Teoría de números algebraicos Tarea 4

Alexey Beshenov (alexey.beshenov@cimat.mx) 15 de septiembre de 2020

Fecha límite: viernes, 25 de septiembre.

Ejercicio 4.1. Encuentre la fórmula para el discriminante del polinomio

$$x^n + ax + b$$
.

Ejercicio 4.2. Sea K/\mathbb{Q} un campo de números y $\alpha \in \mathcal{O}_K$ un elemento entero tal que $\alpha \notin m\mathcal{O}_K$ para m>1. Demuestre que en este caso existe una base de \mathcal{O}_K sobre \mathbb{Z} que contiene α . En particular, demuestre que \mathcal{O}_K siempre admite una base que contiene 1.

Ejercicio 4.3. Sea d un entero libre de cuadrados. Consideremos el campo cúbico $K=\mathbb{Q}(\sqrt[3]{d})$. Denotemos $\alpha=\sqrt[3]{d}$ y consideremos un elemento

$$\beta = a + b\alpha + c\alpha^2, \quad a, b, c \in \mathbb{O}.$$

- a) Calcule las trazas $T_{K/\mathbb{Q}}(\beta)$, $T_{K/\mathbb{Q}}(\alpha\beta)$, $T_{K/\mathbb{Q}}(\alpha^2\beta)$ y la norma $N_{K/\mathbb{Q}}(\beta)$.
- b) Si $\beta \in \mathcal{O}_K$, entonces las trazas y normas de arriba son números enteros. Use esto para concluir que $\mathcal{O}_K \subseteq \frac{1}{3}\mathbb{Z}[\alpha]$.
- c) Use estas consideraciones para calcular el anillo de enteros \mathcal{O}_K y discriminante Δ_K (¡la respuesta depende de d!).

Ejercicio 4.4. Encuentre el anillo de enteros \mathcal{O}_K y discriminante Δ_K para los campos cúbicos $\mathbb{Q}(\sqrt[3]{6})$ y $\mathbb{Q}(\sqrt[3]{12})$.

Ejercicio 4.5. Consideremos el campo cúbico $K = \mathbb{Q}(\sqrt[3]{17})$.

- a) Calcule el anillo de enteros \mathcal{O}_K y discriminante Δ_K .
- b) Describa las factorizaciones de primos racionales $p \in \mathbb{Z}$ en \mathcal{O}_K .
- c) Describa los ideales primos $\mathfrak{p}\subset\mathcal{O}_K$ tales que $N_{K/\mathbb{Q}}(\mathfrak{p})\leq 10$.
- d) Describa todos los ideales $I \subseteq \mathcal{O}_K$ tales que $N_{K/\mathbb{Q}}(I) \leq 10$.