A Generalized Logical Framework

András Kovács¹, Christian Sattler¹

¹University of Gothenburg & Chalmers University of Technology

17 Apr 2025, EuroProofNet WG6 meeting, Genoa

- 1 Two-level type theories (2LTT):
 - metaprogramming over a **single model** of a **single type theory**.

- 1 Two-level type theories (2LTT):
 - metaprogramming over a **single model** of a **single type theory**.
 - the chosen model is defined **outside the system**.

- 1 Two-level type theories (2LTT):
 - metaprogramming over a **single model** of a **single type theory**.
 - the chosen model is defined **outside the system**.
 - only a second-order view on the model.

- 1 Two-level type theories (2LTT):
 - metaprogramming over a single model of a single type theory.
 - the chosen model is defined **outside the system**.
 - only a second-order view on the model.
- ② Generalized logical framework (GLF):
 - metaprogramming over any number of models of any number of type theories.
 - models are defined inside the system.
 - both a first-order and a second-order view on each model.

- 1 Two-level type theories (2LTT):
 - metaprogramming over a single model of a single type theory.
 - the chosen model is defined **outside the system**.
 - only a second-order view on the model.
- ② Generalized logical framework (GLF):
 - metaprogramming over any number of models of any number of type theories.
 - models are defined inside the system.
 - both a first-order and a second-order view on each model.

In this talk:

- lacktriangledown A syntax of GLF + examples + increasing amount of syntactic sugar.
- 2 A short overview of semantics.

GLF basic universes & type formers

Set An universe that supports ETT.

Base : Set Sort of "base categories".

1 : Base The terminal category as a base category.

PSh : **Base** \rightarrow **Set** Universes of presheaves. Cumulativity: PSh_i \subseteq Set. Supports ETT.

We can only eliminate from PSh_i to PSh_i .

 $Cat_i : PSh_i := type of categories in PSh_i$

In : $Cat_i \rightarrow Set$ "Permission token" for working in presheaves over some $C : Cat_i$.

base : In $C \rightarrow$ Base "Using the permission".

We use type-in-type everywhere for simplicity, i.e. Set : Set and PSh_i : PSh_i .

Basic things we can do

 $\mathsf{Set} : \mathsf{Set} \qquad \mathsf{Base} : \mathsf{Set} \qquad \mathbf{1} : \mathsf{Base} \qquad \mathsf{PSh} : \mathsf{Base} \to \mathsf{Set}$ $\mathsf{Cat}_i : \mathsf{PSh}_i := \mathit{type} \; \mathit{of} \; \mathit{cats} \; \mathit{in} \; \mathsf{PSh}_i \qquad \mathsf{In} : \mathsf{Cat}_i \to \mathsf{Set} \qquad \mathsf{base} : \mathsf{In} \; \mathbb{C} \to \mathsf{Base}$

 PSh_1 is a universe supporting ETT, semantically a universe of sets.

We can define some \mathbb{C} : Cat₁, where Obj(\mathbb{C}): PSh₁.

Now, under the assumption of i: In \mathbb{C} , we can form the universe $PSh_{(base i)}$, which is semantically the universe of presheaves over \mathbb{C} .

Syntax sugar: we'll omit base in the following.

At this point, we have no interesting interaction between PSh₁ and PSh_i.

Example: embedding pure lambda calculus

A **second-order model of pure LC** in PSh_i consists of:

$$\begin{array}{l} \mathsf{Tm} : \mathsf{PSh}_i \\ \mathsf{lam} : (\mathsf{Tm} \to \mathsf{Tm}) \to \mathsf{Tm} \\ -\$ - : \mathsf{Tm} \to \mathsf{Tm} \to \mathsf{Tm} \\ \beta \quad : \mathsf{lam} \ f \ \$ \ t = f \ t \\ \eta \quad : \mathsf{lam} \ (\lambda x. \ t \ \$ \ x) = t \end{array}$$

We define $SMod_i$: PSh_i as the above Σ -type.

Example: embedding pure lambda calculus

A first-order model of pure LC consists of:

- A category of contexts and substitutions with Con : PSh_i , Sub : $Con \rightarrow Con \rightarrow PSh_i$ and terminal object •.
- Tm : Con \rightarrow PSh_i, plus a term substitution operation.
- A context extension operation $\neg \triangleright$: Con \rightarrow Con such that Sub Γ ($\Delta \triangleright$) \simeq Sub $\Gamma \times Tm \Gamma$.
- A natural isomorphism $\mathsf{Tm}\,(\Gamma\,\triangleright)\simeq \mathsf{Tm}\,\Gamma$ whose components are λ and application.

We define $\mathsf{FMod}_i : \mathsf{PSh}_i$ as the above Σ -type.

FMod is mechanically derivable from SMod.¹

¹Ambrus Kaposi & Szumi Xie: Second-Order Generalised Algebraic Theories.

Example: embedding pure lambda calculus