Estudo do Espectro de H e Na

Marques, F. Padilha, A.C.M. Steinkirch, M.D.T.V. Tubero, R.A.

Instituto de Física da Universidade de São Paulo

28 de agosto de 2006

Resumo

Os espectros de emissão e de absorção são característicos das substâncias, sendo usados para a sua identificação. Tais espectros são o resultado de transições entre diferentes estados estacionários dos átomos ou moléculas, sendo emitidas ou absorvidas, simultaneamente, ondas electromagnéticas. Dessa forma, esse experimento teve como objetivo o estudo do espectro de emissão do hidrogênio e do sódio, utilizando o espectro do mercúrio para calibração. A obtenção se deu por meio de um espectrógrafo de rede difração, que separa a luz incidente nos diversos comprimentos de onda constituintes. Além disso, utilizou-se lâmpadas de H, Na e Hq, filmes virqens para registrar o espectro e um projetor de diapositivos para determinação de distâncias entre as linhas. Obteve-se o valor para algumas linhas do espectro do hidrogênio e do sódio, e calculou-se o valor da constante de Rydberg, utilizando o hidrogênio, $R_{H} = 1.105(3) \cdot 10^{7} m^{-1}$, utilizando o sódio, na série difusa, $R_{Na} = 1.1094(13) \cdot 10^{7} m^{-1}$. Os valores obtidos foram compatíveis com o valor nominal, $R=1.09677576(12)\cdot 10^7 m^{-1}$. Obteve-se o potencial de ionização do hidrogênio P=-13.7002(12) eV, próximo ao valor nominal P=-13.6057 eV. Em sequência, foi calculado o valor para o defeito quântico da série nítida (sharp) s=-1.350(15) para o sódio, sendo o valor nominal s=-1.37 e o potencial de ionização do sódio, $P_{Na}=5.05(11)eV$, compatível em uma incerteza com o valor teórico, também calculado, igual a -5.1208eV. Por fim, construiu-se os diagramas de energia do hidrogênio e do sódio, e, no caso do sódio, observou-se as regras de transição, validando o modelo teórico utilizado.

1 Introdução

Hoje em dia, a espectroscopia vem desempenhando um papel muito importante nos estudos da física, já que pode-se utilizá-la na análise e identificação de substâncias. Um exemplo disso ocorre no estudo de estrelas, já que pode-se estudar suas composições analisando a luz que chega na terra. Sabemos que um gás, ao ser excitado pela passagem de corrente elétrica, por exemplo, emite luz. Ao ser analisada em um espectrógrafo, essa luz se mostra constituída de diversos comprimentos de onda discretos e bem definidos, que são característicos do elemento emissor. Para esse estudo, pode-se considerar que a radiação emitida é característica dos átomos ou molécula individuais, já quem em um gás estes estão bem afastados entre si. O modelo de Bohr para o átomo de Hidrogênio postula a quantização do momento angular orbital L de um elétron, de modo que esse seja um múltiplo inteiro

de \hbar , e o que implica na quantização da energia total E desse elétron, de acordo com 1[3].

$$E = -\frac{m_e Z^2 e^4}{(4\pi\epsilon_0)^2 2\hbar^2} \frac{1}{n^2} \quad n = 1, 2 \dots$$
 (1)

onde m_e é a massa do elétron, Z é o número atômico, e é a carga elementar e n é o número quântico principal. Substituindo em 1 a equação de Einstein $E = h\nu$, onde $\nu = \frac{c}{\lambda}$ é a frequência, pode-se expressar a diferença entre dois níveis de energia pela equação 2.

$$\Delta E = \frac{m_e Z^2 e^4}{(4\pi\epsilon_0)^2 2\hbar^2} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$
 (2)

que pode ser escrita em função do comprimento de onda λ como:

$$\nu' = \frac{1}{\lambda} = R_H \left[\frac{1}{n_f^2} - \frac{1}{n_i^2} \right]$$
 (3)

onde R_H é a constante de Rydberg. Transições de órbita de um elétron para diferentes níveis resultam em diferentes séries no espectro. Por exemplo, considerando-se o átomo de hidrogênio, para $n_f=1$ tem-se a série de Lyman, para $n_f=2$ temse a série de Balmer e, para outros valores de n_f , outras séries como se mostra a seguir:

• Série de Lyman (ultravioleta)

$$\nu' = \frac{1}{\lambda} = R_H \left[\frac{1}{1^2} - \frac{1}{n^2} \right], n = 2, 3, 4, \dots$$
 (4)

• Série de Balmer (visível e ultravioleta)

$$\nu' = \frac{1}{\lambda} = R_H \left[\frac{1}{2^2} - \frac{1}{n^2} \right], n = 3, 4, 5, \dots$$
 (5)

• Série de Paschen (infravermelho)

$$\nu' = \frac{1}{\lambda} = R_H \left[\frac{1}{3^2} - \frac{1}{n^2} \right], n = 4, 5, 6, \dots$$
 (6)

• Série de Brackett (infravermelho)

$$\nu' = \frac{1}{\lambda} = R_H \left[\frac{1}{4^2} - \frac{1}{n^2} \right], n = 5, 6, 7, \dots$$
 (7)

• Série de Pfund (infravermelho)

$$\nu' = \frac{1}{\lambda} = R_H \left[\frac{1}{4^2} - \frac{1}{n^2} \right], n = 6, 7, 8, \dots$$
 (8)

Neste experimento enfatizou-se o estudo da série de Balmer, pois os comprimentos de onda associados a ela encontram-se na região do visível. Com isso, os comprimentos de onda podem ser determinados experimentalmente por meio de uma rede de difração ou prisma de onde obtém-se o espectro do étamo.

Outro conceito importante é o do potencial de ionização, que é a energia mínima para que um elétron da camada mais interna do átomo seja ionizado. Da equação 1, obtem-se, com n=1, para o átomo de hidrogênio, o valor teórico do potencial: -13.6057eV. Além disso, considerando as equações 2 e 3 e tomando o limite em que $n_f \to \infty$ o potencial de ionização pode ser calculado como:

$$P = hcR_H \tag{9}$$

Os demais elementos da tabela periódica possuem uma estrutura eletrônica mais complexa que o hidrogênio (com poucas excessões, como no caso do He^+ e do Li^{2+} , por possuírem mais elétrons e prótons. Porém, os metais alcalinos, que possuem somente um elétron na camada eletrônica mais externa (ou camada de valência) e têm os outros níveis eletrônicos mais internos totalmente preenchidos, podem ser idealizados como um átomo semelhante ao hidrogênio. Dessa maneira, seu núcleo e elétrons mais internos podem ser encarados como um 'núcleo' de um átomo que possui somente um elétron. Nesse modelo, porém, há algumas correções, já que os elétrons mais internos deste átomo idealizado interagem com o elétron mais interno, e, dessa forma, há uma pequena sobreposição das funções de onda destes dentro do átomo, criando um comportamento que se diferencia do hidrogênio. Para explicar a estrutura deste átomo, assim como as suas transições eletrônicas, a fórmula proposta por Rydberg para o átomo de hidrogênio pode ser utilizada com algumas alterações que levam em consideração as interações entre seus elétrons. Como estes átomos apresentam uma estrutura interna mais complexa, os espectros obtidos apresentam diversas séries, que são explicadas pelas quatro fórmulas de Rydberg modificadas a seguir.

• Série principal

$$\nu' = R \left[\frac{1}{(3+s)^2} - \frac{1}{(n+p)^2} \right], n = 3, 4, \dots$$
(10)

• Série nítida (Sharp)

$$\nu' = R \left[\frac{1}{(3+p)^2} - \frac{1}{(n+s)^2} \right], n = 4, 5, \dots$$
(11)

• Série Difusa

$$\nu' = R \left[\frac{1}{(3+p)^2} - \frac{1}{(n+d)^2} \right], n = 3, 4, \dots$$
(12)

• Série fundamental

$$\nu' = R \left[\frac{1}{(3+f)^2} - \frac{1}{(n+f)^2} \right], n = 4, 5, \dots$$
(13)

onde as letras $s,\,p,\,d$ e f são os números quânticos l respectivos aos subníveis energéticos do átomo em questão e nestas fórmulas, referem-se à correção do modelo, sendo também chamados de defeitos quânticos, dados por

n. quântico	subnível atômico	defeito quântico
0	s	-1,37
1	p	-0,87
\parallel 2	d	-0,01
\parallel 3	f	0,00

Tabela 1: Tabela com os números quânticos de cada subnível atômico e seus respectivos defeitos quânticos.

Pode-se notar que à medida que l aumenta, o defeito quântico diminui. Isto pode ser explicado levando-se em conta que os subníveis atômicos apresentam uma superposição entre si, e quanto mais externos ao átomo forem os subníveis, menor será esta superposição. Quanto menor a superposição, menor será a influência dos elétrons internos sobre o elétron mais externo e mais próximo do comportamento do hidrogênio estará o átomo em questão.

2 Descrição Experimental

Para o estudo do espectro do hidrogênio e do sódio, utilizando um modelo de calibração dado pelo conhecido espectro do mercúrio, utilizou-se lâmpadas de hidrogênio, sódio e mercúrio, e um espectrógrafo de rede de difração que decompõe a luz formando o espectro de emissão. Para registrar os espectros foram utilizados filmes fotográficos virgens e, para que as posições fossem determinadas, utilizou-se um projetor de diapositivos, cuja incerteza associada foi de 0.01 mm. O modelo do espectrógrafo de rede de difração utilizado é mostrado pela figura 1

A partir de uma fenda ajustável do espectrógrafo, (F) a qual se era permitido determinar maior ou menor intensidade luminosa, correspondendo a uma maior ou menor largura das linhas de emissão das lâmpadas à sua frente, a luz era refletida em um espelho plano (E1) e logo após, em um espelho esférico (E2). Deste espelho, a luz era desviada em direção à rede de difração (R) que separava as raias, formando o espectro de emissão do elemento em questão. Este espectro era refletido num

Figura 1: Espectrógrafo de rede de difração.

espelho esférico (E3) e finalmente era registrado em um filme, preso em um cassete localizado em (C). Com a utilização do diafragma de Hartmann, foi possível que em um mesmo filme fossem registrados mais de um espectro, pois este dispositivo permitia um deslocamento dos espectros registrados no filme fotográfico. Os primeiros filmes fotográficos foram utilizados para estimar o tempo de exposição necessário para cada uma das lâmpadas utilizadas, assim como a largura da fenda na qual os espectros ficassem com a melhor definição possível. Como o dispositivo de ajuste da largura da fenda não fornecia uma leitura confiável, mesmo tendo marcações semelhantes a de um micrômetro mecânico, as fendas foram estimadas observandose as raias formadas num papel vegetal e somente o número de voltas do dispositivo de ajuste. Em seguida, os tempos foram determinados, sendo então 2 minutos para a lâmpada de mercúrio, 4 minutos para a lâmpada de hidrogênio e para a lâmpada de sódio, dois tempos foram utilizados: 16 minutos para a exposição longa, do qual se esperava obter as raias mais fracas de emissão deste elemento e 16 segundos para a exposição curta, da qual era almejado obter somente a raia mais intensa do sódio, caracterizada por um amarelo intenso (o sódio possui duas linhas com intensidades muito superiores às outras, e, dessa maneira, essas linhas foram obtidas em espectro adicional de curta exposição). Sabendo-se os tempos de exposição apropriados para cada lâmpada, os espectros do sódio e do hidrogênio foram obtidos acompanhados do espectro do mercúrio, que era a referência. Os filmes foram então revelados e a seguir escaneados, para a análise no software apropriado [1].

3 Resultado e Análise

3.1 Análise do Espectro do Hidrogênio

Inicialmente, para analisar os espectros do H (e, da mesma forma, posteriormente, o do Na), contruiu-se[4] uma curva de calibração com o espectro do mercúrio (figura 3 e tabela 2). A obtenção dos valores das distâncias das linhas de emissão do mercúrio se fez com o auxílio do editor de imagens ImagemJ[1], a partir da contagem de pixels (e convertendo para milímetros) entre as linhas do filme do hidrogênio, escaneado, conforme a figura 2.

Figura 2: Filme com o espectro do Hidrogênio e do Mercúrio.

Assim, a partir dessa relação, obteve-se a função de calibração, da qual, o melhor ajuste foi uma função linear, de acordo com a figura 3, e de onde foi possível medir os comprimentos de onda do espectro do hidrogênio, conforme os valores da tabela 3.

Figura 3: Função de Calibração do Espectro do Mercúrio, para o hidrogênio.

À seguir, no mesmo software[1], as distâncias entre as raias do hidrogênio foram obtidas, possibilitando, então, conhecer os comprimentos de ondas do espectro do hidrogênio e compará-los com os valores nominais, de acordo com a tabela 3.

Y =	A + B * X
A (Å)	6711(7)
Arr B (Å/mm)	43.36(16)

Tabela 2: Função linear de calibração do mercúrio, para o hidrogênio.

H	Dist. H	$\lambda \ Calculado$	$\lambda \ Nominal$
$H\alpha$	2.80 (17) mm	6590(10) Å	$6563 ext{Å}$
$\parallel \mathrm{H}\beta$	42.80 (21) mm	$4855(13) \ \dot{A}$	4861 Å
$\parallel { m H} \gamma$	54.80 (12) mm	$4335(12) \ \dot{A}$	4340 Å
$H\sigma$	60.16 (9) mm	$4103(13) \ \dot{A}$	$ $ 4102 $\dot{\mathrm{A}}$
$H\epsilon$	63.28 (24) mm	$3967(16) \ \dot{A}$	3970 Å
$\parallel \mathrm{H} \varphi$	65.20 (36) mm	$3884(20) \ \dot{A}$	3889 Å

Tabela 3: Tabela com os comprimento de ondas obtidos do Hidrogênio.

À partir desses valores e pela equação 3, traçouse o gráfico de determinação da constante de Rydberg, que é o coeficiente linear do gráfico 4: $R_H = 1.105(3) \cdot 10^7 m^{-1}$, de forma que o valor nominal é $R = 1.09677576(12) \cdot 10^7 m^{-1}$.

Figura 4: Determinação da constante de Rydberg.

E, finalmente, à partir da equação 9, tomando $c=2.999792458.10^8 m/s$ e $h=4.13566743(35).10^{-15} eV.s$ determinouse o potencial de ionização do hidrogênio, P=-13.7002(12)eV, que apresentou-se próximo do valor nominal P=-13.6057eV, de acordo com a equação 9.

Em seguida, de 3, temos 14, de onde se obteve os valores dos níveis de energia do hidrogênio, tabela 4, e se construiu o diagrama de níveis de energia,

figura 5.

$$\Delta E = hcR_H \left[\frac{1}{n_f^2} - \frac{1}{n_i^2} \right] = P \left[\frac{1}{n_f^2} - \frac{1}{n_i^2} \right] \quad (14)$$

n	$\Delta E(eV)n = 1$	$\Delta E(eV)n = 2$
8	13.4955	3.213
7	13.4359	3.147
6	13.3289	3.047
5	13.1613	2.879
$\parallel 4$	12.8529	2.571
3	12.1864	1.904

Tabela 4: Energias na Série de Lyman e Balmer.

Figura 5: Diagrama de energias obtidas experimentalmente para o hidrogênio.

3.2 Análise do Espectro do Sódio

Para a análise do espectro do sódio, foram revelado três filmes, afim de obter aquele com a melhor observação das raias (figuras 6 e 7).

A obtenção dos valores das distâncias das linhas de emissão do mercúrio se fez mais uma vez com editor de imagens ImagemJ[1]. A seguir, obteve-se a função de calibração, da qual, o melhor ajuste foi uma função linear, de acordo com a figura 8 e a tabela 5.

3.2.1 Série Difusa

Nesta etapa, fez-se uma aproximação para o defeito quântico desta série $\mu_d=0$. Este valor estava próx-

Figura 6: Os dois primeiros filmes revelados para o espectro do Sódio e do Mercúrio.

Figura 7: Filmes com o espectro do Sódio e do Mercúrio.

imo do valor nominal que era $\mu_d=-0,01$. Com essa aproximação, pôde-se plotar o gráfico de ν' em função de $\frac{1}{n^2}$ e ajustar uma reta aos pontos, como visto na figura 9. De acordo com a equação 12 com d=0.00, os coeficientes linear e angular do ajuste davam respectivamente $\frac{R}{(3+p)^2}$ e R.

Assim, os valores obtidos do ajuste podem ser observados a seguir:

$$R = -1.109(13) \cdot 10^{7}$$
$$\frac{R}{(3+p)^{2}} = 2.4529(54) \cdot 10^{6}$$

O valor da constante de Rydberg obtida a partir do ajuste no gráfico 12 apresentou-se próximo tanto com o valor obtido a partir das medidas do espectro do hidrogênio quanto com o valor nominal, conforme visto na seção 3.1.

3.2.2 Série Sharp

Como tanto na equação 11 quanto na equação 12 o primeiro termo foi igual, e conhecendo-se os valores de n para cada valor de ν' assim como o valor de $\frac{R}{(3+p)^2}$, pôde-se rearranjar a equação 11 de modo que o valor do defeito quântico correspondente à transição 3s - np pudesse ser obtido. A equação utilizada foi

$$s = \sqrt{\frac{R}{\frac{R}{(3+p)^2} - \nu'}} - n \tag{15}$$

Figura 8: Função de Calibração do Espectro do Mercurio para o Sódio.

Y =	A + B * X
A (Å)	2971.6(2)
B (Å/mm)	44.03(07)

Tabela 5: Função linear de calibração do mercúrio, para o sódio.

Como haviam somente três raias correspondentes à série sharp no espectro , três valores de s foram calculados e um valor médio foi então:

$$s = -1.350(15)$$

Tal valor mostrou-se compatível com o valor nominal que era s=-1.37.

3.2.3 Série Principal

Sabendo-se o valor do defeito quântico s, foi possível obter o valor do primeiro termo da equação 10. Com isso calculou-se a energia de ionização do sódio, fazendo $n \to \infty$ e multiplicando-se esse termo por hc. O valor obtido, desse modo, foi:

$$P_{Na} = -5.05(11)eV$$

Que é compatível, considerando uma incerteza, com o valor teórico calculado da equação 1, igual a -5.1208eV. Assim, comparando o valor do potencial de ionização do sódio com o do hidrogênio, da seção 3.1, verifica-se que o primeiro é menor em módulo, e, conclui-se que é aproximadamente duas vezes mais fácil ionizar o sódio do que o hidrogênio em termos de quantidade de energia necessária no processo. Mas é importante ressaltar que a energia

de ionização do sódio corresponde à energia associada ao comprimento de onda da transição $3s \to \infty$, pois esta é a transição do nível fundamental do elétron de valência (nível 3s) para fora do átomo (nível np, com $n \to \infty$).

Uma outra análise que se fez foi a identificação dos dubletos no filme do sódio. No caso, verificouse o dubleto que de acordo com a análise no ImageJ, correspondeu a uma diferença de distâncias 0.20(1) mm, e aos comprimentos de onda calculados: $\lambda_1 = 5898(63)$ e $\lambda_2 = 5907(62)$, e teóricos (da placa do laboratório, sem incertezas): $\lambda_1 = 5896$ e $\lambda_2 = 5910.\,$ A diferença de energia desse dubleto é dada pela equação da energia de Einstein $E = h\nu$, onde $\nu = \frac{c}{\lambda}$, resultando em 3.2025 · 10⁻³ eV. Estendendo o cálculo das diferenças de energias de todas as raias observadas no filme do espectro do sódio, foi possível obter o diagrama de níveis de energia do sódio, como pode ser observado na figura 10. Não foi possível observar as transições 3d-3p, 4s-3p, 6p-3s e as transições do subnível f. As duas primeiras transições omitidas, deu-se, possivelmente, por corresponderem a fótons de baixa energia, o que faria com que as raias correspondentes se encontrassem na região do infravermelho. A última transição corresponde a um fóton de alta energia, cuja raia correspondente se encontraria na região do ultravioleta.

Um fato que ainda deve ser explicado é a presença de uma raia que se divide em duas outras muito próximas, na região do amarelo. Isto se dá pelo fato de existir uma pequena diferença de energia na transição correspondente, pois os elétrons do nível 3p podem apresentar números quânticos de spin $\pm \frac{1}{2}$, o que faz com que haja um acoplamento entre seus estados descritos pelos seus números

Figura 10: Diagrama de níveis de energia do sódio.

quânticos associados ao momento angular orbital (l) e o de spin (s). Este número é dado por

$$j = l + s \tag{16}$$

Que implica em uma regra de seleção na qual somente transições em que $\Delta l=\mp 1$ ou $\Delta l=0$ são possíveis. Observando a transição do dubleto, notase que os possíveis valores de j são $\frac{1}{2},\,\frac{3}{2},\,\frac{5}{2},$ cujas únicas transições possíveis são $j=\frac{1}{2}\to j=\frac{3}{2},$ $j=\frac{3}{2}\to j=\frac{3}{2}$ e $j=\frac{3}{2}\to j=\frac{5}{2}$. Como as duas primeiras apresentam uma pequena diferença de energia, essas se relacionam a uma das raias do dubleto enquanto que a outra transição se relaciona com a outra.

Finalmente, a grande intensidade de luz emitida pelo dubleto amarelo foi explicada pelo fato de que a maioria dos elétrons atingem a camada menos energética do átomo através da transição 3p - 3s.

4 Conclusão

Através de uma pré-calibração feita com a lâmpada de mercúrio, cujo espectro de emissão era conhecido, foi possível obter experimentalmente a constante de Rydberg para o átomo de hidrogênio: $R_H = 1.105(3) \cdot 10^7 m^{-1}$. Este valor concorda

dentro de 3 incertezas com o valor teórico: R = $1.09677576(12) \cdot 10^7 m^{-1}$. Obteve-se ainda, como resultado da análise, o valor da energia de ionização do hidrogênio, a saber, P = -13.7002(12)eV, cujo valor teórico foi calculado: P = -13.6057eV. O fato dos valores de energia de ionização do Hidrogênio diferirem por mais de três incertezas pode ser explicado pelo fato do valor nominal não apresentar incertezas, o que torna difícil e inconclusiva qualquer tentativa de comparação dos dados. Além disso, foi obtido, também, o valor da energia de ionização do sódio, $P_{Na} = 5.05(11)eV$, compatível em uma incerteza com o valor teórico, -5.1208eV, e menos da metade da energia de ionização do átomo de Hidrogênio. No estudo do espectro do sódio, o defeito quântico da série principal calculado p = -0.79(4) se mostrou compatível com o valor nominal que era p = -0.87. O defeito quântico da série nítida (sharp) calculado foi s = -1.350(15), sendo o valor nominal s = -1.37, sendo estes compatíveis dentro de três incertezas, o que foi considerado satisfatório. O fato destes defeitos quânticos se mostrarem muito próximo dos valores esperados, mostrou que o modelo proposto para o estudo do sódio, no qual se idealiza o átomo de sódio como um átomo de hidrogênio com um núcleo formado pelo próprio núcleo atômico mais os elétrons mais internos, mostrou-se satisfatório para o estudo em questão. Por fim, calculou-se os diagramas de nível de energia tanto do hidrogênio quanto do sódio, e, dessa maneira, pôde-se, finalmente, concluir-se que a calibração com o espectro do mercúrio é eficaz para obter os valores dos outros elementos e, também, o modelo utilizado para o sódio, considerando-o como um hidrogenóide é válido experimentalmente.

Referências

- [1] Software, ImageJ, fabricante: http://rsb.info.nih.gov/ij.
- [2] R.V. Ribas, M.A.Rizzutto, Apostila de Laboratório de Estrutura da Matéria. IF-USP, 1996.
- [3] Software, Origin ver: 7.1, fabricante: Microcal Ltd.