Analysing Gravitational Wave Observation

Team Birdies

Umar Farooq

Ilgwon Park

Gangmin Park

Cyril Briand

July 5 2019

LIGO'

Figure: LIGO Livingston Observatory

Objectives

- Detect cosmic gravitational waves
- Make them an observation tool

Achievement

- Detected multiple binary black hole mergers
- Detected binary neutron star

Why are we doing this project

- Pilot project to learn about scientific software
- Well documented HPC project
- Intro to statistical analysis
- Opportunity to document and suggest improvements

Definition

The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text.

Usage

Data cleaning and transformation, numerical simulation, statistical modeling, data visualization, machine learning, and much more.

Anaconda

Regardless of OS types, Anaconda supports Jupyter notebook including python and scientific packages such as numpy, Scipy and pandas. This way is highly recommended.

pip

User can install Jupyter by just pip like below python3 -m pip install –upgrade pip python3 -m pip install jupyter

Figure: Applying project to Jupyter Notebook

Figure: Applying project to Jupyter Notebook

What we are going to

the direction of our study

We're going to go through the process of detecting gravitational waves and converting them into audio files through some sample data from the paper. **the point of our attention.**

Hypothesis

Parameters required for frequency analysis for gravitational wave detection will affect the results in certain directions.

proof process

- Compare the magnitude of gravitational waves between different samples
- @ Get the relationship of gravitational waves according to parameters.

Sample data parameters

we have 4 BBH events

Estimated Source Parameters

Sky localization

deg^2

parameters

example of GW150914

Quantity	Value	Unit
UTC time	2017-01-04T10:11:58.6	
GPS time	1167559936.6	
Primary mass	31.2 +8.4 -6.0	Msun
Secondary mass	19.4 +5.3 -5.9	Msun
Chirp mass	21.1 +2.4 -2.7	Msun
Total mass	50.7 +5.9 -5.0	Msun
Final mass	48.7 +5.7 -4.6	Msun
Radiated energy	2.0 +0.6 -0.7	Msun c^2
Peak luminosity	3.1 +0.7 -1.3	10^56 erg s^-1
Effective inspiral spin	-0.12 +0.21 -0.30	
Final spin	0.64 +0.09 -0.20	
Luminosity distance	880 +450 -390	Мрс
Source redshift	0.18 +0.08 -0.07	
False alarm rate	< 1.4e-05	уг^-1
Signal to Noise Ratio	13	

1200

Questions

