

# SCENE CLASSIFICATION

### FINAL PROJECT PRESENTATION



PRESENTED BY:

CESARIO LAURA THOFT (1852596)

**CICANI DIEGO (2140394)** 

**ODDI LIVIA (1846084)** 

**ZELLER DAMIAN (2118831)** 





## PRESENTATION OUTLINE

- Problem Statement
- Model selection
- Dataset
- Fine-Tuning
- Experiments and results
  - Accuracy metrics
  - Computational cost vs. Accuracy
  - Attention maps
- Future Work

## PROBLEM STATEMENT

Replication and fine-tuning of 5 pre-trained models from ICLR 2021 paper: "An Image is Worth 16x16 Words" (Dosovitskiy et al.)



Evaluate and compare fine-tuning performance of Vision Transformers (ViTs), Hybrid CNN-Transformer models, and advanced CNN-based models on the Places365 dataset.

A scene classification dataset differing from object-centric datasets like ImageNet-21K

Focus shifted from general image recognition tasks to scene classification on Places 365.

Extend existing research by:

- Analyzing model performance on scene-centric tasks
- Exploring computational trade-offs in fine-tuning
- Using attention maps to visualize the decision-making of the model

## **MODEL SELECTION**

### ViT'S

- ViT-B/32:
  - Computationally efficient baseline, captures global spatial relationships
- ViT-B/16:

Finer-grained feature extraction, balances cost and performance

### **HYBRID MODELS**

- R50+ViT-B/16:
  - Combines ResNet-50's local feature extraction with ViT's global reasoning.
- Evaluates whether
   merging CNN inductive
   biases with Transformers
   improves scene
   classification.

### CUU,2

- EfficientNet-L2:
  - Provides a strong computational efficiency baseline
- BiT-L (ResNet152x4):

Represents traditional CNN approaches for comparison in spatial contexts

365 scene classes and 1.8M images



20 classes (4,000 images, 200 per class) created with stratified subsampling

## FINE-TUNING



| Trial Number | Learning Rate (lr) | Momentum    | Validation Accuracy |
|--------------|--------------------|-------------|---------------------|
| 0            | 2.35E-05           | 0.898099309 | 36                  |
| 1            | 0.00085604         | 0.773994161 | 40                  |
| 2            | 6.87E-05           | 0.791928096 | 38                  |
| 3            | 2.61E-05           | 0.915534275 | 38                  |
| 4            | 0.002361648        | 0.972915928 | 36                  |
| 5            | 0.000594294        | 0.704122817 | 34                  |
| 6            | 0.000127275        | 0.736889905 | 34                  |
| 7            | 0.000868238        | 0.870753416 | 36                  |
| 8            | 0.001042364        | 0.899503888 | 34                  |
| 9            | 0.002427862        | 0.825105154 | 34                  |

Adopted fine-tuning protocol from paper, if reasonable

#### For all models:

• Hyperparameter Tuning: Automated tuning with Optuna for learning rate and momentum



- Optimizers: SGD with momentum from tuning, weight decay = 0 and gradient clipping (max\_norm=1.0)
- Learning Rate: Cosine decay with warm-up; learning rate set based on tuning results
- Batch Size: 32
- Epochs: 10 epochs
- Loss Function: Cross-entropy loss

## ACCURACY METRICS 1/3

### **MODEL**

### **OVERALL ACCURACY**

R50 + ViT-B-16

87.75

ResNet152x4

86.0

**ViT-B-16** 

85.25

**ViT-B-32** 

82.75

EfficientNet-L2

8.25



## ACCURACY METRICS 2/3

#### **EXPECTED RESULTS**

- ViT models excel in global context understanding, achieving strong performance.
- ResNet152x4 performs well, due to its deep architecture enabling capturing complex spatial relationships
- EffNet's low performance reflects its simpler architecture and limitations in adapting ImageNet-21K pre-training.

#### **UNEXPECTED OBSERVATIONS**

- Classes like Canyon and Castle challenge all models (possibly) due to limited similar examples in ImageNet-21K, leading to suboptimal transfer learning for these specific categories
- R50 + ViT-B-16 perform exceptionally well, (possibly) benefiting from hybrid designs and dataset compatibility.



## ACCURACY METRICS 3/3

#### FINDING CONSISTENT WITH THE RESEARCH PAPER?

- Results largely align with research findings:
- ViT-B16 Outperforms ViT-B32

#### **DISCREPANCIES**

- EffNet underperforms compared to research due to smaller model size or training scale.
- R50+ViT-B/16 outperforming all other models

#### **DATASET EFFECT**

- Small fine-tuning datasets favor hybrid models, due to ResNet backbone
- ImageNet-21k Pretraining: JFT-300M pretraining in the research paper allows for further performance gains, particularly for ViT models
- Scene-Specific Challenges: Limited representation of scene-centric classes in ImageNet-21k

## ACCURACY VS FLOP



### ORIGINAL IMAGE

ViT-B\_16

ViT-B\_32

















### ORIGINAL IMAGE

RESNETSO\_VIT-B\_16













### **TAKEAWAYS**

### **Quality of attention maps**

ViT-B\_16 + ViT-B\_32

highly interpretable attention maps

**ResNet50-ViT-B\_16** struggles to generate clear attention maps

### **Impact of patch sizes**

ViT-B\_16 \_\_\_ smaller patches



ViT-B\_32 larger patches

### Design trade-off

ResNet50-ViT-B\_16 high accuracy compromise on interpretability

ViT models seem to be the more reliable choice.

## FUTURE WORK





Explore selfsupervised pre-training for ViTs on Places 365 400 000

Test on other datasets for broader generalization.



Investigate
efficient ViTs for
resourceconstrained
scenarios.



Explore domainspecific pretraining on Places365 for improved performance.

