Lecture 11 Principal Component Analysis

EE-UY 4563 / EL-GY 6143: INTRODUCTION TO MACHINE LEARNING

PROF. SUNDEEP RANGAN

Outline

- Dimensionality reduction
 - ☐ Principal components and directions of variance
 - □ Approximation with PCs
 - ☐ Computing PCs via the SVD
 - ☐ Face example in python
 - ☐ Training models from PCs
 - □ Low rank approximations and recommender systems

Dimensionality Reduction

- ☐ Many modern data sets have very high dimension
- Want to reduce dimension:
 - Simplify classification / regression tasks on the data set
 - Visualize data
 - Find underlying commonalities in data

Data Definitions

- □ Given data: x_i , i = 1, ..., N
- □ Each sample has p features: $x_i = (x_{i1}, ..., x_{ip})$
- \square Represent as an $N \times p$ matrix
- ☐ Unsupervised learning
 - Samples do not have a label
 - Or, we choose to ignore the label for now
- \square Dimension p is large
- ☐ How do we reduce the dimension?

Example: Faces

Labeled Faces in the Wild Home

- ☐ Face images can be high-dimensional
 - We will use 50 x 37 = 1850 pixels
- ☐ But, there may be few degrees of freedom
- ☐ Can we reduce the dimensionality of this?
- ☐ Data Labelled Faces in the Wild project
 - http://vis-www.cs.umass.edu/lfw
 - Large collection of faces (13000 images)
 - Taken from web articles about 10 years ago

Loading the Data

- ■Built-in routines to load data is sciket-learn
- ☐ Can take several minutes the first time (Be patier

```
Image size = 50 \times 37 = 1850 pixels
Number faces = 1288
Number classes = 7
```

```
from sklearn.datasets import fetch_lfw_people
lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

2016-11-14 14:15:30,862 Downloading LFW metadata: http://vis-www.cs.umass.edu/lfw/pairsDevTrain.txt
2016-11-14 14:15:30,958 Downloading LFW metadata: http://vis-www.cs.umass.edu/lfw/pairsDevTest.txt
2016-11-14 14:15:31,028 Downloading LFW metadata: http://vis-www.cs.umass.edu/lfw/pairs.txt
2016-11-14 14:15:31,294 Downloading LFW data (~200MB): http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz
2016-11-14 14:20:10,056 Decompressing the data archive to C:\Users\Sundeep\scikit_learn_data\lfw_home\lfw_funneled
2016-11-14 14:22:08,605 Loading LFW people faces from C:\Users\Sundeep\scikit_learn_data\lfw_home
2016-11-14 14:22:09,735 Loading face #00001 / 01288
2016-11-14 14:22:13,640 Loading face #01001 / 01288
```


Plotting the Data

- ☐ Some example faces
- ☐ You may be too young to remember them all


```
def plt_face(x):
    h = 50
    w = 37
    plt.imshow(x.reshape((h, w)), cmap=plt.cm.gray)
    plt.xticks([])
    plt.yticks([])

I = np.random.permutation(n_samples)
plt.figure(figsize=(10,20))
nplt = 4;
for i in range(nplt):
    ind = I[i]
    plt.subplot(1,nplt,i+1)
    plt_face(X[ind])
    plt.title(target_names[y[ind]])
```

Outline

- □ Dimensionality reduction
- Principal components and directions of variance
- □ Approximation with PCs
- ☐ Computing PCs via the SVD
- ☐ Face example in python
- ☐ Training models from PCs
- □Low rank approximations and recommender systems

Projections

- \square Given a vectors z and v
- \square Projection of z onto v is:

$$\hat{\mathbf{z}} = \operatorname{Proj}_{\mathbf{v}}(\mathbf{z}) = \alpha \mathbf{v}, \qquad \alpha = \frac{\mathbf{v}^T \mathbf{z}}{\mathbf{v}^T \mathbf{v}} = \frac{\|\mathbf{z}\|}{\|\mathbf{v}\|} \cos \theta$$

- Let $V = {\alpha v | \alpha \in R}$ = vectors on the line spanned by v
- \square Theorem: $Proj_{v}(z)$ is closest point in V to z:

$$\hat{\mathbf{z}} = \arg\min_{\mathbf{w} \in V} \|\mathbf{z} - \mathbf{w}\|^2$$

Sample Covariance Matrix

- \square Let \widetilde{X} = data matrix with sample mean removed.
 - \circ Rows: $\widetilde{x}_i = x_i \overline{x}$
- \square Sample covariance matrix: Matrix Q with components:

$$Q_{k\ell} = \frac{1}{N} \sum_{i=1}^{N} (x_{ik} - \bar{x}_k)(x_{i\ell} - \bar{x}_{\ell})$$

- Covariance between feature k and ℓ in the dataset
- \circ Matrix is $p \times p$
- ☐ Theorem: Sample covariance is given by

$$\boldsymbol{Q} = \frac{1}{N} \widetilde{\boldsymbol{X}}^T \widetilde{\boldsymbol{X}}$$

- Proof on board
- Compute sample covariance via a matrix product

Directional Variance

- \square Given data: x_i , i = 1, ..., N and direction v with ||v|| = 1
- \square How much does x_i vary in the direction v?
- \square Let $z_i = v^T x_i$ = projection of x_i onto v
- \square Sample mean and variance in direction v is (proof on board):
 - \circ Sample mean $\bar{z} = v^T \overline{x}$
 - \circ Sample variance $s_z^2 = v^T S v$

Maximizing Directional Variance

- \square What directions \boldsymbol{v} maximize the variance?
- ☐ Formulate as an optimization problem:

$$\max_{\boldsymbol{v}} \boldsymbol{v}^T \boldsymbol{Q} \boldsymbol{v} \quad \text{s.t. } \|\boldsymbol{v}\| = 1$$

- ullet Let $oldsymbol{v}_1,...,oldsymbol{v}_p$ be the eigenvectors of $oldsymbol{Q}:oldsymbol{Q}oldsymbol{v}_j=\lambda_joldsymbol{v}_j$
- □ Sort eigenvalues in descending order: $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p$
 - Can show that eigenvalues are real and non-negative
- ☐ Theorem: Any local maxima of the variance directional is an eigenvector
 - $v = v_j$ for some j and $v^T Q v = \lambda_j$
 - Proof on board

Principal Components

- \square Principal components: The eigenvectors of $oldsymbol{Q}$, $oldsymbol{v}_1$, ..., $oldsymbol{v}_p$
 - \circ Always normalized $\| oldsymbol{v}_i \| = 1$
- \square Sorted by eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$
- \square Each vector is of dimension p
- ☐ Key property: Vectors are orthogonal
 - $\circ \ \boldsymbol{v}_j^T \boldsymbol{v}_k = 0 \text{ if } j \neq k$
 - Proof on board
- ☐ Represents directions of maximal variance

Outline

- □ Dimensionality reduction
- ☐ Principal components and directions of variance
- Approximation with PCs
- ☐ Computing PCs via the SVD
- ☐ Face example in python
- ☐ Training models from PCs
- □ Low rank approximations and recommender systems

Low-Dimensional Representations

- \square Given data x_i , i = 1, ..., N
- \square Problem: Find basis vectors v_j , j=1,...,d such that:

$$x_i \approx \overline{x} + \sum_{j=1}^d \alpha_{ij} v_j$$

- Sample mean + linear combination of basis vectors
- $egin{aligned} \circ \ lpha_i = (lpha_{i1}, ..., lpha_{id}) \ ext{is an approximate coordinates of} \ oldsymbol{x}_i \ ext{in basis} \ (oldsymbol{v}_1, ..., oldsymbol{v}_d) \end{aligned}$
- □ Dimensionality reduction:
 - \circ If $d \ll p$ we have represented $oldsymbol{v}_i$ with a smaller number of coefficients.

Orthonormal Sets and Bases

- lacktriangle Definition: A set of vectors $oldsymbol{v}_1, ..., oldsymbol{v}_d$ are an orthonormal set if:
 - $||v_j|| = 1$ for all j (unit length)
 - $v_j^T v_k = 0$ if $j \neq k$ (perpendicular to one another)
- \square If d=p then $oldsymbol{v_1},...,oldsymbol{v_p}$ is called an orthonormal basis
- lacksquare Matrix form: If $m{V} = [m{v}_1 \ ... \ m{v}_d]$, then $m{V}^T m{V} = I_d$
- \square If d=p, then V is an orthogonal matrix
- ☐ Key property: the PCs form an orthonormal basis

Coefficients in an Orthonormal Basis

- \square Suppose $v_1, ..., v_p$ is an orthonormal basis
- \Box Given a vector z, can write

$$oldsymbol{z} = \sum_{j=1}^p lpha_j oldsymbol{v}_j$$
 , $lpha_j = oldsymbol{v}_j^T oldsymbol{z}$

- Simple expression for computing coefficients in an orthonormal basis
- ☐ Matrix form:

$$\alpha = V^T z$$
, $z = V \alpha$

Approximating the Data Matrix

- \square Given data x_i , i = 1, ..., N
- \square Let $v_1, ..., v_p$ be the PCs
- ☐ Find coefficient expansion of each data sample:

$$x_i = \overline{x} + \sum_{j=1}^p \alpha_{ij} v_j$$
, $\alpha_{ij} = v_j^T (x_i - \overline{x})$

 \square Now consider approximation with d coefficients:

$$\widehat{\boldsymbol{x}}_i = \overline{\boldsymbol{x}} + \sum_{j=1}^a \alpha_{ij} \boldsymbol{v}_j$$

Average Approximation Error

- \Box Let \widehat{x}_i = approximation with d PCs
- \square Error in sample i:

$$x_i - \widehat{x}_i = \sum_{j=d+1}^p \alpha_{ij} v_j$$

 \Box Theorem: Average error with a d PC approximation is:

$$\frac{1}{N} \sum_{i=1}^{N} ||x_i - \widehat{x}_i||^2 = \sum_{j=d+1}^{p} \lambda_j$$

 \circ Sum of the smallest p-d eigenvalues

Proportion of Variance (PoV)

- \square Total variance of data set: $\frac{1}{N}\sum_{i=1}^{N}||x_i-\overline{x}||^2=\sum_{j=1}^{p}\lambda_j$
- \square Average approximation error: $\frac{1}{N}\sum_{i=1}^{N}\|x_i-\widehat{x}_i\|^2 = \sum_{j=d+1}^{p}\lambda_j$
- \Box The proportion of variance explained by d PCs is:

$$PoV(d) = \frac{\sum_{j=1}^{d} \lambda_j}{\sum_{j=1}^{p} \lambda_j}$$

- \circ Measure of approximation error in using d PCs
- \square Example: Suppose eigenvalues of sample covariance matrix are 10, 4, 0.2, 0.1, 0, 0, ...
 - What is the PoV for d = 1,2,3,...

Visualizing the Representation

☐ Finds a low-dimensional representation

Geometry of Approximations

- □ Approximation can be interpreted geometrically
- \square Let V be set of all linear combinations

$$\sum_{j=1}^{a} \alpha_j v_j$$

- ∘ *V* is a vector space
- \circ Called the span of $oldsymbol{v}_1,...,oldsymbol{v}_d$
- \square Given z, \hat{z} is the closest vector in V to z
- \square Called the projection of z onto V

Space spanned by v_1, \dots, v_d

Latent Representations

- \square Each record is of the form: $x_i \approx \overline{x} + \sum_{j=1}^d \alpha_{ij} v_j$
- \square Variance in x_i explained by small number of "latent components"
 - \circ Coefficients α_{ij} are the latent representations of x_i
- ■Example:
 - x_i = list of movie preferences for customer i
 - Movie preferences are highly correlated.
 - Could be explained by small number of components (action, romance, presence of stars, ...)
 - PCA can be used to find these out

Example: USArrests

- ☐ Arrests per capita in four categories
 - One record per US state
- ☐ Visualize PCA in a biplot
 - See the scores (i.e. coefficients of each state)
 - Loading (PC vectors)
- ☐ Fig from ISL 10.1

Outline

- □ Dimensionality reduction
- ☐ Principal components and directions of variance
- □ Approximation with PCs
- Computing PCs via the SVD
 - ☐ Face example in python
 - ☐ Training models from PCs
 - □Low rank approximations and recommender systems

Singular Value Decomposition

- ■SVD: Powerful method in linear algebra
- \square Given matrix $X \in \mathbb{F}^{n \times d}$
 - Typically remove mean from each column
- \square SVD is $X = U\Sigma V^T$, where
 - \cdot $U \in \mathbb{F}^{n \times r}$, columns are orthonormal
 - $V \in \mathbb{F}^{d \times r}$, columns are orthonormal
 - \circ $\Sigma = \operatorname{diag}(s_1, ..., s_r)$, sorted $s_1 \ge s_2 \ge ... \ge s_r \ge 0$. Called the singular values
- All matrices have an SVD
 - Matrices do not have to be square.
- □ Number of singular values $r \le \min(n, d)$

Economy vs. Full SVD

- □ Suppose $A \in \mathbb{R}^{n \times d}$ with rank $r \leq \min\{n, d\}$
- ☐ Two types of SVDs
- \square Economy SVD: $A = USV^*$
 - $U \in \mathbb{F}^{n \times r}$, columns are orthonormal
 - $V \in \mathbb{F}^{d \times r}$, columns are orthonormal
 - $\Sigma \in \mathbb{F}^{r \times r}$ diagonal $\Sigma = diag(s_1, ..., s_r)$,
- \square Full SVD: $A = USV^*$
 - $\circ~U \in \mathbb{F}^{n \times n}$, columns are an orthonormal basis of \mathbb{R}^n
 - $V \in \mathbb{F}^{d \times d}$, columns are an orthonormal basis of \mathbb{R}^d
 - $\Sigma \in \mathbb{F}^{n \times d}$ with diagonal upper left $\Sigma = \begin{bmatrix} \widehat{\Sigma} & 0 \\ 0 & 0 \end{bmatrix}$

SVD Visualized

- ☐ Pink matrices represent "economy" SVD
- ☐Blue represent "full SVD"

Example

$$\Box \operatorname{Let} A = \begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \end{bmatrix}$$

 \Box Then can check that $A = U\Sigma V^*$

$$\mathbf{U} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{5} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{\Sigma} = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{5} & 0 & 0 \\ 0 & 0 & 0 & \mathbf{0} & 0 \end{bmatrix} \qquad \mathbf{V}^* = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \sqrt{0.2} & 0 & 0 & 0 & \sqrt{0.8} \\ 0 & 0 & 0 & 1 & 0 \\ -\sqrt{0.8} & 0 & 0 & 0 & \sqrt{0.2} \end{bmatrix}$$

- Also verify that $UU^* = I_5$ and $VV^* = I_5$
- This can be found by (cleverly) permute the rows of A
- But, in general, use a computer to compute SVD

Geometric Interpretation

- \Box Let $A = U\Sigma V^*$ and y = Ax
- ☐ Consider a transformed space
 - $w = V^*x$ so $w = [w_1, ..., w_N]$ are the coefficients of the input in the basis $V = [v_1, ..., v_N]$
 - $\mathbf{z} = \mathbf{U}^* \mathbf{y}$ so $\mathbf{z} = [z_1, ..., z_M]$ are the coefficients in the basis $U = [u_1, ..., u_M]$
- □ Then: $\mathbf{z} = \mathbf{\Sigma} \mathbf{w}$ so $z_i = \sigma_i w_i$
- ullet Each input direction $oldsymbol{v}_i$ is mapped to $\sigma_i oldsymbol{u}_i$
- ☐Consequence:
 - \circ SVD finds orthonormal bases U,V such that matrix A is a linear scaling in each basis vector

Example Problem

- □ Suppose that $A = U\Sigma V^* \in \mathbb{R}^{3\times 4}$ with $\Sigma = diag(3,0.2,0,0)$
- \square If $x = 2v_1 + 3v_2 + 4v_3 + 5v_4$ find y = Ax in terms of basis u_1, u_2, u_3
- Solution:
 - \bullet $Av_i = \sigma_i u_i$ for all i
 - Therefore,

$$y = Ax = 2Av_1 + 3Av_2 + 4Av_3 + 5Av_4$$

= 2(3) $u_1 + 3(0.2)u_2 + 4(0)u_3$
= $6u_1 + 0.6 u_2$

Computing the PCA via SVD

- \square Let X =data matrix with sample mean removed.
- \Box Take SVD: $X = \mathbf{U}\Sigma\mathbf{V}^T$
- ☐ Properties:
 - Sample covariance matrix is $Q = \frac{1}{N} X^T X = \frac{1}{N} V \Sigma^2 V^T$
 - \circ Eigenvalues are $\lambda_j = \alpha_j^2/N$ where α_j^2
 - \circ PCs are v_j , columns of V
 - Coefficients are $Z = XV = U\Sigma$
 - \circ **X=ZV**^T
- \square Hence, SVD provides PCs, eigenvalues coefficients Z in the PCA representation.

Outline

- ☐ Dimensionality reduction
- ☐ Principal components and directions of variance
- □ Approximation with PCs
- ☐ Computing PCs via the SVD
- Face example in python
- ☐ Training models from PCs
- □Low rank approximations and recommender systems

Computing the PCA

```
☐ Manually compute the PCs with SVD
 npix = h*w

    Remove the mean

 Xmean = np.mean(X,0)

    Use broadcasting

 Xs = X - Xmean[None,:]
U,S,Vtr = np.linalg.svd(Xs, full matrices=False)
                                                           Compute the SVD
                                                       ☐ Use sklearn builtin PCA function
from sklearn.decomposition import PCA

    Construct a PCA object

# Construct the PCA object
pca = PCA(n components=ncomp,
         svd solver='randomized', whiten=True)
                                                         Call fit: Computes mean and PC components

    Stores values internally in the pca class

# Fit the PCA components on the entire dataset
```

pca.fit(X)

Finding the PoV

- Most variance explained in about 400 components
- Some reduction

```
lam = S**2
PoV = np.cumsum(lam)/np.sum(lam)

plt.plot(PoV)
plt.grid()
plt.axis([1,n_samples,0, 1.1])
plt.xlabel('Number of PCs', fontsize=16)
plt.ylabel('PoV', fontsize=16)
```


Plotting Approximations

```
nplt = 2
                     # number of faces to plot
ds = [0,5,10,20,100] # number of SVD approximations
                     # True=Use sklearn reconstruction, else use SVD
use pca = True
# Loop over figures
iplt = 0
for ind in inds:
   for d in ds:
       plt.subplot(nplt,nd+1,iplt+1)
       if use pca:
           # Zero out coefficients after d.
                                                                                □ Reconstruction using sklearn method
           # Note, we need to copy to not overwrite the coefficients
           Zd = np.copy(Z[ind,:])

    Uses the inverse transform method

           Zd[d:] = 0
           Xhati = pca.inverse transform(Zd)
       else:
           # Reconstruct with SVD
          Xhati = (U[ind,:d]*S[None,:d]).dot(Vtr[:d,:]) + Xmean
                                                                                Reconstruction using SVD
       plt face(Xhati)
       plt.title('d={0:d}'.format(d))
       iplt += 1

    Note use of broadcasting

   # Plot the true face
   plt.subplot(nplt,nd+1,iplt+1)
   plt face(X[ind,:])
   plt.title('Full')
```

Plotting the Approximations

Plotting the PCs

☐ The PCs can be plotted as well

State-of-the-Art: Auto-Encoders

- □PCA is a simple example of an autoencoder
- ☐ Tries to find low-dim representation
- Restricted to linear transforms
- Not very good for images and complex data

Deep Auto-Encoders

- □Can use deep networks for learning complex latent representations and their inverses
 - http://www.cc.gatech.edu/~hays/7476/projects/Avery Wenchen/
 - https://swarbrickjones.wordpress.com/2016/01/13/enhancing-images-using-deep-convolutional-generative-adversarial-networks-dcgans/ (Code in Theano not tensorflow)

Outline

- □ Dimensionality reduction
- ☐ Principal components and directions of variance
- □ Approximation with PCs
- ☐ Computing PCs via the SVD
- ☐ Face example in python
- Training models from PCs
 - □ Low rank approximations and recommender systems

Classification Using PCs

- \blacksquare Many problems: Dimensionality of data x is too large
 - Classifier in original space will have too many parameters
- ☐ Key idea:
 - Learn a dimension reducing transform via PCA: z = f(x)
 - Train classifier on low-dim transform $\hat{y} = g(z)$

Why This Would Work?

- □PCA works if: classes are separable in transformed domain
- ☐ Example to right:
 - MNIST digits plotted in two PCs
 - Can mostly separate the classses

Training and Testing

- \square Split data in training and test: $X_{tr}, y_{tr}, X_{ts}, y_{ts}$
- \square Fit PCA transform on Z = g(X) on training data X_{tr}
 - Do not include test data in PCA fit!
 - Many students make this mistake.
- ☐ Transform training and test:

$$Z_{tr} = g(X_{tr}), Z_{ts} = g(X_{ts})$$

- \square Fit classifier $\hat{y} = f(z)$ on transformed training data (Z_{tr}, y_{tr})
- \square Predict classifier on transformed test data: $\hat{y}_{ts} = f(Z_{ts})$
- $\square \text{Score error rate / MSE on test data: } \epsilon = \frac{1}{N} \# \{ \hat{y}_{ts}^i \neq y_{ts}^i \}$

Cross-Validation

- ☐ To find number of PCs and other parameters use cross-validation
- \square Split data in training and test: $X_{tr}, y_{tr}, X_{ts}, y_{ts}$
- ☐ For each set of parameters:
 - Fit PCA transform on Z = g(X, numPCs) on training data X_{tr}
 - Transform training and test: $Z_{tr} = g(X_{tr}), \ Z_{ts} = g(X_{ts})$
 - Fit classifier $\hat{y} = f(z)$ on transformed training data (Z_{tr}, y_{tr})
 - Predict classifier on transformed test data: $\hat{y}_{ts} = f(Z_{ts})$
 - Score (e.g. error rate / MSE) on test data: $\epsilon = \frac{1}{N} \# \{ \hat{y}_{ts}^i \neq y_{ts}^i \}$
- ☐ Select the parameters with lowest score

Example: SVM classification with PCAs

```
npc_test = [25,50,75,100,200]
gam test = [1e-3,4e-3,1e-2,1e-1]
                                                                        ☐ Parameters to search
C = 100
n0 = len(npc test)

    Number of PCs and gamma

n1 = len(gam test)
acc = np.zeros((n0,n1))
acc max = 0
for i0, npc in enumerate(npc test):
                                                                        ☐ Fit on the training data.
   # Fit PCA on the training data
   pca = PCA(n components=npc, svd solver='randomized', whiten=True)
                                                                          This is in the loop!
   pca.fit(Xtr)
   # Transform the training and test
                                                                        ☐ Transform the data
   Ztr = pca.transform(Xtr)
   Zts = pca.transform(Xts)
   for i1, gam in enumerate(gam test):
       # Fiting on the transformed training data
                                                                        ·□Fit classifier on transformed training data
       svc = SVC(C=c, kernel='rbf', gamma = gam)
       svc.fit(Ztr, ytr)
       # Predict on the test data
                                                                        ☐ Test on the transformed test data
       yhat = svc.predict(Zts)
       # Compute the accuracy
                                                                        □ Score on test data
       acc[i0,i1] = np.mean(yhat == yts)
       print('npc=%d gam=%12.4e acc=%12.4e' % (npc,gam,acc[i0,i1]))
```

Example: Parameter Search

■Search over:

- Number of PCs $\in \{25,50,75,100,200\}$
- $\gamma \in \{0.001, 0.004, 0.01, 0.1\}$

- ☐ Plotted is the test accuracy
- □ Best test accuracy $\approx 85\%$

Test Accuracy

Optimal num PCs = 75 Optimal gamma = 0.010000

Examples

□Correct images

George W Bush George W Bush

George W Bush George W Bush

Original Reduced

☐ Error images

Tony Blair

Gerhard Schroeder George W Bush

Original

Reduced

Outline

- □ Dimensionality reduction
- ☐ Principal components and directions of variance
- □ Approximation with PCs
- ☐ Computing PCs via the SVD
- ☐ Face example in python
- ☐ Training models from PCs

Low rank approximations and recommender systems

Low-Rank Approximations

- □SVD can be used for a low-rank approximation
- \square SVD can be written: $X = \mathbf{U} \Sigma \mathbf{V}^T = \sum_{j=1}^r \alpha_j \mathbf{u}_j \mathbf{v}_j^T$
- \square Consider k —term approximation: $X_k = \sum_{j=1}^k \alpha_j u_j v_j^T$
- ☐ Properties:
 - \circ X_k is rank k
 - $\circ X_k = U_k \Sigma_k V_k^T$
 - Error is $||X X_k||_F^2 = \sum_i \sum_j (X_{ij} X_{k,ij})^2 = \sum_{j=k+1}^r \alpha_j^2$
 - \circ If $s_{k+1},...,s_r$ is small then matrix is well approximated by rank k matrix

Low-Rank Approximation Visualized

 \square Can show: Reconstructed matrix X_k is optimal rank k approximation

Recommender Systems

- ☐ How do you recommend a movie to a user?
- MovieLens dataset:
 - Get past ratings from users
 - Make recommendations for future

t[3]:

movield		title	genres	
0	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	
1	2	Jumanji (1995)	Adventure Children Fantasy	
2	3	Grumpier Old Men (1995)	Comedy Romance	
3	4	Waiting to Exhale (1995)	Comedy Drama Romance	
4	5	Father of the Bride Part II (1995)	Comedy	

Ratings Matrix

- □ Data can be represented as ratings matrix
 - Users x movies
- ☐ Problem: Most users have only rated a small fraction
- Need to estimate unseen entries
 - Very sparse
- ☐ How can we do complete this matrix

Name	Dates	Users	Movies	Ratings	Density
ML Latest	'95 – '16	247,753	34,208	22,884,377	0.003%
ML Latest Small	'96 – '16	668	10,329	105,339	0.015%

Movies

Latent Factor Model for Ratings

- □ Idea: Ratings for movies dependent on small number of latent factors
 - E.g. Action, famous actors, genre, ...
- ☐ Mathematically model as:

$$R_{ij} \approx \widehat{R}_{ij} = b_i^u + b_j^m + \sum_{k=1}^K A_{ik} B_{jk}$$

- R_{ij} =Rating of movie j by user i
- $b_i^u = \text{Bias of user } i$
- $b_j^m = \text{Bias of movie } j$
- \circ K = number of latent factors. Typically small $K \ll N_{user}$, N_{movies}
- A_{ik} = Preference of user i to factor k
- $\circ \ B_{jk} =$ Component of factor k in movie j

More to be added

- ☐ These slides are still under construction.
- ☐ More will be added on low rank approximations and embedding layers.

