Идеалы

Определение 1. Идеалом в коммутативном кольце K, называется множество I, замкнутое относительно сложения и для любого $a \in K$ верно, что $aI \subseteq I$, обозначается $I \triangleleft K$.

Упражнение 1. а) Привидите пример идеалов в кольце целых чисел. б) Найдите все идеалы в поле. в) Привидите пример идеала в кольце K[x].

Определение 2. Идеал $I \triangleleft K$ называется порождённым, элементами a_1, \ldots, a_n , если $\forall a \in I$ существуют $b_1, \ldots, b_n \in K$, что $a = \sum b_i a_i$.

Определение 3. Идеал $I \triangleleft K$ называется главным, если существет $k \in I$ такой, что $\forall i \in I$ верно, что i : k. Обозначается I = (k).

Упражнение 2. Привидите пример неглавного идеала в K[x,y].

1. Докажите, что все идеалы в кольце целых чисел и кольце многочленов от одной переменной над полем главные.

Определение 4. Радикалом идеала $I \triangleleft K$ называется множество элементов $J \subseteq K$, что $\forall j \in J \ \exists m \in \mathbb{N}$, что $j^m \in I$, обозначается $J = \sqrt{I}$.

Упражнение 3. Найдите радика идеала $I = ((x-1)^2(x-2)^3) \triangleleft \mathbb{R}[x]$.

2. Докажите, что радикал идеала тоже идеал.

Определение 5. Пусть $I \triangleleft K$, тогда два элемента $a,b \in K$ называются сравнимыми по модулю идеала, если $a-b \in I$. Обозначается $a \equiv b$.

Определение 6. Многообразием идеала $I \triangleleft K[x_1, x_2, \dots x_n]$, где K поле, назвается множество точек $V \subseteq K^n$ таких, что $\forall x_0 \in V$ и $\forall f \in I$ верно, что $f(x_0) = 0$, обозначается V(I).

Пусть $V' \subseteq K^n$, тогда идеалом, порождённым V' называется множество всех многочленов в $f \in K[x_1, x_2, \dots x_n]$ таких, что $\forall x_0 \in V'$ верно, что $f(x_0) = 0$, обозначается I(V')

Теорема 1. теорема Гильберта о нулях. Для любого алгебраически замкнутого поля K и идеала $I \triangleleft K[x_1, x_2, \dots x_n]$ верно, что $\sqrt{I} = I(V(I))$.

Теорема 2. теорема Гильберта о нулях, слабая версия. Для любого алгебраически замкнутого поля K и идеала $I \triangleleft K[x_1, x_2, \dots x_n]$ верно, что $I = K \Leftrightarrow V(I) = \emptyset$.

- **3.** Число 4x + 3y делится на 7. Докажите, что число 4x + 10y делится на 7.
- **4.** a, b, c натуральные числа такие, что ab + 9b + 81 и bc + 9c + 81 делятся на 101. Докажите, что тогда и ca + 9a + 81 тоже делится на 101.
- **5.** а) Существуют ли многочлены P(x,y,z), Q(x,y,z), R(x,y,z), для которых выполнено тождество $(x-y+1)^3P+(y-z-1)^3Q+(z-2x+1)^3R=1$? 6) Тот же вопрос для тождества $(x-y+1)^3P+(y-z-1)^3Q+(z-x+1)^3R=1$?.
- **6.** Существует ли такой многочлен P(x,y) с вещественными коэффициента-ми, что многочлен $P(x,y)^2+1$ делится на многочлен x^2+y^2+1 ?