متغيرهاى تصادفي

فصل سوم

متغير تصادفي

تابعی از فضای نمونه به مجموعهی اعداد حقیقی

$$X:S\to\mathbb{R}=(-\infty,\infty)$$

تکیهگاه (برد) متغیر تصادفی: مجموعهی مقادیری که متغیر تصادفی اختیار می کند

$$S_X = \{X(e) : e \in S\}$$

$$X(e) = x$$

توجه: متغیر تصادفی با مقداری که اختیار می کند تفاوت دارد:

تابع جرم احتمال متغير تصادفى: احتمال اختيار هر مقدار حقيقى توسط متغير تصادفى

$$\forall x \in \mathbb{R}: f_X(x) = P\{X = x\} = P(\{e \in S : X(e) = x\})$$

انواع متغيرهاى تصادفي

متغیر تصادفی گسسته: دارای تکیهگاه متناهی یا نامتناهی شمارا

$$S_X = \{x_1, x_2, \dots, x_k\}$$
 or $S_X = \{x_1, x_2, x_3, \dots\}$

تابع جرم احتمال ساختار احتمالاتی متغیر تصادفی را مشخص سازی می کند و

$$\forall x \in \mathbb{R} : f_X(x) \ge 0 \text{ and } \sum_{x \in S_X} f_x(x) = \sum_i f_X(x_i) = 1$$

متغیر تصادفی پیوسته: دارای تکیهگاه نامتناهی ناشمارا

$$S_X = (a, b)$$
 or $S_X = [0, \infty)$ or $S_X = \mathbb{R}$

تابع جرم احِتمال همواره صفر است و استفاده از آن هیچ اطلاعی در مورد ساختار احتمالاتی متغیر تصادفی در اختیار نمی گذارد $\forall x \in \mathbb{R}: f_X(x) = 0$

مثال: آزمایش تصادفی پرتاب سه سکهی سالم

$$S = \{TTT, TTH, THT, HTT, THH, HTH, HHT, HHH\}$$

$$X(TTT) = 0$$

$$X(TTH) = X(THT) = X(HTT) = 1$$

$$X(THH) = X(HTH) = X(HHT) = 2$$

$$X(HHH) = 3$$

$$S_X = \{0, 1, 2, 3\}$$

تكيهكاه متغير تصادفي

متغير تصادفی گسسته است و تابع جرم احتمال

$$f_X(0) = \frac{1}{8}, \quad f_X(3) = \frac{1}{8}, \quad f_X(1) = \frac{3}{8}, \quad f_X(2) = \frac{3}{8}$$

$$S = \{(i, j) : i, j = 1, 2, \dots, 6\}$$

مثال: آزمایش تصادفی پرتاب دو تاس سالم

متغير تصادفي: مجموع دو خال

$$X((1,1)) = 2$$

$$X((1,2)) = X((2,1)) = 3$$

$$X((1,3)) = X((3,1)) = X((2,2)) = 4$$

$$X((1,4)) = X((4,1)) = X((3,2)) = X((2,3)) = 5$$

$$X((1,5)) = X((5,1)) = X((2,4)) = X((4,2)) = X((3,3)) = 6$$

$$X((1,6)) = X((6,1)) = X((5,2)) = X((2,5)) = X((3,4)) = X((4,3)) = 7$$

$$X((2,6)) = X((6,2)) = X((3,5)) = X((5,3)) = X((4,4)) = 8$$

$$X((3,6)) = X((6,3)) = X((4,5)) = X((5,4)) = 9$$

$$X((4,6)) = X((6,4)) = X((5,5)) = 10$$

$$X((5,6)) = X((6,5)) = 11$$

$$X((6,6)) = 12$$

تكيهكاه متغير تصادفي

$$S_X = \{2, 3, \dots, 11, 12\}$$

متغیر تصادفی گسسته است و تابع جرم احتمال (نمایش جدولی، جبری یا نموداری)

x	2	3	4	5	6	7	8	9	10	11	12
$f_X(x)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

$$f_X(x) = \begin{cases} \frac{6-|7-x|}{36} & x = 2, 3, \dots, 12\\ 0 & \text{otherwise} \end{cases}$$

$$x = 2, 3, \dots, 12$$
 otherwise

مثال: آزمایش تصادفی پرتاب یک تاس سالم تا رسیدن به نخستین شش

$$S = \{6, (1, 6), \dots, (5, 6), (1, 1, 6), \dots, (5, 5, 6), \dots\}$$

متغیر تصادفی: تعداد پرتابهای لازم برای رسیدن به نخستین شش

$$X(6) = 1$$

$$X((1,6)) = X((2,6)) = \cdots = X((5,6)) = 2$$

$$X((1,1,6)) = X((1,2,6)) = \cdots = X((5,5,6)) = 3$$

:

$$S_X = \{1, 2, 3, \ldots\}$$

تكيهگاه متغير تصادفي

متغير تصادفی گسسته است و تابع جرم احتمال

$$f_X(1) = \frac{1}{6}, f_X(2) = \frac{1}{36}, f_X(3) = \frac{1}{216}, \dots, f_X(x) = \frac{1}{6^x}, \dots$$

$$S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 10^2\}$$

متغیر تصادفی: فاصلهی محل اصابت دارت تا مرکز صفحهی دارت

$$X((x,y)) = ||(x,y) - (0,0)|| = \sqrt{x^2 + y^2}$$

تكيهگاه متغير تصادفي

متغیر تصادفی پیوسته است و تابع جرم احتمال

 $S_X = [0, 10]$

تابع توزيع متغير تصادفي

برای هر متغیر تصادفی دلخواه تابع توزیع یا تابع توزیع تجمعی آن به صورت زیر تعریف می شود

$$\forall x \in \mathbb{R} : F_X(x) = P\{X \le x\}$$

ویژگیهای تابع توزیع

$$x \leq y \implies F_X(x) \leq F_X(y)$$

• غیرنزولی (صعودی) است

$$\forall x \in \mathbb{R}: \quad F_X(x^+) \lim_{t \to x^+} F_X(t) = F_X(x)$$

• از راست پیوسته است

$$\lim_{x \to -\infty} F_X(x) = 0, \quad \lim_{x \to \infty} F_X(x) = 1$$

دارای دو مجانب افقی است

• مجموعه ی نقاط ناپیوستگی آن متناهی یا نامتناهی شماراست

$$\{x \in \mathbb{R} : F_X(x^-) < F_X(x)\} = \{x'_1, x'_2, \ldots\}$$

تابع توزیع متغیرهای تصادفی گسسته

برای متغیرهای تصادفی گسسته، تابع توزیع یک تابع پلهای است

- تابع توزیع در نقاط تکیهگاه جهشهایی به اندازهی مقدار تابع جرم احتمال دارد
 - در سایر نقاط ثابت است

$$\forall x \in \mathbb{R} : F_X(x) - F_X(x^-) = P\{X = x\} = f_X(x)$$

رابطهی تابع توزیع و تابع جرم احتمال برای متغیرهای تصادفی گسسته

$$F_X(x) = \sum_{t \in S_X: t \le x} f_X(t)$$

تابع توزیع متغیرهای تصادفی گسسته

مثال: فرض كنيد X يك متغير تصادفي گسسته با تكيهگاه

$$S_X = \{0, 1, 2\}$$

و تابع جرم احتمال

تابع توزیع متغیرهای تصادفی پیوسته

برای متغیرهای تصادفی پیوسته، تابع توزیع یک تابع پیوسته است (فرض می کنیم تحت شرایطی مشتق پذیر باشد) $f_X(x) = \frac{\mathrm{d}}{\mathrm{d}x} F_X(x)$ تابع چگالی احتمال: مشتق تابع توزیع

تابع چگالی احتمال برای متغیرهای تصادفی پیوسته ساختار احتمالاتی متغیر تصادفی را مشخصسازی می کند و

$$orall x \in \mathbb{R}: \quad f_X(x) \geq 0 \quad ext{and} \quad \int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = 1$$
 به علاوه

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

تابع چگالی احتمال متغیرهای تصادفی گسسته در نقاط تکیهگاه تعریف نشده و در سایر نقاط همواره صفر است و استفاده از آن هیچ اطلاعی در مورد ساختار احتمالاتی متغیر تصادفی در اختیار نمی گذارد

تابع توزیع، جرم احتمال و چگالی احتمال

خلاصهی مطالب مطرح شده در مورد تابعهای تعریف شده برای متغیرهای تصادفی

متغیرهای تصادفی پیوسته	متغیرهای تصادفی گسسته	تعریف	تابع
ساختار احتمالاتی را مشخص می کند	ساختار احتمالاتی را مشخص می کند	$F_X(x) = P\{X \le x\}$	تابع توزيع
همواره صفر است	ساختار احتمالاتی را مشخص می کند	$f_X(x) = P\{X = x\}$	تابع جرم احتمال
ساختار احتمالاتی را مشخص می کند	تعریف نشده یا صفر است	$f_X(x) = \frac{\mathrm{d}}{\mathrm{d}x} F_X(x)$	تابع چگالی احتمال

مثالی از یک متغیر تصادفی پیوسته

مثال: برای متغیر تصادف فاصله ی محل اصابت دارت تا مرکز صفحه ی دارتی به شعاع ۱۰ سانتی متر داریم مثال:
$$x<0$$
 $x<0$ $x<0$

بنابراین تابع چگالی احتمال آن برابر است با

احتمال آن برابر است با
$$f_X(x) = P\{X \leq x\} = \begin{cases} \frac{x}{50} & 0 < x < 10 \\ 0 & \text{otherwise} \end{cases}$$

احتمالهای مربوط به یک متغیر تصادفی

فرض کنید a < b اعداد حقیقی دلخواهی باشند، در این صورت

$$P\{X \leq b\} = F_X(b)$$

$$P\{X < b\} = F_X(b^-)$$

$$P\{X > a\} = 1 - F_X(a)$$

$$P\{X \geq a\} = 1 - F_X(a^-)$$

$$P\{a < X \leq b\} = F_X(b) - F_X(a)$$

$$P\{a < X \leq b\} = F_X(b) - F_X(a^-)$$

$$P\{a < X \leq b\} = F_X(b) - F_X(a^-)$$

 $P\{a < X < b\} = F_X(b^-) - F_X(a)$

 $P\{a < X < b\} = F_X(b^-) - F_X(a^-)$