Przewodnik po Technikach Rozumowania LLM

1. Chain of Thought (CoT) - Łańcuch Myśli

Opis

Chain of Thought to technika promptingu, która instruuje model, aby pokazał swój proces rozumowania krok po kroku, zamiast od razu podawać finalną odpowiedź.

Kluczowe Cechy

• Struktura: Sekwencyjna, liniowa

• Podejście: Krok za krokiem

• Typ zadań: Matematyka, logika, rozumowanie przyczynowo-skutkowe

Przykłady Promptów

Podstawowy CoT

```
Rozwiąż ten problem krok po kroku:
Jeśli sklep ma 23 jabłka rano, sprzedaje 17 w ciągu dnia, a wieczorem dostarcza kolejne ś

Myślę krok po kroku:

1. Sklep zaczyna z 23 jabłkami

2. Sprzedaje 17 jabłek: 23 - 17 = 6 jabłek

3. Dostarcza 30 jabłek: 6 + 30 = 36 jabłek

Odpowiedź: 36 jabłek
```

Zero-shot CoT

```
Rozwiąż to zadanie. Myśl krok po kroku.
[zadanie]
```

Few-shot CoT

```
Przykład 1:
Zadanie: [zadanie 1]
Rozwiązanie krok po kroku: [rozwiązanie 1]

Przykład 2:
Zadanie: [zadanie 2]
Rozwiązanie krok po kroku: [rozwiązanie 2]
```

Teraz rozwiąż:

Zadanie: [nowe zadanie]

Zastosowania

- Zadania matematyczne
- Rozumowanie logiczne
- Analiza problemów biznesowych
- Planowanie projektów

2. Tree of Thoughts (ToT) - Drzewo Myśli

Opis

Tree of Thoughts pozwala modelowi eksplorować różne ścieżki rozumowania równolegle, oceniać je i wybierać najlepszą lub backtrackować do wcześniejszych punktów.

Kluczowe Cechy

• Struktura: Hierarchiczna, rozgałęziona

• Podejście: Eksploracja i ocena alternatyw

• Mechanizm: Backtracking i przeszukiwanie

Przykład Implementacji

Podstawowy ToT

```
Zadanie: Zaplanuj strategię marketingową dla nowego produktu.

Myślę o tym jako o drzewie decyzji:

Poziom 1 - Główne strategie:
A) Marketing cyfrowy
B) Marketing tradycyjny
C) Marketing hybrydowy

Eksplorujmy opcję A (Marketing cyfrowy):
A1) Social media marketing
A2) Content marketing
A3) Influencer marketing

Oceńmy A1 (Social media):
+ Niski koszt
+ Szeroki zasięg
- Wysoka konkurencja
Ocena: 7/10
```

```
Oceńmy A2 (Content marketing):
+ Buduje autorytet
+ Długoterminowe korzyści
- Wolne rezultaty
Ocena: 8/10

[Kontynuacja eksploracji innych gałęzi...]

Na podstawie oceny wybieram: A2 + A3 jako najlepszą kombinację.
```

Szablon ToT

- 1. Zdefiniuj główne opcje/ścieżki
- 2. Dla każdej ścieżki:
 - Rozwiń pod-opcje
 - Oceń każdą pod-opcję
 - Porównaj z innymi
- 3. Wybierz najlepszą ścieżkę lub kombinację
- 4. Jeśli potrzeba, wróć i eksploruj inne opcje

3. Graph of Thoughts (GoT) - Graf Myśli

Opis

Graph of Thoughts modeluje rozumowanie jako sieć połączonych myśli, gdzie jednostki informacji mogą się łączyć w dowolne wzorce, umożliwiając sprzężenia zwrotne i nielinearne połączenia.

Kluczowe Cechy

• Struktura: Sieciowa, graf skierowany

• Podejście: Nielinearne połączenia między myślami

• Mechanizm: Agregacja, rafinacja, transformacja

Przykład Implementacji

Podstawowy GoT

```
Zadanie: Analiza wpływu AI na przyszłość edukacji

Graf myśli:

Węzeł A: [Technologie AI w edukacji]

- Machine Learning

- NLP

- Computer Vision

Węzeł B: [Metody nauczania]
```

- Personalizacja
- Adaptive Learning
- Gamifikacja

Wezeł C: [Wyzwania]

- Równość dostępu
- Prywatność danych
- Jakość treści

Połączenia:

- A → B: AI umożliwia personalizację (Machine Learning + Adaptive Learning)
- B → C: Personalizacja rodzi pytania o prywatność
- C → A: Wyzwania techniczne wpływają na wybór technologii
- A → C: Computer Vision może zwiększyć nierówności dostępu

Synteza:

Kombinując węzły A, B, C przez ich połączenia widzimy, że... [ostateczna analiza łącząca wszystkie aspekty]

Operacje GoT

- 1. Generowanie: Tworzenie nowych węzłów myśli
- 2. Agregacja: Łączenie wielu węzłów w jeden
- 3. Rafinacja: Ulepszanie istniejących węzłów
- 4. Transformacja: Przekształcanie węzłów w nowe formy

4. Adaptive Graph of Thoughts (AGoT) - Adaptacyjny Graf Myśli

Opis

AGoT dynamicznie dostosowuje strukturę grafu w czasie rzeczywistym, rekursywnie dekompozując złożone zapytania i selektywnie rozwijając tylko te podproblemy, które wymagają dalszej analizy.

Kluczowe Cechy

- Struktura: Dynamiczny DAG (Directed Acyclic Graph)
- Podejście: Adaptacyjna dekompozycja
- **Mechanizm**: Kompleksność checks i selective expansion

Przykład Implementacji

Podstawowy AGoT

```
Zapytanie: Jak zoptymalizować wydajność systemu e-commerce?
Layer 1 (Główna dekompozycja):
Q1: Analiza frontend performance
Q2: Optymalizacja backend systems
Q3: Database optimization
Q4: Infrastructure scaling
Complexity Check Q1 (Frontend):
→ Zbyt złożone, dekompozuj dalej
Layer 2 dla Q1:
Q1.1: Bundle optimization
Q1.2: Image compression
Q1.3: Caching strategies
Complexity Check Q1.1:
→ Proste, bezpośrednia odpowiedź: "Użyj webpack bundle analyzer..."
Complexity Check Q2 (Backend):
→ Średnio złożone, dekompozuj częściowo
Layer 2 dla Q2:
Q2.1: API optimization
Q2.2: Memory management
[Proces kontynuowany adaptacyjnie...]
Final DAG:
Q1.1 \rightarrow Q1.3 \rightarrow Q2.1 \rightarrow Q3 \rightarrow Final\_Answer
(Tylko niezbędne ścieżki są rozwijane)
```

Algorytm AGoT

```
    Otrzymaj zapytanie główne
    Dekompozuj na podproblemy
    Dla każdego podproblemu:

            a) Oceń złożoność
            b) Jeśli proste → rozwiąż bezpośrednio
            c) Jeśli złożone → dekompozuj rekursywnie

    Zbuduj DAG z rozwiązanych komponentów
    Syntetyzuj finalną odpowiedź
```

Praktyczne Zastosowania

Chain of Thought

- Najlepsze dla: Zadań wymagających sekwencyjnego rozumowania
- Przykłady: Matematyka, analiza krok po kroku, planowanie

Tree of Thoughts

- Najlepsze dla: Problemów z wieloma możliwymi rozwiązaniami
- Przykłady: Strategiczne planowanie, optymalizacja, kreatywne rozwiązywanie problemów

Graph of Thoughts

- Najlepsze dla: Złożonych problemów z wieloma powiązaniami
- Przykłady: Analiza systemów, research synthesis, holistic understanding

Adaptive Graph of Thoughts

- Najlepsze dla: Bardzo złożonych, wielowarstwowych problemów
- Przykłady: Scientific reasoning, complex business analysis, multi-domain problems

Porównanie Technik

Aspekt	СоТ	ТоТ	GoT	AGoT
Złożoność implementacji	Niska	Średnia	Wysoka	Bardzo wysoka
Jakość rozumowania	Dobra	Bardzo dobra	Doskonała	Najlepsza
Koszt obliczeniowy	Niski	Średni	Wysoki	Średni
Elastyczność	Niska	Średnia	Wysoka	Najwyższa
Przypadki użycia	Proste zadania	Średnio złożone	Złożone	Bardzo złożone

Wskazówki Praktyczne

- 1. Zacznij od CoT dla prostych zadań
- 2. **Użyj ToT** gdy potrzebujesz eksplorować alternatywy
- 3. Wybierz GoT dla problemów z wieloma powiązaniami
- 4. Zastosuj AGoT tylko dla najsłożniejszych zadań

Najlepsze Praktyki

- 1. Jasno zdefiniuj cel przed wyborem techniki
- 2. **Testuj różne podejścia** na podobnych problemach
- 3. Monitoruj koszty obliczeniowe
- 4. Dokumentuj skuteczne prompty do ponownego użycia

5. Iteruj i ulepszaj na podstawie wyników						