PCA: Motion Capture

(T.Werner, V.Franc 2014+, V.Voráček)

Tato domácí úloha má tři podúlohy. Zadání se může zdát dlouhé, ale každou požadovanou funkci lze napsat na pár řádků. Úlohu vypracujte v Matlabu nabo Pythonu. Můžete využít templaty pro Matlab [/wiki/_media/courses/b0b33opt/cviceni/hw/pca1/matlab_template_mocap.zip] a Python [/wiki/_media/courses/b0b33opt/cviceni/hw/pca1/python_template_mocap.zip].

1. Proložení bodů podprostorem

Jsou dány body $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$ a přirozené číslo $k \leq m$. Najděte body $\mathbf{b}_1, \dots, \mathbf{b}_n \in \mathbb{R}^m$ takové, aby ležely v (lineárním) podprostoru dimenze k prostoru \mathbb{R}^m a byly co nejblíže bodům $\mathbf{a}_1, \dots, \mathbf{a}_n$ ve smyslu nejmenších čtverců, tj. minimalizovaly výraz

$$\sum_{i=1}^{n} \|\mathbf{a}_i - \mathbf{b}_i\|^2. \tag{1}$$

Zdůrazněme, že zmíněný podprostor předem neznáme, máme ho najít zároveň s body $\mathbf{b}_1,\ldots,\mathbf{b}_n$. Tento podprostor budeme reprezentovat jeho ortonormální bází $\mathbf{u}_1,\ldots,\mathbf{u}_k\in\mathbb{R}^m$. Dále máme najít souřadnice c_{11},\ldots,c_{kn} nalezených bodů $\mathbf{b}_1,\ldots,\mathbf{b}_n$ v této bázi, tedy

$$\mathbf{b}_j = \sum_{i=1}^k c_{ij} \mathbf{u}_i = \mathbf{U} \mathbf{c}_j \qquad orall j = 1, \dots, n$$
 (2)

kde $\mathbf{U} \in \mathbb{R}^{m \times k}$ je matice se sloupečky $\mathbf{u}_1, \dots, \mathbf{u}_k$ (splňující $\mathbf{U}^T \mathbf{U} = \mathbf{I}$) a $\mathbf{c}_j \in \mathbb{R}^k$ je vektor s prvky c_{1j}, \dots, c_{kj} .

Někdy řešíme pozměněnou úlohu: k daným bodům $\mathbf{a}_1,\ldots,\mathbf{a}_n\in\mathbb{R}^m$ hledáme body $\mathbf{b}_1,\ldots,\mathbf{b}_n\in\mathbb{R}^m$, které leží v *afinním* podprostoru dimenze k a minimalizují chybu (1) Pak místo (2) máme

$$\mathbf{b}_j = \mathbf{b}_0 + \mathbf{U}\mathbf{c}_j \qquad \forall j = 1, \dots, n,$$
 (3)

kde $\mathbf{b}_0 \in \mathbb{R}^m$ je (neznámé) posunutí afinního podprostoru vůči počátku.

Nahrazení sekvence $\mathbf{a}_1, \dots, \mathbf{a}_n$ sekvencí $\mathbf{c}_1, \dots, \mathbf{c}_n$ lze vnímat jako kompresi dat: druhá sekvence obsahuje typicky daleko méně čísel než první (velikost báze \mathbf{U} je zanedbatelná).

Je výhodné uspořádat vektory $\mathbf{a}_1,\ldots,\mathbf{a}_n\in\mathbb{R}^m$, $\mathbf{b}_1,\ldots,\mathbf{b}_n\in\mathbb{R}^m$, $\mathbf{c}_1,\ldots,\mathbf{c}_n\in\mathbb{R}^k$ do sloupců matic $\mathbf{A}\in\mathbb{R}^{m\times n}$, $\mathbf{B}\in\mathbb{R}^{m\times n}$, $\mathbf{C}\in\mathbb{R}^{k\times n}$. Pak účelovou funkci $\underline{(1)}$ můžeme napsat jako $\|\mathbf{A}-\mathbf{B}\|^2$ (kde $\|\cdot\|$ je zde Frobeniova norma) a rovnici $\underline{(2)}$ příp. $\underline{(3)}$ jako $\mathbf{B}=\mathbf{UC}$ příp. $\underline{\mathbf{B}}=\mathbf{b}_0\mathbf{1}^T+\mathbf{UC}$.

Úkoly:

- 1. Implementujte matlabskou funkci [U,C]=fitlin(A,k), jejímž vstupem je matice A a číslo k a výstupem jsou matice U a C, které minimalizují (1) za podmínky (2).

 Výstup úkolu: soubor fitlin.m.
- 2. Implementujte funkci [U,C,b0]=fitaff(A,k), jejímž vstupem je matice \mathbf{A} a číslo k a výstupem jsou matice \mathbf{U} , \mathbf{C} a vektor \mathbf{b}_0 , které minimalizují (1) za podmínky (3).

 Výstup úkolu: soubor fitaff.m.

Poznámky:

- Předpokládejte, že nejen $k \leq m$ ale i $k \leq n$.
- Neměli byste nikde vytvořit matici rozměru $n \times n$, protože počet bodů n může být veliký.
- Implementované funkce nemají nic vypisovat ani vykreslovat, mají jen vrátit požadovaný výstup.
- Smíte používat jen základní funkce Matlabu (tedy žádné toolboxy), viz stránka cvičení.
- Funkci fitlin lze napsat na 4 řádky, funkci fitaff na 3 řádky.

2. Proložení bodů přímkou

Nyní použijete výsledek výše na prokládání množiny bodů v rovině přímkou (m=2 a k=1), která nemusí procházet počátkem. Představte si např., že někdo body naklikal myší v grafickém rozhraní (to můžete udělat v Matlabu sami příkazem ginput) a vaším úkolem je proložit jimi nejlepší přímku.

Úkoly:

1. Implementujte funkci $\operatorname{drawfitline}(A)$, která má na vstupu matici $\mathbf{A} \in \mathbb{R}^{2 \times n}$ se zadanými body a nakreslí optimální přímku zeleně, body $\mathbf{a}_1, \dots, \mathbf{a}_n$ jako červené křížky, a n červených úseček kde itá úsečka spojuje bod \mathbf{a}_i s bodem \mathbf{b}_i . Funkci si můžete vyzkoušet na matici \mathbf{A} v souboru line.mat [/wiki/_media/courses/b0b33opt/cviceni/hw/pca1/line.mat] (nahrajete ho příkazem load line). Výstup úkolu: soubor drawfitline.m . Poznámky:

oznaniky.

- Uvědomte si, že místo přímky musíte vlastně nakreslit úsečku (protože přímka je nekonečná a na obrazovku se nevejde) a tedy musíte nějak rozumně zvolit koncové body této úsečky.
- Pro vykreslení použijte příkazy plot , hold on , hold off . Po vykreslení zavolejte příkaz axis equal , aby měřítko obou os bylo stejné.

- Uvnitř funkce neotvírejte ani nezavírejte matlabský obrázek (tj. nevolejte funkce figure ani close).
- Funkci lze napsat do 15 řádků.

3. Komprese a analýza sekvence z motion capture

Při tvorbě počítačových her nebo filmů se používá technologie *motion capture*. Na živého herce se připevní terčíky odrážející infračervené světlo. Terčíky se připevňují na významné body na těle, jako klouby apod. Speciální soustava kamer snímají polohy terčíků a z těch se počítá poloha každého terčíku v třírozměrném prostoru pro každý snímek. Polohy terčíků v prostoru se pak použijí např. pro animaci postav syntetizovaných počítačovou grafikou. Viz např. <u>wikipedie</u> [http://en.wikipedia.org/wiki/Motion_capture].

Pro získání plynulého pohybu je třeba snímat s vysokou frekvencí. Například data použitá v naší úloze byla snímána s vzorkovací frekvencí 120 Hz. Ve výsledku je pak třeba pracovat s velkými objemy dat. Naším úkolem bude snížit objem dat tak, abychom sejmuté body poškodili co nejméně.

Prostorová poloha jednoho terčíku v jednom snímku je dána trojicí souřadnic. V našem případě máme $\ell=41$ terčíků. Poloha všech terčíků v jednom snímku je dána vektorem $\mathbf{a}\in\mathbb{R}^m$ kde $m=3\ell$. Ten si lze představit jako bod v m-rozměrném prostoru. Celkově máme n snímků, tedy vektory $\mathbf{a}_1,\ldots,\mathbf{a}_n\in\mathbb{R}^m$.

Hledáme body, které co nejlépe aproximují původní body a zároveň se dají reprezentovat menším objemem dat. Přesněji, hledáme body $\mathbf{b}_1,\dots,\mathbf{b}_n$, které leží v afinním podprostoru dané dimenze k < m a minimalizují chybu (1).

Úkoly:

- 1. Stáhněte si data [/wiki/_media/courses/b0b33opt/cviceni/hw/pca1/data.zip] (tanec Macarena nastudujte zde [https://www.youtube.com/watch?v=MMRVbhblkjk]). Každý soubor obsahuje jednu matici A, nahrajete ji příkazem A=load('soubor.txt')' (pozor na transpozici). Pro vizualizaci sekvencí použijte příkaz playmotion(conn,A) (vyžaduje funkci playmotion.m [/wiki/_media/courses/b0b33opt/cviceni/hw/pca1/playmotion.m] a soubor connected_points.txt , který nahrajete příkazem conn=load('connected_points.txt')). Toto, i ekvivalent v pythonu je implementováno v templatech.
 Výstup úkolu: nic.
- 2. Aproximujte sekvenci příkazem [U,C,b0]=fitaff(A,k) pro různě zvolená $k\in\{1,\ldots,m\}$, aproximovaná sekvence je pak dána vzorcem $\underline{(3)}$. Obě sekvence zároveň si přehrajte příkazem playmotion(conn,A,B). Pokud máte vše správně, sekvence si budou podobné. Zkoušejte, jak se mění kvalita aproximace pro různá k a různé sekvence. Dumejte, proč se některé sekvence lépe komprimují (stačí menší k) než jiné.

Výstup úkolu: nic.

- 3. Nahrazení sekvence $\mathbf{a}_1,\dots,\mathbf{a}_n$ sekvencí $\mathbf{c}_1,\dots,\mathbf{c}_k$ může mít i jiné výhody než kompresi: protože druhá sekvence 'žije' v prostoru nižší dimenze, dá se např. snadněji zobrazit (vizualizace dat) či rozpoznat z ní typ pohybu herce (pattern recognition). Zkuste si to: pro $k \in \{2,3\}$ si zobrazte trajektorii bodu \mathbf{c}_i v rovině jako funkci času i, kde po sobě jdoucí body spojíte úsečkami (použijte příkaz plot příp. plot3 ; pro k=3 si na matlabském okně s obrázkem zvolte rotaci a točte si 3-D grafem v prostoru). Všimněte si, jak se trajektorie liší pro různé vstupní sekvence (walk1, makarena1, ...). Implementujte funkci plottraj2(C) se vstupem $\mathbf{C} \in \mathbb{R}^{2 \times n}$, která zobrazí tuto trajektorii pro k=2.
 - Výstup úkolu: soubor plottraj2.m.
- 4. Chceme spočítat optimální chybu aproximace $\underline{(1)}$ pro všechny dimenze $k=1,\ldots,m$ afinního podprostoru. Dostaneme tedy čísla d_1,\ldots,d_m , kde d_k je chyba aproximace pro dimenzi k. Implementujte funkci $\mathbf{d}=\mathbf{erraff}(\mathbf{A})$, která pro sekvenci $\mathbf{A}\in\mathbb{R}^{m\times n}$ spočítá tato čísla a uloží je do vektoru $\mathbf{d}\in\mathbb{R}^m$ (funkce nemá nic vypisovat ani vykreslovat). Ve funkci \mathbf{erraff} smíte zavolat matlabskou funkci \mathbf{eig} příp. \mathbf{svd} \mathbf{jen} jednou. V BRUTE je jeden test na matici asi 1000×1000 , funkce musí být dost rychlá, aby to stihla.

Výstup úkolu: soubor erraff.m.

courses/b0b33opt/cviceni/hw/pca1/start.txt · Last modified: 2021/10/28 11:40 by wernetom