

CLOUD COMPUTING

CLOUD SECURITY I

PROF. SOUMYA K. GHOSH
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
IIT KHARAGPUR

Security - Basic Components

- Confidentiality
 - Keeping data and resources hidden
- Integrity
 - Data integrity (integrity)
 - Origin integrity (authentication)
- Availability
 - Enabling access to data and resources

Security Attacks

- Any action that compromises the security of information.
- Four types of attack:
 - Interruption
 - 2. Interception
 - Modification
 - 4. Fabrication
- Basic model:

Security Attacks (contd.)

S

- Interruption:
 - Attack on availability

- Interception:
 - Attack on confidentiality

Security Attacks

- Modification:
 - Attack on integrity

- Fabrication:
 - Attack on authenticity

Classes of Threats

- Disclosure
 - Snooping
- Deception
 - Modification, spoofing, repudiation of origin, denial of receipt
- Disruption
 - Modification
- Usurpation
 - Modification, spoofing, delay, denial of service

Policies and Mechanisms

- Policy says what is, and is not, allowed
 - This defines "security" for the site/system/etc.
- Mechanisms enforce policies
- Composition of policies
 - If policies conflict, discrepancies may create security vulnerabilities

Goals of Security

- Prevention
 - Prevent attackers from violating security policy
- Detection
 - Detect attackers' violation of security policy
- Recovery
 - Stop attack, assess and repair damage
 - Continue to function correctly even if attack succeeds

Trust and Assumptions

- Underlie all aspects of security
- Policies
 - Unambiguously partition system states
 - Correctly capture security requirements
- Mechanisms
 - Assumed to enforce policy
 - Support mechanisms work correctly

Types of Mechanisms

set of reachable states

set of secure states

Assurance

- Specification
 - Requirements analysis
 - Statement of desired functionality
- Design
 - How system will meet specification
- Implementation
 - Programs/systems that carry out design

Operational Issues

- Cost-Benefit Analysis
 - Is it cheaper to prevent or recover?
- Risk Analysis
 - Should we protect something?
 - How much should we protect this thing?
- Laws and Customs
 - Are desired security measures illegal?
 - Will people do them?

Human Issues

- Organizational Problems
 - Power and responsibility
 - Financial benefits
- People problems
 - Outsiders and insiders
 - Social engineering

Tying Together

Passive and Active Attacks

- Passive attacks
 - Obtain information that is being transmitted (eavesdropping).
 - Two types:
 - Release of message contents:- It may be desirable to prevent the opponent from learning the contents of the transmission.
 - <u>Traffic analysis</u>:- The opponent can determine the location and identity of communicating hosts, and observe the frequency and length of messages being exchanged.
 - Very difficult to detect.

Active attacks

- Involve some modification of the data stream or the creation of a false stream.
- Four categories:
 - Masquerade: One entity pretends to be a different entity.
 - Replay: Passive capture of a data unit and its subsequent retransmission to produce an unauthorized effect.
 - Modification: Some portion of a legitimate message is altered.
 - Denial of service: Prevents the normal use of communication facilities.

Security Services

- Confidentiality (privacy)
- Authentication (who created or sent the data)
- Integrity (has not been altered)
- Non-repudiation (the order is final)
- Access control (prevent misuse of resources)
- Availability (permanence, non-erasure)
 - Denial of Service Attacks
 - Virus that deletes files

Role of Security

- A security infrastructure provides:
 - Confidentiality protection against loss of privacy
 - Integrity protection against data alteration/ corruption
 - Availability protection against denial of service
 - Authentication identification of legitimate users
 - Authorization determination of whether or not an operation is allowed by a certain user
 - Non-repudiation ability to trace what happened, & prevent denial of actions
 - Safety protection against tampering, damage & theft

Types of Attack

- Social engineering/phishing
- Physical break-ins, theft, and curb shopping
- Password attacks
- Buffer overflows
- Command injection
- Denial of service
- Exploitation of faulty application logic
- Snooping
- Packet manipulation or fabrication
- Backdoors

Network Security...

- Network security works like this:
 - Determine network security policy
 - Implement network security policy
 - Reconnaissance
 - Vulnerability scanning
 - Penetration testing
 - Post-attack investigation

Step 1: Determine Security Policy

- A security policy is a full security roadmap
 - Usage policy for networks, servers, etc.
 - User training about password sharing, password strength, social engineering, privacy, etc.
 - Privacy policy for all maintained data
 - A schedule for updates, audits, etc.
- The network design should reflect this policy
 - The placement/protection of database/file servers
 - The location of demilitarized zones (DMZs)
 - The placement and rules of firewalls
 - The deployment of intrusion detection systems (IDSs)

Step 2: Implement Security Policy

- Implementing a security policy includes:
 - Installing and configuring firewalls
 - iptables is a common free firewall configuration for Linux
 - Rules for incoming packets should be created
 - These rules should drop packets by default
 - Rules for outgoing packets may be created
 - This depends on your security policy
 - Installing and configuring IDSes
 - snort is a free and upgradeable IDS for several platforms
 - Most IDSs send alerts to log files regularly
 - Serious events can trigger paging, E-Mail, telephone

Step 2: Implement Security Policy

Step 2: Implement Security Policy

- Firewall
 - Applies filtering rules to packets passing through it
 - Comes in three major types:
 - Packet filter Filters by destination IP, port or protocol
 - Stateful Records information about ongoing TCP sessions, and ensures out-ofsession packets are discarded
 - Application proxy Acts as a proxy for a specific application, and scans all layers for malicious data
- Intrusion Detection System (IDS)
 - Scans the incoming messages, and creates alerts when suspected scans/attacks are in progress
- Honeypot/honeynet (e.g. honeyd)
 - Simulates a decoy host (or network) with services

Step 3: Reconnaissance

- First, we learn about the network
 - IP addresses of hosts on the network
 - Identify key servers with critical data
 - Services running on those hosts/servers
 - Vulnerabilities on those services
- Two forms: passive and active
 - Passive reconnaissance is undetectable
 - Active reconnaissance is often detectable by IDS

Step 4: Vulnerability Scanning

- We now have a list of hosts and services
 - We can now target these services for attacks
- Many scanners will detect vulnerabilities (e.g. nessus)
 - These scanners produce a risk report
- Other scanners will allow you to exploit them (e.g. metasploit)
 - These scanners find ways in, and allow you to choose the payload to use (e.g. obtain a root shell, download a package)
 - The payload is the code that runs once inside
- The best scanners are updateable
 - For new vulnerabilities, install/write new plug-ins
 - e.g. Nessus Attack Scripting Language (NASL)

Step 5: Penetration Testing

- We have identified vulnerabilities
 - Now, we can exploit them to gain access
 - Using frameworks (e.g. metasploit), this is as simple as selecting a payload to execute
 - Otherwise, we manufacture an exploit
- We may also have to try to find new vulnerabilities
 - This involves writing code or testing functions accepting user input

Step 6: Post-Attack Investigation

- Forensics of Attacks
- This process is heavily guided by laws
 - Also, this is normally done by a third party
- Retain chain of evidence
 - The evidence in this case is the data on the host
 - The log files of the compromised host hold the footsteps and fingerprints of the attacker
 - Every minute with that host must be accounted for
 - For legal reasons, you should examine a low-level copy of the disk and not modify the original

Thank You!

