Segmetation

陈乐偲

1.摘要

基于pytorch实现几个简单的语义分割模型,并做相关实验

- fcn
- segnet
- linknet
- unet
- pspnet
- icnet

数据集采用cityscape,只对道路和非道路进行二分类/分割

2.代码

2.0 block

定义计算机视觉中常用的一些模块,如CBR单元: Seqential(Conv, Batchnorm, Relu)

- CBR/CR/CB... 利用卷积进行下采样
- DCBR 利用反卷积等进行上采样

```
class CBR(nn.Module):
    def __init__(self,in_channels,out_channels,k_size,stride,padding,inplace=True):
        super().__init__()
        in_channels = int(in_channels)
        out_channels = int(out_channels)
        conv = nn.Conv2d(in_channels, out_channels, k_size, stride=stride, padding=padding)
        self.cbr = nn.Sequential(conv, nn.BatchNorm2d(out_channels), nn.ReLU(inplace=inplace))

def forward(self,x):
    return self.cbr(x)
```

```
class CR(nn.Module):
    def __init__(self,in_channels,out_channels,k_size,stride,padding,inplace=True):
        super().__init__()
        in_channels = int(in_channels)
        out_channels = int(out_channels)
        conv = nn.Conv2d(in_channels, out_channels, k_size, stride=stride, padding=padding)
        self.cr = nn.Sequential(conv, nn.ReLU(inplace=inplace))
    def forward(self,x):
        return self.cr(x)
class CB(nn.Module):
    def __init__(self,in_channels,out_channels,k_size,stride,padding):
        super().__init__()
        in_channels = int(in_channels)
        out_channels = int(out_channels)
        conv = nn.Conv2d(in_channels,out_channels,k_size,stride,padding)
        self.cb = nn.Sequential(conv, nn.BatchNorm2d(out_channels))
    def forward(self,x):
       return self.cb(x)
class DCBR(nn.Module):
    def __init__(self, in_channels, out_channels, k_size, stride, padding,inplace=True):
        super().__init__()
        self.dcbr = nn.Sequential(
            nn.ConvTranspose2d(
                int(in_channels),
                int(out_channels),
                kernel_size=k_size,
                padding=padding,
                stride=stride,
            ),
            nn.BatchNorm2d(int(out_channels)),
            nn.ReLU(inplace=inplace),
        )
    def forward(self, inputs):
        outputs = self.dcbr(inputs)
        return outputs
```

2.1 fcn

实现了全卷积网络fcn32, fcn16, fcn8。

fcn32基于vgg16进行特征提取,只不过将全连接层改为全卷积层。

fcn16在fcn32的基础上,多考虑了最后一层的高层特征信息,而fcn8考虑了最后两层的高层特征信息。

```
class FCN32(nn.Module):
   def __init__(self, n_classes=2):
```

```
super().__init__()
self.n_classes = n_classes
#self.loss = functools.partial(cross_entropy2d, size_average=False)
self.conv_block1 = nn.Sequential(
    nn.Conv2d(3, 64, 3, padding=1),
    nn.ReLU(inplace=True),
    nn.Conv2d(64, 64, 3, padding=1),
    nn.ReLU(inplace=True),
    nn.MaxPool2d(2, stride=2, ceil_mode=True),
)
self.conv_block2 = nn.Sequential(
    nn.Conv2d(64, 128, 3, padding=1),
    nn.ReLU(inplace=True),
    nn.Conv2d(128, 128, 3, padding=1),
    nn.ReLU(inplace=True),
    nn.MaxPool2d(2, stride=2, ceil_mode=True),
)
self.conv_block3 = nn.Sequential(
    nn.Conv2d(128, 256, 3, padding=1),
    nn.ReLU(inplace=True),
    nn.Conv2d(256, 256, 3, padding=1),
    nn.ReLU(inplace=True),
    nn.Conv2d(256, 256, 3, padding=1),
    nn.ReLU(inplace=True),
    nn.MaxPool2d(2, stride=2, ceil_mode=True),
)
self.conv_block4 = nn.Sequential(
    nn.Conv2d(256, 512, 3, padding=1),
    nn.ReLU(inplace=True),
    nn.Conv2d(512, 512, 3, padding=1),
    nn.ReLU(inplace=True),
    nn.Conv2d(512, 512, 3, padding=1),
    nn.ReLU(inplace=True),
    nn.MaxPool2d(2, stride=2, ceil_mode=True),
)
self.conv_block5 = nn.Sequential(
    nn.Conv2d(512, 512, 3, padding=1),
    nn.ReLU(inplace=True),
    nn.Conv2d(512, 512, 3, padding=1),
    nn.ReLU(inplace=True),
    nn.Conv2d(512, 512, 3, padding=1),
    nn.ReLU(inplace=True),
    nn.MaxPool2d(2, stride=2, ceil_mode=True),
)
self.classifier = nn.Sequential(
    nn.Conv2d(512, 4096, 7, padding=3),
    nn.ReLU(inplace=True),
    nn.Dropout2d(),
    nn.Conv2d(4096, 4096, 1),
    nn.ReLU(inplace=True),
    nn.Dropout2d(),
    nn.Conv2d(4096, self.n_classes, 1),
)
self.upsample = nn.UpsamplingBilinear2d(scale_factor=32)
```

```
def forward(self, x):
        conv1 = self.conv_block1(x)
       conv2 = self.conv block2(conv1)
       conv3 = self.conv_block3(conv2)
       conv4 = self.conv_block4(conv3)
       conv5 = self.conv_block5(conv4)
       out = self.classifier(conv5)
       out = self.upsample(out)
       return out
    #复制vgg的卷积层参数
    def init_vgg16_params(self):
        vgg16 = models.vgg16(pretrained=True).to(device)
        blocks = [
           self.conv_block1,
           self.conv_block2,
            self.conv_block3,
           self.conv_block4,
           self.conv_block5,
       ]
       #复制vgg16的参数
       ranges = [[0, 4], [5, 9], [10, 16], [17, 23], [24, 29]]
       features = list(vgg16.features.children())
       for idx, conv_block in enumerate(blocks):
            for 11, 12 in zip(features[ranges[idx][0] : ranges[idx][1]], conv_block):
                if isinstance(l1, nn.Conv2d) and isinstance(l2, nn.Conv2d):
                    assert l1.weight.size() == l2.weight.size()
                    assert l1.bias.size() == l2.bias.size()
                    12.weight.data = 11.weight.data
                    12.bias.data = 11.bias.data
class FCN16(FCN32):
    def __init__(self, n_classes=2):
       super().__init__()
       self.n_classes = n_classes
       self.score_pool4 = nn.Conv2d(512, self.n_classes, 1)
    def forward(self, x):
       conv1 = self.conv block1(x)
       conv2 = self.conv_block2(conv1)
       conv3 = self.conv block3(conv2)
       conv4 = self.conv_block4(conv3)
       conv5 = self.conv_block5(conv4)
        score = self.classifier(conv5)
       score_pool4 = self.score_pool4(conv4)
       #将conv4的信息连结
       score = F.interpolate(score, score_pool4.size()[2:],mode="bilinear",align_corners=True)
        score += score pool4
       out = F.interpolate(score, x.size()[2:],mode="bilinear",align_corners=True)
       return out
class FCN8(FCN32):
    def __init__(self, n_classes=2):
       super().__init__()
        self.n_classes = n_classes
```

```
self.score_pool4 = nn.Conv2d(512, self.n_classes, 1)
        self.score pool3 = nn.Conv2d(256, self.n classes, 1)
    def forward(self, x):
        conv1 = self.conv_block1(x)
        conv2 = self.conv_block2(conv1)
        conv3 = self.conv_block3(conv2)
        conv4 = self.conv_block4(conv3)
        conv5 = self.conv_block5(conv4)
        score = self.classifier(conv5)
        score_pool4 = self.score_pool4(conv4)
        score_pool3 = self.score_pool3(conv3)
        score = F.interpolate(score, score_pool4.size()[2:], mode='bilinear',
align_corners=True)
        score += score_pool4
        score = F.interpolate(score, score_pool3.size()[2:], mode='bilinear',
align_corners=True)
        score += score_pool3
        out = F.interpolate(score, x.size()[2:], mode='bilinear', align_corners=True)
        return out
```

2.2 segnet

编码-解码器结构,主要使用了最大值池化作为下采样手段,并且记录下池化的索引值,在上采样的过程中沿着索引的方向进行反池化。

```
class segnetDown2(nn.Module):
    def __init__(self, in_size, out_size):
       super(segnetDown2, self). init ()
        self.conv1 = CBR(in_size, out_size, 3, 1, 1)
        self.conv2 = CBR(out_size, out_size, 3, 1, 1)
       #在最大值池化中记录index
        self.maxpool with argmax = nn.MaxPool2d(2, 2, return indices=True)
    def forward(self, inputs):
       outputs = self.conv1(inputs)
       outputs = self.conv2(outputs)
        unpooled_shape = outputs.shape
       outputs, indices = self.maxpool_with_argmax(outputs)
        return outputs, indices
class segnetDown3(nn.Module):
    def __init__(self, in_size, out_size):
       super(segnetDown3, self).__init__()
        self.conv1 = CBR(in_size, out_size, 3, 1, 1)
        self.conv2 = CBR(out_size, out_size, 3, 1, 1)
        self.conv3 = CBR(out_size, out_size, 3, 1, 1)
        self.maxpool_with_argmax = nn.MaxPool2d(2, 2, return_indices=True)
    def forward(self, inputs):
```

```
outputs = self.conv1(inputs)
        outputs = self.conv2(outputs)
        outputs = self.conv3(outputs)
        unpooled shape = outputs.shape
       outputs, indices = self.maxpool_with_argmax(outputs)
        return outputs, indices
class segnetUp2(nn.Module):
    def __init__(self, in_size, out_size):
        super(segnetUp2, self).__init__()
       self.conv1 = CBR(in_size, in_size, 3, 1, 1)
       self.conv2 = CBR(in_size, out_size, 3, 1, 1)
    def forward(self, inputs, indices):
       #在unpool的过程中传入indice索引
       outputs = F.max_unpool2d(inputs, indices, kernel_size=2, stride=2)
       outputs = self.conv1(outputs)
       outputs = self.conv2(outputs)
       return outputs
class segnetUp3(nn.Module):
    def __init__(self, in_size, out_size):
       super(segnetUp3, self). init ()
       self.conv1 = CBR(in_size, in_size, 3, 1, 1)
       self.conv2 = CBR(in_size, in_size, 3, 1, 1)
        self.conv3 = CBR(in_size, out_size, 3, 1, 1)
    def forward(self, inputs, indices):
       outputs = F.max_unpool2d(inputs, indices, kernel_size=2, stride=2)
       outputs = self.conv1(outputs)
       outputs = self.conv2(outputs)
       outputs = self.conv3(outputs)
       return outputs
#segnet网络
class SEGNET(nn.Module):
   def __init__(self, n_classes=2, in_channels=3, is_unpooling=True):
       super().__init__()
        self.in_channels = in_channels
       self.is_unpooling = is_unpooling
       #与vgg中的conv大小基本一致
       #使用两个down2,三个down3
       self.down1 = segnetDown2(self.in_channels, 64)
        self.down2 = segnetDown2(64, 128)
       self.down3 = segnetDown3(128, 256)
       self.down4 = segnetDown3(256, 512)
       self.down5 = segnetDown3(512, 512)
       self.up5 = segnetUp3(512, 512)
       self.up4 = segnetUp3(512, 256)
       self.up3 = segnetUp3(256, 128)
        self.up2 = segnetUp2(128, 64)
       self.up1 = segnetUp2(64, n_classes)
    def forward(self, inputs):
        #在下采样时记录最大值池化的index和池化后的大小
        down1, indices_1 = self.down1(inputs)
        down2, indices_2 = self.down2(down1)
```

```
down3, indices_3 = self.down3(down2)
    down4, indices 4 = self.down4(down3)
    down5, indices_5 = self.down5(down4)
   up5 = self.up5(down5, indices_5)
   up4 = self.up4(up5, indices_4)
   up3 = self.up3(up4, indices_3)
   up2 = self.up2(up3, indices_2)
   up1 = self.up1(up2, indices_1)
    return up1
#同样用vgg16的参数初始化
def init_vgg16_params(self):
   vgg16 = vgg16 = models.vgg16(pretrained=True).to(device)
   blocks = [self.down1, self.down2, self.down3, self.down4, self.down5]
   features = list(vgg16.features.children())
   vgg_layers = []
   for _layer in features:
       if isinstance( layer, nn.Conv2d):
           vgg_layers.append(_layer)
   merged_layers = []
   for idx, conv_block in enumerate(blocks):
       #区分down2还是down3
       if idx < 2:
            units = [conv_block.conv1.cbr,conv_block.conv2.cbr]
       else:
           units = [conv_block.conv1.cbr,conv_block.conv2.cbr,conv_block.conv3.cbr,]
       for _unit in units:
            for _layer in _unit:
                if isinstance(_layer, nn.Conv2d):
                    merged_layers.append(_layer)
   for 11, 12 in zip(vgg_layers, merged_layers):
       if isinstance(l1, nn.Conv2d) and isinstance(l2, nn.Conv2d):
           12.weight.data = 11.weight.data
            12.bias.data = 11.bias.data
```

2.3 *unet*

unet采用优美的U型结构,本质为解码-编码器的结合,解码器或编码器的每个子单元为两层CBR单元,并且在编码器编码的过程中加入解码器原本信息的跳层连接。

```
class UNET(nn.Module):
    def __init__(self, feature_scale=4, n_classes=2, in_channels=1, is_deconv=True,
    is_batchnorm=True):
        super(unet, self).__init__()
```

```
self.is deconv = is deconv
       self.is_batchnorm = is_batchnorm
       self.feature scale = feature scale
       filters = [64, 128, 256, 512, 1024]
       filters = [int(x / self.feature_scale) for x in filters]
       # 下采样,默认使用BN
       self.conv1 = unetConv2(self.in_channels, filters[0], self.is_batchnorm)
       self.maxpool1 = nn.MaxPool2d(kernel size=2)
       self.conv2 = unetConv2(filters[0], filters[1], self.is_batchnorm)
       self.maxpool2 = nn.MaxPool2d(kernel_size=2)
       self.conv3 = unetConv2(filters[1], filters[2], self.is_batchnorm)
       self.maxpool3 = nn.MaxPool2d(kernel_size=2)
       self.conv4 = unetConv2(filters[2], filters[3], self.is_batchnorm)
       self.maxpool4 = nn.MaxPool2d(kernel_size=2)
       #UNet最中间一层
       self.center = unetConv2(filters[3], filters[4], self.is_batchnorm)
       # 上采样,默认采用含有可学习参数的反卷积
       self.up_concat4 = unetUp(filters[4], filters[3], self.is_deconv)
       self.up_concat3 = unetUp(filters[3], filters[2], self.is_deconv)
       self.up_concat2 = unetUp(filters[2], filters[1], self.is_deconv)
       self.up_concat1 = unetUp(filters[1], filters[0], self.is_deconv)
       #用卷积实现
       self.final = nn.Conv2d(filters[0], n_classes, 1)
   def forward(self, inputs):
       conv1 = self.conv1(inputs)
       maxpool1 = self.maxpool1(conv1)
       conv2 = self.conv2(maxpool1)
       maxpool2 = self.maxpool2(conv2)
       conv3 = self.conv3(maxpool2)
       maxpool3 = self.maxpool3(conv3)
       conv4 = self.conv4(maxpool3)
       maxpool4 = self.maxpool4(conv4)
       center = self.center(maxpool4)
       up4 = self.up_concat4(conv4, center)
       up3 = self.up_concat3(conv3, up4)
       up2 = self.up_concat2(conv2, up3)
       up1 = self.up_concat1(conv1, up2)
       final = self.final(up1)
       return final
#unet中的卷积单元,每个卷积单元由两个卷积组成,默认使用BN
class unetConv2(nn.Module):
   def __init__(self, in_size, out_size, is_batchnorm):
       super(unetConv2, self).__init__()
```

self.in_channels = in_channels

```
if is_batchnorm:
            self.conv1 = nn.Sequential(nn.Conv2d(in_size, out_size, 3, 1, 0),
nn.BatchNorm2d(out_size), nn.ReLU())
            self.conv2 = nn.Sequential(nn.Conv2d(out size, out size, 3, 1, 0),
nn.BatchNorm2d(out_size), nn.ReLU())
       else:
            self.conv1 = nn.Sequential(nn.Conv2d(in_size, out_size, 3, 1, 0), nn.ReLU())
            self.conv2 = nn.Sequential(nn.Conv2d(out_size, out_size, 3, 1, 0), nn.ReLU())
    def forward(self, inputs):
        outputs = self.conv1(inputs)
       outputs = self.conv2(outputs)
       return outputs
#unet中的上采样模块,将通道提升为两倍
class unetUp(nn.Module):
    def __init__(self, in_size, out_size, is_deconv):
        super(unetUp, self).__init__()
       self.conv = unetConv2(in_size, out_size, False)
       if is_deconv:
            self.up = nn.ConvTranspose2d(in_size, out_size, kernel_size=2, stride=2)
       else:
            self.up = nn.UpsamplingBilinear2d(scale_factor=2)
    def forward(self, inputs1, inputs2):
        outputs2 = self.up(inputs2)
       offset = outputs2.size()[2] - inputs1.size()[2]
       padding = 2 * [offset // 2, offset // 2]
       outputs1 = F.pad(inputs1, padding)
       return self.conv(torch.cat([outputs1, outputs2], 1))
```

2.4 linknet

类似于resnet,定义了残差卷积模块,在传统的CBR单元的基础上,在CB与R之间插入残差模块。并且同样使用了 跳层连接。

```
class ResBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1,inplace=True):
        super().__init__()
        in_channels = int(in_channels)
       out_channels = int(out_channels)
       self.cbr = CBR(in_channels, out_channels, 3, stride, 1)
        self.cb = CB(out channels, out channels, 3, 1, 1)
       #在CB R之间引入残差单元
        self.relu = nn.ReLU(inplace=inplace)
    def forward(self, x):
       residual = x
       out = self.cbr(x)
       out = self.cb(out)
       out += residual
       out = self.relu(out)
       return out
```

```
#带下采样的残差卷积
class ResDownBlock(nn.Module):
   def __init__(self, in_channels, out_channels, stride=1, inplace=True):
       super().__init__()
       in_channels = int(in_channels)
       out_channels = int(out_channels)
       self.cbr = CBR(in_channels, out_channels, 3, stride, 1)
       self.cb = CB(out_channels, out_channels, 3, 1, 1)
       self.downsample = CBR(in_channels, out_channels,3, stride, 1)
       self.relu = nn.ReLU(inplace=inplace)
   def forward(self, x):
       residual = self.downsample(x)
       out = self.cbr(x)
       out = self.cb(out)
       out += residual
       out = self.relu(out)
       return out
#上采样,通过反卷积操作
class linknetUp(nn.Module):
   def __init__(self, in_channels, out_channels,inplace=True):
       super().__init__()
       in_channels = int(in_channels)
       out channels = int(out channels)
       self.cbr1 = CBR(in_channels, out_channels/2, k_size=1, stride=1, padding=0,
inplace=inplace)
       self.dcbr2 = DCBR(out_channels/2, out_channels/2, k_size=2, stride=2, padding=0,
inplace=inplace)
        self.cbr3 = CBR(out_channels/2, out_channels, k_size=1, stride=1, padding=0,
inplace=inplace)
   def forward(self, x):
       x = self.cbr1(x)
       x = self.dcbr2(x)
       x = self.cbr3(x)
       return x
#LINKNET将编码器和解码器相连接
class LINKNET(nn.Module):
   def __init__(self, n_classes=2, in_channels=3):
       super().__init__()
       self.firstconv = CBR(in_channels, 16, 7, stride=2, padding=3)
       self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
       #编码器
       self.encoder1 = nn.Sequential(ResBlock(16,16,1,False), ResBlock(16,16,1,False))
       self.encoder2 = nn.Sequential(ResDownBlock(16,32,2,False), ResBlock(32,32,1,False))
       self.encoder3 = nn.Sequential(ResDownBlock(32,64,2,False), ResBlock(64,64,1,False))
       self.encoder4 = nn.Sequential(ResDownBlock(64,128,2,False)), ResBlock(128,128,1,False))
       #解码器,将编码器中的信息连接到解码器上
       #跳层连接的过程中, relu的inplace应该设置为False
       self.decoder4 = linknetUp(128, 64, inplace=False)
       self.decoder3 = linknetUp(64, 32, inplace=False)
       self.decoder2 = linknetUp(32, 16, inplace=False)
```

```
self.decoder1 = linknetUp(16, 16, inplace=False)
   #分割产生器
   self.finaldeconv1 = nn.Sequential(
       nn.ConvTranspose2d(16, 8, 2, 2, 0),
       nn.BatchNorm2d(8),
       nn.ReLU(inplace=True),
   self.finalconv2 = CBR(8,8,3,1,1)
   self.finalconv3 = nn.Conv2d(8, 2, 3, 1, 1)
def forward(self, x):
   #编码, encoder234逐次下采样
   x = self.firstconv(x)
   x = self.maxpool(x)
   e1 = self.encoder1(x)
   e2 = self.encoder2(e1)
   e3 = self.encoder3(e2)
   e4 = self.encoder4(e3)
   #将四个编码器的结果加到解码器上
   d4 = self.decoder4(e4)
   d4 += e3
   d3 = self.decoder3(d4)
   d3 += e2
   d2 = self.decoder2(d3)
   d2 += e1
   d1 = self.decoder1(d2)
   #产生分割结果
   f1 = self.finaldeconv1(d1)
   f2 = self.finalconv2(f1)
   f3 = self.finalconv3(f2)
   return f3
```

2.5 pspnet

pspnet使用了金字塔池化,将给定的图像卷积后池化为不同大小,再上采样恢复原形状后在通道上拼接。 网络其实得到了小于原图大小的分割图,并且与以前网络逐次卷积后上采样不同,该网络直接进行上采样。

```
#psp中使用到的池化模块定义
class PyramidPool(nn.Module):

def __init__(self, in_features, out_features, pool_size):
    super().__init__()

#使用自适应池化变为给定pool_size的大小,再使用双线性插值上采样为原尺寸
    self.features = nn.Sequential(
        nn.AdaptiveAvgPool2d(pool_size),
        nn.Conv2d(in_features, out_features, 1, bias=False),
```

```
nn.BatchNorm2d(out_features, momentum=0.95),
           nn.ReLU(inplace=True)
       )
   def forward(self, x):
       size=x.size()
       output=F.interpolate(self.features(x), size[2:], mode='bilinear', align_corners=True)
       return output
class PSPNET(nn.Module):
   def __init__(self, num_classes=2):
       super().__init__()
       #使用resnet作为预训练的骨干网络,使用layer1-4提取特征,大小为原图大小的1/8
       self.resnet = torchvision.models.resnet50(pretrained = True)
       #layer5使用金字塔池化并拼接
       self.layer5a = PyramidPool(2048, 512, 1)
       self.layer5b = PyramidPool(2048, 512, 2)
       self.layer5c = PyramidPool(2048, 512, 3)
       self.layer5d = PyramidPool(2048, 512, 6)
       self.final = nn.Sequential(
           nn.Conv2d(4096, 512, 3, padding=1, bias=False),
           nn.BatchNorm2d(512, momentum=0.95),
           nn.ReLU(inplace=True),
           nn.Dropout(0.1),
           nn.Conv2d(512, num_classes, 1),
       )
   def forward(self, x):
       size=x.size()
       x = self.resnet.conv1(x)
       x = self.resnet.bn1(x)
       x = self.resnet.relu(x)
       x = self.resnet.layer1(x)
       x = self.resnet.layer2(x)
       x = self.resnet.layer3(x)
       x = self.resnet.layer4(x)
       #得到每个子layer具有512个通道
       f5a = self.layer5a(x)
       f5b = self.layer5b(x)
       f5c = self.layer5c(x)
       f5d = self.layer5d(x)
       #在通道上拼接
       y = torch.cat([x,f5a,f5b,f5c,f5d], 1)
       x = self.final(y)
       #直接通过双线性插值恢复为原大小
       x = F.interpolate(x,size[2:],mode='bilinear',align_corners=True)
       return x
```

icnet, 图像级联网络, 为了提高分割的实时性而提出。

用不同分辨率的图片同时进行训练,得到不同分辨率的分割结果。

在训练高分辨率图片的分割的时候,利用CCF单元融合了低分辨率图片特征与高分辨率图片特征。

得到了比原图小得多的图片,但同样直接使用双线性插值进行上采样。

```
class CBR(nn.Module):
   def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
       super().__init__()
       self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
       self.bn = nn.BatchNorm2d(out_channels)
       self.relu = nn.ReLU(True)
   def forward(self, x):
       x = self.conv(x)
       x = self.bn(x)
       x = self.relu(x)
       return x
#PSPNET中的金字塔池化,默认参数和PSPNET相同,为[1,2,3,6]
class PyramidPooling(nn.Module):
   def __init__(self, pyramids=[1,2,3,6]):
       super().__init__()
       self.pyramids = pyramids
   def forward(self, input):
       feat = input
       height, width = input.shape[2:]
       for bin_size in self.pyramids:
           x = F.adaptive_avg_pool2d(input, output_size=bin_size)
           x = F.interpolate(x, size=(height, width), mode='bilinear', align corners=True)
           feat = feat + x
       return feat
# CCF单元,级联上下层特征,将底层特征通过分类器输出辅助分类结果,并将低层与高层特征进行结合
class CCF(nn.Module):
   def init (self, low channels, high channels, out channels, nclass):
       super().__init__()
       #使用dilation进行空洞卷积
       self.conv_low = nn.Sequential(
           nn.Conv2d(low_channels, out_channels, 3, padding=2, dilation=2, bias=False),
           nn.BatchNorm2d(out channels)
       self.conv_high = nn.Sequential(
           nn.Conv2d(high_channels, out_channels, 1, bias=False),
           nn.BatchNorm2d(out_channels)
       )
       #分类器
       self.conv_low_cls = nn.Conv2d(out_channels, nclass, 1, bias=False)
   def forward(self, x_low, x_high):
       #将x low插值经过上采样插值为x high的大小
       x_low = F.interpolate(x_low, size=x_high.size()[2:], mode='bilinear',
align corners=True)
```

```
x_{low} = self.conv_{low}(x_{low})
       x_high = self.conv_high(x_high)
       x = x_{low} + x_{high}
       x = F.relu(x, inplace=True)
       x_low_cls = self.conv_low_cls(x_low)
       return x, x_low_cls
class ICHead(nn.Module):
    def __init__(self, nclass):
        super().__init__()
       self.cff_12 = CCF(128, 64, 128, nclass)
       self.cff_24 = CCF(2048, 512, 128, nclass)
        self.conv_cls = nn.Conv2d(128, nclass, 1, bias=False)
    def forward(self, x_sub1, x_sub2, x_sub4):
       outputs = list()
       x_cff_24, x_24_cls = self.cff_24(x_sub4, x_sub2)
       outputs.append(x_24_cls)
       x_cff_12, x_12_cls = self.cff_12(x_cff_24, x_sub1)
       outputs.append(x_12_cls)
       up_x2 = F.interpolate(x_cff_12, scale_factor=2, mode='bilinear', align_corners=True)
       up_x2 = self.conv_cls(up_x2)
       outputs.append(up_x2)
       up_x8 = F.interpolate(up_x2, scale_factor=4, mode='bilinear', align_corners=True)
       outputs.append(up_x8)
       # 输出不同大小的图片, 1 -> 1/4 -> 1/8 -> 1/16
       outputs.reverse()
       return outputs
class ICNET(nn.Module):
    #使用resnet作为预训练的模型
    def __init__(self, nclass = 2):
       super().__init__()
       self.backbone = models.resnet50(pretrained = True)
       #使用步长为2的卷积
       self.conv_sub1 = nn.Sequential(CBR(3, 32, 3, 2),CBR(32, 32, 3, 2),CBR(32, 64, 3, 2))
       self.ppm = PyramidPooling()
       self.head = ICHead(nclass)
    #输入图片x,使用backbone提取各层特征
    def getFeatures(self,x):
       x = self.backbone.conv1(x)
       x = self.backbone.bn1(x)
       x = self.backbone.relu(x)
       x = self.backbone.maxpool(x)
       c1 = self.backbone.layer1(x)
       c2 = self.backbone.layer2(c1)
       c3 = self.backbone.layer3(c2)
       c4 = self.backbone.layer4(c3)
       return c1, c2, c3, c4
    def forward(self, x):
       size = x.size()[2:]
       #原大小,提取特征为1/8 eg.[32,64]
       x_sub1 = self.conv_sub1(x)
       #1/2图的特征,提取特征为1/16 eg.[16,32]
       x_sub2 = F.interpolate(x, scale_factor=0.5, mode='bilinear', align_corners=True)
```

```
_, x_sub2, _, _ = self.getFeatures(x_sub2)
       #1/4图,并加入图像金字塔池化
       x_sub4 = F.interpolate(x, scale_factor=0.25, mode='bilinear', align_corners=True)
       _, _, _, x_sub4 = self.getFeatures(x_sub4)
       x_sub4 = self.ppm(x_sub4)
       #通过IChead分类头输出结果
       outputs = self.head(x_sub1, x_sub2, x_sub4)
       for i in range(len(outputs)):
           outputs[i] = F.interpolate(outputs[i], size=size, mode='bilinear',
align_corners=True)
       return outputs
#定义级联损失,为不同分辨率图片损失之和
class ICLoss(nn.Module):
   def __init__(self,weights=[1.0,0.4,0.4,0.2]):
       super().__init__()
       self.critirion = nn.CrossEntropyLoss()
       self.weights = weights
   def forward(self,outputs,y):
       loss = 0
       for out,w in zip(outputs,self.weights):
           loss += w * self.critirion(out, y)
       return loss
```

2.7 metric

评价指标选取了fps和miou, (同时输出每个像素准确率也可作为辅助指标)

```
def getMetrics(self,dataloader):
       correct = 0
       tot pixel = 0
       tot_time = 0
       tot_num = 0
       tot_intersect = 0
       tot_union = 0
       for i,data in enumerate(dataloader):
           #选取部分计算评价指标
           if i > 5:
               break
           x,y = data
           B = x.shape[0]
           x = x.to(device)
           y = y.to(device)
           tot_num += 1
           start_time = time.time()
           #ICNET取第一个元素为输出
```

```
out = self.model(x)
    if isinstance(out,list):
       out = out[0]
    end_time = time.time()
    tot_time += end_time - start_time
    pred = torch.argmax(out,dim=1)
    correct += torch.sum(pred == y)
    tot_pixel += torch.sum((y>=0))
    pred = pred.bool()
    y = y.bool()
    tot_intersect += torch.sum(pred & y)
    tot_union += torch.sum(pred | y)
acc = (correct / tot_pixel).item()
miou = (tot_intersect / tot_union).item()
fps = (tot_num*BATCH) / tot_time
return acc, miou, fps
```

3.对比

MIOU	FPS	总大小(M)	准确率
-	-	-	-
-	-	-	-
80.97	1913.68	1108.24	92.97
87.63	1857.00	1108.24	95.9
82.22	835.10	89192777.82	92.98
89.36	177.72?	89192777.82	96.37
	- 80.97 87.63 82.22	80.97 1913.68 87.63 1857.00 82.22 835.10	

模型	MIOU	FPS	总大小(M)	准确率
UNET	78.50	1208.15	445.41	92.31
LINKNET	74.59	795.27	159.95	90.6
PSPNET	89.49	427.43	3030.57	96.48
ICNET	85.13	221.57	137438962078.62	93.6

foggy数据集下,

模型	MIOU	FPS	总大小(M)	准确率
FCN32	-	-	-	-
FCN16	-	-	-	-
FCN8	-	-	-	-
FCN8-VGG	90.46	2155	-	96.7
SEGNET	-	-	-	-
SEGNET-VGG	84.78	1006.10	-	94.68
UNET	77.23	1033.62	-	91.48
LINKNET	80.5	631.16	-	92.7
PSPNET	80.82	368.27	-	93.68
ICNET	86.30	185.51	-	95.26

4.实验

代码可实现的实验

- 不同网络结构的各方面对比(参数量、miou、fps)
- BN层的影响
- 不同上采样方式的影响(插值、反卷积)
- 普通卷积和空洞卷积的影响
- 迁移预训练模型参数的影响
- 不同骨干网络的影响 (resnet, vgg)
- 残差卷积和普通卷积的影响
- 是否跳层连接的影响
- ICNET中图片级联的影响

5.样例

使用FCN8取部分训练集(BATCH=8, 取训练集前50BATCH, 并将图片尺寸缩减为256x512)进行训练, 训练10轮的结果如下: (上一行为输出, 下一行为真实标记, 白色为道路, 黑色为其他)

取数据集的1/5, 每轮训练时间大约1min, 总计不到10min

运行结果示例

参考

[1] https://github.com/meetshah1995/pytorch-semseg/

附录

torchsummary的部分,展示一些网络结构(应该没什么用)

Layer (type)	Output Shape	Param #
Conv2d-1	[-1, 64, 256, 512]	,
ReLU-2	[-1, 64, 256, 512]	0
Conv2d-3	[-1, 64, 256, 512]	36,928
ReLU-4	[-1, 64, 256, 512]	0
MaxPool2d-5	[-1, 64, 128, 256]	0
Conv2d-6	[-1, 128, 128, 256]	73,856
ReLU-7	[-1, 128, 128, 256]	0
Conv2d-8	[-1, 128, 128, 256]	147,584
ReLU-9	[-1, 128, 128, 256]	0
MaxPool2d-10	[-1, 128, 64, 128]	0
Conv2d-11	[-1, 256, 64, 128]	295,168
ReLU-12	[-1, 256, 64, 128]	0
Conv2d-13	[-1, 256, 64, 128]	590,080
ReLU-14	[-1, 256, 64, 128]	0
Conv2d-15	[-1, 256, 64, 128]	590,080
ReLU-16	[-1, 256, 64, 128]	0
MaxPool2d-17	[-1, 256, 32, 64]	0
Conv2d-18	[-1, 512, 32, 64]	1,180,160
ReLU-19	[-1, 512, 32, 64]	0

Conv2d-20	[-1, 512, 32,	64] 2,359,808
ReLU-21	[-1, 512, 32,	64] 0
Conv2d-22	[-1, 512, 32,	64] 2,359,808
ReLU-23	[-1, 512, 32,	64] 0
MaxPool2d-24	[-1, 512, 16,	32] 0
Conv2d-25	[-1, 512, 16,	32] 2,359,808
ReLU-26	[-1, 512, 16,	32] 0
Conv2d-27	[-1, 512, 16,	32] 2,359,808
ReLU-28	[-1, 512, 16,	32] 0
Conv2d-29	[-1, 512, 16,	32] 2,359,808
ReLU-30	[-1, 512, 16,	32] 0
MaxPool2d-31	[-1, 512, 8,	16] 0
Conv2d-32	[-1, 4096, 8,	16] 102,764,544
ReLU-33	[-1, 4096, 8,	16] 0
Dropout2d-34	[-1, 4096, 8,	16] 0
Conv2d-35	[-1, 4096, 8,	16] 16,781,312
ReLU-36	[-1, 4096, 8,	16] 0
Dropout2d-37	[-1, 4096, 8,	16] 0
Conv2d-38	[-1, 2, 8,	16] 8,194
Conv2d-39	[-1, 2, 16,	32] 1,026
Conv2d-40	[-1, 2, 32,	64] 514

Total params: 134,270,278
Trainable params: 134,270,278
Non-trainable params: 0

Input size (MB): 1.50

Forward/backward pass size (MB): 594.54

Params size (MB): 512.20

Estimated Total Size (MB): 1108.24

Layer (type)			
	[-1, 64, 256, 512]		
ReLU-2	[-1, 64, 256, 512]	0	0
Conv2d-3	[-1, 64, 256, 512]	36,928	28
ReLU-4	[-1, 64, 256, 512]	0	0
MaxPool2d-5	[-1, 64, 128, 256]	0	0
Conv2d-6	[-1, 128, 128, 256]	73,856	6
ReLU-7	[-1, 128, 128, 256]	0	0
Conv2d-8	[-1, 128, 128, 256]	147,584	34
ReLU-9	[-1, 128, 128, 256]	0	0
MaxPool2d-10	[-1, 128, 64, 128]	0	0
Conv2d-11	[-1, 256, 64, 128]	295,168	58
ReLU-12	[-1, 256, 64, 128]	0	0
Conv2d-13	[-1, 256, 64, 128]	590,080	30
ReLU-14	[-1, 256, 64, 128]	0	0
Conv2d-15	[-1, 256, 64, 128]	590,080	30
ReLU-16	[-1, 256, 64, 128]	0	0
MaxPool2d-17	[-1, 256, 32, 64]	0	0
Conv2d-18	[-1, 512, 32, 64]	1,180,160	50
ReLU-19	[-1, 512, 32, 64]	0	0
Conv2d-20	[-1, 512, 32, 64]	2,359,808	8
ReLU-21	[-1, 512, 32, 64]	0	0
Conv2d-22	[-1, 512, 32, 64]	2,359,808	8

5 111 22	F 4 F42 22	647
ReLU-23	[-1, 512, 32,	64] 0
MaxPool2d-24	[-1, 512, 16,	32] 0
Conv2d-25	[-1, 512, 16,	32] 2,359,808
ReLU-26	[-1, 512, 16,	32] 0
Conv2d-27	[-1, 512, 16,	32] 2,359,808
ReLU-28	[-1, 512, 16,	32] 0
Conv2d-29	[-1, 512, 16,	32] 2,359,808
ReLU-30	[-1, 512, 16,	32] 0
MaxPool2d-31	[-1, 512, 8,	16] 0
Conv2d-32	[-1, 4096, 8,	16] 102,764,544
ReLU-33	[-1, 4096, 8,	16] 0
Dropout2d-34	[-1, 4096, 8,	16] 0
Conv2d-35	[-1, 4096, 8,	16] 16,781,312
ReLU-36	[-1, 4096, 8,	16] 0
Dropout2d-37	[-1, 4096, 8,	16] 0
Conv2d-38	[-1, 2, 8,	16] 8,194
Conv2d-39	[-1, 2, 16,	32] 1,026
==========	=======================================	

Total params: 134,269,764 Trainable params: 134,269,764 Non-trainable params: 0

Input size (MB): 1.50

Forward/backward pass size (MB): 594.51

Params size (MB): 512.20

Estimated Total Size (MB): 1108.21

, , , ,	Output Shape	Param #
	[-1, 64, 256, 512]	
ReLU-2	[-1, 64, 256, 512]	0
Conv2d-3	[-1, 64, 256, 512]	36,928
ReLU-4	[-1, 64, 256, 512]	0
MaxPool2d-5	[-1, 64, 128, 256]	0
Conv2d-6	[-1, 128, 128, 256]	73,856
ReLU-7	[-1, 128, 128, 256]	0
Conv2d-8	[-1, 128, 128, 256]	147,584
ReLU-9	[-1, 128, 128, 256]	0
MaxPool2d-10	[-1, 128, 64, 128]	0
Conv2d-11	[-1, 256, 64, 128]	295,168
ReLU-12	[-1, 256, 64, 128]	0
Conv2d-13	[-1, 256, 64, 128]	590,080
ReLU-14	[-1, 256, 64, 128]	0
Conv2d-15	[-1, 256, 64, 128]	590,080
ReLU-16	[-1, 256, 64, 128]	0
MaxPool2d-17	[-1, 256, 32, 64]	0
Conv2d-18	[-1, 512, 32, 64]	1,180,160
ReLU-19	[-1, 512, 32, 64]	0
Conv2d-20	[-1, 512, 32, 64]	2,359,808
ReLU-21	[-1, 512, 32, 64]	0
Conv2d-22	[-1, 512, 32, 64]	2,359,808
ReLU-23	[-1, 512, 32, 64]	0
MaxPool2d-24	[-1, 512, 16, 32]	0
Conv2d-25	[-1, 512, 16, 32]	2,359,808

ReLU-26	[-1, 512, 16, 32]	0
Conv2d-27	[-1, 512, 16, 32]	2,359,808
ReLU-28	[-1, 512, 16, 32]	0
Conv2d-29	[-1, 512, 16, 32]	2,359,808
ReLU-30	[-1, 512, 16, 32]	0
MaxPool2d-31	[-1, 512, 8, 16]	0
Conv2d-32	[-1, 4096, 8, 16]	102,764,544
ReLU-33	[-1, 4096, 8, 16]	0
Dropout2d-34	[-1, 4096, 8, 16]	0
Conv2d-35	[-1, 4096, 8, 16]	16,781,312
ReLU-36	[-1, 4096, 8, 16]	0
Dropout2d-37	[-1, 4096, 8, 16]	0
Conv2d-38	[-1, 2, 8, 16]	8,194
UpsamplingBilinear2d-39	[-1, 2, 256, 512]	0
		:=======
Total params: 134,268,738		
Trainable params: 134,268,	738	
Non-trainable params: 0		
Input size (MB): 1.50		
Forward/backward pass size	e (MB): 596.50	
Params size (MB): 512.19	•	
Estimated Total Size (MB):	1110.20	