

SEM 2-1 (RC 07 - 08)

F.E. (Sem. – II) (Revised 2007 – 08) (Course) Examination, Nov./Dec. 2012 APPLIED MATHEMATICS – II

Duration: 3 Hours Total Marks: 100

Instructions: i) Attempt any five questions, at least one from each module.

ii) Assume suitable data if necessary.

MODULE-I

- 1. a) Evaluate $\int_{0}^{\infty} \frac{\cos \lambda x}{x}$ (e^{-ax} e^{-bx}) dx applying differentiation under the integral sign.
 - b) Find the length of the cycloid $x = a (\theta + \sin \theta)$, $y = a (1 \cos \theta)$ between two cusp.
 - c) Find the curved surface area of the solid generated by the revolution about

$$x - axis of x (t) = 1 - Sint + \frac{t}{\sqrt{5}}$$
, $y(t) = \frac{2}{\sqrt{5}} Cost$, from $t = 0$ to $t = \pi/2$.

- 2. a) The position vector of a moving object is \overline{r} (t) = 2 Sint \overline{i} + 2 Cost \overline{j} + 3t \overline{k} . Show that velocity and acceleration vectors at $t = \pi/2$ are perpendicular.
 - b) Find the principal normal N and the binomial vector B of $\overline{r}(t) = 2 \text{ Sint } i + 2 \text{ Cost } j + 3t \text{ k at } t = 0.$
 - c) Evaluate $\int_{0}^{\pi} \cos t i + \sin^{2} t j + k dt$.
 - d) Define Curvature. If x = Cost, y = Sint, z = 2t. Find the curvature at $t = \pi/2$. 5

MODULE – II

3. a) Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-2y}}{y} dxdy$.

Mem.

8

- b) Evaluate $\iint 3x + 2dxdy$ over the region enclosed by $x^2 = y$ and y x = 2.
- c) Change the order of integration of $\int_{10}^{2x} 10^{-2x} = 10^{-2x}$
- 4. a) The region bounded by $x^2 = 4y$ and y = 1 is revolved about the x axis. Find the volume of the object generated.
 - b) Evalute the Spherical Polar coordinates integral $\int_{0}^{\pi/2} \int_{0}^{\pi} \int_{0}^{1} 3r^3 \sin^3 \phi \, dr d\theta \, d\phi$. **6**
 - c) Find the volume of the region enclosed $x^2 + y^2 = 4$ and $x^2 + z^2 = 4$.

MODULE - III

- 5. a) Define Curl of a vector field. Show that Curl $(\nabla \phi) = 0$ where ϕ is a scalar point function.
- 6
- b) What is the greatest rate of change of $f(x, y, z) = 2x^2 + 3z + y^2$ at the point (1, -2, 2)?
- 4

c) Evalute $\iint_S \nabla x \overrightarrow{F} \cdot \overrightarrow{n} ds$. Where S is the triangle having vertices

(1, 0, 0), (0, 2, 0) and (0, 0, 2) \overrightarrow{n} is the unit normal vector to the S and

$$\overrightarrow{F} = (x + yz)\overrightarrow{i} + (3z + x^2)\overrightarrow{j} + yx\overrightarrow{k}$$

10

- 6. a) Verify Green's theorem in the plane for $\oint_C (x + 3y^2)dx + xydy$ where C is the boundary of the region enclosed by $y^2 = x$ and x = 1.
 - b) Verify Gauss divergence theorem for $F = (z^2 + 2x) \vec{i} + (x + 2z^2) \vec{j} (y^2 + 3z) \vec{k}$, over the surface of the tetrahedron enclosed by the coordinate planes and the plane x + y + z = 1.

MODULE - IV

7. Solve the following differential equations:

20

a)
$$\frac{dy}{dx} - x^2 e^y = e^{2x + y}$$
.

b)
$$(x^2y^3 + 2y)dx + (2x - 2x^3y^2)dy = 0$$

c)
$$\frac{dy}{dx} = \frac{2y - x + 1}{4y - 2x + 2}$$

d) $(\sec x \tan x \tan y - e^{2x})dx + \sec x \sec^2 ydy = 0$.

8. Solve the following differential equations:

20

a)
$$(D^2 + 2D - 15)y = 2 \sin^2 x + 3$$

b)
$$(D^2 + 4) y = 4Tan 2x$$

c)
$$(D^3 - 6D + 4)y = 5xe^{2x}$$

d)
$$x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$$
.