## **Experiment - 1**

Student Name: Aditya Kumar Singh UID: 23BCS11734

Branch: BE-CSE Section/Group: KRG-2B

Semester: 5<sup>th</sup> Date of Performance: 12/8/25

Subject Name: Project Based Learning in Java

Subject Code: 23CSH-304

Aim: To develop Java programs to analyze strings, perform matrix operations, and

implement basic banking system functionality.

## **Easy-level Problem-**

**Aim:** To write a Java program to analyze a string input by the user. The program should: Count the number of vowels, consonants, digits and special characters in the string.

**Objective:** To understand string manipulation in Java using concepts like java basic input and string handling.

#### **Procedure:**

- 1. Prompt user to enter a string.
- 2. Traverse each character in the string.
- 3. Classify each character using conditions:
  - If the character is vowel(a,e,i,o,u) increment the vowel count.
  - If it is consonant(alphabetic or not a vowel), increment the consonant count.
  - If digit(0-9), increment digit count.
  - -If none of the above and not a space, it is a special character.
- 4. Print the count of vowels, consonants, digits and special characters.

## Sample Input -

Enter a string: Hello World 2025!

# Sample Output -

Vowels: 3

Consonants: 7

Digits: 4

Special characters: 3

### Code -

```
package exp1;
import java.util.Scanner;
public class easy {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.print("Enter a string: ");
String str = sc.nextLine();
int vowels = 0, consonants = 0, digits = 0, special = 0;
str = str.toLowerCase();
for (int i = 0; i < str.length(); i++) {</pre>
char ch = str.charAt(i);
if (ch >= 'a' && ch <= 'z') {</pre>
if ("aeiou".indexOf(ch) != -1) {
vowels++;
} else {
consonants++;
} else if (ch >= '0' && ch <= '9') {</pre>
digits++;
} else if (ch != ' ') {
special++;
}
System.out.println("Vowels: " + vowels);
System.out.println("Consonants: " + consonants);
System.out.println("Digits: " + digits);
System.out.println("Special Characters: " + special);
}
```

## Output -

```
Enter a string: 123ABCJKLM

Vowels: 3

Consonants: 4

Digits: 3

Special Characters: 0
```



#### **Medium- Level Problem -**

**Aim :** To write a Java program to perform matrix operations(addition, subtraction, and multiplication) on two matrices provided by the user. The program need to check the dimensions of the matrices to ensure valid operations.

**Objective:** Understand multidimensional array manipulation and matrix operation validation using concepts of Java multidimensional array and control structures.

#### **Procedure:**

- 1. Accept user input for 2 matrices (2D arrays).
- 2. Check that the dimensions of matrices are valid for the desired operations.
  - For addition/subtraction :dimensions must be equal.
  - For multiplication: columns of Matrix A = rows of Matrix B.
- 3. Use nested loops to perform:
  - Addition : result[i][j] = matrixA[i][j] + matrixB[i][j]
  - Subtraction : result[i][j] = matrixA[i][j] matrixB[i][j]
  - Multiplication : result[i][j] = sum(matrixA[i][k] \* matrixB[k][j])
- 4. Display the resulting matrices.

# **Sample Input:**

Matrix 1: 1

3 4

Matrix 2: 5 6

78

## **Sample Output:**

Addition:

68

10 12

Subtraction:

-4 -4

-4 -4

Multiplication:19 22

43 50

### **Code:**

Discover. Learn. Empower.

```
package exp1;
import java.util.Scanner;
public class medium {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
// Input dimensions
System.out.print("Enter rows and columns of first matrix: ");
int r1 = sc.nextInt();
int c1 = sc.nextInt();
System.out.print("Enter rows and columns of second matrix: ");
int r2 = sc.nextInt();
int c2 = sc.nextInt();
int[][] A = new int[r1][c1];
int[][] B = new int[r2][c2];
System.out.println("Enter elements of first matrix:");
for (int i = 0; i < r1; i++)</pre>
for (int j = 0; j < c1; j++)
A[i][j] = sc.nextInt();
System.out.println("Enter elements of second matrix:");
for (int i = 0; i < r2; i++)</pre>
for (int j = 0; j < c2; j++)
B[i][j] = sc.nextInt();
// Addition & Subtraction
if (r1 == r2 && c1 == c2) {
System.out.println("Addition:");
for (int i = 0; i < r1; i++) {</pre>
for (int j = 0; j < c1; j++) {</pre>
System.out.print((A[i][j] + B[i][j]) + " ");
}
System.out.println();
System.out.println("Subtraction:");
for (int i = 0; i < r1; i++) {</pre>
for (int j = 0; j < c1; j++) {</pre>
System.out.print((A[i][j] - B[i][j]) + " ");
System.out.println();
} else {
System.out.println("Addition/Subtraction not possible (dimension mismatch).");
```

```
Discover. Learn. Empower.
```

37 66 35

```
// Multiplication
if (c1 == r2) {
System.out.println("Multiplication:");
int[][] result = new int[r1][c2];
for (int i = 0; i < r1; i++) {</pre>
for (int j = 0; j < c2; j++) {</pre>
for (int k = 0; k < c1; k++) {
result[i][j] += A[i][k] * B[k][j];
System.out.print(result[i][j] + " ");
System.out.println();
} else {
System.out.println("Multiplication not possible (dimension mismatch).");
}
}
Output:
Enter rows and columns of first matrix: 2 2
Enter rows and columns of second matrix: 2 3
Enter elements of first matrix:
3 4
5 6
Enter elements of second matrix:
5 6
1 2
6 5
Addition/Subtraction not possible (dimension mismatch).
Multiplication:
23 42 23
```

### Hard -level Problem-

**Aim:** To create a Java program to implement a basic banking system with the following features:

- Account creation(Name, Account number,).
- Deposit and withdrawal operations.
- Prevent overdraft by checking the balance before withdrawal.

**Objective:** Apply object-oriented programming concepts in a practical system using concepts like Java classes, objects and control structures.

#### **Procedure:**

- 1. Define a 'BankAccount' class with fields like name, account number, and balance.
- 2. Implement methods for:
  - deposit(double amount): Adds amount to balance.
  - withdraw(double amount): checks balance before subtracting.
- 3. In the main program, create a new account by taking user input.
- 4. Allow the user to perform deposit and withdrawal operations.
- 5. Display appropriate messages and updated balances.

# **Sample Input:**

Create Account: Name: John Doe

Account Number: 12345 Initial Balance: 1000

Deposit: 500 Withdraw: 2000

# **Sample Output:**

Deposit successful! Current Balance: 1500

Error: Insufficient funds. Current Balance: 1500

#### **Code**:

```
package easy_level;
import java.util.Scanner;
class BankAccount {
String name;
int accountNumber;
double balance;
BankAccount(String name, int accountNumber, double initialBalance) {
this.name = name;
this.accountNumber = accountNumber;
this.balance = initialBalance;
void deposit(double amount) {
balance += amount;
System.out.println("Deposit successful! Current Balance: " + balance);
void withdraw(double amount) {
if (amount > balance) {
System.out.println("Error: Insufficient funds. Current Balance: " + balance);
} else {
balance -= amount;
System.out.println("Withdrawal successful! Current Balance: " + balance);
}
}
}
public class hard {
public static void main(String[] args) {
Scanner <u>sc</u> = new Scanner(System.in);
// Account creation
System.out.print("Enter Name: ");
String name = sc.nextLine();
System.out.print("Enter Account Number: ");
int accNo = sc.nextInt();
System.out.print("Enter Initial Balance: ");
double balance = sc.nextDouble();
BankAccount account = new BankAccount(name, accNo, balance);
while (true) {
System.out.println("\n1. Deposit\n2. Withdraw\n3. Exit");
System.out.print("Choose an option: ");
int choice = sc.nextInt();
```

Discover. Learn. Empower.

```
switch (choice) {
case 1:
System.out.print("Enter deposit amount: ");
double dep = sc.nextDouble();
account.deposit(dep);
break;
case 2:
System.out.print("Enter withdrawal amount: ");
double wd = sc.nextDouble();
account.withdraw(wd);
break;
case 3:
System.out.println("Exiting... Thank you!");
default:
System.out.println("Invalid choice.");
}
}
}
}
```

### **Output:**

```
Enter Name:
Enter Account Number:
Enter Initial Balance:

1. Deposit
2. Withdraw
3. Exit
Choose an option: 2
Enter withdrawal amount: 1600
Withdrawal successful! Current Balance: 13400.0

1. Deposit
2. Withdraw
3. Exit
Choose an option: 3
Exiting... Thank you!
```