

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

TECNOLOGÍA INDUSTRIAL II

CURSO 2012-2013

Instrucciones:

- a) Duración: 1 hora y 30 minutos.
- b) El alumno elegirá una única opción de las dos propuestas, indicando la opción elegida.
- c) Puede alterarse el orden de los ejercicios y no es necesario copiar los enunciados.
- d) No se permite el uso de calculadoras programables, gráficas o con capacidad para transmitir datos.
- e) Las respuestas deberán estar suficientemente justificadas y los resultados se expresarán en unidades del S.I., salvo que se pida en otras unidades.
- f) Cada uno de los cuatro ejercicios se puntuará con un máximo de 2,5 puntos.
- g) Dentro de un mismo ejercicio, cada apartado podrá tener el valor máximo que se especifica.

Opción A

Ejercicio 1.- Las temperaturas de fusión del bismuto y el cadmio son 271 °C y 320 °C, respectivamente. Ambos son totalmente insolubles en estado sólido y forman un eutéctico a 144 °C de 60 % de Bi. Se pide:

- a) Dibujar el diagrama de equilibrio del sistema Bi-Cd, suponiendo que las líneas de equilibrio son rectas. Indique las fases y las regiones, líneas y puntos notables del diagrama (1 punto).
- b) Determinar para una aleación de 75 % de Cd, el porcentaje de las fases que existen a temperatura ambiente (1 punto).
- c) Definir los siguientes conceptos: límite elástico, módulo de elasticidad y resistencia a la tracción (0,5 puntos).

Ejercicio 2.- Una máquina frigorífica de congelación trabaja entre dos focos que están a -20 °C y 30 °C de temperatura. La eficiencia de la máquina es la mitad de la ideal. Si la máquina necesita un trabajo de 1692 kJ por hora, se pide:

- a) Calcular la eficiencia de la máquina frigorífica y la cantidad de calor que se extrae del foco frío por hora (1 punto).
- b) Calcular el calor que se cede al foco caliente por hora (1 punto).
- c) Definir el concepto "relación de compresión" en un motor de combustión interna e indicar su expresión matemática (0,5 puntos).

Ejercicio 3.- Para el circuito digital de la figura, se pide:

- a) Obtener la función de salida F y su tabla de verdad (1 punto).
- b) Simplificar la función lógica por Karnaugh y realizar el circuito empleando puertas NAND de dos entradas (1 punto).
- c) Describir el principio de funcionamiento de los termistores e indicar los principales tipos que existen (0,5 puntos).

Ejercicio 4.- Un cilindro de doble efecto con una carrera de de 10 cm, ejerce en el avance una fuerza de 7200 N. Se pide

- a) Calcular el diámetro que tiene el vástago si la tensión que soporta es de 4000 kPa (1 punto).
- b) Calcular el diámetro del émbolo teniendo en cuenta que el consumo de aire medido a la presión de trabajo, es de 1 litro por ciclo (1 punto).
- c) Indicar cómo se puede calcular la potencia hidráulica en función del caudal y cuáles son las unidades en el S.I. de todas las magnitudes que intervienen en el cálculo (0,5 puntos).

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

TECNOLOGÍA INDUSTRIAL II

CURSO 2012-2013

ns	trı	10	n١	n	Դ	c.
113	uч			v	16	Э.

- a) Duración: 1 hora y 30 minutos.
- b) El alumno elegirá una única opción de las dos propuestas, indicando la opción elegida.
- c) Puede alterarse el orden de los ejercicios y no es necesario copiar los enunciados.
- d) No se permite el uso de calculadoras programables, gráficas o con capacidad para transmitir datos.
- e) Las respuestas deberán estar suficientemente justificadas y los resultados se expresarán en unidades del S.I., salvo que se pida en otras unidades.
- f) Cada uno de los cuatro ejercicios se puntuará con un máximo de 2,5 puntos.
- g) Dentro de un mismo ejercicio, cada apartado podrá tener el valor máximo que se especifica.

Opción B

Ejercicio 1.- En un ensayo de tracción de una probeta de acero de 6 mm de diámetro y de 30 mm longitud, se han obtenido los datos de la tabla adjunta. Se pide:

- a) Determinar las tensiones y alargamientos unitarios para cada uno de los puntos obtenidos en el ensayo y dibujar la curva de tracción (1,5 puntos).
- b) Determinar el módulo de elasticidad del acero (0,5 puntos).
- c) ¿Qué tipo de sistema de control elegiría para controlar la temperatura al calentar un horno de precisión? (0.5 puntos).

Alargamiento (mm)	Fuerza (kN)		
0,000	0,00		
0,023	1,72		
0,032	2,30		
0,048	3,49		
0.210	7,07		
0,900	8,58		
1,200	7,63		

Ejercicio 2.- Una bomba de calor de Carnot trabaja entre dos focos a -5 °C y 25 °C, necesitando un trabajo exterior de 9000 kJ/h. Se pide:

- a) Calcular el coeficiente de amplificación calorífica (e') de la bomba (1 punto).
- b) Calcular la potencia necesaria del motor del compresor de la bomba (1 punto).
- c) Dibujar el esquema de una máquina frigorífica de Carnot y explicar su funcionamiento cuando funcione como bomba de calor **(0,5 puntos)**.

Ejercicio 3.- Para que se active el motor de arranque, MA, de un motor diesel se deben cumplir las siguientes condiciones: que se presione el pulsador de arranque, P, que el sensor que detecta exceso de temperatura del motor diesel, T, esté a "0" y que la llave de contacto, LC, esté a "1". En el caso de que la temperatura sea excesiva (T = 1) el motor de arranque se podrá activar mediante un pulsador auxiliar PA, independientemente del estado de las demás variables. Se pide:

- a) Obtener la tabla de verdad y la función lógica MA simplificada por Karnaugh (1 punto).
- b) Obtener el circuito lógico mediante puertas (1 punto).
- c) Enunciar las leyes de Morgan para tres variables e implementarlas con puertas lógicas (0,5 puntos).

Ejercicio 4.- Una tubería horizontal de 200 mm de diámetro conduce agua a una velocidad de 6 m/s y una presión de 40 kPa. La tubería tiene un estrechamiento, siendo la presión en el mismo de 8 kPa. La densidad del agua es 1000 kg/m³. Se pide:

- a) Calcular la velocidad del agua en el estrechamiento (1 punto).
- b) Calcular el diámetro del estrechamiento (1 punto).
- c) Enunciar la ecuación de continuidad y su expresión matemática (0,5 puntos).