Title: Analysis of Fingerprints using Deep Neural Networks

- Definition Fingerprint quality analysis assesses the clarity and usability of a fingerprint image for biometric identification.
- Purpose: Ensures that fingerprints captured are suitable for recognition and matching in security systems.
- Factors Affecting: Ridge Clarity, Moisture, Donor type and Development Method

Development Methods

- Alternate Light Source (ALS)
- Cyanoacrylate
- Magnetic Powder Method
- Other Collection Methods

Why Conduct Analysis

- Improves Identification Accuracy
- Enhances Criminal Investigations
- Supports Examiner Decision-Making

Dataset and Target Variable

- 1300+ Labelled images of fingerprint samples
- Combination of FVC 2004 dataset + Custom Dataset + SocoFing Dataset
- Target Variable A fingerprint quality score ranging from 0 4

The Centre for Applied Science and Technology (CAST) scale is a subjective grading scheme used to assess the quality of developed fingermarks, focusing on the areas of developed ridge detail, with higher scores indicating better quality.

Grade	Level of Detail
0	No evidence of print
1	Some evidence of contact but no ridge detail present
2	Less than 1/3 of print showing clear ridge detail
3	Between 1/3 and 2/3 of print showing clear ridge detail
4	Over 2/3 of print showing clear ridge detail

Data Preprocessing

- Data Augmentation
 - Random Flip
 - Random Crop
 - Resize to 224*224
 - Random Brightness Contrast
 - Normalizing
- Converting images to pytorch tensors

Model Architecture

- Pretrained Models
 - VGG 16 Pretrained Network
 - ResNext Model
 - Resnet 50
- Adam Optimizer
- Sparse Cross Entropy Loss Function
- Early Stopping

VGG16

VGG-16 Conv + Relu 512 Conv + Relu 128 Conv + Relu 256 Conv + Relu 256 Conv + Relu 256 Conv + Relu 512 3x3 Conv + Relu 64 2x2 Max-Pool 512 2x2 Max-Pool 128 3x3 Conv + Relu 3x3 Conv + Relu Conv + Relu 3x3 Conv + Relu Conv + Relu Conv + Relu Max-Pool Max-Pool FC 4096 14 x 14 224 x 224 112 x 112 28 x 28 7 X 7 **56 x 56**

Resnet 50

Result Resnet50

ResNext

Results ResNext

Model Comparison

Epochs After Early Stopping

VGG: 150ResNet: 12ResNext: 32

CONCLUSION

- VGG-16 achieved the highest accuracy, indicating strong feature extraction capabilities despite requiring more training epochs (150).
- **ResNet** had moderate accuracy but trained in significantly fewer epochs (12), showing efficient learning but potentially lower generalization.
- **ResNext** performed better than ResNet but lower than VGG-16, balancing accuracy and training efficiency (32 epochs).