(ii) It is due to OH and the proton can exchange/swap/substitute [1]
 (1) with the D in D₂O ✓
 or D replaces H
 NOT just reacts with water

Total ≈ 17

Page 10 of 13

6	(a)	(i)	propanone ✓ accept acetone or propan-2-one	[1]
		(ii)	propan <u>al</u> ✓ accept propanaldehyde but not ethanal	[1]
	(b)	(i)	reagent(s): e.g. 2,4-dinitrophenylhydrazine ✓ in words or formula	[2]
			observation: e.g. orange / red / yellow precipitate / crystals ✓	
	·	(ii)	no mark for observation if no reagent given reagent(s): e.g. ammoniacal AgNO ₃ ✓ or Ag ₂ O or Ag ⁺ or Tollens observation for D: No change ✓ observation for E: silver (mirror) ✓ grey ppte	[3]
	(c)	(i)	or similarly for another chemical test that works e.g. acid dichromate, Fehlings or CHI ₃ test Marked cross at $v \sim 1700 \checkmark$ D has carbonyl group or ketone or C=O \checkmark	[2]
		(ii)	e g Reduction $CH_3COCH_3 \rightarrow CH_3CHOHCH_3$ (1) (or product is an alcohol)	[2]
			new (broad) peak at ~3230 – 3550 cm ⁻¹ (1) loss of peak at ~ 1700 cm ⁻¹ (1)	
			any two good points ✓ ✓	

Mark Scheme	Unit Code	Session	Year	Final Version
Page 6 of 8	2814	June	2002	

Qu.	Expected answers:	Marks				
6 (a) (i)	C ₇ H ₈ O ✓	[1]				
(ii)	M_r = 108 so m/e of molecular ion = 108 / ecf from (i) \checkmark	[1]				
(iii)	%C = (84.0)/(108) x 100% = 77.8% \(\square\$					
	%H = (8.0)/(108) x 100% = 7.4% ✓					
	/ ecf from (i) or (ii)	[2]				
(b)	K has OH group ✓ (ignore reference to any other bonds)					
	L does not have OH group / peak at 3230 - 3550 cm ⁻¹	[3]				
(c) (i)	peak at $\delta = 7.3$ ppm / with area 5, is due to the benzene ring (protons) \checkmark	÷ '				
	peak at δ = 4.5ppm / with area 2, is due to the -CH ₂ - (protons) \checkmark					
	peak at δ = 3.2ppm / with area 1, is due to the OH (proton) \checkmark	[3]				
(ii)	peak at δ = 3.2ppm / with area 1 disappears / ecf from (i) \checkmark					
(iii)	expect peak at δ = 7.1-7.7 ppm \checkmark 5 protons responsible / area = 5 \checkmark expect peak at δ = 3.3-4.3ppm \checkmark					
	3 protons responsible / area = 3 ✓	[4]				
	отј	tal: 15]				

to a CH₂ ✓

ANY 3 out of 5 reasoning marks

[6]

[1]

[Total: 12]

Z

this is due to 2 neighbours /adjacent

(ii) peak at 1700cm⁻¹ and/or at 1280cm⁻¹ marked ✓

4 (a) (i) reagents conc H₂SO₄ + HNO₃ ✓

electrophile
$$NO_2^+\checkmark$$

 $H_2SO_4^- + HNO_3^- \longrightarrow HSO_4^- + H_2O^- + NO_2^+/$
 $2H_2SO_4^- + HNO_3^- \longrightarrow 2HSO_4^- + H_3O^+ + NO_2^+\checkmark$

mechanism

curly arrow from benzene π -bond to electrophile \checkmark correct intermediate (ecf on electrophile formula) \checkmark curly arrow from C-H bond to π -bond and H $^{+}$ formed \checkmark

overall equation

$$C_6H_6 + HNO_3 - \longrightarrow C_6H_5NO_2 + H_2O \checkmark$$

ANY 6 out of 7 [6]

(ii) NO₂⁺ accepts an electron pair ✓
H is replaced / substituted by NO₂ ✓

[2]

(b) two peaks ✓ peak at/between 2 3-2 7 ✓ peak at/between 7 1-7 7 ✓

[3]

[Total: 11]

(b) 1 doublet and 1 quadruplet / 1 3 3 1 and 1.1 / correct reason for at least one peak / (eg 1,3 3,1 due to 3 neighbours / next to CH₃ / use of n+1 rule) [2]

(c) (i) C₇H₁₂O / [1]

(ii) OH / [1]

[Total: 13]

[Total: 12]

2 (a) (i) CH₃CHClCH₃ ✓ allow any formula that is unambiguously 2-chloropropane [1] (ii) CH₃CHCICH₃ + C₆H₆ ---→ C₆H₅CH(CH₃)₂ + HCI ✓ [1] (iii) halogen carrier ✓ [1] (b) (i) peaks identified peak X - CH₃ (protons) ✓ peak Y - CH (proton) ✓ peak Z – benzene ring (protons) ✓ 3 identification marks reasoning from δ value ... for each, either: quotes a δ value for the peak and refers explicitly to the Data Sheet /or quotes the relevant functional group in the Data Sheet (eg R-CH₃ for X) /or ignore any attempts to reason from quotes exactly the relevant Data Sheet the splitting here, but look out for range, ie (0.7-1.6 for X) credit to parts (ii) and (iii) if not (2.3 - 2.7 for Y)given below (7.1 - 7.7 for Z)3 reasoning marks [6] (ii) 1 proton / CH/ 'n' = 1 (using the n+1 rule) ✓ on the neighbouring/adjacent carbon ✓ [2] (iii) the CH₃ protons are all equivalent/in the same (chemical) environment / there are six protons adjacent to the CH ✓ [1]

the correct compound ✓

shown as a correctly displayed formula ✓

[2]

(ii) yes, because there are four different groups around the central carbon ✓(or ecf on the structure given in (i)) AW

allow asymmetric / non-superimposable on its mirror image

[1]

(b) infra-red/i.r. (spectroscopy) ✓ peak/absorption at 3230 - 3550 (cm⁻¹) ✓

n.m.r. (spectroscopy) ✓ peak at 3.5–5.5 (ppm) ... ✓ ... which disappears in D₂O ✓

Quality of Written Communication

mark for good organisation / a logical response and technical terms, using at least two of the following words:

infra-red, nuclear magnetic resonance, spectroscopy, wavenumber, cm⁻¹, chemical shift, ppm) ✓

[6]