Сферическая геометрия №1

Сечения сферы

№1

Что получиться в сечении сферы радиуса R плоскостью, удаленной от центра сферы на H, если:

- 1. R = 5 см, H = 6 см. Ответ: не пересекаются
- 2. R = 2 см, H = 2 см. Ответ: точка
- 3. R = 4 см, H = 1 см. Ответ: окружность
- 4. R = 4 см, $H = \sqrt{15}$ см. Оценка:

$$4 ? \sqrt{14}$$
 $16 ? 14$
 $16 > 14 \rightarrow 4 > \sqrt{14}$

Ответ: окружность

5. R = 5,65 см, $H = \sqrt{32}$ см. Оценка:

5, 65 ?
$$\sqrt{32}$$

31, 9225 ? 32
31, 9225 < 32 $ightarrow$ 5, 65 $<$ $\sqrt{32}$

Ответ: не пересекаются

6. R = 1 см, $H = (\sqrt{2} + 5)^{\sqrt{4}(\frac{2}{\sqrt{2}} - \sqrt{2})}$ см. Оценка:

$$(\sqrt{2}+5)^{\sqrt{4}\left(\frac{2}{\sqrt{2}}-\sqrt{2}\right)} = (\sqrt{2}+5)^{\sqrt{4}\left(\frac{2-2}{\sqrt{2}}\right)} =$$
$$(\sqrt{2}+5)^0 = 1 \to 1 = (\sqrt{2}+5)^{\sqrt{4}\left(\frac{2}{\sqrt{2}}-\sqrt{2}\right)}$$

Ответ: точка

9. $R = \sin(0,6)$ см, $H = \sin(1,8)$ см. Оценка:

$$\frac{\pi}{6} < 0, 6 < \frac{\pi}{4}$$

$$\sin\left(\frac{\pi}{6}\right) < \sin(0, 6) < \sin\left(\frac{\pi}{4}\right)$$

$$\frac{1}{2} < \sin(0, 6) < \frac{\sqrt{2}}{2}$$

$$\frac{\pi}{2} < 1, 8 < \frac{2\pi}{3}$$

7.
$$R = 2^{100}$$
 см, $H = 100^2$ см. Оценка:

Ka:
$$2^{100} ? 100^{2}$$

$$2^{50} ? 100$$

$$2^{25} ? 10$$

$$1024 * 2^{15} ? 10$$

$$1024 * 2^{15} > 10 \rightarrow 2^{100} > 100^{2}$$

Ответ: окружность

8. $R=200^{300}$ см, $H=300^{200}$ см. Оценка: $200^{300}~?~300^{200}$

$$200^{300} ? 300^{200}$$
$$200^{3} ? 300^{2}$$
$$8000000 ? 90000$$

$$8000000 > 90000 \rightarrow 200^{300} > 300^{200}$$

Ответ: окружность

$$\sin\left(\frac{\pi}{2}\right) > \sin(1,8) > \sin\left(\frac{2\pi}{3}\right)$$
$$1 > \sin(1,8) > \frac{\sqrt{3}}{2}$$

$$\frac{\sqrt{3}}{2} > \frac{\sqrt{2}}{2} \to \sin(1,8) > \sin(0,6)$$

Ответ: не пересекаются

10.
$$R = \sqrt{2 - \frac{1}{4}\sqrt{3 + \sqrt{5}}}$$
 см, $H = 1, 2$ см.

$$\sqrt{2 - \frac{1}{4}\sqrt{3 + \sqrt{5}} ? 1, 2}$$

$$2 - \frac{1}{4}\sqrt{3 + \sqrt{5}} ? 1, 44$$

$$-\frac{1}{4}\sqrt{3 + \sqrt{5}} ? - 0, 56$$

$$\sqrt{3 + \sqrt{5}} ? 2, 24$$

$$3 + \sqrt{5} ? 5, 0176$$

$$\sqrt{5} ? 2, 0176$$

$$5 ? 4.07070976$$

$$5 > 4.07070976$$

$$5 > 4.07070976 \rightarrow \sqrt{2 - \frac{1}{4}\sqrt{3 + \sqrt{5}}} > 1, 2$$

Ответ: окружность

11.
$$R = \pi^2$$
 см, $H = e^3$ см. Оценка:

$$3,14 < \pi < 3,15$$

 $9,8596 < \pi^2 < 9,9225$

$$2,71 < e < 2,72$$

 $19,902511 < e^3 < 20,123648$

$$19.902511 > 9.8596 \rightarrow \pi^2 < e^3$$

Ответ: не пересекаются

12.
$$R = 2\sqrt{18} + 2\sqrt{18}\sqrt{2}\sqrt{3} + 3\sqrt{2}$$
 cm,
 $H = 2\sqrt{8} + 2\sqrt{8}\sqrt{2}\sqrt{3} + 3\sqrt{8}$ cm.

Оценка:

$$2\sqrt{18} + 2\sqrt{18}\sqrt{2}\sqrt{3} + 3\sqrt{2} - (2\sqrt{8} + 2\sqrt{8}\sqrt{2}\sqrt{3} + 3\sqrt{8}) =$$

$$6\sqrt{2} + 6\sqrt{2}\sqrt{2}\sqrt{3} + 3\sqrt{2} - 4\sqrt{2} - 4\sqrt{2}\sqrt{2}\sqrt{3} - 6\sqrt{2} =$$

$$2\sqrt{2}\sqrt{2}\sqrt{3} - \sqrt{2} =$$

$$4\sqrt{3} - \sqrt{2}$$

$$4\sqrt{3} - \sqrt{2} > 0 \rightarrow 2\sqrt{18} + 2\sqrt{18}\sqrt{2}\sqrt{3} + 3\sqrt{2} > 2\sqrt{8} + 2\sqrt{8}\sqrt{2}\sqrt{3} + 3\sqrt{8}$$

Точки A и B лежат на сфере радиуса R. Найдите расстояние от центра сферы до прямой AB, если AB=m.

Решение

- 1) Проведем OA и OB, $\triangle OAB$ равнобедренный, так как OA = OB = R.
- 2) Проведем $OK \perp AB$, тогда $AK = KB = \frac{m}{2}$, так как OK является высотой и медианой.
 - 3) По теореме Пифагора в $\triangle AKO$:

$$OK = \sqrt{R^2 - \left(\frac{m}{2}\right)^2}$$

Otbet:
$$\sqrt{R^2 - \left(\frac{m}{2}\right)^2}$$

№3

Вершины треугольника ABC лежат на сфере радиуса 13 см. Найдите расстояние от центра сферы до плоскости треугольника, если AB=6 см, BC=8 см, AC=10 см.

Решение

1) Заметим, что $\triangle ABC$ - прямоугольный:

$$AB^2 + BC^2 = AC^2$$

- 2) Достроим $\triangle ABC$ до прямоугольника ABCD, пусть K точка пересечения диагоналей, тогда DK = BK = AK = CK
- 3) Проведем $OK,\ OA,\ OB.\ OA=OB=R,$ где R радиус сферы, тогда $\triangle AOC$ равнобедренный и OK высота.
 - 4) Проведем OD, OB. OD = OB = R, тогда $\triangle DOB$ равнобедренный и OK высота.

5)

DB
$$\cap AC = K$$
 OK $\perp DB$ OK \perp AC \rightarrow $OK \perp AC$

6)
$$\rho(O;(ABC)) = OK$$

$$OK = \sqrt{R^2 - AK^2} = \sqrt{13^2 - 5^2} = \sqrt{18*8} = 12 \text{ cm}$$

Ответ: 12 см

№4

Вершины прямоугольника лежат на сфере радиуса 10 см. Найдите расстояние от центра сферы до плоскости прямоугольника, если его диагональ равна 16 см.

Решение

- 1) Пусть ABCD прямоугольник с диагональю 16 см, а R=10 см радиус сферы, точка пересечения диагоналей $K,\,DK=BQ=AK=CK$
 - 2) Проведем $OK,\,OA=OC=R,\,$ тогда $\triangle AOC$ равнобедренный, а OK высота
 - 3) Проведем OB = OD = R, тогда $\triangle BOD$ равнобедренный, а OK высота
 - 4)

5)
$$\rho(O;(ABC)) = OK$$

$$OK = \sqrt{R^2 - AK^2} = \sqrt{10^2 - 8^2} = \sqrt{2*18} = 6 \text{ см}$$

Ответ 6 см.

№5

Расстояние от центра сферы радиуса R до секущей плоскости равно d. Вычислите:

- 1. Радиус окружности, полученной в сечении плоскостью, если $R=5~{\rm cm},\,d=3~{\rm cm}.$
- 2. Длину окружности, полученной в сечении плоскостью, если $R=12~{\rm cm},\, d=8~{\rm cm}.$

Решение

$$O'K = \sqrt{R^2 - d^2} = \sqrt{5^2 - 3^2} = \sqrt{8 * 2} = 4 \text{ cm}$$

2.

$$O'K = \sqrt{R^2 - d^2} = \sqrt{12^2 - 8^2} = \sqrt{20*12} = 4\sqrt{15}$$
 см $L = 2\pi r = 8\pi\sqrt{15}$ см

Ответ: 1) 4 см; 2) $8\pi\sqrt{15}$ см

№6

Секущая плоскость проходит через конец диаметра сферы радиуса R так, что угол между диаметром и плоскостью равен α . Найдите длину окружности, получившейся в сечении, если:

1.
$$R = 2 \text{ cm}, \alpha = 30^{\circ};$$

2.
$$R = 5 \text{ cm}, \ \alpha = 45^{\circ}$$

Решение

$$\angle Q'KO = \alpha, OK = R$$

$$r = R * \cos \alpha$$

$$L = 2\pi r = 2\pi R \cos \alpha$$

1)

$$L = 4\pi\cos 30^\circ = \frac{4\sqrt{3}\pi}{2}$$

 $_{\rm CM}$

2)

$$L=10\pi\cos 45^\circ=\frac{10\sqrt{2}\pi}{2}~\mathrm{cm}$$

Ответ: 1) $\frac{4\sqrt{3}\pi}{2}$ см; 2) $\frac{10\sqrt{2}\pi}{2}$ см