Cryptography: Homework 2

(Deadline: 11:59am, 2019/10/02)

- 1. (20 points) Let $\mathcal{K} = \{k_1, k_2, k_3, k_4, k_5\}$, $\mathcal{M} = \{a, b\}$, and let $\mathcal{C} = \{1, 2, 3, 4, 5\}$. Let $\Pi = (\mathbf{Gen}, \mathbf{Enc}, \mathbf{Dec}) + \mathcal{M}$ be a private-key encryption scheme with key space \mathcal{K} , plaintext space \mathcal{M} and ciphertext space \mathcal{C} , where the algorithms are defined as follows:
 - $k \leftarrow \mathbf{Gen}$: Randomly choose the secret key k from \mathcal{K} such that $\Pr[k = k_1] = \Pr[k = k_2] = \Pr[k = k_3] = 1/9$ and $\Pr[k = k_4] = \Pr[k = k_5] = 1/3$. Output k.
 - $c \leftarrow \mathbf{Enc}(k, m)$: For $k \in \mathcal{K}$ and $m \in \mathcal{M}$, define the ciphertext c as the (k, m)-entry of the following table

	a	b
k_1	1	2
k_2	2	3
k_3	3	1
k_4	4	5
k_5	5	4

i.e., the entry at row k and column m. Output c.

• $m \leftarrow \mathbf{Dec}(k, c)$: For $k \in \mathcal{K}$ and $c \in \mathcal{C}$, define the plaintext m as the element of \mathcal{M} such that the (k, m)-entry of the above table is equal to c. Output m.

Show that the private-key encryption scheme Π is perfectly secret.

2. (30 points) Let Π be the Vigenère cipher where the message space consists of all 3-character strings (i.e., $\mathcal{M} = \{a, b, \dots, z\}^3$), and the key is generated by first choosing the key length t uniformly from $\{1, 2, 3\}$ and then choosing the secret key k uniformly from the set $\{a, b, \dots, z\}^t$. Construct an adversary \mathcal{A} such that $\Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1] > 0.5$.

Grading Policy: The highest score s for your adversary A is defined as follows:

$$s = \left\{ \begin{array}{ll} 0 \text{ points,} & \text{if } \Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1] \leq 0.5; \\ 15 \text{ points,} & \text{if } 0.5 < \Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1] \leq 0.6; \\ 20 \text{ points,} & \text{if } 0.6 < \Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1] \leq 0.7; \\ 25 \text{ points,} & \text{if } 0.7 < \Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1] \leq 0.8; \\ 30 \text{ points,} & \text{if } \Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1] > 0.8. \end{array} \right.$$