

Index

Ur	nit – 4 → Basic Statistics	3
4.\	Mathada . Massum of Control Torodonor.	2
1)	Method 1 → Measure of Central Tendency	3
2)	Method 2 → Measure of Dispersion	14
3)	Method 3 → Covariance	21
4)	Method 4 → Correlation Coefficient	22
5)	Method 5 → Rank Correlation Coefficient	24
6)	Method 6→ Linear Regression	28
7)	Method 7 → Curve Fitting	31
8)	Method 8 Fitting of Trend by Moving Average Method	36

Unit - 4 ---> Basic Statistics

Method 1 → Measure of Central Tendency

Introduction

- → Statistics is the branch of science where we plan, gather and analyze information about a particular collection of objects under investigation.
- → Statistics techniques are used in every other field of science, engineering and humanity, ranging from computer science to industrial engineering to sociology and psychology.
- → For any statistical problem the initial information collection from the sample may look messy, and hence confusing. This initial information needs to be organized first before we make any sense out of it.

Central Tendency

- → The central tendency of a distribution is an estimate of the **center** of a distribution of values.
- → There are three measures to estimate central tendency which is
 - (1) Mean(\bar{x})
 - (2) Median(M)
 - (3) Mode(Z)
 - (4) Quartiles
 - (5) Percentiles

1.1 Mean

- → The mean means average.
- \rightarrow Mean is denoted by " \bar{x} " and read as x bar.
- → Table of different formulae of mean.

Method	Ungrouped Data	Discrete Continuous Grouped Data Grouped Dat					
Direct Method	$\frac{\sum x_i}{n}$	$\frac{\sum f_i x_i}{\sum f_i}$					
Assumed Mean Method	$A + \frac{\sum d_i}{n}$	$A + \frac{\sum}{\sum}$	$\sum f_i d_i \sum f_i$				
Step Deviation Method			$A + \frac{\sum f_i u_i}{\sum f_i} \times c$				

- \rightarrow n = total number of observations
- ightarrow In case of continuous frequency distribution,

 $x_i = mid$ value of the respective class.

- \rightarrow In case of **assumed mean method**, A can be any value from x_i .
- \rightarrow Use below formula to calculate $d_i \& u_i$

$$d_i = x_i - A \ ; \ u_i = \frac{x_i - A}{c}$$

Example of Method-1.1: Examples of Mean

С	1	Find the mean of data 10.2, 9.5, 8.3, 9.7, 9.5, 11.1, 7.8, 8.8, 9.5, 10.									
		Answer: 9	Answer: 9.44								
С	2	Find the m	nean for f	ollowi	ing dat	a:					
		Mark	s obtaine	d	20	9	25	50	40	80	
		Number	r of stude	ents	6	4	16	7	8	2	
		Answer: 3	32.23							_	
С	3	Find the	mean us	sing d	lirect 1	method, a	assumed	nean r	nethod	l and step	
		deviation	method:								
		Mark	KS	0 - 1	0 1	10 – 20	20 - 30	30 -	- 40	40 – 50	
		No. of stu	idents	5		10	40	2	0	25	
		Answer: 3	30								
С	4	Find the m	issing fre	equen	cy f ₁ an	nd f ₂ in the	e table give	en belov	w, it is	being given	
		that the m	ean of th	e give	n frequ	iency dist	ribution is	50.			
		Class	0 - 20	20	- 40	40 - 60	60 - 80	0 80	- 100	Total	
		f	17		f_1	32	f ₂		19	100	
		Answer: f	$f_1 = 18$,	f ₂	= 14			1		<u> </u>	
С	5					branches	s emplovi	ng 50	and 7	0 workers	
		A co-operative bank has two branches employing 50 and 70 workers respectively. The average salaries paid by two respective branches are 360									
		and 390 rupees per month. Calculate the mean of the salaries of all the									
		employees									
		Answer: 3	377.5								

1.2 Median

- → The median is the value found at the **exact middle** of the set of values.
- \rightarrow Median is denoted by capital letter "M".
- → To compute the median, list all observations in ascending order and then locate the value in the center of the sample.
- → Table of formula of median.

Data	Formula
Ungrouped Data	If n is odd, then $M = \left(\frac{n+1}{2}\right)^{th} \text{ observation}$
Discrete Grouped Data	If n is even , then $M = \frac{\left(\frac{n}{2}\right)^{th} \text{ observation} + \left(\frac{n}{2} + 1\right)^{th} \text{ observation}}{2}$
Continuous Grouped Data	$M = L + \left(\frac{\frac{n}{2} - F}{f}\right) \times c$

Where,

Median class = Class whose cumulative frequency with property min $\left\{ cf \mid cf \geq \frac{n}{2} \right\}$

L = Lower boundary point of the median class

n = Total number of observation (sum of the frequencies)

F = Cumulative frequency of the class preceding the median class

f = The frequency of the median class

Example of Method-1.2: Median

С	1	Find the median o	of followin	g data:					
		20, 25, 30, 15, 17, 35, 26, 18, 40, 45, 50.							
		Answer: 26							
С	2	The given observa	tions hav	e been arr	anged:	in ascend	ding	order. If t	he median
		of the data is 63, f	ind the va	lue of x fo	r the fo	ollowing	data	:	
		29, 32, 48, 50, 5	x, x + 2,	72, 78, 8	84, 95.				
		Answer: $x = 62$							
С	3	Calculate the med	ian for the	e followin	g data:				
					5				_
		Marks	20	9	25	50)	40	80
		No. of students	6	4	16	7		8	2
		Answer: 25							
С	4	The following tab	le gives n	narks obta	ained b	y 50 stu	dent	s in stati	stics. Find
		the median.							
		Marks	0 - 10	10 - 2	20 2	20 – 30	30) - 40	40 - 50
		No. of students	16	12		18		3	1
		Answer: 17.5							
С	5	The median of 60	observati	ons (follo	wing d	ata) is 28	3.5. F	ind x and	d y.
		Marks	0 - 10	10 - 20	20 – 3	30 30 -	- 40	40 - 50	50 - 60
		No. of students	5	X	20	1	5	у	5
		Answer: $x = 8$,	y = 7						

1.3 Mode

- → The mode is the **most frequently** occurring value in the set.
- → Mode is denoted by capital letter "Z".
- → The mode is not necessarily unique, like mean and median. we can have data with two modes (bi-modal) or more than two modes (multi-modal).
- → Table of formula of mode.

Data	Formula
Ungrouped Data	Most repeated observation among given data
Discrete Grouped Data	Highest frequency among given data
Continuous Grouped Data	$Z = L + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times c$

Where,

Modal class = A class with highest frequency

L = Lower boundary of modal class

c = Class length

 f_1 = Frequency of the modal class

 f_0 = Frequency of the class before the modal class

f₂ = Frequency of the class after the modal class

Relation Between Mean, Median and Mode

 \rightarrow Z = 3M – $2\bar{x}$; where \bar{x} = Mean, M = Median, Z = Mode

Example of Method-1.3: Mode

С	1	If mean is 1	If mean is 16 and median is 20. Calculate the mode.									
		Answer: 28										
С	2	Find the mo	ode of follo	wing da	ta:							
		(a) 2, 4, 2,	5, 7, 2, 8	3, 9.								
		(b) 2, 8, 4,	6, 10, 12	, 4, 8,	14, 16							
		Answer: (a) 2, (b) 4 & 8										
С	3	Find the mo	ode of follo	wing da	ta:							
		X	1	1	:	22		3	3		44	
		f	1	.5		20		1	9		10	
		Answer: 22	2									
С	4	Find the mode of following data:										
		Class	0 - 10	10	0 - 20 20 - 30 30 - 40 40 - 50				-0 - 50			
		f	3		5	7	7		10		12	
			50 - 60	60	- 70	70 -	- 80	8	0 – 90	90	0 - 100	
			15	1	12	(6		2		8	
		Answer: 55	5									
С	5	Find the mo	ode of follo	wing da	ta:							
		Class	200 -	- 220	220	- 240	2	40 -	- 260	26	50 - 280	
		f		7		15		2	1		19	
			280 -	- 300	300	- 320	3	20 -	- 340			
			(6 4 2								
		Answer: 25	55									
С	6	Obtain the r	nean, mod	e and m	edian f	or the	follov	ving	informa	atior	1:	
		X	< 10	< 20	<	30	< 4	0	< 50		< 60	
		f	12	30	5	57	77		94		100	
		Answer: x̄	Answer: $\bar{x} = 28$, $M = 27.407$, $Z = 25.625$									

1.4 Quartiles

 \rightarrow Quartiles are measures which divide a series into **four** equal parts using three quartiles namely Q₁, Q₂ and Q₃.

The quartile Q_1 is known as first quartile or lower quartile,

The quartile Q₂ is known as second quartile or median quartile,

The quartile Q_3 is known as third quartile or upper quartile.

- → To compute the quartile, list all observations in ascending order.
- → Table of formula of quartile.

Data	Formula
Ungrouped Data	$Q_1 = \left(\frac{n+1}{4}\right)^{th}$ observation $Q_2 = Median$
Discrete Grouped Data	$Q_3 = 3\left(\frac{n+1}{4}\right)^{th} \text{ observation}$
Continuous	$Q_1 = L + \left(\frac{\frac{n}{4} - F}{f}\right) \times c$, $Q_2 = L + \left(\frac{\frac{n}{2} - F}{f}\right) \times c$
Grouped Data	$Q_3 = L + \left(\frac{\frac{3n}{4} - F}{f}\right) \times c$

Where,

Quartile class Qk

- = Class whose cumulative frequency with property min $\left\{ cf \mid cf \geq \frac{kn}{4} \right\}$
- L = Lower boundary point of the quartile class
- n = Total number of observation (sum of the frequencies)
- F = Cumulative frequency of the class preceding the quartile class
- f = The frequency of the quartile class

Example of Method-1.4: Quartiles

С	1	Find the	Find the quartiles of the data: 4, 6, 7, 8, 10, 23, 34.									
		Answer:	6, 8,	23								
С	2	Find the q	ıuartile Q	$_1$, and Q_3 .								
		X	2	4	6		8		10	12		
		f	4	1	2		3		4	5		
		Answer:	4, 12									
С	3	Compute village.	Compute Q_1 , and Q_3 for the data relating to age in years of 543 members in a village.									
		X	20	30	40	50	0 60)	70	8	80	
		f	3	61	132	15	3 14	140		,	3	
		Answer:	40 , 6	0								
С	4	Calculate	the quart	iles Q ₁ , an	d Q ₃ for	the fo	llowing da	ata.				
		Class	3	30 - 32	32 -	- 34	34 -	- 36		36 – 3	8	
		f		12	1	8	1	6		14		
				38 – 40	40 -	- 42	42 –	- 44				
				12	8	3	6)				
		Answer:	33.06,	38.75								
С	5	Calculate	the quart	iles Q ₁ , an	d Q ₃ for t	the fo	llowing da	ata.				
		Mark	S	< 20 20 - 30 30 - 40					40 <			
		Number Studen		14	2	0	2	8		18		
		Answer:	23, 3	9. 28								

1.5 Percentiles

- → Percentiles are measures which divide a series into **hundred** equal parts.
- \rightarrow There are ninety-nine percentiles which is

The percentile P₁ is known as first percentile,

The percentile P_2 is known as second percentile and so on.

- → To compute the percentile, list all observations in ascending order.
- \rightarrow Table of formula of percentile.

Data	Formula
Ungrouped Data	$P_1 = \left(\frac{n+1}{100}\right)^{th} \text{ observation}$
Discrete Grouped Data	$P_{2} = 2\left(\frac{n+1}{100}\right)^{th} \text{ observation}$ \vdots $P_{99} = 99\left(\frac{n+1}{100}\right)^{th} \text{ observation}$
Continuous Grouped Data	$P_{1} = L + \left(\frac{\frac{n}{100} - F}{f}\right) \times c$ $P_{2} = L + 2\left(\frac{\frac{n}{100} - F}{f}\right) \times c$
Duu	$P_{99} = L + 99 \left(\frac{\frac{n}{100} - F}{f} \right) \times c$

Where,

Percentile class Pk

= Class whose cumulative frequency with property min $\left\{ cf \mid cf \ge \frac{kn}{100} \right\}$

L = Lower boundary point of the percentile class

n = Total number of observation (sum of the frequencies)

F = Cumulative frequency of the class preceding the percentile class

f = The frequency of the percentile class

Example of Method-1.5: Percentiles

С	1	Find 20 th Percentile of the data: 4, 6, 7, 8, 10, 23, 34, 55, 60.											
		Answer: 6											
С	2	Find the 30 ^t	Find the 30 th Percentile of the following data.										
		X	2	4	6	8	10	12					
		f	4	1	2	3	4	5					
		Answer: 6											
С	3	Find the 51 ^t	th Perce	entile of th	e following	data:							
		Marks	Marks 15 - 20 20 - 25 25 - 30 30 - 35 35 - 40										
		No. of stud	No. of students 2 12 15 20 25										
		Answer: 32	2. 185										

Method 2 ---> Measure of Dispersion

Dispersion

- → Dispersion refers to the **spread** of the values around the central tendency.
- → For Example:
 - -5, 0, 5 and -50, 0, 50 both have the same mean 0 but clearly the data given in the second case much more widely dispersed than those in the first case.
- → So, measures of central tendency are not sufficient for having some idea about dispersion.
- → Measures of dispersion gives the idea about the degree to which numerical data tend to spread about an average life.
- → There are certain measures of dispersion which is,
 - (1) Range
 - (2) Interquartile Range
 - (3) Standard Deviation
 - (4) Mean Deviation

Range

- → Range is simply the highest value **minus** the lowest value of a set of data values.
- \rightarrow For Example:

Range of -5, 0, 5 is 10

Reason: Range = Highest value – lowest value = 5 - (-5) = 10

<u>Interguartile Range</u>

→ The difference between the upper and lower quartile is known as the interquartile range.

i.e., Interquartile range = upper Quartile – lower Quartile = Q_3 – Q_1 .

Standard Deviation

- → Standard deviation is a measure that is used to quantify the amount of variation or dispersion of a set of data values.
- \rightarrow It is denoted by " σ " and read as "sigma".

→ Table of different formulae of standard deviation.

Method	Ungrouped Data	Discrete Grouped Data	Continuous Grouped Data				
Direct Method	$\sqrt{\frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2}$	$\sqrt{\frac{\sum f_i x_i^2}{\sum f_i} - \left(\frac{\sum f_i x_i}{\sum f_i}\right)^2}$					
Assumed Mean Method	$\sqrt{\frac{\sum d_i^2}{n} - \left(\frac{\sum d_i}{n}\right)^2}$	$\sqrt{\frac{\Sigma}{\Sigma}}$	$\frac{f_i d_i^2}{\sum f_i} - \left(\frac{\sum f_i d_i}{\sum f_i}\right)^2$				
Step Deviation Method			$\sqrt{\frac{\sum f_i u_i^2}{\sum f_i} - \left(\frac{\sum f_i u_i}{\sum f_i}\right)^2} \times c$				

Variance

- → Variance is **expectation** of the squared deviation.
- → It informally measures how far a set of (random) numbers are spread out from their mean.
- \rightarrow It is denoted by capital letter "V" and defined as $V = \sigma^2$.

Coefficient of Variation

- → The Coefficient of Variation is the **ratio** of the standard deviation to the mean and shows the extent of variability in relation to the mean of the population.
- → Coefficient of Variance is defined as

$$C. V. = \frac{\sigma}{\overline{x}} \times 100$$

- → If C.V. is high, then it is less consistent. Similarly, if C.V. is less, then it is more consistent.
- → The higher the Coefficient of Variation, the greater the dispersion.

Mean Deviation

- → The mean deviation is defined as a statistical measure that is used to calculate the average deviation from the mean value of the given data set.
- → In a simple word, the mean deviation is used to calculate how far the values fall from the middle of the data set.

→ Table of different formulae of mean deviation:

Method	Ungrouped Data	Grouped Data
M.D. about Mean	$\frac{\sum x_i - \overline{x} }{n}$	$\frac{\sum f_i x_i - \overline{x} }{\sum f_i}$
M.D. about Median	$\frac{\sum x_i - M }{n}$	$\frac{\sum f_i x_i - M }{\sum f_i}$
M.D. about Mode	$\frac{\sum x_i - Z }{n}$	$\frac{\sum f_i x_i - Z }{\sum f_i}$

Example of Method-3: Measure of Dispersion

С	1	Deter	Determine the interquartile range value for 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.										
		Answer: 11											
С	2	Find t	the interqu	uartile ran	ge for the	following	distributio	on:					
			x 1 2 3 4 5										
			f 5 10 12 5 3										
		Answ	Answer: 10										
С	3	Find the standard deviation for the following data:											
		6, 7,	6, 7, 10, 12, 13, 4, 8, 12.										
		Answ	Answer: 3.0414										
С	4	Find t	the standa	rd deviati	on and vai	iance for t	the follow	ing distrib	ution:				
		х	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70				
		f	6	14	10	8	1	3	8				
		Answer: $\sigma = 19.6214$, $V = 384.9993$											

С	5	The ar	The arithmetic means of runs scored by three batsmen A, B and C, in the											
		same s	same series of 10 innings, are 50,48 and 12 respectively. The standard											
		deviati	deviations of their runs are 15,12 and 2 respectively. Who is the most											
		consist	tent of	the thr	ee?									
		Answe	Answer: Batsman C is more consistent.											
С	6		Answer: Batsman C is more consistent. Two machines A, B are used to fill a mixture of cement concrete in a beam.											
			I'wo machines A, B are used to fill a mixture of cement concrete in a beam. Find the standard deviation of each machine & comment on the											
			performances of two machines.											
		A	·											
		В												
		Answe	Answer: $\sigma_A = 25.4950$, $\sigma_B = 24.4290$											
			There is less variability in the performance of the machine B.											
С	7	Find n				ut the r								
Ĭ	,	data:	rourr u	o v racio:	ii ubo		iioa.	1, 1110	ararr	and i	noue i	, , ,	10110 11	8
				5		10		1	.5		20		 25]
		X	+	7								4		
		f		/		4			6		3		5]
		Answe	Answer: $MD(\bar{x}) = 6.32$, $MD(M) = 6.2$, $MD(Z) = 9$											
С	8	Find n	Find mean deviation about the mean, median and mode for the following											
		data:	data:											
		Cla	Class 5 - 25 25 - 45 45 - 65 65 - 85 85 - 105											
		f	f 12 8 14 20 6											
		Answe	er: MD	$o(\bar{\mathbf{x}}) = 2$	21.33	, M	D(N	I) = 2	21.9	04,	MD($\mathbf{Z}) = 2$	3.466	

Measure of Association

- → In statistics, various factors or coefficients used to quantify a relationship between two or more variables.
- → Some measures of association are Pearson's correlation coefficient, the Spearman rank correlation coefficient.
- → Measures of association are used in various fields of research.
- → A measure of association determined by correlation analysis and regression analysis.
 - Correlation and regression are the most commonly used techniques for investigating the relationship between two quantitative variables.
 - Correlation refers to the relationship of two or more variables. Regression establishes a functional relationship between the variables.
 - The coefficient of correlation is a relative measure whereas the regression coefficient is an absolute figure.

Correlation

- → Two variables are known as **correlated** if a change in one variable affects a change in the other variable. Such a data connecting two variables is called bivariate data.
- → For Example:
 - Relationship between heights and weights.
 - Relationship between price and demand of commodity.
 - Relationship between age of husband and age of wife.
- → When two variables are correlated with each other, it is important to know the amount or extent of correlation between them.
- → The numerical measure of correlation of degree of relationship existing between two variables is known as the coefficient of correlation.
- \rightarrow It is denoted by **r** and it is always lying between -1 and 1.

 \rightarrow The value of r is ± 0.9 or ± 0.8 etc. shows high degree of relationship between the variables while ± 0.2 or ± 0.1 etc. shows low degree of correlation.

<u>Types of Correlation</u>

- → Correlation is classified into four types.
 - Positive Correlation
 - Negative Correlation
 - Linear Correlation
 - Nonlinear Correlation

Positive Correlation

- → If both the variables vary in same direction, then such correlation is known as positive correlation.
- → In other words, if the value of one variable increases, the value of other variables also increases, or, if the value of one variable decreases, the value of other variables also decreases.
- \rightarrow For Example:
 - The correlation between heights and weights of group of persons is a positive correlation.

Height(cm)	150 152		155	160	162	165
Weight(kg)	60	62	64	65	67	69

Negative Correlation

- → If both the variables vary in opposite direction, then such correlation is known as negative correlation.
- → In other words, if the value of one variable increases, the value of other variables decreases, or, if the value of one variable decreases, the value of other variables increases.
- \rightarrow For Example:
 - The correlation between the price and demand of a commodity is a negative correlation.

Price (₹ per unit)	10	8	6	5	4	1
Demand(units)	100	200	300	400	500	600

Linear Correlation

- → If the ratio of change between two variables is constant, then such correlation is known as **linear correlation**.
- → If such variables are plotted on a graph paper, a straight line is obtained.
- \rightarrow For Example:

Milk (l)	5	10	15	20	25	30
Curd (kg)	2	4	6	8	10	12

Nonlinear Correlation

- → If the ratio of change between two variables is not constant, then such correlation known as **nonlinear correlation**.
- → If such variables are plotted on a graph paper, a curve is obtained.
- \rightarrow For Example:

Advertising expenses (₹ in lacs)	3	6	9	12	15
Curd (kg)	10	12	15	15	16

Methods of Studying Correlation

- → There are two different methods of studying correlation:
 - Graphical Methods
 - (1) Scatter Diagram
 - (2) Simple Graph
 - Mathematical Methods
 - (1) Karl Pearson's coefficient of correlation
 - (2) Spearman's rank coefficient of correlation

Method 3 ---> Covariance

Covariance

- → Covariance is a measure of the relationship between two random variables X and Y.
- → It is defined as

$$cov(X,Y) = \frac{1}{n} \cdot \sum (x - \overline{x})(y - \overline{y})$$

Where, \overline{x} and \overline{y} are the mean of the X and Y respectively.

→ Also, we cand find covariance using following formula:

$$cov(X, Y) = \frac{1}{n} \cdot \sum xy - \frac{1}{n^2} \cdot \sum x \sum y$$

Example of Method-3: Covariance

С	1	Find the co	variance of t	he following	g data:						
		(15,44), (2	0,43), (25,4	15), (30,37)), (40,34),	(50,37).					
		Answer: -	39.17								
С	2	Determine	Determine $\sum xy$ if $n = 5$, $cov(X, Y) = 7.2$, $\sum x = 25$, $\sum y = 30$								
		Answer: 186									
С	3	Compute th	Compute the covariance between x and y using the following data:								
		x 1 2 3 4 5									
		X	1	4	3	4	5				
		X	1	_		4					
		y	3	2	5	4	6				
			3	_		<u> </u>					
				_		<u> </u>					

Method 4 ---> Correlation Coefficient

Karl Pearson's Coefficient of Correlation

→ The coefficient of correlation is the measure of correlation between two random variables X and Y, and is denoted by r. It is defined as below:

$$\mathbf{r} = \frac{\mathbf{cov}(\mathbf{X}, \mathbf{Y})}{\mathbf{\sigma_{\mathbf{x}}} \mathbf{\sigma_{\mathbf{y}}}} \qquad \dots \dots (1)$$

Where,

cov(X, Y) is the covariance of variables X and Y.

 σ_x & σ_y are standard deviation of X and Y respectively.

- → This expression is known as Karl Pearson's coefficient of correlation.
- \rightarrow We have.

$$cov(X,Y) = \frac{1}{n} \cdot \sum (x - \overline{x})(y - \overline{y})$$

$$\sigma_{x} = \sqrt{\frac{\sum (x - \overline{x})^{2}}{n}}$$

$$\sigma_y \; = \sqrt{\frac{\sum (y - \; \overline{y} \;)^2}{n}}$$

 \rightarrow Substitute the values of cov(X, Y), σ_x and σ_y in equation (1), We get

$$\mathbf{r} = \frac{\sum (\mathbf{x} - \overline{\mathbf{x}})(\mathbf{y} - \overline{\mathbf{y}})}{\sqrt{\sum (\mathbf{x} - \overline{\mathbf{x}})^2 \cdot \sum (\mathbf{y} - \overline{\mathbf{y}})^2}} \dots \dots (2)$$

 \rightarrow Equation (2) can be further reduced to below equation.

$$\mathbf{r} = \frac{\mathbf{n} \cdot \sum \mathbf{x} \mathbf{y} - \sum \mathbf{x} \sum \mathbf{y}}{\sqrt{\mathbf{n} \cdot \sum \mathbf{x}^2 - (\sum \mathbf{x})^2} \sqrt{\mathbf{n} \cdot \sum \mathbf{y}^2 - (\sum \mathbf{y})^2}} \dots \dots (3)$$

Example of Method-4: Correlation Coefficient

	Compute the coefficient of correlation between x and y using the following
	data:

X	2	4	5	6	8	11
у	18	12	10	8	7	5

Answer: r = -0.9203

Calculate Karl Pearson's correlation coefficient between age and playing C habits:

Age	20	21	22	23	24	25
No. of students	500	400	300	240	200	160
Regular players	400	300	180	96	60	24

Answer: r = -0.9823

C 3 Determine the coefficient of correlation if
$$n = 10, \overline{x} = 5.5, \overline{y} = 4$$
,

$$\sum x^2 = 385 \, \text{,} \sum y^2 = 192 \, \text{,} \qquad \sum (x+y)^2 = 947.$$

Answer:
$$r = -0.6812$$

C 4 Given that $n = 25$, $\sum x = 125$, $\sum x^2 = 650$, $\sum y = 100$, $\sum y^2 = 460$

and $\sum xy = 508$. Later on, it was found that two of the points (8, 12)

and (6,8) were wrongly entered as (6,14) and (8,6). Prove that r

Method 5 --- Rank Correlation Coefficient

Rank Correlation

- → Let a group of n individuals be arranged in order of merit with respect to some characteristics. The same group would give a different order(rank) for different characteristics.
- → Considering the orders corresponding to two characteristics A and B, the correlation between these n pairs of ranks is known as rank correlation in the characteristics A and B for that group of individuals.
- \rightarrow It is denoted by ρ .

Spearman's Rank Correlation Coefficient

 \rightarrow Edward Spearman's formula for rank correlation coefficient (p) is given by

$$\rho=1-\frac{6\sum d^2}{n(n^2-1)}$$

Where, d = Difference of Ranks

Tied Rank

- → If there is a tie between the ranks, then it is known as tied rank.
- \rightarrow Formula for rank correlation coefficient (ρ) is,

$$\rho = 1 - \frac{6\left[\sum d^2 + \frac{1}{12}(m_1^3 - m_1) + \frac{1}{12}(m_2^3 - m_2) + \cdots\right]}{n(n^2 - 1)}$$

Where, d = Difference of Ranks

 m_i = number of times a data repeats = 2, 3, ...

- \rightarrow Note:
 - If any data x_i is repeated 2 times, then $m_1 = 2$.
 - If any data x_i is repeated 3 times, then $m_2 = 3$.
- → In case of tie between individuals' ranks, the rank is divided among equal individuals.
- → For Example:
 - If there is tie with two items at 4th rank, then give average rank 4.5 as rank to both items.

Average =
$$\frac{4+5}{2}$$
 = 4.5

Example of Method-5: Rank Correlation Coefficient

_	l .		· ·										•
С	1	In a college,	IT de	partn	nent h	as arı	range	d one	comp	etitio	n for	IT stu	dents to
		develop an	develop an efficient program to solve a problem. Ten students took part in										
		the competi	tion a	nd ra	nked	by tw	o judg	ges gi	ven in	the f	ollowi	ing tal	ole. Find
		the degree	of ag	reeme	ent be	twee	n the	two	judge	s usir	ng rar	ık cor	relation
		coefficient.											
		1st judge	3	5	8	4	7	10	2	1	6	9	
		2nd judge	6	4	9	8	1	2	3	10	5	7	
					1					1			l
		Answer: ρ =											
С	2	The compet	itions	in a b	eauty	conte	est ar	e ranl	ked by	three	e judg	es:	
		1st judge	1	5	4	8	9	6	10	7	3	2	
		2 nd judge	4	8	7	6	5	9	10	3	2	1	
		3 rd judge	6	7	8	1	5	10	9	2	3	4	
		Use rank con	rrelati	ion to	discu	ss wh	ich pa	air of	judge	s has i	neare	st app	roach to
		beauty.											
		Answer: 2 ⁿ	d and	3 rd j	udge	s has	near	est ap	proa	ch			
		[ρ	12 =	0.55 1	$15, \rho_2$	$_{3}=0$	7333	3, p ₁₃	= 0.0	0545	1		
С	3	Find the rar										e:	
		Roll no.		1	2	3	1	5	1				i

Roll no.	1	2	3	4	5	6	7	8	
Marks in Math.	78	36	98	25	75	82	90	62	(
Marks in Chem.	84	51	91	60	68	62	86	58	Į.

Answer: ρ = 0.8333
Calculate coefficient of correlation by Spearman's method from following.

Sales Cost

Answer: $\rho = 0.7636$

C

C

The coefficient of rank correlation of marks obtained by 10 students in English and Economics was found to be 0.6. It was later discovered that the difference in ranks in the two subjects obtained by one of the students was wrongly taken as 7 instead of 1. Find the correct coefficient of rank correlation.

Answer: 0.8909

Regression

- → Regression is defined as a method of estimating the value of one variable when the other is known and both are correlated.
- → We use the general form regression line for these algebraic expressions. The algebraic expressions of the regression lines are known as **Regression Equations**.
- → It is highly used in statistical estimation of demand curve, supply curve, production function, cost function, consumption function etc.

Types of Regression

- → Regression is classified into four types:
 - Simple Regression
 - Multiple Regression
 - Linear Regression
 - Nonlinear Regression

Simple Regression

→ The regression analysis for studying only two variables at a time is known as simple regression.

Multiple Regression

→ The regression analysis for studying more than two variables at a time is known as multiple regression.

Linear Regression

→ If the regression curve is a straight line, the regression is known as linear regression.

Nonlinear Regression

→ If the regression curve is not a straight line, the regression is known as nonlinear regression.

Method of Studying Regression

- → There are two methods of studying regression:
 - Method of scatter diagram
 - Method of least square
- \rightarrow We will use method of least square only to find out regression.

Method 6 --> Linear Regression

Line of Regression (Linear Regression)

- → If the variables, which are highly correlated, are plotted on a graph then the points are around a straight line, the line is known as the line of regression.
- → There are two types of line of regression.
 - Line of regression of y on x
 - Line of regression of x on y

Line of Regression of y on x

- \rightarrow It is the line which gives the **best estimate for the values of y** for given values of x.
- \rightarrow The regression equation of y on x is given by

$$\mathbf{y} - \overline{\mathbf{y}} = \mathbf{b}_{\mathbf{y}\mathbf{x}} \left(\mathbf{x} - \overline{\mathbf{x}} \right)$$

Where,
$$b_{yx}$$
 = Regression Coefficient = $r \frac{\sigma_y}{\sigma_x} = \frac{n \sum xy - (\sum x)(\sum y)}{n \sum x^2 - (\sum x)^2}$
$$= \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

r = Correlation coefficient between x and y

 \bar{x} , σ_x = Mean & Standard Deviation of all x_i

 \overline{y} , $\sigma_{y} =$ Mean & Standard Deviation of all y_{i}

Line of Regression of x on y

- \rightarrow It is the line which gives the **best estimate for the values of x** for given values of y.
- \rightarrow The regression equation of x on y is given by

$$\mathbf{x} - \overline{\mathbf{x}} = \mathbf{b}_{\mathbf{x}\mathbf{v}} \left(\mathbf{y} - \overline{\mathbf{y}} \right)$$

Where,
$$b_{xy} = \text{Regression Coefficient} = r \frac{\sigma_x}{\sigma_y} = \frac{n \sum xy - (\sum x)(\sum y)}{n \sum y^2 - (\sum y)^2}$$
$$= \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (y - \overline{y})^2}$$

r = Correlation coefficient between x and y

 \bar{x} , σ_x = Mean & Standard Deviation of all x_i

 \bar{y} , $\sigma_y =$ Mean & Standard Deviation of all y_i

Properties of Regression Coefficients

→ The coefficient of correlation is the geometric mean of the coefficients of regression.

i.e.,
$$\mathbf{r} = \sqrt{\mathbf{b}_{\mathbf{yx}} \cdot \mathbf{b}_{\mathbf{xy}}}$$

- \rightarrow The product of both b_{xy} and b_{yx} cannot be more than 1.
- → Both the regression coefficients will have the same sign. They are either both positive and both negative. It means,

If
$$r < 0$$
, then $b_{yx} < 0 \& b_{xy} < 0$.

If
$$r > 0$$
, then $b_{yx} > 0 \& b_{xy} > 0$.

→ The arithmetic mean of the regression coefficients is greater than or equal to the correlation coefficient.

i.e.
$$\frac{b_{xy} + b_{yx}}{2} \ge r$$

Example of Method-6: Linear Regression

C	1	Obtain the two lines of regression for the following data:
	l	

Sales (No. of tablets)	190	240	250	300	310	335	300
Advertising expense (Rs.)	5	10	12	20	20	30	30

Answer:
$$y = 0.1766x - 30.4221$$
; $x = 4.7357y + 189.0807$

C 2 A study of amount of rainfall and quantity of air pollution removed is:

Daily rainfall	4.3	45	5.9	56	6.1	5.2	20	2.1	7.5	
(0.01 cm)	4.3	4.5	3.9	5.0	0.1	3.4	3.0	2.1	7.3	
Particulate	126	121	116	110	111	110	122	1/1	100	
removed unit	120	121	110	110	114	110	132	141	100	

- a. Find the equation of the regression line to predict the particulate removed from the amount of daily rainfall.
- b. Find the amount of particulate removed when daily rainfall is 4.8 units.

Answer: a. y = -6.3240x + 153.1755; b. 122.8203

C 3 The following data regarding the height(y) and weight(x) of 100 students are

given:
$$\sum x = 15000$$
, $\sum y = 6800$, $\sum x^2 = 2272500$, $\sum y^2 = 463025$,

 \sum xy = 1022250. Find the equation of regression line of height on weight.

Answer: y = 0.1x + 53

C 4 The data for advertising and sale given below:

	Adv. Exp.(x) (Rs. lakh)	Sales(y) (Rs. lakh)			
Mean	10	90			
Standard deviation	3	12			

- a. Correlation coefficient between prices is 0.8.
- b. Calculate the two regression lines.
- c. Find the likely sales when advertising expenditure is 15 lakhs.
- d. What should be the advertising expenditure if the company wants to attain a sales target of 120 lakhs?

Answer: b. x = 0.2y - 8; y = 3.2x + 58; c. 106; d. 16

C S A study of prices of a certain commodity at Raipur and Kanpur yields the below data:

	Raipur (Rs)	Kanpur (Rs)			
Average price/kg	2.463	2.797			
Standard deviation	0.326	0.207			

Correlation coefficient between prices at Raipur and Kanpur is 0.774. Estimate the most likely price at Raipur corresponding to the price of 3.052 per kilo at Kanpur.

Answer: 2.774

Method 7 → Curve Fitting

Introduction

- → We come across many situations where we often require to find a relationship between two or more variables. For example, weight and height of a person, demand and supply, expenditure depends on income, etc.
- → This relation may be expresses by polynomial or exponential or logarithmic relationship. In order to determine such relationship, first it is requiring to collect the data showing corresponding values of the variables under consideration.
- Suppose $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ be the data showing corresponding values of the variables x and y under consideration. If we plot the above data points on a coordinate system, then the set of points so plotted form a scatter diagram.
- → From this diagram, it is sometimes possible to visualize a smooth curve approximating the data. Such a curve is known as an **approximating curve**.
- \rightarrow In particular, if the data approximate well to a straight line, we say that a linear relationship exists between the variables. It is quite possible that the relationship of the form y = f(x) between two variables x and y, giving the approximating curve and which fit the given data of x and y, is known as **curve fitting**.

Least Square Method

- Suppose that the data points are $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$, where x is independent and y is dependent variable.
- \rightarrow Let the fitting curve f(x) has the following deviations (or errors or residuals) from each data points. i.e., $d_1 = y_1 f(x_1)$.
- These $d_i = y_i f(x_I)$ are known as deviation, error or residual. Its value may be positive, negative or zero.

→ To give equal weightage to each error, we square each of these and form their sum.

i. e.,
$$D = d_1^2 + d_2^2 + \dots + d_n^2 = \sum_{i=1}^n d_i^2$$

$$= \sum_{i=1}^n [y_i - f(x_i)]^2$$

7.1 Curve Fitting by Straight Line

- \rightarrow Let, $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ be the set of n values and let the relation between x and y be $\mathbf{y} = \mathbf{a} + \mathbf{bx}$.
- \rightarrow We have,

$$D = \sum_{i=1}^{n} [y_i - f(x_i)] = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

- \rightarrow If D = 0, then all the n points will lie on y = f(x).
- \rightarrow If D \neq 0, f(x) is chosen such that D is minimum.
- \rightarrow This will be minimum at,

$$\frac{\partial D}{\partial a} = 0 \Longrightarrow -2\sum_{i=1}^{n} (y_i - a - bx_i) = 0$$

$$\Rightarrow \sum_{i=1}^{n} y_i - a \sum_{i=1}^{n} 1 - b \sum_{i=1}^{n} x_i = 0$$

$$\Rightarrow \sum_{i=1}^{n} y_i - na - b \sum_{i=1}^{n} x_i = 0$$

$$\Rightarrow \sum_{i=1}^{n} y_i = na + b \sum_{i=1}^{n} x_i$$

Similarly, by
$$\frac{\partial D}{\partial b} = 0 \Longrightarrow \sum_{i=1}^{n} x_i y_i = a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} x_i^2$$

 \rightarrow We obtain following **Normal Equations** for the best fitting straight line y = a + bx.

$$\sum y = na + b \sum x$$

$$\sum xy=a\sum x+b\sum x^2$$

→ These equations can be solved simultaneously to give the best value of a and b such that straight line is the best fit to the data.

Example of Method-7.1: Curve Fitting by Straight Line

С	1	Fit a s	traight	line for	the	given p	airs of	(x, y)	which	are					
		(1,5),(2,7)	7), (3, 9),	(4, 10), (5,	11).										
		Answer: $y = 3.9 + 1.5x$													
С	2	Fit a straig	Fit a straight-line $y = ax + b$ to the following data:												
		X	-2	-1	2										
		у	1	2	3	3	4								
		Answer:	y = 0.7x	+ 2.6											
С	3	By method	d of least	squares, fi	t a linea	r relation	of the for	m P =	a + bW to	o the					
		following	data, P is	the pull re	quired 1	to lift a we	eight W. A	lso esti	mate P, v	vhen					
		W is 150.	·	•	•		Ü		,						
		W IS 150.													
		P	50	70)										
		W	12	15	21	25									
		Answer:	P = -11.	8005 + 5	.3041V	W ; P(15	50) = 78 3	3. 814 5							

7.2 Curve Fitting by Parabola

- \rightarrow Let, $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ be the set of n values and let the relation between x and y be $y = a + bx + cx^2$.
- \rightarrow We have.

$$D = \sum_{i=1}^{n} [y_i - f(x_i)] = \sum_{i=1}^{n} (y_i - a - bx_i - cx_i^2)^2$$

- \rightarrow If D = 0, then all the n points will lie on y = f(x). If D \neq 0, f(x) is chosen such that D is minimum.
- Differentiating S with respect to a, b, c and equating with zero (as done while fitting a linear curve). We obtain following **Normal Equations** for the best fitting $y = a + bx + cx^2$ curve (parabola) of second degree.

$$\sum y = na + b \sum x + c \sum x^{2}$$

$$\sum x y = a \sum x + b \sum x^{2} + c \sum x^{3}$$

$$\sum x^{2} y = a \sum x^{2} + b \sum x^{3} + c \sum x^{4}$$

Example of Method-7.2: Curve Fitting by Parabola

С	1	•	Fit a polynomial of degree two using least square method for the following experimental data. Also, estimate $y(2.4)$.												
		X	x 1 2 3 4 5												
		у	5	12	26	60									
		Answe	Answer: $y = 10.4 - 11.0857x + 5.7143x^2$; $y(2.4) = 16.7087$												
С	2	Fit a sec	cond – d	egree p	arabo	la y =	$ax^2 + b$	ox + c to	the follo	wing dat	a:				
		X	-3	-2	-	-1	0	1	2	3					
		у	12	4		1	2	7	15	30					
		Answe	r: y = 2	. 1190x	$x^2 + 2$.	9286	6x + 1.6	6667		1	'				

Fit a relation of the form $R = a + bV + cV^2$ to the following data, where V is the velocity in km/hr. and R is the resistance in km/quintal. Estimate R when V = 90.

V	20	40	60	80	100	120
R	5.5	9.1	14.9	22.8	33.3	46.0

Answer: $R = 4.35 + 0.0024V + 0.0029V^2$; R(90) = 28.0560

Method 8 --> Fitting of Trend by Moving Average Method

Introduction

- → Moving average method is a simple device of reducing fluctuations and obtaining trend values with a fair degree of accuracy.
- → In this method the average value of number of years (or months, weeks or days) is taken as the trend value for the middle point of the period of moving average.
- \rightarrow The process of averaging smoothest the curve and reduces the fluctuation.
- → The first thing to be decided in the method is the period of the moving average. What it means is to take a decision about the number of consecutive items whose average would be calculated each time.

Moving Averages of Odd Number of Years

- → Steps to find moving averages of k years (where k is an odd number)
 - (1) Find the sum of **first k** observations and also find their average (by dividing **k**) and place it against the $\left(\frac{k+1}{2}\right)^{th}$ observation.
 - (2) Leave the first observation, find average of next \mathbf{k} observations and place it against the $\left(\frac{\mathbf{k}+3}{2}\right)^{th}$ observation.
 - (3) Repeat above steps till last observation of the data is used.
- \rightarrow i.e.,

Year	Observations	3 yearly moving average
1980	\mathbf{x}_1	
1981	x ₂	$\frac{1}{3}(x_1 + x_2 + x_3)$
1982	x ₃	$\frac{1}{3}(x_2 + x_3 + x_4)$
1983	X ₄	$\frac{1}{3}(x_3 + x_4 + x_5)$
1983	x ₅	

Moving Averages of Even Number of Years

- → Steps to find moving averages of k years (where k is an even number)
 - (1) Find the sum of first **k** observations and also find their average (by dividing **k**) and place it against between $\left(\frac{k}{2}\right)^{th}$ & $\left(\frac{k}{2}+1\right)^{th}$ observation.
 - (2) Leave the first observation, find the average of **next k** observations and place it against between $\left(\frac{k}{2}+1\right)^{th}$ & $\left(\frac{k}{2}+2\right)^{th}$ observation.
 - (3) Repeat above steps till last observation of the data is used and we get **k** yearly moving average.
 - (4) Find **k** yearly centered moving average(by dividing **2**), which is the trend value of moving average.
- \rightarrow i.e.,

Year	Observations	4 yearly moving average	4 yearly centered moving average
1980	x ₁		
1981	x ₂		
		$\frac{1}{4}(x_1 + x_2 + x_3 + x_4) = A_1$	
1982	x ₃		$\frac{1}{2}(A_1 + A_2)$
		$\frac{1}{4}(x_2 + x_3 + x_4 + x_5) = A_2$	
1983	X ₄		$\frac{1}{2}(A_2 + A_3)$
		$\frac{1}{4}(x_3 + x_4 + x_5 + x_6) = A_3$	
1984	x ₅		

Example of Method-8: Fitting of Trend by Moving Average Method

С	1	Calculate	e 3 year	ly mo	ving a	aver	ages c	of t	he foll	lowing	g da	ta.			
		Year	S	1971		19	972		19	73		1974	19	975	
		Value	е	11			8		1	2		3		4	
		Answer	: 10.33	33,	7.66	66 ,	6.	33	3						
С	2	Calculate	e 4 year	ly mo	ving a	aver	ages	of 1	numb	er of s	tud	ents stı	udying i	n a high	er
		seconda	ry scho	ol in a	parti	cula	r villa	ige	from	the fo	llov	ving dat	ta.		
		Years	199	91 1992 1		19	993	1	994	1995		1996	1997	1998	
		No. of	30	6	43		43		34	44		54	34	24	
		Studen													
		Answer	: 40 ,	42.3	37 ,	42	2 . 62 ,		40.	25					
С	3	Calculate	e 5 year	ly mo	ving a	aver	ages c	of t	he foll	lowing	g da	ta.			
		Years	1971	1972	19	73	197	4	1975	5 19	76	1977	1978	1979	
		Value	25	49	5	5	12		52	4	0	88	12	44	_
		Answer	: 38.6,	4	1.6,	4	19.4,		40.8	3,	47 .	2			1
С	4	Calculate	e 6 year	ly mo	ving a	iver	ages c	of t	he foll	lowing	g da	ta.			
		Years	2001	2002	20	03	200	4	2005	5 20	06	2007	2008	2009	
		Value	124	120	13	35	140)	145	15	8	162	170	175	-
		Answer	: 140. 1	.66,	14	7 . 5 ,	1	15!	5	•		•	•	•	-

* * * * * End of the Unit * * * * *

