Instituto Politécnico Nacional Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas

Análisis de señales y sistemas Evaluación escrita (EE02) 04 de octubre de 2018 Tiempo: 85 minutos

Nombre: Montrel Croz Jorge de Jesús Grupo: ZMVI

Dr. Rafael Martínez Martínez

Este examen consta de 8 páginas (incluyendo esta portada) y 6 problemas. Verifique si falta alguna página. Escriba los datos solicitados en la parte superior y escriba sus iniciales en la parte superior de cada hoja por si llegarán a separarse las hojas.

Puede utilizar formulario y calculadora no programable en este examen.

Se requiere que muestre el trabajo realizado en cada problema de este examen. Las siguientes normas se aplicarán:

- Cada problema/ejercicio debe tener procedimiento ordenado y completo que justifique adecuadamente la respuesta anotada.
- Si falta el procedimiento o este no justifica la respuesta anotada entonces el problema vale 0 puntos aunque la respuesta sea correcta.
- No puede utilizar ningún dispositivo electrónico al menos que se indique lo contrario
- Un examen sucio y/o en desorden puede provocar 10 puntos menos en la calificación del examen.
- Cualquier intento de fraude amerita un reporte en subdirección académica.

Problema	Puntos	Calificación
1	20	3
2	15	9
3	10	10
4	10	9
5	20	20
6	25	15
Total:	100	66

No escriba en la tabla de la derecha.

1. 20 puntos

Encuentra las siguientes convoluciones:

a)
$$f(t) = (te^{-2t}u(t) + 8e^{-2t}u(t)) * (tu(t) - 2e^{-2t}u(t))$$

b)
$$x[n] = 0.5^n u[n] * (2n(0.3)^n u[n] - 2^{-n} u[n] + \delta[n])$$

 $f(t) \star (x(t) + h(t)) = f(t) \star x(t) + f(t) \star h(t)$ distributivides.

the lungodo

6.) usando 7, "uinj * 72" uinj = j, n+1 - 1/2 *** uinj 0.5°utr] * 2n(0.3)°utr] + 0.5°utr] * (-2°utr] + 6.5°utr] * 5(r)

 $-\frac{2}{3}(0.5 + \frac{1}{2}^{n+1}) + 0.5^{n}$] u[n] hope?

6. 25 puntos

EE03

Si $f_3(t) = f_1(t) * f_2(t)$, entonces demuestre que $f_1(at) * f_2(at) = \frac{1}{|a|} f_3(at)$. Esta propiedad de escalamiento de la convolución establece que si $f_1(t)$ y $f_2(t)$ están escaladas en tiempo por a entonces su convolución también esta escala por a en tiempo y en amplitud por $\frac{1}{|a|}$, considere dos casos a > 0 y a < 0, para que observe el por qué se obtiene el valor absoluto.

f3(+)=f,(+)*f2(+)= Dem. gve f, (at) x f((at) = 1 al f3 (at) $\int_{-\infty}^{\infty} f_{1}(ab) f_{2}(a(t-b)) db$ u = ab du = adb $\frac{du}{dt} = db.$ ficultz (at-u) du = 1 f, (at) * f2 (at)