August 23 - August 29, 2019 Maribor, Slovenia Day 1 Tasks

xoranges
Armenian (ARM)

XORanges

Յանեսը սիրում է նարինջներ։ Այդ իսկ պատճառով նա պատրաստել է նարինջների համար սկաներ։ 4 տեսախցիկների և Raspberry Pi 3b+ համակարգչի օգնությամ նա սկսել է պատրաստել նարինջների 3D նկարներ։ Նրա պատկերների մշակումը այդքան էլ լավը չէ, և այն արտածում է միայն 32 բիթանի ամբողջ թիվ, որը պարունակում է կեղևի վրայի անցքերի մասին ինֆորմացիա։ 32-բիթանի ամբողջ D թիվը ներկայացվում է 32 թվանշանների (բիթերի) հաջորդականության տեսքով, որոնցից յուրաքանչյուրը գրո կամ մեկ է։ Եթե մենք սկսենք 0 -ից և ամեն i-րդ բիթի համար, որը հավասար է մեկի ավելացնենք 2^i , մենք կստանանք D թիվը։ Այսինքն, D թիվը ներկայացվում է $d_{31}, d_{30}, \ldots d_0$ հաջորդականության տեսքով, որտեղ $D = d_{31} \cdot 2^{31} + d_{30} \cdot 2^{30} + \ldots + d_1 \cdot 2^1 + d_0 \cdot 2^0$ ։ Օրինակ` 13-ը ներկայացվում է հետևյալ կերպ` $0, \ldots, 0, 1, 1, 0, 1$ ։

Յանեսը սկանավորել է n նարինջ, սակայն երբեմն նա որոշում է ծրագրի իրականացման ժամանակ վերասկանավորել նարինջներից ինչ-որ մեկը (i-րդ նարինջը)։ Ինչը նշանակում է, որ վերասկանավորելուց հետո նա օգտագործում է i-րդ նարինջի թարմացված արժեքը։

Յանեսը ցանկանում է հարցումներ իրականացնել այդ նարինջների վրա։ Նա XOR գործողությունը շատ հետաքրքիր է համարում, և որոշել է անել հաշվարկներ։ Նա ընտրում է նարինջների l-ից u միջակայք (որտեղ $l \le u$) և ցանկանում է գտնել այդ միջակայքում գտնվող տարրերի, այդ միջակայքում գտնվող բոլոր երկու երկարությամբ հաջորդական տարրերի XOR-ների, բոլոր 3 երկարությամբ հաջորդական տարրերի XOR-ների, ... և u-l+1 երկարության հաջորդական տարրերի (միջակայքի բոլոր տարրերը) XOR-ների XOR-ը։

Օրինակ` եթե l=2 և u=4 և ունենք A զանգվածը, ծրագիրը պետք է վերադարձնի հետևյալ արտահայտության արժեքը $a_2\oplus a_3\oplus a_4\oplus (a_2\oplus a_3)\oplus (a_3\oplus a_4)\oplus (a_2\oplus a_3\oplus a_4)$, որտեղ \oplus գործողությունը XOR գործողությունն է իսկ a_i -ն A զանգվածի i-րդ տարրն է։

XOR գործողությունը սահմանվում է հետևյալ կերպ.

Եթե առաջին արժեքի i-րդ բիթը նույնն է ինչ երկրորդ արժեքի i-րդ բիթը, ապա արդյունքի i-րդ բիթը 0 է։ Եթե առաջին արժեքի i-րդ բիթը տարբերվում է երկրորդ արժեքի i-րդ բիթից ապա արդյունքի i-րդ բիթը կլինի 1:

x	y	$x\oplus y$
0	0	0

0	1	1
1	0	1
1	1	0

Oրինակ` $13 \oplus 23 = 26$.

13 =	0001101
23 =	0010111
$13 \oplus 23 = 26 =$	0011010

Մուտքային տվյալներ

Մուտքի առաջին տողը պարունակում է 2 դրական ամբողջ թիվ՝ n և q (վերասկանավորելու և հարցման գործողությունների ընդհանուր քանակը)։

Հաջորդ տողը պարունակում է n ոչ բացասական ամբողջ թվեր անջատված բացատներով A զանգվածի տարրերը (նարինջների սկանավորման արդյունքները)։ a_i տարրը պարունակում է i-րդ նարինջի արժեքը։ i ինդեքսը սկսվում է 1-ից։

<աջորդ q տողերը նարկայացնում են գործողությունները, ամեն տողը իրենից ներկայացնում $\mathbf t$ երեք դրական աբողջ թիվ բաժանված բացատներով։

Եթե գործողությունը 1 տեսակի $\mathbf E$ (վարասկանավորում), առաջին թիվը հավասար $\mathbf E$ երկրորդ թիվը i (այն նարինջի ինդեքսը, որը Յանեսը ցանկանում $\mathbf E$ վերասկանավորել) և $\mathbf E$ $\mathbf E$ ($\mathbf E$):

Եթե գործողությունը 2 տեսակի է (հարցում), առաջին թիվը հավասար է 2 իսկ հաջորդ երկու թվերն են l և u.

Ելք

Դուք պետք է տպեք ճիշտ մեկ ամբողջ թիվ ամեն հարցման համար որը համապատասխանում է այդ հարցման պատասխանին։ Ամեն արժեք պետք է տպել նոր տողում։ Ելքի i-րդ տեղը պետք է համապատասխանի i-րդ հարցման պատասխանին։

Սահմանափակումներ

- $a_i \leq 10^9$
- $ullet 0 < n,q \leq 2 \cdot 10^5$

Ենթախնդիրներ

- 1. **[12 միավոր]**: $0 < n, q \le 100$
- 2. **[18 միավոր]**։ $0 < n, q \le 500$ և փոփոխության գործողություններ չկան
- 3. **[25 միավոր]**: $0 < n, q \le 5000$
- 4. **[20 միավոր]**։ $0 < n, q \le 2 \cdot 10^5$ և փոփոխության գործողություններ չկան
- 5. **[25 միավոր]**։ Լրացուցիչ սահմանափակումներ չկան

Օրինակներ

Օրինակ 1

Մուտք

```
3 3
1 2 3
2 1 3
1 1 3
2 1 3
```

Ելք

```
2 0
```

Մեկնաբանություն

Ամենից առաջ, A=[1,2,3]։ Առաջին հարցումը ամբողջ միաջակայքի վրա է։ Հարցման արդյունքը կլինի $1\oplus 2\oplus 3\oplus (1\oplus 2)\oplus (2\oplus 3)\oplus (1\oplus 2\oplus 3)=2.$

Այնուհետև առաջին նարինջի արժեքը դառնում է 3 ինչի արդյունքւոմ նույն հարցումի պատասխանք ([1,3] միջակայքի) կդառնա $3\oplus 2\oplus 3\oplus (3\oplus 2)\oplus (2\oplus 3)\oplus (3\oplus 2\oplus 3)=0$ ։

Օրինակ 2

Մուտք

```
5 6
1 2 3 4 5
2 1 3
1 1 3
2 1 5
2 4 4
1 1 1
2 4 4
```

Ելք

