Virtual Private Networks (VPNs)

Overview, Properties, IPsec, WireGuard

13 October 2020

Network Security AS 2020

Markus Legner

Where are we in the course?

- Preliminaries and background
 - Networking basics
 - Cryptography
 - Public Key Infrastructures
- Securing the transport layer
 - TLS protocol and ecosystem
 - Attacks on TLS
 - TLS 1.3
- Today: securing the network layer
 - Concepts and use cases of VPNs
 - Example protocols: IPsec, WireGuard

What are VPNs and where are they useful?

A VPN creates a **secure channel** between two networks over an **untrusted network** (the Internet)

- Set-up phase: the tunnel endpoints authenticate each other and set up keys (similar to TLS handshake)
- Tunneling phase:
 - Packets are encapsulated at the first endpoint and decapsulated at the second
 - The original packet is (often) encrypted and authenticated with a MAC

Typical properties of VPN tunnels

- Similar security properties as the TLS record protocol:
 - Authentication of the source, integrity (MACs)
 - Confidentiality (symmetric encryption)
 - Replay suppression (sequence numbers)
- Some tunneling protocols do not provide encryption or authentication

Typical VPN setups

Remote / roaming users

Image credits: Ludovic.ferre https://commons.wikimedia.org/wiki/File:Virtual_Private_Network_overview.svg (CC BY-SA 4.0)

VPN setup 1: secure connection between two physically separated networks (site-to-site)

- Replaces private physical networks and leased lines
 - Even for leased lines, encryption may be desirable
- Used for example to connect regional offices with the head office of a company over the Internet

VPN setup 2: secure connection of a remote host to company/university network (host-to-site)

- Remote host can access resources in private network
 - Private IP addresses can be accessed without port forwarding, etc.
 - Services do not need to be exposed to the Internet
- All traffic between host and private network is secure

VPN setup 3: VPN as a "secure" proxy

- Circumvent censorship (e.g., access facebook in China)
- Avoid tracking by your ISP or in a public WiFi network
- Hide your IP address from websites
- Spoof your location for online shopping, video streaming, etc.
- Access restricted content (e.g., academic journals through ETH)
- Download torrents (only legal ones of course)

Important: VPN provider has access to metadata of all traffic.

VPN ≠ anonymity

- VPNs provide some limited anonymity properties:
 - Local network and ISP only see that you send traffic through some VPN
 - They do not see which websites you access
 - Web servers do not see your real IP address
 - Of course, if you use cookies or log in, anonymity is lost
- VPN server can monitor and record all traffic

See next lecture for details of anonymous communication

VPN vs. TLS

- Why do we need VPNs when we have TLS?
 - VPNs protect all traffic: "blanket" security
 - DNS requests
 - Access to webservers without TLS
 - VPNs can give access to services in private networks or behind firewalls
- Why do we need TLS when we have VPNs?
 - Data is only secure in the tunnel: no security outside of it
 - VPN server can see all unencrypted traffic -> TLS still necessary
 - With a VPN it is not possible to authenticate the webserver, only the tunnel endpoint

Typical properties of VPNs and TLS

	TLS	VPN
Secured layer	Transport layer (L4)	Link/network layer (L2/3)
Protection	End-to-end	Tunnel
Client authentication	Not authenticated	Authenticated
Diversity	One / very few globally accepted standards	Many different protocols

Typical interaction of TLS and VPN

VPNs and availability/performance

- VPNs can negatively impact performance
 - Additional cryptographic operations
 - Potential detours
 - Limited bandwidth at VPN server
- Generally, VPNs do not provide higher availability
 - No built-in defense against (D)DoS attacks or routing attacks
- VPNs can defend against targeted packet filtering
 - Routers can recognize VPN packets but not content
 - Would need to drop all VPN packets

Countries that have (partially) banned VPNs

VPN vs. VLAN (virtual local area network)

- VPN: (securely) connect/combine two different networks
 - One virtual network over multiple physical networks
- VLAN: set up multiple isolated virtual networks on a single physical infrastructure
 - Multiple virtual networks over one physical network
 - Often used in cloud-computing environments for isolating communication between VMs
- VXLAN (virtual extensible LAN) combines both features

What types of VPNs are there?

Many different protocols and applications are used to implement VPN functionality

- Generic Routing Encapsulation (GRE) [1994]
- Internet Protocol Security (IPsec) [1995]
- Point-to-point tunneling protocol (PPTP) [1999]
- Layer-2 tunneling protocol (L2TP) [1999]
- OpenVPN [2001]
- Secure Socket Tunneling Protocol (SSTP) [2007]
- WireGuard [2016]
- ...

Why are there so many VPN applications but only TLS?

Differences between systems and configuration parameters

- Authentication mechanisms
 - Pre-shared key (PSK)
 - Public keys and certificates
 - Client: username/password

- Tunneling mechanism (tunnel protocol)
 - Custom protocols (IPsec)
 - Tunnel over TLS (SSTP)

- Layer of connected networks (inner protocol)
 - Layer 3 (Network layer)
 - Layer 2 (Link layer)

- Implementation
 - User space
 - Kernel module
 - Hardware

Tunnel vs. inner protocol

 Typically network layer (IPsec) or transport layer (OpenVPN, WireGuard)

VPN endpoint at hosts

- VPN creates virtual network adapter (e.g., "tun0", "eth2", ...)
- Can be used like any other network adapter
- VPN interface can be used for all traffic or only selectively ("split tunnel")

```
markus@mlegner:~$ route -n
Kernel IP routing table
Destination
                Gateway
                                 Genmask
                                                 Flags Metric Ref
                                                                      Use Iface
192.168.1.0 0.0.0.0
                                 255.255.255.0
                                                       256
                                                                        0 eth0
129.132.99.164 192.168.1.1
                                 255.255.255.255 U
                                                       0
                                                                        0 eth0
0.0.0.0
                10.6.208.1
                                 0.0.0.0
                                                                        0 tun0
                                                        0
10.6.208.0
                                 255.255.240.0
                0.0.0.0
                                                                        0 tun0
                                                             Public IP of VPN server
```

ETH zürich

New default route through VPN

VPN subnet without gateway

VPN processing at hosts

VPNs

IPsec: securing the network layer since 1995

IPsec is a very large and complicated protocol

- First standardized in 1995 in RFCs 1825—1829
- Described in more than 50 different RFCs
- Multiple different modes
- A myriad of options for cipher suites, authentication mechanisms, etc.

We will focus on common cases and abstract from some details.

Image credits: valenta https://www.geograph.org.uk/photo/5900463 (CC BY-SA 2.0)

IPsec is a very large and complicated protocol

Standards track [edit]

- RFC 1829 ☑: The ESP DES-CBC Transform
- RFC 2403 ☑: The Use of HMAC-MD5-96 within ESP and AH
- RFC 2404 ☑: The Use of HMAC-SHA-1-96 within ESP and AH
- RFC 2405 ☑: The ESP DES-CBC Cipher Algorithm With Explicit IV
- RFC 2410 ☑: The NULL Encryption Algorithm and Its Use With IPsec
- RFC 2451 ☑: The ESP CBC-Mode Cipher Algorithms
- RFC 2857 ☑: The Use of HMAC-RIPEMD-160-96 within ESP and AH
- RFC 3526 ☑: More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE)
- RFC 3602 №: The AES-CBC Cipher Algorithm and Its Use with IPsec
- RFC 3686 ☑: Using Advanced Encryption Standard (AES) Counter Mode With IPsec Encapsulating Security Payload (ESP)
- RFC 3947 ☑: Negotiation of NAT-Traversal in the IKE
- RFC 3948 ☑: UDP Encapsulation of IPsec ESP Packets
- RFC 4106 de : The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload (ESP)
- RFC 4301 ☑: Security Architecture for the Internet Protocol
- RFC 4302 ☑: IP Authentication Header
- RFC 4303 ☑: IP Encapsulating Security Payload
- RFC 4304 ☑: Extended Sequence Number (ESN) Addendum to IPsec Domain of Interpretation (DOI) for Internet Security Association and Key Management Protocol (ISAKMP)
- RFC 4307 ☑: Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)
- RFC 4308 ☑: Cryptographic Suites for IPsec
- RFC 4309 №: Using Advanced Encryption Standard (AES) CCM Mode with IPsec Encapsulating Security Payload (ESP)
- RFC 4543 №: The Use of Galois Message Authentication Code (GMAC) in IPsec ESP and AH
- RFC 4555 ☑: IKEv2 Mobility and Multihoming Protocol (MOBIKE)
- RFC 4806 ☑: Online Certificate Status Protocol (OCSP) Extensions to IKEv2
- RFC 4868 ☑: Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec
- RFC 4945 ☑: The Internet IP Security PKI Profile of IKEv1/ISAKMP, IKEv2, and PKIX
- RFC 5280 ☑: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile
- RFC 5282 &: Using Authenticated Encryption Algorithms with the Encrypted Payload of the Internet Key Exchange version 2 (IKEv2) Protocol
- RFC 5386 ☑: Better-Than-Nothing Security: An Unauthenticated Mode of IPsec
- RFC 5529 ☑: Modes of Operation for Camellia for Use with IPsec
- RFC 5685 ☑: Redirect Mechanism for the Internet Key Exchange Protocol Version 2 (IKEv2)
- RFC 5723 ☑: Internet Key Exchange Protocol Version 2 (IKEv2) Session Resumption
- RFC 5857 ☑: IKEv2 Extensions to Support Robust Header Compression over IPsec
- RFC 5858 ☑: IPsec Extensions to Support Robust Header Compression over IPsec
- RFC 7296 ☑: Internet Key Exchange Protocol Version 2 (IKEv2)
- RFC 7321 №: Cryptographic Algorithm Implementation Requirements and Usage Guidance for Encapsulating Security Payload (ESP) and Authentication Header (AH)
- RFC 7383 ☑: Internet Key Exchange Protocol Version 2 (IKEv2) Message Fragmentation
- RFC 7427 ☑: Signature Authentication in the Internet Key Exchange Version 2 (IKEv2)
- RFC 7634 №: ChaCha20, Poly1305, and Their Use in the Internet Key Exchange Protocol (IKE) and IPsec

Experimental RFCs [edit]

RFC 4478 ☑: Repeated Authentication in Internet Key Exchange (IKEv2) Protocol

Informational RFCs [edit]

- RFC 2367 ☑: PF_KEY Interface
- RFC 2412 ☑: The OAKLEY Key Determination Protocol
- RFC 3706 ☑: A Traffic-Based Method of Detecting Dead Internet Key Exchange (IKE) Peers
- RFC 3715₺: IPsec-Network Address Translation (NAT) Compatibility Requirements
- RFC 4621 ☑: Design of the IKEv2 Mobility and Multihoming (MOBIKE) Protocol
- RFC 4809 ☑: Requirements for an IPsec Certificate Management Profile
- RFC 5387 ☑: Problem and Applicability Statement for Better-Than-Nothing Security (BTNS)
- RFC 5856 ☑: Integration of Robust Header Compression over IPsec Security Associations
- RFC 5930 ☑: Using Advanced Encryption Standard Counter Mode (AES-CTR) with the Internet Key Exchange version 02 (IKEv2) Protocol
- RFC 6027 ☑: IPsec Cluster Problem Statement
- RFC 6071 ☑: IPsec and IKE Document Roadmap
- RFC 6379 ☑: Suite B Cryptographic Suites for IPsec
- RFC 6380 ☑: Suite B Profile for Internet Protocol Security (IPsec)
- RFC 6467 ☑: Secure Password Framework for Internet Key Exchange Version 2 (IKEv2)

Best current practice RFCs [edit]

• RFC 5406 ☑: Guidelines for Specifying the Use of IPsec Version 2

Obsolete/historic RFCs [edit]

- RFC 1825₺: Security Architecture for the Internet Protocol (obsoleted by RFC 2401₺)
- RFC 1826₺: IP Authentication Header (obsoleted by RFC 2402₺)
- RFC 1827 ☑: IP Encapsulating Security Payload (ESP) (obsoleted by RFC 2406 ☑)
- RFC 1828 ☑: IP Authentication using Keyed MD5 (historic)
- RFC 2401 ☑: Security Architecture for the Internet Protocol (IPsec overview) (obsoleted by RFC 4301 ☑)
- RFC 2406 ☑: IP Encapsulating Security Payload (ESP) (obsoleted by RFC 4303 ☑ and RFC 4305 ☑)
- RFC 2407 ☑: The Internet IP Security Domain of Interpretation for ISAKMP (obsoleted by RFC 4306 ☑)
- RFC 2409₺: The Internet Key Exchange (obsoleted by RFC 4306₺)
- RFC 4305₺: Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH) (obsoleted by RFC 4835₺)
- RFC 4306 ☑: Internet Key Exchange (IKEv2) Protocol (obsoleted by RFC 5996 ☑)
- RFC 4718 ☑: IKEv2 Clarifications and Implementation Guidelines (obsoleted by RFC 7296 ☑)
- RFC 4835 ☑: Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH) (obsoleted by RFC 7321 ☑)
- RFC 5996₺: Internet Key Exchange Protocol Version 2 (IKEv2) (obsoleted by RFC 7296₺)

https://en.wikipedia.org/wiki/IPsec

Network Security

A typical IPsec session

A typical IPsec session

Set up a security association (SA) via IKE

Encapsulate packets and tunnel them between SA endpoints

Internet key exchange (IKEv2)

```
Cryptographic algorithms, etc. for rest of IKE
Initiator (I)
                                                           (similar to cipher suite in TLS)
                                                                                                 Responder (R)
                  IKE SA INIT request: HDR (ConnID, Flags, ...), proposal1, gx, NonceI
                IKE SA INIT response: HDR (ConnID, Flags, ...), accept1, gy, NonceR
                           Calculate SKEYSEED based on Noncel, NonceR, g<sup>xy</sup>
                    Generate SA (keys SK, configuration, ...) for rest of IKE exchange
         IKE AUTH: HDR, SK{ "I"
                                     [cert], auth IKE SA INIT request, NonceR}, proposal2
         IKE AUTH: HDR, Sk{ "R", [cert], auth{IKE SA_INIT response, MonceI}, accept2 }
                  Signature (when using public keys)
                                                      Cryptographic algorithms, etc. for IPsec tunnel
                 or MAC (when using pre-shared key)
initiator Generate SA (keys, configuration, ...) for IPsec tunnel
      Identity of initiator
```

VPNs

A typical IPsec session

Set up a security association (SA) via IKE

Encapsulate packets and tunnel them between SA endpoints

IPsec encapsulation security payload (ESP) in tunneling mode

- Add ESP trailer: Padding, type encapsulated (original) packet
- Encrypt packet and trailer
- Add ESP header: SA identification, sequence number
- Create Integrity Check Value (ICV): MAC over original packet, ESP header, ESP trailer
- Add new IP header

IPsec decapsulation and decryption

- Strip off outer IP header
- Look up keys and configuration using information in ESP header
- Check MAC
- Strip off authentication tag and ESP header
- Decrypt original packet
- Remove ESP trailer
- Forward original packet

IPsec and TLS: similarities and differences

	TLS	IPsec
Key exchange	TLS handshake	Additional protocol: Internet Key Exchange (IKE)
Authentication	Typically only server Typically using RSA certificate	Server and client Many different authentication mechanisms
Underlying transport	Reliable (runs on top of TCP)	Best-effort (runs on top of IP)

IKE and IPsec have many additional options

- Additional messages with IKEv2:
 - If Extensible Authentication Protocol (EAP) is used
 - For example, if username/password authentication required
 - If initiator chooses unsupported Diffie—Hellman group
 - Responder can use cookies for DoS defense
- Other IPsec modes:
 - Transport mode (instead of tunneling) for end-to-end connections
 - Authenticated Header (AH) protocol (instead of ESP) for only authentication but no encryption

Problems with IPsec

- Configuration is difficult and error-prone due to many options
- Some options do not provide any security
 - Possible to use NULL encryption and not use any message authentication
- Insecure ciphers are possible → similar problems as TLS
 - Example: SLOTH attack (Bhargavan & Leurent 2015) on weak hashes
 - Bleichenbacher attack on IKE (Felsch et. al 2018)

The Dangers of Key Reuse: Practical Attacks on IPsec IKE

Dennis Felsch, Martin Grothe, and Jörg Schwenk, Ruhr-University Bochum; Adam Czubak and Marcin Szymanek, University of Opole

https://www.usenix.org/conference/usenixsecurity18/presentation/felsch

WireGuard: a modern lightweight VPN

Motivation: popular VPN protocols have huge codebases and/or are slow

VPNs

WireGuard overview

- Designed by Jason A. Donenfeld
- Initial implementation in 2016
- Part of the mainline Linux kernel since January 2020

WireGuard design concepts

- No cryptographic agility ("cryptographically opinionated")
 - Only use state-of-the-art primitives: Curve25519 (key exchange), ChaCha20 (encryption), Poly1305 (authentication), ...
 - Simplify negotiation and remove insecure primitives
 - Question: What happens if cryptographic primitives are found to be vulnerable?
- Very simple configuration similar to SSH authorized_keys
- Very small codebase → minimal attack surface, formally verifiable
 - Dowling&Paterson (2018), Kobeissi&Bhargavan (2018), ...

Can I just once again state my love for [WireGuard] and hope it gets merged soon? Maybe the code isn't perfect, but I've skimmed it, and compared to the horrors that are OpenVPN and IPSec, it's a work of art.

[Linus Torvalds, https://lists.openwall.net/netdev/2018/08/02/124]

WireGuard authentication and keys

- Handshake follows the Noise Protocol Framework (noiseprotocol.org)
 - Built exclusively on (elliptic-curve) Diffie—Hellman exchanges
- Each peer has a static key pair
 - Initiator: S₁^{pub}, S₁^{priv}
 - Responder: S_R^{pub}, S_R^{priv}
- Peers specify in configuration which public keys are authorized
 - Similar to adding ssh keys to the "authorized_keys" file
- Each peer creates ephemeral key pair E₁pub, E₁priv; E_Rpub, E_rpriv
- Derive symmetric keys from four Diffie—Hellman combinations: { $DH(S_1, S_R)$, $DH(S_1, E_R)$, $DH(E_1, S_R)$, $DH(E_1, E_R)$ }

WireGuard 1-RTT handshake

Initiator (I)

Responder (R)

Static key-pair S₁ Static key-pair S_R Generate ephemeral key-pair E S_{τ}^{pub} , E_{τ}^{pub} , timestamp, MACs calculated using DH(S_{τ} , S_{R}), DH(E_{τ} , S_{R}) Check authorization of S₁ **Check MACs** Generate ephemeral key-pair E_R E_{R}^{pub} , MACs calculated using DH(E_{I} , E_{R}), DH(S_{I} , E_{R}) **Check MACs** Derive keys for transport Derive keys for transport Encrypted and authenticated data Encrypted and authenticated data

Network Security

WireGuard is faster than IPsec or OpenVPN

WireGuard whitepaper: https://www.wireguard.com/papers/wireguard.pdf

Summary

What you should remember about VPNs

- VPNs create secure channels on network or link layer
- VPNs and end-to-end security (TLS) complement each other
- Many different VPN protocols and applications
 - IPsec has a long history and numerous configuration options
 - Very versatile but difficult to set up
 - WireGuard is a new VPN protocol with a focus on simplicity
 - Very few configuration parameters, no cryptographic agility
 - Simple to set up
 - Small codebase → small attack surface