Research on path planning algorithm based on deep reinforcement learning

VIN Introduction

柴士佳_Shijia CHAI

Path planning is a primary task of autonomous control for agents

And we have some traditional methods.

- Dijkstra algorithm

A* algorithm

But those methods have some problems.

- Not an end-to-end model
- No learning ability, no generalization ability
- No intelligent understanding of the problem

Therefore, the intelligent algorithm based on deep reinforcement learning has been performed.

- An end-to-end training and prediction model
- The model has the ability of learning and generalization
- Intelligent understanding of the problem

A MODEL FOR POLICIES THAT PLAN

Planning in MDP(Markov Decision Process)

- **□** States $s \in S$, actions $a \in A$
- Reward R(s, a)
- ☐ Transitions P(s'|s,a)
- \square Policy $\pi(a|s)$
- **□** Value function $V^{\pi}(s) = E^{\pi}[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) | s_{0} = s]$
- Value iteration(VI)

$$V_{n+1}(s) = \max_{a} Q_n(s, a) \quad \forall s,$$

$$Q_n(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) V_n(s')$$

- lacktriangle Converge to $V^* = \max_{\pi} V^{\pi}$
- $\Box \text{ Optimal policy } \pi^*(a|s) = \arg \max_{a} Q^*(s,a)$

■ Start from a reactive policy;

- Add an explicit planning computation
- \blacksquare Map the observation to planning MDP \overline{M}

■ Key point: observation will be mapped to a useful but **unknown** new map and we plan on the **new** map.

- Neural Networks map observation to reward and transitions
- Later- learn these

■ Both of them(\bar{R} and \bar{P}) are **trainable**.

■ Value function = sufficient information about plan

■ Fact is: action prediction can require only subset of \overline{V}^*

$$\pi^*(a|s) = \arg\max_{a} R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^*(s')$$

Use attention models in the networks

VALUE ITERATION NETWORKS

VALUE ITERATION = CONVNET

□ Value Iteration:

K iterations of:

$$Q_n(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V_n(s')$$

$$V_{n+1}(s) = \max_{a} Q_n(s, a) \quad \forall s,$$

Convnet :

- \cdot $ar{A}$ channels in $ar{Q}$ layers
- · Linear filters $\Leftrightarrow \gamma \overline{P}$
- · Channel-wise max-pooling
- Tied weights

·Best for locally connected problems(grids, graphs)

VALUE ITERATION NETWORK

■ Use VI model for planning:

VALUE ITERATION NETWORK

■ Value iteration Network(VIN)

VALUE ITERATION NETWORK

- ☐ Use Neural Network to achieve Value Iteration
- ☐ The Networks can learn to plan
- Train like any other Networks
- Backprop just like a convent
- Implementation Use TensorFlow or Pytorch

EXPERIMENTS

- Supervised learning from expert(shortest path)
- □ Observation: image of obstacles + goal, current state
- Compare VINs with reactive policies

- · VI State space: grid-world
- · VI Reward map: Convent
- · VI Transitions: 3×3 kernels

- · Attentions: choose Q values for current state
- · Reactive Policy: FC, softmax

Compare with:

- CNN inspired by DQN architecture¹
 - 5 layers
 - Current state as additional input channel
- Fully convolutional net (FCN) ²
 - · Similar to our attention mechanism
 - · 3 layers
 - Pixel-wise semantic segmentation (labels=actions)

Training:

- □ 5000 random maps, 7 trajectories in each
- Supervised learning from shortest path

¹Mnih et al. Nature 2015

²Long et al. CVPR 2015

Results:

Average training loss:

Success rate on test set:

Need further improvement!

Success rate – reach target without hitting obstacles

■ Use deeper value iteration network:

Value iteration module

■ Use deeper value iteration network:

Average training loss:

Prediction accuracy

- The average training loss of the network is obviously reduced, it performs well on the training set
- The accuracy is over 92% on the big map of the test set, which is significantly improved

- Use Dueling Architecture(ICML2016)
 - -We notice that the Q function can be written into two parts:

$$Q_{\pi}(s,a) = V_{\pi}(s) + A_{\pi}(s,a)$$

-We only need to change the last layers(FC layers, softmax)

- Competition structure
- •Two-channel output

Use Batch Normalization(BN_Layers)

-We have

$$y = \frac{x - E[x]}{\sqrt{Var[x] + \varepsilon}} * \gamma + \beta$$

Without BNLayers

With BNLayers

- -Converge faster
- -Use a larger learning rate
- -Reduce loss function
- -Avoid gradient explosion

■ Hierarchical Structure VIN:

To convey reward information faster in VI, and reduce the effective K, we use multiple levels of resolution.

Use all the tricks

Average training loss:

Prediction accuracy

- The convergence speed of the network is accelerated and the average training loss is further reduced
- The model has the best performance with 93.7989% accuracy on the test set.

SUMMARY

■ Path planning results

■ Value iteration process

With VI Iteration!

SUMMARY

☐ The performance of the models is summarized as follows

Network Structure	8×8 _°	16×16 +	28×28 +
Original VIN	96. 8750% -	93. 9019% -	78. 8834% _•
Deeper VIN	99. 1027% -	95. 1141% -	92. 2152% -
Dueling + BN_Layer	98. 0924% 。	95. 0924% -	92. 6279% -
Hierarchical VIN	98. 5027% -	94. 1778% -	93. 7989% -

- Finally, the accuracy of the improved network is higher than 93% on different size maps
- The performance of the network on the big map has improved significantly, from less than 79% to more than 93%
- It shows that a series of improvements are effective and the network generalization ability is improved

SUMMARY

Compared with CNN and FCN

Map Size	Convolutional Neural Networks	Fully Convolutional Network	Hierarchical VIN	Accuracy Improved(Comp -ared with CNN)
8×8 °	97. 9% -	97.3% -	98. 5%	+ 0.6% 0
16×16 _°	87.6% 0	88.3% 0	94. 2%	+ 6.6% .
28×28 ÷	74. 2% -	76.6% -	93.8%	+ 19.6% .

- Our improved networks get best performance on any size of map
- The accuracy of the network is higher than 93% on different maps
- Especially on the large map, the accuracy is significantly improved, and it is increased by nearly 20%

MARS-NAVIGATION

MARS-NAVIGATION

- · Grid-world with natural image observations
- · Overhead images of Mars terrain
- · Obstacle = slope of 10∘ or more
- · Elevation data not part of input

MARS-NAVIGATION

Results:

	Pred.	Succ.
	loss	rate
VIN	0.089	84.8%
Best	-	90.3%
achievable		

THANK YOU!

REFERENCE

- 1. 章永龙. Dijkstra最短路径算法优化[J]. 南昌工程学院学报, 2006, 25(3):30-33.
- 2. 史辉, 曹闻, 朱述龙, et al. A*算法的改进及其在路径规划中的应用[J]. 测绘与空间地理信息, 2009, 32(6):208-211.
- 3. Volodymyr Mnih, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518: 529-533
- 4. Aviv Tamar, Yi Wu, Garrett Thomas, et al. Value iteration networks[C]. Advances in Neural Information Processing Systems, 2016: 2154-2162
- 5. Ren S., He K., Girshick R., et al. Faster r-cnn: Towards real-time object detection with region proposal networks[C]. Advances in neural information processing systems, 2015: 91-99
- 6. Ziyu Wang, et al. Dueling Network Architectures for Deep Reinforcement Learning[J]. arXiv preprint arXiv:1511.06581, 2016
- 7. Richard S.Sutton, et al. Reinforcement Learning: An Introduction 2nd ed[M]. London: The MIT Press, 2017: 59-69
- 8. Cormen, et al. Introduction to Algorithms 2nd ed[M]. The MIT Press & McGraw-Hill, 2001: 344
- 9. Tieleman, Tijmen, and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural networks for machine learning 4.2, 2012: 26-31
- 10. Gao Huang, Zhuang Liu, et al. Densely Connected Convolutional Networks[C]. Computer Vision and Pattern Recognition, 2017: 4700-4708