Аналогово-цифровое и цифроаналоговое преобразование звука

Наумов Д.А.

Компьютерные музыкальные технологии и звуковой дизайн, 2014

Содержание лекции

- 📵 АЦП и ЦАП
 - Аналоговое представление звука
 - Цифровое представление звука
- Дискретизация и квантование
 - Дискретизация во времени
 - Аналоговый нуль
 - Теорема Котельникова
 - Квантование
 - Клипирование
 - DC-offset
- ③ Цифро-аналоговое преобразование
 - Шум квантования
 - Дизеринг, гранулярный шум
- u Сравнение аналоговой и цифровой форм представления звука

Формы представления звука:

- в виде непрерывного электрического сигнала;
- в закодированном цифровом виде.

Аппаратура, в которой рабочим сигналом является непрерывный электрический сигнал, описывающий звуковые колебания, называется аналоговой аудиоаппаратурой (например, бытовой магнитофон, аудиоусилитель, динамик, осциллограф и т.д.), а сам сигнал — аналоговым аудиосигналом.

Устройство для преобразования звуковых колебаний в электрический (аналоговый) сигнал — микрофон, а аналогового сигнала звуковой частоты в звуковые колебания — акустический динамик (электродинамический громкоговоритель).

Цифровой аудиосигнал

форма (способ) записи аналогового сигнала, т.е. это аналоговый аудиосигнал, представленный некоторым образом в виде дискретных численных значений.

Оцифровка

преобразование аналогового звукового сигнала в цифровой вид.

Аналогово-цифровой преобразователь, АЦП

устройство, предназначенное для осуществления преобразование аналогового звукового сигнала в цифровой вид (Analog-to-Digital Converter — ADC).

Процесс аналогово-цифрового преобразования с помощью АЦП заключается в осуществлении замеров текущих величин амплитуды аналогового сигнала с некоторым временным шагом и последующей записи полученных значений амплитуды в некоторой численной форме.

Дискретизация во времени

процесс регистрации мгновенных значений амплитуды преобразуемого аналогового сигнала (измеряемой в вольтах) через определенные промежутки времени, т.е. с определенным временным шагом, называемым шагом дискретизации.

Частота дискретизации (частота выборки, частота сэмплирования)

количество осуществляемых в одну секунду замеров амплитуды сигнала, Гц.

Аналоговый нуль

условная линия равновесия (≪тишины≫) аналогового сигнала, т.е. линия условного нулевого значения амплитуды аналогового сигнала, относительно которой совершаются колебания электрического тока, моделирующего колебания звуковой волны (звука).

- в отсутствии звуковых колебаний на аналоговую цепь подается постоянный потенциал некоторой величины (постоянное напряжение +11 В — аналоговый нуль.
- звуковые колебания моделируются в аналоговом тракте колебаниями напряжения относительно аналогового нуля.

Теорема Котельникова

Согласно этой теореме, аналоговый сигнал с ограниченным спектром может быть точно описан дискретной последовательностью значений его амплитуды, если эти значения следуют с частотой, как минимум вдвое превышающей наивысшую частоту спектра.

$$F_d \ge 2F_m$$

Для того, чтобы оцифрованный сигнал содержал информацию обо всем диапазоне слышимых человеком частот (0 -20 кГц) исходного аналогового сигнала, частота дискретизации при оцифровке должна составлять не менее 40 кГц. Шаг дискретизации =25 мкс.

Проблемы оцифровки

- необходимо сохранить точность значений замеров амплитуды сигнала;
- сделать это нужно в как можно более компактной форме.

- ullet младший квант самый нижний уровень амплитуды -1 у.е.;
- старший квант самый верхний уровень амплитуды +1 у.е.;
- кванты пронумеруем от 0 до 2^N-1 , используя N бит;
- ullet цифровой нуль расположен ровно между квантами с номерами $2^{N-1}-1$ и 2^{N-1} .

В процессе квантования непрерывный аналоговый звуковой сигнал представляется на каждом шаге дискретизации в виде прямоугольных импульсов текущей амплитуды.

Квантование исходного аналогового сигнала по амплитуде

процесс замены реальных (измеренных) значений амплитуды сигнала приближенными значениями с определенной точностью.

Трехбитный квантователь: N=3 бит, имеем $2^3=8$ квантов, шаг квантования $\Delta = 2/7$ y.e.

Результат квантования: 4, 5, 5, 3, 2, 1, 0, 5, 6, 5, 3, 3. На выходе трехбитного квантователя:

100 101 101 011 010 001 000 101 110 101 011 011.

24.02.2014

Клипирование (clipping, клиппинг)

эффект, возникающий тогда, когда динамический диапазон преобразуемого в цифровую форму аналогового сигнала будет превышать динамический диапазон квантователя.

Дополнительные проблемы в процессе оцифровки сигнала может вызвать несовпадение уровней аналогового и цифрового нулей, а точнее — смещение оси аналогового сигнала относительно цифрового нуля — DC-офсет (от англ. "direct current offset-— смещение постоянного тока).

Сдвиг постоянной составляющей

расстояние между аналоговым и цифровым нулями.

CD-DA (Compact Disc Digital Audio) — стандарт записи данных на оптических аудио компакт дисках.

Стандарт устанавливает следующие параметры кодирования: двухили одноканальная запись (т.е. стерео или моно) в формате ИКМ с частотой дискретизации 44,1 кГц и разрядностью квантования 16 бит.

Одна секунда аудио в таком формате занимает 176 400 байт (2 канала imes 44 100 отсчетов в секунду imes 2 байт на отсчет) или 1 411 200 бит.

Говорят, что битрейт (от англ. «bit rate» — «скорость бита», «скорость потока информации») данных в формате CD-DA составляет 1 411 200 бит/с.

Выходит, что один час аудио в этом формате занимает объем около 600 Мбайт (60 мин imes 60 с imes 2 канала imes 44 100 отсчетов в секунду imes 2 байт на отсчет = 605 Мбайт).

Процесс цифроаналогового преобразования на практике проходит фактически в два этапа:

- генерирование ступенчатого аналогового сигнала на основе известной информации об отсчетах цифрового сигнала, взятой, например, из памяти компьютера (ЦАП получает на входе последовательность отсчетов, т.е. цифровых значений сигнала, и выводит на выходе аналоговые импульсы соответствующей величины);
- сглаживание импульсного аналогового сигнала с помощью аналогового фильтра нижних частот (ФНЧ) с частотой среза, равной половине частоты дискретизации.

Шум квантования

аудиосигнал, составляющий разницу между аналоговым импульсным сигналом, восстановленным из цифрового сигнала на выходе ЦАП, и исходным аналоговым аудиосигналом (до оцифровки).

Величина шума квантования колеблется в пределах величины $\Delta/2$. Наибольший уровень шума квантования для данной разрядности квантования N:

$$S_i = 20 \log(1/k)$$
 дБ,

где $k = 2^{N}$.

Разрядность, бит	k	Уровень шума квантования, дБ
1	2	-6
8	256	-48
15	32 768	-90
16	65 536	-96
20	1 645 676	-120

В цифровой аппаратуре 0 дБ (dBFS, Decibel to Full Scale) соответствует максимальному уровню сигнала, а все другие значения откладываются на отрицательной шкале децибелов (при этом положительные значения сигнала в децибелах считаются зашкаливающими).

Дизеринг

намеренное ≪подмешивание» к преобразуемому цифровому сигналу слабого по уровню (с амплитудой в пределах до 2Δ) псевдослучайного постороннего сигнала, так называемого дизеринг-шума.

Формовка шума

(noise shaping) преобразование (точнее — перераспределение) шума квантования таким образом, чтобы большая часть его энергии расположилась в наименее заметных на слух частотных областях.

Джиттер

осуществление выборки аналогового сигнала в АЦП может происходить не через абсолютно равные промежутки времени, а с некоторыми случайными отклонениями, либо на стадии ЦАП в виде случайных отклонений длительностей (ширины) прямоугольных импульсов от величины шага дискретизации и в отклонениях крутизны фронтов отдельных импульсов.

Гранулярный шум (granular noise)

эффект, проявляющийся при имеющей место нестабильности операции округления в процессе квантования сигнала.

Погрешность квантования сигнала в областях со слабой амплитудой оказывается намного более заметной на слух, чем погрешность квантования в областях, где сигнал характеризуется высокими значениями интенсивности.

Неоднородное квантование

любой способ квантования, предусматривающий использование непостоянного шага $\Delta(\Delta \neq const)$ с наперед заданным разбиением амплитудной шкалы.

Три различные трактовки понятия ≪качества звука≫:

- какая форма представления звуковых колебаний обеспечивает сравнительно более точное приближение к звучанию источника звука;
 - чем меньше тракт, тем лучше;
 - гармонические и негармонические искажения.
- какая форма представления звуковых колебаний обеспечивает наиболее приятное звучание с точки зрения слушателя;
 - Hi-Fi и Hi-End;
 - кодирование с потерями.
- какая форма представления звуковых колебаний обеспечивает максимальную компактность, сохранность и предоставляет эффективную возможность преобразования аудиоданных (их монтажа, коррекции и пр.).
 - ограниченность носителей аналоговой информации;
 - неограниченный возможности преобразования цифровой информации.