SevenBridges

Next Generation Sequencing Technologies

Boris Majić - <u>boris.majic@sbgenomics.com</u> 08.03.2022.

Why Sequence the Genome?

What are the benefits of genome sequencing?

Refresher

Central dogma

Sequencing

- What does "sequencing" mean?
- Why sequence?
- Why sequence DNA and RNA?

What does it mean?

Why sequence DNA?

BRCA1 and BRCA2 genes (BReast CAncer susceptibility genes) code for proteins that block cell growth when cell is damaged

Do we need computers?

- Human genome is 3 billion bps long
- It would take 1M pages (stack 50m high) to write down a single human genome sequence
- Impossible to analyze manually

Yes, we need computers

x3000

x10000

x30000

'The Human Genome printed out into books'
Title: <u>Genome</u>, Image by <u>Dmitry Djouce</u>, via <u>flickr</u> (<u>CC BY 2.0</u>)

Page from The Human Genome. Taken from $\underline{\text{everydaybird}}$ $\underline{\text{blog}}$

The Birth of Sequencing Technologies

The discovery of DNA polymerase, modified nucleotides and the Chain termination method

Important concepts and ideas for understanding sequencing

- DNA replication
- DNA ligation
- DNA fragmentation and gel electrophoresis
- Nucleotide labeling
- Synthesis termination

Crucial Concept: DNA Replication

- 1956 Arthur Kornberg et. al. (New York University)
 - discovered the DNA Polymerase
 - And that polymerase facilitates DNA synthesis
 - zipper molecule

PCR Primers

DNA Replication

PCR: Polymerase Chain Reaction

- DNA Polymerase Chain Reaction (PCR) chemistry based on thermo cycling; acute and repeated i.e. cyclic temperature fluctuations for denaturation and hybridization of complementary strands of DNA
- Taq Polymerase Thermus Acquaticus
 - Not human polymerase
 - Taq is more temperature resistant to high denaturation temperatures of thermocycler

PCR: Polymerase Chain Reaction

DNA fragmentation and ligation

Gel Electrophoresis

Gel Electrophoresis (Creating a DNA Profile)

Terminating and Labeling Nucleotides

Sanger

- Chain **Termination** Method
- dNTPs + <u>labeled</u> ddNTPs
- Southern Blotting on Electrophoresis gel

NGS

- Reversible termination
- No termination
- Slides

Sanger sequencing example

ACTAGCTATGATCGAT

Sequencing Trends

Figure 1: Sequencing Cost and Data Output Since 2000—The dramatic rise of data output and concurrent falling cost of sequencing since 2000. The Y-axes on both sides of the graph are logarithmic.

The Birth of Next Generation Sequencing Technologies

DNA polymerase in the sequencing by synthesis approach

lumina®

Illumina Library Prep

TruSeq PCR Free

Illumina library prep

Illumina flow cell

Illumina flow cell

Cluster Amplification

Illumina sequencing

Illumina sequencing: Paired ends

Figure 4: Paired-End Sequencing and Alignment—Paired-end sequencing enables both ends of the DNA fragment to be sequenced. Because the distance between each paired read is known, alignment algorithms can use this information to map the reads over repetitive regions more precisely. This results in much better alignment of the reads, especially across difficult-to-sequence, repetitive regions of the genome.

Illumina sequencing: Multiplexing

Figure 5: Library Multiplexing Overview.

- a. Two distinct libraries are attached to unique index sequences. Index sequences are attached during library preparation.
- b. Libraries are pooled together and loaded into the same flow cell lane.
- c. Libraries are sequenced together during a single instrument run. All sequences are exported to a single output file.
- d. A demultiplexing algorithm sorts the reads into different files according to their indexes.
- e. Each set of reads is aligned to the appropriate reference sequence.

Recording called bases or reads

The FASTQ file format

Image processing

- Sequencing produces high-resolution TIFF images
- 100 tiles per lane, 8 lanes per flow cell, 100 cycles
- 4 images (A,G,C,T) per tile per cycle = 320,000 images
- Each TIFF image ~ 7Mb = 2,240,000 Mb of data (2.24TB)

Base calling - uses cluster intensities and noise estimate to output the sequence of bases read from each cluster, along with a confidence level for each base.

Phred Scoring

Quality score interpretation

$$Q = -10 \log_{10} P$$
 \longrightarrow $P = 10^{\frac{-Q}{10}}$

Phred Quality Score	Probability of incorrect base call	Base call accuracy			
10	1 in 10	90%			
20	1 in 100	99%			
30	1 in 1000	99.9%			
40	1 in 10000	99.99%			
50	1 in 100000	99.999%			

Materials from Wikepedia

ASCII Base + 33 encoding

ASCII BASE=33 Illumina, Ion Torrent, PacBio and Sanger											
Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59;	37	0.00020	70 F
5	0.31623	38 €	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

FASTQ file format

FASTQ - Analysis

Per Base Sequence Quality

Other NGS Technologies

Nanopore sequencing

SMRT/ZMV Sequencing

Oxford Nanopore MinION

MinION in Space Video

<u>Rosalind</u>

Counting DNA Nucleotides

Transcribing DNA into RNA

Complementing a Strand of DNA

Parsing FASTQ file assignment:

- Count the number of reads
- Calculate average read quality
- Calculate per base average quality
- Create histogram of average read quality
- Create histogram of read quality per base

Resources

- Useful Genetics, https://www.youtube.com/channel/UCtXCrx28msMBQ-vFUIOIReA
- Codecademy, http://www.codeacademy.com
- Illumina inc., https://www.youtube.com/channel/UCxWMU29FF4klG8YmQf6Zv0q
- AWS https://aws.amazon.com/documentation/ec2/
- Ion Torrent sequencing, Thermo Fisher Sci., Life Tech., https://www.youtube.com/user/LifeTechnologiesCorp
- Oxford Nanopore, https://www.youtube.com/channel/UC5yMIYjHSqFfZ37LYq-dziq
- PacBio, https://www.youtube.com/user/PacificBiosciences
- IPython, virtualenv, virtualenvwrapper
- Jupyter Notebook
- nbviewer, http://nbviewer.ipython.org/
- Sequencing, <u>http://mol-biol4masters.masters.grkraj.org/html/Genetic_Engineering5A-DNA_Synthesis_&_Sequencing.htm</u>