Лабораторная работа №8

Информационная безопасность

Николаев Д. И.

14 октября 2023

Российский университет дружбы народов, Москва, Россия

Цели

Освоить на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Задачи

- 1. Реализовать режим однократного гаммирования;
- 2. Найти текст второго сообщения по известным шифротекстам и первому сообщению.

Выполнение работы

Вместо

$$C_1 \bigoplus C_2 \bigoplus P_1 = P_1 \bigoplus P_2 \bigoplus P_1 = P_2. \tag{1}$$

имеем следующие выражения

$$C_1 + C_2 \equiv P_1 + K + P_2 + K \equiv P_1 + P_2 + 2K \pmod{N},$$
 (2)

$$C_i \equiv P_i + K \pmod{N}, \quad i = 1, 2 \tag{3}$$

$$C_1 + C_2 \equiv P_1 + (C_2 - K) + 2K \equiv P_1 + C_2 + K \pmod{N}, \tag{4}$$

$$P_2 \equiv C_2 - K \equiv C_2 - (C_1 + C_2 - P_1 - C_2) \equiv C_2 - (C_1 - P_1) \pmod{N}. \tag{5}$$

В итоге имеем выражение (6)

$$P_2 \equiv C_2 - C_1 + P_1 \pmod{N}. \tag{6}$$

Получение текста второго сообщения по шифротекстам и первому сообщению 1

```
include("C:/Users/User/Documents/work/study/2022-2023/
Информационная безопасность/infosec/labs/lab07/report/report/gamma.jl")
function Gamma_Hijack_Message(Source_Message 1::String.
Encrypted Message 1::String, Encrypted Message 2::String)::String
   n1 = length(Source_Message_1) # Длина исходного сообщения 1
    n2 = length(Encrypted Message 1)
    n3 = length(Encrypted Message 2)
    println("Первое исходное сообщение - ", Source Message 1)
   println("Первое зашифрованное сообщение - ", Encrypted Message 1)
   println("Второе зашифрованное сообщение - ", Encrypted Message 2)
   n1 != n2 != n3 ? println("Несоответсвие размерности исходного и зашифров
    Source Code 1 = []
    Encrypted Code 1 = []
                                                                          5/10
    Encrypted Code 2 = []
```

Получение текста второго сообщения по шифротекстам и первому сообщению 2

```
for i in Source Message 1
   push!(Source_Code_1, Dictionary[i])
end
for i in Encrypted Message 1
   push!(Encrypted_Code_1, Dictionary[i])
end
for i in Encrypted Message 2
   push!(Encrypted Code 2, Dictionary[i])
end
println("Код первого исходного сообщения - ", Source Code 1)
println("Код первого зашифрованного сообщения - ". Encrypted Code 1)
println("Код второго зашифрованного сообщения - ", Encrypted Code 2)
Source Code 2 = [] # Код второго исходного сообщения
```

end

```
for i in range(1, n1)
    a = Encrypted Code 2[i] - Encrypted Code 1[i] + Source Code 1[i]
    a <= 0 ? a += N : skip
    a > N? a \% = N: skip
    push!(Source Code 2. a)
end
println("Код второго исходного сообщения - ". Source Code 2)
Source Message 2 = ""
for i in Source Code 2
    Source Message 2 *= Dictionary2[i]
end
println("Второе исходное сообщение - ", Source Message 2)
return Source Message 2
```

7/10

end

```
P1 = "Ha Ваш исходящий от 1204" # 24 символа
Р2 = " в Северный филиал Банка"
Initial_Key = "АБВГДЕжзийклмнопрстуфхЦЧ"
println("Находим первое зашифрованное сообщение")
C1 = Gamma_Find_Encrypted_Text(P1, Initial_Key) # тексты зашифрованных сообще
println("Находим второе зашифрованное сообщение")
C2 = Gamma Find Encrypted Text(P2. Initial Key)
println("Находим второе сообщение по известным шифротекстам и первому сообщен
Hijacked P2 = Gamma Hijack Message(P1, C1, C2)
if P2 == Hijacked P2
    println("Взлом второго сообщения прошел успешно!")
else
    println("Неудача")
```

```
2002-2023 / Undeposausomas Gesonicinocis (Infosec(labs/lab08/report/reports julia gamma.j]

Accorder Configuence "In Basi eccountry of 1204

Accorder Configuence "In Basi eccountry of
```

Рис. 1: Реализация взлома однократного гаммирования

Результаты

Результаты

По результатам работы, я освоил на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.