量气法测定过氧化氢催化分解

反应速率系数

一 实验目的

测定 H₂O₂ 分解反应的速率系数和级数,并了解一级反应的特点。

二 实验原理

 H_2O_2 在没有催化剂存在时,分解反应进行得很慢,若用 KI 溶液为催化剂,则能加速其分解。

$$H_2O_2 \xrightarrow{KI} H_2O + \frac{1}{2}O_2$$

该反应的机理是:

第一步 $H_2O_2 + KI \longrightarrow KIO + H_2O$ (慢)

第二步 $KIO\longrightarrow KI + \frac{1}{2}O_2$ (快)

由于第一步的反应速率比第二步慢得多,所以整个分解反应的速率 取决于第一步。如果反应速率用单位时间内 H_2O_2 浓度的减少表示,则 它与 KI 和 H_2O_2 的浓度成正比:

$$-\frac{\mathrm{d}\,c_{_{\mathrm{H}_{2}\mathrm{O}_{2}}}}{\mathrm{d}\,t} = k_{_{\mathrm{H}_{2}\mathrm{O}_{2}}}c_{_{\mathrm{KI}}}c_{_{\mathrm{H}_{2}\mathrm{O}_{2}}} \tag{2-40}$$

式中 c 表示各物质的浓度(mol·L $^{-1}$), t 为反应时间(s), $k_{\rm H_2O_2}$ 为反应速率系数,它的大小仅决定于温度。

在反应过程中作为催化剂的 KI 的浓度保持不变,令 $k_{\rm l}$ = $k_{\rm H_2O_2}c_{\rm \tiny KI}$,则

$$\frac{-\mathrm{d}\,c_{_{\mathrm{H}_2\mathrm{O}_2}}}{\mathrm{d}\,t} = k_1 c_{_{\mathrm{H}_2\mathrm{O}_2}} \tag{2-41}$$

式中 k_1 为表观反应速率系数。此式表明,反应速率与 H_2O_2 浓度的一次方成正比,故称为一级反应。积分上式得:

$$\int_{c_0}^{c_t} -\frac{dc_{H_2O_2}}{c_{H_2O_2}} = \int_0^t k_1 dt$$

$$\ln \frac{c_t}{c_0} = -k_1 t$$
(2-42)

在一定温度与催化剂浓度下, k_1 为定值,所以对一级反应而言, $\frac{c_t}{c_0}$ 的值仅与 t 有关,而与反应物初始浓度无关。

在 H_2O_2 催化分解过程中,t 时刻 H_2O_2 的浓度 c_t 可通过测量在相应的时间内反应放出的 O_2 体积求得。因为分解反应中,放出 O_2 的体积与已分解了的 H_2O_2 浓度成正比,其比例常数为定值。令 V_∞ 表示 H_2O_2 全部分解所放出的 O_2 体积, V_t 表示 H_2O_2 在 t 时刻放出的 O_2 体积, V_t

$$c_0 \propto V_{\infty}$$
 , $c_t \propto (V_{\infty} - V_t)$

将上面的关系式代入式 (2-89), 得到

$$\ln \frac{c_t}{c_0} = \ln \frac{V_{\infty} - V_t}{V_{\infty}} = -k_1 t$$

$$\ln(V_{\infty} - V_t) = -k_1 t + \ln V_{\infty}$$
(2-43)

若 H_2O_2 催化分解是一级反应 则以 $\ln(V_{\infty}-V_{t})$ 对 t 作图应得一直线。 这种利用动力学方程的积分式来确定反应级数的方法称为积分法 , 从直线的斜率可求出表观反应速率系数 k_1 。

如求反应的表观活化能 E_a ,则通过测定不同温度下反应速率系数,根据阿仑尼乌斯(Arrhennius)经验方程:

$$\ln k = -\frac{E_{\rm a}}{R} \frac{1}{T} + C \tag{2-44}$$

以 $\ln k$ 对 $\frac{1}{T}$ 作图得一直线,从其斜率 $\left(-\frac{E_{\rm a}}{R}\right)$ 即可求得表观活化能 $E_{\rm ao}$

三 仪器与试剂

仪器:超级恒温槽,移液管(5 mL),实验装置见图 2-32。

试剂: H₂O₂溶液(3%), KI溶液(0.2mol·L⁻¹)。

四 实验步骤

- 1. 调节超级恒温槽(见本书第五章 § 5-1.6)的水温为 25.0±0.1 或 30.0±0.1 °
- 2. 按图 2-32 装好仪器。 用双连球7通过三通活塞6向 量气管鼓气,并压出皂膜润湿 量气管内壁,以防止实验过程 中皂膜破裂。
- 3. 在反应管中加入 3% H₂O₂ 溶液 5mL,将循环恒温 水通入反应管外水浴夹套。同 时在一小试管中移入 0.2mol· L-1KI 溶液 5mL,放入恒温槽 中恒温。
- 4. 在反应管内加入搅拌 拌速度,使搅拌子在反应管中 转速恒定,并在量气管下部压 出皂膜备用。

图 2-32 H₂O₂分解测定装置 子,打开磁力搅拌器,调节搅 1-反应管;2-搅拌子;3-水浴夹套;4-温度计; 5-磁力搅拌器;6-三通活塞;7-双连球; 8-橡皮滴头(内盛肥皂水);9-量气管

- 5. 把小试管中的 KI 溶液倒入反应管中,约1分钟后塞上反应管上 的橡皮塞,同时旋转活塞6使放出的氧气进入量气管。任选一时刻作为 反应起始时间,同时记下量气管中皂膜位置读数 Z_0 ,以后每隔 1 min 记 录一次读数 Z_t , 共 10 次。
- 6. 等分解反应基本完成后,此时反应管中没有气体放出,量气管中 皂膜位置不再变化,记下量气管中皂膜位置的读数即为 Z_{∞} 。

五 数据记录与处理

- 1. 记录反应条件(反应温度、催化剂及其浓度)并列表记录反应时 间 t 和量气管读数 Z_t 的对应值。
 - 2. 计算 V_t 和 V_{∞} : $V_t = Z_0 Z_t$, $V_{\infty} = Z_0 Z_{\infty}$ 。
 - 3. 以 $\ln(V_{\infty} V_t)$ 对 t 作图 , 从所得直线的斜率求表观反应速率系数

六 思考题

- 1. 反应中 KI 起催化作用,它的浓度与实验测得的表观反应速率系数 k_1 的关系如何?
- 2. 实验中放出氧气的体积与已分解了的 H_2O_2 溶液浓度成正比,其比例常数是什么?试计算 5mL 3% H_2O_2 溶液全部分解后放出的氧气体积(25 ,101.325 kPa,设氧气为理想气体,3% H_2O_2 溶液密度可视为 $1.00~\rm g\cdot cm^{-3}$)。
- 3. 若实验在开始测定 V_0 时,已经先放掉了一部分氧气,这样做对实验结果有没有影响?为什么?

实验指导参考

一、教学要点

- 1、物理量代浓度的概念及其在 H_2O_2 分解反应中的应用 (H_2O_2 浓度 与放出 O_2 体积之间的关系)。
 - 2、动力学方程式的建立有微分法和积分法两种方法。

微分法: $r=-\mathrm{d}c/\mathrm{d}t=kc^\alpha$,这里 r 为反应速率 ,c 为反应物 $\mathrm{H}_2\mathrm{O}_2$ 的浓度 , t 为时间 , α 为反应级数。由此 , $\ln r=\ln k+\alpha\ln c$,以 $\ln r$ 对 $\ln c$ 作图为直线 , 斜率为反应级数 α ,截距为 $\ln k$,即可求得反应速率系数 k。

积分法:如教材所示, $\ln(V_\infty-V_t)=-kt+\ln V_\infty$,若 $\ln(V_\infty-V_t)$ 对 t 作图为直线即证明这是一级反应,由斜率求得 k 。

3、反应过程中 , t 时刻 H_2O_2 的浓度 c 与在相应时间内反应放出的 O_2 体积成正比。

H₂O₂ 溶液体积为 0.010L, 当时大气压为 101325Pa,则

$$c = \frac{2 \times 101325 \times V \times 10^{-6}}{0.010 \times 8.314 \times T}$$
 这里 V 是以 mL 为单位的 O_2 的体积。

4、皂膜流量计的使用方法并示范之。

二、指导实验注意点

- 1、讲清皂膜流量计三通活塞的转向。鼓泡时需缓慢有度,使皂膜清晰有序。
- 2、 H_2O_2 与 KI 溶液须分别恒温十分钟以后方可混合。计量体积可在任意是刻开始,以混合后一分钟内为宜。应取较靠近量气管底部的皂膜作为计量用。第一分钟内放出的 O_2 体积以 $5\sim 6mL$ 为宜。
- 3、为求取 V_{∞} ,可在计时结束后再等待 20 分钟,即总反应时间在 30 分钟以上,此时的读数即可认为是 V_{∞} 读数。
- 4、因为量气管读数为由大到小,计算时应予以换算。设 t_0 时读数为 Z_0 ,t 时读数为 Z_t , 时读数为 Z_∞ ,则 V_t = Z_0 Z_t , V_∞ = Z_0 Z_∞ ,所以 V_∞ V_t = Z_t Z_∞ .

三、数据处理示例

	T=298.2K	$c (H_2O)$	$c(H_2O_2) = 3\%$		c(KI) = 0.2 mol/L		$V_{\infty} = 5.2 \text{mL}$	
t	Z_t	$V_{\infty} - V_t$	$\ln(V_{\infty}-V_t)$	c	$\ln c$	r	ln r	
0.00	48.60	43.40	3.7705	0.3547	-1.0364			
1.00	42.80	37.60	3.6270	0.3073	-1.1798	0.0441	-3.1204	
2.00	37.80	32.60	3.4843	0.2665	-1.3225	0.0380	-3.2699	
3.00	33.50	28.30	3.3429	0.2313	-1.4639	0.0327	-3.4205	
4.00	29.80	24.60	3.2027	0.2011	-1.6041	0.0282	-3.5684	
5.00	26.60	21.40	3.0634	0.1749	-1.7434	0.0245	-3.7082	
6.00	23.80	18.60	2.9232	0.1520	-1.8836	0.0213	-3.8513	
7.00	21.40	16.20	2.7850	0.1324	-2.0218	0.0184	-3.9959	
8.00	19.30	14.10	2.6462	0.1153	-2.1606	0.0159	-4.1390	
9.00	17.50	12.30	2.5096	0.1005	-2.2972	0.0139	-4.2762	
10.00	15.90	10.70	2.3702	0.0875	-2.4366	0.0123	-4.4013	
11.00	14.50	9.30	2.3300	0.0760	-2.5768	0.0110	-4.5067	
12.00	13.20	8.00	2.0794	0.0654	-2.7274			

 $\ln r \sim \ln c$: $\alpha = 1.008$ $k = 0.143/\min$ $\ln(V_{\infty} - V_t) \sim t$: $k = 0.139/\min$

四、思考题解答要点

 $1, \quad k_1 = k \cdot c_{KI}^{\beta}$

2、见教学要点第2点。

3、没有影响,对于一级反应,速率系数决定于 $c_{\rm t}/c_0$ 。

五、进一步讨论

1. 本实验令 $k_1=k_{\rm H_2O_2}c_{\rm KI}$,即设催化剂 KI 反应级数为一级。如要验证反应对 $c_{\rm KI}$ 确为一级反应,并求得该反应的速率系数 $k_{\rm H_2O_2}$,还必须进行如下实验:

配置不同 c_{KI} 的反应液,测得各相应的 k_1 ,以 $\ln k_1$ 对 $\ln c_{KI}$ 作图。若得直线的斜率接近 1,即证明此反应对 c_{KI} 确为一级,并可求得 $k_{H,O}$,值。

由于含有强电解质 KI 的水溶液的离子强度对反应速率的影响,若用不同的 $c_{\rm KI}$ 作实验时,应外加第三组分(如 KCl)以调节溶液的离子强度,使它们相同。

除 KI 可作催化剂以外,其它的如 Ag、 MnO_2 、 $FeCl_3$ 、 $Fe_2(SO_4)_3$ 等 也都是该分解反应的很好的催化剂。

2. 严格地讲,用含水量气管测量气体体积时,都包含着水蒸气的分体积。若在某温度 t 时,水蒸气已达饱和,则 V_t 应按下式计算:

$$V_{t} = V_{t,\text{ml}} \left(1 - \frac{p_{\text{H,O}}^{*}}{p_{\text{t}}} \right)$$
 (2-45)

式中 $p_{H,O}^*$ 为量气管温度下水的饱和蒸气压。