

Machine learning Case Study Spark MLLib

K V Subramaniam

Computer Science and Engineering

Motivational Problem: Text Classification

Goal: Given a text Document, Predict its topic.

Dataset: "20 Newsgroups" From UCI KDD Archive

<u>Features</u>

Subject: Re: Lexan Polish?
Suggest McQuires #1 plastic
polish. It will help somewhat
but nothing will remove deep
scratches without making it
worse than it already is.
McQuires will do something...

<u>Label</u>

1: about science

0: not about science

CTR, inches of rainfall, ...

Logistic Regression

Goal: Find best line separating two sets of points.

Classify into science and nonscience. Each point represents a document.

Further details on logistic regression can be found at - https://en.wikipedia.org/wiki/ Logistic regression

Machine Learning Workflow and Challenges

Example ML Workflow

TRAINING

TESTING/PRODUCTION

Almost identical workflow

What are the pain points?

- Create and Handle Many RDDs and data types
 - Labels, features, predictions...
- Write as a script
 - Whole pipeline needs to be coded as a script
 - Not modular
- Tune parameters
 - Key part of ML
 - Training many models
 - For different splits of data
 - Different sets of parameters

Solving the Machine learning challenges

How can the task be made easier?

- Make RDDs easier to read
 - Have to explicitly break up the fields in RDD
 - E.g., break line into blank separated tokens
- As developers we would like to just
 - Program to extract features
 - Specify the model to be used
- However, ML needs additional work
 - Write a script to do all the steps
 - Train the model
 - Evaluate the error of the model by testing

TRAINING

Key concepts

Reading RDDs: DataFrame

Solves the RDD creation pain-point

- ML Pipeline
 - Transformers
 - Estimators
 - Evaluators

Solves the Scripting..

- Parameters
 - API
 - Tuning

Solves the parameter tuning pain point

Dataframes

- Recall
- Announced Feb 2015
- Inspired by data frames in R and Pandas in Python
- Works in:

What is a Dataframe?

- a distributed collection of data organized into named columns
- Like a table in a relational database

Dataframes

Features

- Scales from KBs to PBs
- Supports wide array of data formats and storage systems (Hive, existing RDDs, etc)
- State-of-the-art optimization and code generation via Spark SQL Catalyst optimizer
- APIs in Python, Java

Dataframe

Dataframe: RDD + Schema + DSL

Named columns with types

label: Double

text: String

words: Seq[String]

features: Vector

prediction: Double

label	text	words	features
0	This is	["This", "is",]	[0.5, 1.2,]
0	When we	["When",]	[1.9, -0.8,]
1	Knuth was	["Knuth",]	[0.0, 8.7,]
0	Or you	["Or", "you",]	[0.1, -0.6,]

Domain-Specific Language

```
# Select science articles
sciDocs =
   data.filter("label" == 1)
# Scale labels
data("label") * 0.5
```


ML Pipelines

ML Pipelines

- Introduced in Spark 1.2 and 1.3
- Allows developers to just
 - Program to extract features
 - Specify the model to be used
- Automates the process of
 - Write a script to do all the steps
 - Train the model
 - Evaluate the error of the model by testing
 - Or deploy in production

TESTING/PRODUCTION

The ML Pipeline

Transformers

- Extract features from DataFrame
- Features are stored in a new DataFrame

Estimators

- ML Algorithms
- MLLib has standard defined ML algorithms (e.g., Logistic Regression)
- User can add his own

Evaluators

- Compute predictions and estimate metrics such as error
- Tune algorithm parameters
- Evaluator depends upon estimator
 - Evaluator that trains Logistic Regression cannot be used for Decision Trees

Transformers

TRAINING

def transform(DataFrame): DataFrame

Label	Text
0	
1	

Label	Text	Features
0		
1		

Estimator

TRAINING

def fit(DataFrame): Model

label: Double
text: String
features: Vector

LogisticRegression

Model

Label	Text	Features
0		
1		

Evaluator

TRAINING

def evaluate (DataFrame): Double

label: Double

text: String

features: Vector

prediction: Double

 \Rightarrow

Metric:

accuracy

AUC

MSE

. . .

Label	Text	Features	Prediction
0			
1			

Model

TESTING/PRODUCTION

Model is a type of Transformer

def transform(DataFrame): DataFrame

text: String
features: Vector

prediction: Double

Text	Features

Text	Features	Prediction

The training Pipeline

TRAINING

Pipeline is a type of Estimator

def fit(DataFrame): Model

label: Double

text: String

PipelineModel

The testing pipeline/model

TESTING/PRODUCTION

PipelineModel is a type of Transformer

def transform (DataFrame): DataFrame

text: String

features: Vector

prediction: Double

Putting it all together

Parameter Tuning

Given:

- Estimator
- Parameter Grid
- Evaluator

Find the Best parameters

CrossValidator

Exercise 4: 10 minutes

- Suppose we have a dataset in which each line has a recording of a noise, and its classification
- E.g., <bell.wav>, bell

- What would be the input DataFrame be?
- Suppose we want to recognize sounds by
 - Extracting the frequencies from the wav file
 - Gaussian model
 - Find the average frequency of each sound
 - For a new sound, calculate average frequency
 - Find closest matching sound
- What are the DataFrames, Evaluators, etc needed.

Exercise 4: Solution

- Suppose we have a dataset in which each line has a recording of a noise, and its classification
- E.g., <bell.wav>, bell

- Input DataFrame
 - <bell.wav>, bell
- Feature DataFrame
 - <bell.wav>, bell, frequencies
- Transformer (use same transformer for train/ predict)
 - <bell.wav> Bell, average frequency
- Model
 - train(FeatureDataFrame)
 - Associate average frequency for "Bell"
 - predict(PredictDataFrame)
 - Output closest matching sound

Mllib algorithms

- Classification
 - Logistic Regression
 - Decision Tree
 - Random Forest
 - Gradient boosted tree
 - Multilayer Perceptron
 - SVM
 - Naïve Bayes

- Clustering
 - K-Means
 - LDA
 - GMM
- Collaborative Filtering
 - ALS
- Frequent Pattern Mining

Deep Learning with Big Data

Challenges for Deep Learning

- Heterogenous cluster
- Deep Learning (Tensorflow)
 - Iterative
 - Matrix vector multiplication Linear algebra
- Initially evolved on a single machine only scale up
- Then had its own cluster
 - Typically heterogenous with CPUs, GPUs,
 TPUs

Challenges for Deep Learning

- But data resides on HDFS and big data platform uses Spark
- How should the two work together.
- Typically the two clusters are different

Figure 1: ML Pipeline with multiple programs on separated clusters

https://developer.yahoo.com/blogs/157196317141/

Challenges for Deep Learning

- Can we use the same cluster?
- Tensorflow on Spark
 - From Yahoo

Figure 2: TensorFlowOnSpark for deep learning on Spark clusters

https://developer.yahoo.com/blogs/157196317141/

Tensorflow on Spark Architecture

PES UNIVERSITY

- Supports both
 - Model parallelism
 - Data parallelism
- <10 lines of code change reqd
- Algorithm and parameter server rule on Spark executors
 - Can read data directly from https://developer.yahoo.com/blogs/157196317141/
 HDFS
 - Spark RDD data is fed to spark executor which passes it to Tensorflow
- RDMA → faster network transfers

Figure 3: TensorFlowOnSpark system architecture

Other solutions

- SystemML systemml.apache.org
 - IBM
 - SystemML: Declarative Machine Learning on Spark http://www.vldb.org/pvldb/vol9/p1425-boehm.pdf
 - Uses a declarative ML language
 - Translated to MR/Spark
- Intel BigDL
 - Modeled on Torch

THANK YOU

K V Subramaniam, Usha Devi

Dept. of Computer Science and Engineering

subramaniamkv@pes.edu
ushadevibg@pes.edu