Basic Regression

By: Nur Rohman Widiyanto

Simple Explaination

Supervised Learning

Given the "Right answer" for example in the data

Regression Problem

Predict real-valued output

Problem

- Build a Simple Linear Regression Model to predict sales based on the money spent on TV advertising.
 - Decide whether TV advertising is effective or not and if it is effective
 - How much money the company should spend on TV advertising to get a particular increase in sales.
- Let's inspect the datasets @Notebook #1
 2_1_data_processing.ipynb →

From Scratch

Dataset understanding using Exploratory Data Analysis (EDA)

- The goal is to understand our dataset.
- EDA techniques can be divided into two types:
 - Numerical techniques
 - Graphical techniques
- Let's inspect the datasets @Notebook #2
 2_1_data_processing.ipynb →

Take the Conclusion

- Since there seems to be a *linear relationship* between TV advertising and sales.
 - We can build a linear regression model as our problem statement defines.
- What do you do if you see a non-linear relationship between the two variables?
 - You cannot build a linear regression model.

Analyze the distribution of variables

- Let's inspect the datasets @Notebook #2 →
- Histogram of TV Ad spending:
 - The distribution of TV Ad spending is symmetric.
 - The mean and median are approximately the same.
 - TV Ad spending follows a uniform distribution with a mean of 147.
 - The center is close to 150. The typical deviation in TV Ad spending from the mean is about 85.9 units.

Analyze the distribution of variables

- Let's inspect the datasets @Notebook #2 →
- Histogram of sales:
 - The distribution of sales is single-peaked (unimodal) and symmetric.
 - The mean and median are approximately the same.
 - Sales approximately follow a normal distribution with a mean of 15.13.
 - The center is close to 16.
 - The typical deviation in sales from the mean is about 5.2 units.

Regression Model

Simple Linear Regression

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1$$

- θ_0 and θ_1 : Model parameters
- $h_{\theta}(x)$: Response variable
- x_1 : Predictor

Cost Function

Linear Regression

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

- m: Number of training examples
- x(i) : x-value of *i*-th training example
- y(i): y-value of *i*-th training example
- $J(\theta_0, \theta_1)$: Cost function or mean squared error function

Determine the $heta_0$ and the $heta_1$

Code now @Notebook #1
2_2_linear_regression_gradient_descent_from scratch.ipynb ->

Gradient Descent

 The gradient descent algorithm is an optimization algorithm that can be used to minimize the above cost function and find the optimized values for the linear regression model parameters.

repeat until convergence {
$$\theta := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})$$

$$(for j = 1 \ and \ j = 0)$$

$$(for j = 1 \ and \ j = 0)$$

https://math.stackexchange.com/questions/70728/partial-derivative-in-gradient-

descent-for-two-variables

Gradient Descent

- := notation: Assignment operator. In programming, it is just = notation.
- α : Learning rate. It is a fixed value.
- **Derivative term:** The partial derivative of the cost function $J(\theta_0, \theta_1)$ for J=0 and 1.

Choosing α (Learning rate)

- α is too small, the gradient descent can be slow. It will require more iterations (hence time) to reach the minimum.
- α is too large, the gradient descent can overshoot the minimum. In that case, it may fail to converge or even diverge.

Gradient Descent

```
repeat until convergence {
\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)
\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}
}
```

Code now **@Notebook** #2
2 2 linear regression gradient descent.ipynb →

Plot the Convergence

• Plot the result of Gradient Descent Process to search θ_0 and θ_1 as cost function or $J(\theta_0, \theta_1)$.

```
Let's inspect the datasets @Notebook #3
2_2_linear_regression_gradient_descent.ipynb ->
```

Train the Model

 θ_0 = Di peroleh dari proses Gradient Descent

 θ_1 = Di peroleh dari proses Gradient Descent

$$Sales = \theta_0 + \theta_1 \times TV$$

Let's inspect the datasets **@Notebook** #4 2_2_linear_regression_gradient_descent.ipynb →

Evaluate the Model Performance

$$RSME = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (yi - \hat{y})^2}$$

$$R^2 = Corelation(x)^2$$

Let's inspect the datasets **@Notebook** #5 2_2_linear_regression_gradient_descent.ipynb →

Evaluate the Model Performance

- Plot the **Predicted Sales** compared with the **Real Sales**.
- Calculate the Residual and Analyze the Distribution.

$$R^2 = Corelation(x)^2$$

Plot the Predicted Sales compared with the Residual.

Let's inspect the datasets **@Notebook** #5 2_2_linear_regression_gradient_descent.ipynb →

With Scikit

Steps

- Define x and y #1
- Split the dataset into a Training Set and a Testing Set #2
- Create and fit (train) the Model #3
- Get the Gradient and Intercept of the Linear Regression Line #4
- Make Predictions #5
- Evaluate the Model Performance #6
- Let's inspect the datasets @Notebook
 2_3_linear_regression_with_gradient_descent_with_scikit ->

With Normal Equation

Steps

$$\theta = (x^T x)^{-1} x^T y$$

- θ: Parameter matrix which contains optimized values.
- x: Feature matrix. It is represented as a 2d NumPy array. The shape is (m, n+1) where n is the number of predictors and m is is the number of training examples (rows/observations).
- y: Target vector. It is represented as a 2d NumPy array to match the dimension. The shape is (m, 1) where m is the number of training examples (rows/observations).
- Let's inspect the datasets @Notebook
 2_4_linear_regression_with_normal_equation.ipynb ->

Gradient Descent vs Normal Equation

Gradient Descent

- Need to choose α
- Need many iterations
- Works well even when *n* or the features is large

Normal Equation

- No need to choose α
- Don't need to iterate
- Need to Compute $(X^TX)^{-1}$
- Slow if *n* or the features is very large

Advancing Regression

https://youtube.com/playlist?list=PLLssT5z DsK-h9vYZkQkYNWcItqhlRJLN

Gradient Descent with Multiple Features

Size (Feet)	Number of Bed	Number of Floor	Years	Price
x1	x2	х3	x4	y
2104	5	1	45	460
1416	4	2	40	232
1534	3	2	30	315
•••			•••	

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \dots \\ \theta_n \end{bmatrix} \qquad h_{\theta}(x) = \theta^T x$$

Polynominal Linear Regression

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

= \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3

$$= \theta_0 + \theta_1 x + \theta_2 x^2$$
$$= \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

Feature Scaling

Size (Feet)	Number of Bed	Number of Floor	Years	Price
x1	x2	х3	x4	y
2104	5	1	45	460
1416	4	2	40	232
1534	3	2	30	315
	•••		•••	

$$x_1 = Size (0 - 2000)$$

 $x_2 = number\ of\ bedrooms$

Mean Normalization

$$x = \frac{x - \mu}{S}$$

$$0 \le x \le 1$$

LATIHAN

@Notebook

2_1_data_processing_life_expectancy.ipynb >