CNA1015

Photo Interrupters

Overview

CNA1015 series is a transmissive photosensor series in which a high efficiency GaAs infrared light emitting diode is used as the light emitting element, and a high sensitivity phototransistor is used as the light detecting element. The two elements are arranged so as to face each other, and objects passing between them are detected.

Features

• Position detection accuracy: 0.3 mm

• Gap width: 5 mm

• The type directly attached to PCB

Absolute Maximum Ratings ($Ta = 25^{\circ}C$)

	Symbol Ratings		Unit	
Input (Light emitting diode)	Reverse voltage (DC)	V _R	5	V
	Forward current (DC)	I_F	50	mA
	Power dissipation	P_D^{*1}	75	mW
Output (Photo transistor)	Collector current	I_{C}	20	mA
	Collector to emitter voltage	V _{CEO}	30	V
	Emitter to collector voltage	V _{ECO}	5	V
	Collector power dissipation	P _C *2	100	mW
Тотточатича	Operating ambient temperature	Topr	-25 to +85	°C
Temperature	Storage temperature	T _{stg}	-40 to +100	°C

Internal connector

\blacksquare Electrical Characteristics (Ta = 25°C)

Parameter		Symbol	Conditions	min	typ	max	Unit
Input characteristics	Forward voltage (DC)	V _F	$I_F = 20mA$		1.25	1.4	V
	Reverse current (DC)	I _R	$V_R = 3V$			10	μΑ
Output characteristics	Collector cutoff current	I _{CEO}	$V_{CE} = 10V$		10	200	nA
Transfer characteristics	Collector current	I_{C}	$V_{CC} = 5V, I_F = 20mA, R_L = 100\Omega$	0.5		10	mA
	Collector to emitter saturation voltage	V _{CE(sat)}	$I_F = 40 \text{mA}, I_C = 1 \text{mA}$			0.4	V
	Response time	t_r, t_f^*	$V_{CC} = 5V, I_C = 1mA, R_L = 100\Omega$		5		μs

^{*} Switching time measurement circuit

- $t_{\rm r}$: Rise time (Time required for the collector photo current to increase from 10% to 90% of its final value)
- ${\rm t_f}$: Fall time (Time required for the collector photo current to decrease from 90% to 10% of its initial value)

^{*1} Input power derating ratio is 1.0 mW/°C at Ta = 25°C.

^{*2} Output power derating ratio is 1.33 mW/°C at Ta = 25°C.

