§ 10. კვადრატული ფუნქცია. კვადრატული განტოლება და უტოლობა

I. კვადრატული ფუნქცია. მისი მნიშვნელობათა სიმრავლე და ზრდადობა-კლებადობის შუალედები. კვადრატული ფუნქცია ანუ სამწევრი განისაზღვრება ერთი x ცვლადის შემცველი ax^2+hx+c გამოსახულებით, სადაც a, b, c მოცემული ნამდვილი რიცხვებია და $a\neq 0$. ჩვენს მიზანს წარმოადგენს კვადრატული ფუნქციის გრაფიკის, მისი ფესვების და, ზოგადად, თვისებების შესწავლა. ამიტომ კვადრატული ფუნქციის ჩაწერისათვის გამოვიყენებთ შემდეგი ორივე ტიპის ჩანაწერს:

$$f(x) = ax^2 + bx + c. \tag{1}$$

$$y=ax^2+bx+c. (2)$$

(1) მოსახერხებელია როდესაც ხშირად გეჭირდება ფუნქციის სხვადასხვა მნიშვნელობის გამოთვლა; მაგალითად f(0)=c, f(1)=a+b+c და ა.შ. (2) სახე მოსახერხებელია გრაფიკთან დაკავშირებული საკითხების შესწავლისას, რადგან იგი დაკავშირებულია xoy კოორდინატთა სისტემასთან და გვიჩვენებს, რომ f ფუნქციის მნიშვნელობები უნდა გადაიზომოს y ღერძზე. (2) სახე წარმოადგენს ფუნქციის ზოგადი y=f(x) ჩანაწერის კონკრეტულ რეალიზაციას კვადრატული ფუნქციის შემთხვევაში.

კვადრატული ფუნქციის განსაზღვრის არეს წარმოადგენს R, რადგან ax^2+bx+c განსაზღვრულია ყოველი x რიცხვისათვის.

კვადრატული ფუნქციის გრაფიკის აგებისა და მნიშვნელობათა სიმრავლის დადგენის მიზნით, წინასწარ დავამტკიცოთ მისი რამდენიმე თვისება.

1) თუ კვადრატული ფუნქცია ორ განსხვავებულ წერტილში ტოლ მნიშვნელობას იღებს, მაშინ ეს წერტილები $x = -\frac{b}{2a}$ -ის სიმეტრიულად არიან განლაგებული.

დამტკიცება. ვთქვათ $x_1 \neq x_2$ და $f(x_1) = f(x_2)$. მაშინ

$$ax_1^2 + bx_1 + c = ax_2^2 + bx_2 + c$$
 გათილდება c იკვეცება (x_1-x_2) -ზე $a(x_1+x_2)=-b$ $\frac{x_1+x_2}{2}=-\frac{b}{2a}$

ბოლო ტოლობა გვიჩვენებს, რომ $-rac{b}{2a}$ არის x_1 და x_2 წერტილების შემაერთებელი მონაკვეთის შუა წერტილი.

2) როცა a>0 (a<0), $f(x)=ax^2+bx+c$ კვადრატული ფუნქცია კლებადია (ზრდადია) $\left(-\infty;-\frac{b}{2a}\right]$ შუალედზე და ზრდადია (კლებადია) $\left[-\frac{b}{2a};+\infty\right]$ შუალედზე.

დამტკიცემა. საკმარისია a>0 შემთხვევის განხილვა, რადგან a<0 შემთხვევა სრულად ანალოგიურია. ავიღოთ $-\infty< x_1< x_2\le -\frac{b}{2a}$. ცხადია,

$$\frac{x_1 + x_2}{2} < -\frac{b}{2a} \bowtie x_2 - x_1 > 0. \tag{3}$$

განვიხილოთ სხვაობა: $f(x_2)$ — $f(x_1)$ = $= ax_2^2 + bx_2 + c - ax_1^2 - bx_1 - c =$ $= a(x_2^2 - x_1^2) + b(x_2 - x_1) =$ $= (x_2 - x_1)[a(x_2 + x_1) + b] =$ $= 2a(x_2 - x_1) \left[\frac{x_2 + x_1}{2} + \frac{b}{2a} \right] < 0$ $= 2a(x_2 - x_1) \left[\frac{x_2 + x_1}{2} + \frac{b}{2a} \right] < 0$ $= 2a(x_2 - x_1) \left[\frac{x_2 + x_1}{2} + \frac{b}{2a} \right] < 0$ $= 2a(x_2 - x_1) \left[\frac{x_2 + x_1}{2} + \frac{b}{2a} \right] < 0$

ე.ი. f ფუნქცია კლებადია $\left(-\infty;-\frac{b}{2a}\right]$ -ზე. ანალოგიურად ვაჩვენებთ, რომ იგი ზრდადია $\left[-\frac{b}{2a};+\infty\right)$ შუალედზე.

გავითვალისწინოთ, რომ $f\left(-rac{b}{2a}
ight)=rac{4ac-b^2}{4a}$ და 1)-2) თვისებების გამოყენებით ავაგოთ კვადრატული ფუნქციის გრაფიკი.

კერ განვიხილოთ a>0 შემთხვევა. $\left(-\infty; -\frac{b}{2a}\right]$ -ზე ფუნქცია კლებულობს, $-\frac{b}{2a}$ წერტილში იღებს $\frac{4ac-b^2}{4a}$ მნიშვნელობას და $-\frac{b}{2a}$ -ს მარჯვნივ იზრღება, ამიტომ მივიღეთ წირი რომელსაც ეწოღება **პარაბოლა** (ნახ. 1), რომლის **სიმეტრიის ღერძი** არის $x=-\frac{b}{2a}$ წრფე, ხოლო **პარაბოლას წვეროს** კოორდინატებია $\left(-\frac{b}{2a}; \frac{4ac-b^2}{4a}\right)$. ამიტომ ამ შემთხვევაში (2) კვადრატული ფუნქციის მნიშვნელობათა სიმრავლე არის $\left[\frac{4ac-b^2}{4a}; +\infty\right)$; ფუნქციის უმცირესი მნიშვნელობა არის $\frac{4ac-b^2}{4a}$ და იგი მიიღწევა $x=-\frac{b}{2a}$ წერტილში. a>0 შემთხვევაში შტოები ყოველთვის ზემოთაა მიმართული.

როდესაც a<0, მაშინ კვადრატული ფუნქცია იზრდება $\left(-\infty; -\frac{b}{2a}\right]$ შუალედზე, $-\frac{b}{2a}$ წერტილში იღებს მაქსიმალურ მნიშვნელობას $\frac{4ac-b^2}{4a}$, შემდეგ კლებულობს $\left[-\frac{b}{2a}; +\infty\right)$ შუალედზე. ამგვარად, ამ შემთხვევაში გრაფიკი არის პარაბოლა, რომლის წვერო მდებარეობს $\left(-\frac{b}{2a}; \frac{4ac-b^2}{4a}\right)$ წერტილში, ხოლო

შტოები მიმართულია ქვემოთ; მნიშვნელობათა სიმრავლე არის $\left(-\infty;rac{4ac-b^2}{4a}
ight|$; მაქსიმალური **მ**ნიშვნელობა არის $\frac{4ac-b^2}{4a}$ და იგი მიიღწევა $x=-rac{b}{2a}$ წერტილში .

საბოლოოდ $y=ax^2+bx+c$ კვადრატული სამწევრის მონოტონურობის შუალედები არის (a-ს ნიშნის **მ**იუხედავად) $\left(-\infty; -\frac{b}{2a} \mid \cos \left[-\frac{b}{2a}; +\infty\right]\right)$.

ზოგჯერ საჭიროა f(x)= ax^2+bx+c სამწევრის უდიდესი და უმცირესი მნიშვნელობების განსაზღვრა რაიმე წინასწარ მოცემულ [s;t] სახის შუალედში. თუ [s;t] მთლიანად მდებარეობს მონოტონურობის რაიმე **შუ**ალედში, ანუ თუ $-\frac{b}{2a}
otin [s;t]$, მაშინ ამ შუალედზე სამწევრის უდიდესი და უმცირესი მნიშვნელობები მიიღწევა ბოლოებში, ანუ უნდა გამოვთვალოთ $f(s),\,f(t);$ მათ შორის უდიდესი არის f-ის მაქსიმუმი [s;t]-ზე, ხოლო უმცირესი — მინიმუმია ამავე შუალედზე. თუ $-rac{b}{2a}$ \in [s;t] , მაშინ $f\left(-rac{b}{2a}
ight)$ არის მაქსიმუმი (მინიმუმი) როცა a<0 (a>0), ხოლო მინიმუმი (მაქსიმუმი) მიიღწევა [s;t]-ს ერთ-ერთ ბოლოზე. რამდენიმე შესაძლო შემთხვევა ნაჩვენებია შემდეგ ნახაზებზე.

II. კვადრატული სამწევრის გაშლა მამრავლებად. კვადრატული განტოლების და უტოლობის ამოხსნა. ზოგიერთ შემთხვევაში შესაძლებელია კვადრატული სამწევრის გაშლა გამრავლებად:

სრული კვადრატის გამოყოფა

თუ b^2 —4ac≥0, კვადრატულ ფრჩხილებში კვადრატების სხვაობაა

აღვნიშნოთ $D=b^2-4ac$. D სიდიდეს დისკრიმინანტი ეწოდება და მის ნიშანზე არის დამოკიდებული ისევე როგორც კვადრატული სამ**წევრის მამრავლებად** გაშლადობა, აგრეთვე კვადრატული განტოლების და უტოლობის ამოხსნადობის საკითხი.

დისკრიმინანტს გეომეტრიული შინაარსიც გააჩნია. მისი გამოყენებით პარაბოლის წვეროს ორდინატი ასე ჩაიწერება: $-rac{D}{4a}$.

ვთქვათ D>0. როგორც ვნახეთ, როცა D>0, კვადრატული სამწევრისათვის სამართლიანია გაშლა:

$$ax^2+bx+c=a(x-x_1)(x-x_2),$$
 (4)

სადაც

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \quad x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$
 (5)

ცხადია, ორი განსხვავებული რიცხვი x_1 და x_2 წარმოადგენს **კვადრატული**

$$ax^2 + bx + c = 0, (6)$$

განტოლების ამონახსნებს, რადგან (4)-ის ძალით (6) იგივეა რაც

$$a(x-x_1)(x-x_2)=0$$

განტოლება, რომლის ფესვებია x_1 და x_2 .

კვადრატული უტოლობის ამოსახსნელად, D>0 შემთხვევაში გავარჩიოთ ორი შემთხვევა, a>0 და a<0 ჯერ განვიხილოთ a>0.

 $ax^2+bx+c>0$ უტოლობის ამონახსნთა სიმრავლეს წარმოადგენს $(-\infty;x_1)\cup(x_2;+\infty)$ (ნახ.4), რადგან აბსცისთა ღერძის ზემოთ მოთავსებული ნებისმიერი (x;y) წერტილისათვის y>0. ასევე, $ax^2+bx+c<0$ უტოლობის ამონახსნთა სიმრავლეა $(x_1;x_2)$ (6ახ. 5).

არამკაცრი უტოლობების ამონახსნების მისაღებად, მკაცრი უტოლობების ამონახსნებს ვუმატებთ x_1 და x_2 ფესვებს, ანუ $ax^2+bx+c\ge 0$ უტოლობის ამონახსნთა სიმრავლეა $(-\infty;x_1]\cup[x_2;+\infty)$, ხოლო $ax^2+bx+c\le 0$ უტოლობის ამონახსნთა სიმრავლეა $[x_1;x_2]$.

როდესაც a<0, გვაქვს:

უტოლობა	ამონახსნთა სიმრავლე
$ax^2+bx+c>0$	$(x_1;x_2)$
$ax^2+bx+c\geq 0$	$[x_1;x_2]$
$ax^2+bx+c<0$	$(-\infty;x_1)\cup(x_2;+\infty)$
$ax^2+bx+c\leq 0$	$(-\infty;x_1]\cup[x_2;+\infty)$

მაგალითი. ვიპოვოთ $x^2+3x+2=0$ კვადრატული განტოლების ფესვები, გავშალოთ იგი მამრავლებად, ავაგოთ $y=x^2+3x+2$ კვადრატული ფუნქციის გრაფიკი, ვიპოვოთ $x^2+3x+2>0$ კვადრატული უტოლობის ამონახსნთა სიმრავლე.

ამოხსნა. $ax^2+bx+c=x^2+3x+2$ ე.ი. ჩვენს მაგალითში a=1, b=3, c=2. $D=b^2-4ac=1$. რადგან a>0, გრაფიკი არის პარაბოლა, რომლის შტოები მიმართულია ზემოთ. პარაბოლის წვერო არის წყვილი $\left(-\frac{b}{2a}; -\frac{D}{4a}\right)=(-1,5;-0,25)$. -0,25 არის ამ კვადრატული ფუნქციის უმცირესი მნიშვნელობა. ზუსტი გრაფიკის ასაგებად ჩვენ გვჭირდება პარაბოლისა და საკოორდინატო ღერძების გადაკვეთის წერტილების პოვნა. აბსცისთა ღერძთან პარაბოლას საერთო აქვს ორი წერტილი, რადგან D>0, ესენია $(x_1;0)$ და $(x_2;0)$, სადაც x_1 და x_2 არის

$$x^2+3x+2=0$$

განტოლების ფესვები. (5)-ის თანახმად x_1 =-2 და x_2 =-1. ორდინატთა ღერძის ყოველი წერტილისათვის x=0, რისი ჩასმა კვადრატულ ფუნქციაში გვაძლევს y=2. ე.ი. (0;2) არის პარაბოლისა და ორდინატთა ღერძის გადაკვეთის წერტილი. ამგვარად, მოცემული კვადრატული ფუნქციის გრაფიკს აქვს ნახ. 6-ზე გამოსახული სახე. ამ ნახაზიდანვე ჩანს, რომ x^2 +3x+2>0 კვადრატული უტოლობის ამონახსნთა სიმრავლე არის ($-\infty$;-2) \cup (-1;+ ∞).

შევნიშნოთ, რომ კონკრეტულ მაგალითებში წვეროს y_0 ორდინატის (კვადრატული ფუნქციის \mathbf{z}_0 გარგებლობა $x_0 = -\frac{b}{2a}$ წერტილში) საპოვნელად მოსახერხებელია არა $y_0 = -\frac{D}{4a}$ ფორმულით არგებლობა, არამედ უშუალოდ x_0 -ის ჩასმა კვადრატული სამწევრის გამოსახულებაში.

მაგალითი. ვიპოვოთ $y=x^2-6x+10$ პარაბოლის წვერო.

ამოხსნა. $x_0 = -\frac{b}{2a} = 3$, $y_0 = 3^2 - 6.3 + 10 = 1$, ე.ი. პარაბოლის წვეროა (3;1) წერტილი.

ვთქვათ D=0. ამ შემთხვევაში კვადრატული სამწევრი გაიშლება შემდეგნაირად

$$ax^2+bx+c=a(x-x_0)^2$$
, (7)

ოდაც

$$x_0 = -\frac{b}{2a}.$$

ცხადია, კვადრატულ განტოლებას

$$ax^2+bx+c=0$$

რომელიც ამ შემთხვევაში იგივეა, რაც

$$a(x-x_0)^2=0$$
,

აქვს ერთი ფესვი
$$x_0 = -rac{b}{2a}$$
 .

a-ს ნიშნის მიხედვით, უტოლობებს აქვთ შემდეგი ამონახსნები:

როცა *a*>0

უტოლობა	ამონახსნთა სიმრავლე
$ax^2+bx+c>0$	$(-\infty;x_0)\cup(x_0;+\infty)$
$ax^2+bx+c\ge 0$	R
$ax^2+bx+c<0$	Ø
$ax^2+bx+c\leq 0$	$\{x_0\}$

როცა a<0

უტოლობა	ამონახსნთა სიმრავლე
$ax^2+bx+c>0$	Ø
$ax^2+bx+c\ge 0$	{x ₀ }
$ax^2+bx+c<0$	$(-\infty;x_0)\cup(x_0;+\infty)$
$ax^2+bx+c\leq 0$	R

დასასრულ, განვიხილოთ $D{<}0$ შემთხვევა.

როდესაც a>0, პარაბოლის შტოები ზემოთაა მიმართული და პარაბოლის წვეროს ორდინატა $-\frac{L}{4}$ აგრეთვე დადებითია (რადგან -D>0), ამიტომ პარაბოლა არ კვეთს აბსცისთა დერძს, ანუ კვადრატუგანტოლებას

$$ax^2+bx+c=0$$

არა აქვს ნამდვილი ფესვები, კვადრატული სამწევრი ნამრავლად არ იშლება, კვადრატული უტოლობების

$$ax^2+bx+c>0$$
 gs $ax^2+bx+c\geq0$

ამონახსნთა სიმრავლე არის R, ხოლო კვადრატული უტოლობების

$$ax^2+bx+c<0$$
 gs $ax^2+bx+c\leq 0$

ამონახსნთა სიმრავლე ცარიელია.

ანალოგიურად, როცა a<0, მაშინ პარაბოლის შტოები მიმართულია ქვემოთ, წვეროც აბსცისა ღერძის ქვემოთაა, პარაბოლა არ კვეთს აბსცისთა ღერძს და ამიტომ $ax^2+bx+c=0$ კვადრატულ განტოლებს ამონახსნი არა აქვს; კვადრატული სამწევრი ნამრავლად არ იშლება, კვადრატული უტოლობების

$$ax^2+bx+c>0$$
 go $ax^2+bx+c\geq 0$

ამონახსნთა სიმრავლე ცარიელია, ხოლო კვადრატული უტოლობების

$$ax^2+bx+c<0$$
 gs $ax^2+bx+c\leq 0$

ამონახსნთა სიმრავლე არის $R.\,$

III. არასრული კვადრატული განტოლებები. კვადრატული განტოლების ამოხსნა ლუწი *ხ* კოეფიციენტის შემთხვევაში. როდესაც *ხ* და *c* რიცხვებიდან ერთი მაინც ნულია, მაშინ ანტოლებას ეწოდება არასრული სახის კვადრატული განტოლება. არასრული კვადრატული განტოლების პოხსნა მიზანშეწონილია (5) ფორმულების გამოყენების გარეშე. განვიხილოთ შემდეგი შემთხვევები:

I) თუ h≠0 და c=0 გვექნება

$$ax^2+bx=0 \Leftrightarrow x(ax+b)=0$$

აიდანაც x_1 =0, x_2 = $-\frac{b}{a}$.

2) თუ *ხ=0* და *c≠0 გვექნება*

$$ax^2+c=0 \Leftrightarrow x^2=-\frac{c}{a}$$

აიდანაც ჩანს, რომ განტოლებას ამონახსნი არ გააჩნია, როდესაც a-სა და c-ს აქეთ ართნაირი ნიშანი, ხოლო როდესაც მათ მოპირდაპირე ნიშნები აქვთ, მაშინ განტოლების ამონახსნებია:

$$x_1 = \sqrt{-\frac{c}{a}}, x_2 = \sqrt{-\frac{c}{a}}.$$

3) თუ b=c=0 გვექნება $ax^2=0$ და მისი ამონახსნია x=0.

გან ვიხილოთ კვადრატული განტოლება

$$ax^2 + bx + c = 0, (8)$$

ლუწი b კოეფიციენტით $b=2k,\ k\in \mathbb{Z}$. როგორც ვიცით, როცა $D\geq 0$, (8)-ის ამონახსნები არის:

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \quad x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$
 (9)

(როცა $D=0, x_1=x_2$). (9)-ში გავითვალისწინოთ, რომ b=2k. მივიღებთ:

$$x_{I} = \frac{-2k - \sqrt{4k^2 - 4ac}}{2a} = \frac{-k - \sqrt{k^2 - ac}}{a},$$
 (10)

და ანალოგიურად ვღებულობთ, რომ მეორე ფესვი გამოითვლება ფორმულით

$$x_2 = \frac{-k + \sqrt{k^2 - ac}}{a}.$$
 (11)

(10) და (11) ფორმულებით კვადრატული განტოლების ფესვების გამოთვლა უფრო მოსახერხებელია (9)-სთან შედარებით. რადგან $\frac{b}{2}$ -ის კვადრატი გაცილებით მცირეა, ვიდრე b-ს კვადრატი. გარდა ამისა თუ a=1, (10) და (11) იძლევა ფესვებს გაყოფის მოქმედების გარეშე.

მაგალითი. ამოვხსნათ კვადრატული განტოლება: $x^2+32x+156=0$.

ამოხსნა. გამოვიყენოთ (10) და (11): $x=-16\pm\sqrt{256-156}=-16\pm10$. ე.ი. განტოლების ფესვებია $x_1=-26$, $x_2=-6$.

IV. ბიკვადრატული განტოლება. ბიკვადრატული არის

$$ax^4 + bx^2 + c = 0 (12)$$

სახის განტოლება, სადაც $a,\ b,\ c$ ნამდვილი რიცხვებია და $a\neq 0,\ x$ ცვლადი. ბიკვადრატული განტოლებ იხსნება $y=x^2$ აღნიშვნის გამოყენებით, რომლის შედეგად, (12) იღებს კვადრატული განტოლების სახეს:

$$ay^2 + by + c = 0.$$
 (13)

თუ $D=b^2-4ac$ <0, მაშინ ბიკვადრატულ განტოლებას ამონახსნი არ გააჩნია ნამდვილ რიცხვებში.

თუ D=0, მაშინ (13)-დან ვებულობთ $y=-rac{b}{2a}$; რაც ნიშნავს, რომ ბიკვადრატული განტოლები ამონახსნი მიიღება

$$x^2 = -\frac{b}{2a}$$

განტოლების ამოხსნით.

თუ D>0, მაშინ (13)-დან ვებულობთ $y_1=\frac{-b-\sqrt{D}}{2a}$, $y_2=\frac{-b+\sqrt{D}}{2a}$ და ბიკვადრატულ განტოლების ამონახსნებს მივიღებთ

$$x^2 = \frac{-b - \sqrt{D}}{2a}, \quad x^2 = \frac{-b + \sqrt{D}}{2a}$$

კვადრატული განტოლებების ამოხსნის შემდეგ.

მაგალითი. ამოვხსნათ ბიკვადრატული განტოლება: $2x^4 - 9x^2 + 4 = 0$.

ამოხსნა. აღვნიშნოთ $y=x^2$ და მივიღებთ $2y^2-9y+4=0$ განტოლებას, რომლის ამონახსნებია

$$y_1 = \frac{9 - \sqrt{81 - 32}}{4} = \frac{1}{2}, \quad y_2 = \frac{9 + \sqrt{81 - 32}}{4} = 4$$

ამგვარად

$$x^2 = \frac{1}{2}$$
, $x^2 = 4$.

ე.ი. განტოლების ფესვებია

$$x_1 = -\frac{1}{\sqrt{2}}, x_2 = \frac{1}{\sqrt{2}}, x_3 = -2, x_4 = 2.$$

V. ვიეტის თეორემა და მისი რამდენიმე გამოყენება.

თეორემა (ვიეტის). თუ $ax^2+bx+c=0$ კვადრატული განტოლების დისკრიმინანტი D>0მაშინ განტოლების ამონახსნთა ჯამი არის $-rac{b}{a}$, ხოლო ნამრავლი არის $rac{c}{a}$:

$$\begin{cases} x_1 + x_2 = -\frac{b}{a} \\ x_1 \cdot x_2 = \frac{c}{a} \end{cases}$$

შენიშვნა. ვიეტის თეორემა სამართლიანია D=0 შემთხვევაშიც, ოღონდ ამ შემთხვევაში უნდა ჩავთვალოთ რომ: x_1 = x_2 = x_0 = $-\frac{h}{2a}$.

სამართლიანია ვიეტის თეორემის შებრუნებული

თეორემა. თუ $p,\,q,x_1$ და x_2 ისეთებია, რომ

$$x_1 + x_2 = -p$$
 go $x_1 x_2 = q$

მაშინ x1 და x2 არის

$$x^2 + px + q = 0$$

განტოლების ამონახსნები.

ვიეტის თეორემის გამოყენებით ბევრი საინტერესო ამოცანა იხსნება. განვიხილოთ ზოგიერთი მათგანი.

მაგალითი 1. $2x^2+5x-3=0$ განტოლების ამოუხსნელად იპოვეთ $x_1+x_2+x_1x_2$ და $x_1^2+x_2^2$, სადაც x_1 და x_2 არის მოცემული განტოლების ფესვები.

ამოხსნა. ვიეტის თეორემის თანახმად, $x_1+x_2=-\frac{5}{2}$, $x_1x_2=-\frac{3}{2}$ მაშინ

$$x_1 + x_2 + x_1 x_2 = -\frac{5}{2} - \frac{3}{2} = -4$$
, $x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1 x_2 = \left(-\frac{5}{2}\right)^2 + 3 = 9,25$.

მაგალითი 2. როდის აქვს $ax^2+bx+c=0$ განტოლებას მოდულით ტოლი და ნიშნით განსხვავებული ფესვები? ამოხსნა. პირველ ყოვლისა, ორი ფესვის არსებობისათვის საჭიროა პირობა D>0. პირობის თანახმად $x_1+x_2=0$ $\Leftrightarrow -\frac{b}{a}=0 \Leftrightarrow b=0$. ე.ი. უნდა შესრულდეს D>0 და b=0 პირობები, ანუ ac<0, b=0 პირობები.

მაგალითი 3. როდის აქვს $ax^2+bx+c=0$ განტოლებას დადებითი ფესვები?

ამოხსნა. ფესვების არსებობის პირობასთან (D>0) ერთად უნდა გამოვიყენოთ ვიეტის თეორემა: $x_1>0$ და $x_2>0$ -დან ვიღებთ

$$x_1+x_2=-\frac{b}{a}>0 \text{ gs } x_1x_2=\frac{c}{a}>0$$

ე.ი. უნდა შესრულდეს $D\!\!>\!\!0,\,rac{b}{a}\!\!<\!\!0,\,rac{c}{a}\!\!>\!\!0$ პირობები.

მაგალითი 4. როდის აქვს $ax^2+bx+c=0$ განტოლებას სხვადასხვა ნიშნის ფესვები?

ამოხსნა. საჭიროა შესრულდეს $\frac{c}{a} < 0$, ან რაც იგივეა ac < 0. ამ შემთხვევაში D > 0 პირობის შემოწმება საჭირო არაა, რადგან თუ ac < 0, მაშინ იგი ავტომატურად სრულდება.

VI. რამდენიმე საინტერესო ამოცანა. ხშირად გვხვდება ამოცანები, რომლებშიც მოცემულია $y=ax^2+bx+c$ ფუნქციის გრაფიკის სხვადასხვა წრფეებთან (მათ შორის საკოორდინატო ღერძებთან) თანაკვეთის წერტილები, რომელთა მიხედვით უნდა დავადგინოთ a,b,c კოეფიციენტების მნიშვნელობები. შემდეგი ამოცანა ამ ტიპისაა.

მაგალითი 1. ნახაზზე გამოსახული $y=ax^2+bx+c$ ფუნქციის გრაფიკის საკოორდინატო ღერძებთან თანაკვეთის წერტილებით იპოვეთ $a,\ b,\ c$ -ს მნიშვნელობები.

ამოხსნა. ნახაზის მიხედვით, როცა x=0, მაშინ y=-2, ანუ, თუ ამ მნიშვნელობებს ჩავსვამთ y= ax^2 +bx+c-ში, c=-2. ე.ი. ფუნქცია არის y= ax^2 +bx-2 და მისი ფესვებია x_1 =-1 და x_2 =3, ანუ თუ ფუნქციაში ჩავსვამთ x_1 =-1 და x_2 =3 მნიშვნელობებს, მივიღებთ:

$$\begin{cases} a-b-2=0\\ 9a+3b-2=0, \end{cases}$$

რისი ამოხსნაც გვაძლევს $a=\frac{2}{3}$, $b=-\frac{4}{3}$.

შემდეგ ამოცანაში ვნახავთ, თუ როგორ ხდება ორი კვადრატული ფუნქციის გრაფიკების თანაკვეთის წერტილების განსაზღვრა. იგივე მეთოდი გამოიყენება მაშინაც, თუ ერთ-ერთი ფუნქცია წრფივია. მონაცემების მიხედვით, განსხვავებული ფუნქციების გრაფიკების თანაკვეთის წერტილების რაოდენობა შეიძლება იყოს ნული, ერთი ან ორი.

მაგალითი 2. მოცემულია ორი კვადრატული ფუნქცია: $y=2x^2+3x+4$ და $y=x^2-x+1$. იპოვეთ მათი გრაფიკების თანაკვეთის წერტილები.

ამოხსნა. თანაკვეთის წერტილებში *y* იღებს ერთი და იგივე მნიშვნელობებს, ამიტომ თანაკვეთის წერტილებში აბსცისა x აკმაყოფილებს იმ კვადრატულ განტოლებას, რომელიც მიიღება მოცემული კვადრატული ფუნქციების გატოლების შედეგად:

$$(2x^2+3x+4)=(x^2-x+1) \Leftrightarrow x^2+4x+3=0.$$

ამიტომ თანაკვეთის წერტილთა აბსცისებია x_1 =-3 და x_2 =-1. თანაკვეთის წერტილთა ორდინატები მიიღება x_1 =-3 და x_2 =-1 მნიშვნელობების ჩასმით ერთ-ერთ კვადრატულ ფუნქციაში (სულ ერთია რომელში):

$$y_1=2\cdot(-3)^2+3\cdot(-3)+4=13$$
 gs $y_2=2\cdot(-1)^2+3\cdot(-1)+4=3$

ე.ი. გრაფიკთა თანაკვეთის წერტილებია: (-3;13) და (-1;3).

ფუნქციებს, რომლებსაც ჩვენ განვიხილავთ, აქვთ ერთი ძალიან საყურადღებო თვისება: თუ რაიმე შუალედზე ფუნქცია მიიღებს ორ განსხვავებულ y_1 და y_2 მნიშვნელობას, მაშინ ეს ფუნქცია იგივე შუალედზე მიიღებს ყველა მნიშვნელობას y_1 -სა და y_2 -ს შორის. კერძოდ, თუ ჩვენ ვიპოვით რაიმე შუალედზე ფუნქციის უდიდეს და უმცირეს მიშვნელობებს, მაშინ გვეცოდინება ყველა მნიშვნელობა, რომლის მიღებაც შეუძლია ფუნქციას მოცემულ შუალედზე.

მაგალითი 3. რამდენი მთელი მნიშვნელობა შეიძლება მიიღოს $f(x)=x^2+2x-3$ კვადრატულმა ფუნქციამ, თუ -4,2≤x≤3,1?

ამოხსნა. $f(x)=x^2+2x-3$ კვადრატული ფუნქციის გრაფიკია პარაბოლა, რომლის წვერო არის (-1;-4); რადგან $-1 \in [-4,2;3,1]$, ამიტომ f ფუნქციის მინიმალური მნიშვნელობა ამ შუალედზე ემთხვევა პარაბოლის წვეროს ორდინატს და არის $f_{\min}=f(-1)=-4$. მაქსიმალურ მნიშვნელობას ფუნქცია მიიღებს შუალედის ერთერთ ბოლოზე. რადგან

$$f(-4,2)=17,64-8,4-3=6,24$$
, $f(3,1)=9,61+6,2-3=12,81$,

ამიტომ $f_{\text{max}} = f(3,1) = 12,81$.

ამგვარად [-4,2; 3,1] შუალედზე f ფუნქცია მიიღებს ყველა მნიშვნელობას -4-დან 12,81-ის ჩათვლით. ამათ შორის მთელი მნიშვნელობები არის:

სულ 17 განსხვავებული მთელი მნიშვნელობა.

იმისათვის, რომ შევამოწმოთ, არის თუ არა მოცემული p რიცხვი მოთავსებული $ax^2+bx+c=0$ კვადრატული განტოლების ფესვებს შორის (ვგულისხმობთ $a\neq 0$), არ არის აუცილებელი კვადრატულ განტოლების ამოხსნა. ამისათვის საკმარისია დავრწმუნდეთ, რომ f(p)<0 როცა a>0, ან f(p)>0 როცა a<0 სადაც $f(x)=ax^2+bx+c$. ეს ფაქტი კარგად ჩანს შემდეგ ორ ნახაზზე.

ორივე შემთხვევა შეგვიძლია გავაერთიანოთ ერთ პირობაში: $af(p){<}0$. ეს ფაქტი, ვიეტის თეორემასთან ერთად, საკმარისია შემდეგი ამოცანების ამოსახსნელად.

მაგალითი 4. $ax^2+bx+c=0$ კვადრატული განტოლების ამოუხსნელად შევამოწმოთ მისი ფესვები ნაკლებია თუ არა მოცემულ p რიცხვზე.

ამოხსნა. იმისათვის, რომ p მეტი იყოს f(x)=0 განტოლების (f(x)= ax^2+bx+c) ორივე ფესვზე, საკმარისია შემდეგი პირობების შესრულება:

მაგალითი 5. ax^2+bx+c კვადრატული განტოლების ამოუხსნელად შევამოწმოთ მოთავსებულია თუ არა მისი ფესვები (p;q) ღია შუალედში.

ამოხსნა. კვლავ აღვნიშნოთ $f(x)=ax^2+bx+c$. იმისათვის, რომ f(x)=0 განტოლების ფესვები მოთავსებული იყოს (p;q) შუალედში, საკმარისია:

$$D>0$$
 ორი ფესვის არსებობის პირობა, p არაა ფესვებს შორის q არაა ფესვებს შორის p არაა ფესვებს შორის p ნაკლებია წვეროს აბსცისაზე და p მეტია წვეროს აბსცისაზე

პარაგრაფის ბოლოს მიზანშეწონილად მიგვაჩნია მოვიყვანოთ $f(x)=ax^2+bx+c$ კვადრატული ფუნქციის შემდეგი ძირითადი თვისებები:

1) განსაზღვრის არეა D(f) =(-\infty; +\infty);

2) მნიშვნელობათა სიმრავლეა
$$E(f) = \begin{cases} [y_0; +\infty), & \text{როცა} & a > 0 \\ (-\infty; y_0], & \text{როცა} & a < 0; \end{cases}$$

- 3) ფუნქციის გრაფიკია პარაბოლა:
 - ა) წვეროს კოორდინატებია $x_0=-rac{b}{2a}$, $y_0=rac{4ac-b^2}{4a}$, შევნიშნოთ რომ, როცა კვადრატულ სამწევრს ფქსვები გააჩნია x_0 -ის გამოთვლა შეიძლება შემდეგნაირად $x_0=rac{x_1+x_2}{2}$.
 - a>0, a>0, a>0, a>0, a<0, a<0,
 - გ) პარაბოლა oy ღერძს კვეთ (0;c) წერტილში;
 - დ) პარაბოლა ox ღერძს კვეთ ორ $(x_1 \ cos \ x_2)$ წერტილში. $x_1 \ cos \ x_2$ არის $ax^2+bx+c=0$ განტოლების ამონახსნებია. პარაბოლა ეხება ox ღერძს x_0 წერტილში, თუ x_0 არის

 $ax^2+bx+c=0$ განტოლების ერთადერთი ამონახსნი. პარაბოლა არ გადაკვეთს oა ღერძს, თუ $ax^2+bx+c=0$ განტოლებას ამონახსნი არ გააჩნია

- 4) როცა a>0, ფუნქცია ზრდადია $(x_0;+\infty)$ შუალედში და კლებადია , $(-\infty;x_0)$ შუალედში როცა a<0, ფუნქცია ზრდადია $(-\infty;x_0)$ შუალედში და კლებადია $(x_0;+\infty)$ შუალედში;
- 5) როცა a>0, ფუნქცია ღებულობს მინიმალურ მნიშენელობას x_0 წერტილში და ქამნიშენელობაა y_0 . როცა a<0, ფუნქცია ღებულობს მაქსიმალურ მნიშენელობას x_0 წერტილში და ქამნიშენელობას x_0
- 6) კვადრატული ფუნქცია ყველა თავის მნიშვნელობას მნიშვნელობათა სიმრავლიდას ღებულობს ორ სხვადასხვა წერტილში გარდა y_0 -სა, რომელსაც ღებულობს მხოლოდ x_0 ში;
- 7) როცა კვალრატულ ax^2+bx+c სამწევრს ორი x_1 და x_2 ფესვი აქვს, ადგილი აქვს შემდეგ წარმოდგენას:

$ax^2+bx+c=a(x-x_1)(x-x_2);$

8) როცა კვადრატულ ax^2+bx+c სამწევრს ერთი x_0 ფესვი აქვს, ადგილი აქვს შემდეგ წარმოდგენას:

 $ax^2+bx+c=a(x-x_0)^2$.