Statistique Inférentielle

N. Jégou

Université Rennes 2

Master 1 Mathématiques Appliquées, Statistiques

Plan du cours

- Introduction
- Modèle Statistique
- Estimateurs Propriétés
- Construction d'estimateurs
- Estimation par intervalles

Bibliographie

- Pagès J., Statistique générale pour utilisateurs :
 1) Méthodologie, PUR (2010)
- Husson F. et Pagès J., Statistique générale pour utilisateurs :
 2) Exercices et corrigés, PUR (2013)
- Saporta G., Probabilités, analyse des données et statistique Editions TECHNIP (2011)
- Monfort A., Cours de statistique mathématique, Economica (1982)

On souhaite tester l'efficacité d'un médicament
 n = 100 patients atteints prennent le médicament
 A l'issue de l'étude, 72 patients sont guéris
 Quelle est la probabilité p de guérison suite au traitement ?

- On souhaite tester l'efficacité d'un médicament
 n = 100 patients atteints prennent le médicament
 A l'issue de l'étude, 72 patients sont guéris
 Quelle est la probabilité p de guérison suite au traitement ?
- On est tenté de considérer $p \approx 0.72$

- On souhaite tester l'efficacité d'un médicament
 n = 100 patients atteints prennent le médicament
 A l'issue de l'étude, 72 patients sont guéris
 Quelle est la probabilité p de guérison suite au traitement ?
- On est tenté de considérer $p \approx 0.72$
- Questions :
 Quel crédit donner à cette proposition ?
 Cette idée est-elle cohérente avec une modélisation mathématique ?
 Le niveau de confiance est faible ? Fort ?

• Des biologistes étudient le développement de poissons Des poissons qui se développent correctement pèsent en moyenne 1 kg
Ils prélèvent n=20: leur poids moyen est 949.5 gr

 Des biologistes étudient le développement de poissons Des poissons qui se développent correctement pèsent en moyenne 1 kg
 Ils prélèvent n = 20 : leur poids moyen est 949.5 gr

Questions :
 Faut-il en déduire que les poissons ne se développent pas correctement ?

 Cette valeur est-elle conforme à un développement normal ?

Inférence vs descriptive

- Les données de l'échantillon ne nous intéressent pas en tant que telles
- Les résumer, les représenter est le domaine de la statistique descriptive

Inférence vs descriptive

- Elles nous intéressent car elles donnent une information sur une ensemble plus vaste dont elles proviennent : la population
- L'opération de "remontée" de l'échantillon à la population est appelée inférence statistique

Principe de base de l'inférence

- Si l'on prélève un nouveau jeu de données, les nouvelles observations seront différentes des précédentes
- L'inférence statistique suppose de prendre en compte l'aspect aléatoire des données

Principe de base de l'inférence

- L'idée de base est ainsi de considérer ces observations comme issues d'un phénomène aléatoire
- L'inférence statistique s'appuie donc sur des outils probabilistes

Echantillonnage

- La façon de recueillir ces données a une grande importance dans la pratique
- L'objet n'est pas ici de développer la stratégie selon laquelle l'échantillon a été prélevé (le plan de sondage) : ceci relève de la théorie des sondages

Echantillonnage

- Le principe de base que nous retenons est que chaque individu constitutif de la population doit avoir la même chance de figurer dans l'échantillon
- L'échantillon doit ainsi être prélevé au hasard ; nous considèrerons le cas standard où les tirages sont supposés indépendants :
 - la population est de taille infinie ou bien
 - le tirage se fait avec remise

Notations

- On considère *n* variables aléatoires X_1, \ldots, X_n
- X_1, \ldots, X_n sont des réplications i.i.d. d'une même variable X de loi inconnue
- Les données dont on dispose sont des réalisations de ces variables; elles sont notées x₁,...,x_n

Notations

- On considère *n* variables aléatoires X_1, \ldots, X_n
- X₁,..., X_n sont des réplications i.i.d. d'une même variable X de loi inconnue
- Les données dont on dispose sont des réalisations de ces variables ; elles sont notées x_1, \ldots, x_n
- Attention!
 - X_i est une variable aléatoire
 - x_i est un nombre

Modèle statistique - Définition

- Un modèle statistique est un objet mathématique associé à l'observation de données aléatoires
- On considère d'abord l'expérience aléatoire qui consiste à recueillir une observation x de la variable X
- ullet X est supposée être à valeurs dans un espace ${\mathcal X}$
- ullet On ne connait pas la loi de probabilité ${\mathbb P}$ de X

Modèle statistique - Définition

Un principe de la modélisation est de supposer que la loi de probabilité $\mathbb P$ appartient à une famille $\mathcal P$ de lois de probabilités possibles, d'où la définition suivante :

Définition (Modèle statistique)

On appelle modèle statistique tout triplet $(\mathcal{X}, \mathcal{A}, \mathcal{P})$ où

- X est l'espace des observations, c'est-à-dire l'ensemble de tous les résultats possibles de l'expérience
- \mathcal{A} est une tribu sur \mathcal{X}
- $\mathcal P$ est une famille de probabilités sur $(\mathcal X,\mathcal A)$

- La définition d'un modèle statistique repose donc sur une hypothèse concernant la famille d'appartenance de la loi de X
- Cet aspect doit être gardé en mémoire : les résultats que l'on obtient ensuite ne valent que sous cette hypothèse

Exemple 1 Hypothèse : $X \sim \mathcal{B}(p)$ d'où le modèle associé à une observation de X

$$\mathcal{X} = \{0,1\}$$
 $\mathcal{A} = P(\{0,1\})$ $\mathcal{P} = \{\mathcal{B}(p), p \in]0,1[\}$

Exemple 2 Hypothèse : $X \sim \mathcal{N}(\mu, \sigma^2)$ d'où le modèle associé à une observation de X

$$\mathcal{X} = \mathbb{R}$$
 $\mathcal{A} = \mathcal{B}(\mathbb{R})$ $\mathcal{P} = {\mathcal{N}(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma \in \mathbb{R}^+}$

Modèle discret - Modèle continu

- Le modèle est dit discret lorsque $\mathcal X$ est fini ou dénombrable Alors $\mathcal A$ est la tribu formée par l'ensemble des parties de $\mathcal X$: $\mathcal A=P(\mathcal X)$
- Le modèle est dit continu lorsque $\mathcal{X} \subset \mathbb{R}^p$ et que $\forall \mathbb{P} \in \mathcal{P}$, \mathbb{P} admet une densité dans \mathbb{R}^p Dans ce cas, \mathcal{A} est la tribu des boréliens de $\mathcal{X} : \mathcal{A} = \mathcal{B}(\mathcal{X})$

Dans l'exemple 1, le modèle est discret Dans l'exemple 2, le modèle est continu

Echantillon

Avant d'étendre la définition du modèle à n observations, on précise la notion d'échantillon.

On considère des variables i.i.d. d'où la définition que l'on prend pour un échantillon :

Définition (Echantillon)

Un échantillon de taille n (ou n-échantillon) est une suite X_1,\ldots,X_n de n variables aléatoires indépendantes, de même loi $\mathbb P$

Modèle produit

- Le *n*-échantillon définit un vecteur aléatoire $(X_1,\ldots,X_n)'$ de loi $\mathbb{P}^{\otimes n}$
- Avec comme modèle pour une observation $\mathcal{M} = (\mathcal{X}, \mathcal{A}, \mathcal{P})$, le modèle associé à un n-échantillon est le modèle produit :

$$\mathcal{M}_n = (\mathcal{X}^n, \mathcal{A}_n, \{\mathbb{P}^{\otimes n}\})$$

avec \mathcal{A}_n une tribu sur \mathcal{X}^n

Ainsi dans nos exemples :

	\mathcal{X}	\mathcal{A}	\mathcal{P}
Exemple 1	$\{0,1\}^n$	$P(\{0,1\}^n)$	$\{\mathcal{B}(p)^{\otimes n}, p \in]0,1[\}$
Exemple 2	\mathbb{R}^n	$\mathcal{B}(\mathbb{R}^n)$	$\{\mathcal{N}(\mu, \sigma^2)^{\otimes n}, \mu \in \mathbb{R}, \sigma \in \mathbb{R}^+\}$

Modèle paramétrique - Modèle non paramétrique

Il s'agit de préciser l'hypothèse faite sur la famille d'appartenance de la loi de X:

Définition (Modèle paramétrique - Modèle non paramétrique)

- Si la loi de X appartient à une famille de lois indexables par un nombre fini de paramètres, le modèle est dit paramétrique. On note alors $\mathcal{P} = \{\mathbb{P}_{\theta}, \theta \in \Theta\}$ où $\Theta \in \mathbb{R}^d$ est l'espace des paramètres
- Si la famille d'appartenance de la loi de X n'est pas indexable par un nombre fini de paramètres, on parle alors de modèle non paramétrique

Paramétrique vs Non paramétrique

- Exemples 1 et 2 : modèle paramétrique
- Exemple d'hypothèse non paramétrique : la loi de X appartient à la famille des lois continues
- Avantage : on réduit le risque de mauvaise spécification du modèle
- Inconvénient : techniques d'inférence plus difficiles
- Possibilité de tester l'appartenance à une famille paramétrique

Estimateur

- Cadre du cours : Modèle paramétrique
- ⇒ inférence sur le(s) paramètre(s) caractéristique(s) de la loi : estimation ponctuelle, estimation par intervalles, tests...

Pour cela, on introduit la notion d'estimateur :

Définition (Estimateur)

Un estimateur de θ est une fonction mesurable de (X_1, \ldots, X_n) , indépendante de θ , à valeurs dans un sur-ensemble de Θ

Estimateur

• Un estimateur est une variable aléatoire fonction des X_i :

$$\hat{\theta} = f(X_1, X_2, \dots, X_n)$$

Par exemple :

$$X_1 \quad \inf_{i=1...n} \{X_i\} \quad \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$$

 Exemple 1 : Le nombre moyen de guérisons est un estimateur "naturel" de la probabilité p :

$$\hat{\rho} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Estimateur

• Un estimateur est une variable aléatoire fonction des X_i :

$$\hat{\theta} = f(X_1, X_2, \dots, X_n)$$

Par exemple :

$$X_1 \quad \inf_{i=1...n} \{X_i\} \quad \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$$

• Exemple 2 : Le poids moyen dans l'échantillon est un estimateur "naturel" du poids moyen μ dans le lac :

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Big Picture

- On ne dispose que de la valeur de l'estimateur prise en les observations : $\hat{\theta} = f(x_1, \dots, x_n)$
- Exemple 1 : $\hat{p} = 0.72$ Exemple 2 : $\hat{\mu} = 0.9495$ gr
- On souhaite que cette estimation soit proche du paramètre inconnu

¹Les vitesses ne sont pas abordées ici

Big Picture

- On ne dispose que de la valeur de l'estimateur prise en les observations : $\hat{\theta} = f(x_1, \dots, x_n)$
- Exemple 1 : $\hat{p} = 0.72$ Exemple 2 : $\hat{\mu} = 0.9495$ gr
- On souhaite que cette estimation soit proche du paramètre inconnu
- → Quelle confiance avoir en cette estimation ?

¹Les vitesses ne sont pas abordées ici

Big Picture

- On ne dispose que de la valeur de l'estimateur prise en les observations : $\hat{\theta} = f(x_1, \dots, x_n)$
- Exemple 1 : $\hat{p} = 0.72$ Exemple 2 : $\hat{\mu} = 0.9495$ gr
- On souhaite que cette estimation soit proche du paramètre inconnu
- ullet \Rightarrow Quelle confiance avoir en cette estimation ?
- Pour le savoir, on étudie les propriétés théoriques de l'estimateur
 - Propriétés asymptotiques $(n \to \infty)$: convergence, vitesse¹
 - Propriétés à *n* fixé : biais, variance, risque quadratique

¹Les vitesses ne sont pas abordées ici

Principales formes de convergence pour une suite de variables aléatoires :

Convergence en loi

la suite de variables aléatoires $\{X_n\}$ converge en loi vers la variable aléatoire X si, pour tout réel x où la fonction de répartition F de X est continue, on a

$$\lim_{n\to\infty}F_n(x)=F(x)$$

On note alors

$$X_n \xrightarrow{\mathcal{L}} X$$

Principales formes de convergence pour une suite de variables aléatoires :

- Convergence en loi
- Convergence en probabilité

la suite de variables aléatoires $\{X_n\}$ converge en probabilité vers la variable aléatoire X si pour tout $\varepsilon > 0$,

$$\lim_{n\to+\infty}\mathbb{P}(|X_n-X|\geq\varepsilon)=0$$

On note alors

$$X_n \xrightarrow{\mathcal{D}} X$$

Principales formes de convergence pour une suite de variables aléatoires :

- Convergence en loi
- Convergence en probabilité
- Convergence presque sûre

la suite de variables aléatoires $\{X_n\}$ converge presque sûrement vers la variable aléatoire X si

$$\mathbb{P}(\lim_{n\to+\infty}X_n=X)=1$$

On note alors

$$X_n \xrightarrow{ps} X$$

Principales formes de convergence pour une suite de variables aléatoires :

- Convergence en loi
- Convergence en probabilité
- Convergence presque sûre

Conv. presque sûre ⇒ Conv. en probabilité ⇒ Conv. en loi

Consistance

La consistance d'un estimateur paramétrique spécifie la convergence en probabilité vers le paramètre :

Définition (Consistance)

On dit que $\hat{\theta}$ est consistant (ou convergent) si $\hat{\theta} \xrightarrow{\mathcal{P}} \theta$ c'est-à-dire si

$$\forall \theta \in \Theta, \forall \varepsilon > 0, \lim_{n \to \infty} \mathbb{P}(||\hat{\theta} - \theta|| > \varepsilon) = 0$$

avec ||.|| une norme sur l'espace des paramètres Dans le cas de l'estimation d'un paramètre unidimentionnel, on prendra la valeur absolue

Loi(s) des grands nombres

- La loi des grands nombres justifie l'intérêt, en terme de convergence, de faire des moyennes
- Elle stiplule la convergence d'une moyenne de variable aléatoire vers l'espérance commune
- La loi faible est un résultat de convergence en probabilité
- La loi forte assure, moyennant des hypothèses plus fortes, la convergence presque sûre

Loi(s) des grands nombres

Théorème (Loi des grands nombres)

• Loi faible : Soit (X_n) une suite de variables aléatoires indépendantes et de même espérance $\mathbb{E}[X]$, on a convergence en probabilité de $(\frac{1}{n}\sum_{k=1}^{n}X_k)$ vers $\mathbb{E}[X]$:

$$\forall \varepsilon > 0, \qquad \lim_{n \to +\infty} \mathbb{P}\left(\left|\frac{X_1 + \ldots + X_n}{n} - \mathbb{E}[X]\right| \ge \varepsilon\right) = 0$$

• Loi forte : Soit (X_n) une suite de variables aléatoires indépendantes, intégrables et de même loi, on a convergence presque sûre de $(\frac{1}{n}\sum_{k=1}^{n}X_k)$ vers $\mathbb{E}[X]$:

$$\mathbb{P}\left(\lim_{n\to+\infty}\frac{X_1+\ldots+X_n}{n}=\mathbb{E}[X]\right)=1$$

Loi(s) des grands nombres

- Illustration sur l'Exemple 1 avec p=0.8; K=50 simulations pour n=10,100,200,500
- Quand n augmente la probabilité que $ar{X}$ sorte du couloir $p\pm arepsilon$ tend à se réduire

Théorème central limite

Le théorème central limite précise le comportement asymptotique de la moyenne d'échantillon puisqu'il en donne la loi limite :

Théorème (Théorème Central Limite)

Soit (X_n) une suite de variables aléatoires i.i.d. selon une loi commune X d'espérance $\mathbb{E}[X] = \mu$ et de variance $V(X) = \sigma^2$. On a alors :

$$\frac{1}{\sqrt{n}}\left(\frac{X_1+\ldots+X_n-n\mu}{\sigma}\right)\xrightarrow{\mathcal{L}}\mathcal{N}(0,1)$$

Théorème central limite

- Comme $\frac{1}{\sqrt{n}}\left(\frac{X_1+\ldots+X_n-n\mu}{\sigma}\right)=\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$, le sens concret de ce théorème est que \bar{X} suit approximativement (pour n assez grand) une loi $\mathcal{N}(\mu,\sigma^2/n)$
- L'aspect remarquable est que cela est vrai quelque soit la loi de X (pour peu qu'elle admette une variance)
- Pour des $X_i \underset{\mathrm{i.i.d}}{\sim} \mathcal{N}(\mu, \sigma^2)$ on a $ar{X} \sim \mathcal{N}(\mu, \sigma^2/n)$
- Dans ce dernier cas, il n'est plus question d'approximation

Théorème central limite

Retour aux exemples

Exemple 1

- Hypothèse : $X_i \sim_{i,i,d} \mathcal{B}(p)$
- LGN $\Rightarrow \hat{p}$ estimateur consistant de p:

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i \longrightarrow p$$

- $n\hat{p} = \sum_{i=1}^{n} X_i \sim \mathcal{B}(n, p)$
- Si n est jugé assez grand, TCL \Rightarrow

$$\mathcal{L}(\hat{p}) \approx \mathcal{N}(p, p(1-p)/n)$$

Retour aux exemples

Exemple 2

- Hypothèse : $X_i \sim_{i id} \mathcal{N}(\mu, \sigma^2)$ (*)
- LGN \Rightarrow $ar{X}$ estimateur consistant de μ :

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{\mathcal{P}} \mu$$

- Sous (\star) $\bar{X} \sim \mathcal{N}(\mu, \sigma^2/n)$
- Si (\star) n'est pas vérifiée, si n est jugé assez grand, TCL \Rightarrow

$$\mathcal{L}(\bar{X}) \approx \mathcal{N}(\mu, \sigma^2/n)$$

Propriétés à *n* fixé

- Proriétés de convergence : $n \to \infty$
- En pratique, n est fixé

=> Nécéssité d'étudier les propriétés d'un estimateur pour *n* fixe

- Nous présentons
 - Biais
 - Variance
 - Risque quadratique

Biais

Définition (biais)

Soit $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$ un estimateur. Son espérance sous la loi \mathbb{P}_{θ} est

$$\mathbb{E}_{\theta}[\hat{\theta}] = \int_{\mathcal{X}^n} \hat{\theta}(x) \mathbb{P}_{\theta}(x) dx$$

$$où x = (x_1, \ldots, x_n)$$

- 1. Le biais de $\hat{\theta}$ en θ est $\mathsf{Biais}(\hat{\theta}) = \mathbb{E}_{\theta}[\hat{\theta}] \theta$
- 2. $\hat{\theta}$ est sans biais si pour chaque $\theta \in \Theta$, Biais $(\hat{\theta}) = 0$
- 3. $\hat{\theta}$ est asymtotiquement sans biais si pour chaque $\theta \in \Theta$, $\lim_{n \to \infty} \mathrm{Biais}(\hat{\theta}) = 0$

Biais

- Un estimateur est sans biais si, en moyenne (i.e. sur tous les *n*-échantillons), il tombe sur le paramètre
- ... mais en pratique, on dispose d'<u>un</u> seul échantillon...
- Le fait que l'estimateur soit sans biais est simplement une garantie (théorique) sur le comportement en moyenne de l'estimateur

Biais

• La moyenne d'échantillon estime sans biais l'espérance de la loi commune

$$\mathbb{E}[X_i] = \mu \Rightarrow \mathbb{E}[\bar{X}] = \mu$$
 (Linéarité de l'espérance)

- Exemple $1: \mathbb{E}[\hat{p}] = p$
- Exemple 2 : $\mathbb{E}[\bar{X}] = \mu$
- Mais par exemple, sont aussi sans biais

$$X_1, \qquad \frac{X_1 + X_2}{2}, \qquad X_1 + \frac{X_2 + X_3}{2}, \dots$$

Variance

La variance d'un estimateur mesure la variabilité de cet estimateur, autour de son espérance :

Définition (Variance)

Soit $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$ un estimateur et $\mathbb{E}_{\theta}[\hat{\theta}]$ son espérance sous la loi \mathbb{P}_{θ} . Sa variance est

$$V(\hat{\theta}) = \mathbb{E}_{\theta}[\|\hat{\theta} - \mathbb{E}_{\theta}[\hat{\theta}]\|^2] = \int_{\mathcal{X}^n} \|\hat{\theta}(x) - \mathbb{E}_{\theta}[\hat{\theta}(x)]\|^2 \mathbb{P}_{\theta}(x) dx$$

où $\|.\|$ est une norme sur Θ

Variance

- Si $\mathsf{V}(\hat{ heta})$ faible, les valeurs de $\hat{ heta}$ sont proches les unes des autres
- Avec $V(\hat{\theta})$ faible, on est garanti que l'observation de $\hat{\theta}$ dont on dispose (sur l'échantillon) est proche de celle que l'on aurait avec d'autres échantillons
- La variance de la moyenne d'échantillon décroit avec n :

$$V(X_i) = \sigma^2 \Rightarrow V(\bar{X}) = \frac{\sigma^2}{n}$$
 (avec des X_i décorrélés)

Risque quadratique

- ullet ê estimateur sans biais de heta mais de grande variance
- ullet estimateur biaisé de heta mais de petite variance

Quel est le meilleur choix ?

Risque quadratique

- On souhaite que les valeurs de l'estimateurs soient aussi proches possible de θ
- ullet On souhaite donc que $\|\hat{ heta}- heta\|$ soit petit
- $\|\hat{\theta} \theta\|$ est aléatoire
- On définit le risque quadratique (ou erreur quadratique moyenne) comme l'espérance de cette variable aléatoire :

$$\mathbb{E}_{\theta}[\|\hat{\theta} - \theta\|^2]$$

Risque quadratique

Définition (Risque quadratique - Décomposition biais-variance)

• Soit $\hat{\theta}$ un estimateur d'ordre 2, le risque quadratique de $\hat{\theta}$ sous \mathbb{P}_{θ} est :

$$\mathcal{R}(\theta, \hat{\theta}) = \mathbb{E}_{\theta}[\|\hat{\theta} - \theta\|^2]$$

• $\mathcal{R}(\theta,\hat{\theta})$ est la somme d'un terme de biais et d'un terme de variance :

$$\mathcal{R}(\theta, \hat{\theta}) = \|\mathbb{E}_{\theta}[\hat{\theta}] - \theta\|^2 + \mathbb{E}_{\theta}[\|\hat{\theta} - \mathbb{E}_{\theta}(\hat{\theta})\|^2]$$

• Pour $\theta \in \mathbb{R}$, cette décomposition s'écrit

$$\mathcal{R}(\theta, \hat{\theta}) = \mathsf{Biais}^2(\hat{\theta}) + \mathsf{V}(\hat{\theta})$$

Estimateur préférable - de variance minimum

Définition (Estimateur préférable - de variance minimum)

Soit $\hat{\theta}$ et $\hat{\theta}'$ deux estimateurs d'ordre 2

• On dit que $\hat{\theta}$ est préférable à $\hat{\theta}'$ si

$$\forall \theta \in \Theta, \mathcal{R}(\theta, \hat{\theta}) \leq \mathcal{R}(\theta, \hat{\theta}')$$

• Si $\hat{\theta}$ est sans biais, on dit qu'il est de variance uniformément minimum parmi les estimateurs sans biais s'il est préférable à tout autre estimateur sans biais d'ordre 2

Estimateur préférable - de variance minimum

- Exemple 1 : $X_i \sim \mathcal{B}(p)$ et $\hat{p} = \frac{1}{n} \sum_{i=1}^n X_i$
 - \hat{p} sans biais donc

$$\mathcal{R}(p,\hat{p}) = \mathsf{V}(\hat{p}) = rac{p(1-p)}{n}$$

• $\mathbb{E}[X_1] = p$ donc X_1 est aussi sans biais et

$$\mathcal{R}(p,X_1)=\mathsf{V}(X_1)=p(1-p)$$

- \hat{p} préférable à X_1
- Exemple 2: idem
- Pour déterminer les estimateurs sans biais de variance uniformément minimum : exhaustivité, information de Fisher²

Méthode des moments

 LGN : convergence de la moyenne d'échantillon vers l'espérance

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \longrightarrow \mathbb{E}[X]$$

- \Rightarrow Si *n* assez grand, on a bon espoir que $\bar{X} \approx \mathbb{E}[X]$
- De même, si X tel que $m_k = \mathbb{E}[X^k]$ existe,

$$LGN \Rightarrow \frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} \xrightarrow{\mathcal{P}} \mathbb{E}[X^{k}]$$

 \Rightarrow Si *n* assez grand, on a bon espoir que $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k}\approx\mathbb{E}[X^{k}]$

Méthode des moments

- Idée :
 - Exprimer heta comme fonction des moments m_k
 - Remplacer les m_k par les moments empiriques $\frac{1}{n} \sum_{i=1}^n X_i^k$
- Exemple 1 : $X \sim \mathcal{B}(p) \Rightarrow p = m_1 = \mathbb{E}[X]$ Estimateur des moments : $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- Exemple 2 : $X \sim \mathcal{N}(\mu, \sigma^2)$ d'où

$$\begin{cases} \mu = \mathbb{E}[X] = m_1 \\ \sigma^2 = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = m_2 - m_1^2 \end{cases}$$

Estimateur des moments :

$$\hat{\mu} = \bar{X}$$
 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2$

000000

Méthode des moments

• L'estimateur des moments est défini comme la solution en θ du système à p équations

$$\left\{egin{array}{ll} m_1(heta) &= \hat{m}_1 \ . \ . \ . \ m_p(heta) &= \hat{m}_p \end{array}
ight.$$

Si l'application

$$M: \theta \mapsto (m_1(\theta), \ldots, m_p(\theta))$$

est une bijection, alors l'estimateur des moments existe et est unique

- Soit $(X_1 = x_1, \dots, X_n = x_n)$ les observations
- La probabilité d'observer ces données s'écrit

$$L(x_1, ..., x_n; p) = \mathbb{P}_p(X_1 = x_1, ..., X_n = x_n)$$

$$= \prod_{i=1}^n \mathbb{P}_p(X_i = x_i)$$

$$= \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$$

$$= p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}$$

- Cette probabilité est inconnue car fonction de p inconnue
- Sur les données $\sum_{i=1}^{n} = 72$ donc elle s'écrit

$$L(x_1,\ldots,x_n;p)=p^{72}(1-p)^{28}$$

ullet Ainsi, si p=0.5, la probabilité d'observer nos données est

$$L(x_1,...,x_n,p=0.5)=0.5^{72}\times0.5^{28}\approx8\times10^{-31}$$

• et si p = 0.7, la probabilité d'observer nos données est

$$L(x_1, ..., x_n, p = 0.7) = 0.7^{72} \times 0.3^{28} \approx 1.6 \times 10^{-26}$$

- Quelle valeur de p maximise la probabilité d'observer les données ?
- Représentons $p \mapsto L(x_1, \ldots, x_n; p) = p^{72}(1-p)^{28}$

• La probabilité d'observer nos données est maximum pour p = 0.72

- p=0.72 est la valeur du paramètre qui rend maximum la probabilité d'observer nos données : $\Rightarrow \hat{p}=0.72$ estimation naturelle de p
- Plus généralement on montre que

$$p \mapsto L(x_1, \ldots, x_n; p) = p^{\sum x_i} (1-p)^{n-\sum x_i}$$

est maximum pour $p = \frac{1}{n} \sum_{i=1}^{n} x_i$

• L'estimateur du maximum de vraisemblance pour p est ainsi

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Maximum de vraisemblance

Définition (Vraisemblance)

• Cas discret: La vraisemblance du paramètre θ pour la réalisation (x_1, \ldots, x_n) est l'application $L: \mathcal{X}^n \times \Theta$ définie par

$$L(x_1,\ldots,x_n;\theta)=\mathbb{P}_{\theta}^{\otimes n}(\{x_1,\ldots,x_n\})=\prod_{i=1}^n\mathbb{P}_{\theta}(\{x_i\})$$

• Cas absolument continu : Soit $f(.,\theta)$ la densité associée à \mathbb{P}_{θ} . La vraisemblance du paramètre θ pour la réalisation (x_1,\ldots,x_n) est l'application $L:\mathcal{X}^n\times\Theta$ définie par

$$L(x_1,\ldots,x_n;\theta)=\prod_{i=1}^n f(x_i,\theta)$$

Maximum de vraisemblance

Définition (Estimateur du maximum de vraisemblance)

Un estimateur du maximum de vraisemblance est une statistique g qui maximise la vraisemblance, c'est-à-dire telle que

$$\forall (x_1,\ldots,x_n) \in \mathcal{X}^n : L(x_1,\ldots,x_n;g(x_1,\ldots,x_n)) = \sup_{\theta \in \Theta} L(x_1,\ldots,x_n;\theta)$$

L'estimateur du maximum de vraisemblance s'écrit donc sous la forme $\hat{\theta} = g(X_1, \dots, X_n)$

Maximum de vraisemblance

Propriétés

Invariance

Soit $\Psi:\Theta\to\mathbb{R}^k$ et $\hat{\theta}$ l'estimateur du maximum de vraisemblance de θ , alors $\Psi(\hat{\theta})$ est l'estimateur du maximum de vraisemblance de $\Psi(\theta)$

Consistance

On suppose que \mathbb{P}_{θ} admet une densité $f(x,\theta)$, que Θ est un ouvert et que $\theta \mapsto f(x,\theta)$ est différentiable, alors l'estimateur du maximum de vraisemblance $\hat{\theta}$ est consistant

Confiance ou pas?

Exemple 2:
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i = 949.5$$
 avec $n = 20$

Faut-il avoir confiance en cette estimation ?

- $oldsymbol{\hat{\mu}}$ a de bonnes propriétés : convergence, absence de biais
- $\mathsf{V}(\hat{\mu}) = \sigma^2/n$: $\hat{\mu}$ a une petite variance si n grand 3 Mais
- Il faut quantifier cette confiance en fonction de n
- La confiance est d'autant plus grande que les x_i sont proches les uns des autres : il faut estimer σ^2
- ⇒ L'intervalle de confiance répond à ces questions

 $^{^3\}hat{\mu}$ est de variance uniformément minimum parmi les estimateurs sans biais

Le principe dans le cas de base

• Exemple 2 : $X_i \sim \mathcal{N}(\mu, \sigma^2) \Rightarrow \bar{X} \sim \mathcal{N}(\mu, \sigma^2/n)$ et

$$rac{ar{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

Le principe dans le cas de base

• Avec u_{α} le quantile d'ordre α de la loi $\mathcal{N}(0,1)$, on a

$$\mathbb{P}\left(-u_{1-\alpha/2} < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < u_{1-\alpha/2}\right) = 1 - \alpha$$

Soit

$$\mathbb{P}\left(\bar{X} - u_{1-\alpha/2} \times \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + u_{1-\alpha/2} \times \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

• Ce qu'on peut noter

$$\mathbb{P}\left(\mu \in \bar{X} \pm u_{1-\alpha/2} \times \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

Le principe dans le cas de base

- L'intervalle $\left[ar{X} u_{1-lpha/2} imes rac{\sigma}{\sqrt{n}}; ar{X} + u_{1-lpha/2} imes rac{\sigma}{\sqrt{n}}
 ight]$ a la probabilité 1-lpha de contenir μ
- C'est une intervalle dont les bornes sont aléatoires⁴
- On obtient l'intervalle de confiance en remplaçant dans \bar{X} par son observation \bar{x} sur l'échantillon :

$$\begin{split} \mathsf{IC} &= \left[\bar{x} - u_{1-\alpha/2} \times \frac{\sigma}{\sqrt{n}}; \bar{x} + u_{1-\alpha/2} \times \frac{\sigma}{\sqrt{n}} \right] \\ &= \bar{x} \pm u_{1-\alpha/2} \times \frac{\sigma}{\sqrt{n}} \end{split}$$

⁴Parfois appelé intervalle de probabilité

Interprétation

- On simule K=100 échantillons de taille n=20 selon une loi $\mathcal{N}(\mu=1,\sigma^2=0.01)$
- On prend lpha=0.05=5% et on calcule pour chaque échantillon, l'intervalle de confiance : IC $=ar x\pm u_{1-lpha/2} imes rac{\sigma}{\sqrt n}$

• Environ $\alpha=0.05=5\%$ des intervalles de confiance ne contiennent pas μ

Interprétation

Que peut-on dire (avec $\alpha = 0.05$) ?

- L'IC a 95% de chance de contenir μ ? NON! L'IC n'est pas aléatoire : il contient μ ... ou pas
- La procédure garantit 95% de réussite ⇒
- On peut avoir un niveau de confiance de 95% en l'intervalle calculé, d'où son nom

Intervalle de probabilité - Intervalle de confiance

Définition (Intervalle de probabilité)

Soit $\alpha \in]0,1[$. On appelle intervalle de probabilité pour θ_0 de niveau $1-\alpha$ tout intervalle de la forme $[A_n,B_n]$, où A_n et B_n sont des fonctions mesurables telles que, $\forall \theta_0 \in \Theta$:

$$\mathbb{P}_{\theta_0}(\theta_0 \in [A_n, B_n]) = 1 - \alpha$$

Définition (Intervalle de confiance)

Soit $\alpha \in]0,1[$. On appelle intervalle de confiance pour θ_0 de niveau $1-\alpha$ toute réalisation $[a_n,b_n]$ d'un intervalle de probabilité $[A_n,B_n]$ de niveau $1-\alpha$

Retour à l'exemple 2

En résumé

$$X_i \underset{\mathrm{i.i.d}}{\sim} \mathcal{N}(\mu, \sigma^2) \Rightarrow \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1) \Rightarrow \mathsf{IC} = \bar{x} \pm u_{1-\alpha/2} \times \frac{\sigma}{\sqrt{n}}$$

- $\bar{x}=0.945$ est connu ; si σ^2 est connu, on peut calculer IC
- Problème : en pratique σ^2 est inconnu donc on l'estime
- On utilise la statistique $\hat{\sigma}^2$ consistante et sans biais (cf. TD) :

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

• Question : quelle est la loi de $T = \frac{\bar{X} - \mu}{\hat{\sigma} / \sqrt{n}}$?

Vers la loi de Student

- La loi de Student est définie pour traiter ce cas classique
- Elle s'appuie sur la loi du χ^2 qui elle même sert à caractériser les lois des variables comme

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

- Ces deux lois dérivent de la loi normale qui
 - est une famille de lois classiques en estimation
 - qui donne une bonne approximation pour de nombreux résultats via le TCL

Loi du χ^2

Définition (Loi du χ^2)

Soit U_1,\ldots,U_p des variables indépendantes de même loi $\mathcal{N}(0,1)$, on appelle loi du chi-deux à p degrés de liberté, notée χ_p^2 , la loi de la variable $\sum_{i=1}^p U_i^2$

• Par exemple, pour $X_i \sim \mathcal{N}(\mu, \sigma^2)$, on a :

$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 = \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi_n^2$$

Surtout, sous les mêmes hypothèses :

$$(n-1)\frac{\hat{\sigma}^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 \sim \chi_{n-1}^2$$

Loi du χ^2

Loi de Student

Définition (Loi de Student)

La loi de Student à p degrés de liberté est la loi du rapport indépendant d'une loi normale centrée-réduite et de la racine d'un χ^2 divisé par son degré de liberté p. Pour T suivant une loi de Student à p degrés de liberté, on note $T \sim \mathcal{T}_p$

• Comme on a

$$T = \frac{\bar{X} - \mu}{\hat{\sigma}/\sqrt{n}} = \frac{(\bar{X} - \mu)}{\sigma/\sqrt{n}} \times \frac{\sigma}{\hat{\sigma}} = \frac{(\bar{X} - \mu)}{\sigma/\sqrt{n}} \times \frac{1}{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{\sigma}\right)^2}}$$

• T est le rapport 5 d'une loi $\mathcal{N}(0,1)$ et de la racine d'un χ^2_{n-1} divisé par n-1 son ddl : $T \sim \mathcal{T}_{n-1}$

⁵L'indépendance du rapport est admise

Loi de Student

La loi de Student se rapproche de la loi $\mathcal{N}(0,1)$ quand $n o \infty$:

$$\mathcal{T} \underset{\mathcal{L}}{\rightarrow} \mathcal{N}(0,1).$$

Loi de Fisher

Définition (Loi de Fisher)

La loi de Fisher à p et q degrés de liberté est la loi du rapport indépendant de deux lois du χ^2 divisées par leur degré de liberté :

$$X \sim \chi_p^2, Y \sim \chi_q^2, X \ et \ Y \ indépendantes \ \Rightarrow \frac{X/p}{Y/q} \sim \mathcal{F}_q^p$$

Loi de Fisher

- C'est une loi construite pour comparer des variances
- Exemple de densité :

Intervalle de confiance sur μ

- Statistique utilisée : $T=rac{ar{X}-\mu}{\hat{\sigma}/\sqrt{n}}$
- Hypothèse de normalité : $X_i \underset{\text{i.i.d}}{\sim} \mathcal{N}(\mu, \sigma^2) \Rightarrow \mathcal{T} \sim \mathcal{T}_{n-1}$
- ullet Intervalle de probabilité sur μ :

$$\mathbb{P}\left(T \in \pm t_{n-1}^{1-\alpha/2}\right) = 1 - \alpha$$

$$\Rightarrow \mathbb{P}\left(\mu \in \bar{X} \pm t_{n-1}^{1-\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}}\right) = 1 - \alpha$$

• Intervalle de confiance de niveau 1-lpha :

$$\left[\bar{x} - t_{n-1}^{1-\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}}, \bar{x} + t_{n-1}^{1-\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}}\right]$$

Intervalle de confiance sur μ

L'intervalle de confiance de niveau $1-\alpha$,

$$\left[\bar{x}-t_{n-1}^{1-\alpha/2}\frac{\hat{\sigma}}{\sqrt{n}},\bar{x}+t_{n-1}^{1-\alpha/2}\frac{\hat{\sigma}}{\sqrt{n}}\right]$$

est d'autant plus grand que :

- la confiance souhaitée 1-lpha est grande,
- la taille *n* de l'échantillon est faible
- ullet la variabilité $\hat{\sigma}$ dans l'échantillon est grande

Intervalle de confiance sur σ

- L'estimateur : $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$
- Hypothèse de normalité : $X_i \sim \mathcal{N}(\mu, \sigma^2) \Rightarrow$

$$(n-1)\frac{\hat{\sigma}^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 \sim \chi_{n-1}^2$$

• Avec $\chi^2_{n-1}(\alpha/2)$ et $\chi^2_{n-1}(1-\alpha/2)$ les quantiles, on déduit

$$\mathbb{P}\left((n-1)\frac{\hat{\sigma}^2}{\sigma^2} \in \left[\chi_{n-1}^2(\alpha/2), \chi_{n-1}^2(1-\alpha/2)\right]\right) = 1 - \alpha$$

ullet Et l'intervalle de confiance de niveau 1-lpha est :

$$\mathsf{IC} = \left[\frac{(n-1)\hat{\sigma}^2}{\chi_{n-1}^2 (1-\alpha/2)}, \frac{(n-1)\hat{\sigma}^2}{\chi_{n-1}^2 (\alpha/2)} \right]$$

Intervalle de confiance sur *p*

- $X_i \sim \mathcal{B}(p) \Rightarrow n\hat{p} = \sum_{i=1}^n X_i \sim \mathcal{B}(n,p)$
- Problème : la loi $\mathcal{B}(n,p)$ est discrète
- En pratique, on approche la loi binomiale par une loi normale :

$$rac{n(ar{X}-p)}{\sqrt{np(1-p)}} \stackrel{}{\longrightarrow} \mathcal{N}(0,1)$$

• Pour n assez grand : $\mathcal{L}(ar{X}) pprox \mathcal{N}(p, p(1-p)/n)$

Estimation par intervalles

Intervalle de confiance sur *p*

• On en déduit
$$\mathbb{P}\left(rac{ar{X}-p}{\sqrt{
ho(1-p)/n}}\in\pm u_{1-lpha/2}
ight)=1-lpha$$

• soit
$$\mathbb{P}\left(p \in \bar{X} \pm u_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}} \right) = 1-\alpha$$

- Mais p apparaît dans les bornes...
 - Soit on remplace p par \hat{p} :

$$\mathsf{IC} = \hat{p} \pm u_{1-lpha/2} \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

• Soit, comme $p(1-p) \le 1/4$, on prend l'intervalle

$$\mathsf{IC} = \hat{p} \pm u_{1-\alpha/2} \times \frac{1}{2\sqrt{n}}$$

en lequel la confiance est supérieure à $1-\alpha$