Do Transformers Really Perform Bad for Graph Representation?

Графовые данные

- Каждая вершина имеет признаковое описание в виде вектора
- В зависимости от данных ребра тоже могут иметь признаки

Графовые данные

В чем проблема трансформеров

- Трансформер работает с данными с простой структурой
- Трансформер использует positional encoding, непонятно как считать его для графов

Как работают GNN

- GNN строят эмбеддинги для вершин/ребер учитывающие структуру графа которые затем подаются на вход нейросети
- Эмбеддинги строятся итеративно
- На каждой итерации два шага AGGREGATE и COMBINE.

Как работают GNN

- AGGREGATE собирает признаки из соседних вершин (берет среднее, сумму, максимум, ...)
- COMBINE обновляет текущий вектор используя получившийся вектор

- Идея статьи извлечь из графа информацию о позиционной структуре графа для использования в трансформере
- Для этого используют Centrality Encoding, Spatial Encoding и Edge Encoding

Centrality Encoding

- Идея: вершины с высокой степенью важны
- Используем пару эмбеддингов для входной и выходной степени, прибавляем их признакам вершин
- Каждой степени (или диапазону степеней в зависимости от задачи) соответствует свой эмбеддинг
- В них текут градиенты, обучаются вместе с остальными весами

$$h_i^{(0)} = x_i + z_{\text{deg}^-(v_i)}^- + z_{\text{deg}^+(v_i)}^+$$

Spatial Encoding

- Для каждой пары вершин хотим хранить информацию о их взаимном расположении
- Используем длину кратчайшего пути
- Каждой длине пути соответствует обучаемый скаляр, он прибавляется к произведению query и key векторов в аттеншене

Edge Encoding in the Attention

- Хотим использовать признаки ребер
- Для каждой пары вершин находим кратчайший путь между ними (один из)
- Идем вдоль этого пути и считаем скалярное произведение эмбеддингов ребер со специальными обучаемыми эмбеддингами \boldsymbol{w}_n^E
- Каждому шагу (по порядку) соответствует свой эмбеддинг
- Усредняем получившиеся скаляры и прибавляем к произведению query и key векторов в аттеншене
- Эмбеддинги обучаемы

$$c_{ij} = \frac{1}{N} \sum_{n=1}^{N} x_{e_n} (w_n^E)^T$$

Edge Encoding in the Attention

- Идем вдоль этого пути и умножаем эмбеддинги ребер на специальные обучаемые эмбеддинги
- Каждому шагу (по порядку) соответствует свой эмбеддинг
- Усредняем получившиеся скаляры и прибавляем к произведению query и key векторов в аттеншене

 Можно доказать что можно подобрать веса и функцию расстояния граформер будет повторять работу AGGREGATE и COMBINE шагов различных DNN

• Побили все соты на нескольких датасетах

method	#param.	train MAE	validate MAE 0.1691 (0.1684*) 0.1537 (0.1536*) 0.1485 (0.1510*) 0.1395 (0.1396*) 0.1430	
GCN [26]	2.0M	0.1318		
GIN [54]	3.8M	0.1203		
GCN-VN [26, 15]	4.9M	0.1225		
GIN-VN [54, 15]	6.7M	0.1150		
GINE-VN [5, 15]	13.2M	0.1248		
DeeperGCN-vn [30, 15]	25.5M	0.1059	0.1398	
GT [13]	0.6M	0.0944	0.1400	
GT-Wide [13]	83.2M	0.0955	0.1408	
Graphormer _{SMALL}	12.5M	0.0778	0.1264	
Graphormer	47.1M	0.0582	0.1234	

Table 2: Results on MolPCBA.

method	#param.	AP (%) 28.42±0.43	
DeeperGCN-VN+FLAG [30]	5.6M		
DGN [2]	6.7M	28.85 ± 0.30	
GINE-VN [5]	6.1M	29.17±0.15	
PHC-GNN [29]	1.7M	29.47±0.26	
GINE-APPNP [5]	6.1M	29.79±0.30	
GIN-vn[54] (fine-tune)	3.4M	29.02±0.17	
Graphormer-FLAG	119.5M	31.39±0.32	

Ablation study

Table 5: Ablation study results on PCQM4M-LSC dataset with different designs.

Node Relation Encoding		Controlity	Edge Encoding			valid MAE
Laplacian PE[13]	Spatial	Centrality	via node	via Aggr	via attn bias(Eq.7)	- valid MAE
		1270		-	ē	0.2276
/		1270	175	-	<u> </u>	0.1483
-	✓	1.7		-	ē	0.1427
-	/	1	9-	-	-	0.1396
5.	✓	√	/	-		0.1328
<u>.</u>	✓	1	-	/	-	0.1327
5.1	✓	✓	-	188	✓	0.1304