AMS 572 Data Analysis I Simple Linear Regression

Pei-Fen Kuan

Applied Math and Stats, Stony Brook University

Obs	Age	SBP
1	19	122
2	25	125
3	30	126
4	42	129
5	46	130
6	52	135
7	57	138
8	62	142
9	70	145

Simple Linear Model

Line

$$Y = \alpha + \beta X$$

- $ightharpoonup \alpha = \text{intercept}; \text{ value of } Y \text{ when } X = 0$
- \triangleright $\beta =$ slope; change in Y when X changes 1 unit
- ightharpoonup Y: dependent variable, response variable, outcome variable
- ightharpoonup X: covariate, independent variable, predictor

Simple Linear Model

Simple Linear Model with Error

▶ Linear regression

$$Y = \alpha + \beta X + \epsilon$$
$$\epsilon = Y - \alpha - \beta X$$

 \triangleright ϵ equals vertical distance from Y to line defined by $\alpha + \beta X$

Simple Linear Model with Error

Model Assumptions

- ▶ Data are (Y_i, X_i) ; i = 1, 2, ..., N
- ► Assume:
 - 1. Linearity: $Y_i = \alpha + \beta X_i + \epsilon_i$
 - 2. X's are fixed constants
 - 3. $\epsilon_i \text{ iid } N(0, \sigma^2)$

Least Squares Estimation

▶ Least squares estimators are values of α and β that minimize

$$\sum_{i=1}^{N} \epsilon_i^2 = \sum_{i=1}^{N} (Y_i - \alpha - \beta X_i)^2$$

- ▶ Set partial derivatives equal to 0, solve for α and β
- ► Can also derive these estimators via maximum likelihood

Least Squares Estimation

▶ Solving the partial derivatives, we get

$$\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X}, \quad \hat{\beta} = \frac{\sum_{i} X_{i}Y_{i} - N\bar{X}\bar{Y}}{\sum_{i} X_{i}^{2} - N\bar{X}^{2}}$$

- Note if $X_i = Y_i$ for all i, then $\hat{\beta} =$
- ▶ Also if $Y_i = \bar{Y}$ for all i, then $\hat{\beta} =$

AMS 572

Least Squares Estimation

▶ Predicted response (aka *fitted values*)

$$\hat{Y}_i = \hat{\alpha} + \hat{\beta} X_i$$

► Residual

$$r_i = Y_i - \hat{Y}_i$$

Estimate variance by mean square error (MSE)

$$\hat{\sigma}^2 = \text{MSE} = \frac{1}{N-2} \sum_i (Y_i - \hat{Y}_i)^2$$
$$= \frac{1}{N-2} \sum_i r_i^2$$

$$\bar{Y} = 132.4; \bar{X} = 44.8$$

$$\sum_{i} X_{i}Y_{i} = 54461; \sum_{i} X_{i}^{2} = 20463$$

$$\hat{\beta} = \frac{54461 - 9(132.4)(44.8)}{20463 - 9(44.8)^{2}} = 0.45$$

$$\hat{\alpha} = 132.4 - .45(44.8) = 112.3$$

Example: Interpretation

- ▶ $\hat{\beta} = 0.45 \rightarrow \text{expected SBP increases 0.45 (mmHg) for each one year increase in age$
- ► How about $\hat{\alpha} = 112.3$?

 17

18

Can write

$$\hat{\beta} = \sum c_i Y_i$$

where

$$c_i = \frac{X_i - \bar{X}}{\sum_j (X_j - \bar{X})^2}$$

Under model,

$$Y_i \sim N(\alpha + \beta X_i, \sigma^2)$$

► Thus

$$\hat{\beta} \sim N\left(\sum_{i} c_i(\alpha + \beta X_i), \sigma^2 \sum_{i} c_i^2\right)$$

► Equivalently

$$\hat{\beta} \sim N\left(\beta, \frac{\sigma^2}{\sum_i (X_i - \bar{X})^2}\right)$$

► $(1 - \alpha) * 100\%$ CI for β

$$\hat{\beta} \pm z_{\alpha/2} \sqrt{\frac{\sigma^2}{\sum_i (X_i - \bar{X})^2}}$$

► Test for $H_0: \beta = \beta_0$

$$z = \frac{\beta - \beta_0}{\sqrt{\sigma^2 / \sum_i (X_i - \bar{X})^2}}$$

- ▶ If σ^2 is unknown, use MSE and t_{N-2}
- ▶ $(1 \alpha) * 100\%$ CI for β

$$\hat{\beta} \pm t_{N-2,\alpha/2} \sqrt{\text{MSE}/\sum_{i} (X_i - \bar{X})^2}$$

 $\blacktriangleright \text{ Test for } H_0: \beta = \beta_0$

$$t = \frac{\hat{\beta} - \beta_0}{\sqrt{\text{MSE}/\sum_i (X_i - \bar{X})^2}}$$

▶ For SBP example, $H_0: \beta = 0$ versus $H_a: \beta \neq 0$

$$C_{.05} = \{t : |t| > t_{7,0.025} = 2.365\}$$

ightharpoonup Observed test statistic implies reject H_0

$$t = \frac{0.449 - 0}{\sqrt{3.21/2417.56}} = 12.32$$

▶ 95% CI

- ▶ It can be shown that \bar{Y} and $\hat{\beta}$ are independent
- ► Therefore

$$\hat{\alpha} \sim N\left(\alpha, \sigma^2 \left\{ \frac{1}{N} + \frac{\bar{X}^2}{\sum_i (X_i - \bar{X})^2} \right\} \right)$$

 $H_0: \alpha = \alpha_0$

$$t = \frac{\hat{\alpha} - \alpha_0}{\sqrt{\text{MSE}(\frac{1}{N} + \frac{\bar{X}^2}{\sum_i (X_i - \bar{X})^2})}} \sim t_{N-2}$$

SAS Code

```
data sbpdat;
input age sbp @@;
datalines;
19 122 25 125 30 126 42 129 46 130 52 135 57 138 62 142 70 145;
run;
proc reg data=sbpdat;
model sbp = age;
run;
```

SAS Output

AMS 572

The REG Procedure Model: MODEL1 Dependent Variable: sbp

Number of Observations Read
Number of Observations Used

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	487.74667	487.74667	151.91	<.0001
Error	7	22.47555	3.21079		
Corrected Total	8	510.22222			

Root MSE 1.79187 R-Square 0.9559
Dependent Mean 132.44444 Adj R-Sq 0.9497
Coeff Var 1.35292

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	112.33169	1.73773	64.64	<.0001
age	1	0.44917	0.03644	12.33	<.0001

R Code and Output

```
> age < c(19,25,30,42,46,52,57,62,70)
> sbp <- c(122,125,126,129,130,135,138,142,145)
> fit <- lm(sbp~age)</pre>
> summary(fit)
Call:
lm(formula = sbp ~ age)
Residuals:
   Min
           1Q Median 3Q
                                Max
-2.9934 -0.6884 0.1933 1.2265 1.8199
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 112.33169 1.73773 64.64 5.57e-11 ***
            age
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.792 on 7 degrees of freedom
```

AMS \$\P2\statistic: 151.9 on 1 and 7 DF, @PFaXque: 5.313e-06

Multiple R-squared: 0.9559, Adjusted R-squared: (0.9497) (₹ ₹ ₹ ₹ ♥) (₹ ♥)

CI for E(Y|X=x)

- ▶ Goal: CI for the mean of Y given X = x
- $\blacktriangleright \text{ Let } \mu_x = E(Y|X=x)$
- \blacktriangleright Estimator for μ_x :

$$\hat{\mu}_x = \hat{\alpha} + \hat{\beta}x$$

= $\bar{Y} + \hat{\beta}(x - \bar{X})$

 $\blacktriangleright E(\hat{\mu}_x) = \mu_x$

AMS 572 ©PF.Kuan 2

CI for
$$E(Y|X=x)$$

- ▶ Recall \bar{Y} and $\hat{\beta}$ are independent Normal random variables
- ▶ Thus $\hat{\mu}_x$ is Normal and

$$Var(\hat{\mu}_x) = Var(\bar{Y}) + (x - \bar{X})^2 Var(\hat{\beta})$$
$$= \sigma^2 \left[\frac{1}{N} + \frac{(x - \bar{X})^2}{\sum_i (X_i - \bar{X})^2} \right]$$

CI for E(Y|X=x)

► Therefore, a $(1 - \alpha)100\%$ CI for μ_x is

$$\hat{\mu}_x \pm t_{N-2,\alpha/2} \sqrt{\text{MSE}\left\{\frac{1}{N} + \frac{(x-\bar{X})^2}{\sum_i (X_i - \bar{X})^2}\right\}}$$

AMS 572 ©PF.Kuan

ightharpoonup Suppose we want a 95% CI of the mean SBP if age = 40

► CI

31