Statistical Inference: Peer Assessment

munirbe

Saturday, February 21, 2015

This report was generated to answer the second (basic inferential data analysis) part of the course project. The task is to investigate the **ToothGrowth** data set within the **datasets** library, and do some basic data analysis with it.

The analysis is divided into four parts:

- loading the data set
- basic summary of the data
- compare tooth growth by supp and dose
- conclusion

Loading the data

The **ToothGrowth** data set is located in the **datasets** library.

```
library(datasets);
data(ToothGrowth);
```

Summary of the data set

The number of observations and variables of the **ToothGrowth** data set is 60, and 3, respectively. The variables of the data set are **len**, **supp**, **dose**. The **ToothGrowth** data set is a result of the investigation of the effect of vitamin C on tooth growth in guinea pigs. The length of odontoblasts (teeth) of the 10 guinea pigs, receiving three dose levels of vitamin C (0.5, 1, and 2 mg), with each of two delivery methods: **orange juice** (**OJ**) and **ascorbic acid** (**VC**), is captured in this data set.

To give a visual overview on the effectivity of the two delivery methods as well as the three dose levels of vitamin C, a boxplot can be used.

```
library(ggplot2);
g <- ggplot(data = ToothGrowth, aes(x = as.factor(dose), y = len, fill = as.factor(dose))) +
    geom_boxplot() +
    facet_grid(. ~ supp) +
    ggtitle("Boxplot of the ToothGrowth data set") +
    ylab("Length of tooth") +
    xlab("") +
    scale_fill_manual(values = c("#999999", "#E69F00", "#56B4E9"), name = "Dosage level [mg]");
print(g);</pre>
```


The boxplot shows, that the dosage level has the greatest impact on tooth length and that **OJ** is more effective than **VC**. To get more information on the difference between the two delivery methods, more tests are needed.

Compare tooth growth by supp and dose

The first step is to check whether there is a difference in the supplement type or not. This can be done using the **t.test** function.

```
t.test(len ~ supp, data = ToothGrowth);
##
##
   Welch Two Sample t-test
##
## data: len by supp
## t = 1.9153, df = 55.309, p-value = 0.06063
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
   -0.1710156 7.5710156
##
## sample estimates:
## mean in group OJ mean in group VC
##
           20.66333
                            16.96333
```

Since the confidence interval contains 0 and the p-value is very low, we have to assume, that there is a significant difference in between the supplement forms (see boxplot, where it looks like \mathbf{OJ} being more effective than \mathbf{VC}).

The first two t-test in the annex show, that there is a significant difference between the supplement forms **OJ** and **VC** at dose levels of **0.5 mg** and **1.0** (confidence interval does not contain 0, p-value is close to 1, hence the H0 has to be rejected). In the last t-test, one can see that there is no significant difference between **OJ** and **VC** at a dosage level of **2.0 mg**.

Conclusion

- There is a significant difference in the delivery method at dosage levels of **0.5 mg** and **1.0 mg**
- Both delivery methods are equally efficient at a dosage level of 2.0 mg

Assumptions made for above conclusions

- Sample guinea pigs are representative of the entire population
- For the t-tests, the variances are assumed to be different, and non-paired tests were performed.

Annex

```
sub0.5 <- subset(ToothGrowth, dose == 0.5);</pre>
#t.test(sub0.5[1:10, 1], sub0.5[11:20, 1]);
t.test(sub0.5[1:10, 1] - sub0.5[11:20, 1]);
##
##
    One Sample t-test
##
## data: sub0.5[1:10, 1] - sub0.5[11:20, 1]
## t = -2.9791, df = 9, p-value = 0.01547
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -9.236542 -1.263458
## sample estimates:
## mean of x
       -5.25
sub1.0 <- subset(ToothGrowth, dose == 1.0);</pre>
#t.test(sub1.0[1:10, 1], sub1.0[11:20, 1]);
t.test(sub1.0[1:10, 1] - sub1.0[11:20, 1]);
##
    One Sample t-test
##
## data: sub1.0[1:10, 1] - sub1.0[11:20, 1]
## t = -3.3721, df = 9, p-value = 0.008229
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -9.908089 -1.951911
## sample estimates:
## mean of x
       -5.93
##
```

```
sub2.0 <- subset(ToothGrowth, dose == 2.0);
#t.test(sub2.0[1:10, 1], sub2.0[11:20, 1]);
t.test(sub2.0[1:10, 1] - sub2.0[11:20, 1]);

##
## One Sample t-test
##
## data: sub2.0[1:10, 1] - sub2.0[11:20, 1]
## t = 0.0426, df = 9, p-value = 0.967
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -4.168976 4.328976
## sample estimates:
## mean of x
## 0.08</pre>
```