第十一周作业参考解答及补充

作业

1. (习题 3.3.6)

设 L 是可分多项式 $f(x) \in K[x]$ 的一个分裂域, $K \subseteq E \subseteq L$ 是任意中间域. 证明: 对任意单同态 $\varphi: E \to L$, 若 $\varphi|_K = \mathrm{id}_K$, 则 φ 一定可以延拓成域同构 $\varphi: L \to L$.

proof

按分裂域定义, 存在 $\alpha_1, \alpha_2, \cdots, \alpha_m \in L$ 使得 $f(x) = c(x-\alpha_1)(x-\alpha_2)\cdots(x-\alpha_m)$, 且 $L = K[\alpha_1, \cdots, \alpha_m]$. 由于 $K \subseteq E \subseteq L$, $f(x) \in K[x] \subseteq E[x]$, 将 f(x) 视为 E[x] 中的多项式. f(x) 仍有这样的分解. 且 $L = K[\alpha_1, \cdots, \alpha_m] \subseteq E[\alpha_1, \cdots, \alpha_m] \subseteq L$, 故 L 也是 f(x) 在 E 上的分裂域. 由于 $\varphi|_K = \mathrm{id}_K$, 因此 $\varphi(f(x)) = f(x)$, 那么 L 也是 f(x) 在 $\varphi(E)$ 上的分裂域. 由教材的定理 3.3.2, 由于 f(x) 是可分多项式, 因此 f(x) 在 $\varphi(E)$ 中无重根, 有 $|\{\mathrm{id} \mathrm{id} h L \xrightarrow{\psi} L | \psi|_E = \varphi\}| = [L:E] > 0$, 即该集合非空, 那么存在同构 $\psi: L \to L$ 使得 $\psi|_E = \varphi$.

注:

接 3.3.2 注记, 这种延拓对代数扩张是都成立的.

命题 已知对任意域 K 存在代数闭域 L 使得 $K \subseteq L$. 记 $i_K : K \to L$ 是域 嵌入, 那么对任意代数扩张 $K \subseteq E$, 存在嵌入 $i : E \to L$ 使得 $i|_K = i_K$. 若 E 是代数闭域且 $L/i_K(K)$ 是代数的, 那么 i 是同构. 因此代数闭包在同构的意义下一定唯一. 证明需要 Zorn's Lemma. Serge Lang《Algebra》§V.2 Theorem 2.8. 另外也可以参考《近世代数引论》p136 引理 1, 这个是单代数扩张的版本, 相对简单一些, 如果只考虑有限扩张, 那么用这个版本就够了. 事实上这只是 3.1.2的进一步解释, 在此基础上加了一个同构让他变成如下的交换图

$$E \qquad E' \qquad \qquad \cup \cup \qquad \qquad \cup \cup \qquad \qquad K[x]/(\mu_{\alpha}(x)) \stackrel{\sim}{\longrightarrow} K(\alpha) \stackrel{\varphi}{\longrightarrow} K'(\alpha') \stackrel{\sim}{\longleftarrow} K'[x]/(\mu_{\alpha'}(x)) \qquad \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad$$

其中 η 是域同构, 那么根据教材引理 2.3.2, η 可以延拓成同构 $\tilde{\eta}: K[x] \xrightarrow{\sim} K'[x]$.

这个同态会把 α 的极小多项式映到 α' 的极小多项式. 这样就有

注意到 $(\mu_{\alpha}(x)) \subseteq \ker(\pi' \circ \tilde{\eta})$, 由 quotient 的泛性质 (也就是同态基本定理的推广, 2.1.8 增加的命题) 得到 $\tilde{\eta}$, 而这是域之间的满同态, 故只能是同构, 进而得到 同构 φ , 且 $\varphi|_{K} = \eta$. 注意根据我们 φ 的构造一定是 $\varphi(\alpha) = \alpha'$, 若这里 $\eta = \mathrm{id}_{K}$, 那么 φ 就是把 α 换成 $\mu_{\alpha}(x)$ 的其中一个根.

这也说明我们在同构的意义下考虑域扩张是可行的. 但对代数闭包而言, 不一定是有限扩张, 比如 $\overline{\mathbb{Q}}/\mathbb{Q}$.

有了代数闭包,可分多项式的等价定义为: $f(x) \in K[x]$ 是可分的,即 f(x) 的不可约因子在 \overline{K} 中 (或者说在 f(x) 的分裂域中) 无重根. 这也解释了 2.4.3 和 3.1.1 的关系,特征零的不可约多项式可分,从而特征零的代数扩张一定是可分扩张.

2. (习题 3.3.8)

设 $p \in \mathbb{Z}$ 是一个素数, F 是一个域, $c \in F$. 求证: $x^p - c$ 在 F[x] 中不可约当且仅当 $x^p - c$ 在 F 中无根.

proof

考虑 x^p-c 的分裂域 E, 或者直接考虑 F 的代数闭包, 那么有分解 $x^p-c=(x-\alpha_1)(x-\alpha_2)\cdots(x-\alpha_p)$. 我们证两次逆否.

" \Longrightarrow "若 x^p-c 在 F 中有根, 根据教材定义 2.4.2, x^p-c 有一次因式, 可约.

" \Leftarrow " 若 $x^p - c$ 可约,按定义有 $x^p - c = f(x)g(x)$,那么不妨设 $f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$,其中 0 < n < p,那么根据 Bézout's Identity,存在 $u, v \in \mathbb{Z}$ 使得 nu + pv = 1. 记 $\alpha = \alpha_1 \alpha_2 \cdots \alpha_n \in F$ (韦达定理),注意到 α_i 都是 $x^p - c$ 的根, $\alpha_i^p = c$. 那么 $\alpha^p = \alpha_1^p \alpha_2^p \cdots \alpha_n^p = c^n$,从而 $\alpha^{pu} = c^{nu}$,那么 $(\alpha^u c^v)^p = c^{nu} c^{pv} = c$. 这样 $\alpha^u c^v \in x^p - c$ 的一个根,且 $\alpha \in F$,因此 $\alpha^u c^v \in F$.

3. (习题 3.3.11)

证明: $\mathbb{Q}[\sqrt[4]{2}]$ 是 $\mathbb{Q}[\sqrt{2}]$ 的正规扩张, 但不是 \mathbb{Q} 的正规扩张.

proof

由 3.3.1, $\mathbb{Q}[\sqrt[4]{2}]/\mathbb{Q}[\sqrt{2}]$ 是二次扩张, 从而是正规扩张. 另一方面, 和 3.3.2 类似, $\sqrt[4]{2}$ 在 \mathbb{Q} 上的的极小多项式 x^4-2 有非实数根 $\sqrt[4]{2}i$ 的存在, 自然不是正规扩张.

4. (习题 3.3.13)

设 $L = K[\alpha]$, α 是多项式 $x^d - a \in K[x]$ 的根. 如果 Char(K) = 0, 且 K 包含全部 d 次单位根, 则 $K \subseteq L$ 是正规扩张.

proof

这是 3.3.4 的一般情况. 设 $1 = \omega_0, \omega_1, \cdots \omega_{d-1}$ 是 $x^d - 1$ 的根,根据题设, $\omega_i \in L = K[\alpha], 0 \le i < d$. 而 $(\omega_i \alpha)^d = \omega^d \alpha^d = 1 \cdot a = a$,从而 $\omega_i \alpha \in L$ 是 $x^d - a$ 的 d 个根. 因此按定义 L 是 $x^d - a$ 的分裂域. 由 3.3.14 的注记是 Galois 扩张,自然是正规扩张.

5. (习题 3.3.14*)

设 k 是特征 p > 0 的域, x, y 是 k 上的代数无关元. 令 $K = k(x^p, y^p), L = k(x, y)$. 试证明:

- (1) $Gal(L/K) = \{1\} (/ [L:K] = p^2);$
- (2) $K \subseteq L$ 有无穷多个中间域;
- (3) $K \subseteq L$ 不是单扩张, 即不存在 $\alpha \in L$ 使得 $L = K[\alpha]$.

proof

这题是 3.1.15 的延续.

- (1) 设 $\eta \in \text{Gal}(L/K)$, 只需证 $\eta = \text{id}_L$. 由 3.3.6, $x \in K$ 上的代数元, 且 x 的 极小多项式是 $t^p x^p$, 因此 $\eta(x)$ 是多项式 $t^p x^p$ 的根, 而根据 3.1.15, $t^p x^p$ 只有一个 p 重根 x, 因此 $\eta(x) = x$. 同理 $\eta(y) = y$, 从而 $\eta = \text{id}_L$.
- (2) 设 E 是一个非平凡中间域,由于 $[L:K] = [L:E][E:K] = p^2$,因此只能是 [L:E] = [E:K] = p. 而形如 $E_c = k(x+cy,y^p)$ 就是非平凡的中间域,其中 $c \in K$ 而 K 是无穷域.且 $c_1 \neq c_2 \implies E_{c_1} \neq E_{c_2}$.因此有无穷多个中间域.
- (3) 由 Frobenius 同态可知, $\forall \alpha \in L$, $\alpha^p \in K$, 则 $t^p \alpha^p \in K[t]$ 是 α 的化零 多项式. 从而 $[K[\alpha]:K] \leq p < p^2$. 因此 $K[\alpha] \neq L$.

注・

这题教材答案的错误比较严重, K 并不是完全域, x^p 不是 K 中任何一个元素的 p 次方, 但 L/K 确实不是一个可分扩张, x 在 K 上的极小多项式 t^p-x^p 在 K 上不是可分的. 事实上教材的定理 3.3.4 已经告诉我们完全域的代数扩张一定是可分扩张, 而 L/K 是有限扩张, 自然是代数扩张, 因此教材的答案是前后矛盾的.

事实上, 完全域应该定义为任意代数扩张都是可分扩张的域, 因此包括所有特征零的域. 在完全域上取分裂域得到的扩张一定是 Galois 扩张 (教材定理 3.4.1), 这也是为什么要有完全域这个概念.

课上的补充内容

Serge Lang 《Algebra》 §V.3 Theorem3.3 给出了正规扩张的三个等价定义, 其中有一条是用到代数闭包的:

L/K 是正规扩张,当且仅当延拓后的域嵌入 $\varphi:L\to \overline{K}$ 是 L 的自同构,即 $\varphi(L)=L$.