Probabilités III

MINES ParisTech

12 décembre 2024 (#d82a447)

Question 1 Soient $X \sim \mathcal{E}(\lambda)$, $\lambda > 0$, et $Y \sim \mathcal{B}(1/2)$ deux variables aléatoires réelles indépendantes, et $Z = XY + (1 - Y)\lambda$.
□ A : La fonction de répartition conditionnelle $F_{Z Y=1}$ vaut $F_{Z Y=1}(z) = \mathbb{P}(Z \leq z Y=1) = (1-e^{-\lambda z})1_{\mathbb{R}_+^*}(z)$ □ B : La fonction de répartition conditionnelle $F_{Z Y=0}$ vaut $F_{Z Y=0}(z) = \mathbb{P}(Z \leq z Y=0) = 1_{[\lambda,+\infty[}(z)$ □ C : Z admet une densité □ D : $Z = \lambda$ p.s.
Question 2 (réponses multiples) Soient $X \sim \mathcal{E}(\lambda)$, $\lambda > 0$, et $Y \sim \mathcal{B}(1/2)$ deux variables aléatoires réelles indépendantes, et $Z = XY + (1 - Y)\lambda$. Alors:
$\Box A : \mathbb{E}(Z Y=1) = \frac{1}{\lambda}$ $\Box B : \mathbb{E}(Z Y=0) = \lambda$ $\Box C : \mathbb{E}(Z Y) = \frac{Y}{2\lambda} + \frac{1}{2}(1-Y)\lambda$ $\Box D : \mathbb{E}(Z Y) = \frac{Y}{\lambda} + (1-Y)\lambda$
Question 3 Soient X et Y deux variables aléatoires de densité jointe $f_{X,Y}(x,y) = \frac{1}{x} 1_{[0,x]}(y) \lambda \exp(-\lambda x), \ \lambda > 0$. Quelle est la densité de $Y X=x$? \square A: $\exp(-y)$ \square B: $1_{[0,x]}(y)$ \square C: $\frac{1}{x} 1_{[0,x]}(y)$ \square D: $\lambda \exp(-\lambda x)$
Question 4 En déduire la valeur de $\mathbb{E}(Y)$:
$ \Box A : 1/2 \Box B : x/2 \Box C : \frac{1}{2\lambda} \Box D : \lambda^2 $
Question 5 Soit (X,Y) un vecteur gaussien d'espérance (μ_X,μ_Y) et de matrice de covariance $\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$, où $\rho > 0$. L'espérance conditionnelle de $X Y$ vaut :
\square A: μ_Y \square B: μ_X

- $\Box \ \text{C:} \ \mu_Y + \rho(Y \mu_X)$ $\Box \ \text{D:} \ \mu_X + \rho(Y \mu_Y)$