

Mechanics of Materials I: Fundamentals of Stress & Strain and Axial Loading

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 32 Learning Outcome

Develop Mohr's Circle for Plane Strain

Georgia

Normal Strain Transformation Equation

Shear Strain Transformation Equation

$$\varepsilon_n = \varepsilon_x \cos^2 \theta + \varepsilon_y \sin^2 \theta + \gamma_{xy} \sin \theta \cos \theta$$

$$\gamma_{nt} = -2(\varepsilon_x - \varepsilon_y) \sin \theta \cos \theta + \gamma_{xy} (\cos^2 \theta - \sin^2 \theta)$$

$$\mathcal{E}_{n} = \frac{\mathcal{E}_{x} + \mathcal{E}_{y}}{2} + \frac{\mathcal{E}_{x} - \mathcal{E}_{y}}{2} \cos 2\theta + \frac{\gamma_{xy}}{2} \sin 2\theta \qquad \qquad \frac{\gamma_{nt}}{2} = -\left(\frac{\mathcal{E}_{x} - \mathcal{E}_{y}}{2}\right) \sin 2\theta + \frac{\gamma_{xy}}{2} \cos 2\theta$$

Strain Transformation Equations for Plane Strain

$$\varepsilon_n = \frac{\varepsilon_x + \varepsilon_y}{2} + \frac{\varepsilon_x - \varepsilon_y}{2} \cos 2\theta + \frac{\gamma_{xy}}{2} \sin 2\theta$$

$$\left(\frac{\gamma_{nt}}{2} = -\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right) \sin 2\theta + \frac{\gamma_{xy}}{2} \cos 2\theta$$

Recall Stress Transformation Equations for Plane Stress

$$\sigma_{n} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

$$\tau_{nt} = -\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right) \sin 2\theta + \tau_{xy} \cos 2\theta$$

Recall Stress Transformation Equations for Plane Stress

for Plane Strain

Georgia

$$\sigma_{n} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

$$\varepsilon_{n} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2} + \frac{\varepsilon_{x} - \varepsilon_{y}}{2} \cos 2\theta + \frac{\gamma_{xy}}{2} \sin 2\theta$$

$$\tau_{nt} = -\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right) \sin 2\theta + \tau_{xy} \cos 2\theta$$

$$\varepsilon_{n} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2} + \frac{\varepsilon_{x} - \varepsilon_{y}}{2} \cos 2\theta + \frac{\gamma_{xy}}{2} \sin 2\theta$$

$$\frac{\gamma_{nt}}{2} = -\left(\frac{\varepsilon_{x} - \varepsilon_{y}}{2}\right) \sin 2\theta + \frac{\gamma_{xy}}{2} \cos 2\theta$$

Max/Min-Plane Principal Stresses/Principal Planes

Max/Min-Plane Principal Strains/Principal Planes

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$\tan 2\theta_P = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$$

$$\varepsilon_{1}, \varepsilon_{2} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2} \pm \sqrt{\left(\frac{\varepsilon_{x} - \varepsilon_{y}}{2}\right)^{2} + \left(\frac{\gamma_{xy}}{2}\right)^{2}}$$

$$\tan 2\theta_{P} = \frac{\gamma_{xy}}{\varepsilon_{x} - \varepsilon_{y}}$$

Strain Transformation Equations

These are the exact same form of **Maximum In-Plane Shear Stress** the equations for Mohr's Circle

for Plane Stress

for Plane Strains

Therefore we can similarly

Maximum In-Plane Shear Strain $\frac{\gamma_{MAX}}{2} = \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2}$ graphically display Mohr's Circle

$$\tan 2\theta_P = \frac{-x_{xy}}{\sigma_x - \sigma_y}$$
Maximum In-Plane Shear St

 $\tau_{MAX} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$

Plane Stress Mohr's Circle

Graphical tool for the depiction of the transformation equations for plane stress

$$\left(\sigma_{n} - \frac{\sigma_{x} + \sigma_{y}}{2}\right)^{2} + \left(\tau_{nt} - 0\right)^{2} = \left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}$$
Radius = $\sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}$

Center: $\left(\frac{\sigma_{x} + \sigma_{y}}{2}, 0\right) = \left(\sigma_{AVG}, 0\right)$

The angle on Mohr's circle is 2 times the stress block angle

Mohr's circle is a circle where each point represents the stress σ and τ on a particular plane through a single point

Plane Strain Mohr's Circle

Graphical tool for the depiction of the transformation equations for plane stress

$$\left(\varepsilon_{n} - \frac{\varepsilon_{x} + \varepsilon_{y}}{2}\right)^{2} + \left(\frac{\gamma_{xy}}{2} - 0\right)^{2} = \left(\frac{\varepsilon_{x} - \varepsilon_{y}}{2}\right)^{2} + \left(\frac{\gamma_{xy}}{2}\right)^{2}$$
Radius = $\sqrt{\left(\frac{\varepsilon_{x} - \varepsilon_{y}}{2}\right)^{2} + \left(\frac{\gamma_{xy}}{2}\right)^{2}}$
Center: $\left(\frac{\varepsilon_{x} + \varepsilon_{y}}{2}, 0\right) = \left(\varepsilon_{AVG}, 0\right)$

The angle on Mohr's circle is 2 times the stress block angle

Mohr's circle is a circle where each point represents the stress $\mathcal E$ and $\gamma/2$ on a particular plane through a single point