MTH101: Lecture 8

Dr. Tai-Jun Chen, Dr. Xinyao Yang

Xi'an Jiaotong-Liverpool University, Suzhou

Sep 27, 2017

Cauchy's Integral Formula

Theorem

If f(z) is **Analytic** in a **Simply Connected Domain** D, then for any point $z_0 \in D$ and any conterclockwise orinted simple closed path γ that encloses the point z_0 we have

$$\oint_{\gamma} \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0),$$

or

$$f(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z - z_0} dz.$$

Example

Compute the following integral:

$$\oint_{\gamma} \frac{e^{2z}}{z+4} \ dz,$$

where γ is the circle with center c=-3 and radius R=2 with counterclockwise orientation.

The function $f(z) = e^{2z}$ is **Entire**, thus is **Analytic** in \mathbb{C} (**Simply Connected**), while γ is a **counterclockwise simple closed path** in \mathbb{C} .

The point $z_0 = -4$ is in the **interior** of γ (that is γ encloses z_0). Then we can use **Cauchy's Integral Formula**

$$\oint_{\gamma} \frac{f(z)}{z - z_0} \ dz = 2\pi i f(z_0),$$

where $f(z) = e^{2z}$, $z_0 = -4$.

Therefore,

$$\oint_{\gamma} \frac{e^{2z}}{z+4} \ dz = 2\pi i f(-4) = 2\pi i \ e^{-8}.$$

Multiply Connected Domains - Application 1

Theorem

If f(z) is analytic on C_1 and C_2 and on the ring shaped domain bounded by C_1 and C_2 (see figure below) and z_0 is any point in that domain, then

$$\oint_{C_1} \frac{f(z)}{z - z_0} dz + \oint_{C_2} \frac{f(z)}{z - z_0} dz = 2\pi i \ f(z_0).$$

Example

$$\oint_C \frac{\sin z}{4z^2 - 8iz} \ dz,$$

C consists of the boundaries of the squares with vertices ± 3 , $\pm 3i$ counterclockwise and ± 1 , $\pm i$ clockwise. (See figure below)

Let $4z^2 - 8iz = 0$ we have two "bad" points z = 0 and z = 2i, only z = 2i is in the "ring" shaped doubly connected domain. We let

$$f(z)=\frac{\sin z}{4z},\quad z_0=2i,$$

and observe that f(z) is **Analytic** both in the interior and on the boundary of the ring. The outer boundary is counterclockwise and the inner is clockwise.

Therefore,

$$\oint_C \frac{\sin z}{4z^2 - 8iz} dz = \oint_C \frac{\frac{\sin z}{4z}}{z - 2i} dz = 2\pi i \left[\frac{\sin z}{4z} \right]_{z_0 = 2i}$$
$$= 2\pi i \frac{\sin(2i)}{8i} = \frac{\pi i}{4} \sinh 2.$$

Multiply Connected Domains - Application 2

Example

$$\oint_C \frac{z-2}{z^2-z} \ dz,$$

where C is a circle with center c=0 and radius R=2 counterclockwise.

Let $z^2 - z = 0$ we obtain the two "bad" points $z_1 = 0$ and $z_2 = 1$, both are enclosed by C.

Let C_1 be circle centered at z_1 counterclockwise that only encloses z_1 , and C_2 be a circle centered at z_2 counterclockwise that only encloses z_2 , then

$$\oint_C \frac{z-2}{z^2-z} dz = \oint_{C_1} \frac{\frac{z-2}{z-1}}{z} dz + \oint_{C_2} \frac{\frac{z-2}{z}}{z-1} dz$$

$$= 2\pi i \left[\frac{z-2}{z-1} \right]_{z=0} + 2\pi i \left[\frac{z-2}{z} \right]_{z=1}$$

$$= 2\pi i.$$

Alternatively, we write

$$\frac{z-2}{z^2-z} = \frac{2}{z} - \frac{1}{z-1}.$$

Then,

$$\oint_C \frac{z-1}{z^2-z} dz = \oint_C \frac{2}{z} dz - \oint_C \frac{1}{z-1} dz$$

$$= 2\pi i \cdot 2 - 2\pi i \cdot 1$$

$$= 2\pi i$$

Theorem

If f(z) is analytic in a domain D, then for any point $z_0 \in D$, any counterclockwise oriented simple closed path γ that encloses z_0 and whose interior belongs to D and any positive integer n, we have

$$\oint_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0),$$

or

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz.$$

Moreover, f(z) has derivatives of all order in D, which are also analytic functions in D.

Application 1 - evaluate the line integrals

Example

Compute the following integral:

$$\oint_{\gamma} \frac{\sin z + \cos z}{(z+i)^3} \ dz$$

where γ is the circle with center c=1 and radius R=2 with counterclockwise orientation.

Solution:

Let $(z+i)^3=0$ we have z=-i, which is in the interior of γ .

We observe that $f(z) = \sin z + \cos z$ is **Entire**, thus **Analytic** in the interior and on the boundary of γ which is **simple closed path**. Then we use **Cauchy's integral Formula for derivatives**:

$$\oint_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0),$$

where $f(z) = \sin z + \cos z$, $z_0 = -i$ and n = 2. Therefore,

$$\oint_{\gamma} \frac{\sin z + \cos z}{(z+i)^3} dz = \frac{2\pi i}{2!} [\sin z + \cos z]''|_{z_0 = -i}$$

$$= \pi i [-\sin z - \cos z]_{z_0 = -i}$$

$$= -\pi i [\sin(-i) + \cos(-i)]$$

$$= -\pi i [\cosh 1 - i \sinh 1]$$

Example

Compute the integral

$$\oint_{\gamma} \frac{dz}{z^2(z-2)}$$

along the following paths:

 γ_1 : square with vertices $1 \pm i$ and $-1 \pm i$ counterclockwise;

 γ_2 : circle with center $c_2=2.5$ and radius $R_2=1$ clockwise;

 γ_3 : circle |z+2|=1 counterclockwise.

Let $z^2(z-2) = 0$ we have $z_1 = 0$ and $z_2 = 2$.

1 The counterclockwise simple closed path γ_1 encloses $z_1=0$ and the function $f_1(z)=\frac{1}{z-2}$ is analytic both in the interior and on the boundary of γ_1 .

We use Cauchy's integral formula for derivatives:

$$\oint_{\gamma_1} \frac{dz}{z^2(z-2)} = \oint_{\gamma_1} \frac{\frac{1}{z-2}}{z^2} dz = \frac{2\pi i}{1!} \left[\frac{1}{z-2} \right]_{z_1=0}^{\prime}$$

$$= 2\pi i \left[-\frac{1}{(z-2)^2} \right]_{z_1=0}$$

$$= -\frac{\pi i}{2}$$

2 The clockwise(!) simple closed path γ_2 encloses $z_2=2$ and the function $f_2(z)=\frac{1}{z^2}$ is analytic both in the interior and one the boundary of γ_2 .

Thus we use Cauchy's integral formula (according to counterclockwise path $-\gamma_2$):

$$\oint_{\gamma_2} \frac{dz}{z^2(z-2)} = -\oint_{-\gamma_2} \frac{\frac{1}{z^2}}{z-2} dz = -2\pi i \left[\frac{1}{z^2} \right]_{z_2=2}$$
$$= -\frac{\pi i}{2}$$

3 The counterclockwise simple closed path γ_3 encloses no "bad" points and the function $f(z) = \frac{1}{z^2(z-2)}$ is analytic both in the interior and one the boundary of γ_3 . Thus we use Cauchy's integral theorem

$$\oint_{\gamma_3} \frac{dz}{z^2(z-2)} = 0.$$

Application 2-Cauchy's Inequality

Remark

Let f(z) be analytic function in a domain D, and C be a circle if radius r and center z_0 whose full interior belongs to D, with $|f(z)| \leq M$ on C Using **ML-inequality** we have

$$|f^{(n)}(z_0)| = \left| \frac{n!}{2\pi i} \oint_{C_r} \frac{f(z)}{(z-z_0)^{n+1}} \ dz \right| \leq \frac{n!}{2\pi} \cdot \frac{M}{r^{n+1}} \cdot 2\pi r = \frac{n!M}{r^n}.$$

Bibliography

1 Kreyszig, E. Advanced Engineering Mathematics. Wiley, 9th Edition.