离散数学

集合论习题课

1、A= $\{0,1\}$ B= $\{1,2\}$ 求A²×B。

$$A \times B = \{ \langle x,y \rangle | x \in A \land y \in B \}$$

$$A^2 = A \times A = \{ \langle 0,0 \rangle, \langle 0,1 \rangle, \langle 1,0 \rangle, \langle 1,1 \rangle \}$$

$$A^2 \times B = \{ \langle \langle 0,0 \rangle, 1 \rangle, \langle \langle 0,1 \rangle, 1 \rangle, \langle \langle 1,0 \rangle, 1 \rangle, \langle \langle 1,1 \rangle, 1 \rangle,$$

$$\langle \langle 0,0 \rangle, 2 \rangle, \langle \langle 0,1 \rangle, 2 \rangle, \langle \langle 1,0 \rangle, 2 \rangle, \langle \langle 1,1 \rangle, 2 \rangle \}$$

2、X={a,b,c} Y={s} 列出X到Y的所有关系。

 $X \times Y = \{\langle a,s \rangle, \langle b,s \rangle, \langle c,s \rangle\}$

X×Y的任何一个子集都是一个 从X到Y的关系。如果 | X | = m | Y | = n 则有2^{mn}个从X到Y的关系, 故,有2³=8个关系:

$$R_0 = \Phi$$
 $R_1 = \{\langle a, s \rangle\}$
 $R_2 = \{\langle b, s \rangle\}$
 $R_3 = \{\langle c, s \rangle\}$
 $R_4 = \{\langle a, s \rangle, \langle b, s \rangle\}$
 $R_5 = \{\langle a, s \rangle, \langle c, s \rangle\}$
 $R_7 = \{\langle a, s \rangle, \langle b, s \rangle, \langle c, s \rangle\}$

3、A={1,2,3}, A上五个关系如下。这五个关系中,哪些是等价关系? 如果是等价关系,求其商集。

哪些是偏序关系?如是偏序关系,画哈斯图,并求A的极小(大)元、最小(大)元、上界与下界、上确界和下确界。

等价关系: S和A×A, 对应的商集分别是:

$$A/S=\{\{1,2\},\{3\}\}\ A/A\times A=\{\{1,2,3\}\}$$

偏序关系: T

A的极小元、最小元、下界、下确界都是: 1

A的极大元、最大元、上界、上确界都是: 3

3 c

2

1 .

- 4、R和S都是A上关系,
- a) R和S都自反,R°S 一定自反。

因为任取 $a \in A$, 由于R和S都自反, 所以 $<a,a>\in R$ 及 $<a,a>\in S$ 故 <a,a>∈ R∘S ∴ R∘S自反,

b) R和S都反自反,R。S不一定反自反。

c) R和S都对称,R。S不一定对称。

d) R和S都传递,R。S不一定传递。

5、S是X上关系。

a)证明S传递,当且仅当S∘S⊆S (可用此定理判定传递)

证明: 充分性,已知任取x,y,z \in X,且有<x,y> \in S,<y,z> \in S, 根据关系的复合得<x,z> \in S \circ S \subseteq S,由已知得<x,z> \in S,所以S传递。必要性,已知S传递,任取<x,y> \in S \circ S,根据关系的复合得 \exists z(z \in X \land <x,z> \in S \land <z,y> \in S),由S传递得<x,y> \in S 所以S \circ S \subseteq S

b)证明S自反,当且仅当I_x⊆S。(可用此定理判定自反)

证明:充分性,已知I_x_S,

任取 $x \in X$, 有 $< x, x > \in I_x$, 由己知得 $< x, x > \in S$, 所以S 自反。必要性,已知S 自反,

任取<x,y>∈I_x,得x=y,而S自反,所以<x,y>∈S ∴I_x⊆S

c) S 是 X 上关系,证明 S 是自反和传递,则 S。S=S。其逆为真吗?证明: 由5 a) 得 S 传递,则 S。S \subset S,只证明 S \subset S。S

任取 $<x,y>\in S$,又已知S自反,所以 $<x,x>\in S$,于是 $<x,x>\in S$ $\land <x,y>\in S$ 。由关系的复合得 $<x,y>\in S$ 。S

所以有 $S \subseteq S \circ S$,最后得 $S \circ S = S$ 。 其逆不一定为真。例如S如图所示: 它满足 $S \circ S = S$,但S不自反。

关系性质证明方法

设R是A上关系,

一. 证明R的自反性:

方法1 用自反定义证: 任取 $x \in A$, 证出 $\langle x, x \rangle \in R$.

方法2 用恒等关系 I_A 证:证出 $I_A \subseteq R$.

方法3 用自反闭包证:证出r(R)=R,即 $R \cup I_A=R$.

二. 证明R的反自反性:

方法1 用反自反定义证: 任取 $x \in A$, 证出 $\langle x, x \rangle \notin R$.

三. 证明R的对称性:

方法1 用对称定义证: 任取 $x, y \in A$, 设 $\langle x, y \rangle \in R$, 证出 $\langle y, x \rangle \in R$.

方法2 用求逆关系证:证出 R°=R.

方法3 用对称闭包证: 证出 s(R)=R, 即R∪R^c =R.

四. 证明R的反对称性:

方法1 用定义1证: 任取 $x, y \in A$, 设 $\langle x, y \rangle \in R$, $\langle y, x \rangle \in R$. 证出x = y。

方法2 用定义2证: 任取 $x, y \in A, x \neq y$, 设 $\langle x, y \rangle \in R$, 证出 $\langle y, x \rangle \notin R$.

方法3 用定理证:证出 $R \cap R^c \subseteq I_A$.

五. 证明R的传递性:

方法1 用传递定义证: 任取 $x, y, z \in A$, 设 $\langle x, y \rangle \in R$, $\langle y, z \rangle \in R$, 证出 $\langle x, z \rangle \in R$.

方法2 用传递闭包证: 证出t(R)=R, 即RUR2UR3U... =R.

方法3 用定理证:证出S∘S⊆S

6、R和S都A上是自反、对称、传递的,求证R∩S也是自反、对称和传递的。

证明: 1. 证明R∩S的自反性

方法1 用自反定义证: 任取 $x \in A$, (证出 $\langle x, x \rangle \in R \cap S$)

因R和S都自反,所以有 $\langle x, x \rangle \in \mathbb{R}$, $\langle x, x \rangle \in \mathbb{S}$,于是有 $\langle x, x \rangle \in \mathbb{R} \cap \mathbb{S}$,所以R \cap S也自反。

方法2 用恒等关系 I_A 证: (证出 $I_A \subseteq R \cap S$)

因R和S都自反,所以 $I_A\subseteq R$, $I_A\subseteq S$,所以 $I_A\subseteq R\cap S$,所以 $R\cap S$ 也自反。

方法3 用自反闭包证: $(证出r(R\cap S)=R\cap S, \quad 即 (R\cap S) \cup I_A=R\cap S)$

因R和S都自反,所以r(R)=R,r(S)=S,

 $r(R \cap S) = (R \cap S) \cup I_A = (R \cup I_A) \cap (S \cup I_A) = r(R) \cap r(S) = R \cap S$ 所以 $R \cap S$ 也自反。

2. 证明R∩S的对称性:

方法1 用对称定义证: 任取 $x, y \in A$, 设 $\langle x, y \rangle \in R \cap S$, (证出 $\langle y, x \rangle \in R \cap S$) 则 $\langle x, y \rangle \in R$, $\langle x, y \rangle \in S$, 因为R和S对称,所以有 $\langle y, x \rangle \in R$, $\langle y, x \rangle \in S$, 于是 $\langle y, x \rangle \in R \cap S$ 。∴R ∩ S对称。

方法2 用求逆关系证: (证出 (R∩S) ^c=R∩S)

因为R和S对称,所以有R^c=R, S^c=S, 而(R∩S)^c=R^c∩S^c= R∩S, ∴R∩S对称。

方法3 用对称闭包证: (证出 $s(R \cap S) = R \cap S$, 即 $(R \cap S) \cup (R \cap S)^{\circ} = R \cap S$.)

因为R和S对称,所以s(R)=R,s(S)=S

 $s(R \cap S) = (R \cap S) \cup (R \cap S)^{c} = (R \cap S) \cup (R^{c} \cap S^{c})$

 $= (R \cup R^{c}) \cap (R \cup S^{c}) \cap (S \cup S^{c}) \cap (S \cup R^{c})$

 $= (s(R) \cap (R \cup S^{c})) \cap (s(S) \cap (S \cup R^{c}))$

 $=(R \cap (R \cup S^{c})) \cap (S \cap (S \cup R^{c})) = R \cap S \qquad (吸收律)$

∴R∩S对称。

三、证明R的传递性:

方法1 用传递定义证: 任取 $x, y, z \in A$, 设 $\langle x, y \rangle \in R \cap S, \langle y, z \rangle \in R \cap S, (证出 \langle x, z \rangle \in R \cap S)$ $\langle x, y \rangle \in R \cap S \wedge \langle y, z \rangle \in R \cap S$

- $\Leftrightarrow \langle x, y \rangle \in R \land \langle x, y \rangle \in S \land \langle y, z \rangle \in R \land \langle y, z \rangle \in S$
- \Leftrightarrow $(\langle x, y \rangle \in R \land \langle y, z \rangle \in R) \land (\langle x, y \rangle \in S \land \langle y, z \rangle \in S)$
- \Rightarrow ⟨x, z⟩∈R ∧ ⟨x, z⟩∈S (因为R、S传递)
- ⇔ ⟨x, z⟩∈R∩S 所以R∩S传递。
- 方法2 用传递闭包证: 证出 $t(R \cap S) = R \cap S$, 即 $(R \cap S) \cup (R \cap S)^2 \cup (R \cap S)^3 \cup \ldots = R \cap S$.
- 方法3 用定理证: 证出 S∘S⊆S

用方法2、方法3证明此题的传递性有很大难度。

8、R的有向图如图所示,求r(R)、s(R)、t(R)。

9、 R_1 和 R_2 是A上关系,且 $R_2 \subseteq R_1$,求证 a) $r(R_2) \subseteq r(R_1)$,b) $s(R_2) \subseteq s(R_1)$,c) $t(R_2) \subseteq t(R_1)$ 。

证明: a) $r(R_2) = R_2 \cup I_A \subseteq R_1 \cup I_A = r(R_1)$,

- b) $s(R_2) = R_2 \cup (R_2) \subset R_1 \cup (R_1) \subset s(R_1)$, (因为 $R_2 \subseteq R_1$,所以 $(R_2) \subset (R_1) \subset s(R_1)$)
- c) 先用归纳法证明 $(R_2)^i \subseteq (R_1)^i$,
 - (1)i=1时, $R_2 \subseteq R_1$ 显然结论成立
 - (2)假设i≤k时, 结论成立, 即(R₂)ⁱ⊆(R₁)ⁱ;
 - (3) i=k+1时, $(R_2)^{k+1}=(R_2)^k \circ R_2 \subseteq (R_1)^k \circ R_1 = (R_1)^{k+1}$, $t(R_2)=R_2 \cup (R_2)^2 \cup \ldots \cup (R_2)^k \cup \ldots$ $\subseteq R_1 \cup (R_1)^2 \cup \ldots \cup (R_1)^k \cup \cdots = t(R_1)$ 。

10、X是集合,且|X|=4,X有多少个不同的划分?解.

划分块数	各块元	走素个数	相应划分个数	总数
1	4	4	$C_4^4 = 1$	
2	1 3		$C_4^1 = 4$	
	2 2		$\frac{1}{2} C_4^2 = 3$	15
3	1	1 2	$C_4^2 = 6$	
4	1 1		$C_4^4 = 1$	

11、R和S都是A上等价关系,下面哪个是A上等价关系? 证明或举反例说明.

a) $R \cup S$ b) $R \cap S$

c) ~R (即A×A-R)

d) R-S e) R^2

f) r(R-S)

解.a) c) d) f)不是。请看反例:

- b). R∩S是等价关系, 前面已经证明过
- e). ①证 R^2 自反, 任取 $a \in A$, 因为R自反, 所以〈a, a〉 $\in R$, 根据关系的复合得, 〈a, a〉 $\in R \circ R$, 即〈a, a〉 $\in R^2$, 所以 R^2 自反。
- ②证R²对称, (R²) ^c=(R^c) ²=R² (由R对称得R^c=R) ∴ R²对称
- ③证 R^2 传递,任取 $a, b, c \in A$,设有 $\langle a, b \rangle \in R^2, \langle b, c \rangle \in R^2$,根据关系的复合得,

 $(\exists d \in A \land \langle a, d \rangle \in R \land \langle d, b \rangle \in R) \land (\exists e \in A \land \langle b, e \rangle \in R \land \langle e, c \rangle \in R)$,由于R传递, 所以有 $\langle a, b \rangle \in R$, $\langle b, c \rangle \in R$, $\therefore \langle a, c \rangle \in R^2$ 所以R²传递。

最后得R²是等价关系。

11、给定集合{3,5,15}, {1,2,3,6,12}, {3,9,27,54}, ≼为整除关系, 分别画出上述集合上的≼的关系图,哈斯图,并指出哪些是全序关系。

12、P={x₁,x₂, x₃, x₄, x₅}, P上偏序关系的哈斯图如图所示,求子集 {x₁,x₂, x₃}, {x₂, x₃, x₄}, {x₃, x₄, x₅}和P的极小(大)元、最小(大)元、上界、下界、最小上界和最大下界(上确界和下确界)。

子	集	极小元	极大元	最小元	最大元	上界	下界	上确界	下确界
$\{\mathbf{x}_1,\mathbf{x}_2,$	x ₃ }	x ₂ , x ₃	x ₁	无	x ₁	X ₁	X ₄	x ₁	X ₄
$\{x_2,x_3,$	x ₄ }	X ₄	x ₂ , x ₃	X ₄	无	\mathbf{x}_1	X ₄	\mathbf{x}_1	X ₄
$\{\mathbf{x}_3, \mathbf{x}_4$, x ₅ }	X ₄ , X ₅	X ₃	无	\mathbf{x}_3	x ₁ , x ₃	无	x ₃	无
P		x ₄ , x ₅	x ₁	无	\mathbf{x}_1	x ₁	无	$\mathbf{x_1}$	无

问题?

