

Ayudantía Repaso I1

15 de abril de 2024

Martín Atria, Paula Grune, Caetano Borges

1. Inducción Estructural

Sea S el conjunto de palabras formadas por a's y b's recursivamente de la siguiente manera:

- 1. $a \in S, b \in S$
- 2. Si $\mu \in S$ y $\nu \in S$, entonces $\mu \nu \in S$.
- 3. Solo los elementos generados mediante las reglas 1 y 2 pertenecen a S.

También se define la función reverso $R:S\longrightarrow S$ de la siguiente manera:

- 1. R(a) = a, R(b) = b.
- 2. Si $\mu \in S$, entonces $R(a\mu) = R(\mu)a$, y $R(b\mu) = R(\mu)b$.
- a) Demuestre que para todo par de palabras $\mu, \nu \in S$ se tiene que

$$R(\mu\nu) = R(\nu)R(\mu)$$

b) Demuestre que para toda palabra $\mu \in S$ se cumple que

$$R(R(\mu)) = \mu$$

Solución

a)

BI: Con $\mu = a$ y $\nu \in S$, se tiene que

$$R(\mu\nu) = R(a\nu) = R(\nu)a = R(\nu)R(a) = R(\nu)R(\mu)$$

El caso de $\mu=b$ es análogo. Luego, para todo $\nu\in S$ se cumple el caso base.

HI: Sean $\mu, \nu \in S$. Supongamos que para todo $\xi \in S$ se cumple que $R(\mu \xi) = R(\xi)R(\mu)$, y lo mismo para ν , es decir, que $R(\nu \xi) = R(\xi)R(\mu)$

TI: PD: Para todo $\xi \in S$ se cumple que $R(\mu\nu\xi) = R(\xi)R(\mu\nu)$. Se tiene que

$$R(\mu\nu\xi) = R(\mu(\nu\xi))$$

$$= R(\nu\xi)R(\mu) \qquad \text{por HI}$$

$$= R(\xi)R(\nu)R(\mu) \qquad \text{por HI}$$

$$= R(\xi)(R(\nu)R(\mu))$$

$$= R(\xi)R(\mu\nu) \qquad \text{por HI}$$

Luego, para todo $\mu, \nu \in S, R(\mu\nu) = R(\nu)R(\mu)$.

b)

BI: Con $\mu = a$, la propiedad se cumple trivialmente. Lo mismo para $\mu = b$.

HI: Supongamos que para $\mu, \nu \in S$ se tiene que $R(R(\mu)) = \mu$ y $R(R(\nu)) = \nu$.

TI: PD: $R(R(\mu\nu)) = \mu\nu$. Se tiene que

$$R(R(\mu\nu)) = R(R(\nu)R(\mu))$$
 demostrado en (a)
 $R(R(\mu\nu)) = R(R(\mu))R(R(\nu))$ demostrado en (a)
 $R(R(\mu\nu)) = \mu\nu$ HI

Concluímos que para todo $\mu \in S$ se tiene que $R(R(\mu)) = \mu$.

2. Lógica proposicional

Demuestre que el conjunto $\{\land,\lor,\rightarrow,\leftrightarrow\}$ no es funcionalmente completo.

Solución

Consideremos el conjunto de todas las fórmulas construidas con la variable proposicional p. Dentro de este conjunto está, por ejemplo, la fórmula $p \land \neg p$, que es una contradicción. Demostraremos que, usando solo los conectivos de $C = \{\land, \lor, \to, \leftrightarrow\}$, no se puede obtener ninguna fórmula equivalente a $p \land \neg p$, o en otras palabras, que no se puede expresar la contradicción, y con ello concluiremos que el conjunto no es funcionalmente completo.

Demostraremos que todas las fórmulas que se pueden construir en base a la variable proposicional p con los conectivos de C son equivalentes a p o son tautología. Lo haremos por inducción:

BI: Para $\varphi = p$, la propiedad se cumple trivialmente.

HI: Supongamos que $\varphi, \psi \in \mathcal{L}(P)$ son fórmulas que solo usan conectivos de C, su única variable proposicional es p, y cumplen la propiedad, es decir, que o son equivalentes a p o son tautología.

TI: PD: $\theta = \varphi \circ \psi$, con $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ es tal que $\theta \equiv p \lor \theta \equiv \top$. Hay 4 casos:

- 1. $\theta = \varphi \wedge \psi$.
 - a) Si $\varphi \equiv \psi \equiv \top$, entonces $\theta \equiv \top$.
 - b) Si al menos una de ellas es equivalente a p, entonces $\theta \equiv p$.

En todos los casos se cumple la propiedad.

- 2. a) $\theta = \varphi \vee \psi$. Si al menos una de φ, ψ es equivalente a \top , entonces $\theta \equiv \top$.
 - b) Si ambas son equivalentes a p, entonces $\theta \equiv p$.

En todos los casos se cumple la propiedad.

- 3. $\theta = \varphi \rightarrow \psi$.
 - a) Si $\psi \equiv \top$, entonces $\theta \equiv \top$.
 - b) Si $\varphi \equiv \psi \equiv p$, entonces $\theta \equiv p$.
 - c) Si $\varphi \equiv \top$ y $\psi \equiv p$, entonces $\theta \equiv p$.

En todos los casos se cumple la propiedad.

- 4. $\theta = \varphi \to \psi$
 - a) Si una de φ, ψ es equivalente a \top y la otra es equivalente a p, entonces $\theta \equiv p$.
 - b) En otro caso, $\theta \equiv \top$.

En todos los casos se cumple la propiedad.

Como en todo caso de construcción inductiva se cumple la propiedad, concluímos que toda fórmula construida solo con conectivos de C y en base solo a la variable proposicional p es equivalente a p o es tautología, por lo que ninguna es una contradicción. Con ello, concluímos que la constradicción no se puede expresar, por lo que el conjunto C no es funcionalmente completo.

3. Modelamiento de Lógica de Predicados

Sea \leq y = símbolos de predicado binario y P un símbolo de predicado unario. Considere la interpretación $\mathcal I$ definida como:

$$\mathcal{I}(dom) := \mathbb{N}$$

 $\mathcal{I}(=) := n = m \text{ si y solo si } n \text{ es igual a } m.$

 $\mathcal{I}(\leq) := n \leq m$ si y solo si n es menor o igual que m.

 $\mathcal{I}(P) := P(n)$ si y solo si n es primo

Escriba la siguiente expresión en lógica de predicados sobre la interpretación \mathcal{I} :

"Para todo par de números primos distintos de 2 y 3, hay un número natural entre ellos que no es primo"

Solución

Considere los siguientes predicados:

- $Entre(x,y,z) := x \le y \le z \land \neg(x=y) \land \neg(y=z)$ (y está entre x y z).
- $S(x,y) := x \le y \land \neg(x=y) \land (\neg \exists z.Entre(x,z,y)) \ (y \text{ es sucesor de } x).$
- $0(x) := \forall y.(x \le y) \ (x \text{ es } 0).$
- $1(x) := \exists y.(0(y) \land S(y,x)) \ (x \text{ es } 1).$
- $2(x) := \exists y.(1(y) \land S(y,x)) \ (x \text{ es } 2).$
- $3(x) := \exists y.(2(y) \land S(y,x)) \ (x \text{ es } 3).$
- $PrimoNo2No3(x) := P(x) \land \neg 2(x) \land \neg 3(x)$ (x es un número primo distinto de 2 y 3).

Usando estos predicados, la oración pedida es la siguiente:

$$\forall x \forall y. ((PrimoNo2No3(x) \land PrimoNo2No3(y)) \rightarrow (\exists z. (Entre(x, z, y) \land \neg P(z))))$$