MEMORIAL DESCRITIVO

PROJETO DE GERAÇÃO DISTRIBUÍDA

PROJETO PARA IMPLANTAÇÃO DE GERADOR FOTOVOLTAICO NA ÁREA residencial DO(A) Cliente: Diego tavares

Local: Fortaleza

21/05/2025

SUMÁRIO

1 - INTRODUÇÃO 3
1.1 - Identificação do cliente 3
2 - LOCALIZAÇÃO DO GERADOR FOTOVOLTAICO3
2.1 - Planta de situação do gerador 3
3 -CARGA INSTALADA 4
3.1 - Cálculo da Demanda Média 4
3.2 - Cálculo do Fator de Carga Médio 4
4 - GERADOR FOTOVOLTAICO 4
4.1 - Cálculo da Energia Média Gerad55
5 - DIAGRAMAS BÁSICOS 5
5.1 - Parametrização do inverso5
5.1.x - tabelas de parametrização do inversor 6
6 - INSTALAÇÃO ELÉTRICA 6
6.1 – Diagrama unifilar Geral 6
6.2 – Dimensionamento da Proteção 6
6.3 – Coordenação entre os Disjuntores7
7 – SINALIZAÇÃO 8
8 – RESPONSÁVEL TÉCNICO 9

1 - INTRODUÇÃO

O presente relatório técnico tem por objetivo apresentar o memorial descritivo para implantação de um Gerador Fotovoltaico de fabricação 1 inversor PHB PHB3000-DS. Este modelo e quantidade de gerador foi previamente aprovado pelo proprietário da residência. Este gerador fotovoltaico se conectará ao sistema de baixa tensão, após a medição de energia da ENEL. O mesmo terá como objetivo suprir parte das cargas desta residencia. A previsão de ligação do sistema elétrico é para 21 de junho de 2025.

1.1 - Identificação do cliente

UC:21122212
Classe:residencial trifasico
Nome do Cliente: Diego tavares
Endereço: Rua das laranjas, 979 casa A, Fortaleza, Ceara.
CEP:6000090
CPF/CNPJ: 123456789

2 - LOCALIZAÇÃO DO GERADOR FOTOVOLTAICO

2.1 -Planta de situação do gerador

No diagrama de situação é ilustrada a planta de situação da residência onde será implantado na Rua das laranjas, 979 casa A, Fortaleza, Ceara. A tabela 2.1 mostra o georeferenciamento da localidade de instalação e do gerador.

COORDENADAS - coordenadas decimais - WGS 84		
Local de implantação do Gerador fotovoltaico	Lat:	Long:
	-23.00024	-46.00003

A área de telhado da residência foi escolhida por apresentar vantagens de insolação permanente durante todas as horas do dia para evitar o sombreamento dos painéis fotovoltaicos e segurança dos equipamentos

3 - CARGA INSTALADA

A carga instalada é típica de um estabelecimento residencial, constituído de iluminação e eletrodomésticos diversos, sendo 8 kW. A energia media de consumo é de 1000 kWh.

3.1 - Cálculo da Demanda Média

Considerando um mês comercial com 720 horas, pode-se calcular a demanda média mensal através da equação:

$$D_{\text{media}} = \frac{\text{Energia media}}{N^{\circ} \text{ de horas}} = \frac{1000}{720} = 1.39 \text{ kW}$$

Esta demanda média está dentro do limite da potência máxima injetada no sistema da ENEL, de acordo com a norma NT - 010.

3.2 - Cálculo do Fator de Carga Médio

O fator de carga médio desta residência é calculado através da equação:

$$FC = \frac{\text{Energia}}{\text{Potencia instalada x 720h}} = \frac{1000}{8 \ x \ 720} = 0.17 \ kW$$

4 - GERADOR FOTOVOLTAICO

O Gerador Fotovoltaico escolhido para compor a geração suplementar da residência Alvo deste projeto é composto de 57 módulos fotovoltaicos Leapton LP126610 560 de 560 Wp, 2 modulos fotovoltaicos GOKIN GK2192812781 de 560 Wp, 3 modulos fotovoltaicos JINKO JK1212121 de 560 Wp e 1 inversor PHB PHB3000-DS. O modulo solar fotovoltaico monocristralino 560 Wp, monocristralino 560 Wp, monocristralino 560 Wp, monocristralino 560 Wp possui as características técnicas apresentado na tabela a seguir. Considerando que os módulos instalados são os de (560, 560, 560) Wp, e que eles tem uma tensão elétrica de máxima potência (Vmp) de (50.45, 50.65, 52.45)Vmp. A solução prevista para ser instalada tem 2 arranjos de 20 módulos e 1 arranjo de 22 módulos. Tendo um sistema total com 62 módulos que resultam numa potência total de 34.72 kWp.

Potência nominal máx. (Pmax)	(560, 560, 560)Wp
Tensão operacional opt. (Vmp)	(50.45, 50.65, 52.45)V
Corrente operacional opt. (Imp)	(14.3, 14.3, 14.3) A
Tensão circuito aberto (Voc)	(55.2, 55.2, 55.2)V
Corrente curto-circuito (Isc)	(16.3, 16.3, 16.3) A

O georeferenciamento do local da instalação do Gerador Fotovoltaico estabelece o valor de 74,5% das Condições de Teste padrão (STC) do modulo Fotovoltaico. Por essa premissa, terei uma Potencia resultante do meu Gerador Fotovoltaico (GF) também de 74,5% da Potencia instalada (34.72 kW). Assim, a Potencia efetiva do GF é de 25.87kW, oque satisfaz a demanda média calculada.

4.1 - Cálculo da Energia Média Gerada

Considerando a potência média disponível de 25.87 kW e a média anual do ponto georeferenciado do sistema Horas de Sol a Pico (HSP) que é de 5,84 kWh/m2/dia, como parâmetro de medição da radiação solar em um mês comercial, pode-se calcular a energia média através do produto destas duas grandezas, que resulta em 4532 kWh.

5 - DIAGRAMAS BÁSICOS

A figura a seguir apresenta o esquema básico de ligação de um Gerador Fotovoltaico. Nesta figura pode ser ver todas as partes que compõem o sistema, desde o Gerador Fotovoltaico até a conexão à carga e à rede.

5.1 - Parametrização do inversor

O inversor para cumprir sua função de proteção, é parametrizado com os seguintes valores, de modo a não exceder os limites recomendados pela norma NT – 010 Coelce.

5.1.1 - Ajuste de sobre e Subtensão

Faixa de tensão no ponto de conexão [V]	Tempo de desconexão [s]
TL > 231	0,2 s
189 ≤ TL ≤ 231	Operação Normal
TL < 195,5	0,2 s

5.1.2 - Ajustes dos Limites de Freqüência (sobre e subfreqüência)

Faixa de freqüência no ponto de conexão (Hz)	Tempo de desconexão [s]
f ≤ 57,5	0,2
59,9 < f ≤ 60,1	Operação normal
f > 62,5	0,2

5.1.3 - Ajustes do Limite do Fator de Potência

Potência Nominal (W) - Pn	Faixa de fator de potência	Fator de potência configuração em fábrica
8000	0,95 indutivo – 0,95 capacitivo	1

6 - INSTALAÇÃO ELÉTRICA

A residência é alimentada através da rede de baixa tensão da ENEL em 380V. O ponto de entrega se dá em um quadro instalado junto ao muro da propriedade.

6.1 – Diagrama unifilar Geral

O diagrama unifilar geral se encontra em anexo.

6.2 – Dimensionamento da Proteção e Alimentação do Gerador Fotovoltaico

Este Gerador Fotovoltaico será conectado ao barramento de baixa tensão do consumidor, logo abaixo da proteção geral, que é constituída por um disjuntor trifasico de 32 A. Por sua vez, o ramal de interligação do Gerador Fotovoltaico ao quadro de medição é feito por 1 disjuntor de 16 A. Esta capacidade de condução foi calculada através da seguinte equação.

$$I_{AG} = \frac{\text{potencia nominal}}{\text{Tensao nominal} * 1.732} = \frac{8000}{658.16} = 12.16 A$$

A interligação entre o Gerador Fotovoltaico (8000) kW e o quadro de medição será feito através de um cabo de cobre flexível, isolado em PVC com uma seção reta de (2.5)mm², e sua proteção se dará através de um disjuntor de 1 disjuntor de 16 A A. O dimensionamento do condutor de (2.5) mm² atende aos critérios de máxima capacidade de corrente, já que o mesmo tem capacidade térmica de conduzir até (21) A; e atende também ao critério de máxima queda de tensão. Como trata-se da interligação de um gerador, a máxima queda de tensão permitida é de 3%. A equação abaixo apresenta o cálculo desta queda.

$$\Delta V\% = \frac{200 * \rho * L_c * I_c * \cos\varphi}{S_c * V_f}$$

ρ - resistividade do cobre	0,0173
L _c - comprimento do condutor	10 m
I _c - corrente do condutor	(12.16 A) A
Cosφ - fator de potencia	1
S _c - Seção reta do condutor	(2.5) mm²
V _f - tensão	380

Introduzindo estes valores na equação anterior resulta em uma queda de tensão de 0.44 %, o que satisfaz plenamente o limite máximo de queda que é de 3%.

6.3 – Coordenação entre o Disjuntor do Gerador Fotovoltaico e da Proteção Geral

A proteção geral é feita através de um disjuntor trifasico de 32 A, com curva direta de atuação C, e o Gerador Fotovoltaico terá a sua proteção realizada por 1 disjuntor de 16 A, curva de atuação B. A seletividade é garantida observando o valor maior de corrente nominal do disjuntor principal em relação ao disjuntor para proteção do cabo do inversor, e suas curvas de atuação.

7 – SINALIZAÇÃO

No padrão de entrada será instalada placa de sinalização, confeccionada em PVC 2,0 mm com tratamento anti-UV, conforme Figura a seguir, fixada de acordo com o desenho D010.01 dá NT Br-010 R-01, sem que haja a perfuração da caixa para fixação da sinalização.

igura 2: Padrão de entrada de BT de unidade consumidora que se conecta à rede através de inversor.

CUIDADO RISCO DE CHOQUE ELÉTRICO GERAÇÃO PRÓPRIA

8 – RESPONSÁVEL TÉCNICO

ASSINATURA