The Making of a Real-World Moneyball Finding Undervalued Players with H₂O, LIME and Shiny

Jo-fai (Joe) Chow

Data Science Evangelist /
Community Manager

joe@h2o.ai

@matlabulous

More Info → https://bit.ly/ h2o_meetups

About Me

CrimeMap - Keep It Simple, Stupid

Update Graphs and Tables

eRum 2018 Budapest

6:45 PM - 1 Sep 2018 from Amsterdam. The Netherlands

satRday Amsterdam

Before H₂O

- Water Engineer / EngD Researcher / Matlab Fan Boy (wonder why @matlabulous?)
- Discovered R, Python, H₂O ... never look back again
- Data Scientist at Virgin Media (UK), Domino Data Lab (US)
- At H₂O ...
 - Data Scientist / Evangelist /
 - Sales Engineer / Solution Architect /
 - Community Manager

... The harsh reality of startup life ...

Reminder: #360Selfie

In case you're wondering ... final project result

led to the signing of a Major League Baseball (MLB) player

\$201\frac{1}{1}\$
multi-year contract

finalised two weeks before the regular season

Moneyball: The Multimillion-Dollar Business Problem

The quest to find the most undervalued players (before other teams notice them)

Source: Moneyball, 2011 Columbia Pictures

The Real Business Problem in Major League Baseball (MLB)

- Existing Forecasts (e.g. ESPN) are usually projections for the next year only.
- MLB players usually consider terms for 3 to 5 years when they sign a new contract.
- MLB teams need to consider players' long-term performance (i.e. > 1 year).

2018 SEASON BATTING PROJECTIONS

The Moneyball Team

Baseball Player Performance Data

- Open data Lahman Database.
- Proprietary data (AriDB) from Ari
 Kaplan our real Moneyball guy.
- Enriched Lahman data with Ari's
 Data Final dataset for predictive modelling

Lahman Database

http://www.seanlahman.com/baseball-archive/statistics/

Attribute	Description
playerID	Player ID code
yearID	Year player was born
G	Games
АВ	At Bats
R	Runs
Н	Hits
2B	Doubles
3B	Tripples
HR	Homeruns
SO	Strike Outs
IBB	Intentional Walks
SF	Sacrifice flies

Ari's Database

- Private database containing 5 years of data
- Pitch-by-pitch play for each MLB game:
 - Pitch type, top speed, end speed, spin rate,
 x, y, z coordinates, batter result etc.

Attribute	Description
Pitch_Type	Two - character code of type of pitch. FF=fastball, CU=curveball, SL=slider, etc.
Spin_rate	Spin of the pitch in rotations per minute. One of the top fields for a featurethe theory is the more spin the harder it is to hit.
Start_speed	The velocity of the pitch in mph (when it leaves the hand, which is the measure used for tv).
End_speed	The velocity of the pitch when it arrives at the plate
Z 0	Feet off the ground when the pitch is released.
Spray_x	When ball is hit into play, this is the x - coordinate of where it is hit/picked up by a fielder
Spray_y	When ball is hit into play, this is the y - coordinate of where it is hit/picked up by a fielder
Spray_des	Classification of type of hit: pop out, flyout, groundout, hit, error

- Framed data as regression problems for performance prediction.
- Historical player performance as features.
- Used H₂O AutoML to build ensembles (linear model, random forests, gradient boosting, and deep neural networks).

Approach One: Learning from Lahman only

Learn the Pattern Lahman: Age, Height, Weight ...
Historical Performance Stats Sliding Windows (Stats from previous n years) **Home Runs Predictions** About 300 Lahman Features **Batting Average**

H₂O AutoML:

H₂O.ai

Approach Two: Learning from Lahman & AriDB

Lahman: Age, Height, Weight ...
Historical Performance Stats

 ${f X}$

AriDB: Fastball, curveball, slider, velocity ...

Sliding Windows (Stats from previous n years)

About 300 Lahman Features + 200 AriDB Features

H₂O AutoML:

Learn the Pattern

Home Runs Batting Average

•••

Predictions

One of Many Targets (e.g. Home Runs, Batting Average)

Explaining the Predictions LIME – Local Interpretable Model-agnostic Explanations

- Approximate reasoning of complex ML models (ensembles).
- Most important attributes and their contributions to the predictions.
- Ari validated the models with his 30+ years of baseball domain knowledge.

He trusted the models.

Putting Everything Together – Moneyball Shiny App

Following

David Kearns
@DaithiOCiaran

Attending O'Reilly #Al Conference? Learn how to hit a home run using #artificialintelligence and #machinelearning from @Ledell and former MLB Moneyball analyst @arikaplan1:

conferences.oreilly.com/artificial-int ...

Today is the day #TheAlConf. Want to hear how #MachineLearning can be applied to #Moneyball. Join myself, @arikaplan1 @chriscoad and @ledell @IBMDataScience @h2oai @Aginity 4.50pm Location: Imperial A

3:29 PM - 6 Sep 2018

Oh man, I am missing out. BIG TIME!!! 😭

David Kearns @DaithiOCiaran

Today is the day #TheAlConf. Want to hear how #MachineLearning can be applied to #Moneyball. Join myself, @arikaplan1 @chriscoad and @ledell @IBMDataScience @h2oai @Aginity 4.50pm Location: Imperial A

3:35 PM - 6 Sep 2018

Add another Tweet

David Kearns @DaithiOCiaran · Sep 6

Replying to @matlabulous

I told the guys this pic would hurt ya. You are sorely missed.

 \vee

If you want to hear the Moneyball story from Ari and David ...

Businesses

Macnica Americas

Co-Founder and

More realworld use cases

All H₂O Kaggle **Grandmasters**

Hands-on **Training**

29th & 30th Oct, London

Lead Architect of

Security Scientist

Thanks!

- More Info, Code, and Slides
 - bit.ly/h2o_meetups
- Contact
 - joe@h2o.ai
 - @matlabulous
 - github.com/woobe

Appendix

Lahman Data

Player's information

birthYear [‡]	birthMonth	‡	birthDay [‡] l	birthCountry	\$	birthSta	ite [‡]	bii	thCity [‡]				
1991	8	8	7 (USA		NJ		Vir	neland				
meFirst [‡]	nameLast	÷	nameGiven [‡]	weight [‡]	he	ight [‡]	bats	‡	throws	÷	† debut †	† debut † finalGame †	† debut † finalGame † retroID †
Mike	Trout		Michael Nelson	235		74	R		R		2011-07-08	2011-07-08 2017-10-01	2011-07-08 2017-10-01 troum001

Player's past performance (batting in this case)

Lahman Data Framed as a ML problem

Player Attributes

yearID 🗦	teamID =	lgID [‡]	weight [‡]	height [‡]	bats [‡]	throws	birthYear [‡]	birthCountry [‡]	birthState	birthCity [‡]	age [‡]	career_year
2011	LAA	AL	235	74	R	R	1991	USA	NJ	Vineland	20	1
2012	LAA	AL	235	74	R	R	1991	USA	NJ	Vineland	21	2
2013	LAA	AL	235	74	R	R	1991	USA	NJ	Vineland	22	3
2014	LAA	AL	235	74	R	R	1991	USA	NJ	Vineland	23	4
2015	LAA	AL	235	74	R	R	1991	USA	NJ	Vineland	24	5
2016	LAA	AL	235	74	R	R	1991	USA	NJ	Vineland	25	6
2017	LAA	AL	235	74	R	R	1991	USA	NJ	Vineland	26	7
2018	LAA	AL	235	74	R	R	1991	USA	NJ	Vineland	27	8
2019	LAA	AL	235	74	R	R	1991	USA	NJ	Vineland	28	9
2020	LAA	AL	235	74	R	R	1991	USA	NJ	Vineland	29	10

Past
Performance
Sliding
Windows
+
Other

Stats

last1_HR	last2_HR =	last3_HR [‡]	last4_HR [‡]	last5_HR [‡]	avg_last2_HR [‡]	avg_last3_HR [‡]	avg_last4_HR [‡]	avg_last5_HR
N	NA NA	NA	NA	NA	NaN	NaN	NaN	NaN
!	NA NA	NA	NA	NA	5.0	5.00000	5.00000	5.00000
30	5	NA	NA	NA	17.5	17.50000	17.50000	17.50000
2	30	5	NA	NA	28.5	20.66667	20.66667	20.66667
36	5 27	30	5	NA	31.5	31.00000	24.50000	24.50000
4:	36	27	30	5	38.5	34.66667	33.50000	27.80000
29	41	36	27	30	35.0	35.33333	33.25000	32.60000
33	3 29	41	36	27	31.0	34.33333	34.75000	33.20000
33	33	29	41	36	33.0	31.66667	34.00000	34.40000
33	33	33	29	41	33.0	33.00000	32.00000	33.80000

One of the Targets

_	HR 💠	yearID 0
٦	5	2011
	30	2012
Training	27	2013
	36	2014
	41	2015
Validation	29	2016
J vanadion	33	2017
7 _	NA	2018
Forecast	NA	2019
	NA	2020

H₂O AutoML Code

H₂O AutoML Results

GBM grid 0 AutoML 20180615 040834 model 1

```
H2ORegressionMetrics: stackedensemble
** Reported on cross-validation data. **
** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **
MSE: 0.00246453
RMSE: 0.04964404
MAE: 0.03335875
RMSLE: 0.04124294
Mean Residual Deviance: 0.00246453
Slot "leaderboard":
                                               model id mean residual deviance
                                                                                                    rmsle
                                                                                   rmse
                                                                                             mae
1 StackedEnsemble BestOfFamily 0 AutoML 20180615 040834
                                                                     0.002465 0.049644 0.033359 0.041243
    StackedEnsemble_AllModels_0_AutoML_20180615_040834
                                                                      0.002467 0.049669 0.033367 0.041265
             GLM grid 0 AutoML 20180615 040834 model 0
                                                                      0.002480 0.049802 0.033560 0.041401
             GBM grid 0 AutoML 20180615 040834 model 4
                                                                      0.002486 0.049856 0.033707 0.041373
             GBM_grid_0_AutoML_20180615_040834_model_2
                                                                      0.002564 0.050638 0.034346 0.042008
```

[12 rows x 5 columns]

0.002569 0.050684 0.034261 0.042022