

Preliminares de Geometría

→ ¿Cómo saber la orientación de una vuelta dados 3 puntos p, q y r?

Preliminares de Geometría

→ ¿Cómo saber dados 3 puntos p, q y r la orientación de una vuelta?

Temas a ver	9+6=6
Producto Cruz	Distancia entre 2 puntos
Dirección de vuelta	Ángulos Polares

Producto Cruz	
Dirección de vuelta	

Distancia entre 2 puntos

Se calcula a partir de las coordenadas de dos puntos

Ángulos Polares

Temas a ver

Producto Cruz

Se resuelve con determinantes de matrices

Dirección de vuelta

Distancia entre 2 puntos

Se calcula a partir de las coordenadas de dos puntos

Ángulos Polares

Temas a ver

Producto Cruz

Se resuelve con determinantes de matrices

Dirección de vuelta

Depende del producto cruz de 3 puntos

Distancia entre 2 puntos

Se calcula a partir de las coordenadas de dos puntos

Ángulos Polares

Temas a ver

Producto Cruz

Se resuelve con determinantes de matrices

Dirección de vuelta

Depende del producto cruz de 3 puntos

Distancia entre 2 puntos

Se calcula a partir de las coordenadas de dos puntos

Ángulos Polares

Nos apoyamos de coordenadas cartesianas para pasar a polares

$$| x_1 y_1 |$$

 $| x_2 y_2 | = |A|$
 $|A| = x1*y2 - x2*y1$

De forma recursiva con determinantes

1	1 AU y0	11 10	Consideramos el valor en cada post it, y lo
x0 y0			multiplicamos por el determinante resultante de
<mark>1</mark> x1 y1	1 x1 y1	1 x1 y1	"ignorar" las filas y columnas marcadas en color
1 x2 y2	1 <u>x</u> 2 y2	1 ₊ x2 y2	ignoral lab mab y solarmab marbadab on solor

03

Dirección de vueltas

- Si el valor del producto cruz es positivo, entonces la dirección es a favor de las manecillas del reloj.
- Si el valor es negativo, entonces la dirección es en contra de las manecillas del reloj.
- Si el valor es igual a 0, entonces los puntos son colineales.

Podemos calcular a r a partir de la distancia

 \Rightarrow theta = tan^-1((y2 - y1)/(x2 -x1))

Dada una lista de puntos, donde cada punto tiene coordenadas \boldsymbol{x} y \boldsymbol{y} . Determinar si esos puntos forman una **línea recta** en el plano.

Dada una lista de puntos, donde cada punto tiene coordenadas \boldsymbol{x} y \boldsymbol{y} . Determinar si esos puntos forman una **línea recta** en el plano.

Dada una lista de puntos, donde cada punto tiene coordenadas **x** y y . Determinar si esos puntos forman una **línea recta** en el plano.

¿Se les ocurre cómo resolver el problema?

Podemos (o no) usar el producto cruz entre 2 puntos.

Opción 1

Podemos (o no) usar el producto cruz entre 2 puntos.

En caso de no usar el producto cruz, tener la fórmula del determinante.

Podemos (o no) usar el producto cruz entre 2 puntos.

Revisar si la dirección == 0 para todos los puntos

En caso de no usar el producto cruz, tener la fórmula del determinante.

