

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет"

РТУ МИРЭА

Институт Информационных Технологий **Кафедра** Вычислительной Техники

Лабораторная работа №10

по дисциплине «Архитектура ВМиС»

Студент группы: ИКБО-04-20	Хан А. А
-	(Фамилия студента)
Преподаватель	Железняк Л.М.
•	(Фамилия преподавателя)

Содержание

ВВЕДЕНИЕ	2
Цель лабораторной работы	
Задание	
Порядок выполнения работы	
Выполнение работы	
Терсональный вариант	
выводы	
СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ	

введение

Нам необходимо разработать функциональную электрическую схему цифрового программируемого устройства преобразования кодов при помощи текстового редактора Quartus II. Исследовать работу схемы с использованием сигнального редактора.

Цель лабораторной работы

Ознакомиться с САПР QUARTUS II фирмы Altera, получить практические навыки создания проектов по схемотехнике ЭВМ в САПР (ввод схем, компиляция и моделирование).

Задание

- 1. Согласно своему варианту графа состояний автомата разработать функциональную электрическую схему цифрового программируемого устройства преобразования кодов.
 - 2. Включить ЭВМ и запустить САПР QUARTUS II.
- 3. Создать проект, ввести разработанную схему, откомпилировать и отмоделировать её.
- 4. Проверить полученные результаты, сверив их с таблицей истинности устройства.

Порядок выполнения работы

- 1. Получить № варианта состояний графа устройства.
- 2. На основе исходного графа состояний и согласно своему варианту составить таблицу перекодировки состояний устройства в десятичном и двоичном коде.
- 3. Подставить новые значения состояний в исходный граф.
- 4. Составить таблицу истинности работы устройства.
- 5. По таблице истинности разработать функциональную электрическую схему устройства.
- 6. Создать файл симулятора для анализа работы счетчика по пути New/Verification.../University Program и сохранить файл с расширением vwf (lab4.vwf).
- 7. Реализовать работу устройства на AHDL

Выполнение работы

Персональный вариант

1. Полученный вариант = 28 состояний графа устройства.

Nº	Состояния графа															
вар.	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
28	4	6	7	8	14	2	9	1	12	11	3	0	5	15	10	13

2. На основе исходного графа состояний и согласно своему варианту составить таблицу перекодировки состояний устройства в десятичном и двоичном коде.

 Таблица 1. Таблица перекодировки состояний автомата и их двоичный код

№ состояния	№ состояния из табл.1	Двоичный код		
	Na coctonium na tuosi. 1	q3,q2,q1,q0		
0	4	0100		
1	6	0110		
2	7	0111		
3	8	1000		
4	14	1110		
5	2	0010		
6	9	1001		
7	1	0001		
8	12	1100		
9	11	1011		
10	3	0011		
11	0	0000		
12	5	0101		
13	15	1111		
14	10	1010		
15	13	1101		

3. Подставить новые значения состояний в исходный граф.

Рис. 1. - Граф полученный с учетом таблицы перекодировки.

4. Составить таблицу истинности работы устройства. Таблица 2. Таблица истинности автомата

старое состояние		условие		новое состояние
Nº	код		Nº	Код
4	0100	-	6	0110
6	0110	A=0	12	1100
6	0110	A=1	7	0111
12	1100	-	11	1011
11	1011	-	3	0011
3	0011	B=0	5	0101
3	0011	B=1	0	0000
5	0101	-	1	0001
1	0001	-	15	1111
15	1111	-	10	1010
10	1010	-	13	1101
13	1101	-	4	0100
7	0111	-	8	1000
8	1000	B=0	14	1110
8	1000	B=1	2	0010
14	1110		9	1001
9	1001	-	1	0001
0	0000	1	1	0001
2	0010	-	9	1001

5. Реализовать работу устройства на AHDL

```
lab 10.tdf
SUBDESIGN 'lab10'
 1
  2
     □(
  3
         a, b, clock: input;
  4
         q[3..0]: output;
  5
  6
      variable
  7
         st[15..0], r0, r1, r2, r3, r4, r5: node;
 8
         q[3..0]: dff;
 9
      BEGIN
 10
         q[].clk=clock;
 11
 12
     for i in 0 to 15 generate
 13
     if q[] == i then
 14
         st[i] = vcc;
 15
         end if;
 16
         end generate;
 17
 18
         r0 = st[6]&!a;
 19
         rl = st[6]&a;
 20
         r2 = st[3]&!b;
 21
         r3 = st[3] &b;
 22
         r4 = st[8]&!b;
 23
         r5 = st[8]&b;
 24
         q[0]=r1#st[12]#st[11]#r2#st[5]#st[1]#st[10]#st[14]#st[9]#st[9]#st[0]#st[2];
 25
         q[1]=st[4]#rl#st[12]#st[11]#st[1]#st[15]#r4#r5;
 26
         q[2]=st[4]#r0#r1#r2#st[1]#st[10]#st[13]#r4;
 27
         q[3]=r0#st[12]#st[1]#st[15]#st[10]#st[7]#r4#st[14]#st[2];
 28
 29
      END;
```

Рис. 2. - Описание схемы на языке AHDL.

6. Сделать диаграмму симуляции, сравнить со схемной реализацией.

Рис. 3. - Результаты моделирования работы программы в сигнальном редакторе.

Сверившись с графом убеждаемся, что все переходы выполняются верно, следовательно, схема счётчика составлена правильно.

выводы

В данной лабораторной работе я приобрела навыки использования параметрических элементов (LPM function) в САПР QUARTUS II, экспериментально исследовала счетчики и регистры, построенных на их основе.

СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

- 1. Головков А., Пивоваров И., Кузнецов И. Компьютерное моделирование и проектирование радиоэлектронных средств. Учебник для вузов. Стандарт третьего поколения.:- СПб.: 2015. 208 с.
- 2. Соловьев В.В., Климович А. Логическое проектирование цифровых систем на основе программируемых логических интегральных схем. М.: Горячая линия Телеком, 20011. 376 с.
- 3. Стешенко В. ПЛИС фирмы ALTERA: элементная база, система проектирования и языки описания аппаратуры М.: Додека, 2010. 576 с.
- 4. Антонов А.П. Язык описания цифровых устройств AlteraHDL: Практический курс. М.: ИП «Радиософт», 2013. 224 с.
- 5. Ефремов Н.В. Введение в систему автоматизированного проектирования Quartus II. Учебное пособие. М.: ГОУ ВПО МГУЛ, 2011. 147 с.