

唐老狮系列教程

TE SCHOOL STATES

WELCOME TO THE UNITY SPECIALTY COURSE

STUDY

主要讲解内容

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

主要讲解内容

- 1. 明确目标
- 2. Unity中正交投影重要参数
- 3. 正交投影变换矩阵

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

明确目标

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

明确目标

我们这节课的目标就是要得到

将摄像机视锥体的 正交投影 空间 转换到 齐次坐标裁剪空间 时的 变换矩阵

明确目标

我们可以将其分成两步来完成

- 1.将视锥体中心位移到观察空间原点中心
- 2.将长方体视锥体的xyz坐标范围映射到(-1,1)长宽高为2的正方体中

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

Unity中正交投影重要参数

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

Unity中正交投影重要参数

Projection: 该参数为Orthographic时,为正交摄像机

Size: 视锥体竖直方向上高度的一半

Clipping Planes: 裁剪平面

Near: 近裁剪面离摄像机的距离

Far: 远裁剪面离摄像机的距离

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

Unity中正交投影重要参数

利用已知参数, 获取到远近裁剪面的高度

已知:

Size: 视锥体竖直方向上高度的一半

可得:

近裁剪面高 = 2 * Size

远裁剪面高 = 2 * Size

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

Unity中正交投影重要参数

现在我们已经可以得到

近裁剪面高 = 远裁剪面高 = 2 * Size

我们还可以知道远近裁剪面的宽

可以通过摄像机参数得到Game窗口的宽高比

print(Camera.main.aspect);

Aspect = 宽: 高 = 宽 / 高

因此可以得到

近裁剪面宽 = 远裁剪面宽 = Aspect * 2 * Size

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

Unity中正交投影重要参数

因此,通过上面的推导,我们获取到了远近裁剪面的宽高信息

远近裁剪面

高 = 2 * Size

宽 = Aspect * 高 = Aspect * 2 * Size

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

版权所有: 唐老狮 tpandme@163.com

(1, 1, 1)

(1, -1, 1)

正交投影变换矩阵

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

正交投影变换矩阵

我们已经知道, 我们需要通过以下两步来进行矩阵变换

- 1.将视锥体中心位移到观察空间原点中心
- 2.将长方体视锥体的xyz坐标范围映射到(-1,1)长宽高为2的正方体中

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

正交投影变换矩阵

第一步: 将视锥体中心位移到观察空间原点中心

想要从图一变换到图二

我们只需要对视锥体进行Z方向的平移

X、Y方向是不需要变换的。

因此第一步的变换矩阵的结构一定是一个平移矩阵

1 0 0 0 0 0 0 1 0 0 0 1 Z 我们只需要求出该平移变换矩阵中Z应该平移多少即可 0 0 0 1

正交投影变换矩阵

第一步: 将视锥体中心位移到观察空间原点中心

1 0 0 0 0 1 0 0 0 0 1 Z

我们已知远近裁剪面离摄像机的距离为 Near 和 Far 而观察空间中Z方向是摄像机后方

因此可知 视锥体中心点的 Z 坐标为 $\frac{(-Near) + (-Far)}{2}$

知道了视锥体中心点的Z坐标,那么我们只需要将视锥体平移 - $\frac{(-Near) + (-Far)}{2}$ 个单位即可

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

正交投影变换矩阵

第二步:将长方体视锥体的xyz坐标范围映射到(-1,1)长宽高为2的正方体中

我们可以得到观察空间中的xyz和齐次坐标系中xyz的关系如下图

正交投影变换矩阵

第二步:将长方体视锥体的xyz坐标范围映射到(-1,1)长宽高为2的正方体中

根据这些关系图,我们可以得到一些公式

$$Z_{\hat{r}} = \frac{2}{-Near - (-Far)} * Z_{\infty} => -\frac{2}{Far - Near} * Z_{\infty}$$

正交投影变换矩阵

第二步:将长方体视锥体的xyz坐标范围映射到(-1,1)长宽高为2的正方体中

因此,根据我们的推论,这一步的变换其实就是一个缩放变换,因此,我们可以根据刚才推导的公式

$$X_{\tilde{R}} = \frac{2}{2*Aspect*Size} * X_{m}$$

$$Y_{\hat{A}} = \frac{2}{2*Size} * Y_{\infty}$$

$$X_{\tilde{r}} = \frac{2}{2*Aspect*Size} * X_{m} \qquad Y_{\tilde{r}} = \frac{2}{2*Size} * Y_{m} \qquad Z_{\tilde{r}} = \frac{2}{-Near-(-Far)} * Z_{m} => -\frac{2}{Far-Near} * Z_{m}$$

$$\frac{1}{Aspect * Size} \quad 0 \qquad 0$$

得到:

$$0 - \frac{2}{Far - Near} \qquad 0$$

该矩阵即为我们的目标缩放矩阵

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

正交投影变换矩阵

我们现在得到了两步的对应平移平移矩阵和缩放矩阵,我们将其进行乘法计算后,便可以得到将摄像机视锥体的 正交投影 空间 转换到 齐次坐标裁剪空间 时的 变换矩阵

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

总结

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

总结

1. 明确目标

将摄像机视锥体的 正交投影 空间 转换到 齐次坐标裁剪空间 时的 变换矩阵

2. Unity中正交投影重要参数

Size: 视锥体竖直方向上高度的一半

Near: 近裁剪面离摄像机的距离

Far: 远裁剪面离摄像机的距离

远近裁剪面

高 = 2 * Size

宽 = Aspect * 2 * Size

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

总结

- 3. 正交投影变换矩阵 我们通过两个步骤
 - 1.将视锥体中心位移到观察空间原点中心
 - 2.将长方体视锥体的xyz坐标范围映射到(-1,1)长宽高为2的正方体中 得到了最终的变换矩阵

唐老狮系列教程

排 想 的 您 的 與 所

WELCOME TO THE UNITY SPECIALTY COURSE

STUDY