21-484 Notes JD Nir

jnir@andrew.cmu.edu February 20, 2012

Connectivity - Def: (p. 108): A vertex v in a graph G is a <u>cut-vertex</u> if the number of connected components in $G - \{v\}$ is greater than the number of connected components in G.

- notation: (p. 145): The number of connected components in G is denoted by $\kappa(G)$.
- <u>Claim (Theorem 5.1)</u>: A vertex incident with a bridge is a cut-vertex if an only if its degree is at least two.

<u>Proof:</u> let e = uv be a bridge. If v is a leaf, then $\kappa(G - \{v\}) = \kappa(G)$. If $\deg(v) \ge 2$, then let $w \ne u$ be another neighbor of v.

 \rightarrow In $G - \{v\}$, e is not an edge. Since e was a bridge then there is no w-u path in $G - \{v\}$ (uvw is a u-w path in G using e, so every u-w path uses e). So u and w are not connected in $G - \{v\}$, $\kappa(G - \{v\}) > \kappa(G)$.

Def (p. 111): A non-trivial connected graph with no cut-vertices is called a nonseparable graph.

Remark: $K_2 = \longrightarrow$ is nonseparable.

<u>Proposition (Theorem 5.7):</u> A graph with at least 3 vertices is nonseparable if and only if every two vertices lie on a common cycle.

Proof: Let G be a graph with at least 3 vertices.

- \rightarrow Assume that every two vertices lie on a common cycle. Assume for the sake of contradiction that v is a cut vertex.
 - G is connected (since there is a cycle between every two vertices). $\kappa(G) = 1$.
 - $\kappa(G \{v\}) \ge 2$, so there are u and w in separate connected components in $G \{v\}$.
 - In G, u and w lie on a common cycle, so there are \geq two disjoint u-w paths.
 - v can lie in at most one of these paths.
 - \Rightarrow There is a u-v path in $G \{v\}$ 4.
- \rightarrow Assume that G is a nonseparable. Assume for the sake of contradiction that not all pairs of vertices lie on a common cycle, and let u,v be two vertices such that $\operatorname{dist}(u,v)$ is minimal.
 - \rightarrow if d(u, v) = 1 then none of them are leaves since then the other vertex is a cut-vertex.

Also, can't be that both are leaves.

- \Rightarrow deg(u), deg(v) ≥ 2 . No common cycle containing both u and v means that uv is a bridge.
- \rightarrow By the claim, we get that both are cut-vertices 4.
- \rightarrow Assume $d(u,v) \geq 2$ and let $v_0 = u, v_1, \dots, v_k = v$ be a u-v path.
- $\rightarrow u$ and v_{k-1} lie on a common cycle, $C = \{u_0 = u, u_1, \dots, u_\ell = u\}$ (by minimality of u,v).

- \rightarrow There is a u-v path p in $G-\{v_{k-1}\}$, otherwise v_{k-1} is a cut-vertex.
- ightarrow Let $x=u_i$ be the last common vertex between c and p.
- \rightarrow call the part of C connecting u and v_{k-1} and not containing x, p'.

We have found a cycle: u, p', go backwards on p until $x, u_{i-1}, \ldots, u_0 = u$ common to u and v. 4