FIBER BUNDLES - NOTES

Gal Anton Gorše

1 Fiber bundles

All manifolds are considered smooth (complex).

Definition 1.1. A fiber bundle is a quadruple (E, M, F, π) , where (E, M, F) are smooth (complex) manifolds and $\pi : E \to M$ is a surjective submersion such that for all $x \in M$, there exists an open neighborhood $x \in U \subseteq M$ and a diffeomorphism (biholomorphism)

$$\varphi: \pi^{-1}(U) \to U \times F,$$

such that $\pi = \pi_1 \circ \varphi$.

Definition 1.2. Let G be a Lie group. A fiber bundle (E, M, F, π) is a fiber bundle with structure group G if:

- G acts faithfully on F;
- there exists an open covering $\{U_{\alpha}\}$ of M such that for every index α , there exists a diffeomorphism (biholomorphism)

$$\varphi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U \times F,$$

such that for $U_{\alpha} \cap U_{\beta} = \emptyset$, there exists a smooth map $g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to G$ satisfying

$$\varphi_{\alpha} \circ \varphi_{\beta}^{-1}(x, f) = (x, g_{\alpha\beta}(x)f), \quad \forall x \in U_{\alpha} \cap U_{\beta}, \ \forall f \in F.$$

The covering $\{U_{\alpha}\}$ is called the trivializing atlas, while $\{g_{\alpha\beta}\}$ are the local transition functions.

Transition functions satisfy the so-called cocycle conditions.

- $g_{\alpha\alpha}(x) = \mathrm{id}_F, \ \forall x \in U_{\alpha}.$
- $g_{\beta\alpha}(x) \cdot g_{\alpha\beta}(x) = \mathrm{id}_F, \ \forall x \in U_{\alpha} \cap U_{\beta}.$
- $g_{\alpha\beta}(x) \cdot g_{\beta\gamma}(x) \cdot g_{\gamma\alpha}(x) = \mathrm{id}_F, \ \forall x \in U_\alpha \cap U_\beta \cap U_\gamma.$

Definition 1.3. Let M, M' be manifolds and $\pi_E : E \to M, \ \pi_{E'} : E' \to M'$ fiber bundles. A

morphism of bundles is a pair (f, φ) such that $f: M \to M', \varphi: E \to E'$ and $\pi_{E'} \circ \varphi = f \circ \pi_E$.

$$\begin{array}{ccc} E & \stackrel{\varphi}{\longrightarrow} E' \\ \downarrow^{\pi_E} & & \downarrow^{\pi_{E'}} \\ M & \stackrel{f}{\longrightarrow} M' \end{array}$$

If f, φ are both diffeomorphisms (biholomorphisms), the bundles are equivalent.

Definition 1.4. Let $U \subseteq M$ open. The bundle E is trivial over U if $E|_U := \pi^{-1}(U)$ is equivalent to $U \times F$.

Proposition 1.5. Let (E, M, F, π_E) be a bundle with trivializing atlas $\{(U_{\alpha}, \varphi_{\alpha}^E)\}$ and transition functions $\{g_{\alpha\beta}\}$ and $(E', M, F', \pi_{E'})$ be a bundle with trivializing atlas $\{(U_{\alpha}, \varphi_{\alpha}^E)\}$ and transition functions $\{h_{\alpha\beta}\}$. Take any map $\psi: E \to E'$. For any α , denote

$$\psi_\alpha := \varphi_\alpha^{E'} \circ \psi \circ (\varphi_\alpha^E)^{-1} = (\psi_\alpha', \psi_\alpha'') : U_\alpha \times F \to U_\alpha \times F'.$$

If (id, ψ) is an equivalence, then:

- 1. $\psi'_{\alpha} = id;$
- 2. $\psi_{\alpha}(x,\cdot): \{x\} \times F \to \{x\} \times F' \text{ is a diffeomorphism (biholomorphism)};$
- 3. $\psi_{\beta}''(x,t) = h_{\beta\alpha}(x) \cdot \psi_{\alpha}''(x,g_{\alpha\beta}(x) \cdot t)$ for any $U_{\alpha} \cap U_{\beta} \neq \emptyset$.

Conversely, if there exists a family of smooth maps

$$\psi_{\alpha} = (\psi_{\alpha}', \psi_{\alpha}'') : U_{\alpha} \times F \to U_{\alpha} \times F'$$

that satisfy the above three properties, then there exists a bundle equivalence (id, ψ) such that $\psi_{\alpha} = \varphi_{\alpha}^{E'} \circ \psi \circ (\varphi_{\alpha}^{E})^{-1}$.

Proof. Let us first prove the right implication (\Rightarrow) . From the commuting diagram

$$U_{\alpha} \times F \xrightarrow{(\varphi_{\alpha}^{E})^{-1}} \pi_{E}^{-1}(U_{\alpha}) \xrightarrow{\psi} \pi_{E'}^{-1}(U_{\alpha}) \xrightarrow{\varphi_{\alpha}^{E'}} U_{\alpha} \times F'$$

$$\downarrow^{\pi_{E}} \qquad \qquad \downarrow^{\pi_{E'}} \qquad \qquad \downarrow^{\pi_{E'}} \qquad \downarrow^{\pi_{C'}} \qquad \downarrow^{\pi_$$

we get the first item. Since (id, ψ) is an equivalence, ψ is a diffeomorphism and so is ψ_{α} for any α . The second item then follows. Finally, for $U_{\alpha} \cap U_{\beta} \neq \emptyset$, we have

$$\psi_{\beta} = \varphi_{\beta}^{E'} \circ \psi \circ (\varphi_{\beta}^{E})^{-1}$$

$$= \varphi_{\beta}^{E'} \circ (\varphi_{\alpha}^{E'})^{-1} \circ \varphi_{\alpha}^{E'} \circ \psi \circ (\varphi_{\alpha}^{E})^{-1} \circ \varphi_{\alpha}^{E} \circ (\varphi_{\alpha}^{E})^{-1}$$

$$= (\mathrm{id}, h_{\beta\alpha}) \circ \psi_{\alpha} \circ (\mathrm{id}, g_{\alpha\beta}).$$

Now the converse direction (\Leftarrow). We define $\psi: E \to E'$ $\psi:= (\varphi_{\alpha}^{E'})^{-1} \circ \psi_{\alpha} \circ \varphi_{\alpha}^{E}$ on the open covering $\{\pi^{-1}(U_{\alpha})\}$. This is well-defined because for $\pi^{-1}(U_{\alpha}) \cap \pi^{-1}(U_{\beta})$, we have the third item:

$$\varphi_{\beta}^{E'} \circ (\varphi_{\alpha}^{E'})^{-1} \circ \psi_{\alpha} \circ \varphi_{\alpha}^{E} \circ (\varphi_{\alpha}^{E})^{-1} = (\mathrm{id}, h_{\beta\alpha}) \circ \psi_{\alpha} \circ (\mathrm{id}, g_{\alpha\beta}) = (\mathrm{id}, \psi_{\beta}'') = \psi_{\beta}.$$

So we have proved that $\psi: E \to E'$ is a well-defined smooth map. Now since we have the first two items, ψ_{α} 's are diffeomorphisms, so we can define the smooth inverse $\psi^{-1}: E' \to E$ in a similar

manner. This means that ψ is a diffeomorphism. Finally, because of the diagram

$$\pi_E^{-1}(U_\alpha) \xrightarrow{\varphi_\alpha^E} U_\alpha \times F \xrightarrow{\psi_\alpha} U_\alpha \times F' \xrightarrow{(\varphi_\alpha^{E'})^{-1}} \pi_{E'}^{-1}(U_\alpha)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

we have the equivalence (id, ψ).

Up to an equivalence, a fiber bundle is defined by its transition functions.

Theorem 1.6.

Let M, F be manifolds and G a Lie group acting faithfully on F. Let $\{U_{\alpha}\}$ be an open cover of M with maps $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to G$ satisfying the cocycle conditions. Then there exists a unique (up to equivalence) bundle E with base M, fiber F, structure group G and transition functions $\{g_{\alpha\beta}\}$.

Proof. Define $E := \bigsqcup_{\alpha} U_{\alpha} \times F / \sim$, where

$$(x,f) \sim (y,f') \Leftrightarrow x = y \text{ and } \exists \alpha, \beta : x \in U_{\alpha}, y \in U_{\beta}, f = g_{\alpha\beta(x)}f'.$$

This is an equivalence relation due to the cocycle conditions and E is a topological manifold. Next, we have to show that it is also a smooth one. Up to a refining, assume $\{(U_{\alpha}, \psi_{\alpha})\}$ are local charts for M. Let $\{(W_i, \theta_i)\}$ be an atlas for F. Then $\{[U_{\alpha} \times W_j]\}_{\alpha,j}$ is an open cover of E. Define

$$\widetilde{\varphi}_{\alpha,j}: [U_{\alpha} \times W_j] \to \psi_{\alpha}(U_{\alpha}) \times \theta_j(W_j), \quad [x,f] \mapsto (\psi_{\alpha}(x), \theta_j(f)).$$

This is a homeomorphism by the same arguments as above. We need to see that $\widetilde{\varphi}_{\alpha,j} \circ (\widetilde{\varphi}_{\beta,k})^{-1}$ is smooth. Let $(p,t) \in \psi_{\beta}(U_{\alpha} \cap U_{\beta}) \times \theta_{k}(W_{j} \cap W_{k})$. Then

$$\begin{split} \widetilde{\varphi}_{\alpha,j} \circ (\widetilde{\varphi}_{\beta,k})^{-1}(p,t) &= \widetilde{\varphi}_{\alpha,j}([\psi_{\beta}^{-1}(p),\theta_k^{-1}(t)]) \\ &= \widetilde{\varphi}_{\alpha,j}([\psi_{\beta}^{-1}(p),g_{\alpha\beta}(\psi_{\beta}^{-1}(p)) \cdot \theta_k^{-1}(t)]) \\ &= (\psi_{\alpha} \circ \psi_{\beta}^{-1}(p),\theta_i(g_{\alpha\beta}(\psi_{\beta}^{-1}(p)) \cdot \theta_k^{-1}(t))). \end{split}$$

The second component is smooth w.r.t. $t \in \theta_k(W_k)$ because the action of $g_{\alpha\beta}$ is smooth. It is also smooth w.r.t. $p \in \psi_\beta(U_\beta)$ because ψ_β^{-1} is smooth and $g_{\alpha\beta}: U_\alpha \cap U_\beta \to G$ is smooth. Define

$$\pi: E \to M, \quad \pi([x, f]) = x$$

and this is a well-defined smooth submersion. Next, define

$$\varphi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times F, \quad [\widetilde{x}, \widetilde{f}] \mapsto (x, f),$$

where $(x,f) \in U_{\alpha} \times F \subseteq \bigsqcup_{\alpha} U_{\alpha} \times F$ is a unique representative of $[\widetilde{x},\widetilde{f}]$ in $U_{\alpha} \times F$. Then φ_{α} is bijective with inverse $\rho|_{U_{\alpha} \times F}$, where $\rho: \bigsqcup_{\alpha} U_{\alpha} \times F \to E$ is simply the quotient map. So $\rho|_{U_{\alpha} \times F}$ is continuous and φ_{α} is a homeomorphism. It's easy to show that it is even a diffeomorphism. Next, let $U_{\alpha} \cap U_{\beta} \neq \emptyset$. Then

$$\varphi_{\alpha} \circ \varphi_{\beta}^{-1}(x, f) = \varphi_{\alpha}([x, f]_{\beta}) = \varphi_{\alpha}([x, g_{\alpha\beta}(x)f]_{\alpha}) = (x, g_{\alpha\beta}(x)f),$$

so $\{\varphi_{\alpha}\}$ is a trivializing atlas for E. Finally, suppose that $\pi': E' \to M$ is another such bundle. Then the family of identity maps $U_{\alpha} \times F \to U_{\alpha} \times F$ satisfy the properties from the earlier proposition, so they induce a bundle equivalence between E and E'.

1.1 Vector and principal bundles

Definition 1.7. A bundle $(E, M, \mathbb{R}^k, \pi)$ with structure group $GL_k(\mathbb{R})$ is a vector bundle of rank k if there exists a trivializing atlas $\{(U_\alpha, \varphi_\alpha)\}$ for E such that for all $x \in U_\alpha$,

$$\varphi_{\alpha}|_{E}: E_{x} \to \{x\} \times \mathbb{R}^{k}$$

is a vector space isomorphism.

The previous theorem produces local trivializations which are actually linear on the fibers, so it effectively gives us the fiber in the following lemma.

Lemma 1.8. Let M be a manifold, E bundle with fibers \mathbb{R}^k and structure group $GL_k(\mathbb{R})$. Then there exists a vector bundle over M which is equivalent to E as a bundle.

Definition 1.9. Let M, M' be manifolds and E, E' vector bundles over M, M', respectively. A bundle morphism (f, φ) is a vector bundle morphism if for all $x \in M$, the maps

$$\varphi_x := \varphi \big|_{E_x} : E_x \to S'_{f(x)}$$

is a vector space morphism (i.e. it is linear).

Definition 1.10. A Lie group G acts on right on a manifold F if $R:G\to \mathrm{Diff}(F)$ is a group homomorphism such that

$$R(e) = id$$
, $R(g^{-1}) = (R(g))^{-1}$, $R(gh) = R(h) \circ R(g)$.

Observe that if $L: G \to \text{Diff}$ is a left action, then $R(g) := L(g^{-1})$ is a right action.

Example 1.11. If $\theta: F \to G$ is a diffeomorphism, then we have a right action

$$R_a(f) = \theta^{-1}(\theta(f) \cdot g) =: f \cdot g$$

for $f \in F$, $g \in G$.

Definition 1.12. G Lie group, a bundle (P, M, G, π) with structure group G (so fiber and structure group are the same) is a principal bundle if there exists a trivializing atlas $\{(U_{\alpha}, \varphi_{\alpha})\}$ for P such that for all $x \in U_{\alpha}$, $\varphi_{\alpha}|_{P_{\alpha}} : P_{x} \to \{x\} \times G$ is right G-equivariant: this means that if

$$\varphi_{\alpha}(v) = (x, \varphi_{\alpha}''(x, v))$$

for $v \in P_r$, then

$$\varphi_{\alpha}''(x,vg) = \varphi_{\alpha}''(x,v) \cdot g$$

for every $g \in G$.

Here, the right action of G on the bundles is the one described in fhe last example. Right G-equivariance tells us that no matter what the choice of the diffeomorphism $\varphi_{\alpha}|_{E_x}: E_x \to G$ is, we have essentially the same right action of G on E_x : for $x \in U_{\alpha} \cap U_{\beta}$ and $p \in P_x$, we get

$$p \cdot g := \varphi_{\alpha}^{-1}(\varphi_{\alpha}(p) \cdot g) = \varphi_{\beta}^{-1}(\varphi_{\beta}(p) \cdot g).$$

Also, observe that the right action commutes with the action, given by the fact that G is the structure group.

Definition 1.13. Let M, M' be manifolds, P, P' principal bundles over M, M' with structure group G, G'. Let $\rho: G \to G'$ be a Lie group morphism. A bundle group morphism (f, φ) is a principal bundle ρ -morphism if $\varphi_x(pg) = \varphi_x(p)\rho(g)$ for $p \in P_x$ and $g \in G$.

Lemma 1.14. Let M be a manifold, P bundle over M with fiber G and structure group G. Then there exists a principal bundle P' on M which is equivalent to P as a bundle.

Definition 1.15. Let G be a Lie group and $H \subseteq G$ a Lie subgroup, $\rho: M \hookrightarrow G$ an immersion. Let P be a principal bundle over M with fiber G and P' a principal bundle over M with fiber H. Then P' is a reduction of P if there exists a ρ -morphism of principal bundles (id, h) such that $h: P' \to P$ is injective.

Proposition 1.16. Let P be a principal bundle with structure group G on M and $H \subseteq G$ a Lie subgroup. Then we can reduce G to H iff P is isomorphic to a G-principal bundle \widetilde{P} , which has transition functions in H.

Proof. (\Leftarrow) Let $\{U_{\alpha}\}$ be a trivialization at las for \widetilde{P} (take a refinement if needed). and $h_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to H \subseteq G$ its transition maps. Now every G-principal bundle with this trivialization is isomorphic (as a principal bundle) to $\sqcup_{\alpha} U_{\alpha} \times G / \sim$, so WLOG we may take $\widetilde{P} = \sqcup_{\alpha} U_{\alpha} \times G / \sim$. Next, define a H-principal bundle $P' := \sqcup_{\alpha} U_{\alpha} \times H / \sim$ on M. Define the map

$$i_{\alpha}: U_{\alpha} \times H \to U_{\alpha} \times G, \quad (x,h) \mapsto (x,h).$$

This map passes to the quotients $P' \to P$ and the induced map is a morphism of principal bundles. Since $i: H \hookrightarrow G$ is injective, so is the resulting morphism of principal bundles. (\Rightarrow) Assume $h: P' \to P$ is a reduction and $\{U_{\alpha}\}$ is a trivializing atlas for P, P' (take a refinement, if needed). Let $\varphi'_{\alpha}: P'|_{U_{\alpha}} \to U_{\alpha} \times H$ be a local trivialization for P' with transition maps $h_{\alpha\beta}$ in H. For $p' \in P'_x$, let

$$\varphi'_{\alpha}(p') = (x, \widetilde{\varphi_{\alpha}}'(x, p')).$$

Similarly, let $\psi_{\alpha}: P|_{U_{\alpha}} \to U_{\alpha} \times H$ be a local trivialization for P with transition maps $g_{\alpha\beta}$ in G and

$$\psi_{\alpha}(p) = (x, \widetilde{\psi_{\alpha}}(x, p)).$$

For each α and $x \in U_{\alpha}$, let $e_{x,\alpha} = \widetilde{\psi_{\alpha}} \circ h \circ (\widetilde{\varphi_{\alpha}}')^{-1}(e)$ Now we define new maps $\chi_{\alpha} : P\big|_{U_{\alpha}} \to U_{\alpha} \times G$ such that for $p \in P_x$, we get

$$\chi_{\alpha}(p) = (x, \widetilde{\chi_{\alpha}}(x, p)), \quad \widetilde{\chi_{\alpha}}(x, p) = e_{x,\alpha}^{-1} \cdot \widetilde{\psi_{\alpha}}(x, p).$$

We need to prove that this family of maps is a trivializing atlas on P. First, we prove that they are G-equivariant. For any $p \in P_x$, we get

$$\widetilde{\chi_{\alpha}}(p\cdot g) = e_{x,\alpha}^{-1} \cdot \widetilde{\psi_{\alpha}}(x,p\cdot g) = e_{x,\alpha}^{-1} \cdot \widetilde{\psi_{\alpha}}(x,p) \cdot g = \widetilde{\chi_{\alpha}}(p) \cdot g.$$

Now take any $t \in G$. Then for $x \in U_{\alpha} \cap U_{\beta}$, we have

$$\widetilde{\chi_{\alpha}} \circ \widetilde{\chi_{\beta}}^{-1}(x,t) = \widetilde{\chi_{\alpha}} \circ \widetilde{\chi_{\beta}}^{-1}(x,e_{x,\beta}^{-1} \cdot (e_{x,\beta} \cdot t))$$

$$= \widetilde{\chi_{\alpha}} \circ \widetilde{\chi_{\beta}}^{-1}(\widetilde{\chi_{\beta}}(x,\widetilde{\psi_{\beta}}^{-1}(e_{x,\beta} \cdot t)))$$

$$= \widetilde{\chi_{\alpha}}(x,\widetilde{\psi_{\beta}}^{-1}(e_{x,\beta} \cdot t))$$

$$= \widetilde{\chi_{\alpha}}(x,\widetilde{\psi_{\beta}}^{-1}(e_{x,\beta}) \cdot t)$$

$$= \widetilde{\chi_{\alpha}}(x,\widetilde{\psi_{\beta}}^{-1}(e_{x,\beta})) \cdot t$$

$$= e_{x,\alpha}^{-1} \cdot \widetilde{\psi_{\alpha}}(x,\widetilde{\psi_{\beta}}^{-1}(e_{x,\beta})) \cdot t$$

$$= (e_{x,\alpha}^{-1} \cdot g_{\alpha\beta}(x) \cdot e_{x,\beta}) \cdot t.$$

But now, notice that

$$\begin{split} g_{\alpha\beta}(x) \cdot e_{x,\beta} &= \widetilde{\psi_{\alpha}}(x, \widetilde{\psi_{\beta}}^{-1}(e_{x,\beta})) \\ &= \widetilde{\psi_{\alpha}} \circ h \circ (\widetilde{\varphi_{\beta}}')^{-1}(e) \\ &= \widetilde{\psi_{\alpha}} \circ h \circ (\widetilde{\varphi_{\alpha}}')^{-1} \circ \widetilde{\varphi_{\alpha}}' \circ (\widetilde{\varphi_{\beta}}')^{-1}(e) \\ &= \widetilde{\psi_{\alpha}} \circ h \circ (\widetilde{\varphi_{\alpha}}')^{-1}(h_{\alpha\beta}(x) \cdot e) \\ &= \widetilde{\psi_{\alpha}} \circ h \circ (\widetilde{\varphi_{\alpha}}')^{-1}(e \cdot h_{\alpha\beta}(x)) \\ &= \widetilde{\psi_{\alpha}} \circ h((\widetilde{\varphi_{\alpha}}')^{-1}(e) \cdot h_{\alpha\beta}(x)) \\ &= \widetilde{\psi_{\alpha}}(h((\widetilde{\varphi_{\alpha}}')^{-1}(e)) \cdot h_{\alpha\beta}(x)) \\ &= \widetilde{\psi_{\alpha}}(h((\widetilde{\varphi_{\alpha}}')^{-1}(e))) \cdot h_{\alpha\beta}(x) = e_{x,\alpha} \cdot h_{\alpha\beta}(x). \end{split}$$

Hence $\{\chi_{\alpha}\}$ is a trivialization atlas with transition functions $h_{\alpha\beta}$ in H. Let \widetilde{P} be a G-principal bundle with this trivialization atlas. Then the maps

$$U_{\alpha} \times G \to U_{\alpha} \times G, \quad (x,g) \mapsto (x, e_{x,\alpha}^{-1} \cdot g)$$

induce a bundle isomorphism $P \to \widetilde{P}$ as per previous proposition. By definition (see the proof of proposition), the induced map is also a G-bundle isomorphism.

Example 1.17. Let E be a vector bundle over M with transition functions $f_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to GL_n(\mathbb{R})$. Then we can use these transition functions to build $GL_k(\mathbb{R})$ -principal bundle P(E). Conversely, given a $GL_k(\mathbb{R})$ -bundle P, there exists a unique (up to isomorphism) vector bundle P such that P(E) is equivalent to P.

Definition 1.18. Let M be a manifold and E a vector bundle over M with fiber \mathbb{C}^n and structure group $GL_k(\mathbb{C})$. Then E is a complex vector bundle of complex rank k. If M is a complex manifold and $\pi: E \to M$ is holomorphic, then E is a holomorphic bundle.

Proposition 1.19. Let L, L' be holomorphic fiber bundles of rank 1 (also called line bundles) on a complex manifold M with transition functions $\{g_{\alpha\beta}\}$ and $\{g'_{\alpha\beta}\}$, respectively. Then there exists a holomorphic vector bundle isomorphism iff for all α , there exists a holomorphic map $f_{\alpha}: U_{\alpha} \to \mathbb{C}^*$ such that for $U_{\alpha} \cap U_{\beta} \neq \emptyset$, we get

$$\frac{f_{\alpha}}{f_{\beta}}\big|_{U_{\alpha}\cap U_{\beta}} = \frac{g_{\alpha\beta}}{g'_{\alpha\beta}}$$

Proof. Follows from the proposition on equivalence of bundles.

1.2 Examples

Definition 1.20. The tangent bundle is defined as $TM := \bigsqcup_{p \in M} T_p M$.

Proposition 1.21. $\pi: TM \to M$ is a vector bundle of rank $n = \dim M$.

Proof. We define the smooth structure on TM with local charts

$$\pi^{-1}(U_{\alpha}) \to \mathbb{R}^n \times \mathbb{R}^n, \quad (p,v) \mapsto (\varphi_{\alpha}(p), (d\varphi_{\alpha})_p(v)),$$

where $\varphi_{\alpha}: U_{\alpha} \to \mathbb{R}^n$ are local charts on M. Now if

$$\varphi_{\alpha\beta}:\varphi_{\beta}(U_{\alpha}\cap U_{\beta})\to\varphi_{\alpha}(U_{\alpha}\cap U_{\beta})$$

are the transition maps of the manifold, then we can take the trivialization atlas $\{U_{\alpha}\}$ with local transition maps $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to GL_n(\mathbb{R})$, which map p to the matrix of $(d\varphi_{\alpha\beta})_p$ in the standard basis of \mathbb{R}^n .

Definition 1.22. Let M be a manifold and E a vector bundle on M of rank k. For $p \in M$, let $F(E)_p$ be the set of ordered bases of E_p (equivalently: linear isomorphisms $\mathbb{R}^k \to E_p$) and define $F(E) := \bigsqcup_{p \in M} F(E)_p$ with

$$\pi_{F(F)}: F(E) \to M, \quad (p, \underbrace{(v_1, \dots, v_k)}_{\in F(E)_p}) \mapsto p.$$

This is the frame bundle.

Proposition 1.23. F(E) is a principal bundle with fiber $GL_k(\mathbb{R})$, which is equivalent (as a principal bundle) to the associated principal bundle P(E).

Proof. As before, we have to introduce a principal bundle structure on F(E). So far, we have done this using the fiber bundle construction theorem. Here, we do that in another way. Suppose that $\{U_{\alpha}\}$ is a trivializing atlas for the vector bundle $\pi: E \to M$ as well as the local atlas for M (take a refinement, if needed). Suppose that $\varphi'_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{k}$ are local trivializations and $\varphi_{\alpha}: U_{\alpha} \to \mathbb{R}^{m}$ are local charts on M. Also, let $\{V_{\beta}\}$ be a local atlas for a manifold $GL_{k}(\mathbb{R})$ and $\phi_{\beta}: V_{\beta} \to \mathbb{R}^{k^{2}}$ its local charts. Our goal is then to introduce a topology and a smooth structure on $F(E) := \bigsqcup_{n \in M} F(E)_{p}$ (so far, this is just a set) such that

$$\psi_{\alpha}': \pi_{F(E)}^{-1}(U_{\alpha}) \to U_{\alpha} \times GL_{k}(\mathbb{R}), \quad (\underbrace{p}_{\in U_{\alpha}}, \underbrace{(v_{1}, \dots, v_{k})}_{\in F(E)_{p}}) \mapsto (p, \underbrace{(\varphi_{\alpha}'(v_{1}) \cdots \varphi_{\alpha}'(v_{k}))}_{\in GL_{k}(\mathbb{R})})$$

are local trivializations which make F(E) into a $GL_k(\mathbb{R})$ -principal bundle. For any indices α, β , define the map

$$\psi_{\alpha,\beta}: \psi_{\alpha}^{\prime-1}(U_{\alpha} \times V_{\beta}) \xrightarrow{\psi_{\alpha}^{\prime}} U_{\alpha} \times V_{\beta} \xrightarrow{\varphi_{\alpha} \times \phi_{\beta}} \mathbb{R}^{m} \times \mathbb{R}^{k^{2}}.$$

These maps satisfy the smooth manifold chart lemma (Lemma 1.35 in Lee's Introduction to smooth manifolds), they induce a smooth manifold structure on F(E) which makes ϕ'_{α} into trivialization maps. It is routine to prove that these trivialization maps make F(E) into a $GL_k(\mathbb{R})$ -principal bundle and that F(E) has the same transition functions as the vector bundle E on trivialization atlas $\{\pi_{F(E)}^{-1}(U_{\alpha})\}_{\alpha}$. By the uniqueness in the construction theorem for fiber bundles, it follows that F(E) is equivalent as a $GL_k(\mathbb{R})$ -principal bundle to P(E).

Remark. The proof gives us a way to construct a fiber bundle structure on a set with chosen trivialization functions.

Definition 1.24. When E = TM, we write FM := F(TM).

Proposition 1.25. FM admits a reduction to $GL_k(\mathbb{R})^+$ iff M is orientable.

Proof. Follows directly from proposition (DOPOLNI).

Here's another important example. Define the map

$$\pi: SO(n) \to S^{n-1}, \quad (a_1, \dots, a_n) \to a_n.$$

Now since $S^{n-1} = F^{-1}(0)$, where

$$F: \mathbb{R}^{n-1} \to \mathbb{R}^{n-1}, \quad x \mapsto \langle x, x \rangle - 1$$

and

$$T_p S^{n-1} = \{ v \in \mathbb{R}^{n-1} : dF_p(v) = \langle p, v \rangle = 0 \},$$

we get that if $A = (a_1, \ldots, a_n) \in SO(n)$, then (a_1, \ldots, a_{n-1}) is an orthonormal basis of $T_{a_n}S^{n-1}$. Denote this basis by $\mu(A)$. Let $\{(U_\alpha, \varphi_\alpha)\}$ be an oriented atlas for S^{n-1} such that the basis (e_1, \ldots, e_{n-1}) in $T_{e_n}S^{n-1}$ has the same orientation as the basis, induced by the local chart of the atlas. Denote the basis from the local charts φ_α as

$$\left(\left(\frac{\partial}{\partial x_1}\right)_{\alpha}(p),\ldots,\left(\frac{\partial}{\partial x_{n-1}}\right)_{\alpha}(p)\right)\subseteq T_pS^{n-1},$$

then we can transform it using to an orthonormal basis

$$v^{\alpha}(p) = (v_1^{\alpha}(p), \dots, v_{n-1}^{\alpha}(p)) \subseteq T_p S^{n-1}$$

(using Gram-Schmidt, for example). Therefore, given $A = (a_1, \ldots, a_n) \in SO(n)$, there exists a unique $A_{\alpha} \in SO(n-1)$ such that $\mu(A) = A_{\alpha}^{\top} v^{\alpha}(a_n)$. Now we can define SO(n) as a principal bundle over S^{n-1} with structure group SO(n-1) with local trivializations

$$\psi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times SO(n-1), \quad A \mapsto (a_n, A_{\alpha})$$

(obviously, transition map are in SO(n-1)). We can think of SO(n) as a subbundle of FS^{n-1} made up of only oriented orthonormal bases: SO(n) is a reduction of FS^{n-1} to S^{n-1} .

Example 1.26 (Hopf fibration). The map

$$S^{2n+1} \subseteq \mathbb{C}^{n+1} \to \mathbb{C}P^n, \quad (z_0, \dots, z_n) \mapsto [z_0 : \dots : z_n]$$

is a principal bundle with fiber S^1 .

Example 1.27 (Homogeneous spaces). Let G be a Lie group and $H \subseteq G$ its Lie subgroup, then $G \to G/H$ is a principal bundle with fiber H.

1.3 Sections

Definition 1.28. Let M be a manifold, $\pi: E \to M$ a fiber bundle and $U \subseteq M$ open. A section of E over M is a smooth map $s: U \to E$ such that $\pi \circ s = \mathrm{id}$.

The set of sections of E over M is denoted by $C_{\pi}^{\infty}(U, E)$ or $\mathcal{O}_{\pi}(U, E)$ (if holomorphic). When U = M, we talk about a global section.

Remark. If E is a vector bundle, then $C^{\infty}_{\pi}(U, E)$ is a vector space.

Proposition 1.29. Let E be a fiber bundle over M with fiber F and structure group G. Let $\{(U_{\alpha}, \varphi_{\alpha})\}$ be a trivializing atlas for E, $g_{\alpha\beta}$ transition maps and $U \subseteq M$ open. Then for $s \in C^{\infty}_{\pi}(U, E)$, we define

$$s_{\alpha} = \pi_F \circ \varphi_{\alpha} \circ s : U \cap U_{\alpha} \to F$$

and we have $s_{\alpha} = g_{\alpha\beta}s_{\beta}$ whenever $U \cap U_{\alpha} \cap U_{\beta} \neq \emptyset$. Conversely, given a family of smooth $s_{\alpha} = \pi_F : U \cap U_{\alpha} \to F$ such that $s_{\alpha} = g_{\alpha\beta} \cdot s_{\beta}$, then there exists a unique $s \in C^{\infty}_{\pi}(U, E)$ such that $s_{\alpha} = \pi_F \circ \varphi_{\alpha} \circ s$.

Proof. (\Rightarrow) For $x \in U \cap U_{\alpha} \cap U_{\beta}$, we have

$$s(x) = \varphi_{\alpha}^{-1}(x, s_{\alpha}(x)).$$

Now for $x \in U \cap U_{\alpha} \cap U_{\beta}$, we get

$$(x, s_{\alpha}(x)) = \varphi_{\alpha}(s(x)) = \varphi_{\alpha}(s(x))$$

= $\varphi_{\alpha}(\varphi_{\beta}^{-1}(x, s_{\beta}(x))) = (x, g_{\alpha\beta}(x) \cdot s_{\beta}(x)).$

Conversely (\Leftarrow), given s_{α} , we can define $s(x) := \varphi_{\alpha}^{-1}(x, s_{\alpha}(x))$. By the same calculation as above, this gives us a well defined smooth map, which is a section.

Definition 1.30. The maps $s_{\alpha}: U \cap U_{\alpha} \to F$ are called the local data of s.

Proposition 1.31. Let E be a vector bundle of rank k over M and $U \subseteq M$ open. Then E is trivial over U iff there exist sections s_1, \ldots, s_k such that $\{s_1(x), \ldots, s_k(x)\} \subseteq E_x$ is a basis for every $x \in U$.

Proof. (\Leftarrow) For each $v \in E_x$, there exist coefficients $a_j \in \mathbb{R}$ such that $v = \sum_{j=1}^k a_j s_j(x)$. Then

$$\Phi: E|_{U} \to U \times \mathbb{R}^k, \quad v \mapsto (x, (a_1, \dots, a_k))$$

is a vector bundle isomorphism. Conversely (\Rightarrow) , if $\Phi: E|_U \to U \times \mathbb{R}^k$ is a trivialization, then define $s_j(x) = \Phi^{-1}(x, e_j)$.

Remark. $x \mapsto (x,0)$ is a global section of a vector bundle.

Proposition 1.32. A principal bundle P over M admits a global section iff P is equivalent (as a principal bundle) to $M \times G$.

Proof. (\Leftarrow) If $\Phi: M \times G \to P$ is a principal bundle equivalence, then $x \mapsto \Phi(x, e)$ is a global section on P. Conversely (\Rightarrow), if $s: M \to P$ is a global section. For each $g \in P_x$, there exists a unique $h \in G$ such that s(x)h = g. Now define the principal bundle equivalence

$$\Phi: P \to M \times G, \quad g \mapsto (x, h).$$

Corollary 1.33. A principal bundle P over M is equivalent to $M \times G$ (as a principal bundle) iff G is reducible to $\{e\}$.

Proof. (\Rightarrow) By previous proposition, we have a global section $s:M\to P$, which also gives us an injective principal bundle morphism.

Conversely (\Leftarrow), a reduction $\Phi: M \times \{e\} \to P$ induces a global section $s: x \mapsto \Phi(x, e)$.

1.4 Operations on vector bundles

Let E, F be vector bundles over a manifold M of rank k_1, k_2 , respectively. WLOG assume that both have the same trivialization atlas $\{U_{\alpha}\}$ (take a refinement, if needed). Furthermore, they have trivialization maps $\varphi_{\alpha}^{E}, \varphi_{\alpha}^{F}$ and transition maps $g_{\alpha\beta}^{E}, g_{\alpha\beta}^{F}$, respectively.

$\mathbf{Direct\ sum}\ E\oplus F$

Explicitly, we can construct the vector bundle $E \oplus F$ as a set

$$\bigsqcup_{p \in M} (E_p \oplus F_p) = \{ (p, (u, v)) \mid p \in M, \ u \in E_p, v \in F_p \},\$$

equipped with the smooth structure induced by trivializations

$$\varphi_{\alpha}^{E \oplus F} : \bigsqcup_{p \in U_{\alpha}} (E_p \oplus F_p) \to U_{\alpha} \times \mathbb{R}^{k_1 + k_2}, \quad (p, (u, v)) \mapsto (p, (\varphi_p^E(u), \varphi_p^F(v))).$$

For $U_{\alpha} \cap U_{\beta} \neq \emptyset$, the transition maps are

$$g_{\alpha\beta}^{E\oplus F}(x) = \begin{pmatrix} g_{\alpha\beta}^{E}(x) & \\ & g_{\alpha\beta}^{F}(x) \end{pmatrix} : U_{\alpha} \cap U_{\beta} \to GL(k_1 + k_2).$$

Alternatively, we can construct $E \oplus F$ using the theorem for construction of vector bundles, by defining it as the vector bundle over M with fibers $\mathbb{R}^{k_1+k_2}$ and transition maps $g_{\alpha\beta}^{E\oplus F}$.

Tensor product $E \oplus F$

Explicitly, we define the vector bundle $E \otimes F$ as the set

$$\bigsqcup_{p\in M}(E_p\otimes F_p),$$

equipped by the smooth structure induced by trivializations

$$\varphi_{\alpha}^{E\otimes F}: \bigsqcup_{p\in U_{\alpha}} (E_{p}\otimes F_{p}) \to U_{\alpha}\times \mathbb{R}^{k_{1}\cdot k_{2}}, \quad (p, (\underbrace{u}_{\in E_{p}}\otimes \underbrace{v}_{\in F_{p}})) \mapsto (p, \varphi_{p}^{F}(v)\cdot (\varphi_{\alpha}^{E}(u))^{\top})$$

(when extended linearly). For $A \in \mathbb{R}^{k_1 \times k_1}$ and $B \in \mathbb{R}^{k_2 \times k_2}$, we define the Cauchy product of matrices as

$$A \otimes B = \begin{pmatrix} a_{11}B & \cdots & a_{1k_1}B \\ \vdots & & \vdots \\ a_{k_11}B & \cdots & a_{k_1k_1}B \end{pmatrix}.$$

Now again for $U_{\alpha} \cap U_{\beta} \neq \emptyset$, the transition maps for $E \otimes F$ are

$$g_{\alpha\beta}^{E\otimes F}(x) = (g_{\alpha\beta}^E(x)\otimes g_{\alpha\beta}^F(x)): U_{\alpha}\cap U_{\beta}\to GL(k_1\cdot k_2).$$

Using the construction theorem, we can also define $E \otimes F$ as the vector bundle over M with fibers $\mathbb{R}^{k_1 \cdot k_2}$ and transition maps $g_{\alpha\beta}^{E \otimes F}$.

External product $\Lambda^r(E)$

For a finite dimensional real vector space V, we define $V^{\otimes r} = \underbrace{V \otimes \cdots \otimes V}_{r \text{ times}}$ and $A \in \text{End}(V^{\otimes r})$ as

$$A(v_1 \otimes \cdots \otimes v_r) := \frac{1}{r!} \sum_{\sigma \in S(r)} (-1)^{\sigma} v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(r)}.$$

Since $A^2 = A$, we have $V^{\otimes r} = \ker A \oplus \operatorname{im} A$. Define $\Lambda^r(V) = A(V^{\otimes r}) = \operatorname{im} A$ and write

$$v_1 \wedge \cdots \wedge v_r := A(v_1 \otimes \cdots \otimes v_r).$$

If $\{v_1, \ldots, v_k\}$ is the basis of V, then $\{v_{i_1} \wedge \cdots \wedge v_{i_r}\}$ is the basis for $\lambda^r(V)$ (if r > k, then $\lambda^r(V)$ is a trivial vector space). In particular, we have the canonical isomorphism $\Lambda^r(\mathbb{R}^k) \cong \mathbb{R}^{\binom{k}{r}}$. Now we define $\Lambda^r(E)$ as the set

$$\bigsqcup_{p \in M} \Lambda^r(E_p),$$

equipped with the smooth structure induced by trivializations

$$\varphi_{\alpha}^{\Lambda^{r}(E)}: \bigsqcup_{p \in U_{\alpha}} (\Lambda^{r}(E_{p})) \to U_{\alpha} \times \mathbb{R}^{\binom{k_{1}}{r}}, \quad (p, \underbrace{v_{i_{1}}}_{\in E_{p}} \wedge \cdots \wedge \underbrace{v_{i_{n}}}_{\in E_{p}}) \mapsto (p, \varphi_{p}^{E}(v_{i_{1}}) \wedge \cdots \wedge \varphi_{p}^{E}(v_{i_{n}}))$$

The transition maps are given by $g_{\alpha\beta}^{\Lambda^r(E)}(x)$, which is the matrix in $\mathbb{R}^{n\times n}$, comprised of r-minors of $g_{\alpha\beta}^E(x)$. If $r=\operatorname{rank} E$, then $\Lambda^r(E)=\det(E)$ is the determinant bundle of E. If $r>\operatorname{rank}(E)$, then $\Lambda^r(E)=M$ is the trivial vector bundle.

The Hom bundle Hom(E, F)

Define the vector bundle Hom(E, F) as the set

$$\bigsqcup_{p \in M} \operatorname{Hom}(E_p, F_p),$$

equipped by the smooth structure induced by trivializations

$$\varphi_{\alpha}^{\operatorname{Hom}(E,F)}: \bigsqcup_{p\in U_{\alpha}} (\operatorname{Hom}(E_{p},F_{p})) \to U_{\alpha} \times \mathbb{R}^{k_{1}\cdot k_{2}}, \quad (p,f) \mapsto (p,\varphi_{p}^{F} \circ f \circ \varphi_{p}^{E^{-1}}),$$

where we view $\varphi_p^F \circ f \circ \varphi_p^{E^{-1}} : \mathbb{R}^{k_1} \to \mathbb{R}^{k_2}$ as a matrix in $\mathbb{R}^{k_2 \times k_1}$. Then $\operatorname{Hom}(E, F)$ is the vector bundle over M with transition maps $h_{\alpha\beta}$, where $h_{\alpha\beta}(x)$ (for any $x \in U_{\alpha} \cap U_{\beta}$) is given by the matrix of the linear map

$$\mathbb{R}^{k_2 \times k_1} \to \mathbb{R}^{k_2 \times k_1}, \quad A \mapsto g_{\alpha\beta}^F(x) \cdot A \cdot g_{\beta\alpha}^E(x).$$

The dual bundle E^*

The dual bundle is defined by $E^* = \operatorname{Hom}(E, M \times \mathbb{R})$. This is equivalent to constructing a vector bundle over M with transition maps $g_{\alpha\beta}^{E^*} = (g_{\alpha\beta}^E)^{-\top}$. As a corollary, $T^*M \cong (TM)^*$.

Proposition 1.34. $\operatorname{Hom}(E,F) \cong E^* \otimes F$

Proof. For any $p \in M$, we have $\text{Hom}(E_p, F_p) \cong E_p^* \otimes F_p$ as vector spaces. Then calculate the trivialization maps and determine that the resulting vector bundles are equivalent.

1.5 Pullbacks, subbundles and quotient bundles

Let $f \in C^{\infty}(M)$, then $df_x : T_xM \to T_{f(x)}M$ is a vector bundle morphism. Identifying $T\mathbb{R} \cong \mathbb{R} \times \mathbb{R}$, write $df_x(v) = (f(x), A_x(v))$. The operator $A_x : T_xM \to \mathbb{R}$ is linear, hence

$$M \to T^*M, \quad x \mapsto (x, A_x)$$

is a section of T^*M . This section is also called df_x . So every differential gives us a section on T^*M . Given a local chart $(U,(x_1,\ldots,x_n))$ on M, the set $\left(\frac{\partial}{\partial x_1},\ldots,\frac{\partial}{\partial x_n}\right)$ is a local basis of $TM\big|_U$. Let (dx_1,\ldots,dx_n) be its dual basis in $T^*M\big|_U$, then

$$df\big|_{U} = \sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} \cdot dx_{j}$$

and for each $x \in M$, we have $df_x(v) = (x, v(f))$. Notice that these dx_j are precisely the sections in $C^{\infty}(U, E)$ that we obtain as differentials of the $x_j : U \to \mathbb{R}$ as above. Since differentials give us sections on T^*M , it is natural to ask whether every section on T^*M is a differential of a function on M. This is one of the motivations for geometric PDE's: for a $u \in C^{\infty}(M, T^*M)$, we are looking for an $f \in C^{\infty}(M)$ such that df = u.

Definition 1.35. Let M, N be manifolds and $f: M \to N$ smooth. Let $\pi: E \to N$ be a bundle with fiber F and structure group G. Define the pullback f^*E with fiber F and structure group G over M as

$$f^*E := \{(m, e) \in M \times E : f(m) = \pi(e)\}$$

and map

$$\pi': f^*E \to M, \quad (m, e) \mapsto m.$$

Proposition 1.36. $\pi': f^*E \to M$ is a fiber bundle with fiber F, structure group G and transition maps $g_{\alpha\beta} \circ f$.

$$Proof.$$
 (DOPOLNI)

Example 1.37. Let $x \in M$ and $i : \{x\} \hookrightarrow M$ an immersion. Then $i^*E = Ex$. More generally, if $N \subseteq M$ is a submanifold and $i : N \to M$ is the inclusion, then $E|_N := i^*E$ is the restriction of E to N.

The map

$$\widetilde{f}: f^*E \to E, \quad (m, e) \mapsto e$$

is a fiber bundle morphism, which makes the following diagram commutative.

$$\begin{array}{ccc}
f^*E & \xrightarrow{\widetilde{f}} & E \\
\pi' \downarrow & & \downarrow \pi \\
M & \xrightarrow{f} & N
\end{array}$$

Up to equivalence, f^*E is the only bundle that makes the above diagram commutative when f is a diffeomorphism.

Proposition 1.38. Let $f: N \to M$ smooth and $\pi: E \to N$ a bundle with fiber F and structure group G. Let $\rho: E' \to M$ be another bundle with fiber F and structure group G. If $(f,g): E' \to E$ is a fiber bundle equivalence

$$\begin{array}{ccc} E' & \stackrel{g}{\longrightarrow} & E \\ \rho \!\!\!\! \downarrow & & \downarrow_{\pi}, \\ M & \stackrel{f}{\longrightarrow} & N \end{array}$$

then $E' \cong f^*E$.

Proof. Define the map

$$\Phi: E' \to f^*E, \quad e' \mapsto (\rho(e'), g(e')).$$

Since $f \circ \rho = \pi \circ g$, this is well-defined and the image is exactly f^*E .

Definition 1.39. Let E, F' be vector bundles over M. If there exists a vector bundle morphism $i: F' \subseteq E$ that is injective on the fibers, we call F := i(F') a subbundle of E.

Proposition 1.40. Let M be a manifold and $\pi: E \to M$ a vector bundle of rank k on M. Suppose $i: F' \hookrightarrow E$ and F:=i(F') is a subbundle of rank $l\subseteq k$. Then i is an embedding and $F\subseteq E$ is a submanifold of E. Moreover, $\pi|_F: F\to M$ is a vector bundle and there exists a trivializing atlas $(U_\alpha, \varphi_\alpha)$ of E such that if

$$P_l(x, v_1, \dots, v_k) = (x, v_1, \dots, v_l),$$

 $\{(U_{\alpha}, P_{l} \circ \varphi_{\alpha})\}\$ is a trivializing atlas for F.

Example 1.41. Let $S \subseteq M$ be a submanifold and $i: S \hookrightarrow M$ a inclusion, then

$$di:TS\to TM$$

is fiber-wise injective, so $TS \subseteq TM|_{S}$ is a subbundle over S.

Remark. In the adapted trivialization

$$g_{\alpha\beta}^{E} \begin{pmatrix} g_{\alpha\beta}^{F} & \kappa_{\alpha\beta} \\ 0 & h_{\alpha\beta} \end{pmatrix},$$

 $g^E_{\alpha\beta}$ satisfy the cocycle conditions so the same must be true for $g^F_{\alpha\beta}$ and $h_{\alpha\beta}$.

Definition 1.42. Let M be a manifold and $E \to M$ a vector bundle of rank k. Let $F \subseteq E$ a subbundle of rank k. Define an equivalence relation

$$e \sim e' \Leftrightarrow e, e' \in E_x \text{ and } e - e' \in F_x.$$

We denote by E/F the set of its equivalence classes and the map

$$\pi': E/F \to M, \quad [e] \mapsto \pi(e).$$

Proposition 1.43. E/F is a vector bundle such that

$$\rho: E \to E/F, \quad e \mapsto [e]$$

is a morphism and $(E/F)_x = E_x/F_x$ for each $x \in M$. If $Q \to M$ is a vector bundle with fibers E_x/F_x such that there exists a morphism

$$g': E \to Q, \quad v \mapsto [v],$$

then $Q \cong E/F$.

Definition 1.44. We define $\pi': E/F \to M$ as the quotient bundle.

Proof. (DOPOLNI)

Example 1.45. Let $S \subseteq M$ be a submanifold. Since $TS \subseteq TM|_S$ is a subbundle, we can define the normal bundle to S in M as

$$NS := TM|_{S}/TS$$
.

1.6 Cartier divisors

Definition 1.46. Let M be a complex manifold. An effective Cartier divisor D on M is given by an open cover $\{U_{\alpha}\}$ and holomorphic functions $f_{\alpha}:U_{\alpha}\to\mathbb{C}$ which are not identically zero and such that if $U_{\alpha}\cap U_{\beta}\neq\emptyset$, then

$$f_{\alpha\beta} := \frac{f_{\alpha}}{f_{\beta}} : U_{\alpha} \cap U_{\beta} \to \mathbb{C}$$

is holomorphic and without zeros.

The functions $\{f_{\alpha\beta}\}$ satisfy cocycle conditions, so they define a line bundle, denoted by $\mathcal{O}(D)$. Furthermore, the functions f_{α} are the local data for a non-zero holomorphic section of $\mathcal{O}(D)$. Conversely, given a line bundle and a non-zero global holomorphic section on $\mathcal{O}(D)$, then its local data define a

divisor. Another way to obtain divisors is from complex submanifolds of codimension 1. Let $S \subseteq M$ be a submanifold and $(U_{\alpha}, \varphi_{\alpha})$ an atlas, adapted to S:

$$\varphi_{\alpha}(S \cap U_{\alpha}) = \{ z^{\alpha} = (z_1^{\alpha}, \dots, z_n^{\alpha}) \in \mathbb{C}^n \mid z_n^{\alpha} = 0 \}.$$

If $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then on $U_{\alpha} \cap U_{\beta}$ we have $z_n^{\alpha} = 0$ iff $z_n^{\beta} = 0$. On this intersection, we may regard $z^{\alpha} = \varphi_{\alpha} \circ \varphi_{\beta}^{-1}(z_{\beta}) = z^{\alpha}(z^{\beta})$ as a function of z^{β} , so

$$z_n^{\alpha}(z_1^{\beta},\ldots,z_n^{\beta}) = (z_n^{\beta})^k \cdot u(z_1^{\beta},\ldots,z_n^{\beta}),$$

where $k \geq 1$ and $u \in \mathcal{O}(U_{\alpha} \cap U_{\beta})$. Now since

$$\det(d(\varphi_{\alpha} \circ \varphi_{\beta}^{-1})) = \det\begin{pmatrix} \frac{\partial z_{1}^{\alpha}}{\partial z_{1}^{\beta}} & \cdots & \frac{\partial z_{1}^{\alpha}}{\partial z_{n}^{\beta}} \\ \vdots & & \vdots \\ \frac{\partial z_{n}^{\alpha}}{\partial z_{n}^{\beta}} & \cdots & \frac{\partial z_{n}^{\alpha}}{\partial z_{n}^{\beta}} \end{pmatrix} \neq 0$$

and $\frac{\partial z_n^{\alpha}}{\partial z_n^{\beta}}(p) = 0$ for $p \in S$ and $k = 1, \ldots, n-1$, we get $\frac{\partial z_n^{\alpha}}{\partial z_n^{\beta}}(p) \neq 0$ for all $p \in S$. Compute

$$\frac{\partial z_n^{\alpha}}{\partial z_n^{\beta}} = k \cdot (z_n^{\beta})^{k-1} \cdot u + (z_n^{\beta})^k \cdot \frac{\partial u}{\partial z_n^{\beta}}.$$

Since the above must be nonzero on S, we must have k=1 and $u\neq 0$ on S. Therefore, $u=\frac{z_n^{\alpha}}{z_n^{\beta}}$ is non-zero and holomorphic. The functions $f_{\alpha}:=z_n^{\alpha}:U_{\alpha}\to\mathbb{C}$ now define a Cartier divisor called [S]. On S, we have

$$\frac{z_n^{\alpha}}{z_n^{\beta}}\big|_S = u\big|_S = \frac{\partial z_n^{\alpha}}{\partial z_n^{\beta}}\big|_S,$$

which implies that $\mathcal{O}([S])|_{S} \cong NS$. Also observe that f_{α} is zero to order 1 on S and nowhere else.

1.7 Kernel, image and exact sequences

Given vector bundles E, F over M, a morphism of vector bundles $\varphi : E \to F$ over the identity is a sextion of Hom(E, F).

Proposition 1.47. $\ker \varphi := \bigcup_{x \in M} \ker \varphi_x \subseteq E$ and $\operatorname{im} \varphi := \bigcup_{x \in M} \operatorname{im} \varphi_x \subseteq F$ are vector subbundles iff $\operatorname{rank} \varphi_x$ is constant w.r.t. $x \in M$.

$$Proof.$$
 (DOPOLNI)

Let E; E', E'' be vector bundles over M. Let $\alpha: E' \to E$ and $\beta: E \to E''$ be morphisms.

Definition 1.48. If α is injective, β is surjective and im $\alpha = \ker \beta$, then we say that the sequence

$$0 \to E' \xrightarrow{\alpha} E \xrightarrow{\beta} E'' \to 0$$

is a short exact sequence.

In that case, $E'' \cong E/E'$ and rank $E = \operatorname{rank} E' + \operatorname{rank} E''$.

Proposition 1.49. If

$$0 \to E' \xrightarrow{\alpha} E \xrightarrow{\beta} E'' \to 0$$

is a short exact sequence and F is a vector bundlle over M, then the following sequences are exact:

•
$$0 \to E' \otimes F \xrightarrow{\alpha \otimes \mathrm{id}} E \otimes F \xrightarrow{\beta \otimes \mathrm{id}} E'' \otimes F \to 0$$

- $0 \to \operatorname{Hom}(F, E') \xrightarrow{\alpha \circ} \operatorname{Hom}(F, E) \xrightarrow{\beta \circ} \operatorname{Hom}(F, E'') \to 0$
- $0 \to \operatorname{Hom}(E'', F) \xrightarrow{\circ \beta} \operatorname{Hom}(E, F) \xrightarrow{\circ \alpha} \operatorname{Hom}(E', F) \to 0$

In particular, for $M \times \mathbb{R}$ we get the short exact sequence

$$0 \to (E'')^* \to E^* \to (E')^* \to 0.$$

If $f: N \to M$ is smooth, we also have

$$0 \to f^*(E') \to f^*(E) \to f^*(E'') \to 0.$$

We omit the proof (highly technical).

Theorem 1.50.

If

$$0 \to E' \xrightarrow{\alpha} E \xrightarrow{\beta} E'' \to 0$$

is a short exact sequence, then $\det E \cong \det E' \otimes \det E''$.

Proof. If we take a trivialization of E, adapted to $\alpha(E')$, we have

$$g_{\alpha\beta}^{E} = \begin{pmatrix} g_{\alpha\beta}^{E'} & \kappa_{\alpha\beta} \\ 0 & g_{\alpha\beta}^{E''} \end{pmatrix}.$$

As a result, $\det g_{\alpha\beta}^E = \det g_{\alpha\beta}^{E'} \cdot \det g_{\alpha\beta}^{E''}$.

Definition 1.51. If M is a manifold (usually complex), then $K_M := \det(T^*M)$ is the canonical bundle of M.

If L is a line bundle, then $\operatorname{Hom}(L,L)$ is a line bundle that admits a global nowhere zero section $x \mapsto \operatorname{id}_{L_x}$ and so $\operatorname{Hom}(L,L) \cong M \times \mathbb{C}$ is trivial. Then also $L \otimes L^* \cong \operatorname{Hom}(L,L) \cong M \times \mathbb{C}$ is trivial. As a result, we get that for any holomorphic vector bundles E, F, we have

$$E \otimes L \cong F \Leftrightarrow E \cong F \otimes L^*$$
.

Theorem 1.52.

Let $S \subseteq M$ be a complex submanifold of codimension 1. Then

$$K_S \cong (K_M \otimes \mathcal{O}([S]))|_S.$$

Proof. We have a short exact sequence over S:

$$0 \to TS \to TM|_{S} \to NS \to 0.$$

By dualizing, we get

$$0 \to NS^* \to T^*M|_S \to T^*S \to 0$$

and so

$$K_M\big|_S \cong K_S \otimes NS^* \cong K_S \otimes \mathcal{O}([S])\big|_S^*.$$

Now our previous observation gives us $K_S \cong K_M\big|_S \otimes \mathcal{O}(S)\big|_S \cong (K_M \otimes \mathcal{O}(S))\big|_S$.

1.8 Line bundles and the Picard group

For this section, let M be a complex manifold of dimension n.

Definition 1.53. The set of all line bundles modulo equivalence with tensor product operation is the Picard group of M. We denote it as Pic(M).

Remark. Often in algebraic geometry, they produce $\mathcal{O}([S])^*$ instead of $\mathcal{O}([S])$.

Proposition 1.54. Pic(M) is an abelian group with $L^{-1} = L^*$ and a neutral element $M \times \mathbb{C}$.

Denote by $\mathcal{T}(M)$ the set of all open covers $\{U_{\alpha}\}$ of M together with functions $\{g_{\alpha\beta}\}: U_{\alpha} \cap U_{\beta} \to \mathbb{C}^*$ satisfying cocycle conditions. Every element of $\mathcal{T}(M)$ defines a line bundle. After passing to a common refinement $\{U_{\alpha}\}$, two line bundles with trivializing functions $\{g_{\alpha\beta}\}$ in $\{h_{\alpha\beta}\}$ are equivalent iff there exist functions $f_{\alpha}: U_{\alpha} \to \mathbb{C}^*$ such that $\frac{f_{\beta}}{f_{\alpha}} = \frac{g_{\alpha\beta}}{h_{\alpha\beta}}$ on $U_{\alpha} \cap U_{\beta} \neq \emptyset$. This defines an equivalence relation \sim on $\mathcal{T}(M)$ and $\mathrm{Pic}(M) \cong \frac{\mathcal{T}(M)}{\sim}$. This can be generalized to obtain a cohomology theory.

Definition 1.55. The tautological bundle over $\mathbb{C}P^n$ is

$$\mathcal{O}(-1) := \{ ([p], v) \in \mathbb{C}P^n \times \mathbb{C}^{n+1} \mid v \in \mathbb{C} \cdot p \}.$$

The name comes from the fact that the fiber over [p] is the line passing through 0 and p in \mathbb{C}^{n+1} .

Let $U_{\alpha} = \{[z_0 : \cdots : z_n] \in \mathbb{C}P^n \mid z_{\alpha} \neq 0\}$ and define the map

$$\varphi_{\alpha}: \mathcal{O}(-1)\big|_{U_{\alpha}} \to U_{\alpha} \times \mathbb{C}, \quad ([z_0:\dots:z_n],(v_0,\dots,v_n)) \mapsto ([z_0:\dots:z_n],v_{\alpha}).$$

To prove that it's a trivialization, we give the inverse. If $p = (z_0, \ldots, z_n)$, then $v \in \mathbb{C}p$ iff there exists a $\lambda \in \mathbb{C}$, such that $v_j = \lambda z_j$ for each j. On U_{α} , $\lambda = \frac{v_{\alpha}}{z_{\alpha}}$ so we can define

$$U_{\alpha} \times \mathbb{C} \to \mathcal{O}(-1)|_{U_{\alpha}}, \quad ([z], \lambda) \to ([z], \frac{\lambda}{z_{\alpha}}(z_0, \dots, z_n)).$$

For $[z] \in U_{\alpha} \cap U_{\beta}$, we have

$$\varphi_{\alpha} \circ \varphi_{\beta}^{-1}([z], \lambda) = \varphi_{\alpha}([z], \frac{\lambda}{z_{p}}(z_{0}, \dots, z_{n}))$$

$$= ([z], \lambda \cdot \frac{z_{\alpha}}{z_{\beta}})$$

$$= ([z], g_{\alpha\beta}([z]) \cdot \lambda),$$

so $g_{\alpha\beta}([z]) = \frac{z_{\alpha}}{z_{\beta}}$.

Definition 1.56. Let $\mathcal{O}(1) := \mathcal{O}(-1)^*$ and

$$\mathcal{O}(k) := \begin{cases} \mathcal{O}(1) \otimes \cdots \otimes \mathcal{O}(1); & k > 0 \\ \mathcal{O}(-1) \otimes \cdots \otimes \mathcal{O}(-1); & k < 0 \\ \mathbb{C}P^n \times \mathbb{C}; & k = 0. \end{cases}$$

Some immediate properties:

- $\mathcal{O}(k) \otimes \mathcal{O}(m) \cong \mathcal{O}(k+m)$ for any $k, m \in \mathbb{Z}$.
- $g_{\alpha\beta}^{\mathcal{O}(k)}([z]) = \left(\frac{z_{\alpha}}{z_{\beta}}\right)^{-k}$.

Let $H := \{[z] \in \mathbb{C}P^n \mid a_0z_0 + \cdots + a_nz_n = 0, \ a_0, \dots a_n \in \mathbb{C} \setminus \{0\}\}$. Then H is a codimension 1 submanifold, so it defines an effective Cartier divisor [H]. Now $\{(U_\alpha \cap H, \psi_\alpha)\}$ is an adapted atlas to H, where

$$\psi_{\alpha}: U_{\alpha} \cap H \to \mathbb{C}^{n-1} \times \{0\}, \quad [z_0: \dots: z_n] \mapsto \left(\frac{z_0}{z_{\alpha}}, \dots, \widehat{z_{\alpha}}, \dots, \frac{z_{\alpha'}}{z_{\alpha}}, \sum_{k=0}^n a_k \frac{z_k}{z_{\alpha}}\right)$$

and $\alpha' = \min\{2k - \alpha - 1, k\}$. By our derivation of Cartier divisors, we see that [H] is defined by the last component functions

$$f_{\alpha}: U_{\alpha} \to \mathbb{C}, \quad [z] \mapsto \sum_{k=0}^{n} a_{k} \frac{z_{k}}{z_{\alpha}}.$$

The transition functions of $\mathcal{O}([H])$ are therefore

$$g_{\alpha\beta}^{\mathcal{O}([H])}[z] = \frac{f_{\alpha}([z])}{f_{\beta}([z])} = \frac{z_{\beta}}{z_{\alpha}}.$$

This implies that $\mathcal{O}([H]) \cong \mathcal{O}(1)$.

Proposition 1.57. The space of global holomorphic sections on O(k) is

$$\mathcal{O}(\mathbb{C}P^n, \mathcal{O}(k)) \cong \begin{cases} \{0\}; & k < 0 \\ \operatorname{Pol}_k(\mathbb{C}^{n+1}); & k \ge 0 \end{cases}$$

where $\operatorname{Pol}_k(\mathbb{C}^{n+1})$ is the space of k-homogeneous complex polynomials in n+1 variables.

Proof. Let $s \in \mathcal{O}(\mathbb{C}P^n, \mathcal{O}(k))$ be a nonzero global section and $s_\alpha : U_\alpha \cong \mathbb{C}^n \to \mathbb{C}$ its local data. On $U_\alpha \cap U_\beta$, we have

$$s_{\alpha}\left(\frac{z_{0}}{z_{\alpha}}, \dots, \widehat{z_{\alpha}}, \dots, \frac{z_{n}}{z_{\alpha}}\right) = \left(\frac{z_{\alpha}}{z_{\beta}}\right)^{-k} \cdot s_{\beta}\left(\frac{z_{0}}{z_{\beta}}, \dots, \widehat{z_{\beta}}, \dots, \frac{z_{n}}{z_{\beta}}\right),$$

which implies $z_{\alpha}^k \cdot s_{\alpha} = z_{\beta}^k \cdot s_{\beta}$ on $\mathbb{C}^{n+1} \setminus \{z_{\alpha} \cdot z_{\beta} = 0\}$. The left function is holomorphic on $\mathbb{C}^{n+1} \setminus \{z_{\alpha} = 0\}$ and the right one is holomorphic on $\mathbb{C}^{n+1} \setminus \{z_{\beta} = 0\}$ and they agree on the (open) intersection, so they can be extended to $\mathbb{C}^{k+1} \setminus \{0\}$. Now by Hartog's extension theorem, this can be extended to an entire map $\mathbb{C}^{n+1} \to \mathbb{C}$. Now notice that for any $z \in \mathbb{C}^{n+1} \setminus \{0\}$ and $\lambda \in \mathbb{C} \setminus \{0\}$, we have $P(\lambda z) = \lambda^k P(z)$. This implies that P(0) = 0 and so $P(\lambda z) = \lambda^k P(z)$ for any $z \in \mathbb{C}^{n+1}$, $\lambda \in \mathbb{C}$. But since P is entire and not zero everywhere, we have $k \geq 0$. Since P is entire, it can be written as a power sum around $0 \in \mathbb{C}^{n+1}$, and since it is homogeneous of degree k, its power series has to be finite, so it is a polynomial. Conversely, let $p \in \text{Pol}_k(\mathbb{C}^{n+1})$. Define

$$s_{\alpha}\left(\frac{z_0}{z_{\alpha}}, \dots, \widehat{z_{\alpha}}, \dots, \frac{z_n}{z_{\alpha}}\right) = P\left(\frac{z_0}{z_{\alpha}}, \dots, 1, \dots, \frac{z_n}{z_{\alpha}}\right).$$

Since $s_{\alpha} = \left(\frac{z_{\alpha}}{z_{\beta}}\right)^{-k} s_{\beta}$, they obey the transition functions for $\mathcal{O}(k)$ and hence they're the local data of a section of $\mathcal{O}(k)$.

Corollary 1.58. $\mathcal{O}(k) \cong \mathcal{O}(m) \Leftrightarrow k = m$

Proof. Assume k > m, then

$$\mathcal{O}(m-k) \cong \mathcal{O}(-k) \otimes \mathcal{O}(m) \cong \mathcal{O}(-k) \otimes \mathcal{O}(k) \cong \mathbb{C}P^n \times \mathbb{C}.$$

The left bundle only has a trivial section by the above proposition, while the bundle on the right has \mathbb{C} -many sections.

Theorem 1.59 (Euler exact sequence).

$$0 \to \mathcal{O}(-1) \to \mathbb{C}P^n \times \mathbb{C}^{n+1} \xrightarrow{R} T\mathbb{C}P^n \otimes \mathcal{O}(-1) \to 0$$

is a short exact sequence, where the first map is the inclusion and the second map is

$$R([v], a) := d\pi_v(a) \otimes ([v], v).$$

Here,

$$d\pi_v(\mathbb{C}^{n+1}\setminus\{0\})\cong\mathbb{C}^{n+1}\to T_{[v]}\mathbb{C}P^n$$

is the differential of

$$\pi: \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{C}P^n.$$

Proof. Obviously, $d\pi_v$ is surjective and $\ker d\pi_v = \mathbb{C} \cdot v$. Now if (U_0, φ_0) is a local chart on $\mathbb{C}P^n$, then

$$(\varphi_0 \circ \pi)(v) = \left(\frac{v_1}{v_0}, \dots, \frac{v_n}{v_0}\right)$$

and

$$d(\varphi_0)_{\pi(v)} \circ d(\pi)_v = d(\varphi_0 \circ \pi)_v = \begin{pmatrix} -\frac{v_1}{v_0^2} & \frac{1}{v_0} & 0 & \cdots & 0\\ -\frac{v_1}{v_0^2} & 0 & \frac{1}{v_0} & \cdots & 0\\ \vdots & \vdots & & \ddots & \vdots\\ -\frac{v_1}{v_0^2} & 0 & \cdots & 0 & \frac{1}{v_0} \end{pmatrix}.$$

Notice that for $\lambda \in \mathbb{C} \setminus \{0\}$, $d(\varphi_0 \circ \pi)_{\lambda v} = \frac{1}{\lambda} d(\varphi_0 \circ \pi)_v$, which implies that

$$d(\varphi_0)_{\pi(v)} \circ d(\pi)_{\lambda v} = d(\varphi_0)_{\pi(\lambda v)} \circ d(\pi)_{\lambda v}$$
$$= d(\varphi_0 \circ \pi)_{\lambda v} = \frac{1}{\lambda} d(\varphi_0 \circ \pi)_v$$
$$= \frac{1}{\lambda} d(\varphi_0)_{\pi(v)} \circ d(\pi)_v$$

and so $d(\pi)_{\lambda v} = \frac{1}{\lambda} d(\pi)_v$. This means that R([v], u) is well-defined. It is routine to check that it is smooth and since the diagram

$$([v], a) \xrightarrow{R} d\pi_v(a) \otimes ([v], v)$$

$$\downarrow \qquad \qquad \downarrow$$

$$[v] \xrightarrow{\text{id}} [v]$$

commutes, R is a bundle morphism. Since $d\pi_v$ is linear, R is also a vector bundle morphism. Furthermore, R is surjective since for any $d\pi_v(a) \otimes ([v], \lambda v)$ (where $\lambda \in \mathbb{C} \setminus \{0\}$), we have

$$R([v], \lambda a) = d\pi_v(\lambda a) \otimes ([v], v) = \lambda \cdot (d\pi_v(a) \otimes ([v], v)) = d\pi_v(a) \otimes ([v], \lambda v).$$

Also, for any $v \in \mathbb{C}^{n+1} \setminus \{0\}$ we have

$$\ker R([v], \cdot) = \ker(a \mapsto d\pi_v(a)) = \mathbb{C} \cdot v,$$

so

$$([v],a) \in \ker R \Leftrightarrow a \in \ker R([v],\cdot) \Leftrightarrow a \in \mathbb{C} \cdot v \Leftrightarrow ([v],a) \in \mathcal{O}(-1).$$

If we multiply this exact sequence with $\mathcal{O}(1)$, we get

$$0 \to \mathbb{C}P^n \times \mathbb{C} \to (\mathbb{C}P^n \times \mathbb{C}^{n+1}) \otimes \mathcal{O}(1) \to \mathbb{C}P^n \times \mathbb{C} \to 0.$$

By dualizing, we get

$$0 \to T^* \mathbb{C}P^n \to (\mathbb{C}P^n \times \mathbb{C}^{n+1}) \otimes \mathcal{O}(-1) \to \mathbb{C}P^n \times \mathbb{C} \to 0.$$

By taking determinants, we get

$$\det((\mathbb{C}P^n \times \mathbb{C}^{n+1}) \otimes \mathcal{O}(-1)) = \det(T^*\mathbb{C}P^n) \otimes \det(\mathbb{C}P^n \times \mathbb{C})$$
$$= \det(T^*\mathbb{C}P^n)$$
$$= K_{\mathbb{C}P^n}.$$

Now notice that the transition functions of $\mathbb{C}P^n \times \mathbb{C}^{n+1}$ are just the identity I_{n+1} and the transition functions of $\mathcal{O}(-1)$ are $\left(\frac{z_{\beta}}{z_{\alpha}}\right)^{-1}$, so their Cauchy product is

$$\begin{pmatrix} \left(\frac{z_{\beta}}{z_{\alpha}}\right)^{-1} & & \\ & \ddots & \\ & & \left(\frac{z_{\beta}}{z_{\alpha}}\right)^{-1} \end{pmatrix} = g_{\alpha\beta},$$

so $\det g_{\alpha\beta} = \left(\frac{z_\beta}{z_\alpha}\right)^{-(n+1)}$. As a result,

$$\det((\mathbb{C}P^n \times \mathbb{C}^{n+1}) \otimes \mathcal{O}(-1)) \cong \mathcal{O}(-(n+1))$$

and so $K_{\mathbb{C}P^n} \cong \mathcal{O}(-(n+1))$.

Corollary 1.60. Let $S \subseteq \mathbb{C}P^n$ be a complex submanifold of codimension 1, given by

$$S = \{ [z_0 : \dots : z_n] \in \mathbb{C}P^n \mid p(z_0, \dots, z_n) = 0 \},$$

where $p \in \operatorname{Pol}_k(\mathbb{C}^{n+1})$. Then

$$K_S \cong (K_{\mathbb{C}P^n} \otimes \mathcal{O}([S]))|_S \cong \mathcal{O}(-(n+1)) \otimes \mathcal{O}(k) \cong \mathcal{O}(k-n-1).$$