eMasters in Communication Systems

Core Module: Wireless Communication

- What is this module about?
- Introduce you to cutting-edge wireless technologies
 - Multiple-antenna systems
 - MIMO (Multiple Input Multiple Output) Technology
 - OFDM (Orthogonal Frequency Division Multiplexing) System

- These form the basis of modern wireless cellular and Wi-Fi systems
 - LTE
 - 5G-NR
 - 802.11 ac, 802.11 ax

- However, in order to achieve these goals...
 - We have to first understand the basic principles and models of wireless systems

- Also, since this is a formal course...
 - We will also use a lot of mathematical tools and analysis

Chapter 1: Basic Digital Communication

Conventional Comm

 Why is conventional wireline communication different from wireless?

Reason: Channel is FIXED!!

What are the implications of this?

To understand this, we have to develop a model for the wireline digital system.

Model for Digital Wireline System

Comm system has 4 components

- 1. Received signal y
- 2. Transmit signal x
- 3. Noise n

SNR — Signal to Noise Power Ratio.

- Very very IMPORTANT quantity in communication
- Which we will refer to frequently...

A Simple Model...

$$y = x + n$$

Signal

Signal power is defined as

$$E\{|x|^2\} = P$$

• $E\{\cdot\}$ denotes the expected value or average

Signal

- But NOT any signal is permitted
- Communication signals have to have a specific structure to convey maximum information(bits)...
- This is termed **MODULATION...** which we will come to later

Noise

- The noise n is termed AWGN –
 Additive White Gaussian Noise.
- Noise is Additive.

Some Mathematical Analysis...

- Gaussian noise⇒
- Noise PDF (Probability Density Function) is Gaussian

Gaussian PDF: Shape?

$$f_N(n) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(n-\mu)^2}{2\sigma^2}}$$

- $\mu = Mean = E\{N\}$
- σ^2 = Variance = $E\{(N-\mu)^2\}$

Gaussian PDF: Shape?

$$f_N(n) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{n^2}{2\sigma^2}}$$
cally $u = 0$ for noise

- Typically $\mu=0$ for noise
- $\sigma^2 = \frac{N_0}{2}$ Variance = $E\{|N|^2\}$

Noise

- White Noise ⇒
- Noise PSD(Power Spectral Density) is flat or constant across the frequency spectrum

White Noise

$$S_{nn}(\Omega) = \frac{N_0}{2} = \text{constant}$$

- Similar to white light!
- Contains all frequencies

PSD

- How is PSD defined?
- Fourier transform of autocorrelation

$$R_{nn}(l) = E\{n(k)n(k+l)\} = \frac{N_0}{2}\delta(l)$$

SNR - Signal to Noise Power Ratio

 SNR is the ratio of signal to noise power

$$y = x + n$$

$$SNR = \frac{E\{|x|^2\}}{E\{|n|^2\}} = \frac{P}{N_0/2} = \frac{2P}{N_0}$$

SNR Property of Wireline Channel

 SNR of the wireline channel is approximately constant!!

Why?

- Because the channel is FIXED.
- Therefore, no variations or fluctuations in SNR

 This is a very important property of a wireline comm system

Performance of Communication Systems

- How to characterize the performance of a comm system?
- BER (Bit-Error Rate) is an important metric for any comm system

- What is the BER?
- Probability that a single bit is in error
- Example: $BER = 10^{-2} \Rightarrow$
 - Approx 1% bits are in error
 - 10 in every 1000 bits on an average are in error

Digital Modulation

- Mapping information bits to signals that can be transmitted over the channel
- There are various formats for Digital Modulation
 - Examples: BPSK, QPSK, QAM

BPSK

- Binary Phase Shift Keying
- $x \in \{+A, -A\}$: Two phases 0° and 180°
- $\{+A, -A\}$: Signal constellation

Bit Mapping

Information bits can be mapped as follows

$$0 \rightarrow +A$$
$$1 \rightarrow -A$$

- Consider now signal power P
- It follows that $A = \sqrt{P}$

•
$$x \in \{A, -A\} = \{\sqrt{P}, -\sqrt{P}\}$$

$$E\{|x|^2\} = P$$

Performance of BPSK for Wireline

BER for BPSK over wireline channel is given as

$$BER = Q\left(\sqrt{\frac{2P}{N_0}}\right) = Q(\sqrt{\text{SNR}})$$

Gaussian Q-function

- What is $Q(\cdot)$?
- This is the Gaussian Q function

• $Q(\cdot)$ is the Complementary Cumulative

Distribution Function (CCDF) of the standard

Gaussian RV

$$CDF = Pr(X \leq x) = F_{x}(x)$$

$$CCDF = Pr(X > x)$$

$$= 1 - CDF = F_{x}(x)$$

• Standard Gaussian RV: Mean $\mu = 0$, Variance

$$\sigma^2 = 1$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

• Q(x) is defined as

$$P(X \ge x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

Standard Gaussian PDF x_0 μ \boldsymbol{x}

Q(x) DECREASING FUNCTION

BER Example

• Evaluate the BER of a wireline channel with BPSK transmission $SNR = 12 \ dB$

$$|0|$$
 og $SNR = SNR$ in dB .
 $SNR = 10$

This can be evaluated as follows

$$10 \log_{10} SNR = 12dB$$

 $\Rightarrow \log_{10}(SNR) = 1.2$
 $\Rightarrow SNR = 10^{1.2} = 15.85$

• Hence, the BER is given as ? HOW TO CALCULATE?

BER =
$$Q(\sqrt{SNR})$$

$$= Q(\sqrt{15.85})$$

$$\approx 3.44 \times 10^{-5}$$
No closed No closed Form expression on the continuous of the conti

BER Assignment

• Evaluate the BER of a wireline channel with BPSK transmission $SNR = 15 \ dB$

Please do this as homework

QPSK

- (90°)
- Quadrature Phase Shift Keying
- QPSK constellation is given as

$$x_{I} + jx_{Q}$$
 $\chi_{I}(t) + j\chi_{Q}(t)$

- x_I : In phase component $(\cos(2\pi f_c t))$
- x_Q : Quadrature component $(\sin(2\pi f_c t))$

QCM ORTH QUADRATURE CARRIER CA MULTIPLEXING.

- $x_I \in \{+A, -A\}$
- $x_Q \in \{+A, -A\}$
- Therefore, QPSK constellation is $x_I + jx_Q$ $\{A + jA, A jA, -A + jA, -A jA\}$ M=4 M=4 M=4 N=4 N=4
- QPSK has $log_2M = log_24 = 2$ bits per symbol

QPSK constellation

• Note that the phases of the symbols are 45° , 135° , 225° , 315°

- i.e. Phase differences are 90°
- Hence termed Quadrature Phase Shift Keying

$$M = 4$$
 $\log_2 M = \log_2 4 = 2$

• QPSK has 2 bits per symbol $A \rightarrow 0$

• The mapping can be done as $\stackrel{/}{-}$

$$(A, A) \rightarrow 00$$

 $(A, -A) \rightarrow 01$
 $(-A, A) \rightarrow 10$
 $(-A, -A) \rightarrow 11$

Model for this communication system is given

as
$$\underbrace{(y_I + jy_Q)}_{y} = \underbrace{(x_I + jx_Q)}_{x} + \underbrace{(n_I + jn_Q)}_{power}$$

$$\underbrace{(y_I + jy_Q)}_{y} = \underbrace{(x_I + jx_Q)}_{x} + \underbrace{(n_I + jn_Q)}_{power}$$

$$\underbrace{(y_I + jy_Q)}_{y} = \underbrace{(x_I + jx_Q)}_{x} + \underbrace{(n_I + jn_Q)}_{power}$$

$$\underbrace{(y_I + jy_Q)}_{y} = \underbrace{(x_I + jx_Q)}_{x} + \underbrace{(n_I + jn_Q)}_{power}$$

• Observe now that y, x, n are complex!!!

• For power P

$$A = \sqrt{\frac{P}{2}}$$

• In phase and Quadrature components each have half the power.

ullet Noise n_I, n_Q are **Gaussian** with

power
$$\frac{N_0}{2}$$

- Total noise power = N_0
- SNR for this system is given as

$$SNR = \frac{P}{N_0} = \frac{P_{\text{power}}}{N_0 \text{SE}}$$

Observe that QPSK comprises of 2 parallel BPSK streams

$$y_{Q}' = x_{I} + n_{I}$$

$$y_{Q}'' = x_{Q}' + n_{Q}$$

$$y_{Q} = x_{Q} + n_{Q}$$
MULTIPLEXING.

BER of each BPSK stream is

$$Q(\sqrt{SNR}) = Q\left(\sqrt{\frac{P}{N_0}}\right)$$

BER FOR INPHASE OR QUADRATURE • QPSK symbol is in error when either of the bits is in error $7 + j^{7} = 0$

• Symbol Error Rate (SER) of QPSK |- (I-Q(JSNR))

SER $\approx 2 \times BER$

$$= 2Q(\sqrt{\text{SNR}}) = 2Q \left(\sqrt{\frac{P}{N_0}} \right)^{\frac{1}{N_0}}$$

QPSK Example

- Given SNR = 15 dB, what is the BER and SER for QPSK transmission over an AWGN channel?
- This can be calculated as follows

$$10 \log_{10} SNR = 15dB$$

$$\Rightarrow \log_{10}(SNR) = 1.5$$

$$\Rightarrow SNR = 10^{1.5} = 31.62$$

Therefore, the SER and BER are given

BER =
$$Q(\sqrt{31.62}) = 9.37 \times 10^{-9}$$

SER = 2 × BER = 1.87 × 10⁻⁸

GENERAL

- Quadrature Amplitude Modulation
- QAM is one of the most important constellations NEW RADIO = NR
- Used in 4G, 5G etc
- Examples: 16-QAM, 64-QAM, QPSK.

- QAM is also known as M QAM
- M is the number of symbols
- Number of bits per symbol is log₂ M
- Example: $M = 16 \Rightarrow \log_2 M = 4$

16 QAM

16 QAM Example

$$x_{I} \in \{-3A, -A, A, 3A\}$$

$$x_{Q} \in \{-3A, -A, A, 3A\}$$

$$x_{Q} = -3A - j3A, -3A - jA, \dots$$

$$x_{Q} = -3A - j3A, -3A - jA, \dots$$

$$x_{Q} = -3A - j3A, -3A - jA, \dots$$

$$x_{Q} = -3A - j3A, -3A - jA, \dots$$

$$x_{Q} = -3A - j3A, -3A - jA, \dots$$

$$x_{Q} = -3A - j3A, -3A - jA, \dots$$

$$x_{Q} = -3A - j3A, -3A - jA, \dots$$

$$x_{Q} = -3A - j3A, -3A - jA, \dots$$

- QAM allows to transmit very high bitrates

 HOM = HIGHER ORDER
 MODULATION.
- Example: 1024 QAM has $log_2 1024 = 10$ bits per symbol!

AMC = ADAPHVE MODULATION & CODING.

Symbol Error Rate (SER) SYMBOLER

• SER for
$$M$$
 — QAM is given as

Notice of the power of

Thank You!

