Math 297 Discussion 11

Annie Xu

April 3, 2019

Group homomorphism

Definition 0.1. G, H are groups, a **group homomorphism** $f: G \to H$ is a function satisfying $f(xy) = f(x)f(y) \ \forall x, y \in G$ and f(1) = 1.

Examples

1) General Linear Group

 $GL_n(\mathbb{R}) = \{n \times n \text{ matrices with real entries that are invertible } (\det \neq 0)\}$

- $\cdot = \text{matrix multiplication}$
- 2) Let x be a plane figure, i.e. $x \in \mathbb{R}^2$

A **rigid motion** of \mathbb{R}^2 is a bijective continuous distance-preserving map.

The set of all rigid motions Γ forms a group under composition.

Consider $\{r \in \Gamma | r(x) = x\} = G$

Claim: G is a group under composition:

- i) composition is associative
- ii) identity is in G
- iii) inverse: $x = r^{-1}(x)$ so $r \in G \implies r^{-1} \in G$

Subgroup

Definition 0.2. If Γ is a group, a **subgroup** of Γ is a subset G containing 1, closed under composition $(x, y \in G \implies xy \in G)$, has inverses $(x \in G \implies x^{-1} \in G)$.

Example: regular hexagon

G contains rotation by 60° (or any multiple of 60°) and reflections through certain lines.

Isomorphism

Definition 0.3. An **isomorphism** between groups G and H is a bijective homomorphism.

Definition 0.4. G is a group. Then **center** of G is $Z(G) = \{x \in G | \forall y \in G, xy = yx\}$

Examples

1) Quarternion group:
$$Q=\{1,-1,i,-i,j,-j,k,-k\}$$
 $i^2=-1$ $(-i)^2=-1$ $j^2=-1$ $(-j)^2=-1$ $k^2=-1$ $(-k)^2=-1$ $ij=-ji$ $-1 \cdot i=-i=i(-1)$ $ij=k$ $ik=-ki$ $-1 \cdot j=-j$ $-j=ik$ $jk=-kj$ $-1 \cdot k=-k$ 2) Cyclic group of order n

Definition 0.5. Suppose G is a group and H is a subgroup of G. A **left coset** of H in G is a set of the form $gH = \{gh|h \in H\}$ for some $g \in G$.

Note: right coset Hg is defined similarly.

ex: $G = \mathbb{Z}, H = 2\mathbb{Z}$, even integers

Q: What are the cosets of H? Fact: any two left cosets are either equal or disjoint

 $g, g' \in G$, either gH = g'H or $gH \cap g'H = \emptyset \implies$ left cosets partition G.

Definition 0.6. The *index* of H in G, denoted [G : H], is the number of left cosets (= number of right).

Fact: Any left or right coset of H has cardinality #HWe find $[G:H] = \frac{\#G}{\#H}$ (if G finite) (Lagrange Theorem)

Corollary If G is a finite group, H is a subgroup, #H | #G

Corollary If $g \in G$, $\operatorname{ord}(g)|G$