Exercises from Evans Partial Differential Equations

${\bf Contents}$

5	Sobo	obolev Spaces																2														
	5.1																															2
	5.3																															4
	5.5																															4
	5.6																															Δ

5 Sobolev Spaces

5.1

Suppose $k \in \{0, 1, ...\}$, $0 < \gamma < 1$. Prove $C^{k,\gamma}(\overline{U})$ is a Banach space.

Proof. A Banach space is a *complete normed linear space*, so we need to show that $C^{k,\gamma}(\overline{U})$ is each of the following:

- 1. A Linear space.
- 2. A Normed linear space.
- 3. A Complete space.

Much of the proof will rely on the fact that we know $C(\overline{U})$ is a Banach space itself.

- 1. Suppose $u, v, w \in C^{k,\gamma}(\overline{U})$ and $a, b \in \mathbb{R}$. It follows that $u, v, w \in C^k(\overline{U})$ and that the Hölder norm of each u, v, and w is finite. With this knowledge we will loosely prove the linear space axioms as follows:
 - (i) $u + v \in C^{k,\gamma}(\overline{U})$ because $||u + v||_{C^{k,\gamma}(\overline{U})} < \infty$, which follows from the triangle inequality of norms.
 - (ii) u + v = v + u because $u, v \in C^k(\overline{U})$, which we know is itself a linear space.
 - (iii) u + (v + w) = (u + v) + w following the same argument as (ii).
 - (iv) $C^k(\overline{U}) \subset C^{k,\gamma}(\overline{U})$ implies $\exists \vec{0} \in C^{k,\gamma}(\overline{U})$ such that $u + \vec{0} = u$.
 - (v) Following the same argument as (iv) we get that $\forall u \in C^{k,\gamma}(\overline{U}) \exists (-u)$ such that $u + (-u) = \vec{0}$.
 - (vi) a(bu) = (ab)u following the same argument as (ii).
 - (vii) a(u+v) = au + av following the same argument as (ii).
 - (viii) (a+b)u = au + bu following the same argument as (ii).
 - (ix) Following the same argument as (iv) we get that $\exists \vec{1} \in C^{k,\gamma}(\overline{U})$ such that $\vec{1} \cdot u = u$.
 - (x) Following the same argument as (iv) we get that $\exists \vec{0} \in C^{k,\gamma}(\overline{U})$ such that $\vec{0} \cdot u = \vec{0}$.

These axioms prove that $C^{k,\gamma}(\overline{U})$ is indeed a linear space.

2. Using the fact that $C(\overline{U})$ is itself a normed linear space, with the norm

$$\|u(x)\|_{C(\overline{U})} := \sup_{x \in U} |u(x)|,$$

we can prove the normed linear space axioms as follows:

(i) Suppose $u, v \in C^{k,\gamma}(\overline{U})$ and that α is a fixed multi-index such that $|\alpha| \leq k$. It then follows that

$$\begin{aligned} \|u+v\|_{C^{k,\gamma}(\overline{U})} &= \sum_{|\alpha| \le k} \|D^{\alpha}(u+v)\|_{C(\overline{U})} + \sum_{|\alpha| = k} [D^{\alpha}(u+v)]_{C^{0,\gamma}(\overline{U})} & (1) \\ &\le \sum_{|\alpha| \le k} (\|D^{\alpha}u\|_{C(\overline{U})} + \|D^{\alpha}v\|_{C(\overline{U})}) + \sum_{|\alpha| = k} [D^{\alpha}(u+v)]_{C^{0,\gamma}(\overline{U})} & (2) \\ &\le \sum_{|\alpha| \le k} (\|D^{\alpha}u\|_{C(\overline{U})} + \|D^{\alpha}v\|_{C(\overline{U})}) + \sum_{|\alpha| = k} ([D^{\alpha}u]_{C^{0,\gamma}(\overline{U})} + [D^{\alpha}v]_{C^{0,\gamma}(\overline{U})}) \\ &= \sum_{|\alpha| \le k} \|D^{\alpha}u\|_{C(\overline{U})} + \sum_{|\alpha| \le k} \|D^{\alpha}v\|_{C(\overline{U})} + \sum_{|\alpha| = k} [D^{\alpha}u]_{C^{0,\gamma}(\overline{U})} + \sum_{|\alpha| = k} [D^{\alpha}v]_{C^{0,\gamma}(\overline{U})} \\ &= (\sum_{|\alpha| \le k} \|D^{\alpha}u\|_{C(\overline{U})} + \sum_{|\alpha| = k} [D^{\alpha}u]_{C^{0,\gamma}(\overline{U})}) + (\sum_{|\alpha| \le k} \|D^{\alpha}v\|_{C(\overline{U})} + \sum_{|\alpha| = k} [D^{\alpha}v]_{C^{0,\gamma}(\overline{U})}) \\ &= \|u\|_{C^{k,\gamma}(\overline{U})} + \|v\|_{C^{k,\gamma}(\overline{U})}. \end{aligned} \tag{6}$$

(ii)

(iii)

(iv)

3.

5.3

Denote by U the open square $\{x \in \mathbb{R}^2 \mid |x_1| < 1, |x_2| < 1\}$. Define

$$u(x) = \begin{cases} 1 - x_1, & \text{if } x_1 > 0, |x_2| < x_1 \\ 1 + x_1, & \text{if } x_1 < 0, |x_2| < -x_1 \\ 1 - x_2, & \text{if } x_2 > 0, |x_1| < x_2 \\ 1 + x_2, & \text{if } x_2 < 0, |x_1| < -x_2. \end{cases}$$

For which $1 \le p \le \infty$ does u belong to $W^{1,p}(U)$.

Proof. In progress... \Box

5.5

Let U, V be open sets, with $V \subset\subset U$. Show there exists a smooth function ζ such that $\zeta \equiv 1$ on $V, \zeta = 0$ near ∂U . (Hint: Take $V \subset\subset W \subset\subset U$ and mollify χ_W .)

Proof. In progress... \Box

5.6

Assume U is bounded and $U \subset\subset \bigcup_{i=1}^N V_i$. Show there exist C^{∞} functions ζ_i $(i=1,\ldots,N)$ such that

$$\begin{cases} 0 \le \zeta_i \le 0, \text{ supp } \zeta_i \subset V_i \ (i = 1, \dots, N) \\ \sum_{i=1}^N \zeta_i \text{ on } U. \end{cases}$$

Proof. In progress... \Box