

Пользователь: почему?

$$A_{ijk} = A_{i-1jk} + B_{jk} + B_{jk}$$
, $i=1,40$; $j=1,40$; $k=1,1000$

Cray C90, пиковая производительность 960 Mflop/s

do k = 1, 1000
do j = 1, 40
do i = 1, 40

$$A(i,j,k) = A(i-1,j,k)+B(j,k)+B(j,k)$$

Производительность: **20** Mflop/s на Cray C90

Пользователь: почему?

 $A_{ijk} = A_{i-1jk} + B_{jk} + B_{jk}$, i=1,40; j=1,40; k=1,1000

Cray C90, пиковая производительность 960 Mflop/s

do i = 1, 40, 2
do j = 1, 40
do k = 1, 1000

$$A(i,j,k) = A(i-1,j,k)+2*B(j,k)$$

 $A(i+1,j,k) = A(i,j,k)+2*B(j,k)$

Производительность: **700** Mflop/s на Cray C90

Умножение матриц: все ли просто?

Фрагмент исходного текста:

for(
$$j = 0$$
; $j < n$; ++ j)

for(
$$k = 0$$
; $k < n$; ++ k)

$$A[i][j] = A[i][j] + B[i][k]*C[k][j] (j, k, i) - ?$$

(i, k, j) -? ДА

Порядок циклов: (i, j, k)

Почему возможен другой порядок?

А зачем нужен другой порядок?

Умножение матриц: все ли просто?

(сравнение с порядком (i, j, k))

Решение задачи на компьютере

Будем представлять программы с помощью графов: набор вершин и множество соединяющих их направленных дуг.

Вершины: процедуры, циклы, линейные участки, операторы, итерации циклов, срабатывания операторов...

Будем представлять программы с помощью графов: набор вершин и множество соединяющих их направленных дуг.

Вершины: итерации циклов.

Каждая вершина соответствует двум операторам (телу цикла), выполненным на одной и той же итерации цикла.

Будем представлять программы с помощью графов: набор вершин и множество соединяющих их направленных дуг.

Вершины: срабатывания операторов.

Каждая вершина соответствует одному из двух операторов тела данного цикла, выполненному на некоторой итерации.

Будем представлять программы с помощью графов: набор вершин и множество соединяющих их направленных дуг.

Вершины: процедуры, циклы, линейные участки, операторы, итерации циклов, срабатывания операторов...

Дуги: отражают связь (отношение) между вершинами.

Выделяют два типа отношений:

- операционное отношение,
- информационное отношение.

Будем представлять программы с помощью графов: набор вершин и множество соединяющих их направленных дуг.

Дуги: операционное отношение:

Две вершины A и B соединяются направленной дугой тогда и только тогда, когда вершина B может быть выполнена сразу после вершины A.

Операционное отношение = отношение по передаче управления.

Будем представлять программы с помощью графов: набор вершин и множество соединяющих их направленных дуг.

Дуги: операционное отношение:

$$x(i) = a + b(i) \tag{1}$$

$$y(i) = 2*x(i) - 3$$
 (2)

$$t1 = y(i)*y(i) + 1$$
 (3)

$$t2 = b(i) - y(i)*a$$
 (4)

Будем представлять программы с помощью графов: набор вершин и множество соединяющих их направленных дуг.

Дуги: информационное отношение:

Две вершины A и B соединяются направленной дугой тогда и только тогда, когда вершина B использует в качестве аргумента некоторое значение, полученное в вершине A.

Информационное отношение = отношение по передаче данных.

Будем представлять программы с помощью графов: набор вершин и множество соединяющих их направленных дуг.

Дуги: информационное отношение:

$$x(i) = a + b(i) \tag{1}$$

$$y(i) = 2*x(i) - 3$$
 (2)

$$t1 = y(i)*y(i) + 1$$
 (3)

$$t2 = b(i) - y(i)*a$$
 (4)

Граф управления программы.

Вершины: операторы

Дуги: операционное отношение

for(i = 0; i < n; ++i) {
$$A[i] = A[i - 1] + 2;$$

$$B[i] = B[i] + A[i];$$
(2)

Информационный граф программы.

Вершины: операторы

Дуги: информационное отношение

for(i = 0; i < n; ++i) {
$$A[i] = A[i - 1] + 2;$$

$$B[i] = B[i] + A[i];$$
(1)

Операционная история программы. Вершины: срабатывания операторов Дуги: операционное отношение

```
for(i = 0; i < n; ++i) {
```


Информационная история программы.

Вершины: срабатывания операторов

Дуги: информационное отношение

 $0 \longrightarrow 0 \longrightarrow 0 \longrightarrow$

Может ли информационная история некоторого фрагмента программы иметь 100 вершин и ни одной дуги?

ДА.

Может ли информационная история некоторого фрагмента программы иметь 67 вершин и 3 дуги?

ДА.

Может ли информационная история некоторого фрагмента программы иметь 20 вершин и 200 дуг?

HET.

Модель некоторого фрагмента программы в качестве подграфа содержит следующий граф:

Какой моделью могла бы быть исходная модель?

LA NL ON NA

Множество графовых моделей программ (опорные точки)

Операционные модели

Компактные модели

Истории

Граф управления

Операционная история

Информационный граф

Информационная история

Какое отношение выбрать для описания свойств программ?

Операционное отношение?

$$x(i) = a + b(i) \tag{1}$$

$$y(i) = 2*x(i) - 3$$
 (2)

$$t1 = y(i)*y(i) + 1$$
 (3)

$$t2 = b(i) - y(i)*a$$
 (4)

Какое отношение выбрать для описания свойств программ?

Информационная структура — это основа анализа свойств программ и алгоритмов.

$$x(i) = a + b(i) \tag{1}$$

$$y(i) = 2*x(i) - 3$$
 (2)

$$t1 = y(i)*y(i) + 1$$
 (3)

$$t2 = b(i) - y(i)*a$$
 (4)

Исполнять только последовательно!

Какое отношение выбрать для описания свойств программ?

Информационная структура — это основа анализа свойств программ и алгоритмов.

Информационная зависимость определяет критерий эквивалентности преобразований программ.

Информационная независимость определяет ресурс параллелизма программы.

От компактных до историй: что выбрать для описания свойств программ?

Аргументы для выбора степени компактности модели:

- компактность описания,
- информативность,
- сложность построения.

От компактных до историй: что выбрать для описания свойств программ?

Аргументы для выбора степени компактности модели:

- компактность описания,
- информативность,

• сложность построения.

От компактных до историй: что выбрать для описания свойств программ?

Аргументы для выбора степени компактности модели:

• компактность описания, (компактные +)

• информативность, (истории +)

• сложность построения. (компактные +)

Граф алгоритма — это параметризованная информационная история:

- компактность описания за счет параметризации,
- имеет информативность истории,
- разработана методика построения графа алгоритма по исходному тексту программ.

Схема анализа и преобразования структуры программ

Исходная программа

Преобразованная программа

Теорема о построении графа алгоритма

Теорема. Если фрагмент принадлежит к линейному классу программ, то на основе статического анализа можно построить компактное описание его графа алгоритма в следующем виде: для каждого входа каждого оператора фрагмента

 $(N, \Delta(N), F(\Delta, N))_k$

будет указано конечное множество троек вида

где:

N – линейный выпуклый многогранник в пространстве внешних переменных фрагмента, ∆(N) – линейный выпуклый многогранник в пространстве итераций фрагмента, F(∆, N) – линейная векторная функция, описывающая входящие дуги оператора.

Программы и их графы алгоритма

Do i = 1, n
Do j = 1, m

$$s \neq s + A(i, j)$$

Для входа s:

$$N_{1} = \begin{cases} n \ge 1 \\ m \ge 2 \end{cases} \quad I_{1} = \begin{cases} 1 \le i \le n \\ 2 \le j \le m \end{cases} \quad F_{1} = \begin{cases} i' = i \\ j' = j - 1 \end{cases}$$

$$N_{2} = \begin{cases} n \ge 2 \\ m \ge 1 \end{cases} \quad I_{2} = \begin{cases} 2 \le i \le n \\ j = 1 \end{cases} \quad F_{2} = \begin{cases} i' = i - 1 \\ j' = m \end{cases}$$

Программы и их графы алгоритма

$$s = 0$$
 (1)
Do $i = 1$, n
 $s = s + 1$ (2)
Do $i = 1$, m
 $s = s + 1$ (3)
 $s = s + 1$ (4)

$$\begin{cases}
 m \ge 1 \\
 j_1 = m \\
 u3 3
\end{cases}$$

$$\begin{cases}
 m < 1 \\
 n \ge 1 \\
 j_1 = n \\
 u3 2
\end{cases}$$

$$\begin{cases}
 m < 1 \\
 n < 1 \\
 u3 1
\end{cases}$$

Программы и их графы алгоритма (умножение матриц)

Do i = 1, n
Do j = 1, n
1
$$A(i,j) = 0$$

Do k = 1, n---
2 $A(i,j) \neq A(i,j) + B(i,k)*C(k,j)$

Ярусно-параллельная форма графа алгоритма

Как определить и сделать понятным ресурс параллелизма в графе алгоритма (в программе, в алгоритме)?

Ярусно-параллельная форма графа алгоритма

Ярусно-параллельная форма графа алгоритма

- начальная вершина каждой дуги расположена на ярусе с номером меньшим, чем номер яруса конечной вершины,
- между вершинами, расположенными на одном ярусе, не может быть дуг.

Ярусно-параллельная форма графа алгоритма

Высота ЯПФ – это число ярусов, Ширина яруса – число вершин, расположенных на ярусе, Ширина ЯПФ – это максимальная ширина ярусов в ЯПФ.

Высота ЯПФ = сложность параллельной реализации алгоритма/программы.

Ярусно-параллельная форма графа алгоритма

Каноническая ярусно-параллельная форма графа алгоритма

Высота канонической ЯПФ = длине критического пути + 1.

Каноническая ярусно-параллельная форма графа алгоритма

Чему, согласно закону Амдала, равно максимальное ускорение, которое можно получить при исполнении данного фрагмента на параллельной вычислительной системе?

Закон Амдала:

$$S \leq \frac{1}{\alpha + \frac{(1 - \alpha)}{n}}$$
 где: $\alpha - доля последовательных операций, $p - число процессоров в системе.$$

Каноническая ярусно-параллельная форма графа алгоритма

$$S \approx \frac{1}{\alpha}$$

$$\alpha = rac{ ^{ ext{ Число последовательных}} { \text{ операций} } = rac{m}{n^*m} = rac{1}{n}$$

S≈ n

Конечный параллелизм определяется информационной независимостью некоторых фрагментов в тексте программы.

Массовый параллелизм определяется информационной независимостью итераций циклов программы.

Конечный параллелизм.

Массовый параллелизм.

Координатный параллелизм.

Координатный параллелизм.

Утверждение: для того чтобы цикл был параллельным необходимо и достаточно, чтобы для любой тройки графа алгоритма данного цикла включение $\Delta_i \subset G_i$ было верным, где

 Δ_i — это многогранник из тройки,

$$G_i = \{f_1 = i_1,$$

 i_1 — это параметр анализируемого цикла,

 f_1 — это первая компонента векторной функции F_i из тройки.

Скошенный параллелизм.

for(i = 0; i < n; ++i)
for(j = 0; j < m; ++j)

$$A[i][j] = A[i][j-1] + A[i-1][j]*x;$$

(суммирование элементов массива)

```
s = 0.0;
for ( i = 0; i < n; ++i )
s = s + A[i];
```

(суммирование элементов массива)

<u>Информационная зависимость определяет критерий</u> эквивалентности преобразований программ.

Информационная независимость определяет ресурс параллелизма программы.

Перестановка циклов.

Перестановка циклов.

#pragma omp parallel for for(i = 0; i < n; ++i) for(j = 0; j < m; ++j) A[i][j] = A[i-1][j] + C[i][j]*x;

Всегда ли перестановка циклов является эквивалентным преобразованием?

Распределение циклов.

```
for( i = 1; i < n; ++i) {

A[i] = A[i-1]*p + q;

C[i] = (A[i] + B[i-1])*s;

B[i] = (A[i] - B[i])*t;

}
```


Распределение циклов.

```
for( i = 1; i < n; ++i) {
1    A[i] = A[i-1]*p + q;
2    C[i] = (A[i] + B[i-1])*s;
3    B[i] = (A[i] - B[i])*t;
}
```


Распределение циклов.

Утверждение: для того чтобы можно было выполнить распределение цикла необходимо и достаточно, чтобы распределяемые части находились в разных компонентах сильной связности информационного графа тела данного цикла.

Распределение циклов.

```
for( i = 1; i < n; ++i) {
    A[i] = A[i-1]*p + q;
    C[i] = (A[i] + B[i-1])*s;
    B[i] = (A[i] - B[i])*t;
}
```

```
for(i = 1; i < n; ++i)
A[i] = A[i-1]*p + q;
#pragma omp parallel for
for(i = 1; i < n; ++i)
B[i] = (A[i] - B[i])*t;
#pragma omp parallel for
for(i = 1; i < n; ++i)
C[i] = (A[i] + B[i-1])*s;
```

Расщепление циклов.

for(
$$i = 501$$
; $i \le 2000$; ++ i)
A[i] = A[i] + A[i –500];

Расщепление циклов.

for(
$$i = 501$$
; $i \le 2000$; $++i$)
A[i] = A[i] + A[i-500];

Расщепление циклов.


```
#pragma omp parallel for for( i = 501; i \le 1000; ++i)
A[i] = A[i] + A[i-500];
#pragma omp parallel for for( i = 1001; i \le 1500; ++i)
A[i] = A[i] + A[i-500];
#pragma omp parallel for for( i = 1501; i \le 2000; ++i)
A[i] = A[i] + A[i-500];
```

Эквивалентно ли преобразование?

Простой пример...

(последовательный вариант)

DO
$$i = 1$$
, n

$$DO j = 1$$
, n

$$U(i + j) = U(2*n - i - j + 1)*q + p$$

$$EndDO$$

$$EndDO$$

Совсем не простой пример... (параллельный вариант)

$$DO \ i=1, n$$
 $DO \ j=1, n-i$ Параллельный цикл!
 $U(i+j)=U(2^*n-i-j+1)^*q+p$
 $End\ DO$
 $DO \ j=n-i+1, n$ Параллельный цикл!
 $U(i+j)=U(2^*n-i-j+1)^*q+p$
 $End\ DO$
 $End\ DO$

Решение задачи на компьютере

Решение СЛАУ: от метода к алгоритму

(информационная структура)


```
do i = n, 1, -1

s = 0

do j = i+1, n

s = s + A(i,j)*x(j)

end do

x(i) = (b(i) - s)/A(i,i)

end do
```

Решение СЛАУ: от метода к алгоритму

(информационная структура)


```
do i = n, 1, -1

s = 0

do j = n, i+1, -1

s = s + A(i,j)*x(j)

end do

x(i) = (b(i) - s)/A(i,i)

end do
```

Где узнать больше?

