1.4.8. Измерение модуля Юнга путем акустического резонанаса

Комиссаров Данил Б01-307

Ноябрь 2023

1 Основные формулы

$$f_1 = u/2L \tag{1}$$

$$x_{\rm cp} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{2}$$

$$\sigma_{\text{отд}} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i = x_{\text{cp}})^2}$$
 (3)

$$\varepsilon_k = \frac{\sigma_k}{k} \tag{4}$$

$$\rho = \frac{4m}{\pi d^2 l} \tag{5}$$

$$u = 2L \frac{f_n}{n} \tag{6}$$

$$E = c_{\rm cr}^2 \rho \tag{7}$$

$$\Delta E = E \sqrt{4(\frac{\delta c_{\text{ct}}}{c_{\text{ct}}})^2 + (\frac{\delta \rho}{\rho})^2}$$
(8)

2 Обработка результатов

2.1 Медь

Предварительно оценим частоту первого резонанаса по формуле (1).

$$f_1 = 3.06$$
 к Γ ц

Путем перестройки звукогого гененратора был найден первый резонанс $f_1 = 3.151$ к Γ ц. На экране наблюдается эллипс.

Измерения (кГц)	1	2	3	4	
	3.151	3.152	3.151	3.150	

По формулам (2) и (3) находим, что экспериментальная погрешность равна $\sigma=8*10^{-4}$ к Γ ц. Или же относительная погрешность по (4): $\varepsilon_x=2*10^{-4}$. Найдем частоты, на кратных гармониках:

							_			- 10
Измерения (кГц)	1	$\mid 2 \mid$	3	4	5	6	7	8	9	10
	3.151	6.326	9.482	12.647	15.801	18.970	22.106	25.251	28.386	31.552

Найдем плотность медного стержня $d=(1.185\pm0.001)$ см, $l=(3.05\pm0.01)$ см, $m=(29.437\pm0.001)$ г по (5). $\rho=(8755\pm31)$ кг/м³.

Определим среднеее значение диаметра медного стержня:

Измерения (см)	1	2	3	4	
	1.20	1.20	1.19	1.21	

 $d_{\rm cp} = 1.2 \; {\rm cm}.$

 $\frac{d/2}{l} = 9.9 * 10^{-3} << 1$ - стержень тонкий.

Повторим опыты и для других стержней.

2.2 Дюраль

Частоты кратных гармоник:

Измерения (кГц)	1	2	3	4	5	6	7
	4.257	8.537	12.775	17.038	21.289	25.559	29.762

d = 1.173 см, l = 4.14 см, m = 12.443 г

Плотность стержня (5): $\rho = 2782 \text{ кг/м}^3$.

 $d_{
m cp} = 1.17$ см. $\frac{d/2}{l} = 9.6*10^{-3} << 1$ - стержень тонкий.

2.3Сталь

Частоты кратных гармоник:

Измерения (кГц)	1	2	3	4	5	6
	4.123	8.249	12.374	16.505	20.619	24.780

d=1.950 см, l=2.95 см, m=26.017 г

Плотность стержня (5): $\rho = 7673 \text{ кг/м}^3$.

 $d_{
m cp} = 1.21$ см. $\frac{d/2}{l} = 10^{-4} << 1$ - стержень тонкий.

Первая гамоника для дюрали

Модуляция на частоте f = 1.579 к Γ ц. При этой частоте стержень входит в резонанс. Ось X показывает колебания самого генератора, ось Y показывает колебания с датчика. Стержень имеет собственную частоту f=4.257 к Γ ц - такая же частота сигналов с датчика, а генератор имеет частоту f/2. Пока X Совершает отдно колебание, Y совершает 2 колебания, отсюда и такая фигура.

Добротность медного стержня

Напряжение при первом резонансе: $U=13.5~{\rm B}.$

$$\frac{U}{=} = 9.5 \text{ B}.$$

 $\frac{U}{\sqrt{2}} = 9.5 \text{ B}.$ Частоты при таком напряжении: $\nu = 3.156 \text{ к}\Gamma$ ц, $\nu = 3.146 \text{ к}\Gamma$ ц $\Delta f = 10 \ \Gamma$ ц. $Q = \frac{f}{\Delta f} = 315.1.$

График частоты

График зависимости частоты от номера гармоники

^{*}верхняя прямая соответствует дюрали, средняя - стали, нижняя - меди. Ниже график аппроксимированной прямой для меди с погрешностями (прямые погрешностей практически совпадает с апроксисмированной прямой).

2.7 Скорость звука

```
По (6) скорость звука равна: Для меди: u=(3808.8\pm 8.1)~\text{м/c}^2~(0.21\%) Для дюрали: u=(5152.2\pm 6.1)~\text{м/c}^2~(0.11\%) Для стали: u=(4991.7\pm 3.1)~\text{м/c}^2~(0.06\%) (погрешность измерения длины стержня пренебрежительно мала, по сравнению с погрешностью \frac{f_n}{n})
```

2.8 Определение модуля Юнга

```
Воспользуемся формулами (7) и (8), тогда: Для меди: E=(127.0\pm0.7) ГПа (0.55\%) Для дюрали: E=(73.8\pm0.3) ГПа (0.42\%) Для стали: E=(191.2\pm0.7) ГПа (0.38\%)
```

3 Вывод

Измерение модуля Юнга путем акустического резонанса является достаточно надежным методом.