Задача 10.

Нека \leq е релацията над \mathbb{Z} определена чрез $x \leq y \Leftrightarrow x = y \lor x + 1 < y$. Проверете дали тази релация е частична наредба.

Проверка:

- **а)** Рефлексивност (в \mathbb{Z}): Нека $x \in \mathbb{Z}$. Тогава x = x, откъдето $x = x \lor x + 1 < x$ е винаги истина. Следователно $x \le x$ и \le е рефлексивна.
- **б)** Антисиметричност (в \mathbb{Z}): Нека $x \le y$ и $y \le x$, т.е. ($x = y \lor x + 1 < y$) и ($y = x \lor y + 1 < x$). Ще докажем, че x = y. За целта ще допуснем противното, т.е. ($x \ne y$). Тогава $\neg (y = x)$. Следователно x + 1 < y и $y + 1 < x \Rightarrow$ противоречие $\Rightarrow x = y$.
- **в)** Транзитивност (в \mathbb{Z}): Нека $x \le y$ и $y \le z$. Тогава ($x = y \lor x + 1 < y$) и ($y = z \lor y + 1 < z$). Ще докажем, че $x \le z$, тоест, че ($x = z \lor x + 1 < z$)
- (1) x = y, y = z. Следователно x = z и така $x \le z$;
- (2) x = y, y + 1 < z. Следователно x + 1 < z и така $x \le z$;
- (3) x + 1 < y, y = z. Следователно x + 1 < z и така $x \le z$;
- (4) y+1 < z, x+1 < y. Следователно x+1 < y < z-1 или това е еквивалентно на x+2 < z, но $x+1 < x+2 < z \Rightarrow x+1 < z$ и така $x \le z$.

Тъй като ⊴ е рефлексивна, антисиметрична и транзитивна (във ∀ един от 4-те случая), то ⊴ е частична наредба.

github.com/andy489