CAN207 Continuous and Discrete Time Signals and Systems

Lecture 18
Sampling and Reconstruction

Qing.Liu@xjtlu.edu.cn Room SC340

Content

- 1. Sampling
 - 1.0. What and Why?
 - 1.1. Sampling in Time domain (TD)
 - 1.2. Sampling in Frequency domain (FD)
 - 1.3. Nyquist Theorem
- 2. Reconstruction
 - 2.1 Interpolation
 - 2.2 Reconstruction theory
 - 2.3 Reconstruction in FD filtering
 - 2.4 Reconstruction in TD interpolation
 - 2.5 Realisation

1.0 Digital Processing of CT Signals

Most signals in nature are continuous in time
 Need a way for "digital processing of continuous-time signals" => SAMPLING!

(a) Ideal data flow for the digital processing of continuous-time signals

(b) Practical data flow for the digital processing of continuous-time signals

1.0 Analog -> Digital ->Analog

- Conversion of the continuous-time signal into a discrete-time signal
 - Anti-aliasing filter to prevent potentially detrimental effects of sampling
 - Sample & Hold discrete in time and keep the sampling values for a while to allow the A/D converter to do its job
 - Analog to Digital Converter (A/D) conversion in amplitude
- Processing of the discrete-time signal
 - Digital Signal Processing –Filter, digital processor
- Conversion of the processed discrete-time signal back into a conttime signal
 - Digital to analog converter (D/A) -to obtain the continuous signal
 - Reconstruction / smoothing filter -smooth out the signal from the D/A

• A discrete-time sequence is developed by uniformly sampling the continuous-time signal $x_a(t)$

• The time variable - time t is related to the discrete time variable n only at discrete-time instants t_n

$$t_n = nT_S = \frac{n}{F_S} = \frac{2\pi n}{\Omega_S} \begin{cases} T_S = 1/F_S \text{ (Sampling period, second, second/sample)} \\ F_S = 1/T_S \text{ (Sampling frequency, Hz, cycles/second)} \\ \Omega_S = 2\pi/T_S \text{ (Sampling angular frequency, radian/second)} \end{cases}$$

- Consider $x_a(t) = A\cos(\Omega_0 t + \phi)$
- Now $x[n] = A\cos(\Omega_0 nT_s + \phi)$

$$=A\cos(\frac{2\pi\Omega_0}{\Omega_S}n+\phi)=A\cos(\omega_0n+\phi)=x_a(nT)$$

- Where $\omega_0 = \frac{2\pi\Omega_0}{\Omega_S} = \Omega_0 T_S$
- ω_0 is the (normalized) digital angular frequency of the signal
 - Unit: radians/sample
- Ω_0 is the analog angular frequency of signal
 - Unit: radians/second
- Ω_s is the sampling analog angular frequency
 - Unit: radians/second

• In mathematics, the periodic sampling is modelled as the multiplication of continuous signal and impulse train

• The system to convert the continuous-time (CT) signal $x_a(t)$ to a discrete-time (DT) signal x[n] is shown:

$$x_s(t) = x_a(t)\delta_{T_s}(t) = \sum_{n=-\infty}^{\infty} x_a(nT_s)\delta(t - nT_s)$$

1.1 How signal changed after sampling

• In time domain, continuous -> discrete

- Different sampling rates, different details
 - More samples = higher sampling rate/frequency = more detail
 more information kept = more resource occupation
 - Less samples = lower sampling rate/frequency = less details
 = more information loss = less resource occupation
- How to choose the sampling period/rate?

Recall Lect. 8 p18

- $\tilde{x}(t)$ is periodic
- x(t) represents one period

$$a_k = \frac{1}{T}X(\omega)|_{\omega = k\omega_0}$$

• Fourier transform of $\tilde{x}(t)$

$$\widetilde{X}(\omega) \triangleq \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(\omega - k\omega_0)$$

$$\widetilde{X}(\omega) = \omega_0 \sum_{m=0}^{+\infty} X(\omega)\delta(\omega - k\omega_0)$$

1.2 Frequency domain analyses

• Review: CTFT of a pulse train $\delta_{T_s}(t)$

$$\delta_{T_S}(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT_S) \iff CTFT \\ \Omega_S = 2\pi f_S = \frac{2\pi}{T_S}$$

$$\delta\Omega_S(\Omega) = \Omega_S \sum_{k = -\infty}^{\infty} \delta(\Omega - k\Omega_S)$$

TD: Time domain

FD: Frequency domain

Note: in the following slides, Ω is used to denote the analog frequency for the Continuous-Time Fourier Transform (CTFT), in order to distinguish it from the digital frequency ω used for the Discrete-Time Fourier Transform (DTFT).

1.2 Sampling in Frequency domain (FD)

• In TD: multiplication between $x_a(t)$ and $\delta_{T_s}(t)$

$$x_s(t) = x_a(t) \cdot \delta_{T_s}(t)$$

 $-\Omega_{\rm s}$

• In FD: convolution between $X_a(j\Omega)$ and $\delta_{\Omega_s}(\Omega)$

$$X_{S}(j\Omega) = \frac{1}{2\pi} X_{a}(j\Omega) * \Omega_{S} \sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_{S}) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X_{a}[j(\Omega - k\Omega_{S})]$$

1.2 Sampling in $FD^{\frac{x_a(t)}{}}$

• An alternative expression of $X_s(j\Omega)$ is:

$$x_{s}(t) = \sum_{n=-\infty}^{\infty} x_{a}(nT_{s})\delta(t - nT_{s})$$

Recall
$$X_{s}(j\Omega) = \frac{1}{T_{s}} \sum_{s}^{\infty} X_{a}[j(\Omega - k\Omega_{s})]$$

$$X_{S}(j\Omega) = \sum_{n=-\infty} x_{a}(nT_{S})e^{-j\Omega T_{S}n}$$

Since:
$$x[n] = x_a(nT_s)$$

e:
$$x[n] = x_a(nI_s)$$

$$X(e^{j\omega}) = \sum_{n=1}^{\infty} x[n]e^{-j\omega n}$$

$$\sum_{\alpha}^{\infty} x_{a}(nT_{S})e^{-j\sigma}$$

$$X_{S}(j\Omega) = X(e^{j\omega})\Big|_{\omega=\Omega T_{S}} = X(e^{j\Omega T_{S}})$$

$$X(e^{j\Omega T_S}) = \frac{1}{T_S} \sum_{k=-\infty}^{\infty} X_a[j(\Omega - k\Omega_S)]$$

$$X(e^{j\omega}) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X_a \left[j \left(\frac{\omega}{T_s} - \frac{2\pi k}{T_s} \right) \right]$$

1.2 Sampling in Frequency domain (FD)

• Discretization in TD => Periodicity in FD

1.3 Nyquist-Shannon Theorem

- The spectrum of the sampled signal contains all the information of the original CT signal
 - So the CT signal can be recovered without any loss;

— But a condition needs to be satisfied:

$$\Omega_0 T_s \leq \pi \iff 2\Omega_0 \leq \Omega_s$$

- The Nyquist-Shannon theorem!

1.3 Over-sampling and under-sampling

• Over-sampling: $2\Omega_m < \Omega_T$

• Down-sampling: $2\Omega_m > \Omega_T$

Wrap-up of SAMPLING

- What is sampling process?
 - The first step to convert a continuous-time signal to a discrete-time signal;
- In time domain: multiplication the CT signal to a pulse train, then convert the modulated pulse train to sequence;
- In frequency domain: copy and shift (create infinite replica) the spectrum of the CT signal;
 - The CT signal can be recovered from the sampled signal if Nyquist theorem is satisfied, i.e., $2\Omega_0 \le \Omega_s$
- Nyquist theorem

Example

- A continuous-time signal $x_a(t)$ is the linear combination of the components with 300Hz, 1.2kHz and 3.5kHz frequencies. Sampling $x_a(t)$ with a sampling frequency 2 kHz gets a sequence x[n]. Sending x[n] through an ideal lowpass filter with the cutoff frequency of 900Hz get a continuous-time output $y_a(t)$.
- What are the frequency components in $y_a(t)$?
- What is the critical sampling frequency?

Quiz 1

- The signal $x(t) = \sin(\pi t) + 4\sin(3\pi t)\cos(2\pi t)$, where t is in ms, is sampled at a rate of 3 kHz.
- Find the frequency components in x(t).
- Find the Nyquist rate of the signal.

2.1 Interpolation

• What is interpolation?

- In the mathematical field of numerical analysis, interpolation is a method of *constructing new data points* within the range of a discrete set of known data points.
- In this module, interpolation is a procedure whereby we convert a discrete-time (DT) sequence x[n] to a continuous-time (CT) function x(t).
- Requirement: for the CT function x(t), its values at multiples of T_s should be equal to the corresponding points of the DT sequence x[n]:

$$x(t)\Big|_{t=nT_S}=x[n]$$

The interpolation problem now reduces to "filling the gap" between these instants.

2.1 Interpolation methods

• 1. Zero-order/Local Interpolation

$$I_0(t) = \operatorname{rect}(t)$$

• 2. First-order/Linear Interpolation

$$y = y_1 + (x - x_1) \frac{y_2 - y_1}{x_2 - x_1}$$

• 3. Higher-order/Polynomial Interpolation

2.1 Reconstruction with interpolation

- Interpolation, the fitting of a continuous signal to a set of sample values, is a commonly used procedure for reconstructing a function, either approximately or exactly, from samples.
 - One simple interpolation procedure is the zero-order hold.
 - Another useful form of interpolation is *linear interpolation*, whereby adjacent sample points are connected by a straight line as shown below.

 In more complicated interpolation formulas, sample points may be connected by higher order polynomials or other mathematical functions, like sinc().

2.2 Reconstruction Theory

2.3 Reconstruction filter in Frequency domain

- Reconstruction or smoothing filter is used to eliminate all the replicas of the spectrum outside the baseband
- Ideal lowpass filter

- Frequency domain
$$H_r(j\Omega) = \begin{cases} T_s, & |\Omega| < \Omega_c \\ 0, & |\Omega| > \Omega_c \end{cases}$$

2.4 Reconstruction filter in time domain

- This lowpass filter in time domain is a "sinc" function:
 - Time domain

$$h_r(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H_r(j\Omega) e^{j\Omega t} d\Omega = \frac{T_s}{2\pi} \int_{-\Omega_c}^{\Omega_c} e^{j\Omega t} d\Omega$$
$$= \frac{\sin(\Omega_s t/2)}{\Omega_s t/2} = \frac{\sin(\pi t/T_s)}{\pi t/T_s} = \operatorname{sinc}(\frac{t}{T_s})$$

- Multiply with $H_r(j\Omega)$ (in FD) is equivalent to convolve with $h_r(t)$ (in TD), the recovered signal $x_r(t) = x_s(t) * h_r(t)$
- Impulse train $x_s(t)$: $x_s(t) = \sum_{n=-\infty}^{\infty} x_a(nT_s)\delta(t nT_s)$

2.4 Reconstruction filter in time domain

• Convolution between the discretized signal $x_s(t)$ and the reconstruction lowpass filter $h_r(t)$:

$$x_r(t) = x_s(t) * h_r(t) = \sum_{n = -\infty}^{\infty} x_a(nT_s)h_r(t - nT_s) = \sum_{n = -\infty}^{\infty} x[n]\operatorname{sinc}(t - nT_s)$$

- The values are interpolated as a linear combination of the timeshifted sinc functions
- The amplitudes are scaled according to the sample values at the center locations of the sinc (the interpolation functions)

2.5 Realization

Wrap-up of RECONSTRUCTION

- Continuous-time signal can be reconstructed from the discrete-time sequence;
- Reconstruction can be realized as
 - In time domain: interpolation;
 - In frequency domain: filtering.
- Ideal reconstruction:

Quiz 2

• The spectrum $X(j\Omega)$ of a continuous-time signal x(t) is shown below. x(t) is sampled with the sampling angular frequency Ωs , and get a discrete-time sequence x[k], whose spectrum is $X(j\omega)$.

- a) If $\Omega s = 200$ rad/s, sketch $X(j\omega)$ with all the labels for horizontal and vertical axes;
- b) If $\Omega c = 200 \text{ rad/s}$, can x(t) be reconstructed from x[k]? Explain the reason.

Next ...

- Z-transform
- Discrete Fourier Transform

