عملان دریاویه ۱۲

KB

Find laurents

of the regins.

 $f(z) = \frac{1}{z^{-32+2}}$

on the regions:-

a) & < 121 < 1

e) 121 72

b) 0 < 12-11 < 1

 $F(z) = \frac{1}{z^2 - 3z + 2} = \frac{1}{(z - 1)(z - 2)}$

 $=\frac{A}{Z-1}+\frac{B}{Z-2} \longrightarrow A=1, B=1$

 $F(z) = \frac{1}{z-1} + \frac{1}{z-2}$

 $\frac{1}{1-u} = 1 + u + u^2 + u^3 + \cdots$ |u| < 1

1 = 1 - u + u² - u² - ... |u|<1

TT Lec 14

$$P(z) = \frac{1}{1-z} \cdot - \frac{1}{z} \left(\frac{1}{1-\frac{z}{z}} \right)$$

The region o< 121<1

$$P(z) = [1+z+z^2+z^3+\cdots] - \frac{1}{z}[1+z^2+z^3+z^3]$$

ے لتجھیز المسألة نجعل بدلاً صس کل عے ۱-2 قبل الفك . و إدَا تواجه قوس داخله (۱-2) برك تما هو .

$$F(z) = \frac{-1}{z-1} + \frac{1}{(z-1)-1}$$

$$= \frac{-1}{z-1} - \frac{1}{1-(z-1)}$$

$$= \frac{-1}{z-1} - \frac{1}{1-(z-1)}$$

$$0 \le |z-1| \le 1$$

$$F(z) = \frac{-1}{z-1} - \left[1 + (z-1) + (z-1)^2 + (z-1)^3 - \cdots \right]$$

$$P(z) = \frac{1}{1-z} + \frac{1}{z-2}$$

$$= \frac{-1}{z} \left(\frac{1}{1-\frac{1}{z}}\right) + \frac{1}{z} \left(\frac{1}{1-\frac{2}{z}}\right)$$

ولأسم العياس أكبر مسرقم فأخذ القوس مشترك.

The region is 12172

$$F(z) = \frac{-1}{z} \left[1 + \frac{1}{z} + \left(\frac{1}{z} \right)^2 + \cdots \right] + \frac{1}{z} \left[1 + \frac{2}{z} + \left(\frac{2}{z} \right)^2 + \cdots \right]$$

م إذا كا ب العلم ب ك الا كل ف التجهيز القوس الذي به ط ناخذمنه اله لا مشترك.

(Zero's and singularity of P(z)

 $F(z) = \frac{h(z)}{9(f)}$

م أومار الدالة هي قع ت التي تحجل السط = وعز ولا تجعل المعام = وعز

[A] Lec 14

أخذ صشرك سر السيل حيث م هي أحد أوغار الدالة. ∞ alul deso il z rã que singularity e क ग्रीनिय वह हां हु हां ग्रीसिक क ्र) (कि विं भें d أولاً:- أنه الله الله عند العبَّمة ومع المنام والعد لكر لا تجعل الداله ما لانها بي وهذا نستوجي أن يكن فيم المهام يجعل Umal gray. ما فا هذا الله علا عدد قابل سم المفكول له أسس سالبة (جزء قلبل ق اعفك لا بعملي مه والباق لابعملي) خالتاً أن يكم عند النال عدد لانهائي مسرالحدود ذات أسس سالية. Type of singularity 3 Essentially

)5 Lec 14

[2] Poles

Removable.

 $\frac{\square Removab(e)}{F(z) = \frac{h(z)}{2(z)}}$

العر الماء يجعل السيط جفر لذلك يك

 $\lim_{z\to z} f(z) \neq \infty$

حيث ٤٠٤ هي قيمة ع التي تجعل المقام ميفر.

ر نهای الفکو لا لا قوی علی آسس سالبه م = ٥ = ٥ اور علی آسس سالبه م

12 Poles

(z-Z₀)ⁿ⁺¹ اما قوس (z-Z₀) في المقام أوقوس (z-Z₀) في المقام.

 $\square P(z) = \frac{h(z)}{(z-z_0)}$ "simple pole"

Res f(z) = Lim (z-z) f(z) = a-1 z=z.

ff(z) dz = 2Ti ∑Res f(z) z=z.

Residual

16 Lec 14

$$\boxed{2} \ F(z) = \frac{h(z)}{(z-Z_0)^{n+1}} \quad \text{order}$$

Res
$$f(z) = \frac{1}{n!} \lim_{z \to z_0} \frac{d^n}{dz^n} (z-z_0)^{n+1} f(z)$$

$$z=z_0$$
Les $f(z)$
Les $f(z)$
Les $f(z)$

Res
$$F(z) = \frac{1}{n!} \sum_{z \to z_0} dz^n$$

$$Z = Z_0$$

$$\begin{cases} F(z) dz = 2 \pi i \end{cases} \begin{cases} Res F(z) \end{cases} \begin{cases} 2\pi i \\ 2\pi i \end{cases}$$

3 Essentially

ال دوال تأخذ مه عند ، 2 وعند فركها عدد الحدد دالتي بها أسس سالبة لاناتي.

·· Cosh(z-a) (e (Cos z (Sin z + Jio

Lucus les elements elements

Example

$$2) = \frac{z^2 + 1}{(z-1)(z-2)^2} dz$$

$$|z|=3$$

$$\boxed{2} \oint z^2 \frac{1}{z-1} dz \qquad \boxed{4} \oint \frac{\sinh z}{z-5} dz$$

$$\boxed{|z|=2} \boxed{2} \boxed{|z|=1} o$$

ما وغار العام عند ٥= ٤ تقع داخل المنطقة ما جمقر المقام يجعل السيط = ومغ .

: Lim Sinz =1 + 0 = I = 0

$$2) \quad \beta(z) = \frac{z^2 + 1}{(z-1)(z-2)^2}$$

is pted lies in

Z=1 -> is simple Pole

Z=2 -> is lole of order 2.

Res
$$F(z) = \lim_{z \to 1} (z-1) \frac{z}{(z-1)(z-2)^2} = [2]$$

Res
$$F(z) = \frac{1}{1!} \lim_{z \to 2} \frac{d}{dz} (z-2)^2 \frac{z^2+1}{(z-1)(z-2)^2}$$

[8] Lec 14

$$= \lim_{z \to 2} \frac{(z-1)(2z) - (z^2+1)(1)}{(z-1)^2} = \frac{4-5}{1} = -1$$

$$= \lim_{z \to 2} \frac{(z-1)^2}{(z-1)^2}$$

$$= \lim_{z \to 2} \frac{(z-1)^2}{(z-1)(z-2)^2}$$

$$= \lim_{z \to 2} \frac{(z^2+1)(1)}{(z-2)^2} = \lim_{z \to 2} \frac{($$

$$\int_{(z-1)}^{z} (z-1)^{2} dz = 2\pi i \left[2 + (-1) \right]$$

$$= 2\pi i \left[2 + (-1) \right]$$

$$= 2\pi i$$

معدما ترى دالة متلتية أو أسية أو زائدية الزاوية في عجير له لازم تفل المعتدما) المعتود الترة الترة الترتجعل الدالة مه هي نقطة الفلة.

$$[3] P(z) = z^{2} e^{(z-1)}$$

$$Z = 1 \text{ is singular Point of } P(z)$$

$$e^{-\infty} \rightarrow \infty$$

ع نفل الدالة بدلالة قوى (۱- Z) وأم هذه النقطة الترتيمل الدالة ه.

$$e = 1 + \frac{(a/b - s_1^2)^2}{1!}$$

$$\frac{1}{z-1}$$
 $e = 1 + \frac{1}{1!} \left(\frac{1}{z-1}\right) + \frac{1}{2!} \left(\frac{1}{z-1}\right)^2 + \cdots$

$$Z^{2} = \left[(z-1) + 1 \right]^{2} = (z-1)^{2} + 2(z-1) + 1$$

$$Z^{2} = \left[(z-1)^{2} + 2(z-1) + 1 \right] \left[1 + \frac{1}{z-1} + \frac{1}{2!(z-1)^{2}} + \cdots \right]$$

$$-1 = aui sill used the end,$$

$$a_{1} = \left[1 + \frac{2}{2!} + \frac{1}{3!} \right] = 2 + \frac{1}{6} = \frac{13}{6}$$

$$I = 2\pi i \left(\frac{13}{6} \right)$$

[10] Lec 14