Edmond Ho-Yin Lau
Aaron Meininger
Summer Session 1
Econ 113
7/22/2019

Homework 4

1a. Comparing we should get:

$$\beta_{0}^{*} = \beta_{0} + \beta_{1}\omega_{0} + \beta_{3}\gamma_{0} + \beta_{4}\theta_{0}$$

$$\beta_{2}^{*} = \beta_{1}\omega_{1} + \beta_{2} + \beta_{3}\gamma_{1} + \beta_{4}\theta_{1}$$
Omitted Variable Bias are:
$$\beta_{0}^{*} = \beta_{1}\omega_{0} + \beta_{3}\gamma_{0} + \beta_{4}\theta_{0}$$

$$\beta_{2}^{*} = \beta_{1}\omega_{1} + \beta_{3}\gamma_{1} + \beta_{4}\theta_{1}$$

b. Putting in the values of the parameter we get a predicted Bias for β_2 :

$$0.4*3+(-2.4*0.5)+3.1*0=0$$

2a. The coefficients for β_1 is the coefficient of Minutes per game, β_2 is the coefficient of height and β_3 is the coefficient of talent. We know that an NBA player who plays more minutes and have their height and talent higher comparatively to their peers, will have a better chance of scoring more points. Thus we'd expect β_1 , β_2 , β_3 to all be positive.

- b. The correlation I expect between talent and minutes should be positive. For example, if I am managing the team and wanted certain players to play in order to win, I'd want more talented players to play more minutes in order to score more points to win. If I play less talented players more minutes or more talented players less minutes, my expected score would be lower than if I had more talented players play more minutes. So there must be a positive correlation between talent and minutes, since talent is omitted, we expect β_1 will go up.
- c. Since taller people have an easier time making it to the NBA as opposed to shorter players even if they aren't as talented as the shorter players. This will cause a bias for β_2 , which is the coefficient for height, taller players will have a higher coefficient than shorter players. Mathematically suppose our coefficient for height is 1.2, and our taller player (A) is 80 inches and our shorter player (B) is 70 inches, if we plug in these values for height into our regression, we get, $points = \beta_0 + \beta_1 Minutes + 1.2 ln(height)$, if we hold all else equal, the difference in the expected points will be 0.162.
- d. Two reasons why researchers may omit a variable in their regression is because of the lack of qualitative research done on the topic or change in R^2 was not properly observed.
- 3a. With each year of experience the hourly wage of a male worker will be increased by \$0.15. With each year of experience the hourly wage of a female worker will be increased by \$0.10.
- b. At zero level of experience male and female worker will have the same level of wage.

c.
$$\frac{d_{wage}}{d_{fenale}} = -1.75 + 0.1 exp + 1.5 col$$

The wage gap of being a female with no experience or education is -1.75.

With no degree and 5 years of experience is -1.25.

With a degree and 5 years of experience is .25.

d.
$$wage = 7.10 - 1.75Fem + 2.50Col + 1.50Fem * Col (w/ Col & w/oExp)$$

$$wage = 7.10 - 1.75Fem + 0.15Exp + 0.10Fem * Exp (w/Exp & w/o college)$$

How many years of experience would it take to earn the same wage as with college.

$$wage = 7.10 - 1.75(1) + 2.50(1) + 1.5(1)(1)$$
 subbing in 1 for Col and Fem

$$\widehat{wage} = 9.35$$

$$wage = 7.10 - 1.75(1) + 0.15Exp + 0.10(1) * Exp$$
 subbin in 1 for Fem

$$wage = 5.35 + .25Exp$$

$$Exp = 16 years$$

4a. S.d. of the sample mean:

$$\frac{\sigma}{\sqrt{n}} = \frac{20450}{\sqrt{100}} = 2045$$

b. Test μ < 32000 with normal distⁿ with 10% level

Hypothesis test:

$$H_0$$
: $\mu = 32000$

$$H_a$$
: $\mu < 32000$

Test Statistic
$$z^* = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} = \frac{30755 - 32000}{20450 / \sqrt{100}} = -0.61$$

(P-value Approach)

P-value =
$$P(Z<-0.61)=0.2709$$
(from z-table)

$$P$$
-value = 0.2709

Since $0.2709 \ge 0.1$, we fail to reject the null hypothesis

c. Test: $\mu \neq 33000$ with normal distⁿ

Hypothesis test:

$$H_0$$
: $\mu = 33000$

$$H_{\Delta}$$
: $\mu \neq 33000$

Test Statistic
$$z^* = \frac{x - \mu}{g / \sqrt{n}} = \frac{30755 - 33000}{20450 / \sqrt{100}} = -1.10$$

(P-value Approach):

P-value =
$$P(Z < -1.1 \text{ or } Z > 1.1)$$

P-value =
$$2*P(Z<-1.1) = 2*0.1357 = 0.2714$$

Since $0.2714 \ge 0.1$ we fail to reject the null hypothesis

d. 95% CI

$$\overline{x} \pm Z_{\alpha/2} \times \frac{\sigma}{\sqrt{n}}$$

$$30,755 + 1.96 \times \frac{20450}{\sqrt{100}} = 34763.2$$

 $30,755 - 1.96 \times \frac{20450}{\sqrt{100}} = 26746.8$

$$30,755 - 1.96 \times \frac{20450}{\sqrt{100}} = 26746.8$$

95% Confidence Interval: (26746.8, 34763.2)

5a. reg wage IQ

Residual	5362814.38	899	5965.31077	R-squared Adj R-squared	=	0.0941
Total	5919850.7	900	6577.61189	Root MSE	=	77.235
wage	Coef.	Std. Err.	t P	>> t [95% Co	onf.	Interval]
IQ _cons	1.651079 1024.364	.1708609 17.46236		1.31574 0.000 990.092		1.986412 1058.636

Wage = 1024.364 + 1.651*IQ + u

Strong and positive coefficient, each additional unit of IQ, increases wage by \$1.651.

b. gen IQwithnoise# (1-5) = rnormal (0,50)

reg wage IQwithnoise1

Source		df	MS	Number of ob		901
Model Residual	2642.86562	1 899	2642.86562 6581.98869	Prob > F R-squared		0.0004
Total	•	900	6577.61189	114) 11 0 9442	= =	81.129
wage				P> t [95%		Interval]
IQwithnoise1	0341326	.0538655	-0.63	0.5261398 0.000 1185.	494	.0715842

reg wage IQwithnoise2

Source	SS	df	MS		of obs	=	901
Model Residual	2210.42265 5917640.27	1 899	2210.42265 6582.46972	Prob >	> F	=	0.34 0.5624 0.0004
+ Total	5919850.7	900	6577.61189	_	-squared ISE	=	-0.0007 81.132
wage	Coef.	Std. Err.		P> t	-	nf.	Interval]
IQwithnoise2 _cons	.0328728 1191.336	.0567275 2.705625	0.58	0.562 0.000	078461 1186.026	-	.1442066

reg wage IQwithnoise3

Source	SS	df	MS	Number of obs	=	901
+				F(1, 899)	=	0.03
Model	166.772735	1	166.772735	Prob > F	=	0.8736
Residual	5919683.92	899	6584.74296	R-squared	=	0.0000
+				Adj R-squared	=	-0.0011
Total	5919850.7	900	6577.61189	Root MSE	=	81.146

				[95% Conf.	-
IQwithnoise3	.0531224	-0.16	0.874	1127126 1185.965	.0958042

reg wage IQwithnoise4

Source	SS	df	MS	Numbe	r of ob	s =	901
	+			F(1,	899)	=	1.19
Model	7812.0895	1	7812.0895	Prob	> F	=	0.2760
Residual	5912038.61	899	6576.23872	R-squ	ared	=	0.0013
	+			- Adj R	-square	d =	0.0002
Total	5919850.7	900	6577.61189	Root I	MSE	=	81.094
wage	Coef.	Std. Err.		P> t	•		Interval]
IQwithnoise4	.0601501	.0551876	1.09	0.276	0481	614	.1684616
_cons	1191.257	2.701646	440.94	0.000	1185.	955 	1196.559

reg wage IQwithnoise5

Source	I	SS		df		MS	Nu	mber o	f ob	s =	9	901
	+						F (1, 899)	=	0.	.05
Model	3	314.09296		1	314.	09296	Pr	ob > F		=	0.82	272
Residual	;	5919536.6		899	6584.	57909) R-	square	d	=	0.00	001
	+						- Ad	j R-sqı	lare	d =	-0.00	11
Total	5	5919850.7		900	6577.	61189	Ro	ot MSE		=	81.1	L45
wage		Coef.						-		Conf.	Interva	al]
IQwithnoise5	· -	.0119117	.0545	393	-0.	22	0.827	:	1189		.09512	
_cons		1191.269 	2.703	3373 	440.	66	0.000	1:	185.	963 	1196.5	574

C. The coefficients in part B compared to our original estimate using true value of IQ in part A shows there's some variation in IQ

d.

5a. reg salary sales roe ros indus finance consprod

Source	l ss	df	MS	Number of ob		209
Model	•	6	5293777.58	F(6, 202) Prob > F	=	2.97 0.0084
Residual			1782031.27	- 1	=	0.0811
Total	+ 391732982		1883331.64	Adj K Square	ed = =	0.0538
salary	 Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]

Salary = 715.75 + 0.011*Sales + 7.970*ROE - 2.143*ROS + 279.768*Indus + 552.465*Finance + 948.114*Consprod + u

An additional sale will increase the salary by \$0.011 with ceteris paribus assuming that everything is held constant.

```
b. t_{95\%} = 1.962
```

c. ttest roe == 10, level(90)

Fail to reject the null hypothesis that return on equity (roe) has an effect that is equal to 10 at the 90% level. 0% chance that we would get this sample mean if true mean were 10.

test b[roe]=10

```
(1) roe = 10 F(1, 202) = 0.03Prob > F = 0.8724
```

d. reg salary sales roe ros indus finance consprod

Source	SS	df	MS	Number of o	os =	209
	+			F(6, 202)	=	2.97
Model	31762665.5	6	5293777.58	Prob > F	=	0.0084
Residual	359970317	202	1782031.27	R-squared	=	0.0811
	+			- Adj R-square	ed =	0.0538
Total	391732982	208	1883331.64	Root MSE	=	1334.9
salary	•	Std. Err.			Conf.	Interval]
sales	•			0.2160065	 5773	.0289216
sales	.0111722	.0090017	1.24	0.2160065	5773	.028921

roe		7.970479	12.62133	0.63	0.528	-16.91598	32.85694
ros	1	-2.142566	1.492172	-1.44	0.153	-5.084797	.7996658
indus	1	279.7675	291.5297	0.96	0.338	-295.0642	854.5992
finance		552.465	300.598	1.84	0.068	-40.24739	1145.177
consprod		948.1143	322.5469	2.94	0.004	312.1236	1584.105
_cons		715.7507	276.0282	2.59	0.010	171.4845	1260.017

test indus finance consprod

```
(1) indus = 0
```

- (2) finance = 0
- (3) consprod = 0

$$F(3, 202) = 3.60$$

 $Prob > F = 0.0144$

reg salary sales roe ros

Source	SS	df	MS	Numbe F(3,	r of ob	s = =	209 2.25
Model Residual	12501859.4 379231123	3 205	4167286.46 1849907.92	Prob R-squ	Prob > F R-squared Adj R-squared		0.0834 0.0319 0.0177
Total	391732982	208	1883331.64	_	-	d = =	1360.1
salary	•	Std. Err.	t		•	Conf.	Interval]
sales roe ros _cons	.0154825 22.00331 -1.105191 864.1175	.0089539 11.51655 1.45024 228.3997	1.91 -0.76	0.085 0.057 0.447 0.000	0021 7027 -3.96 413.8	663 449	.0331361 44.70939 1.754108 1314.431