

$egin{aligned} & ext{Algorithmique (AL5)} \ & ext{TD n}^{ ext{o}} \ 11: & ext{Algorithmes d'approximation} \end{aligned}$

Exercice 1 : Répartition de charge

On a m machines $M_1, M_2, ..., M_m$ et n tâches. Pour compléter une tâche j, on a besoin de t_j secondes. L'objectif est de distribuer les tâches de sorte que les charges de travail des machines soient équilibrés. C'est à dire, si on note A(i) l'ensemble des tâches assignées à la machine M_i , sa charge totale est :

$$T_i = \sum_{j \in A(i)} t_j$$

L'objectif est alors de minimiser $\max_i T_i$. On propose l'algorithme suivant : "parcourir les tâches en assignant chaque tâche à la machine qui a la charge minimale."

- 1. Ecrire cet algorithme en pseudo-code. Quel est sa complexité?
- 2. On suppose qu'il y a m machines et m(m-1)+1 tâches. Les m(m-1) premières tâches se font en 1 seconde et la dernière requiert m secondes. Quelle est la solution donnée par l'algorithme? Quelle est la solution optimale? Conjecturez le facteur d'approximation de l'algorithme.
- **3.** On note T^* la valeur optimale. Montrer que $T^* \geq \frac{1}{m} \sum_i t_i$.
- 4. Montrer que $T^* \ge \max_i t_i$.
- 5. Soit M_i la machine qui à la plus grande charge à la fin de l'algorithme. On suppose que la dernière tâche qui a été assignée à M_i est j. Montrer que :

$$T_i - t_j \le \frac{1}{m} \sum_{k=1}^n T_k$$

- **6.** Conclure que l'algorithme est de 2-approximation.
 - On se propose d'améliorer le facteur d'approximation de l'algorithme. Pour cela, on observe que l'algorithme donne une mauvaise solution quand il reçoit une longue tâche à la fin. L'idée est donc de parcourir les tâches en ordre décroissant des t_i .
- 7. Quelle est la complexité du nouvel algorithme?
- 8. Est-ce qu'il trouve la solution optimale dans l'example de la question 2.?
- 9. Montrer que s'il y a plus de m+1 tâches, alors $T^* \geq 2t_{m+1}$.
- 10. En utilisant la question 5., motrer que le nouvel algorithme est de $\frac{3}{2}$ -approximation.