Comprehensive Review: Decision Trees

Master's Level Data Science

Contents

1	Introduction	1
2	Mathematical Formulations 2.1 Uncertainty Measures	1 1 2
3	Geometric Illustrations 3.1 Binary Splits in \mathbb{R}^2	2 2
4	Worked Example 4.1 Data Acquisition and Preprocessing 4.2 Feature Representation 4.3 Model Training 4.4 Model Evaluation 4.5 Model Evaluation 4.6 Model Evaluation	3
5	Algorithm Description	3
6	Empirical Results	4
7	Interpretation & Guidelines	4
8	Future Directions / Extensions	5

1 Introduction

This review synthesizes material from the lecture slides (dtree-1.pdf) and audio transcript (DecisionTreeBasics We cover the case study, the learning algorithm, uncertainty measures, worked examples, and practical considerations for decision trees.

2 Mathematical Formulations

2.1 Uncertainty Measures

Let a node contain a dataset S with K classes. Denote by p_i the fraction of points in class i, so $\sum_{i=1}^{K} p_i = 1$. We define:

 $1. \ {\it Misclassification \ Rate:}$

$$u_{\text{mis}}(S) = 1 - \max_{i} p_{i} = \min_{i} (1 - p_{i})$$

2. Gini Index:

$$u_{\text{gini}}(S) = \sum_{i=1}^{K} p_i (1 - p_i) = 1 - \sum_{i=1}^{K} p_i^2$$

3. Entropy:

$$u_{\text{ent}}(S) = -\sum_{i=1}^{K} p_i \log(p_i)$$

(All logs are natural logarithms.)

2.2 Benefit of a Split

Consider splitting S into S_L and S_R , with fractions $p_L = |S_L|/|S|$ and $p_R = |S_R|/|S|$. Let $u(\cdot)$ be any uncertainty measure. Then the reduction in uncertainty is

$$\Delta u = u(S) - [p_L u(S_L) + p_R u(S_R)].$$

Often we weight by |S| when comparing across nodes, but the greedy algorithm simply picks the split maximizing Δu .

3 Geometric Illustrations

3.1 Binary Splits in \mathbb{R}^2

Below is a TikZ illustration of two successive splits on features x_1 and x_2 .

Figure 1: Illustration of two-level axis-aligned splits in \mathbb{R}^2 .

4 Worked Example

We demonstrate with Python and scikit-learn on a synthetic two-dimensional dataset.

4.1 Data Acquisition and Preprocessing

We generate a toy dataset of two classes separable by decision tree.

```
import numpy as np
from sklearn.datasets import make_classification
X, y = make_classification(
    n_samples=200, n_features=2, n_informative=2,
    n_redundant=0, n_clusters_per_class=1, random_state=42
)
```

4.2 Feature Representation

We standardize features for numerical stability.

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

4.3 Model Training

Train a CART decision tree classifier using Gini index.

```
from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier(
    criterion='gini',
    max_depth=3,
    random_state=42
)
clf.fit(X_scaled, y)
```

4.4 Model Evaluation

Split data, compute accuracy and classification report.

5 Algorithm Description

The greedy top-down tree-building algorithm (CART) proceeds:

- 1. **Initialize**: Start with root node containing all data.
- 2. Evaluate Splits: For each leaf node, examine all features and all candidate thresholds (midpoints between sorted unique values).

- 3. Compute Uncertainty Reduction: For each candidate split, compute $\Delta u = u(S) [p_L u(S_L) + p_R u(S_R)]$.
- 4. Select Best Split: Choose the leaf and split yielding maximum Δu .
- 5. Partition: Split the chosen leaf into two child nodes.
- 6. **Repeat**: Continue until stopping criteria (max depth, min samples, or zero uncertainty) are met.

6 Empirical Results

We study the effect of tree depth on test accuracy.

Figure 2: Accuracy vs. maximum tree depth on test set.

7 Interpretation & Guidelines

- Bias-Variance Tradeoff: Shallow trees underfit (high bias), deep trees overfit (high variance).
- Stopping Criteria: Limit depth, require minimum samples per leaf, or prune post hoc to avoid overfitting.
- Feature Engineering: Categorical features may be one-hot encoded; ordinal splits retain order.
- Interpretability: Trees provide clear question—answer rules favored in domains requiring transparency.

8 Future Directions / Extensions

- Ensembles: Random Forests and Gradient Boosted Trees improve accuracy and robustness.
- Oblique Splits: Allow linear combinations of features at splits for more flexibility.
- Cost-Sensitive Trees: Incorporate asymmetric misclassification costs.
- Online Trees: Incremental updates for streaming data.