Estudio Científico-Matemático del Neutrón en el Marco de la TCDS:

De Estado de Coherencia a Propiedad de la Materia

Genaro Carrasco Ozuna — Proyecto TCDS / CGA

Octubre 2025

Resumen

Este estudio desarrolla la reinterpretación causal del neutrón dentro del marco de la Teoría Cromodinámica Sincrónica (TCDS), mostrando su transición conceptual desde partícula compuesta hacia fuerza de sincronización y finalmente propiedad ontológica de la materia. El tratamiento se realiza sobre el campo de coherencia Σ y su acoplamiento con la materia espacial inerte χ , dentro del Conjunto Granular Absoluto (CGA). Se establecen las ecuaciones fundamentales, la dinámica mesoscópica, los criterios de locking, y un programa experimental falsable basado en dispositivos Σ FET.

1. Formalismo Mínimo TCDS

Los campos fundamentales son: coherencia $\Sigma(x,t)$ y sustrato $\chi(x,t)$. El Lagrangiano efectivo se expresa como:

$$\mathcal{L} = \frac{1}{2}(\partial \Sigma)^2 + \frac{1}{2}(\partial \chi)^2 - \left[-\frac{1}{2}\mu^2 \Sigma^2 + \frac{1}{4}\lambda \Sigma^4 + \frac{1}{2}m_{\chi}^2 \chi^2 + \frac{g}{2}\Sigma^2 \chi^2 \right]$$
(1)

Las ecuaciones de movimiento (EOM) son:

$$\Box \Sigma - \mu^2 \Sigma + \lambda \Sigma^3 + g \, \Sigma \, \chi^2 = 0 \tag{2}$$

$$\Box \chi + m_{\chi}^2 \chi + g \, \Sigma^2 \chi = 0 \tag{3}$$

La dinámica mesoscópica con fricción ϕ y empuje cuántico Q:

$$\partial_t \Sigma = \alpha \Delta \Sigma - \beta \phi + Q \tag{4}$$

El locking sincrónico se define por:

$$\nabla \Sigma_{\text{tot}} = 0 \quad \Rightarrow \quad R \propto \nabla^2 \Sigma \tag{5}$$

2. Tríada Ontológica del Neutrón

2.1. Corte I: Cuasi-Partícula (Estado Local de Equilibrio)

$$\nabla \Sigma_p + \nabla \Sigma_e = 0, \qquad \partial_t \Sigma_n = 0 \tag{6}$$

Masa efectiva por fricción:

$$m_n \propto \int_{\text{CGA}} \phi[\Sigma_n] \, dV$$
 (7)

Condición de estabilidad:

$$\omega^2(k) = \mu^2 - 3\lambda \Sigma_n^2 - g\chi^2 + \alpha k^2 > 0 \tag{8}$$

2.2. Corte II: Fuerza Sincrónica (Modo Restaurador)

La fuerza restauradora de fase es:

$$F_{\Sigma n} = -\frac{\partial V}{\partial \Sigma} = \mu^2 \Sigma - \lambda \Sigma^3 - g \, \Sigma \, \chi^2 \tag{9}$$

Constante de rigidez:

$$k_{\Sigma n} = \frac{\partial F_{\Sigma n}}{\partial \Sigma} \Big|_{\Sigma_n} = \mu^2 - 3\lambda \Sigma_n^2 - g\chi^2$$
 (10)

Amortiguamiento efectivo:

$$\Gamma_{\Sigma n} = \beta \langle \phi \rangle \tag{11}$$

Ecuación dinámica local:

$$\ddot{\delta\Sigma} + \Gamma_{\Sigma n}\dot{\delta\Sigma} + k_{\Sigma n}\delta\Sigma = 0 \tag{12}$$

2.3. Corte III: Propiedad Intensiva (Neutronicidad)

Definición:

$$\eta_n = 1 - \frac{|\nabla \Sigma|}{\Sigma_0} \tag{13}$$

Interpretación: $\eta_n \to 1$ indica estabilidad (estado noble), $\eta_n \to 0$ alta reactividad. Relaciones:

$$F_{\Sigma n} = -\Sigma_0 \frac{\partial \eta_n}{\partial x} \tag{14}$$

$$m_n \propto \int (1 - \eta_n) \, dV \tag{15}$$

3. Migración Ontológica

La relación entre dominios:

Partícula
$$\xrightarrow{\text{promedio temporal}}$$
 Fuerza $\xrightarrow{\text{promedio espacial}}$ Propiedad

Condiciones de paso:

- Corte I \rightarrow II: $k_{\Sigma n} > 0$, $\Gamma_{\Sigma n} > 0$.
- Corte II \rightarrow III: $\ell \gg$ escala observacional y $\nabla \Sigma \approx$ homogéneo.

4. Métricas y Parámetros Clave

$$R(t) = \left| \langle e^{i\theta} \rangle \right| \tag{16}$$

$$LI = \frac{1}{T} \int_0^T \mathbf{1}_{\text{lock}} dt \tag{17}$$

$$RMSE_{SL} = \sqrt{\frac{1}{T} \int_0^T (\dot{\theta} - \omega_0 - K \sin \Delta \theta)^2 dt}$$
 (18)

$$\kappa_{\Sigma} = \frac{k_{\Sigma n}}{\Gamma_{\Sigma n}} \tag{19}$$

Criterios FET: $LI \ge 0.9$, R > 0.95, RMSE_{SL} < 0.1, reproducibilidad $\ge 95 \%$.

5. Predicciones por Corte

Corte I: Decaimiento β como bifurcación $k_{\Sigma n} \to 0^-$.

Corte II: $\Delta f \propto A_c$ bajo drive coherente.

Corte III: Alta η_n correlaciona con baja reactividad y mínima fricción.

6. Programa Experimental Falsable

1. Banco FET: locking dual; medir $k_{\Sigma n}$, $\Gamma_{\Sigma n}$, κ_{Σ} . Firma: $\Delta f \propto A_c$.

2. Fuerzas sub-mm: acotar (g, μ, λ) vía desviaciones Yukawa.

3. Núcleo efectivo: reproducir decaimiento como pérdida de rigidez.

4. Propiedad intensiva: Tomografía de η_n y correlación con reactividad química.

7. Autocrítica y Verificación

Consistencia si los tres cortes producen los mismos parámetros $\{k_{\Sigma n}, \Gamma_{\Sigma n}, \eta_n\}$ dentro de $\pm 5\%$. Error aceptable: RMSE_{SL} < 0,1. Se requieren controles térmicos y EMI nulos para evitar falsos positivos.

8. Conclusión

El neutrón se redefine como **modo coherencial del campo** –, no como partícula elemental. Su existencia causal se expresa en tres dominios:

Estado \leftrightarrow Fuerza \leftrightarrow Propiedad

y su estabilidad es el resultado del locking de gradientes de coherencia. Así, la neutralidad no es cancelación de carga, sino equilibrio ontológico en el CGA.