AMENDMENTS TO THE CLAIMS

The following listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of claims:

Claim 1 (cancelled).

Claim 2 (currently amended). A compound according to claim 1 selected from the group consisting of:

$$R^1$$
 A
 R^5
 R^6

$$R^1$$
 A
 R^1
 R^3
 R^5
 R^4
 R^4
 R^3
 R^4

$$R^1$$
 A
 N
 N
 N
 R^2
 R^3
 R^6
 R^6

$$\begin{array}{c|c}
R & O \\
\hline
 & N \\
 & N \\
\hline
 & N \\
\hline
 & N \\
 & N \\
\hline
 & N \\
 & N \\
\hline
 & N \\
 & N$$

a pharmaceutically acceptable salt thereof,

wherein A is -NR(C=O), -(C=O)NR, (C2-C6)alkynyl-, or a bond;

wherein each R, R^1 , R^2 , R^3 , R^5 , and R^6 are the same or different, where ever they appear, and each is independently selected from the group consisting of (C_1-C_6) alkyl-, (C_2-C_6) alkynyl-, (C_3-C_{10}) cycloalkyl-, (C_6-C_{10}) aryl-, (C_1-C_{10}) heterocyclyl-, (C_1-C_{10}) heteroaryl-, (C_3-C_{10}) cycloalkyl-, (C_6-C_{10}) aryl- (C_1-C_6) alkyl-, (C_1-C_6) alkyl-, (C_1-C_6) alkyl-, (C_1-C_6) alkyl-, (C_1-C_6) alkyl-, (C_3-C_{10}) cycloalkyl- (C_2-C_6) alkenyl-, (C_6-C_{10}) aryl- (C_2-C_6) alkenyl-, (C_1-C_{10}) heterocyclyl- (C_2-C_6) alkenyl-, (C_3-C_{10}) cycloalkyl-, (C_3-C_{10}) cycloalkyl-, (C_3-C_{10}) cycloalkyl-, (C_3-C_{10}) aryl- (C_2-C_6) alkenyl-, (C_3-C_{10}) cycloalkyl-, (C_3-C_{10})

 C_{10})heteroaryl- $(C_2$ - C_6)alkynyl-; wherein each of the aforesaid group members, $(C_1$ - C_6)alkyl-, (C_2-C_6) alkenyl-, (C_2-C_6) alkynyl-, (C_3-C_{10}) cycloalkyl-, (C_6-C_{10}) aryl-, (C_1-C_1) C_{10})heterocyclyl-, (C_1-C_{10}) heteroaryl-, (C_3-C_{10}) cycloalkyl- (C_1-C_6) alkyl-, (C_6-C_{10}) aryl- (C_1-C_6) alkyl-, (C_1-C_{10}) heterocyclyl- (C_1-C_6) alkyl-, (C_1-C_{10}) heteroaryl- (C_1-C_6) alkyl-, (C_3-C_{10}) C_{10})cycloalkyl- $(C_2$ - C_6)alkenyl-, $(C_6$ - C_{10})aryl- $(C_2$ - C_6)alkenyl-, $(C_1$ - C_{10})heterocyclyl- $(C_2$ - C_6)alkenyl-, (C_6-C_{10}) aryl- (C_2-C_6) alkenyl-, (C_1-C_{10}) heteroaryl- (C_2-C_6) alkenyl-, (C_3-C_6) C_{10})cycloalkyl- $(C_2$ - C_6)alkynyl-, $(C_6$ - C_{10})aryl- $(C_2$ - C_6)alkynyl-, $(C_1$ - C_{10})heterocyclyl- $(C_2$ - C_6)alkynyl-, and (C_1-C_{10}) heteroaryl- (C_2-C_6) alkynyl-, may be optionally independently substituted with one to three suitable substituents selected from the group consisting of hydrogen, halogen, hydroxy, -CN, (C₁-C₄)alkyl-, (C₁-C₄)alkoxy-, CF₃-, CF₃O-, (C₆- C_{10})aryl-, (C_1-C_{10}) heteroaryl-, (C_6-C_{10}) aryl- (C_1-C_4) alkyl-, (C_1-C_{10}) heteroaryl- (C_1-C_1) C_4)alkyl-, HO(C=O)-, (C_1-C_4) alkyl-(O)(C=O)-, (C_1-C_4) alkyl- $(O)(C=O)(C_1-C_4)$ alkyl-, (C_1-C_4) alkyl-(C=O)-, (C_1-C_4) alkyl-(C=O) (C_1-C_4) alkyl-, -(S=O)R, $-(SO_2)$ R, and NR⁷R⁸ wherein R⁷ and R⁸ are independently selected from hydrogen, (C₁-C₆)alkyl; R, R³, R⁵, and R⁶ may further be hydrogen; and R⁴ is selected from the group consisting of hydrogen and (C₁-C₆)alkyl-, and R⁴ may be optionally substituted with one to three suitable substituents selected from the group consisting of halogen, hydroxy, -CN, CF₃-, and CF₃O-.

Claim 3 (currently amended). The compound of Claim 1 Claim 2, wherein R^1 is independently selected from (C_3-C_{10}) cycloalkyl- (C_1-C_6) alkyl- (C_6-C_{10}) aryl- (C_1-C_6) alkyl- (C_1-C_6) alkyl- (C_1-C_6) alkyl- (C_1-C_6) alkyl- (C_1-C_6) alkyl- (C_2-C_6) alkenyl- (C_2-C_6) alkenyl- (C_2-C_6) alkenyl- (C_2-C_6) alkenyl- (C_1-C_1) beteroaryl- (C_2-C_6) alkenyl- (C_2-C_6) alkynyl- (C_2-C_6) alkynyl-(C

Claim 4 (currently amended). The compound of Claim 1 Claim 2, wherein R^2 is independently selected from (C_3-C_{10}) cycloalkyl- (C_1-C_6) alkyl- (C_6-C_{10}) aryl- (C_1-C_6) alkyl- (C_1-C_6) alkyl-(

 $C_{10}) cycloalkyl-(C_2-C_6) alkenyl-, (C_6-C_{10}) aryl-(C_2-C_6) alkenyl-, (C_1-C_{10}) heterocyclyl-(C_2-C_6) alkenyl-, (C_1-C_{10}) heteroaryl-(C_2-C_6) alkenyl-, (C_3-C_{10}) cycloalkyl-(C_2-C_6) alkynyl-, (C_6-C_{10}) aryl-(C_2-C_6) alkynyl-, (C_1-C_{10}) heterocyclyl-(C_2-C_6) alkynyl-, and (C_1-C_{10}) heteroaryl-(C_2-C_6) alkynyl-.$

Claim 5 (currently amended). The compound according to any one of Claims 1 to 4 as in Claims 2, 3, or 4, wherein R^1 and R^2 are each independently selected from (C_3 - C_{10})cycloalkyl-(C_1 - C_6)alkyl-, (C_6 - C_{10})aryl-(C_1 - C_6)alkyl-, (C_1 - C_1 0)heteroaryl-(C_1 - C_1 0)heteroaryl-(C_1 - C_1 0)heteroaryl-(C_2 - C_1 0)cycloalkyl-, (C_1 - C_1 0)heteroaryl-(C_2 - C_1

Claim 6 (original). The compound according to Claim 5, wherein R^1 and R^2 are each independently selected from (C_6-C_{10}) aryl- (C_1-C_6) alkyl- and (C_1-C_{10}) heteroaryl- (C_1-C_6) alkyl-.

Claim 7 (original). The compound of Claim 6, wherein R^3 , R^4 , R^5 , and R^6 are each independently selected from the group consisting of hydrogen and (C_1-C_6) alkyl-.

Claims 8 to 10 (cancelled).

Claim 11 (currently amended). A method for treating arthritis, comprising administering to a patient suffering from an arthritis disease a nontoxic antiarthritic effective amount of a compound of Claim 1 Claim 2, or a pharmaceutically acceptable salt thereof.

Claim 12 (original). The method according to Claim 11, wherein the arthritis is osteoarthritis or rheumatoid arthritis.

Claim 13 (cancelled).

Claim 14 (new). A pharmaceutical composition for the treatment of arthritis in a mammal, including a human, comprising an amount of a compound of Claim 2, or a pharmaceutically acceptable salt thereof, effective in such treatment and a pharmaceutically acceptable carrier.