Algebra

[Basis Transformationen] Es sei φ : $U \to V$ und $B = (b_1,...,b_n)$ Basis von U bzw. $C = (c_1,...,c_n)$ Basis von V :

$$\left[\boldsymbol{\varphi}\right]_{C}^{B} = \left(\boldsymbol{\varphi}(b_{1})_{C}, ..., \boldsymbol{\varphi}(b_{n})_{C}\right)$$

 $[\varphi]_{C}^{B} = (\varphi(b_{1})_{C},...,\varphi(b_{n})_{C})$ Die i-te Spalte ist das Bild des i-ten Basisvektors von B zur Basis C

$$\left[\boldsymbol{\varphi}\right]_{C}^{B} v_{B} = \left[\boldsymbol{\varphi}(v)\right]_{C}$$

 φ angewandt auf v zur Basis B gibt das Bild von v zur Basis C

$$B = [id]_{p}$$
 $C^{-1} = [id]^{C}$

B enthält die Bilder der Kanonischen Basis

$$\left[\varphi\right]_{K} = C^{-1} \left[\varphi\right]_{C}^{B} B \qquad C\left[\varphi\right]_{K} B^{-1} = \left[\varphi\right]_{C}^{B}$$

$$C[\boldsymbol{\varphi}]_{\kappa} B^{-1} = [\boldsymbol{\varphi}]_{\kappa}^{B}$$

Es sei E eine von den Vektoren b_x , b_y mit $x \perp y$ aufgespannt wird und v ein Vektor der orthogonal auf E steht.

Dann sieht die Lineare Abbildung φ zur Basis $B = (v, b_x, b_y)$ wie folgt aus:

Projektion entlang v auf E: Reflektion an E orthogonal zu v:

$$[\varphi]_{B}^{B} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\left[\boldsymbol{\varphi} \right]_{B}^{B} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$[\varphi]_{B}^{B} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$[\varphi]_{B}^{B} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$[\varphi]_{B}^{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$$

$$B \text{ muß normiert sein}$$

[**Permutationen**] sgn : $S_n \to \{\pm 1\}$: $\sigma \mapsto 1$ wenn σ gerade ist -1 sonst $sgn(\sigma \circ \omega) = sgn(\sigma) \cdot sgn(\omega)$ τ transposition $\Rightarrow sgn(\tau) = -1$ σ n-elementiger Zyklus \Rightarrow sgn $(\sigma) = (-1)^{n-1}$

[Kreuzprodukt]

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \times \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} bz - cy \\ cx - az \\ ay - bx \end{pmatrix}$$

[Spur und Determinante] Sei $A \in \mathcal{M}(n \times n, \mathbb{K})$

$$\operatorname{tr}(A) := \sum_{i=1}^{n} a_{ii}$$

 $\operatorname{tr}(A) := \sum_{i=1}^n a_{ii} \qquad \qquad \operatorname{Hat} A \operatorname{Dreiecksform} \operatorname{gilt:} \det(A) = \prod_{i=1}^n a_{ii} \\ \operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B) \qquad \det(AB) = \det(A) \det(B) \qquad \det(\lambda A) = \lambda^n \det(A)$

$$tr(A+B) = tr(A) + tr(B)$$

$$det(AB) = det(A) det(B)$$

$$let(\lambda A) = \lambda^n \det(A)$$

$$\operatorname{tr}(A^t) = \operatorname{tr}(A)$$

$$\det(A^t) = \det(A)$$

[Gram Schmidt] Seien $b_1,...,b_n$ linear unabhängig. Dann bekommt man orthogonale $u_1,...,u_n$ rekursiv mit

$$u_1 \coloneqq b_1 \qquad \qquad u_2 \coloneqq b_2 - \frac{\langle u_1, b_2 \rangle}{\langle u_1, u_1 \rangle} \qquad \qquad u_3 \coloneqq b_3 - \frac{\langle b_3, u_1 \rangle}{\langle u_1, u_1 \rangle} - \frac{\langle b_3, u_2 \rangle}{\langle u_2, u_2 \rangle} \qquad \qquad u_i \coloneqq b_i - \sum_{k=1}^{i-1} \frac{\langle b_i, u_k \rangle}{\langle u_k, u_k \rangle}$$

$$u_3 := b_3 - \frac{\langle b_3, u_1 \rangle}{\langle u_1, u_1 \rangle} - \frac{\langle b_3, u_2 \rangle}{\langle u_2, u_2 \rangle}$$

$$u_{i} := b_{i} - \sum_{k=1}^{i-1} \frac{\langle b_{i}, u_{k} \rangle}{\langle u_{k}, u_{k} \rangle}$$

werden diese $u_1,...,u_n$ noch zu $v_1,...,v_n$ normalisiert haben wir eine orthonormale Basis des \mathbb{R}^n

[QR Zerlegung] Sei B eine bel. $n \times m$ Matrix. Dann interpretieren wir die Spalten als $b_1, ..., b_m$.

 $\ \, \text{Mit dem Gram Schmidt Verfahren erhalten wir} \, v_{\scriptscriptstyle 1}, ..., v_{\scriptscriptstyle m} \, \text{die wir als Spalten in die Matrix} \, \mathcal{Q} \, \text{schrieben}. \\$

$$\operatorname{Matrix} R \ \operatorname{mit} \ r_{\!\scriptscriptstyle ij} \coloneqq \left\langle v_{\!\scriptscriptstyle i}, b_{\!\scriptscriptstyle j} \right\rangle \ \operatorname{hat} \ \operatorname{die} \ \operatorname{Form} \begin{pmatrix} \left\| u_{\!\scriptscriptstyle 1} \right\| & * & \left\langle v_{\!\scriptscriptstyle 1}, b_{\!\scriptscriptstyle m} \right\rangle \\ & \ddots & * \\ 0 & & \left\| u_{\!\scriptscriptstyle m} \right\| \end{pmatrix} \operatorname{dann} \ \operatorname{gilt:} B = QR \ !$$

[Orthogonale Projektion] Sei U ein linearer Teilraum von V und $v_1,...,v_m$ eine orthonormale Basis von U dann $\text{ist } \pi_U: V \to U: v \mapsto \sum\nolimits_{i=1}^m \left\langle v_i, v \right\rangle v_i \text{ die orthogonale Projektion auf } U: \operatorname{im}(\pi_U) = U \ \land \ \operatorname{ker}(\pi_U) = U^\perp$

[Diagonalisierung]

$$(A \text{ normal}) \qquad A\overline{A'} = \overline{A'}A \Leftrightarrow (\exists Q \text{ unit"ar})\overline{Q'}AQ = A' \qquad \mathbb{C} \text{ -diagonal}$$

$$\mathbb C$$
 -diagonal

(
$$A$$
 hermitisch)

$$A = \overline{A^t} \iff (\exists Q \text{ unitar}) \overline{Q^t} A Q = A'$$

$$\mathbb R$$
 -diagonal

(
$$A$$
 symmetrisch)

$$A = A^t \Leftrightarrow (\exists Q \text{ orthonormal}) Q^t A Q = A'$$

$$\mathbb{R}$$
 -diagonal