Analyse

Arnaud Durand et Pierre Gervais

September 25, 2016

Contents

1	Calcul propositionnel	Т		
1		3		
2 Sémantique				
3	Exemples de formalisation 3.1 Contraites de compatibilité/exclusion	5		
II	Compléments	5		
4	Calcul propositionnel 4.1 Théorème de lecture unique	5		

Part I

Calcul propositionnel

1 Syntaxe

Le calcul propositionnel est un langage inductivement et librement engendré par un ensemble de règles. C'est à dire qu'une formule ne peut pas être obtenu de deux façons différentes.

Définition 1. Soit \mathcal{P} un ensemble de constantes propositionnelles, on définit $\mathcal{F}_{\mathcal{P}}$ le calcul propositionnel sur \mathcal{P} obtenu par les règles suivantes :

- si $p \in \mathcal{P}$, alors $p \in \mathcal{F}_{\mathcal{P}}$
- $\perp \in \mathcal{F}_{\mathcal{P}}$

- si $F \in \mathcal{F}_{\mathcal{P}}$, alors $(\neg F) \in \mathcal{F}_{\mathcal{P}}$

- si
$$F, G \in \mathcal{F}_{\mathcal{P}}$$
 alors $(F \vee G), (F \wedge G), (F \rightarrow G) \in \mathcal{F}_{\mathcal{P}}$

Notation 1. S'il n'y a pas d'ambiguïté, on notera $\mathcal{F}_{\mathcal{P}} = \mathcal{F}$

Définition 2. Une définition alternative de \mathcal{F} est $\mathcal{F} = \bigcup_{n \geqslant 0} \mathcal{F}_n$ où

- $\mathcal{F}_0 = \mathcal{P}$

-
$$\mathcal{F}_{n+1} = \mathcal{F}_n \cup \{(\neg F) \mid F \in \mathcal{F}_n\} \cup \{(F \star G) \mid F, G \in \mathcal{F}_n, \star \in \{\land, \lor, \rightarrow\}\}, \text{ avec } n \geqslant 0$$

On définit la hauteur d'une formule F par le plus petit n tel que $F \in \mathcal{F}_n$.

Remarque 1. Ce langage est fortement parenthésé et toute formule peut être représentée par un arbre de décomposition.

Figure 1: Arbre de décomposition

Propriété 1. Propriété de lecture unique

Pour tout $F \in \mathcal{F}$, un seul de ces cas est vrai :

1. $F \in \mathcal{P}$

- 2. Il existe un unique $G \in \mathcal{F}$ tel que $F = (\neg G)$
- 3. Il existe d'uniques $G, H \in \mathcal{F}$ et $\star \in \{\lor, \land, \to\}$ tels que $F = G \star H$

C'est-à-dire que toute formule ne peut se décomposer que d'une seule façon.

1.1 Raisonnements

On démontrera généralement les propriétés s'appliquant à \mathcal{F} par induction : pour démontrer une proposition A s'appliquant à \mathcal{F} , on la démontre sur \mathcal{P} et pour tout $(F \star G)$ et $(\neg F)$ où on suppose que $F, G \in \mathcal{F}$ vérifient A et $\star \in \{\land, \lor, \to\}$.

1.2 Définition alternative de $\mathcal{F}_{\mathcal{P}}$

Soit $\Sigma = \mathcal{P} \cup \{(,),\neg,\wedge,\vee,\rightarrow,\bot\}$, Σ^* est l'ensemble des mots sur Σ .

 $Exemple\ 1.$

- $F = (\land \neg x_1)((\in \Sigma^*))$
- $F = (\neg x_1) \in \Sigma^*$

Définition 3. \mathcal{F} est le plus petit sous-ensemble de Σ^* contenant $\mathcal{P} \cup \{\bot\}$ et clos par les opérations

- 1. $(F,G) \longmapsto (F \vee G)$
- 2. $(F,G) \longmapsto (F \wedge G)$
- 3. $(F,G) \longmapsto (F \to G)$

Remarque 2. On peut montrer que les deux définitions correspondent. \mathcal{F} satisfait la propriété de lecture unique (voir TD).

1.2.1 Sous-formule, hauteur, arbre de décomposition

Définition 4. Soit $F \in \mathcal{F}$, on définit $\mathcal{S}(F)$ l'ensemble des sous-formules de F telles que

- si $F \in \mathcal{P}$, $\mathcal{S}(F) = \{F\}$
- si $F = (\neg G)$ alors $S(F) = \{F\} \cup S(G)$
- si $F = (G \star H)$ où $\star \in \{\land, \lor, \rightarrow\}$, alors $\mathcal{S}(F) = \{F\} \cup \mathcal{S}(G) \cup \mathcal{S}(H)$

TODO: vérifier dernier point

Définition 5. Soit $F \in \mathcal{F}$ on définit la hauteur h(F) de F par

- h(F) = 0, si $F \in \mathcal{P}$
- $si = (\neg G)$, alors h(F) = 1 + h(G)
- si $F = (G \star H)$, alors $h(F) = 1 + \max\{h(G), h(H)\}$

Définition 6. Soit $F \in \mathcal{F}$, l'arbre de décomposition de F arb(F) est un graphe étiqueté défini par

1. si $F \in \mathcal{P}$, arb(F) est réduit à un sommet étiqueté par F.

2. si
$$F = (\neg G)$$
, alors $arb(F) = \neg - arb(G)$

3. si
$$F = (G \star H)$$
, alors $arb(F) = G - \star - H$

Notation 2. Soit F une formule, var(F) est l'ensemble des variables de F, occ(F) est le multi-ensemble des variables de F et arb(F) est le graphe

- dont les sommets sont V
- et muni d'une fonction d'étique tage $\lambda: V \longrightarrow \{\neg, \bot, \lor, \land, \to\} \cup var(F).$

Remarque 3. Toutes les définitions sont univoques par la propriété de lecture unique.

Remarque 4. On définit la hauteur d'une formule par la hauteur de son arbre de décomposition, c'est-à-dire la distance maximum entre les feuilles et la racine.

Notation 3.

- \top comme abréviation pour $(\bot \rightarrow \bot)$
- $(p \longleftrightarrow q)$ pour $(p \leftarrow q) \land (p \to q)$

$$-\bigwedge_{i=1}^n A_i = (((A_1 \wedge A_2) \wedge A_3)... \wedge A_n)$$

2 Sémantique

On s'intéresse à des propositions dont la valeur de vérité est soit vrai soit faux. On a besoin d'une **interprétation** (en terme de vrai ou faux) de ces constantes propositionnelles.

Définition 7. Une valuation est une fonction $v: \mathcal{P} \longrightarrow \{0,1\}$. Étant donné une valuation v, on définit l'interprétation $\overline{v}: \mathcal{F} \longrightarrow \{0,1\}$ comme ceci

- si $F = p \in \mathcal{P}$ alors $\overline{v} = v(p)$
- si $F = (\neg G) \in \mathcal{P}$ alors $\overline{v}(F) = 1$ si et seulement si $\overline{v}(G) = 0$
- $-\overline{v}(\perp)=0$
- $\overline{v}(F \wedge G) = 1$ si et seulement si $\overline{v}(F) = \overline{v}(G) = 1$

On peut décrire l'interprétation d'une formule par sa table de vérité :

	F	G	$\neg G$	$F \wedge G$	$F \to G$
ĺ	0	0	1	0	1
ĺ	0	1	1	0	1

On définit formellement la table de vérité par une fonction $v: \{0,1\}^{\mathcal{P}} \longrightarrow \{0,1\}$

Définition 8.

- $F \in \mathcal{F}$ est dit satisfaisable s'il existe une valuation v de \mathcal{P} tel que $\overline{v}(F) = 1$

- F est dit valide si pour toute valuation v de \mathcal{P} , $\overline{v}(F) = 1$, on dit aussi que F est une tautologie.
- F et G sont dites équivalentes, notées $F \equiv G$, si pour toute valuation $v, \overline{v}(F) = \overline{v}(G)$

Exercice 1. Vérifier que $F \equiv G$ si et seulement si $F \leftrightarrow G$ est valide.

Proposition 1. Pour tout $F \in \mathcal{F}$, F est satisfaisable si et seulement si $(\neg F)$ n'est pas valide.

3 Exemples de formalisation

3.1 Contraites de compatibilité/exclusion

Problème : On possède n produits chimiques à ranger dans $k \le n$ conteneurs. Certains produits ne peuvent pas être stockés ensemble dans un conteneur.

La contrainte est donnée sous la forme d'un ensemble $\mathcal{L} \subseteq [n]$ tel que $I = \{i_1, ..., i_k\} \subseteq \mathcal{L}$ si et seulement si les produits $i_1, ..., i_k$ ne peuvent pas être stockés ensemble.

Enjeu : Écrire une formule propositionnelle F telle que F est satisfaisable si le problème a une solution.

Les variables propositionnelles $\mathcal{P} = p(i, j), i \leq n, j \leq k$ sont interprétées par "le produit chimique i est dans le camion j".

On exprime deux propositions :

- Chaque produit se trouve dans un unique conteneur : $F = \left(\bigwedge_{i \leqslant n} \left(\bigvee_{j \leqslant k} p(i,j) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{i \leqslant n} \left(\bigwedge_{j,j' \leqslant k} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigwedge_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigcap_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigcap_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigcap_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigcap_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigcap_{j \leqslant n} (\neg \left(p(i,j) \land p(i,j') \right) \right) \wedge \left(\bigwedge_{j \leqslant n} \left(\bigcap_{$

- On respecte les incompatibilités : $G = \bigwedge_{I \subseteq \mathcal{L}} \left(\bigwedge_{j \leqslant k} \neg \left(\bigwedge_{i \in I} p(i,j) \right) \right)$

Pour chaque ensemble *I* de produits ne pouvant pas être stockés ensemble et pour chaque camion *j*, aucun produit de *I* n'est présent dans le camion

Part II

Compléments

4 Calcul propositionnel

4.1 Théorème de lecture unique

Définition 9. Soient $w_0, w_1 = a_1...a_n \in \mathcal{M}$, on dit que w_0 est un segment initial de w_1 , noté $w_0 \subseteq w_1$ si $w_0 = a_1...a_i$ avec $1 \leq i \leq n$, et w_0 est un segment propre, noté $w_0 \subseteq w_1$ si i < n.

Lemme 1. Soit $F \in \mathcal{F}$ et $G \subsetneq F$, alors $M \notin \mathcal{F}$

Autrement dit, aucune formule n'est le préfixe d'une autre.

Proposition 2. On note o[F] le nombre de parenthèses ouvrantes d'une formule F et f[F] pour ses parenthèses fermées.

1. $\forall F \in \mathcal{F}, \ o[F] = o[G]$

2.
$$\forall F \in \mathcal{F}, \forall M \in \Sigma^*, \ M \subsetneq F \Longrightarrow \begin{cases} o[M] > f[M], \ et \ donc \ M \notin \mathcal{F} & (a) \\ \textbf{x-ou} \ M = \neg ... \neg \notin \mathcal{F} & (b) \\ \textbf{x-ou} \ M = \epsilon \notin \mathcal{F} & (c) \end{cases}$$

Preuve 1. Soient $F \in \mathcal{F}$ et $M \subsetneq F$, montrons le second point.

- Si $F = \neg G = \neg g_1 ... g_n$
 - cas (c) : $M = \epsilon$
 - cas (b) : $M = \neg$
 - cas (a) : $M = \neg g_1...g_i \subsetneq G$, i < nalors soit $o[M] = o(g_1...g_i) > f(g_1...g_i) = f[M]$, ce qui rentre dans le cas (a) soit $g_1...g_i = \underbrace{\neg ... \neg}_{i \text{ fois}}$, alors $M = \underbrace{\neg ... \neg}_{i+1 \text{ fois}}$: on est encore dans le cas (b).
- Si $F = (G \circ H) = (g_1...g_m \circ h_1...h_n)$ et $M \subsetneq F$, soit $M = \epsilon$ (cas (c)), soit $M \neq \epsilon$ avec
 - M = (alors o[M] = 1 > f[M] = 0
 - $M = (q_1...q_i, 1 \le i \le m, \text{donc } o[M] = o(q_1...q_i) + 1 > f[M] = f(q_1...q_i)$
 - $M = (G \circ \text{donc } o[M] = 1 + o[G] > f[M] = f[G]$
 - $M = (G \circ h_1...h_i, \ 1 \leqslant i \leqslant n, \text{ alors } o[M] = 1 + o[G] + o(h_1...h_i)$ $o[M] = 1 + f[G] + o[h_1...h_i] \geqslant 1 + f[G] + f[h_1...h_i] = 1 + f[(G \circ h_1...h_i]) > f[(G \circ h_1...h_i])$
- Si $F \in \mathcal{P}$, $M = \epsilon$, c'est le cas (c).

Preuve 2. Démontrons le théorème de lecture unique par induction sur la longueur d'une formule. Soit $F \in \mathcal{F}$

- Si $F \in \mathcal{P}$ pour tout $q \in \mathcal{P} \setminus \{F\}$, $q \neq F$. $\forall G \in \mathcal{F}, \ F \neq \neg G \ \text{car} \ |\neg G| \geqslant 2 > 1 = |F|$ $\forall G, H \in \mathcal{F}, \ \forall \star \in \{\land, \lor, \longrightarrow\}, \ (G \star H) \neq F \ \text{car} \ |F| = 1 < 5 \leqslant |(G \star H)|$
- Si $F = \neg G$ avec $G \in \mathcal{F}$, pour tout $q \in \mathcal{F}$ on a $q \neq F$. $\forall G \in \mathcal{F}$ on a $\neg G \neq F$ par hypothèse de récurrence.
 - $\neg G \neq (H \star K)$ pour toute formules H et G et tout opérateur $\star.$

- Si $F=(G_1\star G_2),$ supposons $F=(H_1\circ H_2)$ que l'on réécrit

$$a_1...a_k \star b_1...b_l = c_1...c_m \circ d_1...d_n$$

Montrons $G_1 = H_1$, ce qui impliquera $\star = \circ$ et $G_2 = H_2$.

On est face à l'un des deux cas :

$$\underbrace{a_1a_2a_3...a_k}_{G_1\in\mathcal{F}}\subseteq\underbrace{c_1c_2c_3...a_m}_{H_1\in\mathcal{F}}$$

$$(**) c_1c_2c_3...c_m \subseteq d_1d_2d_3...d_n$$

les deux cas sont symétriques, on suppose (*) et par l'absurde que $G_1 \neq H_1$, c'est à dire $G_1 \subsetneq H_1$, ce qui implique d'après le lemme $G_1 \notin \mathcal{F}$.

On a également $\forall F \in \mathcal{F}, \ \neg G \neq (G_1 \star G_2) \text{ et } \forall p \in \mathcal{P}, \ p \neq (G_1 \star G_2).$