(19) World Intellectual Property Organization International Bureau

PCT

C07K 16/00

English

(43) International Publication Date 24 June 2004 (24.06.2004)

(51) International Patent Classification7:

(10) International Publication Number WO 2004/052932 A2

	al lago, CH-6576 Ge
(21) International Application Number;	Lisa [CH/CH]; Schw
PCT/EP2003/013960	SCHWAB, Martin, I

- TC1/13/2003/013/0
- $\textbf{(22) International Filing Date: } 9\, December \, 2003 \, (09.12.2003)$
- (26) Publication Language: English
- (30) Priority Data: 0228832.2 10 December 2002 (10.12.2002) GB
- (71) Applicant (for all designated States except AT, US): NO-VARTIS AG [CH/CH]; Lichtstrasse 35, CH-4056 Basel (CH).
- (71) Applicant (for AT only): NOVARTIS PHARMA GMBH
 [AT/AT]: Brunner Strasse 59, A-1230 Vienna (AT).
- (71) Applicant (for all designated States except US): UNI-VERSITÄT ZÜRICH [CH/CH]; Prorektorat Forschung, Rämistrasse 71, CH-8006 Zürich (CH).
- (72) Inventors; and

(25) Filing Language:

(75) Inventors/Applicants (for US only): BARSKE, Carmen [DE/DE]; Birkenweg 10, 79540 Locrach (DE). MIR, Anis, Khusro [GB/FR]; Rue des Vosges 6, F-68870 Bartenheim (FR). O.BRILE, Thomas [CHCII]: Casa Iago, CH.6576 GernaGimahrogan, CHJ. SCHNELL, Lies [CHCII]; Schwanengasse 9, CH-8001 Zürich (CH), CHWB, Marfin, E. [CHCII]; Walfenplatz Sirnsse 79, CH-8002 Zürich (CH), VITALTIA, Alessandra [CHCII]; 6981 Bedigliora, CH-(CH), ZURINI, Mauro [CHCII]; Benkenstrasse 92a, CH-4102 Binningen (CH).

- (74) Agent: GRUBB, Philip; Novartis AG, Corporate Intellectual Property, CH-4002 Basel (CH).
- (81) Designated States Inationally. AE, AG, AI, AM, AT, AU, AZ, BA, BB, BG, BR, BW, PK, BC, AC, HC, NC, CC, CC, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, EI, GB, GD, GH, HR, HU, ID, IL, IN, IS, PR, KE, KG, KP, KR, KZ, CL, LK, LI, LU, LY, MA, MD, MK, MN, MX, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SE, SG, SK, SY, T, TM, TM, TR, TT, LU, AU, SU, ZV, CV, NY, UZ, AZ, ZW.
- (84) Designated States (regional): Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NOGO A BINDING MOLECULES AND PHARMACEUTICAL USE THEREOF

(57) Abstract: This invention relates to molecules, such as for example monoclonal antibodies or Fab fragments thereof, which are capable of binding to the human NogoA polypeptide or human NiG or human NiG or human NogoA, 623-640 with a dissociation constant < 1000nM; polynucleotides encoding such a binding molecule; an expression vector comprising such polynucleotides; the use of such a binding molecule in the treatment of nerve repair, a plaramaceutical composition comprising such a binding molecule; and to a method of treatment of diseases associated with nerve repair.

WO 2004/052932 PCT/EP2003/013960

Nogo A Binding Molecules And Pharmaceutical Use Thereof

This invention relates to NogoA binding molecules, such as for example monoclonal antibodies or Fab fragments thereof.

Neuronal regeneration following injury in the adult central nervous system (CNS) is limited due to the presence of the inhibitory myelin environment that ensheaths axons and formation of scar tissue. In the last few years important insights have been gained into the molecular understanding why the CNS is unable to spontaneously repair itself following injury. Inhibitory molecules in the myelin are the major impediment for the axonal regeneration, particularly immediately after the injury. So far NogoA, Myelin-Associated Glycoprotein (MAG) and myelin-oligodendrocyte glycoprotein (OMgp) have been characterised as potent inhibitors of neurite outgrowth. In addition, myelin also contains other inhibitory components, such as, chondroitin sulphate proteoglycans. Nogo-A is a member of the reticulon protein family and it has at least two biologically active and pharmacologically distinct domains termed Amino-Nogo and Nogo-66. While the receptor site for the former is not known so far, Nogo-66 inhibits neuronal growth in vitro and in vivo via the neuronal receptor NgR. In addition to Nogo-66, MAG and OMgp also bind to the NgR with high affinity and inhibit neurite outgrowth.

Potential new research approaches currently pursued for enhancement of nerve repair include digestion of scar tissue using an enzyme chondroitinase ABC, bridging techniques using Olfactory ensheathing cells and stem cells and protein growth factors to boost neuronal growth. Blocking actions of neurite outgrowth inhibitors by modulation of intracellular signalling mediators such as Rho, a membrane-bound guanosine trisphosphatase (GTPase), which appears to be a key link in the inhibition of axonal growth. Cyclic adenosine monophosphate (cAMP) which can overcome myelin associated inhibition in vitro and induce regeneration in vivo. Use of peptide inhibitor of the NgR receptor (NEP 1-40) to induce neuronal regrowth and functional recovery in rats following spinal injury.

In addition to the use of the approaches described above, attention has also focused upon the use of certain monoclonal antibodies to neutralize neurite growth inhibitory molecules of the central and peripheral nervous system, in particular to neutralize the neurite growth inhibitory activity of NogoA. Thus it has been shown that the monoclonal antibody IN-1 or the

-2-

IN-1 Fab fragment thereof induce neurite outgrowth in vitro and enhance sprouting and regeneration in vivo (Schwab ME et al. (1996) Physiol. Rev. 76, 319-370), Testing different domains of the NogoA for neurite growth inhibitory acityity have delineated several inhibitory domains in the molecule (Chen et al. (2000) Nature 403, 434-439; GrandPre et al. (2000) Nature 403, 439-444; Prinjha et al. (2000) Nature 403, 383-384; see also detailed analysis in Example 1).

Natural immunoglobulins or antibodies comprise a generally Y- shaped multimeric molecule having an antigen-binding site at the end of each upper arm. The remainder of the structure, in particular the stem of the Y mediates effector functions associated with the immunoglobulins. Antibodies consists of a 2 heavy and 2 light chains. Both heavy and light chains comprise a variable domain and a constant part. An antigen binding site consists of the variable domain of a heavy chain associated with the variable domain of a light chain. The variable domains of the heavy and light chains have the same general structure. More particularly, the antigen binding characteristics of an antibody are essentially determined by 3 specific regions in the variable domain of the heavy and light chains which are called hypervariable regions or complementarity determining regions (CDRs). These 3 hypervariable regions alternate with 4 framework regions (FRs) whose sequences are relatively conserved and which are not directly involved in binding. The CDRs form loops and are held in close proximity by the framework regions which largely adopt a \(\beta \)-sheet conformation. The CDRs of a heavy chain together with the CDRs of the associated light chain essentially constitute the antigen binding site of the antibody molecule. The determination as to what constitutes an FR or a CDR region is usually made by comparing the amino acid sequence of a number of antibodies raised in the same species. The general rules for identifying the CDR and FR regions are general knowledge of a man skilled in the art and can for example be found in the webside (http://www.bioinf.org.uk/abs/).

It has now surprisingly been found that a novel monoclonal mouse antibody (hereinafter called "11C7") raised against a polypeptide fragment of rat NogoA (SEQ ID NO: 1) and of the IgG1 type has better properties than the NogoA antibodies of the prior art especially with regard to the binding affinity to NogoA of different species including the homo sapiens and with regard to its higher NogoA neurite outgrowth neutralizing activity at a given antibody concentration. Moreover it is now possible to construct other NogoA binding molecules having the same hypervariable regions as the said antibody.

Accordingly, the invention provides binding molecules to a particular region or epitope of NogoA (hereinafter referred to as "the Binding Molecules of the invention" or simply "Binding Molecules"). Preferably the Binding Molecules of the invention bind to human NogoA_623-640 (orthologous fragment against which 11C7 was raised; = SEQ ID NO: 6), human Nig-020 (orthologous to the smallest fragment of NogoA with neurite outgrowth inhibitory activity, SEQ ID NO: 24), human NogoA (SEQ ID NO: 5) or human NiG (which is the most potent neurite outgrowth inhibitory fragment of NogoA and starts at amino acid No. 186 and ends at amino acid No. 1004 of human NogoA, = SEQ ID NO: 5) with a dissociation constant (Kd) < 1000nM, more preferably with a Kd < 100 nM, most preferably with a Kd < 10 nM. The binding reaction may be shown by standard methods (qualitative assays) including, for example, the ELISA method described in Example 6 and the biosensor affinity method described in the example 7. In addition, the binding to human NogoA and almost more importantly the efficiency may be shown in a neurite outgrowth assay, e.g. as described below.

Thus, in a further preferred embodiment the Binding Molecules (at a concentration of 1 mg/ml, more preferably at 0.1 mg/ml even more preferably at 0.01 mg/ml culture medium) enhance the number of neurites of rat cerebellar granule cells on a substrate of rat spinal cord protein extract by at least 20%, preferably 50%, most preferred 100% compared to the number of neurites of rat cerebellar granule cells which are treated with a control antibody that does not bind to the human NogoA, human NiG, human Nig-D20 or NogoA_623-640 polypeptide (i.e. that has a dissociation constant > 1000 nM).

In a further preferred embodiment the Binding Molecules of the invention comprises at least one antigen binding site, said antigen binding site comprising in sequence, the hypervariable regions CDR1-11C7, CDR2-11C7 and CDR3-11C7; said CDR1-11C7 having the amino acid sequence SEQ ID NO: 9, and said CDR3-11C7 having the amino acid sequence SEQ ID NO: 9, and said CDR3-11C7 having the amino acid sequence SEQ ID NO: 10; and direct equivalents thereof.

In a further aspect of the invention, the Binding Molecule of the invention comprises at least one antigen binding site, said antigen binding site comprising either

- a) in sequence the hypervariable regions CDR1-11C7, CDR2-11C7 and CDR3-11C7; said CDR1-11C7 having the amino acid sequence of SEQ ID NO: 8, said CDR2-11C7 having the amino acid sequence of SEQ ID NO: 9, and said CDR3-11C7 having the amino acid sequence SEQ ID NO: 10; or
- in sequence the hypervariable regions CDR1'-11C7, CDR2'-11C7 and CDR3'-11C7, said CDR1'-11C7 having the amino acid sequence of SEQ ID NO: 11, said CDR2'-11C7 having the amino acid sequence of SEQ ID NO: 12, and said CDR3'-11C7 having the amino acid sequence of SEQ ID NO: 13; or
- c) direct equivalents thereof.

In a further aspect of the invention, the Binding Molecule of the invention comprises at least

- a) a first domain comprising in sequence the hypervariable regions CDR1-11C7, CDR2-11C7 and CDR3-11C7; said CDR1-11C7 having the amino acid sequence of SEQ ID NO: 8, said CDR2-11C7 having the amino acid sequence of SEQ ID NO: 9, and said CDR3-11C7 having the amino acid sequence SEQ ID NO: 10: and
- b) a second domain comprising in sequence the hypervariable regions CDR1'-11C7, CDR2'-11C7 and CDR3'-11C7, said CDR1'-11C7 having the amino acid sequence of SEQ ID NO: 11, said CDR2'-11C7 having the amino acid sequence of SEQ ID NO: 12, and said CDR3'-11C7 having the amino acid sequence of SEQ ID NO: 13; or
- c) direct equivalents thereof.

Moreover, the invention also provides the following Binding Molecule of the invention, which comprises at least one antigen binding site comprising

- a) either the variable part of the heavy chain of 11C7 (SEQ ID NO: 2); or
- b) the variable part of the light chain of 11C7 (SEQ ID NO: 3), or direct equivalents thereof.

When the antigen binding site comprises both the first and second domains, these may be located on the same polypeptide molecule or, preferably, each domain may be on a different chain, the first domain being part of an immunoglobulin heavy chain or fragment thereof and the second domain being part of an immunoglobulin light chain or fragment thereof.

Examples of Binding Molecules of the invention include antibodies as produced by B-cells or hybridomas and chimeric or humanized antibodies or any fragment thereof, e.g. F(ab')₂; and Fab fragments, as well as single chain or single domain antibodies.

A single chain antibody consists of the variable domains of an antibody heavy and light chains covalently bound by a peptide linker usually consisting of from 10 to 30 amino acids, preferably from 15 to 25 amino acids. Therefore, such a structure does not include the constant part of the heavy and light chains and it is believed that the small peptide spacer should be less antigenic than a whole constant part. By "chimeric antibody" is meant an antibody in which the constant regions of heavy or light chains or both are of human origin while the variable domains of both heavy and light chains are of non-human (e.g. murine) origin. By "humanized antibody" is meant an antibody in which the hypervariable regions (CDRs) are of non-human (e.g. murine) origin, while all or substantially all the other parts of the immunoglobulin e.g. the constant regions and the highly conserved parts of the variable domains, i.e. the framework regions, are of human origin. A humanized antibody may however retain a few amino acids of the murine sequence in the parts of the framework regions adjacent to the hypervariable regions.

Hypervariable regions may be associated with any kind of framework regions, preferably of murine or human origin. Suitable framework regions are described in "Sequences of proteins of immunological interest", Kabat E.A. et al, US department of health and human services, Public health service, National Institute of Health. Preferably the constant part of a human heavy chain of the Binding Molecules may be of the IgG4 type, including subtypes, preferably the constant part of a human light chain may be of the κ type, more preferably of the κ type.

Monoclonal antibodies raised against a protein naturally found in all humans may be developed in a non-human system e. g. in mice. As a direct consequence of this, a xenogenic antibody as produced by a hybridoma, when administered to humans, elicits an undesirable immune response, which is predominantly mediated by the constant part of the xenogenic immunoglobulin. This clearly limits the use of such antibodies as they cannot be administered over a prolonged period of time. Therefore it is particularly preferred to use single chain, single domain, chimeric or humanized antibodies which are not likely to elicit a substantial allogenic response when administered to humans.

In view of the foregoing, a more preferred Binding Molecule of the invention is selected from a chimeric antibody, which comprises at least

- a) one immunoglobulin heavy chain or fragment thereof which comprises (i) a variable domain comprising in sequence the hypervariable regions CDR1-11C7, CDR2-11C7 and CDR3-11C7 and (ii) the constant part or fragment thereof of a human heavy chain; said CDR1-11C7 having the amino acid sequence (SEQ ID NO: 8), said CDR2-11C7 having the amino acid sequence (SEQ ID NO: 9), and said CDR3-11C7 having the amino acid sequence (SEQ ID NO: 10), and
- b) one immunoglobulin light chain or fragment thereof which comprises (i) a variable domain comprising in sequence the hypervariable regions CDR1'-11C7, CDR2'-11C7 and CDR3'-11C7 and (ii) the constant part or fragment thereof of a human light chain; said CDR1'-11C7 having the amino acid sequence (SEQ ID NO: 11), said CDR2'-11C7 having the amino acid sequence (SEQ ID NO: 12), and said CDR3'-11C7 having the amino acid sequence (SEQ ID NO: 13); or direct equivalents thereof.

Alternatively, a Binding Molecule of the invention may be selected from a single chain

binding molecule which comprises an antigen binding site comprising

- a) a first domain comprising in sequence the hypervariable CDR1-11C7, CDR2-11C7 and CDR3-11C7; said CDR1-11C7 having the amino acid sequence (SEQ ID NO: 8), said CDR2-11C7 having the amino acid sequence (SEQ ID NO: 9), and said CDR3-11C7 having the amino acid sequence (SEQ ID NO: 10); and
- b) a second domain comprising in sequence the hypervariable CDR1'-11C7, CDR2'-11C7 and CDR3'-11C7; said CDR1'-11C7 having the amino acid sequence (SEQ ID NO: 11), said CDR2'-11C7 having the amino acid sequence (SEQ ID NO: 12), and said CDR3'-11C7 having the amino acid sequence (SEQ ID NO: 13); and
- a peptide linker which is bound either to the N- terminal extremity of the first domain and to the C-terminal extremity of the second domain or to the C-terminal extremity of the first domain and to the N-terminal extremity of second domain;
- or direct equivalents thereof.

As it is well known, minor changes in an amino acid sequence such as deletion, addition or substitution of one or several amino acids may lead to an allelic form of the original protein which has substantially identical properties. Thus, by the term "direct equivalents thereof" is meant either any single domain Binding Molecule of the invention (molecule X)

WO 2004/052932 PCT/FP2003/013960 -7-

- (i) in which each of the hypervariable regions CDR1, CDR2, and CDR3 of the Binding Molecule is at least 50 or 80% homologous, preferably at least 90% homologous. more preferably at least 95, 96, 97, 98, 99% homologous to the equivalent hypervariable regions of CDR1-11C7 (SEQ ID NO; 8), CDR2-11C7 (SEQ ID NO; 9) and CDR3-11C7 (SEQ ID NO: 10), whereas CDR1 is equivalent to CDR1-11C7. CDR2 is equivalent to CDR2-11C7, CDR3 is equivalent to CDR3-11C7; and
- (ii) which is capable of binding to the human NogoA, human NiG, human NiG-D20, or hurnan NogoA_623-640, preferably with a dissociation constant (Kd) < 1000nM, more preferably with a Kd < 100 nM, most preferably with a Kd < 10 nM, or

any binding molecule of the invention having at least two domains per binding site (molecule X')

- (iii) in which each of the hypervariable regions CDR1, CDR2, CDR3, CDR1', CDR2' and CDR3' is at least 50 or 80% homologous, preferably at least 90% homologous, more preferably at least 95, 96, 97, 98, 99% identical to the equivalent hypervariable regions of CDR1-11C7 (SEQ ID NO: 8), CDR2-11C7 (SEQ ID NO: 9), CDR3-11C7 (SEQ ID NO: 10), CDR1'-11C7 (SEQ ID NO: 11), CDR2'-11C7 (SEQ ID NO: 12), and CDR3'-11C7 (SEQ ID NO: 13), whereas CDR1 is equivalent to CDR1-11C7, CDR2 is equivalent to CDR2-11C7, CDR3 is equivalent to CDR3-11C7, CDR1' is equivalent to CDR1'-11C7, CDR2' is equivalent to CDR2'-11C7, CDR3' is equivalent to CDR3'-11C7: and
- (iv) which is capable of binding the human NogoA, human NiG, human NiG-D20, or human NogoA_623-640, preferably with a dissociation constant (Kd) < 1000nM, more preferably with a Kd < 100 nM, most preferably with a Kd < 10 nM.

Thus further embodiments of the inventions are for example a Binding Molecule which is capable of binding to the human NogoA, human NiG, human NiG-D20, or human NogoA_623-640 with a dissociation constant < 1000nM and comprises at least one antigen binding site, said antigen binding site comprising either

- · in sequence the hypervariable regions CDR1, CDR2, and CDR3, of which each of the hypervariable regions are at least 50%, preferably 80, 90, 95, 96, 97, 98, 99% homologous to their equivalent hypervariable regions CDR1-11C7 (SEQ ID NO: 8). CDR2-11C7 (SEQ ID NO: 9) and CDR3-11C7 (SEQ ID NO: 10); or
- in sequence the hypervariable regions CDR1', CDR2', and CDR3', of which each of the hypervariable regions are at least 50%, preferably 80, 90, 95, 96, 97, 98, 99%

homologous to their equivalent hypervariable regions CDR1'-11C7 (SEQ ID NO: 11), CDR2'-11C7 (SEQ ID NO: 12) and CDR3'-11C7 (SEQ ID NO: 13).

Furthermore, a Binding Molecule which is capable of binding the human NogoA, human NiG, human NiG-D20, or human NogoA_623-640 with a dissociation constant < 1000nM and comprises

- a first antigen binding site comprising in sequence the hypervariable regions CDR1, CDR2, and CDR3, of which each of the hypervariable regions are at least 50%, preferably 80, 90, 95, 96, 97, 98, 99% homologous to their equivalent hypervariable regions CDR1-11C7 (SEQ ID NO: 8), CDR2-11C7 (SEQ ID NO: 9) and CDR3-11C7 (SEQ ID NO: 10); and
- a second antigen binding site comprising in sequence the hypervariable regions CDR1', CDR2', and CDR3', of which each of the hypervariable regions are at least 50%, preferably 80, 90, 95, 96, 97, 98, 99% homologous to their equivalent hypervariable regions CDR1'-11C7 (SEQ ID NO: 11), CDR2'-11C7 (SEQ ID NO: 12) and CDR3'-11C7 (SEQ ID NO: 13).

This dissociation constant may be conveniently tested in various assays including, for example, the biosensor affinity method described in the example 7. In addition, the binding and functional effect of the Binding Molecules may be shown in a bioassay, e.g. as described below.

The constant part of a human heavy chain may be of the $\gamma 1$; $\gamma 2$; $\gamma 3$; $\gamma 4$; $\alpha 1$; $\alpha 2$; δ or ϵ type, preferably of the γ type, whereas the constant part of a human light chain may be of the κ or λ type (which includes the $\lambda 1$; $\lambda 2$; and $\lambda 3$ subtypes) but is preferably of the κ type. The amino acid sequence of all these constant parts are given in Kabat et al. (Supra).

Conjugates of the binding molecules of the invention, e. g. enzyme or toxin or radioisotope conjugates, are also included within the scope of the invention.

"Polypeptide", if not otherwise specified herein, includes any peptide or protein comprising amino acids joined to each other by peptide bonds, having an amino acid sequence starting at the N-terminal extremity and ending at the C-terminal extremity. Preferably the

polypeptide of the present invention is a monoclonal antibody, more preferred is a chimeric (also called V-grafted) or humanised (also called CDR-grafted) monoclonal antibody. The humanised (CDR-grafted) monoclonal antibody may or may not include further mutations introduced into the framework (FR) sequences of the acceptor antibody.

A functional derivative of a polypeptide as used herein includes a molecule having a qualitative biological activity in common with a polypeptide to the present invention, i.e. having the ability to bind to the human NogoA, human NiG, human NiG-D20, or human NogoA_623-640. A functional derivative includes fragments and peptide analogs of a polypeptide according to the present invention. Fragments comprise regions within the sequence of a polypeptide according to the present invention, e.g. of a specified sequence. The term "derivative" is used to define amino acid sequence variants, and covalent modifications of a polypeptide according to the present invention. e.g. of a specified sequence. The functional derivatives of a polypeptide according to the present invention, e.g. of a specified sequence, e.g. of the hypervariable region of the light and the heavy chain, preferably have at least about 65%, more preferably at least about 75%, even more preferably at least about 85%, most preferably at least about 95, 96, 97, 98, 99% overall sequence homology with the amino acid sequence of a polypeptide according to the present invention, e.g. of a specified sequence, and substantially retain the ability to bind the human NogoA, human NiG, human NiG, Duman NogoA at 1823-640.

The term "covalent modification" includes modifications of a polypeptide according to the present invention, e.g. of a specified sequence; or a fragment thereof with an organic proteinaceous or non-proteinaceous derivatizing agent, fusions to heterologous polypeptide sequences, and post-translational modifications. Covalent modified polypeptides, e.g. of a specified sequence, still have the ability bind to the human NogoA, human NiG, human NiGDDO, or human NogoA,623-640 by crosslinking. Covalent modifications are traditionally introduced by reacting targeted amino acid residues with an organic derivatizing agent that is capable of reacting with selected sides or terminal residues, or by hamessing mechanisms of post-translational modifications that function in selected recombinant host cells. Certain post-translational modifications are the result of the action of recombinant host cells on the expressed polypeptide. Glutaminyl and asparaginyl residues are frequently post-translationally deamidated to the corresponding glutamyl and aspartyl residues. Alternatively, these residues are deaminated under mildly acidic conditions. Other post-translational

modifications include hydroxylation of profine and lysine, phosphorylation of hydroxyl groups of seryl, tyrosine or threonyl residues, methylation of the α-amino groups of lysine, arginine, and histidine side chains, see e.g. T. E. Creighton, Proteins: Structure and Molecular Properties, W. H. Freeman & Co., San Francisco, pp. 79-86 (1983). Covalent modifications e.g. include fusion proteins comprising a polypeptide according to the present invention, e.g. of a specified sequence and their amino acid sequence variants, such as immunoadhesins, and N-terminal fusions to heterologous signal sequences.

"Homology" with respect to a native polypeptide and its functional derivative is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the residues of a corresponding native polypeptide, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology, and not considering any conservative substitutions as part of the sequence identity. Neither N- or C-terminal extensions nor insertions shall be construed as reducing identity or homology. Methods and computer programs for the alignment are well known.

"Amino acid(s)" refer to all naturally occurring L-α-amino acids, e.g. and including D-amino acids. The amino acids are identified by either the well known single-letter or three-letter designations.

The term "amino acid sequence variant" refers to molecules with some differences in their amino acid sequences as compared to a polypeptide according to the present invention, e.g. of a specified sequence. Amino acid sequence variants of a polypeptide according to the present invention, e.g. of a specified sequence, still have the ability to bind to human NogoA or human NiG or more preferably to NogoA_623-640. Substitutional variants are those that have at least one amino acid residue removed and a different amino acid inserted in its place at the same position in a polypeptide according to the present invention, e.g. of a specified sequence. These substitutions may be single, where only one amino acid in the molecule has been substituted, or they may be multiple, where two or more amino acids have been substituted in the same molecule. Insertional variants are those with one or more amino acids inserted immediately adjacent to an amino acid at a particular position in a polypeptide according to the present invention, e.g. of a specified sequence. Immediately adjacent to an amino acid means connected to either the α-carboxy or α-amino functional group of the amino acid. Deletional variants are those with one or more amino acids in a polypeptide

according to the present invention, e.g. of a specified sequence, removed. Ordinarily, deletional variants will have one or two amino acids deleted in a particular region of the molecule.

A binding molecule of the invention may be produced by recombinant DNA techniques. In view of this, one or more DNA molecules encoding the binding molecule must be constructed, placed under appropriate control sequences and transferred into a suitable host organism for expression.

In a very general manner, there are accordingly provided

- DNA molecules encoding a single domain Binding Molecule of the invention, a single chain Binding Molecule of the invention, a heavy or light chain or fragments thereof of a Binding Molecule of the invention; and
- the use of the DNA molecules of the invention for the production of a Binding Molecule of the invention by recombinant means.

The present state of the art is such that the skilled man will be able to synthesize the DNA molecules of the invention given the information provided herein i.e. the amino acid sequences of the hypervariable regions and the DNA sequences coding for them. A method for constructing a variable domain gene is for example described in EP 239 400 and may be briefly summarized as follows: A gene encoding a variable domain of a monoclonal antibody of whatever specificity is cloned. The DNA segments encoding the framework and hypervariable regions are determined and the DNA segments encoding the hypervariable regions are removed so that the DNA segments encoding the framework regions are fused together with suitable restriction sites at the junctions. The restriction sites may be generated at the appropriate positions by mutagenesis of the DNA molecule by standard procedures. Double stranded synthetic CDR cassettes are prepared by DNA synthesis according to the sequences given CDR1-11C7, CDR2-11C7, CDR3-11C7, CDR1-11C7, CDR2-11C7 and CDR3'-11C7 above. These cassettes are provided with sticky ends so that they can be ligated at the junctions to the framework by standard protocol for achieving a DNA molecule encoding an immunoglobulin variable domain.

Furthermore, it is not necessary to have access to the mRNA from a producing hybridoma cell line in order to obtain a DNA construct coding for the monoclonal antibodies of the

invention. Thus PCT application W0 90/07861 gives full instructions for the production of a monoclonal antibody by recombinant DNA techniques given only written information as to the nucleotide sequence of the gene.

The method comprises the synthesis of a number of oligonucleotides, their amplification by the PCR method, and their splicing to give the desired DNA sequence.

Expression vectors comprising a suitable promoter or genes encoding heavy and light chain constant parts are publicly available. Thus, once a DNA molecule of the invention is prepared it may be conveniently transferred in an appropriate expression vector.

DNA molecules encoding single chain antibodies may also be prepared by standard methods, for example, as described in W0 88/1649.

In a particular embodiment of the invention, the recombinant means for the production of some of the Binding Molecules of the invention includes first and second DNA constructs as described below:

The first DNA construct encodes a heavy chain or fragment thereof and comprises

- a) a first part which encodes a variable domain comprising alternatively framework and hypervariable regions, said hypervariable regions comprising in sequence DNA-CDR1-11C7 (SEQ ID NO: 15), DNA-CDR2-11C7 (SEQ ID NO: 16) and DNA-CDR3-11C7 (SEQ ID NO: 17); this first part starting with a codon encoding the first amino acid of the variable domain and ending with a codon encoding the last amino acid of the variable domain, and
- b) a second part encoding a heavy chain constant part or fragment thereof which starts with a codon encoding the first amino acid of the constant part of the heavy chain and ends with a codon encoding the last amino acid of the constant part or fragment thereof, followed by a non-sense codon.

Preferably, the second part encodes the constant part of a human heavy chain, more preferably the constant part of the human v4 chain. This second part may be a DNA fragment of genomic origin (comprising introns) or a cDNA fragment (without introns).

PCT/EP2003/013960

The second DNA construct encodes a light chain or fragment thereof and comprises

- a) a first part which encodes a variable domain comprising alternatively framework and hypervariable regions; said hypervariable regions comprising in sequence DNA-CDR1'-11C7 (SEQ ID NO: 17), DNA-CDR2'-11C7 (SEQ ID NO: 18) and DNA-CDR3'-11C7 (SEQ ID NO: 19), this first part starting with a codon encoding the first amino acid of the variable domain and ending with a codon encoding the last amino acid of the variable domain, and
- a second part encoding a light chain constant part or fragment thereof which starts with a
 codon encoding the first amino acid of the constant part of the light chain and ends with
 a codon encoding the last amino acid of the constant part or fragment thereof followed
 by a non-sense codon.

Preferably, the second part encodes the constant part of a human light chain, more preferably the constant part of the human κ chain.

The first or second DNA construct advantageously comprises a third part which is located upstream of the first part and which encodes part of a leader peptide; this third part starting with the codon encoding the first amino acid and ending with the last amino acid of the leader peptide. This peptide is required for secretion of the chains by the host organism in which they are expressed and is subsequently removed by the host organism. Preferably, the third part of the first DNA construct encodes a leader peptide having an amino acid sequence substantially identical to the amino acid sequence of the heavy chain leader sequence as shown in SEQ ID NO: 21 (starting with the amino acid at position -19 and ending with the amino acid at position -1). Also preferably, the third part of the second DNA construct encodes a leader peptide having an amino acid sequence as shown in SEQ ID NO: 23 (light chain, starting with the amino acid at position -18 and ending with the amino acid at position -10.

Each of the DNA constructs are placed under the control of suitable control sequences, in particular under the control of a suitable promoter. Any kind of promoter may be used, provided that it is adapted to the host organism in which the DNA constructs will be transferred for expression. However, if expression is to take place in a mammalian cell, it is particularly preferred to use the promoter of an immunoglobulin gene. The desired antibody may be produced in a cell culture or in a transgenic animal. A suitable transgenic animal may be obtained according to standard methods which include micro injecting into eggs the first and second DNA constructs placed under suitable control sequences transferring the so prepared eggs into appropriate pseudo- pregnant females and selecting a descendant expressing the desired antibody.

When the antibody chains have to be produced in a cell culture, the DNA constructs must first be inserted into either a single expression vector or into two separate but compatible expression vectors, the latter possibility being preferred.

Accordingly, the invention also provides an expression vector able to replicate in a prokaryotic or eukaryotic cell line which comprises at least one of the DNA constructs above described.

Each expression vector containing a DNA construct is then transferred into a suitable host organism. When the DNA constructs are separately inserted on two expression vectors, they may be transferred separately, i.e. one type of vector per cell, or co- transferred, this latter possibility being preferred. A suitable host organism may be a bacterium, a yeast or a mammalian cell line, this latter being preferred. More preferably, the mammalian cell line is of lymphoid origin e.g. a myeloma, hybridoma or a normal immortalized B-cell, but does not express any endogeneous antibody heavy or light chain.

It is also preferred that the host organism contains a large number of copies of the vectors per cell. If the host organism is a mammalian cell line, this desirable goal may be reached by amplifying the number of copies according to standard methods. Amplification methods usually consist of selecting for increased resistance to a drug, said resistance being encoded by the expression vector.

In another aspect of the invention, there is provided a process for producing a multi-chain binding molecule of the invention, which comprises (i) culturing an organism which is transformed with the first and second DNA constructs of the invention and (ii) recovering an active binding molecule of the invention from the culture.

Alternatively, the heavy and light chains may be separately recovered and reconstituted into an active binding molecule after in vitro refolding. Reconstitution methods are well-known in the art; Examples of methods are in particular provided in EP 120 674 or in EP 125 023.

Therefore a process may also comprise

- culturing a first organism which is transformed with a first DNA construct of the invention and recovering said heavy chain or fragment thereof from the culture and
- (iii) culturing a second organism which is transformed with a second DNA construct of the invention and recovering said light chain or fragment thereof from the culture and
- (iii) reconstituting in vitro an active binding molecule of the invention from the heavy chain or fragment thereof obtained in (i) and the light chain or fragment thereof obtained in (ii).

In a similar manner, there is also provided a process for producing a single chain or single domain binding molecule of the invention which comprises

- culturing an organism which is transformed with a DNA construct respectively encoding a single chain or single domain binding molecule of the invention and
- (ii) recovering said molecule from the culture.

The binding molecules of the invention exhibit very good nerve repair activity as shown, for example, in the granule cell neurite outgrowth model.

1. Granule cell neurite outgrowth assay (in vitro)

Neurite outgrowth from dissociated cerebellar granule cells are determined as described (Niederöst et al. (1999) J. Neurosci. 19: 8979-8989). Briefly, cerebella are removed from decapitated postnatal day 5 – 7 rats and dissociated by trypsin treatment. To reduce fibroblast contamination, the cells are preplated onto bacterial dishes. 75'000 cells are then cultured per well in 4-well Greiner tissue culture (Huber & Co AG, Rheinach, Basel) dishes (well surface: 1 cm2) in medium (Neurobasal with B27 serum replacement, Invitrogen). Culture dishes are coated with poly-L-lysine (Sigma). Chaps extracted proteins from total spinal cord homogenates of adult rats (Spillmann et al. (1998) J. Biol. Chem. 273: 19283-19293) is coated at protein concentrations of 0.5 till 8 µg per well over night at 4°C and washed. The binding molecules of the invention are then pre-incubated for 30 min on the test substrate and removed before the cells are added. Cerebellar granule cells are added and incubated for 24 hours. To stop the experiment, 2 ml of 4 % buffered formaldehyde is

slowly added to the culture dishes. Cultures are then stained by immunofluorescence for the growth-associated protein GAP-43 and with Hoechst for cell nuclei (Granule cells are stained with Hoechst in order to see if all the cells have neurites (neurite visualised with anti-GAP-43)). Three pictures are taken randomly at a defined distance of the upper, lower and lateral edge of each well with a 40x objectif on a Zeiss Axiophot Fluorescence Microscope. All the neurites in a field are counted on number-coded, randomly arranged photographs. The response (outgrowth of the granule cell neurites) is dose-dependent in the range of about 0.1 – 10 µg total protein per well (the specific activities of a given preparation vary within this range).

Enhancement of neurite outgrowth of cerebellar granule cell in the non-permissive environment of the above prepared spinal cord extract by preincubation with a binding molecule of the invention may be observed. E.g. a typical profile for the neutralizing effect of the mouse 11C7-IgG1 antibody in the granule cell neurite outgrowth model is given below: Assav 1:

rat myelin coated at 1µg per well	myelin coated at 1µg per well Neurites per field Percentage	
no antibody	80,5	100 %
+mouse IgG	86,5	108 %
11C7 250 μg/ml	160	199 %
Assay 2:		
rat myelin (prep. 2) coated at 8 ug per	well Neurites p	er field Percentage
no antibody	20	100 %
+mouse IgG	17,3	86,5 %
11C7 250 μg/ml	31	155 %
11C7 75μg/ml	26	130 %
11C7 7,5 μg/ml	26	130 %

The neutralizing activity of the molecules of the invention may also be estimated by measuring the regenerative sprouting and neurite outgrowth in the *in vivo* spinal cord injury model as follows:

2. Spinal cord injury model (in vivo)

Adult Lewis rats are injured microsurgically by transecting the dorsal half of the spinal cord bilaterally at the level of the 8th thoracic vertebra. Laminectomy, anesthesia and surgery are described in Schnell and Schwab 1993 (Eur.J. Neurosci. 5: 1156 – 1171). Controls or binding molecules of the invention are applied in two different ways: either by implanting 10⁸ freshly harvested hybridoma cells into one side of the cerebral cortex (grafted animals) or, alternatively, by an implanted intraventricular canula linked to a subcutaneously implanted 2ml Alze (Alza Corporation, Palo Alto) pump (pump animals). – Hybridoma grafted animals: Rats are immunosuppressed for 7 – 10 days with cyclosporin A and sacrificed by transcardial perfusion with 4% buffered formalin 14 days after injury. – Pump animals: Binding molecules of the invention (e.g. at 3.3 mg/ml for mouse 11C7) are filled into 2 ml pumps delivering 0.5 µth into the lateral ventricle for 2 weeks. Pumps are implanted at the time of the spinal cord lesion, and rats are sacrificed 2 weeks later.

Neuroanatomical tracing: The motor and sensory corticospinal tract is traced by injecting the anterograde tracer biotin dextran amine (BDA) into the cortex of the side opposite to the pump or the graft. BDA is transported to the spinal cord within 10 – 14 days and visualized using diaminobenzidine (DAB) as a substrate as described in Brösamle et al., (2000 J.Neurosci. 20: 8061-8068).

Evalutation of anatomical results: Two methods of evaluation are used: a semi-quantitative and a quantitative one. Semi-quantitative estimation of intensity of sprouting and regeneration: Complete sagittal section series of number-coded, randomly mixed animals are evaluated for the presence and density of regenerating sprouts rostral to the lesion using the following definitions: regenerative sprouts are fibers emanating from the transected CST; they are long, irregular in their course, much less branched than the normal grey matter collaterals, and they growth towards and ventrally or laterally around the lesion.

Regenerative sprouts often end in a growth cone which can be small and bulbouse or large and branched. Density of sprouting is rated on a scale of 0 – 3 for each animal. – Long distance regeneration: fibers that can be followed through the lesion into the caudal spinal cord are considered long-distance regenerating fibers. Their maximal distance from the lesion site can be measured, but is often a minimal distance as some unlesioned fibers from the small ventral funiculus CST are often present; their branches mix with those of regenerating axons and make distinction difficult.

Fiber counts (quantitative assay): A line positioned at -0.5 mm rostral to the end of the transected CST is posed on alternating sections of the grey matter, and all intersections with

CST fibers (normal collaterals or sprouts) are counted. Similar lines are positioned caudal to the lesion at a distance of +0.5, +2 and +5 mm from the lesion center. Intersecting fibers are counted and the 3 levels are added to a sum reflecting CST fibers in the caudal spinal cord. These caudal fibers are divided by the number of fibers -0.5 mm rostral to the CST end to obtain a ratio

Two weeks after a spinal cord injury destroying about 40 % of the spinal cord segment T8, mainly in the dorsal half, including both main CSTs: tracing of the CST in control animals show a moderate degree of reactive sprouting of the tract. This phenomenon corresponds to the spontaneous sprouting in response to injury well known in the literature. Injured rats being treated with the binding molecules of the invention or with pumps delivering the binding molecules of the invention may show an enhanced sprouting at the lesion site and regeneration of damaged axons neurite outgrowth of damaged neurites.

Therefore the invention also provides

- the use of the binding molecules of the invention in the nerve repair of a mammalian nervous system, in particular human nervous system,
- (ii) a method of repairing nerves of a mammalian nervous system, in particular human nervous system which comprises administering an effective amount of the binding molecules of the invention to a patient in need of such treatment, or
- (iii) a pharmaceutical composition for nerve repair of a mammalian nervous system, in particular human nervous system which comprises the binding molecules of the invention and a pharmaceutically acceptable carrier or diluent.

In particular, the binding molecules of the invention are useful for axonal regeneration and improved sprouting after nerve fiber damage. Thus the molecules of the invention have a wide utility in particular for human subjects. For example the binding molecule of the invention are useful in the treatment of various diseases of the peripheral (PNS) and central (CNS) nervous system, i.e. more particularly in neurodegenerative diseases such as Alzheimer disease, Parkinson disease, Amyotrophic lateral sclerosis (ALS), Lewy like pathologies or other dementia in general, diseases following cranial, cerebral or spinal trauma, stroke or a demyeliating disease. Such demyelinating diseases include, but are not

limited to, multiple sclerosis, monophasic demyelination, encephalomyelitis, multifocal leukoencephalopathy, panencephalitis, Marchiafava-Bignami disease, pontine myelmolysis, adrenoleukodystrophy, Pelizaeus-Merzbacher disease, Spongy degeneration, Alexander's disease, Canavan's disease, metachromatic leukodystrophy and Krabbe's disease. In one example, administration of the binding molecules of the invention can be used to treat a demyelinating disease associated with NogoA protein. In another example, cells which express the binding molecules of the invention may be transplanted to a site spinal cord injury to facilitate axonal growth throughout the injured site. Such transplanted cells would provide a means for restoring spinal cord function following injury or trauma. Such cells could include olfactory ensheathing cells and stem cells of different lineages of fetal nerve or tissue grafts.

In addition, the Binding Molecules of the invention are useful for the treatment of degenerative ocular disorders which may directly or indirectly involve the degeneration of retinal or corneal cells including ischemic retinopathies in general, anterior ischemic optic neuropathy, all forms of optic neuritis, age-related macular degeneration, diabetic retinopathy, cystoid macular edema (CME), retinitis pigmentosa, Stargard's disease, Best's vitelliform retinal degeneration, Leber's congenital amaurosis and other hereditary retinal degenerations, pathologic myopia, retinopathy of prematurity, and Leber's hereditary optic neuropathy, the after effects of corneal transplantation or of refractive corneal surgery, and heroes keratitis.

Furthermore, it was shown that NogoA plays a role in psychiatric conditions, in particular schizophrenia and depression. Hence, the binding molecules of the invention are useful for the treatment of psychiatric conditions, in particular schizophrenia and depression.

The Binding Molecules of the invention can be provided alone, or in combination, or in sequential combination with other agents. For example, the binding molecules of the invention can be administered in combination with anti-inflammatory agents such as but not limited to corticosteroids following stroke or spinal cord injury as a means for blocking further neuronal damage and inhibition of axonal regeneration, Neurotrophic factors such as NGF, BDNF or other drugs for neurodegenerative diseases such as ExelonTM or Levodopa. As used herein, two agents are said to be administered in combination when the two agents are

administered simultaneously or are administered independently in a fashion such that the agents will act at the same time.

For the treatment of psychiatric conditions, in particular schizophrenia or depression, the Binding Molecules of the invention can be provided alone or in combination in particular with other agents selected from the group consisting of (a) anti-epileptic drugs selected from barbiturates and derivatives thereof, benzodiazepines, carboxamides, hydantoins, succinimides, valproic acid and other fatty acid derivates and other anti-epileptic drugs, (b) conventional antipsychotics, (c) atypical antipsychotics and (d) antidepressants.

The term "barbiturates and derivatives thereof" as used herein includes, but is not limited to Phenobarbital and primidon. The term "benzodiazepines" as used herein includes, but is not limited to clonazepam, diazepam and lorazepam: The term "carboxamides" as used herein includes, but is not limited to carbamazepine, oxcarbazepine and 10-hydroxy-10,11-dihydrocarbamazepine. The term "hydantoins" as used herein includes, but is not limited to phenytoin. The term "succinimides" as used herein includes, but is not limited to ethosuximide and mesuximide. The term "valproic acid and other fatty acid derivates" as used herein includes, but is not limited to valproic acid sodium salt, tiagabine hydrochloride monohydrate and vigrabatrine. The term "other anti-epileptic drugs" as used herein includes, but is not limited to levetiracetam, lamotrigine, gabapentin and felbamate.

The term "conventional antipsychotics" as used herein includes, but is not limited to haloperidol and fluphenazine.

The term "atypical antipsychotics" as used herein relates to clozaril, risperidone, olanzapine, quetiapine, ziprasidone and aripiprazol.

The term "antidepressants" as used herein includes, but is not limited to selective serotonin reuptake inhibitors (SSRI's), or selective serotonin and norepinephrine reuptake inhibitors (SNRI-s). An SSRI's suitable for the present invention can be selected from fluoxetine, fuvoxamine, sertraline, paroxetine, citalopram and escitalopram.

The structure of the active ingredients identified by code nos., generic or trade names may be taken from the actual edition of the standard compendium "The Merck Index" or from databases, e.g. Patents International (e.g. IMS World Publications). The corresponding content thereof is hereby incorporated by reference. Any person skilled in the art is fully enabled to identify the active ingredients and, based on these references, likewise enabled to manufacture and test the pharmaceutical indications and properties in standard test models, both *in vitro* and *in vivo*.

For the indications mentioned above, the appropriate dosage will, of course, vary depending upon, for example, the particular molecule of the invention to be employed, the mode of administration and the nature and severity of the condition being treated. The Binding Molecules of the invention are conveniently administered by pumps or injected as therapeutics at the lesioned site, e.g. they can be administered directly into the CNS intracranially or into the spine intrathecally to the lesioned site.

Pharmaceutical compositions of the invention may be manufactured in conventional manner. E.g. a composition according to the invention comprising the molecules of the invention is preferably provided in lyophilized form. For immediate administration it is dissolved in a suitable aqueous carrier, for example sterile water for injection or sterile buffered physiological saline.

To aid in making up suitable compositions, the binding molecules of the invention and optionally a second drug enhancing the effect of the Binding Molecules of the invention, may be packaged separately within the same container, with instructions for mixing or concomitant administration. Optional second drug candidates are provided above.

The synergistic effect of a combination of the binding molecules of the invention and growth factors such as NGF may be demonstrated in vivo by the spinal cord injury model described above.

Brief description of the drawing

Figure 1: Sequence Comparison: Sequence comparison of the NiG from different species, showing the immunogenic peptide sequence for the 11C7 mAb.

The invention will be more fully understood by reference to the following examples. They should not, however, be construed as limiting the scope of the invention.

In the following examples all temperatures are in degree Celsius (°C).

The monoclonal antibody of attention in the Examples is a Binding Molecule according to the present invention comprising the variable part of the light chain (SEQ ID NO: 3) and the variable part of the heavy chain (SEQ ID NO: 2).

The following abbreviations are used:

ELISA	enzyme	linked	immuno-sorbant assay
-------	--------	--------	----------------------

fluorescence activated cell sorting.

FITC fluorescein isothiocyanate

FBS foetal bovine serum

FACS

HCMV human cytomegalovirus promoter

IgG immunoglobulin isotype G MAb monoclonal antibody

PBS phosphate-buffered saline PCR polymerase chain reaction - 23 -

PCT/FP2003/013960

Example 1: NiG-D20 (SEQ ID NO: 24) is one of the neurite outgrowth inhibitory fragments of NogoA

Methods:

a) Rat Nogo-A deletion library: Deletion constructs are made using internal restriction sites. by ExonucleaseIII/Mung Bean Nuclease treatment and by PCR with rat Nogo-A-specific primers on rat Nogo- (method as in WO00/31235); rat Nogo-A (aa 1-1163; DNA as shown hereafter related to the amino acids of rat NogoA (SEQ ID NO: 26), e.g. aa 1-1163 means that the cDNA construct encodes for polypeptide which starts at the amino acid1 and ends at amino acid 1163 of the rat polypeptide sequence of NogoA), rat Nogo-B (aa 1-172 + 976-1163). rat Nogo-C (Nogo-C N-terminal 11 aa + aa 976-1163), rat Nogo-66 (aa 1019-1083), rat GST-Nogo-66 (aa 1026-1091), rat NiR-G (aa 1-979), rat NiR (1-172), rat NiR-D1 (aa 1-31), rat NiR-D2 (aa 59-172), rat NiR-D3 (aa 1-31 + 59-172), rat EST-Nogo1 (aa 762-1163). rat NiG (aa 174-979), rat NiG-D1 (aa174-909), rat NiG-D2 (aa 174-865), rat NiG-D3 (aa 172-723), rat NiG-D4 (aa 172-646), rat NiG-D5 (aa 293-647), rat NiG-D6 (aa 763-975), rat NiG-D7 (aa 174-235 + 294-979), rat NiG-D8 (aa 218-653), rat NiG-D9 (aa 172-259 + 646-974). rat NiG-D10 (aa 293-979), rat NiG-D11 (aa 209-268), rat NiG-D12 (aa 198-233), rat NiG-D13 (aa 174-216), rat NiG-D14 (aa 174-260), rat NiG-D15 (aa 174-190 + 493-979), rat NiG-D16 (aa 174-190 + 621-979), rat NiG-D17 (aa 174-190 + 259-979), rat NiG-D18 (aa 174-190 + 263-979), rat NiG-D19 (aa 763-865), rat NiG-D20 (aa 544-725), rat NiG-D21 (aa 812-918), rat NiG-D22 (aa 866-975), rat NiG-D23 (aa 914-975), rat NiG-D24 (aa 544-685), rat NiG-D25 (aa 614-725), rat NiG-D26 (aa 544-613), rat NiG-D27 (aa 581-648), rat NiG-D28 (aa 614-685), rat NiG-D29 (aa 648-725), rat NiG-D30 (aa 682-725), rat NiG-D31 (aa 544-580), rat NiG-D32 (aa 581-613), rat NiG-D33 (aa 614-648), rat NiG-D34 (aa 648-685), rat NiG-D35 (aa 260-556), rat NiG-D36 (aa 260-415), NiR-G and NiR-a are derived from Nogo-A-pET28 by restriction enzyme digestions. NiG is derived from NiR-G by restriction digestion and MungBean Nuclease treatment. NiG-D1, -D3, -D4, -D5, -D7, -D8, -D9, -D10 derived from NiG-pET28 by restriction enzyme digestions. NiG-D15, -D16, -D17, -D18 derived from NiGpET28 by Exonuclease III digestion. NiR-b, NiR-D1, -D2, -D3 derived by PCR with NiR-apET28 as a template. NiG-D2, -D6, -D11, -D12, -D13, -D14, -D19, -D20, -D21, -D22, -D23, -D24, -D25, -D26, -D27, -D28, -D29, -D30, -D31, -D32, -D33, -D34, -D35, -D36 derived by PCR using NiG-pET28 as a template. All constructs subcloned into pET28, pET28 used for all the constructs mentioned aboved. pGEX-6P used for GST-Nogo66 and pET26 for periplasmic expression of rat NiG. Human GST-Nogo-66 (aa 1055-1120 of human Nogo-A)

is cloned by PCR on human NogoA DNA (SEQ ID NO: 4) as a template. Deletion constructs are then cloned into pET28 vector (Novagen), pGEX-6P (Amersham Pharmacia Biotech) and pET26 vector (Novagen). Human GST-Nogo-66 corresponds to the GST-nogo protein published by GrandPré et al. (supra). Synthetic rat peptide 4

EELVOKYSNSALGHVNSTIKELRRL (SEQ ID NO: 27) corresponds to the human peptide 4 (Human peptide 4 has been shown to be the inhibitory region of the Nogo-66 domain (GrandPré et al., 2000)). The orthologous rat peptide has a single mismatch C->S (see peptide 4 sequence in GrandPré et al., 2000, supra). Synthetic Pro/Ser-rich peptide PSSPPPSSPPPSSPPPS (SEQ ID NO: 28) as well as rat peptide 4 have been produced and HPLC-purified by Primm SA. Human NogoA_623-640 (SEQ ID NO: 6) is synthesised and purified by Research Genetics Inc.

- b) Generation of human Nogo-A expression constructs (pRK7-hNogo-A): A human cDNA library constructed in lambda gt10 (Clontech) is screened with duplicate filter sets using standard procedures. Fragments of human Nogo-A are amplified by PCR from human whole brain cDNA (Clontech) using a standard protocol and subsequently cloned into pBluescript, digested and Isolated, or used as screening probes directly. A 400bp Xhol/Smal fragment is used as 5' probe, the 3' probe is amplified with primers CA-NA-2F: 5'-AAG CAC CAT TGA ATT CTG CAG TTC C-3' (SEQ ID NO: 29) and CA-NA-3R: 5'-AAC TGC AGT ACT GAG CTC CTC CTC CAT CTG C-3' (SEQ ID NO: 30). Positive clones are isolated, subcloned and sequence confirmed. To obtain a full length human Nogo-A cDNA, overlapping clones are assembled using an unique EcoRl restriction site in the human Nogo-A sequence and subcloned into Bluescript vector, named Pbsnogoa. To obtain pRK7-hNogo-A, the full length cDNA was inserted into the eukaryotic expression vector pRK-7 by directional cloning.
- c) Generation of human NiG (hNiG) expression plasmids (pET28a-hNiG) for bacterial production: A hNiG encoding DNA fragment is subcloned into BamHI/Xhol of pET28a (Novagen), after PCR amplification of the respective coding region from Pbsnogoa, in frame with the N-terminal His- and T7-tag for bacterial expression, using primer sets: forward 5'-GTC GCG GAT CCA TGG AGA CCC TTT TTG CTC TTC-3' (SEQ ID NO: 31); reverse 5'-GTT CTC GAG TTA TGA AGT TTT ACT CAG-3' (SEQ ID NO: 32). The final plasmid is termed pET28a-hNiG. hNiG was then expressed in E.coli BL21 pRP by induction with 1 mM isopropyl-beta-D-thiogalactopyranoside (IPGT).

d) Generation of mouse NiG-exon3 (mNiG-exon3) expression plasmid: The region encoding mouse exon 3 is amplified from mouse genome BAC template with primers: forward 5'-GTG CGG ATC CAT GGA TTT GAA GGA GCA GC-3' (SEQ ID NO: 33); reverse 5'-GTT TCT CGA GTG AAG TTT TAT TCA GCT C-3' (SEQ ID NO: 34) and subcloned into the BamHI/Xhol cloning sites of pET28a. The final plasmid construct is named pET28a-mNiG-exon3.

Cloning of monkey NIG: PolyA RNA is isolated from frozen monkey brain tissue and cDNA are synthesised using an oligo dT primer. Two overlapping fragments covering the 5' and the 3' region of the cDNA are amplified by PCR using sequence-specific primers and a proof-reading enzyme. The primers are designed using the known sequence of the human NiG cDNA. For amplification of the 5' fragment the primers are 5'-TCCACCCGGCCGCCCCA-3' (SEQ ID NO: 35) and 5'-AATGATGGGCAAAGCTGTGCTG-3' (SEQ ID NO: 36), for the 3'-fragment 5'-GGTACAAAGATTGCTTATGAAACA-3' (SEQ ID NO: 37) and 5'-AGCAGGGCCAAGGCAATGTAGG-3' (SEQ ID NO: 38). The two fragments are then subcloned and for each fragment at least 4 independent clones were sequenced. The full length cDNA is assembled by overlapping PCR using the primers mentioned above and the resulting product is cloned and sequenced again.

e) Production of recombinant NogoNiG proteins and the Nogo-A-deletion library as defined above: The bacterial Nogo-A-deletion library is expressed in Escherichia coli. Proteins are extracted either by repeated sonication in sonication buffer (20 mM Tris, 50 mM NaH₂PO₄, 100 mM NaCl, pH 8.0) with 0.75 mg/ml Lysozyme, by solubilisation with B-Per™ (Pierce) or with 8 M urea. NiG expressed with pelB-leader is obtained from the periplasmic space according to the Novagen protocol for periplasmic protein purification. Supernatants of pET28-constructs are purified using the Co²-Talon™ Metal Affinity Resin (Clontech) in a batch procedure. 8 M urea and B-Per™ solubilised lysates are brought to non-denaturing conditions by increasingly substituting the buffer with sonication buffer during the resin-batch procedure. Proteins are eluted with 250 mM imidazole in sonication buffer on a gravity column (BioRad). NiG proteins are further purified by gel filtration on Superdex 200 HiLload 16/50. Supermatants of pGEX-6P constructs are purified with G-sepharose column in a batch procedure according to manufacturer indications (Amersham Pharmacia). Cleavage of GST-Nogo-66 is done by incubating solubilised GST-Nogo-66 with PreScission protease and

subsequent HPLC purification. Gel electroelution is performed by preparative SDS-PAGE of IMAC-purified recombinant Nogo and elution with BioRad Electro-Eluter into 50 mM Tris, pH 7.4, 100 mM NaCl, 0.2% (w/v) CHAPS for 1 hr at 250 mA and followed by 30 s of reversed electrode polarities. Protein concentrations of chromatography-purified proteins are determined using Pierce Coomassie Stain and BSA as standard protein. Protein concentrations of gel eluted proteins are estimated based on band intensity of silver-stained gels (Merril CR, Dunau ML, Goldman D (1981) A rapid sensitive silver stain for polypeptides in polyacrylamide gels. Analyt.Biochem. 110:201-207) with BSA as a standard.

η) Production of recombinant NogoA fragments in CHO cells: A 3119 bp fragment resulting from a partial Hincll digest of rat Nogo-A cDNA, NiR-G, is cloned into pSecTag2 expression vectors (Invitrogen, Groningen, The Netherlands). Transfection of pNiR-G into CHO cells results in intracellular, cytoplasmic expression of NiR-G. Stable NiR-G CHO cell lines are selected with 250 μg/ml Zeocin (Invitrogen). Recombinant NiR-G from cell lysate is purified over a Ni²-NTA column (Qiagen AG, Basel, Switzerland). Rat NiG-D20 and Nogo-66 are cloned into pAPtag5 vector by PCR. Transfection of pNiG-D20-AP into CHO cells results in NiG-520-AP that was secreted into the culture supernatant. Stable pNiG-D20-AP and pNogo-66-AP cell lines were selected with 250 μg/ml Zeocin (Invitrogen). Both cell lines are adapted to serum-free medium (Gibco) conditions and grown in a cell-line chamber (Integra). Supernatants are tenfold concentrated prior to use, and the concentration of fusion protein is assessed as described elsewhere (Flanagan JG, Leder P (1990) The kit ligand: a cell surface molecule altered in steel mutant fibroblasts. Cell 63:185-194).

g) 373 fibroblast and CHO spreading assays: The 3T3 spreading assays are performed as described previously (Spillmann AA, Bandtlow CE, Lottspeich F, Keller F, Schwab ME (1998) Identification and characterization of a bovine neurite growth inhibitor (bNI-220).

J.Biol.Chem. 273:19283-19293). CHO spreading assays are performed essentially the same way as for 3T3 fibroblasts. Briefly, CHO cells are split 1:2. 24 hrs later they are trypsinised in PBS-EDTA for 30 s and ~8'000 CHO cells are plated onto culture dishes precoated with 5, 1, 0.5 and 0.2 µg/well NiG or Nogo-66. After 30-45 min the cells are fixed with 4% (w/v) PFA, 5% (w/v) sucrose and then analysed as described Spillmann et al, supra). ~100 cells are counted per well with light microscopy; criterion of spreaded cells: (a) attachement to the dish AND (b) extended morphology indicative for lamellipodia; under light microscopy the cells appear darker and larger than not spreaded, round cells; non-spreaded cells are

considered those cells that are (a) not attached to the dish OR (b) attached to the dish, but small, rounded, without detectable lamellipodia protruding on the dish. The ratio between spreaded and not spreaded cells defines the degree of non-permissiveness of the substratum.

h) PC12 Neurite outgrowth assays: PC12 neurite outgrowth assays are performed as described previously (Rubin BP, Spillmann AA, Bandtlow CE, Keller F, Schwab ME (1995) Inhibition of PC-12 cell attachment and neurite outgrowth by detergent solubilized CNS myelin proteins. Europ. J. Neurosci. 7: 2524-2529). PC12 cells (a PC12 cell clone able to grow independently of laminin obtained from Moses Chao, New York) are primed for two days with 50-100 ng/ml NGF (Harian Bioproducts, Indianapolis) to DMEM, 5% foetal calf serum, 10% horse serum, 100 U/ml Penicillin and 0.5 mg/ml Streptomycin (Pen-Strep from Gibco-BRL). PC12 cells are detachde mechanically, trypsinised for 5 minutes with 0.05% trypsin (Sigma) in HBSS (Gibco) and plated at a density of 3,000-5,000 cells/cm2 in culture medium with 100 ng/ml NGF. Assays were stopped after 24 hrs by adding 4% (w/v) PFA, 5% (w/v) sucrose in PBS, pH8. Cell culture dishes were coated for PC12 cells the same way as for 3T3 cells.

i) Retinal ganglion cell stripe assays: The retinal ganglion cell stripe assay is performed according to Vielmetter (see Vielmetter J, Stolze B, Bonhoeffer F, Stuermer CA (1990) In vitro assay to test differential substrate affinities of growing axons and migratory cells. Exp. Brain Res. 81:283-287) with modifications (see Schmalfeldt M, Bandtlow CE, Dours-Zimmermann MT, Winterhalter KH, Zimmermann DR (2000) Brain derived versican V2 is a potent inhibitor of axonal growth. J. Cell Sci. 113:807-816). Explants are evaluated after fixation with 4% (w/v) PFA, 0.1% (v/v) glutaraldehyde in PBS for 10 min at RT. For immunostainings, fixed explants are blocked for 1 hr at RT with RNO-blocking solution (0.5% (w/v) BSA, 0.3% (w/v) TopBlock (Juro Supply), 0.1% (w/v) NaN₃ in PBS), permeabilised for 10 min with 0.05% (v/v) Tx-100 in RNO-blocking solution, frozen for one minute at –20 °C and incubated with primary antibodies (AS Bianca for NiR, AS Laura for Nogo-A, NiR-G, NiG, NiG-D3 and NiG-D20, Novagen mAb anti-T7 for Nogo-C and beta-Gal control protein). After washing with PBS, FITC- and TRITC (FITC: Fluorescein-IsoThioCyanate: TRITC:

Laboratories) are added (1:150) to the explants. The samples are coverslipped in 50% (v/v) glycerol, 25 mM NaHCO₂, 40 mM NaCl, 1% (w/v) p-Phenylendiamine (Sigma).

Results:

- a) Two regions in the N-terminal part of Nogo-A are inhibitory for spreading of 3T3 fibroblasts: In order to identify the regions of Nogo-A responsible for the inhibition of 3T3 fibroblast spreading, a library of 50 Nogo deletion constructs is made and recombinant proteins are expressed in bacteria (see method 1a). The apparent EC₅₀ for inhibition of 3T3 fibroblast spreading was approximately 400-500 ng/0.1ml Nogo-A coated overnight per cm2 of culture dish (~4 pmol/cm2), Treatment of Nogo-A or its fragments with 8 M urea results in a strong decrease of inhibitory activity, indicating that conformation is important. The analysis of Nogo fragments in the fibroblast spreading assay reveals that at least two stretches of the Nogo-A protein mediate inhibition of the spreading of freshly plated fibroblasts, namely NiR-D2 (aa 59-172) and NiG-D20 (aa 544-725). All the fragments derived from the NiG-region displaying inhibitory activity (e.g. NiG-D4 and NiG-D8) partially overlap with NiG-D20. Minor inhibitory activity at high protein concentration is seen for NiG-D19 within the NiG-D6 region, Nogo-C, Nogo-66 and rat Peptide 4 (shown to be the inhibitory region of Nogo-66 by GrandPré et al., 2000) are not inhibitory for fibroblast spreading. These data show that the anti-spreading activity of Nogo-A on 3T3 fibroblasts resides in two defined stretches located at the N-terminus (NiR-D2) and within the Nogo-Aspecific part (NiG-D20) of the protein, Non-specific physico-chemical properties (acidity of the fragments, structural effects due to proline and serine residues) are not responsible for this effect. The C-terminal RTN domain is not involved in the inhibition of fibroblast spreading.
- b) NiG-D20 Region of Nogo-A is inhibitory for neurite outgrowth: To determine whether the fragments of Nogo-A that are non-permissive for cell spreading are also inhibitory for neurite outgrowth, a series of bacterially produced Nogo-A fragments as well as eukaryotically produced Nogo-AP chimeras in different neuronal assays are tested. In the stripe assay (method 1), neurites avoid laminin/Nogo-A coated stripes, growing on the laminin-only stripes, whereas stripes coated with laminin/beta-Galactosidase are not circumvented. Full-length Nogo-A is strongly non-permissive for retinal ganglion cell (RGC) neurite outgrowth, while the N-terminal part (NiR) had only marginal effects. Nogo-C activity is indistinguishable from the control protein beta-Galactosidase. The Nogo-A-specific region NiG-D20 appears to

contain the main region responsible for the non-permissive activity on RGC neurite outgrowth; the growth cones stop when encountering NiG-D20-coated stripes. The nonpermissive effect is concentration-dependent. At lower Nogo-A concentrations the number of crossing fibers increased. No obvious difference is observed between nasal and temporal RGC neurites concerning their responsiveness to Nogo-A regions. A laminin-independent, NGF-responsive clone of PC12 cells is primed with 50 ng/ml NGF for 24 hrs and then plated onto dishes coated with bacterially produced Nogo fragments at 0.1-3 µg/cm². Neurite outgrowth is scored one day later. The Nogo-A-specific region (NiG) and its fragment NiG-520 strongly inhibited PC12 neurite outgrowth. In contrast, the N-terminal fragment NiR has only minor activity, detectable only at high protein concentration. Nogo-C and Nogo-66 are inactive.

Example 2: Presence of binding site(s) for NiR-G and NiG-D20 on 3T3 fibroblasts and rat cortical brain membranes:

Methods:

- a) Radioactive labelling and binding experiments: IMAC-purified NiG-D20 is iodinated by ANAWA Trading SA (Wangen, Switzerland) (2,030 Ci/mmol) using Lactoperoxidase and purified by reverse-phase HPLC. Membranes from rat brain cortex are prepared as purified by reverse-phase HPLC. Membranes from rat brain cortex are prepared as described (Olpe HR, Karlsson G, Pozza MF, Brugger F, Steinmann M, Van Riezen H, Fagg G, Hall RG, Froestl W, Bittiger H (1990) CGP 35348: a centrally active blocker of GABAB receptors. Eur.J.Pharmacol. 187:27-38). Binding is performed for 1 hr at RT essentially as described (Kaupmann K, Huggel K, Heid J, Flor PJ, Bischoff S, Mickel SJ, McMaster G, Angst C, Bittiger H, Froestl W, Bettler B (1997) Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature 386:239-246.) using 1.5 ml tubes preincubated for 2 hrs with 1% (w/v) bovine serum albumin to reduce non-specific binding. Membrane homogenates in HEPES buffer pH 7.4 (125 mM NaCl, 5 mM KCl, 0.6 mM MgCl₂, 1.8 mM CaCl₂, 20 mM HEPES, 6 mM dextrose) containing protease inhibitors (Rôche Diagnostics, Mannheim, FRG) are incubated with 1.3 nM iodinated NiG-D20 in the absence or presence of increasing concentrations of unlabelled NiG-D20
- b) Flow cytometry: Flow cytometry and cell sorting are performed on a Cytomation MoFlo high-speed cell sorter (Fort Collins, Colorado). The flow cytometer is equipped with an argon-ion/UV Enterprise II laser tuned to 488 nm with 130 mW of power. Fluorescein (FITC)

fluorescence is collected through a 530/40 nm bandpass filter. For analysis 3T3 fibroblasts are detached with Cell Dissociation Buffer (Gibco). The pre-formed complex used to detect binding of NiR-G to 3T3 fibroblasts is prepared as follows: NiR-G and anti-Myc antibody (9E10) are incubated at a 1:1 molar ratio for 30 min at 4 °C. Next, FITC conjugated F(ab)₂ Goat Anti Mouse IgG is added and incubated for additional 30 min at 4 °C. The resulting molar ratio of the trimeric complex is 1:1:0.5. The complex is added to 1x10⁶ 3T3 fibroblasts in a final volume of 0.1 ml, incubated for 2 hrs at 4 °C, washed, and analysed by flow cytometry.

Results:

Presence of binding site(s) for Nogo-A-specific active fragments on 3T3 fibroblasts and rat cortical brain membranes: Since the NiR-D2 and NiG-D20 regions of Nogo-A are inhibitory for cell spreading and neurite outgrowth despite the absence of Nogo-66 and independently of NgR, the presence of a separate, Nogo-A-specific receptor has to be postulated. Thus binding studies are performed of multimerised, myc-tagged and IMAC-purified NiR-G to living 3T3 fibroblasts that are analysed by flow cytometry. Ab-complexed NiR-G is binding efficiently to 3T3 cells as seen by a fluorescence shift of over 90% of the 3T3 cells. In contrast, 3T3 cells are not labelled after incubation with the 9E10 primary mouse anti-myc mAb complexed with a FITC-conjugated secondary F(ab), goat anti-mouse IgG nor with the secondary Ab alone. To test binding of NiG-D20 to rat cortical membranes, [125]1-labelled NiG-D20 in a radioligand binding assay is used. At a concentration of 1.3 nM of [125]-NiG-D20, evidence for a specific NiG-D20 binding sites on brain membranes as shown by a concentration-dependent competition of radioligand binding by unlabelled NiG-D20 is found. These results show that aminoterminal fragments of Nogo-A can bind to the surface of 3T3 cells and to rat cortical membranes, demonstrating the presence of membrane-bound. Nogo-A-specific binding sites or receptor(s).

Example 3: Generation of mouse 11C7-IgG1

Mice (C3H- and C57Bi6/J-strains) are immunised subcutaneously with the synthetic peptide SYDSIKLEPENPPPYEEA (= rat NogoA_623-640; SEQ ID NO: 1), corresponding to a particular epitope in NiG-D20. This epitope is highly conserved in human, cynomologus monkey and mouse NiG-D20 Nogo-A specific region and starts at amino acid 623 and ends WO 2004/052932 PCT/EP2003/013960

at amino acid 640 of the human NogoA amino acid sequence (SEQ ID NO: 5) (See also sequence alignment: Figure 1).

mAb 11C7 has been obtained out of a fusion of rat NogoA_623-640 with the carrier protein Key hole limped hemagglutinin (KLH) immunised mice. Monoclonal antibodies have been screened by ELISA on rat NogoA_623-640-KLH, rat NogoA_623-640 free peptide and a nonrelated peptide-KLH. In a further screen, the mAbs have been tested by ELISA on NiR-G versus b-Galactosidase, both expressed as his-tagged proteins and purified by metal affinity chromatography. Subsequently, the mAbs have been tested for recognition of Nogo-A on Western blot of oligodendrocyte and brain lysates (rat origin). Antibodies are tested for recognition of the protein in immunocytochemistry of rat Nogo-A-transfected CHO or COS cells and of endogenous Nogo-A of rat oligodendrocytes (permeabilised cells). They have also been tested for surface binding to living rat oligodednrocytes. Species crossreactivity is tested on recombinant NiG of rat, mouse, human and bovine origin by ELISA and on endogenous rat, mouse, human and monkey Nogo-A by Western blot of tissue or cell extracts.

Western blot analysis: SDS-PAGE and Westernblotting are performed as described earlier (Huber AB, Weinmann O, Brosamle C, Oertle T, Schwab ME (2002) Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions. J. Neurosci. 22: 3553-3567), blocking is done with 3% (w/v) Top Block (Juro Supply, Luceme, Switzerland). Antibodies are diluted as follows: Purified monoclonal 11C7 or hybridoma supernatants 1:150. Secondary antibodies are HRP-conjugate anti-mouse ((Pierce; 1:5000,) 1:50,000). Hybridisation with the 11C7 antibody is carried out over night at 4°C. For detection the ECL detection reagents from Amersham Pharmacia are used.

Results:

The 11C7 mAb identifies the 190 kD Nogo-A band on a Western blot of oligodendrocyte cell culture homogenate. 11C7 also identifies human NiG, Cynomolgus NiG cell lysate and rat NiG-D20 in western blots. 11C7 mAb is characterised as a IgG1 isotype (IsoStrip Kit, Roche).

Example 4: Characterisation of the mouse 11C7 mAb

Immunocytochemistry: Optic nerve oligodendrocytes are prepared as described (Schwab, Caroni, 1988, Neuron). Three to five day-old cultures grown on poly-L-lysine coated coverslips are washed twice with PBS, fixed in 4% (w/v) paraformaldehyde (PFA), 5% (w/v) sucrose in PBS for 15 min at room temperature (RT) and non-specific binding is blocked with 10% (v/v) FCS. Cells were then incubated with mouse 11C7 (1:100). Secondary antibodies are goat-anti-mouse TRITC (Jackson ImmunoResearch Laboratories). For cell surface staining, two day-old rat optic nerve cultures are incubated with monoclonal antibody in medium for 25 min at RT. Secondary alkaline phosphatase conjugated antibodies (Milan Analytica, Lausanne) are used at 1:7,500 in 0.1 M maleic acid with 1% (w/v) blocking reagent (1 hr). The cultures are washed twice with maleic acid buffer, once with alkaline phosphatase buffer (0.1 M Tris-HCl pH 9.5, 0.1 M NaCl, 5 mM MgCl₂) and the staining is developed for 3 hrs at room temperature with 0.175 mg/ml BClP (Sigma) in alkaline phosphatase buffer.

NogoA_623-640 epitope of Nogo-A present at the cell surface of cultured oligodendrocytes: Living cultures of oligodendrocytes incubated with mouse 11C7 mAb stain the differentiated oligodendrocyte cell bodies and their radial processes. The control mouse IgG and the antibodies against the intracellular protein CNPase do not stain the living cells. Preincubation of mouse 11C7 with the corresponding immunogenic peptide (= rat NogoA_623-640 SED ID NO: 1) reduces staining to background levels (competitive assay). Cell surface staining is present on all major and small processes and on the cell body. Thus, the Nogo-A specific part of the molecule recognised by mouse 11C7 mAb is exposed to the extracellular space on the plasma membrane of oligodendrocytes.

Production and Purification of mouse 11C7 mAb; A 10-L glas bioreactor is used for continuous-mode cultivation of the hybridoma clone producing the mouse 11C7 mAb. The bioreactor is equipped with a marine impeller placed in a center tube for gentle agitation, a spin filter for cell retention, and coiled silicone tubing for bubble-free aeration. The hybridoma cells are cultivated in our RPMI based serum free medium. The medium is inoculated with cells at 3.7 x 10⁵/mI. After 28 hours continuous medium flow through the bioreactor is started with a rate of 0.5 fermentor volumes /day (5 liters/day). Another 24 hours later the flow rate is increased to its final level of 1 fermentor volume/day (10 liters/day). After 1 week the culture reaches a steady state with 11 x 10⁵ cells/mI and the process is continued for another week. The titer of the mouse 11C7 mAb is determined daily

WO 2004/052932

by HPLC. A total of 150 liters culture supernatant is harvested from the bioreactor, sterile filtered for removal of cells and cell debris. 150 L culture supernatant are concentrated to about 6 L using a Pellikon tangential flow device (Millipore: 10 kDa cut-off). The concentrated supernatant is purified in 3 runs over a 220 ml bed volume column of Protein A Sepharose CI-4B (Pharmacia; 11 cm bed height). Briefly, the culture supernatant after pH correction to 8.1 is loaded at 4 ml/min and the column washed to base-line at 8 ml/min using 100 mM Na₂HPO₄, pH 8.1. Bound material is finally eluted at 8 ml/min using 50 mM NaH₂PO₄, pH 3.0, 140 mM NaCl and immediately neutralized (pH 7.0) with 5 N NaOH and sterile filtered. Absorbance is monitored at 280 nm. Portion of the purified material are eventually further concentrated by ultrafiltration and/or dialyzed against PBS. All the buffers used in the purification are filtered on a 10 kDa ULTRASETTE™ tangential flow device (Filtron Technology Corporation) in order to remove possible endotoxin contaminations. For the same reason the Protein A resin is extensively washed with 20% ethanol and all tubings/pumps treated with 0.1 M NaOH prior to use. Protein concentration is measured spectrophotometrically at 280 nm using a reference absorption of 1.35 for 1 mg/ml, Purity is routinely assessed by SDS-PAGE under reducing conditions using 4-20% Novex gradient gels. Endotoxin content is measured by the classical Limulus Amoebocyte Lysate (LAL) reaction according to the manufacturer instructions (Endotell AG, Allschwil, Switzerland).

Generation of F_{ab} fragments: A portion of mouse 11C7 mAb is extensively dialyzed against 100 mM Na-actetate, pH 5.5, 2 mM EDTA and adjusted to a concentration of 6 mg/ml. F_{ab} fragments are generated by papain digestion (1:200 w/w ratio) in the presence of 0.25 mM cystelne. The reaction is allowed to proceed for 16 hours at 37 °C and then stopped by the addition of the specific papain inhibitor E64 (N-[N-(L-3-trans-carboxirane- 2-carbonyl)-Leucyl]-agmatine) in large excess (10 μ M). The digested antibody is then passed over a column of protein A Sepharose Fast Flow in order to remove intact material and Fc fragments. The F_{ab} fraction is extensively dialysed against PBS and concentrated to about 3 mg/ml. (Papain and E64 are from Roche Molecular Biochemicals).

HPLC, Mass Spectrometry and N-terminal amino acid sequencing of V_L and V_H regions:

a) Reduction and Alkylation: Purified, dried 11C7 antibody are dissolved in 40 µl of 8M urea, 0.4M NH₄HCO₃, pH 8.3. 60 ug DTT (Calbiochem), pre-dissolved in 10 ul of the same buffer as the protein, are added. Reduction is performed at 50°C for 30 min under argon (100 fold molar excess of DTT over protein thiols). After reduction, the sample is cooled WO 2004/052932 PCT/FP2003/013960

- 34 -

to room temperature, 304 ug of iodoacetamide (Sigma Ultra, I-1149) dissolved in the same buffer as the protein is added. Carboxamidomethylation is carried out at room temperature for 15 min in the dark, 1 μl β-mercaptoethanol is added to guench the reaction.

- b) Isolation of Heavy- and Light-Chain: Carboxamidomethylated heavy and light chains of antibody are isolated by Reverse Phase High Pressure Liquid Chromatography (RP-HPLC) on a Hewlett Packard 1090M HPLC System with DR5 pumping system and diode-array UV detector. The conditions for chromatography are: PerSeptive Biosystems Poros 2.1x100 mm column packed with R1/H material; flow is 0.5 ml/min; solvents; (A) 0.1% TFA in water and (B) 0.09% TFA / acetonitril/water 9:1; gradient 25-70% B in 8 minutes at 80°C; detection at 218 / 280 nm.
- c) LC-ESI-MS: Mass spectrometry is carried out using a Q-Tof (Micromass, Manchester, UK) quadrupole time-of-flight hybrid tandem mass spectrometer equipped with a Micromass Z-type electrospray ionization source (ESI). Acquisition mass range is typically m/z 500-2000. Data are recorded and processed using MassLynx software. Calibration of the 500-2500 m/z scale is achieved by using the multiple-charged ion peaks of horse heart myoglobin (MW 16951.5).
- d) HPLC-MS of heavy and light chain: Separation of reduced and carboxamidomethylated heavy and light chain is performed on a HP1100 HPLC system (Hewlett Packard, Palo-Alto, CA, USA) employing a 1mmx150mm LC Packings column packed with Perseptive Biosystems POROS R1/H. The column is held at 60°C. Sample volumes of 10 µl are injected onto the column using a CTC PAL autosampler (CTC, Zwingen, Switzerland) fitted with a Valco model C6UW HPLC valve (Valco, Houston, TX, USA) and a 10 ul injection loop. HPLC was controlled by MassLynx software (Micromass, Manchester, UK). UV detection is at 214 nm. Eluent A is water containing 0.05% TFA. Eluent B is a 1:9 mixture of water: acetonitrile containing 0.045% TFA, A gradient from 20% B to 90% B is run in 20 minutes at 80 °C. The flow rate is typically 60 µl/min. The total flow from the LC system is introduced into the UV detection cell, then the ESI source without any splitting. The HPLC system is controlled and the signal from the UV detector is processed using MassLynx software (Micromass, Manchester, UK). The following 5 signals are detected:

Table 1:

Measured: Signal Interpretation		Signal Interpretation
	A= 50959.0 Da	H-Chain with carboxamidomethyl-cysteine (CAMCys)*
	B= 51119.5 Da	Signal A+162 Da (= hexose)**

C= 51086.0 Da	Signal A+ 127 (Lys), H-Chain with CAMCys*
D= 51251.0 Da	Signal C+162 Da (= hexose)**
E= 24464.8 Da	L-Chain with CAMCys
	*There are two types of H-chain present, one with and one without Lys at the
	C-terminal end. The ratio of both forms is approximately 50:50%.
	**Both types of H-chains have two corresponding glycosylated forms (+162)

d) N-terminal amino acid sequencing of V_L and V_H regions: Collected H+L chains peaks form HPLC are used for sequence analysis. Amino acid sequences are determined on a Hewlett Packard G1000A N-terminal Protein Sequencing System. The system performs automated Edman chemistry on protein samples retained on miniature adsorptive biphasic columns. An optimized chemistry method (double couple 3.0) is used to enhance chemical efficiency; minimize lags and herewith extend sequence analysis to about 50 residues. Analysis of PTH-amino acids is performed on an on-line Hewlett Packard HP1090 HPLC System equipped with a ternary pumping system and a narrowbore (2.1mm x 25cm) PTH column.

Results:

From mass analysis homogeneous heavy and light chain of mouse 11C7-IgG1 are determined. The H-chain is single glycosylated and there are two forms with a difference on the C-terminal Lysine. Total mass analysis of heavy and light chain shows a single mass for both chains. HPLC chromatography of mouse 11C7-IgG1 shows a single peak. After HPLC purification followed by reduction and alkylation pure heavy and light chain are available. N-terminal sequence degradation is performed on light-chain and heavy-chain. 45 to 55 amino acids from the N-terminal sequence of L-chain and H-chain are identified by sequence degradation.

Light Chain

1 5 10 15 20 25 30 **V V V V V**

DVLLTQTPLTLSITIGQPASISCKSSQSLL

31 35 40 45 50 55 60

HSDGKTYLNWLLQRPGQ

Heavy Chain

Example 5: Cloning of the heavy and light chain genes of mouse 11C7 mAb

Total RNA is prepared from 10⁷ hybridoma cells (clone 11C7) using TriPure reagent (Roche diagnostics, Germany, Cat.# 1667157) according to the manufacturers instructions. For cDNA synthesis, mRNA is isolated from above prepared total RNA using Oligotex Resin (Qiagen, Germany, cat. # 70022).

cDNA is generated by reverse transcription using the following conditions: $2 \mu l$ mRNA, $2 \mu l$ 10 x reverse transcription buffer, $2 \mu l$ (dT)₂₀ primer (10 μ M), 0.5 μl RNasin (Promega, 40 U/ml), $2 \mu l$ dNTPs (5 mM each), $1 \mu l$ OmniscriptTM reverse transcriptase (Qiagen, Cat # 205110), 10.5 μl ddH₂O, Reaction:1hr at 37°C. For PCR amplification of cDNA encoding for the V_H and V_L the proofreading enzyme ProofStartTM DNA polymerase is used.

PCR of light and heavy chain: Reaction mix: $2 \mu l$ cDNA , $5 \mu l$ 10 x reaction buffer, $3 \mu l$ dNTPs (5 mM each), $2 \mu l$ 5'primer (10 μ M) (see Table 2), $2 \mu l$ 3'primer (10 μ M) (see Table 2), $1 \mu l$ ProofStart (Qiagen, Cat # 202203), $36 \mu l$ ddH₂O. PCR conditions: 95° C/5 min, $(95^{\circ}$ C/40 sec, 55° C/1 min, 72° C 1 min) x 35, 72° C/10 min. The resulting PCR products are ligated directly into pCRbluntTOPO (Invitrogen). The ligation mix is transfected into TOP 10 cells (Invitrogen) and several clones are picked. The nucleotide sequences of the variable part of the heavy chain of the 11C7 mAb (V-H, SEQ ID NO: 43) and of the light chain of the 11C7 mAb (V-L, SEQ ID NO: 44) cDNas are determined on an ABI sequencer. The subsequent amino acid sequence of V-H and V-L are shown in SEQ ID NO: 2 (V-H) and SEQ ID NO: 3 (V-L). Primers used for PCR amplification of the V_H and V_L cDNAs; all primers are synthesized by MWG Biotech, Germany.

Table2:

Primer	Sequence	SEQ	ID	1
		1		1

			NO:
5'-V _L leader	AATATGAGTCCTGCCCAGTTCCTGTTTC		39
3'-Ск	TTAGGAATTCCTAACACTCTCCCCTGTTGAAG		40
5'-V _H leader	AATATGGATTTTGGGCTGATTTTTTTATTG	-	41
3'-C _H hinge	AATTGGGCAACGTTGCAGGTGACG		42

Example 6: Binding of 11C7 and Fab to Nogo-A domains using ELISA

Greiner 96 well PS plates (#655161) are coated with 0.4-2ug/ml Nogo protein fragments in PBS (100ul/well) covered and incubated 4 hours at room temperature. Plates are flicked and refilled with 200ul/well blocking buffer (PBS+2% BSA), covered and incubated. 1h at RT or overnight at 4 °C, then washed 4 times with water and PBS. Different concentrations of mouse 11C7 mAb or 11C7 Fab are diluted in PBS +2% BSA (100 ul/well), and incubated 2h at RT or overnight at 4 °C. Wash step is repeated and Goat anti-mouse IgG conjugated with horse radish peroxidase (HRP) at a dilution of 1:5000 (ICN #55550) in PBS/0.1%BSA /0.1%Nonidet 40 (100 ul/well) is added and incubated. 2h at RT or overnight at 4 °C and wash step is repeated. HRP reaction is started by adding 100 ul/well BM blue POD (Roche #1484281) and incubated in the dark at RT for 15 minutes . H2SO4 50ul/well 1M is added to stop HRP substrate reaction and the optical density is determinated using a microplate reader (Packard Spectra Count) set to 450nm.

The mouse 11C7 mAb binds to human NiG, rat NiG, mouse NiG, rat NiG-D20 and peptide 472 at very low concentrations of 0.02 to 2.5 nM. Binding to human NiG, rat NiG, mouse NiG at very low concentration is confirmed by the very high affinity (Kd 0.1 – 0.44nM Biosensor affinity measurements) and is consistent with the fact that 472 peptide with the exception of 2-3 amino acids is identical in human compared to rat and mouse equivalent region. The specificity of the binding is indicated by the fact that the mouse 11C7 mAb does not show any binding at all to rat NiG-D6 and Nogo-66 fragments over the same concentration range. The Fab monovalent fragment bound to human NiG and rat NiG-D20 at concentrations 0.025 to 25nM and showed no binding to rat NiG-D6 and Nogo-66 fragments over the same concentration range. The Kd measured by Biosensor was 7.14 nM for human NiG.

Example 7: Biosensor affinity measurements for mouse 11C7-IgG1 and Fab to Nogo-A domains

The affinity of the mouse 11C7 mAb and of the 11C7 Fab are measured by surface plasmon resonance (SPR) using a BIAcore 2000 optical biosensor (Biacore, Uppsala, Sweden) according to the manufacture's instructions (see Figure 2). Recombinant human, mouse, and rat NIG are covalently attached to three separate flow cells of a CM5 sensor chip using amine-coupling chemistry. Briefly; the carboxymethlyladed dextran matrix is activated by injecting 35ul of a solution containing 0.025M NHS and 0.1M EDC. For the immobilization on the sensor chip the recombinant mouse, human, and rat NIG are diluted in 0.01M citrate buffer at a pH varying between 3.5 and 4.5 and injected at a flow rate of 5ul/min to achieve coupling levels allowing affinity measurements. The deactivation of the remaining NHS-ester group is performed by injection of 35ul of 1M ethanolamine hydrochloride (pH 8.5). The surface of the sensor chip is regenerated by injecting 5ul 0.1M HCl. For the measurement of the affinity the antibodies are injected at different concentration, ranging from 0.50nM to 100nM at a flow rate of 200 ul/min. After each injection the sensor chip surface is regenerated with the injection of 10 ul 0.1M HCl without loss of binding activity on the surface. The kinetic constants, ka and kd and the affinity constants KA and KD are evaluated using the BIAevaluations 3.0 software supplied by the manufacturer.

Affinity measurement in BIAcore: The kinietc and the affinity binding constants of the mouse 11C7 mAb and the 11C7 derived monovalent Fab fragment to recombinat NogoA are measured in real time using surface plasmon resonance (SPR) technology (Biacore). For this analysis recombinant human, mouse and rat NIGs are coupled on three independent sensor chip surfaces and different concentrations of the antibodies are injected. Kinetic parameters of the binding interactions are derived from the sensorgrams by non-linear curve fitting. The affinity constants at equilibrium of mouse 11C7-IgG1 are KD= 0.1nM, KD= 0.4nM and KD= 0.19nM for human, rat, and mouse NIG respectively (table 3). For the 11C7 derived Fab fragment the affinity constant to human NIG is KD= 7.14nM. The lower affinity of the Fab fragment results from a decrease of both kinetic constants, association and dissociation (ka, kd). Lower affinity of the Fab fragment compared to the complete antibody is probably related to the avidity effect, which is lacking in the monomeric Fab.

Table 3:

11C7	Ka (1/Ms)	kd (1/s)	KA (M ⁻¹)	KD (M)
HumanNIG	4.48 x10 ⁵	4.6 x10 ⁻⁵	9.73 x10 ⁹	1.03 x10 ⁻¹⁰
Rat NIG	8.76 x10 ⁵	3.89 x10 ⁻⁴	2.25 x10 ⁹	4.44 x10 ⁻¹⁰
Mouse NIG	5.52 x10 ⁵	1.06 x10 ⁻⁴	5.2 x10 ⁹	1.92 x10 ⁻¹⁰
11C7 Fab	Ka (1/Ms)	kd (1/s)	KA (M ⁻¹)	KD (M)
HumanNIG	7.29 x10 ⁴	5.28 x10 ⁻⁴	1.4 x10 ⁸	7.14 x10 ⁻⁹

PCT/EP2003/013960

- 40 -

Claims:

- A binding molecule which is capable of binding to the human NogoA polypeptide (SEQ ID NO: 5) or human NiG (SEQ ID NO: 7) or human NiG-D20 (SEQ ID NO: 24) or human NogoA_623-640 (SEQ ID NO: 6) with a dissociation constant < 1000nM.
- 2.) A binding molecule which is capable of binding to the human NogoA polypeptide (SEQ ID NO: 5) or human NiG (SEQ ID NO: 7) or human NiG-D20 (SEQ ID NO: 24) or human NogoA_623-640 (SEQ ID NO: 6) with a dissociation constant < 1000nM and comprises at least one antigen binding site, said antigen binding site comprising either</p>
 - in sequence the hypervariable regions CDR1, CDR2, and CDR3, of which each of the hypervariable regions are at least 50% homologous to their equivalent hypervariable regions CDR1-11C7 (SEQ ID NO: 8), CDR2-11C7 (SEQ ID NO: 9) and CDR3-11C7 (SEQ ID NO: 10); or
 - in sequence the hypervariable regions CDR1', CDR2', and CDR3', of which each of the hypervariable regions are at least 50% homologous to their equivalent hypervariable regions CDR1'-11C7 (SEQ ID NO: 11), CDR2'-11C7 (SEQ ID NO: 12) and CDR3'-11C7 (SEQ ID NO: 13).
- 3.) A binding molecule which is capable of binding to the human NogoA polypeptide (SEQ ID NO: 5) or human NiG (SEQ ID NO: 7) or human NiG-D20 (SEQ ID NO: 24) or human NogoA_623-640 (SEQ ID NO: 6) with a dissociation constant < 1000nM and comprises</p>
 - a first antigen binding site comprising in sequence the hypervariable regions CDR1, CDR2, and CDR3, of which each of the hypervariable regions are at least 50% homologous to their equivalent hypervariable regions CDR1-11C7 (SEQ ID NO: 8), CDR2-11C7 (SEQ ID NO: 9) and CDR3-11C7 (SEQ ID NO: 10); and
 - a second antigen binding site comprising in sequence the hypervariable regions CDR1', CDR2', and CDR3', of which each of the hypervariable regions are at least 50% homologous to their equivalent hypervariable regions CDR1'-11C7 (SEQ ID NO: 11). CDR2'-11C7 (SEQ ID NO: 12) and CDR3'-11C7 (SEQ ID NO: 13).
- 4.) A binding molecule which comprises at least one antigen binding site, said antigen binding site comprising either

PCT/EP2003/013960

- in sequence the hypervariable regions CDR1-11C7 (SEQ ID NO: 8), CDR2-11C7 (SEQ ID NO: 9) and CDR3-11C7 (SEQ ID NO: 10); or
- in sequence the hypervariable regions CDR1'-11C7 (SEQ ID NO: 11), CDR2'-11C7 (SEQ ID NO: 12) and CDR3'-11C7 (SEQ ID NO: 13); or
- · direct equivalents thereof.

5.) A binding molecule comprising

- a first antigen binding site comprising in sequence the hypervariable regions CDR1-11C7 (SEQ ID NO: 8), CDR2-11C7 (SEQ ID NO: 9) and CDR3-11C7 (SEQ ID NO: 10): and
- a second antigen binding site comprising in sequence the hypervariable regions CDR1'-11C7 (SEQ ID NO: 11), CDR2'-11C7 (SEQ ID NO: 12) and CDR3'-11C7 (SEQ ID NO: 13): or
- · direct equivalents thereof.
- 6.) The binding molecule according to claims 1 to 5 which comprises at least
- one immunoglobulin heavy chain or fragment thereof which comprises (i) a variable domain comprising in sequence the hypervariable regions regions CDR1-11C7 (SEQ ID NO: 8), CDR2-11C7 (SEQ ID NO: 9) and CDR3-11C7 (SEQ ID NO: 10) and (ii) the constant part or fragment thereof of a human heavy chain; and
- one immunoglobulin light chain or fragment thereof which comprises (i) a variable domain comprising in sequence the hypervariable regions CDR1'-11C7 (SEQ ID NO: 11), CDR2'-11C7 (SEQ ID NO: 12) and CDR3'-11C7 (SEQ ID NO: 13) and (ii) the constant part or fragment thereof of a human light chain; or
- · direct equivalents thereof.
- 7. The binding molecule according to claim 6 in which the constant part or fragment thereof of the human heavy chain is of the v4 type and the constant part or fragment thereof of the human light chain is of the k type.
- The binding molecule according to claims 1 to 7, which is a chimeric or humanised monoclonal antibody.

PCT/EP2003/013960

- A binding molecule comprising polypeptide sequences as shown in SEQ ID NO: 2 and SEQ ID NO: 3.
- A polynucleotide comprising polynucleotides encoding a binding molecule according to any of claims 1 to 9.
- 11. A polynucleotide comprising either
- polynucletide sequences as shown in SEQ ID NO: 14, SEQ ID NO: 15 and SEQ ID NO: 16; or
- polynucletide sequences as shown in SEQ ID NO: 17, SEQ ID NO: 18 and SEQ ID NO:
 19.
- An expression vector comprising polynucleotides according to any one of claims 10 or
 11.
- 13. An expression system comprising a polynucleotide according to any one of claims 10 or 11, wherein said expression system or part thereof is capable of producing a polypeptide of any one of claims 1 to 9, when said expression system or part thereof is present in a compatible host cell.
- 14. An isolated host cell which comprises an expression system according to claim 13.
- 15. The use of a binding molecule according to any one of claims 1 to 9 as a pharmaceutical.
- 16. The use of a binding molecule according to any one of claims 1 to 9 in the treatment of nerve repair.
- 17. A pharmaceutical composition comprising a binding molecule according to any one of claims 1 to 9 in association with at least one pharmaceutically acceptable carrier or diluent

18. A method of treatment of diseases associated with nerve repair comprising administering to a subject in need of such treatment an effective amount of a binding molecule according to any one of claims 1 to 9. WO 2004/052932 PCT/EP2003/013960

Figure 1:

human TKVTEEVJANMPEGLTPDLVQRACBSELNEVTGTKIAYETKMDLVQTSEVJQESLYPAQ
monkey
GKVTEEVJANMPEGLTPDLVQRACBSELNEVTGTKIAYETKMDLVQTSEVJQGSSIYPAQ
rat KVYTEAVSANMPEGLTPDLVQBACBSELNEATGTKIAYETKTMDLVQTSEAIQBSIYPTAQ
mouse
SKYTEAVJATMPEGLTPDLVQBACBSELNEATGTKIAYETKYDLVQTSEAIQBSIYPTAQ

human LCPSFEESEAPPSFVLPDIVMEAPLNISAVPSAGASVIQPSSSPLEASS-VNYESIKHEER
monkey LCPSFEESEAPPSFVLPDIVMEAPLNISAVPSAGASAVQPSSSPLEASS-VNYESIHHEER
mouse LCPSFEEAEAPPSFVLPDIVMEAPLNISLLPSGASAVQPSSSPLEAPSFVSYDSIKLEER
mouse LCPSFEEAEAPPSFVLPDIVMEAPLNISLLPSTGASVAQPSASPLEXVESPYSYDSIKLEER
LCPSFEEAEAPTSFVLPDIVMEAPLNISLLPSTGASVAQPSASPLEXVESPYSYDSIKLEER

human FSDYSEMAKVEQFVPDHSELVEDSSPDSEPVDASDDS1PDVPQKQDETVMLVKESLTET
monkey FSDYSEMAKVEQFVPDHSELVEDSSPDSEPVDLFSDDS1PDVPQKQDEAVMLKKENLPET
rat FSNYSELAFEKSVPBHAELVEDSSPSSEPVDLFSDDS1PBVPQTQEBAVMLKKESLTEV
mouse FSNYSELAFEKSVPDHCELVDDSSPSSEPVDLFSDDS1PBVPQTQEBAVMLKKESLTEV
FSNYSELAFEKSVPDHCELVDDSSPSSEPVDLFSDDS1PBVPQTQEBAVMLKKESLTEV

SEQUENCE LISTING

<110> Novartis AG

<120> Organic Compound

<130> 4-32761P1/UNZ

<160> 44

<170> PatentIn version 3.1

<210> 1

<211> 18

<212> PRT

<213> Rattus norvegicus

<220>

<221> PEPTIDE

<222> (1)..(18)

<223> rat NogoA_623-640

<400> 1

Ser Tyr Asp Ser Ile Lys Leu Glu Pro Glu Asn Pro Pro Pro Tyr Glu 1 $$\rm 10$$

Glu Ala

<210> 2

<211> 221

<212> PRT

<213> Mus musculus

<220>

<221> CHAIN

<222> (1)..(221)

<223> Variable part of Heavy Chain of 11C7 with leader sequence

<400> 2

Met Asp Phe Gly Leu Ile Phe Phe Ile Val Gly Leu Leu Lys Gly Val 1 5 10 15

Gln Cys Glu Val Lys Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro $20 \hspace{1.5cm} 25 \hspace{1.5cm} .30$

Gly Gly Ser Leu Lys Leu Ser Cys Val Val Ser Gly Phe Asp Phe Arg $35 \hspace{1cm} 40 \hspace{1cm} 45 \hspace{1cm}$

Arg Asn Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 60

Trp Ile Gly Glu Ile Asn Pro Asp Ser Ser Lys Ile Asn Tyr Thr Pro 65 70 75 80

Ser Leu Lys Asp Lys Phe Ile Ile Ser Arg Asp Asn Ala Lys Asn Thr 85 90 95

Leu Tyr Leu Gln Val Ser Thr Val Arg Ser Glu Asp Thr Ala Leu Tyr 100 105 110

Tyr Cys Val Arg Pro Val Trp Met Tyr Ala Met Asp Tyr Trp Gly Gln 115 120 125

Gly Thr Ser Val Thr Val Ser Ser Ala Lys Thr Thr Pro Pro Ser Val

130 135 140

Tyr Pro Leu Ala Pro Gly Ser Ala Ala Gln Thr Asn Ser Met Val Thr 145 150 155 160

Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr Val Thr 165 170 175

Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro Ala Val 180 185 190

Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val Pro Ser 195 200 205

Ser Thr Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala 210 215 220

<210> 3

<211> 238

<212> PRT

<213> Mus musculus

<220>

<221> CHAIN

<222> (1)..(238)

<223> Light Chain of 11C7 with leader sequence

<400> 3

Met Ser Pro Ala Gln Phe Leu Phe Leu Leu Val Leu Trp Ile Arg Glu 1 5 10 15

Thr Ser Gly Asp Val Leu Leu Thr Gln Thr Pro Leu Thr Leu Ser Ile $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Thr Ile Gly Gln Pro Ala Ser Ile Ser Cys Lys Ser Ser Gln Ser Leu 35 40 45

Leu His Ser Asp Gly Lys Thr Tyr Leu Asn Trp Leu Leu Gln Arg Pro $50 \ \ 55 \ \ 60$

Gly Gln Ser Pro Lys Arg Leu Ile Tyr Leu Val Ser Lys Leu Asp Ser 65 70 75 80

Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr 85 90 95

Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Leu Gly Leu Tyr Tyr Cys 100 105 110

Trp Gln Gly Thr His Phe Pro Gln Thr Phe Gly Gly Gly Thr Lys Leu

Glu Ile Lys Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro

Ser Ser Glu Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu

Asn Asn Phe Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly

Ser Glu Arg Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser

Lys Asp Ser Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp

Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr

Ser Thr Ser Pro Ile Val Lys Ser Phe Asn Arg Gly Glu Cys

<210> 4

<211> 3919

<212> DNA

WO 2004/052932 PCT/EP2003/013960 7/76

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(3579)

<223> Human NogoA

<400> 4

atg gaa gac ctg gac cag tot cot ctg gtc tog toc tog gac agc cca Met Glu Asp Leu Asp Gln Ser Pro Leu Val Ser Ser Ser Asp Ser Pro 5 1 10 15

ccc cgg ccg cag ccc gcg ttc aag tac cag ttc gtg agg gag ccc gag 96 Pro Arg Pro Gln Pro Ala Phe Lys Tyr Gln Phe Val Arg Glu Pro Glu

20 25 30

48

144 Asp Glu Glu Glu Glu Glu Glu Glu Glu Glu Asp Glu Asp Glu Asp 35 40 45

ctg gag gag etg gag gtg etg gag agg aag eec gee gee ggg etg tee 192

Leu Glu Glu Leu Glu Val Leu Glu Arg Lys Pro Ala Ala Gly Leu Ser 50 55 60

geg gec cea gtg cec acc gec cet gec gec ggc geg cec etg atg gac 240

Ala Ala Pro Val Pro Thr Ala Pro Ala Ala Gly Ala Pro Leu Met Asp 65 70

tte gga aat gae tte gtg eeg eeg geg eec egg gga eec etg eeg gee

75

80

Phe Gly Asn Asp Phe Val Pro Pro Ala Pro Arg Gly Pro Leu Pro Ala

get eec eec gte gee eeg gag egg eag eeg tet tgg gae eeg age eeg Ala Pro Pro Val Ala Pro Glu Arg Gln Pro Ser Trp Asp Pro Ser Pro gtg teg teg ace gtg eee geg eea tee eeg etg tet get gee gea gte Val Ser Ser Thr Val Pro Ala Pro Ser Pro Leu Ser Ala Ala Ala Val teg eec tee aag etc eet gag gae gae gag eet eeg gee egg eet eec Ser Pro Ser Lys Leu Pro Glu Asp Asp Glu Pro Pro Ala Arg Pro Pro cet eet eec eeg gee age gtg age eec eag gea gag eec gtg tgg ace Pro Pro Pro Pro Ala Ser Val Ser Pro Gln Ala Glu Pro Val Trp Thr cog coa que coq que coe que que coe coe tec ace coq que que con Pro Pro Ala Pro Ala Pro Ala Ala Pro Pro Ser Thr Pro Ala Ala Pro aag ogc agg ggc too tog ggc toa gtg gat gag acc ott tit got ott Lys Arg Arg Gly Ser Ser Gly Ser Val Asp Glu Thr Leu Phe Ala Leu cct gct gca tct gag cct gtg ata cgc tcc tct gca gaa aat atg gac Pro Ala Ala Ser Glu Pro Val Ile Arg Ser Ser Ala Glu Asn Met Asp ttg aag gag cag cca ggt aac act att teg get ggt caa gag gat tte Leu Lys Glu Gln Pro Gly Asn Thr Ile Ser Ala Gly Gln Glu Asp Phe cca tot gto otg ott gaa act get get tot ott ott et tot otg tot cet Pro Ser Val Leu Leu Glu Thr Ala Ala Ser Leu Pro Ser Leu Ser Pro

ctc	tca	gcc	gct	tct	ttc	aaa	gaa	cat	gaa	tac	ctt	ggt	aat	ttg	tca	768
Leu	Ser	Ala	Ala	Ser	Phe	Lys	Glu	His	Glu	Tyr	Leu	Gly	Asn	Leu	Ser	
				245					250					255		
aca	gta	tta	ccc	act	gaa	gga	aca	ctt	caa	gaa	aat	gtc	agt	gaa	gct	816
Thr	Val	Leu	Pro	Thr	Glu	Gly	Thr	Leu	Gln	Glu	Asn	Val	Ser	Glu	Ala	
			260					265					270			
tct	aaa	gag	gtc	tca	gag	aag	gca	aaa	act	cta	ctc	ata	gat	aga	gat	864
Ser	Lys	Glu	Val	Ser	Glu	Lys	Ala	Lys	Thr	Leu	Leu	Ile	Asp	Arg	Asp	
		275					280					285				
tta	aca	gag	ttt	tca	gaa	tta	gaa	tac	tca	gaa	atg	gga	tca	tcg	ttc	912
Leu	Thr	Glu	Phe	Ser	Glu	Leu	Glu	Tyr	Ser	Glu	Met	Gly	Ser	Ser	Phe	
	290					295					300					
agt	gtc	tct	cca	aaa	gca	gaa	tct	gcc	gta	ata	gta	gca	aat	cct	agg	960
Ser	Val	Ser	Pro	Lys	Ala	Glu	Ser	Ala	Val	Ile	Val	Ala	Asn	Pro	Arg	
305					310					315					320	+1
gaa	gaa	ata	atc	gtg	aaa	aat	aaa	gat	gaa	gaa	gag	aag	tta	gtt	agt	1008
Glu	Glu	Ile	Ile	Val	Lys	Asn	Lys	Asp	Glu	Glu	Glu	Lys	Leu	Val	Ser	
				325					330					335		
aat	aac	atc	ctt	cat	aat	caa	caa	gag	tta	cct	aca	gct	ctt	act	aaa	1056
Asn	Asn	Ile	Leu	His	Asn	Gln	Gln	Glu	Leu	Pro	Thr	Ala	Leu	Thr	Lys	
			340					345					350			
ttg	gtt	aaa	gag	gat	gaa	gtt	gtg	tct	tca	gaa	aaa	gca	aaa	gac	agt	1104
Leu	Val	Lys	Glu	Asp	Glu	Val	Val	Ser	Ser	Glu	Lys	Ala	Lys	Asp	Ser	
		355					360					365				
ttt	aat	gaa	aag	aga	gtt	gca	gtg	gaa	gct	cct	atg	agg	gag	gaa	tat	1152
Phe	Asn	Glu	Lys	Arg	Val	Ala	Val	Glu	Ala	Pro	Met	Arg	Glu	Glu	Tyr	
	370					375					380					

gca gac ttc aaa cca ttt gag cga gta tgg gaa gtg aaa gat agt aag Ala Asp Phe Lys Pro Phe Glu Arg Val Trp Glu Val Lys Asp Ser Lys gaa gat agt gat atg ttg get get gga ggt aaa ate gag age aac ttg Glu Asp Ser Asp Met Leu Ala Ala Gly Gly Lys Ile Glu Ser Asn Leu gaa agt aaa gtg gat aaa aaa tgt ttt gca gat agc ctt gag caa act Glu Ser Lys Val Asp Lys Lys Cys Phe Ala Asp Ser Leu Glu Gln Thr Asn His Glu Lvs Asp Ser Glu Ser Ser Asn Asp Asp Thr Ser Phe Pro agt acg cca gaa ggt ata aag gat cgt tca gga gca tat atc aca tgt Ser Thr Pro Glu Gly Ile Lys Asp Arg Ser Gly Ala Tyr Ile Thr Cys get eee ttt aac eea gea gea act gag age att gea aca aac att ttt Ala Pro Phe Asn Pro Ala Ala Thr Glu Ser Ile Ala Thr Asn Ile Phe cct ttg tta gga gat cct act tca gaa aat aag acc gat gaa aaa aaa Pro Leu Leu Gly Asp Pro Thr Ser Glu Asn Lys Thr Asp Glu Lys Lys ata gaa gaa aag aag gee caa ata gta aca gag aag aat act age ace Ile Glu Glu Lys Lys Ala Gln Ile Val Thr Glu Lys Asn Thr Ser Thr aaa aca tca aac cct ttt ctt gta gca gca cag gat tct gag aca gat Lys Thr Ser Asn Pro Phe Leu Val Ala Ala Gln Asp Ser Glu Thr Asp tat gtc aca aca gat aat tta aca aag gtg act gag gaa gtc gtg gca

Tyr Val Thr Thr Asp Asn Leu Thr Lys Val Thr Glu Glu Val Val Ala 530 535 540 aac atg cet gaa gge etg act eea gat tta gta eag gaa gea tgt gaa 1680 Asn Met Pro Glu Gly Leu Thr Pro Asp Leu Val Gln Glu Ala Cvs Glu 545 550 555 560 agt gaa ttg aat gaa gtt act ggt aca aag att gct tat gaa aca aaa 1728 Ser Glu Leu Asn Glu Val Thr Gly Thr Lys Ile Ala Tyr Glu Thr Lys 565 570 575 atg gac ttg gtt caa aca tca gaa gtt atg caa gag tca ctc tat cct 1776 Met Asp Leu Val Gln Thr Ser Glu Val Met Gln Glu Ser Leu Tyr Pro 580 585 590 gca gca cag ctt tgc cca tca ttt gaa gag tca gaa gct act cct tca 1824 Ala Ala Gln Leu Cvs Pro Ser Phe Glu Glu Ser Glu Ala Thr Pro Ser 595 600 605 cca gtt ttg cct gac att gtt atg gaa gca cca ttg aat tct gca gtt 1872 Pro Val Leu Pro Asp Ile Val Met Glu Ala Pro Leu Asn Ser Ala Val 610 615 620 cet agt get ggt get tee gtg ata eag eec age tea tea eea tta gaa 1920 -Pro Ser Ala Gly Ala Ser Val Ile Gln Pro Ser Ser Ser Pro Leu Glu 625 630 635 640 get tet tea get aat tat gaa age ata aaa eat gag eet gaa aac eee 1968 Ala Ser Ser Val Asn Tyr Glu Ser Ile Lys His Glu Pro Glu Asn Pro 645 650 655 cca cca tat gaa gag gcc atg agt gta tca cta aaa aaa gta tca gga 2016 Pro Pro Tyr Glu Glu Ala Met Ser Val Ser Leu Lys Lys Val Ser Gly 660 665 . 670 ata aag gaa gaa att aaa gag cct gaa aat att aat gca gct ctt caa 2064 Ile Lys Glu Glu Ile Lys Glu Pro Glu Asn Ile Asn Ala Ala Leu Gln

675	6	580	685	
		Ger Ile Ala Cys	gat tta att aaa gaa Asp Leu Ile Lys Glu 700	2112
			tct gat tat tca gaa Ser Asp Tyr Ser Glu 720	2160
			tct gag cta gtt gaa Ser Glu Leu Val Glu 735	2208
	Asp Ser Glu P		ttt agt gat gat tca Phe Ser Asp Asp Ser 750	2256
	Pro Gln Lys G		ytg atg ctt gtg aaa Val Met Leu Val Lys 765	2304 [.]
		he Glu Ser Met 1	ata gaa tat gaa aat Ile Glu Tyr Glu Asn 780	2352
			gga aag cca tat ttg Ely Lys Pro Tyr Leu 800	2400
gaa tot ttt aag	ctc agt tta ga	at aac aca aaa g sp Asn Thr Lys A	gat acc ctg tta cct asp Thr Leu Leu Pro	2448
			815 att cct ttg cag atg le Pro Leu Gln Met 830	2496

gag	gag	ctc	agt	act	gca	gtt	tat	tca	aat	gat	gac	tta	ttt	att	tct	2544
Glu	Glu	Leu	Ser	Thr	Ala	Val	Tyr	Ser	Asn	Asp	Asp	Leu	Phe	Ile	Ser	
		835					840					845				
aag	gaa	gca	cag	ata	aga	gaa	act	gaa	acg	ttt	tca	gat	tca	tct	cca	2592
Lys	Glu	Ala	Gln	Ile	Arg	Glu	Thr	Glu	Thr	Phe	Ser	Asp	Ser	Ser	Pro	
	850					855					860					
att	gaa	att	ata	gat	gag	ttc	cct	aca	ttg	atc	agt	tct	aaa	act	gat	2640
Ile	Glu	Ile	Ile	Asp	Glu	Phe	Pro	Thr	Leu	Ile	Ser	Ser	Lys	Thr	Asp	
865					870					875					880	
tca	ttt	tct	aaa	tta	gcc	agg	gaa	tat	act	gac	cta	gaa	gta	tcc	cac	2688
Ser	Phe	Ser	Lys	Leu	Ala	Arg	Glu	Tyr	Thr	Asp	Leu	Glu	Val	Ser	His	
				885					890					895		
aaa	agt	gaa	att	gct	aat	gcc	ccg	gat	gga	gct	ggg	tca	ttg	cct	tgc	2736
Lys	Ser	Glu	Ile	Ala	Asn	Ala	Pro	Asp	Gly	Ala	Gly	Ser	Leu	Pro	Cys	
			900					905					910			
aca	gaa	ttg	ccc	cat	gac	ctt	tct	ttg	aag	aac	ata	caa	ccc	aaa	gtt	2784
Thr	Glu	Leu	Pro	His	Asp	Leu	Ser	Leu	Lys	Asn	Ile	Gln	Pro	Lys	Val	
		915					920					925				
gaa	gag	aaa	atc	agt	ttc	tca	gat	gac	ttt	tct	aaa	aat	ggg	tct	gct	2832
Glu	Glu	Lys	Ile	Ser	Phe	Ser	Asp	Asp	Phe	Ser	Lys	Asn	Gly	Ser	Ala	
	930					935					940					
aca	tca	aag	gtg	ctc	tta	ttg	cct	cca	gat	gtt	tct	gct	ttg	gcc	act	2880
Thr	Ser	Lys	Val	Leu	Leu	Leu	Pro	Pro	Asp	Val	Ser	Ala	Leu	Ala	Thr	
945					950					955					960	
caa	gca	gag	ata	gag	agc	ata	gtt	aaa	ccc	aaa	gtt	ctt	gtg	aaa	gaa	2928
Gln	Ala	Glu	Ile	Glu	Ser	Ile	Val	Lys	Pro	Lys	Va1	Leu	Val	Lys	Glu	
				965					970					975		

gct	gag	aaa	aaa	ctt	cct	tcc g	at a	ca g	raa a	aa g	ag ga	ıc aç	ga to	a cca		2976
Ala	Glu	Lys	Lys	Leu	Pro	Ser A	sp T	hr G	lu I	ys G	lu As	p Ar	g Se	r Pro		
			980				9	85				99	90			
tct	gct	ata	ttt	tca	gca	gag c	tg	agt	aaa	act	tca g	tt	gtt	gac ct	c	3024
Ser	Ala	Ile	Phe	Ser	Ala	Glu I	eu	Ser	Lys	Thr	Ser V	al	Val	Asp Le	911	
		995				1	000				1	.005				
_			-	-		aag	-							_		3069
Leu	Tyr	-	Arg	Asp	Ile	Lys	_	Thr	Gly	Val			Gly	Ala		
	1010					1015					1020					
		le te e														
				_		tca	_		_		_			_		3114
ser	Leu 1025		. ren	Leu	Leu	Ser 1030		ınr	vaı	rne			· vai	ser		
	1023					1030					1035					
ata	aca	acc	tac	att	acc	ttq	aaa	ata	at-a	tat	ata	200	ata	agg		3159
-		-			-	Leu	-	_						_		3133
	1040					1045		Lou	Deu	501	1050		110	DOL		
						2020					1000					
ttt	agg	ata	tac	aag	ggt	gtg	atc	caa	gct	atc	caq	aaa	tca	gat		3204
Phe	Arg	Ile	Tyr	Lys	Gly	Val	Ile	Gln	Ala	Ile	Gln	Lys	Ser	Asp		
	1055					1060					1065			-		
gaa	ggc	cac	cca	ttc	agg	gca	tat	ctg	gaa	tct	gaa	gtt	gct	ata		3249
Glu	Gly	His	Pro	Phe	Arg	Ala	Tyr	Leu	Glu	Ser	Glu	Val	Ala	Ile		
	1070					1075					1080					
tct	gag	gag	ttg	gtt	cag	aag	tac	a gt	aat	tct	gct	ctt	ggt	cat		3294
Ser	Glu	Glu	Leu	Val	Gln	Lys	Tyr	Ser	Asn	Ser	Ala	Leu	Gly	His		
	1085					1090					1095					
gtg	aac	tgc	acg	ata	aag	gaa	ctc	agg	cgc	ctc	ttc	tta	gtt	gat		3339
Val		Cys	Thr	Ile	Lys	Glu	Leu	Arg	Arg	Leu	Phe	Leu	Val	Asp		
	1100					1105					1110					
gat	tta	gtt	gat	tct	ctg	aag	ttt	gca	gtg	ttg	atg	tgg	gta	ttt		3384

Asp	Leu 1115	Val	Asp	Ser	Leu	Lys 1120		Ala	Val	Leu	Met 1125	Trp	Val	Phe	
	1113					1120					1123				
acc	tat	gtt	ggt	gcc	ttg	ttt	aat	ggt	ctg	aca	cta	ctg	att	ttg	3429
Thr	Tyr	Val	Gly	Ala	Leu	Phe	Asn	Gly	Leu	Thr	Leu	Leu	Ile	Leu	
	1130					1135					1140				
gct	ctc	att	tca	ctc	ttc	agt	gtt	cct	gtt	att	tat	gaa	cgg	cat	3474
Ala	Leu	Ile	Ser	Leu	Phe	Ser	Val.	Pro	Val.	Ile	Tyr	Glu	Arg	His	
	1145					1150					1155				
car	qca	cac	ata	cat	cat	tat	cta	ara	c++	aca	aa+	224		at t	3519
_						Tyr						_		-	2213
	1160	GIII	LIC	nap	111.0	1165	neu	GTĀ	neu	AIG	1170	пув	ASII	val	
	1100					1103					1170				
aaa	gat	gct	atg	gct	aaa	atc	caa	gca	aaa	atc	cct	gga	ttg	aag	3564
Lys	Asp	Ala	Met	Ala	Lys	Ile	Gln	Ala	Lys	Ile	Pro	Gly	Leu	Lys	
	1175					1180					1185				
oac		aat	an a	tera	2226			++	+	2000	en est to e			ıaaggg	2610
	Lys			cga	aaac	gccca	ia ac	ıcaaı	Lagi	. agg	aguu	acc	LLLC	iaayyy	3619
my	1190	ALU	GLU												
gata	ttcat	t to	jatta	tacg	ggg	gaggg	rtc a	ggga	agaa	c ga	acctt	gac	gttg	cagtgc	3679
agtt	tcaca	ıg at	cgtt	gtta	gat	cttta	itt t	ttag	ccat	g ca	ctgtt	gtg	agga	aaaatt	3739
acct	gtctt	gac	tgcc	atgt	gtt	catca	tc t	taag	tatt	g ta	agctg	cta	tgta	tggatt	3799
taaa	ccgta	a to	atat	cttt	ttc	ctato	tg a	ggca	ctgg	t gg	aataa	aaa	acct	gtatat	3859
ttta	cttto	rt ta	rcaga	tagt	ctt	accac	at. c	t.t.aa	caac	t ta	cagag	ata :	ataa	agetag	3919
		-3				53-		- 23	9	-9	- ~9~9		~ ~29		

<211> 1192

<212> PRT

<213> Homo sapiens

<400> 5

Met Glu Asp Leu Asp Gln Ser Pro Leu Val Ser Ser Ser Asp Ser Pro 1 . . . 5 10 15

Pro Arg Pro Gln Pro Ala Phe Lys Tyr Gln Phe Val Arg Glu Pro Glu 20 25 30

Leu Glu Glu Leu Glu Val Leu Glu Arg Lys Pro Ala Ala Gly Leu Ser \$50\$ \$60\$

Ala Ala Pro Val Pro Thr Ala Pro Ala Ala Gly Ala Pro Leu Met Asp 65 70 75 80

Phe Gly Asn Asp Phe Val Pro Pro Ala Pro Arg Gly Pro Leu Pro Ala 85 90 95

Ala Pro Pro Val Ala Pro Glu Arg Gln Pro Ser Trp Asp Pro Ser Pro
100 105 110

Val Ser Ser Thr Val Pro Ala Pro Ser Pro Leu Ser Ala Ala Ala Val Ser Pro Ser Lys Leu Pro Glu Asp Asp Glu Pro Pro Ala Arg Pro Pro Pro Pro Pro Pro Ala Ser Val Ser Pro Gln Ala Glu Pro Val Trp Thr Pro Pro Ala Pro Ala Pro Ala Ala Pro Pro Ser Thr Pro Ala Ala Pro Lys Arg Arg Gly Ser Ser Gly Ser Val Asp Glu Thr Leu Phe Ala Leu Pro Ala Ala Ser Glu Pro Val Ile Arg Ser Ser Ala Glu Asn Met Asp 200 -Leu Lys Glu Gln Pro Gly Asn Thr Ile Ser Ala Gly Gln Glu Asp Phe Pro Ser Val Leu Leu Glu Thr Ala Ala Ser Leu Pro Ser Leu Ser Pro

Leu Ser Ala Ala Ser Phe Lys Glu His Glu Tyr Leu Gly Asn Leu Ser 245 250 250

Thr Val Leu Pro Thr Glu Gly Thr Leu Gln Glu Asn Val Ser Glu Ala

Ser Lys Glu Val Ser Glu Lys Ala Lys Thr Leu Leu Ile Asp Arg Asp

Leu Thr Glu Phe Ser Glu Leu Glu Tyr Ser Glu Met Gly Ser Ser Phe

Ser Val Ser Pro Lys Ala Glu Ser Ala Val Ile Val Ala Asn Pro Arg

Glu Glu Ile Ile Val Lys Asn Lys Asp Glu Glu Glu Lys Leu Val Ser

Asn Asn Ile Leu His Asn Gln Gln Glu Leu Pro Thr Ala Leu Thr Lys

Leu Val Lys Glu Asp Glu Val Val Ser Ser Glu Lys Ala Lys Asp Ser

Phe Asn Glu Lys Arg Val Ala Val Glu Ala Pro Met Arg Glu Glu Tyr

Ala Asp Phe Lys Pro Phe Glu Arg Val Trp Glu Val Lys Asp Ser Lys

Glu Asp Ser Asp Met Leu Ala Ala Gly Gly Lys Ile Glu Ser Asn Leu

19/76

Glu Ser Lys Val Asp Lys Lys Cys Phe Ala Asp Ser Leu Glu Gln Thr

Asn His Glu Lys Asp Ser Glu Ser Ser Asn Asp Asp Thr Ser Phe Pro

Ser Thr Pro Glu Gly Ile Lys Asp Arg Ser Gly Ala Tyr Ile Thr Cys

Ala Pro Phe Asn Pro Ala Ala Thr Glu Ser Ile Ala Thr Asn Ile Phe

Pro Leu Leu Gly Asp Pro Thr Ser Glu Asn Lys Thr Asp Glu Lys Lys

Ile Glu Glu Lys Lys Ala Gln Ile Val Thr Glu Lys Asn Thr Ser Thr

Lys Thr Ser Asn Pro Phe Leu Val Ala Ala Gln Asp Ser Glu Thr Asp

Tyr Val Thr Thr Asp Asn Leu Thr Lys Val Thr Glu Glu Val Val Ala

Asn Met Pro Glu Gly Leu Thr Pro Asp Leu Val Gln Glu Ala Cys Glu Ser Glu Leu Asn Glu Val Thr Gly Thr Lys Ile Ala Tyr Glu Thr Lys

565 570 575

Met Asp Leu Val Gln Thr Ser Glu Val Met Gln Glu Ser Leu Tyr Pro 580 585 590

Ala Ala Gln Leu Cys Pro Ser Phe Glu Glu Ser Glu Ala Thr Pro Ser $595 \hspace{1cm} 600 \hspace{1cm} 605$

Pro Val Leu Pro Asp Ile Val Met Glu Ala Pro Leu Asn Ser Ala Val 610 615 620

Pro Ser Ala Gly Ala Ser Val Ile Gln Pro Ser Ser Ser Pro Leu Glu 625 630 635 640

Ala Ser Ser Val Asn Tyr Glu Ser Ile Lys His Glu Pro Glu Asn Pro 645 650 655

Pro Pro Tyr Glu Glu Ala Met Ser Val Ser Leu Lys Lys Val Ser Gly 660 665 670

Ile Lys Glu Glu Ile Lys Glu Pro Glu Asn Ile Asn Ala Ala Leu Gln 675 680 685

Glu Thr Glu Ala Pro Tyr Ile Ser Ile Ala Cys Asp Leu Ile Lys Glu 690 695 700

Thr Lys Leu Ser Ala Glu Pro Ala Pro Asp Phe Ser Asp Tyr Ser Glu Met Ala Lys Val Glu Gln Pro Val Pro Asp His Ser Glu Leu Val Glu Asp Ser Ser Pro Asp Ser Glu Pro Val Asp Leu Phe Ser Asp Asp Ser Ile Pro Asp Val Pro Gln Lys Gln Asp Glu Thr Val Met Leu Val Lys Glu Ser Leu Thr Glu Thr Ser Phe Glu Ser Met Ile Glu Tyr Glu Asn Lys Glu Lys Leu Ser Ala Leu Pro Pro Glu Gly Gly Lys Pro Tyr Leu

Glu Ser Phe Lys Leu Ser Leu Asp Asn Thr Lys Asp Thr Leu Leu Pro

Asp Glu Val Ser Thr Leu Ser Lys Lys Glu Lys Ile Pro Leu Gln Met

Glu Glu Leu Ser Thr Ala Val Tyr Ser Asn Asp Asp Leu Phe Ile Ser

860

Lys Glu Ala Gln Ile Arg Glu Thr Glu Thr Phe Ser Asp Ser Ser Pro

855

850

Ile Glu Ile Ile Asp Glu Phe Pro Thr Leu Ile Ser Ser Lys Thr Asp

865 870 875 880

Ser Phe Ser Lys Leu Ala Arg Glu Tyr Thr Asp Leu Glu Val Ser His 885 890 895

Lys Ser Glu Ile Ala Asn Ala Pro Asp Gly Ala Gly Ser Leu Pro Cys 900 905 910

Thr Glu Leu Pro His Asp Leu Ser Leu Lys Asn Ile Gln Pro Lys Val 915 920 925

Glu Glu Lys Ile Ser Phe Ser Asp Asp Phe Ser Lys Asn Gly Ser Ala 930 935 940

Thr Ser Lys Val Leu Leu Leu Pro Pro Asp Val Ser Ala Leu Ala Thr 945 950 955 960

Gln Ala Glu Ile Glu Ser Ile Val Lys Pro Lys Val Leu Val Lys Glu $965 \hspace{1.5cm} 970 \hspace{1.5cm} 975$

Ala Glu Lys Lys Leu Pro Ser Asp Thr Glu Lys Glu Asp Arg Ser Pro 980 985 990

Ser Ala Ile Phe Ser Ala Glu Leu Ser Lys Thr Ser Val Val Asp Leu

Leu Tyr Trp Arg Asp Ile Lys Lys Thr Gly Val Val Phe Gly Ala Ser Leu Phe Leu Leu Ser Leu Thr Val Phe Ser Ile Val Ser 1.035 Val Thr Ala Tyr Ile Ala Leu Ala Leu Leu Ser Val Thr Ile Ser Phe Arg Ile Tyr Lys Gly Val Ile Gln Ala Ile Gln Lys Ser Asp Glu Gly His Pro Phe Arg Ala Tyr Leu Glu Ser Glu Val Ala Ile Ser Glu Glu Leu Val Gln Lys Tyr Ser Asn Ser Ala Leu Gly His Val Asn Cys Thr Ile Lys Glu Leu Arg Arg Leu Phe Leu Val Asp Asp Leu Val Asp Ser Leu Lys Phe Ala Val Leu Met Trp Val Phe

Thr Tyr Val Gly Ala Leu Phe Asn Gly Leu Thr Leu Leu Ile Leu

WO 2004/052932 PCT/EP2003/013960 24/76

Ala Leu Ile Ser Leu Phe Ser Val Pro Val Ile Tyr Glu Arg His 1145 1150 1155

Gln Ala Gln Ile Asp His Tyr Leu Gly Leu Ala Asn Lys Asn Val 1160 1165 1170

Lys Asp Ala Met Ala Lys Ile Gln Ala Lys Ile Pro Gly Leu Lys 1175 1180 1185

Arg Lys Ala Glu 1190

<210> 6

<211> 18

<212> PRT

<213> Homo sapiens

<220>

<221> PEPTIDE

<222> (1)..(18)

<223> Human NogoA 623-640

<400> 6

Asn Tyr Glu Ser Ile Lys His Glu Pro Glu Asn Pro Pro Pro Tyr Glu

1 5 10 15

Glu Ala

<210> 7

<211> 819

<212> PRT

<213> Homo sapiens

<220>

<221> PEPTIDE

<222> (1)..(819)

<223> human Nig

<400> 7

Asp Glu Thr Leu Phe Ala Leu Pro Ala Ala Ser Glu Pro Val Ile Arg 1 5 10 15

Ser Ser Ala Glu Asn Met Asp Leu Lys Glu Gln Pro Gly Asn Thr Ile

Ser Ala Gly Gln Glu Asp Phe Pro Ser Val Leu Leu Glu Thr Ala Ala

Ser Leu Pro Ser Leu Ser Pro Leu Ser Ala Ala Ser Phe Lys Glu His

Glu Tyr Leu Gly Asn Leu Ser Thr Val Leu Pro Thr Glu Gly Thr Leu

Gln Glu Asn Val Ser Glu Ala Ser Lys Glu Val Ser Glu Lys Ala Lys

Thr Leu Leu Ile Asp Arg Asp Leu Thr Glu Phe Ser Glu Leu Glu Tyr

Ser Glu Met Gly Ser Ser Phe Ser Val Ser Pro Lys Ala Glu Ser Ala

Val Ile Val Ala Asn Pro Arg Glu Glu Ile Ile Val Lys Asn Lys Asp

Glu Glu Glu Lys Leu Val Ser Asn Asn Ile Leu His Asn Gln Glu Glu

Leu	Pro	Thr	Ala	Leu 165	Thr	Lys	Leu	Val	Lys 170	Glu	Asp	Glu	Val	Val 175	Ser
Ser	Glu	Lys	Ala 180	Lys	Asp	Ser	Phe	Asn 185	Glu	Lys	Arg	Val	Ala 190	Val	Glu
Ala	Pro	Met 195	Arg	Glu	Glu	Tyr	Ala 200	Asp	Phe	Lys	Pro	Phe 205	Glu	Arg	Val
Trp	Glu 210	Val	Lys	Asp	Ser	Lys 215	Glu	Asp	Ser	Asp	Met 220	Leu	Ala	Ala	Gly
Gly 225	Lys	Ile	Glu	Ser	Asn 230	Leu	Glu	Ser	Lys	Val 235	Asp	Lys	Lys	Cys	Phe 240
Ala	Asp	Ser	Leu	Glu 245	Gln	Thr	Asn	His	Glu 250	Lys	Asp	Ser	Glu	Ser 255	Ser
Asn	Asp	Asp	Thr 260	Ser	Phe	Pro	Ser	Thr 265	Pro	Gl u	Gly	Ile	Lys 270	Asp	Arg
Ser	Gly	Ala 275	Tyr	Ile	The		Ala 280	Pro	Phe	Asn	Pro	Ala 285	Ala	Thr	Glu
Ser	Ile 290	Ala	Thr	Asn	Ile	Phe 295	Pro	Leu	Leu	Gly	Asp 300	Pro	Thr	Ser	Glu

Asn Lys Thr Asp Glu Lys Lys Ile Glu Glu Lys Lys Ala Gln Ile Val

Thr Glu Lys Asn Thr Ser Thr Lys Thr Ser Asn Pro Phe Leu Val Ala

Ala Gln Asp Ser Glu Thr Asp Tyr Val Thr Thr Asp Asn Leu Thr Lys

Val Thr Glu Glu Val Val Ala Asn Met Pro Glu Gly Leu Thr Pro Asp . 365

Leu Val Gln Glu Ala Cys Glu Ser Glu Leu Asn Glu Val Thr Gly Thr

Lys Ile Ala Tyr Glu Thr Lys Met Asp Leu Val Gln Thr Ser Glu Val

Met Gln Glu Ser Leu Tyr Pro Ala Ala Gln Leu Cys Pro Ser Phe Glu

Glu Ser Glu Ala Thr Pro Ser Pro Val Leu Pro Asp Ile Val Met Glu

Ala Pro Leu Asn Ser Ala Val Pro Ser Ala Gly Ala Ser Val Ile Gln

Pro Ser Ser Ser Pro Leu Glu Ala Ser Ser Val Asn Tyr Glu Ser Ile

465 470 475 480

Ser Leu Lys Lys Val Ser Gly Ile Lys Glu Glu Ile Lys Glu Pro Glu
485 490 495

Asn Ile Asn Ala Ala Leu Gln Glu Thr Glu Ala Pro Tyr Ile Ser Ile
500 505 510

Lys His Glu Pro Glu Asn Pro Pro Pro Tyr Glu Glu Ala Met Ser Val

Ala Cys Asp Leu Ile Lys Glu Thr Lys Leu Ser Ala Glu Pro Ala Pro 515 520 525

Asp Phe Ser Asp Tyr Ser Glu Met Ala Lys Val Glu Gln Pro Val Pro 530 535 540

Asp His Ser Glu Leu Val Glu Asp Ser Ser Pro Asp Ser Glu Pro Val 545 550 555 560

Asp Leu Phe Ser Asp Asp Ser Ile Pro Asp Val Pro Gln Lys Gln Asp 565 570 575

Glu Thr Val Met Leu Val Lys Glu Ser Leu Thr Glu Thr Ser Phe Glu
580 585 590

Ser Met Ile Glu Tyr Glu Asn Lys Glu Lys Leu Ser Ala Leu Pro Pro 595 600 605

Glu Gly Gly Lys Pro Tyr Leu Glu Ser Phe Lys Leu Ser Leu Asp Asn

Thr Lys Asp Thr Leu Leu Pro Asp Glu Val Ser Thr Leu Ser Lys Lys

Glu Lys Ile Pro Leu Gln Met Glu Glu Leu Ser Thr Ala Val Tyr Ser

Asn Asp Asp Leu Phe Ile Ser Lys Glu Ala Gln Ile Arg Glu Thr Glu

Thr Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr

Leu Ile Ser Ser Lys Thr Asp Ser Phe Ser Lys Leu Ala Arg Glu Tyr

Thr Asp Leu Glu Val Ser His Lys Ser Glu Ile Ala Asn Ala Pro Asp

Gly Ala Gly Ser Leu Pro Cys Thr Glu Leu Pro His Asp Leu Ser Leu

Lys Asn Ile Gln Pro Lys Val Glu Glu Lys Ile Ser Phe Ser Asp Asp

Phe Ser Lys Asn Gly Ser Ala Thr Ser Lys Val Leu Leu Leu Pro Pro 755 760 765

Asp Val Ser Ala Leu Ala Thr Gln Ala Glu Ile Glu Ser Ile Val Lys 770 775 780

Pro Lys Val Leu Val Lys Glu Ala Glu Lys Lys Leu Pro Ser Asp Thr 785 790 795 800

Glu Lys Glu Asp Arg Ser Pro Ser Ala Ile Phe Ser Ala Glu Leu Ser 805 810 815

Lys Thr Ser

<210> 8

<211> 10

<212> PRT

<213> Mus musculus

<220>

<221> BINDING

<222> (1)..(10)

<223> hypervariable part of heavy chain of 11C7

WO 2004/052932 PCT/EP2003/013960

<400> 8

Gly Phe Asp Phe Arg Arg Asn Trp Met Ser

1

5

10

<210> 9

<211> 17

<212> PRT

<213> Mus musculus

<220>

<221> BINDING

<222> (1)..(17)

<223> hypervariable part of heavy chain of 11C7

<400> 9

Glu Ile Asn Pro Asp Ser Ser Lys Ile Asn Tyr Thr Pro Ser Leu Lys 1 \$10\$

Asp

<210> 10

<211> 9

<212> PRT

<213> Mus musculus

<220>

<221> BINDING

<222> (1)..(9)

<223> hypervariable part of heavy chain of 11C7

<400> 10

Pro Val Trp Met Tyr Ala Met Asp Tyr

Т

<210> 11

<211> 16

<212> PRT

<213> Mus musculus

<220>

<221> BINDING

<222> (1)..(16)

<223> hypervariable part of light chain of 11C7

<400> 11

Lys Ser Ser Gln Ser Leu Leu His Ser \mbox{Asp} Gly Lys Thr Tyr Leu \mbox{Asn} 1 \$10\$

<210> 12

<211> 7

<212> PRT

<213> Mus musculus

<220>

<221> BINDING

<222> (1)..(7)

<223> hypervariable part of light chain of 11C7

<400> 12

Leu Val Ser Lys Leu Asp Ser

1

5

<210> 13

<211> 9

<212> PRT

<213> Mus musculus

<220>

<221> BINDING

<222> (1)..(9)

<223> hypervariable part of light chain of 11C7

<400> 13

Trp Gln Gly Thr His Phe Pro Gln Thr

1

5

<210> 14

30

<211> 30

<212> DNA

<213> Mus musculus

<220>

<221> misc_binding

<222> (1)..(30)

<223> DNA-CDR1-11C7

<400> 14

ggattcgatt ttagaagaaa ttggatgagt

<210> 15

<211> 51

<212> DNA

<213> Mus musculus

<220>

<221> misc_binding

<222> (1)..(51)

<223> DNA-CDR2-11C7

<400> 15

gaaattaatc cagatagcag taagataaac tatacgccat ctctaaagga t 51

<210> 16

<211> 27

<212> DNA

<213> Mus musculus

<220>

<221> misc_binding

<222> (1)..(27)

<223> DNA-CDR3-11C7

<400> 16

coggtetgga tgtatgetat ggaetac

27

<210> 17

<211> 48

<212> DNA

<213> Mus musculus

<220>

<221> misc_binding

<222> (1)..(48)

<223> DNA-CDR'1-11C7

<400> 17

aagtcaagtc agagcctctt gcatagtgat ggaaagacat atttgaat

48

<210> 18

<211> 21

<212> DNA

<213> Mus musculus

<220>

<221> misc_binding

<222> (1)..(21)

<223> DNA-CDR'2-11C7

<400> 18

ctggtgtcta aactggactc t 21

<210> 19

<211> 27

<212> DNA

<213> Mus musculus

<220>

<221> misc_binding

<222> (1)..(27)

<223> DNA-CDR'3-11C7

<400> 19

tggcaaggta cacattttcc tcagacg

27

<210> 20

40

<211> 54

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (1)..(54)

<223> leader sequence for heavy chain of 11C7

<400> 20

atg gat ttt ggg ctg att ttt ttt att gtt ggt ctt tta aaa ggg gtc 48
Met Asp Phe Gly Leu Ile Phe Phe Ile Val Gly Leu Leu Lys Gly Val
1 5 10 15

cag tgt 54 Gln Cys

<210> 21

<211> 18

<212> PRT

<213> Mus musculus

<400> 21

Met Asp Phe Gly Leu Ile Phe Phe Ile Val Gly Leu Leu Lys Gly Val

1 5

10 15

48

Gln Cys

<210> 22

<211> 57

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (1)..(57)

<223> leader sequence for 11C7-light chain

<400> 22

atg agt cet gee eag tte etg ttt etg tta gtg etc tgg att egg gaa Met Ser Pro Ala Gln Phe Leu Phe Leu Leu Val Leu Trp Ile Arg Glu

1 5 10 15

PCT/EP2003/013960

42/76

acc agc ggt

Thr Ser Gly

57

<210> 23

<211> 19

<212> PRT

<213> Mus musculus

<400> 23

Met Ser Pro Ala Gln Phe Leu Phe Leu Leu Val Leu Trp Ile Arg Glu

1 5 10 15

Thr Ser Gly

<210> 24

<211> 181

<212> PRT

<213> Homo sapiens

<220>

<221> PEPTIDE

<222> (1)..(181)

<223> human Nig-D20

<400> 24

Gly Thr Lys Ile Ala Tyr Glu Thr Lys Met Asp Leu Val Gln Thr Ser 1 5 10 15

Glu Val Met Glu Ser Leu Tyr Pro Ala Ala Gln Leu Cys Pro Ser $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Phe Glu Glu Ser Glu Ala Thr Pro Ser Pro Val Leu Pro Asp Ile Val 35 40 45

Met Glu Ala Pro Leu Asn Ser Ala Val Pro Ser Ala Gly Ala Ser Val 50 55 60

Ile Gln Pro Ser Ser Ser Pro Leu Glu Ala Ser Ser Val Asn Tyr Glu 65 70 75 80

Ser Ile Lys His Glu Pro Glu Asn Pro Pro Pro Tyr Glu Glu Ala Met 85 90 95

Ser Val Ser Leu Lys Lys Val Ser Gly Ile Lys Glu Glu Ile Lys Glu
100 105 110

Pro Glu Asn Ile Asn Ala Ala Leu Gln Glu Thr Glu Ala Pro Tyr Ile 115 120 125

Ser Ile Ala Cys Asp Leu Ile Lys Glu Thr Lys Leu Ser Ala Glu Pro 130 135 140

Ala Pro Asp Phe Ser Asp Tyr Ser Glu Met Ala Lys Val Glu Glu Pro $145 \hspace{1cm} 150 \hspace{1cm} 155 \hspace{1cm} 160 \hspace{1cm}$

Val Pro Asp His Ser Glu Leu Val Glu Asp Ser Ser Pro Asp Ser Glu $165 \hspace{1.5cm} . \hspace{1.5cm} 170 \hspace{1.5cm} 175$

Pro Val Asp Leu Phe 180

<210> 25

<211> 3492

<21.2> DNA

<213> Rattus norvegicus

<220>

<221> CDS

<222> (1)..(3492)

<223> rat NogoA

<40	00>	25															
															e age		48
Met	Glu	Asp) Ile) Asp	Gln	Ser	Ser	Leu	ı Val	Ser	Sea	r Sea	Th	Ası	Ser		
1				5					10					15			
ccg	ccc	cgg	cct	ccg	ccc	gcc	ttc	aag	tac	cag	tto	gtg	g acc	gag	cee		96
Pro	Pro	Arg	Pro	Pro	Pro	Ala	Phe	Lys	Tyr	Gln	Phe	va]	Thr	Glu	Pro		
			20					25					30				
gag	gac	gag	gag	gac	gag	aaa	gag	gag	. aaa	gac	gao	roman	nen 1	and a	gac	1	44
															Asp	.1	**
		35		LLOD	Cau	OLU	40	GLU	GIU	yen	GIU		GIU	ASL.	Asp		
		33					40					45					
gag	gac	cta	gag	gaa	ctg	gag	gtg	ctg	gag	agg	aag	ccc	gca	gcc	ggg	1	92
G1u	Asp	Leu	Glu	Glu	Leu	Glu	Val	Leu	Glu	Arg	Lys	Pro	Ala	Ala	Gly		
	50					55					60						
cta	tcc	aca	act	aca	ata	cca	ccc	aaa	aaa	aaa	~~~	ccg	aba				40
												Pro		_	_	2	40
65	DCI	TILC	rua	Ма	70	FIO	FIU	ALG	ALA		ALA	Pro	Leu	Leu	_		
0.5					70					75					80		
ttc	agc	agc	gac	tcg	gtg	ccc	ccc	gcg	ccc	cgc	ggg	ccg	ctg	ccg	gcc	28	88
Phe	Ser	Ser	Asp	Ser	Val	Pro	Pro	Ala	Pro	Arg	Gly	Pro	Leu	Pro	Ala		
				85					90					95			
700	aaa	aat	~~~	aat	aab							gaa					
													-	_		33	36
та	PLO	PLO		ALA	PIO	GIU	Arg		Pro	Ser	ıı.rp	Glu		Ser	Pro		
			100					105					110				
jcg	gcg	ccc	gcg	cca	tcc	ctg	ccg	ccc	gct	gcc	gca	gtc	ctg	ccc	tee	38	4
la	Ala	Pro	Ala	Pro	Ser	Leu	Pro	Pro	Ala	Ala	Ala	Val	Leu	Pro	Ser		
		115					120					125					

aag	g cto	cca	a gaç	gad	gad	gag	cct	ccc	geg	gag	g cc	c cc	g cci	t cc	gccg	432
Lys	Let	ı Pro	o Glu	ı Ası) Ası	Glu	Pro	Pro	Ala	a Arg	g Pr	o Pro	Pro	o Pro	Pro	
	130)				135					14	0				
cca	gco	gg	geg	ago	ccc	ctg	geg	gag	ccc	gc	ge	g ccc	cct	te	acg	480
Pro	Ala	Gly	/ Ala	Ser	Pro	Leu	Ala	Glu	Pro	Ala	a Ala	a Pro	Pro	Sea	Thr	
145	i				150)				155	5				160	
CCC	gcc	gco	g ccc	aag	gc	agg	ggc	tcc	ggo	tca	gto	gat	gaç	acc	ctt	528
Pro	Ala	Ala	Pro	Lys	Arg	Arg	Gly	Ser	Gly	Sez	Va.	l Asp	Glu	Thr	Leu	
				165	i				170)				175	5	
															gaa	576
Phe	Ala	Let	Pro	Ala	Ala	Ser	Glu	Pro	Val	.Ile	Pro	Ser	Ser	Ala	Glu	
			180					185		•			190			
						gag						_	_			624
Lys	Ile			Leu	Met	Glu	Gln	Pro	Gly	Asn	Thr	Val	Ser	Ser	Gly	
		195					200					205				
						gtc										672
Gln			Phe	Pro	Ser	Val	Leu	Leu	Glu	Thr	Ala	Ala	Ser	Leu	Pro	
	210					215					220					
						act										720
	Leu	Ser	Pro	Leu		Thr	Val	Ser	Phe		Glu	His	Gly	Tyr	Leu	
225					230					235					240	
						tca							_	_		768
GIY	Asn	Leu	Ser		Val	Ser	Ser	Ser		Gly	Thr	Ile	Glu		Thr	
				245					250					255		
++-		an.		da made												
						gag										816
nen	Harl	GLU	260	Set	пĀŖ	Glu		265	GIU	Arg	Ala	ınr		Pro	Phe	
			200					203					270			
ata	aat	arra	gat	tte	aas	gaa		tas	~	++-	~~~	la cade			- 4	064
500	uuc	aga	gac	cu	gua	yaa	LLL	cca	yaa	LLd	yaa	cat	cca	gaa	atg	864

Val Asn Arg Asp Leu Ala Glu Phe Ser Glu Leu Glu Tyr Ser Glu Met gga tea tet ttt aaa gge tee eea aaa gga gag tea gee ata tta gta Gly Ser Ser Phe Lys Gly Ser Pro Lys Gly Glu Ser Ala Ile Leu Val gaa aac act aag gaa gaa gta att gtg agg agt aaa gac aaa gag gat Glu Asn Thr Lys Glu Glu Val Ile Val Arg Ser Lys Asp Lys Glu Asp tta gtt tgt agt gca gcc ctt cac agt cca caa gaa tca cct gtg ggt Leu Val Cys Ser Ala Ala Leu His Ser Pro Gln Glu Ser Pro Val Glv aaa gaa gac aga gtt gtg tct cca gaa aag aca atg gac att ttt aat Lys Glu Asp Arg Val Val Ser Pro Glu Lys Thr Met Asp Ile Phe Asn gaa atg cag atg tca gta gta gca cct gtg agg gaa gag tat gca gac Glu Met Gln Met Ser Val Val Ala Pro Val Arg Glu Glu Tyr Ala Asp ttt aag cca ttt gaa caa gca tgg gaa gtg aaa gat act tat gag gga Phe Lys Pro Phe Glu Gln Ala Trp Glu Val Lys Asp Thr Tyr Glu Gly agt agg gat gtg ctg gct gct aga gct aat gtg gaa agt aaa gtg gac Ser Arg Asp Val Leu Ala Ala Arg Ala Asp Val Glu Ser Lys Val Asp aga aaa tgc ttg gaa gat agc ctg gag caa aaa agt ctt ggg aag gat Arg Lys Cys Leu Glu Asp Ser Leu Glu Gln Lys Ser Leu Gly Lys Asp agt gaa ggc aga aat gag gat get tet tte eee agt ace eea gaa eet Ser Glu Gly Arg Asn Glu Asp Ala Ser Phe Pro Ser Thr Pro Glu Pro

gtg aag gac age tee aga gea tat att ace tgt get tee ttt ace tea Val Lys Asp Ser Ser Arg Ala Tyr Ile Thr Cys Ala Ser Phe Thr Ser gca acc gaa agc acc aca gca aac act ttc cct ttg tta gaa gat cat Ala Thr Glu Ser Thr Thr Ala Asn Thr Phe Pro Leu Leu Glu Asp His act tca gaa aat aaa aca gat gaa aaa aaa ata gaa gaa agg aag gcc Thr Ser Glu Asn Lys Thr Asp Glu Lys Lys Ile Glu Glu Arg Lys Ala caa att ata aca gag aag act agc ccc aaa acg tca aat cct ttc ctt Gln Ile Ile Thr Glu Lys Thr Ser Pro Lys Thr Ser Asn Pro Phe Leu gta gca gta cag gat tct gag gca gat tat gtt aca aca gat acc tta Val Ala Val Gln Asp Ser Glu Ala Asp Tyr Val Thr Thr Asp Thr Leu tca aag gtg act gag gca gca gtg tca aac atg cct gaa ggt ctg acg Ser Lys Val Thr Glu Ala Ala Val Ser Asn Met Pro Glu Gly Leu Thr cca gat tta gtt cag gaa gca tgt gaa agt gaa ctg aat gaa gcc aca Pro Asp Leu Val Gln Glu Ala Cys Glu Ser Glu Leu Asn Glu Ala Thr ggt aca aag att gct tat gaa aca aaa gtg gac ttg gtc caa aca tca Gly Thr Lys Ile Ala Tyr Glu Thr Lys Val Asp Leu Val Gln Thr Ser gaa gct ata caa gaa tca ctt tac ccc aca gca cag ctt tgc cca tca

Glu Ala Ile Gln Glu Ser Leu Tyr Pro Thr Ala Gln Leu Cys Pro Ser

ttt	gag	gaa	gct	gaa	gca	act	ccg	tca	cca	gtt	ttg	cct	gat	att	gtt	1776
Phe	Glu	Glu	Ala	Glu	Ala	Thr	Pro	Ser	Pro	Val	Leu	Pro	Asp	Ile	Val	
			580					585					590			
atg	gaa	gca	cca	tta	aat	tct	ctc	ctt	cca	agc	gct	ggt	gct	tet	gta	1824
Met	Glu	Ala	Pro	Leu	Asn	Ser	Leu	Leu	Pro	Ser	Ala	Gly	Ala	Ser	Val	
		595					600					605				
gtg	cag	ccc	agt	gta	tcc	cca	ctg	gaa	gca	cct	cct	cca	gtt	agt	tat	1872
Val	Gln	Pro	Ser	Val	Ser	Pro	Leu	Glu	Ala	Pro	Pro	Pro	Val	Ser	Tyr	
	610					615					620					
gac	agt.	ata	aac	ctt	gag	cct	даа	aac	CCC	cca	cca	tat	gaa	gaa	acc	1920
		Ile													-	
625			-2.0		630		- Cara			635		~1~	024	014	640	
023					050					033					010	
atg	aat	gta	gca	cta	aaa	gct	ttg	gga	aca	aag	gaa	gga	ata	aaa	gag	1968
Met	Asn	Val	Ala	Leu	Lys	Ala	Leu	Gly	Thr	Lys	Glu	Gly	Ile	Lys	Glu	
				645					650					655		
cct	gaa	agt	ttt	aat	gca	gct	gtt	cag	gaa	aca	gaa	gct	cct	tat	ata	2016
Pro	Glu	Ser	Phe	Asn	Ala	Ala	Val	Gln	Glu	Thr	Glu	Ala	Pro	Tyr	Ile	
			660					665					670			
tcc	att	gcg	tgt	gat	tta	att	aaa	gaa	aca	aag	ctc	tcc	act	gag	cca	2064
Ser	Ile	Ala	Cys	Asp	Leu	Ile	Lys	Glu	Thr	Lys	Leu	Ser	Thr	Glu	Pro	
		675					680					685				
agt	cca	gat	ttc	tct	aat	tat	tca	gaa	ata	gca	aaa	ttc	gag	aag	tcg	2112
Ser	Pro	Asp	Phe	Ser	Asn	Tyr	Ser	Glu	Ile	Ala	Lys	Phe	Glu	Lys	Ser	
	690					695					700					
gtg	ccc	gaa	cac	gct	gag	cta	gtg	gag	gat	tcc	tca	cct	gaa	tct	gaa	2160
Val	Pro	Glu	His	Ala	Glu	Leu	Val	Glu	Asp	Ser	Ser	Pro	Glu	Ser	Glu	
705					710					715					720	

2008 Pro Val Asp Leu Phe Ser Asp Asp Ser Ile Pro Glu Val Pro Glu Thr 725 730 735 745 750 745 750 745 750 745 750 745 750 745 750 745 750 745 750 745 750 765 760 765 760 765 765 760 765 765 760 765 760 765 765 760 760 765 760 760 765 760																	
caa gag gag gct gtg atg ctc atg aag gag agt ctc act gaa gtg tct 2256 Gln Glu Glu Ala Val Met Leu Met Lys Glu Ser Leu Thr Glu Val Ser 740 745 750 gag aca gta gcc cag cac aaa gag gag aga ctt agt gcc tca cct cag Glu Thr Val Ala Gln His Lys Glu Glu Arg Leu Ser Ala Ser Pro Gln 765 2304 gag cta gga aag cca tat tta gag tct ttt cag ccc aat tta cat agt 755 760 765 gag cta gga aag cca tat tta gag tct ttt cag ccc aat tta cat agt 770 775 780 aca aaa gat gct gca tct aat gac att cca aca ttg acc aaa aag gag 780 2400 Thr Lys Asp Ala Ala Ser Asn Asp Ile Pro Thr Leu Thr Lys Lys Glu 795 790 795 aaa att tct ttg caa atg gaa gag ttt aat act gca att tat tca aat 198 2448 Lys Ile Ser Leu Gln Met Glu Glu Phe Asn Thr Ala Ile Tyr Ser Asn 805 810 815 gat gac tta ctt tct tct aag gaa gac aaa ata aaa gaa agt gaa aca 820 2496 Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt 2544 2544 Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat 2592 2592 Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860 <td>cca</td> <td>gtt</td> <td>ga:</td> <td>: tta</td> <td>ı ttt</td> <td>agt</td> <td>gat</td> <td>gat</td> <td>tog</td> <td>, att</td> <td>cct</td> <td>gaa</td> <td>a gto</td> <td>c cci</td> <td>a ca</td> <td>a aca</td> <td>2208</td>	cca	gtt	ga:	: tta	ı ttt	agt	gat	gat	tog	, att	cct	gaa	a gto	c cci	a ca	a aca	2208
caa gag gag gct gtg atg ctc atg aag gag agt ctc act gaa gtg tct Gln Glu Glu Ala Val Met Leu Met Lys Glu Ser Leu Thr Glu Val Ser 740 745 750 gag aca gta gcc cag cac aaa gag gag aga ctt agt gcc tca cct cag Glu Thr Val Ala Gln His Lys Glu Glu Arg Leu Ser Ala Ser Pro Gln 755 760 765 gag cta gga aag cca tat tta gag tct ttt cag ccc aat tta cat agt Glu Leu Gly Lys Pro Tyr Leu Glu Ser Phe Gln Pro Asn Leu His Ser 770 775 780 aca aaa gat gct gca tct aat gac att cca aca ttg acc aaa aag gag Thr Lys Asp Ala Ala Ser Asn Asp Ile Pro Thr Leu Thr Lys Lys Glu 785 790 795 800 aaa att tct ttg caa atg gaa gag ttt aat act gca att tat tca aat Lys Ile Ser Leu Gln Met Glu Glu Phe Asn Thr Ala Ile Tyr Ser Asn 805 810 815 gat gac tta ctt tct tct aag gaa gac aaa ata aaa gaa agt gaa aca Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860	Pro	Va]	Ası	Leu	ı Phe	Sea	Asp	Asp	Ser	: Ile	Pro	Gl	ı Va	l Pro	o Gl	n Thr	
Glu Glu Ala Val Met Leu Met Lys Glu Ser Leu Thr Glu Val Ser 740					725	5				730)				73	5	
Glu Glu Ala Val Met Leu Met Lys Glu Ser Leu Thr Glu Val Ser 740																	
gag aca gta gcc cag cac aaa gag gag aga ctt agt gcc tca cct cag Glu Thr Val Ala Gln His Lys Glu Glu Arg Leu Ser Ala Ser Pro Gln 755 760 765 gag cta gga aag cca tat tta gag tct ttt cag ccc aat tta cat agt Glu Leu Gly Lys Pro Tyr Leu Glu Ser Phe Gln Pro Asn Leu His Ser 770 775 780 aca aaa gat gct gca tct aat gac att cca aca ttg acc aaa aag gag Thr Lys Asp Ala Ala Ser Asn Asp Ile Pro Thr Leu Thr Lys Lys Glu 785 790 795 800 aaa att tct ttg caa atg gaa gag ttt aat act gca att tat ca aat Lys Ile Ser Leu Gln Met Glu Glu Phe Asn Thr Ala Ile Tyr Ser Asn 805 810 815 gat gac tta ctt tct tct aag gaa gac aaa ata aaa gaa agt gaa aca Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat 2592 Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860	caa	gaç	gaç	gct	gtg	ato	cto	atg	aag	gag	agt	cto	act	gaa	a gt	g tet	2256
gag aca gta gcc cag cac aaa gag gag aga ctt agt gcc tca cct cag Glu Thr Val Ala Gln His Lys Glu Glu Arg Leu Ser Ala Ser Pro Gln 755 760 765 gag cta gga aag cca tat tta gag tct ttt cag ccc aat tta cat agt Glu Leu Gly Lys Pro Tyr Leu Glu Ser Phe Gln Pro Asn Leu His Ser 770 775 780 aca aaa gat gct gca tct aat gac att cca aca ttg acc aaa aag gag Ahr Lys Asp Ala Ala Ser Asn Asp Ile Pro Thr Leu Thr Lys Lys Glu 785 790 aaa att tct ttg caa atg gaa gag ttt aat act gca att tat tca aat Lys Ile Ser Leu Gln Met Glu Glu Phe Asn Thr Ala Ile Tyr Ser Asn 805 810 gat gac tta ctt tct tct aag gaa gac aaa ata aaa gaa agt gaa aca Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860	Gln	Glu	Glu	ı Ala	val	Met	Leu	Met	Lys	Glu	Ser	Let	ı Thi	: Glu	ı Va	l Ser	
Glu Thr Val Ala Gln His Lys Glu Glu Arg Leu Ser Ala Ser Pro Gln 755 760 765 gag cta gga aag cca tat tta gag tct ttt cag ccc aat tta cat agt Glu Leu Gly Lys Pro Tyr Leu Glu Ser Phe Gln Pro Asn Leu His Ser 770 775 780 aca aaa gat gct gca tct aat gac att cca aca ttg acc aaa aag gag 2400 Thr Lys Asp Ala Ala Ser Asn Asp Ile Pro Thr Leu Thr Lys Lys Glu 785 790 795 800 aaa att tct ttg caa atg gaa gag ttt aat act gca att tat tca aat Lys Ile Ser Leu Gln Met Glu Glu Phe Asn Thr Ala Ile Tyr Ser Asn 805 810 815 gat gac tta ctt tct tct aag gaa gac aaa ata aaa gaa agt gaa aca Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860				740)				745					750)		
Glu Thr Val Ala Gln His Lys Glu Glu Arg Leu Ser Ala Ser Pro Gln 755 760 765 gag cta gga aag cca tat tta gag tct ttt cag ccc aat tta cat agt Glu Leu Gly Lys Pro Tyr Leu Glu Ser Phe Gln Pro Asn Leu His Ser 770 775 780 aca aaa gat gct gca tct aat gac att cca aca ttg acc aaa aag gag 2400 Thr Lys Asp Ala Ala Ser Asn Asp Ile Pro Thr Leu Thr Lys Lys Glu 785 790 795 800 aaa att tct ttg caa atg gaa gag ttt aat act gca att tat tca aat Lys Ile Ser Leu Gln Met Glu Glu Phe Asn Thr Ala Ile Tyr Ser Asn 805 810 815 gat gac tta ctt tct tct aag gaa gac aaa ata aaa gaa agt gaa aca Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860																	
gag cta gga aag cca tat tta gag tct ttt cag ccc aat tta cat agt glu Leu Gly Lys Pro Tyr Leu Glu Ser Phe Gln Pro Asn Leu His Ser 770 775 780 aca aaa gat gct gca tct aat gac att cca aca ttg acc aaa aag gag thr Lys Asp Ala Ala Ser Asn Asp Ile Pro Thr Leu Thr Lys Lys Glu 785 790 795 800 aaa att tct ttg caa atg gaa gag ttt aat act gca att tat tca aat Lys Ile Ser Leu Gln Met Glu Glu Phe Asn Thr Ala Ile Tyr Ser Asn 805 810 815 gat gac tta ctt tct tct aag gaa gac aaa ata aaa gaa agt gaa aca Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860	gag	aca	gta	geo	cag	cac	aaa	gag	gag	aga	ctt	agt	gcc	tca	a cct	cag	2304
gag cta gga aag cca tat tta gag tct ttt cag ccc aat tta cat agt Glu Leu Gly Iys Pro Tyr Leu Glu Ser Phe Gln Pro Asn Leu His Ser 770 775 780 aca aaa gat gct gca tct aat gac att cca aca ttg acc aaa aag gag Thr Lys Asp Ala Ala Ser Asn Asp Ile Pro Thr Leu Thr Lys Iys Glu 785 790 795 800 aaa att tct ttg caa atg gaa gag ttt aat act gca att tat tca aat Lys Ile Ser Leu Gln Met Glu Glu Phe Asn Thr Ala Ile Tyr Ser Asn 805 810 815 gat gac tta ctt tct tct aag gaa gac aaa ata aaa gaa agt gaa aca Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860	Glu	Thr	Va]	. Ala	Gln	His	Lys	Glu	Glu	Arg	Leu	Ser	· Ala	Ser	Pro	Gln	
Glu Leu Gly Lys Pro Tyr Leu Glu Ser Phe Gln Pro Asn Leu His Ser 770 775 780 aca aaa gat gct gca tct aat gac att cca aca ttg acc aaa aag gag Thr Lys Asp Ala Ala Ser Asn Asp Ile Pro Thr Leu Thr Lys Lys Glu 785 790 795 800 aaa att tct ttg caa atg gaa gag ttt aat act gca att tat tca aat Lys Ile Ser Leu Gln Met Glu Glu Phe Asn Thr Ala Ile Tyr Ser Asn 805 810 815 gat gac tta ctt tct tct aag gaa gac aaa ata aaa gaa agt gaa aca Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860			755	,				760					765				
Glu Leu Gly Lys Pro Tyr Leu Glu Ser Phe Gln Pro Asn Leu His Ser 770 775 780 aca aaa gat gct gca tct aat gac att cca aca ttg acc aaa aag gag Thr Lys Asp Ala Ala Ser Asn Asp Ile Pro Thr Leu Thr Lys Lys Glu 785 790 795 800 aaa att tct ttg caa atg gaa gag ttt aat act gca att tat tca aat Lys Ile Ser Leu Gln Met Glu Glu Phe Asn Thr Ala Ile Tyr Ser Asn 805 810 815 gat gac tta ctt tct tct aag gaa gac aaa ata aaa gaa agt gaa aca Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860																	
aca aaa gat gct gca tct aat gac att cca aca ttg acc aaa aag gag Thr Lys Asp Ala Ala Ser Asn Asp Ile Pro Thr Leu Thr Lys Lys Glu 785 790 795 800 aaa att tct ttg caa atg gaa gag ttt aat act gca att tat tca aat Lys Ile Ser Leu Gln Met Glu Glu Phe Asn Thr Ala Ile Tyr Ser Asn 805 810 815 gat gac tta ctt tct tct aag gaa gac aaa ata aaa gaa agt gaa aca Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860	gag	cta	gga	aag	cca	tat	tta	gag	tct	ttt	cag	ccc	aat	tta	cat	agt	2352
aca aaa gat gct gca tct aat gac att cca aca ttg acc aaa aag gag Thr Lys Asp Ala Ala Ser Asn Asp Ile Pro Thr Leu Thr Lys Lys Glu 785 790 795 800 aaa att tct ttg caa atg gaa gag ttt aat act gca att tat tca aat Lys Ile Ser Leu Gln Met Glu Glu Phe Asn Thr Ala Ile Tyr Ser Asn 805 810 815 gat gac tta ctt tct tct aag gaa gac aaa ata aaa gaa agt gaa aca Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860	Glu	Leu	Gly	Lys	Pro	Tyr	Leu	Glu	Ser	Phe	Gln	Pro	Asn	Leu	His	Ser	
Thr Lys Asp Ala Ala Ser Asn Asp Ile Pro Thr Leu Thr Lys Lys Glu 785 790 795 800 aaa att tct ttg caa atg gaa gag ttt aat act gca att tat tca aat Lys Ile Ser Leu Gln Met Glu Glu Phe Asn Thr Ala Ile Tyr Ser Asn 805 815 gat gac tta ctt tct tct aag gaa gac aaa ata aaa gaa agt gaa aca Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gt agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860		770					775					780	1				
Thr Lys Asp Ala Ala Ser Asn Asp Ile Pro Thr Leu Thr Lys Lys Glu 785 790 795 800 aaa att tct ttg caa atg gaa gag ttt aat act gca att tat tca aat Lys Ile Ser Leu Gln Met Glu Glu Phe Asn Thr Ala Ile Tyr Ser Asn 805 815 gat gac tta ctt tct tct aag gaa gac aaa ata aaa gaa agt gaa aca Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gt agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860																	
aaa att tot ttg caa atg gaa gag ttt aat act gca att tat toa aat Lys Ile Ser Leu Gln Met Glu Glu Phe Asn Thr Ala Ile Tyr Ser Asn 805 810 815 gat gac tta ctt tot tot aag gaa gac aaa ata aaa gaa agt gaa aca Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt toa gat toa tot cog att gag ata ata gat gaa ttt coc acg ttt Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gtc agt gct aaa gat gat tot cot aaa tta goc aag gag tac act gat Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860	aca	aaa	gat	gct	gca	tct	aat	gac	att	cca	aca	ttg	acc	aaa	aag	gag	2400
aaa att tot ttg caa atg gaa gag ttt aat act gca att tat toa aat Lys Ile Ser Leu Gln Met Glu Glu Phe Asn Thr Ala Ile Tyr Ser Asn 805 810 815 gat gac tta ctt tot tot aag gaa gac aaa ata aaa gaa agt gaa aca Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt toa gat toa tot cog att gag ata ata gat gaa ttt coc acg ttt Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gtc agt got aaa gat gat tot cot aaa tta goc aag gag tac act gat Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860		Lys	Asp	Ala	Ala	Ser	Asn	Asp	Ile	Pro	Thr	Leu	Thr	Lys	Lys	Glu	
Lys Ile Ser Leu Gln Met Glu Glu Phe Asn Thr Ala Ile Tyr Ser Asn 805 810 815 gat gac tta ctt tct tct aag gaa gac aaa ata aaa gaa agt gaa aca 2496 Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt 2544 Fhe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Fhe Pro Thr Fhe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat 2592 Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860	785					790					795					800	
Lys Ile Ser Leu Gln Met Glu Glu Phe Asn Thr Ala Ile Tyr Ser Asn 805 810 815 gat gac tta ctt tct tct aag gaa gac aaa ata aaa gaa agt gaa aca 2496 Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt 2544 Fhe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Fhe Pro Thr Fhe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat 2592 Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860																	
gat gac tta ctt tct tct aag gaa gac aaa ata aaa gaa agt gaa aca Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860																	2448
gat gac tta ctt tct tct aag gaa gac aaa ata aaa gaa agt gaa aca Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860	Lys	Ile	Ser	Leu		Met	Glu	Glu	Phe		Thr	Ala	Ile	Tyr	Ser	Asn	
Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt 2544 Fhe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Fhe Pro Thr Phe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860					805					810					815		
Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr 820 825 830 ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt 2544 Fhe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Fhe Pro Thr Phe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860																	
ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860															-		2496
ttt tca gat tca tct ccg att gag ata ata gat gaa ttt ccc acg ttt Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860	Asp	Asp	ren		ser	ser	Lys	GIU		Lys	Ile	Lys	Glu		Glu	Thr	
Fhe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat 2592 Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860				820					825					830			
Fhe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe 835 840 845 gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat 2592 Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860		tran	~~ 4						- 1								
gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat 2592 Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860															-		2544
gtc agt gct aaa gat gat tct cct aaa tta gcc aag gag tac act gat 2592 Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860	1116	per		Ser	per	FLO	тте		тте	тте	Asp	GIU		Pro	Thr	Phe	
Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860			055					040					845				
Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp 850 855 860	atc	agt	act	222	rat	nat	tet	cct	222	tts	aac	225	ane.	har			2502
850 855 860																	2592
						-130			⊒ y5	_uu	nia		GIU	ığı	TIL	vab	
							555					500					
cta gaa gta tcc gac aaa agt gaa att gct aat atc caa agc ggg gca 2640	cta	gaa	gta	tcc	gac	aaa	agt	gaa	att	act	aat	atc	caa	age	aaa	aca	2640

Leu Glu Val Ser Asp Lys Ser Glu Ile Ala Asn Ile Gln Ser Gly Ala gat toa ttg cot tgc tta gaa ttg coc tgt gac ctt tct ttc aag aat Asp Ser Leu Pro Cys Leu Glu Leu Pro Cys Asp Leu Ser Phe Lys Asn ata tat cet aaa gat gaa gta cat gtt tea gat gaa tte tee gaa aat Ile Tyr Pro Lys Asp Glu Val His Val Ser Asp Glu Phe Ser Glu Asn agg tee agt gta tet aag gea tee ata teg eet tea aat gte tet get Arg Ser Ser Val Ser Lys Ala Ser Ile Ser Pro Ser Asn Val Ser Ala ttg gaa cct cag aca gaa atg ggc agc ata gtt aaa tcc aaa tca ctt Leu Glu Pro Gln Thr Glu Met Gly Ser Ile Val Lys Ser Lys Ser Leu acg aaa gaa gca gag aaa aaa ctt cct tct gac aca gag aaa gag gac Thr Lys Glu Ala Glu Lys Lys Leu Pro Ser Asp Thr Glu Lys Glu Asp aga tee etg tea get gta ttg tea gea gag etg agt aaa aet tea gtt Arg Ser Leu Ser Ala Val Leu Ser Ala Glu Leu Ser Lys Thr Ser Val gtt gac etc etc tac tgg aga gac att aag aag act gga gtg gtg ttt Val Asp Leu Leu Tyr Trp Arg Asp Ile Lys Lys Thr Gly Val Val Phe ggt gcc agc tta ttc ctg ctg ctg tct ctg aca gtg ttc agc att gtc Gly Ala Ser Leu Phe Leu Leu Leu Ser Leu Thr Val Phe Ser Ile Val agt gta acg gcc tac att gcc ttg gcc ctg ctc tcg gtg act atc Ser Val Thr Ala Tyr Ile Ala Leu Ala Leu Leu Ser Val Thr Ile

52/76 age ttt agg ata tat aag gge gtg ate cag get ate cag aaa tea 3114 Ser Phe Arg Ile Tyr Lys Gly Val Ile Gln Ala Ile Gln Lys Ser gat gaa ggc cac cca ttc agg gca tat tta gaa tct gaa gtt gct Asp Glu Gly His Pro Phe Arg Ala Tyr Leu Glu Ser Glu Val Ala ata tca gag gaa ttg gtt cag aaa tac agt aat tct gct ctt ggt Ile Ser Glu Glu Leu Val Gln Lys Tyr Ser Asn Ser Ala Leu Gly cat gtg aac agc aca ata aaa gaa ctg agg cgg ctt ttc tta gtt His Val Asn Ser Thr Ile Lys Glu Leu Arg Arg Leu Phe Leu Val gat gat tta gtt gat tcc ctg aag ttt gca gtg ttg atg tgg gtg Asp Asp Leu Val Asp Ser Leu Lys Phe Ala Val Leu Met Trp Val ttt act tat gtt ggt gcc ttg ttc aat ggt ctg aca cta ctg att Fhe Thr Tyr Val Gly Ala Leu Phe Asn Gly Leu Thr Leu Leu Ile tta gct ctg atc tca ctc ttc agt att cct gtt att tat gaa cgg Leu Ala Leu Ile Ser Leu Phe Ser Ile Pro Val Ile Tyr Glu Arg cat cag gtg cag ata gat cat tat cta gga ctt gca aac aag agt His Gln Val Gln Ile Asp His Tyr Leu Gly Leu Ala Asn Lys Ser

gtt aag gat gcc atg gcc aaa atc caa gca aaa atc cct gga ttg

Val Lys Asp Ala Met Ala Lys Ile Gln Ala Lys Ile Pro Gly Leu

aag cgc aaa gca gat tga 3492

Lys Arg Lys Ala Asp

1160

<210> 26

<211> 1163

<212> PRT

<213> Rattus norvegicus

<400> 26

Met Glu Asp Ile Asp Gln Ser Ser Leu Val Ser Ser Ser Thr Asp Ser 1 \$10\$ \$15\$

Pro Pro Arg Pro Pro Pro Ala Phe Lys Tyr Gln Phe Val Thr Glu Pro
20 25 30

Glu Asp Leu Glu Glu Leu Glu Val Leu Glu Arg Lys Pro Ala Ala Gly 50 55 60

Leu Ser Ala Ala Ala Val Pro Pro Ala Ala Ala Ala Pro Leu Leu Asp 65 70 75 80

Phe Ser Ser Asp Ser Val Pro Pro Ala Pro Arg Gly Pro Leu Pro Ala Ala Pro Pro Ala Ala Pro Glu Arg Gln Pro Ser Trp Glu Arg Ser Pro Ala Ala Pro Ala Pro Ser Leu Pro Pro Ala Ala Ala Val Leu Pro Ser Lys Leu Pro Glu Asp Asp Glu Pro Pro Ala Arg Pro Pro Pro Pro Pro Pro Ala Gly Ala Ser Pro Leu Ala Glu Pro Ala Ala Pro Pro Ser Thr Pro Ala Ala Pro Lys Arg Arg Gly Ser Gly Ser Val Asp Glu Thr Leu Phe Ala Leu Pro Ala Ala Ser Glu Pro Val Ile Pro Ser Ser Ala Glu Lys Ile Met Asp Leu Met Glu Gln Pro Gly Asn Thr Val Ser Ser Gly Gln Glu Asp Phe Pro Ser Val Leu Leu Glu Thr Ala Ala Ser Leu Pro

Ser Leu Ser Pro Leu Ser Thr Val Ser Phe Lys Glu His Gly Tyr Leu 225 230 235 240

Gly Asn Leu Ser Ala Val Ser Ser Ser Glu Gly Thr Ile Glu Thr $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$

Leu Asn Glu Ala Ser Lys Glu Leu Pro Glu Arg Ala Thr Asn Pro Phe 260 265 270

Val Asn Arg Asp Leu Ala Glu Phe Ser Glu Leu Glu Tyr Ser Glu Met 275 280 285

Gly Ser Ser Phe Lys Gly Ser Pro Lys Gly Glu Ser Ala Ile Leu Val 290 295 300 ·

Glu Asn Thr Lys Glu Glu Val Ile Val Arg Ser Lys Asp Lys Glu Asp 305 310 315 320

Leu Val Cys Ser Ala Ala Leu His Ser Pro Gln Glu Ser Pro Val Gly 325 330 335

Lys Glu Asp Arg Val Val Ser Pro Glu Lys Thr Met Asp Ile Phe Asn 340 345 350

Glu Met Gln Met Ser Val Val Ala Pro Val Arg Glu Glu Tyr Ala Asp 355 360 365

Phe Lys Pro Phe Glu Gln Ala Trp Glu Val Lys Asp Thr Tyr Glu Gly

Ser Arg Asp Val Leu Ala Ala Arg Ala Asn Val Glu Ser Lys Val Asp

Arg Lys Cys Leu Glu Asp Ser Leu Glu Gln Lys Ser Leu Gly Lys Asp

Ser Glu Gly Arg Asn Glu Asp Ala Ser Phe Pro Ser Thr Pro Glu Pro

Val Lys Asp Ser Ser Arg Ala Tyr Ile Thr Cys Ala Ser Phe Thr Ser

Ala Thr Glu Ser Thr Thr Ala Asn Thr Phe Pro Leu Leu Glu Asp His

Thr Ser Glu Asn Lys Thr Asp Glu Lys Lys Ile Glu Glu Arg Lys Ala

Gln Ile Ile Thr Glu Lys Thr Ser Pro Lys Thr Ser Asn Pro Phe Leu

Val Ala Val Gln Asp Ser Glu Ala Asp Tyr Val Thr Thr Asp Thr Leu

Ser Lys Val Thr Glu Ala Ala Val Ser Asn Met Pro Glu Gly Leu Thr

Pro Asp Leu Val Gln Glu Ala Cys Glu Ser Glu Leu Asn Glu Ala Thr Gly Thr Lys Ile Ala Tyr Glu Thr Lys Val Asp Leu Val Gln Thr Ser Glu Ala Ile Gln Glu Ser Leu Tyr Pro Thr Ala Gln Leu Cys Pro Ser Phe Glu Glu Ala Glu Ala Thr Pro Ser Pro Val Leu Pro Asp Ile Val Met Glu Ala Pro Leu Asn Ser Leu Leu Pro Ser Ala Gly Ala Ser Val Val Gln Pro Ser Val Ser Pro Leu Glu Ala Pro Pro Pro Val Ser Tyr Asp Ser Ile Lys Leu Glu Pro Glu Asn Pro Pro Pro Tyr Glu Glu Ala Met Asn Val Ala Leu Lys Ala Leu Gly Thr Lys Glu Gly Ile Lys Glu

Pro Glu Ser Phe Asn Ala Ala Val Gln Glu Thr Glu Ala Pro Tyr Ile

Ser Ile Ala Cys Asp Leu Ile Lys Glu Thr Lys Leu Ser Thr Glu Pro 675 680 685

Ser Pro Asp Phe Ser Asn Tyr Ser Glu Ile Ala Lys Phe Glu Lys Ser 690 695 700

Val Pro Glu His Ala Glu Leu Val Glu Asp Ser Ser Pro Glu Ser Glu 705 710 715 720

Pro Val Asp Leu Phe Ser Asp Asp Ser Ile Pro Glu Val Pro Gln Thr
725 730 735

Gln Glu Glu Ala Val Met Leu Met Lys Glu Ser Leu Thr Glu Val Ser . 740 745 750

Glu Thr Val Ala Gln His Lys Glu Glu Arg Leu Ser Ala Ser Pro Gln 755 760 765

Glu Leu Gly Lys Pro Tyr Leu Glu Ser Phe Gln Pro Asn Leu His Ser 770 775 780

Thr Lys Asp Ala Ala Ser Asn Asp Ile Pro Thr Leu Thr Lys Lys Glu 785 790 795 800

Lys Ile Ser Leu Gln Met Glu Glu Phe Asn Thr Ala Ile Tyr Ser Asn 805 810 815

Asp Asp Leu Leu Ser Ser Lys Glu Asp Lys Ile Lys Glu Ser Glu Thr

Phe Ser Asp Ser Ser Pro Ile Glu Ile Ile Asp Glu Phe Pro Thr Phe

Val Ser Ala Lys Asp Asp Ser Pro Lys Leu Ala Lys Glu Tyr Thr Asp

Leu Glu Val Ser Asp Lys Ser Glu Ile Ala Asn Ile Gln Ser Gly Ala

Asp Ser Leu Pro Cys Leu Glu Leu Pro Cys Asp Leu Ser Phe Lys Asn

Ile Tyr Pro Lys Asp Glu Val His Val Ser Asp Glu Phe Ser Glu Asn

Arg Ser Ser Val Ser Lys Ala Ser Ile Ser Pro Ser Asn Val Ser Ala

Leu Glu Pro Gln Thr Glu Met Gly Ser Ile Val Lys Ser Lys Ser Leu

Thr Lys Glu Ala Glu Lys Lys Leu Pro Ser Asp Thr Glu Lys Glu Asp

Arg Ser Leu Ser Ala Val Leu Ser Ala Glu Leu Ser Lys Thr Ser Val

Val Asp Leu Leu Tyr Trp Arg Asp Ile Lys Lys Thr Gly Val Val Phe

Gly Ala Ser Leu Phe Leu Leu Leu Ser Leu Thr Val Phe Ser Ile Val

Ser Val Thr Ala Tyr Ile Ala Leu Ala Leu Leu Ser Val Thr Ile

Ser Phe Arg Ile Tyr Lys Gly Val Ile Gln Ala Ile Gln Lys Ser

Asp Glu Gly His Pro Phe Arg Ala Tyr Leu Glu Ser Glu Val Ala

Ile Ser Glu Glu Leu Val Gln Lys Tyr Ser Asn Ser Ala Leu Gly

His Val Asn Ser Thr Ile Lys Glu Leu Arg Arg Leu Phe Leu Val

Asp Asp Leu Val Asp Ser Leu Lys Phe Ala Val Leu Met Trp Val

Phe Thr Tyr Val Gly Ala Leu Phe Asn Gly Leu Thr Leu Leu Ile ****

Leu Ala Leu Ile Ser Leu Phe Ser Ile Pro Val Ile Tyr Glu Arg 1115 1120 1125

His Gln Val Gln Ile Asp His Tyr Leu Gly Leu Ala Asn Lys Ser 1130 1135 1140

Val Lys Asp Ala Met Ala Lys Ile Gln Ala Lys Ile Pro Gly Leu 1145 1150 1155

Lys Arg Lys Ala Asp 1160

<210> 27

<211> 25

<212> PRT

<213> Rattus norvegicus

<220>

<221> PEPTIDE

<222> (1)..(25)

<223> rat PEP4

15

<400> 27

Glu Glu Leu Val Gln Lys Tyr Ser Asn Ser Ala Leu Gly His Val Asn

1 5 10

Ser Thr Ile Lys Glu Leu Arg Arg Leu

20 25

<210> 28

<211> 17

<212> PRT

<213> Artificial Sequence

<220>

<223> PRO/SER rich peptide

<220>

<221> PEPTIDE

<222> (1)..(17)

<223> Synthetic peptide

Pro Ser Ser Pro Pro Pro Ser Ser Pro Pro Pro Ser Ser Pro Pro Pro

1

5

10

15

Ser

<210> 29

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> CA-NA-2F

<220>

<221> primer_bind

<222> (1)..(25)

<223> CA-NA-2F primer

<400> 29

aagcaccatt gaattetgca gttee

<210> 30

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> CA-NA-3R

<220>

<221> primer_bind

<222> (1)..(28)

<223>

<400> 30

aactgcagta ctgagctcct ccatctgc

<210> 31

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> forward 5'

<220>

<221> primer_bind

<222> (1)..(33)

<223> forward primer

<400> 31

gtcgcggatc catggagacc ctttttgctc ttc

<210> 32

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> reverse 5'

<220>

WO 2004/052932 PCT/EP2003/013960

27

<221> primer_bind

<222> (1)..(27)

<223> reverse primer

<400> 32

gttctcgagt tatgaagttt tactcag

<210> 33

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> forward 5'-1

<220>

<221> primer_bind

<222> (1)..(29)

<223> primer

WO 2004/052932 PCT/EP2003/013960

gtgcggatcc atggatttga aggagcage

29

<210> 34

<211> 28

<212> DNA <213> Artificial Sequence

<220>

<223> reverse 5'-1

<220>

<221> primer_bind

<222> (1)..(28)

<223> primer

<400> 34

gtttctcgag tgaagtttta ttcagctc

28

<210> 35

<211> 20

<212> DNA

WO 2004/052932 PCT/EP2003/013960 68/76

<213> Artificial Sequence

<220>

<223> 5' primer

<220>

<221> primer_bind

<222> (1)..(20)

<223> primer

<400> 35

tccacccgg ccgcgcccaa

20

<210> 36

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> 5' primer 2

<220>

<221> primer_bind

<222> (1)..(22)

<223> primer

<400> 36

aatgatgggc aaagetgtge tg

<210> 37

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> 3' primer

<220>

<221> primer_bind

<222> (1)..(24)

<223> primer

WO 2004/052932 PCT/EP2003/013960

70/76

<400> 37

ggtacaaaga ttgcttatga aaca 24

<210> 38

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> 3' primer 2

<220>

<221> primer_bind

<222> (1)..(22)

<223> primer

<400> 38

agcagggcca aggcaatgta gg

22

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> 5'-VL leader

<220>

<221> primer_bind

<222> (1)..(28)

<223> primer

<400> 39

aatatgagtc ctgcccagtt cctgtttc

<210> 40

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> 3'-Ck

<220>

<221> primer_bind

<222> (1)..(32)

<223> primer

<400> 40

ttaggaattc ctaacactct cccctgttga ag

<210> 41

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> 5'-VH leader

<220>

<222> (1)..(31)

<223> primer

<400> 41

aatatggatt ttgggctgat ttttttatt g

<210> 42

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> 3'-CH hinge

<220>

<221> primer_bind

<222> (1)..(24)

<223> primer

<400> 42

aattgggcaa cgttgcaggt gacg

<210> 43

<211> 663

<212> DNA

<213> Mus musculus

<220>

<221> misc_binding

<222> (1)..(663)

<223> DNA variable part of heavy chain 11C7

<400> 43 atggattttg ggctgatttt ttttattgtt ggtcttttaa aaggggtcca gtgtgaggtg 60 aagetteteg agtetggagg tggeetggtg eageetggag gateeetgaa aeteteetgt 120 gtagtctcag gattcgattt tagaagaaat tggatgagtt gggtccggca ggctcctggg 180 aaagggctag aatggattgg agaaattaat ccagatagca gtaagataaa ctatacgcca 240 tetetaaagg ataaatteat catetecaga gacaatgeca agaataeget gtacetgeaa 300 gtgagcacag tgagatctga ggacacagcc ctttattact gtgtgagacc ggtctggatg 360 tatgctatgg actactgggg tcaaggaacc tcagtcaccg tctcctcagc caaaacgaca 420 cccccatetg tetatecaet ggcccctgga tetgetgccc aaactaactc catggtgacc 480

ctgggatgcc tggtcaaggg ctatttccct gagccagtga cagtgacctg gaactctgga	540
tccctgtcca geggtgtgca caccttccca gctgtcctgc agtctgacct ctacactctg	600
agcageteag tgaetgteee etecageace tggeceageg agacegteae etgeaaegtt	660
gcc	663

<210> 44	
<211> 717	
<212> DNA	
<213> Mus musculus	
<220>	
<220>	
<221> misc_binding	
<222> (1)(717)	
<223> variable part of light chain of 11C7	
*400** 44	
<400> 44 atgagtcctg cccagttcct gtttctgtta gtgctctgga ttcgggaaac cagcggtgat	60
gttotgttga occagactoo totoactitg togataacca tiggacaacc agootocato	120
sss	120

tettgeaagt caagteagag cetettgeat agtgatggaa agacatattt gaattggttg 180

WO 2004/052932 PCT/EP2003/013960 76/76

ttacagagge caggecagte tecaaagege etaatetate tggtgtetaa actggactet 240 ggagtccctg acaggttcac tggcagtgga tcagggacgg atttcacact gaaaatcagc 300 agagtggagg ctgaggattt gggactttat tattgctggc aaggtacaca ttttcctcag 360 acgttcggtg gaggcaccaa gctggaaatc aaacgggctg atgctgcacc aactgtatcc 420 atetteccae catecagtga geagttaaca tetggaggtg ceteagtegt gtgettettg 480 aacaacttct accccaaaga catcaatgtc aagtggaaga ttgatggcag tgaacgacaa 540 aatggcgtcc tgaacagttg gactgatcag gacagcaaag acagcaccta cagcatgagc 600 agcaccctca cgttgaccaa ggacgagtat gaacgacata acagctatac ctgtgaggcc 660 actcacaaga catcaacttc acccattgtc aagagettca acaggggaga gtgttag 717