Dynamic Programming

Recall Divide and Conquer vs. Greedy

Dynamic Programming vs. Divide and Conquer

Dynamic Programming

An Easy Example

- Fibonacci
- Fib(n) = Fib(n-1) + Fib(n-2)
- Solve Recursively

Fibonacci

```
 \begin{array}{c} \textbf{function} \ fib(n) \\  \quad \textbf{if n>1} \\  \quad \quad \textbf{return} \ fib(n-1) + fib(n-2) \\  \quad \textbf{else} \\  \quad \quad \textbf{return 1} \end{array}
```

Recursive Tree

It becomes a DAG!

Implement: memoization

function fib(n)

Fibonacci Check whether n is stored, if yes then directly return.

```
if n>1
    return & store fib(n-1) + fib(n-2)
else
    return & store 1
```

Each i

- Calculate once
- Checked twice

Totally: O(n)

Reverse the graph. Solve them by the topological order.

Implement: DP

- Observation
 - If we know $fib(1) \dots fib(i-1)$.
 - fib(i) can be calculated in constant time.
- DP: calculate all status by a topological order.

```
Fibonacci O(n)

function fib(n)

fib[0] = fib[1] = 1

for i = 2 to n

fib[i] = fib[i-1] + fib[i-2]

return fib[n]
```

Guideline for DP design

- Design a recursive Algorithm.
- Merge the common subproblems.
- Check whether we are in a DAG and find the topological order of this DAG. (usually, by hand.)
- Solve & store the subproblems by the topological order.

Let us use the guideline

Shortest Path in DAGs

- Input: A Directed Acyclic Graph (DAG) G = (V, E), a start vertex $s \in V$, and a weight function w(e) for all $e \in E$. (possible non-negative)
- Output: the distance from s to every $v \in V$.

Important Fact

- Not restricted in DAG!
- Used in Dijkstra, BFS, Bellman-Ford.

Solve $s \rightarrow t$ distance recursively!

A recursive method to solve dist[t].

Merge common subproblems

Merge common subproblems

We have at most *n* subproblems!

Are we in a DAG?

We have at most *n* subproblems!

It is exactly a DAG, because it is *G*!

Solve it by topological order!

We have at most *n* subproblems!

It is exactly a DAG, because it is *G*!

Solve it by topological order!

Plan

- Find a Topological Order of V.
 - O(|V| + |E|)
- dist[s] = 0.
- Solve & record dist[u] by the order.
- Solve $dist[u] = min\{$
 - $dist[v_1] + w(v_1, u)$
 - $dist[v_2] + w(v_2, u)$
 - $dist[v_3] + w(v_3, u)$
 - **...**}
- O(|V| + |E|)

What about the correctness?

- We can easily check the correctness of DP Algorithms by induction.
- Base case:
 - Check our initialization: dist[s] = 0.
- Induction:
 - Assume $dist[u_i]$ is correct for all i < k.
 - $dist[u_k]$ can be solved correctly by the min of
 - $dist[v_1] + w(u_k, v_1)$
 - $dist[v_2] + w(u_k, v_2)$
 - $dist[v_3] + w(u_k, v_3)$

The topological order make a feasible induction order!

A simpler guideline

- Find subproblems.
- Check whether we are in a DAG and find the topological order of this DAG. (usually, by hand.)
- Solve & store the subproblems by the topological order.

More DP algorithms!

Longest Increasing Subsequence

- Input: A sequence $a_1, a_2, ..., a_n$.
- Output: the Longest Increasing Subsequence (LIS)
 - $a_{i_1} < a_{i_2} < a_{i_3} \dots < a_{i_k}$
 - $-i_1 < i_2 < i_3 \dots < i_k$

Solve LIS recursively!

• Enumerate the last number a_i .

$$- LIS = \max_{i \le n} LIS(a_i)$$

Define subproblems

• LIS[k]: the Longest Increasing Subsequence ended by a_k .

Another view of the problem.

LIS[k] can be viewed as the longest path from s to a_k .

Important Fact

• $dist[v] \rightarrow longest path from s to v$.

Important Fact

• $dist[v] \rightarrow longest path from s to v$.

$$dist[t] = \max \begin{cases} dist[v_1] + 1 \\ dist[v_2] + 1 \\ dist[v_3] + 1 \end{cases}$$

Another view of the problem.

LIS[k] can be viewed as the longest path from s to a_k .

1 ... *n* is a topological order!

Another view of the problem.

Longest Increasing Subsequence

```
function LIS(n)

lis[0] = 0

for i = 1 to n

lis[i] = \max_{\substack{a_j < a_i, j < i \\ 1 \le i \le n}} \{lis[j] + 1\} s = a_0 = -\infty
```



```
\begin{aligned} & \text{function } LIS(n) \\ & \text{lis}[0] = 0 \\ & \text{for } i = 1 \text{ to n} \\ & \text{lis}[i] = \max_{a_j < a_i, j < i} \{lis[j] + 1\} \\ & \text{return } \max_{1 \le i \le n} lis[i] \end{aligned}
```



```
function LIS(n)

lis[0] = 0

for i = 1 to n

lis[i] = \max_{\substack{a_j < a_i, j < i \\ 1 \le i \le n}} \{lis[j] + 1\}

return \max_{1 \le i \le n} lis[i]
```



```
function LIS(n)

lis[0] = 0

for i = 1 to n

lis[i] = \max_{\substack{a_j < a_i, j < i \\ 1 \le i \le n}} \{lis[j] + 1\}

return \max_{\substack{1 \le i \le n}} lis[i]
```



```
function LIS(n)

lis[0] = 0

for i = 1 to n

lis[i] = \max_{\substack{a_j < a_i, j < i}} \{lis[j] + 1\}

return \max_{1 \le i \le n} lis[i]
```



```
Longest Increasing Subsequence function LIS(n)
lis[0] = 0
for i = 1 to n
lis[i] = \max_{a_j < a_i, j < i} \{lis[j] + 1\}
return \max_{1 \le i \le n} lis[i]
```

Edit Distance

- Motivation: How to change from one string to another?
- Allowed operations
 - Insertion: insert a character to a specific location.
 - Deletion: delete a character from a specific location.
 - Replacement: rewrite a character at a specific location.
- Change SNOWY to SUNNY?
 - SNNWY
 - SNNY
 - SUNNY

- Allowed operations
 - Alignment: Insert space with 0 cost.
 - Insertion: rewrite a character from a space at a specific location.
 - Deletion: rewrite a character to a space at a specific location.
 - Replacement: rewrite a character at a specific location.

- Allowed operations
 - Alignment: Insert space with 0 cost.
 - Insertion: rewrite a character from a space at a specific location.
 - Deletion: rewrite a character to a space at a specific location.
 - Replacement: rewrite a character at a specific location.

- Allowed operations
 - Alignment: Insert space with 0 cost.
 - Insertion: rewrite a character from a space at a specific location.
 - Deletion: rewrite a character to a space at a specific location.
 - Replacement: rewrite a character at a specific location.

Change alignment

S	N	0	W	_	Y
S	U	N	N	Υ	_

- Allowed operations
 - Alignment: Insert space with 0 cost.
 - Insertion: rewrite a character from a space at a specific location.
 - Deletion: rewrite a character to a space at a specific location.
 - Replacement: rewrite a character at a specific location.

The same as before.

Optimization

- What is the minimized cost to change from a string to another? (it is symmetric)
- We call it the Edit Distance of the two string.
- Usage
 - Quantifying how dissimilar two strings are.

Edit Distance Calculation

- Input: two strings
 - $X: x_1, x_2, ..., x_m$
 - $Y: y_1, y_2, ..., y_n$
- Output: the edit distance between x and y.
- Another view
 - Find the best alignment!

Imagine the best alignment from the tail.

Case 1

Case 2

Case 3

Plus one cost if $x_m \neq y_n$

Do you find out the subproblems?

Subproblems

- ED[i,j]: The edit distance between X[1..i] and Y[1..j].
- ED[n, m]: The edit distance between X and Y.
- How to solve ED[i, j]: min of three cases

$$-ED[i-1, j-1] + \mathbf{1}_{x_i \neq y_j}$$

$$-ED[i, j-1]+1$$

$$-ED[i-1,j]+1$$

Is it DAG?

ED[i,j]	j = 0	j = 1	j = 2	j=3	j=4	$j = \cdots$	j = n
i = 0							
i = 1							
i=2							
i = 3							
$i = \cdots$							
i = m							

Is it DAG?

ED[i,j]	j = 0	<i>j</i> = 1	j = 2	j = 3	j = 4	$j = \cdots$	j = n
i = 0							
i = 1							
i=2							
i = 3							
$i = \cdots$							
i = m						•	

Is it DAG?

ED[i,j]	j = 0	j = 1	j = 2	j=3	j = 4	$j = \cdots$	j = n
i = 0							
i = 1							
i=2							
i = 3							
$i = \cdots$							
i = m							

A topological order

ED[i,j]	j = 0	j = 1	j = 2	j=3	j=4	$j=\cdots$	j = n
i = 0							
i = 1							
i=2							->
i = 3							
$i = \cdots$							
i = m							

ED[i,j]	j = 0	j = 1	j = 2	j=3	j=4	$j = \cdots$	j = n
i = 0	0	1	2	3	4	5	6
i = 1	1						
i=2	2						
i = 3	3						
$i = \cdots$	4						
i = m	5						

ED[i,j]	j = 0	j = 1	j = 2	j=3	j = 4	$j = \cdots$	j = n
i = 0	0	1	2	3	4	5	6
i = 1	1						
i=2	2						
i = 3	3						
$i = \cdots$	4						
i = m	5						

ED[i,j]	j = 0	j = 1	j = 2	j=3	j=4	$j = \cdots$	j = n
i = 0	0	1	2	3	4	5	6
i = 1	1						 ,
i=2	2	<u></u>					
i = 3	3						>
$i=\cdots$	4						
i = m	5						

ED[i,j]	j = 0	j = 1	j = 2	j=3	j=4	$j=\cdots$	j = n
i = 0	0	1	2	3	4	5	6
i = 1	1						 ,
i=2	2						
i = 3	3						
$i=\cdots$	4						
i = m	5						

ED[i,j]	j = 0	j = 1	j=2	j=3	j = 4	$j = \cdots$	j = n
i = 0	0	1	2	3	4	5	6
i = 1	1			'			 ,
i=2	2						
i=3	3						→
$i=\cdots$	4						
i=m	5						✓

 $O(nm) \cdot O(1)$

ED[i,j]	j = 0	j = 1	j = 2	j=3	j=4	$j = \cdots$	j = n
i = 0	0	1	2	3	4	5	6
i = 1	1						
i = 2	2						
i = 3	3						→
$i = \cdots$	4						
i = m	5						✓

Knapsack Problems

- Input: n items with cost c_i and value v_i , and a capacity W.
- Output: Select a subset of items, with total cost at most W. The goal is to maximize the total value.

Select the item with from larger value-cost ratio.

	Value	Cost
iPhone	8888	8888
Algorithm Book	10000	500
Laptop	8888	8500
Hermès	90000	100000

Select the item with from larger value-cost ratio.

W = 10000

	Value	Cost
iPhone	8888	8888
Algorithm Book	10000	500
Laptop	8888	8500
Hermès	90000	100000

Select the item with from larger value-cost ratio.

W = 10000

	Value	Cost
iPhone	8888	8888
Algorithm Book	10000	500
Laptop	8888	8500
Hermès	90000	100000

It looks quite intuitive, and it is correct now!

- Select the item with from larger value-cost ratio.

W = 100000

	Value	Cost
iPhone	8888	8888
Algorithm Book	10000	500
Laptop	8888	8500
Hermès	90000	100000

But when we become rich...

Problem: items are not divisible!

A nice greedy approach.

Select the item with from larger value-cost ratio.

W = 100000

	Value	Cost
iPhone	8888	8888
Algorithm Book	10000	500
Laptop	8888	8500
Qie Gao	90000	100000

But when we become rich...

Problem: items are not indivisible!

Buy 0.82112 portion of the "Qie Gao"

What if items are indivisible?

- The Knapsack Problem is NP-Hard!
- Are we going to talk about approximation algorithms?
- No!
- Let's make a DP algorithm with reasonable running time!

- What we always do before:
- f[i]: the maximum value we can get by using the first i items.

f[i] 5 10 13 16	21 30	?
-----------------	-------	---

- What we always do before:
- f[i]: the maximum value we can get by using the first i items.

How to solve f[i] by f[j < i]?

f[i]	5	10	13	16	21	30	?
J [b]	5	10	+ >	10	Z- <u>t</u>	20	

- What we always do before:
- f[i]: the maximum value we can get by using the first i items.

How to solve f[i] by f[j < i]?

C.F.I.T						The state of the s	
f[i]	5	10	13	16	21	30	?
) []	9		Charles and the second	mesto and a state		5	

We know f[j] but we do not know how much budget it uses!

The space of subproblems is not large enough!

- What we always do before:
- f[i]: the maximum value we can get by using the first i items.
- Use g[i] to store how much budge f[i] uses.

How to solve f[i] by f[j < i]?

f[i] 5 10	13	16	21	30	?

- What we always do before:
- f[i]: the maximum value we can get by using the first i items.
- Use g[i] to store how much budge f[i] uses.

How to solve f[i] by f[j < i]?

- What we always do before:
- f[i]: the maximum value we can get by using the first i items.
- Use g[i] to store how much budge f[i] uses.

How to solve f[i] by f[j < i]?

f[i] 13 16 21 30 ?

It is greedy, and it is not optimal!

Move back to recursion to check how much we need.

- Buy Hermès or not?
- Buy: Earn 90000, continue to buy "iPhone, Book, and Laptop" by W – 100000 budget.
- Not Buy: Earn 0, continue to buy "iPhone, Book, and Laptop" by W budget.

	Value	Cost
iPhone	8888	8888
Algorithm Book	10000	500
Laptop	8888	8500
Hermès	90000	100000

- What we always do before:
- f[i, w]: the maximum value we can get by using the first i items, and with w budget.
- Use g[i] to store how much budge f[i] uses.

How to solve f[i] by f[j < i]?

						Company of the second	
f[i]	CHE - MAR	10	13	16	21	30	7
)	10	±3	10	21	30	

- What we always do before:
- f[i, w]: the maximum value we can get by using the first i items, and with w budget.

f[i,w]	0	1	2	3	4	5	6		W
0									
1						H	ow to so		
2						f[i,w].			
3					2	f[i, w]			
n									f[n, W]

Solve f[i, w]

- What we always do before:
- f[i, w]: the maximum value we can get by using the first i items, and with w budget.
- Two options for item i
 - Buy it: We can at most use $w c_i$ budget before i.
 - Not Buy it: We can at most use w budget before i.
 - Solve $f[i, w] = \max\{f[i-1, w], f[i-1, w-c_i] + v_i\}.$

Check the topological order

• f[i, w]: the maximum value we can get by using the first i items, and with w budget.

•
$$f[i, w] = \max\{f[i-1, w], f[i-1, w-c_i] + v_i\}$$

$$c_i$$

$$O(nW) \cdot O(1)$$

f[i,w]	0	1	2	3	4	5	6		W
0	0	0	0	0	0	0	0	0	0
1	0								
2	0								
3	0				*	f[i, w]			
	0								
n	O								f[n,W]

Knapsack has many variants!

Surplus Supply

- Input: n items with cost c_i and value v_i , and a capacity W.
- Output: Select some items (each items can be selected more than once), with total cost at most W. The goal is to maximize the total value.

	Value	Cost
iPhone	8888	8888
Algorithm Book	10000	500
Laptop	8888	8500
Hermès	90000	100000

How to transfer subproblems now?

- Two options for item i
 - Buy it: We can at most use $w c_i$ budget before i.
 - Not Buy it: We can at most use w budget before i.
 - Solve $f[i, w] = \max\{f[i-1, w], f[i-1, w-c_i] + v_i\}.$
- Problem!
 - We can buy multiple times!

A new subproblem transfer!

- Problem!
 - We can buy multiple times!
- New transfer
 - Not Buy it anymore: We can at most use w budget before i.
 - Buy it: We can at most use $w c_i$ budget before i and i.
 - Solve $f[i, w] = \max\{f[i-1, w], f[i, w-c_i] + v_i\}.$

Check the topological order

• f[i, w]: the maximum value we can get by using the first i items, and with w budget.

• $f[i, w] = \max\{f[i-1, w], f[i, w-c_i] + v_i\}$

f[i,w]	0	1	2	3	4	5	6		W
О	0	0	0	0	0	0	0	0	0
1	0						· 1		
2	0								
3	0					f[i, w]			
	0								
n	0								f[n,W]

Let us program it!

- f[i, w]: the maximum value we can get by using the first i items, and with w budget.
- $f[i, w] = \max\{f[i-1, w], f[i, w-c_i] + v_i\}$

Knapsack with Surplus Supply O(nW) function knapsack(n) $f[0,0] = f[0,1] = f[0,2] = \cdots = f[0,W] = 0$ $f[0,0] = f[1,0] = f[2,0] = \cdots = f[n,0] = 0$ for w = 0 to W for i = 1 to n $f[i,w] = \max\{f[i-1,w],f[i,w-c_i]+v_i\}$ return f[n,W]

We can make it simple

- f[w]: the maximum value we can with w budget.
- $f[w] = \max_{i=1 \sim n} \{f[w], f[w c_i] + v_i\}$

Knapsack with Surplus Supply

```
function knapsack(n)

f[0] = f[1] = \cdots f[n] = 0

for w = 0 to W

for i = 1 to n

f[w] = \max\{f[w], f[w - c_i] + v_i\}

return f[n, W]
```

O(nW) but with less space.

They are not polynomial on the input size!

O(nW) is not polynomial!

- Input: n items with cost c_i and value v_i , and a capacity W.
- Input size: the unit of bits to represent the input.
- $W = 2^N$ by using N bits
 - time complexity becomes $O(2^N)$.

Input of The Knapsack Problem

- Input of Knapsack
 - $-n_{\bullet}W$
 - n values v_i and n costs c_i .
- Assume we have O(N) bits, (input size = N)
- To present n values and costs, we need to use at least O(n) bits. Hence, we at most present n = O(N) with O(N) bits.
- W can be $O(2^N)$
- So, the running time O(nW) can become $O(N2^N)$, which is not polynomial!

Today's goal

- Learn what is DP.
- Learn how to prove DP's correctness.
- Learn the general guideline for designing DP Algorithms.
- Learn to apply the guideline on:
 - Fibonacci
 - Shortest Path on DAGs
 - Edit Distance
 - Knapsack