MobileNetV2: Inverted Residuals and Linear Bottlenecks

Índice

- Introducción
- Intuiciones sobre el modelo
- Bloque Inverted Residuals
- Bloque Lineal Bottleneck
- Arquitectura
- Pruebas de rendimiento
- Conclusiones

Profesores

Miguel A. Gutierrez Naranjo David Solis Martin

Alumno

Germán Lorenz Vieta

Introducción

Sobre redes profundas

Desde LeNet-5 '98 a AlexNet '12 no hubo avances significativos por desconocimiento del potencial de las redes profundas

Desde AlexNet pasando por VGGNet, GoogLeNet/Inception, ResNet, etc se probaron múltiples arquitecturas de redes convolucionales y estrategias para aumentar la detección.

Cuanto más profundo es el modelo su complejidad computacional tiende a aumentar en millones de MAdds.

Cuanto más rápido es el modelo se tiende a perder capacidad de detección.

La conectividad y escasez están relacionadas con la rapidez.

Introducción

¿Qué busca MobileNetV2?

- Arquitectura para entornos móviles
- Optimizar el uso de recursos cuando estos son limitados
- Disminución de operaciones matemáticas complejas y uso de los distintos tipos de memoria de los sistemas
- Mantener la precisión
- Adaptarse a multiples propositos

Convolución y la búsqueda de una estructura liviana

- En CNN una imagen es una matriz de números
- La convolución es aplicar kernels para obtener mapas de caracteristicas
- El mapa de caracteristicas se obtiene al aplicar una función de activación al filtrado

Convolución y la búsqueda de una estructura liviana

- Para reducir dimensionalidad se usan distintos tipos de subsampling
- En MobileNetV1 se reemplaza esta estrategia por un bloque
 Depthwise Separable Convolution y Pointwise Convolution

SUBSAMPLING: Aplico Max-Pooling de 2x2 y reduzco mi salida a la mitad

Depthwise Separable Convolution y Pointwise Convolution

- Deep-Wise Separable Convolution realiza un filtrado ligero mediante convoluciones por canal de entrada
- Pointwise Convolution realiza mediante combinaciones lineales de los canales de entrada distintas funciones

Costo computacional al separar procesos

- Convolución Tradicional
 - Dimension de Input: h x w x d
 - o Dimensión de Kernel: k x k x di x dj
 - Dimensión de Salida: h x w x di x dj
 - Costo: h * w * di * dj * k * k
- Depthwise Separable Convolution
 - Costo: h * w * di * (k² +dj)
 aproximadamente
- Según autor se reduce k² veces la complejidad mientras logra misma capacidad de detección

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

Principios conceptuales del bloque invertido

Si consideramos S el espacio posible

- El mundo real será un subespacio de S muy pequeño que consideraremos Manifold of Interest (MoI)
- Las imágenes entendibles serán aún un subespacio aún más pequeño
- Las no entendibles pueden ser otro subespacio de interés para el modelo

Entonces el autor considera que:

- Existe una "Variedad de Interés" con carga útil de información
- La dimensionalidad y la profundidad están relacionadas conceptualmente

Intuición de la investigación dimensional por los autores

En MobileNetV1 el hiperparámetro $\alpha \in [0,1]$ y si por ejemplo vale 0.5 significa que la dimensionalidad de 128 se reduce a 64 lo que nos lleva a pensar de que a menor α menos Mol, entonces la "variedad de interes" capturara mejor las caracteristicas deseadas

PERO:

Si los canales disminuyen al aplicar ReLU existe alta probabilidad de pérdida de información

Si los canales aumentan al aplicar ReLU existe la probabilidad de perder menos información

Output/dim=5

Output/dim=3

Experimento de los autores al Transformar, aplicar ReLU y Invertir

Output/dim=2

ReLU

10

Input

Conclusiones

- Aplicar ReLU en baja dimensión reduce la "Variedad de Caracteristicas"
- El Mol se logra codificando bajo bajas dimensiones obteniendo rapidez en el procesamiento por no usar S completo
- En base a esto se crea el Bloque Inverted Residual con Lineal Bottleneck

Input	Operator	Output
$h \times w \times k$	1x1 conv2d, ReLU6	$h \times w \times (tk)$
$h \times w \times tk$	3x3 dwise s=s, ReLU6	$\frac{h}{s} \times \frac{w}{s} \times (tk)$
$\frac{h}{s} \times \frac{w}{s} \times tk$	linear 1x1 conv2d	$\frac{h}{s} \times \frac{w}{s} \times k'$

Table 1: Bottleneck residual block transforming from k to k' channels, with stride s, and expansion factor t.

Bloque Lineal Bottleneck

Breve evolución del bloque Bottleneck

- El bloque Regular mezcla las capas
- El bloque Separable separa cada capa y añade el factor de expansión
- El bloque Separable con linear Bottleneck agregar el Pointwise para comprimir información
- El bloque Bottleneck con capa de expansión difiere en que su input es un Pointwise y su output también
 - PointWise es quien hace las combinaciones lineales de los canales de entrada

Figure 2: Evolution of separable convolution blocks. The diagonally hatched texture indicates layers that do not contain non-linearities. The last (lightly colored) layer indicates the beginning of the next block. Note: 2d and 2c are equivalent blocks when stacked. Best viewed in color.

Bloque Lineal Bottleneck

- Los autores consideran a t como un factor de expansión y utilizan t = 6 excepto en la primer capa
- ReLU6 es una implementación que evita la sobre dimensionalidad
- Modifican el comportamiento de Bottleneck para que tenga 2 comportamientos
- El kernel 3 controla la dimensionalidad de salida en el último bloque
- El bloque Inverted Residual se utiliza fusionando la salida cuando d = d'
- El bloque Inverted Residual se elimina cuando el Stride s = 2
- Se diferencia de MobileNetV1 ya que no pierde información en su salida

Arquitectura

Input	Operator	$\mid t \mid c$		n	s
$224^{2} \times 3$	conv2d	-	32	1	2
$112^{2} \times 32$	bottleneck	1	16	1	1
$112^{2} \times 16$	bottleneck	6	24	2	2
$56^2 \times 24$	bottleneck	6	32	3	2
$28^{2} \times 32$	bottleneck	6	64	4	2
$14^{2} \times 64$	bottleneck	6	96	3	1
$14^{2} \times 96$	bottleneck	6	160	3	2
$7^2 \times 160$	bottleneck	6	320	1	1
$7^2 \times 320$	conv2d 1x1	_	1280	1	1
$7^2 \times 1280$	avgpool 7x7	=	-	1	-
$1\times1\times1280$	conv2d 1x1	-	k	-	

Table 2: MobileNetV2: Each line describes a sequence of 1 or more identical (modulo stride) layers, repeated n times. All layers in the same sequence have the same number c of output channels. The first layer of each sequence has a stride s and all others use stride 1. All spatial convolutions use 3×3 kernels. The expansion factor t is always applied to the input size as described in Table 1.

Mobilenet V2

(b) MobileNet[27]

Pruebas de rendimiento

Clasificación con ImageNet

Network	Top 1	Params	MAdds	CPU	
MobileNetV1	70.6	4.2M	575M	113ms	
ShuffleNet (1.5)	71.5	3.4M	292M	-	
ShuffleNet (x2)	73.7	5.4M	524M	_	
NasNet-A	74.0	5.3M	564M	183ms	
MobileNetV2	72.0	3.4M	300M	75ms	
MobileNetV2 (1.4)	74.7	6.9M	585M	143ms	

Detección de Objetos con SSD en COCO

Network	mAP	Params	MAdd	CPU
SSD300[34]	23.2	36.1M	35.2B	-
SSD512[34]	26.8	36.1M	99.5B	-
YOLOv2[35]	21.6	50.7M	17.5B	-
MNet V1 + SSDLite	22.2	5.1M	1.3B	270ms
MNet V2 + SSDLite	22.1	4.3M	0.8B	200ms

Segmentación semántica con DeepLabv3 en PASCAL VOC 2012

Network	OS	ASPP	MF	mIOU	Params	MAdds
MNet V1	16 8	√ √	√	75.29 78.56	11.15M 11.15M	14.25B 941.9B
MNet V2*	16 8	√	√	75.70 78.42	4.52M 4.52M	5.8B 387B
MNet V2*	16 8		√	75.32 77.33	2.11M 2.11M	2.75B 152.6B
ResNet-101	16 8	√ √	√	80.49 82.70	58.16M 58.16M	81.0B 4870.6B

Pruebas de rendimiento

Curva de performance por MAdds entre MobileNetV1, MobileNetV2, ShuffleNet y NAS

Conclusiones

- En el artículo se describe una arquitectura de red simple que permite crear una familia de modelos para dispositivos móviles altamente eficiente.
- La arquitectura propuesta permite una inferencia muy eficiente en memoria confiando en operaciones estándar en todos los marcos neuronales.
- Para el conjunto ImageNet la arquitectura mejoró el estado de arte en cuanto a rendimiento.
- Para la detección de objetos la red supera a los mejores detectores en tiempo real en COCO tanto en precisión como en complejidad del modelo. La combinación con SSDLite brinda una capacidad superior a YOLOv2.
- Por el lado teórico el bloque convolucional propuesto tiene una propiedad única que separa la expresividad de la red de su capacidad

