Dans tout l'exercice, on fixe un entier n > 0 et on se place dans  $\mathcal{M}_n(\mathbf{R})$ . La matrice unité est notée I.

## **Préambule**

- **1.** Une matrice  $M \in \mathcal{M}_n(\mathbf{R})$  est dite *nilpotente* si et seulement si il existe un entier naturel non nul r tel que  $M^r = 0$ .
- 2. On pourra utiliser sans démonstration les résultats suivants mais en signalant leur utilisation:
  - (R1) Si deux matrices U et V commutent alors :
    - **a)**  $U^k$  et  $V^\ell$  commutent pour tous entiers naturels  $\ell$  et k.
    - **b)** U commute avec  $\alpha I + \beta V$  pour tous réels  $\alpha, \beta$ .
    - c) U commute avec  $\alpha I + \beta U$ .
  - (R2) Si U et V commutent et V est inversible, alors U et  $V^{-1}$  commutent.

## Dans le vif du sujet

- **1.** Les résultats de cette question pourront servir par la suite
  - **a)** Soit U et V deux matrices de  $\mathcal{M}_n(\mathbf{R})$  qui commutent. Prouver que :

$$(U+V)(U-V) = U^2 - V^2$$
.

- **b)** Soit M une matrice de  $\mathcal{M}_n(\mathbf{R})$  et r un entier tels que  $M^r = 0$ .
  - i) Développer  $(I M) \times \sum_{k=0}^{r-1} M^k$ .
  - ii) En déduire que I M est inversible et donner son inverse.
  - iii) Soit N une matrice telle que  $N^2$  est inversible. Montrer que N est inversible.
- **2.** On se donne une matrice  $A \in \mathcal{M}_n(\mathbf{R})$  et un entier r non nul tels que

$$[A(A-I)]^r = 0.$$

On définit une suite de matrices  $(A_k)_{k\in\mathbb{N}}$  par :

$$\begin{cases} A_0 = A \\ \forall k \in \mathbb{N} \quad A_{k+1} = (A_k)^2 \times (2A_k - I)^{-1}. \end{cases}$$

- a) Il n'est pas clair que cette suite de matrices soit bien définie. Pourquoi?
- **b)** Afin de justifier que cette suite est bien définie, on considère la propriété  $(P_k)$  suivante pour tout entier naturel *k* et qu'on veut prouver par récurrence :
  - i) La matrice  $2A_k I$  est inversible.
  - ( $P_k$ ) ii) Il existe deux matrices  $C_k$  et  $D_k$  dans  $\mathcal{M}_n(\mathbf{K})$  telles que :  $\mathbf{A.} \ A_k A = [A(A-I)]C_k$   $\mathbf{B.} \ A_k(A_k I) = [A(A-I)]^{2^k} \times D_k \text{ (attention c'est}$   $\mathbf{C.} \ A_k A = AA_k, AC_k = C_k A, AD_k = D_k A.$

**A.** 
$$A_k - A = [A(A - I)]C_k$$

**B.** 
$$A_k(A_k - I) = [A(A - I)]^{2^k} \times D_k$$
 (attention c'est

$$\mathbf{C.} \ A_k A = AA_k, AC_k = C_k A, AD_k = D_k A$$



## Calcul matriciel À rendre le 22 janvier

- i) Factoriser  $M = I (2A I)^2$ .
- ii) Déduire que M est nilpotente, puis que I-M est inversible.
- iii) Déduire que SA-I est vraie et initialiser la récurrence.
- **c)** Soit  $k \ge 0$  un entier tel que  $(P_k)$  est vraie. Montrer que
  - i)  $2A_{k+1} I = [I + 2A_k(A_k I)] \times [2A_k I]^{-1}$ .
  - ii)  $A_{k+1} A = [(A_k A)^2 (A^2 A)] \times [2A_k I]^{-1}$ .
  - iii)  $A_{k+1}(A_{k+1}-I) = [A_k(A_k-I)(2A_k-I)^{-1}]^2$ .
- **d)** Déduire que  $(P_k)$  est vraie pour tout entier k.