Московский физико-технический институт Физтех-школа прикладной математики и информатики

БОЛЬШОЕ НАЗВАНИЕ КУРСА

V CEMECTP

Лектор: Иван Иванович Иванов

Автор: Павел Дуров Проект на Github

Содержание

1	Вступление	2
2	Фундированные множества	2
	2.1. Свойства, эквивалентные фундированности	3

Короче, как-то будем сдавать какой-то экзамен. Очень сложно, ничего не понятно

1 Вступление

Вот у нас были натуральные числа:

$$0 = \emptyset$$

$$1 = \{\emptyset\}$$

$$2 = \{\emptyset, \{\emptyset\}\} = \{0, 1\}$$

$$\vdots$$

$$n + 1 = \{0, 1, 2, \dots n\}$$

Вопрос: что будет в бесконечности?

$$\omega = \{0, 1, 2, \dots\}$$

$$\omega + 1 = \{0, 1, 2, \dots, \omega\}$$

$$\omega + 2 = \{0, 1, 2, \dots, \omega, \omega + 1\}$$

$$\vdots$$

$$2\omega = \dots$$

$$2\omega + 1 = \dots$$

$$\vdots$$

$$3\omega = \dots$$

$$\vdots$$

$$\omega \cdot \omega = \dots$$

Таким образом, получаем различные многочлены от ω , если продолжать этот абсурд, то получится ω^{ω} , потом получится $\omega^{\omega^{\dots^{\dots^{\omega}}}}$ и короче всякое такое.

2 Фундированные множества

Определение 2.1. Пусть S — ЧУМ. Тогда S называется Фундированным, если $\forall A \subset S \exists \min A$

Пример (Фундированные).

- 1. \mathbb{N}, \leqslant
- $2. \mathbb{N}, |$
- 3. $\{a,b\}^*, \sqsubseteq$

Пример (Не фундированные).

- 1. \mathbb{Z}, \leqslant
- $2. \mathbb{N}, \geqslant$
- 3. $[0,1], \leq$
- 4. $\{a,b\}^*, \leq_{lex}$

2.1 Свойства, эквивалентные фундированности

1. (БС) Невозможность бесконечного спуска

$$\nexists a_1 > a_2 > a_3 \dots$$

2. (Ст) Стабилизация

$$\forall a_1 \geqslant a_2 \geqslant a_3 \cdots \Rightarrow \exists k : \forall n > k(a_k = a_n)$$

3. (ТИ) Трансфинитная индукция

$$\forall x (\forall y < x \ \varphi(y) \to \varphi(x)) \Rightarrow \forall z \varphi(z)$$

Теорема 2.1. Свойства Фундированность, БС, Ст, ТИ эквивалентны.

Доказательство.

- 1. ¬Ф ⇒ ¬БС. Пусть $A \neq \emptyset$, ∄ min A. Тогда $\forall a_1 \in A \exists a_2 \in A : a_2 < a_1$. Используя аксиому выбора (выбирая по одному элементу из оставшихся), получается бесконечную убывающую последовательность.
- 2. $\neg \Phi \Leftarrow \neg BC$. Тогда существует $a_1 > a_2 > a_3 \dots$ Рассмотрим это множество, в нем не будет минимального элемента.
- 3. $\neg BC \Rightarrow \neg Cт$. Тогда существует $a_1 > a_2 > a_3 \dots$ Заметим, что для это последовательности неверна стабилизация.
- 4. $\neg BC \Leftarrow \neg Cт$. Рассмотрим последовательность, которая не стабилизируется. Тогда $\forall n \exists k : a_n > a_k$. Тогда \exists бесконечная убывающая цепочка.
- 5. $\neg \Phi \Rightarrow \neg \text{TИ}$. $A \neq \emptyset$ множество без минимального элемента, $\varphi(x) \Leftrightarrow x \notin A \Rightarrow \varphi(x) \not\equiv 1$.

$$\forall y < x \ y \notin A \Rightarrow x \notin A$$

Утверждение вверу верно, т.к. $\forall y < x (y \notin A, x \in A) \Rightarrow x = \min A$.

6. $\neg \Phi \leftarrow \neg T$ И. Тогда для некоторго φ верно, что

$$\forall x (\forall y < x \ \varphi(y) \to \varphi(x))$$

Но

$$\neg \forall z \varphi(z)(1)$$

Пусть $A = \{z | \varphi(z) = 0\}$. Причем A непусто, т.к. (1). Тогда рассмотрим минимальный элемент в A и получим противоречие с определением ТИ.

Определение 2.2. Вполне упорядоченное множество — Линейная упорядоченность + Фундированность

Пример.

$$\mathbb{N}, \leqslant \qquad \qquad \omega$$

$$\left\{1 - \frac{1}{n}|n \in \mathbb{N}_{+}\right\} \qquad \qquad \omega$$

$$\left\{1 - \frac{1}{n}|n \in \mathbb{N}_{+}\right\} \cup \left\{2 - \frac{1}{n}|n \in \mathbb{N}_{+}\right\} \quad \omega \cdot 2$$

$$\cup \left\{k - \frac{1}{n}|k, n \in \mathbb{N}_{+}\right\} \qquad \omega^{2}$$