14. Compactness of SL & QL

- 1. Compactness of SL & QL
- 1.1 Compactness of SL
- 1.2 A 'Pure' proof of SL compactness
- 1.3 Compactness of First-order Languages
- 1.4 The Löwenheim-Skolem theorems
- 1.5 Skolem's 'Paradox'
- 1.6 Problems for finitism
- 1.7 A topological proof of SL compactness

Soundness and Completeness

- ▶ Let Γ be any set of sentences of QL and Θ any sentence of QL.
- ► For our two natural deduction systems SND and QND, we have proven the following (where QND extends SND):
- **Soundness**: If $\Gamma \vdash_{QND} \Theta$, then $\Gamma \vDash \Theta$
 - QND derivations are 'safe' (they preserve truth)
 - (syntactic to semantic: i.e. we chose 'good' rules!)
- **►** Completeness: If $\Gamma \vDash \Theta$, then $\Gamma \vdash_{QND} \Theta$
 - reasoning about arbitrary models is not needed to demonstrate validity: QND derivations suffice
 - (logical entailment is fully covered by our syntactic rules)

14. Compactness of SL & QL

a. Compactness of SL

Compactness of SL

- ▶ Compactness of SL: for any set Γ of SL-sentences (possibly infinite), Γ is satisfiable if and only if every finite subset $\Delta \subseteq \Gamma$ is satisfiable (i.e. for each Δ , there is a truth-value assignment that makes all sentences in Δ true).
- Relying on our valiant labors in proving the soundness and completeness of SND, we gain an elementary proof of compactness
- ► This proof is "impure" because it relies on syntactic notions, whereas the statement of compactness is purely semantic.

An "impure" proof of Compactness

- ▶ Compactness of SL: for any set Γ of SL-sentences, Γ is satisfiable if and only if every finite subset $\Delta \subseteq \Gamma$ is satisfiable
- \Rightarrow (trivial direction): Assume that Γ is satisfiable. Then there is a TVA that makes true every sentence in $\Gamma.$
 - This TVA satisfies every finite subset $\Delta\subseteq\Gamma.$
- \Leftarrow (nontrivial direction): Assume that every finite subset $\Delta \subseteq \Gamma$ is satisfiable.
 - Assume for *reductio* that Γ is unsatisfiable. Then there is no TVA that makes true every sentence in Γ .
 - Hence, for any contradiction C (e.g. $P \& \sim P$), we have $\Gamma \vDash C$

Impure proof: non-trivial direction continued

- ▶ (From above: Γ unsatisfiable $\Rightarrow \Gamma \models C$, for contradiction C)
- ▶ Hence, by completeness of SND, we can derive C from Γ : $\Gamma \vdash_{SND} C$.
- ▶ Since derivations are finite, there exists a finite $\Delta \subseteq \Gamma$ such that $\Delta \vdash_{SND} \mathcal{C}$
- ▶ Then, by soundness of SND, $\Delta \models C$. Since C is unsatisfiable, this means that Δ must be unsatisfiable as well.
- ▶ But that contradicts our starting assumption that every finite subset $\Delta \subseteq \Gamma$ is satisfiable.
- \blacktriangleright So Γ must be satisfiable (proving compactness)

What does compactness of SL tell us?

- ► Question: Are there any arguments of SL that have infinitely-many premises, where no premise is redundant?
- ► Assume that $\Gamma \vDash \mathcal{P}$. Then what can we say about $\Gamma \cup \{\sim \mathcal{P}\}$? $\Gamma \cup \{\sim \mathcal{P}\}$ is **unsatisfiable**!
- So by one Contrapositive of Compactness, there exists a finite subset $\Delta\subset\Gamma\cup\{\sim\!\mathcal{P}\}$ that is unsatisfiable.
 - Easy to show that there is a finite $\Gamma_f \subset \Gamma$ s.t. $\Gamma_f \cup \{\sim P\}$ is unsatisfiable as well. So $\Gamma_f \vDash P$
- Upshot: every valid argument relies on finitely-many premises
 Contrast proof here with PS12 #4, which shows same result using
- Contrast proof here with PS12 #4, which shows same result using completeness and soundness, relying on syntactic ⊢_{SND}
 Whereas our argument above proceeds entirely semantically,

14.a.4

using compactness and semantic entailment ⊨

► If only we could prove compactness purely semantically?!

14. Compactness of SL & QL

b. A 'Pure' proof of SL compactness

A 'Pure' proof of the Compactness of SL

- ▶ Using a very similar idea to our construction of the maximally-SND-consistent set Γ^* , we can provide a purely semantic and yet still elementary proof of SL compactness
- ▶ Proof sketch: assuming that every finite subset of Γ is satisfiable, we will construct a superset $\Gamma^* \supset \Gamma$ for which it is easy to define a truth-value assignment that satisfies every sentence in Γ^* , and hence in Γ .
- As with our earlier completeness proof, Γ^* comes along with a membership lemma, which we use for our induction over SL.

Beginning the Proof

- \Rightarrow (easy direction): assume that the (possibly infinite) set of SL-wffs Γ is satisfiable. Then there is a TVA that makes true every sentence in Γ , and this TVA satisfies every finite subset of Γ .
- \leftarrow (harder direction): Assume that every finite subset $\Delta \subset \Gamma$ is satisfiable. Show that Γ is satisfiable (nontrivial if Γ is infinite).
- Notice that it suffices to construct a superset Γ^* of Γ that is satisfiable. Then the TVA that makes true everything in Γ^* will make true everything in Γ .
- ► To proceed, we introduce an idea very similar to the notion of a maximally-consistent-in-SND set. But now using only *semantic* notions (so avoiding our proof system).

Maximally finitely satisfiable sets

- ► A set Γ^* of SL wffs is maximally finitely satisfiable (MFS) provided that:
 - 1.) Every finite subset of Γ^* is satisfiable (Γ^* is "finitely satisfiable") 2.) For each SL wff \mathcal{P} , if $\Gamma^* \cup \{\mathcal{P}\}$ is FS, then $\mathcal{P} \in \Gamma^*$ ("semantic Door")
 - Otherwise, adding any additional ${\mathcal P}$ to Γ^* breaks finite-satisfiability
 - i.e. $\mathcal{P} \notin \Gamma^*$ iff $\Gamma^* \cup \{\mathcal{P}\}$ has an unsatisfiable finite subset
 - Next we'll show that any MFS set is satisfiable (this mirrors our "maximal consistency lemma" from our completeness proof)
 To do this, we'll prove a membership lemma that facilitates an

14 h 3

- induction over SL!

 ► Finally, we'll show how to construct an MFS \(\Gamma^*\) from any finitely-satisfiable \(\Gamma^*\)
- finitely-satisfiable Γ (i.e. what we assume at the start of the nontrivial-direction)

Membership Lemma for MFS sets ("complete clubs")

- ightharpoonup To induct on SL, we first show some constraints on Γ^* membership
- ightharpoonup Basically, Γ^* has a a bouncer who enforces maximal finite satisfiability.
- ▶ Membership Lemma for club Γ^* : if \mathcal{P} and \mathcal{Q} are SL wffs, then:
 - a.) $\sim \mathcal{P} \in \Gamma^*$ if and only if $\mathcal{P} \notin \Gamma^*$
 - b.) \mathcal{P} & $\mathcal{Q} \in \Gamma^*$ if and only if both $\mathcal{P} \in \Gamma^*$ and $\mathcal{Q} \in \Gamma^*$
 - c.) $P \lor Q \in \Gamma^*$ if and only if either $P \in \Gamma^*$ or $Q \in \Gamma^*$
 - d.) $\mathcal{P} \supset \mathcal{Q} \in \Gamma^*$ if and only if either $\mathcal{P} \notin \Gamma^*$ or $\mathcal{Q} \in \Gamma^*$
 - e.) $\mathcal{P} \equiv \mathcal{Q} \in \Gamma^*$ iff either (i) $\mathcal{P} \in \Gamma^*$ and $\mathcal{Q} \in \Gamma^*$ or (ii) $\mathcal{P} \notin \Gamma^*$ and $\mathcal{Q} \notin \Gamma^*$
- ► These syntactic constraints mirror truth-conditions, but we will now NOT rely on our proof system to prove this lemma
- ► (We built an analog of "the Door" into the definition of MFS sets)

Proof of Membership Lemma for MFS Sets

- ► Case (a): $\sim \mathcal{P} \in \Gamma^*$ iff $\mathcal{P} \notin \Gamma^*$: use condition 2) ("semantic Door") of MFS sets: $\mathcal{P} \notin \Gamma^*$ iff $\Gamma^* \cup \{\mathcal{P}\}$ has an unsatisfiable finite subset
- ► For the other cases, we rely on Case (a), the truth tables for the connectives, and the fact that Γ^* is finitely-satisfiable, i.e. every finite subset is satisfiable.
 - (So we do lots of *reductio* proofs: assume that a membership case fails, apply Case (a), and then show this would result in an unsatisfiable finite subset—contradicting condition (1), i.e. that all finite subsets are satisfiable).
- ► So imagine we've proven the membership lemma!
- ► Then define a TVA \mathcal{I}^* that makes true every atomic sentence in Γ^* ;
 - show by induction that this TVA satisfies every sentence in Γ^* (just as in our proof of completeness of SND!)

Building an MFS Γ^* from a finitely-satisfiable Γ

- ▶ It remains to construct a maximally finitely-satisfiable superset Γ^* of a finitely-satisfiable Γ
- We first enumerate the SL wffs, so that every SL wff is associated with a unique positive integer {1, 2, 3, ...}
- ► Consider the first wff 'A' in our enumeration. If A can be added to Γ while preserving finite satisfiability, then let $\Gamma_1 := \Gamma \cup \{A\}$.
- ▶ Otherwise, let $\Gamma_1 := \Gamma$ (so that Γ_1 stays FS)
- ▶ Then, proceed to the second wff in our enumeration. If it can be added to Γ_1 without the new set breaking FS, let Γ_2 be the result. Otherwise, let $\Gamma_2 := \Gamma_1$
- ightharpoonup T* is the result of 'doing' this procedure for every SL wff
- ightharpoonup More precisely, $ho^* := \bigcup_{k=1}^{\infty}
 ho_k$

Claim: Γ^* is maximally finitely satisfiable (MFS)

- ightharpoonup At this point, it suffices to prove that Γ^* is MFS
- 1.) Clearly, Γ^* is finitely satisfiable. If it were not, then some $\Gamma_k \subset \Gamma^*$ would be finitely unsatisfiable, but that contradicts our construction conditions.
- 2.) Moreover, Γ^* is maximal: if there were a wff $\mathcal Q$ that could be added to Γ^* while preserving finite satisfiability, we would have added $\mathcal Q$ at its enumeration stage.
 - So if $Q \notin \Gamma^*$, it must be that $\Gamma^* \cup \{Q\}$ is *not* finitely satisfiable.
 - ▶ So we're done! Any finitely satisfiable Γ is a subset of an MFS Γ^* , which we've shown is satisfiable! So Γ is satisfiable!

14. Compactness of SL & QL

c. Compactness of First-order

Languages

Compactness of QL

- ▶ Compactness of QL: for any set Γ of QL-sentences, Γ is satisfiable if and only if every finite subset $\Delta \subseteq \Gamma$ is satisfiable (i.e. $(\forall \Delta) \exists$ a QL-model \mathfrak{M}_{Δ} that makes true every sentence in Δ).
- Mutatis mutandis, we can provide an analogous impure proof, relying on the soundness and completeness of system QND
 - And also a 'pure' proof, constructing a maximally finitely satisfiable and existentially complete superset Γ^* .
- ▶ To widen the interest of our results, let's generalize compactness to any first-order language \mathcal{L}

First-order Languages (FOLs)

- ▶ First-order language \mathcal{L} : a set of well-formed formulae specified by a recursion clause like the one we gave for QL, where the symbols of \mathcal{L} include:
 - Variables: w, x, y, z (allowing subscripts $n \in \mathbb{N}$)
 - Operators: our five sentential connectives and two quantifiers
 - Punctuation: left and right parentheses
 - Names: a set of constants (allowing subscripts $n \in \mathbb{N}$)
 - Predicates: a non-empty set of capital letters (allowing subscripts), each with "an invisible label" giving its arity (e.g. 0-place, 1-place, 2-place, etc.)
 - a set of function symbols f(c) (syntax: f maps terms to terms)
- ▶ Different FOLs differ in their names, predicates, and functions

$\mathcal{L}\text{-models}$ and interpretations

- ▶ Let \mathcal{L} be a first-order language, containing constants and k-place predicates (e.g. the language of QL)
 - recall that the atomic sentences of SL are 0th-place predicates
- ▶ An \mathcal{L} -model $\mathfrak{M} := (D, I)$ consists of
 - 1. A non-empty set D of objects, called the domain of ${\mathfrak M}$
 - 2. A map I (the *interpretation* of \mathfrak{M}), which maps the vocabulary of $\mathcal L$ to objects and ordered pairs from D as follows:
 - For each constant $c \in \mathcal{L}$, I(c) is an element of D, called the *referent* or denotation of c
 - For each k-place predicate P of £, I(P) is a set of ordered k-tuples of objects in D, called the extension of P
 - I maps SL atomics to "true" or "false" (i.e. '1' or '0')

FOL with identity and functions

- ▶ With some minor modifications, we could extend our soundness and completeness proofs for QND to FOLs and deduction systems that include (1) a privileged identity predicate "=" and (2) functions that syntactically map terms to terms (interpreted as mapping the domain D to itself)
- Like our symbol " \prime ", we add in some new symbol " α " that doesn't occur in our FOL, to give a countable infinity of unused constants
- ► To construct our maximally-syntactically-consistent, existentially complete superset Γ^* , we focus on equivalence classes of co-referential constants, since now some constants might name the same object in the domain (e.g. c = d)
- ► Using the axiom of choice, we could even handle FOLs that have uncountably many predicates or constants!

Compactness for a first-order language

- ▶ Compactness of a FOL \mathcal{L} : for any set Γ of \mathcal{L} -sentences (possibly infinite), Γ is satisfiable if and only if every finite subset $\Delta \subseteq \Gamma$ is satisfiable.
- We could prove this either by (i) using a soundness and completeness result for an ∠-deduction system;
 (ii) generalizing our 'pure' proof for SL; or
 (iii) generalizing the topological proof of SL compactness (relying on results from topology, e.g. Tychonoff's theorem)

14. Compactness of SL & QL

d. The Löwenheim-Skolem

theorems

Downwards!

- ▶ Terminology: we'll say that a model \mathfrak{M} is *infinite* if its domain D is infinite in size. Likewise for saying that a model is finite, or countably infinite.
- ▶ Downward Löwenheim-Skolem: let Γ be a set of \mathcal{L} -sentences. If Γ is satisfiable in an infinite model, then it is satisfiable in a countably infinite model.
- Gloss: we can always descend from an infinite model to a countably infinite model
- Proof(s): (1) be impure and piggyback on completeness proof or (2) use compactness and satisfiability lemma for MFS sets

Down to be Impure

- ▶ Converse consistency lemma: if \mathcal{L} -set Γ is satisfiable, then Γ is syntactically-consistent (for a given deduction system \mathcal{L} ND that we've shown is sound)
- ► Proof: good exercise!!! Assume for *reductio* that Γ is syntactically-inconsistent and then apply soundness
- ► So since Γ is satisfiable, it is syntactically consistent.

 Then, appeal to our consistency lemma shown in the course of proving completeness: for any syntactically-consistent set, there is a maximally-consistent (and ∃-complete) set that is satisfiable, where we showed this by constructing a countably infinite model
- ► So Γ has a countably infinite model

Down with impurity: apply compactness

- ▶ Pure proof of Downward LS: assume that Γ is satisfied in an infinite model. Then it is satisfiable, and so by compactness theorem for FOL, Γ is finitely-satisfiable
- ▶ Modify our construction to form a maximally finitely-satisfiable and \exists -complete superset Γ^* of Γ
- Prove a satisfiability lemma: any such Γ* is satisfiable, where we show this by constructing a countably infinite L+-model
 (L+ arises from L by adding a countable-infinity of new constants)
- ▶ Then, Γ has a countably infinite \mathcal{L} -model

Onwards and Upwards!

- ▶ Upward Löwenheim-Skolem: let Γ be a set of \mathcal{L} -sentences. If Γ is satisfiable in an infinite model $\mathfrak{M} := (D, I)$, then it is satisfiable in models of arbitrary size larger than |D|
- ▶ Proof Sketch: extend the set of constants \mathcal{C} of \mathcal{L} with an uncountable set \mathcal{E} that contains \mathcal{C} . Extend the FOL \mathcal{L} to \mathcal{L}^+ with \mathcal{E} as its set of constants and with identity predicate =.
- ► Construct an \mathcal{L}^+ -set Γ^+ by adjoining to Γ every sentence of the form $\sim c = d$ for every distinct $c, d \in \mathcal{E}$.
- ▶ Show that Γ^+ is finitely-satisfiable and hence by compactness satisfiable. Then note that any \mathcal{L}^+ -model satisfying Γ^+ must have a domain as large \mathcal{E} . Restrict the interpretation function to construct an \mathcal{L} -model for Γ with domain $|D| = |\mathcal{E}|$

e. Skolem's 'Paradox'

14. Compactness of SL & QL

ZFC as a first-order language

- Zermelo-Fraenkel set theory with choice (ZFC): a FOL ZFC that has identity and a 2-place predicate for set-membership '∈', written between (rather than before) terms when forming atomic wffs
- ▶ In standard models, we interpret the objects as sets
- ▶ A list of axioms or axiom schemas, e.g. Null set axiom: $(\exists x)(\forall y)y \notin x$ (i.e. there is an empty set \varnothing)

 Axiom of Extensionality: $(\forall x)(\forall y)(\forall z)((z \in x \equiv z \in y) \supset x = y)$ (i.e. two sets are identical iff they have the same members)
- ► Axiom of Choice: if x is a set whose members are non-empty sets and no two members of x share a member, then there is a set y that contains exactly one element of each set in x

Skolem's 'Paradox'

- ► If ZFC has any models, then it has a **countable model** (since by downward LS, an infinite model entails a countably infinite model. Any finite model is already countable—and can be extended to a countably infinite model as well)
- ightharpoonup Yet, we can prove within ZFC that there are uncountable sets, e.g. the power set of $\mathbb N$ has cardinality of $\mathbb R$
- ► 'Paradox': how can a countably-infinite model make true the claim that there are uncountable sets?

Paradox Assuaged! (paradise regained?)

- lacktriangle Suppose that ZFC is satisfiable and so has a countable model ${\mathfrak M}$
- \blacktriangleright \mathfrak{M} makes true all the axioms of ZFC and hence all the consequences of these axioms, including the claim U that says "the powerset of \mathbb{N} is uncountable". Denote this set as '2 \mathbb{N} '
- ▶ U: there is an injection but no bijection from \mathbb{N} to $2^{\mathbb{N}}$; $\mathfrak{M} \models U$
- ▶ Since \mathfrak{M} is countable, the sets \mathbb{N} and $2^{\mathbb{N}}$ in \mathfrak{M} are definitely countable (\mathfrak{M} has only countably many objects in its domain to serve as members of objects in that domain)
- ▶ So clearly, there IS a bijection between the sets that correspond to $\mathbb N$ and $2^{\mathbb N}$ in $\mathfrak M$ (we can prove this bijection in a metalanguage)
- ▶ BUT (resolution), this bijection is not itself an object in \mathfrak{M} . So \mathfrak{M} itself represents $2^{\mathbb{N}}$ as uncountable

14. Compactness of SL & QL

f. Problems for finitism

Saying that there are finitely-many things

- ► As shown on PS13 problems #2, 5, and 6, we have some ISSUES when it comes to saying that there are finitely-many things in quantifier logic
- ► It seems like we definitely cannot accomplish this putatively possible task through sentences
- ► Is there any other way we might go about enforcing there being finitely-many things (e.g. if we think there probably are only finitely-many things and want a FOL to reflect that)?

Adding a finitely-many Quantifier

- ► If not through sentences, perhaps through operators, e.g. quantifiers!
- ► Idea: add a 'finitely-many' quantifier, ¬, to FOL
- ▶ Syntactically, we define \exists just like a quantifier: if \mathcal{P} is a formula where x does not appear bound, then $(\exists x)\mathcal{P}$ is a wff
- ▶ Semantically, we extend satisfiability semantics (oh boy—not that sh** again) so that $(\exists x)\mathcal{P}$ is true in a model if and only if there are finitely-many \mathcal{P} -objects in the model's D, i.e. |D| is finite
- ► Question: what would it take to modify our derivation system QND to make it sound and complete for quantifier logic with a finitely-many quantifier (QL-¬¬)?
- ► Answer: no derivation system can be sound & complete for QL-¬¬!
 - F***!!! INFINITE F***!!!

Finite Hopes & Finite Dreams: dashed upon $\infty ext{-many rocks}$

- ► Suppose for *reductio* that we had a sound and complete derivation system for QL-¬¬
- \blacktriangleright Then, we could prove that QL- \exists is compact (see slides 3-4)
- ightharpoonup Yet, the entailment relation $ightharpoonup_{OL-}$ for this logic is NOT compact:
- ▶ Consider the sentence $F := (\exists x)x = x$, which says "there are finitely-many things that equal themselves." This is just a fancy way of saying that there are finitely-many things in the domain (since everything is identical to itself and nothing else).
- ▶ Then consider the set $X := \{F, L_1, L_2, ...\}$, containing F and each L_k for $k \in \mathbb{N}$, where L_k says "there are at least k-things"
- Set X is finitely-satisfiable, but it is not satisfiable (violating compactness). Any way of making true the infinitely-many L_n 's requires an infinite model, which then can't make true sentence $F_{14.f.3}$

14. Compactness of SL & QL

g. A topological proof of SL

compactness

What does "compactness" normally mean?

- Topological space (X, τ): a topology on a set X is a collection of open sets τ s.t. the following sets are open: (i) Ø and X; (ii) arbitrary unions of open sets; (iii) finite intersections of open sets
 A set is closed in (X, τ) if its complement is open
- (NB: sets can be 'clopen', i.e. both open AND closed)
- Compactness in topology: a topological space is compact iff
 every open cover has a finite subcover
 Equivalently: every collection of closed subsets chaving the
- Equivalently: every collection of closed subsets obeying the finite intersection property has non-empty intersection
- ► Finite intersection property (FIP): a set of subsets $\{F_{\beta}\}_{\beta \in B}$ of a topological space has the FIP if for every finite subset B_{\emptyset} of our index set B, the intersection of all the sets F_{β} for $\beta \in B_{\emptyset}$ is non-empty, i.e. provided that $\bigcap_{\beta \in B} F_{\beta}$ is non-empty

14.q.1

Why call the logical property "compactness"?

- ▶ The compactness of SL is equivalent to the compactness of a particular topological space, namely a topology on the set of truth-value assignments (TVAs)
- \blacktriangleright Let A be the set of atomic wffs and let \mathcal{E} be the set of TVAs \blacktriangleright for each atomic wff A, let U_A^0 be the set of TVAs that assign A
- false, and let U_A^1 be the set of TVAs that assign A true \blacktriangleright Endow the set \mathcal{E} with a topology by stipulating that (i) for each
- atomic wff A, U_A^0 and U_A^1 are open and (ii) every non-empty open set arises as a union of these U^0 s and U^1 s
- ► Claim: the compactness of SL is equivalent to the compactness of this topological space \mathcal{E}
 - \blacktriangleright Note that if we prove that 1) compactness of \mathcal{E} entails

compactness of SL and that 2) \mathcal{E} is compact, then 14.q.2 we will have proven compactness without detour through syntax!

Step 1: $\mathcal E$ compact entails SL is compact

▶ Assume that (\mathcal{E}, τ) is compact. Consider an arbitrary set Γ of SL sentences that is finitely satisfiable.

NTS: Γ is satisfiable (the other direction is trivial)

- ▶ Consider an arbitrary wff \mathcal{P} . Lemma: the set $U_{\mathcal{P}} \subset \mathcal{E}$ of TVAs that make \mathcal{P} true is open (proof: use disjunctive normal form and take a matching union of finite intersections of the U_A^0 s and U_B^1 s for atomics that compose \mathcal{P} !)
- ▶ So $U_{\sim P}$ is also open. Since the complement of U_P is $U_{\sim P}$, U_P is both closed and open

Step 1 continued: applying topological compactness

- ▶ So, for each wff \mathcal{P} in Γ , the set of TVAs $U_{\mathcal{P}}$ that make \mathcal{P} true is a closed subset of \mathcal{E}
- So to say that each finite subset Γ_0 of Γ is satisfiable is equivalent to saying that the family $\{U_{\mathcal{P}}: \mathcal{P} \in \Gamma\}$ is a family of closed subsets of \mathcal{E} with the *finite intersection property* (i.e. for any finite subset of this family, the intersection of its members $U_{\mathcal{Q}}$ is non-empty)
- ▶ Since we are assuming that \mathcal{E} is compact, the intersection of ALL members of this family $\{U_{\mathcal{P}}: \mathcal{P} \in \Gamma\}$ is non-empty
- lacktriangleright i.e. this intersection must contain at least one TVA in ${\mathcal E}$
- \blacktriangleright Hence, there is a TVA that makes true all of the members of Γ

Step 2: show that (\mathcal{E}, τ) is compact

product topology

- \blacktriangleright We can think about \mathcal{E} as equalling $2^{\mathcal{A}}$, i.e. the set of maps from the SL atomics A to the set $\{0, 1\}$
- ► Equip the set {0, 1} with the discrete topology (i.e. every subset is open). Then the product topology on $2^{\mathcal{A}}$ equals the topology (\mathcal{E}, τ) defined earlier.
- \triangleright Since there are countably many SL atomics, 2^A is homeomorphic to the Cantor set (comprises ∞ -binary sequences of 0s and 1s)
- ▶ Note that the Cantor set is compact, since it is a closed subset of a compact set (namely the closed unit interval [0, 1])
- show that 2^{A} is compact
- \blacktriangleright If we allow A to have arbitrarily many SL atomics, then we could use Tychonoff's theorem (equivalent to the axiom of choice) to

► Tychonoff: a product of compact spaces is compact in the

14.q.5