1 Spazio euclideo

$$\mathbb{R}^n := \{ x = (x_1, x_2, \dots, x_n | x_1, x_2, x_n \in \mathbb{R} \}$$

In \mathbb{R}^n vale

Somma tra vettori $x = (x_1, ..., x_2), y = (y_1, ..., y_n)$

$$x + y = (x_1 + y_1 + \dots + x_n + y_n)$$

Prodotto con scalare dato $x = (x_1, \ldots, x_n), \lambda \in \mathbb{R}$, poniamo

$$\lambda x := (\lambda x_1, \dots, \lambda x_n)$$

Definizione Prodotto scalare euclideo Dati $x, y \in \mathbb{R}^n$, poniamo:

$$\langle x, y \rangle := \sum_{k=1}^{n} x_k y_k$$

1.1 Proprietà:

- 1. $\langle x, y \rangle = \langle y, x \rangle \quad \forall x, y \in \mathbb{R}^n$
- 2. $\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle$ e $\langle z, \lambda x + \mu y \rangle = \lambda \langle z, x \rangle + \mu \langle z, y \rangle$ $\forall x, y, z \in \mathbb{R}^n \wedge \lambda, \mu \in \mathbb{R}$
- 3. $\langle x, x \rangle \ge 0 \quad \forall x \in \mathbb{R}^n$
- 4. $\langle x, x \rangle = 0 \iff x = 0 = (0, 0, \dots, 0).$

1.2 Definizione Vettori ortogonale

 $x,y\in\mathbb{R}^n$ si dicono ortogonali se $\langle x,y\rangle=0$

1.3 Definizione Norma euclidea

Dato $x \in \mathbb{R}^n$, poniamo $||x|| := \sqrt{\langle x, x \rangle} \in [0, +\infty[$ Si dice norma di x (viene usata la notazione |x|)

Interpretazione della norma con lunghezza (con il Teorema di Pitagora)

1.3.1 Proprietà della norma

- 1. $|\lambda x| = |\lambda| \cdot |x| \quad \forall \lambda \in \mathbb{R}, x \in \mathbb{R}^n$
- 2. $|x| \ge 0 \quad \forall x \in \mathbb{R}^n \text{ in oltre } |x| = 0 \iff x = 0$
- 3. $|x+y| \leq |x| + |y|$ for all $x, y \in \mathbb{R}^n$ (disuguanza triangolare, con relativa interpretazione)

1.4 Normalizzato di un vettore

Definizione: dato $x \neq 0, x \in \mathbb{R}^n$, il normalizzato di x è il vettore $\frac{x}{|x|}$, l'unico multiplo positivo di x che ha norma 1

1.5 Scrittura del prodotto scalare in coordinate polati in \mathbb{R}^n

Dati $x \in \mathbb{R}^2 \setminus \{0\}$, scriviamo

$$x = |x| \frac{x}{|x|} = r(\cos \theta, \sin \theta)$$

dove r=|x| e $\theta\in\mathbb{R}$ è opportuno. Presi $x=(r\cos\theta,r\sin\theta)$ e $y=(\rho\cos\phi,\rho\sin\phi)$, risulta

$$\langle x, y \rangle = r\rho \cos(\phi - \theta) = |x| \cdot |y| \cos(\phi - \theta)$$

la conseguenza è la disuguaglianza di Clauchy-Schwarz

1.6 La disuguaglianza di Clauchy-Schwarz

 $\forall x, y \in \mathbb{R}^n$ vale

$$|\langle x, y \rangle| \le |x| \cdot |y|$$

Inoltre vale l'uguaglianza sse x e y sono indipendenti

1.7 Formula del "quadrato di un binomio"

Dati $x, y \in \mathbb{R}^n$ vale

$$|x + y|^2 = |x|^2 + 2\langle x, y \rangle + |y|^2$$

La dimostazione avviene con le proprietà del prodotto scalare. Dalla formula sopra segue che, se $x \perp y$ in \mathbb{R}^n , allora vale

$$|x+y|^2 = |x|^2 + |y|^2$$

Teorema dio Pitagora

1.8 Disuguaglianza triangolare

Ancora della formula del "quadrato di un binomio" si può ottenere la dimostazione della disuguaglianza triangolare

$$|x+y| \le |x| + |y| \quad \forall x, y \in \mathbb{R}^n$$

Infatti

$$|x+y|^2 = |x|^2 + |y|^2 + 2\langle x, y \rangle \le \text{ (per Clauchy-Schwarz)} \le |x|^2 + |y|^2 + 2|x| \cdot |y| = (|x| + |y|)^2 \quad \forall x, y \in \mathbb{R}^n$$

1.9 Definizione distanza

 $\forall x,y \in \mathbb{R}^n$ la distanza tra xe yè

$$|x-y|$$

1.10 Intorni sferici o dischi o palle

Dato $x \in \mathbb{R}^n$ (centro) e r > 0 (raggio), poniamo

$$B(x,r) = \{y \in \mathbb{R}^n \mid |y-x| < r\}$$
 (palla con centro x e raggio r)

1.11 Definizione insieme limitato

Sia $A \subseteq \mathbb{R}^n$, si dice limitato se $\exists R > 0$ t.c $A \subseteq B(0, R)$

1.12 Insieme aperto

Sia $A \subseteq \mathbb{R}^n$ si dice aperto se

$$\forall x \in A \exists r > 0 \text{ t.c } B(x,r) \subseteq A$$

Esempi Gli intervalli a, b, i rettangoli $A = I \times J \subseteq \mathbb{R}^2$ con I, J aperti in \mathbb{R} .

2 Sucessioni in \mathbb{R}^n

Sia $(x_k)_{k\in\mathbb{N}}$ una sucessione in $\mathbb{R}^n \quad \forall k\in\mathbb{N}$

2.1 Definizione

 $(x_k)_{k\in\mathbb{N}}$ successione in \mathbb{R}^n ; $x\in\mathbb{R}^n$ Si dice $x_k\to x$ per $k\to+\infty$ se vale

$$\lim_{k \to +\infty} x_k^j = x^j \quad \forall j \in \{1, 2, \dots, n\}$$

Equivalentemente se vale $\lim_{k\to+\infty} |x_k-x|=0$

3 Funzioni di più variabili

 $A\subseteq \mathbb{R}^n, B\subseteq \mathbb{R}^q.$ Data $f:A\to B$, il grafico di f è

$$Graf(G) = \{(x, f(x)) \mid x \in A\} \subseteq A \times B$$

3.1 Definizione funzione continua

 $f: A \to B \text{ (con } A \subseteq \mathbb{R}^n, B \subseteq \mathbb{R}^q)$

f si dice continua se \overline{x} se vale quanto segue:

$$\forall (x_k)_{k \in \mathbb{N}}, (x_k) \text{ successione in A, } x_k \xrightarrow[k \to +\infty]{} \overline{x} \implies f(x_k) \to f(\overline{x}) \quad k \to +\infty$$

Si dimostra che la definizione di continuà "per sucessioni" opportuna data è equivalente alla seguente:

 $f: A \to B \ continua \ in \ x \in A \ se \forall \varepsilon > 0 \exists \delta \ t.c \ |f(x) - f(\overline{x})| < \varepsilon \forall x \in A \cap B(x, \delta)$