Chapitre 18 - Séries numériques

1 Sommes partielles d'une série

1.1 Sommes partielles, somme et reste

Définition 1.1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels ou complexes.

On appelle série de terme général u_n , notée $\sum u_n$, la suite $(S_n)_{n\in\mathbb{N}}$ où $S_n = \sum_{k=0}^n u_k$.

 S_n s'appelle la somme partielle d'indice n.

Si la série converge, sa limite s'appelle somme de la série et on la note $\lim_{n\to+\infty} S_n = \lim_{n\to+\infty} \sum_{k=0}^n u_k = \sum_{k=0}^{+\infty} u_k$.

On appelle reste d'ordre n, $R_n = \sum_{k=0}^{+\infty} u_k - S_n = \sum_{k=n+1}^{+\infty} u_k$.

Exemple 1.1.
$$\sum_{n \in \mathbb{N}^*}^{+\infty} (-1)^n \frac{\ln(n)}{n^2}$$

Exemple 1.2. Soit $a \in \mathbb{R}$. La série $\sum \frac{a^n}{n!}$ est convergente et sa somme vaut $\sum_{n=0}^{+\infty} \frac{a^n}{n!} = e^a$. C'est la série exponentielle.

Proposition 1.1. Pour tout entier n_0 , les séries $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant n_0}u_n$ sont de même nature.

Exemple 1.3. Les séries arithmétiques : $\sum_{n\geqslant 0} na$ avec $a\in\mathbb{C}^*$

Exemple 1.4. Les séries géométriques : $\sum_{n\geqslant 0}q^n$ avec $q\in\mathbb{C}^*$ tel que |q|<1 convergent.

1.2 Linéarité de la somme

Proposition 1.2. Si $\sum u_n$ et $\sum v_n$ sont deux séries convergentes, et si $\alpha \in \mathbb{K}$ est un scalaire, alors $\sum (\alpha u_n + v_n)$ est convergente et $\sum_{k=0}^{+\infty} (\alpha u_n + v_n) = \alpha \sum_{n=0}^{+\infty} u_n + \sum_{n=0}^{+\infty} v_n$

Proposition 1.3. Si $\sum u_n$ est une série convergente, alors $\sum \overline{u_n}$ est convergente et $\overline{\left(\sum_{n=0}^{+\infty} u_n\right)} = \sum_{n=0}^{+\infty} \overline{u_n}$

Proposition 1.4. Une série $\sum u_n$ est convergente si et seulement si les séries $\sum \text{Re}(u_n)$ et $\sum \text{Im}(u_n)$ convergent.

En cas de convergence, on a $\sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} \operatorname{Re}(u_n) + i \sum_{n=0}^{+\infty} \operatorname{Im}(u_n)$

Exemple 1.5. Étudions la série : $\sum_{n \in \mathbb{N}} e^{n(-1/2+i)}$

Exemple 1.6. Étudions la somme de ces deux séries : $\sum_{n \in \mathbb{N}} n + \sum_{n \in \mathbb{N}} \left(\frac{1}{2}^n - n\right)$

1.3 Limite du terme général d'une série convergente

Théorème 1.5.

Si $\sum u_n$ est une série convergente, alors le terme général $(u_n)_{n\in\mathbb{N}}$ est une suite convergente vers 0.

Démonstration.

Définition 1.2. Si la suite (u_n) ne tend pas vers 0, on dit que la série $\sum u_n$ est grossièrement divergente.

Exemple 1.7. Les séries géométriques : $\sum_{n\geqslant 0}q^n$ avec $q\in\mathbb{C}^*$ tel que $|q|\geqslant 1$ divergent.

Exemple 1.8. La série harmonique : $\sum_{n \ge 0} \frac{1}{n}$ est une série divergente.

1.4 Séries géométriques

Théorème 1.6. La série $\sum q^n$ avec $q \in \mathbb{C}$ converge si et seulement si |q| < 1.

Corollaire 1.7. Si la série $\sum q^n$ converge, alors sa somme est $\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$.

Exemple 1.9. $\sum \frac{1}{(-2)^n}$

Exemple 1.10. $\sum e^{-n}$

1.5 Télescopage

Proposition 1.8. La suite $(u_n)_{n\in\mathbb{N}}$ converge si et seulement si la série $\sum (u_{n+1}-u_n)$ converge.

Démonstration.

Exemple 1.11. Étudier la convergence de la série $\sum \frac{1}{n(n-1)}$. Déterminer la valeur de sa somme.

Exemple 1.12. Étudier la convergence de la série $\sum \frac{1}{\sqrt{n}}$.

Exercice 1.1. Montrer que la série $\sum \frac{1}{n(n+1)(n+2)}$ est convergente et déterminer la valeur de sa somme.

2 Séries à termes positifs

2.1 Théorème de la limite monotone

Théorème 2.1.

Une série à termes réels positifs converge si et seulement si la suite de ses sommes partielles est majorée.

Remarque 2.1. Une série à termes réels positifs est croissante.

Exemple 2.1. Étudier la convergence de la série $\sum \frac{1}{n^n}$.

Exemple 2.2. Monter que la série $\sum \frac{\ln(n)}{n}$ diverge.

2.2 Critère de comparaison

Théorème 2.2. Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont deux suites positives et si pour tout $n, u_n \leq v_n$, alors la convergence de $\sum v_n$ implique celle de $\sum u_n$ et de plus,

$$\sum_{n=0}^{+\infty} u_n \leqslant \sum_{n=0}^{+\infty} v_n.$$

Démonstration.

Théorème 2.3. Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont deux suites positives et si pour tout $n, u_n \leq v_n$, alors, $\sum u_n$ diverge $\Longrightarrow \sum v_n$ diverge.

Démonstration.

2.3 Critère d'équivalence

Théorème 2.4. Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles positives.

Si
$$u_n \sim v_n$$
, alors $\sum v_n$ converge $\iff \sum u_n$ converge.

Démonstration.

Exemple 2.3. e

2.4 Comparaison à une intégrale

Théorème 2.5. Si f est une fonction décroissante et continue sur $[n_0, +\infty[$, alors on a pour $n \ge n_0 + 1$:

$$\int_{n}^{n+1} f(t) dt \leq f(n) \leq \int_{n-1}^{n} f(t) dt$$

ce qui donne :

$$\int_{n_0+1}^{n+1} f(t) dt \le \sum_{k=n_0+1}^{n} f(k) \le \int_{n_0}^{n} f(t) dt$$

Démonstration.

Exemple 2.4. La série harmonique $\sum \frac{1}{n}$ est divergente. En déterminer un équivalent.

Exemple 2.5. Étudier la série $\sum \frac{1}{1+n^2}$.

Exemple 2.6. Étudier la série $\sum \frac{1}{n \ln(n)}$.

2.5 Séries de Riemann

Définition 2.1. On appelle série de Riemann, les séries de la forme $\sum \frac{1}{n^{\alpha}}$ avec $\alpha \in \mathbb{R}$.

Théorème 2.6. La série de Riemann $\sum \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

Démonstration.

Exemple 2.7. Étude de $\sum \frac{1}{n^2+4n+1}$

2.6 Comparaison à une série géométrique

Exercice 2.1. Montrer le théorème suivant pour une série $\sum u_n$ à termes strictement positifs :

« Si $\frac{u_{n+1}}{u_n} \le q$ pour tout $n \ge n_0$ avec 0 < q < 1, alors la série $\sum u_n$ converge.

Si $\frac{u_{n+1}}{u_n} \ge q$ pour tout $n \ge n_0$ avec q > 1, alors la série $\sum u_n$ diverge. »

2.7 Comparaison à une série de Riemann

Exercice 2.2. Montrer le théorème suivant pour une série $\sum u_n$ à termes positifs.

« Si il existe $\alpha>1$ tel que $(u_n\times n^\alpha)_{n\in\mathbb{N}}$ est bornée, alors $\sum \overline{u_n}$ converge.

Si il existe $\alpha \le 1$ et K > 0 tel que $u_n \ge \frac{K}{n^{\alpha}}$, alors $\sum u_n$ diverge. »

3 Séries absolument convergentes

3.1 Convergence absolue

Définition 3.1. On dit qu'une série $\sum u_n$ est absolument convergente si la série à termes réels positifs $\sum |u_n|$ est convergente.

Théorème 3.1. Une série absolument convergente est convergente.

Corollaire 3.2. Si $\sum u_n$ est une série absolument convergente, alors $\left|\sum_{n=0}^{+\infty} u_n\right| \leq \sum_{n=0}^{+\infty} |u_n|$

Démonstration.

Exemple 3.1. Étude de $\sum \frac{(-1)^n}{n^2}$

Exemple 3.2. Étude de $\sum \frac{\sin(\sqrt{n})}{2^n}$

Exemple 3.3. Étude de $\sum (-1)^{n-1} \left(\frac{1}{n} + \frac{1}{n+1}\right)$: cette série n'est pas absolument convergente mais est convergente.

Exemple 3.4. Étude de $\sum \frac{(-1)^{n-1}}{n}$ en utilisant $\ln(1+x)$

3.2 Convergence absolue par comparaison

Théorème 3.3. Soit (u_n) une suite réelle ou complexe et v_n une suite à termes strictement positifs. Si $u_n = O(v_n)$ et si $\sum v_n$ converge, alors $\sum u_n$ est absolument convergente donc convergente.

Démonstration.

Exemple 3.5. Étude de $\sum \frac{\sin(n) + e^{in}}{n^2}$

4 Développement décimal d'un nombre réel

Définition 4.1. Soit x un nombre réel positif, on appelle valeur décimale approchée par défaut à 10^{-n} près de x le nombre $x_n = 10^{-n} \lfloor 10^n x \rfloor$ et valeur décimale approchée par excès à 10^{-n} près le nombre $y_n = 10^{-n} (\lfloor 10^n x \rfloor + 1) = x_n + 10^{-n}$.

On a alors $x_n \le x_{n+1} \le x < y_{n+1} \le y_n$.

Proposition 4.1. Soit $x \in \mathbb{R}$. Les suites des valeurs décimales approchées par défaut et par excès de x sont adjacentes et convergent vers x.

Définition 4.2. Soit x un nombre réel positif et n un entier naturel, on appelle développement décimal de x l'écriture de $x-\lfloor x\rfloor$ comme somme de la série convergente $x-\lfloor x\rfloor=\sum_{n=1}^{+\infty}\frac{a_n}{10^n}$ où la $n^{\text{ième}}$ décimale de x après la virgule définie par $a_n=10^n(x_n-x_{n-1})$ est un entier entre 0 et 9. On peut écrire $x=\lfloor x\rfloor+\overline{0,a_1a_2a_3\ldots a_n\ldots}$

Démonstration.

Remarque 4.1. On a pour tout entier n_0 , $\sum_{n=n_0}^{+\infty} \frac{9}{10^n} = 9 \times \frac{1}{10^{n_0}} \times \frac{1}{1 - \frac{1}{10}} = \frac{1}{10^{n_0 - 1}}.$

Proposition 4.2. Le développement décimal d'un réel positif est propre : c'est-à-dire que la suite des (a_n) ne se stabilise pas à 9 au-delà d'un certain rang.

Proposition 4.3. Tout nombre décimal a 2 développements l'un propre et l'autre impropre.

Théorème 4.4.

Un nombre x est décimal si et seulement la suite de son développement décimal (a_n) est nulle à partir d'un certain rang.

Un nombre positif x est rationnel si et seulement si la suite (a_n) de son développement décimal est périodique à partir d'un certain rang.

Théorème 4.5. Pour tout nombre $x \in [0,1[$, il existe une unique suite d'entiers $(a_n)_{n \in \mathbb{N}^*}$ telle que

$$x = \sum_{n=1}^{+\infty} \frac{a_n}{10^n} \quad , \qquad \forall n \in \mathbb{N}^*, \quad a_n \in \llbracket [0,9] \rrbracket \quad \text{et} \quad (a_n) \text{ n'est pas stationnaire à 9}.$$

On a $a_n = \lfloor 10^n x \rfloor - 10 \lfloor 10^{n-1} x \rfloor$. On l'appelle le développement décimal illimité propre de x.

