

BAĞIMSIZ GRUPLARDA T TESTI

Bağımsız Ölçümler Deseni

- Her bir uygulama durumu için farklı örneklem kullanılan araştırma yöntemine denir.
 - Örn: Cinsiyet farkları, Özel okul devlet okulu farkı ...
- Gruplar arası desen de denir
- Bağımsız örneklemler için araştırmada amaç iki evren ortalaması arasındaki farkı değerlendirmektir

Evren 1
(Özellikleri
Bilinmiyor)

Örneklem 1

Evren 2
(Özellikleri
Bilinmiyor)

Örneklem 2

Gösterimler

• İki evrenimiz ve iki örneklemimiz olduğu için gösterimlerimiz biraz farklılaşıyor.

- Örneklem Büyüklüğü: n₁ ve n₂
- Evren ortalamaları: μ_1 ve μ_2
- Evren varyansları: σ_1^2 ve σ_2^2
- Örneklem Ortalaması: \overline{X}_1 ve \overline{X}_2
- Örneklem Varyansı: $s_1^2 ve s_2^2$

Hipotezlerin Kurulması:

 Bağımsız örneklemler için araştırmada amaç iki evren ortalaması arasındaki farkı değerlendirmektir.

$$H_0$$
: μ_1 - μ_2 = 0 (μ_1 = μ_2)

$$H_1$$
: μ_1 - $\mu_2 \neq 0$ ($\mu_1 \neq \mu_2$)

Karar kuralının belirlenmesi:

Kritik t değeri için kullanılacak olan serbestlik derecesi

$$sd = sd1 + sd2 = n1 - 1 + n2 - 1 = n1 + n2 - 2$$

t istatistiğinin hesaplanması

• Tek örneklem t testinden hatırlarsak t istatistiğinin genel formu

$$t = \frac{\bar{X} - \mu}{s_M} = \frac{\ddot{O}rneklem \ verisi \ ile \ hipotezin \ farkı}{kestirilen \ standart \ hata}$$

• Bağımsız gruplarda t istatistiğinin hesaplanması

$$t = \frac{\ddot{o}rneklemde\ ortalamalarının\ farkı - evrende\ ortalamalarının\ farkı}{kestirilen\ standart\ hata}$$

$$t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{S_{(\bar{X}_1} - \bar{X}_2)}$$

Örneklem ortalamaları arasındaki fark $\overline{X}_1 - \overline{X}_2$

Kestirilen standart hata (Ortalama mesafe)

Evren ortalamaları arasındaki fark $\mu_1 - \mu_2$

- H_0 doğru ise evren ortalamaları arasındaki fark sıfırdır.
- Dolayısıyla standart hata örneklem ortalamaları arasındaki farkın sıfıra ne kadar yakın olduğuna ilişkin bir ölçüm verir.

• Diğer bir ifade ile eğer H_0 doğru ise yani evren ortalamaları arasındaki fark sıfırsa, örneklem ortalamaları arasında ne kadarlık bir fark tolere edilebilir.

- · İki evrenden iki örneklem seçtiğimiz için iki tane hata kaynağımız var
 - \bar{X}_1 μ_1 bir miktar hata ile temsil eder. \bar{X}_1 için örneklem ortalamasının standart hatası

$$s_{\bar{X}_1} = \frac{s_1}{\sqrt{n_1}} = \sqrt{\frac{s_1^2}{n_1}}$$

• \bar{X}_2 μ_2 bir miktar hata ile temsil eder. \bar{X}_2 için örneklem ortalamasının standart hatası

$$s_{\bar{X}_2} = \frac{s_2}{\sqrt{n_2}} = \sqrt{\frac{s_2^2}{n_2}}$$

Birleşik varyansın hesaplanması:

- Evren varyanslarını eşit olduğu varsayımı altında $\sigma_1 = \sigma_2'$ dir. , s^2_1 ve s^2_2 nin karesi her biri σ^2 'yi kestirmektedir. σ^2 'yi değerinin en iyi kestirimi s^2_1 ve s^2_2 ortalamasıdır. Bu ortalama birleşik varyans olarak adlandırılır.
- Birleşik varyans yapılabilecek en iyi kestirimdir. Birleşik kestirimin standart hatası tek bir örnekleme ait istatistiğin kullanılmasıyla elde edilen standart hata değerine göre daha küçüktür.

Birleşik varyans:

$$s_b^2 = \frac{sd_1s_1^2 + sd_2s_2^2}{sd_1 + sd_2}$$

Ortalamalar arası farkın standart hatası:

$$S_{(M_1 - M_2)} = \sqrt{\frac{s_b^2}{n_1} + \frac{s_b^2}{n_2}}$$

Örnek: Bir araştırmacı çocukların 5 yaşlarındaki TV izleme alışkanlıklarının onların gelecekteki performanslarını etkilediğini düşünmektedir. Düzenli olarak susam sokağı izleyen çocukların orta okul başarılarının daha yüksek olacağı düşünülmektedir.

- Bir araştırmacı bu araştırma sorusunu incelemek amacıyla 20 öğrenci seçmiştir.
 - Örneklem 1: Çocukken susam sokağı izleyen 10 orta okul öğrencisi
 - Örneklem 2: Çocukken susam sokağı izlemeyen 10 orta okul öğrencisi

Araştırma sorusu: Çocukken susam sokağı izlemenin öğrencilerin ortaokul başarılarına etkisi var mıdır?

Hipotez Testinin Aşamaları

- 1. Evren dağılım özelliklerinin belirlenmesi
- 2. Hipotezlerin kurulması
- 3. Karar kuralının belirlenmesi
- 4. Örneklem istatistiğinin hesaplanması

- 5. Karar verme
- 6. Sonuçların yorumlanması

1. Evren dağılım özelliklerinin belirlenmesi

• Bağımlı değişken: ortaokul başarı puanları, sürekli ve normal

- Bağımsız değişken: susam sokağı izleme durumu
- Desen: Bağımsız ölçümler deseni
 - Birbirinden bağımsız iki öğrenci grubumuz var
- Uygun yöntem: Bağımsız gruplarda t testi

2. Hipotezlerin Kurulması

• Sıfır hipotezi: H_0 : μ_1 - μ_2 = 0

(Evren ortalamaları arasında bir farklılık yoktur. Susam sokağı izleyen ve izlemeyen öğrencilerin ortaokul puanları evrende eşittir.)

• Alternatif hipotez: H_1 : $\mu_1 - \mu_2 \neq 0$

(Evren ortalamaları arasında anlamlı bir fark vardır. Susam sokağı izleyen öğrencilerin ortaokul ortalamaları ve izlemeyen öğrencilerden farklıdır.)

3. Karar kuralının belirlenmesi

- Alfa değeri 0.05 olsun
- Yönsüz hipotez testi
- İki örneklem t testi için serbestlik derecesi
 - sd= n1 + n2-2 sd= 10+10-2 = 18
- Kritik t değeri t tablosunda sd=18 olan satır ve iki uçta toplan 0.05 lik alanı gösteren sütunda yer alan t değeridir. Bu değer $t_{kritik}=2.101$ ve -2.101

Karar kuralı:

• Elde ettiğimiz t istatistiği 2.101'den büyük veya -2.101'den küçük olursa H0 reddedilir.

4. Örneklem istatistiğinin hesaplanması

Susam sokağını izleyenler	Susam sokağı izlemeyenler
Ortaokul puanları	Ortaokul puanları
86	90
87	89
91	82
97	83
98	85
99	79
97	83
94	86
89	81
92	92
μ_1 =93 $s_1^2 = 22.22$	μ_2 =85 $s_2^2 = 17.78$
$s_1^2 = 22.22$	$ s_2^2 = 17.78$

•
$$t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{S_{(\bar{X}_1} - \bar{X}_2)}$$

•
$$S_{(\bar{X}_1 - \bar{X}_2)} = \sqrt{\frac{s_b^2}{n_1} + \frac{s_b^2}{n_2}}$$

•
$$s_b^2 = \frac{sd_1s_1^2 + sd_2s_2^2}{sd_1 + sd_2}$$

Birleşik varyans:

$$s_b^2 = \frac{sd_1s_1^2 + sd_2s_2^2}{sd_1 + sd_2} = \frac{9 * 22.22 + 9 * 17.78}{9 + 9} = 20$$

Standart hata

$$s_{(\bar{X}_1 - \bar{X}_2)} = \sqrt{\frac{s_b^2}{n1} + \frac{s_b^2}{n2}} = \sqrt{\frac{20}{10} + \frac{20}{10}} = 2$$

T istatistiği

$$t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{S_{(\bar{X}_1} - \bar{X}_2)} = \frac{(93 - 85) - 0}{2} = 4$$

5. Karar verme

Örneklemden elde ettiğimiz t istatistiği kritik değer olan 2.101'den büyük olduğu için H0 reddedilir.

Raporlama: Çocukken susam sokağı izleyen öğrencilerin orta okul ortalamaları ($\bar{X}_1=93,s=4.71$) susam sokağı izlemeyen öğrencilerin orta okul ortalamalarından ($\bar{X}_2=85,s=4.22$) daha yüksektir. Ortalamalar arasındaki bu fark istatistiksel olarak anlamlıdır, $t_{(18)}=4.00,\ p<.05$.

6. Sonuçların yorumlanması

Etki büyüklüğü

Cohen
$$d = \frac{\ddot{O}rneklem \, ortalamaları \, arasındaki \, fark}{birleşik \, standart \, sapma} = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{s_b^2}} = \frac{93 - 85}{\sqrt{20}}$$

= 1.79 (Büyük etki)

Güven aralığı

Ortalamalar arası farka ilişkin %95 güven aralığı: $(\bar{X}_1 - \bar{X}_2) \pm SH * t$

$$\bar{X}_1 - \bar{X}_2 = 93-85 = 8$$

Alfa 0.05 için t değeri 2.101

Güven aralığı : $8\pm2*2.101$ yani evrende ortalamalar arasındaki fark %95 olasılıkla 3.798 ile 12.202 aralığındadır. (Not: Fark anlamlı olduğundan aralık 0'ı içermez)

Varsayımları:

Bağımsız gözlem: Her bir uygulama durumu içerisindeki gözlemlerin bağımsız olması gerekmektedir.

Normal dağılım: Puanlar evrende normal dağılır.

<u>Varyansların homojenliği:</u> İki evrendeki puanların varyansı eşit olmalıdır $(\sigma_{\overline{x_1}} = \sigma_{\overline{x_2}})$.

Varyansların homojenliği varsayımı

- Varyansların homojenliği varsayımı SPSS'de Levene testi ile incelenebilir.
- Levene testi aşağıdaki hipotezleri test eder:

$$H_0$$
: $\sigma_1^2 = \sigma_2^2$ (Evrende varyanslar eşittir.)

$$H_1: \sigma_1^2 \neq \sigma_2^2$$
 (Evrende varyanslar eşit değildir.)

- Varyansların homojenliği varsayımının sağlanabilmesi için Levene testinin anlamlı çıkmaması beklenir.
- Diğer bir ifade ile Levene testinden elde edilen p değeri 0.05'den büyükse H₀
 kabul edilir ve varyansların homojenliği varsayımı sağlanır.
- ile Levene testinden elde edilen p değeri 0.05'den küçükse H₀ reddedilir ve evren varyansları eşit değildir denir. Varsayım sağlanmaz.

• Eğer her iki gruptaki katılımcı sayısı eşitse, t testi varyansların homojenliği varsayımının ihlaline karşı dayanıklıdır.

 Her iki gruptaki katılımcı sayısı farklı ise t testti varyansların homojenliği varsayımına karşı daha hassastır. Bu durumda alternatif bir test kullanılmalıdır. SPSS bize bu testi de sunar.

Örnekle m Sayısı	σ biliniyor mu?	Test	Hipotezler*	Standard hata	Test İstatistiği	Serbestlik Derecesi (sd)	Etki B. (Cohen d)
1	Evet	z testi	H0: µ= K H1: µ≠ K	$\frac{\sigma}{\sqrt{n}}$	$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$	yok	$\frac{\bar{X} - \mu}{\sigma}$
	Hayır	Tek örneklem t testi	H0: μ= K H1: μ≠ K	$\frac{s}{\sqrt{n}}$	$t = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}}$	n-1	$\frac{\bar{X} - \mu}{s}$
	Örneklemle r Bağımsız mı?	Test	Hipotezler*	Standard hata	Test İstatistiği	Serbestlik Derecesi (sd)	Etki B. (Cohen d)
2	Evet	Bağımsız gruplar t testi**	$H_0: \mu_1 - \mu_2$ =0 $H_1: \mu_1 - \mu_2$ $\neq 0$	$\sqrt{\frac{s_p^2}{n1} + \frac{s_p^2}{n2}}$	$t = \frac{(\bar{X}_1 - \bar{X}_2)}{\sqrt{\frac{s_p^2}{n1} + \frac{s_p^2}{n2}}}$	n1 +n2 -2	$\frac{\bar{X}_1 - \bar{X}_2}{\sqrt{s_p^2}}$
*Bu hipotezle ** Burada var	r yönsüzitestler içind yansların homojenli	Bağımlı dir.Yönlütestlerd ği varşayımının sa testi	e hlpotezhen de von l ağlandığıldınıdım veri	belirtm <u>ell⁄d</u> ir. (> ve lmiştir. √ ⁄⁄ ⁿ bileşik v	eya <). $t = \frac{\overline{D}}{\frac{S_D}{\sqrt{n}}}$	n-1	$\frac{M_D}{S}$