[86.03/66.25] Dispositivos Semiconductores

Transistor TBJ

Transistor TBJ: Cálculo de Beta

Dado un TBJ cuyos parámetros de fabricación son $N_{DE} = 2 \times 10^{18}$ cm⁻³; $N_{AB} = 10^{17}$ cm⁻³; $N_{DC} = 8 \times 10^{14}$ cm⁻³; $W_B = 200$ nm; $W_E = 300$ nm; $W_C = 1.5$ µm. El error en la determinación de los dopajes es del 50% y la resolución en las profundidades (W) es ± 20 nm. Debido a las características del proceso de fabricación, se tiene que cuando W_B es máximo, entonces W_E es mínimo, y viceversa.

• Hallar el máximo y mínimo valor de $\beta_{F}(h_{FF})$ para un transistor construido con este proceso.

Hoja de datos de un TBJ NPN

	· · - , · ·					
h _{FE}	DC current gain	$I_C = 2 \text{ mA}; V_{CE} = 5 \text{ V};$				
	BC546A; BC547A; BC548A	see Figs 2, 3 and 4	110	180	220	
	BC546B; BC547B; BC548B		200	290	450	
	BC547C; BC548C		420	520	800	
	BC547; BC548		110	_	800	
	BC546		110	_	450	
V ₂₅ .	collector-emitter esturation voltage	I ₀ = 10 mΔ· I ₀ = 0.5 mΔ	_	an	250	m\/

¿Qué tipo de transistor es el del problema?

Emisor
$$N_D = 2 \times 10^{18} \text{ cm}^{-3} \longrightarrow N$$

Base
$$N_A = 10^{17} \text{ cm}^{-3}$$
 P

Colector
$$N_D = 8 \times 10^{14} \text{ cm}^{-3} \longrightarrow N$$

¿Cómo me puedo acordar la fórmula de β ?

Es la corriente de difusión de minoritarios en la base (electrones)

¿Cómo me puedo acordar la fórmula de β ?

Es la corriente de difusión de minoritarios en la emisor (huecos)

¿Cómo me puedo acordar la fórmula de β ?

$$\beta_{F} = \frac{I_{C}}{I_{B}} = \frac{D_{n,B}N_{D,E}W_{E}}{D_{p,E}N_{A,B}W_{B}} \underbrace{\frac{\mu_{n,B}N_{D,E}W_{E}}{\mu_{p,E}N_{A,B}W_{B}}}_{\text{Por la relación de Einstein}}$$

¿Cómo obtengo los datos para resolver?

¿Cómo obtengo los datos para resolver?

$$\beta_{F,\text{máx}} = \frac{860 \times 30 \times 320}{100 \times 0.5 \times 180} = 917.33$$

$$\beta_{F, \text{min}} = \frac{650 \times 10 \times 280}{160 \times 1.5 \times 220} = 34.5$$

Resumen

	· · - ,					
h _{FE}	DC current gain	$I_C = 2 \text{ mA}; V_{CE} = 5 \text{ V};$				
	BC546A; BC547A; BC548A	see Figs 2, 3 and 4	110	180	220	
	BC546B; BC547B; BC548B		200	290	450	
	BC547C; BC548C		420	520	800	
	BC547; BC548		110	_	800	
	BC546		110	_	450	
V	collector-emitter esturation voltage	I ₀ = 10 mΔ· I ₀ = 0.5 mΔ		an	250	m\/

34.5

?

917

¿Se animan a calcular el valor típico?

Calculado en el ejercicio

Bonus Track: ¿Cómo calculo el β de un PNP?

Es la corriente de difusión de minoritarios en la base (huecos)

Es la corriente de difusión de minoritarios en la emisor (electrones)