# Supplementary Report 4: Genes of interest marked by vector integration Response Group CR/PRtd only (CLL & ALL Patients)

# Contents

| Summary                               | 2  |
|---------------------------------------|----|
| Integration Frequency (Enrichment)    | 7  |
| Integration Frequency (Depletion)     |    |
| Genes with the Most Abundant Clones   | 9  |
| Longitudinal Observation              | 10 |
| Reference Data                        | 11 |
| Comprehensive Genes of Interest Table | 12 |
|                                       |    |

#### Summary

Lentiviral vectors integrate into genomes of targeted host cells (Tcells). These genomic locations of vector integrations are identifiable through integration site sequencing. Abundances of individual cell clones can be inferred by the sonicLength method (Berry et al. 2012).

In this report, we mined the data collected from integration site sequencing for 20 CART treated subjects. We constructed 4 gene lists based on: 1 & 2) increased / decreased integration site occurrence in patient samples relative to the initial transduction product, 3) peak clonal abundance, and 4) longitudinal clonal persistence. More about each of these criteria is below:

- Integration Frequency is the rate at which integration sites are observed within a gene. This is compared between patient samples and the initial transduction product to score enrichment or depletion during growth in patients. The top of genes with higher patient sample integration frequency over transduction samples were chosen for study (p-value <= 0.05 after exclusion of genes with clones from less than 2 patients and less than 10 observed clones).
- Clonal Abundance can be determined during analysis by quantifying the number of sites of linker ligation associated with each unique integration site. This method is further described in **Berry** et al. 2012. This allows clonal expansion to be quantified. The top 1% of the genes were selected for study based on their maximal peak clonal abundance.
- Longitudinal Observation of clones is the quantification of observed timespans and last observed timepoints. The maximum value for clones within a gene were considered for characterization of the gene in this analysis. Genes were only considered if there were 10 or more integration sites isolated from at least two different patient samples. Genes were also not considered if they only considered of clones which were observed once or the last observed timepoint was less than 90 days from initial infusion.

A point to keep in mind through all this analysis is that integration sites are sampled from a larger population. It would be rare for all integration sites in a sample to be represented in the sequence data.

Table 1: Summary of each filtering criteria.

|              |       |              | · ·             |              | 0            |              |              |
|--------------|-------|--------------|-----------------|--------------|--------------|--------------|--------------|
|              | Gene  | Onco         | Tumor           | Lymphoma     | COSMIC       | TCGA         | Clonal Hema. |
| Criteria     | Count | Related1 (%) | Suppressors (%) | Related2 (%) | Related3 (%) | Related4 (%) | Related5 (%) |
| Enrichment   | 278   | */* 21.2     | */* 11.15       | / 0.360      | */* 12.23    | */* 9.35     | */* 1.079    |
| Depletion    | 4     | / 0.0        | / 0.00          | / 0.000      | / 0.00       | / 0.00       | / 0.000      |
| Abundance    | 119   | */* 20.2     | / 5.88          | / 0.000      | */* 9.24     | / 5.04       | / 0.840      |
| Longitudinal | 208   | */* 25.5     | */* 12.02       | / 0.481      | */* 12.50    | */* 12.02    | */* 1.442    |
| Composite    | 501   | */* 20.2     | */* 9.38        | / 0.200      | */* 10.78    | */* 8.18     | / 0.599      |

Table 1 summarizes the size and contents of each criteria gene list identified by the various methods. Significance of overlap between lists are displayed by asterisks before the percent of genes identified from the criteria list which overlap with the column specified group. The asterisk to the left of the "/" indicates a p-value below 0.05 before multiple comparison corrections, while an asterisk to the right of the "/" indicates a p-value below 0.05 after multiple comparison corrections. Significance was tested using Fishers Exact test and multiple comparison corrections were made using a Benjamini-Hochberg (FDR) method for each criteria based list.

Percent of all analyzed transcription units associated with each list as as follows:

• Onco Related: 9.41%

Tumor Suppressors: 4.91%
Lymphoma Related: 0.16%
COSMIC Related: 3.78%
TCGA Related: 2.88%

• Clonal Hematopoiesis Related: 0.18%



Figure 1: Intersecting gene lists identified through the various selection criteria.

Table 2: The most consistently observed genes from filtering by various criteria. The 'Criteria.' column is a count of how many times the gene was identified by these methods, while the 'Patients' column notes how many specimens collected from patients have had integration sites within the noted gene.

| Gene     | Patients | Freq. Change $(\%)$ | Peak Abund. | Long. Obs. | Criteria             |
|----------|----------|---------------------|-------------|------------|----------------------|
| VAV1     | 13       | 110.6               | 37          | 180        | EAL                  |
| RNF157   | 12       | 77.8                | 28          | 180        | $\mathrm{EAL}$       |
| AKAP13   | 11       | 340.6               | 27          | 360        | $\operatorname{EAL}$ |
| CARD8    | 11       | 74.4                | 79          | 180        | $\operatorname{EAL}$ |
| ZZEF1    | 11       | 64.4                | 56          | 360        | $\operatorname{EAL}$ |
| CRAMP1   | 10       | 53.1                | 30          | 548        | $\operatorname{EAL}$ |
| PAFAH1B1 | 10       | 110.7               | 30          | 360        | $\operatorname{EAL}$ |
| SRCAP    | 10       | 137.3               | 373         | 360        | $\mathrm{EAL}$       |
| UBAP2L   | 10       | 235.7               | 30          | 180        | $\mathrm{EAL}$       |
| ST13     | 8        | 153.7               | 29          | 180        | $\operatorname{EAL}$ |
| CLK4     | 7        | 259.0               | 53          | 120        | $\operatorname{EAL}$ |
| PTBP1    | 7        | 316.1               | 47          | 360        | $\mathrm{EAL}$       |
| TET2     | 5        | 450.8               | 814         | 1584       | $\operatorname{EAL}$ |

Table 3: GO Biological Process. Top 6 per group. Total genes considered: 446

| Group | GO ID                    | GO Term                                                                              | Term<br>Size      | Gene<br>Count                           | Adjusted<br>P-value   |
|-------|--------------------------|--------------------------------------------------------------------------------------|-------------------|-----------------------------------------|-----------------------|
|       | GO:0016569               | covalent chromatin modification                                                      | 436               | 52                                      | 0.0000000             |
|       | GO:0016570               | histone modification                                                                 | 353               | $\frac{32}{45}$                         | 0.0000000             |
|       | GO:0018205               | peptidyl-lysine modification                                                         | 297               | 41                                      | 0.0000000             |
| 1     | GO:0010200<br>GO:0033044 | regulation of chromosome organization                                                | 243               | 22                                      | 0.0106821             |
|       | GO:0043414               | macromolecule methylation                                                            | 230               | 21                                      | 0.010002              |
|       | GO:0006479               | protein methylation                                                                  | 142               | 19                                      | 0.0001516             |
|       | GO:0043632               | modification-dependent macromolecule catabolic                                       | 477               | 39                                      | 0.0016006             |
|       | GO:0006511               | process ubiquitin-dependent protein catabolic process                                | 464               | 38                                      | 0.0018954             |
|       | GO:0019941               | modification-dependent protein catabolic process                                     | 469               | 38                                      | 0.00133447            |
| _     | GO:0010498               | proteasomal protein catabolic process                                                | 360               | 30                                      | 0.002544              |
| 2     | GO:0010430               | proteasome-mediated ubiquitin-dependent protein                                      | 325               | 26                                      | 0.0206822             |
|       | GO:0034976               | catabolic process response to endoplasmic reticulum stress                           | 203               | 17                                      | 0.0437244             |
|       |                          |                                                                                      |                   |                                         |                       |
|       | GO:0071407               | cellular response to organic cyclic compound                                         | 387               | 32                                      | 0.0049674             |
|       | GO:0060322               | head development                                                                     | 430               | 30                                      | 0.0476302             |
| 3     | GO:0071396               | cellular response to lipid                                                           | 338               | 29                                      | 0.0049976             |
|       | GO:0007420               | brain development                                                                    | 407               | 29                                      | 0.0409789             |
|       | GO:0043009<br>GO:0009792 | chordate embryonic development<br>embryo development ending in birth or egg hatching | $\frac{316}{319}$ | $\begin{array}{c} 25 \\ 25 \end{array}$ | 0.027169 $0.030399$   |
|       |                          |                                                                                      |                   |                                         |                       |
|       | GO:0006397               | mRNA processing                                                                      | 394               | $\frac{37}{24}$                         | 0.0001266             |
|       | GO:0010608               | posttranscriptional regulation of gene expression                                    | 402               | 34                                      | 0.0023145             |
| 4     | GO:0006913               | nucleocytoplasmic transport                                                          | 342               | $\frac{32}{22}$                         | 0.0005569             |
|       | GO:0051169               | nuclear transport                                                                    | 346               | 32                                      | 0.0006778             |
|       | GO:0019439<br>GO:0046700 | aromatic compound catabolic process heterocycle catabolic process                    | $398 \\ 394$      | 29<br>28                                | 0.0332963 $0.0477359$ |
|       | GO:0051640               | organelle localization                                                               | 483               | 36                                      | 0.0127430             |
|       | GO:001040<br>GO:0010256  | endomembrane system organization                                                     | $\frac{403}{325}$ | 30<br>31                                | 0.0127430             |
|       | GO:0010230<br>GO:0044770 | cell cycle phase transition                                                          | 323<br>449        | $\frac{31}{31}$                         | 0.0487192             |
| 5     | GO:0051656               | establishment of organelle localization                                              | 319               | 29                                      | 0.0437132             |
|       | GO:0001030<br>GO:0000226 | microtubule cytoskeleton organization                                                | 384               | 28                                      | 0.002003              |
|       | GO:0000220<br>GO:0097435 | supramolecular fiber organization                                                    | 388               | 28                                      | 0.0405680             |
|       | GO:0030155               | regulation of cell adhesion                                                          | 424               | 34                                      | 0.0057642             |
|       | GO:0043547               | positive regulation of GTPase activity                                               | 490               | 34                                      | 0.0335019             |
|       | GO:0007265               | Ras protein signal transduction                                                      | 249               | 20                                      | 0.0394239             |
| 6     | GO:0001667               | ameboidal-type cell migration                                                        | 199               | 19                                      | 0.0111995             |
|       | GO:0018105               | peptidyl-serine phosphorylation                                                      | 197               | 18                                      | 0.021138              |
|       | GO:0018209               | peptidyl-serine modification                                                         | 207               | 18                                      | 0.0332963             |
|       | GO:0051223               | regulation of protein transport                                                      | 495               | 41                                      | 0.0008073             |
|       | GO:1903827               | regulation of cellular protein localization                                          | 429               | 37                                      | 0.0008073             |
| 7     | GO:0032386               | regulation of intracellular transport                                                | 389               | 32                                      | 0.0053911             |
| 7     | GO:0033157               | regulation of intracellular protein transport                                        | 259               | 26                                      | 0.0008563             |
|       | GO:0034504               | protein localization to nucleus                                                      | 257               | 21                                      | 0.0332963             |
|       | GO:0051170               | nuclear import                                                                       | 200               | 18                                      | 0.0246751             |

Table 4: KEGG Pathway analysis. Top 9 per group. Total genes considered: 209

| Group | KEGG ID          | Description                                     | Term | Gene  | Adjusted              |
|-------|------------------|-------------------------------------------------|------|-------|-----------------------|
|       | .1.1.04024       | 1157                                            | Size | Count | P-value               |
|       | path:hsa04024    | cAMP signaling pathway                          | 131  | 12    | 0.0985244             |
|       | path:hsa00310    | Lysine degradation                              | 48   | 9     | 0.0023145             |
|       | path:hsa04310    | Wnt signaling pathway                           | 99   | 9     | 0.1206771             |
|       | path:hsa04114    | Oocyte meiosis                                  | 96   | 9     | 0.1206771             |
| 1     | path:hsa04720    | Long-term potentiation                          | 49   | 8     | 0.0128656             |
|       | path:hsa04921    | Oxytocin signaling pathway                      | 109  | 8     | 0.2365007             |
|       | path: $hsa05012$ | Parkinson disease                               | 176  | 8     | 0.5810597             |
|       | path: $hsa04916$ | Melanogenesis                                   | 56   | 7     | 0.0906693             |
|       | path:hsa04020    | Calcium signaling pathway                       | 143  | 7     | 0.5128703             |
|       | path: hsa 05022  | Pathways of neurodegeneration - multiple        | 316  | 18    | 0.2949414             |
|       | path:hsa04120    | diseases<br>Ubiquitin mediated proteolysis      | 126  | 16    | 0.0023145             |
|       | path:hsa05014    | Amyotrophic lateral sclerosis                   | 262  | 15    | 0.3080526             |
|       | path:hsa04010    | MAPK signaling pathway                          | 195  | 14    | 0.1659765             |
| 2     | path:hsa04144    | Endocytosis                                     | 205  | 14    | 0.1801055             |
|       | path:hsa04141    | Protein processing in endoplasmic reticulum     | 134  | 13    | 0.0693902             |
|       | path:hsa05131    | Shigellosis                                     | 186  | 11    | 0.3104519             |
|       | path:hsa05202    | Transcriptional misregulation in cancer         | 105  | 10    | 0.1039590             |
|       | path:hsa05010    | Alzheimer disease                               | 245  | 9     | 0.7157590             |
|       | path:hsa05200    | Pathways in cancer                              | 340  | 16    | 0.5139562             |
|       | path:hsa04919    | Thyroid hormone signaling pathway               | 91   | 13    | 0.0023145             |
|       | path:hsa05166    | Human T-cell leukemia virus 1 infection         | 166  | 12    | 0.1790553             |
|       | path:hsa05206    | MicroRNAs in cancer                             | 168  | 12    | 0.1801055             |
| 3     | path:hsa05203    | Viral carcinogenesis                            | 147  | 11    | 0.1767306             |
| J     | path:hsa05016    | Huntington disease                              | 214  | 11    | 0.4500675             |
|       | path:hsa05165    | Human papillomavirus infection                  | 224  | 10    | 0.5840418             |
|       | path:hsa05167    | Kaposi sarcoma-associated herpesvirus infection | 124  | 9     | 0.2238980             |
|       | path:hsa04935    | Growth hormone synthesis, secretion and action  | 83   | 8     | 0.1206771             |
|       | path:hsa05205    | Proteoglycans in cancer                         | 128  | 13    | 0.0528221             |
|       | path:hsa04810    | Regulation of actin cytoskeleton                | 151  | 11    | 0.1801055             |
|       | path:hsa05163    | Human cytomegalovirus infection                 | 154  | 10    | 0.2795651             |
|       | path:hsa04660    | T cell receptor signaling pathway               | 80   | 8     | 0.1206771             |
| 4     | path:hsa04015    | Rap1 signaling pathway                          | 137  | 8     | 0.3640239             |
| 1     | path:hsa05135    | Yersinia infection                              | 101  | 7     | 0.2872758             |
|       | path:hsa04022    | cGMP-PKG signaling pathway                      | 107  | 7     | 0.3080526             |
|       | path:hsa05417    | Lipid and atherosclerosis                       | 137  | 6     | 0.5000320 $0.5938126$ |
|       | path:hsa04510    | Focal adhesion                                  | 143  | 6     | 0.6269290             |
|       | path:hsa05225    | Hepatocellular carcinoma                        | 100  | 10    | 0.0985244             |
|       | path:hsa04140    | Autophagy - animal                              | 120  | 10    | 0.1408152             |
|       | path:hsa04915    | Estrogen signaling pathway                      | 78   | 7     | 0.1659765             |
|       | path:hsa04926    | Relaxin signaling pathway                       | 88   | 7     | 0.2113832             |
| 5     | path:hsa04371    | Apelin signaling pathway                        | 95   | 7     | 0.2443199             |
| •     | path:hsa04910    | Insulin signaling pathway                       | 101  | 7     | 0.2872758             |
|       | path:hsa04072    | Phospholipase D signaling pathway               | 107  | 7     | 0.3080526             |
|       | path:hsa04014    | Ras signaling pathway                           | 149  | 7     | 0.5080520 $0.5587694$ |
|       | path:hsa05168    | Herpes simplex virus 1 infection                | 357  | 6     | 0.9939354             |
|       | ранильанич       | Horpes simplex virus i infection                | 001  | 0     | 0.555550              |

## Integration Frequency (Enrichment)

Table 5: Table of top 50 genes with the most frequent clonal enrichment.

| Gene                  | Num. Patients | TDN Sites     | Patient Sites | Onco-Related   | Frequency Increase (%) |
|-----------------------|---------------|---------------|---------------|----------------|------------------------|
| RBM27                 | 6             | 0             | 12            | FALSE          | Inf                    |
| AGL                   | 4             | 1             | 10            | FALSE          | 1368.7                 |
| MCPH1                 | 8             | 2             | 13            | TRUE           | 854.7                  |
| BACH2                 | 7             | $\frac{2}{2}$ | 12            | TRUE           | 781.2                  |
| NDFIP2                | 6             | 3             | 17            | FALSE          | 732.3                  |
| GAK                   | 8             | 3             | 17            | TRUE           | 732.3                  |
| IKZF2                 | 6             | 2             | 11            | TRUE           | 707.8                  |
| GNA12                 | 6             | $\frac{2}{2}$ | 11            | TRUE           | 707.8                  |
| FANCL                 | 5             | $\frac{2}{2}$ | 11            | FALSE          | 707.8                  |
| PIKFYVE               | 9             | $\frac{2}{2}$ | 11            | FALSE          | 707.8                  |
| PAPOLA                | 6             | 3             | 16            | FALSE          | 683.3                  |
| FAM117B               | 6             | 5             | 25            | FALSE          | 634.4                  |
| CD55                  | 9             | 3             | 14            | TRUE           | 585.4                  |
| EP400P1               | 6             | 3<br>4        | 18            | FALSE          | 560.9                  |
|                       | 6             | 3             |               |                |                        |
| FUNDC2<br>GPHN        |               | 3             | 13<br>13      | FALSE<br>TRUE  | 536.4 $536.4$          |
| NDUFV2                | 8<br>9        | 3             | 13<br>13      |                | 536.4                  |
|                       |               | 3             | 13<br>12      | FALSE<br>FALSE |                        |
| UHRF1BP1<br>RAB11FIP2 | 8             | 3             |               | FALSE          | 487.5                  |
|                       | 9             |               | 12            |                | 487.5                  |
| TAF2                  | 7<br>8        | 4             | 16            | FALSE          | 487.5                  |
| PDS5B                 |               | 4             | 16            | TRUE           | 487.5                  |
| RBM39                 | 10            | 5             | 19            | TRUE           | 458.1                  |
| LRPPRC                | 10            | 4             | 15            | FALSE          | 450.8                  |
| TET2                  | 5             | 4             | 15            | TRUE           | 450.8                  |
| FUS                   | 4             | 3             | 11            | TRUE           | 438.5                  |
| PIP5K1A               | 7             | 3             | 11            | FALSE          | 438.5                  |
| LPXN                  | 5             | 3             | 11            | FALSE          | 438.5                  |
| RBMS1                 | 7             | 3             | 11            | FALSE          | 438.5                  |
| EEF2                  | 8             | 3             | 11            | FALSE          | 438.5                  |
| SLK                   | 9             | 4             | 14            | FALSE          | 414.0                  |
| MACROD2               | 7             | 4             | 14            | FALSE          | 414.0                  |
| HSF2                  | 8             | 4             | 14            | FALSE          | 414.0                  |
| SIPA1L1               | 6             | 3             | 10            | FALSE          | 389.6                  |
| VPS9D1                | 7             | 3             | 10            | FALSE          | 389.6                  |
| GARS                  | 4             | 3             | 10            | FALSE          | 389.6                  |
| NSRP1                 | 6             | 3             | 10            | FALSE          | 389.6                  |
| SLBP                  | 7             | 3             | 10            | FALSE          | 389.6                  |
| PDCD10                | 8             | 3             | 10            | FALSE          | 389.6                  |
| BZW2                  | 6             | 3             | 10            | FALSE          | 389.6                  |
| NAA16                 | 6             | 3             | 10            | FALSE          | 389.6                  |
| UBR3                  | 5             | 3             | 10            | FALSE          | 389.6                  |
| PELP1                 | 11            | 8             | 26            | FALSE          | 377.3                  |
| ZFAND3                | 9             | 4             | 13            | FALSE          | 377.3                  |
| RNF10                 | 8             | 5             | 16            | FALSE          | 370.0                  |
| KDM4A                 | 8             | 5             | 16            | FALSE          | 370.0                  |
| HELLS                 | 9             | 5_            | 16            | FALSE          | 370.0                  |
| RASA1                 | 7             | 7             | 22            | TRUE           | 361.6                  |
| PCMTD2                | 6             | 4             | 12            | FALSE          | 340.6                  |
| ZNF512                | 9             | 4             | 12            | FALSE          | 340.6                  |
| SYNJ1                 | 5             | 4             | 12            | FALSE          | 340.6                  |

## Integration Frequency (Depletion)

Table 6: Table of top 4 genes with the most frequent clonal depletion.

| Gene   | Num. Patients | TDN Sites | Patient Sites | Onco-Related | Frequency Increase (%) |
|--------|---------------|-----------|---------------|--------------|------------------------|
| RNPS1  | 5             | 69        | 16            | FALSE        | -65.9                  |
| EXOC2  | 5             | 34        | 10            | FALSE        | -56.8                  |
| EIF2B3 | 8             | 42        | 14            | FALSE        | -51.0                  |
| MROH1  | 8             | 142       | 71            | FALSE        | -26.6                  |

#### Genes with the Most Abundant Clones

Table 7: Table of top 50 Genes containing the highest abundant clones.

| Gene                      | Num. Patients        | Peak Abundance | Peak Rel. Abund. | Clonal Gini Index | Onco-Related   |
|---------------------------|----------------------|----------------|------------------|-------------------|----------------|
| TET2                      | 7                    | 814            | 0.989            | 0.920             | TRUE           |
| KCTD3                     | 3                    | 589            | 0.265            | 0.663             | FALSE          |
| PATL1                     | 3                    | 578            | 0.260            | 0.745             | FALSE          |
| PIKFYVE                   | 8                    | 410            | 0.273            | 0.878             | FALSE          |
| SRCAP                     | 10                   | 373            | 0.357            | 0.896             | FALSE          |
| MTMR3                     | 5                    | 261            | 0.041            | 0.872             | TRUE           |
| PCNX1                     | 10                   | 153            | 0.010            | 0.828             | FALSE          |
| PPP6R3                    | 11                   | 149            | 0.040            | 0.745             | FALSE          |
| SSH2                      | 8                    | 137            | 0.062            | 0.805             | FALSE          |
| RSRC1                     | 7                    | 109            | 0.014            | 0.811             | FALSE          |
| SNHG12                    | 2                    | 96             | 0.057            | 0.646             | FALSE          |
| MAPK14                    | 8                    | 91             | 0.018            | 0.784             | TRUE           |
| RPA3                      | 4                    | 87             | 0.011            | 0.767             | FALSE          |
| ZNF573                    | 3                    | 86             | 0.610            | 0.677             | FALSE          |
| MGA                       | 10                   | 85             | 0.013            | 0.762             | FALSE          |
| AQR                       | 4                    | 84             | 0.022            | 0.790             | FALSE          |
| $\widetilde{\text{LEF1}}$ | 8                    | 84             | 0.038            | 0.770             | TRUE           |
| LINC01473                 | $\overline{2}$       | 82             | 0.075            | 0.488             | FALSE          |
| CARD8                     | 11                   | 79             | 0.056            | 0.700             | TRUE           |
| IQCB1                     | 4                    | 79             | 0.028            | 0.713             | FALSE          |
| DNAJC13                   | 6                    | 71             | 0.004            | 0.764             | FALSE          |
| EXOSC10                   | 4                    | 70             | 0.008            | 0.776             | FALSE          |
| ATP2A2                    | 8                    | 67             | 0.030            | 0.749             | FALSE          |
| SEC31A                    | 6                    | 66             | 0.004            | 0.752             | FALSE          |
| GPN1                      | $\overset{\circ}{2}$ | 62             | 0.017            | 0.711             | FALSE          |
| SMAP2                     | 6                    | 61             | 0.004            | 0.768             | FALSE          |
| TRIO                      | 5                    | 61             | 0.025            | 0.770             | TRUE           |
| ZZEF1                     | 10                   | 56             | 0.333            | 0.632             | FALSE          |
| CLK4                      | 8                    | 53             | 0.036            | 0.653             | FALSE          |
| JMJD6                     | $\overset{\circ}{2}$ | 53             | 0.015            | 0.755             | FALSE          |
| KDM5D                     | 5                    | 51             | 0.017            | 0.741             | FALSE          |
| UBR1                      | 8                    | 48             | 0.421            | 0.715             | FALSE          |
| MEMO1                     | 4                    | 47             | 0.006            | 0.722             | FALSE          |
| PTBP1                     | 6                    | 47             | 0.043            | 0.680             | TRUE           |
| DYNC1H1                   | 6                    | 44             | 0.003            | 0.721             | FALSE          |
| NGDN                      | 3                    | 44             | 0.005            | 0.623             | FALSE          |
| EIF2AK4                   | 3                    | 43             | 0.003            | 0.659             | FALSE          |
| MSH5-SAPCD1               | 4                    | 43             | 0.039            | 0.708             | FALSE          |
| POLG2                     | 2                    | 43             | 0.003            | 0.708             | FALSE          |
| RASEF                     | 1                    | 43             | 0.005            | 0.477             | FALSE          |
| UXT-AS1                   | $\overset{1}{2}$     | 43             | 0.039            | 0.477             | FALSE          |
| ADD1                      | 8                    | 42             | 0.006            | 0.605             | FALSE          |
| GRB2                      | 10                   | 42             | 0.017            | 0.566             | TRUE           |
| KIFC1                     | 7                    | 42 $42$        | 0.017            | 0.694             | FALSE          |
| TAC3                      | $\frac{7}{2}$        | 42 $42$        | 0.003            | 0.694 $0.477$     | FALSE          |
| ZNF92                     | $\frac{2}{2}$        |                |                  |                   | FALSE          |
| ACTL6A                    |                      | 42             | 0.003            | 0.690             |                |
| ACTLOA<br>ATP6V1G2-DDX39B | 1                    | 40             | 0.003            | 0.000             | FALSE          |
| PHF12                     | $\frac{8}{2}$        | 40             | $0.005 \\ 0.014$ | 0.656             | FALSE          |
| MICAL2                    | 1                    | 40<br>39       | 0.014 $0.028$    | $0.670 \\ 0.000$  | FALSE<br>FALSE |
| WHUAL2                    | 1                    | აყ             | 0.028            | 0.000             | FALSE          |

#### ${\bf Longitudinal\ Observation}$

Table 8: Table of top 50 genes identified by longitudinal observations.

| Gene     | Time Span     | Longest Time | Obs. Count    | Num. Patients | Patient Sites | Peak Abund.   | Onco-Related |
|----------|---------------|--------------|---------------|---------------|---------------|---------------|--------------|
| FKBP5    | 1555.0        | 1825.0       | 4             | 11            | 30            | 15            | FALSE        |
| PTPRA    | 1555.0        | 1825.0       | 3             | 8             | 33            | 4             | FALSE        |
| TET2     | 1464.0        | 1584.0       | 7             | 5             | 15            | 814           | TRUE         |
| UBR1     | 1277.5        | 1825.0       | 4             | 7             | 13            | 48            | FALSE        |
| COX6B1   | 825.0         | 1095.0       | 3             | 9             | 17            | 5             | FALSE        |
| CCDC57   | 642.5         | 912.5        | 2             | 11            | 33            | 6             | FALSE        |
| KMT5B    | 642.5         | 912.5        | 2             | 10            | 26            | 7             | FALSE        |
| MACF1    | 519.5         | 547.5        | 3             | 12            | 32            | 11            | TRUE         |
| DNMT1    | 365.0         | 912.5        | 2             | 11            | 65            | 13            | TRUE         |
| STXBP5   | 350.0         | 360.0        | 4             | 8             | 15            | 8             | FALSE        |
| CASK     | 346.0         | 547.5        | 2             | 7             | 16            | 5             | FALSE        |
| RPTOR    | 346.0         | 360.0        | 2             | 15            | 85            | 11            | FALSE        |
| DIP2A    | 346.0         | 360.0        | 2             | 10            | 35            | 25            | FALSE        |
| PTBP1    | 346.0         | 360.0        | 2             | 7             | 17            | 47            | TRUE         |
| MIR4745  | 346.0         | 360.0        | 2             | 6             | 10            | 47            | FALSE        |
| ZZEF1    | 332.0         | 360.0        | 5             | 11            | 47            | 56            | FALSE        |
| SRCAP    | 332.0         | 360.0        | 5             | 10            | 21            | 373           | FALSE        |
| OGDH     | 332.0         | 360.0        | 4             | 4             | 10            | 17            | FALSE        |
| WDR82    | 277.5         | 547.5        | 3             | 7             | 20            | 7             | TRUE         |
| PIP5K1A  | 277.5         | 547.5        | 2             | 7             | 11            | 3             | FALSE        |
| EP400P1  | 260.0         | 270.0        | 3             | 6             | 18            | 5             | FALSE        |
| HSF1     | 256.0         | 270.0        | 3             | 12            | 45            | 10            | FALSE        |
| BOP1     | 256.0         | 270.0        | 3             | 11            | 34            | 10            | TRUE         |
| FNBP1    | 256.0         | 270.0        | $\frac{3}{2}$ | 9             | 32            | 5             | TRUE         |
| PDS5B    | 256.0         | 270.0        | $\frac{2}{2}$ | 8             | 16            | 10            | TRUE         |
| ACOX1    | 256.0         | 270.0        | $\frac{2}{2}$ | 7             | 15            | 2             | FALSE        |
| PIK3C3   | 180.0         | 360.0        | 3             | 10            | 30            | 5             | FALSE        |
| IQGAP1   | 166.0         | 180.0        | 3             | 9             | 16            | 5             | FALSE        |
| SNAPC4   | 166.0         | 180.0        | $\frac{3}{2}$ | 9<br>7        | 18            | 7             | FALSE        |
| UBE2J2   | 166.0         | 180.0        | $\frac{2}{2}$ | 7             | 14            | $\frac{7}{2}$ | FALSE        |
| SSH2     | 152.0         | 1095.0       | 4             | 8             | 26            | 137           | FALSE        |
| MED13    | 152.0 $152.0$ |              |               | 12            | 26<br>26      |               |              |
|          |               | 270.0        | 4             |               |               | 21            | FALSE        |
| CARD8    | 152.0         | 180.0        | 4             | 11            | 38            | 79            | TRUE         |
| LEF1     | 152.0         | 180.0        | 4             | 7<br>13       | 15<br>76      | 84            | TRUE         |
| VAV1     | 152.0         | 180.0        | 3             |               | 76            | 37            | TRUE         |
| STAG1    | 136.0         | 912.5        | 2             | 8             | 13            | 6             | TRUE         |
| PPP6R2   | 136.0         | 180.0        | 2             | 11            | 40            | 15<br>C       | FALSE        |
| RTTN     | 136.0         | 150.0        | 2             | 8             | 15            | 6             | FALSE        |
| MAPK8IP3 | 130.0         | 270.0        | 2             | 10            | 31            | 5             | FALSE        |
| SMG1     | 122.0         | 150.0        | 3             | 12            | 39            | 7             | FALSE        |
| INPP4B   | 122.0         | 150.0        | 3             | 11            | 28            | 3             | FALSE        |
| PIAS1    | 122.0         | 150.0        | 3             | 8             | 21            | 6             | FALSE        |
| DDX60    | 122.0         | 150.0        | 3             | 9             | 15            | 22            | FALSE        |
| ZNRD1ASP | 122.0         | 150.0        | 3             | 6             | 14            | 4             | FALSE        |
| DPYD     | 122.0         | 150.0        | 2             | 12            | 33            | 22            | FALSE        |
| RUNX1    | 110.0         | 360.0        | 2             | 9             | 19            | 1             | TRUE         |
| ASH1L    | 106.0         | 1825.0       | 2             | 12            | 46            | 5             | FALSE        |
| WWOX     | 106.0         | 1095.0       | 3             | 5             | 11            | 5             | TRUE         |
| RFX2     | 106.0         | 360.0        | 2             | 7             | 14            | 9             | TRUE         |
| PPFIA1   | 106.0         | 270.0        | 4             | 5             | 11            | 20            | FALSE        |

#### Reference Data

The NCBI RefGenes data set was used to identify gene regions (hg38) while genes identified as onco-related were from the Bushman Lab curated list of **onco-related genes**.

Gene Ontologies were extracted from the GO.db R-package (v3.4.1). KEGG pathways were acquired via interfacing with the KEGG web-server API through the KEGGREST R-package (v1.16.1). Gene lists, including RefSeq genes used for annotation of integration sites, were standardized to HGNC gene symbols (date: 2018-02-07). Groups identified in GO and KEGG analyses were determined from Jaccard distances between identified terms, followed by modularity-optimizing clustering from a weighted-undirected graph using a Louvain algorithm (Blondel et al. 2008). Terms within groups of GO or KEGG terms have greater overlap of gene lists between themselves that between terms found in other groups. This method was implemented to help reduce the functional redundancy commonly observed in GO and overlapping pathways observed with KEGG.

Comprehensive Genes of Interest Table

Table 9: Table of all genes identified within analysis.

| Gene           | Chromosome            | Start Pos.      | End Pos.    | Patients | Freq. Change (%) | Peak Abund. | Long. Obs. | Criteria            |
|----------------|-----------------------|-----------------|-------------|----------|------------------|-------------|------------|---------------------|
| VAV1           | chr19                 | 6,767,667       | 6,862,366   | 13       | 110.6            | 37          | 152.0      | EAL                 |
| RNF157         | chr17                 | 76,137,452      | 76,245,311  | 12       | 77.8             | 28          | 14.0       | EAL                 |
| AKAP13         | chr15                 | 85,375,615      | 85,754,358  | 11       | 340.6            | 27          | 7.0        | EAL                 |
| CARD8          | chr19                 | 48,203,085      | 48,260,946  | 11       | 74.4             | 79          | 152.0      | EAL                 |
| ZZEF1          | chr17                 | 3,999,444       | 4,147,959   | 11       | 64.4             | 56          | 332.0      | EAL                 |
| CRAMP1         | chr16                 | 1,609,639       | 1,682,908   | 10       | 53.1             | 30          | 18.0       | EAL                 |
| PAFAH1B1       | chr17                 | 2,588,628       | 2,690,615   | 10       | 110.7            | 30          | 7.0        | EAL                 |
| SRCAP          | chr16                 | 30,694,140      | 30,745,129  | 10       | 137.3            | 373         | 332.0      | EAL                 |
| UBAP2L         | chr1                  | 154,215,171     | 154,276,510 | 10       | 235.7            | 30          | 7.0        | EAL                 |
| ST13           | chr22                 | 40,819,534      | 40,862,008  | 8        | 153.7            | 29          | 7.0        | EAL                 |
| CLK4           | chr5                  | 178,597,663     | 178,632,053 | 7        | 259.0            | 53          | 106.0      | EAL                 |
| PTBP1          | chr19                 | 792,391         | 817,327     | 7        | 316.1            | 47          | 346.0      | EAL                 |
| TET2           | chr4                  | 105,140,874     | 105,284,803 | 5        | 450.8            | 814         | 1464.0     | EAL                 |
| FANCA          | chr16                 | 89,732,550      | 89,821,657  | 15       | 94.3             | 21          | 15.0       | $\operatorname{EL}$ |
| $_{ m JPT2}$   | chr16                 | 1,673,276       | 1,707,072   | 15       | 106.7            | 23          | 46.0       | $\operatorname{EL}$ |
| RPTOR          | chr17                 | 80,539,824      | 80,971,373  | 15       | 75.8             | 11          | 346.0      | $\operatorname{EL}$ |
| PPP3CA         | chr4                  | 101,018,429     | 101,352,471 | 14       | 178.3            | 5           | 46.0       | $\operatorname{EL}$ |
| ANKRD11        | chr16                 | 89,262,620      | 89,495,561  | 13       | 94.2             | 23          | 7.0        | $\operatorname{EL}$ |
| EHMT1          | chr9                  | 137,613,991     | 137,841,126 | 13       | 111.1            | 3           | 50.0       | $\operatorname{EL}$ |
| EP300          | chr22                 | 41,087,609      | 41,185,077  | 13       | 159.2            | 6           | 46.0       | $\operatorname{EL}$ |
| LUC7L          | chr16                 | 183,968         | 234,482     | 13       | 35.9             | 30          | 7.0        | AL                  |
| RABEP1         | chr17                 | $5,\!277,\!262$ | 5,391,339   | 13       | 74.7             | 26          | 14.0       | EA                  |
| $_{ m JMJD1C}$ | chr10                 | 63,162,220      | 63,527,075  | 12       | 273.9            | 5           | 7.0        | $\operatorname{EL}$ |
| MED13          | chr17                 | 61,937,604      | 62,070,282  | 12       | 154.6            | 21          | 152.0      | $\operatorname{EL}$ |
| PPP6R3         | chr11                 | 68,455,717      | 68,620,333  | 12       | 182.9            | 149         | 14.0       | EA                  |
| SMG1P1         | chr16                 | 22,432,007      | 22,497,220  | 12       | 225.2            | 3           | 100.0      | $\operatorname{EL}$ |
| CREBBP         | chr16                 | 3,720,054       | 3,885,120   | 11       | 83.6             | 5           | 46.0       | $\operatorname{EL}$ |
| GMDS           | chr6                  | 1,618,799       | 2,250,634   | 11       | 230.5            | 8           | 14.0       | $\operatorname{EL}$ |
| SF1            | chr11                 | 64,759,603      | 64,783,844  | 11       | 84.6             | 16          | 14.0       | $\operatorname{EL}$ |
| SUPT3H         | chr6                  | 44,821,729      | 45,383,051  | 11       | 187.4            | 8           | 14.0       | $\operatorname{EL}$ |
| USP15          | chr12                 | 62,255,339      | 62,414,721  | 11       | 120.3            | 14          | 15.0       | $\operatorname{EL}$ |
| XPO5           | chr6                  | 43,517,329      | 43,581,075  | 11       | 99.3             | 26          | 22.0       | AL                  |
| ARHGAP15       | chr2                  | 143,124,329     | 143,773,352 | 10       | 120.3            | 7           | 5.0        | $\operatorname{EL}$ |
| CHD4           | chr12                 | 6,565,081       | 6,612,433   | 10       | 131.9            | 19          | 7.0        | $\operatorname{EL}$ |
| DDX42          | chr17                 | 63,769,188      | 63,824,317  | 10       | 114.7            | 6           | 14.0       | $\operatorname{EL}$ |
| DIP2A          | chr21                 | 46,453,948      | 46,575,013  | 10       | 28.5             | 25          | 346.0      | AL                  |
| EYA3           | $\operatorname{chr}1$ | 27,965,343      | 28,093,637  | 10       | 235.7            | 7           | 32.0       | $\operatorname{EL}$ |
| KDM6A          | chrX                  | 44,868,174      | 45,117,612  | 10       | 181.5            | 9           | 106.0      | $\operatorname{EL}$ |
| LRBA           | chr4                  | 150,259,658     | 151,020,497 | 10       | 99.7             | 17          | 106.0      | $\operatorname{EL}$ |
| MGA            | chr15                 | 41,655,411      | 41,774,943  | 10       | 148.6            | 85          | 46.0       | EA                  |
| NF1            | chr17                 | 31,089,926      | 31,382,677  | 10       | 193.7            | 14          | 14.0       | $\operatorname{EL}$ |

Table 9: Table of all genes identified within analysis. (continued)

| Gene     | Chromosome            | Start Pos.        | End Pos.          | Patients | Freq. Change (%) | Peak Abund. | Long. Obs. | Criteria               |
|----------|-----------------------|-------------------|-------------------|----------|------------------|-------------|------------|------------------------|
| PIK3C3   | chr18                 | 41,950,197        | 42,086,482        | 10       | 267.2            | 5           | 180.0      | $\operatorname{EL}$    |
| PRKACB   | chr1                  | 84,072,974        | 84,243,498        | 10       | 111.1            | 4           | 7.0        | $\operatorname{EL}$    |
| SETD2    | chr3                  | 47,011,407        | 47,168,977        | 10       | 100.7            | 17          | 22.0       | $\operatorname{EL}$    |
| SRRM2    | chr16                 | 2,747,328         | 2,776,412         | 10       | 183.3            | 32          | 1.0        | $\mathbf{E}\mathbf{A}$ |
| DDX60    | chr4                  | 168,211,290       | 168,323,807       | 9        | 144.8            | 22          | 122.0      | $\operatorname{EL}$    |
| GRB2     | chr17                 | 75,313,075        | 75,410,709        | 9        | 17.5             | 42          | 14.0       | AL                     |
| HELLS    | chr10                 | 94,540,766        | 94,607,099        | 9        | 370.0            | 15          | 106.0      | $\operatorname{EL}$    |
| MED13L   | chr12                 | 115,953,575       | 116,282,186       | 9        | 104.0            | 38          | 7.0        | $\mathrm{EA}$          |
| NDUFV2   | chr18                 | 9,097,629         | 9,139,345         | 9        | 536.4            | 15          | 22.0       | $\operatorname{EL}$    |
| PIKFYVE  | chr2                  | 208,261,266       | 208,363,751       | 9        | 707.8            | 410         | 14.0       | $\mathrm{EA}$          |
| RUNX1    | chr21                 | 34,782,800        | 35,054,298        | 9        | 248.8            | 1           | 110.0      | $\operatorname{EL}$    |
| SLC6A16  | chr19                 | 49,284,634        | 49,330,217        | 9        | 82.1             | 2           | 14.0       | $\operatorname{EL}$    |
| SMURF2   | chr17                 | 64,539,616        | 64,667,268        | 9        | 100.3            | 27          | 7.0        | AL                     |
| TARSL2   | chr15                 | 101,648,751       | 101,729,442       | 9        | 340.6            | 22          | 7.0        | $\operatorname{EL}$    |
| UBAC2    | chr13                 | 99,195,424        | 99,391,499        | 9        | 120.3            | 4           | 14.0       | $\operatorname{EL}$    |
| UBR4     | chr1                  | 19,069,505        | 19,215,252        | 9        | 256.7            | 8           | 7.0        | $\operatorname{EL}$    |
| USP25    | chr21                 | 15,725,024        | 15,885,071        | 9        | 218.2            | 10          | 46.0       | $\operatorname{EL}$    |
| AP2B1    | chr17                 | 35,582,262        | 35,731,417        | 8        | 144.8            | 13          | 90.0       | $\operatorname{EL}$    |
| ATP2A2   | chr12                 | $110,\!276,\!226$ | 110,356,092       | 8        | 157.0            | 67          | 22.0       | $\mathrm{EA}$          |
| DNAJC13  | chr3                  | 132,412,659       | 132,544,032       | 8        | 193.7            | 71          | 7.0        | $\mathbf{E}\mathbf{A}$ |
| DYNC1H1  | chr14                 | 101,959,527       | 102,055,798       | 8        | 193.7            | 44          | 7.0        | $\mathbf{E}\mathbf{A}$ |
| FAM13A   | chr4                  | 88,720,953        | 89,062,195        | 8        | 172.8            | 1           | 7.0        | $\operatorname{EL}$    |
| HNRNPUL1 | chr19                 | $41,\!257,\!475$  | 41,312,783        | 8        | 179.1            | 4           | 14.0       | $\operatorname{EL}$    |
| MCPH1    | chr8                  | 6,401,591         | 6,653,505         | 8        | 854.7            | 9           | 7.0        | $\operatorname{EL}$    |
| MOB3A    | chr19                 | 2,066,035         | $2,\!101,\!270$   | 8        | 135.0            | 2           | 22.0       | $\operatorname{EL}$    |
| PDCD4    | chr10                 | $110,\!866,\!794$ | 110,905,006       | 8        | 105.6            | 26          | 14.0       | AL                     |
| PDS5B    | chr13                 | $32,\!581,\!426$  | 32,783,020        | 8        | 487.5            | 10          | 256.0      | $\operatorname{EL}$    |
| PIAS1    | chr15                 | 68,049,178        | 68,196,466        | 8        | 285.5            | 6           | 122.0      | $\operatorname{EL}$    |
| RSRC1    | chr3                  | 158,105,051       | $158,\!549,\!835$ | 8        | 46.9             | 109         | 106.0      | AL                     |
| SSH2     | chr17                 | 29,620,938        | 29,935,228        | 8        | 27.3             | 137         | 152.0      | AL                     |
| STAG1    | chr3                  | $136,\!332,\!156$ | 136,757,403       | 8        | 281.9            | 6           | 136.0      | $\operatorname{EL}$    |
| LEF1     | $\operatorname{chr}4$ | 108,042,544       | $108,\!173,\!956$ | 7        | 46.9             | 84          | 152.0      | AL                     |
| MAPK14   | chr6                  | 36,022,676        | $36,\!116,\!236$  | 7        | 108.1            | 91          | 7.0        | AL                     |
| NEMP1    | chr12                 | 57,050,642        | 57,083,791        | 7        | 223.1            | 10          | 46.0       | $\operatorname{EL}$    |
| PIP5K1A  | chr1                  | $151,\!193,\!543$ | $151,\!254,\!531$ | 7        | 438.5            | 3           | 277.5      | $\operatorname{EL}$    |
| UBR1     | chr15                 | 42,937,899        | 43,111,088        | 7        | -17.0            | 48          | 1277.5     | AL                     |
| BRWD3    | chrX                  | 80,664,487        | 80,814,734        | 6        | 172.8            | 6           | 7.0        | $\operatorname{EL}$    |
| EP400P1  | chr12                 | $132,\!079,\!282$ | 132,131,340       | 6        | 560.9            | 5           | 260.0      | $\operatorname{EL}$    |
| HERC4    | chr10                 | 67,916,898        | 68,080,346        | 6        | 34.6             | 35          | 106.0      | AL                     |
| MIR4745  | chr19                 | 799,939           | 810,001           | 6        | 267.2            | 47          | 346.0      | $\operatorname{EL}$    |
| MTOR     | chr1                  | $11,\!101,\!530$  | $11,\!267,\!551$  | 6        | 55.5             | 29          | 90.0       | AL                     |

Table 9: Table of all genes identified within analysis. (continued)

| Gene     | Chromosome | Start Pos.       | End Pos.         | Patients | Freq. Change (%) | Peak Abund. | Long. Obs. | Criteria               |
|----------|------------|------------------|------------------|----------|------------------|-------------|------------|------------------------|
| NDFIP2   | chr13      | $79,\!476,\!123$ | 79,561,077       | 6        | 732.3            | 8           | 46.0       | $\operatorname{EL}$    |
| PCNT     | chr21      | 46,319,121       | 46,450,769       | 6        | 223.1            | 5           | 4.0        | $\operatorname{EL}$    |
| TRIM33   | chr1       | 114,387,776      | 114,516,160      | 6        | 303.9            | 17          | 106.0      | $\operatorname{EL}$    |
| UBE2L3   | chr22      | 21,544,446       | 21,629,034       | 6        | 193.7            | 3           | 7.0        | $\operatorname{EL}$    |
| ECD      | chr10      | $73,\!129,\!523$ | 73,173,095       | 5        | 340.6            | 24          | 1.0        | EA                     |
| MARF1    | chr16      | 15,589,368       | 15,648,166       | 5        | 212.1            | 17          | 106.0      | $\operatorname{EL}$    |
| PA2G4    | chr12      | 56,099,318       | 56,118,910       | 5        | 130.8            | 38          | 14.0       | AL                     |
| PPFIA1   | chr11      | 70,265,699       | 70,389,501       | 5        | 169.3            | 20          | 106.0      | $\operatorname{EL}$    |
| STAG3    | chr7       | 100,172,723      | 100,219,387      | 5        | 169.3            | 35          | 0.0        | $\mathbf{E}\mathbf{A}$ |
| EHMT1    | chr9       | 137,758,021      | 137,769,772      | 4        | 144.8            | 1           | 0.0        | $\operatorname{EL}$    |
| KDM2A    | chr11      | 67,114,268       | 67,263,079       | 14       | 14.5             | 7           | 50.0       | L                      |
| NPLOC4   | chr17      | 81,551,884       | 81,642,153       | 14       | 4.9              | 16          | 46.0       | ${f L}$                |
| SARNP    | chr12      | 55,747,462       | 55,822,756       | 14       | 136.6            | 5           | 22.0       | $\mathbf{E}$           |
| SMG1P5   | chr16      | 30,280,017       | 30,340,374       | 14       | 88.2             | 5           | 14.0       | $\mathbf{E}$           |
| TNRC6C   | chr17      | 77,999,236       | 78,113,835       | 14       | 75.2             | 6           | 22.0       | $\mathbf{E}$           |
| CBFB     | chr16      | 67,024,146       | 67,106,055       | 13       | 98.3             | 14          | 22.0       | $\mathbf{E}$           |
| NSD1     | chr5       | 177,128,078      | 177,305,213      | 13       | 12.2             | 6           | 62.0       | ${ m L}$               |
| UTRN     | chr6       | 144,286,736      | 144,858,034      | 13       | 40.5             | 6           | 22.0       | ${f L}$                |
| VPS8     | chr3       | 184,807,142      | 185,057,614      | 13       | 230.5            | 10          | 46.0       | $\mathbf{E}$           |
| ASH1L    | chr1       | 155,330,260      | 155,567,533      | 12       | 2.4              | 5           | 106.0      | ${ m L}$               |
| DPYD     | chr1       | 97,072,743       | 97,926,059       | 12       | 12.7             | 22          | 122.0      | ${ m L}$               |
| HSF1     | chr8       | 144,286,568      | 144,319,726      | 12       | -13.0            | 10          | 256.0      | ${f L}$                |
| MACF1    | chr1       | 39,079,166       | 39,492,138       | 12       | 6.8              | 11          | 519.5      | ${f L}$                |
| PACS1    | chr11      | 66,065,352       | 66,249,747       | 12       | 2.8              | 5           | 46.0       | $_{ m L}$              |
| PSMD13   | chr11      | 231,807          | 257,984          | 12       | 77.8             | 18          | 1.0        | $\mathbf{E}$           |
| SAFB     | chr19      | 5,618,034        | 5,673,478        | 12       | 58.2             | 17          | 0.0        | $\mathbf{E}$           |
| SMG1     | chr16      | 18,799,852       | 18,931,404       | 12       | 6.1              | 7           | 122.0      | ${f L}$                |
| ZNF276   | chr16      | 89,715,367       | 89,745,924       | 12       | 77.5             | 3           | 1.0        | $\mathbf{E}$           |
| BOP1     | chr8       | 144,257,045      | 144,296,438      | 11       | 8.6              | 10          | 256.0      | ${f L}$                |
| CCDC57   | chr17      | 82,096,469       | 82,217,829       | 11       | -8.6             | 6           | 642.5      | ${f L}$                |
| DIAPH2   | chrX       | 96,679,662       | 97,605,598       | 11       | 95.8             | 20          | 46.0       | $\mathbf{E}$           |
| DNMT1    | chr19      | 10,128,343       | $10,\!200,\!135$ | 11       | 4.9              | 13          | 365.0      | ${f L}$                |
| FKBP5    | chr6       | 35,568,584       | 35,733,583       | 11       | -16.9            | 15          | 1555.0     | ${ m L}$               |
| FOXP1    | chr3       | 70,949,713       | 71,588,989       | 11       | 88.0             | 4           | 14.0       | $\mathbf{E}$           |
| FXR2     | chr17      | 7,586,229        | 7,619,897        | 11       | 86.4             | 12          | 14.0       | $\mathbf{E}$           |
| INPP4B   | chr4       | 142,018,159      | 142,851,535      | 11       | 24.6             | 3           | 122.0      | ${f L}$                |
| PELP1    | chr17      | 4,666,383        | 4,709,337        | 11       | 377.3            | 3           | 14.0       | $\mathbf{E}$           |
| PPP6R2   | chr22      | 50,338,316       | 50,450,089       | 11       | 8.8              | 15          | 136.0      | L                      |
| SEC16A   | chr9       | 136,435,095      | 136,488,759      | 11       | 31.7             | 29          | 46.0       | A                      |
| SNORD117 | chr6       | 31,531,373       | 31,541,449       | 11       | 98.7             | 40          | 14.0       | $\mathbf{E}$           |
| TRAPPC10 | chr21      | 44,007,324       | 44,111,551       | 11       | 50.6             | 7           | 14.0       | ${ m L}$               |

Table 9: Table of all genes identified within analysis. (continued)

| Gene      | Chromosome      | Start Pos.  | End Pos.         | Patients | Freq. Change (%) | Peak Abund. | Long. Obs. | Criteria      |
|-----------|-----------------|-------------|------------------|----------|------------------|-------------|------------|---------------|
| VPS13D    | chr1            | 12,225,038  | 12,517,046       | 11       | 164.4            | 3           | 0.0        | E             |
| ZNF407    | chr18           | 74,625,962  | $75,\!070,\!672$ | 11       | 218.2            | 3           | 1.0        | $\mathbf{E}$  |
| ATF7IP    | chr12           | 14,360,631  | 14,507,935       | 10       | 66.0             | 8           | 7.0        | ${ m L}$      |
| CBLB      | chr3            | 105,650,460 | 105,874,422      | 10       | 100.3            | 4           | 7.0        | $\mathbf{E}$  |
| CLEC16A   | chr16           | 10,939,487  | 11,187,189       | 10       | 291.7            | 9           | 0.0        | $\mathbf{E}$  |
| CUX1      | chr7            | 101,810,903 | 102,288,958      | 10       | 212.1            | 3           | 0.0        | $\mathbf{E}$  |
| CYTH1     | chr17           | 78,669,046  | 78,787,342       | 10       | 15.4             | 4           | 7.0        | L             |
| DDX10     | chr11           | 108,660,024 | 108,945,930      | 10       | 193.7            | 3           | 14.0       | $\mathbf{E}$  |
| EPB41     | $\mathrm{chr}1$ | 28,882,090  | 29,125,046       | 10       | 140.3            | 7           | 14.0       | $\mathbf{E}$  |
| FCHSD2    | chr11           | 72,831,744  | 73,147,098       | 10       | 72.0             | 5           | 22.0       | $\mathbf{E}$  |
| GBE1      | chr3            | 81,484,698  | 81,766,799       | 10       | 267.2            | 9           | 46.0       | $\mathbf{E}$  |
| GLCCI1    | chr7            | 7,963,742   | 8,094,079        | 10       | 64.2             | 4           | 84.0       | ${ m L}$      |
| KLF12     | chr13           | 73,681,011  | 74,138,929       | 10       | 133.7            | 12          | 14.0       | $\mathbf{E}$  |
| KMT5B     | chr11           | 68,149,862  | 68,218,772       | 10       | 41.4             | 7           | 642.5      | ${ m L}$      |
| LRPPRC    | chr2            | 43,881,223  | 44,001,005       | 10       | 450.8            | 7           | 0.0        | $\mathbf{E}$  |
| MAPK8IP3  | chr16           | 1,701,182   | 1,775,317        | 10       | -12.4            | 5           | 130.0      | ${ m L}$      |
| MECP2     | chrX            | 154,016,812 | 154,102,731      | 10       | 36.6             | 12          | 99.0       | ${ m L}$      |
| MGEA5     | chr10           | 101,779,442 | 101,823,465      | 10       | 218.2            | 4           | 0.0        | $\mathbf{E}$  |
| MIR6767   | chr16           | 2,440,391   | 2,450,457        | 10       | 140.3            | 3           | 1.0        | $\mathbf{E}$  |
| NCOA1     | chr2            | 24,579,476  | 24,775,701       | 10       | 40.2             | 3           | 22.0       | L             |
| PBRM1     | chr3            | 52,540,351  | 52,690,850       | 10       | 26.6             | 14          | 7.0        | ${ m L}$      |
| PCNX1     | chr14           | 70,902,404  | 71,120,382       | 10       | 16.3             | 153         | 14.0       | A             |
| PHF14     | chr7            | 10,968,871  | 11,174,623       | 10       | 125.2            | 3           | 7.0        | $\mathbf{E}$  |
| PRPF6     | chr20           | 63,976,077  | 64,038,100       | 10       | 120.3            | 9           | 0.0        | $\mathbf{E}$  |
| RAB11FIP3 | chr16           | 420,667     | 527,481          | 10       | -18.4            | 7           | 46.0       | ${ m L}$      |
| RANBP9    | chr6            | 13,616,497  | 13,716,564       | 10       | 167.0            | 6           | 7.0        | $\mathbf{E}$  |
| RBM39     | chr20           | 35,698,608  | 35,747,336       | 10       | 458.1            | 2           | 14.0       | $\mathbf{E}$  |
| RBM5      | chr3            | 50,083,907  | 50,123,964       | 10       | 135.0            | 10          | 1.0        | $\mathbf{E}$  |
| RNF213    | chr17           | 80,255,860  | 80,403,781       | 10       | 66.5             | 6           | 15.0       | $\mathbf{E}$  |
| SAFB2     | chr19           | 5,581,998   | 5,627,927        | 10       | 40.8             | 13          | 22.0       | $_{ m L}$     |
| SIN3A     | chr15           | 75,364,378  | 75,460,783       | 10       | 124.6            | 6           | 0.0        | $\mathbf{E}$  |
| SMARCC1   | chr3            | 47,580,887  | 47,786,915       | 10       | 34.4             | 3           | 7.0        | $_{ m L}$     |
| SMG6      | chr17           | 2,054,838   | 2,308,775        | 10       | 25.9             | 16          | 7.0        | ${ m L}$      |
| SUPT5H    | chr19           | 39,440,545  | 39,481,668       | 10       | 157.0            | 3           | 0.0        | $\mathbf{E}$  |
| VPS13B    | chr8            | 99,008,265  | 99,882,586       | 10       | 67.9             | 5           | 0.0        | $\mathbf{E}$  |
| XPO6      | chr16           | 28,092,975  | 28,216,918       | 10       | 146.7            | $^{2}$      | 7.0        | $\mathbf{E}$  |
| ZGPAT     | chr20           | 63,702,441  | 63,741,142       | 10       | -17.6            | 5           | 7.0        | $_{ m L}^{-}$ |
| ZNF251    | chr8            | 144,715,908 | 144,760,585      | 10       | 17.0             | 21          | 22.0       | L             |
| AKAP8L    | chr19           | 15,375,047  | 15,424,121       | 9        | 157.0            | 3           | 0.0        | E             |
| AP3B1     | chr5            | 77,997,325  | 78,299,755       | 9        | 157.0            | 3           | 0.0        | E             |
| CD55      | chr1            | 207,316,471 | 207,365,966      | 9        | 585.4            | 4           | 0.0        | E             |

Table 9: Table of all genes identified within analysis. (continued)

| Gene                 | Chromosome            | Start Pos.        | End Pos.    | Patients | Freq. Change (%) | Peak Abund. | Long. Obs. | Criteria     |
|----------------------|-----------------------|-------------------|-------------|----------|------------------|-------------|------------|--------------|
| CHD2                 | chr15                 | 92,895,320        | 93,033,007  | 9        | 109.8            | 7           | 0.0        | E            |
| COX6B1               | chr19                 | 35,643,222        | 35,663,784  | 9        | 56.1             | 5           | 825.0      | L            |
| CPEB2                | chr4                  | 14,997,673        | 15,075,153  | 9        | 242.7            | 14          | 22.0       | ${f E}$      |
| CSNK1D               | chr17                 | 82,237,660        | 82,278,742  | 9        | 22.4             | 8           | 7.0        | ${f L}$      |
| DENND1B              | $\operatorname{chr}1$ | 197,499,748       | 197,780,493 | 9        | 10.2             | 3           | 7.0        | $_{\rm L}$   |
| DIP2B                | chr12                 | 50,499,984        | 50,753,667  | 9        | 55.0             | 4           | 7.0        | ${f L}$      |
| DLG1                 | chr3                  | 197,037,559       | 197,304,272 | 9        | 58.6             | 8           | 7.0        | ${f L}$      |
| EIF4G3               | chr1                  | 20,801,291        | 21,181,888  | 9        | 102.8            | 3           | 0.0        | ${f E}$      |
| ELP4                 | chr11                 | 31,504,728        | 31,789,525  | 9        | 140.3            | 4           | 0.0        | E            |
| FNBP1                | chr9                  | 129,882,186       | 130,048,194 | 9        | 23.7             | 5           | 256.0      | $_{\rm L}$   |
| FOXJ3                | chr1                  | 42,171,538        | 42,340,877  | 9        | 92.8             | 12          | 7.0        | ${f L}$      |
| FRYL                 | $\mathrm{chr}4$       | 48,492,362        | 48,785,299  | 9        | 77.8             | 24          | 14.0       | A            |
| GANAB                | chr11                 | 62,619,825        | 62,651,726  | 9        | 66.0             | 6           | 7.0        | $_{ m L}$    |
| GTF2I                | chr7                  | 74,652,664        | 74,765,692  | 9        | 193.7            | 7           | 0.0        | $\mathbf{E}$ |
| HERC1                | chr15                 | 63,603,617        | 63,838,948  | 9        | 132.5            | 4           | 1.0        | E            |
| HNRNPUL2             | chr11                 | 62,707,624        | 62,732,385  | 9        | 36.0             | 9           | 76.0       | $_{\rm L}$   |
| IL4I1                | chr19                 | 49,884,655        | 49,934,539  | 9        | -4.5             | 5           | 46.0       | $_{ m L}$    |
| IQGAP1               | chr15                 | 90,383,240        | 90,507,243  | 9        | 6.8              | 5           | 166.0      | $_{ m L}$    |
| KIAA1468             | chr18                 | 62,182,290        | 62,312,122  | 9        | 86.0             | 17          | 46.0       | L            |
| LOC101926943         | chr7                  | 74,683,936        | 74,733,918  | 9        | 193.7            | 7           | 0.0        | $\mathbf{E}$ |
| LOC101929095         | chr4                  | 14,999,941        | 15,432,914  | 9        | 235.7            | 14          | 22.0       | $\mathbf{E}$ |
| MARK3                | chr14                 | 103,380,363       | 103,508,829 | 9        | 80.3             | 15          | 14.0       | $\mathbf{E}$ |
| NBEAL1               | chr2                  | 203,009,878       | 203,222,994 | 9        | 151.8            | 11          | 14.0       | L            |
| NOSIP                | chr19                 | 49,550,467        | 49,585,572  | 9        | -35.7            | 29          | 0.0        | A            |
| NUP214               | chr9                  | 131,120,560       | 131,239,670 | 9        | 64.2             | 8           | 106.0      | L            |
| PAN3                 | chr13                 | 28,133,505        | 28,300,338  | 9        | 127.0            | 8           | 14.0       | $\mathbf{E}$ |
| PARP8                | chr5                  | 50,660,898        | 50,851,522  | 9        | 18.6             | 4           | 14.0       | L            |
| PLEKHA5              | chr12                 | 19,124,691        | 19,381,399  | 9        | 76.2             | 2           | 7.0        | ${ m L}$     |
| POLA2                | chr11                 | 65,256,851        | 65,303,685  | 9        | 25.9             | 9           | 7.0        | L            |
| POT1                 | chr7                  | $124,\!817,\!385$ | 124,934,983 | 9        | 66.5             | 26          | 0.0        | A            |
| PUM1                 | chr1                  | 30,926,505        | 31,070,717  | 9        | 298.7            | 5           | 0.0        | $\mathbf{E}$ |
| RAB11FIP2            | chr10                 | 117,999,915       | 118,051,884 | 9        | 487.5            | 19          | 1.0        | $\mathbf{E}$ |
| COP1                 | chr1                  | 175,939,825       | 176,212,244 | 9        | 172.8            | 3           | 14.0       | $\mathbf{E}$ |
| RNF216               | chr7                  | 5,615,040         | 5,786,730   | 9        | -11.9            | 15          | 106.0      | $\mathbf{L}$ |
| SENP6                | chr6                  | 75,596,508        | 75,723,285  | 9        | 101.9            | 3           | 0.0        | $\mathbf{E}$ |
| MTREX                | chr5                  | 55,302,747        | 55,430,581  | 9        | 212.1            | 6           | 0.0        | $\mathbf{E}$ |
| $\operatorname{SLK}$ | chr10                 | 103,962,184       | 104,034,233 | 9        | 414.0            | 13          | 1.0        | $\mathbf{E}$ |
| SMCHD1               | chr18                 | 2,650,886         | 2,810,017   | 9        | 0.5              | 4           | 7.0        | L            |
| SYNRG                | chr17                 | 37,509,796        | 37,614,438  | 9        | 120.3            | 10          | 46.0       | $\mathbf{E}$ |
| TCF20                | chr22                 | 42,155,012        | 42,288,927  | 9        | 46.9             | 10          | 7.0        | L            |
| TRAPPC8              | chr18                 | 31,824,172        | 31,948,128  | 9        | 83.6             | 4           | 7.0        | L            |

Table 9: Table of all genes identified within analysis. (continued)

| Gene     | Chromosome             | Start Pos.       | End Pos.    | Patients | Freq. Change (%) | Peak Abund. | Long. Obs. | Criteria     |
|----------|------------------------|------------------|-------------|----------|------------------|-------------|------------|--------------|
| TRPC4AP  | chr20                  | 34,997,403       | 35,097,815  | 9        | 212.1            | 3           | 0.0        | $\mathbf{E}$ |
| UBE2I    | chr16                  | 1,304,152        | 1,332,018   | 9        | 120.3            | 4           | 50.0       | $\mathbf{E}$ |
| VPS52    | chr6                   | $33,\!245,\!271$ | 33,276,965  | 9        | 53.5             | 10          | 106.0      | L            |
| VPS53    | chr17                  | 503,667          | 719,856     | 9        | 226.4            | 6           | 0.0        | $\mathbf{E}$ |
| ZCCHC7   | chr9                   | 37,115,471       | 37,363,148  | 9        | 148.6            | 7           | 46.0       | $\mathbf{E}$ |
| ZFAND3   | chr6                   | 37,814,530       | 38,159,623  | 9        | 377.3            | 5           | 46.0       | $\mathbf{E}$ |
| ZMYM4    | $\operatorname{chr} 1$ | 35,263,966       | 35,426,944  | 9        | 157.0            | 3           | 0.0        | $\mathbf{E}$ |
| ZNF512   | $\mathrm{chr}2$        | 27,577,968       | 27,628,215  | 9        | 340.6            | 2           | 0.0        | $\mathbf{E}$ |
| ZNF609   | chr15                  | 64,494,419       | 64,691,067  | 9        | 193.7            | 6           | 0.0        | $\mathbf{E}$ |
| ABCD2    | chr12                  | 39,546,219       | 39,625,041  | 8        | 267.2            | 8           | 14.0       | $\mathbf{E}$ |
| ACSF3    | chr16                  | 89,088,808       | 89,160,846  | 8        | 115.4            | 4           | 0.0        | $\mathbf{E}$ |
| ADD1     | chr4                   | 2,838,856        | 2,935,075   | 8        | 41.2             | 42          | 7.0        | A            |
| ANKHD1   | chr5                   | 140,396,813      | 140,544,856 | 8        | 125.2            | 6           | 7.0        | $\mathbf{E}$ |
| ARID4B   | $\operatorname{chr} 1$ | 235,161,894      | 235,333,219 | 8        | 167.0            | 6           | 0.0        | $\mathbf{E}$ |
| ARIH1    | chr15                  | 72,469,325       | 72,591,555  | 8        | 128.5            | 5           | 7.0        | L            |
| ASXL2    | chr2                   | 25,728,752       | 25,883,516  | 8        | -9.1             | 3           | 7.0        | L            |
| ATG5     | chr6                   | 106,179,476      | 106,330,820 | 8        | 340.6            | 2           | 0.0        | $\mathbf{E}$ |
| BRWD1    | chr21                  | 39,180,477       | 39,318,786  | 8        | 153.7            | 4           | 14.0       | $\mathbf{E}$ |
| CAMK2D   | chr4                   | 113,446,031      | 113,766,927 | 8        | 54.2             | 9           | 106.0      | L            |
| CAMK4    | chr5                   | 111,218,652      | 111,499,884 | 8        | 56.1             | 9           | 7.0        | L            |
| CDKAL1   | chr6                   | 20,529,456       | 21,237,403  | 8        | 31.4             | 5           | 106.0      | L            |
| CHAF1A   | chr19                  | 4,397,662        | 4,448,397   | 8        | 89.7             | 7           | 7.0        | $\mathbf{E}$ |
| CHD3     | chr17                  | 7,879,804        | 7,917,757   | 8        | 179.1            | 3           | 0.0        | $\mathbf{E}$ |
| CLTC     | chr17                  | 59,614,688       | 59,701,956  | 8        | 161.1            | 3           | 1.0        | $\mathbf{E}$ |
| DAP3     | chr1                   | 155,684,090      | 155,744,009 | 8        | 252.5            | 2           | 0.0        | $\mathbf{E}$ |
| DAZAP1   | chr19                  | 1,402,568        | 1,440,687   | 8        | 34.6             | 2           | 4.0        | L            |
| EED      | chr11                  | 86,239,383       | 86,283,810  | 8        | 311.2            | 6           | 14.0       | $\mathbf{E}$ |
| EEF2     | chr19                  | 3,971,055        | 3,990,463   | 8        | 438.5            | 3           | 0.0        | $\mathbf{E}$ |
| ERC1     | chr12                  | 986,207          | 1,500,933   | 8        | 64.2             | 4           | 7.0        | L            |
| FOCAD    | chr9                   | 20,653,308       | 21,000,955  | 8        | 285.5            | 17          | 7.0        | $\mathbf{E}$ |
| GAK      | chr4                   | 844,274          | 937,390     | 8        | 732.3            | 4           | 14.0       | $\mathbf{E}$ |
| GCN1     | chr12                  | 120,122,209      | 120,199,710 | 8        | 144.8            | 3           | 1.0        | $\mathbf{E}$ |
| GIGYF2   | chr2                   | 232,692,304      | 232,865,577 | 8        | 214.7            | 2           | 0.0        | $\mathbf{E}$ |
| GPHN     | chr14                  | 66,502,406       | 67,186,808  | 8        | 536.4            | 2           | 0.0        | $\mathbf{E}$ |
| HNRNPR   | chr1                   | 23,299,689       | 23,349,364  | 8        | 235.7            | 7           | 46.0       | $\mathbf{E}$ |
| HSF2     | chr6                   | 122,394,550      | 122,438,119 | 8        | 414.0            | 15          | 14.0       | $\mathbf{E}$ |
| KDM4A    | $\operatorname{chr} 1$ | 43,645,125       | 43,710,518  | 8        | 370.0            | 7           | 0.0        | $\mathbf{E}$ |
| KIAA1109 | chr4                   | 122,165,602      | 122,367,759 | 8        | 120.3            | 19          | 1.0        | $\mathbf{E}$ |
| KMT2C    | chr7                   | 152,129,924      | 152,441,005 | 8        | 15.4             | 4           | 7.0        | L            |
| KMT2E    | chr7                   | 105,009,189      | 105,119,085 | 8        | 140.3            | 3           | 0.0        | $\mathbf{E}$ |
| LCOR     | chr10                  | 96,827,259       | 96,991,212  | 8        | 115.4            | 4           | 0.0        | $\mathbf{E}$ |

Table 9: Table of all genes identified within analysis. (continued)

| Gene     | Chromosome | Start Pos.  | End Pos.    | Patients | Freq. Change (%) | Peak Abund.        | Long. Obs. | Criteria      |
|----------|------------|-------------|-------------|----------|------------------|--------------------|------------|---------------|
| MIR5096  | chr17      | 4,136,088   | 4,245,637   | 8        | -20.3            | 9                  | 14.0       | L             |
| MROH1    | chr8       | 144,143,015 | 144,266,940 | 8        | -26.6            | 5                  | 46.0       | DL            |
| MUM1     | chr19      | 1,349,976   | 1,383,431   | 8        | 11.9             | 4                  | 90.0       | $_{\rm L}$    |
| NAA35    | chr9       | 85,936,141  | 86,030,462  | 8        | 267.2            | 8                  | 1.0        | $\mathbf{E}$  |
| NCOA3    | chr20      | 47,496,856  | 47,661,877  | 8        | 54.2             | 6                  | 7.0        | $_{\rm L}$    |
| NEAT1    | chr11      | 65,417,797  | 65,450,538  | 8        | 46.9             | 4                  | 22.0       | $\mathbf{L}$  |
| NELL2    | chr12      | 44,503,274  | 44,918,928  | 8        | 81.4             | 2                  | 4.0        | $_{\rm L}$    |
| PCM1     | chr8       | 17,917,856  | 18,034,948  | 8        | 107.3            | 11                 | 14.0       | $\mathbf{E}$  |
| PDCD10   | chr3       | 167,678,905 | 167,739,863 | 8        | 389.6            | 4                  | 0.0        | $\mathbf{E}$  |
| PDLIM5   | chr4       | 94,446,856  | 94,673,227  | 8        | 252.5            | 3                  | 4.0        | $\mathbf{E}$  |
| PHF20L1  | chr8       | 132,770,357 | 132,853,807 | 8        | 105.6            | 4                  | 22.0       | ${ m L}$      |
| PLEC     | chr8       | 143,910,146 | 143,981,745 | 8        | -24.6            | 11                 | 22.0       | ${ m L}$      |
| POGZ     | chr1       | 151,397,723 | 151,464,465 | 8        | 130.8            | 26                 | 0.0        | A             |
| PPIP5K2  | chr5       | 103,115,247 | 103,209,911 | 8        | 172.8            | 3                  | 0.0        | ${ m E}$      |
| PTPRA    | chr20      | 2,859,194   | 3,043,669   | 8        | 67.1             | 4                  | 1555.0     | ${ m L}$      |
| RASA2    | chr3       | 141,482,046 | 141,620,363 | 8        | 115.4            | 7                  | 14.0       | $\mathbf{E}$  |
| RNF10    | chr12      | 120,529,328 | 120,582,594 | 8        | 370.0            | 7                  | 1.0        | $\mathbf{E}$  |
| RRN3P2   | chr16      | 29,069,841  | 29,121,717  | 8        | 144.8            | $^{2}$             | 4.0        | $\mathbf{E}$  |
| RTTN     | chr18      | 69,998,805  | 70,210,726  | 8        | 37.7             | 6                  | 136.0      | ${ m L}$      |
| SACM1L   | chr3       | 45,684,240  | 45,750,425  | 8        | 340.6            | 11                 | 0.0        | E             |
| SEC24A   | chr5       | 134,643,784 | 134,732,911 | 8        | 193.7            | 1                  | 0.0        | $_{ m E}$     |
| SLX4IP   | chr20      | 10,430,302  | 10,633,034  | 8        | 151.8            | 3                  | 7.0        | $_{ m L}^{-}$ |
| SRP68    | chr17      | 76,033,774  | 76,077,526  | 8        | 115.4            | 12                 | 0.0        | E             |
| STIM2    | chr4       | 26,855,690  | 27,030,381  | 8        | 132.5            | 2                  | 4.0        | $\mathbf{E}$  |
| STRN3    | chr14      | 30,888,798  | 31,031,401  | 8        | 169.3            | 3                  | 7.0        | E             |
| STXBP5   | chr6       | 147,199,357 | 147,395,476 | 8        | 37.7             | 8                  | 350.0      | $_{ m L}^{-}$ |
| SYMPK    | chr19      | 45,810,441  | 45,868,290  | 8        | 193.7            | 3                  | 1.0        | E             |
| TANC2    | chr17      | 63,004,536  | 63,432,706  | 8        | 340.6            | 11                 | 7.0        | E             |
| TONSL    | chr8       | 144,423,779 | 144,449,429 | 8        | 2.2              | 7                  | 7.0        | $_{ m L}^{-}$ |
| TOP1     | chr20      | 41,023,817  | 41,129,486  | 8        | 242.7            | 2                  | 0.0        | E             |
| UHRF1BP1 | chr6       | 34,787,016  | 34,882,514  | 8        | 487.5            | 4                  | 0.0        | E             |
| URI1     | chr19      | 29,918,643  | 30,021,612  | 8        | 193.7            | 6                  | 1.0        | E             |
| VAV3     | chr1       | 107,566,159 | 107,969,923 | 8        | 135.0            | 1                  | 0.0        | E             |
| VMP1     | chr17      | 59,702,464  | 59,847,255  | 8        | 46.9             | 28                 | 46.0       | Ā             |
| YLPM1    | chr14      | 74,758,365  | 74,842,310  | 8        | 214.7            | 19                 | 14.0       | E             |
| YWHAE    | chr17      | 1,339,539   | 1,405,262   | 8        | 340.6            | 2                  | 0.0        | E             |
| ZC3H13   | chr13      | 45,949,464  | 46,057,778  | 8        | 311.2            | 6                  | 46.0       | E             |
| ZFC3H1   | chr12      | 71,604,600  | 71,668,969  | 8        | 340.6            | 4                  | 0.0        | E             |
| ZNF148   | chr3       | 125,220,668 | 125,380,354 | 8        | 153.7            | 6                  | 7.0        | E             |
| ACOX1    | chr17      | 75,936,510  | 75,984,434  | 7        | 4.9              | $\frac{\sigma}{2}$ | 256.0      | L             |
| ASCC3    | chr6       | 100,503,194 | 100,886,372 | 7        | 327.3            | 4                  | 7.0        | E             |

Table 9: Table of all genes identified within analysis. (continued)

| Gene     | Chromosome            | Start Pos.  | End Pos.    | Patients | Freq. Change (%) | Peak Abund.          | Long. Obs. | Criteria     |
|----------|-----------------------|-------------|-------------|----------|------------------|----------------------|------------|--------------|
| ATF7     | chr12                 | 53,502,855  | 53,631,415  | 7        | 69.5             | 32                   | 1.0        | A            |
| ATP8A1   | chr4                  | 42,403,374  | 42,662,105  | 7        | 80.8             | 4                    | 14.0       | $_{\rm L}$   |
| BACH2    | chr6                  | 89,921,527  | 90,301,908  | 7        | 781.2            | 2                    | 0.0        | $\mathbf{E}$ |
| C6orf106 | chr6                  | 34,582,279  | 34,701,850  | 7        | 46.9             | 3                    | 46.0       | $_{\rm L}$   |
| CASK     | chrX                  | 41,509,935  | 41,928,034  | 7        | 95.8             | 5                    | 346.0      | $_{\rm L}$   |
| CCDC47   | chr17                 | 63,740,249  | 63,778,728  | 7        | -13.6            | 6                    | 22.0       | $_{\rm L}$   |
| CDC73    | chr1                  | 193,116,957 | 193,259,812 | 7        | 237.8            | 19                   | 7.0        | $\mathbf{E}$ |
| CHD8     | chr14                 | 21,380,193  | 21,442,298  | 7        | 223.1            | 16                   | 14.0       | $\mathbf{E}$ |
| CLEC2D   | chr12                 | 9,664,707   | 9,704,555   | 7        | 214.7            | 6                    | 1.0        | $\mathbf{E}$ |
| COG5     | chr7                  | 107,196,743 | 107,569,514 | 7        | 256.7            | 7                    | 46.0       | $\mathbf{E}$ |
| CSNK2A1  | chr20                 | 477,693     | 548,838     | 7        | 135.0            | 7                    | 0.0        | $\mathbf{E}$ |
| DEPDC5   | chr22                 | 31,748,950  | 31,912,034  | 7        | 223.1            | 4                    | 0.0        | $\mathbf{E}$ |
| DNAJC5   | chr20                 | 63,890,101  | 63,941,031  | 7        | 120.3            | 2                    | 7.0        | $\mathbf{E}$ |
| FRG1BP   | chr20                 | 30,372,163  | 30,424,842  | 7        | 340.6            | 4                    | 7.0        | $\mathbf{E}$ |
| GATAD2B  | $\operatorname{chr}1$ | 153,799,906 | 153,927,975 | 7        | 61.6             | 2                    | 7.0        | L            |
| GMCL1    | chr2                  | 69,824,605  | 69,886,395  | 7        | 311.2            | 4                    | 0.0        | $\mathbf{E}$ |
| HTT      | chr4                  | 3,069,680   | 3,248,960   | 7        | 46.9             | 25                   | 1.0        | A            |
| KDM7A    | chr7                  | 140,079,745 | 140,181,941 | 7        | 242.7            | 5                    | 7.0        | ${ m E}$     |
| KLRG1    | chr12                 | 8,945,043   | 9,015,744   | 7        | -10.2            | 3                    | 7.0        | $\mathbf{L}$ |
| LSM2     | chr6                  | 31,792,391  | 31,811,984  | 7        | -29.3            | 2                    | 14.0       | L            |
| MACROD2  | chr20                 | 13,990,499  | 16,058,196  | 7        | 414.0            | 1                    | 0.0        | $\mathbf{E}$ |
| MAN1B1   | chr9                  | 137,081,926 | 137,114,187 | 7        | 83.6             | 20                   | 5.0        | $\mathbf{E}$ |
| MAP4K3   | chr2                  | 39,244,265  | 39,442,312  | 7        | 46.9             | 15                   | 46.0       | ${ m L}$     |
| MATR3    | chr5                  | 139,268,751 | 139,336,677 | 7        | 212.1            | 6                    | 1.0        | $\mathbf{E}$ |
| MIA2     | chr14                 | 39,228,909  | 39,356,193  | 7        | 161.1            | 10                   | 7.0        | $\mathbf{E}$ |
| NAA15    | chr4                  | 139,296,466 | 139,395,781 | 7        | 212.1            | 11                   | 0.0        | $\mathbf{E}$ |
| NAA38    | chr17                 | 7,851,680   | 7,890,388   | 7        | -0.9             | 15                   | 14.0       | $_{\rm L}$   |
| NBAS     | chr2                  | 15,161,907  | 15,566,348  | 7        | 22.4             | 4                    | 106.0      | L            |
| NUMA1    | chr11                 | 71,997,863  | 72,085,693  | 7        | 135.0            | 3                    | 0.0        | $\mathbf{E}$ |
| NUP62    | chr19                 | 49,901,825  | 49,934,731  | 7        | -12.8            | 5                    | 46.0       | ${ m L}$     |
| NUP88    | chr17                 | 5,379,832   | 5,424,739   | 7        | 129.5            | 4                    | 0.0        | $\mathbf{E}$ |
| PAPD4    | chr5                  | 79,607,419  | 79,691,648  | 7        | 281.9            | 2                    | 0.0        | $\mathbf{E}$ |
| PHF3     | chr6                  | 63,630,801  | 63,720,522  | 7        | 144.8            | 7                    | 4.0        | $\mathbf{E}$ |
| PMS2P1   | chr7                  | 100,315,639 | 100,341,307 | 7        | 193.7            | 10                   | 0.0        | $\mathbf{E}$ |
| PPP1R16A | chr8                  | 144,472,981 | 144,507,121 | 7        | 35.6             | 4                    | 7.0        | ${ m L}$     |
| PPP4R2   | chr3                  | 72,991,742  | 73,074,201  | 7        | 303.9            | 2                    | 7.0        | $\mathbf{E}$ |
| PRKCA    | chr17                 | 66,297,807  | 66,815,744  | 7        | 128.5            | 7                    | 7.0        | L            |
| PRKN     | chr6                  | 161,342,557 | 162,732,802 | 7        | 303.9            | 3                    | 0.0        | $\mathbf{E}$ |
| PRPSAP1  | chr17                 | 76,305,735  | 76,359,149  | 7        | 149.7            | $\overset{\circ}{2}$ | 46.0       | E            |
| RAD51B   | chr14                 | 67,814,778  | 68,688,106  | 7        | 46.9             | $\frac{1}{2}$        | 22.0       | L            |
| RASA1    | chr5                  | 87,263,252  | 87,396,926  | 7        | 361.6            | 3                    | 0.0        | E            |

Table 9: Table of all genes identified within analysis. (continued)

| Gene         | Chromosome            | Start Pos.  | End Pos.    | Patients | Freq. Change (%) | Peak Abund. | Long. Obs. | Criteria     |
|--------------|-----------------------|-------------|-------------|----------|------------------|-------------|------------|--------------|
| RBMS1        | chr2                  | 160,267,150 | 160,498,807 | 7        | 438.5            | 5           | 1.0        | $\mathbf{E}$ |
| RFX2         | chr19                 | 5,988,163   | 6,115,653   | 7        | 71.3             | 9           | 106.0      | ${ m L}$     |
| ROCK1        | chr18                 | 20,944,741  | 21,116,851  | 7        | 105.6            | 13          | 14.0       | $\mathbf{E}$ |
| RUNX2        | chr6                  | 45,323,316  | 45,556,082  | 7        | 248.8            | 8           | 14.0       | $\mathbf{E}$ |
| SENP3-EIF4A1 | chr17                 | 7,556,991   | 7,584,006   | 7        | 157.0            | 5           | 46.0       | $\mathbf{E}$ |
| SEPT7        | chr7                  | 35,795,985  | 35,912,105  | 7        | 316.1            | 10          | 7.0        | $\mathbf{E}$ |
| SLBP         | chr4                  | 1,687,730   | 1,717,741   | 7        | 389.6            | 2           | 0.0        | $\mathbf{E}$ |
| SMAD2        | chr18                 | 47,828,094  | 47,936,146  | 7        | 172.8            | 7           | 0.0        | $\mathbf{E}$ |
| SNAPC4       | chr9                  | 136,370,568 | 136,403,437 | 7        | 103.4            | 7           | 166.0      | $\mathbf{L}$ |
| SNTB1        | chr8                  | 120,530,744 | 120,817,069 | 7        | 172.8            | 3           | 4.0        | $\mathbf{E}$ |
| SPEN         | chr1                  | 15,842,863  | 15,945,455  | 7        | 58.2             | 2           | 7.0        | L            |
| SPG7         | chr16                 | 89,503,387  | 89,562,768  | 7        | 7.7              | 10          | 7.0        | L            |
| SYNE1        | chr6                  | 152,116,683 | 152,642,399 | 7        | 46.9             | 22          | 46.0       | ${ m L}$     |
| SYNE2        | chr14                 | 63,847,964  | 64,231,451  | 7        | 69.5             | 8           | 22.0       | ${ m L}$     |
| TAF2         | chr8                  | 119,725,773 | 119,837,834 | 7        | 487.5            | 8           | 1.0        | $\mathbf{E}$ |
| THEMIS       | chr6                  | 127,703,193 | 127,923,631 | 7        | -2.1             | 5           | 106.0      | L            |
| TTC21B       | chr2                  | 165,868,361 | 165,958,838 | 7        | 36.4             | 5           | 46.0       | ${ m L}$     |
| UBE2J2       | $\operatorname{chr}1$ | 1,248,911   | 1,278,854   | 7        | -37.7            | 2           | 166.0      | ${ m L}$     |
| UBE3A        | chr15                 | 25,332,248  | 25,444,028  | 7        | 149.7            | 10          | 0.0        | $\mathbf{E}$ |
| UBR5         | chr8                  | 102,247,273 | 102,417,689 | 7        | 95.8             | 19          | 7.0        | ${ m L}$     |
| VPS9D1       | chr16                 | 89,702,132  | 89,725,986  | 7        | 389.6            | 5           | 0.0        | $\mathbf{E}$ |
| VRK3         | chr19                 | 49,971,466  | 50,030,548  | 7        | -13.9            | 2           | 7.0        | L            |
| WDR82        | chr3                  | 52,249,421  | 52,283,643  | 7        | 33.5             | 7           | 277.5      | L            |
| YTHDF3       | chr8                  | 63,163,552  | 63,217,788  | 7        | 63.2             | 13          | 7.0        | ${ m L}$     |
| ZNF81        | chrX                  | 47,831,901  | 47,927,256  | 7        | 175.4            | 7           | 7.0        | $\mathbf{E}$ |
| ZNRF2        | chr7                  | 30,279,306  | 30,372,692  | 7        | 144.8            | 3           | 14.0       | $\mathbf{E}$ |
| ANXA1        | chr9                  | 73,146,730  | 73,175,394  | 6        | 144.8            | 5           | 14.0       | L            |
| ARHGEF6      | chrX                  | 136,660,550 | 136,786,344 | 6        | 193.7            | 5           | 7.0        | $\mathbf{E}$ |
| ATE1         | chr10                 | 121,735,420 | 121,933,801 | 6        | 267.2            | 14          | 46.0       | $\mathbf{E}$ |
| ATP9B        | chr18                 | 79,064,274  | 79,383,282  | 6        | 79.5             | 2           | 7.0        | ${ m L}$     |
| BAG6         | chr6                  | 31,634,027  | 31,657,700  | 6        | 22.4             | 36          | 46.0       | A            |
| BCAS3        | chr17                 | 60,672,774  | 61,397,838  | 6        | -36.1            | 2           | 7.0        | L            |
| BCKDHB       | chr6                  | 80,101,609  | 80,351,270  | 6        | 267.2            | 3           | 0.0        | $\mathbf{E}$ |
| BIRC6        | chr2                  | 32,352,027  | 32,623,898  | 6        | 311.2            | 3           | 0.0        | $\mathbf{E}$ |
| BUB1B        | chr15                 | 40,156,008  | 40,226,136  | 6        | 267.2            | 7           | 14.0       | $\mathbf{E}$ |
| BZW2         | chr7                  | 16,641,133  | 16,711,523  | 6        | 389.6            | 6           | 0.0        | $\mathbf{E}$ |
| CD96         | chr3                  | 111,537,078 | 111,670,991 | 6        | 252.5            | 6           | 0.0        | $\mathbf{E}$ |
| CHD1         | chr5                  | 98,850,203  | 98,931,534  | 6        | 277.7            | 8           | 1.0        | $\mathbf{E}$ |
| CHMP2B       | chr3                  | 87,222,262  | 87,260,548  | 6        | 88.8             | 24          | 7.0        | Ā            |
| CLASP2       | chr3                  | 33,491,245  | 33,723,213  | 6        | 138.7            | 5           | 7.0        | L            |
| CUL3         | chr2                  | 224,465,149 | 224,590,397 | 6        | 252.5            | 8           | 22.0       | $\mathbf{E}$ |

Table 9: Table of all genes identified within analysis. (continued)

| Gene                  | Chromosome            | Start Pos.  | End Pos.          | Patients | Freq. Change (%)     | Peak Abund. | Long. Obs. | Criteria     |
|-----------------------|-----------------------|-------------|-------------------|----------|----------------------|-------------|------------|--------------|
| DERL2                 | chr17                 | 5,466,250   | 5,491,230         | 6        | 135.0                | 37          | 0.0        | A            |
| DNAJC1                | chr10                 | 21,751,547  | 22,008,721        | 6        | 17.5                 | 38          | 7.0        | A            |
| DOT1L                 | chr19                 | 2,159,148   | $2,\!237,\!578$   | 6        | 23.7                 | 6           | 14.0       | L            |
| ERGIC2                | chr12                 | 29,335,645  | 29,386,210        | 6        | 169.3                | 3           | 0.0        | $\mathbf{E}$ |
| FAM117B               | chr2                  | 202,630,177 | 202,774,757       | 6        | 634.4                | 6           | 14.0       | $\mathbf{E}$ |
| FUNDC2                | chrX                  | 155,021,788 | 155,061,916       | 6        | 536.4                | 9           | 46.0       | $\mathbf{E}$ |
| GNA12                 | chr7                  | 2,723,105   | 2,849,325         | 6        | 707.8                | 2           | 0.0        | $\mathbf{E}$ |
| GTDC1                 | chr2                  | 143,941,013 | 144,337,534       | 6        | 256.7                | 9           | 7.0        | $\mathbf{E}$ |
| IKZF2                 | chr2                  | 212,994,685 | 213,156,609       | 6        | 707.8                | 1           | 0.0        | $\mathbf{E}$ |
| MED12L                | chr3                  | 151,081,797 | $151,\!441,\!677$ | 6        | 169.3                | 7           | 7.0        | $\mathbf{E}$ |
| MIR5096               | $\operatorname{chr}1$ | 15,866,148  | 15,910,467        | 6        | 79.5                 | 2           | 7.0        | L            |
| MIR5096               | chr22                 | 37,663,025  | 38,029,093        | 6        | 12.3                 | 6           | 7.0        | L            |
| MMP23A                | $\operatorname{chr}1$ | 1,627,779   | 1,706,808         | 6        | 58.2                 | 17          | 14.0       | L            |
| NAA16                 | chr13                 | 41,306,204  | 41,382,030        | 6        | 389.6                | 2           | 1.0        | $\mathbf{E}$ |
| NFKBIL1               | chr6                  | 31,541,850  | 31,563,829        | 6        | -19.5                | 4           | 7.0        | L            |
| NSRP1                 | chr17                 | 30,111,806  | 30,191,475        | 6        | 389.6                | 2           | 0.0        | $\mathbf{E}$ |
| NUCB1                 | chr19                 | 48,895,049  | 48,928,283        | 6        | 303.9                | 2           | 0.0        | $\mathbf{E}$ |
| NUCB1-AS1             | chr19                 | 48,905,929  | 48,923,891        | 6        | 303.9                | 2           | 0.0        | $\mathbf{E}$ |
| OPRM1                 | chr6                  | 154,005,495 | 154,251,867       | 6        | 46.9                 | 3           | 14.0       | L            |
| PAPOLA                | chr14                 | 96,497,375  | 96,572,116        | 6        | 683.3                | 3           | 0.0        | $\mathbf{E}$ |
| PCMTD2                | chr20                 | 64,250,694  | 64,281,226        | 6        | 340.6                | 17          | 1.0        | $\mathbf{E}$ |
| PDE12                 | chr3                  | 57,551,246  | 57,661,480        | 6        | 303.9                | 3           | 0.0        | $\mathbf{E}$ |
| PHACTR4               | $\operatorname{chr}1$ | 28,364,581  | 28,505,369        | 6        | 1.0                  | 3           | 22.0       | L            |
| RAB28                 | $\mathrm{chr}4$       | 13,362,722  | 13,489,365        | 6        | 172.8                | 12          | 0.0        | $\mathbf{E}$ |
| RBM27                 | chr5                  | 146,198,599 | 146,294,221       | 6        | $\operatorname{Inf}$ | 3           | 0.0        | $\mathbf{E}$ |
| RIPOR2                | chr6                  | 24,799,280  | 25,047,288        | 6        | 46.9                 | 10          | 7.0        | L            |
| RSBN1L                | chr7                  | 77,691,425  | 77,784,803        | 6        | 193.7                | 31          | 1.0        | A            |
| SEC23A                | chr14                 | 39,026,918  | 39,108,528        | 6        | 73.6                 | 7           | 7.0        | L            |
| SHPRH                 | chr6                  | 145,879,808 | 145,969,097       | 6        | 267.2                | 4           | 0.0        | $\mathbf{E}$ |
| SIPA1L1               | chr14                 | 71,524,311  | 71,746,229        | 6        | 389.6                | 22          | 7.0        | $\mathbf{E}$ |
| SPPL3                 | chr12                 | 120,757,509 | 120,909,352       | 6        | 57.4                 | 9           | 14.0       | L            |
| TCF25                 | chr16                 | 89,868,585  | 89,916,384        | 6        | -17.0                | 5           | 106.0      | L            |
| UBE2F-SCLY            | chr2                  | 237,961,944 | 238,104,413       | 6        | 34.6                 | 6           | 46.0       | L            |
| UNKL                  | chr16                 | 1,358,204   | 1,419,720         | 6        | 79.5                 | 7           | 15.0       | L            |
| WWP1                  | chr8                  | 86,337,764  | 86,472,949        | 6        | 177.4                | 3           | 7.0        | $\mathbf{E}$ |
| ZNF473                | chr19                 | 50,020,892  | 50,053,774        | 6        | 4.9                  | 3           | 22.0       | $_{\rm L}$   |
| ZNRD1ASP              | chr6                  | 29,996,010  | 30,066,189        | 6        | 128.5                | 4           | 122.0      | L            |
| BMP2K                 | chr4                  | 78,771,377  | 78,917,187        | 5        | 303.9                | 3           | 0.0        | $\mathbf{E}$ |
| CLEC2B                | chr12                 | 9,847,368   | 9,874,859         | 5        | 252.5                | 7           | 0.0        | $\mathbf{E}$ |
| CSNK1G1               | chr15                 | 64,160,516  | 64,361,259        | 5        | 33.5                 | 8           | 7.0        | L            |
| $\operatorname{CYLD}$ | chr16                 | 50,737,049  | 50,806,935        | 5        | 172.8                | 3           | 7.0        | $\mathbf{E}$ |

Table 9: Table of all genes identified within analysis. (continued)

| Gene           | Chromosome             | Start Pos.  | End Pos.    | Patients | Freq. Change (%) | Peak Abund. | Long. Obs. | Criteria     |
|----------------|------------------------|-------------|-------------|----------|------------------|-------------|------------|--------------|
| ELMO1          | chr7                   | 36,847,905  | 37,454,326  | 5        | 6.8              | 34          | 46.0       | A            |
| $\mathrm{EVL}$ | chr14                  | 99,966,474  | 100,149,236 | 5        | 13.0             | 4           | 7.0        | $_{\rm L}$   |
| FANCL          | chr2                   | 58,154,242  | 58,246,380  | 5        | 707.8            | 6           | 0.0        | $\mathbf{E}$ |
| HIVEP1         | chr6                   | 12,007,490  | 12,169,999  | 5        | 169.3            | 1           | 0.0        | $\mathbf{E}$ |
| HS2ST1         | chr1                   | 86,909,651  | 87,114,998  | 5        | 303.9            | 12          | 7.0        | $\mathbf{E}$ |
| HSF5           | chr17                  | 58,415,166  | 58,493,401  | 5        | 46.9             | 34          | 1.0        | A            |
| IQCB1          | chr3                   | 121,764,760 | 121,840,079 | 5        | 144.8            | 79          | 15.0       | A            |
| KIFC1          | chr6                   | 33,386,535  | 33,414,922  | 5        | 46.9             | 42          | 7.0        | A            |
| KMT2D          | chr12                  | 49,013,974  | 49,060,324  | 5        | 7.7              | 33          | 0.0        | A            |
| LPXN           | chr11                  | 58,521,870  | 58,583,239  | 5        | 438.5            | 9           | 46.0       | $\mathbf{E}$ |
| MBD3           | chr19                  | 1,571,670   | 1,597,761   | 5        | 267.2            | 2           | 7.0        | $\mathbf{E}$ |
| MIR5096        | chr1                   | 235,507,822 | 235,723,113 | 5        | 157.0            | 1           | 0.0        | L            |
| N4BP1          | chr16                  | 48,533,725  | 48,615,209  | 5        | 291.7            | 32          | 106.0      | A            |
| PAG1           | chr8                   | 80,962,810  | 81,117,068  | 5        | 1.0              | 2           | 32.0       | L            |
| PDE7A          | chr8                   | 65,709,333  | 65,846,734  | 5        | 79.5             | 4           | 7.0        | L            |
| PHF20          | chr20                  | 35,767,000  | 35,955,366  | 5        | 7.7              | 38          | 7.0        | A            |
| PLPPR3         | chr19                  | 807,487     | 826,952     | 5        | 169.3            | 6           | 1.0        | $\mathbf{E}$ |
| POM121         | chr7                   | 72,874,334  | 72,956,440  | 5        | 414.0            | 29          | 1.0        | A            |
| RELB           | chr19                  | 44,996,448  | 45,043,198  | 5        | 223.1            | 2           | 0.0        | $\mathbf{E}$ |
| SEC31A         | chr4                   | 82,813,508  | 82,905,571  | 5        | 46.9             | 66          | 7.0        | A            |
| SEPT9          | chr17                  | 77,276,409  | 77,505,596  | 5        | -16.1            | 27          | 7.0        | A            |
| SFI1           | chr22                  | 31,491,138  | 31,623,551  | 5        | -33.2            | 24          | 7.0        | A            |
| SMAP2          | chr1                   | 40,368,705  | 40,428,326  | 5        | 120.3            | 61          | 7.0        | A            |
| STX8           | chr17                  | 9,245,470   | 9,580,958   | 5        | 109.8            | 4           | 7.0        | ${ m L}$     |
| SYNJ1          | chr21                  | 32,623,758  | 32,733,040  | 5        | 340.6            | 4           | 0.0        | $\mathbf{E}$ |
| TNKS           | chr8                   | 9,550,934   | 9,787,346   | 5        | 340.6            | 8           | 7.0        | $\mathbf{E}$ |
| TTC3           | chr21                  | 37,068,183  | 37,208,118  | 5        | 223.1            | 2           | 0.0        | $\mathbf{E}$ |
| UBR3           | chr2                   | 169,822,507 | 170,089,129 | 5        | 389.6            | 11          | 46.0       | $\mathbf{E}$ |
| WWOX           | chr16                  | 78,094,412  | 79,217,667  | 5        | 24.3             | 5           | 106.0      | L            |
| AGL            | chr1                   | 99,845,083  | 99,929,023  | 4        | 1368.7           | 4           | 0.0        | $\mathbf{E}$ |
| ANKRD46        | chr8                   | 100,504,751 | 100,564,786 | 4        | 95.8             | 24          | 7.0        | A            |
| AQR            | chr15                  | 34,851,350  | 34,974,794  | 4        | 28.5             | 84          | 14.0       | A            |
| CAAP1          | chr9                   | 26,835,684  | 26,897,828  | 4        | -8.2             | 27          | 46.0       | A            |
| CNOT6          | chr5                   | 180,489,398 | 180,583,405 | 4        | 22.4             | 2           | 7.0        | $\mathbf{L}$ |
| DENND6A        | chr3                   | 57,620,453  | 57,698,089  | 4        | 267.2            | 3           | 0.0        | $\mathbf{E}$ |
| EXOSC10        | chr1                   | 11,061,612  | 11,104,910  | 4        | 71.3             | 70          | 7.0        | Ā            |
| FAM13B         | chr5                   | 137,932,915 | 138,038,113 | 4        | 223.1            | 3           | 7.0        | E            |
| FUS            | chr16                  | 31,175,109  | 31,199,871  | 4        | 438.5            | 12          | 0.0        | E            |
| GARS           | chr7                   | 30,589,734  | 30,639,032  | 4        | 389.6            | 3           | 0.0        | E            |
| GOLPH3L        | chr1                   | 150,641,224 | 150,702,196 | 4        | -26.6            | 24          | 7.0        | Ā            |
| KDM5D          | $\operatorname{chr} Y$ | 19,700,414  | 19,749,939  | 4        | 144.8            | 2           | 14.0       | A            |

Table 9: Table of all genes identified within analysis. (continued)

| Gene         | Chromosome            | Start Pos.  | End Pos.    | Patients | Freq. Change (%)     | Peak Abund. | Long. Obs. | Criteria     |
|--------------|-----------------------|-------------|-------------|----------|----------------------|-------------|------------|--------------|
| MAD1L1       | chr7                  | 1,810,791   | 2,237,948   | 4        | 20.2                 | 35          | 46.0       | A            |
| MAP2K2       | chr19                 | 4,085,321   | 4,129,129   | 4        | 46.9                 | 2           | 106.0      | $_{\rm L}$   |
| MEMO1        | chr2                  | 31,862,809  | 32,016,052  | 4        | -46.6                | 47          | 7.0        | A            |
| MSH5-SAPCD1  | chr6                  | 31,734,947  | 31,769,847  | 4        | -51.0                | 43          | 7.0        | A            |
| MTMR3        | chr22                 | 29,878,168  | 30,035,868  | 4        | -17.4                | 261         | 106.0      | A            |
| OGDH         | chr7                  | 44,601,521  | 44,714,070  | 4        | -22.7                | 17          | 332.0      | $_{\rm L}$   |
| PATL1        | chr11                 | 59,631,715  | 59,674,038  | 4        | 95.8                 | 578         | 332.0      | A            |
| PDCD11       | chr10                 | 103,391,654 | 103,451,262 | 4        | 193.7                | 27          | 152.0      | A            |
| PDE3B        | chr11                 | 14,638,722  | 14,877,058  | 4        | 95.8                 | 35          | 7.0        | A            |
| PEX5         | chr12                 | 7,184,162   | 7,223,573   | 4        | 340.6                | 2           | 0.0        | $\mathbf{E}$ |
| RAB18        | chr10                 | 27,499,173  | 27,547,237  | 4        | 17.5                 | 24          | 7.0        | A            |
| RMND5A       | chr2                  | 86,715,290  | 86,783,041  | 4        | $\operatorname{Inf}$ | 26          | 0.0        | A            |
| RPA3         | chr7                  | 7,631,562   | 7,723,607   | 4        | 83.6                 | 87          | 106.0      | A            |
| TMTC3        | chr12                 | 88,137,295  | 88,204,887  | 4        | 223.1                | 2           | 0.0        | $\mathbf{E}$ |
| TRIO         | chr5                  | 14,138,701  | 14,515,204  | 4        | 928.1                | 61          | 106.0      | A            |
| XPO1         | chr2                  | 61,472,933  | 61,543,283  | 4        | 83.6                 | 25          | 106.0      | A            |
| ZC3H7A       | chr16                 | 11,745,585  | 11,802,258  | 4        | 311.2                | 11          | 1.0        | ${f E}$      |
| AKAP9        | chr7                  | 91,935,874  | 92,115,673  | 3        | 17.5                 | 25          | 0.0        | A            |
| CHD1L        | $\operatorname{chr}1$ | 147,168,193 | 147,300,766 | 3        | $\operatorname{Inf}$ | 25          | 1.0        | A            |
| DCUN1D4      | chr4                  | 51,837,999  | 51,921,837  | 3        | 22.4                 | 32          | 106.0      | A            |
| EIF2AK4      | chr15                 | 39,929,123  | 40,040,596  | 3        | 634.4                | 43          | 7.0        | A            |
| NGDN         | chr14                 | 23,464,688  | 23,483,193  | 3        | 120.3                | 44          | 0.0        | A            |
| PRKD2        | chr19                 | 46,669,315  | 46,722,127  | 3        | 144.8                | 24          | 22.0       | A            |
| RABGAP1      | chr9                  | 122,936,008 | 123,109,868 | 3        | 2.8                  | 29          | 7.0        | A            |
| SNAP29       | chr22                 | 20,854,003  | 20,896,213  | 3        | 487.5                | 27          | 7.0        | A            |
| STT3B        | chr3                  | 31,527,500  | 31,642,622  | 3        | 252.5                | 6           | 0.0        | $\mathbf{E}$ |
| ZNF573       | chr19                 | 37,733,301  | 37,784,590  | 3        | 17.5                 | 86          | 735.0      | A            |
| C20orf196    | chr20                 | 5,745,386   | 5,869,407   | 2        | -2.1                 | 1           | 0.0        | A            |
| CRTAP        | chr3                  | 33,108,957  | 33,152,773  | 2        | 193.7                | 35          | 7.0        | A            |
| GPN1         | chr2                  | 27,623,647  | 27,655,846  | 2        | 46.9                 | 62          | 1.0        | A            |
| JMJD6        | chr17                 | 76,707,831  | 76,731,799  | 2        | 193.7                | 53          | 1.0        | A            |
| KCTD3        | chr1                  | 215,562,378 | 215,626,821 | 2        | -26.6                | 1           | 0.0        | A            |
| LINC01473    | chr2                  | 186,028,533 | 186,091,317 | 2        | $\operatorname{Inf}$ | 82          | 7.0        | A            |
| LOC101927151 | chr19                 | 27,788,466  | 27,811,780  | 2        | 193.7                | 31          | 46.0       | A            |
| PHF12        | chr17                 | 28,900,252  | 28,956,490  | 2        | 17.5                 | 40          | 106.0      | A            |
| POLG2        | chr17                 | 64,472,784  | 64,502,066  | 2        | 83.6                 | 43          | 7.0        | A            |
| RASEF        | chr9                  | 82,974,584  | 83,068,128  | 2        | $\operatorname{Inf}$ | 43          | 46.0       | A            |
| SNHG12       | chr1                  | 28,573,537  | 28,586,854  | 2        | 340.6                | 96          | 332.0      | A            |
| TAC3         | chr12                 | 57,004,996  | 57,021,560  | 2        | -51.0                | 42          | 7.0        | A            |
| TGFBR2       | chr3                  | 30,601,501  | 30,699,141  | 2        | 193.7                | 31          | 7.0        | A            |
| ACTL6A       | chr3                  | 179,557,879 | 179,593,405 | 1        | -70.6                | 40          | 0.0        | A            |

Table 9: Table of all genes identified within analysis. (continued)

| Gene        | Chromosome | Start Pos.       | End Pos.        | Patients | Freq. Change (%)     | Peak Abund. | Long. Obs. | Criteria |
|-------------|------------|------------------|-----------------|----------|----------------------|-------------|------------|----------|
| C19orf48    | chr19      | 50,792,692       | 50,809,853      | 1        | 46.9                 | 28          | 46.0       | A        |
| CD109       | chr6       | 73,691,084       | 73,833,317      | 1        | -81.6                | 32          | 0.0        | A        |
| KARS        | chr16      | 75,622,723       | 75,652,687      | 1        | 46.9                 | 24          | 0.0        | A        |
| MICAL2      | chr11      | $12,\!105,\!575$ | 12,268,790      | 1        | -26.6                | 39          | 15.0       | A        |
| RBAK-RBAKDN | chr7       | 5,040,820        | 5,078,223       | 1        | 46.9                 | 28          | 7.0        | A        |
| RTCA-AS1    | chr1       | 100,259,741      | 100,271,174     | 1        | $\operatorname{Inf}$ | 27          | 0.0        | A        |
| UXT-AS1     | chrX       | 47,653,832       | 47,665,111      | 1        | $\operatorname{Inf}$ | 43          | 7.0        | A        |
| ZNF92       | chr7       | 65,368,798       | 65,406,135      | 1        | $\operatorname{Inf}$ | 42          | 7.0        | A        |
| EIF2B3      | chr1       | 44,845,521       | 44,991,722      | 8        | -51.0                | 6           | 1.0        | D        |
| EXOC2       | chr6       | 480,137          | 698,141         | 5        | -56.8                | 4           | 0.0        | D        |
| RNPS1       | chr16      | $2,\!248,\!115$  | $2,\!273,\!412$ | 5        | -65.9                | 2           | 0.0        | D        |