Устойчивость

Метод Эйлера

Задача об устойчивости по отношению к заданным малым возмущениям — задача об исследовании возможности существования двух различных форм равновесия (прямое и изогнутое состояние).

Постановка задачи: стержень длиной l с шарнирно закрепленными концами изогнулся (потерял устойчивость) под действием сжимающей силы P. Задача: определить силу, при которой изогнутое состояние стержня является новым положением равновесия.

В произвольном сечении с координатой x: M(x) — изгибающий момент в сечении. Условие равновесия части стержня (x, l):

$$M(x) = -Py. (1)$$

Если прогиб мал, то из теории изгиба балки:

$$y'' \approx \frac{M(x)}{EJ}. (2)$$

Из (1), (2):

$$y'' + k^2 y = 0, \ k^2 = \frac{P}{EI}$$

Из общего решения и граничных условий y(0) = y(l) = 0:

$$P_{cr} = \frac{\pi^2 n^2 EJ}{l^2}, y(x) = C_1 \sin \frac{\pi n x}{l}, n = 1, 2, \dots$$
 (3)

Равновесие нарушается при минимальной критической силе, т.е. в данном случае при n=1.

Потеря устойчивости реальных стержней

Влияние эксцентриситета силы

Пусть сила действует вдоль оси стержня, но приложена на удалении e от оси. Уравнение равновесия:

$$M(x) = -P(y+e)$$
 (4)
N3 (2) μ (4):

$$y'' + k^2 y = -k^2 e, \ k^2 = \frac{P}{EJ}.$$

Решение с учетом граничных условий:

$$y(x) = e \left[\frac{1 - \cos kl}{\sin kl} \sin kx - (1 - \cos kx) \right].$$

Для максимального прогиба:

$$\frac{y_{max}}{e} = \frac{1 - \cos(\frac{kl}{2})}{\cos\frac{kl}{2}} = \frac{1 - \cos(\frac{\pi}{2}\sqrt{\frac{P}{P_{cr}}})}{\cos(\frac{\pi}{2}\sqrt{\frac{P}{P_{cr}}})}$$

Влияние начального прогиба

Пусть у балки есть начальный прогиб $y_0(x) = f_0 \sin \frac{\pi x}{l}$. Уравнение

равновесия:

$$M = -P(y + y_0). \tag{5}$$

Из (5) и (2):

$$y'' + k^2 y = -k^2 y_0 = -k^2 f_0 \sin \frac{\pi x}{l}.$$

Решение с учетом граничных условий:

$$y(x) = \frac{k^2 f_0}{(\frac{\pi}{l})^2 - k^2} \sin \frac{\pi x}{l} = \frac{\frac{P}{P_{cr}}}{1 - \frac{P}{P_{cr}}} f_0 \sin \frac{\pi x}{l}, \ P_{cr} = \frac{\pi^2 EJ}{l^2}$$

Энергетический метод

Полная потенциальная энергия консервативной системы:

$$W = U + \Pi = U - A,\tag{6}$$

U — энергия упругой деформации, Π — потенциальная энергия, A — работа консервативных сил.

Пусть y(x) — произвольное малое отклонения стержня, удовлетворяющее начальным условиям y(0)=y(l)=0. Изменение потенциальной энергии упругой деформации:

$$\Delta U = \frac{1}{2} \int_0^l \frac{M^2 dx}{EJ} = \frac{1}{2} \int_0^l EJy''^2 dx. \tag{7}$$

Работа внешней консервативной силы:

$$A = \lambda P = -\Delta \Pi$$

 λ — модуль перемещения точки приложения силы P.

$$\lambda = \int_0^l (dl - dl \cos \theta) = \int_0^l \frac{\theta^2}{2} dl = \frac{1}{2} \int_0^l y'^2 dx$$
 (8)

Из (6) - (8):

$$\Delta W = \frac{1}{2} \left(\int_0^l EJy''^2 dx - P \int_0^l y'^2 dx \right)$$

При
$$\Delta W < 0 \ (P > P^*)$$
 — неустойчивость, где $P^* = \frac{\int_0^l EJy''^2 dx}{\int_0^l {y'}^2 dx}$. P^* достигает

минимума при
$$y(x)=C_1\sin\frac{\pi x}{l}$$
 \Rightarrow $P_{cr}=P_{min}^*=\frac{\pi^2EJ}{l^2}$ $(n=1).$

Экспериментальная установка

Экспериментальные данные

1-я балка:

L = 81 см		L = 71 см		L = 61 см	
P, H	у, мм	P, H	у, мм	P3, H	х3, мм
2,9	0	2	0,3	2,5	0,9
3,7	0,3	2,7	0,6	3,8	1,6
4,2	0,6	4,8	1	12	2
11,2	0,9	21,5	1,2	36,2	2,5
23,8	1,3	26,6	1,5	50	3
30,1	1,6	33,6	1,9	52,2	3,6
30	1,9	34,5	2,2	52,9	4
29,8	2,1	35,2	2,5	53,1	4,5
29,6	2,4	35,6	3	53,2	5,1
		35,8	3,8	53,2	5,3

2-я балка:

L = 78 см		L = 68 см		L = 58 см	
P4, H	х4, мм	P5, H	х5, мм	P6, H	х6, мм
1	0,3	1,2	0,7	0,7	0,1
1,3	0,4	2,3	1,3	1,6	0,6
1,9	0,7	3,1	1,7	2,9	0,8
2,9	0,9	13,7	2,1	4,1	1,1
2,5	1,2	15,5	2,5	16,6	1,4
6,9	1,4	16,5	2,8	19,8	1,7
10,7	1,8	17,4	3,2	20,7	1,9
12,2	2,2	17,5	4	21,8	2,3
12,9	2,6	18,1	4,9	22,6	2,6
13,5	3,1	18,8	8,8	23,4	3,3
13,7	3,6	19,1	12,6	24	4,6
13,9	4,2			25,2	7,1
14,2	4,9			25,6	10,6
14,5	6,6			25,8	13,4
14,7	8,9				

Обработка результатов

Для каждого участка стержней определяем P_{cr} из графиков и вычисляем n из формулы (3). Усредняем n для каждого из стержней и находим теоретическую зависимость $P_{cr}(\frac{1}{l^2})$ ($n_1 \approx 1.8 \approx 2, \, n_2 \approx 1.2 \approx 1$).

Для этого рассчитываем $J = \frac{ah^3}{12}$ для каждого из стержней ($h_1 = h_2 = 0.99$

мм, $a_1=28$ мм, $a_2=36.5$ мм). Сравниваем эту зависимость с экспериментальной.

1-я балка:

Среднее отклонение: 8.0 %

Среднеквадратичное отклонение: 8.0 %

2-я балка:

Среднее отклонение: 51.0 %

Среднеквадратичное отклонение: 45.0 %