

Алгоритмы. Сортировка.

Сортировка

Сортировка - упорядочение элементов последовательности в возрастающем порядке.

Дано: последовательность из N элементов n_1 , n_2 , n_3 ... в которой каждый элемент n представляет собой запись, которая содержит данные и некоторый ключ k (по нему и проводится сортировка).

Задача сортировки - такая перестановка элементов, что бы их ключи образовали возрастающую последовательность.

$$k_1 \le k_2 \le k_3 \le \dots$$

Сортировка — объяснение на кошках

Есть набор элементов последовательности (как вы догадались это кошки). Выберем в качестве ключа возраст. Тогда элемент этой последовательности можно описать следующим образом:

Сортировка — объяснение на кошках

Последовательность элементов отсортирована по возрастанию

Требования к ключам элементов

Для множества ключей должно быть определенно отношение порядка «<». Причем для любых 3-х ключей (например a, b, c) должны выполнятся такие условия:

- Закон трихотомии. Справедливым является одно и только одно из соотношений: a<b, a>b, a = b.
- Закон транзитивности. Если a<b и b<c, то a<c.

Данные условия определяют математическое понятие линейного или совершенного упорядочения, а удовлетворяющие им множества поддаются сортировке большинством методов.

Закон трихотомии

В качестве ключей сортировки будем как и прежде использовать возраст кошки.

Закон транзитивности

Виды сортировки

Устойчивая (стабильная) сортировка — сортировка, которая не меняет относительный порядок сортируемых элементов, имеющих одинаковые ключи, по которым происходит сортировка.

Математическая формулировка:

$$\forall (i < j \in \mathbb{N}, k_i = k_j) n_i < n_j$$

Для любых индексов в последовательности i < j, в случае если ключи одинаковы, то и $n_i < n_j$.

Неустойчивая — не сохраняет относительный порядок элементов имеющих одинаковые ключи.

Устойчивая сортировка

Имя: Пусянчик **Возраст**: 15 **Вес**: 6

Имя: Люси **Возраст**: 3 **Вес**: 4.5

Имя: Барсик **Возраст**: 7 **Вес**: 5.5

Имя: Кузя **Возраст**: 4 **Вес**: 7

Имя: Тимка **Возраст**: 4 **Вес**: 5

Имя: Люси **Возраст**: 3 **Вес**: 4.5

Имя: Кузя **Возраст**: 4 **Вес**: 7

Имя: Тимка **Возраст**: 4 **Вес**: 5

Имя: Барсик **Возраст**: 7 **Вес**: 5.5

Имя: Умка **Возраст**: 12

Имя: Пусянчик **Возраст**: 15

Bec: 6

Устойчивая сортировка

На предыдущем слайде изображены две последовательности элементов. Верхняя не сортированная последовательность. Нижняя отсортированная последовательность. Отметим два элемента не сортированной последовательности (это коты с именами **Кузя** и **Тимка**) с одинаковыми значениями ключей (у них одинаковый возраст). В не сортированной последовательности **Тимка** стоял правее **Кузи**. В сортированной последовательности эти элементы сменили свое местоположение, но друг относительно друга они сохранили порядок следования. Т.е. **Тимка** стоит правее **Кузи**.

Алгоритмы сортировки которые сохраняют порядок при сортировке называют устойчивыми.

Алгоритмы устойчивой и неустойчивой сортировки

Алгоритмы устойчивой сортировки	Алгоритмы неустойчивой сортировки
Сортировка пузырьком	Сортировка выбором
Сортировка перемешиванием	Сортировка расчёской
Сортировка вставками	Сортировка Шелла
Гномья сортировка	Пирамидальная сортировка
Сортировка слиянием	Плавная сортировка
Сортировка с помощью двоичного дерева	Быстрая сортировка
Сортировка Timsort	

В таблице приведены примеры алгоритмов как устойчивой так и неустойчивой сортировки.

Внешняя и внутренняя сортировки

Внутренняя сортировка — данные последовательности целиком вмещаются в оперативную память.

- Доступ возможен к произвольному элементу последовательности.
- Элементы последовательности упорядочиваются в памяти без дополнительных затрат.

Внешняя сортировка — данные не помещаются в оперативную память.

- Последовательный доступ к элементу последовательности. Т.е. можно прочесть только текущий элемент, за ним следующий и т. д.
- Затраты по свободную навигацию по элементам неоправданно высоки.

Внешняя и внутренняя сортировки

Внутренняя

Внешняя

Некоторые критерии алгоритмов сортировки

Естественность поведения — эффективность метода при обработке уже упорядоченных или частично упорядоченных данных. Алгоритм ведёт себя естественно, если учитывает эту характеристику входной последовательности и работает лучше.

Использование операции сравнения - алгоритмы, использующие для сортировки сравнение элементов между собой, называются основанными на сравнениях. Минимальная трудоемкость худшего случая для этих алгоритмов составляет: $O(n \cdot \ln(n))$

Список литературы

- 1) Ананий Левитин. Алгоритмы: введение в разработку и анализ. : Пер. с англ. М. : Издательский дом "Вильямс", 2006. 576 с. ISBN 5-8459-0987-2. Стр. [45-47]
- 2)Роберт Седжвик, Кевин Уэйн. Алгоритмы на Java.4-е издание. : М.: Вильямс, 2013. 843 с. ISBN: 978-5-8459-1781-2 Стр.[228-233]