

Physical Properties of Concrete and Concrete Constituents

Jean-Pierre Ollivier Jean-Michel Torrenti Myriam Carcassès

First published 2012 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd 27-37 St George's Road London SW19 4EU

John Wiley & Sons, Inc. 111 River Street Hoboken, NJ 07030 USA

www.iste.co.uk

www.wiley.com

© ISTE Ltd 2012

The rights of Jean-Pierre Ollivier, Jean-Michel Torrenti, Myriam Carcassès to be identified as the author of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Cataloging-in-Publication Data

Ollivier, Jean-Pierre, 1946 Apr. 19-

Physical properties of concrete / Jean Pierre Ollivier, Jean Michel Torrenti, Myriam Carcasses. p. cm.

Includes bibliographical references and index.

ISBN 978-1-84821-330-2

1. Concrete. 2. Concrete--Analysis. I. Torrenti, Jean Michel. II. Carcassés, Myriam III. Title. TP882.3.O45 2012

666'.893--dc23

2012003201

British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN: 978-1-84821-330-2

Printed and bound in Great Britain by CPI Group (UK) Ltd., Croydon, Surrey CR0 4YY

Table of Contents

Introduction	хi
Chapter 1. Description of Granular Materials, Definitions	1
1.1. Introduction	1
1.2. Density	2
1.2.1. At the grain scale	2
1.2.2. At the granular material scale	4
1.3. Porosity of granular material	4
1.4. Compactness	4
1.5. Void ratio	5
1.6. Relative compactness	6 7
1.7. Saturation point	
1.8. Moisture content	7
1.8.1. Measurement of moisture content	7
1.8.2. Comparison of methods of measurement	10
1.9. Ratio between the different densities	12
1.10. Absorption of water	12
1.11. Bibliography	13
1.12. Exercises	13
Chapter 2. Granulometry	19
2.1. Introduction	19
2.2. Characterization of the shape of grains	21
2.3. Methods of granulometric analysis	22
2.3.1. Sieving	23
2.3.2. Granulometric methods based on sedimentation	30
2.3.3. Coulter counter	37

vi Physical Properties of Concrete

2.3.4. Laser granulometer (NF ISO 13320-1)	38
2.3.5. Analysis of images coupled by microscopic	20
observations	39
2.4. Granularity: presentation of results	40
2.4.1. Granular cumulative curves	40
2.4.2. Granular frequency curves	43
2.4.3. Other presentations of granularity	43
2.5. Granularity of a mixture of aggregate	46
2.6. Bibliography	47
2.7. Exercises	48
Chapter 3. Specific Surface Area of Materials	55
3.1. Definition	55
3.1.1. The importance of this parameter:	
Portland cement hydration	56
3.2. Calculating the specific surface area	50
of a granular material	57
2.2.1. Douglar consisting of identical grains	37
3.2.1. Powder consisting of identical grains	57
of known shape	57
3.2.2. Homogeneous powder containing grains	- 0
of non-uniform size	58
3.3. Methods based on permeability	
and porosity measurements	59
3.3.1. Kozeny-Carman equation	59
3.3.2. Lea and Nurse apparatus	65
3.3.3. Blaine apparatus	67
3.4. Methods based on the adsorption of a gas	70
3.4.1. Adsorption kinetics	70
3.4.2. Adsorption isotherms	71
3.4.3. Determination of specific surface area	
from isotherm adsorption	75
3.4.4. Determination of the specific surface area	, c
from an isotherm point	77
3.4.5. Comparison of techniques	78
3.5. Methylene blue test for the characterization	70
of fine partial as	78
of fine particles	
3.6. Bibliography	79
3.7. Exercises	79
Chapter 4. Voids in Granular Materials	
and the Arrangement of Grains	87
4.1 Introduction	87

195

Table of Contents	vii
4.2. Sphere packing (one-dimensional: $\Phi = 2R$):	
theoretical approach and experimental data	88
4.2.1. 3D packing of square-based layers	88
4.2.2. 3D packing of rhombic-based layers	90
4.2.3. Porosity of identical spherical packing	90
4.3. Experimental data	95
4.4. Influence of grain shape	97
4.5. Search for maximum compactness	98
4.5.1. Mixture of two one-dimensional aggregates	100
4.5.2. Theoretical analysis of the variation of compactness	100
with volume fractions of grains of different sizes	102
4.5.3. Model with interaction	102
4.5.4. Consideration of the vibration, compressible	100
packing model	109
4.5.5. Mixture of three one-dimensional aggregates	113
4.6. Bibliography	121
4.7. Exercises.	121
4./. LACICISCS	121
Chapter 5. Voids in Concrete	129
5.1. Definitions	129
5.2. Characterization of heterogeneous materials	133
5.3. Specific surface area of porous solids	136
5.4. Measurements of the porosity of consolidated materials	139
5.4.1. Measurement of total porosity	139
5.4.2. Measurement of open porosity	142
5.4.3. Determination of closed porosity	144
5.5. Porometry	145
5.5.1. Mercury porosimetry (or Purcell porosimetry)	145
5.5.2. Image analysis	164
5.5.3. Method based on the adsorption of a gas	165
5.5.4. Dynamic porosimeter: the Brémond porosimeter	172
5.5.5. Thermoporometry	172
5.5.6. Small angle X-ray scattering and small angle	1 / 2
neutron scattering	174
5.5.7. Innovative techniques in development.	175
5.6. Bibliography	175
5.7. Exercises.	177
J./. LACICISCS	1//
Chapter 6. The Fundamentals of Diffusion	195
6.1. The basics of diffusion	195

viii Physical Properties of Concrete

6.1.2. Diffusion and transport of matter	
at the macroscopic level: Fick's first law	201
6.1.3. A thermodynamic approach to molecular diffusion	203
6.1.4. The diffusion of ions in solution	205
6.1.5. Fick's second law	210
6.1.6. The concentration profile of diffusing species	211
6.2. Diffusion in porous media	219
6.2.1. Molecular diffusion	219
6.2.2. Ionic diffusion	222
6.2.3. The penetration kinetic of a species by diffusion:	
Fick's second law	222
6.3. Measurement of the effective diffusion coefficient	
in porous matter	228
6.3.1. Diffusion cell method	228
6.3.2. Electric field migration tests	233
6.3.3. Measurement of the apparent diffusion coefficient	
by immersion	240
6.3.4. Principle of methods of measuring	
the effective diffusion coefficient based	
on measurements of conductivity	241
6.3.5. Orders of magnitude of the diffusion coefficient	
in concrete	243
6.4. The relationship between the effective diffusion	
coefficient and porous structure	245
6.4.1. Empirical models	246
6.4.2. Polyphasic models	249
6.5. Gaseous diffusion	256
6.5.1. The diffusion of a gas in an infinite medium	256
6.5.2. The diffusion of a gas in a pore	258
6.5.3. The diffusion of a gas in a porous material	259
6.5.4. The diffusion of a gas in a reactive porous environment	261
6.6. Bibliography	262
6.7. Exercises	266
Chapter 7. Permeability	279
	279
7.1. Introduction	2/9
7.2. Definition of the permeability of a material	
7.3. Measurement of permeability	282
7.3.1. Constant head permeameters.	282
7.3.2. Analysis of results: validity of Darcy's law	286
7.3.3. Methods of measuring gas permeability	294
7.3.4. Variable head permeameters	295

Γab			

7.4.1. En	ationship bety pirical model	S	 	 	
7.4.2. Ph	sical models		 	 	
	ing of concre				
	sical mechan				
	plified mode				
	l parameters				
	raphy				
	es				

Introduction

Concrete is manufactured at the plant or on site from various components: cement, water and different granular materials such as sand, gravel and various mineral additions. It may also contain admixtures intended to modify its properties from its fresh state (for example retarding or accelerating admixtures, superplasticizer) or its properties in its hardened state (for example air entraining agents). Properties introduced in this material are varied. They concern both its fresh state through its ability to be transported and poured in forms that are more or less fluid, as well as in its hardened state. Properties include its performances, for example mechanical resistance, resistance to aggressive environments, and acoustic or heat insulation. The formulation of concrete consists of finding components and their proportions to meet specific requirements, which may be very different. All of this should be done keeping in mind that concrete is a widely used material, its cost should be limited, and it is prepared and implemented on site in variable environmental conditions.

Understanding the rheological properties of fresh concrete, the hydration phenomenon of cement responsible for structuration, the relationship between the characteristics of the porous solid obtained and its mechanical performances or resistance to the aggressive penetration requires a complex knowledge of the physicochemistry of reactive porous materials. The development of simple formulation rules therefore requires the assimilation of this knowledge and a good command of the properties of these materials.

The purpose of this book is to provide the "mix designer" with useful knowledge on granular and porous materials, which will enable the innovative design of concrete. Topics covered include the characterization of

xii Physical Properties of Concrete

granular materials, the concepts of porosity and specific surface area, and the transport properties (diffusion and permeation) of concrete. Some of these topics are already covered in other general books dedicated to granular or porous materials. The objective here is to bring them together in one book by adapting them for use by concrete specialists.

Simulations in the form of exercises are offered at the end of each chapter to enable readers to assimilate theoretical knowledge and to apply such knowledge to specific problems encountered in civil engineering.