Chapitre 8

Produit scalaire

I. Produit scalaire

1) Norme d'un vecteur

Définition:

Soit \vec{u} un vecteur du plan, et soit A et B deux points du plan tels que $\vec{u} = \overline{AB}$. La norme du vecteur \vec{u} , notée $||\vec{u}||$, est la longueur du segment [AB]; on a : $||\vec{u}|| = ||\overline{AB}|| = AB$.

Remarque:

Dans un repère orthonormé, si \vec{u} a pour coordonnées $\begin{pmatrix} x \\ y \end{pmatrix}$, alors : $\|\vec{u}\| = \sqrt{x^2 + y^2}$.

Propriétés:

Soit \vec{u} et \vec{v} deux vecteurs du plan.

- Pour tout nombre réel \vec{k} , on a $||k\vec{u}|| = |k| \times ||\vec{u}||$ (notamment, $||-\vec{u}|| = ||\vec{u}||$).
- $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$ (inégalité triangulaire).
- $\|\vec{u}\| = 0 \Leftrightarrow \vec{u} = \vec{0}$.

2) Produit scalaire de deux vecteurs

Définition:

Soit \vec{u} et \vec{v} deux vecteurs du plan.

On appelle **produit scalaire** de \vec{u} et de \vec{v} , noté $\vec{u} \cdot \vec{v}$, le nombre réel défini par :

$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$$

Remarques:

- Le produit scalaire de deux vecteurs est un nombre
- Soit A, B, C trois points du plan tels que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$, on a :

$$\vec{u} \cdot \vec{v} = \overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} (AB^2 + AC^2 - BC^2)$$

Théorème: expression dans un repère orthonormé

Le plan est muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$.

Soit
$$\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs du plan. On a alors :

$$\vec{u} \cdot \vec{v} = xx' + yy'$$
.

1

Cette forme est l'expression analytique du produit scalaire.

Démonstration:

Dans le plan muni d'un repère orthonormé.

$$\|\vec{u}\|^2 = x^2 + y^2$$
, $\|\vec{v}\|^2 = x'^2 + y'^2$ et $\|\vec{u} - \vec{v}\|^2 = (x - x')^2 + (y - y')^2$.

$$\operatorname{Ainsi} \ \vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2) = \frac{1}{2} [(x^2 + y^2) + (x'^2 + y'^2) - ((x - x')^2 + (y - y')^2)] \ .$$

En développant le membre de droite, il vient :

$$\vec{u} \cdot \vec{v} = \frac{1}{2} (x^2 + y^2 + x'^2 + y'^2 - x^2 + 2xx' - x'^2 - y^2 + 2yy' - y'^2) = \frac{1}{2} (2xx' + 2yy') = xx' + yy'$$

Propriété:

Pour tout vecteur \vec{u} du plan, on a $\vec{u} \cdot \vec{u} = ||\vec{u}||^2$.

Démonstration :

$$\vec{u} \cdot \vec{u} = \frac{1}{2} (\left\| \vec{u} \right\|^2 + \left\| \vec{u} \right\|^2 - \left\| \vec{u} - \vec{u} \right\|^2) = \frac{1}{2} (2 \left\| \vec{u} \right\|^2 - \left\| \vec{0} \right\|^2) = \frac{1}{2} (2 \left\| \vec{u} \right\|^2) = \left\| \vec{u} \right\|^2.$$

Définition:

Le produit scalaire du vecteur \vec{u} par lui-même, noté \vec{u}^2 , est appelé carré scalaire de \vec{u} .

II. Propriétés du produit scalaire

1) Symétrie et bilinéarité

Propriétés:

- Le produit scalaire de deux vecteurs est **symétrique** : pour tous vecteurs \vec{u} et \vec{v} , on a $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$.
- Le produit scalaire de deux vecteurs est **bilinéaire**, c'est-à-dire que : pour tous vecteurs \vec{u} , \vec{v} et \vec{w} et pour tout réel λ , on a : $(\lambda \vec{u}) \cdot \vec{v} = \lambda \times (\vec{u} \cdot \vec{v}) \qquad \text{et} \qquad \vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$

Démonstration:

On munit le plan d'un repère orthonormé.

Soit
$$\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
, $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ et $\vec{w} \begin{pmatrix} x'' \\ y'' \end{pmatrix}$ trois vecteurs du plan et λ un nombre réel.

On utilise l'expression analytique du produit scalaire et les propriétés de la multiplication des nombres réels (commutativité et distributivité).

• Symétrie :

$$\vec{u} \cdot \vec{v} = xx' + yy' = x'x + y'y = \vec{v} \cdot \vec{u}$$

• Bilinéarité :

$$(\lambda \vec{u}) \cdot \vec{v} = (\lambda x) x' + (\lambda y) y' = \lambda xx' + \lambda yy' = \lambda \times (xx' + yy') = \lambda \times (\vec{u} \cdot \vec{v})$$

$$\vec{u} \cdot (\vec{v} + \vec{w}) = x(x' + x'') + y(y' + y'') = xx' + xx'' + yy' + yy'' = (xx' + yy') + (xx'' + yy'') = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$

Exemples:

- $5\vec{u} \cdot (3\vec{v} 2\vec{w}) = 5\vec{u} \cdot (3\vec{v}) 5\vec{u} \cdot (2\vec{w}) = 15\vec{u} \cdot \vec{v} 10\vec{u} \cdot \vec{w}$.
- $\overrightarrow{AB} \cdot \overrightarrow{AC} = -\overrightarrow{BA} \cdot \overrightarrow{AC} = \overrightarrow{BA} \cdot (-\overrightarrow{AC}) = \overrightarrow{BA} \cdot \overrightarrow{CA}$.

Soit ABCD un rectangle avec AB=a et AD=b. En utilisant la relation de Chasles, on peut décomposer les vecteurs et développer grâce aux propriétés du produit scalaire :

vecteurs et développer grâce aux propriétés du produit scalaire
$$\overrightarrow{AC} \cdot \overrightarrow{DB} = (\overrightarrow{AB} + \overrightarrow{BC}) \cdot (\overrightarrow{DA} + \overrightarrow{AB}) = \overrightarrow{AB} \cdot \overrightarrow{DA} + \overrightarrow{AB} \cdot \overrightarrow{AB} + \overrightarrow{BC} \cdot \overrightarrow{DA} + \overrightarrow{BC} \cdot \overrightarrow{AB}$$

 $\overrightarrow{AC} \cdot \overrightarrow{DB} = \overrightarrow{0} + \overrightarrow{AB} \times \overrightarrow{AB} - \overrightarrow{BC} \times \overrightarrow{DA} + \overrightarrow{0} = a^2 - b^2$

Égalités remarquables :

Pour tous vecteurs \vec{u} , \vec{v} du plan, on a :

•
$$(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2$$
 soit $||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2 + 2\vec{u} \cdot \vec{v}$

•
$$(\vec{u} - \vec{v})^2 = \vec{u}^2 - 2\vec{u} \cdot \vec{v} + \vec{v}^2$$
 soit $||\vec{u} - \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2 - 2\vec{u} \cdot \vec{v}$

•
$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u}^2 - \vec{v}^2$$
 soit $(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = ||\vec{u}||^2 - ||\vec{v}||^2$

Démonstration:

On utilise les propriétés de symétrie et de bilinéarité du produit scalaire :

$$(\vec{u} + \vec{v})^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \vec{u} \cdot \vec{u} + \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{u} + \vec{v} \cdot \vec{v} = \vec{u}^2 + \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{u} + \vec{v}^2 = \vec{u}^2 + 2 \vec{u} \cdot \vec{v} + \vec{v}^2$$

Remarques:

- La première égalité nous donne une nouvelle expression du produit scalaire en fonction des $\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2)$
- La deuxième égalité correspond à l'expression donnant la définition du produit scalaire.

2) Produit scalaire et orthogonalité

Définition:

Soit \vec{u} et \vec{v} deux vecteurs non nuls du plan, et soit A, B, C et D quatre points tels que $\vec{u} = \overrightarrow{AB}$ et

Les vecteurs \vec{u} et \vec{v} sont **orthogonaux** lorsque les droites (AB) et (CD) sont perpendiculaires.

Théorème :

Soit \vec{u} et \vec{v} deux vecteurs non nuls du plan.

Les vecteurs \vec{u} et \vec{v} sont orthogonaux si, et seulement si, leur produit scalaire est nul.

On écrit
$$\vec{u} \perp \vec{v} \iff \vec{u} \cdot \vec{v} = 0$$

Démonstration:

Soit A, B et C trois points du plan distincts deux à deux tels que $\vec{u} = \vec{A}\vec{B}$ et $\vec{v} = \vec{A}\vec{C}$.

On a
$$\vec{u} \cdot \vec{v} = 0 \Leftrightarrow \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2) = 0 \Leftrightarrow \|\vec{u}\|^2 + \|\vec{v}\|^2 = \|\vec{u} - \vec{v}\|^2$$
.

Or
$$\|\vec{u}\|^2 = \|\overrightarrow{AB}\|^2 = AB^2$$
, $\|\vec{v}\|^2 = \|\overrightarrow{AC}\|^2 = AC^2$ et $\|\vec{u} - \vec{v}\|^2 = \|\overrightarrow{AB} - \overrightarrow{AC}\|^2 = \|\overrightarrow{CB}\|^2 = BC^2$
Ainsi $\vec{u} \cdot \vec{v} = 0 \Leftrightarrow AB^2 + AC^2 = BC^2 \Leftrightarrow ABC$ est rectangle en A (théorème de Pythagore).

On conclut $\vec{u} \cdot \vec{v} = 0 \iff \vec{u}$ et \vec{v} sont orthogonaux.

Remarques:

- Par convention, le vecteur nul est orthogonal à tout vecteur du plan.
- Le théorème nous donne une condition nécessaire et suffisante d'orthogonalité de deux droites : les droites (AB) et (CD) sont orthogonales si, et seulement si, $\overline{AB} \cdot \overline{CD} = 0$.
- Soit \vec{u} , \vec{v} et \vec{w} trois vecteurs tels que $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$. Il ne faut pas en conclure que les vecteurs \vec{v} et \vec{w} sont égaux. En effet, $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w} \iff \vec{u} \cdot \vec{v} - \vec{u} \cdot \vec{w} = 0 \iff \vec{u} \cdot (\vec{v} - \vec{w}) = 0$ Donc les vecteurs \vec{u} et $\vec{v} - \vec{w}$ sont orthogonaux

Propriété:

Le plan est muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$.

Les vecteurs $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ sont orthogonaux si, et seulement si :

$$xx' + yy' = 0$$

Exemple:

Dans la base orthonormée (\vec{i},\vec{j}) , on peut montrer que les vecteurs $\vec{u} \begin{pmatrix} 3-\sqrt{5} \\ 2 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 3+\sqrt{5} \\ -2 \end{pmatrix}$ sont orthogonaux. En effet : $\vec{u} \cdot \vec{v} = (3-\sqrt{5})(3+\sqrt{5})+2\times(-2)=3^2-(\sqrt{5})^2-4=9-5-4=0$,

III. Applications en géométrie analytique

Dans toute cette partie, le plan est muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$.

1) <u>Équation d'une droite de vecteur normal</u> n

Définition:

Soit (d) une droite de vecteur directeur \vec{u} .

Un vecteur normal à la droite (d) est un vecteur non nul orthogonal au vecteur \vec{u} .

Soit (d) une droite de vecteur normal $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$ et $A(x_0; y_0)$ un point de (d).

Un point M(x;y) du plan appartient à la droite (d) si, et seulement si, les vecteurs \overrightarrow{AM} et \overrightarrow{n} sont orthogonaux, autrement dit si, et seulement si, $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$.

Or les coordonnées du vecteur \overrightarrow{AM} sont $\begin{pmatrix} x-x_0 \\ y-y_0 \end{pmatrix}$; le produit scalaire $\overrightarrow{AM} \cdot \overrightarrow{n}$ vaut donc $a(x-x_0) + b(y-y_0)$.

On en déduit le théorème suivant :

Théorème:

Soit a et b deux nombres réels non nuls tous les deux $((a;b)\neq(0;0))$.

La droite (d) admet le vecteur $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$ pour vecteur normal si, et seulement si, elle admet une équation cartésienne de la forme ax + by + c = 0, où $c \in \mathbb{R}$.

Remarques:

- Une droite peut donc être complètement définie par la donnée d'un point et d'un vecteur normal.
- Dans un repère orthonormé du plan $(O; \vec{i}, \vec{j})$, une droite (d) d'équation cartésienne ax + by + c = 0 admet pour vecteur directeur $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ et pour vecteur normal $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$. De plus, \vec{u} et \vec{n} ont la même norme

Exemple:

Soit (d) la droite d'équation -2x+5y-18=0.

Un vecteur normal à (d) est $\vec{n} \begin{pmatrix} -2 \\ 5 \end{pmatrix}$ et un vecteur directeur de (d) est $\vec{u} \begin{pmatrix} -5 \\ -2 \end{pmatrix}$.

2) Équation d'un cercle

Propriété:

Soit \mathscr{C} un cercle de centre $\Omega(x_0; y_0)$ et de rayon R.

Un point M(x; y) appartient au cercle \mathscr{C} si, et seulement si : $(x-x_0)^2 + (y-y_0)^2 = R^2$.

Cette équation est une équation cartésienne du cercle \mathscr{C} .

Démonstration :

$$M \in \mathcal{C} \Leftrightarrow \Omega M = R \Leftrightarrow \Omega M^2 = R^2$$
.

Or dans $(O; \vec{i}, \vec{j})$, on a $\Omega M^2 = (x - x_0)^2 + (y - y_0)^2$.

5

Propriété:

Soit \mathscr{C} un cercle de diamètre [AB].

Un point M appartient au cercle \mathscr{C} si, et seulement si, $\overrightarrow{M}A \cdot \overrightarrow{M}B = 0$.

Démonstration:

• Si *M* est distinct de *A* et *B* :

 $\overline{MA} \cdot \overline{MB} = 0 \Leftrightarrow \text{les droites } (MA) \text{ et } (MB) \text{ sont orthogonales}$

 \Leftrightarrow le triangle AMB est rectangle en M

 $\Leftrightarrow M$ appartient au cercle de diamètre [AB].

• Si M = A ou M = B, alors le point M appartient évidemment au cercle de diamètre [AB], et le produit scalaire $\overline{M}A \cdot \overline{M}B$ est nul (car $\overline{M}A = \vec{0}$ ou $\overline{M}B = \vec{0}$).

Exemples:

Dans un repère orthonormé $(O; \vec{i}, \vec{j})$, l'équation du cercle \mathscr{C} de centre $\Omega(-2; 3)$ passant par le point A(2;1) est :

$$(x+2)^2 + (y-3)^2 = 20$$

car
$$\Omega A^2 = (2-(-2))^2 + (1-3)^2 = 4^2 + (-2)^2 = 16 + 4 = 20$$
.

Soit l'ensemble des points M(x; y) vérifiant $x^2 + y^2 + 6x - 2y + 8 = 0$.

$$x^{2}+y^{2}+6x-2y+8=0 \Leftrightarrow [x^{2}+6x]+[y^{2}+2y]+8=0$$

 $\Leftrightarrow [(x+3)^{2}-9]+[(y-1)^{2}-1]+8=0 \Leftrightarrow (x+3)^{2}+(y-1)^{2}=2$

On reconnaît l'équation du cercle \mathscr{C} de centre $\Omega(-3;1)$ et de rayon $\sqrt{2}$.

IV. Autres expressions du produit scalaire

Formule du cosinus 1)

Théorème:

Soit \vec{u} et \vec{v} deux vecteurs non nuls, et θ une mesure de l'angle de vecteurs $(\vec{u}; \vec{v})$. Alors $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos \theta$.

Démonstration:

Soit O un point du plan.

On pose
$$\vec{i} = \frac{1}{\|\vec{u}\|} \times \vec{u}$$
 et \vec{j} le vecteur tel que $(\vec{i}; \vec{j}) \equiv \frac{\pi}{2} [2\pi]$ et $\|\vec{j}\| = 1$.

Le repère $(O; \vec{i}, \vec{j})$ est un repère orthonormé, dans lequel on a:

$$\vec{u} \begin{pmatrix} \|\vec{u}\| \\ 0 \end{pmatrix} \text{ et } \vec{v} \begin{pmatrix} \|\vec{v}\| \cos \theta \\ \|\vec{v}\| \sin \theta \end{pmatrix}$$

On a donc $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \cos \theta + 0 \times ||\vec{v}|| \sin \theta$.

Notation:
$$(\vec{i};\vec{j}) = \frac{\pi}{2} + 2k\pi \text{ (pour } k \in \mathbb{Z}) \text{ est équivalent à } (\vec{i};\vec{j}) \equiv \frac{\pi}{2} [2\pi] \text{ qui se lit : } (\vec{i};\vec{j}) \text{ mesure } \frac{\pi}{2} \text{ modulo } 2\pi \text{ »}$$

Remarques:

Cette formule peut-être très utile pour calculer une mesure de l'angle de vecteurs $(\vec{u}; \vec{v})$:

$$\cos\theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \times \|\vec{v}\|}$$

Pour tout réel x, on a $\cos(-x) = \cos(x)$. On peut donc utiliser des angles géométriques.

Propriétés:

- Si \vec{u} et \vec{v} sont colinéaires et de même sens, alors $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}||$.
- Si \vec{u} et \vec{v} sont colinéaires et de sens contraire, alors $\vec{u} \cdot \vec{v} = -\|\vec{u}\| \times \|\vec{v}\|$.

Démonstration:

Si \vec{u} et \vec{v} sont de même sens, alors $\theta \equiv 0[2\pi]$, donc $\cos \theta = 1$.

Si \vec{u} et \vec{v} sont de sens contraire, alors $\theta \equiv \pi [2\pi]$, donc $\cos \theta = -1$.

Exemple:

Soit *ABC* un triangle équilatéral de côté *a*.

On a:

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(60^\circ) = AB \times AC \times \frac{1}{2} = \frac{a^2}{2}$$

2) Formule des projetés orthogonaux

Définition:

Le **projeté orthogonal** d'un point M sur une droite (d) est le point d'intersection de la droite (d) et de la droite perpendiculaire à (d) passant par le point M.

H est le projeté orthogonal de M sur (d)

Théorème:

Soit A, B, C et D quatre points du plan (avec A et B distincts); soit H et K les projetés orthogonaux respectifs de C et D sur la droite (AB). Alors:

$$\overrightarrow{AB} \cdot \overrightarrow{CD} = \overrightarrow{AB} \cdot \overrightarrow{HK} = \begin{cases} AB \times HK \text{ si } \overrightarrow{AB} \text{ et } \overrightarrow{HK} \text{ sont de même sens} \\ -AB \times HK \text{ si } \overrightarrow{AB} \text{ et } \overrightarrow{HK} \text{ sont de sens contraire} \end{cases}$$

Démonstration:

On a:

$$\overrightarrow{AB} \cdot \overrightarrow{CD} = \overrightarrow{AB} \cdot (\overrightarrow{CH} + \overrightarrow{HK} + \overrightarrow{KD}) = \overrightarrow{AB} \cdot \overrightarrow{CH} + \overrightarrow{AB} \cdot \overrightarrow{HK} + \overrightarrow{AB} \cdot \overrightarrow{KD}$$

Or les droites (AB) et (HC) sont, par définition, orthogonales ; il en est donc de même pour les vecteurs \overline{AB} et \overline{HC} , dont le produit scalaire est nul.

De la même manière, on a $\overline{AB} \cdot \overline{KD} = 0$.

Par conséquent, on a $\vec{u} \cdot \vec{v} = \vec{AB} \cdot \vec{HK}$.

Or les vecteurs \overline{AB} et \overline{HK} sont colinéaires ; on peut donc conclure en utilisant la propriété précédente.

Exemple:

Soit *ABCD* un carré de côté *a*.

On a alors:

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AB} = a^2$$

Car le point C se projette orthogonalement en B sur (AB)

Remarques:

- L'expression donnée dans le théorème est une « définition équivalente » du produit scalaire.
- La formule du cosinus est une « définition équivalente » du produit scalaire, pour des vecteurs non nuls.

V. Applications au triangle et en trigonométrie

1) Relations dans le triangle

Formule de la médiane

Formules de la médiane :

Soit A et B deux points du plan, et I le milieu du segment [AB]

Pour tout point M du plan :

•
$$MA^2 + MB^2 = 2MI^2 + \frac{AB^2}{2}$$

•
$$MA^2 - MB^2 = 2 \overrightarrow{IM} \cdot \overrightarrow{AB}$$

$$\bullet \quad \overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 - \frac{AB^2}{4}$$

Démonstration:

Pour tout point M du plan, on a $MA^2 + MB^2 = \overrightarrow{MA}^2 + \overrightarrow{MB}^2 = (\overrightarrow{MI} + \overrightarrow{IA})^2 + (\overrightarrow{MI} + \overrightarrow{IB})^2$. Ainsi, $MA^2 + MB^2 = \overrightarrow{MI}^2 + 2 \overrightarrow{MI} \cdot \overrightarrow{IA} + \overrightarrow{IA}^2 + \overrightarrow{MI}^2 + 2 \overrightarrow{MI} \cdot \overrightarrow{IB} + \overrightarrow{IB}^2$

qui s'écrit encore :

$$MA^2 + MB^2 = 2MI^2 + 2\overline{MI} \cdot \overline{IA} + 2\overline{MI} \cdot \overline{IB} + \overline{IA}^2 + \overline{IB}^2 = 2MI^2 + 2\overline{MI} \cdot (\overline{IA} + \overline{IB}) + \overline{IA}^2 + \overline{IB}^2$$

Or I est le milieu de [AB]; on a donc $\overline{IA} + \overline{IB} = \overline{0}$ et $IA^2 = IB^2 = \left(\frac{1}{2}AB\right)^2 = \frac{AB^2}{4}$.

On a donc $MA^2 + MB^2 = 2MI^2 + 2\overline{MI} \cdot \vec{0} + \frac{\overline{AB}^2}{4} + \frac{\overline{AB}^2}{4} = 2MI^2 + \frac{AB^2}{2}$.

Exemple:

Dans le triangle ABC ci-contre, on a $BA^2 + BC^2 = 2BI^2 + \frac{AC^2}{2}$

On a donc:

$$BI^2 = \frac{1}{2} \left(BA^2 + BC^2 - \frac{AC^2}{2} \right) = \frac{1}{2} \left(5^2 + 6^2 - \frac{10^2}{2} \right) = \frac{11}{2}$$
, soit $BI = \sqrt{\frac{11}{2}}$.

Formule d'Al-Kashi

Dans un triangle ABC, on notera:

$$a=BC$$
, $b=AC$, $c=AB$, $\hat{A}=\widehat{BAC}$, $\hat{B}=\widehat{ABC}$, $\hat{C}=\widehat{ACB}$

Formule d'Al-Kashi:

Pour tout triangle ABC, on a :

$$a^{2}=b^{2}+c^{2}-2bc\cos \hat{A}$$

 $b^{2}=a^{2}+c^{2}-2ac\cos \hat{B}$
 $c^{2}=a^{2}+b^{2}-2ab\cos \hat{C}$

Démonstration:

$$a^2 = BC^2 = \overrightarrow{BC}^2 = (\overrightarrow{BA} + \overrightarrow{AC})^2 = \overrightarrow{BA}^2 + 2\overrightarrow{BA} \cdot \overrightarrow{AC} + \overrightarrow{AC}^2 = BA^2 + AC^2 - 2\overrightarrow{AB} \cdot \overrightarrow{AC}$$
Or $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos \widehat{A}$ qui est l'égalité recherchée.

Soit EFG un triangle tel que EF=7, FG=4 et EG=5.

On cherche à déterminer les mesures de ses angles. On a donc : $g^2=e^2+f^2-2ef\cos \hat{G}$

Soit $7^2 = 4^2 + 5^2 - 2 \times 4 \times 5 \times \cos \hat{G}$. D'où $\cos \hat{G} = \frac{-8}{40} = -0.2$ soit $\hat{G} \simeq 101.5^\circ$.

De même : $f^2 = e^2 + g^2 - 2 eg \cos \hat{F}$. D'où $\cos \hat{F} = \frac{40}{50} = \frac{5}{7}$ soit $\hat{F} \approx 44.4^{\circ}$.

Donc $\hat{E} = 180 - (\hat{G} + \hat{F})$, soit $\hat{E} \simeq 34.1^{\circ}$.

Formule des aires

Formule des aires :

Pour tout triangle ABC non aplati, si on note $\mathcal G$ l'aire du triangle ABC, on a :

$$\mathcal{S} = \frac{1}{2}bc\sin\hat{A} = \frac{1}{2}ac\sin\hat{B} = \frac{1}{2}ab\sin\hat{C}$$

Démonstration (par disjonction des cas) :

Appelons H le pied de la hauteur issue de C dans le triangle ABC.

Cas 1: \hat{A} est aigu

On a
$$\widehat{HAC} = \widehat{BAC} = \widehat{A}$$

Dans le triangle AHC rectangle en H, on a $\sin \widehat{HAC} = \frac{HC}{AC}$, c'est-à-

dire
$$\sin \hat{A} = \frac{HC}{AC}$$
.

ce que l'on peut encore écrire $HC = b \sin \hat{A}$

Cas 2 : \hat{A} est droit

$$H$$
 et A sont confondus; on a donc $HC = AC = b$.

Dans ce cas, on a
$$\hat{A} = \frac{\pi}{2}$$
, donc $\sin \hat{A} = 1$;

on peut alors écrire $HC=b=b\times 1=b\times \sin \hat{A}$

Cas 3: A est obtus

$$\widehat{HAC}$$
 et $\widehat{BAC} = \widehat{A}$ sont supplémentaires;

ils ont donc le même sinus :
$$\sin \widehat{HAC} = \sin \widehat{A}$$

Dans le triangle AHC rectangle en H, on a $\sin \widehat{HAC} = \frac{HC}{AC}$,

c'est-à-dire
$$\sin \hat{A} = \frac{HC}{b}$$
;

ce que l'on peut encore écrire $HC = b \sin \hat{A}$

Dans tous les cas, on peut écrire $HC = b \sin \hat{A}$.

On peut donc exprimer l'aire \mathcal{S} du triangle ABC : $\mathcal{S} = \frac{1}{2}AB \times HC = \frac{1}{2}c \times b \sin \hat{A}$;

ce qui s'écrit également $\mathcal{S} = \frac{1}{2}bc \sin \hat{A}$.

Pour tout triangle ABC non aplati, on a:

$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}}$$

Démonstration :

On utilise la formule $2S = bc \sin \hat{A} = ac \sin \hat{B} = ab \sin \hat{C}$ et on divise par le produit abc, ce qui donne:

$$\frac{2S}{abc} = \frac{\sin \hat{A}}{a} = \frac{\sin \hat{B}}{b} = \frac{\sin \hat{C}}{c} \text{ ou encore } \frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}} = \frac{abc}{2S}.$$

2) <u>Trigonométrie</u>

Formules d'addition:

Pour tous réels a et b, on a :

- $\cos(a+b) = \cos a \cos b \sin a \sin b$
- $\cos(a-b) = \cos a \cos b + \sin a \sin b$
- $\sin(a+b) = \sin a \cos b + \sin b \cos a$
- $\sin(a-b) = \sin a \cos b \sin b \cos a$

Démonstration :

• Soit a et b deux réels. On munit le plan d'un repère orthonormé $(O; \vec{i}, \vec{j})$.

On définit les vecteurs \vec{u} et \vec{v} de la façon suivante :

$$\circ \|\vec{u}\| = \|\vec{v}\| = 1$$

$$\circ$$
 $(\vec{i};\vec{u}) \equiv b[2\pi]$ et $(\vec{i};\vec{v}) \equiv a[2\pi]$

On peut écrire :

$$(\vec{u}; \vec{v}) = (\vec{u}; \vec{i}) + (\vec{i}; \vec{v}) = -(\vec{i}; \vec{u}) + (\vec{i}; \vec{v}) = -b + a$$

Donc $(\vec{u}; \vec{v}) \equiv a - b[2\pi]$

De plus, les coordonnées des vecteurs
$$\vec{u}$$
 et \vec{v} sont données par $\vec{u} \begin{pmatrix} \cos b \\ \sin b \end{pmatrix}$ et $\vec{v} \begin{pmatrix} \cos a \\ \sin a \end{pmatrix}$.

D'une part, on a :

 $\vec{u} \cdot \vec{v} = \cos a \cos b + \sin a \sin b$

d'autre part, on a :

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}; \vec{v}) = 1 \times 1 \times \cos(a - b)$$
.

On en déduit $\cos(a-b) = \cos a \cos b + \sin a \sin b$

- En remplaçant b par -b, on obtient : $\cos(a+b) = \cos a \cos b \sin a \sin b$
- On a $\sin(a-b) = \cos\left(\frac{\pi}{2} (a-b)\right) = \cos\left(\left(\frac{\pi}{2} + b\right) a\right)$.

En appliquant la formule on a :

$$\sin(a-b) = \cos\left(\left(\frac{\pi}{2} + b\right) - a\right) = \cos\left(\frac{\pi}{2} + b\right)\cos a + \sin\left(\frac{\pi}{2} + b\right)\sin a = -\sin b\cos a + \cos b\sin a$$

Donc $\sin(a-b) = \sin a \cos b - \sin b \cos a$.

• Puis en remplaçant b par -b, on obtient : $\sin(a+b) = \sin a \cos b + \sin b \cos a$

Formule de duplication :

Pour tous réel a, on a :

- $\cos 2a = \cos^2 a \sin^2 a = 2\cos^2 a 1 = 1 2\sin^2 a$
- $\sin 2a = 2\sin a\cos a$