Learning Objective

Mampu memahami dan menjelaskan konsep Hukum 1,2,3 Newton

Mampu memahami dan menjelaskan gaya yang terdapat pada suatu benda

Mampu menyelesaikan persoalan dinamika terkait gaya

Aplikasi Hukum Newton

Membahas penerpan hukum newton dalam kehidupan sehari-hari

01 Gaya Normal

Seorang *lifter* mencoba mengangkat sebuah *barbell* yang memiliki massa 50 Kg. Dia mengangkat *barbell* dengan gaya angkat sebesar 450 N dan ternyata *barbell* tidak terangkat sama sekali.

Pertanyaan:

Tentukan besar dan arah gaya normal barbell!

Langkah 1: Menggambar Diagram Gaya

Langkah 2:

Diketahui:

 $\vec{F} = 450 N$

Besar gaya angkat

m = 50kg

Besar massa total

 $g = 10 \, m/s^2$ Percepatan Gravitasi

Ditanya: \overrightarrow{N} ...?

Dijawab:

Karena barbel tidak terangkat (artinya bendanya diam), maka berlaku hukum newton 1.

02

Benda dihubungkan tali

Sebuah lampu lalu lintas bermassa 15 kg tergantung pada dua buah kabel seperti di gambar.

Hitunglah gaya tegang tali yang menggantung lampu lalu lintas!

Langkah 1: Menggambar Diagram Gaya

Langkah 2:

Diketahui:

$$m=15kg$$
 Besar massa total $g=10 \, m/s^2$ Percepatan Gravitasi

$$\alpha = 30^{\circ}$$

$$\beta = 45^{\circ}$$

Ditanya:

$$\overrightarrow{T_1}$$
 dan $\overrightarrow{T_2}$...?

Dijawab:

Lampu lalu lintas dalam kondisi setimbang (artinya bendanya diam), maka berlaku hukum newton 1.

$$\sum F = 0$$
 maka $\sum F_x = 0$

$$\sum F_y = 0$$

(lanjutan) Langkah 2: Gaya pada sumbu-x

Diketahui:

$$m=15kg$$
 Besar massa total $g=10\,m/s^2$ Percepatan Gravitasi $lpha=30^\circ$ $\beta=45^\circ$

$$\sum F_x = 0$$

$$T_{2x} - T_{1x} = 0$$

$$T_2 \cos \beta - T_1 \cos \alpha = 0$$

$$T_2 \cos 45 - T_1 \cos 30 = 0$$

$$T_2(0.707) - T_1(0.86) = 0$$

$$T_2(0.707) = T_1(0.86)$$

$$T_2 = \frac{T_1(0.86)}{0.707}$$

$$T_2 = 1.225 T_1 \quad \text{pers1}$$

(lanjutan) Langkah 2: Gaya pada sumbu-y

Diketahui:

$$m=15kg$$
 Besar massa total $g=10\,m/s^2$ Percepatan Gravitasi $lpha=30^\circ$ $\beta=45^\circ$

$$\sum F_y = 0$$

$$T_{2y} + T_{1y} - W = 0$$

$$T_2 \sin \beta + T_1 \sin \alpha - W = 0$$

$$T_2 \sin 45 + T_1 \sin 30 - mg = 0$$

$$T_2(0.707) + T_1(0.5) - (15)(10) = 0$$

$$T_2(0.707) + T_1(0.5) - 150 = 0$$

$$T_2(0.707) + T_1(0.5) = 150$$
 pers2

(lanjutan) Langkah 2: Nilai T1 dan T2

Diketahui:

$$m=15kg$$
 Besar massa total $g=10\,m/s^2$ Percepatan Gravitasi $lpha=30^\circ$ $\beta=45^\circ$

Substitusi nilai T_2 pada pers1 ke pers2

$$(1.225T_1)(0.707) + T_1(0.5) = 150$$

 $T_1(0.867) + T_1(0.5) = 150$
 $T_1(1.366) = 150$

 $T_1 = 109.8 N$

Substitusi nilai T_1 ke pers1

$$T_2 = 1.225T_1$$

 $T_2 = 1.225(109.8)$
 $T_2 = 134.5 N$

03

Benda ditarik pada sudut tertentu

Anak kecil duduk diatas slider. Slider yang mulanya diam kemudian ditarik oleh kakaknya menggunakan tali membentuk sudut 60° dengan gaya sebesar 80N. Berat anak bersama slidernya adalah 40kg dan koefisien gesek kinetiknya adalah 0.1. (Percepatan gravitasi $10 \, m/s^2$)

Pertanyaan:

Berapakah jarak yang ditempuh anak anak tersebut setelah 5s?

Langkah 1: Menggambar Diagram Gaya

Langkah 2: Identifikasi

Diketahui:

 $\vec{T} = 80 \ N$ Besar gaya tegangan tali

m = 40kg Besar massa total

 $\mu k = 0.1$ Koefisien gesek kinetik

 $g = 10 \, m/s^2$ Percepatan Gravitasi

 $v_0 = 0 \,\, m/s$ Karena kondisi awal diam, maka kecepatan awalnya 0

 $x_0 = 0 m$ Korena kondisi awal diam, maka posisi awal adalah 0

Ditanya: $x \ saat \ t = 5s \ ...?$

Karena yang dicari adalah posisi perpindahan slider sejauh x selama t=5s, maka menggunkaan persamaan jarak pada kinematika 1

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

Pada persamaan diatas semua komponen sudah diketahui kecuali percepatan (a)

Langkah 3: Kondisi Diam

Ketika anak kecil dan slidernya dalam kondisi diam, berlaku hukum newton 1.

$$\sum F_{x} = 0 \qquad \sum F_{y} = 0$$

Catatan: $\sum F_x = 0$, pada kasus ini diabaikan karena yang dicari adalah pada saat slider bergerak

Maka:
$$\sum F_y = 0$$

 $\vec{N} + T \sin 60^\circ - \vec{W} = 0$
 $\vec{N} + T \sin 60^\circ - mg = 0$
 $\vec{N} = mg + T \sin 60^\circ$
 $\vec{N} = (40)(10) + (80)\left(\frac{1}{2}\sqrt{3}\right)$
 $\vec{N} = 330.7 N$

Langkah 4: Kondisi Bergerak

Ketika anak kecil dan slidernya dalam kondisi bergerak, berlaku hukum newton 2.

$$\sum F_{x} = ma_{x}$$

$$T\cos 60^{\circ} - \overrightarrow{f}_{k} = ma_{x}$$

$$(80) \left(\frac{1}{2}\right) - \overrightarrow{f}_{k} = ma_{x}$$

$$40 - \overrightarrow{f}_{k} = ma_{x}$$

$$a_{x} = \frac{40 - \overrightarrow{f}_{k}}{m} \quad \text{pers1}$$

Menghitung gaya gesek kinetik (\overrightarrow{f}_{x}) :

$$\vec{f}_x = \mu_k \vec{N}$$

$$\vec{f}_x = (0.1)(330.7) = 33.1 N$$

Substituis nilai \vec{f}_k ke pers1

$$a_x = \frac{40 - 33.19}{40} = \frac{6.9}{40} = 0.1725 \, m/s^2$$

Jarak yang ditempuh setelah t = 5s:

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$
 $x = 0 + 0(5) + \frac{1}{2} (0.1725)(5)^2$ maka $x = 2.16 m$

