Introduction

In this project we optimize the temperature, stress, and natural frequency. The main core of this optimization is to understand how optimization work in industrial world. For example, we have break disc for vehicles with pads. We are interested in knowing the result of optimization. We setup static structure, model, and transient thermal and parameters. The schematics below shows how the project connected to each ether.

The formation is for minimize the stress in the break disc

Minimize
$$F = \sum_{n=1}^{n=21} B_n x_n + \sum_{n=1}^{21} B_n n_n^2 + B_n$$

We have two constaines

$$p1 \le 22.5$$

P1 is the rotor for thinkness

$$p2 \le 122$$

P2 is inner rotor for diameter

Model desgin

We used Ansys for soliving this optimization problem

This is the schematic of optimization design in Ansys.

The design shows in Ansys

We design this disc and run it static structure and using mesh

This is for the mesh design with 0.0003 m of size meshing

This shows the equivalent stress for von-mises. That shows the pressure level in the disc

The direction of pressure in the pads of the break. The pressure was applied in the system as the problem required.

The direction of pressure in the pads of the break.

The direction of rotation on y direction. It required rotation of the disc because the car moving with different speed.

These show the pressure 1 and 2 rotation of velocity at 250 rad/s.

The total deformation for the break as showing here. This shows how the frequency impacting the system. And that can determent how we can reduce the stress in some part of the break.

The temperature in c as shown here. We know that the temperature will be very high in the surface of the disc.

For the temperature and time in s

This the heat flus 1 for transient thermal

This the heat flus 2 for transient thermal

Design of Experiment part

Setup for design experiment

We used the type of design experiment is <u>Latin Hypercube Sampling Design</u> and User-Defined Samples with 20 number of samples. We found the temperature has minimum and maximum values are 334.24 and 348.27 C. Also, for the natural frequency minimum and maximum are 1259.60 and 1737.16 Hz. The stress for minimum and maximum are 11199862.83 and 23599292.79 Pa.

Table of	Table of Outline A12: Design Points of Design of Experiments									
	А	В	С	D	E	F	G			
1	Name 💌	P1 - rotor_thickness (mm)	P2 - rotor_OD (mm)	P3 - rotor_ID (mm)	P4 - Equivalent Stress Maximum (Pa)	P5 - Temperature Maximum (C)	P6 - Total Deformation Reported Frequency (Hz)			
2	1	25.125	125.49	82.2	1.2995E+07 342.36		1458.1			
3	2	26.125	132.46	69	1.178E+07	341.52	1553.3			
4	3	22.625	133.24	72.6	1.1524E+07	348	1457			
5	4	25.625	122.39	71.4	1.7574E+07	343,46	1737.2			
6	5	23.125	127.81	87	1.1984E+07	348.27	1309			
7	6	27.375	128.59	83.4	1.1791E+07	339.08	1446.1			
8	7	25.375	131.69	88.2	1.454E+07	342.93	1286.7			
9	8	27.125	130.14	76.2	1.1973E+07	338.98	1548.5			
10	9	24.125	136.34	66.6	1.12E+07	342.63	1403.4			
11	10	23.875	123.16	70.2	1.447E+07	344.76	1707.2			
12	11	24.625	129.36	67.8	1.1399E+07	345.2	1581.5			
13	12	23.625	130.91	84.6	1.1676E+07	347.91	1340.4			
14	13	24.875	127.04	89.4	2.3599E+07	341.68	1274.7			
15	14	26.375	134.01	77.4	1.1761E+07	341.82	1456.9			
16	15	24.375	123.94	73.8	1.3401E+07	340.5	1644.2			
17	16	26.875	124.71	79.8	1.462E+07	334.24	1548.9			
18	17	26.625	137.11	81	1.1659E+07	338.87	1372			
19	18	25.875	134.79	78.6	1.2077E+07	340.46	1428.9			
20	19	23.375	126.26	75	1.1517E+07	344.63	1569.5			
21	20	22.875	135.56	85.8	1.1862E+07	347.8	1259.6			

These are the samples which are 21 iterations. We can use more but it will take time. Only 21 samples taken with me a lot of house and I redo it again it took very long time.

This is for design points and parameter. This design shows how different samples can impact the system result.

Parameters parallel

The values of parameters:

Parameters	Lower Bound	Upper Bound
P1 - rotor_thickness	22.5	27.5
P2 - rotor_OD	122	137.5
P3 - rotor_ID	66	90

We set up these values depends on our range of values. These are the values we used in this simulation.

Respond Surface part

This is the set

We used <u>genetic aggregation</u> for the type of surface response. And we select generate verification points and number verification points 4. This part is very important because it shows how the samples can get in a line that can determinant and can easily solve the problem and find the optimal solution of the problem.

Table of	Table of Schematic E3: Response Surface: Tolerances									
	А	В	С	D	Е	F				
1	Name	Calculated Minimum	Calculated Maximum	Maximum Predicted Error	Refinement	Tolerance 💌				
2	P4 - Equivalent Stress Maximum (Pa)	1.1001E+07	2.3599E+07	5.6473E+06						
3	P5 - Temperature Maximum (C)	333.64	349.64	7.2833						
4	P6 - Total Deformation Reported Frequency (Hz)	1172.5	1879.5	26.277						

This table for respaces surface. These are very important result because we used them in the optimization part us we setup the constraints. These have to be very accuracy.

This is for parameters and min and max values

This is predicted from response surface and observed from design points. It is showing striate line and the points for the very accuracy as we found. This plot shows the solution us very closed to the optimal solution.

This is the respond surface as shown above

This for the verification points

This is response points for both parameters and values of stress, temperature and natural frequency.

This is maximum stress and parameter for thickness. We can understand from this plot where is the mix stress in the system.

The local sensitivity and output parameters for p1, p2, and p3.

Stress maximum and respond points

Spider and respond points

optimization part

in optimization we used two methods:

- 1-method section manual.
- 2- Auto with multiples objective.

We setup the objective and constants in optimization part. We select the min the stress with two parameters as constraints such as p1 thickness and p2 inner diameter.

We did the optimization in two different way and found that multiples objective is the most accuracy result. However, all these results good output but multiples objective take more time and that can help a lot for get very good outcomes.

Method section manual (MOGA)

	A	В	С
1		Enabled	Monitoring
2	☐ ? Optimization ①		
3	☐ Objectives and Constraints		
4	Minimize P5; P5 <= 348.27 C		
5	Seek P4 = 0 Pa; P4 <= 2.3599E+07 Pa		
6	Seek P6 = 0 Hz; P6 >= 1259.6 Hz		
7	■ Domain		
8	☐ Geometry (A1)		
9	ပို P1 - rotor_thickness	V	
10	P2 - rotor_OD	V	
11	rotor_ID	V	
12	Parameter Relationships		
13	✓ Name of the Convergence Criteria		
14	■ Results		
15	✓ Candidate Points		
16	✓ <u>:</u> Tradeoff		
17	✓ 🛱 Samples		
18	✓ 📜 Sensitivities		

Propertie	s of Outline A2: Optimization	▼ ф
	A	В
1	Property	Value
2	■ Design Points	
3	Preserve Design Points After DX Run	
4	■ Failed Design Points Manager	ment
5	Number of Retries	0
6	■ Optimization	
7	Method Selection	Manual
8	Method Name	MOGA 🔻
9	Estimated Number of Evaluations	14400
10	Tolerance Settings	V
11	Verify Candidate Points	
12	Number of Initial Samples	3000
13	Number of Samples Per Iteration	600
14	Maximum Allowable Pareto Percentage	70
15	Convergence Stability Percentage	2

	А	В	С		D	E	F	G	Н	I
1	Name	Parameter		Objective			Constraint			
2	Name	rai ailletei	Type	1	Target	Tolerance	Type	Lower Bound	Upper Bound	Tolerance
3	Minimize P4; P4 <= 2.3599E+07 Pa	P4 - Equivalent Stress Maximum		-	0		Values <= Upper Bound		2.3599E+07	0.001
4	Seek P1 = 22.5 mm	P1 - rotor_thickness	Seek Target	▼	22.5	0.001	No Constraint			
5	Seek P2 = 122 mm	P2 - rotor_OD	Seek Target	-	122	0.001	No Constraint			
*		Select a Parameter								

These are objective and constrained

	A	В	С	D						
1	■ Optimization Study									
2	Minimize P4; P4 <= 2.3599E+07 Pa	Goal, Minimize P4 (Default importance); Strict Constraint, P4 values less than or equals to 2.3599E+07 Pa (Default importance)								
3	Seek P2 = 122 mm	Goal, Seek P2 = 122 mm (De	fault Importance)							
4	Seek P1 = 22.5 mm	Goal, Seek P1 = 22.5 mm (De	efault Importance)							
5	□ Optimization Method									
6	MOGA	The MOGA method (Multi-Objective Genetic Algorithm) is a variant of the popular NSGA -II (Non-dominated Sorted Genetic Algorithm-II) based on controlled elitism concepts. It supports multiple objectives and constraints and aims at finding the global optimum.								
7	Configuration	Generate 3000 samples initially, 600 samples per iteration and find 3 candidates in a maximum of 20 iterations.								
8	Status	Converged after 6609 evalu	ations.							
9	■ Candidate Points									
10		Candidate Point 1	Candidate Point 2	Candidate Point 3						
11	P1 - rotor_thickness (mm)	22.501	22.5	22.5						
12	P2 - rotor_OD (mm)	<u>★</u> 123.17 ★★ 123.45 ★★ 123.45								
13	P3 - rotor_ID (mm)	79.145	79.651	79.369						
14	P4 - Equivalent Stress Maximum (Pa)	★ 1.2522E+07	★ 1.2441E+07	★ 1.2442E+07						

Candidate points

This is for the optimization stability percentage

For minimizes the stress

This shows the parameters and natural frequency (candidate points)

Target point for optimization

The parameter for P1 - rotor_thickness

For parameter for P2 - rotor_OD

The parameter for P3 - rotor_ID

Optimization

Auto with multiple objective method.

	A		В	С
1			Enabled	Monitoring
2	☐ ✓ Optimization			
3	■ Objectives and Constraints			
4	Minimize P4; P4 <=	2.3599E+07Pa		hadel-they the market
5	Seek P1 = 22.5 mm			11
6	Seek P2 = 122 mm			
7	■ Domain			
8	☐ 🍘 Geometry (A1)			
9	P1 - rotor_thi	ckness	V	11
10	P2 - rotor_OD)	V	
11	P3 - rotor_ID		V	MANAPINALINA
Properti	es of Outline A2: Optimization			→ f
	A		В	
1	Property		Valu	ie .
2	■ Design Points			
3	Preserve Design Points After DX Run			
4	■ Failed Design Points Managen	nent		
5	Number of Retries	0		
6	■ Optimization			
7	Method Selection	Auto		
8	Run Time Index	5 - Medium		
9	Estimated Number of Design Points	149		
10	Method Name	Adaptive Multiple	e-Objective	
11	Tolerance Settings		√	
12	Number of Initial	25		

This shows the setup for multiple objective method

Objective and constraints for the system

Stress and number of points

Rotor thickness and number of points

Parameter for p2 and number of points

Parameter for inner and number of points

Convergys criteria

Candidate points

Sample plots

Stress and temperature

Sensitivity and output parameters

	A	В	С	D						
1	■ Optimization Study									
2	Minimize P4; P4 <= 2.3599E+07 Pa	Goal, Minimize P4 (Default importance); Strict Constraint, P4 values less than or equals to 2.3599E+07 Pa (Default importance)								
3	Seek P2 = 122 mm	Goal, Seek P2 = 122 mm (De	fault Importance)							
4	Seek P1 = 22.5 mm	Goal, Seek P1 = 22.5 mm (D	efault Importance)							
5	Optimization Method									
6	Adaptive Multiple-Objective	The Adaptive Multiple-Objective method is a variant of the popular NSGA-II (Non -dominated Sorted Genetic Algorithm-II) based on controlled elitism concepts. It supports multiple objectives and constraints and aims at finding the global optimum. It is limited to continuous and manufacturable input parameters.								
7	Configuration	Generate 26 samples initially, 26 samples per iteration and find 3 candidates in a maximum of 7 iterations.								
8	Status	Not Converged.								
9	■ Candidate Points									
10		Candidate Point 1	Candidate Point 2	Candidate Point 3						
11	P1 - rotor_thickness (mm)	22.763 🙇 22.758 🙇 22.76								
12	P2 - rotor_OD (mm)	<u>★</u> 123.6 ★★ 125.49 ★★ 125.51								
13	P3 - rotor_ID (mm)	69.39	80.263	73.316						
14	P4 - Equivalent Stress Maximum (Pa)	★ 1.3367E+07	★★ 1.1357E+07	★★ 1.1327E+07						

Candidate points

	A	В	С	D	E	F	G	н	I	3	К
1	Reference	Name	P1 - rotor	_thickness (mm)	P2 - ro	tor_OD (mm)	P3 - rotor ID (mm)	P4 - Equivalent Stress Maximum (Pa)		P5 - Temperature Maximum (C)	P6 - Total Deformation Reported
2	THE COURT	None	Parameter Value	Variation from Reference	Parameter Value	Variation from Reference	13-10tol_10 (illii)	Parameter Value	Variation from Reference	P3 - Temperature Maximum (C)	Frequency (Hz)
3	0	Candidate Point 1	22.763	0.00%	123.6	0.00%	69.39	★ 1.3367E+07	0.00%	350.72	1676.7
4	0	Candidate Point 2	22.758	-0.02%	★★ 125.49	1.53%	80.263	★★ 1.1357E+07	-15.04% 349.97		1470.5
5	0	Candidate Point 3	22.764	0.00%	★★ 125.51	1.55%	73.316	★★ 1.1327E+07	-15.26%	347.2	1603.1
		New Custom Candidate Point	25		125		75				

Candidate points