Методы оптимизации, ВМК, осень 2018

Дополнительный материал 2: Матрично-векторные скалярные произведения и нормы

1 Матрично-векторные скалярные произведения

В дальнейшем мы регулярно будем пользоваться различными матрично-векторными скалярными произведениями и нормами. В связи с этим, кратко напомним основные понятия и факты из этой области.

Всюду в дальнейшем будут использоваться следующие стандартные обозначения:

- (a) \mathbb{R} обозначает множество вещественных чисел;
- (b) \mathbb{R}^n обозначает множество всех n-мерных вещественных вектор-столбцов;
- (c) $\mathbb{R}^{m \times n}$ обозначает множество всех вещественных матриц с m строками и n столбцами;
- (d) \mathbb{S}^n обозначает множество всех $n \times n$ вещественных симметричных матриц.
- (e) \mathbb{S}^n_+ и \mathbb{S}^n_{++} обозначают множество всех $n \times n$ вещественных симметричных положительно полуопределенных и положительно определенных матриц соответственно;
- (f) I_n обозначает единичную матрицу размера n.

Заметим, что под векторами из \mathbb{R}^n всюду будут подразумеваться именно вектор-столбцы (а не, например, вектор-строки); таким образом, $\mathbb{R}^n = \mathbb{R}^{n \times 1}$, но $\mathbb{R}^n \neq \mathbb{R}^{1 \times n}$. Напомним, что \mathbb{R} , \mathbb{R}^n , $\mathbb{R}^{m \times n}$ и \mathbb{S}^n являются вещественными векторными пространствами (со стандартными операциями сложения и умножения на число).

Для матрицы $A \in \mathbb{R}^{n \times n}$ символ $\mathrm{Tr}(A) := \sum_{i=1}^n a_{ii}$ обозначает ее след.

Упражнение 1.1 (Циклическое свойство следа). Покажите, что для любых матриц $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times m}$ выполнено

$$Tr(AB) = Tr(BA).$$

Прежде, чем переходить к конкретным примерам, напомним общее определение скалярного произведения.

Определение 1.2 (Скалярное произведение). Пусть V — вещественное векторное пространство. Функция $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$, которая каждой паре x,y векторов в V ставит в соответствие вещественное число $\langle x,y \rangle$, называется вещественным *скалярным произведением*, если она удовлетворяет следующим аксиомам:

- (а) (Положительность) Для любого $x \in V$ выполнено $\langle x, x \rangle \geq 0$. Более того, $\langle x, x \rangle = 0$ тогда и только тогда, когда x = 0.
- (b) (Симметричность) Для любых $x, y \in V$ выполнено $\langle x, y \rangle = \langle y, x \rangle$.
- (c) (Линейность) Для любых $x,y,z\in V$ выполнено $\langle x+y,z\rangle=\langle x,z\rangle+\langle y,z\rangle$. Для любых $x,y\in V$ и любого $\alpha\in\mathbb{R}$ выполнено $\langle \alpha x,y\rangle=\alpha\langle x,y\rangle$.

Векторное пространство с заданным на нем скалярным произведением называется пространством со скалярным произведением или предгильбертовым пространством. Конечномерное вещественное пространство со скалярным произведением также называют евклидовым пространством.

Пример 1.3 (Стандартное скалярное произведение в \mathbb{R}). В пространстве \mathbb{R} скалярное произведение можно ввести как обычное произведение чисел: $\langle x,y \rangle := xy$. Это скалярное произведение называется стандартным скалярным произведением в \mathbb{R} .

Пример 1.4. Стандартное скалярное произведение в \mathbb{R} не является единственно возможным. Например, в \mathbb{R} также можно ввести нестандартное скалярное произведение $\langle x,y\rangle':=5xy$, которое отличается от стандартного скалярного произведения лишь постоянным множителем. Оказывается, что таким образом устроено любое скалярное произведение в \mathbb{R} (см. упражнение 1.5).

Упражнение 1.5. Пусть $\langle \cdot, \cdot \rangle'$ — произвольное скалярное произведение в \mathbb{R} . Покажите, что для некоторого a>0 выполнено $\langle x,y \rangle'=axy$ для всех $x,y \in \mathbb{R}$. Таким образом, с точностью до постоянного множителя стандартное скалярное произведение является единственно возможным в \mathbb{R} . (Подсказка: положите $a:=\langle 1,1\rangle'$.)

Пример 1.6 (Стандартное скалярное произведение в \mathbb{R}^n). В пространстве \mathbb{R}^n вещественных n-мерных вектор-столбцов cmandapmhoe ckansphoe npoussedehue задается формулой

$$\langle x, y \rangle := \operatorname{Tr}(x^T x) = \sum_{i=1}^n x_i y_i.$$

Упражнение 1.7 (Общий вид скалярного произведения в \mathbb{R}^n). Снова рассмотрим пространство \mathbb{R}^n со стандартным скалярным произведением $\langle \cdot, \cdot \rangle$.

(а) Пусть $A \in \mathbb{S}^n_{++}$ — симметричная положительно определенная матрица. Покажите, что функция $\langle \cdot, \cdot \rangle_A : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, определенная по формуле

$$\langle x, y \rangle_A := \langle Ax, y \rangle = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i y_j,$$

задает скалярное произведение в \mathbb{R}^n .

(b) Покажите, что любое скалярное произведение в \mathbb{R}^n обязательно имеет указанный выше вид для некоторой матрицы $A \in \mathbb{S}^n_{++}$. (Подсказка: рассмотрите произвольный базис e_1, \ldots, e_n в \mathbb{R}^n и разложите векторы x, y по этому базису.)

Пример 1.8 (Стандартное скалярное произведение в $\mathbb{R}^{m \times n}$). В пространстве $\mathbb{R}^{m \times n}$ матриц можно ввести фробениусово скалярное произведение

$$\langle A, B \rangle := \operatorname{Tr}(A^T B) = \sum_{i=1}^m \sum_{j=1}^n a_{ij} b_{ij}.$$

Это скалярное произведение называется стандартным скалярным произведением в $\mathbb{R}^{m \times n}$.

Замечание 1.9. Напомним, что, согласно договоренности, сделанной в самом начале, $\mathbb{R}^{n\times 1}=\mathbb{R}^n$. Таким образом, в примере 1.8 было переопределено стандартное скалярное произведение в \mathbb{R}^n , введенное в примере 1.6. Однако нетрудно видеть, что никакой проблемы в этом нет, поскольку оба определения дают одинаковый результат.

Пример 1.10. Пусть V — вещественное векторное пространство со скалярным произведением $\langle \cdot, \cdot \rangle$: $V \times V$, и пусть U — подпространство V. Тогда сужение $\langle \cdot, \cdot \rangle|_{U \times U}$ скалярного произведения $\langle \cdot, \cdot \rangle$ задает скалярное произведение в U. Таким образом, скалярное произведение можно наследовать на подпространство.

Пример 1.11 (Стандартное скалярное произведение в \mathbb{S}^n). Наследуя фробениусово скалярное произведение из пространства $\mathbb{R}^{n \times n}$ на подпространство симметричных матриц \mathbb{S}^n , получаем фробениусово скалярное произведение в \mathbb{S}^n :

$$\langle A, B \rangle := \text{Tr}(AB).$$

(В отличие от примера 1.8, знак транспонирования можно опустить в силу симметричности.) Это скалярное произведение называется стандартным скалярным произведением в \mathbb{S}^n .

В дальнейшем, используя обозначение $\langle x,y\rangle$, где x,y являются объектами одного из пространств \mathbb{R} , \mathbb{R}^n , $\mathbb{R}^{m\times n}$, \mathbb{S}^n , если не оговорено иное, будем иметь в виду именно соответствующее стандартное скалярное произведение из примеров 1.3, 1.6, 1.8, 1.11.

При работе со стандартными матрично-векторными скалярными произведениями часто оказываются полезными следующие свойства сопряженности, которые связывают между собой скалярные произведения в различных пространствах:

Утверждение 1.12 (Тождества сопряженности). Для любых матриц $A \in \mathbb{R}^{m \times k}$, $B \in \mathbb{R}^{k \times n}$, $C \in \mathbb{R}^{m \times n}$ имеет место

$$\langle AB, C \rangle = \langle B, A^TC \rangle = \langle A, CB^T \rangle.$$

Доказательство. Согласно определению, $\langle AB,C\rangle=\mathrm{Tr}((AB)^TC)$. Поскольку $(AB)^T=B^TA^T$, то $\mathrm{Tr}((AB)^TC)=\mathrm{Tr}(B^TA^TC)$. Но, опять же, по определению, $\mathrm{Tr}(B^TA^TC)=\langle B,A^TC\rangle$, что доказывает первое равенство. Для доказательства второго равенства остается воспользоваться циклическим свойством следа (см. упражнение 1.1), чтобы получить $\mathrm{Tr}(B^TA^TC)=\mathrm{Tr}(A^TCB^T)$.

Упражнение 1.13. Пусть $x, y \in \mathbb{R}^n$. Покажите, что $\langle xx^T, yy^T \rangle = \langle x, y \rangle^2$.

В заключение отметим крайне важное неравенство Коши-Буняковского, которое в общем случае справедливо для произвольного скалярного произведения в произвольном векторном пространстве.

Утверждение 1.14 (Неравенство Коши-Буняковского). Пусть V - вещественное векторное пространство со скалярным произведением $\langle \cdot, \cdot \rangle$. Тогда для любых $x, y \in V$ справедливо

$$|\langle x, y \rangle| \le \langle x, x \rangle^{1/2} \langle y, y \rangle^{1/2},\tag{1.1}$$

причем неравенство переходит в равенство тогда и только тогда, когда либо y = 0, либо $x = \alpha y$ для некоторого $\alpha \in \mathbb{R}$.

Доказательство. Для y=0 утверждение, очевидно, верное. Поэтому далее будем считать, что $y\neq 0$. Пусть $\alpha\in\mathbb{R}$ — произвольное число (которое будет выбрано позже). Согласно аксиомам скалярного произведения, имеем

$$0 \le \langle x - \alpha y, x - \alpha y \rangle = \langle x, x \rangle - 2\alpha \langle x, y \rangle + \alpha^2 \langle y, y \rangle. \tag{1.2}$$

Отсюда

$$2\alpha\langle x,y\rangle < \langle x,x\rangle + \alpha^2\langle y,y\rangle.$$

Поскольку $y \neq 0$, то $\langle y, y \rangle \neq 0$. Полагая $\alpha := \langle x, y \rangle / \langle y, y \rangle$, получаем

$$\langle x, y \rangle^2 < \langle x, x \rangle \langle y, y \rangle$$
,

что дает (1.1) после извлечения корня.

Нетрудно видеть, что неравенство (1.1) переходит в равенство тогда и только тогда, когда неравенство (1.2) переходит в равенство. Согласно аксиомам скалярного произведения, последнее возможно, если и только если $x = \alpha y$ (где $\alpha = \langle x, y \rangle / \langle y, y \rangle$).

В частности, рассматривая пространство \mathbb{R}^n со стандартным скалярным произведением, получаем классическое неравенство Коши–Буняковского для конечных сумм:

Следствие 1.15 (Неравенство Коши-Буняковского для конечных сумм). Пусть $x_1, \ldots, x_n \in \mathbb{R}$ u $y_1, \ldots, y_n \in \mathbb{R}$. Тогда

$$\left| \sum_{i=1}^{n} x_i y_i \right| \le \left(\sum_{i=1}^{n} x_i^2 \right)^{1/2} \left(\sum_{i=1}^{n} y_i^2 \right)^{1/2},$$

причем неравенство переходит в равенство, если и только если $y_1 = \cdots = y_n = 0$ или $x_1 = \alpha y_1, \ldots, x_n = \alpha y_n$ для некоторого $\alpha \in \mathbb{R}$.

2 Матрично-векторные нормы

Теперь перейдем к рассмотрению матрично-векторных норм. Как и раньше, начнем с общего определения.

Определение 2.1 (Норма). Пусть V — вещественное векторное пространство. Функция $\|\cdot\|:V\to [0,+\infty)$, которая каждому вектору $x\in V$ ставит в соответствие неотрицательное вещественное число $\|x\|$, называется *пормой*, если она удовлетворяет следующим аксиомам:

- (а) (Положительность) Для любого $x \in V$ выполнено $||x|| \ge 0$. Более того, ||x|| = 0 тогда и только тогда, когда x = 0.
- (b) (Абсолютная однородность) Для любого $x \in V$ и любого $\alpha \in \mathbb{R}$ выполнено $\|\alpha x\| = |\alpha| \|x\|$.
- (c) (Неравенство треугольника) Для любых $x, y \in V$ выполнено $||x + y|| \le ||x|| + ||y||$.

Векторное пространство с заданной на нем нормой называется нормированным пространством.

Пример 2.2 (Стандартная норма в \mathbb{R}). В пространстве \mathbb{R} норму можно ввести как модуль числа: ||x|| := |x|. Эта норма называется *стандартной нормой в* \mathbb{R} . Как показывает упражнение 2.3, с точностью до постоянного множителя стандартная норма является единственно возможной нормой в пространстве \mathbb{R} .

Упражнение 2.3. Покажите, что любая норма $\|\cdot\|'$ в пространстве \mathbb{R} обязательно имеет вид $\|x\|' = a|x|$ для некоторого a > 0. (Подсказка: положите a := |1|.)

Пример 2.4 (Евклидова норма). Если V — вещественное векторное пространство со скалярным произведением $\langle \cdot, \cdot \rangle$, то в V можно ввести $e \epsilon \kappa \kappa n u do b y n u p m y <math>\|x\| := \langle x, x \rangle^{1/2}$. Таким образом, любое пространство со скалярным произведением может быть превращено в нормированное пространство с помощью введения евклидовой нормы.

Пример 2.5 (Стандартная евклидова норма в \mathbb{R}^n). Рассматривая в примере 2.4 в качестве V пространство \mathbb{R}^n со стандартным скалярным произведением, получаем *стандартную евклидову норму*

$$||x||_2 := \langle x, x \rangle^{1/2} = \left(\sum_{i=1}^n x_i^2\right)^{1/2}.$$

Эта норма также известна как l^2 -норма. В дальнейшем для краткости стандартную евклидову норму на \mathbb{R}^n будем обозначать символом $|\cdot|$ (таким образом, $|x| := ||x||_2$ для $x \in \mathbb{R}^n$).

Евклидова норма в \mathbb{R}^n соответствует геометрическому представлению о $\partial nune$ вектора. В частности, при повороте (ортогональном преобразовании) вектора его евклидова норма не изменяется:

Упражнение 2.6. Пусть $x \in \mathbb{R}^n$, и пусть $Q \in \mathbb{R}^{n \times n}$ — ортогональная матрица (т. е. $Q^TQ = QQ^T = I_n$). Покажите, что |Qx| = |x|.

Пример 2.7 (Общий вид евклидовой нормы в \mathbb{R}^n). Снова вернемся к примеру 2.4 и рассмотрим в качестве V пространство \mathbb{R}^n , но на этот раз рассмотрим нестандартное скалярное произведение $\langle x,y\rangle_A:=\langle Ax,y\rangle$, где $A\in\mathbb{S}^n_{++}$ — симметричная положительно определенная матрица (см. упражнение 1.7). Тогда функция $\|\cdot\|_A:\mathbb{R}^n\to\mathbb{R}$, определенная по формуле

$$||x||_A := \langle Ax, x \rangle^{1/2} = \left(\sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j \right)^{1/2},$$

задает нестандартную евклидову норму в пространстве \mathbb{R}^n (которая переходит в стандартную евклидову норму, если $A = I_n$). Согласно упражнению 1.7, любая евклидова норма в пространстве \mathbb{R}^n обязательно имеет указанный вид.

Пример 2.8 (l^1 -норма). Помимо евклидовой нормы в пространстве \mathbb{R}^n также можно задать и неевклидову норму. Например, функция $\|\cdot\|_1:\mathbb{R}^n\to\mathbb{R}$, определенная по формуле

$$||x||_1 := \sum_{i=1}^n |x_i|,$$

задает норму, которая называется l^1 -нормой.

Пример 2.9 (l^{∞} -норма). Еще одной популярной нормой в пространстве \mathbb{R}^n является l^{∞} -норма

$$||x||_{\infty} := \max_{1 \le i \le n} |x_i|.$$

Эта норма также известна как равномерная норма или норма Чебышева.

Следующее упражнение показывает, как связаны между собой нормы l^2 , l^1 и l^∞ :

Упражнение 2.10. Пусть $x \in \mathbb{R}^n$. Докажите следующие неравенства:

$$||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty}$$
 $u = \frac{1}{\sqrt{n}} ||x||_1 \le ||x||_2 \le ||x||_1.$

(Подсказка: для первой части второго неравенства используйте неравенство Коши-Буняковского.)

Замечание 2.11. Нормы l^2 , l^1 и l^∞ , рассмотренные в примерах 2.5, 2.8 и 2.9, являются частными случаями более общего семейства l^p -норм

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p},$$

где $p \in [1, +\infty]$ (при $p = +\infty$ правая часть полагается равной соответствующему пределу при $p \to +\infty$).

Пример 2.12 (Фробениусова норма в $\mathbb{R}^{m \times n}$). Снова вернемся к примеру 2.4 и рассмотрим теперь в качестве V пространство матриц $\mathbb{R}^{m \times n}$ со стандартным скалярным произведением. Соответствующая евклидова норма в данном случае называется фробениусовой нормой и задается формулой

$$||A||_F := \langle A, A \rangle^{1/2} = [\operatorname{Tr}(A^T A)]^{1/2} = \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{1/2}.$$

Эта норма также известна как норма Гильберта-Шмидта.

Упражнение 2.13. Пусть $A \in \mathbb{R}^{m \times n}$, и пусть $Q_1 \in \mathbb{R}^{m \times m}$, $Q_2 \in \mathbb{R}^{n \times n}$ — ортогональные матрицы (т. е. $Q_1^TQ_1 = Q_1Q_1^T = I_m$ и $Q_2^TQ_2 = Q_2Q_2^T = I_n$). Покажите, что

$$||Q_1A||_F = ||AQ_2||_F = ||A||_F.$$

Таким образом, фробениусова норма инвариантна к ортогональным преобразованиям.

Упражнение 2.14. Пусть $A \in \mathbb{R}^{m \times n}$, и пусть $q := \min\{m,n\}$. Покажите, что

$$||A||_F = \left(\sum_{i=1}^q \sigma_i^2(A)\right)^{1/2},$$

где $\sigma_1(A) \ge \cdots \ge \sigma_q(A) \ge 0$ — сингулярные числа матрицы A. ($\Pi odc \kappa a s \kappa a$: воспользуйтесь сингулярным разложением и упражнением 2.13.)

Пример 2.15. Пусть V — вещественное векторное пространство с определенной на нем нормой $\|\cdot\|$: $V \to \mathbb{R}$, и пусть U — подпространство V. Тогда сужение $\|\cdot\|_U$ нормы $\|\cdot\|$ на подпространство U задает норму в этом подпространстве. Таким образом, норму можно наследовать на подпространство.

Пример 2.16 (Фробениусова норма в \mathbb{S}^n). Наследуя фробениусову норму из пространства $\mathbb{R}^{n \times n}$ на подпространство симметричных матриц \mathbb{S}^n , получаем фробениусову норму в пространстве \mathbb{S}^n :

$$||A||_F := \langle A, A \rangle^{1/2} = [\text{Tr}(A^2)]^{1/2}.$$

Упражнение 2.17. Пусть $A \in \mathbb{S}^n$. Покажите, что

$$||A||_F = \left(\sum_{i=1}^n \lambda_i^2(A)\right)^{1/2},$$

где $\lambda_1(A) \ge \cdots \ge \lambda_n(A)$ — собственные значения матрицы A. (См. также упражнение 2.14.)

Пример 2.18 (Операторная норма в $\mathbb{R}^{m \times n}$). Помимо фробениусовой нормы важным примером матричной нормы в пространстве $\mathbb{R}^{m \times n}$ является *операторная норма*:

$$||A||_{\text{op}} := \max_{x \in \mathbb{R}^n : |x|=1} |Ax|.$$

Эта норма также известна как спектральная норма.

Упражнение 2.19. Пусть $v \in \mathbb{R}^n = \mathbb{R}^{n \times 1}$. Покажите, что $||v||_{\text{op}} = |v|$.

Упражнение 2.20. Пусть D — диагональная матрица с элементами $d_1, \ldots, d_n \in \mathbb{R}$ на диагонали. Покажите, что $\|D\|_{\text{op}} = \max_{1 \leq i \leq n} |d_i|$.

Упражнение 2.21. Пусть $A \in \mathbb{R}^{m \times n}$, и пусть $Q_1 \in \mathbb{R}^{m \times m}$, $Q_2 \in \mathbb{R}^{n \times n}$ — ортогональные матрицы. Покажите, что

$$||Q_1A||_{\text{op}} = ||AQ_2||_{\text{op}} = ||A||_{\text{op}}.$$

Таким образом, операторная норма инвариантна к ортогональным преобразованиям. ($\Pi odc\kappa as\kappa a$: используйте результат упражнения 2.6.)

Упражнение 2.22. Пусть $A \in \mathbb{R}^{m \times n}$. Покажите, что $||A||_{\text{ор}} = \sigma_{\text{max}}(A)$, где $\sigma_{\text{max}}(A)$ — максимальное сингулярное число матрицы A. (Подсказка: используйте сингулярное разложение и упражнения 2.21 и 2.20.)

Следующее упражнение показывает, как связаны операторная норма и фробениусова норма, рассмотренная ранее:

Упражнение 2.23. Пусть $A \in \mathbb{R}^{m \times n}$. Покажите, что

$$||A||_{\text{op}} \le ||A||_F \le \sqrt{\min\{m, n\}} ||A||_{\text{op}}.$$
 (2.1)

(Подсказка: воспользуйтесь результатами упражнений 2.14 и 2.22.)

Пример 2.24 (Операторная норма в \mathbb{S}^n). Наследуя операторную норму из пространства $\mathbb{R}^{n \times n}$ на подпространство \mathbb{S}^n , получаем *операторную норму в пространстве* \mathbb{S}^n :

$$||A||_{\text{op}} := \max_{x \in \mathbb{R}^n : |x|=1} |Ax|.$$

Упражнение 2.25. Пусть $A \in \mathbb{S}^n$. Покажите, что

$$||A||_{\text{op}} = \max\{\lambda_{\max}(A), -\lambda_{\min}(A)\},\$$

где $\lambda_{\min}(A)$ и $\lambda_{\max}(A)$ — минимальное и максимальное собственное значения матрицы A. (См. также упражнение 2.22.)

Как показывает упражнение 2.10, каждая из норм l^2 , l^1 и l^∞ в пространстве \mathbb{R}^n может быть ограничена снизу и сверху любой другой с точностью до постоянного множителя; упражнение 2.23 показывает, что аналогичная связь существует также между операторной и фробениусовой нормой в пространстве матриц $\mathbb{R}^{m \times n}$. Оказывается, это не случайно, и подобное утверждение справедливо не только для рассмотренных выше норм, но и вообще для любых двух норм в *конечномерном* пространстве.

Утверждение 2.26 (Эквивалентность норм в конечномерном пространстве). Пусть $V - \kappa$ онечномерное вещественное векторное пространство, и пусть $\|\cdot\|_{(1)}$ и $\|\cdot\|_{(2)}$ — нормы в пространстве V. Тогда найдутся $c_1, c_2 > 0$, такие, что

$$c_1 ||x||_{(2)} \le ||x||_{(1)} \le c_2 ||x||_{(2)}.$$

Доказательство. Нам особо не понадобится это утверждение, поэтому примем его без доказательства. Ограничимся лишь упоминанием, что доказательство опирается на (а) теорему Вейерштрасса о достижении непрерывной функции, заданной на компакте, своих точных нижней и верхней грани; (b) непрерывность нормы; (c) компактность единичной сферы в конечномерном пространстве (в силу ограниченности и замкнутости).

Замечание 2.27. Как показывают неравенства 2.10 и 2.1, константы c_1 и c_2 , вообще говоря, зависят от размерности пространства V. Неформально говоря, именно по этой причине утверждение 2.26 перестает быть верным в случае бесконечномерного пространства V.

При взаимодействии матрицы $A \in \mathbb{R}^{m \times n}$ и вектора $x \in \mathbb{R}^n$ получается новый вектор $Ax \in \mathbb{R}^m$. Если A = 0 или x = 0, то Ax = 0. Но что если матрица A не в точности равна нулю, но при этом близка к нулю (т. е. $\|A\|$ близка к нулю) можно ли утверждать, что норма $\|Ax\|$ также будет близка к нулю? Аналогично, если норма $\|x\|$ близка к нулю, можно ли утверждать, что норма $\|Ax\|$ также будет близка к нулю? Формализуя это рассуждение, хотелось бы иметь неравенство $\|Ax\| \le \|A\| \|x\|$. Оказывается, что подобное неравенство выполнено не для любых норм, что мотивирует следующее определение:

Определение 2.28 (Согласованность норм). Пусть $\|\cdot\|_{(m\times n)}$, $\|\cdot\|_{(n)}$, $\|\cdot\|_{(n)}$ — нормы в пространствах $\mathbb{R}^{m\times n}$, \mathbb{R}^m и \mathbb{R}^n соответственно. Говорят, что матричная норма $\|\cdot\|_{(m\times n)}$ согласована с векторными нормами $\|\cdot\|_{(n)}$ и $\|\cdot\|_{(n)}$, если для всех $x\in\mathbb{R}^n$ выполнено

$$||Ax||_{(m)} \le ||A||_{(m \times n)} ||x||_{(n)}.$$

Упражнение 2.29. Покажите, что операторная и фробениусова нормы в $\mathbb{R}^{n \times n}$ согласованы с векторной евклидовой нормой в \mathbb{R}^n . (Подсказка: сперва покажите это для операторной нормы, а затем воспользуйтесь (2.1).) Согласованы ли эти нормы, например, с l^1 нормой в \mathbb{R}^n ?

Аналогичным образом, для двух матриц A, B справедливость неравенства $||AB|| \le ||A|| ||B||$ зависит от используемой нормы:

- **Упражнение 2.30.** (а) Покажите, что операторная и фробениусова матричные нормы *субмульти- пликативны*, т. е. $||AB|| \le ||A|| ||B||$ для всех $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times k}$. (Подсказка: для фробениусовой нормы примените неравенство Коши–Буняковского.)
 - (b) Покажите, что $||A||_{\max} := \max_{1 \le i \le m; 1 \le j \le n} |a_{ij}|$ задает норму в пространстве $\mathbb{R}^{m \times n}$, но эта норма не является субмультипликативной.