

Models for Anti Money Laundering

FIE453-H20 Big Data with Applications to Finance Final Project

Ruhui Ding, Candidate no. 453013

Agenda

- Project description
- Whether a company is suspicious
- Whether an individual transaction is suspicious
- Conclusion

Agenda

- Project description
- Whether a company is suspicious
- Whether an individual transaction is suspicious
- Conclusion

Datasets

• Customer data. All customers who were flagged by the bank's old flagging system for suspicious transactions. With historical information about whether or not the customer ended up actually being reported to the authorities (after a manual inspection), along with information about the customer.

• **Transaction data.** All the transactions of the bank's customers, with information about each transaction.

Objectives

Objectives

- Create machine learning models to calculate the probability of a corporate customer being involved in suspicious activities
- Create machine learning models to indicate whether an individual transaction is suspicious.

Models

- Supervised model
 - Linear logistic regression model
 - XGBoost model
- Unsupervised model
 - Anomaly detection model

Agenda

- Project description
- Whether a company is suspicious
- Whether an individual transaction is suspicious
- Conclusion

Whether a company is suspicious

Content

- Data visualization
- Linear logistic regression model
- XGBoost model
- Comparison of the two models

Data visualization Data summary statistics

- Missing values
- Wrong data types
- Highly skewed variables

Data visualization Correlation Plot and Correlation Coefficients

- Check the collinearity between independent variables.
- debit_turnover and num_agreements
 are correlated to credit_turnover.

Data visualization

Data visualization

Linear logistic regression model Variable selection and transformations

Not choose

- company_id
- debit_turnover
- num_agreements
- fiscal_year
- year_started
- country_customer
- organization_type
- Bankrupt
- nace

Choose

- language_form
- num_accounts
- risk_industry
- company_size
- reported

Log transformation

- operating_income
- duration_customer_relationship
- credit_turnover

Lump levels

municipal_custo mer

New variables

operation_year

Show 10 ▼ entries			Search:	
term	\$ estimate 🔷	std.error 🖣	statistic 🔷	p.value 📤
num_accounts25+	2.285	0.747	3.058	0.002
log_credit_turnover	-0.312	0.142	-2.2	0.028
risk_industryVery high	0.622	0.289	2.155	0.031
company_sizesmall	1.526	0.842	1.812	0.07
risk_industryLow	-1.513	1.076	-1.406	0.16
company_sizemedium	1.118	0.87	1.285	0.199
(Intercept)	-2.043	1.643	-1.243	0.214
risk_industryModerate	-0.294	0.306	-0.962	0.336
municipal_customer57	-0.742	0.791	-0.939	0.348
num_accounts5-10	0.253	0.269	0.938	0.348
Showing 1 to 10 of 18 entries			Previous 1	2 Next

XGboost Tuning hyperparameters

XGBoost model The set of hyperparameters with the best ROC AUC

Mtry	Min_n	Tree_depth	Learn_rate	Loss_reduction	Sample_size
13	19	13	0.0002354	0.0000008827	0.8666

- The number of predictors that are randomly sampled at each split is 13.
- The minimum number of data points in a node that is required for the node to be split further is 19.
- The maximum depth of the tree is 13.
- The rate at which the boosting algorithm adapts from iteration-to-iteration is 0.0002354.
- The reduction in the loss function required to split further is 0.0000008827.
- The amount of data exposed to the fitting routine is 0.8666.

XGboost The most important variables

Model	Metric	Mean
XGBoost	accuracy	0.7930
XGBoost	roc_auc	0.6484
glm	accuracy	0.7842
glm	roc_auc	0.6147

Comparison of the two models Advantages and disadvantages

XGBoost model

Advantages

- Less data processing.
- Good model performance.
- With a proper tuning process, less likely to overfit.

Linear logistic regression model

Advantages

- No need to tune hyperparameters.
- Fast to implement.
- More informative interpretation.

Disadvantages

- Tuning process takes a long time.
- The interpretation is not very informative.
- Prone to overfit if hyperparameters are not tuned properly.

Disadvantages

- Need more data processing.
- Poorer model performance.

Agenda

- Project description
- Whether a company is suspicious
- Whether an individual transaction is suspicious
- Conclusion

Whether an individual transaction is suspicious

Content

- Anomaly detection model
- Aggregated anomaly score
- Combine linear logistic regression with aggregated anomaly score
- Handle large amounts of data

Anomaly detection model Data summary statistics


```
-- Variable type: numeric
# A tibble: 8 x 11
  skim_variable
                           n_missing complete_rate hist
* <chr>
                               <int>
                                              <db1> <chr
1 amount_NOK
2 receiver_country_id
3 receiver_bank_country_id
4 receiver_bank_id
5 from_account_id
                              164353
                                              0.624
6 to_account_1d
7 transaction id
8 company_id
```

- Missing values
- Wrong data types
- Highly skewed variables

Anomaly detection model Variable selection and transformations

Not choose

- transaction_date
- to_account_id
- company_id
- transaction_id

Choose

- currency
- transaction_type
- operation_year
- overfoering_egne_k onti (internal_transaction)

Lump levels

- text code
- receiver_country_id
- receiver_bank_coun try_id
- receiver_bank
- from_account_id

New variables

- month
- day
- weekday
- relative_size

Log transformation

- amount_NOK
- relative_size

Anomaly detection model Visualize some of the relationships

The relationship between the anomaly score and receiver's country Sort by anomaly score

Anomaly detection model Visualize some of the relationships

Aggregated anomaly score

Company ID	Top 3 anomaly score	Maximum anomaly score	
1	0.614	0.620	
2	0.592	0.593	
3	0.622	0.627	
4	0.647	0.657	
5	0.588	0.588	
6	0.608	0.610	
7	0.602	0.609	
8	0.602	0.608	
With 687 more rows			

term 🔷	estimate 🏺	std.error 🗣	statistic 🖣	p.value ^
num_accounts25+	2.404	0.709	3.392	0.001
log_credit_turnover	-0.43	0.143	-2.996	0.003
(Intercept)	-9.099	3.557	-2.558	0.011
max_anomaly_score	12.128	5.111	2.373	0.018
company_sizesmall	1.597	0.88	1.815	0.069
risk_industryModerate	-0.513	0.314	-1.632	0.103
company_sizemedium	1.213	0.897	1.353	0.176
log_operating_income	0.214	0.176	1.219	0.223
risk_industryVery high	0.336	0.291	1.153	0.249
risk_industryLow	-1.147	1.082	-1.06	0.289

 Adding the aggregated anomaly score variable to the original linear logistic regression model, the ROC AUC on testing set improves from 0.6694 to 0.7178.

Showing 1 to 10 of 19 entries

Handle large amounts of data

- After reading data to R studio, select the columns and rows that are necessary for the task and save the useful part of the data as RData file.
- When working with the data, take a random sample of the data and use the sample to work through the problem before fitting a final model on all the data.
- If possible, upgrade the computer with more memory; if not, use cloud service like Amazon Web Services.

Agenda

- Project description
- Whether a company is suspicious
- Whether an individual transaction is suspicious
- Conclusion

Conclusion

- Both linear logistic regression model and XGBoost model have good performance in predicting the probability of a company being report. The XGBoost is slightly more accurate.
- The anomaly detection model can separate actual reported cases from non-reported cases historically.
- Combining supervised model and unsupervised model improves the model performance of the supervised model.