

Explainable AI

Yu Han

han.yu@ntu.edu.sg

Nanyang Assistant Professor
School of Computer Science and Engineering
Nanyang Technological University

GDPR again ...

u

Companies should commit to ensuring systems that could fall under GDPR, including AI, will be compliant. The threat of sizeable fines of €20 million or 4% of global turnover provides a sharp incentive.

Article 22 of GDPR empowers individuals with the right to demand an explanation of how an AI system made a decision that affects them.

"

- European Commision

XAI

Explanation as feature attribution:

Card denied because client is credit unworthy, despite good salary

Counterfactual explanation:

Had the client had a good credit score the card would have been granted

XAI

- Why did you do that?
- Why not something else?
- When do you succeed?
- When do you fail?
- When can I trust you?
- How do I correct an error?

Deep Learning Working Principles

90% DOG

XAI

"The function of reasoning is ... to devise and evaluate arguments intended to persuade."

- Mercier, Sperber: BEHAVIORAL AND BRAIN SCIENCES (2011)

"looking at how humans explain to each other can serve as a useful starting point for explanation in artificial intelligence"

- Tim Miller AIJ2019

XAI Framework

XAI Framework

Performance vs. Explainability

Learning Techniques (today)

Terminology

Understandability

 Understandability (or intelligibility) refers to the characteristic of a model to make a human understand its function – how the model works – without any need for explaining its internal structure or the algorithmic means by which the model processes data internally

Comprehensibility

 Comprehensibility: when conceived for machine learning models, comprehensibility refers to the ability of a learning algorithm to represent its learned knowledge in a human understandable fashion

Interpretability

 Interpretability: it is defined as the ability to explain or to provide the meaning in understandable terms to a human.

Explainability

- Explainability: it is associated with the notion of explanation as an interface between humans and a decision maker
 - that is, at the same time, both an accurate proxy of the decision maker and comprehensible to humans

Explicability

Explicability:

- Making AI decisions obvious to a human being (i.e. a human being can understand the reason behind an AI decision without explanation)
- Might not be the optimal solution!

Transparency

 Transparency: a model is considered to be transparent if by itself it is understandable. A model can feature different degrees of understandability.

The Use of XAI

Measuring Explanation Effectiveness

Measure of Explanation Effectiveness

User Satisfaction

- Clarity of the explanation (user rating)
- Utility of the explanation (user rating)

Mental Model

- Understanding individual decisions
- Understanding the overall model
- Strength/weakness assessment

'What will it do' prediction

• 'How do I intervene' prediction

Task Performance

- Does the explanation improve the user's decision, task performance?
- Artificial decision tasks introduced to diagnose the user's understanding

Trust Assessment

Appropriate future use and trust

Correctability

- Identifying errors
- Correcting errors
- · Continuous training

Building an Explainable Model (Decision Tree)

The Basics of Decision Tree

The Basics of Decision Tree

- A Decision Tree is a tree-structured plan of a set of attributes to test in order to predict the output.
- A type of supervised learning approaches
- Mostly used in classification problems
- Good interpretability / visualizability
- Not the best performance

Terminology

- 1. Root Node (Top Decision Node): It represents the entire population and can be further divided into two or more homogeneous sets.
- 2. Splitting: It is a process of dividing a node into two or more subnodes.
- **3. Decision Node:** When a sub-node splits into further sub-nodes, then it is called a decision node.
- **4. Leaf/ Terminal Node:** Nodes with no children (no further split) is called Leaf or Terminal node.
- **5. Pruning:** When we reduce the size of decision trees by removing nodes (opposite of Splitting), the process is called pruning.
- **6. Branch / Sub-Tree:** A sub section of the decision tree is called branch or sub-tree.
- **7. Parent and Child Node:** A node, which is divided into sub-nodes is called a parent node of sub-nodes whereas sub-nodes are the child of a parent node.

Decision Tree Example

Decision Tree Example

Decision Tree Example

Discussions

• Pro:

Very good interpretability

Con:

 If the boundaries between classes are not crisp (most real-world applications will fall into this category), the predictions by decisions trees can be inaccurate.

Explainable AI

Yu Han

han.yu@ntu.edu.sg

Nanyang Assistant Professor School of Computer Science and Engineering Nanyang Technological University

