Aggregation Models of Potential Cyclical Trimethylsulfonium Dicyanamide Ionic Liquid Clusters

W. Robert Carper,*,† Kevin Langenwalter,† Naveed S. Nooruddin,† Michael J. Kullman,† Dirk Gerhard,‡ and Peter Wasserscheid‡

Department of Chemistry, Wichita State University, Wichita, Kansas 67260-0051, and Lehrstuhl für Chemische Reaktionstechnik, Universität Erlangen-Nürnberg, Egerlandstrasse 3, Erlangen, D-91058, Germany

Received: October 17, 2008; Revised Manuscript Received: December 9, 2008

Raman and infrared spectra of trimethylsulfonium dicyanamide [(CH₃)₃SN(CN)₂] are reported and accurately reproduced by DFT methods (B3LYP and B3PW91), MP2, and MP3, and to a lesser extent by the RHF method. The (CH₃)₃SN(CN)₂ ionic liquid forms two isomeric dimers that are of cyclic structure, one of which is 13 kcal/mol lower in energy than the other. Both isomeric cyclic pairs (versions 1 and 2), [(CH₃)₃SN(CN)₂]₂, have the potential to further combine and form a common structure containing four pairs of (CH₃)₃SN(CN)₂. This structure can then conceivably undergo a stacking procedure to form extended ionic liquid nanotubes of eight ionic liquids, [(CH₃)₃SN(CN)₂]₈. The possible formation of gas phase ionic liquid clusters of two, four, and eight trimethylsulfonium dicyanamide ionic liquids is supported by highly exergonic free energy changes obtained from B3LYP/(6-311+G(d,p)) density functional calculations.

Introduction

Room temperature ionic liquids (RTILs) have generated considerable excitement in recent years as a new type of solvent medium that possesses minimal vapor pressure.¹⁻⁴ Ionic liquids can be recycled, thus making synthetic processes less expensive and potentially more efficient and environmentally friendly. The use of ionic liquids has proved beneficial in numerous areas including those of homogeneous and heterogeneous catalyses, ^{1,2,4} chirality transfer, ^{5,6} and tribology.⁷ As a result of these and other applications, ⁴ the interest in ionic liquids as a reaction medium has intensified in recent years and has resulted in the reporting of many new ionic liquids including those that contain both organic cations and organic anions such as the trialkysulfonium dicyanamides.⁸

The ability of ionic liquids to form supramolecular aggregates has always been suspected by various investigators, and recent reports in the literature establish this as factual in both liquid and gas phases using mass spectrophotometric, ¹H NMR, conductivity, microcalorimetric, and photoelectron spectroscopic methods. ^{9–12} The ability of room temperature ionic liquids to aggregate undoubtedly affects their ability to serve as efficient reaction media and suggests that those methods identifying the aggregation process may prove to be quite useful.>

In recent years, investigators have used ab initio calculations and Raman spectra to probe both the overall and local structure of ionic liquids as outlined in detail in several excellent reviews. ^{13,14} The advantage of Raman over IR spectra is often due to the complexity of overlapping bands in IR spectra that are difficult to deconvolute. Fortunately,

both the Raman and IR spectra of $(CH_3)_3SN(CN)_2$ are relatively simple when compared with other ionic liquids such as the imidzolium-PF $_6$ and imidzolium-BF $_4$ ionic liquids. ^{15,16}

In this study, the possible formation of cyclical and ultimately tubular structures of the ionic liquid trimethylsulfonium dicyanamide, (CH₃)₃SN(CN)₂, is modeled in the gas phase using theoretical methods that accurately reproduce vibrational spectra. The ability of trimethylsulfonium dicyanamide, (CH₃)₃SN(CN)₂, to conceivably form cyclical pairs that in turn aggregate into helical structures is supported by the results of theoretical and spectroscopic studies reported herein. These gas phase models correlate well with static vibrational spectra (Raman and IR) of trimethylsulfonium dicyanamide in a manner similar to results obtained for imidazolium hexafluorophosphate and imidazolium terafluoroborate ionic liquids. 15,16 The trimethylsulfonium dicyanamide theoretical and experimental vibrational spectra correlation is very good and remains at a high level as one models potential aggregates of trimethylsulfonium dicyanamide ionic liquid ion pairs.

Methods

Preparation and Measurements. Trimethylsulfonium dicyanamide was prepared in a stepwise manner.⁸ The trimethylsulfonium iodide precursor was synthesized using the synthetic approach of Paulsson et al.¹⁷ Equimolar amounts of dimethyl sulfide and methyl iodide dissolved in dry acetone were stirred in darkness at ambient conditions for several days. Silver dicyanamide was precipitated by mixing aqueous solutions of silver nitrate and sodium dicyanamide (1:1 molar ratio). The white residue was filtered off, washed with water to remove any unreacted reagents, and used immediately. An aqueous solution of the iodide was added to

^{*} Corresponding author. E-mail: Bob.Carper@wichita.edu.

[†] Wichita State University.

[‡] Universität Erlangen-Nürnberg.

Figure 1. Raman spectrum of (CH₃)₃SN(CN)₂ at 2 cm⁻¹ resolution.

Figure 2. IR spectrum of (CH₃)₃SN(CN)₂.

an aqueous slurry of the excess (1:1.1) silver dicyanamide, and the solution was heated to 40 °C with stirring overnight. Silver iodide was removed by filtration before drying the product under reduced pressure of 1 mbar. To ensure complete removal of silver salts from the product, the dried ionic liquid was cooled in a freezer overnight before further filtration. Trimethylsulfonium dicyanamide was dried by addition of dry dichloromethane and stirring at 1 mbar and 40 °C overnight.

The Raman spectrum of trimethylsulfonium dicyanamide (Figure 1) was taken using a Nicolet Model 950 Raman spectrophotometer operating at 2 cm⁻¹ resolution. The IR spectrum (Figure 2) was obtained with a Nicolet Model 360 FTIR at 2 cm⁻¹ resolution.

Computational Methods. The ab initio (RHF) and density functional (DFT) calculations were obtained using Gaussian 03 in a tight fit configuration. The calculated vibrational frequencies of all structures contain no imaginary frequencies,

ensuring the presence of a minimum. The eigenvectors for each normal mode were displayed on the computer and the normal modes were assigned to specific group vibrations in a manner similar to previous vibrational frequency studies of ionic liquids. ^{15,16}

Frequency Correlations. The correlations between calculated and experimental spectra were based primarily on peak intensities and frequencies (cm⁻¹) for both Raman and IR.^{15,16} In cases where adjacent experimental IR frequencies overlapped such that assignment was questionable, both frequencies were included in the frequency correlation diagram.

Molecular Structures. The gas phase molecular structures of the various gas phase conformers of $(CH_3)_3SN(CN)_2$ were determined at the B3LYP/(6-31+G(d)), B3LYP/(6-311+G(d,p)), B3PW91/((6-311+G(d,p))), RHF/(6-311+G(d,p)), MP2/(6-311+G(d,p)), and MP3/(6-311+G(d,p)) levels of computation. The intermolecular interactions in ionic liquids include

Figure 3. (a) $(CH_3)_3SN(CN)_2$. (b) $(CH_3)_3SN(CN)_2$ from above.

Figure 4. (a) (CH₃)₃SN(CN)₂ dimer of structural isomer 1. (b) (CH₃)₃SN(CN)₂ dimer of structural isomer 1, from above.

Figure 5. (CH₃)₃SN(CN)₂ of structural isomer 2, B3LYP/(6-311+G(d,p)).

dispersion forces that are not accounted for by DFT (B3LYP and B3PW91) theory. Despite this fact, DFT theory is usually quite successful in predicting accurate molecular structures and vibrational frequencies. ^{19–23} Previous studies have shown

Figure 6. (a) (CH₃)₃SN(CN)₂ version 1, HOMO of B3LYP/(6-311+G(d,p)). (b) (CH₃)₃SN(CN)₂ version 1, LUMO of B3LYP/(6-311+G(d,p)). (c) (CH₃)₃SN(CN)₂ version 1, LUMO + LUMO of B3LYP/(6-311+G(d,p)).

Figure 7. (a) Tetrameric IL resulting from combining either isomer 1 or 2, (CH₃)₃SN(CN)₂; B3LYP/(6-311+G(d,p)). (b) Tetrameric IL resulting from combining either isomer 1 or 2, (CH₃)₃SN(CN)₂, from above; B3LYP/(6-311+G(d,p)).

that DFT vibrational frequencies are generally an improvement over RHF vibrational frequencies. 15,16,24

Results and Discussion

Gas Phase Structures. Virtually identical gas phase structures were obtained for (CH₃)₃SN(CN)₂ using DFT,

Figure 8. (a) Octameric IL, $(CH_3)_3SN(CN)_2$; B3LYP/(6-311+G(d,p)). (b) Octameric IL, $(CH_3)_3SN(CN)_2$, from above; B3LYP/(6-311+G(d,p)).

Figure 9. Thermal free energies of stepwise aggregate formation: bm1 = $(CH_3)_3SN(CN)_2$; bm2 = $[(CH_3)_3SN(CN)_2]_2$; bm4 = $[(CH_3)_3SN(CN)_2]_4$; bm8 = $[(CH_3)_3SN(CN)_2]_8$.

Figure 10. Experimental frequency (cm⁻¹) vs calculated frequency (cm⁻¹) for (CH₃)₃SN(CN)₂. B3LYP/(6-31+G(d)) (■) slope = 1.052; B3PW91/(6-311+G(d,p)) (△) slope = 1.029; B3LYP/(6-311 + G(d,p)) (●) slope = 1.033; theoretical correlation of 1.00 (▼) slope = 1.00

Figure 11. Experimental frequency (cm⁻¹) vs calculated frequency (cm⁻¹) for (CH₃)₃SN(CN)₂. RHF (■) slope = 1.095; MP2 (\bigcirc) slope = 1.061; MP3 (\triangle) slope = 1.040; theoretical correlation of 1.00 (\blacktriangledown) slope = 1.00. Basis set = 6-311 + G (d,p).

MP, and HF computational methods. Figure 3 shows the B3LYP/(6-311+G(d,p)) gas phase structure of $(CH_3)_3SN(CN)_2$ ionic liquid. The DFT structure of $(CH_3)_3SN(CN)_2$ in Figure 3 appears to be held together by a series of nonbonding interactions. These distances are considerably shorter than van der Waals distances (S---N distances less than 3.50 Å) including S---N distances of 3.09 Å and N---H distances of 2.28 Å. Bondi's van der Waals radii include 1.8-1.9 Å for S, 1.5 Å for N, 1.4-1.5 Å for C, and 1.1 Å for H.²⁵

The (CH₃)₃SN(CN)₂ ionic liquid has the potential to form two distinct isomeric dimers: versions 1 and 2 (Figures 4 and 5). Version 1 is lower in free energy than version 2 by 13 kcal/mol. This is detailed in a later section.

The highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbitals of the trimethylsulfonium dicyanamide dimer, [(CH₃)₃SN(CN)₂]₂, are shown in Figure 6a,b. Figure

Figure 12. Experimental Raman frequency (cm⁻¹) vs calculated Raman frequency (cm⁻¹) for ionic liquid (CH₃)₃SN(CN)₂ B3LYP/(6-311+G(d,p)) (O) slope = 1.041; ionic liquid dimer $[(CH_3)_3SN(CN)_2]_2$ B3LYP/(6-311+G(d,p)) (\blacktriangledown) slope = 1.029; theoretical correlation of 1.00 (Δ) slope = 1.00.

6c depicts the combination of the HOMO and LUMO orbitals and displays the resulting gas phase cyclic structure of the (CH₃)₃SN(CN)₂ ionic liquid. The further self-aggregation of this ionic liquid will be discussed in a later section.

This is quite unlike the previously reported DFT structures for the gas phase imidazolium-PF₆ imidazolium-BF₄ ionic liquids. In the imidazolium-PF₆ and imidazolium-BF₄ and other DFT gas phase structures, one generally observes a very short imidazolium ring C-H···F hydrogen bond that is maintained even when the ionic liquid binds to a metal surface. 7,15,16,26

Absolute Energies. The B3LYP/(6-311+G(d,p)) absolute energies of (CH₃)₃S⁺, N(CN)₂⁻, and the ionic liquid (CH₃)₃SN(CN)₂ are -517.645 250, -240.563 946, and -758.328 934 au. The free energy gas phase formation of [(CH₃)₃SN(CN)₂] from (CH₃)₃S⁺and N(CN)₂⁻ is -75.2 kcal/mol. The two dimers of (CH₃)₃SN(CN)₂ (versions 1 and 2) have B3LYP/(6-311+G(d,p)) absolute energies of -1516.693 586 (version 1) and -1516.673 047 au. The free energies of formation of the two dimers are -22.4 (version 1) and -9.5 kcal/mol (version

TABLE 1: B3LYP/(6-311+G(d,p)) Vibrational Assignments^a (cm⁻¹) of (CH₃)₃SN(CN)₂

$assignment^b$	ν	IR, Raman	Raman $\nu_{\rm exp}$	IR $\nu_{\rm exp}$	IR $I_{\rm re}$
Cat-An tors	54	IR, R (w) dp			
Cat—An bend	69	IR, R (w) dp			0.005
Cat—An tors	94	IR			
Cat—An tors	112	IR, R (w) dp			0.021
Cat-An bend	121	IR, R (w) dp			0.016
Cat-An tors	145	IR, R (w) dp	165 (0.05)		0.00
S-Me twist	193	IR, R (m) p	182 (0.60)		0.055
S-Me twist	210	IR			
S-Me twist	226	IR			
S-Me twist	254	IR, R (w) dp			
S-Me twist	268	IR, R (w) dp			
S-Me twist	280	IR, R (w) dp			
C-S bend	306	IR, R (w) dp	288 (0.22)		
N-C-N bend	540	IR, R (w) dp	422 (0.06)		0.014
N-C-N bend	557	IR, R (w) dp	450 (0.15)		
N-C-N bend	561	IR		524 (0.022)	0.02
sym C-S str	631	IR, R (m) p	657 (0.93)	655 (0.008)	0.00
sym C-S str, C-N bend	702	IR, R (m) p	720 (0.20)		0.00
asym C-S str	714	IR, R (m) dp	732 (0.33)		
sym C-N-C bend	720	IR, R (w) p			0.01
H-C-H bend	913	IR, R (w) dp	900 (0.09)	905 (0.011)	0.01
H-C-H bend	949	IR, R (w) dp		945 (0.007)	0.02
C-N-C sym str, H-C-H bend	950	IR, R (w) p			0.01
C-N-C sym str, H-C-H bend	958	IR, R (w) p			0.01
H-C-H bend	1061	IR, R (w) p	1051 (0.07)	1050 (0.037)	0.03
H-C-H bend, C-S sym str	1071	IR, R (w) p	1109 (0.05)		0.04
H-C-H bend, C-S asym str	1072	IR, R (w) dp			0.01
asym C-N-C str, H-C-H bend	1322	IR		1308 (0.060)	0.13
H-C-H bend	1340	IR			0.00
asym C-N-C str, H-C-H bend	1345	IR			
H-C-H bend	1379	IR, R (w) p			0.02
methyl wag	1443	IR, R (w) dp			
methyl wag	1463	IR, R (w) dp			0.03
methyl wag	1464	IR, R (m) p	1421 (0.16)		0.00
methyl wag	1472	IR, R (m) dp	1421 (0.16)		0.00
methyl wag	1478	IR, R (w) p		1426 (0.030)	0.02
methyl wag	1499	IR, R (w) dp			0.03
N-C-N asym str	2203	IR, R (w) p		2124 (1.00)	1
N-C-N sym str	2259	IR, R (vs) p	2193 (0.96)	2230 (0.480)	0.27
H-C-H sym str	3047	IR, R (vs) p	2928 (1.00)		0.02
H-C-H sym str	3049	IR, R (vs) p		2929 (0.013)	0.01
H-C-H sym str	3049	IR, R (w) p			0.00
H-C-H asym str	3148	IR, R (m) dp		3016 (0.051)	0.00
H-C-H asym str	3148	IR, R (s) p			0.00
H-C-H asym str	3154	IR, R (vs) dp	3017 (0.24)		0.00
H-C-H asym str	3155	IR, R (m) dp			0.00
H-C-H asym str	3156	IR, R (m) p			0.00
H-C-H asym str	3159	IR, R (m) dp			0.013

^a Note that experimental and calculated (IR) spectra are normalized to the most intense absorbance peak. Theoretical Raman spectra: vs = 0.5-1.0, s = 0.25-0.5, m = 0.05-0.25, w < 0.05. ^b Cat = cation; An = anion.

TABLE 2: B3PW91/(6-311+G(d,p)) Vibrational Assignments^a (cm⁻¹) of (CH₃)₃SN(CN)₂

$assignment^b$	ν	IR, Raman	Raman $\nu_{\rm exp}$	IR $\nu_{\rm exp}$	IR $I_{\rm re}$
Cat-An tors	54	IR, R (w) dp			
Cat—An tors	69	IR, R (w) dp			0.006
Cat—An tors	92	IR			
Cat—An tors	111	IR			0.026
Cat—An tors	123	IR			0.022
Cat-An bend	147	IR, R (w) dp	165 (0.05)		0.007
S-Me twist	191	IR, R (m) p	182 (0.60)		0.072
N-C-N bend	204	IR			
S-Me twist	223	IR			
C-S-C bend	253	IR, R (w) dp			
S-Me twist	259	IR, R (w) dp			
S-Me twist	273	IR, R (w) dp			
C-S-C bend	295	IR, R (w) dp	288 (0.22)		
N-C-N bend	541	IR, R (w) p	422 (0.06)		0.016
N-C-N bend	557	IR			
1-C-N bend	568	IR		524 (0.022)	0.029
sym C-S str	651	IR, R (m) p	450 (0.15)		0.002
C-N sym bend	711	IR, R (w) p	657 (0.93)	655 (0.008)	0.016
sym C-S str, C-N sym bend	727	IR, R (w) dp	720 (0.20)		
C-S asym str	736	IR, R (m)dp	732 (0.33)		0.00
H-C-H bend	912	IR, R (w) p			
H-C-H bend	947	IR, R (w) dp			
H-C-H bend	953	IR, R (w) p			0.00
H-C-H bend, C-N sym str	974	IR, R (w) p	900 (0.09)	905 (0.011)	0.03
H-C-H bend	1064	IR, R (w) dp		945 (0.007)	0.040
H-C-H bend	1070	IR, R (w) dp	1051 (0.07)	1050 (0.037)	0.04
H-C-H bend	1074	IR, R (w) p	1109 (0.05)		0.013
asym C-N-C str, methyl wag	1334	IR			0.09
methyl wag	1336	IR, R (w) p			0.00
C-N-C asym str, H-C-H bend	1352	IR		1308 (0.060)	0.063
H-C-H bend	1375	IR, R (w) dp			0.036
H-C-H bend	1430	IR, R (w) p			
H-C-H bend	1452	IR, R (w) p			0.033
H-C-H bend	1454	IR, R (m) dp	1421 (0.16)		0.002
H-C-H bend	1463	IR, R (m) dp		1426 (0.030)	0.01
H-C-H bend	1467	IR, R (w) p			0.003
H-C-H bend	1486	IR, R (w) p			0.033
N-C-N asym str	2236	IR, R (w) dp		2124 (1.00)	1
N-C-N sym str	2286	IR, R(vs) p	2193 (0.96)	2230 (0.480)	0.310
H-C-H sym str	3052	IR, R(vs) p			0.034
H-C-H sym str	3055	IR, R(vs) p	2928 (1.00)	2929 (0.013)	0.02
H-C-H sym str	3055	IR, R (w) p			0.00
H-C-H asym str	3162	IR, R (m) dp			0.01
H-C-H asym str	3163	IR, R (s) p			0.008
H-C-H asym str	3168	IR, R (m) dp	3017 (0.24)	3016 (0.051)	0.013
H-C-H asym str	3171	IR, R (vs) dp	3017 (0.24)		0.002
H-C-H asym str	3173	IR, R (vs) dp			0.001
H-C-H asym str	3173	IR, R (m) dp			0.002

^a Note that experimental and calculated (IR) spectra are normalized to the most intense absorbance peak. Theoretical Raman spectra: vs = 0.5-1.0, s = 0.25-0.5, m = 0.05-0.25, w < 0.05. ^b Cat = cation; An = anion.

2). The combination of either one of these two dimers to form an ionic liquid tetramer results in the same structure (Figure 7) whose absolute energy is $-3033.395\,503$ au. The octamer of $(CH_3)_3SN(CN)_2$ shown in Figure 8 has an absolute energy of $-6066.793\,295$ au. Figure 9 is a schematic outline of the various gas phase steps and thermal free energies that may occur from the initial formation of $(CH_3)_3SN(CN)_2$ to the final octameric structure, $[(CH_3)_3SN(CN)_2]_8$.

The steps outlined in Figure 9 indicate highly exergonic driving forces that lead to a series of $[(CH_3)_3SN(CN)_2]_n$ (n = 1, 2, 4, 8) cyclic structures. This initial reaction of the cationic and anionic salts of $(CH_3)_3SN(CN)_2$ is strong enough (-75.2 kcal/mol) to ensure its rapid and relatively complete formation. Any additional steps that potentially may occur are driven by exergonic forces leading to the formation of these unusual aggregates.

TABLE 3: B3LYP/(6-31+G(d)) Vibrational Assignments^a (cm⁻¹) of (CH₃)₃SN(CN)₂

assignment ^b	ν	IR, Raman	Raman $\nu_{\rm exp}$	IR $\nu_{\rm exp}$	IR $I_{\rm re}$
Cat—An tors	59	IR, R (w) dp			0.006
Cat—An bend	64	IR			
Cat—An tors	87	IR, R (w) p			0.00
Cat—An bend	204	IR, R (w) dp	165 (0.05)		0.02
Cat-An tors, S-Me bend	251	IR, R (w) p	182 (0.60)		0.002
Cat-An bend, C-S bend	255	IR, R (w) dp			0.002
Cat-An bend, C-S bend	278	IR, R (w) dp			0.002
C-S bend, Cat-An bend	304	IR, R (w) p	288 (0.22)		0.01
C-S bend	328	IR			
C-S bend	356	IR			
S-Me twist and bend	367	IR, R (w) dp			
S-Me twist and bend	391	IR			
S-Me twist and bend	407	IR, R (m)dp			0.04
N-C-N bend	574	IR, R (m)dp	422 (0.06)		0.009
N-C-N bend	602	IR, R (w) p	450 (0.15)		0.00
C-N bend	615	IR	, ,	524 (0.022)	
N-C-N bend	627	IR, R (w) p		. ,	0.004
N-C-N bend	640	IR			0.009
asym C-S str	656	IR, R (m) dp	657 (0.93)	655 (0.008)	0.002
asym C-N-C str	743	IR, R (m) dp	720 (0.20)	((((((((((((((((((((0.002
H-C-S bend	856	IR, R (w) dp	732 (0.33)		0.009
H-C-H bend	982	IR, R (w) p	(/		0.00
H-C-H bend, C-N-C sym str	1001	IR, R (w) p	900 (0.09)	905 (0.011)	
H-C-H bend, C-N-C sym str	1016	IR, R (w) dp	(,	,	0.00
H-C-H bend	1056	IR, R (w) dp		945 (0.007)	0.034
H-C-H bend, C-S bend	1098	IR, R (w) dp	1051 (0.07)	1050 (0.037)	0.008
H-C-H bend, C-S str	1103	IR, R (w) dp	(3.3.7)	((((((((((((((((((((0.003
asym C-N-C str	1108	IR, R (w) p	1109 (0.05)		0.002
H-C-H sym bend, C-S str	1394	IR, R (w) p	(1308 (0.060)	0.002
H-C-H sym bend, C-S str	1425	IR, R (w) dp			
H-C-H sym bend, C-S str	1456	IR, R (w) p			0.009
H-C-H bend	1466	IR, R (w) dp			0.003
H-C-H bend	1482	IR, R (m) dp			0.00
H-C-H bend	1499	IR, R (m) p	1421 (0.16)	1426 (0.030)	0.003
H-C-H bend	1503	IR,R (m) dp	(• • • •)	()	0.00
H-C-H bend	1513	IR, R (w) dp			0.013
H-C-H bend	1526	IR, R (w) p			0.009
N-C-N asym str	1935	IR, R (m) dp			0.254
N-C-N sym str	2008	IR, R (vs) p			0.092
H-C-H sym str	2454	IR, R (w) dp		2124 (1.00)	0.003
H-C-H sym str	2506	IR, R (vs) p	2193 (0.96)	2230 (0.480)	1
H-C-H sym str	3009	IR, R (vs) p	2175 (0.70)	2230 (0.100)	0.00
H-C-H asym str	3036	IR, R (vs) p	2928 (1.00)	2929 (0.013)	0.00
H-C-H asym str	3038	IR, R (vs) p IR, R (m) dp	2720 (1.00)	2727 (0.013)	0.000
H-C-H asym str	3104	IR, R (m) dp			0.002
H-C-H asym str	3105	IR, R (vs) p	3017 (0.24)	3016 (0.051)	0.002
H-C-H asym str	3105	IR, R (vs) p IR, R (m) p	3017 (0.27)	5010 (0.051)	0.002
H-C-H asym str	3109	IR, R (s) dp			

^a Note that experimental and calculated (IR) spectra are normalized to the most intense absorbance peak. Theoretical Raman spectra: vs = 0.5-1.0, s = 0.25-0.5, m = 0.05-0.25, w < 0.05. ^b Cat = cation; An = anion.

Raman Spectra and Correlation Diagrams. (CH₃)₃SN-(CN)2: B3LYP and B3PW91. Tables 1, 2, and 3 contain the Raman and IR theoretical and experimental vibrations for the (CH₃)₃SN(CN)₂ ionic liquid. The theoretical and experimental vibrational bands correlate well for the B3LYP and B3PW91 methods using the 6-311+G(d,p) basis set as shown in Figure 10. The slopes of the B3LYP/(6-311+G(d,p)) and B3PW91/(6-311+G(d,p)) results shown in Figure 10 correspond (inverse relationship) to a scale factor of 0.97 with a correlation coefficient (R^2) of 0.998. Use of the 6-31+G(d) basis set with B3LYP (Table 3) lowers the scale factor to 0.95 and the correlation coefficient (R^2) to 0.992. Similar results were reported for imidazolium-PF₆⁻ and imidazolium-BF₄⁻ ionic liquids. 15,16

As indicated in Tables 1 and 2, the strongest Raman band at 288 cm⁻¹ is assigned to the S-CH₃ twist. The Raman vibrations in the 657-732 cm⁻¹ region can be associated with C-S bond bend and stretches (B3LYP, Table 1) or a combination of C-S and C-N bend and stretch vibrations (B3PW91, Table 2). The Raman band at 1421 cm⁻¹ is assigned to a methyl wag vibration. The strong Raman band

TABLE 4: MP2/(6-311+G(d,p)) Vibrational Assignments^a (cm⁻¹) of (CH₃)₃SN(CN)₂

assignment ^b	ν	IR, Raman	Raman $\nu_{\rm exp}$	IR $\nu_{\rm exp}$	IR $I_{\rm re}$
Cat—An tors	59	IR, R (w) dp			0.006
Cat—An tors	73	IR, R (w) dp			
Cat—An tors	101	IR			
Cat—An bend	120	IR, R (m) dp			0.022
Cat—An bend	130	IR, R (m) dp			0.026
Cat—An bend	148	IR, R (w) dp	165 (0.05)		0.006
S-Me twist	168	IR, R (m) p	182 (0.60)		0.087
N-C-N sym bend	199	IR			
S-Me twist	226	IR			
S-Me twist	242	IR			
S-Me twist	264	IR, R (w) dp			
S-Me twist	286	IR, R (w) dp	288 (0.22)		
C-S-C bend	307	IR			
N-C-N asym bend	521	IR			0.018
N-C-N asym bend	525	IR, R (w) p	422 (0.06)		0.023
N-C-N sym bend	529	IR, R (w) p	450 (0.15)	524 (0.022)	
C-S sym str	693	IR, R (s) p	657 (0.93)		0.002
C-N-C sym bend	697	IR, R (w) p		655 (0.008)	0.009
C-S str	770	IR, R (m) dp	717 (0.20)		0.002
C-S asym str	778	IR, R (m) dp	732 (0.33)		
H-C-H bend	926	IR			
C-N-C sym str	963	IR, R (m) p	900 (0.09)	905 (0.011)	0.033
H-C-H bend	968	IR, R (w) dp			
H-C-H bend	976	IR		945 (0.007)	0.002
H-C-H bend	1081	IR, R (w) p	1051 (0.07)	1050 (0.037)	0.056
H-C-H bend	1088	IR, R (w) dp			0.012
H-C-H bend	1088	IR, R (w) p			0.037
C-N-C asym str	1276	IR, R (w) p	1109 (0.05)		0.172
methyl wag	1367	IR			0.007
methyl wag	1372	IR		1308 (0.060)	0.006
methyl wag	1410	IR, R (w) p			0.04
H-C-H bend	1454	IR, R (w) dp			
H-C-H bend	1477	IR, R (m) dp			
H-C-H bend	1480	IR, R (w) dp			0.048
H-C-H bend	1482	IR, R (m) dp	1421 (0.16)		0.004
H-C-H bend	1487	IR, R (w) p	,	1426 (0.030)	0.024
H-C-H bend	1504	IR, R (w) dp		, ,	0.04
N-C-N asym str	2148	IR, R (m) dp		2124 (1.00)	1
N-C-N sym str	2159	IR, R (vs) p	2193 (0.96)	2230 (0.480)	0.255
H-C-H sym str	3087	IR, R (vs) p	(, , , ,		0.052
H-C-H sym str	3088	IR, R (vs) p			0.005
H-C-H sym str	3089	IR, R (w) dp			0.002
H-C-H asym str	3207	IR, R (vs) p			0.01
H-C-H asym str	3207	IR, R (s) dp			0.015
H-C-H asym str	3211	IR, R (vs) dp	2928 (1.00)	2929 (0.013)	0.003
H-C-H asym str	3212	IR, R (vs) dp	- ()	- (- ()	0.002
H-C-H asym str	3212	IR, R (m) dp			<u>-</u>
H-C-H asym str	3212	IR, R (s) dp	3017 (0.24)	3016 (0.051)	0.021

^a Note that experimental and calculated (IR) spectra are normalized to the most intense absorbance peak. Theoretical Raman spectra: vs = 0.5-1.0, s = 0.25-0.5, m = 0.05-0.25, w < 0.05. ^b Cat = cation; An = anion.

at 2193 cm⁻¹ is assigned to an N-C-N symmetric stretch, and the vibrations at 2928 and 3017 cm⁻¹ are associated with H-C-H symmetric stretch vibrations.

 $(CH_3)_3SN(CN)_2$: MP2, MP3, and RHF. Tables 4, 5, and 6 contains Møller-Plesset²⁷ (MP2 and MP3) and RHF results using the 6-311+G(d,p) basis set under tight fit requirements. The results and assignments are virtually identical to those obtained using the B3LYP and B3PW91 methods (Tables 1 and 2). These data are plotted in Figure 11. In Figure 11, the results improve from RHF to MP2 to MP3 with the slopes decreasing from 1.095 to 1.061 to 1.040. The slopes are

representative of scale factors of 0.913 (HF), 0.943 (MP2), and 0.962 (MP3).

(CH₃)₃SN(CN)₂: Monomer and Dimer. Figure 12 contains a comparison between calculated B3LYP and experimental Raman vibrations for (CH₃)₃SN(CN)₂ and its version 1 (lowest energy form) dimer, [(CH₃)₃SN(CN)₂]₂, using the 6-311+G(d,p) basis set. As one increases the number of ionic liquids in the aggregate forms (dimer, tetramer, octamer), the number of calculated Raman vibrations increases accordingly; however, the differences in their energies serve to shift the Raman frequencies only slightly. In Figure 12 the

TABLE 5: MP3/(6-311+G(d,p)) Vibrational Assignments^a (cm⁻¹) of (CH₃)₃SN(CN)₂

$assignment^b$	ν	IR, Raman	Raman $\nu_{\rm exp}$	IR $\nu_{\rm exp}$	IR $I_{\rm re}$
Cat—An tors	57	IR			
Cat-An tors	57	IR			
Cat-An tors	97	IR			0.02
Cat-An tors	117	IR			0.009
Cat-An bend	129	IR, R (w) dp	165 (0.05)		0.017
Cat-An tors	148	IR			0.008
Cat-An bend	168	IR, R (m) p	182 (0.60)		0.04
C-S bend	203	IR, R (w) dp			
Me twist	220	IR, R (w) dp			
Me twist	240	IR, R (w) p			
S-Me twist	265	IR			0.00
S-Me twist	286	IR			
S-Me bend	307	IR, R (w) p	288 (0.22)		0.04
N-C-N bend	542	IR, R (w) dp	422 (0.06)		0.017
C-N bend	553	IR, R (m) p	450 (0.15)		0.00
C-N bend	567	IR, R (w) dp	,	524 (0.022)	
N-C-N asym str and bend	691	IR, R (w) p	657 (0.93)	655 (0.008)	0.043
sym C-S str	742	IR, R (m) p	717 (0.20)	, ,	0.004
asym C-S str	768	IR, R (m) dp	732 (0.33)		
asym C-N-C bend and str	779	IR, R (w) p	(3.3.2)		0.00
sym C-N-C bend and str	936	IR, R (w) p	900 (0.09)	905 (0.011)	0.04
Me twist	976	IR		,	
H-C-H bend	982	IR, R (w) dp			
C-N bend	989	IR		945 (0.007)	0.00
H-C-H bend	1089	IR, R (w) p	1051 (0.07)	1050 (0.037)	0.020
H-C-H bend, C-S str	1098	IR, R (w) p		()	0.024
H-C-H bend, C-S str	1098	IR, R (w) dp	1109 (0.05)		0.00
asym C-N-C str	1307	IR	()	1308 (0.060)	0.174
H-C-H sym bend	1385	IR, R (w) dp			0.00
H-C-H sym bend	1389	IR, R (w) dp			0.00.
H-C-H sym bend, C-S str	1427	IR, R (w) p			0.018
H-C-H bend	1465	IR, R (w) dp			0.01
H-C-H sym bend	1486	IR, R (m) dp	1421 (0.16)		
H-C-H bend	1489	IR, R (w) dp	1.21 (0.10)	1426 (0.030)	0.03
H-C-H bend	1490	IR, R (m) dp		1120 (0.050)	0.002
H-C-H bend	1495	IR, R (w) dp			0.019
H-C-H bend	1512	IR, R (w) dp			0.025
N-C-N asym str	2287	IR, R (m) dp		2124 (1.00)	1
N-C-N sym str	2348	IR, R (vs) p	2193 (0.96)	2230 (0.480)	0.284
H-C-H sym str	3101	IR, R (w) dp	2173 (0.70)	2230 (0.400)	0.20
H-C-H sym str	3101	IR, R (w) up IR, R (vs) p	2928 (1.00)	2929 (0.013)	0.008
H-C-H sym str	3103	IR, R (vs) p	2720 (1.00)	2727 (0.013)	0.038
H-C-H asym str	3210	IR, R (vs) p IR, R (m) dp			0.002
H-C-H asym str	3210	IR, R (vs) dp			0.002
H-C-H asym str	3212	IR, R (vs) dp IR, R (m) dp			0.00
H-C-H asym str	3212	IR, R (s) dp			0.00
H-C-H sym and asym str	3212	IR, R (vs) dp	3017 (0.24)	3016 (0.051)	0.002
H-C-H asym str	3217	IR, R (vs) dp IR, R (s) dp	3017 (0.24)	3010 (0.031)	0.002

^a Note that experimental and calculated (IR) spectra are normalized to the most intense absorbance peak. Theoretical Raman spectra: vs = 0.5-1.0, s = 0.25-0.5, m = 0.05-0.25, w < 0.05. b Cat = cation; An = anion.

theoretical slopes of the monomer and dimer forms of $(CH_3)_3SN(CN)_2$ are virtually identical (slope = 1.03, scale factor = 0.97, correlation coefficient = 0.998). It is apparent that the potential aggregation process for the (CH₃)₃SN(CN)₂ ionic liquid has little effect on the calculated Raman spectrum.

Conclusions

The possible formation of (CH₃)₃SN(CN)₂ ionic liquid aggregates is supported by vibrational spectra (Raman and IR) and theoretical calculations using various ab initio and DFT methods. Theoretical results suggest that (CH₃)₃SN(CN)₂ forms a cyclic dimer that may further undergo a "stacking" process, resulting in the formation of tetramers and octamers. It is also conceivable that more complex structures are formed as the process of aggregation occurs. The unusual cyclic structure of $[(CH_3)_3SN(CN)_2]_2$ may be capable of forming ionic liquid nanotubes. In view of the vast number of ionic liquids,28 it is only a matter of time before other potential ionic liquid nanotubes are pointed out by various investigators.

TABLE 6: HF/(6-311+G(d,p)) Vibrational Assignments^a (cm⁻¹) of (CH₃)₃SN(CN)₂

assignment ^b	ν	IR, Raman	Raman $\nu_{\rm exp}$	IR $ u_{\rm exp}$	IR $I_{\rm re}$
Cat—An tors	20	IR			
Cat-An bend	65	IR, R (w) dp			0.004
Cat-An bend	88	IR			
Cat-An tors	103	IR			0.022
Cat-An bend	121	IR			0.014
Cat-An tors	143	IR, R (w) dp	165 (0.05)		0.013
S-Me twist	207	IR, R (m) p	182 (0.60)		0.038
N-C-N sym bend	208	IR			
S-Me twist	233	IR			
S-Me twist	261	IR			
C-S-C sym bend	275	IR, R (w) dp			
C-S-C asym bend	291	IR, R (w) dp	288 (0.22)		
C-S-C sym bend	315	IR			
N-C-N asym bend	605	IR, R (w) p	422 (0.06)		0.018
N-C-N asym bend	627	IR, R (w) dp	450 (0.15)		
N-C-N sym bend	660	IR		524 (0.122)	0.045
sym C-S str	680	IR, R (m) p			0.003
asym C-S str	775	IR, R (m) p	657 (0.931)	655 (0.021)	0.003
asym C-S str	793	IR, R (m) dp	717 (0.20)		0.001
sym C-N-C bend	814	IR, R (w) dp	732 (0.33)		0.01
Me twist	1001	IR, R (w) p			
C-N-C sym str	1034	IR, R (w) p	900 (0.09)	905 (0.16)	0.041
H-C-H bend	1039	IR, R (w) dp		945 (0.10)	
H-C-H bend	1046	IR			
H-C-H bend	1164	IR, R (w) dp	1051 (0.07)	1050 (0.48)	0.024
H-C-H bend	1171	IR, R (w) p	1109 (0.05)		0.022
H-C-H bend	1174	IR, R (w) dp			0.01
asym C-N-C str	1387	IR		1308 (0.55)	0.18
H-C-H sym bend	1477	IR, R (w) p			0.005
H-C-H sym bend	1479	IR, R (w) dp			
H-C-H sym bend	1518	IR, R (w) p			0.013
H-C-H asym bend	1565	IR, R (w) dp	1421 (0.16)		
H-C-H sym bend	1583	IR		1426 (0.42)	0.028
H-C-H asym bend	1584	IR, R (m) dp		` ,	
H-C-H asym bend	1587	IR, R (m) dp			
H-C-H asym bend	1594	IR			0.019
H-C-H sym bend	1612	IR, R (w) p			0.03
N-C-N asym str	2418	IR, R (m) dp		2124 (1.00)	1
N-C-N sym str	2489	IR, R (vs) p	2193 (0.96)	2230 (0.480)	0.28
H-C-H asym str	3197	IR, R (w) dp	- (- (/)	(/	
H-C-H sym str	3199	IR, R (vs) p	2928 (1.00)	2924 (0.23)	0.014
H-C-H sym str	3203	IR, R (vs) p	2928 (1.00)	/	0.022
H-C-H asym str	3301	IR, R (m) dp	- ()		
H-C-H asym str	3302	IR, R (vs) dp			0.005
H-C-H asym str	3307	IR, R (m) dp			0.007
H-C-H asym str	3307	IR, R (s) dp			0.007
H-C-H asym str	3314	IR, R (s) dp			0.003
n=C=n asym sn					

 $[^]a$ Note that experimental and calculated (IR) spectra are normalized to the most intense absorbance peak. Theoretical Raman spectra: vs = 0.5-1.0, s = 0.25-0.5, m = 0.05-0.25, w < 0.05. b Cat = cation; An = anion.

Acknowledgment. The authors wish to acknowledge financial support from the Air Force Office of Scientific Research via Contract No. FA9550-05-C-0182 (W.R.C.). This work was initiated during a Mercator Visiting Professorship (W.R.C.) at RWTH, Aachen, Germany

References and Notes

- (1) Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3772–3789.
 - (2) Welton, T. Chem. Rev. 1999, 99, 2071-2083.
 - (3) Wilkes, J. S. Green Chem. 2002, 4, 73-80.
- (4) *Ionic Liquids in Synthesis*, 2nd ed.; Wasserscheid, P., Welton, T., Eds.; John Wiley: New York, 2008; Vols. 1 & 2.

- (5) Earle, M. J.; McCormac, P. B.; Seddon, K. R. Green Chem. 1999, 1, 23–25.
- (6) Schulz, P. S.; Müller, N.; Bösmann, A.; Wasserscheid, P. Angew. Chem., Int. Ed. 2007, 46, 1293–1295.
- (7) Nooruddin, N. S.; Wahlbeck, P. G.; Carper, W. R. J. Mol. Struct. (THEOCHEM) 2007, 822, 1–7.
- (8) Gerhard, D.; Alpasian, S. C.; Gores, H. J.; Uerdingen, M.; Wasserscheid, P. Chem. Commun. 2005, 5080–5082.
- (9) Dorbritz, S.; Ruth, W.; Kragl, U. Adv. Synth. Catal. 2005, 347, 1273–1279.
- (10) Bini, R.; Bortolini, O.; Chiappe, C.; Pieraccini, D.; Siciliano, T. J. Phys. Chem. B 2007, 111, 598–604.
- (11) Modaressi, A.; Sifaoui, H.; Mielcarz, M.; Domanska, U.; Rogalski, M. Colloids Surf., A: Physicochem. Eng. Aspects 2007, 302, 181–185.

- (12) Strasser, D.; Goulay, F.; Kelkar, M. S.; Maginn, E. J.; Leone, S. R. J. Phys. Chem. A **2007**, 111, 3191–3195.
 - (13) Berg, R. W. Monatsh. Chem. 2007, 135, 1045-1075.
- (14) Iwata, K.; Okajima, H.; Saha, S.; Hamaguchi, H. Acc. Chem. Res. **2007**, 40, 1174–1181.
- (15) Talaty, E. A.; Raja, S.; Storhaug, V. J.; Dolle, S.; Carper, W. R. J. Phys. Chem. B **2004**, 108, 13177–13184.
- (16) Heimer, N. E.; Del Sesto, R. E.; Meng, Z.; Wilkes, J. S.; Carper, W. R. *J. Mol. Liq.* **2006**, *124*, 84–95.
- (17) Paulsson, H.; Berggrund, M.; Svantesson, E.; Hagfeldt, A.; Kloo, L. Sol. Energy Mater. Sol. Cells 2004, 82, 345–360.
- (18) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
- Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03*, revision D.02; Gaussian, Inc.: Wallingford, CT, 2004.
 - (19) Nagy, J.; Weaver, D. F., Jr. Mol. Phys. 1995, 85, 1179-1182.
 - (20) Meijer, E. J.; Sprik, M. J. Chem. Phys. 1996, 105, 8684-8689.
- (21) Andersson, Y.; Langreth, D. C.; Lundqvist, B. I. *Phys. Rev. Lett.* **1996**, *76*, 102–105.
- (22) Kohn, W.; Meir, Y.; Makarov, D. E. Phys. Rev. Lett. 1998, 80, 4153-4156.
- (23) Rowley, R. L.; Pakkanen, T. J. Chem. Phys. 1999, 100, 3368-3377.
- (24) Scott, A. P.; Radom, L. J. Phys. Chem. **1996**, 100, 16502–16513.
- (25) Bondi, A. J. Phys. Chem. 1964, 68, 441-451.
- (26) Meng, Z.; Dölle, A.; Carper, W. R. J. Mol. Struct. (THEOCHEM) **2002**, 585, 119–128.
 - (27) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618-622.
- (28) Seddon, K. R. Preface. *Ionic Liquids in Synthesis*, 2nd ed.; Wasserscheid, P., Welton, T., Eds.; John Wiley: New York, 2008; Vols. *I* & 2.

JP809215Z