The **xtable** Gallery

Jonathan Swinton and others

February 2, 2016

Contents

1	Introduction	2
2	Gallery	2
	2.1 Data frame	2
	2.2 Matrix	2
	2.3 aov	3
	2.4 lm	3
	2.5 glm	6
	2.6 prcomp	6
	2.7 Time series	7
	2.8 Flat tables	7
3	Automatic formatting	10
J	3.1 Suggest alignment, digits, and display	10
	3.2 Shorthand notation	10
	3.3 Math-Style Exponents	11
	5.5 Math-style Exponents	11
4	Sanitization	11
	4.1 Markup in tables	13
5	Format examples	13
	5.1 Adding a centering environment	13
	5.2 Column alignment	14
	5.3 Number of digits	15
	5.4 Suppress row/column names	16
	5.5 Rotate row/column names	18
	5.6 Horizontal lines	19
	5.7 Table level commands	20
	5.8 Long tables	20
	5.9 Use of add.to.row argument	25
	5.10 Sideways tables	25
	5.11 Rescaled tables	27
	5.12 Aligning fixed width columns	27
	5.13 Table width	28
6	Suppressing printing	28
7	Acknowledgements	29
8	Session information	29

1 Introduction

This document gives a gallery of tables which can be made using the **xtable** package to create LATEX output. It doubles as a regression check for the package.

The first step is to load the package and set an option for this document.

```
library(xtable)
options(xtable.floating = FALSE)
options(xtable.timestamp = "")
```

2 Gallery

2.1 Data frame

```
data(tli)
xtable(tli[1:10, ])
```

	grade	sex	disadvg	ethnicty	tlimth
1	6	Μ	YES	HISPANIC	43
2	7	\mathbf{M}	NO	BLACK	88
3	5	F	YES	HISPANIC	34
4	3	\mathbf{M}	YES	HISPANIC	65
5	8	\mathbf{M}	YES	WHITE	75
6	5	\mathbf{M}	NO	BLACK	74
7	8	F	YES	HISPANIC	72
8	4	M	YES	BLACK	79
9	6	M	NO	WHITE	88
10	7	\mathbf{M}	YES	HISPANIC	87

2.2 Matrix

```
design.matrix <- model.matrix(~ sex*grade, data = tli[1:10, ])
xtable(design.matrix, digits = 0)</pre>
```

	(Intercept)	sexM	grade	sexM:grade
1	1	1	6	6
2	1	1	7	7
3	1	0	5	0
4	1	1	3	3
5	1	1	8	8
6	1	1	5	5
7	1	0	8	0
8	1	1	4	4
9	1	1	6	6
10	1	1	7	7

2.3 aov

```
fm1 <- aov(tlimth ~ sex + ethnicty + grade + disadvg, data = tli)
xtable(fm1)</pre>
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
sex	1	75.37	75.37	0.38	0.5417
ethnicty	3	2572.15	857.38	4.27	0.0072
grade	1	36.31	36.31	0.18	0.6717
disadvg	1	59.30	59.30	0.30	0.5882
Residuals	93	18682.87	200.89		

2.4 lm

```
fm2 <- lm(tlimth ~ sex*ethnicty, data = tli)
xtable(fm2)</pre>
```

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	73.6364	4.2502	17.33	0.0000
sexM	-1.6364	5.8842	-0.28	0.7816
ethnictyHISPANIC	-9.7614	6.5501	-1.49	0.1395
ethnictyOTHER	15.8636	10.8360	1.46	0.1466
${\it ethnictyWHITE}$	4.7970	4.9687	0.97	0.3368
sexM:ethnictyHISPANIC	10.6780	8.7190	1.22	0.2238
sexM:ethnictyWHITE	5.1230	7.0140	0.73	0.4670

Anova table (one model)

xtable(anova(fm2))

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
sex	1	75.37	75.37	0.38	0.5395
ethnicty	3	2572.15	857.38	4.31	0.0068
sex:ethnicty	2	298.43	149.22	0.75	0.4748
Residuals	93	18480.04	198.71		

$Anova\ table\ (two\ models)$

```
fm2b <- lm(tlimth ~ ethnicty, data = tli)
xtable(anova(fm2b, fm2))</pre>
```

	Res.Df	RSS	Df	Sum of Sq	F	$\Pr(>F)$
1	96	19053.59				
2	93	18480.04	3	573.55	0.96	0.4141

Anova list

```
272, 89, 407, 338, 87, 324, 279, 471, 323, 128, 423, 334,
         131, 103, 445, 437, 324, 361, 302, 272)
aovdat <- data.frame(Block, A, B, C, Yield)</pre>
old <- getOption("contrasts")</pre>
options(contrasts = c("contr.helmert", "contr.poly"))
(fit <- aov(Yield ~ A*B*C + Error(Block), data = aovdat))</pre>
##
## Call:
## aov(formula = Yield ~ A * B * C + Error(Block), data = aovdat)
## Grand Mean: 291.5938
## Stratum 1: Block
##
## Terms:
                    A:B A:C B:C A:B:C Residuals
## Sum of Squares 780.1250 276.1250 2556.1250 112.5000 774.0938
## Deg. of Freedom 1 1 1
## Residual standard error: 16.06335
## Estimated effects are balanced
##
## Stratum 2: Within
##
## Terms:
                               В С
                                               A:B
##
                      Α
                                             28.17 1802.67
## Sum of Squares 3465.28 161170.03 278817.78
                 1 1 1
## Deg. of Freedom
                                                1
                           A:B:C Residuals
                     B:C
##
## Sum of Squares 11528.17
                           45.37 5423.28
## Deg. of Freedom 1
                             1
## Residual standard error: 17.86103
## Estimated effects are balanced
class(fit)
## [1] "aovlist" "listof"
summary(fit)
##
## Error: Block
## Df Sum Sq Mean Sq F value Pr(>F)
         1 780.1 780.1 3.023 0.1805
## A:B
## A:C
           1 276.1 276.1 1.070 0.3770
           1 2556.1 2556.1 9.906 0.0514 .
## B:C
## A:B:C
          1 112.5 112.5 0.436 0.5562
## Residuals 3 774.1 258.0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## A
          1 3465 3465 10.862 0.00427 **
           1 161170 161170 505.209 4.40e-14 ***
## C 1 278818 278818 873.992 4.67e-16 ***
```

xtable(fit)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
A:B	1	780.12	780.12	3.02	0.1805
A:C	1	276.12	276.12	1.07	0.3770
B:C	1	2556.12	2556.12	9.91	0.0514
A:B:C	1	112.50	112.50	0.44	0.5562
Residuals	3	774.09	258.03		
A	1	3465.28	3465.28	10.86	0.0043
В	1	161170.03	161170.03	505.21	0.0000
\mathbf{C}	1	278817.78	278817.78	873.99	0.0000
A:B 1	1	28.17	28.17	0.09	0.7700
A:C 1	1	1802.67	1802.67	5.65	0.0295
B:C 1	1	11528.17	11528.17	36.14	0.0000
A:B:C 1	1	45.37	45.37	0.14	0.7107
Residuals1	17	5423.28	319.02		

2.5 glm

fm3 <- glm(disadvg ~ ethnicty*grade, data = tli, family = binomial)
xtable(fm3)</pre>

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	3.1888	1.5966	2.00	0.0458
ethnictyHISPANIC	-0.2848	2.4808	-0.11	0.9086
ethnictyOTHER	212.1701	22122.7093	0.01	0.9923
ethnictyWHITE	-8.8150	3.3355	-2.64	0.0082
grade	-0.5308	0.2892	-1.84	0.0665
ethnictyHISPANIC:grade	0.2448	0.4357	0.56	0.5742
ethnictyOTHER:grade	-32.6014	3393.4687	-0.01	0.9923
ethnictyWHITE:grade	1.0171	0.5185	1.96	0.0498

$Analysis\ of\ deviance$

xtable(anova(fm3))

	Df	Deviance	Resid. Df	Resid. Dev
NULL			99	129.49
ethnicty	3	47.24	96	82.25
grade	1	1.73	95	80.52
ethnicty:grade	3	7.20	92	73.32

2.6 prcomp

pr1 <- prcomp(USArrests)
xtable(pr1)</pre>

	PC1	PC2	PC3	PC4
Murder	0.0417	-0.0448	0.0799	-0.9949
Assault	0.9952	-0.0588	-0.0676	0.0389
UrbanPop	0.0463	0.9769	-0.2005	-0.0582
Rape	0.0752	0.2007	0.9741	0.0723

xtable(summary(pr1))

	PC1	PC2	PC3	PC4
Standard deviation	83.7324	14.2124	6.4894	2.4828
Proportion of Variance	0.9655	0.0278	0.0058	0.0008
Cumulative Proportion	0.9655	0.9933	0.9991	1.0000

2.7 Time series

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1954							0	1	3	2	3	5
1955	5	5	5	5	6	6	6	7	9	10	10	10
1956	10	13	14	15	16	17	17	17	19	19	20	20
1957	22	23	23	23	22	22	21	21	22	23	25	25
1958	25	26	26	26	26	26	26	27	26	26	26	26
1959	27	29	32	32	35	35	37	41	42	42	43	46
1960	46	48	50	51	52	53	54	56	59	60	60	60
1961	61	62	63	64	64	65	67	69	71	72	73	73
1962	74	75	78	80	81	82	82	84	86	89		

2.8 Flat tables

See the **Details** section of the help for ftable for a description of these tables, which are flat versions of multi-dimensional contingency tables. They require special methods to enable them to be printed using **xtable**

```
data(mtcars)
mtcars$cyl \leftarrow factor(mtcars$cyl, levels = c("4","6","8"),
                    labels = c("four", "six", "eight"))
tbl <- ftable(mtcars$cyl, mtcars$vs, mtcars$am, mtcars$gear,
             row.vars = c(2, 4),
             dnn = c("Cylinders", "V/S", "Transmission", "Gears"))
tbl
##
             Cylinders
                          four
                                  six
                                         eight
             Transmission
                                   0 1
                                            0 1
##
                             0
                               1
## V/S Gears
## 0
       3
                             0
                                0
                                    0
                                       0
                                            12 0
##
                             0 0
                                   0
                                       2
       4
                                            0 0
##
       5
                             0 1
                                   0 1
                                            0 2
## 1
       3
                             1 0
                                   2 0
                                            0 0
                             2 6
                                    2 0
##
                                             0 0
                                    0
##
                             0
                                1
                                       0
```

Here is the \LaTeX produced:

```
xftbl <- xtableFtable(tbl, method = "compact")</pre>
print.xtableFtable(xftbl, booktabs = TRUE)
## % latex table generated in R 3.2.3 by xtable 1.8-2 package
## %
## \begin{tabular}{ll rrrrrr}
##
    \toprule
##
                                    & \multicolumn{1}{1}{ four} & \multicolumn{1}{1}{
                                                                                     } & \mu
       & Cylinders
    V/S & Gears \ \ Transmission & \multicolumn{1}{1}{ 0} & \multicolumn{1}{1}{ 1} & \mu
##
##
     \midrule
## 0
     & 3
                                        0 & 0 &
                                                 0 & 0 &
                                                              12 & 0 \\
##
        & 4
                                          0 & 0 & 0 & 2 &
                                                                 0 & 0 \\
                                                    0 & 1 &
        & 5
                                         0 & 1 &
                                                                 0 & 2 \\
##
                                     &
                                          1 & 0 & 2 & 0 &
##
    1 & 3
                                                                 0 & 0 \\
```

And here is a basic flat table:

```
xftbl <- xtableFtable(tbl)
print.xtableFtable(xftbl)</pre>
```

		Cylinders	four		six		eight	
		Transmission	0	1	0	1	0	1
V/S	Gears							
0	3		0	0	0	0	12	0
	4		0	0	0	2	0	0
	5		0	1	0	1	0	2
1	3		1	0	2	0	0	0
	4		2	6	2	0	0	0
	5		0	1	0	0	0	0

This illustrates the method argument:

```
xftbl <- xtableFtable(tbl, method = "col.compact")
print.xtableFtable(xftbl, rotate.rownames = TRUE)</pre>
```

	Gears Transmission Cylinders	four		six		eight	
S/Λ	Gears Transm	0	1	0	1	0	1
0	3	0	0	0	0	12	0
	4	0	0	0	2	0	0
	5	0	1	0	1	0	2
\vdash	33	1	0	2	0	0	0
	4	2	6	2	0	0	0
	5	0	1	0	0	0	0

Booktabs is incompatible with vertical lines in tables, so the vertical dividing line is removed.

```
xftbl <- xtableFtable(tbl, method = "compact")
print.xtableFtable(xftbl, booktabs = TRUE)</pre>
```

37 / G	Cylinders	four	-	six		eight	4
V/S	Gears Transmission	0	1	0	1	0	1
0	3	0	0	0	0	12	0
	4	0	0	0	2	0	0
	5	0	1	0	1	0	2
1	3	1	0	2	0	0	0
	4	2	6	2	0	0	0
	5	0	1	0	0	0	0

Row and column variable names can be formatted specially using sanitization, and row and column variable names and labels can be rotated.

If special formatting is required for row and column labels, that can be done as a workaround by redefining the data and associated labels.

```
italic <- function(x){</pre>
  paste0('{\\emph{', x, '}}')
mtcars$cyl <- factor(mtcars$cyl, levels = c("four","six","eight"),</pre>
                       labels = c("four",italic("six"),"eight"))
large <- function(x){</pre>
  paste0('{\\Large ', x, '}')
bold <- function(x){</pre>
  paste0('\{\begin{subarray}{l} bfseries ', x, '\}'\end{subarray}
tbl <- ftable(mtcars$cyl, mtcars$vs, mtcars$am, mtcars$gear,
               row.vars = c(2, 4),
               dnn = c("Cylinders", "V/S", "Transmission", "Gears"))
xftbl <- xtableFtable(tbl, method = "row.compact")</pre>
print.xtableFtable(xftbl,
                     sanitize.rownames.function = large,
                     sanitize.colnames.function = bold,
                     rotate.colnames = TRUE,
                     rotate.rownames = TRUE)
```

		Transmission Cylinders	four		six		eight	
S/N	Gears	Transm	0	\vdash	0	\vdash	0	\vdash
0	ಣ		0	0	0	0	12	0
			0	0	0	2	12 0	
	5 4		0	1	0	1	0	2
\vdash	3		$\begin{bmatrix} 0\\1\\2\\0 \end{bmatrix}$	0 6	2	0	0	0 2 0 0
	5 4		2		2 2 0	0		
	5		0	1	0	0	0	0

3 Automatic formatting

3.1 Suggest alignment, digits, and display

The functions xalign, xdigits, and xdisplay are useful for formatting tables in a sensible way. Consider the output produced by the default formatting.

```
data(mtcars)
dat <- mtcars[1:3, 1:6]
x <- xtable(dat)
x</pre>
```

	mpg	cyl	disp	hp	drat	wt
Mazda RX4	21.00	6.00	160.00	110.00	3.90	2.62
Mazda RX4 Wag	21.00	6.00	160.00	110.00	3.90	2.88
Datsun 710	22.80	4.00	108.00	93.00	3.85	2.32

Now change the default alignment, digits and display using helper functions xalign, xdigits, and xdisplay. This produces a better format as shown below.

```
align(x) <- xalign(x)
digits(x) <- xdigits(x)
display(x) <- xdisplay(x)
x</pre>
```

	mpg	cyl	disp	hp	drat	wt
Mazda RX4	21.0	6	160	110	3.90	2.620
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875
Datsun 710	22.8	4	108	93	3.85	2.320

3.2 Shorthand notation

For convenience, the three 'autoformat' functions (xalign, xdigits, and xdisplay) can be applied together when an xtable is created, using the auto argument:

```
xtable(dat, auto = TRUE)
```

	mpg	cyl	disp	hp	drat	wt
Mazda RX4	21.0	6	160	110	3.90	2.620
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875
Datsun 710	22.8	4	108	93	3.85	2.320

Similarly, the autoformat function can be used to postprocess an existing xtable:

```
x <- xtable(dat)
autoformat(x)</pre>
```

	mpg	cyl	disp	$^{ m hp}$	drat	wt
Mazda RX4	21.0	6	160	110	3.90	2.620
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875
Datsun 710	22.8	4	108	93	3.85	2.320

3.3 Math-Style Exponents

If you prefer 5×10^5 in your tables to 5e5, the math.style.exponents option to print.xtable is useful:

	text	googols	small
A	foo	1×10^{11}	8×10^{-24}
В	bar	5×10^{11}	7×10^{-5}

this option also supports the values ensuremath which uses $\mbox{\ensuremath}$ instead of \$\$ and UTF-8 which uses UTF-8 to approximate the LATEX type setting.

4 Sanitization

	Name	&><_%\$\#^~{}
1	Ampersand	&
2	Greater than	>
3	Less than	<
4	Underscore	_
5	Per cent	%
6	Dollar	\$
7	Backslash	
8	Hash	#
9	Caret	^
10	Tilde	~
11	Left brace	{
12	Right brace	}

Sometimes you might want to have your own sanitization function.

```
Column

1 Value is 10<sup>-1</sup>
2 Value is 10<sup>-2</sup>
3 Value is 10<sup>-3</sup>
```

Sanitization can be useful in formatting column headings and row names:

	mpg	cyl	disp	hp	drat	\mathbf{wt}
$Mazda\ RX4$	21.00	6.00	160.00	110.00	3.90	2.62
Mazda RX4 Wag	21.00	6.00	160.00	110.00	3.90	2.88
Datsun 710	22.80	4.00	108.00	93.00	3.85	2.32

4.1 Markup in tables

Markup can be included in tables, including in column and row names, by using a custom sanitize.text.function.

```
\label{eq:mat_solution} $$ \max <- \operatorname{round}(\operatorname{matrix}(c(0.9, 0.89, 200, 0.045, 2.0), c(1, 5)), 4) $$ rownames(\operatorname{mat}) <- "\$y_{t-1}$" $$ colnames(\operatorname{mat}) <- c("\$R^2$", "$\bar{x}$", "F-stat", "S.E.E", "DW") $$ mat <- xtable(\operatorname{mat}) $$ print(\operatorname{mat}, sanitize.text.function = function(x) {x}) $$
```

	R^2	\bar{x}	F-stat	S.E.E	DW
y_{t-1}	0.90	0.89	200.00	0.04	2.00

You can also have sanitize functions that are specific to column or row names. In the table below, the row name is not sanitized but column names and table elements are.

	Income (US\$)	Expenses (US\$)	Profit (US\$)
α	\$1,000	\$900	\$100

5 Format examples

5.1 Adding a centering environment

	Df	Deviance	Resid. Df	Resid. Dev
NULL			99	129.49
ethnicty	3	47.24	96	82.25
grade	1	1.73	95	80.52
ethnicty:grade	3	7.20	92	73.32

Table 1: latex.environments = ""

	Df	Deviance	Resid. Df	Resid. Dev
NULL			99	129.49
ethnicty	3	47.24	96	82.25
grade	1	1.73	95	80.52
ethnicty:grade	3	7.20	92	73.32

Table 2: latex.environments = "center"

5.2 Column alignment

```
tli.table <- xtable(tli[1:10, ])
align(tli.table) <- rep("r", 6)
tli.table</pre>
```

	grade	sex	disadvg	ethnicty	tlimth
1	6	Μ	YES	HISPANIC	43
2	7	M	NO	BLACK	88
3	5	\mathbf{F}	YES	HISPANIC	34
4	3	M	YES	HISPANIC	65
5	8	M	YES	WHITE	75
6	5	M	NO	BLACK	74
7	8	\mathbf{F}	YES	HISPANIC	72
8	4	M	YES	BLACK	79
9	6	M	NO	WHITE	88
10	7	\mathbf{M}	YES	HISPANIC	87

$Left\ aligned\ strings\ with\ column\ lines$

```
align(tli.table) <- "|rrl|1|1r|"
tli.table</pre>
```

	grade	sex	disadvg	ethnicty	tlimth
1	6	Μ	YES	HISPANIC	43
2	7	Μ	NO	BLACK	88
3	5	\mathbf{F}	YES	HISPANIC	34
4	3	Μ	YES	HISPANIC	65
5	8	Μ	YES	WHITE	75
6	5	Μ	NO	BLACK	74
7	8	\mathbf{F}	YES	HISPANIC	72
8	4	Μ	YES	BLACK	79
9	6	Μ	NO	WHITE	88
10	7	M	YES	HISPANIC	87

$Fixed\ width\ columns$

```
align(tli.table) <- "|rr|lp{3cm}l|r|"
tli.table</pre>
```

	grade	sex	disadvg	ethnicty	tlimth
1	6	M	YES	HISPANIC	43
2	7	Μ	NO	BLACK	88
3	5	F	YES	HISPANIC	34
4	3	Μ	YES	HISPANIC	65
5	8	Μ	YES	WHITE	75
6	5	Μ	NO	BLACK	74
7	8	F	YES	HISPANIC	72
8	4	Μ	YES	BLACK	79
9	6	Μ	NO	WHITE	88
10	7	Μ	YES	HISPANIC	87

5.3 Number of digits

One number for all columns,

```
display(tli.table)[c(2,6)] <- "f"
digits(tli.table) <- 3
tli.table</pre>
```

	grade	sex	disadvg	ethnicty	tlimth
1	6.000	M	YES	HISPANIC	43.000
2	7.000	M	NO	BLACK	88.000
3	5.000	F	YES	HISPANIC	34.000
4	3.000	Μ	YES	HISPANIC	65.000
5	8.000	Μ	YES	WHITE	75.000
6	5.000	Μ	NO	BLACK	74.000
7	8.000	F	YES	HISPANIC	72.000
8	4.000	Μ	YES	BLACK	79.000
9	6.000	Μ	NO	WHITE	88.000
10	7.000	Μ	YES	HISPANIC	87.000

or one for each column, including the row names,

```
digits(tli.table) <- 1:(ncol(tli)+1)
tli.table</pre>
```

	grade	sex	disadvg	ethnicty	tlimth
1	6.00	M	YES	HISPANIC	43.000000
2	7.00	M	NO	BLACK	88.000000
3	5.00	F	YES	HISPANIC	34.000000
4	3.00	Μ	YES	HISPANIC	65.000000
5	8.00	Μ	YES	WHITE	75.000000
6	5.00	Μ	NO	BLACK	74.000000
7	8.00	F	YES	HISPANIC	72.000000
8	4.00	Μ	YES	BLACK	79.000000
9	6.00	Μ	NO	WHITE	88.000000
10	7.00	Μ	YES	HISPANIC	87.000000

or as a full matrix.

```
digits(tli.table) <- matrix(0:4, nrow = 10, ncol = ncol(tli)+1)
tli.table</pre>
```

	grade	sex	$\operatorname{disadvg}$	ethnicty	tlimth
1	6	M	YES	HISPANIC	43
2	7.0	M	NO	BLACK	88.0
3	5.00	F	YES	HISPANIC	34.00
4	3.000	M	YES	HISPANIC	65.000
5	8.0000	M	YES	WHITE	75.0000
6	5	M	NO	BLACK	74
7	8.0	F	YES	HISPANIC	72.0
8	4.00	M	YES	BLACK	79.00
9	6.000	M	NO	WHITE	88.000
10	7.0000	M	YES	HISPANIC	87.0000

5.4 Suppress row/column names

$Suppress\ row\ names$

```
tli.table <- xtable(tli[1:10, ])
print(tli.table, include.rownames = FALSE)</pre>
```

grade	sex	disadvg	ethnicty	tlimth
6	Μ	YES	HISPANIC	43
7	M	NO	BLACK	88
5	F	YES	HISPANIC	34
3	M	YES	HISPANIC	65
8	\mathbf{M}	YES	WHITE	75
5	${\bf M}$	NO	BLACK	74
8	\mathbf{F}	YES	HISPANIC	72
4	${\bf M}$	YES	BLACK	79
6	${\bf M}$	NO	WHITE	88
7	\mathbf{M}	YES	HISPANIC	87

If you want a vertical line on the left, you need to change the <code>align</code> attribute.

```
align(tli.table) <- "|r|r|lp{3cm}l|r|"
print(tli.table, include.rownames = FALSE)</pre>
```

grade	sex	disadvg	ethnicty	tlimth
6	M	YES	HISPANIC	43
7	M	NO	BLACK	88
5	F	YES	HISPANIC	34
3	M	YES	HISPANIC	65
8	M	YES	WHITE	75
5	M	NO	BLACK	74
8	F	YES	HISPANIC	72
4	M	YES	BLACK	79
6	M	NO	WHITE	88
7	M	YES	HISPANIC	87

Revert the alignment to what is was before.

```
align(tli.table) <- "|rr|lp{3cm}l|r|"
```

$Suppress\ column\ names$

print(tli.table, include.colnames = FALSE)

1	6	M	YES	HISPANIC	43
2	7	Μ	NO	BLACK	88
3	5	F	YES	HISPANIC	34
4	3	Μ	YES	HISPANIC	65
5	8	Μ	YES	WHITE	75
6	5	Μ	NO	BLACK	74
7	8	F	YES	HISPANIC	72
8	4	Μ	YES	BLACK	79
9	6	Μ	NO	WHITE	88
10	7	M	YES	HISPANIC	87

Note the doubled header lines which can be suppressed.

1	6	Μ	YES	HISPANIC	43
2	7	Μ	NO	BLACK	88
3	5	F	YES	HISPANIC	34
4	3	Μ	YES	HISPANIC	65
5	8	Μ	YES	WHITE	75
6	5	Μ	NO	BLACK	74
7	8	F	YES	HISPANIC	72
8	4	Μ	YES	BLACK	79
9	6	Μ	NO	WHITE	88
10	7	Μ	YES	HISPANIC	87

$Suppress\ row\ and\ column\ names$

print(tli.table, include.colnames = FALSE, include.rownames = FALSE)

6	M	YES	HISPANIC	43
7	M	NO	BLACK	88
5	F	YES	HISPANIC	34
3	M	YES	HISPANIC	65
8	M	YES	\mathbf{WHITE}	75
5	M	NO	BLACK	74
8	F	YES	HISPANIC	72
4	M	YES	BLACK	79
6	M	NO	\mathbf{WHITE}	88
7	M	YES	HISPANIC	87
				•

5.5 Rotate row/column names

The rotate.rownames and rotate.colnames arguments can be used to rotate the row and/or column names. This requires \usepackage{rotating} in the LATEX preamble.

print(tli.table, rotate.rownames = TRUE, rotate.colnames = TRUE)

	grade	sex	disadvg	ethnicty	tlimth
-	6	M	YES	HISPANIC	43
2	7	Μ	NO	BLACK	88
က	5	F	YES	HISPANIC	34
4	3	Μ	YES	HISPANIC	65
ಒ	8	Μ	YES	$\mathbf{W}\mathbf{H}\mathbf{I}\mathbf{T}\mathbf{E}$	75
9	5	Μ	NO	BLACK	74
7	8	F	YES	HISPANIC	72
∞	4	Μ	YES	BLACK	79
6	6	Μ	NO	\mathbf{WHITE}	88
10	7	Μ	YES	HISPANIC	87

5.6 Horizontal lines

Line locations

Use the hline.after argument to specify the position of the horizontal lines.

print(xtable(anova(fm3)), hline.after = c(1))

	Df	Deviance	Resid. Df	Resid. Dev
NULL			99	129.49
ethnicty	3	47.24	96	82.25
grade	1	1.73	95	80.52
ethnicty:grade	3	7.20	92	73.32

Line styles

Specifying booktabs = TRUE will generate three line types. By default, when no value is given for hline.after, a \toprule will be drawn above the table, a \midrule after the table headings and a \bottomrule below the table. This requires \usepackage{booktabs} in the LATEX preamble.

The top and bottom rules are slightly thicker than the mid rule. The thickness of the lines can be set via the LATEX lengths \heavyrulewidth and \lightrulewidth.

```
tli.table <- xtable(tli[1:10, ])
print(tli.table, include.rownames = FALSE, booktabs = TRUE)</pre>
```

grade	sex	disadvg	ethnicty	tlimth
6	Μ	YES	HISPANIC	43
7	Μ	NO	BLACK	88
5	\mathbf{F}	YES	HISPANIC	34
3	\mathbf{M}	YES	HISPANIC	65
8	\mathbf{M}	YES	WHITE	75
5	Μ	NO	BLACK	74
8	\mathbf{F}	YES	HISPANIC	72
4	M	YES	BLACK	79
6	M	NO	WHITE	88
7	Μ	YES	HISPANIC	87

If hline.after includes -1, a \toprule will be drawn above the table. If hline.after includes the number of rows in the table, a \bottomrule will be drawn below the table. For any other values specified in hline.after, a \midrule will be drawn after that line of the table.

The following table has more than one \midrule.

```
bktbs <- xtable(matrix(1:10, ncol = 2))
hlines <- c(-1, 0, 1, nrow(bktbs))
print(bktbs, booktabs = TRUE, hline.after = hlines)</pre>
```

	1	2
1	1	6
2	2	7
3	3	8
4	4	9
5	5	10

5.7 Table level commands

print(xtable(anova(fm3)), size = "large")

	Df	Deviance	Resid. Df	Resid. Dev
NULL			99	129.49
ethnicty	3	47.24	96	82.25
grade	1	1.73	95	80.52
ethnicty:grade	3	7.20	92	73.32

 $print(xtable(anova(fm3)), \ size = "\\ = "\\ \{\\ (\ \ \)\}\{12pt\}")$

	Df	Deviance	Resid. Df	Resid. Dev
NULL			99	129.49
ethnicty	3	47.24	96	82.25
grade	1	1.73	95	80.52
ethnicty:grade	3	7.20	92	73.32

5.8 Long tables

Requires \usepackage{longtable} in the LATEX preamble.

```
x <- matrix(rnorm(1000), ncol = 10)
x.big <- xtable(x, caption = "A \\code{longtable} spanning several pages")
print(x.big, hline.after=c(-1, 0), tabular.environment = "longtable")</pre>
```

	1	2	3	4	5	6	7	8	9	10
1	0.41	0.49	-0.58	-1.23	0.98	0.31	0.45	-1.02	-2.87	-1.21
2	-0.47	0.70	-0.95	0.04	-1.22	0.61	1.43	-1.39	-0.43	0.30
3	0.07	0.19	-0.18	-0.42	0.71	-1.69	-0.21	-0.05	-1.49	-1.54
4	-0.50	0.70	1.01	-0.90	-0.11	0.78	-1.23	1.81	0.59	0.64
5	-0.83	0.31	0.02	0.42	1.78	0.01	-0.36	-0.10	-0.44	0.70
6	0.17	0.76	-0.65	0.15	-0.24	-0.18	-0.55	0.78	0.90	-1.91
7	-0.90	1.84	-0.50	1.46	-1.53	1.11	0.33	-1.10	0.47	0.94
8	0.17	1.11	1.61	-1.12	0.49	1.48	-0.93	-0.22	0.02	-0.22
9	0.35	0.03	-0.45	-0.52	0.35	-1.15	0.68	0.57	-0.09	-0.67
10	-0.05	-1.11	0.76	-0.07	-0.02	1.01	-1.16	-0.35	-0.36	0.45
11	-0.20	0.42	1.47	-1.41	-1.06	-0.63	1.76	0.79	0.20	1.28
12	-0.65	-0.40	0.44	-0.28	-0.84	0.13	1.45	0.69	-1.11	1.57
13	-1.11	1.49	-0.42	-0.71	-0.01	0.48	-0.45	-0.63	0.67	-1.20
14	0.85	-1.61	-0.04	-2.15	1.04	0.13	0.14	-0.77	-0.39	-0.44
15	0.02	-0.42	-0.49	-0.28	-0.36	-1.46	-0.37	2.36	-0.74	0.15
16	0.83	0.42	1.23	-0.53	-0.87	-0.51	-1.21	-0.19	-0.33	0.07
17	-1.24	-0.15	-0.15	1.13	-2.70	1.54	-2.66	0.01	1.87	-0.45
18	0.17	-0.61	1.55	-0.60	0.49	0.17	-0.03	-0.05	-1.76	-2.34
19	0.67	-0.30	-0.56	0.56	0.43	-0.84	-0.03	-0.57	-0.35	-0.28
20	-0.03	0.63	-0.65	0.14	1.31	-0.66	1.64	-0.93	0.11	-1.18
21	-0.19	0.90	0.14	-1.24	1.47	1.06	-2.00	-1.14	-0.54	0.03
22	-0.78	0.66	0.02	0.37	-0.14	0.35	-0.66	0.91	-0.41	-0.84
23	2.06	2.27	-0.50	-0.11	1.30	-0.90	0.88	-0.99	0.38	-0.12
24	0.75	1.17	-1.58	0.17	0.00	0.01	0.34	0.67	0.22	-0.74
25	1.82	0.29	0.03	0.66	-0.68	0.60	0.12	1.41	-0.67	-0.41
26	0.08	-0.66	-0.72	0.11	-0.85	1.72	-0.62	1.16	0.57	-0.38
27	-0.63	2.92	1.08	1.59	-0.35	-0.88	0.20	-0.14	0.18	1.33
28	-1.51	0.68	-0.95	0.12	0.23	-0.38	-0.24	-0.54	0.69	0.72
29	-0.64	-0.68	1.13	-1.25	-0.03	1.00	0.11	-1.08	-1.33	-0.23

30	0.23	0.19	-0.65	0.74	0.20	-0.46	-0.58	-0.02	-0.77	-1.23
31	1.01	-0.32	0.29	-1.22	0.20	1.46	1.19	-0.23	-0.19	1.05
32	0.25	-0.27	0.90	-1.92	0.71	1.04	1.06	0.16	0.96	-1.44
33	-1.17	-0.93	-0.52	-0.81	-0.27	-1.66	1.34	-0.60	-0.53	-1.18
34	0.67	0.12	0.55	-0.74	1.64	0.42	-0.37	0.63	-1.03	-0.78
35	-1.65	0.32	-0.09	-0.61	0.44	-1.42	-0.30	0.71	0.77	-0.97
36	-0.37	-1.08	-1.14	1.61	-1.19	-1.46	-0.35	1.08	0.47	-0.90
37	-0.32	-3.23	-0.27	1.64	-0.28	0.07	1.37	2.25	-1.23	1.29
38	-1.95	-0.25	1.62	0.73	0.52	0.06	-0.30	0.20	2.05	-0.11
39	0.92	0.03	-0.21	-1.27	-0.41	-0.03	0.10	-0.58	1.50	-0.72
40	-0.62	0.59	-0.82	0.02	0.34	1.26	0.38	-0.08	-1.39	0.67
41	-0.33	0.06	-0.02	0.02 0.49	0.43	0.29	0.68	-1.63	2.15	0.20
42	1.40	0.41	0.33	-0.14	1.30	-0.67	-0.27	0.13	-1.73	-1.22
43	0.64	-1.10	0.96	0.14	-0.65	0.12	$\frac{-0.27}{2.35}$	-0.43	0.10	-0.56
43 44	-0.11	0.71	1.14	-0.94	-0.03	-0.51	-0.93	0.43	-1.14	0.53
$44 \\ 45$	0.51	$0.71 \\ 0.72$		-0.94	-0.02 -0.57	-0.07	-0.93 -1.43	-0.27	-0.38	1.95
			0.10							1.58
46	0.40	0.25	1.16	1.41	-1.13	-1.15	0.04	-1.38	-0.35	
47	1.66	1.36	-0.76	0.27	-1.85	-0.12	1.77	0.04	0.32	0.84
48	0.28	0.40	-2.34	-0.41	0.20	0.10	0.05	-1.35	-1.12	-0.01
49	0.51	0.26	-0.47	0.33	0.60	-0.70	0.11	0.90	-2.76	-1.73
50	0.35	0.27	-0.52	2.06	0.64	0.04	0.86	-1.83	-0.10	-0.73
51	-0.38	0.44	-2.32	0.36	-1.39	-0.65	-0.10	-0.14	-0.75	-0.22
52	0.10	1.06	0.56	1.41	-1.13	-0.64	0.10	0.46	0.21	0.49
53	1.64	0.45	-0.78	1.37	-1.14	-0.20	1.21	-1.52	-0.85	0.06
54	-0.88	0.66	-0.23	-0.41	-0.69	0.49	0.09	1.40	0.79	0.06
55	0.12	-1.14	-1.59	0.76	0.17	-0.21	-0.75	-0.89	0.03	1.84
56	1.36	-0.37	0.55	-0.65	0.59	0.19	0.39	-0.51	0.60	0.39
57	-0.23	1.48	1.89	-1.47	-0.82	0.97	-1.09	0.16	-0.99	-0.28
58	-1.05	-1.22	-0.88	-1.20	-2.86	-0.29	-1.46	-0.34	-0.21	-0.43
59	-0.87	0.26	-0.11	-0.15	0.95	-0.10	-0.12	-1.04	0.34	0.10
60	-0.39	0.41	1.95	1.80	0.62	0.51	-1.10	0.41	-0.09	-0.81
61	-0.85	0.98	0.93	0.10	-0.70	-1.26	0.58	-0.52	1.65	1.37
62	-0.26	-0.35	1.91	-0.80	-1.07	0.54	-0.15	0.51	-1.96	-0.29
63	-0.41	0.16	-0.01	0.23	-0.30	-0.53	-0.77	-0.50	0.76	-0.53
64	-0.18	-1.76	-0.15	0.70	0.11	-1.14	1.62	-0.96	0.01	-0.87
65	0.41	0.34	-0.51	-1.30	0.72	-1.77	-0.11	-0.09	0.95	0.94
66	0.62	-0.67	1.43	-1.05	1.39	-0.71	1.42	0.65	-0.10	-1.28
67	1.68	-0.24	-1.29	-1.94	-0.85	-1.17	-0.11	0.24	-2.74	-0.47
68	-0.07	-1.19	0.31	-1.27	0.29	-1.18	-0.33	-0.06	0.42	0.31
69	-0.32	0.38	-0.05	-0.89	1.33	1.63	0.37	-1.95	-0.22	-0.11
70	1.47	0.67	2.25	-0.29	-0.90	-1.21	1.03	1.45	-0.99	0.25
71	1.70	-0.30	-0.61	1.41	-0.22	1.00	2.71	-0.04	-0.66	-1.32
72	0.04	1.83	-1.51	0.89	-1.77	0.55	-1.03	-0.86	0.06	-0.43
73	-0.33	0.67	0.23	0.27	0.29	-0.88	-0.18	-0.20	2.45	-1.70
74	-1.82	0.95	-0.04	-0.57	-0.64	-0.61	1.08	0.26	0.19	-0.84
75	1.41	2.05	-0.84	-0.04	-0.92	-0.41	0.34	-1.52	-0.98	1.15
76	-0.84	-0.65	0.13	0.55	-0.78	0.19	-0.19	0.72	1.90	0.25
77	-1.12	0.81	-0.28	-0.50	0.44	-0.35	-1.30	0.25	-0.44	0.09
78	3.04	0.99	-0.68	1.06	-2.16	0.83	-0.28	1.20	-0.83	-0.93
79	0.24	-0.01	0.50	1.10	-0.43	-0.29	-0.28	0.99	-1.25	-0.56
80	-0.03	0.32	-0.33	-1.17	-1.01	-0.29 -2.17	-0.18	-0.54	-0.67	-1.02
81	-2.73	-1.01	-1.83	-0.75	-0.96	-0.10	1.61	-0.49	1.94	0.05
82	-2.13 -0.10	0.47	-2.65	$\frac{-0.75}{1.21}$	0.47	-0.10 -1.85	-0.46	-1.00	0.91	0.03 0.77
83	0.98	-0.70	-2.03	-1.69	0.47 0.35	0.94	-1.58	-0.36	0.91 0.74	0.77
84	0.98 0.41	0.70	1.45	0.42	-0.11	-0.75	0.50	0.94	$0.74 \\ 0.15$	-0.62
85	$0.41 \\ 0.91$		0.84		0.54		-0.11	1.79		
		-0.81		0.23		-1.12			0.28	0.55
86	1.98	0.32	1.22	3.20	-0.60	-0.59	-0.20	0.93	0.59	0.39

87	1.17	-0.85	0.98	-2.73	-2.02	0.59	0.64	-1.83	0.22	0.84
88	-0.51	-0.25	0.32	-0.84	1.15	-1.92	-2.91	0.82	0.16	-0.44
89	0.70	-1.55	-1.51	0.67	-0.23	0.25	-0.55	1.04	0.95	-1.18
90	-0.20	0.13	0.21	1.67	-0.37	-0.97	-0.15	0.62	-0.17	-0.08
91	-0.54	0.99	1.60	0.84	0.16	-0.01	0.61	-0.85	0.26	0.30
92	-2.86	0.18	-3.40	-1.43	0.77	0.68	-0.26	1.06	-0.90	1.56
93	-0.79	-1.77	-0.78	2.24	0.43	0.57	-1.01	0.73	1.58	-0.07
94	0.49	-0.62	1.10	-1.76	0.93	1.50	0.37	0.66	1.39	0.43
95	2.17	1.66	0.53	-1.11	0.05	0.13	0.02	-0.38	-1.81	-0.08
96	0.50	1.81	0.79	-0.04	-0.50	-0.70	0.11	0.85	-0.22	2.16
97	0.62	-1.18	0.46	2.23	-0.30	2.15	1.16	0.11	0.55	1.34
98	-0.97	-0.37	0.54	0.51	0.82	-0.30	-0.54	-0.07	0.48	-0.23
99	0.16	0.35	0.01	0.73	-0.85	0.81	-1.25	1.49	0.76	-0.13
100	-2.08	0.32	-0.92	1.73	-0.95	0.93	-1.28	0.76	-0.45	-0.02

Table 3: A longtable spanning several pages

Extra features of the longtable LATEX package can typically be activated using add.to.row, as shown below.

	1	2	3	4	5	6	7	8	9	10
1	0.41	0.49	-0.58	-1.23	0.98	0.31	0.45	-1.02	-2.87	-1.21
2	-0.47	0.70	-0.95	0.04	-1.22	0.61	1.43	-1.39	-0.43	0.30
3	0.07	0.19	-0.18	-0.42	0.71	-1.69	-0.21	-0.05	-1.49	-1.54
4	-0.50	0.70	1.01	-0.90	-0.11	0.78	-1.23	1.81	0.59	0.64
5	-0.83	0.31	0.02	0.42	1.78	0.01	-0.36	-0.10	-0.44	0.70
6	0.17	0.76	-0.65	0.15	-0.24	-0.18	-0.55	0.78	0.90	-1.91
7	-0.90	1.84	-0.50	1.46	-1.53	1.11	0.33	-1.10	0.47	0.94
8	0.17	1.11	1.61	-1.12	0.49	1.48	-0.93	-0.22	0.02	-0.22
9	0.35	0.03	-0.45	-0.52	0.35	-1.15	0.68	0.57	-0.09	-0.67
10	-0.05	-1.11	0.76	-0.07	-0.02	1.01	-1.16	-0.35	-0.36	0.45
11	-0.20	0.42	1.47	-1.41	-1.06	-0.63	1.76	0.79	0.20	1.28
12	-0.65	-0.40	0.44	-0.28	-0.84	0.13	1.45	0.69	-1.11	1.57
13	-1.11	1.49	-0.42	-0.71	-0.01	0.48	-0.45	-0.63	0.67	-1.20
14	0.85	-1.61	-0.04	-2.15	1.04	0.13	0.14	-0.77	-0.39	-0.44
15	0.02	-0.42	-0.49	-0.28	-0.36	-1.46	-0.37	2.36	-0.74	0.15
16	0.83	0.42	1.23	-0.53	-0.87	-0.51	-1.21	-0.19	-0.33	0.07
17	-1.24	-0.15	-0.15	1.13	-2.70	1.54	-2.66	0.01	1.87	-0.45
18	0.17	-0.61	1.55	-0.60	0.49	0.17	-0.03	-0.05	-1.76	-2.34
19	0.67	-0.30	-0.56	0.56	0.43	-0.84	-0.03	-0.57	-0.35	-0.28
20	-0.03	0.63	-0.65	0.14	1.31	-0.66	1.64	-0.93	0.11	-1.18
21	-0.19	0.90	0.14	-1.24	1.47	1.06	-2.00	-1.14	-0.54	0.03
22	-0.78	0.66	0.02	0.37	-0.14	0.35	-0.66	0.91	-0.41	-0.84
23	2.06	2.27	-0.50	-0.11	1.30	-0.90	0.88	-0.99	0.38	-0.12
24	0.75	1.17	-1.58	0.17	0.00	0.01	0.34	0.67	0.22	-0.74

Continued on next page

	1	2	3	4	5	6	7	8	9	10
25	1.82	0.29	0.03	0.66	-0.68	0.60	0.12	1.41	-0.67	-0.41
26	0.08	-0.66	-0.72	0.11	-0.85	1.72	-0.62	1.16	0.57	-0.38
27	-0.63	2.92	1.08	1.59	-0.35	-0.88	0.20	-0.14	0.18	1.33
28	-1.51	0.68	-0.95	0.12	0.23	-0.38	-0.24	-0.54	0.69	0.72
29	-0.64	-0.68	1.13	-1.25	-0.03	1.00	0.11	-1.08	-1.33	-0.23
30	0.23	0.19	-0.65	0.74	0.20	-0.46	-0.58	-0.02	-0.77	-1.23
31	1.01	-0.32	0.29	-1.22	0.20	1.46	1.19	-0.23	-0.19	1.05
32	0.25	-0.27	0.90	-1.92	0.71	1.04	1.06	0.16	0.96	-1.44
33	-1.17	-0.93	-0.52	-0.81	-0.27	-1.66	1.34	-0.60	-0.53	-1.18
34	0.67	0.12	0.55	-0.74	1.64	0.42	-0.37	0.63	-1.03	-0.78
35	-1.65	0.32	-0.09	-0.61	0.44	-1.42	-0.30	0.71	0.77	-0.97
36	-0.37	-1.08	-1.14	1.61	-1.19	-1.46	-0.35	1.08	0.47	-0.90
37	-0.32	-3.23	-0.27	1.64	-0.28	0.07	1.37	2.25	-1.23	1.29
38	-1.95	-0.25	1.62	0.73	0.52	0.06	-0.30	0.20	2.05	-0.11
39	0.92	0.03	-0.21	-1.27	-0.41	-0.03	0.10	-0.58	1.50	-0.72
40	-0.62	0.59	-0.82	0.02	0.34	1.26	0.38	-0.08	-1.39	0.67
41	-0.33	0.06	-0.05	0.49	0.43	0.29	0.68	-1.63	2.15	0.20
42	1.40	0.41	0.33	-0.14	1.30	-0.67	-0.27	0.13	-1.73	-1.22
43	0.64	-1.10	0.96	0.17	-0.65	0.12	2.35	-0.43	0.10	-0.56
44	-0.11	0.71	1.14	-0.94	-0.02	-0.51	-0.93	0.41	-1.14	0.53
45	0.51	0.72	0.10	-1.29	-0.57	-0.07	-1.43	-0.27	-0.38	1.95
46	0.40	0.25	1.16	1.41	-1.13	-1.15	0.04	-1.38	-0.35	1.58
47	1.66	1.36	-0.76	0.27	-1.85	-0.12	1.77	0.04	0.32	0.84
48	0.28	0.40	-2.34	-0.41	0.20	0.10	0.05	-1.35	-1.12	-0.01
49	0.51	0.26	-0.47	0.33	0.60	-0.70	0.11	0.90	-2.76	-1.73
50	0.35	0.27	-0.52	2.06	0.64	0.04	0.86	-1.83	-0.10	-0.73
51	-0.38	0.44	-2.32	0.36	-1.39	-0.65	-0.10	-0.14	-0.75	-0.22
52	0.10	1.06	0.56	1.41	-1.13	-0.64	0.10	0.46	0.21	0.49
53	1.64	0.45	-0.78	1.37	-1.14	-0.20	1.21	-1.52	-0.85	0.06
54	-0.88	0.66	-0.23	-0.41	-0.69	0.49	0.09	1.40	0.79	0.06
55	0.12	-1.14	-1.59	0.76	0.17	-0.21	-0.75	-0.89	0.03	1.84
56	1.36	-0.37	0.55	-0.65	0.59	0.19	0.39	-0.51	0.60	0.39
57	-0.23	1.48	1.89	-1.47	-0.82	0.97	-1.09	0.16	-0.99	-0.28
58	-1.05	-1.22	-0.88	-1.20	-2.86	-0.29	-1.46	-0.34	-0.21	-0.43
59	-0.87	0.26	-0.11	-0.15	0.95	-0.10	-0.12	-1.04	0.34	0.10
	-0.39	0.41								
61	-0.85 -0.26	0.98	0.93	0.10	-0.70	-1.26	0.58	-0.52	1.65	1.37
62 63		-0.35	1.91	-0.80 0.23	-1.07	0.54 -0.53	-0.15	0.51 -0.50	-1.96	-0.29
64	-0.41 -0.18	0.16 -1.76	-0.01 -0.15	0.23 0.70	-0.30		-0.77	-0.96	$0.76 \\ 0.01$	-0.53
65	0.18	0.34		-1.30	$0.11 \\ 0.72$	-1.14 -1.77	1.62 -0.11	-0.90	0.01 0.95	-0.87 0.94
66	0.41 0.62	-0.67	-0.51 1.43	-1.05	1.39	-1.77 -0.71	1.42	0.65	-0.10	-1.28
67	1.68	-0.07	-1.29	-1.03	-0.85	-1.17	-0.11	0.03 0.24	-2.74	-0.47
68	-0.07	-0.24	0.31	-1.94 -1.27	0.29	-1.17	-0.11	-0.06	0.42	0.47
69	-0.07	0.38	-0.05	-0.89	1.33	1.63	0.37		-0.22	
70	$\frac{-0.32}{1.47}$	0.38 0.67	2.25	-0.89 -0.29	-0.90	-1.21	1.03	-1.95 1.45	-0.22 -0.99	-0.11 0.25
70 71	1.47 1.70	-0.30	-0.61	$\frac{-0.29}{1.41}$	-0.90	1.00	$\frac{1.03}{2.71}$	-0.04	-0.99	-1.32
72	0.04	1.83	-0.01 -1.51	0.89	-0.22 -1.77	0.55	-1.03	-0.04	0.06	-0.43
73	-0.33	0.67	0.23	0.89 0.27	0.29	-0.88	-0.18	-0.20	2.45	-0.43 -1.70
73 74	-1.82	0.07 0.95	-0.04	-0.57	-0.64	-0.61	1.08	0.26	0.19	-0.84
74 75	$\frac{-1.62}{1.41}$	2.05	-0.04	-0.04	-0.04	-0.01	0.34	-1.52	-0.19	1.15
76	-0.84	-0.65	0.13	0.55	-0.32	0.19	-0.19	0.72	1.90	0.25
77	-1.12	0.81	-0.28	-0.50	0.44	-0.35	-1.30	0.12 0.25	-0.44	0.29
78	3.04	0.99	-0.68	1.06	-2.16	0.83	-0.28	1.20	-0.44	-0.93
79	0.24	-0.01	0.50	1.10	-0.43	-0.29	-0.18	0.99	-1.25	-0.56
	nuod on		5.50	1.10	0.10	0.20	5.10	5.00	1.20	5.50

Continued on next page

	1	2	3	4	5	6	7	8	9	10
80	-0.03	0.32	-0.33	-1.17	-1.01	-2.17	-0.08	-0.54	-0.67	-1.02
81	-2.73	-1.01	-1.83	-0.75	-0.96	-0.10	1.61	-0.49	1.94	0.05
82	-0.10	0.47	-2.65	1.21	0.47	-1.85	-0.46	-1.00	0.91	0.77
83	0.98	-0.70	-0.58	-1.69	0.35	0.94	-1.58	-0.36	0.74	0.30
84	0.41	0.81	1.45	0.42	-0.11	-0.75	0.50	0.94	0.15	-0.62
85	0.91	-0.81	0.84	0.23	0.54	-1.12	-0.11	1.79	0.28	0.55
86	1.98	0.32	1.22	3.20	-0.60	-0.59	-0.20	0.93	0.59	0.39
87	1.17	-0.85	0.98	-2.73	-2.02	0.59	0.64	-1.83	0.22	0.84
88	-0.51	-0.25	0.32	-0.84	1.15	-1.92	-2.91	0.82	0.16	-0.44
89	0.70	-1.55	-1.51	0.67	-0.23	0.25	-0.55	1.04	0.95	-1.18
90	-0.20	0.13	0.21	1.67	-0.37	-0.97	-0.15	0.62	-0.17	-0.08
91	-0.54	0.99	1.60	0.84	0.16	-0.01	0.61	-0.85	0.26	0.30
92	-2.86	0.18	-3.40	-1.43	0.77	0.68	-0.26	1.06	-0.90	1.56
93	-0.79	-1.77	-0.78	2.24	0.43	0.57	-1.01	0.73	1.58	-0.07
94	0.49	-0.62	1.10	-1.76	0.93	1.50	0.37	0.66	1.39	0.43
95	2.17	1.66	0.53	-1.11	0.05	0.13	0.02	-0.38	-1.81	-0.08
96	0.50	1.81	0.79	-0.04	-0.50	-0.70	0.11	0.85	-0.22	2.16
97	0.62	-1.18	0.46	2.23	-0.30	2.15	1.16	0.11	0.55	1.34
98	-0.97	-0.37	0.54	0.51	0.82	-0.30	-0.54	-0.07	0.48	-0.23
99	0.16	0.35	0.01	0.73	-0.85	0.81	-1.25	1.49	0.76	-0.13
100	-2.08	0.32	-0.92	1.73	-0.95	0.93	-1.28	0.76	-0.45	-0.02

Table 4: A longtable spanning several pages

5.9 Use of add.to.row argument

The following frequency table has outer dimnames: Grade3 and Grade6.

```
Grade3 <- c("A","B","B","A","B","C","C","D","A","B",</pre>
             "C", "C", "C", "D", "B", "B", "D", "C", "C", "D")
Grade6 <- c("A","A","A","B","B","B","B","B","C","C",</pre>
            "A","C","C","C","D","D","D","D","D","D")
Cohort <- table(Grade3, Grade6)</pre>
Cohort
##
         Grade6
## Grade3 A B C D
    A 1 1 1 0
##
        B 2 1 1 2
        C 1 2 2 2
##
##
   D 0 1 1 2
```

The default behavior of print.xtable is to strip outer dimnames.

xtable(Cohort)

	A	В	С	D
A	1	1	1	0
В	2	1	1	2
\mathbf{C}	1	2	2	2
D	0	1	1	2

The desired column labels can be created using add.to.row, in this case applying two commands to "row number zero" while suppressing the basic column names.

		Gra	de 6	
${\rm Grade}\ 3$	A	В	\mathbf{C}	D
A	1	1	1	0
В	2	1	1	2
\mathbf{C}	1	2	2	2
D	0	1	1	2

5.10 Sideways tables

Requires \usepackage{rotating} in the LaTeX preamble. Sideways tables can't be forced in place with the [H] specifier, but you can use the \clearpage command to get them fairly nearby.

```
x <- x[1:30, ]
x.side <- xtable(x, caption = "A sideways table")
print(x.side, floating = TRUE, floating.environment = "sidewaystable")</pre>
```

		2	3	4	5	9	2	∞	6	10
П	0.41	0.49	-0.58	-1.23	0.98	0.31	0.45	-1.02	-2.87	-1.21
2	-0.47	0.70	-0.95	0.04	-1.22	0.61	1.43	-1.39	-0.43	0.30
3	0.07	0.19	-0.18	-0.42	0.71	-1.69	-0.21	-0.05	-1.49	-1.54
4	-0.50	0.70	1.01	-0.90	-0.11	0.78	-1.23	1.81	0.59	0.64
5	-0.83	0.31	0.02	0.42	1.78	0.01	-0.36	-0.10	-0.44	0.70
9	0.17	0.76	-0.65	0.15	-0.24	-0.18	-0.55	0.78	0.90	-1.91
7	-0.90	1.84	-0.50	1.46	-1.53	1.11	0.33	-1.10	0.47	0.94
∞	0.17	1.11	1.61	-1.12	0.49	1.48	-0.93	-0.22	0.02	-0.22
6	0.35	0.03	-0.45	-0.52	0.35	-1.15	0.68	0.57	-0.09	-0.67
10	-0.05	-1.11	0.76	-0.07	-0.02	1.01	-1.16	-0.35	-0.36	0.45
11	-0.20	0.42	1.47	-1.41	-1.06	-0.63	1.76	0.79	0.20	1.28
12	-0.65	-0.40	0.44	-0.28	-0.84	0.13	1.45	0.69	-1.11	1.57
13	-1.11	1.49	-0.42	-0.71	-0.01	0.48	-0.45	-0.63	0.67	-1.20
14	0.85	-1.61	-0.04	-2.15	1.04	0.13	0.14	-0.77	-0.39	-0.44
15	0.02	-0.42	-0.49	-0.28	-0.36	-1.46	-0.37	2.36	-0.74	0.15
16	0.83	0.42	1.23	-0.53	-0.87	-0.51	-1.21	-0.19	-0.33	0.07
17	-1.24	-0.15	-0.15	1.13	-2.70	1.54	-2.66	0.01	1.87	-0.45
18	0.17	-0.61	1.55	-0.60	0.49	0.17	-0.03	-0.05	-1.76	-2.34
19	0.67	-0.30	-0.56	0.56	0.43	-0.84	-0.03	-0.57	-0.35	-0.28
20	-0.03	0.63	-0.65	0.14	1.31	-0.66	1.64	-0.93	0.11	-1.18
21	-0.19	0.90	0.14	-1.24	1.47	1.06	-2.00	-1.14	-0.54	0.03
22	-0.78	0.66	0.02	0.37	-0.14	0.35	-0.66	0.91	-0.41	-0.84
23	2.06	2.27	-0.50	-0.11	1.30	-0.90	0.88	-0.99	0.38	-0.12
24	0.75	1.17	-1.58	0.17	0.00	0.01	0.34	0.67	0.22	-0.74
25	1.82	0.29	0.03	0.66	-0.68	0.60	0.12	1.41	-0.67	-0.41
26	0.08	-0.66	-0.72	0.11	-0.85	1.72	-0.62	1.16	0.57	-0.38
27	-0.63	2.92	1.08	1.59	-0.35	-0.88	0.20	-0.14	0.18	1.33
28	-1.51	0.68	-0.95	0.12	0.23	-0.38	-0.24	-0.54	0.69	0.72
29	-0.64	-0.68	1.13	-1.25	-0.03	1.00	0.11	-1.08	-1.33	-0.23
30	0.23	0.19	-0.65	0.74	0.20	-0.46	-0.58	-0.02	-0.77	-1.23

Table 5: A sideways table

5.11 Rescaled tables

Specify a scalebox value to rescale the table.

```
x <- x[1:20, ]
x.rescale <- xtable(x)
print(x.rescale, scalebox = 0.7)</pre>
```

	1	2	3	4	5	6	7	8	9	10
1	0.41	0.49	-0.58	-1.23	0.98	0.31	0.45	-1.02	-2.87	-1.21
2	-0.47	0.70	-0.95	0.04	-1.22	0.61	1.43	-1.39	-0.43	0.30
3	0.07	0.19	-0.18	-0.42	0.71	-1.69	-0.21	-0.05	-1.49	-1.54
4	-0.50	0.70	1.01	-0.90	-0.11	0.78	-1.23	1.81	0.59	0.64
5	-0.83	0.31	0.02	0.42	1.78	0.01	-0.36	-0.10	-0.44	0.70
6	0.17	0.76	-0.65	0.15	-0.24	-0.18	-0.55	0.78	0.90	-1.91
7	-0.90	1.84	-0.50	1.46	-1.53	1.11	0.33	-1.10	0.47	0.94
8	0.17	1.11	1.61	-1.12	0.49	1.48	-0.93	-0.22	0.02	-0.22
9	0.35	0.03	-0.45	-0.52	0.35	-1.15	0.68	0.57	-0.09	-0.67
10	-0.05	-1.11	0.76	-0.07	-0.02	1.01	-1.16	-0.35	-0.36	0.45
11	-0.20	0.42	1.47	-1.41	-1.06	-0.63	1.76	0.79	0.20	1.28
12	-0.65	-0.40	0.44	-0.28	-0.84	0.13	1.45	0.69	-1.11	1.57
13	-1.11	1.49	-0.42	-0.71	-0.01	0.48	-0.45	-0.63	0.67	-1.20
14	0.85	-1.61	-0.04	-2.15	1.04	0.13	0.14	-0.77	-0.39	-0.44
15	0.02	-0.42	-0.49	-0.28	-0.36	-1.46	-0.37	2.36	-0.74	0.15
16	0.83	0.42	1.23	-0.53	-0.87	-0.51	-1.21	-0.19	-0.33	0.07
17	-1.24	-0.15	-0.15	1.13	-2.70	1.54	-2.66	0.01	1.87	-0.45
18	0.17	-0.61	1.55	-0.60	0.49	0.17	-0.03	-0.05	-1.76	-2.34
19	0.67	-0.30	-0.56	0.56	0.43	-0.84	-0.03	-0.57	-0.35	-0.28
20	-0.03	0.63	-0.65	0.14	1.31	-0.66	1.64	-0.93	0.11	-1.18

5.12 Aligning fixed width columns

Note that using specifications such as $p\{2cm\}$ always produces a **left aligned** column. What if some other alignment is desired?

This is not really a problem with **xtable** but with the formatting of tables with fixed width columns and different alignments using standard LAT_EX.

One solution is to use the array package, defining new column formats.

```
\newcolumntype{L}[1]{>{\raggedright\let\newline\\
    \arraybackslash\hspace{0pt}}m{#1}}
\newcolumntype{C}[1]{>{\centering\let\newline\\
    \arraybackslash\hspace{0pt}}m{#1}}
\newcolumntype{R}[1]{>{\raggedleft\let\newline\\
    \arraybackslash\hspace{0pt}}m{#1}}
\newcolumntype{P}[1]{>{\raggedright\tabularxbackslash}p{#1}}
```

These allow for very sophisticated cell formatting, namely left-aligned, centred, or right-aligned text, with recognition of line breaks for the first three new column types. If these lines are included along with \usepackage{array}, then the following is possible.

name	right	left	text
A	1.40	1.40	txt1
В	34.60	34.60	txt2

5.13 Table width

The tabularx environment is for typesetting tables whose overall width is fixed. The column alignment code X denotes columns that will be stretched to achieve the desired table width. Requires \usepackage{tabularx} in the LATEX preamble.

	One	Two	Three	Four
1	item 1	item 2	item 3	item 4
2	A	В	С	D

6 Suppressing printing

By default the print method will print the LATEX or HTML to standard output and also return the character strings invisibly. The printing to standard output can be suppressed by specifying print.results = FALSE.

```
x.out <- print(tli.table, print.results = FALSE)</pre>
```

Formatted output can also be captured without printing with the toLatex method. This function returns an object of class "Latex".

```
x.ltx <- toLatex(tli.table)</pre>
class(x.ltx)
## [1] "Latex"
x.ltx
## \% latex table generated in R 3.2.3 by xtable 1.8-2 package
## %
## \begin{tabular}{rrlllr}
##
    \hline
## & grade & sex & disadvg & ethnicty & tlimth \\
   \hline
        6 & M & YES & HISPANIC & 43 \\
## 1 &
    2 & 7 & M & NO & BLACK & 88 \\
##
    3 & 5 & F & YES & HISPANIC & 34 \\
##
          3 & M & YES & HISPANIC & 65 \\
##
    4 &
##
    5 &
          8 & M & YES & WHITE & 75 \\
##
    6 &
         5 & M & NO & BLACK & 74 \\
    7 &
         8 & F & YES & HISPANIC & 72 \\
##
##
    8 & 4 & M & YES & BLACK & 79 \\
##
    9 &
          6 & M & NO & WHITE & 88 \\
          7 & M & YES & HISPANIC & 87 \\
##
    10 &
##
     \hline
## \end{tabular}
```

7 Acknowledgements

Most of the examples in this gallery are taken from the **xtable** documentation. Two examples (add.to.row and 'Aligning fixed width columns') are from Stack Exchange.

8 Session information

toLatex(sessionInfo())

- R version 3.2.3 (2015-12-10), x86_64-pc-linux-gnu
- Locale: LC_CTYPE=en_NZ.UTF-8, LC_NUMERIC=C, LC_TIME=en_NZ.UTF-8, LC_COLLATE=C, LC_MONETARY=en_NZ.UTF-8, LC_MESSAGES=en_NZ.UTF-8, LC_PAPER=en_NZ.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_NZ.UTF-8, LC_IDENTIFICATION=C
- Base packages: base, datasets, grDevices, graphics, methods, stats, utils
- Other packages: Matrix 1.2-3, estimability 1.1-1, foreign 0.8-66, knitr 1.10, lsmeans 2.21-1, sp 1.2-1, spdep 0.5-92, sphet 1.6, splm 1.3-7, survival 2.38-3, xtable 1.8-2, zoo 1.7-12
- Loaded via a namespace (and not attached): Formula 1.2-1, LearnBayes 2.15, MASS 7.3-44, MatrixModels 0.4-1, Rcpp 0.12.3, SparseM 1.7, TH.data 1.0-6, bdsmatrix 1.3-2, boot 1.3-17, car 2.1-0, coda 0.18-1, codetools 0.2-14, deldir 0.1-9, evaluate 0.7, formatR 1.2, grid 3.2.3, highr 0.5, ibdreg 0.2.5, lattice 0.20-33, lme4 1.1-10, lmtest 0.9-34, magrittr 1.5, maxLik 1.3-4, mgcv 1.8-7, minqa 1.2.4, miscTools 0.6-16, multcomp 1.4-1, mvtnorm 1.0-3, nlme 3.1-122, nloptr 1.0.4, nnet 7.3-11, parallel 3.2.3, pbkrtest 0.4-2, plm 1.5-12, plyr 1.8.2, quantreg 5.19, sandwich 2.3-4, spam 1.3-0, splines 3.2.3, stringi 0.4-1, stringr 1.0.0, tools 3.2.3