Post-Session Notes: Revision – Results and Visualization

1. Project Overview and Dataset Description

- The session continued work on a synthetic healthcare dataset containing 11 features inspired by real-world smart healthcare use cases.
- The dataset was shared via Google Colab, and students could either download it or use it directly.
- About 1% of the data had missing values, making data cleaning a crucial first step.

2. Data Cleaning and Handling Missing Values

- Categorical features: Missing values were imputed using the mode.
- Numerical features: Missing values handled using mean or median, depending on the distribution.
- This phase ensured that downstream machine learning models had a clean and consistent dataset to work with.

- Techniques used:
 - Count plots for categorical data (e.g., gender).
 - Box plots for numerical variables (e.g., daily calorie intake).
- Outlier detection and distribution shapes (e.g., normal, skewed,
 Poisson) were examined to understand data characteristics.

- Bivariate analysis:
 - Boxplots comparing calorie intake across physical activity levels.
 - Showed no significant variation in calorie intake by activity type.
- Multivariate analysis:
 - Scatter plots: Stress level vs sleep quality showed a negative correlation.
 - Added third variable using hue for mood (happy, neutral, sad) to extract richer insights.
 - Pair plots helped visualize interrelationships between multiple numerical variables such as stress, sleep hours, and mood.

5. Interpreting Statistical Tests and Model Fit Focus was on interpreting model results beyond accuracy. Emphasis on:

- Class balance and the support values for each class.
 - Understanding misleading metrics when dealing with imbalanced data.
- Encouraged viewing metrics in context rather than relying on a single value.

in 6. Support Vector Machine (SVM) Kernels and Model Experimentation

- Models tested:
 - Linear Regression: For continuous target variables.
 - Logistic Regression: For categorical target variables.
 - SVMs with various kernels for classification.
- Kernels explored:
 - RBF (Radial Basis Function)
 - Linear
 - Polynomial (degree 3)

- Sigmoid
- Key insights:
 - Accuracy was generally low (26–41%).
 - Surprisingly, Linear kernel sometimes outperformed RBF.
 - Sigmoid kernel struggled due to multi-class nature of the dataset.
 - Use of class_weight='balanced' had limited improvement, highlighting that kernel choice alone doesn't solve all problems.

7. Importance of Handling Imbalanced Data

- The dataset had class imbalance issues that led to misleadingly high accuracy for the majority class.
- Techniques used:
 - Adjusted class weights during model training.
 - Checked support values to verify if the model was learning minority classes.
- Conclusion: Handling imbalance is essential for building fair and generalizable models.

•	Visualization was positioned not just as a result-presentation tool but as a thinking tool for:
	o Hypothesis generation
	o Identifying trends
	 Spotting data issues (e.g., skewness, outliers)
•	Tools used:
	 Matplotlib
	 Seaborn (sns): For box plots, KDEs, heatmaps, and pair plots.
•	Introduced KDE (Kernel Density Estimation) as a smooth alternative to histograms for distribution visualization.
9.	Correlation Analysis Using Heatmaps
•	Used heatmaps to visualize relationships between numerical features.
•	Strong correlation (~0.86) between daily steps and calorie intake was observed.
•	Most other features showed weak or no significant correlations.
•	Heatmaps provide a quick overview of feature interactions, valuable for feature selection and modeling strategies.

10. Key Takeaways on Model Selection and Data Visualization

- Don't blindly trust accuracy always assess context, class balance, and metric interpretation.
- Visualize early and often start with univariate, move to bivariate, and then explore multivariate relationships.
- Simple models often perform better when the data is not complex or when well-understood.
- Use class balancing techniques when working with imbalanced datasets to prevent misleading outcomes.
- Visualization helps build intuition and supports more informed modeling choices.

Next Steps and Looking Ahead

- The project will evolve into more advanced modeling, including neural networks and deep learning.
- Future sessions will:
 - Introduce new evaluation metrics.
 - Focus on model explainability and interpretability.
 - Emphasize real-world challenges in healthcare-related ML systems.

Closing Thoughts

This session highlighted the importance of data-driven thinking, model experimentation, and visual interpretation over simply chasing higher accuracy. As we move toward deeper models, this foundational approach will ensure robust and insightful data science workflows.