

ACS Lite Project Overview

Raj Ghaman, P.E., FHWA
Douglas Gettman, Ph.D., Siemens ITS
Steve Shelby, Ph.D., Siemens ITS

Presenting at:

Transportation Research Board Annual Meeting
Adaptive Traffic Signal Control Workshop
Washington, DC
January 11, 2004

Outline

ACS = Adaptive Control Software

- Project goals and status
- What's Lite about ACS Lite?
- ACS-Lite system architecture
- ACS-Lite algorithms overview
- Performance results
- Questions?

FHWA's Motivation for the ACS-Lite Project

- Limited U.S. deployment of ACS
 - 8 agencies as of 1999
- FHWA ACS research
 - RHODES, OPAC, RTACL
- ACS survey & ITE roundtable
 - 70% say ACS too costly
 - 40% unconvinced of benefits over TOD/TRPS
 - ACS too sensitive/dependent on communications & detectors
 - Difficult to understand, configure, and maintain
- Closed-loop systems are prevalent in marketplace
 - Can we develop an adaptive solution augmenting existing hardware?

FHWA's ASC-Lite Project Goals

WIDELY DEPLOYABLE adaptive control

- Low cost design
- Leverage existing infrastructure
 - Work with closed-loop systems & standard actuated controllers
 - Standard fully-actuated detector layouts
 - Communications bandwidth & protocols
 - Standard NTCIP interface
 - Field deployable without connection to TMC
- Meet performance expectations

Project Team

SIEMENS

Raj Gahman Gene McHale Felipe Luyanda

Larry Head Doug Gettman Steve Shelby

Darcy Bullock Nils Soyke

Pitu Mirchandani Sanjay Sridhar

TSIS/CORSIM integration & FHWA TReL testing

Charlie Stallard

Controller / Closed-Loop Signal System Vendors

Mark Hudgins

Gary Duncan

Peter Ragsdale

Ed Bertha

Project Summary

Started in March 2002

- Siemens ITS, Purdue, Arizona
- Upgrade CORSIM (ITT Industries) for NTCIP interface
- Partnership with NEMA controller manufacturers
 - Eagle, Econolite, McCain, PEEK
- Focus on arterials in initial phase, networks at a later time

Status

- Initial software development complete
- Initial simulation evaluation complete
- Initial phase final report available March 2004

Coming soon

- Hardware-in-the-loop testing at Turner Fairbank Traffic Research Lab (TReL)
- Field testing with participating NEMA systems
- Additional R&D of algorithms and additional components

What's "Lite" about ACS-Lite?

Slide 9

U.S. Department of Transportation

Federal Highway Administration

FHWA Contract No.DTFH61-02-C-00047

System Architecture

Turner-Fairbank TReL Testing Configuration

Run-Time Refiner

- Adjust active timing plan
 - Cycle (TBD), splits, offsets
 - Small, incremental adjustments (not permanent TBD)
 - Switch earlier or later to next pattern (TBD)
- Monitor real-time status
 - Detector volume & occupancy
 - Sample every few seconds for cyclic flow profiles
 - Sample during green, yellow, & red intervals for phase utilization
 - Actual phase durations of actuated controller
 - Reasons for termination (max-out, gap-out, etc.)

Illustration of Run-Time Refiner

Illustration of Run-Time Refiner

Illustration of Run-Time Refiner

- Manage controllers' transition from one plan to next
 - Select existing transition mode
 - Dwell
 - Add
 - Subtract
 - Best way (of Add/Subtract)
 - Command sequence of changes (TBD)
- Transition Objectives
 - Timely return to coordination
 - Minimally disruptive

Illustration of Transition Manager

- Periodically re-tune Time-of-day (TOD) plans (TBD)
 - Adjust cycle, offset, & splits
 - Changes are "permanent"
 - Fine-tune schedule of pattern switch times
- Benefits
 - Avoid additional 3-5% delay/year due to changing traffic patterns
 - Remain effective during controller comm. failure
 - Plans tailored to accommodate daily variability
 - Respond to seasonal changes in traffic conditions

Illustration of Time-of-day Tuner

Illustration of Time-of-day Tuner

ACS-Lite Algorithms Architecture

Run-Time Refiner Algorithm Details

- Splits
- Offsets

- "EQUISAT" is most popular adaptive split strategy
- "EQUISAT" is most popular age.

 Volume & model parameters can be unreliable Cappacite

 * termination data (not alone)**

 * Termination data (not alone)**

 The comparison of the comparison data (not alone)

 The comparison data (not alone)

 **The

 - Use lane independent green occupancy data
- Account for early-return-to-green
 - Reduce stops with intelligently biased splits
 - Smart biasing requires arrival profile knowledge

Extend EQUISAT concept to multi-ring controllers

- STEP ONE: Form reasonable estimates of degree of saturation
- STEP TWO: Minimize the maximum level of saturation on any phase
 - Ensure barrier alignment & cycle time constraints are satisfied
 - Accommodate progression by allowing lower level of saturation on coordinated phases

Detector Layout

Need detectors at stop-bar of coordinated phases

- Barrier group (or just group)
 - The set of all phases (or ring-groups) between two barriers (or all phases if there are no barriers)
 - 2 groups below: {1,2,5,6} and {3,4,7,8}
- A ring group is the set of phases on a ring in a group
 - 4 ring-groups: {1,2}, {5,6},{3,4}, and {7,8}

L	1	2	а	3	4	Ь
D	5	6		7	8	

- Less split time => higher saturation
- More split time => lower saturation

Degree of saturation estimates for each split allocation

MAX

Better splits for phases (1) & (2)

Original splits for phases (1) & (2)

Worse splits for phases (1) & (2)

(1) 80%	(2) 8	%		80%
(1) 70%	(2	2) 85 %		85%
(1) 65%		(2) 90%		90%

← Duration of ring-group →

Degree of saturation estimates for each barrier group duration

← Duration of barrier-group →

← Duration of barrier-group →

Accounting for all rings

Degree of saturation estimates for each barrier group duration

Inf.

Infeasible

-1

0

ACS Lite Offset Guidelines

- Measure cyclic flow profiles directly
- Account for travel time from the detector to the signal
- Account for variable start of green
- Account for both coordinated approaches and effect on downstream signals
- Maximize the total amount of captured flow
 - Two options:
 - On inbound and outbound movements at ALL signals on the arterial
 - On inbound and outbound movements at EACH signal on the arterial independently
- Make small incremental changes to minimize transitions

Detector Layout

Need detectors at stop-bar of coordinated phases

Local Offset Tuning

Shift to capture most arriving flow

Account for all coordinated approaches

Southbound

Northbound

Account for all downstream signals

Upstream

earlier reduces stops locally

Shifting

Downstream

Typical offset adjustment profile

Simulation Performance Testing

ITT Industries

- Developed NTCIP agent interface to CORSIM
- Developed multi-pattern capability and realistic transition logic

Purdue

- Developed "real-world" test scenarios
- Synchro-optimized timings
- Many, many, many simulation runs and independent assessment of results

Simulation Performance Testing

- Evaluate algorithms parameters
 - Re-adjustment intervals (5 to 10 minutes)
 - Offset changes and max deviations (2 to 20 seconds, "any")
 - Split adjustments and max deviations (2 to 20 seconds, "any")
 - Results tend towards shorter re-adjustment intervals and larger flexibility of algorithm to make adjustments
- Start with optimized timings can ACS-Lite improve?
- Start with bad/arbitrary offsets or splits can ACS-Lite find a good solution?
- Change turning proportions and volumes to represent real-world traffic changes – can ACS-Lite adapt?

Simulation Performance Testing

Changes in volumes at side-street approaches to intersections 2, 4, and 7 impact the entire network

Evaluation Results – Total Control Delay

Evaluation Results – Phase Failures

"Very High Altitude" Evaluation Results

ACS-Lite test scenario	vs. "Do nothing", initially as ACS-Lite	Conclusion	
Start with optimized settings	Delay (-0.0%, +0.7%) Travel Time (-0.6%,+2.4%)	ACS-Lite "does no harm"	
Start with bad Offsets (no split adjustment)	Delay (- 4.2% , +0.9%) Travel Time (- 4.0% ,+1.3%)	ACS-Lite can find a good set of offsets	
Start with bad side-street Splits (no offset adjustments and progression bias)	Delay (-3.3%, +2.2%) Travel Time (-4.9%,+6.8%)	ACS-Lite usually makes improvement	
Changing volumes & turning proportions	Delay (-38%, -7.4%) Travel Time (-6.4%, +3.5%)	ACS-Lite provides consistent delay reduction	

- Core ACS-Lite development is complete
 - Run-Time Refiner
 - Transition Manager
 - Communications and algorithms software infrastructure
- Performance evaluation in simulation is encouraging
- Current configuration designed for up to 12 intersections on arterial
- Coming up
 - TReL testing with Hardware-in-Loop
 - Field testing
 - Time-of-day Tuner algorithms development

Questions?

Hunt us down for a demo

