

SEQUENCE LISTING

<110> Schwabe, Nikolai F
Tan, Linda C
Catherine, Napper E
Fry, Jeremy W
Pang, Susan

<120> CHIMERIC MHC PROTEIN AND OLIGOMER THEREOF

<130> S-844-US

<140> US 10/769,831

<141> 2004-02-02

<150> PCT/EP03/09056

<151> 2003-08-14

<160> 23

<170> PatentIn version 3.5

<210> 1

<211> 9

<212> PRT

<213> Epstein-Barr virus

<400> 1

Gly Leu Cys Thr Leu Val Ala Met Leu
1 5

<210> 2

<211> 38

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide (forward)

<400> 2

gcatcaccat atgatccagc gtactccaaa gattcagg
38

<210> 3

<211> 36

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide (reverse)

<400> 3
ctacaaggat cccatgtctc gatcccactt aactat
36

<210> 4
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide (forward)

<400> 4
taatacgaact cactataggg
20

<210> 5
<211> 19
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide (reverse)

<400> 5
gcttagttatt gctcagcgg
19

<210> 6
<211> 15
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<400> 6

Ser Leu Asn Asp Ile Phe Glu Ala Gln Lys Ile Glu Trp His Glu
1 5 10 15

<210> 7
<211> 15
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<400> 7

Pro Gln Pro Gln Pro Lys Pro Gln Pro Lys Pro Glu Pro Glu Thr
1 5 10 15

<210> 8
<211> 80
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide (forward)

<400> 8
taaagcttca gggccagagc ccgttggct cagacctggg cccgcagatg cttcggaaac
60

tgcaggaaac caacgcggcg
80

<210> 9
<211> 81
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide (reverse)

<400> 9
gaacgtgatc tccctgacct gctgccgcag cagtcctgc acgtcctgca gcgcgcgtt
60

ggtttctgc agttcccgaa g
81

<210> 10
<211> 81
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide (forward)

<400> 10
ctgcaggacg tccggagct gctgccgcag caggtcaggg agatcacgtt cctgaaaaac
60

acggtgatgg agtgtgacgc g
81

<210> 11
<211> 80
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide (reverse)

<400> 11
tacggccgca cgctggtag gccggtagt actgactgct gcatcccgca cgcgtacac
60

tccatcaccc tgttttcag
80

<210> 12
<211> 108
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide (forward)

<400> 12
tgcgggatgc agcagtcagt acgcaccggc ctacccagcg tacggccgcc gcagccgcag
60

ccgaaaccgc agccgaaacc ggaaccggaa actagttga acgacatc
108

<210> 13
<211> 96
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide (reverse)

<400> 13
tactcgagtt cgtgccattc gatttctga gcctcgaaga tgtcggtcaa actagttcc
60

ggttcccggtt tcggctgcgg tttcggtgc ggctgc
96

<210> 14
<211> 72
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide (forward)

<400> 14
gatccgggtgg tggtggttct ggtgggtggt gttctgggtgg tggtggttct ggtgggtggtga
60

gttctgggtgg ta
72

<210> 15
<211> 72
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide (reverse)

<400> 15
agtttaccac cagaaccacc accaccagaa ccaccaccac cagaaccacc accaccagaa
60

ccaccaccac cg
72

<210> 16
<211> 25
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<400> 16

Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
1 5 10 15

Ser Gly Gly Gly Gly Ser Gly Gly Lys
20 25

<210> 17

<211> 24
<212> PRT
<213> Artificial

<220>
<223> Synthetic Construct

<400> 17

Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
1 5 10 15

Gly Gly Gly Ser Gly Gly Lys
20

<210> 18
<211> 22
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide (forward)

<400> 18
gagacatggg aggtgggtgg gg
22

<210> 19
<211> 22
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide (reverse)

<400> 19
ccaccaccac ctccccatgtc tc
22

<210> 20
<211> 35
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide (forward)

<400> 20

gcatcacat gggttctcac tctatgaggt attc
35

<210> 21
<211> 37
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide (reverse)

<400> 21
gcatacgat cttacggct cccatctcag ggtgagg
37

<210> 22
<211> 64
<212> PRT
<213> Rat

<400> 22

Glu Leu Gln Glu Thr Asn Ala Ala Leu Gln Asp Val Arg Glu Leu Leu
20 25 30

Arg Gln Gln Val Lys Glu Ile Thr Phe Leu Lys Asn Thr Val Met Glu
35 40 45

Cys Asp Ala Cys Gly Met Gln Pro Ala Arg Thr Pro Gly Leu Ser Val
50 55 60

<210> 23
<211> 757
<212> PRT
<213> *Homo sapiens*

<300>
<308> Genbank/1705995
<309> 1996-10-01
<313> (1)..(757)

<400> 23

Met Val Pro Asp Thr Ala Cys Val Leu Leu Leu Thr Leu Ala Ala Leu
1 5 10 15

Gly Ala Ser Gly Gln Gly Gln Ser Pro Leu Gly Ser Asp Leu Gly Pro
20 25 30

Gln Met Leu Arg Glu Leu Gln Glu Thr Asn Ala Ala Leu Gln Asp Val
35 40 45

Arg Asp Trp Leu Arg Gln Gln Val Arg Glu Ile Thr Phe Leu Lys Asn
50 55 60

Thr Val Met Glu Cys Asp Ala Cys Gly Met Gln Gln Ser Val Arg Thr
65 70 75 80

Gly Leu Pro Ser Val Arg Pro Leu Leu His Cys Ala Pro Gly Phe Cys
85 90 95

Phe Pro Gly Val Ala Cys Ile Gln Thr Glu Ser Gly Gly Arg Cys Gly
100 105 110

Pro Cys Pro Ala Gly Phe Thr Gly Asn Gly Ser His Cys Thr Asp Val
115 120 125

Asn Glu Cys Asn Ala His Pro Cys Phe Pro Arg Val Arg Cys Ile Asn
130 135 140

Thr Ser Pro Gly Phe Arg Cys Glu Ala Cys Pro Pro Gly Tyr Ser Gly
145 150 155 160

Pro Thr His Gln Gly Val Gly Leu Ala Phe Ala Lys Ala Asn Lys Gln
165 170 175

Val Cys Thr Asp Ile Asn Glu Cys Glu Thr Gly Gln His Asn Cys Val
180 185 190

Pro Asn Ser Val Cys Ile Asn Thr Arg Gly Ser Phe Gln Cys Gly Pro
195 200 205

Cys Gln Pro Gly Phe Val Gly Asp Gln Ala Ser Gly Cys Gln Arg Gly
210 215 220

Ala Gln Arg Phe Cys Pro Asp Gly Ser Pro Ser Glu Cys His Glu His
225 230 235 240

Ala Asp Cys Val Leu Glu Arg Asp Gly Ser Arg Ser Cys Val Cys Arg
245 250 255

Val Gly Trp Ala Gly Asn Gly Ile Leu Cys Gly Arg Asp Thr Asp Leu
260 265 270

Asp Gly Phe Pro Asp Glu Lys Leu Arg Cys Pro Glu Pro Gln Cys Arg
275 280 285

Lys Asp Asn Cys Val Thr Val Pro Asn Ser Gly Gln Glu Asp Val Asp
290 295 300

Arg Asp Gly Ile Gly Asp Ala Cys Asp Pro Asp Ala Asp Gly Asp Gly
305 310 315 320

Val Pro Asn Glu Lys Asp Asn Cys Pro Leu Val Arg Asn Pro Asp Gln
325 330 335

Arg Asn Thr Asp Glu Asp Lys Trp Gly Asp Ala Cys Asp Asn Cys Arg
340 345 350

Ser Gln Lys Asn Asp Asp Gln Lys Asp Thr Asp Gln Asp Gly Arg Gly
355 360 365

Asp Ala Cys Asp Asp Asp Ile Asp Gly Asp Arg Ile Arg Asn Gln Ala
370 375 380

Asp Asn Cys Pro Arg Val Pro Asn Ser Asp Gln Lys Asp Ser Asp Gly
385 390 395 400

Asp Gly Ile Gly Asp Ala Cys Asp Asn Cys Pro Gln Lys Ser Asn Pro
405 410 415

Asp Gln Ala Asp Val Asp His Asp Phe Val Gly Asp Ala Cys Asp Ser
420 425 430

Asp Gln Asp Gln Asp Gly Asp Gly His Gln Asp Ser Arg Asp Asn Cys
435 440 445

Pro Thr Val Pro Asn Ser Ala Gln Glu Asp Ser Asp His Asp Gly Gln
450 455 460

Gly Asp Ala Cys Asp Asp Asp Asp Asn Asp Gly Val Pro Asp Ser
465 470 475 480

Arg Asp Asn Cys Arg Leu Val Pro Asn Pro Gly Gln Glu Asp Ala Asp
485 490 495

Arg Asp Gly Val Gly Asp Val Cys Gln Asp Asp Phe Asp Ala Asp Lys
500 505 510

Val Val Asp Lys Ile Asp Val Cys Pro Glu Asn Ala Glu Val Thr Leu
515 520 525

Thr Asp Phe Arg Ala Phe Gln Thr Val Val Leu Asp Pro Glu Gly Asp
530 535 540

Ala Gln Ile Asp Pro Asn Trp Val Val Leu Asn Gln Gly Arg Glu Ile
545 550 555 560

Val Gln Thr Met Asn Ser Asp Pro Gly Leu Ala Val Gly Tyr Thr Ala
565 570 575

Phe Asn Gly Val Asp Phe Glu Gly Thr Phe His Val Asn Thr Val Thr
580 585 590

Asp Asp Asp Tyr Ala Gly Phe Ile Phe Gly Tyr Gln Asp Ser Ser Ser
595 600 605

Phe Tyr Val Val Met Trp Lys Gln Met Glu Gln Thr Tyr Trp Gln Ala
610 615 620

Asn Pro Phe Arg Ala Val Ala Glu Pro Gly Ile Gln Leu Lys Ala Val
625 630 635 640

Lys Ser Ser Thr Gly Pro Gly Glu Gln Leu Arg Asn Ala Leu Trp His
645 650 655

Thr Gly Asp Thr Glu Ser Gln Val Arg Leu Leu Trp Lys Asp Pro Arg
660 665 670

Asn Val Gly Trp Lys Asp Lys Lys Ser Tyr Arg Trp Phe Leu Gln His
675 680 685

Arg Pro Gln Val Gly Tyr Ile Arg Val Arg Phe Tyr Glu Gly Pro Glu
690 695 700

Leu Val Ala Asp Ser Asn Val Val Leu Asp Thr Thr Met Arg Gly Gly
705 710 715 720

Arg Leu Gly Val Phe Cys Phe Ser Gln Glu Asn Ile Ile Trp Ala Asn
725 730 735

Leu Arg Tyr Arg Cys Asn Asp Thr Ile Pro Glu Asp Tyr Glu Thr His
740 745 750

Gln Leu Arg Gln Ala
755