Линейная алгебра. Лекция 7. Нормальные псевдорешения систем линейных уравнений и псевдообратная матрица

Н. Л. Поляков

Высшая Школа Экономики, Факультет экономических наук, Москва

2022 г.

Нормальные псевдорешения систем линейных уравнений

Псевдообратная матрица

Определение и теорема Мура-Пенроуза

Алгоритм вычисления псевдообратной матрицы

Псевдообратная матрица и нормальные псевдорешения

Псевдообратная матрица и метод наименьших квадратов

Литература

$$x = 1$$
$$x = 2$$

$$\begin{cases} x = 1 \\ x = 2 \end{cases}$$

$$\begin{cases} x + y = 1 \end{cases}$$

$$\begin{cases} x = 1 \\ x = 2 \end{cases}$$

$$\left\{ x + y = 1 \right.$$

Элиаким Гастингс Мур (1862 — 1932)

Идеи принадлежат Э. Муру и Р. Пенроузу.

Роджер Пенроуз (род. 1931)

Нормальным псевдорешением системы линейных уравнений

$$Ax = b$$
,

где $A\in M_{mn}$, $m{b}\in\mathbb{R}^m$, называется вектор $m{u}\in\mathbb{R}^n$, который удовлетворяет следующим условиям:

Нормальным псевдорешением системы линейных уравнений

$$Ax = b$$
,

где $A\in M_{mn}$, $m{b}\in\mathbb{R}^m$, называется вектор $m{u}\in\mathbb{R}^n$, который удовлетворяет следующим условиям:

 $1. \ |Aoldsymbol{u}-oldsymbol{b}|\leqslant |Aoldsymbol{x}-oldsymbol{b}|$ для всех $oldsymbol{x}\in\mathbb{R}^n$,

Нормальным псевдорешением системы линейных уравнений

$$A\boldsymbol{x} = \boldsymbol{b},$$

где $A\in M_{mn}$, $m{b}\in\mathbb{R}^m$, называется вектор $m{u}\in\mathbb{R}^n$, который удовлетворяет следующим условиям:

- 1. $|A\boldsymbol{u} \boldsymbol{b}| \leqslant |A\boldsymbol{x} \boldsymbol{b}|$ для всех $\boldsymbol{x} \in \mathbb{R}^n$,
- 2. Длина $|m{u}|$ минимальна среди всех векторов, удовлетворяющих свойству $m{1}$.

Нормальным псевдорешением системы линейных уравнений

$$Ax = b$$

где $A\in M_{mn},\, m{b}\in\mathbb{R}^m$, называется вектор $m{u}\in\mathbb{R}^n$, который удовлетворяет следующим условиям:

- 1. $|A\boldsymbol{u} \boldsymbol{b}| \leqslant |A\boldsymbol{x} \boldsymbol{b}|$ для всех $\boldsymbol{x} \in \mathbb{R}^n$,
- 2. Длина $|m{u}|$ минимальна среди всех векторов, удовлетворяющих свойству 1.

Теорема

Каждая система линейных уравнений имеет единственное псевдорешение.

Нормальным псевдорешением системы линейных уравнений

$$Ax = b$$

где $A\in M_{mn},\, m{b}\in\mathbb{R}^m$, называется вектор $m{u}\in\mathbb{R}^n$, который удовлетворяет следующим условиям:

- 1. $|A\boldsymbol{u} \boldsymbol{b}| \leqslant |A\boldsymbol{x} \boldsymbol{b}|$ для всех $\boldsymbol{x} \in \mathbb{R}^n$,
- 2. Длина $|m{u}|$ минимальна среди всех векторов, удовлетворяющих свойству 1.

Теорема

Каждая система линейных уравнений имеет единственное псевдорешение. Замечание.

Нормальным псевдорешением системы линейных уравнений

$$Ax = b$$

где $A\in M_{mn},\, m{b}\in\mathbb{R}^m$, называется вектор $m{u}\in\mathbb{R}^n$, который удовлетворяет следующим условиям:

- 1. $|A\boldsymbol{u} \boldsymbol{b}| \leqslant |A\boldsymbol{x} \boldsymbol{b}|$ для всех $\boldsymbol{x} \in \mathbb{R}^n$,
- 2. Длина $|m{u}|$ минимальна среди всех векторов, удовлетворяющих свойству 1.

Теорема

Каждая система линейных уравнений имеет единственное псевдорешение.

Замечание.

 Если система линейных уравнений имеет (настоящие) решения, то нормальное псевдорешение лежит среди решений системы.

Нормальным псевдорешением системы линейных уравнений

$$Ax = b$$

где $A\in M_{mn},\, m{b}\in\mathbb{R}^m$, называется вектор $m{u}\in\mathbb{R}^n$, который удовлетворяет следующим условиям:

- 1. $|A\boldsymbol{u} \boldsymbol{b}| \leqslant |A\boldsymbol{x} \boldsymbol{b}|$ для всех $\boldsymbol{x} \in \mathbb{R}^n$,
- 2. Длина $|m{u}|$ минимальна среди всех векторов, удовлетворяющих свойству 1.

Теорема

Каждая система линейных уравнений имеет единственное псевдорешение.

Замечание.

▶ Если система линейных уравнений имеет (настоящие) решения, то нормальное псевдорешение лежит среди решений системы. В частности, если система имеет единственное (настоящее) решение, то оно является и псевдорешением данной системы.

Нормальным псевдорешением системы линейных уравнений

$$Ax = b$$

где $A\in M_{mn}$, $m{b}\in\mathbb{R}^m$, называется вектор $m{u}\in\mathbb{R}^n$, который удовлетворяет следующим условиям:

- 1. $|A\boldsymbol{u}-\boldsymbol{b}|\leqslant |A\boldsymbol{x}-\boldsymbol{b}|$ для всех $\boldsymbol{x}\in\mathbb{R}^n$,
- 2. Длина |u| минимальна среди всех векторов, удовлетворяющих свойству 1.

Теорема

Каждая система линейных уравнений имеет единственное псевдорешение.

Замечание.

- ▶ Если система линейных уравнений имеет (настоящие) решения, то нормальное псевдорешение лежит среди решений системы. В частности, если система имеет единственное (настоящее) решение, то оно является и псевдорешением данной системы.
- Если система линейных уравнений однородна, то ее нормальное псевдорешение – нулевой вектор.

Рассмотрим систему

$$x = 1$$
$$x = 2$$

Рассмотрим систему

$$\begin{cases} x = 1 \\ x = 2 \end{cases}$$

В матричной форме:

$$\left(\begin{array}{c}1\\1\end{array}\right)\cdot(x)=\left(\begin{array}{c}1\\2\end{array}\right).$$

Рассмотрим систему

$$\begin{cases} x = 1 \\ x = 2 \end{cases}$$

В матричной форме:

$$\left(\begin{array}{c}1\\1\end{array}\right)\cdot(x)=\left(\begin{array}{c}1\\2\end{array}\right).$$

Вычисляем:

$$|Ax - b| = \left| \left(\begin{array}{c} x - 1 \\ x - 2 \end{array} \right) \right| = \sqrt{(x - 1)^2 + (x - 2)^2}.$$

Рассмотрим систему

$$\begin{cases} x = 1 \\ x = 2 \end{cases}$$

В матричной форме:

$$\left(\begin{array}{c}1\\1\end{array}\right)\cdot(x)=\left(\begin{array}{c}1\\2\end{array}\right).$$

Вычисляем:

$$|A\boldsymbol{x} - \boldsymbol{b}| = \left| \left(\begin{array}{c} x - 1 \\ x - 2 \end{array} \right) \right| = \sqrt{(x - 1)^2 + (x - 2)^2}.$$

Средствами мат. анализа находим точку минимума: $x=rac{3}{2}.$

Рассмотрим систему

$$\begin{cases} x = 1 \\ x = 2 \end{cases}$$

В матричной форме:

$$\left(\begin{array}{c} 1 \\ 1 \end{array}\right) \cdot (x) = \left(\begin{array}{c} 1 \\ 2 \end{array}\right).$$

Вычисляем:

$$|Ax - b| = \left| \left(\begin{array}{c} x - 1 \\ x - 2 \end{array} \right) \right| = \sqrt{(x - 1)^2 + (x - 2)^2}.$$

Средствами мат. анализа находим точку минимума: $x = \frac{3}{2}$.

Это и есть псевдорешение (условие 2 выполняется автоматически).

Рассмотрим систему

$$\Big\{x+y=1$$

Рассмотрим систему

$$\left\{ x + y = 1 \right.$$

В матричной форме:

$$\left(\begin{array}{cc} 1 & 1 \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) = (1).$$

Рассмотрим систему

$$\left\{ x + y = 1 \right.$$

В матричной форме:

$$\left(\begin{array}{cc} 1 & 1 \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) = (1).$$

Поскольку система разрешима, условие 1 равносильно тому, что $oldsymbol{u}$ есть решение системы. Находим общее решение:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} t \\ 1-t \end{pmatrix}.$$

Рассмотрим систему

$$\left\{ x + y = 1 \right.$$

В матричной форме:

$$\left(\begin{array}{cc} 1 & 1 \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) = (1).$$

Поскольку система разрешима, условие 1 равносильно тому, что $oldsymbol{u}$ есть решение системы. Находим общее решение:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} t \\ 1-t \end{pmatrix}.$$

Тогда

$$\left| \begin{pmatrix} x \\ y \end{pmatrix} \right| = \sqrt{t^2 + (1-t)^2}.$$

Рассмотрим систему

$$\left\{ x + y = 1 \right.$$

В матричной форме:

$$\left(\begin{array}{cc} 1 & 1 \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) = (1).$$

Поскольку система разрешима, условие 1 равносильно тому, что $oldsymbol{u}$ есть решение системы. Находим общее решение:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} t \\ 1-t \end{pmatrix}.$$

Тогда

$$\left| \begin{pmatrix} x \\ y \end{pmatrix} \right| = \sqrt{t^2 + (1-t)^2}.$$

Средствами мат. анализа находим точку минимума: $t=rac{1}{2}.$

Рассмотрим систему

$$\Big\{x+y=1$$

В матричной форме:

$$\left(\begin{array}{cc} 1 & 1 \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) = (1).$$

Поскольку система разрешима, условие 1 равносильно тому, что $oldsymbol{u}$ есть решение системы. Находим общее решение:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} t \\ 1-t \end{pmatrix}.$$

Тогда

$$\left| \begin{pmatrix} x \\ y \end{pmatrix} \right| = \sqrt{t^2 + (1-t)^2}.$$

Средствами мат. анализа находим точку минимума: $t=rac{1}{2}.$

Значит, нормальное псевдорешение есть...

Рассмотрим систему

$$\Big\{x+y=1$$

В матричной форме:

$$\left(\begin{array}{cc} 1 & 1 \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) = (1).$$

Поскольку система разрешима, условие 1 равносильно тому, что u есть решение системы. Находим общее решение:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} t \\ 1-t \end{pmatrix}.$$

Тогда

$$\left| \begin{pmatrix} x \\ y \end{pmatrix} \right| = \sqrt{t^2 + (1-t)^2}.$$

Средствами мат. анализа находим точку минимума: $t=rac{1}{2}.$

Значит, нормальное псевдорешение есть... $\left(\begin{array}{c} 1/2 \\ 1/2 \end{array} \right)$.

Оказывается, нормальное псевдорешение с.л.у. можно находить с помощью nсевдообратной матрицы A^+ .

Оказывается, нормальное псевдорешение с.л.у. можно находить с помощью nсевдообратной матрицы A^+ .

Определение

Оказывается, нормальное псевдорешение с.л.у. можно находить с помощью nсевдообратной матрицы A^+ .

Определение

Пусть $A \in M_{mn}$.

Оказывается, нормальное псевдорешение с.л.у. можно находить с помощью nсевдообратной матрицы A^+ .

Определение

Пусть $A \in M_{mn}$. Тогда псевдообратная матрица для матрицы A есть матрица A^+ размера $n \times m$, удовлетворяющая условиям:

Оказывается, нормальное псевдорешение с.л.у. можно находить с помощью nсевдообратной матрицы A^+ .

Определение

Пусть $A \in M_{mn}$. Тогда псевдообратная матрица для матрицы A есть матрица A^+ размера $n \times m$, удовлетворяющая условиям:

1.
$$AA^{+}A = A$$
,

Оказывается, нормальное псевдорешение с.л.у. можно находить с помощью nсевдообратной матрицы A^+ .

Определение

Пусть $A \in M_{mn}$. Тогда псевдообратная матрица для матрицы A есть матрица A^+ размера $n \times m$, удовлетворяющая условиям:

- 1. $AA^{+}A = A$,
- 2. $A^+AA^+ = A^+$,

Оказывается, нормальное псевдорешение с.л.у. можно находить с помощью nсевдообратной матрицы A^+ .

Определение

Пусть $A\in M_{mn}$. Тогда псевдообратная матрица для матрицы A есть матрица A^+ размера $n\times m$, удовлетворяющая условиям:

- 1. $AA^{+}A = A$,
- 2. $A^+AA^+ = A^+$,
- 3. $(AA^+)^T = AA^+$,

Оказывается, нормальное псевдорешение с.л.у. можно находить с помощью nсевдообратной матрицы A^+ .

Определение

Пусть $A\in M_{mn}$. Тогда псевдообратная матрица для матрицы A есть матрица A^+ размера $n\times m$, удовлетворяющая условиям:

- 1. $AA^{+}A = A$,
- 2. $A^+AA^+ = A^+$,
- 3. $(AA^+)^T = AA^+$,
- 4. $(A^+A)^T = A^+A$.

Оказывается, нормальное псевдорешение с.л.у. можно находить с помощью nсевдообратной матрицы A^+ .

Определение

Пусть $A \in M_{mn}$. Тогда псевдообратная матрица для матрицы A есть матрица A^+ размера $n \times m$, удовлетворяющая условиям:

- 1. $AA^{+}A = A$,
- 2. $A^+AA^+ = A^+$,
- 3. $(AA^+)^T = AA^+$,
- 4. $(A^+A)^T = A^+A$.

Замечание

Оказывается, нормальное псевдорешение с.л.у. можно находить с помощью nсевдообратной матрицы A^+ .

Определение

Пусть $A \in M_{mn}$. Тогда псевдообратная матрица для матрицы A есть матрица A^+ размера $n \times m$, удовлетворяющая условиям:

- 1. $AA^{+}A = A$,
- 2. $A^+AA^+ = A^+$,
- 3. $(AA^+)^T = AA^+$,
- 4. $(A^+A)^T = A^+A$.

Замечание

Обратная матрица A^{-1} для матрицы A удовлетворяет всем этим условиям.

Оказывается, нормальное псевдорешение с.л.у. можно находить с помощью nсевдообратной матрицы A^+ .

Определение

Пусть $A \in M_{mn}$. Тогда псевдообратная матрица для матрицы A есть матрица A^+ размера $n \times m$, удовлетворяющая условиям:

- 1. $AA^{+}A = A$,
- 2. $A^+AA^+ = A^+$
- 3. $(AA^+)^T = AA^+$,
- 4. $(A^+A)^T = A^+A$.

Замечание

Обратная матрица A^{-1} для матрицы A удовлетворяет всем этим условиям.

Теорема (Мура-Пенроуза)

Для любой матрицы A существует единственная псевдообратная матрица A^+ .

Единственность.

Единственность. Пусть B и C — псевдообратные матрицы для матрицы A. Тогда

B =

$$B = BAB =$$

$$B = BAB = B(AB)^T$$

$$B = BAB = B(AB)^T =$$

$$B = BAB = B(AB)^T = BB^TA^T =$$

$$B = BAB = B(AB)^T = BB^TA^T = BB^T(ACA)^T =$$

$$B = BAB = B(AB)^T = BB^TA^T = BB^T(ACA)^T = B(AB)^T(AC)^T =$$

$$B = BAB = B(AB)^T = BB^TA^T = BB^T(ACA)^T = B(AB)^T(AC)^T =$$

$$BABAC =$$

$$B = BAB = B(AB)^T = BB^TA^T = BB^T(ACA)^T = B(AB)^T(AC)^T =$$

$$BABAC = BAC =$$

$$B = BAB = B(AB)^T = BB^TA^T = BB^T(ACA)^T = B(AB)^T(AC)^T =$$

$$BABAC = BAC = (BA)^TCAC =$$

$$B = BAB = B(AB)^T = BB^TA^T = BB^T(ACA)^T = B(AB)^T(AC)^T =$$

$$BABAC = BAC = (BA)^TCAC = (BA)^T(CA)^TC =$$

$$B = BAB = B(AB)^T = BB^TA^T = BB^T(ACA)^T = B(AB)^T(AC)^T =$$

$$BABAC = BAC = (BA)^TCAC = (BA)^T(CA)^TC = A^TB^TA^TC^TC =$$

$$B = BAB = B(AB)^T = BB^TA^T = BB^T(ACA)^T = B(AB)^T(AC)^T =$$

$$BABAC = BAC = (BA)^TCAC = (BA)^T(CA)^TC = A^TB^TA^TC^TC =$$

$$A^TC^TC =$$

$$B = BAB = B(AB)^T = BB^TA^T = BB^T(ACA)^T = B(AB)^T(AC)^T =$$

$$BABAC = BAC = (BA)^TCAC = (BA)^T(CA)^TC = A^TB^TA^TC^TC =$$

$$A^TC^TC = CAC =$$

$$\begin{split} B &= BAB = B(AB)^T = BB^TA^T = BB^T(ACA)^T = B(AB)^T(AC)^T = \\ BABAC &= BAC = (BA)^TCAC = (BA)^T(CA)^TC = A^TB^TA^TC^TC = \\ A^TC^TC &= CAC = C. \end{split}$$

Единственность. Пусть B и C — псевдообратные матрицы для матрицы A. Тогда

$$\begin{split} B &= BAB = B(AB)^T = BB^TA^T = BB^T(ACA)^T = B(AB)^T(AC)^T = \\ BABAC &= BAC = (BA)^TCAC = (BA)^T(CA)^TC = A^TB^TA^TC^TC = \\ A^TC^TC &= CAC = C. \end{split}$$

Существование.

Единственность. Пусть B и C — псевдообратные матрицы для матрицы A. Тогда

$$\begin{split} B &= BAB = B(AB)^T = BB^TA^T = BB^T(ACA)^T = B(AB)^T(AC)^T = \\ BABAC &= BAC = (BA)^TCAC = (BA)^T(CA)^TC = A^TB^TA^TC^TC = \\ A^TC^TC &= CAC = C. \end{split}$$

Существование.

Вспомогательное утверждение:

Единственность. Пусть B и C — псевдообратные матрицы для матрицы A. Тогда

$$\begin{split} B &= BAB = B(AB)^T = BB^TA^T = BB^T(ACA)^T = B(AB)^T(AC)^T = \\ BABAC &= BAC = (BA)^TCAC = (BA)^T(CA)^TC = A^TB^TA^TC^TC = \\ A^TC^TC &= CAC = C. \end{split}$$

Существование.

Вспомогательное утверждение:

▶ Если $A^T A$ обратима, то $A^+ = (A^T A)^{-1} A^T$ (упражнение).

Единственность. Пусть B и C — псевдообратные матрицы для матрицы A. Тогда

$$\begin{split} B &= BAB = B(AB)^T = BB^TA^T = BB^T(ACA)^T = B(AB)^T(AC)^T = \\ BABAC &= BAC = (BA)^TCAC = (BA)^T(CA)^TC = A^TB^TA^TC^TC = \\ A^TC^TC &= CAC = C. \end{split}$$

Существование.

Вспомогательное утверждение:

- ▶ Если $A^T A$ обратима, то $A^+ = (A^T A)^{-1} A^T$ (упражнение).
- ▶ Если AA^T обратима, то $A^+ = A^T (AA^T)^{-1}$ (упражнение).

Единственность. Пусть B и C — псевдообратные матрицы для матрицы A. Тогда

$$B = BAB = B(AB)^T = BB^TA^T = BB^T(ACA)^T = B(AB)^T(AC)^T =$$

$$BABAC = BAC = (BA)^TCAC = (BA)^T(CA)^TC = A^TB^TA^TC^TC =$$

$$A^TC^TC = CAC = C.$$

Существование.

Вспомогательное утверждение:

- ▶ Если $A^T A$ обратима, то $A^+ = (A^T A)^{-1} A^T$ (упражнение).
- ▶ Если AA^T обратима, то $A^+ = A^T (AA^T)^{-1}$ (упражнение).
- ightharpoonup Если A=FG, где F^TF и GG^T обратимы, то

$$A^{+} = G^{+}F^{+} = G^{T}(GG^{T})^{-1}(F^{T}F)^{-1}F^{T}$$

(упражнение).

ightharpoonup Если A полного стобцового ранга (т.е. если столбцы матрицы линейно независимы), то A^TA обратима.

ightharpoonup Если A полного стобцового ранга (т.е. если столбцы матрицы линейно независимы), то A^TA обратима.

Hа примере матриц 3×2 :

Если A полного стобцового ранга (т.е. если столбцы матрицы линейно независимы), то A^TA обратима.

На примере матриц
$$3 \times 2$$
: пусть $A = \left(egin{array}{cc} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{array} \right)$. Тогда

Если A полного стобцового ранга (т.е. если столбцы матрицы линейно независимы), то A^TA обратима.

На примере матриц
$$3 \times 2$$
: пусть $A = \left(egin{array}{cc} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{array} \right)$. Тогда

$$A^T A =$$

Если A полного стобцового ранга (т.е. если столбцы матрицы линейно независимы), то A^TA обратима.

На примере матриц 3×2 : пусть $A=\left(\begin{array}{ccc} a_1 & b_1\\ a_2 & b_2\\ a_3 & b_3 \end{array}\right)$. Тогда

$$A^{T}A = \begin{pmatrix} a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \end{pmatrix} \cdot \begin{pmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \\ a_{3} & b_{3} \end{pmatrix} =$$

Если A полного стобцового ранга (т.е. если столбцы матрицы линейно независимы), то A^TA обратима.

На примере матриц 3×2 : пусть $A = \left(\begin{array}{cc} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{array} \right)$. Тогда

$$A^{T}A = \begin{pmatrix} a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \end{pmatrix} \cdot \begin{pmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \\ a_{3} & b_{3} \end{pmatrix} = \begin{pmatrix} a_{1}^{2} + a_{2}^{2} + a_{3}^{2} & a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3} \\ a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3} & b_{1}^{2} + b_{2}^{2} + b_{3}^{2} \end{pmatrix}.$$

Если A полного стобцового ранга (т.е. если столбцы матрицы линейно независимы), то A^TA обратима.

На примере матриц 3×2 : пусть $A = \left(\begin{array}{cc} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{array} \right)$. Тогда

$$A^{T}A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} \cdot \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{pmatrix} = \begin{pmatrix} a_1^2 + a_2^2 + a_3^2 & a_1b_1 + a_2b_2 + a_3b_3 \\ a_1b_1 + a_2b_2 + a_3b_3 & b_1^2 + b_2^2 + b_3^2 \end{pmatrix}.$$

Надо показать: $\det A^T A = 0 \Rightarrow \operatorname{rang} A < 2$.

Если A полного стобцового ранга (т.е. если столбцы матрицы линейно независимы), то A^TA обратима.

На примере матриц
$$3 \times 2$$
: пусть $A = \left(egin{array}{cc} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{array} \right)$. Тогда

$$A^{T}A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} \cdot \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{pmatrix} = \begin{pmatrix} a_1^2 + a_2^2 + a_3^2 & a_1b_1 + a_2b_2 + a_3b_3 \\ a_1b_1 + a_2b_2 + a_3b_3 & b_1^2 + b_2^2 + b_3^2 \end{pmatrix}.$$

Надо показать: $\det A^T A = 0 \Rightarrow \operatorname{rang} A < 2$.

Если один из векторов ${m a}, {m b}$ нулевой, сразу имеем ${
m rang}\, A < 2$. Иначе:

Если A полного стобцового ранга (т.е. если столбцы матрицы линейно независимы), то A^TA обратима.

На примере матриц 3×2 : пусть $A = \left(egin{array}{cc} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{array} \right)$. Тогда

$$A^{T}A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} \cdot \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{pmatrix} = \begin{pmatrix} a_1^2 + a_2^2 + a_3^2 & a_1b_1 + a_2b_2 + a_3b_3 \\ a_1b_1 + a_2b_2 + a_3b_3 & b_1^2 + b_2^2 + b_3^2 \end{pmatrix}.$$

Надо показать: $\det A^T A = 0 \Rightarrow \operatorname{rang} A < 2$.

Если один из векторов ${m a}, {m b}$ нулевой, сразу имеем ${
m rang}\, A < 2$. Иначе:

$$\det\left(\boldsymbol{A}^{T}\boldsymbol{A}\right) =$$

Если A полного стобцового ранга (т.е. если столбцы матрицы линейно независимы), то A^TA обратима.

На примере матриц 3×2 : пусть $A = \left(egin{array}{cc} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{array} \right)$. Тогда

$$A^{T}A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} \cdot \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{pmatrix} = \begin{pmatrix} a_1^2 + a_2^2 + a_3^2 & a_1b_1 + a_2b_2 + a_3b_3 \\ a_1b_1 + a_2b_2 + a_3b_3 & b_1^2 + b_2^2 + b_3^2 \end{pmatrix}.$$

Надо показать: $\det A^T A = 0 \Rightarrow \operatorname{rang} A < 2$.

Если один из векторов ${m a}, {m b}$ нулевой, сразу имеем ${
m rang}\, A < 2$. Иначе:

$$\det (\boldsymbol{A}^T \boldsymbol{A}) = |\boldsymbol{a}|^2 |\boldsymbol{b}|^2 - (\boldsymbol{a}, \boldsymbol{b})^2 =$$

Если A полного стобцового ранга (т.е. если столбцы матрицы линейно независимы), то A^TA обратима.

На примере матриц 3×2 : пусть $A = \left(egin{array}{cc} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{array} \right)$. Тогда

$$A^{T}A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} \cdot \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{pmatrix} = \begin{pmatrix} a_1^2 + a_2^2 + a_3^2 & a_1b_1 + a_2b_2 + a_3b_3 \\ a_1b_1 + a_2b_2 + a_3b_3 & b_1^2 + b_2^2 + b_3^2 \end{pmatrix}.$$

Надо показать: $\det A^T A = 0 \Rightarrow \operatorname{rang} A < 2$.

Если один из векторов a, b нулевой, сразу имеем $\operatorname{rang} A < 2$. Иначе:

$$\det (A^T A) = |\boldsymbol{a}|^2 |\boldsymbol{b}|^2 - (\boldsymbol{a}, \boldsymbol{b})^2 = |\boldsymbol{a}|^2 |\boldsymbol{b}|^2 \left(1 - \cos^2 \left(\widehat{\boldsymbol{a}, \boldsymbol{b}}\right)\right)$$

Если A полного стобцового ранга (т.е. если столбцы матрицы линейно независимы), то A^TA обратима.

На примере матриц
$$3 \times 2$$
: пусть $A = \left(egin{array}{cc} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{array} \right)$. Тогда

$$A^{T}A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} \cdot \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{pmatrix} = \begin{pmatrix} a_1^2 + a_2^2 + a_3^2 & a_1b_1 + a_2b_2 + a_3b_3 \\ a_1b_1 + a_2b_2 + a_3b_3 & b_1^2 + b_2^2 + b_3^2 \end{pmatrix}.$$

Надо показать: $\det A^T A = 0 \Rightarrow \operatorname{rang} A < 2$.

Если один из векторов a, b нулевой, сразу имеем $\operatorname{rang} A < 2$. Иначе:

$$\det (A^{T} A) = |\boldsymbol{a}|^{2} |\boldsymbol{b}|^{2} - (\boldsymbol{a}, \boldsymbol{b})^{2} = |\boldsymbol{a}|^{2} |\boldsymbol{b}|^{2} \left(1 - \cos^{2} \left(\widehat{\boldsymbol{a}, \boldsymbol{b}}\right)\right)$$
$$\det (A^{T} A) = 0 \Leftrightarrow \cos \left(\widehat{\boldsymbol{a}, \boldsymbol{b}}\right) = \pm 1 \Leftrightarrow \operatorname{rang} A < 2.$$

Если A полного стобцового ранга (т.е. если столбцы матрицы линейно независимы), то A^TA обратима.

На примере матриц
$$3 \times 2$$
: пусть $A = \left(egin{array}{cc} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{array} \right)$. Тогда

$$A^{T}A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} \cdot \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{pmatrix} = \begin{pmatrix} a_1^2 + a_2^2 + a_3^2 & a_1b_1 + a_2b_2 + a_3b_3 \\ a_1b_1 + a_2b_2 + a_3b_3 & b_1^2 + b_2^2 + b_3^2 \end{pmatrix}.$$

Надо показать: $\det A^T A = 0 \Rightarrow \operatorname{rang} A < 2$.

Если один из векторов a, b нулевой, сразу имеем $\operatorname{rang} A < 2$. Иначе:

$$\det (A^T A) = |\boldsymbol{a}|^2 |\boldsymbol{b}|^2 - (\boldsymbol{a}, \boldsymbol{b})^2 = |\boldsymbol{a}|^2 |\boldsymbol{b}|^2 \left(1 - \cos^2 \left(\widehat{\boldsymbol{a}, \boldsymbol{b}}\right)\right)$$
$$\det (A^T A) = 0 \Leftrightarrow \cos \left(\widehat{\boldsymbol{a}, \boldsymbol{b}}\right) = \pm 1 \Leftrightarrow \operatorname{rang} A < 2.$$

ightharpoonup Если A полного строчного ранга (т.е. если строки матрицы линейно независимы), то AA^T обратима.

Если A полного стобцового ранга (т.е. если столбцы матрицы линейно независимы), то A^TA обратима.

На примере матриц 3×2 : пусть $A = \left(egin{array}{cc} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{array} \right)$. Тогда

$$A^{T}A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} \cdot \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{pmatrix} = \begin{pmatrix} a_1^2 + a_2^2 + a_3^2 & a_1b_1 + a_2b_2 + a_3b_3 \\ a_1b_1 + a_2b_2 + a_3b_3 & b_1^2 + b_2^2 + b_3^2 \end{pmatrix}.$$

Надо показать: $\det A^T A = 0 \Rightarrow \operatorname{rang} A < 2$.

Если один из векторов a,b нулевой, сразу имеем $\operatorname{rang} A < 2$. Иначе:

$$\det (A^T A) = |\boldsymbol{a}|^2 |\boldsymbol{b}|^2 - (\boldsymbol{a}, \boldsymbol{b})^2 = |\boldsymbol{a}|^2 |\boldsymbol{b}|^2 \left(1 - \cos^2 \left(\widehat{\boldsymbol{a}, \boldsymbol{b}}\right)\right)$$
$$\det (A^T A) = 0 \Leftrightarrow \cos \left(\widehat{\boldsymbol{a}, \boldsymbol{b}}\right) = \pm 1 \Leftrightarrow \operatorname{rang} A < 2.$$

▶ Если A полного строчного ранга (т.е. если строки матрицы линейно независимы), то AA^T обратима. Действительно, если A полного строчного ранга, то A^T полного столбцового ранга. По предыдущему пункту $(A^T)^TA^T = AA^T$ обратима.

- lacktriangle Для каждой матрицы A существуют такие матрицы F и G, что
 - 1. F полного столбцового ранга,
 - ${\it 2.}\,\,\,G$ полного строчного ранга,
 - 3. A = FG

(скелетное разложение).

- lacktriangle Для каждой матрицы A существуют такие матрицы F и G, что
 - ${f 1}.$ F полного столбцового ранга,
 - 2. G полного строчного ранга,
 - 3. A = FG

(скелетное разложение).

- lacktriangle Для каждой матрицы A существуют такие матрицы F и G, что
 - ${f 1}.$ F полного столбцового ранга,
 - ${\it 2.}\,\,\,G$ полного строчного ранга,
 - 3. A = FG

(скелетное разложение).

Для нахождения скелетного разложения A=FG матрицы A размера $m\times n$ и ранга r можно применить следующий алгоритм.

ightharpoonup Выбираем r линейно независимых столбцов матрицы A и составляем из них (в том же порядке) новую матрицу. Эту матрицу и можно принять за F.

- lacktriangle Для каждой матрицы A существуют такие матрицы F и G, что
 - ${f 1}.$ F полного столбцового ранга,
 - 2. G полного строчного ранга,
 - 3. A = FG

(скелетное разложение).

Для нахождения скелетного разложения A=FG матрицы A размера $m\times n$ и ранга r можно применить следующий алгоритм.

ightharpoonup Выбираем r линейно независимых столбцов матрицы A и составляем из них (в том же порядке) новую матрицу. Эту матрицу и можно принять за F. Заметим, что она будет размера $m \times r$.

- lacktriangle Для каждой матрицы A существуют такие матрицы F и G, что
 - $1. \ F$ полного столбцового ранга,
 - 2. G полного строчного ранга,
 - 3. A = FG

(скелетное разложение).

- Выбираем r линейно независимых столбцов матрицы A и составляем из них (в том же порядке) новую матрицу. Эту матрицу и можно принять за F. Заметим, что она будет размера $m \times r$.
- ightharpoonup Для нахождения матрицы G заметим, что она должна быть размера r imes n (чтобы размер матрицы FG совпадал с размером матрицы A).

- lacktriangle Для каждой матрицы A существуют такие матрицы F и G, что
 - ${f 1}.$ F полного столбцового ранга,
 - 2. G полного строчного ранга,
 - 3. A = FG

(скелетное разложение).

- Выбираем r линейно независимых столбцов матрицы A и составляем из них (в том же порядке) новую матрицу. Эту матрицу и можно принять за F. Заметим, что она будет размера $m \times r$.
- lacktriangledown Для нахождения матрицы G заметим, что она должна быть размера r imes n (чтобы размер матрицы FG совпадал с размером матрицы A). Вместо тех столбцов, которые мы выбрали для матрицы F в матрице G записываем столбцы единичной матрицы r imes r в естественном порядке.

- lacktriangle Для каждой матрицы A существуют такие матрицы F и G, что
 - $1. \ F$ полного столбцового ранга,
 - 2. G полного строчного ранга,
 - 3. A = FG

(скелетное разложение).

- Выбираем r линейно независимых столбцов матрицы A и составляем из них (в том же порядке) новую матрицу. Эту матрицу и можно принять за F. Заметим, что она будет размера $m \times r$.

- lacktriangle Для каждой матрицы A существуют такие матрицы F и G, что
 - 1. F полного столбцового ранга,
 - 2. G полного строчного ранга,
 - 3. A = FG

(скелетное разложение).

- Выбираем r линейно независимых столбцов матрицы A и составляем из них (в том же порядке) новую матрицу. Эту матрицу и можно принять за F. Заметим, что она будет размера $m \times r$.
- ightharpoonup Для нахождения этих коэффициентов расписываем равенство FG=A покомпонентно.

- lacktriangle Для каждой матрицы A существуют такие матрицы F и G, что
 - ${f 1}.$ F полного столбцового ранга,
 - 2. G полного строчного ранга,
 - 3. A = FG

(скелетное разложение).

- Выбираем r линейно независимых столбцов матрицы A и составляем из них (в том же порядке) новую матрицу. Эту матрицу и можно принять за F. Заметим, что она будет размера $m \times r$.
- ightharpoonup Для нахождения этих коэффициентов расписываем равенство FG=A покомпонентно. Это приводит к системе линеных уравнений на неопределенные коэффициенты.

- lacktriangle Для каждой матрицы A существуют такие матрицы F и G, что
 - ${f 1}.$ F полного столбцового ранга,
 - ${\it 2.}\,\,\,G$ полного строчного ранга,
 - 3. A = FG

(скелетное разложение).

- Выбираем r линейно независимых столбцов матрицы A и составляем из них (в том же порядке) новую матрицу. Эту матрицу и можно принять за F. Заметим, что она будет размера $m \times r$.
- ightharpoonup Для нахождения этих коэффициентов расписываем равенство FG=A покомпонентно. Это приводит к системе линеных уравнений на неопределенные коэффициенты. Решаем эту систему, находим матрицу G.

Пусть

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right).$$

Пусть

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right).$$

Это матрица ранга 2, и первые два ее столбца линейно независимы.

Пусть

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right).$$

Это матрица ранга 2, и первые два ее столбца линейно независимы.

Положим

$$F = \left(\begin{array}{cc} 1 & 2\\ 4 & 5\\ 7 & 8 \end{array}\right).$$

Пусть

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right).$$

Это матрица ранга 2, и первые два ее столбца линейно независимы.

Положим

$$F = \left(\begin{array}{cc} 1 & 2\\ 4 & 5\\ 7 & 8 \end{array}\right).$$

Будем искать G в виде

$$G = \left(\begin{array}{ccc} 1 & 0 & x \\ 0 & 1 & y \end{array} \right).$$

Пусть

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right).$$

Это матрица ранга 2, и первые два ее столбца линейно независимы.

Положим

$$F = \left(\begin{array}{cc} 1 & 2\\ 4 & 5\\ 7 & 8 \end{array}\right).$$

Будем искать G в виде

$$G = \left(\begin{array}{ccc} 1 & 0 & x \\ 0 & 1 & y \end{array}\right).$$

Находим произведение FG и приравниваем к A:

$$\left(\begin{array}{ccc} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{array}\right) \cdot \left(\begin{array}{ccc} 1 & 0 & x \\ 0 & 1 & y \end{array}\right) = \left(\begin{array}{ccc} 1 & 2 & x + 2y \\ 4 & 5 & 4x + 5y \\ 7 & 8 & 7x + 8y \end{array}\right) = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right)$$

$$\begin{cases} x + 2y = 3 \\ 4x + 5y = 6 \\ 7x + 8y = 9 \end{cases}$$

$$\begin{cases} x + 2y = 3 \\ 4x + 5y = 6 \\ 7x + 8y = 9 \end{cases}$$

Решение должно найтись, поскольку третий столбец линейно выражается через два первых.

$$\begin{cases} x + 2y = 3 \\ 4x + 5y = 6 \\ 7x + 8y = 9 \end{cases}$$

Решение должно найтись, поскольку третий столбец линейно выражается через два первых. Действительно, решение:

$$x = -1, \quad y = 2.$$

$$\begin{cases} x + 2y = 3\\ 4x + 5y = 6\\ 7x + 8y = 9 \end{cases}$$

Решение должно найтись, поскольку третий столбец линейно выражается через два первых. Действительно, решение:

$$x = -1, \quad y = 2.$$

Итак, скелетное разложение получено:

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right) = \left(\begin{array}{ccc} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{array}\right) \cdot \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 2 \end{array}\right)$$

$$\begin{cases} x + 2y = 3 \\ 4x + 5y = 6 \\ 7x + 8y = 9 \end{cases}$$

Решение должно найтись, поскольку третий столбец линейно выражается через два первых. Действительно, решение:

$$x = -1, \quad y = 2.$$

Итак, скелетное разложение получено:

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right) = \left(\begin{array}{ccc} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{array}\right) \cdot \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 2 \end{array}\right)$$

Схема доказательства завершена.

Схема доказательства дает следующий алгоритм вычисления псевдообратной матрицы A^+ для матрицы $A\colon$

Схема доказательства дает следующий алгоритм вычисления псевдообратной матрицы A^+ для матрицы A:

ightharpoons Проверяем, является ли матрица A матрицей полного столбцового ранга.

Схема доказательства дает следующий алгоритм вычисления псевдообратной матрицы A^+ для матрицы $A\colon$

▶ Проверяем, является ли матрица A матрицей полного столбцового ранга. Если да, вычисляем: $A^+ = (A^TA)^{-1}A^T$.

Схема доказательства дает следующий алгоритм вычисления псевдообратной матрицы A^+ для матрицы A:

- Проверяем, является ли матрица A матрицей полного столбцового ранга. Если да, вычисляем: $A^+ = (A^T A)^{-1} A^T$.
- ightharpoons Проверяем, является ли матрица A матрицей полного строчного ранга.

Схема доказательства дает следующий алгоритм вычисления псевдообратной матрицы A^+ для матрицы $A\colon$

- Проверяем, является ли матрица A матрицей полного столбцового ранга. Если да, вычисляем: $A^+ = (A^T A)^{-1} A^T$.
- ▶ Проверяем, является ли матрица A матрицей полного строчного ранга. Если да, вычисляем: $A^+ = A^T (AA^T)^{-1}$.

- Проверяем, является ли матрица A матрицей полного столбцового ранга. Если да, вычисляем: $A^+ = (A^T A)^{-1} A^T$.
- Проверяем, является ли матрица A матрицей полного строчного ранга. Если да, вычисляем: $A^+ = A^T (AA^T)^{-1}$.
- ightharpoonup Если матрица A не явяляется матрицей ни полного столбцового, ни полного строчного ранга, находим скелетное разложение A=FG матрицы A (где F матрица полного столбцового, а G матрица полного строчного ранга).

- Проверяем, является ли матрица A матрицей полного столбцового ранга. Если да, вычисляем: $A^+ = (A^TA)^{-1}A^T$.
- Проверяем, является ли матрица A матрицей полного строчного ранга. Если да, вычисляем: $A^+ = A^T (AA^T)^{-1}$.
- Если матрица A не явяляется матрицей ни полного столбцового, ни полного строчного ранга, находим скелетное разложение A=FG матрицы A (где F матрица полного столбцового, а G матрица полного строчного ранга). Для этого используем уже изложенный алгоритм.

- Проверяем, является ли матрица A матрицей полного столбцового ранга. Если да, вычисляем: $A^+ = (A^TA)^{-1}A^T$.
- Проверяем, является ли матрица A матрицей полного строчного ранга. Если да, вычисляем: $A^+ = A^T (AA^T)^{-1}$.
- Если матрица A не явяляется матрицей ни полного столбцового, ни полного строчного ранга, находим скелетное разложение A=FG матрицы A (где F матрица полного столбцового, а G матрица полного строчного ранга). Для этого используем уже изложенный алгоритм. Затем находим псевдообратные матрицы F^+ и G^+ для матриц F и G:

- Проверяем, является ли матрица A матрицей полного столбцового ранга. Если да, вычисляем: $A^+ = (A^T A)^{-1} A^T$.
- Проверяем, является ли матрица A матрицей полного строчного ранга. Если да, вычисляем: $A^+ = A^T (AA^T)^{-1}$.
- ▶ Если матрица A не явяляется матрицей ни полного столбцового, ни полного строчного ранга, находим скелетное разложение A=FG матрицы A (где F матрица полного столбцового, а G матрица полного строчного ранга). Для этого используем уже изложенный алгоритм. Затем находим псевдообратные матрицы F^+ и G^+ для матриц F и G:

$$F^+ = (F^T F)^{-1} F^T$$

- Проверяем, является ли матрица A матрицей полного столбцового ранга. Если да, вычисляем: $A^+ = (A^TA)^{-1}A^T$.
- Проверяем, является ли матрица A матрицей полного строчного ранга. Если да, вычисляем: $A^+ = A^T (AA^T)^{-1}$.
- Если матрица A не явяляется матрицей ни полного столбцового, ни полного строчного ранга, находим скелетное разложение A=FG матрицы A (где F матрица полного столбцового, а G матрица полного строчного ранга). Для этого используем уже изложенный алгоритм. Затем находим псевдообратные матрицы F^+ и G^+ для матриц F и G:

$$F^{+} = (F^{T}F)^{-1}F^{T}$$

 $G^{+} = G^{T}(GG^{T})^{-1}$.

Схема доказательства дает следующий алгоритм вычисления псевдообратной матрицы A^+ для матрицы $A\colon$

- Проверяем, является ли матрица A матрицей полного столбцового ранга. Если да, вычисляем: $A^+ = (A^TA)^{-1}A^T$.
- Проверяем, является ли матрица A матрицей полного строчного ранга. Если да, вычисляем: $A^+ = A^T (AA^T)^{-1}$.
- Если матрица A не явяляется матрицей ни полного столбцового, ни полного строчного ранга, находим скелетное разложение A=FG матрицы A (где F матрица полного столбцового, а G матрица полного строчного ранга). Для этого используем уже изложенный алгоритм. Затем находим псевдообратные матрицы F^+ и G^+ для матриц F и G:

$$F^{+} = (F^{T}F)^{-1}F^{T}$$

 $G^{+} = G^{T}(GG^{T})^{-1}$.

Наконец, вычисляем псевдообратную матрицу:

$$A^+ = G^+ F^+.$$

Пример.

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right).$$

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right).$$

Она не является ни матрицей полного строчного, ни матрицей полного столбцового ранга, а ее скелетное разложение уже найдено:

$$A = FG = \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}.$$

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right).$$

Она не является ни матрицей полного строчного, ни матрицей полного столбцового ранга, а ее скелетное разложение уже найдено:

$$A = FG = \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}.$$

Псевдообращаем матрицу
$$F=\left(egin{array}{cc} 1 & 2 \ 4 & 5 \ 7 & 8 \end{array}
ight).$$

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right).$$

Она не является ни матрицей полного строчного, ни матрицей полного столбцового ранга, а ее скелетное разложение уже найдено:

$$A = FG = \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}.$$

Псевдообращаем матрицу $F=\left(egin{array}{cc} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{array} \right).$

$$F^T F =$$

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right).$$

Она не является ни матрицей полного строчного, ни матрицей полного столбцового ранга, а ее скелетное разложение уже найдено:

$$A = FG = \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}.$$

Псевдообращаем матрицу $F=\left(egin{array}{cc} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{array} \right).$

$$F^T F = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{pmatrix} =$$

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right).$$

Она не является ни матрицей полного строчного, ни матрицей полного столбцового ранга, а ее скелетное разложение уже найдено:

$$A = FG = \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}.$$

Псевдообращаем матрицу $F=\left(egin{array}{cc} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{array} \right).$

$$F^{T}F = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 66 & 78 \\ 78 & 93 \end{pmatrix}$$

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right).$$

Она не является ни матрицей полного строчного, ни матрицей полного столбцового ранга, а ее скелетное разложение уже найдено:

$$A = FG = \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}.$$

Псевдообращаем матрицу $F=\left(egin{array}{cc} 1 & 2 \ 4 & 5 \ 7 & 8 \end{array}
ight).$

$$F^{T}F = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 66 & 78 \\ 78 & 93 \end{pmatrix}$$

$$F^+ =$$

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right).$$

Она не является ни матрицей полного строчного, ни матрицей полного столбцового ранга, а ее скелетное разложение уже найдено:

$$A = FG = \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}.$$

Псевдообращаем матрицу $F=\left(egin{array}{cc} 1 & 2 \ 4 & 5 \ 7 & 8 \end{array}
ight).$

$$F^{T}F = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 66 & 78 \\ 78 & 93 \end{pmatrix}$$

$$F^+ = (F^T F)^{-1} F^T =$$

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right).$$

Она не является ни матрицей полного строчного, ни матрицей полного столбцового ранга, а ее скелетное разложение уже найдено:

$$A = FG = \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}.$$

Псевдообращаем матрицу $F = \left(\begin{array}{cc} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{array} \right).$

$$F^{T}F = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 66 & 78 \\ 78 & 93 \end{pmatrix}$$

$$F^{+} = (F^{T}F)^{-1}F^{T} = \begin{pmatrix} 66 & 78 \\ 78 & 93 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \end{pmatrix} =$$

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right).$$

Она не является ни матрицей полного строчного, ни матрицей полного столбцового ранга, а ее скелетное разложение уже найдено:

$$A = FG = \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}.$$

Псевдообращаем матрицу $F = \left(\begin{array}{cc} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{array} \right).$

$$F^{T}F = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 66 & 78 \\ 78 & 93 \end{pmatrix}$$

$$F^{+} = (F^{T}F)^{-1}F^{T} = \begin{pmatrix} 66 & 78 \\ 78 & 93 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 7 & -2 & 3 \\ 6 & 2 & -2 \end{pmatrix}$$

Псевдообращаем матрицу $G=\left(egin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 2 \end{array}
ight).$

Псевдообращаем матрицу
$$G=\left(egin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 2 \end{array}
ight).$$

$$GG^T =$$

Псевдообращаем матрицу
$$G = \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 2 \end{array} \right)$$
.

$$GG^T = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix} =$$

Псевдообращаем матрицу $G = \left(egin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 2 \end{array} \right)$.

$$GG^{T} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$$

Псевдообращаем матрицу
$$G = \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 2 \end{array} \right)$$
.

$$GG^{T} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$$

$$G^+ =$$

Псевдообращаем матрицу $G = \left(egin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 2 \end{array} \right)$.

$$GG^{T} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$$

$$G^+ = G^T (GG^T)^{-1} =$$

Псевдообращаем матрицу $G = \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 2 \end{array} \right)$.

$$GG^{T} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$$

$$G^+ = G^T (GG^T)^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}^{-1} =$$

Псевдообращаем матрицу $G = \left(egin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 2 \end{array} \right)$.

$$GG^{T} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$$
$$G^{+} = G^{T}(GG^{T})^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}^{-1} = \frac{1}{6} \begin{pmatrix} 5 & 2 \\ 2 & 2 \\ -1 & 2 \end{pmatrix}.$$

Псевдообращаем матрицу $G = \left(egin{array}{ccc} 1 & 0 & -1 \ 0 & 1 & 2 \end{array}
ight)$.

$$GG^{T} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$$
$$G^{+} = G^{T}(GG^{T})^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}^{-1} = \frac{1}{6} \begin{pmatrix} 5 & 2 \\ 2 & 2 \\ -1 & 2 \end{pmatrix}.$$

Псевдообращаем матрицу $G = \left(egin{array}{ccc} 1 & 0 & -1 \ 0 & 1 & 2 \end{array}
ight)$.

$$GG^{T} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$$
$$G^{+} = G^{T}(GG^{T})^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}^{-1} = \frac{1}{6} \begin{pmatrix} 5 & 2 \\ 2 & 2 \\ -1 & 2 \end{pmatrix}.$$

$$A^+ =$$

Псевдообращаем матрицу $G = \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 2 \end{array} \right)$.

$$GG^{T} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$$
$$G^{+} = G^{T}(GG^{T})^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}^{-1} = \frac{1}{6} \begin{pmatrix} 5 & 2 \\ 2 & 2 \\ -1 & 2 \end{pmatrix}.$$

$$A^+ = G^+ F^+ =$$

Псевдообращаем матрицу $G = \left(egin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 2 \end{array} \right).$

$$GG^{T} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$$
$$G^{+} = G^{T}(GG^{T})^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}^{-1} = \frac{1}{6} \begin{pmatrix} 5 & 2 \\ 2 & 2 \\ -1 & 2 \end{pmatrix}.$$

$$A^{+} = G^{+}F^{+} = \frac{1}{36} \begin{pmatrix} 5 & 2\\ 2 & 2\\ -1 & 2 \end{pmatrix} \begin{pmatrix} 7 & -2 & 3\\ 6 & 2 & -2 \end{pmatrix} =$$

Псевдообращаем матрицу $G = \left(egin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 2 \end{array} \right).$

$$GG^{T} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$$
$$G^{+} = G^{T}(GG^{T})^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}^{-1} = \frac{1}{6} \begin{pmatrix} 5 & 2 \\ 2 & 2 \\ -1 & 2 \end{pmatrix}.$$

$$A^{+} = G^{+}F^{+} = \frac{1}{36} \begin{pmatrix} 5 & 2\\ 2 & 2\\ -1 & 2 \end{pmatrix} \begin{pmatrix} 7 & -2 & 3\\ 6 & 2 & -2 \end{pmatrix} =$$

$$\frac{1}{36} \begin{pmatrix} 47 & -6 & 11\\ 26 & 0 & 2\\ 5 & 6 & -7 \end{pmatrix}.$$

Теорема

Пусть дана с. л. у. $A m{x} = m{b}$, и пусть $m{u}$ есть ее нормальное псевдорешение. Тогда $m{u} = A^+ m{b}$.

Теорема

Пусть дана с. л. у. $Am{x}=m{b}$, и пусть $m{u}$ есть ее нормальное псевдорешение. Тогда $m{u}=A^+m{b}$.

Доказательство. Например, средствами мат. анализа.

Теорема

Пусть дана с. л. у. $A m{x} = m{b}$, и пусть $m{u}$ есть ее нормальное псевдорешение. Тогда $m{u} = A^+ m{b}$.

Доказательство. Например, средствами мат. анализа.

Пример

Теорема

Пусть дана с. л. у. $Am{x}=m{b}$, и пусть $m{u}$ есть ее нормальное псевдорешение. Тогда $m{u}=A^+m{b}$.

Доказательство. Например, средствами мат. анализа.

Пример

Найдите нормальное псевдорешение
$$m{u}$$
 с. л. у. $egin{dcases} x+y=1 \\ x=0 \\ y=0 \end{cases}$

Теорема

Пусть дана с. л. у. $A m{x} = m{b}$, и пусть $m{u}$ есть ее нормальное псевдорешение. Тогда $m{u} = A^+ m{b}$.

Доказательство. Например, средствами мат. анализа.

Пример

Найдите нормальное псевдорешение
$$m{u}$$
 с. л. у. $egin{dcases} x+y=1 \\ x=0 \\ y=0 \end{cases}$

Система в матричном виде:

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right)$$

Теорема

Пусть дана с. л. у. $A m{x} = m{b}$, и пусть $m{u}$ есть ее нормальное псевдорешение. Тогда $m{u} = A^+ m{b}$.

Доказательство. Например, средствами мат. анализа.

Пример

Найдите нормальное псевдорешение $m{u}$ с. л. у. $egin{dcases} x+y=1 \\ x=0 \\ y=0 \end{cases}$

Система в матричном виде:

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right)$$

$$\begin{pmatrix} x \\ y \end{pmatrix} =$$

Теорема

Пусть дана с. л. у. $Am{x}=m{b}$, и пусть $m{u}$ есть ее нормальное псевдорешение. Тогда $m{u}=A^+m{b}$.

Доказательство. Например, средствами мат. анализа.

Пример

Найдите нормальное псевдорешение $m{u}$ с. л. у. $egin{dcases} x+y=1 \\ x=0 \\ y=0 \end{cases}$

Система в матричном виде:

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right)$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}^+ \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} =$$

Теорема

Пусть дана с. л. у. $Am{x}=m{b}$, и пусть $m{u}$ есть ее нормальное псевдорешение. Тогда $m{u}=A^+m{b}$.

Доказательство. Например, средствами мат. анализа.

Пример

Найдите нормальное псевдорешение $m{u}$ с. л. у. $egin{dcases} x+y=1 \\ x=0 \\ y=0 \end{cases}$

Система в матричном виде:

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right)$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}^+ \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} =$$

Теорема

Пусть дана с. л. у. $Am{x}=m{b}$, и пусть $m{u}$ есть ее нормальное псевдорешение. Тогда $m{u}=A^+m{b}$.

Доказательство. Например, средствами мат. анализа.

Пример

Найдите нормальное псевдорешение $m{u}$ с. л. у. $egin{dcases} x+y=1 \\ x=0 \\ y=0 \end{cases}$

Система в матричном виде:

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right)$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}^+ \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/3 \\ 1/3 \end{pmatrix}$$

Пусть получена эмпирическая зависимость параметра y от параметров x_1, x_2, \ldots, x_n , иначе говоря, таблица

x_{11}	x_{12}	 x_{1n}	y_1
x_{21}	x_{22}	 x_{2n}	y_2
$\overline{x_{m1}}$	x_{m2}	 x_{mn}	y_m

Пусть получена эмпирическая зависимость параметра y от параметров x_1, x_2, \ldots, x_n , иначе говоря, таблица

x_{11}	x_{12}	 x_{1n}	y_1
x_{21}	x_{22}	 x_{2n}	y_2
x_{m1}	x_{m2}	 x_{mn}	y_m

Требуется найти такую линейную функцию

$$y(\mathbf{x}) = p_0 + p_1 x_1 + p_2 x_2 + \ldots + p_n x_n,$$

что

$$\sum_{i=1}^{m} (y(x_{i1}, x_{i2}, \dots, x_{in}) - y_i)^2 \to \min$$

Пусть получена эмпирическая зависимость параметра y от параметров x_1, x_2, \ldots, x_n , иначе говоря, таблица

x_{11}	x_{12}	 x_{1n}	y_1
x_{21}	x_{22}	 x_{2n}	y_2
x_{m1}	x_{m2}	 x_{mn}	y_m

Требуется найти такую линейную функцию

$$y(x) = p_0 + p_1 x_1 + p_2 x_2 + \ldots + p_n x_n,$$

что

$$\sum_{i=1}^{m} (y(x_{i1}, x_{i2}, \dots, x_{in}) - y_i)^2 \to \min$$

Очевидно, такая функция определяется вектором ${m p}=(p_0,p_1,p_2,\ldots,p_n).$

Очевидно, такая функция определяется вектором $p = (p_0, p_1, p_2, \dots, p_n)$.

Таким образом нам надо решить задачу

$$\sum_{i=1}^{m} (p_0 + x_{i1}p_1 + x_{i2}p_2 + \ldots + x_{in}p_n - y_i)^2 \to \min$$

Очевидно, такая функция определяется вектором ${m p}=(p_0,p_1,p_2,\dots,p_n).$

Таким образом нам надо решить задачу

$$\sum_{i=1}^{m} (p_0 + x_{i1}p_1 + x_{i2}p_2 + \ldots + x_{in}p_n - y_i)^2 \to \min$$

Легко заметить, что в скобках стоят разности произведений строк

компонент вектора
$$m{y} = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_m \end{pmatrix}$$
, т.е. квадрат длины вектора

$$A\mathbf{p} - \mathbf{y}$$
.

Очевидно, такая функция определяется вектором ${m p}=(p_0,p_1,p_2,\ldots,p_n).$

Таким образом нам надо решить задачу

$$\sum_{i=1}^{m} (p_0 + x_{i1}p_1 + x_{i2}p_2 + \ldots + x_{in}p_n - y_i)^2 \to \min$$

Легко заметить, что в скобках стоят разности произведений строк

матрицы
$$A=\left(\begin{array}{ccccccc} 1 & x_{11} & x_{12} & \dots & x_{1n} \\ 1 & x_{21} & x_{22} & \dots & x_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_{m1} & x_{m2} & \dots & x_{mn} \end{array}\right)$$
 на стобец $\boldsymbol{p}=\left(\begin{array}{c} p_0 \\ p_1 \\ \dots \\ p_n \end{array}\right)$ и

компонент вектора
$$m{y}=egin{pmatrix} y_1\\y_2\\ \dots\\y_m \end{pmatrix}$$
, т.е. квадрат длины вектора

$$A\mathbf{p} - \mathbf{y}$$
.

Таким образом, вектор ${m p}$ коэффициентов искомой функции y(x) это нормальное псевдорешение системы

$$A\mathbf{p} = \mathbf{y}$$
.

Цена за $1~\rm kr$ яблок «Гольден» в сети магазинов «***» в первой половине октября менялась согласно следующей таблице:

Дни (x)	12 октября	14 октября	16 октября	19 октября	23 октября
Цена (y)	140 руб	145 руб	142 руб	130 руб	?

Цена за 1 кг яблок «Гольден» в сети магазинов «***» в первой половине октября менялась согласно следующей таблице:

Дни (x)	12 октября	14 октября	16 октября	19 октября	23 октября
Цена (y)	140 руб	145 руб	142 руб	130 руб	?

Используя метод наименьших квадратов при аппроксимации функции цены y килограмма яблок «Гольден» в зависимости от даты x вида

$$y = p_0 + p_1 x,$$

сделайте прогноз цены килограмма яблок «Гольден» на 23 октября.

Цена за 1 кг яблок «Гольден» в сети магазинов «***» в первой половине октября менялась согласно следующей таблице:

Дни (x)	12 октября	14 октября	16 октября	19 октября	23 октября
Цена (y)	140 руб	145 руб	142 руб	130 руб	?

Используя метод наименьших квадратов при аппроксимации функции цены y килограмма яблок «Гольден» в зависимости от даты x вида

$$y = p_0 + p_1 x,$$

сделайте прогноз цены килограмма яблок «Гольден» на 23 октября.

Решение.

Цена за 1 кг яблок «Гольден» в сети магазинов «***» в первой половине октября менялась согласно следующей таблице:

Дни (x)	12 октября	14 октября	16 октября	19 октября	23 октября
Цена (y)	140 руб	145 руб	142 руб	130 руб	?

Используя метод наименьших квадратов при аппроксимации функции цены y килограмма яблок «Гольден» в зависимости от даты x вида

$$y = p_0 + p_1 x,$$

сделайте прогноз цены килограмма яблок «Гольден» на 23 октября.

Решение. Вектор коэффициентов линейной аппроксимации находится как псевдорешение системы

$$A\mathbf{p} = \mathbf{y}$$

с матрицей
$$A=\begin{pmatrix}1&12\\1&14\\1&16\\1&19\end{pmatrix}$$
 и стобцом ${m y}=\begin{pmatrix}140\\145\\142\\130\end{pmatrix}$.

$$\begin{pmatrix} p_0 \\ p_1 \end{pmatrix} = \begin{pmatrix} 1 & 12 \\ 1 & 14 \\ 1 & 16 \\ 1 & 19 \end{pmatrix}^+ \cdot \begin{pmatrix} 140 \\ 145 \\ 142 \\ 130 \end{pmatrix} \approx \begin{pmatrix} 163, 34 \\ -1, 58 \end{pmatrix}$$

$$\begin{pmatrix} p_0 \\ p_1 \end{pmatrix} = \begin{pmatrix} 1 & 12 \\ 1 & 14 \\ 1 & 16 \\ 1 & 19 \end{pmatrix}^+ \cdot \begin{pmatrix} 140 \\ 145 \\ 142 \\ 130 \end{pmatrix} \approx \begin{pmatrix} 163, 34 \\ -1, 58 \end{pmatrix}$$

Линейная аппроксимация:

$$y(x) = 163, 34 - 1, 58x.$$

$$\begin{pmatrix} p_0 \\ p_1 \end{pmatrix} = \begin{pmatrix} 1 & 12 \\ 1 & 14 \\ 1 & 16 \\ 1 & 19 \end{pmatrix}^+ \cdot \begin{pmatrix} 140 \\ 145 \\ 142 \\ 130 \end{pmatrix} \approx \begin{pmatrix} 163, 34 \\ -1, 58 \end{pmatrix}$$

Линейная аппроксимация:

$$y(x) = 163, 34 - 1, 58x.$$

Прогноз на 23 октября:

$$y(23)=163,34-1,58\cdot 23=127$$
 руб

$$\begin{pmatrix} p_0 \\ p_1 \end{pmatrix} = \begin{pmatrix} 1 & 12 \\ 1 & 14 \\ 1 & 16 \\ 1 & 19 \end{pmatrix}^+ \cdot \begin{pmatrix} 140 \\ 145 \\ 142 \\ 130 \end{pmatrix} \approx \begin{pmatrix} 163, 34 \\ -1, 58 \end{pmatrix}$$

Линейная аппроксимация:

$$y(x) = 163, 34 - 1, 58x.$$

Прогноз на 23 октября:

$$y(23) = 163, 34-1, 58 \cdot 23 = 127 \text{ py} 6$$

Замечание

Существуют и другие методы решения задач этого типа.

СПАСИБО ЗА ВНИМАНИЕ!

- Бурмистрова Е. Б., Лобанов С. Г. Линейная алгебра, дифференциальное исчисление функций одной переменной: учебник для вузов, 2010.
- Fuad Aleskerov, Hasan Ersel, Dmitri Piontkovski. Linear Algebra for Economists. Springer (2011).