

Estimating a Mean Difference for Paired Data

Julie Deeke Statistics Course Developer

Twin Education Levels

Twin Days in Twinsburg, Ohio annually since 1976

Variable: Education Level of Twins

Want to treat the two sets of values simultaneously

- Want to treat the two sets of values simultaneously
- Other ways paired data arise:
 - Measurements collected on the same individual

- Want to treat the two sets of values simultaneously
- Other ways paired data arise:
 - Measurements collected on the same individual

- Want to treat the two sets of values simultaneously
- Other ways paired data arise:
 - Measurements collected on the same individual

- Want to treat the two sets of values simultaneously
- Other ways paired data arise:
 - Measurements collected on the same individual
 - Measurements collected on matched individuals

- Want to treat the two sets of values simultaneously
- Other ways paired data arise:
 - Measurements collected on the same individual
 - Measurements collected on matched individuals

- Want to treat the two sets of values simultaneously
- Other ways paired data arise:
 - Measurements collected on the same individual
 - Measurements collected on matched individuals

- Want to treat the two sets of values simultaneously
- Other ways paired data arise:
 - Measurements collected on the same individual
 - Measurements collected on matched individuals
- Variable: Difference of measurements within pairs

What is the <u>average</u> difference between the older twin's and younger twin's self-reported education?

What is the <u>average</u> difference between the older twin's and younger twin's self-reported education?

I'm older and more motivated. I have more education!

What is the <u>average</u> difference between the older twin's and younger twin's self-reported education?

What is the <u>average</u> difference between the older twin's and younger twin's self-reported education?

Population - All identical twins

What is the <u>average</u> difference between the older twin's and younger twin's self-reported education?

Population - All identical twins Parameter of Interest - Population mean difference of self-reported education level μ_d

What is the <u>average</u> difference between the older twin's and younger twin's self-reported education?

Population - All identical twins Parameter of Interest - Population mean difference of self-reported education level μ_d difference = older - younger

What is the <u>average</u> difference between the older twin's and younger twin's self-reported education?

Population - All identical twins Parameter of Interest - Population mean difference of self-reported education level μ_d difference = older - younger

What is the <u>average</u> difference between the older twin's and younger twin's self-reported education?

Population - All identical twins Parameter of Interest - Population mean difference of self-reported education level μ_d

Construct a 95% confidence interval for the mean difference of self-reported education for a set of identical twins.

Difference Calculation

Difference = older twin - younger twin

Older twin education	Younger twin education	Difference (older - younger)
16	16	0
18	16	2
12	12	0
14	14	0
13	15	-2

Difference Summary

Difference = older twin - younger twin

n = 340 observations

Minimum = -3.5 years

Maximum = 4 years

72.1% had a difference of 0 years

Difference Summary

Difference = older twin - younger twin

n = 340 observations

Minimum = -3.5 years
Maximum = 4 years
72.1% had a difference of 0 years

Mean = 0.0838 years Standard Deviation = 0.7627 years

Confidence Interval Basics

Best Estimate ± Margin of Error

95% Confidence Interval Calculations

Best Estimate ± Margin of Error

Sample mean difference ± "a few" · estimated standard error

$$\bar{x}_{d} \pm t^* \left(\frac{s_{d}}{\sqrt{n}}\right)$$

small sample size

 t^* multiplier comes from a t-distribution with n-1 degrees of freedom

95% confidence

$$n = 25 \rightarrow t^* = 2.064$$

$$n = 1000 \rightarrow t^* = 1.962$$

Mean = 0.084 years Standard Deviation = 0.76 years

$$n = 340$$
 observations \rightarrow t* = 1.967

$$\bar{x}_{d} \pm t^{*} \left(\frac{s_{d}}{\sqrt{n}}\right)$$

Mean = 0.084 years Standard Deviation = 0.76 years

n = 340 observations \rightarrow t* = 1.967

$$\bar{x}_d \pm t^* \left(\frac{s_d}{\sqrt{n}}\right)$$

$$0.084 \pm 1.967 (0.76/\sqrt{340})$$

Mean = 0.084 years Standard Deviation = 0.76 years

n = 340 observations \rightarrow t* = 1.967

$$\bar{x}_d \pm t^* \left(\frac{s_d}{\sqrt{n}}\right)$$

$$0.084 \pm 1.967 (0.76/\sqrt{340})$$

$$0.084 \pm 1.967 (0.04)$$

$$0.084 \pm 0.0814$$

Mean = 0.084 years Standard Deviation = 0.76 years

n = 340 observations \rightarrow t* = 1.967

$$\bar{x}_{d} \pm t^{*} \left(\frac{s_{d}}{\sqrt{n}}\right)$$

$$0.084 \pm 1.967 (0.76/\sqrt{340})$$

$$0.084 \pm 1.967 (0.04)$$

$$0.084 \pm 0.0814$$

(0.0025, 0.1652) years

Interpreting the Confidence Interval

"range of reasonable values for our parameter"

Interpreting the Confidence Interval

"range of reasonable values for our parameter"

With 95% confidence, the population mean difference of the older twin's and younger twin's self-reported education is estimated to be between 0.0025 years and 0.1652 years.

IVQ

Is there a difference between education levels of the older and younger twin?

Intervals for Differences

Is there a mean difference between the education level of twins?

If education levels are generally equal \rightarrow mean difference is 0

If education levels are unequal → mean difference is not 0

Look for **0** in the range of reasonable values

Assumptions

We need to assume that we have a <u>random sample</u> of identical twin sets.

② Population of differences is normal (or a large enough sample size can help to bypass this assumption).

Summary

Summary

Extension of the one mean confidence interval

~use difference variable now

Data need to be paired to calculate a difference variable

- ~two measurements on same individual
- ~two measurements on similar, matched individuals

Summary

Extension of the one mean confidence interval

~use difference variable now

Data need to be paired to calculate a difference variable

~two measurements on same individual

~two measurements on similar, matched individuals

0 in the confidence interval

~implies the mean difference is $0 \rightarrow no$ true difference