Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 2



Faglig kontakt : Petter Andreas Bergh

Telefon: 92032532

## Eksamen i MA1301 Tallteori Bokmål Mandag 5. desember 2011 Kl. 09.00–13.00 (4 timer)

Hjelpemidler: kode D (bestemt enkel kalkulator: HP30S eller Citizen SR-270X)

Alle svar skal begrunnes.

Oppgave 1 Hva får vi til rest når vi deler 1301<sup>338</sup> på 98?

Oppgave 2 Finn alle løsninger av systemet

$$8x \equiv 6 \pmod{7}$$
$$x \equiv -3 \pmod{9}$$
$$4x \equiv -1 \pmod{13}.$$

**Oppgave 3** I et RSA-kryptosystem er den offentlige nøkkelen  $\{n, e\} = \{187, 21\}$ . Hva blir den hemmelige nøkkelen  $\{n, d\}$ ? Krypter meldingen M = 20.

Oppgave 4 La a = 77! - 1. Finn et tall  $1 < d < a \mod d | a$ .

**Oppgave 5** Vis at  $32|(n^8-1)$  for alle oddetall  $n \ge 1$ .

**Oppgave 6** Fibonaccifølgen  $f_1, f_2, f_3, \ldots$  defineres ved

$$f_1 = 1$$
  
 $f_2 = 1$   
 $f_n = f_{n-1} + f_{n-2}$  for  $n \ge 3$ .

De første leddene blir 1, 1, 2, 3, 5, 8, 13, 21, ... Vis at

$$\sum_{i=1}^{n} f_i^2 = f_n f_{n+1}$$

for alle  $n \geq 1$ .

**Oppgave 7** La  $n \in \mathbb{N}$  og  $a \in \mathbb{Z}$  med gcd(a, n) = 1. Hvis k er ordenen til a modulo n, vis at

$$a^t \equiv 1 \pmod{n} \Leftrightarrow k|t.$$

## Oppgave 8

a) Vis at for et odde primtall p er kongruensen

$$x^2 \equiv -1 \pmod{p}$$

løsbar hvis og bare hvis p er på formen 4k + 1.

b) Vis at det finnes uendelig mange primtall på formen 4k+1 (hint:  $(2p_1\cdots p_t)^2+1$ ).

Oppgave 9 Er kongruensen

$$x^2 + 4x \equiv 30 \pmod{31}$$

løsbar?