

Task History

Initiating Search

February 23, 2025, 7:31 PM

Substances:

Filtered By:

Structure Match: Substructure

Search Tasks

Task	Search Type	View
Returned Substance Results + Filters (2,558)	Substances	View Results

CAS SciFinder® Page 2

Exported: Retrieved Related Reaction Results + Filters (172)

Reactions

View Results

Filtered By:

Substance

Reactant, Reagent, Solvent

Role:

Catalyst: (Acetato-κ*O*)(acetato-κ*O*,κ*O*')[(1,2,3,4,5,6-η)-1-methyl-4-(1-

methylethyl)benzene]ruthenium, Bis(dichloro(η^6 -p-cymene)ruthenium), Chloro[(1,2,5,6- η)-1,5-cyclooctadiene] [(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-

yl]ruthenium, Dichloro[(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene]ruthenium, [*N*-[(1 *S*,2 *S*)-2-(Amino-κ*N*)-1,2-diphenylethyl]-4-methylbenzenesulfonamidato-

κ//]chloro[(1,2,3,4,5,6-η)-1-methyl-4-(1-

methylethyl)benzene]ruthenium, Ruthenium(1+), [[4,4-

bis(methoxycarbonyl)-1-cyclopenten-1-

yl]hydroxymethylene]carbonyl(η^5 -2,4-cyclopentadien-1-yl) [tris(1-methylethyl)phosphine]-, tetrafluoroborate(1-) (1:1), Ruthenium(1+), tris(acetonitrile)[(1,2,3,4,5- η)-1,2,3,4,5-

pentamethyl-2,4-cyclopentadien-1-yl]-,

hexafluorophosphate(1-) (1:1), Ruthenium(1+),

tris(acetonitrile)[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, (*OC*-6-11)-hexafluoroantimonate(1-), Ruthenium(2+), tris(acetonitrile)[(1,2,3,4,5,6- η)-1-methyl-4-

(1-methylethyl)benzene]-, (*OC*-6-11)-hexafluoroantimonate(1-) (1:2), (*SP*-5-43)-

Carbonyl chlorohydrobis (tricyclohexylphosphine) ruthenium,

Tris(2,2'-bipyridine)ruthenium(2+) bis(hexafluorophosphate)

Document

Type:

0.

Language: English

Journal

Copyright © 2025 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.

Reactions (127)

View in CAS SciFinder

Steps: 1 Yield: 98%

Steps: 1 Yield: 98%

Steps: 1 Yield: 98%

$$\rightarrow \qquad \qquad \downarrow \qquad \qquad D \\ N \\ O \qquad \qquad \downarrow \qquad \qquad D \\ N \\ O \qquad \qquad \downarrow \qquad \qquad \qquad$$

Double bond geometry shown

Suppliers (7)

Double bond geometry shown

31-116-CAS-14215581

Steps: **1** Yield: **98%**

1.1 **Reagents:** Acetic acid-*d*₄, Silver hexafluoroantimonate **Catalysts:** Bis(dichloro(η⁶-*p*-cymene)ruthenium) **Solvents:** 1,2-Dichloroethane; 4 h, rt

Ruthenium-Catalyzed Oxidant-Free Allylation of Aromatic Ketoximes with Allylic Acetates at Room Temperature

By: Manikandan, Rajendran; et al

Chemistry - A European Journal (2015), 21(40), 13934-13938.

Scheme 2 (1 Reaction)

31-116-CAS-22659494

Steps: 1 Yield: 98%

Cobalt-Catalyzed C8-Dienylation of Quinoline-N-Oxides

1.1 **Reagents:** Acetic acid-*d*

Catalysts: Pivalic acid, Silver hexafluoroantimonate, Bis

(dichloro(η^6 -p-cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 36 h, 110 °C

By: Shukla, Rahul K.; et al

Angewandte Chemie, International Edition (2020), 59(39), 17042-17048.

Experimental Protocols

Scheme 3 (1 Reaction)

➤ Suppliers (10)

Steps: 1 Yield: 98%

Steps: 1 Yield: 97%

Steps: 1 Yield: 97%

31-116-CAS-17932231

Steps: 1 Yield: 98%

.1 **Reagents:** Pivalic acid, Acetic acid- d_4 , Silver hexafluoro

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium) Solvents: 2,2,2-Trifluoroethanol; 24 h, 30 °C

Experimental Protocols

Ru(II)-Catalyzed C-H Amidation of Indoline at the C7-Position Using Dioxazolone as an Amidating Agent: Synthesis of 7-Amino Indoline Scaffold

By: Hande, Akshay Ekanath; et al

Journal of Organic Chemistry (2017), 82(24), 13405-13413.

Scheme 4 (1 Reaction)

D H O

□ Suppliers (92)

31-614-CAS-31446855

Steps: 1 Yield: 98%

1.1 Reagents: Zinc acetate, Acetic acid-d

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Acetonitrile; 16 h, 60 °C

Experimental Protocols

Rapid Construction of Hexacyclic Indolines via the Ru(II)-Catalyzed C-H Activation Initiated Cascade Cyclization of Phenidones with Enynones

By: Li, Yang; et al

Organic Letters (2022), 24(1), 435-440.

Scheme 5 (1 Reaction)

Suppliers (43)

Steps: **1** Yield: **97%**

1.1 **Reagents:** Acetic acid- d_4 , Silver hexafluoroantimonate **Catalysts:** Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 28 h, rt

Temperature-controlled redox-neutral ruthenium(II)-catalyzed regioselective allylation of benzamides with allylic acetates

By: Manikandan, Rajendran; et al

Organic & Biomolecular Chemistry (2016), 14(32), 7691-7701.

Scheme 6 (1 Reaction)

31-116-CAS-15725061

➤ Suppliers (43)

Steps: 1 Yield: 96%

Steps: 1 Yield: 96%

31-116-CAS-17921250

Steps: 1 Yield: 97%

Ruthenium-Catalyzed C-H Benzoxylation of tert-Benzamides with Aromatic Acids by Weak Coordination

1.1 Reagents: Acetic acid-d₄

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 4 h, rt

Experimental Protocols

By: More, Nagnath Yadav; et al

Journal of Organic Chemistry (2017), 82(23), 12691-12700.

Scheme 7 (1 Reaction)

31-116-CAS-18656664

Steps: 1 Yield: 96%

1.1 Reagents: Potassium carbonate, Acetic acid- d₄
 Catalysts: Bis(dichloro(η⁶-p-cymene)ruthenium)
 Solvents: Dimethylformamide; 12 h, 100 °C

Ruthenium(II)-Catalyzed Cyclization of Aromatic Acids with Allylic Acetates via Redox-Free Two-Fold Aromatic/Allylic C-H Activations: Combined Experimental and DFT Studies

By: Jambu, Subramanian; et al

Organic Letters (2018), 20(7), 1982-1986.

Scheme 8 (1 Reaction)

31-116-CAS-20829297

Suppliers (47)

Steps: 1 Yield: 96%

.1 Reagents: Acetic acid-d₄
Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η⁶p-cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Scheme 9 (1 Reaction)

Steps: 1 Yield: 96%

31-614-CAS-25537529

Steps: 1 Yield: 96%

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Ruthenium(2+), tris(acetonitrile)[(1,2,3,4,5,6- η)-1-methyl-4-(1-methylethyl)benzene]-, (OC-6-11)-hexafluoro

antimonate(1-) (1:2)

Solvents: 1,4-Dioxane; 6 h, 120 °C

Experimental Protocols

Ruthenium(II)-Catalyzed Redox-Neutral C-H Alkylation of Arylamides with Unactivated Olefins

By: Shambhavi, Chikkabagilu Nagaraju; et al

Organic Letters (2021), 23(12), 4849-4854.

Scheme 10 (2 Reactions) Steps: 1 Yield: 96%

31-116-CAS-17921249

Steps: 1 Yield: 96%

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 4 h, rt

Experimental Protocols

Ruthenium-Catalyzed C-H Benzoxylation of tert-Benzamides with Aromatic Acids by Weak Coordination

By: More, Nagnath Yadav; et al

Journal of Organic Chemistry (2017), 82(23), 12691-12700.

31-116-CAS-5014594

Steps: 1 Yield: 96%

.1 **Reagents:** Acetic acid- d_4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 6 h, rt

Ruthenium-Catalyzed ortho Alkenylation of Aromatics with Alkenes at Room Temperature with Hydrogen Evolution

Steps: 1 Yield: 96%

By: Manikandan, Rajendran; et al

ACS Catalysis (2016), 6(1), 230-234.

Scheme 11 (1 Reaction)

Suppliers (72)

31-116-CAS-15725062

Steps: 1 Yield: 96%

Reagents: Acetic acid-d₄, Silver hexafluoroantimonate
 Catalysts: Bis(dichloro(η⁶-p-cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 4 h, rt

Temperature-controlled redox-neutral ruthenium(II)catalyzed regioselective allylation of benzamides with allylic acetates

By: Manikandan, Rajendran; et al

Organic & Biomolecular Chemistry (2016), 14(32), 7691-7701.

Steps: 1 Yield: 96%

Steps: 1 Yield: 92%

Steps: 1 Yield: 95%

Steps: 1 Yield: 92-96%

Steps: 1 Yield: 95%

Steps: 1 Yield: 93-95%

Scheme 12 (2 Reactions)

31-116-CAS-18298343

1.1 **Reagents:** Acetic acid-*d*₄

Suppliers (20)

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Ethanol; 6 h, rt

Experimental Protocols

Ruthenium(II)-Catalyzed Redox-Neutral Oxidative Cyclization of Benzimidates with Alkenes with Hydrogen Evolution

By: Manikandan, Rajendran; et al

Organic Letters (2017), 19(24), 6678-6681.

31-614-CAS-40879666

Reagents: Sodium acetate, Acetic acid- d₄

Catalysts: Copper diacetate monohydrate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 2,2,2-Trifluoroethanol; 6 h, 75 °C

Experimental Protocols

Synthesis of 1H-Isoindoles via Ruthenium(II)-Catalyzed Cycliz ation of Benzimidates with Alkenes

By: Shambhavi, Chikkabagilu Nagaraju; et al

Journal of Organic Chemistry (2024), 89(14), 9896-9909.

Scheme 13 (1 Reaction)

31-614-CAS-31013104

.1 Reagents: Acetic acid-d₄

 $\label{lem:catalysts:} Catalysts: Ruthenium (2+), tris (acetonitrile) [(1,2,3,4,5,6-\eta)-1-methyl-4-(1-methylethyl) benzene]-, (\textit{OC}-6-11)-hexafluoro$

antimonate(1-) (1:2)

Solvents: 1,2-Dichloroethane; 6 h, 120 °C

Experimental Protocols

Ruthenium(II)-Catalyzed Distal Weak O-Coordinating C-H Alkylation of Arylacetamides with Alkenes: Combined Experi mental and DFT Studies

By: Sivasakthikumaran, Ramakrishnan; et al

Journal of Organic Chemistry (2019), 84(7), 3977-3989.

Scheme 14 (2 Reactions)

Steps: 1 Yield: 95%

Steps: 1 Yield: 95%

31-116-CAS-19145667 Steps: **1** Yield: **95%**

Reagents: 4-Octyne, Copper diacetate monohydrate
 Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-p-cymene)ruthenium)

Solvents: 1,2-Dichloroethane, Acetic acid-d4; 5 min, 50 °C

Sulfoximine-Assisted One-Pot Unsymmetrical Multiple Annulation of Arenes: A Combined Experimental and Computational Study

By: Ghosh, Koushik; et al

Journal of Organic Chemistry (2018), 83(17), 9667-9681.

31-116-CAS-19145666

.1 Reagents: Copper diacetate monohydrate

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane, Acetic acid-d₄; 5 min, 50 °C

Sulfoximine-Assisted One-Pot Unsymmetrical Multiple Annulation of Arenes: A Combined Experimental and Computational Study

By: Ghosh, Koushik; et al

Journal of Organic Chemistry (2018), 83(17), 9667-9681.

Scheme 15 (1 Reaction)

31-116-CAS-2266825

Steps: 1 Yield: 95%

Double bond geometry shown

Steps: 1 Yield: 93%

1.1 Reagents: Cupric acetate, Acetic acid-d

Suppliers (20)

 $\textbf{Catalysts:} \ \ Potassium \ hexafluorophosphate, \ Bis(dichloro(\eta^6-\textit{p-}$

cymene)ruthenium)

Solvents: 1,4-Dioxane, Acetic acid-d, Water-d₂: 1 h, rt → 100 °C

Experimental Protocols

Ruthenium- and rhodium-catalyzed cross-coupling reaction of acrylamides with alkenes: efficient access to (Z, E)-dienamides

By: Zhang, Jian; et al

Chemical Communications (Cambridge, United Kingdom) (2012), 48(91), 11232-11234.

Scheme 16 (1 Reaction)

31-116-CAS-23703959

Steps: 1 Yield: 95%

1.1 Reagents: Potassium carbonate, Acetic acid-d, N-(2,2-Dimethyl-1-oxopropyl)-L-valine

Catalysts: Triphenylphosphine, Nickel dichloride, Bis(dichloro

 $(\eta^6 - p$ -cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 2 h, 140 °C

Experimental Protocols

Ru(II)-Catalyzed Difluoromethylations of 7-Azaindoles: Access to Novel Fluoro-7-Azaindole Derivatives

By: Zhu, Yan-Ying; et al

Asian Journal of Organic Chemistry (2021), 10(6), 1410-1413.

Steps: 1 Yield: 95%

Steps: 1 Yield: 94%

Steps: 1 Yield: 94%

Scheme 17 (1 Reaction)

Suppliers (65)

31-614-CAS-33435180

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Silver triflate, Silver hexafluoroantimonate, Bis

(dichloro(η⁶-*p*-cymene)ruthenium) **Solvents:** 1,2-Dichloroethane; 24 h, 100 °C

A Ruthenium-Catalyzed Cyclization to Dihydrobenzo[c] phenanthridinone from 7-Azabenzonorbornadienes with Aryl Amides

By: Aravindan, Narasingan; et al

Organic Letters (2022), 24(29), 5260-5265.

Scheme 18 (1 Reaction)

□ Suppliers (15)

31-116-CAS-22369763

Steps: **1** Yield: **94%**

Steps: 1 Yield: 95%

1.1 Reagents: Acetic acid-d₄
 Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η⁶-p-cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Scheme 19 (1 Reaction)

Suppliers (38)

p-cymene)ruthenium); 24 h, 150 °C

31-116-CAS-20829302

Steps: 1 Yield: 94%

1 **Reagents:** Acetic acid-*d*₄ **Catalysts:** Silver acetate, Triphenylphosphine, Bis(dichloro(η^6 -

Experimental Protocols

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Steps: 1 Yield: 94%

Steps: 1 Yield: 61-92%

Steps: 1 Yield: 91%

Scheme 20 (1 Reaction)

📜 Suppliers (5)

31-116-CAS-20829289

Steps: 1 Yield: 94%

Reagents: Acetic acid- d_4 Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η^6 -p-cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Scheme 21 (2 Reactions)

H₂N D

Steps: 1 Yield: 92%

Steps: 1 Yield: 61%

Suppliers (115)

31-116-CAS-21553465

.1 **Reagents:** Cupric acetate, Acetic acid-*d*₄, Silver tetrafluo roborate

Catalysts: Bis(dichloro(η⁶-*p*-cymene)ruthenium) **Solvents:** 1,2-Dichloroethane; 5 h, 100 °C

One-Pot Synthesis of Orange-Red Fluorescent Dimeric 2H-Pyrrolo[2,3-c]isoquinoline-2,5(3H)-diones from Benzamides and Maleimides via Ru(II)-Catalyzed Sequential C-C/C-N/C-C Bond Formation

By: Jaiswal, Yogesh; et al

Organic Letters (2020), 22(4), 1605-1610.

31-614-CAS-34763786

.1 Reagents: Silver carbonate, Acetic acid- d_4

Catalysts: Sodium acetate, Silver hexafluoroantimonate, Bis

(dichloro(η⁶-*p*-cymene)ruthenium) **Solvents:** 1,2-Dichloroethane; 12 h, 110 °C

Experimental Protocols

Ru(II)-catalyzed external auxiliary-free primary amide-directed inverse Sonogashira reaction on (hetero)arylamides

By: Baghel, Akanksha Singh; et al

Chemical Communications (Cambridge, United Kingdom) (2022), 58(80), 11304-11307.

Scheme 22 (1 Reaction)

Suppliers (3)

Steps: 1 Yield: 91%

31-116-CAS-20829282

Steps: 1 Yield: 91%

1.1 **Reagents:** Acetic acid-d₄

Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η^6 - ρ -cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Scheme 23 (1 Reaction)

➤ Suppliers (8)

31-116-CAS-20829299

Steps: 1 Yield: 91%

Reagents: Acetic acid- d_4 Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η^6 -p-cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Scheme 24 (1 Reaction)

> Suppliers (9)

Steps: 1 Yield: 90%

31-614-CAS-42973757 Steps: 1 Yield: 90%

1.1 Reagents: Acetic acid-d

Catalysts: Ruthenium(1+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, hexafluoro

phosphate(1-) (1:1)

Solvents: Methanol; 16 h, 80 °C

Experimental Protocols

Rhodium(III)-catalyzed direct C-H activation of 2-aryl-3H-indoles: a strategy for 4- heteroaryl pyrazole synthesis

By: Yang, Zi; et al

Organic & Biomolecular Chemistry (2025), 23(2), 323-327.

Scheme 25 (1 Reaction)

Suppliers (24)

Steps: 1 Yield: 90%

Steps: 1 Yield: 89%

Steps: 1 Yield: 89%

Steps: 1 Yield: 89%

31-116-CAS-447198

Steps: 1 Yield: 90%

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Dichloromethane, Acetonitrile-d₃; 1 h, 70 °C; 1 h,

150 °C

1.2 **Reagents:** Hydrochloric acid **Solvents:** Dichloromethane, Water

1.3 **Reagents:** Potassium carbonate **Solvents:** Water; neutralized

Experimental Protocols

Regioselectivity in C-H activation: reagent control in cyclomet allation of 2-(1-naphthyl)-pyridine

By: Kondrashov, Mikhail; et al

Dalton Transactions (2016), 45(2), 525-531.

Scheme 26 (1 Reaction)

Suppliers (55)

31-116-CAS-20829287

Steps: 1 Yield: 89%

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η^6 -p-cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Scheme 27 (1 Reaction)

➤ Suppliers (12)

31-116-CAS-20829301

Steps: 1 Yield: 89%

Reagents: Acetic acid-d₄
 Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η⁶-p-cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Scheme 28 (1 Reaction)

Absolute stereochemistry shown

HN (S) N

Absolute stereochemistry shown

Steps: 1 Yield: 89%

Steps: 1 Yield: 89%

Steps: 1 Yield: 89%

31-614-CAS-24184220

Steps: 1 Yield: 89%

Reagents: Acetic acid-d₄

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Toluene; 1 h, rt → 80 °C

Experimental Protocols

Late-stage peptide C-H alkylation for bioorthogonal C-H activation featuring solid phase peptide synthesis

By: Schischko, Alexandra; et al

Nature Communications (2019), 10(1), 1-9.

Scheme 29 (1 Reaction)

31-116-CAS-18349311

Steps: 1 Yield: 89%

Ruthenium-Catalyzed Difluoroalkylation of 8-Aminoquinoline Amides at the C5-Position

By: Chen, Changpeng; et al

European Journal of Organic Chemistry (2017), 2017(46),

6947-6950.

Reagents: Acetic acid-d

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium) Solvents: 1,2-Dichloroethane; 48 h, 120 °C

Scheme 30 (1 Reaction)

31-116-CAS-18349316

Steps: 1 Yield: 89%

Reagents: Acetic acid-d Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium); 48 h, 120 °C

Ruthenium-Catalyzed Difluoroalkylation of 8-Aminoquinoline Amides at the C5-Position

By: Chen, Changpeng; et al

European Journal of Organic Chemistry (2017), 2017(46), 6947-6950.

Scheme 31 (1 Reaction)

Suppliers (38)

Steps: 1 Yield: 89%

Steps: 1 Yield: 88%

Steps: 1 Yield: 53-88%

31-116-CAS-21543805

Steps: 1 Yield: 89%

3teps. 1 field.

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Sodium acetate, Bis(dichloro($η^6$ -p-cymene) ruthenium), [1,1,1-Trifluoro-N-[(trifluoromethyl)sulfonyl-κO]

methanesulfonamidato-κ*O*]silver **Solvents:** 1,2-Dichloroethane; 20 h, 40 °C

Ru(II)-Catalyzed C-H Hydroxyalkylation and Mitsunobu Cycliz ation of N-Aryl Phthalazinones

By: Kim, Kunyoung; et al

Journal of Organic Chemistry (2020), 85(4), 2520-2531.

Scheme 32 (1 Reaction)

📜 Suppliers (48)

31-116-CAS-20829300

Steps: 1 Yield: 89%

.1 Reagents: Acetic acid-d₄ Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η⁶-p-cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Scheme 33 (1 Reaction)

31-116-CAS-20829288

Steps: 1 Yield: 88%

Reagents: Acetic acid-d₄
 Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η⁶-p-cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Scheme 34 (3 Reactions)

> Supplier (1)

Double bond geometry shown

31-116-CAS-19337588

Steps: 1 Yield: 88%

9337588 Steps: 1 Yield: 88

1.1 **Reagents:** Acetic acid-*d*

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: 1,2-Dichloroethane; rt; rt → 110 °C; 2 h, 110 °C

Experimental Protocols

Facile preparation of (2Z,4E)-dienamides by the olefination of electrondeficient alkenes with allyl acetate

By: Ding, Liyuan; et al

Journal of Visualized Experiments (2017), (124), e55766/1-e55766/9.

Steps: 1 Yield: 88%

Steps: 1 Yield: 88%

31-116-CAS-16131638

Steps: 1 Yield: 88%

Olefination of Electron-Deficient Alkenes with Allyl Acetate: Stereo- and Regioselective Access to (2Z,4E)-Dienamides

Reagents: Acetic acid-d

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; rt → 110 °C; 2 h, 110 °C; cooled

By: Li, Feifei; et al

Organic Letters (2016), 18(18), 4582-4585.

Experimental Protocols

31-116-CAS-17212735

Steps: 1 Yield: 53%

Reagents: Acetic acid-d4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: Tetrahydrofuran; 3 h, 100 °C

Experimental Protocols

Amide Directed Cross-Coupling between Alkenes and Alkynes: A Regio- and Stereoselective Approach to Substituted (2Z,4Z)-Dienamides

By: Meng, Keke; et al

Organic Letters (2017), 19(10), 2498-2501.

Scheme 35 (1 Reaction)

Suppliers (4)

31-614-CAS-26207804

Steps: 1 Yield: 88%

Reagents: Acetic acid- d_4 , Ammonium persulfate

Catalysts: Potassium hexafluorophosphate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 22 h, 110 °C

Experimental Protocols

Ruthenium(II)-Catalyzed C-H Oxygenations of Reusable Sulfox imine Benzamides

By: Raghuvanshi, Keshav; et al

Organic Letters (2017), 19(6), 1278-1281.

Scheme 36 (1 Reaction)

📜 Suppliers (4)

31-614-CAS-27929722

Steps: 1 Yield: 88%

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of

Reagents: Acetic acid-d₄

Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η⁶-

p-cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Steps: 1 Yield: 87%

Steps: 1 Yield: 86%

Steps: 1 Yield: 86%

Scheme 37 (1 Reaction)

31-116-CAS-20829294

Steps: 1 Yield: 87%

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

1.1 Reagents: Acetic acid-d4

> Suppliers (26)

Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η^6 -p-cymene)ruthenium); 24 h, 150 °C

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Experimental Protocols

Scheme 38 (1 Reaction)

31-116-CAS-20829281

Steps: 1 Yield: 86%

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η^6 -p-cymene)ruthenium); 24 h, 150 °C

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Experimental Protocols

Scheme 39 (1 Reaction)

31-116-CAS-20829283

Steps: 1 Yield: 86%

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η^6 - ρ -cymene)ruthenium); 24 h, 150 °C

By: Zhao, Liang-Liang; et al

Experimental Protocols

Organic Letters (2019), 21(24), 10023-10027.

Steps: 1 Yield: 86%

Steps: 1 Yield: 85%

Steps: 1 Yield: 85%

Scheme 40 (1 Reaction)

$$\bigcap_{N \in \mathbb{N}} \bigcap_{D} \bigcap_{$$

Suppliers (10)

31-116-CAS-20829303

Steps: 1 Yield: 86%

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

1.1 Reagents: Acetic acid-d₄

Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η⁶-

p-cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

By: Zhao, Liang-Liang; et al
Organic Letters (2019), 21(24), 10023-10027.

Scheme 41 (1 Reaction)

Br N

➤ Suppliers (14)

31-614-CAS-25980850

Steps: 1 Yield: 85%

Ruthenium-Catalyzed Remote C-H Sulfonylation of N-Aryl-2aminopyridines with Aromatic Sulfonyl Chlorides

1.1 Reagents: Lithium carbonate (Li₂CO₃), Acetic acid-*d* Catalysts: Bis(dichloro(η⁶-*p*-cymene)ruthenium)

Solvents: Toluene; 24 h, 120 °C

By: Ramesh, Balu; et al

Organic Letters (2017), 19(21), 6000-6003.

Scheme 42 (1 Reaction)

31-116-CAS-18984194

Steps: 1 Yield: 85%

Ruthenium(II)-Catalyzed Regioselective-Controlled Allenyla tion/Cyclization of Benzimides with Propargyl Alcohols

1.1 Reagents: Acetic acid-*d*₄, Disodium phosphate Catalysts: Ruthenium(2+), tris(acetonitrile)[(1,2,3,4,5,6-η)-1-

methyl-4-(1-methylethyl)benzene]-, (*OC*-6-11)-hexafluoro

antimonate(1-) (1:2)

Suppliers (16)

Solvents: 1,2-Dichloroethane; 12 h, 60 °C

Experimental Protocols

By: Anukumar, Adapa; et al

Journal of Organic Chemistry (2018), 83(15), 8567-8580.

Steps: 1 Yield: 84%

Steps: 1 Yield: 82%

Steps: 1 Yield: 82%

Scheme 43 (1 Reaction)

Steps: 1 Yield: 84%

➤ Suppliers (65)

Suppliers (49)

Relative stereochemistry shown

31-614-CAS-33435179

1.1 **Reagents:** Acetic acid-d₄

Catalysts: Silver triflate, Silver hexafluoroantimonate, Bis

(dichloro(η⁶-*p*-cymene)ruthenium) **Solvents:** Water; 24 h, 100 °C A Ruthenium-Catalyzed Cyclization to Dihydrobenzo[c] phenanthridinone from 7-Azabenzonorbornadienes with Aryl Amides

By: Aravindan, Narasingan; et al

Organic Letters (2022), 24(29), 5260-5265.

Scheme 44 (1 Reaction)

$$\begin{array}{c} N \\ N \\ \end{array}$$

$$\begin{array}{c} N \\ \end{array}$$

31-116-CAS-20829285

1.1

Steps: 1 Yield: 82%

Reagents: Acetic acid- d_4

Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η^6 -p-cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Scheme 45 (1 Reaction)

31-614-CAS-27890837

Steps: 1 Yield: 82%

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

1.1 **Reagents:** Acetic acid-d₄

Suppliers (18)

Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η^6 -p-cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Steps: 1 Yield: 81%

Steps: 1 Yield: 81%

Steps: 1 Yield: 81%

Scheme 46 (1 Reaction)

$$\longrightarrow \qquad \qquad \bigcap_{D} \qquad$$

Suppliers (93)

31-116-CAS-20829296

Steps: 1 Yield: 81%

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of **Arenes**

Reagents: Acetic acid- d_4

Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η^6 p-cymene)ruthenium); 24 h, 150 °C

By: Zhao, Liang-Liang; et al

Experimental Protocols

Organic Letters (2019), 21(24), 10023-10027.

Scheme 47 (1 Reaction)

31-116-CAS-20829280

Steps: 1 Yield: 81%

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of

Reagents: Acetic acid-d4

Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η^6 p-cymene)ruthenium); 24 h, 150 °C

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Experimental Protocols

Scheme 48 (1 Reaction)

31-116-CAS-20829292

Steps: 1 Yield: 81%

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

1.1 Reagents: Acetic acid-d₄

Suppliers (65)

Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η⁶*p*-cymene)ruthenium); 24 h, 150 °C

By: Zhao, Liang-Liang; et al

Experimental Protocols

Organic Letters (2019), 21(24), 10023-10027.

Steps: 1 Yield: 80%

Steps: 1 Yield: 80%

Steps: 1 Yield: 80%

Scheme 49 (1 Reaction)

₩ Suppliers (29)

31-116-CAS-20829304

Steps: 1 Yield: 80%

: 80% Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η⁶-

p-cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Scheme 50 (1 Reaction)

31-116-CAS-22922501

Steps: 1 Yield: 80%

Ru(II)-Catalyzed C-H addition and oxidative cyclization of 2aryl quinazolinones with activated aldehydes

1.1 Reagents: Sodium acetate, Acetic acid-d₄

Suppliers (21)

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium) **Solvents:** 1,2-Dichloroethane; rt; 20 h, 80 °C

Experimental Protocols

By: Choi, Jin Ho; et al

Organic & Biomolecular Chemistry (2020), 18(47), 9611-9622.

Scheme 51 (1 Reaction)

> Suppliers (6)

31-116-CAS-18735636

Steps: 1 Yield: 80%

Remote alkylation of N-(quinolin-8-yl)benzamides with alkyl bromides via ruthenium(ii)-catalyzed C-H bond activation

1.1 **Reagents:** Potassium acetate, Acetic acid- d_4

Catalysts: Triphenylphosphine, Bis(dichloro(η^6 -p-cymene)

ruthenium)

Solvents: 1,2-Dichlorobenzene; 36 h, 120 °C

Experimental Protocols

By: Mariappan, Arumugam; et al

Organic & Biomolecular Chemistry (2018), 16(18), 3419-3427.

Steps: 1 Yield: 80%

Steps: 1 Yield: 79%

Steps: 1 Yield: 78%

Scheme 52 (1 Reaction)

≒ Suppliers (68)

31-116-CAS-20829293

Steps: 1 Yield: 80%

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

1.1 **Reagents:** Acetic acid- d_4

 $\textbf{Catalysts:} \ \, \textbf{Silver} \ \, \textbf{acetate}, \, \textbf{Triphenylphosphine}, \, \textbf{Bis}(\textbf{dichloro}(\eta^6 - \eta^6 - \eta^$

p-cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Scheme 53 (1 Reaction)

□ Suppliers (80)

31-116-CAS-20829291

Steps: 1 Yield: 79%

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η^6 -p-cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Scheme 54 (1 Reaction)

31-116-CAS-20829298

Steps: 1 Yield: 78%

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η^6 - ρ -cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Steps: 1 Yield: 74%

Steps: 1 Yield: 73%

Steps: 1 Yield: 72%

Scheme 55 (1 Reaction)

Steps: 1 Yield: 74%

31-085-CAS-16939182

Reagents: Potassium acetate, Acetic acid-d
 Catalysts: Bis(dichloro(η⁶-p-cymene)ruthenium)

 Solvents: 1,4-Dioxane; rt → 120 °C; 16 h, 120 °C

Experimental Protocols

Remote C6-Selective Ruthenium-Catalyzed C-H Alkylation of Indole Derivatives via σ-Activation

By: Leitch, Jamie A.; et al

ACS Catalysis (2017), 7(4), 2616-2623.

Scheme 56 (1 Reaction)

31-614-CAS-42086613

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 2,2,2-Trifluoroethan-*1*,*1-d*₂-ol-*d*; 3 h, 100 °C

Experimental Protocols

Steps: 1 Yield: 73%

Ru(II)-catalyzed C7 trifluoro methylthiolation and thioarylation of indolines using bench-stable reagents

By: Sumit; et al

Journal of Organic Chemistry (2024), 89(21), 15893-15900.

Scheme 57 (1 Reaction)

31-116-CAS-16445132

145132 Steps: 1 Yield: 72%

1.1 **Reagents:** Potassium carbonate, Acetic acid-*d* **Catalysts:** Bis(dichloro(η⁶-*p*-cymene)ruthenium)

Solvents: Water-*d*₂; 20 h, 100 °C

Mechanistic insight into ruthenium catalysed meta-sulfon ation of 2-phenylpyridine

By: Marce, Patricia; et al

Catalysis Science & Technology (2016), 6(19), 7068-7076.

Steps: 1 Yield: 72%

Steps: 1 Yield: 69%

Scheme 58 (1 Reaction)

$$\xrightarrow{\mathsf{D}}$$

Suppliers (80)

31-614-CAS-37169162

Reagents: Cupric acetate, Acetic acid- d_4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: 1,1,2,2-Tetrachloroethane; 4 h, 120 °C

Experimental Protocols

Ru(II)/Ru(IV)-catalyzed C(sp²)-H allylation with alkene difunctionalization to access isochroman-1-imines

By: Joshi, Ashish; et al

Chemical Communications (Cambridge, United Kingdom) (2023), 59(62), 9497-9500.

Scheme 59 (1 Reaction)

Steps: 1 Yield: 72%

31-614-CAS-25968650

Steps: 1 Yield: 70%

Reagents: Acetic acid-d4

Catalysts: Ruthenium(2+), tris(acetonitrile)[(1,2,3,4,5,6-η)-1methyl-4-(1-methylethyl)benzene]-, (OC-6-11)-hexafluoro

antimonate(1-) (1:2)

Solvents: 1,2-Dichloroethane; 12 h, 120 °C

Experimental Protocols

Ruthenium(II)-Catalyzed Distal Weak O-Coordinating C-H Alkylation of Arylacetamides with Alkenes: Combined Experi mental and DFT Studies

By: Sivasakthikumaran, Ramakrishnan; et al

Journal of Organic Chemistry (2019), 84(7), 3977-3989.

Scheme 60 (1 Reaction)

31-085-CAS-15725063

Steps: 1 Yield: 69%

Reagents: Acetic acid- d_4 , Silver hexafluoroantimonate **Catalysts:** Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 36 h, rt

Temperature-controlled redox-neutral ruthenium(II)catalyzed regioselective allylation of benzamides with allylic acetates

By: Manikandan, Rajendran; et al

Organic & Biomolecular Chemistry (2016), 14(32), 7691-7701.

Steps: 1 Yield: 67%

Steps: 1 Yield: 64%

Scheme 61 (1 Reaction)

Suppliers (74)

31-116-CAS-20829295

Steps: 1 Yield: 67%

Reagents: Acetic acid-d₄ Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η^6 p-cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of **Arenes**

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Scheme 62 (1 Reaction)

31-614-CAS-40879671

Steps: 1 Yield: 64%

Reagents: Sodium acetate, Acetic acid- d_4

Catalysts: Copper diacetate monohydrate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: 2,2,2-Trifluoroethanol; 5 min; 16 h, 75 °C

Experimental Protocols

Synthesis of 1H-Isoindoles via Ruthenium(II)-Catalyzed Cycliz ation of Benzimidates with Alkenes

By: Shambhavi, Chikkabagilu Nagaraju; et al

Journal of Organic Chemistry (2024), 89(14), 9896-9909.

Scheme 63 (1 Reaction)

31-116-CAS-20829290

Steps: 1 Yield: 64%

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

Reagents: Acetic acid- d_4 1.1

Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η⁶-

p-cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Steps: 1 Yield: 60%

Scheme 64 (1 Reaction)

$$\longrightarrow$$
 \longrightarrow

Suppliers (90)

31-116-CAS-20829286

Steps: 1 Yield: 60%

Reagents: Acetic acid- d_4 Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η^6 -p-cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of Arenes

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Scheme 65 (1 Reaction)

➤ Suppliers (6)

➤ Suppliers (66)

Steps: 1 Yield: 60%

Steps: 1 Yield: 55%

31-085-CAS-18735637

Steps: **1** Yield: **60%**

1.1 **Reagents:** Potassium acetate, Acetic acid- d_4

Catalysts: Triphenylphosphine, Bis(dichloro(η^6 -p-cymene)

ruthenium)

Solvents: 1,2-Dichlorobenzene; 36 h, 120 °C

Experimental Protocols

Remote alkylation of N-(quinolin-8-yl)benzamides with alkyl bromides via ruthenium(ii)-catalyzed C-H bond activation

By: Mariappan, Arumugam; et al

Organic & Biomolecular Chemistry (2018), 16(18), 3419-3427.

Scheme 66 (1 Reaction)

Suppliers (103)

31-614-CAS-24200512

Steps: 1 Yield: 55%

.1 **Reagents:** Cupric acetate, Acetic acid-*d*₄, (2-Propen-1-ylsulfonyl)benzene, Silver hexafluoroantimonate **Catalysts:** Bis(dichloro(η⁶-*p*-cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 5 min, rt; 5 min, rt; 10 h, 110 °C

Experimental Protocols

Ruthenium(II)-Catalyzed Regioselective C-H Olefination of Aromatic Ketones and Amides with Allyl Sulfones

By: Dana, Suman; et al

Organic Letters (2021), 23(17), 6855-6860.

Steps: 1 Yield: 55%

Steps: 1 Yield: 50%

Scheme 67 (1 Reaction)

Suppliers (80)

📜 Suppliers (16)

31-116-CAS-18984195

Steps: 1 Yield: 55%

Ruthenium(II)-Catalyzed Regioselective-Controlled Allenyla tion/Cyclization of Benzimides with Propargyl Alcohols

Reagents: Acetic acid- d_4 , Disodium phosphate

Catalysts: Ruthenium(2+), tris(acetonitrile)[(1,2,3,4,5,6-η)-1methyl-4-(1-methylethyl)benzene]-, (OC-6-11)-hexafluoro antimonate(1-) (1:2)

Solvents: 1,2-Dichloroethane; 12 h, 60 °C

Experimental Protocols

By: Anukumar, Adapa; et al

Journal of Organic Chemistry (2018), 83(15), 8567-8580.

Scheme 68 (1 Reaction)

31-116-CAS-21553464

Steps: 1 Yield: 54%

Reagents: Cupric acetate, Acetic acid-d4, Silver tetrafluo roborate

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium) Solvents: 1,2-Dichloroethane; 5 h, 100 °C

One-Pot Synthesis of Orange-Red Fluorescent Dimeric 2H-Pyrrolo[2,3-c]isoquinoline-2,5(3H)-diones from Benzamides and Maleimides via Ru(II)-Catalyzed Sequential C-C/C-N/C-C **Bond Formation**

By: Jaiswal, Yogesh; et al

Organic Letters (2020), 22(4), 1605-1610.

Scheme 69 (1 Reaction)

31-116-CAS-20829284

Steps: 1 Yield: 50%

Ruthenium-Catalyzed ortho- and meta-H/D Exchange of **Arenes**

Reagents: Acetic acid-d4

Catalysts: Silver acetate, Triphenylphosphine, Bis(dichloro(η^6 p-cymene)ruthenium); 24 h, 150 °C

Experimental Protocols

By: Zhao, Liang-Liang; et al

Organic Letters (2019), 21(24), 10023-10027.

Steps: 1 Yield: 48%

Steps: 1 Yield: 40%

Scheme 70 (1 Reaction)

31-116-CAS-19145668

Reagents: Copper diacetate monohydrate

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane, Acetic acid-d₄; 10 min, rt

Sulfoximine-Assisted One-Pot Unsymmetrical Multiple Annulation of Arenes: A Combined Experimental and **Computational Study**

By: Ghosh, Koushik; et al

Journal of Organic Chemistry (2018), 83(17), 9667-9681.

Scheme 71 (1 Reaction)

31-614-CAS-26470945

Steps: 1 Yield: 46%

Steps: 1 Yield: 48%

Reagents: Acetic acid-d4

Catalysts: Ruthenium(2+), tris(acetonitrile)[$(1,2,3,4,5,6-\eta)-1$ methyl-4-(1-methylethyl)benzene]-, (OC-6-11)-hexafluoro

antimonate(1-) (1:2)

Solvents: 1,4-Dioxane; 6 h, 120 °C

Experimental Protocols

Ruthenium(II)-Catalyzed Redox-Neutral C-H Alkylation of Arylamides with Unactivated Olefins

By: Shambhavi, Chikkabagilu Nagaraju; et al Organic Letters (2021), 23(12), 4849-4854.

Scheme 72 (1 Reaction)

31-116-CAS-6495796

Steps: 1 Yield: 40%

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -pcymene)ruthenium)

Solvents: Isopropanol, Acetic acid-d₄; 24 h, 130 °C

Experimental Protocols

Ruthenium-Catalyzed Cyclization of Anilides with Substituted Propiolates or Acrylates: An Efficient Route to 2-Quinolinones

By: Manikandan, Rajendran; et al

Organic Letters (2014), 16(13), 3568-3571.

Steps: 1 Yield: 40%

Steps: 1 Yield: 35%

Scheme 73 (1 Reaction)

$$\longrightarrow \mathbb{N} \to \mathbb{N}$$

31-116-CAS-684770

Steps: 1 Yield: 40%

1.1 Reagents: Silver acetate

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Suppliers (74)

Solvents: 1,2-Dichloroethane, Acetic acid- d_4 ; > 1 s, rt; 14 h,

120 °C

Experimental Protocols

Ruthenium-catalyzed ortho alkenylation of aromatic nitriles with activated alkenes via C-H bond activation

By: Reddy, Mallu Chenna; et al

Chemical Communications (Cambridge, United Kingdom) (2015), 51(53), 10738-10741.

Scheme 74 (1 Reaction) Steps: 1 Yield: 38%

Double bond geometry shown

➤ Suppliers (17)

Double bond geometry shown

Steps: 1 Yield: 38%

31-614-CAS-30931921

1.1 Reagents: Dipotassium phosphate

Catalysts: Silver hexafluorophosphate, Silver hexafluoroanti

monate, Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: 1,2-Dichloroethane; > 1 s, rt

1.2 **Reagents:** Acetic acid-*d*₄; 16 h, 120 °C

Experimental Protocols

Regio- and Diastereoselective Access to Fused Isoxazolidines via Ru(II)-Catalyzed C-H Activation of Nitrones and Coupling with Perfluoroalkylolefins

By: Li, Yunyun; et al

Organic Letters (2018), 20(2), 437-440.

Scheme 75 (1 Reaction)

Suppliers (49)

> Suppliers (53)

31-116-CAS-20668512

Steps: 1 Yield: 35%

1.1 **Reagents:** Cupric acetate, Acetic acid- d_4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 1 h, 120 °C

Experimental Protocols

Construction of Pyranoisoquinolines via Ru(II)-Catalyzed Unsymmetrical Double Annulation of N-Methoxybenzamides with Unactivated Alkynes

By: Guntreddi, Tirumaleswararao; et al

Journal of Organic Chemistry (2019), 84(20), 13033-13044.

Steps: 1 Yield: 33%

Steps: 1 Yield: 33%

Steps: 1 Yield: 26%

Scheme 76 (1 Reaction)

📜 Suppliers (4)

📜 Suppliers (47)

31-116-CAS-19145579

Steps: 1 Yield: 33%

Reagents: Cupric acetate, Acetic acid- d_4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,4-Dioxane; 6 h, 120 °C

Experimental Protocols

One-Pot Unsymmetrical {[4 + 2] and [4 + 2] } Double Annula tions of o/o'-C-H Bonds of Arenes: Access to Unusual Pyranoisoquinolines

By: Shankar, Majji; et al

Organic Letters (2018), 20(17), 5144-5148.

Scheme 77 (1 Reaction)

31-116-CAS-19145580

Steps: 1 Yield: 33%

Reagents: Cupric acetate, Acetic acid- d_4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,4-Dioxane; 6 h, 120 °C

Experimental Protocols

One-Pot Unsymmetrical {[4 + 2] and [4 + 2] } Double Annula tions of o/o'-C-H Bonds of Arenes: Access to Unusual Pyranoisoquinolines

By: Shankar, Majji; et al

Organic Letters (2018), 20(17), 5144-5148.

Scheme 78 (1 Reaction)

31-116-CAS-2327109

Steps: 1 Yield: 26%

Reagents: Cupric acetate

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: 1,4-Dioxane, Acetic acid-d; rt → 135 °C; 2 h, 135 °C;

cooled

Experimental Protocols

Stereo- and Chemoselective Cross-Coupling between Two Electron-Deficient Acrylates: An Efficient Route to (Z, E)-**Muconate Derivatives**

By: Hu, Xu-Hong; et al

Journal of the American Chemical Society (2015), 137(9), 3169-3172.

Steps: 1 Yield: 24%

Steps: 1 Yield: 15%

Steps: 1 Yield: 13%

Scheme 79 (1 Reaction)

$$+$$
 H_2N \rightarrow O

📜 Suppliers (115)

31-614-CAS-34763780

Suppliers (67)

Steps: 1 Yield: 24%

1.1 Reagents: Silver carbonate, Acetic acid- d_4 Catalysts: Sodium acetate, Silver hexafluoroantimonate, Bis (dichloro(η^6 -p-cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 12 h, 110 °C

Experimental Protocols

Ru(II)-catalyzed external auxiliary-free primary amide-directed inverse Sonogashira reaction on (hetero)arylamides

By: Baghel, Akanksha Singh; et al

Chemical Communications (Cambridge, United Kingdom) (2022), 58(80), 11304-11307.

Scheme 80 (1 Reaction)

31-116-CAS-19862499

Steps: 1 Yield: 15%

Reagents: Cupric acetate, Acetic acid-*d*₄
Catalysts: Ruthenium(1+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5-η)-1,2,3,4,5-η)-1,2,3,4,5-η-1,2,3,4

Solvents: 2-Methyl-2-butanol; 10 h, 90 °C

Rhodium(III)-Catalyzed ortho-Alkenylation of Anilides with Maleimides

By: Tamizmani, Masilamani; et al

ChemistrySelect (2019), 4(11), 2976-2981.

Scheme 81 (1 Reaction)

31-116-CAS-20966837

Steps: 1 Yield: 13%

1.1 **Reagents:** Methanol- d_4 , Acetic acid- d_4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 5 h, 120 °C

Experimental Protocols

Ru(II)/Rh(III)-Catalyzed C(sp³)-C(sp³) Bond Formation through C(sp³)-H Activation: Selective Linear Alkylation of 8- Methylqu inolines and Ketoximes with Olefins

By: Kumar, Rohit; et al

Journal of Organic Chemistry (2020), 85(2), 1181-1192.

Steps: 1

Steps: 1

Steps: 1

Scheme 82 (1 Reaction)

Steps: 1

Suppliers (72)

31-614-CAS-27190133

1.1 **Reagents:** Acetic acid-d₄

 $\textbf{Catalysts:} \ \, \textbf{Silver hexafluoroantimonate, Bis(dichloro(} \eta^6\text{-}\textit{p-}$

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 10 min, 130 °C; 130 °C → rt

Experimental Protocols

Exceedingly Fast, Direct Access to Dihydroiso quinolino[1,2-b] quinazolinones through a Ruthenium(II)-Catalyzed Redox-Neutral C-H Allylation/Hydroamination Cascade

By: Bairy, Gurupada; et al

Organic Letters (2018), 20(22), 7107-7112.

Scheme 83 (1 Reaction)

≒ Suppliers (91)

Suppliers (3)

31-116-CAS-17765562

1.1 Reagents: Potassium carbonate, Acetic acid-d Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: 2-Methyl-2-butanol; 24 h, 80 °C

Experimental Protocols

Steps: 1

Ruthenium-Catalyzed Alkynylation of Benzoic Acids Mediated by a Weakly Coordination-Directing Auxiliary

By: Chen, Changpeng; et al

European Journal of Organic Chemistry (2017), 2017(32), 4749-4752.

Scheme 84 (1 Reaction)

➤ Suppliers (2)

Supplier (1)

31-614-CAS-24916729

.1 **Reagents:** Cupric acetate, Acetic acid-*d*₄, Silver hexafluoro antimonate

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: 1,4-Dioxane; 6 h, 120 °C

Experimental Protocols

Steps: 1 Double annulation of ortho- and peri-C-H bonds of fused (hetero)arenes to unusual oxepino-pyridines

By: Shankar, Majji; et al

Chemical Science (2020), 11(39), 10770-10777.

Scheme 85 (1 Reaction)

Steps: 1

$$+ \qquad \qquad + \qquad \qquad + \qquad \qquad + \qquad \qquad + \qquad \qquad \\$$

31-116-CAS-23773461

Suppliers (76)

Steps: 1

Suppliers (115)

Reagents: Acetic acid, Cupric acetate, Acetic acid-d₄, Silver tetrafluoroborate

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium) Solvents: 1,2-Dichloroethane; 8 h, 100 °C

Experimental Protocols

Ru(II)-Catalyzed Controlled Cross-Dehydrogenative Coupling of Benzamides with Activated Olefins via Weakly Coordinating **Primary Amides**

Double bond geometry shown

By: Baghel, Akanksha Singh; et al

Journal of Organic Chemistry (2021), 86(14), 9744-9754.

Scheme 86 (1 Reaction)

Steps: 1

31-614-CAS-25589872

Steps: 1

Reagents: Methanol- d_4 , Acetic acid- d_4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 5 h, 120 °C

Experimental Protocols

Ru(II)/Rh(III)-Catalyzed C(sp³)-C(sp³) Bond Formation through C(sp³)-H Activation: Selective Linear Alkylation of 8- Methylqu inolines and Ketoximes with Olefins

By: Kumar, Rohit; et al

Journal of Organic Chemistry (2020), 85(2), 1181-1192.

31-116-CAS-16122782

Steps: 1

Reagents: Acetic acid-d

Catalysts: Cesium acetate, Silver hexafluoroantimonate, Bis (dichloro(η^6 -p-cymene)ruthenium)

Solvents: 1,2-Dichloroethane; > 1 s, rt

1.2 12 h, 40 °C

Experimental Protocols

Ruthenium(II)-Catalyzed C-H Activation of Imidamides and Divergent Couplings with Diazo Compounds: Substrate-Controlled Synthesis of Indoles and 3 H-Indoles

By: Li, Yunyun; et al

Angewandte Chemie, International Edition (2016), 55(39), 11877-11881.

Scheme 88 (1 Reaction)

31-614-CAS-28578657

Steps: 1

Ruthenium-Catalyzed Hydroarylation and One-Pot Twofold **Unsymmetrical C-H Functionalization of Arenes**

Reagents: Cupric acetate, Silver hexafluoroantimonate **Catalysts:** Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Methanol-d₄, Acetic acid-d₄; 6 h, rt

By: Ghosh, Koushik; et al

Angewandte Chemie, International Edition (2016), 55(27), 7821-7825.

Scheme 89 (1 Reaction)

Suppliers (58)

31-614-CAS-25166685

Steps: 1

Electronic Nature of Ketone Directing Group as a Key To Control C-2 vs C-4 Alkenylation of Indoles

Reagents: Acetic acid-d₄, Copper diacetate monohydrate Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -pcymene)ruthenium)

Solvents: 1,2-Dichloroethane; 6 h, 80 °C

By: Lanke, Veeranjaneyulu; et al

Organic Letters (2016), 18(21), 5496-5499.

Experimental Protocols

Scheme 90 (1 Reaction)

31-116-CAS-24239608

Steps: 1

Ruthenium(II)-catalyzed regioselective direct C4- and C5diamidation of indoles and mechanistic studies

Reagents: Acetic acid-d4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Chemical Science (2021), 12(34), 11427-11437.

By: Devkota, Shreedhar; et al

Experimental Protocols

Solvents: 2,2,2-Trifluoroethanol; 20 h, 50 °C

Scheme 91 (1 Reaction)

Steps: 1

31-614-CAS-24290831

Steps: 1

Sulfur and Nitrogen Modulated One-Pot Double Annulation of Arenes

1.1 Reagents: Acetic acid-d4

Catalysts: Cupric acetate, Silver hexafluoroantimonate, Bis

(dichloro(η^6 -p-cymene)ruthenium) **Solvents:** 1,4-Dioxane; 1 h, 120 °C

By: Shankar, Majji; et al

Journal of Organic Chemistry (2021), 86(21), 14942-14955.

Experimental Protocols

Scheme 92 (1 Reaction)

Steps: 1

Steps: 1

31-116-CAS-17032350

Steps: 1

Highly chemoselective ruthenium(II)-catalyzed direct arylation of cyclic and N,N-dialkyl benzamides with aryl silanes

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: Tetrahydrofuran; rt; 20 h, 140 °C

Experimental Protocols

By: Nareddy, Pradeep; et al

Chemical Science (2017), 8(4), 3204-3210.

Scheme 93 (1 Reaction)

___\ \ C-__\S+__

> Suppliers (38)

NH₂

➤ Suppliers (70)

31-614-CAS-34077933

Steps: 1

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Silver triflate, Bis(dichloro(η⁶-p-cymene)ruthenium)

Solvents: Dichloromethane; 12 h, 80 °C

Free Amine-Directed Ru(II)-Catalyzed Redox-Neutral [4 + 2] C-H Activation/Annulation of Benzylamines with Sulfoxonium Ylides

By: Aher, Yogesh N.; et al

Journal of Organic Chemistry (2022), 87(19), 12608-12621.

Steps: 1

Scheme 94 (1 Reaction)

➤ Suppliers (16)

Steps: 1

Steps: 1

Steps: 1

31-614-CAS-33759623

Reagents: Acetic acid-d₄

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,2-Dichloroethylene; 16 h, reflux

Experimental Protocols

Transition metal-catalyzed regioselective functionalization of carbazoles and indolines with maleimides

By: Cho, Eun Hee; et al

Organic & Biomolecular Chemistry (2022), 20(34), 6776-6783.

Scheme 95 (1 Reaction)

31-116-CAS-22752710

Reagents: Cupric acetate, Acetic acid- d_4 , Silver hexafluoro antimonate

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: 1,4-Dioxane; 6 h, 120 °C

Experimental Protocols

Steps: 1

Double annulation of ortho- and peri-C-H bonds of fused (hetero)arenes to unusual oxepino-pyridines

By: Shankar, Majji; et al

Chemical Science (2020), 11(39), 10770-10777.

Scheme 96 (1 Reaction)

Suppliers (25)

31-116-CAS-22793701

Reagents: Sodium acetate, Acetic acid-d **Catalysts:** Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Methanol; 12 h, 100 °C

Steps: 1

Ru(II)-Catalyzed tunable cascade reaction via C-H/C-C bond cleavage

By: Yang, Zi; et al

Journal of Organic Chemistry (2020), 85(20), 12960-12970.

Steps: 1

Steps: 1

Steps: 1

Scheme 97 (1 Reaction)

31-614-CAS-31460471

Steps: 1

1.1 **Reagents:** Silver acetate, Acetic acid-*d*₄, Oxygen **Catalysts:** Silver hexafluoroantimonate, Dichloro[(1,2,3,4,5,6-η)

-1-methyl-4-(1-methylethyl)benzene]ruthenium

Solvents: 1,2-Dichloroethane, Methanol-*d*₄; 30 min, 150 °C

Experimental Protocols

Microwave-Assisted Ruthenium- and Rhodium-Catalyzed Couplings of $\alpha\text{-}Amino$ Acid Ester-Derived Phosphinamides with Alkynes

By: Li, Xue-Hong; et al

Chemistry - An Asian Journal (2022), 17(2), e202101158.

Scheme 98 (2 Reactions)

 $\longrightarrow \bigvee_{N=1}^{N} \bigvee_$

➤ Suppliers (4)

31-116-CAS-19145578

Steps: 1

1.1 **Reagents:** Cupric acetate, Acetic acid-*d*₄

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,4-Dioxane; 6 h, 120 °C

Experimental Protocols

One-Pot Unsymmetrical $\{[4+2]$ and [4+2] $\}$ Double Annula tions of o/o'-C-H Bonds of Arenes: Access to Unusual Pyranoisoquinolines

By: Shankar, Majji; et al

Organic Letters (2018), 20(17), 5144-5148.

31-116-CAS-9496367

Steps: 1

1.1 Reagents: Potassium acetate

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: Acetic acid-d₄; 18 h, 120 °C

Experimental Protocols

Sulfoximine Directed Intermolecular o-C-H Amidation of Arenes with Sulfonyl Azides

By: Yadav, M. Ramu; et al

Organic Letters (2013), 15(7), 1638-1641.

Scheme 99 (1 Reaction)

+

Suppliers (24)

Suppliers (72)

Double bond geometry shown

31-614-CAS-36428377

Steps: 1

1.1 **Reagents:** Cupric acetate, Acetic acid-*d*₄, Disodium phosphate, Silver hexafluoroantimonate

Catalysts: Bis(dichloro(η⁶-*p*-cymene)ruthenium) **Solvents:** 1,4-Dioxane; 10 min, rt; 8 h, 100 °C

Ru(II)-Catalyzed Oxidative Cross-Dehydrogenative Alkenyl ations of Aromatic Amides and Ketones with Unacti vated Olefins

By: Giri, Chandan Kumar; et al

Chemistry - An Asian Journal (2023), 18(10), e202300243.

Scheme 100 (1 Reaction)

Steps: 1

$$\xrightarrow{N}$$

31-614-CAS-38396090

Steps: 1

1.1 **Reagents:** Acetic acid-*d*

📜 Suppliers (4)

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 3 h, rt

Experimental Protocols

Chemo selective C-H alkylation of isoquinolones with maleim ides: A combined experimental and computational case study

By: Chandra, Devesh; et al

Molecular Catalysis (2023), 551, 113597.

Scheme 101 (1 Reaction)

Steps: 1

31-614-CAS-34077934

Steps: 1

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Silver triflate, Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Dichloromethane; 12 h, 80 °C

Free Amine-Directed Ru(II)-Catalyzed Redox-Neutral [4 + 2] C-H Activation/Annulation of Benzylamines with Sulfoxonium Ylides

By: Aher, Yogesh N.; et al

Journal of Organic Chemistry (2022), 87(19), 12608-12621.

Scheme 102 (1 Reaction)

Steps: 1

Suppliers (22)

31-116-CAS-21962346

Steps: 1

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Cupric acetate, [1,1,1-Trifluoro-*N*-[(trifluoromethyl) sulfonyl- κO] methanesulfonamidato- κO] silver, [N-[(15,25)-2- $(Amino-\kappa N)-1,2-diphenylethyl]-4-methylbenzenesulfo$

namidato-κ//]chloro[(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)

benzene]ruthenium

Solvents: 1,2-Dichloroethane; 2 h, 80 °C

Rhodium-Catalyzed ortho-Olefination of Sterically Demanding Benzamides: Application to the Asymmetric Synthesis of **Axially Chiral Benzamides**

By: Yoshimura, Ryo; et al

Chemistry - A European Journal (2020), 26(22), 4969-4973.

Scheme 103 (1 Reaction)

Steps: 1

31-116-CAS-17032349

Steps: 1

Reagents: Acetic acid- d_4

Suppliers (17)

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: Tetrahydrofuran; rt; 20 h, 140 °C

Experimental Protocols

Highly chemoselective ruthenium(II)-catalyzed direct arylation of cyclic and N,N-dialkyl benzamides with aryl silanes

By: Nareddy, Pradeep; et al

Chemical Science (2017), 8(4), 3204-3210.

Scheme 104 (1 Reaction)

Steps: 1

Suppliers (3)

31-614-CAS-26729792

Steps: 1

Reagents: Acetic acid-d₄

Catalysts: Manganese diacetate, Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-cymene)ruthenium); 6 h, 70 °C

Experimental Protocols

Ruthenium-Catalyzed Intramolecular Hydroarylation of Arenes and Mechanistic Study: Synthesis of Dihydroben zofurans, Indolines, and Chromans

By: Rit, Raja K.; et al

Journal of Organic Chemistry (2016), 81(18), 8552-8560.

Scheme 105 (1 Reaction)

Steps: 1

📜 Suppliers (109)

31-116-CAS-4242581

Steps: 1

1.1 Reagents: Silver acetate, Acetic acid- d_4 Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 - ρ -

cymene)ruthenium); 24 h, 100 °C

Experimental Protocols

Ru(II)-catalyzed intermolecular ortho-C-H amidation of aromatic ketones with sulfonyl azides

By: Bhanuchandra, M.; et al

Chemical Communications (Cambridge, United Kingdom) (2013), 49(45), 5225-5227.

Scheme 106 (1 Reaction)

Steps: 1 Yield: 61%

Steps: 1 Yield: 58%

31-116-CAS-19688329

Steps: 1 Yield: 61%

1.1 **Reagents:** Oxygen

Catalysts: Zinc acetate, Tricyclohexylphosphine, Bis(dichloro

 $(\eta^6-p$ -cymene)ruthenium)

Solvents: 1,2-Dichloroethane, Acetic acid-d4; 12 h, 40 °C

Experimental Protocols

Ruthenium(II)-Catalyzed Site-Selective Hydroxymethylation of Indolines with Paraformaldehyde

By: Lee, Suk Hun; et al

Journal of Organic Chemistry (2019), 84(4), 2307-2315.

Scheme 107 (1 Reaction)

> Suppliers (10)

Suppliers (44)

Steps: 1 Yield: 58%

NNNN

31-614-CAS-42086605

1.1 Reagents: Acetic acid-d₄

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: 2,2,2-Trifluoroethan-*1*,*1*-*d*₂-ol-*d*; 3 h, 100 °C

Experimental Protocols

Ru(II)-catalyzed C7 trifluoro methylthiolation and thioarylation of indolines using bench-stable reagents

By: Sumit; et al

Journal of Organic Chemistry (2024), 89(21), 15893-15900.

Steps: 1 Yield: 56%

Scheme 108 (1 Reaction)

Suppliers (72)

31-614-CAS-34692695

Steps: 1 Yield: 56%

1.1 Reagents: Acetic acid-d₄

Catalysts: Silver hexafluorophosphate, Bis(dichloro(η^6 -p-cymene)ruthenium), 2-Imidazolidinecarboxylic acid, 1,3-bis[(5-bromo-2-thienyl)carbonyl]-4,5-diphenyl-, (4*S*,5*S*)-

Solvents: Toluene; 24 h, rt

Experimental Protocols

Ruthenium(II)/Imidazolidine Carboxylic Acid-Catalyzed C-H Alkylation for Central and Axial Double Enantio-Induction

By: Li, Yanjun; et al

Angewandte Chemie, International Edition (2022), 61(47), e202212595.

Scheme 109 (1 Reaction)

Br O

Suppliers (60)

Steps: 1 Yield: 56%

□ Suppliers (59)

31-085-CAS-16939181

Steps: 1 Yield: 56%

1.1 Reagents: Potassium acetate, Acetic acid-d
 Catalysts: Bis(dichloro(η⁶-p-cymene)ruthenium)
 Solvents: 1,4-Dioxane; rt → 120 °C; 16 h, 120 °C

Experimental Protocols

Remote C6-Selective Ruthenium-Catalyzed C-H Alkylation of Indole Derivatives via σ-Activation

By: Leitch, Jamie A.; et al

ACS Catalysis (2017), 7(4), 2616-2623.

Steps: 1 Yield: 48%

Steps: 1 Yield: 47%

Scheme 110 (1 Reaction)

31-614-CAS-29803183

Steps: 1 Yield: 48%

1.1 **Reagents:** Trifluoroacetic acid-*d*, Tetrabutylammonium hexafluorophosphate

Catalysts: Iodobenzene, (Acetato- κO)(acetato- κO , κO)[(1,2,3,4, 5,6-η)-1-methyl-4-(1-methylethyl)benzene]ruthenium Solvents: Trifluoroacetic anhydride; 6 h, 50 °C

1.2 Reagents: Sodium bicarbonate

➤ Suppliers (81)

Solvents: Water

Experimental Protocols

C-H Oxygenation Reactions Enabled by Dual Catalysis with Electrogenerated Hypervalent Iodine Species and Ruthenium Complexes

By: Massignan, Leonardo; et al

Angewandte Chemie, International Edition (2020), 59(8), 3184-3189.

Scheme 111 (1 Reaction)

31-095-CAS-18701921

Steps: 1 Yield: 47%

1.1 **Reagents:** Acetic acid-*d*

Catalysts: Sodium hexafluorophosphate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: Dichloromethane; 4 h, 60 °C

Experimental Protocols

Ru(II)-Catalyzed C-H Aminocarbonylation of N-(Hetero)aryl-7-azaindoles with Isocyanates

By: Jeong, Taejoo; et al

Journal of Organic Chemistry (2018), 83(8), 4641-4649.

Steps: 1 Yield: 41%

Scheme 112 (1 Reaction)

📜 Suppliers (2)

➤ Suppliers (70)

31-116-CAS-13051745

1.1 Reagents: Silver carbonate

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: Chlorobenzene; 2 h, 140 °C

Experimental Protocols

Ruthenium-Catalyzed Regioselective C-H Bond Acetoxylation on Carbazole and Indole Frameworks

By: Okada, Takeshi; et al

Organic Letters (2016), 18(5), 1150-1153.

Scheme 113 (1 Reaction)

Suppliers (2)

Steps: 1 Yield: 41%

Suppliers (4)

Steps: 1 Yield: 35%

31-614-CAS-34634935

Reagents: Lithium acetate, Acetic acid- d_4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η⁶-*p*-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 8 h, 80 °C

Experimental Protocols

Ruthenium(II)-Catalyzed Tandem C-H Allylation and [3+2] Dipolar Cycloaddition to Construct Bridged Tetracycles

By: Moon, Junghyea; et al

Organic Letters (2022), 24(44), 8115-8119.

Scheme 114 (1 Reaction)

➤ Suppliers (123)

➤ Supplier (1)

Steps: 1 Yield: 11%

➤ Suppliers (26)

31-116-CAS-8552177

Steps: 1 Yield: 11%

1.1 Reagents: Acetic acid-d

Catalysts: Cupric acetate, Bis(dichloro(η^6 -p-cymene)

ruthenium)

Solvents: Chlorobenzene, Tetrachloroethylene; 23 h, 140 °C

Experimental Protocols

Toward Polynuclear Ru-Cu Catalytic Dehydrogenative C-N Bond Formation, on the Reactivity of Carbazoles

By: Louillat, Marie-Laure; et al

Organic Letters (2013), 15(1), 164-167.

Scheme 115 (1 Reaction)

Steps: 1

+ Br O

Suppliers (60)

+

Suppliers (3)

D D

31-085-CAS-17903393

1.1 **Reagents:** Acetic acid-*d*, Benzoic acid, 2,4,6-trimethyl-, potassium salt (1:1)

Catalysts: Bis(dichloro(η^6 -p-cymene)ruthenium)

Solvents: 1,4-Dioxane; 16 h, 120 °C

Experimental Protocols

Steps: 1 Ruthenium catalyzed remote C4-selective C-H functiona lisation of carbazoles via σ-activation

By: Leitch, Jamie A.; et al

Chemical Communications (Cambridge, United Kingdom) (2017), 53(97), 13039-13042.

Scheme 116 (1 Reaction)

Steps: 1

Suppliers (56)

➤ Suppliers (3)

31-116-CAS-6770070

Steps: 1

Ruthenium-Catalyzed C-C Bond Cleavage of 2 H-Azirines: A Formal [3+2+2] Cycloaddition to Fused Azepine Skeletons

Catalysts: Chloro[(1,2,5,6-η)-1,5-cyclooctadiene][(1,2,3,4,5-η)-1, 2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]ruthenium

Solvents: 1,2-Dichloroethane; 5 min, 25 °C

2 **Reagents:** Acetic acid-*d*; 5 min, 25 °C

Experimental Protocols

By: Li, Tengfei; et al

Angewandte Chemie, International Edition (2016), 55(8), 2861-2865.

Steps: 1

Scheme 117 (1 Reaction)

Suppliers (5)

📜 Suppliers (41)

31-614-CAS-29402362

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Silver tetrafluoroborate, Bis(dichloro(n⁶-p-cymene)

Solvents: 1,2-Dichloroethane; 3 h, 90 °C

Experimental Protocols

Ruthenium- and Rhodium-Catalyzed Chemodivergent Steps: 1 Couplings of Ketene Dithioacetals and α-Diazo Ketones via C-H Activation/Functionalization

By: Wang, Manman; et al

Organic Letters (2018), 20(15), 4597-4600.

Scheme 118 (1 Reaction)

Suppliers (16)

📜 Suppliers (82)

Steps: 1

Steps: 1

31-614-CAS-33759629

Reagents: Cupric acetate, Acetic acid- d_4

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,2-Dichloroethylene; reflux

Experimental Protocols

Transition metal-catalyzed regioselective functionalization of carbazoles and indolines with maleimides

By: Cho, Eun Hee; et al

Organic & Biomolecular Chemistry (2022), 20(34), 6776-6783.

Scheme 119 (1 Reaction) Steps: 1 Suppliers (82) **>** Suppliers (4)

31-614-CAS-29888489

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Silver hexafluorophosphate, Bis(dichloro(η^6 -pcymene)ruthenium), [1,1,1-Trifluoro-*N*-[(trifluoromethyl) sulfonyl- κO] methanesulfonamidato- κO] silver Solvents: 1,2-Dichloroethane; 24 h, 100 °C

Steps: 1

Access to 2-naphthols via Ru(II)-catalyzed C-H annulation of nitrones with α -diazo sulfonyl ketones

By: Kong, Lingheng; et al

Chemical Communications (Cambridge, United Kingdom) (2019), 55(51), 7339-7342.

31-614-CAS-38396091

Reagents: Acetic acid-d

Catalysts: Silver hexafluoroantimonate, Bis(dichloro(η^6 -p-

cymene)ruthenium)

Solvents: 1,2-Dichloroethane; 3 h, rt

Experimental Protocols

Chemo selective C-H alkylation of isoquinolones with maleim ides: A combined experimental and computational case study

By: Chandra, Devesh; et al

Molecular Catalysis (2023), 551, 113597.