < 10) {
  printf("deltausFMB < 10ms, increase NB_REPEAT\n");
  exit(0);
// Else, if time of execution for SAT was less than a 10ms \,
} else if (deltausSAT < 10) {</pre>
  printf("deltausSAT < 10ms, increase NB_REPEAT\n");</pre>
  exit(0);
}
// Flip the pair of Frames \,
that = &Q;
tho = &P;
```

}

```
}
void Qualify2DDynamic(void) {
  // Initialise the random generator
  srandom(time(NULL));
  // Open the files to save the results
  FILE* fp = fopen("../Results/qualification2DTime.txt", "w");
  FILE* fpCC = fopen("../Results/qualification2DTimeCCC.txt", "w");
FILE* fpCT = fopen("../Results/qualification2DTimeCT.txt", "w");
FILE* fpTC = fopen("../Results/qualification2DTimeTC.txt", "w");
  FILE* fpTT = fopen("../Results/qualification2DTimeTT.txt", "w");
  // Loop on runs
  for (int iRun = 0;
        iRun < NB_RUNS;</pre>
        ++iRun) {
    // Ratio intersection/no intersection for the displayed results
    double ratioInter = 0.1 + 0.8 * (double)iRun / (double)(NB_RUNS - 1);
    // Initialize counters
    minInter = 0.0;
    maxInter = 0.0;
    sumInter = 0.0;
    countInter = 0;
    minNoInter = 0.0;
    maxNoInter = 0.0;
    sumNoInter = 0.0;
    countNoInter = 0;
    minInterCC = 0.0;
    maxInterCC = 0.0;
    sumInterCC = 0.0;
    countInterCC = 0;
    minNoInterCC = 0.0;
    maxNoInterCC = 0.0;
    sumNoInterCC = 0.0;
    countNoInterCC = 0;
    minInterCT = 0.0;
    maxInterCT = 0.0;
    sumInterCT = 0.0;
    countInterCT = 0;
    minNoInterCT = 0.0;
    maxNoInterCT = 0.0;
    sumNoInterCT = 0.0;
    countNoInterCT = 0;
    minInterTC = 0.0;
    maxInterTC = 0.0;
    sumInterTC = 0.0;
    countInterTC = 0;
    minNoInterTC = 0.0;
    maxNoInterTC = 0.0;
    sumNoInterTC = 0.0;
    countNoInterTC = 0;
    minInterTT = 0.0;
    maxInterTT = 0.0;
```

```
sumInterTT = 0.0;
countInterTT = 0;
minNoInterTT = 0.0;
maxNoInterTT = 0.0;
sumNoInterTT = 0.0;
countNoInterTT = 0;
// Declare two variables to memorize the arguments to the
// Qualification function
Param2DTime paramP;
Param2DTime paramQ;
// Loop on the number of tests
for (unsigned long iTest = NB_TESTS;
      iTest--;) {
  // Create two random Frame definitions
  Param2DTime* param = &paramP;
  for (int iParam = 2;
        iParam --;) {
    // 50% chance of being a Cuboid or a Tetrahedron
    if (rnd() < 0.5)
      param -> type = FrameCuboid;
    else
      param -> type = FrameTetrahedron;
    for (int iAxis = 2;
          iAxis--;) {
      param -> orig[iAxis] = -RANGE_AXIS + 2.0 * rnd() * RANGE_AXIS;
param -> speed[iAxis] = -RANGE_AXIS + 2.0 * rnd() * RANGE_AXIS;
       for (int iComp = 2;
            iComp --;) {
         param -> comp[iComp][iAxis] =
           -RANGE_AXIS + 2.0 * rnd() * RANGE_AXIS;
      }
    }
    param = &paramQ;
  }
  // Calculate the determinant of the Frames' components matrix
  double detP =
    paramP.comp[0][0] * paramP.comp[1][1] -
paramP.comp[1][0] * paramP.comp[0][1];
  double detQ =
    paramQ.comp[0][0] * paramQ.comp[1][1] -
paramQ.comp[1][0] * paramQ.comp[0][1];
  // If the determinants are not null, ie the Frame are not degenerate
  if (fabs(detP) > EPSILON && fabs(detQ) > EPSILON) {
    // Run the validation on the two Frames
    Qualification2DDynamic(
```

```
paramP,
        paramQ);
  }
}
// Display the results
if (iRun == 0) {
  fprintf(fp, "percPairInter,");
  fprintf(fp, "countInterTo,countNoInterTo,");
  fprintf(fp, "minInterTo, avgInterTo, maxInterTo,");
  fprintf(fp, "minNoInterTo, avgNoInterTo, maxNoInterTo,");
fprintf(fp, "minTotalTo, avgTotalTo, maxTotalTo\n");
  fprintf(fpCC, "percPairInter,");
  fprintf(fpCC, "countInterCC, countNoInterCC,");
fprintf(fpCC, "minInterCC, avgInterCC, maxInterCC,");
  fprintf(fpCC, "minNoInterCC, avgNoInterCC, maxNoInterCC,");
fprintf(fpCC, "minTotalCC, avgTotalCC, maxTotalCC\n");
  fprintf(fpCT, "percPairInter,");
  fprintf(fpCT, "countInterCT, countNoInterCT,");
  fprintf(fpCT, "minInterCT, avgInterCT, maxInterCT,");
fprintf(fpCT, "minNoInterCT, avgNoInterCT, maxNoInterCT,");
fprintf(fpCT, "minTotalCT, avgTotalCT, maxTotalCT\n");
  fprintf(fpTC, "percPairInter,");
  fprintf(fpTC, "countInterTC, countNoInterTC,");
  fprintf(fpTC, "minInterTC, avgInterTC, maxInterTC,");
fprintf(fpTC, "minNoInterTC, avgNoInterTC, maxNoInterTC,");
fprintf(fpTC, "minTotalTC, avgTotalTC, maxTotalTC\n");
  fprintf(fpTT, "percPairInter,");
fprintf(fpTT, "countInterTT,countNoInterTT,");
  fprintf(fpTT, "minInterTT, avgInterTT, maxInterTT,");
  fprintf(fpTT, "minNoInterTT, avgNoInterTT, maxNoInterTT,");
fprintf(fpTT, "minTotalTT, avgTotalTT, maxTotalTT\n");
fprintf(fp, "%.1f,", ratioInter);
fprintf(fp, "%lu, %lu, ", countInter, countNoInter);
double avgInter = sumInter / (double)countInter;
fprintf(fp, "%f,%f,%f,", minInter, avgInter, maxInter);
double avgNoInter = sumNoInter / (double)countNoInter;
fprintf(fp, "%f,%f,%f,", minNoInter, avgNoInter, maxNoInter);
double avg =
  ratioInter * avgInter + (1.0 - ratioInter) * avgNoInter;
fprintf(fp, "%f,%f,%f",
  (minNoInter < minInter ? minNoInter : minInter),</pre>
  avg,
  (maxNoInter > maxInter ? maxNoInter : maxInter));
if (iRun < NB_RUNS - 1) {</pre>
  fprintf(fp, "\n");
fprintf(fpCC, "%.1f,", ratioInter);
fprintf(fpCC, "%lu,%lu,", countInterCC, countNoInterCC);
double avgInterCC = sumInterCC / (double)countInterCC;
fprintf(fpCC, "%f,%f,%f,", minInterCC, avgInterCC, maxInterCC);
```

```
double avgNoInterCC = sumNoInterCC / (double)countNoInterCC;
fprintf(fpCC, "%f,%f,%f,", minNoInterCC, avgNoInterCC, maxNoInterCC);
double avgCC =
ratioInter * avgInterCC + (1.0 - ratioInter) * avgNoInterCC;
fprintf(fpCC, "%f,%f,%f",
  (minNoInterCC < minInterCC ? minNoInterCC : minInterCC),</pre>
  avgCC,
  (maxNoInterCC > maxInterCC ? maxNoInterCC : maxInterCC));
if (iRun < NB_RUNS - 1) {
  fprintf(fpCC, "\n");
fprintf(fpCT, "%.1f,", ratioInter);
fprintf(fpCT, "%lu, %lu, ", countInterCT, countNoInterCT);
double avgInterCT = sumInterCT / (double)countInterCT;
fprintf(fpCT, "%f,%f,", minInterCT, avgInterCT, maxInterCT);
double avgNoInterCT = sumNoInterCT / (double)countNoInterCT;
fprintf(fpCT, \ \ "\%f,\%f,\%f,", \ minNoInterCT, \ avgNoInterCT, \ maxNoInterCT);
double avgCT =
(minNoInterCT < minInterCT ? minNoInterCT : minInterCT),</pre>
  avgCT,
  (maxNoInterCT > maxInterCT ? maxNoInterCT : maxInterCT));
if (iRun < NB_RUNS - 1) {</pre>
  fprintf(fpCT, "\n");
fprintf(fpTC, "%.1f,", ratioInter);
fprintf(fpTC, "%lu, %lu,", countInterTC, countNoInterTC);
double avgInterTC = sumInterTC / (double)countInterTC;
fprintf(fpTC, "%f,%f,%f,", minInterTC, avgInterTC, maxInterTC);
double avgNoInterTC = sumNoInterTC / (double)countNoInterTC;
fprintf(fpTC, "%f,%f,%f,", minNoInterTC, avgNoInterTC, maxNoInterTC);
double avgTC =
ratioInter * avgInterTC + (1.0 - ratioInter) * avgNoInterTC;
fprintf(fpTC, "%f,%f,%f",
  (minNoInterTC < minInterTC ? minNoInterTC : minInterTC),</pre>
  avgTC,
  (maxNoInterTC > maxInterTC ? maxNoInterTC : maxInterTC));
if (iRun < NB_RUNS - 1) {
  fprintf(fpTC, "\n");
fprintf(fpTT, "%.1f,", ratioInter);
fprintf(fpTT, "%lu, %lu, ", countInterTT, countNoInterTT);
double avgInterTT = sumInterTT / (double)countInterTT;
fprintf(fpTT, "%f,%f,%f,", minInterTT, avgInterTT, maxInterTT);
double avgNoInterTT = sumNoInterTT / (double)countNoInterTT;
fprintf(fpTT, "%f,%f,%f,", minNoInterTT, avgNoInterTT, maxNoInterTT);
double avgTT =
 \begin{array}{c} \widetilde{\text{ratioInter}} \ * \ \text{avgInterTT} \ + \ (1.0 \ - \ \text{ratioInter}) \ * \ \text{avgNoInterTT}; \\ \text{fprintf(fpTT, "%f,%f,%f",} \end{array} 
  (minNoInterTT < minInterTT ? minNoInterTT : minInterTT),</pre>
  avgTT,
  (maxNoInterTT > maxInterTT ? maxNoInterTT : maxInterTT));
if (iRun < NB_RUNS - 1) {
  fprintf(fpTT, "\n");
```

}

```
// Close the files
  fclose(fp);
  fclose(fpCC);
  fclose(fpCT);
  fclose(fpTC);
  fclose(fpTT);
}
int main(int argc, char** argv) {
  Qualify2DDynamic();
 return 0;
8.1.4 3D dynamic
// Include standard libraries
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <time.h>
#include <sys/time.h>
// Include FMB and SAT algorithm library
#include "fmb3dt.h"
#include "sat.h"
// Epsilon to detect degenerated triangles
#define EPSILON 0.1
// Range of values for the random generation of Frames
#define RANGE_AXIS 100.0
// Nb of run
#define NB_RUNS 9
// Nb of tests per run
#define NB_TESTS 100000
// Nb of times the test is run on one pair of frame, used to
\ensuremath{//} slow down the processus and be able to measure time
#define NB_REPEAT_3D 800
// Helper macro to generate random number in [0.0, 1.0]
#define rnd() (double)(rand())/(double)(RAND_MAX)
// Helper structure to pass arguments to the Qualification function
typedef struct {
  FrameType type;
  double orig[3];
  double comp[3][3];
  double speed[3];
} Param3DTime;
// Global variables to count nb of tests resulting in intersection
// and no intersection, and min/max/total time of execution for each
double minInter;
double maxInter;
double sumInter;
unsigned long countInter;
double minNoInter;
double maxNoInter;
double sumNoInter;
```

```
unsigned long countNoInter;
double minInterCC;
double maxInterCC;
double sumInterCC;
unsigned long countInterCC;
double minNoInterCC;
double maxNoInterCC;
double sumNoInterCC;
unsigned long countNoInterCC;
double minInterCT;
double maxInterCT;
double sumInterCT;
unsigned long countInterCT;
double minNoInterCT;
double maxNoInterCT;
double sumNoInterCT;
unsigned long countNoInterCT;
double minInterTC;
double maxInterTC;
double sumInterTC;
unsigned long countInterTC;
double minNoInterTC;
double maxNoInterTC;
double sumNoInterTC;
unsigned long countNoInterTC;
double minInterTT;
double maxInterTT;
double sumInterTT;
unsigned long countInterTT;
double minNoInterTT;
double maxNoInterTT;
double sumNoInterTT;
unsigned long countNoInterTT;
// Qualification function
\ensuremath{//} Takes two Frame definition as input, run the intersection test on
// them with FMB and SAT, and measure the time of execution of each
void Qualification3DDynamic(
        const Param3DTime paramP,
        const Param3DTime paramQ) {
  // Create the two Frames
  Frame3DTime P =
    Frame3DTimeCreateStatic(
      paramP.type,
      paramP.orig,
      paramP.speed,
      paramP.comp);
  Frame3DTime Q =
    {\tt Frame3DTimeCreateStatic} (
      paramQ.type,
      paramQ.orig,
      paramQ.speed,
      paramQ.comp);
  // Helper variables to loop on the pair (that, tho) and (tho, that)
  Frame3DTime* that = &P;
```

```
Frame3DTime* tho = &Q;
// Loop on pairs of Frames
for (int iPair = 2;
     iPair--;) {
  // Declare an array to memorize the results of the repeated
  // test on the same pair,
  // to prevent optimization from the compiler to remove the for loop
  bool isIntersectingFMB[NB_REPEAT_3D] = {false};
  // Start measuring time
  struct timeval start;
  gettimeofday(&start, NULL);
  // Run the FMB intersection test
  for (int i = NB_REPEAT_3D;
      i--;) {
    isIntersectingFMB[i] =
      {\tt FMBTestIntersection3DTime(}
        that,
        tho.
        NULL);
  // Stop measuring time
  struct timeval stop;
  gettimeofday(&stop, NULL);
  // Calculate the delay of execution
  unsigned long deltausFMB = 0;
  if (stop.tv_sec < start.tv_sec) {</pre>
    printf("time warps, try again\n");
    exit(0);
  if (stop.tv_sec > start.tv_sec + 1) {
    printf("deltausFMB >> 1s, decrease NB_REPEAT\n");
    exit(0);
  if (stop.tv_usec < start.tv_usec) {</pre>
    deltausFMB = stop.tv_sec - start.tv_sec;
    deltausFMB += stop.tv_usec + 1000000 - start.tv_usec;
  } else {
    deltausFMB = stop.tv_usec - start.tv_usec;
  // Declare an array to memorize the results of the repeated
  // test on the same pair,
  // to prevent optimization from the compiler to remove the for loop
  bool isIntersectingSAT[NB_REPEAT_3D] = {false};
  // Start measuring time
  gettimeofday(&start, NULL);
  \ensuremath{//} Run the FMB intersection test
  for (int i = NB_REPEAT_3D;
      i--;) {
    isIntersectingSAT[i] =
      SATTestIntersection3DTime(
        that,
```

```
tho);
// Stop measuring time
gettimeofday(&stop, NULL);
// Calculate the delay of execution
unsigned long deltausSAT = 0;
if (stop.tv_sec < start.tv_sec) {</pre>
 printf("time warps, try again\n");
  exit(0);
if (stop.tv_sec > start.tv_sec + 1) {
  printf("deltausSAT >> 1s, decrease NB_REPEAT\n");
  exit(0);
if (stop.tv_usec < start.tv_usec) {</pre>
  deltausSAT = stop.tv_sec - start.tv_sec;
deltausSAT += stop.tv_usec + 1000000 - start.tv_usec;
} else {
  deltausSAT = stop.tv_usec - start.tv_usec;
// If the delays are greater than 10ms
if (deltausFMB >= 10 && deltausSAT >= 10) {
  // If FMB and SAT disagrees
  if (isIntersectingFMB[0] != isIntersectingSAT[0]) {
    printf("Qualification \ has \ failed\n");\\
    Frame3DTimePrint(that);
    printf(" against ");
    Frame3DTimePrint(tho);
    printf("\n");
printf("FMB : ");
    if (isIntersectingFMB[0] == false)
     printf("no ");
    printf("intersection\n");
    printf("SAT : ");
    if (isIntersectingSAT[0] == false)
     printf("no ");
    printf("intersection\n");
    // Stop the qualification test
    exit(0);
  // Get the ratio of execution time
  double ratio = ((double)deltausFMB) / ((double)deltausSAT);
  // If the Frames intersect
  if (isIntersectingSAT[0] == true) {
    // Update the counters
    if (countInter == 0) {
      minInter = ratio;
      maxInter = ratio;
    } else {
```

```
if (minInter > ratio)
    minInter = ratio;
  if (maxInter < ratio)</pre>
    maxInter = ratio;
sumInter += ratio;
++countInter;
if (paramP.type == FrameCuboid &&
    paramQ.type == FrameCuboid) {
  if (countInterCC == 0) {
    minInterCC = ratio;
    maxInterCC = ratio;
  } else {
    if (minInterCC > ratio)
      minInterCC = ratio;
    if (maxInterCC < ratio)</pre>
      maxInterCC = ratio;
  sumInterCC += ratio;
  ++countInterCC;
} else if (paramP.type == FrameCuboid &&
           paramQ.type == FrameTetrahedron) {
  if (countInterCT == 0) {
    minInterCT = ratio;
    maxInterCT = ratio;
  } else {
    if (minInterCT > ratio)
     minInterCT = ratio;
    if (maxInterCT < ratio)</pre>
      maxInterCT = ratio;
  sumInterCT += ratio;
  ++countInterCT;
} else if (paramP.type == FrameTetrahedron &&
           paramQ.type == FrameCuboid) {
  if (countInterTC == 0) {
    minInterTC = ratio;
    maxInterTC = ratio;
  } else {
    if (minInterTC > ratio)
     minInterTC = ratio;
    if (maxInterTC < ratio)
      maxInterTC = ratio;
```

```
sumInterTC += ratio;
    ++countInterTC;
  } else if (paramP.type == FrameTetrahedron && paramQ.type == FrameTetrahedron) {
    if (countInterTT == 0) {
      minInterTT = ratio;
      maxInterTT = ratio;
    } else {
      if (minInterTT > ratio)
        minInterTT = ratio;
       if (maxInterTT < ratio)</pre>
        maxInterTT = ratio;
    sumInterTT += ratio;
    ++countInterTT;
// Else, the Frames do not intersect
} else {
  // Update the counters
  if (countNoInter == 0) {
    minNoInter = ratio;
    maxNoInter = ratio;
  } else {
    if (minNoInter > ratio)
     minNoInter = ratio;
    if (maxNoInter < ratio)</pre>
      maxNoInter = ratio;
  sumNoInter += ratio;
  ++countNoInter;
  if (paramP.type == FrameCuboid && paramQ.type == FrameCuboid) {
    if (countNoInterCC == 0) {
       minNoInterCC = ratio;
      maxNoInterCC = ratio;
    } else {
       if (minNoInterCC > ratio)
      minNoInterCC = ratio;
if (maxNoInterCC < ratio)
         maxNoInterCC = ratio;
    }
```

```
sumNoInterCC += ratio;
     ++countNoInterCC;
  } else if (paramP.type == FrameCuboid && paramQ.type == FrameTetrahedron) {
     if (countNoInterCT == 0) {
       minNoInterCT = ratio;
maxNoInterCT = ratio;
     } else {
        if (minNoInterCT > ratio)
        minNoInterCT = ratio;
if (maxNoInterCT < ratio)
          maxNoInterCT = ratio;
     sumNoInterCT += ratio;
     ++countNoInterCT;
   } else if (paramP.type == FrameTetrahedron &&
                paramQ.type == FrameCuboid) {
     if (countNoInterTC == 0) {
       minNoInterTC = ratio;
maxNoInterTC = ratio;
     } else {
        if (minNoInterTC > ratio)
          minNoInterTC = ratio;
        if (maxNoInterTC < ratio)</pre>
          maxNoInterTC = ratio;
     sumNoInterTC += ratio;
     ++countNoInterTC;
  } else if (paramP.type == FrameTetrahedron && paramQ.type == FrameTetrahedron) {
     if (countNoInterTT == 0) {
       minNoInterTT = ratio;
maxNoInterTT = ratio;
     } else {
        if (minNoInterTT > ratio)
          minNoInterTT = ratio;
        if (maxNoInterTT < ratio)</pre>
          maxNoInterTT = ratio;
     sumNoInterTT += ratio;
     ++countNoInterTT;
}
```

```
// Else, if time of execution for FMB was less than a 10\,\mathrm{ms}
    } else if (deltausFMB < 10) {</pre>
      printf("deltausFMB < 10ms, increase NB_REPEAT\n");</pre>
      exit(0);
    // Else, if time of execution for SAT was less than a 10ms
    } else if (deltausSAT < 10) {</pre>
      printf("deltausSAT < 10ms, increase NB_REPEAT\n");</pre>
      exit(0);
    // Flip the pair of Frames
    that = &Q;
    tho = &P;
  }
void Qualify3DDynamic(void) {
  // Initialise the random generator
  srandom(time(NULL));
  // Open the files to save the results
  FILE* fp = fopen("../Results/qualification3DTime.txt", "w");
  FILE* fpCC = fopen("../Results/qualification3DTimeCC.txt", "w");
FILE* fpCT = fopen("../Results/qualification3DTimeCT.txt", "w");
  FILE* fpTC = fopen("../Results/qualification3DTimeTC.txt", "w");
  FILE* fpTT = fopen("../Results/qualification3DTimeTT.txt", "w");
  // Loop on runs
  for (int iRun = 0;
       iRun < NB_RUNS;</pre>
       ++iRun) {
    // Ratio intersection/no intersection for the displayed results
    double ratioInter = 0.1 + 0.8 * (double)iRun / (double)(NB_RUNS - 1);
    // Initialize counters
    minInter = 0.0:
    maxInter = 0.0;
    sumInter = 0.0;
    countInter = 0;
    minNoInter = 0.0;
    maxNoInter = 0.0;
    sumNoInter = 0.0;
    countNoInter = 0;
    minInterCC = 0.0;
    maxInterCC = 0.0;
    sumInterCC = 0.0;
    countInterCC = 0;
    minNoInterCC = 0.0;
    maxNoInterCC = 0.0;
    sumNoInterCC = 0.0;
    countNoInterCC = 0;
```

```
minInterCT = 0.0;
maxInterCT = 0.0;
sumInterCT = 0.0;
countInterCT = 0;
minNoInterCT = 0.0;
maxNoInterCT = 0.0;
sumNoInterCT = 0.0;
countNoInterCT = 0;
minInterTC = 0.0;
maxInterTC = 0.0;
sumInterTC = 0.0;
countInterTC = 0;
minNoInterTC = 0.0;
maxNoInterTC = 0.0;
sumNoInterTC = 0.0;
countNoInterTC = 0;
minInterTT = 0.0;
maxInterTT = 0.0;
sumInterTT = 0.0;
countInterTT = 0;
minNoInterTT = 0.0;
maxNoInterTT = 0.0;
sumNoInterTT = 0.0;
countNoInterTT = 0;
// Declare two variables to memorize the arguments to the
// Qualification function
Param3DTime paramP;
Param3DTime paramQ;
// Loop on the number of tests
for (unsigned long iTest = NB_TESTS;
     iTest--;) {
  // Create two random Frame definitions
  Param3DTime* param = &paramP;
  for (int iParam = 2;
       iParam--;) {
    // 50% chance of being a Cuboid or a Tetrahedron \,
    if (rnd() < 0.5)
      param -> type = FrameCuboid;
    else
      param -> type = FrameTetrahedron;
    for (int iAxis = 3;
        iAxis--;) {
      param -> orig[iAxis] = -RANGE_AXIS + 2.0 * rnd() * RANGE_AXIS;
      param -> speed[iAxis] = -RANGE_AXIS + 2.0 * rnd() * RANGE_AXIS;
      for (int iComp = 3;
           iComp --; ) {
        param -> comp[iComp][iAxis] =
          -RANGE_AXIS + 2.0 * rnd() * RANGE_AXIS;
      }
    }
```

```
param = &paramQ;
  }
   // Calculate the determinant of the Frames' components matrix
double detP =
  paramP.comp[0][0] * (paramP.comp[1][1] * paramP.comp[2][2]-
  paramP.comp[1][2] * paramP.comp[2][1]) -
  paramP.comp[1][0] * (paramP.comp[0][1] * paramP.comp[2][2]-
  paramP.comp[0][2] * paramP.comp[2][1]) +
paramP.comp[2][0] * (paramP.comp[0][1] * paramP.comp[1][2]-
  paramP.comp[0][2] * paramP.comp[1][1]);
double detQ =
  paramQ.comp[0][0] * (paramQ.comp[1][1] * paramQ.comp[2][2]-
   paramQ.comp[1][2] * paramQ.comp[2][1])
  paramQ.comp[1][0] * (paramQ.comp[0][1] * paramQ.comp[2][2]-
  paramQ.comp[0][2] * paramQ.comp[2][1]) +
paramQ.comp[2][0] * (paramQ.comp[0][1] * paramQ.comp[1][2]-
  paramQ.comp[0][2] * paramQ.comp[1][1]);
   // If the determinants are not null, ie the Frame are not degenerate
  if (fabs(detP) > EPSILON && fabs(detQ) > EPSILON) {
     // Run the validation on the two Frames
     Qualification3DDynamic(
        paramP,
        paramQ);
  }
}
// Display the results
if (iRun == 0) {
  fprintf(fp, "percPairInter,");
  fprintf(fp, "countInterTo, countNoInterTo,");
  fprintf(fp, "minInterTo, avgInterTo, maxInterTo,");
fprintf(fp, "minNoInterTo, avgNoInterTo, maxNoInterTo,");
fprintf(fp, "minTotalTo, avgTotalTo, maxTotalTo\n");
  fprintf(fpCC, "percPairInter,");
  fprintf(fpCC, "countInterCC, countNoInterCC,");
  fprintf(fpCC, "minInterCC, avgInterCC, maxInterCC,");
fprintf(fpCC, "minNoInterCC, avgNoInterCC, maxNoInterCC,");
fprintf(fpCC, "minTotalCC, avgTotalCC, maxTotalCC\n");
  fprintf(fpCT, "percPairInter,");
fprintf(fpCT, "countInterCT,countNoInterCT,");
  fprintf(fpCT, "minInterCT, avgInterCT, maxInterCT,");
  fprintf(fpCT, "minNoInterCT, avgNoInterCT, maxNoInterCT,");
fprintf(fpCT, "minTotalCT, avgTotalCT, maxTotalCT\n");
  fprintf(fpTC, "percPairInter,");
fprintf(fpTC, "countInterTC,countNoInterTC,");
  fprintf(fpTC, "minInterTC, avgInterTC, maxInterTC,");
  fprintf(fpTC, "minNoInterTC, avgNoInterTC, maxNoInterTC,");
fprintf(fpTC, "minTotalTC, avgTotalTC, maxTotalTC\n");
```

```
fprintf(fpTT, "percPairInter,");
  fprintf(fpTT, "countInterTT, countNoInterTT,");
  fprintf(fpTT, "minInterTT, avgInterTT, maxInterTT,");
fprintf(fpTT, "minNoInterTT, avgNoInterTT, maxNoInterTT,");
fprintf(fpTT, "minTotalTT, avgTotalTT, maxTotalTT\n");
fprintf(fp, "%.1f,", ratioInter);
fprintf(fp, "%lu,%lu,", countInter, countNoInter);
double avgInter = sumInter / (double)countInter;
\label{eq:first}  \text{fprintf(fp, "%f,%f,", minInter, avgInter, maxInter);} 
double avgNoInter = sumNoInter / (double)countNoInter;
fprintf(fp, "%f,%f,%f,", minNoInter, avgNoInter, maxNoInter);
double avg =
  ratioInter * avgInter + (1.0 - ratioInter) * avgNoInter;
fprintf(fp, "%f, %f, %f",
  (minNoInter < minInter ? minNoInter : minInter),</pre>
  (maxNoInter > maxInter ? maxNoInter : maxInter));
if (iRun < NB_RUNS - 1) {
  fprintf(fp, "\n");
fprintf(fpCC, "%.1f,", ratioInter);
fprintf(fpCC, "%lu,%lu,", countInterCC, countNoInterCC);
double avgInterCC = sumInterCC / (double)countInterCC;
fprintf(fpCC, "%f,%f,%f,", minInterCC, avgInterCC, maxInterCC);
double avgNoInterCC = sumNoInterCC / (double)countNoInterCC;
fprintf(fpCC, "%f,%f,%f,", minNoInterCC, avgNoInterCC, maxNoInterCC);
double avgCC =
  ratioInter * avgInterCC + (1.0 - ratioInter) * avgNoInterCC;
fprintf(fpCC, "%f,%f,%f",
  (minNoInterCC < minInterCC ? minNoInterCC : minInterCC),</pre>
  avgCC,
  (maxNoInterCC > maxInterCC ? maxNoInterCC : maxInterCC));
if (iRun < NB_RUNS - 1) {
  fprintf(fpCC, "\n");
fprintf(fpCT, "%.1f,", ratioInter);
fprintf(fpCT, "%lu,%lu,", countInterCT, countNoInterCT);
double avgInterCT = sumInterCT / (double)countInterCT;
\label{eq:fpct}    \text{fprintf}(fpCT\,,\,\,\text{"%f}\,,\text{%f}\,,\text{"f}\,,\text{", minInterCT}\,,\,\,\text{avgInterCT}\,,\,\,\text{maxInterCT})\,;
double avgNoInterCT = sumNoInterCT / (double)countNoInterCT;
fprintf(fpCT, "%f,%f,%f,", minNoInterCT, avgNoInterCT, maxNoInterCT);
double avgCT =
  ratioInter * avgInterCT + (1.0 - ratioInter) * avgNoInterCT;
fprintf(fpCT, "%f,%f,%f",
  (minNoInterCT < minInterCT ? minNoInterCT : minInterCT),</pre>
  avgCT.
  (maxNoInterCT > maxInterCT ? maxNoInterCT : maxInterCT));
if (iRun < NB_RUNS - 1) {
  fprintf(fpCT, "\n");
fprintf(fpTC, "%.1f,", ratioInter);
fprintf(fpTC, "%lu,%lu,", countInterTC, countNoInterTC);
double avgInterTC = sumInterTC / (double)countInterTC;
fprintf(fpTC, "%f, %f, %f, ", minInterTC, avgInterTC, maxInterTC);
double avgNoInterTC = sumNoInterTC / (double)countNoInterTC;
fprintf(fpTC, "%f,%f,%f,", minNoInterTC, avgNoInterTC, maxNoInterTC);
```

```
double avgTC =
    ratioInter * avgInterTC + (1.0 - ratioInter) * avgNoInterTC;
fprintf(fpTC, "%f,%f,%f",
      (minNoInterTC < minInterTC ? minNoInterTC : minInterTC),</pre>
      (maxNoInterTC > maxInterTC ? maxNoInterTC : maxInterTC));
    if (iRun < NB_RUNS - 1) {
      fprintf(fpTC, "\n");
    fprintf(fpTT, "%.1f,", ratioInter);
fprintf(fpTT, "%lu,%lu,", countInterTT, countNoInterTT);
    double avgInterTT = sumInterTT / (double)countInterTT;
    fprintf(fpTT, "%f,%f,%f,", minInterTT, avgInterTT, maxInterTT);
    double avgNoInterTT = sumNoInterTT / (double)countNoInterTT;
    fprintf(fpTT, "%f,%f,%f,", minNoInterTT, avgNoInterTT, maxNoInterTT);
    double avgTT =
    ratioInter * avgInterTT + (1.0 - ratioInter) * avgNoInterTT;
fprintf(fpTT, "%f,%f,%f",
      (minNoInterTT < minInterTT ? minNoInterTT : minInterTT),</pre>
      avgTT,
      (maxNoInterTT > maxInterTT ? maxNoInterTT : maxInterTT));
    if (iRun < NB_RUNS - 1) {
      fprintf(fpTT, "\n");
  }
  // Close the files
  fclose(fp);
  fclose(fpCC);
  fclose(fpCT);
  fclose(fpTC);
  fclose(fpTT);
int main(int argc, char** argv) {
  Qualify3DDynamic();
 return 0;
```

8.2 Results

In this subsection I give the results of the qualification for each case. These results are commented in the next section.

8.2.1 2D static

0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	percPairInter	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	percPairInter	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	percPairInter	0.9	0.8	0.7	0.6	0.5	0.0	0.2	0.1	percPairInter	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.1	percPairInter
10096 10284	10288	10326	10480	10186	10346	10098	+	er countInterTT	11854	11568	12036	11840	11856	11906	12070	11868	+	er countInterTC	11956	11890	11706	11472	11956	11746	11746	11956	+	er countInterCT	13082	13254	13336	13306	13388	13018	12974	13262	er countInterCC	47176	46808	47366	46944	47680	46856	47218	46896	H
39200 39298	39908	39456	39714	39490	40140	39080	39536	countNoInterTT	38354	38352	38046	38138	37864	38670	37892	38498	+	countNoInterTC	38500	38480	37916	38530	38182	38216	38022	38176	+	countNoInterCT	36668	37156	36754	36924	36556	36756	37340	36800	countNoInterCC	152820	153188	152624	153048	152316	153132	152778	153094	Н
0.716667	0.754386	0.618705	0.877358	0.082042	0.894737	0.857143	0.772727	minInterTT	0.890909	1.197531	1.156250	1.040816	0.933333	1.141176	1.042553	1.240506	1.042553	minInterTC	0.884615	1.366197	1.211111	1.367089	0.975155	1.109890	1.000000	1.229885	1.010417	minInterCT	1.111111	1.326316	1.166667	1.319149	1.220000	1.509804	2.010101	0.968254	minInterCC	0.884615	0.716667	0.754386	0.618705	0.877358	0.082042	0.894737	0.772727	minInterTo
1.198737 1.198480	1.199020	1.198925	1.198399	1.199142	1.198666	1.198453	1.198835	avgInterTT	1.707463	1.707071	1.707664	1.707618	1.707431	1.705560	1.706505	1.705976	1.707585	avgInterTC	1.713273	1.713645	1.713712	1.712784	1.714598	1.713291	1.713535	1.713030	1.713067	avgInterCT	2.344977	2.343609	2.343364	2.343599	2.343697	2.344679	2.343833	2.343391	avgInterCC	1.774765	1.779339	1.777663	1.777251	1.776000	1.774700	1.773439	1.774545	avgInterTo
1.897059 2.136364	2.308824	1.954545	1.964286	1.958333	1.558824	2.130435	1.816901	maxInterTT	2.650000	3.267606	2.913793	2.704918	2.689655	2.262295	2.318182	2.672131	2.568966	maxInterTC	2.534483	2.919355	2.590164	2.131148	2.557377	2.639344	2.636364	2.661290	2.532258	maxInterCT	3.433962	3.288462	2.923077	3.211538	3.826923	3.245283	3.549020	4.296296	maxInterCC	3.433962	3.288462	2.923077	3.211538	3.826923	3.245283	3.000000	3.549020	maxInterTo
0.305556	0.307692	0.307692	0.300000	0.244898	0.307692	0.307692	0.193548	minNoInterTT	0.164557	0.324324	0.160000	0.315789	0.191176	0.324324	0.315789	0.333333	0.289474	minNoInterTC	0.276596	0.302326	0.307692	0.324324	0.218182	0.282051	0.232143	0.315789	0.217391	minNoInterCT	0.196970	0.282051	0.375000	0.226415	0.363636	0.236364	0.333333	0.209677	minNoInterCC	0.164557	0.282051	0.160000	0.226415	0.191176	0.236364	0.222222	0.193548	minNoInterTo
0.840785	0.838450	0.838316	0.844737	0.838128	0.840542	0.842231	0.845095	avgNoInterTT	0.823848	0.820798	0.823394	0.822087	0.823707	0.821448	0.820123	0.819556	0.824774	avgNoInterTC	0.823944	0.822681	0.826515	0.824166	0.829538	0.821866	0.827049	0.824548	0.825422	avgNoInterCT	0.778204	0.775222	0.780052	0.779392	0.776539	0.774182	0.774786	0.775211	avgNoInterCC	0.817121	0.815331	0.817669	0.816493	0.819332	0.814509	0.817024	0.818249	avgNoInterTo
6.071429	6.357143	6.142857	6.066667	6.071429	6.142857	6.428571	7.800000	maxNoInterTT	6.666667	6.800000	6.733333	6.866667	6.666667	7.000000	6.733333	6.666667	6.733333	maxNoInterTC	6.600000	6.800000	6.666667	6.733333	6.866667	6.600000	7.066667	6.733333	8.750000	maxNoInterCT	3.902439	3.410256	3.410256	3.342105	3.384615	3.307692	4.073171	3.562500	maxNoInterCC	6.666667	6.800000	6.733333	6.866667	6.866667	7.000000	7.066667	6 733333	maxNoInterTo
0.305556	0.307692	0.307692	0.300000	0.082042	0.307692	0.307692	0.193548	minTotalTT	0.164557	0.324324	0.160000	0.315789	0.191176	0.324324	0.315789	0.333333	0.289474	minTotalTC	0.276596	0.302326	0.307692	0.324324	0.218182	0.282051	0.232143	0.315789	0.217391	minTotalCT	0.196970	0.282051	0.375000	0.226415	0.363636	0.236364	0.333333	0.209677	minTotalCC	0.164557	0.282051	0.160000	0.226415	0.191176	0.082042	0.222222	0.193548	minTotalTo
1.127147 1.162651	1.090849	1.054681	1.021568	0.982534	0.947979	0.913476	0.880469	avgTotalTT	1.619102	1.529816	1.442383	1.353406	1.265569	1.175092	1.086038	0.996840	0.913055	aveTotalTC	1.624340	1.535452	1.447553	1.357337	1.272068	1.178436	1.092995	1.002244	0.914187	avgTotalCT	2.188299	2.029932	1.874371	1.717916	1.560118	1.401986	1.088595	0.932029	avgTotalCC	1.679001	1.586537	1.489665	1.392948	1.297666	1.198585	1.103949	1.007527	avgTotalTo
6.071429	6.357143	6.142857	6.066667	6.071429	6.142857	6.428571	7.800000	maxTotalTT	6.666667	6.800000	6.733333	6.866667	6.666667	7.000000	6.733333	6.666667	6.733333	maxTotalTC	6.600000	6.800000		6.733333		6.600000	7.066667	6.733333	8.750000	maxTotalCT	3.902439	3.410256	3.410256	3.342105	3.826923	3.307692	4.073171	4.296296	maxTotalCC	6.666667	6.800000	6.733333	6.866667	6.866667	7.000000	7.066667	6.733333	maxTotalTo

8.2.2 3D static

0.8	0.7	0.0	0.4	0.3	0.2	percratituter	nor-DairIntor	0.00	0.7	0.6	0.5	0.4	0.3	0.2	percPairInter	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	O 1	nercDairInter	0.9	0.8	0.0	0.5	0.4	0.3	0.2	0 1	nercPairInter	0.90	0.7	0.6	0.5	0.4	0.3	0.2	0 1	- DainTator
5166 5372	5052	5258	5194	5402	5110	COMICINCALII	COUR+Tr+crTT	7858	7836	8076	7698	7714	8034	7872	countInterTC	7806	7860	7788	7840	7984	7990	7750	8144	7716	CountInterCT	10692	10538	10642	10618	10558	10600	10538	10390	CountInterCC	31728	31318	32016	31440	31456	31786	31664	31348	Tn+To
45064 44458	44648	44904	45200	44914	44728	7.1 TANTITOMOTHER II	COUNT NO INTO THE	42172	41976	41716	42190	41686	42198	42212	countNoInterTC	42076	42110	42248	42218	42000	42376	41638	42450	42006	Count No InterCT	39566	39444	39810	39386	39282	39464	38946	39592	CountNoInterCC	168272	168682	167984	168560	168544	168214	168336	168650	Tn+onTo
0.170443 0.165548	0.175661	0.154879	0.172996	0.175214	0.173137	0 172088	min ThtorTT	0.247031	0.198095	0.246988	0.247273	0.250608	0.244048	0.248492	minInterTC	0.251225	0.243697	0.207767	0.247642	0.251526	0.247273	0.210473	0.247608	0.250900	minInter(T	0.610044	0.591033	0.455434	0.601732	0.596131	0.594958	0.617512	0 505030	minInterCC	0.165548	0.170443	0.154879	0.166393	0.172996	0.175214	0.173137	0 172088	-inTatosTo
0.212716 0.212138	0.212287	0.212777	0.212079	0.212193	0.212670	0 212261	orogin+orTT	0.384477	0.385020	0.384788	0.384614	0.384895	0.384604	0.384524	avgInterTC	0.384682	0.384246	0.384438	0.384456	0.384428	0.384651	0.384639	0.384309	0 384847	ThterCT	0.685710	0.685890	0.685913	0.686029	0.686025	0.685842	0.686027	0 685998	avoInterCC	0.456860	0.459256	0.458421	0.458186	0.457370	0.455768	0.457077	0 455944	TweetaTo.
0.257993 0.256236	0.245198	0.315145	0.293803	0.275281	0.245132	U SVZVZV U	may Interm	0.563492	0.534574	0.593454	0.583777	0.540214	0.550667	0.551724	maxInterTC	0.558680	0.544607	0.814961	0.583558	0.546419	0.583222	0.542625	0.581646	0 576975	may InterCT	0.742857	1.120135	0.604139	0.883178	0.797639	0.764103	0.868118	0 768836	may InterCC	0.742857	1 120125	0.864139	0.883178	0.797639	0.764103	0.868118	0 768836	Tu+>To
0.033962 0.034704	0.034660	0.033920	0.034660	0.035294	0.034005	U U3400E	minWoIntorTT	0.039829	0.040847	0.038516	0.040059	0.041221	0.040847	0.039623	minNoInterTC	0.040179	0.040971	0.041298	0.041411	0.040057	0.041221	0.040876	0.039764	0 040119	minNoInterCT	0.057613	0.059426	0.058943	0.058000	0.058704	0.059184	0.058943	0 058233	minNoInterCC	0.033962	0.034660	0.033920	0.035623	0.034660	0.035294	0.034005	0 034005	Martatana
0.589733 0.588159	0.589768	0.587383	0.590892	0.588702	0.584720	O ESSERE	avelle InterTT	0.442127	0.439474	0.439599	0.439146	0.438555	0.439259	0.441964	avgNoInterTC	0.437544	0.439741	0.438669	0.438302	0.439683	0.440996	0.442772	0.440253	0 441014	The toll older	0.330888	0.327747	0.327616	0.326951	0.329687	0.325275	0.326211	0.327497	avoNoInterCC	0.453263	0.452785	0.452731	0.451684	0.454649	0.453289	0.452684	0 453139	The American
7.703704 7.629630	7.555556	7.607143	7.518519	7.481481	7.370370	2 SOCO TITLE TITLE	mayNo TatorTT	7.777778	8.138889	8.485714	8.222222	8.194444	7.888889	8.371429	maxNoInterTC	7.861111	8.000000	7.864865	7.861111	8.194444	8.138889	8.250000	8.432432	8 222222	mayNoInterCT	2.621118	2.641509	2.637436	2.656250	2.679245	2.672956	2.743750	2 660377	mayNoInterCC	7.861111	8.138889	8.485714	8.222222	8.194444	8.250000	8.432432	MaxNormer to	WATH-ANTO
0.033962 0.034704	0.034660	0.033920	0.034660	0.035294	0.034005	0 034005	minTc+alTT	0.039629	0.040847	0.038516	0.040059	0.041221	0.040847	0.039023	minTotalTC	0.040179	0.040971	0.041298	0.041411	0.040057	0.041221	0.040876	0.039764	0 040119	minTotal CT	0.057613	0.059426	0.058943	0.058000	0.058704	0.059184	0.058943	0 058233	minTotalCC	0.033962	0.034660	0.033920	0.035623	0.034660	0.035294	0.034005	0 034005	
0.288119 0.249740	0.325531	0.362619	0.439367	0.475749	0.510310	O EEOOSE	awaratalar	0.390185	0.401356	0.406713	0.411880	0.417091	0.422862	0.430476	avgTotalTC	0.389968	0.395345	0.400707	0.405994	0.412055	0.418458	0.425332	0.429065	0 435398	TOTE+TOWN	0.650227	0.614262	0.542576	0.506490	0.472222	0.433445	0.398174	0 363347	aveTotalCC	0.456500	0.45/314	0.456145	0.454935	0.455737	0.454033	0.453562	0 453413	T
7.703704 7.629630	7.555556	7.607143	7.518519	7.481481	7.370370	1 E30530	mayTo+alTT	7.777778	8.138889	8.485714	8.222222	8.194444	7.888889	8.371429	maxTotalTC	7.861111	8.000000			8.194444		8.250000	8.432432	8 222222	mayTo+alfT	2.621118	2.641509	2.639241	2.656250	2.679245	2.672956	2.743750	2 660377	mayTotal CC	7.861111	8.138889	8.485714	8.222222	8.194444	8.250000	8.432432	8 222222	+T^+>1 To

8.2.3 2D dynamic

0.8	0.7	0.6	э . Э .	0 0	0.2	0.1	percP	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.1	percP	0.9	0.8	0.7	0.6	0.5	0.4	0 .	0 0	percP	0.9	0.8	0.7	0.6	0.0	ο	0.2	0.1	percPa	0.9))	0.7	0 0	0.0	0.3	0.2	0.1	percPa
							percPairInter									percPairInter									percPairInter									percPairInter									percPairInter
17258 17512	17108	17352	17410	17416	17236	17310	countInterTT	18562	18608	18702	18524	18500	18558	18176	18668	countInterTC	18536	18674	18730	18730	18742	18260	18768	18500	countInterCT	19838	19808	19514	19608	19750	19770	19996	20156	countInterCC	74448	74348	74054	7/01/	74030	74130	73860	74634	countInterTo
32990 32946	32604	32858	32830	33118	33028	33014	countNoInterTT	31392	31586	31736	31374	31534	31474	31374	30972	countNoInterTC	30958	31252	31546	31408	31236	32166	31700	31146	countNoInterCT	30248	29816	30048	30138	29988	29672	30140	30228	countNoInterCC	125544	125644	125934	105770	125960	125864	126132	125360	countNoInterTo
0.776074 1.120370	1.131222	1.162679	1 183099	1.193396	1.114679	0.910072	minInterTT	1.312796	1.424870	1.424870	1.286232	1.301887	1.231111	1.089844	1.220264	minInterTC	1.188841	1.434555	1.373134	1.189655	1.373134	1.404145	1.262172	0 992727	minInterCT	1.681614	2.069767	1.933333	1.453061	2.069767	1.883598	1.284810	1.589744	minInterCC	1.120370	0 776074	1. 131222	1.163099	1.141553	1.089844	0.992727	0.910072	minInterTo
1.556988 1.556765	1.557946	1.557244	1.557219	1.55/668	1.557638	1.557200	avgInterTT	2.052561	2.052751	2.052920	2.052597	2.052393	2.053298	2.052387	2.052872	avgInterTC	2.056909	2.056744	2.057163	2.057401	2.056833	2.057648	2.056980	2.056518	avgInterCT	2.687086	2.687400	2.687709	2.687214	2.687485	2.686887	2.686885	2.686982	avgInterCC	2.106101	2 107760	2.106917	2.106226	2.108509	2.106538	2.110075	2.110064	avgInterTo
2.735849 2.169591	2.944785	2.325153	2.018750	2.284810	1.925000	2.291925	maxInterTT	2.777778	3.343195	3.253623	2.661871	2.948905	4.676259	2.791367	3.141844	maxInterTC	2.771429	2.892086	2.715556	2.895425	2.811594	3.207143	2.769784	2.669118	maxInterCT	3.446970	3.240602	3.932331	4.507463	3.076923	3.837037	5.152672	3.514925	maxInterCC	3.446970	3 343195	3.932331	4 507463	4.676259	3.837037	5.152672	3.514925	maxInterTo
0.158879 0.155556	0.159574	0.161616	0.163265	0.128000	0.163265	0.124088	minNoInterTT	0.144144	0.131579	0.139344	0.121429	0.131783	0.100000	0.129630	0.145455	minNoInterTC	0.144144	0.146789	0.145455	0.148148	0.119658	0.115646	0.142857	0.145455	minNoInterCT	0.177215	0.175000	0.109290	0.146789	0.168142	0.179245	0.170000	0.190476	minNoInterCC	0.144144	0.131579	0.109290	0.119656	0.100000	0.128000	0.144144	0.124088	minNoInterTo
1.155859 1.173277	1.147668	1.168847	1.138520	1.188439	1.138910	1.165599	avgNoInterTT	1.133875	1.145446	1.179029	1.153910	1.140832	1.152509	1.128056	1.135274	avgNoInterTC	1.144618	1.160466	1.155447	1.144032	1.175631	1.173489	1.125788	1.151/14	avgNoInterCT	1.115490	1.100581	1.123099	1.139496	1.129351	1.082581	1.134145	1.125729	avgNoInterCC	1.142434	1 141269	1.151658	1 151900	1.140739	1.132652	1.147273	1.145043	avgNoInterTo
10.625000 12.916667	10.541667	11.080000	10.750000	12.269231	11.086957	10.708333	maxNoInterTT	13.875000	13.920000	14.000000	14.041667	14.280000	14.269231	13.833333	13.833333	maxNoInterTC	14.840000	13.750000	13.875000	14.080000	13.875000	14.208333	14.083333	13.791667	maxNoInterCT	14.142857	13.555556	13.689655	13.740741	14.678571	15.357143	13.370370	14.344828	maxNoInterCC	14.840000	13 920000	14.000000	14.670571	14.269231	15.357143	14.791667	14.344828	maxNoInterTo
0.158879 0.155556	0.159574	0.161616	0.163265	0.128000	0.163265	0.124088	minTotalTT	0.144144	0.131579	0.139344	0.121429	0.131783	0.100000	0.129630	0.145455	minTotalTC	0.144144	0.146789	0.145455	0.148148	0.119658	0.115646	0.142857	0.145455	minTotalCT	0.177215	0.175000	0.109290	0.146789	0.168142	0.179245	0.170000	0.190476	minTotalCC	0.144144	0.131579	0.121429	0.119656	0.100000	0.128000	0.144144	0.124088	minTotalTo
1.476762 1.518416	1.434862	1.401885	1.347870	1.299207	1.222656	1.204759	avgTotalTT	1.960693	1.871290	1.790753	1.693122	1.596612	1.512824	1.405355	1.227034	avgTotalTC	1.965680	1.877489	1.786648	1.692053	1.616232	1.527152	1.405146	1.242194	avgTotalCT	2.529927	2.370036	2.218326	2.068127	1.908418	1.563873	1.444693	1.281854	avgTotalCC	2.009734	1 914462	1.820339	1.020104	1.527847	1.424818	1.339833	1.241545	avgTotalTo
10.625000 12.916667	10.541667	11.080000	10.750000	12.269231	11.086957	10.708333	maxTotalTT	13.875000	13.920000	14.000000	14.041667	14.280000	14.269231	13.833333	13.833333	maxTotalTC	14.840000	13.750000		14.080000		14.208333	14.083333	13.791667	maxTotalCT	14.142857	13.555556	13.689655	13.740741	14.678571	15.357143	13.370370	14.344828	maxTotalCC	14.840000	13 920000	14.000000	14.070071	14.269231	15.357143	14.791667	14.344828	maxTotalTo

8.2.4 3D dynamic

0.8	0.7	0.5	0.4	0.3	0.2	percrairinter	0. 9	000	0.7	0.6	0.5	0.4	0.3	0 0.1	percPairInter	0.9	0.8	0.7	0.6	0.5	0.0	O . K	0.1	percPairInter	0.9	0.8	0.7	0.6	о.	0.3	0.2	0.1	nercPairInter	O C	0.7	0.6	0.5	0.4	0.3	0.2	percPairInter
10326 10274	10130	10308	10042	9988	10176	+	╁	13084	13136	12938	12746	13044	13200	13410	+	13322	12872	13066	13092	13250	13238	13032	13106	er countInterCT	15644	16266	15714	16224	16376	16060	15858		╬	52548	52046	52366	52680	52180	52248	52180	\vdash
40030	39664	39542	40214	39604	39876	countNointerii	14769C	36816	36960	36656	36716	36636	36976	36792	countNoInterTC	36466	36548	37330	36970	37232	36944	36934	37006	countNoInterCT	34282	34058	34000	34008	33808	34238	34214	+	╬	147718	147954	147634	147318	147820	147752	147820	+
0.288344	0.287386	0.301759	0.284750	0.291235	0.295530	mininterii	0.404000	0.454662	0.468041	0.464640	0.463398	0.464924	0.469051	0.46/119	minInterTC	0.471841	0.470270	0.455041	0.376242	0.463431	0.471399	0.46/99/	0.472222	minInterCT	2.041491	2.140136	2.343877	1.835840	1 952131	1.716621	2.074552	2.006906	minInterCC	0.288344	0.287386	0.295597	0.301759	0.284750	0.291235	0.302134	minInterTo
0.566538	0.565454	0.567024	0.566230	0.565655	0.568691	avginterii	1.429030	1.426933	1.426586	1.427113	1.426045	1.425422	1.425700	1.427916	avgInterTC	1.426264	1.427704	1.425779	1.425273	1.425816	1.427499	1.425228	1.425827	avgInterCT	2.637381	2.637085	2.637677	2.637114	2.636592	2.636809	2.637926	2.637067	aveInterCC	1.620332	1.624435	1.635157	1.634563	1.628638	1.633845	1.626781	avgInterTo
0.793594	0.751237	0.760319	0.849043	0.767725	0.912080	maxinterii	2.000000	3.537377	2.645929	2.731873	2.590657	2.625100	2.632970	2.580315	maxInterTC	2.610224	2.574265	2.558011	2.556701	2.574822	2.723305	2.606891	2.579031	maxInterCT	2.929745	3.066116	3.121185	3.451040	3.03/36/	3.050224	2.954587	2.930846	max InterCC	2.929745	3.121185	3.451040	2.958521	3.037367	3.050224	2.954587	maxInterTo
0.026604	0.027353	0.026054	0.026814	0.027200	0.027092	minvointer!!	0.1020.0	0.027508	0.026657	0.028030	0.026316	0.027441	0.026877	0.027092	minNoInterTC	0.027049	0.027331	0.027846	0.028135	0.026899	0.027397	0.027287	0.028239	minNoInterCT	0.039700	0.038947	0.040975	0.039615	0.040975	0.039832	0.040393	0.039320	minNoInterCC	0.026504	0.026657	0.027353	0.026054	0.026814	0.026877	0.026139	minNoInterTo
0.747468	0.737877	0.748889	0.741519	0.741737	0.751215	avgNointerii	0.070740	0.669689	0.678530	0.665690	0.670671	0.677009	0.675806	0.664325	avgNoInterTC	0.680328	0.681742	0.683470	0.660268	0.674866	0.658867	0.660835	0.658123	avgNoInterCT	0.584295	0.621098	0.592244	0.616276	0.606213	0.594179	0.595183	0.565685	aveNoInterCC	0.674348	0.675858	0.676351	0.678659	0.673728	0.670821	0.673350	avgNoInterTo
27.916667	27.342857	27.648649	26.486486	26.567568	26.611111	maxNointerii	20.700000	21.959184	21.840000	21.346939	22.040816	21.600000	21.215686	21.183673	maxNoInterTC	21.320000	22.795918	22.163265	19.500000	21.940000	20.780000	20.490196	22.240000	maxNoInterCT	13.162896	13.294372	13.064935	13.110619	13.098655	13.156951	13.229075	13.157205	maxNoInterCC	27.916667	27.342857	26.921053	27.648649	26.486486	26.567568	26.611111	maxNoInterTo
0.026604	0.027353	0.026054	0.026814	0.027200	0.027092	miniotalii	0.020.0	0.027508	0.026657	0.028030	0.026316	0.027441	0.026877	0.027092	minTotalTC	0.027049	0.027331	0.027846	0.028135	0.026899	0.027397	0.027287	0.028239	minTotalCT	0.039700	0.038947	0.040975	0.039615	0.040975	0.039832	0.040393	0.039320	minTotal CC	0.026504	0.026657	0.027353	0.026054	0.026814	0.026877	0.027092	minTotalTo
0.602724	0.640131	0.657957	0.671403	0.688913	0.714710	avgiotalii	1.504047	1.275484	1.202169	1.122544	1.048358	0.976374	0.900774	0.740684	avgTotalTC	1.351670	1.278511	1.203086	1.119271	1.050341	0.966320	0.821404	0.734893	avgTotalCT	2.432072	2.233888	2.024047	1.828779	1.418364	1.206968	1.003731	0.772824	aveTotalCC	1.525733	1.339862	1.251635	1.156611	1.055692	0.959728	0.758221	avgTotalTo
27.600000	27.342857	27.648649	26.486486	26.567568	26.611111	maxiotalii	20.70000	21.959184	21.840000	21.346939	22.040816	21.600000	21.215686	21.183673	maxTotalTC	21.320000	22.795918			21.940000	20.780000	20.490196	22.240000	maxTotalCT	13.162896	13.294372	13.064935	13.110619	13.098655	13.156951	13.229075	13.157205	maxTotalCC	27.916667	27.342857	26.921053	27.648649	26.486486	26.567568	26.810811	maxTotalTo

9 Comments about the qualification results

10 Conclusion

The validation proves that the FMB algorithm correctly identifies intersection of pairs of Frames in accordance with the results of the SAT algorithm.

The qualification shows that the FMB is 1.2 to 1.8 times slower than the SAT algorithm in the 2D dynamic case. However it is around 2 times faster in the 3D static case, and up to 1.25 times faster in 3D dynamic and up to 1.1 times faster in the 2D static case if the percentage of tested pairs in intersection is less than, respectively, around 40% and 25%.

On one given pair of Frame, the relative speed of the FMB algorithm varies widely, from around 20 times slower to 50 times faster. This is explained by the way the 2 algorithms works: they both make the asumption that the Frames are intersecting and run through a series of tests to try to prove it wrong. This leads to best cases and worst cases for both algorithm: a non interesecting detected right from the first test, or one detected by the last test. These best and worst cases are different for the two algorithms as the tests they performed are completely different. But in average, the FMB algorithm has the advantage for all but the 2D dynamic case.

11 Annex

11.1 Runtime environment

Results introduce in this paper have been produced by compiling and running the corresponding algorithms in the following environment:

```
/0/2f
                           memory
                                           16GiB System Memory
/0/2f/0
                           memory
                                           [empty]
/0/2f/1
                           memory
                                           16GiB SODIMM DDR4 Synchronous 2400
    MHz (0.4 ns)
/0/39
                                           384KiB L1 cache
                           memory
                                           1536KiB L2 cache
/0/3a
                           memory
                                           12MiB L3 cache
/0/3b
                           memory
                                           Intel(R) Core(TM) i7-8700T CPU @
/0/3c
                           processor
   2.40GHz
/0/100
                           bridge
                                           8th Gen Core Processor Host Bridge
   /DRAM Registers
/0/100/2
                           display
                                           Intel Corporation
                                           Cannon Lake PCH Thermal Controller
/0/100/12
                            generic
/0/100/14
                                           Cannon Lake PCH USB 3.1 xHCI Host
                            bus
    Controller
/0/100/14/0
               usb1
                           bus
                                           xHCI Host Controller
/0/100/14/0/5
                           input
                                           ELECOM Wired Keyboard
/0/100/14/0/6
                           input
                                           PTZ-630
/0/100/14/0/7
                                           USB2.0-CRW
                           generic
                           communication Bluetooth wireless interface
/0/100/14/0/e
/0/100/14/1
                                           xHCI Host Controller
               usb2
                           bus
/0/100/14.2
                           memory
                                           RAM memory
/0/100/14.3
                                           Wireless-AC 9560 [Jefferson Peak]
               wlo1
                           network
/0/100/16
                            communication Cannon Lake PCH HECI Controller
/0/100/17
                                           Cannon Lake PCH SATA AHCI
                           storage
    Controller
/0/100/1f
                           bridge
                                           Intel Corporation
/0/100/1f.3
                           multimedia
                                           Cannon Lake PCH cAVS
/0/100/1f.4
                                           Cannon Lake PCH SMBus Controller
                           hus
/0/100/1f.5
                                           Cannon Lake PCH SPI Controller
                           bus
                                           Ethernet Connection (7) I219-V
/0/100/1f.6
               eno2
                           network
/0/1
               scsi0
                           storage
/0/1/0.0.0
                                           128GB HFS128G39TND-N21
               /dev/sda
                           disk
/0/1/0.0.0/1
                                           99MiB Windows FAT volume
                           volume
/0/1/0.0.0/2
               /dev/sda2
                           volume
                                           15MiB reserved partition
/0/1/0.0.0/3
               /dev/sda3
                                           83GiB Windows NTFS volume
                           volume
               /dev/sda4
                                           499MiB Windows NTFS volume
/0/1/0.0.0/4
                           volume
/0/1/0.0.0/5
               /dev/sda5
                                           35GiB EXT4 volume
                           volume
/0/2
               scsi2
                           storage
                                           500GB ST500LM034-2GH17
/0/2/0.0.0
               /dev/sdb
                           disk
/0/2/0.0.0/1
               /dev/sdb1
                           volume
                                           463GiB EXT4 volume
/0/2/0.0.0/2
               /dev/sdb2
                                           499MiB Windows FAT volume
                           volume
/0/3
               scsi5
                           storage
/0/3/0.0.0
               /dev/cdrom
                                           BD-RE BU50N
                           disk
                                           To Be Filled By O.E.M.
/1
                           power
-----
lscpu
Architecture:
                     x86_64
                     32-bit, 64-bit
Little Endian
CPU op-mode(s):
```

Byte Order: CPU(s): 12

On-line CPU(s) list: 0-11 Thread(s) per core: 2 Core(s) per socket: 6 Socket(s): NUMA node(s):

Vendor ID: GenuineIntel

CPU family: Model: 158

```
Stepping:
                     10
CPU MHz:
                     2216.548
CPU max MHz:
                     4000.0000
CPU min MHz:
                    800.0000
BogoMIPS:
                     4800.00
                    VT - x
Virtualization:
L1d cache:
                     32K
L1i cache:
                     32K
L2 cache:
                     256K
L3 cache:
                     12288K
NUMA nodeO CPU(s):
                    0 - 11
Flags:
                     fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge
    mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe
    syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts
    rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni
    pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr
    pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes
    xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb
    invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept
     vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid
    rtm mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1
    xsaves dtherm ida arat pln pts hwp_notify hwp_act_window hwp_epp
    md_clear flush_l1d
=========
gcc -v
Using built-in specs.
COLLECT_GCC=gcc
COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-linux-gnu/7/lto-wrapper
OFFLOAD_TARGET_NAMES=nvptx-none
OFFLOAD_TARGET_DEFAULT=1
Target: x86_64-linux-gnu
Configured with: ../src/configure -v --with-pkgversion='Ubuntu 7.4.0-1
    ubuntu1~18.04.1' --with-bugurl=file:///usr/share/doc/gcc-7/README.Bugs
    --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++ --prefix=/
    usr --with-gcc-major-version-only --program-suffix=-7 --program-prefix=
    x86_64-linux-gnu---enable-shared --enable-linker-build-id --libexecdir
    =/usr/lib --without-included-gettext --enable-threads=posix --libdir=/
    usr/lib --enable-nls --with-sysroot=/ --enable-clocale=gnu --enable-
    libstdcxx-debug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi
    =new --enable-gnu-unique-object --disable-vtable-verify --enable-libmpx
    --enable-plugin --enable-default-pie --with-system-zlib --with-target-
    system-zlib --enable-objc-gc=auto --enable-multiarch --disable-werror --
    with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32,m64,mx32 --
    enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none
    --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu
     --host=x86_64-linux-gnu --target=x86_64-linux-gnu
Thread model: posix
gcc version 7.4.0 (Ubuntu 7.4.0-1ubuntu1~18.04.1)
```

Intel(R) Core(TM) i7-8700T CPU @ 2.40GHz

11.2 SAT implementation

Model name:

In this section I introduce the code of the implementation of the SAT algorithm, used to validate and qualify the FMB algorithm.

11.2.1 Header

```
#ifndef __SAT_H_
#define __SAT_H_
#include <stdbool.h>
#include <string.h>
#include "frame.h"
// ----- Functions declaration -----
// Test for intersection between 2D Frame that and 2D Frame tho
// Return true if the two Frames are intersecting, else false
bool SATTestIntersection2D(
 const Frame2D* const that,
 const Frame2D* const tho);
// Test for intersection between moving 2D Frame that and 2D
// Frame tho
// Return true if the two Frames are intersecting, else false
bool SATTestIntersection2DTime(
  const Frame2DTime* const that,
  const Frame2DTime* const tho);
// Test for intersection between 3D Frame that and 3D Frame tho
// Return true if the two Frames are intersecting, else false
bool SATTestIntersection3D(
  const Frame3D* const that,
 const Frame3D* const tho);
// Test for intersection between moving 3D Frame that and 3D
// Frame tho
// Return true if the two Frames are intersecting, else false
bool SATTestIntersection3DTime(
 const Frame3DTime* const that,
  const Frame3DTime* const tho);
#endif
11.2.2
         Body
#include "sat.h"
// ----- Macros -----
#define EPSILON 0.000001
// ----- Functions declaration -----
// Check the intersection constraint along one axis for 3D Frames
bool CheckAxis3D(
 const Frame3D* const that,
  const Frame3D* const tho,
  const double* const axis);
// Check the intersection constraint along one axis for moving 3D Frames
bool CheckAxis3DTime(
 const Frame3DTime* const that,
  const Frame3DTime* const tho,
  const double* const axis,
  const double* const relSpeed);
```

```
// ----- Functions implementation -----
// Test for intersection between 2D Frame that and 2D Frame tho
// Return true if the two Frames are intersecting, else false
bool SATTestIntersection2D(
  const Frame2D* const that,
  const Frame2D* const tho) {
  // Declare a variable to loop on Frames and commonalize code
  const Frame2D* frameEdge = that;
  // Loop to commonalize code when checking SAT based on that's edges
  // and then tho's edges
  for (int iFrame = 2;
       iFrame--;) {
    // Shortcuts
    FrameType frameEdgeType = frameEdge->type;
    const double* frameEdgeCompA = frameEdge->comp[0];
    const double* frameEdgeCompB = frameEdge -> comp[1];
    // Declare a variable to memorize the number of edges, by default 2
    int nbEdges = 2;
    // Declare a variable to memorize the third edge in case of
    // tetrahedron
    double thirdEdge[2];
    // If the frame is a tetrahedron
    if (frameEdgeType == FrameTetrahedron) {
      // Initialise the third edge
      thirdEdge[0] = frameEdgeCompB[0] - frameEdgeCompA[0];
thirdEdge[1] = frameEdgeCompB[1] - frameEdgeCompA[1];
      // Correct the number of edges
      nbEdges = 3;
    // Loop on the frame's edges
    for (int iEdge = nbEdges;
         iEdge--;) {
      // Get the current edge
      const double* edge =
        (iEdge == 2 ? thirdEdge : frameEdge->comp[iEdge]);
      \ensuremath{//} Declare variables to memorize the boundaries of projection
      // of the two frames on the current edge
      double bdgBoxA[2];
      double bdgBoxB[2];
      // Declare two variables to loop on Frames and commonalize code
      const Frame2D* frame = that;
      double* bdgBox = bdgBoxA;
      // Loop on Frames
      for (int iFrame = 2;
           iFrame--;) {
```

```
// Shortcuts
const double* frameOrig = frame->orig;
const double* frameCompA = frame->comp[0];
const double* frameCompB = frame->comp[1];
FrameType frameType = frame->type;
// Get the number of vertices of frame
int nbVertices = (frameType == FrameTetrahedron ? 3 : 4);
// Declare a variable to memorize if the current vertex is
// the first in the loop, used to initialize the boundaries
bool firstVertex = true;
// Loop on vertices of the frame
for (int iVertex = nbVertices;
     iVertex--;) {
  // Get the vertex
  double vertex[2];
  vertex[0] = frameOrig[0];
  vertex[1] = frameOrig[1];
  switch (iVertex) {
    case 3:
      vertex[0] += frameCompA[0] + frameCompB[0];
      vertex[1] += frameCompA[1] + frameCompB[1];
      break;
    case 2:
      vertex[0] += frameCompA[0];
vertex[1] += frameCompA[1];
      break;
    case 1:
      vertex[0] += frameCompB[0];
      vertex[1] += frameCompB[1];
      break;
    default:
      break;
  }
  // Get the projection of the vertex on the normal of the edge
  // Orientation of the normal doesn't matter, so we
  // use arbitrarily the normal (edge[1], -edge[0]) \,
  double proj = vertex[0] * edge[1] - vertex[1] * edge[0];
  // If it's the first vertex
  if (firstVertex == true) {
      \ensuremath{//} Initialize the boundaries of the projection of the
      // Frame on the edge
      bdgBox[0] = proj;
      bdgBox[1] = proj;
      // Update the flag to memorize we did the first vertex
      firstVertex = false;
  // Else, it's not the first vertex
  } else {
    // Update the boundaries of the projection of the Frame on
    // the edge
    if (bdgBox[0] > proj)
      bdgBox[0] = proj;
```

```
if (bdgBox[1] < proj)</pre>
               bdgBox[1] = proj;
          }
        // Switch the frame to check the vertices of the second Frame
        frame = tho;
        bdgBox = bdgBoxB;
      // If the projections of the two frames on the edge are
      // not intersecting
      if (bdgBoxB[1] < bdgBoxA[0] ||</pre>
          bdgBoxA[1] < bdgBoxB[0]) {
          // There exists an axis which separates the Frames,
          // thus they are not in intersection
          return false;
      }
    }
    // Switch the frames to test against the second Frame's edges
    frameEdge = tho;
  }
  // If we reaches here, it means the two Frames are intersecting
  return true;
}
// Test for intersection between moving 2D Frame that and 2D
// Return true if the two Frames are intersecting, else false
bool SATTestIntersection2DTime(
  const Frame2DTime* const that,
const Frame2DTime* const tho) {
  // Declare a variable to loop on Frames and commonalize code const Frame2DTime \ast frameEdge = that;
  // Declare a variable to memorize the speed of tho relative to that
  double relSpeed[2];
  relSpeed[0] = tho->speed[0] - that->speed[0];
  relSpeed[1] = tho->speed[1] - that->speed[1];
  // Loop to commonalize code when checking SAT based on that's edges
  // and then tho's edges
  for (int iFrame = 2;
       iFrame--;) {
    // Shortcuts
    FrameType frameEdgeType = frameEdge->type;
    const double* frameEdgeCompA = frameEdge->comp[0];
    const double* frameEdgeCompB = frameEdge->comp[1];
    // Declare a variable to memorize the number of edges, by default 2
```

```
int nbEdges = 2;
// Declare a variable to memorize the third edge in case of
// tetrahedron
double thirdEdge[2];
// If the frame is a tetrahedron
if (frameEdgeType == FrameTetrahedron) {
         // Initialise the third edge
        thirdEdge[0] = frameEdgeCompB[0] - frameEdgeCompA[0];
        thirdEdge[1] = frameEdgeCompB[1] - frameEdgeCompA[1];
        // Correct the number of edges
        nbEdges = 3;
// If the current frame is the second frame
if (iFrame == 1) {
        // Add one more edge to take into account the movement
        // of tho relative to that
        ++nbEdges;
// Loop on the frame's edges
for (int iEdge = nbEdges;
                     iEdge--;) {
        // Get the current edge
        const double* edge =
                  (iEdge == 3 ? relSpeed :
                          (iEdge == 2 ?
                                   (frameEdgeType == FrameTetrahedron ? thirdEdge : relSpeed) :
                                   frameEdge ->comp[iEdge]));
        // Declare variables to memorize the boundaries of projection % \left( 1\right) =\left( 1\right) \left( 1\right
         // of the two frames on the current edge
        double bdgBoxA[2];
        double bdgBoxB[2];
        // Declare two variables to loop on Frames and commonalize code
        const Frame2DTime* frame = that;
        double* bdgBox = bdgBoxA;
         // Loop on Frames
        for (int iFrame = 2;
                             iFrame--;) {
                 // Shortcuts
                 const double* frameOrig = frame->orig;
                 const double* frameCompA = frame->comp[0];
const double* frameCompB = frame->comp[1];
                 FrameType frameType = frame->type;
                 // \ensuremath{\mathsf{Get}} the number of vertices of frame
                 int nbVertices = (frameType == FrameTetrahedron ? 3 : 4);
                 // Declare a variable to memorize if the current vertex is
                 // the first in the loop, used to initialize the boundaries
```

```
bool firstVertex = true;
// Loop on vertices of the frame
for (int iVertex = nbVertices;
                        iVertex--;) {
         // Get the vertex
         double vertex[2];
         vertex[0] = frameOrig[0];
vertex[1] = frameOrig[1];
         switch (iVertex) {
                   case 3:
                             vertex[0] += frameCompA[0] + frameCompB[0];
                             vertex[1] += frameCompA[1] + frameCompB[1];
                           break;
                   case 2:
                          vertex[0] += frameCompA[0];
                            vertex[1] += frameCompA[1];
                   case 1:
                             vertex[0] += frameCompB[0];
                             vertex[1] += frameCompB[1];
                           break;
                   default:
                            break;
         // \ensuremath{\mathsf{Get}} the projection of the vertex on the normal of the edge
         // Orientation of the normal doesn't matter, so we
         // use arbitrarily the normal (edge[1], -edge[0])
         double proj = vertex[0] * edge[1] - vertex[1] * edge[0];
         // If it's the first vertex
         if (firstVertex == true) {
                             // Initialize the boundaries of the projection of the
                             // Frame on the edge \,
                            bdgBox[0] = proj;
bdgBox[1] = proj;
                             // Update the flag to memorize we did the first vertex
                             firstVertex = false;
          // Else, it's not the first vertex
         } else {
                   // Update the boundaries of the projection of the Frame on
                   // the edge
                   if (bdgBox[0] > proj)
                             bdgBox[0] = proj;
                   if (bdgBox[1] < proj)</pre>
                             bdgBox[1] = proj;
         // If we are checking the second frame's vertices % \left( 1\right) =\left( 1\right) \left( 
         if (frame == tho) {
                   // Check also the vertices moved by the relative speed
                   vertex[0] += relSpeed[0];
                   vertex[1] += relSpeed[1];
```

```
proj = vertex[0] * edge[1] - vertex[1] * edge[0];
            if (bdgBox[0] > proj)
              bdgBox[0] = proj;
            if (bdgBox[1] < proj)</pre>
              bdgBox[1] = proj;
         }
        // Switch the frame to check the vertices of the second Frame
        frame = tho;
        bdgBox = bdgBoxB;
      }
      // If the projections of the two frames on the edge are
      // not intersecting
      if (bdgBoxB[1] < bdgBoxA[0] ||
         bdgBoxA[1] < bdgBoxB[0]) {
         // There exists an axis which separates the Frames,
         // thus they are not in intersection
         return false;
     }
   }
   // Switch the frames to test against the second Frame's edges
   frameEdge = tho;
 // If we reaches here, it means the two Frames are intersecting
 return true;
// Test for intersection between 3D Frame that and 3D Frame tho
// Return true if the two Frames are intersecting, else false
bool SATTestIntersection3D(
 const Frame3D* const that,
 const Frame3D* const tho) {
 // Declare two variables to memorize the opposite edges in case
 // of tetrahedron
  double oppEdgesThat[3][3];
 double oppEdgesTho[3][3];
 // Declare two variables to memorize the number of edges, by default 3
 int nbEdgesThat = 3;
 int nbEdgesTho = 3;
 // If the first Frame is a tetrahedron
 if (that->type == FrameTetrahedron) {
   // Shortcuts
   const double* frameCompA = that->comp[0];
```

```
const double* frameCompB = that->comp[1];
  const double* frameCompC = that->comp[2];
  // Initialise the opposite edges
  oppEdgesThat[0][0] = frameCompB[0] - frameCompA[0];
  oppEdgesThat[0][1] = frameCompB[1] - frameCompA[1];
oppEdgesThat[0][2] = frameCompB[2] - frameCompA[2];
  oppEdgesThat[1][0] = frameCompB[0] - frameCompC[0];
oppEdgesThat[1][1] = frameCompB[1] - frameCompC[1];
oppEdgesThat[1][2] = frameCompB[2] - frameCompC[2];
  oppEdgesThat[2][0] = frameCompC[0] - frameCompA[0];
  oppEdgesThat[2][1] = frameCompC[1] - frameCompA[1];
  oppEdgesThat[2][2] = frameCompC[2] - frameCompA[2];
  // Correct the number of edges
  nbEdgesThat = 6;
}
// If the second Frame is a tetrahedron
if (tho->type == FrameTetrahedron) {
  // Shortcuts
  const double* frameCompA = tho->comp[0];
  const double* frameCompB = tho->comp[1];
  const double* frameCompC = tho->comp[2];
  // Initialise the opposite edges
  oppEdgesTho[0][0] = frameCompB[0] - frameCompA[0];
oppEdgesTho[0][1] = frameCompB[1] - frameCompA[1];
  oppEdgesTho[0][2] = frameCompB[2] - frameCompA[2];
  oppEdgesTho[1][0] = frameCompB[0] - frameCompC[0];
oppEdgesTho[1][1] = frameCompB[1] - frameCompC[1];
  oppEdgesTho[1][2] = frameCompB[2] - frameCompC[2];
  oppEdgesTho[2][0] = frameCompC[0] - frameCompA[0];
  oppEdgesTho[2][1] = frameCompC[1] - frameCompA[1];
  oppEdgesTho[2][2] = frameCompC[2] - frameCompA[2];
  // Correct the number of edges
  nbEdgesTho = 6;
}
// Declare variables to loop on Frames and commonalize code
const Frame3D* frame = that;
const double (*oppEdgesA)[3] = oppEdgesThat;
// Loop to commonalize code when checking SAT based on that's edges
// and then tho's edges
for (int iFrame = 2;
      iFrame--;) {
  // Shortcuts
  FrameType frameType = frame->type;
  const double* frameCompA = frame->comp[0];
  const double* frameCompB = frame->comp[1];
const double* frameCompC = frame->comp[2];
```

```
// Declare a variable to memorize the number of faces, by default 3
int nbFaces = 3;
// Declare a variable to memorize the normal to faces
// Arrangement is normFaces[iFace][iAxis]
double normFaces[4][3];
// Initialise the normal to faces
normFaces[0][0] =
  frameCompA[1] * frameCompB[2] -
  frameCompA[2] * frameCompB[1];
normFaces[0][1] =
  frameCompA[2] * frameCompB[0] -
  frameCompA[0] * frameCompB[2];
normFaces[0][2] =
  frameCompA[0] * frameCompB[1] -
  frameCompA[1] * frameCompB[0];
normFaces[1][0] =
  frameCompA[1] * frameCompC[2] -
  frameCompA[2] * frameCompC[1];
normFaces[1][1] =
  frameCompA[2] * frameCompC[0] -
  frameCompA[0] * frameCompC[2];
normFaces[1][2] =
  frameCompA[0] * frameCompC[1] -
  frameCompA[1] * frameCompC[0];
normFaces[2][0] =
  frameCompC[1] * frameCompB[2] -
  frameCompC[2] * frameCompB[1];
normFaces[2][1] =
  frameCompC[2] * frameCompB[0] -
  frameCompC[0] * frameCompB[2];
normFaces[2][2] =
 frameCompC[0] * frameCompB[1] -
  frameCompC[1] * frameCompB[0];
// If the frame is a tetrahedron
if (frameType == FrameTetrahedron) {
  // Shortcuts
  const double* oppEdgeA = oppEdgesA[0];
  const double* oppEdgeB = oppEdgesA[1];
  // Initialise the normal to the opposite face
  normFaces[3][0] =
    oppEdgeA[1] * oppEdgeB[2] -
    oppEdgeA[2] * oppEdgeB[1];
  normFaces[3][1] =
    oppEdgeA[2] * oppEdgeB[0] -
    oppEdgeA[0] * oppEdgeB[2];
  normFaces[3][2] =
    oppEdgeA[0] * oppEdgeB[1] -
    oppEdgeA[1] * oppEdgeB[0];
  // Correct the number of faces
  nbFaces = 4;
// Loop on the frame's faces
```

```
for (int iFace = nbFaces;
        iFace--;) {
    // Check against the current face's normal
    bool isIntersection =
       CheckAxis3D(
         that.
         tho,
         normFaces[iFace]);
    // If the axis is separating the Frames
    if (isIntersection == false) {
       // The Frames are not in intersection,
       // terminate the test
      return false;
    }
  }
  // Switch the frame to test against the second Frame
  frame = tho;
  oppEdgesA = oppEdgesTho;
// Loop on the pair of edges between the two frames
for (int iEdgeThat = nbEdgesThat;
     iEdgeThat --;) {
  // Get the first edge
  const double* edgeThat =
    (iEdgeThat < 3 ?
      that->comp[iEdgeThat] :
       oppEdgesThat[iEdgeThat - 3]);
  for (int iEdgeTho = nbEdgesTho;
        iEdgeTho --;) {
    // Get the second edge
    const double* edgeTho =
       (iEdgeTho < 3 ?
         tho->comp[iEdgeTho] :
oppEdgesTho[iEdgeTho - 3]);
    // Get the cross product of the two edges
    double axis[3];
    axis[0] = edgeThat[1] * edgeTho[2] - edgeThat[2] * edgeTho[1];
    axis[1] = edgeThat[2] * edgeTho[0] - edgeThat[0] * edgeTho[2];
axis[2] = edgeThat[0] * edgeTho[1] - edgeThat[1] * edgeTho[0];
    // Check against the cross product of the two edges
    bool isIntersection =
      CheckAxis3D(
         that,
         tho,
         axis);
    // If the axis is separating the Frames
if (isIntersection == false) {
```

```
// The Frames are not in intersection,
         // terminate the test
        return false;
      }
    }
  }
  // If we reaches here, it means the two Frames are intersecting
  return true;
// Test for intersection between moving 3D Frame that and 3D \,
// Frame tho
// Return true if the two Frames are intersecting, else false
bool SATTestIntersection3DTime(
  const Frame3DTime* const that,
  const Frame3DTime* const tho) {
  // Declare two variables to memorize the opposite edges in case
  // of tetrahedron
  double oppEdgesThat[3][3];
  double oppEdgesTho[3][3];
  // Declare a variable to memorize the speed of tho relative to that
  double relSpeed[3];
  relSpeed[0] = tho->speed[0] - that->speed[0];
  relSpeed[1] = tho->speed[1] - that->speed[1];
  relSpeed[2] = tho->speed[2] - that->speed[2];
  // Declare two variables to memorize the number of edges, by default 3
  int nbEdgesThat = 3;
  int nbEdgesTho = 3;
  // If the first Frame is a tetrahedron
  if (that->type == FrameTetrahedron) {
    // Shortcuts
    const double* frameCompA = that->comp[0];
    const double* frameCompB = that->comp[1];
    const double* frameCompC = that->comp[2];
    // Initialise the opposite edges
    oppEdgesThat[0][0] = frameCompB[0] - frameCompA[0];
oppEdgesThat[0][1] = frameCompB[1] - frameCompA[1];
oppEdgesThat[0][2] = frameCompB[2] - frameCompA[2];
    oppEdgesThat[1][0] = frameCompB[0] - frameCompC[0];
oppEdgesThat[1][1] = frameCompB[1] - frameCompC[1];
    oppEdgesThat[1][2] = frameCompB[2] - frameCompC[2];
    oppEdgesThat[2][0] = frameCompC[0] - frameCompA[0];
    oppEdgesThat[2][1] = frameCompC[1] - frameCompA[1];
    oppEdgesThat[2][2] = frameCompC[2] - frameCompA[2];
    // Correct the number of edges
    nbEdgesThat = 6;
  }
```

```
// If the second Frame is a tetrahedron
if (tho->type == FrameTetrahedron) {
  // Shortcuts
  const double* frameCompA = tho->comp[0];
  const double* frameCompB = tho->comp[1];
  const double* frameCompC = tho->comp[2];
  // Initialise the opposite edges
  oppEdgesTho[0][0] = frameCompB[0] - frameCompA[0];
  oppEdgesTho[0][1] = frameCompB[1] - frameCompA[1];
oppEdgesTho[0][2] = frameCompB[2] - frameCompA[2];
  oppEdgesTho[1][0] = frameCompB[0] - frameCompC[0];
oppEdgesTho[1][1] = frameCompB[1] - frameCompC[1];
  oppEdgesTho[1][2] = frameCompB[2] - frameCompC[2];
  oppEdgesTho[2][0] = frameCompC[0] - frameCompA[0];
oppEdgesTho[2][1] = frameCompC[1] - frameCompA[1];
  oppEdgesTho[2][2] = frameCompC[2] - frameCompA[2];
  // Correct the number of edges
  nbEdgesTho = 6;
// Declare variables to loop on Frames and commonalize code
const Frame3DTime* frame = that;
const double (*oppEdgesA)[3] = oppEdgesThat;
// Loop to commonalize code when checking SAT based on that's edges
// and then tho's edges
for (int iFrame = 2;
     iFrame --;) {
  // Shortcuts
  FrameType frameType = frame->type;
  const double* frameCompA = frame->comp[0];
  const double* frameCompB = frame->comp[1];
  const double* frameCompC = frame->comp[2];
  // Declare a variable to memorize the number of faces, by default 3
  int nbFaces = 3;
  // Declare a variable to memorize the normal to faces
  // Arrangement is normFaces[iFace][iAxis]
  double normFaces[10][3];
  // Initialise the normal to faces
  normFaces[0][0] =
    frameCompA[1] * frameCompB[2] -
    frameCompA[2] * frameCompB[1];
  normFaces[0][1] =
    frameCompA[2] * frameCompB[0] -
frameCompA[0] * frameCompB[2];
  normFaces[0][2] =
    frameCompA[0] * frameCompB[1] -
    frameCompA[1] * frameCompB[0];
  normFaces[1][0] =
    frameCompA[1] * frameCompC[2] -
```

```
frameCompA[2] * frameCompC[1];
normFaces[1][1] =
  frameCompA[2] * frameCompC[0] -
  frameCompA[0] * frameCompC[2];
normFaces[1][2] =
  frameCompA[0] * frameCompC[1] -
  frameCompA[1] * frameCompC[0];
normFaces[2][0] =
  frameCompC[1] * frameCompB[2] -
  frameCompC[2] * frameCompB[1];
normFaces[2][1] =
  frameCompC[2] * frameCompB[0] -
  frameCompC[0] * frameCompB[2];
normFaces[2][2] =
  frameCompC[0] * frameCompB[1] -
  frameCompC[1] * frameCompB[0];
// If the frame is a tetrahedron
if (frameType == FrameTetrahedron) {
  // Shortcuts
  const double* oppEdgeA = oppEdgesA[0];
const double* oppEdgeB = oppEdgesA[1];
  // Initialise the normal to the opposite face
  normFaces[3][0] =
    oppEdgeA[1] * oppEdgeB[2] -
oppEdgeA[2] * oppEdgeB[1];
  normFaces[3][1] =
    oppEdgeA[2] * oppEdgeB[0] -
oppEdgeA[0] * oppEdgeB[2];
  normFaces[3][2] =
    oppEdgeA[0] * oppEdgeB[1] -
    oppEdgeA[1] * oppEdgeB[0];
  // Correct the number of faces
  nbFaces = 4;
// If we are checking the frame 'tho'
if (frame == tho) {
  // Add the normal to the virtual faces created by the speed
  // of tho relative to that
  normFaces[nbFaces][0] =
    relSpeed[1] * frameCompA[2] -
    relSpeed[2] * frameCompA[1];
  normFaces[nbFaces][1] =
    relSpeed[2] * frameCompA[0] -
    relSpeed[0] * frameCompA[2];
  normFaces[nbFaces][2] =
    relSpeed[0] * frameCompA[1] -
relSpeed[1] * frameCompA[0];
  if (fabs(normFaces[nbFaces][0]) > EPSILON ||
      fabs(normFaces[nbFaces][1]) > EPSILON ||
      fabs(normFaces[nbFaces][2]) > EPSILON)
    ++nbFaces;
  normFaces[nbFaces][0] =
```

```
relSpeed[1] * frameCompB[2] -
  relSpeed[2] * frameCompB[1];
normFaces[nbFaces][1] =
 relSpeed[2] * frameCompB[0] -
  relSpeed[0] * frameCompB[2];
normFaces[nbFaces][2] =
  relSpeed[0] * frameCompB[1] -
  relSpeed[1] * frameCompB[0];
if (fabs(normFaces[nbFaces][0]) > EPSILON ||
    fabs(normFaces[nbFaces][1]) > EPSILON ||
    fabs(normFaces[nbFaces][2]) > EPSILON)
 ++nbFaces;
normFaces[nbFaces][0] =
  relSpeed[1] * frameCompC[2] -
  relSpeed[2] * frameCompC[1];
normFaces[nbFaces][1] =
  relSpeed[2] * frameCompC[0] -
  relSpeed[0] * frameCompC[2];
normFaces[nbFaces][2] =
  relSpeed[0] * frameCompC[1] -
 relSpeed[1] * frameCompC[0];
if (fabs(normFaces[nbFaces][0]) > EPSILON ||
    fabs(normFaces[nbFaces][1]) > EPSILON ||
    fabs(normFaces[nbFaces][2]) > EPSILON)
  ++nbFaces;
if (frameType == FrameTetrahedron) {
  const double* oppEdgeA = oppEdgesA[0];
  const double* oppEdgeB = oppEdgesA[1];
  const double* oppEdgeC = oppEdgesA[2];
 normFaces[nbFaces][0] =
    relSpeed[1] * oppEdgeA[2] -
    relSpeed[2] * oppEdgeA[1];
 normFaces[nbFaces][1] =
    relSpeed[2] * oppEdgeA[0] -
    relSpeed[0] * oppEdgeA[2];
 normFaces[nbFaces][2] =
    relSpeed[0] * oppEdgeA[1] -
    relSpeed[1] * oppEdgeA[0];
  if (fabs(normFaces[nbFaces][0]) > EPSILON ||
      fabs(normFaces[nbFaces][1]) > EPSILON ||
      fabs(normFaces[nbFaces][2]) > EPSILON)
    ++nbFaces;
 normFaces[nbFaces][0] =
    relSpeed[1] * oppEdgeB[2] -
    relSpeed[2] * oppEdgeB[1];
  normFaces[nbFaces][1]
    relSpeed[2] * oppEdgeB[0] -
    relSpeed[0] * oppEdgeB[2];
 normFaces[nbFaces][2] =
    relSpeed[0] * oppEdgeB[1] -
    relSpeed[1] * oppEdgeB[0];
  if (fabs(normFaces[nbFaces][0]) > EPSILON ||
      fabs(normFaces[nbFaces][1]) > EPSILON ||
      fabs(normFaces[nbFaces][2]) > EPSILON)
    ++nbFaces;
 normFaces[nbFaces][0] =
```

```
relSpeed[1] * oppEdgeC[2] -
         relSpeed[2] * oppEdgeC[1];
      normFaces[nbFaces][1] =
        relSpeed[2] * oppEdgeC[0] -
relSpeed[0] * oppEdgeC[2];
      normFaces[nbFaces][2] =
         relSpeed[0] * oppEdgeC[1] -
relSpeed[1] * oppEdgeC[0];
      if (fabs(normFaces[nbFaces][0]) > EPSILON ||
           fabs(normFaces[nbFaces][1]) > EPSILON ||
           fabs(normFaces[nbFaces][2]) > EPSILON)
         ++nbFaces;
 }
  // Loop on the frame's faces
  for (int iFace = nbFaces;
        iFace--;) {
    // Check against the current face's normal
    bool isIntersection =
      CheckAxis3DTime(
         that,
         tho,
         normFaces[iFace],
         relSpeed);
    \ensuremath{//} If the axis is separating the Frames
    if (isIntersection == false) {
      \ensuremath{//} The Frames are not in intersection,
      // terminate the test
      return false;
    }
  // Switch the frame to test against the second Frame
  frame = tho;
  oppEdgesA = oppEdgesTho;
// Loop on the pair of edges between the two frames
for (int iEdgeThat = nbEdgesThat;
     iEdgeThat --;) {
  // Get the first edge
  const double* edgeThat =
  (iEdgeThat < 3 ?</pre>
      that -> comp[iEdgeThat] :
      oppEdgesThat[iEdgeThat - 3]);
  for (int iEdgeTho = nbEdgesTho + 1;
        iEdgeTho --;) {
    // Get the second edge
    const double* edgeTho =
      (iEdgeTho == nbEdgesTho ?
         relSpeed :
```

}

```
(iEdgeTho < 3 ?
             tho->comp[iEdgeTho] :
             oppEdgesTho[iEdgeTho - 3]));
      // Get the cross product of the two edges
      double axis[3];
      axis[0] = edgeThat[1] * edgeTho[2] - edgeThat[2] * edgeTho[1];
      axis[1] = edgeThat[2] * edgeTho[0] - edgeThat[0] * edgeTho[2];
      axis[2] = edgeThat[0] * edgeTho[1] - edgeThat[1] * edgeTho[0];
      // Check against the cross product of the two edges
      bool isIntersection =
        CheckAxis3DTime(
          that,
          tho,
          axis,
          relSpeed);
      // If the axis is separating the Frames
      if (isIntersection == false) {
        // The Frames are not in intersection,
        // terminate the test
        return false;
      }
    }
  // If we reaches here, it means the two Frames are intersecting
 return true;
// Check the intersection constraint for Frames that and tho
// relatively to axis
bool CheckAxis3D(
  const Frame3D* const that,
  const Frame3D* const tho,
  const double* const axis) {
  // Declare variables to memorize the boundaries of projection % \left( \frac{1}{2}\right) =\frac{1}{2}\left( \frac{1}{2}\right) 
  // of the two frames on the current edge
  double bdgBoxA[2];
  double bdgBoxB[2];
  // Declare two variables to loop on Frames and commonalize code
  const Frame3D* frame = that;
  double* bdgBox = bdgBoxA;
  // Loop on Frames
  for (int iFrame = 2;
       iFrame--;) {
    // Shortcuts
    const double* frameOrig = frame->orig;
    const double* frameCompA = frame->comp[0];
    const double* frameCompB = frame->comp[1];
const double* frameCompC = frame->comp[2];
    FrameType frameType = frame->type;
```

```
// Get the number of vertices of frame
int nbVertices = (frameType == FrameTetrahedron ? 4 : 8);
// Declare a variable to memorize if the current vertex is
// the first in the loop, used to initialize the boundaries
bool firstVertex = true;
// Loop on vertices of the frame
for (int iVertex = nbVertices;
     iVertex--;) {
  // Get the vertex
  double vertex[3];
  vertex[0] = frameOrig[0];
  vertex[1] = frameOrig[1];
  vertex[2] = frameOrig[2];
  switch (iVertex) {
      vertex[0] +=
        frameCompA[0] + frameCompB[0] + frameCompC[0];
      vertex[1] +=
        frameCompA[1] + frameCompB[1] + frameCompC[1];
      vertex[2] +=
        frameCompA[2] + frameCompB[2] + frameCompC[2];
      break;
    case 6:
      vertex[0] += frameCompB[0] + frameCompC[0];
      vertex[1] += frameCompB[1] + frameCompC[1];
      vertex[2] += frameCompB[2] + frameCompC[2];
      break;
    case 5:
      vertex[0] += frameCompA[0] + frameCompC[0];
      vertex[1] += frameCompA[1] + frameCompC[1];
      vertex[2] += frameCompA[2] + frameCompC[2];
      break:
    case 4:
      vertex[0] += frameCompA[0] + frameCompB[0];
      vertex[1] += frameCompA[1] + frameCompB[1];
      vertex[2] += frameCompA[2] + frameCompB[2];
      break;
    case 3:
      vertex[0] += frameCompC[0];
      vertex[1] += frameCompC[1];
vertex[2] += frameCompC[2];
      break;
    case 2:
      vertex[0] += frameCompB[0];
      vertex[1] += frameCompB[1];
      vertex[2] += frameCompB[2];
      break;
    case 1:
      vertex[0] += frameCompA[0];
      vertex[1] += frameCompA[1];
      vertex[2] += frameCompA[2];
      break;
    default:
      break;
  // Get the projection of the vertex on the axis
  double proj =
```

```
vertex[0] * axis[0] +
                                       vertex[1] * axis[1] +
                                       vertex[2] * axis[2];
                              // If it's the first vertex
                              if (firstVertex == true) {
                                                 // Initialize the boundaries of the projection of the
                                                  // Frame on the edge
                                                bdgBox[0] = proj;
bdgBox[1] = proj;
                                                 // Update the flag to memorize we did the first vertex % \left( 1\right) =\left( 1\right) \left( 1\right
                                                 firstVertex = false;
                              // Else, it's not the first vertex
                              } else {
                                        // Update the boundaries of the projection of the Frame on
                                        // the edge
                                       if (bdgBox[0] > proj)
                                                bdgBox[0] = proj;
                                       if (bdgBox[1] < proj)</pre>
                                                 bdgBox[1] = proj;
                             }
                    // Switch the frame to check the vertices of the second Frame
                    frame = tho;
                    bdgBox = bdgBoxB;
          // If the projections of the two frames on the edge are
           // not intersecting
          if (bdgBoxB[1] < bdgBoxA[0] ||</pre>
                              bdgBoxA[1] < bdgBoxB[0]) {
                         \ensuremath{//} There exists an axis which separates the Frames,
                         // thus they are not in intersection
                         return false;
          }
           // If we reaches here the two Frames are in intersection
          return true;
}
 // Check the intersection constraint for Frames that and tho
 // relatively to axis
 bool CheckAxis3DTime(
          const Frame3DTime* const that,
          const Frame3DTime* const tho,
          const double* const axis,
          const double* const relSpeed) {
          // Declare variables to memorize the boundaries of projection
          // of the two frames on the current edge
```

```
double bdgBoxA[2];
double bdgBoxB[2];
// Declare two variables to loop on Frames and commonalize code
const Frame3DTime* frame = that;
double* bdgBox = bdgBoxA;
// Loop on Frames
for (int iFrame = 2;
     iFrame--;) {
  // Shortcuts
  const double* frameOrig = frame->orig;
  const double* frameCompA = frame->comp[0];
  const double* frameCompB = frame->comp[1];
  const double* frameCompC = frame->comp[2];
  FrameType frameType = frame->type;
  // Get the number of vertices of frame
  int nbVertices = (frameType == FrameTetrahedron ? 4 : 8);
  // Declare a variable to memorize if the current vertex is
  // the first in the loop, used to initialize the boundaries
  bool firstVertex = true;
  // Loop on vertices of the frame
  for (int iVertex = nbVertices;
       iVertex --;) {
    // Get the vertex
    double vertex[3];
    vertex[0] = frameOrig[0];
    vertex[1] = frameOrig[1];
    vertex[2] = frameOrig[2];
    switch (iVertex) {
      case 7:
        vertex[0] +=
          frameCompA[0] + frameCompB[0] + frameCompC[0];
        vertex[1] +=
          frameCompA[1] + frameCompB[1] + frameCompC[1];
        vertex[2] +=
          frameCompA[2] + frameCompB[2] + frameCompC[2];
        break;
      case 6:
        vertex[0] += frameCompB[0] + frameCompC[0];
        vertex[1] += frameCompB[1] + frameCompC[1];
        vertex[2] += frameCompB[2] + frameCompC[2];
        break;
      case 5:
        vertex[0] += frameCompA[0] + frameCompC[0];
        vertex[1] += frameCompA[1] + frameCompC[1];
        vertex[2] += frameCompA[2] + frameCompC[2];
        break;
      case 4:
        vertex[0] += frameCompA[0] + frameCompB[0];
        vertex[1] += frameCompA[1] + frameCompB[1];
        vertex[2] += frameCompA[2] + frameCompB[2];
        break:
      case 3:
        vertex[0] += frameCompC[0];
vertex[1] += frameCompC[1];
        vertex[2] += frameCompC[2];
```

```
break;
  case 2:
    vertex[0] += frameCompB[0];
    vertex[1] += frameCompB[1];
    vertex[2] += frameCompB[2];
    break;
  case 1:
    vertex[0] += frameCompA[0];
    vertex[1] += frameCompA[1];
vertex[2] += frameCompA[2];
    break;
  default:
    break;
// Get the projection of the vertex on the axis
double proj =
  vertex[0] * axis[0] +
  vertex[1] * axis[1] +
  vertex[2] * axis[2];
// If it's the first vertex
if (firstVertex == true) {
    // Initialize the boundaries of the projection of the
    // Frame on the edge
    bdgBox[0] = proj;
    bdgBox[1] = proj;
    // Update the flag to memorize we did the first vertex
    firstVertex = false;
// Else, it's not the first vertex
} else {
  // Update the boundaries of the projection of the Frame on
  // the edge
  if (bdgBox[0] > proj)
    bdgBox[0] = proj;
  if (bdgBox[1] < proj)</pre>
    bdgBox[1] = proj;
}
// If we are checking the second frame's vertices
if (frame == tho) {
  // Check also the vertices moved by the relative speed
  vertex[0] += relSpeed[0];
  vertex[1] += relSpeed[1];
  vertex[2] += relSpeed[2];
proj =
  vertex[0] * axis[0] +
  vertex[1] * axis[1] +
  vertex[2] * axis[2];
  if (bdgBox[0] > proj)
    bdgBox[0] = proj;
  if (bdgBox[1] < proj)</pre>
```

```
bdgBox[1] = proj;
      }
    }
    // Switch the frame to check the vertices of the second Frame
    frame = tho;
    bdgBox = bdgBoxB;
  // If the projections of the two frames on the edge are
  // not intersecting
  if (bdgBoxB[1] < bdgBoxA[0] ||</pre>
      bdgBoxA[1] < bdgBoxB[0]) {
     // There exists an axis which separates the Frames,
     // thus they are not in intersection
     return false;
  }
  // If we reaches here the two Frames are in intersection
  return true;
}
```

11.3 Makefile

In this section I introduce the Makefile used to compile the code given in the previous sections. It also includes command used to run the unit tests, validation and qualification, and to generate the documentation.

```
unitTests2D:
       cd 2D; make unitTests OPTIMIZATION=$(OPTIMIZATION); cd -
unitTests2DTime:
       cd 2DTime; make unitTests OPTIMIZATION=$(OPTIMIZATION); cd -
unitTests3D:
       cd 3D; make unitTests OPTIMIZATION=$(OPTIMIZATION); cd -
unitTests3DTime:
       cd 3DTime; make unitTests OPTIMIZATION=$(OPTIMIZATION); cd -
validation: validation2D validation2DTime validation3D validation3DTime
validation2D:
       cd 2D; make validation OPTIMIZATION=$(OPTIMIZATION); cd -
validation2DTime:
       cd 2DTime; make validation OPTIMIZATION=$(OPTIMIZATION); cd -
validation3D:
       cd 3D; make validation OPTIMIZATION=$(OPTIMIZATION); cd -
validation3DTime:
        cd 3DTime; make validation OPTIMIZATION=$(OPTIMIZATION); cd -
qualification: qualification2D qualification2DTime qualification3D
   {\tt qualification 3DTime}
qualification2D:
        cd 2D; make qualification OPTIMIZATION=$(OPTIMIZATION); cd -
qualification2DTime:
        cd 2DTime; make qualification OPTIMIZATION=$(OPTIMIZATION); cd -
qualification3D:
       cd 3D; make qualification OPTIMIZATION=$(OPTIMIZATION); cd -
qualification3DTime:
       cd 3DTime; make qualification OPTIMIZATION=$(OPTIMIZATION); cd -
clean : clean2D clean2DTime clean3D clean3DTime
clean2D:
       cd 2D; make clean; cd -
clean2DTime:
       cd 2DTime; make clean; cd -
clean3D:
       cd 3D; make clean; cd -
clean3DTime:
       cd 3DTime; make clean; cd -
valgrind: valgrind2D valgrind2DTime valgrind3D valgrind3DTime
valgrind2D:
       cd 2D; make valgrind; cd -
valgrind2DTime:
```

```
cd 2DTime; make valgrind; cd -
valgrind3D:
        cd 3D; make valgrind; cd -
valgrind3DTime:
        cd 3DTime; make valgrind; cd -
run : run2D run2DTime run3D run3DTime
run2D:
        cd 2D; ./main > ../Results/main2D.txt; ./unitTests > ../Results/
            unitTests2D.txt; ./validation > ../Results/validation2D.txt; ./
            qualification; cd -
run3D:
        cd 3D; ./main > ../Results/main3D.txt; ./unitTests > ../Results/
            unitTests3D.txt; ./validation > ../Results/validation3D.txt; ./
            qualification; cd -
run2DTime:
        cd 2DTime; ./main > ../Results/main2DTime.txt; ./unitTests > ../
            Results/unitTests2DTime.txt; ./validation > ../Results/
            validation2DTime.txt; ./qualification; cd -
{\tt run3DTime}:
        cd 3DTime; ./main > ../Results/main3DTime.txt; ./unitTests > ../
            Results/unitTests3DTime.txt; ./validation > ../Results/
            validation3DTime.txt; ./qualification; cd -
plot: cleanPlot plot2D plot2DTime plot3D plot3DTime
cleanPlot:
        rm -f Results/*.png
plot2D:
        cd Results; gnuplot qualification2D.gnu; cd -
plot2DTime:
        cd Results; gnuplot qualification2DTime.gnu; cd -
plot3D:
        cd Results; gnuplot qualification3D.gnu; cd -
plot3DTime:
        cd Results; gnuplot qualification3DTime.gnu; cd -
doc:
        cd Doc; make latex; cd -
getRuntimeEnvironment:
        echo "uname -v\n" > runtimeEnv.txt; uname -v >> runtimeEnv.txt; echo
             "\n=======\n" >> runtimeEnv.txt; echo "lshw -short\n" >>
            runtimeEnv.txt; sudo lshw -short >> runtimeEnv.txt; echo "\n
            ======\n" >> runtimeEnv.txt; echo "lscpu\n" >> runtimeEnv
            .txt; lscpu >> runtimeEnv.txt; echo "\n=======\n" >>
            runtimeEnv.txt; echo "$(COMPILER) -v\n" >> runtimeEnv.txt; $(
COMPILER) -v 1>> runtimeEnv.txt 2>> runtimeEnv.txt
dynamicAnalysis:
        make valgrind 1> dynamicAnalysis.txt 2> dynamicAnalysis.txt
```

11.3.1 2D static

```
\verb"all : main unitTests" validation qualification"
COMPILER ?= gcc
OPTIMIZATION?=-03
BUILD_ARG=$(OPTIMIZATION) -I../SAT -I../Frame
main : main.o fmb2d.o frame.o Makefile
        $(COMPILER) -o main main.o fmb2d.o frame.o
main.o : main.c fmb2d.h ../Frame/frame.h Makefile
        $(COMPILER) -c main.c $(BUILD_ARG)
unitTests : unitTests.o fmb2d.o frame.o Makefile
        $(COMPILER) -o unitTests unitTests.o fmb2d.o frame.o $(LINK_ARG)
unitTests.o : unitTests.c fmb2d.h ../Frame/frame.h Makefile
        $(COMPILER) -c unitTests.c $(BUILD_ARG)
validation : validation.o fmb2d.o sat.o frame.o Makefile
        $(COMPILER) -o validation validation.o fmb2d.o sat.o frame.o
validation.o : validation.c fmb2d.h ../SAT/sat.h ../Frame/frame.h Makefile
        $(COMPILER) -c validation.c $(BUILD_ARG)
{\tt qualification: qualification.o~fmb2d.o~sat.o~frame.o~Makefile}
        $(COMPILER) -o qualification qualification.o fmb2d.o sat.o frame.o $
            (LINK_ARG)
qualification.o : qualification.c fmb2d.h ../SAT/sat.h ../Frame/frame.h
    Makefile
        $(COMPILER) -c qualification.c $(BUILD_ARG)
fmb2d.o : fmb2d.c fmb2d.h ../Frame/frame.h Makefile
        $(COMPILER) -c fmb2d.c $(BUILD_ARG)
sat.o : ../SAT/sat.c ../SAT/sat.h ../Frame/frame.h Makefile
        $(COMPILER) -c ../SAT/sat.c $(BUILD_ARG)
frame.o : ../Frame/frame.c ../Frame/frame.h Makefile
        $(COMPILER) -c ../Frame/frame.c $(BUILD_ARG)
clean :
        rm -f *.o main unitTests validation qualification
valgrind :
        valgrind -v --track-origins=yes --leak-check=full \
        --gen-suppressions=yes --show-leak-kinds=all ./unitTests
11.3.2 3D static
all : main unitTests validation qualification
COMPILER ?= gcc
OPTIMIZATION ?=-03
BUILD_ARG=$(OPTIMIZATION) -I../SAT -I../Frame
main : main.o fmb3d.o frame.o Makefile
        $(COMPILER) -o main main.o fmb3d.o frame.o
```

```
main.o : main.c fmb3d.h ../Frame/frame.h Makefile
        $(COMPILER) -c main.c $(BUILD_ARG)
unitTests : unitTests.o fmb3d.o frame.o Makefile
        $(COMPILER) -o unitTests unitTests.o fmb3d.o frame.o $(LINK_ARG)
unitTests.o : unitTests.c fmb3d.h ../Frame/frame.h Makefile
        $(COMPILER) -c unitTests.c $(BUILD_ARG)
validation : validation.o fmb3d.o sat.o frame.o Makefile
        $(COMPILER) -o validation validation.o fmb3d.o sat.o frame.o
validation.o : validation.c fmb3d.h ../SAT/sat.h ../Frame/frame.h Makefile
        $(COMPILER) -c validation.c $(BUILD_ARG)
qualification : qualification.o fmb3d.o sat.o frame.o Makefile
        (COMPILER) -o qualification qualification.o fmb3d.o sat.o frame.o 
            (LINK_ARG)
qualification.o : qualification.c fmb3d.h ../SAT/sat.h ../Frame/frame.h
    Makefile
        $(COMPILER) -c qualification.c $(BUILD_ARG)
fmb3d.o : fmb3d.c fmb3d.h ../Frame/frame.h Makefile
        $(COMPILER) -c fmb3d.c $(BUILD_ARG)
sat.o : ../SAT/sat.c ../SAT/sat.h ../Frame/frame.h Makefile
        $(COMPILER) -c ../SAT/sat.c $(BUILD_ARG)
frame.o : ../Frame/frame.c ../Frame/frame.h Makefile
        $(COMPILER) -c ../Frame/frame.c $(BUILD_ARG)
clean :
        rm -f *.o main unitTests validation qualification
valgrind:
        valgrind -v --track-origins=yes --leak-check=full \
        --gen-suppressions=yes --show-leak-kinds=all ./unitTests
11.3.3
        2D dynamic
all : main unitTests validation qualification
COMPILER ?= gcc
OPTIMIZATION?=-03
BUILD_ARG=$(OPTIMIZATION) -I../SAT -I../Frame
main : main.o fmb2dt.o frame.o Makefile
        $(COMPILER) -o main main.o fmb2dt.o frame.o
main.o : main.c fmb2dt.h ../Frame/frame.h Makefile
        $(COMPILER) -c main.c $(BUILD_ARG)
unitTests : unitTests.o fmb2dt.o frame.o Makefile
        $(COMPILER) -o unitTests unitTests.o fmb2dt.o frame.o $(LINK_ARG)
unitTests.o : unitTests.c fmb2dt.h ../Frame/frame.h Makefile
        $(COMPILER) -c unitTests.c $(BUILD_ARG)
validation : validation.o fmb2dt.o sat.o frame.o Makefile
        $(COMPILER) -o validation validation.o fmb2dt.o sat.o frame.o
```

```
validation.o : validation.c fmb2dt.h ../SAT/sat.h ../Frame/frame.h Makefile
        $(COMPILER) -c validation.c $(BUILD_ARG)
qualification : qualification.o fmb2dt.o sat.o frame.o Makefile
        $(COMPILER) -o qualification qualification.o fmb2dt.o sat.o frame.o
            $(LINK ARG)
qualification.o : qualification.c fmb2dt.h ../SAT/sat.h ../Frame/frame.h
    Makefile
        $(COMPILER) -c qualification.c $(BUILD_ARG)
fmb2dt.o : fmb2dt.c fmb2dt.h ../Frame/frame.h Makefile
        $(COMPILER) -c fmb2dt.c $(BUILD_ARG)
sat.o : ../SAT/sat.c ../SAT/sat.h ../Frame/frame.h Makefile
        $(COMPILER) -c ../SAT/sat.c $(BUILD_ARG)
frame.o : ../Frame/frame.c ../Frame/frame.h Makefile
        $(COMPILER) -c ../Frame/frame.c $(BUILD_ARG)
clean :
        rm -f *.o main unitTests validation qualification
valgrind :
        valgrind -v --track-origins=yes --leak-check=full \
        --gen-suppressions=yes --show-leak-kinds=all ./unitTests
11.3.4 3D dynamic
all : main unitTests validation qualification
COMPILER ?= gcc
OPTIMIZATION?=-03
BUILD_ARG=$(OPTIMIZATION) -I../SAT -I../Frame
main : main.o fmb3dt.o frame.o Makefile
        $(COMPILER) -o main main.o fmb3dt.o frame.o
main.o : main.c fmb3dt.h ../Frame/frame.h Makefile
        $(COMPILER) -c main.c $(BUILD_ARG)
unitTests : unitTests.o fmb3dt.o frame.o Makefile
        $(COMPILER) -o unitTests unitTests.o fmb3dt.o frame.o $(LINK_ARG)
unitTests.o : unitTests.c fmb3dt.h ../Frame/frame.h Makefile
        $(COMPILER) -c unitTests.c $(BUILD_ARG)
validation: validation.o fmb3dt.o sat.o frame.o Makefile
        $(COMPILER) -o validation validation.o fmb3dt.o sat.o frame.o
validation.o : validation.c fmb3dt.h ../SAT/sat.h ../Frame/frame.h Makefile
        $(COMPILER) -c validation.c $(BUILD_ARG)
qualification : qualification.o fmb3dt.o sat.o frame.o Makefile
        $(COMPILER) -o qualification qualification.o fmb3dt.o sat.o frame.o
           $(LINK_ARG)
qualification.o : qualification.c fmb3dt.h ../SAT/sat.h ../Frame/frame.h
    Makefile
        $(COMPILER) -c qualification.c $(BUILD_ARG)
```

```
\verb|fmb3dt.o| : \verb|fmb3dt.c| fmb3dt.h| .../Frame/frame.h| Makefile|
        $(COMPILER) -c fmb3dt.c $(BUILD_ARG)
sat.o : ../SAT/sat.c ../SAT/sat.h ../Frame/frame.h Makefile
        $(COMPILER) -c ../SAT/sat.c $(BUILD_ARG)
frame.o : ../Frame/frame.c ../Frame/frame.h Makefile
        $(COMPILER) -c ../Frame/frame.c $(BUILD_ARG)
        {\tt rm\ -f\ *.o\ main\ unitTests\ validation\ qualification}
valgrind :
        valgrind -v --track-origins=yes --leak-check=full \
        --gen-suppressions=yes --show-leak-kinds=all ./unitTests
11.3.5 Doc
```

latex:

pdflatex -synctex=1 -interaction=nonstopmode -shell-escape fmb.tex

11.4 Dynamic analysis

```
make[1]: Entering directory '/home/bayashi/GitHub/FMB'
cd 2D; make valgrind; cd -
make[2]: Entering directory '/home/bayashi/GitHub/FMB/2D'
valgrind -v --track-origins=yes --leak-check=full \
--gen-suppressions=yes --show-leak-kinds=all ./unitTests
==7017== Memcheck, a memory error detector
==7017== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==7017== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==7017== Command: ./unitTests
==7017==
--7017-- Valgrind options:
--7017--
--7017--
            --track-origins=yes
--7017--
           --leak-check=full
--7017--
           --gen-suppressions=yes
           --show-leak-kinds=all
--7017--
--7017-- Contents of /proc/version:
--7017-- Linux version 5.3.0-26-generic (buildd@lgw01-amd64-039) (gcc
   version 7.4.0 (Ubuntu 7.4.0-1ubuntu1~18.04.1)) #28~18.04.1-Ubuntu SMP
   Wed Dec 18 16:40:14 UTC 2019
--7017--
--7017-- Arch and hwcaps: AMD64, LittleEndian, amd64-cx16-lzcnt-rdtscp-sse3-
   avx-avx2-bmi
--7017-- Page sizes: currently 4096, max supported 4096
--7017-- Valgrind library directory: /usr/lib/valgrind
--7017-- Reading syms from /home/bayashi/GitHub/FMB/2D/unitTests
--7017-- Reading syms from /lib/x86_64-linux-gnu/ld-2.27.so
--7017--
           Considering /lib/x86_64-linux-gnu/ld-2.27.so .
--7017--
           .. CRC mismatch (computed 1b7c895e wanted 2943108a)
--7017--
          Considering /usr/lib/debug/lib/x86_64-linux-gnu/ld-2.27.so ..
--7017--
           .. CRC is valid
--7017-- Reading syms from /usr/lib/valgrind/memcheck-amd64-linux
--7017--
          Considering /usr/lib/valgrind/memcheck-amd64-linux ...
--7017--
           .. CRC mismatch (computed 41ddb025 wanted 9972f546)
           object doesn't have a symbol table
--7017--
--7017--
           object doesn't have a dynamic symbol table
```

```
--7017-- Scheduler: using generic scheduler lock implementation.
--7017-- Reading suppressions file: /usr/lib/valgrind/default.supp
==7017== embedded gdbserver: reading from /tmp/vgdb-pipe-from-vgdb-to-7017-
   by-bayashi-on-???
==7017== embedded gdbserver: writing to
                                          /tmp/vgdb-pipe-to-vgdb-from-7017-
   by-bayashi-on-???
==7017== embedded gdbserver: shared mem
                                          /tmp/vgdb-pipe-shared-mem-vgdb
   -7017-by-bayashi-on-???
==7017==
==7017== TO CONTROL THIS PROCESS USING vgdb (which you probably
==7017== don't want to do, unless you know exactly what you're doing,
==7017== or are doing some strange experiment):
==7017==
          /usr/lib/valgrind/../../bin/vgdb --pid=7017 ...command...
==7017==
==7017== TO DEBUG THIS PROCESS USING GDB: start GDB like this
==7017==
          /path/to/gdb ./unitTests
==7017== and then give GDB the following command
==7017== target remote | /usr/lib/valgrind/../../bin/vgdb --pid=7017
==7017== --pid is optional if only one valgrind process is running
==7017==
--7017-- REDIR: 0x401f2f0 (ld-linux-x86-64.so.2:strlen) redirected to 0
   x580608c1 (???)
--7017-- REDIR: 0x401f0d0 (ld-linux-x86-64.so.2:index) redirected to 0
   x580608db (???)
--7017-- Reading syms from /usr/lib/valgrind/vgpreload_core-amd64-linux.so
--7017--
           Considering /usr/lib/valgrind/vgpreload_core-amd64-linux.so ..
--7017--
           .. CRC mismatch (computed 50df1b30 wanted 4800a4cf)
--7017--
           object doesn't have a symbol table
--7017-- Reading syms from /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.
   so
--7017--
           Considering /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so
--7017--
           .. CRC mismatch (computed f893b962 wanted 95ee359e)
--7017--
           object doesn't have a symbol table
==7017== WARNING: new redirection conflicts with existing -- ignoring it
--7017--
            old: 0x0401f2f0 (strlen
                                                  ) R-> (0000.0) 0x580608c1
   777
--7017--
            new: 0x0401f2f0 (strlen
                                                   ) R \rightarrow (2007.0) 0 \times 04 c 32 db0
   strlen
--7017-- REDIR: 0x401d360 (ld-linux-x86-64.so.2:strcmp) redirected to 0
   x4c33ee0 (strcmp)
--7017-- REDIR: 0x401f830 (ld-linux-x86-64.so.2:mempcpy) redirected to 0
   x4c374f0 (mempcpy)
--7017-- Reading syms from /lib/x86_64-linux-gnu/libc-2.27.so
--7017--
           Considering /lib/x86_64-linux-gnu/libc-2.27.so .
--7017--
           .. CRC mismatch (computed b1c74187 wanted 042cc048)
--7017--
          Considering /usr/lib/debug/lib/x86_64-linux-gnu/libc-2.27.so ..
--7017--
          .. CRC is valid
--7017-- REDIR: 0x4edac70 (libc.so.6:memmove) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4ed9d40 (libc.so.6:strncpy) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4edaf50 (libc.so.6:strcasecmp) redirected to 0x4a2a6e0 (
   _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4ed9790 (libc.so.6:strcat) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4ed9d70 (libc.so.6:rindex) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4edc7c0 (libc.so.6:rawmemchr) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4edade0 (libc.so.6:mempcpy) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
```

```
--7017-- REDIR: 0x4edac10 (libc.so.6:bcmp) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4ed9d00 (libc.so.6:strncmp) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4ed9800 (libc.so.6:strcmp) redirected to 0x4a2a6e0 (
    vgnU ifunc wrapper)
--7017-- REDIR: 0x4edad40 (libc.so.6:memset) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4ef80f0 (libc.so.6:wcschr) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4ed9ca0 (libc.so.6:strnlen) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4ed9870 (libc.so.6:strcspn) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4edafa0 (libc.so.6:strncasecmp) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4ed9840 (libc.so.6:strcpy) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4edb0e0 (libc.so.6:memcpy@@GLIBC_2.14) redirected to 0
   x4a2a6e0 (_vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4ed9da0 (libc.so.6:strpbrk) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4ed97c0 (libc.so.6:index) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4ed9c70 (libc.so.6:strlen) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4ee46c0 (libc.so.6:memrchr) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4edaff0 (libc.so.6:strcasecmp_1) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4edabe0 (libc.so.6:memchr) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4ef8eb0 (libc.so.6:wcslen) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4eda050 (libc.so.6:strspn) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4edaf20 (libc.so.6:stpncpy) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4edaef0 (libc.so.6:stpcpy) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4edc7f0 (libc.so.6:strchrnul) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4edb040 (libc.so.6:strncasecmp_1) redirected to 0x4a2a6e0
   (_vgnU_ifunc_wrapper)
--7017-- REDIR: 0x4fca3c0 (libc.so.6:__strrchr_avx2) redirected to 0x4c32730
    (rindex)
--7017-- REDIR: 0x4ed3070 (libc.so.6:malloc) redirected to 0x4c2faa0 (malloc
--7017-- REDIR: 0x4fca1d0 (libc.so.6:__strchrnul_avx2) redirected to 0
    x4c37020 (strchrnul)
--7017-- REDIR: 0x4fcaab0 (libc.so.6:__mempcpy_avx_unaligned_erms)
   redirected to 0x4c37130 (mempcpy)
--7017-- REDIR: 0x4fca590 (libc.so.6:__strlen_avx2) redirected to 0x4c32cf0
   (strlen)
Co(0.000000,0.000000) x(1.000000,0.000000) y(0.000000,1.000000)
against
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
minXY(0.000000,0.000000)-maxXY(1.000000,1.000000)
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
against
```

```
Co(0.000000, 0.000000) \times (1.000000, 0.000000) \times (0.000000, 1.000000)
Succeed
minXY(0.000000,0.000000)-maxXY(1.000000,1.000000)
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
against
Co(0.500000, 0.500000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
minXY(0.500000,0.500000)-maxXY(1.000000,1.000000)
Co(0.500000, 0.500000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
against
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
minXY(0.500000,0.500000)-maxXY(1.000000,1.000000)
Co(-0.500000, -0.500000) x(1.000000, 0.000000) y(0.000000, 1.000000)
against
Co(0.500000, 0.500000) x(1.000000, 0.000000) y(0.000000, 1.000000)
Succeed (no inter)
Co(0.500000, 0.500000) \times (1.000000, 0.000000) y (0.000000, 1.000000)
against
C_0(-0.500000, -0.500000) \times (1.000000, 0.000000) \times (0.000000, 1.000000)
Succeed (no inter)
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
against
Co(0.250000, -0.250000) \times (0.500000, 0.000000) y(0.000000, 2.000000)
Succeed
minXY(0.250000,0.000000)-maxXY(0.750000,1.000000)
Co(0.250000, -0.250000) \times (0.500000, 0.000000) y (0.000000, 2.000000)
against
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
minXY(0.250000, 0.000000) - maxXY(0.750000, 1.000000)
Co(0.000000,0.000000) x(1.000000,0.000000) y(0.000000,1.000000)
against
C_0(-0.250000, 0.250000) \times (2.000000, 0.000000) y (0.000000, 0.500000)
Succeed
minXY(0.000000,0.250000)-maxXY(1.000000,0.750000)
Co(-0.250000, 0.250000) x(2.000000, 0.000000) y(0.000000, 0.500000)
against
Co(0.000000, 0.000000) x(1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
minXY(0.000000,0.250000)-maxXY(1.000000,0.750000)
Co(0.000000, 0.000000) \times (1.000000, 1.000000) y(-1.000000, 1.000000)
against
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y (0.000000, 1.000000)
Succeed
minXY(0.000000,0.000000)-maxXY(1.000000,1.000000)
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
Co(0.000000, 0.000000) \times (1.000000, 1.000000) y(-1.000000, 1.000000)
Succeed
minXY(0.000000,0.000000)-maxXY(1.000000,1.000000)
```

```
Co(-0.500000,-0.500000) x(1.000000,1.000000) y(-1.000000,1.000000)
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
minXY(0.000000,0.000000)-maxXY(0.500000,1.000000)
Co(0.000000, 0.000000) x(1.000000, 0.000000) y(0.000000, 1.000000)
against
Co(-0.500000, -0.500000) x(1.000000, 1.000000) y(-1.000000, 1.000000)
Succeed
minXY(0.000000,0.000000)-maxXY(0.500000,1.000000)
Co(1.500000, 1.500000) \times (1.000000, -1.000000) y(-1.000000, -1.000000)
against
Co(1.000000, 0.000000) \times (-1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
minXY(0.500000,0.000000)-maxXY(1.000000,1.000000)
Co(1.000000, 0.000000) \times (-1.000000, 0.000000) y(0.000000, 1.000000)
against
Co(1.500000, 1.500000) x(1.000000, -1.000000) y(-1.000000, -1.000000)
Succeed
minXY(0.500000,0.000000)-maxXY(1.000000,1.000000)
Co(1.000000, 0.500000) \times (-0.500000, 0.500000) y (-0.500000, -0.500000)
Co(0.000000, 1.000000) \times (1.000000, 0.000000) y(0.000000, -1.000000)
Succeed
minXY(0.000000,0.000000)-maxXY(1.000000,1.000000)
Co(0.000000, 1.000000) \times (1.000000, 0.000000) \times (0.000000, -1.000000)
Co(1.000000, 0.500000) x(-0.500000, 0.500000) y(-0.500000, -0.500000)
Succeed
minXY(0.000000,0.000000)-maxXY(1.000000,1.000000)
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y (1.000000, 1.000000)
against
Co(2.000000, -1.000000) x(0.000000, 1.000000) y(-0.500000, 1.000000)
Succeed
minXY(1.500000,0.000000)-maxXY(1.666667,1.000000)
Co(2.000000, -1.000000) \times (0.000000, 1.000000) y (-0.500000, 1.000000)
against
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y (1.000000, 1.000000)
Succeed
minXY(1.500000,0.500000)-maxXY(2.000000,1.000000)
Co(0.000000, 0.000000) \times (1.000000, 0.500000) y(0.500000, 1.000000)
against
Co(1.000000, 1.000000) \times (-0.500000, -0.500000) y(0.000000, -1.000000)
Succeed
minXY(0.500000,0.000000)-maxXY(1.000000,1.000000)
Co(1.000000, 1.000000) x(-0.500000, -0.500000) y(0.000000, -1.000000)
against
Co(0.000000, 0.000000) \times (1.000000, 0.500000) y (0.500000, 1.000000)
Succeed
minXY(0.500000,0.000000)-maxXY(1.000000,1.000000)
Co(0.000000, 0.000000) \times (1.000000, 0.500000) y(0.500000, 1.000000)
```

against

```
Co(1.000000, 2.000000) \times (-0.500000, -0.500000) y(0.000000, -1.000000)
Succeed
minXY(0.500000,0.500000)-maxXY(1.000000,1.500000)
Co(1.000000, 2.000000) \times (-0.500000, -0.500000) y(0.000000, -1.000000)
against
Co(0.000000, 0.000000) \times (1.000000, 0.500000) y(0.500000, 1.000000)
minXY(0.500000,0.500000)-maxXY(1.000000,1.500000)
To (0.000000, 0.000000) x (1.000000, 0.500000) y (0.500000, 1.000000)
against
Co(1.000000, 2.000000) \times (-0.500000, -0.500000) \times (0.000000, -1.000000)
Succeed
minXY(0.500000,0.500000)-maxXY(1.000000,1.000000)
Co(1.000000, 2.000000) \times (-0.500000, -0.500000) y(0.000000, -1.000000)
To (0.000000, 0.000000) x (1.000000, 0.500000) y (0.500000, 1.000000)
Succeed
minXY(0.500000,0.500000)-maxXY(1.000000,1.000000)
Co(0.000000, 0.000000) \times (1.000000, 0.500000) y(0.500000, 1.000000)
against
T_{0}(1.000000, 2.000000) \times (-0.500000, -0.500000) y (0.000000, -1.000000)
Succeed
minXY(0.500000,1.000000)-maxXY(1.000000,1.500000)
To (1.000000, 2.000000) x(-0.500000, -0.500000) y(0.000000, -1.000000)
against
Co(0.000000, 0.000000) \times (1.000000, 0.500000) y (0.500000, 1.000000)
minXY(0.500000,1.000000)-maxXY(1.000000,1.500000)
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
against
T_0(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
\mathtt{minXY} \, (\mathtt{0.000000}\, \mathtt{,0.000000}) \, \mathtt{-maxXY} \, (\mathtt{1.000000}\, \mathtt{,1.000000})
To (0.000000, 0.000000) x (1.000000, 0.000000) y (0.000000, 1.000000)
against
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
minXY(0.000000, 0.000000) - maxXY(1.000000, 1.000000)
Co(0.000000,0.000000) x(1.000000,0.000000) y(0.000000,1.000000)
against
To(0.000000, -0.500000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
minXY(0.000000,0.000000)-maxXY(1.000000,0.500000)
To (0.000000, -0.500000) x (1.000000, 0.000000) y (0.000000, 1.000000)
against
Co(0.000000, 0.000000) x(1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
minXY(0.000000,0.000000)-maxXY(1.000000,0.500000)
Co(0.500000, 0.500000) \times (-0.500000, 0.000000) y(0.000000, -0.500000)
against
To(0.000000, -0.500000) x(1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
```

```
minXY(0.000000,0.000000)-maxXY(0.500000,0.500000)
To(0.000000, -0.500000) x(1.000000, 0.000000) y(0.000000, 1.000000)
against
C_0(0.500000, 0.500000) \times (-0.500000, 0.000000) y(0.000000, -0.500000)
Succeed
minXY(0.000000,0.000000)-maxXY(0.500000,0.500000)
Co(0.500000,0.500000) x(1.000000,0.000000) y(0.000000,1.000000)
against
To (0.000000, 0.000000) x (1.000000, 0.000000) y (0.000000, 1.000000)
Succeed (no inter)
To(0.000000, 0.000000) x(1.000000, 0.000000) y(0.000000, 1.000000)
against
Co(0.500000, 0.500000) x(1.000000, 0.000000) y(0.000000, 1.000000)
Succeed (no inter)
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
against
T_0(1.500000, 1.500000) \times (-1.500000, 0.000000) y(0.000000, -1.500000)
Succeed
minXY(0.000000,0.500000)-maxXY(1.000000,1.000000)
To(1.500000,1.500000) x(-1.500000,0.000000) y(0.000000,-1.500000)
against
Co(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
Succeed
minXY(0.000000,0.500000)-maxXY(1.000000,1.000000)
To (0.000000, 0.000000) x (1.000000, 0.000000) y (0.000000, 1.000000)
To (1.010000, 1.010000) x (-1.000000, 0.000000) y (0.000000, -1.000000)
 Succeed (no inter)
To(1.010000,1.010000) x(-1.000000,0.000000) y(0.000000,-1.000000)
against
To(0.000000, 0.000000) \times (1.000000, 0.000000) y(0.000000, 1.000000)
Succeed (no inter)
To (0.000000, 0.000000) x (1.000000, 0.500000) y (0.500000, 1.000000)
against
To(1.000000, 1.000000) x(-0.500000, -0.500000) y(0.000000, -1.000000)
Succeed
minXY(0.500000, 0.000000) - maxXY(1.000000, 1.000000)
To(1.000000,1.000000) x(-0.500000,-0.500000) y(0.000000,-1.000000)
against
To(0.000000, 0.000000) \times (1.000000, 0.500000) y(0.500000, 1.000000)
Succeed
minXY(0.500000,0.000000)-maxXY(1.000000,1.000000)
To (0.000000, 0.000000) x (1.000000, 0.500000) y (0.500000, 1.000000)
against
To(1.010000,1.500000) x(-0.500000,-0.500000) y(0.000000,-1.000000)
 Succeed (no inter)
To(1.010000,1.500000) x(-0.500000,-0.500000) y(0.000000,-1.000000)
against
T_0(0.000000, 0.000000) \times (1.000000, 0.500000) \times (0.500000, 1.000000)
 Succeed (no inter)
```

```
All unit tests 2D have succeed.
--7017-- REDIR: 0x4ed3950 (libc.so.6:free) redirected to 0x4c30cd0 (free)
==7017==
==7017== HEAP SUMMARY:
==7017==
             in use at exit: 0 bytes in 0 blocks
==7017==
           total heap usage: 1 allocs, 1 frees, 4,096 bytes allocated
==7017==
==7017== All heap blocks were freed -- no leaks are possible
==7017==
==7017== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
==7017== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
make[2]: Leaving directory '/home/bayashi/GitHub/FMB/2D'
/home/bayashi/GitHub/FMB
cd 2DTime; make valgrind; cd -
make[2]: Entering directory '/home/bayashi/GitHub/FMB/2DTime'
valgrind -v --track-origins=yes --leak-check=full \
--gen-suppressions=yes --show-leak-kinds=all ./unitTests
==7020== Memcheck, a memory error detector
==7020== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==7020== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==7020== Command: ./unitTests
==7020==
--7020-- Valgrind options:
--7020--
--7020--
            --track-origins=yes
--7020--
           --leak-check=full
--7020--
           --gen-suppressions=yes
           --show-leak-kinds=all
--7020--
--7020-- Contents of /proc/version:
--7020-- Linux version 5.3.0-26-generic (buildd@lgw01-amd64-039) (gcc
    version 7.4.0 (Ubuntu 7.4.0-1ubuntu1~18.04.1)) #28~18.04.1-Ubuntu SMP
    Wed Dec 18 16:40:14 UTC 2019
--7020-- Arch and hwcaps: AMD64, LittleEndian, amd64-cx16-lzcnt-rdtscp-sse3-
    avx-avx2-bmi
--7020-- Page sizes: currently 4096, max supported 4096
--7020-- Valgrind library directory: /usr/lib/valgrind
--7020-- Reading syms from /home/bayashi/GitHub/FMB/2DTime/unitTests
--7020-- Reading syms from /lib/x86_64-linux-gnu/ld-2.27.so
--7020--
           Considering /lib/x86_64-linux-gnu/ld-2.27.so ...
--7020--
           .. CRC mismatch (computed 1b7c895e wanted 2943108a)
--7020--
          Considering /usr/lib/debug/lib/x86_64-linux-gnu/ld-2.27.so ..
--7020--
          .. CRC is valid
--7020-- Reading syms from /usr/lib/valgrind/memcheck-amd64-linux
--7020-- Considering /usr/lib/valgrind/memcheck-amd64-linux ..
--7020--
           .. CRC mismatch (computed 41ddb025 wanted 9972f546)
--7020--
           object doesn't have a symbol table
--7020--
            object doesn't have a dynamic symbol table
--7020-- Scheduler: using generic scheduler lock implementation.
--7020-- Reading suppressions file: /usr/lib/valgrind/default.supp
==7020== embedded gdbserver: reading from /tmp/vgdb-pipe-from-vgdb-to-7020-
   by-bayashi-on-???
==7020== embedded gdbserver: writing to
                                          /tmp/vgdb-pipe-to-vgdb-from-7020-
   by-bayashi-on-???
==7020== embedded gdbserver: shared mem
                                          /tmp/vgdb-pipe-shared-mem-vgdb
    -7020-by-bayashi-on-???
==7020==
==7020== TO CONTROL THIS PROCESS USING vgdb (which you probably
==7020== don't want to do, unless you know exactly what you're doing,
==7020== or are doing some strange experiment):
==7020==
         /usr/lib/valgrind/../../bin/vgdb --pid=7020 ...command...
==7020==
```

```
==7020== TO DEBUG THIS PROCESS USING GDB: start GDB like this
==7020==
          /path/to/gdb ./unitTests
==7020== and then give GDB the following command
==7020== target remote | /usr/lib/valgrind/../../bin/vgdb --pid=7020
==7020== --pid is optional if only one valgrind process is running
==7020==
--7020-- REDIR: 0x401f2f0 (ld-linux-x86-64.so.2:strlen) redirected to 0
   x580608c1 (???)
--7020-- REDIR: 0x401f0d0 (ld-linux-x86-64.so.2:index) redirected to 0
   x580608db (???)
--7020-- Reading syms from /usr/lib/valgrind/vgpreload_core-amd64-linux.so
--7020--
          {\tt Considering /usr/lib/valgrind/vgpreload\_core-amd64-linux.so ..}
--7020--
           .. CRC mismatch (computed 50df1b30 wanted 4800a4cf)
--7020--
          object doesn't have a symbol table
--7020-- Reading syms from /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.
   so
--7020--
          Considering /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so
--7020--
           .. CRC mismatch (computed f893b962 wanted 95ee359e)
--7020--
           object doesn't have a symbol table
==7020== WARNING: new redirection conflicts with existing - ignoring it
--7020--
            old: 0x0401f2f0 (strlen
                                                  ) R-> (0000.0) 0x580608c1
   ???
--7020--
            new: 0x0401f2f0 (strlen
                                                  ) R-> (2007.0) 0x04c32db0
   strlen
--7020-- REDIR: 0x401d360 (ld-linux-x86-64.so.2:strcmp) redirected to 0
   x4c33ee0 (strcmp)
--7020-- REDIR: 0x401f830 (ld-linux-x86-64.so.2:mempcpy) redirected to 0
   x4c374f0 (mempcpy)
--7020-- Reading syms from /lib/x86_64-linux-gnu/libc-2.27.so
--7020--
          Considering /lib/x86_64-linux-gnu/libc-2.27.so ...
--7020--
           .. CRC mismatch (computed b1c74187 wanted 042cc048)
--7020--
         Considering /usr/lib/debug/lib/x86_64-linux-gnu/libc-2.27.so ..
--7020--
          .. CRC is valid
--7020-- REDIR: 0x4edac70 (libc.so.6:memmove) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4ed9d40 (libc.so.6:strncpy) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4edaf50 (libc.so.6:strcasecmp) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4ed9790 (libc.so.6:strcat) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4ed9d70 (libc.so.6:rindex) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4edc7c0 (libc.so.6:rawmemchr) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4edade0 (libc.so.6:mempcpy) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4edac10 (libc.so.6:bcmp) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4ed9d00 (libc.so.6:strncmp) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4ed9800 (libc.so.6:strcmp) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4edad40 (libc.so.6:memset) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4ef80f0 (libc.so.6:wcschr) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4ed9ca0 (libc.so.6:strnlen) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4ed9870 (libc.so.6:strcspn) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
```

```
--7020-- REDIR: 0x4edafa0 (libc.so.6:strncasecmp) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4ed9840 (libc.so.6:strcpy) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4edb0e0 (libc.so.6:memcpy@@GLIBC_2.14) redirected to 0
    x4a2a6e0 (_vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4ed9da0 (libc.so.6:strpbrk) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4ed97c0 (libc.so.6:index) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4ed9c70 (libc.so.6:strlen) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4ee46c0 (libc.so.6:memrchr) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4edaff0 (libc.so.6:strcasecmp_1) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4edabe0 (libc.so.6:memchr) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4ef8eb0 (libc.so.6:wcslen) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4eda050 (libc.so.6:strspn) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4edaf20 (libc.so.6:stpncpy) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4edaef0 (libc.so.6:stpcpy) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4edc7f0 (libc.so.6:strchrnul) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4edb040 (libc.so.6:strncasecmp_1) redirected to 0x4a2a6e0
    (_vgnU_ifunc_wrapper)
--7020-- REDIR: 0x4fca3c0 (libc.so.6:__strrchr_avx2) redirected to 0x4c32730
     (rindex)
--7020-- REDIR: 0x4ed3070 (libc.so.6:malloc) redirected to 0x4c2faa0 (malloc
   )
--7020-- REDIR: 0x4fca1d0 (libc.so.6:__strchrnul_avx2) redirected to 0
   x4c37020 (strchrnul)
--7020-- REDIR: 0x4fcaab0 (libc.so.6:__mempcpy_avx_unaligned_erms)
    redirected to 0x4c37130 (mempcpy)
--7020-- REDIR: 0x4fca590 (libc.so.6:__strlen_avx2) redirected to 0x4c32cf0
    (strlen)
Co(0.000000, 0.000000) s(0.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000,1.000000)
Co(-1.000000, 0.000000) s(-1.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000, 1.000000)
Succeed (no inter)
Co(-1.000000, 0.000000) s(-1.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000,1.000000)
against
Co(0.000000, 0.000000) s(0.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000,1.000000)
Succeed (no inter)
Co(0.000000,0.000000) s(0.000000,0.000000) x(1.000000,0.000000) y
    (0.000000,1.000000)
against
\texttt{Co(-1.010000,-1.010000)} \;\; \texttt{s(1.000000,0.000000)} \;\; \texttt{x(1.000000,0.000000)} \;\; \texttt{y}
    (0.000000,1.000000)
Succeed (no inter)
Co(-1.010000, -1.010000) s(1.000000, 0.000000) x(1.000000, 0.000000) y
```

```
(0.000000,1.000000)
against
Co(0.000000, 0.000000) s(0.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000,1.000000)
 Succeed (no inter)
Co(0.000000, 0.000000) s(0.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000,1.000000)
against
C_0(-1.000000, 0.000000) s(1.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000,1.000000)
Succeed
minXYT(-1.000000,0.000000,0.000000)-maxXYT(2.000000,1.000000,1.000000)
\texttt{Co} \hspace{0.1cm} (-1.000000 \hspace{0.1cm}, 0.000000) \hspace{0.1cm} \texttt{s} \hspace{0.1cm} (1.000000 \hspace{0.1cm}, 0.000000) \hspace{0.1cm} \texttt{x} \hspace{0.1cm} (1.000000 \hspace{0.1cm}, 0.000000) \hspace{0.1cm} \texttt{y}
    (0.000000,1.000000)
against
Co(0.000000, 0.000000) s(0.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000,1.000000)
Succeed
minXYT(-1.000000,0.000000,0.000000)-maxXYT(1.000000,1.000000,1.000000)
Co(0.000000, 0.000000) s(0.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000,1.000000)
against
C_0(-1.000000, 0.250000) s(4.000000,0.000000) x(0.500000,0.000000) y
    (0.000000.0.500000)
Succeed
minXYT(-1.500000,0.000000,0.125000)-maxXYT(2.500000,1.000000,0.500000)
Co(-1.000000, 0.250000) s(4.000000, 0.000000) x(0.500000, 0.000000) y
     (0.000000,0.500000)
against
Co(0.000000, 0.000000) s(0.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000, 1.000000)
Succeed
minXYT(-0.500000,0.000000,0.125000)-maxXYT(1.500000,1.000000,0.500000)
Co(0.000000,0.000000) s(0.000000,0.000000) x(1.000000,0.000000) y
    (0.000000,1.000000)
against
Co(0.250000, -1.000000) s(0.000000, 4.000000) x(0.500000, 0.000000) y(0.500000, 0.000000)
    (0.000000,0.500000)
Succeed
minXYT(0.000000,-1.500000,0.125000)-maxXYT(1.000000,2.500000,0.500000)
Co(0.250000, -1.000000) s(0.000000, 4.000000) x(0.500000, 0.000000) y
    (0.000000,0.500000)
against
Co(0.000000, 0.000000) s(0.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000,1.000000)
Succeed
minXYT(0.000000,-0.500000,0.125000)-maxXYT(1.000000,1.500000,0.500000)
Co(0.000000, 0.000000) s(0.000000, 0.000000) x(1.000000, 0.000000) y
     (0.000000,1.000000)
against
Co(0.900000, -1.000000) s(0.000000, 4.000000) x(0.500000, 0.000000) y
    (0.000000,0.500000)
Succeed
minXYT(0.000000,-1.500000,0.125000)-maxXYT(1.400000,2.500000,0.500000)
```

```
Co(0.900000, -1.000000) s(0.000000, 4.000000) x(0.500000, 0.000000) y
    (0.000000,0.500000)
against
Co(0.000000, 0.000000) s(0.000000, 0.000000) x(1.000000, 0.000000) y
    (0.000000,1.000000)
Succeed
minXYT(0.000000,-0.500000,0.125000)-maxXYT(1.400000,1.500000,0.500000)
All unit tests 2DTime have succeed.
--7020-- REDIR: 0x4ed3950 (libc.so.6:free) redirected to 0x4c30cd0 (free)
==7020==
==7020== HEAP SUMMARY:
==7020==
            in use at exit: 0 bytes in 0 blocks
           total heap usage: 1 allocs, 1 frees, 4,096 bytes allocated
==7020==
==7020== All heap blocks were freed -- no leaks are possible
==7020==
==7020== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
==7020== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
make[2]: Leaving directory '/home/bayashi/GitHub/FMB/2DTime'
/home/bayashi/GitHub/FMB
cd 3D; make valgrind; cd -
make[2]: Entering directory '/home/bayashi/GitHub/FMB/3D'
valgrind -v --track-origins=yes --leak-check=full \
--gen-suppressions=yes --show-leak-kinds=all ./unitTests
==7023== Memcheck, a memory error detector
==7023== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==7023== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==7023== Command: ./unitTests
==7023==
--7023-- Valgrind options:
--7023--
            --track-origins=yes
--7023--
--7023--
            --leak-check=full
--7023--
            --gen-suppressions=yes
--7023--
           --show-leak-kinds=all
--7023-- Contents of /proc/version:
--7023-- Linux version 5.3.0-26-generic (buildd@lgw01-amd64-039) (gcc
    version 7.4.0 (Ubuntu 7.4.0-1ubuntu1~18.04.1)) #28~18.04.1-Ubuntu SMP
    Wed Dec 18 16:40:14 UTC 2019
--7023--
--7023-- Arch and hwcaps: AMD64, LittleEndian, amd64-cx16-lzcnt-rdtscp-sse3-
    avx-avx2-bmi
--7023-- Page sizes: currently 4096, max supported 4096
--7023-- Valgrind library directory: /usr/lib/valgrind
--7023-- Reading syms from /home/bayashi/GitHub/FMB/3D/unitTests
--7023-- Reading syms from /lib/x86_64-linux-gnu/ld-2.27.so
--7023--
          Considering /lib/x86_64-linux-gnu/ld-2.27.so .
--7023--
           .. CRC mismatch (computed 1b7c895e wanted 2943108a)
--7023--
           Considering /usr/lib/debug/lib/x86_64-linux-gnu/ld-2.27.so ..
--7023--
           .. CRC is valid
--7023-- Reading syms from /usr/lib/valgrind/memcheck-amd64-linux
--7023--
           Considering /usr/lib/valgrind/memcheck-amd64-linux ...
--7023--
           .. CRC mismatch (computed 41ddb025 wanted 9972f546)
--7023--
           object doesn't have a symbol table
--7023--
            object doesn't have a dynamic symbol table
--7023-- Scheduler: using generic scheduler lock implementation.
--7023-- Reading suppressions file: /usr/lib/valgrind/default.supp
==7023== embedded gdbserver: reading from /tmp/vgdb-pipe-from-vgdb-to-7023-
   by-bayashi-on-???
                                         /tmp/vgdb-pipe-to-vgdb-from-7023-
==7023== embedded gdbserver: writing to
    by-bayashi-on-???
```

```
==7023== embedded gdbserver: shared mem /tmp/vgdb-pipe-shared-mem-vgdb
   -7023-by-bayashi-on-???
==7023==
==7023== TO CONTROL THIS PROCESS USING vgdb (which you probably
==7023== don't want to do, unless you know exactly what you're doing,
==7023== or are doing some strange experiment):
==7023==
          /usr/lib/valgrind/../../bin/vgdb --pid=7023 ...command...
==7023==
==7023== TO DEBUG THIS PROCESS USING GDB: start GDB like this
==7023== /path/to/gdb ./unitTests
==7023== and then give GDB the following command
==7023== target remote | /usr/lib/valgrind/../../bin/vgdb --pid=7023
==7023== --pid is optional if only one valgrind process is running
--7023-- REDIR: 0x401f2f0 (ld-linux-x86-64.so.2:strlen) redirected to 0
   x580608c1 (???)
--7023-- REDIR: 0x401f0d0 (ld-linux-x86-64.so.2:index) redirected to 0
   x580608db (???)
--7023-- Reading syms from /usr/lib/valgrind/vgpreload_core-amd64-linux.so
--7023--
        Considering /usr/lib/valgrind/vgpreload_core-amd64-linux.so ..
--7023--
           .. CRC mismatch (computed 50df1b30 wanted 4800a4cf)
--7023--
           object doesn't have a symbol table
--7023-- Reading syms from /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.
   so
--7023--
          Considering /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so
--7023--
          .. CRC mismatch (computed f893b962 wanted 95ee359e)
           object doesn't have a symbol table
--7023--
==7023== WARNING: new redirection conflicts with existing - ignoring it
--7023--
                                                  ) R-> (0000.0) 0x580608c1
            old: 0x0401f2f0 (strlen
   ???
--7023--
            new: 0x0401f2f0 (strlen
                                                  ) R-> (2007.0) 0x04c32db0
   strlen
--7023-- REDIR: 0x401d360 (ld-linux-x86-64.so.2:strcmp) redirected to 0
   x4c33ee0 (strcmp)
--7023-- REDIR: 0x401f830 (ld-linux-x86-64.so.2:mempcpy) redirected to 0
   x4c374f0 (mempcpy)
--7023-- Reading syms from /lib/x86_64-linux-gnu/libc-2.27.so
--7023-- Considering /lib/x86_64-linux-gnu/libc-2.27.so ..
--7023--
           .. CRC mismatch (computed b1c74187 wanted 042cc048)
          Considering /usr/lib/debug/lib/x86_64-linux-gnu/libc-2.27.so ...
--7023--
--7023--
          .. CRC is valid
--7023-- REDIR: 0x4edac70 (libc.so.6:memmove) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4ed9d40 (libc.so.6:strncpy) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4edaf50 (libc.so.6:strcasecmp) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4ed9790 (libc.so.6:strcat) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4ed9d70 (libc.so.6:rindex) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4edc7c0 (libc.so.6:rawmemchr) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4edade0 (libc.so.6:mempcpy) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4edac10 (libc.so.6:bcmp) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4ed9d00 (libc.so.6:strncmp) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4ed9800 (libc.so.6:strcmp) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
```

```
--7023-- REDIR: 0x4edad40 (libc.so.6:memset) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4ef80f0 (libc.so.6:wcschr) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4ed9ca0 (libc.so.6:strnlen) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4ed9870 (libc.so.6:strcspn) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4edafa0 (libc.so.6:strncasecmp) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4ed9840 (libc.so.6:strcpy) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4edb0e0 (libc.so.6:memcpy@@GLIBC_2.14) redirected to 0
   x4a2a6e0 (_vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4ed9da0 (libc.so.6:strpbrk) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4ed97c0 (libc.so.6:index) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4ed9c70 (libc.so.6:strlen) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4ee46c0 (libc.so.6:memrchr) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4edaff0 (libc.so.6:strcasecmp_1) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4edabe0 (libc.so.6:memchr) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4ef8eb0 (libc.so.6:wcslen) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4eda050 (libc.so.6:strspn) redirected to 0x4a2a6e0 (
    vgnU ifunc wrapper)
--7023-- REDIR: 0x4edaf20 (libc.so.6:stpncpy) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4edaef0 (libc.so.6:stpcpy) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4edc7f0 (libc.so.6:strchrnul) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4edb040 (libc.so.6:strncasecmp_1) redirected to 0x4a2a6e0
   (_vgnU_ifunc_wrapper)
--7023-- REDIR: 0x4fca3c0 (libc.so.6:__strrchr_avx2) redirected to 0x4c32730
     (rindex)
--7023-- REDIR: 0x4ed3070 (libc.so.6:malloc) redirected to 0x4c2faa0 (malloc
--7023-- REDIR: 0x4fca1d0 (libc.so.6:__strchrnul_avx2) redirected to 0
   x4c37020 (strchrnul)
--7023-- REDIR: 0x4fcaab0 (libc.so.6:__mempcpy_avx_unaligned_erms)
   redirected to 0x4c37130 (mempcpy)
--7023-- REDIR: 0x4fca590 (libc.so.6:__strlen_avx2) redirected to 0x4c32cf0
    (strlen)
Co(0.000000, 0.000000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000, 1.000000, 0.000000) \ z (0.000000, 0.000000, 1.000000)
against
C_{0}(0.000000, 0.000000, 0.000000) x (1.000000, 0.000000, 0.000000) y
   (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
Succeed
minXYZ(0.000000,0.000000,0.000000)-maxXYZ(1.000000,1.000000,1.000000)
Co(0.000000, 0.000000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
C_{0}(0.000000, 0.000000, 0.000000) x (1.000000, 0.000000, 0.000000) y
   (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
Succeed
```

```
minXYZ(0.000000,0.000000,0.000000)-maxXYZ(1.000000,1.000000,1.000000)
Co(0.000000, 0.000000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000, 1.000000, 0.000000) z(0.000000, 0.000000, 1.000000)
Co(0.500000, 0.500000, 0.500000) x(1.000000, 0.000000, 0.000000) y
    (0.000000, 1.000000, 0.000000) z(0.000000, 0.000000, 1.000000)
minXYZ(0.500000,0.500000,0.500000)-maxXYZ(1.000000,1.000000,1.000000)
Co(0.500000, 0.500000, 0.500000) x(1.000000, 0.000000, 0.000000) y
    (0.000000, 1.000000, 0.000000) z(0.000000, 0.000000, 1.000000)
Co(0.000000, 0.000000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
Succeed
minXYZ(0.500000,0.500000,0.500000)-maxXYZ(1.000000,1.000000,1.000000)
Co(0.000000,0.000000,0.000000) x(1.000000,0.000000,0.000000) y
    (0.000000, 1.000000, 0.000000) z(0.000000, 0.000000, 1.000000)
against
Co(-0.500000, -0.500000, -0.500000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
minXYZ(0.000000,0.000000,0.000000)-maxXYZ(0.500000,0.500000,0.500000)
Co(-0.500000, -0.500000, -0.500000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
against
Co(0.000000, 0.000000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
minXYZ(0.000000,0.000000,0.000000)-maxXYZ(0.500000,0.500000,0.500000)
Co(0.000000, 0.000000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
against
Co(1.500000, 1.500000, 1.500000) x(-1.000000, 0.000000, 0.000000) y
    (0.000000, -1.000000, 0.000000) z(0.000000, 0.000000, -1.000000)
minXYZ(0.500000,0.500000,0.500000)-maxXYZ(1.000000,1.000000,1.000000)
Co(1.500000, 1.500000, 1.500000) x(-1.000000, 0.000000, 0.000000) y
    (0.000000.-1.000000.0.000000) z(0.000000.0.000000.-1.000000)
against
Co(0.000000,0.000000,0.000000) x(1.000000,0.000000,0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
Succeed
minXYZ(0.500000,0.500000,0.500000)-maxXYZ(1.000000,1.000000,1.000000)
Co(0.000000,0.000000,0.000000) x(1.000000,0.000000,0.000000) y
    (0.000000.1.000000.0.000000) z(0.000000.0.000000.1.000000)
against
Co(0.500000, 1.500000, -1.500000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,-1.000000,0.000000) z(0.000000,0.000000,1.000000)
 Succeed (no inter)
Co(0.500000, 1.500000, -1.500000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,-1.000000,0.000000) z(0.000000,0.000000,1.000000)
against
Co(0.000000,0.000000,0.000000) x(1.000000,0.000000,0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
```

```
Succeed (no inter)
Co(0.000000,0.000000,0.000000) x(1.000000,0.000000,0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,-1.000000)
Co(0.500000, 1.500000, -1.500000) \times (1.000000, 0.000000, 0.000000) y
    (0.000000, -1.000000, 0.000000) z(0.000000, 0.000000, 1.000000)
Succeed
minXYZ(0.500000,0.500000,-1.000000)-maxXYZ(1.000000,1.000000,-0.500000)
Co(0.500000, 1.500000, -1.500000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,-1.000000,0.000000) z(0.000000,0.000000,1.000000)
against
Co(0.000000, 0.000000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,-1.000000)
Succeed
minXYZ(0.500000,0.500000,-1.000000)-maxXYZ(1.000000,1.000000,-0.500000)
Co(-1.010000, -1.010000, -1.010000) x(1.000000, 0.000000, 0.000000) y
    (1.000000,1.000000,1.000000) z(0.000000,0.000000,1.000000)
against
Co(0.000000, 0.000000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
 Succeed (no inter)
Co(0.000000, 0.000000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
against
C_0(-1.010000, -1.010000, -1.010000) \times (1.000000, 0.000000, 0.000000) y
    (1.000000, 1.000000, 1.000000) z(0.000000, 0.000000, 1.000000)
 Succeed (no inter)
Co(-1.000000, -1.000000, -1.000000) x(1.000000, 0.000000, 0.000000) y
    (1.000000,1.000000,1.000000) z(0.000000,0.000000,1.000000)
against
Co(0.000000, -0.500000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
Succeed
minXYZ(0.000000,-0.500000,0.000000)-maxXYZ(1.000000,0.000000,1.000000)
Co(0.000000, -0.500000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
Co(-1.000000,-1.000000,-1.000000) x(1.000000,0.000000,0.000000) y
    (1.000000,1.000000,1.000000) z(0.000000,0.000000,1.000000)
Succeed
minXYZ(0.000000,-0.500000,0.000000)-maxXYZ(1.000000,0.000000,1.000000)
To(-1.000000, -1.000000, -1.000000) x(1.000000, 0.000000, 0.000000) y
    (1.000000,1.000000,1.000000) z(0.000000,0.000000,1.000000)
against
C_0(0.000000, -0.500000, 0.000000) x(1.000000, 0.000000, 0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
 Succeed (no inter)
\texttt{Co} \hspace{0.04cm} (0.000000, -0.500000, 0.000000) \hspace{0.4cm} \texttt{x} \hspace{0.04cm} (1.000000, 0.000000, 0.000000) \hspace{0.4cm} \texttt{y}
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
against
To(-1.000000, -1.000000, -1.000000) \times (1.000000, 0.000000, 0.000000)
    (1.000000,1.000000,1.000000) z(0.000000,0.000000,1.000000)
 Succeed (no inter)
```

```
Co(-1.000000, -1.000000, -1.000000) x(1.000000, 0.000000, 0.000000) y
    (1.000000,1.000000,1.000000) z(0.000000,0.000000,1.000000)
against
To(0.000000,-0.500000,0.000000) x(1.000000,0.000000,0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
Succeed
minXYZ(0.000000.-0.500000.0.000000)-maxXYZ(1.000000.0.000000.0.750000)
To(0.000000,-0.500000,0.000000) x(1.000000,0.000000,0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
against
Co(-1.000000, -1.000000, -1.000000) x(1.000000, 0.000000, 0.000000) y
    (1.000000,1.000000,1.000000) z(0.000000,0.000000,1.000000)
Succeed
minXYZ(0.000000.-0.500000.0.000000)-maxXYZ(1.000000.0.000000.1.000000)
To(-1.000000,-1.000000,-1.000000) x(1.000000,0.000000,0.000000) y
    (1.000000,1.000000,1.000000) z(0.000000,0.000000,1.000000)
against
To(0.000000,-0.500000,0.000000) x(1.000000,0.000000,0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
 Succeed (no inter)
To(0.000000,-0.500000,0.000000) x(1.000000,0.000000,0.000000) y
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
To(-1.000000, -1.000000, -1.000000) x(1.000000, 0.000000, 0.000000) y
    (1.000000,1.000000,1.000000) z(0.000000,0.000000,1.000000)
 Succeed (no inter)
To(-0.500000, -1.000000, -0.500000) x(1.000000, 0.000000, 0.000000) y
    (1.000000,1.000000,1.000000) z(0.000000,0.000000,1.000000)
against
(0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
Succeed
minXYZ(0.000000,-0.500000,0.000000)-maxXYZ(0.500000,0.000000,0.500000)
{\tt To (0.000000, -0.500000, 0.000000)} \ {\tt x(1.000000, 0.0000000, 0.000000)} \ {\tt y}
    (0.000000,1.000000,0.000000) z(0.000000,0.000000,1.000000)
against
 To (-0.500000, -1.000000, -0.500000) \ x (1.000000, 0.000000, 0.000000) \ y 
    (1.000000,1.000000,1.000000) z(0.000000,0.000000,1.000000)
Succeed
minXYZ(0.000000,-0.500000,0.000000)-maxXYZ(0.500000,0.000000,0.500000)
All unit tests 3D have succeed.
--7023-- REDIR: 0x4ed3950 (libc.so.6:free) redirected to 0x4c30cd0 (free)
==7023==
==7023== HEAP SUMMARY:
==7023==
            in use at exit: 0 bytes in 0 blocks
==7023==
           total heap usage: 1 allocs, 1 frees, 4,096 bytes allocated
==7023==
==7023== All heap blocks were freed -- no leaks are possible
==7023==
==7023== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
==7023== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
make[2]: Leaving directory '/home/bayashi/GitHub/FMB/3D'
/home/bayashi/GitHub/FMB
cd 3DTime; make valgrind; cd -
make[2]: Entering directory '/home/bayashi/GitHub/FMB/3DTime'
valgrind -v --track-origins=yes --leak-check=full \
```

```
--gen-suppressions=yes --show-leak-kinds=all ./unitTests
==7026== Memcheck, a memory error detector
==7026== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==7026== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==7026== Command: ./unitTests
==7026==
--7026-- Valgrind options:
--7026--
--7026--
            --track-origins=yes
--7026--
           --leak-check=full
--7026--
           --gen-suppressions=yes
--7026--
           --show-leak-kinds=all
--7026-- Contents of /proc/version:
--7026-- Linux version 5.3.0-26-generic (buildd@lgw01-amd64-039) (gcc
   version 7.4.0 (Ubuntu 7.4.0-1ubuntu1~18.04.1)) #28~18.04.1-Ubuntu SMP
   Wed Dec 18 16:40:14 UTC 2019
--7026--
--7026-- Arch and hwcaps: AMD64, LittleEndian, amd64-cx16-lzcnt-rdtscp-sse3-
   avx-avx2-bmi
--7026-- Page sizes: currently 4096, max supported 4096
--7026-- Valgrind library directory: /usr/lib/valgrind
--7026-- Reading syms from /home/bayashi/GitHub/FMB/3DTime/unitTests
--7026-- Reading syms from /lib/x86_64-linux-gnu/ld-2.27.so
--7026-- Considering /lib/x86_64-linux-gnu/ld-2.27.so .
--7026--
           .. CRC mismatch (computed 1b7c895e wanted 2943108a)
--7026--
           Considering /usr/lib/debug/lib/x86_64-linux-gnu/ld-2.27.so \dots
--7026--
          .. CRC is valid
--7026-- Reading syms from /usr/lib/valgrind/memcheck-amd64-linux
--7026--
          Considering /usr/lib/valgrind/memcheck-amd64-linux
--7026--
           .. CRC mismatch (computed 41ddb025 wanted 9972f546)
--7026--
           object doesn't have a symbol table
--7026--
            object doesn't have a dynamic symbol table
--7026-- Scheduler: using generic scheduler lock implementation.
--7026-- Reading suppressions file: /usr/lib/valgrind/default.supp
==7026== embedded gdbserver: reading from /tmp/vgdb-pipe-from-vgdb-to-7026-
   by-bayashi-on-???
==7026== embedded gdbserver: writing to
                                          /tmp/vgdb-pipe-to-vgdb-from-7026-
   by-bayashi-on-???
==7026== embedded gdbserver: shared mem
                                         /tmp/vgdb-pipe-shared-mem-vgdb
   -7026-by-bayashi-on-???
==7026==
==7026== TO CONTROL THIS PROCESS USING vgdb (which you probably
==7026== don't want to do, unless you know exactly what you're doing,
==7026== or are doing some strange experiment):
==7026==
          /usr/lib/valgrind/../../bin/vgdb --pid=7026 ...command...
==7026==
==7026== TO DEBUG THIS PROCESS USING GDB: start GDB like this
==7026== /path/to/gdb ./unitTests
==7026== and then give GDB the following command
==7026==
         target remote | /usr/lib/valgrind/../../bin/vgdb --pid=7026
==7026== --pid is optional if only one valgrind process is running
==7026==
--7026-- REDIR: 0x401f2f0 (ld-linux-x86-64.so.2:strlen) redirected to 0
   x580608c1 (???)
--7026-- REDIR: 0x401f0d0 (ld-linux-x86-64.so.2:index) redirected to 0
   x580608db (???)
--7026-- Reading syms from /usr/lib/valgrind/vgpreload_core-amd64-linux.so
--7026--
          Considering /usr/lib/valgrind/vgpreload_core-amd64-linux.so ..
--7026--
           .. CRC mismatch (computed 50df1b30 wanted 4800a4cf)
           object doesn't have a symbol table
--7026--
--7026-- Reading syms from /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.
   so
```

```
--7026--
           Considering /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so
--7026--
           .. CRC mismatch (computed f893b962 wanted 95ee359e)
           object doesn't have a symbol table
--7026--
==7026== WARNING: new redirection conflicts with existing -- ignoring it
--7026--
            old: 0x0401f2f0 (strlen
                                                  ) R-> (0000.0) 0x580608c1
   777
--7026--
             new: 0x0401f2f0 (strlen
                                                  ) R \rightarrow (2007.0) 0 \times 04 c 32 db0
   strlen
--7026-- REDIR: 0x401d360 (ld-linux-x86-64.so.2:strcmp) redirected to 0
   x4c33ee0 (strcmp)
--7026-- REDIR: 0x401f830 (ld-linux-x86-64.so.2:mempcpy) redirected to 0
   x4c374f0 (mempcpy)
--7026-- Reading syms from /lib/x86_64-linux-gnu/libc-2.27.so
--7026--
         Considering /lib/x86_64-linux-gnu/libc-2.27.so ...
--7026--
           .. CRC mismatch (computed b1c74187 wanted 042cc048)
--7026--
         Considering /usr/lib/debug/lib/x86_64-linux-gnu/libc-2.27.so ...
--7026--
         .. CRC is valid
--7026-- REDIR: 0x4edac70 (libc.so.6:memmove) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4ed9d40 (libc.so.6:strncpy) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4edaf50 (libc.so.6:strcasecmp) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4ed9790 (libc.so.6:strcat) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4ed9d70 (libc.so.6:rindex) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4edc7c0 (libc.so.6:rawmemchr) redirected to 0x4a2a6e0 (
    vgnU ifunc wrapper)
--7026-- REDIR: 0x4edade0 (libc.so.6:mempcpy) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4edac10 (libc.so.6:bcmp) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4ed9d00 (libc.so.6:strncmp) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4ed9800 (libc.so.6:strcmp) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026- REDIR: 0x4edad40 (libc.so.6:memset) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4ef80f0 (libc.so.6:wcschr) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4ed9ca0 (libc.so.6:strnlen) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4ed9870 (libc.so.6:strcspn) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4edafa0 (libc.so.6:strncasecmp) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4ed9840 (libc.so.6:strcpy) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4edb0e0 (libc.so.6:memcpy@@GLIBC_2.14) redirected to 0
   x4a2a6e0 (_vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4ed9da0 (libc.so.6:strpbrk) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4ed97c0 (libc.so.6:index) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4ed9c70 (libc.so.6:strlen) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4ee46c0 (libc.so.6:memrchr) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4edaff0 (libc.so.6:strcasecmp_l) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
```

```
--7026-- REDIR: 0x4edabe0 (libc.so.6:memchr) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4ef8eb0 (libc.so.6:wcslen) redirected to 0x4a2a6e0 (
     _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4eda050 (libc.so.6:strspn) redirected to 0x4a2a6e0 (
    vgnU ifunc wrapper)
--7026-- REDIR: 0x4edaf20 (libc.so.6:stpncpy) redirected to 0x4a2a6e0 (
    _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4edaef0 (libc.so.6:stpcpy) redirected to 0x4a2a6e0 (
     _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4edc7f0 (libc.so.6:strchrnul) redirected to 0x4a2a6e0 (
     _vgnU_ifunc_wrapper)
--7026-- REDIR: 0x4edb040 (libc.so.6:strncasecmp_1) redirected to 0x4a2a6e0
    ( vgnU ifunc wrapper)
--7026-- REDIR: 0x4fca3c0 (libc.so.6:__strrchr_avx2) redirected to 0x4c32730
     (rindex)
--7026-- REDIR: 0x4ed3070 (libc.so.6:malloc) redirected to 0x4c2faa0 (malloc
    )
--7026-- REDIR: 0x4fca1d0 (libc.so.6:__strchrnul_avx2) redirected to 0
    x4c37020 (strchrnul)
--7026-- REDIR: 0x4fcaab0 (libc.so.6:__mempcpy_avx_unaligned_erms)
    redirected to 0x4c37130 (mempcpy)
--7026-- REDIR: 0x4fca590 (libc.so.6:__strlen_avx2) redirected to 0x4c32cf0
    (strlen)
Co(0.000000,0.000000,0.000000) s(0.000000,0.000000,0.000000) x
    (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
    (0.000000,0.000000,1.000000)
against
\texttt{Co} \hspace{0.1cm} (-1.000000 \hspace{0.1cm}, 0.000000 \hspace{0.1cm}, 0.000000) \hspace{0.1cm} \texttt{s} \hspace{0.1cm} (-1.000000 \hspace{0.1cm}, 0.000000 \hspace{0.1cm}, 0.000000) \hspace{0.1cm} \texttt{x}
    (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
    (0.000000,0.000000,1.000000)
 Succeed (no inter)
\texttt{Co(-1.000000,0.000000,0.000000)} \;\; \texttt{s(-1.000000,0.000000,0.000000)} \;\; \texttt{x}
    (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
    (0.000000,0.000000,1.000000)
against
Co(0.000000,0.000000,0.000000) s(0.000000,0.000000,0.000000) x
    (1.000000, 0.000000, 0.000000) \ \ y \ (0.000000, 1.000000, 0.000000) \ \ z
    (0.000000,0.000000,1.000000)
 Succeed (no inter)
\texttt{Co}(0.000000, 0.000000, 0.000000) \texttt{s}(0.000000, 0.000000, 0.000000) \texttt{x}
    (1.000000, 0.000000, 0.000000) \ y (0.000000, 1.000000, 0.000000) \ z
    (0.000000,0.000000,1.000000)
against
\texttt{Co(-1.010000,-1.010000,0.000000)} \;\; \texttt{s(1.000000,0.000000,0.000000)} \;\; \texttt{x}
    (1.000000, 0.000000, 0.000000) \ y (0.000000, 1.000000, 0.000000) \ z
    (0.000000,0.000000,1.000000)
 Succeed (no inter)
Co(-1.010000,-1.010000,0.000000) s(1.000000,0.000000,0.000000) x
    (1.000000, 0.000000, 0.000000) \ y (0.000000, 1.000000, 0.000000) \ z
    (0.000000,0.000000,1.000000)
against
\texttt{Co} \hspace{0.04cm} (0.000000, 0.000000, 0.000000) \hspace{0.4cm} \texttt{s} \hspace{0.04cm} (0.000000, 0.000000, 0.000000) \hspace{0.4cm} \texttt{x}
    (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
    (0.000000,0.000000,1.000000)
 Succeed (no inter)
Co(0.000000,0.000000,0.000000) s(0.000000,0.000000,0.000000) x
    (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
```

```
(0.000000,0.000000,1.000000)
against
Co(-1.000000,0.000000,0.000000) s(1.000000,0.000000,0.000000) x
    (1.000000, 0.000000, 0.000000) \ y (0.000000, 1.000000, 0.000000) \ z
    (0.000000,0.000000,1.000000)
Succeed
minXYZT (-1.000000,0.000000,0.000000,0.000000)-maxXYZT
    (2.000000,1.000000,1.000000,1.000000)
\texttt{Co(-1.000000,0.000000,0.000000)} \ \ \texttt{s(1.000000,0.000000,0.000000)} \ \ \texttt{x}
    (1.000000, 0.000000, 0.000000) \ y (0.000000, 1.000000, 0.000000) \ z
    (0.000000,0.000000,1.000000)
against
Co(0.000000, 0.000000, 0.000000) s(0.000000, 0.000000, 0.000000) x
    (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
    (0.000000,0.000000,1.000000)
Succeed
minXYZT(-1.000000,0.000000,0.000000,0.000000)-maxXYZT
    (1.000000, 1.000000, 1.000000, 1.000000)
\texttt{Co}(0.000000, 0.000000, 0.000000) \texttt{s}(0.000000, 0.000000, 0.000000) \texttt{x}
    (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
    (0.000000, 0.000000, 1.000000)
against
Co(-1.000000,0.250000,0.000000) s(4.000000,0.000000,0.000000) x
    (0.500000, 0.000000, 0.000000) y (0.000000, 0.500000, 0.000000) z
    (0.000000,0.000000,1.000000)
Succeed
minXYZT(-1.500000,0.000000,0.000000,0.125000)-maxXYZT
    (2.500000,1.000000,1.000000,0.500000)
Co(-1.000000, 0.250000, 0.000000) s(4.000000, 0.000000, 0.000000) x
    (0.500000, 0.000000, 0.000000) y (0.000000, 0.500000, 0.000000) z
    (0.000000,0.000000,1.000000)
against
C_{0}(0.000000, 0.000000, 0.000000) s(0.000000, 0.000000, 0.000000) x
    (1.000000, 0.000000, 0.000000) \ y (0.000000, 1.000000, 0.000000) \ z
    (0.000000,0.000000,1.000000)
Succeed
minXYZT(-0.500000,0.000000,0.000000,0.125000)-maxXYZT
    (1.500000,1.000000,1.000000,0.500000)
\texttt{Co}(0.000000, 0.000000, 0.000000) \texttt{s}(0.000000, 0.000000, 0.000000) \texttt{x}
    (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
    (0.000000,0.000000,1.000000)
against
\texttt{Co} \, (0.250000 \, \text{,-1.000000} \, \text{,0.000000}) \, \, \, \texttt{s} \, (0.000000 \, \text{,4.000000} \, \text{,0.000000}) \, \, \, \texttt{x}
    (0.500000, 0.000000, 0.000000) \ y (0.000000, 0.500000, 0.000000) \ z
    (0.000000,0.000000,1.000000)
minXYZT (0.000000, -1.500000, 0.000000, 0.125000) -maxXYZT
    (1.000000, 2.500000, 1.000000, 0.500000)
Co(0.250000, -1.000000, 0.000000) s(0.000000, 4.000000, 0.000000) x
    (0.500000, 0.000000, 0.000000) \ y (0.000000, 0.500000, 0.000000) \ z
    (0.000000,0.000000,1.000000)
Co(0.000000, 0.000000, 0.000000) s(0.000000, 0.000000, 0.000000) x
    (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
    (0.000000, 0.000000, 1.000000)
Succeed
minXYZT(0.000000,-0.500000,0.000000,0.125000)-maxXYZT
```

```
(1.000000, 1.500000, 1.000000, 0.500000)
\texttt{Co}(0.000000, 0.000000, 0.000000) \texttt{s}(0.000000, 0.000000, 0.000000) x
    (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
    (0.000000,0.000000,1.000000)
against
\texttt{Co} \, (0.900000\,, -1.000000\,, 0.000000) \, \, \texttt{s} \, (0.000000\,, 4.000000\,, 0.000000) \, \, \texttt{x}
    (0.500000,0.000000,0.000000) y(0.000000,0.500000,0.000000) z
    (0.000000,0.000000,1.000000)
Succeed
minXYZT(0.000000,-1.500000,0.000000,0.125000)-maxXYZT
    (1.400000,2.500000,1.000000,0.500000)
Co(0.900000, -1.000000, 0.000000) s(0.000000, 4.000000, 0.000000) x
    (0.500000,0.000000,0.000000) y(0.000000,0.500000,0.000000) z
    (0.000000,0.000000,1.000000)
against
\texttt{Co}(0.000000, 0.000000, 0.000000) \texttt{s}(0.000000, 0.000000, 0.000000) \texttt{x}
    (1.000000,0.000000,0.000000) y(0.000000,1.000000,0.000000) z
    (0.000000,0.000000,1.000000)
Succeed
minXYZT (0.000000, -0.500000, 0.000000, 0.125000) -maxXYZT
    (1.400000,1.500000,1.000000,0.500000)
All unit tests 3DTime have succeed.
--7026-- REDIR: 0x4ed3950 (libc.so.6:free) redirected to 0x4c30cd0 (free)
==7026==
==7026== HEAP SUMMARY:
             in use at exit: 0 bytes in 0 blocks
==7026==
            total heap usage: 1 allocs, 1 frees, 4,096 bytes allocated
==7026==
==7026== All heap blocks were freed -- no leaks are possible
==7026== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
==7026== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
make[2]: Leaving directory '/home/bayashi/GitHub/FMB/3DTime'
/home/bayashi/GitHub/FMB
make[1]: Leaving directory '/home/bayashi/GitHub/FMB'
```

References

- [1] J.J.-B. Fourier. Oeuvres II. Paris, 1890
- [2] T.S. Motzkin. Beiträge zur Theorie der linearen Ungleichungen. Thesis, 1936. Reprinted in: Theodore S. Motzkin: selected papers (D.Cantor et al., eds.), Birkhäuser, Boston, 1983.