Devoir #8

A remettre jeudi 9 décembre

- 1. Calculez le flux du champ vectoriel ${\bf v}=\hat i-\hat j+\hat k$ à travers une surface A qui est un disque de rayon r=1 perpendiculaire à l'axe des x positionné à l'origine.
- 2. Vérifiez le théorème de la divergence en calculant $\int_{\mathcal{V}} \nabla \cdot \mathbf{v} \ dV$ et $\int_{\mathcal{S}} \hat{n} \cdot \mathbf{v} \ dA$ et en montrant qu'ils sont égaux:
 - 1. $\mathbf{v}=2\hat{i}-\hat{j}+4\hat{k}$ pour le prisme rectangulaire $0\leq x\leq 1$, $0\leq y\leq 3,\, 0\leq z\leq 2$.
- 3. Si ${\mathcal S}$ est une surface lisse, fermée, orientée qui limite le volume V, montrez que:
 - 1. $\int_{\mathcal{S}} \hat{n} \ dA = \mathbf{0}$. Indice: calculez $\int_{\mathcal{S}} \hat{n} \cdot \mathbf{a} \ dA = \mathbf{0}$ pour tout vecteur constant \mathbf{a} .
 - 2. $\int_{\mathcal{S}} \hat{n} \cdot (x\hat{i}) dA = V.$
- 4. Calculez l'intégrale de ligne $\int_{\mathcal{C}} \mathbf{v} \cdot d\mathbf{R}$ avec $\mathbf{v} = xz^2\hat{i} 3\hat{j} + 2y\hat{k}$ pour la ligne brisée \mathcal{C} connectant les deux points (1,1,1) et (1,2,3), et ensuite qui connecte avec (3,2,1).
- 5. Montrez que dans un champ gravitationnel, le travail (i.e. l'énergie nécessaire définie comme $W = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{R}$) pour amener une particule du point A au point B ne dépend pas de la trajectoire prise. Indice: allez lire le Theoreme 16.10.1, et montrez que le champ de force gravitationelle total d'une somme de masses est toujours irrotationnel.

6. Tangente et normale: Soit une ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$:

Un exemple de courbe

- a) Obtenez la pente $\frac{dy}{dx}$ à x=a/2 pour la partie où y est positif.
- b) Obtenez un vecteur normal (i.e. perpendiculaire) à la courbe à x=a/2 pour la partie où y est positif. *Indice*: vous pouvez supposer que cette ellipse est une courbe de niveau d'un champ scalaire en 2D.

7. Soit une gaussienne $f(x)=e^{-x^2-y^2}$. Si vous considérez un disque de rayon 2 autour de cette gaussienne, quelle est l'aire de cette surface bombée ?

8. Question qui ne vaut aucun point: Laurent Duvernay Tardif dans le devoir #7 a atterri au centre du terrain de football du PEPS. Vrai ou Faux?