Plano de Aquisição de Conhecimentos essenciais DERIVAÇÃO

Plano de Aquisição de Conhecimentos Essenciais

Regras de Derivação

A.Conhecimento

Reproduza a regra indicada no cálculo da derivada de cada uma das seguintes funções:

Regra:
$$(f^p)' = pf^{p-1}f'$$

1.
$$f(x) = x^4$$

2.
$$f(x) = x^9$$

Nota:
$$(af)' = af'$$

3.
$$f(x) = 10x$$

4.
$$f(x) = 10x^4$$

5.
$$f(x) = \frac{1}{2}x^4$$

6.
$$f(x) = \frac{1}{2}x^9$$

7.
$$f(x) = \frac{3x^7}{5}$$

8.
$$f(x) = (3x)^4$$

9.
$$f(x) = (4x)^9$$

10.
$$f(x) = \frac{2}{5}(3x)^4$$

11.
$$f(x) = \frac{(3x)^4}{5}$$

12.
$$f(x) = \frac{2(3x)^7}{5}$$

13.
$$f(x) = 2\left(\frac{3}{2}x\right)^7$$

Nota:
$$\sqrt[q]{f^p} = f^{p/q}$$

14.
$$f(x) = \sqrt{x}$$

15.
$$f(x) = \sqrt[3]{x^2}$$

16.
$$f(x) = \sqrt[3]{(3x)^2}$$

17.
$$f(x) = \frac{\sqrt[4]{x^5}}{3}$$

18.
$$f(x) = \sqrt[3]{\frac{x}{27}}$$

19.
$$f(x) = \sqrt[3]{\frac{x^2}{27}}$$

$$20. \ \ f(x) = \frac{1}{2} \sqrt[3]{\frac{x^2}{4}}$$

Nota:
$$\frac{1}{f^p} = f^{-p}$$

21.
$$f(x) = \frac{1}{x^3}$$

22.
$$f(x) = \frac{1}{x^{-5}}$$

23.
$$f(x) = \frac{3}{x^4}$$

24.
$$f(x) = \frac{1}{(3x)^2}$$

25.
$$f(x) = \frac{2}{(3x)^2}$$

26.
$$f(x) = \frac{1}{\sqrt[3]{x^2}}$$

27.
$$f(x) = \frac{2}{\sqrt[3]{x^2}}$$

28.
$$f(x) = \frac{2}{3\sqrt[3]{x^4}}$$

29.
$$f(x) = \frac{3}{2\sqrt{(2x)^{-3}}}$$

30.
$$f(x) = \frac{\sqrt[3]{(2x)^2}}{2\sqrt{(2x)^{-3}}}$$

Plano de Aquisição de Conhecimentos Essenciais

Regras de Derivação

A.Conhecimento

Reproduza a regra de derivação indicada no cálculo da derivada de cada uma das seguintes funções:

Regra:
$$(f + g)' = f' + g'$$

$$1. \quad f(x) = x^2 + \frac{x}{5}$$

2.
$$f(x) = \frac{(2x)^6}{7} + \frac{3x}{5}$$

3.
$$f(x) = x^3 + \frac{3x}{5} + \frac{1}{x^2}$$

4.
$$f(x) = \frac{\sqrt[3]{x}}{5} + \frac{x^3}{3}$$

5.
$$f(x) = \sqrt[3]{(2x)^2} + \frac{2x^3}{3}$$

6.
$$f(x) = \frac{\sqrt[3]{2x}}{7} + \frac{(2x)^3}{3}$$

7.
$$f(x) = \sqrt{x^3} - \frac{2}{\sqrt[3]{x^2}}$$

8.
$$f(x) = 3 - x\sqrt{x} + \frac{3x^2}{\sqrt{x^3}}$$

9.
$$f(x) = x^2 \sqrt{x} + \frac{3\sqrt[3]{x}}{\sqrt{x^3}}$$

10.
$$f(x) = (x-1)^3$$

11.
$$f(x) = \frac{3(2x-1)^2}{4}$$

12.
$$f(x) = \frac{(x^4 - 1)^2}{4}$$

13.
$$f(x) = \frac{3(x^3 + 3)^2}{2}$$

14.
$$f(x) = \frac{\sqrt[3]{(2x-1)^2}}{5}$$

15.
$$f(x) = \frac{3}{2\sqrt[3]{(x+2)^2}}$$

16.
$$f(x) = \frac{2}{\sqrt[3]{x^3 - 2}}$$

17.
$$f(x) = \frac{(\sqrt{x} + 2)^2}{2}$$

18.
$$f(x) = \frac{1}{\sqrt[3]{x^3 + 8}} - \frac{\sqrt{x+5}}{2}$$

19.
$$f(x) = \frac{1}{(x^2 - 2)^2} - \sqrt{\frac{1}{x+1}}$$

20.
$$f(x) = \frac{3}{(\sqrt{x}+2)^2} - 2(\sqrt[3]{x}+3)^2$$

Regra:
$$(f * g)' = f'g + fg'$$

1.
$$f(x) = \sqrt{x(x-1)}$$

2.
$$f(x) = (x^2 - 2)(3 - \frac{1}{x^2})$$

3.
$$f(x) = (x^3 - 2x)(\sqrt{3x} - \frac{1}{x})$$

Regra:
$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

1.
$$f(x) = \frac{(3x-2x^2)}{x-1}$$

$$2. \quad f(x) = \frac{6x - 2x\sqrt{x}}{9 - x}$$

3.
$$f(x) = \frac{4x^3 - \sqrt[3]{x^2}}{2x - 4}$$

4.
$$f(x) = \frac{(x-1)(2x^2+1)}{x-2}$$

Plano de Aquisição de Conhecimentos Essenciais

Regras de Derivação

A.Conhecimento

Reproduza a regra de derivação indicada no cálculo da derivada de cada uma das seguintes funções:

Regra:
$$(e^f)' = f'e^f$$

 $(a^f)' = f'a^f ln(a)$

1.
$$f(x) = e^x$$

2.
$$f(x) = e^{4x}$$

3.
$$f(x) = 10^{2x+1}$$

4.
$$f(x) = 5e^{2x} + 3$$

$$5. \quad f(x) = e^{x^2}$$

6.
$$f(x) = e^{1+2x^2}$$

7.
$$f(x) = 2e^{x^2} + 1$$

8.
$$f(x) = e^{\sqrt{x}}$$

$$9. \quad f(x) = e^{\sqrt{x+1}}$$

10.
$$f(x) = e^{3\sqrt{x+1}}$$

11.
$$f(x) = 3^{\sqrt[3]{2x+1}}$$

12.
$$f(x) = \sqrt{e^{2x-1}}$$

13.
$$f(x) = (\sqrt{e^{2x} + 2})$$

14.
$$f(x) = \sqrt[3]{e^{2x-1}}$$

15.
$$f(x) = \frac{\sqrt[3]{e^{x^2}}}{5}$$

16.
$$f(x) = e^{1/x}$$

17.
$$f(x) = \frac{1}{e^{2x}}$$

18.
$$f(x) = (e^x + e^{-x})$$

Regra:
$$\left(\ln f\right)' = \frac{f'}{f}$$

$$\left(\log_a f\right)' = \frac{f'}{f \ln a}$$

1.
$$f(x) = ln(x)$$

2.
$$f(x) = ln(2x)$$

3.
$$f(x) = ln(x+5)$$

4.
$$f(x) = ln(x) + 5$$

5.
$$f(x) = ln(x^2 + 2)$$

6.
$$f(x) = ln(2x^3)$$

7.
$$f(x) = ln(\sqrt{x})$$

8.
$$f(x) = log_2(3x^2)$$

9.
$$f(x) = ln(3\sqrt{x} + 5)$$

10.
$$f(x) = ln(\sqrt[3]{x^2} + 3)$$

11.
$$f(x) = ln(3x^3 + \sqrt[3]{2x})$$

12.
$$f(x) = ln(x + e^{-x})$$

13.
$$f(x) = ln(1 + e^{\sqrt{x}})$$

14.
$$f(x) = ln(e^{\sqrt{x}} + x^2)$$

15.
$$f(x) = e^{\sqrt{\ln(x+1)}}$$

16.
$$f(x) = \ln^2(\sqrt{x+1})$$

17.
$$f(x) = \sqrt{ln(x^2 + 1)}$$

18.
$$f(x) = \frac{\ln^3(x^2+1)}{5}$$

19.
$$f(x) = \sqrt[3]{\ln^2(x+2)} + 3$$

20.
$$f(x) = \ln^{-2}(e^{x^2} + 2)$$

Plano de Aquisição de Conhecimentos Básicos

Regras de Derivação

A.Conhecimento

Reproduza a regra de derivação indicada no cálculo da derivada de cada uma das seguintes funções:

Regra:
$$(sen f)' = f' cosf$$

 $(cos f)' = -f' senf$

1.
$$f(x) = sen(3x)$$

$$2. \quad f(x) = sen(x+1)$$

3.
$$f(x) = sen(x^2)$$

4.
$$f(x) = cos(2x^2)$$

5.
$$f(x) = cos(\sqrt{x})$$

6.
$$f(x) = sen^{2}(x)$$

7.
$$f(x) = 2sen^3(x+1)$$

8.
$$f(x) = sen(e^{2x})$$

9.
$$f(x) = cos(ln(x))$$

$$10. \ f(x) = \frac{e^{2senx}}{6}$$

11.
$$f(x) = \sqrt{1 + e^{sen(x)}}$$

12.
$$f(x) = e^{\cos^2(x)}$$

13.
$$f(x) = ln(cos(2x))$$

14.
$$f(x) = ln(sen(\frac{3}{x}))$$

15.
$$f(x) = sen(ln(\sqrt{x+1}))$$

16.
$$f(x) = ln(cos^2(e^x))$$

17.
$$f(x) = 3\cos^2(\ln(x^2+3))$$

18.
$$f(x) = \sqrt[3]{sen(x+1)^2}$$

19.
$$f(x) = \sqrt[3]{sen(e^x + 1)}$$

Regra:
$$(tg f)' = f' sec^2 f$$

 $(cotg f)' = -f' cosec^2 f$

$$1. \quad f(x) = tg(2x)$$

$$2. \quad f(x) = tg(x^3)$$

3.
$$f(x) = cotg(\sqrt{x})$$

4.
$$f(x) = cotg(\sqrt{x^2 + 1})$$

$$5. \quad f(x) = tg\left(\frac{2}{(\sqrt{x}+1)^2}\right)$$

6.
$$f(x) = \cot^2(x + \pi)$$

7.
$$f(x) = \sqrt{\cot g(2x^2)}$$

8.
$$f(x) = 2tg(e^x)$$

$$9. \quad f(x) = \cot g(e^{x+2})$$

10.
$$f(x) = tg(ln(x^2 + 1))$$

11.
$$f(x) = tg(sen(x))$$

12.
$$f(x) = tg^3(sen(3x))$$

13.
$$f(x) = \frac{\cot g(\sqrt[3]{e^x})}{3}$$

14.
$$f(x) = tg(sen(e^x))$$

15.
$$f(x) = \sqrt{\cot g(\ln(x))}$$

16.
$$f(x) = e^{tg(x+1)}$$

17.
$$f(x) = ln(cotg(\sqrt[3]{x^2}))$$

18.
$$f(x) = sen(cotg(\frac{2}{x^2}))$$

19.
$$f(x) = cos(tg(e^{x+1}))$$

Regra:
$$(sec f)' = f' secf tgf$$

 $(cosec f)' = -f' cosecf cotgf$

1.
$$f(x) = cosec(2x^2)$$

$$2. \quad f(x) = \csc(2x^2 + x)$$

$$3. \quad f(x) = \frac{sec(ln(x^2))}{3}$$

4.
$$f(x) = sec(\sqrt{e^{senx}})$$

5.
$$f(x) = \sec^2(sen(x))$$

6.
$$f(x) = \frac{sec(x)}{cos^2(x)}$$

7.
$$f(x) = ln(sec(2x))$$

8.
$$f(x) = e^{sec(x^2)}$$

Regra:
$$(arcsenf)' = \frac{f'}{\sqrt{1-f^2}}$$
$$(arccos f)' = -\frac{f'}{\sqrt{1-f^2}}$$

1.
$$f(x) = arcsen(3x)$$

2.
$$f(x) = arcsen(tg(x))$$

3.
$$f(x) = arcsen\sqrt{1-x^2}$$

4.
$$f(x) = arccos(\sqrt{1 - e^x})$$

5.
$$f(x) = arcsen^3(ln(x))$$

6.
$$f(x) = \sqrt{arccos(e^x)}$$

7.
$$f(x) = arcsen(ln(x^2 + 1))$$

8.
$$f(x) = \frac{e^{arcsen(3x)}}{4}$$

9.
$$f(x) = \arccos(e^x)(e^x + 1)$$

10.
$$f(x) = \frac{arcsen\sqrt{1-x^2}}{3\sqrt{1-x^2}}$$

11.
$$f(x) = \ln(\arcsin \sqrt{x})$$

Regra:
$$(arctgf)' = \frac{f'}{1+f^2}$$

 $(arcotg f)' = -\frac{f'}{1+f^2}$

1.
$$f(x) = arcotg(2x+1)$$

2.
$$f(x) = arctg(x^2)$$

3.
$$f(x) = arcotg(sen(x))$$

4.
$$f(x) = arctg(ln(x))$$

5.
$$f(x) = arctg(e^x)$$

6.
$$f(x) = (arctg(x^2))^2$$

7.
$$f(x) = \frac{arcotg(x)}{(1+x^2)}$$

$$8. \ f(x) = \frac{3\sqrt{arctg(e^x)}}{2}$$

Plano de Aquisição de Conhecimentos Essenciais Regras de Derivação

C.Aplicação

Aplique as regras de derivação no cálculo da derivada de cada uma das seguintes funções:

a.
$$f(x) = e^x$$

b.
$$f(x) = e^{4x}$$

c.
$$f(x) = 5e^{2x} + 3$$

d.
$$f(x) = ln(x)$$

e.
$$f(x) = ln(x+5)$$

f.
$$f(x) = ln(x) + 5$$

g.
$$f(x) = sen(3x)$$

h.
$$f(x) = sen(ln(x))$$

i.
$$f(x) = tg(x^3)$$

$$j. f(x) = sen(e^{2x})$$

k.
$$f(x) = sen^2(x)$$

1.
$$f(x) = sen(x^2)$$

m.
$$f(x) = cos(2x^2)$$

$$n. f(x) = cosec (2x^2)$$

o.
$$f(x) = x^3 - \frac{2x}{3} - \frac{1}{x}$$

p.
$$f(x) = \frac{2}{x^2} + \frac{3}{5x^5}$$

q.
$$f(x) = \sqrt{x^3} - \frac{2}{\sqrt[3]{x^2}}$$

q.
$$f(x) = \sqrt{x^3} - \frac{2}{\sqrt[3]{x^2}}$$
 r. $f(x) = 3 - x\sqrt{x} + \frac{3x^2}{\sqrt{x^3}}$

s.
$$f(x) = (x^2 - 2x)(\sqrt{3x} - \frac{1}{x})$$
 t. $f(x) = \frac{(3x - 2x^2)}{x - 1}$

t.
$$f(x) = \frac{(3x-2x^2)}{x-1}$$

u.
$$f(x) = \frac{6x - 2x\sqrt{x}}{9 - x}$$

$$v. f(x) = \frac{e^{2senx}}{6}$$

x.
$$f(x) = (1-x)2^{x+1}$$

z.
$$f(x) = ln(x + e^{-x})$$

a1.
$$f(x) = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

b1.
$$f(x) = \frac{3xe^{-x}}{\sqrt{e^x}}$$

c1.
$$f(x) = \left(arctg\left(x^2\right)\right)^2$$

d1.
$$f(x) = ln(cos(e^x))$$

e1.
$$f(x) = arcsen \sqrt{1-x^2}$$
 f1. $f(x) = \sqrt[n]{x-2}$, $n \in \mathbb{N}$

f1.
$$f(x) = \sqrt[n]{x-2}, n \in \mathbb{N}$$

g1.
$$f(x) = \sqrt[3]{x-2}$$

h1.
$$f(x) = \sqrt{1 + e^{sen(x)}}$$

i1.
$$f(x) = arctg\sqrt{1 + sen(x)}$$

Plano de Aquisição de Conhecimentos Essenciais Regras de Derivação

D. Análise

1-Para cada função selecione a opção que corresponde à respetiva derivada:

1.1.
$$F(x) = \frac{x}{x^2 + 1}$$

(a)
$$f(x) = -\frac{1}{x^2 + 1}$$

(b)
$$f(x) = \frac{1-x^2}{x^2+1}$$

(a)
$$f(x) = -\frac{1}{x^2 + 1}$$
 (b) $f(x) = \frac{1 - x^2}{x^2 + 1}$ (c) $f(x) = \frac{1 - x^2}{\left(x^2 + 1\right)^2}$ (d) $f(x) = \frac{(x - 1)^2}{\left(x^2 + 1\right)^2}$

(d)
$$f(x) = \frac{(x-1)^2}{(x^2+1)^2}$$

1.2.
$$F(x) = \sqrt{x^2 + 4}$$

(a)
$$f(x) = \frac{2x}{\sqrt{x^2 + 4}}$$
 (b) $f(x) = \frac{x}{\sqrt{x^2 + 4}}$ (c) $f(x) = \frac{2x}{x + 2}$ (d) $f(x) = \frac{x}{x + 2}$

(b)
$$f(x) = \frac{x}{\sqrt{x^2 + 4}}$$

(c)
$$f(x) = \frac{2x}{x+2}$$

(d)
$$f(x) = \frac{x}{x+2}$$

1.3.
$$F(x) = ln(ln(x^2))$$

(a)
$$f(x) = \frac{2}{x \ln(x)}$$
 (b) $f(x) = \frac{1}{x} \ln(x)$ (c) $f(x) = \frac{1}{x \ln(x^2)}$ (d) $f(x) = \frac{2x}{\ln(x)}$

(b)
$$f(x) = \frac{1/x}{\ln(x)}$$

(c)
$$f(x) = \frac{1}{x \ln(x^2)}$$

(d)
$$f(x) = \frac{2x}{\ln(x)}$$

1.4.
$$F(x) = \frac{2}{x^2}$$

(a)
$$f(x) = \frac{2}{x^4}$$

b)
$$f(x) = \frac{4}{x^3}$$

(c)
$$f(x) = -\frac{2}{x^3}$$

(a)
$$f(x) = \frac{2}{x^4}$$
 b) $f(x) = \frac{4}{x^3}$ (c) $f(x) = -\frac{2}{x^3}$ (d) $f(x) = -\frac{4}{x^3}$

1.5.
$$F(x) = arcsen(2x)$$

(a)
$$f(x) = \frac{2}{\sqrt{x^2 - 4}}$$

(b)
$$f(x) = \frac{2}{\sqrt{4 - x^2}}$$

(a)
$$f(x) = \frac{2}{\sqrt{x^2 - 4}}$$
 (b) $f(x) = \frac{2}{\sqrt{4 - x^2}}$ (c) $f(x) = \frac{2}{\sqrt{1 - 4x^2}}$ (d) $f(x) = \frac{2}{\sqrt{1 - 2x^2}}$

(d)
$$f(x) = \frac{2}{\sqrt{1-2x^2}}$$

1.6.
$$F(x) = arctg(2x+1)$$

(a)
$$f(x) = \frac{2}{1+4x^2}$$

b)
$$f(x) = \frac{2}{2 + 4x^2}$$

(a)
$$f(x) = \frac{2}{1+4x^2}$$
 b) $f(x) = \frac{2}{2+4x^2}$ (c) $f(x) = \frac{1}{2+4x+4x^2}$ (d) $f(x) = \frac{1}{1+2x+2x^2}$

(d)
$$f(x) = \frac{1}{1 + 2x + 2x^2}$$

2-Faça as correspondências entre derivada e respetiva função:

Derivada $(f(x))$	$\mathbf{função}(F(x))$

BLOCO I	
a) f(x) = 2x	$1. F(x) = 3x^3$
b) $f(x) = 9x^2$	$2. F(x) = 3x^3 + x$
c) $f(x) = 2(x+1)$	3. $F(x) = (x^2 + 1)^2$
d) $f(x) = 9x^2 + 1$	$4. F(x) = x^2$
e) $f(x) = 4x(x^2 + 1)$	5. $F(x) = (x+1)^2$

BLOCO II	
f) $f(x) = sen(x)$	6. F(x) = tg(2x)
g) $f(x) = -2x\cos(x^2)$	$7. F(x) = \cos^2(x)$
h) $f(x) = 2sec^2(2x)$	$8. F(x) = -\cos(x)$
i) $f(x) = -2cos(x)sen(x)$	$9. F(x) = -sen(x^2)$
$j) f(x) = -3x^2 sen(x^3)$	$10. \ F(x) = \cos(x^3)$

BLOCO III	
k) f(x) = 2tg(2x)	11. $F(x) = ln(x^2 + 1)$
1) f(x) = 2cotg(2x)	12. $F(x) = \frac{\ln(x^3 + 1)}{3}$
$m) f(x) = \frac{2x}{x^2 + 1}$	$13. \ F(x) = -ln(cos(2x))$
$f(x) = \frac{1}{x}$	$14. \ F(x) = \ln(sen(2x))$
o) $f(x) = \frac{x^2}{x^3 + 1}$	$15. \ F(x) = \ln(2x)$

BLOCO IV	
$p) f(x) = \frac{1}{2\sqrt{x+1}}$	16. $F(x) = \sqrt{2ln(x^2)}$
q) $f(x) = \frac{1}{\sqrt[3]{(x+1)^2}}$	17. $F(x) = 3\sqrt[3]{x+1}$
$f(x) = \frac{x}{\sqrt{x^2 + 1}}$	$18. \ F(x) = \sqrt{x+1}$
s) $f(x) = \frac{1}{x\sqrt{\ln(x)}}$	$19. \ F(x) = \sqrt{\ln(x)}$
t) $f(x) = \frac{1}{2x\sqrt{ln(x)}}$	$20. \ F(x) = \sqrt{x^2 + 1}$

BLOCO V	
$f(x) = \frac{e^{\sqrt{x}+1}}{2\sqrt{x}}$	$21. F(x) = e^{sen(x)}$
$v) f(x) = 2xe^{x^2}$	22. $F(x) = \sqrt{1 - e^{2x}}$
w) $f(x) = \frac{-e^{2x}}{\sqrt{1 - e^{2x}}}$	$23. \ F(x) = e^{\sqrt{x}}$
$f(x) = \frac{e^{\sqrt{x}}}{2\sqrt{x}}$	24. $F(x) = e^{x^2}$
$y) f(x) = \cos(x)e^{sen(x)}$	25. $F(x) = e^{\sqrt{x}+1}$

BLOCO VI	
z) $f(x) = \frac{-1}{9+x^2}$	$26. \ F(x) = arctg(2x)$
aa) $f(x) = \frac{3}{\sqrt{1 - 9x^2}}$	$27. \ F(x) = arcsen(\frac{x}{2})$
$bb) \ f(x) = \frac{2}{1 + 4x^2}$	$28. \ F(x) = arcsen(2x)$
$cc) f(x) = \frac{1}{\sqrt{4 - x^2}}$	$29. \ F(x) = \frac{1}{3} \operatorname{arcotg}(\frac{x}{3})$
dd) $f(x) = \frac{2}{\sqrt{1 - 4x^2}}$	$30. \ F(x) = -arccos(3x)$

3-Faça as correspondências entre derivada e respetiva função:

Derivada $(f(x))$	função(F(x))
a) $f(x) = \frac{-\sin\sqrt{2x}}{\sqrt{2x}}$	1. $F(x) = arccos(e^x)$
b) $f(x) = \frac{sen(x)cos(x)}{\sqrt{sen^2(x) + 1}}$	$2. F(x) = \ln(x)$
c) $f(x) = \frac{1}{\sqrt{4 - x^2}}$ d) $f(x) = \frac{1}{x}$	3. $F(x) = arctg(\frac{x}{3})$
\mathcal{X}	$4. F(x) = \ln(x^2)$
e) $f(x) = 3x^2 cos(x^3 + 1)$	$5. F(x) = \cos(e^x)$
$f) f(x) = \frac{2}{x}$	$6. F(x) = e^{arctg(x)}$
f) $f(x) = \frac{2}{x}$ g) $f(x) = \frac{-3e^{3x}}{2\sqrt{1 - e^{3x}}}$ h) $f(x) = \frac{3}{9 + x^2}$	$7. F(x) = \cos(\sqrt{2x})$
h) $f(x) = \frac{3}{9+x^2}$	$8. F(x) = \sqrt{sen^2(x) + 1}$
i) $f(x) = -e^x sen(e^x)$	$9. F(x) = arcsen(\frac{x}{2})$
$j) f(x) = \frac{-1}{(x+1)^2}$	10. $F(x) = \sqrt{1 - e^{3x}}$
k) f(x) = cotg(x)	$11. \ F(x) = \frac{1}{\sqrt{x}}$
$1) f(x) = \frac{\cos(x)}{2 - \cos^2(x)}$	$12. \ F(x) = ln(tg(x))$
$f(x) = \frac{e^{arctg(x)}}{1+x^2}$	13. $F(x) = \sqrt{x^2 + 1}$
n) $f(x) = \frac{2sen(x)}{(cos(x)+1)^2}$	$14. \ F(x) = \ln(sen(x))$
o) $f(x) = \frac{-e^x}{\sqrt{1 - e^{2x}}}$	15. $F(x) = cotg(ln(x))$
$f(x) = \frac{e^x}{e^x + 2}$	16. $F(x) = \frac{2}{\cos(x) + 1}$
q) $f(x) = \frac{x}{\sqrt{x^2 + 1}}$	17. $F(x) = \frac{1}{x+1}$
$f(x) = \frac{2}{sen(2x)}$	18. $F(x) = ln(e^x + 2)$
s) $f(x) = \frac{-1}{xsen^2(ln(x))}$	19. $F(x) = sen(x^3 + 1)$
$f(x) = \frac{-1}{2\sqrt{x^3}}$	20. $F(x) = arctg(sen(x))$