Détection d'une rupture en ligne - méthode FOCuS Synthèse et présentation des résultats du projet d'Algorithmique

Sarugan SRIHARAN

M2 Data Science : Santé, Assurance, Finance

Jeudi 09 Février 2023

Table of Contents

- 1 Introduction
- 2 Algorithmes naïfs
- 3 Algorithmes récursifs
- 4 FOCuS en ligne
- 6 Bibliographie

Introduction

- Détection de rupture : sujet de recherche important dans de nombreux secteurs qui nécessitent la surveillance en temps réel des données.
- But : Déterminer automatiquement si un comportement change dans les données temporelles.

Figure: Données générées aléatoirement

Objectifs

Implémenter l'algorithme FOCuS, proposé par Romano et al. 2022, en R et C++ et de comparer ses performances (algorithmiques et statistiques) à d'autres algorithmes basés sur des approches statistiques

Algorithmes naïfs

Test de comparaison

Principe

effectue un test statistique sur chaque point de la série temporelle en divisant la série en deux parties à gauche et à droite du point considéré

- Test de Kolmogorov-Smirnov de comparaison
- Test de la somme des rangs (Wilcoxon)

Figure: Test de comparaison sur les données

Compléxité :

- KS : $O(T^2 log \frac{T}{2})$ - Wilcoxon : $O(T^2)$

Algorithmes naïfs

Test de comparaison connaissant le nombre de ruptures

Principe

On suppose à présent connaître le nombre de ruptures K dans la série temporelle. On cherche alors astucieusement ces points (avec KS et Wilcoxon) en segmentant les intervalles de recherche après chaque itération

Jeudi 09 Février 2023

Figure: Test de comparaison sur les données

Complexité :

- KS : $O(K \times T^2 log \frac{T}{2})$ - Wilcoxon : $O(K \times T^2)$

Algorithmes récursifs CUSUM et Page-CUSUM en ligne

Objectif

- Introduire des méthodes statistiques plus appropriées et plus efficaces (complexité en O(T) pour CUSUM et $O(T^2)$ pour Page-CUSUM)
- En supposant que la moyenne de pré-rupture μ_0 est connue : l'idée est de surveiller la valeur absolue des sommes partielles

$$S(s, T) = \sum_{t=s+1}^{T} (x_t - \mu_0)$$

CUSUM
$$C(T) = \frac{1}{\sqrt{T}} |S(0,T)|$$
 Page-CUSUM $P(T) = \max_{0 \le w < T} \frac{1}{\sqrt{w}} |S(T-w,T)|$

Figure: CUSUM et Page-Cusum sur les 100 premières valeurs

Algorithmes récursifs

CUSUM et Page-CUSUM hors-ligne

Objectif

- Réappliquer ces procédures lorsqu'on trouve un point de rupture afin de trouver plusieurs points de rupture
- Idée : remplacement des moyennes à priori connues avec les données de la série temporelle.

Figure: CUSUM et Page-Cusum hors-ligne sur les données

• Complexité : O(T) pour CUSUM et $O(T^2)$ pour Page-CUSUM

12/16

Algorithmes récursifs

Méthode Séquentielle de Page en ligne

Objectif

- On suppose que la moyenne à priori $\mu_0=0$, et qu'on connaît aussi la moyenne à posteriori μ_1
- permet de détecter un point de rupture en utilisant des statistiques calculées récursivement à partir des log-vraisemblances

$$LR(x_t, \mu_1) = 2\mu_1(x_t - \frac{\mu_1}{2})$$

Statistique séquentielle de Page :

$$Q_{T,\mu_1} = \max_{0 \le s \le T} \sum_{t=s+1}^{T} \frac{1}{2} LR(x_t, \mu_1)$$

avec
$$egin{cases} Q_{0,\mu_1} = 0 \ Q_{t,\mu_1} = \max\{0, Q_{t-1,\mu_1} + rac{1}{2} LR(x_T, \mu_1)\} \end{cases}$$

Figure: Page séquentielle sur les 100 premières valeurs

Complexité : O(T)

FOCuS en ligne

Objectif

- utilisé sans forcément connaître la moyenne après le changement
- met à jour de manière récursive un modèle de quadratique par morceaux, et le maximum de ce modèle est utilisé comme statistique de test pour détecter un changement.
- Complexité : O(logT) par itération

Bibliographie

- 1 Romano, Gaetano and Eckley, Idris and Fearnhead, Paul and Rigaill, Guillem (2021) Fast Online Changepoint Detection via Functional Pruning CUSUM statistics, arXiv, 10.48550/ARXIV.2110.08205
- 2 ES Page. A test for a change in a parameter occurring at an unknown point. Biometrika, 42(3/4):523–527, 1955.
- 3 Claudia Kirch, Silke Weber, et al. Modified sequential change point procedures based on estimating functions. Electronic Journal of Statistics, 12(1):1579–1613, 2018

