Eksploracja danych w Internecie

Klasyfikacja tekstów

- Aby umożliwić wyszukiwanie dokumentów na temat należy:
 - zgrupować dokumenty na podstawie tematów,
 - nadać tym grupom wyróżniające nazwy (etykiety),
- Klasyfikacja (kategoryzacja) tekstów:
 Proces porządkowania informacji poprzez kojarzenie dokumentów tekstowych z klasami (kategoriami)
- Uczenie maszynowe:
 - Algorytmy, które uczą się wzorców danych,
 - Po wyuczeniu wzorców można przewidywać kategorie nowych danych,
 - Algorytmy uczące używają danych testowych przy uczeniu nadzorowanym i częściowo nadzorowanym.

- Klasyfikator definiuje się następująco:
 - D: zbiór dokumentów,
 - \mathbb{L} $C = \{c_1, c_2, ..., c_L\}$: zbiór L klas z odpowiednimi etykietami,
 - Klasyfikator tekstu jest funkcją binarną $F: D \times C \rightarrow \{0,1\}$ przypisującą każdej parze $[d_i, c_p], d_i \in D$ i $c_p \in C$ wartość
 - 1, gdy d_j należy do klasy c_p ,
 - ullet 0, gdy gdy d_j nie należy do klasy c_p .
- Definicja ta objemuje algorytmy nadzorowane i nienadzorowane

- Dokładniejsze są algorytmy nadzorowane:
 - ■jednoetykietowe pojedyncza klasa przypisana do dokumentu,
 - ■wieloetykietowe jedna lub więcej klas przypisanych do dokumentu
- W ostatnim przypadku funkcja klasyfikacji $F(d_j, c_p)$ przestaje być binarna i zwraca stopień przynależności dokumentu d_j do klasy c_p .

Algorytmy nienadzorowane

- Algorytmy nadzorowane bazują na zbiorze testowym (uczącym)
 - Zbiór klas z przykładami dokumentów w każdej z nich
 - Przynależność do klas określają specjaliści
 - Zbiór testowy służy do uczenia klasyfikatora
- Duża liczność zbioru uczącego lepiej dostraja klasyfikator i zapobiega przeuczeniu (overfitting)
- Klasyfikator podlega ocenie jakości (walidacja krzyżowa)

Nadzorowane algorytmy klasyfikacji

Algorytmy nienadzorowane (klastering)

Klasyfikacja K-średnich

- W metodach nienadzorowanych etykiety klas są generowane automatycznie poprzez ustalenie środków skupień danych w odpowiednio dobranej przestrzeni atrybutów (termów) opisujących dokumenty
- Wyniki mogą być czasami niezadowalające lub różne od oczekiwanych przez użytkownika
- Metoda K-średnich:
 - Wejście zadana liczba K klastrów,
 - Każdy klaster jest reprezentowany przez centroidę dokumentów,
 - Algorytm:
 - Przypisanie dokumentu do najbliższej centroidy,
 - Przeliczenie centroid,
 - Powtórzenie poprzednich kroków aż do stabliizacji położenia centroid

K-średnich – tryb wsadowy

- Wszystkie dokumenty są klasyfikowane przed przeliczeniem centroid
- Dokument d_j reprezentuje wektor \vec{d}_j

$$\vec{d}_j = (w_{1,j}, w_{2,j}, \dots, w_{t,j})$$

- gdzie
 - $\mathbf{w}_{i,j}$: waga termu k_i w dokumencie $d_{j,j}$
 - t: rozmiar słownika.
- Krok początkowy:
 - Wybierz losowo K dokumentów jako centroidy

$$\vec{\triangle}_p = \vec{d}_j$$

K-średnich – tryb wsadowy

- Krok przypisania:
 - przypisz każdy dokument do najbliższej centroidy
 - Doblicz funkcję odległości jako odwrotność funkcji podobieństwa d_i i c_p (formuła kosinusowa)

$$sim(d_j, c_p) = \frac{\vec{\triangle}_p \bullet \vec{d}_j}{|\vec{\triangle}_p| \times |\vec{d}_j|}$$

■Krok poprawy – przeliczenie centroid każdego klastra

$$\vec{\triangle}_p = \frac{1}{size(c_p)} \sum_{\vec{d}_j \in c_p} \vec{d}_j$$

Powtarzaj kroki przypisania i poprawy, aż centroidy przestaną się zmieniać

Bisekcja K-średnich

- Algorytm:
 - buduje hierarchię klastrów,
 - w każdym kroku dzieli na 2 klastry.
- Wielokrotne powtórzenie K-średnich dla K=2
- Krok początkowy przypisanie dokumentów do jednego klastra,
- Krok podziału:
 - wybierz najliczniejszy klaster,
 - zastosuj do niego metodę K-średnich (K=2)
- Krok wyboru (decyzji):
 - zatrzymaj, jeśli wszystkie klastry mniejsze niż zadany rozmiar,
 - w przeciwnym razie wróć do kroku podziału

Klastering hierarchiczny

- Algorytm podstawowy:
- Początek:
 - start: zbiór N dokumentów do klasyfikacji
 - macierz podobieństwa (odległości) N × N
- Przypisz każdy dokument do swojego klastra
 - Utwórz N klastrów, po jednym dla każdego dokumentu
- Znajdź dwa najbliższe klastry
 - połącz je w jeden klaster,
 - zredukuj liczbę klastrów do N-1
- Przelicz odległości między nowym klastrem i każdym ze starych
- Powtórz 2 ostatnie kroki, aż powstanie jeden klaster o rozmiarze N.

Klastering hierarchiczny

- Sposób obliczania odległości klastrów definiuje 3 warianty algorytmu:
 - ■single-link
 - complete-link
 - average-link
- $dist(c_p, c_r)$: odległość klastrów c_p and c_r
- $dist(d_i, d_i)$: odległość dokumentów d_i and d_i

■Algorytm *Single-Link*

$$dist(c_p, c_r) = \min_{\forall \ d_j \in c_p, d_l \in c_r} dist(d_j, d_l)$$

Klastering hierarchiczny

Algorytm Complete-Link

$$dist(c_p, c_r) = \max_{\forall d_j \in c_p, d_l \in c_r} dist(d_j, d_l)$$

Algorytm Average-Link

$$dist(c_p, c_r) = \frac{1}{n_p + n_r} \sum_{d_i \in c_p} \sum_{d_l \in c_r} dist(d_j, d_l)$$

Prosta klasyfikacja tekstu (naive)

- Wejście:
 - D: zbiór dokumentów,
 - \mathbb{L} $C = \{c_1, c_2, ..., c_L\}$: zbiór L klas z odpowiednimi etykietami
- Algorytm: przypisz jedną lub więcej klas C do każdego dokumentu D.
 - dopasuj termy dokumentów do etykiet klas,
 - dopuść częściowe dopasowanie do klas
 - popraw pokrycie przez zdefiniowanie alternatywnych etykiet klas – synonimów

Prosta klasyfikacja tekstu (naive)

- Klasyfikacja przez dopasowanie bezpośrednie
- Wejście:
 - D: zbiór dokumentów,
 - \mathbb{L} $C = \{c_1, c_2, ..., c_L\}$: zbiór L klas z odpowiednimi etykietami
- Reprezentacja:
 - lacksquare dokument d_j jako ważony wektor $ec{d}_j$
 - lacksquare klasa c_p jako ważony wektor $ec{c}_p$
- Dla każdego dokumentu $d_j \in D$
 - \blacksquare wyszukaj klasy $c_p \in C$ których etykiety zawierają termy d_i ,
 - \blacksquare dla każdej wyszukanej pary $[d_i, c_p]$ oblicz wektor rankingu

$$sim(d_j, c_p) = \frac{\vec{d_j} \cdot \vec{c_p}}{|\vec{d_j}| \times |\vec{c_p}|}$$

Wybierz dla d_j klasy c_p z najwyższymi wartościami $sim(d_i, c_p)$

- Wymagają zbiorów uczących
- $D_t \in D$: zbiór dokumentów uczących
- $T: D_t \times C \rightarrow \{0,1\}$: funkcja trenująca Przypisuje do każdej pary $[d_j, c_p], d_j \in D_t$ oraz $c_p \in C$ wartość:
 - 1, gdy $d_j \in c_p$ wg. oceny specjalistów,
 - \blacksquare 0, gdy $d_j \notin c_p$ wg. oceny specjalistów
- Funkcja ucząca T jest stosowana do dostrojenia klasyfikatora

Faza treningu (uczenia się)

- ■Aby ocenić klasyfikator używa się zbioru testowego podzbioru dokumentów nie występujących w zbiorze uczącym
- Klasy dokumentów określają specjaliści
- Weryfikacja algorytmu polega na:
 - klasyfikacji zbioru testowego przy pomocy algorytmu,
 - porównaniu uzyskanych klas z podanymi przez specjalistów.

Klasyfikacja i ocena

- Zbiór uczący jest używany do budowy reguł klasyfikacji
- Organizacja klasyfikatora w formie drzewa grafu
- Reguły klasyfikacji łatwe do interpretacji przez człowieka
- Przykładowa baza danych:

	ld	Play	Outlook	Temperature	Humidity	Windy
Training set	1	yes	rainy	cool	normal	false
	2	no	rainy	cool	normal	true
	3	yes	overcast	hot	high	false
	4	no	sunny	mild	high	false
	5	yes	rainy	cool	normal	false
	6	yes	sunny	cool	normal	false
	7	yes	rainy	cool	normal	false
	8	yes	sunny	hot	normal	false
	9	yes	overcast	mild	high	true
	10	no	sunny	mild	high	true
Test Instance	11	?	sunny	cool	high	false

Przewidywanie atrybutu Play

- ■Węzły wewnętrzne → nazwy atrybutów
- ■Krawędzie → wartości atrybutów
- ■Trawers drzewa decyzyjnego → wartość atrybutu "Play".
- ightharpoonup (Outlook = sunny) \land (Humidity = high) \rightarrow (Play = no)

	ld	Play	Outlook	Temperature	Humidity	Windy
Test Instance	11	?	sunny	cool	high	false

- Predykcje bazują na zadanych przykładach
- Nowe przykłady naruszające wzorzec prowadzą do błędnych przewidywań
- Przykładowa baza danych stanowi zbiór uczący, determinujący drzewo decyzyjne DT (Decision Tree)

- DT buduje się z bazy danych poprzez rekursywne podziały
- Wybiera się dowolny atrybut różny od "Play" jako korzeń drzewa
- Pozostałe atrybuty dzielą krotki danych na podzbiory,
- Dla każdego podzbioru krotek wybiera się kolejny atrybut dzielący

- Proces podziału zależy od kolejności rozpatrywania atrybutów
- ■Drzewa decyzyjne mogą być niezrównoważone; drzewa zrównoważone lepiej przewidują wartości atrybutów
- Reguła kciuka: wybieraj atrybuty, które pozwalają zmniejszyć średnią długość ścieżki
- Drzewa do klasyfikacji dokumentów:
 - term indeksujący jest skojarzony z węzłami wewnętrznymi,
 - klasy dokumentów są skojarzone z liśćmi,
 - binarne predykaty wskazujące obecność/nieobecność termów indeksujących są skojarzone z krawędziami.

- Niech:
 - \mathbb{I} $K = \{k_1, k_2, \dots, k_t\}$: zbiór termów indeksujących dokumentów
 - C: zbiór klas dokumentów
 - P: zbiór predykatów logicznych termów indeksujących
- Drzewo klasyfikacji:

$$DT = (V, E; r; l_I, l_L, l_E)$$

- (V, E, r): drzewo z korzeniem r,
- $I_I: I \to K$: funkcja kojarząca termy indeksowe K z węzłami wewnętrznymi I,
- $\blacksquare I_L: \bar{I} \to C$: funkcja kojarząca klasy $c_p \in C$ z liśćmi drzewa,
- $I_E: E \to P$: funkcja kojarząca predykaty logiczne P z krawędziami E.

- Tworzenie drzewa przez rekursywne podziały:
 - **krok 1:** skojarzenie dokumentów z korzeniem,
 - **krok 2:** wybierz termy indeksujące zapewniające dobry podział
 - krok 3: powtarzaj aż drzewo rozwinie się w pełni

Termy k_a , k_b , k_c , k_h - termy wybrane do 1 podziału

- Wybór termów rozdzielających odbywa się w oparciu o entropię lub tzw. wzmocnienie informacyjne
- Wybór termów z dużym wzmocnieniem informacyjnym
 - zwiększa liczbę gałęzi na danym poziomie drzewa,
 - zmniejsza liczbę dokumentów w podzbiorach wynikowych,
 - buduje mniejsze i mniej złożone drzewa decyzyjne.
- Jeżeli jakoś dokument nie zawiera termów używanych w budowie drzewa decyzyjnego nie wykorzystuje się go przy tej budowie

Klasyfikator k-NN

■ Klasyfikacja na żądanie (zwłoczna) – wykonywana gdy prezentowany jest nowy dokument $d_{i.}$

Klasyfikator k-NN

- Określa się k najbliższych sąsiadów dokumentu d_j w zbiorze uczącym.
- Klasy tych sąsiadów używa się do ustalenia klasy dokumentu d_i .
- ■Każdej parze dokument-klasa $[d_j, c_p]$ przypisuje się wartość:

$$S_{d_j,c_p} = \sum_{d_t \in N_k(d_j)} similarity(d_j, d_t) \times \mathcal{T}(d_t, c_p)$$

guzic.

- $N_k(d_i)$: zbiór k najbliższych sąsiadów dokumentu d_i w zbiorze uczącym
- \blacksquare similarity(d_i , d_t): formula podobieństwa dokumentów,
- $T(d_t, c_p)$: funkcja zbioru uczącego równa 1 gdy $d_t \in c_p$ albo 0 w przeciwnym wypadku

- Klasyfikator przypisuje dokumentowi d_j klasę (klasy) c_p z najwyższym wynikiem
- Klasyfikator musi obliczyć odległości dokumentu d_j do każdego z elementów zbioru uczącego w zadanym otoczeniu
- Innym problemem jest wybór najlepszej wartości k

- Klasyfikator Rocchio:
 - modyfikuje zapytanie na bazie odpowiedzi użytkownika
 - tworzy nowe zapytanie lepiej wyrażające potrzeby użytkownika
 - ■może być adaptowany do klasyfikacji tekstu
- Zbiór uczący pełni rolę informacji zwrotnej od użytkownika
 - \blacksquare termy dokumentów uczących z danej klasy c_{ρ} dają dodatnie sprzężenie zwrotne,
 - \blacksquare termy dokumentów uczących spoza danej klasy c_p dają ujemne sprzężenie zwrotne.
- Sprzężenie informacyjne zbierane jest przez wektor centroidy
- Nowy dokument jest klasyfikowany na bazie odległości od tej centroidy

Klasyfikator Rocchio

Dokument d_i :

$$\vec{d_j} = (w_{1,j}, w_{2,j}, \dots, w_{t,j})$$

- $\mathbf{w}_{i,j}$: waga termu k_i w dokumencie d_i ,
- ■t: rozmiar słownika.
- Klasyfikator Rocchio dla klasy c_p :

$$\vec{c}_p = \frac{\beta}{n_p} \sum_{d_j \in c_p} \vec{d}_j - \frac{\gamma}{N_t - n_p} \sum_{d_l \notin c_p} \vec{d}_l$$

gdzie

- $\blacksquare n_p$: liczba dokumentów w klasie c_p ,
- $\blacksquare N_t$: całkowita liczba dokumentów w zbiorze uczącym.

Klasyfikator Rocchio

 \blacksquare -: termy poza klasą c_p .

■ Klasyfikator przypisuje każdej parze $[d_i, c_p]$ wartość:

$$S(d_j, c_p) = |\vec{c}_p - \vec{d}_j|$$

 \blacksquare Klasa z najmniejszą wartością S jest przypisana do d_i .

Klasyfikator Rocchio

■Problem: ujemne sprzężenie przemieszcza niekorzystnie centroidę

■Wykorzystuje się jedynie "najbardziej pozytywne" dokumenty z ujemnym sprzężeniem informacyjnym

Każdej parze $[d_j, c_p]$ przypisuje się prawdopodobieństwo $P(c_p|\vec{d}_j)$ (tw. Bayesa)

$$P(c_p|\vec{d}_j) = \frac{P(c_p) \times P(\vec{d}_j|c_p)}{P(\vec{d}_j)}$$

- $lacksquare P(ec{d}_j)$: prawdopodobieństwo wylosowania dokumentu $ec{d}_j$
- $lacktriangleq P(c_p)$: prawdopodobieństwo wylosowania dokumentu w klasie c_p
- Nowym dokumentom przypisuje się klasy o największym prawdopodobieństwie
- Aby uprościć wyznaczenie $P(\vec{d}_j|c_p)$ zakłada się niezależność termów indeksujących

Dokument d_j jest reprezentowany przez wektor wag binarnych

$$ec{d_j} = (w_{1,j}, w_{2,j}, \dots, w_{t,j})$$

$$w_{i,j} = \left\{ egin{array}{l} 1 & ext{if term } k_i ext{ occurs in document } d_j \\ 0 & ext{otherwise} \end{array}
ight.$$

Do każdej pary $[d_i, c_p]$ przypisuje się wartość

$$S(d_j, c_p) = \frac{P(c_p | \vec{d_j})}{P(\overline{c_p} | \vec{d_j})} \sim \frac{P(\vec{d_j} | c_p)}{P(\vec{d_j} | \overline{c_p})}$$

Przy założeniu niezależności termów

$$P(\vec{d_j}|c_p) = \prod_{k_i \in \vec{d_j}} P(k_i|c_p) \times \prod_{k_i \notin \vec{d_j}} P(\overline{k_i}|c_p)$$

$$P(\vec{d_j}|\overline{c_p}) = \prod_{k_i \in \vec{d_i}} P(k_i|\overline{c_p}) \times \prod_{k_i \notin \vec{d_i}} P(\overline{k_i}|\overline{c_p})$$

Stąd

$$S(d_j, c_p) \sim \sum_{k_i} w_{i,j} \left(\log \frac{p_{iP}}{1 - p_{iP}} + \log \frac{1 - q_{iP}}{q_{iP}} \right)$$

$$p_{iP} = P(k_i | c_p)$$

$$q_{iP} = P(k_i | \overline{c}_p)$$

Prawdopodobieństwa p_{iP} oraz q_{iP} są wyznaczane ze zbioru D_t dokumentów uczących.

$$p_{iP} = \frac{1 + \sum_{d_j | d_j \in \mathcal{D}_t \wedge k_i \in d_j} P(c_p | d_j)}{2 + \sum_{d_j \in \mathcal{D}_t} P(c_p | d_j)} = \frac{1 + n_{i,p}}{2 + n_p}$$

$$q_{iP} = \frac{1 + \sum_{d_j | d_j \in \mathcal{D}_t \wedge k_i \in d_j} P(\overline{c}_p | d_j)}{2 + \sum_{d_j \in \mathcal{D}_t} P(\overline{c}_p | d_j)} = \frac{1 + (n_i - n_{i,p})}{2 + (N_t - n_p)}$$

- $n_{i,p}$, n_p , n_p , N_t : jak w modelu probablilistycznym ($N_t liczba$ dokumentów testowych, n_i liczba dokumentów z i-tym termem, $n_{i,p}$ liczba dokumentów z i-tym termem w klasie c_p .
- $\blacksquare P(c_p|d_j) \in \{0,1\} \ oraz \ P(\bar{c}_p|d_j) \in \{0,1\}$: wzięte ze zbioru uczącego.
- Nlasyfikator przypisuje każdemu dokumentowi d_j klasę z największą wartością $S(d_i,c_p)$.

- SVM metoda wektorów nośnych (Support Vector Machine)
- Hiperpłaczczyzna s rozdzielająca klasy maksymalizuje odległości do najbliższych dokumentów w każdej z rozdzielanych klas (c_{α} , c_{b} na rysunku).

SVM – zakłada liniową separowalność klas dokumentów

Hpperpłaszczyznę decyzyjną s wybiera się ze zbioru płaszczyzn równoległych do hiperpłaszczyzn ograniczających (support vectors) i umieszczonych pomiędzy nimi.

Problem optymalizacji SVM: dla danych wektorów \vec{a} i \vec{b} znaleźć płaszczyznę H_w , która maksymalizuje margines m.

Hiperpłaszczyzna H_w jest określona przez wektor \vec{h} i prostopadły wektor \vec{w} , które nie są z góry znane

 \overline{AP} : Odległość punktu A do hiperpłaszczyzny H_w .

$$\overline{AP} = \frac{\vec{a}\vec{w} + k}{|\vec{w}|}$$

 \overline{BQ} : Odległość punktu B do hiperpłaszczyzny H_w .

$$\overline{BQ} = -\frac{\vec{b}\vec{w} + k}{|\vec{w}|}$$

 \blacksquare Margines m niezależny od rozmiaru \overrightarrow{w} :

$$m = \overline{AP} + \overline{BQ}$$

Założenia ograniczające dla \overrightarrow{w} :

$$\vec{a}\vec{w} + k = 1$$
$$\vec{b}\vec{w} + k = -1$$

Stad:

$$m = \frac{1}{|\vec{w}|} + \frac{1}{|\vec{w}|}$$

$$m = \frac{2}{|\vec{w}|}$$

- Oznaczenia:
 - $\blacksquare T = \{..., [c_j, \vec{z}_j], [c_{j+1}, \vec{z}_{j+1}], ...\}$: zbiór uczący,
 - \mathbf{L}_{i} : klasa związana z punktem \vec{z}_{j} reprezentującym dokument d_{i} .
- Problem optymalizacji SVM:
- maksymalizacja $m = 2/|\vec{w}|$ przy ograniczeniach

$$\vec{w}\vec{z}_j + b \ge +1 \text{ if } c_j = c_a$$

 $\vec{w}\vec{z}_j + b \le -1 \text{ if } c_j = c_b$

wektory nośne spełniają warunki równości w powyższym układzie równań

- Przykład:
- maksymalizować wartość $m = 2/|\vec{w}|$
- przy ograniczeniach

$$\vec{w} \cdot (5,5) + b = +1$$

 $\vec{w} \cdot (1,3) + b = -1$

- $m = 3\sqrt{2}$ odległość między hiperpłaszczyznami,
- $|\vec{w}| = \sqrt{x^2 + y^2}$
- Stad:

$$3\sqrt{2} = 2/\sqrt{x^2 + y^2}$$

$$5x + 5y + b = +1$$

$$x + 3y + b = -1$$

Rozwiązanie:

$$y + x - 7 = 0$$

- Klasyfikacja dokumentu d_i (wektora \vec{z}_j) $f(\vec{z}_j) = sign(\vec{w}\vec{z}_j + b)$
- Nowy dokument d_i jest klasyfikowany
 - \blacksquare do klasy c_a : gdy $\overrightarrow{w}\overrightarrow{z}_i + b > 1$,
 - do klasy c_b : gdy $\vec{w}\vec{z}_i + b < -1$.
- Przy wielu klasach każda wybrana klasa c_p jest oddzielana od pozostałych
- Wybrane klasy d_j te, które zapewniają największe marginesy m względem innych klas

Klasyfikatory zespołowe (złożone)

Klasyfikatory zespołowe (złożone)

Metoda stosowa: funkcja ucząca składa wyniki przewidywań poszczegółnych klasyfikatorów składowych z określonymi wagami lub wybiera najlepszy

- Metoda wzmacniania (boosting): łączone klasyfikatory są budowane w wielu iteracjach tą samą metodą uczenia
- W każdej iteracji
 - dokument w zbiorze uczącym ma przypisaną wagę,
 - wagi źle sklasyfikowanych dokumentów zwiększają się po kolejnych iteracjach
- Po n iteracjach
 - wyjścia klasyfikatorów są łączone w sumę ważoną,
 - wagi są związane z błędami estymacji każdego klasyfikatora