Q Midtem

PHYS 107 - Week 5 - Wednesday * Announcements: - Eid on Friday, tophat should work

work lut occused absence taken

- fractice quistions not graded

* Friction:

kinetic friction: $f_k = \mu_k N$ static friction: Of flas u, N normal force N & weight W * Example of skier on a slope (m = 70 kg) $\sqrt{5} = 0 \text{ m/s}$ $\sqrt{5} = 0.05$ $\sqrt{5} = 0.03$ $\sqrt{5} = 0.03$ FBD W 30°

W = mg downwards (always) e) will the skier start morning?
e) what will be the velocity after 5 m? Q Friction in skier

- congrenents:
$$\vec{N} = (0, N)$$
 $\vec{W} = (-mg \sin 30^{\circ}, -mg \cos 30^{\circ})$
 $\vec{J} = (\vec{J}, 0)$
 $\vec{J} = (\vec{J}, 0$

$$a_{x} \neq 0 \rightarrow f_{k} - mg \sin 30^{\circ} = m a_{x}$$

$$u_{k} N$$

$$a_{x} = \frac{4k - mg \sin 30^{\circ}}{m} = \frac{(0.03)(606N) - 350N}{70 kg}$$

$$a_{x} = -4.7 \frac{m}{s^{2}}$$

- prelocity at
$$3c = -5m$$
 from $x_0 = 0$

$$V^2 = V_0^2 + 2a_x(z-z_0)$$

$$v^2 = 0 + 2(-4.7 \frac{m}{s^2})(-5m) => v = -4.87 \frac{m}{s}$$

negative x direction!

Tendon

