Image Pyramids
lec 3 Frequency Domain /
Any univarite function Can be re-written as a weighted Sum of Sines 1 Cosines of dilbrent Frequencies
Amplitude (A) Sin(WX+0)
Fourier transform Stores: (1) (1) magnitude -> how much Signal at Particular Freq. (2) Phase -> Spatial information (indirectly)
Amplitude = ± VR(w) + I(w) ² Phase = O = tan I(w) 3) In mathematical way, they are represented R(w) as real , Complex numbers
)(FFt) => Fast fourier transform = N Log N
5) Fourier transform of Convoloution of two functions is the product of their Fourier transform
[[g*h]= [[g] F[h]
6) Inverse Pourier transform of Product of 2 Bourier transform is the Convolution of 2 inverse Ft F-1 [gh] = f-1[g] * F-1[h]
Convolution in spatial = MultipliChion in Frequency
. 0

	- Probles 11
Template Matching	
O Correlation (2) Zeromean Corellation (3): (4) Normalized Cross G-relation	Sum Square di Phrente
Norrelation Problem: response is stronger in	higher intensity
2) Zero mean Bright Pixel above average / dark	
Problem: (iresponse is Sensitive to goin (i) pixels in Bilter (near) havel (ii) doesn't require pixels in im be near or proportional to	ittle elfect
3) Sum Square dilbrence (SSD) w. problem: response is sensitive:	Lo average intestly
A Normalized Crox Greletion Solvent to man and intensity of Problem: Slow	Scale che ind Constrays
Sampling	
Image , Gaussian low Pass Sample , Filter Prillered img	Low Res image
Scann	ned with CamScanner

> mexican Replacian Pilter -> (2nd) derivative of Gassian) 2D edge detection (J2) operator how many 2d deverative Pilters?

-> 4 -> 2 in X

in y we Can re Construct original image From Laplacian Pframid Image Pyramids Pixels -> Great Spatial resolution
poor access Frequency Fourier -> Poor in spatial transform great in Frequency Pyramids) , Balance between Spatial, Krequely applications (Compression 2 object detection (scale seach)

3 detection Stable points

4 Registeration -> Grase-to-line

Denoising Smoothing with larger Standard deviation Suppress noise
But also Blur Image Salt, Pepper noise (by) Gaussian Smoothing > median Pilter , non linear Select median intensity Not Convolution Roboust to outliers Non (jnear litters Dixels Purther from Center Count less 2) <u>Clipped</u> mean average, ignoring lew bright, dak pitel Bilateral Lilleral weign by Spatial distable, intersity delhance