Zadania rekrutacyjne 2024

AGH Space Systems

21 października 2024

Cześć! W tym etapie przygotowaliśmy dla Ciebie kilka zadań. Nie oczekujemy, że wykonasz je wszystkie - ważne, żebyś czuł się dobrze z tym co stworzysz. Liczymy przede wszystkim na jakość rozwiązań, a nie na ich ilość. Jeśli któryś temat Ci się specjalnie spodoba nie ma problemu, żebyś wykonał tylko jedno zadanie.

Zadania podzielone są na dwa rodzaje - dotyczące hardware'u oraz firmware'u. W przypadku zadań firmware'owych ważna jest czytelność kodu oraz komentarze.

Na wykonanie zadań masz trochę ponad tydzień (deadline 2024-10-31 do godziny 23:59). Uprzedzając twoje pytania - tak, można korzystać z wszelakich pomocy - internetu, książek, artykułów, porad znajomych, czy wykładowców. Istotne jest, aby wykonać wybrane zadania najlepiej jak potrafisz, a wiedza, którą nabędziesz przy okazji, pozostała w Twojej głowie.

Po rozwiązaniu zadań (zarówno hardware'owych jak i firmware'owych) należy:

- stworzyć publiczne repozytorium w serwisie github.com
- wgrać rozwiązane zadania
- przesłać link w formularzu: link

Jeśli masz dodatkowe pytania do zadań, możesz skorzystać z tego formularza. Odpowiedź otrzymasz na podanego maila.

Powodzenia!

1 Zadania Hardware

Zadania z części hardware polegają na zaproponowaniu rozwiązania zadanego problemu wraz z krótkim uzasadnieniem/opisem. Preferujemy, aby projekt był wykonany w programie Altium Designer, jednak nie jest to krytyczne. Darmowa wersja Altiuma dla studentów jest dostępna pod tym linkiem.

1.1 Zadanie 1

Zaprojektuj układ do pomiaru prądu do 50A (odpornego na wyższe wartości chwilowe) na linii 24V. Napięcie wyjściowe ma przyjmować wartości z zakresu od 0 do 3V3, odpowiadające liniowo mierzonemu prądowi. Wyjście układu ma być gotowe do bezpośredniego podłączenia do ADC.

Jeżeli tylko znajdziesz czas zachęcamy do wykonania projektu PCB, lecz nie jest to wymagane.

1.2 Zadanie 2

Zaprojektuj layout (projekt PCB) przetwornicy step-down AP63300 na podstawie podanego poniżej schematu (1) i noty katalogowej. Użyj wartości komponentów podanych przez nas, ale sam dobierz konkretne ich modele tak, aby maksymalny ciągły prąd obciążenia wynosił 3A.

1.3 Zadanie 3

Zaproponuj jakie złącze, posiadające od 4 do 12 pinów, byś wybrał mając na uwadze, że będzie ono często wpinane i wypinane, zazwyczaj bez należytej uwagi. Dodatkowym aspektem jest zachowanie małej masy połaczeń.

Opisz dlaczego wybrałeś konkretne rozwiązanie oraz jego zalety i wady.

2 Zadania Firmware

Zadania z części firmware polegają na stworzeniu projektu na mikrokontroler STM32G474RET3 w języku C/C++ (mile widziany generator projektu CMake wygenerowany w STM32CubeMX). W przypadku gdy projekt będzie stworzony w środowisku innym niż STM32CubeIDE prosimy o zawarcie instrukcji kompilacji projektu. Kod powinien się kompilować, natomiast oczywiście nie wymagamy pełnej poprawności działania. Do wykonania zadań powinna zostać wykorzystana biblioteka HAL. Mile widziane są komentarze opisujące działanie rozwiązań.

2.1 Obsługa programowalnej diody RGB

Zaimplementuj obsługę LED-ów WS2812B tak aby:

- 1. dioda R zmieniała natężenie świecenia w kształt sygnału prostokątnego z wypełnieniem 50%
- 2. dioda G zmieniała natężenie świecenia w kształt sygnału piłokształtnego
- 3. dioda B po naciśnieciu przycisku (dowolne GPIO) zamrugała 3-krotnie

Przyjmij okres zmian kolorów T = 3s.

2.2 Biblioteka UART

Zaimplementuj bibliotekę obsługującą interfejs tekstowy zrealizowany na interfejsie UART (baudrate 115200, 8 bitów danych, brak bitu parzystości, jeden bit stopu). Powinna ona obsługiwać odbieranie komend w sygnaturze komenda [=arg1;arg2;...]\r\n - argumenty są opcjonalne, w zależności od definicji komendy.

- Moduł powinien zawierać funkcje pozwalające dodać (zdefiniować) własne komendy (na etapie kompilacji). Po otrzymaniu poprawnego ciągu znaków, powinna zostać wywołana funkcja callback.
- 2. Funkcje callback powinny otrzymywać podane przez użytkownika argumenty.
- 3. Zdefiniuj komendę help wypisującą wszystkie dostępne polecenia.

Funkcja callback nie musi przetwarzać danych w żaden sposób, wystarczy że zostanie wywołana i otrzyma poprawne dane wejściowe.

2.3 Przetwarzanie danych z sensora

Napisz program, który umożliwi komunikację hipotetycznego sensora z mikrokontrolerem. Sensor wykonuje dokładne pomiary parametrów gleby i zwraca je w formie analogowej. Instrukcję obsługi sensora i formuły na przeliczenie surowych odczytów na wartości fizyczne znajdziesz w nocie katalogowej SPX24 dostarczonej wraz z zadaniami.

Załóż, że sygnały cyfrowe mają poziomy pozwalające na bezpośrednie sterowanie z mikrokontrolera, a analogowe mogą być bezpośrednio podane na wejście ADC.

Program powinien pobierać dane z czujnika jak najszybciej jest to możliwe z punktu widzenia mikroprocesora (zachowując gwarancję poprawności odczytu). Spróbuj rozwiązać temat w sposób nie blokujący wykonywania innego kodu na mikroprocesorze.

Rysunek 1: Schemat do zadania 1.3