Лабораторная работа №4.

1. Выбрать функцию f(x) (не самую тривиальную). Например,

$$f(x) = e^{2x-1} + 3\sin\left(3x + \frac{\pi}{7}\right) - \frac{\arctan(3x+6)}{\sqrt{x+4}} - 3.$$

f(x) должна содержать несколько элементарных функций, одна из которых выбирается из таблицы:

Вариант	Функция	Примерный вид
1	Экспоненциальная	$e^{ax+b}+c$
2	Тригонометрическая	$A*\cos(bx+c)$
3	Корень к-ой степени	$\sqrt[k]{ax+b}$
4	Дробно-рациональная	$\frac{a_0 + a_1 x + \dots + a_m x^m}{b_0 + b_1 x + \dots + b_k x^k}$
5	Гиперболическая	A*sh(bx+c)
6	Обратная к гиперболической	$A * \operatorname{arch}(ax + b)$

Значения параметров a_i, b_i, \dots, Z_i – произвольные.

- 2. Сгенерировать N=20 точек на интервале [0,1] и разбить на 2 множества (тренировочный и тестовый наборы по 10 точек). Сгенерировать шум $\epsilon=(\epsilon_1,\epsilon_2,\ldots,\epsilon_N),\,\epsilon\in N(0,1)$. Значения рассчитать по формуле $y=f(x)+\sigma\epsilon$. Изобразить наборы точек на плоскости разным цветом.
- 3. МНК (методом наименьших квадратов) решить задачу линейной регрессии, приблизить тренировочные данные многочленом 1 степени, для нахождения коэффициентов регрессии использовать:
 - 3.1. Точную формулу;
 - 3.2. Градиентный спуск (алгоритм реализовать самому).
- 4. Приблизить тренировочные данные многочленами 2, 5 и 9 степеней. Построить график зависимости ошибки MSE (средний квадрат ошибки) на тренировочных и тестовых данных от степени.
- 5. Выбрать любую отличную от варианта нелинейную функцию, зависящую от параметров (можно взять из соседнего варианта). Приблизить данные, найдя подходящие значения параметров. Сравнить точность с п.4.
- 6. Для многочленов 5 степени добавить коэффициент регуляризации, обучить на тренировочных данных. Построить график зависимости ошибки от силы регуляризации.

Вариант	Регуляризация
Нечетный	$L_1(Lasso)$
Четный	$L_2(Ridge)$