PROJECT REPORT

Dataset: Customer_Purchase_Behaviour

SOFTWARE USED: -

• Database : My SQL Workbench

• Visualization: MS Power-BI

Preprocessing & EDA: Jupyter Notebook

DATA DETAILS

This dataset containing customer purchase information for an online retail company. The dataset includes the following details:

- Transaction ID
- Customer ID
- Customer Name
- Product ID
- Product Name
- Product Category
- Purchase Quantity
- Purchase Price
- Purchase Date
- Country

1. Data Extraction and Transformation (SQL):

- Setup a Database: Create a database to store the customer purchase data.
 - create database myproject;
- Data Ingestion: Write SQL scripts to import the provided purchase data into the database.

Steps:

- i. Format of data is csv
- ii. I used data ingestion manually by copying the script of the csv dataset using export method in sql.

Normalization of the data.

Data is normalized into 3 Tables :-

- i. Customers
- ii. Products
- iii. Purchase

Data Manipulation:

Create table customers1 as with cte as (select customername, country, purchasedate from raw_data)

Select row_number()over(order by purchasedate)+99 as customerid, customername, country from cte;

alter table raw data add column customerid1 int;

- Update customer with the customerid1 values from customers1

update raw_data r

join customers1 c1 on r.customername = c1.customername and r.country = c1.country

set r.customerid1 = c1.customerid;

-- Replacing the Old customerid Values with new

alter table raw_data drop column customerid;

alter table raw_data change column customerid1 customerid int;

-- We can see Now customerid have unique data and we can delete our customer1 table which we used for mapping

drop table customers1;

Normalization of the data.

Data is normalized into 3 Tables :-

- i. Customers
- ii. Products
- iii. Purchase

```
create table purchases (transactionid int primary key,
  customerid int,
  productid int,
  purchasequantity int,
  purchaseprice double,
  purchasedate date,
  foreign key (customerid) references customers(customerid),
  foreign key (productid) references products(productid)
);
insert into purchases (transactionid, customerid, productid,
purchasequantity, purchaseprice, purchasedate)
select transactionid, customerid, productid, purchasequantity,
purchaseprice, purchasedate
from raw_data;
```

Advanced queries to aggregate data

- Finding total purchase by each customer
- -- Total spent per customer

select c.customerid, c.customername, count(*) as total_purchases, sum(p.purchasequantity * p.purchaseprice) as total_spent

from customers c

join purchases p on c.customerid = p.customerid

group by c.customerid, c.customername

order by total_spent;

productid	productname	total_sales
861	Smartphone	4997.200000000001
302	Camera	4990.849999999999
479	Headphones	4967.75
624	Microwave	4952.099999999999
1155	Washing Machine	4950.65
327	Camera	4927.099999999999
858	Smartphone	4890.65
1070	Toaster	4887.799999999999
477	Headphones	4828.5
612	Microwave	4793.3

• Total sales per product

-- Total sales per product

select p.productid, p.productname, sum(pur.purchasequantity * pur.purchaseprice) as total_sales

from products p

join purchases pur on p.productid = pur.productid

group by p.productid, p.productname

order by total_sales desc;

productid	productname	total_sales
861	Smartphone	4997.200000000001
302	Camera	4990.849999999999
479	Headphones	4967.75
624	Microwave	4952.099999999999
1155	Washing Machine	4950.65
327	Camera	4927.099999999999
858	Smartphone	4890.65
1070	Toaster	4887.799999999999
477	Headphones	4828.5
612	Microwave	4793.3

• Number of customer per country

select country, count(*) as num_of_customers
from customers

group by country

order by num_of_customers desc;

country	num_of_customers
Sudan	11
Palau	10
Romania	9
Botswana	9
Sri Lanka	9
Philippines	9
Eritrea	8
Oman	8
Luxembourg	8
Guyana	8

• Top 5 product in each category

select p.productname, sum(ps.purchasequantity) as total_sales

from products p

join purchases ps on p.productid = ps.productid

group by p.productname

order by total_sales desc

limit 5;

• Greatest purchase Quantity

select customerid, productid, max(purchasequantity) as greatest_purchase_quantity

from purchases

group by customerid, productid

order by greatest_purchase_quantity desc

limit 1;

customerid	productid	greatest_purchase_quantity	
825	795	5	

2. Data Analysis (Python):

```
Libraries used :-
import sqlalchemy
import pymysql
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Data Extraction:

```
engine =
sqlalchemy.create_engine('mysql+pymysql://root:12345@localhost:3306/
myproject')

#Loading Tables from 'myproject' database
customers = pd.read_sql_table("customers", engine)
products = pd.read_sql_table("products", engine)
purchases = pd.read_sql_table("purchases", engine)
```

- Data Analysis: Perform the following analysis using basic Python:
 - Calculate total purchases, total revenue, and average purchase value.

```
total_purchases total_purchases = combined_df['purchasequantity'].sum()

print(f"Total Purchase: {total_purchases}")

print(total_purchases)

total_revenue = total_revenue = (combined_df['purchasequantity'] *
    combined_df['purchaseprice']).sum()

print(f"Total Revenue: {total_revenue}"):

Avg_purchase = #average_purcahse_value

Avg_purchase = round(combined_df['purchaseprice'].mean(),2)
```

print(f"Average Purchase Value: {Avg_purchase}")

Calculate total purchases, total revenue, and average purchase value.

```
#total_purchases
total_purchases = combined_df['purchasequantity'].sum()
print(f"Total Purchase: {total_purchases}")

Total Purchase: 3053

#total_revenue
total_revenue = (combined_df['purchasequantity'] * combined_df['purchaseprice']).sum()
print(f"Total Revenue: {total_revenue}")

Total Revenue: 1485760.549999998

#average_purcahse_value
Avg_purchase = round(combined_df['purchaseprice'].mean(),2)
print(f"Average Purchase Value: {Avg_purchase}")

Average Purchase Value: 489.27
```

Identify top customers and their purchasing behavior.

```
top_customers = purchases.groupby('customerid').agg(
   total_purchases=('purchasequantity', 'sum'),
   total_spent=('purchaseprice', 'sum')
).nlargest(10, 'total_spent')
plt.savefig('top_customer.png')
print(top_customers)
```

	total_purchase	s tota	l_spent
customerid			
877		2	999.98
367	!	5	999.44
381	!	5	998.17
173		3	997.45
603	4	4	996.01
971		3	995.97
559	4	4	994.58
1026	!	5	993.55
915		2	992.33
358	4	4	991.08
<pre><figure pre="" siz<=""></figure></pre>	e 640x480 with (Axes>	

Analyze purchase trends over time (monthly, quarterly, yearly).

MONTHLY TRENDS

```
#Monthly
monthly_trends = combined_df.groupby(['year', 'month']).agg({
   'purchasequantity': 'sum',
    'purchaseprice': 'sum'
}).reset_index()
monthly_trends['average_purchase'] = monthly_trends['purchaseprice'] / monthly_trends['purchasequantity']
print(monthly_trends)
   year month purchasequantity purchaseprice average_purchase
   2023
                                       4012.44
                                                    143.301429
1
   2023
             7
                            269
                                      47956.69
                                                    178.277658
2
   2023
             8
                            236
                                      33493.46
                                                    141.921441
3
   2023
             9
                            287
                                      46764.80
                                                     162.943554
   2023
            10
                            243
                                      38368.97
                                                     157.896996
   2023
            11
                            293
                                      39839.29
                                                     135.970273
                            295
                                                     175.967525
6
   2023
            12
                                      51910.42
   2024
            1
                            292
                                      43575.14
                                                    149.229932
                                      41393.77
                                                    152.182978
   2024
                                      37442.66
                                                    180.012788
10 2024
                            195
                                      34165.64
                                                    175.208410
             5
                            268
                                      42799.97
                                                     159.701381
11 2024
12 2024
                             167
                                      27551.47
                                                      164.978862
```


QUATERLY TREND

montn

	quarter	purchasequantity	purchaseprice	average_purchase
0	2023Q2	28	4012.44	143.301429
1	2023Q3	792	128214.95	161.887563
2	2023Q4	831	130118.68	156.580842
3	2024Q1	772	122411.57	158.564210
4	2024Q2	630	104517.08	165.900127

YEARLY TREND

yearly_trends = combined_df.groupby(combined_df['purchasedate'].dt.year)[['purchaseprice', 'purchasequantity']].sum().reset_index()
print(yearly_trends)

```
        purchasedate
        purchaseprice
        purchasequantity

        0
        2023
        262346.07
        1651

        1
        2024
        226928.65
        1402
```


Identify the top-performing product categories.

Identify the top-performing product categories. ¶

• Identify the top-performing product categories.

```
top_product = combined_df.groupby('productname')['purchaseprice'].sum().reset_index()
top_10 = top_product.sort_values(by='purchaseprice', ascending=False).head(10)
print("Top 10 product by purchase price:")
print(top_10)
```

Top 10 product by purchase price:

	productname	purchaseprice
8	Microwave	30970.75
14	Smartwatch	29407.68
17	Toaster	29116.03
6	Heater	28828.67
5	Headphones	27748.78
10	Refrigerator	27730.95
9	Printer	27360.29
16	Television	25188.60
2	Camera	24985.70
0	Air Conditioner	24812.05

Key Insight Report;

1. Total Purchases: 3053

2. Total Revenue: 1,485,760.54

3. Average Purchase Value: 489.29

Purchase_trend over time:

Monthly Trend in 2023:

December-2023 saw the highest purchase quantity (295 units), purchase price of 51910.42, with an average purchase value of 175.96.

and lowest is the jun-2023 with the purchase quantity (28 unit), purchase price of 4012.44 with an avg purchase value of 143.30

Purchases showed fluctuations across other months, indicating seasonal variations or promotional effects.

Quarterly Trend:

Q2 2023 had the lowest purchase quantity but a moderate average purchase value.

Q3 and Q4 2023 showed higher quantities and revenues

Q1 2024 maintained a steady purchase quantity and average purchase value.

Yearly Trend:

2023 saw the highest overall purchase quantity (1,651 units) and revenue (\$262,346.07), with a consistent average purchase value.

2024 started slightly lower but maintained a strong average purchase value.

Top performing product Performance:

Electronics: Customers made 1,480 purchases, generating 248,194.56 in revenue. On average, each purchase in this category was about 167.70.

Home Appliances: This category saw 1573 purchases, totaling 241,080.16 in revenue. The average purchase here was around 153.26.

Thank You.