<u>דפי נוסחאות בלוגיקה ותורת הקבוצות</u> תחשיב הפסוקים

- $\alpha \lor \beta \equiv \beta \lor \alpha$: 1). חק החלוף לגבי האַווי
- $\alpha \land \beta \equiv \beta \land \alpha$. מק החלוף לגבי הגמום: 2). חק החלוף
- $(\alpha \vee \beta) \vee \gamma \equiv \alpha \vee (\beta \vee \gamma)$: חק הקבוץ לגבי האָווי.
- $(\alpha \land \beta) \land \gamma \equiv \alpha \land (\beta \land \gamma)$. חק הקבוץ לגבי הגמום: (4
- $\alpha \wedge (\beta \vee \gamma) = (\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$. חק הפָלוג של האָווי מעל הגָמום (5). חק
- $\alpha \lor (\beta \land \gamma) \equiv (\alpha \lor \beta) \land (\alpha \lor \gamma)$ אווי: (6). חק הפָלוג של הגָמום מעל האָווי:
 - $\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$, $\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$: כללי דה-מורגן:
 - $\alpha \rightarrow \beta \equiv \neg \alpha \lor \beta$, $\neg (\alpha \rightarrow \beta) \equiv \alpha \land \neg \beta$.(8
 - $\alpha \longleftrightarrow \beta \equiv (\alpha \to \beta) \land (\beta \to \alpha) \equiv (\alpha \land \beta) \lor (\neg \alpha \land \neg \beta)$.(9
 - $\alpha \land T \equiv \alpha$, $\alpha \lor T \equiv T$, $\alpha \land F \equiv F$, $\alpha \lor F \equiv \alpha$: חָקִי האמת (10
 - $\alpha \wedge (\alpha \vee \beta) \equiv \alpha$, $\alpha \vee (\alpha \wedge \beta) \equiv \alpha$: חָקי הספיגה (הרוב קובע) (11

הגדרה: המבנה M הוא **תת מבנה** של המבנה N אם העולם של M מוכל בעולם של N, M, והסמנים שמופיעים באוצר המילים מתפרשים אותו דבר ב-N,M, כלומר:

- $a_1,a_2...a_n$ אברים חס ח -מקומי ולכל חמן אברים חס -n R אברים ממן יחס R אם לכל סמן אם $R^N(a_1...a_n)$ אם $R^M(a_1...a_n)$
 - M בעולם של $a_1,a_2..a_n$ אברים $a_1,a_2..a_n$ בעולם של $a_1,a_2..a_n$ בתקיים: $f^M(a_1,a_2..a_n)=f^N(a_1,a_2..a_n)$
 - $C^{M}=C^{N}$ מתקיים, c , ג. לכל סמן של קבוע אישי,

<u>איזומורפיזם:</u>

הגדרה: נתונים שני מבנים M_1,M_2 שמפרשים אותו אוצר מילים. איזומורפיזם בין הגדרה: M_1,M_2 הוא פונקציה M_1,M_2 שמקיימת את התכונות הבאות:

- א. H חחייע ועל.
- M_1 -ם $a_1,a_2...a_n$ ב-. לכל סמן של יחס $a_1,a_2...a_n$, באוצר המילים ולכל R, באוצר חסח-מקומי, $R^{M2}(H(a_1),H(a_2)..H(a_n))$ אם"ם $R^{M1}(a_1,a_2...a_n)$ מתקיים: $R^{M2}(A_1,a_2...a_n)$
 - M_1 בעולם של $a_1,a_2..a_n$ אברים f, ולכל f בעולם של f בעולם של h לכל סמן של פונקציה h-מקומית, h- $f^{M1}(a_1,a_2..a_n))=f^{M2}(H(a_1),H(a_2)..H(a_n))$ מתקיים:
 - $H(c^{M1})=c^{M2}$ מתקיים, c , אישי, ד. לכל סמן של קבוע אישי

 $H:M_1 {
ightarrow} M_2$ איזומורפיים אם יש איזומורפיזם M_1,M_2 הגדרה: המבנים

. אז כל פסוק שנכון באחד מהם, נכון בשני $\mathsf{M}_1\cong\mathsf{M}_2$ משפט: אם $\mathsf{M}_1\cong\mathsf{M}_2$

<u>שקילות לוגית</u>

A אם B, אם M הגדרת שקילות לוגית: הפסוקים B,A שקולים לוגית פירושו שלכל מבנה M, אם B מתקיים, אז B מתקיים ואם B מתקיים אז A מתקיים.

החֵקים האנלוגיים לחֵקי דה-מורגן: (טְפול בשלילה שמופיעה לפני סוגריים)

$$\neg$$
[\forall x(α)]≡ \exists x($\neg\alpha$) .×

$$\neg [\exists x(\alpha)] \equiv \forall x(\neg \alpha)$$
.

החלפת שם של משתנה מכומת: בפסוק $\forall x(\alpha)$ נתן להחליף את x ב-y, בהנחה ש- α מופיע ב- α רק כמשתנה חופשי ו-y כלל לא מופיע ב- α (אין צֹרך לְזכֹר את ההנחה, אלא רק להבין את הרעיון ולתרגל).

משפט הוצאת הכמתים מחוץ לסוגריים: אם x לא מופיע בפסוק β , אז x משפט הוצאת הכמתים מחוץ לסוגריים: אם x אותו דבר אם יופיע y במקום y.

הרעיון של המשפט: אין קשר בין הכָמות על x לבין הפסוק β . לכן זה לא משנה אם הרעיון של המשפט: אין קשר בין הכָמות על β יופיע בתוך הסוגריים או מחוץ להם.

משפט המחמיר והמֱקַל:

$$.[\forall \mathbf{x}(\alpha)] \land [\forall \mathbf{x}(\beta)] \equiv \forall \mathbf{x}[\alpha \land \beta]$$

$$.[\exists \mathbf{x}(\alpha)] \lor [\exists \mathbf{x}(\beta)] \equiv \exists \mathbf{x}[\alpha \lor \beta]$$
...

הרעיון: יש דָמיון בין הכמת ∀ ובין הקשר ∧. שניהם "מחמירים", כלומר מקשים לקבל ערך אמת. הכמת ∀ אומר שאפילו אם יש x אחד שלא מקיים, אז נקבל F. הקשר ∧ אומר שאפילו אם רק אחד משני הפסוקים שקרי, אז נקבל F. בחלק א של המשפט יש שלוב של הכמת המחמיר עם הקשר המחמיר. לכן אפשר להחליף סדר ביניהם. בחלק ב יש שלוב של הכמת המקל, ∃, עם הקשר המקל, ∨.

המשפטים היסודיים של תורת המודלים

<u>תורה</u> = קבוצה של פסוקים באוצר מילים מסוים.

תורה היא <u>עקבית</u> אם יש לה מודל, כלומר יש מבנה המקיים את כל הפסוקים בה.

משפט הקומפקטיות:

תורה היא עקבית אם ורק אם כל תת קבוצה סופית שלה היא עקבית.

תורת הקבוצות

:N={0,1,2...} המספרים המבעיים, Z: המספרים השלמים, Q: המספרים הרציונלים

R: המספרים הממשיים.

תכונות של איחוד וחיתוך:

 $A \cup B = B \cup A$: 1). האָחוד מקיים את חק החלוף

 $A \cap B = B \cap A$: 2). החָתוּך מקיים את חק החלוף

3). האָחוד מקיים את חק הקבוץ:

 $.A \cup B \cup C = (A \cup B) \cup C = A \cup (B \cup C)$

4). החתוך מקיים את חק הקבוץ:

 $.A \cap B \cap C = (A \cap B) \cap C = A \cap (B \cap C)$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C), A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 3. חֲקִי הפָּלוג:

 $(A \cup B)^c = A^c \cap B^c$, $(A \cap B)^c = A^c \cup B^c$ כללי דה-מורגן: (6

 $f: \mathbb{N} \to \mathbb{A}$ היא בת מניה אם היא ריקה או שקיימת פונקציה **על** A הגדרה: קבוצה

<u>משפט:</u> אם קבוצה A היא אחוד של אוסף בן מניה של קבוצות בנות מניה, אז A בת מניה. הגדרה: קבוצות B,A תקראנה שוות עוצמה אם יש פונקציה חח"ע ועל מ-B ל-B.

.A-ברה: עוצמת A גדולה או שווה לעוצמת B אם יש פונקציה חח"ע מ-B ל-A

אבל B אדולה או שווה לעוצמת A אם עוצמת A גדולה או שווה לעוצמת B אבל A הגדרה: עוצמת A אינן שוות עוצמה. B אינן שוות עוצמה.

משפט קנטור: לכל קבוצה A עוצמת קבוצת החזקה (P(A) של A גדולה מעוצמת A.

משפט: עוצמת המספרים הממשיים R שווה לעוצמת (P(N) ולכן גדולה מעוצמת N.

משפט קנטור ברנשטיין: לכל שתי קבוצות B,A: אם עוצמת A גדולה או שווה שפט קנטור ברנשטיין: לכל שתי קבוצות B,A אז B, שוות עוצמה.

משפט השוואת העוצמות: אם B,A קבוצות אז עוצמת A גדולה או שווה לעוצמת B או עוצמת B גדולה או שווה לעוצמת A.

<u>דף נוסחאות מורחב (דף זה ימסר כתוספת רק לזכאים)</u>

מסקנה מהפסוק	הוכחת הפסוק	טבלת ההוכחות
ת(t), כאשר t שם עצם α(t), כשר להצבה, כלומר שאין בו משתנה שיהיה מכומת אחרי ההצבה של t במקום x.	α בעולם הדיון. צ"ל x יהי	∀x(α)
כאשר c הוא סמן α(c) של קבוע אישי חדש.	נגדיר=x (באגף ימין יופיע שם עצם הכשר להצבה ב $lpha$ במקום x). צ"ל $lpha$.	∃ x (α)
$_{eta}$ (אפשר גם להסיק) (מובן).	שלב א: צ"ל α. שלב ב: צ"ל β.	α∧β
מקרה א: α. מקרה ב: β. מהפסוק מסיקים שבהכרח אחד המקרים יתקיים.	מספיק להוכיח אחד מהם.	α∨β
$, lpha$ אם כבר הוכחנו את β .	.β צ"ל α. נניח	$\alpha \rightarrow \beta$
אפשר כמובן גם $\alpha op \beta$ להסיק $\alpha op \alpha$).	$egin{aligned} \alpha & \rightarrow \beta \ \end{pmatrix}$ שלב א: צ"ל $eta & \rightarrow \alpha \ \end{pmatrix}$ שלב ב: צ"ל	α↔β

<u>דוגמאות לשמושים שגויים, כי השם לא כשר להצבה:</u>

- $\exists y(y + x) \exists y(y \neq x) \exists y(y \neq x)$ נסיק בטעות ש- $A = \exists y(y \neq x) \exists y$ בנוסחא במקום Y שבה Y שבה Y הטעות נובעת מהצבת Y מכומת.
 - ב. שמוש שגוי בשורה השניה בטבלה : על מנת להוכיח ש- $X[\forall y(x=y)]$ נכתב X בטעות כך : נגדיר X צ"ל Y(y=y). הטעות נובעת מהצבת Y במקום Y בנוסחא $X=\forall y(x=y)$ שבה Y מכומת.

יחסים:

הגדרה: יהי S יחס דו-מקומי על הקבוצה A.

- $X \in S$ מתקיים $X \in A$ מתקיים S = X.
- $x,y \in S$ אז $x,y \in S$ אם $x,y \in A$ ב. סימטרי אם יים לכל
- y=x אז $< y,x> \in S$ וגם $< x,y> \in S$ אז $x,y\in A$ אז אם S
- <y,z> \in S אם <x,y> \in S אם <x,y,z \in A אם <x,y,z \in S אם <x,z> \in S אז <x,z> \in S.
 - ה. יחס שקילות אם"ם S גם רפלקסיבי, גם סימטרי וגם טרנזיטיבי.
 - ו. S יחס סדר חלקי אם"ם S גם רפלקסיבי, גם אנטי סימטרי וגם טרנזיטיבי.