1994 INDEX

Materials in the ocean and the role of MTD, 184 Preventing biofouling with copper-nickel alloys, 181 Reinforced rubber hose in offshore applications, 187 Structural materials in marine environments (c), 428 MATERIALS SCIENCE sans frontieres, 370

MEMBRANE materials - challenges for the '90s (c),

Are high resolution microscopes too expensive?, 527 Cathodoluminescence for ceramics, 24 Ceramic fibre composites under the acoustic micro-

The electron microscope's role in materials research, 376
MICROWAVE technology for welding and joining, 526
NUCLEAR FUEL reprocessing, Choosing materials for,

Contamination problems with packaging materials, 623 Material advances in packaging, 621

How do polymers fit into the environmental equation, 303 Intelligent processing - a quantum leap in quality con-

Measuring viscosity to optimise thermoset processing, 14

PAGINATION

July

August

September

October

361-408

409-456

457-512

513-568

569-616

Microstructural analysis in 3D, 200

381 MICROSCOPY

scope, 73

628 PACKAGING

POLYMERS

January February

March

April

AEROSPACE Advanced engineering ster Adhesive bonding in sever ALUMINIUM, Superplastic ANALYSIS A new advance in optical	e environments, 523
Probing the surface to impr	rove performance, 532
AUTOMOTIVE MATERIALS Achieving fuel efficiency with New laminate sheet for ca Productive system solutions Structural adhesives in auta Taking the lead in material The materials link to fogge	n sheet steel automobiles, 133 r body panels, 582 for car bumpers, 14 pmotive applications, 418 is recovery, 313
CERAMICS	d windscreens, Jou
Cathodoluminescence for a Improving performance in ce The shrinking world of ferro	eramic matrix composites, 63
COMPOSITE MATERIALS	
Composite propellers for si Ceramic fibre composites a scope, 73	mall boats?, 69 under the acoustic micro-
Composites research: ten yellimproving performance in cellioning aluminium based me Metal matrix composites for	eramic matrix composites, 63 tal matrix composites, 415
(c), 80 New laminate sheet for car Titanium based composites COPPER-nickel alloys, prev CORROSION	r body panels, 582 s: exploiting the benefits, 66 venting biofouling with, 181
	in marine environments, 189 to combat corrosion off-

Cutting tools: a crucial factor in productivity, 84 Surface engineering of cutting edges, 141

Designer materials for fingerprint detection, 534 New materials and materials design, 535 ENVIRONMENTAL ISSUES

Examining the options to clean up foundry melting, 77 How do polymers fit into the environmental equation?, Introducing BS 7750: the environmental challenge, 316 Old tyres are a burning issue, 310 Taking the lead in materials recovery, 313 The environmental audit: regulations and the polymer

Preventing stress cracking in high density polyethyl-

The importance of being specific, 472
FERROELECTRIC ceramics, the shrinking world of, 125

Product development: managing the flow of informa-

Taking STEPS towards materials information, 71 Technical information and business decisions, 373 The impact of modern materials telecommunications, 202

Automatic surface inspection moves on, 201

Laser forming: a force for the future?, 574 Laser welding provides tailored properties, 576 MAGNESIUM alloys: the next generation, 198

Biodeterioration of materials in marine environments, 189 Developments in materials to combat corrosion off-

MARINE TECHNOLOGY

Adhesive bonding in severe environments, 523 Environmental issues and adhesives, 422 Joining aluminium based metal matrix composites, 415 Laser welding provides tailored properties, 576
Microwave technology for welding and joining, 526 Structural adhesives in automotive applications, 418

Dealing with packaging waste, 306 Environmental issues and adhesives, 422 Environmental legislation: how worried should the non-ferrous metal sector be (c), 323

CUTTING

DESIGN

industry, 475 FAILURE

ene, 246

tion, 17

INFORMATION

INSPECTION

JOINING

LASERS

shore, 193

Failure is not just fracture, 249

177-232 234-296 November May 297-360 December 617-664 June

1-56

57-120

121-176

AUTHORS		
Abbott, S G, 422	ter Maat, H J, 582	
Ahmed, W. 141	Marshall, J M, 129	
Allan, P.S, 7	Matthews, A, 133	
Ansell, P, 376	Matthews, FL, 146	
Bamkin, R, 17	McCarthy, PR, 243	
Bell, A J, 125	Money, G, 477	
Bendall, K C, 193	Nicolson, JA, 316	
Bevis, MJ, 7	van den Otelaar, J,	
Booth, D, 475	Peuch, P, 313	
Bordas, J, 318	Pickard, A, 17	
Briggs, A, 73	Powell, CA, 181	
Brown, C, 16	Pridham, MS, 574	
Brown, M, 200	Priest, M, 374, 535	
Campbell, J, 426	Rainforth, W M, 52	
Cann, J M, 303	Ralph, B, 365	
Chapman, J, 139	Reaney, I M, 125	
Clark, D, 144	Richards, SJ, 187	
Clementson, T, 202	Ridley, N, 251	
Coates, P.D. 10	Roberts, T, 628	
Coulson, H, 238	Rodriguez, J, 320	
Cubbon, RCP, 135	Sammes, N.M., 246	
Davies, M, 189	Sawar, M, 141	
Davis, P.W., 243	Scott, PJB, 189	
Duke, A J, 249	Searle, A, 24	
Edwards, R, 84	Searle, T, 69	
Ellis, D, 240	Selman, GL, 373	
Ellis, M B D, 415	Shaw, SJ, 523	
Everson, H, 461	Short, D. 69	
Eyre, T S, 365	Sidaway, T, 583	
Fay, P, 418	Siores, E, 526	
Fisher, PM, 310	Smallman, RE, 370	
Gibson, R, 623	Smith, R J, 201	
Gittos, MF, 415	Stracey, RJ, 196	
Glyde, B S, 306, 472	Swindells, N, 71	
Goddard, R, 621	Swindells, RJ, 71	
Harrison, K, 532	Thomson, GA, 574	
Hazell, LB, 532	Thorwart, L, 519	
Hepburn, A.R., 129	Threadgill, PL, 415	
Hick, A J, 147	Tod, D A, 523	
Hill, A, 374, 535, 625	Torrance, A A, 320	
Howick, C, 580	Ward, S D, 318	
Kapranos, P, 465	Wardlow, GD, 198	
Kato. H, 365	Whitehouse, CR, 3	
Kemp, M, 632	Wilshire, B, 534	
Lalley, M, 576	Wood, JV, 80	
Lennard, DE, 184	Woodward, VG, 2	
Lloyd, D, 479	Yang, Y, 320	
Lowe, K, 577	Yeomans, J, 63	

iei Maai, 113, 302
Marshall, J.M., 129
Marshall, J M, 129 Matthews, A, 133
Matthews FI 146
Matthews, F L, 146 McCarthy, P R, 243, 468
McCarrny, P K, 243, 408
Money, G, 477
Nicolson, J A, 316
van den Otelaar, J, 14
Peuch, P, 313
Pickard, A, 17
Powell CA 181
Powell, C A, 181 Pridham, M S, 574
1 i i i i i i i i i i i i i i i i i i i
Priest, M, 3/4, 535, 625
Priest, M, 374, 535, 625 Rainforth, W M, 527
Ralph, B, 365
Reaney, I M, 125
n: 1 C 1 107
Richards, S J, 187
Ridley, N, 251
Roberts, T, 628
Podriguez 1 220
Rodriguez, J, 320
Sammes, N.M., 246
Sawar, M, 141
Scott, PJB, 189
Searle, A, 24
Canda T 40
Searle, T, 69
Selman, G L, 373
Shaw, SJ, 523
Short, D, 69
Sidoway T 593
Sidaway, T, 583 Siores, E, 526
Siores, E, 320
Smallman, R E, 370
Smith, R J, 201
Stracey, RJ, 196
Swindells, N, 71
Swindells, R J, 71
Thomson, G A, 574
Thorwart, L, 519
Threadgill, PL, 415
Inredagill, P.L., 413
Tod, D A, 523
Torrance, A.A. 320
Ward, S D, 318
Wardlew CD 100
Wardlow, G D, 198
Whitehouse, CR, 318
Wilshire, B, 534
Wood, JV, 80
Woodward, V G, 246
Yang, Y, 320
Yeomans, J, 63

Preventing stress cracking in high density polyethyl- ene, 246	
Productive system solutions for car bumpers, 14 Shear controlled orientation: a route to optimised	
properties, 7 The environmental audit: regulations and the polymer	
industry, 475 PROCESSING	
Intelligent processing - a quantum leap in quality con- trol, 10	
Measuring viscosity to optimise thermoset processing, 14 Reaction processing, Institute workshop (c), 586 Semi solid metal processing: an environmentally	
friendly process, 465 Shear controlled orientation: a route to optimised	
properties, 7 Infrared thermography: a tool for process develop- ment, 78	
PRODUCT REVIEWS	
Furnaces and heat treatment, 551	
Hardness and mechanical testing, 105	
Materials testing and analytical services, 443 Materials testing software, 350	
Microscopy and image analysis, 501	
Microscopy, image processing and metallography, 163 Moulding and casting, 648	
Nondestructive testing, 601 Software for the materials business, 100	
Vacuum heat treatment, 43 QUALITY	
Every man's guide to quality terminology, 238 Why hardness is vital to statistical process control, 583 REFRACTORIES in steelmaking, 135	
RESEARCH Effective management of materials R&D, 374	
Making the most of Materials Foresight, 426 RUBBER	
Old tyres are a burning issue, 310 Reinforced rubber hose in offshore applications, 187	
Rubber chemicals: problems and panaceas, 479 SEAL performance, The materials key to, 519 SMART MATERIALS	
Smart systems: not just a flash in the pan, 20 The science and art of smart materials, 632	
Towards the molecular dimension, 144 SPECIFICATIONS	
The importance of being specific, 472 STANDARDS	
A guide to NAMAS, 243	
CEN standards and their implications, 240 Introducing BS 7750: the environmental challenge, 316 Taking STEPS towards materials information, 71	
STEEL Achieving fuel efficiency with sheet steel automobiles, 133	
Advanced engineering steels for aerospace, 461 How steel is responding to the new materials chal-	
lenge, 577	
Refractories in steelmaking, 135 Steelmakers face up to the challenges ahead, 139	
Talking of bainite and acicular ferrite, 251 The heat treatment response of aluminium bearing	
plain carbon steels (c), 147	
SUPERPLASTICALLY FORMED aluminium, 196 SURFACE ENGINEERING	
Mapping wear behaviour of nitrided steel, 365 Surface engineering of cutting edges, 141	
SYNCHROTRON radiation: the UK considers a new source, 318	
TESTING Infrared thermography: a tool for process develop-	
ment, 78 Taking the test in thermomechanical fatigue, 468	
Why hardness is vital to statistical process control, 583 THERMAL PROCESSING	
Examining the options to clean up foundry melting, 77 Solar hardening of steels, 320	
The heat treatment response of aluminium bearing plain carbon steels (c), 147	
THIN FILM sensors, 129 TITANIUM based composites: exploiting the benefits, 66	
WEAR, Mapping behaviour of nitrided steel, 365	

(c)= conference report