# Harvard CS 121 and CSCI E-207 Lecture 13: Turing Machines

Harry Lewis

October 14, 2010

• Reading: Sipser, §3.1.

### **Turing Machines**

Objective: Define a computational model that is

- General-purpose:
  - (as powerful as programming languages)
- Formally Simple:

(we can prove what <u>cannot</u> be computed)

## The Origin of Computer Science

# Alan Mathison Turing

"On Computable Numbers, with an Application to the Entscheidungsproblem" 1936



# **What Problem Was Turing Trying to Solve?**

David Hilbert

"Mathematical Problems" 1900



## The Logicians



Kurt Gödel

"On Formally Undecidable Propositions ... " 1931



Alonzo Church

"An Unsolvable Problem of Elementary Number Theory" 1936

## The Basic Turing Machine



- Head can both read and write, and move in both directions
- Tape has unbounded length
- □ is the blank symbol. All but a finite number of tape squares are blank.

#### **Formal Definition of a TM**

A (deterministic) Turing Machine (TM) is a 7-tuple  $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ , where:

- Q is a finite set of states, containing
  - the start state  $q_0$
  - ullet the accept state  $q_{accept}$
  - the reject state  $q_{reject} \neq q_{accept}$
- $\Sigma$  is the input alphabet
- $\Gamma$  is the tape alphabet
  - Contains  $\Sigma$
  - Contains "blank" symbol  $\sqcup \in \Gamma \Sigma$

#### The transition function

$$Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$$

- L and R are "move left" and "move right"
- $\delta(q,\sigma) = (q',\sigma',R)$ 
  - Rewrite  $\sigma$  as  $\sigma'$  in current cell
  - Switch from state q to state q'
  - And move right
- $\delta(q,\sigma) = (q',\sigma',L)$ 
  - Same, but move left
  - Unless at left end of tape, in which case stay put

### **Computation of TMs**

- A configuration is uqv, where  $q \in Q$ ,  $u, v \in \Gamma^*$ .
  - Tape contents = uv followed by all blanks
  - State = *q*
  - Head on first symbol of v.
  - Equivalent to uqv', where  $v' = v \sqcup$ .
- Start configuration =  $q_0w$ , where w is input.
- One step of computation:
  - $uq\sigma v$  yields  $u\sigma'q'v$  if  $\delta(q,\sigma)=(q',\sigma',R)$ .
  - $u\tau q\sigma v$  yields  $uq'\tau\sigma'v$  if  $\delta(q,\sigma)=(q',\sigma',L)$ .
  - $q\sigma v$  yields  $q'\sigma' v$  if  $\delta(q,\sigma)=(q',\sigma',L)$ .
- If  $q \in \{q_{accept}, q_{reject}\}$ , computation halts.

### TMs and Language Membership

- M accepts w if there is a sequence of configurations  $C_1, \ldots, C_k$  such that
  - 1.  $C_1 = q_0 w$ .
  - 2.  $C_i$  yields  $C_{i+1}$  for each i.
  - 3.  $C_k$  is an accepting configuration (i.e. state of M is  $q_{accept}$ ).
- $L(M) = \{w : M \text{ accepts } w\}.$
- L is Turing-recognizable if L=L(M) for some TM M, i.e.
  - $w \in L \Rightarrow M$  halts on w in state  $q_{accept}$ .
  - $w \notin L \Rightarrow$  M halts on w in state  $q_{\mbox{reject}}$  OR M never halts (it "loops").

### Decidability, a.k.a. Recursiveness

- ullet L is (Turing-)decidable if there is a TM M s.t.
  - $w \in L \Rightarrow M$  halts on w in state  $q_{accept}$ .
  - $w \notin L \Rightarrow M$  halts on w in state  $q_{\text{reject}}$ .
- Other common terminology
  - Recursive = decidable
  - Recursively enumerable (r.e.) = Turing-recognizable
  - Because of alternate characterizations as sets that can be defined via certain systems of recursive (self-referential) equations.

# **Example**

• Claim:  $L = \{a^nb^nc^n : n \ge 0\}$  is decidable.

#### **Questions**

- Does every TM recognize some language?
- Does every TM decide some language?
- How many Turing-recognizable languages are there?
- How many decidable languages are there?