Contents

- 1. Understand Decision Trees
- 2. Discover entropy and information gain
- 3. Discuss decision tree limitations + applications

Decision Trees

- A decision tree is a tree-like model that is used for making decisions.
- It consists of nodes that represent decision points, and branches that represent the outcomes of those decisions.
- The decision points are based on the values of the input variables, and the outcomes are the possible classifications or regression predictions.

Decision Trees for Classification

cylinders	displacement	horsepower	weight	acceleration	year	maker	mpg
4	112	88	2395	18	82	America	Good
4	135	84	2370	13	82	America	Bad
4	135	84	2370	13	82	America	Good
4	91	68	1970	17.6	82	Europe	Good
4	105	63	2125	14.7	82	America	Bad
4	105	63	2125	14.7	82	America	Good
6	146	120	2930	13.8	81	Europe	OK
4	156	92	2620	14.4	81	America	OK
4	81	60	1760	16.1	81	Europe	Good
4	140	88	2870	18.1	80	America	OK
8	305	130	3840	15.4	79	America	Bad
6	200	85	2990	18.2	79	America	Bad

Full dataset link here!

Split data into a tree structure

- Let's split the dataset on how heavy the car is.
- The root note represents entire dataset (19 bad, 15 okay, and 8 good examples)
- The leaves have some subset of bad/okay/good
 - Some leaves are **pure** (all bad, okay, or good)
 - \circ Some leaves are **mixed** \rightarrow split further

Second Split

- Let's split the dataset on displacement
- A leaf is now pure (good!)
- Another leaf is still mixed → split further

Keep Splitting

- Keep on splitting until all leaves are pure
- Sometimes this actually might not be possible (see the red leaves 1 out of 2 examples is bad)
- We can use this organization of the data as a classifier
- Given a test example, we traverse the tree from root to the leaf and return the leaf label → decision tree!

Decision Trees

- Like SVMs, Decision Tree (DT) is a versatile ML algorithm for classification and regression (Recall **DecisionTreeRegressor**)
- We will discuss how to train, visualize, and predict with Decision Trees, including Classification and Regression Tree (CART).
- Later, it is a fundamental component of **Random Forest**

- 1. Calculate the impurity for the entire dataset. This is the impurity of the root node.
- 2. For each input variable, calculate the impurity for all possible split points. The split point that results in the minimum impurity is chosen.
- 3. The data is split into two subsets based on the chosen split point, and a new node is created for each subset.
- 4. Steps 2 and 3 are repeated for each new node, until a stopping criterion is met. This stopping criterion could be a maximum tree depth, a minimum number of data points in a leaf node, or a minimum reduction in impurity.
- 5. The resulting tree is the decision tree.

- 1. Calculate the impurity for the entire dataset. This is the impurity of the root node.
- 2. For each input variable, calculate the impurity for all possible split points. The split point that results in the minimum impurity is chosen.
- 3. The data is split into two subsets based on the chosen split point, and a new node is created for each subset.
- 4. Steps 2 and 3 are repeated for each new node, until a stopping criterion is met. This stopping criterion could be a maximum tree depth, a minimum number of data points in a leaf node, or a minimum reduction in impurity.
- 5. The resulting tree is the decision tree.

- 1. Calculate the impurity for the entire dataset. This is the impurity of the root node.
- 2. For each input variable, calculate the impurity for all possible split points. The split point that results in the minimum impurity is chosen.
- 3. The data is split into two subsets based on the chosen split point, and a new node is created for each subset.
- 4. Steps 2 and 3 are repeated for each new node, until a stopping criterion is met. This stopping criterion could be a maximum tree depth, a minimum number of data points in a leaf node, or a minimum reduction in impurity.
- 5. The resulting tree is the decision tree.

- 1. Calculate the impurity for the entire dataset. This is the impurity of the root node.
- 2. For each input variable, calculate the impurity for all possible split points. The split point that results in the minimum impurity is chosen.
- 3. The data is split into two subsets based on the chosen split point, and a new node is created for each subset.
- 4. Steps 2 and 3 are repeated for each new node, until a stopping criterion is met. This stopping criterion could be a maximum tree depth, a minimum number of data points in a leaf node, or a minimum reduction in impurity.
- 5. The resulting tree is the decision tree.

Feature x<threshold

Feature x>=threshold

- 1. Calculate the impurity for the entire dataset. This is the impurity of the root node.
- 2. For each input variable, calculate the impurity for all possible split points. The split point that results in the minimum impurity is chosen.
- 3. The data is split into two subsets based on the chosen split point, and a new node is created for each subset.
- 4. Steps 2 and 3 are repeated for each new node, until a stopping criterion is met. This stopping criterion could be a maximum tree depth, a minimum number of data points in a leaf node, or a minimum reduction in impurity.
- 5. The resulting tree is the decision tree.

Feature x<threshold

Feature x>=threshold

https://www.niser.ac.in/~smishra/teach/cs460/23cs460/lectures/lec9.pdf

- 1. Calculate the impurity for the entire dataset. This is the impurity of the root node.
- 2. For each input variable, calculate the impurity for all possible split points. The split point that results in the minimum impurity is chosen.
- 3. The data is split into two subsets based on the chosen split point, and a new node is created for each subset.
- 4. Steps 2 and 3 are repeated for each new node, until a stopping criterion is met. This stopping criterion could be a maximum tree depth, a minimum number of data points in a leaf node, or a minimum reduction in impurity.
- 5. The resulting tree is the decision tree.

https://www.niser.ac.in/~smishra/teach/cs460/23cs460/lectures/lec9.pdf

CART

- Stopping Criteria
 - Maximum depth
 - o Minimum number of instances in each leaf node
 - Feature values for all records are identical
 - Other criteria

How to measure impurity?!

• We need to define a way for measuring **impurity** to select features and splitting thresholds

Gini index measures the probability of a random instance being misclassified when chosen randomly

Entropy measures disorder, randomness, or uncertainty

Choosing what feature to split on

A node is "pure" if all samples it applies to belong to the same class (or its impunity = 0). Otherwise its impurity (Gini index) is computed as:

$$G_i = 1 - \sum\limits_{k=1}^n {p_{i,k}}^2$$

 $p_{i,k}$ is the ratio of class k instances among the training instances in the i^{th} node.

Gini index measures the probability of a random instance being misclassified when chosen randomly

Estimating Class Probability

- Predict by estimating probability that a sample belongs to a particular class k
- Traverse the tree to leaf node, then return the ratio of training samples of class k

Decision Boundary

- 1. Calculate the impurity for the entire dataset. This is the impurity of the root node.
- 2. For each input variable, calculate the impurity for all possible split points. The split point that results in the minimum impurity is chosen.
- 3. The data is split into two subsets based on the chosen split point, and a new node is created for each subset.
- 4. Steps 2 and 3 are repeated for each new node, until a stopping criterion is met. This stopping criterion could be a maximum tree depth, a minimum number of data points in a leaf node, or a minimum reduction in impurity.
- 5. The resulting tree is the decision tree.

https://www.niser.ac.in/~smishra/teach/cs460/23cs460/lectures/lec9.pdf

Decision Trees: CART

The CART Training Algorithm

The Classification and Regression Tree (CART) algorithm to train Decision Trees

• Search for the pair of a single feature and its threshold (k, t_k) that produce the subset with **lowest Gini index**:

$$J(k, t_k) = \frac{m_{\text{left}}}{m} G_{\text{left}} + \frac{m_{\text{right}}}{m} G_{\text{right}}$$
 where
$$\begin{cases} G_{\text{left/right}} \text{ measures the impurity of the left/right subset,} \\ m_{\text{left/right}} \text{ is the number of instances in the left/right subset.} \end{cases}$$

- Split training set into two subsets using feature k and threshold t_k
- Split the subset using the same logic, stop once reaches max depth

Entropy, anyone?

Entropy measures disorder, randomness, or uncertainty

Entropy

- •Entropy is a measure of **disorderness**: it is zero when well-order and identical
- •A set's entropy is zero when it contains instances of only one class (same as Gini)
- •Entropy is calculated as H_i:

$$H_i = -\sum\limits_{k=1}^n p_{i,k} \log(p_{i,k})$$

Entropy Interpretation

For binary Y, the entropy is a function of p(y):

$$H(Y) = -\sum_{y \in Y} p(y) \log p(y)$$

Note: entropy is 0 when **p=1 or p=0** (all are of the same class)

Entropy is 1 when **p=0.5** (50% in either class)

.

Information Gain

• To measure the reduction in entropy of Y from knowing X, we use Information Gain:

IG
$$(Y,X)=H(Y)-H(Y|X)$$
 where $H(Y|X)=\sum\limits_{x\in X}p(x)H(Y|X=x)$

- To determine which feature in a given set of feature vectors is most useful to discriminating between the classes
- We will use IG to decide the ordering of features in the nodes of a decision tree.

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

- 1. Calculate the impurity for the entire dataset. This is the impurity of the root node.
- 2. For each input variable, calculate the impurity for all possible split points. The split point that results in the minimum impurity is chosen.
- 3. The data is split into two subsets based on the chosen split point, and a new node is created for each subset.
- 4. Steps 2 and 3 are repeated for each new node, until a stopping criterion is met. This stopping criterion could be a maximum tree depth, a minimum number of data points in a leaf node, or a minimum reduction in impurity.
- 5. The resulting tree is the decision tree.

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

$$H(Y) = -\sum_{i=1}^{K} p_k \log_2 p_k$$
$$= -\frac{5}{14} \log_2 \frac{5}{14} - \frac{9}{14} \log_2 \frac{9}{14}$$
$$= 0.94$$

- 1. Calculate the impurity for the entire dataset. This is the impurity of the root node.
- 2. For each input variable, calculate the impurity for all possible split points. The split point that results in the minimum impurity is chosen.
- 3. The data is split into two subsets based on the chosen split point, and a new node is created for each subset.
- 4. Steps 2 and 3 are repeated for each new node, until a stopping criterion is met. This stopping criterion could be a maximum tree depth, a minimum number of data points in a leaf node, or a minimum reduction in impurity.
- 5. The resulting tree is the decision tree.

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

$$InfoGain(Humidity) = H(Y) - \frac{m_L}{m} H_L - \frac{m_R}{m} H_R$$
$$= 0.94 - \frac{7}{14} H_L - \frac{7}{14} H_R$$

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

$$InfoGain(Humidity) = H(Y) - \frac{m_L}{m} H_L - \frac{m_R}{m} H_R$$

$$0.94 - \frac{7}{14} H_L - \frac{7}{14} H_R$$

$$H_L = -\frac{6}{7}\log_2\frac{6}{7} - \frac{1}{7}\log_2\frac{1}{7}$$

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

InfoGain(Humidity) =
$$H(Y) - \frac{m_L}{m} H_L - \frac{m_R}{m} H_R$$

$$0.94 - \frac{7}{14} H_L - \frac{7}{14} H_R$$

$$H_L = -\frac{6}{7}\log_2\frac{6}{7} - \frac{1}{7}\log_2\frac{1}{7}$$

$$= 0.592$$

$$H_R = -\frac{3}{7}\log_2\frac{3}{7} - \frac{4}{7}\log_2\frac{4}{7}$$

$$= 0.985$$

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

InfoGain(Humidity) =

$$H(Y) - \frac{m_L}{m}H_L - \frac{m_R}{m}H_R$$

 $0.94 - \frac{7}{14}0.592 - \frac{7}{14}0.985$
= $0.94 - 0.296 - 0.4925$
= 0.1515

Example: When to play tennis?

Calculating for each feature:

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

$$IG(Humidity) = 0.1515$$

$$IG(Outlook) = 0.247$$

$$IG(Temperature) = 0.029$$

$$IG(Windy) = 0.048$$

ightarrow Initial split is on **Outlook** because it is the feature with the highest IG.

The CART Training Algorithm

- 1. Calculate the impurity for the entire dataset. This is the impurity of the root node.
- 2. For each input variable, calculate the impurity for all possible split points. The split point that results in the minimum impurity is chosen.
- 3. The data is split into two subsets based on the chosen split point, and a new node is created for each subset.
- 4. Steps 2 and 3 are repeated for each new node, until a stopping criterion is met. This stopping criterion could be a maximum tree depth, a minimum number of data points in a leaf node, or a minimum reduction in impurity.
- 5. The resulting tree is the decision tree.

The CART Training Algorithm

- 1. Calculate the impurity for the entire dataset. This is the impurity of the root node.
- 2. For each input variable, calculate the impurity for all possible split points. The split point that results in the minimum impurity is chosen.
- 3. The data is split into two subsets based on the chosen split point, and a new node is created for each subset.
- 4. Steps 2 and 3 are repeated for each new node, until a stopping criterion is met. This stopping criterion could be a maximum tree depth, a minimum number of data points in a leaf node, or a minimum reduction in impurity.
- 5. The resulting tree is the decision tree.

Example: When to play tennis?

Search for best split at the next level:

The CART Training Algorithm

- 1. Calculate the impurity for the entire dataset. This is the impurity of the root node.
- 2. For each input variable, calculate the impurity for all possible split points. The split point that results in the minimum impurity is chosen.
- 3. The data is split into two subsets based on the chosen split point, and a new node is created for each subset.
- 4. Steps 2 and 3 are repeated for each new node, until a stopping criterion is met. This stopping criterion could be a maximum tree depth, a minimum number of data points in a leaf node, or a minimum reduction in impurity.
- 5. The resulting tree is the decision tree.

Example: When to play tennis?

The final decision tree

Note that not all leaves need to be pure; sometimes similar (even identical) instances have different classes. Splitting stops when data cannot be split any further.

How to measure impurity?!

• We need to define a way for measuring **impurity** to select features and splitting thresholds

Gini index measures the probability of a random instance being misclassified when chosen randomly

Entropy measures disorder, randomness, or uncertainty

- Both Entropy and Gini produce similar tree most of the time, but Gini is slightly faster.
- Gini is for numerical features while Entropy is for categorical ones.
- Gini tends to isolate the **largest** class from other classes while Entropy tends to find group that made up ~50% of the data → **more balanced tree**.

Computational Complexity

- Finding the optimal tree is known as a NP-Complete problem, so we must settle for a "reasonably good" solution.
- Traversing requires roughly O(log(m)) independent of number of features → very fast (m is the number of samples)
- Training comparing all features on all samples at each node
 O(nm log(m)) → slow down considerably for large training set.
 (n is the number of features)

What makes a good tree?

- Nt too small: need to handle important but subtle distinction in data
- **Not too big:** avoid overfitting training examples
- Occam's Razor: find the simplest model (smallest tree) that fits the observations
- **Regularization**: In practice, you can **regularize** the construction process to get small but effective tree

Occam's Razor: if you have two competing ideas to explain the same phenomenon, you should prefer the simpler one.

Regularization Hyperparameters

Left unconstrained, decision tree will most likely overfitting to the training data.

Need to restrict the tree degree of freedom → **regularization**

- max_depth: the maximum depth of the tree
- min_sample_split: the minimum number of samples a node must have to split
- min_sample_leaf: the minimum number of samples a leaf node must have
- max_leaf_nodes: maximum number of leaf nodes
- max_features: maximum number features that are evaluated for splitting

Training a Decision Tree in Python

```
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

iris = load_iris()
X = iris.data[:, 2:] # petal length and width
y = iris.target

tree_clf = DecisionTreeClassifier(max_depth=2, random_state=42)
tree_clf.fit(X, y)
```

Code Demo

```
from sklearn.datasets import make_moons
Xm, ym = make_moons(n_samples=100, noise=0.25, random_state=53)

deep_tree_clf1 = DecisionTreeClassifier(random_state=42)
deep_tree_clf2 = DecisionTreeClassifier(min_samples_leaf=4, random_state=42)
deep_tree_clf1.fit(Xm, ym)
deep_tree_clf2.fit(Xm, ym)
```


Limitations and Applications

Sensitivity to Training Set

DT loves **orthogonal** decision boundary → sensitive to training set rotation

Limitations and Applications

Instability to small variation of training data

Random Forest might help!

Decision Trees: Extensions

1. Regression

```
from sklearn.tree import DecisionTreeRegressor

tree_reg = DecisionTreeRegressor(max_depth=2, random_state=42)
tree_reg.fit(X, y)
```


2. Max Depth and Prediction

3. CART cost function

$$J(k, t_k) = \frac{m_{\text{left}}}{m} \text{MSE}_{\text{left}} + \frac{m_{\text{right}}}{m} \text{MSE}_{\text{right}}$$

where
$$\begin{cases} MSE_{\text{node}} = \sum_{i \in \text{node}} (\hat{y}_{\text{node}} - y^{(i)})^2 \\ \hat{y}_{\text{node}} = \frac{1}{m_{\text{node}}} \sum_{i \in \text{node}} y^{(i)} \end{cases}$$

4. Regression Overfitting and Regularization

Recap: Decision Trees

- Average of target value in the leaf node
- Classification: Majority class in the leaf node 55

Summary

- + Easy to understand (by human)
- + Computationally efficient
- + Handle both numerical and categorical data
- + Eager learning: do not have to carry training data around
- + Building block for various ensemble methods
- Heuristic training techniques
- Finding partition of space that minimizes error is NP-hard
- Use greedy approaches with limited theoretical work