IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Appln No. : 10/600,266

Confirm. No.: 7488

Applicant(s): Fumitoshi ASAI et al

Filed : June 20, 2003

For : MEDICINAL COMPOSITIONS

CONTAINING ASPIRIN

Art Unit : 1614

Examiner : Brian Yong S. Kown

Docket No. : 03337C/HG

Customer No.: 01933

SUPPLEMENTAL AMENDMENT

COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, VA 22313-1450

SIR:

This is to supplement the amendment filed October 16, 2007 in which a Declaration of Dr. Fumitoshi Asai was attached. The Declaration was a Declaration Under 37 CFR 1.131 to predate a reference. To complete the record there is enclosed herewith a substantially identical Declaration which is signed by the other three co-inventors.

Respect

Reg. No. 26,853

Frishauf, Holtz, Goodman

& Chick, P.C.

220 Fifth Ave., 16th Floor New York, NY 10001-7708

Tel. No. (212) 319-4900

Fax No.: (212) 319-5101

MJC/sg

Enc. Declaration with attachments

CERTIFICATE OF FACSIMILE TRANSMISSION TO NO.1-571-273-8300 CENTER TOTAL PAGES: 19

I hereby certify that this paper is being facsimile

paper is being facsimile transmitted to the Patents and Trademarks Office on the data notal below.

MADELLAND S. CHICK

Dated: October 22, 2007

In the event that this Paper is late filed, and the necessary petition for extension of time is not filed concurrently herewith, please consider this as a Petition

for the requisite extension of time, and to the extent not tendered by

payment attached hereto, authorization

to charge the extension fee, or any other fee required in connection with this Paper, to Account No. 06-1378.

CHICK

PECEIVED CENTRAL FAX CENTER OCT 2 2 2007

IN ISE UNITED STATES PATENT AND TEMPERARY OFFICE

Appl. No. : 10/600,266

Confirm. No.: 7488

Applicant (s): Fumitoshi ABAI et al

riled

: June 20, 2003

Art Unit : 1614

: Brian Yong S. Kown

Docket No. : 03337C/RG

For

examiner

MEDICINAL COMPOSITIONS

CONTAINING ASPIRIN

Customer No.: 01933

DECLARACION MODER 37 CER 1.131

The balow named declarants hereby declare the following:

- 1. They are each a co-inventor of the invention described and claimed in the above-identified application.
- 2. Attached hereto are copies of notebook records documenting experiments done by us (the inventors) or under our supervision and control, showing a reduction to practice of the claimed invention. The code "CS 747" which appears throughout the notebook pages is our internal code for the compound identified as "Compound A" in Table I of the specification of our patent application. The dates on the copies have been blacked out. Translations of these documents are also attached. The acts described in these documents occurred prior to November 3, 1999.

We hereby declare that all statements made berein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1081, of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

CS 747

•

Combination Experiment

Aspirin

Dose

CS 747

0.3 mg/kg (4hr)

about 40 mg

1 mg/kg (4hr)

about 20

Dose in which both bleeding time and aggregation were measured:

Aspirin 10 + CS 747 0.6

2hr

First, experiment with a central focus on Aspirin 10 + CS 747 0.6

Another group 0.3 or 1

Conduct 0.3 because I seems to work too much.

Arterio venous Shunt Thrombosis Model in Rats (Examination of effect by combination of CS-747 with aspirin)

[Object]

Examine the effect by combination of CS-747 with aspirin using Arterio-venous shunt thrombosis model in rats.

[Experimental Term]

Thirty six rats received on the same are used

[Animals]

Seven-week-old male SD rats (Japan SLC) are purchased and used for the experiment after preliminary breeding for about a week. The experiment is conducted as 6 rats per group.

[Test agents]

CS-747 (synthesized by Ube Industrials Ltd., Lot No. 16) and aspirin (Sigma, A-5376, Lot No. 46H1053, received on are used. The test agents are dissolved or suspended in a 5% Arabic gum (Sigma, Lot No. 73H0705, opened on solution and administered orally in volume of 1 ml/kg two hours before starting arterio-venous shunt. Administered group are (A) vehicle, (B) aspirin 10 mg/kg, (C) CS-747 0.3 mg/kg, (D) CS-747 0.6 mg/kg, (E) aspirin 10 mg/kg + CS-747 0.3 mg/kg, and (F) aspirin 10 mg/kg + CS-747 0.6 mg/kg.

[Methods]

- (1) For the experiment, the method by Umetsu et al. (Thromb. Haemost. 39, 74-83, 1978) is partly modified.
- (2) The shunt tube for arterio venous shunt is prepared as follows; both sides of a medical silicon tube of 12 cm length (inner diameter: 1.5 mm, outer diameter: 2.5 mm, KANEKA Medix Co., Ltd) are connected each to a polyethylene tube of 7 cm length (inner diameter: 0.5 mm, outer diameter: 1.0 mm, Natsume Seisakusho Co., Ltd.)

covered with silicon via a medical silicon tube of 0.7 cm length (inner diameter: 1.0 mm, outer diameter: 1.5 mm, KANEKA Medix Co., Ltd.) as connector. At the connection,

Page 147

surgical adhesive (Aronalpha A, Sankyo) is used for preventing blood leak. In addition, a silk thread (size 3-0, Niccho Kogyo) of 10 cm length is placed in the tube of 12 cm length.

- (3) Vehicle (5% Arabic gum solution) or test agents are administered orally in a volume of 1 ml/kg 2 hours before starting arterio venous shunt. 6 rats per group are used.
- (4) The above tube prepared in advance is filled with heparin solution (Japanese Pharmacopoeia Heparin Sodium Injection, Fuso Pharmaceutical Industries, Ltd., Lot-No. 97H28A, received on (Otsuka) diluted with normal saline (Otsuka) resulting in 30 unit/kg.
- (5) The rat is anesthetized with an intraperitoneal injection of 1 ml/kg (40 mg/kg) of pentobarbital solution (Nembutal R, Abbott, Lot No. 20-975-Z7) diluted with normal saline resulting in 40 mg/ml. After it is fixed to turning up, the jugular vein is exposed and one side of the abunt tube (in which the silk thread is not adhered) is cannulated. Subsequently, to the carotid artery where bloodstream is abut using clamp, the other side of the tube is cannulated to make the arterio venous shunt.
- (6) After removing the clamp and allowing blood to circulate for 30 minutes, the thrombus adsorbed on the silk thread is weighed. The thrombus weight was calculated by subtracting of the weight of the thread (6.5 mg) from the measured weight.

Files were stored at AV-shunt (3) (F00515 data)

A. Sugidachi

AV shunt Thrombosis Model in Rats
(Combination of CS 747 with aspirin)

Protocol: P. 146, 147

Reagent and so on: p. 110, p. 138

Cage number:

6raC3-01-04

Rats

SD male (Japan SLC)

Sex, system:

male SD

wks, Receipt

Sugidachi

Year round old:

7 weeks

Receipt number: 034163

Body weight:

Manufacture name: Japan SLC

Receive date:

Number of rats: 36

Experimenter: Atsuhiro Sugidachi

Housing term:

Receipt number:

034163

5% Arabic gum soln.

67.7mg aspirin

50 mg/ml = 1011.7 mg / 20.234 ml dH₂O

16.2 mg CS 747

Aspirin

10 mg/ml = 57.7 mg / 5.77 ml 5% Arabic gum soln.

1011.7 mg Arabic gum

CS 747

16.2 mg / 5.4 ml = 3 mg/ml

3 mg/ml soln. 1 ml + 5% Arabic gum soln. 2 ml = 1 mg/ml

1 mg/ml soln. 1 ml + 5% Arabic gum soln. 2.33 ml = 0.3 mg/ml

1 mg/ml soln. 1.5 ml + 5% Arabic gum soln. 1 ml = 0.6 mg/ml

10.7 mg CS 747

Further prepared because of insufficient (spilled)

5% Arabic gum 1084.7 mg / 21.69 ml $dH_2O = 50 \text{ mg/ml}$

1084.7 mg Arabic gum

CS 747 10.7 mg / 10.7 ml Arabic gum soln. = 1 mg/ml

1 mg/ml soln. 1.5 ml + 5% Arabic gum soln. 3.5 ml = 0.3 mg/ml

1 mg/ml soln. 3 ml + 5% Arabic gum soln. 2 ml = 0.6 mg/ml

Page 149

			.1		
	B. W. (g)	Treatment	•	Measured value (mg)	Thrombus (mg)
`#1	253	Vehicle		61.3	54.8
2	252	Aspirin 10		51.3	44.8
3	262	CS 747 0.3		58.3	51.8
4	267	CS 747 0.6		43.1 ·	36.6
5	256	Aspirin 10 + C	S 747 0.3	39.6	33.1
G.	271	Aspirin 10 + C		23.2	1 6.7 °
7	250	v	·	63.2	56.7
8 ′	246	A10		58.4	51.9
9	258	747 0.3		51.8	45.3
10	269	747 0.6		53.1	46.6
11	268	A 10 + 747 0.3		30.5	24.0
12	244	A 10 + 747 0.6)	41.8	34.8
13	247	v	,	56.1	49.6
14	262	A 10		48.6	42.1
15	256	747 0.3		52.2	45.7
16	267	747 0.6	*	46.3	39.8
17	268	A 10 + 747 0.3		42.2	35.7
18	242	A 10 + 747 0.6	_	21.6	15.1
		•	V = Vehicl	e ·	
		070 0 -	A = Aspiri	מ	
	#1	252.9 g 251.7 g 262.3 g 267.3 g	747 = CS 7	7 4 ?	
		256.4 g 271.1 g	heparin	nl soln. 1 ml + saline 9 r	nl = 100 unit/ml
				l soln. 3 ml + saline 7 m	
	#7	250.0 g	100 u/m	i som. 5 mi 4 same . 2.	
		245.8 g 257.8 g	•		
		269.0 g		,	
		268.3 g 244.4 g			
		•			•
	#13	247.0 g 262.3 g			
		256.2 g			
		267.3 g 267.6 g			
		242.1 g			

P	a	g.	e	1	50	
r	и	ĸ	8	Т	JU	

#1	0.0613 g	#7	0.0632 g	#13	0.0561 g
#2	0.0513 g	#8	0.0584g	#14	48.6 mg
#3	0.0583 g	#9	0.0518 g	#15	52.2 mg
#4	0.0431 g	#10	0.05 31 g	#16	0.0 463 g
#5	0.0396 g	, #11	0.0305 g	#17	0.0422 g
#6	0.0232 g	#12	41.3 mg	#18	0.0216 g

A. Sugidachi

AV Shunt Thrombosis Model in Rats (Aspirin + CS 747)Protocol: p. 146, 147 Reagents and so on: p. 110, 138 Cage number: 6raC3-01-01 Rat 6 SD male (7 wks, Receipt) Sex, system male SD 36+2 Japan SLC Year round old: 7 weeks Receipt Body weight: Sugidachi Manufacture name: Japan SLC Receipt number: 034163 Receive date: Number of rats: 36 Experimenter: Atsuhiro Sugidachi Housing term: Receipt number: 034163 Additional 2 rats euthanasia using CO2 gas B. W. 72.0 mg 271.0 g 277.6 g 11.3 mg 272.8 g 275.0 g 245.5 g #6 251.6 g 1224.1 mg #10 248.2 g #8 263.9 g #9 253.3 g #7 281.1 g #11 263.4 g 5% Arabic gum = 50 mg/ml #12 263.4 g $= 1224.1 / 24.48 \text{ m} \text{l} dH_2O$ 271.3 g #13 265.3 g Aspirin 266.0 g 255.5 g 10 mg/ml = 72.0 / 7.2 ml 5% Arabic gum soln.245.6 g #18 272.4 g

CS 747

Page 152

		1 mg/ml soln. 1.5	ınl + 5% Arabic gum soln	. 1ml = 0.6 mg/ml
			l + 5% Arabic gum soln. 2	_
		•	_	•
qed	arin	1000 unit/ml soln.	(origine) 1 ml + saline 9	ml = 100 upit/ml
		100 unit/ml soln.	3 ml + saline 7 ml = 30 ur	nit/ml
	B. W. (g)	Treatment	Measured value (mg)	Thrombus (mg)
#1	271	V	55.6	49.1
2	278	A 10	52.9	46.4
3	273	747 0.3	43.9	37.4
4	275	747 <u>0.6</u>	41.0	34.5 .
Б	246	A10 + 74703	24.6	18.1
6	252	A10 + 74706	19.7	13.2
7	281	v	59.0	52. 5.
8	264	A 10	63.2	56.7
9	253	747 0.3	47.1	40.6
10	248	747 <u>0.6</u>	38.5	32.0
11	263	A10 + 7470.3	36.7	30.2
12	263	A10 + 7470.6	35.6	29.1
13	271	v	57.8	51.3
14	265	A 10	44.3	37.8
15	266	747 0.3	46.4	39.9
16	256	747 0.6	42.2	35.7
17	246	A 10 + 747 0.3	48.3	41.8
18	272	A 10 + 747 0.6	36.6	30.1

11.3 mg / 11.3 ml 5% Arabic gum soln. = 1 mg/ml

V = Vehicle A = Aspinin747 = CS 747

#1	0.0556 g	#7	0.0590 g	#13	0.0578 g
#2 [.]	0.0529 g	#8	0.0632 g	#14	44.3 mg
#3	0.0439 g	#9	0.0471 ġ	#15	0.0464 g
#4	0.0410 g	#10	0.0385 g	#16	42.2 mg :
#5	0.0246 g	#11	0.0367 g	#17	48.3 mg
#6	0.0197 g	#12	0.0356 g	#18	36.6 mg
·			A. Sugidachi	Hirose	

Arterio-venous shunt thrombosis model in rats

Aspirin + CS 747 Summary

Vehicle	52.3 <u>+</u> 1.2
Aspiria 10	46.6 <u>+</u> 2.8
CS 747 0.3	43.5 ± 2.1
CS 747 0.6	37.5 <u>+</u> 2.1
Aspirin 10 + CS 747 0.3	30.5 ± 3.5
Aspirin 10 + CS 747 0.6	23.2 ± 3.8

A. Sugidachi

145	;
	i
<u> </u>	
CC P(C)	
CS 747) 毎頃 Exp. 450.	-
Aspiria	
1 mg/ks (4hr) ~ 19 40 mg.	
1 m 1/K) (4hr) 2 5) 20	
December 1950 Card 1950 Ca	
出血時間,) 频果 zt 作27:13 doc 12	
Arpiria 10 + C5747 6.6 2hr	
まる Aspirin 日 + C3797 (6) を中心ていて 975ラー	
とうは 図ーの - の2 からかとうじょって 図と行るり、	
	
	
· · · · · · · · · · · · · · · · · · ·	

	l.	ラット
		70
(J-00 D 100 L 300 E 3 G 6		
(3) 動静脈シャント闘始2時間前に、vehicle(5%アラビアゴム溶液)または顕物を1 ml/kgの割合で経口投与する。1群6匹の実験を行う。		- ケージ - 性別、
(4) あらかじめ作成しておいた上記チューブに30 unit/kgとなるように、生理会 塩液(大塚)で希釈したヘパリン溶液(日本薬局方ヘパリンナトリウム注射液、 大桑薬品工業、Lot No. 97H28A、 入荷)を満たす。		一 周 樂入寒 -
/ (5) 生理食塩液で40 mg/mlに希釈したペントバルビタール溶液(ネンプタール®、 Abbott、Lot No. 20-975-27)を1 ml/kg服腔内投与(40 mg/kg)してラットを麻酔		受付
させる。仰臥位に固定させた後、頸豚脈を穿出させ、シャント用チューブの片。(絹 (糸の付いていない方)をカニュレーションする。続いて、クレンメで血液を遮断しておいた頸動脈に、チューブの反対端をカニュレーションし、動膀脈		
シャントを形成する。		57. 16.
(6) クレンメをはずしてシャントに30分間血液を循環させた後、絹糸に付着し		
	-	1011.
		· .
ファイル AV-shut(3) 1=保存.		
(FOSI57-9)		19.7
		1084.7

B.W. (*) Treet want (例定值(my)) Thrashus (ng) #1 253 Vehile 613 54.8 2 252 Aspirin (D) 51.3 44.8 3 262 (5147 (D) 58.3 51.6 4 267 (5147 (D) 43.1 36.6 5 256 Aspirin (D+ (5147 (D) 37.6 37.1) 6 271 Aspirin (D+ (5147 (D) 23.2 16.7 7 250 V 63.2 56.7 8 246 A (D) 58.4 51.9 9 258 747 (D) 53.8 45.3 1 269 747 (D) 50.5 24.0 12 244 A (D) 147 (D) 41.3 34.8 13 247 V 56.1 49.6		
B.W.(テ) Treat ment (別定値(ms)) Thrashus (ng) #1 253 Vehile 61.3 54.8 2 252 Aspir:a.⑩ 51.3 44.8 3 262 CS747 ② 57.3 51.8 4 267 CS7A ⑥ 43·1 36·6 5 256 Aspir:a.⑩+CS747 ⑥ 37·6 37·1 6 271 Aspir:a.⑫+CS747 ⑥ 23·2 16·7 7 250 V 63·2 56·7 8 246 A ⑩ 53·4 51.9 9 253 747 ⑥ 5) 8 45·3 10 268 A⑩+ 747 ⑥ 70·5 24.0 11 268 A⑩+ 747 ⑥ 70·5 24.0 12 244 A⑩+ 747 ⑥ 41·3 34·8 13 247 V 56·1 47·6		
#1 253 Vehile 61.3 54.8 2 252 Aspirin (10) 51.3 44.8 3 262 (5147 (13) 58.3 51.8 4 267 (5147 (16) 43.1 36.6 5 256 Aspirin (10) 40.147 (10) 37.6 37.1 6 271 Aspirin (10) 40.147 (10) 23.2 16.7 .7 250 V 63.2 56.7 8 246 A (10) 53.4 51.9 9 258 747 (10) 57.8 45.3 (1) 268 A (10) 47.7 (10) 30.5 24.0 12 244 A (10) 47.6 (10) 41.3 34.8 13 247 V 56.1 47.6		
#1 253 Vehile 61.3 54.8 2 252 Aspirin (b) 51.3 44.8 3 262 (5747 (c)) 573.3 51.8 4 267 (5147 (c)) 43.1 36.6 5 256 Aspirin (b) 43.1 36.6 5 256 Aspirin (b) + (5747 (c)) 37.6 37.1 6 271 Aspirin (b) + (5747 (c)) 23.2 16.7 7 250 V 63.2 56.7 8 246 A (b) 57.4 51.9 9 258 747 (c) 53.1 46.6 11 268 A (c) + 747 (c) 30.5 24.0 12 244 A (c) + 747 (c) 41.3 34.8 13 247 V 56.1 47.6	=	
#1 253 Vehile 61.3 54.8 2 252 Aspirin (10) 51.3 44.8 3 262 (5147 (13) 58.3 51.8 4 267 (5147 (16) 43.1 36.6 5 256 Aspirin (10) + (5147 (10) 37.6 33.1 6 271 Aspirin (10) + (5147 (10) 23.2 16.7 7 250 V 63.2 56.7 8 246 A (10) 57.4 51.9 9 258 747 (10) 57.8 45.3 (1) 269 747 (10) 53.1 46.6 11 268 A (10) + 147 (10) 30.5 24.0 12 244 A (10) + 1147 (10) 41.3 34.8 13 247 V 56.1 45.6		=
#1 253 Vehile 61.3 54.8 2 252 Aspirin (10) 51.3 44.8 3 262 (5747 (13) 58.3 51.8 4 267 (5747 (16) 43.1 36.6 5 256 Aspirin (10) 43.1 36.6 5 256 Aspirin (10) 43.1 36.6 271 Aspirin (10) 43.7 (10) 23.2 16.7 7 250 V 63.2 56.7 8 246 A (10) 57.4 51.9 9 258 747 (10) 57.8 45.3 (1) 268 A (10) 747 (10) 70.5 24.0 12 244 A (10) + 1147 (10) 70.5 24.0 13 247 V 56.1 47.6		
2 252 Aspir:n (10) $5 .3$ 44.8 3 262 (5747) (13) 57.3 51.8 4 267 (5747) (13) 43.1 36.6 5 256 Aspir:n (10) + (5747) (13) 37.6 37.1 6 271 Aspir:n (10) + (5747) (14) 23.2 16.7 .7 250 V 63.2 56.7 8 246 A (10) 57.4 51.9 9 258 747 (21) 57.8 45.3 10 269 747 (10) 53.1 46.6 11 268 $A(1)$ 747 (10) 70.5 24.0 12 244 $A(1)$ 747 (10) 41.3 34.8 13 247 V 56.1 47.6		
3 262 (5747 (3) 58.3 51.8 4 267 (5747 (6) 43.1 36.6 5 256 Aspir: (9+65747 (6) 37.6 73.1 6 271 Asq: ((8) + (5747 (6) 23.2 16.7 7 250 V 63.2 56.7 8 246 A (8) 53.4 51.9 9 258 747 (6) 53.1 46.6 11 268 A (8) + 747 (6) 30.5 24.0 12 244 A (8) + 747 (6) 41.3 34.8 13 247 V 56.1 47.6	.	.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- .#-	G
4 267 $C574$ $C6$ $C574$ $C6$ $C574$ $C6$ <td>~</td> <td></td>	~	
5 256 A spir: \bullet		-
6 27 Aspiring + (5747 @) 23.2 16.7 7 250 V 63.2 56.7 8 246 A B 57.4 51.9 9 258 747 D 57.8 45.3) 269 747 D 50 53 46.6 11 268 AB+ 147 D 70 70 70 70 70 70 70 70 70 70 70 70 70	·	╀
7 250 V 63.2 56.7 8 246 A B 58.4 51.9 9 258 747 D 51.8 45.3) 269 747 D 53 46.6 11 268 AB+ 747 D 30.5 24.0 12 244 AB+ 147 D 41.3 34.8 13 247 V 56.1 45.6	-	•
8 246 A® 53.4 51.9 9 258 747⑥ 57.8 45.3) 269 747⑥ 53·1 46.6 11 268 A®+ 747⑥ 30·5 24.0 12 244 A®+ 1147⑥ 41·3 34.8 13 247 V 56·1 45·6	_ # 2	9.4
9 258 747 ② 5).8 45.3) 269 747 ③ 53 46.6 11 268 A@+ 747 ④ 30.5 24.0 12 244 A@+ 1147 ⑥ 41.3 34.8 13 247 V 56.1 45.6		
→ 269 747⑥ 53 46.6 11 268 A®+ 747⑥ 30.5 24.0 12 244 A®+ 747⑥ 4J.3 34.8 13 247 V 56·1 49·6	. 1	1
11 268 A®+ 747@ 30.5 24.0 12 244 A®+ 1147@ 41.3 34.8 13 247 V 56.1 49.6	. 1	
12 244 A®+ 1147(0) 41.3 34.8 13 247 V 56.1 49.6	_	•
13 247 V 56·1 49·6	_ ·#}	0
	<u>.</u> -	-
14 262 AB 43.6 42.1		<u>:</u>
15 256 747 1 52.2 45.7	. ,	
16 267 74760 46.3 39.8	. ÷	6. i
17 Z68 AB+747 @ 42:2 35-7	₩.	
18 242 AB+747(G) 2).6 15.1	۲۰۰۱۲۰	
(V = Vehicle		<u>-</u>
*1 252.99 A · Asp		
262, 3g (77 C. 1.)	- ++-C	_
267.3g 256.4g	<i></i>	U
271.19 ヘパリン		
#7 250.80 1000 u/ml soln. ml + salis 9 ml = 100 unit/ml	1	
257.89 : /00 -/nl s.h Jul + soli 7nl = 30 unityul	#6	0.6
266.39 264.4g	4.0	
	, j	•
#\3 247.89 262.3g - 256.2g		

OCT. 22. 2007 11:08AM +1-212-319-5101 customer 01933 NO. 2427 P. 17 22. 200, 12;17:30 ; Dalichi S, yo IP GOODMAN 151 ;0336805623 # 36/ ラット AV shut 血栓モデル フ・ロトコール (574 P146, 141 ケージ番号: 67C3~01-01 ラッ 1/10 5D 8 (7wks) 茶 性別、系統: 6 周年令: 7週 日本SLC 体重: 日本SLC 入荷日: 匹数: B.W. 爽愍者: 36 杉立 収度 何育期間: 中门 27 1 034163 受付番号: 034163 278 3 273 275 おまけ2亿 3 246 6 ₹52 COzzas z 安外天 B.w. 72.0 mg 过电点. 281 11.3 mg 271.09 곻 264 277.68 272.68 275.68 245.58 253 1224.1 mg 10 248 251.60 11 263 40 248.29 42 263.99 49 253.38 49 263.49)2 263 13

= 50 - 1/ml

24.48 me d H20

5% 77E734 soln.

271

265

266

256 246

272

14

15 .

16

5%アラビアゴム

Aspirin

271.39 265.39 266.09 255.59

245. 59 4B 272.43

