

B-tree DATA STRUCTURES & ALGORITHMS

Definition

A **B-tree** T is a rooted tree (whose root is T.root) having the following properties:

- 1. Every node *x* has the following attributes:
 - a. x.n, the number of keys currently stored in node x,
 - b. the x.n keys themselves, $x.key_1, x.key_2, \dots, x.key_{x.n}$, stored in nondecreasing order, so that $x.key_1 \le x.key_2 \le \dots \le x.key_{x.n}$,
 - c. x.leaf, a boolean value that is TRUE if x is a leaf and FALSE if x is an internal node.
- 2. Each internal node x also contains x.n+1 pointers $x.c_1, x.c_2, \ldots, x.c_{x.n+1}$ to its children. Leaf nodes have no children, and so their c_i attributes are undefined.

Definition

3. The keys x. key_i separate the ranges of keys stored in each subtree: if k_i is any key stored in the subtree with root x. c_i , then

$$k_1 \leq x \cdot key_1 \leq k_2 \leq x \cdot key_2 \leq \cdots \leq x \cdot key_{x,n} \leq k_{x,n+1}$$
.

4. All leaves have the same depth, which is the tree's height h.

Definition

- 5. Nodes have lower and upper bounds on the number of keys they can contain. We express these bounds in terms of a fixed integer $t \ge 2$ called the *minimum degree* of the B-tree:
 - a. Every node other than the root must have at least t-1 keys. Every internal node other than the root thus has at least t children. If the tree is nonempty, the root must have at least one key.
 - b. Every node may contain at most 2t 1 keys. Therefore, an internal node may have at most 2t children. We say that a node is *full* if it contains exactly 2t 1 keys.²

The simplest B-tree occurs when t = 2. Every internal node then has either 2, 3, or 4 children, and we have a **2-3-4** tree. In practice, however, much larger values of t yield B-trees with smaller height.

Example

The height of a B-tree

If $n \ge 1$, then for any n-key B-tree T of height h and minimum degree $t \ge 2$, $h \le \log_t \frac{n+1}{2}$.

The height of a B-tree

number n of keys satisfies the inequality

$$n \geq 1 + (t-1) \sum_{i=1}^{h} 2t^{i-1}$$

$$= 1 + 2(t-1) \left(\frac{t^{h} - 1}{t-1}\right)$$

$$= 2t^{h} - 1.$$

By simple algebra, we get $t^h \le (n+1)/2$. Taking base-t logarithms of both sides proves the theorem.

Searching a B-tree

```
B-TREE-SEARCH(x, k)

1 i = 1

2 while i \le x.n and k > x.key_i

3 i = i + 1

4 if i \le x.n and k == x.key_i

5 return (x, i)

6 elseif x.leaf

7 return NIL

8 else DISK-READ(x.c_i)

9 return B-TREE-SEARCH(x.c_i, k)
```

Creating an empty B-tree

```
B-TREE-CREATE(T)

1  x = \text{ALLOCATE-NODE}()

2  x.leaf = \text{TRUE}

3  x.n = 0

4  \text{DISK-WRITE}(x)

5  T.root = x
```

B-Tree-Create requires O(1) disk operations and O(1) CPU time.

The procedure B-TREE-SPLIT-CHILD takes as input a nonfull internal node **x** and an index i such that **x.ci** is a full child of **x**.

B-TREE-SPLIT-CHILD (x, i)

1
$$z = \text{Allocate-Node}()$$
2 $y = x.c_i$
3 $z.leaf = y.leaf$
4 $z.n = t - 1$
5 **for** $j = 1$ **to** $t - 1$
6 $z.key_j = y.key_{j+t}$
7 **if** not $y.leaf$
9 $z.c_j = y.c_{j+t}$
10 $y.n = t - 1$
11 **for** $j = x.n + 1$ **downto** $i + 1$
12 $x.c_{j+1} = x.c_j$
13 $x.c_{i+1} = z$
14 **for** $j = x.n$ **downto** i
15 $x.key_{j+1} = x.key_{j}$
16 $x.key_i = y.key_t$
17 $x.n = x.n + 1$
18 DISK-WRITE(y)
19 DISK-WRITE(y)
20 DISK-WRITE(x)

Insert

T.root

 $T_5 \ T_6 \ T_7 \ T_8$

 T_1 T_2 T_3 T_4

Insert

B-Tree-Insert-Nonfull (x, k)

```
i = x.n
                                           else while i \ge 1 and k < x. key_i
   if x.leaf
                                      10
                                                   i = i - 1
3
        while i \ge 1 and k < x.key_i
                                               i = i + 1
                                      11
            x.key_{i+1} = x.key_i
4
                                      12
                                               DISK-READ(x.c_i)
5
            i = i - 1
                                               if x.c_i.n == 2t - 1
                                      13
        x.key_{i+1} = k
6
                                                   B-TREE-SPLIT-CHILD (x, i)
                                      14
        x.n = x.n + 1
                                                   if k > x. key,
                                      15
        DISK-WRITE(x)
                                      16
                                                       i = i + 1
                                               B-Tree-Insert-Nonfull (x.c_i, k)
                                      17
```


Delete

- 1. If the key k is in node x and x is a leaf, delete the key k from x.
- 2. If the key k is in node x and x is an internal node, do the following:
 - a. If the child y that precedes k in node x has at least t keys, then find the predecessor k' of k in the subtree rooted at y. Recursively delete k', and replace k by k' in x. (We can find k' and delete it in a single downward pass.)
 - b. If y has fewer than t keys, then, symmetrically, examine the child z that follows k in node x. If z has at least t keys, then find the successor k' of k in the subtree rooted at z. Recursively delete k', and replace k by k' in x. (We can find k' and delete it in a single downward pass.)
 - c. Otherwise, if both y and z have only t-1 keys, merge k and all of z into y, so that x loses both k and the pointer to z, and y now contains 2t-1 keys. Then free z and recursively delete k from y.

Delete

- 3. If the key k is not present in internal node x, determine the root $x.c_i$ of the appropriate subtree that must contain k, if k is in the tree at all. If $x.c_i$ has only t-1 keys, execute step 3a or 3b as necessary to guarantee that we descend to a node containing at least t keys. Then finish by recursing on the appropriate child of x.
 - a. If $x.c_i$ has only t-1 keys but has an immediate sibling with at least t keys, give $x.c_i$ an extra key by moving a key from x down into $x.c_i$, moving a key from $x.c_i$'s immediate left or right sibling up into x, and moving the appropriate child pointer from the sibling into $x.c_i$.
 - b. If $x.c_i$ and both of $x.c_i$'s immediate siblings have t-1 keys, merge $x.c_i$ with one sibling, which involves moving a key from x down into the new merged node to become the median key for that node.

