Experimental page: ratios of curve fit deaths to curve fit confirmed cases

— India cum. fit CFR — World cum. fit CFR

Demonstration of SIR model where $R_{\,e}\,$ is linearly reduced to 1 at the end of the sequence:

Reducing the $R_{\,e}\,$ while keeping gamma constant is the same as reducing contact rate. Contact rate is reduced through isolation, lockdowns, and vaccinations.

USA Excess Deaths (from CDC data):

Annualized on 45 weeks

	All Cause	All Cause, excl.	CV19
3 yr average before 2020	854:100,000	854:100,000	-
2020	975:100,000	893:100,000	-
Diff.	121:100,000	38:100,000	82:100,000

3 yr average 859:100,000

32% of All-Cause excess deaths are non-CV19

False Positives Demonstration

Use 0.20% from US est. incidence above as estimated daily incidence Prevalence estimated as avg. infected period of 2 weeks X incidence

0.20% X 14 = 2.800%

99%	99% accuracy of test		
	Positive	Negative	
test pos	2.772%	0.972%	3.74%
test neg	0.028%	96.228%	96.26%
	2.800%	97.200%	100.00%

False pos. is nearly 1/4 of total positives!

TRUE +	2.772%/3.74%	74.0%
FALSE +	0.972%/3.74%	26.0%
Total		100.00%

Counter-act this tendency by increasing test sensitivity. However this may increase false negatives, the recipients of which may be positive, think they're negative, and go spread it around some more.

Here are some demonstrations of SIR model (and a SEIR model), using R_e, gamma, and beta

