Intuitionistic Logic

K. Kogkalidis

Logic & Language 2020

Intuitionism

L. E. J. Brouwer

Main Tenets

- Mathematical truth is subjective rather than fundamental
- Proof is a process of construction rather than discovery
- A mathematical object exists if it can be constructed

Intuitionistic Logic

A different formal model to capture the notion of Intuitionistic Truth, which is stricter than Classical Truth

Arend Heyting

Intuitionistic Logic vs Classical Logic

CL:

- ▶ Propositions are either true or false
 - Law of exluded middle: $\top \rightarrow (A \lor \neg A)$
- ► Negation is Falsity

Double Negation Elimination:
$$\neg(\neg A) \rightarrow A$$

IL:

- Propositions are proven (true) or unproven (anything)
- Negation is refutability

Consequence

IL is a weaker logic, disallowing proof by contradiction

Basic Definitions: Proposition

Propositions

Let $\mathcal C$ a set of *propositional constants*. The *propositions* (formulas) $\mathcal P$ of IL are:

$$\mathcal{P} := \mathcal{C} \mid \mathcal{P}_1 \rightarrow \mathcal{P}_2 \mid \mathcal{P}_1 \times \mathcal{P}_2 \mid \mathcal{P}_1 + \mathcal{P}_2$$

where:

- \rightarrow is read as "implies"
- × is read as "and"
- + is read as "or"

We will denote propositional constants by A, B, C, \dots

Basic Definitions: Assumption & Judgement

Assumptions

An assumption (context) ${\mathcal A}$ is a sequence of zero or more propositions:

$$\mathcal{A} := () \ | \ \mathcal{A}, \mathcal{P}$$

We will denote assumptions by $\Gamma, \Delta, \Theta, \dots$

Judgement

A judgement \mathcal{J} is a statement $\mathcal{A} \vdash \mathcal{P}$

Read as "from assumptions \mathcal{A} , one can conclude proposition \mathcal{P} "

Basic Definitions: Rule

Rule

A *rule* is a statement consisting of zero or more premises $\mathcal{J}_1, \ldots \mathcal{J}_n$ and a conclusion \mathcal{J}_c :

$$\frac{\mathcal{J}_1 \quad \dots \quad \mathcal{J}_n}{\mathcal{J}_c}$$

If every \mathcal{J}_i is derivable (has a proof), we can derive \mathcal{J}_c

Axiom Rule

From any formula A, one can conclude itself:

$$\overline{A \vdash A} \ Ax$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \to I \quad \frac{\Gamma \vdash A \to B \quad \Delta \vdash A}{\Gamma, \Delta \vdash B} \to E$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \to I \quad \frac{\Gamma \vdash A \to B \quad \Delta \vdash A}{\Gamma, \Delta \vdash B} \to E$$

$$\frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \times B} \times I \quad \frac{\Gamma \vdash A \times B \quad \Delta, A, B \vdash C}{\Gamma, \Delta \vdash C} \times E$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \to I \quad \frac{\Gamma \vdash A \to B \quad \Delta \vdash A}{\Gamma, \Delta \vdash B} \to E$$

$$\frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \times B} \times I \quad \frac{\Gamma \vdash A \times B \quad \Delta, A, B \vdash C}{\Gamma, \Delta \vdash C} \times E$$

$$\frac{\Gamma \vdash A + B \quad \Delta, A \vdash C \quad \Delta, B \vdash C}{\Gamma, \Delta \vdash C} + E$$

$$\frac{\Gamma \vdash A}{\Gamma \vdash A + B} + I_1 \frac{\Gamma \vdash B}{\Gamma \vdash A + B} + I_2$$

Structural Rules

The , of IL assumptions is commutative:

$$\frac{\Delta,\Gamma\vdash A}{\Gamma,\Delta\vdash A}$$
 Exchange

IL propositions are free to discard and replicate:

$$\frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B}$$
 Contraction
$$\frac{\Gamma \vdash B}{\Gamma, A \vdash B}$$
 Weakening

Example: Identity Function

Example: Identity Function

$$\frac{\overline{A \vdash A} \ Ax}{\vdash A \to A} \to I$$

$$A \times B \vdash B \times A$$

$$\frac{\overline{A \times B \vdash A \times B}}{A \times B \vdash B \times A} \times E$$

$$\frac{\overline{A \times B \vdash A \times B} \ Ax}{A \times B \vdash B \times A} \ \times E$$

$$\frac{\overline{A \times B \vdash A \times B} \ Ax}{A \times B \vdash B \times A} \frac{\overline{B, A \vdash B \times A}}{A, B \vdash B \times A} \xrightarrow{Ex} Ex$$

$$\frac{\overline{B \vdash B} \ Ax \quad \overline{A \vdash A} \quad Ax}{\overline{A \vdash A \times B} \ Ax \quad \overline{A \vdash B \times A} \quad \times I}$$

$$\frac{\overline{A \times B \vdash A \times B} \ Ax \quad \overline{A \times B \vdash B \times A} \quad Ex}{A \times B \vdash B \times A} \times E$$

$$\overline{A \rightarrow B, B \rightarrow C \vdash A \rightarrow C}$$

$$\frac{\overline{A \to B, B \to C, A \vdash C}}{A \to B, B \to C \vdash A \to C} \to I$$

$$\frac{B \to C, A, A \to B \vdash C}{A \to B, B \to C, A \vdash C} \to Ex$$

$$A \to B, B \to C \vdash A \to C$$

$$A \to B, B \to C \vdash A \to C$$

$$\frac{\overline{B \to C \vdash B \to C} \quad Ax}{\frac{B \to C, A, A \to B \vdash C}{A \to B, B \to C, A \vdash C} \quad Ex} \to E$$

$$\frac{A \to B, B \to C \vdash A \to C}{A \to B, B \to C \vdash A \to C} \to I$$

$$\frac{\overline{B \to C \vdash B \to C} \quad Ax}{\frac{B \to C, A, A \to B \vdash C}{A \to B, B \to C, A \vdash C}} \to E$$

$$\frac{A \to B, B \to C, A \vdash C}{A \to B, B \to C \vdash A \to C} \to I$$

$$\frac{B \to C \vdash B \to C}{B \to C} Ax \qquad \frac{A \to B, A \vdash B}{A, A \to B \vdash B} Ex$$

$$\frac{B \to C, A, A \to B \vdash C}{A \to B, B \to C, A \vdash C} Ex$$

$$\frac{A \to B, B \to C}{A \to B, B \to C, A \vdash C} \to I$$

$$\frac{A \rightarrow B \vdash A \rightarrow B}{A \rightarrow B, A \vdash B} \xrightarrow{A \vdash A} \xrightarrow{A \vdash$$

$$\overline{(A \times B) \to C \vdash A \to B \to C}$$

$$\frac{\overline{(A \times B) \to C, A \vdash B \to C}}{(A \times B) \to C \vdash A \to B \to C} \to I$$

$$\frac{(A \times B) \to C, A, B \vdash C}{(A \times B) \to C, A \vdash B \to C} \to I$$
$$(A \times B) \to C \vdash A \to B \to C$$

$$\frac{\overline{(A \times B) \to C \vdash (A \times B) \to C} \quad Ax \quad \overline{A, B \vdash A \times B}}{\frac{(A \times B) \to C, A, B \vdash C}{(A \times B) \to C, A \vdash B \to C} \to I} \to E$$

$$\frac{(A \times B) \to C, A \vdash B \to C}{\overline{(A \times B) \to C \vdash A \to B \to C}} \to I$$

$$\frac{(A \times B) \to C \vdash (A \times B) \to C}{(A \times B) \to C \vdash (A \times B) \to C} A \times \frac{\overline{A \vdash A} A \times \overline{B \vdash B}}{A, B \vdash A \times B} \times I$$

$$\frac{(A \times B) \to C, A, B \vdash C}{(A \times B) \to C, A \vdash B \to C} \to I$$

$$\frac{(A \times B) \to C, A \vdash B \to C}{(A \times B) \to C \vdash A \to B \to C} \to I$$

Proof Normalization

A single judgement may have many distinct proofs:

- "Morally" distinct: different construction methods
- © Redundant elongations due to chaining I/E or C/W rules

$$\frac{\overline{A \to B, A \vdash B}}{\overline{A \to B \vdash A \to B}} \to I \quad \overline{A \vdash A} \quad Ax$$

$$\underline{A \to B \vdash A \to B} \quad A \vdash B$$

$$\vdots \quad \vdots \quad B$$

Curry-Howard Correspondence

William Howard

Nicolas de Bruijn

Curry-Howard Correspondence Intuitionistic Logic describes a model of computation, known as the simply-typed λ -calculus λ^{\rightarrow}

Alonzo Church

Propositions as Types

Logic	Programming
Proposition	Туре
Proof	Algorithm
Provability	Type Inhabitation
Proof Normalization	eta-reduction
Propositional Constant	Primitive Type
Axiom	Variable Instantiation
Logical Connectives	Type Operators
Introduction Rules	Type Constructors
Elimination Rules	Type Destructors
Implication Introduction	Function Abstraction
Implication Elimination	Function Application

Terms of the simply typed λ -calculus

Each proposition($\equiv type$) \mathcal{P} is assigned a unique term (name) \mathcal{T} :

$$\mathcal{T}:\mathcal{P}$$

Assumptions A are now interpreted as a *typing environment*:

$$\mathcal{A} := () \mid \mathcal{A}, \mathcal{T} : \mathcal{P}$$

Terms of the simply typed λ -calculus

Let V a set of *primitive terms* (variables).

We will denote primitive terms by x, y, z, ...

The terms \mathcal{T} of the simply typed λ -calculus then are:

$$\mathcal{T} :=$$

Terms of the simply typed λ -calculus

Let V a set of *primitive terms* (variables).

We will denote primitive terms by x, y, z, ...

The terms $\mathcal T$ of the simply typed λ -calculus then are:

$$\mathcal{T}:=\mathcal{V}$$

$$\frac{}{\mathbf{x}:A\vdash\mathbf{x}:A}$$
 Ax

Let V a set of *primitive terms* (variables).

We will denote primitive terms by x, y, z, ...

$$\mathcal{T} := \mathcal{V} \mid \mathcal{T}(\mathcal{T})$$

$$\frac{\Gamma \vdash \mathtt{f} : A \to B \quad \Delta \vdash \mathtt{x} : A}{\Gamma, \Delta \vdash : \mathtt{f}(\mathtt{x})^1 : B} \to E$$

¹Can also be written f x

Let V a set of *primitive terms* (variables).

We will denote primitive terms by x, y, z, ...

The terms \mathcal{T} of the simply typed λ -calculus then are:

$$\mathcal{T} := \mathcal{V} \mid \mathcal{T}(\mathcal{T}) \mid \lambda \mathcal{T}.\mathcal{T}$$

Implication-Only

$$\frac{\Gamma, \mathbf{x} : A \vdash \mathbf{f} : B}{\Gamma \vdash \lambda \mathbf{x} . \mathbf{f} : A \to B} \to I$$

Let V a set of *primitive terms* (variables).

We will denote primitive terms by x, y, z, ...

The terms \mathcal{T} of the simply typed λ -calculus then are:

$$\mathcal{T} := \mathcal{V} \mid \mathcal{T}(\mathcal{T}) \mid \lambda \mathcal{T}.\mathcal{T} \mid (\mathcal{T}, \mathcal{T})$$

Implication-Only

$$\frac{\Gamma \vdash \mathbf{x} : A \quad \Delta \vdash \mathbf{y} : B}{\Gamma, \Delta \vdash (\mathbf{x}, \ \mathbf{y}) : A \times B} \times I$$

Let V a set of *primitive terms* (variables).

We will denote primitive terms by x, y, z, ...

$$\mathcal{T} := \mathcal{V} \mid \mathcal{T}(\mathcal{T}) \mid \lambda \mathcal{T}.\mathcal{T}$$
 Implication-Only $\mid (\mathcal{T}, \mathcal{T}) \mid$ case \mathcal{T} of $(\mathcal{T}, \mathcal{T}) \rightarrow \mathcal{T}$ /w Product

$$\frac{\Gamma \vdash s : A \times B \quad \Delta, x : A, y : B \vdash w : C}{\Gamma, \Delta \vdash case \ s \ of \ (x, y) \rightarrow w : C} \times E$$

Let V a set of *primitive terms* (variables).

We will denote primitive terms by x, y, z, ...

$$\mathcal{T} := \mathcal{V} \mid \mathcal{T}(\mathcal{T}) \mid \lambda \mathcal{T}.\mathcal{T}$$
 Implication-Only $\mid (\mathcal{T}, \mathcal{T}) \mid \mathsf{case} \ \mathcal{T} \ \mathsf{of} \ (\mathcal{T}, \mathcal{T}) o \mathcal{T}$ /w Product $\mid \mathsf{inl}(\mathcal{T}) \mid \mathsf{inr}(\mathcal{T})$

$$\frac{\Gamma \vdash x : A}{\Gamma \vdash \text{inl}(x) : A + B} + l_1 \quad \frac{\Gamma \vdash x : B}{\Gamma \vdash \text{inr}(x) : A + B} + l_2$$

Let V a set of *primitive terms* (variables).

We will denote primitive terms by x, y, z, ...

$$\begin{split} \mathcal{T} := \mathcal{V} \mid \mathcal{T}(\mathcal{T}) \mid \lambda \mathcal{T}.\mathcal{T} & \textit{Implication-Only} \\ \mid (\mathcal{T}, \mathcal{T}) \mid \mathsf{case} \ \mathcal{T} \ \mathsf{of} \ (\mathcal{T}, \mathcal{T}) \to \mathcal{T} & \textit{/w Product} \\ \mid \mathsf{inl}(\mathcal{T}) \mid \mathsf{inr}(\mathcal{T}) \\ \mid \mathsf{case} \ \mathsf{s} \ \mathsf{of} \ \mathsf{inl}(\mathtt{x}) \to \mathtt{w}; \ \mathsf{inr}(\mathtt{y}) \to \mathtt{z} & \textit{/w Co-product} \end{split}$$

$$\frac{\Gamma \vdash \mathtt{s} : A + B \quad \Delta, \mathtt{x} : A \vdash \mathtt{w} : C \quad \Delta, \mathtt{y} : B \vdash \mathtt{z} : C}{\Gamma \vdash \mathtt{case} \ \mathtt{s} \ \mathtt{of} \ \mathtt{inl}(\mathtt{x}) \rightarrow \mathtt{w}; \ \mathtt{inr}(\mathtt{y}) \rightarrow \mathtt{z} : C} \ + E$$

Terms: Uniqueness & Structural Rules

Variable names must be unique for each distinct formula instantiation in a proof!

$$\frac{\Gamma, y : A, z : A \vdash u : B}{\Gamma, x : A \vdash u [x/y, x/z] : B}$$
Contraction

$$\frac{\Gamma \vdash u : B}{\Gamma, x : A \vdash u : B} \text{ Weakening}$$

Example: Identity Function Revisited

$$\frac{\overline{A \vdash A} \ Ax}{\vdash A \to A} \to I$$

Example: Identity Function Revisited

$$\frac{\underline{\mathbf{x}: A \vdash \mathbf{x}: A}}{\vdash A \to A} \xrightarrow{Ax} I$$

Example: Identity Function Revisited

$$\frac{\overline{x:A \vdash x:A} Ax}{\vdash \lambda x. x:A \to A} \to I$$

$$\frac{A \rightarrow B \vdash A \rightarrow B}{A \rightarrow B, A \vdash B} \xrightarrow{Ax} \xrightarrow{A \vdash A} \xrightarrow{Ax} E$$

$$\frac{A \rightarrow B, A \vdash B}{A, A \rightarrow B \vdash B} \xrightarrow{Ex} \xrightarrow{A \rightarrow B, B \rightarrow C, A, A \rightarrow B \vdash C} \xrightarrow{Ex} \xrightarrow{A \rightarrow B, B \rightarrow C, A \rightarrow C} \xrightarrow{A \rightarrow B, B \rightarrow C \vdash A \rightarrow C} \xrightarrow{A \rightarrow B, B \rightarrow C \vdash A \rightarrow C} \xrightarrow{A \rightarrow B, B \rightarrow C \vdash A \rightarrow C} \xrightarrow{A \rightarrow B, B \rightarrow C \vdash A \rightarrow C}$$

$$\frac{\underline{\mathbf{f}: A \to B \vdash \mathbf{f}: A \to B} \quad Ax}{\underline{A \to B, A \vdash B}} \xrightarrow{\underline{\mathbf{x}: A \vdash \mathbf{x}: A}} \xrightarrow{Ax} \xrightarrow{A} E$$

$$\frac{A \to B, A \vdash B}{A, A \to B \vdash B} \xrightarrow{Ex} \xrightarrow{A} E$$

$$\frac{B \to C, A, A \to B \vdash C}{A \to B, B \to C, A \vdash C} \xrightarrow{Ex} \xrightarrow{A \to B, B \to C, A \vdash C} \xrightarrow{A \to B, B \to C \vdash A \to C} \xrightarrow{A} I$$

$$\frac{\frac{\mathbf{f}:A\to B\vdash \mathbf{f}:A\to B}{\mathbf{f}:A\to B} \xrightarrow{Ax} \frac{Ax}{\mathbf{x}:A\vdash \mathbf{x}:A} \xrightarrow{Ax}}{\frac{\mathbf{f}:A\to B,\mathbf{x}:A\vdash \mathbf{f}:\mathbf{x}:B}{A,A\to B\vdash B}} \xrightarrow{Ex} Ex} \xrightarrow{B\to C,A,A\to B\vdash C} Ex$$

$$\frac{\frac{B\to C,A,A\to B\vdash C}{A\to B,B\to C,A\vdash C}}{A\to B,B\to C\vdash A\to C} \xrightarrow{\to I}$$

$$\frac{\frac{\mathbf{f}:A\to B\vdash \mathbf{f}:A\to B}{\mathbf{f}:A\to B} \xrightarrow{Ax} \frac{\mathbf{x}:A\vdash \mathbf{x}:A}{\mathbf{x}:A\vdash \mathbf{x}:A} \xrightarrow{Ax}}{\frac{\mathbf{f}:A\to B,\mathbf{x}:A\vdash \mathbf{f}:\mathbf{x}:B}{\mathbf{x}:A,\mathbf{f}:A\to B\vdash \mathbf{f}:\mathbf{x}:B}} \xrightarrow{Ex} \xrightarrow{\mathbf{g}:B\to C,\mathbf{x}:A,\mathbf{f}:A\to B\vdash \mathbf{g}} \xrightarrow{(\mathbf{f}:\mathbf{x}):C} Ex} \to E$$

$$\frac{\mathbf{g}:B\to C,\mathbf{x}:A,\mathbf{f}:A\to B\vdash \mathbf{g}}{\frac{A\to B,B\to C,A\vdash C}{A\to B,B\to C\vdash A\to C}\to I} \xrightarrow{Ex}$$

$$\frac{\frac{\mathbf{f}:A\to B\vdash \mathbf{f}:A\to B}{\mathbf{x}:A\vdash \mathbf{x}:A}\xrightarrow{\mathbf{Ax}} \xrightarrow{\mathbf{x}:A\vdash \mathbf{x}:A}\xrightarrow{\mathbf{Ax}}{\frac{\mathbf{f}:A\to B,\mathbf{x}:A\vdash \mathbf{f}:\mathbf{x}:B}{\mathbf{x}:A,\mathbf{f}:A\to B\vdash \mathbf{f}:\mathbf{x}:B}} \xrightarrow{\mathbf{Ex}} \xrightarrow{\mathbf{Ax}} \xrightarrow{\mathbf{Ax}} E$$

$$\frac{\mathbf{g}:B\to C,\mathbf{x}:A,\mathbf{f}:A\to B\vdash \mathbf{g}:\mathbf{f}:\mathbf{x}:C}{\frac{\mathbf{f}:A\to B,\mathbf{g}:B\to C,\mathbf{x}:A\vdash \mathbf{g}:\mathbf{f}:\mathbf{x}:C}{A\to B,B\to C\vdash A\to C}}\xrightarrow{\mathbf{Ex}} \xrightarrow{\mathbf{Ax}} \xrightarrow{\mathbf{Ax}} E$$

$$\frac{\frac{\mathbf{f}:A\to B\vdash \mathbf{f}:A\to B}{\mathbf{x}:A\vdash \mathbf{x}:A}\xrightarrow{\mathbf{x}:A\vdash \mathbf{x}:A}}{\frac{\mathbf{f}:A\to B,\mathbf{x}:A\vdash \mathbf{f}:\mathbf{x}:B}{\mathbf{x}:A,\mathbf{f}:A\to B\vdash \mathbf{f}:\mathbf{x}:B}}\xrightarrow{\mathbf{Ex}}\xrightarrow{\mathbf{Ax}} E$$

$$\frac{\mathbf{g}:B\to C,\mathbf{x}:A,\mathbf{f}:A\to B\vdash \mathbf{g}:\mathbf{f}:\mathbf{x}:C}{\mathbf{f}:A\to B,\mathbf{g}:B\to C,\mathbf{x}:A\vdash \mathbf{g}:\mathbf{f}:\mathbf{x}:C}\xrightarrow{\mathbf{Ex}}\xrightarrow{\mathbf{f}:A\to B,\mathbf{g}:B\to C\vdash \lambda\mathbf{x}.(\mathbf{g}:\mathbf{f}:\mathbf{x}):A\to C}\to I$$

Term Equivalence & Reduction

 $ightharpoonup \alpha$ -conversion Changing the name of bound variables

$$\lambda x.x \stackrel{\alpha}{\equiv} \lambda y.y$$

► Substitution Changing the name of free variables

$$(f g)(\lambda x.(x g))[h/g] = (f h)(\lambda x.(x h))$$

 η -reduction Simplifying an abstraction if the abstracted variable does not occur free in the function body

$$\lambda x.f \ x \stackrel{\eta}{\equiv} f \ (x \ \text{does not occur in } f)$$

 \blacktriangleright β -reduction Removing any applicable abstraction

$$(\lambda x.g)(y) \Longrightarrow g[x/y]$$

Proof Normalization ≡ Term Reduction

- Church-Rosser: order of term reduction rules is irrevelant
- Subject Reduction: term reduction rules on well-typed terms produce well-typed terms

Proof Normalization & Term Reduction (\rightarrow)

$$\frac{\overline{x}: A \vdash x: A}{\vdots} \dots \\
\frac{\Gamma, x: A, \dots \vdash u: B}{\Gamma, x: A \vdash u: B} & \vdots \\
\frac{\Gamma \vdash \lambda x. u: A \to B}{\Gamma, \Delta \vdash (\lambda x. u)(t): B} & \to E$$

$$\Rightarrow \frac{\Gamma, \Delta, \dots \vdash u: B}{\Gamma, \Delta \vdash u: B}$$

$$(\lambda x. u)(t) \Longrightarrow u[t/x]$$

 β -reduction

Proof Normalization & Term Reduction (\times)

Proof Normalization & Term Reduction (+)

$$\frac{\Gamma \vdash t : B}{\Gamma \vdash \text{inr}(t) : A + B} + I_{2} \qquad \frac{\Delta, x : A \cdots \vdash v : C}{\Delta, x : A \vdash v : C} \qquad \frac{\Delta, y : B \cdots \vdash w : C}{\Delta, y : B \vdash w : C} + E$$

$$\frac{\Gamma \vdash t : B}{\Gamma, \Delta \vdash \text{case inr}(t) \text{ of inl}(x) \rightarrow v; \text{inr}(y) \rightarrow w : C} + E$$

$$\vdots$$

$$\Gamma \vdash t : B \qquad \vdots$$

$$\Gamma \vdash t : B \qquad \vdots$$

$$\Gamma \vdash t : B \qquad \vdots$$

$$\Gamma, \dots, \dots \vdash w : C$$

$$\frac{\Gamma, \dots, \Delta, \dots \vdash w : C}{\Gamma, \Delta \vdash w : C}$$

case inr(t) of inl(x) \rightarrow v; inr(y) \rightarrow w $\Longrightarrow w[t/y]$

Beyond simple types: the λ -Cube

Three axes of extension:

 $\lambda 2$ Terms can depend on types

$$\frac{\Gamma \vdash \mathsf{t} : A}{\Gamma \vdash \Lambda \mathsf{a.t} : \Pi \mathsf{a.A}}$$

 $\lambda\Pi$ Types can depend on terms

$$\frac{\Gamma, \mathbf{x} : A \vdash \mathbf{B} : *}{\Gamma \vdash \Pi \mathbf{x} . \mathbf{A} . \mathbf{B} : *}$$

 $\lambda \underline{\omega}$ Types can depend on types

$$\lambda A : *.(A \rightarrow B) \rightarrow (B \rightarrow B \rightarrow B) \rightarrow B$$

