vSAN のプランニングとデプロイ

Update 2

VMware vSphere 8.0

VMware vSAN 8.0

最新の技術ドキュメントは、 VMware の Web サイト (https://docs.vmware.com/jp/)

VMware, Inc. 3401 Hillview Ave. Palo Alto, CA 94304 www.vmware.com **ヴイエムウェア株式会社** 〒 108-0023 東京都港区芝浦 3-1-1 田町ステーションタワー N 18 階 www.vmware.com/jp

Copyright $^{©}$ 2018-2023 VMware, Inc. All rights reserved. 著作権および商標情報。

目次

vSAN のプランニングとデプロイ 6

```
1 vSAN について 7
```

vSAN の概念 7

vSAN の特性 8

vSAN の用語および定義 10

vSAN と従来のストレージの違い 14

2 vSAN クラスタの構築 15

vSAN デプロイのオプション 16

- **3** vSAN と他の VMware ソフトウェアの統合 19
- **4** vSAN の制限事項 20

5 vSAN を有効にするための要件 21

vSAN のハードウェア要件 21

vSAN のクラスタ要件 23

vSAN のソフトウェア要件 23

vSAN のネットワーク要件 24

ライセンス要件 24

vSAN が有効になっているクラスタのライセンス 24

vSphere+ および vSAN+ のサブスクリプション 25

サブスクリプション エディションについて 26

6 vSAN クラスタの設計とサイジング 27

vSAN ストレージの設計とサイジング 27

vSAN でのキャパシティ プランニング 28

vSAN でのフラッシュ キャッシュ デバイスの設計上の考慮事項 30

vSAN のフラッシュ キャパシティ デバイスの設計に関する考慮事項 31

vSAN の磁気ディスクの設計に関する考慮事項 32

vSAN のストレージ コントローラの設計に関する考慮事項 33

vSAN ホストの設計とサイジング 33

vSAN クラスタの設計に関する考慮事項 35

vSAN ネットワークの設計 36

vSAN ネットワークのスタティック ルートの作成 39

vSAN ネットワークのベスト プラクティス 40

vSAN フォルト ドメインの設計とサイジング 40

起動デバイスと vSAN の使用 41 vSAN クラスタでの永続的なログ記録 42

7 vSAN の新規または既存クラスタの準備 43

ストレージの準備 43

ストレージ デバイスの互換性の確認 43

ストレージ デバイスの準備 44

ストレージ コントローラの準備 45

ESXCLI でフラッシュ デバイスをキャパシティ デバイスとしてマーク 46

ESXCLI を使用した、キャパシティ デバイスとして使用されるフラッシュ デバイスのタグの解除 47

RVC でフラッシュ デバイスをキャパシティ デバイスとしてマーク 48

vSAN へのメモリの提供 49

vSAN のホストの準備 49

vSAN と vCenter Server の互換性 50

vSAN ネットワークの構成 50

8 単一サイト vSAN クラスタの作成 52

vSAN クラスタの特性 52

vSAN クラスタを作成する前に 53

クイックスタートを使用した vSAN クラスタの構成および拡張 54

クイックスタートを使用した vSAN クラスタの構成 56

vSAN の手動による有効化 58

vSAN の VMkernel ネットワークの設定 59

vSAN クラスタの作成 59

vSphere Client を使用した vSAN クラスタの構成 60

vSAN 設定の編集 63

既存のクラスタで vSAN を有効にする 64

vSAN クラスタのライセンス設定 65

vSAN クラスタでサブスクライブされた機能の表示 66

vSAN データストアの表示 66

vSAN および vSphere HA の使用 68

vCenter Server での vSAN の展開 70

vSAN をオフにする 70

9 vSAN ストレッチ クラスタまたは 2 ノード クラスタの作成 71

vSAN ストレッチ クラスタについて 71

ストレッチ クラスタの設計に関する考慮事項 73

ストレッチ クラスタを操作する場合のベスト プラクティス 74

ストレッチ クラスタのネットワーク設計 75

vSAN 2 ノード クラスタについて 76

クイックスタートを使用したストレッチ クラスタまたは 2 ノード クラスタの構成 76

vSAN ストレッチ クラスタの手動構成 79

優先フォールト ドメインの変更 80

監視ホストの変更 81

vSAN 監視アプライアンスのデプロイ 81

監視アプライアンスの vSAN ネットワークの設定 82

監視アプライアンスでの管理ネットワークの構成 82

監視トラフィック用のネットワーク インターフェイスの構成 83

ストレッチ クラスタの標準の vSAN クラスタへの変換 86

vSAN のプランニングとデプロイ

『vSAN のプランニングとデプロイ』では、vSphere 環境で vSAN クラスタを設計およびデプロイする方法について説明します。これには、システム要件、サイジングのガイドラインおよび推奨されるベスト プラクティスの情報が含まれています。

VMware では、多様性の受け入れを尊重しています。ユーザー、パートナー、社内コミュニティ内でこの原則を促進するため、包括的な表現でコンテンツを作成します。

対象読者

本書は、VMware vSphere 環境で vSAN クラスタを設計およびデプロイするユーザーを対象としています。ここには、仮想マシン テクノロジーおよび仮想データセンター運用に精通した、経験の豊富なシステム管理者向けの情報が含まれます。また、読者が VMware ESXi、vCenter Server、および vSphere Client などを含む、VMware vSphere に精通していることを前提としています。

vSAN の機能の詳細および vSAN クラスタの構成方法については、『VMware vSAN の管理』を参照してください。

vSAN クラスタの監視および問題の解決に関する詳細については、『vSAN の監視とトラブルシューティング』ガイドを参照してください。

vSAN について

1

VMware vSAN は ESXi ハイパーバイザーの一部としてネイティブに動作するソフトウェアの分散レイヤーです。

vSAN はホスト クラスタのローカル ディスクまたは直接接続されたキャパシティ デバイスを統合し、vSAN クラスタのすべてのホストで共有される単一のストレージ プールを作成します。vSAN では、共有ストレージを必要とする HA、vMotion、DRS などの VMware 機能をサポートすることで、外部の共有ストレージが不要になり、ストレージ構成や仮想マシンのプロビジョニングを簡素化できます。

次のトピックを参照してください。

- vSAN の概念
- vSAN の用語および定義
- vSAN と従来のストレージの違い

vSAN の概念

VMware vSAN では、仮想マシンの共有ストレージを作成するソフトウェア定義のアプローチを使用します。

ESXi ホストのローカル物理ストレージ リソースを仮想化し、サービス品質要件に沿って仮想マシンとアプリケーションに分割して割り当てることができるストレージのプールに変換します。 vSAN は ESXi ハイパーバイザーに直接実装されます。

vSAN は、ハイブリッドまたはオールフラッシュのクラスタのどちらかとして機能するように構成できます。ハイブリッドのクラスタでは、キャッシュ レイヤーにフラッシュ デバイスが使用され、ストレージ容量レイヤーに磁気ディスクが使用されます。オールフラッシュのクラスタでは、キャッシュと容量の両方でフラッシュ デバイスが使用されます。

vSAN は、既存のホスト クラスタまたは新しく作成するクラスタで有効にできます。vSAN は、すべてのローカルキャパシティ デバイスを、vSAN クラスタのすべてのホストによって共有される単一のデータストアに集約します。データストアは、キャパシティ デバイスまたはキャパシティ デバイスが搭載されているホストをクラスタに追加することにより、拡張することができます。vSAN を最適な状態で動作させるには、クラスタのすべての ESXi ホストが、すべてのクラスタ メンバーで類似または同一の構成を共有することをお勧めします。これには、類似または同一のストレージ構成も含まれます。この一貫した構成により、クラスタ内のすべてのデバイスおよびホストで、仮想マシンのストレージ コンポーネントがバランシングされます。ローカル デバイスを持たないホストでも、vSAN データストアでその仮想マシンを参加させて実行することができます。

vSAN Original Storage Architecture (OSA) で、ストレージ デバイスを vSAN データストアに提供する各ホストは、フラッシュ キャッシュ用に少なくとも 1 つのデバイスと、キャパシティ用に少なくとも 1 つのデバイスを提供する必要があります。提供元のホスト上のデバイスは、1 つ以上のディスク グループを形成します。各ディスク グループには、1 つのフラッシュ キャッシュ デバイスと、恒久的ストレージ用の 1 つまたは複数のキャパシティ デバイスが含まれています。各ホストは、複数のディスク グループを使用するように構成できます。

vSAN Express Storage Architecture (ESA) では、vSAN によって要求されるすべてのストレージ デバイスが キャパシティとパフォーマンスに影響します。 vSAN によって要求された各ホストのストレージ デバイスは、ストレージ プールを形成します。 ストレージ プールは、ホストによって vSAN データストアに提供されるキャッシュと キャパシティの量を表します。

vSAN クラスタの設計およびサイジングに関するベスト プラクティス、キャパシティの考慮事項、および一般的な 推奨事項については、『VMware vSAN 設計とサイジングのガイド』を参照してください。

vSAN の特性

次の特性は、vSAN、そのクラスタ、およびデータストアに適用されます。

vSAN には、データ コンピューティングおよびストレージ環境に回復性と効率性を追加するための多数の機能が含まれています。

表 1-1. vSAN の機能

サポートされている機能	説明
共有ストレージ サポート	vSAN は、HA、vMotion、および DRS など、共有ストレージが必要な VMware 機能をサポートしています。 たとえば、ホストの負荷が高くなると、 DRS はクラスタ内の他のホストに仮想マシンを移行できます。
オンディスク フォーマット	vSAN のオンディスク仮想ファイル フォーマットは、vSAN クラスタごとに拡張性の高いスナップショットとクローン管理サポートを提供します。vSAN クラスタごとにサポートされる仮想マシン スナップショットとクローンの数については、『構成の上限』ドキュメントを参照してください。
オールフラッシュ構成とハイブリッド構成	vSAN は、オールフラッシュまたはハイブリッド クラスタで構成できます。
フォルト ドメイン	vSAN は、vSAN クラスタがデータセンターの複数のラックまたはプレード サーバ シャーシにまたがる場合に、ラックまたはシャーシの障害からホストを保護 するフォルト ドメイン構成をサポートしています。
ファイル サービス	vSAN ファイル サービスを使用すると、クライアント ワークステーションまたは仮想マシンがアクセスできる vSAN データストアにファイル共有を作成できます。
iSCSI ターゲット サービス	vSAN iSCSI ターゲット サービスを使用すると、vSAN クラスタ外のホストおよび物理ワークロードが vSAN データストアにアクセスできます。
ストレッチ クラスタと 2 ノード クラスタ	vSAN は 2 つの地理的な場所にまたがるストレッチ クラスタをサポートします。

表 1-1. vSAN の機能 (続き)

サポートされている機能	説明
Windows Server Failover Clustering (WSFC) のサポート	vSAN 6.7 Update 3 以降のリリースでは、共有ディスクへのアクセスをノート間で調停するために、Windows Server Failover Clustering (WSFC) で要求される仮想ディスク レベルでの SCSI-3 Persistent Reservations (SCSI3-PR) がサポートされます。 SCSI-3 PR がサポートされることにより、 vSAN データストアでネイティブに仮想マシン間で共有されているディスク リソースを使用して WSFC を構成できます。 現在、以下の構成がサポートされています。 ■ クラスタあたり最大 6 個のアプリケーション ノード。 ■ ノードあたり最大 64 台の共有仮想ディスク。 注: vSAN では、Microsoft Windows Server 2012 以降で実行される Microsoft SQL Server 2012 以降の動作が確認済みです。
vSAN Health Service	vSAN Health Service には、クラスタ コンポーネントの問題の原因を監視、トラブルシューティング、診断し、潜在的なリスクを識別する事前構成済みの健全性チェック テストが含まれています。
vSAN パフォーマンス サービス	vSAN パフォーマンス サービスには、IOPS、スループット、遅延、および輻輳の監視に使用される統計チャートが含まれています。vSAN クラスタ、ホスト、ディスク グループ、ディスク、および仮想マシンのパフォーマンスを監視できます。
組み込みの vSphere ストレージ機能	vSAN は、従来から VMFS および NFS ストレージとともに使用されている vSphere のデータ管理機能が組み込まれています。これらの機能には、スナップショット、リンク クローン、vSphere Replication が含まれます。
仮想マシン ストレージ ポリシー	vSAN では、仮想マシン ストレージ ポリシーと連携して、仮想マシン中心のストレージ管理をサポートしています。 仮想マシンのデプロイ中にストレージ ポリシーを割り当てない場合は、vSAN のデフォルト ストレージ ポリシーが自動的に仮想マシンに割り当てられます。
迅速なプロビジョニング	vSAN では、仮想マシンの作成中およびデプロイ中に、vCenter Server [®] で迅速にストレージをプロビジョニングできます。
デデュープおよび圧縮	vSAN はブロックレベルのデデュープおよび圧縮を実行してストレージ容量を飲 約します。vSAN オールフラッシュ クラスタでデデュープおよび圧縮を有効に すると、各ディスク グループ内の冗長なデータが削減されます。デデュープと圧 縮の設定はクラスタ全体に行いますが、これらの機能はディスク グループ単位で 適用されます。圧縮のみの vSAN はディスク単位で適用されます。
保存データの暗号化	vSAN では、保存データの暗号化が提供されます。データの暗号化は、デデュープなどの他のすべての処理が実行された後に行われます。保存データの暗号化を行うと、クラスタからデバイスが削除された場合に備えて、ストレージ デバイス上のデータが保護されます。
転送中データの暗号化	vSAN では、クラスタ内のホスト間で転送中のデータを暗号化できます。転送中データの暗号化を有効にすると、vSAN は、ホスト間で転送されるすべてのデータとメタデータのトラフィックを暗号化します。
SDK サポート	VMware vSAN SDK は、VMware vSphere Management SDK の拡張機能です。これには、開発者が vSAN のインストール、構成、監視、およびトラフルシューティングを自動化する際にに役立つドキュメント、ライブラリ、およびコード サンプルが含まれています。

vSAN の用語および定義

vSAN では独自の用語と定義が使用されており、これらを理解することが重要となります。

vSAN の使用を開始する前に、vSAN の重要な用語および定義を確認してください。

ディスク グループ (vSAN Original Storage Architecture)

ディスク グループは、ホストおよび物理デバイス グループでの物理ストレージ容量とパフォーマンスの単位です。 これにより、vSAN クラスタのパフォーマンスと容量が決まります。搭載しているローカル デバイスを vSAN クラ スタに提供する各 ESXi ホストでは、デバイスがディスク グループに編成されます。

各ディスク グループには、1つのフラッシュ キャッシュ デバイスと1つ以上のキャパシティ デバイスが含まれている必要があります。キャッシュで使用されるデバイスは、ディスク グループ間での共有や、その他の目的で使用することができません。1つのキャッシュ デバイスは、1つのディスク グループ専用にする必要があります。ハイブリッドのクラスタでは、キャッシュ レイヤーにフラッシュ デバイスが使用され、ストレージ容量レイヤーに磁気ディスクが使用されます。オールフラッシュ クラスタでは、キャッシュとキャパシティの両方でフラッシュ デバイスが使用されます。ディスク グループの作成および管理の詳細については、「VMware vSAN の管理」を参照してください。

ストレージ プール (vSAN Express Storage Architecture)

ストレージ プールは、vSAN によって要求されるホスト上のすべてのストレージ デバイスを表します。各ホストには 1 つのストレージ プールが含まれています。ストレージ プール内の各デバイスは、キャパシティとパフォーマンスの両方を提供します。許可されるストレージ デバイスの数は、ホスト構成によって決まります。

使用される容量

使用される容量とは、任意の時点で1台以上の仮想マシンによって使用される物理容量の合計です。使用される容量は、.vmdkファイルの使用サイズ、保護レプリカなどの多くの要因によって決定されます。キャッシュサイジングの計算時には、保護レプリカで使用される容量は考慮されません。

オブジェクト ベースのストレージ

vSAN では、オブジェクトと呼ばれる柔軟性の高いデータ コンテナの形でデータを格納および管理します。オブジェクトは、クラスタ全体に分散されているデータおよびメタデータを含む論理ポリュームです。たとえば、スナップショットと同様に、.vmdk はそれぞれが1つのオブジェクトです。vSAN データストアに仮想マシンをプロビジョニングする場合、vSAN は、複数のコンポーネントで構成されるオブジェクト セットを仮想ディスクごとに作成します。また、コンテナ オブジェクトとして仮想マシン ホームの名前空間を作成し、仮想マシンのすべてのメタデータ ファイルを格納します。vSAN は、割り当てられた仮想マシン ストレージ ポリシーに基づいて、各オブジェクトを個別にプロビジョニングおよび管理します。たとえば、すべてのオブジェクトに RAID を構成する場合に使用することができます。

注: vSAN Express Storage Architecture が有効な場合、すべてのスナップショットは新しいオブジェクトではありません。ベース .vmdk とそのスナップショットは、1つの vSAN オブジェクトに含まれています。また、 vSAN ESA では、ダイジェストは vSAN オブジェクトによってバッキングされます。

vSAN は、次の要因を考慮して、仮想ディスクのオブジェクトを作成し、クラスタにオブジェクトを分散する方法を決定します。

- vSAN は、指定された仮想マシン ストレージ ポリシー設定に基づいて、仮想ディスク要件が適用されていることを確認します。
- vSAN はプロビジョニングの時点で、正しいクラスタ リソースが使用されていることを確認します。たとえば vSAN は、保護ポリシーに基づいて作成するレプリカの数を決定します。パフォーマンス ポリシーにより、各 レプリカに割り当てられる Flash Read Cache の量、各レプリカで作成されるストライプの数、およびそれら を配置するクラスタ内の場所が決まります。
- vSAN は、仮想ディスクのポリシーに準拠しているかどうかを継続的に監視してレポートします。ポリシーに準拠していない場合は、原因となっている問題のトラブルシューティングを行って解決する必要があります。

注: 必要に応じて、仮想マシン ストレージ ポリシーの設定を編集できます。ストレージ ポリシーの設定を変更しても、仮想マシンへのアクセスに影響はありません。 vSAN は、再構成に使用するストレージとネットワーク リソースを動的に調整して、オブジェクトの再構成が通常のワークロードに与える影響を最小にします。 仮想マシン ストレージ ポリシーの設定を変更すると、 vSAN が、オブジェクトの再作成プロセスを開始し、その後再同期を行う場合があります。 「vSAN の監視とトラブルシューティング」を参照してください。

■ vSAN は、ミラーリングや監視などの必要な保護コンポーネントが、異なるホストやフォルト ドメインに配置されていることを確認します。たとえば、障害発生時にコンポーネントを再構築するために、仮想マシン オブジェクトの保護コンポーネントを 2 台の異なるホストに配置するか、フォルト ドメイン全体に配置する必要がある場合、vSAN は配置ルールに適合する ESXi ホストを検索します。

vSAN データストア

クラスタで vSAN を有効にすると、単一の vSAN データストアが作成されます。これは、仮想ボリューム、 VMFS、および NFS などを含む使用可能なデータストアのリストに、別のタイプのデータストアとして表示されます。1つの vSAN データストアで、仮想マシンや仮想ディスクごとに異なるレベルのサービス レベルを提供できます。vCenter Server® では、vSAN データストアのストレージ特性が一連の機能として表示されます。これらの機能は、仮想マシンのストレージ ポリシーを定義するときに参照できます。 仮想マシンをデプロイする際、vSAN はこのポリシーを使用して、各仮想マシンの要件に基づいて最適な方法で仮想マシンを配置します。 ストレージ ポリシーの使用については、 \mathbb{R} vSphere ストレージ \mathbb{R} ドキュメントを参照してください。

vSAN データストアでは、特定の特性について考慮する必要があります。

- vSAN は、クラスタにストレージを提供してるかどうかに関係なく、クラスタ内のすべてのホストがアクセスできる単一の vSAN データストアを提供します。各ホストには、Virtual Volumes、VMFS、または NFS などの他の任意のデータストアをマウントすることもできます。
- Storage vMotion を使用することにより、vSAN データストア間、NFS データストア間、および VMFS データストア間で仮想マシンを移行できます。
- キャパシティとして使用される磁気ディスクとフラッシュ デバイスのみが、データストアの容量に反映できます。フラッシュ キャッシュとして使用されるデバイスは、データストアの一部に含まれません。

オブジェクトとコンポーネント

各オブジェクトは、一連のコンポーネントで構成されます。これらは、仮想マシンのストレージ ポリシーが使用する機能に応じて決定されます。たとえば、[許容される障害の数] が 1 に設定されている場合、vSAN は、レプリカや監視などの保護コンポーネントがそれぞれ vSAN クラスタの個別のホストに配置されるようにします。この場合、各レプリカはオブジェクト コンポーネントとなります。また、同じポリシーで [オブジェクトあたりのディスク ストライプの数] が 2 以上に設定されている場合、vSAN は複数のキャパシティ デバイスにわたってオブジェクトのストライピングも行い、各ストライプが、指定したオブジェクトのコンポーネントとみなされます。必要な場合、vSANは、大きなオブジェクトを複数のコンポーネントに分割することもあります。

vSAN データストアには、次のオブジェクト タイプが含まれます。

VM Home 名前空間

.vmx、ログ ファイル、.vmdk ファイル、スナップショット差分記述ファイルなどの仮想マシンの構成ファイルすべてが保存されている、仮想マシンのホーム ディレクトリ。

VMDK

仮想マシンのハード ディスク ドライブの内容を格納する、仮想マシンのディスク ファイル (.vmdk ファイル)。

仮想マシン スワップ オブジェクト

仮想マシンのパワーオン時に作成されます。

スナップショット差分 VMDK

仮想マシンのスナップショットの作成時に作成されます。このような差分ディスクは、vSAN Express Storage Architecture 用には作成されません。

メモリ オブジェクト

仮想マシンの作成またはサスペンドで、スナップショット メモリ オプションを選択するときに作成されます。

仮想マシンのコンプライアンス ステータス:準拠および非準拠

仮想マシンの1つ以上のオブジェクトが、割り当てられているストレージ ポリシーの要件を満たしていない場合、その仮想マシンは非準拠とみなされます。たとえば、ミラー コピーのいずれかにアクセスできない場合、ステータスは非準拠になります。ストレージ ポリシーに定義されている要件に仮想マシンが準拠している場合、その仮想マシンは準拠していることになります。 [仮想ディスク] ページの [物理ディスクの配置] タブから、仮想マシン オブジェクトのコンプライアンスの状態を確認できます。 vSAN クラスタのトラブルシューティングの詳細については「vSANの監視とトラブルシューティング」を参照してください。

コンポーネントの状態:「低下」および「なし」

vSAN は、コンポーネントの次の障害状態を認識します。

■ 低下: vSAN で永続的なコンポーネント障害が検出され、障害が発生したコンポーネントが正常な状態に戻らないと判断される場合、コンポーネントのステータスは 「低下」 になります。 vSAN は低下したコンポーネントの再構築をすぐに開始します。この状態は、障害の発生したデバイスにコンポーネントが存在する場合に発生することがあります。

■ なし: vSAN で一時的なコンポーネント障害が検出され、そのすべてのデータを含むコンポーネントがリカバリされて vSAN が元の状態に戻るとみなされる場合、コンポーネントのステータスは「なし」になります。この状態は、ホストを再起動するとき、または vSAN ホストからデバイスを切り離す場合に発生する可能性があります。vSAN は 60 分待ってから、[なし] ステータスのコンポーネントの再構築を開始します。

オブジェクトの状態:[健全]および[非健全]

クラスタ内の障害のタイプと数に応じて、オブジェクトのステータスは次のいずれかになります。

- 健全:少なくとも1つの完全なRAID1ミラーリングを使用できる場合、または最低限必要な数のデータセグメントを使用できる場合、オブジェクトは健全であるとみなされます。
- 非健全:オブジェクトは完全なミラーリングが利用できないか、最小限必要なデータ セグメントを RAID 5 または RAID 6 のオブジェクトに使用できないときに、非健全とみなされます。利用可能なオブジェクトの票が 50% に満たない場合は、オブジェクトは非健全です。クラスタで複数の障害が発生すると、オブジェクトが非健全になることがあります。オブジェクトの動作ステータスが非健全とみなされる場合は、関連する仮想マシンの可用性に影響します。

監視

監視は、メタデータのみを含み、実際のアプリケーション データは何も含まないコンポーネントです。障害が発生した後、存続しているデータストアのコンポーネントの可用性に関して決定を下す場合のタイブレーカとして機能します。 オンディスク フォーマット 1.0 を使用する場合、監視は vSAN データストアでメタデータにおよそ 2 MB の容量を使用し、バージョン 2.0 以降のオンディスク フォーマットでは 4 MB の容量を使用します。

vSAN では、オブジェクトの可用性の判別に、各コンポーネントが1つ以上の票を持つ非対称投票システムを使用してクォーラムを維持します。票が50%を超えると、仮想マシンのストレージオブジェクトはいつでもアクセス可能で、オブジェクトは利用可能とみなされます。票が50%以下の場合、すべてのホストがオブジェクトにアクセス可能ですが、オブジェクトは vSAN データストアにアクセスできなくなります。アクセスできないオブジェクトは、関連付けられた仮想マシンの可用性に影響を与えることがあります。

ストレージ ポリシーベースの管理 (SPBM)

vSAN を使用する場合、パフォーマンスや可用性などの仮想マシンのストレージ要件を、ポリシーという形で定義できます。vSAN を使用すると、vSAN データストアにデプロイされる仮想マシンに、少なくとも 1 台の仮想マシンストレージ ポリシーが割り当てられるようになります。仮想マシンのストレージ要件が分かっている場合は、ストレージ ポリシーを定義し、仮想マシンに割り当てることができます。仮想マシンのデプロイ時にストレージ ポリシーを適用しない場合、vSAN はデフォルトの vSAN ポリシーを自動的に割り当てます。このポリシーでは、[許容される障害の数] が 1 で、各オブジェクトに単一のディスク ストライプが設定され、シン プロビジョニングされた仮想ディスクが使用されます。ベスト プラクティスとして、ポリシーの要件がデフォルトのストレージ ポリシーで定義されている要件と同じ場合でも、独自の仮想マシン ストレージ ポリシーを定義します。vSAN ストレージ ポリシーの使用方法については、「VMware vSAN の管理」を参照してください。

vSphere PowerCLI

VMware vSphere PowerCLI では、vSAN 用にコマンドライン スクリプトのサポートが追加され、構成および 管理タスクの自動化を支援します。vSphere PowerCLI は、vSphere API に Windows PowerShell インターフェイスを提供します。PowerCLI には、vSAN コンポーネントを管理するためのコマンドレットが含まれています。vSphere PowerCLI の使用の詳細については、vSphere PowerCLI のドキュメントを参照してください。

vSAN と従来のストレージの違い

vSAN には従来のストレージ アレイと共通する特性が多数ありますが、vSAN の全体的な動作と機能は異なります。 たとえば、vSAN は ESXi ホストのみの管理と操作が可能で、1 つの vSAN インスタンスがクラスタの 1 つのデータストアを提供します。

vSAN と従来のストレージは、次のような重要な面においても異なります。

- vSAN では、ファイバ チャネル (FC) やストレージ エリア ネットワーク (SAN) などの仮想マシン ファイルを リモートで保存する外部ネットワーク ストレージは不要です。
- 従来のストレージでは、ストレージ管理者が異なるストレージシステムに事前にストレージ容量を割り当てます。 vSAN は、ESXi ホストのローカル物理ストレージ リソースを自動的に単一のストレージ プールに変換します。 これらのプールは、サービスの品質要件に応じて仮想マシンおよびアプリケーションに分割して割り当てることができます。
- vSAN は、LUN や NFS 共有に基づく従来のストレージ ボリュームのようには動作しません。iSCSI ターゲット サービスは LUN を使用して、リモート ホスト上でイニシエータを有効にし、ブロック レベルのデータを vSAN クラスタ内のストレージ デバイスに転送します。
- FCP などの一部の標準ストレージ プロトコルは vSAN に適用されません。
- vSAN は vSphere と高度に統合されます。従来のストレージとは異なり、vSAN には専用プラグインやストレージ コンソールは必要ありません。vSphere Client を使用して vSAN をデプロイ、管理、監視できます。
- 専用ストレージ管理者が vSAN を管理する必要はありません。代わりに、vSphere 管理者が vSAN 環境を管理できます。
- vSAN を使用する場合、新しい仮想マシンを展開するときに自動的に仮想マシン ストレージ ポリシーが割り当 てられます。ストレージ ポリシーは、必要に応じて動的に変更できます。

vSAN クラスタを作成するときに、ストレージ アーキテクチャと展開オプションを選択できます。 リソースとニーズに最適な vSAN ストレージ アーキテクチャを選択してください。

vSAN Original Storage Architecture

vSAN Original Storage Architecture (OSA) は、フラッシュ ソリッド ステート ドライブ (SSD) や磁気ディスク ドライブ (HDD) など、幅広いストレージ デバイス向けに設計されています。ストレージを提供する各ホストには、1つ以上のディスク グループがあります。各ディスク グループには、1つのフラッシュ キャッシュ デバイスと1つ以上のキャパシティ デバイスが含まれます。

vSAN Express Storage Architecture

vSAN Express Storage Architecture (ESA) は、高性能な NVMe ベースの TLC フラッシュ デバイスと高性 能ネットワーク向けに設計されています。ストレージを提供する各ホストには、4 つ以上のフラッシュ デバイスから 構成されるストレージ プールが 1 つあります。各フラッシュ デバイスは、キャッシュとキャパシティをクラスタに 提供します。

要件に応じて、次の方法で vSAN を展開できます。

vSAN ReadyNode

vSAN ReadyNode は、Cisco、Dell、Fujitsu、IBM、Supermicro などの VMware パートナーから提供される vSAN ソフトウェアの事前構成済みソリューションです。このソリューションには、サーバ OEM および VMware が推奨する vSAN デプロイでテストされ、認定済みハードウェア フォーム ファクタで検証されたサーバ 構成が含まれます。特定のパートナーにおける vSAN ReadyNode ソリューションの詳細については、VMware パートナーの Web サイトを参照してください。

ユーザー定義 vSAN クラスタ

vSAN クラスタを構築するには、vSAN 互換性ガイド (VCG) Web サイト (http://www.vmware.com/resources/compatibility/search.php) に記載されている個々のソフトウェアとハードウェア コンポーネント (ドライバ、ファームウェア、ストレージ I/O コントローラなど) を選択します。 VCG Web サイトに記載されている認定された任意のサーバ、ストレージ I/O コントローラ、キャパシティ デバイスとフラッシュ キャッシュ デバイス、メモリ、CPU ごとに必要なコア数を選択できます。 vSAN でサポートされているソフトウェアおよびハードウェア コンポーネント、ドライバ、ファームウェア、およびストレージ I/O コントローラを選択する前に、VCG Web サイトで互換性情報を確認します。 vSAN クラスタを設計する場合は、 VCG Web サイトに記載されているデバイス、ファームウェア、ドライバのみを使用します。 VCG に記載されていないソフトウェアおよびハードウェア バージョンを使用すると、クラスタで障害や予期しないデータ損失が発生する可能性があります。 vSAN クラスタの設計の詳細については、『vSAN プランニングとデプロイ』の「vSAN クラスタの設計とサイジング」を参照してください。

次のトピックを参照してください。

■ vSAN デプロイのオプション

vSAN デプロイのオプション

このセクションでは、vSAN クラスタでサポートされるデプロイ オプションについて説明します。

標準 vSAN クラスタ

標準の vSAN クラスタは、3 台以上のホストで構成されます。通常、標準の vSAN クラスタ内のすべてのホストは 単一サイトに配置され、同じレイヤー 2 ネットワークに接続されています。オールフラッシュ構成には 10 Gb ネットワーク接続が必要です。vSAN Express Storage Architecture には 25 Gb ネットワーク接続が必要です。

詳細については、「8章 単一サイト vSAN クラスタの作成」を参照してください。

2 ノード構成の vSAN クラスタ

2 ノード構成の vSAN クラスタは、リモート オフィスや支社などの環境で使用されることが多く、通常は高可用性が必要な少数のワークロードを実行します。2 ノード構成の vSAN クラスタは同じ場所に配置された 2 台のホストで構成され、同じネットワーク スイッチに接続されるか、直接接続されます。2 ノード構成の vSAN クラスタに 3 台目のホストを監視ホストとして追加できます。監視ホストは、支社から離れた場所に配置することが可能です。通常、監視ホストは vCenter Server とともに主要サイトに配置されます。

詳細については、「9 章 vSAN ストレッチ クラスタまたは 2 ノード クラスタの作成」を参照してください。

vSAN ストレッチ クラスタ

vSAN ストレッチ クラスタはサイト全体の障害に対する回復性を提供します。ストレッチ クラスタ内のホストは、2 つのサイトで均等に分散されます。2 つのサイトには、5 ミリ秒 (5ms) 以下のネットワーク遅延が必要です。 vSAN 監視ホストは、監視機能を提供する 3 番目のサイトにあります。監視ホストは、2 つのデータ サイト間でネットワーク パーティションが発生する際のタイブレーカとしても機能します。監視ホストには、監視コンポーネントなどのメタデータのみが保存されます。

詳細については、「9章 vSAN ストレッチ クラスタまたは 2 ノード クラスタの作成」を参照してください。

vSAN と他の VMware ソフトウェア の統合

3

vSAN を起動して実行すると、残りの VMware ソフトウェア スタックと統合されます。

vSphere コンポーネントや、vSphere vMotion、スナップショット、クローン、Distributed Resource Scheduler (DRS)、vSphere High Availability、VMware Site Recovery Manager などの機能を使用すると、従来のストレージで可能なほとんどの操作を実行できます。

vSphere HA

vSphere HA と vSAN を同じクラスタで有効にできます。従来のデータストアの場合と同様に、vSphere HA では vSAN データストアの仮想マシンに同じレベルの保護が提供されます。このレベルの保護では、vSphere HA と vSAN がやり取りするときに、特定の制限が適用されます。 vSphere HA と vSAN の統合に関する特定の考慮事項については、「vSAN および vSphere HA の使用」を参照してください。

VMware Horizon View

vSAN と VMware Horizon View を統合することができます。統合すると、仮想デスクトップ環境に関して vSAN に次のメリットがあります。

- 自動キャッシュを備えた高性能ストレージ
- 自動修正用のポリシーベースのストレージ管理

vSAN と VMware Horizon の統合の詳細については、VMware with Horizon View のドキュメントを参照してください。vSAN 用の VMware Horizon View の設計およびサイジングについては、『Designing and Sizing Guide for Horizon View』を参照してください。

vSAN の制限事項

4

このトピックでは、vSAN の制限事項について説明します。

vSAN を操作するときは、次の制限事項を考慮してください。

- vSAN では、複数の vSAN クラスタに参加するホストはサポートされません。ただし、クラスタ全体で共有される他の外部ストレージ リソースに、vSAN ホストからアクセスできます。
- vSAN では、vSphere DPM および Storage I/O Control はサポートされません。
- vSAN では、SE スパース ディスクはサポートされません。
- vSAN では、RDM、VMFS、診断パーティション、その他のデバイス アクセス機能はサポートされません。

vSAN を有効にするための要件

vSAN クラスタを展開する前に、環境が vSAN を実行するための要件を満たしていることを確認します。 次のトピックを参照してください。

- vSAN のハードウェア要件
- vSAN のクラスタ要件
- vSAN のソフトウェア要件
- vSAN のネットワーク要件
- ライセンス要件

vSAN のハードウェア要件

ESXi ホストとストレージ デバイスが vSAN のハードウェア要件を満たしていることを確認します。

ストレージ デバイスの要件

vSAN 構成に含まれるすべてのキャパシティ デバイス、ドライバ、およびファームウェア バージョンが、『VMware 互換性ガイド』の「vSAN」セクションのリストに記載され、認定されている必要があります。

表 5-1. vSAN Original Storage Architecture ストレージ デバイスの要件

ストレージ コンポーネント	要件
キャッシュ	 ■ 1個の SAS または SATA 半導体ディスク (SSD) または PCIe フラッシュデバイス。 ■ [許容される障害の数] を計算する前に、各ディスク グループのフラッシュ キャッシュ デバイスのサイズを確認します。ハイブリッド クラスタの場合、キャパシティ デバイス上で使用する予定のストレージ容量の少なくとも 10% (ミラーなどのレプリカを含まない) を提供する必要があります。
	 vSphere Flash Read Cache が、vSAN のキャッシュ用に予約しているフラッシュ デバイスを一切使用しないようにする必要があります。
	■ キャッシュ フラッシュ デバイスは、VMFS や別のファイル システムによってフォーマットしないようにする必要があります。
容量	■ ハイブリッド グループ構成には、少なくとも1つの SAS または NL-SAS ® 気ディスクが必要です。
	■ オールフラッシュ ディスク グループ構成には、少なくとも1個の SAS または SATA ソリッドステート ディスク (SSD) または PCle フラッシュ デバイスが必要です。
ストレージ コントローラ	SAS または SATA ホスト バス アダプタ (HBA)、またはパススルー モードか RAID 0 モードの RAID コントローラ 1 個。
	同じストレージ コントローラが vSAN ディスクと非 vSAN ディスクの両方を/ッキングしている場合は、問題を回避するために次の点を考慮します。
	vSAN ディスクと非 vSAN ディスクに異なるコントローラ モードを設定して、 一貫しない方法でディスク処理を行うことは避けてください。 vSAN の運用に悪 影響となる場合があります。 vSAN ディスクが RAID モードの場合は、非 vSAN ディスクも RAID モードにする必要があります。
	VMFS に非 vSAN ディスクを使用する場合は、VMFS データストアをスクラッチ、ログ記録、およびコア ダンプ専用にします。
	vSAN ディスクまたは RAID グループとコントローラを共有するディスクまたに RAID グループで仮想マシンを実行しないでください。
	非 vSAN ディスクを Raw デバイス マッピング (RDM) として仮想マシンのゲストにパススルーしないでください。
	パススルーや RAID など、コントローラでサポートされている機能については、 vSAN HCL (https://www.vmware.com/resources/compatibility/ search.php?deviceCategory=vsan) を参照してください。

表 5-2. vSAN Express Storage Architecture ストレージ デバイスの要件

ストレージ コンポーネント	要件
キャッシュおよび容量	各ストレージ プールには、少なくとも 4 つの NVMe TLC デバイスが必要です。

ホスト メモリ

vSAN Original Storage Architecture のメモリ要件は、ESXi ハイパーバイザーが管理するディスク グループと デバイス数によって決まります。詳細については、VMware のナレッジベースの記事 https://kb.vmware.com/s/article/2113954 を参照してください。

vSAN Express Storage Architecture には、少なくとも 512 GB のホスト メモリが必要です。環境に必要なメモリは、ホストのストレージ プール内のデバイス数によって異なります。

フラッシュ起動デバイス

ESXi インストーラは、インストール中、起動デバイスにコア ダンプ パーティションを作成します。コア ダンプ パーティションのデフォルトのサイズは、ほとんどすべてのインストール環境の要件を満たすことができます。

- ESXi ホストのメモリが 512 GB 以下である場合は、USB、SD、または SATADOM デバイスからホストを起動できます。 vSAN ホストを USB デバイスや SD カードから起動する場合、起動デバイスのサイズは少なくとも 4 GB にする必要があります。
- ESXi ホストのメモリが 512 GB を超える場合は、次のガイドラインを検討します。
 - 16 GB 以上のサイズの SATADOM またはディスク デバイスからホストを起動することができます。 SATADOM デバイスを使用する場合は、シングル レベル セル (SLC) デバイスを使用します。
 - vSAN 6.5 以降を使用している場合、USB/SD デバイスから起動するには、ESXi ホストのコアダンプ パーティションのサイズを変更する必要があります。

ESXi 6.0 以降のホストを USB デバイスまたは SD カードから起動する場合、vSAN トレース ログは RAM ディスクに書き込まれます。シャットダウンやシステム クラッシュ(パニック)が発生すると、これらのログは永続メディアへ自動的にオフロードされます。これは、ESXi を USB スティックまたは SD カードから起動する際、vSANトレースの処理にサポートされている唯一の方法です。電源障害が発生した場合、vSANトレース ログは保存されません。

ESXi 6.0 以降のホストを SATADOM デバイスから起動する場合、vSAN トレース ログは直接 SATADOM デバイスに書き込まれます。したがって、SATADOM デバイスが、このガイドで説明している仕様を満たしていることが重要です。

vSAN のクラスタ要件

vSAN を有効にするための要件をホスト クラスタが満たしていることを確認します。

- vSAN 構成に含まれるすべてのキャパシティ デバイス、ドライバ、およびファームウェア バージョンが、 『VMware 互換性ガイド』の「vSAN」セクションのリストに記載され、認定されている必要があります。
- 標準 vSAN クラスタには、クラスタの容量を構成する、最低 3 台のホストが必要です。2 ホスト構成の vSAN クラスタは、2 台のデータ ホストと 1 台の外部監視ホストから構成されます。3 台のホストからなるクラスタの 考慮事項については、vSAN クラスタの設計に関する考慮事項を参照してください。
- vSAN クラスタ内のホストは他のクラスタに参加することはできません。

vSAN のソフトウェア要件

環境内の vSphere コンポーネントが vSAN を使用するためのソフトウェア バージョンの要件を満たしていることを確認します。

vSAN 機能のフル セットを使用するには、vSAN クラスタに参加する ESXi ホストをバージョン 8.0 Update 1以降にする必要があります。 vSAN の以前のバージョンからのアップグレード時に現在のオンディスク フォーマットバージョンを保持できますが、新しい機能の多くは使用できません。 vSAN 8.0 Update 1以降のソフトウェアでは、すべてのオンディスク フォーマットがサポートされます。

vSAN のネットワーク要件

ESXi ホストでのネットワーク インフラストラクチャとネットワーク構成が、vSAN の最低限のネットワーク要件を満たしていることを確認します。

表 5-3. vSAN のネットワーク要件

ネットワーク コンポーネント	要件
ホストのバンド幅	各ホストには、vSAN 専用の最低限のバンド幅が必要です。
	■ vSAN OSA: ハイブリッド構成の場合は専用の1 Gbps、オールフラッシュ構成 の場合は専用または共有の10 Gbps
	■ vSAN ESA: 専用または共有の 25 Gbps
	vSAN でのネットワークに関する考慮事項の詳細については、vSAN ネットワークの 設計を参照してください。
ホスト間の接続	vSAN クラスタの各ホストには、容量を提供するかどうかに関係なく、vSAN トラフィックに VMkernel ネットワーク アダプタが必要です。 vSAN の VMkernel ネットワークの設定を参照してください。
ホストのネットワーク	vSAN クラスタのすべてのホストは、vSAN レイヤー 2 またはレイヤー 3 ネットワークに接続されている必要があります。
IPv4 および IPv6 のサポート	vSAN ネットワークでは、IPv4 と IPv6 の両方がサポートされます。
ネットワーク遅延	■ クラスタ内のすべてのホスト間で標準(非ストレッチ)vSAN クラスタに対して 最大 1 ミリ秒の RTT
	■ ストレッチ クラスタの 2 つのメイン サイト間で最大 5 ミリ秒の RTT
	■ メイン サイトから vSAN 監視ホストへ最大 200 ミリ秒の RTT

ライセンス要件

vSAN の有効なライセンスまたはサブスクリプションがあることを確認します。

本番環境で vSAN を使用するには、各 vSAN クラスタに特別なライセンスを割り当てる必要があります。 vSphere には、vSAN クラスタのライセンスを管理するための一元化されたライセンス管理システムが用意されています。vSphere+には、vSAN+クラスタに対して柔軟なサブスクリプション オプションが用意されています。詳細については、『vCenter Server およびホスト管理』の「ライセンスとサブスクリプションの管理」を参照してください。

vSAN が有効になっているクラスタのライセンス

クラスタで vSAN を有効にしたら、適切な vSAN ライセンスをクラスタに割り当てる必要があります。

vSphere ライセンスと同様に、vSAN は、CPU のキャパシティ単位でライセンスが付与されます。vSAN ライセンスをクラスタに割り当てる場合、使用されるライセンス キャパシティの量は、クラスタに参加しているホストの CPU の総数に等しくなります。たとえば、それぞれ 8 個の CPU を搭載した 4 台のホストが存在する vSAN クラスタの場合は、最低 32 個の CPU キャパシティの vSAN ライセンスをクラスタに割り当てます。

次のいずれかの場合、vSAN のライセンス使用量が再計算および更新されます。

■ 新しいライセンスを vSAN クラスタに割り当てた場合

- 新しいホストを vSAN クラスタに追加した場合
- ホストがクラスタから削除された場合
- クラスタの CPU の総数が変更された場合

vSAN ライセンス モデルに準拠している vSAN クラスタを維持する必要があります。クラスタ内の全ホストの合計 CPU 数が、クラスタに割り当てられている vSAN ライセンスのキャパシティを超えないようにしてください。

ライセンスと評価期間の有効期限

vSAN のライセンス有効期間または評価期間が終了しても、現在構成されている vSAN のリソースと機能は引き続き使用できます。ただし、SSD または HDD の容量を既存のディスク グループに追加したり、新しいディスク グループを作成したりすることはできません。

vSAN for Desktop

vSAN for Desktop は、vSphere for Desktop や Horizon™ View™ などの VDI 環境で使用します。vSAN for Desktop のライセンス使用量は、有効な vSAN があるクラスタのパワーオン状態の仮想マシン総数と等しくなります。

エンド ユーザー使用許諾契約書 (EULA) の条項の遵守を維持するには、vSAN for Desktop のライセンス使用量はライセンス キャパシティ以下にする必要があります。vSAN クラスタのパワーオンされたデスクトップ仮想マシンの数は、vSAN for Desktop のライセンス キャパシティ以下にする必要があります。

vSphere+ および vSAN+ のサブスクリプション

VMware vSphere+™ は、ライセンス ベースの管理から従量課金制のサブスクリプション モデルへの移行を可能にするワークロード プラットフォームです。サブスクリプションに変換された vSphere 環境に vSAN クラスタをデプロイする場合は、vSAN ライセンス キーを引き続き使用するか、vSphere+ サブスクリプションに加えて、VMware vSAN+™ サブスクリプションを購入する必要があります。

ライセンス評価期間が終了する前、または vCenter Server および ESXi ホストに割り当てられたライセンスが期限切れになる前に、vCenter Server インスタンスを vSphere+ に変換できます。

vCenter Server をサブスクリプションに変換し、vSphere+機能の使用を開始する方法の詳細については、 VMware vSphere+ ドキュメントの「サブスクリプションの購入」を参照してください。

vSphere+ にサブスクライブする予定の vCenter Server インスタンスで vSAN クラスタを管理する場合は、 vSAN ライセンス キーを引き続き使用するか、vSAN+ サブスクリプションを購入します。同じ VMware Cloud アカウント組織内で、vSAN+ サブスクリプションと vSAN ライセンス キーの組み合わせを使用しないでください。 vSAN+ サブスクリプションと vSAN ライセンス キーを組み合わせて使用すると、vSAN デプロイ全体が vSAN+ サブスクリプションによる測定および課金方式に変換され、ライセンス キーは無視されます。 これにより、サブスクリプションが予期せずに使用される可能性があります。

vSAN+ サブスクリプションのあるクラスタで vSAN を無効にすると、そのクラスタに関連付けられているすべて の ESXi ホストに vSphere+ サブスクリプションが自動的に適用されます。

vSphere+ の無償評価版サブスクリプション

VMware では、vSphere+ と vSAN+ の無償評価版サブスクリプション期間を提供しています。vSphere+ サブスクリプションを購入する準備ができたら、VMware の営業担当者または VMware パートナーに連絡して、オンプレミスのワークロードからサブスクリプションへの変換でサポートを受けます。購入可能なサブスクリプションは、1年または 3 年です。

vSphere+ 無償評価版サブスクリプションを開始する方法については、VMware vSphere + ドキュメントの vSphere+ 無償評価版の起動を参照してください。

サブスクリプション エディションについて

vSphere+ および vSAN+ サブスクリプションには、異なる機能を提供する複数のエディションが用意されています。

エディションが高いほど、下位のエディションに比べてより多くの機能が提供されます。たとえば、vSphere+は vSphere+ Standard よりも多くの機能を提供します。同様に、vSAN+ Enterprise は、vSAN+ Advanced よりも多くの機能を提供します。

さまざまなエディションと各 vSphere エディションで使用可能な機能の詳細については、「vSphere 製品ライン比較」を参照してください。 vSAN のエディションについては、『vSAN ライセンス ガイド』を参照してください。

vSphere+ および vSAN+ サブスクリプション使用量

各 vSphere+ および vSAN+ エディションのサブスクリプション使用量を確認できます。各 vCenter Server の サブスクリプション使用量を表示し、使用量が購入したサブスクリプション容量の範囲内であるか超えているかを確認できます。vSAN+ サブスクリプション使用量のシナリオの詳細については、「サブスクリプション使用量の表示」を参照してください。

vSAN クラスタの設計とサイジング

パフォーマンスと使用を最適にするには、vSphere 環境で vSAN をデプロイする前にホストおよびそのストレージ デバイスの機能および構成を計画します。 vSAN クラスタ内での特定のホストおよびネットワーク構成について、慎重に検討してください。

『VMware vSAN の管理』ドキュメントでは、vSAN クラスタの設計およびサイジングに関する主要なポイントについて説明しています。vSAN クラスタの設計およびサイジングに関する詳細な手順については、『VMware vSAN 設計とサイジング ガイド』を参照してください。

次のトピックを参照してください。

- vSAN ストレージの設計とサイジング
- vSAN ホストの設計とサイジング
- vSAN クラスタの設計に関する考慮事項
- vSAN ネットワークの設計
- vSAN フォルト ドメインの設計とサイジング
- 起動デバイスと vSAN の使用
- vSAN クラスタでの永続的なログ記録

vSAN ストレージの設計とサイジング

予期されるデータ ストレージの消費に基づいて、容量およびキャッシュを計画します。可用性と耐久性に関する要件を考慮してください。

次に参照するドキュメント

■ vSAN でのキャパシティ プランニング

vSAN データストアのキャパシティを計算して、クラスタ内の仮想マシン ファイルを調整し、障害およびメンテナンス処理に対応することができます。

■ vSAN でのフラッシュ キャッシュ デバイスの設計上の考慮事項

高いパフォーマンスと必要なストレージ容量を提供し、将来の増加に対応できるように、ストレージ デバイス の構成を計画します。vSAN Original Storage Architecture の場合は、要件に合わせてキャッシュ デバイスとキャパシティ デバイスの構成を慎重に検討してください。

■ vSAN のフラッシュ キャパシティ デバイスの設計に関する考慮事項

高いパフォーマンスと必要なストレージ容量を提供し、将来の増加に対応できるように、vSAN オールフラッシュ構成に対するフラッシュ キャパシティ デバイスの構成を計画します。

■ vSAN の磁気ディスクの設計に関する考慮事項

ストレージ容量とパフォーマンスの要件に従って、ハイブリッド構成での磁気ディスクサイズと数について検 討します。

■ vSAN のストレージ コントローラの設計に関する考慮事項

パフォーマンスと可用性の要件に最適な vSAN クラスタのホストにストレージ コントローラを使用します。

vSAN でのキャパシティ プランニング

vSAN データストアのキャパシティを計算して、クラスタ内の仮想マシン ファイルを調整し、障害およびメンテナンス処理に対応することができます。

Raw キャパシティ

この式を使用して、vSAN データストアの Raw キャパシティを決定します。これらのディスク グループ内のキャパシティ デバイスのサイズで、クラスタ内のディスク グループの合計数を乗算します。vSAN オンディスク フォーマットで必要なオーバーヘッドを減算します。

許容される障害の数

vSAN データストアの容量(仮想マシンの数と VMDK ファイルのサイズを除く)を計画する場合は、クラスタの仮想マシン ストレージ ポリシーで [許容される障害の数] を考慮する必要があります。

[許容される障害の数] は、vSAN のストレージのキャパシティ プランでサイズを指定するときに重要な役割を果たします。仮想マシンの可用性の要件に基づいて設定する場合、仮想マシンとその個々のデバイスの使用量の 2 倍以上のサイズになる可能性があります。

たとえば、[許容される障害の数] が [1 件の障害 - RAID-1 (ミラーリング)] に設定されている場合、仮想マシンは Raw 容量の約 50% を使用できます。FTT を 2 に設定すると、使用可能な容量が約 33% になります。FTT を 3 に設定すると、使用可能な容量が約 25% になります。

ただし、[許容される障害の数] が [1 件の障害 - RAID-5 (イレージャ コーディング)] に設定されている場合、仮想 マシンは Raw 容量の約 75% を使用できます。FTT を [2 件の障害 - RAID-6 (イレージャ コーディング)] に設定 すると、使用可能な容量が約 67% になります。RAID 5/6 の詳細については、『VMware vSAN の管理』を参照 してください。

vSAN ストレージ ポリシーの属性の詳細については、『VMware vSAN の管理』を参照してください。

必要なキャパシティの計算

次の基準に従って、RAID 1 ミラーリングが構成されているクラスタ内の仮想マシンのキャパシティ プランニングを 行います。

1 vSAN クラスタ内の仮想マシンで使用されることが予想されるストレージ容量を計算します。

expected overall consumption = number of VMs in the cluster \star expected percentage of consumption per VMDK

2 クラスタ内の仮想マシンのストレージ ポリシーで構成される [許容される障害の数] 属性を考慮します。この属性は、クラスタ内のホスト上の VMDK ファイルのレプリカ数に直接影響します。

```
datastore capacity = expected overall consumption * (FTT + 1)
```

- 3 vSAN オンディスク フォーマットのオーバーヘッド要件を見積もります。
 - オンディスク フォーマット バージョン 3.0 以降では、一般的にデバイスあたり 1 ~ 2% 未満の容量の追加のオーバーヘッドがかかります。ソフトウェア チェックサムが有効なデデュープおよび圧縮では、デバイスあたり約 6.2% の容量の追加のオーバーヘッドがかかります。
 - オンディスク フォーマット バージョン 2.0 では、一般的にデバイスあたり 1 ~ 2% 未満の容量の追加のオーバーヘッドがかかります。
 - オンディスク フォーマット バージョン 1.0 では、キャパシティ デバイスあたり約 1 GB の追加のオーバー ヘッドがかかります。

キャパシティ サイジング ガイドライン

- vSAN がストレージ負荷を再分散しないように、少なくとも 30% の容量を未使用のままにします。 vSAN は、 1個のキャパシティ デバイスの使用量が 80% 以上に達するとクラスタ全体でコンポーネントの再分散を行います。再分散処理は、アプリケーションのパフォーマンスに影響する可能性があります。この問題を回避するには、ストレージ使用率を 70% 未満に維持します。 vSAN 7.0 Update 1以降では、操作の予約とホスト再構築の予約を使用して未使用のキャパシティを管理できます。
- キャパシティ デバイス、ディスク グループ、およびホストの障害発生時または置き換えの処理に使用するキャパシティを追加します。キャパシティ デバイスにアクセスできなると、vSAN はクラスタ内の別のデバイスからコンポーネントをリカバリします。フラッシュ キャッシュ デバイスで障害が発生するか削除された場合、vSAN はディスク グループ全体からコンポーネントをリカバリします。
- ホストに障害が発生した後またはメンテナンス モードになったときに、vSAN がコンポーネントを確実にリカバリできるように、追加のキャパシティを予約します。たとえば、ホストに十分なキャパシティをプロビジョニングして、ホスト障害が発生した後またはメンテナンス中のコンポーネントの再構築に必要なキャパシティが十分に残るようにします。障害が発生したコンポーネントの再構築に必要な空き容量を確保するため、4 台以上のホストを使用する場合、この追加キャパシティは非常に重要です。ホストで障害が発生した場合、新たな障害に対応できるように、別のホストの使用可能なストレージで再構築が行われます。ただし、3 台のホストで構成されたクラスタで [許容される障害の数] が1に設定されている場合、1台のホストで障害が発生するとクラスタ内には2台のホストのみが残されるため、vSAN は再構築操作を実行しません。障害発生後に再構築を行うには、少なくとも3台のホストが稼動している必要があります。
- VSAN 仮想マシン ストレージ ポリシーの変更に使用する十分な容量の一時ストレージを用意します。仮想マシン ストレージ ポリシーを動的に変更する場合、VSAN は、オブジェクトの新しい RAID ツリー レイアウトを作成する可能性があります。VSAN が新しいレイアウトをインスタンス化して同期する際、オブジェクトが使用する容量が一時的に増加することがあります。このような変化に対応するため、クラスタに一定の一時ストレージ容量を確保します。
- ソフトウェア チェックサムやデデュープおよび圧縮などの高度な機能を使用する場合、処理のオーバーヘッドに対応する追加のキャパシティを予約しておきます。

■ 障害時の持続性を確保するため、ストレージポリシーで指定されているホスト以外のホストを追加します。詳細については、『VMware vSAN の管理ガイド』を参照してください。

仮想マシン オブジェクトの考慮事項

vSAN データストアのストレージ容量を検討する際は、データストアに必要な VM Home ネームスペース オブジェクト、スナップショット、およびスワップ ファイルの容量を考慮します。

- VM Home ネームスペース: VM Home ネームスペース オブジェクトに特定のストレージ ポリシーを割り当 てることができます。キャパシティとキャッシュ ストレージの不要な割り当てを防ぐため、vSAN は仮想マシン ホーム名前空間のポリシーから [許容される障害の数] と [強制プロビジョニング] の設定のみを適用します。 [許容される障害の数] が O より大きい仮想マシン ホームの名前空間に割り当てられたストレージ ポリシーの 要件を満たすように、ストレージ容量を計画します。
- スナップショット。差分デバイスは、ベースとなる VMDK ファイルのポリシーを継承します。スナップショットの想定されるサイズと数、および vSAN ストレージ ポリシーの設定に合わせて、追加容量を検討します。 必要となる容量はさまざます。仮想マシンがデータを更新する頻度や、仮想マシンがスナップショットにアクセスする時間によって、サイズは異なります。
- スワップ ファイル。vSAN 6.7 以降では、仮想マシンのスワップ ファイルは仮想マシンの名前空間のストレージ ポリシーを継承します。

vSAN でのフラッシュ キャッシュ デバイスの設計上の考慮事項

高いパフォーマンスと必要なストレージ容量を提供し、将来の増加に対応できるように、ストレージ デバイスの構成 を計画します。vSAN Original Storage Architecture の場合は、要件に合わせてキャッシュ デバイスとキャパシティ デバイスの構成を慎重に検討してください。

PCIe または SSD フラッシュ デバイスの選択

vSAN ストレージのパフォーマンス、容量、書き込み耐久性、およびコストの要件に応じて、SSD フラッシュ デバイスを選択します。

- 互換性。SSD デバイスのモデルは、『VMware 互換性ガイド』の「vSAN」セクションのリストに含まれている必要があります。
- パフォーマンス。一般に、PCIe デバイスのパフォーマンスは SATA デバイスよりも高速です。
- 容量。PCle デバイスで使用可能な最大容量は、『VMware 互換性ガイド』において現在 vSAN の互換 SATA デバイスとしてリストに含まれている最大容量よりも大きくなります。
- 書き込み耐久性。SSD デバイスの書き込み耐久性は、容量、オールフラッシュ構成のキャッシュ、およびハイブリッド構成でのキャッシュの要件を満たす必要があります。
 - オールフラッシュ構成とハイブリッド構成での書き込み耐久性要件の詳細については、『VMware vSAN 設計とサイジング ガイド』を参照してください。SSD デバイスの書き込み耐久性クラスの詳細については、『VMware 互換性ガイド』の「vSAN」セクションを参照してください。
- コスト。一般に、PCIe デバイスのコストは SSD デバイスの場合よりも高くなります。

vSAN キャッシュとしてのフラッシュ デバイス

これらの考慮事項に基づき、書き込み耐久性、パフォーマンス、および潜在的な拡張性について、vSAN 用のフラッシュ キャッシュの構成を設計します。

表 6-1. vSAN キャッシュのサイジング

ストレージ構成	考慮事項
オールフラッシュ構成とハイブリッド構成	 キャッシュ対容量比を高くすれば、将来的に容量を拡張しやすくなります。キャッシュのサイズを大きめに設定することにより、キャッシュのサイズを増やさずに既存のディスク グループに容量を追加することができます。 フラッシュ キャッシュ デバイスには、高い書き込み耐久性が必要です。 フラッシュ キャッシュ デバイスの置き換えは、ディスク グループ全体に影響が返ぶ操作であるため、キャパシティ デバイスの置き換えよりも複雑になります。 フラッシュ デバイスを追加してキャッシュのサイズを追加する場合は、ディスクグループをさらに作成する必要があります。フラッシュ キャッシュ デバイスとディスク グループの比率は、常に 1:1 です。
	複数のディスク グループを構成することには、次の利点があります。 ■ 障害のリスクが低減されます。単一のキャッシュ デバイスに障害が発生した場合、影響を受けるキャパシティ デバイスの数が少なくなります。 ■ 小サイズのフラッシュ キャッシュ デバイスを含むディスク グループを複数 デプロイすれば、潜在的にパフォーマンスが向上します。 ただし、複数のディスク グループを構成すると、ホストのメモリ消費量は増大します。
オールフラッシュ構成	オールフラッシュ構成の場合、vSAN は書き込みキャッシュでのみキャッシュ レイヤーを使用します。書き込みキャッシュには、大量の書き込み動作を処理する能力が必要です。このアプローチでは容量フラッシュの存続期間が延び、より廉価で、書き込み耐久性が低くなります。
ハイブリッド構成	フラッシュ キャッシュ デバイスは、仮想マシンの使用が想定される、予測されたストレージの少なくとも 10% (ミラーなどのレプリカを含まない) を提供する必要があります。 仮想マシン ストレージ ポリシーの [許容される障害の数] 属性は、キャッシュのサイズに影響しません。 アクティブな仮想マシン ストレージ ポリシーで読み取りキャッシュの予約が設定されている場合、vSAN クラスタのホストには、障害後の再構築またはメンテナンス様
	作の期間に予約の必要を満たす十分なキャッシュが必要です。 使用可能な読み取りキャッシュが予約の必要を満たすほど十分でない場合は、再構築またはメンテナンス操作に失敗します。読み取りキャッシュ予約は、特定のワークロートに対する明確で既知のパフォーマンス要件を満たす必要がある場合にのみ使用します。スナップショットを使用する場合は、キャッシュ リソースが消費されます。いくつかのスナップショットを使用する場合は、キャッシュ対消費容量比 10 パーセントの従来量よりも多くのキャッシュを専用に使用することを考慮します。

vSAN のフラッシュ キャパシティ デバイスの設計に関する考慮事項

高いパフォーマンスと必要なストレージ容量を提供し、将来の増加に対応できるように、vSAN オールフラッシュ構成に対するフラッシュ キャパシティ デバイスの構成を計画します。

PCIe または SSD フラッシュ デバイスの選択

vSAN ストレージのパフォーマンス、容量、書き込み耐久性、およびコストの要件に応じて、SSD フラッシュ デバイスを選択します。

- 互換性。SSD デバイスのモデルは、『VMware 互換性ガイド』の「vSAN」セクションのリストに含まれている必要があります。
- パフォーマンス。一般に、PCIe デバイスのパフォーマンスは SATA デバイスよりも高速です。
- 容量。PCIe デバイスで使用可能な最大容量は、『VMware 互換性ガイド』において現在 vSAN の互換 SATA デバイスとしてリストに含まれている最大容量よりも大きくなります。
- 書き込み耐久性。SSD デバイスの書き込み耐久性は、容量、オールフラッシュ構成のキャッシュ、およびハイブリッド構成でのキャッシュの要件を満たす必要があります。

オールフラッシュ構成とハイブリッド構成での書き込み耐久性要件の詳細については、『VMware vSAN 設計とサイジング ガイド』を参照してください。SSD デバイスの書き込み耐久性クラスの詳細については、『VMware 互換性ガイド』の「vSAN」セクションを参照してください。

■ コスト。一般に、PCIe デバイスのコストは SSD デバイスの場合よりも高くなります。

vSAN キャパシティとしてのフラッシュ デバイス

オールフラッシュ構成では、vSAN は読み取り操作にキャッシュを使用せず、仮想マシン ストレージ ポリシーの読み取りキャッシュ予約設定を適用しません。キャッシュには、書き込み耐久性の高い、少量の高価なフラッシュを使用できます。 容量には、書き込み耐久性の低い安価なフラッシュを使用できます。

フラッシュ キャパシティ デバイスの構成は、次のガイドラインに従って計画します。

- vSAN のパフォーマンスを高めるには、小さいフラッシュ キャパシティ デバイスによるディスク グループをより多く使用します。
- バランスのとれたパフォーマンスと予測しやすい動作を実現するために、タイプとモデルが同じフラッシュ キャパシティ デバイスを使用します。

vSAN の磁気ディスクの設計に関する考慮事項

ストレージ容量とパフォーマンスの要件に従って、ハイブリッド構成での磁気ディスクサイズと数について検討します。

SAS および NL-SAS 磁気デバイス

vSAN ストレージのパフォーマンス、容量、コストの要件に沿って、SAS または NL-SAS 磁気デバイスを使用します。

- 互換性。磁気ディスクのモデルは認証され、『VMware 互換性ガイド』の「vSAN」セクションに記載されている必要があります。
- パフォーマンス。SAS および NL-SAS デバイスはパフォーマンスが高速です。
- キャパシティ。vSAN の SAS または NL-SAS 磁気ディスクのキャパシティは、『VMware 互換性ガイド』の「vSAN」セクションで確認できます。容量が多いデバイスを少数使用するのではなく、容量が多いデバイスを多数使用することを検討してください。

■ コスト。SAS および NL-SAS デバイスは高価な場合があります。

vSAN キャパシティとしての磁気ディスク

次のガイドラインに従って、磁気ディスクの構成について検討します。

■ vSAN のパフォーマンスを向上させるには、容量が少ない磁気ディスクを数多く使用します。

キャッシュとキャパシティ デバイス間でのデータ転送全体で適切なパフォーマンスを得るには、十分な数の磁気 ディスクを使用する必要があります。容量が少ない磁気ディスクを数多く使用すると、容量が多いデバイスを少数使用する場合に比べてパフォーマンスが向上します。複数の磁気ディスク スピンドルを使用すると、ステージング解除の処理時間を短縮できます。

多くの仮想マシンが配置された環境では、読み取りキャッシュからデータを読み取れず、vSAN が磁気ディスクからデータを読み取る場合に、磁気ディスクの数が重要となります。仮想マシンの数が少ない環境では、アクティブな仮想マシン ストレージ ポリシーの [オブジェクトあたりのディスク ストライプの数] が 1 より大きければ、ディスク数が読み取り操作に影響します。

- 負荷を分散してパフォーマンスと予測しやすい動作を実現するには、タイプとモデルが同じ磁気ディスクを vSAN データストアで使用します。
- 定義済みのストレージ ポリシーの [許容する障害の数] 属性と [オブジェクトあたりのディスク ストライプの数] 属性の値を満たすには、十分な数の磁気ディスクを専用に使用します。 vSAN の仮想マシン ストレージ ポリシーの詳細については、「VMware vSAN の管理」を参照してください。

vSAN のストレージ コントローラの設計に関する考慮事項

パフォーマンスと可用性の要件に最適な vSAN クラスタのホストにストレージ コントローラを使用します。

- 『VMware 互換性ガイド』に記載されているストレージ コントローラ モデル、およびドライバとファームウェアのバージョンを使用します。『VMware 互換性ガイド』で vSAN を検索します。
- 可能であれば複数のストレージ コントローラを使用して、パフォーマンスを高め、起こり得るコントローラの障害をディスク グループのサブセットのみに分離します。
- 『VMware 互換性ガイド』キュー深度が最も高いストレージ コントローラを使用します。キュー深度が高いコントローラを使用すると、パフォーマンスが向上します。たとえば vSAN が障害発生後にコンポーネントを再構築するときやホストがメンテナンス モードになったときです。
- vSAN のパフォーマンスを最適化するには、ストレージ コントローラをパススルー モードで使用します。 RAID O モードのストレージ コントローラは、パススルー モードのストレージ コントローラに比べて、より高度な構成とメンテナンス作業が必要になります。
- コントローラのキャッシュを無効にするか、キャッシュを100% 読み取りに設定します。

vSAN ホストの設計とサイジング

パフォーマンスおよび可用性を最適にするには、vSAN クラスタのホストの構成を計画します。

メモリと CPU

次の考慮事項に基づいて、vSAN クラスタのホストのメモリと CPU 要件を計算します。

表 6-2. vSAN ホストのメモリと CPU のサイジング

計算リソース	考慮事項
メモリ	■ 仮想マシンあたりのメモリ ■ 仮想マシンの予測数に基づいたホストあたりのメモリ ■ vSAN Original Storage Architecture には、ホストあたり 5 個のディスク グループと、ディスク グループあたり 7 個のキャパシティ デバイスをサポートするために、少なくとも 32 GB のメモリが必要です。 ■ vSAN Express Storage Architecture には 512 GB 以上のメモリが必要です。 メモリが必要です。 メモリが 512 GB 以下のホストは、USB、SD、または SATADOM デバイスから起動できます。ホストのメモリが 512 GB より大きい場合は、SATADOM またはディスク デバイスからホストを起動してください。 詳細については、VMware のナレッジベースの記事「https://kb.vmware.com/s/article/2113954」を参照してください
CPU	 ホストあたりのソケット ソケットごとのコア 仮想マシンの予測数に基づいた vCPU 数 vCPU とコアの比 vSAN の 10% の CPU オーバーヘッド 注: vSAN Express Storage Architecture では、ホストあたり少なくとも 32 個の CPU コアが必要です。

ホストのネットワーク

パフォーマンス向上のため、vSAN トラフィックにさらに多くのバンド幅を提供します。

- vSAN Original Storage Architecture
 - 1 GbE のアダプタを備えたホストを使用する場合は、アダプタを vSAN 専用にします。オールフラッシュ 構成の場合は、10 GbE の専用または共有アダプタを備えたホストを使用します。
 - 10 GbE のアダプタを使用する場合は、ハイブリッド構成およびオールフラッシュ構成のどちらの場合も、アダプタを他のトラフィックと共有できます。
- vSAN Express Storage Architecture
 - 専用または共有の 25 GbE アダプタを持つホストの使用を計画します。
 - ネットワーク アダプタは、他のトラフィック タイプと共有できます。
- ネットワーク アダプタを他のトラフィック タイプと共有する場合は、Network I/O Control と VLAN を使用して、vSphere Distributed Switch によって vSAN トラフィックを分離します。
- 物理アダプタのチームを作成して、vSAN トラフィックの冗長性を提供します。

ディスク グループとストレージ プール

vSAN Original Storage Architecture は、ディスク グループを使用してパフォーマンスと信頼性のバランスを とります。フラッシュ キャッシュまたはストレージ コントローラが応答を停止し、ディスク グループに障害が発生 した場合、vSAN はクラスタ内の別の場所からすべてのコンポーネントを再構築します。

複数のディスク グループを使用し、各ディスク グループがデータストア容量の一部を提供することには利点がありますが、欠点もあります。

- 複数のディスク グループの利点
 - データストアのキャッシュがさらに集約され I/O 操作が高速になるため、パフォーマンスが向上します。
 - 障害のリスクが複数のディスク グループに分散されます。
 - 1個のディスク グループに障害が発生した場合に、vSAN が再構築するコンポーネントの数が少なくなるため、パフォーマンスが向上します。
- 複数のディスク グループの欠点
 - 2 つ以上のキャッシュ デバイスが必要であるため、コストが高くなります。
 - 複数のディスク グループを処理するために、より多くのメモリが必要になります。
 - 単一障害点のリスクを軽減するために、複数のストレージ コントローラが必要になります。

vSAN Express Storage Architecture は、各デバイスがパフォーマンスとキャパシティの両方を提供するストレージ プールを使用します。1つのデバイスで障害が発生しても、ストレージ プール内の他のデバイスのデータの可用性に影響を与えることはありません。この設計では、障害ドメインの規模が縮小されます。

ドライブ ベイ

メンテナンスを簡単にするには、ドライブ ベイと PCle スロットがサーバ本体の前面にあるホストを検討してください。

デバイスのホット プラグとスワップ

ホット プラグ操作、または磁気ディスクとフラッシュ キャパシティ デバイスの置換をホストで簡単に行うには、ストレージ コントローラのパススルー モードのサポートを検討してください。コントローラが RAID O モードで動作する場合は、追加の手順を実行してからでないとホストで新しいドライブを検出できません。

vSAN クラスタの設計に関する考慮事項

高い可用性を確保し、使用量の増大に対処できるように、ホストおよび管理ノード構成を設計します。

障害の許容に対応する vSAN クラスタのサイジング

仮想マシン ストレージ ポリシーで [許容される障害の数] (FTT) 属性を設定し、ホストの障害を処理します。 クラスタに必要なホスト数は次のように計算されます: 2 * FTT + 1。 クラスタが許容する障害の数が多いほど、容量の大きいホストが必要になります。

クラスタのホストがラック サーバに接続されている場合は、ホストをフォルト ドメインに編成し、トップオブラックのスイッチの障害やサーバ ラック電源の損失などの問題に対して回復性を向上することができます。「vSAN フォルト ドメインの設計とサイジング 」を参照してください。

2 ホスト構成または 3 ホスト構成のクラスタの制限

3 台のホストからなる構成では、許容される障害の数を 1 に設定することで、1 つのホスト障害のみを許容できます。 vSAN は、個別のホストで必要な 2 つの仮想マシン データのレプリカをそれぞれ保存します。 監視オブジェクトは、3 つ目のホストに配置します。 クラスタのホスト数が少ないため、次の制限があります。

- 1台のホストに障害が発生した場合、vSAN は、新たな障害に備えるために別のホストにデータを再構築することができません。
- ホストをメンテナンス モードに切り替える必要がある場合、vSAN はホストからデータを退避させてポリシーのコンプライアンスを維持することはできません。ホストがメンテナンス モードの場合、障害がさらに発生すると、データは潜在的な障害またはアクセス不可に対して無防備になります。

[データのアクセシビリティの確保] のデータ退避オプションのみを使用できます。[データ アクセシビリティの確保] は、データの移行中でもオブジェクトが使用できるようにします。ただし、別の障害が発生した場合には、オブジェクトにリスクが発生する可能性があります。2 ホスト構成または 3 ホスト構成のクラスタの vSAN オブジェクトは、ポリシーに準拠しません。ホストがメンテナンス モードの場合は、オブジェクトが再構築され、ポリシーのコンプライアンスが確保されます。

アクセスできないホストまたはディスク グループが 2 ホスト構成または 3 ホスト構成のクラスタに含まれていると、別の障害が発生した場合に vSAN オブジェクトがアクセス不能になるリスクがあります。

負荷分散と非負荷分散のクラスタ構成

vSAN は、ストレージ構成などの構成が統一されているホストで最適に機能します。

vSAN クラスタで構成が異なるホストを使用すると、次のようなデメリットがあります。

- vSAN は各ホストに同数のコンポーネントを格納できないため、ストレージ パフォーマンスの予測性が低下します。
- 各ホストのメンテナンス方法が異なります。
- キャッシュ デバイスの数が少ないか、タイプが異なる場合、クラスタ内のホストのパフォーマンスが低下します。

vSAN への vCenter Server のデプロイ

vCente Server が使用できない場合でも、vSAN は正常に動作を続け、仮想マシンは継続して稼働します。

vCenter Server が vSAN データストアにデプロイされていて、vSAN クラスタに問題が発生した場合は、Web ブラウザを使用して各 ESXi ホストにアクセスし、vSphere Host Client 経由で vSAN を監視することができます。vSAN の健全性情報は、Host Client で、または esxcli コマンドを使用して表示できます。

vSAN ネットワークの設計

可用性、セキュリティ、バンド幅の確保を vSAN クラスタで提供できるネットワーク機能を検討します。

vSAN ネットワークの構成の詳細については、『vSAN ネットワーク設計ガイド』を参照してください。

ネットワークのフェイルオーバーとロード バランシング

vSAN では、ネットワークの冗長性専用にバッキング仮想スイッチで構成されたチーミングおよびフェイルオーバーポリシーが使用されます。 vSAN では、ロード バランシングに NIC チーミングは使用されません。

可用性のために NIC チームを構成する場合は、次のフェイルオーバー構成を検討してください。

チーミング アルゴリズム	チームのアダプタのフェイルオーパー構成
発信元の仮想ポートに基づいたルート	アクティブ-パッシブ
IP ハッシュに基づいたルート	標準スイッチの固定 EtherChannel および Distributed Switch の LACP ポート チャネルでアクティブ-アクティブ
物理ネットワーク アダプタの負荷に基づいたルート	アクティブ-アクティブ

vSAN は、IP ハッシュに基づくロード バランシングをサポートしていますが、すべての設定についてパフォーマンスが向上されるわけではありません。vSAN が多くの受信者に使用されている場合は、IP ハッシュのメリットがあります。この場合、IP ハッシュがロード バランシングを行います。vSAN が唯一の利用者である場合は、向上が見られない可能性があります。この動作は特に 1 GbE 環境に適用されます。たとえば、vSAN について 4 つの 1 GbE 物理アダプタと IP ハッシュを使用している場合、1 Gbps を超えて使用することはできない可能性があります。この動作は、VMware でサポートされるすべての NIC チーミング ポリシーにも適用されます。

vSAN では、同じサブネット上の複数の VMkernel アダプタはサポートされません。複数の VMkernel アダプタ を、別の VLAN または別の物理ファブリックなどの異なるサブネットで使用できます。複数の VMkernel アダプタ を使用して可用性を提供するには、vSphere やネットワーク インフラストラクチャを含む構成コストがかかります。 物理ネットワーク アダプタをチーミングすると、ネットワークの可用性を高めることができます。

vSAN ネットワークでのユニキャストの使用

vSAN 6.6 以降のリリースでは、vSAN クラスタをサポートする物理スイッチでマルチキャストは必要ありません。 vSAN 用にシンプルなユニキャスト ネットワークを設計できます。以前のリリースの vSAN では、ハートビートを有効にし、クラスタ内のホスト間でメタデータをやり取りするには、マルチキャストが必要です。 vSAN クラスタに それ以前のバージョンのソフトウェアを実行しているホストがある場合は、マルチキャスト ネットワークが必要です。 vSAN クラスタでマルチキャストを使用する方法の詳細については、旧バージョンの『VMware vSAN の管理』を参照してください。

注: vSAN 6.6 クラスタでデプロイされた vCenter Server では、予約機能のない DHCP から取得された IP アドレスを使用する構成はサポートされていません。予約機能付きの DHCP を使用する理由は、割り当てられた IP アドレスが VMkernel ポートの MAC アドレスにバインドされるためです。

RDMA の使用

vSAN 7.0 Update 2 以降のリリースでは、リモート ダイレクト メモリ アクセス (RDMA) を使用できます。 RDMA では通常、CPU 使用率が低く、I/O 遅延が少なくなります。ホストが RoCE v2 プロトコルをサポートしている場合、vSphere Client で vSAN ネットワーク サービス経由での RDMA を有効にできます。

vSAN over RDMA を設計する場合は、次のガイドラインを考慮してください。

- 各 vSAN ホストには、VMware 互換性ガイドの vSAN セクションに記載されている RDMA 対応の vSAN 認定 NIC が必要です。接続の各端で同じベンダーの同じモデル ネットワーク アダプタを使用します。DCBx モードを IEEE に構成します。
- すべてのホストが RDMA をサポートしている必要があります。ホストに RDMA サポートがないと、vSAN クラスタ全体が TCP に切り替わります。
- ネットワークはロスレスにする必要があります。優先フロー制御でデータセンター ブリッジを使用するように ネットワーク スイッチを構成します。優先度レベル 3 でマークされた vSAN トラフィックにロスレス トラフィック クラスを構成します。
- vSAN で RDMA を使用する場合、LACP または IP ハッシュベースの NIC チーミングはサポートされません。 vSAN で RDMA を使用する場合、NIC フェイルオーバーはサポートされます。
- すべてのホストは同じサブネット上にある必要があります。 vSAN で RDMA を使用する場合、最大 32 台のホストがサポートされます。

Network I/O Control を使用した vSAN のバンド幅の割り当て

vSAN トラフィックは、vSphere vMotion トラフィック、vSphere HA トラフィック、および仮想マシン トラフィックなどの他のシステムのトラフィック タイプと、物理ネットワーク アダプタを共有できます。vSAN に必要なバンド幅を確保するには、vSphere Distributed Switch で vSphere Network I/O Control を使用します。

vSphere Network I/O Control では、vSAN 送信トラフィックの予約とシェアを構成できます。

- vSAN の物理アダプタで使用できる最低のバンド幅が Network I/O Control で確保されるように予約を設定します。
- vSAN に割り当てられた物理アダプタが飽和したときに特定のバンド幅を vSAN で使用できるようにシェアを 設定して、再構築操作および同期操作の実行中に物理アダプタの容量全体が vSAN で使用されるのを回避しま す。たとえば、チームの別の物理アダプタに障害が発生し、ポート グループのすべてのトラフィックがチーム内 の別のアダプタに転送されると、物理アダプタが飽和状態になる可能性があります。

たとえば、vSAN、vSphere vMotion、および仮想マシンのトラフィックを処理する 10 GbE の物理アダプタで、 特定のバンド幅とシェアを構成できます。

表 6-3. vSAN を処理する物理アダプタの Network I/O Control の構成例

トラフィック タイプ	予約、Gbps	シェア
vSAN	1	100
vSphere vMotion	0.5	70
仮想マシン	0.5	30

ネットワーク アダプタが飽和状態になると、Network I/O Control により物理アダプタの vSAN に 5 Gbps が割り当てられます。

vSphere Network I/O Control を使用して vSAN トラフィックのバンド幅の割り当てを構成する詳細については、『vSphere のネットワーク』ドキュメントを参照してください。

vSAN トラフィックのマーク

優先順位のタグ付けは、vSAN トラフィックの Quality of Service (QoS) の要求が高い接続済みネットワーク デバイスを示すためのメカニズムです。vSAN トラフィックを特定のクラスに割り当てて、O (優先順位が低い) \sim 7 (優先順位が高い) のサービス クラス (CoS) 値をトラフィックに適切にマークにすることができます。vSphere Distributed Switch のトラフィック フィルタリングおよびマーキング ポリシーを使用して、優先順位レベルを設定します。

VLAN における vSAN トラフィックのセグメント化

セキュリティおよびパフォーマンスを強化するため、特に複数のトラフィック タイプ間でバッキング物理アダプタの 容量を共有している場合は、VLAN で vSAN トラフィックを隔離することを検討します。

ジャンボ フレーム

CPU パフォーマンスを向上するために vSAN でジャンボ フレームを使用する場合は、クラスタ内のすべてのネットワーク デバイスとホストでジャンボ フレームが有効であることを確認します。

デフォルトでは、TCP セグメンテーション オフロード (TSO) および Large Receive Offload (LRO) 機能は、ESXi で有効になっています。ジャンボ フレームを使用することにより、ネットワーク上のすべてのノードでジャンボ フレームを有効化するコストに見合うだけのパフォーマンスの改善が得られるかどうかを検討します。

vSAN ネットワークのスタティック ルートの作成

vSAN 環境にスタティック ルートの作成が必要になる場合があります。

vSphere が単一のデフォルト ゲートウェイを使用する従来の構成では、すべてのルーティング トラフィックがこの ゲートウェイを通じて送信されます。

注: vSAN 7.0 以降では、各ホストの vSAN VMkernel アダプタのデフォルト ゲートウェイをオーバーライド して、vSAN ネットワークのゲートウェイ アドレスを構成できます。

ただし、特定の vSAN 環境では、スタティック ルートが必要な場合があります。たとえば、別のネットワーク上に Witness (監視) ホストを配置している環境や、データ サイトと Witness (監視) ホストの両方を別々のネットワークに配置するストレッチ クラスタ環境などです。

ESXi ホストでスタティック ルートを設定するには、esxcli コマンドを使用します。

esxcli network ip route ipv4 add -g gateway-to-use -n remote-network

remote-network は、ホストがアクセスするリモート ネットワークで、gateway-to-use は、リモート ネットワークへのトラフィックの送信に使用するインターフェイスです。

ストレッチ クラスタのネットワーク設計の詳細については、「VMware vSAN の管理」を参照してください。

vSAN ネットワークのベスト プラクティス

パフォーマンスおよびスループットの向上のために、vSAN のネットワークのベスト プラクティスを検討してください。

- vSAN OSA: ハイブリッド構成の場合は、少なくとも 1 GbE の物理ネットワーク アダプタを専用にします。 ネットワークのパフォーマンスを最適にするには、10 GbE の専用または共有物理アダプタに vSAN トラフィックを配置します。オールフラッシュ構成の場合は、10 GbE の専用または共有物理ネットワーク アダプタを使用します。
- VSAN ESA: 25 GbE の専用または共有物理ネットワーク アダプタを使用します。
- フェイルオーバー NIC として1つの追加物理 NIC をプロビジョニングします。
- 共有ネットワーク アダプタを使用する場合は、vSAN トラフィックを Distributed Switch に配置し、vSAN へのバンド幅が確保されるように Network I/O Control を構成します。

vSAN フォルト ドメインの設計とサイジング

vSAN フォルト ドメインを使用すると、別個のコンピューティング ラックに収容されているサーバ全体に冗長コンポーネントを分散できます。この方法により、電源や接続が失われるなどのラックレベルの障害から使用環境を保護することができます。

フォルト ドメインの構成

vSAN では、[許容される障害の数] (FTT) に 1 を指定できるよう、少なくとも 3 つのフォルト ドメインが必要です。各フォルト ドメインは 1 台以上のホストで構成されます。フォルト ドメインの定義では、潜在的な障害ゾーン (たとえば、個々のコンピューティング ラック エンクロージャ) を表す物理ハードウェア構成について確認する必要があります。

可能であれば、少なくとも 4 つのフォルト ドメインを使用してください。3 つのフォルト ドメインは特定のデータ 退避モードをサポートせず、vSAN は障害発生後にデータを再保護できません。この場合、再構築が可能な追加のフォルト ドメインが必要です。これは、3 つのフォルト ドメインだけでは提供できません。

フォルト ドメインが有効にされると、vSAN は、個々のホストではなくフォルト ドメインにアクティブな仮想マシン ストレージ ポリシーを適用します。

仮想マシンに割り当てるストレージ ポリシーの [FTT] 属性に基づいて、クラスタ内のフォルト ドメインの数を計算します。

number of fault domains = 2 * FTT + 1

ホストがフォルト ドメインのメンバーではない場合、vSAN はそのホストをスタンドアロンのフォルト ドメインと解釈します。

数台のホストの障害に対するフォルト ドメインの使用

それぞれ 2 台のホストが収容された 4 台のサーバ ラックで構成されるクラスタについて考慮します。[許容される障害の数] が 1 に設定されていて、フォルト ドメインが有効になっていない場合、vSAN は、1 つのオブジェクトの両方のレプリカを同じラック エンクロージャに収容されているホストと一緒に保存することがあります。このためアプリケーションには、ラックレベルの障害が発生したときにデータが損失する潜在的な危険性があります。潜在的に障害が発生する可能性があるホストを別個のフォルト ドメインで一緒に構成する場合、vSAN では、各保護コンポーネント(レプリカおよび監視)が確実に別のフォルト ドメインに配置されるようにします。

ホストおよび容量を追加する場合は、既存のフォルト ドメイン構成を使用するか、またはフォルト ドメインを定義 することができます。

フォルト ドメインを使用したときにストレージの負荷を分散し、フォールト トレランスを有効にする場合は、次のガイドラインを考慮します。

- ストレージ ポリシーで構成されている [許容される障害の数] を満たす十分なフォルト ドメインを設定します。 少なくとも 3 つのフォルト ドメインを定義します。確実に保護するには、少なくとも 4 つのドメインを定義します。
- 各フォルトドメインに同じ数のホストを割り当てます。
- 統一された構成のホストを使用します。
- 可能であれば、空き容量のある1つのフォルトドメインを障害後のデータ再構築で専用に使用します。

起動デバイスと vSAN の使用

vSAN クラスタの一部である ESXi のインストールをフラッシュ デバイスから開始する場合、特定の制限が適用されます。

USB/SD デバイスから vSAN ホストを起動する際には、4 GB 以上の高品質の USB または SD フラッシュ ドライブを使用する必要があります。

SATADOM デバイスから vSAN ホストを起動する場合は、シングル レベル セル (SLC) デバイスを使用する必要があります。起動デバイスのサイズは少なくとも 16 GB にする必要があります。

インストール中に、ESXi インストーラによって起動デバイスにコアダンプ パーティションが作成されます。 コア ダンプ パーティションのデフォルトのサイズは、ほとんどすべてのインストール環境の要件を満たすことができます。

- ESXi ホストのメモリが 512 GB 以下である場合は、USB、SD、または SATADOM デバイスからホストを起動できます。
- ESXi ホストのメモリが 512 GB を超える場合は、次のガイドラインを検討します。
 - 16 GB 以上のサイズの SATADOM またはディスク デバイスからホストを起動することができます。 SATADOM デバイスを使用する場合は、シングル レベル セル (SLC) デバイスを使用します。
 - vSAN 6.5 以降を使用している場合、USB/SD デバイスから起動するには、ESXi ホストのコアダンプ パーティションのサイズを変更する必要があります。

ディスクから起動するホストには、ローカル VMFS があります。仮想マシンを実行している VMFS を含むディスクがある場合は、vSAN 用でない ESXi 起動用のディスクを分離する必要があります。この場合は、コントローラも分離する必要があります。

vSAN のログ情報と起動デバイス

USB または SD デバイスから ESXi を起動すると、ホストの再起動時にログ情報やスタック トレースが失われます。これは、スクラッチ パーティションが RAM ドライブ上に存在するためです。ログ、スタック トレース、メモリ ダンプには、恒久的ストレージを使用します。

ログ情報は、vSAN データストアには保存しないでください。vSAN クラスタで障害が発生した場合に、ログ情報にアクセスできなくなる可能性があるため、この構成はサポートされていません。

恒久的なログ ストレージに関して、次のオプションを検討します。

- vSAN に使用されておらず、VMFS または NFS でフォーマットされたストレージ デバイスを使用します。
- メモリ ダンプとシステム ログを vCenter Server に送信するように、ホストで ESXi Dump Collector と vSphere Syslog Collector を構成します。

恒久的な場所を使用するスクラッチ パーティションの設定の詳細については、『vCenter Server のインストールとセットアップ』ドキュメントを参照してください。

vSAN クラスタでの永続的なログ記録

vSAN クラスタ内のホストからのログを保持するストレージを提供します。

USB または SD デバイスに ESXi をインストールし、ローカル ストレージを vSAN に割り当てると、永続的な口グ記録に十分なローカル ストレージまたはデータストア容量が残らなくなる可能性があります。

ログ情報が失われることを避けるには、ESXi Dump Collector と vSphere Syslog Collector を構成して ESXi メモリ ダンプとシステム ログをネットワーク サーバにリダイレクトします。

vSphere Syslog Collector の構成の詳細については、http://kb.vmware.com/kb/2021652 を参照してください。

ESXi Dump Collector の構成の詳細については、https://kb.vmware.com/s/article/2002954 を参照してください。

vSAN の新規または既存クラスタの準備

7

vSAN クラスタを展開して仮想マシン ストレージとしての使用を開始する前に、vSAN が正しく動作するために必要なインフラストラクチャを提供する必要があります。

次のトピックを参照してください。

- ストレージの準備
- vSAN へのメモリの提供
- vSAN のホストの準備
- vSAN と vCenter Server の互換性
- vSAN ネットワークの構成

ストレージの準備

vSAN および vSAN データストアを使用する仮想ワークロードに対して十分なディスク容量を用意します。

ストレージ デバイスの互換性の確認

『VMware 互換性ガイド』を参照して、ストレージ デバイス、ドライバ、ファームウェアが vSAN と互換性があることを確認します。

vSAN と互換性があるいくつかのオプションの中から選択できます。

- OEM ベンダーと VMware が vSAN との互換性について有効性を確認している物理サーバである、vSAN ReadyNode サーバを使用します。
- 検証済みのデバイス モデルの中から個々のコンポーネントを選択して、ノードを構築します。

『VMware 互換性ガイ ド』セクション	確認するコンポーネント タイプ
システム	ESXi を実行する物理サーバ。
vSAN	■ ハイブリッド構成の磁気ディスク SAS モデル。 ■ 『VMware 互換性ガイド』でのリストに含まれているフラッシュ デバイス モデル。PCle フラッシュ デバイス のモデルによっては、vSAN と一緒に使用できるものもあります。書き込みの耐久性とパフォーマンス クラスも考慮してください。
	■ パススルーをサポートするストレージ コントローラ モデル。 vSAN は、各ストレージ デバイスが個々の RAID 0 グループとして表されている場合、RAID 0 モードに対応するように構成されているストレージ コントローラと連係動作することができます。

ストレージ デバイスの準備

vSAN クラスタの要件に基づいて、フラッシュ デバイスおよび磁気ディスクを使用します。vSAN Express Storage Architecture の場合は、『VMware 互換性ガイド』に記載されている要件を満たすフラッシュ デバイス を選択します。

予測される仮想マシンの使用に対応できるだけの十分な容量がクラスタにあることと、仮想マシンのストレージ ポリシーに定義された [許容される障害の数] を確認します。

vSAN でストレージ デバイスを要求できるようにするため、ストレージ デバイスが次の要件を満たしている必要があります。

- ストレージ デバイスが ESXi ホストに対してローカルであること。vSAN ではリモート デバイスを要求できません。
- ストレージ デバイスに既存のパーティション情報が保存されていないこと。
- オールフラッシュとハイブリッドの両方のディスク グループを同じホストで使用していないこと。

ディスク グループまたはストレージ プールのデバイスの準備

vSAN Original Storage Architecture では、1 つの標準クラスタに 3 台以上のホストが存在します。また、クラスタにストレージを提供するホストごとに、1 つ以上のディスク グループがあります。各ディスク グループには、1 つのフラッシュ キャッシュ デバイスと、1 つ以上の磁気ディスクまたはフラッシュ キャパシティ デバイスがあります。ハイブリッド クラスタの場合、フラッシュ キャッシュ デバイスの容量は、キャパシティ デバイスでの予想ストレージ使用量の 10% 以上にする必要があります(保護コピーの容量を除く)。

vSAN Express Storage Architecture では、1 つの標準クラスタに 3 台以上のホストが存在します。また、クラスタにストレージを提供するホストごとに、1 つのストレージ プールがあります。各ストレージ プールは、vSAN によって要求される 1 つ以上のローカル フラッシュ ディスクから構成されています。

Raw および使用可能な容量

特定の状況に対応するため、仮想マシンの容量を超える Raw ストレージ容量を用意します。

- 容量にはフラッシュ キャッシュ デバイスのサイズを含めないでください。ストレージのフラッシュ デバイスを 追加しない限り、フラッシュ キャッシュ デバイスはストレージを提供せず、キャッシュとして使用されます。
- 仮想マシンのストレージ ポリシーで定義された [許容される障害の数] (FTT) の値に対応できる、十分な容量を 用意します。FTT が O より大きい場合は、デバイスの占有量が拡張されます。FTT を 1 に設定すると、占有量 が 2 倍になります。FTT を 2 に設定すると、占有量が 3 倍になり、以下同様です。
- 統合された vSAN データストア オブジェクトではなく、個々のホストの容量を調べて、操作に十分な容量が vSAN データストアにあるかどうかを確認します。たとえば、ホストを退避させる場合、退避させるホストにデータストアのすべての空き容量があるために、別のホストへの退避をクラスタで処理できないことがあります。
- シンプロビジョニングされたワークロードで大量のストレージの消費を開始する場合は、データストアで容量不足になるのを回避できるだけの十分な容量を用意します。
- 物理ストレージで vSAN クラスタのホストの再保護モードとメンテナンス モードに対応できることを確認します。

- 使用可能なストレージ容量に対する vSAN のオーバーヘッドを検討します。
 - オンディスク フォーマット バージョン 1.0 では、キャパシティ デバイスあたり約 1 GB の追加のオーバー ヘッドがかかります。
 - オンディスク フォーマット バージョン 2.0 では、一般的にデバイスあたり 1 ~ 2% 未満の容量の追加のオーバーヘッドがかかります。
 - オンディスク フォーマット バージョン 3.0 以降では、一般的にデバイスあたり 1 ~ 2% 未満の容量の追加のオーバーヘッドがかかります。ソフトウェア チェックサムが有効なデデュープおよび圧縮では、デバイスあたり約 6.2% の容量の追加のオーバーヘッドがかかります。

vSAN データストアの容量の計画の詳細については、、『VMware vSAN 設計とサイジング ガイド』を参照してください。

vSAN ポリシーのキャパシティ デバイスに与える影響

仮想マシンの vSAN ストレージ ポリシーは、さまざまな方法でキャパシティ デバイスに影響します。

表 7-1. vSAN の仮想マシン ポリシーと Raw 容量

ポリシーが影響する点	説明
ポリシーの変更	■ [許容される障害の数] (FTT) は、仮想マシンに提供する必要がある物理ストレージ容量に影響します。 FTT の値が大きいほど可用性が高くなり、より多くの容量を用意する必要があります。
	FTT を 1 に設定すると、仮想マシンの VMDK ファイルのレプリカが 2 個作成されます。FTT を 1 に設定すると、50 GB の VMDK ファイルが 1 個ある場合、異なるホストに 100 GB の容量が必要になります。FTT が 2 に変更されると、クラスタ内のホスト全体で VMDK の 3 個のレプリカをサポートできる容量 (150 GB) が必要になります。
	■ オブジェクトあたりの新しいディスク ストライブ数など、一部のポリシー変更には一時リソースが必要です。 vSAN では、変更によって影響を受けるオブジェクトを再作成します。一定の期間、物理ストレージで古いオブジェクトと新しいオブジェクトの両方に対応する必要があります。
再保護モードまたはメンテナンス モードの使用可能な容量	ホストをメンテナンス モードにするか、仮想マシンのクローンを作成する場合、 vSAN データストアで十分な容量が利用可能であることが示されていても、データストアが仮想マシン オブジェクトを退避できないことがあります。空き容量が メンテナンス モードに設定されているホストにある場合、この容量不足が発生します。

ストレージ コントローラの準備

vSAN の要件に合わせて、各ホストのストレージ コントローラを構成します。

vSAN のホストにあるストレージ コントローラが、モード、ドライバ、ファームウェア バージョン、キュー深度、キャッシュ、および高度な機能の特定の要件を満たしていることを確認します。

表 7-2. vSAN のストレージ コントローラ構成の確認

ストレージ コントローラの機能	ストレージ コントローラの要件	
必須モード	■ 『VMware 互換性ガイド』で、コントローラが必須モード、パススルー、または RAID O の場合の vSAN の要件を確認します。 ■ パススルーと RAID O の両方のモードがサポートされている場合は、RAID O では なくパススルー モードを構成します。RAID O にすると、ディスクの置換が複雑に なります。	
RAID E-K	■ RAID O の場合は、物理ディスク デバイスごとに RAID ボリュームを 1 つ作成します。 ■ 『VMware 互換性ガイド』の一覧にあるモード以外の RAID モードは有効にしないでください。 ■ コントローラのスパニングを有効にしないでください。	
ドライバおよびファームウェアのバージョン	 コントローラでは、『VMware 互換性ガイド』の説明に従って、最新バージョンのドライバおよびファームウェアを使用してください。 コントローラの筐体内ドライバを使用する場合は、そのドライバが vSAN 用に認定されていることを確認してください。 OEM の ESXi リリースには、認定されておらず、『VMware 互換性ガイド』のリースには、認定されておらず、『VMware 互換性ガイド』のリースには、認定されておらず、『VMware 互換性ガイド』のリースには、認定されておらず、『VMware 互換性ガイド』のリースには、認定されておらず、『VMware 互換性ガイド』のリースには、認定されておらず、『VMware 互換性ガイド』のリースには、認定されておらず、『VMware 互換性ガイド』のリースには、認定されておらず、『VMware 互換性ガイド』のリースには、認定されておらず、『VMware 互換性ガイド』のリースには、認定されておらず、『VMware 互換性ガイド』の別のでは、「VMware 互換性ガイド』の別の記述を表現しています。 	
	ストに含まれていないドライバがインストールされている場合があります。	
キュー深度	コントローラのキュー深度が 256 以上であることを確認します。キュー深度が深いほ どパフォーマンスが向上します。	
キャッシュ	ストレージ コントローラのキャッシュを無効にするか、キャッシュを無効にすることができない場合は 100 パーセント読み取りに設定します。	
高度な機能	HP SSD Smart Path などの高度な機能を無効にします。	

ESXCLI でフラッシュ デバイスをキャパシティ デバイスとしてマーク

esxcli を使用して手動で各ホスト上のフラッシュ デバイスをキャパシティ デバイスとしてマークできます。

前提条件

vSAN 6.5 以降を使用していることを確認します。

手順

- 1 キャパシティ デバイスとしてマークするフラッシュ デバイスの名前を確認するには、各ホストで次のコマンド を実行します。
 - a ESXi Shell で、esxcli storage core device list コマンドを実行します。
 - b コマンド出力の上部でデバイス名を探し、その名前を書き留めます。
 - このコマンドには次のオプションがあります。

表 7-3. コマンド オプション

オプション	説明
-d disk=str	キャパシティ デバイスとしてタグ付けするデバイスの名前。 たとえば、 mpx.vmhba1:C0:T4:L0。
-t tag=str	追加または削除するタグを指定します。 たとえば、capacityFlash タグは、フラッシュ デバイスをキャパシティ デバイスとしてマークするために使用します。

このコマンドでは、ESXi で識別されるすべてのデバイス情報が一覧表示されます。

- 2 出力で、デバイスの Is SSD 属性が true であることを確認します。
- 3 フラッシュ デバイスをキャパシティ デバイスとして夕グ付けするには、esxcli vsan storage tag add -d <device name> -t capacityFlash コマンドを実行します。

たとえば、esxcli vsan storage tag add -t capacityFlash -d mpx.vmhba1:C0:T4:L0 コマンドを使用することができます。ここで、mpx.vmhba1:C0:T4:L0 はデバイス名です。

- 4 フラッシュ デバイスがキャパシティ デバイスとしてマークされているかどうかを確認します。
 - a 出力で、デバイスの IsCapacityFlash 属性が 1 に設定されていることを確認します。

例: コマンド出力

vdq -q -d <device name> コマンドを実行して、IsCapacityFlash 属性を確認できます。 たとえば、vdq -q -d mpx.vmhba1:C0:T4:L0 コマンドでは、次の出力が返されます。

ESXCLI を使用した、キャパシティ デバイスとして使用されるフラッシュ デバイスのタグの解除

キャパシティ デバイスとして使用されるフラッシュ デバイスのタグを解除し、キャッシュとして使用可能にすることができます。

手順

1 キャパシティ デバイスとしてマークされているフラッシュ デバイスのタグを解除するには、esxcli vsan storage tag remove -d <device name> -t capacityFlash コマンドを実行します。たとえば、esxcli vsan storage tag remove -t capacityFlash -d mpx.vmhba1:C0:T4:L0 コマンドを使用することができます。ここで、mpx.vmhba1:C0:T4:L0 はデバイス名です。

- 2 フラッシュ デバイスのタグが解除されたかどうかを確認します。
 - a 出力で、デバイスの IsCapacityFlash 属性が 0 に設定されていることを確認します。

例: コマンド出力

vdq -q -d <device name> コマンドを実行して、IsCapacityFlash 属性を確認できます。たとえば、vdq -q -d mpx.vmhba1:C0:T4:L0 コマンドでは、次の出力が返されます。

```
[
    \{
"Name" : "mpx.vmhba1:C0:T4:L0",
"VSANUUID" : "",
"State" : "Eligible for use by VSAN",
"ChecksumSupport": "0",
"Reason" : "None",
"IsSSD" : "1",
"IsCapacityFlash": "0",
"IsPDL" : "0",
    \},
```

RVC でフラッシュ デバイスをキャパシティ デバイスとしてマーク

vsan.host_claim_disks_differently RVC コマンドを実行して、ストレージ デバイスをフラッシュ、容量フラッシュ、または磁気ディスク (HDD) としてマークします。

RVC ツールを使用すると、フラッシュ デバイスをキャパシティ デバイスとしてタグ付けできます。このタグ付けは、個別に行うことも、デバイスのモデルを指定してバッチで行うこともできます。キャパシティ デバイスとしてのフラッシュ デバイスにタグを付ける場合、フラッシュ デバイスをオールフラッシュ ディスク グループに含めることができます。

注: vsan.host_claim_disks_differently コマンドでは、タグ付けの前にデバイス タイプは確認されません。このコマンドでは、使用中の磁気ディスクおよびデバイスを含め、capacity_flash コマンド オプションを使用して付加されたデバイスにタグが付けられます。タグ付けの前に、デバイスのステータスを必ず確認してください。

vSAN 管理のための RVC コマンドの詳細については、『RVC コマンド リファレンス ガイド』を参照してください。

前提条件

- vSAN バージョン 6.5 以降を使用していることを確認します。
- SSH が vCenter Server で有効化されていることを確認します。

手順

- 1 vCenter Server への SSH 接続を開きます。
- 2 管理者権限を持つローカル アカウントを使用して、vCenter Server にログインします。

3 次のコマンドを実行して、RVCを開始します。

```
rvc local_user_name@target_vCenter_Server
```

たとえば、同じ vCenter Server を使用してキャパシティ デバイスのフラッシュ デバイスを root ユーザーとしてマークするには、次のコマンドを実行します。

rvc root@localhost

- 4 ユーザー名に対応するパスワードを入力します。
- **5** vSphere インフラストラクチャで、*vcenter_server/data_center/*computers/*cluster/*hosts ディレクトリに移動します。
- 6 --claim-type capacity_flash --model *model_name* オプションを指定して vsan.host_claim_disks_differently コマンドを実行し、同じモデルのオールフラッシュ デバイス をクラスタ内のすべてのホストのキャパシティ デバイスとしてマークします。

vsan.host claim disks differently --claim-type capacity flash --model model name *

次のステップ

クラスタで vSAN を有効にし、キャパシティ デバイスを要求します。

vSAN へのメモリの提供

vSAN に使用するデバイスおよびディスクの最大数をサポートするように、ホストにメモリをプロビジョニングします。

デバイスおよびディスク グループの最大数の要件を満たすには、ホストのシステム操作に 32 GB のメモリをプロビジョニングする必要があります。最大デバイス構成の詳細については、『vSphere 構成の上限』ドキュメントを参照してください。

vSAN のホストの準備

vSAN を有効にする準備作業の一環として、クラスタのホストの構成に関する要件および推奨事項を確認します。

- ホストのストレージ デバイスと、そのドライバおよびファームウェアのバージョンが、『VMware 互換性ガイド』の「vSAN」セクションに記載されていることを確認します。
- vSAN データストアのストレージが少なくとも3台のホストで構成されていることを確認します。
- メンテナンスおよび障害時の修正を行うため、少なくとも 4 台のホストをクラスタに追加します。
- クラスタ内でストレージのバランスを最適にするため、統一された構成を持つホストを指定します。
- ストレージを構成するホストでストレージ コンポーネントのアンバランスな分布を回避するため、計算リソース のみを持つホストはクラスタに追加しないでください。コンピューティング専用ホストで実行される仮想マシン で大量のストレージ容量が必要な場合、キャパシティを提供する個々のホストに大量のコンポーネントが保存されることがあります。その結果、クラスタでのストレージ パフォーマンスが低下する可能性があります。

- 電力を節約するために、ホストで積極的な CPU 電力管理ポリシーを構成しないでください。 CPU 速度遅延に 敏感な特定のアプリケーションでは、パフォーマンスが低下する可能性があります。 CPU 電力管理ポリシーの 詳細については、『vSphere のリソース管理』ドキュメントを参照してください。
- クラスタにブレード サーバが含まれる場合、ブレード サーバに接続されている外部ストレージ エンクロージャ でデータストアの容量を拡張することを検討してください。ストレージ エンクロージャが VMware 互換性ガイド の vSAN に関するセクションに記載されていることを確認してください。
- ハイブリッド ディスク構成またはオールフラッシュ ディスク構成に配置するワークロードの構成を検討します。
 - 高レベルの予測可能なパフォーマンスを得るには、オールフラッシュ ディスク グループのクラスタを準備 します。
 - パフォーマンスとコストのバランスを取るには、ハイブリッド ディスク グループのクラスタを準備します。

vSAN と vCenter Server の互換性

ソフトウェアの不一致によって引き起こされる潜在的な障害を回避するために、vCenter Server と ESXi のバージョンを同期します。

vCenter Server と ESXi の vSAN コンポーネント間を最適に統合するには、2 つの最新バージョンの vSphere コンポーネントをデプロイします。『vCenter Server のインストールとセットアップ』および『vSphere のアップグレード』ドキュメントを参照してください。

vSAN ネットワークの構成

ESXi ホストのクラスタで vSAN を有効にする前に、vSAN 通信を行うために必要なネットワーク インフラストラクチャを提供する必要があります。

vSAN は、クラスタに参加する ESXi ホスト全体でデータを交換する、分散ストレージ ソリューションを提供します。特定の構成項目を含む、vSAN をインストールするためのネットワークを準備します。

ネットワーク設計ガイドラインの詳細については、「vSAN ネットワークの設計」を参照してください。

同じサブネット内へのホストの配置

最適なネットワーク パフォーマンスを得るには、ホストを同じサブネットに接続する必要があります。vSAN 6.0 以降では、必要に応じてホストを同じレイヤー 3 ネットワークに接続することもできます。

物理アダプタのネットワーク バンド幅の専用化

少なくとも1Gbps のバンド幅を vSAN に割り当てます。次のいずれかの構成オプションを使用できます。

- vSAN OSA: ハイブリッド ホスト構成に専用の 1 GbE 物理アダプタを使用するか、可能であれば、専用また は共有の 10 GbE 物理アダプタを使用します。オールフラッシュ構成で専用または共有の 10-GbE 物理アダプ タを使用します。
- vSAN ESA:専用または共有の 25 GbE 物理アダプタを使用します。

■ 他のシステム トラフィックを処理する物理アダプタで vSAN トラフィックを制御し、Distributed Switch の vSphere Network I/O Control を使用して vSAN のバンド幅を予約します。

仮想スイッチでのポート グループの構成

vSAN の仮想スイッチでポート グループを構成します。

- vSAN の物理アダプタをアクティブなアップリンクとしてポート グループに割り当てます。 ネットワーク可用性について NIC チームが必要な場合は、スイッチへの物理アダプタの接続に基づいてチーミング アルゴリズムを選択します。
- 設計されている場合は、仮想スイッチでタギングを有効にして vSAN トラフィックを VLAN に割り当てます。

vSAN のホストでのファイアウォールの調査

vSAN は、クラスタ内の各ホストの特定のポートでメッセージを送信します。ホストのファイアウォールがこれらのポートでのトラフィックを許可していることを確認します。

クラスタで vSAN を有効にすると、必要なすべてのポートが ESXi ファイアウォール ルールに追加され、自動的に設定されます。管理者がファイアウォール ポートを開いたり、ファイアウォール サービスを手動で有効にしたりする必要はありません。

受信接続と送信接続用に開いているポートを確認できます。ESXi ホストを選択して、[構成] > [セキュリティ プロファイル] をクリックします。

単一サイト vSAN クラスタの作成

vSphere クラスタを作成するときに vSAN を有効にすることも、既存のクラスタで vSAN を有効にすることもできます。

次のトピックを参照してください。

- vSAN クラスタの特性
- vSAN クラスタを作成する前に
- クイックスタートを使用した vSAN クラスタの構成および拡張
- vSAN の手動による有効化
- vSAN クラスタのライセンス設定
- vSAN クラスタでサブスクライブされた機能の表示
- vSAN データストアの表示
- vSAN および vSphere HA の使用
- vCenter Server での vSAN の展開
- vSAN をオフにする

vSAN クラスタの特性

vSAN 環境で作業する前に、vSAN クラスタの特性を理解することが重要です。

vSAN クラスタの特性には、次のものが含まれます。

- vCenter Server インスタンスごとに複数の vSAN クラスタを使用できます。1 台の vCenter Server を使用して、複数の vSAN クラスタを管理できます。
- vSAN では、フラッシュ キャッシュ デバイスやキャパシティ デバイスを含むすべてのデバイスが使用され、他 の機能とデバイスが共有されることはありません。
- vSAN クラスタには、キャパシティ デバイスを持つホストと持たないホストの両方を含めることができます。 キャパシティ デバイスを持つホストが少なくとも 3 台必要です。ベスト プラクティスとして、vSAN クラスタ 含めるホストは同一構成にします。
- ホストがキャパシティを提供する場合、そのホストには少なくとも1つのフラッシュ キャッシュ デバイスと1つのキャパシティ デバイスが必要です。

- ハイブリッド クラスタでは、磁気ディスクがキャパシティ デバイスとして使用され、フラッシュ デバイスが読み取り/書き込みキャッシュとして使用されます。vSAN では、使用可能なすべてのキャッシュの 70% が読み取りキャッシュとして使用され、30% が書き込みバッファとして使用されます。ハイブリッド構成では、フラッシュ デバイスは、読み取りキャッシュおよび書き込みバッファとしての役割を果たします。
- オールフラッシュ クラスタでは、指定された1つのフラッシュ デバイスが書き込みキャッシュとして使用され、 追加のフラッシュ デバイスがキャパシティ デバイスとして使用されます。オールフラッシュ クラスタでは、直接フラッシュ プール キャパシティから読み取りが行われます。
- vSAN クラスタに入れることができるのは、ローカルまたは直接接続されたキャパシティデバイスのみです。 vSAN では、クラスタに接続された SAN や NAS などの他の外部ストレージは使用できません。

クイックスタートを利用して設定した vSAN クラスタの特性の詳細については、クイックスタートを使用した vSAN クラスタの構成および拡張を参照してください。

vSAN クラスタの設計およびサイジングについては、6 章 vSAN クラスタの設計とサイジングを参照してください。

vSAN クラスタを作成する前に

このトピックでは、vSAN クラスタを作成するためのソフトウェアおよびハードウェア要件のチェックリストを提供します。また、このチェックリストを使用して、クラスタがガイドラインおよび基本的な要件を満たしていることを確認することもできます。

vSAN クラスタの要件

開始する前に、VMware 互換性ガイドの Web サイト (http://www.vmware.com/resources/compatibility/search.php) で、ハードウェア デバイスの特定のモデル、およびドライバとファームウェアの特定のバージョンを確認します。次の表に、vSAN でサポートされている主要なソフトウェアおよびハードウェアの要件を示します。

注意: 保証されていないソフトウェアおよびハードウェア コンポーネント、ドライバ、コントローラ、ファームウェアを使用すると、予期しないデータ損失やパフォーマンスの問題が発生する可能性があります。

表 8-1. vSAN クラスタの要件

要件	説明	
ESXi ホスト	■ ホストで最新バージョンの ESXi を使用していることを確認します。 ■ vSAN クラスタに割り当て可能なサポートされているストレージ構成を持つ ESXi ホストが 3 台以上あることを確認します。最適な結果を得るには、4 台以上のホストで vSAN クラスタを構成します。	
メモリ	 ■ 各ホストに 32 GB 以上のメモリがあることを確認します。 ■ 大規模な構成でパフォーマンスを高めるには、クラスタに 32 GB 以上のメモリが必要です。 vSAN ホストの設計とサイジングを参照してください。 	

表 8-1. vSAN クラスタの要件 (続き)

要件	説明
ストレージ I/O コントローラ、ドライバ、ファームウェア	■ ストレージ I/O コントローラ、ドライバ、およびファームウェアのバージョンが VMware 互換性ガイドの Web サイト (http://www.vmware.com/resources/compatibility/search.php) に記載され認定されていることを確認します。 ■ コントローラでパススルーまたは RAID O モードが構成されていることを確認します。 ■ コントローラ キャッシュおよび高度な機能が無効になっていることを確認します。キャッシュを無効にできない場合は、読み取りキャッシュを 100 バーセントに設定する必要があります。 ■ キュー深度が高いコントローラを使用していることを確認します。キュー深度が 256 未満のコントローラを使用すると、メンテナンス中や障害の発生時に仮想マシンのパフォーマンスに大きく影響する可能性があります。
キャッシュおよび容量	■ vSAN Original Storage Architecture の場合は、クラスタにストレージを提供する vSAN ホストに 1 個以上のキャッシュ デバイスと 1 個のキャパシティ デバイスがあることを確認します。vSAN では、vSAN クラスタに含まれるホストのローカル キャッシュ デバイスとキャパシティ デバイスに対する排他的アクセスが必要です。これらのデバイスを、 Virtual Flash File System (VFFS)、VMFS パーティション、ESXi 起動パーティションなどの他の用途で共有することはできません。 ■ vSAN Express Storage Architecture の場合は、ストレージを提供するホストに互換性のあるフラッシュ ストレージ デバイスがあることを確認します。
	■ 最適な結果を得るには、統一された構成のホストを持つ vSAN クラスタを作成します。
ネットワーク接続	各ホストに少なくとも1つのネットワークアダプタが構成されていることを確認します。ハイブリッド構成の場合、vSANホストで1GbE以上の専用バンド幅を使用できることを確認します。
	■ オールフラッシュ構成の場合、vSAN ホストで 10 GbE 以上のバンド幅を使用できることを確認します。
	vSAN ネットワークのベスト プラクティスと考慮事項については、vSAN ネットワークの設計 および vSAN のネットワーク要件を参照してください。
vSAN と vCenter Server の互換性	vCenter Server の最新バージョンを使用していることを確認します。
ライセンス キー	■ 有効な vSAN ライセンス キーがあることを確認します。 ■ オールフラッシュ機能を使用するには、この機能をサポートするライセンスが必要です。 ■ ストレッチ クラスタ、あるいはデデューブおよび圧縮などの高度な機能を使用するには、これらの機能をサポートするライセンスが必要です。 ■ 使用する予定のライセンス数が、vSAN クラスタに参加しているホストの CPU 総数に等しいことを確認してください。クラスタに容量を提供するホストのみに、ライセンス数を設定しないでください。vSAN のライセンスの詳細については、『vCenter Server およびホスト管理』ドキュメントを参照してください。

vSAN クラスタ要件の詳細については、5章 vSAN を有効にするための要件を参照してください。

vSAN クラスタの設計とサイジングの詳細については、『VMware vSAN 設計とサイジングのガイド』を参照してください。

クイックスタートを使用した vSAN クラスタの構成および拡張

クイックスタート ワークフローを使用すると、vSAN クラスタを迅速に作成、構成、および展開できます。

クイックスタートはワークフローを統合し、ネットワーク、ストレージ、サービスなどの一般的な機能に推奨されるデフォルト設定を使用する新しい vSAN クラスタを迅速に作成することができます。クイックスタートは一般的なタスクをグループ化し、設定ウィザードを使用してプロセスをガイドします。クイックスタートの各ウィザードに必要な情報を入力すると、入力された情報に基づいてクラスタが構成されます。

クイック スタートでは vSAN Health Service を使用して構成を確認し、その結果に基づいて構成の問題を修正することができます。各クイック スタート カードには構成のチェックリストが表示されます。緑のメッセージ、黄色の警告、赤の障害をクリックすると詳細を表示できます。

クイックスタート クラスタに追加されるホストは、クラスタ設定に一致するように自動的に構成されます。新しいホストの ESXi ソフトウェアおよびパッチ レベルは、クラスタ内の ESXi ソフトウェアおよびパッチ レベルに一致する必要があります。クイックスタート ワークフローを使用してホストをクラスタに追加する際は、ホストにネットワークまたは vSAN を構成することはできません。ホストの追加の詳細については、『 VMware vSAN の管理』の「vSAN クラスタの拡張」を参照してください。

注: クイックスタート以外でネットワーク設定を変更すると、クイックスタート ワークフローを使用してクラスタ にホストを追加して構成することができなくなります。

クイックスタート クラスタの特性

クイックスタートを使用して構成された vSAN クラスタには次の特性があります。

- ホストに ESXi 6.0 Update 2 以降が必要です。
- すべてのホストはネットワーク設定を含み同じ構成になります。クイックスタートは、各ホストのネットワーク 設定をクラスタ要件に合わせて変更します。
- クラスタ構成は、ネットワークとサービスで推奨されるデフォルトの設定に基づいています。

■ クイックスタート ワークフローでは、ライセンスは割り当てられません。ライセンスは手動でクラスタに割り当てる必要があります。

クイックスタート クラスタの管理および拡張

クイックスタート ワークフローが完了したら、vSphere Client またはコマンドライン インターフェイスを使用して、vCenter Server からクラスタを管理できます。

クイックスタート ワークフローを使用して、クラスタにホストを追加し、追加ディスクを要求することができます。 ただし、クイックスタートでクラスタを構成した後、クイックスタートを使用してクラスタ構成を変更することはで きません。

クイックスタート ワークフローは、HTML5 ベースの vSphere Client を介してのみ使用できます。

クイックスタートのスキップ

[クイックスタートをスキップ] ボタンを使用して、クイックスタート ワークフローを終了し、引き続きクラスタとそのホストを手動で構成できます。新しいホストを個別に追加し、それらのホストを手動で構成することができます。 スキップ後にクラスタのクイックスタート ワークフローをリストアすることはできません。

クイックスタート ワークフローは、新しいクラスタ向けに設計されています。既存の vSAN クラスタを 6.7 Update 1 以降にアップグレードする際、クイックスタート ワークフローが表示されます。クイックスタート ワークフローをスキップし、引き続き vCenter Server からクラスタを管理します。

クイックスタートを使用した vSAN クラスタの構成

クイックスタート ワークフローを使用すると、vSAN クラスタを迅速に構成できます。

前提条件

- ホストで ESXi 6.0 Update 2 以降が実行されていることを確認します。
- クラスタ内の ESXi ホストに既存の vSAN またはネットワーク構成がないことを確認します。

注: クイックスタートを使用してネットワーク構成を行い、これらのパラメータをクイックスタートの外部から変更した場合、クイックスタートを使用してホストの追加や構成を行うことはできません。

手順

- 1 vSphere Client でクラスタに移動します。
- 2 [構成] タブをクリックし、[構成] > [クイックスタート] の順に選択します。
- 3 (オプション) [クラスタの基本] で [編集] をクリックして、クラスタの基本ウィザードを開きます。
 - a (オプション) クラスタ名を入力します。
 - b DRS、vSphere HA、vSAN などの基本的なサービスを選択します。
 - vSAN Express Storage Architecture を使用するには、[vSAN ESA の有効化] を選択します。vSAN Express Storage Architecture は、パフォーマンスと効率性を高める高性能フラッシュ ストレージ デバイス用に最適化されています。
 - c [OK] または [終了] をクリックします。

- 4 [ホストの追加]で、[追加]をクリックして、ホストの追加ウィザードを開きます。
 - a [ホストの追加] 画面で新しいホストの情報を入力するか、既存のホストをクリックして、インベントリにリストされたホストから選択します。
 - b [ホスト サマリ] 画面でホストの設定を確認します。
 - c [設定内容の確認] 画面で [終了] をクリックします。

注: ホストで vCenter Server を実行している場合、ホストをクイックスタート ワークフローを使用してクラスタに追加するため、メンテナンス モードに切り替えることはできません。同じホストで Platform Services Controller が実行されている可能性もあります。ホスト上の他のすべての仮想マシンはパワーオフする必要があります。

- 5 [クラスタの構成]で、[構成]をクリックして、クラスタの構成ウィザードを開きます。
 - a (vSAN ESA クラスタ) 「クラスタ タイプ」 ページで、HCI クラスタ タイプを入力します。
 - [vSAN HCI] はコンピューティング リソースとストレージ リソースを提供します。データストアは、 データセンターおよび vCenter Server 間で共有できます。
 - [vSAN Max] はストレージ リソースを提供しますが、コンピューティング リソースは提供しません。 データストアは、データセンターおよび vCenter Server 間のリモート vSAN クラスタによってマウントできます。
 - b [Distributed Switch の設定] 画面で、Distributed Switch、ポート グループ、物理アダプタなどのネットワーク設定を入力します。
 - [Distributed Switch] セクションで、ドロップダウン メニューから構成する Distributed Switch の数を入力します。各 Distributed Switch の名前を入力します。[既存の使用] をクリックし、既存の Distributed Switch を選択します。

ホストに選択した Distributed Switch と同じ名前の標準仮想スイッチがある場合は、対応する Distributed Switch に標準スイッチが移行されます。

ネットワーク リソース コントロールを有効にして、バージョン 3 に設定します。Distributed Switch とネットワーク リソース コントロール バージョン 2 は併用できません。

- [ポート グループ] セクションで、vMotion に使用する Distributed Switch と、vSAN ネットワークに使用する Distributed Switch を選択します。
- [物理アダプタ] セクションで、各物理ネットワーク アダプタの Distributed Switch を選択します。 各 Distributed Switch は、1つ以上の物理アダプタに割り当てる必要があります。

選択した物理アダプタが、ホスト全体で同じ名前を持つ標準仮想スイッチに接続されている場合、標準スイッチは Distributed Switch に移行されます。選択した物理アダプタが未使用の場合、標準スイッチから Distributed Switch への移行はありません。

ネットワーク リソース コントロールを有効にして、バージョン 3 に設定します。Distributed Switch とネットワーク リソース コントロール バージョン 2 は併用できません。

- c [vMotion トラフィック] ページで、vMotion トラフィックの IP アドレス情報を入力します。
- d 「ストレージ トラフィック] 画面で、ストレージ トラフィックの IP アドレス情報を入力します。

- e [詳細オプション] ページで、DRS、HA、vSAN、ホスト オプション、EVC などのクラスタ設定情報を入 カします。
- f [ディスクの要求] ページで、各ホストのストレージ デバイスを選択します。vSAN Original Storage Architecture のクラスタの場合は、1つのキャッシュ デバイスと 1つ以上のキャパシティ デバイスを選択します。vSAN Express STorage Architecture のクラスタの場合は、ホストのストレージ プールにフラッシュ デバイスを選択します。

注: vSAN Direct ストレージを使用できるのは、vSAN Data Persistence プラットフォームのみです。vSAN Data Persistence プラットフォームは、ソフトウェア テクノロジー パートナーが VMware Infrastructure と統合するためのフレームワークを提供します。VMware のユーザーが vSAN Data Persistence プラットフォームのメリットを利用できるように、各パートナーが独自のプラグインを開発する必要があります。プラットフォーム上で実行されるパートナー ソリューションが稼動するまで、このプラットフォームは機能しません。詳細については、『vSphere with Tanzu の構成と管理』を参照してください。

g (オプション)[フォルト ドメインの作成]ページで、障害が発生する可能性のあるホストのフォルト ドメインを定義します。

フォルト ドメインの詳細については、『 *VMware vSAN の管理*』の「vSAN クラスタのフォルト ドメインの管理」を参照してください。

- h (オプション) システムがプロキシ サーバを使用している場合は、[プロキシ設定] ページでプロキシ サーバ を構成します。
- i [確認] 画面でクラスタの設定を確認し、[終了] をクリックします。

次のステップ

vCenter Server からクラスタを管理することができます。

クイックスタートを使用して、クラスタにホストを追加することができます。詳細については、『VMware vSAN の管理』の「vSAN クラスタの拡張」を参照してください。

vSAN の手動による有効化

vSAN クラスタを作成するには、vSphere ホスト クラスタを作成し、そのクラスタで vSAN を有効にします。

vSAN クラスタには、容量のあるホストと容量のないホストを含めることができます。vSAN クラスタを作成するときは、次のガイドラインに沿ってください。

- vSAN クラスタには、少なくとも 3 台の ESXi ホストを含める必要があります。vSAN クラスタでホストとデバイスの障害を許容する場合は、vSAN クラスタに参加する少なくとも 3 台のホストがクラスタに容量を提供する必要があります。最適な結果を得るには、4 つ以上のホストを追加してクラスタに容量を提供することを考慮してください。
- ESXi 5.5 Update 1 以降のホストだけが vSAN クラスタに参加できます。
- ホストを vSAN クラスタから別のクラスタに移動する前に、ターゲット クラスタで必ず vSAN を有効にして ください。

■ vSAN データストアにアクセスできるようにするには、ESXi ホストは vSAN クラスタのメンバーであることが必要です。

vSAN を有効にすると、vSAN ストレージ プロバイダが自動的に vCenter Server に登録され、vSAN データストアが作成されます。ストレージ プロバイダについては、『vSphere のストレージ』ドキュメントを参照してください。

vSAN の VMkernel ネットワークの設定

vSAN クラスタ内でのデータの交換を有効にするには、各 ESXi ホストに vSAN トラフィック用の VMkernel ネットワーク アダプタを搭載する必要があります。

手順

- 1 ホストを右クリックし、[ネットワークの追加]を選択します。
- 2 [接続タイプの選択] ページで、[VMkernel ネットワーク アダプタ] を選択し、[次へ] をクリックします。
- 3 「ターゲット デバイスの選択] ページで、ターゲット スイッチング デバイスを設定します。
- **4** 「ポートのプロパティ」ページで、「vSAN] サービスを選択します。
- 5 VMkernel アダプタの構成を完了します。
- **6** [設定内容の確認] ページで、vSAN の VMkernel アダプタのステータスが [有効] であることを確認し、[終了] をクリックします。

結果

ホストで vSAN ネットワークが有効になります。

次のステップ

ホスト クラスタで vSAN を有効にできます。

vSAN クラスタの作成

クラスタを作成してから、vSAN 用にクラスタを設定できます。

手順

- **1** データセンターを右クリックし、「新規クラスタ」を選択します。
- 2 [名前] テキスト ボックスに、クラスタの名前を入力します。
- 3 クラスタの DRS、vSphere HA、および vSAN を有効にします。

vSAN Express Storage Architecture を使用するには、[vSAN ESA の有効化] を選択します。vSAN Express Storage Architecture は、パフォーマンスと効率性を高める高性能フラッシュ ストレージ デバイス用に最適化されています。

4 [OK] をクリックします。

インベントリにクラスタが表示されます。

5 vSAN クラスタにホストを追加します。

vSAN クラスタには、キャパシティ デバイスを持つホストと持たないホストの両方を含めることができます。 ベスト プラクティスとして、キャパシティ デバイスを持つホストを追加します。

次のステップ

vSAN クラスタのサービスを構成します。「vSphere Client を使用した vSAN クラスタの構成 」を参照してください。

vSphere Client を使用した vSAN クラスタの構成

vSphere Client を使用して、既存のクラスタに vSAN を構成できます。

注: クイックスタートを使用して、vSAN クラスタをすばやく作成および設定することができます。詳細については、『vSAN のプランニングとデプロイ』の「クイックスタートを使用した vSAN クラスタの構成および拡張」を参照してください。

前提条件

環境がすべての要件を満たしていることを確認します。『vSAN のプランニングとデプロイ』の「vSAN を有効にするための要件」を参照してください。

vSAN を有効にして構成する前に、クラスタを作成してホストを追加します。各ホストのポート プロパティを構成して、vSAN サービスを追加します。

手順

- 1 既存のホスト クラスタに移動します。
- 2 [構成] タブをクリックします。

3 [vSAN] の下で [サービス] を選択します。

- a HCI 構成タイプを選択します。
 - [vSAN HCI] はコンピューティング リソースとストレージ リソースを提供します。データストアは、 同じデータセンター内のクラスタ間、およびリモート vCenter Server によって管理されているクラ スタ間で共有できます。
 - [vSAN コンピューティング クラスタ] は、vSphere コンピューティング リソースのみを提供します。 同じデータセンターの vSAN Max クラスタおよびリモート vCenter Server によって提供されるデータストアをマウントできます。

- [vSAN Max] (vSAN ESA クラスタ) はストレージ リソースを提供しますが、コンピューティング リソースは提供しません。データストアは、クライアント vSphere クラスタ、同じデータセンター内 の vSAN クラスタ、およびリモート vCenter Server からマウントできます。
- b 展開オプション(標準の vSAN クラスタ、2 ノード構成の vSAN クラスタ、または vSAN ストレッチ クラスタ)を選択します。
- c [構成]をクリックして、[vSAN の構成] ウィザードを開きます。

- 4 クラスタに互換性がある場合は [vSAN ESA] を選択して、[次へ] をクリックします。
- **5** 使用する vSAN サービスを構成し、[次へ] をクリックします。

デデュープおよび圧縮、保存データの暗号化、転送中データの暗号化などのデータ管理機能を構成します。ネットワークで RDMA (リモート ダイレクト メモリ アクセス) がサポートされている場合は、[RDMA] を選択します。

6 vSAN クラスタのディスクを要求し、[次へ] をクリックします。

vSAN Original Storage Architecture (vSAN OSA) の場合、ストレージを提供する各ホストに、キャッシュ用として少なくとも 1 台のフラッシュ デバイスが必要です。また、キャパシティ用に 1 台以上のデバイスが必要です。vSAN Express Storage Architecture (vSAN ESA) の場合、ストレージを提供する各ホストに 1 つ以上のフラッシュ デバイスが必要です。

- 7 フォルト ドメインを作成して、同時に障害が発生するホストをグループ化します。
- 8 構成を確認して [終了] をクリックします。

結果

vSAN を有効にすると、vSAN データストアが作成され、vSAN ストレージ プロバイダが登録されます。 vSAN ストレージ プロバイダは組み込みのソフトウェア コンポーネントで、データストアのストレージ機能と vCenter Server との通信を行います。

次のステップ

vSAN データストアが作成されたことを確認します。「vSAN データストアの表示」を参照してください。 vSAN ストレージ プロバイダが登録されていることを確認します。

vSAN 設定の編集

vSAN クラスタの設定を編集してデータ管理機能を構成し、クラスタから提供されるサービスを有効にすることができます。

デデュープおよび圧縮、または暗号化を有効にする場合は、既存の vSAN クラスタの設定を編集します。デデュープおよび圧縮、または暗号化を有効にする場合は、クラスタのオンディスク フォーマットは自動的に最新バージョンにアップグレードされます。

手順

1 vSAN クラスタに移動します。

- 2 [構成] タブをクリックします。
 - a [vSAN] の下で [サービス] を選択します。
 - b 構成するサービスの[編集] または[有効化] ボタンをクリックします。
 - ストレージを構成します。[リモート データストアのマウント] をクリックして、他の vSAN クラスタ のストレージを使用します。
 - vSAN パフォーマンス サービスを構成します。詳細については、『vSAN の監視とトラブルシューティング』の「vSAN のパフォーマンスの監視」を参照してください。
 - ファイル サービスを有効にします。詳細については、『VMware vSAN の管理』の「vSAN ファイル サービス」を参照してください。
 - vSAN ネットワーク オプションを構成します。詳細については、『vSAN のプランニングとデプロイ』 の「vSAN ネットワークの構成」を参照してください。
 - iSCSI ターゲット サービスを構成します。詳細については、『VMware vSAN の管理』の「vSAN iSCSI ターゲット サービスの使用」を参照してください。
 - デデュープと圧縮、保存データの暗号化、転送中データの暗号化などのデータ サービスを構成します。
 - キャパシティの予約とアラートを構成します。詳細については、『vSAN の監視とトラブルシューティング』の「予約済み容量について」を参照してください。
 - 詳細オプションを構成します。
 - オブジェクト修復タイマー
 - ストレッチ クラスタのサイト読み取りのローカリティ
 - シン スワップ プロビジョニング
 - 最大 64 ホストの大規模クラスタのサポート
 - 自動リバランス
 - vSAN 健全性サービスの履歴を構成します。
 - c 要件に合わせて設定を変更します。
- 3 [適用]をクリックして、選択内容を確認します。

既存のクラスタで vSAN を有効にする

既存のクラスタで vSAN を有効にして、機能とサービスを構成できます。

前提条件

環境がすべての要件を満たしていることを確認します。『vSAN のプランニングとデプロイ』の「vSAN を有効にするための要件」を参照してください。

手順

- 1 既存のホスト クラスタに移動します。
- 2 [構成] タブをクリックします。

- **3** [vSAN] の下で [サービス] を選択します。
 - a 構成タイプ (標準 vSAN クラスタ、2 ノード vSAN クラスタ、またはストレッチ クラスタ)を選択します。
 - b クラスタ ホストにディスク グループまたはストレージ プールを追加する場合は、[ローカル vSAN データストアが必要] を選択します。
 - c [構成] をクリックして、[vSAN を構成] ウィザードを開きます。
- **4** クラスタに互換性がある場合は [vSAN ESA] を選択して、[次へ] をクリックします。
- **5** 使用する vSAN サービスを構成し、[次へ] をクリックします。

デデュープおよび圧縮、保存データの暗号化、転送中データの暗号化などのデータ管理機能を構成します。ネットワークで RDMA (リモート ダイレクト メモリ アクセス) がサポートされている場合は、[RDMA] を選択します。

6 vSAN クラスタのディスクを要求し、[次へ] をクリックします。

vSAN Original Storage Architecture (vSAN OSA) の場合、ストレージを提供する各ホストに、キャッシュ用として少なくとも 1 つのフラッシュ デバイスが必要です。また、キャパシティ用に 1 つ以上のデバイスが必要です。vSAN Express Storage Architecture (vSAN ESA) の場合、ストレージを提供する各ホストに 1 つ以上のフラッシュ デバイスが必要です。

- 7 フォルト ドメインを作成して、同時に障害が発生するホストをグループ化します。
- 8 構成を確認して [終了] をクリックします。

vSAN クラスタのライセンス設定

評価期間の終了前、または現在割り当てられているライセンスの有効期間の終了前に、vSAN クラスタにライセンスを割り当てる必要があります。

vSAN のライセンスをアップグレード、結合、または分割する場合は、新しいライセンスを vSAN クラスタに割り当てる必要があります。vSAN ライセンスをクラスタに割り当てる場合、使用されるライセンス キャパシティの量は、クラスタに参加しているホストの CPU の総数に等しくなります。vSAN クラスタのホストが追加または削除されるたびに、クラスタのライセンス使用量が再計算および更新されます。ライセンスの管理およびライセンスに関する用語と定義の詳細については、『vCenter Server およびホスト管理』ドキュメントを参照してください。

クラスタで vSAN を有効にすると、vSAN を評価モードで使用してその機能を調べることができます。評価期間は、 vSAN が有効になると開始され、その 60 日後に期限切れになります。 vSAN を使用する場合は、評価期間が期限 切れになる前にクラスタのライセンス契約を行う必要があります。 vSphere ライセンスと同様に、 vSAN ライセンスにも CPU 単位のキャパシティがあります。オール フラッシュ構成やストレッチ クラスタなどの高度な機能を使用するには、その機能をサポートするライセンスが必要です。

前提条件

■ vSAN のライセンスを表示および管理するには、vCenter Server システムに対する グローバル.ライセンス 権限を持っている必要があります。

手順

- 1 vSAN クラスタに移動します。
- 2 [構成] タブをクリックします。
- **3** [ライセンス] で [vSAN クラスタ] を選択します。
- 4 [ライセンスの割り当て]をクリックします。
- 5 既存のライセンスを選択し、[OK] をクリックします。

vSAN クラスタでサブスクライブされた機能の表示

サブスクリプションのある vSAN+ クラスタの場合、VMC コンソール を使用して、サブスクリプションの使用量を確認できます。また、vCenter Server を使用して、サブスクライブされている機能のリストを表示できます。 VMC コンソール に表示されるサブスクリプション使用量の詳細については、『vSphere+ の使用と管理』ガイドの「サブスクリプション使用量と請求の表示」を参照してください。

前提条件

vCenter Server は、vSphere+ サブスクリプションに変換する必要があります。

手順

- 1 vSAN クラスタに移動します。
- 2 [構成] タブをクリックします。
- **3** [ライセンスとサブスクリプション] で、[vSAN クラスタ] を選択して、サブスクライブされている機能のリストを表示します。

vSAN+ サブスクリプションを vSphere+ 環境に追加すると、表示されるコア数が、vSAN クラスタに関連付けられているすべてのホストの各 CPU の物理 CPU コアの合計数と等しくなります。CPU ごとに少なくとも 16 コアのキャパシティが必要です。CPU あたり 16 コア未満の物理 CPU は、CPU 使用率で 16 コアとしてカウントされます。vSAN+ サブスクリプションの情報を表示するには、「vSphere+ および vSAN+ のサブスクリプション」を参照してください。コア要件の詳細については、『vSphere+ スタートガイド』の「サブスクリプションの購入」を参照してください。

vSAN データストアの表示

vSAN を有効にした後、単一のデータストアが作成されます。vSAN データストアの容量を確認できます。

前提条件

vSAN とディスク グループまたはストレージ プールを構成します。

手順

- 1 [ストレージ] に移動します。
- 2 vSAN データストアを選択します。
- 3 [構成] タブをクリックします。
- 4 vSAN データストアの容量を確認します。

vSAN データストアのサイズは、ESXi ホストごとのキャパシティ デバイスの数と、クラスタ内の ESXi ホスト の数によって決まります。たとえば、ホストに 2 TB のキャパシティ デバイスが 7 個あり、クラスタにホスト が 8 台含まれる場合、おおよそのストレージ容量は 7×2 TB $\times 8 = 112$ TB になります。オールフラッシュ構成を使用している場合、キャパシティにはフラッシュ デバイスが使用されます。ハイブリッド構成の場合、容量には磁気ディスクが使用されます。

一部の容量はメタデータに割り当てられます。

- オンディスク フォーマット バージョン 1.0 では、キャパシティ デバイスあたり約 1 GB が追加されます。
- オンディスク フォーマット バージョン 2.0 では、キャパシティ オーバーヘッドが追加されます (一般的にはデバイスあたり 1 ~ 2% の容量にすぎない)。
- オンディスク フォーマット バージョン 3.0 以降では、キャパシティ オーバーヘッドが追加されます(一般的にはデバイスあたり 1 ~ 2% の容量にすぎない)。ソフトウェア チェックサムが有効になっているデデュープおよび圧縮では、デバイスあたり約 6.2% の容量の追加のオーバーヘッドがかかります。

次のステップ

vSAN データストアのストレージ機能を使用して、仮想マシンのストレージ ポリシーを作成します。詳細については、『vSphere のストレージ』ドキュメントを参照してください。

vSAN および vSphere HA の使用

vSphere HA と vSAN を同じクラスタで有効にできます。vSphere HA では、vSAN データストアに従来のデータストアと同じレベルの仮想マシンの保護を提供します。このレベルの保護では、vSphere HA と vSAN がやり取りするときに、特定の制限が適用されます。

ESXi ホストの要件

vSAN は、次の条件を満たす場合にのみ vSphere HA クラスタと併用できます。

- クラスタの ESXi ホストはすべてバージョン 5.5 Update 1 以降である必要があります。
- クラスタには、3 台以上の ESXi ホストが必要です。最適な結果を得るには、4 台以上のホストで vSAN クラスタを構成します。

注: vSAN 7.0 Update 2 以降では、Proactive HA がサポートされます。修正方法として [すべての障害を対象としたメンテナンス モード] を選択します。隔離モードはサポートされますが、隔離モードのホストで障害が発生し、FTT=0 のオブジェクトまたは FTT=1 のオブジェクトが低下状態になった場合、データ損失から保護されません。

ネットワークの相違点

vSAN は独自の論理ネットワークを使用します。vSAN と vSphere HA が同じクラスタに対して有効にされていると、HA のエージェント間のトラフィックは管理ネットワークではなくこのストレージ ネットワークを通過します。vSphere HA は、vSAN がオフになっている場合にのみ、管理ネットワークを使用します。 ホストで vSphere HA が構成されている場合、vCenter Server は適切なネットワークを選択します。

注: クラスタで vSAN を有効にするときに、vSphere HA が有効になっていないことを確認します。その後、vSphere HA を再度有効にすることができます。

仮想マシンがすべてのネットワーク パーティションで部分的にのみアクセス可能な場合、仮想マシンをパワーオンしたり、すべてのパーティションで仮想マシンに完全にアクセスしたりすることはできません。たとえば、クラスタを P1 と P2 にパーティション分割した場合、仮想マシン ネームスペース オブジェクトはパーティション P1 にはアクセスできますが、P2 にはアクセスできません。 VMDK はパーティション P2 にアクセスできますが、P1 にはアクセスできません。 このような場合、仮想マシンはパワーオンできず、すべてのパーティションで完全にアクセスすることはできません。

次の表に、vSAN が使用されているときと使用されていないときの vSphere HA ネットワークの相違点を示します。

表 8-2. vSphere HA ネットワークの相違点

	vSAN オン	vSAN オフ
vSphere HA が使用するネットワーク	vSAN ストレージ ネットワーク	管理ネットワーク
ハートビート データストア	2 台以上のホストにマウントされる、vSAN デ ータストア以外のデータストア	2 台以上のホストにマウントされるデータスト ア
ホストは「隔離」と宣言	隔離アドレスは ping 不可、vSAN ストレージ ネットワークはアクセス不可	隔離アドレスは ping 不可、管理ネットワーク はアクセス不可

vSAN のネットワーク構成を変更すると、vSphere HA エージェントは新しいネットワーク設定を自動的に取得しません。vSAN ネットワークを変更するには、vSphere HA クラスタのホストの監視を有効に戻す必要があります。

- 1 vSphere HA クラスタの [ホストの監視] を無効にします。
- 2 vSAN ネットワークに変更を加えます。
- 3 クラスタのすべてのホストを選択して右クリックし、[HA の再構成] を選択します。
- 4 vSphere HA クラスタの [ホストの監視] を再度有効にします。

容量の予約設定

アドミッション コントロール ポリシーで vSphere HA クラスタの容量を予約する場合は、この設定が vSAN ルール セットの対応する [許容される障害の数] ポリシー設定と連携する必要があります。 vSphere HA アドミッション コントロールの設定で予約されている容量よりも少なくすることはできません。 たとえば、vSAN のルール セットが 2 つの障害しか許容していない場合、vSphere HA アドミッション コントロール ポリシーでは 1 つまたは 2 つのホスト障害に相当する容量を予約する必要があります。 ホストが 8 台あるクラスタで [予約されたクラスタ リソースの割合] ポリシーを使用している場合、クラスタ リソースの 25 パーセントを超えて予約をしないでください。同じクラスタで、[許容される障害の数] ポリシーを使用してホストの台数が 2 を超えないように設定します。 vSphere HA によって予約される容量が少なすぎると、フェイルオーバーが期待されたとおりに動作しない可能性があります。 過度に大きな容量が予約されると、仮想マシンのパワーオンとクラスタ間の vSphere vMotion 移行に大きな制約が生じることがあります。 [予約されたクラスタ リソースの割合] ポリシーの詳細については、『vSphere 可用性』ドキュメントを参照してください。

複数のホストで障害が発生した状況での vSAN と vSphere HA の動作

仮想マシン オブジェクトのフェイルオーバー クォーラムが失われて vSAN クラスタが失敗すると、クラスタ クォーラムがリストアされている場合でも、vSphere HA が仮想マシンを再起動できない場合があります。 vSphere HA は、クラスタ クォーラムがあり、仮想マシン オブジェクトの最新のコピーにアクセスできる場合にのみ、再起動を保証します。最新のコピーとは、書き込みが行われた最後のコピーのことです。

1 台のホストでの障害を許容するために vSAN 仮想マシンがプロビジョニングされる例を検討してみましょう。この仮想マシンは、ホスト H1、H2、および H3 という 3 台のホストが含まれている vSAN クラスタで実行しています。3 台のすべてのホストに順番に障害が発生します。最後に障害が発生するホストは H3 です。

H1 と H2 がリカバリした後、クラスタには 1 つのクォーラムがあります (1 つのホストの障害が許容される)。しかし、障害が発生した最後のホスト (H3) に仮想マシン オブジェクトの最新コピーが含まれており、そのコピーにはまだアクセスできないため、vSphere HA は仮想マシンを再起動できません。

この例では、3 台のすべてのホストを同時にリカバリするか、2 台のホストのクォーラムに H3 が含まれている必要があります。 どちらの条件も満たされない場合、HA はホスト H3 が再度オンラインになったら、仮想マシンの再起動を試行します。

vCenter Server での vSAN の展開

vCenter Server を展開するときに vSAN クラスタを作成して、このクラスタで vCenter Server をホストすることができます。

vCenter Server は、クラスタ内の ESXi ホストを管理するために使用される事前構成済みの仮想マシンです。 vSAN クラスタに vCenter Server をホストできます。

vCenter Server インストーラを使用して vCenter Server を展開する場合は、シングルホストの vSAN クラス タを作成して、このクラスタで vCenter Server をホストすることができます。デプロイのステージ1でデータストアを選択する場合は、[ターゲット ホストを含む新しい vSAN クラスタにインストール] をクリックします。インストーラ ウィザードの手順に従ってデプロイを完了します。

vCenter Server インストーラにより、ホストから要求されたディスクを含む、1 台のホストからなる vSAN クラスタが作成されます。vCenter Server は vSAN クラスタに展開されます。

展開が完了したら、vCenter Server を含むシングルホストの vSAN クラスタを管理できるようになります。 vSAN クラスタの構成を完了する必要があります。

vSAN をオフにする

ホスト クラスタの vSAN をオフにできます。

クラスタで vSAN をオフにすると、vSAN データストアのすべての仮想マシンとデータ サービスにアクセスできなくなります。 vSAN Direct を使用して vSAN クラスタのストレージを使用している場合、健全性チェック、容量レポート、パフォーマンス監視などの vSAN Direct 監視サービスも使用できなくなります。 vSAN がオフのときに仮想マシンを使用する場合は、必ず vSAN クラスタをオフにする前に仮想マシンを vSAN データストアから別のデータストアに移行します。

前提条件

ホストがメンテナンスモードであることを確認します。

手順

- 1 vSAN クラスタに移動します。
- 2 [設定] タブをクリックします。
- **3** [vSAN] の下で [サービス] を選択します。
- 4 [vSAN をオフにする] をクリックします。
- **5** [vSAN をオフにする] ダイアログで選択内容を確認します。

vSAN ストレッチ クラスタまたは 2 ノード クラスタの作成

9

2 つの地理的な場所(またはサイト)にわたるストレッチ クラスタを作成することができます。ストレッチ クラスタを使用すると、vSAN データストアを 2 つのサイトにわたって拡張し、これを拡張ストレージとして使用できます。ストレッチ クラスタは、1 つのサイトで障害が発生したり、スケジュール設定されたメンテナンスが実行されたりする場合にも、稼動し続けます。

次のトピックを参照してください。

- vSAN ストレッチ クラスタについて
- vSAN 2 ノード クラスタについて
- クイックスタートを使用したストレッチ クラスタまたは 2 ノード クラスタの構成
- vSAN ストレッチ クラスタの手動構成
- 優先フォールトドメインの変更
- 監視ホストの変更
- vSAN 監視アプライアンスのデプロイ
- ストレッチ クラスタの標準の vSAN クラスタへの変換

vSAN ストレッチ クラスタについて

ストレッチ クラスタを使用すると、vSAN クラスタが 1 つのデータ サイトから 2 つのサイトに拡張され、より適切な可用性とサイト間のロード バランシングを実現できます。通常、ストレッチ クラスタはデータセンター間の距離が限定されている環境(都市やキャンパスなど)に導入されます。

ストレッチ クラスタを使用すれば、一方のサイトでメンテナンスを実行したり、一方のサイトが切断したりしても、クラスタの全体的な運用には影響しないため、計画的なメンテナンスを管理して、災害シナリオを回避できます。ストレッチ クラスタ構成では、両方のデータ サイトがアクティブになっています。いずれかのサイトで障害が派生すると、vSAN はもう一方のサイトのストレージを使用します。vSphere HA は、残りのアクティブ サイトで再起動する必要のある仮想マシンを再起動します。

1つのサイトを優先サイトとして定義する必要があります。他のサイトは、セカンダリ サイトまたは非優先サイトになります。2つのアクティブ サイト間のネットワーク接続が失われた場合、vSAN は優先サイトで処理を続行します。優先として指定されているサイトとは、通常は、運用を継続しているサイトのことです。ただし、優先サイトが再同期している場合、または優先サイトに別の問題がある場合は除きます。サイトが運用を継続できれば、データの可用性は最大になります。

vSAN ストレッチ クラスタでは、一度に1つのリンク障害を許容でき、データを継続して使用できます。リンク障害とは、2つのサイト間または1つのサイトと監視ホスト間でネットワーク接続が切断されることです。サイト障害またはネットワーク接続の切断時に、vSAN は完全に機能するサイトに自動的に切り替わります。

vSAN 7.0 Update 3 以降のストレッチ クラスタでは、1 つのサイトが使用できない場合に監視ホストの障害を許容できます。ストレージ ポリシーのサイトの耐障害性ルールをサイト ミラーリング - ストレッチ クラスタに構成します。メンテナンスまたは障害が原因で1つのサイトが停止し、監視ホストで障害が発生した場合、オブジェクトは非準拠になりますが、アクセス可能な状態を維持します。

ストレッチ クラスタの使用方法の詳細については、『vSAN ストレッチ クラスタ ガイド』を参照してください。

監視ホスト

各ストレッチ クラスタは、2 つのデータ サイトと 1 つの監視ホストで構成されます。監視ホストは 3 番目のサイト にあり、この監視ホストには仮想マシン オブジェクトの監視コンポーネントが含まれます。監視ホストは、vSAN オブジェクトとコンポーネントのサイズや UUID などのメタデータのみの顧客データを保存しません。

監視ホストは、2つのサイト間のネットワーク接続が切断されて、データストアコンポーネントの可用性に関して決定を下す必要がある場合のタイプレーカとして機能します。この場合、通常、監視ホストは優先サイトを使用してVSANクラスタを形成します。ただし、優先サイトがセカンダリサイトと監視ホストから隔離された場合、監視ホストはセカンダリサイトを使用してクラスタを形成します。優先サイトが再度オンラインになると、両方のサイトにすべての最新データのコピーが含まれるようにデータが再同期されます。

監視ホストに障害が発生した場合、対応するすべてのオブジェクトがコンプライアンスに準拠しなくなりますが、完全にアクセスすることができます。

監視ホストには次の特性があります。

- 監視ホストは、バンド幅が狭い/待ち時間が長いリンクを使用できます。
- 監視ホストは、仮想マシンを実行できません。
- 1台の Witness (監視) ホストは、1つの vSAN ストレッチ クラスタのみをサポートできます。2 ノード vSAN クラスタは、1台の Witness (監視) ホストを共有できます。
- 監視ホストには、vSAN トラフィックが有効で、クラスタ内のすべてのホストに接続できる VMkernel アダプタが 1 つ必要です。監視ホストは、管理用に 1 つの VMkernel アダプタを、vSAN データ トラフィック用に 1 つの VMkernel アダプタを使用します。監視ホストは、vSAN 専用に VMkernel アダプタを 1 つのみ使用できます。
- 監視ホストは、ストレッチ クラスタ専用のスタンドアロン ホストである必要があります。vCenter Server を 使用して、他のクラスタに追加したり、インベントリ内で移動したりできません。

監視ホストは、物理ホスト、または仮想マシン内で実行されている ESXi ホストになります。仮想マシンの監視ホストでは、仮想マシンの保存や実行などの他のタイプの機能は提供されません。1 つの物理サーバで複数の監視ホストを仮想マシンとして実行できます。パッチの適用やネットワークおよび監視の基本構成の場合、仮想マシンの監視ホストは標準 ESXi ホストと同じように機能します。監視ホストは、vCenter Server を使用して管理する、esxcliまたは vSphere Lifecycle Manager を使用してパッチの適用やアップデートを行う、および ESXi ホストと通信する標準ツールを使用して監視することができます。

ストレッチ クラスタの監視ホストとして監視仮想アプライアンスを使用できます。監視仮想アプライアンスは仮想マシンの ESXi ホストで、OVF または OVA としてパッケージ化されています。アプライアンスは、展開の規模に基づいて各種オプションで使用できます。ストレッチ クラスタの監視ホストとして監視仮想アプライアンスを使用できます。監視仮想アプライアンスは仮想マシンの ESXi ホストで、OVF または OVA としてパッケージ化されています。VSAN アーキテクチャと展開の規模に応じて、さまざまなアプライアンスとオプションを使用できます。

ストレッチ クラスタおよびフォルト ドメイン

ストレッチ クラスタは、サイト間の冗長性を高めて障害から保護するためにフォルト ドメインを使用します。ストレッチ クラスタの各サイトは、個別のフォルト ドメインに存在します。

ストレッチ クラスタでは、優先サイト、セカンダリ サイト、および監視ホストの 3 つのフォルト ドメインが必要です。各フォルト ドメインは独立したサイトを表します。監視ホストに障害が発生するか、または監視ホストがメンテナンス モードになると、vSAN はサイトに障害があると見なします。

vSAN 6.6 以降のリリースでは、ストレッチ クラスタ内の仮想マシン オブジェクトに対して、ローカル障害からの保護レベルを一段と高めることができます。ストレッチ クラスタを構成する場合は、クラスタ内のオブジェクトに次のポリシー ルールを使用できます。

- [サイトの耐障害性]。ストレッチ クラスタの場合、このルールは障害の許容方法を定義します。[サイト ミラーリング ストレッチ クラスタ]を選択します。
- [許容される障害の数 (FTT)]。ストレッチ クラスタでは、[FTT] は 1 個の仮想マシン オブジェクトが許容できる追加ホストの障害数を定義します。
- [なし]。このデータのローカリティ ルールは「なし」、「優先」、「セカンダリ」のいずれかに設定できます。この ルールによって、ストレッチ クラスタ内の選択したサイトに仮想マシン オブジェクトを制限できます。

ローカルでの障害からの保護が設定されたストレッチ クラスタでは、1個のサイトが利用できない場合でも、クラス タ内の利用可能なサイトで、欠けているコンポーネントや障害のあるコンポーネントの修理を実行できます。

vSAN 7.0 以降では、一方のサイトのディスク使用量が 96% に達するか、空き容量が 5 GB (いずれか少ない方) になると、もう一方のサイトのディスクに空き容量があれば、I/O 処理が継続します。影響を受けたサイトのコンポーネントが「不完全」とマークされ、vSAN はもう一方のサイトで良好状態のオブジェクト コピーに対する I/O を継続します。影響を受けたサイトのディスク使用量が 94% か 10 GB (いずれか少ない方) になると、不完全なコンポーネントが使用可能になります。vSAN は使用可能なコンポーネントを再同期し、すべてのオブジェクトがポリシーに準拠するようになります。

ストレッチ クラスタの設計に関する考慮事項

vSAN ストレッチ クラスタを使用する場合、次のガイドラインを考慮してください。

- ストレッチ クラスタの DRS 設定を構成します。
 - クラスタ上で DRS が有効になっている必要があります。 DRS を一部自動化モードで設定すると、各サイト にどの仮想マシンを移行するかを制御できます。 vSAN 7.0 Update 2 では、 DRS を自動モードで操作 し、ネットワーク パーティションから正常にリカバリできます。
 - 優先サイト用とセカンダリ サイト用に 2 つのホスト グループを作成します。
 - 優先サイト上に仮想マシンを保持するためのグループと、セカンダリ サイト上に仮想マシンを保持するため のグループの 2 台の仮想マシン グループを作成します。

- 仮想マシンとホスト グループをマッピングする仮想マシンとホスト間のアフィニティ ルールを 2 つ作成 し、どの仮想マシンとホストを優先サイト上に配置し、どの仮想マシンとホストをセカンダリ サイト上に配置するかを指定します。
- クラスタ内の仮想マシンの初期配置を実行するように、仮想マシンとホスト間のアフィニティ ルールを構成します。
- ストレッチ クラスタの HA 設定を構成します。
 - HA ルール設定はフェイルオーバー中に仮想マシンとホスト間のアフィニティ ルールを順守する必要があります。
 - HA データストア ハートビートを無効化します。
 - HA とホスト エラーの監視、アドミッション コントロールを使用して、FTT を各サイトのホスト数に設定します。
- ストレッチ クラスタにはオンディスク フォーマット 2.0 以降が必要です。必要に応じて、ストレッチ クラスタ を構成する前にオンディスク フォーマットをアップグレードします。『 *VMware vSAN の管理*』の「vSAN のディスク フォーマットのアップグレード」を参照してください。
- ストレッチ クラスタの [FTT] を 1 に構成します。
- vSAN ストレッチ クラスタでは、[FTT] が [なし] に設定され、「優先」または「セカンダリ」のいずれかが設定されている場合、対称型マルチプロセッシング フォルト トレランス (SMP-FT) 仮想マシンの有効化がサポートされます。 vSAN は、[FTT] が 1 以上に設定されたストレッチ クラスタ上の SMP-FT 仮想マシンをサポートしていません。
- ホストが切断されたり応答しない場合は、監視ホストの追加または削除は実施できません。この制限により、再構成処理を開始する前に、vSAN が十分な情報をすべてのホストから収集できるようになります。
- esxcli を使用してホストの追加または削除を行うことは、ストレッチ クラスタではサポートされません。
- 監視ホストのスナップショットを作成したり、監視ホストをバックアップしたりしないでください。監視ホスト に障害が発生した場合は、監視ホストの変更。

ストレッチ クラスタを操作する場合のベスト プラクティス

vSAN ストレッチ クラスタを操作するときは、適切なパフォーマンスを得るために次の推奨事項に準拠してください。

- ストレッチ クラスタ内のサイト (フォルト ドメイン) の 1 つにアクセスできない場合でも、別の 2 つのサイト を含むサブクラスタに新しい仮想マシンをプロビジョニングすることができます。これらの新規仮想マシンは暗 黙的に強制プロビジョニングされ、パーティション分割されたサイトがクラスタに再接続されるまでは非準拠状態になります。この暗黙的な強制プロビジョニングは、3 つのサイトのうちの 2 つが利用可能な場合にのみ実行されます。 この「サイト」とは、データ サイトまたは監視ホストのいずれかを指します。
- 停電やネットワーク接続が失われたことが原因でサイト全体がオフラインになった場合は、時間を置かずに、サイトを直ちに再起動します。 vSAN ホストを 1 台ずつ再起動する代わりに、すべてのホストをほぼ同時にオンラインに戻します。間隔は 10 分以内にするのが理想的です。このプロセスに従うと、サイト間で大量のデータが再同期されることを回避できます。

- ホストが永続的に使用不可の場合は、再構成タスクを実行する前に、クラスタからそのホストを削除します。
- 複数のストレッチ クラスタに対応するために仮想マシンの監視ホストのクローンを作成する場合、クローンを作成するまでは仮想マシンを監視ホストとして構成しないでください。 最初に OVF から仮想マシンを展開し、次に仮想マシンのクローンを作成して、各クローンを別のクラスタの監視ホストとして構成します。 または、OVF から必要な数の仮想マシンを展開し、それぞれを異なるクラスタ用の監視ホストとして構成できます。

ストレッチ クラスタのネットワーク設計

ストレッチ クラスタの 3 つのサイトはすべて、管理ネットワークと vSAN ネットワークを通じて通信を行います。 両方のデータ サイトにある仮想マシンは、共通の仮想マシン ネットワークを通じて通信します。

vSAN ストレッチ クラスタは、特定の基本ネットワーク要件を満たす必要があります。

- 管理ネットワークは、レイヤー 2 拡張ネットワークまたはレイヤー 3 ネットワークを使用して、3 つのすべて のサイトに接続する必要があります。
- vSAN ネットワークは、3 つのすべてのサイトに接続する必要があります。データ サイトと監視ホスト間でルーティングと接続は独立している必要があります。vSAN は、2 つのデータ サイト間でレイヤー 2 とレイヤー 3 をサポートします。また、データ サイトと監視ホストの間ではレイヤー 3 をサポートします。
- 仮想マシン ネットワークは、データ サイトと接続する必要がありますが、監視ホストと接続する必要はありません。データ サイト間ではレイヤー 2 拡張ネットワークまたはレイヤー 3 ネットワークを使用します。障害が発生した場合、仮想マシンにリモート サイトで機能する新しい IP アドレスは必要ありません。
- vMotion ネットワークは、データ サイトと接続する必要がありますが、監視ホストと接続する必要はありません。データ サイト間ではレイヤー 2 拡張またはレイヤー 3 ネットワークを使用します。

注: vSAN over RDMA は、vSAN ストレッチ クラスタまたは 2 ノード クラスタではサポートされていません。

ESXi ホストでのスタティック ルートの使用

ESXi ホストで単一のデフォルト ゲートウェイを使用する場合、各 ESXi ホストに、単一のデフォルト ゲートウェイを持つデフォルト TCP/IP スタックが含まれます。デフォルト ルートは、通常、管理ネットワーク TCP/IP スタックに関連付けられます。

管理ネットワークと vSAN ネットワークは互いに隔離されている場合があります。たとえば、管理ネットワークは物理 NIC 0 の vmk0 を使用し、vSAN ネットワークは物理 NIC 1 の vmk2 を使用する場合があります。つまり、2 つの異なる TCP/IP スタックに対応する別々のネットワーク アダプタを使用します。この構成は、vSAN ネットワークにデフォルト ゲートウェイがないことを意味します。

vSAN 7.0 以降では、各ホストの vSAN VMkernel アダプタのデフォルト ゲートウェイをオーバーライドして、 vSAN ネットワークのゲートウェイ アドレスを構成できます。

また、スタティック ルートを使用してネットワーク間で通信することもできます。vSAN ネットワークはレイヤー 2 ブロードキャスト ドメイン (たとえば 172.10.0.0) の 2 つのデータ サイトに拡張され、監視ホストは別のブロードキャスト ドメイン (たとえば 172.30.0.0) にあるとします。データ サイト上の VMkernel アダプタが監視ホスト上の vSAN ネットワークへ接続すると、ESXi ホストのデフォルト ゲートウェイが管理ネットワークと関連付けられているために、接続が失敗します。管理ネットワークから vSAN ネットワークへのルートはありません。

特定のネットワークに到達するためにどのパスをたどるのかを示す新しいルーティング エントリを定義します。ストレッチ クラスタの vSAN ネットワークについては、スタティック ルートを追加して、すべてのホストにわたって適切な通信を確保することができます。

たとえば、各データ サイトのホストにスタティック ルートを追加して、172.30.0.0 の監視ネットワークに到達する要求が、172.10.0.0 インターフェイスを通じてルーティングされるようにできます。また、データ サイトの 172.10.0.0 ネットワークに到達する要求が、172.30.0.0 インターフェイスを通じてルーティングできるように、スタティック ルートを監視ホストに追加します。

注: スタティック ルートを使用する場合は、新しく追加される ESXi ホストがクラスタ全体で通信できるようにする前に、それらのホストに対応するスタティック ルートをいずれかのサイトに手動で追加する必要があります。監視ホストを置き換える場合は、スタティック ルートの構成を更新する必要があります。

スタティック ルートを追加するには、esxcli network ip route コマンドを使用します。

vSAN 2 ノード クラスタについて

2 ノード構成の vSAN クラスタでは、同じ場所に 2 台のホストが存在します。監視機能は、専用の仮想アプライアンス上の 2 番目のサイトで実行されます。

2 ノード構成の vSAN クラスタは、リモート オフィスや支社などの環境で使用されることが多く、通常は高可用性が必要な少数のワークロードを実行します。2 ノード構成の vSAN クラスタは同じ場所に配置された 2 台のホストで構成され、同じネットワーク スイッチに接続されるか、直接接続されます。3 台目のホストは Witness (監視)ホストとして機能します。このホストは、支社から離れた場所に設置できます。通常、Witness (監視)ホストは vCenter Server とともに主要サイトに配置されます。

1 台の監視ホストで、最大 64 個までの 2 ノード vSAN クラスタをサポートできます。共有 Witness (監視) ホストでサポートされているクラスタの数は、ホストのメモリで決まります。

クイックスタートまたは vSAN の構成ウィザードで 2 ノード vSAN クラスタを構成する場合は、監視ホストを選択できます。 クラスタに新しい監視ホストを割り当てるには、vSphere Client でクラスタを右クリックし、[vSAN] > [共有監視の割り当て] メニューを選択します。

クイックスタートを使用したストレッチ クラスタまたは 2 ノード クラスタの構成

クイックスタート ワークフローを使用すると、ストレッチ クラスタまたは 2 ノード クラスタを迅速に構成できます。

vSphere Client にクラスタを作成する際、クイックスタート ワークフローが表示されます。 クイックスタートを使用して、ホストの追加やディスクの要求など、基本的な構成タスクを実行できます。

前提条件

- Witness(監視)ホストとして使用するクラスタ外部のホストを展開します。
- ホストで ESXi 6.0 Update 2 以降が実行されていることを確認します。2 ノード クラスタの場合は、ホスト で ESXi 6.1 以降が実行されていることを確認します。

■ クラスタ内の ESXi ホストに既存の vSAN またはネットワーク構成がないことを確認します。

手順

- 1 vSphere Client で、クラスタに移動します。
- 2 [構成] タブをクリックし、[構成] > [クイックスタート] の順に選択します。
- 3 [クラスタの基本]で、[編集]をクリックして、クラスタの基本ウィザードを開きます。
 - a クラスタ名を入力します。
 - b vSAN スライダを有効にします。

クラスタに互換性がある場合は、[vSAN ESA] を選択します。 DRS または vSphere HA など、他の機能も有効にできます。

- c [終了]をクリックします。
- 4 [ホストの追加]で、[追加]をクリックして、ホストの追加ウィザードを開きます。
 - a [ホストの追加] 画面で新しいホストの情報を入力するか、既存のホストをクリックして、インベントリにリストされたホストから選択します。
 - b [ホスト サマリ] 画面でホストの設定を確認します。
 - c [設定内容の確認] 画面で [終了] をクリックします。

- 5 [クラスタの構成]で、[構成]をクリックして、クラスタの構成ウィザードを開きます。
 - a (vSAN ESA クラスタ) [クラスタ タイプ] ページで、HCI クラスタ タイプを入力します。
 - [vSAN HCI] はコンピューティング リソースとストレージ リソースを提供します。データストアは、 データセンターおよび vCenter Server 間で共有できます。
 - [vSAN Scale Flex] はストレージ リソースを提供しますが、コンピューティング リソースは提供しません。データストアは、データセンターおよび vCenter Server 間のリモート vSAN クラスタによってマウントできます。
 - b [Distributed Switch の設定] 画面で、Distributed Switch、ポート グループ、物理アダプタなどのネットワーク設定を入力します。
 - [Distributed Switch] セクションで、ドロップダウン メニューから構成する Distributed Switch の数を入力します。各 Distributed Switch の名前を入力します。[既存の使用] をクリックし、既存の Distributed Switch を選択します。

選択した物理アダプタが、ホスト全体で同じ名前を持つ標準仮想スイッチに接続されている場合、標準スイッチは Distributed Switch に移行されます。選択した物理アダプタが未使用の場合、標準スイッチは Distributed Switch に移行されます。

ネットワーク リソース コントロールを有効にして、バージョン 3 に設定します。Distributed Switch とネットワーク リソース コントロール バージョン 2 は併用できません。

- [ポート グループ] セクションで、vMotion に使用する Distributed Switch と、vSAN ネットワークに使用する Distributed Switch を選択します。
- [物理アダプタ] セクションで、各物理ネットワーク アダプタの Distributed Switch を選択します。 各 Distributed Switch は、1つ以上の物理アダプタに割り当てる必要があります。

物理 NIC と Distributed Switch のこのマッピングは、クラスタ内のすべてのホストに適用されます。 既存の Distributed Switch を使用する場合は、物理アダプタの選択内容が Distributed Switch のマッピングと一致することがあります。

- c [vMotion トラフィック] ページで、vMotion トラフィックの IP アドレス情報を入力します。
- d [ストレージ トラフィック] 画面で、ストレージ トラフィックの IP アドレス情報を入力します。
- e [詳細オプション] ページで、DRS、HA、vSAN、ホスト オプション、EVC などのクラスタ設定情報を入 カレます。

[vSAN オプション] セクションで、[デプロイ タイプ] としてストレッチ クラスタまたは 2 ノード vSAN クラスタを選択します。

f [ディスクの要求]ページで、vSAN データストアを作成するストレージ デバイスを選択します。

vSAN Original Storage Architecture の場合は、キャッシュとキャパシティのデバイスを選択します。 vSAN は、これらのデバイスを使用して各ホストにディスク グループを作成します。

vSAN Express Storage Architecture の場合は、互換性のあるフラッシュ デバイスを選択するか、 [vSAN でディスクを管理する] を有効にします。 vSAN は、これらのデバイスを使用して各ホストにストレージ プールを作成します。

- g (オプション) システムがプロキシ サーバを使用している場合は、[プロキシ設定] ページでプロキシ サーバ を構成します。
- h [フォルト ドメインの構成] 画面で、優先サイトとセカンダリ サイト内のホストのフォルト ドメインを定義します。
 - フォルト ドメインの詳細については、『 *VMware vSAN の管理*』の「vSAN クラスタのフォルト ドメインの管理」を参照してください。
- i [監視ホストの選択] ページで、監視ホストとして使用するホストを選択します。 監視ホストはストレッチ クラスタに属することはできませんが、 vSAN データ トラフィック用に構成された VMkernel アダプタを 1つのみ配置することができます。

Witness (監視) ホストを構成する前に、ホストが空でコンポーネントが含まれていないことを確認します。2 ノード クラスタでは、他の 2 ノード クラスタと監視を共有できます。

- i [監視ホストのディスクの要求]ページで、監視ホストのディスクを選択します。
- k [確認] 画面でクラスタの設定を確認し、[終了] をクリックします。

次のステップ

vCenter Server からクラスタを管理することができます。

ホストをクラスタに追加し、クイックスタートを使用して構成を変更できます。また、vSphere Client を使用して 構成を手動で変更することもできます。

vSAN ストレッチ クラスタの手動構成

2 つの地理的な場所またはサイトにまたがる vSAN ストレッチ クラスタを構成します。

前提条件

- 優先サイト用、セカンダリ サイト用、監視用と、少なくとも 3 つのホストがあることを確認します。
- ストレッチ クラスタの監視ホストとして機能するように1つのホストを構成していることを確認します。監視ホストが vSAN クラスタの一部ではなく、vSAN データ トラフィックに対して1つの VMkernel アダプタのみが構成されていることを確認します。
- 監視ホストが空であり、コンポーネントが含まれていないことを確認します。既存の vSAN ホストを監視ホストとして構成するには、最初にホストからすべてのデータを退避させて、ストレージ デバイスを削除します。

手順

- 1 vSAN クラスタに移動します。
- 2 [設定] タブをクリックします。

3 [vSAN] の下で、[フォルト ドメイン] をクリックします。

- 4 [ストレッチ クラスタの構成]をクリックして、ストレッチ クラスタの構成ウィザードを開始します。
- 5 セカンダリ フォルト ドメインに割り当てるホストを選択し、[>>] をクリックします。 [優先フォルト ドメイン] の下にリストされているホストは優先サイトにあります。
- 6 「次へ] をクリックします。
- 7 vSAN ストレッチ クラスタのメンバーでない監視ホストを選択し、「次へ」 をクリックします。
- 監視ホストでストレージ デバイスを要求して、[次へ] をクリックします。
 vSAN Original Storage Architecture の場合は、キャッシュとキャパシティのデバイスを選択します。
 vSAN Express Storage Architecture の場合は、互換性のあるフラッシュ デバイスを選択するか、[vSAN でディスクを管理する] を有効にします。
- 9 [設定内容の確認] ページで構成を確認し、[終了] をクリックします。

優先フォールト ドメインの変更

セカンダリ サイトを優先サイトとして構成できます。現在の優先サイトはセカンダリ サイトになります。

注: [データのローカリティ = 優先] ポリシー設定のオブジェクトは常に優先フォルト ドメインに移動します。[データのローカリティ] = [セカンダリ] のオブジェクトは常にセカンダリ フォルト ドメインに移動します。優先ドメインをセカンダリに、セカンダリ ドメインを優先に変更すると、これらのオブジェクトはサイト間を移動します。このアクションにより、再同期アクティビティが増える可能性があります。不要な再同期を避けるには、優先ドメインとセカンダリ ドメインをスワップする前に、[データのローカリティ] の設定を [なし] に変更します。ドメインを再びスワップしたら、[データのローカリティ] をリセットできます。

手順

- 1 vSAN クラスタに移動します。
- 2 [設定] タブをクリックします。

- **3** [vSAN] の下で、[フォルト ドメイン] をクリックします。
- 4 セカンダリ フォルト ドメインを選択し、[優先フォルト ドメインの変更] アイコンをクリックします。
- 5 [はい]または[適用]をクリックして確定します。選択したフォールトドメインが優先フォールトドメインとしてマークされます。

監視ホストの変更

vSAN ストレッチ クラスタの監視ホストを置換または変更できます。

vSAN ストレッチ クラスタで監視ホストとして使用される ESXi ホストを変更します。

前提条件

Witness (監視) ホストが別のクラスタに使用されていないことを確認します。また、vSAN トラフィックに VMkernel が構成され、そのディスクに vSAN パーティションがないことを確認します。

手順

- 1 vSAN クラスタに移動します。
- 2 [設定] タブをクリックします。
- 3 vSAN で [フォルト ドメイン] をクリックします。
- 4 [変更] ボタンをクリックします。[監視ホストの変更] ウィザードが開きます。
- 5 監視ホストとして使用する新しいホストを選択して、[次へ]をクリックします。
- 6 新しい監視ホストでディスクを要求して、[次へ]をクリックします。
- 7 [設定内容の確認] ページで設定を確認し、[終了] をクリックします。

vSAN 監視アプライアンスのデプロイ

ストレッチ クラスタなどの特定の vSAN 構成には、監視ホストが必要です。監視ホストとして専用の物理 ESXi ホストを使用するのではなく、vSAN 監視アプライアンスをデプロイできます。アプライアンスは、ESXi を実行する事前構成された仮想マシンで、OVA ファイルとして配布されます。

汎用 ESXi ホストとは異なり、監視アプライアンスは仮想マシンを実行しません。監視アプライアンスは vSAN 監視として機能することのみを目的としています。

vSAN 監視アプライアンスをデプロイおよび構成するためのワークフローには、次のプロセスが含まれます。

vSAN 監視アプライアンスをデプロイする場合は、vSAN ストレッチ クラスタでサポートされている監視アプライアンスのサイズを構成する必要があります。以下のいずれかのオプションを選択します。

- 「極小」は、最大 750 個のコンポーネント (10 台以下の仮想マシン) をサポートします。
- 「中」は、最大 21,833 個のコンポーネント(500 台の仮想マシン)をサポートします。共有監視として、「中」の監視アプライアンスは最大 21,000 個のコンポーネントと 21 台までの vSAN 2 ノード クラスタをサポートします。

- 「大」は、最大 45,000 個のコンポーネント(500 台を超える仮想マシン)をサポートします。共有監視として、「大」の監視アプライアンスは最大 24,000 個のコンポーネントと 24 台までの vSAN 2 ノード クラスタをサポートします。
- 「特大」は、最大 64,000 個のコンポーネント (500 台を超える仮想マシン) をサポートします。共有監視として、「特大」の監視アプライアンスは最大 64,000 個のコンポーネントと最大 64 台の 2 ノード vSAN クラスタをサポートします。

注: この概算値は、標準の仮想マシン構成を基準にしています。仮想マシンを構成するコンポーネントの数は、仮想ディスクの数、ポリシー設定、スナップショットの要件などによって異なります。VSAN 2 ノード クラスタの監視アプライアンスのサイジングの詳細については、『VSAN 2 ノード ガイド』を参照してください。

また、vSAN 監視アプライアンス用のデータストアを選択する必要があります。監視アプライアンスには、vSAN ストレッチ クラスタのデータストアとは異なるデータストアを使用する必要があります。

- 1 VMware Web サイトからアプライアンスをダウンロードします。
- 2 アプライアンスを vSAN ホストまたはクラスタにデプロイします。詳細については、『vSphere の仮想マシン管理』ドキュメントの「OVF テンプレートのデプロイ」を参照してください。
- 3 監視アプライアンス上に vSAN ネットワークを構成します。
- 4 監視アプライアンス上に管理ネットワークを構成します。
- 5 アプライアンスを監視 ESXi ホストとして vCenter Server に追加します。必ずホスト上に vSAN VMkernel インターフェイスを構成してください。

監視アプライアンスの vSAN ネットワークの設定

vSAN 監視アプライアンスには、2つの事前構成済みのネットワーク アダプタが含まれます。アプライアンスが vSAN ネットワークに接続できるようにするには、2番目のアダプタの構成を変更する必要があります。

手順

- 1 監視ホストを含む仮想アプライアンスに移動します。
- 2 アプライアンスを右クリックして、[設定の編集]を選択します。
- **3** 「仮想ハードウェア] タブで、2 番目のネットワーク アダプタを展開します。
- **4** ドロップダウン メニューから vSAN ポート グループを選択し、「OK] をクリックします。

監視アプライアンスでの管理ネットワークの構成

ネットワーク上で接続できるように、監視アプライアンスを構成します。

デフォルトでは、ネットワークに DHCP サーバが含まれている場合、アプライアンスはネットワーク パラメータを 自動的に取得できます。含まれていない場合は、適切な設定を構成する必要があります。

手順

- 1 監視アプライアンスをパワーオンして、そのコンソールを開きます。
 - アプライアンスが ESXi ホストであるため、ダイレクト コンソール ユーザー インターフェイス (DCUI) が表示されます。
- **2** F2 キーを押して、[ネットワーク アダプタ] ページに移動します。
- 3 [ネットワーク アダプタ]ページで、転送用に少なくとも 1 つの vmnic が選択されていることを確認します。
- 4 管理ネットワーク用の IPv4 パラメータを構成します。
 - a [IPv4 構成] セクションに移動し、デフォルトの DHCP 設定を [固定] に変更します。
 - b 次の設定を入力します。
 - IP アドレス
 - サブネット マスク
 - デフォルト ゲートウェイ
- 5 DNS パラメータを構成します。
 - プライマリ DNS サーバ
 - 代替 DNS サーバ
 - ホスト名

監視トラフィック用のネットワーク インターフェイスの構成

2 ノード構成の vSAN クラスタやストレッチ クラスタで、データ トラフィックと監視トラフィックを分離することができます。

vSAN のデータ トラフィックは、低遅延で高いバンド幅のリンクを必要とします。監視トラフィックの場合、高遅延、低バンド幅、かつルーティング可能なリンクを使用できます。データ トラフィックを監視トラフィックから分離するために、vSAN の監視トラフィック専用の VMkernel ネットワーク アダプタを構成できます。

vSAN ストレッチ クラスタで vSAN データ トラフィックを配信するために、直接ネットワーク交差接続のサポートを追加できます。監視トラフィック用に、別のネットワーク接続を構成できます。クラスタの各データ ホストで、管理 VMkernel ネットワーク アダプタを構成して、ここでも監視トラフィックを伝送できるようにします。監視ホスト上に監視トラフィック タイプを構成しないでください。

注: ネットワーク アドレス変換 (NAT) は、vSAN データ ホストと監視ホスト間ではサポートされていません。

前提条件

- データ サイトから監視トラフィックへの接続に、1,000 vSAN コンポーネントあたり 2 Mbps の最小バンド幅 があることを確認します。
- 以下の遅延についての要件を確認します。
 - 2 ノード構成の vSAN クラスタでは、RTT を 500 ミリ秒未満にする必要があります。

- サイトあたりのホスト数が 11 台未満のストレッチ クラスタでは、RTT を 200 ミリ秒未満にする必要があります。
- サイトあたりのホスト数が 11 台以上のストレッチ クラスタでは、RTT を 100 ミリ秒未満にする必要があります。
- vSAN データ接続が、次の要件を満たしていることを確認します。
 - 2 ノード構成の vSAN クラスタで直接接続されているホストの場合、ホスト間で 10 Gbps の直接接続を使用します。ハイブリッド クラスタでは、ホスト間で 1 Gbps クロス接続も使用できます。
 - スイッチ インフラストラクチャに接続されたホストの場合、10 Gbps の共有の接続 (オール フラッシュ クラスタには必須) か、1 Gbps の専用の接続を使用します。
- データ トラフィックと監視トラフィックで同じ IP バージョンが使用されていることを確認します。

手順

- 1 ESXi ホストへの SSH 接続を開きます。
- 2 esxcli network ip interface list コマンドを使用して、管理トラフィックに使用する VMkernel ネットワーク アダプタを決定します。

例:

```
esxcli network ip interface list
[vmk0]
  Name: vmk0
  MAC Address: e4:11:5b:11:8c:16
  Enabled: true
  Portset: vSwitch0
  Portgroup: [Management Network]
  Netstack Instance: defaultTcpipStack
  VDS Name: N/A
  VDS UUID: N/A
  VDS Port: N/A
  VDS Connection: -1
  Opaque Network ID: N/A
  Opaque Network Type: N/A
  External ID: N/A
  MTU: 1500
  TSO MSS: 65535
  Port ID: 33554437
[vmk1]
  Name: vmk1
  MAC Address: 00:50:56:6a:3a:74
  Enabled: true
  Portset: vSwitch1
  Portgroup: [vsandata]
  Netstack Instance: defaultTcpipStack
  VDS Name: N/A
  VDS UUID: N/A
  VDS Port: N/A
  VDS Connection: -1
```

```
Opaque Network ID: N/A
Opaque Network Type: N/A
External ID: N/A
MTU: 9000
TSO MSS: 65535
Port ID: 50331660
```

注: 後方互換性のため、マルチキャスト情報が含まれます。 vSAN 6.6 以降のリリースでは、マルチキャストは必要ありません。

3 esxcli vsan network ip add コマンドを使用して、監視トラフィックをサポートするように管理 VMkernel ネットワーク アダプタを構成します。

```
esxcli vsan network ip add -i vmkx -T witness
```

4 esxcli vsan network list コマンドを使用して、新しいネットワーク構成を確認します。

例:

```
esxcli vsan network list
Interface
  VmkNic Name: [vmk0]
  IP Protocol: IP
  Interface UUID: 8cf3ec57-c9ea-148b-56e1-a0369f56dcc0
  Agent Group Multicast Address: 224.2.3.4
  Agent Group IPv6 Multicast Address: ff19::2:3:4
  Agent Group Multicast Port: 23451
  Master Group Multicast Address: 224.1.2.3
  Master Group IPv6 Multicast Address: ff19::1:2:3
  Master Group Multicast Port: 12345
  Host Unicast Channel Bound Port: 12321
  Multicast TTL: 5
  Traffic Type: [witness]
Interface
  VmkNic Name: [vmk1]
  IP Protocol: IP
  Interface UUID: 6df3ec57-4fb6-5722-da3d-a0369f56dcc0
  Agent Group Multicast Address: 224.2.3.4
  Agent Group IPv6 Multicast Address: ff19::2:3:4
  Agent Group Multicast Port: 23451
  Master Group Multicast Address: 224.1.2.3
  Master Group IPv6 Multicast Address: ff19::1:2:3
  Master Group Multicast Port: 12345
  Host Unicast Channel Bound Port: 12321
  Multicast TTL: 5
  Traffic Type: [vsan]
```

結果

vSphere Client で、vSAN トラフィック用に管理 VMkernel ネットワーク インターフェイスが選択されていません。 vSphere Client でインターフェイスを再度有効にしないでください。

ストレッチ クラスタの標準の vSAN クラスタへの変換

ストレッチ クラスタを廃止し、標準の vSAN クラスタに変換できます。

ストレッチ クラスタを廃止すると、監視ホストは削除されますが、フォルト ドメインの構成はそのまま残ります。 監視ホストは使用できないため、仮想マシンのすべての監視コンポーネントが見つかりません。仮想マシンの完全な 可用性を確保するには、クラスタ オブジェクトをただちに修復します。

前提条件

- 実行中のすべての仮想マシンをバックアップし、すべての仮想マシンが現在のストレージ ポリシーに準拠していることを確認します。
- 健全性に問題がなく、すべての再同期アクティビティが完了していることを確認します。
- 関連するストレージ ポリシーを変更して、すべての仮想マシン オブジェクトを 1 つのサイトに移動します。データの局所性ルールを使用して、選択したサイトに仮想マシン オブジェクトを制限します。

手順

- 1 vSAN ストレッチ クラスタに移動します。
- 2 [構成] タブをクリックします。
- **3** 「vSAN] の下で、「フォルト ドメイン] をクリックします。
- 4 ストレッチ クラスタを無効にします。
 - a [無効化]をクリックします。[監視ホストの削除]ダイアログが開きます。
 - b [削除]をクリックして確認します。
- 5 フォルトドメインの構成を削除します。
 - a フォルト ドメインを選択し、[アクション] > [削除] の順に選択します。[はい] をクリックして確認します。
 - b ほかのフォルト ドメインを選択し、[アクション] > [削除] の順に選択します。[はい] をクリックして確認 します。
- 6 インベントリから監視ホストを削除します。
- 7 クラスタ内のオブジェクトを修復します。
 - a [監視] タブをクリックします。
 - b [vSAN] の下で、[健全性] をクリックし、[vSAN オブジェクトの健全性] をクリックします。
 - c 「オブジェクトをただちに修復] をクリックします。

vSAN によりクラスタ内に監視コンポーネントが再作成されます。