CS & IT ENGINEERING

Theory of Computation Finite Automata: DFA-5

Lecture No. 10 (no DPP)

(86) (aa+bb)

min=aa or bb

5 States

(87) X (aa+bb) X

min = aa or bb

A: waits for an

B: waits for a

C; waits for b

D: find

A: waiting for aa or bb B: waiting for a C: final (chily wilt aa) D: waits for b E: final (endy wilt U)

Are you clear
why C & E are
needed as different
finals?

=5 states

I) Part present EL (goto final II) If Past preunt & L then i) past. present of future (L 3000 particular state waiting for fithing 11) Part Preunt o future & L goto Dead every

4 states

(90) aa (a+b)*bb

= 6 states

Starts wilt a and contains a

ends wilt a and contains a

 $\sqrt{a} = \sqrt{a}$

B) 2 States

Construction

Starts wilt aga and Enda wilk aab

Model-XI [composition based] FA, XFA2

$$\{\omega | \omega \in \{a,b\}^*, na(\omega) = even$$

compound FA

,
$$Na(w) = even$$
, $Nb(w) = odd$

finals (99)

$$na(w) = odd$$
, $nb(w) = even$

(100)

$$Na(\omega) = odd$$
, $Nb(\omega) = odd$

(10)

(103) dw/weda,63*, na(w) is div by 2, nb(w) is div by 3]}.
2×3=6 states

**(lou)

qw/wefa,by*, ra(w) is div by (10), nb(w) is div by (20)

10×20 = 200 States

Models:

spacial I	PUT 2*12 (8) 12 2 12
Z Shengik I	IWI=K, K+2 IWI≤K,K+2 IWI≥K,K+1 IWI <k,k+2 iwi+k,k+2<="" th=""></k,k+2>
I No of a I	$N_a(\omega)=K$ $N_a(\omega)\leq K$ $N_a(\omega) \geq K$ $N_a(\omega) < K$ $N_a(\omega) < K$ $N_a(\omega) \neq K$
Over 1 Symbol V	$a = (aa)^{\frac{1}{2}}$ $a(aa)^{\frac{1}{2}}$ $a(aa)^{$
Sequence 1	意識 まきる まちょう まちゃく
Ach Slengt VI	Wisdiv by K >K states W =K, M+K2 > If K,>K2 i) K, states
Ach Stength VI	$M_{\alpha}(\omega)$ is div by K $M_{\alpha}(\omega) = K_{1} N_{1} + K_{2} \sum_{i=1}^{n-1} K_{2} + K_{2} \sum_{i=1}^{n-1} K_{2} + K_{3} + K_{4} + K_{4} + K_{5} + K_{6} + K$
Start/contain/en/111	ax abx aaax xax Xaaax xa Xab Xaba Xaaab
Position bally 11	Klt Symbol from begin is a Kt symbol from end is a 72
Multiple Conlistry X	(aathb) X X(aathb) X (aathb) axb aaxbb
combortu XI	Na(w) is div by K, and Na(w) is div by Kz >> K, XK2

Model-XII (Many Itings but onething) — Tricky

- (105) $\int_{-\infty}^{\infty} |\omega| |\omega| = \{a,b\}^{*}, \quad \omega \text{ starts } |\omega| = \phi$ $\int_{-\infty}^{\infty} |\omega| = \phi 1 \text{ state}$
- {w|wEda,b}*, w ends wilt a, w ends with b'}

L=(atb)^t \rightarrow 2 states $g'' = (a+b)^{\dagger}$ $= (a+b)^{\dagger}$ $= (a+b)^{\dagger}$ $= (a+b)^{\dagger}$

 $\{\omega \mid \omega \in \{a,b\}^*, \omega \text{ starts will } \alpha' \text{ or } b'\} = (a+b)^{\dagger}$ (108) dw/weda, b}x, w ends with a or b'= (a+b)t (109)

(110) $\int \omega |\omega| + |a,b|^*$, $N_a(\omega)$ is $d\omega by 2$, $N_a(\omega)$ is $d\omega by 4$? $\#as/2 \cap \#as/4 = \#as/4 \Rightarrow 4$ States

(II) $d\omega | \omega \in \{a,b\}^*$, $na(\omega)$ is div by 2 or $na(\omega)$ is div by 4} $\#a's/2 \cup \#a's/y \Rightarrow \#a's/2 \Rightarrow 2$ States

$$L = ab(a+b)^{x} \longrightarrow \overline{z} - \lambda ab^{x}$$

$$L = (aa)^{*}$$

$$\{\omega | \omega \in \{a,b\}^*, \quad N_a(\omega) = 1, \quad N_b(\omega) = 2\}$$

$$\{\omega \mid 1, n_b(\omega) \leq 1, n_b(\omega) = 2\}$$

(114)
$$\{\omega\}$$
 11, $n_a(\omega) \geq 1$, $n_b(\omega) = 2$

(115)
$$\frac{1}{2}\omega$$
 | ", $N_a(\omega) = 1$, $N_b(\omega) \leq 2$

$$d\omega$$
 | ", $Na(\omega) \leq 1$, $Nb(\omega) \leq 2$

$$\{\omega\}$$
 $\{\omega\}$
 $\{\omega\}$
 $\{\omega\}$
 $\{\omega\}$
 $\{\omega\}$
 $\{\omega\}$
 $\{\omega\}$
 $\{\omega\}$
 $\{\omega\}$

$$d\omega$$
 $|\omega|$
 $|\omega|$

(20)

DFA Minimization

Minimized DE States

n states

DFA
minimization
Algoritm

Try to Deduce no. of states by finding equivalent states and combines them

Minimization Algorithm (Partition Algorithm)

Table Approach (Partition based Algorithms)

* Set Approach

{0,00,00,00h is a partition on Q

- I) Every Q; is subset of Q (non empty)
- D, O, U, O, U, Q
- Freng Q;, Q; A) Q; NQ; = \$
 idis

DFA Construction
$$Q = \{90, 91, 92\}$$

T) $\{q_0\}$, $\{q_1\}$, $\{q_2\}$ $\{q_2\}$ $\{q_3\}$ $\{q_4\}$ $\{q_4\}$ $\{q_4\}$ $\{q_5\}$ $\{q_6\}$ $\{q_6\}$

 2^{int} (II) $\{2^{int}$ $\{2^{int}\}$ $\{2^{int}\}$

I) dhan, 92 b, 190 }

J. Panitan with 2 subjet

Total No. of partitions on Q wilk 3 elements = 5

Lang

Summary

models of DFA
minimitation of DFA

Mert Session: NFA

