- 1. (1) Sol. The normal field extension is an algebraic field extension $K \subset L$ such that for any irreducible polynomial $f(x) \in K[x]$ that has a root in L, f(x) splits in L.
 - (2) Proof. We assume first that $K \subset L$ is a finite normal extension. Then $L = K(a_1, a_2, ..., a_n)$ for some $a_1, ..., a_n \in L$. Let $f_i \in K[x]$ be the minimal polynomial for a_i (i = 1, 2, ..., n). f_i exists since L is an algebraic extension. Consider the polynomial $f = f_1 f_2 \cdots f_n \in K[x]$. By the definition of normal extension, f_i splits in L. So f splits in L. Let R be the set of all the roots of f in L. Then we have

$$L = K(a_1, ..., a_n) \subset K(R) \subset L.$$

Thus L = K(R), which shows that L is the splitting field of $f \in K[x]$.

Next we assume that $K \subset L$ is a finite splitting field for $f \in K[x]$. Let $g \in K[x]$ be an arbitrary polynomial such that g has a root α in L. We want to show that g splits in L. Let $h = fg \in K[x]$ and M be the splitting field of h. Since h splits in M, it can be written as the product of linear factors with coefficients in M. Then f, g can also be written in this way since K[x] is a unique factorization domain, which shows that both f and g split in M. Considering f, there exists a K-homomorphism ϕ from L to M, which satisfies $\phi(L) = \phi(K)(\alpha, a_2, ..., a_n) = K(\alpha, a_2, ..., a_n) = L$ where $a_i \in L$ are the roots of f. Considering g, let $\beta \neq \alpha$ be another root of g in M (if g has only one root α , then we are done). So we just need to show that β is in L.

By the extension lemma, there exists a ring isomorphism j from $K(\alpha)$ to $K(\beta)$, which satisfies j(k)=k for any $k\in K$ and $j(\alpha)=\beta$. Regard $K(\beta)$ as a subfield of M, we can write $j:K(\alpha)\to M$. Note that L is the splitting field of $f\in K(\alpha)[x]$. To see that, the splitting field of f, regarded as a polynomial in $K(\alpha)[x]$, is $K(\alpha)(\alpha,a_2,...,a_n)=K(\alpha,a_2,...,a_n)=L$. Now that L is a splitting field of $K(\alpha)$, we can extend $j:K(\alpha)\to M$ to $\tilde{\phi}:L\to M$ be the extension lemma. Again by the extension lemma, $\phi=\tilde{\phi}$. So $\tilde{\phi}(L)=\phi(L)=L$, and $\beta=\tilde{\phi}(\alpha)\in L$.

2. *Sol.*

$$x^{9} - x = x(x^{8} - 1)$$

$$= x(x^{4} + 1)(x^{2} + 1)(x + 1)(x - 1)$$

$$= x(x + 1)(x + 2)(x^{2} + 1)(x^{4} + 4x^{2} + 4 - 4x^{2})$$

$$= x(x + 1)(x + 2)(x^{2} + 1)(x^{2} + 2x + 2)(x^{2} - 2x + 2).$$

$$x^{27} - x = x(x^{26} - 1)$$

$$= x(x^{13} + 1)(x^{13} - 1)$$

$$= x(x + 1)(x + 2)(x^{12} + \dots + x + 1)(x^{12} - \dots - x + 1)$$

$$= x(x + 1)(x + 2)(x^3 - x + 1)(x^3 - x - 1)(x^3 + x^2 - 1)(x^3 - x^2 + 1)$$

$$(x^3 + x^2 + x - 1)(x^3 + x^2 - x + 1)(x^3 - x^2 + x + 1)(x^3 - x^2 - x - 1)$$

- 3. Sol. $x^5 + x + 1 = (x^2 + x + 1)(x^3 + x^2 + 1)$. Considering 0 and 1, both of the factors are nonzero. So they are irreducible. Thus we have $x^5 + x + 1|x^{2^6} x$ since 2|6 and 3|6. Note that 6 is the least common multiple of 2 and 3, so the splitting field of $x^{2^6} x \in \mathbb{F}_2[x]$ is exactly the splitting field for $x^5 + x + 1 \in \mathbb{F}_2[x]$. Therefore L is the splitting field of $x^{2^6} x \in \mathbb{F}_2[x]$, which is isomorphic to \mathbb{F}_{2^6} . And $|L: \mathbb{F}_2| = 6$, L has $2^6 = 64$ elements.
- 4. (1) Sol. Generators of \mathbb{F}_{11}^* are $\{2, 6, 7, 8\}$.
 - (2) Sol. The product is 10!. By Wilson's theorem, $10! \equiv -1 \equiv 10 \pmod{11}$. So the product is 10.
 - (3) Sol. The product of all elements in \mathbb{F}_p^* is p-1. $\mathbb{F}_p^* = \{1, 2, ..., p-1\}$. For each $i \in \{2, ..., p-2\}$, there exists a unique $a_i \in \{2, ..., p-2\}$ such that $i \cdot a_i = 1$. To see that, consider the set

$$\{i, 2i, ..., (p-2)i, (p-1)i\}.$$

It is a complete residue system for p. Otherwise if $mi \equiv ni \pmod{p}$ for some $m \neq n \in \mathbb{F}_p^*$, then p|(m-n)i, which is impossible. Thus such a_i exists, and obviously not equal to 1 or p-1. In this way, we partition $\{2,...,p-2\}$ into $\frac{p-3}{2}$ pairs, and in the form (i,a_i) . Therefore

$$(p-1)! = 1 \cdot (p-1) \cdot 1^{(p-3)/2} = p-1.$$

5. Proof. Let F be a finite field of even order. Since the order must be of

the form p^k for a prime number p and a positive integer k, we have p=2. The order of F then becomes 2^k . Since F is finite, $F^*=F\setminus\{0\}$ is a cyclic multiplicative group. Assume that $F^*=\langle a\rangle$. Then for any $b\in F^*$, $b=a^n$ for some $0\neq n\neq 2^k-2$. If n is even, then $b=(a^{n/2})^2$. If n is odd, then $b=(a^{(n+2^k-1)/2})^2$. And for $0, 0=0^2$. Therefore every element is a square. \square

- 6. Proof. Obviously, $\operatorname{Aut}_K(L) \subset \operatorname{Aut}(L)$. So it suffices to show that for any $\phi \in \operatorname{Aut}(L)$, we have $\phi(k) = k$ for any $k \in K$. Note that K is the subfield generated by $\{1\}$, so $\phi(k) = \phi(m \cdot 1) = m\phi(1) = m \cdot 1 = k$ for some positive integer m.
- 7. Proof. Since $K \subset L$ is a finite Galois extension, $|\operatorname{Aut}_K(L)| = |L:K|$. By tower theorem, $|L:K| = |L:K(\alpha)||K(\alpha):K| = |L:K(\alpha)| \cdot \deg(p) \ge \deg(p)$. So we have $|\operatorname{Aut}_K(L)| \ge \deg(p)$.