The Doub 4 Wavelet transform

$$x \rightarrow \begin{bmatrix} x_{obs} \\ x_{obs} \end{bmatrix} \rightarrow \begin{bmatrix} s \\ d \end{bmatrix} = \\
s [k] = (\frac{\sqrt{3} - 1}{\sqrt{2}}) ((\frac{\sqrt{3} + 2}{4}) \times [2k] + (\frac{\sqrt{3}}{4}) \times [2k+2] + (\frac{3 - \sqrt{3}}{4}) \times [2k+3] + (\frac{3 - \sqrt{3}}{4}) \times [2k+3] - \frac{1}{4} \times [2k+3]$$

$$4[k] = (\frac{\sqrt{3} + 1}{\sqrt{2}}) ((\frac{2 - \sqrt{3}}{4}) \times [2k-2] - (\frac{\sqrt{3}}{4}) \times [2k+3] + (\frac{2\sqrt{3} - 3}{4}) \times [2k-1] + \frac{1}{4} \times [2k+1]$$

	2k-2	2k-1	zk	24+1	2k+2	ZK+3
5(2)			13+2 4	3-53	194 194	- 4
<u>d</u> (1)	2-53	253-3	19/3 1	14		
	'		1	J 3		
" grediet"	13-2	3-253	57	3-4		
7.0	4	4		[1

" predict" =
$$\left(\frac{\sqrt{3}-2}{4}\right) S s^{(1)} + \left(\frac{\sqrt{3}}{4}\right) S^{(1)}$$

$$d^{(1)} = X_{odd} - "predict"$$

$$S^{(2)} = S^{(1)} - Sd^{(1)}$$

$$\begin{bmatrix} S^{(1)} \\ X_{odd} \end{bmatrix} \xrightarrow{P_1} \begin{bmatrix} S^{(1)} \\ d^{(1)} \end{bmatrix}$$

$$d^{(1)} = X_{odd} - \left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53-2}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac{53-2}{4} \right) F_{S}^{(1)} \right)$$

$$= X_{odd} - \left(\left(\frac{53-2}{4} \right) S_{S}^{(1)} + \left(\frac$$

$$D = \begin{bmatrix} \frac{\sqrt{3}-1}{2} & 0 \\ 0 & \frac{\sqrt{3}+1}{2} \end{bmatrix}$$

$$D \begin{bmatrix} s^{(2)} \\ d^{(1)} \end{bmatrix} = \begin{bmatrix} s \\ d \end{bmatrix}$$

$$DU_{2}P, U_{1} = \begin{bmatrix} s \\ d \end{bmatrix}$$

$$T_{a}$$

$$DU_{2}P_{1}U_{1} = \begin{bmatrix} \alpha I + 88^{-1} \\ -\beta I - 88 \end{bmatrix}$$

$$\alpha I + 88^{-1}$$

$$\alpha I + 88^{-1}$$

$$\alpha = \frac{1+\sqrt{3}}{4\sqrt{2}} \quad \beta = \frac{3+\sqrt{3}}{4\sqrt{2}} \quad \gamma = \frac{3-\sqrt{3}}{4\sqrt{2}} \quad \delta = \frac{1-\sqrt{3}}{4\sqrt{2}}$$

$$DU_{2}^{2}U_{1} = \begin{bmatrix} \frac{1+\sqrt{3}}{4\sqrt{2}} + \frac{3-\sqrt{3}}{4\sqrt{2}}S^{2} \\ \frac{3+\sqrt{3}}{4\sqrt{2}} - \frac{1-\sqrt{3}}{4\sqrt{2}}S \end{bmatrix} \begin{pmatrix} \frac{3+\sqrt{3}}{4\sqrt{2}} + \frac{1-\sqrt{3}}{4\sqrt{2}}S^{2} \\ \frac{3+\sqrt{3}}{4\sqrt{2}} - \frac{1-\sqrt{3}}{4\sqrt{2}}S \end{pmatrix} \begin{pmatrix} \frac{1+\sqrt{3}}{4\sqrt{2}} + \frac{3-\sqrt{3}}{4\sqrt{2}}S \\ \frac{1+\sqrt{3}}{4\sqrt{2}} + \frac{3-\sqrt{3}}{4\sqrt{2}}S \end{pmatrix}$$