TRIGONOMETRY

Chapter 04 SESSION 2

Razones trigonométricas de un ángulo agudo

Que se te viene a la mente cuando escuchas la palabra

...RAZÓN

Excelente!!

Una razón es la comparación entre dos cantidades.

¿Podremos establecer razones entre las longitudes de los lados de un triángulo rectángulo?

... ¿Qué opinas?

Para aclarar tus ideas, Veamos

Razones Trigonométricas de un Ángulo Agudo

Es el cociente entre las longitudes de los lados de un triángulo rectángulo.

Teorema de Pitágoras

$$c^2 = a^2 + b^2$$

Luego:

$$sen\alpha = \frac{cateto\ opuesto\ al\ 4\ \alpha}{hipotenusa} = \frac{C.\ O.}{H.}$$

$$cos\alpha = \frac{cateto\ adyacente\ al\ 4\ \alpha}{hipotenusa} = \frac{C.\ A.}{H.}$$

$$tan\alpha = \frac{cateto\ opuesto\ al\ 4\ \alpha}{cateto\ adyacente\ al\ 4\ \alpha} = \frac{C.\ O.}{C.\ A.}$$

$$cot\alpha = \frac{cateto\ adyacente\ al\ 4\ \alpha}{cateto\ opuesto\ al\ 4\ \alpha} = \frac{C.\ A.}{C.\ O.}$$

$$sec\alpha = \frac{hipotenusa}{cateto\ adyacente\ al\ 4\ \alpha} = \frac{H.}{C.\ A.}$$

$$csc\alpha = \frac{hipotenusa}{cateto\ opuesto\ al\ 4\ \alpha} = \frac{H.}{C.\ O.}$$

1. Si
$$\cos \theta = \frac{1}{\sqrt{7}}$$
, siendo " θ " un ángulo agudo, efectúe

$$E = \sec^2 \theta + \sqrt{42} \operatorname{sen} \theta$$

RESOLUCIÓN:

Del dato:

$$\cos \theta = \frac{1}{\sqrt{7}} = \frac{CA}{H}$$

$$\theta$$

Recordar:

$$sen\theta = \frac{CO}{H}$$

$$cos\theta = \frac{CA}{H}$$

$$sec\theta = \frac{H}{CA}$$

Teorema de Pitágoras:

$$(CO)^2 + (1)^2 = (\sqrt{7})^2$$

 $(CO)^2 + 1 = 7$
 $(CO)^2 = 6$ $CO = \sqrt{6}$

$$\mathbf{E} = \sec^2 \theta + \sqrt{42} \sec \theta$$

$$\mathbf{E} = \left(\frac{\sqrt{7}}{1}\right)^2 + \sqrt{42} \times \left(\frac{\sqrt{6}}{\sqrt{7}}\right)$$

$$\mathbf{E} = 7 + \sqrt{6}\sqrt{7} \times \left(\frac{\sqrt{6}}{\sqrt{9}}\right)$$

$$E = 7 + 6$$

$$\therefore E = 13$$

2. Si sec β = 1,2 ; siendo "β" un ángulo agudo, efectúe

$$L = \sqrt{11}(\cot \beta + \csc \beta)$$

RESOLUCIÓN:

Del dato:

$$\sec \beta = \frac{6}{5} = \frac{H}{CA}$$

$$6$$

$$6$$

$$6$$

$$6$$

$$5$$

Recordar:

$$cot\theta = \frac{CA}{CO}$$

$$sec\theta = \frac{H}{CA}$$

$$csc\theta = \frac{H}{CO}$$

Teorema de Pitágoras:

$$(CO)^2 + (5)^2 = (6)^2$$

 $(CO)^2 + 25 = 36$
 $(CO)^2 = 11 \implies CO = \sqrt{11}$

$$\mathbf{L} = \sqrt{11}(\cot\boldsymbol{\beta} + \csc\boldsymbol{\beta})$$

$$\mathbf{L} = \sqrt{11} \times \left(\frac{5}{\sqrt{11}} + \frac{6}{\sqrt{11}} \right)$$

$$L = 5 + 6$$

$$\therefore L = 11$$

3. En el triángulo rectángulo $(m \not B = 90^\circ)$ se cumple que $\frac{\text{sen A}}{\text{sec C}} = \frac{1}{3}$, efectúe

$$E = \sqrt{3} \csc A + \tan^2 C$$

RESOLUCIÓN:

 $\frac{}{sec C} = \frac{}{3}$

Del dato:

$$\frac{\frac{a}{b}}{\frac{b}{b}} = \frac{1}{3} \implies \frac{a^2}{b^2} = \frac{1}{3} \implies \frac{a}{b} = \frac{1}{\sqrt{3}}$$

Teorema de Pitágoras:

$$(c)^{2} + (1)^{2} = (\sqrt{3})^{2}$$

 $(c)^{2} + 1 = 3$
 $(c)^{2} = 2$ $c = \sqrt{2}$

$$\mathbf{E} = \sqrt{3} \operatorname{csc} \mathbf{A} + \tan^2 \mathbf{C}$$

$$\mathbf{E} = \sqrt{3} \times \left(\frac{\sqrt{3}}{1}\right) + \left(\frac{\sqrt{2}}{1}\right)^2$$

$$\mathbf{E} = 3 + 2$$

$$\therefore E = 5$$

4. Si $\tan \theta = \frac{21}{20}$, donde θ es un ángulo agudo, efectúe

$$Q = \sqrt{58} \cos \left(\frac{\theta}{2}\right)$$

RESOLUCIÓN:

 $\tan\theta = \frac{21}{20} = \frac{\cos\theta}{\cos\theta}$ Del dato:

En el AABC (Por el Teorema de Pitágoras)

$$(H)^2 = (21)^2 + (20)^2$$

$$(H)^2 = 441 + 400$$

$$\mathbf{H} = \sqrt{841} \qquad \mathbf{H} = \mathbf{29}$$

$$H=29$$

En el AABD (Por el Teorema de Pitágoras)

$$(Y)^2 = (21)^2 + (49)^2$$

$$(Y)^2 = 441 + 2401$$

$$Y = \sqrt{2842}$$
 $Y = 7\sqrt{58}$

$$Y = 7\sqrt{58}$$

$$Q = \sqrt{58} \cos \left(\frac{\theta}{2}\right)$$

$$Q = \sqrt{58} \times \left(\frac{49}{7\sqrt{58}}\right)$$

$$\therefore \mathbf{Q} = \mathbf{7}$$

5. Una barra metálica descansa sobre una pared lisa, tal como se muestra en la figura. Calcule el producto del coseno y la tangente de α .

$$a = 16m$$

Recordar:

$$(a+b)^2 + (a-b)^2 = 2(a^2 + b^2)$$

$$(a+b)^2 - (a-b)^2 = 4ab$$

Por el Teorema de Pitágoras:

$$(a)^2 + (a-4)^2 = (a+4)^2$$

$$(a)^2 = (a + 4)^2 - (a - 4)^2$$

$$(a)^2 = 4(a)(4)$$
 \Rightarrow $a = 16$

$$\cos \alpha \cdot \tan \alpha = \left(\frac{16}{20}\right) \times \left(\frac{12}{16}\right)$$

$$\therefore \cos \alpha \cdot \tan \alpha = \frac{3}{5}$$

6 Ramiro heredó un terreno en de triángulo forma ABC, donde AC=36m, $\operatorname{csc} A = \sqrt{17}$ y $\csc C = \sqrt{26}$. ¿Cuál es el área de dicho terreno?

RESOLUCIÓN:

Del dato:

En el ΔAHB:

$$\csc A = \frac{\sqrt{17}k}{1k}$$

Por el Teorema de Pitágoras Por el Teorema de Pitágoras

$$(AH)^2 + (k)^2 = (\sqrt{17}k)^2$$

$$(AH)^2 + k^2 = 17k^2$$

$$(AH)^2 = 16k^2$$

$$\rightarrow$$
 AH = 4k

En el ΔBHC:

$$\csc C = \frac{\sqrt{26}k}{1k}$$

$$(HC)^2 + (k)^2 = (\sqrt{26}k)^2$$

$$(HC)^2 + k^2 = 26k^2$$

$$(HC)^2 = 25k^2$$

$$\rightarrow$$
 HC = 5k

Del gráfico, se observa que:

$$9k = 36m$$
 $k = 4m$

$$k = 4m$$

Calculando el área del terreno:

$$\mathbb{A} = \frac{36 \times \mathbf{k}}{2} = \frac{36 \times (4)}{2}$$

$$\therefore \mathbb{A} = 72 \mathrm{m}^2$$

7. Del gráfico, efectúe

$$B = (tan α + tan β) cot θ$$

Recordar:

$$tan\theta = \frac{CO}{CA}$$

$$cot\theta = \frac{CA}{CO}$$

RESOLUCIÓN:

Sea

$$BP = PC = a$$

 $AM = MN = NC = 1$

Piden:

$$B = (\tan \alpha + \tan \beta) \cot \theta$$

$$\mathbf{B} = \left(\frac{\mathbf{Z}\mathbf{a}}{\mathbf{Z}} + \frac{2\mathbf{a}}{\mathbf{1}}\right) \times \left(\frac{3}{\mathbf{a}}\right)$$

$$\mathbf{B} = (3\mathbf{A}) \times \left(\frac{3}{\mathbf{A}}\right)$$

 $\therefore B = 9$

RESOLUCIÓN:

Sea
$$AQ = QC = a$$

Piden: sen α

En el
$$\triangle ABC$$
: sen $\alpha = \frac{10}{2a} = \frac{5}{a}$... (1)

En el
$$\triangle PQC$$
: sen $\alpha = \frac{a}{8}$... (2)

Igualando (2) y (1)

$$\frac{a}{8} = \frac{5}{a} \implies a^2 = 40 \implies a = \sqrt{40}$$

$$\implies a = 2\sqrt{10}$$

Reemplazando en (2)

$$\therefore sen \alpha = \frac{\sqrt{10}}{4}$$