PreCal concise

2025-09-17

Here is the more concise summary of the main content, including definitions and examples, from "PreCalc.pdf", in English and Markdown format, with shortened narrative parts:

1 | FUNCTIONS AND GRAPHS

This chapter reviews fundamental functions (polynomial, rational, trigonometric, exponential, logarithmic) for calculus study. It covers evaluation, graphical properties, and algebraic techniques for solving related equations, providing a foundation for calculus. For instance, logarithmic functions are used to compare earthquake intensity (Example 1.39).

1.1 | Review of Functions

This section defines functions and examines representations (tables, formulas, graphs). It covers notation, domain, range, function composition, and symmetry.

Function

- **Definition**: A function consists of a set of inputs (the **domain**), a set of outputs (the **range**), and a rule assigning each input to exactly one output.
- The input is the **independent variable** (x), and the output is the **dependent variable** (y).
- **Example**: For $f(x) = x^2$:
 - * Domain: all real numbers.
 - * Rule: square the input.
 - * Input x = 2 gives output y = 4.
 - * Range: non-negative real numbers.
- Functions can be visualized as an input/output device (Figure 1.2) or by mapping elements (Figure 1.3), or by plotting points (x, f(x)) (Figure 1.4, Figure 1.5).

• Domain of a Function

- If not specified, the domain includes all real numbers for which f(x) is real.
- Example: $f(x) = x^2$ domain is all real numbers; $f(x) = \sqrt{x}$ domain is non-negative real numbers.
- Set Notation: Use set-builder (e.g., $\{x \in \mathbb{R} | 1 < x < 5\}$) or interval notation (e.g., $\{1, 5\}$) for infinite sets. Square brackets include endpoints (e.g., \$\$). ∞ and $-\infty$ denote unboundedness.

• Piecewise-Defined Functions

- Functions defined by different equations across different domain parts.

- **Example**:
$$f(x) = \begin{cases} x+1 & \text{if } x < 2 \\ -x+7 & \text{if } x \ge 2 \end{cases}$$
. $f(0) = 1$, $f(4) = 3$.

• Evaluating Functions

- Substitute x into the formula.
- **Example 1.1**: For $f(x) = x^2 3x + 5$:

$$f(1) = 1^2 - 3(1) + 5 = 3$$

*
$$f(1) = 1^2 - 3(1) + 5 = 3$$
.
* $f(-2) = (-2)^2 - 3(-2) + 5 = 15$.

$$* f(a) = a^2 - 3a + 5.$$

• Finding Domain and Range

- Example 1.2:

* For
$$f(x) = \frac{1}{x+2}$$
: domain is $(-\infty, -2) \cup (-2, \infty)$; range is $(-\infty, 0) \cup (0, \infty)$.

- * For $f(x) = \sqrt{x-3}$: domain is $[3,\infty)$; range is $[0,\infty)$.
- Representing Functions
 - Commonly using tables, graphs, or formulas.
 - **Tables**: Frequent in real-world data (Table 1.1).
 - Graphs: Visual representation from data points (Figure 1.6, Figure 1.7).
 - Algebraic Formulas: Many applications have explicit formulas, e.g., $A = \pi r^2$.
- Zeros of a Function
 - x values where f(x) = 0, indicating graph's x-axis intersections.
- y-intercept
 - Given by f(0), a function has at most one y-intercept.
- Vertical Line Test
 - Rule: A graph represents a function if any vertical line intersects it at most once.
- Increasing and Decreasing Functions
 - **Definition**: f is increasing on I if $x_1 < x_2 \implies f(x_1) \le f(x_2)$ for $x_1, x_2 \in I$.
 - **Definition**: f is **decreasing** on I if $x_1 < x_2 \implies f(x_1) \ge f(x_2)$ for $x_1, x_2 \in I$.
 - Example: $f(x) = x^3$ is increasing on $(-\infty, \infty)$; f(x) = -x + 1 is decreasing on $(-\infty, \infty)$ (Figure 1.11).
- Combining Functions
 - Mathematical Operators: Given f, g, new functions are:
 - * (f+g)(x) = f(x) + g(x).
 - * (f-g)(x) = f(x) g(x).
 - * $(f \cdot g)(x) = f(x)g(x)$. * $(\frac{f}{g})(x) = \frac{f(x)}{g(x)}$ (if $g(x) \neq 0$). **Function Composition**: Applying one function to another.
 - * **Definition**: For $f: D_f \to R_f$ and $g: D_g \to R_g$, if $R_f \subseteq D_g$, then $(g \circ f)(x) = g(f(x))$ is the composite function with domain D_f .
 - * **Example 1.7**: For $f(x) = x^2, g(x) = \sqrt{x-3}$:
 - $(g \circ f)(x) = \sqrt{x^2 3}$. Domain: $(-\infty, -\sqrt{3}] \cup [\sqrt{3}, \infty)$.
 - $(f \circ g)(x) = x 3$. Domain: $[3, \infty)$.
- Symmetry of Functions
 - **Even Function**: f(x) = f(-x) for all x in domain. Symmetric about y-axis.
 - * Example: $f(x) = x^2$ is even.
 - Odd Function: f(-x) = -f(x) for all x in domain. Symmetric about the origin.
 - * Example: $f(x) = x^3$ is odd.
 - Example 1.10:
 - * $f(x) = 3x^4 1$: Even.
 - * $f(x) = \sqrt{x+1}$: Neither.
- Absolute Value Function
 - **Definition**: $|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$
 - It is an even function, symmetric about the y-axis (Figure 1.14).

1.2 | Basic Classes of Functions

This section covers linear, quadratic, and higher-degree polynomials, distinguishing algebraic from transcendental functions, and exploring function transformations.

- Linear Functions and Slope
 - Definition: A linear function is f(x) = mx + b (m, b are constants).
 - Slope: Change in y per unit change in x, indicating steepness and direction.
 - * **Definition**: Slope $m = \frac{y_2 y_1}{x_2 x_1}$ for points (x_1, y_1) and (x_2, y_2) . * In f(x) = mx + b, m is the slope, b is the y-intercept.
 - Point-slope equation: $y y_1 = m(x x_1)$.
 - Slope-intercept form: y = mx + b.

- Standard form: Ax + By = C (A, B not both zero).
- **Example 1.12**: Line through (-3, 4) and (2, -1):
 - * Slope m = -1.
 - * Point-slope: y 4 = -1(x (-3)).
 - * Slope-intercept: y = -x + 1.
- Polynomials
 - **Definition**: $f(x) = a_n x^n + \cdots + a_0$ where n is a non-negative integer, $a_n \neq 0$.
 - **Degree**: n (highest power).
 - Leading coefficient: a_n .
 - **Types**: Constant (n = 0), Linear (n = 1), Quadratic (n = 2), Cubic (n = 3).
- Power Functions: Form $f(x) = x^n$ (n is a positive integer).
 - If n is even, $f(x) = x^n$ is even (Figure 1.18(a)).
 - If n is odd, $f(x) = x^n$ is odd (Figure 1.18(b)).
- Behavior at Infinity (End Behavior): What f(x) does as $x \to \pm \infty$. For polynomials, the leading term dictates this behavior.
- Zeros of Polynomial Functions
 - Quadratic Formula: For $ax^2 + bx + c = 0$, $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.
 - * $b^2 4ac > 0$: two real solutions.
 - * $b^2 4ac = 0$: one real solution.
 - * $b^2 4ac < 0$: no real solutions.
 - **Example 1.14**: For $f(x) = -2x^2 + 4x 1$, zeros are $x = 1 \pm \frac{\sqrt{2}}{2}$.
- Algebraic Functions
 - **Definition**: Involves $+, -, \times, \div$, rational powers, and roots.
 - Rational Function: Quotient of two polynomials, $f(x) = \frac{p(x)}{q(x)}$.
 - * Example: $f(x) = \frac{x+1}{x-1}$.
 - Root Function: $f(x) = x^{1/n}$ (n > 1 positive integer).
 - * **Example**: $f(x) = \sqrt{x}$ (square root), $f(x) = \sqrt{x}$ (cube root).
- Transcendental Functions
 - **Definition**: Cannot be described by basic algebraic operations.
 - **Examples**: Trigonometric, exponential, and logarithmic functions.
 - Example 1.18: $f(x) = \frac{1}{x^2+1}$ (algebraic); $f(x) = \cos x$ (transcendental).
- Piecewise-Defined Functions
 - Functions defined by different formulas in different domain parts. Absolute value function is an example.
 - **Example 1.19**: Graphing $f(x) = \begin{cases} x+1 & \text{if } x < 2 \\ (x-2)^2 + 3 & \text{if } x \ge 2 \end{cases}$
- Transformations of Functions
 - Vertical shift: $f(x) \pm c$ (up/down c units).
 - Horizontal shift: $f(x \pm c)$ (left/right c units).
 - Vertical scaling: $c \cdot f(x)$ (stretch if c > 1, compress if 0 < c < 1).
 - Horizontal scaling: f(cx) (compress if c > 1, stretch if 0 < c < 1).
 - **Reflection**: -f(x) (about x-axis); f(-x) (about y-axis).
 - Order of Transformations: Horizontal shift \rightarrow Horizontal scaling \rightarrow Vertical scaling \rightarrow Vertical shift.
 - **Example 1.21**: Graph $f(x) = -\sqrt{x+3} 3$ by shifting $f(x) = \sqrt{x}$ left 3, reflecting over x-axis, then shifting down 3.

1.3 | Trigonometric Functions

Trigonometric functions model cyclical phenomena. This section defines the six basic functions, their identities, and graph properties.

- Radian Measure
 - **Definition**: Arc length on the unit circle corresponding to an angle. 1 radian corresponds to an

```
arc length of 1.
```

- Conversion: $360^{\circ} = 2\pi \text{ rad}$; $180^{\circ} = \pi \text{ rad}$.
- Example 1.22:
 - * $45^{\circ} = \frac{\pi}{4} \text{ rad.}$
 - * $\frac{3\pi}{2}$ rad = 270°.

• Six Basic Trigonometric Functions

- Unit Circle Definition: For point (x, y) on unit circle with angle θ :
 - $* \sin \theta = y$
 - $* \cos \theta = x$
 - * $\tan \theta = y/x \ (x \neq 0)$
 - $* \csc\theta = 1/y \ (y \neq 0)$
 - $* \sec \theta = 1/x \ (x \neq 0)$
 - * $\cot \theta = x/y \ (y \neq 0).$
- Right Triangle Definition: For acute angle θ , opposite o, adjacent a, hypotenuse h:
 - $* \sin \theta = o/h$
 - $*\cos\theta = a/h$
 - * $\tan \theta = o/a$.
- **Example 1.23**: $\sin(\frac{\pi}{2}) = 1$.

• Trigonometric Identities

- Equations true for all defined angles.
- Reciprocal identities: e.g., $\tan \theta = \sin \theta / \cos \theta$, $\csc \theta = 1 / \sin \theta$.
- Pythagorean identities: $\sin^2 \theta + \cos^2 \theta = 1$, etc..
- Addition/Subtraction formulas: e.g., $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$.
- **Double-angle formulas**: e.g., $\sin(2\theta) = 2\sin\theta\cos\theta$.
- **Example 1.25**: Solving $\sin(2x) = \sin x$ yields $x = n\pi$, $x = \frac{\pi}{3} + 2n\pi$, $x = \frac{5\pi}{3} + 2n\pi$.

• Graphs and Periods of Trigonometric Functions

- Periodic function: Values repeat.
- **Period**: Smallest P > 0 where f(x + P) = f(x).
- Periods: $\sin, \cos, \sec, \csc = 2\pi$; $\tan, \cot = \pi$.
- Transformations: $f(x) = A\sin(B(x-C)) + D$.
 - * A: amplitude.
 - * B: affects period (Period = $2\pi/|B|$).
 - * C: phase shift (horizontal).
 - * D: vertical shift.

1.4 | Inverse Functions

Inverse functions reverse a function's operation. This section defines them, states existence conditions, outlines how to find them, and discusses inverse trigonometric functions.

- Existence of an Inverse Function
 - **Definition**: For $f: D_f \to R_f$, its inverse $f^{-1}: R_f \to D_f$ (if exists) satisfies $y = f(x) \iff x = f^{-1}(y)$. f^{-1} is "f inverse".
 - A function needs to be **one-to-one** to have an inverse.
 - One-to-one function: $x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$.
- Horizontal Line Test
 - Rule: A function is one-to-one if every horizontal line intersects its graph at most once.
 - Example 1.28: $f(x) = \sin x$ is not one-to-one; $f(x) = x^3$ is one-to-one.
- Finding a Function's Inverse
 - 1. Solve y = f(x) for x in terms of y.
 - 2. Interchange x and y, write as $y = f^{-1}(x)$.
 - **Example 1.29**: For $f(x) = x^3 4$:
 - * $x = \sqrt{y+4}$.
 - * $f^{-1}(x) = \sqrt{x+4}$. Domain/Range: $(-\infty, \infty)$ for both f, f^{-1} .
- Graphing Inverse Functions

- Graphs of f and f^{-1} are symmetric about the line y = x (Figure 1.39).
- Restricting Domains
 - If f is not one-to-one, restrict its domain to a subset where it is one-to-one to define an inverse.
 - **Example**: $f(x) = x^2$ (not one-to-one). Restrict to $[0, \infty)$, inverse is $g^{-1}(x) = \sqrt{x}$.
- Inverse Trigonometric Functions
 - Trigonometric functions are periodic, so domains are restricted to define inverses.
 - Definitions:
 - * $\arcsin x = y \iff \sin y = x$. Domain: [-1, 1], Range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
 - * $\arccos x = y \iff \cos y = x$. Domain: [-1, 1], Range: $[0, \pi]$.
 - * $\arctan x = y \iff \tan y = x$. Domain: $(-\infty, \infty)$, Range: $(-\frac{\pi}{2}, \frac{\pi}{2}]$.
 - Example 1.32:
 - * $\arcsin(\frac{1}{2}) = \frac{\pi}{6}$.
 - * $\cos(\arcsin(\frac{1}{2})) = \frac{\sqrt{3}}{2}$.

1.5 | Exponential and Logarithmic Functions

This section examines exponential and logarithmic functions, their properties for solving equations, the significance of e, and hyperbolic functions.

- Exponential Functions
 - **Definition**: $f(x) = b^x$ $(b > 0, b \ne 1)$. Constant base, variable exponent.
 - Distinction from Power Functions: $f(x) = x^b$ is a power function.
 - Graphing Exponential Functions:
 - * Domain: $(-\infty, \infty)$, Range: $(0, \infty)$.
 - * If b > 1, increasing, $f(x) \to 0$ as $x \to -\infty$ (Figure 1.44).
 - * If 0 < b < 1, decreasing, $f(x) \to 0$ as $x \to \infty$ (Figure 1.44).
 - Laws of Exponents:
 - 1. $b^{x}b^{y} = b^{x+y}$ 2. $\frac{b^{x}}{b^{y}} = b^{x-y}$

 - 3. $(b^x)^y = b^{xy}$
 - $4. (ab)^x = a^x b^x$
 - 5. $(\frac{a}{b})^x = \frac{a^x}{b^x}$.
 - Example 1.33 (Bacterial Growth): $P(t) = 100 \cdot 2^{t/3}$. After 3 hours, P(3) = 200.
- The Number e
 - $-e \approx 2.718282$ is the limit of $(1+\frac{1}{n})^n$ as $n \to \infty$.
 - Natural Exponential Function: $f(x) = e^x$. Its graph has slope 1 at x = 0 (Figure 1.45).
 - Example 1.35 (Compounding Interest): $A(t) = Pe^{rt}$. Investment of 1000at0.05 continuous interest: $A(t) = 1000e^{0.05t}$.
- Logarithmic Functions
 - **Definition**: Inverse of exponential function $f(x) = b^x$. $y = \log_b x \iff x = b^y \ (b > 0, b \neq 1)$.
 - **Example**: $\log_{10} 100 = 2$ because $10^2 = 100$.
 - Natural Logarithm: Base e, denoted $\ln x$.
 - Inverse Relationship: $b^{\log_b x} = x$ and $\log_b(b^x) = x$.
 - Graphs: $y = \log_b x$ and $y = b^x$ are symmetric about y = x (Figure 1.46).
 - Properties of Logarithms:
 - 1. $\log_b(xy) = \log_b x + \log_b y$
 - 2. $\log_b(\frac{x}{y}) = \log_b x \log_b y$
 - 3. $\log_b(x^r) = r \log_b x$.
 - Change-of-Base Formulas:
 - $1. \log_b x = \frac{\log_a x}{\log_a b}$
 - 2. $\log_b x = \frac{\ln x}{\ln b}$. **Example 1.36**: Solving $e^{5x-3} = 10$ yields $x = \frac{3+\ln 10}{5}$.
 - **Example 1.37**: Solving $\ln(x) + \ln(x-1) = 0$ yields $x = \frac{1+\sqrt{5}}{2}$ (for x > 1).

- Example 1.39 (Richter Scale): $M_1 M_2 = \log_{10}(\frac{A_1}{A_2})$. A magnitude 9 earthquake is ≈ 50.11 times more intense than a magnitude 7.3 earthquake.
- Hyperbolic Functions
 - **Definition**: Defined by combinations of e^x and e^{-x} .
 - * $\cosh x = \frac{e^x + e^{-x}}{2}$ * $\sinh x = \frac{e^x e^{-x}}{2}$ * $\tanh x = \frac{e^x e^{-x}}{e^x + e^{-x}}$. **Identities**: $\cosh^2 x \sinh^2 x = 1$.
- Inverse Hyperbolic Functions
 - Inverses of hyperbolic functions, expressed using natural logarithms.
 - Definition:
 - * $\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1}).$ * $\cosh^{-1} x = \ln(x + \sqrt{x^2 1}) \ (x \ge 1).$ * $\tanh^{-1} x = \frac{1}{2} \ln(\frac{1+x}{1-x}) \ (|x| < 1).$ **Example 1.41**: $\sinh^{-1}(1) = \ln(1 + \sqrt{2}).$