metal-organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

catena-Poly[[(1,10-phenanthroline)zinc]- μ -3-[3-(carboxylatomethoxy)phenyl]-acrylato]

Ling Chen

School of Pharmacy and Material Engineering, Jinhua College of Vocation and Technology, Jinhua, Zhejiang 321017, People's Republic of China Correspondence e-mail: chenling78@126.com

Received 24 May 2012; accepted 30 May 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.023; wR factor = 0.070; data-to-parameter ratio = 12.2.

The asymmetric unit of the title compound, $[Zn(C_{11}H_8O_5)-(C_{12}H_8N_2)]_n$, is composed of a Zn^{II} ion and 3-[3-(carboxylatomethoxy)phenyl]acrylate and 1,10-phenanthroline ligands. The Zn^{II} ion adopts a distorted square-pyramidal ZnN_2O_3 coordination. The bridging mode of the dianion leads to the formation of zigzag chains parallel to [010]. Intermolecular π - π stacking interactions [centroid–centroid distance of 3.5716 (12) Å] lead to the formation of a two-dimensional network parallel to (001).

Related literature

For background to inorganic-organic hybrid materials, see: Fujita *et al.* (1994) and for their applications and topological structures, see: Comotti *et al.* (2008); Hong *et al.* (2006); Moulton & Zaworotko (2001); Swiegers & Malefeste (2000); Kaes *et al.* (2000).

Experimental

Crystal data

Data collection

Bruker APEXII area-detector diffractometer 3430 independent reflections 3430 independent reflections 2980 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.56$, $T_{\rm max} = 0.71$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.023 & 280 \text{ parameters} \\ wR(F^2) = 0.070 & \text{H-atom parameters constrained} \\ S = 1.02 & \Delta\rho_{\text{max}} = 0.22 \text{ e Å}^{-3} \\ 3430 \text{ reflections} & \Delta\rho_{\text{min}} = -0.35 \text{ e Å}^{-3} \end{array}$

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008.

This work was supported financially by the Foundation of Jinhua College of Vocation and Technlogy (20110013).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2464).

References

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2006). *APEX2* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA

Comotti, A., Bracco, S., Sozzani, P., Horike, S. & Matsuda, R. (2008). J. Am. Chem. Soc. 130, 13664–13672.

Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152.

Hong, X. L., Li, Y. Z., Hu, H., Pan, Y. & Bai, J. (2006). Cryst. Growth Des. 6, 1121–1126.

Kaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553–3590.Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Swiegers, G. F. & Malefeste, T. J. (2000). Chem. Rev. 100, 3483-3538.

Acta Cryst. (2012). E68, m882 [doi:10.1107/S1600536812024610]

catena-Poly[[(1,10-phenanthroline)zinc]- μ -3-[3-(carboxylatomethoxy)phenyl]-acrylato]

Ling Chen

Comment

In recent decades, inorganic-organic hybrid materials such as coordination complexes have attracted plenty of attention (Fujita *et al.* (1994)) due to the fact that they might have potential applications as functional solid materials in adsorption, catalysis, and ion exchange (Comotti *et al.* (2008), Hong *et al.* (2006)), at the same time that they usually present intriguing topological structures (Moulton *et al.* (2001), Swiegers *et al.* (2000), Kaes *et al.* (2000)). Herein we report one such inorganic-organic hybrid compound, [Zn L (phen), where L is 3-carboxymethoxy phenyl acrylate ($C_{11}H_8O_5$) and phen is 1,10-phenanthroline($C_{12}H_8N_2$)].

As shown in Figure 1, the strucure contains one Zn^{II} ion coordinated by two N atoms from a chelating phen and two O atoms from a chelating carboxylato group from one L ligand, defining the base of a distorted square pyramidal coordination; the apical site is occupied by a third O from the reamining carboxylato group of another L ligand which thus behaves in a $\mu_2 \kappa^3$ bridging chelating mode, forming a one-dimensional zigzag chain which extends along the b axis (Figure 2).

In this structure, the benzene ring from a L ligand and an adjacent six-membered heterocycle ring of phen are nearly parallel (dihedral angle: 4.83 (10)°), affording a face-to-face intermolecular π - π stacking with an intercentroid distance of 3.5716 (12) Å. Intermolecular π - π stacking interactions lead to the formation of a two-dimensional network (Figure 3).

Experimental

A mixture of $ZnCl_2(0.136 \text{ g}, 1 \text{ mmol})$,3-carboxymethoxy phenycl acrylic acid(0.2220 g,1 mmol) and 1,10-phenanthroline(0.0991 g,0.5 mmol) was dissolved in a 20 mL EtOH/H₂O(ν/ν ,1:9). Then, the pH value was adjusted to 7 through the use of a 2 mol/L NaOH solution. The mixture was then sealed in a 25 mL stainless steel reactor and heated to 433 K for 3 days. Then the reactant mixture was cooled to room temperature at the rate of 5 degrees per hour. Evaporation of the resulting solution for a few days afforded colorless crystals of title compound.

Refinement

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [C—H 0.93 Å $U_{iso}(H) = 1.2 U_{eq}(C)$].

Computing details

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT* (Bruker, 2006); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Acta Cryst. (2012). E68, m882 Sup-1

Figure 1
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code:(A) -x - 1, y - 1/2, -z + 1/2]

Figure 2 The one-dimensional chain structure in the title compound along the b axis.

Acta Cryst. (2012). E**68**, m882

Figure 3 View of the two-dimensional supramolecular network connected by π - π stacking interactions.

catena-Poly[[(1,10-phenanthroline)zinc]- μ -3-[3-(carboxylatomethoxy)phenyl]acrylato]

Crystal	data

•	
$[Zn(C_{11}H_8O_5)(C_{12}H_8N_2)]$	F(000) = 952
$M_r = 465.75$	$D_{\rm x} = 1.588 \; {\rm Mg \; m^{-3}}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 9958 reflections
a = 10.2744 (4) Å	$\theta = 2.1 - 25.0^{\circ}$
b = 14.9979 (6) Å	$\mu = 1.30 \text{ mm}^{-1}$
c = 15.9060 (6) Å	T = 296 K
$\beta = 127.347 (2)^{\circ}$	Prism, colourless
$V = 1948.51 (13) \text{ Å}^3$	$0.46 \times 0.42 \times 0.26 \text{ mm}$
Z=4	

Data collection
Bruker APEXII area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.56, \ T_{\max} = 0.71$

26006 measured reflections 3430 independent reflections 2980 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.022$ $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$ $h = -12 \rightarrow 12$ $k = -17 \rightarrow 17$ $l = -18 \rightarrow 18$

sup-3 Acta Cryst. (2012). E68, m882

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.070$ S = 1.023430 reflections 280 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0426P)^2 + 0.5701P]$ where $P = (F_o^2 + 2F_c^2)/3$ (Δ/σ)_{max} = 0.001 $\Delta\rho$ _{max} = 0.22 e Å⁻³ $\Delta\rho$ _{min} = -0.35 e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

	x	y	Z	$U_{ m iso}$ */ $U_{ m eq}$
Zn1	-0.30637 (2)	-0.253939 (12)	0.368035 (16)	0.03728 (9)
O1	-0.33062(15)	0.25494 (8)	0.04670 (10)	0.0419 (3)
O2	-0.36123(19)	-0.15717(9)	0.26359 (11)	0.0591 (4)
O3	-0.13946(19)	-0.12441(9)	0.42086 (11)	0.0567 (4)
O4	-0.66285 (17)	0.13485 (10)	0.00573 (12)	0.0591 (4)
O5	-0.56836 (17)	0.26740 (9)	0.07863 (12)	0.0482 (3)
N1	-0.41141(18)	-0.35805(9)	0.25550 (12)	0.0408 (3)
N2	-0.10093(17)	-0.33092 (9)	0.42815 (12)	0.0373 (3)
C1	-0.20554 (19)	0.21845 (11)	0.14171 (12)	0.0320 (3)
C2	-0.22189(19)	0.14486 (10)	0.18669 (13)	0.0335 (4)
H2A	-0.3230	0.1168	0.1518	0.040*
C3	-0.0880(2)	0.11214 (11)	0.28402 (13)	0.0353 (4)
C4	0.0613 (2)	0.15579 (13)	0.33550 (14)	0.0442 (4)
H4A	0.1511	0.1361	0.4015	0.053*
C5	0.0764(2)	0.22891 (13)	0.28838 (15)	0.0449 (4)
H5A	0.1773	0.2571	0.3227	0.054*
C6	-0.0547(2)	0.26020 (11)	0.19240 (15)	0.0377 (4)
H6A	-0.0429	0.3089	0.1614	0.045*
C7	-0.1050(2)	0.03192 (12)	0.32975 (14)	0.0412 (4)
H7A	-0.0254	0.0223	0.4017	0.049*
C8	-0.2224(3)	-0.02701 (12)	0.27791 (15)	0.0473 (5)
H8A	-0.3011	-0.0182	0.2056	0.057*
C9	-0.2398 (3)	-0.10691 (12)	0.32551 (15)	0.0457 (4)
C10	-0.4780 (2)	0.20433 (14)	-0.01510 (13)	0.0433 (4)
H10A	-0.4506	0.1438	-0.0206	0.052*
H10B	-0.5465	0.2291	-0.0859	0.052*

Acta Cryst. (2012). E68, m882 Sup-4

C11	-0.5770 (2)	0.20077 (12)	0.02659 (13)	0.0386 (4)
C12	-0.5648 (2)	-0.37041 (13)	0.17056 (16)	0.0511 (5)
H12A	-0.6440	-0.3295	0.1562	0.061*
C13	-0.6122 (3)	-0.44236 (15)	0.10171 (17)	0.0602 (6)
	` '	` /	` '	` '
H13A	-0.7209	-0.4489	0.0429	0.072*
C14	-0.4975(3)	-0.50280 (14)	0.12172 (17)	0.0583 (5)
H14A	-0.5279	-0.5515	0.0771	0.070*
C15	-0.3334(3)	-0.49139 (12)	0.20977 (16)	0.0486 (5)
C16	-0.2961 (2)	-0.41737 (11)	0.27537 (14)	0.0382 (4)
C17	-0.2041 (3)	-0.55048 (13)	0.23654 (19)	0.0583 (6)
H17A	-0.2280	-0.5997	0.1938	0.070*
C18	-0.0487(3)	-0.53644 (13)	0.32207 (19)	0.0564 (6)
H18A	0.0330	-0.5756	0.3367	0.068*
C19	-0.0068 (2)	-0.46234 (12)	0.39092 (16)	0.0447 (4)
C20	-0.1308 (2)	-0.40297 (11)	0.36709 (14)	0.0369 (4)
C21	0.1518 (2)	-0.44575 (13)	0.48294 (17)	0.0506 (5)
H21A	0.2373	-0.4837	0.5020	0.061*
C22	0.1806 (2)	-0.37366 (14)	0.54458 (16)	0.0503 (5)
H22A	0.2852	-0.3625	0.6061	0.060*
C23	0.0510(2)	-0.31708 (12)	0.51406 (15)	0.0443 (4)
H23A	0.0720	-0.2675	0.5557	0.053*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.04366 (15)	0.02930 (13)	0.04777 (15)	0.00345 (7)	0.03236 (12)	0.00291 (8)
O1	0.0319 (6)	0.0483 (8)	0.0439 (7)	0.0026 (5)	0.0221 (6)	0.0141 (5)
O2	0.0862 (11)	0.0392 (7)	0.0518 (8)	-0.0111 (7)	0.0418 (8)	0.0017 (6)
О3	0.0772 (9)	0.0435 (8)	0.0504 (8)	0.0091 (7)	0.0393 (8)	0.0136 (6)
O4	0.0534 (8)	0.0638 (9)	0.0682 (9)	-0.0194(7)	0.0411 (7)	-0.0084 (7)
O5	0.0560(8)	0.0423 (7)	0.0640 (9)	0.0012 (6)	0.0456 (8)	0.0041 (6)
N1	0.0480 (9)	0.0336 (7)	0.0481 (9)	-0.0012(6)	0.0330(8)	0.0024 (6)
N2	0.0435 (8)	0.0309 (7)	0.0492 (9)	0.0005 (6)	0.0342 (8)	0.0025 (6)
C1	0.0317 (9)	0.0319 (8)	0.0352 (9)	0.0016 (6)	0.0217 (8)	-0.0012(7)
C2	0.0284 (8)	0.0327 (8)	0.0368 (9)	-0.0036(6)	0.0184 (7)	-0.0016(7)
C3	0.0363 (9)	0.0358 (9)	0.0343 (9)	0.0028 (7)	0.0217 (8)	-0.0015(7)
C4	0.0329 (9)	0.0543 (11)	0.0327 (9)	0.0013 (8)	0.0132 (8)	-0.0043 (8)
C5	0.0327 (9)	0.0508 (10)	0.0453 (11)	-0.0119(8)	0.0205 (9)	-0.0131 (8)
C6	0.0390 (10)	0.0334 (9)	0.0477 (11)	-0.0064(7)	0.0300 (9)	-0.0061 (7)
C7	0.0447 (10)	0.0411 (10)	0.0382 (9)	0.0121 (8)	0.0254 (8)	0.0091 (8)
C8	0.0663 (12)	0.0362 (9)	0.0389 (10)	0.0006 (9)	0.0316 (10)	0.0053 (8)
C9	0.0702 (13)	0.0329 (9)	0.0505 (12)	0.0086 (9)	0.0452 (11)	0.0040(8)
C10	0.0311 (9)	0.0620 (12)	0.0338 (9)	0.0001 (8)	0.0182 (8)	0.0049 (8)
C11	0.0306 (8)	0.0460 (10)	0.0341 (9)	0.0058 (8)	0.0170(8)	0.0110 (8)
C12	0.0493 (11)	0.0481 (11)	0.0543 (12)	-0.0018 (9)	0.0305 (10)	0.0058 (9)
C13	0.0628 (13)	0.0589 (13)	0.0528 (12)	-0.0191 (11)	0.0319 (11)	-0.0051 (10)
C14	0.0806 (15)	0.0440 (11)	0.0616 (13)	-0.0192(11)	0.0491 (13)	-0.0127 (10)
C15	0.0738 (14)	0.0333 (9)	0.0597 (12)	-0.0089(9)	0.0514 (12)	-0.0034 (8)
C16	0.0541 (11)	0.0273 (8)	0.0509 (10)	-0.0009(7)	0.0410 (9)	0.0031 (7)
C17	0.0897 (17)	0.0348 (10)	0.0808 (16)	-0.0005 (10)	0.0675 (15)	-0.0061 (10)

Acta Cryst. (2012). E**68**, m882

C18	0.0836 (16)	0.0334 (10)	0.0880 (16)	0.0105 (10)	0.0708 (15)	0.0066 (10)
C19	0.0605 (12)	0.0332 (9)	0.0658 (12)	0.0073 (8)	0.0516 (11)	0.0114 (8)
C20	0.0501 (10)	0.0272 (8)	0.0509 (10)	0.0006 (7)	0.0398 (9)	0.0049 (7)
C21	0.0528 (11)	0.0457 (11)	0.0734 (14)	0.0138 (9)	0.0488 (11)	0.0213 (10)
C22	0.0436 (10)	0.0563 (12)	0.0571 (12)	0.0029 (9)	0.0336 (10)	0.0148 (10)
C23	0.0491 (11)	0.0414 (10)	0.0514 (11)	-0.0023 (8)	0.0352 (10)	0.0019 (8)

Geometric parameters (Å, °)

Geometric parameters (A,)			
Zn1—O5 ⁱ	1.9502 (13)	C7—C8	1.307 (3)
Zn1—O2	2.0119 (13)	C7—H7A	0.9300
Zn1—N2	2.0626 (14)	C8—C9	1.485 (2)
Zn1—N1	2.1126 (15)	C8—H8A	0.9300
Zn1—O3	2.3818 (15)	C10—C11	1.515 (2)
Zn1—C9	2.5197 (19)	C10—H10A	0.9700
O1—C1	1.371 (2)	C10—H10B	0.9700
O1—C10	1.425 (2)	C12—C13	1.398 (3)
O2—C9	1.266 (2)	C12—H12A	0.9300
O3—C9	1.239 (2)	C13—C14	1.363 (3)
O4—C11	1.229 (2)	C13—H13A	0.9300
O5—C11	1.266 (2)	C14—C15	1.403 (3)
O5—Zn1 ⁱⁱ	1.9502 (13)	C14—H14A	0.9300
N1—C12	1.327 (2)	C15—C16	1.408 (2)
N1—C16	1.357 (2)	C15—C17	1.430 (3)
N2—C23	1.326 (2)	C16—C20	1.433 (3)
N2—C20	1.358 (2)	C17—C18	1.345 (3)
C1—C2	1.380 (2)	C17—H17A	0.9300
C1—C6	1.389 (2)	C18—C19	1.431 (3)
C2—C3	1.395 (2)	C18—H18A	0.9300
C2—H2A	0.9300	C19—C21	1.402 (3)
C3—C4	1.388 (2)	C19—C20	1.405 (2)
C3—C7	1.470 (2)	C21—C22	1.366 (3)
C4—C5	1.389 (3)	C21—H21A	0.9300
C4—H4A	0.9300	C22—C23	1.394 (3)
C5—C6	1.367 (3)	C22—H22A	0.9300
C5—H5A	0.9300	C23—H23A	0.9300
C6—H6A	0.9300		
O5i-Zn1-O2	108.22 (6)	O3—C9—C8	121.79 (19)
O5 ⁱ —Zn1—N2	130.55 (6)	O2—C9—C8	116.76 (17)
O2—Zn1—N2	118.81 (6)	O2—C9—C8 O3—C9—Zn1	69.26 (10)
O5 ⁱ —Zn1—N1	110.93 (6)	O2—C9—Zn1	52.27 (9)
O2—Zn1—N1	95.18 (6)	C8—C9—Zn1	168.31 (14)
N2—Zn1—N1	80.34 (6)	O1—C10—C11	115.57 (15)
$O5^{i}$ —Zn1—O3	* *	O1—C10—C11 O1—C10—H10A	108.4
O3—Zn1—O3 O2—Zn1—O3	103.69 (5) 58.93 (5)	C11—C10—H10A	108.4
N2—Zn1—O3	58.93 (5) 88.72 (5)	O1—C10—H10B	108.4
N2—Zn1—O3 N1—Zn1—O3	88.72 (5) 142.20 (5)	C11—C10—H10B	108.4
O5 ⁱ —Zn1—C9	142.20 (5) 109.35 (6)	H10A—C10—H10B	107.4
O2—Zn1—C9	29.86 (6)	O4—C11—O5	107.4 124.43 (17)
U2—ZIII—U9	47.00 (0)	0 4 —011—03	124.43 (1/)

Acta Cryst. (2012). E**68**, m882

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
O3—Zn1—C9 29.10 (6) N1—C12—C13 122.7 (2) C1—O1—C10 116.18 (13) N1—C12—H12A 118.7 C9—O2—Zn1 97.87 (11) C13—C12—H12A 118.7 C9—O3—Zn1 81.63 (12) C14—C13—C12 119.3 (2) C11—O5—Zn1 ⁱⁱⁱ 110.61 (11) C14—C13—H13A 120.3 C12—N1—C16 118.40 (16) C12—C13—H13A 120.3 C12—N1—Zn1 130.30 (13) C13—C14—C15 119.82 (19) C16—N1—Zn1 111.24 (12) C13—C14—H14A 120.1 C23—N2—C20 118.40 (15) C15—C14—H14A 120.1 C23—N2—Zn1 128.60 (12) C14—C15—C16 117.25 (19) C1—C2—N2—Zn1 112.97 (11) C14—C15—C16 117.25 (19) O1—C1—C2 124.29 (14) C16—C15—C17 118.80 (19) O1—C1—C6 115.46 (15) N1—C16—C15 122.52 (17) C2—C1—C6 120.24 (15) N1—C16—C20 117.81 (15) C1—C2—B2A 119.7 C18—C17—C15 121.51 (19) C3—C2—H2A 119.7 C18—C17—H17A </td <td>N2—Zn1—C9</td> <td>104.25 (6)</td> <td>O4—C11—C10</td> <td>118.21 (17)</td>	N2—Zn1—C9	104.25 (6)	O4—C11—C10	118.21 (17)
C1-O1-C10	N1—Zn1—C9	120.11 (6)	O5—C11—C10	117.33 (16)
C9—O2—Zn1 97.87 (11) C13—C12—H12A 118.7 C9—O3—Zn1 81.63 (12) C14—C13—C12 119.3 (2) C11—O5—Zn1" 110.61 (11) C14—C13—H13A 120.3 C12—N1—C16 118.40 (16) C12—C13—H13A 120.3 C12—N1—Zn1 130.30 (13) C13—C14—C15 119.82 (19) C16—N1—Zn1 111.24 (12) C13—C14—H14A 120.1 C23—N2—C20 118.40 (15) C15—C14—H14A 120.1 C23—N2—Zn1 128.60 (12) C14—C15—C16 117.25 (19) C20—N2—Zn1 112.97 (11) C14—C15—C17 123.94 (19) O1—C1—C2 124.29 (14) C16—C15—C17 118.80 (19) O1—C1—C6 115.46 (15) N1—C16—C20 117.81 (15) C1—C2—C3 120.24 (15) N1—C16—C20 117.81 (15) C1—C2—C3 120.56 (15) C15—C16—C20 119.67 (16) C1—C2—H2A 119.7 C18—C17—H17A 119.2 C4—C3—C7 120.96 (16) C17—C18—C19 121.12 (19) C2—C3—C7 120.24 (15) C17—C18—H18A	O3—Zn1—C9	29.10 (6)	N1—C12—C13	122.7 (2)
C9—O3—Zn1 81.63 (12) C14—C13—C12 119.3 (2) C11—O5—Zn1iii 110.61 (11) C14—C13—H13A 120.3 C12—N1—C16 118.40 (16) C12—C13—H13A 120.3 C12—N1—Zn1 130.30 (13) C13—C14—C15 119.82 (19) C16—N1—Zn1 111.24 (12) C13—C14—H14A 120.1 C23—N2—C20 118.40 (15) C15—C14—H14A 120.1 C23—N2—Zn1 128.60 (12) C14—C15—C16 117.25 (19) C20—N2—Zn1 112.97 (11) C14—C15—C16 117.25 (19) O1—C1—C2 124.29 (14) C16—C15—C17 118.80 (19) O1—C1—C6 115.46 (15) N1—C16—C15 122.52 (17) C2—C1—C6 120.24 (15) N1—C16—C20 117.81 (15) C1—C2—C3 120.56 (15) C15—C16—C20 117.81 (15) C1—C2—H2A 119.7 C18—C17—H17A 119.2 C4—C3—C2 118.79 (16) C15—C17—H17A 119.2 C4—C3—C7 120.96 (16) C17—C18—C19 121.12 (19) C2—C3—C7 120.94 (15) C17—C18—C	C1—O1—C10	116.18 (13)	N1—C12—H12A	118.7
C11—O5—Zn1 ⁱⁱ 110.61 (11) C14—C13—H13A 120.3 C12—N1—C16 118.40 (16) C12—C13—H13A 120.3 C12—N1—Zn1 130.30 (13) C13—C14—C15 119.82 (19) C16—N1—Zn1 111.24 (12) C13—C14—H14A 120.1 C23—N2—C20 118.40 (15) C15—C14—H14A 120.1 C23—N2—Zn1 128.60 (12) C14—C15—C16 117.25 (19) C20—N2—Zn1 112.97 (11) C14—C15—C16 117.25 (19) C1—C1—C2 124.29 (14) C16—C15—C17 123.94 (19) O1—C1—C6 115.46 (15) N1—C16—C15 122.52 (17) C2—C1—C6 120.24 (15) N1—C16—C20 117.81 (15) C1—C2—C3 120.56 (15) C15—C16—C20 119.67 (16) C1—C2—H2A 119.7 C18—C17—C15 121.51 (19) C3—C2—H2A 119.7 C18—C17—H17A 119.2 C4—C3—C2 118.79 (16) C15—C17—H17A 119.2 C4—C3—C7 120.96 (16) C17—C18—H18A 119.4 C3—C4—H4A 120.0 C21—C19—C20	C9—O2—Zn1	97.87 (11)	C13—C12—H12A	118.7
C12—N1—C16 118.40 (16) C12—C13—H13A 120.3 C12—N1—Zn1 130.30 (13) C13—C14—C15 119.82 (19) C16—N1—Zn1 111.24 (12) C13—C14—H14A 120.1 C23—N2—C20 118.40 (15) C15—C14—H14A 120.1 C23—N2—Zn1 128.60 (12) C14—C15—C16 117.25 (19) C20—N2—Zn1 112.97 (11) C14—C15—C17 123.94 (19) O1—C1—C2 124.29 (14) C16—C15—C17 118.80 (19) O1—C1—C6 115.46 (15) N1—C16—C15 122.52 (17) C2—C1—C6 120.24 (15) N1—C16—C20 117.81 (15) C1—C2—H2A 119.7 C18—C17—C15 121.51 (19) C3—C2—H2A 119.7 C18—C17—H17A 119.2 C4—C3—C2 118.79 (16) C15—C17—H17A 119.2 C4—C3—C2 118.79 (16) C15—C17—H17A 119.2 C2—C3—C7 120.24 (15) C17—C18—H18A 119.4 C3—C4—C5 119.93 (16) C19—C18—H18A 119.4 C3—C4—H4A 120.0 C21—C19—C18 123.	C9—O3—Zn1	81.63 (12)	C14—C13—C12	119.3 (2)
C12—N1—Zn1 130.30 (13) C13—C14—C15 119.82 (19) C16—N1—Zn1 111.24 (12) C13—C14—H14A 120.1 C23—N2—C20 118.40 (15) C15—C14—H14A 120.1 C23—N2—Zn1 128.60 (12) C14—C15—C16 117.25 (19) C20—N2—Zn1 112.97 (11) C14—C15—C17 123.94 (19) O1—C1—C2 124.29 (14) C16—C15—C17 118.80 (19) O1—C1—C6 115.46 (15) N1—C16—C15 122.52 (17) C2—C1—C6 120.24 (15) N1—C16—C20 117.81 (15) C1—C2—C3 120.56 (15) C15—C16—C20 119.67 (16) C1—C2—H2A 119.7 C18—C17—C15 121.51 (19) C3—C2—H2A 119.7 C18—C17—H17A 119.2 C4—C3—C2 118.79 (16) C15—C17—H17A 119.2 C4—C3—C7 120.96 (16) C17—C18—C19 121.12 (19) C2—C3—C7 120.24 (15) C17—C18—H18A 119.4 C3—C4—C5 119.93 (16) C19—C18—H18A 119.4 C3—C4—H4A 120.0 C21—C19—C18	C11—O5—Zn1 ⁱⁱ	110.61 (11)	C14—C13—H13A	120.3
C16—N1—Zn1 111.24 (12) C13—C14—H14A 120.1 C23—N2—C20 118.40 (15) C15—C14—H14A 120.1 C23—N2—Zn1 128.60 (12) C14—C15—C16 117.25 (19) C20—N2—Zn1 112.97 (11) C14—C15—C17 123.94 (19) O1—C1—C2 124.29 (14) C16—C15—C17 118.80 (19) O1—C1—C6 115.46 (15) N1—C16—C15 122.52 (17) C2—C1—C6 120.24 (15) N1—C16—C20 117.81 (15) C1—C2—G3 120.56 (15) C15—C16—C20 119.67 (16) C1—C2—H2A 119.7 C18—C17—C15 121.51 (19) C3—C2—H2A 119.7 C18—C17—H17A 119.2 C4—C3—C2 118.79 (16) C15—C17—H17A 119.2 C4—C3—C7 120.96 (16) C17—C18—C19 121.12 (19) C2—C3—C7 120.24 (15) C17—C18—H18A 119.4 C3—C4—C5 119.93 (16) C19—C18—H18A 119.4 C3—C4—H4A 120.0 C21—C19—C18 113.90 (17) C5—C4—H4A 120.0 C21—C19—C18 118	C12—N1—C16	118.40 (16)	C12—C13—H13A	120.3
C23—N2—C20 118.40 (15) C15—C14—H14A 120.1 C23—N2—Zn1 128.60 (12) C14—C15—C16 117.25 (19) C20—N2—Zn1 112.97 (11) C14—C15—C17 123.94 (19) O1—C1—C2 124.29 (14) C16—C15—C17 118.80 (19) O1—C1—C6 115.46 (15) N1—C16—C15 122.52 (17) C2—C1—C6 120.24 (15) N1—C16—C20 117.81 (15) C1—C2—C3 120.56 (15) C15—C16—C20 119.67 (16) C1—C2—H2A 119.7 C18—C17—C15 121.51 (19) C3—C2—H2A 119.7 C18—C17—H17A 119.2 C4—C3—C2 118.79 (16) C15—C17—H17A 119.2 C4—C3—C7 120.96 (16) C17—C18—C19 121.12 (19) C2—C3—C7 120.24 (15) C17—C18—H18A 119.4 C3—C4—H4A 120.0 C21—C19—C20 117.30 (17) C5—C4—H4A 120.0 C21—C19—C18 123.79 (18) C6—C5—C4 121.12 (17) C20—C19—C18 118.90 (19) C6—C5—H5A 119.4 N2—C20—C16 1	C12—N1—Zn1	130.30 (13)	C13—C14—C15	119.82 (19)
C23—N2—Zn1 128.60 (12) C14—C15—C16 117.25 (19) C20—N2—Zn1 112.97 (11) C14—C15—C17 123.94 (19) O1—C1—C2 124.29 (14) C16—C15—C17 118.80 (19) O1—C1—C6 115.46 (15) N1—C16—C15 122.52 (17) C2—C1—C6 120.24 (15) N1—C16—C20 117.81 (15) C1—C2—C3 120.56 (15) C15—C16—C20 119.67 (16) C1—C2—H2A 119.7 C18—C17—C15 121.51 (19) C3—C2—H2A 119.7 C18—C17—H17A 119.2 C4—C3—C2 118.79 (16) C15—C17—H17A 119.2 C4—C3—C7 120.96 (16) C17—C18—C19 121.12 (19) C2—C3—C7 120.96 (16) C17—C18—H18A 119.4 C3—C4—H4A 120.0 C21—C19—C20 117.30 (17) C5—C4—H4A 120.0 C21—C19—C18 123.79 (18) C6—C5—C4 121.12 (17) C20—C19—C18 118.90 (19) C6—C5—H5A 119.4 N2—C20—C16 117.53 (15) C5—C6—H6A 120.3 C22—C21—C19 119	C16—N1—Zn1	111.24 (12)	C13—C14—H14A	120.1
C20—N2—Zn1 112.97 (11) C14—C15—C17 123.94 (19) O1—C1—C2 124.29 (14) C16—C15—C17 118.80 (19) O1—C1—C6 115.46 (15) N1—C16—C15 122.52 (17) C2—C1—C6 120.24 (15) N1—C16—C20 117.81 (15) C1—C2—C3 120.56 (15) C15—C16—C20 119.67 (16) C1—C2—H2A 119.7 C18—C17—C15 121.51 (19) C3—C2—H2A 119.7 C18—C17—H17A 119.2 C4—C3—C2 118.79 (16) C15—C17—H17A 119.2 C4—C3—C7 120.96 (16) C17—C18—C19 121.12 (19) C2—C3—C7 120.24 (15) C17—C18—H18A 119.4 C3—C4—C5 119.93 (16) C19—C18—H18A 119.4 C3—C4—H4A 120.0 C21—C19—C20 117.30 (17) C5—C4—H4A 120.0 C21—C19—C18 123.79 (18) C6—C5—C4 121.12 (17) C20—C19—C18 118.90 (19) C6—C5—H5A 119.4 N2—C20—C19 122.48 (17) C4—C5—H5A 119.4 N2—C20—C16 117.53 (15)	C23—N2—C20	118.40 (15)	C15—C14—H14A	120.1
01—C1—C2 124.29 (14) C16—C15—C17 118.80 (19) 01—C1—C6 115.46 (15) N1—C16—C15 122.52 (17) C2—C1—C6 120.24 (15) N1—C16—C20 117.81 (15) C1—C2—C3 120.56 (15) C15—C16—C20 119.67 (16) C1—C2—H2A 119.7 C18—C17—C15 121.51 (19) C3—C2—H2A 119.7 C18—C17—H17A 119.2 C4—C3—C2 118.79 (16) C15—C17—H17A 119.2 C4—C3—C7 120.96 (16) C17—C18—C19 121.12 (19) C2—C3—C7 120.24 (15) C17—C18—H18A 119.4 C3—C4—C5 119.93 (16) C19—C18—H18A 119.4 C3—C4—H4A 120.0 C21—C19—C20 117.30 (17) C5—C4—H4A 120.0 C21—C19—C18 123.79 (18) C6—C5—C4 121.12 (17) C20—C19—C18 118.90 (19) C6—C5—H5A 119.4 N2—C20—C16 117.53 (15) C5—C6—C1 119.32 (17) C19—C20—C16 119.99 (16) C5—C6—H6A 120.3 C22—C21—H21A 120.1	C23—N2—Zn1	128.60 (12)	C14—C15—C16	117.25 (19)
01—C1—C6 115.46 (15) N1—C16—C15 122.52 (17) C2—C1—C6 120.24 (15) N1—C16—C20 117.81 (15) C1—C2—C3 120.56 (15) C15—C16—C20 119.67 (16) C1—C2—H2A 119.7 C18—C17—C15 121.51 (19) C3—C2—H2A 119.7 C18—C17—H17A 119.2 C4—C3—C2 118.79 (16) C15—C17—H17A 119.2 C4—C3—C7 120.96 (16) C17—C18—C19 121.12 (19) C2—C3—C7 120.24 (15) C17—C18—H18A 119.4 C3—C4—C5 119.93 (16) C19—C18—H18A 119.4 C3—C4—H4A 120.0 C21—C19—C20 117.30 (17) C5—C4—H4A 120.0 C21—C19—C18 123.79 (18) C6—C5—C4 121.12 (17) C20—C19—C18 118.90 (19) C6—C5—H5A 119.4 N2—C20—C19 122.48 (17) C4—C5—H5A 119.4 N2—C20—C16 117.53 (15) C5—C6—C1 119.32 (17) C19—C20—C16 119.99 (16) C5—C6—H6A 120.3 C22—C21—H21A 120.1 </td <td>C20—N2—Zn1</td> <td>112.97 (11)</td> <td>C14—C15—C17</td> <td>123.94 (19)</td>	C20—N2—Zn1	112.97 (11)	C14—C15—C17	123.94 (19)
C2—C1—C6 120.24 (15) N1—C16—C20 117.81 (15) C1—C2—C3 120.56 (15) C15—C16—C20 119.67 (16) C1—C2—H2A 119.7 C18—C17—C15 121.51 (19) C3—C2—H2A 119.7 C18—C17—H17A 119.2 C4—C3—C2 118.79 (16) C15—C17—H17A 119.2 C4—C3—C7 120.96 (16) C17—C18—C19 121.12 (19) C2—C3—C7 120.24 (15) C17—C18—H18A 119.4 C3—C4—C5 119.93 (16) C19—C18—H18A 119.4 C3—C4—H4A 120.0 C21—C19—C20 117.30 (17) C5—C4—H4A 120.0 C21—C19—C18 123.79 (18) C6—C5—C4 121.12 (17) C20—C19—C18 118.90 (19) C6—C5—H5A 119.4 N2—C20—C19 122.48 (17) C4—C5—H5A 119.4 N2—C20—C16 117.53 (15) C5—C6—C1 119.32 (17) C19—C20—C16 119.99 (16) C5—C6—H6A 120.3 C22—C21—C19 119.86 (17) C1—C6—H6A 120.3 C22—C21—H21A 120.1	O1—C1—C2	124.29 (14)	C16—C15—C17	118.80 (19)
C1—C2—C3 120.56 (15) C15—C16—C20 119.67 (16) C1—C2—H2A 119.7 C18—C17—C15 121.51 (19) C3—C2—H2A 119.7 C18—C17—H17A 119.2 C4—C3—C2 118.79 (16) C15—C17—H17A 119.2 C4—C3—C7 120.96 (16) C17—C18—C19 121.12 (19) C2—C3—C7 120.24 (15) C17—C18—H18A 119.4 C3—C4—C5 119.93 (16) C19—C18—H18A 119.4 C3—C4—H4A 120.0 C21—C19—C20 117.30 (17) C5—C4—H4A 120.0 C21—C19—C18 123.79 (18) C6—C5—C4 121.12 (17) C20—C19—C18 118.90 (19) C6—C5—H5A 119.4 N2—C20—C19 122.48 (17) C4—C5—H5A 119.4 N2—C20—C16 117.53 (15) C5—C6—C1 119.32 (17) C19—C20—C16 119.99 (16) C5—C6—H6A 120.3 C22—C21—L12 120.1 C8—C7—C3 125.61 (17) C19—C21—H21A 120.1 C8—C7—H7A 117.2 C21—C22—H22A 120.4	O1—C1—C6	115.46 (15)	N1—C16—C15	122.52 (17)
C1—C2—H2A 119.7 C18—C17—C15 121.51 (19) C3—C2—H2A 119.7 C18—C17—H17A 119.2 C4—C3—C2 118.79 (16) C15—C17—H17A 119.2 C4—C3—C7 120.96 (16) C17—C18—C19 121.12 (19) C2—C3—C7 120.24 (15) C17—C18—H18A 119.4 C3—C4—C5 119.93 (16) C19—C18—H18A 119.4 C3—C4—H4A 120.0 C21—C19—C20 117.30 (17) C5—C4—H4A 120.0 C21—C19—C18 123.79 (18) C6—C5—C4 121.12 (17) C20—C19—C18 118.90 (19) C6—C5—H5A 119.4 N2—C20—C19 122.48 (17) C4—C5—H5A 119.4 N2—C20—C16 117.53 (15) C5—C6—C1 119.32 (17) C19—C20—C16 119.99 (16) C5—C6—H6A 120.3 C22—C21—C19 119.86 (17) C1—C6—H6A 120.3 C22—C21—H21A 120.1 C8—C7—C3 125.61 (17) C19—C21—H21A 120.1 C8—C7—H7A 117.2 C21—C22—C23 119.14 (19)	C2—C1—C6	120.24 (15)	N1—C16—C20	117.81 (15)
C3—C2—H2A 119.7 C18—C17—H17A 119.2 C4—C3—C2 118.79 (16) C15—C17—H17A 119.2 C4—C3—C7 120.96 (16) C17—C18—C19 121.12 (19) C2—C3—C7 120.24 (15) C17—C18—H18A 119.4 C3—C4—C5 119.93 (16) C19—C18—H18A 119.4 C3—C4—H4A 120.0 C21—C19—C20 117.30 (17) C5—C4—H4A 120.0 C21—C19—C18 123.79 (18) C6—C5—C4 121.12 (17) C20—C19—C18 118.90 (19) C6—C5—H5A 119.4 N2—C20—C19 122.48 (17) C4—C5—H5A 119.4 N2—C20—C16 117.53 (15) C5—C6—C1 119.32 (17) C19—C20—C16 119.99 (16) C5—C6—H6A 120.3 C22—C21—C19 119.86 (17) C1—C6—H6A 120.3 C22—C21—H21A 120.1 C8—C7—C3 125.61 (17) C19—C22—H21A 120.1 C8—C7—H7A 117.2 C21—C22—H22A 120.4 C7—C8—C9 125.05 (18) C23—C22—H22A 120.4	C1—C2—C3	120.56 (15)	C15—C16—C20	119.67 (16)
C4—C3—C2 118.79 (16) C15—C17—H17A 119.2 C4—C3—C7 120.96 (16) C17—C18—C19 121.12 (19) C2—C3—C7 120.24 (15) C17—C18—H18A 119.4 C3—C4—C5 119.93 (16) C19—C18—H18A 119.4 C3—C4—H4A 120.0 C21—C19—C20 117.30 (17) C5—C4—H4A 120.0 C21—C19—C18 123.79 (18) C6—C5—C4 121.12 (17) C20—C19—C18 118.90 (19) C6—C5—H5A 119.4 N2—C20—C19 122.48 (17) C4—C5—H5A 119.4 N2—C20—C16 117.53 (15) C5—C6—C1 119.32 (17) C19—C20—C16 119.99 (16) C5—C6—H6A 120.3 C22—C21—C19 119.86 (17) C1—C6—H6A 120.3 C22—C21—H21A 120.1 C8—C7—C3 125.61 (17) C19—C21—H21A 120.1 C8—C7—H7A 117.2 C21—C22—C23 119.14 (19) C3—C7—H7A 117.2 C21—C22—H22A 120.4 C7—C8—C9 125.05 (18) C23—C22—H22A 120.4 C7—C8—H8A 117.5 N2—C23—C22 122.81 (18)	C1—C2—H2A	119.7	C18—C17—C15	121.51 (19)
C4—C3—C7 120.96 (16) C17—C18—C19 121.12 (19) C2—C3—C7 120.24 (15) C17—C18—H18A 119.4 C3—C4—C5 119.93 (16) C19—C18—H18A 119.4 C3—C4—H4A 120.0 C21—C19—C20 117.30 (17) C5—C4—H4A 120.0 C21—C19—C18 123.79 (18) C6—C5—C4 121.12 (17) C20—C19—C18 118.90 (19) C6—C5—H5A 119.4 N2—C20—C19 122.48 (17) C4—C5—H5A 119.4 N2—C20—C16 117.53 (15) C5—C6—C1 119.32 (17) C19—C20—C16 119.99 (16) C5—C6—H6A 120.3 C22—C21—C19 119.86 (17) C1—C6—H6A 120.3 C22—C21—H21A 120.1 C8—C7—C3 125.61 (17) C19—C21—H21A 120.1 C8—C7—H7A 117.2 C21—C22—C23 119.14 (19) C3—C7—H7A 117.2 C21—C22—H22A 120.4 C7—C8—C9 125.05 (18) C23—C22—H22A 120.4 C7—C8—H8A 117.5 N2—C23—H23A 118.6	C3—C2—H2A	119.7	C18—C17—H17A	119.2
C2—C3—C7 120.24 (15) C17—C18—H18A 119.4 C3—C4—C5 119.93 (16) C19—C18—H18A 119.4 C3—C4—H4A 120.0 C21—C19—C20 117.30 (17) C5—C4—H4A 120.0 C21—C19—C18 123.79 (18) C6—C5—C4 121.12 (17) C20—C19—C18 118.90 (19) C6—C5—H5A 119.4 N2—C20—C19 122.48 (17) C4—C5—H5A 119.4 N2—C20—C16 117.53 (15) C5—C6—C1 119.32 (17) C19—C20—C16 119.99 (16) C5—C6—H6A 120.3 C22—C21—C19 119.86 (17) C1—C6—H6A 120.3 C22—C21—H21A 120.1 C8—C7—C3 125.61 (17) C19—C21—H21A 120.1 C8—C7—H7A 117.2 C21—C22—C23 119.14 (19) C3—C7—H7A 117.2 C21—C22—H22A 120.4 C7—C8—C9 125.05 (18) C23—C22—H22A 120.4 C7—C8—H8A 117.5 N2—C23—H23A 118.6	C4—C3—C2	118.79 (16)	C15—C17—H17A	119.2
C3—C4—C5 119.93 (16) C19—C18—H18A 119.4 C3—C4—H4A 120.0 C21—C19—C20 117.30 (17) C5—C4—H4A 120.0 C21—C19—C18 123.79 (18) C6—C5—C4 121.12 (17) C20—C19—C18 118.90 (19) C6—C5—H5A 119.4 N2—C20—C19 122.48 (17) C4—C5—H5A 119.4 N2—C20—C16 117.53 (15) C5—C6—C1 119.32 (17) C19—C20—C16 119.99 (16) C5—C6—H6A 120.3 C22—C21—C19 119.86 (17) C1—C6—H6A 120.3 C22—C21—H21A 120.1 C8—C7—C3 125.61 (17) C19—C21—H21A 120.1 C8—C7—H7A 117.2 C21—C22—C23 119.14 (19) C3—C7—H7A 117.2 C21—C22—H22A 120.4 C7—C8—C9 125.05 (18) C23—C22—H22A 120.4 C7—C8—H8A 117.5 N2—C23—H23A 118.6	C4—C3—C7	120.96 (16)	C17—C18—C19	121.12 (19)
C3—C4—H4A 120.0 C21—C19—C20 117.30 (17) C5—C4—H4A 120.0 C21—C19—C18 123.79 (18) C6—C5—C4 121.12 (17) C20—C19—C18 118.90 (19) C6—C5—H5A 119.4 N2—C20—C19 122.48 (17) C4—C5—H5A 119.4 N2—C20—C16 117.53 (15) C5—C6—C1 119.32 (17) C19—C20—C16 119.99 (16) C5—C6—H6A 120.3 C22—C21—C19 119.86 (17) C1—C6—H6A 120.3 C22—C21—H21A 120.1 C8—C7—C3 125.61 (17) C19—C21—H21A 120.1 C8—C7—H7A 117.2 C21—C22—C23 119.14 (19) C3—C7—H7A 117.2 C21—C22—H22A 120.4 C7—C8—C9 125.05 (18) C23—C22—H22A 120.4 C7—C8—H8A 117.5 N2—C23—C22 122.81 (18) C9—C8—H8A 117.5 N2—C23—H23A 118.6	C2—C3—C7	120.24 (15)	C17—C18—H18A	119.4
C5—C4—H4A 120.0 C21—C19—C18 123.79 (18) C6—C5—C4 121.12 (17) C20—C19—C18 118.90 (19) C6—C5—H5A 119.4 N2—C20—C19 122.48 (17) C4—C5—H5A 119.4 N2—C20—C16 117.53 (15) C5—C6—C1 119.32 (17) C19—C20—C16 119.99 (16) C5—C6—H6A 120.3 C22—C21—C19 119.86 (17) C1—C6—H6A 120.3 C22—C21—H21A 120.1 C8—C7—C3 125.61 (17) C19—C21—H21A 120.1 C8—C7—H7A 117.2 C21—C22—C23 119.14 (19) C3—C7—H7A 117.2 C21—C22—H22A 120.4 C7—C8—C9 125.05 (18) C23—C22—H22A 120.4 C7—C8—H8A 117.5 N2—C23—C22 122.81 (18) C9—C8—H8A 117.5 N2—C23—H23A 118.6	C3—C4—C5	119.93 (16)	C19—C18—H18A	119.4
C6—C5—C4 121.12 (17) C20—C19—C18 118.90 (19) C6—C5—H5A 119.4 N2—C20—C19 122.48 (17) C4—C5—H5A 119.4 N2—C20—C16 117.53 (15) C5—C6—C1 119.32 (17) C19—C20—C16 119.99 (16) C5—C6—H6A 120.3 C22—C21—C19 119.86 (17) C1—C6—H6A 120.3 C22—C21—H21A 120.1 C8—C7—C3 125.61 (17) C19—C21—H21A 120.1 C8—C7—H7A 117.2 C21—C22—C23 119.14 (19) C3—C7—H7A 117.2 C21—C22—H22A 120.4 C7—C8—C9 125.05 (18) C23—C22—H22A 120.4 C7—C8—H8A 117.5 N2—C23—C22 122.81 (18) C9—C8—H8A 117.5 N2—C23—H23A 118.6	C3—C4—H4A	120.0	C21—C19—C20	117.30 (17)
C6—C5—H5A 119.4 N2—C20—C19 122.48 (17) C4—C5—H5A 119.4 N2—C20—C16 117.53 (15) C5—C6—C1 119.32 (17) C19—C20—C16 119.99 (16) C5—C6—H6A 120.3 C22—C21—C19 119.86 (17) C1—C6—H6A 120.3 C22—C21—H21A 120.1 C8—C7—C3 125.61 (17) C19—C21—H21A 120.1 C8—C7—H7A 117.2 C21—C22—C23 119.14 (19) C3—C7—H7A 117.2 C21—C22—H22A 120.4 C7—C8—C9 125.05 (18) C23—C22—H22A 120.4 C7—C8—H8A 117.5 N2—C23—C22 122.81 (18) C9—C8—H8A 117.5 N2—C23—H23A 118.6	C5—C4—H4A	120.0	C21—C19—C18	123.79 (18)
C4—C5—H5A 119.4 N2—C20—C16 117.53 (15) C5—C6—C1 119.32 (17) C19—C20—C16 119.99 (16) C5—C6—H6A 120.3 C22—C21—C19 119.86 (17) C1—C6—H6A 120.3 C22—C21—H21A 120.1 C8—C7—C3 125.61 (17) C19—C21—H21A 120.1 C8—C7—H7A 117.2 C21—C22—C23 119.14 (19) C3—C7—H7A 117.2 C21—C22—H22A 120.4 C7—C8—C9 125.05 (18) C23—C22—H22A 120.4 C7—C8—H8A 117.5 N2—C23—C22 122.81 (18) C9—C8—H8A 117.5 N2—C23—H23A 118.6	C6—C5—C4	121.12 (17)	C20—C19—C18	118.90 (19)
C5—C6—C1 119.32 (17) C19—C20—C16 119.99 (16) C5—C6—H6A 120.3 C22—C21—C19 119.86 (17) C1—C6—H6A 120.3 C22—C21—H21A 120.1 C8—C7—C3 125.61 (17) C19—C21—H21A 120.1 C8—C7—H7A 117.2 C21—C22—C23 119.14 (19) C3—C7—H7A 117.2 C21—C22—H22A 120.4 C7—C8—C9 125.05 (18) C23—C22—H22A 120.4 C7—C8—H8A 117.5 N2—C23—C22 122.81 (18) C9—C8—H8A 117.5 N2—C23—H23A 118.6	C6—C5—H5A	119.4	N2—C20—C19	122.48 (17)
C5—C6—H6A 120.3 C22—C21—C19 119.86 (17) C1—C6—H6A 120.3 C22—C21—H21A 120.1 C8—C7—C3 125.61 (17) C19—C21—H21A 120.1 C8—C7—H7A 117.2 C21—C22—C23 119.14 (19) C3—C7—H7A 117.2 C21—C22—H22A 120.4 C7—C8—C9 125.05 (18) C23—C22—H22A 120.4 C7—C8—H8A 117.5 N2—C23—C22 122.81 (18) C9—C8—H8A 117.5 N2—C23—H23A 118.6	C4—C5—H5A	119.4	N2—C20—C16	117.53 (15)
C1—C6—H6A 120.3 C22—C21—H21A 120.1 C8—C7—C3 125.61 (17) C19—C21—H21A 120.1 C8—C7—H7A 117.2 C21—C22—C23 119.14 (19) C3—C7—H7A 117.2 C21—C22—H22A 120.4 C7—C8—C9 125.05 (18) C23—C22—H22A 120.4 C7—C8—H8A 117.5 N2—C23—C22 122.81 (18) C9—C8—H8A 117.5 N2—C23—H23A 118.6	C5—C6—C1	119.32 (17)	C19—C20—C16	119.99 (16)
C8—C7—C3 125.61 (17) C19—C21—H21A 120.1 C8—C7—H7A 117.2 C21—C22—C23 119.14 (19) C3—C7—H7A 117.2 C21—C22—H22A 120.4 C7—C8—C9 125.05 (18) C23—C22—H22A 120.4 C7—C8—H8A 117.5 N2—C23—C22 122.81 (18) C9—C8—H8A 117.5 N2—C23—H23A 118.6	C5—C6—H6A	120.3	C22—C21—C19	119.86 (17)
C8—C7—H7A 117.2 C21—C22—C23 119.14 (19) C3—C7—H7A 117.2 C21—C22—H22A 120.4 C7—C8—C9 125.05 (18) C23—C22—H22A 120.4 C7—C8—H8A 117.5 N2—C23—C22 122.81 (18) C9—C8—H8A 117.5 N2—C23—H23A 118.6	C1—C6—H6A	120.3	C22—C21—H21A	120.1
C3—C7—H7A 117.2 C21—C22—H22A 120.4 C7—C8—C9 125.05 (18) C23—C22—H22A 120.4 C7—C8—H8A 117.5 N2—C23—C22 122.81 (18) C9—C8—H8A 117.5 N2—C23—H23A 118.6	C8—C7—C3	125.61 (17)	C19—C21—H21A	120.1
C7—C8—C9 125.05 (18) C23—C22—H22A 120.4 C7—C8—H8A 117.5 N2—C23—C22 122.81 (18) C9—C8—H8A 117.5 N2—C23—H23A 118.6	C8—C7—H7A	117.2	C21—C22—C23	119.14 (19)
C7—C8—H8A 117.5 N2—C23—C22 122.81 (18) C9—C8—H8A 117.5 N2—C23—H23A 118.6	C3—C7—H7A	117.2	C21—C22—H22A	120.4
C9—C8—H8A 117.5 N2—C23—H23A 118.6	C7—C8—C9	125.05 (18)	C23—C22—H22A	120.4
	C7—C8—H8A	117.5	N2—C23—C22	122.81 (18)
O3—C9—O2 121.44 (17) C22—C23—H23A 118.6	C9—C8—H8A	117.5	N2—C23—H23A	118.6
	O3—C9—O2	121.44 (17)	C22—C23—H23A	118.6

Symmetry codes: (i) -x-1, y-1/2, -z+1/2; (ii) -x-1, y+1/2, -z+1/2.

Acta Cryst. (2012). E68, m882 sup-7