Examenul de bacalaureat național 2017 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2 + \frac{1}{2} = \frac{5}{2}$	3p
	$\left \frac{5}{2} \cdot \frac{4}{5} \right = 2$	2p
2.	1 1 1 1 2 1 1 1 1 2 1	2p
	$\frac{x_1 + x_2 - 1}{x_1 x_2} = \frac{4 - 1}{3} = 1$	3p
3.	$2^{x+1} = 2^3 \Leftrightarrow x+1=3$	3p
	x=2	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	2p
	Multiplii de 4 din mulțimea A sunt 4 și 8, deci sunt 2 cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{cazuri favorabile}} = \frac{2}{1}$	1p
	nr. cazuri posibile 9	-Р
5.	$AB = \sqrt{(4-0)^2 + (0-3)^2} = 5$, $AO = 3$, $BO = 4$	3 p
	$P_{\Delta AOB} = AB + AO + BO = 5 + 3 + 4 = 12$	2p
6.	$\sin 150^\circ = \frac{1}{2}$, $\sin 60^\circ = \frac{\sqrt{3}}{2}$	3 p
	$\sin^2 150^\circ + \sin^2 60^\circ = \left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{3}{4} = 1$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 3 & 2 \\ 2 & 3 \end{vmatrix} = 3 \cdot 3 - 2 \cdot 2 =$	3 p
	=9-4=5	2p
b)	$B \cdot B = \begin{pmatrix} 2 & a+1 \\ a+1 & a^2+1 \end{pmatrix}$	2p
	$2B = \begin{pmatrix} 2 & 2 \\ 2 & 2a \end{pmatrix}$, deci $B \cdot B = 2B \Leftrightarrow a = 1$	3 p
c)	$A \cdot B - B \cdot A = \begin{pmatrix} 5 & 3+2a \\ 5 & 2+3a \end{pmatrix} - \begin{pmatrix} 5 & 5 \\ 3+2a & 2+3a \end{pmatrix} = \begin{pmatrix} 0 & 2a-2 \\ 2-2a & 0 \end{pmatrix}$	3 p
	$\det(A \cdot B - B \cdot A) = \begin{vmatrix} 0 & 2a - 2 \\ 2 - 2a & 0 \end{vmatrix} = (2a - 2)^2 \ge 0, \text{ pentru orice număr real } a$	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

2.a)	$1 \circ 3 = 1 \cdot 3 - 3 \cdot 1 - 3 \cdot 3 + 12 =$	3 p
	=3-3-9+12=3	2p
b)	$x \circ y = xy - 3x - 3y + 9 + 3 =$	2p
	= x(y-3)-3(y-3)+3=(x-3)(y-3)+3, pentru orice numere reale x şi y	3 p
c)	$x \circ x = (x-3)^2 + 3$, $(x \circ x) \circ x = (x-3)^3 + 3$	3 p
	$(x-3)^3 + 3 = 3 \Leftrightarrow x = 3$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = (x^3)' + (6x)' + (2)' =$	2p
	$=3x^2+6=3(x^2+2), x \in \mathbb{R}$	3 p
b)	$\lim_{x \to 0} \frac{f'(x)}{x+2} = \lim_{x \to 0} \frac{3(x^2+2)}{x+2} =$	2p
	$=\frac{3(0^2+2)}{0+2}=3$	3р
c)	$x \in [-1,1] \Rightarrow f'(x) > 0$, deci f este crescătoare pe $[-1,1]$	2 p
	Cum $f(-1) = -5$ și $f(1) = 9$, obținem $-5 \le f(x) \le 9$, pentru orice $x \in [-1,1]$	3 p
2.a)	$\int_{0}^{1} (f(x) + x) dx = \int_{0}^{1} (4x^{3} - x + x) dx = \int_{0}^{1} 4x^{3} dx =$	2p
	$ = x^4 \begin{vmatrix} 1 \\ 0 \end{vmatrix} = 1 $	3 p
b)	$\int_{0}^{1} (4x^{3} - f(x))e^{x} dx = \int_{0}^{1} (4x^{3} - 4x^{3} + x)e^{x} dx = \int_{0}^{1} xe^{x} dx =$	2p
	$=(x-1)e^x\begin{vmatrix}1\\0\\1\end{vmatrix}=1$	3 p
c)	$\mathcal{A} = \int_{1}^{3} f(x) dx = \int_{1}^{3} (4x^{3} - x) dx = \left(x^{4} - \frac{x^{2}}{2}\right) \Big _{1}^{3} =$	3p
	$=81-\frac{9}{2}-1+\frac{1}{2}=76$	2p