Approfondimento 3.4

Completiamo la dimostrazione del Teorema 3.24, mostrando che $\mathcal{L}[M] = \mathcal{L}[G_M]$. A questo fine, trattiamo prima il caso della stringa vuota: $\epsilon \in \mathcal{L}[M]$ sse q_0 è finale sse è presente la produzione $q_0 \to \epsilon$ sse $\epsilon \in \mathcal{L}[G_M]$ (quest'ultimo fatto segue dalla forma delle produzioni di una grammatica regolare: la stringa vuota può essere generata solo con la produzione vuota del simbolo iniziale).

Sia ora $x \in \Sigma^+$: dimostriamo per induzione su |x| che $\hat{\delta}(q_0, x) = q_j$ sse esiste in G_M una derivazione $q_0 \Rightarrow^* xq_j$.

Base: |x|=1, cioè $x=a\in \Sigma$. In tal caso $\hat{\delta}(q_0,a)=\delta(q_0,a)$; si ha dunque $\delta(q_0,a)=q_j$ e nella grammatica c'è la produzione $q_0\to aq_j$ che giustifica la derivazione $q_0\Rightarrow aq_j$.

Passo: x=wa, con $a\in \Sigma$ e $w\in \Sigma^+$; per ipotesi induttiva, supponiamo che si abbia $\hat{\delta}(q_0,w)=q_i$ sse esiste in G_M la derivazione $q_0\Rightarrow^*wq_i$; dobbiamo dimostrare che $\hat{\delta}(q_0,wa)=q_j$ sse esiste la derivazione $q_0\Rightarrow^*waq_j$. Ma $\hat{\delta}(q_0,wa)=\delta(\hat{\delta}(q_0,w),a))=\delta(q_i,a)=q_j$; in virtù di quest'ultima transizione, nella grammatica deve esistere la produzione $q_i\to aq_j$. Per ipotesi induttiva abbiamo $q_0\Rightarrow^*wq_i$ e sfruttando la produzione che abbiamo appena menzionato otteniamo $q_0\Rightarrow^*wq_j$. Questo è ciò che dovevamo dimostrare, perché questo ragionamento è reversibile: se c'è una derivazione nella grammatica, questa è possibile in virtù di una produzione che viene da una transizione del DFA.

Rimane da dimostrare che $\mathcal{L}[M] = \mathcal{L}[G_M]$. Per definizione, $x \in \mathcal{L}[M]$ sse $\hat{\delta}(q_0, x) = q_j \in F$. Se supponiamo x = wa, l'automa è prima andato in $\hat{\delta}(q_0, w) = q_i$ (e nella grammatica abbiamo la derivazione $q_0 \Rightarrow^* w q_i^6$) e poi ha eseguito $\delta(q_i, a) = q_j$; siccome $q_j \in F$, nella grammatica abbiamo la produzione $q_i \to a$. Possiamo dunque estendere la derivazione $q_0 \Rightarrow^* w q_i$ ad una derivazione $q_0 \Rightarrow^* w q_i$, cioè $x = wa \in \mathcal{L}[G_M]$. Ancora una volta questo ragionamento è reversibile e dimostra quindi anche il viceversa.

⁶Il caso in cui $w = \epsilon$ lo si tratta facilmente a parte.