Name: Adrian Tran SID: 861233198 Session: 022 ENGR ID: adtran UCR NetID: atran059

CS168 Lab 4 Report

Week 1 Checkoff From Here

Verilog Questions

```
*All multi-answers are given from the top downwards
```

Chapter 1:

```
1) a
```

- 2) b
- 3) False, False, True, False
- 4) Legal, Illegal, Legal, Legal
- 5) No
- 6) No, No
- 7) Yes, Yes
- 8) Yes, Yes
- 9) No, Yes, Yes
- 10) No, No

Chapter 2

```
1) 1, 3 4
```

2) 2, 3, 56

3) B

```
module Q4 (count, clock); module Q2; input clock; reg clock
                                      reg clock;
      output count;
                                       wire [3:0] count;
      reg [3:0] count, count_reg;
                                      Q4 counter (count, clock);
                                     initial begin
      initial count_reg = 0;
                                         clock = 0;
      always @(posedge clock)
                                      #8 forever begin
        count_reg = count_reg + 1;
                                            #2 clock = 1;
                                             #2 clock = 0;
      always @(negedge clock)
                                           end
        count = count_reg;
                                     end
4) endmodule
                                    endmodule
```

```
module Q5 (count, clock);
         input clock;
         output [3:0] count;
         reg [3:0] count_reg;
         initial count_reg = 0;
         always @(posedge clock)
            count_reg = count_reg + 1;
         assign #2 count = count reg;
      endmodule
5)
     module Q6 (count, clock);
        input clock;
output [3:0] count;
        parameter clktoq = 2;
        reg [3:0] count_reg;
        initial count_reg = 0;
        always @(posedge clock)
          count_reg = count_reg + 1;
        assign #clktoq count = count_reg;
    endmodule
Chapter 3
1) Constant, delay, scalar, scalar, non-fixed, size, fixed-size
2) Illegal, 9, 0, 4'b0100x, illegal, 4'b1010, illegal, 1'b0, 1'bx, 1'bx
3) B
4) 4, Yes, 6 or 10, No
5) #1x = x + 1;
Chapter 4
      module vabc (d, s);
          input [1:0] s;
          output [3:0] d;
          not (s1_, s[1]), (s0_, s[0]);
          and (d[3], s1_, s0_);
          and (d[2], s1_, s[0]);
          and (d[1], s[1], s0_);
          and (d[0], s[1], s[0]);
      endmodule
1)
      module dabc (a, b, c, d, s1, s0);
        input s1, s0;
        output a, b, c,d;
        not (s1_, s1), (s0_, s0);
         and #3 (a, s1_, s0_);
        and #3 (b, s1_, s0);
        and #3 (c, s1, s0_);
        and #3 (d, s1, s0);
     endmodule
2)
```

```
3) 1
```

```
module mod (in1, in2, s, out);
    input in1, in2, s;
    output out;

    or (out, o1, o2);
    and (o1, in1, s);
    and (o2, in2 s_);
    not (s_, s);

4) endmodule

module xyz (a, b);
    input a;
    output b;

    not (a_, a);
    nand (t1, a, b);
    nand (b, a_, t1);
endmodule
```

Chapter 5

- 1) 1
- 2) 3
- 3) assign #1 s = a + 1b;
- 4) always #10 clock = ~clock;

Sample solution:

```
module test;
        reg x, y, clk;
        always
            #10 clk = ~clk;
        initial begin
                $display("clk
                                x y");
                x = 0;
                y = 0;
                clk = 1;
                forever
                       $strobe(" %b
                                       %b %b", clk, x, y);
        initial begin
                @(negedge clk);
@(negedge clk)
x = 1;
                @(negedge clk)
                x = 0;
@(posedge clk);
                @(posedge clk)
                       $finish();
        end
        reg t;
        initial t = 0;
        always @(posedge clk)
                t = x;
        always @(negedge clk)
               y = t;
endmodule
```

- 5)
- 6) Behavioral
- 7) Register transfer, behavioral

One possible solution is:

```
or #1 mux (a, t1, t2, t3);
not (s0_, s[0]);
not (s1_, s[1]);
and (sel1, s1_, s[0]);
and (sel2, s[1], s0_);
nor (sel3, sel1, sel2);
and (t1, sel1, x);
and (t2, sel2, y);
and (t3, sel3, z);
```

8)

Simulation result of example counter:

Final Layout in Figure 49 for 4-bit full adder:

Week 2 Checkoff From here:

Final Layout in Figure 51:

5 Design Compiler Report (timing, power, area, reference, and resource):

Timing Report

Report: timing

-path full

-delay max

-nets

-max_paths 1

-transition_time

Design: gcdGCDUnit_rtl Version: K-2015.06-SP4

Date : Sun Mar 10 00:15:10 2019

Operating Conditions: TYPICAL Library: saed90nm_typ

Wire Load Model Mode: top

Startpoint: GCDdpath0/A_reg_reg[4]

(rising edge-triggered flip-flop clocked by ideal_clock1)

Endpoint: GCDdpath0/A_reg_reg[9]

(rising edge-triggered flip-flop clocked by ideal_clock1)

Path Group: ideal_clock1

Path Type: max

Attributes:

d - dont_touchu - dont_usemo - map_onlyso - size_only

i - ideal_net or ideal_network

inf - infeasible path

Point	Fanout	Trans Ir	ncr Pat	th Attri	butes
clock ideal_clock1 (rise edg	 e)		0.00	0.00	
clock network delay (ideal)			0.00	0.00	
GCDdpath0/A_reg_reg[4]/C	•	•	0.00	0.00	0.00 r
GCDdpath0/A_reg_reg[4]/Q	•	•	0.04		0.24 f
result_bits_data[4] (net)	5			.24 f	
U153/QN (NAND2X1)		0.04		0.28 r	
n294 (net)	2	0.00			
U251/QN (INVX0)		0.03	0.03		
n183 (net)	2	0.00			
U133/QN (NAND2X0)		0.06		0.35 r	
n149 (net)	1	0.00			
U252/QN (NAND2X1)	•	0.05		0.39 f	
n314 (net)	3	0.00			
U253/QN (NAND2X2)		0.03			
n153 (net)	1	0.00			
U258/QN (NAND2X1)	4	0.03		0.44 f	
n154 (net)	1	0.00			
U259/Q (AO21X1)		0.04		0.52 f	
n227 (net)	4	0.00			
U177/Q (LSDNX1)	0	0.04	0.08	0.60 f	
n308 (net)	2	0.00			
U320/Q (AO21X1)	4	0.03	0.09	0.69 f	
n233 (net)	1	0.00			
U322/Q (XOR2X1)	4	0.04		0.81 r	
n234 (net)	1	0.00			
U140/QN (NAND2X0)	4	0.05			
n238 (net)	1	0.00			
U324/QN (NAND4X0)		0.07	0.04	0.88 r	

n91 (net)	1	0.00	0.88 r

GCDdpath0/A_reg_reg[9]/D (DFFARX1) 0.07 0.00 0.88 r

data arrival time 0.88

clock ideal_clock1 (rise edge) 1.00 1.00 clock network delay (ideal) 0.00 1.00

GCDdpath0/A_reg_reg[9]/CLK (DFFARX1) 0.00 1.00 r

library setup time -0.12 0.88 data required time 0.88

data required time 0.88 data arrival time -0.88

slack (MET) 0.00

Area Report

Report : area

Design : gcdGCDUnit_rtl Version: K-2015.06-SP4

Date : Sun Mar 10 00:16:39 2019

Library(s) Used:

saed90nm_typ (File:

/usr/local/synopsys/pdk/SAED90_EDK/SAED_EDK90nm_REF/references/ChipTop/ref/saed90nm_fr/LM/saed90nm_typ.db)

Number of ports: 54
Number of nets: 384
Number of cells: 317

Number of combinational cells: 283
Number of sequential cells: 34
Number of macros/black boxes: 0
Number of buf/inv: 34

Number of buf/inv: 34 Number of references: 30

Combinational area: 1995.864012 Buf/Inv area: 199.999007

Noncombinational area: 1081.958015 Macro/Black Box area: 0.000000

Net Interconnect area: undefined (No wire load specified)

Total cell area: 3077.822028

Total area: undefined

Hierarchical area distribution

	Global cell area Local cell area
Hierarchical cell	Absolute Percent Combi- Noncombi- Black- Total Total national national boxes Design
gcdGCDUnit_rtl gcdGCDUnit_rtl	3077.8220 100.0 1995.8640 1081.9580 0.0000
Total	1005 9640 1091 0590 0 0000

Total 1995.8640 1081.9580 0.0000

Power Report

Report: power -hier

-analysis_effort low Design: gcdGCDUnit_rtl Version: K-2015.06-SP4

Date : Sun Mar 10 00:42:27 2019 **********

Library(s) Used:

saed90nm_typ (File:

/usr/local/synopsys/pdk/SAED90_EDK/SAED_EDK90nm_REF/references/ChipTop/ref/saed90n m_fr/LM/saed90nm_typ.db)

Operating Conditions: TYPICAL Library: saed90nm_typ

Wire Load Model Mode: top

Global Operating Voltage = 1.2 Power-specific unit information: Voltage Units = 1V Capacitance Units = 1.000000pf Time Units = 1ns

Dynamic Power Units = 1mW (derived from V,C,T units)

Leakage Power Units = 1pW

Reference Report

Report : reference

Design: gcdGCDUnit_rtl Version: K-2015.06-SP4

Date : Sun Mar 10 00:41:05 2019

Attributes:

b - black box (unknown)

bo - allows boundary optimization

d - dont_touch

mo - map_only

h - hierarchical

n - noncombinational

r - removable

s - synthetic operator

u - contains unmapped logic

Reference	Library Unit	Area Count	Total Area	Attributes
AND2X1	saed90nm typ	7.445000	 1 7.445	000
AO21X1	saed90nm_typ	10.138000	1 10.138	3000
AO221X1	saed90nm_typ	12.902000	4 51.60	8002
AO222X1	saed90nm_typ	14.746000	20 294.9	20006
DFFARX1	saed90nm_typ	32.256001	32 1032.	192017 n
DFFX1	saed90nm_typ	24.882999	2 49.765	999 n
FADDX1	saed90nm_typ	29.490999	11 324.4	00991 r
INVX0	saed90nm_typ	5.530000	9 49.7700	02
ISOLANDX1	saed90nm_ty	p 7.373000	4 29.4	92001

ISOLORX1	saed90nm_typ	7.387000	4	29.548000
MUX21X1	saed90nm_typ	11.059000	4	44.236000
NAND2X0	saed90nm_typ	5.443000	47	255.820992
NAND3X0	saed90nm_typ	7.373000	17	125.341002
NAND4X0	saed90nm_typ	8.294000	3	24.881999
NOR2X0	saed90nm_typ	5.530000	7	38.710001
NOR3X0	saed90nm_typ	8.294000	2	16.587999
NOR4X0	saed90nm_typ	9.216000	4	36.863998
OA21X1	saed90nm_typ	9.216000	3	27.647999
OA22X1	saed90nm_typ	11.059000	19	210.121000
OA221X1	saed90nm_typ	12.902000	1	12.902000
OR4X1	saed90nm_typ	10.152000	1	10.152000
XNOR2X1	saed90nm_typ	13.824000	1	13.824000

Total 22 references

2696.369010

Resource Report

Report: resources

Design : gcdGCDUnit_rtl Version: K-2015.06-SP4

Date : Sun Mar 10 00:27:26 2019

Resource Report for this hierarchy in file ./gcd_dpath.v

=====

Implementation Report

======

| Current | Set |

Cell	Module	Implementation Im	plementation	
======	========		========	=============
sub_x_2	DW01_sub	pparch (area,spe	ed)	
It_x_3	DW_cmp	pparch (area,speed)	
=======	========	=======================================		=======================================
======				

Conclusion:

I completed the lab fairly easily. However, I did run into some errors with the ICC for the GCD Portion of the lab. I eventually figured it out, though: and the issue is documented on the class Github page. I enjoyed this lab. Much more fun than the last, haha.