

Domaine : Sciences et Technologies

Établissement : EPL

Filière: GM, GC, GE, GI

SYLLABUS DE COURS

Intitulé du parcours : Licence Fondamentale

Semestre d'évolution : Harmattan 1 (Semestre 1)

Code et intitulé de l'enseignement : PHY1120, Mécanique du point

Nombre de crédits : 4

Volume horaire total : 48h (CM : 36h ; TD : 12h ; TP : ...)

Jour, horaire et salle de l'enseignement : Lundi et Vendredi de 7h à 9h 15 à la bibliothèque du lycée scientifique

Enseignant responsable de l'UE : Dr. AYELEH Edo, Assistant, Mécanique des solides, eaveleh@yahoo.fr / edo.ayeley@univ-lome.tg / papaviayeleh@gmail.com

Disponibilité pour recevoir les étudiants : Jeudi de 10h à 12h au lycée scientifique

Public cible : Cette UE s'adresse aux étudiants désireux de se former à l'exercice du métier d'ingénierie Génies Mécanique, Civil, Electrique et Informatique.

Prérequis : BAC Scientifique

Objectifs d'enseignement

- Objectif général :

L'objectif général de l'enseignement de la mécanique du point matériel aux étudiants en ingénierie (génie civil, génie mécanique, génie informatique, etc.) est de leur fournir une compréhension fondamentale des principes de la mécanique qui régissent le mouvement et l'interaction des corps matériels. Cette connaissance est essentielle pour leur permettre de concevoir, analyser et optimiser des systèmes et des structures dans leurs domaines respectifs.

- **Objectifs spécifiques** : A la fin de l'UE, les étudiants seront capables de :

Décrire les concepts fondamentaux de la mécanique du point matériel, y compris les notions de force, masse, et mouvement;

Expliquer les lois du mouvement de Newton et leur application dans des situations pratiques liées aux différentes branches du génie;

Analyser des problèmes de mécanique du point matériel en identifiant les forces agissant sur un objet et en déterminant leur effet sur le mouvement;

Appliquer les principes de la mécanique du point matériel pour résoudre des problèmes concrets, tels que le calcul de la trajectoire d'un projectile ;

Comparer les différents types de forces (gravitational, frictionnelle, etc.) et évaluer leur impact sur le mouvement d'un point matériel dans divers contextes d'ingénierie ;

Illustrer les concepts de travail, d'énergie et de puissance à l'aide d'exemples pratiques et de démonstrations ;

Formuler des équations de mouvement pour des systèmes simples et prédire le comportement d'un point matériel sous l'influence de forces spécifiques ;

Interpréter des graphiques de mouvement (position, vitesse, accélération) et discuter des implications de ces graphiques dans des applications d'ingénierie ;

Concevoir des expériences simples pour tester des concepts de mécanique du point matériel et synthétiser les résultats pour en tirer des conclusions ;

Critiquer des études de cas réels où la mécanique du point matériel a été appliquée dans des projets d'ingénierie, en identifiant les succès et les échecs.

Langue d'enseignement : Français

Bref descriptif de l'enseignement :

La mécanique du point, enseignée aux étudiants de première année en mécanique, génie civil, génie électrique et informatique, leur permet d'identifier les forces agissant sur un corps, d'analyser les mouvements en utilisant les lois de Newton, et d'appliquer ces concepts à des problèmes pratiques. Les étudiants sont encouragés à comprendre les principes fondamentaux tels que la conservation de l'énergie et la dynamique des systèmes. À travers des exercices, ils évaluent les résultats de leurs calculs et synthétisent leurs connaissances pour résoudre des cas complexes. Cette approche leur donne les outils nécessaires pour créer des modèles physiques et simuler des situations réelles.

Organisation de l'enseignement

Objectifs	Séance N° et durée	Contenu et activités d'enseignement/apprentissage	Méthodes d'enseignement/ apprentissage	Matériel/ Support pédagogique
Revoir les notions	1 :Rappels mathématiq	-Vecteurs, dérivées, intégrales, systèmes de coordonnées.	Cours magistral, travaux dirigés.	Tableaux, calculatrices,
mathématiques	ues (2h)	-Exercices de calcul vectoriel,	ani geoi	logiciels de

nécessaires à la mécanique.		résolutions de problèmes simples.		mathématiques
Comprendre les	2 :Cinémati	- Définition des grandeurs	Cours interactif, travaux	Graphiques,
notions de	que du	cinématiques, équations horaires.	pratiques.	logiciels de
position,	point (2h)	-Graphiques de position-vitesse,		simulation.
vitesse et		exercices pratiques.		
accélération.			_	
Approfondir les	3 :Cinémati	- Mouvement rectiligne uniforme,	Cours magistral,	Tableaux,
concepts de	que du	mouvement rectiligne	exercices en groupe.	simulateurs de
mouvement	point	uniformément accéléré,		mouvement.
rectiligne et	(suite) (2h)	mouvement circulaire.		
circulaire.		- Problèmes à résoudre,		
	,	simulations de mouvements.		
Analyser des	4: Étude	-Mouvement parabolique,	Cours magistral, travaux	Matériel de
mouvements	de	oscillations simples.	pratiques.	laboratoire,
spécifiques	mouvement	-Études de cas, expériences		vidéos
(paraboliques,	S	pratiques.		explicatives.
oscillatoires).	particuliers (2h)			
Approfondir	5 :Étude de	-Équations du mouvement	Cours interactif, travaux	Logiciels de
l'étude des	mouvement	harmonique simple.	dirigés.	simulation,
mouvements	S	-Résolution de problèmes,		matériel de
oscillatoires et	particuliers	simulations.		laboratoire.
de leur	(suite) (2h)			
représentation.				
Comprendre la	6 :Composi	-Addition des vecteurs de position,	Cours magistral, travaux	Tableaux,
superposition	tion des	vitesse et accélération.	pratiques.	logiciels de
des	mouvement	-Exercices de composition de		simulation.
mouvements.	S	mouvements, études de cas.		
	(2h)			
Appliquer la	7 :Composi	-Mouvements combinés (ex. :	Cours interactif, travaux	Matériel de
composition	tion des	mouvement circulaire +	en groupe.	simulation,
des	mouvement	rectiligne).		tableaux.
mouvements à	s (suite)	-Problèmes pratiques, simulations.		
des cas	(2h)			
concrets.				
Introduire les	8 :Dynami	-Premier et deuxième principes de	Cours magistral, travaux	Tableaux,
lois de Newton	que du	Newton, forces fondamentales.	dirigés.	calculatrices.
et les forces.	point	- Résolution de problèmes, études		
	matériel	de cas.		
	(2h)			
Appliquer les	9 :Dynami	-Forces de frottement, forces de	Cours interactif, travaux	Matériel de
lois de Newton	que du	tension, forces gravitationnelles.	pratiques.	laboratoire,
à des systèmes	point	-Problèmes pratiques, simulations.		logiciels de
variés.	matériel			simulation.
	(suite) (2h)			
Analyser des	10 :Applica	-Applications des lois de Newton à	Cours magistral, travaux	Études de cas,
situations	tions de la	des problèmes quotidiens.	en groupe.	vidéos
réelles à l'aide	dynamique	-Études de cas, projets de groupe.		explicatives.
de la	(2h)			
dynamique.	` ′			

Introduire le concept de moment cinétique.	11 :Momen t Cinétique (2h)	-Définition, formule, unitésExemples de calculs de moment cinétique.	Cours magistral, exercices pratiques.	Calculatrices, tableaux de valeurs.
Comprendre les mouvements à accélération centrale.	12 :Mouve ments à Accélératio n Centrale (2h)	-Définition, exemples (cercle, ellipse)Simulation de mouvements circulaires.	Cours interactif, démonstration.	Logiciels de simulation, vidéos.
Comprendre le travail, la puissance et l'énergie.	13 :Travail et Énergie (2h)	-Définitions, théorèmes de l'énergie. -Calculs de travail effectué par une force.	Cours magistral, exercices en groupe.	Diaporama, exemples pratiques.
Appliquer le principe de conservation de l'énergie.	14 :Conser vation de l'Énergie (2h)	-Cas pratiques, exemples de systèmesÉtudes de cas, résolution de problèmes.	Apprentissage par problèmes, discussions.	Tableaux, exercices à résoudre.
Comprendre le concept de puissance.	15 :Puissan ce (2h)	-Formule, unités, exemplesCalculs de puissance dans différents contextes.	Cours magistral, exercices pratiques.	Calculatrices, tableaux.
Comprendre le mouvement oscillatoire.	16 :Introdu ction aux Oscillateur s (2h)	-Définition, exemples (pendule, ressort)Observation de mouvements oscillatoires.	Cours interactif, démonstration.	Pendules, ressorts, chronomètres.
Analyser les équations du mouvement oscillatoire.	17 :Équatio ns du Mouvemen t Oscillatoire (2h)	-Équations de mouvement, fréquence, période. -Résolution d'équations de mouvement.	Exercices en groupe, discussions.	Tableaux, calculatrices.
Chocs Élastiques et Inélastiques	18 :Compr endre les différents types de chocs. (2h)	-Définition, conservation de la quantité de mouvement. -Expériences de chocs avec billes.	Apprentissage par l'expérience, démonstration.	Billes, surfaces de choc.
Analyser les résultats des chocs.	19 : Analyse des Chocs (2h)	-Calculs de vitesses après choc. -Résolution de problèmes de chocs.	Exercices pratiques, discussions.	Tableaux, calculatrices.
Appliquer les concepts de chocs à des situations réelles.	20 :Applica tions des Chocs (2h)	-Exemples dans le sport, la sécurité routière. -Études de cas, discussions en groupe.	Cours interactif, travail en groupe.	Vidéos, études de cas.
Réviser les concepts clés et évaluer les connaissances.	21 :Révisio n et Évaluation (2h)	-Synthèse des thèmes abordés. -Quiz, discussions, révisions en groupe.	Cours participatif, évaluation formative.	Quiz, feuilles de révision.

Consolider les connaissances	22 et 23 :Révisio	-Révision des concepts clés de cinématique et dynamique.	Cours interactif, discussions en groupe.	Quiz en ligne, tableaux.
acquises.	n des	-Quiz, exercices de révision.		
	thèmes			
	(2h)			
Évaluer les	24 :Évaluat	-Examen couvrant tous les thèmes	Examen écrit.	Évaluation
connaissances	ion finale	abordés.		individuelle.
acquises durant	(2h)	-Examen écrit ou oral.		
le cours.				

Evaluation

- $Contrôle\ continu$: Evaluations formatives, DSTs (Evaluations sommatives), Projets de classe (50%)
 - Examen final: Examen (Harmattan) écrit (50%)

Bibliographie

- Notes de cours de l'enseignant
- J. L. Queyrel, nouveau précis de physique : Mécanique MPSI-PCSI-PTSI, Ed. Bral, 2003.
- J. Boutigny : cours de physique, Mécanique 1, Ed Vuibert.