PATENT ABSTRACTS OF JAPAN

(11)Publication number::

06-243871

(43)Date of publication of application: 02.09.1994

(51)Int.CI.

HO1M 4/58 HO1M 4/02

H01M 10/40

(21)Application number: 05-050227

(71)Applicant: SANYO ELECTRIC CO LTD

(22)Date of filing:

16.02.1993

(72)Inventor: KUROKAWA HIROSHI

UEHARA MAYUMI

NOMA TOSHIYUKI NISHIO KOJI

SAITO TOSHIHIKO

(54) NONAQUEOUS SECONDARY BATTERY

(57) Abstract:

PURPOSE: To let the crystal structure of material consisting of a anode hardly collapse at the time of charging/discharging, and thereby make cyclic characteristics excellent. CONSTITUTION: In the non-aqueous secondary battery the cathode of which is composed of material capable of storing lithium or metallic lithium, as anode active material, a fluorine contained composite oxide represented by a formula: LixNi1−yCoyOwFa (where 0≤x≤1.3, 0≤y \leq 1.1, 1.8 \leq w+0.5a \leq 2.2, and 0.25 \leq a \leq 2) is employed.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-243871

(43)公開日 平成6年(1994)9月2日

(51)Int.Cl.* H 0 1 M 4/58	識別配号	号 FI	技術表示值所
4/02	C	**	
10/40	Z	•	
	•	•	
	<u>k-</u>	審査請求	未請求 請求項の数1 FD (全 5 頁)
(21)出顯番号	特願平5-50227	(71)出願人	000001889
(22)出顧日	平成5年(1993)2月16日	(72)発明者	三洋電機株式会社 大阪府守口市京阪本通2丁目5番5号 黒河 安史
		.4	大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内
			大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内
		(72)発明者	能間 俊之 大阪府守口市京阪本通 2 丁目18番地 三洋 電機株式会社内
	and the second s	C7414Pm 1	弁理士 松尾 智弘 最終頁に続く

(54) 【発明の名称】 非水系二次電池

(57)【要約】

【特許請求の範囲】

【請求項1】負極にリチウムイオンを吸蔵放出可能な材 料又は金属リチウムが使用されてなる非水系二次電池に おいて、正極活物質として、組成式Liz Ni:-y Co y O* Fa (但し、0<x≦1.3、0≦y≦1、1. $8 \le w + 0$, $5a \le 2$, 2, 0, $25 \le a \le 2$ 7る。) で表されるフッ素含有複合酸化物が使用されてい ることを特徴とする非水系二次電池。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、非水系二次電池に係わ り、詳しくはサイクル特性の向上を目的とした正極活物 質の改良に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】近年、 リチウム二次電池等の非水系二次電池が、ニッケル・カ ドミウム二次電池等の水系二次電池と異なり水の分解電 圧を考慮する必要がないため高電圧設計が可能であるな どの理由から、脚光を浴びつつある。

【0003】而して、従来、非水系二次電池の主たる正 20 極活物質として、組成式Lix Niュ-y Coy Ov (但 l, 0 < x ≤ 1. 3, 0 ≤ y ≤ 1, 1. 8 ≤ v ≤ 2. 2 である。) で表される複合酸化物が使用されている。な お、組成中のxは充放電時の正極活物質のリチウムイオ ンの吸蔵放出に伴い増減する値である。

【0004】しかしながら、この従来の非水系二次電池 には、充放電を繰り返すうちに正極活物質の結晶構造が 急激に崩壊することに起因して、容量が短サイクル裡に 低下してしまうという問題があった。

【0005】本発明は、この問題を解決するべくなされ 30 たものであって、その目的とするところは、サイクル特 性に優れた非水系二次電池を提供するにある。

[0006]

【課題を解決するための手段】上記目的を達成するため の本発明に係る非水系二次電池(以下、「本発明電池」 と称する。)は、負極にリチウムイオンを吸蔵放出可能 な材料又は金属リチウムが使用されてなる非水系二次電 池において、正極活物質として、組成式LixNi1-y Coy O_n Fa (但し、0<x≤1.3、0≤y≤1、 1.8≦w+0.5a≦2.2.0.25≦a≦2であ 40 る。) で表されるフッ素含有複合酸化物が使用されてな

【0007】本発明が改良せんとする電池(対象電池) は、負極に金属リチウム、又はリチウム合金、コーク ス、黒鉛などのリチウムイオンを吸蔵放出可能な材料が 使用されてなる非水系二次電池である。

【0008】本発明電池は、上記対象電池の正極活物質 として、組成式Lix Nii-y Coy O, Fa (但し、 $0 < x \le 1.3, 0 \le y \le 1, 1.8 \le w + 0.5a \le$ 2.2、0.25≦a≦2である。)で表されるフッ素 50 に説明するが、本発明は下記実施例により何ら限定され

含有複合酸化物が使用されたものである。このフッ素含 有複合酸化物は、組成式Lix Nii-, Co, O, で表 される従来使用されていた複合酸化物中の酸素の一部が フッ素で置換されたものである。

【0009】このフッ素含有複合酸化物は、たとえばリ チウムの水酸化物、酸化物、炭酸塩又は硝酸塩と、ニッ ケルの水酸化物、酸化物、炭酸塩又は硝酸塩と、コバル トの水酸化物、酸化物、炭酸塩又は硝酸塩と、フッ素化 合物とを所定の割合で混合し、焼成することにより得ら

【0010】上記フッ素化合物としては、LiF、Ni F2、CoF2、並びにLi、Ni及びCoの各フッ化 水素塩が例示される。

【0011】組成式Lix Nii-y Coy On Fa 中の フッ案のストイキオメトリーaが、0.25以上、且 つ、2以下に規制されるのは、ストイキオメトリーaが この範囲を外れてフッ素置換量が過少又は過多になる と、後述する実施例に示すように、フッ素置換によるサ イクル特性の向上効果が十全に発現されないからであ

【0012】本発明電池は、上述した如く、負極に金属 リチウム又はリチウムイオンを吸蔵放出可能な材料が使 用されてなる非水系二次電池の正極活物質として、特定 の組成式で表されるフッ素含有複合酸化物を使用した点 に最大の特徴を有する。それゆえ、本発明電池を構成す る電解液、セパレータ等の他の部材については特に制限 されず、非水系二次電池用として従来使用され、或いは 提案されている種々の材料を制限無く使用することが可 能である。

【0013】たとえば、電解液としては、プロピレンカ ーボネート、エチレンカーボネート、ビニレンカーボネ ートなどの有機溶媒や、これらとジメチルカーボネー ト、ジエチルカーボネート、1,2-ジメトキシエタ ン、1,2-ジエトキシエタン、エトキシメトキシエタ ンなどの低沸点溶媒との混合溶媒に、LiPF6、Li C104 LiCFa SOa などの電解液溶質を0.7 ~1.5M(モル/リットル)、就中1Mの割合で溶か した溶液が挙げられる。

[0.014]

【作用】本発明電池においては、正極活物質として特定 のフッ素含有複合酸化物が使用されているので、充放電 時に正極活物質の結晶構造の崩壊が起こりにくい。な お、このように結晶構造の崩壊が起こりにくくなる理由 については、本発明者らにおいても必ずしも定かではな いが、酸素に比し電気陰性度の大きなフッ素で酸素を一 部置換したことにより複合酸化物の結晶構造が安定化の 方向に微妙に変化したためと推察される。

[0015]

【実施例】以下、本発明を実施例に基づいてさらに詳細

るものではなく、その要旨を変更しない範囲において適 宜変更して実施することが可能なものである。 【0016】(実施例1)扁平型の非水系二次電池(本

発明電池)を作製した。

【0017】〔正極の作製〕LiOH(水酸化リチウ ム)と、Ni(OH)2 (水酸化ニッケル)と、LiF (フッ化リチウム)とを、モル比1:2:1で混合し、 酸素分圧が0.75気圧の乾燥雰囲気下において、75 0°Cで20時間焼成し、次いで石川式らいかい乳鉢で 60分間粉砕して、正極活物質としての組成式LiNi O1.76 Fo.6 で表されるフッ素含有複合酸化物を得た。 【0018】次いで、上記正極活物質(粉末)と、導電 剤としてのアセチレンブラックと、結着剤としてのフッ 素樹脂粉末とを、重量比率90:6:4の割合で混合し て正極合剤を得た。この正極合剤を成形圧2トン/cm 2 で加圧成形した後、250°Cで加熱処理して、直径 20mmの円板状の正極を作製した。なお、正極集電体 として、ステンレス鋼板 (SUS304)を使用した。 【0019】 [負極の作製] リチウム圧延板を所定寸法 に打ち抜いて、金属リチウムからなる直径20mmの円 板状の負極を作製した.なお、負極集電体として、ステ ンレス鋼板(SUS304)を使用した。

【0020】〔電解液の調製〕プロピレンカーボネート (PC)と1、2ージメトキシエタン(DME)との等 体積混合溶媒に、LiClO4 (過塩素酸リチウム)を 1M(モル/リットル)の割合で溶かして非水系電解液 を調製した。

【0021】〔電池の作製〕以上の正負両極及び非水系 電解液を用いて扁平型の本発明電池BA1(電池寸法: 直径24mm、厚み:3.0mm)を作製した。セパレ 30 ータとしては、ポリプロピレン製の微多孔膜を使用し、 これに先に述べた非水系電解液を含浸させた。

【0022】図1は作製した本発明電池BA1を模式的 に示す断面図であり、同図に示す本発明電池BA1は、 正極1、負極2、これら両電極1,2を互いに離間する セパレータ3、正極缶4、負極缶5、正極集電体6、負 極集電体7及びポリプロピレン製の絶縁パッキング8な どからなる。

【0023】正極1及び負極2は、非水系電解液を含浸 したセパレータ3を介して対向して正負両極缶4、5が 40 形成する電池ケース内に収容されており、正極1は正極 集電体6を介して正極缶4に、また負極2は負極集電体 7を介して負極缶5に接続され、電池内部で生じた化学 エネルギーを正極缶4及び負極缶5の両端子から電気エ ネルギーとして外部へ取り出し得るようになっている。 【0024】(実施例2~5) LiOHとNi(OH) 2 とLiFとをモル比3:4:1 (実施例2)、Ni (OH) 2 とLiFとをモル比1:1(実施例3)、L iOHとNi(OH)2とNiF2 (フッ化ニッケル) としiPとをモル比1:1:1:1(実施例4)又はN 50 はNi(OH)2とNiF2としiFとをモル比2:

i (OH) 2 とNiF2 とLiFとをモル比1:1:2 (実施例5)で混合し、実施例1と同様に、焼成、粉砕 して、順に組成式LiNiO1.875 Fo.25、LiNiO 1.5 F、LiNiO1.25F1.5、LiNiOF2 で表さ れる4種のフッ素含有複合酸化物を得た。これらのフッ 索含有複合酸化物を正極活物質として使用したこと以外 は実施例1と同様にして、本発明電池BA2~BA5を 作製した。

【0025】(実施例6~10) LiOHとNi(O H) 2 とCo(OH) 2 (水酸化コバルト) とLiPと をモル比1:1:1:1(実施例6)、LiOHとNi (OH) 2 とCo(OH) 2 とLiFとをモル比3: 2:2:1 (実施例7)、Ni (OH)2 とCo (O H) 2 としiFとをモル比1:1:2 (実施例8)、L iOHとNiF2とCo(OH)2とLiFとをモル出 1:1:1:1 (実施例9) 又はNiF2 とCo (O H) 2 とLiFとをモル比1:1:2 (実施例10)で 混合し、実施例1と同様に、焼成、粉砕して、順に組成 式LiNio.5 Coo.5 O1.75Fo.5 、LiNio.5 C 00.5 O1.875 F0.25, LiNio.5 Coo.5 O1.5 F 1.0 LiNio.5 Coo.5 O1.25 F1.5 LiNi 0.5 С 00.6 01.0 F2.0 で表される5種のフッ素含有 複合酸化物を得た。これらのフッ索含有複合酸化物を正 極活物質として使用したこと以外は実施例1と同様にし て、本発明電池BA6~BA10を作製した。

【0026】(実施例11~15) LiOHとCo(0 H) 1 とLiFとをモル比1:2:1 (実施例11)、 LiOHとCo(OH), とLiFとをモル比3:4: 1 (実施例12)、Co (OH) 2 とLiFとをモル比 1:1 (実施例13)、LiOHとCo (OH) 2とC oF2 (フッ化コバルト)とLiFとを1:1:1:1 (実施例14)又はCo(OH)2とCoF2とLiF とを1:1:2 (実施例15)で混合し、実施例1と同 様に、焼成、粉砕して、順に組成式LiCoO1.75F 0.5 LiCOO1.875 F0.25 LiCOO 1.5 F1.0 , LiCoO1.25 F1.5 , LiCoO1.0 F

2.0 で表される5種のフッ素含有複合酸化物を得た。 但 し、焼成は800°Cで行った。これらのフッ素含有複 合酸化物を正極活物質として使用したこと以外は実施例 1と同様にして、本発明電池BA11~BA15を作製 した.

【0027】(比較例1) LiOHと、Ni(OH)2 とをモル比1:1で混合し、実施例1と同様に、焼成、 粉砕して、組成式LiNiO2 で表される複合酸化物を 得た。このフッ素を含有しない複合酸化物を正極活物質 として使用したこと以外は実施例1と同様にして、比較 電池BC1を作製した。

【0028】(比較例2及び3) LiOHとNi (O H) 2 としiFとをモル比9:10:1(比較例2)又

3:5(比較例3)で混合し、実施例1と同様に、焼 成、粉砕して、順に組成式LiNiO1,95 Fo.1 、Li Ni Oo. 9 F2. 2 で表される 2種のフッ素含有複合酸化 物を得た。これらのフッ素含有複合酸化物を正極活物質 として使用したこと以外は実施例1と同様にして、比較 電池BC2及びBC3を作製した。

【0029】(比較例4) LiOHとNi (OH) * と Co(OH)2 とをモル比2:1:1で混合し、実施例 1と同様に、焼成、粉砕して、組成式LiNio.6 Co 0.5 02 で表される複合酸化物を得た。このフッ素を含 10 有しない複合酸化物を正極活物質として使用したこと以 外は実施例1と同様にして、比較電池BC4を作製し た。

【0030】(比較例5及び6) LiOHとNi (0 H) 2 とCo(OH) 2 とLiFとをモル比9:5: 5:1 (比較例5)又はNi (OH)2 とCo (OH) 2 とCoF2 とNiF2 とLiFとをモル比2:2: 3:3:10 (比較例6) で混合し、実施例1と同様 に、焼成、粉砕して、順に組成式LiNio.5 Coo.5 O1.95 Fo.1、LiNio.5 Coo.5 Oo.9 F2.2 で表 20 される2種のフッ素含有複合酸化物を得た。これらのフ ッ素含有複合酸化物を正極活物質として使用したこと以 外は実施例1と同様にして、比較電池BC5及びBC6 を作製した。

【0031】(比較例7) LiOHと、Co(OH)2 得た、このフッ素を含有しない複合酸化物を正板活物質*

*として使用したこと以外は実施例1と同様にして、比較 電池BC7を作製した。

【0032】(比較例8及び9) LiOHとCo(O H)2 としiFとをモル比9:10:1 (実施例8) 又 はCo(OH):とCoF:とLiFとをモル比2: 3:5 (実施例9)で混合し、実施例1と同様に、焼 成、粉砕して、順に組成式LiCoO1.85Fo.1、Li CoOo.s F2.1 で表されるフッ素含有複合酸化物を得 た。このフッ素含有複合酸化物を正極活物質として使用 したこと以外は実施例1と同様にして、比較電池BC8 及びBC9を作製した。

【0033】(初期放電容量)本発明電池BA1~BA 15及び比較電池BC1~BC9について、室温(25 ・C)下、3mAで充電終止電圧4.2Vまで充電した 後、3mAで放電終止電圧2.75Vまで放電して、各 電池の初期放電容量(mAh/g)を求めた。

【0034】(500サイクル目の放電容量) 本発明電 池BA1及び比較電池BC1について、室温(25° C)下、3mAで充電終止電圧4.2Vまで充電した 後、3mAで放電終止電圧2.75Vまで放電する工程 を1サイクルとするサイクル試験を行い、各電池の50 0サイクル目の放電容量 (mAh/g)を求めた。 【0035】表1 (実施例1~15)及び表2 (比較例 1~9)に、このようにして求めた各電池の初期放電容 量及び500サイクル目の放電容量をまとめて示す。

	組成式LixN	iı-yCoyO w	1サイクル	500 サイク	
	У	w	8	目の放電容量 mAb/g	ル目の放電 容量 mAh/g
実施例 [0	1.75	0.5	150	148
実施例 2	0	1.875	0.25	150	148
実施例 3	0	1.5	l i	150	148
実施例 4	0	1.25	1.5	150	148
実施例 5	0	1	2	150	148
実施例 6	0.5	1.75	0.5	145	143
夹施例7	0.5	1.875	0.25	145	143
実施例8	0.5	1.5	1	145	143
実施例9	0.5	1.25	1.5	145	143
実施例10	0.5	1	2	145	143
実施例11	ı	1.75	0.5	140	138
実施例12	1	1.875	0.25	140	138
実施例13	1	1.5	1, .	140	138
実施例14	1	1.25	1.5	140	138
実施例15	ı	1	2	140	138

[0037]

* *【表2】

	組成式LixNi, y CoyO wF a中の			1サイクル	500 712		
	y.	w	a	目の放電容量 mih/g	ル目の放電 容量 mAh/g		
比較例1	0	2	0	150	130		
比較例2	0	1.95	0.1	150	130		
比較例3	0	0.9	2.2	150	130		
比較例4	0.5	2	0	145	120		
比較例 5	0.5	1.95	0.1	145	120		
比較例 6	0.5	0.9	2.2	145	115		
比較例7	1	2	0	140	115		
比較的8	1	1.95	0.1	140	115		
比較例9	1	0.9	2.2	140	110		

【0038】両表より、本発明電池BA1~BA15は、比較電池BC1~BC9に比し、500サイクル目の放電容量の低下が少なく、総じてサイクル特性に優れていることが分かる。

【0039】級上の実施例では、本発明を扁平型の非水系二次電池に適用する場合を例に挙げて説明したが、電池の形状は特に限定されず、本発明は円筒型、角型など種々の形状の非水系二次電池に適用し得るものである。【0040】また、Li原料としてLiOHを、Ni原料としてNi(OH)2 又はNiF2を、Co原料としてCo(OH)2 又はCoF2を使用する場合を一例に説明したが、他の材料を使用してなる本発明で規制するフッ素含有複合酸化物を正極活物質として使用した※30

※場合においても先の本発明電池BA1~BA15と同様 の優れたサイクル特性を有する非水系二次電池が得られ る.

8

[0041]

20

【発明の効果】本発明電池は、充放電時に正極活物質の 結晶構造の崩壊が起こりにくいためサイクル特性に優れ るなど、本発明は優れた特有の効果を奏する。

【図面の簡単な説明】

【図1】扁平型の本発明電池の断面図である。

【符号の説明】

BA1 本発明電池

- 7.1 正板 5 1 1 1
 - 2 負極
 - 3 セパレータ

[図1]

BAI

フロントページの続き

(72)発明者 西尾 晃治

大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 斎藤 俊彦

大阪府守口市京阪本通2丁目18番地 三洋電機株式会社内