Building and Evaluating Predictive Models – Part 1

Abhishek Kumar AUTHOR @meabhishekkumar

Data Science Project Cycle

Data Science Project Cycle

Overview (Concepts)

Machine learning basics

Titanic disaster challenge

Classifier

Metrics

Baseline model

Logistic regression model

Overview (Tools)

Python

- Numpy
- Pandas
- Scikit-Learn

Machine Learning Basics

Machine Learning

Learning from data or examples

INBOX (68) DRAFT SENT MAIL SPAM (221) TRASH

Spam Detection

Spam Detection

Label

Training Data

Label

Input and Output Feature

Representation

Generalization

(Output feature)

Label

Generalization

Label

Test Data

Supervised Learning

Titanic Disaster

Class: Survived (1)

Class: Not Survived (0)

Classification

Output: Discrete labels

Class: Survived (1)

Class: Not Survived (0)

Regression

Output: Continuous values

Unsupervised Learning

Customer Segmentation

Customer Segmentation

Training Data

Customer Segmentation

Clustering

Titanic Disaster Challenge

- Both input and output in training data
- Supervised learning problem
- Classification task
- Binary classification

Titanic Disaster Challenge

Titanic Disaster Challenge

Classifier

Classifier

Classifier

Classifiers

Logistic regression

Support vector machine

Neural networks

Random forest

"If you can't measure it, you can't improve it."

Peter Drucker

Performance Metrics

Precision Recall Accuracy

Accuracy

ld	F ₁		F _n	Output	Output	
1				1	1	
2				0	0	2
3				1	0	
4				1	1	3 Accuracy = Correct count /
5				0	1	Total Count
6				1	1	4 Accuracy = $6/10 = 0.6 (60\%)$
7				1	0	
8				0	1	
9				1	1	5
10				1	1	6
	Test data		Predicted	Actual		

output

output

Precision

Confusion Matrix

	Predicted Negative	Predicted Positive
Actual Negative	True Negative (TN)	False Positive (FP)
Actual Positive	False Negative (FN)	True Positive (TP)

	Predicted Negative	Predicted Positive
Actual Negative	20	40
Actual Positive	30	60

Precision

What fraction of positive predictions are correct?

$$\frac{TP}{Total\ Positive\ Predictions}$$

$$\frac{TP}{TP + FP}$$

Precision =
$$60/(60 + 40) = 0.6$$

Recall

Confusion Matrix

	Predicted Negative	Predicted Positive	
Actual Negative	True Negative (TN)	False Positive (FP)	
Actual Positive	False Negative (FN)	True Positive (TP)	

	Predicted Negative	Predicted Positive	
Actual Negative	20	40	
Actual Positive	30	60	

Recall

What fraction of positive cases you predicted correctly?

$$\frac{\mathit{TP}}{\mathit{Total\ Positive\ Cases}}$$

$$\frac{TP}{TP + FN}$$

Recall =
$$60/(60 + 30) = 0.67$$

Classifier Evaluation

Train Test Split

Classifier Evaluation

Baseline Model

Baseline Model for Classification

Class	Count
1	60
0	40

Baseline model = Class 1

Baseline model accuracy = 60/(60 + 40) = 0.6

- Output majority class
- Predictive model should have better performance than baseline

Preparing data for machine learning model

Building and evaluating baseline model

Making first Kaggle submission

Linear Regression Model

- Supervised learning problem
- Regression task
- Model coefficients: b0, b1

- Supervised learning problem
- Classification task
- Binary classification

- Supervised learning problem
- Classification task
- Binary classification

- Supervised learning problem
- Classification task
- Binary classification
- Sigmoidal curve

Granted = b0 + b1 * income 1

$$P = \frac{1}{1 + e^{-Granted}}$$

2

P > threshold : Class 1

P <= threshold : Class O

Building logistic regression using Scikit- Learn

Making second Kaggle submission

Summary

Machine learning foundation

Baseline model

Logistic regression model

