

Übung zur Vorlesung Informatik 1

WS 2020/21

Fakultät für Angewandte Informatik Lehrprofessur für Informatik Dr. Martin Frieb, Johannes Metzger

30.11.2020

Übungsblatt 5

Abgabe spätestens bis: 07.12.2020 10:00 Uhr

- Dieses Übungsblatt soll in den in der Übungsgruppe festgelegten Teams abgegeben werden (Einzelabgaben sind erlaubt, falls noch keine Teamzuteilung erfolgt ist).
- Die **Zeitangaben** geben zur Orientierung an, wie viel Zeit für eine Aufgabe später in der Klausur vorgesehen wäre; gehen Sie davon aus, dass Sie zum jetzigen Zeitpunkt wesentlich länger brauchen und die angegebene Zeit erst nach ausreichender Übung erreichen.
- * leichte Aufgabe / ** mittelschwere Aufgabe / *** schwere Aufgabe

Aufgabe 17 * (Gleitkomma-Codierung und -Dekodierung, 26 Minuten)

Geben Sie zu jeder Teilaufgabe jeweils den Rechenweg oder eine Begründung an.

- a) (Codierung des Exponenten, 12 Minuten)
 - 1. (*, 1 Minute)

Berechnen Sie: $c_{EX-127.8}(2)$

2. (*, 1 Minute)

Berechnen Sie: $c_{EX-127,8}(-2)$

3. (*, 1 Minute)

Berechnen Sie: $(10010100)_{EX-127,8}$

4. (*, 1 Minute)

Berechnen Sie: $(00001001)_{EX-127,8}$

5. (*, 1 Minute)

Welche EX-q-Codierung wird zur Codierung des Exponenten in der Gleitkomma-Codierung $c_{GK,53,64}$ verwendet?

6. (*, 1 Minute)

Welche EX-q-Codierung wird zur Codierung des Exponenten in der Gleitkomma-Codierung $c_{GK,11,16}$ verwendet?

7. (*, 1 Minute)

Geben Sie das Bitmuster des größten darstellbaren Exponenten der Gleitkomma-Codierung $c_{GK,53,64}$ an (unter Berücksichtigung von reservierten Bitmustern).

8. (*, 1 Minute)

Geben Sie das Bitmuster des kleinsten darstellbaren Exponenten der Gleitkomma-Codierung $c_{GK,11,16}$ an (unter Berücksichtigung von reservierten Bitmustern).

9. (**, 1 Minute)

Geben Sie den größten darstellbaren Exponenten der Gleitkomma-Codierung $c_{GK,11,16}$ als Dezimalzahl an (unter Berücksichtigung von reservierten Bitmustern).

10. (**, 1 Minute)

Geben Sie den kleinsten darstellbaren Exponenten der Gleitkomma-Codierung $c_{GK,24,32}$ als Dezimalzahl an (unter Berücksichtigung von reservierten Bitmustern).

11. (**, 1 Minute)

Führen Sie folgende Addition von Bitmustern in der $c_{EX-127,8}\text{-Codierung}$ durch: $10000000 \oplus_{EX-127,8} 00000000$

12. (**, 1 Minute)

Führen Sie folgende Subtraktion von Bitmustern in der $c_{EX-127,8}$ -Codierung durch: $01100000 \ominus_{EX-127,8} 00100000$

- b) (Codierung der Mantisse, 12 Minuten)
 - 1. (*, 1 Minute)

Berechnen Sie: $c_{FK,23,23}(0.25)$

2. (*, 1 Minute)

Berechnen Sie: $c_{FK,10,10}(0.1)$

3. (*, 1 Minute)

Berechnen Sie: $(10100000000000000000000)_{FK,23,23}$

4. (*, 1 Minute)

Berechnen Sie: $(000000001)_{FK,10,10}$

5. (*, 1 Minute)

Welche Festkomma-Codierung wird zur Codierung der Mantisse in der Gleitkomma-Codierung $c_{GK,11,16}$ verwendet?

6. (*, 1 Minute)

Welche Festkomma-Codierung wird zur Codierung der Mantisse in der Gleitkomma-Codierung $c_{GK.65.80}$ verwendet?

7. (*, 1 Minute)

Wie groß ist maximal der absolute Rundungsfehler bei der $c_{FK,10,10}$ -Codierung?

8. (*, 1 Minute)

Wie viele Bit k für Nachkommastellen muss eine Festkomma-Codierung mindestens haben, damit der absolute Rundungsfehler maximal 0.02 ist?

9. (**, 2 Minuten)

Berechnen Sie den absoluten Rundungsfehler bei der Codierung $c_{FK,23,23}(0.25)$.

10. (**, 2 Minuten)

Berechnen Sie den absoluten Rundungsfehler bei der Codierung $c_{FK,4,4}(0.275)$.

- c) (Normierung, 2 Minuten)
 - 1. (*, 1 Minute)

Geben Sie die Dezimalzahl 16.8 in der Form $m \cdot 2^e$ mit $1 \le m < 2$ an.

2. (*, 1 Minute)

Geben Sie die Dezimalzahl 0.01 in der Form $m \cdot 2^e$ mit $1 \le m < 2$ an.

Aufgabe 18 (Gleitkomma-Codierung und -Dekodierung, 31 Minuten)

1. (**, 4 Minuten)

Berechnen Sie : $c_{GK,11,16}(4.8)$

2. (**, 4 Minuten)

Berechnen Sie: $c_{GK,11,16}(-0.525)$

3. (*, 2 Minuten)

Berechnen Sie: $(1100111001000000)_{GK,11,16}$

4. (*, 2 Minuten)

Berechnen Sie: $(0100001000000110000000000000000000)_{GK,24,32}$

5. (*, 1 Minute)

Geben Sie die größte positive, normalisiert darstellbare Zahl in der Gleitkomma-Codierung $c_{GK,11,16}$ in normierter Gleitkommadarstellung zur Basis 2 an (unter Berücksichtigung von reservierten Bitmustern).

6. (*, 1 Minute)

Geben Sie die kleinste positive, normalisiert darstellbare Zahl in der Gleitkomma-Codierung $c_{GK,11,16}$ in normierter Gleitkommadarstellung zur Basis 2 an (unter Berücksichtigung von reservierten Bitmustern).

7. (*, 1 Minute)

Wie groß ist maximal der relative Rundungsfehler bei der $c_{GK,11,16}$ -Codierung?

8. (**, 1 Minute)

Wie groß muss man k mindestens wählen, damit der **relative** Rundungsfehler bei der Codierung einer Zahl mit einer Gleitkommacodierung $c_{GK,k,n}$ maximal 0.01 ist?

9. (***, 1 Minute)

Wie groß muss man k mindestens wählen, damit bei der $c_{GK,k,n}$ -Codierung einer positiven Zahl x mit einer normierten Gleitkommadarstellung $x = m \cdot 2^{10}$ ein maximaler **absoluter** Rundungsfehler von 0.01 auftritt?

10. (**, 4 Minuten)

Berechnen Sie den absoluten Rundungsfehler bei der Codierung $c_{GK,11,16}(5.0)$.

11. (**, 4 Minuten)

Berechnen Sie den absoluten Rundungsfehler bei der Codierung $c_{GK,5,8}(14.4)$.

12. (**, 2 Minuten)

Berechnen Sie das Ergebnis der Addition der Zahlen $(1.0)_2 \cdot 2^0$ und $(1.1)_2 \cdot 2^{-1}$ bzgl. der $c_{GK,5,8}$ -Codierung und geben Sie den dabei ggf. auftretenden Rundungsfehler an.

13. (**, 2 Minuten)

Berechnen Sie das Ergebnis der Addition der Zahlen $(1.0)_2 \cdot 2^0$ und $(1.1)_2 \cdot 2^0$ bzgl. der $c_{GK,5,8}$ -Codierung und geben Sie den dabei ggf. auftretenden Rundungsfehler an.

14. (**, 2 Minuten)

Berechnen Sie das Ergebnis der Addition der Zahlen $(1.0)_2 \cdot 2^3$ und $(1.0)_2 \cdot 2^{-2}$ bzgl. der $c_{GK,5,8}$ -Codierung und geben Sie den dabei ggf. auftretenden Rundungsfehler an.

Aufgabe 19 (C-Ausdrücke, 20 Minuten)

- 1. (*, 0,5 Minuten) Welchen Wert hat der Ausdruck !1.05?
- 2. (*, 0,5 Minuten) Welchen Wert hat der Ausdruck !'\0'?
- 3. (*, 0,5 Minuten) Welchen Wert hat der Ausdruck -1 < 0?
- 4. (*, 0,5 Minuten) Welchen Wert hat der Ausdruck ! (-1 < 0)?
- 5. (*, 0,5 Minuten) Welchen Wert hat der Ausdruck (0 < 1) && (1 < 0)?
- 6. (*, 0,5 Minuten) Welchen Wert hat der Ausdruck (0 < 1) | (1 < 0)?
- 7. (*, 0,5 Minuten) Welchen Wert hat der Ausdruck !1 || 0?
- 8. (*, 0,5 Minuten) Welchen Wert hat der Ausdruck! (1 || 0)?
- 9. (*, 0,5 Minuten) Welchen Wert hat der Ausdruck! (1 && 0)?
- 10. (*, 0,5 Minuten) Welchen Wert hat der Ausdruck 'B' != 66?
- 11. (*, 0,5 Minuten) Welchen Wert hat der Ausdruck 'A' == 'a'?
- 12. (*, 0,5 Minuten) Welchen Wert hat der folgende Ausdruck: 1 ? 2 : 3
- 13. (*, 0,5 Minuten) Welchen Wert hat der folgende Ausdruck: 1 ? (2 ? 3 : 4) : 5
- 14. (*, 0,5 Minuten) Welchen Wert hat der Ausdruck isdigit(65)?
- 15. (*, 0,5 Minuten) Welchen Wert hat der Ausdruck isupper (65)?
- 16. (*, 0,5 Minuten) Welchen Wert hat der Ausdruck y = 'A'?
- 17. (*, 0,5 Minuten) Sei y eine **int**-Variable mit dem Wert 0. Welchen Wert hat der Ausdruck y +=-1?
- 18. (*, 0,5 Minuten) Sei y eine **int**-Variable mit dem Wert 5. Welchen Wert hat der Ausdruck v *=-1?
- 19. (*, 0,5 Minuten) Sei y eine **int**-Variable mit dem Wert 5. Welchen Wert hat der Ausdruck y /= 2?
- 20. (*, 0,5 Minuten) Sei y eine double-Variable mit dem Wert 5.0. Welchen Wert hat der Ausdruck y /= 2?
- 21. (*, 0,5 Minuten) Sei y eine **int**-Variable mit dem Wert 0. Welchen Wert hat der Ausdruck ++y?
- 22. (*, 0,5 Minuten) Sei y eine **int**-Variable mit dem Wert 0. Welchen Wert hat der Ausdruck y++?
- 23. (*, 0,5 Minuten) Sei y eine **int**-Variable mit dem Wert 0. Welchen Wert hat der Ausdruck y == 2?
- 24. (*, 0,5 Minuten) Sei y eine **int**-Variable mit dem Wert 0. Welchen Wert hat die Variable y nach Auswertung des Ausdrucks --y?
- 25. (*, 0,5 Minuten) Sei y eine **int**-Variable mit dem Wert 0. Welchen Wert hat die Variable y nach Auswertung des Ausdrucks y--?
- 26. (*, 0,5 Minuten) Welchen Wert hat der Ausdruck x = y = 8?
- 27. (*, 0,5 Minuten) Sei y eine **int**-Variable mit dem Wert 0. Welchen Wert hat der Ausdruck y == (x = 0)?

- 28. (*, 0,5 Minuten) Welchen Wert hat die Variable x nach Auswertung des Ausdrucks x = y = -2?
- 29. (**, 1 Minute) Seien x und y Variablen vom Typ int. Formulieren Sie eine C-Bedingung, die genau dann wahr ist, wenn x durch y teilbar ist.
- 30. (***, 1 Minute) Sei v ein Feld vom Typ int. Formulieren Sie eine C-Bedingung, die genau dann wahr ist, wenn der Speicherbereich von v mindestens für 10 Komponenten ausreicht.
- 31. (**, 1 Minute) Seien x und k Variablen vom Typ int. Formulieren Sie eine C-Bedingung mit bitweisem Operator, die genau dann wahr ist, wenn x echt kleiner 2^k ist.
- 32. (**, 1 Minute) Seien x und y Variablen vom Typ double. Formulieren Sie einen C-Ausdruck, dessen Wert das Minimum von x und y ist.
- 33. (**, 1 Minute) Sei x eine Variable vom Typ double. Formulieren Sie einen C-Ausdruck, dessen Wert der zu x nächstgelegende ganzzahlige Wert ist. Benutzen Sie dazu geeignete mathematische Funktionen aus math.h.

Aufgabe 20 (C-Kontrollstrukturen, 24 Minuten)

1. (*, 3 Minuten)

Drücken Sie die folgende Fallunterscheidung ohne Benutzung von switch-case aus:

```
switch (alter / 10) {
case 0:
        printf("under 10\n");
        break;
case 1:
        printf("between 10 and 20\n");
        break;
default:
        printf("over 20\n");
        break;
}
```

2. (*, 3 Minuten)

Drücken Sie den folgende Fallunterscheidung mit Benutzung von switch-case aus:

```
if (c == 'e') {
          printf("%e\n", x);
} else if (c == 'f') {
          printf("%f\n", x);
} else {
          printf("invalid parameter\n");
}
```

3. (*, 3 Minuten)

Drücken Sie die folgende do-Schleife mit einer while-Schleife aus:

4. (*, 3 Minuten)

Drücken Sie die folgende while-Schleife mit einer do-Schleife aus:

```
summe = v[0];
i = 1;
while (i <= n) {
    summe += v[i];
    ++i;
}</pre>
```

5. (*, 3 Minuten)

Drücken Sie die folgende do-Schleife mit einer do-Schleife mit Schleifenbedingung 1 aus:

```
summe = 0;
i = 0;
do {
    summe += v[i];
    ++i;
} while (i <= n);</pre>
```

6. (*, 3 Minuten)

Drücken Sie die folgende while-Schleife mit einer while-Schleife ohne break-Anweisung aus:

```
s = 0;
while (1) {
    if (x == 0) {
        break;
    }
    x = x / 2;
    ++s;
}
```

7. (*, 3 Minuten)

Drücken Sie die folgende while-Schleife mit einer while-Schleife mit continue-Anweisung aus:

```
i = 0;
while (i < n) {
    if ((x = rand()) % 2 != 0) {
        printf("%i\n", x);
        ++i;
}</pre>
```

8. (*, 3 Minuten)

Drücken Sie die folgende Schleife mit einer while-Schleife ohne continue-Anweisung aus:

```
s = 0;
while (x > 0) {
    r = x % 2;
    x = x / 2;
    if (r != 0) {
        continue;
    }
    ++s;
}
```