

معماری و سازمان کامپیوتر

دانشگاه صنعتی اصفهان

دانشکده مهندسی برق و کامپیوتر

امیر خورسندی

بهار ۱۴۰۲

سیستم های چند پردازنده ای

مقدمه

• یک سیستم چندپردازنده ای از دو یا تعداد بیشتری هسته پردازشی به همراه حافظه و تجهیزات ورودی اخروجی تشکیل شده است.

• امکان گنجاندن چندین هسته بر روی تراشه بر اساس پیشرفت تکنولوژی و بر مبنای تحقق قانون مور حاصل شده است.

• این سیستم ها در دسته سیستم های چند دستورالعمل و چند داده از طبقه بندی فلین قرار می گیرند.

مقایسه با سیستم های چند کامپیوتری

- ارتباط بین کامپیوترها از طریق شبکه کامپیوتری برقرار می شود.
 - هر کامپیوتر سیستم عامل مجزای خود را دارد.
 - هر کامپیوتر وظیفه مجزایی را بر عهده دارد.
- سیستم های چند کامپیوتری از نوع سیستم های با اتصال سست محسوب می شوند.

• مهم ترین مزیت سیستم چند پردازنده افزایش کارایی سیستم به دلیل امکان اجرای همزمان بخش های مجزای برنامه نرم افزاری است.

• کاربر می تواند برنامه را به بخش های غیرمرتبط تقسیم کند و هر بخش را به صورت همزمان با سایر بخش ها بر روی یک هسته مجزا اجرا نماید.

• در حال حاضر کامپایلرها به تقسیم وظایف و توزیع آن بر روی هسته های مختلف جهت افزایش کارایی می پردازند.

• قابلیت تحمل خطای سیستم افزایش می یابد.

انواع سیستم چند پردازنده ای

سیستم با حافظه مشترک:

انواع سیستم چند پردازنده ای (ادامه)

سیستم با حافظه توزیع شده:

انواع ساختارهای ارتباطی

- گذرگاه مشترک با اشتراک زمانی
- سیستم حافظه با درگاه چندگانه
 - سوییچ های Crossbar
 - سوييچ چند طبقه اي
 - اتصال Hypercube

گذرگاه مشترک با اشتراک زمانی

٩

گذرگاه مشترک سلسله مراتبی

سیستم حافظه با درگاه چندگانه

سوييچ Crossbar

سوييچ ۲ در ۲

A connected to 0

B connected to 0

A connected to 1

B connected to 1

سوييچ چند طبقه

Hypercube **Jimil**

کنترل دسترسی به ساختار ارتباطی مشترک

- ساختار زنجیره ای
 - ساختار موازی

ساختار زنجیره ای

ساختار موازي

چالش ها

- •هماهنگ سازی عملکرد هسته های مختلف
 - •کنترل دسترسی به منابع مشترک
- •حفظ سازگاری بین نسخه های مختلف یک داده

هماهنگ سازی عملکرد هسته های مختلف

- •حافظه مشترک
 - •تبادل پيام

کنترل دسترسی به منابع مشترک

- •ساختار پایه/پیرو
- •قفل نمودن داده در ناحیه بحرانی (سمافور)

```
while (Lock);
```

Lock = true;

• • • •

Lock = false;

حفظ سازگاری بین نسخه های مختلف یک داده

Symmetrical Multiprocessor System

- •سیاست های به روزرسانی در حافظه نهان
 - Write Through
 - Write Back •