DM 11 Éléments de correction

	Etude d'une étape de la synthèse de l'acide sulfurique	
	Choix de la température - Approche théorique	
1	Dans le cadre de l'approximation d'Ellingham $\Delta_r G^{\circ}(T) = \Delta_r H^{\circ} - T \Delta_r S^{\circ}$ est une droite affine de T puisque $\Delta_r H^{\circ}$ et $\Delta_r S^{\circ}$ sont indépendants de T . En notant $\Delta_r G^{\circ}(T) = -R(k_2 + k_1 T)$, la relation $\Delta_r G^{\circ}(T) = -RT \ln(K^{\circ})$ donne $\ln(K^{\circ}) = k_1 + \frac{k_2}{T}$.	
2	relation $\Delta_r G^{\circ}(T) = -RT \ln(K^{\circ})$ donne $\ln(K^{\circ}) = k_1 + \frac{k_2}{T}$. Loi de Hess : $\Delta_r H^{\circ} = \Delta_f H^{\circ}_{SO_{3(g)}} - \frac{1}{2} \Delta_f H_{O_{2(g)}} - \Delta_f H_{SO_{2(g)}} = -k_2 R = -99 \text{ kJ.mol}^{-1}$. Par définition : $\Delta_r S^{\circ} = s^{\circ}_{SO_{3(g)}} - \frac{1}{2} s^{\circ}_{O_{2(g)}} - s^{\circ}_{SO_{2(g)}} = k_1 R = -93, 5 \text{ J.K}^{-1}.\text{mol}^{-1}$. Finalement $k_1 = -11, 2$ et $k_2 = 11, 9 \cdot 10^3 \text{ K}$.	
3	Selon la loi de Van't Hoff, une baisse de température déplace l'équilibre dans le sens exothermique, ici le sens direct car k_2 positif.	
	Choix de la composition du système - Approche théorique	
4	On fait un tableau d'avancement : initialement $SO_{2(g)}$ est présent avec n et $SO_{3(g)}$ est absent. L'avancement $\xi = \alpha n$, donc à l'équilibre il reste $(1-\alpha)n$ de $SO_{2(g)}$ et on a produit αn de $SO_{3(g)}$. On en déduit la constante d'équilibre $K^{\circ} = \frac{\alpha}{1-\alpha} \left(\frac{P^{\circ}}{P_{O_2}}\right)^{1/2}$	
5	À partir d'une situation d'équilibre initiale, si on ajoute du dioxy- gène P_{O_2} augmente, mais à T fixée $K^{\circ}(T)$ reste constant, donc α augmente. L'ajout de dioxygène permet donc d'optimiser l'oxyda- tion de SO_2 .	
6	on obtient $Q = \frac{n_{SO_3}}{n_{SO_2}} \left(\frac{n_{gaz}^{tot} + dn_{N_2}}{n_{O_2}} \times \frac{P^{\circ}}{P} \right)^{1/2}$	
7	À T et P fixée, ceci fait croître Q . Dans la situation initiale il est égal à K° donc $Q > K^{\circ}$. Selon le critère d'évolution, $Q \to K^{\circ}$, donc Q diminue on forme des réactifs ce qui nuit à l'oxydation de SO_2 . L'analyse précédente montre que la présence de N_2 réduit l'oxydation de SO_2 , l'utilisation de dioxygène pur est donc souhaitable thermodynamiquement.	

