Deep Learning HW-2

Name: Sai Anuraghav Savadam

SJSU ID: 016882437

Option chosen - Training

I have chosen 3 models from the provided GitHub link

- 1. CNNNet1
- 2. AlexNet
- 3. MLP

Additionally, to fulfill the requirements, I went ahead and chose **EfficientNetB0** from PyTorch Vision and made 4 changes to it to make it CustomEfficientNet which are -

- 1. Replaced the top layer with fully connected layer to adapt the dataset.
- 2. Replaced the output layer as we are using this for Binary Classification.
- 3. Added dropouts for Regularization.
- 4. Added transformations layer for dataset to be more augmented and different.

Dataset - Cats Vs Dogs Observations:

CNN model1

Test Loss: 0.6932

Accuracy: Cats 0%, Dogs 100%, Overall 50%

AlexNet

Test Loss: 0.6932

Accuracy: Cats 100%, Dogs 0%, Overall 50%

MLP

Test Loss: 0.7030

Accuracy: Cats 73.2%, Dogs 39%, Overall 56.1%

EfficientNet

Test Loss: 0.1144

Accuracy: Cats 96.2%, Dogs 94.8%, Overall 95.5%

Summary:

EfficientNet significantly outperforms the other models, achieving the highest accuracy for both cats and dogs with a substantially lower test loss, indicating superior ability to generalize on unseen data. The MLP model shows a balanced but less accurate performance. Both CNN_model1 and AlexNet display extreme bias towards one class, resulting in 50% overall accuracy, which is effectively no better than random guessing.

Plots:

Dataset - WildFire

I made lot of changes to the input layers and output layers of the models to accept the wildfire dataset.

Observations:

CustomEfficientNet

Final Train Loss: 0.0253
Final Valid Loss: 0.0007
Final Train Accuracy: 99.2%
Final Valid Accuracy: 100%

CNNNet1

Final Train Loss: 0.2114
Final Valid Loss: 0.2795
Final Train Accuracy: 91.3%
Final Valid Accuracy: 85.3%

AlexNet

Final Train Loss: 2.6669
Final Valid Loss: 0.5668
Final Train Accuracy: 73.0%
Final Valid Accuracy: 76.5%

MLP

Final Train Loss: 0.1275
Final Valid Loss: 5.4646
Final Train Accuracy: 99.4%
Final Valid Accuracy: 97.1%

Summary:

- CustomEfficientNet shows the best performance with the lowest loss values and highest accuracy, indicating it's highly effective for the wildfire dataset.
- **CNNNet1** has moderate performance with reasonable loss and accuracy, suggesting it's somewhat effective but could benefit from further optimization.
- **AlexNet** struggles with higher loss and lower accuracy compared to CustomEfficientNet and CNNNet1, indicating less effective learning and generalization.
- **MLP** demonstrates excellent training performance with a very high accuracy, but the high validation loss suggests potential overfitting or issues with generalization to unseen data.

Plots:

