results.md 10/16/2019

原始数据表

	电极 (负极-正极)	检零指示 (mV)	当前示数 (V)	电池电动势 (V)	
•	Zn-甘汞-1	-5767	1.05767	1.05739	
	Zn-甘汞-2	-5749	1.05749	1.05759	
	甘汞-Cu-1	-5063	0.05063	0.05063	
	甘汞-Cu-2	-4646	0.04646	0.04646	
	Zn-Cu-1	-10764	1.10764	1.10764	
	Zn-Cu-2	-10410	1.1041	1.10411	
	AgCl-AgNO ₃ -1	-2764	0.32764	0.32765	
	AgCl-AgNO ₃ -2	-2718	0.32718	0.32699	

-1为试验性 (tentative) 测量, 仅用于辅助-2的实验组, 下面计算都只使用-2实验组的数据.

数据处理与分析

查得饱和甘汞电极在20°C时的电极电势为 $0.2471~V^{[1]}$.

1. 锌的标准电极势

根据Zn-甘汞电池的结构可知,

$$\epsilon = \epsilon_{right} - \epsilon_{left} = \epsilon (\sharp \overline{\pi}) - (\epsilon^{ heta} (Zn/Zn^{2+}) + rac{RT}{nF} lna(Zn^{2+}))$$

移项得到

$$\epsilon^{ heta}(Zn/Zn^{2+}) = \epsilon(\pm \overline{\pi}) - \epsilon - rac{RT}{nF}lna(Zn^{2+})$$

具甲

$$a(Zn^{2+})=\gamma(Zn^{2+}) imes c(Zn^{2+}), n=2, F=96485\ C\cdot mol^{-1}, T=293.15K, R=8.314\ J\cdot mol^{-1}\cdot K^{-1}$$
代入数据计算得 $\epsilon^{ heta}(Zn/Zn^{2+})=-0.75745\ V$

理论值 (20°C时) 为 -0.76218 $V^{[1]}$, 相对误差为 0.62 %.

2. 铜的标准电极势

根据Cu-甘汞电池的结构可知,

$$\epsilon = \epsilon_{right} - \epsilon_{left} = \epsilon^{ heta}(Cu/Cu^{2+}) + rac{RT}{nF}lna(Cu^{2+}) - \epsilon(\pm \pi)$$

移项得到

results.md 10/16/2019

$$\epsilon^{ heta}(Cu/Cu^{2+}) = \epsilon(\pm \pi) - \epsilon - rac{RT}{nF}lna(Cu^{2+})$$

其中

$$a(Cu^{2+}) = \gamma(Cu^{2+}) \times c(Cu^{2+}), n = 2, F = 96485 \ C \cdot mol^{-1}, T = 293.15K, R = 8.314 \ J \cdot mol^{-1} \cdot K^{-1} + 1.5K \cdot$$

代入数据计算得 $\epsilon^{ heta}(Cu/Cu^{2+})=0.34579~V$

理论值 (20°C时) 为 $0.34182\ V^{[1]}$, 相对误差为 1.16%.

3. 电池(5)的电动势

电池(5): $Zn|ZnSO_4(0.1\ mol\cdot dm^{-3})||CuSO_4(0.1\ mol\cdot dm^{-3})||CuSO_4(0$

- 3.1 电池电动势的计算值可以通过1、2的实验值相加得到, 为 1.10405~V
- 3.2 电池电动势的实验值直接测得,为 1.10411~V
- 3.3 电池电动势的理论值可通过锌、铜的标准电极势来计算:

根据Zn-Cu电池的结构可知

$$\epsilon = \epsilon_{right} - \epsilon_{left} = \epsilon^{ heta}(Cu/Cu^{2+}) + rac{RT}{nF}lna(Cu^{2+}) - (\epsilon^{ heta}(Zn/Zn^{2+}) + rac{RT}{nF}lna(Zn^{2+}))$$

化简得到

$$\epsilon = \epsilon^{ heta}(Cu/Cu^{2+}) - \epsilon^{ heta}(Zn/Zn^{2+}) - rac{RT}{nF}lnrac{a(Cu^{2+})}{a(Zn^{2+})}$$

方程中的 ϵ^{θ} 均为理论值 (theoretical value).

$$\sharp + \tfrac{a(Cu^{2+})}{a(Zn^{2+})} = \tfrac{\gamma(Cu^{2+}) \times c(Cu^{2+})}{\gamma(Zn^{2+}) \times c(Zn^{2+})}, n = 2, F = 96485 \; C \cdot mol^{-1}, T = 293.15K, R = 8.314 \; J \cdot mol^{-1} \cdot K^{-1}$$

代入数据计算得 $\epsilon_{Zn-Cu}=1.10481~V$

计算值和实验值的相对误差为 0.0543 ‰, 计算值和理论值的相对误差为 0.0638 %.

4. 微溶盐AgCI的溶度积和溶解度

根据电池结构,有

$$\epsilon = rac{RT}{F}lnrac{a_2(Ag^+)}{a_1(Ag^+)} = rac{RT}{F}lnrac{\gamma_2c_2}{\gamma_1c_1}$$

令 $0.01\ mol\cdot dm^{-3}\ KCl$ 溶液中 Ag^+ 的活度为 $a(Ag^+)$,又因为 $0.01\ mol\cdot dm^{-3}\ AgNO_3$ 的平均离子活度系数为 0.902, 上式化简为

$$\epsilon = -rac{RT}{F}lnrac{a(Ag^+)}{0.092 imes0.01}$$

由于氯化银活度积 $K_{sp}=a(Ag^+)\cdot a(Cl^-)$, 代入上式得

$$\epsilon = rac{RT}{F}ln(0.902 imes0.01) - rac{RT}{F}lnK_{sp} + rac{RT}{F}lna(Cl^-)$$

results.md 10/16/2019

所以

$$lgK_{sp} = lg(0.902 imes 0.01) + lg(0.901 imes 0.01) - rac{\epsilon F}{2.303 RT}$$

因为 AgCl 在水中的溶解度极小, 可以认为 $\gamma(Ag^+)=\gamma(Cl^-)pprox 1$, 因此活度积可以看成溶度积, 所以

$$K_{sp} = [c(Ag^+)/c^{ heta}]^2 = [c(Cl^-)/c^{ heta}]^2$$

因此 AgCl 在水中的的溶解度为 $\sqrt{K_{sp}}c^{\theta}$. 代入数据计算得, $K_{sp}=1.946\times 10^{-10}$, 溶解度为 $1.395\times 10^{-5}\ mol\cdot dm^{-3}$.

summary table

electrodes	ϵ	$\epsilon^{ heta}$	ϵ_{theory}	error	
Zn	1.05759	-0.75745	-0.76218	0.621%	
Cu	0.04646	0.34579	0.34182	1.16%	
electrodes	ϵ	$\epsilon_{compute}$	ϵ_{theory}	error_1	error_2
Zn-Cu	1.10411	1.10405	1.1048	0.0638%	0.0543‰
	ϵ	K_{sp}	solubility		
Ag	0.32699	$1.946 imes 10^{-10}$	1.395×10^{-5}		

参考文献

[1]: W. M. Haynes, ed., CRC Handbook of Chemistry and Physics, 96th Edition (Internet Version 2016), CRC Press.