

Cambridge International AS & A Level

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME								
CENTRE NUMBER					CANDIDATE NUMBER			
CHEMISTRY							97	701/22
Paper 2 Struct	tured Qu	estions A	S Core			Ma	ay/June	2014
						1 hou	ı r 15 m i	nutes
Candidates and	swer on t	the Quest	ion Pap	er.				
Additional Mate	erials:	Data Bo	ooklet					

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A Data Booklet is provided.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

Answer **all** the questions in the spaces provided.

l (a) E>	xplain what is meant by the term <i>nucleon number</i> .
		[1]
(k	-	omine exists naturally as a mixture of two stable isotopes, ⁷⁹ Br and ⁸¹ Br, with relative isotopic asses of 78.92 and 80.92 respectively.
	(i)	Define the term relative isotopic mass.
		[2]
	(ii)	
		[3]
(0		comine reacts with the element $\bf A$ to form a compound with empirical formula $\bf A$ Br ₃ . The ercentage composition by mass of $\bf A$ Br ₃ is $\bf A$, 4.31; Br, 95.69.
		alculate the relative atomic mass, A_r , of A . ve your answer to three significant figures.

(d)	The elements in Period 3 of the Periodic Table show different behaviours in their reactions with oxygen.										
	(i)	Describe what you would see when separate samples of magnesium and sulfur reacted with oxygen.	are								
		Write an equation for each reaction.									
		magnesium									
		sulfur									
			[4]								
	(ii)	Write equations for the reactions of aluminium oxide, Al_2O_3 , with									
		sodium hydroxide,									
		hydrochloric acid.									
			[2]								
(e)	Pho	osphorus reacts with chlorine to form PCl_5 .									
	Sta	te the shape of and two different bond angles in a molecule of ${ m PC}\it{l}_{\rm 5}$.									
	sha	pe of PC $l_{\scriptscriptstyle 5}$									
	bon	nd angles in PCl ₅	[2]								
		[Total:									
		[10tal.									

2	A 6.30 g sample of hydrated	ethanedioic	acid,	$H_2C_2O_4.xH_2O$,	was	dissolved	in	water	and	the
	solution made up to 250 cm ³ .									

A 25.0 cm³ sample of this solution was acidified and titrated with 0.100 mol dm⁻³ potassium manganate(VII) solution. 20.0 cm³ of this potassium manganate(VII) solution was required to react fully with the ethanedioate ions, $C_2O_4^{2-}$, present in the sample.

(a	The MnO ₄ ions in the	potassium manganate(VII	oxidise the	ethanedioate io	ns.
10		potabolarii illarigariato	V 11	, oxidioo liic	Ctilalicalcate io	10.0

above.			

(i) Explain, in terms of electron transfer, the meaning of the term oxidise in the sentence

[1]

(ii) Complete and balance the ionic equation for the reaction between the manganate(VII) ions and the ethanedioate ions.

$$2MnO_4^{-}(aq) + 5C_2O_4^{2-}(aq) + \dots H^{+}(aq) \rightarrow \dots (aq) + 10CO_2(aq) + \dots H_2O(I)$$
[3]

(b) (i) Calculate the number of moles of manganate(VII) used in the titration.

[1]

(ii) Use the equation in (a)(ii) and your answer to (b)(i) to calculate the number of moles of $C_2O_4^{2-}$ present in the 25.0 cm³ sample of solution used.

[1]

(iii) Calculate the number of moles of H₂C₂O₄.xH₂O in 6.30 g of the compound.

[1]

(iv) Calculate the relative formula mass of H₂C₂O₄.xH₂O.

[1]

(v) The relative formula mass of anhydrous ethanedioic acid, $H_2C_2O_4$, is 90.

Calculate the value of x in $H_2C_2O_4.xH_2O$.

[1]

[Total: 9]

- 3 The elements in Period 3 of the Periodic Table show variations in their behaviour across the period.
 - (a) The bar chart below shows the variation of melting points of the elements across Period 3.

In each of the following parts of this question you should clearly identify the interactions involved and, where appropriate, explain their relative magnitudes.

(1)	Explain the general increase in meiting point from Na to At.
	[3]
(ii)	Explain the variation of melting points from P to Ar.
	[3]
iii)	Explain why Si has a much higher melting point than any of the other elements in the period.

(b) The graph below shows the variation of the first ionisation energies across Period 3.

(i)	Explain why	the first	ionisation	energy of Ar is	greater than	that c	of C1.
١	•,	Explain will	, tile illet	iornsation	Chicigy of 7 th 13	greater triair	tilat	$n \cup \iota$.

17
1
1

(ii)	Explain why	\prime the first ionisation energy of A l is less than that	of Mg
------	-------------	---	-------

[1]

(iii) F	xnlain	why the	first	ionisation	energy of	S	is le	ss than	that	of I	Ρ
---------	--------	---------	-------	------------	-----------	---	-------	---------	------	------	---

[1]

[Total: 10]

Crude o	oil is processed to give a wide variety of hydrocarbons.
	ve the names of one physical process and one chemical process carried out during the ocessing of crude oil.
phy	ysical process
che	emical process
	[2]
(b) Alk	anes and alkenes can both be obtained from crude oil.
(i)	Explain why alkanes are unreactive.
	[2]
(ii)	State the bond angles in a molecule of
	ethane,
	ethene.
	[1]
(iii)	State the shape of each molecule in terms of the arrangement of the atoms bonded to each carbon atom.
	ethane ethene
(iv)	Explain why these molecules have different shapes in terms of the carbon-carbon bonds present.
(c) (i)	Use a series of equations to describe the mechanism of the reaction of ethane with chlorine to form chloroethane. Name the steps in this reaction.
	[5]
(ii)	Write an equation to show how butane could be produced as a by-product of this reaction.
	[1]
	[Total: 13]

5	A hydrocarbon, P	with the formula	C ₆ H ₁₂ readily	y decolourises bromine
•	7 t i i y di Ocai Doii, i	, with the formula	O61 112 1 Caaii	y acconduitses broilin

On reaction with hot, concentrated, acidified potassium manganate (VII) solution a single organic product, \mathbf{Q} , is obtained.

Q gives an orange precipitate when reacted with 2,4-dinitrophenylhydrazine, 2,4-DNPH reagent, but has no reaction with Tollens' reagent.

(a)	(i)	Explain these observations.
	(ii)	Draw the skeletal formula of P and give its name.
	(,	Draw the skeletal formala of F and give to hame.
		name of P
	/iii\	[2] Draw the skeletal formula of Q and give its name.
	(111)	Draw the skeletal formula of & and give its hame.
		name of Q
		[2]

(b) There are several structural isomers of **P** that also decolourise bromine, but only four of these structural isomers exhibit geometrical (cis-trans) isomerism.

Give the structures of any **three** structural isomers of **P** that exhibit geometrical (cis-trans) isomerism.

[3]

[Total: 11]

BLANK PAGE

BLANK PAGE

12

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.