

Probabilistic Reasoning

Practice4

실습 1. Basic Probability

- Seeing Theory
 - https://students.brown.edu/seeing-theory/index.html
- Basic Probability

```
Example of Random Sampling with Replacement
printProb(event_probability(deck[
                                        <code>'], deck['cards']))</code>
printProb(event_probability(deck[
                                        ], deck[
                                        '], deck[ˈ
printProb(event_probability(deck[
printProb(event_probability(deck[
                                        ], deck[
printProb(event_probability(deck[
                                        ], deck[
printProb(event_probability(deck[
                                        ], deck[
25.0%
25.0%
25.0%
25.0%
25.0%
25.0%
```

```
Example of Random Sampling without Replacement
def draw(card, deck):
    return prob
printProb(draw(
                      , deck))
25.0%
23.53%
22.0%
26.53%
25.0%
23.4%
```


실습 2. Naïve Bayes (scikit-learn)

Iris data set classification

Classification Report							
	precision	recall	f1-score	support			
setosa	0.91	1.00	0.95	21			
versicolor	0.62	0.70	0.66	30			
virginica	0.56	0.42	0.48	24			
avg / total	0.68	0.69	0.68	75			
Accuracy 0.6933333333	33						

실습 2. Naïve Bayes (scikit-learn)

Plot Decision Regions

Decision Region of Naive Bayes

Decision Region of KNN

실습 3. Custom Naïve Bayes Implementation

Bayesian Classifier Example

No.	age	income	student	credit_rating	buys_computer
1	<=30	high	no	fair	no
2	<=30	high	no	excellent	no
3	3140	high	no	fair	yes
4	>40	medium	no	fair	yes
5	>40	low	yes	fair	yes
6	>40	low	yes	excellent	no
7	3140	low	yes	excellent	yes
8	<=30	medium	no	fair	no
9	<=30	low	yes	fair	yes
10	>40	medium	yes	fair	yes
11	<=30	medium	yes	excellent	yes
12	3140	medium	no	excellent	yes
13	3140	high	yes	fair	yes
14	>40	medium	no	excellent	no

실습 3. Custom Naïve Bayes Implementation

```
def getPredictionBayes(dataSet, X):
    classProb = {
   numberOfData = len(dataSet)
    for classValue in classProb.keys():
        probability = 1
        naiveBayesPrint(classValue)
        classCount = countClass(classValue, dataSet)
        p = (3)
        probability *= p
       print("%.5f" % p, end='')
        for i in range(len(X)):
            value = X[i]
            p = (4)
            print(" * %.5f" % p, end='')
            probability *= p
        print("\n = %.5f" % probability)
        classProb[classValue] = probability
   bestClass, bestProb = None, -1
    for classValue, probability in classProb.items():
        if bestClass is None or probability > bestProb:
            bestProb = probability
            bestClass = classValue
   return bestClass, bestProb
```

```
# get number of value in i^th column
def count(classValue, i, value, dataSet):
    n = 0
    for instance in dataSet:
        # fill the blank (1) & (2)
        if (1) and (2):
            n += 1
    return n
```

Classification Results

실습 4. Understanding Generative Model

