

Single-Source Shortest Paths

2019년 2학기 한양대학교 컴퓨터소프트웨어학부 임을규

Contents

Definition

◆ Single-source shortest paths in directed acyclic graphs

Dijkstra's algorithm

Definition

- Edge weight
- Path weight
 - The sum of all edge weights in the path.
- \blacksquare *A Shortest path* from u to v.
 - \blacksquare A path from u to v whose weight is the smallest.
 - Vertex u is the **source** and v is the **destination**.
- *The Shortest-path weight* from *u* to *v*.
 - The weight of a shortest-path from *u* to *v*
 - \bullet $\delta(u,v)$

Definition

- Shortest-path problems
 - Single-source & single-destination
 - Single-source
 - Single-destination
 - All pairs

lack What is a shortest path from s to g?

- Do all negative-weight edges make problems?
- ◆ Do all negative-weight cycles make problems?

◆ Do all negative-weight cycles reachable from the source make problems?

◆ Single-source shortest paths can be defined if there are not any *negative-weight cycles reachable from the source*.

Cycles

- Cycles
 - A shortest path does not include cycles.
 - A shortest-path length is at most |V|-1.

Predecessor subgraph

- Predecessor subgraph
 - Shortest-path tree
 - Optimal substructure

Predecessor subgraph

Relaxation

lacktriangle Relaxation on (u, v)

- Dijkstra's algorithm
 - It works properly when all edge weights are *nonnegative*.

```
DIJKSTRA(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
S \leftarrow \emptyset
3 \ Q \leftarrow V[G]
4 while Q \neq \emptyset
5
      do u \leftarrow \text{EXTRACT-MIN}(Q)
               S \leftarrow S \cup \{u\}
                for each vertex v \in Adj[u]
8
                         do RELAX(u, v, w)
```

Q

S	t	у	\mathcal{X}	\mathcal{Z}
0	∞	8	8	8

S

S	t	у	\mathcal{X}	Z
0	8	8	8	8
	10	5	-	-

$$S = \{s\}$$

S	t	у	\mathcal{X}	Z
0	8	8	8	8
	10	5	-	-

$$S = \{s, y\}$$

S	t	у	\mathcal{X}	z
0	∞	∞	8	8
	10	5	I	I
	8		14	7

$$S = \{s, y\}$$

S	t	у	X	Z
0	8	8	8	8
	10	5	-	-
	8		14	7
	8		13	

$$S = \{s, y, z, t\}$$

1		1
L	4	ζ

S	t	у	X	z
0	8	∞	8	8
	10	5	-	-
	8		14	7
	8		13	
			9	

$$S = \{s, y, z, t\}$$

S	t	у	\mathcal{X}	Z
0	8	8	8	8
	10	5	-	-
	8		14	7
	8		13	
			9	

$$S = \{s, y, z, t, x\}$$

```
DIJKSTRA(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
S \leftarrow \emptyset
3 \ Q \leftarrow V[G]
4 while Q \neq \emptyset
5
      do u \leftarrow \text{EXTRACT-MIN}(Q)
               S \leftarrow S \cup \{u\}
                for each vertex v \in Adj[u]
8
                         do RELAX(u, v, w)
```

Running time

- $O(V^2)$ if we use an array
- $O(V \lg V + E \lg V)$ if we use a heap
- $O(V \lg V + E)$ if we use a Fibonacci heap.

Procedure	Binary heap (worst-case)	Fibonacci heap (amortized)
MAKE-HEAP	Θ(1)	Θ(1)
INSERT	$\Theta(\lg n)$	$\Theta(1)$
MINIMUM	$\Theta(1)$	$\Theta(1)$
EXTRACT-MIN	$\Theta(\lg n)$	$O(\lg n)$
Union	$\Theta(n)$	$\Theta(1)$
DECREASE-KEY	$\Theta(\lg n)$	$\Theta(1)$
DELETE	$\Theta(\lg n)$	$O(\lg n)$

Fibonacci heap

Definitions

- length of a path: sum of edge weights along the path
- distance from u to v, $\delta(u, v)$: minimum length

Problem: Given a directed graph with NONNegative edge weights G = (V, E), and a special source vertex $s \in V$, determine the distance from the source vertex to every vertex in G.

- *d*[*v*]: estimate the shortest path
- $\pi[v]$: predecessor pointer of the path

Principle Observation

- Any subpath of a shortest path must also be a shortest path. Maintain an Estimate of shortest path for each vertex d[v]
- Initially, d[s] = 0 and $d[v] = \infty$
- $d[v] \ge \delta(s, v)$: As the algorithm goes on, it updates d[v] until all d[v] converge to $\delta(s, v)$ (This update process is called relaxation.)

if
$$(d[u] + w[u, v] < d[v])$$

 $d[v] = d[u] + w[u, v];$
 $\pi[v] = u;$

- Maintain a subset of vertices $S \subseteq V$, for which we claim we "know" the shortest distance, $d[u] = \delta(s, u)$.
- Initially, S = {} and one by one we selected vertices from V S to add S at each stage.
- We select the vertex whose d[u] is minimum. We implement this
 on a priority queue where every operation (Insert, Delete_min,
 Decrease_key) can be done in O(log n) time.
- At each stage
 - select a vertex u, which has the smallest d_u among all the unknown vertices.
 - declare that the shortest path from s to u is known
 - update d_v : $d_v = d_u + w_{u,v}$ if this value for d_v is an improvement. (decide if it is a good idea to use u on the path to v.)

Correctness

Lemma When a vertex u is added to S, $d[u] = \delta(s, u)$.

Proof: We assume all edge weights are STRICTLY positive. Suppose the algorithm FIRST attempts to add a vertex u to S for which $d[u] \neq$ $\delta(s, u)$, so $d[u] > \delta(s, u)$. Consider the situation JUST PRIOR to the insertion of u. Consider the true shortest path from s to u. Since s $\in S$ and $u \in V - S$, at some point this path takes a jump out of S. Let (x, y) be the edge taken by the path where $x \in S$ and $y \in V - S$. We argue $y \neq u$. (Why? Since $d[x] = \delta(s, x)$ and we applied relaxation when we add x, we would have set $d[u] = d[x] + w(x, u) = \delta(s, u)$, but we assumed this is not the case.) Now since y appears midway on the path from s to u and all subsequent edges are positive, we have $\delta(s,y) < \delta(s,u)$, and thus, $d[y] = \delta(s,y) < \delta(s,u) < d[u]$. Thus, y would have been added BEFORE u, in contradiction to our assumption.

- The Bellman-Ford algorithm
 - it solves the single source shortest-paths problem in the general case in which edge weights may be negative.

```
BELLMAN-FORD(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 For i \leftarrow 1 to |V[G]|-1
     do for each edge(u, v) \in E[G]
3
            do RELAX(u, v, w)
  for each edge(u, v) \in E[G]
     do if d[u] + w(u, v) < d[v]
            then return FALSE
 return TRUE
```

Relaxation order

(t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

- Relaxation order
 - (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

- Relaxation order
 - (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

- ◆ The Bellman-Ford algorithm
 - Running time : O(VE)

Assume B-F returns True but there is a negative weight cycle $\langle v_0, v_1, ..., v_k \rangle$.

$$\sum_{i=1}^{k} d[v_i] \le \sum_{i=1}^{k} (d[v_{i-1}] + w(v_{i-1}, v_i))$$

$$= \sum_{i=1}^{k} d[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

$$\sum_{i=1}^{k} d[v_i] = \sum_{i=1}^{k} d[v_{i-1}]$$

$$0 \le \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

DAG-SHORTEST-PATHS(G, w, s)

- 1 topologically sort the vertices of G
- 2 INITIALIZE-SINGLE-SOURCE(G, s)
- 3 for each vertex u, taken in topologically sorted order
- 4 do for each vertex $v \in Adj[u]$
- 5 do RELAX(u, v, w)

• Running time: $\Theta(V+E)$ time

PERT chart

◆ PERT

- Program evaluation and review technique (PERT)
- Edges represent jobs to be performed.
- Edge weights represent the times required to perform particular jobs.

PERT chart

◆ PERT

- If edge (u,v) enters vertex v and edge (v,x) leaves v, then job (u,v) must be performed prior to job (v,x).
- A path through this dag represents a sequence of jobs that must be performed in a particular order.
- A critical path is a longest path through the dag.

PERT chart

- Finding a critical path in a dag
 - Negate the edge weights and run DAG-SHORTEST-PATHS or
 - Run DAG-SHORTEST PATHS, with the modification that we replace " ∞ " by "- ∞ " and ">" by "<".

