MRes Advanced Brain Imaging

Revision session

Remi Gau

School of psychology University of Birmingham

16th March 2016

- How do you map from voxel space to world space?
- What are the real world coordinates of the voxel with indices
 1 1 1 of an image with the following tranformation matrix?

- How do you map from voxel space to world space?
- What are the real world coordinates of the voxel with indices
 1 1 1 of an image with the following tranformation matrix?

- What is an objective function when comparing 2 images?
- Why are there different objective functions?

- What is an objective function when comparing 2 images?
- Why are there different objective functions?

Which objective functions are used for (1) realignment of functional images and (2) coregistration of a structural and functional image?

Draw a Venn diagram of these different types of image transformations: (1) rigid body, (2) affine and (3) all possible types of transformation. Give an example of each of these types of transformation and/or mention at what stage of the pre-processing each type is used.

General questions Realignment normalization Smoothing

General questions

If you resample your images after each preprocessing step, how will the images look different (as compared to when you resampled only after smoothing)?

General question Realignment normalization Smoothing

Realignment

What are some the possible sources of residual errors that are still present after realignment?

General question Realignment normalization Smoothing

Realignment

What can you do to minimize the effects of those residual errors?

General questions Realignment normalization Smoothing

Normalization

What are the reasons for normalization?

Normalization

Most spatial normalization procedures involves two steps, affine and non-linear transformation. Why?

Normalization

What alternatives are there if you still want to average results accross subjects without normalising your data?

General question Realignment normalization Smoothing

Smoothing

What are the main reasons for spatial smoothing?

Draw a Venn diagram of: t-test, paired t-test, ANOVA, repeated measures ANOVA, General Linear model.

If two regressors X_1 and X_2 are correlated, what do the β estimates represent?

If regressor 1 and 2 are correlated and you orthogonalize 2 with respect to 1 which, if any, β will change and why? Explain via geometric perspective.

The General Linear Model described by $Y = X\beta + \varepsilon$. Define the design matrices (X) of the following:

Two-sample t-test with 3 subjects in group A and B

The General Linear Model described by $Y = X\beta + \varepsilon$. Define the design matrices (X) of the following:

• Paired t-test with 2 conditons (A and B) with 3 subjects

The General Linear Model described by $Y = X\beta + \varepsilon$. Define the design matrices (X) of the following:

ANOVA with three groups of subjects and 3 subjects in each group

The General Linear Model described by $Y = X\beta + \varepsilon$. Define the design matrices (X) of the following:

 Repeated measures ANOVA for 3 subjects and with three within subject levels

The General Linear Model described by $Y = X\beta + \varepsilon$. Define the design matrices (X) of the following:

Regression

Experimental design

- List at least 6 parametric factors.
- What is the advantage of having a parametric factor with 3 rather than 2 levels?

Experimental design

- List at least 6 parametric factors.
- What is the advantage of having a parametric factor with 3 rather than 2 levels?

In the experiment, you present 4 flashes with the following onset vector.

$$[\ 1\ 0\ 1\ 1\ 0\ 1\]$$

You assume a simple HRF.

$$[1 \ 3 \ 5 \ 1 \ -2 \ 0]$$

Generate a predictor for your BOLD-response in the experiment.

- An experiment was performed with a TR = 3 secs and an SOA = 3 secs. How would you change the experimental parameters and why?
- What are the assumptions inherent in using convolution for modeling the BOLD response?

- An experiment was performed with a TR = 3 secs and an SOA = 3 secs. How would you change the experimental parameters and why?
- What are the assumptions inherent in using convolution for modeling the BOLD response?

Why is it possible to optimize the efficiency of an experimental design even before running the experiment?

Explain the concept of design efficiency from the perspective of maximal bandpassed energy.

What would be the most efficient fMRI design and why?

Which experiments make *a priori* optimization of design efficiency difficult?

- Explain the concept of basis functions for modeling the HRF.
- You have performed a complex working memory experiment. You are not sure about the shape of the activation functions. Which basis sets might be useful for modeling the hemodynamic response? What are their advantages and disadvantages?

- Explain the concept of basis functions for modeling the HRF.
- You have performed a complex working memory experiment. You are not sure about the shape of the activation functions. Which basis sets might be useful for modeling the hemodynamic response? What are their advantages and disadvantages?

- Why would you model your events using the informed basis functions set (i.e. what is the function of the derivatives)?
- How can you test whether the informed basis functions set is really sufficient for modeling the HRF?

- Why would you model your events using the informed basis functions set (i.e. what is the function of the derivatives)?
- How can you test whether the informed basis functions set is really sufficient for modeling the HRF?

What conditions need to be fulfilled in order to perform selective averaging rather then using a convolution model for estimating the averaged response to an event class?

How does non-sphericity emerge at 1st and 2nd level?

- \bullet What is the meaning of a p-value in classical statistics? E.g. $\rho<\alpha$ means that:
- In the case where $\rho>\alpha,$ does it provide evidence to say that ${\rm H_0}$ is true?
- A t-test is a ratio of?

- \bullet What is the meaning of a p-value in classical statistics? E.g. $\rho<\alpha$ means that:
- In the case where $p>\alpha$, does it provide evidence to say that ${\rm H_0}$ is true?
- A t-test is a ratio of?

- \bullet What is the meaning of a p-value in classical statistics? E.g. $\rho<\alpha$ means that:
- In the case where $\rho>\alpha$, does it provide evidence to say that H $_0$ is true?
- A t-test is a ratio of?

Does the t-statistic depend on the scaling of the regressors?

Define precisely the three levels of inference and their constraints: voxel, cluster and set. What are their advantages and disadvantages?

Given the following outcomes and a threshold $\mu_1 = 0.5$:

- True positives or Hits (TP):
- True negatives or Correct Rejections (TN)
- False positives or False alarms (FP):
- False negatives or Missed (FN):

Given the following outcomes and a threshold $\mu_1 = 0.5$:

- True positives or Hits (TP):
- True negatives or Correct Rejections (TN)
- False positives or False alarms (FP):
- False negatives or Missed (FN):

Given the following outcomes and a threshold $\mu_1 = 0.5$:

- True positives or Hits (TP):
- True negatives or Correct Rejections (TN)
- False positives or False alarms (FP):
- False negatives or Missed (FN):

Given the following outcomes and a threshold $\mu_1 = 0.5$:

- True positives or Hits (TP):
- True negatives or Correct Rejections (TN)
- False positives or False alarms (FP):
- False negatives or Missed (FN):

In 5 Parkinson patients and 5 Alzheimer patients, the following activation measurements have been obtained

```
Parkinson 5 7 9 4 3 Alzheimer 1 4 2 2 3
```

Using non-parametric statistics, you want to investigate whether the means are different between the 2 samples at a significance of p<0.05. Describe the main steps of the procedure.

Family wise error

Suppose you have a statistical parametric map with 100 000 voxels. But you have smoothed your data with a ridiculously large FWHM (e.g 1 meter!). You are looking for activation with $\alpha=0.05$.

What threshold would a Bonferonni correction give you? Why is that not threshold not appropriate? What would a better threshold be?

Family wise error

The SPM results page gives you the following values for the estimated smoothness of your data: $FWHM = 12.6 \ 11.9 \ 10.9$ (in mm). Yet you have smoothed your data with a [8 8 8] mm FWHM Gaussian kernel.

Is that an error? What could be the differences due to?

