

The Table Method

by Sophia

WHAT'S COVERED

In this lesson, you will use tables to evaluate limits. Specifically, this lesson will cover:

- 1. Creating a Table of Values to Estimate a Limit
- 2. Using a Table of Values to Estimate a Limit

1. Creating a Table of Values to Estimate a Limit

Let's consider again the function $f(x) = \frac{x^2 - 1}{x - 1}$. This time though, we can use a table to estimate the value of

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}.$$

First, we must create the table. To do this, we need to use a sequence of x-values that get closer to 1 from both the left and the right.

From the left, you could use x = 0.9, 0.99, 0.999.

From the right, you could use x = 1.001, 1.01, 1.1.

Now, place the information into one table, also leaving a place for x = 1 as shown below: (Notice the "---" in the place for x = 1. This is because f(x) is undefined there.)

x	0.9	0.99	0.999	1	1.001	1.01	1.1
$f(x) = \frac{x^2 - 1}{x - 1}$							

Now, complete the table by substituting all x-values into the function.

х	0.9	0.99	0.999	1	1.001	1.01	1.1
---	-----	------	-------	---	-------	------	-----

$f(x) = \frac{x^2 - 1}{x - 1}$ 1.9	1.99	1.999		2.001	2.01	2.1
------------------------------------	------	-------	--	-------	------	-----

It appears that as x gets closer to 1 from either side, f(x) gets closer to 2.

Thus, we can say $\lim_{x\to 1} \frac{x^2-1}{x-1} = 2$, just as we said in the graphing example in the previous part of this challenge.

WATCH

The following video walks you through the process of evaluating the limit numerically as x approaches -2 of the rational function $f(x) = \frac{x^3 + 8}{x + 2}$.

2. Using a Table of Values to Estimate a Limit

If a table is already created, we can use the information from the table to estimate the limit.

 \approx EXAMPLE Evaluate $\lim_{x\to 0} \sqrt{x}$. Here is a table of values that represent x-values around x=0.

X	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(\mathbf{x}) = \sqrt{\mathbf{x}}$	undef.	undef.	undef.	0	0.03162	0.1	0.31623

From the left side, there is no limit since \sqrt{x} is undefined when x < 0. From the right, it appears as if the limit is 0 since the values of \sqrt{x} are trending toward 0.

Since the left-hand and right-hand sides do not match, we conclude that $\lim_{x\to 0} \sqrt{x}$ does not exist.

□ HINT

Be sure your calculator is set to *Radians* when creating a table for trigonometric functions like in the example below.

 \Leftrightarrow EXAMPLE Use a table of values to evaluate $\lim_{x\to 0} \frac{\sin 4x}{x}$. The table with the values of f(x) is shown below:

X	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(\mathbf{x}) = \frac{\sin 4\mathbf{x}}{\mathbf{x}}$	3.89418	3.99893	3.99999		3.99999	3.99893	3.89418

It appears as if f(x) is getting closer to 4 from either side. Therefore, we conclude that $\lim_{x\to 0} \frac{\sin 4x}{x} = 4$.

Consider the function $\frac{\sqrt{x-2}}{x-4}$. Answer the following questions to evaluate $\lim_{x\to 4} \frac{\sqrt{x-2}}{x-4}$.

Create a table of values for this function.

х	3.9	3.99	3.999	0	4.001	4.01	4.1
$f(x) = \frac{\sqrt{x} - 2}{x - 4}$	0.25158	0.25016	0.25002		0.24998	0.24984	0.24846

What is the limit of the function as it approaches 4?

$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} = 0.25$$

Ŝ

SUMMARY

In this lesson, you learned about another method to evaluate limits, by creating a table of values to estimate a limit. You also learned that it is very helpful to use a table of values to estimate a limit, since it shows patterns in how f(x) changes as x approaches a number.

SOURCE: THIS WORK IS ADAPTED FROM CHAPTER 1 OF CONTEMPORARY CALCULUS BY DALE HOFFMAN.