Numerical Analysis - ENME 602

Engineering and Materials Science Assoc.Prof.Dr. Hesham H. Ibrahim Spring 2021

Practice Sheet 4A

Linear Systems: Iterative Methods

Problem 1

1. Find the first two iterations of the **Jacobi method** for the following linear systems, using $X^{(0)} = 0$:

a.
$$3x_1 - x_2 + x_3 = 1,$$

 $3x_1 + 6x_2 + 2x_3 = 0,$
 $3x_1 + 3x_2 + 7x_3 = 4.$

b.
$$10x_1 - x_2 = 9,$$

 $-x_1 + 10x_2 - 2x_3 = 7,$
 $-2x_2 + 10x_3 = 6.$

c.
$$10x_1 + 5x_2 = 6,$$

 $5x_1 + 10x_2 - 4x_3 = 25,$
 $- 4x_2 + 8x_3 - x_4 = -11,$
 $- x_3 + 5x_4 = -11.$

d.
$$4x_1 + x_2 + x_3 + x_5 = 6,$$

 $-x_1 - 3x_2 + x_3 + x_4 = 6,$
 $2x_1 + x_2 + 5x_3 - x_4 - x_5 = 6,$
 $-x_1 - x_2 - x_3 + x_4 = 6,$
 $2x_2 - x_3 + x_4 + 4x_5 = 6.$

- **2.** Use the **Jacobi method** to solve the linear systems in **Exercise 1**, with $TOL = 10^{-3}$ in the l_{∞} norm.
- **3.** Use the **Gauss-Seidel method** to solve the linear systems in **Exercise 1**, with $TOL = 10^{-3}$ in the l_{∞} norm.

1

Solution:

Question	Approximation	Error
1.a	$X^{(2)} = (0.14286, -0.35714, 0.42857)$	0.35714
1.b	$X^{(2)} = (0.97000, 0.87000, 0.54000)$	0.17
1.c	$X^{(2)} = (-0.65000, 1.65000, -0.40000, -2.47500)$	1.25
1.d	$X^{(2)} = (1.32500, -0.10000, 2.50000, 6.70000, 1.30000)$	1.9
2.a	$X^{(9)} = (0.03510, -0.23664, 0.65813)$	0.00075
2.b	$X^{(6)} = (0.99572, 0.95777, 0.79145)$	0.00052
2.c	$X^{(21)} = (-0.79711, 2.79517, -0.25940, -2.25179)$	0.00096
2.d	$X^{(47)} = (0.83072, 2.30758, 2.30753, 11.44654, -1.93836)$	0.00085
3.a	$X^{(6)} = (0.03535, -0.23679, 0.65776)$	0.00080
3.b	$X^{(4)} = (0.99575, 0.95787, 0.79157)$	00080
3.c	$X^{(9)} = (-0.79691, 2.79462, -0.25918, -2.25184)$	0.00085
3.d	$X^{(8)} = (0.83075, 2.30773, 2.30775, 11.44624, -1.93849)$	0.00078