A CONCEPTUAL MODEL FOR OPTIMIZATION PROBLEMS

JEAN P. MARTINS jeanp@dei.uc.pt

ABSTRACT. Defines general concepts related to combinatorial optimization problems and illustrates how they can be used to implement metaheuristics in terms of elementar neighborhood-based operations.

1. Definitions

Definition 1.1 (Component). In a combinatorial optimization problem, a component $c \in C$ is the elementary unity of a solution.

Definition 1.2 (Search space). The search space S of a combinatorial optimization problem is a subset of the power set of components $S_{\leq n}(2^C)$ (only S from now on), in which elements $x \in S$ can be composed of a maximum of n components. In practical terms, S is implicitly defined by C and n.

Example 1.1 (Knapsack problem component). In a knapsack problem, a component is an item. There are n available items (components) $C = \{1, 2, ..., n\}$. Therefore, elements $x \in S$ can be composed of a maximum of n items, i.e. |C| = n.

Example 1.2 (Minimum spanning tree component). In a minimum spanning tree problem, a component is an edge. Considering a undirected complete graph G = (V, E), with |V| = n, there are $|C| = (n^2 - n)/2$ available edges (components).

Definition 1.3 (Neighborhood). A neighborhood function $N_k(x) = \{y \in S : d(x,y) = \delta(k)\}$ defines the neighbors of x in terms of components, with $k \geq 0$ denoting the number of components in which x and y differ. The size of N(x) is usually $|C| \in O(n^k)$.

Example 1.3 (Add/remove neighborhood). Solutions $x, y \in S$ are neighbors if they differ in only one component, i.e. k = 1. A solution y can be generated from x by adding or removing a component.

Example 1.4 (Swap neighborhood). Solutions $x, y \in S$ are neighbors if they differ in two components, i.e. k = 2. A solution y can be generated from x by removing a component and adding another component.

Example 1.5 (2-opt neighborhood). Solutions $x, y \in S$ are neighbors if they differ in two components, i.e. k = 2. A solution y can be generated from x by removing two components (edges) (a, b) and (c, d) and adding the components (edges) (a, d) and (c, b).

Observe that the neighborhoods add/remove and swap are independent of the component structure, whereas 2-opt assume the components are edges in a graph.

Date: July 7, 2015.

2. Implementation details

Definition 2.1 (Search space). The search space structure S defines the list of components C it supports.

Definition 2.2 (Solution). Solutions x, as elements of the search space S, have a copy of the component list. The components composing x are stored in $C_u = \{c \in C : c \in x\}$, the remaining (available) are stored in $C_a = \{c \in C : c \notin x\}$. In summary, $C_u \cup C_a = C$.

Definition 2.3 (Neighborhood). Neighboring solutions are generated by the function N, which has access to solutions x and their component lists.