A Simple Approach for Author Profiling in MapReduce

Suraj Maharjan, Prasha Shrestha, and Thamar Solorio

University of Alabama at Birmingham Department of Computer and Information Sciences Birmingham, Alabama 35294-1170, USA {suraj, prasha, solorio}@cis.uab.edu

Task

- Given: an anonymous text
- Predict: author's age group [18-24 | 25-34 | 35-49 | 50-64 | 65-plus] author's gender [male | female]
- Provided: Training data in English and Spanish
 - English Blog, Reviews, Social Media, and Twitter
 - Spanish Blog, Social Media, and Twitter

Features Considered

- Word n-grams: unigrams, bigrams, and trigrams combined
- Retained stop words, emoticons, punctuation marks
- Tokenized using CMU ARK Tweet Part-of-Speech Tagger
- An *n*-gram must be used by at least two authors to be considered as a feature

Experiments on Training Data

- Local Hadoop cluster with one master node and seven slave nodes
- Each node has 16 cores and 12 GB memory
- Training data split into 70:30 ratio for training and development
- Modeled as 10 class classification problem

Classification Algorithm	English (%)				Spanish (%)			
Classification Algorithm	Blogs	Reviews	Social Media	Twitter	Blog	Social Media	Twitter	
Naïve Bayes	27.50	21.55	20.62	28.89	55.00	20.48	34.78	
Cosine similarity	20.00	23.64	19.72	27.78	35.00	26.33	36.96	
Weighted Cosine Similarity	30.00	23.16	19.97	26.67	40.00	22.07	32.61	
Logistic Regression	27.50	23.08	20.62	33.33	35.00	25.80	32.61	
SVM	25.00	22.28	19.80	32.22	30.00	26.33	34.78	

Table 1: Accuracy for word 1, 2, 3 -grams for cross validation dataset.

Classification Algorithm	English (%)				Spanish (%)			
Classification Algorithm	Blogs	Reviews	Social Media	Twitter	Blog	Social Media	Twitter	
Naïve Bayes	25.00	18.99	18.33	24.44	40.00	19.68	23.91	
Cosine similarity	20.00	21.63	17.90	30.00	50.00	21.81	26.09	
Weighted Cosine Similarity	20.00	21.15	16.78	23.33	40.00	19.68	28.26	
Logistic Regression	22.50	21.71	16.78	25.56	35.00	23.67	17.39	
SVM	20.00	20.83	15.92	24.44	35.00	23.14	17.39	

Table 2: Accuracy for character 2, 3 -grams for cross validation dataset.

	English	(%)	Spanish (%)			
Classification Algorithm	Separate Models	Single Model	Separate Models	Single Model		
Naïve Bayes	21.21	20.13	23.53	21.04		
Cosine similarity	19.89	17.34	27.83	27.60		
Weighted Cosine Similarity	21.32	18.18	23.98	24.89		
Logistic Regression	21.83	21.92	26.92	28.96		
SVM	20.99	20.48	27.37	28.05		

Table 3: Accuracy for single and separate models for all categories.

Results

 Number of features in English: 7,299,609 Number of features in Spanish: 1,154,270

Longuego	Cotogoma	Test 1				Test 2			
Language	Language Category		Age	Gender	Runtimes	Both	Age	Gender	Runtime
	Blog	16.67	25.00	54.17	00:01:50	23.08	38.46	57.69	0:01:56
English	Reviews	20.12	28.05	62.80	00:01:46	22.23	33.31	66.87	0:02:13
English	Social Media	20.09	36.27	53.32	00:07:18	20.62	36.52	53.82	0:26:31
	Twitter	40.00	43.33	73.33	00:02:01	30.52	44.16	66.88	0:02:31
	Blog	28.57	42.86	57.14	00:00:35	25.00	46.43	42.86	0:00:39
Spanish	Social Media	30.33	40.16	68.03	00:01:13	28.45	42.76	64.49	0:03:26
	Twitter	61.54	69.23	88.46	00:00:43	43.33	61.11	65.56	0:01:10

Table 4: Accuracy by category and language on test dataset. 1st 2nd 3rd

System	Average Accuracy(%)
PAN'14 Best	28.95
Ours	27.60
Baseline	14.04

Table 5: Accuracy comparison with other systems.

Conclusion

- Word *n*-grams proved to be better features than character *n*-grams for this task
- MapReduce is ideal for feature extraction from large dataset
- Our system works better when there is a large dataset
- Simple approaches do work

