

OF PANASONIC CELLS LITHIUM-ION BATTERY AND **ENGINEERING AND ABUSE TESTING**

1999 NASA AEROSPACE BATTERY WORKSHOP

Judith A. Jeevarajan Lockheed Martin/NASA-JSC

Bobby J. Bragg NASA-JSC

Panasonic Lithium-ion Battery in the IBM Thinkpad

Panasonic 17500 Lithium-ion Cells

Physical Characteristics

Weight: 24.43 + 0.6 g

Diameter: 16.399 + 0.4 mm

Length: 49.648 + 1.2 mm

Electrochemical Characteristics

Open Circuit Voltage: 3.9 V

Capacity (room temperature): 0.81 Ah

Charge/Discharge Curves for Panasonic 17500 Li-ion Cell

Rate Capability of Panasonic 17500 Lithium-ion Cells Under Different Conditions of Charge and Discharge

	C	0.840	0.838	0.832	0.826	0.822	~
0.5 C Charge	0.25 C Discharge	0	0	0	0	0	0.00018
	0.5 C Discharge	0.837	0.835	0.826	0.822	0.819	0.00017
	1 C Discharge	0.824	0.817	0.802	0.799	0.792	0.00027
1.0 C Charge	0.25 C Discharge	0.828	0.827	0.816	0.804	0.792	0.00037
	0.5 C Discharge	0.837	0.832	0.820	0.809	0.794	0.00039
	1 C Discharge	0.816	0.810	0.801	0.788	0.774	0.00038
Cycle	Number	1	5	25	50	100	CDR Ah/Cycle

CDR stands for Capacity Decay Rate. The shaded cell values were used to calculate the CDR. CDR= $(C_5-C_{100})/95$, C_5 and C_{100} are the capacities at cycle # 5 and 100, respectively.

At 1 C Charge, Discharge, Capacity Decay is 4%

At 0.5 C Charge/Discharge, Cacpacity Decay is 1.9 %

Discharge Capacity for the Panasonic cells at 0.5C Rate of Discharge and Different Rates of Charge

Discharge Capacities versus Temperature for the Panasonic 17500 Lithium-ion Cells

Effective Internal Resistance for the Panasonic Lithium-ion cells

Minimum Voltages Obtained During the Discharge Pulse of the Internal Resistance Test

Charge Discharge Curve for Charge at 3C Rate to 4.2 V and Discharge with 1C Current to 2.7 V

Charge-Discharge Curve for Charge to 5.0 V with a Current and Discharge to 2.7 V with 1C Current

Overcharge Test Using a 3C Current to 12 V

Current and Temperature Changes During a High Rate Overcharge (3C current) to 12 V

Discharge of Panasonic 17500 Lithium-ion Cells Using 3C Current

Current and Voltage Characteristics During Discharge into Reversal of Panasonic 17500 Lithium-ion Cells with 1C Current

Heat-to-Vent of Panasonic 17500 Lithium-ion Cells

Voltage and Temperature Profile During a Soft Internal Short

Voltage and Temperature Characteristics During a Hard Internal Short

Current and Temperature Characteristics During An External Short Test Using 40 mohm Load

Electrolyte Analysis of Panasonic 17500 lithium-ion cell

Panasonic Lithium-ion IBM Thinkpad Battery

Weight: 366 g

Dimensions: 4'X 4.5'

Capacity: 3.0 Ah Configuration: 4P3S (12 cells)

Circuit Board in the Panasonic Thinkpad Lithium-ion Battery

Circuit Board in the Panasonic Lithium-ion Battery

Decisions about turning off charge and discharge switches based on cell bank voltages and current are made by firmware in microcontroller.

Protective circuit performs capacity gauge function.

Protective circuit can balance cell bank states-of-charge by putting small (15 mA) discharge currents on individual cell banks.

Current and Voltage During the Charging of a Panasonic Lithium-ion Battery Using the IBM Thinkpad Charger

Discharge Characteristics of the Panasonic Lithium-ion Battery with No Programs Running

Discharge Characteristics of the Panasonic Lithium-ion Battery with the Program Running

Voltage Profile of Individual Cell Banks During Overdischarge of Top Cell Bank

Voltage Profile of Individual Cell Banks During Overdischarge of Middle Cell Bank

Voltage Profile During Reset of Last Cell Bank after an Overdischarge

Current and Voltage Profile During An Overcharge of the Whole Battery using a 2 A Current

CONCLUSIONS

- shows that the 0.5 C rate of charge and discharge might be the ideal condition Performance of the cells under different conditions of charge and discharge for long term cycling.
- protection under both conditions to prevent any catastrophic occurrences. Overcharge and Overdischarge: The cells and the battery have adequate
- runaway. This situation is non-credible in the cabin of the Space Shuttle or ISS. Temperatures above 150 °C are required to vent the cells or cause a thermal
- Internal crushes can give different results depending on the nature of the crush. Soft shorts do not exhibit high temperatures or thermal runaway whereas hard internal shorts can exhibit temperatures above 400 °C and expel can contents.
- All batteries will be screened using a vibration test (0.067 g^2 /Hz for one minute) for internal short before flight.

ACKNOWLEDGMENT

Frank Davies- Hernandez Engineering/NASA-JSC Dr. Wenlin Zhang - Schlumberger, Rosharon, TX Anita Thomas-Lockheed Martin/NASA-JSC Gwen Gilliam- Lockheed Martin/NASA-JSC **Gerald Steward- NASA-JSC**