Part 2-KD Project

Abstract

We explore a series of Knowledge Distillation (KD) strategies for improving student model performance:

- 1. Baseline: Training with cross-entropy loss only
- 2. **KD:** Adding KL divergence to transfer soft targets from the teacher
- 3. **KD + Alignment:** Aligning student and teacher attention on causally relevant regions
- KD + Attention Transfer: Enhancing knowledge transfer with spatial attention maps
- 5. KD + Attention + Alignment: Combining both mechanisms for optimal knowledge transfer

Abstract

We evaluate whether this step-by-step or leave one out enhancement leads to:

Higher classification accuracy

Better robustness to corrupted inputs (e.g., CIFAR-10)

Greater model efficiency (fewer parameters, faster inference)

Why Is This Problem Challenging?

- The teacher and student networks differ in depth, width, and representation capacity
- Aligning their attention maps is non-trivial due to structural differences
- Not all teacher attention is useful, Teacher sometimes focus on irrelevant regions, requires causal filtering
- Balancing multiple losses (CE, KL, Attention, Alignment) requires careful tuning , Choosing the right weights $(\lambda_1 \lambda_4)$ is delicate too much of one signal can dominate the learning

How We Structured the Solution

Step-wise comparison:

 Baseline → KD → KD +Alignment → KD+Attention → KD + Attention + Alignment

Robust evaluation:

Accuracy, efficiency

Loss integration:

Combine CE, KL, masked MSE, and alignment losses into unified training

Our Experiment

Research Question:

Can the incorporation of Alignment and Attention Transfer techniques enhance the effectiveness of Knowledge Distillation in improving student model accuracy for image

classification?

Innovation Through Selective and Aligned Attention Transfer

- Instead of transferring all attention maps from the teacher to the student, we transfer only the causally influential attention.
- These regions are identified using gradient-based causal masks.
- A masked alignment loss is applied so the student learns to focus where it truly matters.
- This results in cleaner, more focused knowledge transfer, which improves generalization and reduces overfitting.

Attention Maps in KD – Key Ideas

- What is attention? A spatial map indicating which parts of the input the network focuses on.
- How it's used: Extracted by computing the sum of squared feature activations across channels.
- Why it matters: Transferring attention maps helps the student learn where to focus, mimicking the teacher's internal reasoning.

Attention Maps in KD – Example

Alignment in KD-Key Ideas

- What is alignment? A contrastive learning mechanism that encourages the student's attention to match the teacher's only for the same image.
- How it's used: Apply contrastive loss: pull positive pairs (same image) together, push negative pairs (different images) apart in the attention space.
- Why it matters: It avoids blind copying the student learns to focus like the teacher, but only when appropriate.

What Are We Changing and Exploring?

what are we changing?

- 1. We replace traditional training or ensembling approaches with a Knowledge Distillation framework, where a compact student model learns from both:
 - The true labels (hard supervision)
 - The soft output distributions of a larger teacher (soft supervision)

What Are We Changing and Exploring?

what are we exploring?

- Beyond Standard KD:
 - Can we achieve significant gains by enhancing KD with attention and alignment mechanisms?
- 2. Student Efficiency vs. Teacher Performance:
 - How close can a smaller, cheaper student get to a large teacher's accuracy?
- 3. Role of Attention & Alignment:
 - Do attention transfer and masked alignment lead to better generalization and robustness?

Knowledge Distillation in image classification task

 Goal: Enhance the performance of a lightweight neural network by distilling knowledge from a larger, well-trained Teacher model.

 Method: Knowledge Distillation (KD) – Apply KD to transfer soft targets and internal representations (e.g., attention maps) from the Teacher to the Student.

Focus: Accuracy, efficiency, and generalization.

- 1. Baseline (Student Only No KD)
 - Model: Lightweight ResNet18 trained from scratch
 - Supervision: Cross-entropy loss with ground-truth labels only
 - Goal: Serve as a lower-bound reference for student performance

- 2. KD (Standard Knowledge Distillation)
 - Teacher: Pretrained ResNet50 with CBAM
 - Student: ResNet18
 - Supervision:
 - Cross-entropy loss (CE)
 - KL Divergence loss (KD) on soft logits from the teacher
 - Goal: Teach student via soft labels and improve accuracy

3. KD + Alignment

- Additional Component: Masked Attention Alignment Loss
- Steps:
 - Extract attention maps from both teacher and student
 - Generate causal mask from teacher (via gradients)
 - Align student's attention only in masked regions
- Objective: Encourage spatial agreement without requiring negative samples
 - Loss: MSE between masked attention maps

- 4. KD + Attention Transfer
 - Additional Component: Masked Attention Transfer
 - Steps:
 - Compute squared attention activations
 - Mask irrelevant regions using the causal mask
 - Minimize MSE on masked areas
 - Objective: Guide student to focus like the teacher, but only on useful areas

- 5. KD + Attention + Alignment (Full Method)
 - Full Loss Components
 - Combines hard labels, soft logits, masked attention transfer, and masked attention alignment
 - Goal: Achieve best accuracy, generalization, and robustness

Dataset and Preprocessing

Dataset: CIFAR-10 – 60,000 color images (32x32), 10 balanced classes.

- **Split**: 50k training/10k validation
- Preprocessing:
 - Random horizontal flip
 - Random crop with padding
 - Normalization using dataset mean and std

Training Strategy

- Step 1: Forward input through teacher → extract attention & causal mask
- Step 2: Forward same batch through student
- **Step 3:** Compute relevant loss terms (CE, KD, masked MSE, alignment)
- Step 4: Backpropagate & update student only

Evaluation Metrics

- Top-1 Accuracy on validation set
- Model size (parameter count)
- Inference time per sample

Methodology Overview: Comparative Knowledge Distillation Approaches

- Objective: Compare multiple distillation strategies using CIFAR-10
- Teacher: ResNet-50
- Student: ResNet-18

Methods Compared:

- 1. Baseline
- 2. KD
- 3. KD + Alignment
- 4. KD + Attention Transfer
- 5. KD + Both

Method 1 – Baseline: Training with cross-entropy loss only

Cross-entropy loss with ground-truth labels only

• Used between the student model's output and the true class labels (i.e., hard targets).

$$\mathcal{L}_{CE} = -\sum_{i=1}^{C} y_i \cdot \log(\hat{y}_i)$$

Method 2: KD (Standard Knowledge Distillation)

- Cross-entropy loss (CE)
- KL Divergence loss (KD) on soft logits from the teacher
 - a. Goal: Mimic the teacher's soft probability distribution
 - b. Captures teacher's knowledge of class similarities, helping student generalize better

$$\mathcal{L}_{KD} = \sum \hat{p}_{ ext{teacher}}^T \cdot \log \left(rac{\hat{p}_{ ext{teacher}}^T}{\hat{p}_{ ext{student}}^T}
ight)$$

Method 3: KD + Alignment

Additional Component: Masked Attention Alignment Loss

- Loss: MSE between masked attention maps
 - Only compute MSE where the teacher's mask indicates high importance.

$$\mathcal{L}_{ ext{Align}} = rac{1}{N} \sum_{i=1}^{N} M_i \cdot \left(A_i^{ ext{student}} - A_i^{ ext{teacher}}
ight)^2$$

Method 4: KD + Attention Transfer

Additional Component: Masked Attention Transfer

• Loss: Minimize MSE on masked areas

 Objective: Guide student to focus like the teacher, but not only on useful areas

$$\mathcal{L}_{\mathrm{attn}} = \mathrm{MSE}(A_{\mathrm{student}} \odot M, A_{\mathrm{teacher}} \odot M)$$

Method 5: KD + Attention + Alignment (Full Method)

Full Loss Components

- Combines hard labels, soft logits, masked attention transfer, and masked attention alignment
- Goal: Achieve best accuracy, generalization, and robustness

$$\mathcal{L}_{ ext{total}} = lpha \cdot \mathcal{L}_{ ext{KD}} + eta \cdot \mathcal{L}_{ ext{Align}} + \gamma \cdot \mathcal{L}_{ ext{Attn}}$$

Method Comparison Summary

Model	Architecture	Supervision Type	Additional Components	Loss Functions	Objective / Goal
• 1. Baseline (Student Only – No KD)	ResNet18 (lightweight, from scratch)	Ground-truth only	None	Cross-Entropy (CE)	Serve as lower-bound for student model performance
• 2. Standard KD (Knowledge Distillation)	Teacher: ResNet50 + CBAM Student: ResNet18	Hard & Soft labels	None	Cross-Entropy (CE) KL Divergence (KD)	Improve student by mimicking soft logits of teacher
• 3. KD + Alignment	Same as above	Hard & Soft labels + masked attention regions	Masked Attention Alignment	CE + KD + MSE (masked attn alignment)	Align spatial attention between teacher and student using causal masking
4. KD + Attention Transfer	Same as above	Hard & Soft labels + masked attention regions	Masked Attention Transfer	CE + KD + MSE (masked attn transfer)	Transfer squared attention maps in causal regions to guide focus
• 5. Full Method (KD + Attention + Alignment)	Same as above	Hard & Soft labels + attention alignment and transfer	Masked Attention Transfer + Masked Attention Alignment	CE + KD + λ ₁ · MaskedAttn + λ ₂ · Alignment	Combine all techniques for best generalization, robustness, and accuracy

5e-4

5e-4

30

30

Batch Size

64

64

Yes

Yes

Hyperparameters Training Configuration							
Model	Learning Rate	Optimizer	Momentum	Weight Decay	Epochs	Early Stopping	Ва
1. Baseline (Student Only)	0.01	SGD	0.9	5e-4	30	Yes	64
2. KD (Standard)	0.01	SGD	0.9	5e-4	30	Yes	64
3. KD +	0.01	SGD	0.9	5e-4	30	Yes	64

0.9

0.9

SGD

SGD

Alignment

0.01

0.01

4. KD +

5. Full

Method

(KD + Attention + Alignment)

Attention Transfer

Summary & Fair Comparison

- Same teacher/student architecture across all methods
- Same dataset, preprocessing, and training setup
- Controlled evaluation with identical hyperparameters
- Early stopping ensures unbiased performance comparison
- Enables fair ablation of Alignment & Attention impact

Training Strategy

- 1. Forward input batch through the teacher
 - a. Extract intermediate attention maps
 - b. Compute causal masks based on teacher gradients
- 2. Forward same input batch through the student
 - a. Get student predictions
 - b. Extract corresponding attention maps
- 3. Compute total loss
 - a. KD loss (e.g., KL-divergence with soft targets)
 - b. classification loss (e.g., CrossEntropy)
 - c. Attention alignment loss (e.g., MSE between student and teacher maps over causal regions)
- 4. Backpropagate total loss and update student weights
 - a. Use optimizer to update student parameters

```
P Epoch 20/30
 Train Loss: 0.3433 | Accuracy: 0.8791
Test Loss: 0.4560 | Accuracy: 0.8513
נשמר המורה הטוב ביותר
P Epoch 21/30
Train Loss: 0.3318 | Accuracy: 0.8830
Test Loss: 0.4567 | Accuracy: 0.8494
Epoch 22/30
 Train Loss: 0.3338 | Accuracy: 0.8817
Test Loss: 0.5091 | Accuracy: 0.8356
P Epoch 23/30
Train Loss: 0.3219 | Accuracy: 0.8885
Test Loss: 0.4796 | Accuracy: 0.8441
Epoch 24/30
Train Loss: 0.3102 | Accuracy: 0.8907
Test Loss: 0.4659 | Accuracy: 0.8488
P Epoch 25/30
Train Loss: 0.3109 | Accuracy: 0.8900
Test Loss: 0.4646 | Accuracy: 0.8497
P Epoch 26/30
Train Loss: 0.2980 | Accuracy: 0.8959
Test Loss: 0.4431 | Accuracy: 0.8558
נשמר המורה הטוב ביותר 🌌
P Epoch 27/30
Train Loss: 0.2889 | Accuracy: 0.8981
Test Loss: 0.5032 | Accuracy: 0.8379
P Epoch 28/30
Train Loss: 0.2830 | Accuracy: 0.9010
Test Loss: 0.4659 | Accuracy: 0.8529
P Epoch 29/30
Train Loss: 0.2812 | Accuracy: 0.9011
Test Loss: 0.4796 | Accuracy: 0.8492
P Epoch 30/30
Train Loss: 0.2787 | Accuracy: 0.9032
```

Test Loss: 0.5252 | Accuracy: 0.8310

האימון הסתיים! דיוק מירבי: 0.8558 🌺

Teacher training for the task

Metric	Best Epoch (26/30)	Final Epoch (30/30)	Comments
Train Loss	0.2980	0.2787	Continued to decrease slightly
Train Accuracy	0.8959	0.9032	Slight improvement
Test Loss	0.4431	0.5252	Lowest at Epoch 26 – then worsened
Test Accuracy	0.8558	0.8310	Highest at Epoch 26 – slight decline
Early Stopping	Not Used	Not Used	Model continued past optimum
Optimization Outcome	Local Optimum Reached	Slight Overfitting	Training beyond Epoch 26 not beneficial

Method 1 - baseline

```
Train Acc: 0.8287 | • Val Acc: 0.7920

Baseline Epoch 26/30

Train Acc: 0.8347 | • Val Acc: 0.8008

חוול שמירה של המוול עם הביצועים הטובים ביותר

Baseline Epoch 27/30

Train Acc: 0.8358 | • Val Acc: 0.7996

Baseline Epoch 28/30

Train Acc: 0.8400 | • Val Acc: 0.8056

חוול שמירה של המוול עם הביצועים הטובים ביותר

Baseline Epoch 29/30

Train Acc: 0.8428 | • Val Acc: 0.8054

Baseline Epoch 30/30

Train Acc: 0.8452 | • Val Acc: 0.7999
```

CrossEntropy

25

Method 2 - KD

```
    KD Epoch 25/30
    Train Acc: 0.8636 | Test Acc: 0.8300
    שמירה של המודל הטוב ביותר
    KD Epoch 26/30
    Train Acc: 0.8655 | Test Acc: 0.8324
    שמירה של המודל הטוב ביותר
    KD Epoch 27/30
    Train Acc: 0.8704 | Test Acc: 0.8259
    KD Epoch 28/30
    Train Acc: 0.8766 | Test Acc: 0.8249
    KD Epoch 29/30
    Train Acc: 0.8812 | Test Acc: 0.8364
    שמירה של המודל הטוב ביותר
    KD Epoch 30/30
    Train Acc: 0.8844 | Test Acc: 0.8316
```


Accuray comparison on training and val - baseline vs KD

	Model	Best Train Accuracy	Best Validation Accuracy
0	Baseline Student	0.8400	0.8056
1	KD Student	0.8812	0.8364

Method 3 - KD + Alignment

Method 4 - KD + Attention Transfer

Method 3 Vs Method 4

	Model	Epoch	Train Accuracy	Val Accuracy
0	Group 3 (Align)	29	0.87902	0.8278
1	Group 4 (Attention)	30	0.88236	0.8353

Method 5 KD + Attention Transfer + Alignment

```
Train Acc: 0.8543 | Val Acc: 0.8203
   Losses | CE: 0.5088, Feat: 0.0041, Att: 0.0009, Total: 0.2085
   No improvement. Patience: 2/7

▲ Group 5 Epoch 24/30

■ Train Acc: 0.8589 | Val Acc: 0.8173
   Losses | CE: 0.4539, Feat: 0.0041, Att: 0.0009, Total: 0.2019
   No improvement. Patience: 3/7

▲ Group 5 Epoch 25/30

Train Acc: 0.8625 | Val Acc: 0.8186
   Losses | CE: 0.6118, Feat: 0.0041, Att: 0.0009, Total: 0.1960
  No improvement, Patience: 4/7

≤ Group 5 Epoch 26/30

Train Acc: 0.8667 | Val Acc: 0.8274
Losses | CE: 0.3167, Feat: 0.0040, Att: 0.0009, Total: 0.1919
Mew best model saved! Val Acc: 0.8274
Train Acc: 0.8728 | Val Acc: 0.8240
  Losses | CE: 0.3407, Feat: 0.0041, Att: 0.0009, Total: 0.1839
No improvement. Patience: 1/7

▲ Group 5 Epoch 28/30

Train Acc: 0.8759 | Val Acc: 0.8297
Losses | CE: 0.4371, Feat: 0.0040, Att: 0.0009, Total: 0.1785
Mew best model saved! Val Acc: 0.8297
Train Acc: 0.8784 | Val Acc: 0.8377
Losses | CE: 0.5948, Feat: 0.0041, Att: 0.0009, Total: 0.1758
Mew best model saved! Val Acc: 0.8377

▲ Group 5 Epoch 30/30

■ Train Acc: 0.8808 | Val Acc: 0.8278
  Losses | CE: 0.3342, Feat: 0.0041, Att: 0.0009, Total: 0.1707
No improvement. Patience: 1/7
WW Best Val Acc: 0.8377 at Epoch 29
```


Results of all of our 5 models

	Group	Best Validation Accuracy
0	Group 1: Baseline	0.8056
1	Group 2: KD	0.8364
2	Group 3: Feature Alignment	0.8278
3	Group 4: Attention Transfer	0.8353
4	Group 5: Combined (Align + Attention)	0.8377

Questions?

