Cifrado en flujo

Registros de desplazamiento

Registros de desplazamiento

Características

- Son generadores de secuencias de bits.
- Permiten generar secuencias de períodos muy grandes.
- Tienen una estructura matemática bien conocida.
- Las secuencias que originan presentan buenas propiedades aleatorias.
- Son de fácil implementación en hardware.
- Ampliamente usados: generadores de secuencias aleatorias, test de circuitos, compresión de datos, ...
 GSM, GPS, Bluetooth, TV digital, PKZIP.

Registros de desplazamiento retroalimentados

Constan de:

- Un registro de desplazamiento.
- Una función feedback.

Un registro de desplazamiento retroalimentado de longitud L es una estructura formada por L celdas de memoria $\{S_{L-1}, \ldots, S_0\}$, y una señal de reloj.

- Cada celda S_i puede almacenar un bit s_i , i = 0, 1, ..., L 1.
- Los bits $[s_{L-1}, \ldots, s_1, s_0]$ son el *estado inicial* del registro.
- A cada control de reloj:
 - El bit s₀ sale del registro.
 - Se produce un desplazamiento: el bit de S_i se desplaza a S_{i-1} .
 - Se calcula el nuevo bit de S_{l-1} mediante una función feedback.

Registros de desplazamiento retroalimentados **lineales** (linear feedback shift registers, LFSR)

- El registro de desplazamiento más simple es el lineal: LFSR
- La función de feedback es un XOR de ciertas posiciones del registro.

Supongamos L = 4 y estado inicial $[s_3, s_2, s_1, s_0] = [0, 1, 1, 0]$.

En la primera unidad de tiempo:

- La salida del registro es $s_0 = 0$.
- El contenido de cada celda se desplaza a la derecha.
- El nuevo contenido s_4 de la celda S_3 se calcula mediante un XOR de algunos de los bits $\{s_3, s_2, s_1, s_0\}$. Por ejemplo,

$$s_4 \equiv s_3 + s_0 \mod 2$$
.

t	S_3	S_2	S_1	S_0
0	0	1	1	0
1	0	0	1	1

Repitiendo el proceso a cada control de reloj resulta

t	S ₃ 0 0 1 0 0 1 1 1 1	S_2	S_1	S_0	t	S ₃ 1 1 0 1 0 1 1 0 1 0	S_2	S_1	S_0
0	0	1	1	0	8	1	1	1	0
1	0	0	1	1	9	1	1	1	1
2	1	0	0	1	10	0	1	1	1
3	0	1	0	0	11	1	0	1	1
4	0	0	1	0	12	0	1	0	1
5	0	0	0	1	13	1	0	1	0
6	1	0	0	0	14	1	1	0	1
7	1	1	0	0	15	0	1	1	0

La secuencia de salida es

$$s_0, s_1, s_2, s_3, s_4, s_5, \dots = 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, \dots$$

y es periódica con período 15.

Análisis de un LFSR:

Sea s_{j-1}, \ldots, s_{j-L} el estado del registro en el instante t:

En el instante t+1 el nuevo contenido s_j de la celda S_{L-1} se calcula mediante un XOR de algunos de los bits del registro:

$$s_j \equiv c_1 s_{j-1} + c_2 s_{j-2} + \dots + c_L s_{j-L} \mod 2,$$

donde c_j puede valer 0 o 1. Es decir,

$$1 \cdot s_j + c_1 s_{j-1} + c_2 s_{j-2} + \dots + c_L s_{j-L} \equiv 0 \mod 2.$$

Asociamos a esta expresión el polinomio

$$C(D) = 1 + c_1 D + c_2 D^2 + \cdots + c_L D^L.$$

Ejemplo (continuación)

En el ejemplo anterior,

$$s_j \equiv s_{j-1} + s_{j-4} \mod 2,$$

$$s_j+s_{j-1}+s_{j-4}\equiv 0 \mod 2.$$

$$L = 4,$$
 $C(D) = 1 + D + D^4.$

- El **LFSR queda definido** por < L, C(D) >:
 - *L* es la longitud del registro.
 - c(D) se denomina **polinomio de conexión**.
- Si grado del polinomio = longitud del registro, el registro se denomina no singular.
- Un LFSR de longitud L puede presentar 2^L 1 estados internos.
 - Las secuencas producidas son periódicas, de período a lo sumo $2^L 1$ (el estado $[0, 0, \dots, 0]$ produce una secuencia de 0's).
 - Bajo ciertas condiciones se alcanza el período máximo $2^L 1$.

Períodos de las secuencias

Un LFSR < L, C(D) > puede presentar $2^L - 1$ estados internos y por tanto el máximo período posible es $2^L - 1$.

Teorema

Si C(D) es un polinomio primitivo de grado L, entonces la secuencia generada por el LFSR < L, C(D) > es de período máximo $2^L - 1$ para cualquier estado inicial diferente de $[0, \ldots, 0]$.

¿Qué es un polinomio primitivo?

Definición (Polinomio irreducible)

Decimos que un polinomio C(D) de grado mayor o igual que 1 es irreducible si no es producto de otros dos polinomios de grado positivo.

Ejemplo

$$C(D) = D^5 + D^4 + D^3 + D$$
 no es irreducible en \mathbb{Z}_2 : $D^5 + D^4 + D^3 + D = (D^3 + D + 1)(D^2 + D).$ $C(D) = 1 + D^2 + D^4$ **no** es irreducible en \mathbb{Z}_2 : $1 + D^2 + D^4 = (1 + D + D^2)^2.$

 $C(D) = 1 + D + D^4$ es irreducible en \mathbb{Z}_2 :

• Supongamos $C(D) = (a+D)(b+cD+dD^2+D^3)$ con $a,b,c,d \in \mathbb{Z}_2$. Entonces $C(a) = (a+a)(b+ca+da^2+a^3) = 0$. Pero

$$C(a) = 1 + a + a^4 = \left\{ \begin{array}{l} \operatorname{si} \ a = 0 \ \operatorname{entonces} \ C(a) = 1, \\ \operatorname{si} \ a = 1 \ \operatorname{entonces} \ C(a) = 1. \end{array} \right\} (\#)$$

• Supongamos $C(D) = (a+bD+D^2)(c+dD+D^2)$ con $a, b, c, d \in \mathbb{Z}_2$. $1+D+D^4 = ac + (ad+bc)D + (a+bd+c)D^2 + (b+d)D^3 + D^4$.

$$\Rightarrow \left\{ \begin{array}{ll} ac = 1 & \Rightarrow a = c = 1, \\ ad + bc = 1 & \Rightarrow d + b = 1, \\ a + bd + c = 0 & \Rightarrow 1 = 0 \ (\#) \end{array} \right.$$

Definición (Polinomio primitivo)

Un polinomio C(D) de grado L con coeficientes en \mathbb{Z}_2 es un polinomio primitivo si

- C(D) es irreducible,
- para todo d divisor propio de $2^L 1$, C(D) no divide a $1 + D^d$.

Observación. Todo polinomio irreducible C(D) de grado L con coeficientes en \mathbb{Z}_2 divide a $1 + D^{2^L - 1}$.

$$C(D) = 1 + D + D^4$$
 es primitivo:

- C(D) es irreducible en \mathbb{Z}_2 .
- $2^4 1 = 15$. C(D) no divide a $1 + D^5$ ni a $1 + D^3$.

El LFSR < 4, C(D) > genera secuencias de período 15.

Ejemplo

$$C(D) = 1 + D^2 + D^4$$
 no es primitivo (no es irreducible).

$$s_j \equiv s_{j-2} + s_{j-4} \mod 2$$
. Estado inicial: $[s_3, s_2, s_1, s_0] = [0, 1, 1, 0]$

t	S ₃	S_2	S_1	S_0			
0	0	1	1	0	•		
1	1	0	1	1			Período: 3.
2	0 1 1 0	1	0	1			
3	0	1	1	0	$= [s_3 \mid s_2 \mid s_1 \mid s_0]$,]	

```
Some Primitive Polynomials Mod 2
(1, 0)
                             (36, 11, 0)
                                                          (68. 9. 0)
                                                                                       (97. 6. 0)
(2, 1, 0)
                             (36, 6, 5, 4, 2, 1, 0)
                                                          (68, 7, 5, 1, 0)
                                                                                       (98, 11, 0)
(3, 1, 0)
                             (37, 6, 4, 1, 0)
                                                          (69, 6, 5, 2, 0)
                                                                                       (98, 7, 4, 3, 1, 0)
(4, 1, 0)
                             (37, 5, 4, 3, 2, 1, 0)
                                                          (70, 5, 3, 1, 0)
                                                                                       (99. 7. 5. 4, 0)
(5, 2, 0)
                             (38, 6, 5, 1, 0)
                                                          (71, 6, 0)
                                                                                       (100, 37, 0)
(6, 1, 0)
                                                          (71, 5, 3, 1, 0)
                             (39, 4, 0)
                                                                                       (100, 8, 7, 2, 0)
(7, 1, 0)
                             (40, 5, 4, 3, 0)
                                                          (72, 10, 9, 3, 0)
                                                                                       (101, 7, 6, 1, 0)
(7, 3, 0)
                             (41, 3, 0)
                                                          (72, 6, 4, 3, 2, 1, 0)
                                                                                       (102, 6530)
(8, 4, 3, 2, 0)
                             (42, 7, 4, 3, 0)
                                                          (73, 25, 0)
                                                                                       (103, 9, 9)
(9, 4, 0)
                             (42, 5, 4, 3, 2, 1, 0)
                                                          (73, 4, 3, 2, 0)
                                                                                       (104, 11, 10, 1, 0)
(10, 3, 0)
                             (43, 6, 4, 3, 0)
                                                          (74, 7, 4, 3, 0)
                                                                                       (105, 16, 0)
(11, 2, 0)
                             (44, 6, 5, 2, 0)
                                                          (75, 6, 3, 1, 0)
                                                                                       (106, 15, 0)
(12, 6, 4, 1, 0)
                             (45, 4, 3, 1, 0)
                                                          (76, 5, 4, 2, 0)
                                                                                       (107, 9, 7, 4, 0)
(13, 4, 3, 1, 0)
                             (46, 8, 7, 6, 0)
                                                          (77, 6, 5, 2, 0)
                                                                                       (108, 31, 0)
(14, 5, 3, 1, 0)
                             (46, 8, 5, 3, 2, 1, 0)
                                                          (78, 7, 2, 1, 0)
                                                                                       (109, 5, 4, 2, 0)
(15, 1, 0)
                             (47, 5, 0)
                                                          (79, 9, 0)
                                                                                       (110, 6, 4, 1, 0)
(16, 5, 3, 2, 0)
                             (48, 9, 7, 4, 0)
                                                          (79, 4, 3, 2, 0)
                                                                                       (111, 10, 0)
(17, 3, 0)
                             (48, 7, 5, 4, 2, 1, 0)
                                                          (80, 9, 4, 2, 0)
                                                                                       (111, 49, 0)
(17, 5, 0)
                             (49, 9, 0)
                                                          (80, 7, 5, 3, 2, 1, 0)
                                                                                       (113, 9, 0)
(17. 6. 0)
                              (49, 6, 5, 4, 0)
                                                          (81, 4, 0)
                                                                                       (113, 15, 0)
(18, 7, 0)
                              (50, 4, 3, 2, 0)
                                                          (82, 9, 6, 4, 0)
                                                                                       (113, 30, 0)
(18, 5, 2, 1, 0)
                             (51, 6, 3, 1, 0)
                                                          (82, 8, 7, 6, 1, 0)
                                                                                       (114, 11, 2, 1, 0)
(19, 5, 2, 1, 0)
                              (52, 3, 0)
                                                          (83, 7, 4, 2, 0)
                                                                                       (115, 8, 7, 5, 0)
(20, 3, 0)
                              (53, 6, 2, 1, 0)
                                                          (84, 13, 0)
                                                                                       (116, 6, 5, 2, 0)
(21, 2, 0)
                                                          (84, 8, 7, 5, 3, 1, 0)
                              (54, 8, 6, 3, 0)
                                                                                       (117, 5, 2, 1, 0)
(22, 1, 0)
                              (54, 6, 5, 4, 3, 2, 0)
                                                          (85, 8, 2, 1, 0)
                                                                                       (118, 33, 0)
(23, 5, 0)
                              (55, 24, 0)
                                                          (86, 6, 5, 2, 0)
                                                                                       (119, 8, 0)
(24, 4, 3, 1, 0)
                              (55, 6, 2, 1, 0)
                                                          (87, 13, 0)
                                                                                       (119, 45, 0)
(25, 3, 0)
                              (56, 7, 4, 2, 0)
                                                          (87, 7, 5, 1, 0)
                                                                                       (120, 9, 6, 2, 0)
(26, 6, 2, 1, 0)
                              (57, 7, 0)
                                                          (88, 11, 9, 8, 0)
                                                                                       (121, 18, 0)
(27, 5, 2, 1, 0)
                              (57, 5, 3, 2, 0)
                                                          (88, 8, 5, 4, 3, 1, 0)
                                                                                       (122, 6, 2, 1, 0)
(28, 3, 0)
                              (58, 19, 0)
                                                          (89, 38, 0)
                                                                                       (123, 2, 0)
(29, 2, 0)
                              (58, 6, 5, 1, 0)
                                                          (89, 51, 0)
                                                                                       (124, 37, 0)
(30, 6, 4, 1, 0)
                              (59. 7, 4, 2, 0)
                                                           (89, 6, 5, 3, 0)
                                                                                       (125, 7, 6, 5, 0)
(31, 3, 0)
                              (59, 6, 5, 4, 3, 1, 0)
                                                          (90. 5, 3, 2, 0)
                                                                                       (126, 7, 4, 2, 0)
(31, 6, 0)
                              (60, 1, 0)
                                                           (91, 8, 5, 1, 0)
                                                                                        (127, 1, 0)
(31, 7, 0)
                              (61, 5, 2, 1, 0)
                                                           (91, 7, 6, 5, 3, 2, 0)
                                                                                       (127, 7, 0)
(31, 13, 0)
                              (62, 6, 5, 3, 0)
                                                           (92, 6, 5, 2, 0)
                                                                                       (127, 63, 0)
(32, 7, 6, 2, 0)
                              (63, 1, 0)
                                                           (93, 2, 0)
                                                                                        (128, 7, 2, 1, 0)
(32, 7, 5, 3, 2, 1, 0)
                              (64, 4, 3, 1, 0)
                                                           (94, 21, 0)
                                                                                        (129, 5, 0)
(33, 13, 0)
                              (65, 18, 0)
                                                           (94, 6, 5, 1, 0)
                                                                                        (130, 3, 0)
(33, 16, 4, 1, 0)
                              (65, 4, 3, 1, 0)
                                                           (95, 11, 0)
                                                                                        (131, 8, 3, 2, 0)
(34, 8, 4, 3, 0)
                              (66, 9, 8, 6, 0)
                                                           (95, 6, 5, 4, 2, 1, 0)
                                                                                        (132, 29, 0)
(34, 7, 6, 5, 2, 1, 0)
                              (66, 8, 6, 5, 3, 2, 0)
                                                           (96, 10, 9, 6, 0)
                                                                                        (133, 9, 8, 2, 0)
(35, 2, 0)
                              (67, 5, 2, 1, 0)
                                                           (96, 7, 6, 4, 3, 2, 0)
                                                                                        (134, 57, 0)
```

Fuente: Schneier, Applied Cryptography.

(13, 4, 3, 1, 0) significa $D^{13} + D^4 + D^3 + D + 1$.

Ataques a los registros

A pesar de sus buenas condiciones de aletoriedad, las secuencias generadas por un LFSR < L, C(D) > son predecibles:

Dada una parte de la secuencia producida por un registro de desplazamiento, es posible encontrar el registro que la origina, en ciertos casos.

Sea $s_0, s_1, s_2, \ldots, s_n$ una secuencia dada. Queremos encontrar el registro < L, C(D) > que la genera. Denotamos

$$C(D) = 1 + c_1D + c_2D^2 + \cdots + c_LD^L$$

sabemos que los términos de la sucesión deben satisfacer

$$s_i \equiv c_1 s_{i-1} + \cdots + c_L s_{i-L} \mod 2$$
,

y queremos hallar los coeficientes $c_1, \ldots c_L$ del polinomio.

• Ataque 1: Conocida la longitud L del registro. Supongamos que conocemos 2L bits de una secuencia $s_j, s_{j-1}, \ldots, s_{j-2L+1}$. Podemos plantear el sistema de L ecuaciones con L incógnitas $(c_1, \ldots c_L)$:

• Ataque 2: Algoritmo de Berlekamp-Massey.

Dada una secuencia finita de bits $s^N = (s_0, s_1, \dots, s_{N-1})$ permite encontrar, mediante un procedimiento iterativo, un LFSR < L, C(D) > que la genera.

Ejemplo: Algoritmo A5/1, usado en GSM.

Fuente: https://es.wikipedia.org/wiki/A5/1

Fin de la sección