Computació Numèrica

Part 2.2 - Valors propis i vectors propis Valors singulars

M. Àngela Grau Gotés

Departament de Matemàtica Aplicada II Universitat Politècnica de Catalunya · BarcelonaTech.

17 de març de 2021

Drets d'autor

"Donat el caràcter i la finalitat exclusivament docent i eminentment il·lustrativa de les explicacions a classe d'aquesta presentació, l'autor s'acull a l'article 32 de la Llei de propietat intel·lectual vigent respecte de l'ús parcial d'obres alienes com ara imatges, gràfics o altre material contingudes en les diferents diapositives"

© 2021 by M. Àngela Grau Gotés.

Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional.

Índex

Introducció

Àmbits

En el camp de l'enginyeria els valors i els vectors propis tenen una relevància destacada per analitzar models amb oscilacions i resonàncies. El seu coneixement és bàsic en:

- Sistemes elèctrics de corrent alterna
- Vibració natural d'estructures
- Mecànica quàntica
- Làsers
- Resonància Magnètica Nuclear (NMR)
- Anàlisis de Components Principals
- Algoritme Pagerank

Introducció

Cas històric

- 1.- Pont Tacoma Narrows 1940
- 2.- Enfonsament del Pont Tacoma Narrows, Washington. Video original
 - 3.- Enfonsament del Pont Tacoma Narrows, Washington. Video

Introducció

Enginyeria Informàtica

- 1.- The Anatomy of a Large-Scale Hypertextual Web Search Engine Autors: Sergey Brin and Lawrence Page
 - 2.- https://sctmates.webs.ull.es/
 - 2.- PageRank, Wikipedia
- 3.- La descomposición en valores singulares (SVD) y algunas de sus aplicaciones

6 / 35

Valors i vectors propis

Definicions

Sigui $A = (a_{ij})_{n \times n}$ per $a_{ij} \in \mathbb{R}$ $1 \le i, j \le n$, A matriu quadrada de nombres reals; $\lambda \in \mathbb{R}$ un real i $v \in \mathbb{R}^n$ un vector.

Vector i valor propi

Si l'equació $A\mathbf{v} = \lambda \mathbf{v}$ té alguna solució no trivial $(\mathbf{v} \neq \mathbf{0})$ es diu que λ és un valor propi i \mathbf{v} un valor propi de la matriu A.

- Espectre: $spec(A) = \{\lambda_1, \lambda_2, \dots, \lambda_n, / \lambda_k \text{valor propi } A\}$
- Radi espectral: $\rho(A) = \max(\{|\lambda_1|, \dots, |\lambda_n|, /\lambda_k \text{valor propi } A\})$
- Polinomi característic: $p(\lambda) = det(A \lambda I)$.

Propietats

Si \mathbf{v} i λ compleixen $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$, llavors

- $(-A)v = -\lambda v ,$
- $(A \mu I)v = (\lambda \mu)v,$
- $A^{-1}v = \frac{1}{\lambda}v,$
- $(A \mu I)^{-1} v = \frac{1}{(\lambda \mu)} v,$
- **3** El conjunt $\left\{v^{(1)}, v^{(2)}, \dots v^{(k)}\right\}$ de vectors propis de valor propi $\lambda_1, \lambda_2, \dots, \lambda_k$, tots diferents, és un conjunt de vectors linealment independent.

Matrius semblants

Dues matrius, A i B quadrades d'ordre n es diuen **semblants** si existeix una matriu S tal que $A = S^{-1} B S$. Una matriu és **diagonalitzable** si és semblant a una matriu diagonal.

Igualtat de valors propis

A i B semblants, λ i v tals que $Av=\lambda v$, llavors λ és un valor propi de B de un vector propi Sv.

Teorema de Schur

Per a qualsevol matriu quadrada A, existeix una matriu U ortogonal tal que $T=U^{-1}AU$ és triangular superior.

Els elements de la diagonal de T són els valors propis de la matriu A.

Càlcul amb ordinador

Els valors propis i els vectors propis d'una matriu $n \times n$ on $n \ge 4$ s'han de trobar numèricament enlloc de fer-ho a mà.

Els mètodes numèrics que s'utilitzen a la pràctica depenen del significat geomètric de valors propis i vectors propis. L'essència de tots aquests mètodes es recull en el mètode de les potències.

Mètode de les potències

Mètode de la potència

Vector propi i valor propi de mòdul mà xim

Teorema (MP)

A matriu quadrada de nombres reals d'ordre n tal que

- $|\lambda_1| > |\lambda_2| > |\lambda_3| > \cdots > |\lambda_n|$
- 2 Existeixen *n* vectors propis linealment independents, $\{v^{(1)}, v^{(2)}, \dots, v^{(n)}\}.$
- **1** Per $x^{(0)} = a_1 v^{(1)} + a_2 v^{(2)} + \cdots + a_n v^{(n)}$ amb $a_1 \neq 0$

Llavors el mètode iteratiu $x^{(k)} = A x^{(k-1)}$ és convergent i

$$\lim_{k\to\infty} x^{(k)} = \lim_{k\to\infty} A^k \, x^{(0)} = \lim_{k\to\infty} \lambda_1^k a_1 v^{(1)} \,.$$

El mètode iteratiu convergeix al valor propi de mòdul màxim

Mètode de la potència

Vector propi i valor propi de mòdul mínim, ...

Fent ús de propietats citades anteriorment, podem establir els casos:

MP inversa (MPI)

Mètode de la potència per obtenir λ^{-1} , el valor propi de mòdul mínim: $A x^{(k)} = x^{(k-1)}$

MP inversa (MPD)

Mètode de la potència per obtenir $\lambda - \mu$, el valor propi de més llunyà a λ : $x^{(k)} = (A - \mu I)x^{(k-1)}$

MP inversa (MPI)

Mètode de la potència per obtenir $(\lambda - \mu)^{-1}$, el valor propi de més proper a λ : $(A - \mu I) x^{(k)} = x^{(k-1)}$

Mètode de les potències

Joc de proves

Calculeu, amb quatre xifres significatives, el valor propi dominant de la matriu:

$$A = \left(\begin{array}{rrr} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{array}\right)$$

$$x_{max}^{0} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad x_{min}^{0} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

Exemple resolt

Vegeu el document ... de MATLAB® del campus

Valor propi de mòdul màxim

Algorisme

1.-
$$x_0 = (,, ...,)^t$$

2.-
$$x^k = Ax^{(k-1)}$$

3.-
$$m_k = ||x^k||_{\infty}$$
 \leftarrow sempre positiu!!

4.-
$$x^k = \frac{1}{m_{k+1}} x^k$$

- **5.-** criteri de parada $||x^k x^{(k-1)}||_{\infty} < \epsilon$
- **6.-** residual $||Ax^k m_k x^{(k)}||_{\infty} < \epsilon$

L'aproximació del valor propi és m_k i la del vector propi és x^k . Aquest algorisme només proporciona valors propis positius, cal modificar per tots els casos.

Mètode de Wielandt

Mètode deflacció de Wielandt

Sigui λ_1 un valor propi de la matriu A de dimensió n i x_1 un vector propi associat tal que la seva primera component és igual a 1. Considerem la matriu següent:

$$B = A - x_1 a_1,$$

on a_1 denota la primera fila de la matriu A. Aquesta nova matriu té tota la primera fila igual a zero. Si λ_2 i x_2 són, respectivament, valor i vector propis d'A amb la primera component de x_2 igual a 1, podem escriure

$$B(x_1 - x_2) = \lambda_1 x_1 - \lambda_2 x_2 - \lambda_1 x_1 + \lambda_2 x_1 = \lambda_2 (x_1 - x_2).$$

Veure bibliografia, Grau - Noguera

Quocient de Rayleigh

Quocient de Rayleigh

Aproximació valor propi

La convergència del mètode de la potència depèn de la magnitud del quocient $\theta = |\lambda_2|/|\lambda_1|$. Si $\theta \approx 1$ calen més iteracions per a una exactitud fixada.

Per a matrius simètriques, s'aconsella la successió per a l'aproximació del valor propi:

$$r_k = \frac{x_k^t \cdot A \cdot x_k}{x_k^t \cdot x_k}.$$

La convergència de r_k cap a $|\lambda_1|$ és de l'ordre de $\left(\frac{|\lambda_2|}{|\lambda_1|}\right)^2$.

Es pot aplicar per qualsevol tipus de matriu, però no es manté l'ordre de convergència.

El sistema $x \cdot \lambda = A \cdot x$ és sobredeterminat, r_k és la solució de les equacions normals.

Mètode QR

Mètode QR

Introducció

El mètode de la potència i el mètode de la potència inversa només proporcionen una parella valor propi - vector propi; tots dos mètodes es poden modificar per donar totes les parelles valor i vector propi d'una matriu.

Hi ha, però mètodes per obtenir tots els valors propis en un sol algorisme. Un d'ells és l'anomentat mètode $\mathbf{Q}\mathbf{R}$. Aquest és la base de tot el programari modern, inclòs MATLAB®, de càlcul de valors propis.

Factorització QR

El mètode $\mathbf{Q}\mathbf{R}$ es fonamenta en el fet que qualsevulla matriu quadradra admet descompossició $\mathbf{Q}\mathbf{R}$: existeixen matrius \mathbf{Q} i \mathbf{R} tals que A=QR, amb Q ortogonal $(Q^{-1}=Q^t)$ i R triangular superior.

Mètode QR

Mètode QR de Francis (1961)

El mètode consisteix en:

- Transformem la matriu A en una matriu H Hessenberg superior fent ús de transformacions de Householder.
 - Iniciem el mètode fent $H_1 = H$
- ② Obtenim la factorització QR de la matriu $H,\ H_1=Q_1\,R_1$
- lacktriangledown Multiquem Q i R en ordre invers per obtenir una nova H, $H_2=R_1$ Q_1
- Repetim els pasos 2 i 3 fins que . . .
- La diagonal de H convergeix als valors propis.

Demostració.

La transformació $A \to H$ és una transformació de similaritat via matrius ortogonals. La transformació $H_{i+1} \to H_i$ és una transformació de similaritat, verifica

$$H_{i+1} = R_i Q_i = Q_i^{-1} Q_i R_i Q_i = Q_i^t H_i Q_i$$

Llavors la diagonal de H convergeix als valors propis de la matriu A.

Transformacions de Householder

Transformacions de Householder

Per $v \in \mathbb{R}^n$ definim la transformació associada a v per

$$H = \begin{cases} I, & v = 0, \\ I - \frac{2}{v^t v} v v^t, & v \neq 0. \end{cases}$$

Propietats

- **1** H és simètrica, ortogonal i $H^2 = I$.
- 2 Si $x \perp v$, $\Rightarrow Hx = x$.
- **4** Si $||x|| = ||v||, v = x y, \Rightarrow Hx = y$.

Factorització QR

Per A és una matriu $m \times n$, les matrius ortogonals Q_k modifiquen les files k, \dots, m de la manera següent:

De $Q_nQ_{n-1}\cdots Q_1A=R$, construïm

$$A = \underbrace{Q_1^t \dots Q_{n-1}^t Q_n^t}_{Q} R = QR$$

Són una successió de simetries per transformar les columnes de la matriu A a una forma triangular superior

Valors singulars

Valors Singulars

Sigui A és una matriu $m \times n$, la matriu $A^t A$ és quadrada $n \times n$ simètrica i definida positiva, els seus n valors propis, λ_i , són reals i no negatius.

S'anomenen **valors singulars** de la matriu A les n arrels quadrades (pos.) dels valors propis no negatius de $A^t A$.

Valors singulars de A

$$\sigma_i = +\sqrt{\lambda_i}, \quad i = 1, \ldots, n$$

Ordenats usualment,

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$$

Descomposició en Valors Singulars

28 / 35

Descomposició en Valors Singulars

Algorisme

L'algorisme de Golub i Reinsch (1970) per al càlcul de valors singulars no calcula en cap moment la matriu A^tA , sino que treballa directament sobre la matriu A.

Bàsicament, consisteix en dos grans passos: primer es transforma la matriu inicial en una de més senzilla i després s'aplica una variant del mètode QR per obtenir una successió de matrius convergent a una matriu diagonal que conté els valors singulars.

Matriu Pseudoinversa

Pseudoinversa de Moore-Penrose

Sigui A una matriu $m \times n$, la pseudoinversa de Moore-Penrose, A^+ és la única matriu $n \times m$ tal que

$$AA^{+}A = A$$
, $A^{+}AA^{+} = A^{+}$.

La matriu A^+ es pot calcular a partir de la descompossició en valors singulars de la matriu A.

Valors singulars de A i matriu A^+

$$A = USV^{t} = \begin{bmatrix} U_1, U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1, V_2 \end{bmatrix}^{t} \Longrightarrow A^{+} = V_1 \Sigma_1^{-1} U_1^{t}$$

La matriu Σ_1 és diagonal amb els valors singulars no nuls.

30 / 35

Sistemes lineals sobredeterminats

Sigui A una matriu $m \times n$, $m \ge n$, b un vector de m components, x el vector de n d'incògnites. La matriu de coeficients del sistema d'equacions normals, A^tA és no singular si i només si rank(A) = n

Teorema (Equacions normals)

 $Si \times \text{ \'es la soluci\'o dels sistema d'equacions normals, } A'(b-Ax)=0$, llavors

$$||r(x)||_2 \leq ||r(y)||_2.$$

Teorema (Pinversa)

La solució de residu mínim de Ax = b és $x = A^+b$.

Exemple

X	0.25	0.50	0.75	1.00	1.25	1.50	1.75
Υ	0.40	0.50	0.90	1.28	1.60	1.66	2.02

Empreu una tècnica de mínims quadrats per ajustar la taula de dades a funcions del tipus:

- $\mathbf{0}$ $y = a_0 + a_1 x$. Determineu a_0 i a_1 , doneu l'equació de la funció obtinguda i calculeu el vector residu en la solució.
- $y = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$. Determineu a_0 , a_1 , a_2 , a_3 i a_4 , doneu l'equació de la funció obtinguda i calculeu el vector residu en la solució.
- calculeu el vector residu en la solució.
- Quin dels tipus sembla el més adient. Per què?

Valors propis. Valors singulars Guia estudi

Guia estudi tema

Llibre Càlcul numèric: teoria i pràctica

- Conceptes i exercicis resolts: capítol 7, pàgines 250-297.
- Problemes proposats: 1, 2, 3, 4, 5, 6, i 8.
- Pràctiques resoltes : de la pàgina 298-304.
- Pràctiques proposades: pàgines 305-309.

Llibre Cálculo Científico con MATLAB y Octave

- Conceptes i exercicis resolts: capítol 6, pàgines 173-190.
- Problemes i pràctiques proposades: del 6.1 al 6.10

Referències

- Llibre de consulta Accès UPCommons, Càlcul numèric: teoria i pràctica
- Llibre de consulta Accès UPCommons. Cálculo numérico
 - Numerical Computing with MATLAB, Libro de texto de Cleve Moler
- Eigenvalues and Singular Values, Chapter 10
- Least Squares, Chapter 5