**Problem 1.27** Prove that the divergence of a curl is always zero. *Check* it for function  $\mathbf{v}_a$  in Prob. 1.15.

**Problem 1.26** Calculate the Laplacian of the following functions:

- (a)  $T_a = x^2 + 2xy + 3z + 4$ .
- (b)  $T_b = \sin x \sin y \sin z$ .
- (c)  $T_c = e^{-5x} \sin 4y \cos 3z$ .
- (d)  $\mathbf{v} = x^2 \,\hat{\mathbf{x}} + 3xz^2 \,\hat{\mathbf{v}} 2xz \,\hat{\mathbf{z}}$ .

**Problem 1.28** Prove that the curl of a gradient is always zero. *Check* it for function (b) in Prob. 1.11.

**Problem 1.29** Calculate the line integral of the function  $\mathbf{v} = x^2 \,\hat{\mathbf{x}} + 2yz \,\hat{\mathbf{y}} + y^2 \,\hat{\mathbf{z}}$  from the origin to the point (1,1,1) by three different routes:

- (a)  $(0,0,0) \to (1,0,0) \to (1,1,0) \to (1,1,1)$ .
- (b)  $(0,0,0) \rightarrow (0,0,1) \rightarrow (0,1,1) \rightarrow (1,1,1)$ .
- (c) The direct straight line.
- (d) What is the line integral around the closed loop that goes *out* along path (a) and *back* along path (b)?

**Problem 1.30** Calculate the surface integral of the function in Ex. 1.7, over the *bottom* of the box. For consistency, let "upward" be the positive direction. Does the surface integral depend only on the boundary line for this function? What is the total flux over the *closed* surface of the box (*including* the bottom)? [*Note:* For the *closed* surface, the positive direction is "outward," and hence "down," for the bottom face.]

**Problem 1.31** Calculate the volume integral of the function  $T = z^2$  over the tetrahedron with corners at (0,0,0), (1,0,0), (0,1,0), and (0,0,1).

**Problem 1.33** Test the divergence theorem for the function  $\mathbf{v} = (xy) \,\hat{\mathbf{x}} + (2yz) \,\hat{\mathbf{y}} + (3zx) \,\hat{\mathbf{z}}$ . Take as your volume the cube shown in Fig. 1.30, with sides of length 2.



FIGURE 1.30

**Problem 1.34** Test Stokes' theorem for the function  $\mathbf{v} = (xy)\,\hat{\mathbf{x}} + (2yz)\,\hat{\mathbf{y}} + (3zx)\,\hat{\mathbf{z}}$ , using the triangular shaded area of Fig. 1.34.



FIGURE 1.34