Graphlopedia

Washington Experimental Mathematics Laboratory

Sara Billey, Kimberly Bautista, Aaron Bode, Riley Casper, Dien Dang, Nicholas Farn, Graham Kelley, Sha Lai, Adharsh Ranganathan, Michael Trinh, Alexander Tsun, Katrina Warner

December 1, 2017

Welcome to Graphlopedia, a database for graphs! We are a small team of undergraduate students (with mentors Sara Billey and Riley Casper) at the University of Washington. For the last five months we have been building a database of graphs for the use of mathematicians and other graph lovers. We have a limited number of entries right now, but it will soon grow exponentially as we start implementing graph recognition and user input.

Please use "ctrl + F" to search our database. The graphs are ordered by degree sequence. A more involved website is in the works; for now please enjoy our static PDF version.

Title: Triangle

Degree Sequence: [2, 2, 2]

Vertices: 3

Edges: [[1, 2], [1, 3], [2, 3]]

Comments:

- 1. Complete graph on 3 vertices, K_3 ,
- 2. Coxeter graph of type affine A_2 ,
- 3. Cycle on 3 vertices, C_3 ,

Links:

- http://mathworld.wolfram.com/TriangleGraph.html,
- 2. https://en.wikipedia.org/wiki/Triangle_graph,

References:

1. J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Math, Volume 29, 1990. Page 34.,

Title: 2-Path, P_2

Degree Sequence: [1, 1]

Vertices: 2 Edges: [[1, 2]]

Comments:

1. Coxeter graph of type A_2 ,

Links:

https://en.wikipedia.org/wiki/Path_graph,

References:

1. J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Math, Volume 29, 1990. Page 32.,

Title: 3-Path, P_3

Degree Sequence: [2, 1, 1]

Vertices: 3

Edges: [[1, 2], [1, 3]]

Comments:

1. Coxeter graph of type A_3 ,

Links:

https://en.wikipedia.org/wiki/Path_graph,

References:

1. J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Math, Volume 29, 1990. Page 32.,

Title: 4-Path, P_4

Degree Sequence: [2, 2, 1, 1]

Vertices: 4

Edges: [[1, 2], [1, 4], [2, 3]]

Comments:

1. Coxeter graph of type A_4 ,

Links:

https://en.wikipedia.org/wiki/Path_graph,

References:

1. J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Math, Volume 29, 1990. Page 32.,

Title: 5-Path, P_5

Degree Sequence: [2, 2, 2, 1, 1]

Vertices: 5

Edges: [[1, 2], [1, 5], [2, 3], [3, 4]]

Comments:

1. Coxeter graph of type A_5 ,

Links:

https://en.wikipedia.org/wiki/Path_graph,

References:

1. J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Math, Volume 29, 1990. Page 32.,

Title: Claw

Degree Sequence: [3, 1, 1, 1]

Vertices: 4

Edges: [[1, 2], [1, 3], [1, 4]]

Comments:

- 1. star graph of type (1,3),
- 2. complete bipartite graph $K_{1,3}$,
- 3. Coxeter graph of type D_4 ,

Links:

http://mathworld.wolfram.com/ClawGraph.html,

References:

- 1. Horton, J. D. and Bouwer, I. Z. Symmetric Y-Graphs and H-Graphs. J. Combin. Th. Ser. B 53, (1991). Page 116.,
- 2. Humphreys J., Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Math, Volume 29, 1990. Page 32.,
- 3. Dahlberg, S., Foley, A., and van Willigenburg, S. Resolving Stanley's e-positivity of claw contractible free graphs. Preprint arXiv:1703.05770, (2017), Page 5.,
- 4. Gasharov V., On Stanley's chromatic symmetric function and clawfree graphs, Discrete Math. 205, 229-234 (1999).,

Title: 3-Antiprism

Degree Sequence: [4, 4, 4, 4, 4, 4]

Vertices: 6

Edges: [[1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 5], [2, 6], [3, 4], [3, 6], [4, 5], [4, 6], [5, 6]]

Comments:

1. planar,

Links:

- http://mathworld.wolfram.com/AntiprismGraph.html,
- 2. https://en.wikipedia.org/wiki/Antiprism_graph,

References:

1. Alekseyev, M.; Michon, G. Making Walks Count: From Silent Circles to Hamiltonian Cycles. eprint arXiv:1602.01396. (2016),

Title: 3-Barbell

Degree Sequence: [3, 3, 2, 2, 2, 2]

Vertices: 6

Edges: [[1, 2], [1, 3], [1, 4], [2, 5], [2, 6], [3, 4], [5, 6]]

Comments:

1. planar,

Links:

- http://mathworld.wolfram.com/BarbellGraph.html,
- 2. https://en.wikipedia.org/wiki/Barbell_graph,

References:

1. Wilf, H. The editor's corner: the white screen problem. Amer. Math. Monthly 96 (1989), no. 8, 704-707.

Title: Pappus Graph

Vertices: 18

Edges: [[1, 2], [1, 6], [1, 7], [2, 3], [2, 8], [3, 4], [3, 9], [4, 5], [4, 10], [5, 6], [5, 11], [6, 12], [7, 14], [7, 18], [8, 13], [8, 15], [9, 14], [9, 16], [10, 15], [10, 17], [11, 16], [11, 18], [12, 13], [12, 17], [13, 16],

[14, 17], [15, 18]]

Comments:

1. The Pappus graph is formed as the Levi graph of the Pappus configuration.,

Links:

- https://en.wikipedia.org/wiki/Pappus_graph,
- 2. http://mathworld.wolfram.com/PappusGraph.html,

References:

1. Coxeter, H. S. M. Self-Dual Configurations and Regular Graphs. Bull. Amer. Math. Soc. 56, 413-455, 1950. Page 434.,

Graphlopedia ID: G000010 **Title**: 8-Vertex Threshold Graph

Degree Sequence: [7, 5, 2, 2, 2, 2, 1, 1]

Vertices: 8

Edges: [[1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [2, 3], [2, 4], [2, 5], [2, 6]]

Comments:

1. threshold, planar, and trivially perfect.,

Links:

https://en.wikipedia.org/wiki/Threshold_graph,

References:

1. Heggernes, P.; Kratsch, D. Linear-time certifying recognition algorithms and forbidden induced subgraphs, Nordic Journal of Computing, 14 (1-2): 87-108 (2008),

Graphlopedia ID: G000011 **Title**: 6-Vertex Circular-Arc

Degree Sequence: [3, 3, 2, 2, 2, 2]

Vertices: 6

Edges: [[1, 2], [1, 3], [1, 4], [2, 3], [2, 5], [4, 6], [5, 6]]

Comments:

- 1. circular-arc graph,
- 2. intersection graph,
- 3. arc,

Links:

https://en.wikipedia.org/wiki/Circular-arc_graph,

Title: 4-Cycle

Degree Sequence: [2, 2, 2, 2]

Vertices: 4

Edges: [[1, 2], [1, 4], [2, 3], [3, 4]]

Comments:

1. minimal non-trivially-perfect graph,

Links:

https://en.wikipedia.org/wiki/Trivially_perfect_graph,

References:

1. Martin Charles Golumbic, Trivially perfect graphs, Discrete Mathematics, Volume 24, Issue 1, 1978, Pages 105-107.,

Author(s): Katrina Warner, Sara Billey.

Title: ladder graph

Degree Sequence: [3, 3, 3, 3, 2, 2, 2, 2]

Vertices: 8

Edges: [[1, 2], [1, 4], [1, 6], [2, 3], [2, 8], [3, 4], [3, 7], [4, 5], [5, 6], [7, 8]]

Comments:

1. ladder graph,

Links:

https://en.wikipedia.org/wiki/Ladder_graph,

Title: Truncated Icosahedral Graph

Vertices: 60

Edges: [[1, 2], [1, 6], [2, 3], [2, 9], [3, 4], [3, 12], [4, 5], [4, 15], [5, 1], [5, 18], [6, 7], [6, 20], [7, 8], [7, 21], [8, 9], [8, 24], [9, 10], [10, 11], [10, 25], [11, 12], [11, 28], [12, 13], [13, 14], [13, 29], [14, 15], [14, 32], [15, 16], [16, 17], [16, 33], [17, 18], [17, 36], [18, 19], [19, 20], [19, 37], [20, 40], [21, 22], [21, 40], [22, 23], [22, 41], [23, 24], [23, 43], [24, 25], [25, 26], [26, 27], [26, 44], [27, 28], [27, 46], [28, 29], [29, 30], [30, 31], [30, 47], [31, 32], [31, 49], [32, 33], [33, 34], [34, 35], [34, 50], [35, 36], [35, 52], [36, 37], [37, 38], [38, 39], [38, 53], [39, 40], [39, 55], [41, 42], [41, 55], [42, 43], [42, 56], [43, 44], [44, 45], [45, 46], [45, 57], [46, 47], [47, 48], [48, 49], [48, 58], [49, 50], [50, 51], [51, 52], [51, 59], [52, 53], [53, 54], [54, 55], [54, 60], [56, 57], [56, 60], [57, 58], [58, 59], [59, 60]]

Comments:

- 1. buckyball graph,
- 2. cayley,
- 3. 60-fullerene,

Links:

1. http://m.wolframalpha.com/input/?i=buckyball+graph,

References:

1. "Truncated Icosahedral Graph." Buckyball Graph – from Wolfram MathWorld, m.wolframalpha.com/input/?ibuckyball + graph.

Title: F_2

Degree Sequence: [4, 4, 4, 4, 2, 2]

Vertices: 6

Edges: [[1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 6], [3, 4], [3, 6], [4, 5]]

Comments:

1. canonical example of a graph with an Eulerian cycle,

References:

1. N. Chiarelli, Martin Milanic, A threshold approach to connected domination, University of Primorska, 2016. Page 4.,

Title: 5-Wheel Graph

Degree Sequence: [4, 3, 3, 3, 3]

Vertices: 5

Edges: [[1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 5], [3, 4], [4, 5]]

Comments:

1. wheel graph W_5 ,

Links:

http://mathworld.wolfram.com/WheelGraph.html,

2. https://en.wikipedia.org/wiki/Wheel_graph,

Graphlopedia ID: G000017 **Title**: Total Domishold Raft

Degree Sequence: [3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1]

Vertices: 12

Edges: [[1, 4], [1, 5], [1, 9], [2, 3], [2, 6], [2, 10], [3, 7], [3, 11], [4, 8], [4, 12], [5, 6], [7, 8]]

Comments:

1. A total domishold graph that is not connected-domishold,

Links:

arxiv.org/pdf/1610.06539v1.pdf,

References:

1. Chiarelli, Nina, and Martin Milanic. "A Threshold Approach to Connected Domination." 21 Oct. 2016, arxiv.org/pdf/1610.06539v1.pdf.,

Title: $G_k K_{2,6}$ free

Vertices: 17

Edges: [[1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], [1, 12], [1, 13], [2, 12], [2, 13], [2, 14], [2, 15], [3, 11], [3, 12], [3, 14], [3, 17], [4, 5], [4, 13], [4, 15], [4, 17], [5, 6], [6, 7], [7, 8], [8, 9], [9, 10],

[10, 11], [14, 16], [15, 16], [16, 17]]

Comments:

- 1. 3-connected,
- 2. G_k where $k \geq 1$,

References:

1. Ellingham, M. N. et al. "Hamiltonicity of Planar Graphs with a Forbidden Minor." ArXiv, ArXiv, 20 Oct. 2016, arxiv.org/pdf/1610.06558v1.pdf.,

Graphlopedia ID: G000019 **Title**: hexahedral graph 3

Degree Sequence: [4, 4, 3, 3, 3, 3]

Vertices: 6

Edges: [[1, 2], [1, 3], [1, 4], [1, 6], [2, 3], [2, 4], [2, 5], [3, 5], [4, 6], [5, 6]]

Comments:

1. polyhedral graph,

Links:

http://mathworld.wolfram.com/PolyhedralGraph.html,

References:

1. "Polyhedral Graph." Polyhedral Graph – from Wolfram MathWorld, mathworld.wolfram.com/PolyhedralGraph Author(s): Aaron Bode.

Title: Herschel Graph

Degree Sequence: [4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3]

Vertices: 11

Edges: [[1, 4], [1, 6], [1, 7], [1, 11], [2, 6], [2, 7], [2, 8], [2, 9], [3, 4], [3, 8], [3, 9], [3, 11], [4, 5], [5, 6],

[5, 8], [7, 10], [9, 10], [10, 11]]

Comments:

- 1. smallest nonhamiltonion polyhedral graph,
- 2. planar,

Links:

http://mathworld.wolfram.com/HerschelGraph.html,

References:

 $1. \ \ "Herschel Graph." \ Herschel Graph-from \ Wolfram \ Math World, \\ math world. \\ wolfram.com/Herschel Graph. \\ ht world. \\ math world. \\ wolfram.com/Herschel Graph. \\ ht world. \\ wolfram. \\ math world. \\ wolfram. \\$

Title: 3-regular graph 1

Degree Sequence: [3, 3, 3, 3, 3, 3]

Vertices: 6

Edges: [[1, 2], [1, 3], [1, 5], [2, 4], [2, 6], [3, 4], [3, 5], [4, 6], [5, 6]]

References:

1. Kong, Qi, and Ligong Wang. "The Signless Laplacian Spectral Radius of Subgraphs of Regular Graphs." https://Arxiv.org/Pdf/1610.08855v1.Pdf, ArXiv, 28 Oct. 2016, arxiv.org/pdf/1610.08855v1.pdf.,

Title: 3-regular graph 2

Degree Sequence: [3, 3, 3, 3, 3, 3, 3, 3]

Vertices: 8

Edges: [[1, 2], [1, 3], [1, 5], [2, 4], [2, 6], [3, 4], [3, 7], [4, 8], [5, 6], [5, 7], [6, 8], [7, 8]]

References:

1. Q. Kong, L. Wang, The signless Laplacian spectral radius of subgraphs of regular graphs, Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, 2016.,

Title: 5-Cycle, C_5

Degree Sequence: [2, 2, 2, 2, 2]

Vertices: 5

Edges: [[1, 2], [1, 5], [2, 3], [3, 4], [4, 5]]

Links:

https://en.wikipedia.org/wiki/Cycle_graph,

Author(s): Zachary Hamaker.

Title: Isobutane Molecule

Degree Sequence: [4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Vertices: 14

Edges: [[1, 2], [1, 5], [1, 6], [1, 7], [2, 3], [2, 4], [2, 14], [3, 8], [3, 9], [3, 10], [4, 11], [4, 12], [4, 13]]

Comments:

- 1. connected forest,
- 2. tree graph,
- 3. Error in pubchem link, I don't see the graph there, but it is about isobutane mol-SB,

Links:

- http://mathworld.wolfram.com/Tree.html,
- 2. https://pubchem.ncbi.nlm.nih.gov/compound/isobutane,

References:

1. Tree – from Wolfram MathWorld, mathworld.wolfram.com/Tree.html.,

Title: Projective embedding of the positive roots of type A_3

Degree Sequence: [4, 3, 3, 2, 2, 2]

Vertices: 6

Edges: [[1, 2], [1, 3], [1, 4], [1, 5], [2, 4], [2, 6], [3, 5], [3, 6]]

Comments:

1. Vertices are the intersections of the lines generated by the positive roots with a certain affine hyperplane. Lines represent two dimensional spans.,

References:

1. S. Billey and A. Postnikov. Smoothness of Schubert varieties via patterns in root subsystems. Advances in Applied Mathematics, vol 34 (2005). Page 453.,

Title: Heawood Graph

Vertices: 14

Edges: [[1, 2], [1, 10], [1, 14], [2, 3], [2, 7], [3, 4], [3, 12], [4, 5], [4, 9], [5, 6], [5, 14], [6, 7], [6, 11],

[7, 8], [8, 9], [8, 13], [9, 10], [10, 11], [11, 12], [12, 13], [13, 14]]

Comments:

- 1. cage graph,
- 2. non-planar,

Links:

http://mathworld.wolfram.com/HeawoodGraph.html,

References:

1. Y. Zhao, Extremal regular graphs: independent sets and graph homomorphisms, 2016.,

Title: Desargues' Graph

Vertices: 20

Edges: [[1, 2], [1, 6], [1, 20], [2, 3], [2, 17], [3, 4], [3, 12], [4, 5], [4, 15], [5, 6], [5, 10], [6, 7], [7, 8], [7, 16], [8, 9], [8, 19], [9, 10], [9, 14], [10, 11], [11, 12], [11, 20], [12, 13], [13, 14], [13, 18], [14, 15],

[15, 16], [16, 17], [17, 18], [18, 19], [19, 20]]

Comments:

- 1. cubic-symmetric graph,
- 2. Desargues graph is the first of four graphs depicted on the cover of Harary (1994).,

Links:

- http://mathworld.wolfram.com/DesarguesGraph.html,
- 2. https://en.wikipedia.org/wiki/Desargues_graph,

References:

1. Kagno, I. N. Desargues' and Pappus' Graphs and Their Groups. Amer. J. Math. 69, 859-863, 1947.,

Title: Figure 2(a)

Degree Sequence: [6, 3, 3, 3, 3, 3, 3]

Vertices: 7

Edges: [[1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [2, 3], [2, 7], [3, 4], [4, 5], [5, 6], [6, 7]]

Links:

https://arxiv.org/pdf/math/0608624.pdf,

References:

1. W. Wood. Combinatorial Modulus and Types of Graphs, 2006.,

Title: Figure 2(b)

Degree Sequence: [4, 4, 4, 2, 2, 2]

Vertices: 6

Edges: [[1, 2], [1, 3], [1, 5], [1, 6], [2, 3], [2, 4], [2, 5], [3, 4], [3, 6]]

Links:

1. https://arxiv.org/pdf/math/0608624.pdf],,

References:

1. W. Wood. Combinatorial Modulus and Types of Graphs, 2006.,

Title: threshold graph 2

Degree Sequence: [9, 9, 6, 6, 6, 5, 5, 2, 2, 2]

Vertices: 10

Edges: [[1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7],

[2, 8], [2, 9], [2, 10], [3, 4], [3, 5], [3, 6], [3, 7], [4, 5], [4, 6], [4, 7], [5, 6], [5, 7]]

Comments:

1. threshold graph with binary string 0011100011,

References:

1. A. Banerjee1, R. Mehatari. On the normalized spectrum of threshold graphs, Indian Institute of Science Education and Research Kolkata, 2016.,

Title: Plabic Graph

Degree Sequence: [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

Vertices: 12

Edges: [[1, 2], [1, 5], [1, 7], [2, 3], [2, 8], [3, 4], [3, 10], [4, 5], [4, 11], [5, 6], [6, 7], [6, 12], [7, 8], [8,

9], [9, 10], [9, 12], [10, 11], [11, 12]]

Comments:

- 1. plabic,
- 2. nonplanar,
- 3. undirected,

Links:

1. https://arxiv.org/pdf/1106.0023.pdf,

References:

1. Y. Kodoma, L. Williams. KP Solutions and Total Positivity for the Grassmannian, 2014.,

Title: Figure 8

Vertices: 20

Edges: [[1, 2], [1, 3], [1, 10], [2, 8], [2, 15], [3, 6], [3, 11], [4, 7], [4, 9], [4, 14], [5, 6], [5, 7], [5, 17], [6, 16], [7, 18], [8, 9], [8, 20], [9, 19], [10, 11], [10, 15], [11, 12], [12, 13], [12, 17], [13, 14], [13, 16],

[14, 15], [16, 20], [17, 18], [18, 19], [19, 20]]

Comments:

- 1. soliton,
- 2. plabic,

Links:

1. https://arxiv.org/pdf/1106.0023.pdf,

References:

1. Y. Kodoma, L. Williams. KP Solutions and Total Positivity for the Grassmannian, 2014.,

Title: Figure 5

Degree Sequence: [4, 4, 4, 4, 4]

Vertices: 5

Edges: [[1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5], [3, 4], [3, 5], [4, 5]]

Links:

1. https://arxiv.org/pdf/1106.0023.pdf,

References:

1. M. Han. Cosmological Constant in LQG Vertex Amplitude, 2011.,

Title: 6-cycle

Degree Sequence: [2, 2, 2, 2, 2, 2]

Vertices: 6

Edges: [[1, 2], [1, 6], [2, 3], [3, 4], [4, 5], [5, 6]]

Links:

https://en.wikipedia.org/wiki/Cycle_graph,

Title: Complete Bipartite Graph $K_{2,3}$

Degree Sequence: [3, 3, 2, 2, 2]

Vertices: 5

Edges: [[1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5]]

Comments:

1. The class of outerplanar graphs is closed under minor taking: its obstruction set consists of the graphs $K_{2,3}$ and K_4 .

References:

- 1. H.L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth, Theoretical Computer Science 209. (1998). Page. 34,
- 2. M.M. Syslo, Characterisations of outerplanar graphs, Discrete Math. 26 (1979) 47-53.,

Graphlopedia ID: G000036 **Title**: Guanine Structure

Degree Sequence: [3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1]

Vertices: 11

Edges: [[1, 2], [1, 5], [1, 9], [2, 3], [2, 7], [3, 6], [3, 10], [4, 5], [4, 6], [4, 11], [7, 8], [8, 9]]

Links:

https://arxiv.org/pdf/cs/0703132.pdf,

References:

1. L. Peshkin. Center for Biomedical Informatics, Harvard Medical School."Structure Induction by Lossless Graph Compression" (2007).,

Title: Sugar

Degree Sequence: [4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1]

Vertices: 11

Edges: [[1, 4], [1, 9], [1, 10], [1, 11], [2, 3], [2, 4], [2, 5], [3, 7], [3, 8], [5, 6], [6, 7]]

Comments:

- 1. The compound object induced by the Graphitour algorithm, which corresponds to the backbone of the molecule: phosphate and sugar.,
- 2. Error in GRAPH: G000037 degree seq [4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1] should be [4, 3, 3, 2, 1, 0, 1, 1, 1, 1, 1] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] [[1, 4], [1, 9], [1, 10], [1, 11], [2, 3], [2, 4], [2, 5], [3, 7], [3, 8]],

Links:

1. https://arxiv.org/pdf/cs/0703132.pdf,

References:

1. L. Peshkin. Structure Induction by Lossless Graph Compression, (2007).,

Graphlopedia ID: G000038 **Title**: Original Factor Graph

 $\textbf{Degree Sequence} \colon [3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1]$

Vertices: 14

Edges: [[1, 2], [1, 7], [1, 14], [2, 4], [2, 12], [3, 4], [3, 8], [3, 10], [4, 9], [5, 6], [5, 9], [5, 11], [6, 12],

[6, 13], [7, 8], [10, 11]]

Links:

1. https://arxiv.org/pdf/cs/0612030.pdf,

References:

1. J. Mooji, B. Kappen. "Loop Corrections for Approximate Inference" (2006),

Title: Cavity Graph of i

Degree Sequence: [3, 2, 2, 2, 2, 1, 1, 1, 1, 1]

Vertices: 10

Edges: [[1, 2], [1, 8], [1, 9], [2, 3], [3, 10], [4, 5], [4, 7], [5, 6]]

Links:

1. https://arxiv.org/pdf/cs/0612030.pdf,

References:

1. J. Mooji, B. Kappen. "Loop Corrections for Approximate Inference" (2006),

Title: Fig.1

Degree Sequence: [5, 5, 5, 5, 5, 5]

Vertices: 6

Edges: [[1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [2, 3], [2, 4], [2, 5], [2, 6], [3, 4], [3, 5], [3, 6], [4, 5], [4, 6],

[5, 6]]

Links:

1. https://arxiv.org/pdf/hep-th/0611042.pdf,

References:

1. A. Baratin, L. Friedel. Perimeter Institute for Theoretical Physics. "Hidden Quantum Gravity in 4d Feynman Diagrams" (2007),

Title: K5 Graph

Degree Sequence: [4, 4, 4, 4, 4]

Vertices: 5

Edges: [[1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5], [3, 4], [3, 5], [4, 5]]

Links:

https://arxiv.org/pdf/hep-th/0611042.pdf,

References:

1. A. Baratin, L. Friedel. Perimeter Institute for Theoretical Physics. "Hidden Quantum Gravity in 4d Feynman Diagrams" (2007),

Title: Figure 1

Degree Sequence: [3, 2, 2, 1]

Vertices: 4

Edges: [[1, 2], [1, 3], [1, 4], [2, 3]]

Links:

1. https://arxiv.org/pdf/1304.0478.pdf,

References:

1. Z. Cinkir. "Explicit Computation of Certain Arakelov-Green Functions" (2013).,

Graphlopedia ID: G000043 **Title**: Tetrahedral Graph

Degree Sequence: [3, 3, 3, 3]

Vertices: 4

Edges: [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]

Links:

1. https://arxiv.org/pdf/1304.0478.pdf,

References:

1. Z. Cinkir. "Explicit Computation of Certain Arakelov-Green Functions" (2013).,

Title: The staircase of order eight, St8

Degree Sequence: [3, 3, 3, 3, 3, 3, 3, 3]

Vertices: 8

Edges: [[1, 2], [1, 3], [1, 4], [2, 3], [2, 8], [3, 5], [4, 5], [4, 6], [5, 7], [6, 7], [6, 8], [7, 8]]

Links:

1. https://arxiv.org/pdf/1611.07899.pdf,

References:

1. N. Kothari. "Generating Near-Bipartite Bricks" arXiv (2016). Page 4.,

Title: Fano Graph

Vertices: 14

Edges: [[1, 2], [1, 6], [1, 14], [2, 3], [2, 11], [3, 4], [3, 8], [4, 5], [4, 13], [5, 6], [5, 10], [6, 7], [7, 8], [7,

12], [8, 9], [9, 10], [9, 14], [10, 11], [11, 12], [12, 13], [13, 14]]

Comments:

1. The Fano graph is formed as the Levi graph of the Fano plane.,

Links:

- 1. https://commons.wikimedia.org/wiki/File:Fano_plane-Levi_graph.svg,
- 2. https://en.wikipedia.org/wiki/Levi_graph,
- 3. https://en.wikipedia.org/wiki/Fano_plane,

References:

1. Coxeter, H. S. M. Self-Dual Configurations and Regular Graphs. Bull. Amer. Math. Soc. 56, 413-455, 1950. Page 424.,

Author(s): Sara Billey.

Graphlopedia ID: G000046 **Title**: Complete Bipartite K_5

Degree Sequence: [4, 4, 4, 4, 4]

Vertices: 5

Edges: [[1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5], [3, 4], [3, 5], [4, 5]]

Comments:

1. Nonplanar,

Links:

https://en.wikipedia.org/wiki/Planar_graph,

Graphlopedia ID: G000047 **Title**: Complete Bipartite $K_{3,3}$

Degree Sequence: [3, 3, 3, 3, 3, 3]

Vertices: 6

Edges: [[1, 4], [1, 5], [1, 6], [2, 4], [2, 5], [2, 6], [3, 4], [3, 5], [3, 6]]

Comments:

1. Nonplanar,

Links:

https://en.wikipedia.org/wiki/Planar_graph,

2. http://mathworld.wolfram.com/NonplanarGraph.html,

Title: Petersen Graph 1

Degree Sequence: [5, 4, 4, 4, 4, 3, 3, 3]

Vertices: 8

Edges: [[1, 2], [1, 3], [1, 4], [1, 5], [1, 8], [2, 3], [2, 5], [2, 7], [3, 4], [3, 6], [4, 5], [4, 7], [5, 6], [6, 8],

[7, 8]]

Comments:

1. Petersen graph,

Links:

https://en.wikipedia.org/wiki/Petersen_family,

Title: Petersen Graph 2

Degree Sequence: [5, 5, 5, 4, 4, 4, 3]

Vertices: 7

Edges: [[1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [2, 3], [2, 4], [2, 5], [2, 6], [3, 4], [3, 5], [3, 6], [4, 7], [5, 7],

[6, 7]]

Comments:

1. Petersen graph,

Links:

https://en.wikipedia.org/wiki/Petersen_family,

Title: Petersen Graph 3

Degree Sequence: [4, 4, 4, 3, 3, 3, 3, 3, 3]

Vertices: 9

Edges: [[1, 2], [1, 3], [1, 4], [1, 7], [2, 3], [2, 5], [2, 8], [3, 6], [3, 9], [4, 5], [4, 9], [5, 6], [6, 7], [7, 8],

[8, 9]]

Comments:

1. Petersen graph,

Links:

https://en.wikipedia.org/wiki/Petersen_family,

Title: Petersen Graph 4

Degree Sequence: [3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

Vertices: 10

Edges: [[1, 2], [1, 5], [1, 7], [2, 3], [2, 8], [3, 4], [3, 9], [4, 5], [4, 10], [5, 6], [6, 8], [6, 9], [7, 9], [7, 10],

[8, 10]]

Comments:

1. Petersen graph,

Links:

https://en.wikipedia.org/wiki/Petersen_family,

References:

1. Y. Zhao, Extremal regular graphs: independent sets and graph homomorphisms, 2016.,

Title: Petersen Graph 5

Degree Sequence: [6, 4, 4, 4, 4, 4, 4]

Vertices: 7

Edges: [[1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [2, 3], [2, 5], [2, 7], [3, 4], [3, 6], [4, 5], [4, 7], [5, 6],

[6, 7]]

Comments:

1. Petersen graph,

Links:

https://en.wikipedia.org/wiki/Petersen_family,

Graphlopedia ID: G000053 **Title**: Petersen Graph 6

Degree Sequence: [5, 5, 5, 5, 5, 5]

Vertices: 6

Edges: [[1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [2, 3], [2, 4], [2, 5], [2, 6], [3, 4], [3, 5], [3, 6], [4, 5], [4, 6],

[5, 6]]

Comments:

1. Petersen graph,

Links:

https://en.wikipedia.org/wiki/Petersen_family,

Title: Petersen Graph 7

Degree Sequence: [4, 4, 4, 4, 4, 4, 3, 3]

Vertices: 8

Edges: [[1, 2], [1, 4], [1, 6], [1, 7], [2, 3], [2, 5], [2, 8], [3, 4], [3, 6], [3, 7], [4, 5], [4, 8], [5, 6], [5, 7],

[6, 8]]

Comments:

1. Petersen graph,

Links:

https://en.wikipedia.org/wiki/Petersen_family,

Title: Starfish

Vertices: 20

Edges: [[1, 6], [1, 7], [1, 20], [2, 8], [2, 9], [2, 10], [3, 11], [3, 12], [3, 13], [4, 14], [4, 15], [4, 16], [5, 17], [5, 18], [5, 19], [6, 9], [6, 18], [7, 10], [7, 19], [8, 11], [8, 20], [9, 12], [10, 13], [11, 14], [12, 15], [12, 15], [13, 15], [14, 15], [15, 16], [15

[13, 16], [14, 17], [15, 18], [16, 19], [17, 20]]

Comments:

1. Let G be theta-connected, and not contain Petersen. If G contains Starfish then G is isomorphisc to Starfish.,

References:

1. N. Robertson, P. Seymour, R. Thomas, Excluded Minors in Cubic Graphs, 1995.,

Title: Jaws

Vertices: 20

Edges: [[1, 2], [1, 6], [1, 13], [2, 3], [2, 9], [3, 4], [3, 8], [4, 5], [4, 10], [5, 6], [5, 11], [6, 7], [7, 8], [7, 12], [8, 20], [9, 10], [9, 14], [10, 16], [11, 12], [11, 17], [12, 19], [13, 14], [13, 18], [14, 15], [15, 16],

[15, 20], [16, 17], [17, 18], [18, 19], [19, 20]]

Comments:

1. Let G be theta-connected, and not contain Petersen. If G contains Jaws then G is doublecross.,

References:

1. N. Robertson, P. Seymour, R. Thomas, Excluded Minors in Cubic Graphs, 1995.,

Title: Triplex

Degree Sequence: [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

Vertices: 12

Edges: [[1, 2], [1, 9], [1, 10], [2, 3], [2, 11], [3, 4], [3, 12], [4, 5], [4, 10], [5, 6], [5, 11], [6, 7], [6, 12],

[7, 8], [7, 10], [8, 9], [8, 11], [9, 12]]

Comments:

1. Petersen, Triplex and Box are the only graphs minimal with the property of being dodecahedrally-connected and having crossing number > 1.,

Links:

1. https://arxiv.org/pdf/1403.2118.pdf,

References:

1. N. Robertson, P. Seymour, R. Thomas, Excluded Minors in Cubic Graphs, 1995.,

Title: Box

Vertices: 14

Edges: [[1, 2], [1, 4], [1, 10], [2, 3], [2, 13], [3, 6], [3, 7], [4, 5], [4, 12], [5, 6], [5, 13], [6, 9], [7, 8], [7,

10], [8, 9], [8, 14], [9, 12], [10, 11], [11, 12], [11, 14], [13, 14]]

Comments:

1. Petersen, Triplex and Box are the only graphs minimal with the property of being dodecahedrally-connected and having crossing number > 1.,

Links:

1. https://arxiv.org/pdf/1403.2118.pdf,

References:

1. N. Robertson, P. Seymour, R. Thomas, Excluded Minors in Cubic Graphs, 1995.,

Title: Antibox

Vertices: 14

Edges: [[1, 2], [1, 4], [1, 5], [2, 3], [2, 6], [3, 4], [3, 7], [4, 8], [5, 9], [5, 12], [6, 10], [6, 13], [7, 10], [7,

14], [8, 11], [8, 12], [9, 11], [9, 13], [10, 12], [11, 14], [13, 14]]

Links:

1. https://arxiv.org/pdf/1403.2118.pdf,

References:

1. N. Robertson, P. Seymour, R. Thomas, Excluded Minors in Cubic Graphs, 1995. Page 36.,

Title: Window

Degree Sequence: [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

Vertices: 12

Edges: [[1, 2], [1, 4], [1, 5], [2, 3], [2, 6], [3, 4], [3, 7], [4, 8], [5, 9], [5, 12], [6, 9], [6, 10], [7, 10], [7,

11], [8, 11], [8, 12], [9, 11], [10, 12]]

Links:

1. https://arxiv.org/pdf/1403.2118.pdf,

References:

1. N. Robertson, P. Seymour, R. Thomas, Excluded Minors in Cubic Graphs, 1995. Page 36.,

Title: Drape

Vertices: 14

Edges: [[1, 2], [1, 4], [1, 5], [2, 3], [2, 6], [3, 4], [3, 7], [4, 8], [5, 12], [5, 13], [6, 9], [6, 10], [7, 10], [7,

11], [8, 11], [8, 14], [9, 11], [9, 13], [10, 12], [12, 14], [13, 14]]

Links:

1. https://arxiv.org/pdf/1403.2118.pdf,

References:

1. N. Robertson, P. Seymour, R. Thomas, Excluded Minors in Cubic Graphs, 1995. Page 36.,

Title: Superbox

Vertices: 16

Edges: [[1, 2], [1, 5], [1, 11], [2, 3], [2, 12], [3, 4], [3, 8], [4, 5], [4, 13], [5, 14], [6, 7], [6, 10], [6, 11],

[7, 8], [7, 12], [8, 9], [9, 10], [9, 13], [10, 14], [11, 15], [12, 15], [13, 16], [14, 16], [15, 16]

Comments:

1. Related to Box, G000058,

Links:

1. https://arxiv.org/pdf/1403.2118.pdf,

References:

1. N. Robertson, P. Seymour, R. Thomas, Excluded Minors in Cubic Graphs, 1995. Page 39.,

Title: Drum

Vertices: 14

Edges: [[1, 2], [1, 3], [1, 4], [2, 5], [2, 6], [3, 7], [3, 11], [4, 8], [4, 12], [5, 9], [5, 11], [6, 10], [6, 12],

[7, 8], [7, 14], [8, 13], [9, 10], [9, 14], [10, 13], [11, 13], [12, 14]]

Figure 10: Drum.

Links:

1. https://arxiv.org/pdf/1403.2118.pdf,

References:

1. N. Robertson, P. Seymour, R. Thomas, Excluded Minors in Cubic Graphs, 1995. Page 41.,

Title: Twinplex

Degree Sequence: [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

Vertices: 12

Edges: [[1, 2], [1, 8], [1, 9], [2, 3], [2, 11], [3, 4], [3, 10], [4, 5], [4, 12], [5, 6], [5, 9], [6, 7], [6, 11], [7,

8], [7, 10], [8, 12], [9, 10], [11, 12]]

Links:

1. https://arxiv.org/pdf/1403.2118.pdf,

References:

1. N. Robertson, P. Seymour, R. Thomas, Excluded Minors in Cubic Graphs, 1995.,