Proximal Policy Optimization

Presented by : Atmani Hanan

University mohammed vi polytechnic

July 23

Presentation plan

- Introduction and motivation
- 2 Trust Region Policy optimization (TRPO)
- 3 Proximal Policy Optimization (PPO)

Introduction

Update Gradient asciente:

$$\theta^{(t+1)} = \theta^{(t)} + \eta \nabla_{\theta} J(\theta^t)$$

Unstable update

- Step size is very important (If step size is very small, learning process is slow)
- Next batch is generated from current bad policy \rightarrow Collect bad samples.
- ullet Bad sample o worse policy

Data Inefficiency

- On policy method: for each new policy we need to generate a completely new trajectory
- the data is throw out after just one gradient update

Efficient Data

• If we uses the advantage expression of gradient:

$$abla J(heta) = \mathbb{E}_{ au \sim \pi_{ heta}} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi_{ heta}}(s, a)
abla \log \pi_{ heta}(a \mid s)
ight]$$

- Can we estimate an expectation of one distribution without taking samples from it?
- Estimate one distribution by sampling from another distribution:

$$\mathbb{E}_{x \sim p}(f(x)) = \int f(x)p(x) dx,$$

$$= \int f(x) \frac{p(x)}{q(x)} q(x) dx,$$

$$= \mathbb{E}_{x \sim q} \left(f(x) \frac{p(x)}{q(x)} \right) \approx \frac{1}{N} \sum_{i=1, x_i \sim q}^{N} \left(f(x^i) \frac{p(x^i)}{q(x^i)} \right)$$

Efficient Data

•

 $egin{aligned}
abla J(heta) &= \mathbb{E}_{ au \sim \pi_{ heta}} \left[A^{\pi_{ heta}}(s, a)
abla \log \pi_{ heta}(a \mid s)
ight] \ &= \mathbb{E}_{ au \sim \pi_{ heta} ext{old}} \left[rac{\pi_{ heta}(s_t, a_t)}{\pi_{ heta} ext{old}(s_t, a_t)} A^{\pi_{ heta}}(s, a)
abla \log \pi_{ heta}(a \mid s)
ight] \end{aligned}$

• Then the surrogate objective function:

$$J(heta) = \mathbb{E}_{ au \sim \pi_{ heta \, ext{old}}} \left[rac{\pi_{ heta}(s_t, a_t)}{\pi_{ heta \, ext{old}}(s_t, a_t)} A^{\pi_{ heta}}(s, a)
ight]$$

ullet Two expectations are same, but we are using sampling method to estimate them o variance is also important

Efficient Data

• We have: $\operatorname{Var}_{x \sim p}(f(x)) = \mathbb{E}_{x \sim p}(f(x)^2) - (\mathbb{E}_{x \sim p}(f(x)))^2$ and $\mathbb{E}_{x \sim p}(f(x)) = \mathbb{E}_{x \sim q}\left(f(x)\frac{p(x)}{q(x)}\right)$

Then

$$\operatorname{Var}_{x \sim q} \left(f(x) \frac{p(x)}{q(x)} \right) = \mathbb{E}_{x \sim q} \left(\left(f(x) \frac{p(x)}{q(x)} \right)^2 \right) - \left(\mathbb{E}_{x \sim q} \left(f(x) \frac{p(x)}{q(x)} \right) \right)^2$$
$$= \mathbb{E}_{x \sim p} \left(f(x)^2 \frac{p(x)}{q(x)} \right) - \left(\mathbb{E}_{x \sim p} (f(x)) \right)^2$$

• We may need to sample more data if $\frac{p(x)}{q(x)}$ is far away from 1

Stable Update

- Make confident update:
 - Adaptive learning rate
 - limit the policy update range
- Can we measure the distance between two distributions?
- KL Divergence: Measure the distance of two distributions:

$$D_{KL}(p||q) = \sum_{x} p(x) \log \left(\frac{p(x)}{q(x)}\right)$$

• KL divergence of two policies:

$$D_{\mathit{KL}}(\pi_1||\pi_2)[s] = \sum_{a \in \mathcal{A}} \pi_1(a|s) \log \left(rac{\pi_1(a|s)}{\pi_2(a|s)}
ight)$$

Trust Region Policy optimization (TRPO)

 The TRPO method involves solving the problem by linearizing the objective function and transforming the constraints into quadratic form.

$$\max_{\theta} \hat{\mathbb{E}}_t \left(\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\text{old}}(a_t|s_t)} \hat{A}_t \right)$$

Subject to

$$\hat{\mathbb{E}}_t \left(\mathsf{KL}(\pi_{\theta_{\mathrm{old}}}, \pi_{\theta}(.|s_t)) \right) \leq \delta$$

 TRPO uses conjugate gradient descent to solve the optimization problem. The Hessian matrix is computationally and memory expensive

PPO with Adaptive KL Penalty

- The Constraint helps in the training process. However, maybe the constraint is not a strict constraint. Does it matter if we only break the constraint just a few times?
- What if we treat it as a " soft" constraint? add proximal value to objective function?
- PPO with Adaptive KL Penalty:

$$L^{\mathit{KLpen}}(\theta) = \hat{\mathbb{E}_t} \left(\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\mathsf{old}}(a_t|s_t)} \hat{A}_t - \beta D_{\mathit{KL}}(\pi_{\theta_{\mathsf{old}}}(.|s_t), \pi_{\theta}(.|s_t)) \right)$$

- Hard to pick β value \rightarrow Use adaptive
- Compute $d = \hat{\mathbb{E}}_t \left(D_{\mathsf{KL}}(\pi_{\theta_{\mathsf{old}}}(.|s_t), \pi_{\theta}(.|s_t)) \right)$
 - If $d < d_{targ}/1.5$, $\beta \leftarrow \frac{\beta}{2}$ (more data)
 - If $d > d_{targ} \times 1.5$ (more penalty)
- Still need to setup a KL divergence target value...

Algorithm PPO with adaptive KL penalty

- Input: Initial policy parameters θ_0 , initial KL penalty β_0 , target KL-divergence δ
- for k = 0, 1, 2, ... do
 - Collect set of partial trajectories on policy $\pi_k = \pi_{\theta_k}$
 - \bullet Estimate advantage $\hat{A}^{\pi_k}_t$ using any advantage estimation algorithm
 - Compute policy update:

$$\theta_{k+1} = \operatorname{argmax}_{\theta} \hat{\mathbb{E}}_{t} \left(\frac{\pi_{\theta}(a_{t}|s_{t})}{\pi_{k}(a_{t}|s_{t})} \hat{A}_{t}^{\pi_{k}} - \beta_{k} D_{KL}(\pi_{\theta_{k}}(.|s_{t}), \pi_{\theta}(.|s_{t})) \right)$$

- if $\hat{\mathbb{E}}_t\left(D_{\mathit{KL}}(\pi_{\theta_k}(.|s_t),\pi_{\theta_{k+1}}(.|s_t))\right)) \geq 1.5\delta$, Then:
 - $\bullet \ \beta_{k+1} = 2\beta_k$
- Else if $\hat{\mathbb{E}}_t\left(D_{\mathit{KL}}(\pi_{\theta_k(.|s_t),\pi_{\theta_{k+1}}}(.|s_t))\right) \leq \frac{1.5}{\delta}$, then

•
$$\beta_{k+1} = \beta_k/2$$

PPO with Clipped objective

$$-max_{\theta} \hat{\mathbb{E}}_{t} \left(\frac{\pi_{\theta}(s_{t}/a_{t})}{\pi_{\theta}_{old}(s_{t}/a_{t})} \hat{A}_{t} \right).$$

-Denote the probability ratio: $r_t(\theta) = \frac{\pi_{\theta}(s_t/a_t)}{\pi_{\theta_{old}}(s_t/a_t)}$ Invariance happens when r changes too quickly \rightarrow limit r within a range?

- Input :initial policy parameters θ_0 , clipping parameter ϵ
- For k=0,1,2,... do
 - Collect of partial trajectories \mathcal{D}_k on policy $\pi_k = \pi_{\theta_k}$
 - Estmate advantage $\hat{A}_t^{\pi_k}$ using any advantage estimation algorithm.
 - Compute policy update:

$$\theta_{k+1} = \operatorname{argmax}_{\theta} L_{\theta_k}^{CLIP}(\theta)$$

and for

Where

$$L_{ heta_k}^{ extit{CLIP}}(heta) = \hat{\mathbb{E}}_{ au \sim \pi_k} \left(\sum_{t=0}^{I} \left[min\left(r_t(heta) \hat{A}_t^{\pi_k}, clip(r_t(heta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t^{\pi_k}
ight)
ight]$$

and

$$extit{clip}(x; 1 - \epsilon, 1 + \epsilon) = egin{cases} 1 - \epsilon & x \leq 1 - \epsilon \ 1 + \epsilon & x \geq 1 + \epsilon.\pi_{ heta}, \ x & ext{else} \end{cases}$$

