RNA-Seq Data processing

Transcript alignment and quantification

For genomic + transcriptomic alignments use Tophat

1 2 3 4

1 2 3

For transcriptomic alignments and quantifications use RSEM

Data transfer

Transfer fastq files to the cluster

Create a directory:

\$ mkdir /full/path/of/your_folder

Copy or move your files (same machine):

\$ cp -R /source/dir/*.fastq.gz /full/path/of/your_folder/.

\$ mv /source/dir/*.fastq.gz /full/path/of/your_folder/.

\$ rsync -vazu /source/dir/*.fastq.gz /full/path/of/your_folder/.

Copy your files (remote machine):

\$ scp /local/folder/*.fastq.gz user@ghpcc06.umassrc.org:/remote/path/.

\$ rsync -vazu /local/folder/*.fastq.gz user@ghpcc06.umassrc.org:/remote/path/.

Use FTP clients to transfer the files

Tophat and RSEM http://bioinfo.umassmed.edu/index.php?p=33

TopHat A spliced read mapper

For Whole Genome

Index files for TopHat:

Output file: Alignments in BAM format only for genomic coordinates

RSEM Transcript alignment and quantification

For Only Transcriptome

Index files for RSEM:

rsem-prepare-reference \ --gtf ucsc.gtf --transcript-to-gene-map ucsc_into_genesymbol.rsem \ mm10.fa mm10.rsem

m10.rsem.transcripts.fa

Output files: Alignments in BAM format for both genomic coordinates and transcriptomic coordinates

> Gene and isoform quantification results

Expression Expression

Quantify with the RSEM program

- RSEM depends on an existing annotation and will only scores transcripts that are present in the given annotation file.
- RSEM generates 2 result files:
 - rsem.genes.results
 - rsem.isoforms.results

Expression matrices

Create consolidated table

We use bin/rsem.to.table.pl command to join the rsem.genes.results files side-by-side, that contains the expected_count or tpm information, and place them into a final output file. Repeat the same step for isoforms.

This one-line command assumes the genes (and transcripts) in each files are in the same order.

Visualization

Alignment visualiztion using IGV

Download the IGV program from the IGV site and transfer your bam files from the hpcc to your laptop.

http://software.broadinstitute.org/software/igv/download

Homework

http://bioinfo.umassmed.edu/index.php?p=33

- Excercise 3: Genome alignment of RNA-seq reads.
- Excercise 4: Differential gene expression analysis with DESeq

RNA-Seq Data processing

Thanks! Questions?

http://bioinfo.umassmed.edu