TD 3 : Processus de Poisson, approche mesure aléatoire

Exercice 1:

Soit $(T_n)_{n\geqslant 1}$ un processus ponctuel sur \mathbf{R}_+ (i.e. $0 < T_1 < T_2 < \cdots < T_n < \cdots$ et $\lim_n T_n = +\infty$ p.s.) et le processus de comptage $(N_t)_{t\geqslant 0}$ associé,

$$\forall t \geqslant 0, \quad N_t = \sum_{n \ge 1} \mathbf{1}_{\{T_n \leqslant t\}}.$$

On définit pour tout $\omega \in \Omega$ la mesure (appelée mesure aléatoire) sur $\mathscr{B}(\mathbf{R}_+)$

$$\forall A \in \mathcal{B}(\mathbf{R}_+), \quad \mu(\omega, A) = \sum_{n \ge 1} \mathbf{1}_{\{T_n(\omega) \in A\}},$$

et pour toute fonction mesurable positive f sur \mathbf{R}_+ on note $\mu(f)$ l'application mesurable $\omega \mapsto \mu(f)(\omega)$

$$\forall f \in \mathscr{M}_+(\mathbf{R}_+), \quad \mu(f) = \sum_{n \ge 1} f(T_n).$$

Dans tout l'exercice on note m la mesure de Lebesgue.

1. Montrer que si $(N_t)_{t\geqslant 0}$ est un processus de Poisson d'intensité $\lambda>0$ pour toute fonction mesurable positive f la transformation de Laplace vérifie

$$\mathbf{E}\left[e^{-\mu(f)}\right] = e^{-\lambda \int_0^{+\infty} (1 - e^{-f(t)}) dt} \tag{*}$$

2. Montrer que si $\mu(f)$ verifie (*) pour toute $f \in \mathcal{M}_+(\mathbf{R}_+)$ alors

$$\begin{cases} \forall A_1, \dots, A_n \in \mathcal{B}(\mathbf{R}_+) \text{ disjoints, alors les v.a.} \mu(A_1), \dots, \mu(A_n) \text{ sont indépendantes,} \\ \forall A \in \mathcal{B}(\mathbf{R}_+), \mu(A) \sim \mathcal{P}(\lambda m(A)) \text{ si } m(A) < +\infty, \text{ et } \mu(A) = +\infty \text{ p.s. si } m(A) = +\infty \end{cases}$$
(**)

(on rappelle que la transformée de Laplace d'une loi de Poisson $X \sim \mathscr{P}(\theta)$ vérifie $\mathbf{E}\left[e^{-uX}\right] = e^{-\theta(1-e^{-u})}$).

- 3. Montrer la réciproque de la question 2.
- 4. En déduire que (*) et (**) sont des critères équivalents au fait que $(N_t)_{t\geqslant 0}$ soit un processus de Poisson d'intensité $\lambda > 0$.

Corrigé:

1. Soit f une fonction mesurable positive sur \mathbf{R}_+ et T>0. On note $f_T(f)=f(t)\mathbf{1}_{\{t\leqslant T\}}$ de sorte que f_T croît vers f avec T, $\mu(f_T)$ croît vers $\mu(f)$ p.s. (par Beppo Levi) et donc $e^{-\mu(f_T)}$ décroît vers $e^{-\mu(f)}$ p.s.. D'autre part, $|e^{-\mu(f_T)}| \leqslant 1$ donc par convergence dominée lorsque $T \to \infty$

$$\mathbf{E}\left[e^{-\mu(f_T)}\right] \to \mathbf{E}\left[e^{-\mu(f)}\right] \quad \text{et} \quad \int_0^{+\infty} (1 - e^{-f_T(t)}) dt \to \int_0^{+\infty} (1 - e^{-f(t)}) dt.$$

Il suffit donc de montrer le résultat pour des fonctions de la forme f_T . Or on a

$$\mu(f_T) = \sum_{n \ge 1} f_T(T_n) = \sum_{k=1}^{N_T} f(T_k) = \sum_{n \ge 0} \sum_{k=1}^n f(T_k) \mathbf{1}_{\{N_T = n\}}$$

et $\mathbf{E}\left[e^{-\mu(f_T)}\right] = \sum_{n\geqslant 0} a_n$ avec $a_n = \mathbf{E}\left[e^{-\sum_{k=1}^n f(T_k)}\mathbf{1}_{\{N_T=n\}}\right]$. Or d'après l'exercice 5 de la feuille 6 on connaît la loi conditionnelle de (T_1,\ldots,T_n) sachant $\{N_T=n\}$ donc

$$a_n = \mathbf{E} \left[e^{-\sum_{k=1}^n f(T_k)} \mid N_T = n \right] \mathbf{P} \left[N_T = n \right],$$

= $\lambda^n e^{-\lambda T} \int_{\mathbf{R}_+^n} e^{-\sum_{k=1}^n f(t_k)} \mathbf{1}_{\{t_1 < t_2 < \dots < t_n \leqslant T\}} dt_1 \dots dt_n.$

Comme $\sum_{k=1}^{n} f(t_k) = \sum_{k=1}^{n} f(t_{\sigma(k)})$ pour toute permutation σ de $\{1, \ldots, n\}$ et que $\sum_{\sigma} \mathbf{1}_{\{t_{\sigma(1)} < t_{\sigma(2)} < \cdots < t_{\sigma(n)} \leqslant T\}} = \mathbf{1}_{\{t_1 \leqslant T, \ldots, t_n \leqslant T\}}$ on obtient en sommant à gauche et à droite sur toutes les permutations de $\{1, \ldots, n\}$ (il y en a n!)

$$a_n n! = \lambda^n e^{-\lambda T} \int_{[0,T]^n} e^{-\sum_{k=1}^n f(t_k)} dt_1 \dots dt_n = \lambda^n e^{-\lambda T} \left(\int_0^T e^{-f(t)} dt \right)^n.$$

Ainsi on a

$$\mathbf{E}\left[e^{-\mu(f_T)}\right] = \sum_{n\geqslant 0} \frac{e^{-\lambda T}}{n!} \left(\lambda \int_0^T e^{-f(t)} dt\right)^n,$$

$$= e^{-\lambda T} e^{\lambda \int_0^T e^{-f(t)} dt},$$

$$= e^{-\lambda \int_0^{+\infty} (1 - e^{-f_T(f)}) dt}.$$

2. Soit A_1, \ldots, A_n des boréliens de \mathbf{R}_+ deux à deux disjoints et $a_i \geqslant 0$. On considère la fonction $f(t) = \sum_{i=1}^n a_i \mathbf{1}_{A_i}(t)$ alors $\mu(f)$ vérifie

$$\mathbf{E}\left[\prod_{i=1}^{n} e^{-a_i \mu(A_i)}\right] = \prod_{i=1}^{n} e^{-\lambda m(A_i)(1 - e^{-a_i})}$$

On en déduit que les v.a. $\mu(A_1),\ldots,\mu(A_n)$ sont indépendantes et si $m(A_i)<+\infty$ alors

$$\mathbf{E}\left[e^{-a_i\mu(A_i)}\right] = e^{-\lambda m(A_i)(1 - e^{-a_i})}$$

donc $\mu(A_i)$ a pour loi une loi de Poisson de paramètre $\lambda m(A_i)$.

3. Réciproquement on considère la fonction étagée, $f(t) = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{\{A_i\}}(t)$ avec les A_1, \ldots, A_n disjoints et $\alpha_i \geqslant 0$. Par hypothèse on sait que les $\mu(A_i)$ sont indépendantes et que $\mu(A_i) \sim \mathscr{P}(\lambda m(A_i))$ i.e.

$$\mathbf{E}\left[e^{-\alpha_i\mu(A_i)}\right] = e^{-\lambda m(A_i)(1 - e^{-\alpha_i})}$$

Par indépendance on a

$$\mathbf{E}\left[e^{-\sum_{i=1}^{n}\alpha_{i}\mu(A_{i})}\right] = \prod_{i=1}^{n}e^{-\lambda m(A_{i})(1-e^{-\alpha_{i}})}$$

et donc

$$\mathbf{E}\left[e^{-\mu(f)}\right] = e^{-\lambda \sum_{i=1}^{n} m(A_i)(1 - e^{-\alpha_i})} = e^{-\lambda \int_0^{+\infty} \left(1 - e^{-\sum_{i=1}^{n} \alpha_i \mathbf{1}_{A_i}(t)}\right) dt}.$$

Le résultat (*) est vrai pour toute fonction étagée et on obtient le résultat pour toute fonction f mesurable positive en l'écrivant comme limite croissante de fonctions étagées.

4. D'après les questions 2. et 3. les critères (*) et (**) sont équivalents. De plus d'après la question 1. on sait que si $(N_t)_{t\geqslant 0}$ est un processus de Poisson alors (*) est vérifié. Il suffit de montrer la réciproque, pour cela il suffit de montrer que si $(N_t)_{t\geqslant 0}$ vérifie (**) alors c'est un processus de Poisson. Or d'après (**) $(N_t)_{t\geqslant 0}$ est un PAIS de loi marginale $N_t \sim \mathcal{P}(\lambda t)$ (en prenant A = [0, t]) et donc c'est un processus de Poisson (cf. définition ou exercice 4 (iii) feuille 6).

Exercice 2:

Soient $(N_t^1)_{t\geqslant 0}$, $(N_t^2)_{t\geqslant 0}$ et $(N_t^3)_{t\geqslant 0}$ trois processus de Poisson indépendants et de paramètres respectifs $\lambda_1>0$, $\lambda_2>0$ et $\lambda_3>0$. On définit $(N_t)_{t\geqslant 0}$ par $N_t=N_t^1+N_t^2+N_t^3$ pour tout $t\geqslant 0$ et $(T_n)_{n\geqslant 1}$ les instants successifs de sauts du processus $(N_t)_{t\geqslant 0}$.

- 1. En utilisant la caractérisation par la transformée de Laplace, montrer que $(N_t)_{t\geqslant 0}$ est un processus de Poisson d'intensité $\lambda=\lambda_1+\lambda_2+\lambda_3$.
- 2. Quelle est la loi de T_n pour un $n \ge 1$?
- 3. Quelle est la probabilité que le premier saut de $(N_t)_{t\geqslant 0}$ soit un saut de $(N_t^1)_{t\geqslant 0}$?
- 4. Quelle est la probabilité que le premier saut après un instant s>0 soit un saut de $(N_t^3)_{t\geqslant 0}$?

Corrigé:

1. Soit μ la mesure aléatoire associée au processus ponctuel $(T_n)_{n\geqslant 1}$ formé par la réunion (ordonnée) des instants de sauts de N^1 (notés $(T_n^1)_{n\geqslant 1}$), N^2 (notés $(T_n^2)_{n\geqslant 1}$) et N^3 (notés $(T_n^3)_{n\geqslant 1}$). Alors pour toute fonction mesurable positive f

$$\mu(f) = \sum_{n \ge 1} f(T_n) = \sum_{n \ge 1} f(T_n^1) + f(T_n^2) + f(T_n^3) = \mu^1(f) + \mu^2(f) + \mu^3(f),$$

et par indépendance des trois processus

$$\mathbf{E}\left[e^{-\mu(f)}\right] = \mathbf{E}\left[e^{-\mu^1(f)}\right]\mathbf{E}\left[e^{-\mu^2(f)}\right]\mathbf{E}\left[e^{-\mu^3(f)}\right] = e^{-(\lambda_1 + \lambda_2 + \lambda_3)\int_0^{+\infty} (1 - e^{-f(t)})\mathrm{d}t},$$

d'où le résultat.

2. La loi de T_n est la somme de n v.a. indépendantes de loi exponentielle de paramètre λ , donc c'est une v.a. de loi gamma de paramètres n et $\lambda = \lambda_1 + \lambda_2 + \lambda_3$ à savoir la loi de densité

$$f_{T_n}(t) = \frac{\lambda}{(n-1)!} e^{-\lambda t} (\lambda t)^{n-1} \mathbf{1}_{\mathbf{R}_+}(t).$$

3. Il s'agit exactement de l'exercice 3 de la feuille 6 (lemme des 3 réveils). Donc

$$\mathbf{P}\left[T_1 = T_1^1\right] = \frac{\lambda_1}{\lambda_1 + \lambda_2 + \lambda_3}.$$

4. Conditionnellement à \mathscr{F}_s (la tribu engendrée par les 3 processus jusqu'à l'instant s) les processus $(N^i_{t+s} - N^i_s)_{t\geqslant 0}$ sont encore des processus de Poisson, indépendants, de paramètres respectifs $\lambda_i > 0$. Soit τ_1 le premier instant de saut de $(N_t)_{t\geqslant 0}$ après s>0, $\tau_1=\inf\{n\geqslant 1,T_n>s\}$ alors par Markov

$$\mathbf{P}\left[\tau_1 \in (T_n^3)_{n \geqslant 1} \mid \mathscr{F}_s\right] = \mathbf{P}\left[T_1 = T_1^3\right] = \frac{\lambda_3}{\lambda_1 + \lambda_2 + \lambda_3}.$$

Exercice 3:

Soit $(N_t)_{t\geqslant 0}$ un processus de Poisson d'intensité $\lambda>0$ d'instants de sauts $(T_n)_{n\geqslant 1}$. On propose d'effacer des sauts de $(N_t)_{t\geqslant 0}$ avec une probabilité $p\in]0,1[$ et donc de considérer un processus $(\tilde{N}_t)_{t\geqslant 0}$ avec moins de sauts que ceux de $(N_t)_{t\geqslant 0}$. Pour cela, on considère une suite de Bernoulli $(\xi_n)_{n\geqslant 1}$, suite de v.a. *i.i.d.* $\mathbf{P}[\xi_1=0]=p=1-\mathbf{P}[\xi_1=1]$ avec $p\in]0,1[$. On suppose la suite $(\xi_n)_{n\geqslant 1}$ indépendante du processus $(N_t)_{t\geqslant 0}$ et on définit

$$\forall t \geqslant 0, \quad \tilde{N}_t = \sum_{n \geqslant 1} \mathbf{1}_{\{T_n \leqslant t\}} \xi_n$$

1. Soit f une fonction mesurable positive sur \mathbf{R}_+ et $g_p(t) = -\log(p + e^{-f(t)}(1-p))$ pour tout $t \ge 0$. Montrer que

$$\mathbf{E}\left[e^{-\sum_{n\geqslant 1}g_p(T_n)}\right] = e^{-\lambda(1-p)\int_0^{+\infty}(1-e^{-f(t)})\mathrm{d}t}.$$

- 2. En déduire que $(\tilde{N}_t)_{t\geq 0}$ est un processus de Poisson d'intensité $(1-p)\lambda$.
- 3. Que peut-on dire du processus $(N_t \tilde{N}_t)_{t \geq 0}$?

Corrigé:

1. On introduit la mesure aléatoire $\mu = \sum_{n\geqslant 1} \delta_{T_n}$ associée à $(T_n)_{n\geqslant 1}$ qui vérifie (car $g_p\geqslant 0$)

$$\mathbf{E}\left[e^{-\mu(g_p)}\right] = \mathbf{E}\left[e^{-\sum_{n\geqslant 1}g_p(T_n)}\right] = e^{-\lambda \int_0^{+\infty} (1-e^{-g_p(t)})dt}$$

Or $1 - e^{-g_p(t)} = 1 - (p + e^{-f(t)}(1 - p)) = (1 - p)(1 - e^{-f(t)})$. D'où le résultat.

2. On introduit $(\tilde{T}_n)_{t\geqslant 1}$ les instants de saut de $(\tilde{N}_t)_{t\geqslant 0}$ et $\tilde{\mu}$ la mesure aléatoire associée. Alors pour toute fonction $f\geqslant 0$,

$$\mathbf{E}\left[e^{-\tilde{\mu}(f)}\right] = \mathbf{E}\left[e^{-\sum_{n\geqslant 1} f(\tilde{T}_n)}\right] = \mathbf{E}\left[e^{-\sum_{n\geqslant 1} f(T_n)\xi_n}\right].$$

Or en préconditionnant par rapport à $\sigma(T_n, n \ge 1)$

$$\mathbf{E}\left[e^{-\sum_{n\geqslant 1}f(T_n)\xi_n}\right] = \mathbf{E}\left[\mathbf{E}\left[e^{-\sum_{n\geqslant 1}f(T_n)\xi_n}\left|\sigma(T_n, n\geqslant 1)\right|\right]\right]$$

et par indépendance de $(T_n)_{n\geqslant 1}$ et de $(\xi_n)_{n\geqslant 1}$ on a

$$\mathbf{E}\left[e^{-\sum_{n\geqslant 1}f(T_n)\xi_n}\left|\sigma(T_n,n\geqslant 1)\right] = \prod_{n\geqslant 1}\left((1-p)e^{-f(T_n)} + p\right),$$
$$= e^{-\sum_{n\geqslant 1}g_p(T_n)},$$

avec g_p comme en 1. On conclut aisément.

3. Le processus $(N_t - \tilde{N}_t)_{t \ge 0}$ est un processus de Poisson de paramètre λp et indépendant de N et de \tilde{N} .

Exercice 4:

A un arrêt de bus, les bus numéro 1 arrivent selon un processus de Poisson d'intensité $\alpha > 0$ (par heure) et les bus numéro 2 arrivent selon un processus de Poisson d'intensité $\beta > 0$. On suppose que ces 2 processus sont indépendants.

On arrive à l'arrêt à 7h du matin.

- 1. Quelle est la probabilité que le premier bus soit un numéro 1?
- 2. Quelle est la probabilité que les deux premiers soient des numéro 1?
- 3. Quelle est la probabilité que exactement k bus numéro 1 passent à l'arrêt pendant qu'on attend un bus numéro 2?
- 4. Quelle est la probabilité que exactement k bus numéro 1 passent à l'arrêt pendant 1 heure si le nombre total de bus passés est n (on suppose $n \ge k$)?