BEST AVAILABLE COPY

RECEIVED
CENTRAL FAX CENTER
DEC 0 8 2006

IN THE CLAIMS:

The present listing of the claims replaces all previous versions and listings.

1-49. (Cancelled)

50. (New) A fluorescent brightness measuring method which measures the brightness of minute points which are arranged on a substrate having a substantially flat surface and include a fluorescent substance, the method comprising:

a first imaging step of obtaining an image of each minute point including the fluorescent substance as a first image by emitting light with a wavelength which can excite the fluorescent substance;

a second imaging step of obtaining an image of foreign matter adhering on the substrate as a second image by emitting light with a wavelength which does not excite the fluorescent substance;

an extraction step of obtaining a binarized image by extracting a foreign matter area from the second image;

a foreign matter elimination step of disabling an image at a part overlapping the foreign matter area in the first image with the binarized image being used as a mask; and a reliability judgment step of obtaining an area of each minute point after the foreign matter elimination step and judging the reliability of the measurement value by using a ratio of the obtained area and the reference area of the minute point.

51. (New) The fluorescent brightness measuring method according to claim 50, further comprising a correction step of correcting the second image by using a reference image.

-2-

g\Olympus\1373\16790\amend\16790.am2

- 52. (New) The fluorescent brightness measuring method according to claim 50, wherein the extraction step obtains the binarized image by using a differential image acquired from the second image.
- 53. (New) The fluorescent brightness measuring method according to claim 52, wherein the extraction step determines a binarization level of the binarized image by using a frequency distribution of the differential signal corresponding to each pixel.
- 54. (New) The fluorescent brightness measuring method according to claim 53, wherein the differential signal is standardized with an intensity in a minute area corresponding to the differential signal.
- 55. (New) The fluorescent brightness measuring method according to claim 52, wherein the differential signal is standardized with an intensity in a minute area corresponding to the differential signal.
- 56. (New) The fluorescent brightness measuring method according to claim 50, further comprising an expansion step of expanding the foreign matter area of the binarized image by only a fixed quantity.
- 57. (New) The fluorescent brightness measuring method according to claim 56, further comprising a correction step of correcting the second image by using a reference image.
- 58. (New) The fluorescent brightness measuring method according to claim 56, wherein the extraction step obtains the binarized image by using a differential image acquired from the second image.

- 59. (New) The fluorescent brightness measuring method according to claim 58, wherein the extraction step determines a binarization level of the binarized image by using a frequency distribution of the differential signal corresponding to each pixel.
- 60. (New) The fluorescent brightness measuring method according to claim
 59, wherein the differential signal is standardized with an intensity in a minute area corresponding to the differential signal.
- 61. (New) The fluorescent brightness measuring method according to claim 58, wherein the differential signal is standardized with an intensity in a minute area corresponding to the differential signal.
- 62. (New) The fluorescent brightness measuring method according to claim 50, further comprising a normalization step of normalizing the measured brightness of the minute point by using a reference area of the minute point.
- 63. (New) The fluorescent brightness measuring method according to claim 62, further comprising a correction step of correcting the second image by using a reference image.
- 64. (New) The fluorescent brightness measuring method according to claim 62, wherein the extraction step obtains the binarized image by using a differential image acquired from the second image.
- 65. (New) The fluorescent brightness measuring method according to claim 64, wherein the extraction step determines a binarization level of the binarized image by using a frequency distribution of the differential signal corresponding to each pixel.

- 66. (New) The fluorescent brightness measuring method according to claim65, wherein the differential signal is standardized with an intensity in a minute areacorresponding to the differential signal.
- 67. (New) The fluorescent brightness measuring method according to claim 64, wherein the differential signal is standardized with an intensity in a minute area corresponding to the differential signal.
- 68. (New) The fluorescent brightness measuring method according to claim 62, further comprising an expansion step of expanding the foreign matter area of the binarized image by only a fixed quantity.
- 69. (New) The fluorescent brightness measuring method according to claim 68, further comprising a correction step of correcting the second image by using a reference image.
- 70. (New) The fluorescent brightness measuring method according to claim 68, wherein the extraction step obtains the binarized image by using a differential image acquired from the second image.
- 71. (New) The fluorescent brightness measuring method according to claim 70, wherein the extraction step determines a binarization level of the binarized image by using a frequency distribution of the differential signal corresponding to each pixel.
- 72. (New) The fluorescent brightness measuring method according to claim 71, wherein the differential signal is standardized with an intensity in a minute area corresponding to the differential signal.

- 73. (New) The fluorescent brightness measuring method according to claim 70, wherein the differential signal is standardized with an intensity in a minute area corresponding to the differential signal.
- 74. (New) A fluorescent brightness measuring method which measures the brightness of minute points which are arranged on a substrate having a substantially flat surface and include a fluorescent substance, the method comprising:

a first imaging step of obtaining an image of each minute point including the fluorescent substance as a first image by emitting light with a wavelength which can excite the fluorescent substance;

a second imaging step of obtaining an image of foreign matter adhering on the substrate as a second image by emitting light with a wavelength which does not excite the fluorescent substance;

an extraction step of obtaining a binarized image by extracting a foreign mater area from the second image; and

a foreign matter elimination step of disabling an image at a part overlapping the foreign matter area in the first image with the binarized image being used as a mask,

the extraction step of obtaining the binarized image by using a differential image acquired from the second image.

75. (New) The fluorescent brightness measuring method according to claim
74, wherein the extraction step determines a binarization level of the binarized image by using a frequency distribution of the differential signal corresponding to each pixel.

- 76. (New) The fluorescent brightness measuring method according to claim75, wherein the differential signal is standardized with an intensity in a minute areacorresponding to the differential signal.
- 77. (New) The fluorescent brightness measuring method according to claim 74, wherein the differential signal is standardized with an intensity in a minute area corresponding to the differential signal.
- 78. (New) The fluorescent brightness measuring method according to claim 74, further comprising an expansion step of expanding the foreign matter area of the binarized image by only a fixed quantity.
- 79. (New) The fluorescent brightness measuring method according to claim 78, wherein the extraction step determines a binarization level of the binarized image by using a frequency distribution of the differential signal corresponding to each pixel.
- 80. (New) The fluorescent brightness measuring method according to claim 79, wherein the differential signal is standardized with an intensity in a minute area corresponding to the differential signal.
- 81. (New) The fluorescent brightness measuring method according to claim 78, wherein the differential signal is standardized with an intensity in a minute area corresponding to the differential signal.
- 82. (New) The fluorescent brightness measuring method according to claim 78, further comprising a normalization step of normalizing the measured brightness of the minute point by using a reference area of the minute point.

- 83. (New) The fluorescent brightness measuring method according to claim 82, wherein the extraction step determines a binarization level of the binarized image by using a frequency distribution of the differential signal corresponding to each pixel.
- 84. (New) The fluorescent brightness measuring method according to claim 73, wherein the differential signal is standardized with an intensity in a minute area corresponding to the differential signal.
- 85. (New) The fluorescent brightness measuring method according to claim 82, wherein the differential signal is standardized with an intensity in a minute area corresponding to the differential signal.
- 86. (New) The fluorescent brightness measuring method according to claim 74, further comprising a normalization step of normalizing the measured brightness of the minute point by using a reference area of the minute point.
- 87. (New) The fluorescent brightness measuring method according to claim 86, wherein the extraction step determines a binarization level of the binarized image by using a frequency distribution of the differential signal corresponding to each pixel.
- 88. (New) The fluorescent brightness measuring method according to claim 87, wherein the differential signal is standardized with an intensity in a minute area corresponding to the differential signal.
- 89. (New) The fluorescent brightness measuring method according to claim 86, wherein the differential signal is standardized with an intensity in a minute area corresponding to the differential signal.

- 90. (New) A fluorescent brightness measuring method which measures the brightness of minute points which are arranged on a substrate having a substantially flat surface and include a fluorescent substance, the method comprising:
- a first imaging step of obtaining an image of each minute point including the fluorescent substance as a first image by emitting light with a wavelength which can excite the fluorescent substance;
- a second imaging step of obtaining an image of foreign matter adhering on the substrate as a second image by emitting light with a wavelength which does not excite the fluorescent substance;
- a correction step of correcting the second image by using a reference image;
 an extraction step of obtaining a binarized image by extracting a foreign matter
 area from the second image which is corrected;
- a foreign matter elimination step of disabling an image at a part overlapping the foreign matter area in the first image with the binarized image being used as a mask; and a normalization step of normalizing the measured brightness of the minute point by using a reference area of the minute point.
- 91. (New) The fluorescent brightness measuring method according to claim 90, further comprising an expansion step of expanding the foreign matter area of the binarized image by only a fixed quantity.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.