

Lecture 18 Filter Banks

Last Time

- Exchange of filtering and expanders
- Today:
 - Exchange of filtering and compressors
 - Polyphase decomposition
 - Multi-rate Filter Banks
 - Subtleties in Time-Frequency tiling
 - Perfect reconstruction with non-ideal filters
 - Polyphase filter banks

• We can decomposed an impulse response to: M-1

$$h[n] = \sum_{k=0}^{m-1} h_k[n-k]$$

• Define:
$$h_k[n] \longrightarrow \bigcup_{M} e_k[n]$$

$$e_k[n] = h_k[nM]$$

$$h_0[n] \longrightarrow \bigoplus_{n} e_0[n]$$

$$e_1[n] \longrightarrow \bigoplus_{n} e_1[n]$$

$$e_k[n] \longrightarrow [\uparrow_{\mathbf{M}}] \longrightarrow h_k[n]$$

recall upsampling ⇒ scaling

$$H_k(z) = E_k(z^M)$$

Also, recall:

$$h[n] = \sum_{k=0}^{M-1} h_k[n-k]$$

So,

$$H(z) = \sum_{k=0}^{M-1} E_k(z^M) z^{-k}$$

$$H(z) = \sum_{k=0}^{M-1} E_k(z^M) z^{-k}$$

Why should you care?

$$x[n] \longrightarrow H(z) \longrightarrow y[n] \longrightarrow \bigcup M \longrightarrow w[n] = y[nM]$$

- Problem:
 - –Compute all y[n] and then throw away -wasted computation!
 - For FIR length N ⇒ N mults/unit time
 - –Can interchange Filter with compressor?
 - Not in general!

$$x[n] \longrightarrow H(z) \longrightarrow y[n] \longrightarrow [M] \longrightarrow w[n] = y[nM]$$

$$x[n] \longrightarrow H(z) \longrightarrow y[n] \longrightarrow [\downarrow M] \longrightarrow w[n] = y[nM]$$

Interchange filter with decimation

now, what can we do?

$$x[n] \longrightarrow \underbrace{H(z)} \longrightarrow y[n] \longrightarrow \underbrace{\downarrow \mathbf{M}} \longrightarrow w[n] = y[nM]$$

Interchange filter with decimation

Computation:

Each Filter: N/M *(1/M) mult/unit time

Total: N/M mult/unit time

Multirate FilterBank

- $h_0[n]$ is low-pass, $h_1[n]$ is high-pass
- Often $h_1[n] = e^{j\pi n} h_0[n]$ or $H_1(e^{j\omega}) = H_0(e^{j(w-\pi)})$

Perfect Reconstruction Ideal Filters

Non ideal LP and HP Filters

Perfect Reconstruction non-Ideal Filters

Perfect Reconstruction non-Ideal Filters

$$Y(e^{j\omega}) = \frac{1}{2} \left[G_0(e^{j\omega}) H_0(e^{j\omega}) + G_1(e^{j\omega}) H_1(e^{j\omega}) \right] X(e^{j\omega})$$

$$+ \frac{1}{2} \left[G_0(e^{j\omega}) H_0(e^{j(\omega-\pi)}) + G_1(e^{j\omega}) H_1(e^{j(\omega-\pi)}) \right] X(e^{j(\omega-\pi)})$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \qquad \uparrow \qquad \qquad \qquad \uparrow \qquad \qquad \qquad \qquad \uparrow \qquad \qquad \qquad \qquad \uparrow \qquad \qquad \qquad \qquad \downarrow$$
aliasing need to cancel!

Quadrature Mirror Filters - perfect recon

QMF - mirror around pi/2
$$H_1(e^{j\omega})=H_0(e^{j(\omega-\pi)})$$
 $G_0(e^{j\omega})=2H_0(e^{j\omega})$ $G_1(e^{j\omega})=-2H_1(e^{j\omega})$

Quadrature Mirror Filters - perfect recon

$$H_1(e^{j\omega}) = H_0(e^{j(\omega-\pi)})$$

$$G_0(e^{j\omega}) = 2H_0(e^{j\omega})$$

QMF - mirror around pi/2
$$H_1(e^{j\omega})=H_0(e^{j(\omega-\pi)})$$
 $G_0(e^{j\omega})=2H_0(e^{j\omega})$ $G_1(e^{j\omega})=-2H_1(e^{j\omega})$

Example Haar:

$$e_{00} = h_0[2n]$$

 $e_{01} = h_0[2n+1]$
 $e_{10} = h_1[2n] = e^{j2\pi n}h_0[2n] = e_{00}[n]$
 $e_{11} = h_1[2n+1] = e^{j2\pi n}e^{j\pi}h_0[2n+1] = -e_{01}[n]$

Polyphase Filter-Bank

Polyphase Filter-Bank

