

HEAT TRANSFER NUMERICAL SOLUTION PROJECT

Group11	ID
Abdelaziz Mahmoud	3961
Abdelmohaimen Mohamed	4432
Ahmed Hani	3981
Ahmed Abdelaziz	3928
Ibrahin Mostafa	4715
Mohannad Mahmoud	5123
Omar Ashraf El-maleh	4552
Amr Ali Abuelkheir	4496
Abdallah Ibrahim Fouad	3926
Youssef Mostafa Farag	4583

Train

Description

This problem is modelled as a steady-state, 2-D Forced convection problem, taking into consideration the domain entrance Region and the domain height

Numerical Calculation

The numerical solution is done on **ANSYS**, using the **SIMPLEC** solver, for the initial solution and Adapting mesh to Velocity gradient to capture the Velocity boundary layer.

Geometry

V5: Is the domain height

H6: Is the Domain Entrance

Mesh

Edge sizing is utilized to ensure small enough elements near leading edge of plate to capture gradients

Adapting mesh

The mesh is adapted after initial solution to the velocity gradients to ensure presence of enough elements inside the velocity boundary

Mesh dependency Study

The meh is varied from extremely coarse to extremely fine to ensure the solution is mesh-independent, the parameters of concern are average surface temperature and drag force, the results are shown

The solution for both parameters converges after about, 10 thousand elements.

Domain Dependency study

X-direction (Domain Inlet)

Y-direction (Domain Height)

The Surface temperature is nearly independent of the domain but the force is affected due to V.B.L deterioration if the inlet is close to the no-slip region.

Time step dependency Study

The Study Is Steady-State So no time step dependency is done

Hand Calculation

The problem is solved by hand using the available correlations [Incropera](7-20 to 7-30)

Equations

Shown In Figure

Results

vel	T(K)		h		
	hand Calc	Numerical	hand Calc	Numerical	
0	55.00	82.00	5.68	3.36	
10	29.60	29.13	20.00	22.63	
20	25.49	24.85	36.40	43.00	
30	23.97	23.67	50.42	55.96	
40	23.15	22.89	63.00	71.11	
vel	F(N)	C_f*e-3		
	hand Calc	Numerical	hand Calc	Numerical	
0	0.00	0.00	0.00	0.00	
10	3.96	4.39	2.93	3.25	
20	14.56	15.51	2.70	2.87	
30	30.78	32.53	2.53	2.68	
40	52.00	55.60	2.41	2.57	

$T_{f} = 1 / 2 \cdot (T_{guess} + T_{inf})$ $Re = \frac{\rho \cdot Vel \cdot L_{c}}{\mu}$ $Nus = 0.0308 \cdot Re^{\left[4 / 5\right]} \cdot P_{f}^{\left[1 / 3\right]}$ $v = \frac{\mu}{\rho}$ $\mu = \textbf{Visc} \left(Air_{ha}, T = T_{f}, P = P\right)$ $\rho = \rho(Air_{ha}, T = T_{f}, P = P)$ $Pr = \textbf{Pr} \left(Air_{ha}, T = T_{f}, P = P\right)$ $k = \textbf{k} \left(Air_{ha}, T = T_{f}, P = P\right)$ $Nus = \frac{h \cdot L_{c}}{k}$ $q = h \cdot (T_{s} - T_{inf})$ $C_{f} = \frac{0.074}{Re^{\left[1 / 5\right]}} - \frac{1742}{Re}$ $F_{d} = 0.5 \cdot \rho \cdot Vel^{2} \cdot C_{f} \cdot A$		
$Re = \frac{\rho \cdot Vel \cdot L_c}{\mu}$ $Nus = 0.0308 \cdot Re^{\left[4/5\right]} \cdot P_r^{\left[1/3\right]}$ $v = \frac{\mu}{\rho}$ $\mu = Visc \left(Air_{ha}, T = T_f, P = P\right)$ $\rho = \rho(Air_{ha}, T = T_f, P = P)$ $Pr = Pr \left(Air_{ha}, T = T_f, P = P\right)$ $k = k \left(Air_{ha}, T = T_f, P = P\right)$ $Nus = \frac{h \cdot L_c}{k}$ $q = h \cdot (T_s - T_{inf})$ $C_f = \frac{0.074}{Re^{\left[1/5\right]}} - \frac{1742}{Re}$	1	EE: Formatted Equations
Nus = 0.0308 · Re ^[4 / 5] · Pr ^[1 / 3] $v = \frac{\mu}{\rho}$ $\mu = \text{Visc} (\text{Air}_{ha}, \text{T} = \text{T}_f, \text{P} = \text{P})$ $\rho = \rho(\text{Air}_{ha}, \text{T} = \text{T}_f, \text{P} = \text{P})$ $Pr = \text{Pr} (\text{Air}_{ha}, \text{T} = \text{T}_f, \text{P} = \text{P})$ $k = k (\text{Air}_{ha}, \text{T} = \text{T}_f, \text{P} = \text{P})$ $\text{Nus} = \frac{h \cdot L_c}{k}$ $q = h \cdot (\text{T}_s - \text{T}_{inf})$ $C_f = \frac{0.074}{\text{Re}^{[1 / 5]}} - \frac{1742}{\text{Re}}$		$T_f = 1 / 2 \cdot (T_{guess} + T_{inf})$
$v = \frac{\mu}{\rho}$ $\mu = \text{Visc} (\text{Air}_{ha}, \text{T} = \text{T}_f, \text{P} = \text{P})$ $\rho = \rho(\text{Air}_{ha}, \text{T} = \text{T}_f, \text{P} = \text{P})$ $Pr = \text{Pr} (\text{Air}_{ha}, \text{T} = \text{T}_f, \text{P} = \text{P})$ $k = k (\text{Air}_{ha}, \text{T} = \text{T}_f, \text{P} = \text{P})$ $\text{Nus} = \frac{h \cdot L_c}{k}$ $q = h \cdot (\text{T}_s - \text{T}_{inf})$ $C_f = \frac{0.074}{\text{Re}^{\left[\frac{1}{5}\right]}} - \frac{1742}{\text{Re}}$,	
$\mu = \text{Visc} (\text{Air}_{ha}, \text{T} = \text{T}_f, \text{P} = \text{P})$ $\rho = \rho(\text{Air}_{ha}, \text{T} = \text{T}_f, \text{P} = \text{P})$ $Pr = \text{Pr} (\text{Air}_{ha}, \text{T} = \text{T}_f, \text{P} = \text{P})$ $k = k (\text{Air}_{ha}, \text{T} = \text{T}_f, \text{P} = \text{P})$ $\text{Nus} = \frac{h \cdot L_c}{k}$ $q = h \cdot (\text{T}_s - \text{T}_{inf})$ $C_f = \frac{0.074}{\text{Re}^{\left[\frac{1}{5}\right]}} - \frac{1742}{\text{Re}}$	0	Nus = $0.0308 \cdot Re^{[4/5]} \cdot Pr^{[1/3]}$
$\rho = \rho(Air_{ha}, T = T_f, P = P)$ $Pr = Pr(Air_{ha}, T = T_f, P = P)$ $k = k(Air_{ha}, T = T_f, P = P)$ $Nus = \frac{h \cdot L_c}{k}$ $q = h \cdot (T_s - T_{inf})$ $C_f = \frac{0.074}{Re^{\left[\frac{1}{5}\right]}} - \frac{1742}{Re}$	r	$v = \frac{\mu}{\rho}$
$Pr = Pr(Air_{ha}, T = T_f, P = P)$ $k = k(Air_{ha}, T = T_f, P = P)$ $Nus = \frac{h \cdot L_c}{k}$ $q = h \cdot (T_s - T_{inf})$ $C_f = \frac{0.074}{Re^{\left[\frac{1}{5}\right]}} - \frac{1742}{Re}$		$\mu = \text{Visc} (Air_{ha}, T = T_f, P = P)$
$k = k (Air_{ha}, T = I_f, P = P)$ $Nus = \frac{h \cdot L_c}{k}$ $q = h \cdot (T_s - T_{inf})$ $C_f = \frac{0.074}{Re^{[1/5]}} - \frac{1742}{Re}$	1	$\rho = \rho(Air_{ha}, T = T_f, P = P)$
Nus = $\frac{H - L_c}{k}$ q = h · (T _s - T _{inf}) $C_f = \frac{0.074}{Re^{[1/5]}} - \frac{1742}{Re}$	-	
Nus = $\frac{H - L_c}{k}$ q = h · (T _s - T _{inf}) $C_f = \frac{0.074}{Re^{[1/5]}} - \frac{1742}{Re}$)	k = k (Air _{ha} ,T=T _f ,P=P)
$C_f = \frac{0.074}{Re^{[1/5]}} - \frac{1742}{Re}$	h	Nus = $\frac{h \cdot L_c}{k}$
	ı	$q = h \cdot (T_s - T_{inf})$
$F_d = 0.5 \cdot \rho \cdot Vel^2 \cdot C_f \cdot A$		$C_f = \frac{0.074}{Re^{[1/5]}} - \frac{1742}{Re}$
		$F_d = 0.5 \cdot \rho \cdot Vel^2 \cdot C_f \cdot A$

Plots

Required

- 1-The Relation between the Velocity and change in both velocity and Drag Force
- 2- The Relation between the Velocity and change in both Roof Temp. And Heat Transfer Coefficient
- 3-Comparison between Drag forces obtained from analytical and numerical method
- 3-Comparison between Surface Temp. Obtained from analytical and numerical method

1-

2-

3-

4-

Graphics

Contours

Temperature

Lines

Isotherms

Streamlines

Heat Flow lines

Vectors

Developing Velocity Profile

Enclosure

Description

This problem is modelled as a steady-state, 2-D natural convection problem, taking into consideration body force effects and the variable Density of Fluid with temperature

The study encounters three conditions, 1) vertical enclosure 2) Inclined enclosure 3) Horizontal enclosure (Hot Plate up And Hot Plat down)

Each one is studied separately

Numerical Calculation

The numerical solution is done on **ANSYS**, using the **COUPLED** solver and the boussinesq approximation for the initial solution to help with convergence.

Mesh:

The edge sizing is applied to get a fine mesh near the edges to capture circulating flow and gradients

Square enclosure mesh

Rectangular enclosure mesh

Mesh dependency Study

Domain Dependency study

The domain is bounded from all regions so No domain dependency study is needed

Time step dependency Study

The Study is Steady-State So No Time Step dependency is needed

Hand Calculation

The problem is solved by hand using the available correlations [Incropera](9-36 to 9-53)

Equation

Nus_{inc1} = 1 + 1.44 · Star_{term,1} ·
$$\left[1 - \frac{1708 \cdot (1.8 \cdot \sin(\theta))^{1.0}}{\text{Ra} \cdot \cos(\theta)}\right]$$
 + Star_{Term,2}

Star_{term,1} = 1 - $\frac{1708}{\text{Ra} \cdot \cos(\theta)}$

Star_{Term,2} = $\frac{(\text{Ra} \cdot \cos(\theta))^{(1/3)}}{18}$ - 1

Nus_{aboveThetaCr} = Nus₁₂ · sin ^{0.25} (θ)

Results

Relation between L and Q

Q1 from first Correlation And Q2 From Second Correlation

	Analytical		Numerical		Analytical		Numerical
L	Q1	Q2	Q	L	Q1	Q2	Q
0.1	14.528	7.768	-15.4967	-	-	-	-
0.2	29.056	15.536	-28.01	2.2	155.056	170.896	-259
0.4	43.168	31.072	-49.996	2.4	165.504	186.432	-284
0.6	58.512	46.608	-70.4648	2.6	175.76	201.968	-309.65
0.8	72.608	62.144	-91.3546	2.8	185.808	217.504	-333
1	85.84	77.68	-113	3	195.6	233.04	-358
1.2	98.4	93.216	-138.87	3.2	205.312	248.576	-382
1.4	110.488	108.752	-163	3.4	214.88	264.112	-406
1.6	122.112	124.288	-187.3	3.6	224.352	279.648	-431
1.8	133.416	139.824	-211	3.8	233.624	295.184	-455
2	144.32	155.36	-235	4	242.72	310.72	-479

Relation between Theta and Heat Transfer Rate at Length = 1.2m

Theta	Q Numerical	Q Analytical	Theta	Q Numerical	Q Analytical
0.000	161.369	129.360	-	-	-
10.000	152.830	127.584	100.000	141.586	-
20.000	152.640	124.656	110.000	136.114	-
30.000	149.964	120.336	120.000	128.963	-
40.000	150.107	114.480	130.000	120.024	-
50.000	150.814	106.656	140.000	109.191	-
60.000	151.029	96.000	150.000	95.751	-
70.000	150.348	80.016	160.000	78.020	-
80.000	148.629	93.216	170.000	49.990	-
90.000	145.724	-	180.000	11.600	11.600

Undefined Values for Analytical solution due to absence of suitable Correlation for an inclined enclosure with hot plat up

Plots Required

It is observed that the solution can be considered as a superposition between the results of both correlation and the result conforms with both

Graphics

Contours

Temperature

Vertical and inclined

Contours of Static Temperature (k)

May 16, 2019 ANSYS Fluent Release 16.0 (2d, dp, pbns, ske)

Horizontal

Contours of Static Temperature (k)

May 16, 2019 ANSYS Fluent Release 16.0 (2d, dp, pbns, ske)

Velocity

Vertical And Inclined

Horizontal

Rotational flow for hot plate down (left) and stagnant for hot plate up (right)

Lines Isotherms Vertical

Horizontal (Hot plate up)

Streamlines

Inclined and vertical

Heat Flow lines

Vectors

Egg

Description

The problem is modelled as 3-D Transient conduction In A sphere

Numerical Calculation

Geometry

Only Half a sphere is modelled since it is axisymmetric to save computational cost

Mesh:

A physics controlled, auto generated hex mesh is used.

Mesh dependency Study Surface Temperature

Centre Temp:

It is noticed that the results are hardly dependent of the mesh as in converges after a relatively coarse mesh

Domain Dependency study

The domain is Bounded So No Domain Dep Study is needed

Time step dependency Study

It IS observed that the solution is highly affected by the solver time step, but it converges after a time step of approximately $0.1\,\mathrm{s}$

Hand Calculation Equations

Results

	Anal	ytical	Numerical		
Time(min)	T_Center	T_surface	T_Center	T_surface	
2	52.65	-45.72	5.143692	97.15074	
3	58.34	-27.97	6.444813	97.68472	
4	63.32	-12.4	7.979248	97.84508	
5	67.7	1.262	13.04192	98.08995	
6	71.54	13.25	20.17801	98.25875	
8	77.86	32.99	36.15454	98.49288	
11	84.72	54.42	51.52901	98.63643	
13	88.01	64.68	64.15955	98.73304	
15	90.54	72.58	73.69571	98.80272	
19	93.99	83.35	83.27381	98.87487	
22	95.61	88.43	89.26541	98.92163	
25	96.71	91.86	92.9771	98.95134	
29	97.65	94.77	95.27554	98.96994	
32	98.08	96.14	96.69971	98.98148	
35	98.38	97.07	97.58144	98.9886	

Plots

Required

Analytical

Numerical

Comparison

There is great Error at small time values in the analytical solution due to the One-Term Approximation of the fourrier expansion used to solve the model, but the time taken to reach maximum temperature is approximatley the same.

Graphics

Contours

Temperature

Lines Isotherms

Heat Flow lines

