CÁLCULO DIFERENCIAL E INTEGRAL III

SISTEMAS DE EQUAÇÕES DIFERENCIAIS EXERCÍCIOS

1. Considere as seguintes matrizes

$$i) \ \ A = \left[\begin{array}{ccccc} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right]; \quad ii) \ \ A = \left[\begin{array}{ccccc} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 1 & 3 \end{array} \right]; \quad iii) \ \ A = \left[\begin{array}{ccccc} 2 & -2 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{array} \right].$$

Para cada uma das matrizes A acima indicadas, responda às seguintes questões:

- (a) Calcule A^2 , $A^3 \in A^4$.
- (b) Conjecture e demonstre uma fórmula para A^n , com $n \in \mathbb{N}$.
- (c) Calcule e^{At} pela definição.
- 2. Explicite e^{At} para cada uma das matrizes.

(a)
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 - \lambda \\ 1 - \lambda \end{bmatrix}$$

$$\mathbf{(b)} \ \ A = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

(c)
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

(d)
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \end{bmatrix}$$

(e)
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

3. Relativamente à matriz

$$A = \left[\begin{array}{cc} 1 & 1 \\ 4 & 1 \end{array} \right]$$

calcule e^{At} e resolva o problema de valor inicial X' = AX, $X(0) = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$.

4. Com respeito a cada uma das matrizes A a seguir indicadas, calcule e^{At} e resolva o problema de valor inicial X' = AX, $X(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.

(a)
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 3 & -1 \\ 0 & 0 & 2 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix}$$

5. Seja

$$A = \left[\begin{array}{rrr} -2 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & -1 & -2 \end{array} \right]$$

Determine e^{At} e resolva o problema de valor inicial X' = AX, $X(\pi/2) = [1 \ 0 \ 1]^T$.

6. Para a matriz

$$A = \left[\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 2 \end{array} \right]$$

calcule e^{At} e resolva o problema de valor inicial $X^\prime=AX,$ $X(1)=[1 \ 0 \ 1]^T.$

7. Considere as seguintes matrizes:

i)
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{bmatrix}$$
; ii) $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ -1 & 1 & 3 \end{bmatrix}$; iii) $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & -1 \\ 0 & 1 & 1 \end{bmatrix}$.

Para cada uma delas calcule e^{At} e resolva o problema de valor inicial X' = AX, $X(0) = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$.

RESPOSTAS

- **1.** i)
 - (a) $A^2 = A^3 = A^4 = A$.
 - (b) $A^n = A, n \in \mathbb{N}.$
 - (c) $e^{At} = I + (e^t 1) A$.
 - ii)

(a)
$$A^2 = \begin{bmatrix} 2^2 & 0 & 0 \\ 0 & 3^2 & 0 \\ 0 & 2 \cdot 3 & 3^2 \end{bmatrix}$$
, $A^3 = \begin{bmatrix} 2^3 & 0 & 0 \\ 0 & 3^3 & 0 \\ 0 & 3 \cdot 3^2 & 3^3 \end{bmatrix}$,

$$A^4 = \left[\begin{array}{ccc} 2^4 & 0 & 0 \\ 0 & 3^4 & 0 \\ 0 & 4 \cdot 3^3 & 3^4 \end{array} \right].$$

(b)
$$A^n = \begin{bmatrix} 2^n & 0 & 0 \\ 0 & 3^n & 0 \\ 0 & n \cdot 3^{n-1} & 3^n \end{bmatrix}.$$

(c)
$$e^{At} = \begin{bmatrix} e^{2t} & 0 & 0 \\ 0 & e^{3t} & 0 \\ 0 & t e^{3t} & e^{3t} \end{bmatrix}$$
.

iii)

(a)
$$A^2 = \begin{bmatrix} 2^2 & -2^2 & 2^2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
, $A^3 = \begin{bmatrix} 2^3 & -2^3 & 2^3 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$, $A^4 = \begin{bmatrix} 2^4 & -2^4 & 2^4 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.

(b)
$$A^n = \begin{bmatrix} 2^n & -2^n & 2^n \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

(c)
$$e^{At} = \begin{bmatrix} e^{2t} & 1 - e^{2t} & e^{2t} - 1 \\ 0 & 1 & e^t - 1 \\ 0 & 0 & e^t \end{bmatrix}$$
.

2. (a)
$$e^{At} = \begin{bmatrix} e^{2t} & 0 & 0 \\ 0 & e^{-t} & 0 \\ 0 & 0 & e^{2t} \end{bmatrix}$$

(b)
$$e^{At} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ t & 1 & 0 & 0 & 0 \\ \frac{t^2}{2!} & t & 1 & 0 & 0 \\ \frac{t^3}{3!} & \frac{t^2}{2!} & t & 1 & 0 \\ \frac{t^4}{4!} & \frac{t^3}{3!} & \frac{t^2}{2!} & t & 1 \end{bmatrix}$$

(c)
$$e^{At} = \begin{bmatrix} e^{3t} & 0 & 0 \\ te^{3t} & e^{3t} & 0 \\ \frac{t^2}{2}e^{3t} & te^{3t} & e^{3t} \end{bmatrix}$$

$$\mathbf{(d)} \ e^{At} = \begin{bmatrix} e^t & 0 & 0 & 0 & 0 & 0 \\ te^t & e^t & 0 & 0 & 0 & 0 \\ \frac{t^2}{2}e^t & te^t & e^t & 0 & 0 & 0 \\ 0 & 0 & 0 & e^{-t} & 0 & 0 \\ 0 & 0 & 0 & te^{-t} & e^{-t} & 0 \\ 0 & 0 & 0 & 0 & 0 & e^{t/2} \end{bmatrix}$$

(e)
$$A = \begin{bmatrix} e^{2t} & 0 & 0 \\ te^{2t} & e^{2t} & 0 \\ 0 & 0 & e^{-t} \end{bmatrix}$$

3.
$$e^{At} = \begin{bmatrix} \frac{e^{3t} + e^{-t}}{2} & \frac{e^{3t} - e^{-t}}{4} \\ e^{3t} - e^{-t} & \frac{e^{3t} + e^{-t}}{2} \end{bmatrix}$$
, $X(t) = \begin{bmatrix} e^{3t} \\ 2e^{3t} \end{bmatrix}$.

4. (a)
$$e^{At} = \begin{bmatrix} e^t & \frac{e^{3t} - e^t}{2} & \frac{e^t - e^{3t}}{2} \\ 0 & e^{3t} & e^{2t} - e^{3t} \\ 0 & 0 & e^{2t} \end{bmatrix}$$
, $X(t) = \begin{bmatrix} e^t \\ e^{2t} \\ e^{2t} \end{bmatrix}$.

$$\mathbf{(b)} \ e^{At} = \begin{bmatrix} \frac{e^t}{6} + \frac{e^{-2t}}{3} + \frac{e^{3t}}{2} & -\frac{e^t}{3} + \frac{e^{-2t}}{3} & \frac{e^t}{2} - e^{-2t} + \frac{e^{3t}}{2} \\ -\frac{2e^t}{3} - \frac{e^{-2t}}{3} + e^{3t} & \frac{4e^t}{3} - \frac{e^{-2t}}{3} & -2e^t + e^{-2t} + e^{3t} \\ -\frac{e^t}{6} - \frac{e^{-2t}}{3} + \frac{e^{3t}}{2} & \frac{e^t}{3} - \frac{e^{-2t}}{3} & -\frac{e^t}{2} + e^{-2t} + \frac{e^{3t}}{2} \end{bmatrix},$$

$$X(t) = \begin{bmatrix} \frac{e^t}{3} - \frac{e^{-2t}}{3} + e^{3t} \\ -\frac{4e^t}{3} + \frac{e^{-2t}}{3} + 2e^{3t} \\ -\frac{e^t}{3} + \frac{e^{-2t}}{3} + e^{3t} \end{bmatrix}$$

5.
$$e^{At} = \begin{bmatrix} e^{-2t} & 0 & 0 \\ 0 & e^{-2t}\cos t & e^{-2t}\sin t \\ 0 & -e^{-2t}\sin t & e^{-2t}\cos t \end{bmatrix}, \quad X(t) = \begin{bmatrix} e^{\pi-2t} \\ -e^{\pi-2t}\cos t \\ e^{\pi-2t}\sin t \end{bmatrix}.$$

$$\mathbf{6.} \ e^{At} = \left[\begin{array}{ccc} e^{2t} & e^{2t} - e^t & 0 \\ 0 & e^t & 0 \\ 0 & 2 \, e^t - 2 \, e^{2t} & e^{2t} \end{array} \right], \quad X(t) = e^{2(t-1)} \left[\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right].$$

$$\mathbf{7. \ i)} \ e^{At} = \left[\begin{array}{ccc} e^{2t} & t \, e^{2t} & 0 \\ 0 & e^{2t} & 0 \\ e^{2t} - e^{3t} & e^{2t} + t \, e^{2t} - e^{3t} & e^{3t} \end{array} \right], \quad X(t) = \left[\begin{array}{c} e^{2t} \\ 0 \\ e^{2t} \end{array} \right].$$

ii)
$$e^{At} = \begin{bmatrix} (1-t)e^{2t} & te^{2t} & te^{2t} \\ 0 & e^{2t} & 0 \\ -te^{2t} & te^{2t} & (1+t)e^{2t} \end{bmatrix}$$
, $X(t) = \begin{bmatrix} e^{2t} \\ 0 \\ e^{2t} \end{bmatrix}$.

iii)
$$e^{At} = \begin{bmatrix} e^{2t} & \frac{t^2 e^{2t}}{2} & \left(t - \frac{t^2}{2}\right) e^{2t} \\ 0 & (1+t) e^{2t} & -t e^{2t} \\ 0 & t e^{2t} & (1-t) e^{2t} \end{bmatrix}, \quad X(t) = \begin{bmatrix} \left(1 + t - \frac{t^2}{2}\right) e^{2t} \\ -t e^{2t} \\ (1-t) e^{2t} \end{bmatrix}.$$

8.
$$X(t) = \begin{bmatrix} -\frac{t^8}{28} + \frac{5t^7}{21} + 2t + 1 \\ -\frac{t^8}{56} + \frac{t^7}{21} + \frac{t^6}{6} + t + 1 \end{bmatrix}$$
.