Teoria de la Computació

Tema 2: Autòmats Finits

Teoria:

- R. Cases i L. Márquez "Teoria de la computació. Llenguatges regulars i incotextuals": Capítols 4 i 5 (Llibre TC (llenguatges regulars i incontextuals)).
- M. Sipser, "Introduction to the Theory of Computation": Section 1.1 Finite Automata, Section 1.2 Nondeterminism. No conté una secció explícita per a la Minimització d'Autòmats, només Problems 1.51 i 1.52.
- Vídeos del 4 al 13

Exercicis per a l'avaluació contínua:

ACLARIMENT: Quan diem "calcula explícitamente", volem dir calculeu l'autòmat aplicant l'algorisme pertinent (intersecció d'autòmats, reunió d'autòmats, ...) explicant la costrucció de l'autòmat (intersecció, reunió,) i si cal l'algorisme de determinització i l'algorisme de minimització.

- 1. Obtén los DFA's mínimos A_1, A_2 para $L_1 = \{xaay \mid x, y \in \{a, b\}^*\}$ y $L_2 = \{xbby \mid x, y \in \{a, b\}^*\}$, respectivamente, y calcula explícitamente el DFA intersección $A_1 \cap A_2$, determinízalo y minimízalo.
- 2. Obtén los DFA's mínimos A_1, A_2 para $L_1 = \{xaay \mid x, y \in \{a, b\}^*\}$ y $L_2 = \{xbby \mid x, y \in \{a, b\}^*\}$, respectivamente, y calcula explícitamente el DFA unión $A_1 \cup A_2$, determinízalo y minimízalo.
- 3. Obtén los DFA's mínimos A_1, A_2 para $L_1 = \{xay \mid x, y \in \{a, b\}^*\}$ y $L_2 = \{xbbby \mid x, y \in \{a, b\}^*\}$, respectivamente, y calcula explícitamente el DFA unión $A_1 \cup A_2$, determinízalo y minimízalo.
- 4. Obtén el DFA mínimo A para $L = \{aaw \mid w \in \{a,b\}^*\}$, y calcula explícitamente \overline{A} .
- 5. Obtén el DFA mínimo A para $L = \{w \in \{0,1\}^* \mid \mathtt{valor}_2(w) \in \dot{3}\}$, y calcula explícitamente \overline{A} .
- 6. Obtén el DFA mínimo A para $L = \{w \in \{0,1\}^* \mid |w| \in \dot{3}+1\}$, y calcula explícitamente \overline{A} .
- 7. Obtén los DFA's mínimos A_1, A_2 para $L_1 = \{xaya \mid x, y \in \{a, b\}^*\}$ y $L_2 = \{bxby \mid x, y \in \{a, b\}^*\}$, respectivamente, y calcula explícitamente el λ -NFA concatenación $A_1 \cdot A_2$, determinízalo y minimízalo.
- 8. Obtén los DFA's mínimos A_1, A_2 para $L_1 = \{xaay \mid x, y \in \{a, b\}^*\}$ y $L_2 = \{bxb \mid x \in \{a, b\}^*\}$, respectivamente, y calcula explícitamente el NFA concatenación $A_1 \cdot A_2$, determinízalo y minimízalo.

- 9. Obtén los DFA's mínimos A_1, A_2 para $L_1 = \{xaya \mid x, y \in \{a, b\}^*\}$ y $L_2 = \{bxb \mid x \in \{a, b\}^*\}$, respectivamente, y calcula explícitamente el NFA concatenación $A_1 \cdot A_2$, determinízalo y minimízalo.
- 10. Obtén el DFA mínimo A para $L = \{xay \in \{a,b\}^* \mid |y| = 1\}$, y calcula explícitamente el NFA estrella A^* , determinízalo y minimízalo.
- 11. Obtén el DFA mínimo A para $L = \{xaby \in \{a,b\}^* \mid |y| = 1\}$, y calcula explícitamente el NFA estrella A^* , determinízalo y minimízalo.
- 12. Obtén el DFA mínimo A para $L = \{axaby \in \{a,b\}^* \mid |y| = 1\}$, y calcula explícitamente el NFA estrella A^* , determinízalo y minimízalo.
- 13. Obtén el DFA mínimo A para $L = \{w \in \{a,b\}^* \mid \forall w_1, w_2(w = w_1 a w_2 \Rightarrow |w_1|_b \in \dot{2})\}$, y calcula explícitamente el NFA reverso A^R , determinízalo y minimízalo.
- 14. Obtén el DFA mínimo A para $L = \{w \in \{a,b\}^* \mid \forall w_1, w_2 (w = w_1 a w_2 \Rightarrow |w_1|_b \in \dot{2} + 1)\}$, y calcula explícitamente el NFA reverso A^R , determinízalo y minimízalo.
- 15. Obtén el DFA mínimo A para $L = \{w \in \{a, b\}^* \mid \forall w_1, w_2(w = w_1 a w_2 \Rightarrow |w_1| \in \dot{2})\}$, y calcula explícitamente el NFA reverso A^R , determinízalo y minimízalo.
- 16. Obtén el DFA mínimo A para $L = \{axbya \mid x, y \in \{a, b\}^*\}$, y dado el morfismo definido por $\sigma(a) = aa$, $\sigma(b) = ba$, calcula explícitamente el NFA imagen $\sigma(A)$, determinízalo y minimízalo.
- 17. Obtén el DFA mínimo A para $L = \{axbyc \mid x, y \in \{a, b, c\}^*\}$, y dado el morfismo definido por $\sigma(a) = ab$, $\sigma(b) = b$, $\sigma(c) = \lambda$, calcula explícitamente el NFA imagen $\sigma(A)$, determinízalo y minimízalo.
- 18. Obtén el DFA mínimo A para $L = \{xbcya \mid x, y \in \{a, b, c\}^*\}$, y dado el morfismo definido por $\sigma(a) = bbb$, $\sigma(b) = a$, $\sigma(c) = \lambda$, calcula explícitamente el NFA imagen $\sigma(A)$, determinízalo y minimízalo.
- 19. Sea A el DFA mínimo que reconoce a los números binarios múltiples de 3. Calcula $\sigma^{-1}(A)$ tomando como σ los morfismos:
 - (a) $\sigma(a) = 01$, $\sigma(b) = 0$, $\sigma(c) = \lambda$.
 - (b) $\sigma(a) = 10, \ \sigma(b) = 0, \ \sigma(c) = \lambda.$
 - (c) $\sigma(a) = 00, \ \sigma(b) = 11, \ \sigma(c) = \lambda.$
 - (d) $\sigma(a) = 001$, $\sigma(b) = 101$, $\sigma(c) = 0$.
- Diseña un algoritmo de coste razonable para encontrar los estados no accesibles de un DFA de entrada.
- 21. Diseña un algoritmo de coste razonable para decidir si un DFA de entrada acepta alguna palabra.
- 22. Diseña un algoritmo de coste razonable para decidir si un DFA de entrada acepta infinitas palabras.

- 23. Cuál es el coste del algoritmo de determinización de NFA's en DFA's.
- 24. Cuál es el coste temporal de las siguentes operaciones de DFA's:
 - (a) intersección.
 - (b) unión.
 - (c) complementario.
 - (d) concatenación (incluyendo determinización).
 - (e) estrella (incluyendo determinización).
 - (f) reverso (incluyendo determinización).
 - (g) aplicación de morfismo (incluyendo determinización).
 - (h) aplicación de morfismo inverso.
- 25. Cuál es el coste del algoritmo de minimización con una implementación razonable.
- Propón un algoritmo de coste razonable para saber si dos DFA's de entrada reconocen el mismo lenguaje.
- 27. Propón un algoritmo de coste razonable para saber, si dados dos DFA's de entrada, el lenguaje generado por el primero está incluido en el lenguaje generado por el segundo.
- 28. Justifiqueu la veracitat o falsetat de les següents afirmacions per a DFAs mínims A, A_1, A_2 , NFAs B, B_1, B_2, B_3 i morfisme σ . En cas que les operacions que apareixen hagin estat definides només per a DFAs, assumiu la seva extensió natural a NFAs.
 - (a) $A_1 \cap A_2$ és DFA mínim.
 - (b) $A_1 \cup A_2$ és DFA mínim.
 - (c) \bar{A} és DFA mínim.
 - (d) $\sigma(A)$ és DFA.
 - (e) $\sigma^{-1}(A)$ és DFA mínim.
 - (f) $\bar{A} = A$.
 - (g) $(B^R)^R = B$.
 - (h) $(B^*)^* = B^*$.
 - (i) $(B_1B_2)B_3 = B_1(B_2B_3)$.
 - (j) $(B_1B_2)^R = B_2^R B_1^R$.
 - (k) $(B^R)^* = (B^*)^R$.
 - (1) En el cas en que A^R també sigui DFA, llavors podem concloure que és mínim.
- 29. Decimos que un NFA es de aceptación única si para cada palabra aceptada existe una única ejecución aceptadora. Demuestra que, para un NFA de aceptación única A, A^R es un NFA de aceptación única.

- 30. Dado un lenguaje L, definimos $\operatorname{Prefijos}(L)$ como el lenguaje $\{w | \exists x : (wx \in L)\}$. Dado un DFA A, cómo se puede construir un DFA $\operatorname{Prefijos}(A)$ que cumpla $\mathcal{L}(\operatorname{Prefijos}(A)) = \operatorname{Prefijos}(\mathcal{L}(A))$.
- 31. Dado un lenguaje L, definimos Sufijos(L) como el lenguaje $\{w | \exists x : (xw \in L)\}$. Dado un DFA A, cómo se puede construir un DFA Sufijos(A) que cumpla $\mathcal{L}(Sufijos(A)) = Sufijos(\mathcal{L}(A))$.
- 32. Donats dos llenguatges $L_1, L_2 \subseteq \Sigma^*$, definim
 $$\begin{split} & \text{intercalAND}(L_1, L_2) = \{x_1y_1...x_ny_n | (n \geq 1) \, \wedge \, (x_1,...,x_n,y_1,...,y_n \in \Sigma) \, \wedge \, (x_1...x_n \in L_1) \, \wedge \, (y_1...y_n \in L_2) \} \\ & \text{Demostreu que si } L_1 \text{ i } L_2 \text{ són regulars, aleshores intercalAND}(L_1, L_2) \text{ també és regular.} \end{split}$$
- 33. Donat un llenguatge L, definim FirstHalf $(L) = \{x \mid \exists y : (|x| = |y| \land xy \in L)\}$. Demostreu que si L és regular, aleshores FirstHalf(L) és regular.
- 34. Dado un natural n definimos $L_n = \{w \in \{0,1\}^* | \exists k : (valor_2(w) = k \cdot 2^n)\}$. Justifica que cualquier L_n es regular. Cuantos estados tiene el DFA mínimo que reconoce L_n ?
- 35. Sigui $B_n = \{a^k \mid k \text{ \'es un m\'ultiple de } n\}$. Demostreu que per a cada $n \geq 1$, el llenguatge B_n és regular.
- 36. Sigui $C_n = \{x \in \{0,1\}^* | \text{valor}_2(x) \text{ és un múltiple de } n\}$. Demostreu que per a cada $n \ge 1$, el llenguatge C_n és regular.
- 37. Demostreu que el llenguatge $L_n = \{xay \mid x, y \in \{a, b\}^* \land |y| = n\}$, per a $n \ge 0$, té un DFA de 2^{n+1} estats.
- 38. Cuantos estados tiene el DFA mínimo que reconoce las palabras sobre $\{a, b, c\}$ que contienen al menos 100 ocurrencias de cada uno de estos tres símbolos.