Solution Homework-06 ENGR 117

5 Questions 20 points each

- Q-1 Design an op amp-based low-pass filter with a cutoff frequency of 2500 Hz and a passband gain of 5 using a 10 nF capacitor. The input to the low-pass filter is 3.5 cos ωt V.
- a) Draw your circuit, labeling the component values and output voltage.
- b) If the value of the feedback resistor in the filter is changed but the value of the resistor in the forward path is unchanged, what characteristic of the filter is changed?
- c) Find the output voltage when $\omega = \omega_c$.
- d) Find the output voltage when ω = 0.125 ω_c .
- e) Find the output voltage when ω = 8 ω_c .

Note: vi = 3.5 L 0 ==== \rightarrow Vi(j ω) = 3.5 L 0

[a]
$$\omega_c = \frac{1}{R_2 C}$$
 so $R_2 = \frac{1}{\omega_c C} = \frac{1}{2\pi (2500)(10 \times 10^{-9})} = 6366 \Omega$
 $K = \frac{R_2}{R_1}$ so $R_1 = \frac{R_2}{K} = \frac{6366}{5} = 1273 \Omega$

[b] Both the cutoff frequency and the passband gain are changed.

[c]
$$H(j\omega) = \frac{-5(2\pi)(2500)}{j\omega + 2\pi(2500)}$$

$$H(j5000\pi) = \frac{-5(5000\pi)}{5000\pi + j5000\pi} = \frac{5}{\sqrt{2}} / 135^{\circ} = \frac{Vo}{Vi}$$

$$V_o = \frac{17.5}{\sqrt{2}} / 135^{\circ} \quad \text{so} \quad v_o(t) = 12.37 \cos(5000\pi t + 135^{\circ}) \text{ V}$$

[d]
$$H(j625\pi) = \frac{-5(5000\pi)}{5000\pi + j625\pi} = 4.96/172.9^{\circ} = \frac{Vo}{Vi}$$
$$V_o = 17.36/172.9^{\circ} \quad \text{so} \quad v_o(t) = 17.36\cos(625\pi t + 172.9^{\circ}) \text{ V}$$

[e]
$$H(j40,000\pi) = \frac{-5(5000\pi)}{5000\pi + j40,000\pi} = 0.62 / 97.1^{\circ} = \frac{Vo}{Vi}$$
$$V_o = 2.2 / 97.1^{\circ} \quad \text{so} \quad v_o(t) = 2.2 \cos(40,000\pi t + 97.1^{\circ}) \text{ V}$$

- **Q-2** Write the relationship and draw phasor between phase and line quantities for a balanced 3 phase system if:
 - a. Star Connection (phasor diagram for phase voltages and Line voltages).
 - b. Delta Connection (phasor diagram for phase currents and Line currents).
- [a] STAR: (Positive sequence)

I(phase) = I(Line) It means:

$$lan = l\phi L 0$$

$$la = l\phi L 0$$

$$lb = l\phi L -120$$

$$lb = l\phi L -120$$

Icn =
$$I\phi L + 120$$
 Ic = $I\phi L + 120$

V(Line) = $(\sqrt{3} L+30^{\circ})$ V(phase) It means:

Van = V
$$\phi$$
 L 0° then Vab = ($\sqrt{3}$ L+30°) (V ϕ L 0) = $\sqrt{3}$ V ϕ L 30°
Vbn = V ϕ L -120° then Vbc = ($\sqrt{3}$ L+30°) (V ϕ L -120) = $\sqrt{3}$ V ϕ L -90°
Vcn = V ϕ L +120° then Vca = ($\sqrt{3}$ L+30°) (V ϕ L +120) = $\sqrt{3}$ V ϕ L 150°

[b] DELTA: (Positive sequence)

V(phase) = V(Line) It means:

Vab = V
$$\phi$$
 L 0 Vab = I ϕ **L** 0
Vbc = V ϕ **L** -120 Vbc = V ϕ **L** -120

$$Vca = V\phi L + 120 \qquad Vca = V\phi L + 120$$

I(Line) = $(\sqrt{3} L-30^{\circ})$ I(phase) It means:

lab =
$$I \varphi L 0^{\circ}$$
 then la = $(\sqrt{3} L - 30^{\circ}) (I \varphi L 0) = \sqrt{3} I \varphi L - 30^{\circ}$
lbc = $I \varphi L - 120^{\circ}$ then lb = $(\sqrt{3} L - 30^{\circ}) (I \varphi L - 120) = \sqrt{3} I \varphi L - 150^{\circ}$
lca = $I \varphi L + 120^{\circ}$ then lc = $(\sqrt{3} L - 30^{\circ}) (I \varphi L + 120) = \sqrt{3} I \varphi L 90^{\circ}$

Q-3 For each set of voltages, state whether or not the voltages form a balanced three-phase set. If the set is balanced, state whether the phase sequence is positive or negative. If the set is not balanced, explain why?

a)
$$v_a = 48 \cos(314t - 45^\circ) \text{ V},$$

 $v_b = 48 \cos(314t - 165^\circ) \text{ V},$
 $v_c = 48 \cos(314t + 75^\circ) \text{ V}.$

b)
$$v_a = 188 \cos(250t + 60^\circ) \text{ V},$$

 $v_b = -188 \cos 250t \text{ V},$
 $v_c = 188 \cos(250t - 60^\circ) \text{ V}.$

c)
$$v_a = 426 \cos 100t \text{ V},$$

 $v_b = 462 \cos(100t + 120^\circ) \text{ V},$
 $v_c = 426 \cos(100t - 120^\circ) \text{ V}.$

d)
$$v_a = 1121 \cos (2000t - 20^\circ) \text{ V},$$

 $v_b = 1121 \sin (2000t - 50^\circ) \text{ V},$
 $v_c = 1121 \cos (2000t + 100^\circ) \text{ V}.$

e)
$$v_a = 540 \sin 630t \text{ V},$$

 $v_b = 540 \cos(630t - 120^\circ) \text{ V},$
 $v_c = 540 \cos(630t + 120^\circ) \text{ V}.$

f)
$$v_a = 144 \cos (800t + 80^\circ) \text{ V},$$

 $v_b = 144 \sin (800t - 70^\circ) \text{ V},$
 $v_c = 144 \sin (800t + 50^\circ) \text{ V}.$

[a]
$$V_a = 48/-45^{\circ} V$$

$$\mathbf{V}_{\mathrm{b}} = 48 \underline{/ - 165^{\circ}} \, \mathrm{V}$$

$$V_{\rm c} = 48/75^{\circ} \, {\rm V}$$

Balanced, positive phase sequence

[b]
$$V_a = 188/60^{\circ} V$$

$$V_b = -188/0^{\circ} V = 188/180^{\circ} V$$

$$V_c = 188 / -60^{\circ} V$$

Balanced, negative phase sequence

[c]
$$V_a = 426/0^{\circ} V$$

$$\mathbf{V}_b = 462 \underline{/120^\circ}\,\mathrm{V}$$

$$V_c = 426/-120^{\circ} V$$

Unbalanced due to unequal amplitudes

[d]
$$V_a = 1121/-20^{\circ} V$$

$$V_b = 1121 / - 140^{\circ} V$$

$$V_c = 1121/100^{\circ} V$$

Balanced, positive phase sequence

[e]
$$V_a = 540/-90^\circ V$$

$$V_b = 540/-120^{\circ} V$$

$$V_c = 540/120^{\circ} V$$

Unbalanced due to unequal phase separation

[f]
$$V_a = 144/80^{\circ} V$$

$$V_b = 144/ - 160^{\circ} V$$

$$V_c = 144/-40^{\circ} V$$

Balanced, negative phase sequence

Q-4 A balanced three-phase circuit has the following characteristics.

- Y-Y connected;
- The line voltage at the source, V_{ab} , is $110\sqrt{3}/-60^{\circ} V$;
- The phase sequence is positive;
- The line impedance is $3 + j2 \Omega/\phi$;
- The load impedance is $37 + j28 \Omega/\phi$;
- a) Draw the single-phase equivalent circuit for the a-phase.
- b) Calculated the line currents for each phase.
- c) Calculated the line voltages at the load in each phase.

[a]
$$\mathbf{V}_{an} = 1/\sqrt{3}/(-30^{\circ})\mathbf{V}_{ab} = 110/(-90^{\circ})\mathbf{V}$$

The a-phase circuit is

[b]
$$\mathbf{I}_{aA} = \frac{110/-90^{\circ}}{40+j30} = 2.2/-126.87^{\circ} A$$

[c]
$$\mathbf{V}_{AN} = (37 + j28)\mathbf{I}_{aA} = 102.08/-89.75^{\circ}\,\mathrm{V}$$

 $\mathbf{V}_{AB} = \sqrt{3}/30^{\circ}\mathbf{V}_{AN} = 176.81/-59.75^{\circ}\,\mathrm{V}$

Q-5 A balanced, three-phase circuit is characterized as follows:

- Y-Δ connected;
- Source voltage in the b-phase is 150/135° V;
- · Source phase sequence is acb;
- Line impedance is $2 + j3 \Omega/\phi$;
- Load impedance is $129 + j171 \Omega/\phi$.
- a) Draw the single phase equivalent for the a-phase.
- b) Calculate the a-phase line current.
- c) Calculate the a-phase line voltage for the threephase load.

[a]
$$\mathbf{V}_{an} = \mathbf{V}_{bn} - 1/120^{\circ} = 150/15^{\circ} \,\mathrm{V}$$

 $Z_y = Z_{\Delta}/3 = 43 + j57 \,\Omega$

The a-phase circuit is

[b]
$$\mathbf{I}_{aA} = \frac{150/15^{\circ}}{45 + j60} = 2/-38.13^{\circ} A$$

[c]
$$\mathbf{V}_{AN} = (43 + j57)\mathbf{I}_{aA} = 142.8/\underline{14.84^{\circ}}\,\mathrm{V}$$

 $\mathbf{V}_{AB} = \sqrt{3}/\underline{-30^{\circ}}\mathbf{V}_{AN} = 247.34/\underline{-15.16^{\circ}}\,\mathrm{V}$

V_{BC}= 247.34 **L** +104.84° V

V_{CA}= 247.34 **L** -135.16° V