

ABV- Indian Institute of Information Technology & Management, Gwalior

Semester II (2022-23)

Minor

Course Title: Discrete Mathematical Structures	
Course Code: BCAS-1202	
MM: 40 – 46 Duration: 120 minu	ites
Note:	
 All parts of a question should be answered consecutively. Each answer should start from a new page. The question paper has six questions. Question no. 1: Consider several variables for both quantifiers. Question no. 2: Three different examples must be given for 3 different methods and prove them proposition no. 4: Solid Mathematical discussion is needed, and try to discuss all the related concepts for marks. Question no. 6 b): Two examples must be given. Questions no. 2 and 4 a) are open questions, and the marks will be purely based on the justification and Mathematical explanations. 	erly. or better
 a) Define and discuss any two quantifiers using illustrative examples. b) Discuss the concept of 'Contingency' using real-life examples briefly. 	(4) (2)
2. Discuss any three methods of proof theoretically and explain each method using exampl	es. (9-12)
 3. Prove or disprove: Let R be the relation from A to B, and let A₁, A₂ be any two non-emptof A. Then a) If A₁ ⊆ A₂, then R(A₁) ⊆ R(A₂) b) R(A₁ ∪ A₂) ⊇ R(A₁) ∪ R(A₂), c) R(A₁ ∩ A₂) ⊆ R(A₁) ∩ R(A₂) 	
 4. a) Discuss two representations for the following relation on a finite set A = {1,2,3 {(1,2), (2,2), (2,3), (3,4), (4,4), (5,4), (5,1)}. b) How do we find M_{Rⁿ} (for n ≥ 2) for any relation R on a finite set? State and Prove your claim. 	(2) (6)
a) Discuss the importance of a "Partition of a set" and how it relates to a few important of Relations and graphs.b) Discuss different equivalent conditions for a function to be invertible.	(6-9) (2)
 5. Fill in the blanks and prove: a) The number of odd-degree vertices in a graph is b) A graph G is disconnected with two components iff 	(1.5) (2.5)
6. a) State and prove the necessary and sufficient condition theorem for an Euler graph.	(5)

End of Question Paper ***Best of Luck***

b) Show the importance of Euler graphs using real-life examples.

(4)