Chapter 5			Date:	
Ray Mod	Ray Model of Light			
1 Introdu What is Li Definition:	ght?			
• Ligh	t travels in lir	nes.		
_	it travels at a very high spe uum.	eed. It travels at a speed o	f	in a
Light Ray:	A line of light	Light Beam: A _	of light.	
Different E	Beams of Light			
	$\stackrel{\longrightarrow}{\longrightarrow}$			
	Parallel beam	Divergent beam (fan outwards)	Convergent beam (merge to a point)	
How do we know that light travels in a straight line? Through a straight hose: Through a bent hose:				
Conclusion: This shows that, but travels in				
2 Shadows and Eclipses				
_	shines on an object, some	e rays of light are avel		
The	The behind the object which is called the			

What is an Eclipse?

An eclipse of the Sun occurs when the _____ comes between the Sun and the Earth.

The moon _____ from the Sun and casts a _____ on the Earth.

3 Reflection of Light and its practical uses

What is Reflection?

The _____ in a mirror is formed when light rays _____ the mirror and travel to your eyes. This bouncing of light off a mirror is called _____.

Features of a Ray Diagram

Terminology	Definition
Plane mirror	A flat mirror.
Normal	The line (ON) is to the mirror at the point of incidence.
Incident Ray	The ray (OA) that the mirror.
Angle of Incidence ()	Angle between the to the
Reflected Ray	The ray (OB) that the mirror.
Angle of Reflection ()	Angle between the and the

Laws of Reflection

- 1. The incident ray, normal and reflected ray all lie on the same _____.
- 2. The angle of incidence is always ______ to the angle of reflection.

Reflection - when light ray strikes at different angles

No matter which angle the light ray strikes the mirror the angle of incident will **always be equal** to the angle to of reflection.

Reflection – when light ray strikes at 90° to plane mirror.

When a ray of light strikes the mirror at a right angle (90°), **angle of incidence** is _____. It is then reflected along the same path.

Types of Reflection

Regular Reflection	Diffused Reflection
 On a smooth surface, A parallel beam of light is reflected as a parallel beam. Anis formed. 	On a rough surface, A parallel beam of light is reflected as individual rays reflected in different directions. It is formed.

Ray Diagram (Reflection)

4 steps for drawing ray diagrams

- 1) _____ the position of the image behind the mirror.
 - Ensure distance between object and mirror is ______ to distance between image and mirror.
 - Image must be drawn in dotted lines indicated image is ______.
- 2) Draw a pair of ______ from the **image** to the observer.
 - Use **dotted** lines (______) for the rays behind the mirror.
 - Use **solid** lines (_____) for rays in front of the mirror.
 - Rays must start from _____ point of the image.
- 3) Draw a pair of _____ from the surface of the mirror to the object.
 - Ensure that the pair of rays emerge from _____ point of the object must be _____ as the image.
- 4) Draw _____ to indicate the direction of the light rays.
 - From image to eye
 - From object to mirror

Draw the ray diagram for the object given:

Practice 1

B

Practice 2

Characteristics of an image of a plane mirror:

- 1. The distance of the image from the mirror is ______ to the distance of the object from the mirror.
- 2. The image and the object are of the _____.
- 3. The image is _____.
- 4. The image is ______. This means the left and right side of the image are reversed.
- 5. The image is ______. This means that the image cannot be projected onto a screen behind the mirror.

Uses of Plane mirrors

- Helps a driver see the traffic behind.
- Helps a person check his appearance.
- Makes a room bigger.
- Periscope is a device that are made of _____ plane mirrors to see over obstacles.

Uses of Curved Mirrors

•	Convex mir	that are always	
		than the object. This allows for	
	а	field of view.	

• Uses of convex mirrors

- > At _____ corners of traffic junctions
- > _____ mirror
- Mirrors placed at the _____ of shops.

- Compact make-up and shaving kits
- Dentist's mirror

Convex mirror

Concave mirror

4 Refraction and its practical uses

What is Refraction?

Refraction is the ______ when it passes from one transparent medium into another of different _____ (e.g. from air to water).

Refraction is caused by a _____ in speed of light as it passes through a different transparent medium.

Label the diagram

Refraction – when a ray of light travels from an optically <u>LESS</u> dense medium to <u>MORE</u> an optically more dense medium.

- speed of light ______,
- the ray of light bends _____ the normal.
- Therefore,

Refraction – when a ray of light travels from an optically <u>MORE</u> dense medium to more an optically <u>LESS</u> dense medium.

- speed of light _____,
- the ray of light bends _____ the normal.
- Therefore,

Refraction – when a ray of light enters another medium perpendicular to the surface.

- speed of light ______.
- _____ of ray is observed.
- Therefore,

*Note: There is still a change in speed of light although there is no bending (deviation) observed.

Test yourself!

The diagram shows a tank of turpentine and water. It is known that the optical density of air, turpentine and water increases in the following order: air, water, turpentine. With this information, complete draw the path of the light ray till it exits the tank.

Effects of Refraction

The ______ of light causes an object to appear _____ than it actually is when a transparent material is on top.

In the diagram, refraction causes point **A** to ______to the surface at **B**. So to the eyes, the straw appears to bend _____ the surface of the water.

Ray Diagram (Refraction)

4 s	steps fo	or drawing ray diagrams
1)		the position of the image.
	•	Object appears
	•	Image should be drawn directly the object.
	•	Image should be and same
2) Draw a pair of from the image to the observer.		
	•	Start from point of the image.
	•	Use dotted lines () from the image to the surface of the water.
	•	Use solid lines () from the surface to the observer.
3)	Draw	a pair of from the object to the surface.
	•	Use solid lines () to connect the incident rays to the refracted rays
4)	Draw	to indicate the direction of the light rays.

Draw the ray diagram for the object.

5 Colours

What is a spectrum of white light?

Ordinary light (or white light) is a mixture of _____ different colours called a _____.

When a beam of white light passes through a _____, the light splits up and _____ into a spectrum.

The Spectrum consists of seven colours: R____, O_____, Y_____, G_____,

B____, I____ and V_____.

What causes the colours in a rainbow?

Sunlight (white light) passes through rain drops. Each rain drop acts as a _____ and ____ the white light to form the colour of the spectrum.

Refraction

Rays travel at different angles.

here

Incident

sunlight

White light can also be obtained by combining the colours together.

By using two prisms, one to disperse white light into its colours and the second one to converge the coloured light rays together to form white light.

Colour Mixing

- Primary colours of light: _____, and _____.
- Mixing two primary coloured lights at a time gives: _____, ____ and _____
 lights.
- Mixing all three primary coloured lights gives: _____light.

Seeing Coloured objects in White light

When white light shines on a coloured object, some of the colours in the spectrum are _____ and some are _____.

Seeing Coloured objects in coloured light

The colour of an object is the colour of the light that is _____ from it into our eyes.

6 Electromagnetic (EM) Spectrum

The electromagnetic waves in the spectrum:

- (a) Radio waves
- (b) Microwaves
- (c) Infrared radiation
- (d) Light
- (e) Ultraviolet radiation
- (f) X-rays
- (g) Gamma rays

Each electromagnetic waves have their function e.g. radio waves are used in the transmitting of radio signals.

Beneficial and Harmful Effects of infrared radiation and ultraviolet radiation:

a) Infrared radiation

Beneficial	Harmful
	Large doses of infrared radiation can
Use in remote control, night vision goggles, lasers, thermographic cameras,	damage
communications devices and weather	Exposure to intense electromagnetic
satellites.	radiation, including infrared radiation, can
	damage the eye.

b) Ultraviolet radiation

Beneficial	Harmful
UV from the Sun is needed by our bodies to produce which helps strengthen bones, muscles and the body's immune system.	Overexposure of u.v. can cause • sunburn •
Useful for disinfection and of surgical instrument.	

7 Light Pollution

•	Excessive artificial lighting causes	, making the sky look bright even
	at night and difficult to observe the stars	

- A lot of _____ is used
- Light pollution can be harmful to human health, causing problems such as stress, headaches and sleep deprivation
- Nocturnal animals may have trouble hunting for food because it is too bright.

Essential Takeaways

- 1. Light rays as representation of light
- 2. Use of light rays to explain reflection and refraction
- 3. Use of light rays to predict effects of refraction