Fractions Rationnelles Généralités MPSI 2

On note $\mathbb{K}(X)$ le corps des fractionnelles sur \mathbb{K} (le corps des fractions de l'anneau intègre $\mathbb{K}[X]$).

L'existence et la construction de $\mathbb{K}(X)$ sont admises.

- Soit $(P_1, Q_1) \in \mathbb{K}[X]^2, (P_2, Q_2) \in \mathbb{K}[X]^2, Q_1 \neq 0$ et $Q_2 \neq 0$

 $\begin{array}{l} -\frac{P_1}{Q_1}+\frac{P_2}{Q_2}=\frac{P_1Q_2+P_2Q_1}{Q_1Q_2} \text{ Elément neutre}: \frac{0}{Q} \\ -\frac{P_1}{Q_1}\times\frac{P_2}{Q_2}=\frac{P_1P_2}{Q_1Q_2} \text{ Elément unit\'e}: \frac{Q}{Q} \\ -\frac{P_1}{Q_1}=\frac{P_2}{Q_2} \iff P_1Q_2=P_2Q_1 \\ \text{On dit que } (P_1,Q_1) \text{ et } (P_2,Q_2) \text{ sont deux repr\'esentants de la m\'eme fraction.} \end{array}$

- On a $\mathbb{K} \stackrel{\varphi}{\hookrightarrow} \mathbb{K}[X] \stackrel{\iota}{\hookrightarrow} \mathbb{K}(X)$ "iota"
 - $\varphi \colon \mathbb{K} \longrightarrow K[X]$ est un homomorphisme d'anneaux injectif $\lambda \longmapsto (\lambda, 0, 0, \dots)$
 - $\iota \colon \mathbb{K} \longrightarrow K[X]$ est un homomorphisme d'anneaux injectif

$$P \longmapsto \frac{P}{1}$$

• Forme irréductible d'une fraction rationnelle :

Pointe intedectible d'une fraction race
$$\frac{P}{Q} \text{ où } \begin{cases} P \in \mathbb{K}[X], Q \in \mathbb{K}[X], Q \neq 0 \\ P \land Q = 1 \\ Q \text{ est unitaire} \end{cases}$$

Propriété 0.0.1

Toute fraction rationnelle de $\mathbb{K}[X]$ peut être mise de manière unique sous forme irréductible.

• Existence : Soit $(P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X]^*$

$$D = \operatorname{pgcd}(P, Q)$$

 $D = \operatorname{pgcd}(P,Q)$ Alors $\exists (P_1,Q_1) \in \mathbb{K}[X]^2, P = DP_1 \text{ et } Q = DQ_1 \text{ et } P_1 \wedge Q_1 = 1$ On a : $\frac{P}{Q} = \frac{P_1}{Q_1}$

Soit λ le coefficient dominant de Q_1 .

Alors $\lambda \in \mathbb{K}^*$ et : $\exists Q_2 \in \mathbb{K}[X], Q_1 = \lambda Q_2$ et Q_2 est unitaire

$$\frac{P_1}{Q_1} = \frac{\lambda(\lambda^{-1}P_1)}{\lambda Q_2} = \frac{\lambda^{-1}P_1}{Q_2}$$

Posons $P_2 = \lambda^{-1} P_1$.

 $P_2 \wedge Q_2 = 1 \text{ car } P_1 \wedge Q_1 = 1.$

Finalement, le couple (P_2, Q_2) convient.

• Unicité : Supposons qu'il existe deux formes irréductibles (P_1,Q_1) et (P_2,Q_2) d'une même fraction.

Alors:
$$\begin{cases} P_1 \wedge Q_1 = 1 \\ P_2 \wedge Q_2 = 1 \\ Q_1, Q_2 \text{ unitaires} \\ P_1 Q_2 - P_2 Q_1 = 0 \end{cases}$$

$$P_1Q_2=P_2Q_1$$
 En utilisant un théorème de GAUSS, on obtient :
$$\begin{cases} Q_2|Q_1\\Q_1|Q_2 \end{cases}$$

Donc Q_1 et Q_2 sont des polynomes associés. Comme Q_1 et Q_2 sont unitaires, on en déduit que $Q_1 = Q_2$, d'où l'unicité de l'écriture.

Définition 0.0.1

Soit
$$F \in \mathbb{K}[X] : \exists (P,Q) \in \mathbb{K}[X]^2, Q \neq 0$$
 et $F = \frac{P}{Q}$
On pose : $\deg(F) = \deg(P) - \deg(Q)$

Justification : Soit (P,Q) et (P',Q') deux représentants de F.

Alors PQ' = P'Q

Donc: deg(P) + deg(Q) = deg(P') + deg(Q')D'où: deg(P) - deg(Q') = deg(P') - deg(Q)

Propriété 0.0.2

Soit F_1 et F_2 deux éléments de $\mathbb{K}[X]$. On a :

$$\deg(F_1 + F_2) \le \max(\{\deg(F_1), \deg(F_2)\})$$
Si $\deg F_1 \ne \deg F_2$ alors $\deg(F_1 + F_2) = \max(\{\deg(F_1), \deg(F_2)\})$

$$\deg(F_1 F_2) = \deg(F_1) + \deg(F_2)$$