Bài 6: Lập trình với Wi-Fi client - server

Bài toán: Chương trình giao tiếp 2 Wi-Fi.

Wi-Fi server lắng nghe tín hiệu từ Client. Khi nhận được tín hiệu "get" sẽ trả về tín hiệu "Server gui lai get";

Wi-Fi Client kết nối đến server và gửi tín hiệu "get".

1. Bước 1: Mô tả thiết bị.

Thiết đặt thông số cho Wi-Fi: thiết đặt thông số cho Wi-Fi như 1 server.

Hình 1: Cài đặt thông số cho Wi-Fi

Tên thuộc tính	Ý nghĩa
Baud	Baud của Wi-Fi
Connected Channel	Số lượng truy cập vào Wi-Fi
Mode	Chế đô truy cập Wi-Fi
Password Access Point	Mật khẩu mạng Wi-Fi muốn kết nối
Password ST	Mật khẩu của Wi-Fi
SSID Access Point	SSID của Wi-Fi muốn kết nối
SSID ST	SSID của Wi-Fi
	Địa chỉ IP của Wi-Fi muốn kết nối (dùng
	cho cấu hình Client)
IP	Đia chỉ IP của server để các thiết bị khác giao tiếp vời server.(dùng khi cấu hình esp là server)
Port	Chế độ Server: Port của Server. Chế độ Client: kết nối đến Port của Server.
Protocol	Phương thức Protocol.

Bảng 1: các thuộc tính của Wi-Fi ESP 8266 Lưu ý: Mỗi ESP8266 có giá trị baud khác nhau.

Thiết đặt thông số cho Wi-Fi client

Hình 2: Cài đặt thông số đèn led.

2. Bước 2: mô tả trạng thái chương trình client.

Hình 3: Lược đồ trạng thái cho chương trình client.

3. Kết quả mã nguồn client

```
Source code for
   #include <SoftwareSerial.h>
   Each state in the application corresponds to one the integer.
    Numbered starting at 0
    stateCurrent is a variable that stores the current state of the application.
    start: 0
10
    SendRequest: 1
    ReceiveResponse: 2
11
    L*/
13 int currentState = 0;
14
    int nextState = -1;
    /*----*/
15
    /*Define Wifi ESP8266 - wifi */
16
17
    #define TIMEOUT 3000
    #define RX 2 // pin TX of ESP8266 connect to pin 2 of Arduino
18
19
    #define TX 3 //pin RX of ESP8266 connect to pin 3 of Arduino
20
    SoftwareSerial wifi(RX,TX);
    /*----*/
22
    /*----*/
23
    //Read response from esp. Arduino is a receiver
24
    String readResponse();
25
    //Arduino send command to the esp
26
    String sendCommand(String command);
27
    //Close connection with a link id
28 void closeConnect();
29 void sendResponse(String content);
30 void HandleRequest(String res);
```

Hình 4: Mã nguồn sau khi phát sinh

```
31 void statestart();
    void stateSendRequest();
33
   void stateReceiveResponse();
34
   /*----*/
35 void setup()
36 □{
        Serial.begin(9600); //Change baud rate according to your ESP
37
38
        wifi.begin(115200);
39
        Serial.println(sendCommand("AT+RST"));
40
        Serial.println(sendCommand("AT+CWMODE=1"));
41
        Serial.println(sendCommand("AT+CWJAP=\"ESPLAP\",\"1234567890\""));
42
        Serial.println(sendCommand("AT+CIFSR"));
43
        if(currentState == 0){
44
            statestart();
45
   []<sub>}</sub>
46
47
   void loop()
48
        //Listening the request from server
49
50
        String res = readResponse();
        if(res != ""){
51
52
            HandleRequest(res);
53
54
        delay(300);
55
        switch(currentState) {
56
            case 0:
57
            //Event: "get" send
58
            //send to client response
59
            sendResponse("get");
60
            stateSendRequest();
```

Hình 5: Mã nguồn sau khi phát sinh

```
//<case0>
61
62
            break;
63
            case 1:
64
            //<case1>
65
            break;
66
            case 2:
67
            //<case2>
68
            break;
69
            default:
70
            break;
71
   b
72
73
    /*----*/
74
    String readResponse()
75 □ {
76
        String res = "";
77
        long timeout = millis() + TIMEOUT;
78
        while (millis() < timeout)</pre>
79 卓
80
            if (wifi.available())
81
82
               char ch = wifi.read();
83
               res += ch;
84
85
86
        return res;
87 L}
88
    //Send command to esp.
89 String sendCommand(String command)
```

Hình 6: Mã nguồn sau khi phát sinh

```
wifi.println(command);
     92
              return readResponse();
         L}
     93
     94 //Close connection with a link id
95 void closeConnect()
     96 ₽{
     97
              Serial.println(sendCommand("AT+CIPCLOSE=5"));
         L
     98
     99
          void sendResponse(String content)
     100 □{
    101
              closeConnect();
              Serial.println(sendCommand("AT+CIPSTART=\"TCP\",\"192.168.4.22\",80"));
    102
              String cmd = "AT+CIPSEND=";
    103
    104
              cmd += content.length();
    105
              Serial.println(sendCommand(cmd));
    106
              Serial.println(sendCommand(content));
         L
    107
    108 □void HandleRequest(String res){
              if(res.indexOf("+IPD") >= 0)
    109
    110 🛱
    111
                  //Event: "Server gui lai get" received
                  if(res.indexOf("Server gui lai get") != -1)
    112
    113 🖨
    114
                      // thêm lệnh in kết quả ra màn hình
    115
                      Serial.prinltn("Server gui lai get");
    116
                      stateReceiveResponse();
     117
    118
                  //<requestWifi>
    119
    120
               delay(300);
                       Hình 7: Mã nguồn sau khi phát sinh.
121 \[ \]
122 □void statestart(){
123
           currentState = 0;
124
           delay(200);
    L}
125
126 poid stateSendRequest() {
127
          currentState = 1;
128
           delay(200);
    L
129
130 □void stateReceiveResponse(){
131
           currentState = 2;
```

Hình 8: Mã nguồn phát sinh

----*/

132

133

L}

delay(200);

4. Bước 2: mô tả trạng thái chương trình server.

Hình 9: lược đồ xử lý phía server.

5. Mã nguồn phát sinh phía Server

```
2
    Source code for
   L*/
3
4
   #include <SoftwareSerial.h>
5 ⊟/*
    Each state in the application corresponds to one the integer.
7
    Numbered starting at 0
8
    stateCurrent is a variable that stores the current state of the application.
9
    Start: 0
10
    GetReceived: 1
    SendResponse: 2
12
   L*/
13
   int currentState = 0;
    int nextState = -1;
14
    /*----*/
15
16
    /*Define Wifi ESP8266 - esp */
17
                        3000
    #define TIMEOUT
18
    #define RX 2 // pin TX of ESP8266 connect to pin 2 of Arduino
    #define TX 3 //pin RX of ESP8266 connect to pin 3 of Arduino
19
20
    SoftwareSerial esp(RX,TX);
21
    /*----*/
    /*----*/
22
    //Read response from esp. Arduino is a receiver
23
    String readResponse();
    //Arduino send command to the esp
26
    String sendCommand(String command);
27
    //Close connection with a link id
28
    void closeConnect();
29
    void sendResponse(String content);
30 void HandleRequest(String res);
```

Hình 10: Mã nguồn server

```
31 void stateStart();
     void stateGetReceived();
    void stateSendResponse();
                    -----*/
    void setup()
36 ₽{
37
          Serial.begin(9600); //Change baud rate according to your ESP
          esp.begin(9600);
          Serial.println(sendCommand("AT+RST"));
39
          Serial.println(sendCommand("AT+CWMODE=2"));
40
          Serial.println(sendCommand("AT+CIFSR"));
41
          Serial.println(sendCommand("AT+CWSAP=\"ESPLAP\",\"1234567890\",5,3"));
Serial.println(sendCommand("AT+CIPAP=\"192.168.4.22\",\"192.168.4.22\",\"255.255.255.0\""));
42
43
          Serial.println(sendCommand("AT+CIPMUX=1"));
44
45
          {\tt Serial.println(sendCommand("AT+CIPSERVER=1,80"));}
          Serial.println(sendCommand("AT+CIFSR"));
46
47
          Serial.println("Server is ready.");
48
          if(currentState == 0){
49
              stateStart();
50
    L}
51
    void loop()
    ₽{
54
          //Listening the request from server
          String res = readResponse();
56
          if(res != ""){
57
             HandleRequest(res);
59
          delay(300);
          switch(currentState) {
```

Hình 11: mã nguồn server

```
61
            case 0:
62
            //<case0>
63
            break;
64
            case 1:
            //Event: "Server gui lai get" send
65
            //send to client response
66
67
            sendResponse("Server gui lai get");
68
            stateSendResponse();
69
            //<case1>
70
            break;
71
            case 2:
72
            //<case2>
73
            break;
74
            default:
75
            break;
76
77
78 /*----*/
79 String readResponse()
80 □{
        String res = "";
81
        long timeout = millis() + TIMEOUT;
82
        while (millis() < timeout)</pre>
83
84 🖨
85
            if (esp.available())
86 🖨
87
               char ch = esp.read();
88
               res += ch;
89
90
```

Hình 12: mã nguồn server.

```
91
          return res;
     L
 92
 93
     //Send command to esp.
      String sendCommand(String command)
 94
 95
     ⊟ {
          esp.println(command);
 96
 97
          return readResponse();
     L}
 98
 99
     //Close connection with a link id
100
     void closeConnect()
101
     □ {
102
          Serial.println(sendCommand("AT+CIPCLOSE=5"));
     L}
103
104
     void sendResponse(String content)
105
     □ {
106
          String cmd = "AT+CIPSEND=0,";
107
          cmd += content.length();
108
          Serial.println(sendCommand(cmd));
109
          Serial.println(sendCommand(content));
110
          closeConnect();
111
112
     □void HandleRequest (String res) {
113
          if (res.indexOf("GET / HTTP/1.1") >= 0)
114
          {
115
              String content = "Well come to ESP LAP";
116
              String cmd = "AT+CIPSEND=0,";
117
              cmd += content.length();
118
              Serial.println(sendCommand(cmd));
119
              Serial.println(sendCommand(content));
120
              closeConnect();
```

Hình 13: mã nguồn server

```
closeConnect();
121
122
         else if (res.indexOf("CONNECT") >= 0)
123 卓
124
             Serial.println("receive....");
125
126
         else if (res.indexOf("+IPD") >= 0)
127
128
             //Event: "get" received
129
             if(res.indexOf("get") != -1)
130 🖨
131
                stateGetReceived();
132
133
             //<requestWifi>
134
135
         delay(300);
136 }
137 □void stateStart(){
138
        currentState = 0;
139
         delay(200);
140 |
141 pvoid stateGetReceived() {
142
        currentState = 1;
143
         delay(200);
144 |
145 poid stateSendResponse() {
146
        currentState = 2;
147
         delay(200);
148 }
                 ----*/
149 /*--
```

Hình 14: mã nguồn server

6. Lắp đặt thiết bị.

7. Bài tập.

1. Hãy cấu hình giao tiếp giữa 2 Wi-Fi esp8266v1. Client gửi tín hiệu yêu cầu mở đèn bên server. Server thực thi lệnh bật đèn và gửi lại tín hiệu thông báo đã bật đèn.

Cách cấu hình Wi-Fi Client để kết nối đến Wi-Fi khác.

Hình 15: Cấu hình Wi-Fi Client kết nối đến 1 Wi-Fi Server khác.

Mode: Station

Thiết đặt Wi-Fi dạng Station.

SSID Access Point, Password Access Point: kết nối đến Wi-Fi server hay Wi-Fi trung gian.

Protocol: thiết lập phương thức protocol là UDP/ TCP tùy loại.

IP: Địa chỉ IP của Wi-Fi server trong mạng

Port: Port giao tiếp với Server.