ЛАБОРАТОРНАЯ РАБОТА 20

КОМБИНАЦИОННОЕ РАССЕЯНИЕ СВЕТА

Цель работы: овладение навыками работы на установках предназначенных для регистрации слабых потоков, наблюдение спектров КРС какого-либо вещества и определение колебательных энергий молекулы.

Оборудование: источник излучения, линза, монохроматор, приемник излучения, усилитель, микроамперметр.

КЛАССИЧЕСКАЯ ТЕОРИЯ

Пусть вещество облучается светом с напряженностью E:

$$E = E_0 \cos 2\pi \omega t$$

В молекулах вещества индуцируется дипольный момент μ :

$$\mu = \alpha E_0 \cos 2\pi \omega t = \mu_0 \cos 2\pi \omega t$$

 α - поляризуемость.

При этом интенсивность рассеянного света, обусловленная колебаниями дипольного момента, будет пропорциональна

$$I \sim \omega^4 (\alpha E_0)^2$$

Кроме того, на колебания дипольного момента влияют собственные колебания ядер молекул. Поляризуемость $\alpha = f(r)$, где r - расстояние между двумя ядрами. Для малых отклонений

$$r - r_e = A \cos 2\pi \Omega t$$

Разложим f в ряд до второго члена и подставим в формулу для μ

$$\mu = \left[\alpha(r_e) + \left(\frac{\partial \alpha}{\partial r}\right)_{r=r_e} \cdot A \cdot \cos 2\pi \Omega t\right] E_0 \cos 2\pi \omega t =$$

$$= \alpha(r_e) E_0 \cos 2\pi \omega t + \frac{1}{2} \left(\frac{\partial \alpha}{\partial r}\right)_{r=r_e} \times A E_0 \cos 2\pi (\omega - \Omega) t + \frac{1}{2} \left(\frac{\partial \alpha}{\partial r}\right)_{r=r_e} \times A E_0 \cos 2\pi (\omega + \Omega) t$$

Значит интенсивность рассеянного света и дипольный момент складываются из трех преодически меняющихся компонет с частотам ω - релеевское рассеяние, ($\omega - \Omega$) - стоксова компонента КРС, ($\omega + \Omega$) - антистоксова компонента КРС.

ХОД РАБОТЫ

Схема установки:

- 1. Источник излучения, твердотельный лазер 532 нм.
- 2. Линза
- 3. Кювета с исследуемым веществом
- 4. Линза
- 5. Монохроматор
- 6. Приемник излучения
- 7. Усилитель
- 8. Регистрирующее устройство (микроамперметр)

Включим в сеть лазер, наполним кювету исследуемым веществом (CCl_4), отъюстируем установку. Получим на выходе линию релеевского рассеяния. Включим блик питания ФЭУ. Измерим максимумы линий КРС.

Без поправки, Ангстрем	С поправкой, Ангстрем	Ψ астоты ω
5318	5325	3.54e15
5379	5386	3.50e15

Тогда, энергия
$$E=h \nu$$
, $\Delta E=h \frac{c}{\lambda^2} \Delta \lambda=26$ мэВ

Частота
$$\omega = \frac{2\pi c}{\lambda}$$