Probability and Measure - Tutorial 1

1. Let Ω be a set and let

$$\mathcal{A} = \{ A \subset \Omega : A \text{ or } A^c \text{ is countable } \}.$$

Show that \mathcal{A} is a σ -algebra.

- 2. Let Ω be a nonempty set, let \mathcal{A} be a σ -algebra, and let $(A_n)_{n\in\mathbb{N}}$ be a sequence of sets in \mathcal{A} . Show that the following sets belong to \mathcal{A} .
 - (a) $\{\omega \in \Omega : \omega \in A_n \text{ for all } n \in \mathbb{N}\}.$
 - (b) $\{\omega \in \Omega : \omega \notin A_n \text{ for all } n \in \mathbb{N}.$
 - (c) $\{\omega \in \Omega : \omega \in A_n \text{ for infinitely many } n \in \mathbb{N}\}$; this set is denoted $\limsup_{n \to \infty} A_n$.
 - (d) $\{\omega \in \Omega : \omega \in A_n \text{ for all but finitely many } n \in \mathbb{N}\}$; this set is denoted $\liminf_{n \to \infty} A_n$.

Describe the complements of these sets.

- 3. Show that the union of σ -algebras need not be a σ -algebra.
- 4. Let $\Omega = \mathbb{N}$, $\mathcal{A} = \mathcal{P}(\Omega)$ (the power set of Ω) and let p_n , $n \in \mathbb{N}$, be nonnegative numbers. Show that

$$\mu(A) = \sum_{n \in A} p_n, \quad A \subset \Omega,$$

defines a measure on Ω .

5. Let \mathcal{A} be a collection of subsets of a set Ω with the following properties: (a) $\Omega \in \mathcal{A}$; (b) $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$; (c) $A, B \in \mathcal{A}$ disjoint $\Rightarrow A \cup B \in \mathcal{A}$. Show that

$$A, B \in \mathcal{A}, \quad A \subset B \quad \Rightarrow \quad B \setminus A \in \mathcal{A}.$$