Build a Personalized Online Course Recommender System with Machine Learning

<Atheenthara Ram S> <2022-08-17>

Outline

- Introduction and Background
- Exploratory Data Analysis
- Content-based Recommender System using Unsupervised Learning
- Collaborative-filtering based Recommender System using Supervised learning
- Conclusion
- Appendix

Introduction

Project background and context

As a new machine learning engineer in a Massive Open Online Courses (MOOCs) startup called AI Training Room. In AI Training Room, learners across the world can learn leading technologies such as Machine Learning, AI, Data Science, Cloud, App development, etc. Your company grows rapidly and reaches millions of learners in a very short period.

Problem states and hypotheses

- Collecting and understanding data
- Performing exploratory data analysis on online course enrollments datasets
- Extracting Bag of Words (BoW) features from course textual content
- Calculating course similarity using BoW features
- Building content-based recommender systems using various unsupervised learning algorithms, such as:
 - Distance/Similarity measurements, K-means, Principal Component Analysis (PCA), etc.
- Building collaborative-filtering recommender systems using various supervised learning algorithms
 - K Nearest Neighbors, Non-negative Matrix Factorization (NMF), Neural Networks,
 Linear Regression, Logistic Regression, RandomForest, etc.
- Creating an insightful and informative slideshow and presenting it to your peers

Exploratory Data Analysis

Course counts per genre

Chatbot	4
Blockchain	4
ComputerVision	1(
Containers	1
R	1
FrontendDev	19
Python	28
BigData	36
CloudComputing	3
DataScience	38
DataAnalysis	56
Database	6(
MachineLearning	69
BackendDev	78

- The most popular genre = BackendDev
- The least popular genre = Chatbot
- The most popular programming language = Python
- R is the second most popular language among all the courses

Course enrollment distribution

count	33901.000000
mean	6.881980
std	5.823548
min	1.000000
25%	2.000000
50%	6.000000
75%	9.000000
max	61.000000

- there are 33901 users in total
- the mean number of rates per user = 6.88
- the max number of rates per user = 61

20 most popular courses

TITLE Envolle

Enrolls	TITLE	
14936	python for data science	0
14477	introduction to data science	1
13291	big data 101	2
10599	hadoop 101	3
8303	data analysis with python	4
7719	data science methodology	5
7644	machine learning with python	6
7551	spark fundamentals i	7
7199	data science hands on with open source tools	8
6719	blockchain essentials	9
6709	data visualization with python	10
6323	deep learning 101	11
5512	build your own chatbot	12
5237	r for data science	13
5015	statistics 101	14
4983	introduction to cloud	15
4480	docker essentials a developer introduction	16
3697	sql and relational databases 101	17
3670	mapreduce and yarn	18
3624	data privacy fundamentals	19

- most popular course = python for data science
- the number of most popular course enrolls = 14936
- most of the topics are related to data science & big data
- R language is less popular than Python (5237 enrolls)

Word cloud of course titles

- the most frequent word = Data Science
- Python is also popular term in course title
- topic related to Data Science and Machine Learning are generally the popular courses
- traditional direction such as Java and Web technology are less popular compare to AI related courses

Content-based Recommender System using Unsupervised Learning

Flowchart of content-based recommender system using user profile and course genres

Evaluation results of user profile-based recommender system

The threshold can be fine-tuned to adjust the size of generated recommendations score_threshold = 10.0

On average, how many new/unseen courses have been recommended per user (in the test user dataset)?

Answer= 61.82

1 res_df.groupby(by='USER').size().mean()

61.81828703703704

Flowchart of content-based recommender system using course similarity

Course 1: "Machine Learning for Everyone"

Evaluation results of course similarity based recommender system

Your hyper-parameter settings, such as a score or similarity threshold threshold = 0.5

On average, how many new/unseen courses have been recommended per user (in the test user dataset)

```
1 len(res_df['COURSE_ID'].sum())/len(res_df)
2.392
```


Flowchart of clustering-based recommender system

Clustering on User Profiles

Evaluation results of clustering-based recommender system

Your hyper-parameter settings, such as a score or similarity threshold

threshold num of courses = 10

On average, how many new/unseen courses have been recommended per user (in the test user dataset)

```
1 total_recom_courses=len(df_recom['recom_courses'].sum())
2 recom_courses_per_user=total_recom_courses/len(df_recom)
3 print('recommend courses per user = ', recom_courses_per_user)
recommend courses per user = 13.702
```

ans = 13.7

Collaborative-filtering Recommender System using Supervised Learning

Flowchart of KNN based recommender system

User-based collaborative filtering:

$$\hat{r} * ui = \frac{\sum v \in N_i^k(u) \text{similarity}(u, v) \cdot r_vi}{\sum v \in N_i^k(u) \text{similarity}(u, v)}$$

Item-based collaborative filtering:

$$\hat{r} * ui = \frac{\sum *j \in N_u^k(i) \text{similarity}(i, j) \cdot r_u j}{\sum j \in N_u^k(i) \text{similarity}(i, j)}$$

Here $N_i^k(u)$ notates the nearest k neighbors of u.

Flowchart of NMF based recommender system

Non-negative Matrix Factorization

User-item interaction matrix: A 10000 x 100

User matrix: **U** 10000 x 16

		feature1		feature16	
	user1				
	user2				
_	user3		•••		
5	user4				^
	user6				

Item matrix: I 16 x 100

	item1	 item100
feature1		
feature2		
feature16		

Flowchart of Neural Network Embedding based recommender system

Compare the performance of collaborative-filtering models

- All Collaborative-filtering models significantly outperform the Baseline (RMSE)
- Generally KNN-based Recommend system have the best performance
 - KNN_User > KNN_Item
- SVD and NeuralNetwork have similar performance (0.059 and 0.062)
- In terms of Model Simplicity and Performance, i think KNN-based Model would be the optimal choice for the course recommender System

Conclusions

- In this Project, we explore different Modelling method for the Course recommender systems
 - Content_Based Recommender System (Unsupervised)
 - User Profile-Based
 - Course Similarity-Based
 - Clustering Based (PCA+K-means)
 - Clustering Based Modelling will generally have better performance than previous 2 options, but it is harder for model explanation because sometimes the large number of principal components will make it difficult to understand the meaning
 - Collaborative-filtering Recommender System (Supervised)
 - KNN based
 - NMF based
 - Neural Network Embedding based
 - Regression approach
 - Classification approach
- Generally, the Collaborative-filtering method is more advanced and accurate. It also provides RMSE as the metrics for Model Evaluation
 - Among all the models, the KNN-based Model have the Best Performance (RMSE=0.048)
 - Neural Network (Regression and Classification) and NMF Model have similar Accuracy (RMSE around 0.6)
 - However,NN model is computationally heavy. So the optimal final Model for the Course Recoomend System would be KNN based Model