Exercise sheet 8: Suffix-Trees

Exercise 1

You are given the text T=CAGTAGTAGC.

1a)

Draw the corresponding suffix tree!

Hide

Solution

CAGTAGTAGC

1b) Describe the steps of a counting query for P = TAG.

Hide

Solution

- start at root node
- locate outgoing edge that starts with T
- match subsequent characters of the pattern
- in the subtree rooted at TAG count the number of leaves $\Rightarrow 2$

1c)

Describe the steps of a reporting query for P = AG.

Hide

Solution

- start at root node
- locate outgoing edge that start with A
- match subsequent characters of the pattern
- in the subtree rooted at AG report the labels of all leaves $\Rightarrow \{2, 5, 8\}$

Exercise 2

2a)

Draw a generalized suffix tree for the sequences A = CCATG and B = CATG.

Hide

Hint 1 Concatenate the two sequences using a unique character for splitting. e.g. CCATG#CATG\$. Dont forget to include suffix links!

Formulae sl(v) = w

 $\overline{v} = cb$

 $\overline{w} = b$

c: character, b: string

remember: \overline{v} denotes the concatenation of all path labels from the root to v.

Solution

CCATG#CATG\$

2b) Find the Maximal Unique Matches of the sequences A = CCATG and B = CATG using the tree from A).

\mathbf{Hide}

Solution CATG is the only MUM as $\overline{v} = \text{CATG}$ has no suffix links pointing to it

Exercise 3

3a)

Draw a generalized suffix tree for the sequence A = ACGCACGCG.

Hide

Solution

3b)

Find all maximal pairs of length at least 2.

Hide

Solution ACGC: (1, 5, 4)

CG: (2, 8, 2), (6, 8, 2)

3c)

Why is C: (2, 8, 1) not a maximal pair?

Hide

Solution It is not right maximal. This can be seen since CG: (2,8,2) already includes the indices 2 and 8 with a longer match.