Задание

Используя приложенный файл данных, выполните следующие задания:

- Оцените, какие признаки вносят значимый вклад в разделение рубрик на геозависимые и геонезависимые, и оставьте для включения в модель только те, которые значимо дифференцируют рубрики.
- Выберите две модельи наиболее, на Ваш взгляд, подходящие для решения задачи классификации рубрик. Кратко (1-2 абзаца) обоснуйте свой выбор.
- Постройте первую из двух выбранных моделей, кратко охарактеризуйте вклад отдельных признаков в "судьбу" рубрики: что "способствует" геозависимости, а что, напротив, освобождает рубрику от территориальной привязки?
- Постройте вторую модель, сравните результат, полученный на разных моделях.
- Коротко (на 1-2 абзаца) объясните различия в результате, если таковые будут выявлены.
- Постройте прогноз для нескольких (2-3) рубрик: в какой класс они попадут и с какой вероятностью?

Данные

Посмотрим на данные, построим графики, оценим признаки

```
In [79]:
```

```
import pandas as pd
data = pd.read_csv("Data_Projects.csv", sep=';', decimal=',')
```

```
In [80]:
```

data

Out[80]:

	AddressCount	CallsCount	ClicksCount	FirmsCount	GeoPart	MobilePart	UsersCount	
0	156	20	1903	176	0.416104	0.535762	1125	7
1	17	37	258	20	0.211679	0.430657	157	22
2	78	56	1956	185	0.349475	0.476594	1195	14
3	14	70	378	19	0.318718	0.463744	206	33
4	111	90	4089	90	0.556175	0.490573	2934	15
74	2535	12436	44597	113	0.364710	0.388519	11172	19
75	1103	12805	33388	411	0.415795	0.549773	13911	26
76	3132	20609	75303	409	0.308071	0.470916	23982	22
77	5740	47912	167155	1457	0.427646	0.595409	61127	9
78	6037	48497	149920	1157	0.431926	0.524850	58351	9

79 rows × 9 columns

In [81]:

data.corr()

Out[81]:

	AddressCount	CallsCount	ClicksCount	FirmsCount	GeoPart	MobilePart	Use
AddressCount	1.000000	0.618009	0.911155	0.670168	0.201072	0.412753	(
CallsCount	0.618009	1.000000	0.838606	0.470456	0.148431	0.241862	(
ClicksCount	0.911155	0.838606	1.000000	0.714979	0.243448	0.416174	(
FirmsCount	0.670168	0.470456	0.714979	1.000000	0.403079	0.311372	(
GeoPart	0.201072	0.148431	0.243448	0.403079	1.000000	0.306338	(
MobilePart	0.412753	0.241862	0.416174	0.311372	0.306338	1.000000	(
UsersCount	0.933225	0.722171	0.974676	0.747713	0.256766	0.479752	
Distance	-0.359379	-0.240452	-0.360231	-0.478833	-0.567236	-0.520953	-(
IsGeo	0.323899	0.086014	0.308041	0.376945	0.434534	0.538959	(
4							•

```
In [82]:
```

```
y = data['IsGeo']
X = data.drop(['IsGeo'], axis='columns')
```

In [83]:

```
import matplotlib.pyplot as plt
_, axis = plt.subplots(ncols=8, figsize=(12, 4))
axis[0].boxplot(data['AddressCount'])
axis[1].boxplot(data['CallsCount'])
axis[2].boxplot(data['ClicksCount'])
axis[3].boxplot(data['FirmsCount'])
axis[4].boxplot(data['GeoPart'])
axis[5].boxplot(data['MobilePart'])
axis[6].boxplot(data['UsersCount'])
axis[7].boxplot(data['Distance'])
```

Out[83]:

In [84]:

```
import matplotlib.pyplot as plt
_, axis = plt.subplots(ncols=8, figsize=(16, 4))
axis[0].hist(data['AddressCount'])
axis[1].hist(data['CallsCount'])
axis[2].hist(data['ClicksCount'])
axis[3].hist(data['FirmsCount'])
axis[4].hist(data['GeoPart'])
axis[5].hist(data['MobilePart'])
axis[6].hist(data['UsersCount'])
axis[7].hist(data['Distance'])
```

Out[84]:

In [117]:

```
X = X[X['FirmsCount'] < 2000]
data = data[data['FirmsCount'] < 2000]
y = data['IsGeo']</pre>
```

In [86]:

X.corr()

Out[86]:

	AddressCount	CallsCount	ClicksCount	FirmsCount	GeoPart	MobilePart	Use
AddressCount	1.000000	0.621184	0.911533	0.811500	0.194179	0.412330	
CallsCount	0.621184	1.000000	0.846491	0.626577	0.160266	0.242780	(
ClicksCount	0.911533	0.846491	1.000000	0.837546	0.228674	0.416226	(
FirmsCount	0.811500	0.626577	0.837546	1.000000	0.346878	0.380148	(
GeoPart	0.194179	0.160266	0.228674	0.346878	1.000000	0.309554	(
MobilePart	0.412330	0.242780	0.416226	0.380148	0.309554	1.000000	(
UsersCount	0.937297	0.736553	0.975849	0.841365	0.231311	0.482357	
Distance	-0.355807	-0.248272	-0.351528	-0.500639	-0.554618	-0.523602	-(
4							•

PCA

Поскольку большая часть признаков скоррелирована, то отделение эффекта каждого фактора затруднительно + не подходит для наивного байеса. Оценим применимость факторного анализа, при положительном результате применим РСА.

Исходя из матрицы корреляции уже можно сделать вывод о том, что ФА/РСА применимы, но проверим критериями КМО и Бартлетта:

In [87]:

Out[91]:

!pip install factor-analyzer

```
Requirement already satisfied: factor-analyzer in c:\users\alexey\anaconda3
\lib\site-packages (0.3.2)
Requirement already satisfied: scikit-learn in c:\users\alexey\anaconda3\lib
\site-packages (from factor-analyzer) (0.23.2)
Requirement already satisfied: scipy in c:\users\alexey\anaconda3\lib\site-p
ackages (from factor-analyzer) (1.4.1)
Requirement already satisfied: pandas in c:\users\alexey\anaconda3\lib\site-
packages (from factor-analyzer) (1.0.1)
Requirement already satisfied: numpy in c:\users\alexey\anaconda3\lib\site-p
ackages (from factor-analyzer) (1.18.1)
Requirement already satisfied: joblib>=0.11 in c:\users\alexey\anaconda3\lib
\site-packages (from scikit-learn->factor-analyzer) (0.14.1)
Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\alexey\anaco
nda3\lib\site-packages (from scikit-learn->factor-analyzer) (2.1.0)
Requirement already satisfied: python-dateutil>=2.6.1 in c:\users\alexey\ana
conda3\lib\site-packages (from pandas->factor-analyzer) (2.8.1)
Requirement already satisfied: pytz>=2017.2 in c:\users\alexey\anaconda3\lib
\site-packages (from pandas->factor-analyzer) (2019.3)
Requirement already satisfied: six>=1.5 in c:\users\alexey\anaconda3\lib\sit
e-packages (from python-dateutil>=2.6.1->pandas->factor-analyzer) (1.14.0)
In [88]:
import factor analyzer
from factor analyzer import FactorAnalyzer
In [89]:
  p_value_bartlet = factor_analyzer.factor_analyzer.calculate_bartlett_sphericity(X)
In [90]:
  p_value_kmo = factor_analyzer.factor_analyzer.calculate_kmo(X)
In [91]:
p value bartlet, p value kmo
```

(8.824928170727435e-143, 0.7403915463256981)

Как мы видим H0 о диагональности корреляционной матрицы отвергается, статистика критерия KMO > 0.7 => ФА применим.

В нашем случае основной целью будет сокращение к-ва фич, а не их классификация, поэтому применим РСА.

Для оценки к-ва значимых компонент используем метод Кайзера.

```
In [106]:
```

```
from sklearn.preprocessing import StandardScaler
```

In [107]:

```
X_norm = StandardScaler().fit_transform(X)
```

In [108]:

```
from sklearn.decomposition import PCA
```

In [109]:

```
X_ = pd.DataFrame(X_norm)
(X_.cov() > X_.cov().to_numpy().trace() /X_.cov().shape[0]).to_numpy().trace().sum()
```

Out[109]:

3

In [110]:

```
pca = PCA(n_components=3, svd_solver='full')
```

In [111]:

```
pca.fit(X_norm)
```

Out[111]:

PCA(n_components=3, svd_solver='full')

In [112]:

```
pca.explained_variance_ratio_.sum()
```

Out[112]:

0.871443046265559

In [133]:

```
pca_x = pca.transform(X_norm)
```

In []:

Модели

Поскольку:

- У нас мало примеров
- У нас вследствие РСА выполняется предположение о некоррелированность признаков

Возьмем в качестве моделей Лин.регрессию и Байесовский классификатор.

```
In [118]:
```

```
from sklearn.model_selection import train_test_split
```

```
In [127]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.2, stratify=y)
```

In [128]:

```
from collections import Counter
```

```
In [131]:
```

```
Counter(y_test)
```

Out[131]:

Counter({1: 6, 0: 10})

Отобразим разбиение на графике по первым 2 фичам:

In [151]:

```
_, axis = plt.subplots(ncols=3, figsize=(12, 4))
axis[0].scatter(pca_x[:, 0], pca_x[:, 1], c=y)
axis[1].scatter(pca_x[:, 1], pca_x[:, 2], c=y)
axis[2].scatter(pca_x[:, 0], pca_x[:, 2], c=y)
```

Out[151]:

<matplotlib.collections.PathCollection at 0x23052ae93c8>

Как мы видим, наши данные +- линейно разделимы, так что лин.регрессия будет неплоха

In [153]:

```
from sklearn.linear_model import LinearRegression
```

In [158]:

```
linr = LinearRegression()
```

In [159]:

```
linr.fit(X_train, y_train)
```

Out[159]:

LinearRegression()

In [160]:

```
linr.score(X_test, y_test)
```

Out[160]:

0.3849070638677923

In [162]:

```
preds = linr.predict(X_test)
```

```
In [165]:
(preds > 0.5).astype(int)
Out[165]:
array([1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0])
In [167]:
from sklearn.metrics import accuracy_score
In [169]:
accuracy_score((preds > 0.5).astype(int), y_test)
Out[169]:
0.75
Вышло качество не очень, проверим на SVC нет ли ошибки при использовании LR:
In [172]:
from sklearn.svm import SVC
svc = SVC()
In [173]:
svc.fit(X_train, y_train)
Out[173]:
SVC()
In [177]:
preds_ = svc.predict(X_test)
In [178]:
accuracy_score(preds_, y_test)
Out[178]:
0.6875
In [179]:
preds_
Out[179]:
array([1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0], dtype=int64)
```

Вышло качество еще хуже => сама модель ЛР нормальная, просто данные сложнолинейно разделимы

Bayes:

```
In [182]:
from sklearn.naive_bayes import GaussianNB
In [183]:
nbm = GaussianNB()
In [184]:
nbm.fit(X_train, y_train)
Out[184]:
GaussianNB()
In [185]:
preds_b = nbm.predict(X_test)
In [186]:
preds_b
Out[186]:
array([1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], dtype=int64)
In [187]:
accuracy_score(preds_b, y_test)
Out[187]:
0.75
Качество вышло как и у линейной регрессии. Для лучшего качества нужно больше примеров.
Попробуем еще дерево решений, оно выдает лучший результат.
In [188]:
from sklearn.tree import DecisionTreeClassifier
In [189]:
dtc = DecisionTreeClassifier()
```

```
In [190]:
dtc.fit(X_train, y_train)

Out[190]:
DecisionTreeClassifier()

In [193]:
preds__ = dtc.predict(X_test)

In [194]:
accuracy_score(preds__, y_test)

Out[194]:
0.8125
```

Таким образом, приведено сравнение нескольких простых классификаторов. Наилучший результат показало дерево решений. Можно предположить, что ансамбль деревьев выдаст лучший результат, но нужно больше данных.

Исходные признаки сильно скоррелированы и применение PCA помогает сократить количество переменных и сделать возможным применение NBC.