PAPER REVIEW:

# ROAD ACCIDENT ANALYSIS WITH DATA MINING APPROACH (EVIDENCE FROM ROME)

LECTURERS: PHAUK SOKKHEY & CHAN SOPHAL

Presenter: KHUN Dararith

PAPER OVERVIEW **TITLE:** Road Accident Analysis with Data Mining

Approach: evidence from Rome

**PUBLISH** 

© 2022 The Authors. Published by

DATE:

ELSEVIER B.V.

**AUTHORS:** Antonio Comi\*, Antonio Polimeni, Chiara

Balsamo.

Department of Enterprise Engineering,

University of Rome Tor Vergata, 00118

Rome, Italy

**SOURCE:** <a href="https://www.sciencedirect.com/science/article/">https://www.sciencedirect.com/science/article/</a>

pii/S2352146522002265

# ABSTRACT

Road accident is one of the main causes of mortality worldwide. This paper was arranged to:

- Measure the accident to reduce or mitigate the accident impacts
- Identify the most effective measure
- Able to identify and classify the cause that can trigger an accident
- Study of data mining to clustering approaches to analyze accident data of 15 districts in ROME
- Analyses which tool is powerful for planning suitable measures to reduce accidents.

# DATASET

The considered dataset (Open Data - Roma Capitale, 2020) consists of:

- 97,297 road accidents that occurred from 2016 to 2019 in Rome (Italy),
- Divided into 15 districts, which have an area of 1285 km2
- The resident population of nearly three million inhabitants



Fig. 1. Road network data.

|                          | Pedestrians & Cyclists | Two-wheeled vehicles | Four-wheeled vehicles | Public services vehicles | Heavy<br>vehicles | тот    |
|--------------------------|------------------------|----------------------|-----------------------|--------------------------|-------------------|--------|
| Single vehicle accidents | 91                     | 2,918                | 11,703                | 319                      | 561               | 15,592 |
| Pedestrians & Cyclists   | 23                     | 1,790                | 5,825                 | 163                      | 394               | 8,195  |
| Two-wheeled vehicles     |                        | 895                  | 17,568                | 258                      | 1,182             | 19,903 |
| Four-wheeled vehicles    |                        |                      | 41,745                | 1,904                    | 7,339             | 50,988 |
| Public services vehicles |                        |                      |                       | 23                       | 142               | 165    |
| Heavy vehicles           |                        |                      |                       |                          | 347               | 347    |
| TOTAL                    | 114                    | 5,603                | 76,841                | 2,667                    | 9,965             | 95,190 |

Table 2. Types of road accidents.

| Type of accident        | 2016 [%] | 2017 [%] | 2018 [%] | 2019 [%] |
|-------------------------|----------|----------|----------|----------|
| Collision with obstacle | 26.19    | 23.06    | 27.42    | 25.93    |
| Rear-end collision      | 15.37    | 15.94    | 14.99    | 15.33    |
| Side collision          | 22.54    | 23.65    | 22.64    | 23.62    |
| Head on collision       | 25.72    | 26.86    | 24.85    | 24.99    |
| Rollover                | 1.02     | 0.97     | 0.89     | 0.92     |
| Pedestrian hit          | 6.38     | 6.66     | 6.46     | 6.65     |
| Sudden braking          | 1.27     | 1.18     | 1.3      | 1.07     |
| Vehicle fall            | 0.67     | 0.76     | 0.64     | 0.58     |
| Run-off roadway         | 0.84     | 0.92     | 0.81     | 0.91     |



Fig. 2. Accidents.



b) Accidentality rate per district

## METHODOLOGY

This study employs several models to explore their performance in describing and predicting road accidents inside Rome.

- k-means clustering
- Kohonen network

which is useful to uncover clusters (i.e., groups) of data objects that are more similar to each other.

#### Predictive analysis:

- Decision trees,
- Association rules
- Artificial neural networks (ANNs)

| CLUSTER | MONTH   | TYPE OF ACCIDENT   | CHARACTERISTICS<br>OF ROAD SECTION | VEHICLE<br>TYPE | INJURIES | DEATHS | DISTRICT |
|---------|---------|--------------------|------------------------------------|-----------------|----------|--------|----------|
| 1       | June    | Pedestrian hit     | Slope section                      | Unknown         | 1.015    | 0.025  | 7        |
| 2       | March   | Side collision     | Slope section                      | Four-wheeled    | 0.421    | 0.003  | 11       |
| 3       | June    | Rear-end collision | Flat section                       | Four-wheeled    | 0.616    | 0.012  | 7        |
| 4       | April   | Side collision     | Slope section                      | Four-wheeled    | 0.465    | 0.002  | 3        |
| 5       | October | Rear-end collision | Straight section                   | Four-wheeled    | 0.459    | 0.002  | 11       |
| 6       | October | Side collision     | Slope section                      | Four-wheeled    | 0.475    | 0.003  | 5        |

Table 6. Kohonen clustering.

| CLUSTER | MONTH    | TYPE OF ACCIDENT      | INJURIES | DEATHS | DISTRICT |
|---------|----------|-----------------------|----------|--------|----------|
| 1       | January  | Pedestrian hit        | High     | High   | 14-15    |
| 2       | December | Run-off the roadway   | Medium   | Low    | 14-15    |
| 3       | December | Vehicle fall          | High     | Low    | 5-6      |
| 4       | December | Fall from an overpass | High     | High   | 1-2      |
| 5       | January  | Side collision        | Low      | Low    | 1-2      |
| 6       | January  | Rear-end collision    | Medium   | Low    | 3-4      |

Table 8. C5.0 confusion matrix (test set).

|          |     |      | Predicted injuries |     |     |    |  |  |  |
|----------|-----|------|--------------------|-----|-----|----|--|--|--|
| S        |     | 0    | 1                  | 2-3 | 4-5 | >5 |  |  |  |
| uries    | 0   | 7113 | 101                | 0   | 0   | 0  |  |  |  |
| inj      | 1   | 1608 | 1171               | 108 | 1   | 0  |  |  |  |
| Observed | 2-3 | 267  | 345                | 87  | 3   | 0  |  |  |  |
| bse      | 4-5 | 13   | 42                 | 19  | 0   | 0  |  |  |  |
| O        | >5  | 1    | 3                  | 2   | 0   | 0  |  |  |  |

Table 9. CHAID confusion matrix (test set).

|                   |     | Predicted injuries |      |     |     |    |  |  |
|-------------------|-----|--------------------|------|-----|-----|----|--|--|
| S                 |     | 0                  | 1    | 2-3 | 4-5 | >5 |  |  |
| Observed injuries | 0   | 7188               | 26   | 0   | 0   | 0  |  |  |
| d inj             | 1   | 1651               | 1185 | 52  | 0   | 0  |  |  |
| rve               | 2-3 | 269                | 380  | 52  | 1   | 0  |  |  |
| )bse              | 4-5 | 14                 | 49   | 11  | 0   | 0  |  |  |
| )                 | >5  | 1                  | 4    | 1   | 0   | 0  |  |  |

Table 10. ANN confusion matrix (test set).

|          |     | Pred | licted i | njuri | es  |    |
|----------|-----|------|----------|-------|-----|----|
| S        |     | 0    | 1        | 2-3   | 4-5 | >5 |
| njuries  | 0   | 7121 | 93       | 0     | 0   | 0  |
|          | 1   | 1604 | 1253     | 31    | 0   | 0  |
| Observed | 2-3 | 408  | 196      | 98    | 0   | 0  |
| bse      | 4-5 | 61   | 9        | 4     | 0   | 0  |
| C        | >5  | 5    | 1        | 0     | 0   | 0  |

Before training the introduced models, the dataset is divided into two sections: training/validation and test sets. Each model is trained and validated on the training set (i.e., years 2016, 2017, and 2018). Then, the models are compared in their prediction performance on the test set (i.e., 2019). C5.0 got 77%, CHAID 76% and ANN 77,8%

### CONCLUSION

This paper had the purpose to find out which data mining techniques are more suitable to analyze road accidents. The selection of these techniques is based on a review of the state of the art.

#### As the result:

- k-means and Kohonen network is advantageous for descriptive analysis
- Decision trees and neural networks are useful for predictive analysis

#### Result of applying Data mining:

- Identify characteristics of the roads
- A new study of road safety
- Recognizing accident patterns without the "noise" was suggested to use hybrid prediction approach

## THANK YOU!