Diskretne strukture

Gašper Fijavž

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

1. december 2023

Kaj je graf

Graf je urejen par G = (V, E), kjer je

- ▶ V neprazna končna množica točk (vozlišč) grafa G in
- ightharpoonup E množica *povezav* grafa G, pri čemer je vsaka povezava *par* točk .

Zgled: $V = \{u, v, w, x, y\}$ $E = \{\{u, v\}, \{u, w\}, \{v, w\}, \{v, x\}\}$

Kaj je graf

Pisava: Namesto $e = \{u, v\}$ pišemo krajše e = uv ali e = vu.

V tem primeru pravimo, da sta točki u in v krajišči povezave e, povezava e povezuje točki u in v.

Pravimo tudi, da sta u in v sosednji, kar označimo z $u \sim v$, ker sta krajišči iste povezave.

Oznake: V = V(G) ... množica točk grafa GE = E(G) ... množica povezav grafa G

Stopnje točk

Stopnja točke $v \in V(G)$ je število povezav, ki imajo v za krajišče. Stopnjo točke v označimo z deg(v).

Točka stopnje 0 je *izolirana točka*, točki stopnje 1 pravimo tudi *list* grafa.

Graf *G* je *regularen*, če imajo vse njegove točke isto stopnjo. Graf *G* je *d-regularen*, če so vse točke grafa *G* stopnje *d*. 3-regularnim grafom pravimo tudi *kubični grafi*.

Stopnje točk

Izrek (Lema o rokovanju)

Naj bo G graf z n točkami in m povezavami. Potem je

$$\sum_{i=1}^n \deg(v_i) = 2 \cdot m$$

Posledica

V vsakem grafu je sodo mnogo točk lihe stopnje.

Posledica

Naj bo G d-regularen graf z n točkami in m povezavami. Potem je

$$n \cdot d = 2 \cdot m$$

Grafično zaporedje

Končno zaporedje naravnih števil

$$d_1 \geq d_2 \geq d_3 \geq \ldots \geq d_n$$

je *grafično*, če obstaja graf G z n točkami, ki imajo stopnje enake d_1, d_2, \ldots, d_n .

Naloga: Ali je zaporedje 5, 4, 3, 2, 2, 1 grafično?

Grafično zaporedje

Naloga: Ali je zaporedje 6, 4, 4, 3, 2, 2, 1 grafično?

Grafično zaporedje

Izrek

Zaporedje $d_1 \geq d_2 \geq d_3 \geq \ldots \geq d_n$ je grafično natanko tedaj, ko je tudi zaporedje

$$d_2-1, d_3-1, \ldots, d_{d_1+1}-1, d_{d_1+2}, \ldots, d_n$$

grafično.

Posledica

Zaporedje $d_1 \geq d_2 \geq d_3 \geq \ldots \geq d_n$ je grafično natanko tedaj, ko požrešna metoda uspe.

Izomorfizem grafov

Grafa G_1 in G_2 sta *izomorfna*, če obstaja preslikava $f:V(G_1)\to V(G_2)$, za katero velja:

- 1. f je bijektivna in
- 2. $u \sim_{G_1} v \Leftrightarrow f(u) \sim_{G_2} f(v)$.

V tem primeru pravimo, da je f izomorfizem grafov G_1 in G_2 , ter pišemo $G_1 \cong G_2$. V nasprotnem primeru (če izomorfizem ne obstaja) pravimo, da sta grafa neizomorfna.

Trditev

Izomorfizem ohranja število vozlišč, število povezav, stopnje vozlišč, število trikotnikov, . . .

Polni grafi

Graf je poln, če sta vsaki njegovi točki sosedi. Poln graf na n točkah označimo s K_n .

$$\begin{array}{ll} V(K_n) = \{v_1, v_2, \dots, v_n\} & |V(K_n)| = n \\ E(K_n) = \{v_i v_j \; ; \; 1 \leq i < j \leq n\} & |E(K_n)| = \frac{n(n-1)}{2} \\ \deg(v_1) = n-1 & K_n \; \text{je} \; (n-1) \text{-regularen graf.} \end{array}$$

Prazni grafi

Graf je *prazen*, če nobeni njegovi točki nista sosedi. Prazen graf na n točkah označimo s $\overline{K_n}$.

$$egin{aligned} V(\overline{K_n}) &= \{v_1, v_2, \dots, v_n\} \ E(\overline{K_n}) &= \emptyset \ \deg(v_1) &= 0 \end{aligned} \qquad \begin{aligned} &|V(\overline{K_n})| &= n \ |E(\overline{K_n})| &= 0 \ \deg(v_1) &= 0 \end{aligned}$$

$$\overline{K_1} = K_1$$

Polni dvodelni grafi

 $K_{m,n}$ je *polni dvodelni graf* na n+m točkah. Vsebuje dva *barvna razreda* s po n in m točkami, točki sta sosedi natanko tedaj, ko sta v različnih barvnih razredih.

$$\begin{array}{ll} V(K_{m,n}) = \{v_1, v_2, \dots, v_m, u_1, u_2, \dots, u_n\} & |V(K_{m,n})| = m+n \\ E(K_{m,n}) = \{v_i u_j \; ; \; 1 \leq i \leq m \; \text{in} \; 1 \leq j \leq n\} & |E(K_{m,n})| = m \cdot n \\ \deg(v_1) = n \; , \; \deg(u_1) = m & K_{n,n} \; \text{je} \; \textit{n}\text{-regularen}. \end{array}$$

$$K_{1,1}=K_2$$

Cikli

Cikel na $n \geq 3$ točkah označimo s C_n .

$$\begin{array}{ll} V(C_n) = \{v_1, v_2, \dots, v_n\} & |V(C_n)| = n \\ E(C_n) = \{v_1 v_2, v_2 v_3, \dots, v_{n-1} v_n, v_n v_1\} & |E(C_n)| = n \\ \deg(v_1) = 2 & C_n \text{ je 2-regularen graf.} \end{array}$$

$$C_3 = K_3, C_4 = K_{2,2}$$

Poti

Pot na n točkah označimo s P_n .

$$V(P_n) = \{v_1, v_2, \dots, v_n\}$$
 $|V(P_n)| = n$
 $E(P_n) = \{v_1v_2, v_2v_3, \dots, v_{n-1}v_n\}$ $|E(P_n)| = n-1$
 $\deg(v_1) = 1, \deg(v_2) = 2$ če $n \ge 3$.

$$P_1 = K_1 = \overline{K_1}, P_2 = K_2 = K_{1,1}, P_3 = K_{2,1}$$

Hiperkocke

Točke d-razsežne hiperkocke Q_d so zaporedja ničel in enic dolžine d. Dve takšni točki-zaporedji sta sosedi, če se razlikujeta v natanko enem členu.

$$|V(Q_d)| = 2^d$$

 $|E(Q_d)| = d \cdot 2^{d-1}$
 Q_d je d -regularen graf.

$$Q_0 = K_1, Q_1 = K_2, Q_2 = C_4$$

Podgrafi

Naj bosta H in G grafa.

Pravimo, da je H podgraf grafa G, $H \subseteq G$, če je $V(H) \subseteq V(G)$ in $E(H) \subseteq E(G)$.

Podgrafi

Podgraf H grafa G je *vpet podgraf*, če je V(H) = V(G).

Podgraf H grafa G je induciran podgraf, če za vsako povezavo $e = uv \in E(G)$ velja: če sta u in v vozlišči grafa H, potem je tudi e povezava v grafu H.

Zgledi podgrafov

Podgrafi

Naj bo G graf in $U \subseteq V(G)$ ter $F \subseteq E(G)$.

 $\mathsf{Z}\ \mathsf{G}[U]$ označimo inducirani podgraf z množico vozlišč U.

Z G[F] označimo vpet podgraf z množico povezav F.

Definicija sprehoda

Sprehod S v grafu G = (V, E) je zaporedje vozlišč

$$u_0 u_1 u_2 \dots u_{n-1} u_n$$
,

pri čemer sta zaporedni vozlišči sprehoda u_i in u_{i+1} sosedi v grafu G $(i=0,\ldots,n-1)$.

Dolžina sprehoda $S = u_0 u_1 \dots u_n$ je enaka n, |S| = n.

Vozlišče u_0 imenujemo *začetek*, vozlišče u_n pa *konec* sprehoda. u-v *sprehod* je sprehod z začetkom v u in koncem v v.

Sprehod $S = u_0 \dots u_n$ je *pot*, če $u_i \neq u_j$ za vse $0 \leq i < j \leq n$.

Sprehod $S = u_0 \dots u_n$ je *obhod*, če je $u_0 = u_n$.

Sprehod $S = u_0 \dots u_n$ je *cikel*, če je $u_0 = u_n$, sicer pa so točke med sabo različne in je $n \ge 3$.

Sprehod ali pot

Lema

 \check{C} e v grafu G=(V,E) obstaja u-v sprehod S, potem v G obstaja tudi u-v pot.

Posledica (dokaza zgornje leme)

Najkrajši u – v sprehod v grafu je pot.

Operacije s sprehodi

Stik ali *konkatenacija* sprehodov $S_1 = u_0 u_1 \dots u_k$ in $S_2 = u_k u_{k+1} \dots u_m$ je sprehod

$$S_1S_2=u_0u_1\ldots u_ku_{k+1}\ldots u_m.$$

Velja tudi $|S_1S_2| = |S_1| + |S_2|$.

Obratni sprehod sprehoda $S = u_0 u_1 \dots u_k$ je sprehod

$$S^R = u_k \dots u_1 u_0.$$

Odsek sprehoda $S=u_0u_1\ldots u_k$ od u_i do u_j , kjer je $i\leq j$, je sprehod

$$S_{u_i-u_i}=u_iu_{i+1}\ldots u_j.$$

Povezanost grafov

Graf G je povezan, če za vsaki dve vozlišči $u,v\in V(G)$ v grafu G obstaja u-v sprehod .

Povezane komponente

V množici točk grafa G definirajmo relacijo P z naslednjim predpisom:

 $uPv \iff v G \text{ obstaja } u-v \text{ sprehod.}$

Razdalja v povezanem grafu

Naj bo G povezan graf. Razdalja med točkama u in v v grafu G, dist(u, v), je dolžina najkrajše u - v poti (sprehoda) v G.

Trditev

Razdalja dist v povezanem grafu ustreza trikotniški neenakosti, za poljubne tri točke u, v, w grafa G velja

$$dist(u, w) \leq dist(u, v) + dist(v, w)$$

Dvodelni grafi

Graf G je *dvodelen*, če lahko točke grafa G pobarvamo z dvema barvama takó, da ima vsaka povezava krajišči različnih barv.

Izrek

Graf G je dvodelen natanko tedaj, ko G ne vsebuje ciklov lihe dolžine.

Eulerjev problem

▶ Ali obstaja obhod po mestu, ki bi prehodil vse mostove in sicer vsakega natanko enkrat?

Eulerjevi grafi

Sprehod v grafu G je enostaven, če vsako povezavo uporabi največ enkrat.

Problem: Ali v grafu *G* obstaja enostaven obhod, ki vsebuje vse povezave in vse točke?

Enostaven obhod v grafu G, ki vsebuje vse povezave in vse točke imenujemo *Eulerjev* obhod.

Graf G je ${\it Eulerjev}$, če ima kak Eulerjev obhod.

Eulerjevi grafi

Zgled:

► Eulerjev obhod:

Eulerjev izrek

Izrek (Euler)

Graf G je Eulerjev natanko tedaj, ko je G povezan in so vse njegove točke sodih stopenj.

Posledica

Graf je Eulerjev natanko tedaj, ko ga lahko narišemo z eno samo potezo, ki je povrh vsega še sklenjena.

Drevesa in gozdovi

Drevo je povezan graf brez ciklov. Gozd je graf brez ciklov.

Trditev

G je gozd \iff povezane komponente G so drevesa. G je drevo \iff G je povezan gozd.

Zgledi

Grafi P_n in $K_{1,n}$ so drevesa.

Prerezne točke in povezave

 $v \in V(G)$ je *prerezna točka* grafa G, če ima G-v strogo več povezanih komponent kot G.

 $e \in E(G)$ je *prerezna povezava* grafa G, če ima G-e strogo več povezanih komponent kot G.

Trditev

 $e \in E(G)$ je prerezna povezava natanko tedaj, ko e ne leži na nobenem ciklu v grafu G.

Zgledi

Lastnosti dreves

Naj bo T drevo z n točkami in m povezavami.

- 1. T je povezan graf.
- 2. T je brez ciklov.
- 3. m = n 1.
- 4. Vsaka povezava v T je prerezna.
- 5. Za poljubni točki $u, v \in V(T)$ obstaja natančno ena u v pot v T.
- 6. Če drevesu *T* dodamo katerokoli novo povezavo, vsebuje dobljeni graf natanko en cikel.

Vpeto drevo

Naj bo G graf in $H \subseteq G$. H je *vpeto drevo* v G, če je

- ▶ H vpet podgraf v G in
- ► *H* drevo.

Lastnosti

Izrek

G je povezan \iff G ima vsaj eno vpeto drevo.

Trditev

Če je T drevo in $|V(T)| \ge 2$, potem ima T vsaj dva lista.

Posledica

Če je G povezan in $|V(G)| \ge 2$, potem vsebuje G vsaj dve točki, ki nista prerezni.

Hamiltonovi grafi

Cikel v grafu G je Hamiltonov, če vsebuje vse točke grafa G.

Graf G je Hamiltonov, če vsebuje kak Hamiltonov cikel.

Zgledi

Zgledi

Kakšna je zveza med Hamiltonovimi in Eulerjevimi grafi?

Kako prepoznati Hamiltonove grafe

Hamiltonov problem je mnogo težji kot Eulerjev.

Ne obstaja enostavna karakterizacija Hamiltonovih grafov.

Spoznali bomo en *zadosten pogoj*, da je graf Hamiltonov in en *potreben pogoj*, da je graf Hamiltonov.

Potrebni pogoj z razpadom grafa

Izrek

Naj bo G povezan graf. Denimo, da obstaja takšna podmnožica točk grafa $S\subseteq V(G)$ moči |S|=k, za katero velja, da ima

$$G - S$$

vsaj k + 1 povezanih komponent. Potem G ni Hamiltonov.

Komentar: Pogoj, da v grafu takšna množica S ne obstaja, je potreben. To pomeni, da vsak Hamiltonov graf zadošča temu pogoju. Toda če graf pogoju zadošča, to še ne pomeni, da je Hamiltonov.

Razpad v dvodelnih grafih

Potrebni pogoj z razpadom grafa ima v družini dvodelnih grafov naslednjo posledico.

Posledica

Naj bo G dvodelen graf z barvnima razredoma V_1 in V_2 . $(V(G) = V_1 \cup V_2, \ V_1$ je množica 'belih', V_2 množica 'črnih' točk.) Če je $|V_1| \neq |V_2|$, potem G ni Hamiltonov.

Diracov zadostni pogoj

Izrek (Dirac)

Naj bo G graf z vsaj tremi točkami ($|V(G)| = n \ge 3$). Če za vsako točko

$$v \in V(G) \ \textit{velja} \ \deg(v) \geq \frac{n}{2},$$

potem je graf G Hamiltonov.

Komentar: Pogoj je zadosten. To pomeni, da je vsak graf, ki izpolni omenjeni pogoj tudi Hamiltonov. Ni pa res, da bi vsak Hamiltonov graf izpolnil zgornji pogoj.

Grötzschev graf

Ali je Hamiltonov?

Petersenov graf

Ali je Hamiltonov?

Barvanje grafov

k-barvanje točk grafa G je preslikava

$$c: V(G) \to \{1, 2, 3, \ldots, k\},\$$

za katero velja, da je $c(u) \neq c(v)$ za vsako povezavo $uv \in E(G)$.

To pomeni, da morata biti krajišči vsake povezave različnih barv.

Najmanjše naravno število k, za katerega obstaja k-barvanje točk grafa G, imenujemo kromatično število grafa G in ga označimo s $\chi(G)$.

Zgledi

- 1. $\chi(G) \leq |V(G)|$
- 2. $\chi(G) \leq 2 \iff G$ dvodelen
- 3. $\chi(K_n) = n$, $\chi(\overline{K_n}) = 1$
- 4. $\chi(K_{m,n}) = 2$
- 5. $\chi(T)=2$, če je T drevo in ima vsaj dve točki, $\chi(P_n)=$
- 6. $\chi(C_n) = \begin{cases} 2, & n \text{ sod,} \\ 3, & n \text{ lih.} \end{cases}$
- 7. $\chi(Q_d)=2$, če $d\geq 1$.

Velikost največje klike

 $Z \omega(G)$ označimo velikost največjega polnega podgrafa v G.

Velja $\omega(G) \leq 2$ natanko tedaj, ko je G brez trikotnikov.

 $\Delta(G)$ označuje *največjo stopnjo* točke v grafu G,

z $\delta(G)$ pa označimo *najmanjšo stopnjo* točke grafa G.

Barvanje točk grafa

Izrek

$$\omega(G) \leq \chi(G) \leq \Delta(G) + 1$$

Velja celo boljši rezultat.

Izrek (Brooks)

Naj bo G povezan graf. Če G ni niti lih cikel niti poln graf, potem je $\chi(G) \leq \Delta(G)$

Zgled uporabe

Problem: Skladiščimo nevarne kemikalije $K_1, K_2, K_3, \ldots, K_n$.

Predpisi določajo, da določenih nevarnih snov ne smemo skladiščiti skupaj. Poišči najmanjše potrebno število skladiščnih prostorov.

Petersenov graf

Kolikšno je njegovo kromatično število?

Grötzschev graf

Kolikšno je njegovo kromatično število?