Motor Test Results and Analysis

Date: 2023-08-17

Author: Jonas Wagner

Test done with a new motor which started at 50rpm and ended in a stall after 3.5ish min.

This is likely due to the higher loading and lower RPM then is ideal for the motor.

Data ingested from 20230817 161823 1.mp4 using dataIngest.m

```
clear
close all
T =
readtable("data\motorTestData_20230817_161823_1.csv","VariableNamingRule","preserve"
);
T = fillmissing(T,"nearest");
T.omega = (2*pi/60).*T.RPM;
T.P_in_W = T.("Voltage (V)") .* T.("Current (A)");
T.P_out_W = T.("Torque (Nm)") .* T.omega;
T.eta = T.P_out_W ./ T.P_in_W
```

 $T = 6118 \times 9 \text{ table}$

. . .

	Time (s)	Current (A)	Voltage (V)	Torque (Nm)	RPM	omega
1	0.3333	0.7200	24.8900	0.5000	51	5.3407
2	0.3666	0.7200	24.8900	0.5000	51	5.3407
3	0.3999	0.7200	24.8900	0.5000	51	5.3407
4	0.4332	0.7200	24.8900	0.5000	51	5.3407
5	0.4666	0.7200	24.8900	0.5000	51	5.3407
6	0.4999	0.7200	24.8900	0.5000	51	5.3407
7	0.5332	0.7200	24.8900	0.5000	51	5.3407
8	0.5665	0.7200	24.8900	0.5000	51	5.3407
9	0.5998	0.7200	24.8900	0.5000	51	5.3407
10	0.6332	0.7200	24.8900	0.5000	51	5.3407
11	0.6665	0.7200	24.8900	0.5000	51	5.3407
12	0.6998	0.7200	24.8900	0.5000	51	5.3407
13	0.7332	0.7200	24.8900	0.5000	51	5.3407
14	0.7665	0.7200	24.8900	0.5000	51	5.3407

:

```
% Energy (J) = Power (W) * Time (s)
E_total_in = sum(10*T.P_in_W);
E_total_out = sum(10*T.P_out_W);
```

```
eta_total = E_total_out/E_total_in;
fprintf('Total Energy In: %0d W\n',round(E_total_in)); fprintf('Total Energy Out:
%0d W\n',round(E_total_out)); fprintf('Total Efficiency: %.2f%%',100*eta_total)
```

Total Energy In: 940771 W Total Energy Out: 91890 W Total Efficiency: 9.77%

Plots

```
figure
hold on
plot(T.("Time (s)"), T.P_in_W, DisplayName = "Power In (W)")
plot(T.("Time (s)"), T.P_out_W, DisplayName = "Power Out (W)")
title('Power over time')
xlabel('Time (s)')
ylabel('Power (W)')
legend
```



```
figure
plot(T.("Time (s)"), T.eta, DisplayName="Efficiency")
title('Efficiency over Time')
xlabel('Time (s)')
ylabel('Efficiency')
legend
```

