Конспект к экзамену по билетам (математический анализ) (1-й семестр)

Латыпов Владимир (конспектор)
t.me/donRumata03, github.com/donRumata03, donrumata03@gmail.com

Виноградов Олег Леонидович (лектор) olvin@math.spbu.ru

26 сентября 2022 г.

Содержание

1	Введ	ение	6
2	Назі	вания билетов (ровно как в оригинале)	6
3	Терм	ины, незнание которых приводит к неуду по экзамену	9
4	Указ	ания к билетам	10
	4.1	Множества и операции над ними	10
	4.2	Аксиомы вещественных чисел	11
	4.3	Метод математической индукции. Бином Ньютона	11
	4.4	Существование максимума и минимума конечного мно-	
		жества, следствия	11
	4.5	Целая часть числа. Плотность множества рациональных	
		чисел	12
	4.6	Две теоремы о "бедности" счетных множеств	12
	4.7	Теорема об объединении не более чем счетных множеств	
		(с леммой)	12
	4.8	Счетность множества рациональных чисел	12
	4.9	Несчетность отрезка	13
	4.10	Единственность предела последовательности. Ограничен-	
		ность сходящейся последовательности	13
	4.11	Предельный переход в неравенстве. Теорема о сжатой	
		последовательности	13
	4.12	Бесконечно малые. Арифметические действия над сходя-	
		щимися последовательностями	13
	4.13	Свойства скалярного произведения. Неравенство Коши-	
		Буняковского-Шварца. Норма, порожденная скалярным	
		произведением	14
	4.14	Неравенства Коши-Буняковского в $\mathbb R$ и $\mathbb C$. Сходимость и	
		покоординатная сходимость	15
	4.15	Бесконечно большие и бесконечно малые. Арифметиче-	
		ские действия над бесконечно большими	15
	4.16	Свойства открытых множеств. Открытость шара. Внут-	
		ренность	15
	4.17	Предельные точки. Связь открытости и замкнутости. Свой-	
		ства замкнутых множеств. Замыкание	16
	4.18	Открытость и замкнутость относительно пространства и	
		поппространства	17

4.19	Компактность относительно пространства и подпростран-	
	ства	18
4.20	Компактность, замкнутость и ограниченность	18
4.21	Две леммы о подпоследовательностях	18
4.22	Лемма о вложенных параллелепипедах. Компактность ку-	
	ба	18
4.23	Характеристика компактов в \mathbb{R}^m . Принцип выбора	19
4.24	Сходимость и сходимость в себе. Полнота \mathbb{R}^m	19
4.25	Теорема о стягивающихся отрезках. Существование точ-	
	ной верхней границы.	20
4.26	Предел монотонной последовательности	20
4.27	Неравенство Я. Бернулли, $limz^n$, число e	20
	4.27.1 Неравенство Я. Бернулли	20
	4.27.2 $limz^n$	20
	4.27.3 число e	2
4.28	Верхний и нижний пределы последовательности	2
	Равносильность определений предела отображения по	
	Коши и по Гейне.	2
4.30	Простейшие свойства отображений, имеющих предел (един	-
	ственность предела, локальная ограниченность, арифме-	
	тические действия)	22
4.31	Предельный переход в неравенстве для функций. Теоре-	
	ма о сжатой функции	22
4.32	Предел монотонной функции	22
	Критерий Больцано-Коши для отображений	22
	Двойной и повторные пределы, примеры	22
	Непрерывность. Точки разрыва и их классификация, при-	
	меры.	22
4.36	Арифметические действия над непрерывными отобра-	
	жениями. Стабилизация знака непрерывной функции.	28
4.37	Непрерывность и предел композиции.	28
	Характеристика непрерывности отображения с помощью	
	прообразов.	28
4.39	Теорема Вейерштрасса о непрерывных отображениях, след-	
	СТВИЯ	24
	Теорема Кантора.	24
	Теорема Больцано-Коши о непрерывных функциях	24
4.42	Сохранение промежутка (с леммой о характеристике про-	_
	межутков). Сохранение отрезка	24
	Теорема Больцано-Коши о непрерывных отображениях.	25
4.44	Разрывы и непрерывность монотонной функции	25

4.45	Существование и непрерывность обратной функции	25
4.46	Степень с произвольным показателем	25
4.47	Свойства показательной функции и логарифма	26
	Непрерывность тригонометрических и обратных триго-	
	нометрических функций	26
4.49	Замечательные пределы.	26
	Замена на эквивалентную при вычислении пределов. Асим	Π-
	ТОТЫ	26
4.51	Единственность асимптотического разложения	26
4.52	Дифференцируемость и производная. Равносильность опре	-
	делений, примеры.	27
4.53	Геометрический и физический смысл производной	28
4.54	Арифметические действия и производная	28
4.55	Производная композиции	28
4.56	Производная обратной функции и функции, заданной	
	параметрически	28
4.57	Производные элементарных функций	28
	Теорема Ферма	29
	Теорема Ролля	29
4.60	Формулы Лагранжа и Коши, следствия	29
4.61	Правило Лопиталя раскрытия неопределенностей вида $\frac{0}{0}$	
	примеры	29
4.62	Правило Лопиталя раскрытия неопределенностей вида	
	$rac{inf}{inf}$ примеры	29
4.63	Теорема Дарбу, следствия.	29
4.64	Вычисление старших производных: линейность, прави-	
	ло Лейбница, примеры.	29
4.65	Формула Тейлора с остаточным членом в форме Пеано	29
4.66	Формула Тейлора с остаточным членом в форме Лагранжа.	29
4.67	Тейлоровские разложения функций	29
4.68	Иррациональность числа е	30
4.69	Применение формулы Тейлора к раскрытию неопреде-	
	ленностей	30
4.70	Критерий монотонности функции	30
4.71	Доказательство неравенств с помощью производной, при-	
	меры	30
4.72	Необходимое условие экстремума. Первое правило ис-	
	следования критических точек	30
4.73	Второе правило исследования критических точек. Произ-	
	волные финкции	30

4.74	Лемма о трех хордах и односторонняя дифференцируе-	
	мость выпуклой функции	31
4.75	Выпуклость и касательные. Опорная прямая	31
4.76	Критерии выпуклости функции	31
4.77	Неравенство Иенсена	31
4.78	Неравенства Юнга и Гёльдера	32
4.79	Неравенство Минковского и неравенство Коши между	
	средними	32
4.80	Метол касательных	

1. Введение

Максимально сжатый матанал: для каждого билета будет списко сущностей (определений, теорем, замечаний, следствий и т.д.), о которых надо рассказать, а также указания к доказательствам (в тех случаях, когда это не очевидно).

2. Названия билетов (ровно как в оригинале)

- 1. Множества и операции над ними.
- 2. Аксиомы вещественных чисел.
- 3. Метод математической индукции. Бином Ньютона.
- 4. Существование максимума и минимума конечного множества, следствия.
- 5. Целая часть числа. Плотность множества рациональных чисел.
- 6. Две теоремы о "бедности" счетных множеств.
- 7. Теорема об объединении не более чем счетных множеств (с леммой).
- 8. Счетность множества рациональных чисел.
- 9. Несчетность отрезка.
- 10. Единственность предела последовательности. Ограниченность сходящейся последовательности.
- 11. Предельный переход в неравенстве. Теорема о сжатой последовательности.
- 12. Бесконечно малые. Арифметические действия над сходящимися последовательностями.
- 13. Свойства скалярного произведения. Неравенство Коши-Буняковского-Шварца. Норма, порожденная скалярным произведением.
- 14. Неравенства Коши-Буняковского в \mathbb{R} и \mathbb{C} . Сходимость и покоординатная сходимость.
- 15. Бесконечно большие и бесконечно малые. Арифметические действия над бесконечно большими.

- 16. Свойства открытых множеств. Открытость шара. Внутренность.
- 17. Предельные точки. Связь открытости и замкнутости. Свойства замкнутых множеств. Замыкание.
- 18. Открытость и замкнутость относительно пространства и подпространства.
- 19. Компактность относительно пространства и подпространства.
- 20. Компактность, замкнутость и ограниченность.
- 21. Две леммы о подпоследовательностях.
- 22. Лемма о вложенных параллелепипедах. Компактность куба.
- 23. Характеристика компактов в \mathbb{R}^{m} . Принцип выбора.
- 24. Сходимость и сходимость в себе. Полнота \mathbb{R}^{m} .
- 25. Теорема о стягивающихся отрезках. Существование точной верхней границы.
- 26. Предел монотонной последовательности.
- 27. Неравенство Я. Бернулли, $limz^n$, число e^n .
- 28. Верхний и нижний пределы последовательности.
- 29. Равносильность определений предела отображения по Коши и по Рейне.
- 30. Простейшие свойства отображений, имеющих предел (единственность предела, локальная ограниченность, арифметические действия).
- 31. Предельный переход в неравенстве для функций. Теорема о сжатой функции.
- 32. Предел монотонной функции.
- 33. Критерий Больцано Коши для отображений.
- 34. Двойной и повторные пределы, примеры.
- 35. Непрерывность. Точки разрыва и их классификация, примеры.
- 36. Арифметические действия над непрерывными отображениями. Стабилизация знака непрерывной функции.
- 37. Непрерывность и предел композиции.

- 38. Характеристика непрерывности отображения с помощью прообразов.
- 39. Теорема Вейерштрасса о непрерывных отображениях, следствия.
- 40. Теорема Кантора.
- 41. Теорема Больцано-Коши о непрерывных функциях.
- 42. Сохранение промежутка (с леммой о характеристике промежутков). Сохранение отрезка.
- 43. Теорема Больцано-Коши о непрерывных отображениях.
- 44. Разрывы и непрерывность монотонной функции.
- 45. Существование и непрерывность обратной функции.
- 46. Степень с произвольным показателем.
- 47. Свойства показательной функции и логарифма.
- 48. Непрерывность тригонометрических и обратных тригонометрических функций.
- 49. Замечательные пределы.
- 50. Замена на эквивалентную при вычислении пределов. Асимптоты.
- 51. Единственность асимптотического разложения.
- 52. Дифференцируемость и производная. Равносильность определений, примеры.
- 53. Геометрический и физический смысл производной.
- 54. Арифметические действия и производная.
- 55. Производная композиции.
- 56. Производная обратной функции и функции, заданной параметрически.
- 57. Производные элементарных функций.
- 58. Теорема Ферма.
- 59. Теорема Ролля.
- 60. Формулы Лагранжа и Коши, следствия.

- 61. Правило Лопиталя раскрытия неопределенностей вида примеры.
- 62. Правило Лопиталя раскрытия неопределенностей вида примеры.
- 63. Теорема Дарбу, следствия.
- 64. Вычисление старших производных: линейность, правило Лейбница, примеры.
- 65. Формула Тейлора с остаточным членом в форме Пеано.
- 66. Формула Тейлора с остаточным членом в форме Лагранжа.
- 67. Тейлоровские разложения функций
- 68. Иррациональность числа е.
- 69. Применение формулы Тейлора к раскрытию неопределенностей.
- 70. Критерий монотонности функции.
- 71. Доказательство неравенств с помощью производной, примеры.
- 72. Необходимое условие экстремума. Первое правило исследования критических точек.
- 73. Второе правило исследования критических точек. Производные функции
- 74. Лемма о трех хордах и односторонняя дифференцируемость выпуклой функции.
- 75. Выпуклость и касательные. Опорная прямая.
- 76. Критерии выпуклости функции.
- 77. Неравенство Иенсена.
- 78. Неравенства Юнга и Гёльдера.
- 79. Неравенство Минковского и неравенство Коши между средними.
- 80. Метод касательных.

3. Термины, незнание которых приводит к неуду по экзамену

1. Виды отображений (инъекция, сюръекция, биекция), образ, прообраз, обратное отображение

- 2. Предел последовательности, функции, отображения (в разных ситуациях и на разных языках)
- 3. Метрическое, векторное, нормированное пространства, неравенство Коши Буняковского
- 4. Внутренние и предельные точки, открытые, замкнутые и компактные множества, компактность в евклидовом пространстве;
- 5. Сходимость в себе, полнота метрического пространства
- 6. Ограниченность множества, точные границы
- 7. О-символика
- 8. Непрерывность, теоремы Больцано Коши и Вейерштрасса о непрерывных функциях, равномерная непрерывность, теорема Кантора
- 9. Замечательные пределы
- 10. Дифференцируемость и производная
- 11. Формулы и правила дифференцирования
- 12. Формула Лагранжа, формула Тейлора с остатками в форме Пеано и Лагранжа, основные тейлоровские разложения
- 13. Сравнение логарифмической, степенной и показательной функций
- 14. Точки экстремума и их отыскание, определение и критерии выпуклости
- 15. Умение дифференцировать обязательно

4. Указания к билетам

Укзания составлены в соответствии с учебником Виноградова 🔊

4.1. Множества и операции над ними.

Задание множеств, обозначения, подмножества, обозначния числовых множеств

Утверждения, кванторы

Семейства множеств, пересечения, объединения, разность, универсум, дополнение

Законы Де-Моргана (вычесть объединение \Leftrightarrow пересечь частичные разности и то же для пересечение \leftrightarrow объединение)

Ещё теорема: пересечение с объединением \Leftrightarrow объединенние пересечений и наоборот

4.2. Аксиомы вещественных чисел.

Поле: абелева группа по сложению, абелева группа по умножению (кроме обратимости нуля)

Добавляем аксиомы для упорядоченности: 3 для линейного порядка + можно прибавлять к неравенствам + умножать неравенства с нулём (Вводим значки $>, <, \geqslant$ через \leqslant)

Вводим промежутки, отрезки, интервалы, полуинтервалы, лучи.

Вводим $\overline{\mathbb{R}}$, добавляя $\pm \infty$

Добавляем аксиому Архимеда (но всё ещё $\mathbb Q$ удовлетворяет)

Аксиома Кантора о вложенных отрезках (пересечение даже бесконечного количества в $\mathbb R$ непусто, но только для замкнутых) Пример: в $\mathbb Q$ можно сделать, чтобы они сходились в $\sqrt{2}$.

4.3. Метод математической индукции. Бином Ньютона.

Определение ММИ для последовательности утверждений (следствие следующего утверждения из предыдущего)

Индуктивное подмножество ℝ

Определение № как минимального по включению индуктивного.

Доказываем Бином Ньютона по индукции.

4.4. Существование максимума и минимума конечного множества, следствия.

Ограниченность сверху, снизу $M \subset \mathbb{R}$, \Leftrightarrow ограниченность по модулю

Верхняя граница, минимум, максимум

Существование минимума и максимума конечного множества по индукции по количеству элементов.

Полная упорядоченность № по отношению ≤

4.5. Целая часть числа. Плотность множества рациональных чисел.

Через аксиому Архимеда, $c=rac{[na]+1}{n}.$

 \Rightarrow в любом промежутке найдётся ∞ рациональных.

4.6. Две теоремы о "бедности" счетных множеств.

Эквивалентность по мощности: существует биекция (это отношение эквивалентности)

Счётное, если №.

Сами теоремы о бедности:

- Любое бесконечное подмножество сожержит счётное подмножество
- Бесконечное подмножество счётного счётно (расположим в виде последовательности, нумеруем в порядке появления)

4.7. Теорема об объединении не более чем счетных множеств (с леммой).

Счётное, если $\mathbb{N} \Leftrightarrow$ можно расположить в виде последовательности \Leftrightarrow в виде таблицы \Leftrightarrow можно составить биекцию с $\mathbb{N} \times \mathbb{N}$

Не более чем счётно объединение не более чем счётных не более чем счётно

4.8. Счетность множества рациональных чисел.

Счётность рациональных как таблицы (отдельно рассматреть отрицательные и ноль)

4.9. Несчетность отрезка.

Несчётность отрезка [0;1] (по аксиоме Кантора: пусть расположили в виде последовательности, бесконечное деление на 3 части, последовательность вложенных, не содержащих n-ную точку \Leftarrow пересечение не пусто \Leftarrow она не занумерована. Противоречие), гипотеза Континуума.

4.10. Единственность предела последовательности. Ограниченность сходящейся последовательности.

По определению (обе — в произвольных метрических пространствах).

4.11. Предельный переход в неравенстве. Теорема о сжатой последовательности.

Обе — для ℝ

При переходе важно не забыть про неверность в случае перехода от строгого к строгому.

Про двух милиционеров — по определению.

4.12. Бесконечно малые. Арифметические действия над сходящимися последовательностями.

Бесконечно малые — в нормированном (⇒ линейном) пространстве.

Note: метрика может быть не «равномерной» $\Rightarrow \rho(x,0)$ может быть не нормой.

Арифметические действия:

для нормированного пространства: сумма, умножение на последовательность скаляров, разность, сходимость нормы к норме предела. для числовых последовательностей: ещё и частное последовательностей (если знаметель не принимает ноль и его предел не ноль) через предел $\frac{1}{y_n}$ через ограниченность $\frac{1}{y_n}$.

4.13. Свойства скалярного произведения. Неравенство Коши-Буняковского-Шварца. Норма, порожденная скалярным произведением.

Метрика: тождественность (ноль только у равных), симметричность, неравенство треугольника

Норма (в векторных): положительная определённость (ноль у нуля и только), положительная однородность, неравенство треугольника.

Скалярное произведение (в векторных): Линейность по первому аргументу, Эрмитова симметричность (то есть $\langle x,x\rangle\in\mathbb{R}$), положительная определённость (для одинаковых не меньше нуля, ноль у нуля и только).

Свойства: аддитичность по второму аргументу, «эрмитова» (но не полодительная) однородность по второму аргументу, хотя бы при одном нуле — ноль.

КБШ:

$$\left| \langle x, y \rangle \right|^2 \leqslant \langle x, x \rangle \langle y, y \rangle \tag{1}$$

Доказываем, отдельно рассмотрев $y=\mathbb{O}$, иначе $\lambda=-\frac{< x,x>}{< y,y>}$.

Раскладываем по линейности и $\lambda \overline{\lambda} = |\lambda|^2$:

$$\langle x + \lambda y, x + \lambda y \rangle$$

Получаем: $\langle x,x\rangle\langle y,y\rangle-|\langle x,y\rangle|^2=\langle y,y\rangle\langle x+\lambda y,x+\lambda y\rangle\geqslant 0$

Обращается в равенство только для коллинеарных векторов.

Умеем порождать норму как $\|x\| = \sqrt{\langle x, x \rangle}$

Проверяем аксиомы, треугольник:

$$\|x+y\| = \langle x,x\rangle + 2\operatorname{Re}\langle x,y\rangle + \langle y,y\rangle \leqslant \langle x,x\rangle + 2|\langle x,y\rangle| + \langle y,y\rangle \leqslant \leqslant p^2(x) + 2p(x)p(y) + p^2(y) = \|p(x)\| + 2p(x)p(y) + p^2(y) +$$

Нер-во треугольника обращается в равенство только для **сонаправленных** векторов.

4.14. Неравенства Коши-Буняковского в \mathbb{R} и \mathbb{C} . Сходимость и покоординатная сходимость.

Нер-ва КБШ и треугольника просто приводим в частом случае для евклидовой нормы.

Покоординатная сходимость равносильна в \mathbb{R}^m сходимости по Евклидовой норме. (ограничиваем друг друга с обеих сторон (разность по любой координате меньше нормы меньше корня из размерности на максимальную разность), производим поредельный переход)

4.15. Бесконечно большие и бесконечно малые. Арифметические действия над бесконечно большими.

Определеяем стремление к просто бесконечности (если с какого-то момента норма всегда больше любого заданного значения)

Для $\mathbb R$ также определяем для $+\infty$ и $-\infty$.

NOTE: НЕограниченная — не обязательно бесконечно большая.

Предел в $\overline{\mathbb{R}}$ единственен.

Бесконечно большая $\Leftrightarrow \frac{1}{x_n}$ бесконечно малая и не равна нулю никогда.

Арифметические действия с ББ (некоторые можно и в С):

- 1. Можно суммировать с огранмиченными правильным образом (3 штуки).
- 2. Можно умножать на отделимую от нуля правильным образом (3 штуки).
- 3. Можно делить на бесконечно малую и бесконечно большую, а ещё стремящуюся к обычному пределу делить на ББ (ещё 3 штуки).

4.16. Свойства открытых множеств. Открытость шара. Внутренность.

Внутренняя точка: найдётся окрестность, целиком содержащаяся во множестве.

Открытое: все точки множества — внутренние.

- 1. Объединение любого количества открытых множеств открыто
- 2. Пересечение конечного количества открытых множеств открыто.

Первое очевидно, воторое доказывается через минимум множества радиусов.

Внутренность — множество внутренних точек ($\overset{\circ}{D}$ или Int D).

Также это:

- Объединение всех открытых подмножеств
- Максимальное по включению открытое подмножество

Доказывается: рассмотрим множество G в виде объединения всех открытых подмножеств. Оно удовлетворяет второму критерию, открыто (как объединение открытых). Докажем, что любая внутренняя точка принадлежит G (действительно, внутреняя \Rightarrow есть окрестность, содержащаяся в D, но она открытое мн-во $\Rightarrow x \in V_x \subset G$) и что все точки G — внутренние (очевидно).

«Открытый шар» является открытым множеством. Доказывается через неравенство треугольника.

4.17. Предельные точки. Связь открытости и замкнутости. Свойства замкнутых множеств. Замыкание.

Предельная точка = точка сгущения множества: в любой **проколотой** окрестности найдётся точка (\Rightarrow найдётся и бесконечное количество точек). Можно также переформутировать как «предельная, если существует последовательность точек множества, **отличных** от a стремящаяся к a». (Равносильность очевидна).

Изолированная точка: принадлежит множеству, но не является точкой сгущения.

Точка прикосновения: В любой **не проколотой** окрестности точки найдётся точка множества. «коснулось как-то: возможно — за счёт густоты, возможно — за счёт наличия в себе». Можно переформулировать как «существует последовательность точек множества (может быть и просто стационаная последовательность из a), стремащаяся к a».

Замкнутое множество: Содерджит все свои точки сгущения

Теорема: Множество замкнуто \iff его дополнение открыто Доказывается легко по определениям.

Можно и сформулировать как «множество открыто \iff его дополнение замкнуто».

Свойства

- 1. Пересечение любого количества замкнутых множеств замкнуто.
- 2. Объединение конечного количества замкнутых множеств замкнуто

(Доказывается через соответствующие свойства открытых множеств, по предыдущей теореме, а также — через законы Де-Моргана)

Замыкание: все точки прикосновения (\overline{D} или $\operatorname{Cl} D$)

Замыкание множества — это также (теорема):

- Пересечение всех замкнутых надмножеств
- Минимальное по включению замкнутое надмножество

Доказательство: Берём пересечение всех замкнутых **над**множеств. (Конечно, оно соответствет второму критерию). Оно замкнуто по предыдущей теореме.

Если $x\in D$, то есть x - точка прикосповепия D, то тем более x — точка прикосповепия F, а тогда $x\in F$ в силу замкпутости F. С другой сторопы, если $x\notin \bar{D}$, то у точки x существует окрестпость V_x , содержащаяся в D^c . Тогда ее дополпепие V_x^c замкпуто и содержит D, поэтому $F\subset V_x^c$, то есть $V_x\subset F^c$ и, в частпости, $x\notin F$.

Множество замкнуто ⇔ оно совпадает со своим замыканием.

4.18. Открытость и замкнутость относительно пространства и подпространства.

Пусть $D \subset Y \subset X$.

- 1. D открыто в $Y \iff \exists G$, открытое в X, такое, что $D = G \cap Y$.
- 2. D закрыто в $Y \iff \exists F$, закрытое в X, такое, что $D = G \cap Y$.

4.19. Компактность относительно пространства и подпространства.

Свойства компактности равносильны в метрическом пространстве и в его подпространстве.

4.20. Компактность, замкнутость и ограниченность.

- 1. Компактность ⇒ замкнутость и ограниченность.
- 2. Замкнутое подмножество компакта компактно компактно.

Первое — что ограничено — очевидно. Доказываем, что $K^{\mathbb{C}}$ открыто. Фиксируем точку в нём, для каждой точки в K строим два шара. Выделяем покрытие, берём по соответствующим индексам шары, они из $K^{\mathbb{C}}$.

Обратно — просто берём те же индексы.

4.21. Две леммы о подпоследовательностях.

Лемма 1: Всякая подпоследовательность сходящейся последовательности сходится к тому же пределу (a).

Док-во: возьмем $\xi>0$, по определению предела существует такой номер, что $\rho(x_n,a)<\xi$ => $\rho(x_n,a)<\xi$

Лемма 2: Если есть две последовательности $\{x_{n_k}\}, \{x_{m_l}\}$, такие, что объединение их индексов дает равно $\mathbb N$. Если обе стремятся к a, то и $\{x_n\}$ стремится к a

Док-во: выберем $\xi>0$, найдем в двух последовательностях индексы, после которых расстояние до $a<\xi$, выберем максимум. Тогда $\{x_n\}$ стремится к a.

4.22. Лемма о вложенных параллелепипедах. Компактность куба.

Во-первых, их пересечение непусто. Рассмотрим по каждой координате, сведем к теореме о вложенных отрезках.

Пусть I - замкнутый параллелепипед. Тогда I - компактно.

Док-во: от противного. Половинным делением построим последовательность пар-ов, т.ч. из исходного покрытия нельзя выделить конечное подпокрытьие.

Получится система вложенных параллелепипедов, их диаметр стремится к нулю. Есть точка пересечения, она содержится в каком-то множестве покрытия G_{a_i} , а множество открытое, то есть найдётся шар с центром в этой точке, целиком содержащийся во множестве. Но тогда найдём параллелепипед, т.ч. он содержится в шаре, а значит можно выделить подпокрытие в виде множества G_{a_i} .

Противоречие

4.23. Характеристика компактов в \mathbb{R}^{m} . Принцип выбора.

Равносильно:

- 1. K замкнуто и ограничено.
- $2. \ K$ компактно.
- 3. Из всякой последовательности точек K можно извлечь подпоследовательность, имеющицю предел, принадлежащиц $\square K$.

Важно, что принадлежащиц $\square K$.

1 -> 2: содержится в кубе (Гейне-Бродель) 2 -> 3: Случай конечного D — отдельно, иначе доказываем, что в К есть предельные точки множества значений от противного (если нет, получим шары, в каждом не более одной точки, покрывающие), затем выделим стремящуюся, сужая окрестность от противного. 3 -> 1: Два раза от противного.

4.24. Сходимость и сходимость в себе. Полнота \mathbb{R}^m .

Заметим, что в $\mathbb Q$ последовательность может стремиться к $\sqrt{2}$, то есть не иметь предел в $\mathbb Q$, но сходиться в себе.

Принцип выбора Больцано-Вейерштрасса: из ограниченной можно извлечь сходящуюся (вписываем в куб).

Для неограниченной, можно и к бесконечности.

Сходится в себе:

ограничена, если есть сходящаяся подпоследовательность, то есть предел.

Имеет предел => сходится в себе

Для \mathbb{R}^m выполняется и обратное, так как можно извлечь сходящуюся подпоследовательность и потом по пред пункту.

4.25. Теорема о стягивающихся отрезках. Существование точной верхней границы.

Стягивающиеся — вложенные и размер стремится к нулю.

Т. о стягивающихся отрезках: их пересечение состоит ровно из одной точки (что непусто - из аксиомы Кантора). Доказываем, что $c,d\in S\Rightarrow c=d$, то есть что c-d=0. Можем либо сделать предельный переход, либо просто от противного.

Доказываем существование sup через деление промежутка пополам, строим стягивающуюся последовательность отрезков с нужным свойством, тогда получим единественное значение.

4.26. Предел монотонной последовательности.

Чтобы $\in \mathbb{R}$, она ещё должна быть ограничена.

Записать характеристику \sup , \inf через неравенства с ε . Доказываем, что \lim это \sup через характеристику.

Можно проиллюстрировать примером формулы Герона для \sqrt{x} .

4.27. Неравенство Я. Бернулли, $limz^n$, число e.

4.27.1. Неравенство Я. Бернулли

Доказываем по индукции по n, домножая обе части на 1+x и группируя.

4.27.2. $limz^n$

Для |z|<1 оно сходится к нулю (Так как модуль (а он норма) делает то же самое).

${f 4.27.3.}$ число e

Она ограничена снизу единицей. Докажем убывание последовательности $y_n=(1+\frac{1}{n})^{n+1}$. Для этого докажем, что отношение соседних меньше единицы. Для этого юзанём нер-во Бернулли. Тогда сама последовательность сходится к тому же пределу (как предел отношения). Е как-то связана со Львом Толстым, но это сложно, не будем доказывать.

4.28. Верхний и нижний пределы последовательности.

Предел супремумов из всех членов с номером $\geqslant k$ и инфинумов того же. Сами посдедовательности — верхние и нижние огибающие.

Теоремы:

- \cdot Верхний и нижний пределы любой последовательности существуют в $\overline{\mathbb{R}}$, причём верхний не меньше нижнего.
- Верхний наибольший из частичных пределов, аналогично нижний. (Частичный предел, если существует подпоследовательность, стремящаяся к этому числу.)

Характеристика верхнего и нижнего пределов с помощью неравенств:

$$b = \overline{\lim}_{\lim} x_n \in \mathbb{R} \iff \begin{cases} \forall \varepsilon > 0 \quad \exists N \quad \forall n > N \quad x_n < b + \varepsilon, \\ \forall \varepsilon > 0 \quad \forall N \quad \exists n > N \quad x_n > b - \varepsilon, \end{cases}$$

$$a = \underline{\lim} x_n \in \mathbb{R} \iff \begin{cases} \forall \varepsilon > 0 \quad \exists N \quad \forall n > N \quad x_n > a - \varepsilon, \\ \forall \varepsilon > 0 \quad \forall N \quad \exists n > N \quad x_n < a + \varepsilon. \end{cases}$$

$$(2)$$

4.29. Равносильность определений предела отображения по Коши и по Гейне.

Из Коши в Гейне — просто

Обратно - от противного: построим последовательность, стремящуюся к *a*, но не обрадающцю нужными свойствами.

4.30. Простейшие свойства отображений, имеющих предел (единственность предела, локальная ограниченность, арифметические действия).

4.31. Предельный переход в неравенстве для функций. Теорема о сжатой функции.

4.32. Предел монотонной функции.

Важно: говорим только про правосторонние и левосторонние пределы. Причём как a, так и $\lim f(x)$ моугут быть ∞ .

Сама точка не фигурирует в теореме.

Доказываем, что супремум множества значений является супремумом. Но это слезует из характеристики супремума через $\varepsilon \delta$.

4.33. Критерий Больцано-Коши для отображений.

Отображение **в полное пространство** имеет предел \iff Для любого $\varepsilon>0$ найдётся проколотая окрестность, внутри которой точки отображения друг от друга не дальше ε .

4.34. Двойной и повторные пределы, примеры.

Из двойного (возможно, бесконечного) и конечного при любом фиксированной одной переменной кроме самой точки следует существование и равенство предела тому же.

4.35. Непрерывность. Точки разрыва и их классификация, примеры.

5 определений непрерывности (2 годятся только для предельных точек)

- 1. Предел в точке существует и совпадает со значением (только для предельных точек)
- 2. Окрестности (не выколотая, в отличие от предела)
- 3. $\varepsilon\&\&\delta$ -язык «дословный перевод» с языка окрестностей по Коши

- 4. Гейне: язык последовательностей (должно выполняться даже для последовательности, принимающей точку a, в отличие от предела)
- 5. Бесконечно малому приращению аргумента соответствует бесконечно малое приращение значения функции (только для нормированных простнанств с нулями, так как мы зотим вычитать и стремиться к нулю)

Первого рода — если все числа $f(x_0+), f(x_0-), f(x_0)$ есть, но какие-то не совпадают.

Второго рода — если какой-то из пределов не существует или бесконечен.

Устранимый разрыв — если $f(x_0+)=f(x_0-)$ и $f(x_0)$ ли не опрекделено, либо не равно им.

4.36. Арифметические действия над непрерывными отображениями. Стабилизация знака непрерывной функции.

Непрерывными являются все те 5 штук от ненпрерывных, доказывается через последовательности.

4.37. Непрерывность и предел композиции.

Для непрерывности — просто обе должны ьыть непрерывны. Два раза применяем определение непрерывности (по Гейне).

А предел в наивном виде не будет работать: нужно либо сказать, что внутренняя в какой-то окрестности не принимает точку, либо — что внешняя — непрерывна.

И, конечно, точки предельные.

4.38. Характеристика непрерывности отображения с помощью прообразов.

Непрерывна \Leftrightarrow прообраз любого открытого множества — открыт.

4.39. Теорема Вейерштрасса о непрерывных отображениях, следствия.

Непрерывный образ компакта — компакт.

Следствия — первая и вторая теоремы Вейерштрасса о непрерывных на отрезке для функциях:

- 1. Ограничены
- 2. Принимают наибольшее и наименьшее значения (так как на прямой у компакта $\sup \in E$)

4.40. Теорема Кантора.

Равномерно непрерывно, то есть найдётся общее $\delta(\varepsilon)$ для всех x, что две точки, ближе друг к другу, чем δ имеют значения ближе ε .

Непрерывное на компакте отображение равномерно непрерывно.

От противного, строим две последовательности, пользуемся секвенциальной компактностью, извлекаем сходящуюся подпоследовательность, потом берём вторую по тем же индексам, получаем противоречие, так как непрерывность.

4.41. Теорема Больцано-Коши о непрерывных функциях.

Непрерывная на отрезке функция принимает все промежуточные значения на (a,b).

Доказываем, строя стягивающиеся отрезки вокруг нуля.

Получается, что множество значений выпукло.

4.42. Сохранение промежутка (с леммой о характеристике промежутков). Сохранение отрезка.

Выпуклое множество в нормированном пространстве: вместе с любыми двумя точками содержит отрезок, их соединяющий.

Леммой о характеристике промежутков: E — промежуток \leftrightarrow E — выпукло.

Доказывем, что $(m,M)\subset E\subset [m,M]$, где sup,inf

Теорема о сохранении промежутка: непрерывный образ промежутка — промежуток. (Из больцано-Коши говорим, что выпукло => промежуток)

Следствие — непрерывный образ отрезка — отрезок. (Так как промежуток, а по Т. Вейерштрасса оно имеет min и max элемент)

4.43. Теорема Больцано-Коши о непрерывных отображениях.

Непрерывный образ линейно связного множества линейно связен.

(Применяем теорему о непрерывности композиции)

4.44. Разрывы и непрерывность монотонной функции.

Монотонная на промежутке функция:

- Не может иметь разрывов второго рода (то есть пределы существуют и не бесконечны), так как теорема о пределе монотонной функции

4.45. Существование и непрерывность обратной функции.

Если строго монотонна на промежутке, существует обратная — с таким же знаком монотонности, причём они биекции между $\langle a,b\rangle \leftrightarrow \langle m,M\rangle$.

Ещё и непрерывная, если исходная непрерывна.

Доказательство: возрастает => обратима, возрастает, очевидно. Множество значений — промежуток, так как f непрерывна.

Непрерывна, так как монотоная с множеством значний промежуток.

4.46. Степень с произвольным показателем.

Для натуральных — очевидно. Для им обратных по сложению — $\frac{1}{...}$. Для обратных по умножению: обратная функция. Для рациональных

— как композиция числителя и $\frac{1}{denominator}$.

Для вещественных — как предел по рациональным.

4.47. Свойства показательной функции и логарифма.

4.48. Непрерывность тригонометрических и обратных тригонометрических функций.

Доказывается через формулу разности. Для обратных — они ведь обратные к непрерывным, монотонным.

4.49. Замечательные пределы.

Вот они — слева направо (5 штук, кажется):

•
$$\frac{\sin x}{x} \xrightarrow[x \to 0]{} 1$$

• ..

4.50. Замена на эквивалентную при вычислении пределов. Асимптоты.

По факту — что можно заменять эквивалентную в произведенени и при делении. В обоих утверждениях предел одновременно существуют или нет и, если существуют, то одинаков.

Доказывается через определение через функцию $\to 1$.

Вертикальная асимптота — $x = x_0$. Остальная — как

4.51. Единственность асимптотического разложения.

Асимптотические разложения могут быть из произвольного метрического пространства (но должно быть в предельной точке) и дейстувуют в \mathbb{R} .

Одна и та же система функций. Доказывваем, что если оба ассимптотические разложения по ней, то коэффициенты равны.

Причём требуем, чтобы **последняя** функция в любой окрестности имела не ноль. Вводим множества для каждого индекса, на которых функция по этому индексу не ноль. x_0 — предельная точка каждого такого

множества, так как иначе все остальные тоже будут. В том числе — и последняя, но ведь про неё мы сказали, что в любой окрестности она не тождественный ноль.

Во-первых, для всех бол´ьших номеров функция по этому номеру функция — о малое от данной. Далее — найдётся окрестности для каждого номера, что k-тая функция в ней не ноль.

Находим минимальный индекс m, в котором коэффициенты разложений отличаются и получаем, что разность коэффициентов, умноженная на g_m — это $o(g_m)$, то есть эта разность равна нулю, то есть эти коэффициенты равны (если перейти к пределу по E_m), противоречие.

4.52. Дифференцируемость и производная. Равносильность определений, примеры.

Определения. Функция (рассматриваем именно функции, то есть $\mathbb{R} \mapsto \mathbb{R}$) должна быть определена по крайней мере на невырожденном промежутке $\langle a,b \rangle$ Два определения: через асимптотическое разложение и через предел отношения.

Первое:

$$f(x) = f(x_0) + A(x - x_0) + o(x - x_0), \quad x \to x_0,$$

Второе:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \tag{3}$$

Доказываем эквивалентность определений. « \Rightarrow »: переносим в другую часть, делим и получаем $A+\varphi(x)\underset{x\to x_0}{\longrightarrow} A$

«
$$\Leftarrow$$
»: примем $\varphi(x)=rac{f(x)-f(x_0)}{x-x_0}-A$. Подставим — подходит.

Дифференцируемость — более сильное условие, чем непрерывность, то есть дифференцируемость \Rightarrow непрерывность. (доказывается через первое (ассимптотически-разложенческое) определение производной)

Примером тому служат |x| и $x \sin x$.

Есть вообще функция Вейерштрасса, такая, что непрерывна везде, но нигде не дифференцируема.

4.53. Геометрический и физический смысл производной.

Геометрический — касательная, которая предельное положение секущей, причём угловой коэффициент равен производной.

Физический задача о связи скорости, ускорения, положения и т.д. тела. Очередная величина— это производная предыдущей (в физики такое постоянно встречается, диффуры всякие)

4.54. Арифметические действия и производная.

Производная суммы, разности, умножения на число, произведения, отношения равна тому, чему нужно. Доказывается по определению через предел и по свойствам предела. Надо не забыть сказать про непрерывность сумму, произведение и т.д. непрерывных при переходе к пределу.

4.55. Производная композиции.

Доказывается по первому определению производной в форме функции от x+ приращения. Подставляем асимптотическое разложение в аргумент внешней функции, а потом разложить внешнюю.

Note: можно дифференцировать вложенную композицию по цепочке.

4.56. Производная обратной функции и функции, заданной параметрически.

Обратная — через предел обратной функции.

Параметрически — если можем поделить на куски, чтобы было обратимо, делаем, получаем, что y(x)=y(t(x)), далее - по производной обратной получаем отношение производных.

4.57. Производные элементарных функций.

Пользуемся замечательными пределами и производными обратной функции, где нужно.

4.58. Теорема Ферма.

Определена на промежутке. Тогда для внутренней точки, если в ней дифференцируемо и она маскимум или минимум, производная равна нулю.

Доказательство: раз производная есть, то правая и левая равны, но, так как максимум, то левая не меньше нуля (переходя к пределу), а правая — не больше. То есть проихводная равна нулю.

4.59. Теорема Ролля.

Теперь определена на отрезке.

- 4.60. Формулы Лагранжа и Коши, следствия.
- 4.61. Правило Лопиталя раскрытия неопределенностей вида $\frac{0}{0}$ примеры.
- 4.62. Правило Лопиталя раскрытия неопределенностей вида $\frac{inf}{inf}$ примеры.
- 4.63. Теорема Дарбу, следствия.
- 4.64. Вычисление старших производных: линейность, правило Лейбница, примеры.

правило Лейбница — для н-ной проихводной произведения двух (как бином Ньютона и тоже по индукции).

$$\sin x, x^k, \tfrac{1}{x}, \ln x$$

- 4.65. Формула Тейлора с остаточным членом в форме Пеано.
- 4.66. Формула Тейлора с остаточным членом в форме Лагранжа.
- 4.67. Тейлоровские разложения функций

$$e^x$$
, $sinx$, $cosx$, $ln(1+x)$, $(1+x)^{\alpha}$

4.68. Иррациональность числа е.

Применяем Тейлора.

4.69. Применение формулы Тейлора к раскрытию неопределенностей.

Отличный пример из учебника:

$$\lim_{x \to 0} \frac{e^{-x^2/2} - \cos x}{x^4} = \frac{1}{12}$$

4.70. Критерий монотонности функции.

Нестрогая, критерий постоянства. Строгая, если проихводная $\geqslant 0$ и не принимает ноль ни на каком интервале.

4.71. Доказательство неравенств с помощью производной, примеры.

«если неравенство выполняется в начале и по производной, то выполняется и для всего промежутка».

4.72. Необходимое условие экстремума. Первое правило исследования критических точек.

Первое правило исследования критических точек — через первую проивоную

4.73. Второе правило исследования критических точек. Производные функции

Второе правило исследования критических точек — через n-ного порядка (чётное/нечётное)

(если все меньшего порядка (кроме самой функции) равны нулю, то записываем тейлора в форме пеано, смотрим на знак)

$$f(x)-f\left(x_{0}\right)=\left(x-x_{0}\right)^{n}\left(\frac{f^{(n)}\left(x_{0}\right)}{n!}+\varphi(x)\right)$$

Запишем по определении o(f), доопределим, юзанём стабилизацию знака

4.74. Лемма о трех хордах и односторонняя дифференцируемость выпуклой функции.

Лемма о трех хордах: Для двух точек внутри промежутка

односторонняя дифференцируемость выпуклой функции — есть конечные $f'_-(x), f'_+(x),$ причем $f'_-(x) \leqslant f'_+(x)$

— по определению через лемму (разностное отношение возрастает и ограничено, друг другом и по лемме).

4.75. Выпуклость и касательные. Опорная прямая.

Дифференцируемая выпукла \iff не ниже/выше любоу касательной Помним, что $f_-'(x), f_+'(x).$

Опорная прямая:

$$f(x_0) = \ell(x_0)$$
 и $f(x) \geqslant \ell(x)$ для всех $x \in \langle a, b \rangle$.

4.76. Критерии выпуклости функции.

- Дифференцируемая выпукла \Leftrightarrow производная возрастает

4.77. Неравенство Иенсена.

Выпуклая от взвешенного среднего не больше, чем взвешенное среднее f-ов.

Нормируем веса, показываем, что среднее в промежутке. f(x*) равно опорной прямой, заносим β под сумму внутри w_i , получаем опорная прямая * веса под суммой, но по выпклости это не больше f-ов.

4.78. Неравенства Юнга и Гёльдера.

Гёльдер — Обобщение КБШ для степенного среднего.

$$\left|\sum_{k=1}^n a_k b_k\right| \leqslant \left(\sum_{k=1}^n \left|a_k\right|^p\right)^{1/p} \left(\sum_{k=1}^n \left|b_k\right|^q\right)^{1/q}$$

Юнг — просто исполбзуется в доказательстве.

4.79. Неравенство Минковского и неравенство Коши между средними.

$$\left(\sum_{k=1}^{n} |a_k + b_k|^p\right)^{1/p} \leqslant \left(\sum_{k=1}^{n} |a_k|^p\right)^{1/p} + \left(\sum_{k=1}^{n} |b_k|^p\right)^{1/p}$$

4.80. Метод касательных.

Метод Ньютона в одномерном случае для решения уравнений, проводим касательные до посинения.

Первая и вторая производные сохраняют знак на [a,b] «в строгом смысле». Рассматриваем 4 случая, какой, чтобы не разойтись.

Подбираемся всегда с одной стороны.

Доказываем, что последовательность приближений имеет предел. Изза выпуклости она больше/меньше α , причём убывает/возрастает, то есть имеет предел β . Переходя к пределу, получаем:

$$\beta = \beta - \frac{f(\beta)}{f'(\beta)} \Longrightarrow \beta = \alpha$$

(так как только один корень)

Квадратичную сходимость доказываем через тейлоровское разложение функции и ограничнность $\left|\frac{f''}{f'}\right|$ или же |f''| и отделимость от нуля |f'|

Количество гарантированно правильных знаков увеличивается каждый раз в 2 раза (при $\to \infty$), причём можно пост-фактум определять правильность, имея информацию о новых знаках.

Был пример с нахождением $\frac{1}{7}$, умея лишь складывать и умножать.