CHAPTER 1

INFINITE SERIES

CHAPTER OBJECTIVE

At the end of the chapter, you should be able to:

- 1. Determine if a given sequence is convergent or divergent.
- 2. Determine if a given series is convergent or divergent.
- 3. Differentiate/integrate an infinite series.

CHAPTER OBJECTIVE

At the end of the chapter, you should be able to:

- 4. Find the interval and radius and convergence of a given series
- 5. Write the Maclaurin/Taylor series expansion of a function.

What's next in the sequence?

$$* \frac{1}{2}, \frac{1 \cdot 3}{2 \cdot 4}, \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}, \frac{1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8}, \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10}$$

0, 3, 8, 15, 24, 35, 48

1, 1, 2, 3, 5, 8, 13, 21

1.1 Sequences

A sequence of real numbers $a_1, a_2, ..., a_n, ...$ is a function that assigns to each positive integer n a number a_n .

DOMAIN: N

The numbers in the range are called the *elements* or *terms* of the sequence.

1.1 Sequences

NOTATIONS:

$$\{a_n\}_{n=1}^{+\infty}$$

$$\{a_n\}$$

$$\{f(n)\}$$

Example 1.

Let
$$f(n) = n^2 - 1$$
.

n	1	2	3	4	5	6	7
f(n)	0	3	8	15	24	35	48

n	1	2	3	4	5	6	7
f(n)	0	3	8	15	24	35	48
†	N.A	_ //	. /	M	M		A
+							
+							
+1							
) +	1						

Example 2.

Let
$$g(n)=(-1)^{n+1}$$
.

n	1	2	3	4	5	6	7
g(n)	1	-1	1	-1	1	-1	1

n	1	2	3	4	5	6	7
g(n)	1	-1	1	-1	1	-1	1

Example 3.

Let
$$h(n) = e^{-n}$$
.

n	1	2	3	4	5	6	7
h(n)	$\frac{1}{e}$	$\frac{1}{e^2}$	$\frac{1}{e^3}$	$\frac{1}{e^4}$	$\frac{1}{e^5}$	$\frac{1}{e^6}$	$\frac{1}{e^7}$

n	1	2	3	4	5	6	7
h(n)	$\frac{1}{a}$	$\frac{1}{e^2}$	$\frac{1}{e^3}$	$\frac{1}{e^4}$	$\frac{1}{e^5}$	$\frac{1}{e^6}$	$\left \frac{1}{e^7} \right $
		e	e	e	e	e	e
	1						
-	1		\vdash			+	→

Example 4.

Let
$$j(n) = (-1)^n \frac{1}{n}$$
.

n	1	2	3	4	5	6	7
j(n)	-1	$\frac{1}{2}$	$-\frac{1}{3}$	$\frac{1}{4}$	$-\frac{1}{5}$		$-rac{1}{7}$

n	1	2	3	4	5	6	7
j(n)	-1	$\frac{1}{2}$	$-\frac{1}{3}$	$\frac{1}{4}$	$-\frac{1}{5}$	$\frac{1}{a}$	$\left \begin{array}{c} 1 \\ -\frac{1}{7} \end{array} \right $
	M.	2	3	4	5	6	7
—				•	•		→
LAI	1	AĄ		M			
	1						

OUR INTEREST IN SEQUENCES:

Behavior of
$$f(n)$$

as
$$n \to +\infty$$

Let
$$\lim_{n \to +\infty} f(n) = L$$
.

The Limit of a Sequence

The *limit of a sequence* f is the real number L if for any $\varepsilon > 0$, however small, there exists a number N > 0 such that if n is a natural number and if n > N, then $|f(n)-L| < \varepsilon$.

We write:
$$\lim_{n \to +\infty} f(n) = L$$

Theorem.

If $\lim_{x \to +\infty} f(x) = L$ and f is defined for every

positive integer then
$$\lim_{n\to +\infty} f(n) = L$$
.

Recall:
$$\lim_{n \to +\infty} e^{-n} = 0$$

Note that $h(n)=e^{-n}$ is defined for every positive integer and $\lim_{x\to +\infty}e^{-x}=0$.

Definition.

If in
$$\lim_{n\to +\infty} f(n) = L$$
 , L exists,

Then the sequence is said to be *convergent*. Otherwise it is *divergent*.

Which of the ff sequences is/are convergent?

$$\left\{\frac{n}{3n+4}\right\}$$

$$\left\{ \frac{3n}{n+2} + \cos\left(\frac{4}{n}\right) \right\}$$

$$\left\{\frac{2}{n}(Arc\tan n)\right\}$$

$$\left\{ \left(1 + \frac{7}{n}\right)^n \right\}$$

$$\left\{ \left(-1\right)^{n+1}\right\} \qquad \left\{ \frac{n!}{10}\right\}$$

$$\left\{\frac{3^n}{(n+2)!}\right\}$$

1.2 Monotonic and Bounded Sequences

Theorem.

A bounded monotonic sequence is convergent.

When are sequences monotonic? bounded?

1.2 Monotonic and Bounded Sequences

Definitions.

A sequence is *monotonic* if it is either increasing or decreasing.

A sequence
$$\{a_n\}$$
 is *increasing* if

$$a_n \le a_{n+1}$$
, $\forall n \in N$

A sequence
$$\{a_n\}$$
 is *decreasing* if

$$a_n \ge a_{n+1}$$
, $\forall n \in N$

How do we determine if a sequence is monotonic or not?

- 1. Observe a_n .
- 2. Obtain $\frac{a_n}{a_{n+1}}$. Then Compare result to

1(one).

2. Find f'(x).

Definitions.

A sequence is **bounded** if it has both an upper bound and a lower bound.

A real number l is a lower bound of the sequence if $l \le a_n$, $\forall n \in N$

A lower bound g is the greatest lower bound of the sequence if $l \le g$ for all lower bound l.

Definitions.

A real number u is an $upper\ bound$ of the sequence if $u \ge a_n$, $\forall n \in N$

An upper bound v is the *least upper bound* of the sequence if $u \ge v$ for all upper bound v bound v is the *least upper bound* v is the *least up*

Examples 1. $\left\{\frac{5n+1}{2n}\right\}$

Let
$$f(x) = \frac{5x+1}{2x}$$
 \Longrightarrow $f'(x) = \frac{-2}{4x^2}$

Since f'(x) < 0, f is decreasing.

Now,
$$\frac{5n+1}{2n} > 0$$
 . f has 0 as a lower bound and 3 as an upper bound.

Thus, the sequence is monotonic and bounded.

Examples 2. $\left\{\frac{n!}{10}\right\}$

Let
$$a_n = \frac{n!}{10}$$
 \Longrightarrow $a_{n+1} = \frac{(n+1)!}{10}$

Now,
$$\frac{a_n}{a_{n+1}} = \frac{n!}{10} \cdot \frac{10}{(n+1)!} = \frac{1}{(n+1)} < 1$$

That is, $a_n < a_{n+1}$

Thus, the sequence is monotonic (increasing).

Examples 2. $\left\{\frac{n!}{10}\right\}$

Note that
$$\frac{n!}{10} > 0$$
.

$$\left\{ rac{n\,!}{10}
ight\}$$
 has 0 as a lower bound but has no upper bound.

Thus, the sequence is unbounded.

Examples 3. $\left\{ \left(-1\right)^{n+1} \right\}$

Recall:

n	1	2	3	4	5	6	7
a_n	1	-1	1	-1	1	-1	1

Thus, the sequence is bounded but is neither increasing nor decreasing.

Examples 4.
$$\left\{ \frac{3^n}{(n+2)!} \right\}$$

Let
$$a_n = \frac{3^n}{(n+2)!} \implies a_{n+1} = \frac{3^{n+1}}{(n+3)!}$$

Now,
$$\frac{a_n}{a_{n+1}} = \frac{3^n}{(n+2)!} \cdot \frac{(n+3)!}{3^{n+1}} = \frac{(n+3)}{3} > 1$$

That is, $\alpha_n > \alpha_{n+1}$

Thus, the sequence is monotonic (decreasing).

Examples 4.
$$\left\{ \frac{3^n}{(n+2)!} \right\}$$

Note that
$$\frac{3^n}{(n+2)!} > 0$$
.

$$\left\{ \begin{array}{c} 3^n \\ \hline (n+2)! \end{array} \right\} \quad \text{has 0 as a lower bound} \\ \text{and has } \frac{1}{2} \text{ as an upper bound.} \\ \end{array}$$

Thus, the sequence is bounded.

REMARKS:

A bounded decreasing sequence converges to its greatest lower bound.

Similarly, a bounded increasing sequence converges to its least upper bound.

