

Group Equivariant Deep Learning

Lecture 2 - Steerable group convolutions

Lecture 2.4 - Group Theory | Induced representations and feature fields

Preliminaries (and intuition) for steerable group convolutions

We call $\hat{f}: \mathbb{R}^d \to \mathbb{R}^{d_\rho}$ a feature vector field, or simply a **feature field**, if its

codomain transforms via a representation $\rho(h)$ of H domain transforms via the action g^{-1} of $G = (\mathbb{R}^d, +) \rtimes H$

Representation ρ defines the **type** of the field, and together with the group action of $G = (\mathbb{R}^d, +) \rtimes H$ defines the **induced representation**

$$\left(\operatorname{Ind}_{H}^{G}[\rho](\mathbf{x},h)\hat{f}\right)(\mathbf{x}') := \rho(h)\hat{f}(h^{-1}(\mathbf{x}'-\mathbf{x}))$$

Regular G feature maps: $f(\mathbf{x}, h)$ considered so far can be considered feature fields.

$$(\mathcal{L}_g f)(\mathbf{x}', h') = f(h^{-1}(\mathbf{x}' - \mathbf{x}), h^{-1}h)$$

Regular G feature maps: $f(\mathbf{x}, h)$ considered so far can be considered feature fields.

$$(\mathcal{L}_g f)(\mathbf{x}', h') = f(h^{-1}(\mathbf{x}' - \mathbf{x}), h^{-1}h)$$

Regular H **feature fields**: Let $f^H(\mathbf{x}) = f(\mathbf{x}, \cdot)$ be the field of functions $f^H(\mathbf{x}) : H \to \mathbb{R}$ on the subgroup H, then the functions (**fibers**) transform via the regular representation \mathcal{L}_h^H (recall. $\mathcal{L}_h^H f(h') = f(h^{-1}h')$)

$$(\mathscr{L}_{g}f)(\mathbf{x}',h') \iff \left(\operatorname{Ind}_{H}^{G}[\mathscr{L}_{h}^{H}](\mathbf{x},h)f^{H}\right)(\mathbf{x}')$$

Regular G feature maps: $f(\mathbf{x}, h)$ considered so far can be considered feature fields.

$$(\mathcal{L}_g f)(\mathbf{x}', h') = f(h^{-1}(\mathbf{x}' - \mathbf{x}), h^{-1}h)$$

Regular H feature fields: Let $f^H(\mathbf{x}) = f(\mathbf{x}, \cdot)$ be the field of functions $f^H(\mathbf{x}) : H \to \mathbb{R}$ on the subgroup H, then the functions (fibers) transform via the regular representation \mathcal{L}_h^H (recall. $\mathcal{L}_h^H f(h') = f(h^{-1}h')$)

$$(\mathscr{L}_g f)(\mathbf{x}', h') \iff \left(\operatorname{Ind}_H^G[\mathscr{L}_h^H](\mathbf{x}, h)f^H\right)(\mathbf{x}')$$

Regular G feature maps: $f(\mathbf{x}, h)$ considered so far can be considered feature fields.

$$(\mathcal{L}_g f)(\mathbf{x}', h') = f(h^{-1}(\mathbf{x}' - \mathbf{x}), h^{-1}h)$$

Regular H feature fields: Let $f^H(\mathbf{x}) = f(\mathbf{x}, \cdot)$ be the field of functions $f^H(\mathbf{x}) : H \to \mathbb{R}$ on the subgroup H, then the functions (**fibers**) transform via the regular representation \mathscr{L}_h^H (recall. $\mathcal{L}_h^H f(h') = f(h^{-1}h')$)

$$(\mathscr{L}_{g}f)(\mathbf{x}',h') \iff \left(\operatorname{Ind}_{H}^{G}[\mathscr{L}_{h}^{H}](\mathbf{x},h)f^{H}\right)(\mathbf{x}')$$

Steerable H feature fields: Since the fibers $f^H(\mathbf{x})$ are functions on H we can represent them via their Fourier coefficients $\hat{f}(\mathbf{x}) = \mathcal{F}_H[f^H(\mathbf{x})]$. These vectors of coefficients transform via irreps $\rho(h) = \bigoplus_l \rho_l(h)$

$$(\mathscr{L}_{g}f)(\mathbf{x}',h') \iff \left(\operatorname{Ind}_{H}^{G}[\mathscr{L}_{h}^{H}](\mathbf{x},h)\hat{f}\right)(\mathbf{x}') \iff \left(\operatorname{Ind}_{H}^{G}[\rho(h)](\mathbf{x},h)\hat{f}\right)(\mathbf{x}')$$

