### Importing the Dependencies

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score
```

## Data Collection and Analysis

#### PIMA Diabetes Dataset

```
# loading the diabetes dataset to a pandas DataFrame
diabetes dataset = pd.read csv('/content/diabetes.csv')
# printing the first 5 rows of the dataset
diabetes dataset.head()
   Pregnancies Glucose BloodPressure SkinThickness Insulin
BMI \
                    148
                                     72
                                                                  33.6
0
             6
                                                    35
                                                               0
                     85
                                     66
                                                    29
                                                                  26.6
                                                               0
1
2
                                                              0 23.3
                    183
                                     64
                                                     0
                     89
                                     66
                                                              94 28.1
                                                    23
                    137
                                     40
                                                    35
                                                             168 43.1
   DiabetesPedigreeFunction
                             Age
                                  Outcome |
0
                      0.627
                               50
                                         1
1
                      0.351
                                         0
                               31
2
                      0.672
                                         1
                               32
3
                      0.167
                               21
                                         0
4
                      2.288
                               33
                                         1
# number of rows and Columns in this dataset
diabetes dataset.shape
(768, 9)
# getting the statistical measures of the data
diabetes dataset.describe()
                       Glucose BloodPressure SkinThickness
       Pregnancies
Insulin \
        768.000000 768.000000
count
                                    768.000000
                                                   768.000000
```

| 768.000000                                            |                      |                                          |  |  |  |  |  |
|-------------------------------------------------------|----------------------|------------------------------------------|--|--|--|--|--|
| mean 3.845052 120.894                                 | 531 69.105469        | 20.536458                                |  |  |  |  |  |
| 79.799479                                             | C10 10 255007        | 15 052210                                |  |  |  |  |  |
| std 3.369578 31.972<br>115.244002                     | 618 19.355807        | 15.952218                                |  |  |  |  |  |
| min 0.000000 0.000                                    | 000 0.000000         | 0.00000                                  |  |  |  |  |  |
| 0.000000                                              | 0.00000              | 0.00000                                  |  |  |  |  |  |
| 25% 1.000000 99.000                                   | 000 62.000000        | 0.000000                                 |  |  |  |  |  |
| 0.000000                                              |                      |                                          |  |  |  |  |  |
| 50% 3.000000 117.000                                  | 000 72.000000        | 23.000000                                |  |  |  |  |  |
| 30.500000                                             |                      | 22 22222                                 |  |  |  |  |  |
| 75% 6.000000 140.250                                  | 000 80.000000        | 32.000000                                |  |  |  |  |  |
| 127.250000<br>max 17.000000 199.000                   | 000 122.000000       | 99.000000                                |  |  |  |  |  |
| 846.000000                                            | 122.00000            | 99.000000                                |  |  |  |  |  |
| 0.10.1000000                                          |                      |                                          |  |  |  |  |  |
|                                                       | PedigreeFunction     | Age Outcome                              |  |  |  |  |  |
| count 768.000000                                      |                      | 768.000000 768.000000                    |  |  |  |  |  |
| mean 31.992578                                        | 0.471876             | 33.240885 0.348958                       |  |  |  |  |  |
| std 7.884160<br>min 0.000000                          | 0.331329             | 11.760232 0.476951<br>21.000000 0.000000 |  |  |  |  |  |
| 25% 27.300000                                         | 0.078000<br>0.243750 | 24.000000 0.000000                       |  |  |  |  |  |
| 50% 32.000000                                         | 0.372500             | 29.000000 0.000000                       |  |  |  |  |  |
| 75% 36.600000                                         | 0.626250             | 41.000000 1.000000                       |  |  |  |  |  |
| max 67.100000                                         | 2.420000             | 81.000000 1.000000                       |  |  |  |  |  |
| dishatas datasat[[Outsamal]] value saunta()           |                      |                                          |  |  |  |  |  |
| <pre>diabetes_dataset['Outcome'].value_counts()</pre> |                      |                                          |  |  |  |  |  |
| 0 500                                                 |                      |                                          |  |  |  |  |  |
| 1 268                                                 |                      |                                          |  |  |  |  |  |
| Name: Outcome, dtype: int64                           |                      |                                          |  |  |  |  |  |
|                                                       |                      |                                          |  |  |  |  |  |

# 0 --> Non-Diabetic

# 1--> Diabetic

| <pre>diabetes_dataset.groupby('Outcome').mean()</pre> |            |            |               |               |  |  |  |
|-------------------------------------------------------|------------|------------|---------------|---------------|--|--|--|
| Insulin \ Outcome                                     | regnancies | Glucose    | BloodPressure | SkinThickness |  |  |  |
| 0<br>68.792000                                        | 3.298000   | 109.980000 | 68.184000     | 19.664000     |  |  |  |
| 1 100.335821                                          | 4.865672   | 141.257463 | 70.824627     | 22.164179     |  |  |  |
| BMI DiabetesPedigreeFunction Age Outcome              |            |            |               |               |  |  |  |

```
0
         30.304200
                                    0.429734
                                              31.190000
         35.142537
                                    0.550500
                                              37.067164
1
# To find the corelation in data set we use corr()
import matplotlib.pyplot as plt
import seaborn as sns
corrMatrix=diabetes dataset.corr()
corrMatrix
                          Pregnancies
                                        Glucose
                                                  BloodPressure
SkinThickness \
                             1.000000
                                       0.129459
                                                       0.141282
Pregnancies
0.081672
Glucose
                             0.129459 1.000000
                                                       0.152590
0.057328
BloodPressure
                             0.141282 0.152590
                                                       1.000000
0.207371
SkinThickness
                            -0.081672 0.057328
                                                       0.207371
1.000000
Insulin
                            -0.073535 0.331357
                                                       0.088933
0.436783
BMI
                             0.017683 0.221071
                                                       0.281805
0.392573
DiabetesPedigreeFunction
                            -0.033523 0.137337
                                                       0.041265
0.183928
                             0.544341 0.263514
                                                       0.239528
Aae
0.113970
                             0.221898 0.466581
                                                       0.065068
Outcome
0.074752
                                               DiabetesPedigreeFunction
                           Insulin
                                         BMI
Pregnancies
                                                              -0.033523
                         -0.073535 0.017683
Glucose
                          0.331357
                                    0.221071
                                                               0.137337
BloodPressure
                          0.088933
                                    0.281805
                                                               0.041265
SkinThickness
                          0.436783
                                    0.392573
                                                               0.183928
Insulin
                          1.000000
                                    0.197859
                                                               0.185071
BMI
                          0.197859 1.000000
                                                               0.140647
DiabetesPedigreeFunction
                                                               1.000000
                          0.185071
                                    0.140647
                         -0.042163
                                                               0.033561
Age
                                    0.036242
Outcome
                          0.130548
                                    0.292695
                                                               0.173844
```

```
Age
                                    Outcome
Pregnancies
                         0.544341
                                   0.221898
Glucose
                         0.263514
                                   0.466581
BloodPressure
                         0.239528
                                   0.065068
SkinThickness
                         -0.113970
                                   0.074752
Insulin
                         -0.042163
                                   0.130548
BMI
                         0.036242
                                   0.292695
DiabetesPedigreeFunction 0.033561
                                   0.173844
Age
                         1.000000 0.238356
Outcome
                         0.238356 1.000000
import seaborn as sns
sns.heatmap(corrMatrix,cmap="YlGnBu",annot=True)
plt.gcf().set size inches(20, 20)
```



```
# separating the data and labels
X = diabetes_dataset.drop(columns = 'Outcome', axis=1)
Y = diabetes_dataset['Outcome']

print(X)

Pregnancies Glucose BloodPressure SkinThickness Insulin BMI
0 6 148 72 35 0 33.6
```

| 1                              | 1  | 85  | 66 | 29 | 0   | 26.6 |  |  |  |
|--------------------------------|----|-----|----|----|-----|------|--|--|--|
| 2                              | 8  | 183 | 64 | 0  | 0   | 23.3 |  |  |  |
| 3                              | 1  | 89  | 66 | 23 | 94  | 28.1 |  |  |  |
| 4                              | 0  | 137 | 40 | 35 | 168 | 43.1 |  |  |  |
|                                |    |     |    |    |     |      |  |  |  |
| 763                            | 10 | 101 | 76 | 48 | 180 | 32.9 |  |  |  |
| 764                            | 2  | 122 | 70 | 27 | 0   | 36.8 |  |  |  |
| 765                            | 5  | 121 | 72 | 23 | 112 | 26.2 |  |  |  |
| 766                            | 1  | 126 | 60 | 0  | 0   | 30.1 |  |  |  |
| 767                            | 1  | 93  | 70 | 31 | 0   | 30.4 |  |  |  |
| DiabetesPedigreeFunction Age 0 |    |     |    |    |     |      |  |  |  |

Train Test Split

```
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size =
0.2, stratify=Y, random_state=2)
print(X.shape, X_train.shape, X_test.shape)
(768, 8) (614, 8) (154, 8)
```

Training the Model

```
classifier = svm.SVC(kernel='linear')
#training the support vector Machine Classifier
classifier.fit(X_train, Y_train)
SVC(kernel='linear')
```

Model Evaluation

**Accuracy Score** 

Making a Predictive System

```
input_data = (5,166,72,19,175,25.8,0.587,51)

# changing the input_data to numpy array
input_data_as_numpy_array = np.asarray(input_data)

# reshape the array as we are predicting for one instance
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

prediction = classifier.predict(input_data_reshaped)
print(prediction)
```

```
if (prediction[0] == 0):
    print('The person is not diabetic')
else:
    print('The person is diabetic')

[1]
The person is diabetic

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439:
UserWarning: X does not have valid feature names, but SVC was fitted with feature names
    warnings.warn(
```

Saving the trained model

```
import pickle
filename = 'diabetes model.sav'
pickle.dump(classifier, open(filename, 'wb'))
# loading the saved model
loaded_model = pickle.load(open('diabetes_model.sav', 'rb'))
input data = (5,166,72,19,175,25.8,0.587,51)
# changing the input data to numpy array
input_data_as_numpy_array = np.asarray(input_data)
# reshape the array as we are predicting for one instance
input data reshaped = input data as numpy array.reshape(1,-1)
prediction = loaded model.predict(input data reshaped)
print(prediction)
if (prediction[0] == 0):
  print('The person is not diabetic')
else:
  print('The person is diabetic')
[1]
The person is diabetic
/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439:
UserWarning: X does not have valid feature names, but SVC was fitted
with feature names
 warnings.warn(
for column in X.columns:
  print(column)
```

Pregnancies
Glucose
BloodPressure
SkinThickness
Insulin
BMI
DiabetesPedigreeFunction
Age