Démonstration 0.1.

Soit F un sev de E et $m_0 \in \mathscr{E}$.

On pose $\mathscr{F} = \{m \in \mathscr{E} \mid \overrightarrow{m_0m} \in F\}$ c'est à dire \mathscr{F} est le sous-espace affine passant par m_0 et de direction F.

Montrons que \mathscr{F} est un espace affine de direction F.

Soit θ' la restriction de $\theta: \mathcal{E} \times \mathcal{E} \to E$ à $\mathcal{F} \times \mathcal{F}$. c'est-à-dire $\theta': \mathcal{F} \times \mathcal{F} \to E$

 $(m, m') \mapsto \theta(m, m') = \overrightarrow{mm'}$

Montrons que: $\forall (m, m') \in \mathscr{F} \times \mathscr{F}, \theta'(m, m') \in F$.

Soit $(m, m') \in \mathscr{F} \times \mathscr{F}$.

 $\vec{mm'} = m, \vec{m}_0 + m_0, \vec{m}' \in F$

 $= -\overrightarrow{m_0, m} + \overrightarrow{m_0, m'} \in F \ car \ F \ est \ un \ sev \ de \ E$

D'où $\theta' \colon \mathscr{F} \times \mathscr{F} \to F$

est une application et vérifie la re-

 $(m, m') \mapsto \theta'(m, m') = \overrightarrow{mm'}$

lation de Chasles car θ la vérifie.

Soit $a \in \mathscr{F}$

On a $\theta'_a \colon \mathscr{F} \to F$

 $m \mapsto \theta'(a, m) = a\vec{m}$

Montrons que θ'_a est bijective.

Soit $\vec{v} \in F$, donc $\vec{v} \in E$.

Comme θ_a est bijective, il existe un unique $m \in \mathcal{E}$ tel que $\theta_a(m) = \vec{v}$.

Reste à montrer que $m \in \mathscr{F}$.

En utilisant Chasles, on a:

$$\vec{m_0}m = \vec{m_0}a + \vec{am} = \vec{m_0}a + \theta_a(m) = \vec{m_0}a + \vec{v} \in F$$

Démonstration 0.2.

Avec $\mathscr{F} = \{ m \in \mathscr{E} \mid \vec{m_0}m \in F \}$

Soit $m_1 \in \mathscr{F}$.

Montrons que $\mathscr{F} = \{ m \in \mathscr{E} \mid \vec{m_1}m \in F \}$

Soit $m \in \mathscr{F}$

$$\vec{m_1}\vec{m} = \vec{m_1}\vec{m_0} + \vec{m_0}\vec{m} \in F$$

= $-\vec{m_0}\vec{m_1} + \vec{m_0}\vec{m} \in F \ car \ F \ est \ un \ sev \ de \ E$

Donc $\mathscr{F} \subset \{m \in \mathscr{E} \mid \vec{m_1 m} \in F\}$ Réciproquement, soit $m \in \mathscr{E}$ tel que $\vec{m_1 m} \in F$.

$$m_{\vec{0}}\vec{m} = m_{\vec{0}}\vec{m}_1 + m_{\vec{1}}\vec{m} \in F$$

= $m_{\vec{0}}\vec{m}_1 + m_{\vec{1}}\vec{m} \in F \ car \ F \ est \ un \ sev \ de \ E$

$$Ainsi \, \mathscr{F} = \{ m \in \mathscr{E} \mid \vec{m_1 m} \in F \}$$

Démonstration 0.3.

Soient $m_0 \in \mathcal{E}$, F un sev de E.

Soit
$$\mathscr{F} = \{ m \in \mathscr{E} \mid \vec{m_0 m} \in F \}$$

Alors \mathscr{F} est un sous espace de \mathscr{E} de direction F passant par m_0 . d'où l'existence.

Pour l'unicité, si \mathscr{F}' est un sous-espace affine de $\mathscr E$ de direction F passant par m_0 .

Ainsi
$$\mathscr{F}' = m_0 + F = \mathscr{F}$$