Определение 1. Пусть G — группа преобразований множества X, а H — группа преобразований множества Y. Группы G и H называются uзоморфнымu, если найдётся биекция $\varphi \colon G \to H$, при которой тождественное преобразование переходит в тождественное, обратное — в обратное, а композиция преобразований — в композицию преобразований, то есть:

- (i) $\varphi(\mathrm{id}_X) = \mathrm{id}_Y$;
- (*ii*) для каждого $g \in G$ верно: $\varphi(g^{-1}) = (\varphi(g))^{-1}$;
- (iii) для любых $g_1, g_2 \in G$ верно: $\varphi(g_1 \circ g_2) = \varphi(g_1) \circ \varphi(g_2)$.

Отображение φ в этом случае называется *изоморфизмом*. **Обозначение:** $G \simeq H, G \stackrel{\varphi}{\simeq} H.$

Задача 1. Правда ли, что если $G \simeq H$, то **a)** #G = #H; **б)** #X = #Y?

Задача 2. Пусть $\varphi \colon G \to H$ — биекция, такая что выполнено условие (iii) определения 1. Докажите, что φ является изоморфизмом.

Задача 3. Докажите, что следующие группы изоморфны:

- **а)** группа вращений правильной 4-угольной призмы (не являющейся кубом) и группа движений квадрата;
- б) группа движений куба и группа движений октаэдра;
- в) группа вращений правильного n-угольника и группа вычетов по модулю n (см. задачу 7в). Эта группа обозначается \mathbb{Z}_n или $\mathbb{Z}/n\mathbb{Z}$;
- г)* группа движений тетраэдра и группа вращений куба.

Задача 4. Пусть $\varphi \colon G \to H$ — изоморфизм. Докажите, что для любого элемента $g \in G$ верно: $\mathrm{ord}(g) = \mathrm{ord}(\varphi(g));$

Задача 5. Какие из следующих групп изоморфны:

- 1) группа вращений правильного 24-угольника;
- 2) группа движений правильного 12-угольника;
- 3) группа движений правильной 6-угольной призмы;
- 4) группа движений правильного тетраэдра;
- 5) группа S_4 ?

Абстрактные группы

Определение 2. Абстрактной группой (или просто группой) называется множество G с операцией умножения, обладающей следующими свойствами:

- (i) (ab)c = a(bc) для любых $a, b, c \in G$ (ассоциативность);
- (ii) существует такое элемент $e \in G$ (единица), что ae = ea = a для любого $a \in G$;
- (iii) для всякого элемента $a \in G$ существует такой элемент $a^{-1} \in G$ (обратный элемент), что $aa^{-1} = a^{-1}a = e$.

Задача 6. Докажите, что всякая группа преобразований с операцией композиции является абстрактной группой.

Задача 7. Являются ли следующие множества с указанными операциями группами:

- а) $(\mathbb{Z}, +)$; б) $(\mathbb{R} \setminus \{0\}, \cdot)$; в) (остатки по модулю 5, +); г) (остатки по модулю $5, \cdot)$;
- д) (ненулевые остатки по модулю $5, \cdot$); е) то же самое по модулю 10.

Задача 8. а) Пусть G — группа преобразований множества X, и $h \in G$. Докажите, что отображение $L_h \colon G \to G, g \xrightarrow{L_h} h \circ g$ является преобразованием G (такое преобразование называется *левым сдвигом*);

б) Реализуйте произвольную абстрактную группу как группу преобразования некоторого множества.

Задача 9. Докажите, что в группе может быть только одна единица, только один обратный элемент.

Задача 10. Докажите, что группы 1) вращений окружности; 2) комплексных чисел, по модулю равных 1 с операцией умножения; и 3) группа матриц вида $\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$ с операцией умножения $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} ax + bz & ay + bt \\ cx + dz & cy + dt \end{pmatrix}$ изоморфны.