Intégrales dépendant d'un paramètre

Antoine MOTEAU antoine.moteau@wanadoo.fr

Table des matières

1	Fonctions intégrables sur un intervalle quelconque	2
	1.1 Définition	2
	1.2 Propriétés	3
	1.3 Changement de variables	3
2	Intégrales dont l'intégrande dépends d'un paramètre	4
	2.1 Continuité par rapport au paramètre	4
	2.2 Dérivation par rapport au paramètre	
3	Paramètre dans l'intégrande et dans les bornes de l'intégrale	10
	3.1 Décomposition du problème	10
	3.2 Cas où l'on peut transformer simplement	
4	Exemple de calcul d'une intégrale dépendant d'un paramètre	10

4 2 ▶

Intégrales dépendant d'un paramètre.

1 Fonctions intégrables sur un intervalle quelconque

1.1 Définition

Définition 1.1.1.

Une fonction f, continue par morceaux sur un intervalle I, qui <u>n'est pas forcément un segment</u>, est intégrable sur I si elle vérifie l'une des deux conditions équivalentes suivantes :

- f admet sur I une intégrale absolument convergente;
- il existe un réel M>0 tel que pour tout segment J inclus dans I, on ait : $\int_{I} |f(t)| \ dt \leqslant M$.

Remarque. Une fonction continue par morceaux sur un segment I est intégrable sur I.

Si I est un intervalle quelconque, pour f intégrable sur I, on appelle intégrale de f sur I et on note $\int_{\mathbb{R}} f$

- si I est un segment (I = [a, b]), l'intégrale définie de f sur I, avec $\int_I f = \int_{[a, b]} f = \int_{[a, b]} f$
- ullet si I n'est pas un segment, l'intégrale impropre de f sur I.

Exemples 1.1.0.1.

- 1. (a) Fonction <u>non intégrable</u> sur] $0, +\infty$ [: $f: x \longmapsto \frac{\sin x}{x}$ n'est pas intégrable sur] $0, +\infty$ [. L'intégrale généralisée $\int_0^{+\infty} \frac{\sin x}{x} dx$ est
 - (semi-)convergente (prolongement par continuité en 0 et IPP entre 1 et X),
 - non absolument convergente (admis pour l'instant).
 - (b) Fonction intégrable sur] $0, +\infty$ [: $f: x \longmapsto \frac{1}{\sqrt{x}(1+x^2)}$ est intégrable sur] $0, +\infty$ [: l'intégrale, généralisée en 0 et en $+\infty$, $\int_0^{+\infty} \frac{1}{\sqrt{x}(1+x^2)} dx$ est absolument convergente.

$$\int_{]0,+\infty[} f = \int_0^{+\infty} \frac{1}{\sqrt{x} (1+x^2)} \, dx = \dots = \frac{\pi \sqrt{2}}{2}$$

2. (a) Fonction <u>non intégrable</u> sur] 0,1]: $f: x \longmapsto \frac{1}{x} \sin\left(\frac{1}{x}\right) \text{ n'est pas intégrable sur] 0,1].}$

L'intégrale, généralisée en 0, $\int_0^1 \frac{1}{x} \sin\left(\frac{1}{x}\right) dx$ est

- (semi-)convergente (IPP entre X et 0),
- non absolument convergente. (admis pour l'instant).
- (b) Fonction intégrable sur] 0, 1] : $f: x \longmapsto \ln(x)$ est intégrable sur] 0, 1] : $\int_0^1 \ln(x) \, dx \text{ est absolument convergente (et } \int_{]0,1]} f = \int_0^1 \ln(x) = \ldots = -1).$

1.2 Propriétés

Théorème 1.2.1. (linéarité)

Soient f et g des fonctions intégrables sur l'intervalle I (quelconque).

Pour λ et μ réels ou complexes, $\lambda f + \mu g$ est intégrable sur I et $\int_I \lambda f + \mu g = \lambda \int_I f + \mu \int_I g$.

Preuve. simple extension du résultat vu pour les intégrales définies ou pour les intégrales généralisées.

Théorème 1.2.2. (Relation de Chasles)

Soit f une fonction intégrable sur l'intervalle I et sur l'intervalle J (quelconques).

 $Si\ I \cup J$ est intervalle et $si\ I \cap J$ est vide ou réduit à un point, f est intégrable $sur\ I \bigcup J$ et

$$\int_{I \cup J} f = \int_{I} f + \int_{J} f.$$

<u>Preuve</u>. simple extension du résultat vu pour les intégrales définies ou pour les intégrales généralisées.

Théorème 1.2.3. (Inégalités)

Pour des fonctions f et g intégrables sur l'intervalle I (quelconque),

$$si \quad f \leqslant g \quad alors \quad \int_I f \leqslant \int_I g \quad , \qquad et, \ en \ particulier, \quad \left| \int_I f \right| \leqslant \int_I |f| \ .$$

Preuve. simple extension de résultats vus pour les intégrales définies ou pour les intégrales généralisées.

1.3 Changement de variables

Théorème 1.3.1.

Etant données une fonction f intégrable sur l'intervalle I (quelconque) et une bijection φ d'un intervalle J sur I, de classe \mathcal{C}^1 sur I,

$$\int_I f = \int_J (f \circ \varphi) \times |\varphi'| \qquad \left(= \int_{x \in J} f \big(\varphi(x) \big) \times |\varphi'(x)| \ dx \right) \qquad (\varphi \ est \ monotone) \ .$$

Preuve. Admis (extension du changement de variable dans un intégrale définie).

Exemple 1.3.0.1. Calcul de $\int_0^{+\infty} \frac{\sqrt{x}}{1+x^2} dx$. On vérifie que $f: x \longmapsto \frac{\sqrt{x}}{1+x^2}$ est intégrable sur $[0, +\infty[$: f est définie continue positive sur $[0, +\infty[$ et, pour $x>0, 0\leqslant f(x)\leqslant \frac{1}{x^{3/2}}$, avec $\int_{17}^{+\infty} \frac{1}{x^{3/2}} dx$ convergente. On pose $u=\sqrt{x}$ et on introduit la fonction $\varphi: u \longmapsto x=u^2$.

- φ est une bijection croissante de classe \mathcal{C}^1 de $J = [0, +\infty[$ sur $I = [0, +\infty[$
- $\int_{x=0}^{+\infty} \frac{\sqrt{x}}{1+x^2} dx = \int_{u=0}^{+\infty} \frac{2u^2}{1+u^4} du = \int_{u=0}^{+\infty} \left(-\frac{1}{2} \frac{u\sqrt{2}}{u^2+u\sqrt{2}+1} + \frac{1}{2} \frac{u\sqrt{2}}{u^2-u\sqrt{2}+1} \right) du = \cdots$ (calcul usuel, entre 0 et X, puis passage à la limite quand X tends vers $+\infty$).

Exemple 1.3.0.2. Calcul de $\int_0^{\pi/2} \frac{\sin x}{\sqrt{\cos x}} dx$. On vérifie que $f: x \longmapsto \frac{\sin x}{\sqrt{\cos x}}$ est intégrable sur $\left[0, \frac{\pi}{2}\right[: f \text{ est définie, continue et positive sur } \left[0, +\frac{\pi}{2}\right[\text{ et } f(x) \underset{\pi/2}{\sim} \frac{1}{\sqrt{\frac{\pi}{2}-x}}.$

On pose $u = \cos x$, en faisant le changement de variable $\varphi : u \longmapsto x = \arccos x$.

 φ est \mathcal{C}^1 , bijective décroissante de] 0, 1] sur $\left[0, \frac{\pi}{2}\right[$, d'où :

$$\int_0^{\pi/2} \frac{\sin x}{\sqrt{\cos x}} \, dx = \int_{u=1}^0 \frac{\sqrt{1-u^2}}{\sqrt{u}} \, \frac{-1}{\sqrt{1-u^2}} \, du = \int_{u=0}^1 \frac{\sqrt{1-u^2}}{\sqrt{u}} \, \frac{1}{\sqrt{1-u^2}} \, du = \int_{u=0}^1 \frac{du}{\sqrt{u}} \, du = \int_{u=0}^1 \frac{du}{\sqrt{u}}$$

2 Intégrales dont l'intégrande dépends d'un paramètre

2.1 Continuité par rapport au paramètre

Théorème 2.1.1.

Soient I et J des intervalles de \mathbb{R} .

 $Pour \ x \in I, \ on \ pose \ g(x) = \int_J f(x,t) \ dt \qquad \left\{ \begin{array}{l} x \in I \ \ \'etant \ le \ param\`etre \\ t \in J \ \ \'etant \ la \ variable \ d'int\'egration. \end{array} \right.$

où $f:(x,t)\longmapsto f(x,t)$ est une fonction à valeurs réelles ou complexes définie sur $I\times J$.

Si

- 1. f est continue sur $I \times J$.
- 2. il existe une fonction positive φ , continue par morceaux et intégrable sur J, telle que

$$\forall (x,t) \in I \times J, \ |f(x,t)| \leqslant \varphi(t)$$
 (hypothèse de domination uniforme)

alors g(x) est défini pour tout $x \in I$ et la fonction $g: x \longmapsto g(x)$ est continue sur I.

<u>Preuve</u>. L'existence de g(x), pour $x \in I$, provient des théorèmes de majoration. Continuité : admis.

Remarques.

1. Cas où I et J sont des segments :

L'hypothèse de majoration uniforme est facilement vérifiée dans le cas où

$$\begin{cases} I \text{ et } J \text{ sont des } \underline{\text{segments}}, \\ \text{et } f \text{ est } \underline{\text{continue}} \text{ (globalement) sur } I \times J, \end{cases}$$

puisque la fonction f, continue sur le fermé borné $I \times J$, est bornée sur $I \times J$.

Il suffit alors de prendre, pour obtenir une majoration uniforme sur $I \times J$, la fonction φ constante sur J, égale à $\max_{(x,t) \in I \times J} |f(x,t)|$), fonction qui est naturellement intégrable sur le segment J.

2. Restriction (temporaire) de l'intervalle du paramètre :

Si l'hypothèse de domination n'est pas vérifiée sur $I \times J$, on pourra <u>restreindre</u> l'ensemble décrit par le paramètre x, en limitant x à un intervalle K (en général un segment) <u>strictement inclus</u> dans I, de façon à réaliser une majoration uniforme pour $(x,t) \in K \times J$ (voir dans les exemples ci-dessous).

Attention, l'intervalle J d'intégration reste inchangé.

Exemple 2.1.0.3. La fonction $g: x \longmapsto \int_0^{+\infty} \frac{\sin(t\,x)}{1+t^2} \,dt$, est définie et continue sur \mathbb{R} :

- 1. L'intégrande est continu sur $I \times J = \mathbb{R} \times [0, +\infty[$.
- 2. L'hypothèse de domination absolue et uniforme est vérifiée sur $I \times J$:

$$\forall (x,t) \in I \times J, \left| \frac{\sin(t\,x)}{1+t^2} \right| \leqslant \frac{1}{1+t^2} = \varphi(t)$$

avec φ indépendante de x, continue par morceaux et intégrable sur $J = [0, +\infty[$.

3. Toutes les hypothèses du théorème étant vérifiées sur $I \times J$, cela permet de conclure.

Exemple 2.1.0.4. La fonction $g: x \longmapsto \int_0^1 \frac{\ln(1+xt)}{1+t^2} dt$, est définie et continue sur $[0,+\infty[$:

- 1. L'intégrande, $f:(x,t)\longmapsto \frac{\ln(1+x\,t)}{1+t^2}$ est une fonction continue sur $I\times J=[0,+\infty\,[\times[\,0,1\,]$.
- 2. Recherche d'une domination absolue et uniforme, par une fonction intégrable indépendante de x:

Pour
$$(x,t)$$
 de $I \times J$, $|f(x,t)| \le \frac{x\,t}{1+t^2} \le \frac{x}{2}$ $\begin{cases} \text{majoration intégrable sur } J, \text{ à } x \text{ fixé dans } I, \\ \text{mais } \underline{\text{non indépendante de } x} : \text{échec!} \end{cases}$

Remarques.

- Pour $x \in I$, fixé, on a un majorant intégrable sur J, ce qui prouve au moins l'existence de g(x) pour $x \in I$, mais pas la continuité de g sur I.
- On a obtenu la meilleure majoration, puisque $\sup_{t \in [0,1]} \frac{t}{1+t^2} = \frac{1}{2}$.
- 3. Restriction : domination absolue et uniforme sur un intervalle inclus strictement dans I: Pour tout A > 0, considérons le segment K = [0, A].

Pour
$$(x,t)$$
 de $K \times J$, $|f(x,t)| \le \frac{xt}{1+t^2} \le x \le A = \varphi(t)$ majoration indépendante de $x \in K$.

La fonction majorante φ , constante, est continue par morceaux, intégrable sur $J=[\,0,1\,]$.

Toutes les hypothèses du théorème étant vérifiées sur $K \times J$, on peut alors conclure :

$$g$$
 est définie, continue sur $K = [0, A]$ (conclusion partielle, restreinte).

4. Conclusion définitive (levée de la restriction) :

g étant continue sur tout segment
$$[0, A]$$
 avec $A > 0$, g est continue sur $[0, +\infty[$.

Exemple 2.1.0.5. La fonction $g: x \longmapsto \int_0^{+\infty} \frac{\ln(1+x\,t)}{1+t^2} \,dt$, est définie et continue sur $[0,+\infty[$:

- 1. L'intégrande, $f:(x,t)\longmapsto \frac{\ln(1+x\,t)}{1+t^2}$ est continu sur $I\times J=[\,0,+\infty\,[\times[\,0,+\infty\,[$
- 2. Recherche d'une domination absolue et uniforme, par une fonction intégrable indépendant de x:

on garde $1+t^2$ au dénominateur, pour ne pas introduire de problème en $t=0\,!$

- Pour (x,t) de $I \times J$, $|f(x,t)| \leqslant \frac{x\,t}{1+t^2}$ $\bigg\{$ majoration non intégrable sur J : échec!
- Pour (x,t) de $I \times J$, $|f(x,t)| \le \frac{\sqrt{x}\sqrt{t}}{1+t^2}$ $\begin{cases} \text{majoration intégrable sur } J, \text{ à } x \text{ fixé dans } I, \\ \text{mais } \underline{\text{non indépendante de } x} : \text{échec!} \end{cases}$

Remarque. Cette dernière majoration prouve seulement que g est définie sur I.

3. Restriction : domination absolue et uniforme sur un intervalle inclus strictement dans I: Pour tout A > 0, considérons le segment K = [0, A].

Pour
$$(x,t)$$
 de $K \times J$, $|f(x,t)| \le \frac{\sqrt{x}\sqrt{t}}{1+t^2} \le \sqrt{A} \frac{\sqrt{t}}{1+t^2} = \varphi(t)$ majoration indépendante de x .

La fonction majorante φ , <u>indépendante</u> de x, est continue par morceaux sur J, intégrable sur J. Toutes les hypothèses du théorème sont vérifiées sur $K \times J$, ce qui permet d'affirmer que

$$g$$
 est définie, continue sur $K = [0, A]$ (conclusion partielle, restreinte).

4. Conclusion définitive (levée de la restriction) :

$$g$$
 étant continue sur tout segment $[0,A]$ avec $A>0,\,g$ est continue sur $[0,+\infty\,[$.

Exemple 2.1.0.6. La fonction $g: x \longmapsto \int_0^{+\infty} \frac{\sin^2(t\,x)}{t^2} \,dt$, est définie et continue sur \mathbb{R} :

Ici, il est prévisible que l'on n'aura pas une majoration uniforme simple, même en restreignant le domaine du paramètre, par une fonction intégrable sur $J =]0, +\infty[$ et on étudie (séparément) les deux fonctions :

$$g_1: x \longmapsto \int_0^1 \frac{\sin^2(t\,x)}{t^2} \, dt$$
 et $g_2: x \longmapsto \int_1^{+\infty} \frac{\sin^2(t\,x)}{t^2} \, dt$

- 1. Pour g_1 :
 - L'intégrande est continu sur $\mathbb{R} \times [0,1]$,
 - $\bullet \ \forall \, x \in \mathbb{R}, \, \forall \, t \in] \, 0,1 \,], \, \left| \frac{\sin^2(t \, x)}{t^2} \right| \leqslant \frac{x^2 \, t^2}{t^2} = x^2 \left\{ \begin{array}{l} \text{majoration intégrable sur }] \, 0,1 \,], \, \grave{\mathbf{a}} \, x \, \text{fix\'e dans } \mathbb{R}, \\ \text{mais } \underline{\text{non ind\'ependante de } \underline{x}} : \text{\'echec } ! \end{array} \right.$
 - Restriction : Soit A > 0. On limite le paramètre x au segment K = [-A, A].

$$\forall x \in K, \forall t \in]0,1], \left| \frac{\sin^2(t \, x)}{t^2} \right| \leqslant \frac{x^2 \, t^2}{t^2} \leqslant A^2 \left\{ \begin{array}{l} \text{majoration indépendante de } x \in K \\ \text{et intégrable sur }]0,1] \end{array} \right.$$

Pour g_1 , toutes les hypothèses du théorème sont validées sur $K = [-A, A] \times]0, 1]$, donc g_1 est définie et continue sur K = [-A, A].

Comme cela est vrai pour tout A > 0, on en déduit que g_1 est définie et continue sur \mathbb{R} .

- 2. Pour g_2 :
 - L'intégrande est continu sur $\mathbb{R} \times]1, +\infty[$,

•
$$\forall x \in \mathbb{R}, \forall t \in]1, +\infty[, \left|\frac{\sin^2(t \, x)}{t^2}\right| \leqslant \frac{1}{t^2} \begin{cases} \text{majoration } \underline{\text{indépendante de } x \in \mathbb{R}} \\ \text{et intégrable sur }]1, +\infty[\end{cases}$$

Pour g_2 , toutes les hypothèses du théorème sont validées sur $\mathbb{R} \times]1, +\infty [$, sans restriction, donc g_2 est définie et continue sur \mathbb{R} .

3. Conclusion : g, somme de deux fonctions définies et continues sur \mathbb{R} , est définie et continue sur \mathbb{R} .

Exemple 2.1.0.7. La fonction $g: x \longmapsto \int_0^1 \frac{e^{tx} - 1}{t} dt$, est définie et continue sur \mathbb{R} :

- L'intégrande est une fonction continue sur $\mathbb{R} \times [0,1]$.
- Soit A > 0. On restreint x à l'intervalle $K =]-\infty, A]$.

$$\forall \, (x,t) \in K \times]\, 0,1\,], \left| \frac{e^{t\,x}-1}{t} \right| \leqslant \frac{e^{A\,t}-1}{t} = \varphi(t) \left\{ \begin{array}{l} \text{majoration } \underline{\text{indépendante de } x \in K} \\ \text{et intégrable sur }]\, 0,1\,] \end{array} \right.$$

(la fonction φ admet un prolongement continu sur [0,1]).

Toutes les hypothèses du théorème sont validées sur $K =]-\infty, A \times [0, 1]$, donc

g est définie et continue sur
$$K =]-\infty, A$$
].

Comme cela est vrai pour tout A > 0, on en déduit que g est définie et continue sur \mathbb{R} .

Dérivation par rapport au paramètre

Théorème 2.2.1. (Formule de Liebniz)

Soient I et J des intervalles de \mathbb{R} .

Pour $x \in I$, on pose $g(x) = \int_J f(x,t) dt$ $\begin{cases} x \in I \text{ \'etant le param\`etre} \\ t \in J \text{ \'etant la variable d'int\'egration.} \end{cases}$

où $f:(x,t)\longmapsto f(x,t)$ est une fonction à valeurs réelles ou complexes définie sur $I\times J$.

Si

- $1. \ f \ satisfait \ aux \ hypothèses \ du \ th\'eor\`eme \ de \ continuit\'e, \ \grave{a} \ savoir :$
 - f est continue sur $I \times J$,
 - il existe une fonction positive φ , continue par morceaux et intégrable sur J, telle que

$$\forall (x,t) \in I \times J, |f(x,t)| \leq \varphi(t)$$
 (hypothèse de domination uniforme)

- 2. f admet une fonction dérivée partielle $\frac{\partial f}{\partial x}$ satisfaisant aux mêmes hypothèses, à savoir :
 - $\frac{\partial f}{\partial r}$ est définie, continue sur $I \times J$,
 - il existe une fonction positive ψ , continue par morceaux et intégrable sur J, telle que

$$\forall (x,t) \in I \times J, \ \left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant \psi(t)$$
 (hypothèse de domination uniforme)

alors la fonction g définie sur I par la relation $g(x) = \int_{\tau} f(x,t) dt$ est définie, de classe \mathcal{C}^1 sur I et

pour tout
$$x \in I$$
, $g'(x) = \int_{I} \frac{\partial f}{\partial x}(x,t) dt$.

Extension à la dérivation à l'ordre k.

Si, pour tout $i = 0 \cdots k$,

- $\frac{\partial^i f}{\partial x^i}$ est définie, continue sur $I \times J$,
- il existe une fonction positive ψ_i , continue par morceaux et intégrable sur J, telle que

$$\forall (x,t) \in I \times J, \ \left| \frac{\partial^i f}{\partial x^i}(x,t) \right| \leqslant \psi_i(t)$$
 (hypothèse de domination uniforme)

alors la fonction g définie sur I par la relation $g(x) = \int_I f(x,t) dt$ est de classe C^k sur I et

pour tout
$$x \in I$$
, $g^{(k)}(x) = \int_J \frac{\partial^k f}{\partial x^k}(x,t) dt$.

Preuve. Admis.

Remarques.

- 1. Comme précédemment, dans le cas où I et J sont des segments, si f est de classe \mathcal{C}^k sur $I \times J$, les hypothèses de majoration uniforme sont automatiquement vérifiées.
- 2. Comme précédemment, si les hypothèses de domination ne sont pas vérifiées sur $I \times J$, on pourra se restreindre (temporairement) à un sous-intervalle de I. (voir exemple ci-dessous).

Attention, l'intervalle d'intégration reste inchangé.

Exemple 2.2.0.8.

La fonction $g: x \longmapsto g(x) = \int_0^{+\infty} \frac{\ln(1+xt)}{1+t^2} dt$, est

- définie, continue sur $[0, +\infty[$ (restriction temporaire de x à [0, A], avec A > 0, déjà vu),
- de classe C^1 sur $]0, +\infty[$ (0 exclus : restriction temporaire de x à $[a, +\infty[$ avec a > 0))

On note $f:(x,t)\longmapsto \frac{\ln(1+x\,t)}{1+t^2}$, l'intégrande.

1.
$$f$$
 est de classe \mathcal{C}^1 sur $I \times J = [0, +\infty[\times[0, +\infty[$ et $\frac{\partial f}{\partial x}(x, t) = \frac{t}{(1+t^2)(1+xt)}]$.

$$2. \sup_{x\geqslant 0} \left| \frac{\partial f}{\partial x}(x,t) \right| = \frac{t}{1+t^2}, \quad \text{et } t \longmapsto \frac{t}{1+t^2} \text{ est non intégrable sur }] \ 0, +\infty \ [.$$

3. Restriction du domaine du paramètre \boldsymbol{x} :

Soient a et A tels que 0 < a < A. On restreint x l'intervalle K = [a, A].

$$\forall (x,t) \in K \times J, \left| \frac{\partial f}{\partial x}(x,t) \right| \leq \frac{t}{(1+t^2)(1+at)},$$

et la fonction $t \longmapsto \frac{t}{(1+t^2)(1+at)}$ est intégrable sur $]0,+\infty[$.

Les hypothèses du théorème sont donc vérifiés sur $[a, A] \times]0, +\infty[$ et on en déduit que

$$g$$
 est de classe \mathcal{C}^1 sur $[a, A]$ et $\forall x \in [a, A], \ g'(x) = \int_0^{+\infty} \frac{t}{(1+t^2)(1+xt)} \ dt$

(en fait, on pouvait se passer de A et travailler sur $[a, +\infty[)$.

4. Conclusion (levée de la restriction) : g est de classe C^1 sur tout [a, A] avec 0 < a < A, donc :

$$g$$
 est de classe \mathcal{C}^1 sur $]0, +\infty[$ (0 exclus) et $\forall x > 0$, $g'(x) = \int_0^{+\infty} \frac{t}{(1+t^2)(1+xt)} dt$.

Remarque. On en déduit aisément que

$$\forall x \ge 0, \ \int_0^{+\infty} \frac{\ln(1+x\,t)}{1+t^2} \, dt = \frac{\pi}{4} \ln(1+x^2) - \int_0^x \frac{\ln(u)}{1+u^2} \, du.$$

(pour information, cela ne pouvait pas se montrer à l'aide d'une intégration par parties)

Exemple 2.2.0.9.

La fonction $g: x \longmapsto g(x) = \int_0^1 \frac{\ln(1+xt)}{1+t^2} dt$, est

- définie, continue sur $[0, +\infty[$ (déjà vu),
- de classe C^1 sur $[0, +\infty[$.

Mêmes calculs que précédemment, mais en plus simple puisque l'intégrale est non généralisée. Il n'y a pas besoin de restreindre le paramètre x: la dérivée partielle par rapport à x de l'intégrande, en $(x,t) \in [0,+\infty[\times[0,1],$ est majorée en module par $\varphi_1(t) = \frac{t}{t^2+1}$, avec φ_1 continue sur le segment [0,1], donc intégrable sur [0,1].

$$g$$
 est de classe \mathcal{C}^1 sur $[0, +\infty[$ et $\forall x \ge 0, g'(x) = \int_0^1 \frac{t}{(1+t^2)(1+xt)} dt$.

puis on en déduit aisément que :

$$\forall x \ge 0, \int_0^1 \frac{\ln(1+xt)}{1+t^2} dt = \frac{\ln 2}{2} \arctan x + \frac{\pi}{8} \ln(1+x^2) - \int_0^x \frac{\ln(1+u)}{1+u^2} dt.$$

(pour information, cela ne pouvait pas se montrer à l'aide d'une intégration par parties)

Exemple 2.2.0.10.

La fonction $g: x \longmapsto g(x) = \int_0^{+\infty} \frac{\ln(1+x^2t)}{1+t^2} dt$, est

- définie, continue sur $[0, +\infty[$ et même définie et continue sur \mathbb{R} , paire,
- de classe C^1 sur $]0, +\infty[$ (0 exclus!) (et même de classe C^1 sur \mathbb{R}^*).

Si g est définie sur $[0, +\infty[$, alors elle est définie sur $\mathbb R$ et paire. On se limite donc à $x \ge 0$.

On note $f:(x,t) \longmapsto \frac{\ln(1+x^2t)}{1+t^2}$, $I = [0,+\infty[$ et $J = [0,+\infty[$.

- 1. f est de classe C^1 sur $I \times J$, et $\frac{\partial f}{\partial x}(x,t) = \frac{2xt}{(1+xt)(1+t^2)}$.
- 2. $\forall (x,t) \in I \times J, |f(x,y)| \leq \frac{x\sqrt{t}}{1+t^2}$, majoration non uniforme,
 - $\bullet \ \, \forall \, (x,t) \in I \times J, \, \left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant \frac{2\,x\,t}{1+t^2}, \quad \text{majoration } \underline{\text{non intégrable}} \text{ sur } J =]\,0, +\infty \,[.$
- 3. Il faut alors restreindre le domaine du paramètre x, <u>en une des extrémités ou aux deux</u> : Soit a>0 et A>a.

$$\begin{split} \forall \left(x,t\right) \in \left[\,0,A\,\right] \times \left]\,0,+\infty \left[,\,\, \left|f(x,y)\right| \leqslant \frac{A\,\sqrt{t}}{1+t^2} = \varphi(t), \\ \forall \left(x,t\right) \in \left[\,a,A\,\right] \times \left]\,0,+\infty \left[,\,\, \left|\frac{\partial f}{\partial x}(x,t)\right| \leqslant \frac{2\,A\,t}{\left(1+a\,t\right)\left(1+t^2\right)} = \psi(t) \end{split}$$

- La fonction φ est <u>indépendante</u> de $x \in [0, A]$, intégrable sur $]0, +\infty[$, donc toutes les hypothèses <u>du théorème</u> de continuité sont vérifiées sur $[0, A] \times [0, +\infty[$.
- La fonction ψ est <u>indépendante</u> de $x \in [a,A]$, intégrable sur $J =]0,+\infty[$, donc toutes les hypothèses du théorème de dérivation sont vérifiées sur $[a,A] \times]0,+\infty[$.

et on peut conclure (conclusion partielle, restreinte), que g est :

- continue sur [0, A],
- de classe C^1 sur [a, A], et, $\forall x \in [a, A]$, $g'(x) = \int_0^{+\infty} \frac{\partial f}{\partial x}(x, t) dt$.
- 4. Conclusion définitive (levée partielle des restrictions) :

g est continue sur
$$\mathbb{R}$$
, de classe \mathcal{C}^1 sur \mathbb{R}^* (0 exclus) et $\forall x \neq 0, g'(x) = \int_0^{+\infty} \frac{\partial f}{\partial x}(x,t) dt$.

Exemple 2.2.0.11.

Montrer que la fonction $g: x \longmapsto g(x) = \int_0^{+\infty} \frac{\sin^2(tx)}{t^2} e^{-t} dt$, est définie, $\mathcal{C}^0, \mathcal{C}^1, \mathcal{C}^2, \ldots \mathcal{C}^\infty$ sur \mathbb{R} .

On pourra se restreindre (temporairement) à des intervalles [-A, +A] (avec 0 < A).

Complément : montrer que $\forall x \in \mathbb{R}, \ \int_0^{+\infty} \frac{\sin^2(t \, x)}{t^2} \, e^{-t} \, dt = x \arctan(2 \, x) - \frac{1}{4} \ln(1 + 4 \, x^2).$

Exemple 2.2.0.12.

Montrer que la fonction $g: x \longmapsto \int_0^{\pi/2} \cos(x \sin t) dt$ est de classe \mathcal{C}^{∞} sur \mathbb{R} et, pour $k \in \mathbb{N}$, donner l'expression de $g^{(k)}(x)$ à l'aide d'une intégrale.

Calculer en particulier, pour tout $k \in \mathbb{N}$, $g^{(k)}(0)$ (on distinguera selon que k est pair ou impair).

3 Paramètre dans l'intégrande et dans les bornes de l'intégrale

3.1 Décomposition du problème

Soit $g: x \longmapsto g(x) = \int_{a(x)}^{b(x)} f(x,t) dt$, avec $\begin{cases} a \text{ et } b \text{ de classe } \mathcal{C}^1 \text{ sur l'intervalle } I, \text{ à valeurs dans l'intervalle } J, \\ f \text{ de classe } \mathcal{C}^1 \text{ sur } I \times J. \end{cases}$

On "dédouble" le paramètre x en considérant, pour c fixé, $c \in J$, la fonction de deux variables x et y:

$$H:(x,y)\longmapsto \int_{c}^{y}f(x,t)\,dt$$
 et on $a:g(x)=H\big(x,b(x)\big)-H\big(x,a(x)\big)$

Si on se place dans un segment quelconque K inclus dans I, les fonctions a et b étant continues sur I, donc bornées sur K, on est amené à travailler également dans un segment K' inclus dans J.

- H admet une dérivée partielle, <u>par rapport à x</u>, de classe C^1 sur $K \times K'$ (application du théorème de dérivation sous le signe intégral, avec un intervalle d'intégration qui est un segment)
- H admet une dérivée partielle, <u>par rapport à y</u>, de classe C^1 sur $K \times K'$ (théorème sur les intégrales fonction de la borne supérieure)

donc H est de classe \mathcal{C}^1 sur $K \times K'$ et comme g(x) = H(x, b(x)) - H(x, a(x)), g est de classe \mathcal{C}^1 sur K.

De la différentielle $dH_{(x,y)}=\frac{\partial H}{\partial x}(x,y)\,dx+\frac{\partial H}{\partial y}(x,y)\,dy$, on déduit :

$$g'(x) = \frac{\partial H}{\partial x}(x, b(x)) + \frac{\partial H}{\partial y}(x, b(x)) \frac{db}{dx}(x) - \frac{\partial H}{\partial x}(x, a(x)) - \frac{\partial H}{\partial y}(x, a(x)) \frac{da}{dx}(x)$$

$$= \frac{\partial H}{\partial x}(x, b(x)) + \frac{\partial H}{\partial y}(x, b(x)) b'(x) - \frac{\partial H}{\partial x}(x, a(x)) - \frac{\partial H}{\partial y}(x, a(x)) a'(x)$$

$$= \int_{c}^{b(x)} \frac{\partial f}{\partial x}(x, t) dt + f(x, b(x)) b'(x) - \int_{c}^{a(x)} \frac{\partial f}{\partial x}(x, t) dt - f(x, a(x)) a'(x)$$

$$g'(x) = f(x, b(x)) b'(x) - f(x, a(x)) a'(x) + \int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x, t) dt.$$

Exemple 3.1.0.13. Pour x > 0, calculer $\frac{d}{dx} \left(\int_x^{x^2} \ln(1+xt) dt \right) \dots$

3.2 Cas où l'on peut transformer simplement

Exemple 3.2.0.14.

- g définie par $g(x) = \int_0^x (x-t) e^{-t} dt$. On a : $g(x) = x \int_0^x e^{-t} dt \int_0^x t e^{-t} dt$
- g définie par $g(x) = \int_0^x e^{x-t} f(t) dt$. On a : $g(x) = e^x \int_0^x e^{-t} f(t) dt$

4 Exemple de calcul d'une intégrale dépendant d'un paramètre

Exemple 4.0.0.15. Calcul explicite, pour $x \in \mathbb{R}$, de $f(x) = \int_0^{+\infty} \frac{x \cos u}{u^2 + x^2} du$.

- 1. En se limitant à l'intervalle $]0, +\infty[$, vérifier que
 - f est de classe \mathbb{C}^2 sur tout segment [a,A] (avec $0 < a < A < +\infty[$), donc sur $]0,+\infty[$
 - f est solution, sur] $0, +\infty$ [, de l'équation différentielle y'' y = 0 (on remarquera que : $\Delta\left(\frac{x}{u^2 + x^2}\right) = \frac{\partial^2}{\partial u^2}\left(\frac{x}{u^2 + x^2}\right) + \frac{\partial^2}{\partial x^2}\left(\frac{x}{u^2 + x^2}\right) = 0$)
 - f est bornée sur $]0,+\infty[$ et $\lim_{x\to 0^+}f(x)=\frac{\pi}{2}$ (remarquer que $\frac{\pi}{2}=\int_0^{+\infty}\frac{x}{u^2+x^2}\,du$)
- 2. En déduire une expression simple de f(x), pour $x \ge 0$, puis pour $x \in \mathbb{R}$.