	MEMBER LIST					
No.	Name	ID	Role			
1	Trang Ngoc Thao Nguyen	1752037	Leader			
2	Nguyen Huynh Thanh Hai	1752016	Group member			
3	Pham Trong Nhan	1752394	Group member			
4	Pham Doan Trang	1752550	Group member			
5	Nguyen La Thong	1752522	Group member			
6	Huynh Thai Duong	1752150	Group member			
7	Huynh Ngoc Thien	1752051	Group menber			
8	Nguyen Cong Minh	1752347	Group member			
9	Le Nguyen Ngoc Thanh	1710301	Group member			
10	Nguyen Ngoc Gia Van	1614058	Group member			

Boolean Algebra

a.

$$x = ABC + \overline{A}C$$

$$= C(AB + \overline{A})$$

$$= C[(\overline{A} + B)(A + \overline{A})]$$

$$= C(\overline{A} + B)$$

$$= \overline{A}C + BC$$

b.

$$y = (Q + R)(\overline{Q} + \overline{R})$$

= $Q\overline{Q} + Q\overline{R} + R\overline{Q} + R\overline{R}$
= $Q\overline{R} + \overline{Q}R$

c.

$$\begin{split} w &= ABC + A\overline{B}C + \overline{A} \\ &= AC(B + \overline{B}) + \overline{A} \\ &= \underline{AC + \overline{A}} \\ &= \underline{\overline{A} + \overline{C} + \overline{A}} \\ &= \underline{(\overline{A} + \overline{C})A} \\ &= A\overline{A} + \overline{C}A \\ &= C + \overline{A} \end{split}$$

d.

$$q = \overline{RST}(\overline{R+S+T}) = (\overline{R}+\overline{S}+\overline{T})\overline{R.S}.\overline{T} = \sum \overline{S}.\overline{T}(\overline{R}+\overline{R}) = \sum \overline{S}.\overline{T}.\overline{R} = \overline{S}.\overline{T}.\overline{R}$$

e.

$$x = \overline{A} \, \overline{B} \, \overline{C} + \overline{A}BC + ABC + A\overline{B} \, \overline{C} + A\overline{B}C$$

$$= (A + \overline{A})\overline{B} \, \overline{C} + (A + \overline{A})BC + A\overline{B}C$$

$$= \overline{B} \, \overline{C} + BC + A\overline{B}C$$

$$= \overline{B} \, \overline{C} + C(B + A\overline{B})$$

$$= \overline{B} \, \overline{C} + CB + CA$$

f.

$$z = (B + \overline{C})(\overline{B} + C) + \overline{A} + B + \overline{C}$$

$$= B\overline{B} + BC + \overline{B} \overline{C} + \overline{C}C + A\overline{B}C$$

$$= BC + \overline{B} \overline{C} + A\overline{B}C$$

$$= BC + (\overline{B} + A\overline{B}) \overline{C} + A\overline{B}C$$

$$= BC + \overline{B} \overline{C} + A\overline{B} \overline{C} + A\overline{B}C$$

$$= BC + \overline{B} \overline{C} + A\overline{B} \overline{C} + A\overline{B}C$$

g.

$$\begin{split} y &= \overline{C + D} + \overline{A}.C.\overline{D} + A.\overline{B}.\overline{C} + \overline{A}.\overline{B}.C.D + A.C.\overline{D} \\ y &= \overline{C}.\overline{D} + \overline{A}.C(\overline{D} + \overline{B}.D) + A.\overline{B}.\overline{C} + A.C.\overline{D} \\ y &= \overline{C}.\overline{D} + \overline{A}.C(\overline{D} + \overline{D}.\overline{B} + \overline{B}.D) + A.\overline{B}.\overline{C} + A.C.\overline{D} \\ y &= \overline{C}.\overline{D} + \overline{A}.C(\overline{D} + \overline{B}) + A.\overline{B}.\overline{C} + A.C.\overline{D} \\ y &= \overline{C}.\overline{D} + (\overline{A}.C.\overline{D} + A.C.\overline{D}) + \overline{A}.C.\overline{B} + A.\overline{B}.\overline{C} \\ y &= \overline{C}.\overline{D} + C.\overline{D} + \overline{A}.C.\overline{B} + A.\overline{B}.\overline{C} \\ y &= \overline{D} + \overline{A}.C.\overline{B} + A.\overline{B}.\overline{C} \end{split}$$

h.

$$x = AB\overline{(\bar{C}D)} + \bar{A}BD + \bar{B}\bar{C}\bar{D}$$

$$x = AB(C + \bar{D}) + \bar{A}BD + \bar{B}\bar{C}\bar{D}$$

$$x = ABC + AB\bar{D} + \bar{A}BD + \bar{B}\bar{C}\bar{D}$$

$$x = ABC + \bar{A}BD + AB\bar{D} + \bar{B}\bar{C}\bar{D}$$

$$x = B(AC + \bar{A}D) + \bar{D}(AB + \bar{B}\bar{C})$$

K-map

1. $F(A,B,C) = \sum (1,2,3,4,6,7)$:

1.png

Therefore: $X = B + A\bar{C} + \bar{A}C$.

2. $F(A,B,C,D) = \sum (1,3,4,5,6,7,12,13)$:

2.png

 $Therefore: X = \bar{A}D + \bar{A}B + B\bar{C}.$

3. $F(A,B,C,D) = \sum (2,5,7,8,10,12,13,15)$

	$\overline{\mathrm{C}}.\overline{\mathrm{D}}$	C.D	C.D	$C.\overline{D}$
$\overline{A}.\overline{B}$	0 0	0 ,	0 ,	1
\overline{A} .B	O 4	1_{s}	1	0
A.B	1	1	1	0
$A.\overline{B}$	1 8	0	0 1	1

$$\Rightarrow \mathrm{F}(\mathrm{A,B,C,D}) = \mathrm{BD} + \mathrm{A}\overline{C}.\overline{D} + \overline{B}\mathrm{C}\overline{D}$$

$$F(A,B,C,D) = \sum (0,\!6,\!8,\!9,\!10,\!11,\!13,\!14,\!15)$$

Case 1

,	$\overline{\mathbf{C}}.\overline{\mathbf{D}}$	$\overline{\mathbf{C}}$.D	C.D	$C.\overline{D}$
$\overline{A}.\overline{B}$	1	0	0 3	0 2
\overline{A} .B	O 4	0 5	0 ,	1
A.B	O 12	1	1	1
$A.\overline{B}$	1	1 9	1	1

$$\Rightarrow F(A,B,C,D) = AD + AC + BC\overline{D} + \overline{B}.\overline{C}.\overline{D}$$

Case 2

	$\overline{\mathrm{C}}.\overline{\mathrm{D}}$	C.D	C.D	$C.\overline{D}$
$\overline{A}.\overline{B}$	1	0 ,	0 3	O 2
\overline{A} .B	O 4	0 ,	0 ,	1
A.B	0	1	1	1
$A.\overline{B}$	1 8	1 9	1	1
/	,	1		

$$\Rightarrow \mathrm{F}(\mathrm{A,B,C,D}) = \mathrm{AD} + \mathrm{A}\overline{B} + \mathrm{BC}\overline{D} + \overline{B}.\overline{C}.\overline{D}$$

AB/CD	$\overline{C}\overline{D}$	$\bar{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	\bigcap	0	0	0
$\bar{A}B$	1)	1	1	1
AB	0	1	1	1
$Aar{B}$		1	1	

$$X = BD + BC + \bar{A}\bar{C}\bar{D} + A\bar{B}$$

AB/CD	$\overline{C}\overline{D}$	$\bar{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	V	0	0	0
$ar{A}B$		1	1	
AB	0	1	1	1
$\overline{{\sf A}ar{B}}$	1	1	1	1

 $X = AC + AD + \bar{B}\bar{C}\bar{D} + \bar{A}B$

DC/BA	$\overline{B}\overline{A}$	$ar{B}A$	BA	$B\bar{A}$
$\overline{D}\overline{C}$		0	\bigcap	1_
$\overline{D}C$	0	1	1	0
DC	4	1	1	
${ m D} ar{\mathcal{C}}$	1	0	1	T

$$X = CA + DC + BA + \bar{C}\bar{A}$$

DC/BA	$\overline{B}\overline{A}$	$ar{B}A$	BA	$B\bar{A}$
$\overline{D}\overline{C}$	_1	0	1	
$\frac{\overline{D}C}{DC}$	0	1	1	0
DC		1	1	
${ m D} ar{\mathcal{C}}$	1	0	1	

$$\overline{X = CA + DC + \bar{C}\bar{A} + \bar{C}B}$$

DC/BA	$\overline{B}\overline{A}$	$ar{B}A$	BA	$\mathrm{B}ar{A}$
$\overline{D}\overline{C}$	1	0	$\sqrt{1}$	1
$\overline{D}C$	0	1	1	0
DC	1	1	1	1
$\mathrm{D} ar{\mathcal{C}}$	1	0	1/	X

$$X = CA + BA + \bar{C}\bar{A} + D\bar{A}$$

DC/BA	$\overline{B}\overline{A}$	$ar{B}A$	BA	$\mathrm{B}ar{A}$
$\overline{D}\overline{C}$	_1	0	1	1
$\overline{D}C$	0	1	1	0
DC		1	1	
${ m D} ar{\mathcal{C}}$		0		
$X = CA + \bar{C}\bar{A} +$	$D\bar{A} + \bar{C}B$		•	

DC/BA	$\overline{B}\overline{A}$	$\bar{B}A$	BA	$\mathrm{B}ar{A}$
$\overline{D}\overline{C}$	1	1	0	0
$\overline{D}C$	1	1	1	0
$\overline{D}C$	0	1		
${ m D} ar{\mathcal{C}}$	1	0	0	\overline{A}

$$X = \bar{D}\bar{B} + CA + DCB + D\bar{C}\bar{A}$$

DC/BA	$\overline{B}\overline{A}$	$ar{B}A$	BA	$\mathrm{B}ar{A}$
$\overline{D}\overline{C}$	1	1	0	0
$\overline{D}C$	1	1	1	0
$\overline{D}C$	0	1	1	\bigcap
${ m D} ar{\mathcal{C}}$	D	0	0	W.

$$X = \bar{D}\bar{B} + CA + DB\bar{A} + D\bar{C}\bar{A}$$

DC/BA	$\overline{B}\overline{A}$	$\bar{B}A$	BA	$B\bar{A}$
$\overline{D}\overline{C}$	1	1	0	0
$\overline{D}C$	1	1	1	0
DC	0	1	1	1
${ m D} ar{\mathcal{C}}$	1	0	0	1

$$X = \bar{D}\bar{B} + CA + DB\bar{A} + \bar{C}\bar{B}\bar{A}$$

• Case 1:

$$x_1 = \overline{C} \ \overline{A} + \overline{D} \ \overline{B} + DC$$

• Case 2:

$$\mathbf{x}_2 = \overline{C} \ \overline{A} + \overline{D} \ \overline{C} + \mathbf{C} \overline{B}$$

• Case 3:

$$\mathbf{x}_3 = \overline{C} \ \overline{A} + \overline{D} \ \overline{B} + \mathbf{C} \overline{B}$$

\bullet Case 4:

$$\mathbf{x}_4 = \mathbf{D}\overline{A} + \overline{D} \ \overline{C} + \overline{D} \ \overline{B}$$

• Case 5:

$$\mathbf{x}_5 = \mathbf{D}\overline{A} + \overline{D} \ \overline{C} + \mathbf{C}\overline{B}$$

• Case 6:

$$x_6 = \overline{C} \ \overline{A} + \overline{D} \ \overline{B} + \overline{B} \ \overline{A}$$

• Case 7:

$$x_7 = D\overline{A} + \overline{C} \ \overline{A} + \overline{D} \ \overline{B}$$

KMap (cont)

1

1.
$$F(A,B,C,D) = \sum m(0,1,2,5,7,8,10,14,15) + d(3,13)$$

$$F = B'D' + A'D + ABC$$

 $\mathbf{2}$

2)
$$F(A,B,C,D) = \prod M(1,3,4,5,11,12,14,15).D(0,6,7,8)$$
 Solution

	$\overline{C} \overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \ \overline{B}$	X	0	\bigcirc	1
$\overline{A}B$	0	0	X	X
AB	0	1	0	0
$A\overline{B}$	X	1	0	1

$$\Rightarrow F(A, B, C, D) = \overline{A}D + B\overline{D} + CD$$

	$\overline{C} \overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A} \ \overline{B}$	X	0	0	1
$\overline{A}B$	0	0	X	X
AB	0	1	0	0
$A\overline{B}$	X	1	0	1

$$\Rightarrow F(A, B, C, D) = \overline{A} \overline{C} + B\overline{D} + CD$$

3

3.
$$F(A,B,C,D) = \sum m(1,3,6,8,11,14) + d(2,4,5,13,15)$$

$$F = A'B'D + B'CD + BCD' + AB'C'D'$$

4.

• Case 1:

$$\mathbf{x}_1 = \overline{C} \ \overline{D} + \mathbf{A} \overline{D} + \mathbf{A} \mathbf{B} \overline{C}$$

\bullet Case 2:

$$\mathbf{x}_2 = \overline{C} \ \overline{D} + \overline{B} \ \overline{D} + \mathbf{AB} \overline{C}$$

$$\begin{split} & F(D,C,B,A) \\ &= \prod M(0,3,6,9,11,13,14).D(5,7,10,12) \\ &= (A+B+C+D)(\bar{B}+\bar{A}+C)(\bar{D}+\bar{A}+B)(\bar{C}+\bar{B}+A) \end{split}$$

6.

$$F(D,C,B,A) = \Sigma m(0,1,4,6,10,14) + d(5,7,8,9,11,12,15)$$

= $\bar{D}\bar{B} + BC + BD$

$$\begin{split} & F(D,C,B,A) \\ &= \Sigma m(0,1,4,6,10,14) + d(5,7,8,9,11,12,15) \\ &= \bar{B}\bar{D} + BD + \bar{A}C \end{split}$$

${\bf Case\ 3:}$

$$\begin{split} & \text{F(D,C,B,A)} \\ & = \Sigma \text{m}(0.1,4,6,10,14) \, + \, \text{d}(5,7,8,9,11,12,15) \\ & = \bar{B}\bar{D} \, + \, \text{BD} \, + \, \text{C}\bar{D} \end{split}$$

Case 4:

$$\begin{split} & \text{F(D,C,B,A)} \\ & = \Sigma \text{m}(0.1,4,6,10,14) \, + \, \text{d}(5,7,8,9,11,12,15) \\ & = \bar{B}\bar{D} \, + \, \text{BC} \, + \, \bar{A}D \end{split}$$

Case 5:

$$\begin{split} & F(D,C,B,A) \\ &= \Sigma m(0,1,4,6,10,14) + d(5,7,8,9,11,12,15) \\ &= \bar{B}\bar{D} + \bar{A}C + D\bar{A} \end{split}$$

Case 6:

$$\begin{split} & F(D,C,B,A) \\ &= \Sigma m(0,1,4,6,10,14) \, + \, d(5,7,8,9,11,12,15) \\ &= \bar{B}\bar{D} \, + \, D\bar{A} \, + \, C\bar{D} \end{split}$$

$$\begin{split} & F(D,C,B,A) \\ &= \Sigma m(0,1,4,6,10,14) + d(5,7,8,9,11,12,15) \\ &= \bar{B}\bar{D} + BC + \bar{C}D \end{split}$$

Case 8:

$$\begin{split} & \text{F(D,C,B,A)} \\ & = \Sigma \text{m}(0.1,4,6,10,14) \, + \, \text{d}(5,7,8,9,11,12,15) \\ & = \bar{B}\bar{D} \, + \bar{C}D \, + \, \text{C}\bar{A} \end{split}$$

Case 9:

$$\begin{split} & F(D,C,B,A) \\ &= \Sigma m(0,1,4,6,10,14) + d(5,7,8,9,11,12,15) \\ &= BD + C\bar{A} + \bar{B}\bar{C} \end{split}$$

Case 10:

$$\begin{split} & \text{F(D,C,B,A)} \\ & = \Sigma \text{m}(0.1,4,6,10,14) \, + \, \text{d}(5,7,8,9,11,12,15) \\ & = \text{BD} \, + \, \bar{C}\bar{B} \, + \, \text{C}\bar{D} \end{split}$$

Case 11:

$$\begin{split} & F(D,C,B,A) \\ &= \Sigma m(0,1,4,6,10,14) + d(5,7,8,9,11,12,15) \\ &= \bar{C}\bar{B} + C\bar{A} + D\bar{A} \end{split}$$

Case 12:

$$\begin{split} & \text{F(D,C,B,A)} \\ & = \Sigma \text{m}(0.1,4,6,10,14) \, + \, \text{d}(5,7,8,9,11,12,15) \\ & = \bar{C}\bar{B} \, + \, C\bar{D} \, + \, \text{D}\bar{A} \end{split}$$

Case 13:

$$= \Sigma m(0,1,4,6,10,14) + d(5,7,8,9,11,12,15)$$

$$= \bar{C}\bar{B} + C\bar{A} + D\bar{C}$$

		CB			CB				
		00	01	11	10	00	01	11	10
	00	0	1	1	0	0	X	0	0
ED	01	0	X	0	0	0	1	0	0
ED	11	X	0	0	1	1	X	0	1
	10	0	0	0	1	0	0	0	1
			A=	= 0			A=	= 1	

$$\begin{split} & F(E,D,C,B,A) \\ &= \Sigma m(1,3,10,14,21,26,28,30) + d(5,12,17,29) \\ &= \bar{C}B\bar{E} + C\bar{B}E + \bar{A}\bar{D}\bar{E}B + DE\bar{B} \end{split}$$

8.
$$F(A, B, C, D) = \Pi M(0, 2, 3, 4, 7, 8)$$

 \bullet Case 1:

\overrightarrow{CD} $\overline{C}.\overline{D}\overline{C}DCDC\overline{D}$				
$\overline{A}.\overline{B}$	0	1	0	0
$\overline{A}B$	0	1	0	1
AB	1	1	1	1
$A\overline{B}$	0	1	1	1

Groups				
(0,2)	A+B+D			
(0,4)	A+C+D			
(0,8)	B+C+D			
(3,7)	$A + \overline{C} + \overline{D}$			

Call x is the result of the simplification and we have:

•
$$\mathbf{x} = (A+B+D).(A+C+D).(B+C+D).(A+\overline{C}+\overline{D})$$

\bullet Case 2:

$ \begin{array}{c} \text{CD} \\ \overline{C}.\overline{D}\overline{C}DCDCDC\overline{D} \end{array} $					
$\overline{A}.\overline{B}$	0	1	0	0	
$\overline{A}B$	0	1	0	1	
AB	1	1	1	1	
$A\overline{B}$	0	1	1	1	

Groups				
(3,2)	$A+B+\overline{C}$			
(0,4)	A+C+D			
(0,8)	B+C+D			
(3,7)	$A + \overline{C} + \overline{D}$			

Call x is the result of the simplification so we have:

$$\bullet \ \mathbf{x} = (A+B+\overline{C}).(A+C+D).(B+C+D).(A+\overline{C}+\overline{D})$$

2-input NAND gates.

The following function is in minimum sum of products form. Implement it using only two-input NAND gates. No gate may be used as a NOT gate.

1 — First way to simplify and draw G circuit

$$G = ABC\bar{E} + \bar{A}B\bar{E} + \bar{B}\bar{C}E + \bar{A}BCE + A\bar{D}$$

$$= ABC\bar{E} + \bar{A}BCE + \bar{A}\bar{B}\bar{E} + \bar{B}\bar{C}E + A\bar{D}$$

$$= BC(A\bar{E} + \bar{A}E) + \bar{B}(\bar{A}\bar{E} + \bar{C}E) + A\bar{D}$$

$$= BC(A\bar{E} + \bar{A}E) + C\bar{C} + \bar{B}(\bar{A}\bar{E} + \bar{C}E) + B\bar{B} + A\bar{D} + A\bar{A}$$

$$= C(\bar{C} + B(A\bar{E} + \bar{A}E)) + \bar{B}(\bar{A}\bar{E} + \bar{C}E) + B\bar{B} + A(\bar{D} + \bar{A})$$

$$= (C(C.(B((\bar{A}\bar{E}).(\bar{A}E))))).(\bar{B}((\bar{A}\bar{E}).(\bar{C}E))).((\bar{B}\bar{B})).(\bar{A}(\bar{D}\bar{A}))$$

$$= (C(C.(B((\bar{A}\bar{E}).(\bar{A}E))))).(\bar{B}((\bar{A}\bar{E}).(\bar{C}E))) + (B\bar{B})].(\bar{A}(\bar{D}\bar{A}))$$

$$= (C(C.(B((\bar{A}\bar{E}).(\bar{A}E))))).(\bar{B}((\bar{A}\bar{E}).(\bar{C}E))))].(\bar{A}(\bar{D}\bar{A}))$$

2 — Second way to simplify and draw G circuit

$$G = ABC\bar{E} + \bar{A}\bar{B}\bar{E} + \bar{B}\bar{C}E + \bar{A}BCE + A\bar{D}$$

$$= ABC\bar{E} + \bar{A}\bar{B}\bar{E} + \bar{B}\bar{C}E + \bar{A}BCE + A\bar{D}(B + \bar{B})$$

$$= ABC\bar{E} + \bar{A}\bar{B}\bar{E} + \bar{B}\bar{C}E + \bar{A}BCE + A\bar{D}B + A\bar{D}\bar{B}$$

$$= A\bar{D}\bar{B} + \bar{A}\bar{B}\bar{E} + \bar{B}\bar{C}E + \bar{A}BCE + A\bar{D}B + ABC\bar{E}$$

$$= \bar{B}(\bar{A}\bar{E} + \bar{C}E + A\bar{D}) + B(AC\bar{E} + \bar{A}CE + A\bar{D})$$

$$= \bar{B}(\bar{A}\bar{E} + \bar{C}E(A + \bar{A}) + A\bar{D}) + B(AC\bar{E} + \bar{A}CE + A\bar{D})$$

$$= \bar{B}(\bar{A}\bar{E} + \bar{C}EA + \bar{C}E\bar{A} + A\bar{D}) + B(C(A\bar{E} + \bar{A}E) + A\bar{D})$$

$$= \bar{B}(\bar{A}\bar{E} + \bar{C}E\bar{A} + \bar{C}E\bar{A} + A\bar{D}) + B(C(A\bar{E} + \bar{A}E) + A\bar{D})$$

$$= \bar{B}(\bar{A}(\bar{E} + \bar{C}E) + A(\bar{C}E + \bar{D})) + B(C(\bar{A}\bar{E} + \bar{A}E) + A\bar{D})$$

$$= \bar{B}(\bar{A}(\bar{E}, \bar{C}\bar{E}) + A(\bar{C}\bar{E}, \bar{D})) + B(C(\bar{A}\bar{E}, \bar{A}\bar{E}) + A\bar{D})$$

$$= \bar{B}(\bar{A}(\bar{E}, \bar{C}\bar{E}) - \bar{A}(\bar{C}\bar{E}, \bar{D})) + B(\bar{C}(\bar{A}\bar{E}, \bar{A}\bar{E}) - \bar{A}\bar{D})$$

$$= \bar{B}(\bar{A}(\bar{E}, \bar{C}\bar{E}) - \bar{A}(\bar{C}\bar{E}, \bar{D})) - \bar{B}(\bar{C}(\bar{A}\bar{E}, \bar{A}\bar{E}) - \bar{A}\bar{D})$$

$$K = \bar{x}\bar{y}b + \bar{x}y\bar{b} + x\bar{y}\bar{b} + xyb$$

$$= \bar{x}\bar{y}b + x\bar{y}\bar{b} + \bar{x}y\bar{b} + xyb$$

$$= \bar{y}(\bar{x}b + x\bar{b}) + y(\bar{x}\bar{b} + xb)$$

$$= \overline{(\bar{y}(\overline{(\bar{x}b)}.\overline{(\bar{x}\bar{b})})}.\overline{(\bar{y}(\overline{(\bar{x}\bar{b})}.\overline{(\bar{x}b)}))}$$
(3)

