(Q9)

Theorem 1. There exists sets of real numbers $A, B \subseteq \mathbb{R}$ satisfying **all** of the following conditions:

- (a) $A \neq \phi, B \neq \phi$
- (b) There exists $b \in B$ so that a < b for every $a \in A$.
- (c) There exists $a \in A$ so that b < a for every $b \in B$.

This theorem is false. We can prove this by contradiction.

Proof. We begin by assuming all three conditions are true.

By condition (a), $A \neq \phi, B \neq \phi$. Let $x \in A$ and $x \in B$. This implies $x \in A \cap B$.

Since $A, B \subseteq \mathbb{R}$, we can conceptualize them as sections on a number line.

Considering condition (b),

If
$$x \in A \cap B$$
, then
$$\exists b \in B \text{ s.t. } a < b, \forall a \in A \\ \implies b \notin A \\ \implies x < b \text{ (since } x \in A) \text{ and } a < b$$

Simultaneously considering condition (c),

If
$$x \in A \cap B$$
, then
$$\exists a \in A \text{ s.t. } b < a, \forall b \in B \qquad \Longrightarrow a \notin B$$

$$\Longrightarrow x < a \text{ (since } x \in B) \text{ and } b < a$$

This leaves us with four states which must be simultaneously true:

$$\forall x \in A \cap B, \exists a \in A, b \in B \text{ such that:}$$

- 1. x < b.
- 2. x < a.
- 3. a < b.
- 4. b < a.

This implies $a < b < a \Rightarrow a < a$ which is not possible unless $A = \phi$ and $B = \phi$ via vacuous truth, which contradicts condition (a).