附录A z变换表

F(s)	f(t)	F(z)
e^{-ksT}	$\delta(t-kT)$	z ^{-k}
	 	
1	$\delta(t)$	1 或 z ⁻⁰
$\frac{1}{s}$	1(t)	$\frac{z}{z-1}$
$\frac{1}{s^2}$	<i>t</i> .	$\frac{Tz}{(z-1)^2}$
$\frac{1}{s^3}$	$\frac{1}{2!}t^2$	$\frac{T^2z(z+1)}{2(z-1)^3}$
$\frac{1}{s^4}$	$\frac{1}{3!}t^3$	$\frac{T^{3}(z^{2}+4z+1)z}{6(z-1)^{4}}$
$\frac{1}{s^{k+1}}$	$\frac{1}{k!}t^k$	$\lim_{a\to 0} \frac{(-1)^k}{k!} \frac{\partial^k}{\partial a^k} \left(\frac{z}{z - e^{-aT}} \right)$
$\frac{1}{s - (1/T) \ln a}$	$a^{\iota/T}$	$\frac{z}{z-a}$
$\frac{1}{s+a}$	e ^{-at}	$\frac{z}{z - e^{-aT}}$
$\frac{1}{(s+a)^2}$	te ^{-ai}	$\frac{Tz\mathrm{e}^{-aT}}{(z-\mathrm{e}^{-aT})^2}$
$\frac{1}{(s+a)^3}$	$\frac{t^2}{2}e^{-at}$	$\frac{T^2 e^{-aT} z}{2(z - e^{-aT})^2} + \frac{T^2 e^{-2aT} z}{(z - e^{-aT})^3}$
$\frac{1}{(s+a)^{k+1}}$	$\frac{t^k}{k!}e^{-at}$	$\frac{(-1)^k}{k!} \frac{\partial^k}{\partial a^k} \left(\frac{z}{z - e^{-aT}} \right)$
$\frac{a}{s(s+a)}$	1 – e ^{-at}	$\frac{z(1 - e^{-aT})}{(z - 1)(z - e^{-aT})}$
$\frac{\omega_0}{s^2 - \omega_0^2}$	$\sinh(\omega_0 t)$	$\frac{z \sinh(\omega_0 T)}{z^2 - 2z \cosh(\omega_0 T) + 1}$
$\frac{s}{s^2 - \omega_0^2}$	$\cosh(\omega_{_0}t)$	$\frac{z[z-\cosh(\omega_0 T)]}{z^2-2z\cosh(\omega_0 T)+1}$
$\frac{\omega_0^2}{s(s^2-\omega_0^2)}$	$\cosh(\omega_0 t) - 1$	$\frac{z[z-\cosh(\omega_0 T)]}{z^2-2z\cosh(\omega_0 T)+1}-\frac{z}{z-1}$

续表

		
F(s)	f(t)	F(z)
$\frac{\omega_0^2}{s(s^2+\omega_0^2)}$	$1-\cos(\omega_0 t)$	$\frac{z}{z-1} - \frac{z[z-\cos(\omega_0 T)]}{z^2 - 2z\cos(\omega_0 T) + 1}$
$\frac{\omega_0}{(s+a)^2+\omega_0^2}$	$e^{-at}\sin(\omega_0 t)$	$\frac{z\mathrm{e}^{-aT}\sin(\omega_0 T)}{z^2 - 2z\mathrm{e}^{-aT}\cos(\omega_0 T) + \mathrm{e}^{-2aT}}$
$\frac{s+a}{(s+a)^2+\omega_0^2}$	$e^{-at}\cos(\omega_0 t)$	$\frac{z^2 - ze^{-aT}\cos(\omega_0 T)}{z^2 - 2ze^{-aT}\cos(\omega_0 T) + e^{-2aT}}$
$\frac{a^2}{s(s+a)^2}$	$1-(1+at)e^{-at}$	$\frac{z}{z-1} - \frac{z}{z - e^{-aT}} - \frac{aTe^{-aT}z}{(z - e^{-aT})^2}$
$\frac{a^2(s+b)}{s(s+a)^2}$	$b - be^{-at} + a(a - b)te^{-at}$	$\frac{bz}{z-1} - \frac{bz}{z - e^{-aT}} + \frac{a(a-b)Te^{-aT}z}{(z - e^{-aT})^2}$
$\frac{a^3}{s^2(s+a)^2}$	$at-2+(at+2)e^{-at}$	$\frac{(aT+2)z-2z^2}{(z-1)^2} + \frac{2z}{z-e^{-aT}} + \frac{aTe^{-aT}z}{(z-e^{-aT})^2}$
$\frac{(a-b)^2}{(s+b)(s+a)^2}$	$e^{-bt} - e^{-at} + (a-b)te^{-at}$	$\frac{z}{z - e^{-bT}} - \frac{z}{z - e^{-aT}} + \frac{(a - b)Te^{-aT}z}{(z - e^{-aT})^2}$
$\frac{(a-b)^2(s+c)}{(s+b)(s+a)^2}$	$(c-b)e^{-bt} + (b-c)e^{-at} - (a-b)(c-a)te^{-at}$	$\frac{(c-b)z}{z-e^{-bT}} + \frac{(b-c)z}{z-e^{-aT}} - \frac{(a-b)(c-a)Te^{-aT}z}{(z-e^{-aT})^2}$
$\frac{a^2b}{s(s+b)(s+a)^2}$	$1 - \frac{a^{2}}{(a-b)^{2}} e^{-bt} + \frac{ab + b(a-b)}{(a-b)^{2}} e^{-at} + \frac{ab}{a-b} t e^{-at}$	$\frac{z}{z-1} - \frac{a^2 z}{(a-b)^2 (z - e^{-bT})} + \frac{[ab+b(a-b)]z}{(a-b)^2 (z - e^{-aT})} + \frac{abTe^{-aT}z}{(a-b)(z - e^{-aT})^2}$
$\frac{a^2b(s+c)}{s(s+b)(s+a)^2}$	$c + \frac{c^2(b-c)}{(a-b)^2} e^{-bt} +$ $\frac{ab(c-a) + bc(a-b)}{(a-b)^2}$ $e^{-at} + \frac{ab(c-a)}{a-b} t e^{-at}$	$\frac{cz}{z-1} + \frac{a^{2}(b-c)z}{(a-b)^{2}(z-e^{-bT})} + \frac{[ab(c-a)+bc(a-b)]z}{(a-b)^{2}(z-e^{-aT})} + \frac{ab(c-a)Te^{-aT}z}{(a-b)(z-e^{-aT})^{2}}$
$\frac{b-a}{(s+a)(s+b)}$	e ^{-ai} – e ^{-bi}	$\frac{z}{z - e^{-aT}} - \frac{z}{z - e^{-bT}}$
$\frac{(b-a)(s+c)}{(s+a)(s+b)}$	$(c-a)e^{-at} + (b-c)e^{-bt}$	$\frac{(c-a)z}{z-e^{-aT}} + \frac{(b-c)z}{z-e^{-bT}}$
$\frac{ab}{s(s+a)(s+b)}$	$1 + \frac{b}{a-b} e^{-at} - \frac{a}{a-b} e^{-bt}$	$\frac{z}{z-1} + \frac{bz}{(a-b)(z-e^{-aT})} - \frac{az}{(a-b)(z-e^{-bT})}$
	•	

14	_
45	=
24	1

F(s)	f(t)	F(z)
$\frac{ab(s+c)}{s(s+a)(s+b)}$	$c + \frac{b(c-a)}{a-b}e^{-at} + \frac{a(b-c)}{a-b}e^{-bt}$	$\frac{cz}{z-1} + \frac{b(c-a)z}{(a-b)(z-e^{-aT})} + \frac{a(b-c)z}{(a-b)(z-e^{-bT})}$
$\frac{a^2b^2}{s^2(s+a)(s+b)}$	$abt - (a+b) - \frac{b^2}{a-b}e^{-at} + \frac{a^2}{a-b}e^{-bt}$	$\frac{abTz}{(z-1)^2} - \frac{(a+b)z}{z-1} - \frac{b^2z}{(a-b)(z-e^{-aT})} + \frac{a^2z}{(a-b)(z-e^{-bT})}$
$\frac{a}{s^2(s+a)}$	$t-\frac{1-e^{-at}}{a}$	$\frac{Tz}{(z-1)^2} - \frac{(1-e^{-aT})z}{a(z-1)(z-e^{-aT})}$
$\frac{1}{(s+a)(s+b)(s+c)}$	$\frac{e^{-at}}{(b-a)(c-a)} + \frac{e^{-bt}}{(a-b)(c-b)} + \frac{e^{-ct}}{(a-c)(b-c)}$	$\frac{z}{(b-a)(c-a)(z-e^{-aT})} + \frac{z}{(a-b)(c-b)(z-e^{-bT})} + \frac{z}{(a-c)(b-c)(z-e^{-cT})}$
$\frac{s+d}{(s+a)(s+b)(s+c)}$	$\frac{(d-a)}{(b-a)(c-a)}e^{-at} +$ $\frac{(d-b)}{(a-b)(c-b)}e^{-bt} +$ $\frac{(d-c)}{(a-c)(b-c)}e^{-ct}$	$\frac{(d-a)z}{(b-a)(c-a)(z-e^{-aT})} + \frac{(d-b)z}{(a-b)(c-b)(z-e^{-bT})} + \frac{(d-c)z}{(a-c)(b-c)(z-e^{-cT})}$
$\frac{abc}{s(s+a)(s+b)(s+c)}$	$1 - \frac{bc}{(b-a)(c-a)} e^{-at} - \frac{ca}{(c-b)(a-b)} e^{-bt} - \frac{ab}{(a-c)(b-c)} e^{-ct}$	$ \frac{z}{z-1} \frac{bcz}{(b-a)(c-a)(z-e^{-aT})} - \frac{caz}{(c-b)(a-b)(z-e^{-bT})} - \frac{abz}{(a-c)(b-c)(z-e^{-cT})} $
$\frac{abc(s+d)}{s(s+a)(s+b)(s+c)}$	$d - \frac{bc(d-a)}{(b-a)(c-a)} e^{-at} - \frac{ca(d-b)}{(c-b)(a-b)} e^{-bt} - \frac{ab(d-c)}{(a-c)(b-c)} e^{-ct}$	$ \frac{dz}{z-1} - \frac{bc(d-a)z}{(b-a)(c-a)(z-e^{-aT})} - \frac{ca(d-b)z}{(c-b)(a-b)(z-e^{-bT})} - \frac{ab(d-c)z}{(a-c)(b-c)(z-e^{-cT})} $
$\frac{\omega_0}{s^2 + \omega_0^2}$	$\sin(\omega_0 t)$	$\frac{z\sin(\omega_0 T)}{z^2 - 2z\cos(\omega_0 T) + 1}$
$\frac{s}{s^2+\omega_0^2}$	$\cos(\omega_0 t)$	$\frac{z[z-\cos(\omega_0 T)]}{z^2-2z\cos(\omega_0 T)+1}$