Babeş-Bolyai University, Faculty of Mathematics and Computer Science

Mathematical Analysis - Lecture Notes

Computer Science, Academic Year: 2020/2021

Lecture 2

Sequences of real numbers

Definition 1. Let $m \in \mathbb{Z}$. A sequence in \mathbb{R} is a function $x : \{n \in \mathbb{Z} \mid n \geq m\} \to \mathbb{R}$. We usually write x_n instead of x(n).

Notation: $(x_n)_{n\geq m}$, $(x_n)_{n=m}^{\infty}$.

In general, we consider m=1 and use the notation $(x_n)_{n\geq 1}$, $(x_n)_{n\in\mathbb{N}}$, or (x_n) .

Example 1. (i) Let $\alpha \in \mathbb{R}$, $x_n = \alpha$, $n \in \mathbb{N}$ – the sequence constantly equal to α .

(ii) The Fibonacci sequence: (x_n) defined recursively by

$$x_1 = 1$$
, $x_2 = 1$, and $x_{n+1} = x_n + x_{n-1}$ for $n \in \mathbb{N}, n > 2$.

Remark 1. A sequence (x_n) should not be confused with the set of its values $\{x_n \mid n \in \mathbb{N}\}$.

Definition 2. A sequence (x_n) in \mathbb{R} is said to be bounded below (bounded above, bounded, unbounded) if the set of its values $\{x_n \mid n \in \mathbb{N}\}$ is bounded below (bounded above, bounded, unbounded).

Remark 2. (x_n) is:

bounded below \Leftrightarrow \exists a \in \mathbb{R} n.t. \not \not $x_n \not> a$, $t_n \in \mathbb{N}$ bounded \Leftrightarrow \exists a \in \mathbb{R} n.t. $t_n \in \mathbb{N}$ $t_n \in \mathbb{N}$

Definition 3. A sequence (x_n) in \mathbb{R} is

- increasing (decreasing) if $\forall n \in \mathbb{N}, x_n \leq x_{n+1} \ (x_n \geq x_{n+1}).$
- strictly increasing (strictly decreasing) if $\forall n \in \mathbb{N}, x_n < x_{n+1} \ (x_n > x_{n+1}).$
- monotone (strictly monotone) if it is either increasing or decreasing (if it is either strictly increasing or strictly decreasing).

Example 2. Let $\alpha \in \mathbb{R}$ and $x_n = \alpha^n$, $n \in \mathbb{N}$.

(
$$x_n$$
) is $\begin{cases} \text{increasing for } \alpha = 0 \text{ or } \alpha > 1 \text{ (strictly increasing for } \alpha > 1) \\ \text{decreasing for } \alpha \in [0,1] \text{ (strictly decreasing for } \alpha \in (0,1)) \\ \text{meither increasing, nor decreasing for } \alpha < 0. \end{cases}$

Limit of a sequence

Definition 4. A sequence (x_n) in \mathbb{R} is said to have a limit (in $\overline{\mathbb{R}}$) if there exists $x \in \overline{\mathbb{R}}$ such that

$$\forall V \in \mathcal{V}(x), \exists n_V \in \mathbb{N} \text{ such that } \forall n \in \mathbb{N}, n \ge n_V \text{ we have } x_n \in V.$$
 (1)

(every neighborhood of x contains all terms of (x_n) except a finite number).

Remark 3. A sequence in \mathbb{R} cannot have two distinct limits.

Definition 5. If a sequence (x_n) in \mathbb{R} has a limit, then the unique $x \in \overline{\mathbb{R}}$ satisfying (1) is called the limit of (x_n) and we write $\lim_{n\to\infty} x_n = x$ or $x_n \to x$. Sometimes we also say that (x_n) tends to x.

Proposition 1. Let (x_n) be a sequence in \mathbb{R} . Then

 $\lim_{n\to\infty} x_n = x \in \mathbb{R} \iff \forall \varepsilon > 0, \exists n_\varepsilon \in \mathbb{N} \text{ such that } \forall n \in \mathbb{N}, n \geq n_\varepsilon \text{ we have } |x_n - x| < \varepsilon.$

$$\lim_{n\to\infty} x_n = \infty \ (-\infty) \iff \forall a\in\mathbb{R}, \exists n_a\in\mathbb{N} \ such \ that \ \forall n\in\mathbb{N}, n\geq n_a \ we \ have \ x_n>a \ (x_n< a).$$

$$\underbrace{Pf}_{n\to\infty} \ (\exists x_n=x_n) \$$

Definition 6. A sequence (x_n) in \mathbb{R} is called

- convergent if it has a finite limit. In this case we also say that (x_n) converges to $\lim x_n \in \mathbb{R}$.
- divergent if it is not convergent (i.e., it has no limit or the limit is infinite).

Example 3. Let $\alpha \in \mathbb{R}$ and $x_n = \alpha^n$, $n \in \mathbb{N}$.

Example 3. Let
$$\alpha \in \mathbb{R}$$
 and $x_n = \alpha^n$, $n \in \mathbb{N}$.

$$(x_n) \text{ is } \begin{cases} \text{constraint for } \alpha \in (-1, 1] \\ \text{divergent for } \alpha \neq -1 \text{ or } \alpha \geq 1 \end{cases}$$

$$\lim_{m \to \infty} \text{th} = \begin{cases} \emptyset & \text{for } \alpha \in (-1, 1) \\ \text{for } \alpha \neq 1 \end{cases}$$

$$\lim_{m \to \infty} \text{th} = \begin{cases} \emptyset & \text{for } \alpha \leq -1 \\ \text{for } \alpha \neq 1 \end{cases}$$

Remark 4. For the behavior of a sequence w.r.t. its convergence/divergence, a finite number of terms of the sequence is irrelevant.

elation monotony - boundedness

then, the Every increasing (decreasing) sequence is bounded below (above).

Relation convergence - boundedness

Theorem 1. Every convergent sequence (x_n) in \mathbb{R} is bounded.

Remark 5. Bounded sequences are not always convergent. However, for monotone sequences, convergence and boundedness agree.

Theorem 2. Let (x_n) be a monotone sequence in \mathbb{R} . Then

- (i) (x_n) has a limit in \mathbb{R} .
- (ii) if (x_n) is increasing, then $\lim_{n\to\infty} x_n = \sup_{n\in\mathbb{N}} x_n$, so (x_n) is convergent if and only if (x_n) is
- (iii) if (x_n) is decreasing, then $\lim_{n\to\infty}x_n=\inf_{n\in\mathbb{N}}x_n$, so (x_n) is convergent if and only if (x_n) is $bounded\ below.$

Pf: Support (7m) is increasing.

Core 1: (2m) bd. above

(+ 1 m and + to bd above =)

=) $\forall n \geq n_{\xi}$, $\star - \epsilon < t + n_{\xi} \leq t + n_{\xi} \leq t + n_{\xi}$ (since (t + n) is more assing) =) $\forall n \geq n_{\xi}$, $\star - \epsilon < t + n_{\xi} \leq t + n_{\xi}$

| th = * | ~ E

CONE 2: (m) not lod. above => sup to = \infty and \tank, \frack, \frac

Proposition 2. Let $(x_n), (y_n)$ be sequences in \mathbb{R} such that $\forall n \in \mathbb{N}, x_n \leq y_n$.

- (i) If (x_n) and (y_n) are convergent, then $\lim_{n\to\infty} x_n \leq \lim_{n\to\infty} y_n$.
- (ii) If $\lim_{n\to\infty} x_n = \infty$, then $\lim_{n\to\infty} y_n = \infty$.
- (iii) If $\lim_{n\to\infty} y_n = -\infty$, then $\lim_{n\to\infty} x_n = -\infty$.

Theorem 3 (Squeeze Theorem). Let $(x_n), (y_n), \text{ and } (z_n)$ be sequences in \mathbb{R} such that $\forall n \in \mathbb{N}, x_n \leq y_n \leq z_n$. Suppose that (x_n) and (z_n) are convergent and $\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = l \in \mathbb{R}$. Then (y_n) is also convergent and $\lim_{n \to \infty} y_n = l$.

Theorem 4 (Stolz-Cesàro). Let $(x_n), (y_n)$ be sequences in \mathbb{R} such that

- (i) (y_n) is strictly increasing and $\lim_{n\to\infty} y_n = \infty$,
- (ii) $\lim_{n \to \infty} \frac{x_{n+1} x_n}{y_{n+1} y_n} = L \in \overline{\mathbb{R}}.$

Then $\lim_{n\to\infty} \frac{x_n}{y_n} = L$.

Example 4. $\lim_{n \to \infty} \frac{1! + 2! + \ldots + n!}{n!} = 1.$

Take #= 11+21+...+n!, yn=n!, neIN

 $\frac{x_{max}-x_m}{y_{max}-y_m}=\frac{(m+1)!}{(m+1)!-m!}=\frac{(m+1)!}{m!\left[(m+1)-1\right]}=\frac{m+1}{m}\rightarrow 1$

5.-C. \Rightarrow $\lim_{m\to\infty} \frac{2m}{2m} = 1$

Consequences of the Stolz-Cesàro Theorem

Corollary 1. If $\lim_{n\to\infty} x_n = x \in \overline{\mathbb{R}}$, then $\lim_{n\to\infty} \frac{x_1 + x_2 + \ldots + x_n}{n} = x$.

Pf: Take dn = x1+ x2+ ... + xn, bn=n, new

(br) strictly inor, bn -> 00

 $\frac{a_{min}-a_m}{b_{min}-b_m}=\frac{k_{min}}{1}=k_{min}\rightarrow x$

5.-C. d ~ -> *, i.e., ***** -> *

Remark 6. The converse implication in Corollary 1 does not hold.

$$\frac{x_{1}+x_{2}+..+x_{n}}{n} = \begin{cases} 0 & \text{fin } n \text{ evin} \\ -\frac{1}{n} & \text{for } n \text{ odd} \end{cases} \Rightarrow \forall n \in \mathbb{N}, -\frac{1}{n} \leq \frac{x_{1}+x_{2}+...+x_{n}}{n} \leq 0 \Rightarrow 0$$

$$\lim_{n \to \infty} \frac{x_{1}}{n} = \frac{x_{1}+x_{2}+...+x_{n}}{n} \leq 0 \Rightarrow 0$$

Corollary 2. If $\forall n \in \mathbb{N}, x_n > 0$ and $\lim_{n \to \infty} x_n = x \in [0, \infty) \cup \{\infty\}$, then $\lim_{n \to \infty} \sqrt[n]{x_1 \cdot x_2 \cdot \dots \cdot x_n} = x$.

Proof. Apply Corollary 1 for the sequence defined by $y_n = \ln x_n$, $n \in \mathbb{N}$.

Corollary 3. If
$$\forall n \in \mathbb{N}, x_n > 0$$
 and $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = L \in [0, \infty) \cup \{\infty\}, then \lim_{n \to \infty} \sqrt[n]{x_n} = L$.

Proof. Apply Corollary 2 for the sequence defined by $y_1 = x_1$ and $y_n = \frac{x_n}{x_{n-1}}$, $n \in \mathbb{N}$, $n \ge 2$, taking into account that $\sqrt[n]{x_n} = \sqrt[n]{x_1 \cdot \frac{x_2}{x_1} \cdot \ldots \cdot \frac{x_n}{x_{n-1}}}, n \in \mathbb{N}, n \ge 2.$

The number e

Define the sequences $e_n = \left(1 + \frac{1}{n}\right)^n$ and $e'_n = \left(1 + \frac{1}{n}\right)^{n+1}$ for $n \in \mathbb{N}$. Then (e_n) is strictly increasing, while (e'_n) is strictly decreasing

Take d,= 1, d_= ... = an+1 = 1+ L , where now

 $6(a_{1}, a_{2}, ..., a_{n+1}) < A(a_{2}, d_{2}, ..., d_{n+1}) \text{ (we have more }$ $n+1 \sqrt{(1+\frac{1}{m})^{m}} < \frac{n+m(n+\frac{1}{m})}{m+1} = \frac{n+m+1}{m+1} = 1 + \frac{1}{m+1} = > \frac{(1+\frac{1}{m})^{n}}{m+1} < \frac{(1$ 6(a, a,,..., an+1) < A(a, d,...,dn+1) (we have strict inequality because the numbers a $((1-\frac{1}{m})^n)$ is also strictly increasing $(a_1=1, a_1, \dots = a_{n+1}=1-\frac{1}{m})$

 $\left(1+\frac{1}{m}\right)^{m+1} \cdot \left(\frac{m+1}{m}\right)^{m+1} = \frac{1}{\left(\frac{m}{m+1}\right)^{m+1}} = \frac{1}{\left(\frac{m}{m+1}\right)^{m+1}} = \frac{1}{\left(1-\frac{1}{m+1}\right)^{m+1}} = \frac{1}{\left(1-\frac{1}{m+1}\right)^{m+1}} = \frac{1}{\left(1-\frac{1}{m+1}\right)^{m+1}}$ decreasing

=> 2=e, < en < e'n < e's = 4, + mein, n72

=) (en) converges to some real wr. blue 2 and 4. We denote its limit by e (Eulen's number, 2 = 2.71) Note that (en) also converges to e and we have

(i) Another approach to define the number e is via the series $\sum_{k=1}^{\infty} \frac{1}{k!}$. We will see that these two approaches are equivalent.

(ii) One can prove that if (x_n) is a sequence in \mathbb{R} such that $x_n \neq 0$ for all $n \in \mathbb{N}$, and $\lim_{n \to \infty} x_n = 0$, then $\lim_{n\to\infty} (1+x_n)^{\frac{1}{x_n}} = e$.

Limit laws

$$x + \infty = \infty + x = \infty, \ \forall x \in \mathbb{R},$$

$$x + (-\infty) = (-\infty) + x = -\infty, \ \forall x \in \mathbb{R},$$

$$\infty + \infty = \infty, \ (-\infty) + (-\infty) = -\infty,$$

$$x \cdot \infty = \infty \cdot x = \begin{cases} \infty, & \text{if } x \in (0, \infty) \\ -\infty, & \text{if } x \in (-\infty, 0), \end{cases}$$

$$x \cdot (-\infty) = (-\infty) \cdot x = \begin{cases} -\infty, & \text{if } x \in (0, \infty) \\ \infty, & \text{if } x \in (-\infty, 0), \end{cases}$$

$$\infty \cdot \infty = \infty, \quad (-\infty) \cdot (-\infty) = \infty, \quad \infty \cdot (-\infty) = (-\infty) \cdot \infty = -\infty,$$

$$\frac{x}{\infty} = \frac{x}{-\infty} = 0, \ \forall x \in \mathbb{R},$$

$$\frac{1}{0+} = \infty, \quad \frac{1}{0-} = -\infty,$$

$$x^{\infty} = \begin{cases} \infty, & \text{if } x \in (1, \infty) \\ 0, & \text{if } x \in [0, 1), \end{cases}$$

$$x^{-\infty} = \begin{cases} 0, & \text{if } x \in (1, \infty) \\ \infty, & \text{if } x \in (0, 1), \end{cases}$$

$$(\infty)^{x} = \begin{cases} \infty, & \text{if } x \in (0, \infty) \\ 0, & \text{if } x \in (-\infty, 0), \end{cases}$$

$$\infty^{\infty} = \infty, \quad \infty^{-\infty} = 0.$$

Not defined

$$\begin{split} &\infty + (-\infty), \quad (-\infty) + \infty, \\ &0 \cdot \infty, \quad \infty \cdot 0, \quad 0 \cdot (-\infty), \quad (-\infty) \cdot 0, \\ &\frac{\infty}{\infty}, \quad \frac{-\infty}{-\infty}, \quad \frac{\infty}{-\infty}, \quad \frac{-\infty}{\infty}, \\ &1^{\infty}, \quad 0^{0}, \quad \infty^{0}, \quad 1^{-\infty}. \end{split}$$

$$\left(\left(1-\frac{1}{n}\right)^n\right)$$
 str. increosing:

Take
$$a_1 = 1$$
, $a_2 = ... = a_{n+1} = 1 - \frac{1}{n}$

$$G(a_1, a_{2_1}, ..., a_{n+1}) \in A(a_{n_1, n_2, ..., n+1})$$

$$\sqrt{1 + (1 - \frac{1}{N})} \quad \left(\frac{1 + N(1 - \frac{1}{N})}{N + 1} = \frac{1 + N - 1}{N + 1} = \frac{1 - \frac{1}{N - 1}}{N + 1}$$

$$- > \left(\sqrt{1 - \frac{w}{1}} \right)_{w} < \left(\sqrt{1 - \frac{w+v}{1}} \right)_{w+1}$$