		SRM Institute of Science and Technology Kattankulathur	
		DEPARTMENT OF MEATHEMATICS	
		18MAB102T ADVANCED CALCULUS & COMPLEX ANALYSIS	
		UNIT - V: Complex Integration Tutorial Sheet 13	
	Sl.No.	Questions	Answer
Part – A			
1	Evaluate $\oint_C \frac{e^{-z}}{z-1} dz$ where C is a circle (i) $ z = 2$ (ii) $ z = \frac{1}{4}$.		(i) $2\pi i e^{-1}$ (ii) 0
2	Evaluate $\oint_C \frac{dz}{z^2 - 2z}$ where C is a circle $ z - 2 = 1$.		πi
3	Evaluate $\oint_C z^2 e^{\frac{1}{z}} dz$ where C is the circle $ z = 1$.		$\frac{\pi i}{3}$
4	Obtain Taylor's series of $f(z) = \frac{z-1}{z^2}$ in powers of $z-1$.		$\sum_{n=1}^{\infty} (-1)^{n-1} n(z-1)^n$
5	Obtain Laurent's series of $f(z) = \frac{1}{z(z-1)}$ in $ z < 1$ and $ z > 1$.		$\sum_{n=1}^{\infty} (-1)^{n-1} n (z-1)^n$ (i) $-\frac{1}{z} - \sum_{n=0}^{\infty} z^n$ (ii) $-\frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{z}\right)^n$
Part – B			
6	Evaluate $\oint_C \frac{\cos \pi z^2}{(z-1)(z-2)} dz$ where C is the circle $ z = \frac{3}{2}$.		$2\pi i$
7	Evaluate $\oint_C \frac{z+4}{z^2+2z+5} dz$ where C is the circle $ z+1+i =2$.		$\frac{\pi}{2}(2i-3)$
8	Expand $\frac{1}{(z-1)(z-2)}$ in the region $0 < z-1 < 1$		$-\frac{1}{z-1} - \sum_{n=0}^{\infty} (z-1)^n$
9	Expand $\frac{7z-2}{(z+1)z(z-2)}$ in the region $1< z+1 <3$		$\frac{-2}{z+1} + \sum_{n=2}^{\infty} \frac{1}{(z+1)^n} - \frac{2}{3} \sum_{n=0}^{\infty} \left(\frac{z+1}{3}\right)^n$
10		function $\frac{4z+3}{z(z-3)(z+2)}$ in Laurent's series	(i) $\frac{z^{-1}}{2} - \frac{5}{3} \sum_{n=0}^{\infty} \left(\frac{z}{3}\right)^n - \frac{1}{4} \sum_{n=0}^{\infty} (-1)^n \left(\frac{z}{2}\right)^n$
	•	z =2 (ii) in the annular region between 3 and (iii) exterior to $ z =3$.	(ii) $\frac{z^{-1}}{2} - \frac{5}{3} \sum_{n=0}^{\infty} \left(\frac{z}{3}\right)^n - \frac{1}{2z} \sum_{n=0}^{\infty} (-1)^n \left(\frac{2}{z}\right)^n$
			(iii) $\frac{z^{-1}}{2} - \frac{5}{z} \sum_{n=0}^{\infty} \left(\frac{3}{z}\right)^n - \frac{1}{2z} \sum_{n=0}^{\infty} (-1)^n \left(\frac{2}{z}\right)^n$