

Mid-frequency bottom backscatter, environmental measurements, model/data comparison, and implications to reverberations

Dajun Tang

Applied Physics Laboratory, University of Washington

Acknowledgments:

HAARI (Hangzhou Applied Acoustics Research Institute, China)

Miller (URI), Qi (SCSIO, Guangzhou)

Work funded by the Office of Naval Research

- Scientific Goals
- Bottom roughness measurements
- Inverting bottom properties using noise
- Numerical simulation and modeling
- Direct-path bottom backscatter measurement (Session 4, 8)

maintaining the data needed, and of including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding an OMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 2. REPORT TYPE N/A			3. DATES COVERED		
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER			
Mid-frequency Bottom Backscatter, Environmental Measurements, Model/data Comparison, and Implications to Reverberations				5b. GRANT NUMBER	
modelitata Comparison, and implications to Reverberations				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Applied Physics Laboratory, University of Washington				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited			
13. SUPPLEMENTARY NO Also See: M001452	otes 2, The original docu	nent contains color	images.		
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	34	ALSI UNSIBLE FERSUN

Report Documentation Page

Form Approved OMB No. 0704-0188

Scientific Goals

Hypothesis:

Bottom roughness is the main scattering mechanism in the mid-frequency (3-4 kHz) range at the ECS site.

Although backscatter measurements are many, there is a lack of data on bottom characterization which prevents direct model/data comparison.

Goal:

Model/data comparison with model parameters measured at required resolutions.

Approach

- Using ambient noise to estimate C, ρ, and α at the same frequency range with cores as supporting data sets
- Using IMP2 to measure bottom roughness at the required spatial resolution
- Time-domain simulation of bottom backscatter using 1st order perturbation theory. All simulation parameters are the same as those in real experiments
- HAARI vertical array system to measure bottom scatter

Background Information

Source and 32 Element Array

Approach

- Using ambient noise to estimate C, r, and a at the same frequency range with cores as supporting data sets
- Using IMP2 to measure bottom roughness at the required resolution
- Time-domain simulation of bottom backscatter using 1st order perturbation theory. All simulation parameters are the same as those in real experiments
- HAARI vertical array system to measure bottom scatter

Using noise to measure bottom reflection loss $|R(f,\theta)|^2$

Bottom parameters estimated: C, ρ, α

Assumption: Surface and bottom scatter is small.

Advantage of using ambient noise:

- Need only a single station.
- · Passive.
- Provides data over wide frequency band.
- With a moving vertical array, provides potential for large area survey.
- Needs no knowledge of the noise sources.
- Has potential to be applied to range-dependent environments since the array is sensitive only to local modes.

Dominant Noise Sources

Beam-forming to find incident and reflected energy

For an infinitely-long array, $|R(\theta,f)|^2$ is the ratio of the beams.

- Pt. 9 by Furduyev from AKUSTIKA OKEANA in Russian, Ed. Brekhovskikh.
- Harrison, C. in SACLANTCEN uncertainties workshop, 2002
- Tang, D. in SACLANTCEN uncertainties workshop, 2002

Beams in 500 Hz bands, averaged over 60 half-seconds segments

Typical Sound Speed Profile at the ECS site

Mode Amplitudes

Model/data comparison, 500 Hz bands, 100 realizations using Kraken

 ρ = 1.87 - 1.92 g/cm³. No attenuation data from cores. (Miller, URI and Qi of SCSIO)

Summary on noise inversion:

Sound speed, density, and attenuation coefficient are obtained via |R|² from ambient and ship's self noise.

Sound speed results are consistent with core results.

Density results are slightly lower than core results (loss of surficial water in cores?).

No direct measurements of attenuation coefficient.

Overall inversion results are encouraging and basicresearch level experiments are needed.

Because all sonar performance in shallow waters depends on surficial bottom geo-acoustics parameters, using ambient noise to invert these parameters is a powerful, fruitful, and convenient method

Approach

- Using ambient noise to estimate C, ρ, and α at the same frequency range with cores as supporting data sets
- Using IMP2 to measure bottom roughness at the right resolution
- Time-domain simulation of bottom backscatter using 1st order perturbation theory. All simulation parameters are the same as those in real experiments
- HAARI vertical array system to measure bottom scatter

Conductivity System

The IMP2 (2nd generation In situ Measurement of Porosity) is designed to measure seafloor roughness and sub-bottom heterogeneity with centimeter-scale resolution ---- necessary to model backscatter at 3-4 kHz.

IMP2 on the Melville at the ECS site

Formation Factor and Rough Interface from 3rd IMP2 Deployment Water **Rough Seafloor** Depth (cm) Sediment 15 ^L 0 Range (cm)

Video picture of ECS seafloor, 2nd deployment

Video picture of ECS seafloor, 3rd deployment

Estimated spectrum from ECS data. It will be an input to model backscatter

$$S1(k) = w_1/k^{\gamma_1}$$

Approach

- Using ambient noise to estimate C, ρ, and α at the same frequency range with cores as supporting data sets
- Using IMP2 to measure bottom roughness at the right resolution
- Time-domain simulation of bottom backscatter using 1st order perturbation theory. All simulation parameters are the same as those in real experiments
- HAARI vertical array system to measure bottom scatter

Direct-path backscatter model

$$p(t) = s''(t) * I(t)$$

$$I(t) = \frac{1}{4pc^2} \iint dx dy \frac{\mathbf{t}(x, y)}{R_i R_s} \mathbf{z}(x, y) \mathbf{d}(t - t_d)$$

Approach

- Using ambient noise to estimate C, ρ , and α at the same frequency range with cores as supporting data sets
- Using IMP2 to measure bottom roughness at the right resolution
- Time-domain simulation of bottom backscatter using 1st order perturbation theory. All simulation parameters are the same as those in real experiments
- HAARI vertical array system to measure bottom scatter (Wang, session 4, 8)

Summary and Discussions:

With contemporaneous measurements of acoustics and environmental data at the same location, model/data comparison indicates that bottom backscatter in the frequency band of 3-4 kHz is dominated by bottom roughness.

Mode of operation:

- Scientific hypotheses to be tested
- Simulation of experiment results with realistic models
- Measure parameters which are required inputs to models
- Experiment data analysis confirmation of the starting hypotheses and refining of understanding

A (debatable) Statement

It is the environment, s.....

It is the acousticians, not geologists, who should take a lead on measuring bottom geo-acoustic parameters for underwater acoustics applications.

It is all in the environment,

High quality measurement of bottom geo-acoustic parameters is key to understanding shallow water acoustics

Data will be available to all interested ASIAEX scientists

Caution should be taken when extrapolate mid-frequency environmental data to low-frequency applications

Related topics:

Reverberation simulation in the time domain – surface and bottom roughness scatter

Transport theory of long-range reverberation

Estimating reflection loss from broadband reverberation data – speculative