BCSE307L—COMPILER DESIGN

TEXT BOOK:

 Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, "Compilers: Principles, Techniques and Tools", Second Edition, Pearson Education Limited, 2014. - - - - - -

Module:2 | SYNTAX ANALYSIS

8 hours

Role of Parser- Parse Tree - Elimination of Ambiguity – Top Down Parsing - Recursive Descent Parsing - LL (1) Grammars – Shift Reduce Parsers- Operator Precedence Parsing - LR Parsers, Construction of SLR Parser Tables and Parsing- CLR Parsing- LALR Parsing.

Bottom Up Parsing

- Reduction
- ☐ Handle Pruning
- ☐ Shift-Reduce Parsing
- Operator Precedence
- LR Parser
 - □SLR (Simple LR)
 - CLR (Canonical LR)
 - LALR (Lookahead LR)

LR Parsing: Simple LR (SLR)

LR(k)

- L left to right scanning of the input
- R construction a rightmost derivation in reverse
- K number of input symbols of lookahead that are used in marking parsing decisions.
 - \circ K =0 or k = 1, LR parser with k ≤ 1

LR Parsing

- LR parsers can be constructed to recognize all programming language constructs for which context-free grammars
- LR-parsing method is the most general non-backtracking shift-reduce parsing method
- LR parser can detect a syntactic error as soon as it is possible to do so on a left to right scan of the input
- The class of grammars that can be parsed using LR methods is a proper superset of the class of grammars

LR Parser

- Augmented Grammar
- Finding Canonical LR(0) items
- Finding First and Follow
- Parser Table
- Stack Implementation

1) Augmented Grammar

If G is a grammar with start Symbol S, then G', the augmented grammar for G, is G with a new start symbol S' and production S' \rightarrow S

Example

$$E \rightarrow E+T \mid T$$

$$T \rightarrow T^*F \mid F$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$

1) Augmented Grammar

$$E' \rightarrow E$$

$$E \rightarrow E+T --- (1)$$

$$E \rightarrow T --- (2)$$

$$T \rightarrow T^*F --- (3)$$

$$T \rightarrow F --- (4)$$

$$F \rightarrow (E) --- (5)$$

$$F \rightarrow id --- (6)$$

2) Finding Canonical LR(0) items

Items and the LR(0) Automaton

- Closure of Item sets
- Function GOTO

Items and the LR(0) Automaton

- LR parser makes shit-reduce decisions by maintaining states to keep track of where we are in a parse
- States represent sets of "items"
- An LR(0) item of s grammar G is a production of G with a dot at some position of the body.
- Production A → XYZ yields the four items

$$A \rightarrow \cdot XYZ$$

$$A \rightarrow X \cdot YZ$$

$$A \rightarrow XY \cdot Z$$

$$A \rightarrow XYZ \cdot$$

The production $A \to \epsilon$ generates only one item, $A \to \cdot$

Ex: $A \rightarrow aBb$ Possible LR(0) Items:

$$A \rightarrow a Bb$$
 $A \rightarrow a Bb$
 $A \rightarrow a b$
 $A \rightarrow a Bb$

Construction of Parse Tree

- 1.Construction of set of LR(0) items
- 2.Construction of PT using LR(0)

- Collection of set of LR(0) items-canonical collection of LR(0)
- An LR(0) item of a grammar G is a production of G a dot at the some position of the right side.

Closure of Item Sets

If I is a set of items for a grammar G, then CLOSURE(I) is the set of items constructed from I by the two rules:

- 1. Initially, add every item in I to CLOSURE(I).
- 2. If $A \to \alpha \cdot B\beta$ is in CLOSURE(I) and $B \to \gamma$ is a production, then add the item $B \to \gamma$ to CLOSURE(I), if it is not already there. Apply this rule until no more new items can be added to CLOSURE(I).

Function GOTO

The second useful function is GOTO(I, X) where I is a set of items and X is a grammar symbol. GOTO(I, X) is defined to be the closure of the set of all items $[A \to \alpha X \cdot \beta]$ such that $[A \to \alpha \cdot X \beta]$ is in I.

Canonical Collection of sets of LR(0)

```
 \begin{aligned} \mathbf{void} \ items(G') \ \{ \\ C &= \big\{ \mathtt{CLOSURE}(\{[S' \to \cdot S]\}) \big\}; \\ \mathbf{repeat} \\ \mathbf{for} \ ( \ \mathtt{each} \ \mathtt{set} \ \mathtt{of} \ \mathtt{items} \ I \ \mathtt{in} \ C \ ) \\ \mathbf{for} \ ( \ \mathtt{each} \ \mathtt{grammar} \ \mathtt{symbol} \ X \ ) \\ \mathbf{if} \ ( \ \mathtt{GOTO}(I, X) \ \mathtt{is} \ \mathtt{not} \ \mathtt{empty} \ \mathtt{and} \ \mathtt{not} \ \mathtt{in} \ C \ ) \\ \mathbf{add} \ \mathtt{GOTO}(I, X) \ \mathtt{to} \ C; \\ \mathbf{until} \ \mathtt{no} \ \mathtt{new} \ \mathtt{sets} \ \mathtt{of} \ \mathtt{items} \ \mathtt{are} \ \mathtt{added} \ \mathtt{to} \ C \ \mathtt{on} \ \mathtt{a} \ \mathtt{round}; \\ \} \end{aligned}
```

Figure 4.33: Computation of the canonical collection of sets of LR(0) items

Canonical Collections of LR(0) items Example:

First consider the set of items I_0 :

 $F \rightarrow \cdot \mathbf{id}$

 I_1 :

$$E' \to E \cdot E \to E \cdot + T$$

$$E' \rightarrow \cdot E$$

 $E \rightarrow \cdot E + T$
 $E \rightarrow \cdot T$
 $T \rightarrow \cdot T * F$
 $T \rightarrow \cdot F$
 $F \rightarrow \cdot (E)$

 I_2 :

$$\begin{split} E &\to T \cdot \\ T &\to T \cdot *F \end{split}$$

$$\begin{array}{c}
I_{0} \\
E' \to \cdot E \\
E \to \cdot E + T \\
E \to \cdot T \\
T \to \cdot T * F \\
F \to \cdot (E) \\
F \to \cdot \mathbf{id}
\end{array}$$

$$\begin{array}{c}
I_{1} \\
E' \to E \\
E \to E \\
E \to F
\end{array}$$

$$\begin{array}{c}
I_{2} \\
E \to T \\
T \to \cdot T * F
\end{array}$$

$$\begin{array}{c}
I_{2} \\
E \to T \\
T \to \cdot T * F
\end{array}$$

$$\begin{array}{c}
F \to \cdot (E) \\
F \to \cdot \mathbf{id}
\end{array}$$

$$\begin{array}{c}
I_{3} \\
T \to F \\
\end{array}$$

$$\begin{array}{c}
I_{5} \\
F \to \mathbf{id} \\
\end{array}$$

$$I_{6}$$
 $E \rightarrow E + \cdot T$
 $T \rightarrow \cdot T * F$
 $T \rightarrow \cdot F$
 $F \rightarrow \cdot (E)$
 $F \rightarrow \cdot \mathbf{id}$

$$\begin{bmatrix}
I_8 \\
E \to E \cdot + T \\
F \to (E \cdot)
\end{bmatrix}$$

$$I_7$$
 $T
ightarrow T * \cdot F$
 $F
ightarrow \cdot \mathbf{id}$

$$\begin{array}{c|c}
I_9 \\
E \to E + T \cdot \\
T \to T \cdot * F
\end{array}$$

$$F \rightarrow (E)$$

$$I_{10}$$
 $T \rightarrow T * F \cdot$

Figure 4.31: LR(0) automaton for the expression grammar (4.1)

3) FIRST and FOLLOW

FIRST(X)

Rules:

- 1. X is a Terminal, FIRST (X) = { X }
- 2. X is a Non-terminal, $X \rightarrow Y_1, Y_2, Y_3 \dots Y_k, K \ge 1$, FIRST(X) = FIRST(Y₁)
- 3. $X \rightarrow \varepsilon$ is a production, FIRST(X) = { ε }

FOLLOW (X)

Rules:

- 1. S is a Start Symbol, FOLLOW(S) = \$
- 2. If a production A $\rightarrow \alpha$ B β , FOLLOW(B) = FIRST(β) ϵ
- 3. If a production $A \rightarrow \alpha B$ or $A \rightarrow \alpha B \beta$ i.e, FIRST(β) = ϵ FOLLOW (B) = FOLLOW(A)

FIRST and FOLLOW

Non- terminal	FIRST	FOLLOW
E	(, id	+,) , \$
Т	(, id	+, *,) , \$
F	(, id	+, *,) , \$

4) LR Parsing

LR Parsing Algorithm

- Structure of the LR Parsing Table
- LR Parser Configurations
- Behavior of the LR Parser

LR Parsing Algorithm

Structure of the LR Parsing Table

The parsing table consists of two parts: a parsing-action function ACTION and a goto function GOTO.

- 1. The ACTION function takes as arguments a state i and a terminal a (or \$, the input endmarker). The value of ACTION[i,a] can have one of four forms:
 - (a) Shift j, where j is a state. The action taken by the parser effectively shifts input a to the stack, but uses state j to represent a.
 - (b) Reduce $A \to \beta$. The action of the parser effectively reduces β on the top of the stack to head A.
 - (c) Accept. The parser accepts the input and finishes parsing.
 - (d) Error. The parser discovers an error in its input and takes some corrective action.
- 2. We extend the GOTO function, defined on sets of items, to states: if $GOTO[I_i, A] = I_j$, then GOTO also maps a state i and a nonterminal A to state j.

LR Parser Configurations

A Configuration of an LR parser is a pair

$$(s_0s_1\cdots s_m, a_ia_{i+1}\cdots a_n\$)$$

This configuration represents the right –sentential form

$$X_1X_2\cdots X_ma_ia_{i+1}\cdots a_n$$

Behavior of the LR Parser

The entry $ACTION[s_m, a_i]$ in the parsing action table. The configurations resulting after each of the four types of move are as follows

1. If ACTION[s_m, a_i] = shift s, the parser executes a shift move; it shifts the next state s onto the stack, entering the configuration

$$(s_0s_1\cdots s_ms, a_{i+1}\cdots a_n\$)$$

2. If ACTION[s_m, a_i] = reduce $A \to \beta$, then the parser executes a reduce move, entering the configuration

$$(s_0s_1\cdots s_{m-r}s, a_ia_{i+1}\cdots a_n\$)$$

where r is the length of β , and $s = \text{GOTO}[s_{m-r}, A]$.

Behavior of the LR Parser

- 3. If ACTION $[s_m, a_i] = \text{accept}$, parsing is completed.
- 4. If $ACTION[s_m, a_i] = error$, the parser has discovered an error and calls an error recovery routine.

LR Parsing Algorithm

Algorithm 4.44: LR-parsing algorithm.

INPUT: An input string w and an LR-parsing table with functions ACTION and GOTO for a grammar G.

OUTPUT: If w is in L(G), the reduction steps of a bottom-up parse for w; otherwise, an error indication.

METHOD: Initially, the parser has s_0 on its stack, where s_0 is the initial state, and w\$ in the input buffer. The parser then executes the program in Fig. 4.36.

LR Parsing Algorithm

```
let a be the first symbol of w$;
while(1) { /* repeat forever */
      let s be the state on top of the stack;
      if (ACTION[s, a] = shift t) {
             push t onto the stack;
             let a be the next input symbol;
       } else if ( ACTION[s, a] = reduce A \to \beta ) {
             pop |\beta| symbols off the stack;
             let state t now be on top of the stack;
             push GOTO[t, A] onto the stack;
             output the production A \to \beta;
       } else if ( ACTION[s, a] = accept ) break; /* parsing is done */
       else call error-recovery routine;
```

ACTION and GOTO functions of an LR-parsing table for the expression grammar.

$$(1)$$
 $E \rightarrow E + T$

$$(4) T \to F$$

$$(2) \quad E \to T$$

$$(5) ext{ } F o (E)$$

$$(3) \quad T \to T * F$$

(6)
$$F \rightarrow \mathbf{id}$$

The codes for the actions are:

- 1. si means shift and stack state i,
- 2. rj means reduce by the production numbered j,
- 3. acc means accept,
- 4. blank means error.

Constructing SLR-Parsing Table

Algorithm 4.46: Constructing an SLR-parsing table.

_ INPUT: An augmented grammar G'.

OUTPUT: The SLR-parsing table functions ACTION and GOTO for G'.

METHOD:

- 1. Construct $C = \{I_0, I_1, \ldots, I_n\}$, the collection of sets of LR(0) items for G'.
- 2. State i is constructed from I_i . The parsing actions for state i are determined as follows:
 - (a) If $[A \to \alpha \cdot a\beta]$ is in I_i and $GOTO(I_i, a) = I_j$, then set ACTION[i, a] to "shift j." Here a must be a terminal.
 - (b) If $[A \to \alpha \cdot]$ is in I_i , then set ACTION[i, a] to "reduce $A \to \alpha$ " for all a in FOLLOW(A); here A may not be S'.
 - (c) If $[S' \to S \cdot]$ is in I_i , then set ACTION[i, \$] to "accept."

If any conflicting actions result from the above rules, we say the grammar is not SLR(1). The algorithm fails to produce a parser in this case.

Constructing SLR-Parsing Table

- 3. The goto transitions for state i are constructed for all nonterminals A using the rule: If $GOTO(I_i, A) = I_j$, then GOTO[i, A] = j.
- 4. All entries not defined by rules (2) and (3) are made "error."
- 5. The initial state of the parser is the one constructed from the set of items containing $[S' \to \cdot S]$.

Parsing Table

STATE	ACTION					GOTO			
	id	+	*	()	\$	E	T	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

5) Stack Implementation

	STACK	Symbols	Input	ACTION
(1)	0		$\mathbf{id}*\mathbf{id}+\mathbf{id}\$$	shift
(2)	0 5	\mathbf{id}	$*\mathbf{id}+\mathbf{id}\$$	reduce by $F \to \mathbf{id}$
(3)	0 3	F	$*\mathbf{id}+\mathbf{id}\$$	reduce by $T \to F$
(4)	0 2	T	$*\mathbf{id}+\mathbf{id}\$$	shift
(5)	0 2 7	T*	$\mathbf{id} + \mathbf{id}\$$	shift
(6)	$0\ 2\ 7\ 5$	$T * \mathbf{id}$	$+\operatorname{\mathbf{id}}\$$	reduce by $F \to \mathbf{id}$
(7)	$0\ 2\ 7\ 10$	T * F	$+\operatorname{\mathbf{id}}\$$	reduce by $T \to T * F$
(8)	0 2	T	$+\operatorname{\mathbf{id}}\$$	reduce by $E \to T$
(9)	0 1	E	$+\operatorname{\mathbf{id}}\$$	shift
(10)	0 1 6	E +	$\mathbf{id}\$$	shift
(11)	$0\ 1\ 6\ 5$	$E + \mathbf{id}$	\$	reduce by $F \to \mathbf{id}$
(12)	$0\ 1\ 6\ 3$	E + F	\$	reduce by $T \to F$
(13)	$0\ 1\ 6\ 9$	E+T	\$	reduce by $E \to E + T$
(14)	0 1	E	\$	accept

Figure 4.38: Moves of an LR parser on id * id + id

Viable Prefixes

The prefixes of right sentential forms that can appear on the stack of shift-reduce parser are called viable prefixes.

Item A $\rightarrow \beta_1 \beta_2$ is valid prefix $\alpha \beta_1$ if there is a derivations S' => α Aw => $\alpha \beta_1 \beta_2$ w rm rm

More Powerful LR-Parsers

Canonical-LR (CLR)

- Makes full use of the lookahed symbols
- Large set of items called LR(1) items

Lookahead-LR (LALR)

 Based on LR(0) set of items and fewer states based on the LR(1) items

Canonical LR(1) Items

Formally, we say LR(1) item $[A \to \alpha \cdot \beta, a]$ is valid for a viable prefix γ if there is a derivation $S \stackrel{*}{\Rightarrow} \delta Aw \Rightarrow \delta \alpha \beta w$, where

- 1. $\gamma = \delta \alpha$, and
- 2. Either a is the first symbol of w, or w is ϵ and a is \$.

Canonical LR(1) Items

```
SetOfItems CLOSURE(I) {
       repeat
              for ( each item [A \to \alpha \cdot B\beta, a] in I )
                      for (each production B \to \gamma in G')
                             for (each terminal b in FIRST(\beta a))
                                    add [B \to \gamma, b] to set I;
       until no more items are added to I;
       return I:
SetOfItems GOTO(I, X) {
       initialize J to be the empty set;
       for (each item [A \to \alpha \cdot X\beta, a] in I)
              add item [A \to \alpha X \cdot \beta, a] to set J;
       return CLOSURE(J);
void items(G') {
       initialize C to \{CLOSURE(\{[S' \rightarrow \cdot S, \$]\})\};
       repeat
              for ( each set of items I in C )
                      for (each grammar symbol X)
                             if (GOTO(I,X)) is not empty and not in C)
                                    add GOTO(I, X) to C;
       until no new sets of items are added to C;
```

Example 4.54: Consider the following augmented grammar.

$$I_0: S \to \cdot S, \$$$

$$S \to \cdot CC, \$$$

$$C \to \cdot cC, c/d$$

$$C \to \cdot d, c/d$$

The brackets have been omitted for notational convenience, and we use the notation $[C \to cC, c/d]$ as a shorthand for the two items $[C \to cC, c]$ and $[C \to cC, d]$.

Now we compute $GOTO(I_0, X)$ for the various values of X. For X = S we must close the item $[S' \to S \cdot, \$]$. No additional closure is possible, since the dot is at the right end. Thus we have the next set of items

$$I_1: S' \to S_{\cdot}, \$$$

For X=C we close $[S\to C\cdot C,\ \$]$. We add the C-productions with second component \\$ and then can add no more, yielding

$$I_2: S \to C \cdot C, \$$$

$$C \to \cdot cC, \$$$

$$C \to \cdot d, \$$$

Next, let X = c. We must close $\{[C \to c \cdot C, c/d]\}$. We add the C-productions with second component c/d, yielding

$$I_0: S \to S, \$$$

 $S \to CC, \$$
 $C \to cC, c/d$
 $C \to d, c/d$

The brackets have been omitted for notational convenience, and we use the notation $[C \to cC, c/d]$ as a shorthand for the two items $[C \to cC, c]$ and $[C \to cC, d]$.

Now we compute $GOTO(I_0, X)$ for the various values of X. For X = S we must close the item $[S' \to S \cdot, \$]$. No additional closure is possible, since the dot is at the right end. Thus we have the next set of items

$$I_1: S' \to S_{\cdot}, \$$$

For X = C we close $[S \to C \cdot C, \$]$. We add the C-productions with second component \$ and then can add no more, yielding

$$I_2: S \to C \cdot C, \$$$

 $C \to \cdot cC, \$$
 $C \to \cdot d, \$$

Next, let X = c. We must close $\{[C \to c \cdot C, c/d]\}$. We add the C-productions with second component c/d, yielding

$$I_3: C \to c \cdot C, c/d$$

 $C \to c \cdot C, c/d$
 $C \to d, c/d$

Finally, let X = d, and we wind up with the set of items

$$I_4: C \to d \cdot, c/d$$

We have finished considering GOTO on I_0 . We get no new sets from I_1 , but I_2 has goto's on C, c, and d. For GOTO(I_2 , C) we get

$$I_5: S \to CC \cdot, \$$$

no closure being needed. To compute $GOTO(I_2, c)$ we take the closure of $\{[C \to c \cdot C, \$]\}$, to obtain

$$I_6: C \to c \cdot C, \$$$

$$C \to \cdot cC, \$$$

$$C \to \cdot d, \$$$

Continuing with the GOTO function for I_2 , GOTO (I_2 , d) is seen to be

$$I_7: C \to d_{\cdot}, \$$$

Turning now to I_3 , the GOTO's of I_3 on c and d are I_3 and I_4 , respectively, and GOTO(I_3 , C) is

$$I_8: C \to cC \cdot, c/d$$

 I_4 and I_5 have no GOTO's, since all items have their dots at the right end. The GOTO's of I_6 on c and d are I_6 and I_7 , respectively, and GOTO(I_6 , C) is

$$I_9: C \to cC \cdot, \$$$

STATE	ACTION			GOTO	
DIAIL	c	d	\$	S	C
0	s3	s4		1	2
1			acc		
2	s6	s7			5
3	s3	s4			8
4	r3	r3			
5			$_{\rm r1}$		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

Figure 4.42: Canonical parsing table for grammar (4.55)

LALR – Example 2

Consider the following augmented grammar.

$$\begin{array}{cccc} S' & \rightarrow & S \\ S & \rightarrow & C \ C \\ C & \rightarrow & c \ C \ \mid \ d \end{array}$$

LALR – Example 2

Example 4.60: Again consider grammar (4.55) whose GOTO graph was shown in Fig. 4.41. As we mentioned, there are three pairs of sets of items that can be merged. I_3 and I_6 are replaced by their union:

$$I_{36}$$
: $C \to c \cdot C$, $c/d/\$$
 $C \to \cdot cC$, $c/d/\$$
 $C \to \cdot d$, $c/d/\$$

 I_4 and I_7 are replaced by their union:

$$I_{47}$$
: $C \to d \cdot, c/d/\$$

and I_8 and I_9 are replaced by their union:

$$I_{89}$$
: $C \to cC \cdot , c/d/\$$

LALR – Example 2

The LALR action and goto functions for the condensed sets of items are shown in Fig. 4.43.

STATE	ACTION			GOTO	
DIALE	c	d	\$	S	C
0	s36	s47		1	2
1			acc		
2	s36	s47			5
36	s36	s47			89
47	r3	r3	r3		
5			r1		
89	r2	r2	r2		

Figure 4.43: LALR parsing table for the grammar of Example 4.54

Thank You