Emulating a gravity model to infer the spatiotemporal dynamics of an infectious disease

Murali Haran¹

(joint work with Roman Jandarov¹ and Ottar Bjornstad²)

¹Department of Statistics, The Pennsylvania State University
²Department of Entomology and Center for Infectious Disease Dynamics, The Pennsylvania State University

Joint Statistical Meetings, Vancouver, BC. August 2010

Infectious disease modeling

- Infectious diseases have an immense impact on human health, agriculture and conservation.
- ► The theory of disease dynamics provides a tractable system for investigating key questions in population and evolutionary biology. Of practical use in management and control of infectious diseases, including immunization and epidemic control strategies.
- ▶ SIR models: a class of disease dynamics models.
- ► Although relatively simple, variants of SIR models have been effective and are widely used.
- Here: statistical inference for the Gravity-TSIR model, which models spatiotemporal dynamics. This model presents several inferential and computational challenges.

SIR models

Basic SIR models classify individuals as one of **susceptible** (S), **infected** (I) or **recovered** (R).

- Individuals are born into the susceptible class.
- Susceptible individuals have never come into contact with the disease and are able to catch the disease, after which they move into the infected class.
- Infected individuals spread the disease to susceptibles, and remain in the infected class (the infected period) before moving into the recovered class.
- Individuals in the recovered class are assumed to be immune for life.

Gravity T-SIR model

Extension of the discrete time-series SIR (T-SIR) model (Bjornstad et al.2002; Grenfell et al. 2002) with explicit formulation of the spatial transmission between different host communities.

Notation:

- $I_{k,t}$ number of infected individuals in city k at time t.
- \triangleright $S_{k,t}$ number of susceptible individuals in city k at time t.
- $ightharpoonup d_{k,j}$ distance between cities k and j.
- $ightharpoonup N_{k,t}$ population of city k at time t.
- \triangleright $B_{k,t}$ local number of new hosts (births) in city k at time t.
- $ightharpoonup L_{k,t}$ number of infected people moved to city k at time t.
- ► *T* cities, *K* time points.

Modeling incidences

Following Xia, Bjornstad and Grenfell (2004):

▶ Number of incidences of a disease at time t + 1 for city k,

$$I_{k,t+1} = \mathsf{Poisson}(\lambda_{k,t+1}), \text{ where } \lambda_{k,t+1} = \beta_t \mathcal{S}_{k,t} (I_{k,t} + L_{k,t})^{\alpha}.$$

- {β_t} specified only via 26 parameters (26 = number of biweeks in a year), to allow for differences in seasonal transmission. Assumed to be same every year.
- α , $\{\beta_t\}$ are local transition parameters.

Modeling susceptibles

Number of susceptible individuals at time t + 1 for city k is then modeled via balance equation (Bartlett, 1957):

$$S_{k,t+1} = S_{k,t} + B_{k,t} - I_{k,t+1}$$

► Finally, unobserved number of infected immigrants moved to city *k* at time *t* is modeled as:

$$L_{k,t} = \text{Gamma}(m_{k,t}, 1),$$

where

$$m_{k,t} = \theta N_{k,t}^{\tau_1} \sum_{i=1, i \neq k}^{K} \frac{(J_{jt})^{\tau_2}}{d_{k,j}^{\rho}}, \quad \theta, \tau_1, \tau_2, \rho > 0.$$

Statistical inference for measles

Measles data

- The UK Registrar General's data for 952 cities in England and Wales for years 1944-1966 of biweekly incidences of measles. Very rich spatio-temporal data.
- Data for number of susceptibles from standard susceptible reconstruction algorithms (Fine and Clarkson 1982a, Schenzle 1984, Ellner et al. 1998, Bobashev et al. 2000, Finkenstadt and Grenfell 2000).

Parameters of the model:

- ▶ Reliable estimates of local transition parameters α and $\{\beta_t\}$ are assumed known from previous work (Bjornstad et al. 2001).
- Gravity parameters θ , τ_1 , τ_2 , ρ are unknown.
- ▶ **Goal**: Infer unknown gravity parameters: θ , τ_1 , τ_2 , ρ .

Challenges with likelihood-based inference

- ▶ Dimensions of the data (*TK*): 546*952 = 519,792.
- ▶ Number of infected immigrants $\{L_{k,t}\}$ are unobserved.
- ▶ The likelihood function is complicated:
 - Involves integrating over 519,792 latent variables (frequentist or Bayesian.)
 - Very expensive calculations per iteration.
- Approximate Bayesian computations (ABC) ("MCMC without likelihoods", Marjoram et al., 2002) is also infeasible since simulating draws from this model is computationally expensive.

A simplified model and gridded MCMC

An approach: simplify the model by fixing the number of immigrants (latent variables) at their means.

- ▶ Likelihood evaluations are still very expensive. It takes ≈ 72 hours to find MLEs for the simplified gravity model.
- Studying likelihood surface, learning about variability of estimates is computationally infeasible.

Gridded Metropolis-Hastings:

- We evaluate expensive parts of the likelihood for a grid of parameter values and store these in a look-up table.
- Sample discretized parameter space (on grid). M-H ratio evaluation is now much faster.

Results

Simulation experiments and likelihood/Bayes evaluations suggest that the gridded MCMC algorithm produces posterior distributions similar to a non-gridded MCMC algorithm.

Issues:

- Serious identifiability issues. Can only infer 2 of the 4 parameters.
- In simulation studies: posterior (and likelihood) surface is peaked away from the true parameter values. There's a significant bias.

Alternative approach

- Instead of likelihood-based approach, focus on important biological 'signatures' (characteristics) of the process. E.g. proportion of zeros (no disease incidences).
- ▶ Borrow ideas from computer model emulation, calibration.
 - Simulate realizations from the gravity model at different parameter values.
 - Use the signatures to define statistics.
 - Find distance between summary statistics for the simulated process and the observations.
 - Fit a Gaussian process to this distance.
 - Can obtain a likelihood and perform Bayesian inference for the gravity model parameters using the real data.

Inferential approach outline

- Gravity parameters, $\Theta = (\theta, \tau_1, \tau_2, \rho)$.
- ► Summary statistics (distance to observations) based on simulations at Θ_i , i = 1, ..., n parameter settings, $\mathbf{Y} = (\mathbf{Y}(\Theta_1), ..., \mathbf{Y}(\Theta_n))$.
- ▶ Model stochastic model output **Y** using a Gaussian process: **Y** | β , ξ ~ $N(\mu_{\beta}(\Theta), \Sigma(\xi, \Theta))$. Infer β , ξ : regression, covariance parameters.
- ► Model summary statistic for real data set **Z**:
- ▶ **Z** = η (**Y**, θ) + δ _Ψ(**Y**, Θ) + ϵ _{σ 2}(**Y**) where η is a random variable with predictive distribution derived above. δ is a discrepancy function, modeled as Gaussian process, and ϵ is a vector of i.i.d. errors.
- ▶ Infer posterior $\pi(\Theta, \Psi, \sigma^2 \mid \mathbf{Z}, \mathbf{Y})$ using MCMC.

Summary

- With estimated parameters, the model is able to reproduce well the signatures of the disease process.
- Through simulation studies, we find that our GP-based emulation approach produces unbiased estimates of the parameters.
- Can also produce estimates of uncertainty, look at all marginals, joint distributions of parameters easily.
- Our statistical approach unearths serious identifiability issues.
- Issue: Computational concerns do not allow for more than 3 replications at each grid point.

Key references

- Grenfell, B.T., Bjørnstad, O. N. and Kappey, J. (2001), "Traveling waves and spatial hierarchies in measles epidemics." *Nature*.
- Xia, Y. C., Bjørnstad, O. N. and Grenfell, B. T. (2004), Measles Metapopulation Dynamics: A gravity model for epidemiological coupling and dynamics, *American* Naturalist.
- Bjørnstad, O. N., Finkenstädt, B. and Grenfell, B. T.(2001), Dynamics of measles epidemics. I. estimating scaling of transmission rates using a time series SIR model, *Ecological Monographs*.

Acknowledgment: Support from Bill and Melinda Gates Foundation.