14.07, Fall 2019: Formula Sheet for Midterm Exam 3 Final version: use this version only

• Q Theory of investment over two-periods (no borrowing constraints):

$$\begin{split} \frac{i_0}{k_0} &= \frac{Q-1}{\phi} \\ Q &= \frac{\overline{e}_1}{1+\overline{R}_k} \\ \overline{R}_k - R_f &= \beta_k \left(\overline{R}_m - R_f \right) \end{split}$$

• Holmstrom-Tirole model for banks' investment and payoff:

$$I = \frac{N}{1 - \overline{\rho}}$$
 and $U = \left(1 + \frac{R}{1 - \overline{\rho}}\right) N$

• Kiyotaki-Moore credit cycles Procyclical leverage ($\overline{\rho}_1(R_1)$ increasing in R_1):

$$I_1 = \frac{1}{1 - \overline{\rho}_1(R_1)} N_1$$

Fire sales externalities (in terms of prices, prices are increasing in I_1)

$$P_1 = P_1^{\text{fair}} + \overbrace{P_0 G(l_1)}^{\text{fire-sale influen}}$$

(in terms of returns, returns are increasing in I_1)

demand influence/fire sale
$$D_1 + P_1 \qquad \qquad D_1 = P_1$$

$$1 + R_1 = \frac{D_1 + P_1}{P_0} = \underbrace{1 + R_1^{\text{fair}}}_{\text{fair return}} + \underbrace{G(l_1)}$$

Putting all together:

$$\begin{split} I_1 &= \frac{1}{1 - \overline{\rho}_1} N_1 \\ &= \frac{1}{1 - \overline{\rho}_1 \left(R_1 \right)} \left(\left(1 + R_1 \right) I_0 - B_0 \right) \\ &= \frac{1}{1 - \overline{\rho}_1 \left(R_1 \right)} \left(\left(1 + R_1^{\text{fair}} + G \left(I_1 \right) \right) I_0 - \overline{\rho}_0 I_0 \right) \text{ where } I_0 = \frac{N_0}{1 - \overline{\rho}_0} I_0 \end{split}$$

- Diamond-Dybvig bank runs. λ is the expected share of withdrawers, $\tilde{\lambda}$ is the actual share of withdrawers, \underline{C}_1 the promised payment to withdrawers, R the long-term return, L the liquidation value:
 - 1. When $\tilde{\lambda} = \lambda$:

$$C_1 = \underline{C}_1$$

$$C_2 = \frac{1}{1 - \lambda} R(1 - \lambda \underline{C}_1)$$

2. When $\tilde{\lambda} > \lambda$ but not too high:

$$C_1(\tilde{\lambda}) = \underline{C}_1$$

$$C_2(\tilde{\lambda}) = \frac{1}{1 - \tilde{\lambda}} R(1 - \lambda \underline{C}_1 - \frac{\underline{C}_1}{L} (\tilde{\lambda} - \lambda))$$

3. When $\tilde{\lambda}$ is higher than a threshold:

$$C_1(\tilde{\lambda}) = \frac{\lambda \underline{C}_1 + (1 - \lambda \underline{C}_1)L}{\tilde{\lambda}} < \underline{C}_1$$
$$C_2(\tilde{\lambda}) = 0$$

1