V602

Röntgenemission und -absorption

Tahir Kamcili Marina Andreß tahir.kamcili@udo.edu marina.andress@udo.edu

Durchführung: 27.04.2021 Abgabe: 04.05.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung					
2	Durchführung					
3	Auswertung					
	3.1 Bragg Bedingung					
	3.2 Emissionsspektrum	5				
	3.3 Das Absorptionsspektrum	7				
	3.4 Bestimmung der Rydbergenergie	11				
4	Diskussion	12				

1 Zielsetzung

2 Durchführung

3 Auswertung

3.1 Bragg Bedingung

Abbildung 1: N gegen θ aufgetragen.

Aus (1) wird ein Maximung bei einem Winkel von $\theta = 28.2^{\circ}$ ermittelt. Daraus lässt sich die absolute und relative Abweichung vom Sollwinkel bestimmen.

$$\begin{split} \Delta\theta_{\rm abs} &= 0.2^{\circ} \\ \Delta\theta_{\rm rel} &= 0.0071 = 0.7\% \end{split}$$

3.2 Emissionsspektrum

Aus den Messdaten lässt sich das Emissionsspektrum einer Kupferröntgenröhre in (2) graphisch darstellen.

Zu erkennen sind die ermittelten Peaks, die die K_{α} und K_{β} Linie darstellen, sowie der rot makierte Bremsberg.

Die maximale Energie $E_{\rm max}$ und die minimale Wellenlänge lassen sich aus der Beschleunigungsspannung U=35 kV bestimmen. Mit (xx) ergibt sich für den Grenzwinkel dann:

$$\begin{split} \mathrm{E_{max}} &= 35\,\mathrm{keV} \\ \lambda_{\mathrm{min}} &= 354.241\,\mathrm{nm} \\ \theta_{\mathrm{Grenz}} &= 5.045^{\circ} \end{split}$$

Abbildung 2: Emissionsspektrum einer Cu-Röntgenröhre.

Das Detailspektrum um die Peaks ist in (3) dargestellt, wobei der grüne Bereich die Full Width at Half Maximum makiert.

Hieraus lässt sich $\Delta \rm E_{\rm FWHM}$ bestimmen und daraus das Auflösungsvermögen A mit

$$A = \frac{E_{max}}{\varDelta E_{FWHM}}$$

für die K_α und K_β Linie berechnen. So ergibt sich:

$$\begin{split} \mathbf{E}_{\alpha} &= 8.0434\,\mathrm{keV} & \mathbf{E}_{\beta} &= 8.9142\,\mathrm{keV} \\ \Delta \mathbf{E}_{\mathrm{FWHM}\alpha} &= 165.63\,\mathrm{V} & \Delta \mathbf{E}_{\mathrm{FWHM}\beta} &= 205.58\,\mathrm{V} \\ \mathbf{A}_{\alpha} &= 48.56 & \mathbf{A}_{\beta} &= 43.36 \end{split}$$

Mithilfe der aus der Literatur entnommenen Absorptionsenergie $E_{K,abs}=8980.476\,\mathrm{eV}$ können die Abschirmkonstanten für Kupfer mit den Formeln

Abbildung 3: Emissionsspektrum einer Cu-Röntgenröhre mit der FWHM.

$$\begin{split} \sigma_1 &= Z - \sqrt{\frac{E_{Kabs}}{R_y}} \\ \sigma_2 &= Z - \sqrt{\frac{m^2}{n^2}(Z - \sigma_1)^2 - \frac{m^2}{R_\infty}E_{K\alpha}} \\ \sigma_3 &= Z - \sqrt{\frac{l^2}{n^2}(Z - \sigma_1)^2 - \frac{l^2}{R_\infty}E_{K\beta}} \end{split}$$

bestimmt werden. Mit n=1, m=2 und l=3 ergeben sie sich zu:

$$\sigma_1 = 3.3031^{\circ}$$

 $\sigma_2 = 12.3981^{\circ}$
 $\sigma_3 = 22.3776^{\circ}$

3.3 Das Absorptionsspektrum

Im Folgenden sind die K-Kanten von Zink, Gallium, Brom, Rubidium und Strontium aufgetragen.

Aus den gemessenen K-Kanten lassen sich die Bragg-Winkel $\theta_{\rm K}$ sowie die Energieübergänge bestimmen, woraus sich die Abschirmzahlen $\sigma_{\rm K}$ bestimmen lassen.

 ${\bf Abbildung~4:~Absorptions spektrum~eines~Zinkabsorbers.}$

 ${\bf Abbildung~5:~Absorptions spektrum~eines~Gallium absorbers.}$

 ${\bf Abbildung~6:}~{\bf Absorptions spektrum~eines~Bromabsorbers.}$

Abbildung 7: Absorptionsspektrum eines Rubidiumabsorbers.

 ${\bf Abbildung~8:~Absorptions spektrum~eines~Strontium absorbers.}$

Tabelle 1: Messwerte der Energieübergänge $E_K,$ Bragg-Winkel θ_K und Abschirmzahlen σ_K

	Z	$\rm E_{K}/keV$	$\theta_{ m K}/^{\circ}$	$\sigma_{ m K}$
Zn	30	9.6005	18.7	3.6345
Ga	31	10.3508	17.3	3.6359
Br	35	13.4795	13.2	3.8365
Rb	37	15.0519	11.8	4.1091
Sr	38	15.9881	11.1	4.1203

3.4 Bestimmung der Rydbergenergie

Aus der Beziehung $E_K \sim Z^2$ nach Moseley kann die Rydbergenergie aus der Steigung des $\sqrt{E_K} - Z$ Diagramms aus (9) bestimmt werden.

Abbildung 9: $\sqrt{E_K} - Z$ Diagramm.

Aus der Linearen Regression ergibt sich die Ausgleichsgerade

$$g = 3.5394 \, x - 8.0559.$$

Aus dem Quadrat der Steigung wird nun die Rydbergenergie zu

$$R_{\infty} = 12.5271 \,\mathrm{eV}$$

bestimmt werden.

4 Diskussion

Während der Durchführung des Versuchs sind einige Fehlerquellen aufgefallen, die die Ergebnisse beeinflussen.