AuB: 11. Übung (30.01.24)

Dienstag, 30. Januar 2024 10:18

zu HA 12) s1.)

*) A ist T-entochardsor
$$A \subseteq \Sigma^*$$

$$\chi_A \text{ ist T-berechenboar} \qquad \chi_A \colon \Sigma^* \longmapsto \{0,1\}$$
) If ist T-berechenboar $f \colon \Sigma^ \to \Sigma^*$

Dann: ·)
$$f^{-1}(A) = \{ \omega \in \mathbb{Z}^* \mid_{U \in A} (f(\omega) = U) \}$$
 Funktion $f: X \to Y$
 $\to ist T$ -entscheidbor $B \subseteq X$: $f(B) = ig \{ y \in Y \mid_{X \in B} (f(X) = y) \}$
 $\mathcal{X}_{f^{-1}(A)}$ ist T -berechenbor $A \subseteq Y$: $f^{-1}(A) = ig \{ x \in X \mid_{X \in A} (f(X) = y) \}$

Bild in B Urbild von A

zu HA12) 5.2):

REC ist algorithlossen bigh. Vereinigung, d.n wenn $L_1, L_2 \in REC$, damm $L_1 \cup L_2 \in REC$ Es sei $L_1, L_2 \in REC$. Damn gibt es ein passendes Alphabet Ξ mit .) $L_1 \subseteq \Xi^* \land L_1$ ist T-entscheidbar, d.n. X_L ist T-berechenbar .) $L_2 \subseteq \Xi^* \land L_2$ ist T-entscheidbar, d.n. X_{L_2} ist T-berechenbar

Behaupt.: $\chi_{L_1 \cup L_2}$ ist T-berechanbor, d.h. eo gibt eine TM M, die $\chi_{L_1 \cup L_2}$ berechnet

Endliche Automaten HA 9 - Roduktautomaten

m1.) (Diese Aufgabe ist eine mündliche Hausaufgabe, die nicht bewertet wird.)

Wir betrachten die folgenen Sprachen

 $L_1 = \{w \in \{0,1\}^* \mid |w| \geq 3 \text{ und das drittletzte Zeichen von } w \text{ ist } 1 \; \}$ und

 $L_2 = \{w \in \{0,1\}^* \mid |w|_1 \ \equiv_3 2\}$

Konstruieren Sie deterministische endliche Automaten A_1 , A_2 und A_3 , so dass

a)
$$L(A_1) = L_1$$

b)
$$L(A_2) = L_2$$

c)
$$L(A_3) = L_1 \setminus L_2$$

Gegelren sind $A_i = (Q_i, \Sigma, \sigma_i, q_{o_i}, F_i)$ für $i \in \{1,2\}$ Produktautomat $A = (Q, \Sigma, \sigma, q_{o_i}, F)$ ist definiert durch: $Q = d_i Q_i \times Q_2$

$$q_0 = q_1 (q_{01}, q_{02})$$
of $((q_1, q_2), \times) = q_1 (cf_1(q_{11}, \times), of_2(q_{21}, \times))$

$$F = q_1 \{ (q_{11}, q_2) \mid q_1 \in F_1 \land q_2 \in Q_2 \setminus F_2 \}$$

$$| L_1 \setminus L_2 = L_1 \cap L_2 = F_1 \times (Q_2 \setminus F_2)$$

9)a)
$$L_1 = \{ w \in \{0,1\}^* \mid |w| \ge 2 \text{ n vortable Zeichen ist } 1 \}$$

Maj. Reilen: 00 $\} \notin L_1$
10 $\} \in L_1$

$$[\infty] = \{ \lambda, 0, 00, 000, 100, \dots \}$$

$$[01] = \{ 1, 01, 001, 101, \dots \}$$

$$[10] = \{ 10, 010, 110, \dots \}$$

$$[11] = \{ 11, 011, 111, \dots \}$$

- Pfeile analog in anderen Ebenen