H2O.ai Algorithms

Patrick Hall 22 Jan 2017

Algorithms on H₂O

Supervised Learning

Statistical Analysis

- Penalized Linear Models: Binomial, Gaussian, Gamma, Poisson and Tweedie – HIGHLY INTERPRETABLE
- Naïve Bayes

Ensembles

- Distributed Random Forest:
 Classification or regression models
- Gradient Boosting Machine:
 Produces an ensemble of decision trees with increasing refined approximations

Unsupervised Learning

Clustering

Dimensionality Reduction

- K-means: Partitions observations into k clusters/groups of the same spatial size. Automatically detect optimal k
- Principal Component Analysis: Linearly transforms correlated variables to independent components
- Generalized Low Rank Models: extend the idea of PCA to handle arbitrary data consisting of numerical, Boolean, categorical, and missing data

Neural Networks

Multilayer Perceptron

Deep Learning

- Deep neural networks: Multi-layer feed forward neural networks for standard supervised learning tasks
- Convolutional neural networks:
 Sophisticated architectures for pattern recognition in images, sound, and text

Anomaly Detection

Term Embeddings

- Autoencoders: Find outliers using a nonlinear dimensionality reduction based on neural networks
- **Word2vec:** Generate context-sensitive numerical representations of a large text corpus

Supervised Learning

Regression:

How much will a customers spend?

H₂O algos:

Penalized Linear Models Random Forest Gradient Boosting Neural Networks

Classification:

Will a customer make a purchase? Yes or No

H₂O algos:

Penalized Linear Models
Naïve Bayes
Random Forest
Gradient Boosting
Neural Networks

Unsupervised Learning

Clustering:

Grouping rows – e.g. creating groups of similar customers

H₂O algos:

k – means

Feature extraction:

Grouping columns – Create a small number of new representative dimensions

H₂O algos:

Principal components
Generalized low rank models
Autoencoders
Word2Vec

Anomaly detection:

Detecting outlying rows - Finding high-value, fraudulent, or weird customers

H₂O algos:

Principal components
Generalized low rank models
Autoencoders

H ₂ O.ai	Usage	Recommendations	Problems
Penalized Linear Models	RegressionClassification	 Best for linear or linearly separable relationships Nonlinear and interaction terms should be specified by users Great for wide data Creates interpretable models 	NAsOutliers/influential pointsStrongly correlated inputsRare categorical levels in new data
Naïve Bayes	Classification	 Best for linearly separable relationships in big data Great for huge data sets where other methods fail 	 Linear independence assumption Rare categorical levels in new data
Random Forest	RegressionClassification	 Single trees great for non-smooth relationships Great for nonlinear and nonlinearly separable relationships in dirty data Great for modeling interactions Great for NAs and outliers 	OvertrainingMany hyperparameters
Gradient Boosting Machines	RegressionClassification	 Single trees great for non-smooth relationships Great for nonlinear and nonlinearly separable relationships in dirty data Great for modeling interactions Great for NAs and outliers 	 Overtraining Many hyperparameters Often more accurate than random forest but also potentially more susceptible to instability with noisy data
Neural Networks (Deep learning & MLP)	RegressionClassification	 Great for nonlinear and nonlinearly separable relationships Great for modeling interactions in fully connected topologies Deep water is well-suited for pattern recognition in images, videos, and sound 	 NAs Overtraining Outliers/influential points Long training times Many hyperparameters Strongly correlated inputs Rare categorical levels in new data

H ₂ O.ai	Usage	Recommendations	Problems
k - means	Clustering	 Great for creating Gaussian, non-overlapping, roughly equally sized clusters The number of clusters can be unknown 	 NAs Outliers/influential points Strongly correlated inputs Cluster labels sensitive to initialization Curse of dimensionality
Principal Components Analysis	Feature extractionDimension reductionAnomaly detection	 Great for extracting a number <= N of linear, orthogonal features from i.i.d. numeric data Great for plotting extracted features in a reduced-dimensional space to analyze data structure, e.g. clusters, hierarchy, sparsity, outliers 	NAsOutliers/influential pointsCategorical inputs
Generalized Low Rank Models	Feature extractionDimension reductionAnomaly detectionMatrix completion	 Great for extracting linear features from mixed data Great for plotting extracted features in a reduced-dimensional space to analyze data structure, e.g. clusters, hierarchy, sparsity, outliers Great for imputing NAs 	Outliers/influential points
Autoencoders (Neural Networks)	Feature extractionDimension reductionAnomaly detection	 Great for extracting a number of nonlinear features from mixed data Great for plotting extracted features in a reduced dimensional space to analyze structure, e.g. clusters, hierarchy, sparsity, outliers 	 NAs Overtraining Outliers/influential points Long training times Many hyperparameters Strongly correlated inputs Rare categorical levels in new data
Word2Vec	Highly representative feature extraction from text	 Great for extracting highly representative, context sensitive term embeddings (e.g. numerical vectors) from text Great for text preprocessing prior to further supervised or unsupervised analysis 	 Many Hyperparameters • Long training times Overtraining Specifying term weightings prior to training