EEE4117F: ONLINE QUIZ 3

ELECTRICAL MACHINES AND POWER ELECTRONICS

Prepared By:

Ronak Mehta - MHTRON001

Faculty of Engineering and the Built Environment

12th June 2020

PART A – ELECTRICAL MACHINES

Question 1:

Question 2:

	Question 2 - Part A
(5-1)	@ rated frequency (ie: 50 Hz)
	$N_s = \frac{120f}{P} = \frac{120(50)}{4} = \frac{1500r_{pm}}{4}$
	Slip Speed, NSL = NS - Nr = 1500 - 1370 rpm = 130 rpm
	9150. @ constant flux: Tem = kWsi = kNsi
	angines to the same of
	@ 80% of full Load Torque: if Lodd Torque = 80%, then Now = 80% (directly proportional)
	Use @ 80) of full Load Torque = 0.8 * 130rpm
	Dsr = 104 cpm
	A) - 130(30) 900 mm
	Ns, = 120(30) = 900 rpm
	Nr. = Ns Nshew = 900rpm - 104 rpm = 796rpm
•	: [Nr. = 796 rpm]
2.2)	@ Full-Load torque: Nsi = 130rpm
	Ns = Nr + NsL
	= 1000 rpm + 130 rpm
	Ns = 1130 (pm
	$N_s = 120f \Rightarrow f = N_s * P = (1130)(4) = 37.67 Hz$
	f = 37.67 Hz

```
(2.3) F= 40Hz, N= 1100 pm
           Ns = 120(40) = 1200 rpm
           NSL = Ns-Nr = 1200 - 1100 = 100rpm
        @ Full Load: NSL = 130rpm
        @ ? Load ; NoL = 100 rpm
                7. Tem = 130 rpm
                        = 100 x (100/- ) Tem
                        = 76.92 /. fipm
                  .. 76.92% of Full-Load Torque is delivered
(2.4) In regenerative breaking mode, Nr exceeds Ns
               Ns = (20(30) = 900 pm
      from 9(2-1). Nsc, new = 104 rpm (@80% of full-load Torque)
                    Nr = Ns + Nshnew
                       = 900 + 104
                       = 1004rpm
                   Nr = 1004 rpm
```

PART B – POWER ELECTRONICS

Question 1:

Part B.	Question 1:

$$R_{L} = \frac{V_{0}^{2}}{R_{0}} = \frac{(-12)^{2}}{15} = \frac{9.6 \Omega}{15}$$

$$L_{min} = \frac{(1-D)^2 R}{2f}$$

i)
$$L_{min} = \frac{(1 - 0.46)^2 9.6}{2(50k)} = 28 \mu H$$

: Lim selected = 28 jul

(1-3)
$$C_{ma} = D = 0.46 = 95.83 \mu F$$

 $R(\frac{6}{4})f = 9.6(0.01)(50k)$

(a)
$$(m_0 = 0.545) = 113.5 \mu F$$

 $9.6(0.01)(94)$

Question 2:

dit B:	Question 2:
2.1>	$D = 1 - \frac{V_0}{V_0}$
	V ₀
	$D_{\text{max}} = 1 - \frac{2 - 7}{8} = 0.6625$
	$D_{min} = 1 - \frac{4.2}{8} = 0.475$
	= 0.475 < D < 0.6625
•	Σ ΔΙ _L = 0.45] _L
	I = VoIo
	$T_{L} = 8(1) = 2.963A$ 2.7
	$\frac{z_1}{4.2} = \frac{8(1)}{4.2} = \frac{1.905A}{1.905A}$
•	ΔIL = 0.45IL: 0.857A < ΔIL < 1.333A
	$\Gamma^{\text{min}} = \frac{(\nabla \Gamma) t}{(\nabla \Gamma) D}$
	and AIL must be Min
	$L_{min} = \frac{(V_{d_{max}})D_{max}}{(DI_{u_{min}})f} = \frac{(4.2)(0.6625)}{(0.857)(100k)} = \frac{32.47 \mu H}{}$
-	: Lmin = 32.47 MH

But B:	Question 2:
(2.2)	$C = \frac{D}{P(\frac{N_0}{V_0})^c}, R = \frac{N_0}{I_0} = \frac{8V}{10} = \frac{8\Omega}{10}$
	D must Max. and NB: when D is min:
	$C = \frac{0.6625}{(8)(0.01)(100k)} = \frac{82.8 \mu F}{(8)(0.01)(100k)} = \frac{59.4 \mu}{(8)(0.01)(100k)}$ Which is NOT Ideal
	.: C = 82-8 MF
	And the second s
	A1301 (1)8 2 1