Closure properties of regular languages

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

09 January 2024

Outline

1 Closure under Boolean Ops

Proofs using Induction

Closure properties

- Class of Regular languages is closed under
 - Complement, intersection, and union.
 - Concatenation, Kleene iteration.

Closure under complementation

- Idea: Flip final states.
- Formal construction:
 - Let $\mathcal{A} = (Q, s, \delta, F)$ be a DFA over alpahet A.
 - Define $\mathcal{B} = (Q, s, \delta, Q F)$.
 - Claim: $L(B) = A^* L(A)$.

Proof of claim

•
$$L(\mathcal{B}) \subseteq A^* - L(\mathcal{A})$$
.
• $w \in L(\mathcal{B}) \implies \widehat{\delta}(s, w) \in (Q - F)$.
• $\widehat{\delta}(s, w) \notin F$
• $w \notin L(\mathcal{A})$
• $w \in A^* - L(\mathcal{A})$.

•
$$L(\mathcal{B}) \supseteq A^* - L(\mathcal{A})$$
.

Closure under intersection

Product construction. Given DFA's $\mathcal{A} = (Q, s, \delta, F)$, $\mathcal{B} = (Q', s', \delta', F')$, define product \mathcal{C} of \mathcal{A} and \mathcal{B} :

$$C = (Q \times Q', (s, s'), \delta'', F \times F'),$$

where $\delta''((p, p'), a) = (\delta(p, a), \delta'(p', a)).$

Product construction example b a b a b e, b a o, b A B A × B

Correctness of product construction

Claim: $L(C) = L(A) \cap L(B)$.

Proof of claim $L(C) = L(A) \cap L(B)$.

•
$$L(C) \subseteq L(A) \cap L(B)$$
.
 $w \in L(C) \implies \widehat{\delta}''((s,s'),w) \in F \times F'$.
 $\implies (\widehat{\delta}(s,w),\widehat{\delta}'(s',w)) \in F \times F'$ (by subclaim)
 $\implies \widehat{\delta}(s,w) \in F \text{ and } \widehat{\delta}'(s',w) \in F'$
 $\implies w \in L(A) \text{ and } w \in L(B)$
 $\implies w \in L(A) \cap L(B)$.

Subclaim: $\widehat{\delta}''((s,s'),w) = (\widehat{\delta}(s,w),\widehat{\delta}'(s',w)).$

Closure under union

• Follows from closure under complement and intersection since $L_1 \cup L_2 = \overline{\overline{L_1} \cap \overline{L_2}}$.

Closure under union

- Follows from closure under complement and intersection since $L_1 \cup L_2 = \overline{\overline{L_1} \cap \overline{L_2}}$.
- Can also do directly by product construction: Given DFA's $\mathcal{A} = (Q, s, \delta, F)$, $\mathcal{B} = (Q', s', \delta', F')$, define \mathcal{C} : $\mathcal{C} = (Q \times Q', (s, s'), \delta'', (F \times Q') \cup (Q \times F'))$, where $\delta''((p, p'), a) = (\delta(p, a), \delta(p', a))$.

Principle of Mathematical Induction

- $\mathbb{N} = \{0, 1, 2 \dots\}$
- P(n): A statement P about a natural number n.
- Example:
 - P(n) = "n is even."
 - $P_1(n) =$ "Sum of the numbers $1 \dots n$ equals n(n+1)/2."
 - $P_2(n) =$ "For all $w \in A^*$, if length of w is n then $\widehat{\delta}''((s,s'),w) = (\widehat{\delta}(s,w),\widehat{\delta}'(s',w))$."

Principle of Induction

If a statement P about natural numbers

- is true for 0 (i.e P(0) is true), and,
- is true for n + 1 whenever it is true for n (i.e. $P(n) \implies P(n+1)$)

then P is true of all natural numbers (i.e. "For all n, P(n)" is true).

Proof of subclaim

Exercise: Prove the Subclaim:

$$\widehat{\delta}''((s,s'),w) = (\widehat{\delta}(s,w),\widehat{\delta}'(s',w)).$$

using induction.

Closure under concatenation and Kleene iteration

Concatenation of languages:

$$L \cdot M = \{u \cdot v \mid u \in L, \ v \in M\}.$$

Kleene iteration of a language:

$$L^* = \{\epsilon\} \cup L \cup L^2 \cup L^3 \cup \cdots,$$

where

$$L^n = L \cdot L \cdots L$$
 ($n \text{ times}$).
= $\{w_1 \cdots w_n \mid \text{each } w_i \in L\}$.

Will prove these closure properties using Non-Deterministic Finite-State Automata (NFAs) later.