Bancos (Bases) de Dados

Aula #7 – Álgebra Relacional Cálculo Relacional

Prof. Eduardo R. Hruschka

* Slides baseados no material elaborado pelas professoras:

Cristina D. A. Ciferri

Elaine P. M. de Souza

Álgebra Relacional

- Fornece um conjunto básico de operações que permitem ao usuário especificar solicitações de recuperações (novas relações);
 - Fundamento formal para operações realizadas no modelo relacional;
 - Base para implementar e otimizar consultas em SGBDs;
 - □ Alguns de seus conceitos são incorporados na linguagem de consulta padrão SQL.

Álgebra Relacional

- Maneira teórica de se manipular um BD relacional;
- Linguagem de consulta procedural:
 - usuários especificam os dados necessários e como obtê-los;
- Consiste de um conjunto de operações:
 - entrada: uma ou duas relações;
 - □ <u>saída</u>: uma nova relação resultado.

Operações

- Fundamentais:
 - □ Seleção;
 - Projeção;
 - Produto cartesiano;
 - Renomear;
 - União;
 - Diferença de conjuntos.

- Adicionais:
 - □ Intersecção de conjuntos;
 - Junção natural;
 - Divisão;
 - Atribuição;

- Podem ser geradas a partir das operações fundamentais;
- Facilitam a construção de consultas.

Classificação das Operações

- Unárias:
 - Seleção;
 - Projeção;
 - Renomear.

operam sobre uma única relação

- Binárias:
 - Produto cartesiano;
 - União;
 - □ Diferença de conjuntos;
 - □ Intersecção de conjuntos;
 - Junção natural;
 - Divisão.

operam sobre duas relações

Relações

Consideremos os seguintes esquemas de relações:

```
cliente (nro_cli, nome_cli, end_cli, saldo, cod_vend)

vendedor (cod_vend, nome_vend)

pedido (nro_ped, data, nro_cli)

pedido_peça (nro_ped, nro_peça)

peça (nro_peça, descrição_peça)
```

Seleção

 Seleciona tuplas da relação argumento que satisfaçam à condição de seleção;

σ_{condição_seleção} (relação argumento)

- pode envolver operadores de comparação (=, <, >, ≤, ≥, ≠);
- pode combinar condições usando-se ∧, ∨, ¬.

- relação;
- resultado de alguma operação de álgebra relacional.

Relação Cliente

cliente (nro_cli, nome_cli, end_cli, saldo, cod_vend)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

Liste toda a informação da relação Cliente referente ao cliente de número 4.

$$\sigma_{\text{nro_cli} = 4}$$
 (cliente)

Relação resultado:

nro_cli	nome_cli	end_cli	saldo	cod_vend
4	Rodrigo	Rua X	137,00	2

grau: mesmo grau da relação argumento.

número de tuplas: menor ou igual ao número de tuplas da relação argumento.

Liste toda a informação da relação Cliente para clientes que possuam saldo devedor inferior a R\$ 200,00 e que morem na Rua X.

Relação resultado:

•	nro_cli	nome_cli	end_cli	saldo	cod_vend
	1	Márcia	Rua X	100,00	1
	4	Rodrigo	Rua X	137,00	2

grau: mesmo grau da relação argumento.

número de tuplas: menor ou igual ao número de tuplas da relação argumento.

- Seleção $\sigma_{(condição)}R$
 - <u>resultado</u>: subconjunto das tuplas de R que satisfazem à condição de seleção <*condição*>
 - condição de seleção: sempre é uma operação de comparação (=, >, <, etc) de um atributo da relação com:
 - uma constante;
 - com outro atributo da própria relação ⇒ comparação de valores de dois atributos da mesma tupla.

- Seleção ⇒ particionamento horizontal:
 - escolha de algumas "linhas" da tabela.

- Operador Seleção é Comutativo
 - $\sigma_{\text{(condição A)}}(\sigma_{\text{(condição B)}}) = \sigma_{\text{(condição B)}}(\sigma_{\text{(condição A)}})$
- Uma sequência de seleções pode ser executada em qualquer ordem, ou pode ser transformada numa única seleção
 - $\sigma_{(condição\ 1)}(\sigma_{(condição\ 2)}(...(\sigma_{(condição\ n)}(R))))$
 - $\sigma_{\text{(condição 1) AND (condição 2) AND ... (condição n)}}(R)$

- Operador Seleção:
 - aplicado a cada tupla;
 - (grau de $\sigma_{\text{(condição)}}(R)$) = (grau de R);
 - $|\sigma_{\text{(condição)}}(R)| \le |R|$;
 - seletividade da condição de seleção: fração de tuplas selecionadas.

Projeção

Produz uma nova relação contendo um "subconjunto vertical" da relação argumento, sem "duplicações":

$\pi_{\text{lista_atributos}}$ (relação argumento)

- lista de atributos;
- os atributos são separados por vírgula.

- relação;
- resultado de alguma operação da álgebra relacional.

Liste o número e o nome de todos os clientes.

π nro_cli, nome_cli (cliente)

Relação resultado:

grau: número de atributos listados em lista_atributos.

nro_cli	nome_cli
1	Márcia
2	Cristina
3	Manoel
4	Rodrigo

número de tuplas: menor ou igual ao número de tuplas da relação argumento.

Liste o *número* e o *nome* de todos os clientes que possuam saldo devedor inferior a 200,00 reais e morem na Rua X.

Passos:

- Realizar uma operação de <u>seleção</u> para criar uma nova relação que contém somente aqueles clientes com o saldo e o endereço apropriados;
- Realizar uma <u>projeção</u> sobre a relação resultante do passo anterior, restringindo o resultado desejado às colunas indicadas.

Primeiro passo:

$$\sigma_{saldo_dev < 200,00 \land end_cli = "Rua X"}$$
 (cliente)

Segundo passo:

 $\pi_{\text{nro_cli, nome_cli}}$ (primeiro passo)

Listando o *número* e o *nome* de todos os clientes que possuam saldo inferior a R\$ 200,00 e que morem na Rua X de maneira mais compacta:

$$\pi_{\text{nro_cli, nome_cli}}$$
 ($\sigma_{\text{saldo_dev} < 200,00 \land \text{end_cli} = \text{"Rua X"}}$ (cliente))

- Projeção π_(atributos) R
 - <u>resultado</u>: relação que tem apenas os atributos indicados na lista de atributos.
 - <atributos>: subconjunto do conjunto de atributos da relação.

- O resultado de uma operação de projeção é uma relação ⇒ não devem existir tuplas repetidas;
 - Se <atributos> contém chave da relação ⇒ resultado não tem tuplas repetidas;
 - Se <atributos> não contém chave ⇒ possibilidade de tuplas repetidas.

eliminação de repetições

- Projeção ⇒ particionamento vertical:
 - escolha de algumas "Colunas" da tabela.

- Operador de Projeção:
 - não é Comutativo;
 - se < lista B > contém < lista A > , então vale a igualdade:
 - (grau de $\pi_{< lista>}(R)$) = |< lista>|
 - $|\pi_{\langle lista \rangle}(R)| \leq |R|$

Atribuição

- Funcionalidades:
 - Associa uma relação argumento a uma relação temporária;
 - □ Permite o uso da relação temporária em expressões subseqüentes.

relação temporária ← relação argumento

 resultado de alguma operação da álgebra relacional.

Liste o número e o nome de todos os clientes que possuam saldo inferior a R\$ 200,00 e que morem na Rua X.

$$\pi_{\text{nro_cli, nome_cli}}$$
 ($\sigma_{\text{saldo_dev} < 200,00 ^ end_cli = "Rua X"}$ (cliente))

- Usando atribuição:
 - □ temp $\leftarrow \sigma_{\text{saldo dev} < 200,00 ^{\text{end cli}} = \text{"Rua X"}}$ (cliente)
 - $\square \pi_{\text{nro cli, nome cli}}$ (temp)

Atribuição

- Características adicionais:
 - permite renomear os atributos de relações intermediárias e final. Exemplo:
 - \square R(código, nome) $\leftarrow \pi_{\text{nro cli, nome cli}}$ (temp)
- Observações:
 - □ não adiciona poder à álgebra relacional;
 - geralmente utilizada para expressar consultas complexas.

Renomear

- Alterar nomes de relações e/ou atributos:
 - Nome da relação;
 - Nomes dos atributos da relação;
 - □ Nome da relação e nomes dos atributos.

Renomear

Exemplos:

- □ cliente (<u>nro_cli</u>, nome_cli, end_cli, saldo, cod_vend)
- \Box $\rho_{comprador}$ (cliente);
- □ ρ_{comprador (código, nome, rua, saldo, vendedor)} (cliente).

Produto Cartesiano

- Combina tuplas de duas relações (quaisquer);
- Tuplas da relação resultante:
 - todas as combinações de tuplas possíveis entre as relações participantes.

relação argumento 1 × relação argumento 2

Relações Cliente e Vendedor:

cliente (nro_cli, nome_cli, end_cli, saldo, cod_vend)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

vendedor (cod_vend, nome_vend)

cod_vend	nome_vend	
1	Adriana	
2	Roberto	

Cliente × Vendedor

nro_cli	nome_cli	end_cli	saldo	cliente. cod_vend	vendedor.co d_vend	nome_vend
1	Márcia	Rua X	100,00	1	1	Adriana
1	Márcia	Rua X	100,00	1	2	Roberto
2	Cristina	Avenida 1	10,00	1	1	Adriana
2	Cristina	Avenida 1	10,00	1	2	Roberto
3	Manoel	Avenida 3	234,00	1	1	Adriana
3	Manoel	Avenida 3	234,00	1	2	Roberto
4	Rodrigo	Rua X	137,00	2	1	Adriana
4	Rodrigo	Rua X	137,00	2	2	Roberto

grau: número de atributos de cliente + número de atributos de vendedor.

número de tuplas: número de tuplas de cliente * número de tuplas de vendedor.

Exercício:

- Considere as seguintes relações:
 - usuário (cliente_nome, gerente_nome);
 - cliente (cliente_nome, rua, cidade).

cliente_nome	gerente_nome
Márcia	Manoel
Rodrigo	Maria

cliente_nome	rua	cidade
Márcia	Rua X	Itambé
Rodrigo	Rua X	Maringá

Liste o nome de todos os usuários atendidos pelo gerente Manoel, assim como as cidades nas quais eles vivem.

- Primeiro passo:
 - Determinar quem são os usuários atendidos pelo gerente Manoel

$$temp_1 \leftarrow \pi_{cliente_nome} (\sigma_{gerente_nome = "Manoel"} (usuário))$$

□ Relação resultado temp₁:

cliente_nome

Márcia

- Segundo passo:
 - Realizar o produto cartesiano das relações: $temp_2 \leftarrow temp_1 \times cliente$
 - □ relação resultado temp₂:

temp ₁ . cliente_nome	cliente. cliente_nome	rua	cidade
Márcia	Márcia	Rua X	Itambé
Márcia	Rodrigo	Rua X	Maringá

- Terceiro passo:
 - eliminar informações inconsistentes:

$$temp_3 \leftarrow \sigma_{temp1.cliente_nome = cliente.cliente_nome} (temp_2);$$

□ relação resultado temp₃:

temp ₁ . cliente_nome	cliente. cliente_nome	rua	cidade
Márcia	Márcia	Rua X	Itambé

- Quarto passo:
 - Exibir as informações solicitadas:

 $\pi_{temp1.cliente_nome, cidade}$ (temp3);

□ Relação resultado:

temp ₁ . cliente_nome	cidade
Márcia	Itambé

Exercício

■ Considere a relação cliente (<u>cliente_nome</u>, rua, cidade):

cliente_nome	rua	cidade
Márcia	Rua X	Itambé
Rodrigo	Rua X	Maringá
Cristina	Rua XTZ	Maringá
Sofia	Rua X	Maringá
Ricardo	Rua AAA	Itambé

Liste o nome dos clientes que moram na mesma *rua* e na mesma *cidade* de Rodrigo usando a operação "produto cartesiano".

- Primeiro passo:
 - Determinar o nome da rua e o nome da cidade na qual Rodrigo mora:

$$temp_1 \leftarrow \pi_{rua, cidade} (\sigma_{cliente_nome = "Rodrigo"} (cliente))$$

■ Relação resultado temp₁:

rua	cidade
Rua X	Maringá

Segundo passo:

- realizar o produto cartesiano das relações: $temp_2 \leftarrow temp_1 \times cliente;$

relação resultado temp₂:

temp ₁ .rua	temp ₁ .cidade	cliente_nome	cliente.rua	cliente.cidade
Rua X	Maringá	Márcia	Rua X	Itambé
Rua X	Maringá	Rodrigo	Rua X	Maringá
Rua X	Maringá	Cristina	Rua XTZ	Maringá
Rua X	Maringá	Sofia	Rua X	Maringá
Rua X	Maringá	Ricardo	Rua AAA	Itambé

Terceiro passo:

– eliminar informações indesejadas:

$$temp_3 \leftarrow \sigma_{cliente_nome \neq "Rodrigo"} (temp_2);$$

relação resultado temp₃:

temp ₁ .rua	temp ₁ .cidade	cliente_nome	cliente.rua	cliente.cidade
Rua X	Maringá	Márcia	Rua X	Itambé
Rua X	Maringá	Cristina	Rua XTZ	Maringá
Rua X	Maringá	Sofia	Rua X	Maringá
Rua X	Maringá	Ricardo	Rua AAA	Itambé

Quarto passo:

– exibir as informações solicitadas:

$$\pi_{\text{cliente_nome}} \left(\sigma_{\text{temp}_1.\text{rua} = \text{cliente.rua} \land \text{temp}_1.\text{cidade} = \text{cliente.cidade}} \left(\text{temp}_3 \right) \right)$$

relação resultado:

cliente_nome

Sofia

Junção Natural

- Concatena tuplas relacionadas de duas relações em tuplas únicas;
- Simplifica consultas que requerem produto cartesiano:
 - forma um produto cartesiano dos argumentos;
 - □ faz uma seleção forçando igualdade sobre os atributos que aparecem em ambos argumentos;
 - □ remove colunas duplicadas.

Junção

- Concatenação:
 - dos atributos comuns;
 - dos atributos especificados na condição de junção;

relação argumento 1 ⋈_{condição junção} relação argumento 2

Exercício: fazer a junção natural de cliente X vendedor.

Relações Cliente e Vendedor:

cliente (nro_cli, nome_cli, end_cli, saldo, cod_vend)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

vendedor (cod_vend, nome_vend)

cod_vend	nome_vend
1	Adriana
2	Roberto

Cliente M Vendedor

nro_cli	nome_cli	end_cli	saldo	cod_vend	nome_vend
1	Márcia	Rua X	100,00	1	Adriana
2	Cristina	Avenida 1	10,00	1	Adriana
3	Manoel	Avenida 3	234,00	1	Adriana
4	Rodrigo	Rua X	137,00	2	Roberto

grau: número de atributos diferentes de cliente e de vendedor + (número de atributos comuns)

número de tuplas: entre zero e (número de tuplas de cliente * número de tuplas de vendedor)

Junção

- Condição de junção:
 - □ <condição> ^ <condição> ^ ... ^ <condição>
- $\mathbf{A}_{i} \theta \mathbf{B}_{j}$
 - □ A_i: atributo da relação argumento 1
 - □ B_i: atributo da relação argumento 2
 - θ : $\{=, <, >, \le, \ge, \ne\}$: theta join. $\{=\}$: equijoin.

R

В	С
a	X
b	У
a	У
С	У

S

A	D
1	d
2	d
5	e

R MS

A	В	С	D
1	a	X	d
2	b	У	d

Interna:

□ somente as tuplas de R que têm tuplas correspondentes em S, e vice-versa, aparecem no resultado

R

S

R⊃⋈S

A	В	C
1	a	X
2	b	у
3	a	у
4	c	у

A	D
1	d
2	d
5	e

A	В	C	D
1	a	X	d
2	b	У	d
3	a	У	Null
4	С	У	Null

- Externa à esquerda
 - □ mantém cada tupla de R em R ⊃ S
 - preenche com valores nulos os atributos de S que não correspondem às tuplas em R

R

B

b

C	
X	

A D1 d

S

2 d
5 e

 $R \bowtie S$

A	В	C	D
1	a	X	d
2	b	y	d
5	Null	Null	e

- Externa à direita:
 - □ mantém cada tupla de S em R ⋈ S;
 - preenche com valores nulos os atributos de R que não correspondem às tuplas em S.

R

S

Н	IXI	<u> </u>
ll		\mathbf{O}

A	В	C
1	a	X
2	b	у
3	a	у
4	c	у

A	D
1	d
2	d
5	e

A	В	С	D
1	a	X	d
2	b	y	d
3	a	y	Null
4	С	y	Null
5	Null	Null	e

Externa completa:

- □ mantém as tuplas de R e S em R⊃x□S;
- preenche com valores nulos os atributos que não correspondem à coluna de junção.

Operações sobre Conjuntos

- Operações:
 - União;
 - □ Intersecção;
 - Diferença.
- Características:
 - atuam sobre relações compatíveis;
 - eliminam tuplas duplicadas da relação resultado.

Duas relações são compatíveis quando:

- possuem o mesmo grau;
- seus atributos correspondentes possuem os mesmos domínios.

União de Conjuntos

 Une duas relações R e S compatíveis em uma relação que contém todas as tuplas pertencentes a R, a S, ou a ambas (R e S):

relação argumento 1 ∪ relação argumento 2

Intersecção de Conjuntos

Une duas relações R e S compatíveis em uma relação que contém todas as tuplas pertencentes tanto a R quanto a S:

relação argumento 1 ∩ relação argumento 2

Diferença de Conjuntos

Une duas relações R e S compatíveis em uma relação que contém todas as tuplas pertencentes a R que não pertencem a S:

relação argumento 1 - relação argumento 2

Relações Cliente e Pedido

cliente (nro_cli, nome_cli, end_cli, saldo, cod_vend)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

pedido (nro_ped, data, nro_cliente)

nro_ped	data	nro_cliente
1	10/12/2004	1
2	11/12/2004	4

Consultas 5, 6 e 7

- Liste os números dos clientes que:
 - 5. ou têm pedido, ou foram atendidos pelo vendedor 2, ou ambos;
 - 6. têm pedido, e que foram atendidos pelo vendedor 2;
 - 7. têm pedido, mas não foram atendidos pelo vendedor 2.

Sub-Consultas

Liste os números dos clientes que têm pedido.

$$temp_1 \leftarrow \pi_{nro\ cliente}$$
 (pedido)

Liste os números dos clientes que foram atendidos pelo vendedor 2.

$$temp_2 \leftarrow \pi_{nro\ cliente} (\sigma_{cod\ vend=2} (cliente))$$

Liste os números dos clientes que ou têm pedido, ou foram atendidos pelo vendedor 2, ou ambos.

temp ₁	temp ₂		$temp_1 \cup temp_2$
nro_cliente	nro_cliente		nro_cliente
1	4		1
4		•	4

Liste os números dos clientes que têm pedido, e que foram atendidos pelo vendedor 2.

temp ₁	temp ₂	$temp_1 \cap temp_2$
nro_cliente	nro_cliente	nro_cliente
1	4	4
4		

Liste os números dos clientes que têm pedido, mas que não foram atendidos pelo vendedor 2.

temp ₁	temp ₂	temp ₁ - temp ₂
nro_cliente	nro_cliente	nro_cliente
1	4	1
4		

Exercício

Considere a relação conta (nro_conta, saldo):

nro_conta	saldo
01-010101-01	100,00
01-020202-02	200,00
01-030303-03	300,00
01-040404-04	400,00

Listar o maior saldo.

- Primeiro passo:
 - Realizar o produto cartesiano da relação conta com ela mesma:

$$temp_1 \leftarrow conta \times \rho_{conta2}(conta)$$

□ Relação resultado temp₁:

conta.nro_conta	conta.saldo	conta2.nro_conta	conta2.saldo
01-010101-01	100,00	01-010101-01	100,00
01-010101-01	100,00	01-020202-02	200,00
01-010101-01	100,00	01-030303-03	300,00
01-010101-01	100,00	01-040404-04	400,00
01-020202-02	200,00	01-010101-01	100,00
01-020202-02	200,00	01-020202-02	200,00
01-020202-02	200,00	01-030303-03	300,00
01-020202-02	200,00	01-040404-04	400,00
01-030303-03	300,00	01-010101-01	100,00
01-030303-03	300,00	01-020202-02	200,00
01-030303-03	300,00	01-030303-03	300,00
01-030303-03	300,00	01-040404-04	400,00
01-040404-04	400,00	01-010101-01	100,00
01-040404-04	400,00	01-020202-02	200,00
01-040404-04	400,00	01-030303-03	300,00
01-040404-04	400,00	01-040404-04	400,00

- Segundo passo:
 - □ listar os saldos que não são os mais altos:

$$temp_2 \leftarrow \pi_{conta.saldo} \left(\sigma_{conta.saldo < conta2.saldo} \left(temp_1 \right) \right)$$

□ relação resultado temp₂:

conta.saldo
100,00
200,00
300,00

- Terceiro passo:
 - □ listar todos os saldos da relação conta:

$$temp_3 \leftarrow \pi_{saldo}$$
 (conta)

□ relação resultado temp₃:

saldo
100,00
200,00
300,00
400,00

- Quarto passo:
 - □ Fazer a diferença entre "todos os saldos da relação conta" e "os saldos que não são os mais altos": temp₃ temp₂
 - Relação resultado:

Divisão

- Divisão de duas relações R e S:
 - □ todos os valores de um atributo de R que fazem referência a todos os valores de um atributo de S;

relação argumento 1 ÷ relação argumento 2

Liste todos os pedidos que referenciam todas as peças listadas na relação peça:

pedido_peça

nro_ped	nro_peça
9	12
1	04
1	66
4	03
5	11
8	04
8	74

 $\pi_{nro_peça}(peça)$

nro_peça
66
04

pedido_peça ÷ peça

nro_pedido
1

divisão: utilizada para consultas que incluam o termo *para todos* ou *em todos*.

Exercícios:

- Considere os seguintes esquemas de relações:
 - empregado (cod_empregado, primeiro_nome_emp, último_nome_emp, data_niver_emp, end_emp, sexo_emp, salário_emp, cod_supervisor, nro_departamento)
 - departamento (nro_departamento, nome_depto, cod_gerente, data_início_gerente)
 - projeto (nro_projeto, nome_projeto, local_projeto, nro_departamento)
 - trabalha_para (cod_empregado, nro_projeto, horas_trabalhadas)
 - dependente (cod_empregado, nome_dependente, sexo_depte, data_niver_depte, parentesco)

Pede-se:

- 1. Liste as informações dos empregados que trabalham para o departamento 4 e que recebem salário maior do que R\$25.000,00 ou que trabalham para o departamento 5 e que recebem salário maior do que R\$30.000,00.
- 2. Liste o primeiro nome, o último nome e o salário dos empregados que trabalham para o departamento 4 e que recebem salário maior do que R\$25.000,00.
- 3. Liste o código dos empregados que trabalham para o departamento 5 ou que supervisionam um empregado que trabalha para o departamento 5.
- 4. Recupere, para cada empregado do sexo feminino, o seu nome completo e os nomes dos seus dependentes. Use a operação de produto cartesiano.
- 5. Recupere, para cada departamento, o seu nome e o nome completo de seu gerente.
- 6. Recupere o nome completo dos empregados que trabalham em todos os projetos no qual o empregado João Silva trabalha.
- 7. Recupere os nomes completos dos empregados que não têm dependentes.

Cálculo Relacional de Tupla

Uma consulta é expressa como:

```
{ t | P(t) }
```

- O conjunto de tuplas *t* tal que o predicado *P* é verdadeiro para *t*:
 - □ t[A]: valor da tupla *t* para o atributo A;
 - \Box t \in r: tupla t pertence à relação r.

Esquema Base

```
agência (<u>nome_agência</u>, cidade_agência, fundos)
cliente (<u>nome_cliente</u>, rua_cliente, cidade_cliente)
empréstimo (<u>número_empréstimo</u>, nome_agência, total)
devedor (<u>nome_cliente</u>, <u>número_empréstimo</u>)
conta (<u>número_conta</u>, nome_agência, saldo)
depositante (<u>nome_cliente</u>, <u>número_conta</u>)
```

- Liste as informações da relação *empréstimo* para os empréstimos com totais superiores a R\$ 1.200.
- Álgebra relacional:

```
\sigma_{\text{total} > 1200} (empréstimo)
```

```
\{ t \mid t \in \text{empr\'estimo} \land t[\text{total}] > 1200 \}
```

- Liste os números dos empréstimos para os empréstimos com totais superiores a R\$1.200.
- Álgebra relacional:

```
\pi_{\text{número\_empréstimo}} ( \sigma_{\text{total} > 1200} ( empréstimo ))
```

```
{ t \mid \exists s \in \text{empr\'estimo} (t[n\'umero\_empr\'estimo] 
 = s[n\'umero\_empr\'estimo] \land s[total] > 1200 )}
```

- Liste os nomes dos clientes que têm um empréstimo na agência Centro.
- Álgebra relacional:

```
\pi_{\text{nome\_cliente}}(\sigma_{\text{nome\_agencia} = \text{``Maring\'a Centro''}}(\text{devedor}))
```

```
{ t | ∃ s ∈ devedor ( t[nome_cliente] = s[nome_cliente] ∧
∃ u ∈ empréstimo (u[número_empréstimo] =
s[número_empréstimo] ∧
u[nome_agência] = "Centro" ))}
```

- Encontre todos os clientes que possuem uma conta, um empréstimo ou ambos.
- Álgebra relacional:

```
\pi_{\text{nome\_cliente}} (depositante) \cup \pi_{\text{nome\_cliente}} (devedor)
```

```
{ t | ∃ s ∈ depositante ( t[nome_cliente] = s[nome_cliente] ) ∨ 
∃ u ∈ devedor ( t[nome_cliente] = u[nome_cliente] )}
```

- Encontre todos os clientes que possuem uma conta e um empréstimo.
- Álgebra relacional:

```
\pi_{\text{nome\_cliente}} (depositante) \cap \pi_{\text{nome\_cliente}} (devedor)
```

```
{ t | ∃ s ∈ depositante ( t[nome_cliente] = s[nome_cliente] ) ∧ 
∃ u ∈ devedor ( t[nome_cliente] = u[nome_cliente] )}
```

- Encontre todos os clientes que possuem contas, mas não possuem empréstimos.
- Álgebra relacional:

```
\pi_{\text{nome\_cliente}} (depositante) – \pi_{\text{nome\_cliente}} (devedor)
```

```
{ t \mid \exists s \in depositante (t[nome\_cliente] = s[nome\_cliente]) \land \\ \neg \exists u \in devedor (t[nome\_cliente] = u[nome\_cliente])}
```

Definição Formal

Expressão em cálculo relacional de tupla:

```
\{ t \mid P(t) \}
```

- sendo que P é uma fórmula.
- Variáveis tuplas:
 - □ variável livre: não quantificada por ∃ ou ∀;
 - \square variável limite: quantificada por ou \exists ou \forall .

Fórmula

- Construída por meio de átomos;
- Formas de um átomo:
 - \square $S \in \Gamma$
 - s: variável tupla
 - r: uma relação
 - \Box s[x] Θ u[y] e/ou s[x] Θ c
 - s, u: variáveis tuplas
 - x: atributo no qual s é definido;
 - y: atributo no qual u é definido
 - c: constante
 - $\Theta = (<, \le, >, \ge, =, <>)$

Uso de Átomos nas Fórmulas

- Regras
 - um átomo é uma fórmula
 - □ se P_1 é uma fórmula então ¬ P_1 e (P_1) são fórmulas
 - □ se P_1 e P_2 são fórmulas então $P_1 \lor P_2$, $P_1 \land P_2$, $P_1 \Rightarrow P_2$ são fórmulas
 - se P₁(s) é uma fórmula contendo uma variável tupla livre s e r é uma relação
 - então $\exists s \in r(P_1(s)) e \ \forall s \in r(P_1(s)) são fórmulas$