PCT/JPC3/13422

\mathbf{H} 庁

JAPAN PATENT OFFICE

RECEIVE 1.10.03

0 4 DEC 2003

別紙添付の書類に記載されている事項は下記の上が順書類にP記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

人

2002年10月28日

出 願 Application Number:

特願2002-312812

[ST. 10/C]:

[JP2002-312812]

出 Applicant(s):

株式会社明治ゴム化成

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Commissioner, Japan Patent Office 2003年11月21日

ページ: 1/E

【書類名】

特許願

【整理番号】

MP1-321

【あて先】

特許庁長官 太田 信一郎 殿

【国際特許分類】

B41N 10/04

B41F 13/00

【発明者】

神奈川県足柄上郡開成町延沢1番地 株式会社明治ゴム 【住所又は居所】

化成本社工場内

【氏名】

岩崎 吉夫

【発明者】

神奈川県足柄上郡開成町延沢1番地 株式会社明治ゴム 【住所又は居所】

化成本社工場内

【氏名】

堀 浩之

【特許出願人】

【識別番号】

000155229

【氏名又は名称】 株式会社 明治ゴム化成

【代理人】

【識別番号】

100081329

【弁理士】

【氏名又は名称】 関根 光生

【電話番号】

03-3835-9464

【手数料の表示】

【予納台帳番号】

009405

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

要

【物件名】

要約書 1

【プルーフの要否】

【発明の名称】 印刷用ブランケット

【特許請求の範囲】

【請求項1】 1枚以上の織布からなる補強層と、圧縮性層と、支持体を介して積層した表面ゴム層とからなる印刷用ブランケットにおいて、圧縮性層をセパレート層で仕切って2層に分割したことを特徴とする印刷用ブランケット。

【請求項2】 2層に分割してなる圧縮性層は空隙量がそれぞれ異なることを特徴とする請求項1に記載の印刷用ブランケット。

【請求項3】 セパレート層は、エラストマーによる1又は複数の層によって形成されていることを特徴とする請求項1又は2に記載の印刷用ブランケット

【請求項4】 第1圧縮性層の空隙量が0.10~0.20mmであり、第 1圧縮性層と第2圧縮性層の全体の空隙量が0.25mm以上であることを特徴 とする請求項1~3のいずれか1項に記載の印刷用ブランケット。

【請求項5】 圧縮性層のマトリックス硬度が50~90JIS-Aであることを特徴とする請求項1~3のいずれか1項に記載の印刷用ブランケット。

【請求項6】 第1圧縮性層の空隙量が0.10~0.20mmであり、第1圧縮性層と第2圧縮性層の全体の空隙量が0.25mm以上であるとともに、圧縮性層のマトリックス硬度が50~90JIS-Aであることを特徴とする請求項1~3のいずれか1項に記載の印刷用ブランケット。

【請求項7】 セパレート層は硬度が50 J I S - A \sim 80 J I S - D であり、厚さが0.05 mm以上であることを特徴とする請求項 $1\sim5$ のいずれか 1 項に記載の印刷用ブランケット。

【請求項8】 第1圧縮性層の空隙量が0.10~0.20mmであり、第1圧縮性層と第2圧縮性層の全体の空隙量が0.25mm以上であり、圧縮性層のマトリックス硬度が50~90JIS-Aであり、セパレート層は硬度が50JIS-A~80JIS-Dであり、厚さが0.05mm以上であることを特徴とする請求項1~3のいずれか1項に記載の印刷用ブランケット。

【発明の詳細な説明】

【産業上の利用分野】

この発明は、オフセット印刷機に用いられる印刷用ブランケットに係り、詳しくは、圧縮性層を有する印刷用ブランケットに関するものである。

[0002]

【従来の技術】

オフセット印刷においては、刷版の画像を紙面に印刷するのにブランケットを介在させ、刷版の画像を一度ブランケットに転写した後、ブランケットの画像を紙面に印刷するのである。このようなブランケットには、多孔質からなる圧縮性層を内部に設けた圧縮性ブランケットがある。

[0003]

図2に基づいて、圧縮性ブランケットの一例を説明すると、綿布、レーヨン布、ポリエステル布等1にゴム糊等の接着層2を介して2~3層に積層した補強層3と、この補強層3の上に発泡剤の発泡により形成した微細な多孔質層である圧縮性層4と、さらに圧縮性層4に積層された綿布による支持体5と、支持体5に積層した表面ゴム層6とからなる。上記表面ゴム層6を支持体5に積層するには、ナイフコーターやブレードコーター等のコーターを用いて行われる。

[0004]

そして、圧縮性層を設ける目的の1つは、印刷面に不均一な圧力が発生すると印刷像が不鮮明になる、いわゆる「ぼけ」を防止するためであり、他の目的は、印刷作業中に紙シートが偶然に2枚以上挿入された場合における衝撃を緩和し、吸収し、ブランケットの損傷を軽減し、あるいはブランケットの印刷上の品質を害しないようにするためであり、さらに他の目的は、印刷機のニップ部で圧縮されたブランケットの厚さを正常な厚さに回復させることによって、印刷面の平坦度及び厚さを一定に維持するためである。このような目的を達成し鮮明な印刷画像を得るために、高速オフセット印刷機には圧縮性印刷用ブランケットが用いられるのである。

[0005]

【発明が解決しようとする課題】

しかしながら、上記のように、圧縮性層を有するブランケットにおいても、圧力変化を完全に吸収することができず、ストリーク不良(ショック目)やスマッシュ不良が生じる。ストリーク不良とは、印刷機のシリンダーギャップ部がニップを通過する際などに発生する急激な圧力変化や振動によって印刷圧力(印圧)が変化し、印刷物に横筋が入ってしまう不良である。つまり、ストリーク不良とは、印刷機に発生する何らかのショックが印刷物にでてしまうので、ショック目ともいわれている。また、スマッシュ不良とは、印刷作業中に印刷用紙の切断等により複数の用紙が重なってニップに入った場合に、圧縮されたブランケットの厚さを正常な厚さに回復させることができずにブランケットが凹んでしまう不良である。

[0006]

ストリーク不良(ショック目)やスマッシュ不良対策としては、圧縮弾性率の低いブランケットを使用することが行われている。圧縮弾性率の低いブランケットを使用することで、ストリーク不良(ショック目)は多少改善されるものの、版胴とブランケット胴との間及びブランケット胴と圧胴との間のインキ転移圧力(ニップ間の圧力)が低下し、印刷品質の低下(インキ着肉不良)が発生することになる。また、圧縮弾性率の低いブランケットを使用しても、従来の圧縮性ブランケットでは、圧縮可能な圧縮量(空隙量)が限られているので、瞬間的に過度の印圧のかかるスマッシュ不良に対して対応できず、ブランケットに凹み不良が発生する。なお、この明細書において、空隙量とは、圧縮性層において垂直断面に占める空隙の厚さの総和をいうものとする。

$[0\ 0\ 0\ 7]$

この発明はかかる現況に鑑みてなされたもので、印刷品質を保ちながら、ストリーク不良(ショック目)及びスマッシュ不良の低減を図った印刷用ブランケットを提供せんとするものである。

[0008]

【課題を解決するための手段】

この発明は上記目的を達成するために次のような構成とした。即ち、この発明 に係る印刷用ブランケットは、1枚以上の織布からなる補強層と、圧縮性層と、 支持体を介して積層した表面ゴム層とからなる印刷用ブランケットにおいて、圧縮性層をセパレート層で仕切って2層に分割したことを特徴とする。前記2層の圧縮性層は空隙量がそれぞれ異なるように形成することができる。このように、圧縮性層を2層構造とすることによって、表面ゴム層に近い第1圧縮性層で通常の印圧を吸収し、急激にかかった過度の印圧を第2圧縮性層で吸収することができる。セパレート層は、エラストマーによる1又は複数の層によって形成することができる。表面ゴム層に近い第1圧縮性層の空隙量が0.10~0.20mmとし、第1圧縮性層と第2圧縮性層の全体の空隙量を0.25mm以上とすることが好ましい。第1圧縮性層と第2圧縮性層の空隙量を前記のように形成することが好ましい。第1圧縮性層と第2圧縮性層の空隙量を前記のように形成することによって、ストリーク不良(ショック目)やスマッシュ不良対策として有効である。

また、圧縮性層のマトリックス硬度は、50~90JIS-Aであることが好ましい。圧縮性層のマトリックス硬度を50~90JIS-Aとすることによって、ベタ部のインキ被覆率が向上する。さらに、セパレート層の硬度は、50JIS-A~80JIS-Dであり、厚さが0.05mm以上であるることが好ましい。セパレート層の硬度を50JIS-A~80JIS-D、厚さを0.05mm以上とすることによって、ベタ部のインキ被覆率が向上する。

[0009]

【発明の実施の形態】

この発明に係る印刷用ブランケットは、圧縮性層を有するブランケットであって、図1に示すように、補強層11、第2圧縮性層12,セパレート層13,第1圧縮性層14,支持体15及び表面ゴム層16を順次積層してなる。前記補強層11は、綿布、レーヨン布、ポリエステル布等の公知の織布を1枚、又は2枚以上をゴム糊等の接着層で積層してなる。

[0010]

また、第1圧縮性層及び第2圧縮性層とも、公知の手段により形成することができる。例えば、圧縮性層を形成する合成ゴム配合物中に発泡剤を配合する発泡成形法、ガラス、フェノール樹脂、熱可塑性プラスチック材料による中空微小球を配合しておき、独立したセルを形成する中空微小球混入法、水、メタノール等

の溶出液に溶出可能な粉体、例えば、塩化ナトリウム、砂糖等を合成ゴム配合物 中に配合しておき、加硫後に溶出させる粉体溶出法等によって成形することがで きる。

[0011]

前記表面層 1 6 は、印刷インキ、インキ洗浄溶剤等を考慮して耐油性ポリマーが用いられ、例えば、ポリクロロプレンゴム(CR)、多硫化ゴム(T)、ポリアクリロニトリル・ブタジエンゴム(NBR)、フッ素ゴム(FKM)、シリコーンゴム(Q)等によって形成することができる。このような耐油性ポリマーは、加硫剤、加硫促進剤、補強剤、老化防止剤等の1種以上を添加したものであってもよい。

[0012]

表面ゴム層に近い第1圧縮性層の空隙量が0.10~0.20mmとし、第1 圧縮性層と第2圧縮性層の全体の空隙量を0.25mm以上とすることが好ましい。第1圧縮性層の空隙量が0.10mm以下では、通常の印圧を十分に吸収できないと共に、0.20mm以上では、ベタ部インキ被覆率が低下するからである。

[0013]

また、圧縮性層のマトリックス硬度は、50~90 J I S - Aであることが好ましい。圧縮性層のマトリックス硬度が50 J I S - A以下では、、ベタ部インキ被覆率が低下し、マトリックス硬度が90 J I S - A以上では、50%網点面積率(ドットゲイン)及び装着性が低下するからである。

[0014]

また、セパレート層は、エラストマーによる1又は複数の層によって形成されている。セパレート層の硬度は、50JIS-A~80JIS-Dであり、厚さが0.05mm以上であることが好ましい。硬度が50JIS-A以下では、ベタ部インキ被覆率が低下し、硬度が80JIS-D以上では、装着性が低下するからである。また、セパレート層の厚さが0.05mm以下では、第2圧縮性層の影響を受けることになり、圧縮性層を2層に分割する機能を果たすことができず、ベタ部インキ被覆率が低下することになるからである。

【実施例】

(第1圧縮性層と第2圧縮性層との空隙量の和とストリーク不良(ショック目)、スマッシュ不良及び印刷品質(着肉性)との関係)

比較例のブランケットは、図2に示すように、3枚の織布を積層してなる補強層3に圧縮性層4、支持体5及び表面ゴム層6を積層したものを使用した。また、実施例のブランケットには、図1に示すように、比較例と同じく織布を積層してなる補強層11に第2圧縮性層12、セパレート層13,第1圧縮性層14、支持体15及び表面ゴム層16を順次積層したものを使用した。セパレート層の厚さは0.10mm(80JIS-A)、第1圧縮性層の空隙量は0.15mm(70JIS-A)、第1圧縮性層と第2圧縮性層の空隙量の和は表1に示す通りである。

[0016]

【表1】

	比較例	比較例	比較例	比較例	実施例	実施例	実施例
	1	2	3	4	1	2	3
第一圧縮性層空隙量(mm)	0.18	0.24	0.15		←-	←	←
第二圧縮性層 空隙量(mm)	_	_	0	0.05	0.10	0.15	0.20
第一+第二 圧縮性層(mm)	0.18	0.24	0.15	0.20	0.25	0.30	0.35
備考	通常圧 縮弾性 率 BL	低圧縮 弾性率 BL					_

[0017]

(ストリーク不良の評価)

[0018]

試験方法は次のようにして行った。まず、試料を印刷機に基準の仕立て厚さ($P/B=0.10\,\mathrm{mm}$)で専用のトルクレンチにより締め付け、トルク $38\,\mathrm{N}$ ・ m にて装着する。その後、10, 000枚/時の印刷速度で印刷を行い、約100枚印刷したら印刷機を停止させる。ここで、試料の緩みを補正する目的で再度専用のトルクレンチにより締め付けトルク $38\,\mathrm{N}$ ・ m にて増し締めを行う。

[0019]

インキの供給量を調整しながら総70%網点印刷を行い、濃度を基準濃度に合わせる。基準濃度を藍 $1.45\sim1.50$ 、紅 $1.30\sim1.35$ とし、濃度計にはグレタグD196を用いて測定した。210枚以上印刷を行い(濃度調整はこの間に終了させる)、 $190\sim209$ 枚の印刷用紙20枚を採取する。採取した印刷用紙のショック目近辺とショック目の色差(Δ E*ab)をグレタグD196で測定し、判断する。判断基準は、グレタグD196の説明書から抜粋した評価基準を基に判断する。評価基準を表2に示す。

[0020]

【表 2】

色差 (ΔE*ab)		弊社判断基準
0~0.5	きわめてわずかに異なる	0
0.5~1.5	わずかに異なる	Δ
1.5~3.0 ·	感知し得るほど異なる	×
3.0~6.0	著しく異なる	×
6.0~12.0	きわめて著しく異なる	×
12.0 以上	別の色統になる	×

[0021]

(スマッシュ不良の評価)

次に、スマッシュ不良について評価した。測定機器には、高速輪転型回転試験機15M型(これは、印刷機の圧胴とブランケット胴のユニットを改造した圧縮

[0022]

測定方法は次のようにして行った。まず、ニップでのブランケットの圧縮量が 0.40mmになるようにブランケット胴に下敷きとブランケットを装着し、一定トルク(200kgf・cm)で下敷きがシリンダー面に接触するように胴に張る。試験機を回転速度100rpmで回転させる。0回転でサンプル表面を観察し、50回転、100回転、200回転、300回転、500回転、700回転、1000回転後に試験機を止めてサンプル表面を観察した。サンプル表面のクラック状況を目視で判断した。判断基準は表3に示す通りである。

[0023]

【表3】

ブランケット表面状態	弊社判断基準
クラック無し	0
軽度のクラック(25倍ルーペで確認できるレベル)	Δ
重度のクラック (目視で確認できるレベル)	×

[0024]

(印刷品質の評価)

印刷品質の評価は次のようにして行った。。印刷条件と用いた測定機器は次の通りである。印刷機器には小森リスロン226を用い、印刷速度は10000枚/時で、印圧はP/B=0.10mm、B/I=0.15mm、刷版はクロマリンシステム、インキは東洋ハイエコー社の藍M、用紙は両面アート76.5kg、菊半裁、濃度計はグレタグD196、基準濃度は藍1.55~1.60とし、画像処理装置にはKSシステムズDA6000を用いた。

[0025]

[0026]

インキの供給量を調整しながら濃度を基準濃度に合わせる。基準濃度を藍1.55~1.60とし、濃度計にはグレタグD196を用いて測定した。210枚以上印刷を行い(濃度調整はこの間に終了させる)、190~209枚の印刷用紙20枚を採取する。印刷パッチを画像処理(ベタ部インキ被覆率)し、評価する。評価基準を表4に示す。

[0027]

【表4】

画像処理によるベタ部インキ被覆率	弊社判断基準
99以上~100%	0
98%以上 99%未満	Δ
98%未満	×

[0028]

上記ストリーク不良(ショック目)、スマッシュ不良及び印刷品質(着肉性) 、いわゆるベタ部インキ被覆率の評価結果を表 5 に示す。実施例では何れも良好 な結果を示している。

[0029]

【表5】

	比較例1	比較例2	比較例3	比較例4	実施列1	実施列2	実施例3
ストリーク 不良評価	×	0	×	Δ	0	0	0
スマッシュ 不良評価	×	×	×	×	0	0	0
ベタ部インキ 被覆率評価	0	Δ	0	0	-0	0	0

(第1圧縮性層の空隙量と印刷品質との関係)

まず、第1圧縮性層の空隙量は、比較例及び実施例とも表6に示す通りである。第2圧縮性層の空隙量は0.15mm(70JIS-A)、セパレート層の厚さは0.10mm(80JIS-A)である。

[0031]

【表 6】

	比較例	比較例	実施例	実施例	実施例	比較例
	5	6	4	2	5	7
第一圧縮性層の 空隙量(mm)	0.03	0.05	0.10	0.15	0.20	0.25

[0032]

(印刷品質の評価)

印刷品質の評価は次のようにして行った。印刷条件と用いた測定機器は次の通りである。印刷機器には小森リスロン226を用い、印刷速度は10000枚/時で、印圧はP/B=0.10mm、B/I=0.15mm、刷版はクロマリンシステム、インキは東洋ハイエコー社の藍M、用紙は両面アート76.5kg、菊半裁、濃度計はグレタグD196、基準濃度は藍1.55~1.60とし、画像処理装置にはKSシステムズDA6000を用いた。

[0033]

試験方法は次のようにして行った。まず、試料を印刷機に基準の仕立て厚さ($P/B=0.10\,mm$)で専用のトルクレンチにより締め付け、トルク $38\,N$ ・mにて装着する。その後、10, $00\,0$ 枚/時の印刷速度で印刷を行い、約 $10\,0$ 枚印刷したら印刷機を停止させる。ここで、試料の緩みを補正する目的で再度専用のトルクレンチにより締め付けトルク $38\,N$ ・mにて増し締めを行う。

[0034]

インキの供給量を調整しながら濃度を基準濃度に合わせる。基準濃度を藍 1. $55 \sim 1$. 60 とし、濃度計にはグレタグD 196 を用いて測定した。 210 枚以上印刷を行い(濃度調整はこの間に終了させる)、 $190 \sim 209$ 枚の印刷用

[0035]

【表7】

With the set of the se	
濃度計による 50%網点の面積率	弊社判断基準
10%以上 15%未満	0
15%以上 20%未満	
10%未満 20%以上	
	1 ^ 1

[0036]

上記ベタ部インキ被覆率及び50%網点面積率(ドットゲイン)の評価結果を表8に示す。実施例では何れも良好な結果を示している。

[0037]

【表8】

	比較例 5	比較例 6	実施例 4	実施例	実施例 5	比較例
ベタ部インキ被覆率	0	0	0	0	0	×
50%網点面積率 (ドットゲイン)	×	×	0	0	0	0

[0038]

(圧縮性層のマトリックス硬度と印刷品質(着肉性)及び装着性の関係)

まず、圧縮性層のマトリックス硬度は、比較例及び実施例とも表9に示す通りである。第1圧縮性層及び第2圧縮性層とも空隙量は、0.15mm、セパレート層の厚さは、0.10mm (80 J I S - A) である。

[0039]

【表 9】

	比較例8	実施列6	実施列7	実施列2	実施列8	実施例9	比較列9
圧縮製の マトリックス硬度 (JIS-A)	40	50	60	70	80	90	95

[0040]

(印刷品質の評価)

印刷品質の評価は次のようにして行った。印刷条件と用いた測定機器は次の通りである。印刷機器には小森リスロン $2\ 2\ 6$ を用い、印刷速度は $1\ 0\ 0\ 0$ 枚/時で、印圧は P/B=0. $1\ 0$ mm、B/I=0. $1\ 5$ mm、刷版はクロマリンシステム、インキは東洋ハイエコー社の藍M、用紙は両面アート $7\ 6$. $5\ kg$ 、菊半裁、濃度計はグレタグ $D\ 1\ 9\ 6$ 、基準濃度は藍 1. $5\ 5\sim 1$. $6\ 0$ とし、画像処理装置には $K\ S$ システムズ $D\ A\ 6\ 0\ 0\ 0$ を用いた。

[0041]

試験方法は次のようにして行った。まず、試料を印刷機に基準の仕立て厚さ($P/B=0.10\,\mathrm{mm}$)で専用のトルクレンチにより締め付け、トルク38 $N\cdot\mathrm{m}$ にて装着する。その後、10,000枚/時の印刷速度で印刷を行い、約100枚印刷したら印刷機を停止させる。ここで、試料の緩みを補正する目的で再度専用のトルクレンチにより締め付けトルク38 $N\cdot\mathrm{m}$ にて増し締めを行う。

[0042]

インキの供給量を調整しながら濃度を基準濃度に合わせる。基準濃度を藍1.55~1.60とし、濃度計にはグレタグD196を用いて測定した。210枚以上印刷を行い(濃度調整はこの間に終了させる)、190~209枚の印刷用紙20枚を採取する。印刷パッチを画像処理(ベタ部インキ被覆率)及び濃度計で50%網点面積率を測定し、評価する。評価基準は表7に示す通りである。

[0043]

(装着性の評価)

装着性(ブランケットの剛性)の評価は次のようにして行った。測定条件と用いた測定機器は次の通りである。試験機には、ブランケット装着性試験機(胴径Φ $173\,\mathrm{mm}$ 、面長 $\omega=120^\circ$)を用い、サンプルは長さ寸法 $300\,\mathrm{mm}$ 、幅寸法14ンチのブランケットを用い、荷重は $2\,\mathrm{kg}$ f で行った。試験方法は、前記サンプルを測定器に装着し、サンプルの先端に前記 $2\,\mathrm{kg}$ f の重りを付ける。サンプルの浮いた長さ(シリンダーから離れた長さ)と高さ(シリンダーからの距離)を測定し、装着性を判断した(基準は株式会社明治ゴム化成製 $940\,\mathrm{A}$

[0044]

【表10】

	比較列8	実施列6	実施例7	実施例2	実施列8	実施列9	比較例9
ベタ部インキ 被覆率	×	0	0	0	0	0	0
50%網点面積率 (ドットゲイン)	0	0	0	0	0	0	×
装着性	0	0	0	0	0	Δ	×

※ : 基準製品より良い-O、同等-A、悪い-×

[0045]

(セパレート層のマトリックス硬度と印刷品質及び装着性の関係)

セパレート層のマトリックス硬度と印刷品質(着肉性)及び装着性について評 価した。まず、セパレート層のマトリックス硬度は、比較例及び実施例とも表1 1に示す通りである。第1圧縮性層及び第2圧縮性層とも空隙量は、0.15m m (70 J I S - A)、セパレート層の厚さは、0.10 mmである。

[0046]

【表11】

	比較例 11	実施例9	実施例 10	実施例 11	実施例 12	比較例 12
セパレート層の硬	50*	70*	90*	70**	80**	90**
度 (JIS-A、D)						

* : ЛS-A ** : ЛS-D

[0047]

(印刷品質の評価)

印刷品質の評価は次のようにして行った。印刷条件と用いた測定機器は次の通 りである。印刷機器には小森リスロン226を用い、印刷速度は10000枚/ 時で、印圧はP/B=0.10mm、B/I=0.15mm、刷版はクロマリン システム、インキは東洋ハイエコー社の藍M、用紙は両面アート76.5kg、 菊半裁、濃度計はグレタグD196、基準濃度は藍1.55~1.60とし、画

[0048]

試験方法は次のようにして行った。まず、試料を印刷機に基準の仕立て厚さ(P/B=0.10mm)で専用のトルクレンチにより締め付け、トルク38N・mにて装着する。その後、10,000枚/時の印刷速度で印刷を行い、約100枚印刷したら印刷機を停止させる。ここで、試料の緩みを補正する目的で再度専用のトルクレンチにより締め付けトルク38N・mにて増し締めを行う。

[0049]

インキの供給量を調整しながら濃度を基準濃度に合わせる。基準濃度を藍1.55~1.60とし、濃度計にはグレタグD196を用いて測定した。210枚以上印刷を行い(濃度調整はこの間に終了させる)、190~209枚の印刷用紙20枚を採取する。印刷パッチを画像処理(ベタ部インキ被覆率)し、評価する。評価基準は表4に示す通りである。

[0050]

(装着性の評価)

装着性、即ちブランケットの剛性の評価は次のようにして行った。測定条件と用いた測定機器は次の通りである。試験器には、ブランケット装着性試験器(Φ 173 mm、 ω =120°)を用い、サンプルは長さ寸法300 mm、幅寸法1インチのブランケットを用い、荷重は2kgfで行った。試験方法は、前記サンプルを測定器に装着し、サンプルの先端に前記2kgfの重りを付ける。サンプルの浮いた長さ(シリンダーから離れた長さ)と高さ(シリンダーからの距離)を測定し、装着性を判断した(基準は株式会社明治ゴム化成製940A-42 $\tilde{\tilde$

[0051]

【表12】

	比較例	実施例	実施例	実施例	実施例	比較例
	1 1	9	10	11	12	12
ベタ部イン キ被覆率	×	0	0	0	0	0
装着性*	0	0	0	0	Δ	×

* : 基準製品より良い-〇、同等-△、悪い-×

[0052]

(セパレート層の厚さと印刷品質の関係)

ブランケットの構成は図1に示す通りである。また、セパレート層の厚さは、 比較例及び実施例とも表13に示す通りである。第1圧縮性層及び第2圧縮性層 とも空隙量は、0.15mm(70JIS-A)、セパレート層のマトリックス 硬度は、80JIS-Aである。

[0053]

【表13】

	比較例	比較例	実施例	実施例	実施例	実施例
	1 3	1 4	1 3	2	1 4	15
セパレート層	0	0.00	0.05	0.10		
の厚さ(mm)	U	0.03	0.05	0.10	0.20	0.30

[0054]

(印刷品質の評価)

印刷品質の評価は次のようにして行った。。印刷条件と用いた測定機器は次の通りである。印刷機器には小森リスロン226を用い、印刷速度は10000枚/時で、印圧はP/B=0.10mm、B/I=0.15mm、刷版はクロマリンシステム、インキは東洋ハイエコー社の藍M、用紙は両面アート76.5kg、菊半裁、濃度計はグレタグD196、基準濃度は藍1.55~1.60とし、画像処理装置にはKSシステムズDA6000を用いた。

[0055]

試験方法は次のようにして行った。まず、試料を印刷機に基準の仕立て厚さ(

[0056]

インキの供給量を調整しながら濃度を基準濃度に合わせる。基準濃度を藍1.55~1.60とし、濃度計にはグレタグD196を用いて測定した。210枚以上印刷を行い(濃度調整はこの間に終了させる)、190~209枚の印刷用紙20枚を採取する。印刷パッチを画像処理(ベタ部インキ被覆率)し、評価する。評価基準は表4に示す通りである。上記評価結果を表14に示す。

[0057]

【表14】

	比較列13	比較列14	実施例13	実施列2	実施列14	実施例15
ベタ部インキ被覆率	×	×	0	0	0	0

[0058]

上記表14から明らかなように、ベタ部インキ被覆率は、比較例では第2圧縮性層の影響を受けるために悪い結果となっているが、実施例ではセパレート層により第1圧縮性層と第2圧縮性層とが分離されるために良い結果となっている。

[0059]

【発明の効果】

この発明によれば次のような効果を奏することができる。即ち、圧縮性層をセパレート層によって2層に分割したので、表面ゴム層に近い第1圧縮性層により通常の印圧を吸収し、急激な印圧の変化は第2圧縮性層で吸収することができ、ストリーク不良(ショック目)やスマッシュ不良対策として有効であり、ベタ部のインキ被覆率を向上させることができる。

【図面の簡単な説明】

【図1】

【図2】

従来の印刷用ブランケットの部分断面図である。

【符号の説明】

11:補強層

12:第2圧縮性層

13:セパレート層

14:第1圧縮性層

15:支持体

16:表面ゴム層

図面

【図1】

【図2】

【要約】

【課題】 従来のブランケットには、印刷品質を保ちながら、ストリーク不良(ショック目)、及びスマッシュ不良の低減を図ることはできなかった。

【解決手段】 1枚以上の織布からなる補強層と、圧縮性層と、支持体を介して積層した表面ゴム層とからなる印刷用ブランケットにおいて、圧縮性層をセパレート層で仕切って2層に分割した構成とした。圧縮性層を2層構造とすることによって、通常の印圧と急激にかかった過度の印圧とを効率的に吸収することができる。表面ゴム層に近い第1圧縮性層の空隙量が0.10~0.20mmとし、第1圧縮性層と第2圧縮性層の全体の空隙量を0.25mm以上とすることが好ましい。また、圧縮性層の硬度は50~90JIS-Aであり、セパレート層の硬度は50JIS-A~80JIS-Dで、厚さが0.05mm以上であることが好ましい。

【選択図】 図1

特許出願の番号 ・ 特願2002-312812

受付番号 50201623642

書類名 特許願

担当官 第二担当上席 0091

作成日 平成14年10月29日

<認定情報・付加情報>

【提出日】 平成14年10月28日

次頁無

特願2002-312812

出願人履歴情報

識別番号

[000155229]

1. 変更年月日

2002年 3月18日

[変更理由]

住所変更

住所

東京都新宿区西新宿七丁目22番35号

氏 名

株式会社明治ゴム化成