<u>Práctica 3</u>. LEY DE OHM. RESISTENCIA INTERNA DE UN GENERADOR.

Nombre: Jordi Apellidos: Blasco Lozano Grupo: 4 Fecha: 16/05/2024

2. Objetivo de la práctica

Verificar la ley de Ohm y determinar la resistencia interna de un generador.

3. Fundamento teórico

Cuando entre los extremos de un conductor lineal se aplica una diferencia de potencial V, a través de éste circula una corriente eléctrica de intensidad I, de modo que estas magnitudes están relacionadas mediante la ley de Ohm:

$$V = IR (Ec.1)$$

siendo R la resistencia eléctrica, la cual depende de la temperatura, de la geometría del conductor y de una magnitud característica del material, denominada resistividad ρ . Idealmente, se puede verificar la ley de Ohm mediante un circuito eléctrico sencillo formado por un generador y una resistencia, tal y como el que se muestra en la Figura 1.

Figura 1. Circuito de un generador ideal.

Un generador se caracteriza por su fuerza electromotriz (f.e.m.) ε , que tiene dimensiones de potencial eléctrico y se mide en voltios (V). En un generador ideal, la diferencia de potencial V, que tiene entre sus bornes, es igual a la f.e.m. ε , y es independiente de la intensidad que circula por el circuito. La ley de Ohm para el circuito de la Figura 1 relaciona la intensidad I y la diferencia de potencial ε mediante:

$$\varepsilon = IR$$
 (Ec.2)

Un generador real no es perfecto y tiene pérdidas de energía debido a su resistencia interna ri. Esto hace que la diferencia de potencial V que puede suministrar sea menor que la fuerza electromotriz (f.e.m.) ϵ del generador ideal. En un circuito, esta resistencia interna causa que parte de la energía se consuma dentro del propio generador, y por lo tanto, lo que se mide realmente es V, no ϵ .

Figura 2. Circuito de un generador real.

La ley de Ohm para el circuito de la Figura 2 relaciona la intensidad I y la diferencia de potencial ε mediante:

$$\varepsilon = I(R + ri) \tag{Ec.3}$$

Teniendo en cuenta la Ec.1:

$$V = \varepsilon - Iri \tag{Ec.4}$$

La Ec.4 muestra que la tensión que suministra la pila es inferior a la f.e.m., tanto menor cuanto mayor sea la corriente que circula por el circuito. Esta disminución es debida a la resistencia interna del generador. Sólo si el circuito está abierto (I = 0) se cumple que $V = \varepsilon$.

4. Instrumentación y montaje experimental

Generador de corriente continua de unos 5 V, resistencias de 100, 150, 330, 680, 1000, 1500, 2200, 2700 y 3300 Ω , dos polímetros, placa de conexiones y cables.

5. Procedimiento

- Medir la diferencia de potencial V en circuito abierto para obtener la f.e.m. ε del generador. Calcular el error absoluto de las coordenadas obtenidas.
- Medir V y la corriente I para distintas resistencias R. La gráfica de V frente a I será lineal, con la pendiente igual a ri y la ordenada en el origen igual a ε.
- Con ri conocida, verificar la ley de Ohm graficando I frente a (R+ri)-1, esperando una línea recta con pendiente ε.

6. Datos

a) Medida de la diferencia de potencial V en circuito abierto.

$$V = 5.20 \pm 0.01 \text{ V}$$

b) Elaborar una tabla en la que aparezcan los valores medidos para las resistencias R, las intensidades I y las diferencias de potencial V.

R nominal (Ω)	$R \pm E_R(\Omega)$	I ± E₁(Unidades)	$V \pm E_V$ (Unidades)
100	99,8 ± 0,1	$50,1 \pm 0,1$	4,91 ± 0,01
150	148,5 ± 0,1	$33,9 \pm 0,1$	5 ± 0,01
330	324 ± 1	15,5 ± 0,1	5,1 ± 0,01
680	671 ± 1	7,5 ± 0,1	5,14 ± 0,01
1000	982 ± 1	5 ± 0,1	5,16 ± 0,01
1500	1487 ± 1	33 ± 0,1	5,17 ± 0,01
2200	2140 ± 10	2,2 ± 0,1	5,17 ± 0,01
2700	2630 ± 10	1,7 ± 0,1	5,17 ± 0,01
3300	3210 ± 10	1,4 ± 0,1	5,18 ± 0,01

7. Graficos

a)

Graficos

Mediante python y las librerias matplotlib y numpy creamos un data set con todos los datos y realizamos una grafica de plots con el ajuste lineal correspondiente

b)

$$r_i = rac{\Delta V}{\Delta I} = rac{5.18 - 4.91}{0.14 - 5.01} = 0.055\,\Omega$$

$$\varepsilon = V + r_i I = 5.18 + (0.055)(0.14) = 5.1877 V$$

$$|M| = r_i = 0.055 \pm 0.001 \, \Omega$$
 $n = \varepsilon = 5.1877 \pm 0.01 \, V$

c)

R±E _R (Ω)	$(R+ri)^{-1}\pm E(R+ri)^{-1}_{(R+ri)}$ $)\cdot\pm E_{(R+ri)-1}(\mu\Omega^{-1})$	I±E₁±E₁ (mA)
99.8 ± 0.1	9950 ± 10	501 ± 0.1
148.5 ± 0.1	6710 ± 10	339 ± 0.1
324 ± 1	3080 ± 10	155 ± 0.1
671 ± 1	1490 ± 10	75 ± 0.1
982 ± 1	1020 ± 10	50 ± 0.1
1487 ± 1	670 ± 10	33 ± 0.1
2140 ± 10	470 ± 10	22 ± 0.1
2630 ± 10	380 ± 10	17 ± 0.1
3210 ± 10	310 ± 10	14 ± 0.1

d)

 $(R+r_i)^{-1}\;(\Omega^{-1})$

8. Calculos

Realizamos las derivadas parciales según la formula

$$E_f = \left|rac{\partial f}{\partial R}
ight|E_R + \left|rac{\partial f}{\partial r_i}
ight|E_{r_i} \qquad \qquad E_f = \left|-rac{1}{(R+r_i)^2}
ight|E_R + \left|-rac{1}{(R+r_i)^2}
ight|E_{r_i}$$

Luego sustituimos por los datos

$$E_f = rac{1}{(324.5)^2} imes 1 pprox rac{1}{105260.25} pprox 9.5 imes 10^{-6} \, \Omega^{-1}$$

9. Resultados y respuestas

a)

Cuestión	Resultado
f.e.m ε (apartado 7b)	$5.1877\pm0.01V$
Resistencia interna <i>ri</i> del generador (apartado 7b)	$0.055\pm0.001\Omega$

b)

Cuando R es grande V ronda los 5,17, es decir el limite de V cuando R tiende a infinito está acotado entre 5,17 y 5,19

C)

La medida del circuito abierto de V es practicamente la misma a $\mathcal E$ del apartado 7b

Conclusión

En esta práctica se verificó la ley de Ohm y se determinó la resistencia interna de un generador. Los resultados mostraron una relación lineal entre la diferencia de potencial y la corriente, confirmando la teoría. Los valores de la resistencia interna y la f.e.m. obtenidos mediante ajustes por mínimos cuadrados fueron consistentes y coincidieron con las medidas en circuito abierto. La práctica demostró cómo las pérdidas internas afectan la tensión suministrada, validando la aplicación de conceptos teóricos a circuitos eléctricos reales.