Welcome to

Programming Massively Parallel Processors (PMPP)

Prof. Dr.-Ing. Michael Goesele Dr. Stefan Guthe Dominik Wodniok

Graphics, Capture and Massively Parallel Computing (GCC)
TU Darmstadt

(Preliminary) Course Schedule

you are here

	12.10.2015	Introduction to PMPP
•	13.10.2015	Lecture Example Project, CUDA Programming 1
	19.10.2015	Lecture CUDA Programming 2
	20.10.2015	Lecture CUDA Programming 3
	26.10.2015	Introduction Final Projects, Exercise 1 assigned
	27.10.2015	Questions and Answers (Q&A)
	2.11.2015	Lecture, Final Projects assigned, Ex. 1 due, Ex. 2 assigned
	3.11.2015	Questions and Answers (Q&A)
	9.11.2015	Lecture, Exercise 2 due
	10.11.2015	Lecture
	16.11.2015	Questions and Answers (Q&A)
	17.11.2015	Questions and Answers (Q&A)
	23.11.2015	1 st Status Presentation Final Projects
	24.11.2015	1 st Status Presentation Final Projects (continued)
	30.11.2015	
	1.12.2015	Prof. DrIng. Michael Goesel

(Preliminary) Course Schedule

7.12.2015

8.12.2015

14.12.2015

15.12.2015

Christmas break

11.1.2016 2nd Status Presentation Final Projects

12.1.2016 2nd Status Presentation Final Projects (continued)

18.1.2016

19.1.2016

25.1.2016

26.1.2016

1.2.2016

2.2.2016

8.2.2016 Final Presentation Final Projects

9.2.2016 Final Presentation Final Projects (continued)

Hardware and Accounts

- I all exercises and projects will be solved using NVIDIA CUDA on Linux systems
 - I all exercises and projects will run on the HHLR
 - register in TuCAN ASAP so that we can create your accounts
 - I fill in and sign account form
- I also possible but not really recommended to run CUDA on your own system
 - I no support provided
 - I all exercises and projects must run on HHLR for grading

HHLR Account

Nutzungsordung des Hochleistungsrechners der TU Darmstadt **Nutzung durch Studierende im Rahmen** einer Lehrveranstaltung

1. Präambel

Diese Nutzungsordnung legt fest, nach welchen Regeln der Hochleistungsrechner von Studierenden im Rahmen einer Lehrveranstaltung der TU Darmstadt benutz

Der Hochleisungsrechner steht überdies den Wissenschaftlerinnen und Wissenschaftlern der TU Darmstadt und den Wissenschaftlerinnen und Wissenschaftlern anderer Universitäten zur Verfügung. Wissenschaftliches Rechnen ist gestattet, sofern die eingesetzte Software dies erlaubt, Jegliche rein kommerzielle zug ist untersagt. Besandtel dieser Natzungsordnung sind die Bestimmungen in der Allgemeinen. Benutzungsordnung für die Informationsverrund Kommunikations-Infrastruktur [1] der TU Darmstadt.

nzeitverteilung nach dem Prinzip des "fair-queuing" werden auf der Webseite des Hochleistungsrechners [2] bekanntgegeben

"r lizenzpflichtige Software ausschließlich unter Einhaltung der Lizenzbedingungen einsetzen, insbesondere sind ggf. Beschränkungen "senschaftlicher Anwendung zu beachten. Der/die Nutzer/-in ist für die Prüfung und Einhaltung selbst verantwortlich.

- [1] Allgemeine Benutzungsordnung für die Informationsverarbeitungs- und Kommunikations-Infrastruktur
 - http://www.hrz.tu-darmstadt.de/itsicherheit/revelwerke/allgemeinebenutzerordnung.de.isp
- [2] Hauptseite des hessischen Hochleistungsrechners an der TU Darmstadt

http://www.hhlr.tu-darmstadt.de/

*Achtung BETA: Die Adresse des Homeverzeichnisses kann sich noch ändern Ein Update wird ggf in der Vorlesung bekanntgegeben.

5. Antrag auf Nutzung des Hochleistungsrechners im Rahmen einer Lehrveranstaltung

Informationen über den/die Antragsteller/-in

Dieses Formular finden Sie online auch unter "Nutzerantrag für Studierende (Lehrveranstaltung)" auf unserer Webseite http://www.hhlr.tu-darmstadt.de/hhlr/lichtenberg/zugang/lichtenberg_zugang.de.isp.

Nachname, Vorname:	
E-Mail:	
TU-ID (auch Externe):	
Universität/wiss.Einrichtung:	TU-Darmstadt
Titel der Lehrveranstaltung:	Grundlagen der Informatik 3 (Gdl 3)
Semester / Jahr:	Wintersemester 2013/14

Die maximale Laufzeit der Nutzungsberechtigung richtet sich nach dem Nutzungsantrag für die Lehrveranstaltung (aber max. 6 Monate).

Ich bestätige hiermit die Richtigkeit meiner Angaben und verpflichte mich zur Einhaltung dieser Nutzungsordnung. Ich bin mit der Verarbeitung meiner personenbezogenen Daten (nach Abschnitt 2.b)

Ort, Datum	Unterschrift							
(Wird vom HRZ ausgefüllt)								
Wurde genehmigt und eingerichtet: ja/nein								
Laufzeit des Nutzerkontos:	- siehe Hauptformular des/der Lehrenden -							
Danas								
Datum	Unterschrift							
Anmerkungen:								

09 01 14 Technische Universität Darmstadt, Hochschulrechenzentrum

Seite 2 von 2

Why PMPP?

- I discussion inspired by
 The Landscape of Parallel Computing
 Research: A View from Berkeley
 by Asanivic et al., December 18, 2006
 Technical Report UCB/EECS-2006-183
- read Sections 1-3 of the Berkeley Report [Asanovic et al. 2006]
 - l available online or on the course webpage
 - you are welcome to read the whole document

The Landscape of Parallel Computing Research: A View from Berkeley

Krste Asanovic
Ras Bodik
Bryan Christopher Catanzaro
Joseph James Gebis
Patry Husbands
Kurt Keutzer
David A. Patterson
William Lester Plishker
John Shalf
Samuel Webb Williams
Katherine A. Yelick

Electrical Engineering and Computer Sciences University of California at Berkeley

Technical Report No. UCB/EECS-2006-183 http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

December 18, 2006

An Example from PMPP 2008

Massively-Parallel Simulation of Biochemical Systems

Jens Ackermann Paul Baecher Thorsten Franzel Michael Goesele Kay Hamacher

published at GI 2009 Workshop on Massively Parallel Computational Biology on GPUs

Motivation

Parameter Dependency

Behavior of a single system can be highly dependent on the parameters/conditions:

Multiple Simulations

Multiple Simulations

Contributions

- Automated pipeline from models in high-level description language to CUDA simulation.
- Considerable speedup for simple model.
 - → New possibilities for the analysis.
 - →No need for expensive clusters.

Simulation Software Packages

- [SOSlib]: outdated, not massively parallel
- ■[BioNessie]: large-scale grid computing → HPC clusters are expensive
- [Copasi]: sequential parameter scans, export model to C

"You have to be careful [..], COPASI will run 100 time course simulations during this twodimensional scan which can take a long time."

Systems Biology Markup Language (SBML)

- ■XML based language → machine-readable
- Covers different kinds of models: chemical reactions, metabolic pathways, ...
- There exists a multitude of tools for modeling and analysis.
 - → SBML as common ground for data inter-change.
- Databases available.

```
<species id="ATP" compartment="cell"/>
<parameter id="temperature" value="0.5"/>
<rateRule variable="ATP">
 <math xmlns="...">
   <apply><times/>
       <ci>temperature</ci>
       <ci>ADP</ci>
   </apply>
  </rateRule>...
```

Biochemical System

Time dependent variables

$$(x_1(t), ..., x_n(t))$$

Initial values

$$(x_1(t_0), ..., x_n(t_0))$$

System of (autonomous) ODEs

$$dx_1/dt = f_1(p, x(t))$$
...
$$dx_n/dt = f_n(p, x(t))$$

$$dx/dt = f(p, x(t))$$

Fixed parameters

$$(p_1, ..., p_m)$$

Time

t

Brute-force Parameter Scan

Sample the m-dimensional space of all possible parameters with a grid.

- For each parameter set p:
 - Evolve ODEs by integrating f.
 - Analyze emerging time series.

Problem:

Combinatorics → many parameter sets even for small grid sizes.

Solution:

embarassingly parallel → use CUDA

Our Pipeline

CUDA Implementation Issues

One thread = one parameter setting.

```
device float f(float *x, uint i) {...}
for (uint t = 0; t < T; t++)
                                              // time steps
    for (uint i = 0; i < n; i++) {
                                              // coordinates
        x[i] = x[i] + step size * f(x,i); // Euler
        result[thdOffset + t*n + i] = x[i];
                                                    Global
                                                   memory
                                                    write!
```

- Euler method needs to evaluate the model function f.
- Lots of data. Storing all time series would slow things down.

Challenges for SBML Conversion

- Function f needed:
 - Extract from SBML model.

$$ATP + H_2O \longrightarrow ADP + P \longrightarrow dATP/dt = ...$$

- Convert f to CUDA code and compile into simulation binary.
- Too much data:
 - Store only characteristics, e.g., Lyapunov numbers.
 - Computation needs Jacobian of f.
 - → Computer Algebra System to automatically differentiate f.

Our Pipeline (final)

Proof of Concept: Roessler Attractor

- [Roessler, 1976], [Samardzija, 1989]
- 3 variables, 3 parameters.
- SBML model is "human readable".

Results

■ 3 variables, 3 parameters, 10⁶ parameter sets:

GPU/CPU	#MPs	threads/bloc k	Time [10 ³ s]
9800 GX2	1x16	256	12.22
9800 GX2	2x16	256	6.13
9800 GX2	2x16	320	5.55
Xeon CPU	-	serialized	~280

Preliminary results.!

19 variables, 48 parameters _____ Speedup 27

Possible Visualization

Isosurface extraction in the parameter space:

Conclusion

- Parameter scanning is important for understanding complex system behavior.
 - Ideally suited for parallel computation.
 - Potentially high performance gain if it fits to the architecture.
- Automatic SBML to CUDA conversion connects modeling tools to fast, parallel simulations.

Corresponding Publication

Scholar

 \leftarrow

Bearbeiten

Exportieren *

Michael Goesele

Massively-Parallel Simulation of Biochemical Systems.

[PDF] von emis.de

Autoren Jens Ackermann, Paul Baecher, Thorsten Franzel, Michael Goesele, Kay Hamacher

Publikationsdatum 2009/9/29

Konferenz GI Jahrestagung

Seiten 739-750

Beschreibung

Abstract: Understanding biological evolution prompts for a detailed understanding of the realized phenotype. Biochemical and gene regulatory dynamics are a cornerstone for the physiology of the cell and must therefore be regarded as one of the major aspects of such a phenotype. Experimental insight into molecular parameters is, however, hard to come by. Model development therefore requires computational parameter estimation. At the same time, design of cellular dynamics is highly efficient when done in-silico. We therefore ...

Zitate insgesamt

Zitiert von: 11

Google Scholar-Artikel

Massively-Parallel Simulation of Biochemical Systems.

J Ackermann, P Baecher, T Franzel, M Goesele... - Gl Jahrestagung, 2009

Zitiert von: 11 - Ähnliche Artikel - Alle 7 Versionen