

哈爾濱フ紫大学(深圳) HARBIN INSTITUTE OF TECHNOLOGY

实验报告

开课学期:	2021 春季			
课程名称:	计算机体系结构(实验)			
实验名称:	分支预测器设计			
实验性质:	综合设计型			
实验时间:	<u>6</u> 地点: <u>T2210</u>			
学生班级:	2018 级计算机 5 班			
学生学号:	180110505			
学生姓名:	胡聪			
评阅教师:				
报告成绩:				

实验与创新实践教育中心印制

1. 实验内容

本实验将基于Pin插桩分析的工作机理,使用C/C++实现分支预测器的软件模型, 从而在进一步熟悉插桩工具使用的同时,加深对分支预测原理的理解。

设计锦标赛分支预测器;

至少使用2种动态分支预测方法;

只需预测分支跳转方向,不需预测分支目标地址。

2. 设计与实现

2.1 题目分析

BHT——Branch History Table,用于记录分支历史信息的表格,用于判断一条分支指令是否token,记录跳转信息。简单的BHT只需要用1bit位进行记录,但是这样记录还不够准确,所以一般使用2bit位进行记录,预测时,用分支指令的地址查BHT,获得相应的饱和计数器值。若饱和计数器的最高位为1,预测分支跳转,否则预测分支不跳转。当分支指令的实际跳转方向被确定时,不管预测是否正确,都对BHT中的饱和计数器进行更新,从而达到动态调整分支预测结果的目的。

基于BHT的分支预测方法忽视了分支指令之间的关联性。为此,基于全局历史的分支预测方法在BHT的基础上增加了GHR(Global History Register,全局历史寄存器)来将所有分支指令关联起来。

基于全局历史的分支预测方法使用一个k比特的GHR来记录所有最近k条分支指令的历史跳转方向,并使用PHT(Pattern History Table,模式历史表)来记录各分支指令的分支历史。其中,PHT的结构类似于BHT。

预测时,首先将分支指令的地址和GHR进行异或,再用异或操作的结果来查PHT,然后根据PHT当前行的分支历史和分支目标地址,对该分支指令的分支跳转方向和分支目标地址进行预测。

基于局部选择历史的选择方法使用LSHT(Local Selection History Table,局部选择历史表)来记录子预测器预测结果的历史选择情况。

LSHT一般具有4096条记录,每条记录均包含Tag和局部选择历史2个字段。其中,Tag字段是分支指令地址的一部分,局部选择历史字段则是2bit的饱和技术器,其作用等同于GSHR。

预测时,先取分支指令的地址查LSHT,得到相应的选择历史LSHT[i]。若LSHT[i]的最高位为0,则输出子预测器1的预测结果;否则输出子预测器2的预测结果。当分支指令的实际跳转行为被确定时,需要同时对子预测器和LSHT[i]进行更新。对于子预测器,根据分支指令的实际跳转行为和锦标赛预测结果等信息,使用子预测器自身的更新策略进行更新。

2.2 实验过程

在已经给定的实验框架中,搭建好了Pin插桩的指令代码框架,这部分代码从目标程序中选择控制流指令,然后在分支成功处和失败处插入分析代码。分析代码获取分支指令地址,调用分支预测器模型进行分支预测,并且记录模型的预测结果数据。

BHT: 预测时,使用分支指令地址查询BHT,获得相应的饱和计数器值。最高位为1则分支跳转,否则不跳转。当跳转方向确定,无论预测是否正确,均对饱和计数器进行更新,实现动态调整分支预测结果。

GHR: 预测时,首先将分支指令的地址和GHR进行异或,再用异或操作的结果来查PHT,然后根据PHT当前行的分支历史和分支目标地址,对该分支指令的分支 跳转方向和分支目标地址进行预测。指令跳转时:

```
BOOL predict(ADDRINT addr)
{
    UINT64 tag = cut(addr ^ GHR.getVal(), L);
    return bhist[tag].isTaken();
}
```

锦标赛预测分支,基于局部选择历史的选择方法:

```
BOOL predict(ADDRINT addr)
{
    if (!GSHR.isTaken())
    {
       return BPs[0]->predict(addr);
    }
    else
    {
       return BPs[1]->predict(addr);
    }
}
```

2.3 实验结果及分析

BHT

```
runspec finished at Thu May 20 16:52:02 2021; 26 total seconds elapsed
takenCorrect: 172951802
takenIncorrect: 12036890
notTakenCorrect: 277281557
nnotTakenIncorrect: 12791123
Precision: 94.7737
runspec finished at Thu May 20 16:53:26 2021; 26 total seconds elapsed
takenCorrect: 170144442
takenIncorrect: 11944651
notTakenCorrect: 275147878
nnotTakenIncorrect: 12725185
Precision: 94.7507
runspec finished at Thu May 20 16:54:29 2021; 23 total seconds elapsed
takenCorrect: 179655439
takenIncorrect: 12313688
notTakenCorrect: 287292139
nnotTakenIncorrect: 13096879
Precision: 94.839
runspec finished at Thu May 20 16:56:08 2021; 23 total seconds elapsed
takenCorrect: 180290618
takenIncorrect: 12379570
notTakenCorrect: 288923529
nnotTakenIncorrect: 13139232
Precision: 94.8419
```

GHR

```
runspec finished at Thu May 20 16:58:05 2021; 26 total seconds elapsed takenCorrect: 180870962 takenIncorrect: 7192836 notTakenCorrect: 283815524 nnotTakenIncorrect: 7399047 Precision: 96.9554
```

runspec finished at Thu May 20 16:59:29 2021; 25 total seconds elapsed

takenCorrect: 175595353
takenIncorrect: 7108621
notTakenCorrect: 280239863
nnotTakenIncorrect: 7428918

Precision: 96.9094

runspec finished at Thu May 20 17:01:12 2021; 23 total seconds elapsed

takenCorrect: 186347459 takenIncorrect: 7338089 notTakenCorrect: 293538777 nnotTakenIncorrect: 7743484

Precision: 96.953

runspec finished at Thu May 20 17:02:38 2021; 24 total seconds elapsed

takenCorrect: 187847766
takenIncorrect: 7362034
notTakenCorrect: 296082102
nnotTakenIncorrect: 7642188

Precision: 96.9927

锦标赛

runspec finished at Thu May 20 17:04:10 2021; 46 total seconds elapsed

takenCorrect: 181078756 takenIncorrect: 7174457 notTakenCorrect: 283802830 nnotTakenIncorrect: 7173675

Precision: 97.006

runspec finished at Thu May 20 17:05:54 2021; 44 total seconds elapsed

takenCorrect: 175752824
takenIncorrect: 6977484
notTakenCorrect: 280363087
nnotTakenIncorrect: 7272794

Precision: 96.9704

runspec finished at Thu May 20 17:07:47 2021; 43 total seconds elapsed

takenCorrect: 186702422
takenIncorrect: 7216386
notTakenCorrect: 293669634
nnotTakenIncorrect: 7406554

Precision: 97.0458

runspec finished at Thu May 20 17:09:31 2021; 44 total seconds elapsed

takenCorrect: 188046758 takenIncorrect: 7310401 notTakenCorrect: 296132959 nnotTakenIncorrect: 7429062

Precision: 97.0457

结果表格

	bzip2	sjeng	wrf	sphinx3
BHT 预测器	94. 7737	94. 7507	94.839	94. 8419
GHR 预测器	96. 9554	96. 9094	96. 953	96. 9927
锦标赛预测器	97.006	96. 9704	97. 0458	97. 0457

通过改变L的值,可以找到准确率与L值之间的关系:

通过观察最终的实验结果,对bzip2、sjeng、wrf和sphinx3算法进行测试的结果中,同一预测算法的结果大致相同,而全局分支预测器的准确率较高,锦标赛分支预测器的结果也是接近全局分支预测器的,这比较符合最初的预期。

3. 总结和感想

在本次实验过程中,首先学习了各个动态分支预测器的原理,以及各种寄存器的使用方式,通过在实验过程中对于参数的调节,一步一步慢慢改善预测算法的准确性,锻炼了自己对于问题的处理能力和调试能力。