Exemplar Problem

Trigonometric Functions

7. If a cos θ + b sin θ = m and a sin θ - b cos θ = n, then show that a 2 + b 2 = m 2 + n 2 .

Solution:

According to the question,

a
$$\sin \theta - b \cos \theta = n ...(ii)$$

Squaring and adding equation 1 and 2, we get,

$$(a \cos \theta + b \sin \theta)^2 + (a \sin \theta - b \cos \theta)^2 = m^2 + n^2$$

$$\Rightarrow$$
 a 2 cos 2 θ + b 2 sin 2 θ + 2ab sin θ cos θ + a 2 sin 2 θ + b 2 cos 2 θ - 2ab sin θ cos θ = m 2 + n 2

$$\Rightarrow$$
 a 2 cos 2 θ + b 2 sin 2 θ + a 2 sin 2 θ + b 2 cos 2 θ = m 2 + n 2

$$\Rightarrow$$
 a 2 (sin 2 θ + cos 2 θ) + b 2 (sin 2 θ + cos 2 θ) = m 2 + n 2

Using,
$$\sin^2 \theta + \cos^2 \theta = 1$$
,

We get,

$$\Rightarrow$$
 a ² + b ² = m ² + n ²