## A globally consistent first estimation for them SLAM problem



Mark Griguletskii, Ivan Kudryakov. Skoltech, NLA, 2022 <sup>1</sup>

## Problem statement

P(x<sub>0</sub>) - priori

Xi - robot`s pose Ui - odometry measurement

Mk - landmark

Zk - landmark measurement

C - loop closure measurement



Perception in Robotics course. Skoltech, 2019, Gonzalo Ferrer

$$\mathcal{P}(\mathcal{X}, \mathcal{M}, \mathcal{Z}, \mathcal{U}) = p(x_0) \prod_{i=1}^{M} p(x_i | x_{i-1}, \mu_i) \cdot \prod_{i=1}^{k} p(z_k | x_{i_k}, m_{j_k})$$

i=1

$$\theta^* = \arg \max_{\theta} \mathcal{P}(\mathcal{X}, \mathcal{M}|\mathcal{Z}, \mathcal{U}) = \arg \max_{\theta} \mathcal{P}(\mathcal{X}, \mathcal{M}, \mathcal{Z}, \mathcal{U})$$

$$= \arg \min_{\theta} \left\{ -\log \mathcal{P}(\mathcal{X}, \mathcal{M}, \mathcal{Z}, \mathcal{U}) \right\} =$$

$$= \arg \min_{\theta} \left\{ \sum_{i}^{M} \|g_i(x_{i-1}, u_i) - x_i\|_{\Sigma_i}^2 + \sum_{k=1}^{K} \|h_k(x_{i_k}, m_{j_k}) - z_k\|_{\Sigma_k}^2 \right\}$$

## Error function linearization



A Tutorial on Graph-Based SLAM. Giorgio Grisetti; Rainer Kümmerle; Cyrill Stachniss; Wolfram Burgard

$$x_0$$
  $x_1$   $x_2$   $x_2$   $x_3$   $x_2$   $x_3$   $x_4$   $x_5$   $x_5$   $x_5$ 

$$\mathbf{e}_{ij}(\mathbf{\ddot{x}}_i + \Delta \mathbf{x}_i, \mathbf{\ddot{x}}_j + \Delta \mathbf{x}_j) = \mathbf{e}_{ij}(\mathbf{\ddot{x}} + \Delta \mathbf{x})$$

$$\simeq \mathbf{e}_{ii} + \mathbf{J}_{ii}\Delta \mathbf{x}.$$

$$g_i(x_{i-1}, u_i) - x_i \cong \left[g_i(x_{i-1}^0, u_i) + G_i^{i-1} \delta x_{i-1}\right] - \left[x_i^0 + \delta x_i\right] = \left(G_i^{i-1} \delta x_{i-1} - \delta x_i\right) - a_i$$

$$G_i^{i-1} = \frac{\partial g_i(x_{i-1}^0, u_i)}{\partial x_{i-1}} \quad |x_{i-1}|$$

#### Adjacency matrix and solution





We solve linear system via QR decomposition, as it has exact

solution

- $\delta$  2) solve  $\delta = R^{-1}Q^Tb$ 
  - 3) update  $X:=X+\delta$

1) calculate A, b around X, and A = QR

4) residual =  $||Ax - b||_2$ 

## How does it converge?





while  $||\delta||_2>=\epsilon$ : 1) calculate A,b around X, and A=QR

- 2) solve  $\delta = R^{-1}Q^Tb$
- 3) update  $X:=X+\delta$
- 4) residual =  $||Ax b||_2$

#### What happens if an initial estimate is random?



#### What happens if an initial estimate is zeros?



#### What happens if an initial estimate is better - noisy integration of odometry?



#### What happens if an initial estimate is Ostov-based solution?



#### From all-data graph to minimum spanning tree (ostov) with Prim's algorithm



# What happens if an initial estimate is Forward-Backward weighted average-based solution?





#### Forward-Backward weighted average results



# From complete graph to minimum spanning tree (ostov) with Prim's algorithm

while  $||\delta||_2 > = \epsilon$ : 1) calculate Ostov / Forward-Backward average

- 1) calculate A, b around X, and A = QR
- 2) solve  $\delta = R^{-1}Q^Tb$  and update  $X := X + \delta$

- 2) compute initial estimation  $X_0$
- 3) calculate A,b around  $X_0$ , and A=QR
- 4) solve  $\delta = R^{-1}Q^Tb$  once and update  $X := X + \delta$

 $m[O_{A,b}(3k^2N) + O_{QR}(k^2N^3) + O_{solve}(k^2N^2)]$ 

 $O_{A.b}(3k^2N) + iggl[O_{ostov}(N+M\log M)iggr] + O_{QR}(k^2N^3) + O_{solve}(k^2N^2)$ 

$$O_{A,b}(3k^2N) + \overline{O_{ostov}(N)} + \overline{O_{QR}(k^2N^3) + O_{solve}(k^2N^2)}$$

N - number of measurements (edges)

M - number of states (verices)

13

#### Main results

| Initial estimation                | Max transition error (m) | Max rotation error (deg) | Complexity      |
|-----------------------------------|--------------------------|--------------------------|-----------------|
| Zeros                             | 2.59                     | 172.58                   | $O(m(N^2+N^3))$ |
| noisy odometry integration        | 0.27                     | 24.11                    | $O(m(N^2+N^3))$ |
| Ostov-based solution              | 0.26                     | 17.1                     | $O(N^2+N^3)$    |
| Forward-Backward Weighted Average | 0.24                     | 17.37                    | $O(N^2+N^3)$    |

With the simplified problem and less amount of operations we have achieved the same accuracy



#### Literature

- 1)David P. Woodruff. 2014. Sketching as a Tool for Numerical Linear Algebra. Found. Trends Theor. Comput. Sci. 10, 1–2 (October 2014), 1–157. <a href="https://doi.org/10.1561/0400000060">https://doi.org/10.1561/0400000060</a>
- 2) R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige and W. Burgard, "G2o: A general framework for graph optimization," *2011 IEEE International Conference on Robotics and Automation*, 2011, pp. 3607-3613, doi: 10.1109/ICRA.2011.5979949.
- 3) M. Kaess, A. Ranganathan and F. Dellaert, "iSAM: Incremental Smoothing and Mapping," in IEEE Transactions on Robotics, vol. 24, no. 6, pp. 1365-1378, Dec. 2008, doi: 10.1109/TRO.2008.2006706.
- 3) Different sketching techniques <a href="https://github.com/JinChengneng/MatrixSketching/tree/master/doc">https://github.com/JinChengneng/MatrixSketching/tree/master/doc</a>