international collegiate programming contest ASIA REGIONAL CONTEST

ICPC JAKARTA 2024

Problem J Xorderable Array

You are given an array A of N integers: $[A_1, A_2, \dots, A_N]$.

The array A is (p,q)-xorderable if it is possible to rearrange A such that for each pair (i,j) that satisfies $1 \le i < j \le N$, the following conditions must be satisfied after the rearrangement: $A_i \oplus p \le A_j \oplus q$ and $A_i \oplus q \le A_j \oplus p$. The operator \oplus represents the *bitwise xor*.

You are given another array X of length M: $[X_1, X_2, \dots, X_M]$. Calculate the number of pairs (u, v) where array A is (X_u, X_v) -xorderable for $1 \le u < v \le M$.

Input

The first line consists of two integers N M ($2 \le N, M \le 200\,000$).

The second line consists of N integers A_i ($0 \le A_i < 2^{30}$).

The third line consists of M integers X_u ($0 \le X_u < 2^{30}$).

Output

Output a single integer representing the number of pairs (u,v) where array A is (X_u,X_v) -xorderable for $1 \le u < v \le M$.

Sample Input #1

3	4						
0	3 0						
1	2 1	1					

Sample Output #1

3

Explanation for the sample input/output #1

The array A is (1,1)-xorderable by rearranging the array A to [0,0,3].

Sample Input #2

5 2	2		
0 7	7 13	22	24
12 1	10		

Sample Output #2

1

Explanation for the sample input/output #2

The array A is (12, 10)-xorderable by rearranging the array A to [13, 0, 7, 24, 22].

Sample Input #3

3 3 0 0 0 1 2 3

Sample Output #3

0

international collegiate programming contest ASIA REGIONAL CONTEST

ICPC JAKARTA 2024

This page is intentionally left blank.