Microcontroladores

Prof. Marcos Chaves

Interrupções Externas

Fonte:

Interrupções

As interrupções são causadas através de eventos assíncronos (podem ocorrer a qualquer momento) causando um desvio no processamento. Este desvio tem como destino um endereço para tratamento da interrupção. Uma boa analogia para melhor entendermos o conceito de interrupção é a seguinte: você está trabalhando digitando uma carta no computador quando o seu telefone toca. Neste momento você, interrompe o que está fazendo, para atender ao telefone e verificar o que a pessoa do outro lado da linha está precisando. Terminada a conversa, você coloca o telefone no gancho novamente e retoma o seu trabalho do ponto onde havia parado.

Observe que não precisamos verificar a todo instante, se existe ou não alguém na linha, pois somente quando o ramal é chamado, o telefone toca avisando que existe alguém querendo falar com você.

Comportamento de uma interrupção

Uma interrupção suspende a execução de uma apliação, salva as informações de con-Texto e desvia o controle para uma rotina de serviço de interrupção (ISR) para que o evento possa ser processado. Ao finalizar as informações são restauradas e a execução normal é retomada.

Fases de atendimento de uma interrupção

- 1 Quando a interrupção ocorre, o programa principal é interrompido; O endereço atual é salvo na pilha (STACK); O contador de programa(PC) é carregado com o endereço do vetor de interrupção específica ativada.
- 2 No endereço do vetor interrupção deve ocorrer a chamada da rotina da tratamento da interrupção (Interrupt routine).
- 3 Ao final da rotina de interrupçÃo, o PC é carregado com o último endereço salvo na pilha, retornando ao ponto original do programa principal.

Vetor	Endereço	Fonte	Definição			
1	0×0000	RESET	Reset Ext., Power-On Reset,			
2	0x0002	INT0	Int. Externa no pino INTO			
3	0x0004	INT1	Int. Externa no pino INT1			
4	0x0006	PCINT0	Mudança estado pino Req. 0			
5	8000x0	PCINT1	Mudança estado pino Req. 1			
6	0x000A	PCINT2	Mudança estado pino Req. 2			
7	0x000C	WDT	Watchdog Time-out			
8	0x000E	TIMER2 COMPA	T/C2 Compare Match A			
9	0×0010	TIMER2 COMPB	T/C2 Compare Match B			
10	0x0012	TIMER2 OVF	T/C2 Overflow			
11	0x0014	TIMER1 CAPT	T/C1 Evento de Captura			
12	0x0016	TIMER1 COMPA	T/C1 Compare Match A			
13	0X0018	TIMER1 COMPB	T/C1 Compare Match B			
14	0X001A	TIMER1 OVF	T/C1 Overflow			
15	0x001C	TIMER0 COMPA	T/C0 Compare Match A			
16	0x001E	TIMER0 COMPB	T/C0 Compare Match B			
17	0x0020	TIMER0 OVF	T/C0 Overflow			
18	0x0022	SPI, STC	SPI Transfer. completa			
19	0x0024	USART, RX	USART Recep. completa			
20	0x0026	USART, UDRE	USART Reg. dados vazio			
21	0x0028	USART, TX	USART Transm. completa			
22	0x002A	ADC	Conv. A/D completada			
23	0x002C	EE_READY	EEPROM Pronta			
24	0X002E	ANALOG COMP	Comparador Analógico			
25	0×0030	TWI	2-Wire serial interface			
26	0x0032	SPM READY	Memória Flash Pronta			

Interrupções no Atmega328

Vetores de Interrupções no Atmega328 em C

```
Código (função)
int main()
                      {//aqui vai o programa principal
ISR(INTO vect)
                      {//interrupção externa 0
ISR(INT1 vect)
                      {//interrupção externa 1
ISR(PCIN\overline{T}0 \text{ vect})
                      {//interrupção 0 por mudança de pino
ISR(PCINT1 vect)
                      {//interrupção 1 por mudança de pino
ISR(PCINT2 vect)
                      {//interrupção 2 por mudança de pino
ISR(WDT vect)
                      {//estouro do temporizador Watchdog
ISR(TIMER2 COMPA vect) {//igualdade de comparação A do TC2
ISR(TIMER2 COMPB vect) {//igualdade de comparação B do TC2
ISR(TIMER2 OVF vect) {//estouro do TC2}
ISR(TIMER1 CAPT vect) {//evento de captura do TC1
ISR(TIMER1 COMPA vect) {//igualdade de comparação A do TC1
ISR(TIMER1_COMPB_vect) {//igualdade de comparação B do TC1
ISR(TIMER1 OVF vect) {//estouro do TC1
ISR(TIMERO COMPA_vect) {//igualdade de comparação A do TCO
ISR(TIMERO COMPB vect) {//igualdade de comparação B do TCO
ISR(TIMERO OVF vect) {//estouro do TCO
ISR(SPI STC vect)
                      {//transferência serial completa - SPI
ISR(USART RX vect)
                      {//USART, recepção completa
ISR(USART UDRE vect)
                      {//USART, limpeza do registrador de dados
ISR(USART TX vect)
                      {//USART, transmissão completa
ISR(ADC vect)
                      {//conversão do ADC completa
ISR(EE READY vect)
                      {//EEPROM pronta
ISR(ANALOG COMP vect) {//comparador analógico
ISR(TWI vect)
                      {//interface serial TWI
ISR(SPM READY vect)
                      {//armazenagem na memória de programa pronta}
```

Vetores de Interrupções no Atmega328 em Assembly

Address	Labels Code		Co	omments
0x0000	jmp	RESET	;	Reset Handler
0x0002	jmp	EXT_INTO	;	IRQ0 Handler
0×0004	jmp	EXT_INT1	;	IRQ1 Handler
0x0006	jmp	PCINT0	;	PCINTO Handler
0x0008	jmp	PCINT1	;	PCINT1 Handler
0x000A	jmp	PCINT2	;	PCINT2 Handler
0x000C	jmp	WDT	;	Watchdog Timer Handler
0x000E	jmp	TIM2_COMPA	;	Timer2 Compare A Handler
0x0010	jmp	TIM2_COMPB	;	Timer2 Compare B Handler
0×0012	jmp	TIM2_OVF	;	Timer2 Overflow Handler
0×0014	jmp	TIM1_CAPT	;	Timer1 Capture Handler
0x0016	jmp	TIM1_COMPA	;	Timer1 Compare A Handler
0x0018	jmp	TIM1_COMPB	;	Timer1 Compare B Handler
0x001A	jmp	TIM1_OVF	;	Timer1 Overflow Handler
0x001C	jmp	TIMO_COMPA	;	TimerO Compare A Handler
0x001E	jmp	TIMO_COMPB	;	TimerO Compare B Handler
0×0020	jmp	TIMO_OVF	;	Timer0 Overflow Handler

Vetores de Interrupções no Atmega328 em Assembly

```
0 \times 0022
                                        ; SPI Transfer Complete Handler
                amir
                        SPI STC
0 \times 0024
                       USART RXC
                                        ; USART, RX Complete Handler
                amir
0 \times 0026
                                        ; USART, UDR Empty Handler
                qmj
                      USART_UDRE
0x0028
                                        ; USART, TX Complete Handler
                amir
                      USART_TXC
0 \times 002 A
                       ADC
                                        ; ADC Conversion Complete Handler
                qmŗ
0 \times 0.02 C
                       EE_RDY
                                        ; EEPROM Ready Handler
                qmj
0 \times 002 E
                gmŗ
                       ANA_COMP
                                        ; Analog Comparator Handler
0 \times 0030
                                        : 2-wire Serial Interface Handler
                gmj
                        TWI
0x0032
                        SPM RDY
                                        ; Store Program Memory Ready Handler
                amr
0 \times 0033 RESET:
                        r16, high(RAMEND); Main program start
                1di
0 \times 0034
                        SPH,r16
                out
                                        ; Set Stack Pointer to top of RAM
0x0035
                ldi
                       r16, low(RAMEND)
0x0036
                out
                        SPL, r16
0 \times 0037
                sei
                                        ; Enable interrupts
0x0038
                <instr> xxx
```

- O ATmega328 possui dois pinos dedicados para interrupções externas:
 - INT0 e INT1

Interrupção Externa

Interrupção Externa

Registradores Interrupção Externa

- ✓ Há 5 interrupções externas:
 - INT1 e INT0;
 - PCI2, PCI1 e PCIO.
- ✓ As interrupções externas são gatilhadas a partir dos pinos INT[1:0] (INT1 e INT0), PCINT[23:16] (PCI2), PCINT[14:8] (PCI1) e PCINT[7:0] (PCI0).

Registradores Interrupção Externa EICRA

✓ Bits 1 e 0 - ISCO1 e ISCOO → Indica o evento (nível e borda) no pino INTO que gerará uma interrupção.

Value	Description
00	The low level of INT0 generates an interrupt request.
01	Any logical change on INT0 generates an interrupt request.
10	The falling edge of INT0 generates an interrupt request.
11	The rising edge of INT0 generates an interrupt request.

'O' por pelo menos a execução da instrução atual.

> 1 ciclo de clock

Tab. 6.2 – Bits de configuração da forma das interrupções nos pinos INT1 e INT0.

ISC11	ISC10	Descrição					
0	0	Um nível baixo em INT1 gera um pedido de interrupção.					
0	1	Qualquer mudança lógica em INT1 gera um pedido de interrupção.					
1	0	Uma borda de decida em INT1 gera um pedido de interrupção.					
1	1	Uma borda de subida em INT1 gera um pedido de interrupção.					
ISC01	ISC00	Descrição					
0	0	Um nível baixo em INTO gera um pedido de interrupção.					
0	1	Qualquer mudança lógica em INT0 gera um pedido de interrupção.					
1	0	Uma borda de decida em INTO gera um pedido de interrupção.					
1	1	Uma borda de subida em INTO gera um pedido de interrupção.					

Registradores Interrupção Externa EIMSK

Name: EIMSK Offset: 0x3D Reset: 0x00

Property: When addressing as I/O Register: address offset is 0x1D

- ✓ Bits 1 e 0 INT1 e INT0 → Habilita, respecitivamente, as interrupções INT1 e INTO. Se I = 1, uma interrupção ocorrerá quando um determinado evento ocorrer no respectivo pino.
- ✓ Nota: mesmo se o pino for configurado como saída, uma requisição de interrupção poderá ocorrer se uma atividade (evento configurado em EICRA) ocorrer.

Registradores Interrupção Externa EICRA

✓ Bits 3 e 2 - ISC11 e ISC10 → Indica o evento (nível e borda) no pino INT1 que gerará uma interrupção.

Value	Description
00	The low level of INT1 generates an interrupt request.
01	Any logical change on INT1 generates an interrupt request.
10	The falling edge of INT1 generates an interrupt request.
11	The rising edge of INT1 generates an interrupt request.

'O' por pelo menos a execução da instrução atual.

> > 1 ciclo de clock

Registradores Interrupção Externa PCICR

Name: PCICR Offset: 0x68 Reset: 0x00 Property: -

- ✓ Bit 2 PCIE2 → Habilita interrupção de mudança no pino. Qualquer mudança em qualquer um dos pinos (PCINT[23:16]) habilitados causará uma interrupção (PCI2).
- ✓ Bit 1 PCIE1 → idem para os pinos PCINT[14:8] e interrupção PCI1.
- ✓ **Bit O PCIEO** → idem para os pinos PCINT[7:0] e interrupção PCIO.

Registradores Interrupção Externa PCIFR

Name: PCIFR Offset: 0x3B Reset: 0x00

Property: When addressing as I/O Register: address offset is 0x1B

- ✓ Bit 2 PCIF2 → Indica a ocorrência da mudança de sinal em um dos pinos PCINT[23:16].
- ✓ Bit 1 PCIF1 → Indica a ocorrência da mudança de sinal em um dos pinos PCINT[14:8].
- ✓ Bit 0 PCIFO → Indica a ocorrência da mudança de sinal em um dos pinos PCINT[7:0].
 - Esses flags são zerados automaticamente quando a ISR for executada ou, alternativamente, via software escrevendo '1'.

Registradores Interrupção Externa PCMSK2

Name: PCMSK2
Offset: 0x6D
Reset: 0x00
Property: -

Bit	7	6	5	4	3	2	1	0
[PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16
Access	R/W	R/W	R/W	RW	R/W	RW	R/W	R/W
Reset	0	0	0	0	0	0	0	0

- ✓ Seleciona se a interrupção de mudança no pino está habilitada no correspondente pino de E/S - PCI2.
- ✓ Ex.: se PCINT16 = 1, qualquer mudança nesse pino (1→0 ou 0→1), gerará uma interrupção se PCIE2 de PCICR for '1' e I=1. O bit PCIF2 de PCIFR será setado.

Registradores Interrupção Externa PCMSK1

- ✓ Seleciona se a interrupção de mudança no pino está habilitada no correspondente pino de E/S PCI1.
- ✓ Ex.: se PCINT14 = 1, qualquer mudança nesse pino (1→0 ou 0→1), gerará uma interrupção se PCIE1 de PCICR for '1' e I=1. O bit PCIF1 de PCIFR será setado.

Registradores Interrupção Externa PCMSKO

- ✓ Seleciona se a interrupção de mudança no pino está habilitada no correspondente pino de E/S - PCIO.
- ✓ Ex.: se PCINT3 = 1, qualquer mudança nesse pino (1→0 ou 0→1), gerará uma interrupção se PCIEO de PCICR for '1' e I=1. O bit PCIFO de PCIFR será setado.

Exemplo de uma operação das duas interrupções externas, INT0 e INT1

Fig. 6.2 – Circuito para emprego das interrupções externas INTO e INT1.

```
; DEFINITIONS
.equ vermelho = pb0
.equ amarelo = pb1
.equ verde = pb2
; VARIABLES
: RESET and INTERRUPT VECTORS
.org 0x0000
   ; Reset Vector
  rjmp Start
.org 0x0002; porta que pode receber o bot,,o deinterrupÁ,,o
   rjmp trata int0
.org 0x0004; porta que pode receber o bot,,o deinterrupÁ,,o
   rjmp trata int1
.org 0x050
```

```
.include "lib328Pv01.inc"
Start:
   ; Write your code here
     sbi ddrb,0
     sbi ddrb,1
     sbi ddrb,2
     sei; habilita as interrupÁies no microcontrolador
     sbi EIMSK,INTO; habilita a interrupÁ"o externa 0
     sbi EIMSK,INT1; habilita a interrupÁ,,o externa 0
Loop:
     sbi portb, vermelho
     ldi delay_time,1
     rcall delay_seconds
     cbi portb, vermelho
     sbi portb, verde
     ldi delay time,1
     rcall delay_seconds
     cbi portb, verde
     sbi portb,amarelo
     ldi delay_time,1
     rcall delay_seconds
     cbi portb,amarelo
  rjmp Loop
```

```
trata_int0:
     cbi portb, vermelho
     cbi portb,verde
blink: ; pisca o amarelo
     sbi portb,amarelo
     ldi delay_time,1
     rcall delay_seconds
     cbi portb,amarelo
     ldi delay_time,1
     rcall delay_seconds
     rjmp blink
     ;reti
trata_int1:
     cbi portb,amarelo
     cbi portb,verde
     sbi portb,vermelho
     sei
     rjmp trata_int1
```