Lecture 10 – Probabilistic Context Free Grammars (PCFG)

- 1. CFG, Ambiguity
- 2. PCFGs
- 3. Algorithms related to PCFG
 - a. Parsing
 - b. LM
- 4. Limitations of PCFGs

Why would we want to generate syntax trees?

Applications in sentiment analysis, machine translation, information structure...

Context Free Grammars

$$G = \langle N, \Sigma, R, S \rangle$$

N – Tags like N, NP, VP, ...

 Σ – words, non-terminals

R — rules

S – start symbol

Example rule: $R: X \to Y_1, Y_2, X \in N, Y_i \in \{N \cup \Sigma\}$

This model cannot tell you which syntax tree is more likely.

We need a notion of probability for syntax trees.

Probabilistic Context Free Grammars

Assign probability to each rule in *R*

To determine the probability of a syntax tree, multiply the probability of the rules used in the syntax tree.

Algorithms

Given S, T(S) (sentence and trees associated with the sentence)

Want to determine...

- 1. $T^* = \underset{T \in T(S)}{\operatorname{argmax}} p(S, T)$ (parsing task)
- 2. $p(S) = \sum_{T \in T(S)} p(S, T)$ (LM task)

Parameters of model: $p(\alpha \to \beta | \alpha) = \frac{count(\alpha \to \beta)}{count(\alpha)}$

CYK Algorithm

Chomsky-Normal Form: Any context free grammar can be translated a grammar with the following types of rules:

$$X \to Y_1 Y_2;$$
 $X, Y_1, Y_2 \in N$
 $X \to Y;$ $X \in N, Y \in \Sigma$

Assume non-terminals are numbered: $N = \{N_1, ..., N_K\}, N_1 = S$

 $\pi[i, j, k] = \max$ probability of a tree that starts at position i, ends at position j, and is derived from N_k .

Want to find $\pi[1, n, S]$.

Base Case:

$$\pi[i,i,k] = p(N_k \to w_i|N_k)$$

Recursive Case:

$$\pi[i,j,k] = \max_{l,m,s} \pi[i,s,l] \pi[s,j,m] p(N_l,N_m|N_k)$$