CALCOLO NUMERICO 1 - PROVA MATLAB - 20 febbraio 2013

1) Approssimare l'integrale improprio

$$(*) \qquad \int_0^\infty x e^{-2x} \mathrm{d}x.$$

con il metodo dei trapezi compositi applicato all'integrale definito

$$I_b = \int_0^b xe^{-2x} dx, \quad b = 5, 6, 7, 8, 9, 10.$$

Fissato b, sia $M_b = 10b$ il numero di sottointervalli di uguale ampiezza e sia I_b il corrispondente valore ottenuto. Successivamente si consideri per (*) la sostituzione $t = e^{-x}$ e, dopo aver trovato i nuovi estremi di integrazione a_1 e b_1 , si approssimi l'integrale definito

$$(**) I = \int_{a_1}^{b_1} f(t) dt,$$

con il metodo del punto medio composito, relativo alla suddivisione di $[a_1,b_1]$ in N intervalli di uguale ampiezza, con N=50,100,150,200. Siano I_N i valori ottenuti. Riportare nelle tabelle i valori trovati di I_b e I_N .

	b=5	b=6	b=7	b = 8	b=9	b = 10
I_b						

	N = 50	N = 100	N = 150	N = 200
I_N				

2) Approssimare l'unica radice dell'equazione $f(x) \equiv (x-1)^2 \log x = 0$, avente molteplicità q > 1, con il metodo di Newton modificato

$$x_{n+1} = x_n - p \frac{f(x_n)}{f'(x_n)}, \quad p = 1, 2, 3, 4$$

utilizzando $x_0 = 2$, test d'arresto $|x_{n+1} - x_n| < 10^{-8}$, e si riporti $\forall p$ il numero di iterazioni it, x_{it} e $f'(x_{it})$. Dedurre il valore di q e l'ordine del metodo di Newton $\forall p$, giustificando le risposte.

	it	$x_{ t it}$	$f'(x_{it})$
p = 1 $p = 2$ $p = 3$ $p = 4$			
p=2			
p=3			
p=4			

3) Sia $A\mathbf{x} = \mathbf{b}$ un sistema lineare con A è matrice tridiagonale $N \times N$, N > 2, avente diagonale principale con tutti elementi uguali a 4, sotto-diagonale e sopra-diagonale con tutti elementi uguali a -1. Si consideri il metodo iterativo,

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \left(A \mathbf{x}^{(k)} - \mathbf{b} \right),$$

con $\alpha>0$. Trovare una condizione per α che garantisca la convergenza del metodo utilizzando gli autovalori della matrice A, e riportare tale condizione nel caso N=10 ed N=20.

Per N=20, costruire il vettore termine noto \mathbf{b} in modo tale che la soluzione sia il vettore costante $\mathbf{x}=(1,1,\ldots,1)^T$. Fissare un valore α e valutare quante iterazioni sono necessarie per approssimare la soluzione a meno di $err_1=10^{-4}$ e a meno di $err_2=10^{-8}$ (si consideri l'errore nella norma euclidea). In entrambi i casi calcolare anche la norma del residuo: $\|\mathbf{b}-A\mathbf{x}\|$.

Condizione su α nel caso generale:

Spiegazione:

Condizione su α nel caso N=10:

Condizione su α nel caso N=20:

N = 20	condizione su α	it	$\ \mathbf{b} - A\mathbf{x}\ $
err_1			
err_2			