Probabilités - Résumé

October 18, 2023

THEVENET Louis

Table des matières

1. Notions		1
1.1. Fonction de répartition		1
1.1.1. VAC		1
1.1.2. Propritété		1
1.2. Fonction caractéristique		1
1.3. Lois conditionnelles		1
1.3.1. VAD		1
1.3.2. VAC		1
1.4. Indépendance		2
1.5. Corrélation		2
1.6. Espérance conditionnelle		2
2. Vecteurs Gaussiens		2
2.1. Transformation affine		2
2.2. Lois marginales		2
3. Convergence		2
4. Théorèmes		2
4.1. Loi faible des grands nomb	res	2
	es	
4.3. Théorème central limite		2
5. Méthodes		3
5.1. Changements de variables .		3
9		
5.1.2. VAC		3
6. Astuces		3
1. Notions		
1.1. Fonction de répartiti	on	
$F: \begin{cases} \mathbb{R} \to [0,1] \\ x \mapsto P[X < x] \end{cases}$	1.1.1. VAC	1.1.2. Propritété
$(x \mapsto P[X < x]$	$F(x) = \int_{-\infty}^{x} p(u) du$	p(x)=F'(x)
10 D	<i>∞</i>	
1.2. Fonction caractéristic	que	
$\Phi_X(t) = E[\exp(itX)]$		
1.3. Lois conditionnelles		
1.3.1. VAD	1.3.2. VAC	Où p_{i} et $p(x, .)$ sont les
$P[X = X_i \mid Y = y_j] = \frac{p_{ij}}{p_j}$	Densité de $X (Y=y)$:	lois marginales,
- [g_{j}] $p_{.j}$	$p(x y) = \frac{p(x,y)}{p(.,y)}$	i.e. $p(x, .) = \int_{\mathbb{R}} p(x, y) dy$
	p(.,y)	1 (, ,) JR 1 (. , 3) 3

1.4. Indépendance

Pour X et Y indépendantes et α et β continues, on a $\alpha(X)$ et $\beta(Y)$ indépendantes. (réciproque vraie si bijectivité)

1.5. Corrélation

$$\mathrm{cov}(X,Y) = E[XY] - E[X]E[Y], \qquad E[VV^T] = \begin{pmatrix} \mathrm{var}(X) & \mathrm{cov}(X,Y) \\ \mathrm{cox}(X,Y) & \mathrm{var}(Y) \end{pmatrix}, \qquad r(X,Y) = \frac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y}$$

1.6. Espérance conditionnelle

$$E[\alpha(X,Y)] = E_X[E_Y[\alpha(X,Y) \mid X]]$$

2. Vecteurs Gaussiens

2.1. Transformation affine

Pour $X\sim\mathcal{N}_n(m,\Sigma)$ un vecteur Gaussien et $Y=AX+b,\,A\in\mathcal{M}_{p,n}(\mathbb{R}),$ Si $\operatorname{rg}(A)=p,$ on a :

Y est un vecteur Gaussien et $Y \sim \mathcal{N}_{p}(Am + b, A\Sigma A^{T})$

2.2. Lois marginales

$$X=(x'\ x'')\sim \mathcal{N}_n(m,\Sigma),\, m=(m'\ m''),\, \Sigma=\begin{pmatrix} \Sigma'\ M\\ M^T\ \Sigma'' \end{pmatrix},\, \text{alors on a}:$$

$$X'\sim \mathcal{N}_p(m',\Sigma')$$

où $\Sigma' \in \mathcal{M}_p(\mathbb{R})$

3. Convergence

En loi :
$$X_n \xrightarrow[n \to \infty]{\mathcal{L}} X \Leftrightarrow F_n[X_n < x] \xrightarrow[n \to \infty]{\mathcal{CS}} F(x) = P[X < x]$$

En probas :
$$X_n \xrightarrow[n \to \infty]{\mathcal{P}} X \Leftrightarrow \forall \varepsilon > 0, P[|X_n - X| > \varepsilon] \xrightarrow[n \to \infty]{0} 0$$

En moyenne quadratique :
$$X_n \xrightarrow[n \to \infty]{\mathcal{MQ}} X \Leftrightarrow E\left[\left(X_n - X\right)^2\right] \xrightarrow[n \to \infty]{} 0$$

Presque sûrement :
$$X_n \xrightarrow[n \to \infty]{\mathcal{PS}} X \Leftrightarrow X_n(\omega) \xrightarrow[n \to \infty]{} X(\omega), \forall \omega \in A \mid P(A) = 1$$

4. Théorèmes

4.1. Loi faible des grands nombres

Si $X_1,...,X_n$ sont des VA iid de moyennes $E[X_k]=m<\infty,$ alors

$$\overline{X_n} = \frac{1}{n} \sum_{k=1}^n X_k \xrightarrow[n \to \infty]{\mathcal{P}} m$$

4.2. Loi forte des grands nombres

Si $X_1,...,X_n$ sont des VA iid de moyennes $E[X_k]=m<\infty$, de variances $\sigma^2<\infty$ alors

$$\overline{X_n} = \frac{1}{n} \sum_{k=1}^n X_k \underset{n \to \infty}{\overset{\mathcal{MQ}}{\longrightarrow}} m$$

4.3. Théorème central limite

Si $X_1,...,X_n$ sont des VA iid de moyennes $E[X_k]=m<\infty,$ de variances $\sigma^2<\infty$ alors

$$Y_n = \frac{\sum_{k=1}^n X_k - nm}{\sqrt{n\sigma^2}} \xrightarrow[n \to \infty]{\mathcal{L}} X \sim \mathcal{N}(0,1)$$

5. Méthodes

5.1. Changements de variables

5.1.1. VAD

$$P\big(y=y_j\big) = \sum_{i|y_j=g(x_i)} P[X=x_i]$$

5.1.2. VAC

Si g est **bijective** et **différentiable**, alors Y = g(X) est une VAC et

$$p_{Y(y)} = p_{X(g^{-1}(y))} \left| \frac{dx}{dy} \right|$$

Si
$$g: \mathbb{R}^2 \to \mathbb{R}^2$$
, on a : $p_{U,V}(u,v) = P_{X,Y}\big(g^{-1}(u,v)\big)|\mathrm{det}(J)|$

6. Astuces

• Changement de variable type $Z=\alpha(X,Y)$, on peut poser T=Y par exemple pour utiliser les théorèmes sur les changements de $\mathbb{R}^2 \to \mathbb{R}^2$