Geometrie pentru informaticieni

Seminarul 8: Hiperbola și parabola

Paul A. Blaga

Probleme rezolvate

Hiperbola

Problema 1. Stabiliți ecuația unei hiperbole ale cărei focare sunt situate pe axa Ox, simetric față de origine și care satisface unul dintre următoarele seturi de condiții suplimentare:

- 1) axele sunt date de 2a = 10 şi 2b = 8;
- 2) distanța dintre focare este 2c=6, iar excentricitatea este $\varepsilon=\frac{3}{2}$;
- 3) ecuațiile asimptotelor sunt

$$y = \pm \frac{4}{3}x,$$

iar distanța dintre focare este 2c = 20;

Soluție. 1) Semiaxele sunt a=5 și b=4, deci ecuația hiperbolei este

$$\frac{x^2}{25} - \frac{y^2}{16} = 1.$$

2) Determinăm mai întâi semiaxele. Avem:

$$c = 3 = \sqrt{a^2 + b^2},$$

adicâ $a^2 + b^2 = 9$, iar excentricitatea fiind egală cu 3/2, avem

$$\frac{3}{2} = \frac{c}{a} = \frac{3}{a},$$

de unde deducem că a=2, prin urmare $b\equiv\sqrt{9-a^2}=\sqrt{5}$. Așadar, ecuația hiperbolei este

$$\frac{x^2}{4} - \frac{y^2}{5} = 1.$$

3) Avem de rezolvat sistemul

$$\begin{cases} \frac{b}{a} = \frac{4}{3}, \\ \sqrt{a^2 + b^2} = 10. \end{cases}$$

Obținem imediat că a=6,b=8, deci ecuația hiperbolei este

$$\frac{x^2}{36} - \frac{y^2}{64} = 1.$$

Problema 2. Calculați aria triunghiului format de dreapta

$$9x + 2y - 24 = 0.$$

și de tangentele la hiperbola

$$\frac{x^2}{4} - \frac{y^2}{9} = 1$$

în punctele de intersecție cu dreapta.

Soluție. Punctele de intersecție dintre hiperbolă și dreaptă sunt soluțiile sistemului de ecuații

$$\begin{cases} 9x^2 - 4y^2 - 36 = 0, \\ 9x + 2y - 24 = 0. \end{cases}$$
 (1)

Rezolvând sistemul, obținem punctele

$$M_1\left(\frac{6+\sqrt{2}}{2}, \frac{-6-9\sqrt{2}}{4}\right)$$
 şi $M_2\left(\frac{6-\sqrt{2}}{2}, \frac{-6+9\sqrt{2}}{4}\right)$.

Ecuația tangentei în M_1 este

$$t_1: 9\left(\frac{6+\sqrt{2}}{2}\right)x - 4\left(\frac{-6-9\sqrt{2}}{4}\right)y - 36 = 0$$

sau

$$t_1: 9(6+\sqrt{2})x + 2(6+9\sqrt{2})y - 72 = 0,$$

iar ecuația tangentei în M_2 este

$$t_2: 9(6-\sqrt{2})x + 2(6-9\sqrt{2})y - 72 = 0.$$

De aici rezultă imediat că cel de-al treilea vârf al triunghiului, în care se intersectează cele două tangente, este $M_3\left(\frac{3}{2},-\frac{3}{4}\right)$.

Prin urmare, aria triunghiului $M_1M_2M_3$ va fi dată de

$$\mathcal{A} = \pm \frac{1}{2} \begin{vmatrix} \frac{6 + \sqrt{2}}{2} & \frac{-6 - 9\sqrt{2}}{4} & 1\\ \frac{6 - \sqrt{2}}{2} & \frac{-6 + 9\sqrt{2}}{4} & 1\\ \frac{3}{2} & -\frac{3}{4} & 1 \end{vmatrix} = \pm \frac{1}{128} \begin{vmatrix} 2(6 + \sqrt{2}) & -6 - 9\sqrt{2} & 4\\ 2(6 - \sqrt{2}) & -6 + 9\sqrt{2} & 4\\ 6 & -3 & 4 \end{vmatrix} = 3\sqrt{2}.$$

Problema 3. Demonstrați că aria paralelogramului format de asimptotele la hiperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

și de dreptele duse prin orice punct al hiperbolei, paralele cu asimptotele, este constantă, egală cu $\frac{ab}{2}$. Soluție. Fie $A(x_0, y_0)$ un punct de pe hiperbolă. Cele două asimptote au ecuațiile

$$as_1: y = \frac{b}{a}x,$$

respectiv

$$as_2: y = -\frac{b}{a}x.$$

Dreapta care trece prin A și este paralelă cu as_1 va avea ecuația

$$d_1: y - y_0 = \frac{b}{a}(x - x_0),$$

în timp ce dreapta care trece prin A și este paralelă cu asimptota a doua are ecuația

$$d_2: y - y_0 = -\frac{b}{a}(x - x_0).$$

Fie $B = as_1 \cap d_2$, $C = as_1 \cap as_2$, $D = as_2 \cap d_1$. Atunci paralelogramul a cărui arie o căutăm este paralelogramul ABCD. Aria sa este egală cu de două ori aria triunghiului ABC. Prin urmare, pentru a determina această arie, este suficient să determinăm coordonatele vârfurilor B și C. C fiind punctul de intersecție a asimptotelor, el coincide cu originea, deci tot ce mai trebuie să facem este să rezolvăm sistemul

$$\begin{cases} y = \frac{b}{a}x, \\ y - y_0 = -\frac{b}{a}(x - x_0). \end{cases}$$

Obţinem imediat $B\left(\frac{1}{2}\left(x_0+\frac{a}{b}y_0\right),\frac{1}{2}\left(\frac{b}{a}x_0+y_0\right)\right)$. Conform celor spuse mai sus, aria paralelogramului este dublul ariei triunghiului ABC, adică

$$\mathcal{A} = \left| \begin{vmatrix} x_0 & y_0 & 1 \\ \frac{1}{2} \left(x_0 + \frac{a}{b} y_0 \right) & \frac{1}{2} \left(\frac{b}{a} x_0 + y_0 \right) & 1 \\ 0 & 0 & 1 \end{vmatrix} \right| = \frac{1}{2ab} \left| b^2 x_0^2 - a^2 y_0^2 \right| = \frac{ab}{2},$$

unde, pentru a scrie ultima egalitate, am folosit faptul că punctul A se află pe hiperbolă, deci coordonatele sale verifică ecuația acesteia.

Problema 4. Stabiliți ecuațiile tangentelor la hiperbola

$$\frac{x^2}{16} - \frac{y^2}{64} = 1$$

care sunt paralele cu dreapta

$$10x - 3y + 9 = 0.$$

Soluție. Ca în cazul problemei precedente, ecuațiile acestor tangente sunt

$$y = kx \pm \sqrt{a^2k^2 - b^2},$$

unde, acum, k este chiar panta dreptei date, adică

$$k = \frac{10}{3}.$$

Prin urmare, avem,

$$y = \frac{10}{3}x \pm \sqrt{16 \cdot \frac{100}{9} - 64}$$

sau

$$10x - 3y \pm 32 = 0.$$

Problema 5. O hiperbolă trece prin punctul $M(\sqrt{6},3)$ şi este tangentă dreptei 9x+2y-15=0. Stabiliți ecuația hiperbolei, știind că axele sale coincid cu axele de coordonate.

Soluție. Căutăm, mai întâi, condiția general ă pentru ca o dreaptă de ecuație

$$Ax + By + C = 0$$

să fie tangent ă unei hiperbole de ecuație

$$\frac{x^2}{a^2} - \frac{y}{b^2} = 1.$$

Presupunem, pentru fixarea ideilor, că $B \neq 0$. Atunci

$$y = -\frac{Ax + C}{B}.$$

Dacă înlocuim în ecuația elipsei, obținem ecuația de gradul doi în x

$$(a^{2}A^{2} - b^{2}B^{2})x^{2} + 2a^{2}ACx + a^{2}(b^{2}B^{2} + C^{2}) = 0.$$

Condiția de tangență impune ca discriminantul acestei ecuații să fie egal cu zero. Dar

$$\Delta = 4a^2b^2B^2 \left(a^2A^2 - b^2B^2 - C^2\right) = 0.$$

Dar a și B nu se anulează (ele sunt numere strict pozitive), în timp ce B este diferit de zero prin ipoteză. Prin urmare, dreapta este tangentă hiperbolei dacă și numai dacă avem

$$a^2A^2 - b^2B^2 = C^2.$$

Exact aceeași condiție se obține și dacă facem ipoteza că $A \neq 0$.

În cazul nostru concret, condiția de mai sus devine

$$81a^2 - 4b^2 = 225$$
.

Aceasta este prima ecuație pentru determinarea pătratelor semiaxelor. A doua se obține din condiția ca punctul M să se afle pe hiperbolă, ceea ce ne conduce la

$$9a^2 - 6b^2 + a^2b^2 = 0.$$

Rezolvând sistemul format din cele două ecuații, obținem $a^2 = 10/3$, $b^2 = 45/4$ sau $a^2 = 5$, $b^2 = 45$, de unde rezultă ecuațiile celor două hiperbole care îndeplinesc condițiile din enunțul problemei.

Parabola

Problema 6. Determinați ecuația unei parabole cu vârful în origine dacă axa parabolei este axa Ox și parabola trece prin punctul A(9,6).

Soluție. Ecuația parabolei este de forma $y^2 = 2px$. Sigurul parametru care trebuie determinat este parametrul parabolei, p. Din condiția ca A să fie pe parabolă, obținem:

$$36 = 2 \cdot p \cdot 9$$
.

de unde rezultă că p=2, deci ecuația parabolei este

$$u^2 = 4x$$
.

Problema 7. Să se afle locul geometric al punctelor din care se pot duce tangente perpendiculare la parabola $y^2 = 2px$.

Soluție. Ecuația tangentei de pantă k la parabolă este

$$y = kx + \frac{p}{2k}.$$

Tangenta perpendiculară va avea panta -1/k, deci va fi de ecuație

$$y = -\frac{1}{k}x - \frac{kp}{2}.$$

Ajungem acum la sistemul de ecuații

$$\begin{cases} my = m^2x + \frac{p}{2}, \\ -my = x + \frac{m^2p}{2}. \end{cases}$$

Dacă adunăm cele două ecuații, obținem

$$(m^2 + 1)\left(x + \frac{p}{2}\right) = 0,$$

de unde

$$x = -\frac{p}{2},$$

adică locul geometric este directoarea parabolei.

Problema 8. Determinați ecuația canonică a unei parabole, știind că tangenta paralelă cu dreapta 5x - 4y - 2 = 0 trece prin punctul A(4,7).

Soluție. panta tangentei este k = 5/4. Ecuația tangentei de pantă 5/4 este

$$y = \frac{5}{4}x + \frac{2}{5}p.$$

Dacă impunem condiția ca A să se afle pe tangentă, obținem

$$7 = \frac{5}{4} \cdot 4 + \frac{2}{5}p,$$

de unde rezultă imediat că p=5, adică ecuația parabolei este

$$y^2 = 10x$$
.

Probleme rezolvate

Problema 9. Se dă hiperbola $16x^2 - 9y^2 = 144$. Să se determine:

- 1) semiaxele;
- 2) focarele;
- 3) ecuațiile asimptotelor;

Problema 10. Focarele unei hiperbole coincid cu cele ale elipsei

$$\frac{x^2}{25} + \frac{y^2}{9} = 1.$$

Stabiliți ecuația hiperbolei, știind că excentricitatea ei este egală cu 2.

Problema 11. Demonstrați că produsul distanțelor de la orice punct de pe hiperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

până la asimptote este constant, egal cu $\frac{a^2b^2}{a^2+b^2}$.

Problema 12. Stabiliți ecuațiile tangentelor la hiperbola

$$\frac{x^2}{20} - \frac{y^2}{5} = 1$$

care sunt perpendiculare pe dreapta

$$4x + 3y - 7 = 0.$$

Problema 13. Din punctul A(5,9) ducem tangente la parabola $y^2=5x$. Stabiliți ecuația coardei care unește punctele de tangență.

Problema 14. Să se determine ecuația canonică a unei parabole, știind că ea este tangentă dreptei 3x - 2y + 4 = 0 și determinați punctul de tangență.