40+2	

Name: _____ Date: ____

MHF4U

Test – Unit 1: Polynomial Functions

Show all **applicable** work and express all answers in simplest form. Marks are awarded for presentation and technical correctness.

- 1. State the domain of $f(x) = \sqrt{x-4} + 7$. (1 mark)
- 2. List one odd function. (1 mark)
- 3. Given $f(x) = 3^x$, what is the range of y = -f(x) + 6. (1 mark)
- 4. Graph on a number line |x| < 3. (1 mark)
- 5. Determine the end behaviour(s) of $f(x) = \frac{1}{x} 2$. (2 marks)

- 6. On what interval(s) is the function $f(x) = (x+8)^2$ decreasing? (1 mark)
- 7. Given the following inequality, write the range of solutions in interval notation. (1 mark)

- 8. If $f^{-1}(5) = -7$, state the corresponding point on y = f(x). (1mark)
- 9. Is the following piecewise function continuous? Show your work. (3 marks)

$$f(x) = \begin{cases} |x-4| - 3, & \text{if } x \le 2\\ -(x-4)^2 + 5, & \text{if } x > 2 \end{cases}$$

- 10. Sketch a graph with the following characteristics.
 - Range is $y \in \mathcal{R}$
 - f(-4) = 1, f(0) = 2 and f(3) = 0
 - Discontinuous at x = -3
 - Has end behaviours $x \to \infty$ $y \to \infty$ and $x \to -\infty$ $y \to 0$
 - Intervals of increase $(-\infty, -3)(-3, 1)$ and $(4, \infty)$
 - Interval of decrease (1,4) (5 marks)

12. State the transformations used on the parent function: $y = -5^{2x-6} + 1$ (2 marks)

13. Solve and check for |2x-6| = -4x + 8. (4 marks)

14. The point (0, -5) is on the function y = -3f(x+2)+5. Determine what this point is on the original function of y = f(x). (3 marks)

15. You work at a job that pays you \$15 an hour. If you work over 40 hours you get paid time and a half or 1.5 times your regular rate. Write a piecewise function that models this situation. (3 marks)

- 16. Given the function f(x) = -2|x+4| + 5
 - a. Graph the function below on the graph. (3 marks)
 - b. Identify the domain and range of f(x) (2 marks)
 - c. Identify the intervals of increase/decrease of f(x). (2 marks)
 - d. Identify the end behaviours of f(x). (2 marks)

