

ELL100: INTRODUCTION TO ELECTRICAL ENGG.

Number Systems

Instructor for this part: Debanjan Bhowmik, Assistant Professor, Department of Electrical Engineering, IIT Delhi

Contact: debanjan@ee.iitd.ac.in

Textbook: 'Digital Design' by Moris Mano (Chapter 1: Digital Systems and Binary Numbers)

Number Systems

- Non-Positional Systems (symbols represent numbers):
 - Roman Numerals: I (1), V (5), X (10), L (50), C (100), D (500), M (1000)
 - Chinese Numerals:—(1),二(2),三(3),十(10),二十(20),百(100),千(1000)
- Positional Systems (symbols get value/significance from position):
 - Decimal: 0,1,2,3,4,5,6,7,8,9 [Base 10]
 - Binary: 0,1 [Base 2]
 - Octal: 0,1,2,3,4,5,6,7 [Base 8]
 - Hexadecimal: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F [Base 16]

Numerical Value

• Any number N when represented in a base b is written as $N = (d_r d_{r-1} \cdots d_0)_b$

• 'b' denotes the base

$$N = d_r b^r + d_{r-1} b^{r-1} + \dots + d_1 b + d_0$$

The notation can also be extended to non-integers

$$(0.d_{-1}d_{-2}\cdots)_b = d_{-1}b^{-1} + d_{-2}b^{-2} + \cdots$$

Bit/Digit Significance

- For positional number systems,
 - Right most: Least significant digit/bit (LSB)
 - Left most: Most significant digit/bit (MSB)

Common Number Systems

Decimal Notation (Digits: 0-9) [Usage: Common day-to-day]

$$2198_{10} = 2 \times 10^3 + 1 \times 10^2 + 9 \times 10 + 8 \times 10^0$$

• Binary Notation (Digits: 0 & 1) [Usage: Digital Computers]

$$100010010110_2 = 2^{11} + 2^7 + 2^4 + 2^2 + 2^1 = 2198_{10}$$

• Hexadecimal (Digits : 0-9+A-F) [Usage: Assembly Language] $2018_{10} = 7 \times 16^2 + 14 \times 16 + 2 = 7E2_{16}$

Conversion: Base b > Decimal

- Base b → Decimal
 - 1. Multiply each bit of the Base b number by its corresponding weighting factor
 - 2. Sum all the products to get the decimal number

Examples:

- Bin to Dec: $_{1011.01_2} = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2}$ = 8 + 2 + 1 + 0.25 = 11.25
- Hex to Dec $B92.A_{16} = 11 \times 16^2 + 9 \times 16^1 + 2 \times 16^0 + 10 \times 16^{-1}$ = 2816 + 144 + 2 + 0.625 = 2962.625

Conversions

• • Decimal → Base b

Let the integer to be converted be N_{10} . Then

$$N_{10} = (d_r d_{r-1} \cdots d_0)_b$$

- 1. Set $q_0 = N_{10}$, i = 0
- 2. While $q_i > 0$
 - 1. $q_{i+1} = \left\lfloor \frac{q_i}{b} \right\rfloor$. (Here $\lfloor x \rfloor$ denotes the largest integer less than or equal to x)
 - $2. \quad d_i = q_i bq_{i+1}$
 - 3. i = i + 1
 - 4. End while

Conversion: Decimal -> Base b

- Example: Converting 7530₁₀ to Hex.
 - $q_0 = 7530$
 - $q_1 = \lfloor 7530/16 \rfloor = 470$, $d_0 = 7530-16 \times 470 = 10 \rightarrow A$
 - $q_2 = \lfloor 470/16 \rfloor = 29$, $d_1 = 470 16 \times 29 = 6$
 - $q_3 = \lfloor 29/16 \rfloor = 1$, $d_2 = 29-16=13 \rightarrow D$
 - $q_4 = \lfloor 1/16 \rfloor = 0$, $d_3 = 1$
 - $7530_{10} = 1D6A_{16}$

Conversions (Non-integers)

• • Decimal → Base b

Let the number to be converted be n_{10} with 0<n<1. Then

$$n_{10} = (0.d_{-1}d_{-2} \cdot \cdots \cdot d_{-k})_b$$

- 1. Set $r_0 = n_{10}$, i = 0
- 2. While $(r_i > 0 \& i > -k)$
 - 1. $d_{i-1} = \lfloor br_i \rfloor$. (Here $\lfloor x \rfloor$ denotes the largest integer less than or equal to x)
 - 2. $r_{i-1} = br_i d_{i-1}$
 - 3. i = i 1
 - 4. End while

Conversion: Decimal -> Base b

- Example: Converting 0.2₁₀ to Binary
 - $r_0 = 0.2$
 - $d_{-1}=[2 \times 0.2] = 0$, $r_{-1} = 2 \times 0.2 0 = 0.4$
 - $d_{-2} = \lfloor 2 \times 0.4 \rfloor = 0$, $r_{-2} = 2 \times 0.4 0 = 0.8$
 - $d_{-3} = \lfloor 2 \times 0.8 \rfloor = 1$, $r_{-3} = 2 \times 0.8 1 = 0.6$
 - $d_{-4} = \lfloor 2 \times 0.6 \rfloor = 1$, $r_{-4} = 2 \times 0.6 1 = 0.2$
 - $0.2_{10} = 0.00110011..._2$

Conversion: Binary > Base 2ⁿ

Doesn't work for decimal since base 10 can't be expressed as 2ⁿ

- Group bits in groups of n-bits starting from the '.'
- Replace the n-bits by its equivalent in Base 2ⁿ
- Example: Convert 1101110.110101₂ into hexadecimal
 - 1101110.110101 → 110 | 1110 . 1101 | 01
 - 110 | 1110 . 1101 | 01 \rightarrow 0110 | 1110 . 1101 | 0100
 - 0110 | 1110 . 1101 | 0100 \rightarrow 6 | E . D | 4 \rightarrow 6E.D4₁₆

Conversion: Base 2ⁿ → Binary

- Replace each digit by its n-bit binary equivalent.
- Ignore leading zeros before MSB and trailing zeros after decimal point.
- Example : Convert 3C.B6₁₆ into Binary.
 - 3C.B6 → 0011 | 1100 . 1011 | 0110
 - 0011 1100 . 1011 0110 \rightarrow 111100.1011011₂

Representation of Negative Numbers

- Easy to do on paper.
- $-(106_{10})=-106_{10}$.
- $-(1101010_2)=-1101010_2$.
- Not trivial to represent '-' in electronic hardware (in binary)
 - ON and OFF Present
 - How to differentiate Positive/Negative numbers

Signed and Unsigned Numbers

- Signed Number: One of the bits (the MSB) is used to represent the sign of the number
 - Eg: Assuming 8 bit (one byte) representation
 - Unsigned 21: 0001 0101
 - Signed +21 : 0001 0101 MSB=0 → Positive Number
 - Signed -21 : 1001 0101 MSB=1 → Negative Number

- Range: $-(2^{n-1}-1)$ to $+(2^{n-1}-1)$ (-127 to +127 in case of 8 bit)
- Includes: +0 and -0 (0000 0000 and 1000 0000)
- Tedious: Needs keeping note of MSB BEFORE operation.

Signed Number Representation: 1s Complement

- A method to more efficiently represent negative numbers, which is more conducive to arithmetic operations.
 - MSB is still the sign bit.
 - Range: $-(2^{n-1}-1)$ to $+(2^{n-1}-1)$
 - To obtain the 1s complement of a binary number, flip all the bits.

Under 8-bit representation:

```
• Eg: 17_{10} = 0001 \ 0001_2 \rightarrow 1110 \ 1110_2 = -17_{10}

127_{10} = 0111 \ 1111_2 \rightarrow 1000 \ 0000_2 = -127_{10}

+0_{10} = 0000 \ 0000_2 \rightarrow 1111 \ 1111_2 = -0_{10}
```

- Still Contains +0 and -0
- To get decimal equivalent from 1s complement:
 - Use position based power summation
 - BUT, MSB is weighed -(2ⁿ⁻¹ -1) instead of 2ⁿ⁻¹

Signed Number Representation: 2s Complement

- More useful than ones complement.
 - MSB is still the sign bit.
 - Range: $-(2^{n-1})$ to $+(2^{n-1}-1)$
 - To obtain the 2s complement of a binary number, obtain (1s complement)+1
 Under 8-bit representation:

```
• Eg: 17_{10} = 0001 \ 0001_2 \rightarrow 1_2 + 1110 \ 1110_2 = 1110 \ 1111_2 = 17_{10}

127_{10} = 0111 \ 1111_2 \rightarrow 1_2 + 1000 \ 0000_2 = 1000 \ 0001_2 = 127_{10}

+0_{10} = 0000 \ 0000_2 \rightarrow 1_2 + 1111 \ 1111_2 = 0000 \ 0000_2
```

- Contains only +0 [Thus increasing range by 1]
- To get decimal equivalent from 2s complement:
 - Use position based power summation
 - BUT, MSB is weighed -2ⁿ⁻¹ instead of 2ⁿ⁻¹

1-s and 2-s complement for 4-bit representation

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	_	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	_	_

From Moris Mano's 'Digital Design' textbook (Chapter 1)

Binary Arithmetic

Addition:

+	0	1
0	0	1
1	1	10

 Whenever, operations in an N-bit system produces an N+1 bit result, there is a carry bit

	1011001
+	1101101
С	11111-
	11000110

Binary Arithmetic

- Subtraction:
 - $X-Y \rightarrow X+(-Y)$
 - Add X and (complement of Y)
- 2's Complement
 - In case of carry bit
 - If MSB = 0, then result is positive number ignore carry bit.
 - If MSB = 1, add carry bit to result. Take 2's complement and place a
 (-) sign in front.

Example: Subtraction (2s Complement)

• n=1101001, m=101110. Obtain n-m and m-n using 2s complement.

• n-m

	0101110	m
	1010001	1's complement of m
+	1	
	1010010	2's complement of m
+	1101001	n
	10111011	Sum (MSB=0), Ignore carry
	0111011	n-m

m-n

	1101001	n
	0010110	1's complement of n
+	1	
	0010111	2's complement of n
+	0101110	m
	1 000101	Sum (MSB=1), no carry
	0111010	1's complement
+	1	
	(-)0111011	m-n