Introduction to Algorithms 6.046J/18.401J

LECTURE 17

Shortest Paths I

- Properties of shortest paths
- Dijkstra's algorithm
- Correctness
- Analysis
- Breadth-first search

Prof. Erik Demaine

Paths in graphs

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$. The *weight* of path $p = v_1 \to v_2 \to \cdots \to v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

Paths in graphs

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$. The *weight* of path $p = v_1 \to v_2 \to \cdots \to v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

Example:

Shortest paths

A shortest path from u to v is a path of minimum weight from u to v. The shortest-path weight from u to v is defined as

 $\delta(u, v) = \min\{w(p) : p \text{ is a path from } u \text{ to } v\}.$

Note: $\delta(u, v) = \infty$ if no path from u to v exists.

Well-definedness of shortest paths

If a graph *G* contains a negative-weight cycle, then some shortest paths do not exist.

Well-definedness of shortest paths

If a graph *G* contains a negative-weight cycle, then some shortest paths do not exist.

Example:

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Triangle inequality

Theorem. For all $u, v, x \in V$, we have $\delta(u, v) \leq \delta(u, x) + \delta(x, v)$.

Triangle inequality

Theorem. For all $u, v, x \in V$, we have $\delta(u, v) \leq \delta(u, x) + \delta(x, v)$.

Proof.

Single-source shortest paths (nonnegative edge weights)

Problem. Assume that $w(u, v) \ge 0$ for all $(u, v) \in E$. (Hence, all shortest-path weights must exist.) From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.

IDEA: Greedy.

- 1. Maintain a set *S* of vertices whose shortest-path distances from *s* are known.
- 2. At each step, add to S the vertex $v \in V S$ whose distance estimate from S is minimum.
- 3. Update the distance estimates of vertices adjacent to ν .

Dijkstra's algorithm

$$d[s] \leftarrow 0$$
for each $v \in V - \{s\}$
do $d[v] \leftarrow \infty$
 $S \leftarrow \emptyset$
 $Q \leftarrow V$
 $\Rightarrow Q$ is a priority queue maintaining $V - S$, keyed on $d[v]$

Dijkstra's algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
    do d[v] \leftarrow \infty
S \leftarrow \emptyset
Q \leftarrow V
                   \triangleright Q is a priority queue maintaining V-S,
                     keyed on d[v]
while Q \neq \emptyset
    do u \leftarrow \text{Extract-Min}(Q)
         S \leftarrow S \cup \{u\}
         for each v \in Adj[u]
             do if d[v] > d[u] + w(u, v)
                      then d[v] \leftarrow d[u] + w(u, v)
```


Dijkstra's algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
    do d[v] \leftarrow \infty
S \leftarrow \emptyset
                  \triangleright Q is a priority queue maintaining V-S,
Q \leftarrow V
                    keyed on d[v]
while Q \neq \emptyset
    do u \leftarrow \text{Extract-Min}(Q)
        S \leftarrow S \cup \{u\}
        for each v \in Adi[u]
                                                            relaxation
             do if d[v] > d[u] + w(u, v)
                     then d[v] \leftarrow d[u] + w(u, v)
                                       Implicit Decrease-Key
```


Graph with nonnegative edge weights:

S: {}

S: { A }

S: { A }

S: { A, C }

Correctness — Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

Correctness — Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

Proof. Suppose not. Let v be the first vertex for which $d[v] < \delta(s, v)$, and let u be the vertex that caused d[v] to change: d[v] = d[u] + w(u, v). Then,

$$d[v] < \delta(s, v)$$
 supposition
 $\leq \delta(s, u) + \delta(u, v)$ triangle inequality
 $\leq \delta(s, u) + w(u, v)$ sh. path \leq specific path
 $\leq d[u] + w(u, v)$ v is first violation

Contradiction.

Correctness — Part II

Lemma. Let u be v's predecessor on a shortest path from s to v. Then, if $d[u] = \delta(s, u)$ and edge (u, v) is relaxed, we have $d[v] = \delta(s, v)$ after the relaxation.

Correctness — Part II

Lemma. Let u be v's predecessor on a shortest path from s to v. Then, if $d[u] = \delta(s, u)$ and edge (u, v) is relaxed, we have $d[v] = \delta(s, v)$ after the relaxation.

Proof. Observe that $\delta(s, v) = \delta(s, u) + w(u, v)$. Suppose that $d[v] > \delta(s, v)$ before the relaxation. (Otherwise, we're done.) Then, the test d[v] > d[u] + w(u, v) succeeds, because $d[v] > \delta(s, v) = \delta(s, u) + w(u, v) = d[u] + w(u, v)$, and the algorithm sets $d[v] = d[u] + w(u, v) = \delta(s, v)$.

Correctness — Part III

Theorem. Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Correctness — Part III

Theorem. Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Proof. It suffices to show that $d[v] = \delta(s, v)$ for every $v \in V$ when v is added to S. Suppose u is the first vertex added to S for which $d[u] > \delta(s, u)$. Let y be the first vertex in V - S along a shortest path from s to u, and let x be its predecessor:

Correctness — Part III (continued)

Since u is the first vertex violating the claimed invariant, we have $d[x] = \delta(s, x)$. When x was added to S, the edge (x, y) was relaxed, which implies that $d[y] = \delta(s, y) \le \delta(s, u) < d[u]$. But, $d[u] \le d[y]$ by our choice of u. Contradiction.

Analysis of Dijkstra

```
while Q \neq \emptyset

\mathbf{do} \ u \leftarrow \text{Extract-Min}(Q)

S \leftarrow S \cup \{u\}

\mathbf{for} \ \text{each} \ v \in Adj[u]

\mathbf{do} \ \mathbf{if} \ d[v] > d[u] + w(u, v)

\mathbf{then} \ d[v] \leftarrow d[u] + w(u, v)
```


Analysis of Dijkstra


```
while Q \neq \emptyset

\mathbf{do} \ u \leftarrow \text{Extract-Min}(Q)

S \leftarrow S \cup \{u\}

\mathbf{for} \ \text{each} \ v \in Adj[u]

\mathbf{do} \ \mathbf{if} \ d[v] > d[u] + w(u, v)

\mathbf{then} \ d[v] \leftarrow d[u] + w(u, v)
```


Analysis of Dijkstra

```
|V|
times
```

```
while Q \neq \emptyset

do u \leftarrow \text{Extract-Min}(Q)

S \leftarrow S \cup \{u\}

for each v \in Adj[u]

do if d[v] > d[u] + w(u, v)

times

then d[v] \leftarrow d[u] + w(u, v)
```


Analysis of Dijkstra

```
times while Q \neq \emptyset
do u \leftarrow \text{Extract-Min}(Q)
S \leftarrow S \cup \{u\}
for each \ v \in Adj[u]
do \text{ if } d[v] > d[u] + w(u, v)
then \ d[v] \leftarrow d[u] + w(u, v)
```

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

Analysis of Dijkstra

```
times while Q \neq \emptyset
do u \leftarrow \text{Extract-Min}(Q)
S \leftarrow S \cup \{u\}
for each \ v \in Adj[u]
do \text{ if } d[v] > d[u] + w(u, v)
then \ d[v] \leftarrow d[u] + w(u, v)
```

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

Time =
$$\Theta(V \cdot T_{\text{EXTRACT-MIN}} + E \cdot T_{\text{DECREASE-KEY}})$$

Note: Same formula as in the analysis of Prim's minimum spanning tree algorithm.

$$Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

T_{EXTRACT-MIN} T_{DECREASE-KEY}

Total

$$Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

TEXTRACT-MIN TDECREASE-KEY

Total

array

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Q $T_{\mathrm{EXTRACT\text{-}MIN}}$ $T_{\mathrm{DECREASE\text{-}KEY}}$ Total array O(V) O(1) $O(V^2)$ binary heap $O(\lg V)$ $O(\lg V)$ $O(\lg V)$ $O(\lg V)$

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Total TEXTRACT-MIN TDECREASE-KEY O(1)array binary $O(\lg V)$ $O(\lg V)$ $O(E \lg V)$ heap **Fibonacci** $O(E + V \lg V)$ $O(\lg V)$ amortized amortized heap worst case

Suppose that w(u, v) = 1 for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

Suppose that w(u, v) = 1 for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

• Use a simple FIFO queue instead of a priority queue.

Suppose that w(u, v) = 1 for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

• Use a simple FIFO queue instead of a priority queue.

```
Breadth-first search

while Q \neq \emptyset

do u \leftarrow \text{Dequeue}(Q)

for each v \in Adj[u]

do if d[v] = \infty

then d[v] \leftarrow d[u] + 1

Enqueue(Q, v)
```


Suppose that w(u, v) = 1 for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

• Use a simple FIFO queue instead of a priority queue.

```
Breadth-first search

while Q \neq \emptyset

do u \leftarrow \text{Dequeue}(Q)

for each v \in Adj[u]

do if d[v] = \infty

then d[v] \leftarrow d[u] + 1

Enqueue(Q, v)
```

Analysis: Time = O(V + E).

Q:

Q: abdcegifh

Q: abdcegifh

Correctness of BFS

```
while Q \neq \emptyset

\mathbf{do} \ u \leftarrow \mathrm{DEQUEUE}(Q)

\mathbf{for} \ \mathrm{each} \ v \in Adj[u]

\mathbf{do} \ \mathbf{if} \ d[v] = \infty

\mathbf{then} \ d[v] \leftarrow d[u] + 1

\mathrm{ENQUEUE}(Q, v)
```

Key idea:

The FIFO *Q* in breadth-first search mimics the priority queue *Q* in Dijkstra.

• Invariant: v comes after u in Q implies that d[v] = d[u] or d[v] = d[u] + 1.