MATEMATIK 2 - OPVARMNING 5 (1) Antag at Sanx har konvergensradius \$ >0. a) Hvad er det største <u>abne</u> interval rækken er konvergent? 501 Rakken er unitormt konvergent i J-J.J[. b) Kan vi uden yderligere information, finde et største atsluttet interval hvor rækken er konvergent? SO Nej. Vi er nødt til at undersøge om rækken er konvergent i randpunkterne x=-1, og x=11) Hvad er det største <u>abne</u> t-interval hvor rateken $\sum_{n=0}^{\infty} an(t-2)^n$ er konvergent?

2 an (t-2) er konvergent! $\frac{50!}{\text{Konvergens radius}}$ var jo $x \in]-f, f[$. Nu er x=t-2Så rækleen er konvergent når $t-2 \in]-f, f[$ (=) $t \in]-f+2, f+2[$. d) Hvad skal f opfylde for at vier sikre på 2 at $\sum_{n=0}^{\infty}$ an $sin^n(t)$ er konvergent for alle $t \in \mathbb{R}$?

Sol

Det største $sin^n(t)$ nogensinde kan blive er 1.

Det sker fx når $t = \frac{\pi}{2}$.

I det tiltælde bliver rækken $\sum_{n=0}^{\infty}$ ansim (t) størst (worst case scenario)

Så hvis $f \ge \frac{\pi}{2}$ ved vi med sikkerhed at ∞ an $\sin^n(t)$ er konvergent for alle $t \in \mathbb{R}$.

NB: $t=\frac{\pi}{2}\Rightarrow \sin(\frac{\pi}{2})=1$ $t=\frac{\pi}{2}+2\pi \Rightarrow \sin(\frac{\pi}{2}+2\pi)=1$.