Estatística e Probabilidades

Lista 02

Entrega em 20/08/2020

Para todas as questões, a construção do resultado (através dos cálculos, explicações, comentários, etc.) deve ser apresentada. Respostas sem esse tipo de justificativa **não** serão pontuadas.

A questão de *desafio* vale dois pontos extras na primeira prova (limitado ao valor máximo da avaliação) para o(a) **primeiro(a)** aluno(a) que submeter a solução correta. Por fim, o nível de dificuldade desse tipo de questão **não** será repetido na prova. Fiquem tranquilos!

Exercício 0.1. Considere um teste para um determinado tipo de doença tal que 95% dos doentes reagem positivamente à avaliação; enquanto que 3% dos indivíduos testados e que não apresentam a doença também têm resultado positivo. Além disso, sabe-se que apenas 1% da população possui a doença. Nesse cenário, um indivíduo, escolhido ao acaso, realizou o teste e obteve resultado positivo. Sobre essa pessoa, qual a probabilidade de que ele(a) esteja, de fato, doente?

Exercício 0.2 (James, Barry R. *Probabilidade: um curso em nível intermediário*). Pedro quer enviar uma carta a Maria. A probabilidade de que Pedro escreva a carta é de 0.8. A probabilidade de que os Correios não a perca é de 0.9. A probabilidade de que o carteiro entregue a carta é de 0.9. Dado que Maria não recebeu a carta, qual a probabilidade condicional de que Pedro não a tenha escrito?

Exercício 0.3. Considere um experimento aleatório que sorteia, de maneira uniforme, um número inteiro conjunto $\{1, 2, \dots, 9, 10\}$. Seja X a variável aleatória que indica o número sorteado e Y a variável aleatória que indica a quantidade de divisores que o número sorteado possui. Nesse caso,

- (a) Determine $f_X(x)$ e $f_Y(y)$; isto é, a função (massa) de probabilidade de X e Y, respectivamente;
- (b) Determine $F_X(x)$ e $F_Y(y)$; isto é, a função de distribuição acumulada de X e Y, respectivamente;

- (c) Calcule $F_X(5)$ e $F_Y(2)$; isto é, $\mathbb{P}(X \leq 5)$ e $\mathbb{P}(Y \leq 2)$, respectivamente; e
- (d) Faça o esboço do gráfico de $F_Y(y)$.

Desafio 0.1 (O problema de *Monty Hall*). Suponha que um convidado está em um programa de televisão e deve escolher entre três portas (A, B e C), uma das quais esconde (de maneira *uniforme*) um automóvel e as outras duas escondem dois bodes (um em cada porta). O convidado escolhe uma das portas. Em seguida, o apresentador, que sabe o que as portas escondem, abre uma das duas portas restantes — revelando um bode. Então ele pergunta ao convidado: "*Você quer trocar de porta?*". O problema é: é vantajoso para o convidado trocar sua escolha? Se o fizer, qual sua probabilidade de ganhar o automóvel?

Estatística e Probabilidades

Lista 02 RESPOSTAS

Exercício 0.1. Sejam $D = \{\text{indivíduo possui a doença}\}\ e\ T = \{\text{teste apresentou resultado positivo}\}$. Assim, a partir dos dados do problema, sabemos que $\mathbb{P}(D) = 0.01$, $\mathbb{P}(D^c) = 0.99$, $\mathbb{P}(T|D) = 0.95$, $\mathbb{P}(T^c|D) = 0.05$, $\mathbb{P}(T|D^c) = 0.03$ e $\mathbb{P}(T^c|D^c) = 0.97$. Nesse caso, queremos obter $\mathbb{P}(D|T)$. Assim,

$$\mathbb{P}(D|T) = \frac{\mathbb{P}(D\cap T)}{\mathbb{P}(T)} = \frac{\mathbb{P}(T|D)\cdot\mathbb{P}(D)}{\mathbb{P}(T)} = \frac{\mathbb{P}(T|D)\cdot\mathbb{P}(D)}{\mathbb{P}(T|D)\cdot\mathbb{P}(D) + \mathbb{P}(T|D^c)\cdot\mathbb{P}(D^c)},$$

já que D e D^c formam uma partição do espaço amostral. Dessa forma, substituindo os valores de maneira apropriada, temos que

$$\mathbb{P}(D|T) = \frac{0.95 \cdot 0.01}{0.95 \cdot 0.01 + 0.03 \cdot 0.99} \approx 0.24.$$

Como curiosidade, $\mathbb{P}(D)$ é chamado de "prevalência" da doença na população, $\mathbb{P}(T|D)$ é chamado de "sensibilidade do teste" e $\mathbb{P}(T^c|D^c)$ é chamado de "especificidade do teste". Além disso, $\mathbb{P}(D^c|T)$ e $\mathbb{P}(D|T^c)$ são chamadas de probabilidades de "falso-positivo" e "falso-negativo", respectivamente, e essas quantidades **dependem** da taxa de prevalência.

Exercício 0.2. Comece definindo os eventos de interesse. Nesse caso, $E = \{\text{Pedro escreve a carta}\}$, $C = \{\text{Correios perde a carta}\}$, $S = \{\text{Carteiro entrega a carta}\}$ e $M = \{\text{Maria recebe a carta}\}$. Assim, sabemos que $\mathbb{P}(E) = 0.8$, $\mathbb{P}(E^c) = 0.2$, $\mathbb{P}(C^c|E) = 0.9$, $\mathbb{P}(C|E) = 0.1$, $\mathbb{P}(S|(E \cap C^c)) = 0.9$ e $\mathbb{P}(S^c|(E \cap C^c)) = 0.1$. Além disso, podemos determinar $\mathbb{P}(M)$:

$$\mathbb{P}(M) = \mathbb{P}(E \cap C^c \cap S) = \mathbb{P}((E \cap C^c) \cap S)$$

$$= \mathbb{P}(S|(E \cap C^c)) \cdot \mathbb{P}(E \cap C^c)$$

$$= \mathbb{P}(S|(E \cap C^c)) \cdot \mathbb{P}(C^c|E) \cdot \mathbb{P}(E)$$

$$= 0.9 \cdot 0.9 \cdot 0.8 = 0.648.$$

o que implica que $\mathbb{P}(M^c) = 1 - 0.648 = 0.352$.

Agora, podemos calcular $\mathbb{P}(E^c|M^c)$, que é a probabilidade que nos interessa.

$$\mathbb{P}(E^c|M^c) = \frac{\mathbb{P}(E^c \cap M^c)}{\mathbb{P}(M^c)} = \frac{\mathbb{P}(M^c|E^c) \cdot \mathbb{P}(E^c)}{\mathbb{P}(M^c)} = \frac{1 \cdot 0.2}{0.352} \approx 0.568,$$

Estatística e Probabilidades. ICEx, UFMG. André V. R. Amaral (avramaral@gmail.com). Em 1º/2020.

onde $\mathbb{P}(M^c|E^c)=1$; já que, se Pedro não escreveu a carta, não é possível que Maria a receba.

Exercício 0.3. Para resolver essa questão, vamos começar listando os possíveis valores que as variáveis aleatórias X e Y podem assumir. Para uma possível configuração $\omega \in \Omega$,

$$X(\omega) \in \{1, 2, \dots, 9, 10\} \text{ e } Y(\omega) \in \{1, 2, 3, 4\}.$$

Nesse caso,

(a)
$$f_X(x) = \mathbb{P}(X = x) = \frac{1}{10}, \forall x \in \{1, 2, \dots, 9, 10\}.$$
 Além disso,

$$f_Y(y) = \mathbb{P}(Y = y) = \begin{cases} \frac{1}{10} & \text{se } y = 1\\ \frac{4}{10} & \text{se } y = 2\\ \frac{2}{10} & \text{se } y = 3\\ \frac{3}{10} & \text{se } y = 4, \end{cases}$$

já que o número 1 tem um divisor, os números 2, 3, 5 e 7 têm dois divisores, os números 4 e 9 têm $tr\hat{e}s$ divisores e os números 6, 8 e 10 têm quatro divisores.

(b) Temos que

$$F_X(x) = \mathbb{P}(X \le x) = \begin{cases} 0 & \text{se } x < 0 \\ \frac{|x|}{10} & \text{se } 0 \le x < 10 \\ 1 & \text{se } x \ge 10 \end{cases}$$

$$F_Y(y) = \mathbb{P}(Y \le y) = \begin{cases} 0 & \text{se } y < 0 \\ 0 & \text{se } 0 \le y < 1 \\ \frac{1}{10} & \text{se } 1 \le y < 2 \\ \frac{5}{10} & \text{se } 2 \le y < 3 \\ \frac{7}{10} & \text{se } 3 \le y < 4 \\ 1 & \text{se } y \ge 4 \end{cases}$$

(c) Temos que

$$F_X(5) = \mathbb{P}(X \le 5) = \mathbb{P}(X = 1) + \mathbb{P}(X = 2) + \mathbb{P}(X = 3) + \mathbb{P}(X = 4) + \mathbb{P}(X = 5) = \frac{5}{10} = \frac{1}{2}$$

$$F_Y(2) = \mathbb{P}(Y \le 2) = \mathbb{P}(Y = 1) + \mathbb{P}(Y = 2) = \frac{1}{10} + \frac{4}{10} = \frac{5}{10} = \frac{1}{2}.$$

Estatística e Probabilidades. ICEx, UFMG. André V. R. Amaral (avramaral@gmail.com). Em 1º/2020.

(d) O esboço do gráfico de $F_Y(y)$ é mostrado abaixo.

Desafio 0.1. Suponha, inicialmente, que o participante escolheu a porta "A". Em seguida, o apresentador abriu a porta "B" (que, obviamente, não tinha o prêmio); nesse caso, defina $V = \{\text{apresentador mostra a porta "B"}\}.$

Além disso, defina A (ou B ou C) = {a porta "A" (ou "B" ou "C") contém o prêmio}. Nesse sentido, queremos determinar $\mathbb{P}(A|V)$ e $\mathbb{P}(C|V)$. Mas antes, vamos calcular $\mathbb{P}(V)$:

$$\begin{split} \mathbb{P}(V) &= \mathbb{P}(V|A) \cdot \mathbb{P}(A) + \mathbb{P}(V|B) \cdot \mathbb{P}(B) + \mathbb{P}(V|C) \cdot \mathbb{P}(C) \\ &= \frac{1}{2} \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} \\ &= \frac{1}{2}, \end{split}$$

já que os eventos A, B e C formam uma partição do espaço amostral. Além disso, note que para determinar as probabilidades condicionais, é importante considerar a escolha do convidado.

Agora,

$$\mathbb{P}(A|V) = \frac{\mathbb{P}(A \cup V)}{\mathbb{P}(V)} = \frac{\mathbb{P}(V|A) \cdot \mathbb{P}(A)}{\mathbb{P}(V)} = \frac{\frac{1}{2} \cdot \frac{1}{3}}{\frac{1}{2}} = \frac{1}{3}$$
$$\mathbb{P}(C|V) = \frac{\mathbb{P}(B \cup V)}{\mathbb{P}(V)} = \frac{\mathbb{P}(V|C) \cdot \mathbb{P}(C)}{\mathbb{P}(V)} = \frac{1 \cdot \frac{1}{3}}{\frac{1}{2}} = \frac{2}{3},$$

além do fato de que $\mathbb{P}(B|V) = 0$. Sendo assim, dado que o apresentador abriu a porta "B" (que não tinha o prêmio), o convidado pode aumentar a sua probabilidade de ganhar o prêmio trocando sua escolha de "A" para "C".