Analisis Matemático 2 fiuba

Isaac Edgar Camacho

21 de diciembre de 2019

Resumen

Este documento es una introducción a análisis 2 que pretende ser una guia sencilla, rapida y simple

Índice

1. Puntos en el Espacio

1

1. Puntos en el Espacio

■ En R^2 un punto se indica como un par ordenado $\mathbf{x} = (\mathbf{x}, \mathbf{y})$ es decir un par de coordenadas cartecianas y vamos a decir que x pertenece a R^2 si y solo si x tiene dos componentes. De la misma manera un punto en R^3 se escribe como una terna ordenada $\mathbf{x} = (\mathbf{x}, \mathbf{y}, \mathbf{z})$ y decimos que x pertenece a R^3 si y solo si x tiene tres componentes.

Podemos generalizarlo a R^n , en este espacio un punto se indica como una n-upla $\mathbf{x}=(\underbrace{a,\ldots,a})$ entonces decimos que \mathbf{x} pertenece a R^n si y solo si

 \mathbf{x} tiene \mathbf{n} componentes.

El espacio \mathbb{R}^2 Algebraicamente es el conjunto de todos los pares ordenados y Geometricamente se lo puede definir como el conjunto de todos los vectores que parten del origen.

■ ESPACIOS VECTORIALES (Repaso)

Si en un espacio \mathbb{R}^n se define la suma de dos de sus elementos y el producto de un escalar por un vector, Entonces podemos hablar de un espacio vectorial.

Si
$$x = (x_1, x_2)$$
 e $y = (y_1, y_2) \epsilon R^2 \Rightarrow (x + y) \epsilon R^2$

Si $\mathbf{x} = (x_1, x_2) \epsilon R^2 \mathbf{y} k$ es un escalar $\Rightarrow k \mathbf{x} \epsilon R^2$

- ESPACION METRICO Es un espacio vectorial donde se introduce una metrica o distancia y se simboliza (R^n , d)
- DISTANCIA Sea el conjunto M distinto de vacio y los elementos x , y , z pertenecientes a M, definimos la distancia como una funcion positiva, real , escalar que cumple las siguientes propiedades.

Propiedades de la distancia

1. La distancia a si mismo es nula.

$$d(x,y) = 0 \iff x = y$$

2. Propiedad simetrica

$$d(x,y) = d(y,x)$$

3. Propiedad triangular.

$$d(x,z) \le d(x,y) + d(y,z)$$

Esta propiedad se importante ya que la igualdad solo se dará cuando los tres puentos esten alineados sobre una recta, en cualquier otro caso la desigualdad se cunplirá.

EJEMPLOS DE DISTANCIAS :

Distancia pitagorica:
$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$
.

Distancia taxy: es la distancia como si recorrieras las calles no podes ir en diagonal d(x,y) = $|x_2 - x_1| + |y_2 - y_1|$.

Distancia Ajedres: Es como si te movieras como el caballo del ajedres.

$$d(x,y) = \max |x_2 - x_1| + |y_2 - y_1|$$

• Garbage colector: quita los objetos a los que no haga referencia nada