PR60538USw

Amendments To The Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (original) A process for preparing a compound of formula (I):

$$(Q^2)_n$$
 $\begin{pmatrix} N \\ 3 \end{pmatrix}$ $\begin{pmatrix} N \\ 5 \end{pmatrix}$ $\begin{pmatrix} S \\ Q^1 \end{pmatrix}$

wherein:

R¹ is selected from the group consisting of H, alkyl, alkenyl, alkynyl,

 $-C(O)R^7$, $-CO_2R^7$, $-C(O)NR^7R^8$, $-C(O)N(R^7)OR^8$,

 $-C(O)N(R^7)-R^2-OR^8$, $-C(O)N(R^7)-Ph$, $-C(O)N(R^7)-R^2-Ph$,

-C(O)N(R⁷)C(O)R⁸, -C(O)N(R⁷)CO₂R⁸, -C(O)N(R⁷)C(O)NR⁷R⁸,

 $-C(O)N(R^7)S(O)_2R^8$, $-R^2-OR^7$, $-R^2-O-C(O)R^7$, $-C(S)R^7$,

 $-C(S)NR^{7}R^{8}$, $-C(S)N(R^{7})-Ph$, $-C(S)N(R^{7})-R^{2}-Ph$, $-R^{2}-SR^{7}$,

 $-C(=NR^{7})NR^{7}R^{8}$, $-C(=NR^{7})N(R^{8})-Ph$, $-C(=NR^{7})N(R^{8})-R^{2}-Ph$,

 $-R^2-NR^7R^8$, -CN, $-OR^7$, $-S(O)_fR^7$, $-S(O)_2NR^7R^8$, $-S(O)_2N(R^7)-Ph$,

 $-S(O)_2N(R^7)-R^2-Ph,\ -NR^7R^8,\ N(R^7)-Ph,\ -N(R^7)-R^2-Ph,\ -N(R^7)-R^7-Ph,\ -N(R^7)-R$

SO₂R⁸ and Het:

Ph is phenyl optionally substituted from 1 to 3 times with a substituent selected from the group consisting of halo, alkyl, -OH, -R²-OH,

-O-alkyl, - R^2 -O-alkyl, - NH_2 , -N(H)alkyl, - $N(alkyl)_2$, -CN and - N_3 ;

Het is a 5-7 membered heterocycle having 1, 2, 3 or 4 heteroatoms selected from N, O and S, or a 5-6 membered heteroaryl having 1, 2, 3 or 4 heteroatoms selected from N, O and S, each optionally substituted from 1 to 2 times with a substituent selected from the group consisting of halo, alkyl, oxo, -OH, -R²-OH, -O-alkyl, -R²-O-alkyl, -NH₂, -N(H)alkyl, -N(alkyl)₂, -CN and -N₃:

 Q^1 is a group of formula: $-(R^2)_a-(Y^1)_b-(R^2)_c-R^3$

a, b and c are the same or different and are each independently 0 or 1
and at least one of a or b is 1;

n is 0, 1, 2, 3 or 4;

 Q^2 is a group of formula: $-(R^2)_{aa}-(Y^2)_{bb}-(R^2)_{cc}-R^4$ or two adjacent Q^2 groups are selected from the group consisting of alkyl, alkenyl, $-OR^7$, $-S(O)_fR^7$ and $-NR^7R^8$ and together with the carbon atoms to which they are bound, they form a C_{5-6} cycloalkyl, C_{5-6} cycloalkenyl, phenyl, 5-7 membered heterocycle having 1 or 2 heteroatoms selected from N, O and S, or 5-6 membered heteroaryl having 1 or 2 heteroatoms selected from N, O and S;

aa, bb and cc are the same or different and are each independently 0 or 1;

each Y¹ and Y² is the same or different and is independently selected from the group consisting of -O-, -S(O)_f-, -N(R³)-, -C(O)-, -OC(O)-, -CO₂-, -C(O)N(R³)-, -C(O)N(R³)S(O)₂-, -OC(O)N(R³)-, -OS(O)₂-, -S(O)₂N(R³)-, -S(O)₂N(R³)C(O)-, -N(R³)S(O)₂-, -N(R³)C(O)-, -N(R³)CO₂- and -N(R³)C(O)N(R³)-;

each R² is the same or different and is independently selected from the group consisting of alkylene, alkenylene and alkynylene;

each R^3 and R^4 is the same or different and is each independently selected from the group consisting of H, halo, alkyl, alkenyl, alkynyl, $-C(O)R^7$, $-C(O)NR^7R^8$, $-CO_2R^7$, $-C(S)R^7$, $-C(S)NR^7R^8$, $-C(=NR^7)R^8$, $-C(=NR^7)NR^7R^8$, $-CR^7=N-OR^7$, $-OR^7$, $-S(O)_1R^7$, $-S(O)_2NR^7R^8$, $-NR^7R^8$, $-N(R^7)C(O)R^8$, $-N(R^7)S(O)_2R^8$, $-NO_2$, -CN, $-N_3$ and a group of formula (ii):

$$((R^2)_d - R^6)_e$$

wherein:

Ring A is selected from the group consisting of C₅₋₁₀cycloalkyl,

C₅₋₁₀cycloalkenyl, aryl, 5-10 membered heterocycle having 1, 2 or 3 heteroatoms selected from N, O and S and 5-10 membered heteroaryl having 1, 2 or 3 heteroatoms selected from N, O and S

each d is 0 or 1;

e is 0, 1, 2, 3 or 4;

each R⁶ is the same or different and is independently selected from the group consisting of H, halo, alkyl, alkenyl,

alkynyl, cycloalkyl, cycloalkenyl, Ph, Het,

-CH(OH)-R²-OH, -C(O)R⁷, -CO₂R⁷, -CO₂-R₂-Ph,

-CO₂-R²-Het, -C(O)NR⁷R⁸, -C(O)N(R⁷)C(O)R⁷,

-C(O)N(R⁷)CO₂R⁷, -C(O)N(R⁷)C(O)NR⁷R⁸,

 $-C(O)N(R^7)S(O)_2R^7$, $-C(S)R^7$, $-C(S)NR^7R^8$, $-C(=NR^7)R^8$,

 $-C(=NR^{7})NR^{7}R^{8}$, $-CR^{7}=N-OR^{8}$, =O, $-OR^{7}$, $-OC(O)R^{7}$,

-OC(O)Ph, -OC(O)Het, -OC(O)NR⁷R⁸, -O-R²-S(O)₂R⁷,

-S(O)_fR⁷, -S(O)₂NR⁷R⁸, -S(O)₂Ph, -S(O)₂Het, -NR⁷R⁸,

-N(R⁷)C(O)R⁸, -N(R⁷)CO₂R⁸, -N(R⁷)-R²-CO₂R⁸,

 $-N(R^7)C(O)NR^7R^8$, $-N(R^7)-R^2-C(O)NR^7R^8$, $-N(R^7)C(O)Ph$,

-N(R⁷)C(O)Het, -N(R⁷)Ph, -N(R⁷)Het,

 $-N(R^7)C(O)NR^7-R^2-NR^7R^8$, $-N(R^7)C(O)N(R^7)Ph$,

 $-N(R^7)C(O)N(R^7)Het$, $-N(R^7)C(O)N(R^7)-R^2-Het$,

 $-N(R^7)S(O)_2R^8, \ -N(R^7)-R^2-S(O)_2R^8, \ -NO_2, \ -CN \ and \ -N_3;$

wherein when Q¹ is defined where b is 1 and c is 0, R³ is not halo,

 $-C(O)R^7, -C(O)NR^7R^8, -CO_2R^7, -C(S)R^7, -C(S)NR^7R^8, \\$

 $-C(=NR^7)R^8$, $-C(=NR^7)NR^7R^8$, $-CR^7=N-OR^7$, $-OR^7$, $-S(O)_fR^7$,

 $-S(O)_2NR^7R^8$, $-NR^7R^8$, $-N(R^7)C(O)R^8$, $-N(R^7)S(O)_2R^8$, $-NO_2$, -CN or $-N_3$;

wherein when Q^2 is defined where bb is 1 and cc is 0, R^4 is not halo,

 $-C(O)R^7, -C(O)NR^7R^8, -CO_2R^7, -C(S)R^7, -C(S)NR^7R^8, \\$

 $-C(=NR^7)R^8$, $-C(=NR^7)NR^7R^8$, $-CR^7=N-OR^7$, $-OR^7$, $-S(O)_fR^7$,

 $-S(O)_2NR^7R^8$, $-NR^7R^8$, $-N(R^7)C(O)R^8$, $-N(R^7)S(O)_2R^8$, $-NO_2$, -CN or $-N_3$;

R⁵ is selected from the group consisting of H, halo, alkyl, cycloalkyl, -OR⁷, -S(O)_fR⁷, -NR⁷R⁸, -NHC(O)R⁷, -NHC(O)NR⁷R⁸ and -NHS(O)₂R⁷:

f is 0, 1 or 2; and

each R⁷ and each R⁸ are the same or different and are each independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, cycloalkyl and cycloalkenyl;

or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof;

said process comprising the steps of reacting one equivalent of a compound of formula (III):

$$(Q^2)_n$$
 R^5 III

or an acid addition salt thereof,

with one equivalent of a compound of formula (IV):

wherein R¹⁰ is selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl and suitable carboxylic acid protecting groups; in the presence of a base additive.

- 2. (original) The process according to claim 1, wherein said base additive is selected from the group consisting of sodium bicarbonate, triethylamine, sodium acetate, *N*-methylimidazole, pyridine and *N*-methylbenzimidazole.
- 3. (original) The process according to claim 1, wherein said base additive is sodium bicarbonate.
- 4. (original) The process according to claim 1, wherein said base additive is *N*-methylimidazole.

PR60538USw

- 5. (original) The process according to claim 1, wherein said reaction is carried out in an inert solvent.
- 6. (original) The process according to claim 5, wherein said inert solvent is chloroform or a mixture of chloroform and acetic acid.
- 7. (original) The process according to claim 1 further comprising the step of converting the compound of formula (I) to a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof.
- 8. (original) The process according to claim 1 further comprising the step of converting the compound of formula (I) or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof to a different compound of formula (I) or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof.