Capítulo 1

Análisis Descriptivo Multivariante

1.1. Cálculo de Estadígrafos Multivariantes

1. Se dispone de 3 indicadores económicos x_1 , x_2 y x_3 , que se miden en cuatro paises, con los resultados siguientes:

$$\begin{array}{c|cccc} x_1 & x_2 & x_3 \\ \hline 2 & 3 & -1 \\ 1 & 5 & -2 \\ 2 & 2 & 1 \\ 2 & 3 & 1 \\ \end{array}$$

- a) Calcular el vector de medias \bar{x} , la matriz de covarianzas S_x y la matriz de correlaciones R.
- b) Calcular el vector de medias utilizando las definiciones dadas en clases.
- c) Calcular la matriz de covarianzas utilizando todas las definiciones dadas en clases.
- d) Calcular la matriz de correlaciones utilizando la matriz de covarianzas.
- e) Estandarizar los datos, es decir construir la matriz Z.
- f) Utilizando la matriz Z hallada, calcular el vector de medias y la matriz de covarianzas.

g) A partir de los tres indicadores económicos x_1 , x_2 y x_3 definidos inicialmente, se construyen dos nuevos indicadores:

$$y_1 = (1/3)x_1 + (1/3)x_2 + (1/3)x_3$$

 $y_2 = x_1 - 0.5x_2 - 0.5x_3$

Calcular el vector de medias para $y' = (y_1, y_2)$, su matriz de covarianzas y la matriz de correlaciones.

2. Considere la matriz de datos X que recoge n=6 observaciones de un vector aleatorio $x=(x_1,x_2,x_3)'$, como se muestra a continuación:

x_1	x_2	x_3
-2	1	4
3	0	-1
5	1	2
-1	3	6
2	-7	4
-1	0	-1

- a) Calcular el vector de medias \bar{x} y la matriz de covarianzas muestrales S_x .
- b) Calcular la matriz de covarianzas muestrales de los datos estandarizados a media cero y varianza unidad.
- c) Sea el vector aleatorio $y = (y_1, y_2)'$, donde $y_1 = -x_1 + 2x_2 x_3$ y $y_2 = x_1 + x_2$. Calcular el vector de medias \bar{y} y la matriz de covarianzas muestrales S_y de la matriz de datos Y.
- d) Calcular la matriz de observaciones Y mediante una operación matricial en la que aparezca la matriz de datos X
- e) Calcular la matriz de covarianzas S_z del vector aleatorio $Z=(z_1,z_2)$, donde $z_1=y_1/\sqrt{6}$ y $z_2=y_2/\sqrt{2}$.
- f) Calcular las matrices de correlaciones de X, Y y Z y de la matriz de datos estandarizada obtenida en el inciso b).

1.2. Aspectos Teóricos

- 1. Dada una muestra aleatoria de n vectores p-dimensionales x_1, x_2, \ldots, x_n , considere la combinación lineal $y_i = a_1 x_{i1} + \ldots + a_p x_{ip} = a' x_i$, donde $i = 1, \ldots, n$, donde $a = (a_1, \ldots, a_n)'$ es un vector fijo. Mostrar que:
 - a) el vector de medias está definido como: $\bar{y} = a'\bar{x}$
 - b) la matriz de covarianzas está dado por: $S_y = a'Sa$.
- 2. Sea A un matriz fija de dimensión $m \times p$, bajo la transformación:

$$y_i = Ax_i + b, \qquad i = 1, \dots, n.$$

mostrar que:

$$i) \ \bar{y} = A\bar{x} + b \qquad \qquad ii) \ S_y = AS_x A'$$

donde \bar{x} , S_x son el vector de medias y la matriz de covarianzas de la muestra aleatoria compuesta por los vectores p-dimensionales x_1, x_2, \ldots, x_n .

3. Sea

$$S(a) = \frac{1}{n} \sum_{i=1}^{n} (x_i - a)(x_i - a)'$$

donde la matriz de covarianzas S está definida cuando x = a. Mostrar que:

- a) $S(a) = S + (\bar{x} a)(\bar{x} a)'$
- $b) \min_{a} |S(a)| = |S|$
- c) $\min_{a} tr S(a) = tr S$
- 4. Sea M = X'X donde X es una matriz de datos. Mostrar que:
 - i) $m_{ii} = x_i' x_i = n(s_{ii} + \bar{x}_i^2)$
 - ii) $m_{ij} = x_i' x_j = n(s_{ij} + \bar{x}_i \bar{x}_j)$
- 5. Dada una muestra aleatoria de n vectores p-dimensionales x_1, x_2, \ldots, x_n , considere la transformación $y_i = D^{-1}(x_i \bar{x})$ con $i = 1, \ldots, n$ donde $D = diag(s_{ii})$. Mostrar que:
 - a) la transformación puede escribirse como $Y = HXD^{-1}$, donde $Y' = (y_1, \dots, y_n)$.

- b) $\bar{y}=0$ y $S_y=R$, utilizando el hecho de que Y'1=0 y $Y'HY=D^{-1}X'HXD^{-1}$.
- 6. Mostrar que la transformación de Mahalanobis definida por: $z_i = S^{-1/2}(x_i \bar{x})$ para i = 1, ..., n, puede ser escrita como: $Z = HXS^{-1/2}$ donde $Z' = (z_1, ..., x_n)$. Asi mismo, mostrar que $\bar{z} = 0$ y $S_z = I$.
- 7. Sea $u_{pq} = M_{pq}/s_1^p s_2^q$ donde

$$M_{pq} = \frac{1}{n} \sum_{i=1}^{n} (x_{i1} - \bar{x}_1)^p (x_{i2} - \bar{x}_2)^q$$

Mostrar que:

$$b_{1,2} = (1 - r^2)^{-3} [u_{30}^2 + u_{03}^2 + 3(1 + 2r^2)(u_{12}^2 + u_{21}^2) - 2r^3 u_{30} u_{03}$$

$$+6r \{u_{30}(ru_{12} - u_{21}) + u_{03}(ru_{21} - u_{12}) - (2 + r^2)u_{12}u_{21}\}]$$

$$b_{2,2} = (1 - r^2)^{-2} [u_{40} + u_{04} + 2u_{22} + 4r(ru_{22} - u_{13} - u_{31})]$$

Por lo tanto, para $s_1 = s_2 = 1$, r = 0, mostrar que:

$$b_{1,2} = M_{30}^2 + M_{03}^2 + 3M_{12}^2 + 3M_{21}^2$$

$$y$$

$$b_{2,2} = M_{40} + M_{04} + 2M_{22}$$

Así $b_{1,2}$ acumula los efectos de M_{21} , M_{12} , M_{03} , M_{30} mientras que $b_{2,2}$ acumula los efectos de M_{22} , M_{04} y M_{40} .