BÀI TẬP CHƯƠNG 1

	~	_	-		*
A	RΔI	TÂP	IV	THU	VFT
				1110	

Câu 1. Không dùng máy tính. Kiểm tra trong các s	ố sau những số nào chịa hết cho 99
① 0	2 444
③ 1716	4 192544
(5) -32516	(6) -195518
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
Câu 2. Tìm 5 chữ số tận cùng của số 5^{55} .	
Câu 3. Cho $A = 1.2.329, B = 30.31.3258$. Chú	ứng minh rằng $A+B$ chia hết cho 59.
	•••••
	•••••

GVLT: NGUYỄN VĂN THÌN	LÝ THUYẾT SỐ
Câu 4. Có tồn tại hay không các số nguyên $a;b;c$ sao cho: $a \mid bc$ nhưng $a \nmid b$ và a	
	·
Câu 5. Cho a,b,c,d là các số nguyên với $a \mid b$ và $c \mid d$. Chứng minh rằng: $ac \mid bd$.	
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
Câu 6. Cho a,b là các số nguyên dương. Chứng minh rằng nếu $a \mid b$ thì $a \le b$.	
	• • • • • • • • • • • • • • • • • • • •
	•••••
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •

Câu 8. Ta ký hiệu: $a \equiv b \pmod{m}$ nếu và chỉ nếu $m \mid (a-b)$. Cho a,b,c,m là các số nguyên, m dương.	GVLT: NGUYỄN VĂN THÌN	LÝ THUYẾT SỐ
Câu 7. Chứng minh rằng nếu $a \mid x, b \mid x$ và a, b nguyên tố cùng nhau thì $a \cdot b \mid x$. Câu 8. Ta ký hiệu: $a \equiv b \pmod{m}$ nếu và chí nếu $m \mid (a - b)$. Chún a, b, c, m là các số nguyên, m dương. Giả sử $d = (c, m)$, khi đó nếu $ac \equiv bc \pmod{m}$ thì $a \equiv b \pmod{m/d}$.		
Câu 7. Chứng minh rằng nếu $a \mid x, b \mid x$ và a, b nguyên tổ cùng nhau thì $a \cdot b \mid x$. Câu 8. Ta ký hiệu: $a \equiv b \pmod{m}$ nếu và chỉ nếu $m \mid (a - b)$. Cho a, b, c, m là các số nguyên, m dương. Giả sử $d = (c, m)$, khi đổ nếu $ac \equiv bc \pmod{m}$ thì $a \equiv b \pmod{m/d}$. Câu 9. Giả sử $a \equiv b \pmod{m_j}, j = 1, 2, \dots, k$, trong đổ m_j là các số nguyên tổ cùng nhau từng cặp. Chứng minh rằng $a \equiv b \pmod{m_1 m_2 \cdots m_k}$.		
Câu 8. Ta ký hiệu: $a\equiv b\pmod{m}$ nếu và chỉ nếu $m\mid (a-b)$. Cho a,b,c,m là các số nguyên, m đương. Giả sử $d=(a,m)$, khi đó nếu $ac\equiv bc\pmod{m}$ thì $a\equiv b\pmod{m/d}$. Câu 9. Giả sử $a\equiv b\pmod{m_j}, j=1,2,\ldots,k$, trong đó m_j là các số nguyên tố cùng nhau từng cặp. Chứng minh rằng $a\equiv b\pmod{m_1m_2\cdots m_k}$.		
Câu 8. Ta ký hiệu: $a\equiv b\pmod{m}$ nếu và chỉ nếu $m\mid (a-b)$. Cho a,b,c,m là các số nguyên, m đương. Giả sử $d=(a,m)$, khi đó nếu $ac\equiv bc\pmod{m}$ thì $a\equiv b\pmod{m/d}$. Câu 9. Giả sử $a\equiv b\pmod{m_j}, j=1,2,\ldots,k$, trong đó m_j là các số nguyên tố cùng nhau từng cặp. Chứng minh rằng $a\equiv b\pmod{m_1m_2\cdots m_k}$.		
Câu 8. Ta ký hiệu: $a\equiv b\pmod{m}$ nếu và chỉ nếu $m\mid (a-b)$. Cho a,b,c,m là các số nguyên, m dương. Giả sử $d=(c,m)$, khi đó nếu $ac\equiv bc\pmod{m}$ thì $a\equiv b\pmod{m/d}$. Câu 9. Giả sử $a\equiv b\pmod{m_j}, j\equiv 1,2,\ldots,k$, trong đó m_j là các số nguyên tố cùng nhau từng cặp. Chứng minh rằng $a\equiv b\pmod{m_1m_2\cdots m_k}$.	Câu 7. Chứng minh rằng nếu $a \mid x, b \mid x$ và a, b nguyên tố cùng nhau thì $a \cdot b \mid x$.	
Câu 8. Ta ký hiệu: $a \equiv b \pmod m$ nếu và chỉ nếu $m \mid (a-b)$. Cho a,b,c,m là các số nguyên, m đương. Giả sử $d=(c,m)$, khi đổ nếu $ac\equiv bc \pmod m$ thì $a\equiv b \pmod m/d$. Câu 9. Giả sử $a\equiv b \pmod m_j, j=1,2,,k$, trong đố m_j là các số nguyên tổ cùng nhau từng cặp. Chứng minh rằng $a\equiv b \pmod {m_1m_2\cdots m_k}$.		
Câu 8. Ta ký hiệu: $a\equiv b\pmod{m}$ nếu và chỉ nếu $m\mid(a-b)$. Cho a,b,c,m là các số nguyên, m dương. Giả sử $d=(c,m)$, khi đó nếu $ac\equiv bc\pmod{m}$ thì $a\equiv b\pmod{m/d}$. Câu 9. Giả sử $a\equiv b\pmod{m_j}, j=1,2,\ldots,k$, trong đó m_j là các số nguyên tố cùng nhau từng cặp. Chứng minh rằng $a\equiv b\pmod{m_1m_2\cdots m_k}$.		
Câu 8. Ta ký hiệu: $a\equiv b\pmod{m}$ nếu và chỉ nếu $m\mid (a-b)$. Cho a,b,c,m là các số nguyên, m đương. Giả sử $d=(c,m)$, khi đó nếu $ac\equiv bc\pmod{m}$ thì $a\equiv b\pmod{m/d}$. Câu 9. Giả sử $a\equiv b\pmod{m_j}, j=1,2,\ldots,k$, trong đó m_j là các số nguyên tổ cùng nhau từng cặp. Chứng minh rằng $a\equiv b\pmod{m_1m_2\cdots m_k}$.		• • • • • • • • • • • • • • • • • • • •
Câu 8. Ta ký hiệu: $a\equiv b\pmod{m}$ nếu và chỉ nếu $m\mid (a-b)$. Cho a,b,c,m là các số nguyên, m đương. Giả sử $d=(c,m)$, khi đó nếu $ac\equiv bc\pmod{m}$ thì $a\equiv b\pmod{m/d}$. Câu 9. Giả sử $a\equiv b\pmod{m_j}, j=1,2,\ldots,k$, trong đó m_j là các số nguyên tổ cùng nhau từng cặp. Chứng minh rằng $a\equiv b\pmod{m_1m_2\cdots m_k}$.		
Câu 8. Ta ký hiệu: $a\equiv b\pmod{m}$ nếu và chỉ nếu $m\mid (a-b)$. Cho a,b,c,m là các số nguyên, m đương. Giả sử $d=(c,m)$, khi đó nếu $ac\equiv bc\pmod{m}$ thì $a\equiv b\pmod{m/d}$. Câu 9. Giả sử $a\equiv b\pmod{m_j}, j=1,2,\ldots,k$, trong đó m_j là các số nguyên tổ cùng nhau từng cặp. Chứng minh rằng $a\equiv b\pmod{m_1m_2\cdots m_k}$.		
Câu 8. Ta ký hiệu: $a\equiv b\pmod{m}$ nếu và chỉ nếu $m\mid (a-b)$. Cho a,b,c,m là các số nguyên, m đương. Giả sử $d=(c,m)$, khi đó nếu $ac\equiv bc\pmod{m}$ thì $a\equiv b\pmod{m/d}$. Câu 9. Giả sử $a\equiv b\pmod{m_j}, j=1,2,\ldots,k$, trong đó m_j là các số nguyên tổ cùng nhau từng cặp. Chứng minh rằng $a\equiv b\pmod{m_1m_2\cdots m_k}$.		
Câu 8. Ta ký hiệu: $a \equiv b \pmod m$ nếu và chỉ nếu $m \mid (a-b)$. Cho a,b,c,m là các số nguyên, m dương. Giả sử $d=(c,m)$, khi đó nếu $ac \equiv bc \pmod m$ thì $a \equiv b \pmod m/d$. Câu 9. Giả sử $a \equiv b \pmod {m_j}, j=1,2,\ldots,k$, trong đó m_j là các số nguyên tố cùng nhau từng cặp. Chứng minh rằng $a \equiv b \pmod {m_1 m_2 \cdots m_k}$.		
Câu 8. Ta ký hiệu: $a \equiv b \pmod{m}$ nếu và chỉ nếu $m \mid (a-b)$. Cho a,b,c,m là các số nguyên, m dương. Giả sử $d=(c,m)$, khi đó nếu $ac \equiv bc \pmod{m}$ thì $a \equiv b \pmod{m/d}$. Câu 9. Giả sử $a \equiv b \pmod{m_j}, j=1,2,\ldots,k$, trong đó m_j là các số nguyên tố cùng nhau từng cặp. Chứng minh rằng $a \equiv b \pmod{m_1 m_2 \cdots m_k}$.		
Câu 8. Ta ký hiệu: $a \equiv b \pmod{m}$ nếu và chỉ nếu $m \mid (a-b)$. Cho a,b,c,m là các số nguyên, m dương. Giả sử $d=(c,m)$, khi đó nếu $ac \equiv bc \pmod{m}$ thì $a \equiv b \pmod{m/d}$. Câu 9. Giả sử $a \equiv b \pmod{m_j}, j=1,2,\ldots,k$, trong đó m_j là các số nguyên tố cùng nhau từng cặp. Chứng minh rằng $a \equiv b \pmod{m_1 m_2 \cdots m_k}$.		• • • • • • • • • • • • • • • • • • • •
Câu 8. Ta ký hiệu: $a \equiv b \pmod{m}$ nếu và chỉ nếu $m \mid (a-b)$. Cho a,b,c,m là các số nguyên, m dương. Giả sử $d=(c,m)$, khi đó nếu $ac \equiv bc \pmod{m}$ thì $a \equiv b \pmod{m/d}$. Câu 9. Giả sử $a \equiv b \pmod{m_j}, j=1,2,\ldots,k$, trong đó m_j là các số nguyên tố cùng nhau từng cặp. Chứng minh rằng $a \equiv b \pmod{m_1 m_2 \cdots m_k}$.		• • • • • • • • • • • • • • • • • • • •
Câu 8. Ta ký hiệu: $a \equiv b \pmod{m}$ nếu và chỉ nếu $m \mid (a-b)$. Cho a,b,c,m là các số nguyên, m dương. Giả sử $d=(c,m)$, khi đó nếu $ac \equiv bc \pmod{m}$ thì $a \equiv b \pmod{m/d}$. Câu 9. Giả sử $a \equiv b \pmod{m_j}, j=1,2,\ldots,k$, trong đó m_j là các số nguyên tố cùng nhau từng cặp. Chứng minh rằng $a \equiv b \pmod{m_1 m_2 \cdots m_k}$.		• • • • • • • • • • • • • • • • • • • •
Chúng minh rằng $a\equiv b \pmod{m_j}, j=1,2,\ldots,k$, trong đó m_j là các số nguyên tố cùng nhau từng cặp. Chúng minh rằng $a\equiv b \pmod{m_1m_2\cdots m_k}$.		• • • • • • • • • • • • • • • • • • • •
Chúng minh rằng $a\equiv b \pmod{m_j}, j=1,2,\ldots,k$, trong đó m_j là các số nguyên tố cùng nhau từng cặp. Chúng minh rằng $a\equiv b \pmod{m_1m_2\cdots m_k}$.		• • • • • • • • • • • • • • • • • • • •
Chúng minh rằng $a\equiv b \pmod{m_j}, j=1,2,\ldots,k$, trong đó m_j là các số nguyên tố cùng nhau từng cặp. Chúng minh rằng $a\equiv b \pmod{m_1m_2\cdots m_k}$.		• • • • • • • • • • • • • • • • • • • •
Chứng minh rằng $a \equiv b \pmod{m_1 m_2 \cdots m_k}$.	Câu 8. Ta ký hiệu: $a \equiv b \pmod{m}$ nêu và chỉ nêu $m \mid (a - b)$. Cho a, b, c, m là các số nguyên, m dương. Giả sử $d = (c, m)$, khi đó nếu $ac \equiv bc \pmod{m}$ thì $a \equiv b \pmod{m/d}$.	
Chứng minh rằng $a \equiv b \pmod{m_1 m_2 \cdots m_k}$.		
Chứng minh rằng $a \equiv b \pmod{m_1 m_2 \cdots m_k}$.		• • • • • • • • • • • • • • • • • • • •
Chứng minh rằng $a \equiv b \pmod{m_1 m_2 \cdots m_k}$.		• • • • • • • • • • • • • • • • • • • •
Chứng minh rằng $a \equiv b \pmod{m_1 m_2 \cdots m_k}$.		• • • • • • • • • • • • • • • • • • • •
Chứng minh rằng $a \equiv b \pmod{m_1 m_2 \cdots m_k}$.		• • • • • • • • • • • • • • • • • • • •
Chứng minh rằng $a \equiv b \pmod{m_1 m_2 \cdots m_k}$.		• • • • • • • • • • • • • • • • • • • •
Chứng minh rằng $a \equiv b \pmod{m_1 m_2 \cdots m_k}$.	••••••	• • • • • • • • • • • • • • • • • • • •
Chứng minh rằng $a \equiv b \pmod{m_1 m_2 \cdots m_k}$.		• • • • • • • • • • • • • • • • • • • •
Chứng minh rằng $a \equiv b \pmod{m_1 m_2 \cdots m_k}$.		• • • • • • • • • • • • • • • • • • • •
Chứng minh rằng $a \equiv b \pmod{m_1 m_2 \cdots m_k}$.		• • • • • • • • • • • • • • • • • • • •
Chứng minh rằng $a \equiv b \pmod{m_1 m_2 \cdots m_k}$.		• • • • • • • • • • • • • • • • • • • •
Chứng minh rằng $a \equiv b \pmod{m_1 m_2 \cdots m_k}$.		• • • • • • • • • • • • • • • • • • • •
Chứng minh rằng $a \equiv b \pmod{m_1 m_2 \cdots m_k}$.		• • • • • • • • • • • • • • • • • • • •
Chứng minh rằng $a \equiv b \pmod{m_1 m_2 \cdots m_k}$.		• • • • • • • • • • • • • • • • • • • •
	Câu 9. Giả sử $a \equiv b \pmod{m_j}, j = 1, 2,, k$, trong đó m_j là các số nguyên tố c	ùng nhau từng cặp.
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •

GVLT: NGUYỄN VĂN THÌN	LÝ THUYẾT SỐ
Câu 10. Cho p là số nguyên tố. Chứng minh rằng $a^2 \equiv 1 \pmod{p}$ khi và chỉ khi $a \equiv 1 \pmod{p}$	±1(mod <i>p</i>).
Câu 11. Chứng minh rằng nếu một số nguyên a thoả $2 \nmid a$ và $3 \nmid a$ thì $24 \mid (a^2 - 1)$.	
Cau 11. Chung minin rang neu mọt số nguyên a thốa $2 \uparrow a$ và $5 \uparrow a$ thì $24 \uparrow (a - 1)$.	
	• • • • • • • • • • • • • • • • • • • •
	•••••
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
Câu 12. Thực hiện chuyển cơ số:	••••••
a) Chuyển (1999) ₁₀ sang cơ số 7 và (6105) ₇ sang cơ số 10	
b) Chuyển $(101001000)_2$ sang cơ số 10 và $(1984)_{10}$ sang cơ số 2	
c) Chuyển (100011110101) $_2$ và (11101001110) $_2$ sang hệ cơ số 16.	
d) Chuyển $(ABCDEF)_{16}$, $(DEFACED)_{16}$ và $(9A0B)_{16}$ sang cơ số 2.	
	•••••

GVLT: NGUYỄN VĂN THÌN	LÝ THUYẾT SỐ
Câu 13. Chứng minh rằng mọi vật nặng không quá $2^k - 1$ (với trọng lượng là số ng cân bằng một cái cân hai đĩa, sử dụng các quả cân $1;2;2^2;;2^{k-1}$.	uyên) đều có thể
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
Câu 14. Kiểm tra các số sau có là số nguyên tố không?	
a) $2^{2^{2005}} + 5$	
b) $n^4 + 4^n$, với mọi số nguyên $n > 1$.	
c) $3^{2^{4n+1}} + 2$, với n là số nguyên dương.	
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
Câu 15. Tìm tất cả số tự nhiên n sao cho $n^4 + 4$ là số nguyên tố.	
	••••
	•••••

GVLI: NGUIEN VAIN IIIIN	LI IIIUILI 30
	•••••
	• • • • • • • • • • • • • • • • • • • •
Câu 16. Chứng minh có vô hạn số nguyên	tố!
	•••••
	•••••
Câu 17. Tim ước chung lớn nhất của các ca	ăn số nguyên sau:
1 15;35	② 0;111
③ -12;18	4 99;100
(5) 11;121	6 100;102.
,	
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	•••••
	•••••
•••••	
Câu 18. Tìm bội chung nhỏ nhất của các b	yô số nguyên sau:
	0-7

1 8;10;12	2 5;25;75
3 99;9999;0	4 6;15;21
(5) -7;28;-35	6 0;0;1001
	••••••
	•••••
	uyên không âm m,n và mọi số nguyên $a>1$, ta có:
$(a^m$ -	$(-1, \alpha^n - 1) = \alpha^{(m,n)} - 1.$
• • • • • • • • • • • • • • • • • • • •	•••••
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
C âu 20. Cho a,b là các số nguyên thoả (a	(a,b) = 1. Chứng minh rằng:
	$ \begin{cases} (a+b,a-b) = 1 \\ (a+b,a-b) = 2 \end{cases} $
	(a+b,a-b)=2
• • • • • • • • • • • • • • • • • • • •	•••••
• • • • • • • • • • • • • • • • • • • •	•••••

GVLT: NGUYỄN VĂN THÌN	LÝ THUYẾT SỐ
Câu 21. Cho a,b,c là các số nguyên khác 0. Chứng minh rằng: $(ac,bc) = c (a,b)$.	
Câu 22. Cho a,b,c là các số nguyên thoả $c \mid ab$. Chứng minh rằng: $c \mid (a,c)(b,c)$.	
Cita === Cito w,o,o ia cae so figure inou o wo. Citarig inimi rang. o (w,o)(o,o).	
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
••••••	• • • • • • • • • • • • • • • • • • • •
•••••	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
Câu 23. Cho a,b,c là các số nguyên khác 0, đôi một nguyên tố cùng nhau. Chứng minh rằng: $(a,bc) = (a,b)(a,c)$.	
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
••••••	• • • • • • • • • • • • • • • • • • • •

Câu 24. Cho a,b,c là các số nguyên thoả $(a,b) = 1$ và $c \mid (a+b)$.
Chứng minh rằng: $(c,a) = 1$ và $(c,b) = 1$
Câu 25. Cho a,b,c là các số nguyên thoả $(a,b)=(a,c)=1$. Chứng minh rằng: $(a,bc)=1$.
Câu 26. Cho k là một số nguyên, chứng minh rằng các số $6k-1$; $6k+1$; $6k+2$; $6k+3$; $6k+5$ đôi một nguyên tố cùng nhau.

GVLT: NGUYỄN VĂN THÌN

LÝ THUYẾT SỐ

GVLT: NGUYỄN VĂN THÌN	LÝ THUYẾT SỐ
Câu 27. Cho k là một số nguyên dương, chứng minh rằng các số $3k+2$ và 5 nhau.	6k + 3 nguyên tố cùng
••••••	
	• • • • • • • • • • • • • • • • • • • •

B BÀI TẬP THỰC HÀNH

Dưới đây là một số lưu ý khi nộp bài.

① Yêu cầu viết bằng Python 3. Khi nộp bài, chỉ nộp lại file có đuôi .py theo định dạng sau: "n_MSSV.py".

Trong đó, n là số thứ tự bài tập, MSSV là mã số sinh viên.

Ví dụ, bạn có MSSV là 1712000 làm câu 1, thì đặt tên file là: "1_1712000.py".

2 Yêu cầu sử dụng thư viện **argv** để khai báo biến. Tức là, đầu mỗi file .py, các bạn thực hiện khai báo như dưới đây trước khi thực hành. from sys import argv script, input = argv

Câu 1. Viết chương trình thực hiện các yêu cầu sau:

- Đọc file input.txt với 10 bộ test, mỗi bộ test trên một dòng (theo thứ tự $n \ a \ b$). Trong đó n là số trong hệ cơ số a cần chuyển sang hệ cơ số b.
- Xuất ra file 1_MSSV.txt gồm 10 dòng mỗi dòng là một kết quả tương ứng.
 Ví dụ: Đây là file input.txt gồm 10 bộ test:

```
input.txt

1001 2 10

FAB 16 10

123 4 5

1234 5 6

12345 6 7

1263A 16 2

ABC 16 3

ABC 16 4

ABC 16 5

ABC 16 6
```

kết quả xuất ra file 1_MSSV.txt như sau:

```
9
4011
102
522
5303
10010011000111010
10202210
222330
41443
20420
```

Câu 2. Viết chương trình thực hiện các yêu cầu sau:

- Đọc file input.txt với 10 bộ test, mỗi bộ test trên một dòng (gồm 1 số n). Trong đó n là số tự nhiên.

Xuất ra file 2_MSSV.txt gồm 10 dòng mỗi dòng là một kết quả tương ứng.
 Lưu ý: Các thừa số nguyên tố ghi theo thứ tự từ nhỏ đến lớn.
 Ví dụ: Đây là file input.txt gồm 10 bộ test:

kết quả xuất ra file 2_MSSV.txt như sau:

Câu 3. Viết chương trình thực hiện các yêu cầu sau:

- Đọc file input.txt với 10 bộ test, mỗi bộ test trên một dòng (theo thứ tự a b). Trong đó a, b là các số tự nhiên.
- Xuất ra file 3_MSSV.txt gồm 10 dòng mỗi dòng là một kết quả tương ứng.
 Ví dụ: Đây là file input.txt gồm 10 bộ test:

kết quả xuất ra file 3_MSSV.txt như sau:

		3_1712000.txt
<u>ի</u> 12		
12		
4 5		
5		
10		
7		
1		
1		
6		
4		