Homework in Org-mode

Question 1. What is this document?

This is a demonstration of my homework LaTeX class. It is an extension of the amsart and should have all of its functionality. These are some of the set symbols: $\mathbb{C} \supset \mathbb{R} \supset \mathbb{Q} \supset \mathbb{Z} \supset \mathbb{N}$, then some Greek and other mathematical symbols are, $\alpha, \varepsilon, \partial, \rightarrow, \Rightarrow, \hookrightarrow, \rightarrow, \rightarrow$. We can also insert multiple figures as seen in figure 1. There is also an org-mode version of this file¹.

FIGURE 1. Al'Khwarizmi

Question 2. Prove that $\exists (x,y) \in \mathbb{Z}$ such that x+y=4. We show,

Proof of important theorem. Four is the sum of two integers. $1, 3 \in \mathbb{Z}$ and 1 + 3 = 4.

QED.

Question 3. What is the cardinality of Natural Numbers? It is \aleph_0 [1]. See also question 99.

Question 99. Is the cardinality of Naturals and Reals the same because they are both infinite? No, the cardinality of Reals is greater because they are also un-listable (uncountable). See also question 3.

Question 4. Finally the numbered bullets are done with the enumitem package,

- 1) With just bullets,
 - Cats
 - Dogs

Question (Bonus) 1. State chain rule.

Chain Rule:

$$\zeta(x) = f(g(x))$$
 then according to the chain rule: $\frac{\mathrm{d}\,\zeta}{\mathrm{d}\,x} = \frac{\mathrm{d}\,f}{\mathrm{d}\,g} \times \frac{\mathrm{d}\,g}{\mathrm{d}\,x}$

Question (Bonus) 2. Euclidean Algorithm

You may write code as in listing 1,

¹Tashfeen's org-mode configurations can be found here.

```
1 def gcd(x, y): \# x > y
    x0, x1, y0, y1 = 1, 0, 0, 1
    while (y > 0):
3
      print('\\gcd(%d, %def) &: %d &&= ' % (x, y, x), end='')
4
      q, r = divmod(x, y)
5
      # print('%d \\times %d + %d &&\\quad' % (q, y, r), end='')
      # print('[%d, %d] - %d[%d, %d] = ' % (x0, x1, q, y0, y1), end='')
      x, y = y, r
      x0, x1, y0, y1 = y0, y1, x0 - q * y0, x1 - q * y1
9
      # print('[%d, %d] \\\', % (y0, y1))
10
    return x, x0, x1
11
```

LISTING 1. Euclidean Algorithm for Greatest Common Factor

Question 5. How do we insert in-file code?

Like in listing 2,

```
1 def fib(n):
2   if n == 0: return 0
3   if n == 1: return 1
4   return fib(n - 1) + fib(n - 2)
5 print(fib(20))
```

Listing 2. Recursive Python function to calculate n^{th} Fibonacci number.

References

[1] Sandra Lach Arlinghaus and SL Arlinghaus. Part ii. elements of spatial planning: Theory. merging maps: Node labeling strategies. *Unknown*, 1996.

BAYT EL-HIKMAH