Computer Algorithms

Segment 3

Dynamic Programming

Why Dynamic Programming?

- Divide-and-Conquer: a top-down approach. Many smaller instances are computed more than once.
- Dynamic programming: a bottom-up approach. Solutions for smaller instances are stored in a table for later use.
- It sometimes happens that the natural way of dividing an instance suggested by the structure of the problem leads us to consider several overlapping subinstances.
- If we solve each of these independently, they will in turn create a large number of identical subinstances.

Why Dynamic Programming?....

- If we pay no attention to this duplication, it is likely that we will end up with an inefficient algorithm.
- If, on the other hand, we take advantage of the duplication and solve each subinstance only once, saving the solution for later use, then a more efficient algorithm will result.
- The underlying idea of dynamic programming is thus quite simple: avoid calculating the same thing twice, usually by keeping a table of known results, which we fill up as subinstances are solved.
- Dynamic programming is a bottom-up technique.

What is Dynamic Programming?

- *Dynamic Programming* is a general algorithm design technique.
- Invented by American mathematician Richard Bellman in the 1950s to solve optimization problems.
- "Programming" here means "planning".
- Main idea:
 - solve several smaller (overlapping) subproblems.
 - record solutions in a table so that each subproblem is only solved once.
 - final state of the table will be (or contain) solution.

What is Dynamic Programming?...

- Dynamic programming solves optimization problems by combining solutions to subproblems
- "Programming" refers to a tabular method with a series of choices, not "coding"
- A set of choices must be made to arrive at an optimal solution
- As choices are made, subproblems of the same form arise frequently
- The key is to *store* the solutions of subproblems to be *reused* in the future

What is Dynamic Programming? ...

- Recall the divide-and-conquer approach
 - Partition the problem into independent subproblems
 - Solve the subproblems recursively
 - Combine solutions of subproblems
- This contrasts with the dynamic programming approach
- Dynamic programming is applicable when *subproblems* are not independent
 - i.e., subproblems share subsubproblems
 - Solve every subsubproblem only once and store the answer for use when it reappears
- A divide-and-conquer approach will do more work than necessary

Elements of Dynamic Programming?

- Development of a dynamic programming solution to an optimization problem involves four steps
 - 1. Characterize the structure of an optimal solution
 - Optimal substructures, where an optimal solution consists of sub-solutions that are optimal.
 - Overlapping sub-problems where the space of sub-problems is small in the sense that the algorithm solves the same sub-problems over and over rather than generating new sub-problems.
 - 2. Recursively define the value of an optimal solution.
 - define the value of an optimal solution based on value of solutions to sub-problems.
 - 3. Compute the value of an optimal solution in a bottom-up manner.
 - compute in a bottom-up fashion and save the values along the way
 - later steps use the save values of pervious steps
 - 4. Construct an optimal solution from the computed optimal value

- Suppose we have a sequence or chain $A_1, A_2, ..., A_n$ of n matrices to be multiplied
 - That is, we want to compute the product $A_1A_2...A_n$
- There are many possible ways (parenthesizations) to compute the product
- Example: consider the chain A₁, A₂, A₃, A₄ of 4 matrices
 - Let us compute the product A₁A₂A₃A₄
- There are 5 possible ways:
 - 1. $(A_1(A_2(A_3A_4)))$ 2. $(A_1((A_2A_3)A_4))$
 - 3. $((A_1A_2)(A_3A_4))$ 4. $((A_1(A_2A_3))A_4)$
 - 5. $(((A_1A_2)A_3)A_4)$

- To compute the number of scalar multiplications necessary, we must know:
 - Algorithm to multiply two matrices, matrix dimensions

```
Input: Matrices A_{p \times q} and B_{q \times r} (with dimensions p \times q and q \times r)
```

Result: Matrix $C_{p \times r}$ resulting from the product $A \cdot B$

```
MATRIX-MULTIPLY(A_{p \times q}, B_{q \times r})
```

```
1. for i \leftarrow 1 to p
```

```
2. for j \leftarrow 1 to r
```

3.
$$C[i, j] \leftarrow 0$$

4. **for**
$$k \leftarrow 1$$
 to q

5.
$$C[i,j] \leftarrow C[i,j] + A[i,k] \cdot B[k,j]$$

6. return C

Scalar multiplication in line 5 dominates time to compute CNumber of scalar multiplications = pqr

- Example: Consider three matrices $A_{10\times100}$, $B_{100\times5}$, and $C_{5\times50}$
- There are 2 ways to parenthesize

$$- ((AB)C) = D_{10 \times 5} \cdot C_{5 \times 50}$$

- AB \Rightarrow 10·100·5=5,000 scalar multiplications
- DC \Rightarrow 10·5·50 =2,500 scalar multiplications

-
$$(A(BC)) = A_{10 \times 100} \cdot E_{100 \times 50}$$

- BC \Rightarrow 100·5·50=25,000 scalar multiplications
- AE \Rightarrow 10·100·50 =50,000 scalar multiplications

Total: 75,000

- Matrix-chain multiplication problem
 - Given a chain A_1 , A_2 , ..., A_n of n matrices, where for i=1, 2, ..., n, matrix A_i has dimension $p_{i-1} \times p_i$
 - Parenthesize the product $A_1A_2...A_n$ such that the total number of scalar multiplications is minimized

1. The structure of an optimal solution

- Let us use the notation $A_{i...j}$ for the matrix that results from the product $A_i A_{i+1} ... A_j$
- An optimal parenthesization of the product $A_1 A_2 ... A_n$ splits the product between A_k and A_{k+1} for some integer kwhere $1 \le k < n$
- First compute matrices $A_{1...k}$ and $A_{k+1...n}$; then multiply them to get the final matrix $A_{1...n}$
- **Key observation**: parenthesizations of the subchains $A_1A_2...A_k$ and $A_{k+1}A_{k+2}...A_n$ must also be optimal if the parenthesization of the chain $A_1A_2...A_n$ is optimal (why?)
- That is, the optimal solution to the problem contains within it the optimal solution to subproblems

- 2. Recursive definition of the value of an optimal solution
 - Let m[i, j] be the minimum number of scalar multiplications necessary to compute $A_{i,j}$
 - Minimum cost to compute $A_{1...n}$ is m[1, n]
 - Suppose the optimal parenthesization of $A_{i..j}$ splits the product between A_k and A_{k+1} for some integer k where $i \le k < j$

- $A_{i..j} = (A_i A_{i+1}...A_k) \cdot (A_{k+1} A_{k+2}...A_j) = A_{i..k} \cdot A_{k+1..j}$
- Cost of computing $A_{i..j} = cost$ of computing $A_{i..k} + cost$ of computing $A_{k+1..j} + cost$ of multiplying $A_{i..k}$ and $A_{k+1..j}$
- Cost of multiplying $A_{i..k}$ and $A_{k+1..j}$ is $p_{i-1}p_kp_j$
- $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_k p_j$ $for \ i \le k < j$
- m[i, i] = 0 for i=1,2,...,n
- But... optimal parenthesization occurs at one value of k among all possible $i \le k < j$
- Check all these and select the best one

$$m[i,j] = \begin{cases} 0 & \text{if } i=j \\ \min \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i \le j \\ i \le k \le j \end{cases}$$

- To keep track of how to construct an optimal solution, we use a table *s*
- s[i, j] = value of k at which $A_i A_{i+1} ... A_j$ is split for optimal parenthesization
- Algorithm: next slide
 - First computes costs for chains of length l=1
 - Then for chains of length l=2,3,... and so on
 - Computes the optimal cost bottom-up

3. Computing the optimal costs

Input: Array p[0...n] containing matrix dimensions and n

Result: Minimum-cost table *m* and split table *s*

MATRIX-CHAIN-ORDER(p[], n)

```
for i \leftarrow 1 to n
                                                              Takes O(n^3) time
Requires O(n^2) space
    m[i, i] \leftarrow 0
for l \leftarrow 2 to n
    for i \leftarrow 1 to n-l+1
          j \leftarrow i+l-1
           m[i, j] \leftarrow \infty
           for k \leftarrow i to j-1
                  q \leftarrow m[i, k] + m[k+1, j] + p[i-1] p[k] p[j]
                  if q < m[i, j]
                         m[i, j] \leftarrow q
                         s[i, j] \leftarrow k
```

return *m* and *s*

4. Constructing an optimal solution

```
Print-Optimal-Parens(s, i, j)
    if i = j
           then print "A<sub>i</sub>":
    else
          { print "(";
             Print-Optimal-Parens(s, i, s[i, j]);
             Print-Optimal-Parens(s, s[i, j]+1, j);
           print ")";
10.
```

Matrix	Dimension
A_1	30×35
A_2	35×15
A_3	15×5
A_4	5×10
A_5	10×20
A_6	20×25

Assign
$p_0 = 30$
p ₁ =35
p ₂ =15
p ₃ =5
p ₄ =10
p ₅ =20
p ₆ =25

m[i,i]
m[1,1]=0
m[2,2]=0
m[3,3]=0
m[4,4]=0
m[5,5]=0
m[6,6]=0

$$\begin{split} &m[1,2]{=}m[1,1] + m[2,2] + p_0p_1p_2 = 0{+}0{+}30.35.15{=}15750 \\ &m[2,3]{=}m[2,2] + m[3,3] + p_1p_2p_3 = 0{+}0{+}35.15.5{=}2625 \\ &m[3,4]{=}m[3,3] + m[4,4] + p_2p_3p_4 = 0{+}0{+}15.5.10{=}750 \\ &m[4,5]{=}m[4,4] + m[5,5] + p_3p_4p_5 = 0{+}0{+}5.10.20{=}1000 \\ &m[5,6]{=}m[5,5] + m[6,6] + p_4p_5p_6 = 0{+}0{+}10.20.25{=}5000 \end{split}$$

m	i									
		1	2	3	4	5	6			
	6					5000	0			
i	5				1000	0				
	4			750	0					
	3		2625	0						
	2	15750	0							
	1	0								

_									
	S	i (value of k)							
			1	2	3	4	5		
		6					5		
	i	5				4			
		4			3				
		3		2					
		2	1						
١									

$$m[1,3]=\min \begin{cases} m[1,1] + m[2,3] + p_0p_1p_3 = 7875 \\ m[1,2] + m[3,3] + p_0p_2p_3 = 18000 \end{cases}$$

$$m[2,4]=\min \begin{cases} ? \quad m[3,5]=\min \begin{cases} ? \quad m[4,6]=\min \end{cases} ?$$

m		i									
		1	2	3	4	5	6				
	6				3500	5000	0				
 i	5			2300	1000	0					
	4		4375	750	0						
	3	7875	2625	0							
	2	15750	0								
	1	0									

_							
s i (value of k						k)	
			1	2	3	4	5
		6				5	5
	i	5			3	4	
	J	4		3	3		
		3	1	2			
		2	1				

$$m[1,4] = min \begin{cases} m[1,1] + m[2,4] + p_0p_1p_4 = ? \\ m[1,2] + m[3,4] + p_0p_2p_4 = ? \\ m[1,3] + m[4,4] + p_0p_3p_4 = 9375 \end{cases}$$

$$m[2,5]=min - ?$$
 $m[3,6]=min - ?$

m		i									
		1	2	3	4	5	6				
	6			5375	3500	5000	0				
i	5		7125	2300	1000	0					
	4	9375	4375	750	0						
	3	7875	2625	0							
	2	15750	0								
	1	0									

S		i (value of k)							
		1	2	3	4	5			
	6			3	5	5			
j	5		3	3	4				
	4	3	3	3					
	3	1	2						
	2	1							

$$m[1,1] + m[2,5] + p_0 p_1 p_5 = ?$$

$$m[1,2] + m[3,5] + p_0 p_2 p_5 = ?$$

$$m[1,3] + m[4,5] + p_0 p_3 p_5 = 11875$$

$$m[1,4] + m[5,5] + p_0 p_4 p_5 = ?$$

$$m[2,6] = min$$
?

m		i								
		1	2	3	4	5	6			
	6		10500	5375	3500	5000	0			
i	5	11875	7125	2300	1000	0				
	4	9375	4375	750	0					
	3	7875	2625	0						
	2	15750	0							
	1	0								

_								
	S	i (value of k)						
			1	2	3	4	5	
		6		3	3	5	5	
	j	5	3	3	3	4		
	J	4	3	3	3			
		3	1	2				
		2	1					

m	i								
		1	2	3	4	5	6		
	6	15125	10500	5375	3500	5000	0		
i	5	11875	7125	2500	1000	0			
	4	9375	4375	750	0				
	3	7875	2625	0					
	2	15750	0						
	1	0							

S	i (value of k)					
j		1	2	3	4	5
	6	3	3	3	5	5
	5	3	3	3	4	
	4	3	3	3		
	3	1	2			
	2	1				

Constructing an optimal solution

Longest common subsequence (LCS)

The problem we shall consider is longest-common-subsequence problem. A subsequence of a given sequence is just the given sequence with some elements (possibly none) left out. Formally, given a sequence $X = \langle x_1, x_2, ..., x_m \rangle$, another sequence Z = $\langle z_1, z_2, ..., z_k \rangle$ is a subsequence of X if there exist a strictly increasing sequence $\langle i_1, i_2, ..., i_k \rangle$ of indices of X such that for all j = 1, 2, ..., k, we have $x_{ij} = z_{j}$. For example, $Z = \langle B, C, D, B \rangle$ is a subsequence of $X = \langle A, B \rangle$ B, C, B, D, A, B> with corresponding index sequence <2, 3, 5, 7>

LCS...

Given two sequence X and Y, we say that a sequence Z is a common subsequence of X and Y if Z is a subsequence of both X and Y. For example, it $X = \langle A, A \rangle$ B, C, B, D, A, B> and Y = <B, D, C, A, B, A>, the sequence <B, C, A> is a common subsequence of both X and Y. The sequence <B, C, A> is not a longest common subsequence (LCS) of X and Y, however, since it has length 3 and the sequence <B, C, B, A>, which is also common to both X and Y, has length 4. The sequence <B, C, B, A> is an LCS of X and Y, as is the sequence <B, D, A, B>, since there is no common subsequence of length 5 or greater.

LCS...

In the longest-common-subsequence problem, we are given two sequence $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ and wish to find a maximum-length common subsequence of X and Y. Now we show that the LCS problem can be solved efficiently using dynamic programming.

Characterizing a LCS

A brute-force approach to solving the LCS problem is to enumerate all subsequence of X and check each subsequence to see if it is also a subsequence of Y, keeping track of the longest subsequence found. Each subsequence of Y corresponds to a subset of the indices {1, 2, ..., m} of X. There are 2^m subsequences of X, so this approach requires exponential time, making it impractical for long sequences.

The LCS problem has an optimal-substructure property, however, the following theorem shows. As we shall see, the natural class of subproblems correspond to pairs of "prefixes" of the two input sequences. To be precise, given a sequence $X = \langle x_1, x_2, ..., x_m \rangle$, we define the ith **prefix** of X, for i = 0, 1, ..., m, as $X_i = \langle x_1, x_2, ..., x_i \rangle$. For example, if $X = \langle A, B, C, B, D, A, B \rangle$, then $X_4 = \langle A, B, C, B \rangle$ and X_0 is the empty sequence.

Characterizing a LCS...

Theorem 1 (Optimal substructure of an LCS)

Let $X = \langle x_1, x_2, ..., x_m \rangle$, and $Y = \langle y_1, y_2, ..., y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is and LCS of X_{m-1} and Y_{n-1}
- 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$, then $z_k \neq y_m$ implies that Z is an LCS of X and Y_{n-1} .

Proof: (case 1: $x_m = y_n$)

Any sequence Z' that does not end in $x_m = y_n$ can be made longer by adding $x_m = y_n$ to the end. Therefore,

- (1) longest common subsequence (LCS) Z must end in $x_m = y_n$.
- (2) Z_{k-1} is a common subsequence of X_{m-1} and Y_{n-1} , and
- (3) there is no longer CS of X_{m-1} and Y_{n-1} , or Z would not be an LCS.

Characterizing a LCS...

Theorem 1 (Optimal substructure of an LCS)

Let $X = \langle x_1, x_2, ..., x_m \rangle$, and $Y = \langle y_1, y_2, ..., y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is and LCS of X_{m-1} and Y_{n-1}
- 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$, then $z_k \neq y_m$ implies that Z is an LCS of X and Y_{n-1} .

Proof: (case 2: $x_m \neq y_n$, and $z_k \neq x_m$)

Since Z does not end in x_m ,

- (1) Z is a common subsequence of X_{m-1} and Y, and
- (2) there is no longer CS of X_{m-1} and Y, or Z would not be an LCS.

Proof: (case 3: $x_m \neq y_n$, and $z_k \neq y_m$)

Symmetric to (case 2)

A recursive solution to subproblems

The characterization of Theorem 1 shows that an LCS of two sequences contains within it an LCS of prefixes of the two sequences. Thus, the LCS problem has an optimal-substructure property. A recursive solution also has the overlapping-subproblems property, as we shall see in a moment.

Theorem 1 implies that there are either on or two subproblems to examine when finding an LCS of $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$. If $x_m = y_n$ we must find and LCS of X_{m-1} and Y_{n-1} . Appending $x_m = y_n$ to this LCS yields an LCS of X and Y. If $x_{m \neq y_n}$, then we must solve two subproblems: finding an LCS of X_{m-1} and Y and finding an LCS of X and Y_{n-1} . Whichever of these two LCS's is longer is an LCS of X and Y.

A recursive solution to subproblems ...

We can readily see the overlapping-subproblems property in the LCS problem. To find and LCS of X and Y, we may need to find the LCS's of X and Y_{n-1} and of X_{m-1} and Y. But each of these subproblems has the subsubproblem of finding the LCS of X_{m-1} and Y_{n-1} . Many other subproblems share subsubproblems.

A recursive solution to subproblems ...

Like the matrix-chain multiplication problem, our recursive solution to the LCS problem involves establishing a recurrence of the cost of an optimal solution. Let us define c[i,j] to be the length of an LCS of the sequences X_i , and Y_j . If either i = 0 or j = 0, one of the sequences has length 0, so the LCS has length 0. The optimal substructure of the LCS problem gives the recursive formula

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1, j-1]+1 & \text{if } i, j > 0 \text{ and } x_i = y_j \\ max(c[i,j-1], c[i-1,j]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j \end{cases}$$

Computing the length of an LCS

Based on recursive equation, we could easily write an exponential-time recursive algorithm to compute the length of an LCS of two sequences. Since there are only $\Theta(mn)$ distinct subproblems, however, we can use dynamic programming to compute the solutions bottom up.

Procedure LCS-LENGTH takes two sequences $X = \langle x_1, x_2, x_3 \rangle$..., x_m and $Y = \langle y_1, y_2, ..., y_n \rangle$ as inputs. It stores the c[i,j] values in a table c[0..m,0..n] whose entries are computed in row-major order. (That is, the first row of c is filled in form left to right, then the second row, and so on.) It also maintains the table b[1.m,1..n] to simplify construction of an optimal solution. Intuitively, b[i,j] points to the table entry corresponding to the optimal subproblem solution chosen when computing b[i,j]. The procedure returns the b and c tables: c[m,n] contains the length of an LCS of X and Y.

Computing the length of an LCS

```
LCS-LENGTH (X, Y)
       m \leftarrow length[X]
       n \leftarrow length[Y]
       for i \leftarrow 1 to m
            do c[i, 0] \leftarrow 0
       for j \leftarrow 0 to n
            do c[0, j] \leftarrow 0
       for i \leftarrow 1 to m
 8.
             do for j \leftarrow 1 to n
                  \mathbf{do} \ \mathbf{if} \ x_{i} = y_{i}
                          then c[i, j] \leftarrow c[i-1, j-1] + 1
                                   b[i,j] \leftarrow "``"
                           else if c[i-1, j] \ge c[i, j-1]
13.
                                 then c[i, j] \leftarrow c[i-1, j]
                                         b[i, j] \leftarrow "\uparrow"
15.
                                  else c[i, j] \leftarrow c[i, j-1]
16.
                                        b[i, j] \leftarrow "\leftarrow"
        return c and b
```

b[i, j] points to table entry whose subproblem we used in solving LCS of X_i and Y_j .

c[m,n] contains the length of an LCS of X and Y.

Computing the length of an LCS

Figure 3.1 The c and b tables

Computing the length of an LCS

Figure 3.1 The c and b tables computed by LCS-LENGTH on the sequence X=<A, B, C, B, D, A, B> and Y=<B, D, C, A, B,A>. The square in row i and column j contains the value of c[i,j] and the appropriate arrow for the value of b[i,j]. The entry 4 in c[7,4]— the lower right-hand corner of the table—is the length of an LCS \leq B, C, B, A \geq of X and Y. For i, i \geq 0, entry c[i,j] depends only on whether $x_i = y_i$ and the values in entries c[i-1,j],c[i,j-1], and c[i-1,j-1], which are computed before c[i,j]. To reconstruct the elements of an LCS, follow the b[i,j] arrows from the lower right-hand corner; the path is shaded. Each " ' " on the path corresponds to an entry (highlighted) for which $x_i = y_i$ is a member of an LCS

Computing the length of an LCS

Figure 3.1 Shows the tables produced by LCS-LENGTH on the sequences $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$. The running time of the procedure in O(mn), since each table entry O(1) time to compute.

Construction an LCS

The b table returned by LCS-LENGTH can be to quickly construct an LCS of $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., x_m \rangle$ y,>. We simply begin at b[m,n] and trace through the table following the arrows. Whenever we encounter a " in entry b[i,j], it implies that $x_i = y_j$ is an element of the LCS. The elements of the LCS are encountered in reverse order by this method. The following recursive procedure prints out an LCS of X and Y in the proper, forward order. The initial invocation is PRINT-LCS(b, X, length[x], lentgh[Y]).

Construction an LCS.....

```
<u>PRINT-LCS (b, X, i, j)</u>
   if i = 0 or j = 0
       then return
   if b[i, j] = "``"
       then PRINT-LCS(b, X, i-1, j-1)
             print x_i
6. elseif b[i, j] = "\uparrow"
       then PRINT-LCS(b, X, i-1, j)
    else PRINT-LCS(b, X, i, j-1)
```

- •Initial call is PRINT-LCS (*b*, *X*,*m*, *n*).
- •When b[i, j] =, we have extended LCS by one character. So LCS = entries with in them.
- •Time: O(m+n)

Figure 15.6 The c and b tables computed by LCS-LENGTH on the sequences $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$. The square in row i and column j contains the value of c[i, j] and the appropriate arrow for the value of b[i, j]. The entry 4 in c[7, 6]—the lower right-hand corner of the table—is the length of an LCS $\langle B, C, B, A \rangle$ of X and Y. For i, j > 0, entry c[i, j] depends only on whether $x_i = y_j$ and the values in entries c[i-1, j], c[i, j-1], and c[i-1, j-1], which are computed before c[i, j]. To reconstruct the elements of an LCS, follow the b[i, j] arrows from the lower right-hand corner; the path is shaded. Each " \nwarrow " on the path corresponds to an entry (highlighted) for which $x_i = y_j$ is a member of an LCS.

LCS Example

We'll see how LCS algorithm works on the following example:

- X = ABCB
- Y = BDCAB

What is the Longest Common Subsequence of X and Y?

$$LCS(X, Y) = BCB$$

 $X = A B C B$
 $Y = B D C A B$

ABCB LCS Example (0) 3 \mathbf{D} B B

$$X = ABCB$$
; $m = |X| = 4$
 $Y = BDCAB$; $n = |Y| = 5$
Allocate array c[5,4]

ABCB LCS Example (1) 0 0 0 0 B 0 \mathbf{C} 0 B

for
$$i = 1$$
 to m $c[i,0] = 0$
for $j = 1$ to n $c[0,j] = 0$

LCS Example (2)

RDCAR

	j	0	1	2	3	4	5
i		Y	(B)	D	C	A	B
0	X	j ₀	0	0	0	0	0
1	(A)	0	0				
2	В	0					
3	C	0					
4	В	0					

if
$$(X_i == Y_i)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (3)

RDCAR

					_		В
	j	0	1	2	3	4	5
i		Y	В	D	C	A	В
0	X	j ₀	0	0	0	0	0
1	i A	0	0	0	0		
2	В	0					
3	C	0					
4	В	0					

if
$$(X_i == Y_i)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (4)

BDCAB

							\vdash
	j	0	1	2	3	4	5
i	•	Y	В	D	C	(\mathbf{A})	В
0	X	j ₀	0	0	0,	0	0
1	(A)	0	0	0	0	1	
2	В	0					
3	C	0					
4	В	0					

if
$$(X_i == Y_i)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

47

LCS Example (5)

RDCA P

					_		R
	j	0	1	2	3	4	5 B
i	•	Y	В	D	C	A	(B)
0	X	j ₀	0	0	0	0	0
1	(A)	0	0	0	0	1 -	1
2	В	0					
3	C	0					
4	В	0					

if
$$(X_i == Y_i)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (6)

RDCAR

					_	` /	
	j	0	1	2	3	4	5
i	-	Y	(B)	D	\mathbf{C}	A	В
0	X	j ₀	0	0	0	0	0
1	A A	0	0	0	0	1	1
2	$ig(\mathbf{B} ig)$	0	1				
3	C	0					
4	В	0					

if
$$(X_i == Y_i)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (7)

BDCAB

	j	0	1	2	3	4	5
i		Y	В	D	C	A	> B
0	X	j ₀	0	0	0	0	0
1	A A	0	0	0	0	1	1
2	\bigcirc B	0	1	1	1	1	
3	\mathbf{C}	0					
4	В	0					

if
$$(X_i == Y_i)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (8)

if
$$(X_i == Y_i)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

*

B

LCS Example (10)

RDCAR

	j	0	1	_2	3	4	5
i		Y	B	D	C	A	В
0	X	j ₀	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	_1	1	1	2
3	\bigcirc	0	1 +	1			
4	В	0					

if
$$(X_i == Y_i)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (11)

RDCAB

	j	0	1	2	3	4	5
i		Y	В	D	(C)	A	В
0	X	j ₀	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1,	1	1	2
3	\bigcirc	0	1	1	2		
4	В	0					

if
$$(X_i == Y_i)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (12) D B B

if
$$(X_i == Y_i)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (13)

RDCAR

	j	0	1	2	3	4	5
i	· ·	Y	(B)	D	C	A	В
0	X	j ₀	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0	1	1	2	2	2
4	(B)	0	1				

if
$$(X_i == Y_i)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (14)

ABCB BDCAB

	i	0	1	2	3	4	5
i	3	Y	В	(D	C	A	S B
0	X	j ₀	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0	1	_1	_2	_2	2
4	(B)	0	1	1	2	2	

if
$$(X_i == Y_i)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (15)

if
$$(X_i == Y_i)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

Finding LCS

LCS (reversed order): **B C B**LCS (straight order): **B C B**(this string turned out to be a palindrome)⁵⁹