CÁLCULO DIFERENCIAL E INTEGRAL

Respostas dos exercícios

Thiago de Paula Oliveira March 28, 2018

② You may copy, distribute and modify this list as long as you cite the author.

Pré-Cálculo: Funções e modelos 1

1.

(a)
$$h(x) = \frac{3x^3 + 5x^2 + 2x + 2}{x + 1}$$
, para $x \neq -1$ (b) $h(x) = \frac{x(3x + 2)}{x + 1}$, para $x \neq -1$

(b)
$$h(x) = \frac{x(3x+2)}{x+1}$$
, para $x \neq -1$

(c)
$$h(x) = \frac{2x+5}{(x+1)^2}$$
, para $x \neq -1$

(d)
$$h(x) = \frac{x(3x+2)}{(x+1)^2}$$
, para $x \neq -1$

(e)
$$h(x) = \frac{3x^2 + 3x + 2}{(x+1)(3x^2 + 2x + 1)}$$
, para $x \neq -1$ (f) $h(x) = \frac{1}{x(3x+2) + 1}$

(f)
$$h(x) = \frac{1}{x(3x+2)+3}$$

2. Verificar pelo Wolfram|Alpha. Site: https://www.wolframalpha.com.

3.

(a)
$$D(f) = \{x \in \mathbb{R}\}, CD(f) = Im(f) = \{y \in \mathbb{R}\}$$

(b)
$$D(h) = \{x \in \mathbb{R} | -2 \le x \le 2\}, Im(h) = \{y \in \mathbb{R} | 0 \le y \le 2\}, CD(h) = \{y \in \mathbb{R}\}$$

(c)
$$D(f) = \{u \in \mathbb{R}\}, Im(f) = \{y \in \mathbb{R} | y \ge x\}, CD(f) = \{y \in \mathbb{R}\}$$

(d)
$$D(f) = \{z \in \mathbb{R}\}, Im(f) = \{y \in \mathbb{R} | y \ge 0\}, CD(f) = \{y \in \mathbb{R}\}$$

(e)
$$D(g) = \{x \in \mathbb{R} | x \neq 0\}, Im(f) = \left\{ y \in \mathbb{R} | y \ge \frac{8\sqrt{2}}{3^{3/4}} \right\}, CD(f) = \{ y \in \mathbb{R} \}$$

(f)
$$D(f) = \{x \in \mathbb{R} | x > 0\}, Im(f) = \{y \in \mathbb{R} | 0 < y < 1 \cup y > 6\}, CD(f) = \{y \in \mathbb{R}\}$$

(g)
$$D(g) = \{x \in \mathbb{R} | 0 < x < \sqrt{2} \cup x > \sqrt{2} \}, Im(g) = \{y \in \mathbb{R} \}, CD(g) = \{y \in \mathbb{R} \}$$

(h)
$$D(f) = \{x \in \mathbb{R}\}, Im(f) = \{y \in \mathbb{R} | y \le \frac{13}{3} \cup y = 9\}, CD(f) = \{y \in \mathbb{R}\}$$

② You may copy, distribute and modify this list as long as you cite the author.

4. (a)

- (b) A função é dada por f(x) = 263.87x e em 2 anos, considerando a mesma alíquota, a pessoa pagará R\$ 6.332,88 retido na fonte. O gráfico deve ser feito no Wolfram|Alpha.
- (c) Incremento salarial no período de 1 ano será dado pela função f(x)=100x, logo $f(12)=100\times 12=1.200$. Já a contribuição ao estado será dada pela função:

$$h(x) = 27, 5x.$$

Dessa forma, $h(12)=27.5\times 12=330,00$. Portanto, ela receberá um incremento de 1.200 reais e pagará um incremento de 330,00 reais de impostos retidos na fonte no período de um ano. Logo, a função que descreve o aumento da renda em função do tempo é g(x)=f(x)-h(x)=72.5x, assim, no período de um ano sua renda aumentará g(12)=870,00 reais.

- (a) Função par
- (b) Função ímpar
- (c) Função par

- 5.
- (d) Função par
- (e) Função par
- (f) Função ímpar
- 6. (a) Verificar pelo Wolfram|Alpha.
 - (b) $m = \frac{5}{9}$ e intercepto $-\frac{160}{9}$
- **9** You may copy, distribute and modify this list as long as you cite the author.

- 7. (a) $t \approx 9.57$
 - (b) $f(5.3) \approx 101.21$
 - (c) Verificar pelo Wolfram Alpha.
- 8.

(a)
$$f \circ g(x) = (x+5)^5$$

(a)
$$f \circ g(x) = (x+5)^5$$
 (b) $f \circ g(x) = \log(x+4)$ (c) $f \circ g(x) = |e^{x^3}|$

(c)
$$f \circ g(x) = |e^{x^3}|$$

(d)
$$f \circ g(x) = \sqrt{x^2}$$

(e)
$$f \circ g(x) = \cos 2x$$

(d)
$$f \circ g(x) = \sqrt{x^2}$$
 (e) $f \circ g(x) = \cos 2x$ (f) $f \circ g(x) = \frac{1}{\lg(x)}$

(b)
$$\log 2 + 4$$

9. (a) 37 (b)
$$\log 2 + 4$$
 (c) e^6 (d) 2 (e) $2 \cos 2$ (f) $\lg \frac{1}{2}$

(e)
$$2\cos 2$$

(f)
$$tg \frac{1}{2}$$

10. (a)
$$\frac{x^2+2}{x^2}$$
 (b) $\left(\frac{x+1}{x}\right)^{\frac{3}{2}} + 3$ (c) $\frac{2-\cos(2x)}{2\sin x + 1}$

11.

(a)
$$D(f) = \{x \in \mathbb{R} \mid x \in \mathbb{R}$$

(a)
$$D(f) = \{x \in \mathbb{R}\}$$
 (b) $D(f) = \{v \in \mathbb{R} | v \neq 0\}$ (c) $D(f) = \{x \in \mathbb{R}\}$

(c)
$$D(f) = \{x \in \mathbb{R}\}$$

(d)
$$D(f) = \{x \in \mathbb{R} \mid x \in \mathbb{R}$$

$$(\mathrm{d})\ \mathrm{D}(f) = \{x \in \mathbb{R}\} \qquad (\mathrm{e})\ \mathrm{D}(f) = \{t \in \mathbb{R}| -1 \leq t \leq 1\} \qquad (\mathrm{f})\ \mathrm{D}(f) = \{x \in \mathbb{R}\}$$

(f)
$$D(f) = \{x \in \mathbb{R}\}$$

12.

(a)
$$D(f) = \{x \in \mathbb{R} | x > 0\}$$
 (b) $D(f) = \{x \in \mathbb{R} | x > 0\}$

(b)
$$D(f) = \{x \in \mathbb{R} | x > 0\}$$

(c)
$$D(f) = \{x \in \mathbb{R} | x < -1 \cup x > 0\}$$

13. (a)
$$f(x) = \frac{x^3 + 2x}{|x| + 1}$$
; (b) $f(x) = \log(x) + x$; ; (c) $f(x) = e^{x^2}$; (d) $f(x) = \sqrt{x}$

- 14. (a) Supondo $t \in [0, 10]$, temos que o gráfico de f(t) é dado por:
 - (b) 1.13008 unidades de tempo.
- 15. $Dm(f) = \{x \in \mathbb{R} | 0 \le x \le b \ \forall \ 0 < a < b\} \ e \ Im(f) = \{y \in \mathbb{R} | 0 \le y \le h\}.$ A função é dada por:

$$f(x) = \begin{cases} \frac{h}{a}x, & \text{para } 0 \le x < a \\ \frac{h}{a-b}(x-b), & \text{para } a \le x \le b \end{cases}$$

② You may copy, distribute and modify this list as long as you cite the author.

16.

(a)
$$f^{-1}(x) = \ln x$$
 (b) $f^{-1}(x) = \frac{x}{1+x}$

(c) Para determinar a inversa dessa função deve-se restringir o domínio da mesma em duas partes, que são $x \in [-1,\infty)$ e $(-\infty,-1)$. Assim, temos que $f^{-1}(x) = \sqrt{x+1} - 1$, para $\forall \ x \geq -1$ ou $f^{-1}(x) = -\sqrt{x+1} - 1$, para $\forall \ x \geq -1$.

(d)
$$f^{-1}(x) = x^2, \forall x \in \mathbb{R}_+$$
 (e) $f^{-1}(x) = \frac{bx - a}{x + 1}$

(f) Para determinar a inversa dessa função deve-se restringir o domínio da mesma em $x \in [0, \pi]$. Assim, temos que $f^{-1}(x) = \arccos(x)$.

17. Considere a função $f(x)=x^3$. Calcule e simplique o quociente $\frac{f(3+h)-f(3)}{h}$.

18. Prove que $\operatorname{tg} \alpha \operatorname{sen} \alpha + \cos \alpha = \operatorname{sec} \alpha$.

19. Prove que
$$\frac{2 \operatorname{tg} \alpha}{1 + \operatorname{tg}^2 \alpha} = \operatorname{sen} 2\alpha$$
.

20. Construa o gráfico da função $f(x) = 2 + \operatorname{sen} x$.

21. Determine as coordenadas do vértice da equação $x^2 - 3(x + y) = 1$

22. Determine o domínio e imagem da equação $y^2 = -x^2 + 4$

9 You may copy, distribute and modify this list as long as you cite the author.

23. Determine a monotonicidade das seguintes funções

(a)
$$f(x) = x^3$$

(b)
$$f(x) = x^2$$

(c)
$$f(x) = x + 3$$

(d)
$$f(x) = \sqrt{x+2}$$
 (e) $f(x) = \log(2x)$ (f) $f(x) = e^{-x^2}$

(e)
$$f(x) = \log(2x)$$

(f)
$$f(x) = e^{-x^2}$$

- 24. Um veículo teve seu pneu calibrado para 35 libras e, em seguida, o motorista se deslocou do ponto A ao ponto B em 9h a uma velocidade média de 100 km por hora. Suponha que a temperatura do pneu aumenta quadraticamente em função da distância percorrida até aproximadamente 100 graus Celcius. Então a temperatura se mantêm constante até a distância percorrida em 8h (Figura ??). Na última hora, suponha que a temperatura decai quadraticamente em função da distância. Determine uma função que descreva o aumento da temperatura em função da distância (em km).
- 25. Simplifique as funções a seguir

(a)
$$f(x) = 4 \operatorname{sen}^2 x + 4 \cos^2 x$$

(a)
$$f(x) = 4 \operatorname{sen}^2 x + 4 \cos^2 x$$

 (b) $f(x) = \frac{x^2 + 8x + 16}{8x + 32}$
 (c) $f^{-1}(x) = \sqrt{x + 1} - 1 \forall x \in [-1, 1]$

$$(c)f^{-1}(x) = \sqrt{x+1} - 1 \forall \ x \in$$

(d)
$$f(x) = \log(x^2 + 3x) - \log(x)$$
 (e) $f(x) = \frac{e^x e^{\pi}}{e^{2x}}$ (f) $f(x) = e^{-x^2} e^{x^2 + 2x}$

(e)
$$f(x) = \frac{e^x e^{\pi}}{e^{2x}}$$

(f)
$$f(x) = e^{-x^2} e^{x^2 + 2x}$$

(g)
$$f(x) = \frac{\sin(2x)}{[\cos 2]^{-1}} - \frac{\sin 2}{[\cos(2x)]^{-1}}$$
 (h) $f(x) = \sin^2 x \operatorname{tg}^{-2} x$ (i) $f(x) = x^2 + 4x - 4$

(h)
$$f(x) = \sin^2 x \, \text{tg}^{-2} x$$

(i)
$$f(x) = x^2 + 4x - 4$$

26. Encontre as raízes das funções polinomiais a seguir

(a)
$$f(x) = x^3 + x^2$$

(a)
$$f(x) = x^3 + x^2$$
 (b) $f(x) = x^2 - 10x - 9$

(c)
$$f(x) = x^2 + 9$$

(d)
$$f(x) = \frac{1}{x^2 + 4}$$

(d)
$$f(x) = \frac{1}{x^2 + 4}$$
 (e) $f(x) = cx^2 + 4cx + c^2$ (f) $f(x) = \frac{x^2 + 2}{x}$

(f)
$$f(x) = \frac{x^2 + 2}{x}$$