AMENDMENTS TO THE CLAIMS

Please amend the claims without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, as follows.

1. (Original) A compound of formula (I):

wherein:

R is CN, CSNH2 or C(=N-Z)-S(O)r-Q;

 $Z \text{ is } H, (C_1 - C_6) - alkyl, (C_1 - C_6) - haloalkyl, (C_3 - C_6) - alkenyl, (C_3 - C_6) - alkynyl, \\ --(CH_2)_q R^7, COR^8, \\ --(CH_2)_q R^7, \\ --(CH_2)_q R^7,$

 $\mathrm{CO}_2\!\!-\!\!(\mathrm{C}_1\text{-}\!\mathrm{C}_6)\text{-}alkyl \text{ or } S(\mathrm{O})_pR^8;$

 $Q \text{ is } (C_1\text{-}C_6)\text{-}alkyl \text{ or } CH_2R^7;\\$

W is C-halogen, C-CH3 or N;

R2 is hydrogen, halogen or CH3;

R3 is (C1-C3)-haloalkyl, (C1-C3)-haloalkoxy or SF5;

 R^4 is hydrogen, (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_2-C_6) -alkynyl, (C_2-C_6) -haloalkynyl, (C_3-C_6) -cycloalkyl, (C_3-C_6) -alkyl, (C_3-C_6) -alkyl, (C_3-C_6) -alkyl, (C_3-C_6) -alkylyl, (C_3-C_6) -alkylyl, (C_3-C_6) -alkylyl, (C_3-C_6) -alkylyl, (C_3-C_6) -alkylyl, (C_3-C_6) -alkylyl, (C_3-C_6) -alkylyl) unsubstituted or substituted

by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, (C₃-C₆)-alkenyloxy, (C₃-C₆)-haloalkenyloxy, (C₃-C₆)-alkynyloxy, (C₃-C₆)-haloalkenyloxy, (C₃-C₆)-haloalkenyloxy, (C₃-C₆)-haloalkenyloxy, (C₃-C₆)-cycloalkyl, S(O)₈R⁸, CN, NO₂, OH, COR⁹, NR⁹R¹⁰, S(O)₈R⁷, OR⁷ and

 CO_2R^9 ; A is (C_1-C_6) -alkylene or (C_1-C_6) -haloalkylene;

X is C(=O), C(=S) or SO_2 ;

Y is O. NR11 or a covalent bond;

R⁵ is (C₃-C₆)-alkenyl, (C₃-C₆)-haloalkenyl, (C₃-C₆)-alkynyl, (C₃-C₆)-haloalkynyl, C₃-C₇)cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₆)-alkyl, —(CH₂)₈R⁷ or —(CH₂)₈R¹²; or is C₁-C₆)-alkyl
unsubstituted or substituted by one or more radicals selected from the group consisting of
halogen, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, (C₃-C₆)-alkenyloxy, (C₃-C₆)-haloalkenyloxy, (C₃-C₆)-alkynyloxy, (C₃-C₆)-haloalkynyloxy, (C₃-C₇)-cycloalkyl, S(O)_pR⁸, CN, NO₂, OH, COR⁹,
NR⁹R¹⁰, S(O)_pR⁷, OR⁷ and CO-R⁹.

 R^6 is (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_2-C_6) -alkynyl or (C_2-C_6) -haloalkynyl;

$$\begin{split} R^{7} & is \ phenyl \ unsubstituted \ or \ substituted \ by \ one \ or \ more \ radicals \ selected \ from \ the \ group \\ & consisting \ of \ halogen, (C_1-C_6)-alkyl, (C_1-C_6)-haloalkyl, (C_1-C_6)-alkoxy, (C_1-C_6)-haloalkoxy, CN, \\ & NO_2, S(O)_p R^8, COR^{10}, COR^{13}, CONR^9 R^{10}, SO_2NR^9 R^{10}, NR^9 R^{10} \ and \ OH; \end{split}$$

 R^8 is $(C_1$ - $C_6)$ -alkyl or $(C_1$ - $C_6)$ -haloalkyl;

 R^9 and R^{10} are each independently H, (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_3-C_6) -alkenyl, (C_3-C_6) -haloalkenyl, (C_3-C_6) -alkynyl, (C_3-C_6) -cycloalkyl or — (C_1-C_6) -alkyl- (C_3-C_6) -cycloalkyl; or R^9 and R^{10} together with the attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkyl and (C_1-C_6) -haloalkyl;

 $R^{11} \ is \ H, (C_1\text{-}C_6)\text{-alkyl}, (C_1\text{-}C_6)\text{-haloalkyl}, (C_3\text{-}C_6)\text{-alkenyl} \ or \ (C_3\text{-}C_6)\text{-alkynyl};$

 R^{12} is heterocyclyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -haloalkoxy, (C_1-C_4) -alkyl, (C_1-C_4)

 R^{13} is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)₈R⁸ and NR⁹R¹⁰;

n, p and r are each independently zero, one or two;

m and q are each independently zero or one; and

each heterocyclyl in the above-mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S:

or a pesticidally acceptable salt thereof.

- 2. (Original) A compound or a salt thereof as claimed in claim 1 wherein \mathbb{R}^1 is CN or CSNH₂.
- (Original) A compound or a salt thereof as claimed in claim 1 wherein R⁶ is CF₃.
- (Original) A compound or a salt thereof as claimed in claim 1 wherein R¹ is CN, CSNH₂ or C(=N-Z)-S-Q;

$$Z \text{ is H, } (C_1 - C_3) \text{-alkyl, } --(CH_2)_q R^7, COR^8, CO_2 --(C_1 - C_3) \text{-alkyl or } S(O)_p R^8; \\$$

Q is
$$(C_1-C_3)$$
-alkyl;

R2is Cl;

R3 is CF3;

 R^4 is hydrogen, (C_2-C_4) -alkenyl, (C_2-C_4) -alkynyl, (C_3-C_7) -cycloalkyl, CO_2 — (C_1-C_4) -alkyl, CO_2 — (C_3-C_4) -alkenyl, CO_2 — (C_1-C_4) -alkenyl, CO_2 — (C_1-C_4) -alkenyl, CO_2 — (C_1-C_4) -alkenyl, CO_2 — (C_1-C_4) -alkyl), unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkoxy, $S(O)_nR^8$ and CO_2 — (C_1-C_3) -alkyl);

X is C(=O) or SO_2 ;

Y is O, NH or a covalent bond;

 R^5 is (C_3-C_4) -alkenyl, (C_3-C_4) -alkynyl, — $(CH_2)_qR^7$, (C_1-C_3) -alkyl or (C_1-C_3) -haloakyl; R^6 is CF_3 :

each R^7 is independently phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkyl, (C_1-C_3) -haloalkyl, (C_1-C_3) -alkoxy, (C_1-C_3) -haloalkoxy, (C_1-C_3) -alkoxy, (C_1-C_3) -haloalkoxy, (C_1-C_3) -alkoxy, (C_1-C_3) -haloalkoxy, (C_1-C_3) -alkoxy, (C_1-C_3) -haloalkoxy, (C_1-C_3) -alkoxy, (C_1-C_3) -alkoxy, (C_1-C_3) -haloalkoxy, (C_1-C_3) -alkoxy, (C_1-C_3) -alkoxy, (C_1-C_3) -haloalkoxy, (C_1-C_3) -alkoxy, (C_1-C_3) -haloalkoxy, (C_1-C_3) -alkoxy, (C_1-C_3) -haloalkoxy, (C_1-C_3) -alkoxy, (C_1-C_3) -haloalkoxy, (C_1-C_3) -halo

each R^8 is independently (C₁-C₃)-alkyl or (C₁-C₃)-haloalkyl.

 (Original) A compound or a salt thereof as claimed in claim 1 wherein R¹ is CN or CSNH₂;

W is C-Cl;

R2 is Cl:

R3 is CF3;

R4 is (C1-C3)-alkyl;

A is -CH2CH2- or -CH2CH2CH2-;

X is C(=O);

Y is O, NH or a covalent bond;

 R^5 is (C₃-C₄)-alkenyl, (C₃-C₄)-alkynyl, —(CH₂) $_qR^7$, (C₁-C₃)-alkyl or (C₁-C₃)-haloalkyl; R^6 is CF:

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₃)-alkyl, (C₁-C₃)-haloalkyl, (C₁-C₃)-alkoxy, (C₁-C₃)-haloalkoxy, CN, NO₂ and S(O)_pR⁸; and

R8 is (C1-C3)-alkyl or (C1-C3)-haloalkyl.

- 6. (Currently amended) A process for the preparation of a compound of formula (I) or a salt thereof as defined in claim 1, which process comprises:
- a) when R², R³, R⁴, R⁵, R⁶, W, A and n are as defined in claim 1, R¹ is CN, and Y and X are as defined in claim 1 with the exclusion of compounds in which —Y—X— is —NH—CO— or NH—CS—, acylating or sulfonylating a compound of formula (II):

wherein R^2 , R^3 , R^4 , R^6 , W, A and n are as defined in formula (II), with a compound of formula (III):

$$R^5$$
—Y—X-L (III)

wherein Y and X are as defined in formula (I) with the exclusion of compounds in which

—Y—X— is —NH—CO— or —NH—CS—, and L is a leaving group; or

b) when R¹ is CN, and R², R³, R⁴, R⁵, R⁶, W, A and n are as defined in claim 1, reacting a compound of formula (II) wherein R¹, R², R³, R⁶, W, A and n are as defined in claim 1 and —Y—X— is —NH—CO— or —NH—CS—, with an isocyanate or isothiocyanate compound of formula (IV) or (V):

$$R^5$$
—N=C=O (IV)

$$R^5$$
—N=C=S (V)

wherein R 5 is as defined in formula(I); or

- c) when R¹ is CN, n is 1 or 2, and R², R³, R⁴, R⁵, R⁶, W, A, X and Y are as defined in claim 1, oxidizing a corresponding compound in which n is 0 or 1; or
- d) when R^1 is CSNH₂, and R^2 , R^3 , R^4 , R^5 , R^6 , W, A, X, Y and n are as defined in claim 1, reacting the corresponding compound of formula (I) wherein R^1 is CN, with an alkali or alkaline earth metal hydrosulfide, or with the reagent Ph_2PS_2 ; or
- (e) when R^1 is CSNH2, and R^2 , R^3 , R^4 , R^5 , R^6 , W, A, X, Y and n are as defined in claim 1, reacting the corresponding compound of formula (I) wherein R^1 is CN, with a bis(trialkylsilyl)sulfide, in the presence of a base; or
- (f) when R^1 is C(=N-H)—S-Q, and Q, R^2 , R^3 , R^4 , R^5 , R^6 , W, A, X, Y and n are as defined in claim 1, reacting the corresponding compound of formula (I) wherein R^1 is $CSNH_2$ with an alkylating agent of formula (VI) or (VII):

$$Q_3O^+BF_4^-$$
 (VI) (VII)

wherein Q is as defined in formula (I) and L 1 is a leaving group; or

(g) when R¹ is C(=N-Z)-S-Q, Z is as defined in claim 1 with the exclusion of H, and the other values are as defined in formula (I), alkylating, acylating or sulfonylating the corresponding compound of formula (I) wherein Z is H, with a compound of formula (VII) (VIII):

Z-L²

(VII) (VIII)

wherein Z is as defined in formula (I) with the exclusion of H, and L2 is a leaving group; and

- (h) if desired, converting a resulting compound of formula (I) into a pesticidally acceptable salt thereof
- 7. (Original) A pesticidal composition comprising a pesticidally effective amount of a compound of formula (I) or a pesticidally acceptable salt thereof as defined in claim 1, in association with a pesticidally acceptable diluent or carrier and/or surface active agent.

8.-9. (Cancelled)

- 10. (Original) A method for controlling pests at a locus which comprises applying to said locus a pesticidally effective amount of a compound of formula (I) or a salt thereof as claimed in claim 1.
- 11. (Original) A method for controlling pests at a locus which comprises applying to said locus a pesticidally effective amount of a composition as claimed in claim 7.
- 12. (Original) A veterinary medicament comprising a pesticidally effective amount of a compound of formula (I) or a salt thereof as claimed in claim 1, in association with a veterinarily acceptable diluent or carrier and/or surface active agent.
- 13. (Original) A method for the control of pests in or on an animal which comprises administering to said animal a pesticidally effective amount of a compound of formula (I) or a salt thereof as claimed in claim 1.
- 14. (Original) A method for the control of pests in or on an animal which comprises administering to said animal a pesticidally effective amount of a veterinary medicament as claimed in claim 12.

- 15. (Original) A compound or a salt thereof as claimed in claim 2 wherein R⁶ is CF₃.
- (Original) A compound or salt thereof as claimed in claim 4, wherein R¹ is CN or CSNH₂.
- 17. (Original) A compound or a salt thereof as claimed in claim 1, wherein R¹ is CN, R⁴ is CH₃, R⁶ is CF₃, A is —CH₂CH₇—, W is C—Cl, R² is Cl and R³ is CF₃.
- (Currently amended) The A compound of formula (I) or salt thereof as claimed in claim

wherein:

R¹ is CN, R⁴ is CH₃, R⁶ is CF₃, A is —CH₂CH₂—, W is C—Cl, R² is Cl and R³ is CF₃; and

- (a) X is C(=O), Y is O, R⁵ is CH₃ and n is 1;
- (b) X is C(=O), Y is O, R⁵ is 4-nitrophenyl and n is 2;
- (c) X is C(=O), Y is a covalent bond, R⁵ is CH₃ and n is 2;
- (d) X is C(=O), Y is a covalent bond, R5 is CH2OCH3 and n is 2;
- (e) X is C(=O), Y is a covalent bond, R⁵ is 4-trifluoromethylphenyl and n is 2;
- (f) X is C(=0), Y is a covalent bond, R^5 is 2,6-difluorophenyl and n is 2;

- (g) X is C(=O), Y is a covalent bond, R5 is 2-fluorophenyl and n is 2;
- (h) X is C(=O), Y is NH, R⁵ is 4-ethoxyphenyl and n is 2;
- (i) X is C(=O), Y is NH, R⁵ is 4-trifluoromethoxyphenyl and n is 2;
- (i) X is SO₂, Y is a covalent bond, R⁵ is propyl and n is 2;
- (k) X is SO₂, Y is a covalent bond, R⁵ is 4-chlorophenyl and n is 2; or
- (1) X is SO₂, Y is a covalent bond, R⁵ is 4-methylphenyl and n is 2.