ON THE REDUCTION OF POINTS ON ABELIAN VARIETIES AND TORI

ANTONELLA PERUCCA

ABSTRACT. Let G be the product of an abelian variety and a torus defined over a number field K. Let R_1, \ldots, R_n be points in G(K). Let ℓ be a rational prime and let a_1, \ldots, a_n be non-negative integers. Consider the set of primes \mathfrak{p} of K satisfying the following condition: the ℓ -adic valuation of the order of $(R_i \text{ mod } \mathfrak{p})$ equals a_i for every $i = 1, \ldots, n$. We show that this set has a natural density and we characterize the n-tuples a_1, \ldots, a_n for which the density is positive. More generally, we study the ℓ -part of the reduction of the points.

1. Introduction

Let G be the product of an abelian variety and a torus defined over a number field K. Let \mathcal{O} be the ring of integers of K. We reduce G modulo \mathfrak{p} , where \mathfrak{p} is a prime of K (a non-zero prime ideal of \mathcal{O}). By fixing a model of G over an open subscheme of Spec \mathcal{O} , one can define the reduction $G_{\mathfrak{p}}$ of G for all but finitely many primes \mathfrak{p} of K. We fix a point R in G(K) and consider its reduction $(R \mod \mathfrak{p})$, which is well-defined for all but finitely many primes \mathfrak{p} of K (the set of excluded primes depends on the point, unless the toric part of G is trivial). We are interested in the set of values taken by the order of $(R \mod \mathfrak{p})$, by varying \mathfrak{p} .

If R is a torsion point of order n then the order of $(R \mod \mathfrak{p})$ equals n for all but finitely many primes \mathfrak{p} of K: the excluded primes are either of bad reduction or divide n (bad reduction here means that the reduction is not defined on R or that $G_{\mathfrak{p}}$ is not the product of an abelian variety and a torus).

Now assume that R has infinite order. Call n_R the number of connected components of the smallest K-algebraic subgroup of G containing R. In [12, Main Theorem] we proved that n_R is the greatest positive integer dividing the order of $(R \mod \mathfrak{p})$ for all but finitely many primes \mathfrak{p} of K.

Let ℓ be a rational prime. We study the ℓ -adic valuation of the order of $(R \mod \mathfrak{p})$. We write $\operatorname{ord}_{\ell}$ to indicate the ℓ -adic valuation of the order. Let a be a non-negative integer and consider the following set:

$$\Gamma = \{ \mathfrak{p} : \operatorname{ord}_{\ell}(R \bmod \mathfrak{p}) = a \}$$

We prove that Γ is finite if $a < v_{\ell}(n_R)$ and it has a positive natural density if $a \ge v_{\ell}(n_R)$. See Corollary 19.

For several points we have the following result:

Theorem 1. Let K be a number field, let $I = \{1, ..., n\}$. For every $i \in I$, let G_i be the product of an abelian variety and a torus defined over K and let R_i be a point in $G_i(K)$. Let ℓ be a rational prime. For every $i \in I$, let a_i be a non-negative integer. Consider the following set of primes of K:

$$\Gamma = \{ \mathfrak{p} : \forall i \in I \text{ ord}_{\ell}(R_i \bmod \mathfrak{p}) = a_i \}$$

The set Γ is either finite or it has a positive natural density.

Write $G = \prod_{i=1}^n G_i$ and $R = (R_1, \dots, R_n)$. Let G_R be the smallest K-algebraic subgroup of G containing R and call G_R^1 the connected component of G_R containing R.

The set Γ is infinite if and only if the following condition is satisfied: there exists a torsion point $T = (T_1, \ldots, T_n)$ in $G_R^1(\bar{K})$ such that $\operatorname{ord}_{\ell} T_i = a_i$ for every $i \in I$.

Let G be the product of an abelian variety and a torus defined over a number field K. Let R be a point in G(K). Let ℓ be a rational prime and let \mathfrak{p} be a prime of K of good reduction, not over ℓ . Call $a = \operatorname{ord}_{\ell}(R \mod \mathfrak{p})$. Let L be a finite Galois extension of K where the points in $G[\ell^a]$ are defined. Then for every prime \mathfrak{q} of L over \mathfrak{p} there exists a unique T in $G[\ell^a]$ such that $\operatorname{ord}_{\ell}(R - T \mod \mathfrak{q}) = 0$. We define the ℓ -part of $(R \mod \mathfrak{p})$ as the $\operatorname{Gal}(\bar{K}/K)$ -class of T, which is independent of the choice of \mathfrak{q} and of L.

Theorem 2. Let G be the product of an abelian variety and a torus defined over K. Let R be a point in G(K). Let ℓ be a rational prime. Let L be a finite Galois extension of K. Let T be a $Gal(\bar{K}/K)$ -stable subset of $G[\ell^{\infty}](L)$. Then the following set of primes of K is either finite or it has a positive natural density:

$$\Gamma = \{ \mathfrak{p} : \forall \text{ prime } \mathfrak{q} \text{ of } L \text{ over } \mathfrak{p} \text{ ord}_{\ell}(R - Y \bmod \mathfrak{q}) = 0 \text{ for some } Y \text{ in } \mathcal{T} \}$$

Let G_R be the smallest K-algebraic subgroup of G containing R. Call $n_{R,\ell}$ the greatest power of ℓ dividing the number of connected components of G_R . Call G_R^j the connected component of G_R containing the point jR. The set Γ is infinite if and only if T contains a point in

$$\bigcup_{j\equiv 1 \pmod{n_{R,\ell}}} G_R^j[\ell^\infty](L)$$

Notice that throughout the paper we replace ℓ by a finite set S of rational primes.

To prove the existence of the densities, we apply a method by Jones and Rouse ([9, Theorem 7]). An alternative method is due to Pink and Rütsche, see [15, Chapter 4].

To determine the conditions under which the densities are positive, we refine results of [12] which were based on a method by Khare and Prasad ([10, Lemma 5]). An alternative method is due to Pink, see [14, Theorem 4.1]. Notice that the same method by Khare and Prasad has been applied in the following papers by Banaszak, Gajda, Krasoń, Barańczuk and Górnisiewicz: [1], [3], [7], [2].

Some explicit calculations for the density have been made by Jones and Rouse in [9]. About the order of the reductions of points on the multiplicative group and elliptic curves, see [16] and [5] respectively.

A reason to study the order of the reduction of points is the following. Fix a number field K. Let A be a simple abelian variety defined over K and let R be a point in A(K) of

infinite order. Consider the sequence $\{\operatorname{ord}(R \bmod \mathfrak{p})\}$ indexed by the primes \mathfrak{p} of K (put 1 if the expression is not well-defined). This sequence determines the isomorphism class of A and determines R up to isomorphism. This is a corollary of the results on the support problem ([13, Corollary 8 and Proposition 9]).

2. Preliminaries

Let G be the product of an abelian variety and a torus defined over a number field K. Let R be a point in G(K). Call G_R the smallest K-algebraic subgroup of G containing R, which is the Zariski closure of $\mathbb{Z}R$. The connected component of the identity of G_R is the product of an abelian variety and a torus defined over K (see [12, Proposition 5]). Call it G_R^0 . Let n_R be the number of connected components of G_R .

For every finite extension L of K, the smallest L-algebraic subgroup of G containing R is the base change $G_R \times_K \operatorname{Spec} L$. Notice that n_R does not depend on the field L because G_R^0 is geometrically connected (since it has a rational point).

The point $n_R R$ is the smallest positive multiple of R which belongs to G_R^0 . There exists a torsion point X in $G_R(\bar{K})$ of order n_R such that R-X belongs to G_R^0 (see [12, Lemma 1]). In particular, the point $n_R X$ is the smallest positive multiple of X which belongs to G_R^0 . The group of connected components of G_R is cyclic of order n_R . The connected components of G_R are $G_R^0, \ldots, G_R^{n_R-1}$, where G_R^i is the connected component of G_R containing iR (or equivalently containing iX).

Lemma 3. For all but finitely many primes \mathfrak{p} of K, the connected components of $(G_R \mod \mathfrak{p})$ are $(G_R^i \mod \mathfrak{p})$ for $i = 0, \ldots, n_R - 1$. In particular, the group of connected components of $(G_R \mod \mathfrak{p})$ is cyclic of order n_R . If L is a finite Galois extension of K, the analogue properties hold for every prime \mathfrak{q} of L lying outside a finite set of primes of K not depending on L.

Proof. Let F be a finite Galois extension of K where the points in $G[n_R]$ are defined. Apply [11, Lemma 4.4] to $G[n_R]$ and to $G_R^0[n_R]$. We deduce that for all but finitely many primes \mathfrak{w} of F the following holds: $(n_R X \mod \mathfrak{w})$ is the smallest positive multiple of $(X \mod \mathfrak{w})$ which belongs to $(G_R^0 \mod \mathfrak{w})$. Thus for all but finitely many primes \mathfrak{p} of K the point $(n_R R \mod \mathfrak{p})$ is the smallest positive multiple of $(R \mod \mathfrak{p})$ which belongs to $(G_R^0 \mod \mathfrak{p})$. The first assertion follows.

Let \mathfrak{q} be a prime of L lying over a prime \mathfrak{p} of K. The group of connected components of $(G_R \mod \mathfrak{q})$ is cyclic of order dividing n_R . Then the second assertion holds since $(G_R \mod \mathfrak{q})$ is a base change of $(G_R \mod \mathfrak{p})$, up to discarding a set of primes \mathfrak{p} of K not depending on L.

Lemma 4 (see also [11, Lemma 4.4]). Let L be a finite Galois extension of K. Let n be a positive integer such that $G[n] \subseteq G(L)$. For every prime \mathfrak{q} of L coprime to n and not lying over a finite set of primes of K (not depending on n nor on L), the reduction modulo \mathfrak{q} gives an isomorphism from $G_R^i[n]$ to $(G_R^i \mod \mathfrak{q})[n]$ for every $i = 0, \ldots, n_R - 1$.

Proof. By [11, Lemma 4.4], the property in the statement holds for $G_R^0[n]$ and for G[n]. By Lemma 3, up to excluding a finite set of primes \mathfrak{q} (lying over a finite set of primes of K not

depending on n nor on L), we may assume that the connected components of $(G_R \mod \mathfrak{q})$ are $(G_R^i \mod \mathfrak{q})$ for $i = 0, \ldots, n_R - 1$. We conclude because the reduction modulo \mathfrak{q} maps $G_R^i[n]$ to $(G_R^i \mod \mathfrak{q})[n]$.

Lemma 5 (see also [8, Proposition C.1.5]). Let m be a positive integer. For every n > 0 call K_n the smallest extension of K over which the m^n -th roots of R are defined. Then the primes of K which ramify in $\bigcup_{n>0} K_n$ are contained in a finite set.

Proof. It suffices to prove that there exists a finite set J of primes of K (not depending on n) such that the following holds: every prime $\mathfrak p$ of K outside this set does not ramify in K_n . By [11, Lemma 4.4], there exists a finite set J of primes of K (not depending on n) satisfying the following property: for every prime $\mathfrak p$ of K outside J and for every prime $\mathfrak q$ of K_n over $\mathfrak p$, the reduction map modulo $\mathfrak q$ is injective on $G[m^n]$. It suffices to show that the inertia group of $\mathfrak q$ over $\mathfrak p$ is trivial. Let σ be in the inertia group of $\mathfrak q$ over $\mathfrak p$. Then σ induces the identity automorphism on the reduction modulo $\mathfrak q$ of the m^n -th roots of K. Because of the injectivity of the reduction modulo $\mathfrak q$ on $G[m^n]$, σ induces the identity automorphism on the m^n -th roots of K hence it is the identity of $Gal(K_n/K)$.

3. On the existence of the density

In this section we generalize a result by Jones and Rouse ([9, Theorem 7]). We apply the same method to prove the existence of the natural density.

The results by Pink and Rütsche in [15, Chapter 4] concern the existence of the Dirichlet density. Their method has the advantage (say with respect to Corollary 9) to allow the set \mathcal{T} to be infinite.

Theorem 6. Let G be the product of an abelian variety and a torus defined over a number field K. Let R be a point in G(K). Let S be a finite set of rational primes and let m be the product of the elements of S. Let T be a point in $G[m^{\infty}](L)$, where L is a finite Galois extension of K. Call T the $Gal(\bar{K}/K)$ -conjugacy class of T. Then the following set of primes of K has a natural density:

```
\Gamma = \{ \mathfrak{p} : \forall \ell \in S \ \operatorname{ord}_{\ell}(R - T \bmod \mathfrak{q}) = 0 \ \text{for some prime } \mathfrak{q} \ \text{of } L \ \text{over } \mathfrak{p} \}
= \{ \mathfrak{p} : \forall \ell \in S \ \forall \ \text{prime } \mathfrak{q} \ \text{of } L \ \text{over } \mathfrak{p} \ \operatorname{ord}_{\ell}(R - Y \bmod \mathfrak{q}) = 0 \ \text{for some } Y \ \text{in } T \}
```

Proof. First step. For every $Y \in \mathcal{T}$, we have $G_{R-Y}^0 = G_R^0$ because R and R-Y have a common multiple. Since G_R^0 and R are defined over K, it follows that $n_{R-Y} = n_{R-T}$ for every $Y \in \mathcal{T}$. If m and n_{R-T} are not coprime then by [12, Proposition 2] the set Γ is finite and in particular it has density zero. Now assume that m and n_{R-T} are coprime. By replacing R and R by R and R and R and R respectively, we may assume that for every $Y \in \mathcal{T}$ the algebraic group R is connected hence equal to R. Call R which is the product of an abelian variety and a torus defined over R.

Second step. Let a be such that $m^a(R-Y)=m^aR$ for every $Y \in \mathcal{T}$. In particular, m^aR belongs to G'. Call K_n the smallest extension of K over which the m^{n+a} -th roots of m^aR in G' are defined. By Lemma 5, we may consider only the primes \mathfrak{p} of K which do not ramify in $\bigcup_{n>0} K_n$. We also avoid the primes of bad reduction. By Lemma 4, we may

also assume the following: for every n and for every prime \mathfrak{w} of K_n over \mathfrak{p} the reduction modulo \mathfrak{w} is injective on $G'[m^{n+a}]$. Call $k_{\mathfrak{w}}$ the residue field. Then, for every $Y \in \mathcal{T}$, the reduction modulo \mathfrak{w} induces a bijection from the m^n -th roots of R - Y in G' to the m^n -th roots of $(R - Y \mod \mathfrak{w})$ in $G'_{\mathfrak{w}}(k_{\mathfrak{w}})$.

By excluding finitely many primes \mathfrak{p} of K, we may also assume that $G_{\mathfrak{w}}$ (respectively $G'_{\mathfrak{w}}$) is the base change of $G_{\mathfrak{p}}$ (respectively $G'_{\mathfrak{p}}$). In particular, we identify $G_{\mathfrak{w}}(k_{\mathfrak{w}})$ (respectively $G'_{\mathfrak{w}}(k_{\mathfrak{w}})$) with $G_{\mathfrak{p}}(k_{\mathfrak{w}})$ (respectively $G'_{\mathfrak{p}}(k_{\mathfrak{w}})$).

Third step. Call H_n the subset of $\operatorname{Gal}(K_n/K)$ consisting of the automorphisms which fix some m^n -th root of R-Y in G' for some $Y \in \mathcal{T}$. We write $\operatorname{Fr}_{\mathfrak{p}}$ for the Frobenius at \mathfrak{p} without specifying the prime of K_n lying over \mathfrak{p} .

Since H_n is closed by conjugation, the following set of primes of K is well-defined:

$$B_n = \{ \mathfrak{p} : \operatorname{Fr}_{\mathfrak{p}} \in H_n \}$$

The set B_n has a natural density because of the Cebotarev Density Theorem.

Now we prove that $B_n \supseteq \Gamma$ for every n. Take $\mathfrak p$ in Γ and let $\mathfrak q$ be a prime of L over $\mathfrak p$. Let $Y \in \mathcal T$ be such that the order of $(R-Y \bmod \mathfrak q)$ is coprime to m or equivalently such that the orbit of $(R-Y \bmod \mathfrak q)$ via the iterates of [m] is periodic. Since $(R \bmod \mathfrak q)$ belongs to $G_{\mathfrak p}(k_{\mathfrak p})$ and $(Y \bmod \mathfrak q)$ is a multiple of $(R \bmod \mathfrak q)$, the point $(R-Y \bmod \mathfrak q)$ belongs to $G_{\mathfrak p}(k_{\mathfrak p}) \cap (G'(L) \bmod \mathfrak q)$. Then $(R-Y \bmod \mathfrak q)$ has m^n -th roots in that set for every n. Fix n and let $\mathfrak w$ be a prime of K_n over $\mathfrak q$. We deduce that there exists Z in $G'(K_n)$ such that $m^n Z = R - Y$ and $(Z \bmod \mathfrak w)$ is in $G_{\mathfrak p}(k_{\mathfrak p})$. In particular, Z is fixed by $F_{\mathfrak p}$.

Now we suppose that $\mathfrak p$ belongs to B_n for infinitely many n and show that $\mathfrak p$ belongs to Γ . We have to prove that for every prime $\mathfrak q$ of L over $\mathfrak p$ there exists $Y \in \mathcal T$ such that the orbit of $(R-Y \bmod \mathfrak q)$ via the iterates of [m] is periodic. Since $\mathcal T$ and $G_{\mathfrak q}(k_{\mathfrak q})$ are finite sets, it suffices to show that for infinitely many n the point $(R-Y \bmod \mathfrak q)$ has m^n -th roots in $G_{\mathfrak q}(k_{\mathfrak q})$ for some $Y \in \mathcal T$.

Let n be such that \mathfrak{p} belongs to B_n and fix a prime \mathfrak{w} of K_n over \mathfrak{q} . Let $Y \in \mathcal{T}$ be such that there exists Z in $G'(K_n)$ satisfying the following properties: $m^n Z = R - Y$ and Z is fixed by $\mathrm{Fr}_{\mathfrak{p}}$. Then $(Z \bmod \mathfrak{w})$ is in $G_{\mathfrak{p}}(k_{\mathfrak{p}})$ and $m^n(Z \bmod \mathfrak{w}) = (R - Y \bmod \mathfrak{w})$. It follows that $(R - Y \bmod \mathfrak{q})$ has m^n -th roots in $G_{\mathfrak{q}}(k_{\mathfrak{q}})$.

Fourth step. For every σ in $\operatorname{Gal}(K_n/K)$, call σ_n (respectively $\sigma_{n,\ell}$) the image of σ in the group of automorphisms of $G'[m^{n+a}]$ (respectively $G'[\ell^{n+a}]$). Notice that the determinant of $\sigma_{n,\ell}$ is an element of $\mathbb{Z}/\ell^{n+a}\mathbb{Z}$ and the fact that the determinant is zero is invariant by conjugation. Then the following set of primes of K is well-defined and it has a natural density because of the Cebotarev Density Theorem:

$$A_n = \{ \mathfrak{p} \in B_n : \det(\operatorname{Fr}_{\mathfrak{p},n,\ell} - \operatorname{id}) \} \neq 0 \ \forall \ell \in S \}$$

We now prove that $A_n \subseteq \Gamma$ for every n. It suffices to show that for every n it is $A_n \subseteq A_{n+1}$ since then A_n is contained in B_n for infinitely many n.

Fix \mathfrak{p} in A_n . Since $\det(\operatorname{Fr}_{\mathfrak{p},n,\ell}-\operatorname{id}))\neq 0$ it follows that $\det(\operatorname{Fr}_{\mathfrak{p},n+1,\ell}-\operatorname{id}))\neq 0$. Furthermore, the image of $(\operatorname{Fr}_{\mathfrak{p},n,\ell}-\operatorname{id})$ in $G'[\ell^{n+a}]$ has the same index as the image of $(\operatorname{Fr}_{\mathfrak{p},n+1,\ell}-\operatorname{id})$ in $G'[\ell^{n+a+1}]$. Thus the m-th roots of the image of $(\operatorname{Fr}_{\mathfrak{p},n}-\operatorname{id})$ belong to the image of $(\operatorname{Fr}_{\mathfrak{p},n+1}-\operatorname{id})$.

For every $Y \in \mathcal{T}$, let P_Y be a m^{n+1} -th root of R - Y in G'. Notice that any other m^{n+1} -th root of R - Y in G' differs from P_Y by an element of $G'[m^{n+1}]$. Then $\operatorname{Fr}_{\mathfrak{p}}$ is in H_{n+1} if and only if for some $Y \in \mathcal{T}$ the point $\operatorname{Fr}_{\mathfrak{p}}(P_Y) - P_Y$ is of the form $\operatorname{Fr}_{\mathfrak{p},n+1}(X) - X$ for some X in $G'[m^{n+1}]$. Similarly, because \mathfrak{p} is in H_n , we know that for some Y the point $\operatorname{Fr}_{\mathfrak{p}}(mP_Y) - mP_Y$ is of the form $\operatorname{Fr}_{\mathfrak{p},n}(X) - X$ for some X in $G'[m^n]$. For such Y, the m-th root $\operatorname{Fr}_{\mathfrak{p}}(P_Y) - P_Y$ is of the form $\operatorname{Fr}_{\mathfrak{p},n+1}(X) - X$ for some X in $G'[m^{n+1}]$. Thus $\operatorname{Fr}_{\mathfrak{p}}$ belongs to H_{n+1} . We conclude that \mathfrak{p} belongs to A_{n+1} .

Fifth step. To conclude the proof, we show that the natural density of $B_n \setminus A_n$ goes to zero for n going to infinity. We have:

$$B_n \setminus A_n \subseteq \bigcup_{\ell \in S} \{ \mathfrak{p} : \operatorname{Fr}_{\mathfrak{p}} \in H_n ; \det(\operatorname{Fr}_{\mathfrak{p},n,\ell} - \operatorname{id}) \} = 0 \}$$

Without loss of generality, we fix ℓ in S and show that the following set (which is well-defined and whose natural density exists by the Cebotarev Density Theorem) has density going to zero for n going to infinity:

$$E_n = \{ \mathfrak{p} : \operatorname{Fr}_{\mathfrak{p}} \in H_n ; \det(\operatorname{Fr}_{\mathfrak{p},n,\ell} - \operatorname{id}) \} = 0 \}$$

Because of the Cebotarev Density Theorem, the density of E_n is at most the maximum of

$$\frac{\#\{\sigma \in \operatorname{Gal}(K_n/K) : \sigma_{n,\ell} = g \; ; \; \sigma \in H_n \; ; \; \det(g - \operatorname{id})) = 0\}}{\#\{\sigma \in \operatorname{Gal}(K_n/K) : \sigma_{n,\ell} = g\}}$$

where g varies in the group of the automorphisms of $G'[\ell^{n+a}]$ induced by $Gal(K_n/K)$.

To estimate the above ratio, we may replace H_n with the subset of $Gal(K_n/K)$ fixing some ℓ^{n+a} -th root of m^aR in G'. Then we may replace K_n by the smallest extension of K where the ℓ^{n+a} -th roots of m^aR in G' are defined (since the properties of σ are determined by its restriction to this subfield).

By [4, Theorem 2] (applied to the point $m^a R$ in G') there exists a positive integer c, not depending on n nor on g, such that the denominator is at least $\frac{1}{c} \# (G'[\ell^{n+a}])$.

Now we estimate the numerator. Let Z be an ℓ^{n+a} -th root of $m^a R$ in G'. Any σ such that $\sigma_{n,\ell} = g$ is determined by $\sigma(Z) - Z$. Since $\sigma \in H_n$, $\sigma(Z) - Z$ is in the image of g - id. By the assumptions on g, the cardinality of the image of g - id is at most $\frac{1}{\ell^{n+a}} \# (G'[\ell^{n+a}])$. We deduce that the density of E_n is bounded by $\frac{c}{\ell^{n+a}}$.

Notice that if R is a torsion point then Γ or its complement is a finite set.

Remark 7. In Theorem 6 it is not necessary to require that the point T has order dividing a power of m.

Proof. Write T = T' + T'' where the order of T' divides a power of m and the order of T'' is coprime to m. Then T'' does not influence the condition defining Γ .

Remark 8. In the theorem, if T = 0 we have

$$\Gamma = \{ \mathfrak{p} : \forall \ell \in S \ \operatorname{ord}_{\ell}(R \bmod \mathfrak{p}) = 0 \}$$

Call K_n the smallest extension of K where the m^n -th roots of R are defined. If $G_R = G$, the density of Γ is

$$\lim_{n\to\infty} \frac{\#\{\sigma\in \operatorname{Gal}(K_n/K): \sigma \text{ fixes some } m^n\text{-th root of } R\}}{\#\operatorname{Gal}(K_n/K)}$$

Proof. In the proof of the Theorem 6 (in which a = 0, G' = G), notice that the density of Γ is the limit of the density of B_n .

Corollary 9. Let G be the product of an abelian variety and a torus defined over a number field K. Let R be a point in G(K). Let S be a finite set of rational primes. Let T be a finite $Gal(\bar{K}/K)$ -stable subset of $G(\bar{K})_{tors}$. Let L be a finite Galois extension of K over which the points in T are defined. Then the following set of primes of K has a natural density:

$$\Gamma = \{ \mathfrak{p} : \forall \ell \in S \ \forall \text{ prime } \mathfrak{q} \text{ of } L \text{ over } \mathfrak{p} \text{ } \operatorname{ord}_{\ell}(R - Y \bmod \mathfrak{q}) = 0 \text{ for some } Y \text{ in } \mathcal{T} \}$$

Proof. The set \mathcal{T} is the disjoint union of the $\operatorname{Gal}(\bar{K}/K)$ -orbits of its element. To each orbit we can apply Theorem 6, in view of Remark 7. Then Γ is the disjoint union of finitely many sets admitting a natural density.

Corollary 10. Let K be a number field and let $I = \{1, ..., n\}$. For every $i \in I$ let G_i be the product of an abelian variety and a torus defined over K and let R_i be a point in $G_i(K)$. Let S be a finite set of rational primes. For every $i \in I$, let \mathcal{T}_i be a finite $Gal(\bar{K}/K)$ -stable subset of $G_i(\bar{K})_{tors}$. Let L be a finite $Gal(\bar{K}/K)$ are defined for every i. Then the following set of primes of K has a natural density:

$$\Gamma = \{ \mathfrak{p} : \forall \ell \ \forall i \ \forall \ prime \ \mathfrak{q} \ of \ L \ over \ \mathfrak{p} \ \operatorname{ord}_{\ell}(R_i - Y_i \ \operatorname{mod} \ \mathfrak{q}) = 0 \ for \ some \ Y_i \ in \ \mathcal{T}_i \}$$

Proof. Write $G = \prod G_i$ and $R = (R_1, \dots, R_n)$. Call \mathcal{T} the set of points $T = (T_1, \dots, T_n)$ such that $T_i \in \mathcal{T}_i$ for every $i \in I$. Then it suffices to apply Corollary 9 to R and \mathcal{T} .

Corollary 11. Let K be a number field and let $I = \{1, ..., n\}$. For every $i \in I$ let G_i be the product of an abelian variety and a torus defined over K and let R_i be a point in $G_i(K)$. Let S be a finite set of rational primes. For every $i \in I$ and for every $\ell \in S$, let $a_{\ell i}$ be a non-negative integer. Consider the following set of primes of K:

$$\Gamma = \{ \mathfrak{p} : \forall \ell \in S \ \forall i \in I \ \operatorname{ord}_{\ell}(R_i \bmod \mathfrak{p}) = a_{\ell i} \}$$

The set Γ has a natural density.

Proof. Call m the product of the elements of S. For every i, let \mathcal{T}_i be the set consisting of the points Y_i in $G_i[m^{\infty}](\bar{K})$ satisfying $\operatorname{ord}_{\ell}(Y_i) = a_{\ell i}$ for every $\ell \in S$. Let L be a finite Galois extension of K where the points of \mathcal{T}_i are defined for every i. It suffices to apply Corollary 10 since by Lemma 4, up to excluding finitely many primes \mathfrak{p} , we have

$$\Gamma = \{ \mathfrak{p} : \forall \ell \ \forall i \ \forall \ prime \ \mathfrak{q} \ of \ L \ over \ \mathfrak{p} \ \operatorname{ord}_{\ell}(R_i - Y_i \ \operatorname{mod} \ \mathfrak{q}) = 0 \ for \ some \ Y_i \ in \ \mathcal{T}_i \}$$

4. On the positivity of the density

Theorems 1 and 2 are proven respectively in Theorems 14 and 12.

Theorem 12. Let G be the product of an abelian variety and a torus defined over a number field K. Let R be a point in G(K). Let S be a finite set of rational primes. Call M the product of the elements of M. Let M be a $Gal(\bar{K}/K)$ -stable subset of M is either finite or it has a positive natural density:

$$\Gamma = \{ \mathfrak{p} : \forall \ell \in S \mid \forall \text{ prime } \mathfrak{q} \text{ of } L \text{ over } \mathfrak{p} \text{ ord}_{\ell}(R - Y \text{ mod } \mathfrak{q}) = 0 \text{ for some } Y \text{ in } T \}$$

Let G_R be the smallest K-algebraic subgroup of G containing R. For every ℓ , call $n_{R,\ell}$ the greatest power of ℓ dividing the number of connected components of G_R . Call G_R^j the connected component of G_R containing jR. The set Γ is infinite if and only if the set T contains a point which can be written as the sum for $\ell \in S$ of elements in

$$\bigcup_{j\equiv 1 \pmod{n_{R,\ell}}} G_R^j[\ell^\infty](L)$$

Proof. The existence of the density was proven in Corollary 9. Since the set Γ increases by enlarging \mathcal{T} , we may reduce to the case where \mathcal{T} is the $\operatorname{Gal}(\bar{K}/K)$ -orbit of a point T. By [12, Main Theorem] applied to the point R-T, the set Γ is infinite if and only if n_{R-T} is coprime to m.

Suppose that Γ is infinite. By [12, Theorem 7] applied to the point $n_{R-T}(R-T)$, there exists a positive density of primes \mathfrak{p} of K such that for some prime \mathfrak{q} of L over \mathfrak{p} it is $\operatorname{ord}_{\ell}(R-T \mod \mathfrak{q}) = \operatorname{ord}_{\ell}(n_{R-T}(R-T) \mod \mathfrak{q}) = 0$ for every $\ell \in S$. Hence Γ has a positive density.

Write $T = \sum_{\ell} T_{\ell}$ where T_{ℓ} is in $G[\ell^{\infty}](L)$. Notice that T_{ℓ} is a multiple of T for every $\ell \in S$. If Γ is infinite, there exist infinitely many primes \mathfrak{q} of L such that $\operatorname{ord}_{\ell}(R-T \mod \mathfrak{q}) = 0$. For every $\ell \in S$ the point $(T_{\ell} \mod \mathfrak{q})$ is a multiple of $(R \mod \mathfrak{q})$ hence it belongs to $(G_R \mod \mathfrak{q})$. By applying Lemma 4 to G and G_R , we deduce that T_{ℓ} belongs to G_R for every $\ell \in S$. Then to prove the criterion in the statement we may assume that the point T is such that T_{ℓ} belongs to G_R for every $\ell \in S$.

Notice that n_{R-T} is coprime to ℓ if and only if $n_{R-T_{\ell}}$ is coprime to ℓ . To conclude, we show that $n_{R-T_{\ell}}$ is coprime to ℓ if and only if the point T_{ℓ} belongs to $G_R^j[\ell^{\infty}](L)$ for some $j \equiv 1 \pmod{n_{R,\ell}}$. The last condition is equivalent to saying that $R - T_{\ell}$ belongs to $G_R^j[\ell^{\infty}](L)$ for some $j \equiv 0 \pmod{n_{R,\ell}}$.

Let $R - T_{\ell}$ belong to G_R^j and let X be as in Section 2. Then $G_R^j = G_R^0 + jX$ and the smallest multiple of jX lying in G_R^0 is $[n_R/(n_R,j)]jX$. Since $G_{R-T_{\ell}}^0 = G_R^0$, we deduce that $n_{R-T_{\ell}}$ is coprime to ℓ if and only if $n_R/(n_R,j)$ is coprime to ℓ . This is equivalent to saying that $j \equiv 0 \pmod{n_{R,\ell}}$.

Corollary 13. Let K be a number field, let $I = \{1, ..., n\}$. For every $i \in I$, let G_i be the product of an abelian variety and a torus defined over K and let R_i be a point in $G_i(K)$. Let S be a finite set of rational primes. Call m the product of the elements of S. Let L be a

finite Galois extension of K. For every i, let \mathcal{T}_i be a $\operatorname{Gal}(\bar{K}/K)$ -stable subset of $G_i[m^{\infty}](L)$. Then the following set of primes of K is either finite or it has a positive natural density:

$$\Gamma = \{ \mathfrak{p} : \forall i \ \forall \ell \ \forall \ prime \ \mathfrak{q} \ of \ L \ over \ \mathfrak{p} \ \operatorname{ord}_{\ell}(R_i - Y_i \ \operatorname{mod} \ \mathfrak{q}) = 0 \ for \ some \ Y_i \ in \ \mathcal{T}_i \}$$

Write $G = \prod_{i=1}^n G_i$ and $R = (R_1, \ldots, R_n)$. Let G_R be the smallest K-algebraic subgroup of G containing R. For every ℓ , call $n_{R,\ell}$ the greatest power of ℓ dividing the number of connected components of G_R . Call G_R^j the connected component of G_R containing jR. Let T be the product of the T_i for $i \in I$. The set Γ is infinite if and only if the set T contains a point which can be written as the sum for $\ell \in S$ of elements in

$$\bigcup_{j\equiv 1 \pmod{n_{R,\ell}}} G_R^j[\ell^\infty](L)$$

Proof. Notice that

$$\Gamma = \{ \mathfrak{p} : \forall \ell \in S \ \forall \ prime \ \mathfrak{q} \ of \ L \ over \ \mathfrak{p} \quad \operatorname{ord}_{\ell}(R - Y \ \operatorname{mod} \ \mathfrak{q}) = 0 \ for \ some \ Y \ in \ \mathcal{T} \}$$

Then it suffices to apply Theorem 12.

Theorem 14. Let K be a number field, let $I = \{1, ..., n\}$. For every $i \in I$, let G_i be the product of an abelian variety and a torus defined over K and let R_i be a point in $G_i(K)$. Let S be a finite set of rational primes. For every $i \in I$ and for every $\ell \in S$, let $a_{\ell i}$ be a non-negative integer. Consider the following set of primes of K:

$$\Gamma = \{ \mathfrak{p} : \forall \ell \in S \ \forall i \in I \ \operatorname{ord}_{\ell}(R_i \bmod \mathfrak{p}) = a_{\ell i} \}$$

The set Γ is either finite or it has a positive natural density.

Write $G = \prod_{i=1}^n G_i$ and $R = (R_1, \ldots, R_n)$. Let G_R be the smallest K-algebraic subgroup of G containing R. For every ℓ , call $n_{R,\ell}$ the greatest power of ℓ dividing the number of connected components of G_R . Call G_R^j the connected component of G_R containing jR.

The set Γ is infinite if and only if one of the following equivalent conditions is satisfied:

(i): for every $\ell \in S$ there exists a torsion point $T_{\ell} = (T_{\ell 1}, \dots, T_{\ell n})$ such that $\operatorname{ord}_{\ell}(T_{\ell i}) = a_{\ell i}$ for every $i \in I$ and T_{ℓ} belongs to

$$\bigcup_{j\equiv 1 \pmod{n_{R,\ell}}} G_R^j[\ell^\infty]$$

(ii): for every $\ell \in S$ there exists a torsion point $T_{\ell} = (T_{\ell 1}, \dots, T_{\ell n})$ in $G_R^1(\bar{K})$ such that $\operatorname{ord}_{\ell}(T_{\ell i}) = a_{\ell i}$ for every $i \in I$.

Lemma 15. In Theorem 14, suppose that condition (ii) is satisfied. Then there exists a torsion point $T = (T_1, \ldots, T_n)$ in $G_R^1(\overline{K})$ such that $\operatorname{ord}_{\ell}(T_i) = a_{\ell i}$ for every $i \in I$ and for every $\ell \in S$.

Proof. For every $\ell \in S$, the torsion point $T_{\ell} - X$ belongs to $G_R^0(\bar{K})$. Then we can write $T_{\ell} - X = Z_{\ell} + Z'_{\ell}$, where Z_{ℓ} is a point in $G_R^0[\ell^{\infty}]$ and Z'_{ℓ} is a torsion point in $G_R^0(\bar{K})$ of

order coprime to ℓ . Define $T = \sum_{\ell} Z_{\ell} + X$. The point T is a torsion point in $G_R^1(\bar{K})$. For every $\ell \in S$ and for every $i \in I$ we have:

$$\operatorname{ord}_{\ell}(T_i) = \operatorname{ord}_{\ell}(\sum_{\ell} Z_{\ell i} + X_i) = \operatorname{ord}_{\ell}(Z_{\ell i} + X_i) = \operatorname{ord}_{\ell}(Z_{\ell i} + Z'_{\ell i} + X_i) = \operatorname{ord}_{\ell}(T_{\ell i}) = a_{\ell i}$$

Proof of Theorem 14. The existence of the density for Γ was proven in Corollary 11.

Call m the product of the elements of S. Let L be a finite Galois extension of K where the points in $G_i[\ell^{a_{\ell i}}]$ are defined for every $\ell \in S$ and for every $i \in I$. We may assume (see Lemma 4) that for every prime \mathfrak{q} of L the reduction modulo \mathfrak{q} gives a bijection from $G_i[\ell^{a_{\ell i}}]$ to $(G_i[\ell^{a_{\ell i}}] \mod \mathfrak{q})$, for every $\ell \in S$ and for every $i \in I$.

Let \mathcal{T} be the set consisting of the points $Y=(Y_1,\ldots,Y_n)$ in $G[m^{\infty}]$ such that $\operatorname{ord}_{\ell}(Y_i)=a_{\ell i}$ for every $\ell \in S$ and for every $i \in I$. Notice that \mathcal{T} is contained in $G[m^{\infty}](L)$ and it is $\operatorname{Gal}(\bar{K}/K)$ -stable. A prime \mathfrak{p} of K belongs to Γ if and only if for every prime \mathfrak{q} of L over \mathfrak{p} the following holds: for some $Y \in \mathcal{T}$ $\operatorname{ord}_{\ell}(R-Y \mod \mathfrak{q})=0$ for every $\ell \in S$. Apply Theorem 12 to R and \mathcal{T} . We deduce that the set Γ is infinite if and only if it has a positive density. We also deduce that Γ is infinite if and only if \mathcal{T} contains a point $T=(T_1,\ldots,T_n)$ with the following property: we can write $T=\sum_{\ell}T_{\ell}$ where for every $\ell \in S$ the point T_{ℓ} is in $G_R^j[\ell^{\infty}](L)$ for some $j\equiv 1\pmod{n_{R,\ell}}$. Notice that \mathcal{T} contains such an element if and only if condition (i) is satisfied.

Suppose again that Γ is infinite. We show that condition (ii) is satisfied. Without loss of generality, fix $\ell \in S$. Because of condition (i) there exists $T_{\ell} = (T_{\ell 1}, \dots, T_{\ell n})$ such that $\operatorname{ord}_{\ell}(T_{\ell i}) = a_{\ell i}$ for every $i \in I$ in $G_R^j[\ell^{\infty}](L)$ for some $j \equiv 1 \pmod{n_{R,\ell}}$. Let X be as in section 2 and notice that the order of (j-1)X is coprime to ℓ . Since $G_R^j(\bar{K}) = G_R^1(\bar{K}) + (j-1)X$ we deduce that $T_{\ell} - (j-1)X$ is in $G_R^1(\bar{K})$ and satisfies the properties of condition (ii).

Viceversa, suppose that condition (ii) is satisfied. By Lemma 15, there exists a torsion point $T = (T_1, \ldots, T_n)$ in $G_R^1(\bar{K})$ such that $\operatorname{ord}_{\ell}(T_i) = a_{\ell i}$ for every $i \in I$ and for every $\ell \in S$. In particular, the point R - T belongs to $G_R^0(\bar{K})$. Furthermore, $G_{R-T}^0 = G_R^0$ since R and R - T have a common multiple. We deduce that G_{R-T} is connected.

Let F be a finite Galois extension of K where T is defined. By applying [12, Theorem 7] to the point R-T, we find infinitely many primes \mathfrak{p} of K such that for some prime \mathfrak{w} of F over \mathfrak{p} it is $\operatorname{ord}_{\ell}(R-T \mod \mathfrak{w})=0$ for every $\ell \in S$.

Up to excluding finitely many primes \mathfrak{p} , we may assume that the order of $(T_i \mod \mathfrak{w})$ equals the order of T_i for every $i \in I$.

Then such primes \mathfrak{p} belong to Γ since for every $\ell \in S$ and for every $i \in I$ it is

$$\operatorname{ord}_{\ell}(R_i \bmod \mathfrak{p}) = \operatorname{ord}_{\ell}(R_i \bmod \mathfrak{w}) = \operatorname{ord}_{\ell}(T_i \bmod \mathfrak{w}) = \operatorname{ord}_{\ell}(T_i \bmod \mathfrak{w})$$

Suppose that in Theorem 14 every G_i and every R_i is non-zero. Then the condition $G_R = G$ implies that for every choice of the parameters $a_{\ell i}$ the set Γ is infinite. The condition $G_R = G$ is equivalent to saying that R generates a free End_K G-submodule of

G(K), see [12, Remark 6]. The following example shows that the set Γ may be infinite for every choice of the parameters even if $G_R \neq G$.

Example 16. Let E be an elliptic curve over \mathbb{Q} without complex multiplication and such that $E(\mathbb{Q})$ contains three points P_1 , P_2 and P_3 which are \mathbb{Z} -linearly independent. For example consider the curve [0,0,1,-7,6] of [6]. Let $I=\{1,2\}$ and let $S=\{\ell\}$. Let $G_1=G_2=E^2$. Consider the points $R_1=(P_1,P_3)$ and $R_2=(P_2,P_3)$. Let a_1 and a_2 be non-negative integers. There exist infinitely many primes \mathfrak{p} such that $\operatorname{ord}_{\ell}(R_i \mod \mathfrak{p})=a_i$ for i=1,2. Indeed, the point (P_1,P_2,P_3) is independent in E^3 so we can apply $[12,P_3]$ proposition [12]. Thus we find infinitely many \mathfrak{p} such that $\operatorname{ord}_{\ell}(P_i \mod \mathfrak{p})=a_i$ for i=1,2 and $\operatorname{ord}_{\ell}(P_3 \mod \mathfrak{p})=0$.

Remark 17. Suppose that the number of connected components of G_R is coprime to ℓ . Then in condition (ii) of Theorem 14 it suffices to require that T_{ℓ} is in G_R and not necessarily in G_R^1 . In general, it suffices to require that T_{ℓ} is in G_R^b for some b coprime to ℓ .

Proof. Let X be as in section 2. If the number of connected components of G_R is coprime to ℓ then the order of X is coprime to ℓ . Then by summing to T_ℓ a multiple of X we may assume that T_ℓ is in G_R^1 . For the second assertion, notice that $G_R^b = G_{bR}^1$. So by applying Theorem 14 to the point bR we find infinitely many primes \mathfrak{p} of K such that for every $i \in I$ and for every $\ell \in S$ it is

$$\operatorname{ord}_{\ell}(R_i \bmod \mathfrak{p}) = \operatorname{ord}_{\ell}(bR_i \bmod \mathfrak{p}) = a_{\ell i}$$

We deduce that the set Γ is infinite.

Remark 18. With the notations of Theorem 14, for every $\ell \in S$ define the following set:

$$\Gamma_{\ell} = \{ \mathfrak{p} \in K : \forall i \in I \text{ ord}_{\ell}(R_i \mod \mathfrak{p}) = a_{\ell i} \}$$

We have $\Gamma = \cap_{\ell} \Gamma_{\ell}$ and Γ is an infinite set if and only if Γ_{ℓ} is an infinite set for every $\ell \in S$.

Proof. In Theorem 14, condition (ii) is a collection of conditions for every $\ell \in S$.

For one point of infinite order we have:

Corollary 19. Let G be the product of an abelian variety and a torus defined over a number field K. Let R be a point in G(K) of infinite order. Let S be a finite set of rational primes. For every $\ell \in S$ let a_{ℓ} be a non-negative integer. Consider the following set of primes of K:

$$\Gamma = \{ \mathfrak{p} : \forall \ell \in S \ \operatorname{ord}_{\ell}(R \bmod \mathfrak{p}) = a_{\ell} \}$$

The set Γ is either finite or it has a positive natural density. Let G_R be the smallest K-algebraic subgroup of G containing R and call n_R the number of connected components of G_R . Then Γ is infinite if and only if for every ℓ in S it is $a_\ell \geq v_\ell(n_R)$. Furthermore, n_R is the greatest positive integer dividing the order of $(R \mod \mathfrak{p})$ for all but finitely many primes \mathfrak{p} of K.

Proof. The assertions are consequences of [12, Main Theorem] and Corollary 11.

Notice that $G_R^1(\bar{K})$ contains a torsion point of order n if and only if n is a multiple of n_R . This follows from the fact that $G_R^1(\bar{K}) = X + G_R^0(\bar{K})$, where X is as in Section 2.

ACKNOWLEDGEMENTS

I thank Rafe Jones and Jeremy Rouse for helpful discussions. I thank Peter Jossen, Emmanuel Kowalski and Dino Lorenzini for useful comments.

References

- [1] G. Banaszak, W. Gajda, and P. Krasoń, Detecting linear dependence by reduction maps, J. Number Theory 115 (2005), no. 2, 322–342.
- [2] G. Banaszak and P. Krasoń, On arithmetic in Mordell-Weil groups, arXiv:0904.2848.
- [3] S. Barańczuk, On reduction maps and support problem in K-theory and abelian varieties, J. Number Theory 119 (2006), no. 1, 1–17.
- [4] D. Bertrand, Galois Representations and Transcendental Numbers, New Advances in Trascendence Theory (Durham, 1986), 37–55, Cambridge Univ. Press, Cambridge, 1988.
- [5] J. Cheon and S. Hahn, The Orders of the Reductions of a Point in the Mordell-Weil Group of an Elliptic Curve, Acta Arith. 88 (1999), no. 3, 219–222.
- [6] J. Cremona, Elliptic Curve Data, http://www.warwick.ac.uk/staff/J.E.Cremona/
- [7] W. Gajda and K. Górnisiewicz, Linear dependence in Mordell-Weil groups, J. Reine Angew. Math. 630 (2009), 219–233.
- [8] M. Hindry and J. H. Silverman, Diophantine Geometry. An Introduction, Graduate Texts in Mathematics 201, Springer Verlag, New York, 2000.
- [9] R. Jones and J. Rouse, Iterated Endomorphisms of Abelian Algebraic Groups, arXiv:0706.2384.
- [10] C. Khare and D. Prasad, Reduction of homomorphisms mod p and algebraicity, J. Number Theory, 105 (2004), no. 2, 322–332.
- [11] E. Kowalski, Some local-global applications of Kummer theory, Manuscripta Math. 111 (2003), no. 1, 105–139.
- [12] A. Perucca, Prescribing valuations of the order of a point in the reductions of abelian varieties and tori, J. Number Theory 129 (2009), no. 2, 469–476.
- [13] A. Perucca, Two variants of the support problem for products of abelian varieties and tori, J. Number Theory 129 (2009), no. 8, 1883–1892.
- [14] R. Pink, On the order of the reduction of a point on an abelian variety, Math. Ann. 330 (2004), no. 2, 275–291.
- [15] E. Rütsche, Über das Reduktionsverhalten von Punkten auf abelschen Varietäten, Master thesis at ETH Zürich, March 2004, http://www.math.ethz.ch/~pink/Theses/Master.html
- [16] A. Schinzel, Primitive divisors of the expression Aⁿ Bⁿ in algebraic number fields, J. Reine Angew. Math. 268/269 (1974), 27–33.

Antonella Perucca EPFL Station 8, CH-1015, Lausanne, Switzerland antonella.perucca@epfl.ch