Deep Network for Speech Emotion Recognition —A Study of Deep Learning—

Zhuowei Han

Institut für Signalverarbeitung und Systemtheorie

Universität Stuttgart

16/04/2015

Motivation

Speech Emotion Recognition

- Most current work focuses on speech processing based on linguistic information, e.g.: Skype Translator
- More natural human-machine interaction requires paralinguistic information such as age, gender, emotion.
- Speech Recognition / Speeker Identification / Emotion Recognition

Motivation

Deep Learning

- Deep architecture for extracting complex structure and building internal representations from input
- New research area of machine learning (from shallow to deep structure)
- Widely applied in vision/audition processing, e.g. handwriting recognition (Graves, Alex, et al. 2009), traffic sign classification (Schmidhuber, et al. 2011), text translation (Google, 2014)

Table of Contents

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine

Restricted Boltzmann Machine CRBM

Conclusion and Outlook

Table of Contents

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine CRBM

Conclusion and Outlook

Mel Frequency Cepstral Features

- short-term power spectrum
- mel-scale approximate human perception
- widely-used in speech recognition tasks
- Transformation between Mel and Hertz scale

$$f_{mel} = 1125 \ln (1 + f_{Hz}/700)$$

 $f_{Hz} = 700 \left(\exp(f_{mel}/1125) - 1 \right)$

Emotion Recognition Approaches

Traditional Approaches

- pre-selected features
- supervised training
- low-level features not appropriate for classification
- shallow structure of classifiers

Deep Learning Approaches

- learning representations from high-dim data
- extracting appropriate features without hand-crafting
- low-level features are used to build high-level features as network gets deeper
- frame-based classification

Table of Contents

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine CRBM

Conclusion and Outlook

Concepts

- lacktriangle Generative graphical model, capture data distribution $P(\mathbf{x}|oldsymbol{ heta})$
- Trained in unsupervised way, only use unlabeled input sequencex for learning.
 - □ automatically extract useful features from data
 - □ Find hidden structure (distribution).
 - □ Learned features used for prediction or classification
- Successfully applied in motion capture (Graham W. Taylor, Geoffrey E. Hinton, 2006)
- Potential to be extend to capture temporal information

Restricted Boltzmann Machine

Structure

Restricted Boltzmann Machine

Structure

Energy Function:
$$E_{\theta} = -\mathbf{x}^{T}\mathbf{W}\mathbf{h} - \mathbf{b}^{T}\mathbf{x} - \mathbf{c}^{T}\mathbf{h}$$

Joint Distribution:
$$P^{RBM}(\mathbf{x}, \mathbf{h}) = \frac{1}{Z}e^{-E_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{h})}$$

Partition Function:
$$Z = \sum e^{-E_{\pmb{\theta}}(\mathbf{x},\mathbf{h})}$$

Free Energy:
$$\mathcal{F}(\mathbf{x}) = -\log \sum_{\mathbf{h}} e^{-E(\mathbf{x},\mathbf{h})}$$

Inference

Inference

$$P(\mathbf{x}) = \sum_{\mathbf{h}} P(\mathbf{x}, \mathbf{h})$$

$$P(\mathbf{h}) = \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{h})$$

Inference

Inference

$$P(\mathbf{x}) = \sum_{\mathbf{h}} P(\mathbf{x}, \mathbf{h})$$

$$P(\mathbf{h}) = \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{h})$$

$$P(\mathbf{h}|\mathbf{x}) = \frac{P(\mathbf{x}, \mathbf{h})}{P(\mathbf{x})}$$

$$P(\mathbf{x}|\mathbf{h}) = \frac{P(\mathbf{x}, \mathbf{h})}{P(\mathbf{h})}$$

Inference

Inference

$$\begin{split} P(\mathbf{x}) &= \sum_{\mathbf{h}} P(\mathbf{x}, \mathbf{h}) \\ P(\mathbf{h}) &= \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{h}) \\ P(\mathbf{h} | \mathbf{x}) &= \frac{P(\mathbf{x}, \mathbf{h})}{P(\mathbf{x})} \\ P(\mathbf{x} | \mathbf{h}) &= \frac{P(\mathbf{x}, \mathbf{h})}{P(\mathbf{h})} \\ P(h_j &= 1 \mid \mathbf{x}) = sigmoid(\sum_i x_i W_{ij} + c_j) \\ P(x_i &= 1 \mid \mathbf{h}) = sigmoid(\sum_i W_{ij} h_j + b_i) \end{split}$$

Conditional RBM

- Consider visible units from previous time step as additional bias for current visible and hidden layer
- A and B are weight parameter of visible (history) visible and visible (history) - hidden connections
- Visible layer is linear units with independent Gaussian noise to model real-valued data, e.g. spectral features

Conditional RBM

- Consider visible units from previous time step as additional bias for current visible and hidden layer
- A and B are weight parameter of visible (history) visible and visible (history) - hidden connections
- Visible layer is linear units with independent Gaussian noise to model real-valued data, e.g. spectral features

Conditional RBM

Energy Function:
$$E_{\boldsymbol{\theta}}^{CRBM}(\mathbf{x}, \mathbf{h}) = \left\| \frac{\mathbf{x} - \tilde{\mathbf{b}}}{2} \right\|^2 - \tilde{\mathbf{c}}^T \mathbf{h} - \mathbf{x}^T \mathbf{W} \mathbf{h}$$

$$\tilde{\mathbf{b}} = \mathbf{b} + \mathbf{A} \cdot \mathbf{x}_{< t}$$

$$\tilde{\mathbf{c}} = \mathbf{c} + \mathbf{B} \cdot \mathbf{x}_{< t}$$

$$\boldsymbol{\theta} = \{ \mathbf{W}, \mathbf{A}, \mathbf{B}, \mathbf{b}, \mathbf{c} \}$$
Free Energy: $\mathcal{F}(\mathbf{x}) = \left\| \mathbf{x} - \tilde{\mathbf{b}} \right\|^2 - \log(1 + e^{\tilde{\mathbf{c}} + \mathbf{x} \cdot \mathbf{W}})$

Maximum Likelihood Estimation $P(\mathbf{x}|\boldsymbol{\theta})$

Note that KL is non-negative

Maximum Likelihood Estimation $P(\mathbf{x}|\boldsymbol{\theta})$

Kullback-Leibler Divergence:

$$Q(\mathbf{x}) \| P(\mathbf{x}|\boldsymbol{\theta}) = \int_{-\infty}^{\infty} Q(\mathbf{x}) \cdot \log \frac{Q(\mathbf{x})}{P(\mathbf{x}|\boldsymbol{\theta})} d\mathbf{x}$$

$$= \int_{-\infty}^{\infty} Q(\mathbf{x}) \cdot \log Q(\mathbf{x}) d\mathbf{x} - \int_{-\infty}^{\infty} Q(\mathbf{x}) \cdot \log P(\mathbf{x}|\boldsymbol{\theta}) d\mathbf{x}$$

$$= \langle \log Q(\mathbf{x}) \rangle_{Q(\mathbf{x})} - \langle \log P(\mathbf{x}|\boldsymbol{\theta}) \rangle_{Q(\mathbf{x})}$$

 $Q(\mathbf{x})$, true data distribution $P(\mathbf{x}|\boldsymbol{\theta})$, model distribution $\langle \cdot \rangle_{Q(\mathbf{x})}$, expectation w.r.t. $Q(\mathbf{x})$ Note that KL is non-negative

Maximum Likelihood Estimation $P(\mathbf{x}|\boldsymbol{\theta})$

Kullback-Leibler Divergence:

$$Q(\mathbf{x}) \| P(\mathbf{x} | \boldsymbol{\theta}) = \int_{-\infty}^{\infty} Q(\mathbf{x}) \cdot \log \frac{Q(\mathbf{x})}{P(\mathbf{x} | \boldsymbol{\theta})} d\mathbf{x}$$

$$= \int_{-\infty}^{\infty} Q(\mathbf{x}) \cdot \log Q(\mathbf{x}) d\mathbf{x} - \int_{-\infty}^{\infty} Q(\mathbf{x}) \cdot \log P(\mathbf{x} | \boldsymbol{\theta}) d\mathbf{x}$$

$$= \langle \log Q(\mathbf{x}) \rangle_{Q(\mathbf{x})} - \langle \log P(\mathbf{x} | \boldsymbol{\theta}) \rangle_{Q(\mathbf{x})}$$

 $Q(\mathbf{x})$, true data distribution $P(\mathbf{x}|\boldsymbol{\theta})$, model distribution $\langle \cdot \rangle_{Q(\mathbf{x})}$, expectation w.r.t. $Q(\mathbf{x})$ Note that KL is non-negative

$$-\log P(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{F}(\mathbf{x}) + \log \sum_{\mathbf{x}} \sum_{\mathbf{h}} e^{-E_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{h})}$$

$$-\log P(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{F}(\mathbf{x}) + \log \sum_{\mathbf{x}} \sum_{\mathbf{h}} e^{-E_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{h})}$$

$$-\frac{\partial \log P(\mathbf{x}|\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} - \sum_{\tilde{\mathbf{x}}} P(\tilde{\mathbf{x}}) \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \boldsymbol{\theta}}$$

x, input (visible) data space

 $\tilde{\mathbf{x}},$ all possible vectors in the data space, generated by model.

$$-\log P(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{F}(\mathbf{x}) + \log \sum_{\mathbf{x}} \sum_{\mathbf{h}} e^{-E_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{h})}$$
$$-\frac{\partial \log P(\mathbf{x}|\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} - \sum_{\tilde{\mathbf{x}}} P(\tilde{\mathbf{x}}) \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \boldsymbol{\theta}}$$

x, input (visible) data space

 $\tilde{\mathbf{x}},$ all possible vectors in the data space, generated by model.

objective function by averaging log-likelihood over data:

$$-\left\langle \frac{\partial \log P(\mathbf{x}|\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right\rangle_{\mathbf{x}} = \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{\mathbf{x}} - \left\langle \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \boldsymbol{\theta}} \right\rangle_{\tilde{\mathbf{x}}}$$

Gibbs sampling

$$\mathbf{x}^{(1)} \sim P(\mathbf{x})$$

$$\mathbf{h}^{(1)} \sim P(\mathbf{h}|\mathbf{x}^{(1)})$$

$$\mathbf{x}^{(2)} \sim P(\mathbf{x}|\mathbf{h}^{(1)})$$

 $\mathbf{h}^{(2)} \sim P(\mathbf{h}|\mathbf{x}^{(2)})$

$$\mathbf{x}^{(k)} \sim P(\mathbf{x}|\mathbf{h}^{(k-1)})$$

Gibbs sampling

$$\mathbf{x}^{(1)} \sim P(\mathbf{x})$$

 $\mathbf{h}^{(1)} \sim P(\mathbf{h}|\mathbf{x}^{(1)})$

$$\mathbf{x}^{(2)} \sim P(\mathbf{x}|\mathbf{h}^{(1)})$$
$$\mathbf{h}^{(2)} \sim P(\mathbf{h}|\mathbf{x}^{(2)})$$

$$\mathbf{x}^{(k)} \sim P(\mathbf{x}|\mathbf{h}^{(k-1)})$$

Gibbs sampling

$$\mathbf{x}^{(1)} \sim P(\mathbf{x})$$

 $\mathbf{h}^{(1)} \sim P(\mathbf{h}|\mathbf{x}^{(1)})$

$$\mathbf{x}^{(2)} \sim P(\mathbf{x}|\mathbf{h}^{(1)})$$
$$\mathbf{h}^{(2)} \sim P(\mathbf{h}|\mathbf{x}^{(2)})$$

:

$$\mathbf{x}^{(k)} \sim P(\mathbf{x}|\mathbf{h}^{(k-1)})$$

4 B > 4 D > 4 A >

- lack k=0, $P_0({f x})$ is true data distribution, independent of parameter $m{ heta}$
- Performing k-Gibbs steps to generate $P_k(\mathbf{x}|\boldsymbol{\theta})$, with $k \to \infty$ the Markov chain converges to stationary distribution:

$$P_{\infty}(\mathbf{x}|\boldsymbol{\theta}) \to P(\tilde{\mathbf{x}}|\boldsymbol{\theta})$$

- k=0, $P_0(\mathbf{x})$ is true data distribution, independent of parameter $\boldsymbol{\theta}$
- Performing k-Gibbs steps to generate $P_k(\mathbf{x}|\boldsymbol{\theta})$, with $k \to \infty$ the Markov chain converges to stationary distribution:

$$P_{\infty}(\mathbf{x}|\boldsymbol{\theta}) \to P(\tilde{\mathbf{x}}|\boldsymbol{\theta})$$

Rewrite objective function:

$$-\left\langle \frac{\partial \log P(\mathbf{x}|\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0(\mathbf{x})} = \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0(\mathbf{x})} - \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_\infty(\mathbf{x}|\boldsymbol{\theta})}$$

- k=0, $P_0(\mathbf{x})$ is true data distribution, independent of parameter $\boldsymbol{\theta}$
- Performing k-Gibbs steps to generate $P_k(\mathbf{x}|\boldsymbol{\theta})$, with $k \to \infty$ the Markov chain converges to stationary distribution:

$$P_{\infty}(\mathbf{x}|\boldsymbol{\theta}) \to P(\tilde{\mathbf{x}}|\boldsymbol{\theta})$$

Rewrite objective function:

$$-\left\langle \frac{\partial \log P(\mathbf{x}|\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0(\mathbf{x})} = \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0(\mathbf{x})} - \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_\infty(\mathbf{x}|\boldsymbol{\theta})}$$

Contrastive Divergence: Perform CD-1

$$\begin{split} &-\frac{\partial}{\partial \boldsymbol{\theta}}(P_0 \| P_{\infty}^{\boldsymbol{\theta}} - P_1^{\boldsymbol{\theta}} \| P_{\infty}^{\boldsymbol{\theta}}) \\ &= \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0} - \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_1^{\boldsymbol{\theta}}} + \frac{\partial P_1^{\boldsymbol{\theta}}}{\partial \boldsymbol{\theta}} \frac{\partial (P_1^{\boldsymbol{\theta}} | P_{\infty}^{\boldsymbol{\theta}})}{\partial P_1^{\boldsymbol{\theta}}} \end{split}$$

Contrastive Divergence: Perform CD-1

$$-\frac{\partial}{\partial \boldsymbol{\theta}} (P_0 \| P_{\infty}^{\boldsymbol{\theta}} - P_1^{\boldsymbol{\theta}} \| P_{\infty}^{\boldsymbol{\theta}})$$

$$= \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0} - \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_1^{\boldsymbol{\theta}}} + \frac{\partial P_1^{\boldsymbol{\theta}}}{\partial \boldsymbol{\theta}} \frac{\partial (P_1^{\boldsymbol{\theta}} | P_{\infty}^{\boldsymbol{\theta}})}{\partial P_1^{\boldsymbol{\theta}}}$$

Contrastive Divergence: Perform CD-1

$$-\frac{\partial}{\partial \boldsymbol{\theta}} (P_0 \| P_{\infty}^{\boldsymbol{\theta}} - P_1^{\boldsymbol{\theta}} \| P_{\infty}^{\boldsymbol{\theta}})$$

$$= \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0} - \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_1^{\boldsymbol{\theta}}} + \frac{\partial P_1^{\boldsymbol{\theta}}}{\partial \boldsymbol{\theta}} \frac{\partial (P_1^{\boldsymbol{\theta}} | P_{\infty}^{\boldsymbol{\theta}})}{\partial P_1^{\boldsymbol{\theta}}}$$

Contrastive Divergence: Perform CD-1

$$\begin{split} &-\frac{\partial}{\partial \boldsymbol{\theta}}(P_0 \| P_{\infty}^{\boldsymbol{\theta}} - P_1^{\boldsymbol{\theta}} \| P_{\infty}^{\boldsymbol{\theta}}) \\ &= \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0} - \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_1^{\boldsymbol{\theta}}} + \frac{\partial P_1^{\boldsymbol{\theta}}}{\partial \boldsymbol{\theta}} \frac{\partial (P_1^{\boldsymbol{\theta}} | P_{\infty}^{\boldsymbol{\theta}})}{\partial P_1^{\boldsymbol{\theta}}} \end{split}$$

Parameter Update

$$\Delta oldsymbol{ heta} \sim \left\langle rac{\partial \mathcal{F}(\mathbf{x})}{\partial oldsymbol{ heta}}
ight
angle_{P_0} - \left\langle rac{\partial \mathcal{F}(\mathbf{x})}{\partial oldsymbol{ heta}}
ight
angle_{P_1^{oldsymbol{ heta}}}$$

Table of Contents

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine CRBM

Conclusion and Outlook

Conclusion

- Model with long-term dependencies shall be used for speech emotion
- CRBM is appropriate for short-term modelling, but not for long-term variation
- LSTM is good at modelling long time dependency
- Frame-based classification can also reach good result
 - □ CRBM-LSTM 71.98%
 - □ LSTM 81.59%
 - \Box LSTM with rectifier layers 83.43%

Outlook

- Stacking CRBM to form deeper structure
- Train CRBM with more/larger database
- Second order optimization to speed up learning process
- Bi-directional LSTM, capturing future dependencies

Thank You!