Distracted Driver Detection

Rifqi Alkhatib General Assembly DSI 20

Agenda

Background

- High road fatality rates in Singapore
- Distracted driving a major cause of road accidents
- >80% of drivers admit to using phone while driving
- >90% think that it is unsafe

Problem Statement

- Explore use of dashboard cameras to improve these statistics
- Create an image classification model that can detect the distraction state of the driver

Data Source - Kaggle Competition

- Images of drivers in various states of distraction
- 10 Classes
- Images curated from controlled experiment
- Train and test data split on the drivers*
 - > 22,000 Train images
 - > 79,000 Test images
- Evaluated on multi-class log loss

Classes

c0: Safe Driving

c5: Operating the Radio

c5: Operating the Radio

Insights from Data

- Drivers' body position the most distinguishing feature
- Features consistent across classes
 - Type of car
 - Lighting
 - Quality of image
- Features inconsistent within same class
 - Driver features
 - Camera angle

Preprocessing

Distinct Driver Issue

- Train and test data split on the drivers*
- Model must be able to generalize to new drivers
- Many similar images
- Might end up overfitting to drivers' features

Trial Model

Transfer learning from pre-trained CNN model: VGG16

Kaggle score – 1.78549

Split by Driver

- Random train-validation split leads to poor generalization
- Split by unique driver instead
 - 26 unique drivers in train data
 - 19 7 split
- Model should train on non-driver related features

Methodology

- Transfer Learning
 - Build classifier on pre-trained CNN Models
 - VGG16
 - EfficientNetB4
- Fine-tuning
 - 2 rounds
- Optimised on categorical cross-entropy
- 25 Initial epochs + 25 Fine-tuning epochs per round
- Callbacks
 - Checkpoint, EarlyStopping, ReduceLROnPlateau

Baseline Model

- Predict all classes to have same probability
- Baseline score: 2.303

VGG16

- Trained on ImageNet90.1% Top-5 Acc
- 5 Convolutional blocks
- 3 Fully connected layers
- Simple architecture
- Large size

VGG16

Kaggle Score: **0.68395**

EfficientNetB4

- Trained on ImageNet
- Focused on efficiency of parameters
- Repeated modules linked in blocks
- 8 different architectures
- B4 provides good balance

EfficientNetB4

Kaggle Score: **0.59852**

Selection of Best Model

Model	Data	Fine-Tuning	Test Score (Kaggle)	Val Loss	Val Accuracy	Initial Epochs	Fine-Tuning Epochs	Total Epochs
VGG16	Randomly Shuffled	No	1.78549	0.049	0.987	25	-	25
VGG16	Split by Driver	Yes	0.68395	0.62	0.853	13	17 + 8	38
EfficientNetB4	Split by Driver	Yes	0.59852	0.478	0.877	24	16 + 9	49

- EfficientNetB4 performs best
- Splitting by driver reduced overfitting

Final Kaggle Submission

- Ensemble method
- Cross-validate best model over 4 folds
 - Data is not randomly shuffled
 - Expose the model to maximum amount of information
- Fine-tuned EfficientNetB4

- Final Score: 0.30096
 - Improvement from single fold (0.598)

Model Evaluation

Confusion Matrix

- Generally performs well
- Class c9: Talking to Passenger

Misclassifications

- Sources of ambiguity for each class
- Particularly noticeable for c9
- Class labels not always consistent

Test on Unseen Data

- Images outside the experiment
- Different lighting, car, location, camera angle

Test on Unseen Data

- Does not perform well43% accuracy
- Some classes 100% wrong

Conclusion

- Successfully created model that predicted well for test set
- Not robust enough to be useful in real life
- Shows that detecting distraction with dashboard cameras is feasible
- Can be applied to improve road safety
 - Useful information for insurance companies
 - Real time feedback to drivers

Recommendations for Future Development

- Improve performance on unseen external data
 - Grayscale photos to reduce effect of driver features
 - Image augmentation
 - Gather more varied data
- Further development
 - Apply model to videos

