东南大学电工电子实验中心 实验报告

课程名称: 数字逻辑电路实验 C

第 5 次实验

实验名称: 时序逻辑电路

院(系): 网络空间安全学院 专业: 计算机类

姓名: <u>梁耀欣</u> 学号: JS322405

实验室: 电子技术室 502 实验组别:

同组人员: 实验时间: 5月18日

评定成绩: 审阅教师:

时序逻辑电路

一、实验目的

- 1. 掌握时序逻辑电路的一般设计过程;
- 2. 掌握时序逻辑电路的时延分析方法,了解时序电路对时钟信号相关参数的基本要求;
- 3. 掌握时序逻辑电路的基本调试方法,熟练使用示波器观察波形图

二、实验原理

- 1、74HC00 与 74HC20 可以实现二一与非门和四一与非门的逻辑功能
- 2、将输出的十进制数字连到二极管上可以方便显示输出信号
- 3、74HC74 为两个单输入端的 D 触发器:

10 5 10 2PRE 10 6 9 20 GND 7 8 20

FUNCTION TABLE					
	INP	OUTI	PUTS		
PRE	CLR	CLK	D	σ	ō
L	Н	Х	Х	Н	L
н	L	X	X	L	н
L	L	X	X	ΗŤ	НŤ
н	Н	1	Н	Н	L
н	Н	1	L	L	н
Н	Н	L	X	Q ₀	\overline{Q}_0

4.74HC161 为四位二进制同步加法计数器:

MODE SELECT - FUNCTION TABLE FOR 'HC161 AND 'HCT161

_		
MR 1	O	16 V _{CC}
CP 2		15 TC
P0 3		14 Q0
P1 4		13 Q1
P2 5		12 Q2
P3 6		11 Q3
PE 7		10 TE
GND 8		9 SPE
_		

	INPUTS					OUTPUTS		
OPERATING MODE	MR	CP	PE	TE	SPE	Pn	Qn	TC
Reset (Clear)	L	Х	Х	Х	Х	Х	L	L
Parallel Load	Н	1	х	х	- 1	1	L	L
	Н	1	х	Х	1	h	Н	(Note 1)
Count	Н	1	h	h	h (Note 3)	Х	Count	(Note 1)
Inhibit	Н	Х	I (Note 2)	Х	h (Note 3)	Х	qn	(Note 1)
	Н	Х	Х	I (Note 2)	h (Note 3)	Х	qn	L

三、 实验内容

1、广告流水灯(第 11 周课内验收)

用触发器、组合函数器件和门电路设计一个广告流水灯,该流水灯由 8 个 LED 组成, 工作时始终为 1 暗 7 亮,且这一个暗灯循环右移。

- 1) 写出设计过程, 画出设计的逻辑电路图, 按图搭接电路
- 2) 将单脉冲加到系统时钟端,静态验证实验电路
- 3) 将 TTL 连续脉冲信号加到系统时钟端,用示波器观察并记录时钟脉冲 CP、触发器的输出端 Q2、Q1、Q0 和 8 个 LED 上的波形。

2、序列发生器(第 11 周课内课内验收)

分别用 MSI 计数器设计一个具有自启动功能的 01011 序列信号发生器

- 1) 写出设计过程, 画出电路逻辑图
- 2) 搭接电路, 并用单脉冲静态验证实验结果
- 3) 加入 TTL 连续脉冲,用示波器观察观察并记录时钟脉冲 CLK、序列输出端的波形。

3、简易数字钟(第 12 周课内验收)

设计一个只有小时和分钟功能的简易数字钟,输入时钟脉冲的周期为 1 分钟,4 位数

码管用于显示, 高 2 位显示小时 $(0\sim23)$, 低 2 位显示"分钟" $(0\sim59)$ 。

- 1) 设计并搭试电路,验证电路结果。
- 2) 用双踪示波器观察并记录"分钟"计数电路中的时钟脉冲及计数器的各输出波形
- 3) 用双踪示波器观察并记录"小时"计数电路中的时钟脉冲及计数器的各输出波形

四、 实验设计方案

1. 广告流水灯

实验原理:

- 1、画出时序状态转移表
- 2、通过译码器实现二极管的闪烁

1) 状态转移表

现态			次态			
$\mathbf{Q}_0^{\mathrm{n}}$	$\mathbf{Q}_1^{\mathrm{n}}$	$\mathbf{Q}_2^{\text{ n}}$	$\mathbf{Q_0}^{\mathrm{n+1}}$	$\mathbf{Q_1}^{\mathrm{n+1}}$	$\mathbf{Q}_2^{\text{ n+1}}$	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	1	0	1	
1	0	1	1	1	0	
1	1	0	1	1	1	
1	1	1	0	0	0	

2) 逻辑电路图

3) 实物连接图

在示波器上观察到的波形

Clk 与 A:

A与B:

A与C:

手绘图:

2. 序列发生器

实验原理:

设计一个模 5 的计数器,由于计数器自身特点不需要考虑自启动,把 74161 器件改为模 5 计数器并把输出结果连接到 74151 数据选择器,把最小项输入置 1,其余置 0,输出结果。

1) 状态表

顺序	\mathbf{Q}_{c}	\mathbf{Q}_{B}	$\mathbf{Q}_{\mathtt{A}}$	Y
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1

2) 逻辑表达式

Z= ODQCQBQA+QDQCQBQA+QDQCQBQA.

3)逻辑电路图

4) 实物连接图

在示波器上观察到的波形

手绘图

3. 简易数字钟

实验原理:

为了实现计数器的功能,分钟使用模 60 计数器,小时使用模 24 计数器,需要将两个计数器级联。为了满足需求,低位片都改装为模 10 计数器,分钟高位片改装成模 6 计数器,小时高位片改装成模 2 计数器。但是小时的高低位片都不是完全的模 10 和模 2 计数器,当高位片为 2 时,低位片会变成模 4 计数器。对于每一个计数器,使用两个 74161 芯片分别做个位数和十位数,再通过同步接法级联组成。通过将 ET 端接入控制加法,当达到 59 时,会发出信号到两个 LD 非端,下一次 CP 由 0 到 1 时进行 0000 送数,相当于清零效果。每清一次零,模 24 计数器会进行加 1 操作。为了方便观察,将四个 74161 芯片的 Q3,Q2,Q1 和 Q0 接入数码管,这样能直观地显示数字时间,方便观察。

1) 逻辑电路图

2) 实物连接图

实验中观察到的示波器波形

手绘图

五、 测试方案

首先接入单脉冲信号,观察数字显示器和 LED 灯并与状态真值表对比,若一致则证明实验正确,反之则需要用万用表检验电路的错误;分别用单脉冲和连续脉冲信号测试,由于两片计数器是同步置数法,观察显示屏是否从 00:01 到 24:00 再循环,若符合则证明测试成功,不符合则再排除障碍。

六、 实验总结

对于同步置数的规则在预习时还是有些困惑,但是在老师批改预习报告后及时发现问题,明白了模24的原理,在改正电路设计后成功完成了实验。