基础设施智慧服务系统(iS3) 安装使用手册

同济大学 土木信息技术教育部工程研究中心 中国智慧基础设施联盟

2018.11

目录

第一章 概述	
第二章 系统运行环境	1
2.1硬件要求	1
2.2操作系统要求	1
2.3数据库要求	1
2.4运行所需插件要求	1
第三章 安装步骤	2
3.1安装客户端插件	
3.1.1 IronPython-2.7.5	
3.1.2 UnityWebPlayer	
3.1.3 UnityWebPlayerFull	
3.2安装客户端软件	
第四章 系统操作界面	8
4.1查看工程项目	8
4.2可视化交互界面	9
4.2.1二维可视化界面	9
4.2.2三维可视化界面	12
4.3脚本语言交互/数据库查看界面	13
4.3.1脚本语言交互界面	13
4.3.2数据库查看界面	14
4.4工程对象数交互界面	14
4.5工程对象信息查看界面	15
4.6常见问题	17
第五章 某隧道数据配置案例	18
5.1新增工程	18

5.2数据配置	18
5.2.1设置配置工具路径	19
5.2.2选择配置工程	19
5.2.3设置已选工程数据路径	20
5.2.4二维数据配置	21
5.2.4数据对象组关联配置	25
5.2.5数据对象树定义	30
5.3数据集成	32
5.4数据关联	33
5.5数据二三维联动	34

第一章 概述

iS3是基础设施智慧服务系统(infrastructure Smart Service System)的简称,由同济大学自主研发,拥有完全自主知识产权。iS3是一套基础设施全寿命数据采集、处理、表达、分析的一体化决策服务系统。主要服务于道路、桥梁、隧道、综合管廊、基坑等基础设施对象,涵盖从规划、勘察、设计、施工到运营维护各阶段不同信息流节点的全寿命周期。广义上讲,iS3适用于任何领域的信息化应用。

此文档介绍的是iS3基础设施智慧服务系统网络版的安装使用,iS3基础设施智慧服务系统网络版是在单机版功能基础上,还具有通过iS3云服务在线管理基础设施全寿命数据的能力,实时加载各种类型工程数据,并支持自定义分析工具等二次开发功能。

第二章 系统运行环境

2.1 硬件要求

- Intel 或 AMD 处理器 PC机
- 软件所占空间不超过1G磁盘空间

2.2 操作系统要求

- 32/64 位 Windows 7及以上
- . net framework 4.5

2.3 数据库要求

• Sqlserver2008

2.4运行所需插件要求

• Python插件: IronPython-2.7.5

● Unity3D插件: UnityWebPlayer和UnityWebPlayerFull

第三章 安装步骤

3.1 安装客户端插件

iS3基础设施智慧服务系统网络版运行需安装三个插件,插件安装包请通过百度云网盘自行下载。下载后进入保存目录,按顺序依次安装即可。(百度云地址:https://pan.baidu.com/s/13u2mzuLzLWn0BVwQCkRNVw;密码:wisp)

3.1.1 IronPython-2.7.5

iS3二次开发主要插件。双击【IronPython-2.7.5】,即可安装。安装完成后 关闭此页面即可。

3.1.2 UnityWebPlayer

iS3平台三维界面主要插件。双击【UnityWebPlayer】,即可安装。安装完成后关闭此页面即可。

3.1.3 UnityWebPlayerFull

iS3平台三维界面主要插件。双击【UnityWebPlayerFull】,即可安装。安装 完成后关闭此页面即可。

3.2 安装客户端软件

iS3基础设施智慧服务系统安装包请通过百度云网盘自行下载。(百度云地址: https://pan.baidu.com/s/13u2mzuLzLWn0BVwQCkRNVw;密码: wisp)

下载文件夹iS3 v1.2后,进入保存目录,双击iS3 v1.2/bin/iS3.Desktop.exe,便可运行iS3平台。进行系统配置后,输入账户密码即可运行主程序。默认初始账户密码均为admin,主数据库IP为127.0.0.1,主数据库为iS3Project,数据库账户为sa,数据库密码为123456。

田戸政府 部份配票

登录成功后,此页面即为iS3平台主界面。

第四章 系统操作界面

以iS3测试案例为例,介绍如何使用iS3平台基础功能。此案例的数据已导入软件,无需再进行数据准备导入步骤。

4.1 查看工程项目

滚动鼠标可放大/缩小地图,拖动鼠标可移动地图,移动鼠标至地图标记处显示工程项目名称,点击【iS3测试案例】,即进入该项目的具体工程信息界面。

跳转此界面即为iS3测试案例的具体工程信息界面,根据操作可分为四块区域。

- ▶ 左上部分: 可视化交互界面;
- ▶左下部分: 脚本语言交互界面/数据库查看界面;
- ▶右上部分: 工程对象数交互界面;
- ▶ 右下部分:工程对象信息查看界面。

右上角为快捷键。

- ▶右上角 . 返回系统主界面;
- ▶右上角 : 运行脚本语言。

4.2 可视化交互界面

此模块可实现2D平面图/剖面图/数据视图/3D视图一体化联动,快速高效展示工程信息。

4.2.1 二维可视化界面

单击【BaseMap】即可查看二维可视化界面,滚动鼠标可放大/缩小地图,鼠标拖动布移动地图。

通过点击显示区上部 🦥 🧿 💆 可对此界面进行基础操作。

▶ 可通过点选不同图层更改显示图层;

▶ **э** 单击此按钮,弹跳处右上标红区域,可通过鼠标拖动指针 旋转地图;

▶ 随机选取一个监测点,单击此按钮,可将所要查看的监测点/范围居于地图中心;

单击此按钮,可根据需求大范围选择所需查看信息;

单击此按钮,弹跳出下列标红区域,可根据需求,布置点线面等操作,单击最后一个按钮,即可关闭此界面。

4.2.2 三维可视化界面

单击【Map3D】即可切换至三维可视化界面,滚动鼠标可放大/缩小地图,鼠标右键拖动可旋转地图。

鼠标左键点击【Map3D】并拖动,可将二维、三维可视化界面并排显示。

例如选择左右排列,如下图所示。可通过选取任意一点监测点,在其任意界面 实现数据交互显示。

4.3 脚本语言交互/数据库查看界面

4.3.1 脚本语言交互界面

切换至【Python】可根据需求对软件进行二次开发,配置iS3内置工具、查看参数、分析工程信息等需求。

4.3.2 数据库查看界面

切换至【Data List】便可对数据库进行查看,点击右上方【监测点】,数据库中变会弹跳出此项目工程信息中所有监测点的信息。

单击【ID】此行任意名称,可根据其需求排序。

4.4 工程对象数交互界面

iS3测试案例较为单一,仅有监测点显示,不同的工程项目可查看对象数不同,较为复杂的工程项目可能包含地质、监测点等信息。

4.5 工程对象信息查看界面

【Object View】可对工程信息分别进行曲线图、表格、文本形式查看。

单击 可将曲线图全屏,对于数据查看分析更加一目了然。

切换至【Tools】,可查看拓展分析工具,基于iS3框架自主开发相应的工具,后续将陆续更新工具库内容。

4.6 常见问题

Q1: 插件安装完成后,在运行iS3. desktop. exe时,加载3D文件若卡死在如下界面或加载失败,可尝试一下解决办法。

方法一:

根据链接下载unity文件夹,将下载好的unity文件夹复制至C:\Users\(当前用户)\AppData\LocalLow\unity文件夹中,需先设置显示隐藏文件夹。

(链接: https://pan.baidu.com/s/1uV4RqrbBI777ec9FfyaC1A 密码: k5jr) 方法二:

重新安装Unity 3d WebPlayer插件。

备注: 若以上方法均无效,请关机重启或断网尝试再次运行iS3单机版。

第五章 某隧道数据配置案例

本章将以基础设施智慧服务系统(iS3)数据准备手册第六章某隧道为例,讲解如何将准备好的二维数据、三维数据集成进iS3平台。通过使用iS3-config配置工具后,将二维数据、三维数据、数据库中的工程数据关联起来,实现二三维数据联动。

5.1 新增工程

打开iS3平台,进入工程列表界面,点击左下角"新增工程",填写工程ID为 "TunnelDemo"和工程描述信息"iS3 Chuzhou Trainning"。点击"选取地图位置",在右边地图区域点击工程相应的位置,然后点击"确定"按钮,即可添加工程。

5.2 数据配置

将采用配置工具iS3-Config进行iS3工程的数据配置工作。配置工具存放在"iS3 V 1.2\iS3-Config\bin"目录下,双击"iS3.Config.exe"即可打开。

5.2.1 设置配置工具路径

打开配置工具后,进行iS3运行程序路径的设置,指定二维、三维数据的存放位置,设置数据库地址(默认为本机,即127.0.0.1),填写数据库的登陆用户名和密码(默认用户名: sa,默认密码: 123456)。设置完毕后,点击"Start configuration"进行下一步。

5.2.2 选择配置工程

工程列表将列出数据库"iS3Project"中"Sys_ProjectListInfo"表里存放的工程,由于我们在5.1节中新增了一个"TunnelDemo"工程,因此可在列表中查看。在"Avaliable Projects"中选择"TunnelDemo"工程,并点击"Next"进行下一步。

5.2.3 设置已选工程数据路径

设置本工程的"ID"和"Title"为"TunnelDemo", "Local data path"指定本工程的二维数据、三维数据存放位置, "Local tile path"指定本工程的由Arcgis导出的离线切片包位置。

5. 2. 4 二维数据配置

5.2.4.1 平面图配置

点击左下角的"+",新增一张二维地图。"Eng. Map ID"表示这张地图的编号,设置为"MapO";"Eng. Map type"表示这张地图的类型,设置为"FootPrintMap",即平面图;"Local tiled map"表示要加载的离线切片包,通过点击"···"打开选择窗口选择"Planview. tpk";"Local GeoDB map"表示要加载的 geodatabase 文件,通过点击"···"打开选择窗口选择"Planview. geodatabase"。

选择打开"Planview.geodatabase"文件后,可以将该文件含有的图层加载进来,包括"River"、"TunnelPlan"和"MonPoint"。可以点击其中某一个图层,对该图层的绘制方式进行设置。如选中"MonPoint"图层,再点击"Layer

Setting"可对"MonPoint"进行设置。

5.2.4.2 剖面图配置

点击左下角的"+",再新增一张二维地图。"Eng. Map ID"表示这张地图的编号,设置为"Map1";"Eng. Map type"表示这张地图的类型,设置为"GeneralProfileMap",即剖面图;"Local tiled map"表示要加载的离线切片包,通过点击"···"打开选择窗口选择"Profileview. tpk";"Local GeoDB map"表示要加载的geodatabase文件,通过点击"···"打开选择窗口选择"profileview. geodatabase"。

选择打开"profileview.geodatabase"文件后,可以将该文件含有的图层加载进来,包括"Stratum"和"TunnelSection"。可以点击其中某一个图层,对该图层的绘制方式进行设置。如选中"Stratum"图层,再点击"Layer Setting"可

对 "Stratum" 进行设置。

配置完平面图和剖面图后,点击"Next"进入下一步。

5.2.4 数据对象组关联配置

点击 "Domains"下方的"+"按钮,可弹出"Input domain information"窗口,添加本工程存在的"Domain",选择"Geology",点击"OK"即可添加。重复本步骤,将"Monitoring"和"Structure"也添加进来。

在 "Domains" 选框里选中 "Geology", 点击 "Digital objects"下方的 "+"按钮,可弹出"Input digital object name"窗口,输入该Domain中存在的 对象组名"ALLSTRA",即可添加该对象组。

点击 "Table name"后面的"…"按钮,选择数据库中本对象组对应的数据表"STRA",即可将对象组与该数据表关联起来。

勾选"Has 2D Model",表示本对象组有相对应的二维图层与之关联。点击"2D Layer"后的"…"按钮,选择剖面图"Map1"中的"Stratum"图层,即可将对象组与该图层关联起来。

在"Domains"选框里选中"Monitoring",点击"Digital objects"下方的"+"按钮,可弹出"Input digital object name"窗口,输入该Domain中存在的对象组名"MonPoint",即可添加该对象组。

点击 "Table name"后面的"…"按钮,选择数据库中本对象组对应的数据表 "MonPoint",即可将对象组与该数据表关联起来。

勾选"Has 2D Model",表示本对象组有相对应的二维图层与之关联。点击"2D Layer"后的"···"按钮,选择平面图"Map0"中的"MonPoint"图层,即可将对象组与该图层关联起来。

勾选"Has 3D Model",表示本对象组有相对应的三维图层与之关联。点击"3D Layer"后的"···"按钮,选择"iS3Project/MonPoint/MonPoint"图层,即可将对象组与该图层关联起来。

数据对象组关联配置完成后,点击"Next"进入下一步。

5.2.5 数据对象树定义

本节讲解如何配置对象树。

选中"Geology"选项卡,配置在该Domain里的对象树。在对象树(左边白色框内)右击,点击"Add",增加一个节点。

选中新增加的节点,往"Name", "Display name"填入"地层",将
"Digital objects"选择为对象组"ALLSTRA",即可将对象树上的"地层"节点与对象组"ALLSTRA"关联起来。

选中"Monitoring",配置在该Domain里的对象树。在对象树(左边白色框内)右击,点击"Add",增加一个节点。

选中新增加的节点,往"Name","Display name",分别填写为"监测点",将"Digital objects"选择为对象组"MonPoint",即可将对象树上的"监测点"节点与对象组"MonPoint"关联起来。

配置完对象树后, 按 "Finish", 即可生成"TunnelDemo.py"和 "TunnelDemo.xml", 保存在了\iS3 V 1.2\Data\TunnelDemo文件夹内。

5.3 数据集成

经过了工程数据的准备以及数据配置的工作,运行iS3平台,可以在工程列表中看到"TunnelDemo"工程,进入该项目。

进入项目后,可以看到iS3的加载过程。根据我们的配置需求,iS3平台将工程数据以平面图、剖面图以及三维图加载了进来,说明程序完成了数据集成功能。

5.4 数据关联

在对象树中,我们选取"地层"节点,可以在"DataList"列表中查看该对象组在数据库的信息,完成了对象树与对象组之间的关联。在剖面图内,或者数据表内点击某个地层,可在右下角的对象查看框中看到该对象的信息,说明完成了对象与数据表的关联。

5.5 数据二三维联动

在平面图上选取了一个监测点,在平面图中该监测点被高亮,在数据表中也高亮了出来,在三维图中该监测点也被高亮。在三维图中选取一个监测点,也会发现平面图、数据表中该点的信息被高亮。可以说明,程序已经完成了二三维联动的功能。

