II B. Tech II Semester Supplementary Examinations, November - 2018 SWITCHING THEORY AND LOGIC DESIGN

(Electrical and Electronics Engineering)

Time: 3 hours			Max. Marks: 70	
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B		
		PART -A		
1.	a)	Write first 20 numbers in base-6 system?	(3M)	
	b)	What is duality?	(2M)	
	c)	Define combinational circuit?	(2M)	
	d)	What is PAL?	(2M)	
	e)	List out the application of counters?	(3M)	
	f)	What is Mealy model?	(2M)	
		PART -B		
2.	a)	convert the following decimal numbers to the indicated base: i) 7562.45 to Octal ii) 1938.257 to hexadecimal iii)175.175 to binary	(7M)	
	b)	Construct Hamming code for BCD 0110. Use even parity.	(7M)	
3.	a)	Minimization of function f using K-map $f(A,B,C,D) = \sum (0,2,3,4,6,7,8,10) + d(12,13,14,15)$	(7M)	
	b)	Minimize the given 5 variable function using QM Tabular Method $f = \Sigma$ (2, 4, 9, 10, 11, 12, 19, 20, 21, 22, 23, 24, 25, 26, 29, 31).	(7M)	
4.	a)	Draw and explain about BCD adder circuit Excess3 adder circuit	(7M)	
	b)	Explain in detail about4-bit digital comparator	(7M)	
5.	a)	Implement f (A,B,C,D) = $\sum (0,1,3,5,6,8,9,11,12,13)$ using PROM and explicts procedure	ain (7M)	
	b)	Design and implement Full adder with PLA	(7M)	
6.	a)	With the aid of external logic, convert D type flip-flop to a T flip-flop	(7M)	
	b)	Explain about decade ripple counter	(7M)	

7. a) For the state diagram shown in below fig, design using J-K Flip-flop

(7M)

b) Design a sequence detector circuit to detect a serial input sequence of 1010.it should produce an output 1 when the input pattern has been detected. (7M)