

Remember...

Separate chaining

- Advantages
 - Used when memory is of concern, easily implemented.
- Disadvantages
 - Parts of the table/array might never be used.
 - As chains get longer, search time increases toO(n) in the worst case.

Next Question:

Is there a way to use the "unused" space in the table/array instead of using chains to make more space?

3

Remember... Open Addressing

Main idea: use empty space in the table

Important points:

- All items are stored in the hash table itself.
- In addition to the cell data (if any), each cell keeps one of the three states: EMPTY, OCCUPIED, DELETED.
- While inserting, if a collision occurs, alternative cells are tried until an empty cell is found.
- **Probe sequence**: A probe sequence is the sequence of array indexes that is followed in searching for an empty cell during an insertion, or in searching for a key during find or delete operations.
- The most common probe sequences are of the form:

 $h_i(key) = (h(key) + c(i)) \mod TableSize,$ where i = 0, 1, ..., TableSize-1and c(0) = 0. Linear probing - linear function: c(i) = i

Open Addressing. Quadratic probing

- Quadratic probing is a collision resolution method that eliminates the primary clustering problem of linear probing.
- We can avoid **primary clustering** by changing the **probe** function:
 - $c(i) = i \text{ by } c(i) = i^2 \text{ (or } c(i) = a_1 i^2 + a_2 i + a_3)$

If h(key) = key % TableSize is already occupied then

- □ the **probe sequence** is:
 - 1st probe: (h(key) + 1²) % TableSize
 2nd probe: (h(key) + 2²) % TableSize
 3rd probe: (h(key) + 3²) % TableSize
 - **...**
 - ith probe: (h(key) + i²) % TableSize

5

Open Addressing. Quadratic probing

- h(key) = key % TableSize
- and the probe sequence is:
 1st probe: (h(key)
 - 1st probe: (h(key) + 1²) % TableSize
 2nd probe: (h(key) + 2²) % TableSize
 - 3rd probe: (h(key) + 3²) % TableSize
 - **...**
 - ith probe: (h(key) + i²) % TableSize
- **Example:** insert {89,18,49,58,69}

	Empty Table	After 89	After 18	After 49	After 58	After 69
0				49	49	49
1						
2					58	58
3						69
4						
5						
6						
7						
8			18	18	18	18
9		89	89	89	89	89

Open Addressing. Quadratic probing

- Important points:
 - □ Quadratic probing is better than linear probing because it eliminates primary clustering.
 - □ However, if $h(k_1) = h(k_2)$ the **probing sequences** for k_1 and k_2 are exactly the same. This sequence of locations is called a **secondary clustering**.
 - Example:

7

Open Addressing. Quadratic probing

□ Bad News:

■ For **quadratic probing** is **NO** guarantee of finding an empty cell once the table gets more than half full, or even before the table gets half full if the table size is not prime.

Theorem: if the table is half empty (λ < 1/2) and the TableSize is prime, then we are always guaranteed to be able to insert a new element.

Proof: (see textbook, page 182)

Quadratic Probing. Java Code

☐ See Java Code for Quadratic Probing in:

http://users.cis.fiu.edu/~weiss/dsaajava/code/DataStructures/QuadraticProbingHashTable.java

Author: Mark A. Weiss

9

Open Addressing. Double Hashing

General Idea:

- □ Given **two good hash functions u** and **v**, it is very unlikely that for some **key**, **u(key)** == **v(key)**
- □ So make the probe function f(i) = i*v(key)

Finding a position...

h(key) = key % TableSize

- □ and the probe sequence is:
 - 1st probe: (u(key) + 1*v(key)) % TableSize
 - 2nd probe: (u(key) + 2*v(key)) % TableSize
 - 3rd probe: (u(key) + 3*v(key)) % TableSize
 - ...
 - ith probe: (u(key) + i*v(key)) % TableSize

Detail: Make sure v(key) cannot be 0

Open Addressing. Double Hashing

- If we have
 - \square **u(key) = key** and,
 - \neg v(key) = R (key mod R), with R a prime smaller than TableSize, will work well.

Example:

□ If we choose R = 7, then to insert {89,18,49,58,69} we have:

 i^{th} probe: (key + i*(7 - (key % 7)) % TableSize

	Empty Table	After 89	After 18	After 49	After 58	After 69
0						69
1						
2						
3					58	58
4						
5						
6				49	49	49
7						
8			18	18	18	18
9		89	89	89	89	89

Open Addressing. Double Hashing Analysis

11

- By simple intuition we can suppose that if each probe is "jumping" by **v(key)** each time, we "leave the neighborhood" and "go different places from other initial collisions"
- But we could still have a problem like in quadratic probing where we are not "safe" (infinite loop despite room in table)

Good News:

- It is known that this **cannot happen** in at least one case:
 - u(key) = key % p
 - v(key) = q (key % q)
 - 2 < q < p
 - p and q are prime

Open Addr. Improving the key distribution

	Linear Probing	Quadratic Probing	Double Hashing
0	49	49	69
1	58		
2	69	58	
3		69	58
4			
5			
6			49
7			
8	18	18	18
9	89	89	89

13

Comparison: Linear, Quadratic, and Double

- **Separate chaining** hashing requires the use of links, which costs some memory, and the standard method of implementing calls on memory allocation routines, which typically are expensive.
- **Quadratic probing** is only slightly more difficult to implement and gives good performance in practice. An insertion can fail if the table is half empty, but this is not likely.
- **Double hashing** eliminates primary and secondary clustering, but the computation of a second hash function can be costly.
- In most cases quadratic probing is the fastest method.

Comparison: AVL-tree vs. Hash Table AVL-tree HashTable

	Ins, Del, Find complexity	O(logN)	O(1) in average
•	Find Min/Max	Yes	No

Items in a rangeYesNo

Sorted InputVery BadNo problems(many rotations)

Recommendation:

□ Use **Hash Table** if there is any suspicion of **SORTED input** & **NO ordering** information is required.

