Basic math for big data

Solution of Midterm

Question 1.

- (a) 1) proposition 2) not proposition 3) proposition
- (b) 1) $\neg \exists x P(x)$ 2) $\exists x \Big(P(x) \land \forall y \Big(P(y) \rightarrow (y = x) \Big) \Big)$
- (c) 1) False 2) True 3) True

Question 2.

- (a) This statement is false. Assume $X = \{1\}$ and $Y = \{2\}$. Then, $X \cap Y = \emptyset$, $Y X = \{2\}$, and $(X \cap Y) \cup (Y X) = \emptyset \cup \{2\} = \{2\} \neq X$.
- (b) This statement is true. Both sides are equal to the set of all pairs (x, y) such that $x \in X, y \in Y$, and $y \notin Z$.
- (c) This statement is false. Assume $X = Y = \{1\}$ and $Z = \{2\}$. Then, $Y \cup Z = \{1,2\}$ and $X (Y \cup Z) = \emptyset$. However, since $X Y = \emptyset$, $(X Y) \cup Z = \emptyset \cup \{2\} = \{2\} \neq \emptyset = X (Y \cup Z)$.

Question 3.

- (a) 7
- (b) 9+9+90 = 108
- (c) $\frac{10!}{3!2!2!} = 151200$
- (d) For each sequence of n tosses with k runs, let a_i be the length of i-th run. Then, every sequence of n tosses with k runs defines one sequence a_1, a_2, \ldots, a_k such that $|a_1| + |a_2| + \cdots + |a_k| = n$ for $1 \le i \le k$. Each such sequence a_i corresponds to exactly the two following distinct sequences of tosses.

$$\underbrace{T \dots T}_{a_1} \underbrace{H \dots H}_{a_2} \underbrace{T \dots T}_{a_3} \dots$$

$$\underbrace{H \dots H}_{a_1} \underbrace{T \dots T}_{a_2} \underbrace{H \dots H}_{a_3} \dots$$

Therefore, the number of sequences of n tosses with k runs is twice the number of sequences a_i . The number of sequences a_i is $\binom{n-1}{k-1}$. Thus, the number of sequences of tosses that contains exactly k runs is $2 \cdot \binom{n-1}{k-1}$.

Question 4.

(a)
$$\{(1,1), (1,2), (2,1), (2,2)\}$$

(b) 1)
$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
 2) $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

- (c) 1) Equivalence relation ,2) Not transitive, 3) Not reflexive, not symmetric, not transitive, 4) Equivalence relation, 5) Not reflexive, not transitive
- (d) 1) No, 2) Yes, 3) Yes, 4) No