3

Функциональная, статистическая и корреляционная зависимость

Рассмотрим систему двух случайных величин $\{X,Y\}$.

Эти случайные величины могут быть независимыми:

$$f(x,y) = f_1(x) \cdot f_2(y)$$
 (5.1)

В против случае между ними может быть:

функциональная зависимость:

$$y = g(x)$$
.

статистическая зависимость:

$$\varphi(x/y) = f(x,y) / f_2(y)
\varphi(y/x) = f(x,y) / f_1(x)$$
(5.2)

Одним из видов (частным случаем) статистической зависимости является корреляционная зависимость.

Корреляционная зависимость, корреляционный момент, коэффициент корреляции

Корреляционной называют статистическую зависимость двух случайных величин, при которой изменение значения одной из случайных величин приводит к изменению математического ожидания другой случайной величины.

$$M(X/y) = q_1(y)$$

 $M(Y/x) = q_2(x)$ (5.3)

Функции (5.3) называют функциями регрессии.

Корреляционный момент:

$$\mu_{xy} = M\{[x - M(X)] \cdot [y - M(Y)]\}$$
 (5.4)

$$\mu_{xy} = M \{ [x - M(X)] \cdot [y - M(Y)] \}$$
 Коэффициент корреляции:
$$r_{xy} = \frac{\mu_{xy}}{\sigma_x \sigma_y}$$
 (5.5)

Корреляционная зависимость, коэффициент корреляции

Для коэффициента корреляции справедливо соотношение:

$$\left| r_{xy} \right| \le 1 \tag{5.6}$$

Случайные величины X и Y называют коррелированными, если их корреляционный момент или (что тоже самое) их коэффициент корреляции отличен от нуля. В противном случае эти величины некоррелированы.

Если случайные величины X и Y коррелированы, то они зависимы.

Обратное предположение в общем случае неверно. Тоесть, если случайные величины X и Y некорелированы, то они могут быть, как независимыми, так и зависимыми.

Корреляционная зависимость, коэффициент **с**орреляции

5

Можно представить эти утверждения в наглядной форме: X и Y коррелированы \Rightarrow CB X и Y зависимы

X и Y независимы \Rightarrow СВ X и Y некоррелированы Если случайные величины X и Y коррелированны и обе функции регрессии Y на X и X на Y линейны, то говорят, что X и Y связаны линейной корреляционной зависимостью. В частности, это имеет место если двумерная случайная величина $\{X,Y\}$ распределена нормально. Коэффициент корреляции, как известно, служит мерой тесноты линейной зависимости между случайными величинами X и Y. При $|r_{xy}| = 1$ эта зависимость становится функциональной.

7

Корреляционная таблица

Пусть имеется выборка двумерной случайной величины $\{X,Y\}$. Ее значения удобно представлять в виде так называемой корреляционной таблицы. Например,

	Y	X							
		10	20	30	40	n _y			
	0,4 0,6 0,8	5 3	_ 2 19	7 6 —	14 4 —	26 12 22			
	n _x	8	21	13	18	n=60			

Статистическая оценка коэффициента корреляции

Значение \overline{r}_{xy} - статистической оценки r_{xy} - коэффициента корреляции можно вычислить по формуле:

$$\overline{r}_{xy} = \frac{\sum_{i=1}^{K_y} \sum_{j=1}^{K_x} n_{ij} y_i x_j - N \overline{x}_e \overline{y}_e}{N S_x S_y}$$
(5.7)

При N>50 в случае нормального распределения системы случайных величин $\{X,Y\}$ для оценки значения r_{xy} можно использовать соотношение:

$$\overline{r}_{xy} - 3\frac{1 - \overline{r}_{xy}^2}{\sqrt{N}} \le r_{xy} \le \overline{r}_{xy} + 3\frac{1 + \overline{r}_{xy}^2}{\sqrt{N}}$$
 (5.8)

Вычисление выборочного коэффициента корреляции

При вычислении выборочного коэффициента корреляции необходимо вычислить $\sum_{i=1}^{K_y}\sum_{j=1}^{K_x}n_{ij}y_ix_j=\sum_{j=1}^{K_y}y_i\sum_{j=1}^{K_x}n_{ij}x_j=\sum_{j=1}^{K_y}x_j\sum_{i=1}^{K_y}n_{ij}y_i\;.$ Это удобно производить в табличной форме:

					17		1	1
			X				$X_i = \sum_{j=1}^{K_x} n_{ij} x_j$	
Y							$X_i = \sum n_{ij} x_j$	$y_i X_i$
		3			7		<i>j</i> =1	
			15			49		
1		5			7		64	64
	5			7				
			9			28		
5		3			4		37	185
	15			20				
			12			14		
8		4			2		26	208
	32			16				
$Y_j = \sum_{i=1}^{K_y} n_{ij} y_i$		52			43			457
$x_j Y_j$		156			301		457	

Доверительный интервал для выборочного коэффициента корреляции

Распределение \overline{r}_{xy} при определенных условиях можно удовлетворительно аппроксимировать нормальным законом. Однако при увеличении интенсивности корреляционной связи распределение \overline{r}_{xy} становится все более ассиметричным.

С помощью преобразования Фишера перейдем к случайной величине z:

$$\overline{z} = 0.5 \ln \frac{1 + \overline{r}_{xy}}{1 - \overline{r}_{xy}} = 1.1513 \lg \frac{1 + \overline{r}_{xy}}{1 - \overline{r}_{xy}}$$
 (5.9)

9

Доверительный интервал для выборочного коэффициента корреляции

Распределение z при неограниченном возрастании объема выборки асимптотически нормальное со значением СКВО, равным:

 $\bar{\sigma}_z = \frac{1}{\sqrt{N-3}} \tag{5.10}$

В результате доверительный интервал для r_{xy} генеральной совокупности с доверительной вероятностью γ определяют по следующей схеме:

- 1. По формуле (5.9) вычисляют выборочное значение \overline{z} ;
- 2. По формуле (5.10) вычисляют значение $\bar{\sigma}_z$;

Доверительный интервал для выборочного коэффициента корреляции

3. Доверительный интервал для генерального значения представляется в виде:

$$(\overline{z} - \lambda(\gamma)\overline{\sigma}_z, \overline{z} + \lambda(\gamma)\overline{\sigma}_z), \qquad (5.11)$$

где значение $\lambda(\gamma)$ должно удовлетворять условию:

$$\Phi[\lambda(\gamma)] = \frac{\gamma}{2} \tag{5.12}$$

4. Для пересчета интервала (5.11) в доверительный интервал для коэффициента корреляции с тем же значением γ необходимо воспользоваться обратным преобразованием Фишера:

$$r = th(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}} = \frac{e^{2z} - 1}{e^{2z} + 1}$$
 (5.13)

11

Проверка гипотезы о значимости выборочного коэффициента

корреляции Пусть имеется выборка объема N значений двумерной нормально распределенной случайной величины $\{X,Y\}$ и вычислено значение выборочного коэффициента корреляции $\overline{r}_{xy} \neq 0$. Поскольку \overline{r}_{xy} является случайной величиной, то это еще не значит что r_{xy} - коэффициент корреляции для генеральной совокупности тоже отличен от нуля.

Возникает необходимость проверить гипотезу $H_0: r_{xy} = 0$. Альтернативной будет гипотеза $H_1: r_{xy} \neq 0$. Если основная гипотеза H_0 отвергается, то это означает,

что выборочный коэффициент корреляции \overline{r}_{xv} значимо отличается от нуля (значим). В противном случае — \overline{r}_{xv} незначим.

Проверка гипотезы о значимости выборочного коэффициента корреляции

В качестве критерия проверки статистической гипотезы о значимости выборочного коэффициента корреляции можно принять случайную величину:

$$T = \frac{\overline{r}_{xy}\sqrt{N-2}}{\sqrt{1-\overline{r}_{xy}^2}} \tag{5.14}$$

При справедливости нулевой гипотезы H_0 случайная величина T распределена по закону Стьюдента с k=N-2степенями свободы.

Критическая область для данного критерия двусторонняя.

13

Проверка гипотезы о значимости выборочного коэффициента корреляции

Проверка гипотезы осуществляется по стандартной схеме:

- 1. По формуле (5.14) вычисляется значение $T_{\text{набл}}$;
- 2. По заданному уровню значимости α и значению k из таблицы определяется значение $t_{\kappa pum}(\alpha,k)$;
- 3. Если $\left|T_{\text{набл}}\right| \le t_{\kappa pum}(\alpha,k)$ нет оснований отвергать гипотезу H_0 .
- 4. Если $|T_{\text{набл}}| > t_{\kappa pum}(\alpha, k)$ основная гипотеза H_0 с выборочными данными и должна быть отвергнута.