CCACGCGTCCGGTCAGCTCTGGTTCGGAGAAGCAGCGGCTGGCGTGGGCCATCCGGGGAATGGGC GCCCTCGTGACCTAGTGTTGCGGGGCCAAAAAGGGTCTTGCCGGCCTCGCTGCAGGGGGCGTAT CTGGGCGCCTGAGCGCGCGTGGGAGCCTTGGGAGCCGCCGCAGCAGGGGGCACACCCGGAACCG ${ t GCCTGAGCGCCCGGGACCATGAACGGGGGGGCCATCTGCAGCGCCCTGCCCACCATTCCCTACCA}$ CAGACTGGCGCGTCCAGGTGGCCGTGAAGCACCTGCACACTCCACACTCCGCTGCTCGACAGTGAA TTTGGGAATTTGCAATGAGCCTGAATTTTTGGGAATAGTTACTGAATACATGCCAAATGGATCAT TAAATGAACTCCTACATAGGAAAACTGAATATCCTGATGTTGCTTGGCCATTGAGATTTCC TATC CTGCATGAAATTGCCCTTGGTGTAAATTACCTGCACAATATGACTCCTCCTTTACTTCATCATGA CTTGAAGACTCAGAATATCTTATTGGACAATGAATTTCATGTTAAGATTGCAGATTTTGGTTTAT CAAAGTGGCGCATGATGTCCCTCTCACAGTCACGAAGTAGCAAATCTGCACCAGAAGGAGGGGACA ATTATCTATATGCCACCTGAAAACTATGAACCTGGACAAAAATCAAGGGCCAGTATCAAGCACGA TATATATAGCTATGCAGTTATCACATGGGAAGTGTTATCCAGAAAACAGCCTTTTGAAGATGTCA CCAATCCTTTGCAGATAATGTATAGTGTGTCACAAGGACATCGACCTGTTATTAATGAAGAAAGT TTGCCATATGATATACCTCACCGAGCACGTATGATCTCTCTAATAGAAAGTGGATGGGCACAAAA TCCAGATGAAAGACCATCTTTCTTAAAATGTTTAATAGAACTTGAACCAGTTTTGAGAACATTTG AAGAGATAACTTTTCTTGAAGCTGTTATTCAGCTAAAGAAAACAAAGTTACAGAGTGTTTCAAGT GCCATTCACCTATGTGACAAGAAGAAAATGGAATTATCTCTGAACATACCTGTAAATCATGGTCC ACAAGAGGAATCATGTGGATCCTCTCAGCTCCATGAAAATAGTGGTTCTCCTGAAACTTCAAGGT CCCTGCCAGCTCCTCAAGACAATGATTTTTTATCTAGAAAAGCTCAAGACTGTTATTTTATGAAG CTGCATCACTGTCCTGGAAATCACAGTTGGGATAGCACCATTTCTGGATCTCAAAGGGCTGCATT CTGTGATCACAAGACCATTCCATGCTCTTCAGCAATAATAAATCCACTCTCAACTGCAGGAAACT CAGAACGTCTGCAGCCTGGTATAGCCCAGCAGTGGATCCAGAGCAAAAGGGAAGACATTGTGAAC CAAATGACAGAAGCCTGCCTTAACCAGTCGCTAGATGCCCTTCTGTCCAGGGACTTGATCATGAA AGAGGACTATGAACTTGTTAGTACCAAGCCTACAAGGACCTCAAAAGTCAGACAATTACTAGACA CTACTGACATCCAAGGAGAAGTTTGCCAAAGTTATAGTACAAAAATTGAAAGATAACAACAA ATGGGTCTTCAGCCTTACCCGGAAATACTTGTGGTTTCTAGATCACCATCTTTAAATTTACTTCA AAATAAAAGCATGTAAGTGACTGTTTTTCAAGAAGAAATGTGTTTCATAAAAGGATATTTATAAA

FIG. 1

0.0	C T	9.0	906	O	L1		S	B	0	220	**	Ø	Ø	0	2	-	Ø	æ	О	N	7	Q	œ	0	3	77	
DS.K.	υ	Ara	D LA	Asn.	Leu	Pro	Val	Ser	Pro	Trp	77.	Pro	Arg	11.e	Ala	GIV	Thr	Cys	Gly	Asn	Ile	Leu	Lys	Glu	Tyr	Met	
٠ ا ١ . ا	Car	, 1	re Leu	Ur U	P 20	۲: ۲:	(n t	E THE	D.T.D	1-: T:	.ĭer	(p ; ;	910	コロ	N N H	S H	Glu	Asp	Ser	H H	1770	Ser	나라	Glu	Pro	Ser	
Leu	Ala	Ser	H 1	Met	T T	Re t	라다	Ser	17.1	r i e	Ile	ast.	Asp	Glu	Ser	Asn	9 7 0	Gln	Ile	1	Glu	Gin	Ser	Gly	Gln	Lys	
Lys	His	ASD	H	Tyr	Ala	Asn	Glu	Gln	Asn	Val	Gln	Tyr	Pro	Phe	Val	Val	Ser	Ala	Thr	Ala	Glu	Asn	Val	Gln	Leu	Asn	
His	Arg	Leu	Ser	Glu	Val	His	Asn	Ser	Glu	Ala	Leu	でなっ	Asn	Thr	Ser	Pro	G1Y	Lys	Ser	Ser	Ala	Leu	Len	Ile	$G1\frac{1}{2}$	Gln	
Tyr	Ala	Leu	Phe	Thr	Asp	Leu	Asp	Len	Pro	Tyr	Pro	Len	Gln	Arg	Gln	Ile	Ser	Arg	Asp	Ser	Ile	Cys	gla	Asp	Met	Leu	
Pro	Ser	Pro	Arg	Val	Pro	Tyr	Len	Ser	Pro	Ser	Asn	Ser	Ala	Len	Len	Asn	Asn	Ser	Trp	Cys	Glγ	Ala	Tyr	Thr	Gln	Leu	
116	Ser	Thr	Ala	ile	Tyr	Asn	Leu	Mer	Met	Tyr	Thr	gln	Trp	Val	Lys	Leu	Glu	Leu	Ser	Pro	Pro	Glu	Asp	Thr	Lys	Asn	
Thr	Val	His	Ľys	Gly	Glu	Val	Ile	Met	Tyr	Ile	Val	Glu	$_{ m G1Y}$	Pro	Thr	Ser	His	Phe	His	Ile	Gln	Thr	gla	Asp	Asn	Leu	
Pro	Thr	Ile	His	Leu	Thr	Gly	Asn	Arg	Ile	Asp	Asp	Asn	Ser	Glu	Lys	Leu	Len	Asp	Asn	Thr	Leu	Met	Lys	Leu	Asp	Ser	
Leu	Glý	His	Leu	Phe	Lys	Len	Gln	Trp	Ile	His	Glu	Ile	Glu	Leu	Lys	Glu	Gln	Asn	G1Y	Lys	Arg	Gln	Met	Leu	Lys	Pro	
Ala	Ser	Leu	Ile	Glu	Arg	Ala	Thr	£.7s	Thr	Lys	phe	Val	Ile	Glu	Leu	Met	Ser	Asp	Pro	His	Glu	Asn	Ile	Gln	Len	Ser	
Ser	Ala	His	Glu	Pro	His	Ile	Lys	Ser	Gly	Ile	Pro	Pro	Leu	Ile	Gln	Lys	Ser	Gln	Cys	Asp	Ser	Val	Leu	Arg	Lys	Arg	
			Ala		•																						
			Glu																								
			Arg																								
			Leu																								
			Val																								(
			Asp																								1
			S.S.S																								1

Matter No.: 07334-076002 Page 3 of Applicant(s): John Bertin NOVEL MOLECULES OF THE CARD-RELATED PROTEIN FAMILY AND USES THEREOF

TTTTTATGGG	AATCGCAGCT	TGGAAGAGAC	AGARCAATTC	CAGAAWTAAA	TTGRAATTGA
AGATTTAACC	AATGTTGTTT	TAAAATATTC	TAACTTCAAA	GAATGATGCC	AGAACTTWAA
AAGGGRCTGC	GCAGAGTAGC	AGGGCCCTG	GAGGGCGCGG	CCTGAATCCT	GATTGCCCTT
CTGCTGAGAG	GACACACGCA	GCTGAAGATG	AATTTGGGAA	AAGTAGCCGC	TTGCTACTTT
AACTATGGAA	GAGCAGGGCC	ACAGTGAGAT	GGAAATAATC	CCATCAGAGT	CTCACCCCCA
CATTCAATTA	CTGAAAAGCA	ATCGGGAACT	TCTGGTCACT	CACATCCGCA	ATACTCAGTG
TCTGGTGGAC	AACTTGCTGA	AGAATGACTA	CTTCTCGGCC	GAAGATGCGG	AGATTGTGTG
TGCCTGCCCC	ACCCAGCCTG	ACAAGGTCCG	CAAAATTCTG	GACCTGGTAC	AGAGCAAGGG
CGAGGAGGTG	TCCGAGTTCT	TCCTCTACTT	GCTCCAGCÃA	CTCGCAGATG	CCTACGTGGA
CCTCAGGCCT	TGGCTGCTGG	AGATCGGCTT	CTCCCCTTCC	CTGCTCACTC	AGAGCAAAGT
CGTGGTCAAC	ACTGACCCAG	TGAGCAGGTA	TACCCAGCAG	CTGCGACACC	ATCTGGGCCG
TGACTCCAAG	TTCGTGCTGT	GCTATGCCCA	GAAGGAGGAG	CTGCTGCTGG	AGGAGATCTA
CATGGACACC	ATCATGGAGC	TGGTTGGCTT	CAGCAATGAG	AGCCTGGGCA	GCCTGAACAG
CCTGGCCTGC	CTCCTGGACC	ACACCACCGG	CATCCTCAAT	GAGCAGGGTG	AGACCATCTT
CATCCTGGGT	GATGCTGGGG	TGGGCAAGTC	CATGCTGCTA	CAGCGGCTGC	AGAGCCTCTG
GGCCACGGGC	CGGCTAGACG	CAGGGGTCAA	ATTCTTCTTC	CACTTTCGCT	GCCGCATGTT
CAGCTGCTTC	AAGGAAAGTG	ACAGGCTGTG	TCTGCAGGAC	CTGCTCTTCA	AGCACTACTG
CTACCCAGAG	CGGGACCCCG	AGGAGGTGTT	TGCCTTCCTG	CTGCGCTTCC	CCCACGTGGC
CCTCTTCACC	TTCGATGGCC	TGGACGAGCT	GCACTCGGAC	TTGGACCTGA	GCCGCGTGCC
TGACAGCTCC	TGCCCCTGGG	AGCCTGCCCA	CCCCCTGGTC	TTGCTGGCCA	ACCTGCTCAG
TGGGAAGCTG	CTCAAGGGGG	CTAGCAAGCT	GCTCACAGCC	CGCACAGGCA	TCGAGGTCCC
GCGCCAGTTC	CTGCGGAAGA	AGGTGCTTCT	CCGGGGCTTC	TCCCCCAGCC	ACCTGCGCGC
CTATGCCAGG	AGGATGTTCC	CCGAGCGGGC	CCTGCAGGAC	CGCCTGCTGA	GCCAGCTGGA
GGCCAACCCC	AACCTCTGCA	GCCTGTGCTC	TGTGCCCCTC	TTCTGCTGGA	TCATCTTCCG
GTGCTTCCAG	CACTTCCGTG	CTGCCTTTGA	AGGCTCACCA	CAGCTGCCCG	ACTGCACGAT
GACCCTGACA	GATGTCTTCC	TCCTGGTCAC	TGAGGTCCAT	CTGAACAGGA	TGCAGCCCAG
CAGCCTGGTG	CAGCGGAACA	CACGCAGCCC	AGTGGAGACC	CTCCACGCCG	GCCGGGACAC
TCTGTGCTCG	CTGGGGCAGG	TGGCCCACCG	GGGCATGGAG	AAGAGCCTCT	TTGTCTTCAC
CCAGGAGGAG	GTGCAGGCCT	CCGGGCTGCA	GGAGAGAGAC	ATGCAGCTGG	GCTTCCTGCG
GGCTTTGCCG	GAGCTGGGCC	CCGGGGGTGA	CCAGCAGTCC	TATGAGTTTT	TCCACCTCAC
CCTCCAGGCC	TTCTTTACAG	CCTTCTTCCT	CGTGCTGGAC	GACAGGGTGG	GCACTCAGGA

FIG. 3A

Matter No.: 07334-076002 Page 4 of 10
Applicant(s): John Bertin
NOVEL MOLECULES OF THE CARD-RELATED PROTEIN

FAMILY AND USES THEREOF

TOCTOCOTTO CTOCCGTTOO AGTGCCTGCA GGGCAGTGGT CCGGCGCGGG AAGACCTCTT CAAGAACAAG GATCACTTCC AGTTCACCAA CCTCTTCCTG TGCGGGCTGT TGTCCAAAGC CAAACAGAAA CTCCTGCGGC ATCTGGTGCC CGCGGCAGCC CTGAGGAGAA AGCGCAAGGC CCTGTGGGCA CACCTGTTTT CCAGCCTGCG GGGCTACCTG AAGAGCCTGC CCCGCGTTCA GGTCGAAAGC TTCAACCAGG TGCAGGCCAT GCCCACGTTC ATCTGGATGC TGCGCTGCAT CTACGAGACA CAGAGCCAGA AGGTGGGGCA GCTGGCGGCC AGGGGCATCT GCGCCAACTA CCTCAAGCTG ACCTACTGCA ACGCCTGCTC GGCCGACTGC AGCGCCCTCT CCTTCGTCCT GCATCACTTC CCCAAGCGGC TGGCCCTAGA CCTAGACAAC AACAATCTCA ACGACTACGG CGTGCGGGAG CTGCAGCCCT GCTTCAGCCG CCTCACTGTT CTCAGACTCA GCGTAAACCA GATCACTGAC GGTGGGGTAA AGGTGCTAAG CGAAGAGCTG ACCAAATACA AAATTGTGAC CTATTTGGGT TTATACAACA ACCAGATCAC CGATGTCGGA GCCAGGTACG TCACCAAAAT CCTGGATGAA TGCAAAGGCC TCACGCATCT TAAACTGGGA AAAAACAAAA TAACAAGTGA AGGAGGGAAG TATCTCGCCC TGGCTGTGAA GAACAGCAAA TCAATCTCTG AGGTTGGGAT GTGGGGCAAT CAAGTTGGGG ATGAAGGAGC AAAAGCCTTC GCAGAGGCTC TGCGGAACCA CCCCAGCTTG ACCACCCTGA GTCTTGCGTC CAACGGCATC TCCACAGAAG GAGGAAAGAG CCTTGCGAGG GCCCTGCAGC AGAACACGTC TCTAGAAATA CTGTGGCTGA CCCAAAATGA ACTCAACGAT GAAGTGGCAG AGAGTTTGGC AGAAATGTTG AAAGTCAACC AGACGTTAAA GCATTTATGG CTTATCCAGA ATCAGATCAC AGCTAAGGGG ACTGCCCAGC TGGCAGATGC GTTACAGAGC AACACTGGCA TAACAGAGAT TTGCCTAAAT GGAAACCTGA TAAAACCAGA GGAGGCCAAA GTCTATGAAG ATGAGAAGCG GATTATCTGT TTCTGAGAGG ATGCTTTCCT GTTCATGGGG TTTTTGCCCT GGAGCCTCAG CAGCAAATGC CACTCTGGGC AGTCTTTTGT GTCAGTGTCT TAAAGGGGCC TGCGCAGGCG GGACTATCAG GAGTCCACTG CCTYCATGAT GCAAGCCAGC TTCCTGTGCA GAAGGTCTGG TCGGCAAACT CCCTAAGTAC CCGCTACAAT TCTGCAGAAA AAGAATGTGT CTTGCGAGCT GTTGTAGTTA CAGTAAATAC ACTGTGAAGA GAAAAAAAA ACGGACGCGT GG (SEQ ID NO:7) FIG. 3B

The Hand

MEEQGHSEMEIIPSESHPHIQLLKSNRELLVTHIRNTQCLVDNLLKNDYFSAEDAEIVCACPTOP DKVRKILDLVQSKGEEVSEFFLYLLQQLADAYVDLRPWLLEIGFSPSLLTQSKVVVNTDPVSRYT QQLRHHLGRDSKFVLCYAQKEELLLEEIYMDTIMELVGFSNESLGSLNSLACLLDHTTGILNEOG ETIFILGDAGVGKSMLLQRLQSLWATGRLDAGVKFFFHFRCRMFSCFKESDRLCLQDLLFKHYCY PERDPEEVFAFLLRFPHVALFTFDGLDELHSDLDLSRVPDSSCPWEPAHPLVLLANLLSGKLLKG ASKLLTARTGIEVPRQFLRKKVLLRGFSPSHLRAYARRMFPERALQDRLLSQLEANPNLCSLCSV PLFCWIIFRCFQHFRAAFEGSPQLPDCTMTLTDVFLLVTEVHLNRMQPSSLVQRNTRSPVETLHA GRDTLCSLGQVAHRGMEKSLFVFTQEEVQASGLQERDMQLGFLRALPELGPGGDQQSYEFFHLTL QAFFTAFFLVLDDRVGTQELLRFFQEWMPPAGAATTSCYPPFLPFQCLQGSGPAREDLFKNKDHF QFTNLFLCGLLSKAKQKLLRHLVPAAALRRKRKALWAHLFSSLRGYLKSLPRVQVESFNQVQAMP TFIWMLRCIYETQSQKVGQLAARGICANYLKLTYCNACSADCSALSFVLHHFPKRLALDLDNNNL NDYGVRELQPCFSRLTVLRLSVNQITDGGVKVLSEELTKYKIVTYLGLYNNQITDVGARYVTKIL DECKGLTHLKLGKNKITSEGGKYLALAVKNSKSISEVGMWGNQVGDEGAKAFAEALRNHPSLTTL SLASNGISTEGGKSLARALQQNTSLEILWLTQNELNDEVAESLAEMLKVNQTLKHLWLIQNQITA KGTAQLADALQSNTGITEICLNGNLIKPEEAKVYEDEKRIICF (SEQ ID NO:8)

FIG 4

Matter No.: 07334-076002 Applicant(s): John Bertin

NOVEL MOLECULES OF THE CARD-RELATED PROTEIN

Page 6 of 10

FAMILY AND USES THEREOF

CACGCGTCCGACTTGCTGAAGAATGACTACTTCTCGGCCGAAGATGCGGAGATTGTGT GTGCCTGCCCACCCAGCCTGACAAGGTCCGCAAAATTCTGGACCTGGTACAGAGCAAG GGCGAGGAGGTGTCCGAGTTCTTCCTCTACTTGCTCCAGCAACTCGCAGATGCCTACGT AAGTCGTGGTCAACACTGACCCAGTGAGCAGGTATACCCAGCAGCTGCGACACCATCTG GGCCGTGACTCCAAGTTCGTGCTGTGCTATGCCCAGAAGGAGGAGCTGCTGCTGGAGGA GATCTACATGGACACCATCATGGAGCTGGTTGGCTTCAGCAATGAGAGCCTGGGCAGCC TGAACAGCCTGGCCTGCCTCCTGGACCACCACCGGCATCCTCAATGAGCAGGGTGAG ACCATCTTCATCCTGGGTGATGCTGGGGTGGGCAAGTCCATGCTGCTACAGCGGCTGCA GAGCCTCTGGGCCACGGGCCGGCTAGACGCAGGGGTCAAATTCTTCTTCCACTTTCGCT GCCGCATGTTCAGCTGCTTCAAGGAAAGTGACAGGCTGTGTCTGCAGGACCTGCTCTTC AAGCACTACTGCTACCCAGAGCGGGACCCCGAGGAGGTGTTTGCCTTCCTGCTGCGCTT CCCCCACGTGGCCCTCTTCACCTTCGATGGCCTGGACGAGCTGCACTCGGACTTGGACC TGAGCCGCGTGCCTGACAGCTCCTGCCCCTGGGAGCCTGCCCACCCCCTGGTCTTGCTG GCCAACCTGCTCAGTGGGAAGCTGCTCAAGGGGGGCTAGCAAGCTGCTCACAGCCCGCAC AGGCATCGAGGTCCCGCGCCAGTTCCTGCGGAAGAAGGTGCTTCTCCGGGGGCTTCTCCC CCAGCCACCTGCGCGCCTATGCCAGGAGGATGTTCCCCGAGCGGGCCCTGCAGGACCGC CTGCTGAGCCAGCTGGAGGCCAACCCCAACCTCTGCAGCCTGTGCTCTGTGCCCCTCTT CTGCTGGATCATCTTCCGGTGCTTCCAGCACTTCCGTGCTGCCTTTGAAGGCTCACCAC AGCTGCCCGACTGCACGATGACCCTGACAGATGTCTTCCTCCTGGTCACTGAGGTCCAT CTGAACAGGATGCAGCCCAGCAGCCTGGTGCAGCGGAACACACGCAGCCCAGTGGAGAC CCTCCACGCCGGCCGGGACACTCTGTGCTCGCTGGGGCAGGTGGCCCACCGGGGCATGG AGAAGAGCCTCTTTGTCTTCACCCAGGAGGAGGTGCAGGCCTCCGGGCTGCAGGAGAGA GACATGCAGCTGGGCTTCCTGCGGGGCTTTGCCGGAGCTGGGCCCCGGGGGTGACCAGCA GTCCTATGAGTTTTTCCACCTCAGCCTCCTCACCTGTAAAACTGGGATCCCAGTATAGA CTTTGGAAATCAGTAGACACCATATGCTTCAAAAAACAGGGGCTATTAAAATGACATCA GGAGCCAGAAAGTCTCATGGCTGTGCTTTCTCTTGAAGTTTATACAACAACCAGATCAC CGATGTCGGAGCCAGACTGGGAAAAAACAAAATAACAAGTGAAGGAGGGAAGTATCTCG CCCTGGCTGTGAAGAACAGCAAATCAATCTCTGAGGTTGGGATGTGGGGCAATCAAGTT GGGGATGAAGGAGCAAAAGCCTTCGCAGAGGCTCTGCGGAACCACCCCAGCTTGACCAC CCTGAGTCTTGCGTCCAACGCCATCTCCACAGAAGGAGGAAAGAGCCTTGCGAGGGCCC TGCAGCAGAACACGTCTCTAGAAATACTGTGGCTGACCCAAAATGAACTCAACGATGAA GTGGCAGAGAGTTTGGCAGAAATGTTGAAAGTCAACCAGACGTTAAAGCATTTATGGCT TATCCAGAATCAGATCACAGTCTTTTGTGTCAGTGTCTTAAAGGGGCCTGCGCAGGCGG GACTATCAGGAGTCCACTGCCTCCATGATGCAAGCCAGCTTCCTGTGCAGAAGGTCTGG TCGGCAAACTCCCTAAGTACCCGCTACAATTCTGCAGAAAAAGAATGTGTCTTGCGAGC TGTTGTAGTTACAGTAAATACACTGTGAAGAGACTTTATTGCCTATTATAATTATTTTT ATCTGAAGCTAGAGGAATAAAGCTGTGAGCAAACAGAGGGGGCCAGCCTCACCTCATTC CAACACCTGCCATAGGGACCAACGGGAGCGAGTTGGTCACCGCTCTTTTCATTGAAGAG TTGAGGATGTGGCACAAAGTTGGTGCCAAGCTTCTTGAATAAAACGTGTTTGATGGATT AGTATTATACCTGAAATATTTTCTTCCTTCTCAGCACTTTCCCATGTATTGATACTGGT CCCACTTCACAGCTGGAGACACCGGAGTATGTGCAGTGTGGGATTTGACTCCTCCAAGG TTTTGTGGAAAGTTAATGTCAAGGAAAGGATGCACCACGGGCTTTTAATTTTAATCCTG GAGTCTCACTGTCTGCTGGCAAAGATAGAGAATGCCCTCAGCTCTTAGCTGGTCTAAGA ATGACGATGCCTTCAAAATGCTGCTTCCACTCAGGGCTTCTCCTCTGCTAGGCTACCCT CCTCTAGAAGGCTGAGTACCATGGGCTACAGTGTCTGGCCTTGGGAAGAAGTGATTCTG TCCCTCCAAAGAAATAGGGCATGGCTTGCCCCTGTGGCCTTGGCATCCAAATGGCTGCT TTTGTCTCCCTTACCTCGTGAAGAGGGGAAGTCTCTTCCTGCCTCCCAAGCAGCTGAAG GGTGACTAAACGGGCGCCAAGACTCAGGGGATCGGCTGGGAACTGGGCCAGCAGAGCAT GTTGGACACCCCCCACCATGGTGGGCTTGTGGTGGCTGCTCCATGAGGGTGGGGGTGAT ACTACTAGATCACTTGTCCTCTTGCCAGCTCATTTGTTAATAAAATACTGAAAACACAA AAAAAAAAAAAA (SEQ ID NO:25) FIG. 5

fu

Ţ..

Matter No.: 07334-076002

Applicant(s): John Bertin NOVEL MOLECULES OF THE CARD-RELATED PROTEIN

Page 7 of 10

FAMILY AND USES THEREOF

HASDLLKNDYFSAEDAEIVCACPTQPDKVRKILDLVQSKGEEVSEFFLYLL QQLADAYVDLRPWLLEIGFSPSLLTQSKVVVNTDPVSRYTQQLRHHLGRDS KFVLCYAQKEELLLEEIYMDTIMELVGFSNESLGSLNSLACLLDHTTGILN EQGETIFILGDAGVGKSMLLQRLQSLWATGRLDAGVKFFFHFRCRMFSCFK ESDRLCLQDLLFKHYCYPERDPEEVFAFLLRFPHVALFTFDGLDELHSDLD LSRVPDSSCPWEPAHPLVLLANLLSGKLLKGASKLLTARTGIEVPRQFLRK KVLLRGFSPSHLRAYARRMFPERALQDRLLSQLEANPNLCSLCSVPLFCWI IFRCFQHFRAAFEGSPQLPDCTMTLTDVFLLVTEVHLNRMQPSSLVQRNTR SPVETLHAGRDTLCSLGQVAHRGMEKSLFVFTQEEVQASGLQERDMQLGFL RALPELGPGGDQQSYEFFHLSLLTCKTGIPV (SEQ ID NO:26)

FIG. 6

SEQ. ID NO. 31/32/33/34

Matter No.: 07334-076002 Page 8 of Applicant(s): John Bertin NOVEL MOLECULES OF THE CARD-RELATED PROTEIN FAMILY AND USES THEREOF Page 8 of 10 ž

	CARD4-CARD	ARC-CARD	cIAP2-CARD	CARD4-CARD	CARD3-CARD	ARC-CARD	cIAP1-CARD		CARD4-CARD	CARD3-CARD	ARC-CARD	cIAP1-CARD	cIAP2-CARD
40	NILIKNDY ALLSRDL	A L L A R G V N L L K A N V	S L L T A G T 80	SEFFLIYL	A K V I V Q K	OELLRC	A T V F R N S						
30	C I N O S I D		CVIPID 70	OSKGEEV	DIOGEEF	OGKGEAA	I V K G N I A		<u> </u>			<u> </u>	Δ
20	NRELLVTHIRNTOCL VDNLLKINDY KREDIVNQMTEA-CLNOSLDALLSRDL	VETLOADS	JFQHLTT 60	IN RIKITEDEL	V R O L L D T	RRILLILL	OTSTORELIDITIAN KGNAAANIFKNC OTSTOARELIDIILVKGNIAATVFRNS	100	TIS d S d S I E I T I M d	V S R S P S I		V F V	
	X Q S	I D R	I R K	A C P	T X	A L P	N E		LR	o:	N C M W	X K N I	1 H B K
	I A D Q	Q E R P S E A S D D L S	ESINDELL	SAEDAEIV	M K E D Y E L V	T G P K Y E A L	INEQEHDVI		TOOTION A		UN TRIGIAL D		OEAEAVLL-

Matter No.: 07334-076002 Page 9 of 10 Applicant(s): John Bertin NOVEL MOLECULES OF THE CARD-RELATED PROTEIN

FAMILY AND USES THEREOF

400

350

BB

2.56

20

6