Thuật toán DFS và DFS

Trần Vĩnh Đức

HUST

Ngày 10 tháng 1 năm 2017

Nội dung

1 Biểu diễn đồ thị

2 Tìm kiệm theo chiếu sâu

3 Tìm kiếm theo chiều rộng

Biểu diễn đồ thị bởi danh sách kề

API cho đồ thị

lớp Graph

• •	
Graph(int V)	tạo ra một đồ thị rỗng với V đỉnh
Graph(istream ∈)	tạo một đồ thị từ luồng vào in
<pre>void addEdge(int v, int w)</pre>	thêm cạnh υ-w
<pre>vector<int> getAdj(int v)</int></pre>	danh sách cạnh kề với đỉnh υ
int getV()	số đỉnh
<pre>int getE()</pre>	số cạnh

Ví dụ: Sử dụng lớp Graph

```
//Tinh bac cua dinh v trong G
//G.adj(v).size();
int degree (Graph &G, int v)
{
   int deg = 0;
   for(int w: G.getAdj(v))
        deg++;
   return deg;
}
```

Demo cài đặt lớp Graph.

Nội dung

1 Biếu diễn đồ th

2 Tìm kiếm theo chiều sâu

3 Tìm kiếm theo chiều rộng

Tìm kiếm theo chiều sâu (DFS)

Thuật toán DFS cho phép duyệt đồ thị một cách có hệ thống.

Úng dụng:

- Kiểm tra xem một đỉnh có liên thông với một đỉnh khác
- Kiểm tra tính liên thông của đồ thị
- Tìm đường đi giữa hai đỉnh

Thuật toán BFS

```
DFS (Đồ thị G, đỉnh v):
Đánh dấu đỉnh v đã được thăm
Với mỗi đỉnh w chưa đánh dấu và w kề với v:
DFS (w)
```


 $\label{eq:hinh:hinh:hinh:hinh:0,1,2,4,3,5,6} \ensuremath{\mathrm{Hinh:}}$ Thứ tự thăm đỉnh: 0,1,2,4,3,5,6

 $\label{eq:hinh:hinh:hinh:hinh:0,1,2,4,3,5,6} \ensuremath{\mathrm{Hinh:}}\ \ensuremath{\mathrm{Th\acute{u}}}\ \ensuremath{\mathrm{t\acute{u}}}\ \ensuremath{\mathrm{t\acute{u}}}\ \ensuremath{\mathrm{hinh:}}\ \ensuremath{\mathrm{Ch\acute{u}}}\ \ensuremath{\mathrm{Ch\acute{u}}}\ \ensuremath{\mathrm{c\acute{u}}}\ \ensuremath{\mathrm{c\acute{u}}}\ \ensuremath{\mathrm{Ch\acute{u}}}\ \ensuremath{\mathrm{Ch\acute{u}}\ \ensuremath{\mathrm{Ch\acute{u}}}\ \ensuremath{\mathrm{Ch\acute{u}}\ \ensuremath{\mathrm{Ch\acute{u}}}\ \ensuremath{\mathrm{Ch\acute{u}}}\ \ensuremath{\mathrm{C$

 $\label{eq:hinh:hinh:hinh:hinh:0,1,2,4,3,5,6} \ensuremath{\mathrm{Hinh:}}\ \ensuremath{\mathrm{Th\acute{u}}}\ \ensuremath{\mathrm{t\acute{u}}}\ \ensuremath{\mathrm{t\acute{u}}}\ \ensuremath{\mathrm{hinh:}}\ \ensuremath{\mathrm{Ch\acute{u}}}\ \ensuremath{\mathrm{Ch\acute{u}}}\ \ensuremath{\mathrm{c\acute{u}}}\ \ensuremath{\mathrm{c\acute{u}}}\ \ensuremath{\mathrm{Ch\acute{u}}}\ \ensuremath{\mathrm{Ch\acute{u}}\ \ensuremath{\mathrm{Ch\acute{u}}}\ \ensuremath{\mathrm{Ch\acute{u}}\ \ensuremath{\mathrm{Ch\acute{u}}}\ \ensuremath{\mathrm{Ch\acute{u}}}\ \ensuremath{\mathrm{C$

Hãy đưa ra thứ tự thăm đỉnh theo thuật toán DFS đối với đồ thị sau

Hình: Đồ thị Petersen

Hãy đưa ra thứ tự thăm đỉnh theo thuật toán DFS đối với đồ thị sau

Hình: Đồ thị Grötzsch

Cài đặt DFS

```
void dfs (Graph &G, int v)
{
  marked[v] = true;
  count++;
  for (int w: G.adj(v))
  {
    if(!marked[w]) dfs(G,w);
  }
}
```

- Mång bool marked[V] để đánh dấu các đỉnh đã thăm.
- Biến int count dùng để đếm số đỉnh liên thông với đỉnh xuất phát.

Câu hỏi

- Làm thế nào để kiểm tra đồ thị có liên thông hay không?
- Làm thế nào để tính số thành phần liên thông của đồ thi?

Tìm đường đi trên đồ thị dùng DFS

- Sử dụng mảng edgeTo[V] thỏa mãn: edgeTo[w] = v nếu v-w là cạnh tới w lần đầu tiên.
- Đường đi từ 0-5 là : 5 3 2 0

Cài đặt DFS để tìm đường đi 1

```
void dfs (Graph &G, int v)
{
  marked[v] = true;
  for(int w: G.adj(v))
      if (!marked[w])
        //Luu lai canh toi w lan dau v-w
        edgeTo[w] = v;
        dfs(G,w);
}
```

Tìm đường đi tới một đỉnh

```
// Danh sach cac dinh tren duong di toi v
vector<int> pathTo(int v)
  vector <int> path;
  if (!hasPathTo(v))
      return path;
  for (int x = v; x != s; x = edgeTo[x])
      path.push_back(x);
  path.push_back(s);
  return path;
```

Nội dung

1 Biểu diễn đồ th

2 Tìm kiếm theo chiều sâu

3 Tìm kiếm theo chiều rộng

Thuật toán BFS

```
BFS (Đồ thị G, đỉnh s):

Đánh dấu đỉnh s đã được thăm

Đưa đỉnh s vào hàng đợi

while (hàng đợi chưa rỗng):

Xóa đỉnh v tiếp theo trong hàng đợi

Đưa vào hàng đợi mọi đỉnh chưa được đánh dấu

và kề với v và đánh dấu chúng
```


 $\hbox{\bf Hình: Thứ tự thăm đỉnh}: 0,1,3,2,4,5,6$

 $\hbox{\bf Hình: Thứ tự thăm đỉnh}: 0,1,3,2,4,5,6$

Hãy đưa ra thứ tự thăm đỉnh theo thuật toán BFS đối với đồ thị sau

Hình: Đồ thị Petersen

Hãy đưa ra thứ tự thăm đỉnh theo thuật toán BFS đối với đồ thị sau

Hình: Đồ thị Grötzsch

```
void bfs (Graph &G, int s)
{
  queue < int > Q;
  marked[s] = true;
  Q.push(s);
  while (!Q.empty())
    int v = Q.front();
    Q.pop();
    for(int x: G.adj(v))
        if (!marked[x])
           edgeTo[x] = v;
          marked[x] = true;
          Q.push(x);
        }
```

Hãy đưa ra mảng edgeTo[] sau chi chạy theo thuật toán BFS với đồ thị sau đây. Từ mảng đó, hãy tìm một đường đi từ đỉnh 0 đến đỉnh 7.

Hình: Đồ thị Grötzsch

Mênh đề

Với mỗi đỉnh v có thể tới được từ s, thuật toán BFS tính một đường đi ngắn nhất từ s tới v (không có đường đi nào từ s đến v với ít cạnh hơn).