Number Representation

Denary

The denary number system (also known as decimal) uses 10 symbols (0–9) to represent numbers. It is a base-10 number system.

Humans use it because we have 10 fingers.

Binary

Computers don't have fingers, they have circuits. These circuits can be in one of two states: on or off. So, they use a base-2 number system.

$$On = 1$$

$$Off = 0$$

Each place in a binary number has a value.

These go up in multiples of 2.

128	64	32	16	8	4	2	1	_ 1
0	0	0	0	0	0	0	1	

Each place in a binary number has a value.

These go up in multiples of 2.

128	64	32	16	8	4	2	1	_ 2
0	0	0	0	0	0	1	0	

Each place in a binary number has a value.

These go up in multiples of 2.

128	64	32	16	8	4	2	1	_ 2
0	0	0	0	0	0	1	1	- 3

Each place in a binary number has a value.

These go up in multiples of 2.

128	64	32	16	8	4	2	1	_ 1
0	0	0	0	0	1	0	0	- 4

Each place in a binary number has a value.

These go up in multiples of 2.

1	128	64	32	16	8	4	2	1	
	0	0	0	0	0	1	0	1	_ 5

Each place in a binary number has a value.

These go up in multiples of 2.

128	64	32	16	8	4	2	1	– 6
0	0	0	0	0	1	1	0	- 0

Each place in a binary number has a value.

These go up in multiples of 2.

128	64	32	16	8	4	2	1	
0	0	0	0	0	1	1	1	_

Each place in a binary number has a value.

These go up in multiples of 2.

18	128	64	32	16	8	4	2	1	_ 0
	0	0	0	0	1	0	0	0	-0

Denary to Binary

Start by writing out the place values.

Then write a 1 underneath the place values that add up to the denary number.

Denary to Binary

Start by writing out the place values.

Then write a 1 underneath the place values that add up to the denary number.

Finally, fill in the remaining spaces with 0s.

16-bit Example

255 is the highest value that can be stored in 8-bit binary.

By increasing the number of bits to 16 we can store a maximum value of 65,535.

32,768	16,384	8,192	4,096	2,048	1,024	512	256	128	64	32	16	&	4	2	
1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

$$32,768 + 2 = 32,770$$

Hexadecimal

Hexadecimal is often used as a shorthand for binary as it is quicker for humans to write.

Hexadecimal is a base-16 number system, which means it uses 16 symbols.

0	1	2	3	4	5	6	7	8	9	A	В	С	D	Ε	F
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

It starts by using the symbols 0–9 and then switches the letters A–F.

This is so that only single digits are used.

$$F = 15$$

Hexadecimal to Binary

Hexadecimal numbers usually consist of pairs of digits as this is equivalent to 1 byte (8 bits).

Converting between hexadecimal and binary is simple. You just take each character and convert it into the equivalent binary number.

Hex		D						
Decimal		1	3			1	0	
Binary	1	1	0	1	1	0	1	0

Finally, you join the two binary numbers together.

DA = 11011010

Binary to Hexadecimal

To convert from binary to hexadecimal we simply reverse the process.

Binary	1	1	0	1	1	0	1	0
Decimal		1	3			1	0	
Hex						A	4	

The easiest way to convert a hexadecimal number to denary is to convert it to binary first and then from binary into denary.

16-bit Example

Here is an example of the conversion of a 16-bit binary number.

Binary	1	1	0	1	1	0	0	1	1	0	1	0	0	0	0	1
Decimal	13				9				10				1			
Hex	D				9				A				1			

A 16-bit binary number becomes a 4 digit hexadecimal number.

D9A1