

FCC Test Report

FCC ID : 2AA8Z-XRPAD2

Equipment : 802.11n 3T3R Mini PCle Module

Model No. : WPEA-127NI

Brand Name : PerkinElmer

Applicant : PerkinElmer Medical Imaging

Address : In der Rehbach 22, 65396 Walluf, Germany

Standard : 47 CFR FCC Part 15.407

Received Date : Aug. 19, 2015

Tested Date : Aug. 26 ~ Oct. 06, 2015

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

ilac MRA

Page: 1 of 107

Report No.: FR581901 Report Version: Rev. 01

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	9
1.3	Test Setup Chart	
1.4	The Equipment List	10
1.5	Testing Applied Standards	11
1.6	Measurement Uncertainty	11
2	TEST CONFIGURATION	12
2.1	Testing Condition	12
2.2	The Worst Test Modes and Channel Details	
3	TRANSMITTER TEST RESULTS	14
3.1	Conducted Emissions	14
3.2	Emission Bandwidth	19
3.3	RF Output Power	23
3.4	Peak Power Spectral Density	26
3.5	Transmitter Radiated and Band Edge Emissions	31
3.6	Frequency Stability	104
4	TEST LABORATORY INFORMATION	107

Release Record

Report No.	Version	Description	Issued Date
FR581901	Rev. 01	Initial issue	Oct. 29, 2015

Report No.: FR581901 Page: 3 of 107

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.262MHz 46.77 (Margin -14.61dB) - QP	Pass
15.407(b) 15.209	Radiated Emissions	[dBuV/m at 3m]: 5725.00MHz 52.99 (Margin -1.01dB) - AV	Pass
15.407(a)	Emission Bandwidth	Meet the requirement of limit	Pass
15.407(e)	6dB bandwidth	Meet the requirement of limit	Pass
15.407(a)	RF Output Power	Max Power [dBm]: 5150~5250MHz: 16.78 5250~5350MHz: 16.99 5470~5725MHz: 14.67 5725~5850MHz: 14.45	Pass
15.407(a)	Peak Power Spectral Density	Meet the requirement of limit	Pass
15.407(g)	Frequency Stability	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Report No.: FR581901 Page: 4 of 107

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information					
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS
5150-5250 5250-5350 5470-5725 5725-5850	а	5180-5240 5260-5320 5500-5700 5745-5825	36-48 [4] 52-64 [4] 100-140 [11] 149-165 [5]	1 NOTE 3	6-54 Mbps
5150-5250 5250-5350 5470-5725 5725-5850	n (HT20)	5180-5240 5260-5320 5500-5700 5745-5825	36-48 [4] 52-64 [4] 100-140 [11] 149-165 [5]	3	MCS 0-23
5150-5250 5250-5350 5470-5725 5725-5850	n (HT40)	5190-5230 5270-5310 5510-5670 5755-5795	38-46 [2] 54-62 [2] 102-134 [5] 151-159 [2]	3	MCS 0-23

Note 1: RF output power specifies that Maximum Conducted Output Power.

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Note 3: 802.11a supports 1TX function only. TX diversity function is supportted for 11a function.

1.1.2 Antenna Details

Ant.	Brand	Model	Type	Connector	Operating Fr	equencies (M	Hz) / Antenna	a Gain (dBi)
No.	Brana	model	1,700	Commodici	5150~5250	5250~5350	5470~5725	5725~5850
1	Perkinelmer	CBSA	PCB	UFL	5.6	5.6	6.1	5.9

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	3.3Vdc from host
-------------------	------------------

1.1.4 Accessories

N/A

Report No.: FR581901 Page: 5 of 107

1.1.5 Channel List

802.11	a / HT20	802.1	1n HT40
Channel	Frequency(MHz)	Channel	Frequency(MHz)
36	5180	38	5190
40	5200	46	5230
44	5220	54	5270
48	5240	62	5310
52	5260	102	5510
56	5280	110	5550
60	5300	118	5590
64	5320	126	5630
100	5500	134	5670
104	5520	151	5755
108	5540	159	5795
112	5560		
116	5580		
120	5600		
124	5620		
128	5640		
132	5660		
136	5680		
140	5700		
149	5745		
153	5765		
157	5785		
161	5805		
165	5825		

Report No.: FR581901 Page: 6 of 107

1.1.6 Test Tool and Duty Cycle

Test Tool	art2, ver_2_14			
	Mode	Duty cycle (%)	Duty factor (dB)	
Duty Cycle and Duty Footor	11a	98.64%	0.06	
Duty Cycle and Duty Factor	HT20	98.10%	0.08	
	HT40	95.80%	0.19	

1.1.7 Power Setting

For Frequency band 5150-5250 MHz				
Modulation Mode	Test Frequency (MHz)	Power Set		
11a	5180	12.5		
11a	5200	12.5		
11a	5240	12.5		
HT20	5180	11.5		
HT20	5200	11.5		
HT20	5240	11.5		
HT40	5190	9		
HT40	5230	11.5		

For Frequency band 5250~5350 MHz				
Modulation Mode	Test Frequency (MHz)	Power Set		
11a	5260	12		
11a	5300	12		
11a	5320	12		
HT20	5260	11.5		
HT20	5300	11.5		
HT20	5320	11.5		
HT40	5270	11.5		
HT40	5310	11.5		

Report No.: FR581901 Page: 7 of 107

For Frequency band 5470~5725 MHz				
Modulation Mode	Test Frequency (MHz)	Power Set		
11a	5500	11		
11a	5580	11		
11a	5700	11		
HT20	5500	10		
HT20	5580	10		
HT20	5700	10		
HT40	5510	10		
HT40	5590	10		
HT40	5670	10		

For Frequency band 5725~5850 MHz				
Modulation Mode	Test Frequency (MHz)	Power Set		
11a	5745	11.5		
11a	5785	11.5		
11a	5825	11.5		
HT20	5745	9.5		
HT20	5785	9.5		
HT20	5825	9.5		
HT40	5755	8		
HT40	5795	9.5		

Report No.: FR581901 Page: 8 of 107

1.2 Local Support Equipment List

	Support Equipment List										
No.	Equipment	Brand	Model	S/N	FCC ID	Signal cable / Length (m)					
1	Notebook	DELL	Latitude E6430	74GB4X1	DoC						

1.3 Test Setup Chart

Report No.: FR581901 Page: 9 of 107

1.4 The Equipment List

Test Item	Conducted Emission	Conducted Emission										
Test Site	Conduction room 1 / (Conduction room 1 / (CO01-WS)										
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until							
EMC Receiver	R&S	ESCS 30	100169	Oct. 17, 2014	Oct. 16, 2015							
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 17, 2014	Nov. 16, 2015							
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Dec. 31, 2014	Dec. 30, 2015							
Measurement Software	AIIIIX		e3 6.120210k		NA							
Note: Calibration Inte	rval of instruments liste	d above is one year.										

Test Item	Radiated Emission				
Test Site	966 chamber 3 / (030	CH03-WS)			
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101498	Dec. 09, 2014	Dec. 08, 2015
Receiver	Agilent	N9038A	MY53290044	Oct. 21, 2014	Oct. 20, 2015
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-562	Jan. 19, 2015	Jan. 18, 2016
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Feb. 03, 2015	Feb. 02, 2016
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 10, 2014	Nov. 09, 2015
Loop Antenna	R&S	HFH2-Z2	11900	Nov. 10, 2014	Nov. 09, 2015
Preamplifier	EMC	EMC02325	980146	Oct. 21, 2014	Oct. 20, 2015
Preamplifier	Agilent	83017A	MY39501310	Dec. 23, 2014	Dec. 22, 2015
Pre-Amplifier	WM	TF-130N-R1	923365	Feb. 10, 2015	Feb. 09, 2016
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/4	Feb. 09, 2015	Feb. 08, 2016
RF cable-8M	HUBER+SUHNER	SUCOFLEX104	MY22601/4	Feb. 09, 2015	Feb. 08, 2016
RF cable-1M	HUBER+SUHNER	SUCOFLEX104	MY22624/4	Feb. 09, 2015	Feb. 08, 2016
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800-001	Feb. 09, 2015	Feb. 08, 2016
LF cable-3M	EMC	EMC8D-NM-NM-3000	131103	Feb. 09, 2015	Feb. 08, 2016
LF cable-13M	EMC	EMC8D-NM-NM-13000	131104	Feb. 09, 2015	Feb. 08, 2016
Measurement Software	AUDIX	e3	6.120210g	NA	NA
Note: Calibration Int	erval of instruments lis	sted above is one year.			

Report No.: FR581901 Page: 10 of 107

Test Item	RF Conducted									
Test Site	(TH01-WS)									
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until					
Spectrum Analyzer	R&S	FSV40	101063	Feb. 03, 2015	Feb. 02, 2016					
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Dec. 03, 2014	Dec. 02, 2015					
Power Meter	Anritsu	ML2495A	1218007	Oct. 20, 2014	Oct. 19, 2015					
Power Sensor	Anritsu	MA2411B	1207367	Oct. 20, 2014	Oct. 19, 2015					
Note: Calibration Inter	Note: Calibration Interval of instruments listed above is one year.									

1.5 Testing Applied Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.407

ANSI C63.10-2013

FCC KDB 789033 D02 General UNII Test Procedures New Rules v01

FCC KDB 644545 D03 Guidance for IEEE 802 11ac New Rules v01

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

FCC KDB 412172 D01 Determining ERP and EIRP v01r01

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty	Measurement Uncertainty							
Parameters	Uncertainty							
Bandwidth	±34.134 Hz							
Conducted power	±0.808 dB							
Frequency error	±34.134 Hz							
Power density	±0.463 dB							
Conducted emission	±2.670 dB							
AC conducted emission	±2.92 dB							
Radiated emission ≤ 1GHz	±3.99 dB							
Radiated emission > 1GHz	±5.52 dB							
Time	±0.1%							
Temperature	±0.6 °C							

Report No.: FR581901 Page: 11 of 107

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	22°C / 56%	Kevin Ma
Radiated Emissions	03CH03-WS	20-21°C / 60-64%	Aska Huang Warren Lee
RF Conducted	TH01-WS	22°C / 64%	Alex Huang

➤ FCC site registration No.: 390588➤ IC site registration No.: 10807C-1

2.2 The Worst Test Modes and Channel Details

F	requency band 5	150~5350 MHz / 5470~5725 MHz			
Test item	Modulation Mode	Test Frequency (MHz)	Data Rate	Test Configuration	
Conducted Emissions	HT40	5270	MCS 0		
Radiated Emissions ≤1GHz	HT40	5270	MCS 0		
	11a	5180 / 5200 / 5240 / 5260 / 5300 5320 / 5500 / 5580 / 5700	6 Mbps		
RF Output Power	HT20	5180 / 5200 / 5240 / 5260 / 5300 5320 / 5500 / 5580 / 5700	MCS 0		
	HT40	5190 / 5230/ 5270 / 5310 / 5510 5590 / 5670	MCS 0		
Radiated Emissions >1GHz	11a	5180 / 5200 / 5240 / 5260 / 5300 5320 / 5500 / 5580 / 5700	6 Mbps		
Emission Bandwidth	HT20	5180 / 5200 / 5240 / 5260 / 5300 5320 / 5500 / 5580 / 5700	MCS 0		
Peak Power Spectral Density	HT40	5190 / 5230/ 5270 / 5310 / 5510 5590 / 5670	MCS 0		
Frequency Stability	Un-modulation	5200			

NOTE:

1. The device supports diversity function that listed as below:

a.) 802.11a, 1Tx, chain 0 or chain 1 or chain 2.

After pre-testing, **chain 1** has the worst emission value, therefore the following test results came out from this.

 The antenna of EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.

Report No.: FR581901 Page: 12 of 107

	Frequency band 5725-5850 MHz										
Test item	Modulation Mode	Test Frequency (MHz)	Data Rate	Test Configuration							
Conducted Emissions	HT20	5785	MCS 0								
Radiated Emissions ≤1GHz	HT20	5785	MCS 0								
	11a	5745 / 5785 / 5825	6 Mbps								
RF Output Power	HT20	5745 / 5785 / 5825	MCS 0								
	HT40	5755 / 5795	MCS 0								
Radiated Emissions >1GHz	11a	5745 / 5785 / 5825	6 Mbps								
Emission Bandwidth 6dB bandwidth	HT20	5745 / 5785 / 5825	MCS 0								
Peak Power Spectral Density	HT40	5755 / 5795	MCS 0								
Frequency Stability	Un-modulation	5785									

NOTE:

- 1. The device supports diversity function that listed as below:
 - a.) 802.11a, 1Tx, chain 0 or chain 1 or chain 2.
 - After pre-testing, **chain 1** has the worst emission value, therefore the following test results came out from this.
- 2. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **Y-plane** results were found as the worst case and were shown in this report.

Report No.: FR581901 Page: 13 of 107

3 Transmitter Test Results

3.1 Conducted Emissions

3.1.1 Limit of Conducted Emissions

	Conducted Emissions Limit									
Frequency Emission (MHz)	Quasi-Peak	Average								
0.15-0.5	66 - 56 *	56 - 46 *								
0.5-5	56	46								
5-30	60	50								
Note 1: * Decreases with the logarith	m of the frequency.									

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz

3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR581901 Page: 14 of 107

3.1.4 Test Result of Conducted Emissions

Report No.: FR581901 Page : 15 of 107

Report No.: FR581901 Page: 16 of 107

		HT20	HT20 Test Freq. (MHz) 5785									
wer Phase		Line										
	80 Level (dB	uV)										
	70								CI	SPRICN	S/VCCI-E	
	60											
	50	€i.							CISPI	RICNSIV	CCI-B A	<u>′</u>
	40		8 1.			l			1	Ju Pan	۸۸۸۸	
	30			4		ALANIA BANKAN	Happahling 1	AND THE RESERVE OF THE PARTY OF		/ Vilen	74.14	
	20		1 1	MANINAM	WITT .	_	,W,	N	<u> </u>		1	<u>/</u>
	10											
	0											
	0.150.2		0.5	1	Frequ	2 ency (MH		5	10		20	30
	Fred	I Level	Limit Line	Over Limit	Read Level	LISN factor	cable loss	Remark				
	MH 2	z dBuV	dBu∀	dB	dBuV	dB	dB					
1 2	0.196 0.196	45.61	63.77	-19.27 -18.16	34.34 45.45	0.07 0.07	0.09	Average QP				
3 4	0.255	5 40.46	61.60		29.84	0.07	0.10	Average QP				
5 6@		42.73	59.75			0.07	0.10	Average QP				
	0.452	2 24.51 2 36.15	56.84	-22.33 -20.69		0.07 0.07	0.12	_				
7 8	2.309	9 23.97 9 31.20		-22.03 -24.80		0.10	0.25	Average QP				
8 9	2.309			-19.44	30.09	0.27	0.20					
8	2.309 14.828 14.828			-24.10		0.27	0.20	QP				

Report No.: FR581901 Page: 17 of 107

Report No.: FR581901 Page: 18 of 107

3.2 Emission Bandwidth

3.2.1 Limit of Emission Bandwidth

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

3.2.2 Test Procedures

26dB Bandwidth

- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set the VBW > RBW, Detector = Peak.
- 3. Trace mode = max hold.
- 4. Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

Occupied Bandwidth

- 1. Set RBW = 1 % to 5 % of the OBW
- 2. Set VBW ≥ 3 RBW
- 3. Sample detection and single sweep mode shall be used
- 4. Use the 99 % power bandwidth function of the instrument

6dB Bandwidth

- 1. Set RBW = 100kHz, VBW = 300kHz
- 2. Detector = Peak, Trace mode = max hold.
- 3. Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

3.2.3 Test Setup

Report No.: FR581901 Page: 19 of 107

3.2.4 Test Result of Emission Bandwidth

	For Frequency band 5150~5250 MHz											
BA - d -		Freq.	2	6dB Band	width (MHz	<u>z)</u>	9	99% Bandy	vidth (MHz	:)		
Mode	N _{TX}	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3		
11a	1	5180		25.33				17.18				
11a	1	5200		24.70				17.28				
11a	1	5240		25.22				17.28				
HT20	3	5180	25.33	26.32	25.39		18.18	18.11	18.13			
HT20	3	5200	25.16	25.74	25.16		18.23	18.19	18.10			
HT20	3	5240	25.57	26.26	25.91		18.38	18.16	18.15			
HT40	3	5190	54.49	54.84	51.01		38.38	37.90	37.96			
HT40	3	5230	53.80	60.99	51.48		38.08	37.78	37.90			

	For Frequency band 5250~5350 MHz												
Mode	N.	Freq.	26dB Bandwidth (MHz)			99	9% Bandv	vidth (MH	z)	Power Limit			
Wiode	N _{TX}	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3	(dBm)		
11a	1	5260		25.16				17.26			24.00		
11a	1	5300		24.52				17.25			24.00		
11a	1	5320		25.16				17.27			24.00		
HT20	3	5260	25.28	25.62	25.45		18.35	18.16	18.16		24.00		
HT20	3	5300	25.57	25.62	25.28		18.42	18.26	18.09		24.00		
HT20	3	5320	25.62	26.09	25.45		18.46	18.24	18.09		24.00		
HT40	3	5270	53.91	61.10	51.59		38.02	37.82	37.84		24.00		
HT40	3	5310	55.54	60.87	52.52		38.26	37.92	37.64		24.00		

Report No.: FR581901 Page: 20 of 107

	For Frequency band 5470~5725 MHz												
Mode	N	Freq.	26	dB Band	width (MH	łz)	99	9% Bandv	vidth (MH	lz)	Power		
Mode	N _{TX}	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3	Limit (dBm)		
11a	1	5500		24.93				17.29			24.00		
11a	1	5580		25.04				17.31			24.00		
11a	1	5700		25.22				17.36			24.00		
HT20	3	5500	25.62	26.03	25.80		18.49	18.16	18.16		24.00		
HT20	3	5580	25.51	25.51	25.51		18.30	18.16	18.13		24.00		
HT20	3	5700	25.91	25.04	26.43		18.36	18.13	18.16		24.00		
HT40	3	5510	54.96	54.03	51.71		38.28	38.12	37.82		24.00		
HT40	3	5590	53.45	55.30	52.41		38.38	37.90	37.78		24.00		
HT40	3	5670	54.03	55.42	54.26		38.16	37.70	37.90		24.00		

Report No.: FR581901 Page: 21 of 107

	For Frequency band 5725-5850 MHz												
			OBW Bandwidth (MHz)					6dB B	andwidth	(MHz)			
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3	6dB BW Limit (MHz)		
11a	1	5745		17.29				16.35			0.5		
11a	1	5785		17.37				16.35			0.5		
11a	1	5825		17.43				16.35			0.5		
HT20	3	5745	18.44	18.17	18.10		17.57	17.57	17.57		0.5		
HT20	3	5785	18.33	18.26	18.08		17.57	17.57	17.57		0.5		
HT20	3	5825	18.25	18.20	18.10		17.57	17.57	17.57		0.5		
HT40	3	5755	38.34	38.08	37.86		36.41	36.41	36.41		0.5		
HT40	3	5795	38.20	37.94	37.96		36.41	36.06	36.41		0.5		

Report No.: FR581901 Page: 22 of 107

3.3 RF Output Power

3.3.1 Limit of RF Output Power

	Frequency band 5150-5250 MHz									
Оре	erating Mode	Limit								
	Outdoor access point	Conducted Power: 1 W The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm)								
	Indoor access point	Conducted Power: 1 W								
	Fixed point-to-point access points	Conducted Power: 1 W								
	Mobile and portable client devices	Conducted Power: 250 mW								

Fred	quency Band (MHz)	Limit			
\boxtimes	5250 ~ 5350	250mW or 11dBm+10 log B			
\boxtimes	5470 ~ 5725	250mW or 11dBm+10 log B			
\boxtimes	☑ 5725 ~ 5850 1 W				
Note	e: "B" is the 26dB emission bandwidth i	n MHz.			

3.3.2 Test Procedures

- Nower meter
 - Measurements is performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required

3.3.3 Test Setup

Report No.: FR581901 Page : 23 of 107

3.3.4 Test Result of Maximum Conducted Output Power

	For Frequency band 5150~5250 MHz											
		- (A)	C	onducted I	Power (dBn	n)	Total Power (mW)	Total	Limit (dBm)			
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3		Power (dBm)				
11a	1	5180		11.60			14.454	11.60	24.00			
11a	1	5200		11.85			15.311	11.85	24.00			
11a	1	5240		11.72			14.859	11.72	24.00			
HT20	3	5180	11.26	11.66	12.80		47.076	16.73	24.00			
HT20	3	5200	11.21	11.45	12.86		46.496	16.67	24.00			
HT20	3	5240	11.65	11.82	12.30		46.810	16.70	24.00			
HT40	3	5190	8.75	9.32	10.22		26.569	14.24	24.00			
HT40	3	5230	11.90	11.89	12.24		47.690	16.78	24.00			

	For Frequency band 5250~5350 MHz											
			C	onducted I	Power (dBn	n)	Total	Total	Limit (dBm)			
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)				
11a	1	5260		11.79			15.101	11.79	24.00			
11a	1	5300		11.44			13.932	11.44	24.00			
11a	1	5320		11.32			13.552	11.32	24.00			
HT20	3	5260	11.85	11.84	12.42		48.045	16.82	24.00			
HT20	3	5300	11.25	11.83	12.13		44.906	16.52	24.00			
HT20	3	5320	11.26	11.79	12.01		44.352	16.47	24.00			
HT40	3	5270	12.03	12.06	12.56		50.058	16.99	24.00			
HT40	3	5310	11.55	12.17	12.28		47.675	16.78	24.00			

Report No.: FR581901 Page: 24 of 107

	For Frequency band 5470~5725 MHz												
			Conducted Power (dBm)				Total	Total	Limit				
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)	(dBm)				
11a	1	5500		10.63			11.561	10.63	23.90				
11a	1	5580		10.69			11.722	10.69	23.90				
11a	1	5700		10.60			11.482	10.60	23.90				
HT20	3	5500	9.65	9.52	9.47		27.031	14.32	23.90				
HT20	3	5580	9.02	9.64	9.80		26.734	14.27	23.90				
HT20	3	5700	9.13	9.13	9.93		26.209	14.18	23.90				
HT40	3	5510	9.50	9.93	9.46		27.583	14.41	23.90				
HT40	3	5590	9.35	10.39	9.89		29.299	14.67	23.90				
HT40	3	5670	9.60	9.40	9.60		26.950	14.31	23.90				

Note: Antenna gain is 6.1 dBi > 6dBi, Conducted power limit shall be reduced to 24 dBm - (6.1dBi - 6 dBi) = 23.9 dBm.

	For Frequency band 5725-5850 MHz											
Mada		F (MIII-)	C	onducted I	Power (dBn	n)	Total	Total	Limit (dBm)			
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)				
11a	1	5745		11.25			13.335	11.25	30.00			
11a	1	5785		11.34			13.614	11.34	30.00			
11a	1	5825		11.10			12.882	11.10	30.00			
HT20	3	5745	9.37	8.80	9.23		24.611	13.91	30.00			
HT20	3	5785	9.53	9.46	10.03		27.874	14.45	30.00			
HT20	3	5825	9.12	9.48	9.90		26.810	14.28	30.00			
HT40	3	5755	7.69	6.52	7.34		15.782	11.98	30.00			
HT40	3	5795	9.44	9.11	9.76		26.400	14.22	30.00			

Report No.: FR581901 Page: 25 of 107

3.4 Peak Power Spectral Density

3.4.1 Limit of Peak Power Spectral Density

	Frequency band 5150-5250 MHz								
Оре	erating Mode	Limit							
	Outdoor access point	17 dBm / MHz							
	Indoor access point	17 dBm / MHz							
	Fixed point-to-point access points	17 dBm / MHz							
	Mobile and portable client devices	11 dBm / MHz							

Free	quency Band (MHz)	Limit
\boxtimes	5250 ~ 5350	11 dBm / MHz
\boxtimes	5470 ~ 5725	11 dBm / MHz
\boxtimes	5725 ~ 5850	30 dBm / 500 kHz

3.4.2 Test Procedures

For 5150~5250 MHz, 5250~5350 MHz, 5470~5725 MHz

- Method SA-1 (for 11a / n HT20)
 - 1. Set RBW = 1 MHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
 - 2. Trace average 100 traces.
 - 3. Use the peak marker function to determine the maximum amplitude level.
- Method SA-2 Alternative (for 11n HT40)
 - 1. Set RBW = 1 MHz, VBW = 3 MHz, Detector = RMS.
 - 2. Set sweep time ≥ 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
 - 3. Perform a single sweep.
 - 4. Use the peak marker function to determine the maximum amplitude level.
 - 5. Add 10 $\log(1/x)$, where x is the duty cycle.

For 5725~5850 MHz

- Method SA-1 (for 11a / n HT20)
 - 1. Set RBW = 500 kHz, VBW = 2 MHz, Sweep time = auto, Detector = RMS.
 - 2. Trace average 100 traces.
 - 3. Use the peak marker function to determine the maximum amplitude level.
- Method SA-2 Alternative (for 11n HT40)
 - 1. Set RBW = 500 kHz, VBW = 2 MHz, Detector = RMS.
 - 2. Set sweep time ≥ 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
 - 3. Perform a single sweep.
 - 4. Use the peak marker function to determine the maximum amplitude level.
 - 5. Add 10 log(1/x), where x is the duty cycle.

Report No.: FR581901 Page: 26 of 107

3.4.3 Test Setup

Report No.: FR581901 Page: 27 of 107

Test Result of Peak Power Spectral Density 3.4.4

Fre	quency	band		5150~5250 MHz	/ 5250~5350 MHz	
	Conditio	on	F	Peak Power Spectra	I Density (dBm/MHz	:)
Mode	N _{TX}	Freq. (MHz)	PPSD w/o D.F (dBm/MHz)	Duty Factor (dB)	PPSD with D.F (dBm/MHz)	PPSD Limit (dBm/MHz)
11a	1	5180	-0.40	0.00	-0.40	11
11a	1	5200	-0.55	0.00	-0.55	11
11a	1	5240	-0.07	0.00	-0.07	11
HT20	3	5180	2.62	0.00	2.62	6.63
HT20	3	5200	3.54	0.00	3.54	6.63
HT20	3	5240	3.31	0.00	3.31	6.63
HT40	3	5190	-1.92	0.19	-1.73	6.63
HT40	3	5230	1.53	0.19	1.72	6.63
11a	1	5260	-0.62	0.00	-0.62	11
11a	1	5300	-0.85	0.00	-0.85	11
11a	1	5320	-0.93	0.00	-0.93	11
HT20	3	5260	3.31	0.00	3.31	6.63
HT20	3	5300	2.89	0.00	2.89	6.63
HT20	3	5320	3.07	0.00	3.07	6.63
HT40	3	5270	0.54	0.19	0.73	6.63
HT40	3	5310	0.30	0.19	0.49	6.63

Note:

- D.F is duty factor.
 Test result of HT20/HT40 is bin-by-bin summing measured value of each TX port.
 For 3Tx mode: Directional gain = 5.6+10* log(3/1) = 10.37 dBi > 6 dBi. Limit shall be reduced to 11 dBm (10.37 dBi 6 dBi) = 6.63 dBm.

Report No.: FR581901 Page: 28 of 107

Fre	quency	band		5470~57	725 MHz				
	Conditio	on	Peak Power Spectral Density (dBm/MHz)						
Mode	N _{TX}	Freq. (MHz)	PPSD w/o D.F (dBm/MHz) Duty Factor (dB)		PPSD with D.F (dBm/MHz)	PPSD Limit (dBm/MHz)			
11a	1	5500	-0.83	0.00	-0.83	10.9			
11a	1	5580	-1.37	0.00	-1.37	10.9			
11a	1	5700	-1.36	0.00	-1.36	10.9			
HT20	3	5500	2.03	0.00	2.03	6.13			
HT20	3	5580	1.60	0.00	1.60	6.13			
HT20	3	5700	1.64	0.00	1.64	6.13			
HT40	3	5510	-1.22	0.19	-1.03	6.13			
HT40	3	5590	-1.69	0.19	-1.50	6.13			
HT40	3	5670	-1.58	0.19	-1.39	6.13			

Note:

- 1. D.F is duty factor.
- Test result of HT20/HT40 is bin-by-bin summing measured value of each TX port.
 For 1Tx mode: Directional gain = 6.1 dBi > 6dBi, Limit shall be reduced to 11 dBm (6.1 dBi 6 dBi) = 10.9 dBm.
 For 3Tx mode: Directional gain = 6.1+10* log(3/1) = 10.87 dBi > 6 dBi.
 Limit shall be reduced to 11 dBm (10.87 dBi 6 dBi) = 6.13 dBm.

Report No.: FR581901 Page: 29 of 107

Fre	quency	band		5725-58	50 MHz	
	Conditio	on	Pe	ak Power Spectral	Density (dBm/500kl	Hz)
Mode	N _{TX}	Freq. (MHz)	PPSD w/o D.F (dBm/500kHz)	Duty Factor (dB)	PPSD with D.F (dBm/500kHz)	PPSD Limit (dBm/500kHz)
11a	1	5745	-2.64	0.00	-2.64	30.00
11a	1	5785	-2.27	0.00	-2.27	30.00
11a	1	5825	-2.64	0.00	-2.64	30.00
HT20	3	5745	-0.59	0.00	-0.59	25.33
HT20	3	5785	0.06	0.00	0.06	25.33
HT20	3	5825	-0.32	0.00	-0.32	25.33
HT40	3	5755	-5.64	0.19	-5.45	25.33
HT40	3	5795	-3.09	0.19	-2.90	25.33

Note:

- 1. D.F is duty factor.
- Test result of HT20/HT40 is bin-by-bin summing measured value of each TX port.
 For 3TX mode: Directional gain = 5.9+10* log(3/1) = 10.67 dBi > 6 dBi. Limit shall be reduced to 30 dBm (10.67 dBi 6 dBi) = 25.33 dBm.

Report No.: FR581901 Page: 30 of 107

3.5 Transmitter Radiated and Band Edge Emissions

3.5.1 Limit of Transmitter Radiated and Band Edge Emissions

Restricted Band Emissions Limit										
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)							
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300							
0.490~1.705	24000/F(kHz)	33.8 - 23	30							
1.705~30.0	30	29	30							
30~88	100	40	3							
88~216	150	43.5	3							
216~960	200	46	3							
Above 960	500	54	3							

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

	Un-restricted band emissions above 1GHz Limit
Operating Band	Limit
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.725 - 5.850 GHz	5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] 5.825 5.835 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m]

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Report No.: FR581901 Page: 31 of 107

3.5.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR581901 Page: 32 of 107

3.5.3 Test Setup

Report No.: FR581901 Page: 33 of 107

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR581901 Page: 34 of 107

Modulation	HT40		Test Fred	ą. (MHz)	!	5270		
Polarization	Vertical							
90 Level (di	BuV/m)						_	
80								
70								
60						FCC CLAS	e D	
50						TCCCLAS	3-Б	
					4 5 6		J	
40		2 :	3					
30								
20								
10								
0 <mark></mark> 30 100	0. 200. 3		00. 600 ency (MHz)	. 700.	800.	900.	1000	
	Freq. Emissio	n Limit Margir	s SA	Factor	Remark	ANT	Turn	
	level		reading			High	Table	
	MHz dBuV/m	dBuV/m dB	dBuV	dB		cm	deg	
1	98.87 33.56	43.50 -9.94	52.10	-18.54	Peak			
2	298.69 33.89		46.58	-12.69	Peak			
3	499.48 33.62		41.27	-7.65	Peak			
4	746.83 40.82 815.70 38.65	46.00 -5.18 46.00 -7.35	44.09 40.95	-3.27 -2.30	Peak Peak			
5 6	846.74 37.86		39.64	-2.30 -1.78	Peak Peak			

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR581901 Page: 35 of 107

Modulation Polarization		HT20			Test Freq. (MHz)			5785			
			Horizontal								
			•								
	90 ^{L6}	evel (dBi	BuV/m)								
	80										
	70										
	60									FCC CLAS	SS-B
	50										
											_
	40			2		4		-		6	
	30										
	-										
	20										
	10										
	030	100.	20	0. 30	0. 40		00. 600 ency (MHz)	0. 700.	800.	900.	1000
								- .		****	_
		H	req. E	missior: level	l Limit	Margir	n SA reading	Factor	Remark	ANT High	Turn Table
			MHz	dBuV/m	dBuV/r	n dB	dBuV	dB		cm	deg
			1112	ubuv/iii	ubuv/i	ıı ub	abav	ub		CIII	ueg
	1	_	99.02	41.70	43.50	-1.80	60.23	-18.53	QP	198	351
	2		232.73	36.79	46.00		51.98	-15.19	Peak		
	3		98.69	38.69			51.38	-12.69	Peak		
	4		131.58	32.74		-13.26	41.98	-9.24	Peak		
	5					-8.36			Peak		
	6	8	397.18	34.05	46.00	-11.95	34.79	-0.74	Peak		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR581901 Page: 36 of 107

Modulation			HT20				Test Freq. (MHz)			5785	
Polarization			Vertical								
	90 Le	vel (dBu	V/m)								
	00										
	80—										
	70										
	60										
	•									FCC CLAS	SS-B
	50										_
	40					3			4 5		
		- 1		2		ı			١Ĭ	6	
	30—										
	20										
	10										
	030	100.	200	0. 30	0. 4		00. 60 ency (MHz)	0. 700.	800.	900.	1000
		E	rea F	mission	limit	Margi		Factor	Remark	ANT	Turn
			req. L	level	LIMIC	nai 61	reading		Kellul K	High	Table
		ı	MHz	dBuV/m	dBuV/ı	m dB	dBuV	dB		cm	deg
	1		98.87	34.08	43.50	-9.42	52.62	-18.54	Peak		
	2		32.73	32.94		-13.06	48.13		Peak		
	3		39.34			-10.85	44.19		Peak		
	4		97.27			-8.69	39.91		Peak		
	5 6		15.70 99.12	36.26 32.68	46.00		38.56 33.36		Peak Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR581901 Page: 37 of 107

3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 38 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 39 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 40 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 41 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 42 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 43 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 44 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 45 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 46 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 47 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 48 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 49 of 107

Modulation	11a	Test Freq. (MHz)	5500							
Polarization	Horizontal									
90 Level (dBu\	//m)									
80										
70			FCC PART 15E (74)							
60	8									
			FCC CLAS S-B (AVG)							
50	7									
40										
30										
20										
10										
01000 6	000. 10000. 14000.	18000. 22000. 26000. 30000. Frequency (MHz)	34000. 40000							
Fr	eq. Emission Limit	Margin SA Factor Rema	ark ANT Turn							
	level	reading	High Table							
M	lHz dBuV/m dBuV/m	dB dBuV dB	cm deg							
	0.00 45.12 54.00		_							
	0.00 56.73 74.00									
	0.00 44.87 54.00 0.00 64.43 74.00									

3.91

3.91

15.72

15.72

65.24

29.00

41.91

Average

Average

Peak

Peak

226

226

213

213

247

247

152

152

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor, cable loss and amplifier gain

5470.00 48.79 54.00 -5.21 44.88

5470.00 69.15 74.00 -4.85

11000.00 44.72 54.00 -9.28

11000.00 57.63 74.00 -16.37

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 50 of 107

Report Version: Rev. 01

5

6

7

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 51 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page : 52 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 53 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 54 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 55 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 56 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 57 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 58 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 59 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 60 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 61 of 107

3.5.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT20

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR581901 Page: 62 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 63 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 64 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 65 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 66 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 67 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 68 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 69 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 70 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 71 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 72 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 73 of 107

Modulation	HT20	Test Freq. (MHz)	5500
Polarization	Horizontal		
90 Level (dBu	J/m)		
00			

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m		SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5440.00	46.84	54.00	-7.16	40.23	6.61	Average	271	251
2	5440.00	59.14	74.00	-14.86	52.53	6.61	Peak	271	251
3	5460.00	46.67	54.00	-7.33	40.03	6.64	Average	271	251
4	5460.00	65.84	74.00	-8.16	59.20	6.64	Peak	271	251
5	5470.00	47.66	54.00	-6.34	41.01	6.65	Average	271	251
6	5470.00	67.41	74.00	-6.59	60.76	6.65	Peak	271	251
7	11160.00	44.98	54.00	-9.02	28.29	16.69	Average	165	212
8	11160.00	56.07	74.00	-17.93	39.38	16.69	Peak	165	212

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 74 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 75 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 76 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 77 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 78 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 79 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 80 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 81 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 82 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 83 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 84 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 85 of 107

3.5.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT40

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 86 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 87 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 88 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 89 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 90 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 91 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 92 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 93 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 94 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 95 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 96 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 97 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 98 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 99 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 100 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 101 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 102 of 107

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR581901 Page: 103 of 107

3.6 Frequency Stability

3.6.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.6.2 Test Procedures

- 1. The EUT is installed in an environment test chamber with external power source.
- Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT.
- 3. A sufficient stabilization period at each temperature is used prior to each frequency measurement.
- 4. When temperature is stabled, measure the frequency stability.
- 5. The test shall be performed under -40 to 80 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.

3.6.3 Test Setup

Report No.: FR581901 Page: 104 of 107

3.6.4 Test Result of Frequency Stability

Frequency: 5200 MHz	Frequency Drift (ppm)				
Temperature (°C)	0 minute	2 minutes	5 minutes	10 minutes	
T20°CVmax	4.04	4.17	4.30	4.17	
T20°CVmin	3.90	4.26	4.01	4.11	
T80CVnom	3.44	3.56	4.05	3.69	
T70CVnom	3.34	2.83	3.73	3.78	
T60CVnom	3.49	3.97	3.90	3.34	
T50CVnom	3.15	3.91	3.46	3.00	
T40°CVnom	3.00	3.47	3.41	3.02	
T30°CVnom	3.66	3.55	3.94	4.05	
T20°CVnom	2.51	3.08	2.07	2.73	
T10°CVnom	2.66	2.50	2.28	3.15	
T0°CVnom	0.68	1.03	1.12	1.34	
T-10°CVnom	1.26	1.51	0.96	1.60	
T-20°CVnom	0.30	0.59	0.22	0.43	
T-30°CVnom	0.38	0.50	0.75	0.13	
T-40°CVnom	0.61	1.06	1.02	1.28	
/nom [Vac]: 120		Vmax [Vac]: 138	•	Vmin [Vac]: 102	
rnom [°C]: 20		Tmax [°C]: 80		Tmin [°C]: -40	

Report No.: FR581901 Page: 105 of 107

Frequency: 5785 MHz	Frequency Drift (ppm)				
Temperature (°C)	0 minute	2 minutes	5 minutes	10 minutes	
T20°CVmax	0.56	1.07	0.38	0.89	
T20°CVmin	0.66	0.89	0.81	0.46	
T80CVnom	0.58	0.33	0.47	1.05	
T70CVnom	0.08	0.52	-0.13	0.31	
T60CVnom	0.07	0.74	0.53	0.38	
T50CVnom	0.58	0.50	0.68	0.89	
T40°CVnom	-0.04	-0.07	0.42	0.17	
T30°CVnom	-0.30	-0.41	-0.01	-0.67	
T20°CVnom	0.23	0.21	0.54	0.44	
T10°CVnom	0.01	0.59	0.07	-0.09	
T0°CVnom	-0.34	-0.32	-0.21	0.44	
T-10°CVnom	0.49	0.61	0.38	0.52	
T-20°CVnom	0.69	0.85	1.09	0.38	
T-30°CVnom	0.01	-0.31	-0.30	0.23	
T-40°CVnom	-0.29	0.14	0.09	-0.51	
Vnom [Vac]: 120		Vmax [Vac]: 138	•	Vmin [Vac]: 102	
Tnom [°C]: 20		Tmax [°C]: 80		Tmin [°C]: -40	

Report No.: FR581901 Page: 106 of 107

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

<u>==END</u>==

Report No.: FR581901 Page: 107 of 107