기상 현상에 따른 뜰개 추적

권병근^{1,*}, 박은지²

¹부산대학교 수학과, 산업수학 소프트웨어 연계전공, 산업수학센터 학부연구생 ²부산대학교 수학과

이메일: *house9895@pusan.ac.kr

1. Abstract

이 프로젝트는 풍속 및 유속을 활용하여 뜰개의 움직임을 예측하고, 표층해류의 움직임을 모델링하는 것을 목표로 한다. 데이터는 풍속과 유속의 동서 및 남북으로 나뉘어 처리하였다. 풍속 및 유속 데이터는 가중치 평균 및 쌍선형 보간을 사용하여 추정하였다. 또한 움직임의 특성을 나타내기 위해 파생 변수인 d_long, d_lati를 생성하였으며, 이후 LGBM Regressor를 사용하여 움직임을 예측하는 모델을 개발하고 시각화를 통해 결과를 확인하였다.

2. Introduction

풍속, 유속을 활용하여 뜰개의 움직임을 예측하여 표층해류의 움직임을 예측하는 모델을 개발하는 것을 문제로 정의하였다. 이 문제를 해결하기 위해 데이터를 적절히 전처리하고, 분석에 필요한 파생 변수를 생성한 뒤, 다양한 모델 분석을 통하여 최적의 모델을 선정하는 것으로 목표를 설정하였다.

3. Main

(1) 사용한 데이터

- 2005년 뜰개의 움직임
- 2005~2006, 2016~2017 water velocity
- 2005~2006, 2016~2017 wind velocity
- water velocity와 wind velocity의 범위

북쪽 : 53.66, 남쪽 : 30.17, 동쪽 : 146.63, 서쪽 : 123.87 범위를 맞춰 각 지점 안 모든 위도, 경도에서의 풍속과 유속 수집

(2) 데이터 전처리

water velocity(유속)에서 동서 방향은 water_u, 남북 방향은 water_v, wind velocity(풍속)에서 동서 방향은 wind_u, 남북 방향안 wind_v라고 재정의하여 혼란을 방지하였다.

(3) 2005년 뜰개의 움직임 시각화

Python의 Folium 라이브러리를 사용하여 실제 지도 위에 시각화하였다. 대부분의 뜰개들이 동해안과 일본 사이에서 움직이는 모습을 확인할 수 있다.

(4) 풍속, 유속 데이터 생성

수집한 기상 데이터는 위도, 경도에 따라 격자로 잘려서 데이터가 제공되었다. 따라서 원하는 지역에서의 기상 데이터를 추정하기 위해 가중치 평균과 쌍선형 보간 기겁을 사용하여 추정하였다. 추정할 때 원하는 지역과 가장 근접한 4지점의 위치를 사용하였다.

SII SIZ SIS SI4

: 격자 중에 구하고자 하는 지점을 포함하는 격자의 4꼭지점을 활용하여 값을 추정

실제 데이터와 추정한 데이터 간의 통곗값을 표와 그래프로 비교한 뒤, 더 적절하다고 판단한 가중치 평균으로 추정한 값을 선정하였다.

(5) 파생 변수 생성

뜰개의 위치 변화를 알기 위해 그 움직임을 위도와 경도의 변화량을 이용하여

표현하기 위하여 차분을 활용하여 d_long, d_lati 파생 변수를 생성하였다. 아래 표를 보면 오른쪽 표에 새로운 파생 변수가 추가 된 것을 확인할 수 있다.

(6) 예측 방법 선택

뜰개의 움직임을 위도, 경도의 변화량으로 나타낼 수 있으므로 water_u, water_v, wind_u, wind_v 변수를 feature로 하여 d_long, d_lati를 각각의 회귀 모델을 활용하여 예측하기로 하였다.

	Feature				Answer	
	water_u	water_v	wind_u	wind_v	d_long	d_lati
0	0.089673	0.041876	4.087482	-1.265760	0.090988	0.070000
1	0.095552	0.053962	3.988419	-1.597433	0.112015	0.041000
2	0.113870	0.135307	1.290056	0.333414	0.009995	-0.028999
3	0.259294	0.156671	5.640256	8.854036	0.102005	0.050999
4	0.368874	0.064946	13.505250	7.603525	0.086990	-0.024002
	***	222	925		***	***
15809	0.076116	-0.035941	3.090491	1.099326	0.029999	-0.000999
15810	0.075121	-0.036927	1.551420	2.108921	-0.041992	-0.029999
15811	0.081807	-0.019462	1.289979	4.271356	-0.057007	0.008999
15812	0.081604	-0.005729	0.537444	4.900105	0.072998	0.054001
15813	0.055305	0.045386	-1.123176	5.443793	0.094009	-0.005001

15814 rows × 6 columns

(7) 모델 선택

전처리를 마친 2005년 뜰개의 움직임 데이터셋을 활용하여 d_long과 d_lati를 각각 회귀하는 다양한 모델 생성 후 RMSE 수치 비교를 통해 가장 좋은 성능을

보여주는 LGBM Regressor를 채택하였다.

RMSE 수치	d_long	d_lati
Linear Regression	0.0448	0.0350
XGB Regressor	0.0455	0.0355
LGBM Regressor	0.0437	0.0346
Random Forest Regressor	0.0448	0.0352
SVM Regressor	0.0464	0.0376
Elastic Net Regressor	0.0525	0.0439
KNN Regressor	0.0527	0.0431
DNN Regressor	0.0443	0.0519

4. Result

예측 모델을 데이터에 적용한 뒤 시각화를 해보았다. 앞서 보았던 시각화 자료 와 비슷하게 동해안과 일본 사이에서 뜰개들이 이동하고 있는 모습을 확인할 수 있었다.

5. Utilization Plan & Expected Effect

최종 모델을 활용하면 기상 현상에 따른 정박한 선박의 닻 끌림을 예측할 수 있고, 이는 선박의 파괴, 기름 유출, 인명 피해 등 다양한 사고를 방지할 수 있다. 그리고 해양 오염 물질을 추적하고 적절한 조치를 취하여 그 물질들의 확산을 방지할 수 있다. 끝으로 난류 또는 한류의 흐름을 예측하고 어획 가능 품종을 판단하여 어획량 증가 및 수익 증가로 이어질 수 있다.