SPECIFICATION OF SEQUENTIAL SYSTEMS

- Synchronous sequential systems
- Mealy and Moore machines
- Time behavior
- State minimization

Figure 7.1: Input and output time functions.

Figure 7.2: a) Synchronous behavior. b) Asynchronous behavior.

- Clock
- I/O sequence

$$x(2,5) = aabc$$

$$x(2,5) = aabc$$
$$z(2,5) = 1021$$

Example 7.1: Serial decimal adder

least-significant digit first (at t=0)

Figure 7.3: Output and state transition functions

$$\begin{array}{lll} \mbox{State-transition function} & s(t+1) = G(s(t),x(t)) \\ \mbox{Output function} & z(t) = H(s(t),x(t)) \end{array}$$

Example 7.3: State description of serial adder

Input: $x(t), y(t) \in \{0, 1, ..., 9\}$ Output: $z(t) \in \{0, 1, ..., 9\}$ State: $s(t) \in \{0, 1\}$ (the carry)

Initial state: s(0) = 0

Functions: The transition and output functions are

$$s(t+1) = \begin{cases} 1 & \text{if } x(t) + y(t) + s(t) \ge 10 \\ 0 & \text{otherwise} \end{cases}$$
$$z(t) = (x(t) + y(t) + s(t)) \mod 10$$

Example:

Example 7.4: Odd/Even

Time-behavior specification:

Input: $x(t) \in \{a, b\}$

Output: $z(t) \in \{0, 1\}$

Function: $z(t) = \begin{cases} 1 & \text{if } x(0,t) \text{ contains an even number of } b'\text{s} \\ 0 & \text{otherwise} \end{cases}$

I/O sequence:

Example 7.4: State description of odd/even

Input: $x(t) \in \{a, b\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{\text{EVEN, ODD}\}$

Initial state: s(0) = EVEN

PS	x(t) = a	x(t) = b
EVEN	EVEN, 1	ODD, 0
ODD	ODD, 0	EVEN, 1
	NS,	z(t)

Mealy machine

$$z(t) = H(s(t), x(t))$$

$$s(t+1) = G(s(t), x(t))$$

Moore machine

$$z(t) = H(s(t))$$

$$s(t+1) = G(s(t), x(t))$$

Example 7.5: Moore sequential system

Input: $x(t) \in \{a, b, c\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3\}$

Initial state: $s(0) = S_0$

PS	Input			
	a	b	c	
$\overline{S_0}$	S_0	S_1	S_1	0
S_1	S_2	S_0	S_1	1
S_2	S_2	S_3	S_0	1
S_3	S_0	S_1 S_0 S_3 S_1	S_2	0
	NS			Output

• State diagram

Figure 7.4: (a) State diagram representation. (b) Simplified state diagram notation.

s(t)	x(t)	
	a	b
$\overline{S_0}$	S_1, p	$\overline{S_2,q}$
S_1	S_1, p	S_0, p
S_2	S_1, p	S_2, p
	s(t +	$\overline{1),z(t)}$

Figure 7.5: State diagram for Example 7.6.

Figure~7.6:~State diagram for Example~7.5

Example 7.7: Use of conditional expressions

Input: $x(t) \in \{0, 1, 2, 3\}$

Output: $z(t) \in \{a, b\}$

State: $s(t) \in \{S_0, S_1\}$

Initial state: $s(0) = S_0$

$$s(t+1) = \begin{cases} S_0 & \text{if } (s(t) = S_0 \\ & \text{and } [x(t) = 0 \text{ or } x(t) = 2]) \\ & \text{or } (s(t) = S_1 \text{ and } x(t) = 3) \\ S_1 & \text{otherwise} \end{cases}$$

$$z(t) = \begin{cases} a & \text{if } s(t) = S_0 \\ b & \text{if } s(t) = S_1 \end{cases}$$

 $\label{eq:Figure 7.7} Figure \ 7.7: \ \textbf{State diagram for Example 7.7}$

Example 7.8: Integers as state names

A modulo-64 counter

Input: $x(t) \in \{0, 1\}$

Output: $z(t) \in \{0, 1, 2, \dots, 63\}$

State: $s(t) \in \{0, 1, 2, \dots, 63\}$

Initial state: s(0) = 0

$$s(t+1) = [s(t) + x(t)] \mod 64$$
$$z(t) = s(t)$$

Example 7.9: Vectors as state names

Input:
$$e(t) \in \{1, 2, \dots, 55\}$$
Output: $z(t) \in \{0, 1, 2, \dots, 55\}$
State: $\underline{s}(t) = (s_{55}, \dots, s_1), \quad s_i \in \{0, 1, 2, \dots, 99\}$
Initial state: $\underline{s}(0) = (0, 0, \dots, 0)$

$$s_i(t+1) = \begin{cases} [s_i(t)+1] \mod 100 & \textbf{if} \quad e(t) = i \\ i = 1, 2, \dots, 55 \\ s_i(t) & \textbf{otherwise} \end{cases}$$

$$z(t) = \begin{cases} i & \textbf{if} \quad e(t) = i \text{ and } s_i(t) = 99 \\ 0 & \textbf{otherwise} \end{cases}$$

Time behavior and finite-state machines

• State description \Rightarrow I/O sequence (Example 7.10)

Initial state: $s(0) = S_2$

P^{k}	S		x(t)					
		a	,	b	(()		
$\overline{S_0}$)	S	0	$\overline{S_1}$	S	1		\overline{p}
S_{1}	1	S	2	S_0	S	1		q
S_2	2	S	2	S_3	S	0		q
S_{i}	3	S	0	S_1	S	$\frac{1}{2}$		p
			1	N.S	5		z	$\overline{(t)}$
t	()	1		2	(3	4
\overline{x}	(\overline{a}	b		\overline{c}	C	$\overline{\imath}$	
s	S	\mathcal{S}_2	S_{i}	2	S_3	S	\tilde{S}_2	S_2
z	(\mathcal{I}	q	,	p	Q	I	

Not all time-behaviors are realizable:

$$z(t) = \begin{cases} 1 & \text{if } x(0,t) \text{ has same number of } 0'\text{s and } 1'\text{s} \\ 0 & \text{otherwise} \end{cases}$$

s(t) =difference between number of 1's and 0's

$$s(t+1) = \begin{cases} s(t) + 1 & \text{if } x(t) = 1\\ s(t) - 1 & \text{otherwise} \end{cases}$$

$$z(t) = \begin{cases} 1 & \text{if } s(t) = 0 \\ 0 & \text{otherwise} \end{cases}$$

⇒ difference unbounded: not a finite-state system

Procedure for obtaining FSM from time behavior

- 1. Determine a set of states representing required events
- 2. Determine the transition function
- 3. Determine the output function

• Example 7.11

Input:
$$x(t) \in \{0,1\}$$

Output: $z(t) \in \{0,1\}$
Function: $z(t) = \begin{cases} 1 & \text{if } x(t-3,t) = 1101 \\ 0 & \text{otherwise} \end{cases}$

pattern detector ⇒ detect subpatterns

State	indicates that
$\overline{S_{init}}$	Initial state; also no subpattern
S_1	First symbol (1) of pattern has been detected
S_{11}	Subpattern 11 has been detected
S_{110}	Subpattern 110 has been detected

Figure 7.8: State diagram for Example 7.11

$$z(t) = F(x(t - m + 1, t))$$

Example 7.12:

$$z(t) = \begin{cases} p & \text{if } x(t-3,t) = aaba \\ q & \text{otherwise} \end{cases}$$

- ⇒ finite memory of length four
- All finite-memory machines are FS systems
- Not all FS systems are finite memory

$$z(t) = \begin{cases} 1 & \text{if } \text{number of } 1'\text{s in } x(0,t) \text{ is even} \\ 0 & \text{otherwise} \end{cases}$$

Controllers

- The state description is primary
- FSM producing control signals
- Control signals determine actions performed in other parts of system
- Autonomous: Fixed sequence of states, independent of inputs

Autonomous controller

Figure 7.9: Autonomous controller: Timing diagram.

Figure 7.10: Autonomous controller: State diagram.

Note: $coin \cdot return = 0$

Figure 7.11: Controller for simple vending machine: Block diagram.

Figure 7.12: Controller for simple vending machine: State diagram.

Input:
$$x(t) \in \{0, 1\}$$
Output: $z(t) \in \{0, 1\}$
Function: $z(t) = \begin{cases} 1 & \text{if } x(t-2, t) = 101 \\ 0 & \text{otherwise} \end{cases}$

$$\frac{t \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8}{x \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1}$$

$$z \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0$$

Figure 7.13: a) State diagram with redundant states; b) Reduced state diagram

• k-distinguishable states: diff. output sequences

$$z(x(t, t+k-1), S_v) \neq z(x(t, t+k-1), S_w)$$

Example:

State
$$x(3,7)$$
 $z(3,7)$
 S_1 0210 0011
 S_3 0210 0001

- k-equivalent states: not distinguishable for sequences of length k
 - $-P_k$ partition of states into k-equivalent classes
- Equivalent states
 - not distinguishable for any k

Example 7.14

 $\begin{array}{ll} \text{Input:} & x(t) \in \{a,b,c\} \\ \text{Output:} & z(t) \in \{0,1\} \\ \text{State:} & s(t) \in \{A,B,C,D,E,F\} \end{array}$

Initial state: s(0) = A

\overline{PS}	x = a	x = b	x = c
\overline{A}	E,0	D, 1	B,0
B	F, 0	D,0	A, 1
C	E,0	B,1	D,0
D	F, 0	B,0	C, 1
E	C,0	F, 1	F, 0
F	B,0	C, 0	F, 1
		\overline{NS} , z	

A and B are 1-distinguishable because

$$z(b,A) \neq z(b,B)$$

A and C are 1-equivalent because

$$z(x(t), A) = z(x(t), C), \quad for \ all \ x(t) \in I$$

• A and C are also 2-equivalent because

$$z(aa, A) = z(aa, C) = 00$$

 $z(ab, A) = z(ab, C) = 01$
 $z(ac, A) = z(ac, C) = 00$
 $z(ba, A) = z(ba, C) = 10$
 $z(bb, A) = z(bb, c) = 10$
 $z(bc, A) = z(bc, C) = 11$
 $z(ca, A) = z(ca, C) = 00$
 $z(cb, A) = z(cb, C) = 00$
 $z(cc, A) = z(cc, C) = 01$

Obtaining P_1 : Directly from transition function

From P_i to P_{i+1} ...

1. P_{i+1} is a refinement of P_i (states (i+1)-equiv. must also be i-equiv.)

$$P_i$$
 $(A, B, C)(D)$ possible not possible P_{i+1} $(A, C)(B)(D)$ $(A, D)(B)(C)$

For (i+1)-equiv.

$$z(x(t,t+i),S_v) = z(x(t,t+i),S_w)$$

for arbitrary x(t, t + i)

Then

$$z(x(t, t+i-1), S_v) = z(x(t, t+i-1), S_w)$$

Example:

$$z(abcd, S_v) = z(abcd, S_w) = 1234$$

then

$$z(abc, S_v) = z(abc, S_w) = 123$$

- 2. Two states are (i+1)-equivalent if and only if
 - a) they are i-equivalent, and
 - b) for all $x \in I$, the corresponding next states are i-equivalent

If:

- Since the states are i-equiv. they are also 1-equiv.
- Then, if the next states are i-equiv, the states are (i+1)-equiv.

Figure 7.14: Illustration of (i + 1)-equivalence relation.

Only if: By contradiction.

• If for some input, say a, the next states are not i-equivalent then there exists a sequence of length i, say T, such that these next states are distinguishable.

Therefore,

$$z(aT, S_v) \neq z(aT, S_w)$$

 $\rightarrow S_v$ and S_w not (i+1)-equiv.

Figure 7.15: Illustration of (i + 1)-equivalence relation.

When to stop? Stop when P_{i+1} is the same as P_i

- This is the equivalence partition
- The process always terminates

Procedure: Summary

- 1. Obtain P_1 (directly from the state table)
- 2. Obtain P_{i+1} from P_i by grouping states that are i-equivalent and whose corresponding successors are i-equivalent
- 3. Terminate when $P_{i+1} = P_i$
- 4. Write the reduced table

PS	x(t) = a	x(t) = b	x(t) = c
Α	0	1	0
В	0	0	1
C	0	1	0
D	0	0	1
Ε	0	1	0
F	0	0	1
		NS, z	

$$P_1 = (A, C, E) \quad (B, D, F)$$

\overline{PS}		x(t))
	a	b	c
\overline{A}	E	\overline{D}	B
C	E	B	D
E	C	F	F
		\overline{NS}	1

PS	,	x(t))
	a	b	\overline{c}
\overline{B}	F	\overline{D}	\overline{A}
D	F	B	C
F	B	C	F
		\overline{NS}	1

$$P_2 = (A, C, E) \quad (B, D) \quad (F)$$

$$P_3 = (A, C) (E) (B, D) (F)$$

$$P_4 = P_3 = (A, C) (E) (B, D) (F)$$

The minimal system:

\overline{PS}	x = a	x = b	x = c
\overline{A}	E,0	B, 1	B,0
B	F, 0	B,0	A,1
E	A, 0	F, 1	F, 0
F	B,0	A,0	F,1
		NS, z	

- The state coding is called state assignment
- Coding functions:

 $egin{array}{ll} {\sf Input} & C_I: & I
ightarrow \{0,1\}^n \ {\sf Output} & C_O: & O
ightarrow \{0,1\}^m \ {\sf State} & C_S: & S
ightarrow \{0,1\}^k \ \end{array}$

Example 7.16

\overline{PS}	x = a	x = b	x = c
\overline{A}	E,0	B, 1	B,0
B	F, 0	B,0	A,1
E	A, 0	F, 1	F, 0
F	B,0	A,0	F, 1
		\overline{NS} , z	

Binary coding

Input code

	L.
x(t)	$x_1(t)x_0(t)$
a	00
b	01
С	10

z(t)				
0	0			
1	1			

Output code State assignment

~				
s(t)	$s_1(t)s_0(t)$			
A	00			
B	01			
E	10			
F	11			

The resulting binary specification:

$s_1(t)s_0(t)$	$x_1 x_0 = 00$	$x_1 x_0 = 01$	$x_1 x_0 = 10$	
00	10, 0	01, 1	01, 0	
01	11, 0	01, 0	00, 1	
10	00, 0	11,1	11, 0	
11	01, 0	00, 0	11, 1	
	$s_1(t+1)s_0(t+1), z$			

 $Figure \ 7.16: \ \textbf{Switching expressions as arc labels}$

Modulo-p counter

 $Figure \ 7.17: \ \textbf{State diagram of a modulo-5 counter}$

Figure 7.18: Fragment of state diagram of pattern recognizer

Figure 7.19: State diagram of a pattern recognizer