Бурмашев Григорий. Алгебра – 9

[ПОСЛЕДНЯЯ]

Номер 1

Расписываем \mathbb{F}_9 :

$$\mathbb{F}_9 = \mathbb{Z}_3[x]/x^2 + 2x + 2 = \{0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2\}$$

Заметим, что $x^2 + 2x + 2$ неприводим, т.к у него нет корней

Формула понижения степени:

$$x^2 = x + 1$$

Составим таблицу умножения для \mathbb{F}_9 :

•	0	1	2	X	x + 1	x + 2	2x	2x + 1	2x + 2
0	0	0	0	0	0	0	0	0	0
1	0	1	2	X	x+1	x+2	2x	2x+1	2x+2
2	0	2	1	2x	2x+2	2x+1	X	x+2	x+1
X	0	X	2x	x+1	2x+1	1	2x+2	2	x+2
x +1	0	x+1	2x+2	2x+1	2	X	x+2	2x	1
x + 2	0	x+2	2x+1	1	X	2x+2	2	x+1	2x
2x	0	2x	X	2x+2	x+2	2	x+1	1	2x+1
2x + 1	0	2x+1	x+2	2	2x	x+1	1	2x+2	X
2x + 2	0	2x+2	x+1	x+2	1	2x	2x+1	X	2

Из лекции знаем, что $\forall a \in F_q$ a является корнем многочлена x^q-x , а значит $a^{q-1}=1$, в нашем случае q=9, а значит $a^8=1$ и нас интересуют элементы порядка 8, нужно их найти

А теперь для каждого элемента возводим его в степень, пока не придем в единицу. Для возведения будем просто идти по таблице умножения до тех пор, пока не упремся в 1. Таким образом и посчитаем порядок каждого элемента.

Через — обозначаю возведение исходного числа в очередную степень (т.е x^2 будет $x \to x+1$ соотвественно)

• 0:

Нас не интересует, т.к не является порождающим

• 1:

$$1^1 = 1$$

Т.е порядок 1

• 2:

$$2 \rightarrow 1$$

Т.е порядок 2

• *x*:

$$x \rightarrow x + 1 \rightarrow 2x + 1 \rightarrow 2 \rightarrow 2x \rightarrow 2x + 2 \rightarrow x + 2 \rightarrow 1$$

Т.е порядок 8

• x + 1:

$$x+1 \rightarrow 2 \rightarrow 2x+2 \rightarrow 1$$

Т.е порядок 4

• x + 2:

$$x+2 \rightarrow 2x+2 \rightarrow 2x \rightarrow 2 \rightarrow 2x+1 \rightarrow x+1 \rightarrow x \rightarrow 1$$

Т.е порядок 8

• 2*x*:

$$2x \rightarrow \rightarrow x + 1 \rightarrow x + 2 \rightarrow 2 \rightarrow x \rightarrow 2x + 2 \rightarrow 2x + 1 \rightarrow 1$$

Т.е порядок 8

• 2x + 1:

$$2x+1 \rightarrow 2x+2 \rightarrow x \rightarrow 2 \rightarrow x+2 \rightarrow x+1 \rightarrow 2x \rightarrow 1$$

Т.е порядок 8

• 2x + 2:

$$2x + 2 \rightarrow 2 \rightarrow x + 1 \rightarrow 1$$

Т.е порядок 4

Посчитали все порядки, по итогу:

Элемент:	Порядок:
1	1
2	2
X	8
x+1	4
x+2	8
2x	8
2x+1	8
2x+2	4

Берем только те, у которых порядок 8

Ответ:

$$x, x + 2, 2x, 2x + 1$$

Номер 2

Задача с семинара, поэтому делаю как на семинаре:

$$p = 5, n = 2$$
$$h_1 = x^2 + 3$$
$$h_2 = y^2 + y + 2$$

Для начала сделаем легкую часть, проверим на приводимость:

В \mathbb{Z}_5 возможные корни:

Проверяем:

• h_1 :

$$h_1(0) = 3$$

 $h_1(1) = 4$
 $h_1(2) = 4 + 3 = 2$
 $h_1(3) = 4 + 3 = 2$
 $h_1(4) = 1 + 3 = 4$

• h_2 :

$$h_2(0) = 2$$

$$h_2(1) = 1 + 1 + 2 = 4$$

$$h_2(2) = 4 + 2 + 2 = 3$$

$$h_2(3) = 4 + 3 + 2 = 4$$

$$h_2(4) = 1 + 4 + 2 = 2$$

Нигде не получили нулей, значит они действительно неприводимы над \mathbb{Z}_5

Нам нужно построить явно изоморфизм вида:

$$F_1 = \mathbb{Z}_5/(h_1) \simeq F_2 = \mathbb{Z}_5/(h_2)$$

$$\exists \alpha \in F_2 : h_1(\alpha) = 0$$

Гомоморфизм:

$$\varphi: \mathbb{Z}_5[x] \to F_2$$

 $f \Rightarrow f(\alpha)$

На лекции доказывалось, что:

$$h_1 \in \text{Ker}\varphi \leadsto \text{Ker}\varphi = (h_1)$$

Теорема о гомоморфизме ⇒ изоморфизм вида:

$$F_1 = \mathbb{Z}_p[x]/(h_1) \simeq \operatorname{Im}\varphi \subseteq F_2$$

В F_1 лежит q элементов, в F_2 тоже q, тогда получается, что образ тоже содержит q элементов, а тогда образ совпадает с F_2 и мы действительно получаем изоморфизм.

Остается найти такое $\alpha \in F_2 : h_1(\alpha) = 0$

Знаем, что в F_2 :

$$y^2 = -y - 2 = 4y + 3$$

Теперь находим α :

$$\alpha = a\overline{y} + b$$

$$h_1(\alpha) = (a\overline{y} + b)^2 + 3 = a^2\overline{y}^2 + 2a\overline{y}b + b^2 + 3 = 0$$

Пользуемся фактом про понижение степени:

$$a^{2}(4\overline{y}+3) + 2a\overline{y}b + b^{2} + 3 = 0$$

$$4a^{2}\overline{y} + 3a^{2} + 2a\overline{y}b + b^{2} + 3 = 0$$

$$\overline{y}(4a^2 + 2ab) + (3a^2 + b^2 + 3) = 0$$

Получаем СЛУ:

$$\begin{cases} 4a^2 + 2ab = 0\\ 3a^2 + b^2 + 3 = 0 \end{cases}$$

$$\begin{cases} 2a(2a+b) = 0\\ 3a^2 + b^2 + 3 = 0 \end{cases}$$

Пытаемся угадать вариант, их не так уж и много в рамках \mathbb{Z}_5

• a = 1:

$$\begin{cases} 2(2+b) = 0 \\ b^2 + 1 = 0 \end{cases}$$

$$\begin{cases} 2(2+b) = 0 \\ b^2 + 1 = 0 \end{cases}$$

$$\begin{cases} b = 3 \\ b^2 + 1 = 3^2 + 1 = 4 + 1 = 0 \end{cases}$$

Все выполняется, а значит угадывание можно останавливать и нам подходит вариант вида:

$$\alpha=\overline{y}+3$$

Ответ:

изоморфизм $F_1 \simeq F_2$ определяется так:

$$a\overline{x} + b \to a(\overline{y} + 3) + b$$

Вот и всё :(