Homework 3 Partial Solutions

Section 3.1

8. This questions is about arbitrary vectors, these could be vectors in \mathbb{R}^n but it could also be the space of matrices $\mathbb{R}^{n \times m}$, could be the space of continuous functions on the unit interval into \mathbb{R} , $C([0,1],\mathbb{R})$, etc. So you must argue generally using axioms of vector spaces.

$$x + y = x + z$$

$$(-x) + (x + y) = (-x) + (x + z)$$
(A4)

$$(-x+x) + y = (-x+x) + z$$
 (A2)

$$0 + y = 0 + z \tag{A4}$$

$$y = z \tag{A3}$$

13. There are various ways to see that this is not a vector space. One way is to notice that there is no 0 element!

What element a of \mathbb{R} would satisfy $\max(a, r) = r$ for all $r \in \mathbb{R}$? For $r \geq 0$, a = 0 would suffice, but what would work for r < 0? If $a \oplus r = r$ for r < 0, then a < r. But then a < r for all $r \in \mathbb{R}$!

14. Let $V = \mathbb{Z}$ and define scalar multiplication by

$$\alpha \cdot_V n = |\alpha| \cdot n \tag{1}$$

$$n +_V m = n + m \tag{2}$$

Is this a vector space?

All the additive axioms clearly hold since these are true of integer arithmetic.

The problem here is $\alpha \cdot_V (\beta \cdot_V n) = (\alpha \cdot \beta) \cdot_V n$. For example:

$$.5 \cdot_V (2 \cdot_V n) = 0 \cdot (2 \cdot n) = 0$$

while

$$(.5 \cdot 2) \cdot_V n = 1 \cdot_V n = 1 \cdot n = n$$

Section 3.2

2.

(a) This is not a subspace because $(0,0)^T \notin S$.

(b) This is a subspace.

• If $(a, b, c) \in S$, then $\alpha(a, b, c)^T \in S$, since, a = b = c implies $\alpha a = \alpha b = \alpha c$.

• If $(a, b, c)^T$, $(A, B, C)^T \in S$, then a + A = b + B = c + C, so $(a, b, c)^T + (A, B, C)^T \in S$.

Thus S is closed under scalar multiplication and addition and is a subspace.

(c) This is a subspace. Do just like (b), but use the property $x_1 = x_2 + x_3$. Another way is to notice that S = NS(A) where $A = \begin{bmatrix} 1 & -1 & -1 \end{bmatrix}$. (We could have done this with (b) as well.)

(d) This is not a subspace $(1,2,1)^T$ and $(4,1,1)^T$ are in S, but the sum $(5,3,2)^T \notin S$

4.

(a) $\operatorname{rref}(A) = I_2 \text{ so } \operatorname{NS}(A) = \operatorname{span}\{\mathbf{0}\}.$

(b) $\operatorname{rref}(A) = \begin{bmatrix} 1 & 2 & -3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ so $A\boldsymbol{x} = \boldsymbol{0}$ is equivalent to

$$x_1 + 2x_2 - 3x_3 = 0$$
$$x_4 = 0$$

Let $x_2 = s$ and $x_3 = t$, then we have:

$$x_1 = -2s + 3t$$

$$x_2 = s$$

$$x_3 = t$$

$$x_4 = 0$$

which is the same as

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 3 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

So $NS(A) = span\{(-1, 1, 0, 0)^T, (3, 0, 1, 0)^T\}.$

(c) $\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$ so this has x_3 as a free variable. Let $x_3 = t$, then

$$x_1 = t$$
$$x_2 = t$$

is the resulting system so an element of NS(A) is of the form

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} t \\ t \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

so $NS(A) = span\{(1,1,1)^T\}.$

(d) Just as an example of using MATLAB

 $\operatorname{rref}(A) = \begin{bmatrix} 1 & 1 & 0 & 5 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ so x_2 and x_4 are the non-pivot, hence free variables. Let $x_2 = s$ and $x_4 = t$, then the system becomes

$$x_1 = -s - 5t$$
$$x_3 = -3t$$

So we have $x \in NS(A)$ iff

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -s - 5t \\ s \\ -3t \\ t \end{bmatrix} = s \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -5 \\ 0 \\ -3 \\ 1 \end{bmatrix}$$

and thus

$$NS(A) = \operatorname{span} \left\{ \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -5\\0\\-3\\1 \end{bmatrix} \right\}$$

- **8.** A is fixed.
 - $0A = A0 \text{ so } 0 \in S$
 - Let $B, C \in S$, then BA = AB and CA = AC so (B + C)A = BA + CA = AB + AC = A(B + C) and hence $B + C \in S$.
 - Let $B \in S$, then $(\alpha B)A = \alpha(BA) = \alpha(AB) = A(\alpha B)$, so $\alpha B \in S$.
- **11.** Just put the vectors in as columns, or rows, of a matrix A. Find $\operatorname{rref}(A)$. If there are two non-zero rows, that is $\operatorname{rank}(A) = 2$, then the set is a basis. for example, given $B = \{(2,1)^T, (3,2)^T\}$ for $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ (I put the vectors in as columns). $\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, so B spans \mathbb{R}^2 . (You could just compute $\operatorname{rank}(A)$ in MATLAB.
- 13. If $A = \begin{bmatrix} x_1 & x_2 \end{bmatrix}$, then $x \in \text{span}\{x_1, x_2\}$ iff Az = x has a solution, similar for y. So for x just try to solve

$$\begin{bmatrix} -1 & 3 \\ 2 & 4 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 6 \end{bmatrix}$$

Since

$$\operatorname{rref}\left(\begin{bmatrix} -1 & 3 & 2\\ 2 & 4 & 6\\ 3 & 2 & 6 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

this has no solution. Recall this was an augmented matrix and the last row means $0z_1+0z_2=1$ which is nonsense.

17.

- (a) Adding a vector to a spanning set leaves it a spanning set. This is clear since if $S \subset S' \subset V$ are sets of vectors in a vector space V, then clearly $\operatorname{span}(S) \subset \operatorname{span}(S')$. But if $\operatorname{span}(S) = V$, i.e., S is a spanning set, then $V \subset \operatorname{span}(S) \subset \operatorname{span}(S') \subset V$ so these must all be the same.
- (b) Removing a vector from a spanning set may, or may not, leave it as a spanning set. If it is a minimal spanning set (a basis), then removing a vector will mean that what is left is no longer spanning.

Section 3.3

2. Again just write these vectors down as the rows of a matrix A. If rref(A) has any 0 rows, then the vectors are not independent, otherwise they are. For example:

$$\operatorname{rref}\left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

So these vectors are not independent.

- **5.** (This is sort of the opposite of the spanning case.)
- (a) Adding vectors to a linearly independent set can obviously mess up independence. (Just add a linear combination of the original vectors.) For example, if $S \subset \mathbb{R}^n$ is linearly independent, then $S \cup \{0\}$ is not.
- (b) Clearly removing a vector from a linearly independent set cannot mess up linear independence.

Specifically if $S = \{v_1, \ldots, v_n\}$ and $S' \subset S$, say $S' = \{v_{i_1}, \ldots, v_{i_k}\}$ and $c_{i_1}v_{i_1} + \cdots + c_{i_k}v_{i_k} = \mathbf{0}$ is a linear combination of elements of S', then this is trivially also a linear combination of elements of S and hence by the independence of S we have $c_{i_1} = \cdots = c_{i_k} = 0$. So S' is linearly independent.

- **8.** Determine whether the following are independent in P_3 .
- (a) $\{1, x^2, x^2 2\}$ is not independent as $x^2 2 = -2 \cdot 1 + 1 \cdot x^2$, so $x^2 2$ is a linear combination of 1 and x^2 .
- (c) $\{x+2, x+1, x^2-1\}$ relative to the standard (ordered) basis for P_3 , $\{1, x, x^2\}$, this is equivalent to asking if $\{(2, 1, 0), (1, 1, 0), (-1, 0, 1)\}$ is linearly independent. Clearly,

$$\begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

4

so $\{x+2, x+1, x^2-1\}$ is linearly independent.

- (d) $\{x+2, x^2-1\}$ is independent since $\{x+2, x+1, x^2-1\}$ is linearly independent, by (c).
- **9.** Show the following sets are linearly independent in C([0,1])
- (a) $\sin(\pi x)$ and $\cos(\pi x)$

One interesting way here is to note that $\langle f, g \rangle = \int_0^1 f \cdot g \, dx$ is an inner-product on C([0, 1]) and $\langle \sin(\pi x), \cos(\pi x) \rangle = 0$, so actually, these two functions are orthogonal!

A less interesting way is to note that if $a\sin(\pi x) + b\cos(\pi x) = 0$ (the 0 function), then letting x = 0 gives $a\sin(0) + b\cos(0) = b = 0$ and letting x = 1/2 gives $a\sin(\pi/2) + b\cos(\pi/2) = a = 0$ so a = b = 0 and hence the two functions are independent.

(b)
$$x^{3/2}$$
 and $x^{5/2}$

Suppose $ax^{3/2} + bx^{5/2} = 0$ for all $x \in [0, 1]$, then for x = 1 we have a + b = 0 and for x = 1/4 we have $a(1/2)^3 + b(1/2)^5 = 0$ so $a + b(1/2)^2 = 0$ hence a + b/4 = 0 or equivalently 4a + b = 0. Solving

$$4a + b = 0$$
$$a + b = 0$$

gives a = b = 0. So These are independent.

(c) 1,
$$x^x - e^{-x}$$
 and $e^x + e^{-x}$

Again suppose $h(x) = a + b(e^x - e^{-x}) + c(e^x + e^{-x}) = 0$. It is easy to see h(0) = a + 2c = 0, h'(0) = 2b = 0 and h''(0) = 2c = 0. So clearly, a = b = c = 0 as desired.

(d)
$$e^x$$
, e^{-x} and e^{2x}

This is like (c), Assume $h(x) = ae^x + be^{-x} + ce^{2x}$, then $h'(x) = ae^x - be^{-x} + 2ce^{2x}$ and $h''(x) = ae^e + be^{-x} + 4e^{2x}$ and so

$$h(0) = a + b + c = 0$$

$$h'(0) = a - b + 2c = 0$$

$$h''(0) = a + b + 4c = 0$$

It is easy to check that this has the unique solution a = b = c = 0.

10. It turns out here that $1, \cos(x)$, and $\sin^2(x/2)$ are linearly dependent and this is from one of the half-angle formulas,

$$\cos(x) = \cos^2(x/2) - \sin^2(x/2) = 1 - 2\sin^2(x/2)$$

16. Show that the columns of A are linearly independent iff $NS(A) = \{0\}$.

Suppose A is $m \times n$ so $A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$ with $a_i \in \mathbb{R}^m$ the ith column of A. Then

$$Ax = x_1a_1 + \dots + x_na_n$$

is an arbitrary linear combination of the columns of A and so.

(if) Assume NS(A) = $\{0\}$, then $x_1a_1 + \cdots + x_na_n = 0$ iff Ax = 0 iff x = 0, that is $x_1 = x_2 = \cdots x_n = 0$. So the columns of A are linearly independent since the only linear combination giving $\mathbf{0}$ is the trivial combination.

(only-if) Assume the columns of A are linearly independent, then $A\mathbf{x} = \mathbf{0}$ would mean the $x_1\mathbf{a_1} + \cdots + x_n\mathbf{a_n} = 0$ so by linear independence, $x_1 = x_2 = \cdots = 0$ and hence $A\mathbf{x} = \mathbf{0}$ implies $\mathbf{x} = \mathbf{0}$ so $NS(A) = \{\mathbf{0}\}.$

17. Suppose $NS(A) = \{0\}$ and x_1, x_2, \dots, x_k are linearly independent. Suppose also

$$\alpha_1 A x_1 + \alpha_2 A x_2 + \dots + \alpha_k A x_k = 0,$$

then

$$\mathbf{0} = \alpha_1 A \mathbf{x}_1 + \dots + \alpha_k A \mathbf{x}_k = A(\alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k)$$

so $\alpha_1 \mathbf{x}_1 + \cdots + \alpha_k \mathbf{x}_k \in NS(A) = \{\mathbf{0}\}$ and thus

$$\alpha_1 \boldsymbol{x}_1 + \cdots + \alpha_k \boldsymbol{x}_k = \boldsymbol{0}$$

But the x_i 's are linearly independent so $a_1 = a_2 = \cdots = a_k = 0$. but this is what we needed to see that Ax_1, Ax_2, \ldots, Ax_k is linearly independent.

Section 3.4

5.

(a) Let A be the matrix whose columns are the three vectors given

$$A = \begin{bmatrix} 2 & 3 & 2 \\ 1 & -1 & 6 \\ 3 & 4 & 4 \end{bmatrix}$$

The given vectors are linearly independent iff $NS(A) = \{0\}$, since

$$NS(A) = \{0\} \text{ iff } Ax = 0 \text{ implies } x = 0,$$

but the right hand side here says precisely that the only linear combination of the columns that yields $\mathbf{0}$ is the trivial combination, that is all coefficients are 0.

$$\operatorname{rref} A = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

Clearly, this has a nontrivial null space, in fact,

$$NS(A) = span\{(-4, 2, 1)\}$$

So $-4x_1 + 2x_2 + x_3 = 0$, where these were the given vectors. (Easy for the reader to check. Do it!)

- (b) Clearly x_1 and x_2 are linearly independent, since there is no $r \in \mathbb{R}$ such that $rx_1 = x_2$.
- (c) Let $S = \text{span}\{x_1, x_2, x_3\}$, then (a) and (b) together show $2 \le \dim(S) < 3$ so $\dim(S) = 2$.
- (d) A 2-dimensional subspace of \mathbb{R}^3 is a plane.

alternate solution

$$\begin{bmatrix} 3 & -3 & -6 \\ -2 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -2 \\ 0 & 0 & 0 \\ 0 & 7 & 10 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -2 \\ 0 & 7 & 10 \\ 0 & 0 & 0 \end{bmatrix}$$

So a basis for $V = \text{span}\{x_1, x_2, x_3\}$ is given by $\{x_2, x_2\}$. So $\dim(V) = 2$ and V is a plane in \mathbb{R}^3 .

7.
$$(a+b, a-b+2c, b, c) = a(1,1,0,0) + b(1,-1,1,0) + c(0,2,0,1)$$

It is easy to see that $\{(1,1,0,0), (1,-1,1,0), (0,2,0,1)\}$ is independent so $\dim(S) = 3$.

8.

- (a) No, two non co-linear vectors span a plane not all of \mathbb{R}^3
- (b) X must be linearly independent. We can be more specific here. If A has columns $x_1 = (1,1,1)$, $x_2 = (3,-1,4)$, and $x_3 = (a_1,a_2,a_3)$, then X is linearly independent iff any of the following hold
 - $NS(A) = \{0\}$
 - det(A) = 0
 - $\operatorname{rref}(A) = I_3$

Any one of these can be used to characterize the x_3 that are allowed, but geometrically we know that the set of these vectors is ALL vectors not in the plane spanned by x_1 and x_2 .

- (c) Any vector not in the plane spanned by x x_2 will work, say $x_3 = (1,0,0)^T$
- **13.** $\cos(2x) = 2\cos^2(x) 1$, so $\dim(\operatorname{span}\{\cos(2x), \cos^2(x), 1\}) = 2$.