# Задача А. Соревнование по распилу

Имя входного файла: tournament.in Имя выходного файла: tournament.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Сенсация! В программу Олимпийских игр решили включить соревнования по распилу бревен на скорость. Однако с организацией турнира возникли некоторые сложности. Как уже известно, в турнире примут участие N спортсменов.

Турнир будет организован по следующей схеме: будет проведено T туров, причем первые T-1 из них будут отборочными, а последний — финальным. В каждом из отборочных туров все оставшиеся спортсмены будут разбиты на A ( $A \geqslant 2$ ) подгрупп по ровно B ( $B \geqslant 2$ ) человек в каждой. Из каждой подгруппы дальше пройдут ровно C человек ( $1 \leqslant C < B$ ). Для каждого отборочного тура будут выбраны свои значения A, B и C. В финале все оставшиеся участники одновременно сразятся между собой, определив чемпиона.

Так как доход организаторов зависит от количества проданных билетов, а оно, в свою очередь, от количества туров, то организаторы хотят провести как можно больше туров. Однако сами они с этой задачей не справились, поэтому обратились к вам за помощью. Найдите максимально возможное количество туров, включая финальный, которое можно провести, выбирая значения  $A,\,B$  и C для каждого из отборочных туров.

## Формат входного файла

В первой строке входного файла задано единственное целое число N — количество участников турнира ( $1 \le N \le 10^{12}$ ).

## Формат выходного файла

Выведите единственное пелое число — максимально возможное количество туров.

# Примеры

|   | tournament.in | tournament.out |
|---|---------------|----------------|
|   | 3             | 1              |
| Ì | 6             | 3              |

# Система оценки

Тесты к этой задаче состоят из пяти групп.

- 0. Тесты 1–2. Тесты из условия, оцениваются в ноль баллов.
- 1. Тесты 3–30. В тестах этой группы  $N \leq 30$ . Эта группа оценивается в 25 баллов, баллы начисляются только при прохождении всех тестов группы.
- 2. Тесты 31–40. В тестах этой группы  $N \leqslant 1\,000$ . Эта группа оценивается в 25 баллов, баллы начисляются только при прохождении всех тестов группы. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов первой группы.

- 3. Тесты 41–50. В тестах этой группы  $N\leqslant 10^6$ . Эта группа оценивается в 25 баллов, баллы начисляются только при прохождении всех тестов группы. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов первой и второй групп.
- 4. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 25 баллов. Решение будет тестироваться на тестах этой группы offline, т.е. после окончания тура, причем только в случае прохождения всех тестов первой, второй и третьей групп. Тесты в этой группе оцениваются независимо.

## Задача В. Несостоявшийся программист

Имя входного файла: accountant.in
Имя выходного файла: accountant.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Был обычный весенний вечер. За окном завывала метель. Бухгалтер Евгений скучал на работе и с грустью вспоминал о своих былых успехах на олимпиадах по программированию. В его школьные годы на олимпиадах давали не больше восьми задач, и, разглядывая график своих успехов на сайте Topforces, ему удалось подсчитать, что в  $v_1$  олимпиадах он решил ровно 1 задачу, в  $v_2$  олимпиадах — ровно 2, ..., в  $v_8$  олимпиадах — ровно 8 задач (Евгений предпочитал не вспоминать об олимпиадах, на которых он ничего не решил). К концу рабочего дня в офисе не осталось чистой бумаги, а из всех электронных устройств включенным оставался только калькулятор. Нашему герою ничего другого не оставалось, кроме как ввести памятные ему числа в калькулятор:  $v_11v_22\ldots v_88$ . Стоит заметить, что никаких пробелов и других разделителей на калькуляторе Евгения не было, поэтому он записал эти числа просто подряд, получив некоторое число N. Кроме того, он был достаточно ленив, поэтому все  $v_i$  вводил без ведущих нулей, а если какое-то  $v_i$  равнялось нулю, то соответствующую пару  $v_i i$  он просто не вводил.

Например, если  $v_2 = 111$ ,  $v_3 = 1$ , а все остальные  $v_i = 0$ , то у Евгения получилось бы число N = 111213.

Уйдя с работы, Евгений оставил калькулятор с введенным числом N на столе, чем и воспользовалась его любопытная коллега Марина. Она сразу догадалась, как образовано введенное число, и уже собиралась приступать к расшифровке, как вдруг поняла, что различных наборов  $(v_1,\ldots,v_8)$ , из которых можно было получить это число, может быть достаточно много. Так, приведенное выше число N может быть получено также и при  $v_1=11,\,v_3=21.$ 

Марина попросила вас найти количество таких наборов по модулю числа  $10^9 + 7 = 1\,000\,000\,007$ .

# Формат входного файла

Входной файл содержит единственное оставленное Евгением на калькуляторе целое число N ( $1 \le N < 10^{1\,000\,000}$ ).

## Формат выходного файла

Выведите единственное целое число — количество различных наборов  $(v_1, \ldots, v_8)$ , из которых описанным выше алгоритмом можно было получить число N, по модулю числа  $10^9 + 7$ .

Два набора  $(v_1, \ldots, v_8)$  и  $(v_1', \ldots, v_8')$  будем считать различными, если хотя бы для одного i от 1 до 8  $v_i \neq v_i'$ .

Обратите внимание, что Евгений мог ошибиться и получить число N, которое не соответствует ни одному набору  $(v_1, \ldots, v_8)$ .

## Пример

| accountant.in | accountant.out |
|---------------|----------------|
| 111213        | 5              |

## Система оценки

Тесты к этой задаче состоят из четырех групп.

- 0. Тест 1. Тест из условия, оцениваемый в ноль баллов.
- 1. Тесты 2–15. В тестах этой группы  $1 \le N < 10^{10}$ . Эта группа оценивается в 30 баллов, баллы начисляются только при прохождении всех тестов группы.
- 2. Тесты 16–30. В тестах этой группы  $1 \leqslant N < 10^{1\,000}$ . Эта группа оценивается в 30 баллов, баллы начисляются только при прохождении всех тестов группы. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов первой группы.
- 3. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 40 баллов. Решение будет тестироваться на тестах этой группы **offline**, т. е. после окончания тура, причем только в случае прохождения всех тестов первой и второй групп. Тесты в этой группе оцениваются **независимо**.

# Задача С. Две башни

Имя входного файла: towers.in
Имя выходного файла: towers.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Компания «Nanosoft» готовится удивить мир принципиально новой игрой для смартфонов «Две башни». Ее ключевая особенность заключается в том, что играть в нее смогут даже самые маленькие дети. Во-первых, для управления используется всего одна кнопка. Во-вторых, проиграть просто невозможно (правда, игроку может надоесть часами нажимать на одну и ту же кнопку).

Игровое поле представляет собой бесконечную горизонтальную ленту, разбитую на ячейки, пронумерованные целыми числами слева направо (см. рис.). Изначально в ячейках с отрицательными номерами расположена армия монстров, у каждого из которых есть некоторое количество единиц здоровья. А именно, в ячейках  $-1,-2,\ldots,-K$  расположены монстры с 1 единицей здоровья, в следующих K ячейках (с номерами  $-(K+1),\ldots,-2K)$  расположены монстры с 2 единицами здоровья и так далее. Таким образом, для каждого целого положительного числа i в ячейке с номером -i изначально находится монстр с  $\left\lceil \frac{i}{K} \right\rceil$  единицами здоровья. Кроме того, на ленте расположены две башни, каждая из которых контролирует некоторый отрезок ленты: первой башне соответствуют все ячейки с K по K включительно, а второй — ячейки с K по K включительно (K0 км.)

Например, при  $K=3,\ A=B=1,\ C=3,\ D=4$  исходная позиция будет выглядеть следующим образом:



После очередного нажатия на кнопку происходит следующее. Сначала вся армия сдвигается на одну позицию вправо. Затем каждая башня производит выстрел по самому правому монстру, находящемуся в области ее видимости, отнимая у него единицу здоровья. Если у монстра отнимают последнюю единицу здоровья, он немедленно умирает и исчезает.

Игра заканчивается, как только впервые в ячейке с номером D+1 окажется монстр.

Как вы уже могли заметить, главная проблема игры заключается в том, что для выигрыша может потребоваться слишком много нажатий на кнопку, поэтому для некоторых особо сложных уровней решено ограничить возраст игроков, допускаемых к его прохождению. В связи с этим вам нужно определить, сколько нажатий на кнопку потребуется для победы на данном уровне, который описывается числами K, A, B, C и D.

# Формат входного файла

В единственной строке входного файла содержатся пять разделенных пробелами целых чисел  $K,\ A,\ B,\ C,\ D\ (1\leqslant K\leqslant 10^9,\ 0\leqslant A\leqslant B< C\leqslant D\leqslant 10^9).$ 

# Формат выходного файла

Выведите единственное натуральное число — ответ на задачу.

## Примеры

| towers.in  | towers.out |
|------------|------------|
| 2 0 0 1 1  | 7          |
| 3 1 1 3 4  | 13         |
| 1 2 3 7 11 | 17         |

## Комментарии

Пошагово разберем первый тест.

## Исходная позиция:



После 1 нажатия:



После 2 нажатий:



После 3 нажатий:



После 4 нажатий:



После 5 нажатий:



После 6 нажатий:



#### После 7 нажатий:



## Система оценки

Тесты к этой задаче состоят из четырех групп.

- 0. Тесты 1–3. Тесты из условия, оцениваются в ноль баллов.
- 1. Тесты 4–17. В тестах этой группы  $1 \leqslant K \leqslant 10^3$ ,  $0 \leqslant A \leqslant B < C \leqslant D \leqslant 10^3$ . Эта группа оценивается в 30 баллов, баллы начисляются только при прохождении всех тестов группы.
- 2. Тесты 18–24. В тестах этой группы  $1\leqslant K\leqslant 10^5,\ 0\leqslant A\leqslant B< C\leqslant D\leqslant 10^5.$  Эта группа оценивается в 30 баллов, баллы начисляются только при прохождении всех тестов группы. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов первой группы.
- 3. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 40 баллов. Решение будет тестироваться на тестах этой группы **offline**, т. е. после окончания тура, причем только в случае прохождения всех тестов первой и второй групп. Тесты в этой группе оцениваются **независимо**.

# Задача D. Три строки

Имя входного файла: three.in
Имя выходного файла: three.out
Ограничение по времени: 3 секунды
Ограничение по памяти: 512 мегабайт

В новом учебном году школа, в которой обучается 7-классница Андреева Анна Андреевна, решилась на беспрецедентные меры по повышению знаний учащихся: каждый преподаватель школы должен помимо основных занятий прочитать хотя бы один годовой спецкурс. Темы спецкурсов преподаватели подобрали самые разные и интересные, а чтобы все учащиеся окончательно побросали свои внешкольные дела и с увлечением слушали новые курсы, их решено было сделать обязательными, а в конце еще и ставить дополнительную оценку в дневник.

Аня тщательно следит, чтобы в ее дневнике появлялись лишь оценки, строго большие четырех, поэтому, выкроив время между посещением бассейна и музыкальной школой, она села делать домашнее задание по спецкурсу «История магии», куда они с подружками ходят по средам, сразу после математики.

На последнем занятии рассказывалось, что все заклинания представляют собой конечные последовательности строчных латинских букв (возможно, пустые). Более того, история магии такая длинная и насыщенная, а маги в стародавние времена трудились столь плодотворно, что в наше время можно считать, что каждая конечная последовательность строчных латинских букв (в том числе и пустая) обязательно является заклинанием.

После этого преподаватель рассказал, что в древности магические ордена с одной стороны беспокоились о передаче и сохранении своих знаний, а с другой ни в коем случае не желали делиться своими результатами с кем бы то ни было, вследствие чего в ордене Данных Строк применялся следующий метод шифрования. Чтобы сохранить три заклинания A, B и C, из них формировали три строки: A' = \*A\*B\*, B' = \*C\*A\*, C' = \*B\*C\*, где вместо каждого символа '\*' подставлялась любая последовательность строчных латинских букв (возможно, пустая). Дополнительно требовалось, чтобы длины всех трех полученных строк были равны некоторому заранее выбранному числу N. Например, строки A = «a», B = «tb» и C = «c» могли быть зашифрованы при помощи строк A' = \*agtb>, B' = \*icea> и C' = \*tbhc>.

В качестве домашнего задания преподаватель предложил каждому школьнику попытаться расшифровать по одному результату такой записи. Ане даны три строки A', B' и C', вероятно полученные из каких-то заклинаний A, B и C описанными выше преобразованиями. Поскольку некоторые наборы из трех строк могли быть получены и больше чем из одного варианта исходных заклинаний A, B и C, Ане необходимо всего лишь найти максимально возможную суммарную длину исходных заклинаний.

# Формат входного файла

Первая строка входного файла содержит единственное целое число N ( $1 \le N \le 2\,000$ ) — длину каждой из входных строк. В следующих трех строках содержатся строки A', B' и C', каждая из которых состоит из N строчных латинских букв.

## Формат выходного файла

Выведите единственное целое число — ответ на поставленную задачу.

## Примеры

| three.in | three.out |
|----------|-----------|
| 2        | 3         |
| ac       |           |
| ba       |           |
| cb       |           |
| 4        | 4         |
| agtb     |           |
| icea     |           |
| tbhc     |           |
| 3        | 2         |
| abc      |           |
| cde      |           |
| dea      |           |

## Система оценки

Тесты к этой задаче состоят из четырех групп.

- 0. Тесты 1–3. Тесты из условия, оцениваются в ноль баллов.
- 1. Тесты 4–20. В тестах этой группы  $1\leqslant N\leqslant 50$ . Эта группа оценивается в 30 баллов.
- 2. Тесты 21–40. В тестах этой группы  $1 \leqslant N \leqslant 300$ . Эта группа оценивается в 30 баллов. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов первой группы.
- 3. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 40 баллов. Решение будет тестироваться на тестах этой группы **offline**, т. е. после окончания тура, причем только в случае прохождения всех тестов первой и второй групп.

Баллы за каждую группу тестов ставятся только при прохождении всех тестов группы.