Perceptron

INDRAPRASTHA INSTITUTE *of*INFORMATION TECHNOLOGY **DELHI**

Perceptron

- Input: $\mathbf{D} = \{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), ..., (\mathbf{x}_n, \mathbf{y}_n)\}$ s.t., $\mathbf{x}_i \in \mathbf{X}, \mathbf{y}_i \in \mathbf{Y}$ where $\mathbf{X} \in \mathbf{R}, \mathbf{Y} \in \{-1,1\}$
- Use a function to map real numbers to {-1,1}

Perceptron: Binary Classification

Separability: Linear vs Non-Linear

• **Assumption:** There exists a hyperplane!

Logical Operations

Example: AND Gate

$$x_1 + x_2 - 1.5 = 0$$

 $w_1 = w_2 = 1; b = -1.5$

- 1. $X_1 = 0, X_2 = 0$ a. O + O - 1.5 = -1.5
- 2. $X_1 = 0, X_2 = 1$ a. O + 1 - 1.5 = -0.5
- 3. $X_1 = 1, X_2 = 0$ a. 1 + 0.1.5 = -0.5
- 4. $X_1 = 1, X_2 = 1$ a. 1 + 1 - 1.5 = 0.5

Hyperplane for Logical Operations

	OR	
l ₁	12	out
0	0	0
0	1	1
1	0	1
1	1	1

	XOR	
I,	I ₂	out
0	0	0
0	1	1
1	0	1
1	1	0

Learning

- Correct Classification: $y_i f(x_i) > 0$
 - $f(x_1) = b + w_1 x_1 + w_2 x_2 + \dots + w_n x_n > 0$ and belongs to C_1
 - $f(x_1) = b + w_1 x_1 + w_2 x_2 + \dots + w_n x_n < 0$ and belongs to C_2
 - \circ w(i+1) = w(i)
- Incorrect Classification: $y_i f(x_i) < o$
 - $f(x_i) = b + w_1 x_1 + w_2 x_2 + \dots + w_n x_n < 0$ and belongs to C_1
 - $w(i+1) = w(i) + \Delta$
 - $f(x_i) = b + w_1 x_1 + w_2 x_2 + \dots + w_n x_n > 0$ and belongs to C_2

Note: $\Phi = sgn$ function

- **Input:** Training examples $\{x_i, y_i\}_{i=1 \text{ to } n}$
- Initialize w and b as zero or randomly
- While !converged do#Loop through the samples
 - \circ for j = 1 to n do
 - #Compare the true label and the prediction
 - $= error_i = y_i \varphi(w^T x_i + b)$
 - #If the model wrongly predicts the class, update the weight and the bias
 - **■** *If error != 0*
 - #Update the weight
 - \circ $W = w + error_i \times x_i$
 - #Update the bias
 - \circ $B = b + error_i$
 - Test for convergence
- Output: Set of weights w and bias b for the perceptron

Let's follow the steps manually for the AND gate.

	AND	
l ₁	12	out
0	0	0
0	1	0
1	0	0
1	1	1

- **Input:** Training examples for the AND gate problem?
 - Input is clear.
 - Map the out to -1 and 1 s.t., 1 maps to 1 and 0 maps to -1

AND		
l ₁	12	out
0	0	•
0	1	0
1	0	d
1	1	1

- **Input:** Training examples for the AND gate problem?
 - o Input is clear.
 - O Map the out to -1 and 1 s.t., 1 maps to 1 and 0 maps to -1
- Initialize w and b as zero.

- \circ W₁, W₂ = o and b = o
- Let's calculate error and compare the true label and the prediction
 - sample1 prediction = 1
 - \blacksquare sample1_error = -1 1 = -2

AND			
l ₁	l ₂	out	
0	0	•	-1
0	1	0	-1
1	0	d	-1
1	1	1	

$$error = y - \varphi(w^Tx + b)$$

$$\Phi$$
 = sgn function

- **Input:** Training examples for the AND gate problem?
 - Input is clear.
 - O Map the out to -1 and 1 s.t., 1 maps to 1 and 0 maps to -1
- Initialize w and b as zero.

- \circ W_1 , $W_2 = 0$ and b = 0
- Let's calculate error and compare the true label and the prediction
 - \blacksquare sample1_prediction = 1
 - \blacksquare sample1 error = -1 1 = -2
- \circ If error != o
 - *Updating the weights*
 - W1 = O + (-2)*O = O
 - W2 = O + (-2)*O = O
 - *Updating the bias*
 - B = O + (-2) = -2
- $o W_1, W_2 = o \text{ and } b = -2$

	AND		1
l ₁	l ₂	out	
0	0	•	-1
0	1	0	-1
1	0	d	-1
1	1	1	

$$error = y - \varphi(w^Tx + b)$$

 $W = w + error # x$
 $B = b + error$

- **Input:** Training examples for the AND gate problem?
 - Input is clear.
 - O Map the out to -1 and 1 s.t., 1 maps to 1 and 0 maps to -1
- Initialize w and b as zero.

- $0 W_1, W_2 = 0 ext{ and } b = -2$
- Let's calculate error and compare the true label and the prediction
 - *sample2 prediction* = -1
 - \blacksquare $sample2_error = -1 + 1 = 0$
- \circ If error != o
 - *Updating the weights*
 - *Updating the bias*
- \circ W₁, W₂ = 0 and b = -2

	AND		1
I ₁	l ₂	out	
0	0	•	-1
0	1	0	-1
1	0	d	-1
1	1	1	

$$error = y - \varphi(w^Tx + b)$$

 $W = w + error * x$
 $B = b + error$

- **Input:** Training examples for the AND gate problem?
 - o Input is clear.
 - O Map the out to -1 and 1 s.t., 1 maps to 1 and 0 maps to -1
- Initialize w and b as zero.

- o $W_1, W_2 = o \text{ and } b = -2$
- Let's calculate error and compare the true label and the prediction
 - sample3 prediction = -1
 - \blacksquare $sample3_error = -1 + 1 = 0$
- \circ If error != o
 - *Updating the weights*
 - Updating the bias
- \circ W₁, W₂ = 0 and b = -2

	AND]
l ₁	l ₂	out	
0	0	•	-1
0	1	0	-1 -1
1	0	d	-1
1	1	1	

$$error = y - \varphi(w^Tx + b)$$

 $W = w + error x$
 $B = b + error$

- **Input:** Training examples for the AND gate problem?
 - Input is clear.
 - O Map the out to -1 and 1 s.t., 1 maps to 1 and 0 maps to -1
- Initialize w and b as zero.

- $0 W_1, W_2 = 0 ext{ and } b = -2$
- Let's calculate error and compare the true label and the prediction
 - sample4 prediction = -1
 - \blacksquare sample 4 error = 1 + 1 = 2
- \circ If error != o
 - *Updating the weights*
 - W1 = O + (2)*1 = 2
 - W2 = 0 + (2)*1 = 2
 - *Updating the bias*
 - B = -2 + (2) = 0
- $o W_1, W_2 = 2 \text{ and } b = 0$

	AND		1
l ₁	l ₂	out	
0	0	•	-1
0	1	0	-1
1	0	d	-1
1	1	1	

$$error = y - \varphi(w^Tx + b)$$

 $W = w + error \not\approx x$
 $B = b + error$

- **Input:** Training examples for the AND gate problem?
 - o Input is clear.
 - O Map the out to -1 and 1 s.t., 1 maps to 1 and 0 maps to -1
- Initialize w and b as zero.

- $o W_1, W_2 = 2 \text{ and } b = 0$
- Let's calculate error and compare the true label and the prediction
 - *sample1_prediction* = 1
 - \blacksquare sample1 error = -1 -1 = -2
- \circ If error != o
 - *Updating the weights*
 - W1 = 2 + (-2)*0 = 2
 - W2 = 2 + (-2)*0 = 2
 - *Updating the bias*
 - B = o + (-2) = -2
- $0 W_1, W_2 = 2 \text{ and } b = -2$

AND			
l ₁	l ₂	out	
0	0	•	-1
0	1	0	-1
1	0	d	-1
1	1	1	

$$error = y - \varphi(w^Tx + b)$$

 $W = w + error # x$
 $B = b + error$

- **Input:** Training examples for the AND gate problem?
 - Input is clear.
 - O Map the out to -1 and 1 s.t., 1 maps to 1 and 0 maps to -1
- Initialize w and b as zero.

- \circ W₁, W₂ = 2 and b = -2
- Let's calculate error and compare the true label and the prediction
 - sample2_prediction = 1
 - *sample2_error* = -1 -1 = -2
- \circ If error != o
 - *Updating the weights*
 - W1 = 2 + (-2)*0 = 2
 - W2 = 2 + (-2)*0 = 2 Error is made intentionally (try correcting
 - *Updating the bias*

•
$$B = -2 + (-2) = -4$$

$$\circ$$
 W₁, W₂ = 2 and b = -4

	AND		
	out	l ₂	l ₁
-1	•	0	0
-1	0	1	0
-1	d	0	1
	1	1	1

$$error = y - \varphi(w^Tx + b)$$

 $W = w + error * x$
 $B = b + error$

- **Input:** Training examples for the AND gate problem?
 - o Input is clear.
 - O Map the out to -1 and 1 s.t., 1 maps to 1 and 0 maps to -1
- Initialize w and b as zero.

- \circ W₁, W₂ = 2 and b = -4
- Let's calculate error and compare the true label and the prediction
 - sample3 prediction = -1
 - \blacksquare $sample3_error = -1 + 1 = 0$
- \circ If error != o
 - *Updating the weights*
 - *Updating the bias*
- \circ W₁, W₂ = 2 and b = -4

	AND		
l ₁	12	out	
0	0	•	-1
0	1	0	-1
1	0	d	-1
1	1	1	

$$error = y - \varphi(w^Tx + b)$$

 $W = w + error \not\approx x$
 $B = b + error$

- **Input:** Training examples for the AND gate problem?
 - Input is clear.
 - O Map the out to -1 and 1 s.t., 1 maps to 1 and 0 maps to -1
- Initialize w and b as zero.

- \circ W₁, W₂ = 2 and b = -4
- Let's calculate error and compare the true label and the prediction
 - sample4 prediction = 1
 - \blacksquare sample4 error = 1 -1 = 0
- \circ If error != o
 - *Updating the weights*
 - *Updating the bias*
- \circ W₁, W₂ = 2 and b = -4

AND			
l ₁	l ₂	out	
0	0	•	-1
0	1	0	-1
1	0	d	-1
1	1	1	

$$error = y - \varphi(w^Tx + b)$$

 $W = w + error * x$
 $B = b + error$

- **Input:** Training examples for the AND gate problem?
 - o Input is clear.
 - O Map the out to -1 and 1 s.t., 1 maps to 1 and 0 maps to -1
- Initialize w and b as zero.

- \circ W₁, W₂ = 2 and b = -4
- Let's calculate error and compare the true label and the prediction
 - *sample1 prediction* = -1
 - \blacksquare sample1 error = -1 +1 = 0
- \circ If error != o
 - *Updating the weights*
 - Updating the bias
- \circ W₁, W₂ = 2 and b = -4

AND			
l ₁	l ₂	out	
0	0	•	-1
0	1	0	-1 -1
1	0	d	-1
1	1	1	

$$error = y - \varphi(w^Tx + b)$$

 $W = w + error * x$
 $B = b + error$

- **Input:** Training examples for the AND gate problem?
 - o Input is clear.
 - O Map the out to -1 and 1 s.t., 1 maps to 1 and 0 maps to -1
- Initialize w and b as zero.

- $0 W_1, W_2 = 2 ext{ and } b = -4$
- Let's calculate error and compare the true label and the prediction
 - *sample2 prediction* = -1
 - \blacksquare sample 2 error = -1 + 1 = 0
- \circ If error != o
 - *Updating the weights*
 - *Updating the bias*
- \circ W₁, W₂ = 2 and b = -4

AND			1
l ₁	l ₂	out	
0	0	•	-1
0	1	0	-1
1	0	d	-1
1	1	1	

$$error = y - \varphi(w^Tx + b)$$

 $W = w + error * x$
 $B = b + error$

- **Input:** Training examples for the AND gate problem?
 - Input is clear.
 - O Map the out to -1 and 1 s.t., 1 maps to 1 and 0 maps to -1
- Initialize w and b as zero.

- \circ W₁, W₂ = 2 and b = -4
- Let's calculate error and compare the true label and the prediction
 - sample3 prediction = -1
 - \blacksquare sample3 error = -1 +1 = 0
- \circ If error != o
 - *Updating the weights*
 - *Updating the bias*
- \circ W₁, W₂ = 2 and b = -4

AND			1
l ₁	l ₂	out	
0	0	•	-1
0	1	0	-1
1	0	d	-1
1	1	1	

$$error = y - \varphi(w^Tx + b)$$

 $W = w + error * x$
 $B = b + error$

- **Input:** Training examples for the AND gate problem?
 - Input is clear.
 - O Map the out to -1 and 1 s.t., 1 maps to 1 and 0 maps to -1
- Initialize w and b as zero.

Iteration=3

- \circ W₁, W₂ = 2 and b = -4
- Let's calculate error and compare the true label and the prediction
 - sample4 prediction = 1
 - \blacksquare sample4_error = 1 -1 = 0
- *If error != o*
 - Updating the weights
 - Updating the bias
- \circ W₁, W₂ = 2 and b = -4

No change in iteration 3 i.e, error was 0 for all the training examples. The model has converged.

• **Output:** W_1 , W_2 = 0.5 and b = -1

$$error = y - \varphi(w^Tx + b)$$

 $W = w + error # x$
 $B = b + error$

$$\mathbf{w}(n+1) = \mathbf{w}(n)$$
 if $\mathbf{w}^T \mathbf{x}(n) > 0$ and $\mathbf{x}(n)$ belongs to class \mathscr{C}_1
 $\mathbf{w}(n+1) = \mathbf{w}(n)$ if $\mathbf{w}^T \mathbf{x}(n) \le 0$ and $\mathbf{x}(n)$ belongs to class \mathscr{C}_2

$$\mathbf{w}(n+1) = \mathbf{w}(n) - \eta(n)\mathbf{x}(n) \qquad \text{if } \mathbf{w}^{T}(n)\mathbf{x}(n) > 0 \text{ and } \mathbf{x}(n) \text{ belongs to class } \mathscr{C}_{2}$$
$$\mathbf{w}(n+1) = \mathbf{w}(n) + \eta(n)\mathbf{x}(n) \qquad \text{if } \mathbf{w}^{T}(n)\mathbf{x}(n) \leq 0 \text{ and } \mathbf{x}(n) \text{ belongs to class } \mathscr{C}_{1}$$

Assumptions:

- Learning rate $\eta = 1$
 - Initial Condition w(o) = o

- Misclassification for x(1), x(2)..., $x(n) \in C_1$
 - $\circ w(n+1)$
 - $\blacksquare = w(n) + x(n)$
 - \circ w(o) = o;
 - $\mathbf{w}(1) = x(0)$
 - w(2) = w(1) + x(1)
 - $w(n+1) = x(0) + x(1) + x(2) + \dots + x(n) ---- (I)$
- Since C_1 and C_2 are linearly separable, there exists optimal \mathbf{w}_0 such that $\mathbf{w}_0^T x(n) > 0$ for $x(1), x(2), x(n) \in C_1$
 - Let α be a positive number

- Multiplying w_o^T both the sides of the equation (I)

 - $\circ w_0^T w(n+1) >= n\alpha$
- Cauchy-Schwarz inequality for two vectors u, v
 - $||u||^2||v||^2 >= [uv]^2$
 - $||w_0^T||^2 ||w(n+1)||^2 >= [w_0^T w(n+1)]^2$
- $||\mathbf{w}_{0}^{T}||^{2}||\mathbf{w}(\mathbf{n}+1)||^{2} >= n^{2}\alpha^{2}$
 - $||w(n+1)||^2 >= n^2 \alpha^2 / ||w_0^T||^2 \dots (II)$

- $w(k+1) = w(k) + x(k), k = 1, 2, ...n \text{ and } x(k) \in C_1$
- By taking the squared Euclidean norm • $||w(k+1)||^2 = ||w(k)||^2 + ||x(k)||^2 + 2w^T(k)x(k)$
- Misclassification for x(1), x(2)..., x(n) ε C₁ i.e. w^T(k)x(k) < 0 $||w(k+1)||^2 <= ||w(k)||^2 + ||x(k)||^2$
- $||w(k+1)||^2 ||w(k)||^2 \le ||x(k)||^2$ for k = 1, 2, ...n
- $\bullet \quad \mathbf{w}(\mathbf{O}) = \mathbf{O}$

$$||w(n+1)||^{2} \leq \sum_{i=1}^{n} ||x(k)||^{2}$$
$$||w(n+1)||^{2} \leq n\beta \qquad \beta = \max_{x(n)\in C_{1}} ||x(k)||^{2}$$

Conflict

$$\|\mathbf{w}(n+1)\|^2 \ge \frac{n^2\alpha^2}{\|\mathbf{w}_0\|^2}$$

$$\|\mathbf{w}(n+1)\|^2 \le \sum_{k=1}^n \|\mathbf{x}(k)\|^2 \le n\beta$$

• n cannot be larger than some value n_{max} for which both are satisfied:

$$\frac{n_{\max}^2 \alpha^2}{\|\mathbf{w}_0\|^2} = n_{\max} \beta \qquad \qquad n_{\max} = \frac{\beta \|\mathbf{w}_0\|^2}{\alpha^2}$$

- ullet Weight update algorithm must terminate after n_{max} iterations.
 - If the data are linearly separable, perceptron is guaranteed to converge
- There is no unique solution for w_o (optimal weights) and n_{max} (maximum number of iterations).
- Fixed Increment Convergence Theorem:
 - For some $n_o <= n_{max}$, the perceptron converges such that $w(n_o) = w(n_o + 1) = w(n_o + 2) =$
 - \blacksquare n_o : optimal number of iterations

Loss: Perceptron and Logistic Regression

$$\mathcal{L}_{\mathrm{perc}}(x,y) = \begin{cases} 0 & \text{if } y\Phi(w^Tx) > 0 \\ -y\Phi(w^Tx) & \text{if } y\Phi(w^Tx) \leq 0 \end{cases}$$

Loss function for perceptron

$$\mathcal{L}_{\mathrm{lr}}(x,y) = \begin{cases} -y\Phi(w^Tx) + log(1+e^{y\Phi(w^Tx)}) & \text{if } y = +1 \text{ (positive)} \\ log(1+e^{-y\Phi(w^Tx)}) & \text{if } y = -1 \text{ (negative)} \end{cases}$$

Loss function for logistic regression

Loss: Perceptron and Logistic Regression

References

- 1. https://www.acm.org/media-center/2019/march/turing-award-2018
- 2. Chapter 3, Neural Networks: A Comprehensive Foundation (2nd Edition) 2nd Edition by Simon Haykin

