1. PRELIMINARES

Conceitos de estabilidade e de adaptabilidade

Há dois tipos de estabilidade: (i) estática ou biológica, quando um genótipo apresenta comportamento constante entre ambientes; e (ii) dinâmica ou agronômica, quando determinado genótipo responde à variação do ambiente de forma linear

Não haverá interação GXA para os genótipos que mostram paralelismo com a reta obtida com a média de todos genótipos, são genótipos que mostram plasticidade ou adaptabilidade ampla, respondendo ao ambiente como a média de todos genótipos.

.No caso do uso do método de Eberhart e Russel (1966), (reta $y = b^*x + a$).; x = findice de ambiente=média do local — média geral; (b) indica a responsividade do genótipo , b>1 genótipos responsivos, indicando que a resposta melhora com a melhora do ambiente; o valor de (a) representa a resposta no ponto <math>x=0, estando relacionado à média geral do genótipo em todos ambientes..

Na Figura 1 estão dados médios hipotéticos da produção (TCH) de quatro cultivares (A,B,C,D), em função do índice de Eberhart& Russel (1966), em cinco ambientes.

Figura 1.Dados médios hipotéticos de quatro cultivares em função do índice de Eberhart & Russel (1966).

Na prática, será interessante para ambientes bons alocar genótipos com alta produção média e b>1; para ambientes ruins, alocar genótipos com alta produção média e b<1. Quando um genótipo não possui um comportamento previsível em função dos ambientes (por exemplo, se a linearidade falhar) ele poderá eventualmente ter resposta favorável a ambientes específicos (adaptabilidade preferencial ou específica para determinados ambientes); o que sugere, para esse caso, seleção regional ou para locais específicos.

Nota-se (Figura 1) que há dois cultivares com produção média alta (C e D) e dois com produção média baixa (A e B) e que nenhum dos quatro cultivares tem comportamento igual à média dos cultivares, sugerindo interação (GxA), o que é mostrado na ANOVA (Tabela 1). Os valores de b da reta (Y= a +b*X) são respectivamente: 1,2564 para A; 0,5385 para B; 1,8718 para C e 0,4616 para D.Para recomendação prática, levando-se em conta a capacidade produtiva e a responsividade, sugere-se: cultivar D para os piores ambientes e C para os melhores.

O geral, pode-se usar a escala: R2>0,8, estabilidade dinâmica muito boa; 0,6<R2<0,8,média à boa; 0,4<R2<0,6, baixa à média , valor de R2 é uma medida da credibilidade da reta e da adaptabilidade do genótipo. A significância do R2 depende de seu valor e do número de locais avaliados e pode ser avaliada. De um modo 0,2<R2<0,4, baixa; <0,2 estabilidade dinâmica ausente, eventualmente estabilidade estática.

2. ANÃLISE DOS CASOS RELATADOS COM MAIS DETALHES NO BOLETIM TÉCNICO IAC, 227 (CAMPINAS, NOVEMBRO DE 2021) (LANDELL, M.G.A. et al. 2021. Variedades de cana-de-açúcar para o Centro sul do Brasil: 21ª liberação do programa cana IAC (1959-2021), Campinas, Instituto Agronômico. 40p).

METODOLOGIA

São comparados padrões de estabilidade e adaptabilidade em que a nova cultivar foi cultivada com o padrão B867515 em (n) locais. Foram usadas as médias, calculada a reta, o R2 e feita ANOVA; tanto de cada cultivar e do respectivo padrão, em 3 casos.

ESQUEMA DA ANOVA INDIVIDUAL

FONTE DE VARIÇÃO	GL	SQ	QM=SQ/GL	F	Pvalue
1)EFEITO LINEAR	1	R2*SQT		QM(1)/QM(2)	
2) DESVIO LINEAR	n-2	(1-R2)*SQT			
3) TOTAL	n-1	SQT			

SQT = SOMA(y*y) - SOMA(y*y)/n

ESQUEMA DA ANOVA CONJUNTA

FONTE DE VARIÇÃO	GL	SQ	QM=SQ/GL	F	Pvalue
1)EFEITO LINEAR (padrão)	1			1/4	
2) EFEITO LINEAR (cultivar)	1			2/4	
3)DIFERENÇA NOS R2	1			3/4	
4)DESVIOS RESTANTES	(n-2)+(n_3)				
5)TOTAL GERAL	2n-2				

SQ(DIFERENÇA NOS R2)=MODULO(R2padrão-R2cultivar)*SQTcultivar.

Gráfico: Análise de estabilidade, modelo Ebehart e Russell, da cultivar IACCTC052562 em comparação com o padrão RB867515

ANÁLISE: A cultivar IACCTC052562 apresenta comportamento médio superior ao padrão RB867515, principalmente nos ambientes melhores, é muito responsiva, coeficiente linear 1,574 é quase o dobro da RB867515. Na média, a produção da cultivar é superior, média ao redor de 7 ton/há e essa diferença é maior nos melhores ambientes.

Os R2 são médios e praticamente iguais (diferença só 0,046, p>0,05, ns) . Há similar estabilidade dinâmica, mas nos melhores $\,$ ambientes há muita vantagem para . cultivar IACCTC052562. Produz menos que RB867515 nos ambientes ruins .

(obs: um defeito, só tem um ponto no índice ambiental positivo)

Cultivar	EQUAÇÃO	R2	DIFERENÇA		
			R2		
RB867515	0,845 x + 88,95	0,616			
IACCTC052562	1,574 x + 96,r0	0,570	0,046		
FONTES					P-
VARIAÇAO	GL	SQ	QM	F	value
LINEAR 7515	1	4813,399	4813,39859	84,04747	<0.05
LINEAR 2562	1	1899,422	1899,4224	33,1661	<0.05
DIFERENÇA R2	1	153,2867	153,28672	2,676562	ns
DESVIO	19	4280,171	475,57456		
SQTOTAL GERAL	14	11146,28			

,

Gráfico: Análise de estabilidade do modelo Ebehart e Russell do cultivar IACCTC059561 em comparação com o padrãoRB867515.

ANÁLISE: A cultivar IACCTC059561 apresenta comportamento com resposta linear (estabilidade dinâmica) muito similar ao da RB867515, mas há pequenas diferenças O coeficiente linear e o R2 são ligeiramente maiores na 7515 e diferença no R2 de 0,017(p<0,05), indicando melhor estabilidade dinâmica, mais responsiva e melhor adaptabilidade no geral dos ambientes.

As respostas lineares em função dos **índices** ambientais (x) e uma ANOVA foram:

Cultivar	EQUAÇÃO	R2	DIFERENÇA		
			R2		
RB867515	1,226 x + 87,25	0,916			
IACCTC059561	1,205 x + 83,72	0,799	0,117		
FONTES					P-
VARIAÇAO	GL	SQ	QM	F	value
LINEAR 7515	1	3258,59672	3258,597	56,89884	<0.05
LINEAR 9561	1	3149,733905	3149,734	54,99797	<0.05
DIFERENÇA R2	1	461,225115	461,2251	8,05352	<0.05
DESVIO	11	629,95926	57,26902		
SQTOTAL GERAL	14	7499,515			

Gráfico: Análise de estabilidade do modelo Ebehart e Russell do cultivar IACSP046007 em comparação com o padrão RB867515.

ANÁLISE: A cultivar IACSP046007 apresenta comportamento médio superior ao da RB867515, na média ao redor de 14 ton/ha.

O coeficiente linear da 6007 é ligeiramente superior e os R2 são praticamente iguais a 0,6(diferença só 0,007, p>0,05) na 7515, indicando similar média estabilidade dinâmica e adaptabilidade no geral dos ambientes, com vantagem na produção média para IACSP046007, em todos ambientes.

As respostas lineares em função dos **índices** ambientais (x) e uma ANOVAforam:

Cultivar	EQUAÇÃO	R2	DIFERENÇA R2		
RB867515	0,9221 x + 97,64	0,605			
IACSP046007	1,0955 x + 112,5	0,598	0,007		
FONTES					P-
VARIAÇAO	GL	SQ	QM	F	value
LINEAR 7515	1	2374,057644	2374,058	10,14815	<0.05
LINEAR 6007	1	3129,000449	3129	13,37523	<0.05
DIFERENÇA R2	1	612,19574	612,1957	2,616892	ns
DESVIO	13	3041,250611	233,9424		
SQTOTAL GERAL	16	9156,504444			