1. ОБЗОР АНАЛОГОВ.

Моделирование бизнес-процессов позволило выявить ряд возможностей по их трансформации и создания цифрового продукта, обеспечивающего мультиплатформенность для всех участников процесса. Основные инструменты для реализации задачи:

- Моделирование бизнес-процессов;
- Машинное обучение и анализ больших данных;
- Платформа «Уберизации»;
- Смарт-контракты на оказание услуг (блокчейн).

Выбор инструментов основан на анализе опыта их применения в транспортных компаниях Российской Федерации.

Например в ОАО «РЖД» реализованы сервисы проекта «Интертран», которые уже работают. Это безбумажная мультимодальная грузовая перевозка. Введен целый комплекс решений: это электронный документооборот, это рабочие места для сотрудников, которые работают в порту. Эффект — сокращение перевозки на четверо суток транзитных грузов только за счет цифровых инструментов [1].

Применение технологии блокчейн позволяет обеспечить доверие к информации и сформировать доверенную среду с контрагентами. Как результат, на основании математических алгоритмов возможно внедрение смарт-контрактов при взаимодействии с различными участниками перевозки, так.

Эффективность внедрения платформенных продуктов связана с возможностью совершать пиринговые или квази-пиринговые транзакции, минимизировать число звеньев между поставщиком и заказчиком услуг, реализовать рейтинговую систему оценки качества услуг, в том числе количественную оценку их качества и обоснованный выбор лучшего решения.

Оценка эффектов внедрения проекта соответстсвует целям Паспорта проекта Цифровая трансформация транспортной отрасли в РФ, в т.ч.:

- к 2024 году более 30% перевозочных документов переведены в цифровой вид (грузовых).
- к 2024 году в 2 раза увеличен объем транзитных перевозок контейнеров для автомобильного и железнодорожного транспорта
- к 2030 году увеличение средней коммерческой скорости грузового автомобиля/поездаот 11% до 75% в зависимости от вида транспорта и дальности перевозки

2. ТЕХНИЧЕСКОЕ ЗАДАНИЕ НА РАЗРАБОТКУ МДО.

2.1. Введение

В целях обеспечения устойчивого развития Бугульминского района Республики Татарстан определена необходимость создания цифровой транспортно-логистической платформы, объединяющей ключевых участников перевозочного процесса, в которую на основании входных поступающих «грузоотправителя» параметров, OT основании математических алгоритмов формируется потребность в перевозке грузов на различные периоды времени (среднесрочные, краткосрочные). Это позволяет «системе», но основании информации от «перевозчиков» о наличии ресурсов заказа (техника, пропускные способности и выполнения сформировать в автоматическом режиме маршрут следования груза, оценить предложение сформировать коммерческое стоимость грузоотправителя. При подтверждении всех сторон готовности заключить контракт – математический алгоритм формирует типовой договор на перевозку груза, который цифровой подписью «акцептуется» сторонами договора. В результате запуксается процесс планирования ресурсов у перевозчика и последующее обеспечение перевозки ресурсами в заданные конрактами условиями (срок доставки, стоимость и т.п.).

2.2. Основания для разработки

Основанием для разработки системы является выполнение конкурсного задания Чемпионата Digital Skills 2022.

2.3. Назначение разработки

Одним из решений задач развития транспортной отрасли является создание "цифровой транспортно-логистической платформы" — как совокупность бизнес-сервисов обмена логистической информацией, сопровождающих планирование и осуществление перевозочного процесса, включающих территориально и функционально распределенные ИТ-решения, платформы и информационные системы, владельцами и (или) операторами которых могут являться бизнес и органы государственной власти.

2.4. Требования к программе или программному изделию

2.4.1. Требования к системе в целом

2.4.1.1. Требования к структуре и функционированию системы

МДО Системы должен быть централизованным, т.е. все данные должны располагаться в центральном хранилище. Система ХД должна иметь трехуровневую архитектуру (первый уровень - источник, второй - хранилище, третий - отчетность).

В МДО Системе предлагается выделить следующие функциональные модули:

– программный модуль размещения, регистрации и обработки заказов на оказание услуг перевозки, включая услуги накопления и перераспределения грузов, а также погрузки/выгрузки;

- программный модуль обработки заказов и построения логистических цепочек доставки грузов;
- программный модуль хранения данных, которая предназначена для хранения данных в структурах, нацеленных на принятие решений
- программный модуль формирования и визуализации отчетности, которая предназначена для формирования бизнес-ориентированных витрин данных и отчетности

2.5. Требования к программной документации

При разработке МДО должны быть разработаны следующие документы:

- программа и методика испытаний;
- руководство пользователя.

2.6. Стадии и этапы разработки

Разработка ПО должна включать в себя следующие этапы:

2.6.1. Разработка программного обеспечения Цифровой транспортно-логистической платформы в части создания базовой системы.

В рамках данного этапа должны быть выполнены следующие работы:

- разработка функциональности регистрации заказов на предоставление транспортных услуг;
- разработка функциональности управления и маршрутизации заказов между участниками транспортного рынка;
- разработка функциональности расчета оптимальной загрузки инфраструктуры участников транспортного рынка;
- разработка функциональности формирование предложении по маршрутизации грузов;
- разработка функциональности получение информации смежных систем участников транспортного рынка в части информации о доступности инфраструктуры и внутреннему обмену услугами (в части предоставления ресурсов для перевозки);
 - разработка функциональности мониторинга сроков доставки грузов;
- разработка функциональности мониторинга сроков обработки и управления закзами.

2.6.2. Разработка программного обеспечения Цифровой транспортно-логистической платформы в части создания программного модуля, регистрации и обработки заказов на оказание услуг перевозки, включая услуги накопления и перераспределения грузов.

В рамках данного этапа должны быть выполнены следующие работы:

- разработка функциональности регистрации прогнозируемой величины объема предстоящего заказа на оказание услуги перевозки на долгосрочные и среднесрочные периоды (от месяца до нескольких лет);
- разработка функциональности регистрации заказа на оказание услуги перевозки;

– разработка функциональности мониторинга процессов обработки заказа на предоставление услуги перевозки.

2.6.3. Разработка программного обеспечения Цифровой транспортно-логистической платформы в части создания бизнессервисов для оператора транспортно-логистического центра.

В рамках данного этапа должны быть выполнены следующие работы:

- разработка функциональности формирования транспортнологистических цепочек исполнения заказов на перевозку;
- разработка функциональности управления процессами маршрутизации и согласования объемов заказов и их корректировки.

2.6.4. Разработка программного обеспечения Цифровой транспортно-логистической платформы в части создания бизнессервисов для грузоперевозчика.

В рамках данного этапа должны быть выполнены следующие работы:

- разработка функциональности планирования ресурсов на обеспечение внутренних услугрегистрация заказа на оказание услуги перевозки;
- разработка функциональности управления внутренним обменом услугами;
- разработка функциональности обеспечения заказов на услуги перевозки;
- разработка функциональности обеспечения внутреннего заказа ресурсами;
- разработка функциональности регистрации параметров выполнения перевозки;
- разработка функциональности взаимодействия с организациями, обеспечивающими погрузку/выгрузку.

2.6.5. Разработка программного обеспечения Цифровой транспортно-логистической платформы в части создания бизнессервисов мониторинга процессов перевозки.

В рамках данного этапа должны быть выполнены следующие работы:

- разработка функциональности мониторинга сроков доставки грузов;
- разработка функциональности мониторинга исполнения сроков выполнения заказов;
- разработка функциональности мониторинга исполнения сроков обработки заказов;
- разработка функциональности мониторинга наличия ресурсов для перевозки.

2.6.6. Разработка документации.

В рамках данного этапа должны быть выполнены следующие работы:

- разработана программа и методика испытаний;

– разработано руководство пользователя.

2.7. Порядок контроля и приемки

Состав, объем и методы испытаний системы определяются документом «Программа и методика испытаний», разрабатываемым на стадии «Рабочая документация».

3. МОДЕЛЬ ИНФОРМАЦИОННОЙ UML-2.

Для выполнения поставленной задачи по разработке диаграмм в формате UML-2 использована программная среда VISIO.

Рисунок 1. UML-2 диаграмма прецедентов перевозки груза.

Рисунок 2. UML-2 диаграмма размещения заказа на перевозку.

Рисунок 3. UML-2 диаграмма обработки перевозчиком заказа на перевозку.

Рисунок 4. UML-2 диаграмма получение заказа грузоотправителем.

Рисунок 5. UML-2 диаграмма классов.

Рисунок 6. UML-2 диаграмма действий.

Рисунок 7. UML-2 диаграмма последовательности приемки заказа (без отклонений в процессе).

Рисунок 8. UML-2 диаграмма последовательности отказа в перевозке (по причине отсутствия ресурса для перевозки).

Рисунок 9. UML-2 диаграмма последовательности приемки заказа (с учетом этапа поиска резервных ресурсов).

Рисунок 10. UML-2 диаграмма последовательности управления поездом.

4. МОДЕЛЬ МДО ИНФОРМАЦИОННОЙ СИСТЕМЫ.

В соответствии с заданием разработана модель минимального демонстрационного образца (МДО) в нотации UML-2.

Основная логика выполнения процесса связана с внесением ГРУЗООТПРАВИТЕЛЕМ информации о необходимой перевозки груза, с последующей реализацией услуги ПЕРЕВОЗЧИКОМ и формированием необходимых отчетных документов.

Рисунок 11. Модель информационной системы в нотации UML-2.

5. ОПИСАНИЕ И СХЕМА ИТ-ИНФРАСТРУКТУРЫ ВСЕЙ ИНФОРМАЦИОННОЙ СИСТЕМЫ.

6. РАСЧЕТ ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ И МЕТРИКИ ЭФФЕКТА ОТ ТРАНСФОРМАЦИИ ОРГАНИЗАЦИИ.

Разарабатываемый продукт направлен на увеличение объема перевозок за счет привлечения новых участников процесса, а также сокращение операционных расходов за счет его автоматизации.

Расходная часть проекта TCO (Total Cost Ownership) складывается из нескольких составляющих:

- серверное оборудование (стоимость приобретения нового оборудования, стоимость амортизации существующего оборудования, участвующего в проекте);
- работы по внедрению и разработке системы, выполняемые компаниейинтегратором;
 - годовое сопровождение клиентской кастомизации;

- внутренние ресурсы, участвующие в проекте (бизнес-заказчики, системные аналитики, программисты и т.д.);
- внутренние ресурсы, выделенные на последующее сопровождение ИТ-решения.

Таблица 1. Расчет срока окупаемости проекта.

№ п/п	НАИМЕНОВАНИЕ	2022	2023	2024	2025
Расходы, млн.руб.					
1	серверное оборудование	0,5	0,5	0,5	0,5
2	работы по внедрению и разработке системы, выполняемые компанией-интегратором	60	0	0	0
3	годовое сопровождение клиентской кастомизации	2	2	0	0
4	внутренние ресурсы, участвующие в проекте	6	0	0	0
5	внутренние ресурсы, выделенные на последующее сопровождение ИТ-решения	6	6	6	6
	ИТОГО РАСХОДЫ	74,5	8,5	6,5	6,5
	Доходы, млн.руб.				
1	увеличение объема перевозок на 5%	0	38,4	38,4	38,4
2	сокращение трудозатрат (4 чел. на 50%)	0	2,4	2,4	2,4
	итого доходы	0	40,8	40,8	40,8
Прибыль, млн.руб.					
	Разница между Доходами и Расходами	-74,5	32,3	34,3	34,3
	Срок окупаемости (4 года)		-42,2	-7,9	26,4

В соответствии с проведенными расчетами затраты на внедрение продукта составят 74,5 млн.руб. (на основании бенчмаркинга аналогичных проектов), срок окупаемости (согласно прогноза по увеличению выручки и снижению ФОТ) составит 3,2 года.

Далее проект будет генерить прибыль в размере 34,3 млн.руб. ежегодно.

7. МОДЕЛИ БАЗ ДАННЫХ.

В соответствии с заданием разработана модель баз данных в нотации UML-2, которая обеспечивает связь данных в соответствии с выполняемыми процессами и формируемыми продуктами.

Рисунок 12. Модели баз данных.

8. WIREFRAME-ЭСКИЗЫ МДО СИСТЕМЫ.

Рисунок 13. Эскиз просмотра списка заказов оператором.

Рисунок 14. Эскиз создания нового заказа грузоотправителем.

Рисунок 15. Эскиз обработки заказа оператором.

Рисунок 16. Эскиз передача потребности в ресурсах оператором.

Рисунок 17. Эскиз получение потребности грузоперевозчиком.

Рисунок 18. Эскиз внутренний обмен услуг у грузоперевозчика.

Рисунок 19. Эскиз планирование ресурсов перевозчика.

Рисунок 20. Эскиз мониторинг исполнения заказов.

9. ПРОЕКТ ДИЗАЙНА КОМПОНЕНТ РАЗРАБАТЫВАЕМОЙ СИСТЕМЫ.

Рисунок 21. Интерфейс просмотра списка заказов оператором.

Рисунок 22. Интерфейс создания заказа грузоотправителем.

10. ПРОТОКОЛЫ И АРІ ВЗАИМОДЕЙСТВИЯ КОМПОНЕНТ СИСТЕМЫ МЕЖДУ СОБОЙ И ВНЕШНИМИ РЕСУРСАМИ.

Параметр	Обязательный	Тип данных	Описание
company_name	да	text	Название компании
company_taxid	да	string	ИНН
cargo_departure	нет	text	Точка отправления груза
cargo_arrive	нет	text	Точка прибытия груза
cargo_departure_time	нет	datetime	Дата отправления груза
cargo_arrive_time	нет	string	Срок доставки груза
cargo_delivery_cost	нет	string	Стоимость доставки
number_cargo_auto	нет	text	Номер грузового авто
number_cargo_train		string	Номер вагона
number_cargo_air		text	Номер воздушного судна