Travaux Pratiques

stoehr@ceremade.dauphine.fr

1 Simulations de variables aléatoires

Rappel R. runif permet de simuler des réalisations *i.i.d.* de loi $\mathcal{U}([0,1])$. R propose des générateurs aléatoires pour la plupart des lois usuelles. Toutefois, ils ne seront pas utilisés dans cette partie sauf à titre de comparaison.

1.1 Fonction inverse et transformations

Exercice 1 (Simulation d'une variable aléatoire discrète). Soit X une variable aléatoire discrète sur l'ensemble $\{5,6,7,8\}$. On définit la loi v de X par

$$\mathbb{P}[X=5] = 0.4$$
, $\mathbb{P}[X=6] = 0.2$, $\mathbb{P}[X=7] = 0.3$, $\mathbb{P}[X=8] = 0.1$.

- 1. Simuler avec la méthode de la fonction inverse un échantillon \mathbf{x} de 10000 variables aléatoires *i.i.d.* suivant la loi v.
- **2.** Comparer le diagramme en bâtons de l'échantillon \mathbf{x} à celui de v.

Rappel R. barplot(height = ...) trace le diagramme en bâtons de variables catégorielles ou discrètes. height est un vecteur contenant la hauteur des barres ou la table de contingence de l'échantillon. Pour un échantillon \mathbf{x} , la table de contingence s'obtient avec table (\mathbf{x}).

Auto-évaluation. Nombre de fois où les éléments suivants interviennent dans la solution.

Question	c()	for	while	if-else	Vectorize	apply
1.	0	0	0	0	0	0

Exercice 2 (*Loi exponentielle et lois connexes*). Soient $X_1, ..., X_n$, variables aléatoires *i.i.d.* de loi exponentielle $\mathcal{E}(\lambda)$, *i.e.* $\mathbb{E}[X_1] = \lambda^{-1}$.

- 1. (a) Simuler avec la méthode de la fonction inverse 10000 réalisations de la loi $\mathcal{E}(\lambda)$ pour $\lambda = 2$.
 - **(b)** Vérifier à l'aide d'un histogramme et d'un diagramme Quantile-Quantile que la distribution de cet échantillon est en adéquation avec loi $\mathscr{E}(\lambda)$.
- **2.** On rappelle que $S_n = X_1 + ... + X_n$ suit la loi gamma $\Gamma(n, \lambda)$, *i.e.* $\mathbb{E}[S_n] = n\lambda^{-1}$.
 - (a) Partant de ce résultat, simuler 10000 réalisations de la loi gamma $\Gamma(n, \lambda)$, avec $\lambda = 1.5$ et n = 10.
 - **(b)** Vérifier graphiquement que la distribution de cet échantillon est en adéquation avec loi $\Gamma(n,\lambda)$.

- **3.** Soit $N = \sup\{n \ge 1 : S_n \le 1\}$ (par convention N = 0 si $S_1 > 1$). Alors N suit la loi de Poisson $\mathcal{P}(\lambda)$.
 - (a) Partant de ce résultat, simuler 10000 réalisations de la loi de Poisson $\mathcal{P}(\lambda)$, avec $\lambda = 4$.
 - **(b)** Vérifier graphiquement que la distribution de cet échantillon est en adéquation avec loi $\mathcal{P}(\lambda)$.

Rappel R.

- hist(x, freq = F) affiche l'histogramme d'un échantillon x. L'option freq spécifie si l'histogramme est représenté en densité d'effectifs (freq = TRUE par défaut) ou en densité de probabilités (freq = FALSE).
- lines(x,y) permet d'ajouter une courbe affine par morceaux reliant les points d'abscisse x et d'ordonnée y.
- quantile(x, probs) retourne les quantiles d'un échantillon x pour un vecteur de probabilités probs.
- dexp, pexp et qexp correspondent respectivement à la densité, à la fonction de répartion et à la fonction quantile d'une loi exponentielle.
- dgamma, pgamma et qgamma correspondent respectivement à la densité, à la fonction de répartion et à la fonction quantile d'une loi gamma.
- dpois, ppois et qpois correspondent respectivement à la densité, à la fonction de répartion et à la fonction quantile d'une loi de Poisson.

Auto-évaluation. Nombre de fois où les éléments suivants interviennent dans la solution.

Questions	c()	for	while	if-else	Vectorize	apply
1.	0	0	0	0	0	0
2.	0	≤ 1	0	0	0	0
3.	0	≤1	1	0	0	0

1.2 Loi normale, vecteurs gaussiens et mouvement brownien

Exercice 3 (Algorithme de Box-Muller).

- 1. Écrire une fonction BM(n) qui retourne n réalisations de la loi normale $\mathcal{N}(0,1)$ par la version cartésienne de la méthode de Box-Muller.
- 2. Valider l'algorithme à l'aide d'un outil graphique.

Rappel R. dnorm, pnorm et qnorm correspondent respectivement à la densité, à la fonction de répartion et à la fonction quantile d'une loi normale.

Question	c()	for	while	if-else	Vectorize	apply
1.	0	0	0	≤1	0	0

Exercice 4 (*Simulation de vecteurs gaussiens*). Soit $\mathbf{X} = (X_1, X_2)$ de loi $\mathcal{N}(\mu, \Sigma)$, avec

$$\mu = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 et $\Sigma = \begin{pmatrix} 4 & 3 \\ 3 & 9 \end{pmatrix}$

- 1. Simuler une suite de vecteurs $(X^{(n)})_{n\geq 1} = (X_{1,n}, X_{2,n})_{n\geq 1}$ qui suivent la loi de X.
- **2.** Quelle est la loi de $X_1 + X_2$? Valider ce résultat graphiquement.

Auto-évaluation. Nombre de fois où les éléments suivants interviennent dans la solution.

Question	c()	for	while	if-else	Vectorize	apply
1.	0	0	0	0	0	0

Exercice 5 (Simulation du brownien). En utilisant les propriétés des accroissements du brownien, simuler une réalisation du brownien aux instants $(t_1, ..., t_{1110})$ définis par $t_i = i/100$ pour $i \in [1, 100]$, $t_i = 1 + (i - 100)/10$ pour $i \in [101, 110]$ et $t_i = 2 + (i - 110)/1000$ pour $i \in [111, 1110]$.

Auto-évaluation. Nombre de fois où les éléments suivants interviennent dans la solution.

c()	for	while	if-else	Vectorize	apply
0	0	0	0	0	0

1.3 Algorithme du rejet

Exercice 6 (*Rejet – un premier exemple*). Soit *f* une fonction de densité définie pour tout réel *x* par

$$f(x) = \frac{2}{\pi} \sqrt{1 - x^2} \mathbb{1}_{\{x \in [-1,1]\}}.$$

- 1. Utiliser la méthode du rejet pour simuler 10000 réalisations suivant la loi de densité f.
- **2.** Tracer l'histogramme de cet échantillon et le comparer à la densité f.

Auto-évaluation. Nombre de fois où les éléments suivants interviennent dans la solution.

Version	c()	for	while	if-else	Vectorize	apply
* ***	0 1	1 0	1	0	0	0

Exercice 7. Utiliser la méthode du rejet pour simuler 5000 réalisations suivant la loi uniforme sur le disque unité $\mathcal{D} = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Version	c()	for	while	if-else	Vectorize	apply
* ***	0 1	1 0	1	0	0	0

Exercice 8 (*Loi normale tronquée*). La loi normale $\mathcal{N}(\mu, \sigma^2)$, $\mu > 0$, $\sigma > 0$, tronquée de support $[b, +\infty[$ admet une densité f définie pour tout réel x par

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}\Phi\left(\frac{\mu-b}{\sigma}\right)} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \mathbb{1}_{\{x \ge b\}},$$

où Φ est la fonction de répartition de la loi normale centrée réduite $\mathcal{N}(0,1)$.

Densité instrumentale n°1 : $\mathcal{N}(\mu, \sigma^2)$.

- 1. Écrire une fonction tr_norm(n, b, mean, sd) permettant de simuler n réalisations suivant la normale $\mathcal{N}(\text{mean}, \text{sd}^2)$ tronquée de support $[b, +\infty[$.
- **2.** Simuler 10000 réalisations suivant la loi normale $\mathcal{N}(0,2)$ tronquée de support $[2,+\infty[$. Valider votre algorithme graphiquement.

Densité instrumentale n°2. La loi exponentielle translatée de b, $\tau \mathcal{E}(\lambda, b)$, a pour densité

$$g_{\lambda}(x) = \lambda e^{-\lambda(x-b)} \mathbb{1}_{\{x \ge b\}}, \quad x \in \mathbb{R}.$$

Dans la suite on fixe λ à la valeur optimale obtenue dans le TD n°2.

- 3. Écrire une fonction $tr_norm_2(n, b, mean, sd)$ permettant de simuler n réalisations suivant la normale $\mathcal{N}(mean, sd^2)$ tronquée de support $[b, +\infty[$.
- **4.** Simuler 10000 réalisations suivant la loi normale $\mathcal{N}(0,2)$ tronquée de support $[2,+\infty[$. Valider votre algorithme graphiquement.
- **5.** Comparer les performances de tr norm et tr norm 2.

Auto-évaluation. Nombre de fois où les éléments suivants interviennent dans la solution.

Version	c()	for	while	if-else	Vectorize	apply
1. * ***	0 1	1 0	1	0	0	0
4. * * * *	0 1	1 0	1	0	0	0

2 Méthode de Monte Carlo classique

Exercice 9 (Estimation $de \pi$).

- 1. En utilisant la méthode de Monte Carlo classique, avec n=150000 tirages, proposer une estimation de π basée sur la génération de
 - (a) $U_1, ..., U_n$ variables aléatoires *i.i.d.* de loi uniforme $\mathcal{U}([0,1])$;
 - **(b)** $(U_{1,1}, U_{2,1}), \dots, (U_{1,n}, U_{2,n})$ couples de variables aléatoires *i.i.d.* suivant la loi $\mathcal{U}([0,1]) \otimes \mathcal{U}([0,1])$.
- 2. Quel est l'estimateur le plus performant?
- 3. Avec l'inégalité de Bienaymé-Tchebichev ou l'hypothèse du régime asymptotique au niveau de confiance 95%, pour quelle valeur de n a-t-on une précision de 10^{-2} ? Discuter les résultats obtenus.

Auto-évaluation. Nombre de fois où les éléments suivants interviennent dans la solution.

Questions	c()	for	while	if-else	Vectorize	apply
1.	0	0	0	0	0	0
3.	0	0	0	0	0	0

Exercice 10 (Calcul intégral). On s'intéresse au calcul de l'intégrale suivante

$$\delta = \int_2^{+\infty} \int_0^5 \sqrt{x+y} \sin\left(y^4\right) \exp\left(-\frac{3x}{2} - \frac{y^2}{4}\right) dx dy.$$

- 1. Proposer une estimation de δ par la méthode de Monte Carlo classique en utilisant :
 - (a) un générateur de la loi uniforme et un générateur de la loi normale;
 - (b) un générateur de la loi exponentielle et un générateur de la loi normale;
 - (c) un générateur de la loi exponentielle et un générateur de la loi normale tronquée.
- 2. Déterminer le coût de calcul de ces méthodes. En déduire celle qu'il est préférable d'utiliser.

Auto-évaluation. Nombre de fois où les éléments suivants interviennent dans la solution.

Questions	c()	for	while	if-else	Vectorize	apply
1. * ***	0 1	1 0	1	0	0	0

3 Méthodes de réduction de variance

3.1 Échantillonnage préférentiel

Exercice 11 (*Loi de Cauchy*). Soit X une variable aléatoire de loi de Cauchy $\mathcal{C}(0,1)$. On s'intéresse à l'estimation de

$$p := \mathbb{P}[X \ge 50] = \int_{50}^{+\infty} \frac{1}{\pi(1+x^2)} dx.$$

On se propose de comparer la méthode de Monte Carlo classique et la méthode d'échantillonnage préférentiel basée sur la loi de Pareto dont la fonction de répartition est donnée pour $x \in \mathbb{R}$ par

$$F(x) = \left[1 - \left(\frac{a}{x}\right)^k\right] \mathbb{1}_{\{x \ge a\}}, \quad \text{avec} \quad a > 0 \quad \text{et} \quad k > 0.$$

On considèrera n = 10000 tirages.

- 1. Donner une estimation de p à partir de simulations suivant la loi de Cauchy $\mathscr{C}(0,1)$.
- **2.** (a) Quelles valeurs de *a* et *k* doit-on choisir pour la méthode d'échantillonage préférentiel?
 - **(b)** En déduire une estimation de *p* par la méthode d'échantillonnage préférentiel.
- 3. Déterminer l'efficatité relative entre ces deux méthodes.

Auto-évaluation. Nombre de fois où les éléments suivants interviennent dans la solution.

Questions	c()	for	while	if-else	Vectorize	apply
2.	0	0	0	0	0	0
3.	0	0	0	0	0	0

Exercice 12 (Rejet v.s. échantillonnage préférentiel). On revient sur le calcul de l'intégrale

$$\delta = \int_2^{+\infty} \int_0^5 \sqrt{x+y} \sin\left(y^4\right) \exp\left(-\frac{3x}{2} - \frac{y^2}{4}\right) dx dy.$$

- 1. En écrivant δ comme une espérance par rapport à la loi exponentielle et à la loi exponentielle translatée, proposer une estimation de δ par la méthode d'échantillonnage préférentiel.
- 2. Comparer les performances de cette méthode avec la méthode de Monte Carlo classique basée sur un générateur de la loi exponentielle et un générateur de la loi normale tronquée.

Auto-évaluation. Nombre de fois où les éléments suivants interviennent dans la solution.

Questions	c()	for	while	if-else	Vectorize	apply
2. * * * *	0 1	1 0	1	0	0	0

3.2 Autres méthodes de réductions

Exercice 13 (Intégrale de Gauss et réduction de variance). On souhaite estimer

$$\mathscr{I} = \int_0^2 e^{-x^2} \mathrm{d}x$$

à l'aide des méthodes de Monte-Carlo. Dans cette exercice, on considèrera n = 10000 tirages.

- 1. Donner une estimation de $\mathscr I$ à l'aide de la méthode de Monte-Carlo classique basée sur deux lois différentes.
- 2. Pour ces estimateurs, proposer une nouvelle estimation de *I* basée sur une variable antithétique.
- **3.** (a) Calculer le moment d'ordre $k \in \mathbb{N}^*$ d'une variable aléatoire uniforme sur [0,2].
 - **(b)** On utilise le développement en série entière de $x \mapsto \exp(-x^2)$ tronqué à l'ordre $k \in \mathbb{N}^*$ comme variable de contrôle. Proposer une méthode pour trouver la valeur de k à utiliser en pratique.
 - (c) En déduire une estimation de *I* par la méthode de la variable de contrôle.
- **4.** On considère un estimateur basé sur le générateur de la loi $\mathcal{U}([0,2])$.
 - (a) Choisir une variable de stratification Z et une partition $D_1, ..., D_K$ telles que $\mathbb{P}[Z \in D_k] = 1/K$.
 - **(b)** Donner une estimation de \mathcal{I} par la méthode de stratification avec allocation proportionnelle et K = 10. Étudier l'influence de K sur la précision de la méthode.
- 5. Déterminer l'efficacité relative de ces différentes méthodes.

Trouble do 1930 ou 100 closinolino durvanto intervientante dunto in dollarioni.						
Questions	c()	for	while	if-else	Vectorize	apply
3.b.	0	2	0	0	0	0
3.c.	0	1	0	0	0	0
4.b. (★)	0	1	0	0	0	0
4.b. (★ ★ ★)	0	0	0	0	0	1
4.c.	0	1	0	0	0	0

Auto-évaluation. Nombre de fois où les éléments suivants interviennent dans la solution.

Exercice 14 (« *Mouvement brownien* » *et finance*). Soit $\mathbf{X} = (X_1, X_2)$ un vecteur gaussien de loi $\mathcal{N}(0, \Sigma)$, avec

$$\Sigma = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}.$$

On souhaite estimer

$$\mathscr{I} = \mathbb{E}\left[\max\left\{0, \frac{1}{2}e^{-\sigma^{2}/2 + \sigma X_{1}} + \frac{1}{2}e^{-\sigma^{2}/2 + \sigma X_{2}} - 1\right\}\right].$$

Pour les applications numériques, on prendra $\sigma = 2$, n = 5000 tirages et on fournira un intervalle de confiance asymptotique au niveau 95%.

1. Donner une estimation de \mathcal{I} par la méthode Monte-Carlo classique.

On s'intéresse dans un premier temps à la méthode de la variable antithétique. Soient

$$\mathbf{Z} \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) \quad \text{et} \quad A = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

- 2. (a) Montrer que le vecteur AZ suit la même loi que Z
 - (b) Donner une estimation de ${\mathcal I}$ par la méthode de la variable antithétique.
 - (c) La méthode de la variable antithétique permet-elle de réduire la variance?

On s'intéresse enfin à la méthode de la variable de contrôle.

- **3.** (a) Calculer $\mathbb{E}[\exp(\sigma X_1) + \exp(\sigma X_2)]$.
 - (b) En déduire une estimation de \mathcal{I} par la méthode de la variable de contrôle.
- 4. Déterminer l'efficacité relative de ces trois méthodes.

Questions	c()	for	while	if-else	Vectorize	apply
1.	0	0	0	0	0	0
2.	0	0	0	0	0	0
3.	0	1	0	0	0	0

Exercice 15. Le nombre de précipitation S sur un mois est modélisé par une loi de Poisson de paramètre $\lambda = 3.7$. La quantité d'eau Q_S tombant lors d'une précipitation S est modélisé par un loi de Weibul de paramètre de forme S et de paramètre d'échelle S = 2 (on supposera que les précipitations sont indépendantes). La quantité de pluie tombant en 1 mois est donc

$$X = \begin{cases} 0 & \text{, si } S = 0, \\ \sum_{s=1}^{S} Q_s & \text{, sinon.} \end{cases}$$

On s'intéresse aux mois présentant de faibles précipitations et on cherche à estimer $p = \mathbb{P}[X < 3]$ (*i.e.*, il y a moins de 3 cm de pluie par mois).

- 1. Donner une estimation de p par la méthode de Monte Carlo classique. On donnera l'intervalle de confiance au niveau 95%.
- **2.** Donner une estimation de *p* par la méthode de stratification avec allocation proportionnelle, en précisant les strates utilisées. On donnera l'intervalle de confiance au niveau 95%.
- **3.** Proposer une méthode d'estimation de *p* par la méthode de stratification avec allocation optimale. Quelles difficultés rencontrez-vous?
- **4.** Comparer les variances et l'efficacité relative de ces trois méthodes d'estimations. Discuter de façon concise les résultats obtenus.

Questions	c()	for	while	if-else	Vectorize	apply
1. * * * *	0	1 0	0	0	0	0 1
2. * * * *	0	5 2	0	0	0	0 4