

DeepSTL – From English Requirements to Signal Temporal Logic

Jie He, Ezio Bartocci, Dejan Ničković, Haris Isakovic, Radu Grosu

Cyber Physical Systems Group, TU Wien

AIT Austria Institute of Technology

April 13, 2022

Alice: Verification Engineer

I spent my whole PhD studying formal methods.

However, I am frustrated by the resistance of my colleagues to use formal methods in practice.

- Difficult to learn
- Hard to translate informal requirements into formal specifications!

Bob: Machine Learning Expert

Why?

That's True. But what does the specification look like?

Alice: Verification Engineer

Take **Signal Temporal Logic (STL)** as an example. It looks like this,

$$\varphi := x \sim u \mid \neg \varphi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \mathbf{U}_I \varphi_2 \mid \varphi_1 \mathbf{S}_I \varphi_2$$

like this,

$$(w,i) \models x \sim u \qquad \leftrightarrow \qquad w(x,i) \sim u$$

$$(w,i) \models \neg \varphi \qquad \leftrightarrow \qquad (w,i) \not\models \varphi$$

$$(w,i) \models \varphi_1 \lor \varphi_2 \qquad \leftrightarrow \qquad (w,i) \models \varphi_1 \text{ or } (w,i) \models \varphi_2$$

$$(w,i) \models \varphi_1 \mathbf{U}_I \varphi_2 \qquad \leftrightarrow \qquad \exists j \in (i+I) \cap \mathbb{T} : (w,j) \models \varphi_2$$

$$\text{and } \forall i < k < j, (w,k) \models \varphi_1$$

$$(w,i) \models \varphi_1 \mathbf{S}_I \varphi_2 \qquad \leftrightarrow \qquad \exists j \in (i-I) \cap \mathbb{T} : (w,j) \models \varphi_2$$

$$\text{and } \forall j < k < i, (w,k) \models \varphi_1$$

Bob: Machine Learning Expert

Alice: Verification Engineer

and this,

tautology true $= p \vee \neg p$ false = ¬true contradiction $\varphi_1 \wedge \varphi_2 = \neg(\neg \varphi_1 \vee \neg \varphi_2)$ disjunction implication $\varphi_1 \rightarrow \varphi_2 = \neg \varphi_1 \lor \varphi_2$ eventually, finally $F_I \varphi$ = true $U_I \varphi$ $\mathbf{G}_{I}\varphi$ = $\neg \mathbf{F}_{I}\neg \varphi$ $\mathbf{O}_{I}\varphi$ = $\mathbf{true} \mathbf{S}_{I} \varphi$ always, globally once $\mathbf{H}_{I}\varphi = \neg \mathbf{O}_{I} \neg \varphi$ historically $\mathbf{rise}(\varphi) = \varphi \land \neg \varphi \mathbf{S} \mathbf{true}$ rising edge falling edge $\mathbf{fall}(\varphi) = \neg \varphi \land \varphi \, \mathbf{S} \, \mathbf{true}$

Bob: Machine Learning Expert

A lot of math required!

I know why engineers are reluctant to use formal methods.

Alice: Verification Engineer

Yes. Traditional approaches require strict rules for the input languages. But they are very flexible in reality.

How?

Bob: Machine Learning Expert

Why not build a **translator** to directly translate English requirements into STL specifications?

Why not consider deep learning? Look at Google Translate, DeepL.

Highlights

- 1. Empirical analysis of STL requirements found in scientific literature and practical applications that can guide data generation.
- 2. Generate synthetic examples of STL requirements that are consistent with the empirically collected statistics.
- Employ a state-of-art machine translation architecture to train the translator, and evaluate its effectiveness of learning synthetic examples and its possibilities for extrapolation.

Translation results of DeepSTL (Real output)

Requirement 1:

Whenever V_Mot is detected to become equal to 0, then at a time point starting after at most 100 time units Spd_Act shall continuously remain on 0 for at least 20 time units.

STL Formula:

```
always ( rise ( V_Mot == 0 ) -> eventually [ 0 : 100 ] ( always [ 0 : 20 ] ( Spd_Act == 0 ) ) )
```

Requirement 2:

Whenever the value of signal WEb gets changed to 40, then eventually Sd should equal to 5 at a certain moment during the next 1287 time units, till then the value of signal S4 must keep greater than or equal to 2755 and no more than 2771 all the time.

STL Formula:

```
always ( rise ( WEb == 40 ) -> ( S4 >= 2755 and S4 <= 2771 ) until [ 0 : 1287 ] ( Sd == 5 ) )
```

Translation results of DeepSTL (Real output)

Requirement 3.1:

Whenever V_In is above 5, then there must exist a time point in the next 10 time units, at which the value of signal V_Out should be less than 2.

STL Formula:

```
always ( V_In > 5 -> eventually [ 0 : 10 ] ( V_Out < 2 ) )
```

Requirement 3.2:

Globally, if the value of V_In is greater than 5, then finally the value of V_Out should be smaller than 2 at a time point within 10 time units.

STL Formula:

```
always ( V_In > 5 -> eventually [ 0 : 10 ] ( V_Out < 2 ) )
```

Requirement 3.3:

It is always the case that when the signal V_In is larger than 5, then eventually at sometime during the following 10 time units the signal V_Out shall be smaller than 2.

STL Formula:

```
always ( V_In > 5 -> eventually [ 0 : 10 ] ( V_Out < 2 ) )
```

Step 1: Empirical Analysis

Empirical Statistics – STL Specifications

1. STL Template Distribution

ightharpoonup Invariance/Reachability: $\mathbf{G}\varphi$, $\mathbf{G}_{[a\ b]}\varphi$, $\mathbf{F}_{[a\ b]}\varphi$

Ex:
$$\mathbf{G}_{[\tau_s, T]}$$
 ($\mu < c_l$), $\mathbf{F}(x > 0.4)$

 \triangleright Immediate response: $\mathbf{G}(\varphi \to \psi)$

Ex:
$$G(\text{not_Eclipse} = 0 \rightarrow \text{sun_currents} = 0)$$

 \triangleright Temporal response: $\mathbf{G}(\varphi' \to \psi')$

Ex:
$$G(rise(gear_id = 1) \rightarrow G_{[0,2.5]} \neg fall(gear_id = 1))$$

 \triangleright Stabilization/Recurrence: **FG** φ , **GF** φ

Ex:
$$\mathbf{F}_{[0, 14400]}\mathbf{G}_{[4590, 9963]}$$
 ($x_{10} \ge 0.325$)
 $\mathbf{G}_{[0, 12]}(\mathbf{F}_{[0, 2]} \text{ regionA } \wedge \mathbf{F}_{[0, 2]} \text{ regionB})$

Empirical Statistics – STL Specifications

2. STL Operator Distribution

- \Box Equality (x = u):
 - Check if a discrete variable is in a given mode
- \square Conjunction ($\varphi_1 \land \varphi_2$):
 - Specify the value of a signal lying within a given range
- \square Implication ($\varphi_1 \rightarrow \varphi_2$):
 - Widely used in response specifications
- \square Rising edge (**rise**(φ)):
 - A condition starts holding is more frequently specified
- \Box **G** and **F** operator ($G_I \varphi$, $F_I \varphi$):
 - A majority of templates need to use them
- ☐ Future operator (**G**, **F**, **U**) vs. Past operator (**O**, **H**, **S**):
 - Most declarative specifications have a natural future flavor

Empirical Statistics – NL Requirements

1. English formulation of STL sentences

- Numeric (atomic) predicates
- Temporal operators (phrases)
- Specific scenarios (e.g., a rising/falling edge)

Sparsity and Imbalance

Example 1:

$x > \mu$	be above	increase above	be higher than	be larger than	be greater than	be bigger than	be more than	be over
Num.	4	2	1	1	1	0	0	0

Example 2:

$G_{[0,t]}/H_{[0,t]}$	for at least t time units	for more than t time units	for the following/past t time units	within t time units
Num.	8	6	0	0

Empirical Statistics – NL Requirements

2. Language Quality

- Clear (46 sentences, 35.4%)
 - Straightforward, unambiguous, without room for further interpretation
- ➤ Indirect (43 sentences, 33.1%)
 - Assume some implicit knowledge, need an expert for translation
- ➤ Ambiguous (41 sentences, 31.5%)
 - Vague, may have multiple interpretations
 - Lack key information from contexts
 - Rely on external sources, e.g., tables and figures

Step 2: Corpus Construction

1. Restricted STL Fragment

Simple Phrase (SP)

$$SP := \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha$$

$$\alpha := x \circ u \mid \neg(x \circ u) \mid \mathbf{rise} (x \circ u) \mid \mathbf{fall} (x \circ u) \mid$$

$$\neg \mathbf{rise} (x \circ u) \mid \neg \mathbf{fall} (x \circ u)$$

$$\circ \in \{<, \leq, =, \geq, >\}$$

1. Restricted STL Fragment

Simple Phrase (SP)

```
SP := \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha
\alpha := x \circ u \mid \neg(x \circ u) \mid \mathbf{rise} (x \circ u) \mid \mathbf{fall} (x \circ u) \mid
\neg \mathbf{rise} (x \circ u) \mid \neg \mathbf{fall} (x \circ u)
\circ \in \{<, \leq, =, \geq, >\}
```

Temporal Phrase (TP)

```
TP := TP' | \neg TP' | \mathbf{rise} \ TP' | \mathbf{fall} \ TP' | \neg \mathbf{rise} \ TP' | \neg \mathbf{fall} \ TP'
TP' := \mathbf{UTO}_I(\alpha) | (\alpha)\mathbf{BTO}_I(\alpha)
\mathbf{UTO} \in \{\mathbf{F}, \mathbf{G}, \mathbf{O}, \mathbf{H}\}, \ \mathbf{BTO} \in \{\mathbf{U}, \mathbf{S}\}, \ I \in \{t_1, t_2\}
```

1. Restricted STL Fragment

Simple Phrase (SP)

```
SP := \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha
\alpha := x \circ u \mid \neg(x \circ u) \mid \mathbf{rise} (x \circ u) \mid \mathbf{fall} (x \circ u) \mid
\neg \mathbf{rise} (x \circ u) \mid \neg \mathbf{fall} (x \circ u)
\circ \in \{<, \leq, =, \geq, >\}
```

Temporal Phrase (TP)

```
TP := TP' | \neg TP' | \mathbf{rise} \ TP' | \mathbf{fall} \ TP' | \neg \mathbf{rise} \ TP' | \neg \mathbf{fall} \ TP'
TP' := \mathbf{UTO}_I(\alpha) | (\alpha)\mathbf{BTO}_I(\alpha)
\mathbf{UTO} \in \{\mathbf{F}, \mathbf{G}, \mathbf{O}, \mathbf{H}\}, \ \mathbf{BTO} \in \{\mathbf{U}, \mathbf{S}\}, \ I \in \{t_1, t_2\}
```

Nested Temporal Phrase (NTP)

$$NTP := \mathbf{F}_I \mathbf{G}_I(\alpha) \mid \mathbf{G}_I \mathbf{F}_I(\alpha)$$

1. Restricted STL Fragment

Simple Phrase (SP)

$$SP := \alpha |\alpha \wedge \alpha| \alpha \vee \alpha$$

$$\alpha := x \circ u |\neg (x \circ u)| \text{ rise } (x \circ u)| \text{ fall } (x \circ u)|$$

$$\neg \text{rise } (x \circ u)| \neg \text{fall } (x \circ u)$$

$$\circ \in \{<, \leq, =, \geq, >\}$$

Temporal Phrase (TP)

$$TP := TP' | \neg TP' | \mathbf{rise} \ TP' | \mathbf{fall} \ TP' | \neg \mathbf{rise} \ TP' | \neg \mathbf{fall} \ TP'$$

$$TP' := \mathbf{UTO}_I(\alpha) | (\alpha)\mathbf{BTO}_I(\alpha)$$

$$\mathbf{UTO} \in \{\mathbf{F}, \mathbf{G}, \mathbf{O}, \mathbf{H}\}, \ \mathbf{BTO} \in \{\mathbf{U}, \mathbf{S}\}, \ I \in \{t_1, t_2\}$$

Nested Temporal Phrase (NTP)

$$NTP := \mathbf{F}_I \mathbf{G}_I(\alpha) \mid \mathbf{G}_I \mathbf{F}_I(\alpha)$$

$$P \coloneqq SP \mid TP$$

$$\psi \coloneqq \mathbf{G}_{I}(SP) \mid \mathbf{F}_{I}(SP) \text{ (Invariance/Reachability)}$$

$$\mid \mathbf{G}(SP \to SP) \text{ (Immediate response)}$$

$$\mid \mathbf{G}(P \to TP) \text{ (Temporal response)}$$

$$\mid \mathbf{G}(P \to NTP) \text{ (Stabilization/Recurrence)}$$

1. Restricted STL Fragment

Simple Phrase (SP)

$$SP := \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha$$

$$\alpha := x \circ u \mid \neg(x \circ u) \mid \mathbf{rise}(x \circ u) \mid \mathbf{fall}(x \circ u) \mid$$

$$\neg \mathbf{rise}(x \circ u) \mid \neg \mathbf{fall}(x \circ u)$$

$$\circ \in \{<, \leq, =, \geq, >\}$$

Temporal Phrase (TP)

```
TP \coloneqq TP' | \neg TP' | \mathbf{rise} \ TP' | \mathbf{fall} \ TP' | \neg \mathbf{rise} \ TP' | \neg \mathbf{fall} \ TP'
TP' \coloneqq \mathbf{UTO}_I(\alpha) | (\alpha)\mathbf{BTO}_I(\alpha)
\mathbf{UTO} \in \{\mathbf{F}, \mathbf{G}, \mathbf{O}, \mathbf{H}\}, \ \mathbf{BTO} \in \{\mathbf{U}, \mathbf{S}\}, \ I \in \{t_1, t_2\}
```

Nested Temporal Phrase (NTP)

$$NTP := \mathbf{F}_I \mathbf{G}_I(\alpha) \mid \mathbf{G}_I \mathbf{F}_I(\alpha)$$

$$P \coloneqq SP \mid TP$$

$$\psi \coloneqq \mathbf{G}_{I}(SP) \mid \mathbf{F}_{I}(SP) \text{ (Invariance/Reachability)}$$

$$\mid \mathbf{G}(SP \to SP) \text{ (Immediate response)}$$

$$\mid \mathbf{G}(P \to TP) \text{ (Temporal response)}$$

$$\mid \mathbf{G}(P \to NTP) \text{ (Stabilization/Recurrence)}$$

G (V_In
$$> 5 \rightarrow \mathbf{F}_{[0, 10]}$$
 (V_Out < 2))

1. Restricted STL Fragment

Simple Phrase (SP)

$$SP := \alpha |\alpha \wedge \alpha| \alpha \vee \alpha$$

$$\alpha := x \circ u |\neg (x \circ u)| \text{ rise } (x \circ u)| \text{ fall } (x \circ u)|$$

$$\neg \text{rise } (x \circ u)| \neg \text{fall } (x \circ u)$$

$$\circ \in \{<, \leq, =, \geq, >\}$$

Temporal Phrase (TP)

$$TP \coloneqq TP' | \neg TP' | \mathbf{rise} \ TP' | \mathbf{fall} \ TP' | \neg \mathbf{rise} \ TP' | \neg \mathbf{fall} \ TP'$$

$$TP' \coloneqq \mathbf{UTO}_I(\alpha) | (\alpha)\mathbf{BTO}_I(\alpha)$$

$$\mathbf{UTO} \in \{\mathbf{F}, \mathbf{G}, \mathbf{O}, \mathbf{H}\}, \ \mathbf{BTO} \in \{\mathbf{U}, \mathbf{S}\}, \ I \in \{t_1, t_2\}$$

Nested Temporal Phrase (NTP)

$$NTP := \mathbf{F}_I \mathbf{G}_I(\alpha) \mid \mathbf{G}_I \mathbf{F}_I(\alpha)$$

$$P \coloneqq SP \mid TP$$

$$\psi \coloneqq \mathbf{G}_{I}(SP) \mid \mathbf{F}_{I}(SP) \text{ (Invariance/Reachability)}$$

$$\mid \mathbf{G}(SP \to SP) \text{ (Immediate response)}$$

$$\mid \mathbf{G}(P \to TP) \text{ (Temporal response)}$$

$$\mid \mathbf{G}(P \to NTP) \text{ (Stabilization/Recurrence)}$$

G (V_In
$$> 5 \rightarrow \mathbf{F}_{[0, 10]}$$
 (V_Out < 2))

1. Restricted STL Fragment

Simple Phrase (SP)

$$SP := \alpha |\alpha \wedge \alpha| \alpha \vee \alpha$$

$$\alpha := x \circ u |\neg(x \circ u)| \text{ rise } (x \circ u)| \text{ fall } (x \circ u)|$$

$$\neg \text{rise } (x \circ u)| \neg \text{fall } (x \circ u)$$

$$\circ \in \{<, \leq, =, \geq, >\}$$

Temporal Phrase (TP)

```
TP := TP' | \neg TP' | rise TP' | fall TP' | \neg rise TP' | \neg fall TP'
TP' := UTO_I(\alpha) | (\alpha)BTO_I(\alpha)
UTO \in \{F, G, O, H\}, BTO \in \{U, S\}, I \in \{t_1, t_2\}
```

Nested Temporal Phrase (NTP)

$$NTP := \mathbf{F}_I \mathbf{G}_I(\alpha) \mid \mathbf{G}_I \mathbf{F}_I(\alpha)$$

$$P \coloneqq SP \mid TP$$

$$\psi \coloneqq \mathbf{G}_{I}(SP) \mid \mathbf{F}_{I}(SP) \text{ (Invariance/Reachability)}$$

$$\mid \mathbf{G}(SP \to SP) \text{ (Immediate response)}$$

$$\mid \mathbf{G}(P \to TP) \text{ (Temporal response)}$$

$$\mid \mathbf{G}(P \to NTP) \text{ (Stabilization/Recurrence)}$$

G (V_In
$$> 5 \rightarrow \mathbf{F}_{[0, 10]}$$
 (V_Out < 2))

1. Restricted STL Fragment

Simple Phrase (SP)

$$SP := \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha$$

$$\alpha := x \circ u \mid \neg(x \circ u) \mid \mathbf{rise} (x \circ u) \mid \mathbf{fall} (x \circ u) \mid$$

$$\neg \mathbf{rise} (x \circ u) \mid \neg \mathbf{fall} (x \circ u)$$

$$\circ \in \{<, \leq, =, \geq, >\}$$

Temporal Phrase (TP)

```
TP := TP' | \neg TP' | rise TP' | fall TP' | \neg rise TP' | \neg fall TP'
TP' := UTO_I(\alpha) | (\alpha)BTO_I(\alpha)
UTO \in \{F, G, O, H\}, BTO \in \{U, S\}, I \in \{t_1, t_2\}
```

Nested Temporal Phrase (NTP)

$$NTP := \mathbf{F}_I \mathbf{G}_I(\alpha) \mid \mathbf{G}_I \mathbf{F}_I(\alpha)$$

$$P \coloneqq SP \mid TP$$

$$\psi \coloneqq \mathbf{G}_{I}(SP) \mid \mathbf{F}_{I}(SP) \text{ (Invariance/Reachability)}$$

$$\mid \mathbf{G}(SP \to SP) \text{ (Immediate response)}$$

$$\mid \mathbf{G}(P \to TP) \text{ (Temporal response)}$$

$$\mid \mathbf{G}(P \to NTP) \text{ (Stabilization/Recurrence)}$$

G (V_In
$$> 5 \rightarrow \mathbf{F}_{[0, 10]}$$
 (V_Out < 2))

1. Restricted STL Fragment

Simple Phrase (SP)

$$SP := \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha$$

$$\alpha := x \circ u \mid \neg(x \circ u) \mid \mathbf{rise}(x \circ u) \mid \mathbf{fall}(x \circ u) \mid$$

$$\neg \mathbf{rise}(x \circ u) \mid \neg \mathbf{fall}(x \circ u)$$

$$\circ \in \{<, \leq, =, \geq, >\}$$

Temporal Phrase (TP)

```
TP := \frac{TP'}{\neg TP'} | \text{rise } TP'| \text{ fall } TP'| \neg \text{rise } TP'| \neg \text{fall } TP'
TP' := \frac{\textbf{UTO}_I(\alpha)}{(\alpha)} | (\alpha) \textbf{BTO}_I(\alpha)
\textbf{UTO} \in \{\textbf{F}, \textbf{G}, \textbf{O}, \textbf{H}\}, \ \textbf{BTO} \in \{\textbf{U}, \textbf{S}\}, \ I \in \{t_1, t_2\}
```

Nested Temporal Phrase (NTP)

$$NTP := \mathbf{F}_I \mathbf{G}_I(\alpha) \mid \mathbf{G}_I \mathbf{F}_I(\alpha)$$

$$P \coloneqq SP \mid TP$$

$$\psi \coloneqq \mathbf{G}_{I}(SP) \mid \mathbf{F}_{I}(SP) \text{ (Invariance/Reachability)}$$

$$\mid \mathbf{G}(SP \to SP) \text{ (Immediate response)}$$

$$\mid \mathbf{G}(P \to TP) \text{ (Temporal response)}$$

$$\mid \mathbf{G}(P \to NTP) \text{ (Stabilization/Recurrence)}$$

G (V_In
$$> 5 \rightarrow \mathbf{F}_{[0, 10]}$$
 (V_Out < 2))

1. Restricted STL Fragment

Simple Phrase (SP)

$$SP := \alpha |\alpha \wedge \alpha| \alpha \vee \alpha$$

$$\alpha := x \circ u |\neg (x \circ u)| \text{ rise } (x \circ u)| \text{ fall } (x \circ u)|$$

$$\neg \text{rise } (x \circ u)| \neg \text{fall } (x \circ u)$$

$$\circ \in \{<, \leq, =, \geq, >\}$$

Temporal Phrase (TP)

```
TP := TP' | \neg TP' | rise TP' | fall TP' | \neg rise TP' | \neg fall TP'
TP' := UTO_I(\alpha) | (\alpha)BTO_I(\alpha)
UTO \in \{F, G, O, H\}, BTO \in \{U, S\}, I \in \{t_1, t_2\}
```

Nested Temporal Phrase (NTP)

$$NTP := \mathbf{F}_I \mathbf{G}_I(\alpha) \mid \mathbf{G}_I \mathbf{F}_I(\alpha)$$

$$P \coloneqq SP \mid TP$$

$$\psi \coloneqq \mathbf{G}_{I}(SP) \mid \mathbf{F}_{I}(SP) \text{ (Invariance/Reachability)}$$

$$\mid \mathbf{G}(SP \to SP) \text{ (Immediate response)}$$

$$\mid \mathbf{G}(P \to TP) \text{ (Temporal response)}$$

$$\mid \mathbf{G}(P \to NTP) \text{ (Stabilization/Recurrence)}$$

G (V_In
$$> 5 \rightarrow \mathbf{F}_{[0, 10]}$$
 (V_Out < 2))

1. Restricted STL Fragment

Simple Phrase (SP)

$$SP := \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha$$

$$\alpha := x \circ u \mid \neg(x \circ u) \mid \mathbf{rise}(x \circ u) \mid \mathbf{fall}(x \circ u) \mid$$

$$\neg \mathbf{rise}(x \circ u) \mid \neg \mathbf{fall}(x \circ u)$$

$$\circ \in \{ <, \leq, =, \geq, > \}$$

Temporal Phrase (TP)

```
TP := TP' | \neg TP' | rise TP' | fall TP' | \neg rise TP' | \neg fall TP'
TP' := UTO_I(\alpha) | (\alpha)BTO_I(\alpha)
UTO \in \{F, G, O, H\}, BTO \in \{U, S\}, I \in \{t_1, t_2\}
```

Nested Temporal Phrase (NTP)

$$NTP := \mathbf{F}_I \mathbf{G}_I(\alpha) \mid \mathbf{G}_I \mathbf{F}_I(\alpha)$$

$$P \coloneqq SP \mid TP$$

$$\psi \coloneqq \mathbf{G}_{I}(SP) \mid \mathbf{F}_{I}(SP) \text{ (Invariance/Reachability)}$$

$$\mid \mathbf{G}(SP \to SP) \text{ (Immediate response)}$$

$$\mid \mathbf{G}(P \to TP) \text{ (Temporal response)}$$

$$\mid \mathbf{G}(P \to NTP) \text{ (Stabilization/Recurrence)}$$

G (V_In
$$> 5 \rightarrow \mathbf{F}_{[0, 10]}$$
 (V_Out < 2))

1. Restricted STL Fragment

- Not support complex grammar
- Not support ad-hoc templates in other group

2. Compare to empirical analysis

 $x \geq u$ $\mathbf{F}_{I}\varphi$ x > u25K 50K 25K 100K 125K $G_I \varphi$ x = u $\varphi_1 \mathbf{U}_I \varphi_2$ $\rightarrow \varphi_2$ $\mathbf{O}_{I} \varphi$ $\varphi_1 \vee \varphi_2$ $\mathbf{H}_{I}\varphi$ $\varphi_1 \wedge \varphi_2$ $\varphi_1 \mathbf{S}_I \varphi_2$

 $rise(\varphi) x \leq u$

 $\mathbf{fall}(\varphi)$

x < u

Empirical statistics

Generated Corpus

1. Translate atomic propositions

Generation information:

1. Translate atomic propositions

1. Translate atomic propositions

Example: $G (rise (In > 0) \rightarrow rise (Out > 0))$

Adverbial Information:

```
{'adverb': ['immediately'],
  'adv_phrase': ['at once']}
```

Predicate Commands:

```
{'simple_future_tense': ['will'],
  'modal_verb': ['should'],
  'adverb': ['immediately']}
```

1. Translate atomic propositions

Generation information:

```
{'type': 'event',
  'index': [1, 1],
  'ingredient': ['Out', '0'],
  'expression': 'rise (Out > 0)'}
```

Raw Template:

Predicate Commands:

```
{'simple_future_tense': ['will'],
  'modal_verb': ['should'],
  'adverb': ['immediately']}
```

1. Translate atomic propositions

Example: G (rise (In > 0) \rightarrow rise (Out > 0))

Refined Subject:

- Out
- the value of Out

Refined Predicate:

- will increase above
- should increase above

- will become larger than
- will immediately increase above will immediately become larger than
 - should become larger than
- should immediately increase above should immediately become larger than

Refined Object:

0

1. Translate atomic propositions

Example: G (rise (In > 0) \rightarrow rise (Out > 0))

Refined Subject:

- Out
- the value of Out

Refined Predicate:

- will increase above
- will immediately increase above will immediately become larger than
- should increase above

- will become larger than
- should become larger than
- should immediately increase above should immediately become larger than

Refined Object:

0

1. Translate atomic propositions

Example: $G (rise (In > 0) \rightarrow rise (Out > 0))$

Adverbial Information:

```
{'adverb': ['immediately'],
  'adv_phrase': ['at once']}
```

Assembler

Refined Template:

- 1. the value of Out will increase above 0
- 2. the value of Out will immediately increase above 0
- 3. immediately the value of Out will increase above 0
- 4. the value of Out will increase above 0 immediately
- 5. at once the value of Out will increase above 0
- 6. the value of Out will increase above 0 at once

1. Translate atomic propositions

Example: $G (rise (In > 0) \rightarrow rise (Out > 0))$

Adverbial Information:

```
{'adverb': ['immediately'],
  'adv_phrase': ['at once']}
Assembler
```

Refined Template:

- 7. the value of Out should increase above 0
- 8. the value of Out should immediately increase above 0
- 9. immediately the value of Out should increase above 0
- 10. the value of Out should increase above 0 immediately
- 11. at once the value of Out should increase above 0
- 12. the value of Out should increase above 0 at once

2. Translate temporal phrases

 $TP := TP' | \neg TP' | \mathbf{rise} \ TP' | \mathbf{fall} \ TP' | \neg \mathbf{rise} \ TP' | \neg \mathbf{fall} \ TP' \quad \mathbf{y} - \mathbf{axis}$ $TP' := \mathbf{UTO}_I(\alpha) | (\alpha) \mathbf{BTO}_I(\alpha) \quad \mathbf{x} - \mathbf{axis}$ $\mathbf{UTO} \in \{\mathbf{F}, \mathbf{G}, \mathbf{O}, \mathbf{H}\}, \ \mathbf{BTO} \in \{\mathbf{U}, \mathbf{S}\}, \ I \in \{t_1, t_2\}$

General Strategy:

- Reuse translations of atomic propositions
- Add temporal adverbial modifiers
- Enrich verb tenses

Step 3: Machine Translation

Machine Translation – Al Models

1. Seq2seq

Encoder-decoder model using Recurrent neural network (RNN)

Machine Translation – Al Models

2. Att-seq2seq

- Encoding sequence: $\mathbf{e} = (e_1, e_2, ..., e_m)$
- Decoding sequence: $\mathbf{s} = (s_1, s_2, ..., s_n)$
- Output probabilities:

$$P(\mathbf{s}|\mathbf{e};\theta) = \prod_{k=1}^{n} P(s_k|s_{< k},\mathbf{e};\theta)$$

Bahdanau attention model^[1]

Machine Translation – Al Models

3. Transformer (DeepSTL)

- Encoding sequence: $\mathbf{e} = (e_1, e_2, ..., e_m)$
- Decoding sequence: $\mathbf{s} = (s_1, s_2, ..., s_n)$
- Output probabilities:

$$P(\mathbf{s}|\mathbf{e};\theta) = \prod_{k=1}^{n} P(s_k|s_{< k},\mathbf{e};\theta)$$

Transformer's new features:

- Self-attention
- Multi-head attention
- Enable parallelization

Data split:

- Training set: 97,200 English-STL pairs
- Validation set: 10,800 English-STL pairs
- Testing set: 12,000 English-STL pairs

Decoder

Transformer model^[1]

Machine Translation – Process Identifiers and Constants

1. Pipeline

1. Training and Validation

Validation formula accuracy

2. Testing

Testing results on synthetic data

	Formula Acc.	Template Acc.	BLEU
Seq2seq	0.071 ± 0.0388	0.207 ± 0.0868	0.092 ± 0.0361
Att-seq2seq	0.977 ± 0.0060	0.980 ± 0.0063	0.996 ± 0.0011
Transformer	0.987 ± 0.0028	0.995 ± 0.0014	0.998 ± 0.0005

Testing results on 14 extrapolation cases

	Formula Acc.	Template Acc.	BLEU
Seq2seq	0.050 ± 0.0283	0.158 ± 0.0895	0.027 ± 0.0120
Att-seq2seq	0.559 ± 0.0865	0.742 ± 0.0660	0.888 ± 0.0348
Transformer	0.712 ± 0.0678	0.899 ± 0.0100	0.962 ± 0.0030

3. Translation results on extrapolation (Real output)

Example 1:

If the value of signal RWs_angular_momentum is greater than 0.35, then the value of signal RWs_torque shall be equal to 0.

```
• Transformer (C_t = -0.01393): always ( RWs_angular_momentum > 0.35 -> RWs_torque == 0 )
```

- Att-seq2seq ($C_a = -0.30038$): always (RWs_angular_mxyomemeEqm < 0.3 -> RWs_torque == 0)
- Seq2seq (C_s = -2.77145): always (WNcAi1iDSDDyD1yD2y171a71aa2345324621) 5 too long, display omitted

3. Translation results on extrapolation (Real output)

Example 2:

Whenever Op_Cmd changes to Passive then in response Spd_Act changes to 0 after at most 500 time units.

```
• Transformer (C_t = -0.00091): always ( rise ( Op_Cmd == Passive ) -> eventually [ 0 : 500 ] ( rise ( Spd_Act == 0 ) ) ) 
• Att-seq2seq (C_a = -0.10360): always ( rise ( Op_Cmd == Passive ) -> not ( eventually [ 0 : 500 ] ( Spd_Act == 0 ) ) ) 
• Seq2seq (C_s = -3.03260): always ( rise (PIweD > 12.3 Q8y5yDy6y1y1R11y1y1g1y1A ...... too long, display omitted
```

3. Translation results on extrapolation (Real output)

Example 3:

Whenever V_Mot enters the range [1, 12] then in response starting after at most 100 time units Spd_Act must be in the range [100, 1000].

```
• Transformer (C_t = -0.00873): always ( rise ( V_Mot >= 1 and V_Mot <= 12 ) -> eventually [ 0 : 100 ] ( Spd_Act >= 100 and Spd_Act <= 1000 ) )
```

- Att-seq2seq (C_a = -0.06080): always (rise (V_Mot >= 1 and V_Mot <= 12) -> not (eventually [0 : 100] (Spd_Act >= 100 and Spd_Act <= 1000))
- Seq2seq (C_s = -2.68981): always (rise (p_qHX > 4 Q3DaQaDamyma01Q) ya) 4 fall too long, display omitted

Future Work

Future Work

- 1. Data augmentation
- 2. Introduce domain knowledge
- 3. Name entity recognition (NER)
- 4. Improve training procedure
- 5. Explore attention mechanism
- 6. Neural symbolic approach
- 7. Augment interaction

Thank you