2 Ringe

2.1 Euklidische Ringe

Definition 2.1 (a) Ein Integritätsbereich R heißt **euklidisch**, wenn es eine Abbildung: $\delta: R \setminus \{0\} \to \mathbb{N}$ mit folgender Eigenschaft gibt: zu $f, g \in R, g \neq 0$ gibt es $q, r \in R$ mit f = qg + r mit r = 0 oder $\delta(r) < \delta(q)$.

- (b) Sei R euklidisch, $a, b \in R \setminus \{0\}$. Dann gilt:
 - (i) in R gibt es einen ggT von a und b.
 - (ii) $d \in (a, b)$ (dh $\exists x, y \in R$ mit d = xa + yb)
 - (iii) (d) = (a, b)
- (c) Jeder euklidische Ring ist ein Hauptidealring.

Beispiel: \mathbb{Z} mit $\delta(a) = |a|$, K[X] mit $\delta(f) = \operatorname{Grad}(f)$

2.2 Hauptidealringe

Definition 2.2

Ein komutativer Ring mit Eins heißt Hauptidealring, wenn jedes Ideal in R ein Hauptideal ist

Satz 4

Jeder nullteilerfreie Hauptidealring ist faktoriell.

Satz 5

Es sei R ein Hauptidealring $p \in R$ eine von 0 verschiedene Nichteinheit. Dann ist äquivalent:

- (i) p ist irreduzibel
- (ii) p ist Primelement
- (iii) (p) ist maximales Ideal in R

2.3 Faktorielle Ringe

Proposition + Definition 2.3

Sei R ein Integritätsbereich.

- (a) Folgende Eigenschaften sind äquivalent:
 - (i) Jedes $x \in R \setminus \{0\}$ läßt sich eindeutig als Produkt von Primelementen schreiben.
 - (ii) Jedes $x \in R \setminus \{0\}$ läßt sich "irgendwie" als Produkt von Primelementen schreiben
 - (iii) Jedes $x \in R \setminus \{0\}$ läßt sich eindeutig als Produkt von irreduziblen Elementen schreiben.
- (b) Sind diese drei Eigenschaften für R erfüllt, so heißt R faktorieller Ring. (Oder **ZPE-Ring** (engl.: UFD)). Dabei ist in (a) "eindeutig" gemeint, bis auf Reihenfolge und Multiplikation mit Einheiten. Präziser: Sei \mathcal{P} ein Vertretersystem der Primelemnte $(\neq 0)$ bezüglich "assoziiert".

Dann heißt (i) $\forall x \in R \setminus \{0\} \exists ! \ e \in R^x$ und für jedes $p \in \mathcal{P}$ ein $\nu_p(x) \geq 0 : x = e \prod_{p \in \mathcal{P}} p^{\nu_p}$. (beachte $\nu_p \neq 0$ nur für endlich viele p).

Bemerkung 2.4

Ist R faktorieller Ring, so gibt es zu allen $a, b \in R \setminus \{0\}$ einen ggT(a,b).

Bemerkung 2.5

Sei R ein faktoriellen Ring, $a \in R$.

a irreduzibel $\Leftrightarrow a$ prim

2.4 Vererbung auf den Polynomring

Bemerkung 2.6

Sei R ein Ring und R[X] der zugehörige Polynomring, dann vererben sich folgende Eigenschaften von R auf R[X]:

- 1. hat Eins
- 2. kommutativ
- 3. Integritätsbereich
- 4. faktoriell