Math 103A — Modern Algebra I

Instructor: Sunny (Shishir Agrawal)

Common Ground

Turn to someone sitting near you who you don't already know. Take about 5 minutes to find at least *two* things that you have in common with your partner.

(Try to go beyond "We're both taking Math 103A this quarter," but it doesn't have to anything deeply personal.)

About Me

Pedagogy Data

Hake, doi:10.1119/1.18809

Class Structure

https://sagrawalx.github.io/teaching/fa22_math103a/

Group Theory

A "group" is a gadget that helps us understand symmetries.

History

The basic idea has nebulously existed "forever."

History

The basic idea has nebulously existed "forever."

Here's a story about how the concept started to solidify.

The solutions to $ax^2+bx+c=0$ are given by $\frac{-b\pm\sqrt{b^2-4ac}}{2a}.$

The solutions to $ax^2 + bx + c = 0$ are given by

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

This is ancient! In some fashion, it was known to:

► Egypt (2050–1650 BCE)

The solutions to $ax^2 + bx + c = 0$ are given by

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

This is ancient! In some fashion, it was known to:

- ► Egypt (2050–1650 BCE)
- ► Greece (Euclid 300 BCE, Diophantus 250 CE)

The solutions to $ax^2 + bx + c = 0$ are given by

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

This is ancient! In some fashion, it was known to:

- ► Egypt (2050–1650 BCE)
- ► Greece (Euclid 300 BCE, Diophantus 250 CE)
- ► China (九章算術 1000 BCE-200 CE)

The solutions to $ax^2 + bx + c = 0$ are given by

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

This is ancient! In some fashion, it was known to:

- ► Egypt (2050–1650 BCE)
- ► Greece (Euclid 300 BCE, Diophantus 250 CE)
- ► China (九章算術 1000 BCE-200 CE)
- **.**..

Cubic Formula

The solutions to $ax^3 + bx^2 + cx + d = 0$ are:

$$x_k = \frac{-1}{3a} \left(b + \xi^k C + \frac{\Delta_0}{\xi^k C} \right)$$

for k = 0, 1, 2, where:

$$\xi=(-1+\sqrt{-3})/2$$
 $\Delta_0=b^2-3$ ac $\Delta_1=2b^3-9$ abc $+27$ a 2 d

$$C = \sqrt[3]{\frac{\Delta_1 \pm \sqrt{\Delta_1^2 - 4\Delta_0^3}}{2}}$$

Gerolamo Cardano (Italy, 1501–1576)

Lodovico Ferrari (Italy, 1522–1565) and Gerolamo Cardano (Italy, 1501–1576)

What about the quintic?

What about the quintic?

300 years go by...

Insolvability of the Quintic

Niels Henrik Abel (Norway, 1802–1829)

Évariste Galois (France, 1811–1832)

Modern Definition of Groups

Arthur Cayley (UK, 1821-1895)

First Isomorphism Theorem, Applications in Physics

Amalie Emmy Noether (Germany, 1882-1935)

Applications in Cryptography

Malcolm Williamson (UK and USA, 1950–2015)

Whitfield Diffie (USA, 1944–) and Martin Hellman (USA, 1945–)

Let's do some math!

- 1. How many positive integers less than 12 are relatively prime to 12?
- (A) 1
- (B) 4
- (C) 5
- (D) None of the above

- 2. What is the greatest common divisor (gcd) of 12 and 30?
- (A) 2
- (B) 3
- (C) 4
- (D) None of the above