

Semester 1 Examinations 2011/2012

Exam Codes 1AH1, 1AH2, 1HA1, 1PAH1, 1MA1, 4BS3, 4FM2

Exams Postgraduate Diploma in Arts (Mathematics/Mathematical Science)

Higher Diploma (Mathematical Science)

M.A. (First Year)

B.Sc. Financial Mathematics & Economics

B.Sc. (Mathematics)

Module Measure Theory (Advanced Analysis I)

Module Code MA490/MA540

External Examiner Dr Colin Campbell Internal Examiner(s) Prof. Graham Ellis

Dr Ray Ryan

Instructions: Answer every question.

Duration 2 Hours

No. of Pages 3 pages, including this one

Department School of Mathematics, Statistics and Applied Mathematics

Requirements: No special requirements

Release to Library: Yes

You must answer every question

Q1 [49%] Answer seven of the following:

- (a) Let A, B, C, be three subsets of a set X and let A be the algebra generated by them. What is the biggest possible number of elements A can have? Explain your answer.
- (b) U, V are two subsets of a set X and a sequence of subsets of X is defined as follows: $E_1 = \emptyset$, $E_2 = X$, $E_n = U$ if n > 2 is odd and $E_n = V$ if n > 2 is even. Find $\lim \inf E_n$ and $\lim \sup E_n$.
- (c) Give a verbal description of the following events in Bernoulli space:

(i)
$$\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k \cap E_{k+1} \cap E_{k+2}$$
 (ii)
$$\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} E_k^c$$

- (d) (i) If (A_n) is a sequence of measurable events in a probability space satisfying $P(A_n) = 3^{-n}$, find $P([A_n, i.o.])$.
 - (ii) If (B_n) is an independent sequence of measurable events with the property that $P(B_n) = 1/n$, find $P([B_n^c, \text{ev.}])$.
- (e) Let D be the set of numbers in the interval [0,1] that have a decimal expansion in which the digit 2 does not appear. Show that D is a Borel set. State one other interesting property of this set.
- (f) Show that, if f is a measurable function, then the function f^2 is also measurable. Show that the converse is false.
- (g) Let $f_n(x) = n(1-x)x^n$. You may take it that $f_n(x) \to 0$ as $n \to \infty$ for every $x \in (0,1)$. Show that this sequence does not converge uniformly on the interval (0,1). What does Egorov's Theorem tell you about this sequence?
- (h) Give an example of a series $\sum g_n$ of Lebesgue integrable functions on \mathbb{R} , that converges but for which term by term integration is not valid. Sketch the graphs of g_1 and g_2 .
- (i) Let (X, \mathcal{A}, μ) be a measure space and let f be a nonnegative measurable function on X such that $\int_X f d\mu = 0$. Show that f = 0 almost everywhere.
- (j) Determine which (if any) of the following numbers belong to the Cantor Set:

$$\frac{1}{9} + \frac{2}{27}, \qquad \frac{2}{\pi}, \qquad (0.02001)_3, \qquad \frac{8}{9}$$

(k) Let $f: \mathbb{R} \to \mathbb{R}$ be the function

$$f(x) = \begin{cases} x+3 & \text{if } x \notin \mathbb{Q} \\ \sin e^x & \text{if } x \in \mathbb{Q} \end{cases}$$

Find the Lebesgue integral of f on the interval [0,1].

You must answer every question.

Q2 [17%]

(a) Give the definition of a *measure*. If (E_n) is an sequence of measurable sets, show that

$$\mu\bigg(\bigcup_{n=1}^{\infty} E_n\bigg) \le \sum_{n=1}^{\infty} \mu(E_n)$$

(b) Give the definition of $\lim \inf B_n$ and $\lim \sup B_n$, where (B_n) is a sequence of sets. Show that, if the sequence (B_n) is decreasing, then

$$\lim \sup B_n = \bigcap_{n=1}^{\infty} B_n$$

(c) State the two Borel-Cantelli Lemmas.

Q3 [17%] Let X be a set and A a σ -algebra of subsets of X.

(a) Suppose the function $f: X \to \mathbb{R}$ is measurable, so that $\{x \in X : f(x) > \lambda\}$ is a measurable set for every $\lambda \in \mathbb{R}$. Show that the sets

(i)
$$\{x \in X : f(x) < \lambda\}$$
 and (ii) $\{x \in X : f(x) = \lambda\}$

are measurable for every $\lambda \in \mathbb{R}$.

(b) If f and g are measurable functions, show that the function f - g is measurable.

Q4 [17%] Let (X, \mathcal{A}, μ) be a measure space.

- (a) Give an account of the definition of the integral $\int_X f d\mu$ for nonnegative measurable functions f on X.
- (b) State Lebesgue's Monotone Convergence Theorem (LMCT). Give an example of a sequence of functions for which term by term integration is not permissable. Explain why LMCT cannot be applied to your example.
- (c) Describe the construction of the Cantor Set and prove that this set is uncountable.