

Maximum Likelihood Estimation on Stochastic Blockmodels for Directed Graph Clustering

Authors: Mihai Cucuringu*, Xiaowen Dong†, and Ning Zhang*

Presenter: Ning Zhang

The (undirected) graph clustering problem

Optimization methods

e.g., Ratio Cut [Hagen and Kahng (1992)]

Statistical methods

e.g., Community detection in Stochastic Block Models (SBM) [Abbe et al.(2015)]

Cluster directed graphs

Financial transition network

Citation network

Causal network

Challenges in directed graph clustering

cannot naively apply undirected clustering algorithms

asymmetric edge connection \rightarrow asymmetric matrix representation

directed graph

0	0	1	1	0	0
0	0	0	0	1	0
0	0	0	0	0	1
0	0	0	0	0	1
0	0	0	1	0	0
1	1	0	0	0	0

graph adjacency matrix A

Existing directed clustering algorithms

Symmetrization

 $A + A^T$, $AA^T & A^T A$ [Kessler (1963), Small (1973), Satuluri and Parthasarathy (2011)]

Hermitian

 $H = i (A - A^T)$ [Cucuringu et al. (2020)], magnet Laplacian [Fanuel et al. (2017)]

• SVD

SVD on $A - A^T$ [Hayashi et al. (2022)], DI-SIM [Rohe et al. (2016)]

• Heuristic

Weighted Cut optimization [Meilă and Pentney (2007)]

• • •

Limitations:

lack of theoretical justification on the clustering objective or graph matrix representation

Existing directed clustering algorithms

Symmetrization

 $A + A^T$, AA^T & A^TA [Kessler (1963), Small (1973), Satuluri and Parthasarathy (2011)]

Hermitian

 $H = i (A - A^T)$ [Cucuringu et al. (2020)], magnet Laplacian [Fanuel et al. (2017)]

• SVD

SVD on $A - A^T$ [Hayashi et al. (2022)], DI-SIM [Rohe et al. (2016)]

• Heuristic

Weighted Cut optimization [Meilă and Pentney (2007)]

• • •

Our work:

- propose a novel directed clustering objective
- combined views from statistics and optimization
- introduce spectral and SDP algorithms for directed graph clustering

Apply maximum likelihood estimation on Directed-SBM (N, p, q, η)

For *u*, *v* in same cluster:

$$P(u \to v) = p/2$$

$$P(v \rightarrow u) = p/2$$

• For $u \in C_1$, $v \in C_2$ $P(u \to v) = (1 - \eta) q$ $P(v \rightarrow u) = \eta q$

Apply maximum likelihood estimation on Directed-SBM (N, p, q, η)

MLE optimization goal (simplified illustration version)

max Net Flow $-\lambda$ Total Flow,

- Total Flow: $|C_1 \rightarrow C_2| + |C_2 \rightarrow C_1|$
- Net Flow: $|C_1 \rightarrow C_2| |C_2 \rightarrow C_1|$

 C_1

Apply maximum likelihood estimation on Directed-SBM (N, p, q, η)

MLE optimization goal

$$\max_{x \in \{i,1\}^N} x^* H x \quad (\text{Herm-MLE})$$

where $H = i(A - A^T) + \lambda_1 (A + A^T) + \lambda_2 J$ (1) where $\lambda_1, \lambda_2 \in \mathbb{R}$ is function of p, q, η .

Apply maximum likelihood estimation on Directed-SBM (N, p, q, η) MLE optimization goal (complex version)

$$\max_{x \in \{i,1\}^N} x^* H x \quad (\text{Herm-MLE})$$

where
$$H = i(A - A^{T}) + \lambda_{1} (A + A^{T}) + \lambda_{2} J$$
 (1)

- ✓ Relax (Herm-MLE) to the PSD cone → Algorithm MLE-SDP
- ✓ Relax (Herm-MLE) to $C^N \rightarrow$ Algorithm MLE-SC

Algorithms (MLE-SC)

- > Step 1. Compute the Hermitian matrix H according to (1);
- > Step 2. Compute the top eigenvector \hat{v} of H;
- > Step 3. Apply k-means on the matrix $[Re(\hat{v}); Im(\hat{v})]$

Algorithms (MLE-SDP)

- >Step 1. Compute the Hermitian matrix H according to (1);
- >Step 2. Solve the following SDP

```
\max_{\substack{s.t.\ X\in\mathcal{H}\\X\geqslant 0}} \langle H,X\rangle \text{ (SDP-MLE)}
\alpha_{x\geqslant 0}
\alpha_{x\geqslant 0}
```

and compute the top eigenvector of \hat{v} ;

> Step 3. Apply k-means on the matrix $[Re(\hat{v}); Im(\hat{v})]$

Experiment on synthetic data

Experiments on graphs generated from the DSBM(N, p, q, η) ensemble, with different parameters.

Experiment on real-word digraphs

14

Experiment on real-word digraphs

Data set	Herm	HermRW	$A^T A \& A A^T$	DI-SIM	$A + A^T$	MLE-SC	MLE-SDP
email-Eu-core [1]	0.045	-0.002	-0.007	-0.005	0.301	0.608	0.757
PolBlog [2]	0.012	-0.002	-0.001	-0.001	0.206	0.030	0.809

ARIs from test on real-world data.

[1] Yin, Hao, et al. "Local higher-order graph clustering." *Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining.* 2017.

[2] Adamic, Lada A., and Natalie Glance. "The political blogosphere and the 2004 US election: divided they blog." *Proceedings of the 3rd international workshop on Link discovery.* 2005.

Conclusion

- Derive the MLE on DSBM and use it as a new directed clustering objective
- Propose a novel Hermitian matrix representation for directed graphs
- Introduce two directed clustering algorithms
- (to appear) Prove a high probability error bound

Thanks for your attention!