CURVAS ALGEBRAICAS, CURSO 2025-2026

José F. Fernando

Primeros pasos en Geometría Algebraica

1. Sean K un cuerpo y consideramos los polinomios

$$f(x, y) := xy^4 + x^3y^3 + x^2(y^3 + 1) - 1$$
 $y \quad g(x, y) := x^5 + y(x^4 + x^3 + y(y + 1)x + y).$

Demostrar que f y g son irreducibles en K[x, y].

2. Encontrar todos los puntos $(x,y) \in \mathbb{C}^2$ tales que

$$y^2 + x^2 - y - 3x = 0$$
 e $y^2 - 6xy - x^2 + 11y + 7x - 12 = 0$.

- 3. Sea $p := x^2y 3xy^2 + x^2 3xy$ y $q := yx^3 4y^2 3y + x^3 + 1$. Comprobar que $\operatorname{Res}_{\mathbf{x}}(p,q) \neq 0$ mientras que $\operatorname{Res}_{\mathbf{y}}(p,q) = 0$. ¿Cómo se puede explicar esto?
- 4. Sea $F \in K[x, y]$ un polinomio homogéneo de grado n con coeficientes en un cuerpo algebraicamente cerrado K. Demostrar que existen $a \in K \setminus \{0\}$, $r \le n$ puntos distintos $[a_i : b_i] \in K\mathbb{P}^1$ y enteros positivos $m_i \ge 1$ tales que

$$F = a \prod_{i=1}^{r} (a_i \mathbf{y} - b_i \mathbf{x})^{m_i}$$

Se dice que $[a_i:b_i]$ son las raíces de F y m_i es la multiplicidad de $[a_i:b_i]$ como raíz de F.

- 5. Descomponer en factores irreducibles el polinomio $x^4 + y^4$ en $\mathbb{Q}[x, y]$, $\mathbb{R}[x, y]$ y $\mathbb{C}[x, y]$.
- 6. Demostrar que los divisores de un polinomio homogéneo son necesariamente polinomios homogéneos.
- 7. (i) Sea K un cuerpo. Calcular los subconjuntos algebraicos de K.
 - (ii) ¿Es \mathbb{Z} un subconjunto algebraico de \mathbb{R} ? ¿Lo es el intervalo [0,1)?
- 8. (i) ¿Es el conjunto $X := \{(x,y) \in \mathbb{R}^2 : y = \exp(x)\}$ un subconjunto algebraico de \mathbb{R}^2 ?
 - (ii) ¿Es el conjunto $X := \{(x, y) \in \mathbb{R}^2 : y = \sin(x)\}$ un subconjunto algebraico de \mathbb{R}^2 ?

Estudio local de curvas algebraicas

- 9. Sean $f, g \in \mathbb{C}[t]$ dos polinomios. Demostar que $X := \{(f(t), g(t)) \in \mathbb{C}^2 : t \in \mathbb{C}\}$ es un conjunto algebraico de \mathbb{C}^2 . ¿Es cierto el resultado si cambiamos \mathbb{C} por \mathbb{R} ? Calcular el ideal de ceros del conjunto $X := \{(t^2 1, t(t^2 1)) : t \in \mathbb{C}\}$.
- 10. Demostrar que el conjunto de puntos de la forma $(t^4 + 2t^3 + t^2 1, t^4 + 2t^3 + 2t^2 + t)$ con $t \in K$ es una cónica afín del plano K^2 . ¿Notas algo extraño? ¿A qué se debe?
- 11. Obtener una parametrización racional de la curva $\mathcal{Z}(y^2 x^2(x^2 1))$ considerando su intersección con la familia de parábolas y tx(x 1) = 0 donde $t \in \mathbb{C}$. ¿Qué interpretación geométrica tiene esta parametrización?

- 12. Demostrar que la aplicación $\varphi: K\mathbb{P}^1 \to K\mathbb{P}^2$, $[\mathsf{t}_0: \mathsf{t}_1] \to [\mathsf{t}_0^3: \mathsf{t}_0\mathsf{t}_1^2 \mathsf{t}_0^3: \mathsf{t}_1^3 \mathsf{t}_0^2\mathsf{t}_1]$ está bien definida, que su imagen es $\mathcal{Z}(\mathsf{x}_0\mathsf{x}_1^2 \mathsf{x}_0\mathsf{x}_2^2 + \mathsf{x}_1^3)$ y que solo un punto de la imagen tiene dos preimágenes.
- 13. Parametrizar las siguientes curvas planas afines proyectando desde el punto (0,0) sobre la recta y=1 y sobre la recta x=1. ¿Para cuántos valores del parámertro se obtiene el origen? Representa gráficamente las curvas y discutir si se obtendría una parametrización proyectando desde algún otro punto.
 - (i) $\mathcal{Z}(x^2 + y^2 2x)$.
 - (ii) $\mathcal{Z}(2x^2 + 7xy 4x + y)$.
 - (iii) $\mathcal{Z}(y^2 x^2 + 2x^3)$.
 - (iv) $\mathcal{Z}(y^2 + x^3)$.
 - (v) $\mathcal{Z}(y^2 + x^2 + 2x^3)$.
 - (vi) $\mathcal{Z}(x^3 + y^3 + x^4)$.
 - (vii) $\mathcal{Z}(x^2y xy^2 + x^4)$.
- 14. Parametrizar los completados proyectivos de las curvas del Ejercicio ??.
- 15. Calcular la intersección de cada uno de los siguientes pares de curvas:
 - (i) $\mathcal{Z}(x_2^2 x_0x_1)$ y $\mathcal{Z}(x_0x_2^2 x_0^2x_1 + x_1^3)$.
 - $\text{(ii)} \ \ \mathcal{Z}(x_0x_2^2-x_1(x_1-2x_0)(x_1+x_0)) \ y \ \ \mathcal{Z}(x_1^2+x_2^2-2x_0x_1).$
 - (iii) $\mathcal{Z}(\mathbf{x}_0(\mathbf{x}_1^2 + \mathbf{x}_2^2) + \mathbf{x}_1^3 + \mathbf{x}_2^3)$ y $\mathcal{Z}(\mathbf{x}_1^3 + \mathbf{x}_2^3 2\mathbf{x}_0\mathbf{x}_1\mathbf{x}_2)$.
- 16. Demostrar que las siguientes curvas afínes son irreducibles y calcular sus puntos singulares, multiplicidades y tangentes a las curvas en ellos:
 - (i) $f := y^2 + 2x^2 x^4$.
 - (ii) $f := x^3 + x^2 + y^2$
 - (iii) $f := x^6 x^2y^3 y^5$.
 - (iv) $f := (x^2 + y^2)^2 y(3x^2 y^2)$.
- 17. Demostrar que las siguientes curvas (proyectivas) son irreducibles y calcular sus puntos singulares, multiplicidades y tangentes a las curvas en ellos:
 - (i) $F := \mathbf{x}_1 \mathbf{x}_2^4 + \mathbf{x}_0 \mathbf{x}_2^4 + \mathbf{x}_0^4 \mathbf{x}_1$.
 - (ii) $F := \mathbf{x}_1^2 \mathbf{x}_2^3 + \mathbf{x}_0^3 \mathbf{x}_1^2 + \mathbf{x}_0^3 \mathbf{x}_2^2$.
 - (iii) $F := \mathbf{x}_0 \mathbf{x}_2^2 \mathbf{x}_1 (\mathbf{x}_1 \mathbf{x}_0) (\mathbf{x}_1 \lambda \mathbf{x}_0)$ para $\lambda \in \mathbb{C}$.
 - (iv) $F := (x_0 + x_1 + x_2)^3 27x_0x_1x_2$.
 - (v) $F := x_1^2 x_2^2 + 36x_0^3 x_1 + 24x_0^3 x_2 + 108x_0^4$
- 18. Encontrar todas las series formales $g \in K[[t]]$ con g(0) = 0 (calculando sus coeficientes hasta grado 3) tales que f(t, g(t)) o f(g(t), t) = 0 para los siguientes polinomios:
 - (i) $f := 3v^2 + 4x x^3$.
 - (ii) $f := x^3 + y^3 x^4$.
 - (iii) $f := y^4 + x^2y xy^2 + x^4$.
- 19. Calcular los primeros términos de las raíces de Puiseux de los polinomios (en la variable y):
 - (i) $x^4 x^3y + 3x^2y^3 3xy^5 + y^7$.
 - (ii) $2x^5 x^3y + 2x^2y^2 xy^3 + 2y^5$.
 - (iii) $(x^2 + 4x^3 + 6x^4) 4x^4y + (-2x 4x^2 2x^3)y^2 + y^4$.
- 20. Demostrar que una cónica no singular no tiene puntos de inflexión.

Teorema de Bézout

- 21. Calcular los lugares en el origen de las siguientes curvas:
 - (i) $F := y^{12} x^{15} + x^{30}$.
 - (ii) $F := y^2 x^2 + x^5 + y^2x^3$.
 - (iii) $F := y^6 y^2x^4 + x^{11}$.
 - (iv) $F := (y^2 x^3)(y^3 x^4) + x^{11}$.
 - (v) $F := y^3 + xy^2 + 2x^4 + x^2y^3$.
- 22. Proporcionar la ecuación de una curva cuyos lugares en el origen correspondan a las raíces de Puiseux $y = \eta(x^{7/3} \pm \sqrt{-1}x^{17/6})$ donde $\eta^3 = 1$.
- 23. Consideramos los polinomios

$$F := \mathbf{x}_1^3 + \mathbf{x}_2^3 - 2\mathbf{x}_0\mathbf{x}_1\mathbf{x}_2,$$

$$G := 2\mathbf{x}_1^3 - 4\mathbf{x}_1^2\mathbf{x}_2 + 3\mathbf{x}_1\mathbf{x}_2^2 + \mathbf{x}_2^3 - 2\mathbf{x}_2^2\mathbf{x}_0.$$

- (i) Comprobar que [0:0:1] no es un cero ni de F ni de G y que F y G no poseen ningún cero común en la recta \mathbf{x}_0 .
- (ii) Calcular $\operatorname{Res}_{\mathtt{y}}(f,g)$ donde $f:=F(1,\mathtt{x},\mathtt{y})$ y $g:=G(1,\mathtt{x},\mathtt{y}).$
- (iii) Calcular los ceros comunes de los polinomios F y G y su multiplicidad de intersección en cada uno de ellos.
- (iv) Encontrar los lugares de f y g centrados en el (0,0). Calcular el orden de f en los de g y el orden de g en los de f.
- 24. Para cada $\lambda \in \mathbb{C}$ definimos $F_{\lambda} := \mathbf{x}_0^3 \mathbf{x}_2^3 3\lambda \mathbf{x}_1^5 \mathbf{x}_2 3\lambda \mathbf{x}_0 \mathbf{x}_1^5 + 5\lambda \mathbf{x}_1^6$
 - (i) Calcular las tangentes a F_{λ} en los puntos $p_1 := [1:0:0]$ y $p_2 := [0:0:1]$. Encontrar algún valor de λ para el que el punto $p_3 := [1:1:1]$ sea un punto singular de F_{λ} .
 - (ii) Encontrar la ecuación reducida G de la cónica que pasa por el punto p_3 y cuyas tangentes en los puntos p_1 y p_2 son respectivamente \mathbf{x}_2 y \mathbf{x}_0 .
 - (iii) Sean G la cónica del apartado anterior, λ el valor calculado en el apartado (i) y $F:=F_{\lambda}$. Calcular los ceros comunes de F y G y la multiplicidad de intersección de F y G en cada uno de ellos.
- 25. Sea $F := \mathbf{x}_0(\mathbf{x}_1^2 \mathbf{x}_0\mathbf{x}_2)^2 \mathbf{x}_1^5$ y $G := \mathbf{x}_1^4 + \mathbf{x}_1^3\mathbf{x}_2 \mathbf{x}_0^2\mathbf{x}_2^2$. Calcular la multiplicidad de intersección de F y G en cada uno de sus ceros comunes.
- 26. Verificar el teroema de Bézout para los pares de curvas siguientes:
 - (i) $F := (x^2 y)^2 x^5$, $G := x^4 + x^3y y^2$.
 - (ii) $F := y^4 y^2 + x^4 = 0$, $G := y^4 2y^3 + (1 x)y^2 2x^2y + x^4$.
- 27. Obtener los lugares de Puiseux en el origen de la curva $F := y^2 y^3 2yx^2 + x^4$. De dos formas distintas:

3

- (i) Calculando directamente las raíces de Puiseux de la ecuación.
- (ii) Utilizando la parametrización $x := t(t^2 1)$ e $y := (t^2 1)^2$
- 28. ¿Poseen algún lugar común dos curvas planas proyectivas irreducibles distintas?

Aplicaciones

- 29. Sea \mathfrak{H} el haz de cónicas generado por las cónicas de ecuaciónes $x_1^2 + x_1x_2 x_0x_2$ y $x_1^2 + x_0x_2$.
 - (i) Hallas los puntos base de \mathfrak{H} .
 - (ii) Determinar si \mathfrak{H} puede ser generado por cónicas reducibles y, en caso afirmativo, hallar tales generadores reducibles.
- 30. Consideramos los puntos proyectivos p_i de coordenadas $[\pm 1 : \pm 1 : 1]$ y los puntos q_1, \ldots, q_5 de coordenadas $[0 : 5 : 1], \ldots, [0 : 9 : 1]$. Calcular el conjunto de las cúbicas que pasan por $p_1, \ldots, p_4, q_1, \ldots, q_5$.
- 31. Identificamos cada punto $u:=[u_{00}:u_{01}:u_{02}:u_{11}:u_{12}:u_{22}]\in K\mathbb{P}^5$ con la cónica de $K\mathbb{P}^2$ de ecuación $Q_u:=u_{00}\mathbf{x}_0^2+u_{01}\mathbf{x}_0\mathbf{x}_1+u_{02}\mathbf{x}_0\mathbf{x}_2+u_{11}\mathbf{x}_1^2+u_{12}\mathbf{x}_1\mathbf{x}_2+u_{22}\mathbf{x}_2^2=0$.
 - (i) Compruébese que el hiperplano de $K\mathbb{P}^5$ de ecuación $\mathfrak{u}_{01}=0$ no corresponde al conjunto de cónicas que pasan por un punto fijo de $K\mathbb{P}^2$.
 - (ii) Caracterizar en términos de $u \in K\mathbb{P}^5$ cuándo la recta $\mathbf{x}_2 = 0$ es tangente a la cónica Q_u .
- 32. Determinar el sistema lineal de cúbicas que cortan a $\mathcal{Z}(\mathbf{x}_0\mathbf{x}_2 \mathbf{x}_1^2)$ solo en el punto [1:0:0]. Encontrar alguna de ellas que sea irreducible.
- 33. Demostrar que el conjunto de las rectas tangentes a la curva $\mathcal{Z}(\mathbf{x}_0\mathbf{x}_2^2 \mathbf{x}_1^3)$ forma una curva de $(K\mathbb{P}^2)^*$ dando una ecuación en las variables $\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2$ que caracterice cuándo la recta de ecuación $\mathbf{a}_0\mathbf{x}_0 + \mathbf{a}_1\mathbf{x}_1 + \mathbf{a}_2\mathbf{x}_2$ es tangente a $\mathcal{Z}(\mathbf{x}_0\mathbf{x}_2^2 \mathbf{x}_1^3)$. Ayuda: Parametrizar la curva $\mathcal{Z}(\mathbf{x}_0\mathbf{x}_2^2 \mathbf{x}_1^3)$ y para cada uno de sus puntos calcular la recta tangente en función de los parámetros. Comprobar que entonces el conjunto de rectas tangentes se puede parametrizar también.
- 34. Determinar el conjunto de las cúbicas que son singulares en el punto [1:0:0], pasan por los puntos [0:0:1], [0:1:0] con tangentes respectivas $\mathbf{x}_0 \mathbf{x}_1$ y $\mathbf{x}_0 \mathbf{x}_2$ y además pasan por el punto [0:1:1]. ¿Cuántas de estas cúbicas son reducibles? ¿Cuántas tienen otro punto singular aparte del [1:0:0]?
- 35. Encontrar una paramatrización de la curva $x_1^2x_2^2 + x_0^2x_1^2 x_0^2x_2^2 = 0$.
- 36. Demostrar que una cuártica con cuatro puntos dobles es reducible.
- 37. **Teorema de Pappus.** Sean L_1 y L_2 dos rectas del plano proyectivo $K = \mathbb{P}^2$ y $\{o\} := L_1 \cap L_2$. Sean a_1, a_2 y a_3 tres puntos distintos de los ceros de L_1 y b_1, b_2 y b_3 tres puntos distintos en los ceros de L_2 , todos ellos distintos de o. Sea L_{ij} la recta que une a_i con b_j para $1 \le i, j \le 3$ con $i \ne j$. Demostrar que los puntos $\{p_1\} = \mathcal{Z}(L_{12}, L_{21}), \{p_2\} = \mathcal{Z}(L_{13}, L_{31})$ y $\{p_3\} = \mathcal{Z}(L_{23}, L_{32})$ están alineados.
- 38. **Teorema de Pascal II.** Sean $a_1, a_2, a_3, b_1, b_2, b_3 \in \mathbb{CP}^2$. Sea L_{ij} la recta que une a_i con b_j para $1 \leq i, j \leq 3$ con $i \neq j$. Supongamos que los puntos $\{p_1\} = \mathcal{Z}(L_{12}, L_{21}), \{p_2\} = \mathcal{Z}(L_{13}, L_{31})$ y $\{p_3\} = \mathcal{Z}(L_{23}, L_{32})$ están alineados. Demostrar que existe una cónica que pasa por los puntos $a_1, a_2, a_3, b_1, b_2, b_3$.
- 39. Determinar bajo que condiciones dados seis puntos de inflexión de una cúbica no singular existe una cónica que pasa por ellos. Decidir si dicha cónica es irreducible o no.
- 40. (i) Comprobar que la cúbica $F := \mathbf{x}_1^2 \mathbf{x}_2 \mathbf{x}_0^3 4\mathbf{x}_0 \mathbf{x}_2^2$ es no singular y que o := [0:1:0] es uno de sus puntos de inflexión.

Figura 1: Teorema de Pappus.

(ii) Consideramos el conjunto Z de los ceros de F y la estructura de grupo con neutro o. Dados los puntos a:=[0:0:1] y b:=[2:4:1], encontrar un tercer punto $c\in Z$ de modo que el conjunto $G:=\{o,a,b,c\}$ es un subgrupo de Z. ¿Es cíclico?

Figura 2: Teorema de Pascal II.