程式設計理念和規格書

第一題

程式設計理念:

Quadrilateral 為主程式部分,由 check 對輸入值檢查是否符合範圍,再由 partition 判斷其四邊形種類。再利用不同的 test cases,對程式進行測試。

系統規格:

A. boundary testing

測試目的: 測試在規格範圍中(valid),系統的可靠度

測試規格:

Boundary	1. 規格中的 a, b, c, d 為對角線, 其下限為 1, 上限為 100 2. 規格中的 p 為夾角, 範圍限制為(0,90] 3. 測試時分別取 a, b, c, d, p 為邊界值,略大於下限值,及略 小於上限值來做測試
Robustness	1. a, b, c, d, p 的範圍限制與 boundary 相同 2. 考慮 invalid 的部分, 因此,除了 boundary 的測試項目,分別在 a, b, c, d, p 取略小於下限值,及略大於上限值來做測試

B. equivalence classes

測試目的: 測試在規格範圍中(valid),以及範圍之外(invalid),系統的可靠度

測試規格:

Weak normal	1. 從輸入的值, 我們可以得到7種不同的四邊形類型,
	用下面所列出的條件去做分類:
	(1) a=b=c=d
	(2) a=c,b=d,b≠c
	(3) $a=c \text{ or } b=d$
	(4) ad=bc
	(5) p=90
	2. 以 a, b, c, d 的條件判斷為 x 軸, p 的值為 y 軸,
	示意圖如下:

C. decision classes

測試目的:利用條件式將結果分類,由條件式的不同組合來對程式結果做測試測試規格:由四邊形的分類規則,可以找出其特性:

Square	a=b=c=d, p=90
Rhombus	a=c and b=d, p=90
Rectangle	a=b=c=d, p=(0.90)
harrier-shaped	a=c or b=d, p=90
parallelogram	a=c and b=d, p=(0,90)
trapezium	ad=bc
quadrilateral	else

我們可以從上面的規則,利用 5 個條件式,去判斷所能產生的圖形 Condions:

C1:a=c

C2:b=d

C3:a=b

C4:a*d=b*c

C5:P=90

不過由於某些條件式無法同時成立,所以會產生 A8:impossible 的情形

C1:a=c	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	F	F	F	F	F	F
C2:b=d	Т	Т	Т	Τ	Т	-	F	F	F	F	F	Т	Τ	Т	Т	F
C3:a=b	Т	Т	Т	F	F	F	Т	Т	F	F	-	-	-	Т	F	-
C4:a*d=b*c	Т	Т	F	Т	Т	F	F	F	Т	F	Т	F	Т	F	F	F
C5:P=90	Т	F	-	Т	F	-	Т	F	-	-	-	Т	-	F	F	-
Rule Count	1	1	2	1	1	4	1	1	2	2	4	2	4	1	1	4
A1: square	Χ															
A2: rhombus		Χ														
A3: rectangle				Χ												
A4: harrier-shaped							Χ					Χ				
A5: parallelogram					Χ											
A6: trapezium											Χ					
A7: quadrilateral								Χ		Χ					Χ	Χ
A8:impossible			Χ			Χ			Χ				Χ	Χ		

D. Coverage 與 Cyclomatic Complexity 計算方法:

statement and branch	code cover								
coverage	Name Statement Branch								
	⊿ 🗁 eec	83.5 %	79.2 %						
		100.0 %	50.0 %						
		89.1 %	50.0 %						
		85.9 %	50.0 %						
		89.5 %	85.7 %						
		74.0 %	42.9 %						
		— 100.0 %	100.0 %						
		98.9 %	5 0.0 %						
Cyclomatic Complexity	McCabe								
	■ quadrilateral								
	partition	16							
	check	11							
	main								
	使用 Metrics (plug-in of Eclipse)								
	可計算出程式的 Cyclomatic Complexity								
	在主程式當中								
	check(檢查輸入是否符合範圍條件)=11,								
	partition(偵測輸入所能產生的四邊形)=16								