O Osciloscópio

Introdução à Engenharia Eletrotécnica

Licenciatura em Engenharia Eletrotécnica e Computadores Ano letivo 2021-22

Pedro Miguel Cabral Novembro 2021 Versão 1.0

Sumário

- Introdução
- Descrição Básica
- Tipos de Osciloscópios
- Sistemas e Controlos
- Pontas de Prova
- Medidas e Terminologia
- Ligação ao PC
- Referências

As notas que se seguem pretendem ser apenas uma descrição sumária de alguns pontos considerados importantes para que a sua utilização seja feita de forma correta.

Introdução

Em Eletrónica, o Osciloscópio, é o aparelho de medida por excelência, sendo ferramenta indispensável no projeto, fabrico e teste de equipamentos eletrónicos.

Introdução

A sua utilidade não se limita ao mundo da eletrónica.

Com um sensor* adequado, um osciloscópio permite medir todo o tipo de sinais.

^{*}Dispositivo que gera um sinal elétrico em resposta a estímulos físicos (p. ex. som, luz, pressão, ou calor).

Introdução

Algumas formas de Onda comuns

Descrição Básica

O principal objetivo de um osciloscópio é representar graficamente a variação de um sinal elétrico ao longo do tempo.

A maioria dos osciloscópios produz um gráfico bidimensional com o tempo no eixo xx e a tensão no eixo yy.

Tipos de Osciloscópios

Qualquer equipamento eletrónico pode ser classificado em duas categorias distintas: analógico e digital.

O equipamento analógico trabalha continuamente com tensões variáveis, enquanto o equipamento digital trabalha com quantidades binárias discretas que representam amostras da tensão.

Um fonógrafo convencional é um dispositivo analógico, enquanto que o leitor de MP3 é um dispositivo digital.

Tipos de Osciloscópios

Os osciloscópios podem ser classificados de forma semelhante como analógicos e digitais.

Osciloscópio Analógico

Osciloscópio Digital

Tipos de Osciloscópios

Em contraste com um osciloscópio analógico, um osciloscópio digital usa um conversor analógico-digital (ADC) para converter a tensão medida em informação digital.

A forma de onda é adquirida como uma série de amostras que são armazenadas até que um número de suficiente seja acumulado.

Sistemas e Controlos

O painel frontal de um osciloscópio inclui um ecrã, botões, interruptores e indicadores usados para controlar a aquisição e exibição do sinal divididos por secções.

O painel frontal também inclui conectores de entrada onde, usando pontas de prova adequadas, poderão ser ligados os sinais a medir.

Canal 1

Canal 2

Sistemas e Controlos

Um osciloscópio básico consiste em quatro sistemas diferentes:

- Sistema de Visualização
- Sistema Vertical
- Sistema Horizontal
- Sistema de Trigger

Sistema de Visualização

O Sistema de Visualização é constituído por um ecrã. As marcações no ecrã criam um display. Cada linha vertical e horizontal constitui uma divisão principal. O display é geralmente disposto num formato padrão de 8x10 ou 10x10 divisões.

são chamadas de divisões secundárias

Os controlos verticais permitem: posicionar e dimensionar os sinais verticalmente, definir o acoplamento de entrada e efetuar outros ajustes de condicionamento de sinal.

A configuração de volts/div é um fator de escala que varia o tamanho do sinal no ecrã.

Ajuste da posição (deslocamento) do sinal no eixo vertical.

Ajuste da escala (volts / div) do sinal no eixo vertical.

Se a configuração for 2volts/div, então cada uma das oito divisões verticais representa 2V e todo o ecrã pode exibir 16V, assumindo uma ecrã com 8 divisões principais.

Botão de Seleção com controlos extra

Acoplamento de entrada

O acoplamento é a conexão do circuito de teste a medir ao osciloscópio. O acoplamento pode ser definido como **DC**, **AC** ou **GND**.

Acoplamento de entrada

DC: mostra todo o sinal de entrada (componentes AC e DC).

AC: componente DC bloqueada (sinal centrado nos zero Volt).

Preferencialmente deve ser usado o acoplamento **DC** pois os sinais têm geralmente, para além da comp. variável no tempo, uma comp. contínua (o seu valor médio) que pode ser importante.

A utilização do acoplamento **AC** retira esta comp. e, além disso, introduz alguma distorção em sinais de baixa frequência.

O acoplamento **AC** deve ser usado quando a comp. variável do sinal tiver uma amplitude muito menor que a comp. contínua ou quando a esta não for relevante para o tipo de medida em causa.

Sistema Horizontal

Os controlos horizontais permitem: posicionar e dimensionar os sinais horizontalmente, e efetuar outros ajustes de condicionamento de sinal.

Sistema Horizontal

Sistema Horizontal

Se a configuração for 500us, então cada uma das dez divisões verticais representa 500us e todo o ecrã pode exibir 5ms, assumindo uma ecrã com 10 divisões principais.

A função de Trigger de um osciloscópio sincroniza o varrimento horizontal no ponto correto do sinal, essencial para uma boa visualização e caracterização.

Os controlos de Trigger permitem estabilizar sinais periódicos e capturar formas de onda de disparo único.

O Trigger faz com que as formas de onda periódicas pareçam estáticas no ecrã do osciloscópio, exibindo repetidamente a mesma parte do sinal.

Exemplo de sinal sem controlo de trigger

Exemplo de sinal com controlo de trigger

É necessário que o varrimento se inicie num ponto fixo da onda, opara que se veja um traço <u>estável</u>

As Pontas de Prova funcionam em conjunto com o osciloscópio como parte do sistema de medição.

São dispositivos de entrada única que ligam o circuito a medir ao osciloscópio permitindo o encaminhamento do sinal.

A maioria das pontas de prova tem um resistência de 9M Ω para atenuação que, quando combinada com uma impedância de entrada padrão de um osciloscópio (1M Ω), cria um divisor de tensão de 1/10.

Muitas pontas permitem selecionar entre 10X e 1X (sem atenuação).

A ponta de prova com atenuação 10X melhora a precisão da medida mas também reduz a amplitude do sinal na entrada do osciloscópio por um fator de 10.

Como atenua o sinal, torna difícil medir sinais pequenos.

Deve-se usar a ponta de prova na posição 10X e comutar para 1X quando for necessário medir sinais de baixa amplitude ou com tempos de subida muito pequenos.

Muitos osciloscópios detetam automaticamente se a ponta de prova que está a ser usada é de 1X ou 10X, ajustando automaticamente as leituras efetuadas.

No entanto, na maior parte dos osciloscópios (como no caso dos que estão nas bancadas do laboratório), é necessário definir o tipo de sonda que está a ser usada (1X ou 10X) diretamente nos menus do canal em questão para que esse ajuste seja feito.

Compensação

- Ponta de prova na posição x10
- Ligar ao terminal "PROBE COMP"

Compensação

- Ajustar sinal
- Ajustar ponta de prova

Os osciloscópios digitais modernos têm funções que tornam as medições de formas de onda mais fáceis.

Seja através dos botões do painel frontal e/ou dos menus disponíveis no ecrã, é possível selecionar medições totalmente automatizadas.

Muitos instrumentos digitais também fornecem cálculos médios e fazem outras operações matemáticas.

Examples of fully automated waveform measurements:		
■ Period	■ Duty Cycle +	■High
■ Frequency	■ Duty Cycle -	■ Low
■ Width +	■ Delay	■ Minimum
■ Width -	■ Phase	■ Maximum
■ Rise time	■ Burst width	■ Overshoot +
■ Fall time	■ Peak-to-peak	Overshoot -
■ Amplitude	■ Mean	■ RMS
■ Extinction ratio	■ Cycle mean	■ Cycle RMS
■ Mean optical power	■ Cycle area	■ Jitter

Frequência e Período

A frequência é definida como o número de vezes por segundo que uma forma de onda se repete.

O período é o intervalo de tempo entre repetições $T = \frac{1}{f}$.

Amplitude

A amplitude é uma medida da magnitude de um sinal.

Há uma variedade de medições de amplitude, incluindo:

Amplitude de pico a pico: mede a diferença absoluta entre os valores MAX e min.

Amplitude de pico: mede apenas o valor MAX (ou min) de um sinal acima (ou abaixo) de 0V.

Fase

A fase é melhor explicada observando-se uma onda sinusoidal.

O nível de tensão das ondas sinusoidais é baseado no movimento circular. Dado que um círculo tem 360°, um ciclo de uma onda sinusoidal tem 360°.

Usando graus, podemo-nos referir à fase de uma onda sinusoidal quando desejamos descrever quanto do período já passou.

Diferença de Fase

A diferença de fase entre dois sinais descreve o atraso (ou avanço) que um deles tem em relação ao outro.

As formas de onda apresentadas alcançam pontos semelhantes dos seus ciclos com exatamente $\frac{1}{4}$ de ciclo de separação $\left(\frac{360^{\circ}}{4} = 90^{\circ}\right)$.

Ligação ao PC

- Para encontrar: procura no Google por "OpenChoice Desktop"
- Instalar: Versão atual exige Windows 7 ou posterior
- Ligar osciloscópio ao PC por cabo USB

Após arranque, clicar em "Select Instrument" para ligar ao

osciloscópio

Ligação ao PC

 Em modo "Screen Capture", cada click em "Get Screen" cria uma cópia do ecrã que pode ser gravada.

TBS 1102B - 18:52:46 19/10/2018

Ligação ao PC

- Para gerar cópia do ecrã com fundo branco:
 - No osciloscópio (não no OpenChoice Desktop):
 - Menu: Utility \rightarrow more- \rightarrow Options \rightarrow Printer setup \rightarrow Ink Saver \rightarrow On

TBS 1102B - 18:52:13 19/10/2018

Menu: Utility \rightarrow - more- \rightarrow Options \rightarrow Printer setup \rightarrow Ink Saver \rightarrow On

TBS 1102B - 18:52:46 19/10/2018

Menu: Utility \rightarrow - more- \rightarrow Options \rightarrow Printer setup \rightarrow Ink Saver \rightarrow Off

Referências

- "XYZs of Oscilloscopes Primer", Tektronix,
 https://download.tek.com/document/03W 8605 7 HR Letter.pdf
- https://learn.sparkfun.com/tutorials/how-to-use-an-oscilloscope/all
- "TDS1000B and TDS2000B Series Digital Storage Oscilloscope User Manual",
 Tektronix,
 http://www.sophphx.caltech.edu/Lab Equipment/Tektronix TDS1000 2000 User Manual.pdf
- Pedro Fonseca, "Workshop sobre o Osciloscópio", DETI, 2018