Treinamento Ferramentas Bioinformática

Msc. Ricardo Roldan Dra. Roberta Lane

Alinhamento

Por que fazer alinhamento?

MFGE8 Anolis_Ref	А	Τ	G	G	G	Т	G	А	T	T	C	C	T	G	C	G	A	A	G	T	G	A	A	T	C	А	А	T	G	T	C	T	G
MFGE8 BWA	N	N	N	G	G	Т	G	Д	T	T	C	C	T	G	T	G	А	А	G	T	G	А	А	T	C	Д	А	T	G	T	C	Т	G
MFGE8 NGM	N	N	N	G	G	Т	G	Д	T	T	C	C	Т	G	T	G	Α	A	G	Т	G	А	A	T	C	А	А	Т	G	T	C	Т	G
MFGE8 SOAP	N	N	N	G	G	Т	G	А	T	T	C	C	T	G	T	G	А	A	G	T	G	А	A	T	C	А	А	Т	G	Т	C	T	G
MFGE8 Trinity	N	N	N	G	G	Т	G	Д	T	T	C	C	T	G	T	G	Α	А	G	T	G	Д	А	T	C	А	Д	Т	G	Т	C	Т	G
MFGE8 Velvet	N	N	N	G	G	Т	G	А	T	T	C	C	T	G	T	G	Α	А	G	T	G	А	А	T	C	А	А	T	G	T	C	T	G

Alinhamento

Por que fazer alinhamento?

- >Comparar amostra vs DB;
- >Identificar o que é sua amostra;
- >Identificar motivos e domínios;
- >Permite criar filogenias e fenética

MFGE8 Anolis_Ref	Д	T	G	G	G	T	G	А	T	T	C	C	T	G	C	G	Д	А	G	T	G	А	А	T	C	А	А	T	G	T	C	T	G
MFGE8 BWA	N	N	N	G	G	Т	G	Д	Т	T	C	C	T	G	Т	G	А	А	G	T	G	А	А	T	C	А	А	T	G	T	С	T	G
MFGE8 NGM	N	N	N	G	G	Т	G	Д	Т	T	C	C	T	G	T	G	А	Д	G	T	G	А	А	T	C	А	А	T	G	T	C	T	G
MFGE8 SOAP	N	N	N	G	G	Т	G	Д	Т	T	C	C	T	G	Т	G	Д	A	G	T	G	Α	А	T	C	А	А	T	G	T	C	T	G
MFGE8 Trinity	N	N	N	G	G	Т	G	А	T	Т	С	C	T	G	Т	G	А	Α	G	Т	G	Α	А	Т	C	А	А	T	G	T	С	T	G
MFGE8 Velvet	N	N	N	G	G	Т	G	Д	Т	T	C	C	T	G	Т	G	Д	А	G	T	G	А	Д	T	C	А	А	T	G	T	С	T	G

Tipos de Alinhamento

Extensão

- > Tentativa de alinhar toda a extensão das sequências (Inicio ao fim);
- Utilizada para comparação de genes ou proteínas com funções similares.

- Alinhamento com apenas a região de maior similaridade;
- Utilizada para identificação de padrões e domínios conservados.

Tipos de Alinhamento

Quantidade

Basic Local Alignment Search Tool

https://blast.ncbi.nlm.nih.gov/Blast.cgi

>Desconhecido KDCKRESNTFPGICITKPPCRKACIREKFTDGHCSKILRRCLCTKPC

https://www.megasoftware.net/

Motivos e Domínios

Motivos e Domínios

Motivos:

"Motivo" ~ "Padrão"
*Ex: Defensinas vegetais : βαββ
Defensinas humanas : αβββ

Domínios:

- Regiões funcionais e/ou estruturais das proteínas;
- Proteínas podem apresentar 1 ou mais domínios.

Motivos e Domínios

Motivos:

"Motivo" ~ "Padrão"

*Ex: Defensinas vegetais : $\beta \alpha \beta \beta$

Defensinas humanas : $\alpha\beta\beta\beta$

Domínios:

- Regiões funcionais e/ou estruturais das proteínas;
- Proteínas podem apresentar 1 ou mais domínios.

Classification of protein families

Interpro

https://www.ebi.ac.uk/in terpro/

CD-Search (NCBI)

https://www.ncbi.nlm.nih .gov/Structure/cdd/wrps b.cgi

Modelagem proteínas

Modelagem proteínas

Por que estudar estrutura das proteínas?

Sergey Ovchinnikov

Fatores responsáveis pelo dobramento

Backbone conformations

Sidechain conformations

Dr. Sergey Ovchinnikov

Dobramento e a problemática da modelagem

"Para uma dada **sequência**, encontre a **estrutura** de **menor energia livre**"

Sequence

[Video credit: C. Fennell]

Dill, K.A. and MacCallum, J.L., 2012. The protein-folding problem, 50 years on. *science*, 338(6110), pp.1042-1046.

Slide credit: Sergey Ovchinnikov

Modelagem comparativa ("Modelagem por homologia")

Modeller

Program for Comparative Protein Structure Modelling by Satisfaction of Spatial Restraints

Utiliza uma **estrutura resolvida** experimentalmente como **template** para gerar **modelos**

Modelagem *ab initio* ("do zero")

Inteligência artificial

ALPHAFOLD

Inteligência artificial e modelagem

Jumper J. et al. 2021. Highly accurate protein structure prediction with AlphaFold. *Nature*

Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, ..., Baker D. 2021. Acc. pred. of protein struct. and inter. using a 3-track NN. *Science* **Slide credit: Sergey Ovchinnikov**

PyMOL → Ferramenta de visualização (".pdb")

https://pymol.org/2/

https://github.com/sokrypton/ColabFold

Sergey Ovchinnikov Harvard University

Obrigado e Boa Jornada!

Contato:

