Designing an Index for ZooDB

Jonas Nick & Bogdan Vancea

May 31, 2014

Outline

- 1 Introduction
- 2 Goals & Challenges
- 3 The new Index Implementation
- 4 Benchmarks

- an open source object database written in Java
- JDO standard compliant
- 4 times faster than competitor db4o
- zoodb.org

Key-Value data structure

- 1. fast retrieval
- 2. ordered iteration
- 3. stored in a file

Key-Value data structure

- 1. fast retrieval
- 2. **ordered** iteration
- 3. stored in a file

```
ZooJdoHelper.createIndex(pm, Person.class, "name",
false);
```

Key-Value data structure

- 1. fast retrieval
- 2. ordered iteration
- 3. stored in a file

```
ZooJdoHelper.createIndex(pm, Person.class, "name",
false);
```

 $\begin{array}{l} \mathsf{Attribute} \ \mathsf{Index} \\ \mathsf{Value} \to \mathsf{Object}\text{-}\mathsf{ID} \end{array}$

Key-Value data structure

- fast retrieval
- 2. ordered iteration
- 3. stored in a file

ZooJdoHelper.createIndex(pm, Person.class, "name",
false);

Attribute Index Value \rightarrow Object-ID

ObjectID Index $OID \rightarrow Diskpos$

Free Space Index Page-ID \rightarrow TxID

► Inner node contains keys and children pointer, leaf contains keys and values.

- Inner node contains keys and children pointer, leaf contains keys and values.
- Node fills one disk page.

- Inner node contains keys and children pointer, leaf contains keys and values.
- Node fills one disk page.
- Node has maximum and minimum number of entries.

Example: insert (8, v)

Images adapted from Database Management Systems by Ramakrishnan and Gehrke.

- Inner node contains keys and children pointer, leaf contain keys and values.
- Node fills one disk page.
- ▶ Node has maximum and minimum number of entries.

- Inner node contains keys and children pointer, leaf contain keys and values.
- Node fills one disk page.
- ▶ Node has maximum and minimum number of entries.
- Rebalancing
 - on insert: split
 - on delete: redistribute or merge

- Inner node contains keys and children pointer, leaf contain keys and values.
- Node fills one disk page.
- Node has maximum and minimum number of entries.
- Rebalancing
 - on insert: split
 - on delete: redistribute or merge
- Insert, remove, search are logarithmic.

Images adapted from Database Management Systems by Ramakrishnan and Gehrke.

▶ faster B+ tree index

- ▶ faster B+ tree index
- key unique and key-value unique
 - ► Ex. insert (1,1), (1,2)

- ▶ faster B+ tree index
- key unique and key-value unique
 - ► Ex. insert (1,1), (1,2)
- range query iterators

- ▶ faster B+ tree index
- key unique and key-value unique
 - ► Ex. insert (1,1), (1,2)
- range query iterators
- buffer manager to allow caching
 - fetches pages

- ▶ faster B+ tree index
- key unique and key-value unique
 - ► Ex. insert (1,1), (1,2)
- range query iterators
- buffer manager to allow caching
 - fetches pages
- prefix sharing

Exploit common prefix

00010000 00010100 00010110

variable number of key-value entries per node

- variable number of key-value entries per node
- prefix determines
 - if can be split without underflow

- variable number of key-value entries per node
- prefix determines
 - if can be split without underflow
 - ▶ if can be merged without overflow

- variable number of key-value entries per node
- prefix determines
 - ▶ if can be split without underflow
 - ▶ if can be merged without overflow
 - the number redistributions

runtime dominated by disk access

- runtime dominated by disk access
 - prefer fewer nodes

- runtime dominated by disk access
 - prefer fewer nodes
 - rarely modify nodes

- runtime dominated by disk access
 - prefer fewer nodes
 - rarely modify nodes
- New features are costly.

- runtime dominated by disk access
 - prefer fewer nodes
 - rarely modify nodes
- New features are costly.
- Textbook algorithms need to be adapted.

- runtime dominated by disk access
 - prefer fewer nodes
 - rarely modify nodes
- New features are costly.
- Textbook algorithms need to be adapted.
 - 1. not optimized for practical scenarios

Challenges

- runtime dominated by disk access
 - prefer fewer nodes
 - rarely modify nodes
- New features are costly.
- Textbook algorithms need to be adapted.
 - 1. not optimized for practical scenarios
 - 2. do not cover duplicates nor prefix sharing

Challenges

- runtime dominated by disk access
 - prefer fewer nodes
 - rarely modify nodes
- New features are costly.
- Textbook algorithms need to be adapted.
 - 1. not optimized for practical scenarios
 - 2. do not cover duplicates nor prefix sharing
- low-level implementation optimizations

Index Implementation

► Search - Similar to normal B+ Tree

- ▶ Search Similar to normal B+ Tree
- Insert overflow
 - attempt to redistribute values to left sibling before creating a new node

- Search Similar to normal B+ Tree
- Insert overflow
 - attempt to redistribute values to left sibling before creating a new node
- Delete underflow
 - check if possible to merge with left or right neighbour
 - check if possible to split current node between left and right
 - redistribute from left or right

- ▶ Search Similar to normal B+ Tree
- Insert overflow
 - attempt to redistribute values to left sibling before creating a new node
- Delete underflow
 - check if possible to merge with left or right neighbour
 - check if possible to split current node between left and right
 - redistribute from left or right
- Write
 - only write dirty nodes
 - prefix encoding

Microbenchmarks

Duration

Operation	Baseline (No prefix sharing)	Prefix sharing
Search	1	0.9 - 1.1
Insert	1	1.6 - 2.8
Delete	1	1.45 - 2.9

Size of B+ tree

Operation	Baseline (No prefix sharing)	Prefix sharing
Insert	1	0.5 - 1.1
Delete	1	0.5 - 0.75

StackOverflow Data Import

- ► Real-world workload consisting of importing StackOverflow data: users, posts, comments and votes
- ▶ 3 key unique attribute indexes and 9 key-value unique indexes

Index	Space saving (%)
Atrribute	41.6
OID	41.5
POS	23.1
Total	38.5

StackOverflow Import - Commit times

- predominantly searches
- more entries in a node
 → fewer dirty nodes
- data locality

Q&A

- ▶ Thank you for your attention!
- ▶ Questions ?