```
#Importing Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')

#Reading the dataset
crop=pd.read_csv("/Crop_recommendation.csv")
crop
```

	N	Р	К	temperature	humidity	ph	rainfall	label	
0	90	42	43	20.879744	82.002744	6.502985	202.935536	rice	ıl.
1	85	58	41	21.770462	80.319644	7.038096	226.655537	rice	
2	60	55	44	23.004459	82.320763	7.840207	263.964248	rice	
3	74	35	40	26.491096	80.158363	6.980401	242.864034	rice	
4	78	42	42	20.130175	81.604873	7.628473	262.717340	rice	
2195	107	34	32	26.774637	66.413269	6.780064	177.774507	coffee	
2196	99	15	27	27.417112	56.636362	6.086922	127.924610	coffee	
2197	118	33	30	24.131797	67.225123	6.362608	173.322839	coffee	
2198	117	32	34	26.272418	52.127394	6.758793	127.175293	coffee	
2199	104	18	30	23.603016	60.396475	6.779833	140.937041	coffee	
2200 rows × 8 columns									

crop.head()

	label	rainfall	ph	humidity	temperature	K	Р	N	
ılı	rice	202.935536	6.502985	82.002744	20.879744	43	42	90	0
	rice	226.655537	7.038096	80.319644	21.770462	41	58	85	1
	rice	263.964248	7.840207	82.320763	23.004459	44	55	60	2
	rice	242.864034	6.980401	80.158363	26.491096	40	35	74	3
	rice	262.717340	7.628473	81.604873	20.130175	42	42	78	4

crop.tail()

	N	Р	K	temperature	humidity	ph	rainfall	label	
2195	107	34	32	26.774637	66.413269	6.780064	177.774507	coffee	ılı
2196	99	15	27	27.417112	56.636362	6.086922	127.924610	coffee	
2197	118	33	30	24.131797	67.225123	6.362608	173.322839	coffee	
2198	117	32	34	26.272418	52.127394	6.758793	127.175293	coffee	
2199	104	18	30	23.603016	60.396475	6.779833	140.937041	coffee	

crop.isna().sum()

N	0
P	0
K	0
temperature	0
humidity	0
ph	0
rainfall	0

plt.show()

```
label
                    0
     dtype: int64
print("The size of the dataset:",crop.size)
print("Shape of the dataset:",crop.shape)
     The size of the dataset: 17600
     Shape of the dataset: (2200, 8)
print("Number of columns in the dataset:\n",crop.columns)
     Number of columns in the dataset:
      Index(['N', 'P', 'K', 'temperature', 'humidity', 'ph', 'rainfall', 'label'], dtype='object')
print("Value count of the labels:\n",crop['label'].value_counts())
     Value count of the labels:
                    100
     rice
     maize
                    100
     jute
                    100
     cotton
                    100
                    100
     coconut
     papaya
                    100
     orange
                    100
                    100
     apple
     muskmelon
                    100
     watermelon
                    100
     grapes
                    100
                    100
    mango
     banana
                    100
     pomegranate
                    100
     lentil
                    100
     blackgram
                    100
     mungbean
                    100
     mothbeans
                    100
     pigeonpeas
                    100
     kidneybeans
                    100
     chickpea
                    100
                    100
     coffee
     Name: label, dtype: int64
#Data visualization
#Pie chart for label column
data_viz_df = crop.copy()
data viz df.head()
label_name = data_viz_df['label'].value_counts().index
val = data_viz_df['label'].value_counts().values
plt.figure(figsize = (8,8))
plt.pie(x = val , labels = label\_name , shadow = True , autopct = '%1.1f%'')
```


#Bar graph for Label column plt.figure(figsize = (20 , 7)) $sns.countplot(x = 'label' , data = data_viz_df)$ plt.show()

#Label Encoding from sklearn.preprocessing import LabelEncoder le = LabelEncoder() crop['label'] = le.fit_transform(crop['label']) crop.head()

		N	P	K	temperature	humidity	ph	rainfall	label	\blacksquare
() 9	90	42	43	20.879744	82.002744	6.502985	202.935536	20	ılı
1	l 8	85	58	41	21.770462	80.319644	7.038096	226.655537	20	
2	2 (60	55	44	23.004459	82.320763	7.840207	263.964248	20	
3	3	74	35	40	26.491096	80.158363	6.980401	242.864034	20	
4		78	42	42	20.130175	81.604873	7.628473	262.717340	20	

x=crop.drop('label',axis=1)

```
N P K temperature humidity
                                                          rainfall
                                                                     \blacksquare
       0
            90 42 43
                          20.879744 82.002744 6.502985 202.935536
                                                                     ıl.
       1
            85 58 41
                          21.770462 80.319644 7.038096 226.655537
       2
            60 55 44
                          23.004459 82.320763 7.840207
                                                        263.964248
                          26.491096 80.158363 6.980401 242.864034
       3
            74 35 40
y=crop['label']
     0
             20
     1
             20
             20
             20
     3
     4
             20
     2195
              5
     2196
              5
     2197
              5
     2198
              5
     2199
     Name: label, Length: 2200, dtype: int64
#Train_Test_Split
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.33,random_state=0)
print("xtrain shape:",xtrain.shape)
print("xtest shape:",xtest.shape)
print("ytrain shape:",ytrain.shape)
print("ytest shape:",ytest.shape)
     xtrain shape: (1474, 7)
     xtest shape: (726, 7)
     ytrain shape: (1474,)
     ytest shape: (726,)
#LogisticRegression()
from sklearn.linear_model import LogisticRegression
LG = LogisticRegression()
LG.fit(xtrain,ytrain)
     ▼ LogisticRegression
     LogisticRegression()
#To check intercept and co-efficient
print('Intercept:',LG.intercept_)
print('Co-efficient:',LG.coef_)
     Intercept: [-0.00780263 -0.01053188 -0.01657645 0.00332404 -0.00463209 0.00217817
      -0.01441515 -0.00392094 -0.00192072 0.01139565 0.00604579 0.01981117
       0.02530411 \quad 0.04437446 \quad -0.00247394 \quad 0.00067193 \quad 0.00319134 \quad -0.04082406
      -0.00357376  0.00243646  -0.0123666  0.00030511]
     Co-efficient: [[-4.95073484e-01 2.37818458e-01 8.81830732e-01 -2.02632762e-01
       -2.15887867e-01 -5.59788206e-02 -2.65260000e-01]
      -2.87219947e-01 -8.73894529e-02 6.77969943e-02]
      [-1.22341138e-01 4.17528443e-01 -4.32713598e-01 1.84071457e-01
        6.03238407e-02 -6.94249117e-02 6.43785233e-02]
      [ 7.08325343e-02 2.80986905e-01 4.72444119e-01 -2.58743623e-03
       -4.93916277e-01 3.47613283e-02 7.42472131e-02]
      [-3.39645974e-01\ -5.62047213e-01\ -1.45093902e-01\ -4.47995478e-02
        2.49809393e-01 -5.68238347e-02 3.57349018e-01]
      [ 6.51856484e-01 -4.63425638e-01 -1.74397966e-01 7.00590637e-02
       -4.16995783e-01 2.76565987e-02 2.26341134e-01]
      [ \ 6.07064022e-01 \ -1.34120586e-01 \ -5.74851007e-01 \ -1.85494873e-01
        6.30183028e-02 -2.64960924e-02 -1.90339861e-02]
      [-4.88437684e-01 3.87346469e-01 1.04059784e+00 -1.27822994e-01
       -2.31305090e-01 -2.88194601e-02 -8.50592446e-01]
      [ 1.87619254e-01 -1.72504463e-01 8.65556339e-03 -1.27720022e-01
       -8.28986040e-02 6.62274965e-02 2.66109022e-01]
      [-1.94869829e-01 6.75571604e-01 -6.24381826e-02 2.12318514e-02
       -7.24283208e-01 6.29970737e-02 1.97017331e-01]
      [-2.03451192e-01 5.39442203e-01 -3.12328384e-01 -1.59233261e-01
        2.65899943e-01 5.12321440e-02 -1.67062430e-01]
      [ 4.51779041e-01 -4.11379427e-02 -3.08784109e-01 5.16554953e-02
       -7.66516820e-02 4.94236731e-02 9.55319619e-02]
```

```
[-2.92335907e-01 -1.84513905e-01 3.09791378e-01 5.71415316e-01
       -8.67931805e-02 9.61871208e-02 1.93947179e-01]
     [-2.00695183e-01 1.74360039e-01 -7.08670458e-02 8.14513299e-01
       -2.31985140e-02 3.17598068e-01 -5.12918666e-02]
     [-2.48551961e-01 2.41566023e-02 -4.41589441e-01 4.31574548e-03
       5.82246788e-01 -1.62197926e-02 -7.35054258e-02]
     [ 5.58967400e-01 -3.63880997e-01 1.26053947e-01 7.76629075e-02
       3.39145879e-01 1.00746460e-03 -8.97768988e-01]
     [-3.13038618e-01 \ -3.93235362e-01 \ -5.19932385e-01 \ -1.69364564e-02
       5.04927147e-01 4.25652560e-02 1.96768632e-01]
     [-2.54664016e-01 1.16083229e-01 4.07403242e-01 -2.03504842e-01
       1.11101751e-01 -2.34937289e-01 1.65237761e-01]
     [-2.47777779e-01 3.75688193e-01 -5.17238715e-01 8.52964584e-02
       -4.56960960e-02 -5.08523340e-02 2.60099344e-01]
     [-3.01581873e-01 -3.96251359e-01 2.55926764e-01 -1.43333131e-01
       4.29057822e-01 2.21824551e-02 1.02038234e-01]
     -2.32198055e-02 -1.46840662e-01 3.54096485e-01]
     [ 5.77461776e-01 -4.30975036e-01 1.40036163e-01 -3.55983415e-02
       1.02535187e-01 1.94397099e-03 -2.96443689e-01]]
#Predictions
y_pred=LG.predict(xtest)
y pred
     array([21, 21, 7, 3, 2, 8, 13, 9, 15, 1, 13, 5, 10, 14, 12, 0, 5,
           10, 5, 12, 4, 2, 9, 8, 6, 5, 10, 16, 13, 9, 19, 20, 11, 15,
            4, 6, 12, 12, 21, 13, 11, 2, 18, 21, 18, 14, 9, 9, 6, 14, 13,
            2, 0, 15, 18, 1, 17, 12, 10, 6, 16, 14, 21, 20, 15,
                                                                 0, 7, 5
            0, 16, 4, 19, 9, 11, 7, 13, 3, 11, 8, 12, 20, 13, 21, 21, 15,
           6, 11, 10, 13, 17, 2, 8, 14, 7, 14, 11, 5, 8, 10, 3, 16, 8, 14, 1, 1, 20, 21, 5, 18, 15, 15, 12, 5, 7, 16, 19, 14, 10, 11,
            8, 19, 10, 16, 3, 3, 2, 19, 16, 3, 12, 13, 2, 15, 14, 6, 14,
            4, 19, 16, 2, 10, 7, 0, 5, 3, 0, 8, 12, 21, 17, 16,
                                                                     4. 13.
            1, 19, 3, 21, 11, 0, 8, 10, 18, 8, 9, 9, 15, 20, 15, 1, 16,
            9, 0, 13, 4, 6, 14, 9, 19, 17, 16, 20, 17, 17, 9, 9, 1, 4,
           18, 20, 17, 11, 8, 13, 20, 11, 5, 18, 4, 3, 12, 4, 19, 6, 13,
           18, 16, 15, 11, 18, 1, 3, 2, 18, 16, 13, 14, 12, 17, 15, 19, 8,
           20, 2, 17, 2, 5, 11, 5, 16, 20, 13, 14, 16, 9, 19, 4, 12, 14,
            6, 20, 3, 14, 0, 18, 13, 20, 21, 2, 19, 16, 11, 7, 3, 18, 8,
           17, 19, 5, 12, 13, 8, 21, 19, 20, 7, 4, 8, 10, 3, 5, 5, 17,
           19, 11, 20, 3, 18, 16, 19, 18, 4, 9, 19, 15, 13, 12, 10, 1, 2
           12, 9, 12, 6, 14, 4, 7, 7, 18, 17, 20, 20, 3, 15, 5, 21,
            8, 13, 7, 15, 2, 13, 13, 3, 2, 12, 1, 12, 19, 8, 16, 15,
                                                                         3,
           10, 6, 17, 7, 9, 10, 0, 20, 15, 0, 17, 2, 8, 3, 13, 10,
           20, 9, 15, 12, 7, 17, 20, 5, 15, 13, 1, 17, 16, 9, 21, 18,
           21, 21, 18, 9, 2, 9, 8, 4, 6, 9, 16, 6, 18, 19, 6, 6,
            6, 0, 16, 11, 7, 1, 0, 13, 20, 9, 1, 20, 10, 3, 19, 1,
                                                                         3.
           15, 19, 0, 10, 15, 16, 2, 15, 13, 12, 3, 19, 12, 3, 4, 15,
                                                                        1,
           18, 17, 8, 2, 6, 20, 1, 4, 20, 2, 11, 16, 21, 20, 0, 7, 18,
            7, 3, 12, 8, 19, 11, 12, 7, 1, 14, 18, 1, 6, 2, 0, 0, 8, 21, 3, 1, 19, 1, 9, 7, 11, 5, 6, 8, 7, 5, 14, 2,
                                                                     0, 8,
                                                                        8,
           16, 18, 18, 15, 2, 21, 14, 21, 17, 14, 14, 14, 19, 16, 13, 0,
            4, 11, 4, 7, 7, 3, 3, 12, 9, 12, 16, 14, 17, 18, 2, 17, 15,
            2, 1, 20, 5, 6, 7, 8, 3, 15, 1, 7, 21, 15, 9, 8, 18, 6,
           21, 19, 5, 4, 11, 20, 14, 9, 21, 14, 0, 0, 21, 1, 18, 14,
           14, 6, 20, 17, 6, 17, 3, 0, 19, 13, 20, 2, 12, 16, 8, 1, 13,
            5, 6, 12, 5, 4, 19, 6, 7, 2, 3, 8, 3, 17, 16, 6, 1, 2,
           15, 17, 0, 16, 19, 11, 18, 17, 12, 19, 17, 7, 20, 6, 8, 13, 10,
           13, 9, 1, 13, 0, 17, 21, 4, 3, 10, 9, 13, 7,
                                                             7, 16, 20, 2,
            1, 6, 6, 13, 20, 20, 4, 13, 6, 5, 17, 5, 14, 10, 16, 19, 3,
           10, 6, 12, 16, 5, 20, 17, 17, 4, 20, 6, 13, 4, 20, 7, 0,
                                                                        1.
            4, 1, 11, 12, 17, 17, 20, 8, 15, 6, 10, 9, 2, 5, 20, 16,
            1, 2, 0, 11, 12, 3, 4, 15, 5, 19, 16, 7, 17, 3, 8, 21, 16,
            9, 16, 16, 10, 11, 12, 9, 19, 4, 13, 11, 10, 14, 20, 9, 16, 10,
            5, 14, 15, 4, 7, 4, 19, 18, 4, 10, 17, 1, 3, 13, 17, 16, 10,
           19, 2, 20, 16, 20, 3, 2, 18, 5, 3, 7, 4, 3, 7, 5, 19, 19, 1, 3, 2, 18, 13, 0, 19, 0, 13, 0, 21, 18])
#Evaluating the model
train accuracy=LG.score(xtrain.vtrain)
print('Train_accuracy(R_Squared):',train_accuracy)
test_accuracy=LG.score(xtest,ytest)
print('Test_accuracy(R_Squared):',test_accuracy)
     Train_accuracy(R_Squared): 0.9721845318860244
     Test_accuracy(R_Squared): 0.9435261707988981
```

```
import math
from sklearn.metrics import mean_squared_error,mean_absolute_error
```

```
print('Mean Absolute Error:',mean_absolute_error(ytest,y_pred))
print('Mean Squared Error:',mean_squared_error(ytest,y_pred))
print('Root Mean Squared Error:',math.sqrt(mean_squared_error(ytest,y_pred)))
```

Mean Absolute Error: 0.47107438016528924 Mean Squared Error: 4.597796143250688 Root Mean Squared Error: 2.1442472206466046

#To check the actual label,predicted label
dfr=pd.DataFrame({'Actual label':ytest,'Predicted label':y_pred})
dfr

	Actual label	Predicted label	
1320	21	21	11.
1367	21	21	
1291	7	7	
264	3	3	
728	2	2	
1523	0	0	
731	2	13	
1545	0	0	
1358	21	21	
383	9	18	

726 rows × 2 columns

```
#Plotting the Bar graph for above actual,predicted label
graph=dfr.head(20)
graph.plot(kind='bar')
plt.title('Bar Graph')
plt.xlabel('Actual&Predicted label')
plt.ylabel('Frequency')
plt.show()
```



```
#RandomForestClassifier()
from sklearn.ensemble import RandomForestRegressor
RF = RandomForestRegressor()
RF.fit(xtrain,ytrain)
```

```
RandomForestRegressor
     RandomForestRegressor()
#Evaluating model
train_accuracy = RF.score(xtrain,ytrain)
print("Train_accuracy(R_Squared):",train_accuracy)
test_accuracy = RF.score(xtest,ytest)
print("Test_accuracy(R_Squared):",test_accuracy)
     Train_accuracy(R_Squared): 0.994821238022106
     Test_accuracy(R_Squared): 0.9715513770838728
#Comparision between Linear and RandomForestRegression using boxplot
logistic_regression_accuracy=0.9435261707988981
random_forest_accuracy=0.9715513770838728
accuracy_scores=[logistic_regression_accuracy,random_forest_accuracy]
model_names=['LogisticRegression','RandomForestRegression']
plt.bar(model_names,accuracy_scores)
plt.xlabel('Models')
plt.ylabel('Test_Accuracy')
plt.title('Comparision of Test_Accuarcy:LogisticRegression v/s RandomForestRegression')
plt.show()
```

Comparision of Test_Accuarcy:LogisticRegression v/s RandomForestRegression

