Geometric Description of Span

• If \mathbf{v}_1 are \mathbf{v}_2 nonzero vectors in \mathbb{R}^3 , with \mathbf{v}_2 not a multiple of \mathbf{v}_1 , then Span $\{\mathbf{v}_1, \mathbf{v}_2\}$ is the plane in \mathbb{R}^3 that contains $\mathbf{v}_1, \mathbf{v}_2$ and $\mathbf{0}$.

• In particular, Span $\{v_1, v_2\}$ contains the line in \mathbb{R}^3 through v_1 and v_2 and v_3 and v_4 and v_5 and v_6 and v_8 are v_8 and v_8 and v_8 and v_8 and v_8 are v_8 and v_8 and v_8 and v_8 and v_8 and v_8 are v_8 and v_8 and v_8 and v_8 are v_8 and v_8 and v_8 and v_8 are v_8 and v_8 and v_8 and v_8 and v_8 are v_8 and v_8 and v_8 and v_8 and v_8 and v_8 are v_8 and v_8 and v_8 are v_8 and v_8 and v_8 are v_8 and v_8 and v_8 and v_8 are v_8 and v_8 and v_8 and v_8 are v_8 and v_8 and v_8 are v_8 and v_8 and v_8 and v_8 are v_8 and v_8 and v_8 are v_8 and v_8 and v_8 are v

Geometric Interpretation of Vector Equation

• Finding a linear combination of given vectors \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 to be equal to \mathbf{b} :

$$\begin{bmatrix} 60 \\ 65 \\ 55 \end{bmatrix} x_1 + \begin{bmatrix} 5.5 \\ 5.0 \\ 6.0 \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} x_3 = \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix}$$
$$\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \mathbf{a}_3 x_3 = \mathbf{b}$$

• The solution exists only when $\mathbf{b} \in \text{Span } \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}.$