PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 98/53097
C12Q 1/68	A2	(43) International Publication Date: 26 November 1998 (26.11.98)
(21) International Application Number: PCT/CA (22) International Filing Date: 21 May 1998 (CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
(30) Priority Data: 08/861,774 22 May 1997 (22.05.97)	Ţ	Published Without international search report and to be republished upon receipt of that report.
(71) Applicant: TERRAGEN DIVERSITY INC. [CA/CA] sity of British Columbia, Suite 300, 2386 East M couver, British Columbia V6T 1Z3 (CA).		
(72) Inventors: WATERS, Barbara; 5706 Timbervalle Delta, British Columbia V4L 2E6 (CA). MIAO, V W.; 13750 31 Avenue, Surrey, British Columbia (CA). YAP, Wai, Ho; 5 Elite Terrace, Singapor (SG). SEOW, Kah, Tong; 8 Jln Aneka, Serene Pa Baru, Johor 80300 (MY).	/ivian, I V4P 2I e 4587	5. 17 . 18
(74) Agent: DEETH WILLIAMS WALL; National Bank Suite 400, 150 York Street, Toronto, Ontario M (CA).		

(54) Title: METHOD FOR ISOLATION OF BIOSYNTHESIS GENES FOR BIOACTIVE MOLECULES

(57) Abstract

Degenerate primers which hybridize with various classes of antibiotic biosynthesis gene were used to amplify fragments of DNA from soil and lichen extracts. Cloning and sequencing of the amplified products showed that these products included a variety of novel and previously uncharacterized antibiotic biosynthesis gene sequences, the products of which have the potential to be active as antibiotics, immunosuppressors, antitumor agents, etc. Thus, antibiotic biosynthesis genes can be recovered from soil or lichens by combining a sample with a pair of amplification primers under conditions suitable for polymerase chain reaction amplification, wherein the primer set is a degenerate primer set selected to hybridize with conserved regions of known antibiotic biosynthetic pathway genes, for example Type I and Type II polyketide synthase genes, isopenicillin N synthase genes, and peptide synthetase genes, cycling the combined sample through a plurality of amplification cycles to amplify DNA complementary to the primer set; and isolating the amplified DNA.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL.	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	Fl	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΛZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

-1-

METHOD FOR ISOLATION OF BIOSYNTHESIS GENES FOR BIOACTIVE MOLECULES

DESCRIPTION

BACKGROUND OF THE INVENTION

This application relates to a method for the isolation of biosynthesis genes for antibiotics and other bioactive molecules from complex natural sources such as humus, soil and lichens.

5

Antibiotics play an important role in man's efforts to combat disease and other economically detrimental effects of microorganisms. Traditionally, antibiotics have been identified by screening microorganisms, especially those found naturally in soil, for their ability to produce an antimicrobial substance. In some cases, the gene or genes responsible for antibiotic synthesis have then been identified and cloned into producer organisms which produce the antibiotic in an unregulated manner for commercial applications. However, it has been estimated that less than 1% of the microorganisms present in soil are culturable. Torsvik et al., *Appl. Environ. Microbiol.* 56: 782-787 (1990). Thus, much of the genetic diversity potentially available in soil microorganisms is unavailable through traditional techniques.

15

20

10

As pathogenic microorganisms become increasingly resistant to known antibiotics, it would, however, be highly desirable to be able to access the reservoir of genetic diversity found in soil, and to facilitate the exploration of new species of antibiotics which may be made by the vast numbers of unculturable organisms found there. It would further be desirable to have access to novel biosynthetic enzymes and the genes encoding such enzymes, which could be used in recombinant organisms for antibiotic production or for *in vitro* enzymatic synthesis of desirable compounds. Thus, it is an object of the present invention to provide a method and compositions for isolating DNA and DNA fragments encoding enzymes relevant to the production of pharmaceutically active molecules such as antibiotic biosynthesis enzymes.

25

- 2 -

SUMMARY OF THE INVENTION

We have now identified degenerate primers which hybridize with various classes of antibiotic biosynthesis genes, and have used such primers to amplify fragments of DNA from soil and lichen extracts. Cloning and sequencing of the amplified products showed that these products included a variety of novel and previously uncharacterized antibiotic biosynthesis gene sequences, the products of which have the potential to be active as antibiotics, immunosuppressors, antitumor agents, etc. Thus, antibiotic biosynthesis genes can be recovered from soil by a method in accordance with the present invention comprising the steps of:

- (a) combining a soil-derived sample with a pair of amplification primers under conditions suitable for polymerase chain reaction amplification, wherein the primer set is a degenerate primer set selected to hybridize with conserved regions of known antibiotic biosynthetic pathway genes, for example Type I and Type II polyketide synthase genes, isopenicillin N synthase genes, and peptide synthetase genes;
 - (b) cycling the combined sample through a plurality of amplification cycles to amplify DNA complementary to the primer set; and
 - (c) isolating the amplified DNA.

5

15

20

25

30

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, antibiotic biosynthesis genes can be recovered from soil and lichens by a method comprising the steps of:

- (a) combining a humic or lichen-derived sample with a pair of amplification primers under conditions suitable for polymerase chain reaction amplification, wherein the primer set is a degenerate primer set selected to hybridize with conserved regions of an antibiotic biosynthesis gene;
- (b) cycling the combined sample through a plurality of amplification cycles to amplify DNA complementary to the primer set; and
 - (c) isolating the amplified DNA.

As used in the specification and claims of this application, the term "humic or lichen-derived sample" encompasses any sample containing the DNA found in lichens or in samples of humic materials including soil, mud, peat moss, marine sediments, and effluvia

- 3 -

from hot springs and thermal vents in accessible form for amplification, substantially without alteration of the natural ratios of such DNA in the sample. One exemplary form of a humic sample is a sample obtained by performing direct lysis as described by Barns et al., *Proc. Nat'l Acad. Sci. USA* 91:1609-1613 (1994) on a soil sample and then purifying the total DNA extract by column chromatography. Related extraction methods can be applied to the isolation of community DNA from other environmental sources. See, Trevors et al., eds. *Nucleic Acids in the Environment*, Springer Lab Manual (1995). Lichen-derived samples may be prepared from foliose lichens by the method of fungal DNA extraction described by Miao et al., *Mol. Gen. Genet.* 226: 214-223 (1991). Specific non-limiting procedures for isolation of DNA from humic and lichen samples are set forth in the examples herein.

5

10

15

20

25

30

The humic or lichen-derived sample is combined with at least one, and optionally with several pairs of amplification primers under conditions suitable for polymerase chain reaction amplification. Polymerase chain-reaction (PCR) amplification is a well known process. The basic procedure, which is described in US Patent No. 4,683,202 and 4,683,195, which are incorporated herein by reference, makes uses of two amplification primers each of which hybridizes to a different one of the two strands of a DNA duplex. Multiple cycles of primer extension using a polymerase enzyme and denaturation are used to produce additional copies of the DNA in the region between the two primers. In the present invention, PCR amplification can be performed using any suitable polymerase enzyme, including Taq polymerase and Thermo SequenaseTM.

The amplification primers employed in the method of the invention are degenerate primer sets selected to hybridize with conserved regions of known antibiotic biosynthetic genes, for example Type I and Type II polyketide synthase genes, isopenicillin N synthase genes, and peptide synthetase genes. Each degenerate primer set of the invention includes multiple primer species which hybridize with one DNA strand, and multiple primer species which hybridize with the other DNA strand. All of the primer species within a degenerate primer set which bind to the first strand are the same length, and hybridize with the same target region of the DNA. These primers all have very similar sequences, but have a few bases different in each species to account for the observed variations in the target region. For this reason, they are called degenerate primers.

Similarly, all of the primers within a degenerate primer set which bind to the second strand are the same length, hybridize with the same target region of the DNA, and have very similar sequences with a few bases different in each species to account for the observed variations in the target region.

5

10

15

20

25

30

The degenerate primer sets of the invention are selected to hybridize to highly conserved regions of known antibiotic biosynthesis genes in such a way that they flank a region of several hundred (e.g. 300) or more base pairs such that amplification leads to the selective reproduction of DNA spanning a substantial portion of the antibiotic biosynthesis gene. Selection of primer sets can be made based upon published sequences for classes of antibiotic biosynthesis genes.

For example, for amplification of Type I polyketide synthase genes, we have designed primers based upon the conserved sequences of six beta-ketoacyl carrier protein synthase domains of the erythromycin gene cluster. Donadio et al., *Science* 252: 675-679 (1991); Donadio and Staver, *Gene* 126: 147-151 (1993). These primers have the sequences 5'-GC(C/G) (A/G)T(G/C) GAC CCG CAG CG CGC-3' [SEQ ID No. 1] and

5'-GAT (C/G)(G/A)C GTC CGC (G/A)TT (C/G)GT (C/G)CC-3'

[SEQ ID No. 2].

The expected size of the PCR product is 1.2 kilobase pairs. Other degenerate primer sets for Type I and Type II polyketide synthetase genes could be determined from sequence information available in Hutchinson and Fujii, *Ann. Rev. Microbiol.* 49: 201-238 (1995).

Type II polyketide synthase gene clusters are characterized by the presence of chain length factor genes which are arranged at the 3'-end of the ketosynthase genes. Primers were designed based on one conserved region near the 3'-end of the ketosynthase gene and one at the middle portion of the chain length factor gene. The sequences of one suitable set of amplification primers are:

5' CT(C/G)AC(G/C)(G/T)(C/G)GG(C/G)CGIAC(C/G)GC(C/G)AC(C/G)CG-3'SEQ ID No. 3 and

5' GTT(C/G)AC(C/G)GCGTAGAACCA(C/G)GCGAA-3'

SEQ ID No. 4

The expected size of the PCR product was 0.5 kilobase pairs. An alternative set of degenerate primers has the sequence

5'-TTCGG(C/G)GGITTCCAG(T/A)(C/G)IGC(C/G)ATG

SEQ ID No. 5

- 5 -

PCT/CA98/00488

and

5

15

20

30

5'-TC(C/G)A(G/T)(C/G)AG(C/G)GC(C/G)AI(C/G)GA(C/G)TCGTAICC SEQ ID No. 6. These primers were designed based upon consensus sequences for the regions flanking the Ks_{β} (chain length factor) genes. The consensus sequences are available from Hutchinson and Fujii, *supra*.

Primers were designed for beta-lactam biosynthetic genes on the basis of the conserved sequences of a number of isopenicillin N synthase genes as described in Aharanowitz et al., *Ann. Rev. Microbiol.* 46: 461-495 (1992). These primers have the sequences

10 5'-GG(C/G/T) TC(C/G) GG(C/G) TT(C/T) TTC TAC GC-3' [SEQ ID No. 7] and

5'-CCT (C/G)GG TCT GG(A/T) A(C/G)A G(C/G)A CG-3' [SEQ ID No. 8].

The expected size of the PCR product is 570 base pairs. Other degenerate primer sets could be determined from sequence information available in Jensen and Demain, "Beta-Lactams" in *Genetics and Biochemistry of Antibiotic Production* (L.C. Vining and C, Studdard, eds.), pp 239-268, Butterworth-Heinemann, Newton, MA (1995).

For isolation of peptide synthetase genes, primers based on two of the conserved core sequences within the functional domains of peptide synthetase genes as described by Turgay and Marahiel, *Peptide Res.* 7: 238-241 (1994) were utilized. These primers had the sequence

5'-ATCTACAC(G/C)TC(G/C)GGCAC(G/C)AC(G/C)GGCAAGCC(G/C)AAGGG-3' SEQ ID No. 9

and

25 5'-A(A/T)IGAG(T/G)(C/G)ICCICC(G/C)(A/G)(A/G)(G/C)I(A/C)GAAGAA-3' SEQ ID No. 10

The expected size of the PCR product is 1.2 kilobase pairs.

PCR amplification can also be used for isolating lichen-derived antibiotic biosynthesis genes and gene fragments. For isolation of Type I polyketide synthase genes from lichens, the primer set used was previously described by Keller et al. in *Molec. Appl. to*

- 6 -

Food Safety Involving Toxic Microorganisms, J.L. Richard, ed., pp. 2630277 (1995), and had the following sequences.

5'-MGIGARGCIYTIGCIATGGAYCCICARCARMG

SEQ ID No. 11

and

5

10

5'-GGRTCNCCIARYTGIGTICCIGTICCRTGIGC

SEQ ID No. 12

The expected size of the PCR product is approximately 0.7 to 0.9 kilobases. Actual products evaluated ranged in size from 637 to 809 nucleotides (not including the 61 nt due to the primers).

Once the primers and the sample are cycled through sufficient thermal cycles to selectively amplify antibiotic biosynthetic DNA in the sample (generally around 25 cycles or more), the amplified DNA is isolated from the amplification mixture. Isolation can be accomplished in a variety of ways. For example, the PCR products can be isolated by electrophoresis on an agarose or polyacrylamide gel, visualized with a stain such as ethidium bromide and then excised from the gel for cloning. Primers modified with an affinity binding moiety such as biotin may also be used during the amplification step, in which case the affinity binding moiety can be used to facilitate the recovery. Thus, in the case of biotinylated primers, the amplified DNA can be recovered from the amplification mixture by coupling the biotin to a streptavidin-coated solid support, for example Dynal streptavidin-coated magnetic beads.

20

15

It will be appreciated that the DNA obtained as a result of this isolation will not generally be of a single type because of the degeneracy of the primers and the complexity of the initial sample. Thus, although these steps are sufficient to recover antibiotic biosynthesis genes from soil or lichen, it is preferable to further separate and characterize the individual species of amplified DNA.

25

30

This further separation and characterization can be accomplished by inserting the amplified DNA into an expression vector and cloning in a suitable host. The specific combination of vectors and hosts will be understood by persons skilled in the art, although bacterial expression vectors and bacterial hosts are generally preferred. Individual clones are then picked and the sequence of the cloned plasmid determined. While random selection has been employed successfully, selection of antibiotic biosynthesis gene-containing clones

5

10

15

20

30

can be facilitated by screening using hybridization with DNA probes based on conserved sequences or by overlay of bacterial clones with an antibiotic-sensitive test strain.

Once the sequence of the cloned DNA is determined, it can be screened against existing libraries of nucleotide and protein sequences for confirmation as an antibiotic biosynthetic gene or gene fragment. Amplified DNA so-identified can be used in several ways. First, the amplified DNA, or distinctive portions thereof, can be used to as probes to screen libraries constructed from humic-derived or lichen DNA to facilitate the identification and isolation of full length antibiotic biosynthetic genes. Once isolated, these genes can be expressed in readily cultivated surrogate hosts, such as a Streptomyces species for soilderived genes or an Aspergillus species for lichen-derived genes. General procedures for such expression are known in the art, for example from Fujii et al., Molec. Gen. Genet. 253: 1010 (1996) and Bedford et al., J. Bacteriol. 177: 4544-4548 (1995), which are incorporated herein by reference. Second, amplified DNA which is different from previously known DNA can be used to generate hybrid antibiotic biosynthesis genes using the procedures described by McDaniel et al, Nature 375: 549-554 (1995); Stachelhaus et al., Science 269: 69-72 (1995); and Stachelhaus et al, Biochem, Pharmacol. 52: 177-186 (1996). In these procedures, the novel DNA sequences isolated using the method of the invention are spliced into a known antibiotic gene to provide an expressible sequence encoding a complete gene product.

Using the method of the invention, a number of unique nucleotide sequences have been identified and characterized. The sequences and the biosynthetic polypeptides/proteins for which they encode, given by sequence ID Nos. 13 to 80, are a further aspect of the present invention.

25 <u>EXAMPLE 1</u>

Total DNA was extracted from soil samples by a direct lysis procedure as described by Barns et al. (1994). The high molecular weight DNA (>20 kb) in the extract was separated on a Sephadex G200 column (Pharmacia, Uppsala, Sweden) as described by Tsai and Olson, *Appl. Environ. Microbiol.* 58: 2292-2295 (1992).

The DNA extract (10-50 ng template DNA) was added to an amplification mixture (total volume 100 µl) containing 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 2 mM

- 8 -

MgCl₂, 200 μM of each deoxynucleotide triphosphate, 25 pmol of each Type I polyketide primer (Seq ID Nos 1 and 2) and 5.0 units of Taq polymerase (BRL Life Technologies, Gaithersburg, MD). The mixture was then thermally cycled for 30 cycles in a MJ Research PTC-100 thermocycler using the following program:

denaturation 93°C 60 seconds

5

10

15

20

25

30

annealing 60°C 30 seconds

extension 72°C 90 seconds

The PCR products were then electrophoresed in 1% agarose gels and stained with ethidium bromide to visualize the DNA bands. Bands containing PCR product of the expected size were excised from the gel and purified using a Qiaex Gel Extraction kit (Qiagen GmBH). The purified DNA was ligated to pCRII (Invitrogen) to generate a clone library using *E. coli* INVαF competent cells. 18 clones were chosen at random from the library and sequenced using a Taq Dye Terminator Cycle Sequencing Kit and an Applied Biosystem DNA sequencer model 373. The sequencing primers used included the universal M13 (-20) forward primer, the M13 reverse primer and primers designed from the sequence data obtained. DNA sequences were translated into partial amino acid sequences using a software package from Geneworks (Intelligenetics, Inc.) with further manual adjustments and sent to the NCBI database by e-mail at blast@ncbi.nlm.nih.gov for comparison against protein databases. Altschul et al., "Basic Local Alignment Tool", *J. Mol. Biol.* 215: 403-410 (1990).

Blast analysis of the 18 clones pointed to 12 unique sequences that were not identical to each other or to published sequences. Seq. ID No. 13 shows the complete DNA sequence of a representative unique clone (Clone ksfs). Seq. ID No. 14 shows the translated amino acid sequence of this clone. The greatest homology as determined by a Blast analysis is indicated to be Type I polyketide synthases. Similar results were obtained on the Blast search of the other 11 unique clones based upon partial sequences which were determined.

EXAMPLE 2

The experiment of Example 1 was repeated using isopenicillin N synthase gene primers (Seq ID Nos. 7 and 8). The thermal cycling program was changed to include 60 second extension periods at 72°C, but otherwise the experimental conditions were the same. Twelve clones were picked at random and yielded one unique sequence that was not identical

-9-

to published sequences. The complete sequence of this clone (Clone ipnsfs) is shown in Seq. ID. No. 15 and the translated amino acid sequence in Seq. ID No. 16. The BLAST search indicated greatest homology for this sequence with isopenicillin N synthases.

5

10

15

20

25

30

EXAMPLE 3

The experiment of Example 1 was repeated using peptide synthetase primers (Seq. ID Nos 9 and 10). The amplification mixture was changed to a 50 ul volume containing 10 to 50 ng of template DNA, 20 mM (NH₄)₂SO₄, 74 mM Tris-HCl (pH 8.8), 1.5 mM MgCl₂, 0.01% Tween 20, 200 μM of each deoxynucleotide triphosphate, 25 pmol of each primer, 0.25 % skim milk and 0.4 units of Ultra Therm DNA Polymerase (Bio/Can Scientific, Mississauga, Ontario). The mixture was thermocycled for 30 cycles using the following program:

denaturation 95°C 60 seconds

annealing 52°C 60 seconds

extension 72°C 120 seconds.

Thirty clones containing a 1.2 kb insert have been partially sequenced. The BLAST analysis of the 30 clones pointed to 28 unique sequences that were not identical to each other or to published sequences. Varying degrees of homology to known peptide synthase genes were seen. Seq. ID No. 17 shows the complete DNA sequence of representative clone (ps32). Seq. ID No. 18 shows the translated amino acid sequence of this clone. Based on a Blast search of these sequences, the greatest homology is to a peptide synthase gene such as the pristinamycin synthase gene from *Streptomyces pristinaespiralis* and *Bacillus* sp. peptide synthetase genes such as gramicidin S synthase and surfactin synthetase. Stachelhaus and Marahiel, *FEMS Micro. Letters* 125: 3-14 (1995); Turgay et al., *Mol. Micro* 6: 529-546 (1992).

Sequence ID Nos. 81 to 94 show an additional 7 unique sequences (nucleic acid and translated amino acid sequences) of 1.2 kb PCR products amplified from soil DNA samples using these primers. These sequences have been named ps 2, ps 3, ps 7, ps 10, ps 24, ps 25 and ps 30. The sequences are unique in that they are all different from each other and from ps 32,

- 10 -

and while they show greatest homology to peptide synthetase sequences in the databases searched by BLAST analysis, they do not match any known sequence. Within each, the conserved motifs (TGD, KIRGXRIEL, NGK) common to peptide synthetase domains as described by Turgay and Marahiel (1994) can be identified. Descriptive information of the clones follows:

Clone ps 2, 1204 bp, with conserved motifs SGD, KIRGFRIEL, NGK, 67% G + C

5

10

15

25

30

Clone ps 3, 1178 bp, with conserved motifs TGD, KIRGSRIEL, NGK, 59 % G + C

Clone ps 7, 1222 bp with conserved motifs TGD, KIRGYRIEL, NGK, 55.5 % G + C

Clone ps 10, 1171 bp with conserved motifs TGD, KIRGHRIEL, NLK, 63% G + C

Clone ps 24, 1190 bp with conserved motifs TGD, KIRGHRIAM, NQK, 56 % G + C

Clone ps 25, 1178 bp with conserved motifs TGD, KLRGYRIEL, NDK 68 % G + C

Clone ps 30, 1200 bp with conserved motifs TGD, KVRGFRIEP, NGK, 64.5 % G + C

Clone ps 32, 1172 bp with conserved motifs TGD, KIRGFRIEL, SGK, 67 % G + C

EXAMPLE 4

The experiment of example 1 was repeated using the Type II polyketide synthase primers given by Seq. ID. Nos. 3 and 4. PCR amplification was carried out in a total volume of 50 ul containing 50 ng of soil DNA, 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 2 mM MgCl₂, 200 uM of each deoxynucleotide triphosphate, 25 pmol of each primer and 5.0 units of *Taq* polymerase (BRL Life Technologies, Gaithersburg, MD). The thermal cycling conditions included denaturations at 94°C for 60 seconds, annealing at 58°C for 30 seconds and extensions at 72°C for seconds, repeated for a total of 30 cycles.

PCR amplification yielded products of the expected size of 0.5 kilobase pairs. Sequencing of 18 randomly selected clones revealed the presence of 5 unique sequence that

- 11 -

were not identical to each other or to published sequences. Seq. ID No. 19 shows the complete DNA sequence of a representative clone (clone clf). The translated amino acid sequence of this clone is shown in Seq. ID. No. 20. In a BLAST search of this DNA sequence against the protein database, the greatest homology is indicated to chain length factor genes of the Type II polyketide synthases.

5

10

15

20

25

30

Example 5

The experiment of Example 1 was repeated using the Type I polyketide synthase primers designed for fungal sequences. (Seq. ID. Nos. 11 and 12) PCR amplifications were carried out with lichen DNA samples from a variety of lichen species representing 11 genera prepared as described in Miao et al. (1991), supra.

PCR amplifications were carried out in a total volume of 50 ul containing approximately 10 ng of lichen DNA and 1 unit of *Taq* polymerase in a reaction as per Example 4. The cycling protocol was 30 cycles of denaturation at 95°C for 60 seconds, annealing at 57°C for 2 minutes and extensions at 72°C for 2 minutes.

Forty seven clones with inserts of the expected size have been partially sequenced. The sequences all show homology to Type I fungal polyketide synthase genes but are all distinct from each other and from known sequences. Seq. ID. No. 21 shows the complete DNA sequence of a 637 base pair product amplified from DNA extracted from the lichen *Xanthoparmelia cumberlandia* (clone Xa.cum.6A). The translated amino acid sequence is shown in Seq. ID. No. 22. The greatest homology as determined by Blast analysis is indicated to fungal Type I polyketide synthase genes. Sequence ID Nos. 29 and 30 show the DNA sequence and conceptual amino acid sequence, respectively, for a further clone Xa.cum.6H isolated in this experiment. Sequences of DNA and the corresponding amino acid sequences for seven other lichen samples, *Leptogium corniculatum* (Seq. ID Nos. 31-42), *Parmelia sulcata* (Seq. ID Nos. 43-50); *Peltigera neopolydactyla* (Seq. ID Nos. 51-60); *Pseudocyphellaria anthrapsis* (Seq. ID Nos. 61-62); *Siphula ceratities* (Seq. ID. Nos. 63-66); *Thamnolia vermicularis* (Seq. ID Nos. 67-68); and *Usnea florida* (Seq. ID Nos. 69-80). Each of these sequences showed homology by Blast analysis to fungal Type I polyketide synthase.

- 12 -

EXAMPLE 6

The experiment of Example 5 was repeated on DNA from the lichen *Solorina* crocea using the degenerate peptide synthetase primers of Example 3. Freshly collected lichen (approximately 1.2 g) was washed in running tap water to remove conspicuous soil and field detritis, and then further cleaned under a dissecting microscope. The cleaned sample was then gently shaken in a 50 ml tube containing about 40 ml of 0.2% SDS for at least 30 minutes and rinsed thoroughly with water. Excess surface water was blotted from the washed, hydrated lichen, and the sample was frozen at -80°C for at least 15 minutes then vacuum dried at room temperature for 4 hours. The lichen was ground in liquid nitrogen using a mortar and pestle to produce a lichen powder for use in preparing DNA extracts.

5

10

15

20

25

30

To prepare the DNA extracts, 0.28g of lichen powder was placed into 18 2-ml microfuge tubes, and each aliquot was mixed with 1.25 ml isolation buffer (150 mM EDTA, 50 mM Tris pH 8, 1% sodium lauroyl sarcosine) and extracted for 1 hour at 62°C. The samples were centrifuged for three minutes to pellet cellular debris and a cloudy supernatant was decanted into new microfuge tubes. Each sample of the supernate was mixed with 750 μl 7.5 M ammonium acetate, incubated on ice for 30 minutes and centrifuged for five minutes at 16,000 X g to precipitate proteins. The supernatant fluid was saved in new microfuge tubes and nucleic acids were precipitated with 0.6 volumes of isopropanol overnight at 4°C. Samples were centrifuged for five minutes at 16,000 X g to pellet nucleic acids. The pellets were dissolved in TE containing RNAse (18 µg total) at 50°C for 45 minutes. The solutions were then extracted with an equal volume of TE saturated phenol:chloroform (1:1), and again with chloroform. DNA in the aqueous phase was precipitated with 0.1 M sodium acetate and two volumes of ethanol at -20°C for 2 hours, and then pelleted by centrifugation for five minutes at 16,000 X g. The DNA pellet was washed with 75% ethanol, vacuum dried at room temperature for 3 minutes and then dissolved in TE. The final amount of DNA recovered was approximately 70µg according to fluorometric measurement.

Two clones containing the expected 1.2 kb insert were sequenced and found to contain the same sequence shown in Seq. ID. No. 23. Seq. ID. No. 24 shows the translated amino acid sequence. The sequence is distinct, with greatest homology as determined by Blast analysis to the peptide synthase module of the cyanobacterium *Microcyctis aeruginosa*.

- 13 -

EXAMPLE 7

The experiment of example 4 was repeated using the Type II polyketide synthase primers given by Seq. ID. Nos. 5 and 6. Three starting samples were used for recovery of Type II polyketide synthase genes: two uncharacterized strains of *Streptomyces* (strains WEC 68A and WEC 71B) which had been shown to contain Type II polyketide synthase genes, and a soil sample obtained from a forest area near Vancouver, British Columbia. The soil sample was prepared using the basic protocol from Holben et al, *Appl. Environ. Microbiol.* 54: 703-711 (1988) with variations in parameters such as mix time to adjust for the individual characteristics of the soil samples.

10

15

20

25

30

5

Streptomyces genomic DNA preparations suitable for PCR amplification were prepared from the mycelia harvested from a 50 ml culture in tryptic soy broth (Difco) which had been grown for 3 days at 300 C. The mycelia were collected by centrifugation at 2500 x g for 10 minutes, the pellets were washed in 10% v/v glycerol and the washed pellets were frozen at -200C. The size of the pellets will vary with different strains; for extraction, 1 g samples were suspended in 5 ml TE buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA) in a 50 ml screw cap Oakridge tube and lysozyme (to 10 mg/ml) and RNase (to 40 ug/g) were added. Following incubation at 300C for 45 min. a drop of each suspension was transferred to a microscope slide, one drop of 10% SDS was added and the suspension was checked for complete clearing and increased viscosity, indicating lysis. Most strains lyse with this incubation time, but incubation in lysozyme may be continued if necessary. (For strains which are very resistant to lysis, small amounts of DNA suitable for PCR amplification may often be prepared on a FastPrep™ instrument as described below.) Following confirmation of sufficient incubation time in lysozyme, 1.2 ml of 0.5 M EDTA, pH 8.0 was added to the suspension and mixed gently then 0.13 ml of 10 mg/ml Proteinase K (Gibco/BRL) solution was added and incubated for 5 min. at 300 C. 0.7 ml of 10% SDS was added, mixed gently by tilting, then incubated again at 300 C for 2 hours. Following lysis, three successive phenol/chloroform extractions were performed by adding a volume equivalent to the aqueous phase each time of a 1:1 mixture of ultrapure Tris buffer saturated phenol (Gibco/BRL) and chloroform. The aqueous phase was recovered each time following centrifugation at 2500 x g for 10 min. in a shortened (i.e.wide bore) Pasteur pipet to minimize shearing; DNA was precipitated from the final aqueous phase with the addition of 0.1 volume of 3M Na acetate.

- 14 -

pH 4.8 and 1 volume of isopropanol at room temperature. DNA was spooled from the solution onto a sealed Pasteur pipet, rinsed in ice cold 70% ethanol and solubilized in 0.5 ml TE buffer overnight at room temperature. DNA yields (as determined spectrophotometrically) typically range from 1 to 3 mg from 1 g of mycelia.

5

10

15

20

An alternative method for the preparation of small amounts of Streptomyces DNA suitable for PCR amplification has been found to be useful for strains resistant to lysis or when a faster method is desirable. This method makes use of the FastPrep™ instrument (Savant) and the methods and kit supplied by BIO 101 (Bio/Can Scientific, Mississauga, Canada). A 2 ml aliquot from a 20 ml, 3 day culture in tryptic soy broth is pelleted in a 2 ml microfuge tube and the size of the mycelial pellet is estimated. "Small" pellets are resuspended in 100 ul of sterile distilled water; larger pellets are resuspended in 200-300 ul of water. 200 ul of suspension is transferred to a homogenization tube from the kit. Following the manufacturer's protocol for the preparation of DNA from medium hard tissue, the large bead is added to this tube (which already contains a small bead) and 1 ml of solution CLS-TC from the kit is added and the samples are processed in the instrument for 10 seconds at speed setting 4.5. Samples are then spun 15 min. at 10,000 x g at 40C and 600 ul of the supernatant is transferred to a clean microfuge tube, 400 ul of Binding Matrix is added and mixed gently, then the sample is spun for 1 min. as above. The supernatant is discarded while the pellet is resuspended in 500 ul SEWS-M and transferred to a SPIN™ Filter unit. This is spun for 1 minute, the contents of the catch tube are discarded and the unit is spun again to dry. The filter unit is transferred to a new microfuge tube and DNA is eluted from the matrix in 100 ul DES which is left on the filter for 2-3 min. at room temperature. Eluted DNA is collected by spinning once again and this DNA is now ready to use in PCR amplifications. Due to components of the final solution, DNA prepared by this method is difficult to quantify.

25

30

PCR amplification was carried out in a total volume of 50 ul containing 50 ng of DNA, 5 % DMSO, 1.25 mM MgCl₂, 200 uM of each deoxynucleotide triphosphate, 0.5 ug of each primer and 5.0 units of *Taq* polymerase (BRL Life Technologies, Gaithersburg, MD). The thermal cycling started with a 'touch-down' sequence, lowering the annealing temperature from 65°C to 58°C over the course of 8 cycles. The temperature of the annealing step

Typically 1 ul or 1/10 ul of this eluate is suitable as a template for PCR;

larger quantities may be inhibitory to the PCR polymerase.

- 15 -

was then maintained at 58°C for a further 35 cycles. The overall cycle used was: denaturation at 94°C for 45 seconds, annealing at 65°C to 58°C for 1 minute and extension at 72°C for 2 minutes. The size of the amplified fragments was expected to be approximately 1.5 kb.

5

10

15

20

25

30

Amplification of the two *Streptomyces* strains produced DNA fragments of the expected size (1482 bp and 1538 bp). Open reading frame analysis of the two sequences revealed the presence of a set of three ORFs each, corresponding to the 3'-ends of the putative Ks_{α} -subunit genes (50 to 60 bp), possible full-length Ks_{β} genes (approx. 1.2 kb) and the first halves of potential ACP genes (approx 100 bp). In each sequence, the first and second ORFs were linked by a stop codon overlap typical of $Ks_{\alpha,\beta}$ gene pair junctions and a possible indication of tight coexpression through translational coupling. The two Ks_{β} genes were separated from the downstream ACP genes by a short spacer, again consistent with the expected gene organization.

Two clones were selected from among clones created using the soil DNA as a source which were found to produce 1.5 kb inserts. These inserts were sequenced and found to exhibit similarity to known KS_{β} genes with three ORFs as described above. The translated amino acid sequences of the four genes are shown in Sequence ID Nos 25 to 28.

The four putative KS_{β} genes had G+C content over 70% which is typical for the coding regions of Actinomycete genes. Results of data base searches established that the deduced products of all four ORFs were similar to known KS_{β} gene products from Type II polyketide synthases but they did not match any known sequences.

EXAMPLE 8

DNA can be extracted from large volumes of soil in accordance with the following procedure. Place dry soil into a sterile blender with 0.2% sodium pyrophosphate (100 ml/100 grams of soil). The pH of the sodium pyrophosphate solution should be about 10, although some variation to account for the characteristics of the soil may be appropriate. The mixture is blended for 30 seconds, decanted into centrifuges bottles and then centrifuged for 15 minutes at 100 X g at 4°C. The supernatant is decanted, filtered two times through cheese cloth and saved. The pelleted soil is extracted an additional two times using the same procedure.

After the extractions, the pooled supernatants are centrifuged for 15 minutes at 10,500 X g and the pellets are collected. The pellet may be incubated for 6 hours at 55°C in pre-germination medium (0.5% w/v yeast extract (Difco), 0.5% w/v casamino acids (Difco) with 0,005 M CaCl₂ and 0.025 M TES, pH 8.0 (added separately from sterile stock after autoclaving other components)) and then repelleted, or it may be used directly. In either case, the pellet (approximately 30-200 mg) is mixed with 5 ml 1X TE (pH 8.0), 500 μl 0.5M EDTA (pH 8.0) and 500 μl - 20 mg/ml lysozyme in 1X TE (pH 8.0) and incubated for 30 minutes at 37°C. 500 μl of 20% SDS and 100 μl - 1% proteinase K in TE and 1% SDS are then added and the mixture is vortexed gently before incubating for 60 minutes at 55°C or overnight at 37°C.

The incubated mixture is combined with 10 ml 20% polyvinylpyrrolidone (avg. MW=40,000) and incubated for 10 minutes at 70°C. One-half volume of 7.5 M ammonium acetate (stored at -20°C) is then added, the resulting mixture is placed for 10 minutes on a low speed shaker, and then centrifuged for 20 minutes at 18,5000 X g. The supernatant is combined with 1 volume of isopropanol and incubated for 30 minutes at -20°C before centrifuging for 20 minutes at 18,500 X g. The pellet from this centrifugation is washed in 70% ethanol, and centrifuged for 10 minutes at 18,500 X g. The pellet from this final centrifugation is collected and air dried.

20 EXAMPLE 9

5

10

15

25

30

To extract DNA from small amounts of soil the following procedure can be used. Combine soil (approx 1 g) with 1 ml distilled water, vortex to suspend and pellet at 19,000 X g for 5 minutes. After removing the supernatant, freeze/thaw the samples twice by either of the following techniques (a) -20°C freezer, 30 minutes, followed by 50-60°C water bath (2 minutes), repeated 2 times; or (b) quick freeze in EtOH-dry ice bath (dip in until frozen, approx one minute) followed by 60°C water bath (2 minutes), repeated 2 times. The pellets are then suspended in 350 μl TE buffer (pH 8.0), 50 μl 0.5 M EDTA and 50 μl-20 mg/ml lysozyme in TE buffer, vortexed and incubated at 37°C for 30 minutes in a water bath. 50 μl of 20% SDS and 10 μl 1% Proteinase K/ 1% SDS in TE buffer is added, vortexed, and incubated for one hour at 55°C or overnight at 37°C. One-tenth volume of 20% polyvinylpyrrolidone (avg. MW=40,000) is then added and incubated at 70°C for 10 minutes.

- 17 -

One-half volume of 7.5 M ammonium acetate (stored at -20°C) is added, the tubes are shaken at low speed for ten minutes and then centrifuged at 19,000 X g for 20 minutes. The supernatant is collected using pipets with cut tips to avoid shearing DNA, combined with one volume of isopropanol, mixed gently, and stored at -20°C for 30 minutes or 4°C overnight. The DNA is then collected as a pellet by centrifugation at 19,000 X g for 10 minutes. The resulting pellet is washed with 0.5 ml of 70% ethanol (stored at -20°C) and then air or vacuum dried. The dried DNA is then dissolved in 50-150 ul of TE buffer, incubated at 4°C for one hour and then heated to 60°C for 10 minutes to facilitate dissolving DNA. The resulting solutions are stored at -20°C until use.

5

- 18 -

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
- (i) APPLICANT: Terragen Diversity Inc.
- (ii) TITLE OF INVENTION: METHOD FOR ISOLATION OF BIOSYNTHESIS GENES FOR BIOACTIVE MOLECULES
 - (iii) NUMBER OF SEQUENCES: 94
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Deeth Williams Wall
 - (B) STREET: National Bank Building, 150 York Street, Suite 400
 - (C) CITY: Toronto
 - (D) STATE: Ontario
 - (E) COUNTRY: Canada
 - (F) ZIP: M5H 3S5
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 3.5 inch, 1.44 Mb
 - (B) COMPUTER: Dell (IBM Compatible)
 - (C) OPERATING SYSTEM: Windows 95
 - (D) SOFTWARE: Word 97
 - (vi) CURRENT APPLICATION DATA :
 - (A) APPLICATION NUMBER: Not yet assigned
 - (B) FILING DATE: May 21, 1998
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/861,774
 - (B) FILING DATE: May 22, 1997
 - (viii) ATTORNEY/AGENT INFORMATION :
 - (A) NAME: Eileen McMahon
 - (B) REGISTRATION NUMBER:
 - (C) REFERENCE/DOCKET NUMBER: 1694/0005
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 416-941-9440
 - (B) TELEFAX: 416-941-9443
 - (C) TELEX:
- (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: yes
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GCSRTSGACC CGCAGCGCGC 2

- (2) INFORMATION FOR SEQ ID NO:2:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 21
- (B) TYPE: nucleic acid

- 19 -

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GATSRCGTCC GCRTTSGTSC C 21

- (2) INFORMATION FOR SEQ ID NO: 3:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 25
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: yes
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CTSACSKSGG SCGNACSGCS ACSCG 25

- (2) INFORMATION FOR SEQ ID NO:4:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 25
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

GTTSACSGCG TAGAACCASG CGAA 25

- (2) INFORMATION FOR SEQ ID NO:5:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 24
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: yes
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

TTCGGSGGNT TCCAGWSNGC SATG 24

- (2) INFORMATION FOR SEQ ID NO:6:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 26
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA

- 20 -

- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6: TCSAKSAGSG CSANSGASTC GTANCC 26

1CDARDAGDG CDANDGADIC GIANCC 26

- (2) INFORMATION FOR SEQ ID NO:7:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: yes
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GGBTCSGGST TYTTCTACGC 20

- (2) INFORMATION FOR SEQ ID NO:8:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

CCTSGGTCTG GWASAGSACG 20

- (2) INFORMATION FOR SEQ ID NO:9:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 35
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: yes
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ATCTACACST CSGGCACSAC SGGCAAGCCS AAGGG

35

- (2) INFORMATION FOR SEQ ID NO:10:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 26
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

- 21 -

```
AWNGAGKSNC CICCSRRSNM GAAGAA 26
(2) INFORMATION FOR SEQ ID NO:11:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 32
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: other DNA
 (iii) HYPOTHETICAL: no
 (iv) ANTI-SENSE: yes
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
MGIGARGCIY TIGCIATGGA YCCICARCAR MG
                                         32
(2) INFORMATION FOR SEQ ID NO:12:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 32
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: other DNA
 (iii) HYPOTHETICAL: no
 (iv) ANTI-SENSE: no
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
GGRTCNCCIA RYTGIGTICC IGTICCRTGI GC
                                        32
(2) INFORMATION FOR SEQ ID NO:13:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1206
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: genomic DNA
 (iii) HYPOTHETICAL: no
 (iv) ANTI-SENSE: no
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
GCGGTGGACC CGCAGCAGCG CCTCATGCTG GAGCTGGCCT GGTCCGCGCT
                                                            50
GGAAAGCGCA GGTCATCCGC CCTCGATATT CCCCGGCCTG ATCGGGGTCT
                                                            100
ATGTCGGCAT GAACTGGAAT CGCTATCGCG CGAATTGCAT TTCTGCACAC
CCTGATGTGG TGGAGCGATT CGGTGAATTG AACACAGCGC TCGCCAACGA
                                                            200
ATACGACTTT CTTGCTACCC GAATCTCCTA CAAGCTCAAT CTGCGCGGTC
                                                            250
CCAGCGTCAC TATCAGCACC GCTTGTTCGA CTTCCCTGGT TGCCATTGCT
                                                            300
CAGGCTTCGC AGGCGTTGCT CAACTATGAA TGCGACATTG CTTTGGCTGG
                                                            350
GGTTGCCTCC ATAACCGTGC CTGTCAATGC AGGCTACCTC TACCAAGAAA
                                                            400
GGTGGCATGC TTTCACCGAA GGGCATTGTC CTACATTCGA TGCCCCAGCA
                                                            450
CGGGACCACT TCAATGATGC CCCCTGTCTC CTTTTTGCGG GCCTGGAAAA
                                                            500
CCCATCCAGG AGGGGGGGG GGGCCCTCAT ACCCGGCCTT TCAAGCGGGA
                                                            550
ACCTCTCACA GGAAGCGGAT GTTTCAGCCG AAGGGATGTT GAACATTGAC
                                                            600
GCCGGCAGCA CGGGGGACAA GTTCAGGGAT GGGCGCGCTT TTGTTGTATG
                                                            650
GGGGGGCCT GGAAGAAGCA TTCAAGGGAC GGTGATCAAA CTTAACCCCT
                                                           700
TCATTGGCGG GTTTGCCGCG GAACAAGGAC GGGTTCGGAC AAGGCGAGTT
TACCGGCGCC CAGGCGTCAA TGGTCAGGGC GGAGTTCATT TCGCTTTGGC
```

- 22 -

GGTGGAGTTT	GCGGGATATT	CGAATCCCGC	AAGCATCGGG	ATTTCATTCG	850
AAAACCCACG	GGCACGGGCG	ACGCCATTGG	GCGATCCGAT	AGAAGTGGCC	900
GCGCTAAAGA	TGGTTTTTCG	CCGACGCTCG	TTCCAGAGGC	GCCGTTGCGC	950
CCTTGGATCG	GTCAAGAGTT	GTGTCGGACA	CCTGGTTCAC	GCCGCCGGCG	1000
TGACCGGATT	TATCAAGGCT	GTCTTGTCGG	TCTACCACGG	CAAGATCGCA	1050
CCGACACTGT	TTTTCGAGAA	AGCAAATCCG	AGGCTCGGGC	TGGAAGACAG	1100
TCCTTTCTAT	GTCAATGCCG	GACTCGAGAA	GTGGACGGCC	GCCGAGCAGC	1150
CACGCCGCGC	GGGGGTCAGT	GCTTTCGGGG	TCGGTGGCAC	CAATGCGCAC	1200
GCGATC					1206
(2) INFORMAT	TION FOR SEQ	ID NO:14:			
(i) SEQUEN	CE CHARACTER	ISTICS:			
(A) LENGTH	: 402				
CCGACACTGT TCCTTTCTAT CACGCCGCGC GCGATC (2) INFORMAT (i) SEQUENC	TTTTCGAGAA GTCAATGCCG GGGGGTCAGT FION FOR SEQ CE CHARACTER	AGCAAATCCG GACTCGAGAA GCTTTCGGGG ID NO:14:	AGGCTCGGGC GTGGACGGCC	TGGAAGACAG GCCGAGCAGC	1100 1150 1200

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
- Ala Val Asp Pro Gln Gln Arg Leu Met Leu Glu Leu Ala Trp Ser 5 10 15
- Ala Leu Glu Ser Ala Gly His Pro Pro Ser Ile Phe Pro Gly Leu 20 25 30
- Ile Gly Val Tyr Val Gly Met Asn Trp Asn Arg Tyr Arg Ala Asn
 35 40 45
- Cys Ile Ser Ala His Pro Asp Val Val Glu Arg Phe Gly Glu Leu
 50 55 60
- Asn Thr Ala Leu Ala Asn Glu Tyr Asp Phe Leu Ala Thr Arg Ile 65 70 75
- Ser Tyr Lys Leu Asn Leu Arg Gly Pro Ser Val Thr Ile Ser Thr 80 85 90
- Ala Cys Ser Thr Ser Leu Val Ala Ile Ala Gln Ala Ser Gln Ala 95 100 105
- Leu Leu Asn Tyr Glu Cys Asp Ile Ala Leu Ala Gly Val Ala Ser 110 115 120
- Ile Thr Val Pro Val Asn Ala Gly Tyr Leu Tyr Gln Glu Arg Trp
 125 130 135
- His Ala Phe Thr Glu Gly His Cys Pro Thr Phe Asp Ala Pro Ala 140 145 150
- Arg Asp His Phe Asn Asp Ala Pro Cys Leu Leu Phe Ala Gly Leu 155 160 165
- Glu Asn Pro Ser Arg Arg Gly Gly Gly Ala Leu Ile Pro Gly Leu

- 23 -

				170					175					180
Ser	Ser	Gly	Asn	Leu 185	Ser	Gln	Glu	Ala	Asp 190	Val	Ser	Ala	Glu	Gly 195
Met	Leu	Asn	Ile	Asp 200	Ala	Gly	Ser	Thr	Gly 205	Asp	Lys	Phe	Arg	Asp 210
Gly	Arg	Ala	Phe	Val 215	Val	Trp	Gly	Gly	Pro 220	Gly	Arg	Ser	Ile	Gln 225
Gly	Thr	Val	Ile	Lys 230	Leu	Asn	Pro	Phe	Ile 235	Gly	Gly	Phe	Ala	Ala 240
Glu	Gln	Gly	Arg	Val 245	Arg.	Thr	Arg.	Arg	Val 250	Tyr	Arg	Arg	Pro	Gly 255
Val	Asn	Gly	Gln	Gly 260	Gly	Val	His	Phe	Ala 265	Leu	Ala	Val	Glu	Phe 270
Ala	Gly	Tyr	Ser	Asn 275	Pro	Ala	Ser	Ile	Gly 280	Ile	Ser	Phe	Glu	Asn 285
Pro	Arg	Ala	Arg	Ala 290	Thr	Pro	Leu	Gly	Asp 295	Pro	Ile	Glu	Val	Ala 300
Ala	Leu	Lys	Met	Val 305	Phe	Arg	Arg	Arg	Ser 310	Phe	Gln	Arg	Arg	Arg 315
Cys	Ala	Leu	Gly	Ser 320	Val	Lys	Ser	Cys	Val 325	Gly	His	Leu	Val	His 330
Ala	Ala	Gly	Val	Thr 335	Gly	Phe	Ile	Lys	Ala 340	Val	Leu	Ser	Val	Tyr 345
His	Gly	Lys	Ile	Ala 350	Pro	Thr	Leu	Phe	Phe 3 5 5	Glu	Lys	Ala	Asn	Pro 360
Arg	Leu	Gly	Leu	Glu 365	Asp	Ser	Pro	Phe	Tyr 370	Val	Asn	Ala	Gly	Leu 375
Glu	Lys	Trp	Thr	Ala 380	Ala	Glu	Gln	Pro	Arg 385	Arg	Ala	Gly	Val	Ser 390
Ala	Phe	Gly	Val	Gly 395	Gly	Thr	Asn	Ala	His 400	Ala	Ile			

- (2) INFORMATION FOR SEQ ID NO:15
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 565
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no

- 24 -

- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GGCTCCGGGT	TTTTCTACGC	GTCCAACCAC	GGGATCGACG	TCACGCGGGT	50
GCGCGACGAG	GTGAACAAGT	TCCACGCCGA	GATGACGCCC	GGGGAGAAGT	100
TCGAGCTGGC	CATCAACGCC	TACAACGACG	CGAATCCGCA	TACCCGCAAC	150
GGGTATTACA	TGGCCGTCGA	AGGCAAGAAG	GCCGTCGAGT	CCTTCTGCTA	200
CCTCAACCCG	GCCTTCACCC	CCGAGCACCC	GATGATCGAG	GCGGGCGCGG	250
	GGTGAACAAC				300
	GGGGAGCAGT				350
GGTGCTGCTG	CGTGGGTACG	CGCTGGCCCT	GGGCAAGGAC	GAGAACTACT	400
TCGACGACTA	CGTCAAGCAC	TCCGACACGC	TCTCGGCCGT	CTCGCTGATC	450
	ACCTGGAGAA				500
	AGCTTCGAGG	ATCACTTCGA	CGTCTCGCTG	ATCACCGTGC	550
TCTTCCAGAC	CCAGG				565

- (2) INFORMATION FOR SEQ ID NO:16:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 188
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
- Gly Ser Gly Phe Phe Tyr Ala Ser Asn His Gly Ile Asp Val Thr
 5 10 15
- Arg Val Arg Asp Glu Val Asn Lys Phe His Ala Glu Met Thr Pro 20 25 30
- Gly Glu Lys Phe Glu Leu Ala Ile Asn Ala Tyr Asn Asp Ala Asn 35 40 45
- Pro His Thr Arg Asn Gly Tyr Tyr Met Ala Val Glu Gly Lys Lys 50 55 60
- Ala Val Glu Ser Phe Cys Tyr Leu Asn Pro Ala Phe Thr Pro Glu 65 70 75
- His Pro Met Ile Glu Ala Gly Ala Ala Gly His Glu Val Asn Asn 80 85 90
- Trp Pro Asp Glu Ala Arg His Pro Gly Phe Arg Glu Tyr Gly Gly
 95 100 105
- Ala Val Leu Arg Arg Gly Ser Ser Asp Leu Ser Leu Val Leu Leu 110 115 120
- Arg Gly Tyr Ala Leu Ala Leu Gly Lys Asp Glu Asn Tyr Phe Asp 125 130 135
- Asp Tyr Val Lys His Ser Asp Thr Leu Ser Ala Val Ser Leu Ile

- 25 -

Arg Tyr Pro Tyr Leu Glu Asn Tyr Pro Pro Val Lys Thr Gly Pro 155

Asp Gly Glu Lys Leu Ser Phe Glu Asp His Phe Asp Val Ser Leu 170

The Thr Val Leu Pho Cln Thr Cln

Ile Thr Val Leu Phe Gln Thr Gln 185

- (2) INFORMATION FOR SEQ ID NO:17:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1172
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

AAGGAGGGC	CGCCCGGGGC	GAAGAAGCTG	TCCGTCCGAC	TGACACGTTC	50
CACTCCGAGG	AGCCCGGACC	AGATGCGCGC	CAGCTTTACC	TCGACCGGCG	100
TAGATGGCGG	GTCGTAGTCA	GTGCGATCCG	ATGAGTCATC	TGGAGGTGCA	150
GGCAGCACCT	TCAGATCGAT	CTTGCCGCTC	GCCATGCGCG	GCATCTCGCG	200
GAGCTCGACG	AATGCAGCCG	GAATCATGTA	CTCGGGCAAC	CGCGTGCGAA	250
GATGATCGCG	CAGCTCGGAC	GCGGCGACCG	AGGCGAGCCG	AGGCGACCAG	300
TACGCAACGA	GACGCTTGTC	GCCGGCCCGC	TCCTGCCGCG	CCAGGACGAC	350
GGCCGTCTCG	ACACCGGGGT	GATCGGCCAG	CGCCGCCTCG	ATCTCACCGA	400
GCTCGATGCG	GAAGCCGCGG	ATCTTGACCT	GATGATCCGC	GCGCCCGATG	450
AAGTCGAGGT	TGCCGTCCGG	AAGCCAGCGC	ACCAGGTCGC	CGGTCCGGTA	500
CAGCCGCGAG	CCAGGTGCAC	CGAATGGATC	GGGTACGAAC	CGCGCTCCGG	550
TGAGGGCGGC	ATCATCGACA	TAGCCGCGCG	CGAGGTTCTC	GCCACCGATG	600
TACAGCTCGC	CGATCACGCG	CGCCGGAACG	GGCTCGAGTG	CGCTATCGAG	650
CACGTAGACC	TGAACGTTGT	CGAGCGGACG	GCCGATCGAC	GGCAGCTCGG	700
ACCCGTGTTC	GGACGCGGGC	GACACGATCG	CCCACGTCGT	ATCGACCGCG	750
TTCTCCGTCG	GGCCGTACTC	GTTGAGCATG	CGGTAGTGCG	CATCGCGCGG	800
TGGACGCCGC	GTGAGTCGAT	CACCGCCCGT	ACGCAGCACG	CGCAACGAGC	850
GTGGAAAGTC	GCCAGCCGCG	AGCAACGCGT	CGAGTAGCCG	GCCTGGAAGA	900
TCGGAGATCG	TGATCCCCCA	TCGCGTCAGG	TTCTCGAGCA	GGCGCGGCGG	950
ATCGAGGCGG	AGCTCGTTGT	CCACCAGATG	AAGCCGGGCG	CCCGTCGCCA	1000
GCGTGGACCA	CAGCTCGAGC	GCCGCGGCAT	CGAACGACAT	CGAGTAGATC	1050
TGCGTCACGC	GGTCGTCGGC	ACTGATCTCG	ACGGCACGCT	GGTTCCACGC	1100
GATCAAATTT	CTCAGTGCAC	GGTGCGGCAC	GGCGACGCCC	TTCGGCTTGC	1150
CCGTCGTGCC	CGACGTGTAG	AT			1172

- (2) INFORMATION FOR SEQ ID NO:18:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 390
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein

- 26 -

- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
- Ile Tyr Thr Ser Gly Thr Thr Gly Lys Pro Lys Gly Val Ala Val
- Pro His Arg Ala Leu Arg Asn Leu Ile Ala Trp Asn Gln Arg Ala
 20 25 30
- Val Glu Ile Ser Ala Asp Asp Arg Val Thr Gln Ile Tyr Ser Met
 35 40 45
- Ser Phe Asp Ala Ala Ala Leu Glu Leu Trp Ser Thr Leu Ala Thr
 50 55 60
- Gly Ala Arg Leu His Leu Val Asp Asn Glu Leu Arg Leu Asp Pro
 65 70 75
- Pro Arg Leu Leu Glu Asn Leu Thr Arg Trp Gly Ile Thr Ile Ser 80 85 90
- Asp Leu Pro Gly Arg Leu Leu Asp Ala Leu Leu Ala Ala Gly Asp 95 100 105
- Phe Pro Arg Ser Leu Arg Val Leu Arg Thr Gly Gly Asp Arg Leu 110 115 120
- Thr Arg Arg Pro Pro Arg Asp Ala His Tyr Arg Met Leu Asn Glu 125 130 135
- Tyr Gly Pro Thr Glu Asn Ala Val Asp Thr Thr Trp Ala Ile Val
- Ser Pro Ala Ser Glu His Gly Ser Glu Leu Pro Ser Ile Gly Arg 155 160 165
- Pro Leu Asp Asn Val Gln Val Tyr Val Leu Asp Ser Ala Leu Glu 170 175 180
- Pro Val Pro Ala Arg Val Ile Gly Glu Leu Tyr Ile Gly Glu 185 190 195
- Asn Leu Ala Arg Gly Tyr Val Asp Asp Ala Ala Leu Thr Gly Ala 200 205 210
- Arg Phe Val Pro Asp Pro Phe Gly Ala Pro Gly Ser Arg Leu Tyr 215 220 225
- Arg Thr Gly Asp Leu Val Arg Trp Leu Pro Asp Gly Asn Leu Asp 230 235 240
- Phe Ile Gly Arg Ala Asp His Gln Val Lys Ile Arg Gly Phe Arg 245 250 255
- Ile Glu Leu Gly Glu Ile Glu Ala Ala Leu Ala Asp His Pro Gly

- 27 -

				260					265					270
Val	Glu	Thr	Ala	Val 275	Val	Leu	Ala	Arg	Gln 280	Glu	Arg	Ala	Gly	Asp 285
Lys	Arg	Leu	Val	Ala 290	Tyr	Trp	Ser	Pro	Arg 295	Leu	Ala	Ser	Val	Ala 300
Ala	Ser	Glu	Leu	Arg 305	Asp	His	Leu	Arg	Thr 310	Arg	Leu	Pro	Glu	Tyr 315
Met	Ile	Pro	Ala	Ala 320	Phe	Val	Glu	Leu	Arg 325	Glu	Met	Pro	Arg	Met 330
Ala	Ser	Gly	Lys	Ile 335	Asp	Leu	Lys	Val	Leu 340	Pro	Ala	Pro	Pro	Asp 345
Asp	Ser	Ser	Asp	Arg 350	Thr	Asp	Tyr	Asp	Pro 355	Pro	Ser	Thr	Pro	Val 360
Glu	Val	Lys	Leu	Ala 365	Arg	Ile	Trp	Ser	Gly 370	Leu	Leu	Gly	Val	Glu 375
Arg	Val	Ser	Arg	Thr 380	Asp	Ser	Phe	Phe	Ala 385	Pro	Gly	Gly	Pro	Ser 390

- (2) INFORMATION FOR SEQ ID NO:19:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 472
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

TTCGGCGGGT	TCCAGACGGC	CATGGTGCTG	ACGACGGGAC	GGGACAATGA	50
				CAACGGGCTC	
ACCACCGAGG	ACGTGTGGTC	GGCCGTGCTC	GGCGGCCGCA	GCGGCCTTGG	150
AACGATCACC	CGTTTCGACG	CCGCGGGCTA	CCCGGCCCGG	ATCGCCGGCG	200
AGGTGTCGCA	GTTCGTGGCC	GAGGAGCACA	TCGCCGACCG	GCTGATCCCG	250
				AGTCGGCGAT	300
	AAGGTGGGAC				350
TGGTCACCGC	CGCGACGGCA	GGCGGCTTCG	AGTTCGGCCA	GCGGGAGCTG	400
GAGAACCTGT	GGCGCAAGGG	GCCTGAGCAC	GTCAGCCCCT	ACCAGTCCTT	450
CGCCTGGTTC	TACGCCGTCA	AC			472

- (2) INFORMATION FOR SEQ ID NO:20:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 142
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

- 28 -

- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Met Arg Ser Ser Val Ala Val Thr Gly Ile Gly Leu Val Ala Ala 5 10 15

Asn Gly Leu Thr Thr Glu Asp Val Trp Ser Ala Val Leu Gly Gly 20 25 30

Arg Ser Gly Leu Gly Thr Ile Thr Arg Phe Asp Ala Ala Gly Tyr 35 40 45

Pro Ala Arg Ile Ala Gly Glu Val Ser Gln Phe Val Ala Glu Glu
50 55 60

His Ile Ala Asp Arg Leu Ile Pro Gln Thr Asp His Met Thr Arg
65 70 75

Leu Ala Leu Ala Ala Glu Ser Ala Ile Arg Asp Ala Lys Val 80 85 90

Gly Pro Gly Arg Ala Ala Arg Phe Gly Ala Gly Val Val Thr Ala 95 100 105

Ala Thr Ala Gly Gly Phe Glu Phe Gly Gln Arg Glu Leu Glu Asn 110 115 120

Leu Trp Arg Lys Gly Pro Glu His Val Ser Pro Tyr Gln Ser Phe 125 130 135

Ala Trp Phe Tyr Ala Val Asn

- (2) INFORMATION FOR SEQ ID NO:21:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 637
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

TATATTACTC CAGGTTGCTT ACGAAGCATT GGAGATGTCC GGATATTTCG
CCGATTCGTC CAGGCCTGAG GATGTCGGTT GCTATATTGG AGCTTGTGCA
ACAGATTACG ATTTCAACGT AGCATCCCAT CCTCCCACGG CGTATTCAGC
GACTGGCACG CTCCGATCTT TTCTAAGTGG CAAGCTGTCG CATTACTTTG 200
GTTGGTCCGG TCCCTCTCTT GTCCTAGACA CTGCCTGCTC TTCGTCGGCG 250
GTGGCTATTC ATACTGCATG TACTGCTTTG AGGACTGGCC AGTGTTCTCA 300
AGCTCTAGCA GGCGGGATCA CGTTGATGAC AAGCCCGTAT CTCTATGAGA 350
ACTTCTCTGC AGCCCATTTC TTGAGTCCAA CGGGAGGTTC AAAGCCGTTC 400

- 29 -

AGCGCAGRTG CAGATGGATA CTGTAGAGGA GAAGGTGGTG GCCTCGTGGT CTTGAAACGA CTTTCAGATG CTCTCAGGGA TGATGACCAT ATTATTAGTG TCATCGCTGG CTCGGCGGTC AACCAGAACG ACAACTGCGT GCCTATCACC 550 GTCCCTCACA CTTCGTCTCA GGGAAATCTC TATGAACGAG TTACCAGACA 600 GGCAGGGGTG ACACCCAATA AAGTCACTTT TGTGGAA 637 (2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 212
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Ile Leu Leu Gln Val Ala Tyr Glu Ala Leu Glu Met Ser Gly Tyr

Phe Ala Asp Ser Ser Arg Pro Glu Asp Val Gly Cys Tyr Ile Gly

Ala Cys Ala Thr Asp Tyr Asp Phe Asn Val Ala Ser His Pro Pro

Thr Ala Tyr Ser Ala Thr Gly Thr Leu Arg Ser Phe Leu Ser Gly

Lys Leu Ser His Tyr Phe Gly Trp Ser Gly Pro Ser Leu Val Leu

Asp Thr Ala Cys Ser Ser Ser Ala Val Ala Ile His Thr Ala Cys 90

Thr Ala Leu Arg Thr Gly Gln Cys Ser Gln Ala Leu Ala Gly Gly 100

Ile Thr Leu Met Thr Ser Pro Tyr Leu Tyr Glu Asn Phe Ser Ala 110

Ala His Phe Leu Ser Pro Thr Gly Gly Ser Lys Pro Phe Ser Ala

Xaa Ala Asp Gly Tyr Cys Arg Gly Glu Gly Gly Leu Val Val

Leu Lys Arg Leu Ser Asp Ala Leu Arg Asp Asp His Ile Ile 155

Ser Val Ile Ala Gly Ser Ala Val Asn Gln Asn Asp Asn Cys Val 170 175

Pro Ile Thr Val Pro His Thr Ser Ser Gln Gly Asn Leu Tyr Glu 185

- 30 -

Arg Val Thr Arg Gln Ala Gly Val Thr Pro Asn Lys Val Thr Phe
200 205 210

Val Glu

- (2) INFORMATION FOR SEQ ID NO:23:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1177
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEO ID NO:23:

GCACGACGGG CAAGCCCAAG GGGGGCGATG AACAGCCATC GAGGAATTTG 50 CAATCGCTTA CTGTGGATGC AAGATGCTTA CAAACTAACT GAAACTGATC 100 GCGTTCTGCA AAAAACGCCT TTTAGTTTCG ACGTTTCCGT TTGGGAGTTT 150 TTCTGGCCTC TCTTGACAGG GGCGCGTTTA GTGATGGCTC AACCAGGCGG 200 ACAGCGAGAT GCAACTTACT TAATTAACAC CATCGTCCAA GAGGAAATTA 250 CAACACTGCA TTTTGTCCCC TCCATGTTGC GGATATTTCT CCAAACTAAA 300 GGGCTAGAAC GTTGTCAATC TCTAAAACGG GTGTTTTGTA GTGGAGAAGC 350 CTTACCAGTT GACCTCCAGG AGCGGTTTTT TGACTCGATG GGATGTGAAC 400 TACACAACCT CTATGGTCCT ACCGAAGCGG CAATTGATGT CACATTTTGG 450 CAGTGTCAAA GAGAGAGTAA CTTAAAAAGT GTACCGATTG GGAGAGCGAT 500 CGCCAACACT CAAMTTTATA TCCTCGACTC CCATTTACAA GCAGTTCCCT 550 TGGGTGCGAT CGGCGAACTT TATATTGGTG GTATCGGCGT TGCTAGAGGS 600 TATCTTAACC GTCCAGACTT AACAGCCGAG CGATTTATTT CCCATCCCTT 650 TAAGGAAGGC GRRAAACTTT ACAAAACAGG AGACTTAGCC CGATATCTGG 700 CCGATGGCAA TATCGAATAC ATCGGTAGAA TTGATCATCA AGTAAAAATT 750 CGGGGTTTCC GCATCGAACT TGGAGAAATC GAAACTTTAC TAGCACAACA 800 CCCGACCATA CAGCAAACTG TCGTCACAGC TAGAATTGAT CATCTCGAAA 850 ACCAGCGATT AGTCGCCTAC ATCGTTCCTC ATTCAGAGCA GACACTAACC 900 ACAGACGAAC TGCGCCACTT CCTCAAAAAG AAACTGCCAG AATATATGGT 950 GCCTAGTACT TTCGTTTTCC TAGACACTCT ACCCCTAACC CCCAACGGCA 1000 AAATTGACCG TCGCGCTTTA CCAGCACCCG ACTCAACAAG GCTTGATTCA 1050 GAAAACACAT ATCTTGCTCC CCGCGATTAA TTAGAATTTC AGTTGACTAA 1100 AATTTGGTCA GAAATTTTAG GTATCCAGCC TATCGGTGTC AGGGACAACT 1150 TCTTCTTCCT TGGGCGGCCC CTCCCTT

- (2) INFORMATION FOR SEQ ID NO:24:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 392
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Ala Arg Arg Ala Ser Pro Arg Gly Ala Met Asn Ser His Arg Gly

Ile	Cys	Asn	Arg	Leu 20	Leu	Trp	Met	Gln	Asp 25	Ala	Tyr	Lys	Leu	Thr
Glu	Thr	Asp	Arg	Val 35	Leu	Gln	Lys	Thr	Pro 40	Phe	Ser	Phe	Asp	Val
Ser	Val	Trp	Glu	Phe 50	Phe	Trp	Pro	Leu	Leu 55	Thr	Gly	Ala	Arg	Leu 60
Val	Met	Ala	Gln	Pro 65	Gly	Gly	Gln	Arg	Asp 70	Ala	Thr	Tyr	Leu	Ile 75
Asn	Thr	Ile	Val	Gln 80	Glu	Glu	Ile	Thr	Thr 85	Leu	His	Phe	Val	Pro 90
Ser	Met	Leu	Arg	Ile 95	Phe	Leu	Gln	Thr	Lys 100	Gly	Leu	Glu	Arg	Cys 105
Gln	Ser	Leu	Lys	Arg 110	Val	Phe	Cys	Ser	Gly 115	Glu	Ala	Leu	Pro	Val 120
Asp	Leu	Gln	Glu	Arg 125	Phe	Phe	Asp	Ser	Met 130	Gly	Cys	Glu	Leu	His 135
Asn	Leu	Tyr	Gly	Pro 140	Thr	Glu	Ala	Ala	Ile 145	Asp	Val	Thr	Phe	Trp 150
Gln	CAa	Gln	Arg	Glu 155	Ser	Asn	Leu	Lys	Ser 160	Val	Pro	Ile	Gly	Arg 165
Ala	Ile	Ala	Asn	Thr 170	Gln	Xaa	Tyr	Ile	Leu 175	Asp	Ser	His	Leu	Gln 180
Ala	Val	Pro	Leu	Gly 185	Ala	Ile	Gly	Glu	Leu 190	Tyr	Ile	Gly	Gly	Ile 195
Gly	Val	Ala	Arg	Gly 200	Tyr	Leu	Asn	Arg	Pro 205	Asp	Leu	Thr	Ala	Glu 210
Arg	Phe	Ile	Ser	His 215	Pro	Phe	Lys	Glu	Gly 220	Gly	Lys	Leu	Tyr	Lys 225
Thr	Gly	Asp	Leu	Ala 230	Arg	Tyr	Leu	Ala	Asp 235	Gly	Asn	Ile	Glu	Tyr 240
Ile	Gly	Arg	Ile	Asp 245	His	Gln	Val	Lys	Ile 250	Arg	Gly	Phe	Arg	Ile 255
Glu	Leu	Gly	Glu	Ile 260	Glu	Thr	Leu	Leu	Ala 265	Gln	His	Pro	Thr	Ile 270
Gln	Gln	Thr	Val	Val 275	Thr	Ala	Arg	Ile	Asp 280	His	Leu	Glu	Asn	Gln 285
Arg	Leu	Val	Ala	Tyr	Ile	Val	Pro	His	Ser	Glu	Gln	Thr	Leu	Thr

- 32 -

				290					295					300
Thr	Asp	Glu	Leu	Arg 305	His	Phe	Leu	Lys	Lys 310	Lys	Leu	Pro	Glu	Tyr 315
Met	Val	Pro	Ser	Thr 320	Phe	Val	Phe	Leu	Asp 325	Thr	Leu	Pro	Leu	Thr 330
Pro	Asn	Gly	Lys	Ile 335	Asp	Arg	Arg	Ala	Leu 340	Pro	Ala	Pro	Asp	Ser 345
Thr	Arg	Leu	qaA	Ser 350	Glu	Asn	Thr	Tyr	Leu 355	Ala	Pro	Arg	Asp	Xaa 360
Leu	Glu	Phe	Gln	Leu 365	Thr	Lys	Ile	Trp	Ser 370	Gl _, u	Ile	Leu	Gly	Ile 375
Gln	Pro	Ile	Gly	Val 380	Arg	Asp	Asn	Phe	Phe 385	Phe	Leu	Gly	Arg	Pro 390
Ľėu	Pro													
(i) (A) (B) (D) (ii) (A) (ii) (v) (xi	SEQ LENG TYP TOP) MO DES i) H FRA) SE	UENCH GTH: E: an OLOGY LECUI CRIPT CRIPT GMENT QUENC	nino Y: li LE TY TION: HETIC T TYP CE DE	RACTI acid near PE: prof AL: E: in	ERIST tein no nterr	CICS: nal f N: SE	ragme Q ID	NO:2		Gly	Ile	Ala	Ala	Pro 15
Asn	Gly	Leu	Gly	Ile 20	Glu	Glu	Tyr	Trp	Ser 25	Ala	Thr	Leu	Ala	Gly 30
Arg	Gly	Ala	Ile	Gly 35	Pro	Leu	Thr	Arg	Phe 40	Asp	Ala	Ser	Ser	Tyr 45
Pro	Ser	Arg	Leu	Ala 50	Gly	Glu	Ile	Arg	Gly 55	Phe	Thr	Ala	Ala	Glu 60
His	Leu	Pro	Gly	Arg 65	Leu	Leu	Pro	Gln	Thr 70	Asp	Arg	Met	Thr	Gln 75
Leu	Ala	Leu	Val	Ser 80	Ala	Gly	Trp	Ala	Leu 85	Asp	Asp	Ala	Gly	Val 90
Val	Pro	Asp	Glu	Leu 95	Pro	Ala	Tyr	Asp	Met 100	Gly	Val	Ile	Thr	Ala 105

Ser	His	Ala	Gly	Gly 110	Phe	Glu	Phe	Gly	Gln 115	Asn	Glu	Leu	Lys	Ala 120
Leu	Trp	Ser	Lys	Gly 125	Gly	Lys	Tyr	Val	Ser 130	Ala	Tyr	Gln	Ser	Phe 135
Ala	Trp	Phe	Tyr	Ala 140	Val	Asn	Ser	Gly	Gln 145	Ile	Ser	Ile	Arg	Asn 150
Gly	Met	Arg	Gly	Pro 155	Ser	Gly	Val	Val	Val 160	Ser	Asp	Gln	Ala	Gly 165
Gly	Leu	Asp	Ala	Leu 170	Ala	Gln	Ala	Arg	Arg 175	Gln	Ile	Arg	Lys	Gly 180
Thr	Pro	Leu	Ile	Val 185	Ser	Gly	Ala	Val	Asp 190	Ala	Ser	Leu	Cys	Thr 195
Trp	Gly	Trp	Val	Ala 200	Gln	Leu	Ala	Gly	Gly 205	Arg	Leu	Ser	Arg	Ser 210
Asp	Asp	Pro	Gly	His 215	Ala	Tyr	Val	Pro	Phe 220	Asp	Asp	Ala	Ala	Val 225
Gly	His	Val	Pro	Gly 230	Glu	Gly	Gly	Ala	Leu 235	Leu	Ile	Leu	Glu	Glu 240
Ala	Glu	His	Ala	Arg 245	Ser	Arg	Gly	Ala	Arg 250	Arg	Ile	Tyr	Gly	Glu 255
Ile	Thr	Gly	His	Ala 260	Ser	Thr	Phe	Asp	Pro 265	Pro	Pro	Trp	Ser	Gly 270
Arg	Gly	Pro	Ala	Val 275	Gln	Arg	Val	Ile	Glu 280	Glu	Ala	Leu	Ala	Asp 285
Ala	Gly	Thr	Val	Pro 290	Asp	Glu	Val	Asp	Val 295	Val	Phe	Ala	Asp	Ala 300
Ala	Ala	Leu	Pro	Glu 305	Leu	Asp	Arg	Ile	Glu 310		Ala	Ala	Ile	Thr 315
Lys	Val	Phe	Gly	Pro 320	His	Ala	Val	Pro	Val 325	Thr	Ala	Pro	Lys	Thr 330
Met	Thr	Gly	Arg	Leu 335	Tyr	Ser	Gly	Ala	Ala 340	Pro	Leu	Asp	Val	Ala 345
Ala	Ala	Cys	Leu	Ala 350	Ile	Arg	Asp	Gly	Leu 355	Ile	Pro	Pro	Thr	Ile 360
His	Ser	Ser	Leu	Ser 365	Gly	Arg	Tyr	Glu	Ile 370	Asp	Leu	Val	Thr	Gly 375
Ala	Pro	Arg	Thr	Ala	Pro	Val	Arg	Thr	Ala	Leu	Val	Val	Ala	Arg

385

390

- 34 -

380

Gly	His	Gly	Gly	Phe 3 9 5	Asn	Ser	Ala	Val	Val 400	Val	Arg	Ala	Pro	Arc 405
Asp														
(A) (B) (D) (ii (A) (ii (v)	SEQ LEN TYP TOP) MO DES .i) H	UENCI GTH: E: ai OLOGI LECUI CRIPI YPOTI GMENI	ION FE CHA 415 mino Y: li LE TY FION: HETIC TYFE CE DE	RACT acid near PE: pro AL:	ERIST tein no nterr	rICS:	ragm		26:					
										Val	Arg	Ser	Ala	Thr 15
Ala	Val	Phe	Thr	Gly 20	Ile	Gly	Val	Thr	Ala 25	Pro	Asn	Gly	Leu	Gly 30
Thr	Ala	Ala	Trp	Trp 35	Gln	Ala	Thr	Val	Ala 40	Gly	Glu	Ser	Gly	Ile 45
Arg	Pro	Val	Ser	Arg 50	Phe	Asp	Ala	Ser	Gly 55	Tyr	Pro	Ser	Thr	Leu 60
Ala	Gly	Glu	Val	Pro 65	Gly	Phe	Asp	Ala	Glu 70	Glu	His	Ile	Pro	Ser 75
Arg	Leu	Leu	Ser	Gln 80	Thr	Asp	His	Met	Thr 85	Arg	Leu	Ala	Leu	Thr 90
Ala	Ala	Lys	Glu	Ala 95	Leu	Glu	Asp	Ser	Gly 100	Ala	Asp	Pro	Ala	Glu 105
Met	Pro	Gln	Tyr	Ser 110	Ala	Gly	Ala	Val	Thr 115	Ala	Ala	Ser	Ala	Gly 120
Gly	Phe	Glu	Phe	Gly 125	Gln	Arg	Glu	Leu	Gln 130	Ala	Leu	Trp	Ser	Lys 135
Gly	Gly	Gln	Tyr	Val 140	Ser	Ala	Tyr	Gln	Ser 145	Tyr	Ala	Trp	Phe	Tyr 150
Ala	Val	Asn	Thr	Gly 155	Gln	Ile	Ser	Ile	Arg 160	His	Gly	Leu	Arg	Gly 165
Pro	Ser	Gly	Val	Leu 170	Val	Thr	Glu	Gln	Ala 175	Gly	Gly	Leu	Glu	Ala

PCT/CA98/00488

- 35 -

Val	Ala	Gln	Ala	Arg 185	Arg	Gln	Leu	Arg	Lys 190	Gly	Ser	Lys	Leu	Ile 195
Val	Thr	Gly	Gly	Val 200	Asp	Gly	Ala	Val	Cys 205	Pro	Trp	Gly	Trp	Thr 210
Ala	Gln	Leu	Ala	Gly 215	Gly	Arg	Met	Ser	Pro 220	Val	Ala	Asp	Pro	Ala 225
Arg	Ala	Phe	Leu	Pro 230	Phe	qaA	Ser	Glu	Ala 235	Ser	Gly	Tyr	Val	Ala 240
Gly	Glu	Gly	Gly	Ala 245	Ile	Leu	Val	Leu	Glu 250	Asp	Ala	Glu	Ala	Ala 255
Arg	Glu	Arg	Gly	Ala 260	Arg	Ile	Tyr	Gly	Arg 265	Leu	Ser	Gly	Tyr	Ala 270
Ala	Thr	Phe	Asp	Pro 275	Ala	Pro	Gly	Arg	Gly 280	Gly	Glu	Pro	Gly	Leu 285
Arg	Arg	Ala	Ala	Glu 290	Leu	Ala	Leu	Thr	Glu 295	Ala	Gly	Leu	Ser	Ala 300
Ser	Asp	Val	Asp	Val 305	Val	Phe	Ala	Asp	Ala 310	Ser	Gly	Val	Pro	Glu 315
Leu	Asp	Arg	Gln	Glu 320	Glu	Ala	Ala	Leu	Thr 325	Ala	Leu	Phe	Gly	Pro 330
Arg	Gly	Val	Pro	Val 335	Thr	Ala	Pro	Lys	Thr 340	Met	Thr	Gly	Arg	Leu 345
Ser	Ala	Gly	Gly	Ala 350	Ser	Leu	Asp	Leu	Ala 355	Ala	Ala	Leu	Leu	Ser 360
Ile	Arg	Asp	Ala	Val 365	Ile	Pro	Pro	Thr	Val 370	Asn	Val	Thr	Ser	Pro 375
Val	Ala	Ala	Asp	Ala 380	Leu	Asp	Leu	Val	Thr 385	Glu	Ala	Arg	Arg	Gly 390
Pro	Val	Arg	Thr	Ala 395	Leu	Val	Leu	Ala	Arg 400	Gly	Thr	Gly	Gly	Phe 405
Asn	Ala	Ala	Ala	Val 410	Val	Thr	Ala	Ala	Asn 415					

- (2) INFORMATION FOR SEQ ID NO:27:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 403
- (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein

(iii) HYPOTHETICAL: no

(v) FRAGMENT TYPE: internal fragment

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

Met Ile Pro Val Ala Val Thr Gly Met Gly Val Ala Ala Pro Asn
5 10 15

Gly Leu Gly Ala Ala Asp Tyr Trp Ala Ala Thr Arg Gly Gly Lys
20 25 30

Ser Gly Ile Gly Arg Ile Thr Arg Phe Asp Pro Ser Ser Tyr Pro 35 40 45

Ala Arg Leu Ala Gly Glu Ile Pro Gly Phe Glu Ala Ala Glu His
50 55 60

Leu Pro Gly Arg Leu Leu Pro Gln Thr Asp Arg Val Thr Arg Leu 65 70 75

Ser Leu Ala Ala Ala Asp Trp Ala Leu Ala Asp Ala Gly Val Glu 80 85 90

Pro Glu Ser Phe Asp Pro Leu Asp Met Gly Val Val Thr Ala Gly
95 100 105

His Ala Gly Gly Phe Glu Phe Gly Gln Gly Glu Leu Gln Lys Leu 110 115 120

Trp Ala Lys Gly Ser Gln Phe Val Ser Ala Tyr Gln Ser Phe Ala 125 130 135

Trp Phe Tyr Ala Val Asn Ser Gly Gln Ile Ser Ile Arg His Gly
140 145 150

Met Lys Gly Pro Asn Gly Val Val Val Ser Asp Gln Ala Gly Gly 155 160 165

Leu Asp Ala Leu Ala Gln Ala Arg Arg Leu Val Arg Lys Gly Thr 170 175 180

Pro Leu Ile Val Cys Gly Ala Val Asp Ala Ser Ile Cys Pro Trp 185 190 195

Gly Trp Val Ala Gln Leu Ala Gly Gly Arg Met Ser Asp Ser Asp 200 205 210

Glu Pro Ala Arg Ala Tyr Leu Pro Phe Asp Arg Asp Ala Arg Gly 215 220 225

Tyr Leu Pro Gly Glu Gly Gly Ala Ile Leu Ile Met Glu Pro Ala 230 235 240

Ala Ala Arg Ala Arg Gly Ala Lys Val Tyr Gly Glu Ile Ser 245 250 255

Gly Tyr Gly Ala Thr Phe Asp Pro Pro Pro Gly Ser Gly Ser Gly

- 37 -

- 3, -	
260 265 270	
Ser Thr Leu Arg Thr Ala Ile Arg Val Ala Leu Asp Asp Ala Gly 275 280 285	
Val Ala Pro Gly Asp Val Asp Ala Val Phe Ala Asp Gly Ala Gly 290 295 300	
Val Pro Glu Leu Asp Arg Ala Glu Ala Glu Ala Ile Thr Asp Val 305 310 315	
Phe Gly Ser Gly Gly Val Pro Val Thr Val Pro Lys Thr Met Thr 320 325 330	
Gly Arg Leu Tyr Ser Gly Ala Ala Pro Leu Asp Val Ala Cys Ala 335 340 345	
Leu Leu Ala Met Gln Ala Gly Val Ile Pro Pro Thr Val His Ile 350 355 360	
Asp Pro Cys Pro Glu Tyr Gly Leu Asp Leu Val Leu His Gln Ala 365 370 375	
Arg Pro Ala Thr Val Arg Thr Ala Leu Val Leu Ala Arg Gly His 380 385 390	
Gly Gly Phe Asn Ser Ala Met Ala Val Arg Ala Gly Arg 395 400	
(2) INFORMATION FOR SEQ ID NO:28 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 407 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: (A) DESCRIPTION: protein (iii) HYPOTHETICAL: no (v) FRAGMENT TYPE: internal fragment (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28 Met Ser Ala Arg Phe Leu Val Thr Gly Ile Gly Val Ala Ala Pro 5 10 15 Ser Gly Leu Gly Val Glu Asp Phe Trp Ser Val Thr Arg Ile Gly	
20 25 30	

Lys Asn Ala Ile Gly Pro Val Thr Arg Phe Asp Ala Ser Ala Tyr

Pro Ser Arg Leu Ala Gly Glu Ile His Gly Phe Glu Pro Lys Glu

His Leu Pro Gly Arg Leu Val Pro Gln Thr Asp Arg Val Thr Gln

1	Leu	Ala	Leu	Val	Ala 80	Ala	Asp	Cys	Ala	Phe 85	Ala	Asp	Ala	Gly	Ile 90
(Glu	Pro	Gly	Thr	Ile 95	Asp	Pro	Tyr	Ala	Met 100	Gly	Val	Val	Thr	Ala 105
1	Ala	Gly	Ala	Gly	Gly 110	Phe	Glu	Phe	Ala	Glu 115	Asn	Glu	Leu	Arg	Lys 120
Ι	Leu	Trp	Ser	Glu	Gly 125	Ala	ГЛа	Arg	Val	Ser 130	Ala	Tyr	Gln	Ser	Phe 135
1	Ala	Trp	Phe	Tyr	Ala 140	Val	Asn	Ser	Gly	Gln 145	Ile	Ser	Ile	Arg	Asn 150
(3ly	Leu	Arg	Gly	Pro 155	Ala	Gly	Val	Val	Ile 160	Ser	Asp	Gln	Ala	Gly 165
(3ly	Leu	qaA	Ala	Leu 170	Ala	Gln	Ala	Arg	Arg 175	Gln	Leu	Arg	Lys	Gly 180
S	Ser	Lys	Leu	Ile	Ala 185	Thr	Gly	Gly	Phe	Asp 190	Ala	Pro	Ile	Cys	Ser 195
Ι	Leu	Gly	Trp	Ala	Ser 200	Gln	Pro	Arg	Thr	Gly 205	Gly	Leu	Met	Phe	His 210
C	3lu	Arg	Thr	Glu	Pro 215	Glu	Arg	Ala	Tyr	Leu 220	Pro	Phe	Glu	Asp	Ala 225
7	Ala	Ala	Gly	Tyr	Val 230	Pro	Gly	Glu	Gly	Gly 235	Ala	Met	Leu	Ile	Leu 240
C	3lu	Asp	Glu	Asp	Ser 245	Ala	Arg	Asp	Arg	Gly 250	Ala	Arg	Thr	Val	Tyr 255
C	€ly	Glu	Phe	Ala	Gly 260	Tyr	Gly	Ala	Thr	Leu 265	Asp	Pro	Lys	Pro	Gly 270
5	Ser	Gly	Arg	Glu	Pro 275	Gly	Leu	Arg	Arg	Ala 280	Ile	Asp	Val	Ala	Leu 285
1	Thr	Asp	Ala	Ala	Cys 290	His	Pro	Ala	Glu	Val 295	Glu	Val	Val	Phe	Ala 300
P	Asp	Gly	Ala	Ala	Thr 305	Pro	Arg	Leu	Asp	Arg 310	Glu	Glu	Ala	Glu	Ala 315
]	lle	Thr	Ala	Val	Phe 320	Gly	Pro	Arg	Ala	Val 325	Pro	Val	Thr	Val	Pro 330
Ι	rys	Thr	Met	Thr	Gly 335	Arg	Ile	Asn	Ser	Gly 340	Gly	Ala	Pro	Ile	Asp 345
7	/al	Val	Ser	Ala	Val	Leu	Ser	Met	Arg	Glu	Gly	Leu	Ile	Pro	Pro

- 39 **-**

				350					355					360
Thr	Thr	Asn	Val	Glu 365	Leu	Ser	Asp	Ala	Tyr 370	Asp	Leu	Asp	Leu	Val 375
Ala	Val	Arg	Pro	Arg 380	Thr	Ala	Ser	Val	Arg 385	Thr	Ala	Leu	Val	Leu 390
Ala	Arg	Gly	Arg	Gly 395	Gly	Phe	Asn	Ser	Ala 400	Val	Val	Val	Arg	Ala 405
Val	Asp													
(i) (A) (B) (C) (D) (ii) (iv) (xi) GGAT TCAC CTCC ACCA CCGT TTGC ATCA CCGT TTGC (A) (B) (D) (ii) (A) (E) (V)	SEQ LEN TYP STR TOP) MO i) H i) AN) SE CCAAC ATGAA TTTGA TGTGC CCGGC CCGGC CCGGC TTTGA T	UENCE GTH: GTH: GE: NI ANDEL OLOGY LECUI YPOTE TI-SE QUENC CTT (ATG (A	E CHA 543 1clei DNESS Y: li LE TY HETIC ENSE: ENGG CACTA CACTA	PE: 19 PE	ERIST id ngle genom no PTION CT ACC AA CC GA CC GG GT ACC ACC ACC ACC ACC ACC ACC ACC ACC AC	TICS: TI	NA GQ ID GCACT GACT GACT GACT AATGT CCTCA AAGT CCAGT NO:30	r GGA r TTG r TAG r TAG r TTG A GCA r CTT A GCC C CGT C GCA C CAG C CAG C CAG C CTG	AGTCA GGATO GTGGO GATAO AATAO CCTAO GGAO AAGAO ACCA GCTTAO	ECTA CCAC CTGC CGGC IGGT AAGT ECGG EAAG AAAC AAAC CGTT	TATO CCAO ATGA TTGO CTGO CCGT GCAA GAGT CCTO GAAA	CGGTC CCGCA CCCA CTCGC GTGA CTTGA ATGCA ATGCA CAGTC	GCA : ATA : ATT : FCA :	100 150 200 250 350 400 450 550
				Val					Leu		Met	Ser	Gly	_
Db	77-	3	0	5	•	D	a.	24	10	<i>a</i> 3		_		15
rne	Ala	Asp	Ser	Ser 20	Arg	Pro	Glu	Asp	Val 25	Gly	Cys	Tyr	Ile	Gly 30
Ala	Cys	Ala	Thr	Asp	Tyr	Asp	Phe	Asn	Val	Ala	Ser	His	Pro	Pro

PCT/CA98/00488 WO 98/53097

- 40 -

				35					40					45
Thr	Ala	Tyr	Ser	Ala 50	Thr	Gly	Thr	Leu	Arg 55	Ser	Phe	Leu	Ser	Gly 60
Lys	Leu	Ser	His	Tyr 65	Phe	Gly	Trp	Ser	Gly 70	Pro	Ser	Leu	Val	Leu 75
Asp	Thr	Ala	Cys	Ser 80	Ser	Ser	Ala	Val	Ala 85	Ile	His	Thr	Ala	Cys 90
Thr	Ala	Leu	Arg	Thr 95	Gly	Gln	Cys	Ser	Gln 100	Ala	Leu	Ala	Gly	Gly 105
Ile	Thr	Leu	Met	Thr 110	Ser	Pro	Tyr	Leu	Tyr 115	Glu	Asn	Phe	Ser	Ala 120
Ala	His	Phe	Leu	Ser 125	Pro	Thr	Gly	Gly	Ser 130	Lys	Pro	Phe	Ser	Ala 135
Xaa	Ala	Asp	Gly	Tyr 140	Cys	Arg	Gly	Glu	Gly 145	Gly	Gly	Leu	Val	Val 150
Leu	Lys	Arg	Leu	Ser 155	Asp	Ala	Leu	Arg	Asp 160	Asp	Asp	His	Ile	Ile 165
Ser	Val	Ile	Ala	Gly 170	Ser	Ala	Val	Asn	Gln 175	Asn	Asp	Asn	Cys	Val 180
Pro	Ile	Thr	Val	Pro 185	His	Thr	Ser	Ser	Gln 190	Gly	Asn	Leu	Tyr	Glu 195
Arg	Val	Thr	Arg	Gln 200	Ala	Gly	Val	Thr	Pro 205	Asn	Lys	Val	Thr	Phe 210
Val	Glu													

- (2) INFORMATION FOR SEQ ID NO:31:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 643
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

AATCCTCATG	GAATCAGCTT	GGCAAACACT	AGAAAACGCT	GGCATAACTG	50
CGAACAAAGT	AGCTGGCAGC	AGTACAGGAG	TTTTTGTGGG	TGCTAGTGGC	100
TCTGATTACT	GTTGGGTAAT	GGAGCGGGTA	GGTATTCCCA	TAGAAGCTCA	150
CGTTGCAACG	GGCACGTCGT	TGGCAGCGCT	GGCAAATCGC	ATCTCTTACT	200
TTTTTGACTT	GCGAGGCCCA	AGCATCGTCA	TTGATACGGC	GTGTTCTAGT	250
TCGTTGATGG	CAGTGCATCA	GGCGGTTCAA	TCTATCCGAG	CAGGTGAGTG	300

- 41 -

CTTACAAGCA CTGGTGGGCG GTATACATAT CATGAGCCAT CCGGCTAACA GTATTGCATA TTACAAGGCT GGGATGTTGG CGCATGATGG CAAGTGCAAG ACATTTGACG ATCGCGCAGA TGGGTACGTT CGCAGTGAAG GCGCTGTGAT GCTTCTGCTC AAGCAATTGC ATCAGGCGGA AGCAGATGGC GATCTAATTT 5 ATGCGACAAT CAAGGGGTCA GCCTCGAATC ATGGTGGACA GTCCGCCGGC 5 CTCACCGTAC CGAATCCGCA ACAGCAGGCA GCACTCTTAA CCAATGCCTG GAAAGCCTCT GGTGTAGACC CTAACACGAT TAGTTTTATC GAA 6 (2) INFORMATION FOR SEQ ID NO:32:											
(i) SEQUENCE (A) LENGTH: (B) TYPE: at (D) TOPOLOGY (ii) MOLECUE (A) DESCRIPY (iii) HYPOTE (v) FRAGMENY (xi) SEQUENCE	E CHARACTER 214 mino acid Y: linear LE TYPE: TION: prote HETICAL: no T TYPE: inte	ISTICS: in ernal fragm ION: SEQ ID	NO:32:								
Ile Leu Met (Glu Ser Ala 5	Trp Gln Th	r Leu Glu 10	Asn Ala Gly	Ile 15						
Thr Ala Asn	Lys Val Ala 20	Gly Ser Se	r Thr Gly 25	Val Phe Val	Gly 30						
Ala Ser Gly	Ser Asp Tyr 35	Cys Trp Va	l Met Glu 40	Arg Val Gly	Ile 45						
Pro Ile Glu A	Ala His Val 40	Ala Thr Gl	y Thr Ser 55	Leu Ala Ala	Leu 60						
Ala Asn Arg	Ile Ser Tyr 65	Phe Phe As	p Leu Arg 70	Gly Pro Ser	Ile 75						
Val Ile Asp	Thr Ala Cys 80	Ser Ser Se	r Leu Met 85	Ala Val His	Gln 90						
Ala Val Gln	Ser Ile Arg 95	Ala Gly Gl	u Cys Leu 100	Gln Ala Leu	Val 105						
Gly Gly Ile I	His Ile Met 110	Ser His Pr	o Ala Asn 115	Ser Ile Ala	Tyr 120						
Tyr Lys Ala	Gly Met Leu 125	Ala His As	p Gly Lys 130	Cys Lys Thr	Phe 135						
Asp Asp Arg	Ala Asp Gly 140	Tyr Val Ar	g Ser Glu 145	Gly Ala Val	Met 150						
Leu Leu Leu 1	Lys Gln Leu 155	His Gln Al	a Glu Ala 160	Asp Gly Asp	Leu 165						
Ile Tyr Ala	Thr Ile Lys 170	Gly Ser Al	a Ser Asn 175	His Gly Gly	Gln 180						

- 42 -

Ser Ala Gly Leu Thr Val Pro Asn Pro Gln Gln Gln Ala Ala Leu 185 190 Leu Thr Asn Ala Trp Lys Ala Ser Gly Val Asp Pro Asn Thr Ile Ser Phe Ile Glu (2) INFORMATION FOR SEO ID NO:33: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 637 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33: TATATTACTC CAGGTTGCTT ACGAAGCATT GGAAATGTCC GGGTATTTCG 50 CCGACTCGTC CAAGCCTGAG GACGTAGGTT GCTATATTGG AGCTTGTGCA 100 ACAGATTACG ATTTCAGCGT AGCGTCCCAT CCTCCTACGG CATACTCAGC 150 AACTGGCACG CTCCGATCTT TCCTGAGTGG CAAGCTGTCA CATTACTTTG 200 GTTGGTCTGG TCCCTCTCTT GTCCTGGACA CCGCCTGCTC TTCATCGGCG 250 GTGGCCATTC ACACTGCATG TACTGCTTTG AGGACTGGCC AGTGTTCTCA 300 GGCTTTAGCA GGCGGGATTA CTTTGATGAC CAGCCCGTAT CTCTTTGAGA 350 ACTTTGCTGC CGCCCATTTC TTGAGCCCAA CGGGAGGCTC AAAGCCGTTC 400 AGTGCAGATG CAGATGGGTA TTGTAGAGGA GAAGGGGGTG GGCTCGTGGT 450 CTTGAAACGA CTTTCAGATG CTATCAGGGA TAACGACCAC ATCATTAGCG 500 TCATCGCTGG CTCAGCCGTC AACCAGAACG CTAACTGTGT GCCTATCACC 550 GTCCCTCATA CTTCGTCTCA GGGCAATCTC TATGAACGAG TTACCGCACA 600 GGCAGGGGTG ACACCTAATA AGGTCACTTT TGTGGAA (2) INFORMATION FOR SEQ ID NO:34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 212 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: (A) DESCRIPTION: protein (iii) HYPOTHETICAL: no (v) FRAGMENT TYPE: internal fragment (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34: Ile Leu Leu Gln Val Ala Tyr Glu Ala Leu Glu Met Ser Gly Tyr Phe Ala Asp Ser Ser Lys Pro Glu Asp Val Gly Cys Tyr Ile Gly Ala Cys Ala Thr Asp Tyr Asp Phe Ser Val Ala Ser His Pro Pro Thr Ala Tyr Ser Ala Thr Gly Thr Leu Arg Ser Phe Leu Ser Gly - 43 -

WO 98/53097 PCT/CA98/00488

Lys	Leu	Ser	His	Tyr 65	Phe	Gly	Trp	Ser	Gly 70	Pro	Ser	Leu	Val	Leu 75
Asp	Thr	Ala	Cys	Ser 80	Ser	Ser	Ala	Val	Ala 85	Ile	His	Thr	Ala	Cys 90
Thr	Ala	Leu	Arg	Thr 95	Gly	Gln	Cys	Ser	Gln 100	Ala	Leu	Ala	Gly	Gly 105
Ile	Thr	Leu	Met	Thr 110	Ser	Pro	Tyr	Leu	Phe 115	Glu	Asn	Phe	Ala	Ala 120
Ala	His	Phe	Leu	Ser 125	Pro	Thr	Gly	Gly	Ser 130	Lys	Pro	Phe	Ser	Ala 135
Asp	Ala	Asp	Gly	Tyr 140	Cya	Arg	Gly	Glu	Gly 145	Gly	Gly	Leu	Val	Val 150
Leu	Lys	Arg	Leu	Ser 155	Asp	Ala	Ile	Arg	Asp 160	Asn	Asp	His	Ile	Ile 165
Ser	Val	Ile	Ala	Gly 170	Ser	Ala	Val	Asn	Gln 175	Asn	Ala	Asn	Cys	Val 180
Pro	Ile	Thr	Val	Pro 185	His	Thr	Ser	Ser	Gln 190	Gly	Asn	Leu	Tyr	Glu 195
Arg	Val	Thr	Ala	Gln 200	Ala	Gly	Val	Thr	Pro 205	Asn	Lys	Val	Thr	Phe 210

Val Glu

- (2) INFORMATION FOR SEQ ID NO:35:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 691
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

CCATCTGCTA	GAAATCAGCT	ACGAGGCGCT	CGAGAATGCA	GGCTTTCCAC	50
TGCCTAGCAT	TGCTGGCACG	AACATGGGTG	TCTTTGTCGG	CGGAAGCAAC	100
TCTGAGTATC	GAGCGCACAT	CGGAAACGAT	ACCGACAACT	TACCGATGTT	150
TGAAGCAACA	GGCAATGCAG	AATCTCTGCT	GGCGAATCGA	GTCTCTTATG	200
TGTATGATCT	CCACGGCGCA	AGTCTGACGA	TTGGTACCGC	TTGTTCCGTC	250
GAGTTTAGCA	GCTTTGGATA	GCGCGTTTCT	CAGCTTGCAG	CTGGTAAGTC	300
GTCCACAGCA	ATTGTTGCCG	GCTCCGTTGT	TCGAATCGTA	CCGTCATCGA	350
CCATCTCACC	TTCTACTATG	AAGTAAGCAG	TCATGGCTCT	TGACACGGAG	400
ACTACTCACC	ATTCCAGGCT	TCTGTCACCA	GAAGGGCGGT	GTTATGCGTT	450
CGATGACAGA	GCCACTAGTG	GTTTTGGAAG	GGGTGAAGGT	TCTGCCTGCA	500
TAATATTGGA	AACCTTAGAG	GCAGCCTTAA	GAGACAACGA	CCCAATCCGA	550
TCGGTCATTC	GCAATTCGGG	AGTCAATCAA	GATGGTAAAA	CTGCAGGTAT	600

- 44 -

0.03.000.000.000.000.000.000.000.000.00														650 691
(2) INFORMATION FOR SEQ ID NO:36: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 215 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: (A) DESCRIPTION: protein (iii) HYPOTHETICAL: no (v) FRAGMENT TYPE: internal fragment (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36: His Leu Leu Glu Ile Ser Tyr Glu Ala Leu Glu Asn Ala Gly Pl 5 10 Pro Leu Pro Ser Ile Ala Gly Thr Asn Met Gly Val Phe Val G														
Pro	Leu	Pro	Ser	Ile 20	Ala	Gly	Thr	Asn	Met 25	Gly	Val	Phe	Val	Gly 30
Gly	Ser	Asn	Ser	Glu 35	Tyr	Arg	Ala	His	Ile 40	Gly	Asn	Asp	Thr	Asp 45
Asn	Leu	Pro	Met	Phe 50	Glu	Ala	Thr	Gly	Asn 55	Ala	Glu	Ser	Leu	Leu 60
Ala	Asn	Arg	Val	Ser 65	Tyr	Val	Tyr	Asp	Leu 70	His	Gly	Ala	Ser	Leu 75
Thr	Ile	Gly	Thr	Ala 80	CÀa	Ser	Val	Glu	Phe 85	Ser	Ser	Phe	Gly	Xaa 90
Arg	Val	Ser	Gln	Leu 95	Ala	Ala	Gly	Lys	Ser 100	Ser	Thr	Ala	Ile	Val 105
Ala	Gly	Ser	Val	Val 110	Arg	Ile	Val	Pro	Ser 115	Ser	Thr	Ile	Ser	Pro 120
Ser	Thr	Met	Lys	Leu 125	Leu	Ser	Pro	Glu	Gly 130	Arg	Cys	Tyr	Ala	Phe 135
Asp	Asp	Arg	Ala	Thr 140	Ser	Gly	Phe	Gly	Arg 145	Gly	Glu	Gly	Ser	Ala 150
Cys	Ile	Ile	Leu	Glu 155	Thr	Leu	Glu	Ala	Ala 160	Leu	Arg	Asp	Asn	Asp 165
Pro	Ile	Arg	Ser	Val 170	Ile	Arg	Asn	Ser	Gly 175	Val	Asn	Gln	Asp	Gly 180
Lys	Thr	Ala	Gly	Ile 185	Thr	Met	Pro	Asn	Gly 190	Glu	Ala	Gln	Ala	Ser 195
Leu	Ile	Gln	Ser	Val 200	Tyr	Arg	Thr	Ala	Gly 205	Leu	Asp	Pro	Leu	Gln 210

- 45 -

Thr Asp Tyr Val Glu 215

WO 98/53097

```
(2) INFORMATION FOR SEO ID NO:37
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 680
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: genomic DNA
 (iii) HYPOTHETICAL: no
 (iv) ANTI-SENSE: no
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:
AACTGTTAGA GGTCAGTTAC GAGGCGTTTG AGAATGCGGG CATATCATTA
TCGAGTGTTG CAGGTACCGA CGTTGGGGTA TTCATCAGTG CCAGCACCAA
                                                            100
TGATTACCGT TTCGTTTTCC ACAACGACCT CGACACATTG CCAATGTTTG
                                                            150
AATCCACTGG GAGTGAATTA TCGATCATGT CCAATCGTAT CTCCTATACT
TTCAATCTTA GAGGTCCAAG TATGACGATT GATACTCCCT GTTCCTCAAG
TTTGATCGCA CTCCATACAG CATTCAGAAG TCTACAGGTC GGAGAAAGCT CTTGCGCCAT TGTCGGTGGA TCTAACCTCC ACATCACTCC AGATTCCTAC
ATTTCATTCT CGACGATGAG GTAAGCACTA TCGTTTGCGA ATTACCTATC
TTTGATTACG AGTGACTAAG TTGTACAGGC TCCTGTCGCC CCATGGACGA
TCGTGCAGTC AATGGGTTTG GGCGCGGAGA GGGCACAAGT TGCATAATAC
TGAAGCCTTT AGATGCCGCA TTGAAAGACC ACGATCCCAT AAGGGCAGTT
ATTCGCAATA CGGGCACTAA TCAAGATGGG AAGACGACAG GTATCACGAT
GCCGAATGGT GAAGCACAGG CCGCCTTAAT GCAATCAGTC TACGAGGCAG
                                                            650
CGGGCTTAGA TCCCCTTGAA ACAGACTATG
                                                            680
(2) INFORMATION FOR SEQ ID NO:38:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 209
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE:
 (A) DESCRIPTION: protein
 (iii) HYPOTHETICAL: no
 (v) FRAGMENT TYPE: internal fragment
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:
Leu Leu Glu Val Ser Tyr Glu Ala Phe Glu Asn Ala Gly Ile Ser
Leu Ser Ser Val Ala Gly Thr Asp Val Gly Val Phe Ile Ser Ala
Ser Thr Asn Asp Tyr Arg Phe Val Phe His Asn Asp Leu Asp Thr
Leu Pro Met Phe Glu Ser Thr Gly Ser Glu Leu Ser Ile Met Ser
Asn Arg Ile Ser Tyr Thr Phe Asn Leu Arg Gly Pro Ser Met Thr
```

PCT/CA98/00488

- 46 -

IleAspThrProCys
80SerSerSerLeuIle
85AlaLeuHisThrAla
90PheArgSerLeuGlnValGlyGluSerSerCysAlaIleValGlyGlySerAsnLeuHis
110IleThrProAspSerTyrIleSerPheSerThrMetSerCysThrGlySerCysArgProMetAspAspArgAlaValAsnGlyPheGlyArgGlyGlyGlyThrSerCysIleIleArgAlaValIleArgAsnAlaLeuLysAspHisAspProIleArgAlaIleThrMetProAsnGlyThrAsnGlnAlaAlaLeuMetGlnSerValTyrGluAlaGlyLeuAspProLeuGluThrAspTyr

- (2) INFORMATION FOR SEQ ID NO:39:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 691
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

GCATTTGCTG	GAGGTGAGCT	ATGAAGCGCT	TGAAAATGCT	GGCCTTTCTC	50
TTCCTTGCAT	TGCCGGCACC	AAAATGGGAG	TCTTCGTTGG	TGGAGGCAAT	100
GCAKAGTATC	GATCGCATAT	CGGCCAAGAT	ATTGACAATC	TGCCTATGTT	150
CGAGGCAACT	GGTAACGCAG	AGGCGCTATT	GGCGAATAGA	GTTTCTTATG	200
TATATGATCT	TCGAGGACCG	AGTCTAACCA	CCGATACCGC	CTGTTCCTCA	250
AGTCTCGCCG	CTTTGAACAC	GGCATTCTTA	AGTCTACAGG	CTGGCGAGTC	300
GTCTACAGCA	CTGGTCGGTA	GCTCAGTAAT	TCGGCTTAGG	CCTGAGTCAG	350
CCATCTCACT	TTCCAGCATG	CAGTAAGTCC	TTCATGGTGC	ACCTGCATAC	400
ATTGCTAATA	AGTGCAGGCT	TCTATCCCCA	GATGGAAAAT	CTTACGCGTT	450
CGATGAGAGA	GCTACCAGTG	GTTTTGGAAG	GGGTGAGGGT	TCGGGTTGCA	500
TAATACTAAA	ACCCCTGGAC	GCAGCCGTGA	GAGACGGAGA	CCCAATTAGA	550
GCAGTCATTT	GTAACTCGGG	TGTAAACCAA	GACGGCAAGA	CTGCTGGTAT	600
TACAATGCCT	AATGGACACG	CGCAAGCTTC	TCTAATACGG	TCTGTTTATC	650
AGTCTACAGG	GATAGACCCT	TTAATGACGG	ACTATGTCGA	A	691

(2) INFORMATION FOR SEQ ID NO:40:

- 47 -

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 215

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE:

(A) DESCRIPTION: protein

(iii) HYPOTHETICAL: no

(v) FRAGMENT TYPE: internal fragment

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

His Leu Leu Glu Val Ser Tyr Glu Ala Leu Glu Asn Ala Gly Leu 5 10 15

Ser Leu Pro Cys Ile Ala Gly Thr Lys Met Gly Val Phe Val Gly 20 25 30

Gly Gly Asn Ala Xaa Tyr Arg Ser His Ile Gly Gln Asp Ile Asp 35 40 45

Asn Leu Pro Met Phe Glu Ala Thr Gly Asn Ala Glu Ala Leu Leu 50 55 60

Ala Asn Arg Val Ser Tyr Val Tyr Asp Leu Arg Gly Pro Ser Leu 65 70 75

Thr Thr Asp Thr Ala Cys Ser Ser Ser Leu Ala Ala Leu Asn Thr 80 85 90

Ala Phe Leu Ser Leu Gln Ala Gly Glu Ser Ser Thr Ala Leu Val 95 100 105

Gly Ser Ser Val Ile Arg Leu Arg Pro Glu Ser Ala Ile Ser Leu 110 115 120

Ser Ser Met Gln Leu Leu Ser Pró Asp Gly Lys Ser Tyr Ala Phe 125 130 135

Asp Glu Arg Ala Thr Ser Gly Phe Gly Arg Gly Glu Gly Ser Gly 140 145 150

Cys Ile Ile Leu Lys Pro Leu Asp Ala Ala Val Arg Asp Gly Asp 155 160 165

Pro Ile Arg Ala Val Ile Cys Asn Ser Gly Val Asn Gln Asp Gly
170 175 180

Lys Thr Ala Gly Ile Thr Met Pro Asn Gly His Ala Gln Ala Ser 185 190 195

Leu Ile Arg Ser Val Tyr Gln Ser Thr Gly Ile Asp Pro Leu Met 200 205 210

Thr Asp Tyr Val Glu

```
(2) INFORMATION FOR SEQ ID NO:41:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 637
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: genomic DNA
 (iii) HYPOTHETICAL: no
 (iv) ANTI-SENSE: no
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:
GCTGTTTCTT CAAACTAGCT GGCAATGCAT TGAAGATGCG GGATATAACC 50
CCACATCCTT TGCAGGTAGC AAGTGTGGCG TATTTGTCGG CTGCGAAACG 100
GGAGACTATG GAAAGATTGT GCAGCGATAT GAATTGAGCG CTCTCGGATT 150
GCTAGGCTCT TCTGCGGCAC TGCTCCCGGC AAGGATCTCC TATTTCCTCA 200
ACCTCCAGGG CCCTTGTATG GCGATCGACA CAGCCTGCTC TGCATCCCTA 250
GTTGCCATAG CCAACGCCTG CGACAGCCTG GTACTGGGTC ACTCCGATGC 300
AGCCTTGGCC GGAGGAGTCT ACGTCCTCTC CGGGCCGGAA ATGCACATTA 350
TGATGAGCAA AGCTGGTATC TTGTCACCCG ATGGCAGATG TTTCACCTTC 400
GATCGACGTG CTAACGGCTT TGTACCGGGC GAAGGTGTGG GCGTCGTGTT 450
ACTCAAACGC CTTGCCGATG CCGAAAAAGA CGGTGATAAT ATCTGTGGTG 500
TGATTCGAGG CTGGGGGGTG AATCAAGACG GCAAGACCAG TGGAATTACA 550
GCACCTAACG GACAGTCACA GCAACGATTG CAGAAAGAAG TCTACGAACG 600
GTTTCAGATT CAGCCAGCAG ACATTCAACT GGTTGAG
(2) INFORMATION FOR SEQ ID NO:42:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 212
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE:
 (A) DESCRIPTION: protein
 (iii) HYPOTHETICAL: no
 (v) FRAGMENT TYPE: internal fragment
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:
Leu Phe Leu Gln Thr Ser Trp Gln Cys Ile Glu Asp Ala Gly Tyr
Asn Pro Thr Ser Phe Ala Gly Ser Lys Cys Gly Val Phe Val Gly
Cys Glu Thr Gly Asp Tyr Gly Lys Ile Val Gln Arg Tyr Glu Leu
Ser Ala Leu Gly Leu Leu Gly Ser Ser Ala Ala Leu Leu Pro Ala
Arg Ile Ser Tyr Phe Leu Asn Leu Gln Gly Pro Cys Met Ala Ile
Asp Thr Ala Cys Ser Ala Ser Leu Val Ala Ile Ala Asn Ala Cys
```

- 49 -

Asp Ser Leu Val Leu Gly His Ser Asp Ala Ala Leu Ala Gly Gly 105

Val Tyr Val Leu Ser Gly Pro Glu Met His Ile Met Met Ser Lys 120

Ala Gly Ile Leu Ser Pro Asp Gly Arg Cys Phe Thr Phe Asp Arg 135

Arg Ala Asn Gly Phe Val Pro Glu Glu Gly Val Gly Val Val Leu 150

Leu Lys Arg Leu Ala Asp Ala Glu Lys Asp Gly Asp Asp Ile Cys 165

Gly Val Ile Arg Gly Trp Gly Val Asn Gln Asp Gly Lys Thr Ser 180

Gly Ile Thr Ala Pro Asn Gly Gln Ser Gln Gln Arg Leu Gln Lys 195

Glu Val Tyr Glu Arg Phe Gln Ile Gln Pro Ala Asp Ile Gln Leu 210

Val Glu

- (2) INFORMATION FOR SEQ ID NO:43:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 643
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

GATGATGATA GAAGTCGCTT ACCAAGGACT TGAGAGTGCA GGGCTGTCTC 50
TTCAGGATGT TGCCGGATCG AGGACTGGAG TCTTCATTGG CCATTTCAGC 100
AGTGATTACC GAGACATGAT ATTCAGAGAT CCCGAGAGGG CACCGACCTA 150
CACTTTCAGT GGGGTTAGTA AGACGTCATT GGCGAATCGC ATCTCCTGGC 200
TGTTCGACCT GAAAGGCCCA AGTTTCAGCT TGGACACAGC CTGCTCGTCG 250
AGTCTGGTCG CCCTGCATTT GGCTTGCCAA AGCTTACGCG CTGGAGAGTC 300
AGATATCGCC ATTGTCGAG GGGTCAACCT TCTCTGGAAT CCGGAGTTGT 350
TCATGTATCT CTCCAATCAG CACTTTCTCT CGCCAGATGG GAAATGTAAA 400
AGCTTTGACG AATCCGGCGA TGGCTATGGT CGTGGCGAAG GCATTGCCGC 450
TCTTGTACTA AGAAGAGTCG ACGACGCGAT TGCGGCCCGG GACCCTATTC 500
GTGCCATCAT TCGCGGTACT GGGAGTAATC AGGACGGACA CACCAAAGGC 550
TTCACCCTCC CCAGCGCAGA AGCCCAGGCG AGGTTGATTA GAGATACGTA 600
CTCTGCCGCG GGGCTAGGTT TTAGAGACAC GCGATACGTA GAA

- (2) INFORMATION FOR SEQ ID NO:44:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 214
 - (B) TYPE: amino acid

- 50 -

- (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:
 Met Met Ile Glu Val Ala Tyr Gln Gly Leu Glu Ser Ala Gly Leu

5 10 15

Ser Leu Gln Asp Val Ala Gly Ser Arg Thr Gly Val Phe Ile Gly 20 25 30

His Phe Ser Ser Asp Tyr Arg Asp Met Ile Phe Arg Asp Pro Glu 35 40 45

Arg Ala Pro Thr Tyr Thr Phe Ser Gly Val Ser Lys Thr Ser Leu 50 55 60

Ala Asn Arg Ile Ser Trp Leu Phe Asp Leu Lys Gly Pro Ser Phe 65 70 75

Ser Leu Asp Thr Ala Cys Ser Ser Ser Leu Val Ala Leu His Leu 80 85 90

Ala Cys Gln Ser Leu Arg Ala Gly Glu Ser Asp Ile Ala Ile Val 95 100 105

Gly Gly Val Asn Leu Leu Trp Asn Pro Glu Leu Phe Met Tyr Leu 110 115 120

Ser Asn Gln His Phe Leu Ser Pro Asp Gly Lys Cys Lys Ser Phe 125 130 135

Asp Glu Ser Gly Asp Gly Tyr Gly Arg Gly Glu Gly Ile Ala Ala 140 145 150

Leu Val Leu Arg Arg Val Asp Asp Ala Ile Ala Ala Arg Asp Pro 155 160 165

Ile Arg Ala Ile Ile Arg Gly Thr Gly Ser Asn Gln Asp Gly His
170 175 180

Thr Lys Gly Phe Thr Leu Pro Ser Ala Glu Ala Gln Ala Arg Leu 185 190 195

Ile Arg Asp Thr Tyr Ser Ala Ala Gly Leu Gly Phe Arg Asp Thr 200 205 210

Arg Tyr Val Glu

- (2) INFORMATION FOR SEQ ID NO:45:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 655
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

- 51 -

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

RGTCCTTATG GAGACCGTCT ACGAGGCAAT TGAGTCTGCG GGTATGACTT 50 TGAAGGGGCT GCAAGGCAGC GACACAAGTG TGTATGCCGG CGTCATGTGT 100 GGCGACTACG AGGCCATACA GCTCCGCGAT CTGGACGCGG CCCCGACTTA 150 TTTCGCAGTG GGAACCTCGC GAGCTATCCT CTCCAATCGA ATCTCGTATT 200 TCTTCAACTG GCACGGCGC TCCATCACCA TGGACACGGC ATGTTCCTCT 250 AGTCTGGTCG CCATTCACTT GGCCGTTCAG RCGCTTCGGG CAAATGAATC 300 ACGRATGGCC GTGGCGTGTG GGTCGAACCT CATTCTCGGA CCCGAGAGTT 350 ACATTATTGA AAGCAAGGTG AAGATGCTGT CCCCGGACGG TCTCAGCCGA 400 ATGTGGGATA AAGACGCCAA CGGCTATGCG CGTGGAGATG GCGTTGCGGC 450 CGTTGTTTTG AAGACTCTCA GCGCCGCGCT GGCGGACGGA GACCACATTG 500 AATGTCTCAT ACGGGAGACG GGACTCAACC AGGACGGTGC GACAGCCGGT 550 CTCACCATGC CTAGCGCCAC TGCGCAGCGA GCTCTTATTC ACAGTACGTA 600 CACCAAGGCA GGTCTTGATC TCACTGCCCA GGCAGACCGT CCCCAGTATT 650 **TCGAG** 655

- (2) INFORMATION FOR SEQ ID NO:46:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 218
 - (B) TYPE: amino acid (D) TOPOLOGY: linear

 - (ii) MOLECULE TYPE:
 - (A) DESCRIPTION: protein
 - (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:
- Val Leu Met Glu Thr Val Tyr Glu Ala Ile Glu Ser Ala Gly Met
- Thr Leu Lys Gly Leu Gln Gly Ser Asp Thr Ser Val Tyr Ala Gly 25
- Val Met Cys Gly Asp Tyr Glu Ala Ile Gln Leu Arg Asp Leu Asp
- Ala Ala Pro Thr Tyr Phe Ala Val Gly Thr Ser Arg Ala Ile Leu
- Ser Asn Arg Ile Ser Tyr Phe Phe Asn Trp His Gly Ala Ser Ile
- Thr Met Asp Thr Ala Cys Ser Ser Ser Leu Val Ala Ile His Leu
- Ala Val Gln Xaa Leu Arg Ala Asn Glu Ser Arg Met Ala Val Ala 100
- Cys Gly Ser Asn Leu Ile Leu Gly Pro Glu Ser Tyr Ile Ile Glu
- Ser Lys Val Lys Met Leu Ser Pro Asp Gly Leu Ser Arg Met Trp

- 52 -

				125					130					135
Asp	Lys	Asp	Ala	Asn 140	Gly	Tyr	Ala	Arg	Gly 145	Asp	Gly	Val	Ala	Ala 150
Val	Val	Leu	Lys	Thr 155	Leu	Ser	Ala	Ala	Leu 160	Ala	Asp	Gly	Asp	His 165
Ile	Glu	Cys	Leu	Ile 170	Arg	Glu	Thr	Gly	Leu 175	Asn	Gln	Asp	Gly	Ala 180
Thr	Ala	Gly	Leu	Thr 185	Met	Pro	Ser	Ala	Thr 190	Ala	Gln	Arg	Ala	Leu 195
Ile	His	Ser	Thr	Tyr 200	Thr	Lys	Ala	Gly	Leu 205	Asp	Leu	Thr	Ala	Gln 210
Ala	Asp	Ara	Pro	Gln	Tvr	Phe	Glu							

Ala Asp Arg Pro Gln Tyr Phe Glu 215

- (2) INFORMATION FOR SEQ ID NO:47:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 754
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

AGGTCTGTTG	GAGACGGTTT	ATCGCGCCTT	TGAAAACGGT	AAGGCCACCC	50
TGGGAATAAA	CCGGCTTCTC	GTCCTGACGG	CTTACTCTAT	GCTAGCTGGT	100
ATACCCATGG	AGCAGGTCCT	CGGGTCGAAG	ACATCCGTTT	ACGTGGGATG	150
TTTCACCCGC	GAGTTCGAGC	AGTTGCTCGC	GAGGGACCCC	GAGATGAATC	200
TGAAATACAT	CGCTACGGGC	ACCGGCACGG	CGATGCTGTC	GAATCGCCTC	250
TCCTGGTTCT	ATGACTTGAA	AGGCGCCAGT	ATCACTCTTG	ATACTGCCTG	300
TTCGTCCAGT	CTCAATGCGT	GCCATCTTGC	TTGCGCAAGC	TTACGTAATG	350
GAGAAGCCAA	TATGGTAAGA	CTCCAACTCA	TCGCGGGACT	GAACAATTGC	400
ATACTGATCC	ATCAAAGGCC	CTGGTAGGAG	GCTGCAATCT	TTTCTATAAC	450
CCGGAAACGA	TCATCCCTCT	GACAAATCTA	GGCTTTCTTT	CTCCGGATAA	500
CAAATGTTAT	AGTTTTGACC	ATCGTGCTAA	CGGTTACTCT	CGCGGCGAGG	550
GGTTTGGTAT	TCTTGTATTG	AAGAGACTGT	CGGACGCTCT	ACGCGATAAC	600
GACACTGTCC	GTGCAGTGAT	TCGGGCCTCT	TCGTCTAACC	AGGATGGCAA	650
GTCTCCCGGT	ATCACACAGC	CTACCAAACA	AGCGCAAATA	CAACTGATCA	700
AAGACACTTA	CGCGGCTGCC	GGGCTGGACT	ATACGCAAAC	CCGCTACTTC	750
GANA					754

- (2) INFORMATION FOR SEQ ID NO:48:
- (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 214 (B) TYPE: amino acid

- 53 -

(D) TOPOLOGY: linear
(ii) MOLECULE TYPE:

- (A) DESCRIPTION: protein
 (iii) HYPOTHETICAL: no
 (v) FRAGMENT TYPE: internal fragment
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:
 Gly Leu Leu Glu Thr Val Tyr Arg Ala Phe Glu Asn Ala Gly Ile
 5 10 15

 Pro Met Glu Gln Val Leu Gly Ser Lys Thr Ser Val Tyr Val Gly
 20 25 30

 Cys Phe Thr Arg Glu Phe Glu Gln Leu Leu Ala Arg Asp Pro Glu
 35 40 45

 Met Asn Leu Lys Tyr Ile Ala Thr Gly Thr Gly Thr Ala Met Leu
 50 55 60

 Ser Asn Arg Leu Ser Trp Phe Tyr Asp Leu Lys Gly Ala Ser Ile
 65 70 75

 Thr Leu Asp Thr Ala Cys Ser Ser Ser Leu Asn Ala Cys His Leu
 80 85 90

 Ala Cys Ala Ser Leu Arg Asn Gly Glu Ala Asn Met Ala Leu Val
- Thr Asn Leu Gly Phe Leu Ser Pro Asp Asn Lys Cys Tyr Ser Phe
- Asp His Arg Ala Asn Gly Tyr Ser Arg Gly Glu Gly Phe Gly Ile 140 145 150

Gly Gly Cys Asn Leu Phe Tyr Asn Pro Glu Thr Ile Ile Pro Leu

- Leu Val Leu Lys Arg Leu Ser Asp Ala Leu Arg Asp Asn Asp Thr
 155 160 165
- Val Arg Ala Val Ile Arg Ala Ser Ser Ser Asn Gln Asp Gly Lys 170 175 180
- Ser Pro Gly Ile Thr Gln Pro Thr Lys Gln Ala Gln Ile Gln Leu 185 190 195
- Ile Lys Asp Thr Tyr Ala Ala Ala Gly Leu Asp Tyr Thr Gln Thr 200 205 210

Arg Tyr Phe Xaa

(2) INFORMATION FOR SEQ ID NO:49:

110

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 722
- (B) TYPE: nucleic acid

- 54 -

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

CTTGTTACTC	GAGACTGTCT	ACGAATCTCT	CGAGTCGGCT	GGTCAGACAA	50
TCGAAGGCTT	GCAAGGATCG	CAAACCGCAG	TGTATATTGG	TGTAATGTGC	100
GATGATTACG	CCGAGCTCGT	GTATCATGAT	ACAGAGTCAA	TCCCGACCTA	150
TGCTGCAACT	GGTAGTGCAC	GCAGCATGAT	GTCGAACCGA	ATCTCTTACT	200
TCTTTGACTG	GAAGGGGCCG	TCAATGACCA	TTGATACTGC	CTGTTCCTCT	250
AGTCTTGTCG	CTGTCCACCA	GGCCGTTCAA	GTTCTCAGGA	GCGGAGAATC	300
CCGCGTCGCA		GGGCAAATCT	CATCTTCGGA	CCCAGTAAGT	350
CTTCCTAAAA	TATGAGTAGG	CTCCAGTCAT	TGTGATTGCT	AATCACTTCA	400
ACCATTTACA	GAGATGTACA	TTGCTGAGAG	CAACCTCAAT	ATGTTGTCCC	450
CAACTGGSCG	STCCCGAATG	TGGGACGCTA	ACSCGGATGG	CTATGCACGA	500
GGAGAGGGTA	TTGCATCTGT	CGTACTCAAA	ACTCTTAGCT	CTGCTATAGC	550
AGATGGTGAT	ACCATCGAAT	GTTTGATCCG	AGAAACCGGT	GTCAACCAGG	600
ATGGCCGCAC		ACTATGCCAA	GCTCCGCAGC	CCAAGCCAGT	650
TTGATCCGTC	AGACTTACGC	CAGAGCTGGT	TTGGACCTGG	CGAAGCAAGC	700
TGATCGGCCT	CAATTCTTTG	AG			722

- (2) INFORMATION FOR SEQ ID NO:50:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 218
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

Leu Leu Glu Thr Val Tyr Glu Ser Leu Glu Ser Ala Gly Gln
5 10 15

Thr Ile Glu Gly Leu Gln Gly Ser Gln Thr Ala Val Tyr Ile Gly
20 25 30

Val Met Cys Asp Asp Tyr Ala Glu Leu Val Tyr His Asp Thr Glu 35 40 45

Ser Ile Pro Thr Tyr Ala Ala Thr Gly Ser Ala Arg Ser Met Met 50 55 60

Ser Asn Arg Ile Ser Tyr Phe Phe Asp Trp Lys Gly Pro Ser Met
65 70 75

Thr Ile Asp Thr Ala Cys Ser Ser Ser Leu Val Ala Val His Gln
80 85 '90

Ala Val Gln Val Leu Arg Ser Gly Glu Ser Arg Val Ala Val Ala 95 100 105

Ala Gly Ala Asn Leu Ile Phe Gly Pro Lys Met Tyr Ile Ala Glu
110 115 120

- 55 -

Ser Asn Leu Asn Met 125 Leu Ser Pro Thr Gly Arg Ser Arg Met Trp 135

Asp Ala Asn Xaa Asp Gly Tyr Ala Arg Gly Glu Gly Ile Ala Ser 150

Val Val Leu Lys Thr Leu Ser Ser Ala Ile Ala Asp Gly Asp Thr 165

Ile Glu Cys Leu Ile Arg Glu Thr Gly Val Asn Gln Asp Gly Arg 180

Thr Thr Gly Ile Thr Met Pro Ser Ser Ala 190 Ala Gln Ala Ser Leu 195

Ile Arg Gln Thr Tyr Ala Arg Ala Gly Leu Asp Leu Ala Lys Gln Ala Asp Arg Pro Gln Phe Phe Glu

- (2) INFORMATION FOR SEQ ID NO:51:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 703
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

AATATTACTT GAGACGATCT ACGAAGGACT TGAGTCCGCC GGACTTACCA 50
TAAAGGGGCT GCAAGGTTCC CAAACAGCTG TGTACGTCGG TCTCATGGCT 100
GGAGACTACT ATGACATCCA GATGCGCGAC ATAGAGACTT TGCCTCGATA 150
TGCTGCTACC GGGACTGCTC GTAGCATTAT GAGCAACCGA GTCTCTTATT 200
TCTTTGATTG GAAAGGTCCG TCCATGACAA TTGATACGGC CTGCTCTTCT 250
TCCCTCGTTG CCGTTCATCA GGCTGTCGAG ATTCTCCGGA GAGGTGATGT 300
TACCATGGCT GTGGCTGCCG GCGCCAACCT GATCTATGGT CCTGAGGCTT 350
ATATATCCGA GTCGAATCTG AACATGCTGT CGCCGAGCGG AAGATCGCGC 400
ATGTGGGATT CAAGTGCGGA CGGATACGGC CGCGGAGAAG GGTTTGCGGC 450
AGTGATGTTG AAGACCCTGA GCGCTGCAAT TCGTGATGGA GATCATATCG 500
AGTGCATTAT CCGGGAGACA GGAATTAACC AGGATGGCAG AACAGCCGGA 550
ATTACCATGC CAAGTGCTGT CAGCCAGACT CGATTGATCA AAGACACATA 600
TGCTCGAGCT GGACTCGATT GCAGGAAAGA AGCGCAGTAC TGCCAGTACT 700
TTGAAGGTAA GCGAATAACT TTTCTTGATA AACGCACTTA CTAAGATCTT 700

- (2) INFORMATION FOR SEQ ID NO:52:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 234
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

- 56 -

- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:
- Ile Leu Leu Glu Thr Ile Tyr Glu Gly Leu Glu Ser Ala Gly Leu
 5 10 15
- Thr Ile Lys Gly Leu Gln Gly Ser Gln Thr Ala Val Tyr Val Gly
 20 25 30
- Leu Met Ala Gly Asp Tyr Tyr Asp Ile Gln Met Arg Asp Ile Glu
 35 40 45
- Thr Leu Pro Arg Tyr Ala Ala Thr Gly Thr Ala Arg Ser Ile Met
 50 55 60
- Ser Asn Arg Val Ser Tyr Phe Phe Asp Trp Lys Gly Pro Ser Met
 65 70 75
- Thr Ile Asp Thr Ala Cys Ser Ser Ser Leu Val Ala Val His Gln 80 85 90
- Ala Val Glu Ile Leu Arg Arg Gly Asp Val Thr Met Ala Val Ala 65 70 75
- Ala Gly Ala Asn Leu Ile Tyr Gly Pro Glu Ala Tyr Ile Ser Glu
 110 115 120
- Ser Asn Leu Asn Met Leu Ser Pro Ser Gly Arg Ser Arg Met Trp
 125 130 135
- Asp Ser Ser Ala Asp Gly Tyr Gly Arg Gly Glu Gly Phe Ala Ala 140 145 150
- Val Met Leu Lys Thr Leu Ser Ala Ala Ile Arg Asp Gly Asp His
 155 160 165
- Ile Glu Cys Ile Ile Arg Glu Thr Gly Ile Asn Gln Asp Gly Arg
 170 175 180
- Thr Ala Gly Ile Thr Met Pro Ser Ala Val Ser Gln Thr Arg Leu 185 190 195
- Ile Lys Asp Thr Tyr Ala Arg Ala Gly Leu Asp Cys Arg Lys Glu 200 205 210
- Ala Glu Arg Cys Gln Tyr Phe Glu Gly Lys Arg Ile Thr Phe Leu 215 220 225
- Asp Lys Arg Thr Tyr Xaa Asp Leu Xaa 230
- (2) INFORMATION FOR SEQ ID NO:53:
- (i) SEQUENCE CHARACTERISTICS:

- 57 -

```
(A) LENGTH: 643
```

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

GCTGTTGCTG GAGGTAAGTT GGGAAGCTTT AGAAAATGCT GGCAAAGCAC 50
CTGAAAAGCT AGCAGGAAGC AATACAGGTG TATTTGTTGG CATTAGCAAC 100
TTTGATTATT CACAGTTGCA AATTAATCAA ACCGCTCAAC TAGATGCCTA 150
TACAGGCACT GGCAATGCTT TTAGCATCGC AGCTAACCGT CTTTCCTATT 200
TTCTAGACTT GCACGGACCT AGCTGGCAG TAGACACAGC CTGTTCATCA 250
TCTCTAGTAG CAGTCCATCA AGCTTGCCAA AGTCTGCGTC AAGGAGAATG 300
CGAACTAGCC CTCGCTGGTG GTGTAAATCT GATTCTCACC CCACAATTAA 350
CCATCACTTT TTCCCAAGCT GGGATGATGG CTGCTGATGG TCGTTGCAAA 400
ACCTTTGATG CTGATGCTGA TGGTTACGTG CGGGGCGAAG GTTGTGGTGT 450
TGTAATTCTC AAGCGTTCG CCAACGCTCA ACGAGATGGA GACAATATTT 500
TGGCAGTTAT TAAAGGTTCG GCAGTTAACC AAGATGGTCG CAGCAACGGA 550
TTGACAGCAC CCAACGGTCA TGCCCAACAA GCAGTTATTC GCCAAGCATT 600
ACAAAAATGCC AATGTTGCAG CTGCCGAGAT TAGCTATGTA GAA 643

- (2) INFORMATION FOR SEQ ID NO:54:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 214
 - (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

Leu Leu Glu Val Ser Trp Glu Ala Leu Glu Asn Ala Gly Lys
5 10 15

Ala Pro Glu Lys Leu Ala Gly Ser Asn Thr Gly Val Phe Val Gly

20 25 30

Ile Ser Asn Phe Asp Tyr Ser Gln Leu Gln Ile Asn Gln Thr Ala 35 40 45

Gln Leu Asp Ala Tyr Thr Gly Thr Gly Asn Ala Phe Ser Ile Ala
50 55 60

Ala Asn Arg Leu Ser Tyr Phe Leu Asp Leu His Gly Pro Ser Trp
65 70 75

Ala Val Asp Thr Ala Cys Ser Ser Ser Leu Val Ala Val His Gln
80 85 90

Ala Cys Gln Ser Leu Arg Gln Gly Glu Cys Glu Leu Ala Leu Ala 95 100 105

- 58 -

	Gly	Gly	Val	Asn	Leu 110	Ile	Leu	Thr	Pro	Gln 115	Leu	Thr	Ile	Thr	Phe 120
	Ser	Gln	Ala	Gly	Met 125	Met	Ala	Ala	Asp	Gly 130	Arg	Cys	Lys	Thr	Phe 135
,	Asp	Ala	Asp	Ala	Asp 140	Gly	Tyr	Val	Arg	Gly 145	Glu	Gly	Cys	Gly	Val 150
	Val	Ile	Leu	Lys	Arg 155	Leu	Ala	Asn	Ala	Gln 160	Arg	Asp	Gly	Asp	Asn 165
	Ile	Leu	Ala	Val	Ile 170	Lys	Gly	Ser	Ala	Val 175	Asn	Gln	Asp	Gly	Arg 180
	Ser	Asn	Gly	Leu	Thr 185	Ala	Pro	Asn	Gly	His 190	Ala	Gln	Gln	Ala	Val 195
	Ile	Arg	Gln	Ala	Leu 200	Gln	Asn	Ala	Asn	Val 205	Ala	Ala	Ala	Glu	Ile 210
	a	m	** - 7	~ 7											

Ser Tyr Val Glu

- (2) INFORMATION FOR SEQ ID NO:55:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH:655
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

TCTTTTTTTG	GAGTGTGCTT	GGGAAGCGCT	GGAAAATGCT	GGTTATGACC	50
CGAAAACAGA	CAAAAATCTA	ATTGGCGTTT	ATGCAGGGGG	GAATCTAAGT	100
ACCTACTTAC	TTAACAATCT	CGCCTCACAC	CCTGAACTCA	TTAAAGCGCT	150
GGAGTCACAA	ATTACAATTG	CTAATGATAA	GGACTTTATA	TGCACACGAG	200
TTTCTTACAA	ATTAAACCTG	AAAGGGCCGA	GTATTAGTGT	CGGCACGGCC	250
TGCTCTACGT	CATTAGTAGC	AGTTCACTTG	GCATGTCGAG	GATTGCTAAG	300
TTACCAGTGT	GATATGGCAC	TGGCTGGCGG	TATTGCGATA	CAAGTTCCAC	350
AAAAACAAGG	TTATTTCTAT	CAAGAAGGTG	GCATGGCCTC	TCCTGATGGC	400
CACTGTCGGG	CCTTTGATGC	TAAAGCACAA	GGTAGCCCTT	TTGGCAAAGG	450
AGCAGGTATT	GTCGTGCTGA	AAAGATTGGA	AGATGCTGTA	GCTGATGGAG	500
ACTGCATTTA	TGCGGTTATC	AAAGGTTCAG	CCATCAATAA	CGACGGTTCC	550
GAGAAGGTGA	GTTACACCGC	ACCCAGTGTA	ACAGGCCAAG	CAGAAGTGAT	600
TGCCGAGGCT	CAGGCGATCG	CTAACTTTGA	TTCTGAAACA	ATCACCTACA	650
TTGAA					655

- (2) INFORMATION FOR SEQ ID NO:56:
- (i) SEQUENCE CHARACTERISTICS:

- 59 -

(A) LENGTH: 217

(B) TYPE: amino acid
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE:
(A) DESCRIPTION: protein
(iii) HYPOTHETICAL: no
(v) FRAGMENT TYPE: internal fragment
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:
Leu Phe Leu Glu Cys Ala Trp Glu Ala Leu Glu Asn Ala Gly Tyr
5 10 15

Asp Pro Lys Thr Asp Lys Asn Leu Ile Gly Val Tyr Ala Gly Gly
20 25 30

Asn Leu Ser Thr Tyr Leu Leu Asn Asn Leu Ala Ser His Pro Glu
35 40 45

Leu Ile Lys Ala Leu Glu Ser Gln Ile Thr Ile Ala Asn Asp Lys
50 55 60

Asp Phe Ile Cys Thr Arg Val Ser Tyr Lys Leu Asn Leu Lys Gly
65 70 75

Pro Ser Ile Ser Val Gly Thr Ala Cys Ser Thr Ser Leu Val Ala
80 85 90

Val His Leu Ala Cys Arg Gly Leu Leu Ser Tyr Gln Cys Asp Met

Arg Ala Phe Asp Ala Lys Ala Gln Gly Ser Pro Phe Gly Lys Gly
140 145 150

Ala Gly Ile Val Val Leu Lys Arg Leu Glu Asp Ala Val Ala Asp
155 160 165

Ala Leu Ala Gly Gly Ile Ala Ile Gln Val Pro Gln Lys Gln Gly

Tyr Phe Tyr Gln Glu Gly Gly Met Ala Ser Pro Asp Gly His Cys

100

- Gly Asp Cys Ile Tyr Ala Val Ile Lys Gly Ser Ala Ile Asn Asn 170 175 180
- Asp Gly Ser Glu Lys Val Ser Tyr Thr Ala Pro Ser Val Thr Gly 185 190 195
- Gln Ala Glu Val Ile Ala Glu Ala Gln Ala Ile Ala Asn Phe Asp 200 205 210

Ser Glu Thr Ile Thr Tyr Ile 215

(2) INFORMATION FOR SEQ ID NO:57:

- 60 -

```
(i) SEQUENCE CHARACTERISTICS:
```

- (A) LENGTH: 765
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

ATTGCTGCTT GAAAACGTCT ATGAAGCTCT TGAAAACGGT GAGCGGTTCT 50
TCAAGAGAAT ATTGATGCAT CAATATGCTA ACTTGATGTC AATCATCAGC 100
TGGTATTCCT CTGAGCGAGT CCGTCTCTTC TAACACCTCC GTTTATGTTG 150
GCTCATTCGG TGATGACTAT AAGACGATTC TCAATACCGA TTTTGAGAGT 200
TGGGTCAAGT ACAAAGGCAC CGGTGTCTAT AACTCGATTC TGGCCAATCG 250
AATCAGCTGG TTCTACGACT TTAAAGGAGC CAGCGTCACG CTAGATACCG 300
CATGCTCGAG TAGCTTGGTA GCCGTGCATA TGGCTTGCCA GGATTTGAGG 350
TTGGGAGAGT CTAGAATGGT CAGTGTATTT CTCTATTGAA AAGTACTAGA 400
GGATTCTAAT TGACGTATTT GGATACCAGT CCGTTGTCGG CGGTGTCAAC 450
ATCATTGGCC ATCCGTTGCT CGTCCACGAT CTAAGCAAGC TCGGAGCGCT 500
CTCTCCTGAT GGCGTGTGCT ACACTTTCGA TGAACGGCC AATGGATATT 550
CCCGGGGAGA AGGTGTCGGC ACCATCGTTC TCAAACGGCT CTCTGACGCA 600
ATCGAAGACGT AAAACAGCAG GTATATTTGT CCCTTCAGTC CAAGCCCAGG 700
AGCGACTTAT CCGGGATACC TATGAGAAGG CTGGGCTTGA CCGGACACGC 750
ACGACATATT TGGAA

- (2) INFORMATION FOR SEQ ID NO:58:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 216
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

Leu Leu Glu Asn Val Tyr Glu Ala Leu Glu Asn Ala Gly Ile 5 10 15

Pro Leu Ser Glu Ser Val Ser Ser Asn Thr Ser Val Tyr Val Gly
20 25 30

Ser Phe Gly Asp Asp Tyr Lys Thr Ile Leu Asn Thr Asp Phe Glu

Ser Trp Val Lys Tyr Lys Gly Thr Gly Val Tyr Asn Ser Ile Leu
50 55 60

Ala Asn Arg Ile Ser Trp Phe Tyr Asp Phe Lys Gly Ala Ser Val 65 70 75

Thr Leu Asp Thr Ala Cys Ser Ser Ser Leu Val Ala Val His Met 80 85 90

- 61 -

Ala	Cys	Gln	Asp	Leu 95	Arg	Leu	Gly	Glu	Ser 100	Arg	Met	Val	Ser	Ser 105
Val	Val	Gly	Gly	Val 110	Asn	Ile	Ile	Gly	His 115	Pro	Leu	Leu	Val	His 120
Asp	Leu	Ser	Lys	Leu 125	Gly	Ala	Leu	Ser	Pro 130	Asp	Gly	Val	Cys	Tyr 135
Thr	Phe	Asp	Glu	Arg 140	Ala	Asn	Gly	Tyr	Ser 145	Arg	Gly	Glu	Gly	Val 150
Gly	Thr	Ile	Val	Leu 155	Lys	Arg	Leu	Ser	Asp 160	Ala	Ile	Glu	Asp	Gly 165
Asp	Thr	Ile	Arg	Ala 170	Ile	Ile	Arg	Ala	Ser 175	Gly	Cys	Asn	Gln	Asp 180
Gly	Lys	Thr	Ala	Gly 185	Ile	Phe	Val	Pro	Ser 190	Val	Gln	Ala	Gln	Glu 195
Arg	Leu	Ile	Arg	Asp 200	Thr	Tyr	Glu	Lys	Ala 205	Gly	Leu	Asp	Arg	Thr 210
Arg	Thr	Thr	Tyr	Leu 215	Glu									

- (2) INFORMATION FOR SEQ ID NO:59:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 709
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

TAAGTTACTG GAAACAGCAT ATACTGCGTT TGAGAACGGT GAGTACGCCT 50
TGCGTCGTAT CCCCTCCCCC CTCATGGAAG ATCTCAATCT GATCTCGTGA 100
AACAGCCGGC ATCGGGTTAG AAGCGGCACG AGGATCAAAC ACTTCAGTAC 150
ATATAGGTTG TTTTAATATC GACTATACAA GCAACCATAG TAGAGATCCA 200
GAGCAGATGC ACAAATATAC GGGGACTGGA GGAGCACCTT CCATGCTGTC 250
GAACAGACTG AGTTGGTTTT TCGATCTGAG AGGACCGAGC TTGACCTTGG 300
ACACGGCATG CTCTAGTAGC ATGGTTCT GTCGGGGGTT GTAATCTCAT 400
CTACAGCGTC GACAATCTGA CATGGGTCTT GTCGGGGGTT GTAATCTCAT 400
CTACAGCGTC GACATGACCA TGGCTCTATC CAAGCTTGGA TTTCTCTCCC 450
ATAACAGTCG GTGCTACAGT TTTGACCATC GAGCGGATGG GTACGCCAGA 500
GGTGAAGGCT TTGGAGTTTT AATTCTCAAA CGTGTCGAAG ACGCCATACG 550
AGATGGGGAT ACTATACGAG GAGTCATTCG ATTAACAAGC TCCAATCAAG 600
ACGGCCATAC TCCGGGAATA ACAATGCCCA GCAGAGACGC CCAAGCAAGT 650
CTACTTTGA

(2) INFORMATION FOR SEQ ID NO:60:

- 62 -

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 213
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

Lys Leu Leu Glu Thr Ala Tyr Thr Ala Phe Glu Asn Ala Gly Ile 5 10 15

Gly Leu Glu Ala Ala Arg Gly Ser Asn Thr Ser Val His Ile Gly
20 25 30

Cys Phe Asn Ile Asp Tyr Thr Ser Asn His Ser Arg Asp Pro Glu
35 40 45

Gln Met His Lys Tyr Thr Gly Thr Gly Gly Ala Pro Ser Met Leu
50 55 60

Ser Asn Arg Leu Ser Trp Phe Phe Asp Leu Arg Gly Pro Ser Leu 65 70 75

Thr Leu Asp Thr Ala Cys Ser Ser Ser Met Val Ala Leu Asp Leu 80 85 90

Ala Cys Gln Thr Leu Gln Ser Gly Gln Ser Asp Met Gly Leu Val 95 100 105

Gly Gly Cys Asn Leu Ile Tyr Ser Val Asp Met Thr Met Ala Leu 110 115 120

Ser Lys Leu Gly Phe Leu Ser His Asn Ser Arg Cys Tyr Ser Phe 125 130 135

Asp His Arg Ala Asp Gly Tyr Ala Arg Gly Glu Gly Phe Gly Val 140 145 150

Leu Ile Leu Lys Arg Val Glu Asp Ala Ile Arg Asp Gly Asp Thr
155 160 165

Ile Arg Gly Val Ile Arg Leu Thr Ser Ser Asn Gln Asp Gly His
170 175 180

Thr Pro Gly Ile Thr Met Pro Ser Arg Asp Ala Gln Ala Ser Leu 185 190 195

Ile Arg Lys Thr Tyr Gln Gln Ala Gly Leu Asp Met Gln Met Thr 200 205 210

Gly Tyr Phe

- (2) INFORMATION FOR SEQ ID NO:61:
- (i) SEQUENCE CHARACTERISTICS:

- 63 -

```
(A) LENGTH: 649
```

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

AATGTTGCTC GAGATCACCT ACGAAGCCCT GGAGAACGCT GGACTTCCTT 50
TGAGTAAGGT TGTCGGCTCT GATACAGCCT GCTTCATTGG TGGCTTTACA 100
CGAGATTATG ATGATTTGAC CACTTCGGAG CTCGCGAAGA CCCTACTCTA 150
CACAACTACC GGCAACGGCC TGACGATGAT GTCGAATCGC TTATCCTGGT 200
TCTACGACCT TCATGGCCCG TCGGTTTCGC TCGACACAGC ATGTTCTAGC 250
TCGCTGGTTG CACTAAACCT TGCATGCCAG ACAATCCGAG CATCGACGAA 300
TGACTCTCGA CAGGCGATAG TTGGAGGTGT CAATCTCATG CTGCTCCCTG 350
ATCAGATGAC CACGATTAAT CCTCTGCATT TCTTAAGTCC TGATAGCCAA 400
TGCTACTCGT TTGATGACCG TGCAAACGGT TACACCCGTG GAGAAGGTAT 450
TGGCATACTG GTGCTCAAGC ACATCAATGA TGCTATTCGA GATGGAGACC 500
GTATAAGGGC AGTAATCCGC GGCACTGGGG TCAACTCCGA TGGCAAGACC 550
CCTGGCATTA CCTTGCCAAG CACGGCTGCA CAAGCCTCTT TAATTCGCGC 600
AACGTACGCC TCGGCAGGC TGGACCCAGC TCACACCGGC TACTTTGAA 649

- (2) INFORMATION FOR SEO ID NO:62:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 216
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE:
 - (A) DESCRIPTION: protein
 - (iii) HYPOTHETICAL: no
 - (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

Met Leu Leu Glu Ile Thr Tyr Glu Ala Leu Glu Asn Ala Gly Leu 5 10 15

Pro Leu Ser Lys Val Val Gly Ser Asp Thr Ala Cys Phe Ile Gly 20 25 30

Gly Phe Thr Arg Asp Tyr Asp Asp Leu Thr Thr Ser Glu Leu Ala 35 40 45

Lys Thr Leu Leu Tyr Thr Thr Gly Asn Gly Leu Thr Met Met 50 55 60

Ser Asn Arg Leu Ser Trp Phe Tyr Asp Leu His Gly Pro Ser Val 65 70 75

Ser Leu Asp Thr Ala Cys Ser Ser Ser Leu Val Ala Leu Asn Leu 80 85 90

Ala Cys Gln Thr Ile Arg Ala Ser Thr Asn Asp Ser Arg Gln Ala
95 100 105

Ile Val Gly Gly Val Asn Leu Met Leu Leu Pro Asp Gln Met Thr
110 115 120

- 64 -

Thr Ile Asn Pro Leu His Phe Leu Ser Pro Asp Ser Gln Cys Tyr 135

Ser Phe Asp Asp Arg Ala Asn Gly Tyr Thr Arg Gly Glu Gly Ile 150

Gly Ile Leu Val Leu Lys His Ile Asn Asp Ala Ile Arg Asp Gly 165

Asp Cys Ile Arg Ala Val Ile Arg Gly Thr Gly Val Asn Ser Asp 180

Gly Lys Thr Pro Gly Ile Thr Leu Pro Ser Thr Ala Ala Gln Ala 195

Ser Leu Ile Arg Ala Thr Tyr Ala Ser Ala Gly Leu Asp Pro Ala 210

His Thr Gly Tyr Phe Glu 215

- (2) INFORMATION FOR SEQ ID NO:63:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 747
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

TATGCTACTT GAATGCACAT ACGAAGCGTT AGAGAATGGT CAGTGAGCTA 50
CGAGCCGATT TTCATATATC ATGGCTAACA AGTTGAAGCT GGCATACCTC 100
TAGATAAAGT AGTAGGAGAA CCCGTAGGGG TGTACGTCGG CTCAGCTAGT 150
TCCGATTACT CGGACATCGT GAACTCAGAC GGCGAGATGG TCTCCACTTA 200
CACGGCCACG GGGTTGGCCG CAACGATGAT GGCAAACCGC ATATCCTATT 250
TCTATGATCT CCGGGGGCCA AGCTTCACAT TGGACACGGC GTGTTCATCG 300
AGTTTGATGG CGTTACACCT AGCGTGCCAA AGTCTTCGAG TCGGTGAATC 350
GAAGCAAGCC ATTGTGGGCG GGGTCCACCT TGTACTGAGC CCGGATTGTA 400
TGACTTCGAT GAGTTTATTA GGGTAAGACC TTCAAAATCT CCATGCAGAA 450
TTTCTAAAATC TAACCTACCA CCCTAGTTTG TTCTCTAATG ACGGCCGATC 500
CTACACTTAT GACCATCGAG GTACTGGTTA TGGGCGCGC GAAGGTATTG 550
CTACCTTAGT AATAAAACCT CTTAAAGATG CGATGGAAGC CGGTGATAAC 600
ATCCGGGCCA TCATCCGCAA TAGTGGGGCA AATCAAGATG GTCGAACACC 650
AGGTGTGACT TTTCCAAGTC AAGATGCTCA GATAGATCTT ATGAGATCGG 700
TATATCGTTC CGCTGGACTT GATGTACTTG ATACCGGCTA CGTGGAA

- (2) INFORMATION FOR SEQ ID NO:64:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 214
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

- 65 -

- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

Met Leu Leu Glu Cys Thr Tyr Glu Ala Leu Glu Asn Ala Gly Ile 5 10 15

Pro Leu Asp Lys Val Val Gly Glu Pro Val Gly Val Tyr Val Gly
20 25 30

Ser Ala Ser Ser Asp Tyr Ser Asp Ile Val Asn Ser Asp Gly Glu
35 40 45

Val Ser Thr Tyr Thr Ala Thr Gly Leu Ala Ala Thr Met Met
50 55 60

Ala Asn Arg Ile Ser Tyr Phe Tyr Asp Leu Arg Gly Pro Ser Phe
65 70 75

Thr Leu Asp Thr Ala Cys Ser Ser Ser Leu Met Ala Leu His Leu 80 85 90

Ala Cys Gln Ser Leu Arg Val Gly Glu Ser Lys Gln Ala Ile Val 95 100 105

Gly Gly Val His Leu Val Leu Ser Pro Asp Cys Met Thr Ser Met 110 115 120

Ser Leu Leu Gly Leu Phe Ser Asn Asp Gly Arg Ser Tyr Thr Tyr 125 130 135

Xaa His Arg Gly Thr Gly Tyr Gly Arg Gly Xaa Gly Ile Ala Thr 140 145 150

Leu Val Ile Lys Pro Leu Lys Asp Ala Met Glu Ala Gly Asp Asn 155 160 165

Ile Arg Ala Ile Ile Arg Asn Ser Gly Ala Asn Gln Asp Gly Arg
170 175 180

Thr Pro Gly Val Thr Phe Pro Ser Gln Asp Ala Gln Ile Asp Leu 185 190 195

Met Arg Ser Val Tyr Arg Ser Ala Gly Leu Asp Val Leu Asp Thr 200 205 210

Gly Tyr Val Glu

- (2) INFORMATION FOR SEQ ID NO:65:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 643
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

- 66 **-**

- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65

AATTCTACTT GAAGTCGCCT ATCAAGCAAT GGAGTCAAGC GGCTGCTTAC 50
GGAACCATCG ACGCGAAGCT GGGGATCCTG TGGGATGTTT TATTGGAGCT 100
AGCTTTGCCG AATATCTTGA CAACACCTGT TCTAATCCGC CAACCAGCTA 150
TACTTCCACT GGCACCATCA GAGCTTTCCA CTGCGGTAGA CTCAGTTATT 200
ACTTTGGATG GAGCGGTCCT GCCGAGGTCA TTGATACAGC TTGCTCCTCT 250
TCGTTGGTTG CTATCAATCG AGCTTGCAAG TCAGTGCAGG CGGGTGAATG 300
TACAATGGCT CTTACTGGTG GAGTGAACAT TATAACTGGT ATCCACAACT 350
TCTTAGATCT GGCAAAGGCT GGCTTYTTAA GCCCCACAGG CCAATGCAGA 400
CCCTTTGACC AGTCTGCAGA TGGGTATTGT CGCTCAGAAG GAGCAGGACT 450
TCGGAGTTAT TCCAAGTGTG TCCACCAACC AAGGCGGATT GTCATCTTCA 550
ATTACGATCC CTCATTCGCC TGCACAAAAA AAGTTGTATC AAACCGTGCT 600
TCGGCAAGCC GGCATGAAGC TAGAACAGGT TAGCTACGTA GAG 643

- (2) INFORMATION FOR SEQ ID NO:66:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 214
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

Ile Leu Leu Glu Val Ala Tyr Gln Ala Met Glu Ser Ser Gly Cys
5 10 15

Leu Arg Asn His Arg Arg Glu Ala Gly Asp Pro Val Gly Cys Phe
20 25 30

Ile Gly Ala Ser Phe Ala Glu Tyr Leu Asp Asn Thr Cys Ser Asn 35 40 45

Pro Pro Thr Ser Tyr Thr Ser Thr Gly Thr Ile Arg Ala Phe His 50 55 60

Cys Gly Arg Leu Ser Tyr Tyr Phe Gly Trp Ser Gly Pro Ala Glu 65 70 .75

Val Ile Asp Thr Ala Cys Ser Ser Ser Leu Val Ala Ile Asn Arg 80 85 90

Ala Cys Lys Ser Val Gln Ala Gly Glu Cys Thr Met Ala Leu Thr 95 100 105

Gly Gly Val Asn Ile Ile Thr Gly Ile His Asn Phe Leu Asp Leu 110 115 120

Ala Lys Ala Gly Phe Leu Ser Pro Thr Gly Gln Cys Arg Pro Phe
125
130

- 67 -

Asp Gln Ser Ala Asp Gly Tyr Cys Arg Ser Glu Gly Ala Gly Leu 150

Val Val Leu Lys Leu Leu Ser Gln Ala Ile Ala Asp Gly Asp Gln 165

Ile Phe Gly Val Ile Pro Ser Val Ser Thr Asn Gln Gly Gly Leu 170

Ser Ser Ser Ile Thr Ile Pro His Ser Pro Ala Gln Lys Lys Leu 195

Tyr Gln Thr Val Leu Arg Gln Ala Gly Met Lys Leu Glu Gln Val 200

Ser Tyr Val Glu

- (2) INFORMATION FOR SEQ ID NO:67:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 809
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

- (2) INFORMATION FOR SEQ ID NO:68:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 237
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE:
 - (A) DESCRIPTION: protein

- 68 -

- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

Arg Lys Leu Leu Glu Val Val Phe Glu Cys Phe Glu Ser Ala Gly
5 10 15

Thr Pro Leu His Ala Val Ser Gly Ala Asn Ile Gly Cys Tyr Val 20 25 30

Gly Asn Phe Thr Leu Asp Tyr Leu Val Met Gln Ser Lys Asp Thr 35 40 45

Asp Ser Phe His Arg Tyr Thr Ala Pro Gly Met Gly Pro Thr Leu
50 55 60

Leu Ala Asn Arg Ile Ser His Val Phe Asn Leu Gln Gly Pro Ser
65 70 75

Val Met Leu Asp Thr Ala Cys Ser Ser Ser Ile Tyr Ala Leu His 80 85 90

Ala Ala Cys Val Ala Leu Asn Ala Asp Glu Cys Asn Ala Ala Ile 95 100 105

Val Ala Gly Ala Asn Leu Ile Gln Ser Pro Glu Trp His Leu Ala 110 115 120

Val Ser Lys Ser Gly Val Ile Ser Gln Thr Ser Thr Cys His Thr

Phe Asp Ala Ser Ala Asp Gly Tyr Gly Arg Gly Glu Gly Val Gly
140 145 150

Ala Leu Tyr Leu Lys Arg Leu Ser Asp Ala Ile Arg Asp Arg Asp
155 160 165

Pro Ile Arg Ser Val Ile Arg Gly Thr Ala Val Asn Ser Asn Gly
170 175 180

Lys Thr Asn Gly Ile Ser Gln Pro Ser Ala Leu Ala Gln Glu Ala 185 190 . 195

Val Ile Lys Lys Ala Tyr Ala Lys Ala Gly Leu Pro Val Thr Glu 200 205 210

Thr Asp Tyr Val Glu Val Ser Glu Leu Cys Leu Asn Gln Lys Thr 215 220 225

Ser Cys His Tyr Phe Leu Ser Phe Thr Xaa Leu Leu 230 235

- (2) INFORMATION FOR SEQ ID NO:69:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 658
- (B) TYPE: nucleic acid

PCT/CA98/00488 WO 98/53097

```
- 69 -
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: genomic DNA
 (iii) HYPOTHETICAL: no
 (iv) ANTI-SENSE: no
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:
TTTGCTCCTT GAGACTGTCT ACGAAGCTCT GGAAGCAGGC GGTCACACGA 50
TTGAAGCGCT ACGAGGATCT GATACGTCTG TCTTTACAGG CACCATGGGC 100
GTCGACTACA ACGATACTGT TATACGGGAC CTGAACGTCA TCCCGACGTA 150
CTTTGCTACT GGAGTAAATC GAGCTATCAT CTCGAACCGA GTCTCATACT 200
TCTTTGACTG GCATGGCCG AGCATGACCA TCGACACAGC CTGTTCATCC 250
AGTCTCGTCG CCGTGCACCA AGGAGTGAAA GCTCTTCGGA GTGGGGAGTC 300
GCGTACTGCC CTGGCATGTG GGACGCAGGT CATTCTAAAT CCCGAGATGT 350
ATGTTATTGA GAGCAAGCTG AAAATGCTTT CTCCTACGGG CCGCTCCCGC 400
ATGTGGGATG CGGACGCGGA TGGCTACGCT CGTGGGGAGG GCGTAGCGGC 450
TGTAGTGCTG AAACGGCTCA GTGACGCTAT TGCGGATGGA SATCGCATCG 500
AGTGCATCAT CCGTGAGACA GGGTCCAACC AAGACGGCCA TTCAAATGGT 550
ATCACGGTGC CGAGTACGGA GGCCCAAGCG GCCCTCATCC ACCAAACCTA 600
TGCCAGAGCT GGTCTAGACC CGGAAAATAA CCCTCACGAC CGCCCTCAGT 650
TCTTCGAA
(2) INFORMATION FOR SEQ ID NO:70:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 219
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE:
 (A) DESCRIPTION: protein
 (iii) HYPOTHETICAL: no
 (v) FRAGMENT TYPE: internal fragment
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:
Leu Leu Leu Glu Thr Val Tyr Glu Ala Leu Glu Ala Gly Gly His
Thr Ile Glu Ala Leu Arg Gly Ser Asp Thr Ser Val Phe Thr Gly
Thr Met Gly Val Asp Tyr Asn Asp Thr Val Ile Arg Asp Leu Asn
Val Ile Pro Thr Tyr Phe Ala Thr Gly Val Asn Arg Ala Ile Ile
                  50
Ser Asn Arg Val Ser Tyr Phe Phe Asp Trp His Gly Pro Ser Met
Thr Ile Asp Thr Ala Cys Ser Ser Ser Leu Val Ala Val His Gln
Gly Val Lys Ala Leu Arg Ser Gly Glu Ser Arg Thr Ala Leu Ala
```

Cys Gly Thr Gln Val Ile Leu Asn Pro Glu Met Tyr Val Ile Glu

110

- 70 -

Ser Lys Leu Lys Met Leu Ser Pro Thr Gly Arg Ser Arg Met Trp 135

Asp Ala Asp Ala Asp Gly Tyr Ala Arg Gly Glu Gly Val Ala Ala 150

Val Val Leu Lys Arg Leu Ser Asp Ala Ile Ala Asp Gly --- Arg 165

Ile Glu Cys Ile Ile Arg Glu Thr Gly Ser Asn Gln Asp Cly His 180

Ser Asn Gly Ile Thr Val Pro Ser Thr Glu Ala Gln Ala Ala Leu 195

Ile His Gln Thr Tyr Ala Arg Ala Gly Leu Asp Pro Glu Asn Asn 210

Pro His Asp Arg Pro Gln Phe Phe Glu 215

- (2) INFORMATION FOR SEQ ID NO:71:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 753
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

TGGGCTACTC GAGACTGCTT ACAAGGCGTT CGAAAACGGT GAGTCTTGAA 50
GCTGCACAGA TCAAGACAAG AACACTAAAT CTCTCAGCGG GCATACGCAT 100
AGAAGAAGCC GCTGGCTCTA GAACTCAGT TCATATCGGG AGTTTCACTC 150
ATGATTGGAG AGACATCCTC CAAAGGGATC CACTAATGGA TGTTAGCTAC 200
ATAGCTACCG CAACCGAGGT TTCTATGCTA GCGAGTCGAC TCAGCTGGTT 250
TTATGATCTA AGTGGGCCYA GCATCTCCTT GGATACAGCG TGTTCGAGTA 300
GCTTAATGGC TTTACATCTC GCCTGCCAGA GTCTAAAGAG TCGAGAGGCC 350
GACATGGTAA GGCTATGCTA CTTTCTGGCT CACTCAAACT GTTTCCATA 400
TCTGATGCTT GCACAGGGCC TTGTTGGGAG GGGCTAATCT TCTTTTGGAT 450
CCTGTAGGGG TTATTGGCAT AACAAATGTT GGCATGCTTT CGCCAGATGG 500
CATTAGTTAC AGCTTTGATC ATCGTGCAAA CGGGTATGCC CGAGAGAAG 550
GGTTCGGAGT CGTTGTCATC AAACGCTTGG ACGATGCTCT CAGACATGGC 600
GATACTATTC GCGGTATCGT TCGTGCCACA GGATCGAATC AAGATGGAAG 650
AACTCCAGGG ATTACCCAAC CTGATGGAGC CGCGCAAGAA GAGCTCATCC 700
GAGACACTTA CAAAGCTGCT GGCTTAGATA TGAGGCTAGT AAGGTTATCT 750
TAA

- (2) INFORMATION FOR SEQ ID NO:72:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 213
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

- 71 -

- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

Gly Leu Leu Glu Thr Ala Tyr Lys Ala Phe Glu Asn Ala Gly Ile 5 10 15

Arg Ile Glu Glu Ala Ala Gly Ser Arg Thr Ser Val His Ile Gly
20 25 30

Ser Phe Thr His Asp Trp Arg Asp Ile Leu Gln Arg Asp Pro Leu 35 40 45

Met Asp Val Ser Tyr Ile Ala Thr Ala Thr Glu Val Ser Met Leu
50 55 60

Ala Ser Arg Leu Ser Trp Phe Tyr Asp Leu Ser Gly Pro Ser Ile
65 70 75

Ser Leu Asp Thr Ala Cys Ser Ser Ser Leu Met Ala Leu His Leu 80 85 90

Ala Cys Gln Ser Leu Lys Ser Arg Glu Ala Asp Met Gly Leu Val 95 100 105

Gly Gly Ala Asn Leu Leu Leu Asp Pro Val Gly Val Ile Gly Ile 110 115 120

Thr Asn Val Gly Met Leu Ser Pro Asp Gly Ile Ser Tyr Ser Phe
125 130 135

Asp His Arg Ala Asn Gly Tyr Ala Arg Gly Glu Gly Phe Gly Val 140 145 150

Val Val Ile Lys Arg Leu Asp Asp Ala Leu Arg His Gly Asp Thr 155 160 165

Ile Arg Gly Ile Val Arg Ala Thr Gly Ser Asn Gln Asp Gly Arg 170 175 180

Thr Pro Gly Ile Thr Gln Pro Asp Gly Ala Ala Gln Glu Glu Leu 185 190 195

Ile Arg Asp Thr Tyr Lys Ala Ala Gly Leu Asp Met Arg Leu Val 200 205 210

Arg Tyr Ser

- (2) INFORMATION FOR SEQ ID NO:73:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 753
- (B) TYPE: nucleic acid

- 72 -

PCT/CA98/00488

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:
- ATTGTTGCTC GAAGTAACCT ATGAAGCTTT AGAGAACGGT GGGTAGTTCC 50 AGGAAGCATT AATCAAGACA AAGCTATTGC TCACACTTTT CCAAAATAGC 100 CGGAATACCC TTGAACCAAA TTGTGGGCCA GGATGTTGGG GTTTTTGTTG 150 GCGGCTCAAT GTCCGACTAC CAGAACCTCC TCCACAAAGA CATCGCAAAT 200 GGTCCTATTT ACCAAGCCAC TGGCACTGCC ATGAGCTTCC TAGCCAACCG 250 AATATCTTAC ATCTATGACC TCAAGGGCCC AAGCGTAACA GTGGACACTG 300 CATGCTCCTC GGGTCTCACG GCACTTCATT TAGCATGCCA GAGCATACGC 350 ACTGGTGAGA TCCGACAAGC TTTGGTCGGC GGTGTATACA TTATCCTAAG 400 CCCGGAGAAT ATGATTGCCA TGAGCATGCT GGGGTGATGT CTCCTGTTCC 450 AGAAAGTAAT TGATAAAAGC TAATGCCAGT AGACTGTTTG GCACCGACGG 500 TCTCTCATAC AGCTATGATC ACCGAGCAAC TGGATATGGA CGTGGTGAAG 550 GAGGAGGCAT GATAGTCTTA AAGTCGCTAG ACGACGCGAT GGCAAACGGA 600 GACACAATAC ATGCGGTAAT TCGGCACACA GGGACAAATC AGGATGGTAA 650 GACCAGCGC CCAACAATGC CCAGTCTGGA AGCCCAGGAG AGACTCATCA 700 AGAAAGTTTA CAGCCAGGCT GGTCTGGATC CATTGGATAC AGAATATGTC 750 GAG
- (2) INFORMATION FOR SEQ ID NO:74:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 214
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE:
 - (A) DESCRIPTION: protein
 - (iii) HYPOTHETICAL: no

 - (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:
- Leu Leu Glu Val Thr Tyr Glu Ala Leu Glu Asn Ala Gly Ile
- Pro Leu Asn Gln Ile Val Gly Gln Asp Val Gly Val Phe Val Gly
- Gly Ser Met Ser Asp Tyr Gln Asn Leu Leu His Lys Asp Ile Ala
- Asn Gly Pro Ile Tyr Gln Ala Thr Gly Thr Ala Met Ser Phe Leu
- Ala Asn Arg Ile Ser Tyr Ile Tyr Asp Leu Lys Gly Pro Ser Val
- Thr Val Asp Thr Ala Cys Ser Ser Gly Leu Thr Ala Leu His Leu
- Ala Cys Gln Ser Ile Arg Thr Gly Glu Ile Arg Gln Ala Leu Val
- Gly Gly Val Tyr Ile Ile Leu Ser Pro Glu Asn Met Ile Ala Met

- 73 -

				110					115					120
Ser	Met	Leu	Gly	Leu 125	Phe	Gly	Thr	Asp	Gly 130	Leu	Ser	Tyr	Ser	Tyr 135
Asp	His	Arg	Ala	Thr 140	Gly	Tyr	Gly	Arg	Gly 145	Glu	Gly	Gly	Gly	Met 150
Ile	Val	Leu	Lys	Ser 155	Leu	Asp	Asp	Ala	Met 160	Ala	Asn	Gly	Asp	Thr 165
Ile	His	Ala	Val	Ile 170	Arg	His	Thr	Gly	Thr 175	Asn	Gln	Asp	Gly	Lys 180
Thr	Ser	Gly	Pro	Thr 185	Met	Pro	Ser	Leu	Glu 190	Ala	Gln	Glu	Arg	Leu 195
Ile	Lys	Lys	Val	Tyr 200	Ser	Gln	Ala	Gly	Leu 205	Asp	Pro	Leu	Asp	Thr 210
Glu	Tyr	Val	Glu											

- (2) INFORMATION FOR SEQ ID NO:75:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 692
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

AATGCTGCTT	GAGGTAGTCT	ATGAGGCGTT	AGAAGACGGT	AAGTCTAACG	50
AATTTCAATC	AGTGGTCCTG	AGCTAATTGC	GATCAAGCTG	GCATTACGCT	100
CGACGACATT	AAGGGTTCCC	AGACATCTGT	CTACTGTGGG	AGCTTCACCA	150
ACGACTACCG	TGAAATGCTG	AACAAAGATT	TGGGGTACTA	CCCCAAGTAC	200
ATGGCCACTG	GTGTTGGAAA	CTCCATCTTA	GCCAACCGCA	TTTCATATTT	250
CTATGACCTA	CACGGACCAA	GTGTGACTGT	CGACACAGCC	TGCTCTCTTC	300
CCCTGGTCTC	ATTCCATATG	GGCAACAGAT	CAATCCMAGA	TGGAGATGCT	350
GACATCTCAA	TCGTCATTGG	ATCTTCGCTC	CATTTTGATC	CCAACATGTT	400
CGTCACTATG	ACGGACCTTG	GGTTTCTCTC	AACCGACGGC	AGATGCCGTG	450
CTTTTGACGC	TAGCGGAAAG	GGGTATGTCC	GCGGTGAGGG	CATCTGCGCT	500
GTTGTTTTGA	AACAAAAATC	ACGCGCTGAA	CTTCACGACA	ACAACGTTCG	550
ATCCGTCATT	CGTGGCTCGG	ATGTCAACCA	CGACGGTGCC	AAAGACGGTA	600
TCACAATGCC	AAACTCGAAG	GCTCAGGAGA	GCCTCATCAG	AAAGACCTAC	650
AAAAACGCTG	GACTGAGTAC	AAACGACACC	CAGTACTTTG	AG	692

- (2) INFORMATION FOR SEQ ID NO:76:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 214
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

- 74 -

- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

Met Leu Leu Glu Val Val Tyr Glu Ala Leu Glu Asp Ala Gly Ile 5 10 15

Thr Leu Asp Asp Ile Lys Gly Ser Gln Thr Ser Val Tyr Cys Gly
. 20 25 30

Ser Phe Thr Asn Asp Tyr Arg Glu Met Leu Asn Lys Asp Leu Gly
35 40 45

Tyr Tyr Pro Lys Tyr Met Ala Thr Gly Val Gly Asn Ser Ile Leu
50 55 60

Ala Asn Arg Ile Ser Tyr Phe Tyr Asp Leu His Gly Pro Ser Val 65 70 75

Thr Val Asp Thr Ala Cys Ser Leu Pro Leu Val Ser Phe His Met 80 85 90

Gly Asn Arg Ser Ile Xaa Asp Gly Asp Ala Asp Ile Ser Ile Val 95 100 105

Ile Gly Ser Ser Leu His Phe Asp Pro Asn Met Phe Val Thr Met 110 115 120

Thr Asp Leu Gly Phe Leu Ser Thr Asp Gly Arg Cys Arg Ala Phe
125
130

Asp Ala Ser Gly Lys Gly Tyr Val Arg Gly Glu Gly Ile Cys Ala 140 145 150

Val Val Leu Lys Gln Lys Ser Arg Ala Glu Leu His Asp Asn Asn 155 160 165

Val Arg Ser Val Ile Arg Gly Ser Asp Val Asn His Asp Gly Ala 170 175 180

Lys Asp Gly Ile Thr Met Pro Asn Ser Lys Ala Gln Glu Ser Leu 185 190 195

Ile Arg Lys Thr Tyr Lys Asn Ala Gly Leu Ser Thr Asn Asp Thr 200 205 210

Gln Tyr Phe Glu

- (2) INFORMATION FOR SEQ ID NO:77:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 690
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

- 75 -

```
(D) TOPOLOGY: linear
```

- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

TATTTTATTG GAGACAACAT ACGAAGCACT TGAAAATAGT GAGTAAGCCA 50
TGACCGTATT AAGTAAAAGC TCACGAACAG TAAAGGTGGC ACCCCTCTGG 100
CTAGCATTCG CGGCCAAAAT GTAGGCGTTT ACGTTGGTGC ATCCATGTCA 150
GACTACAACG AGCTTTTCGC AAAGGACCCG GATACCAATT TGACATATCG 200
TATTACCGGA ACTGCATCAA ATATTTTGTC AAATCGACTC TCCTACATGT 250
TCGACCTTCA CGGGCCAAGT TTCACGGTGG ACACTGCGTG CTCATCAAGC 300
TTGGCCGCAT TCCATCTGGC CTGTCAGAGT TTGAAGACGG GAGAGGTCCG 350
GCAAGCCATC GTGGGCGGGG CTTACCTTGT ATTATCCCCA GATCCTACGA 400
TCGGAATGAG CAAACTCAGG CTTTACGGCG AACATGGTCG CTCATACACT 450
TACGATCACC GAGGGACTGG ATACGGTCGT GGCGAGGGCG TCGCTAGCCT 500
AATTCTTAAG CCTTTACAAG ATGCTATCGA CGTGGGTGAT ACAATTCGAG 550
CAATCATACG TAACACTGGA ATGAATCAAG ACGGGAAGAC GAACGGAATT 600
ACGCTCCCAA GCAAAGACGC CCCAAGAAAGC CTCATAAGGT CTGTTACAC 650
AGCTGCAGGT CTCGATCCAC TGTATACTTC CTACGTTGAG

- (2) INFORMATION FOR SEQ ID NO:78:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 214
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:
- Ile Leu Leu Glu Thr Thr Tyr Glu Ala Leu Glu Asn Ser Gly Thr
 5 10 15
- Pro Leu Ala Ser Ile Arg Gly Gln Asn Val Gly Val Tyr Val Gly
 20 25 30
- Ala Ser Met Ser Asp Tyr Asn Glu Leu Phe Ala Lys Asp Pro Asp 45
- Thr Asn Leu Thr Tyr Arg Ile Thr Gly Thr Ala Ser Asn Ile Leu 50 55 60
- Ser Asn Arg Leu Ser Tyr Met Phe Asp Leu His Gly Pro Ser Phe 65 70 75
- Thr Val Asp Thr Ala Cys Ser Ser Ser Leu Ala Ala Phe His Leu 80 85 90
- Ala Cys Gln Ser Leu Lys Thr Gly Glu Val Arg Gln Ala Ile Val 95 100 105
- Gly Gly Ala Tyr Leu Val Leu Ser Pro Asp Pro Thr Ile Gly Met
 110 115 120
- Ser Lys Leu Arg Leu Tyr Gly Glu His Gly Arg Ser Tyr Thr Tyr

- 76 -

				125					130					135
Asp	His	Arg	Gly	Thr 140	Gly	Tyr	Gly	Arg	Gly 145	Glu	Gly	Val	Ala	Ser 150
Leu	Ile	Leu	Lys	Pro 155	Leu	Gln	Asp	Ala	Ile 160	Asp	Val	Gly	Asp	Thr 165
Ile	Arg	Ala	Ile	Ile 170	Arg	Asn	Thr	Gly	Met 175	Asn	Gln	Asp	Gly	Lys 180
Thr	Asn	Gly	Ile	Thr 185	Leu	Pro	Ser	Lys	Asp 190	Ala	Gln	Glu	Ser	Leu 195
Ile	Arg	Ser	Val	Tyr 200	Thr	Ala	Ala	Gly	Leu 205	Asp	Pro	Leu	Tyr	Thr 210
Ser	Tyr	Val	Glu											

- (2) INFORMATION FOR SEQ ID NO:79:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 761
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

GCGAATGCTA GAGACGGCTT ATCACGCTCT GGAGGACGGT AAGTCTAACC 50 AGTGCAAATT TAGGGGCTAT AATCTTGGTG TGTGAGAATA ACATACCATC 100 AGCGAGCATC CCCCTGGAGA AGTGCTTCGG CTCAGACACT TCCGTTTATA 150 CCGGGTGCTT CACCAACGAT TATCTCAGCA TACTGCAGCA AGACTTTGAG 200 GCTGAGCAAA GGCACGCAGC CATGGGAATC GCGCCCTCCA TGTTGGCCAA 250 TCGCCTAAGC TGGTTCTTCA ACTTCAAGGG GACATCGATG AACCTGGATT 300 CGGCCTGCTC CAGCAGTCTG GTTGCACTGC ATCTTGCTTC ACAGGACCTC 350 CGTGCTGGTA CCACATCGAT GGTATGTATC GATCATAAAA TCACGTACTC 400 CTTCATTAAT AAATAAATGT TTTAGGCACT AGTTGGAGGG GCGAATCTTG 450 TCTACCACCC CGACTTCATG GAGATGATGT CAAACTTCAA CTTCCTGTCT 500 CCCGACAGCC GTTCTTGGAG TTTCGATCAA CGTGCTAATG GTTATGCGCG 550 TGGGGAAGGA ACCGCCGTGA TGGTCGTCAA ACGCCTTGCA GATGCACTGC 600 GAGATGGAGA TACAATCAGA ACCGTAATCT GGAGTACCGG GTCGAACCAA 650 GACGGGAGAA CACCTGGGAT CACGCAGCCA AGTAAAGAAG CGCAGTTAAA 700 TCTCATCGAG CGCACCTACA AACAAGCGAA GATTGATATG GAGCCTACCA 750 GATTCTTCGA G

- (2) INFORMATION FOR SEQ ID NO:80:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 214
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE:
 - (A) DESCRIPTION: protein

- 77 -

(iii) HYPOTHETICAL: no

(v) FRAGMENT TYPE: internal fragment

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

Arg Met Leu Glu Thr Ala Tyr His Ala Leu Glu Asp Ala Ser Ile 5 10 15

Pro Leu Glu Lys Cys Phe Gly Ser Asp Thr Ser Val Tyr Thr Gly
20 25 30

Cys Phe Thr Asn Asp Tyr Leu Ser Ile Leu Gln Gln Asp Phe Glu 35 40 45

Ala Glu Gln Arg His Ala Ala Met Gly Ile Ala Pro Ser Met Leu
50 55 60

Ala Asn Arg Leu Ser Trp Phe Phe Asn Phe Lys Gly Thr Ser Met
65 70 75

Asn Leu Asp Ser Ala Cys Ser Ser Ser Leu Val Ala Leu His Leu 80 85 90

Ala Ser Gln Asp Leu Arg Ala Gly Thr Thr Ser Met Ala Leu Val 95 100 105

Gly Gly Ala Asn Leu Val Tyr His Pro Asp Phe Met Glu Met Met
110 115 120

Ser Asn Phe Asn Phe Leu Ser Pro Asp Ser Arg Ser Trp Ser Phe 125 130 135

Asp Gln Arg Ala Asn Gly Tyr Ala Arg Gly Glu Gly Thr Ala Val

Met Val Val Lys Arg Leu Ala Asp Ala Leu Arg Asp Gly Asp Thr
155 160 165

Ile Arg Thr Val Ile Trp Ser Thr Gly Ser Asn Gln Asp Gly Arg
170 175 180

Thr Pro Gly Ile Thr Gln Pro Ser Lys Glu Ala Gln Leu Asn Leu 185 190 195

Ile Glu Arg Thr Tyr Lys Gln Ala Lys Ile Asp Met Glu Pro Thr 200 205 210

Arg Phe Phe Glu

- (2) INFORMATION FOR SEQ ID NO:81:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1221
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA

- 78 -

```
(iii) HYPOTHETICAL: no
 (iv) ANTI-SENSE: no
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:
AAGGAGGGC CGCCGGGAG AAGAAGTTAT CGTGGGCGCC GATTCGGTCG 50
ACCGGCAGCA ATTGCAGCCA GATTGCCGCG AGGGCTTCCT CCATTCCCGG 100
CGCGGGCGCA ACGAATCCGG TGTACTCCAG ATGCCGTGCG GTCCGGGGGA 150
GAGCTGCCTG ATCCAGTTTG AGATTCTTGT TTAAAGGAAG TTCGGCCAGC 200
TTCTCTATGG CGGCGGGGAC CATGTGAGCG GGGAGCAGAG CCTTCATGTG 250
CTGGCGAATC GTTTCCGTGG ACGCTCCGCC GACTGCATAC GCCGCGAGAT 300
ACTTCTCGCC GGGGATATCG TCTCGGACCA GCACAACGCC GTCCGTGACG 350
CCCGGGCACG ACTGCAGCG GGCCTGAATT TCGCCGAGTT CTATGCGATG 400
CCCGCGAAGC TTGATCTGGC CGTCGTTTCT GCCCAGAAAA TCGATGCGCC 450
CATCCGGCAG ATAGCGCGCG CGATCGCCCG TGCGGTACAT ACGCGCGCCC 500
GGAAATGGGC TAAACGGGTT CGGCACAAAG TAGGCTGCGG TGAGATCGCT 550
GCGCCCCGCA TAGCCGCGCG CGACACCGTC TCCGGCAGCG TACAGCCAGC 600
CTTCCACTCC CGGCGGAACG GGAGCGAATT GCTCGTCGAG CACGTAGGTT 650
TGGACGTTCG AAATTGGACG GCCGATGGGA ATCGACGGGG TCCCGGCGGG 700
GACCGAATCG ATGACGCCAC ACGCCGTGAG CATCGTGTTC TCGGTAGGGC 750
CGTAACCGTT CAAGAGGCGG GCGGGCTTGC CGTGCTCGAT CACCATGCGC 800
ATCCAGTGGG GATCCAGCGC TTCGCCGCCG ACAATCACAT TGGTCAGCGA 850
TTCGAATCCG GCTGGATCTT CGCGGGCAAC CTGATTGAAC AGAGATGCAG 900
TAAGGATAAT CGTGTCCACG TGGAAGCGGC GAAAGGCGAG AATCAGCTCG 1000
CGGGGCGCCA TCAAGGTCTC TTTCGAAAGA ACGACGATTC GCGCGCCATG 1050
CAGCAGGCCG CCCCATAACT CGAAGGTGGG AGGGTCGAAA CCGAAGGCCG 1100
ACATCTGTCC CACGGTATCG GCGGGTGAGA ATTGTACGTA GTTGGTCCGG 1150
CTAACGAGGT TGACAATCGC CCCGTGGGGG ACGGCGACCC CCTTGGGCTT 1200
GCCGGTCGTG CCGGACGTGT A
(2) INFORMATION FOR SEQ ID NO:82:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 390
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE:
 (A) DESCRIPTION: protein
 (iii) HYPOTHETICAL: no
 (v) FRAGMENT TYPE: internal fragment
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:
Tyr Thr Ser Gly Thr Thr Gly Lys Pro Lys Gly Val Ala Val Pro
His Gly Ala Ile Val Asn Leu Val Ser Arg Thr Asn Tyr Val Gln
Phe Ser Pro Ala Asp Thr Val Gly Gln Met Ser Ala Phe Gly Phe
Asp Pro Pro Thr Phe Glu Leu Trp Gly Gly Leu Leu His Gly Ala
Arg Ile Val Val Leu Ser Lys Glu Thr Leu Met Ala Pro Arg Glu
```

Leu Ile Leu Ala Phe Arg Arg Phe His Val Asp Thr Ile Ile Leu

Thr	Ala	Ser	Leu	Phe 95	Asn	Gln	Val	Ala	Arg 100	Glu	Asp	Pro	Ala	Gly 105
Phe	Glu	Ser	Leu	Thr 110	Asn	Val	Ile	Val	Gly 115	Gly	Glu	Ala	Leu	Asp 120
Pro	His	Trp	Met	Arg 125	Met	Val	Ile	Glu	His 130	Gly	Lys	Pro	Ala	Arg 135
Leu	Leu	Asn	Gly	Tyr 140	Gly	Pro	Thr	Glu	Asn 145	Thr	Met	Leu	Thr	Ala 150
Cys	Gly	Val	Ile	Asp 155	Ser	Val	Pro	Ala	Gly 160	Thr	Pro	Ser	Ile	Pro 165
Ile	Gly	Arg	Pro	Ile 170	Ser	Asn	Val	Gln	Thr 175	Tyr	Val	Leu	Asp	Glu 180
Gln	Phe	Ala	Pro	Val 185	Pro	Pro	Gly	Val	Glu 190	Gly	Trp	Leu	Tyr	Ala 195
Ala	Gly	Asp	Gly	Val 200	Ala	Arg	Gly	Tyr	Ala 205	Gly	Arg	Ser	Asp	Leu 210
Thr	Ala	Ala	Tyr	Phe 215	Val	Pro	Asn	Pro	Phe 220	Ser	Pro	Phe	Pro	Gly 225
Ala	Arg	Met	Tyr	Arg 230	Thr	Gly	Asp	Arg	Ala 235	Arg	Tyr	Leu	Pro	Asp 240
Gly	Arg	Ile	Asp	Phe 245	Leu	Gly	Arg	Asn	Asp 250	Gly	Gln	Ile	Lys	Leu 255
Arg	Gly	His	Arg	Ile 260	Glu	Leu	Gly	Glu	Ile 265	Gln	Ala	Ala	Leu	Gln 270
Ser	Cys	Pro	Gly	Val 275	Thr	Asp	Gly	Val	Val 288	Leu	Val	Arg	Asp	Asp 285
Ile	Pro	Gly	Glu	Lys 290	_	Leu	Ala	Ala	Tyr 295		Val	Gly	Gly	Ala 300
Ser	Thr	Glu	Thr	Ile 305	Arg	Gln	His	Met	Lys 310	Ala	Leu	Leu	Pro	Ala 315
His	Met	Val	Pro	Ala 320	Ala	Ile	Glu	Lys	Leu 325	Ala	Glu	Leu	Pro	Leu 330
Asn	Lys	Asn	Leu	Lys 335	Leu	Asp	Gln	Ala	Ala 340	Leu	Pro	Arg	Thr	Ala 345
Arg	His	Leu	Glu	Tyr 350	Thr	Gly	Phe	Val	Ala 355	Pro	Ala	Pro	Gly	Met 360
Glu	Glu	Ala	Leu	Ala	Ala	Ile	Trp	Leu	Gln	Leu	Leu	Pro	Val	Asp

- 80 -365 370 375 Arg Ile Gly Ala His Asp Asn Phe Phe Ser Arg Ala Ala Pro Pro 385 (2) INFORMATION FOR SEQ ID NO:83 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1222 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83: CGTTTCACCC CAAGAATCTC AGACCATATA TCAGCAATGG CCTTCTCCCT 50 GGCATTGCCC GGAGCGACAT AGATCGGATC CCGAATCACA GTATCGCGAT 100 CAAATGGCGG CAGGGCGTTT CGGTCAATCT TGCCGTTCGG CGTTAAAGGG 150 AGAGAATCGA CAATGACGAA GGCGCTGGGC ACCATGTAGT CCGGCAGTTT 200 TGCCTTCAGA TGGGCGCGCA ATTCGCTTAT TTCGGGAGCA CCTTCCCGTG 250 CGACGATATA AGCAACTAAT TGCTTTTCTT CGCTAGGGTC TTTTGTCGTT 300 GTGACCACAG CTTCTCGAAT CGGGGATGTT GCGCAACAGG ACTTCGATTT 350 CTCCAGCTCG ATGCGATAGC CGCGAATCTT GACCTGATTG TCGGTGCGGC 400 CGATAAACTC GATGTTGCCA TCCGGCAAAT AACGCGCAAG ATCGCCAGTT 450

CGATAGAGGC GCTGCGCTGG CTCGCGATCG AATGAATGGT AGATGAACCT 500 CTCCGCCGTC AGTTCCGGCC GGTTGAGATA CCCTCGCGCC AGTCCGTCGC 550 CGCCAATGTA GATCTCTCCA ACCACGCCGA TCGGCACCGG ATTGAGATGA 600 GCATCCAGTA TGTAGATCTG CGTATTCGCG ATCGGTCGGC CAATGGGCGG 650 TAATTCTCCC CAGCACTCTG GCGGACCGTC CACAGTAAAC GCTGTCACAA 700

CGTGGCTTTC CGTCGGCCA TACTGGTTGA CCAAATGACA CTCGGGCAAC 750
GTGTCAAGGA AACTTCTGAT CCGCGGCGTT ATCTGCAGCC GCTCTCCCGC 800
CGTAATGACT TCGCGCAGCT GCGCCAAAAC CACATTCTCC ATGTGCGCGG 850
CTTCCGCCAT CTGTTGCAGT ACGACAAAAG GCACAAAAAG TCTCTCTACT 900

CGCTTCATTC GCAGGAAATT CAACAGGGCT GGCGGATCGC GTCGGATTTG 950
CGCGGGCAGT AGCACCAGTG TGCCTCCTGA GCACCACGTG CTAAACATCT 1000
CTTGAAACGA AACATCGAAA CTCAACGAGG CAAACTGTAA CGTTCGCGCC 1050
GGCACCGAAC GAGAAAAATC CTCAATTTGC CACGCGATCA GGTTGGCAAG 1100
CGCGCGGTGT TCCATCACCA CACCCTTCGG CTTGCCCGTC GTGCCAATCC 1150
CGCGGCCATG GCGCCCGGA GCATGCGACG TCGGGCCCAA TTCGCCCTAT 1200

1222

- (2) INFORMATION FOR SEQ ID NO:84 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 396
 - (B) TYPE: amino acid

AGTGAGTCGT ATTACAATTC AA

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

Gly	Thr	Thr	Gly	Lys 5	Pro	Lys	Gly	Val	Val 10	Met	Glu	His	Arg	Ala 15
Leu	Ala	Asn	Leu	Ile 20	Ala	Trp	Gln	Ile	Glu 25		Phe	Ser	Arg	Ser 30
Val	Pro	Ala	Arg	Thr 35	Leu	Gln	Phe	Ala	Ser 40	Leu	Ser	Phe	Asp	Val 45
Ser	Phe	Gln	Glu	Met 50	Phe	Ser	Thr	Trp	Cys 55	Ser	Gly	Gly	Thr	Leu 60
Val	Leu	Leu	Pro	Ala 65	Gln	Ile	Arg	Arg	Asp 70	Pro	Pro	Ala	Leu	Leu 75
Asn	Phe	Leu	Arg	Met 80	Lys	Arg	Val	Glu	Arg 85	Leu	Phe	Val	Pro	Phe 90
Val	Val	Leu	Gln	Gln 95	Met	Ala	Glu	Ala	Ala 100	His	Met	Glu	Asn	Val 105
Val	Leu	Pro	Gln	Leu 110	Arg	Glu	Val	Ile	Thr 115	Ala	Gly	Glu	Arg	Leu 120
Gln	Ile	Thr	Pro	Arg 125	Ile	Arg	Ser	Phe	Leu 130	Asp	Thr	Leu	Pro	Glu 135
Cys	His	Leu	Val	Asn 140	Gln	Tyr	Gly	Pro	Thr 145	Glu	Ser	His	Val	Val 150
Thr	Ala	Phe	Thr	Val 155	Asp	Gly	Pro	Pro ·	Glu 160	Cys	Trp	Gly	Glu	Leu 165
Pro	Pro	Ile	Gly	Arg 170	Pro	Ile	Ala	Asn	Thr 175	Gln	Ile	Tyr	Ile	Leu 180
Asp	Ala	His	Leu	Asn 185	Pro	Val	Pro	Ile	Gly 190	Val	Val	Gly	Glu	Ile 195
Tyr	Ile	Gly	Gly	Asp 200	Gly	Leu	Ala	Arg	Gly 205	Tyr	Leu	Asn	Arg	Pro 210
Glu	Leu	Thr	Ala	Glu 215	Arg	Phe	Ile	Tyr	His 220	Ser	Phe	Asp	Arg	Glu 225
Pro	Ala	Gln	Arg	Leu 230	Tyr	Arg	Thr	Gly	Asp 235	Leu	Ala	Arg	Tyr	Leu 240
Pro	Asp	Gly	Asn	Ile 245	Glu	Phe	Ile	Gly	Arg 250	Thr	Asp	Asn	Gln	Val 255
Lys	Ile	Arg	Gly	Tyr 260	Arg	Ile	Glu	Leu	Glu 265	Lys	Ser	Lys	Ser	Cys 270
Cys	Ala	Thr	Ser	Pro	Ile	Arg	Glu	Ala	Val	Val	Thr	Thr	Thr	Lys

- 82 -

				275					288					285
Asp	Pro	Ser	Glu	Glu 290	Lys	Gln	Leu	Val	Ala 295	Tyr	Ile	Val	Ala	Arg 300
Glu	Gly	Ala	Pro	Glu 305	Ile	Ser	Glu	Leu	Arg 310	Ala	His	Leu	Lys	Ala 315
Lys	Leu	Pro	Asp	Tyr 320	Met	Val	Pro	Ser	Ala 325	Phe	Val	Ile	Val	Asp 330
Ser	Leu	Pro	Leu	Thr 335	Pro	Asn	Gly	Lys	Ile 340	Asp	Arg	Asn	Ala	Leu 345
Pro	Pro	Phe	Asp	Arg 350	Asp	Thr	Val	Ile	Arg 355	Asp	Pro	Ile	Tyr	Val 360
Ala	Pro	Gly	Asn	Ala 365	Arg	Glu	Lys	Ala	Ile 370	Ala	Asp	Ile	Trp	Ser 375
Glu	Ile	Leu	Gly	Val 380	Lys	Arg	Ile	Gly	Val 385	His	Asp	Asn	Phe	Phe 390
Ala	Pro	Gly	Gly	Pro 395	Ser									

- (2) INFORMATION FOR SEO ID NO:85
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1200
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

AATCTACACG TCCGGCACCA CCGGCAAGCC CAAGGGGGCC ATAATCCATC 50 ACCTGGGACT GGCGAATTAC TTGGTGTGGT GCTCGCGGGC TTACGCGATT 100 GCTCAAGGAG TGGGAGCACC GGTCCACTCG TCGATCTCGT TCGATCTGAC 150 GATCACTGCC TTGCTTGCCC CCTTGGTCGT CGGCCGGCGC ATCGACCTGC 200 TTGATGAAGA ACTGGGCATC GAGCAACTGA GTTACGCTCT CCGGCGATCG 250 CGCGACTATA GCCTGGTCAA GATCACTCCG GCTCACCTGC GCTGGCTCGG 300 CGATGAACTG GGACCCTGCG AGGCCGAAGG TCGTACGCGA GCTTTCATCA 350 TCGGTGGTGA GCAACTGACG GCCGAACACG TCKCATTCTG GAGGCGGCAC 400 GCGCCGGGGA CGAGCCTGAT CAACGAGTAT GGTCCGACCG AGACGGTCGT 450 CGGCTGCTGC GTGTACCGCG TGCCTCCTGA CCAGGAGATT TCGGGGCCCA 500 TCCCGATTGG CCGACCGATC GCCAACACGC GTCTCTACGT CCTCGATCCG 550 GATCTCGCGC TGGTACCCAT CGGCGTTGCA GGCGAGCTGT ACATCGGCGG 600 TGCCGGGGTC GCGCGGGGT ATCTCAACAG GCCCGGCCTG ACCGCTGAAA 650 GGTTCATCCC CGACCCGTTC GGCAAGAAGC CGGGCGAGCG CCTCTATCGC 700 ACCGGAGACC TCGCCCGATG GCGGTCCGAC GGTAACCTCG AGTATCTCGG 750 CAGGGTCGAT CGCCAGGTTA AAGTCCGCGG GTTTCGGATC GAACCCGGGG 800 AGATCGAACA GGCACTCGCC CGGCACTCCG CGGTACGCGA GTCCGTCGTG 850 GTCGCAAGCG CAGGTGCATC GGACGTGCAA CGCCTCGTCG CCTATCTGGT 900

- 83 -

TCTTGCGGAG GCAGGGCCGG CACCGCCCGA CTCGGAGCTG CGCGAGTTCC 950 TGCGGACGTT ACTCCCCGAG CCGATGATAC CCTCGGCATT CGTTGTGCTG 1000 GAGACGCTCC CACTGACCCA CAACGGGAAG GTGGACCGAG AGGCCCTGCC 1050 GGCCCCTGAG GGTGTGCCCT TCCGTGGGGA TGCTCGTTTC GTTGCTCCCC 1100 GCGGCCCGCT CGAACAGGAG GTGGCATCGA TCTGGGGTGC AGTCCTCGGA 1150 CTGGAGCGTA TCGGCGCCCT TGACAACTTC TTCTTCCCTC GGCGGCCCCT 1200

- (2) INFORMATION FOR SEQ ID NO:86
 - (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 399
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:
- Ile Tyr Thr Ser Gly Thr Thr Gly Lys Pro Lys Gly Ala Ile Ile
- His His Leu Gly Leu Ala Asn Tyr Leu Val Trp Cys Ser Arg Ala
- Tyr Ala Ile Ala Gln Gly Val Gly Ala Pro Val His Ser Ser Ile
- Ser Phe Asp Leu Thr Ile Thr Ala Leu Leu Ala Pro Leu Val Val
- Gly Arg Arg Ile Asp Leu Leu Asp Glu Glu Leu Gly Ile Glu Gln
- Leu Ser Tyr Ala Leu Arg Arg Ser Arg Asp Tyr Ser Leu Val Lys
- Ile Thr Pro Ala His Leu Arg Trp Leu Gly Asp Glu Leu Gly Pro
- Cys Glu Ala Glu Gly Arg Thr Arg Ala Phe Ile Ile Gly Gly Glu
- Gln Leu Thr Ala Glu His Val Xaa Phe Trp Arg Arg His Ala Pro
- Gly Thr Ser Leu Ile Asn Glu Tyr Gly Pro Thr Glu Thr Val Val 145
- Gly Cys Cys Val Tyr Arg Val Pro Pro Asp Gln Glu Ile Ser Gly
- Pro Ile Pro Ile Gly Arg Pro Ile Ala Asn Thr Arg Leu Tyr Val
- Leu Asp Pro Asp Leu Ala Leu Val Pro Ile Gly Val Ala Gly Glu 185 190

Leu	Tyr	Ile	Gly	Gly 200	Ala	Gly	Val	Ala	Arg 205	Gly	Tyr	Leu	Asn	Arg 210
Pro	Gly	Leu	Thr	Ala 215	Glu	Arg	Phe	Ile	Pro 220	Asp	Pro	Phe	Gly	Lys 225
Lys	Pro	Gly	Glu	Arg 230	Leu	Tyr	Arg	Tḥr	Gly 235	Asp	Leu	Ala	Arg	Trp 240
Arg	Ser	Asp	Gly	Asn 245	Leu	Glu	Tyr	Leu	Gly 250	Arg	Val	Asp	Arg	Gln 255
Val	Lys	Val	Arg	Gly 260	Phe	Arg	Ile	Glu	Pro 265	Gly	Glu	Ile	Glu	Gln 270
Ala	Leu	Ala	Arg	His 275	Ser	Ala	Val	Arg	Glu 288	Ser	Val	Val	Val	Ala 285
Ser	Ala	Gly	Ala	Ser 290	Asp	Val	Gln	Arg	Leu 295	Val	Ala	Tyr	Leu	Val 300
Leu	Ala	Glu	Ala	Gly 305	Pro	Ala	Pro	Pro	Asp 310	Ser	Glu	Leu	Arg	Glu 315
Phe	Leu	Arg	Thr	Leu 320	Leu	Pro	Glu	Pro	Met 325	Ile	Pro	Ser	Ala	Phe
Val	Val	Leu	Glu	Thr 335	Leu	Pro	Leu	Thr	His 340	Asn	Gly	Lys	Val	Asp 345
Arg	Glu	Ala	Leu	Pro 350	Ala	Pro	Glu	Gly	Val 355	Pro	Phe	Arg	Gly	Asp 360
Ala	Arg	Phe	Val	Ala 365	Pro	Arg	Gly	Pro	Leu 370	Glu	Gln	Glu	Val	Ala 375
Ser	Ile	Trp	Gly	Ala 380	Val	Leu	Gly	Leu	Glu 385	Arg	Ile	Gly	Ala	Leu 390
Asp	Asn	Phe	Phe	Phe 395	Pro	Arg	Arg	Pro						

- (2) INFORMATION FOR SEQ ID NO:87:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1204
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

AGGGGCCGCC GGGCGAGAAG AAGTTCGCGG TGATGCTCAC CGGCGCGTCG 50 AGCTTCAACG CCTCCTGCCA GATCTCCGCG AGCTTGCTCT CCGTCTCCGT 100 - 85 -

GCCCGGCGCTACGTATTGGGCGCCGGCGCTACGGTCGATGGACGGCAGCG150CCTTACGATCGATCTTGCCGTTGGCATTCAGCGGAAAGGCCTCCAGGACG200CGCCAGCCGCTGGGAATCATGTACTCGGGCAGGGCCAGCTTGAGGCGCAT250CCGCAGCGCCGAGATGAGCACCTCTTCGTCCCGCGGTCTGGGCCACGACGT300AGGCGACGAGGGCCTTGTTCTCCCCCTCTCCCTGCGCCACCACCAGGGCG350TCGTCGACGCCAGCCTCGGTCTTCAGCGCGGTCTCGATCTCGCCGAGCTC400GATGCGGAAGCCGCGGATCTTGATCTGGTCGTCGAGGCGGCCGAGGAACT450CGGCCTTCGCCGAAGGGATTGGCGAACGAGGTCGCGCGTGCGATAGAGG500CGCCCTTCGCCGAAGGGATTGGCGATGAACTTCGCCGCGTTCAGCTCCG550CTGGTTGACGTAGCCTCTCGCCACCCCTGCCCCGCCAATGCACAGCTCCG600CGGCCACGCCGACCGGCGCGATCTCCAGTGCCTCGTTGAGGACATACAGC650CTGGTGTTGTCCATGGCCGTGCGATGGCCAGGCGCTCCGGCAGGCCGGC700CTGGGAGAGGAGCGGTGACGTCGGCGATGGCAGGCGCGACCACGGTCTCCG750TGGGAGCGAGCGAGGCGGAACAGATTCGCGGCCGATGACGAAAACCGT800TTGAGATGAAGCCCGGCCGACGCTTCTCCGTCAGCCCGATGACAGTTCGAGCTTTCGAGACCCTTTCAGCTCAGTTCGAGCAGATAAACGT950CGTTCGTCGCGAGACGCAGCTTCTCCGCTGAGCAGATAAACCTCATCGCCGGGTACTCGCGGCAGATAAACCTCAGCGGCAACCTTCTTCAGTCAGTTCGAGCAGTTCGAGCAGTTC

- (2) INFORMATION FOR SEQ ID NO:88:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 401
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:
- Ile Tyr Thr Ser Gly Thr Thr Gly Lys Pro Lys Gly Val Glu Ile
 5 10 15
- Arg His Ala Gly Leu Ser Asp Tyr Cys Ala Phe Ala Ser Gln Arg
 20 25 30
- Tyr Tyr Ala Lys Gly Leu Ala Gly Ser Leu Val Val Thr Ser His 35 40 45
- Gly Phe Asp Ile Thr Val Pro Ser Leu Tyr Val Pro Leu Leu Arg
 50 55 60
- Gly Gly Cys Val Ser Leu Thr Thr Pro Gly Asp Glu Leu Asn Glu
 65 70 75
- Leu Ala Lys Ala Leu Ala Gly Asp Glu Arg Ala Tyr Leu Leu Arg 80 85 90
- Met Thr Pro Met His Leu Thr Gly Met Leu Ala Leu Leu Asp Ser 95 100 105

Ala	Glu	Leu	Thr	Glu 110	Asp	Thr	Ala	Arg	Ala 115	Ser	Ser	Gln	His	Val 120
Phe	Val	Ile	Gly	Gly 125	Glu	Ser	Phe	Pro	Ala 130	Ser	Leu	Ala	Arg	Glu 135
Leu	Gln	Thr	Arg	Phe 140	Pro	His	Ala	Gln	Ile 145	Tyr	Asn	His	Tyr	Gly 150
Pro	Thr	Glu	Thr	Val 155	Val	Gly	Cys	Ala	Met 160	Phe	Asp	Val	Thr	Ala 165
Ala	Leu	Gln	Ala	Gly 170	Leu	Pro	Glu	Arg	Leu 175	Pro	Ile	Gly	Arg	Ala 180
Met	Asp	Asn	Thr	Glu 185	Leu	Tyr	Val	Leu	Asn 190	Glu	Ala	Leu	Glu	Ile 195
Ala	Pro	Val	Gly	Val 200	Ala	Gly	Glu	Leu	Cys 205	Ile	Gly	Gly	Ala	Gly 210
Val	Ala	Arg	Gly	Tyr 215	Val	Asn	Gln	Pro	Glu 220	Leu	Thr	Ala	Ala	Lys 225
Phe	Ile	Ala	Asn	Pro 230	Phe	Gly	Glu	Gly	Arg 235	Leu	Tyr	Arg	Ser	Gly 240
Asp	Leu	Val	Arg	Arg 245	Leu	Ala	Ser	Gly	Asp 250	Leu	Glu	Phe	Leu	Gly 255
Arg	Leu	Asp	Asp	Gln 260	Ile	Lys	Ile	Arg	Gly 265	Phe	Arg	Ile	Glu	Leu 270
Gly	Glu	Ile	Glu	Thr 275	Ala	Leu	Lys	Thr	Glu 288	Ala	Gly	Val	Asp	Asp 285
Ala	Leu	Val	Val	Ala 290	Gln	Gly	Glu	Gly	Glu 295	Asn	Lys	Ala	Leu	Val 300
Ala	Tyr	Val	Val	Ala 305	Gln	Thr	Ala	Asp	Glu 310	Glu	Val	Leu	Ile	Ser 315
Ala	Leu	Arg	Met	Arg 320	Leu	Lys	Leu	Ala	Leu 325	Pro	Glu	Tyr	Met	Ile 330
Pro	Ser	Gly	Trp	Arg 335	Val	Leu	Glu	Ala	Phe 340	Pro	Leu	Asn	Ala	Asn 345
Gly	Lys	Ile	Asp	Arg 350	Lys	Ala	Leu	Pro	Ser 355	Ile	Asp	Arg	Ser	Ala 360
Gly	Ala	Gln	Tyr	Val 365	Ala	Pro	Gly	Thr	Glu 370	Thr	Glu	Ser	Lys	Leu 375
Ala	Glu	Ile	Trp	Gln	Glu	Ala	Leu	Lys	Leu	Asp	Ala	Pro	Val	Ser

- 87 -

380 385 390 Ile Thr Ala Asn Phe Phe Ser Pro Gly Gly Pro 395 (2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1190 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (xi) SEQUENCE DESCRIPTION: SEO ID NO:89: ATCTACACCT CGGGCACGAC CGGCAAGCCG AAGGGGATCA TGTATTCGCA 50 TCGATACCTG TTGCATAATA TGCGCAACTA CGGCGACTTA TTTCAGGTCT 100 CCCCCCACGA TCGCTGGAGT TGGTTGCATT CCTACAGCTA TGCTTCGGCG 150
AATACTGATA TCCTTTGCCC GCTACTGCAC GGCGCCGCCG TCTGCCCTTG 200
GAATTTGCAT CGTAATGGCC TATCGGGCTT AGCTCGTTGG CTCGCCGAGT 250 CGCGAATCAC CATTTTGAAC TGGATGCCGA CACCGCTACG CAGTTTGGCA 300 AAGCTCTGGC CGCCAAAGCA CGTGCTTCCC GATCTGCGAC TTACAGTGTT 350 GGGCGGCGAA ACGCTGTTTG CCCAAGACGT TGCTGACTTT CGGCGAATAA 400 TTTCGCTGAA TTGCCTAATC GCCAATCGTC TGGGAACTTC GGAAACTGGA 450 TTGTTTCGGC TCGCGTTTCT CGACCGAGAG ACTCCCCTTG CTAATGGTTC 500 CATACAGGCC GGATACGAAG TTCCAGACAA GACCGTCGTC CTGTTCGACG 550 AATATGGAGT TGAGCTGGCC CCTGGCAACG TCGGTCAGAT TGGCGTGCGC 600 AGCAGGTACT TGCCGCCTGG ATACTGGCGA CGGCCGGAGT TGACAAGCGA 650 GCGATTTCTA ACCAGTAAAG GCGATGATGA CGTACGGACC TTCCTCACCG 700 GCGACCTTGG GCGAATGCGG GACGACGGAT GCCTCGAGCA CTGCGGACGG 750 CTCGACTCCC AAGTGAAGAT CCGTGGTCAC CGCATCGCAA TGGGAGAGAT 800 CGAATTCTTG CTTCGGACAT GCGACGGAGT CAGCGAAGCA GTTGTCATTG 850 CCAGGCCACA TTCAGACGGT GAAACCCGTT TGATAGCTTA TTTTGTGCCG 900 ACCGAGAAAA GCGCTATCGA TGTATCGAGC CTTCGTCGGC ACCTGCTGGG 950 AAAGCTGCCT GGCCACATGA TCCCCTCGGC GTTTGTGCGG CTCGACGGCG 1000 TGCCCAAAAA CGCCAACCAA AAAGTAGATT GGGCGGCCTT GCCAGCACCG 1050 AACTTCCAAA ACCAGGGACA GCAGCACGTA CCGCCACAAA CGCCTTGGCA 1100 GCGACATCTC GTGGAGTTGT GGCAAAAGTT GTTGAATGTG GAATCGATCG 1150 GCATCCACGA TGACTTCTTC GCCCTCGGCG GCCCCTCCTT 1190 (2) INFORMATION FOR SEO ID NO:90: (i) SEOUENCE CHARACTERISTICS: (A) LENGTH: 396 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: (A) DESCRIPTION: protein (iii) HYPOTHETICAL: no (v) FRAGMENT TYPE: internal fragment (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

Ser His Arg Tyr Leu Leu His Asn Met Arg Asn Tyr Gly Asp Leu

Ile Tyr Thr Ser Gly Thr Thr Gly Lys Pro Lys Gly Ile Met Tyr

				20					25					30
Phe	Gln	Val	Ser	Pro 35	His	Asp	Arg	Trp	Ser 40	Trp	Leu	His	Ser	Tyr 45
Ser	Tyr	Ala	Ser	Ala 50	Asn	Thr	Asp	Ile	Leu 55	Cys	Pro	Leu	Leu	His 60
Gly	Ala	Ala	Val	Cys 65	Pro	Trp	Asn	Leu	His 70	Arg	Asn	Gly	Leu	Ser 75
Gly	Leu	Ala	Arg	Trp 80	Leu	Ala	Glu	Ser	Arg 85	Ile	Thr	Ile	Leu	Asn 90
Trp	Met	Pro	Thr	Pro 95	Leu	Arg	Ser	Leu	Ala 100	Lys	Leu	Trp	Pro	Pro 105
Lys	His	Val	Leu	Pro 110	Asp	Leu	Arg	Leu	Thr 115	Val	Leu	Gly	Gly	Glu 120
Thr	Leu	Phe	Ala	Gln 125	Asp	Val	Ala	Asp	Phe 130	Arg	Arg	Ile	Ile	Ser 135
Leu	Asn	Cys	Leu	Ile 140	Ala	Asn	Arg	Leu	Gly 145	Thr	Ser	Glu	Thr	Gly 150
Leu	Phe	Arg	Leu	Ala 155	Phe	Leu	Asp	Arg	Glu 160	Thr	Pro	Leu	Ala	Asn 165
Gly	Ser	Ile	Gln	Ala 170	Gly	Tyr	Glu	Val	Pro 175	Asp	Lys	Thr	Val	Val 180
Leu	Phe	Asp	Glu	Tyr 185	Gly	Val	Glu	Leu	Ala 190	Pro	Gly	Asn	Val	Gly 195
Gln	Ile	Gly	Val	Arg 200	Ser	Arg	Tyr	Leu	Pro 205	Pro	Gly	Tyr	Trp	Arg 210
Arg	Pro	Glu	Leu	Thr 215	Ser	Glu	Arg	Phe	Leu 220	Thr	Ser	Lys	Gly	Asp 225
Asp	Asp	Val	Arg	Thr 230	Phe	Leu	Thr	Gly	Asp 235	Leu	Gly	Arg	Met	Arg 240
Asp	Asp	Gly	Cys	Leu 245	Glu	His	Cys	Gly	Arg 250	Leu	Asp	Ser	Gln	Val 255
Lys	Ile	Arg	Gly	His 260	Arg	Ile	Ala	Met	Gly 265	Glu	Ile	Glu	Phe	Leu 270
Leu	Arg	Thr	Cys	Asp 275	Gly	Val	Ser	Glu	Ala 288	Val	Val	Ile	Ala	Arg 285
Pro	His	Ser	Asp	Gly 290	Glu	Thr	Arg	Leu	Ile 295	Ala	Tyr	Phe	Val	Pro 300

- 89 -

Thr Glu Lys Ser Ala Ile Asp Val Ser Ser Leu Arg Arg His Leu Agg Gly Lys Leu Gly Val Gly His Met Ile Pro 325 Ser Ala Phe Val Arg 330 Leu Asp Gly Val Pro Lys Asn Ala Asn Gln Lys Val Asp Trp Ala 345 Ala Leu Pro Ala 350 Asn Phe Gln Asn Gln Gly Gln Gln His Val 360 Pro Pro Gln Thr Pro 365 Trp Gln Arg His Leu Saro Val Glu Leu Trp Gln 375 Lys Leu Leu Asn Val 380 Glu Ser Ile Gly Ile His Asp Asp Phe Phe 390 Ala Leu Gly Gly Gly Pro 395 Ser

- (2) INFORMATION FOR SEQ ID NO:91:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1178
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

AAGGAGGGC CGCCCGCCC GAAGAAGTTC TCGTGTAGCC CGACGCGTTC 50
CAGCTGCAGC ACGCGCACC AGATCGCTGC GACCTGCCGC TGGACGTCCG 100
TCATGATCGC GGTGTCCGCT GCGGCCGCTG CCGCGCGATT CACCTGTGGA 150
ATGGGCAGGG CCTTGCGGTC GATCTTGTCG TTCGGCGTGA GCGGCAGCGC 200 GGCGAGCGAT ACGATCACCT GTGGCACCAT GTACTCGGGG AGTCTCGCGC 250 GGAGCGCCGT CCGGAGCTCG TCGAGCGGCA GCACGCCGTC TTCTGCCGGG 300 ACGACGTACG CCACCAGACG CTGATCGCCG GGGGTGTCCT CGCGCACGAC 350 GGCCACGCTG CGGCGCACCG ACGGATGCTC GGACAGGACC GATTCGATCT 400 CCCCCAGCTC GATCCGGTAG CCGCGAAGCT TCACCTGATG ATCTCGGCGT 450 CCGACGAACT CGAGGGCCCG ATCGGCGCGC AGTCGTACGA TGTCGCCGGT 500 GCGGTACACG CGCTCCGCCG GTCTGCCCGC GACCTCGACG ACGACGAACT 550 TTTCTGCCGT GAGCTCGGGT CGATGACGAT AGCCCCGCGC CACGCCCTCT 600 CCTCCGATGC ACAGCTCACC CGGCACGCCG ATGGGAGCCT GGCGACCCGC 650 TATCGCGATC GCAATCCGTG ACCTGATGCA CGGTCGACCA GATCGTCGTC 750
TCGGTCGGGC CGTACATGTT CCACAGCGCC CGCACCCTCG ACGAGAGATC 800
GCGCGCGAGA TCGCGTGGAA GGGCCTCCCC GCCGCAGAGC GCGGTGAGAT 850 CCGTCTTGCC CTGCCAGCCG GCGTCGATGA GCAGGCGCCA GGTCGCGGGG 900 GTCGCCTGCA TCATCGTCGC TCTGCACGAT TCGATGCGCT CGCGAAGACG 950 CTCGCCGTCG AGCACGTCGC CGCGGGAGGC GATGACCGTC CTCCCGCCGA 1000 CGACGAGAGG CAAGAACAGC TCGAGACCCG CGATGTCGAA CGACGGCGTG 1050 GTGACCGCGA GGAGCACGTC GCCGGCTCGC AAGCCTGGCT CCTTCTGCAT 1100 GGCGCGCAGG AAATTCACGA GCTGGCGGTG CTCGATCTCG ACCCCCTTCG 1150

- 90 -

GCTTGCCCGT CGTGCCCGAC GTGTAGAT

1178

(i) SEQU (A) LENG (B) TYPE	TH: 39: : amind LOGY: : ECULE ' RIPTION POTHET MENT T UENCE	HARAC c aci linea TYPE: N: pr ICAL: YPE: DESCE	cTERI d ar cotei no inte	n ernal	s: fra seQ	agmer ID N	10:92		Gly	Val	Glu	Ile
-		5			-	-	10	-	_			15
Glu His A	rg Gln	Leu 20	Val	Asn	Phe	Leu	Arg 25	Ala	Met	Gln	Lys	Glu 30
Pro Gly L	eu Arg	Ala 35	Gly	Asp	Val	Leu	Leu 40	Ala	Val	Thr	Thr	Pro 45
Ser Phe A	sp Ile	Ala 50	Gly	Leu	Glu	Leu	Phe 55	Leu	Pro	Leu	Val	Val 60
Gly Gly A	rg Thr	Val 65	Ile	Ala	Ser	Arg	Gly 70	Asp	Val	Leu	Asp	Gly 75
Glu Arg L	eu Arg	Glu 80	Arg	Ile	Glu	Ser	Cys 85	Arg	Ala	Thr	Met	Met 90
Gln Ala T	hr Pro	Ala 95	Thr	Trp	Arg	Leu	Leu 100	Ile	Asp	Ala	Gly	Trp 105
Gln Gly L	ys Thr	Asp 110	Leu	Thr	Ala	Leu	Cys 115	Gly	Gly	Glu	Ala	Leu 120
Pro Arg A	sp Leu	Ala 125	Arg	Asp	Leu	Ser	Ser 130	Arg	Val	Arg	Ala	Leu 135
Trp Asn M	et Tyr	Gly 140	Pro	Thr	Glu	Thr	Thr 145	Ile	Trp	Ser	Thr	Val 150
His Gln V	al Thr	Asp 155	Cys	Asp	Arg	Asp	Ile 160	Pro	Ile	Gly	His	Pro 165
Ile Ala A	sn Thr	Asn 170	Val	Tyr	Val	Leu	Asp 175	Ala	Ala	Gly	Arg	Gln 180
Ala Pro I	le Gly	Val 185	Pro	Gly	Glu	Leu	Cys 190	Ile	Gly	Gly	Glu	Gly 195
Val Ala A	rg Gly	Tyr 200	Arg	His	Arg	Pro	Glu 205	Leu	Thr	Ala	Glu	Lys 210

Phe	Val	Val	Val	Glu 215	Val	Ala	Gly	Arg	Pro 220	Ala	Glu	Arg	Val	Tyr 225
Arg	Thr	Gly	Asp	Ile 230	Val	Arg	Leu	Arg	Ala 235	Asp	Arg	Ala	Leu	Glu 240
Phe	Val	Gly	Arg	Arg 245	Asp	His	Gln	Val	Lys 250	Leu	Arg	Gly	Tyr	Arg 255
Ile	Glu	Leu	Gly	Glu 260	Ile	Glu	Ser	Val	Leu 265	Ser	Glu	His	Pro	Ser 270
Val	Arg	Arg	Ser	Val 275	Ala	Val	Val	Arg	Glu 288	Asp	Thr	Pro	Gly	Asp 285
Gln	Arg	Leu	Val	Ala 290	Tyr	Val	Val	Pro	Ala 295	Glu	Asp	Gly	Val	Leu 300
Pro	Leu	Asp	Glu	Leu 305	Arg	Thr	Ala	Leu	Arg 310	Ala	Arg	Leu	Pro	Glu 315
Tyr	Met	Val	Pro	Gln 320	Val	Ile	Val	Ser	Leu 325	Ala	Ala	Leu	Pro	Leu 330
Thr	Pro	Asn	Asp	Lys 335	Ile	Asp	Arg	Lys	Ala 340	Leu	Pro	Ile	Pro	Gln 345
Val	Asn	Arg	Ala	Ala 350	Ala	Ala	Ala	Ala	Asp 355	Thr	Ala	Ile	Met	Thr 360
Asp	Val	Gln	Arg	Gln 365	Val	Ala	Ala	Ile	Trp 370	Cys	Ala	Val	Leu	Gln 375
Leu	Glu	Arg	Val	Gly 380	Leu	His	Glu	Asn	Phe 385	Phe	Ala	Pro	Gly	Gly 390

Pro Ser

- (2) INFORMATION FOR SEQ ID NO:93:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH:1178
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

ATCTACACCT CCGGCACGAC GGGCAAGCCG AAGGGAGTAA AGATCACACA 50 TCGTGCCGTG GTGAATTTTC TGAACTCGAT GCGGCGTGAA CCAGGGCTGA 100 CCCCGGACGA TGTGGTGCTC TCGGTCACCA CGCTGTCGTT TGACATTGCC 150 GGACTCGAAC TCCACCTGCC CCTGACGACT GGAGCCACGG TCGTAGTGGC 200 GACCCAAGAC GCGGTGTCCG ACGCTGAACT GCTGGTCAGA GAGTTGGAGC 250 - 92 -

WO 98/53097

PCT/CA98/00488

GGACCGGAAC AACTCTGTTG CAGGCGACGC CAGTCACATG GCGAATGCTT 300 CTGGAGTCGG GCTGGAAAGG AAATCCGCGA CTCAAGGCTC TGGTCGGAGG 350 TGAGGCAGTG CCGAGGGACC TGGTGAATCG GCTTGCTCCC CTTTGCGCGT 400 CACTTTGGAA CATGTACGGA CCAACGGAAA CCACGATCTG GTCAACGGTT 450 GGGCGTCTGG AGGCTGGAGA TGGTGTGTCT AGTATTGGCC GGCCCATCGA 500 CAATACGCGG ATTTACGTCG TGGATCCGTC GATACACCTT CAGCCCATCG 550 GAGTTCCCGG CGAATTGCTG ATTGGCGGAG AAGGATTGGC CGACGGATAT 600 CTGAAACGCG ATCAGTTGAC GGCAGAGAAG TTCATTCCTG ATCCATTTGG 650 TGGGAGGCCT GGGTCTCGGC TGTATCGAAC CGGAGATCTT GCGCGCTGGC 700 GCGCGGACGG CACCTTGGAG TGTCTCGGAC GAATGGACCA ACAGGTGAAG 750 ATTCGGGGTT CCCGGATCGA ATTGGGTGAG ATCGAAACCC TGTTGGCCTC 800 CCACCCGGAT GTGAAACAGA ACGTGGTGGT CGTACGCGAG GACAGCCCCG 850 GGGAAAAAA ATTGGTGGGC TATTTCGTGC CGGCGAACGG ACGCAATCCC 900 GAAGTGATGG AATTTCGCAA ACATCTGCAG CGGACGCTTC CGGATTACAT 950 GGTCCCCTCA GTGTACGTGC CCTTGACCTC GGTTCCGCTT ACACCCAACG 1000 GAAAGATCGA CCGCAAGGCG CTGCCCGCAC CGGATATCAG CGCCGTCACG 1050 GTTTCCCGAG AGTCAATTGC GCCGCGCAAT CCCGCCGAAG AGCGGCTGGC 1100 AGCAATTTC GCCAAGGTGC TTGGCACGCC GATCGCCTCG ATCCACGACA 1150 GCTTCTTCTC CCCGGGCGGC CCCTCCAT (2) INFORMATION FOR SEQ ID NO:94 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 218 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: (A) DESCRIPTION: protein (iii) HYPOTHETICAL: no (v) FRAGMENT TYPE: internal fragment (xi) SEQUENCE DESCRIPTION: SEQ ID NO:94: Ile Tyr Thr Ser Gly Thr Thr Gly Lys Pro Lys Gly Val Lys Ile Thr His Arg Ala Val Val Asn Phe Leu Asn Ser Met Arg Arg Glu Pro Gly Leu Thr Pro Asp Asp Val Val Leu Ser Val Thr Thr Leu

Ser Phe Asp Ile Ala Gly Leu Glu Leu His Leu Pro Leu Thr Thr 55

Gly Ala Thr Val Val Val Ala Thr Gln Asp Ala Val Ser Asp Ala

Glu Leu Leu Val Arg Glu Leu Glu Arg Thr Gly Thr Thr Leu Leu

Gln Ala Thr Pro Val Thr Trp Arg Met Leu Leu Glu Ser Gly Trp

Lys Gly Asn Pro Arg Leu Lys Ala Leu Val Gly Glu Ala Val

Pro Arg Asp Leu Val Asn Arg Leu Ala Pro Leu Cys Ala Ser Leu

- 93 -

				125					130					135
Trp	Asn	Met	Tyr	Gly 140	Pro	Thr	Glu	Thr	Thr 145	Ile	Trp	Ser	Thr	Val 150
Gly	Arg	Leu	Glu	Ala 155	Gly	Asp	Gly	Val	Ser 160	Ser	Ile	Gly	Arg	Pro 165
Ile	Asp	Asn	Thr	Arg 170	Ile	Tyr	Val	Val	Asp 175	Pro	Ser	Ile	His	Leu 180
Gln	Pro	Ile	Gly	Val 185	Pro	Gly	Glu	Leu	Leu 190	Ile	Gly	Gly	Glu	Gly 195
Leu	Ala	Asp	Gly	Tyr 200	Leu	Lys	Arg	Asp	Gln 205	Leu	Thr	Ala	Glu	Lys 210
Phe	Ile	Pro	Asp	Pro 215	Phe	Gly	Gly	Arg	Pro 220	Gly	Ser	Arg	Leu	Tyr 225
Thr	Gly	Asp	Leu	Ala 230	Arg	Trp	Arg	Ala	Asp 235	Gly	Thr	Leu	Glu	240
Cys	Leu	Gly	Arg	Met 245	Asp	Gln	Gln	Val	Lys 250	Ile	Arg	Gly	Ser	Arg 255
Glu	Leu	Gly	Glu	Ile 260	Glu	Thr	Leu	Leu	Ala 265	Ser	His	Pro	Asp	270
Lys	Gln	Asn	Val	Val 275	Val	Val	Arg	Glu	Asp 288	Ser	Pro	Gly	Glu	285
Lys	Lys	Leu	Val	Gly 290	Tyr	Phe	Val	Pro	Ala 295	Asn	Gly	Arg	Asn	Pro 300
Glu	Val	Met	Glu	Phe 305	Arg	Lys	His	Leu	Gln 310	Arg	Thr	Leu	Pro	Asp 315
Tyr	Met	Val	Pro	Ser 320	Val	Tyr	Val	Pro	Leu 325	Thr	Ser	Val	Pro	Leu 330
Thr	Pro	Asn	Gly	Lys 3 3 5	Ile	Asp	Arg	Lys	Ala 340	Leu	Pro	Ala	Pro	Asp 345
Ile	Ser	Ala	Val	Thr 350	Val	Ser	Arg	Glu	Ser 355	Ile	Ala	Pro	Arg	Asn 360
Pro	Ala	Glu	Glu	Arg 365	Leu	Ala	Ala	Ile	Phe 370	Ala	Lys	Val	Leu	Gly 375
Thr	Pro	Ile	Ala	Ser 380	Ile	His	Asp	Ser	Phe 385	Phe	Ser	Pro	Gly	Gly 390
_														

Pro

- 94 -

CLAIMS

1	1.	A method for recovery of antibiotic biosynthetic DNA from numic										
2	materials or lichen co	mprising the steps of:										
3	(a)	combining a humic or lichen-derived sample with a set of										
4	amplification primers	under conditions suitable for polymerase chain reaction amplification,										
5	wherein the primer se	et is a degenerate primer set selected to hybridize with conserved regions										
6	of antibiotic biosynth	netic gene;										
7	(b)	cycling the combined sample through a plurality of amplification										
8	cycles to amplify DNA complementary to the primer set; and											
9	(c)	isolating the amplified DNA.										
1	2.	The method according to claim 1, wherein the primer set hybridizes										
2	with a polyketide synthase gene.											
1	3.	The method according to claim 2, wherein the primer set comprises										
2	primers having the sequence set forth in SEQ ID Nos. 1 and 2.											
1	4.	The method according to claim 2, wherein the primer set comprises										
2	primers having the sequence set forth in SEQ ID Nos. 3 and 4.											
1	5.	The method according to claim 2, wherein the primer set comprises										
2	primers having the se	equence set forth in SEQ ID Nos. 5 and 6.										
1	6.	The method according to claim 2, wherein the primer set comprises										
2	primers having the sequence set forth in SEQ ID Nos. 11 and 12.											
1	7.	The method according to claim 1, wherein the primer set hybridizes										
2	with a isopenicillin N	I synthase gene.										

- 95 -

WO 98/53097 PCT/CA98/00488

i	8.	The method according to claim /, wherein the primer set comprises										
2	primers having the	sequence set forth in SEQ ID Nos. 7 and 8.										
l	9.	The method according to claim 1, wherein the primer set hybridizes										
2	with a peptide synthetase gene.											
1	10.	The method according to claim 9, wherein the primer set comprises										
2	primers having the	sequence set forth in SEQ ID Nos. 9 and 10.										
1	11.	The method according to any of claims 1 to 10, wherein the sample										
2	comprises DNA extracted from a soil sample.											
1	12.	The method according to claim 1, wherein the sample is a lichen-										
2	derived sample.	The method according to claim 1, wherein the sample is a nenem-										
1	13.	The method according to any of claims 1 to 12, further comprising the										
2	steps of cloning the isolated DNA into a host organism, and isolating the cloned DNA.											
1	14.	The method according to claim 13, wherein the host organism is E .										
2	coli.											
1	15.	An oligonucleotide primer having the sequence as defined in any of										
2	Seq. ID. Nos. 1 thro	ough 8.										
1	16.	A composition comprising two oligonucleotide primers having the										
2	sequence as defined	1 in Seq. ID Nos. 1 and 2; 3 and 4; 5 and 6; or 7 and 8.										
1	17.	A polynucleotide comprising a region having the sequence given by										
2	any of sequence ID	Nos. 13, 15, 17, 19, 21, 23, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51,										
3	53, 55, 57, 59, 61, 6	63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91 or 93.										

WO 98/53097

1		18.	A bios	ynthe	etic po	lype	ptid	e en	cod	ed b	у а	pol	ynu	cled	otide	e co	mpr	isir	ng a
2	region having	the seq	uence g	iven	by any	of	sequ	ience	e ID	No	s. 1	3, 1	5, 1	7, 1	9, 2	21, 2	23, 2	9,	31,
_				40						6 2			~	~.		~~			0.1

- 96 -

PCT/CA98/00488

- 3 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79 81,
- 4 83, 85, 87, 89, 91 or 93.
- 1 19. The biosynthetic polypeptide of claim 18, wherein the polypeptide has
- 2 the amino acid sequence given by any of Sequence ID Nos. 14, 16, 18, 20, 22, 24, 26, 28, 30,
- 3 32, 3,4 3,6 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80,
- 4 82, 84, 86, 88, 90, 92 or 94.