

64-040 Modul IP7: Rechnerstrukturen

http://tams.informatik.uni-hamburg.de/ lectures/2012ws/vorlesung/rs

- Kapitel 12 -

Andreas Mäder

Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik

Technische Aspekte Multimodaler Systeme

Wintersemester 2012/2013

Kapitel 12

Schaltwerke

Definition und Modelle

Asynchrone (ungetaktete) Schaltungen

Synchrone (getaktete) Schaltungen

Flipflops

RS-Flipflop

D-Latch

D-Flipflop

JK-Flipflop

Hades

Zeitbedingungen

Taktschemata

Beschreibung von Schaltwerken

Entwurf von Schaltwerken

Kapitel 12 (cont.)

Beispiele

Ampelsteuerung Zählschaltungen verschiedene Beispiele Asynchrone Schaltungen

Literatur

Schaltwerke

- ► **Schaltwerk**: Schaltung mit Rückkopplungen und Verzögerungen
- ▶ fundamental andere Eigenschaften als Schaltnetze
- Ausgangswerte nicht nur von Eingangswerten abhängig sondern auch von der Vorgeschichte
- ⇒ interner Zustand repräsentiert "Vorgeschichte"
 - ▶ ggf. stabile Zustände ⇒ Speicherung von Information
 - ▶ bei unvorsichtigem Entwurf: chaotisches Verhalten

Schaltwerke: Blockschaltbild

- Eingangsvariablen x und Ausgangsvariablen y
- Aktueller Zustand z
- Folgezustand
- ightharpoonup Rückkopplung läuft über Verzögerungen au / Speicherglieder

Schaltwerke: Blockschaltbild (cont.)

zwei prinzipielle Varianten für die Zeitglieder

1. nur (Gatter-) Verzögerungen: asynchrone oder

nicht getaktete Schaltwerke

2. getaktete Zeitglieder: synchrone oder getaktete Schaltwerke

Synchrone und Asynchrone Schaltwerke

- **synchrone Schaltwerke**: die Zeitpunkte, an denen das Schaltwerk von einem stabilen Zustand in einen stabilen Folgezustand übergeht, werden explizit durch ein Taktsignal (clock) vorgegeben
- asynchrone Schaltwerke: hier fehlt ein Taktgeber, Änderungen der Eingangssignale wirken sich unmittelbar aus (entsprechend der Gatterverzögerungen τ)
- potentiell höhere Arbeitsgeschwindigkeit
- aber sehr aufwendiger Entwurf
- ▶ fehleranfälliger (z.B. leicht veränderte Gatterverzögerungen durch Bauteil-Toleranzen, Spannungsschwankungen, usw.)

Theorie: Endliche Automaten

FSM - Finite State Machine

- ▶ Deterministischer Endlicher Automat mit Ausgabe
- 2 äguivalente Modelle
 - ▶ Mealy: Ausgabe hängt von Zustand und Eingabe ab
 - ► Moore: —"— nur vom Zustand ab
- ▶ 6-Tupel $(Z, \Sigma, \Delta, \delta, \lambda, z_0)$
 - ► Z Menge von Zuständen
 - \triangleright Σ Eingabealphabet
 - Δ Ausgabealphabet
 - δ Übergangsfunktion $\delta: Z \times \Sigma \to Z$
 - ▶ λ Ausgabefunktion $\lambda: Z \times \Sigma \to \Delta$
 - $\lambda: Z \longrightarrow \Delta$

Mealy-Modell Moore- -"-

 $ightharpoonup z_0$ Startzustand

Mealy-Modell und Moore-Modell

- ► **Mealy-Modell**: die Ausgabe hängt vom Zustand z und vom momentanen Input x ab
- ► **Moore-Modell**: die Ausgabe des Schaltwerks hängt nur vom aktuellen Zustand z ab

Ausgabefunktion: $y = \lambda(z, x)$ Mealy

 $y = \lambda(z)$ Moore

▶ Überführungsfunktion: $z^+=\delta(z,x)$ Moore und Mealy

lackbox Speicherglieder oder Verzögerung au im Rückkopplungspfad

Mealy-Modell und Moore-Modell (cont.)

Mealy-Automat

Moore-Automat

Asynchrone Schaltungen: Beispiel Ringoszillator

click to start/stop odd number of inverting gates external test equipment 000008284 [Hen] Hades Webdemo: reset-counte 12-gatedelay/20-ringoscillator/ringoscillator

- stabiler Zustand, solange der Eingang auf 0 liegt
- instabil sobald der Eingang auf 1 wechselt (Oszillation)

Asynchrone Schaltungen: Beispiel Ringoszillator (cont.)

- ungerade Anzahl n invertierender Gatter $(n \ge 3)$
- Start/Stop über steuerndes NAND-Gatter
- Oszillation mit maximaler Schaltfrequenz z.B.: als Testschaltung für neue (Halbleiter-) Technologien

Asynchrone Schaltungen: Probleme

- das Schaltwerk kann stabile und nicht-stabile Zustände enthalten
- die Verzögerungen der Bauelemente sind nicht genau bekannt und können sich im Betrieb ändern
- ► Variation durch Umweltparameter z.B. Temperatur, Versorgungsspannung, Alterung
- ⇒ sehr schwierig, die korrekte Funktion zu garantieren z.B. mehrstufige Handshake-Protokolle
 - ▶ in der Praxis überwiegen synchrone Schaltwerke
 - Realisierung mit Flipflops als Zeitgliedern

Universität Hamburg

Synchrone Schaltungen

- ▶ alle Rückkopplungen der Schaltung laufen über spezielle Zeitglieder: "Flipflops"
- ▶ diese definieren / speichern einen stabilen Zustand, unabhängig von den Eingabewerten und Vorgängen im δ -Schaltnetz
- Hinzufügen eines zusätzlichen Eingangssignals: "Takt"
- die Zeitglieder werden über das Taktsignal gesteuert verschiedene Möglichkeiten: Pegel- und Flankensteuerung, Mehrphasentakte (s.u.)
- ⇒ synchrone Schaltwerke sind wesentlich einfacher zu entwerfen und zu analysieren als asynchrone Schaltungen

Zeitglieder / Flipflops

- ► **Zeitglieder**: Bezeichnung für die Bauelemente, die den Zustand des Schaltwerks speichern können
- ▶ bistabile Bauelemente (Kippglieder) oder Flipflops
- ► zwei stabile Zustände ⇒ speichert 1 Bit
 - 1 Setzzustand
 - 0 Rücksetzzustand
- ▶ Übergang zwischen Zuständen durch geeignete Ansteuerung

Flipflops

12.4 Schaltwerke - Flipflops

- Name f
 ür die elementaren Schaltwerke
- \blacktriangleright mit genau zwei Zuständen Z_0 und Z_1
- Zustandsdiagramm hat zwei Knoten und vier Übergänge (s.u.)
- ▶ Ausgang als Q bezeichnet und dem Zustand gleichgesetzt
- ightharpoonup meistens auch invertierter Ausgang \overline{Q} verfügbar
- Flipflops sind selbst nicht getaktet
- sondern "sauber entworfene" asynchrone Schaltwerke
- ► Anwendung als Verzögerungs-/Speicherelemente in getakteten Schaltwerken

12.4 Schaltwerke - Flipflops

Flipflops: Typen

- Basis-Flipflop
- getaktetes RS-Flipflop
- pegelgesteuertes D-Flipflop
- flankengesteuertes D-Flipflop
- JK-Flipflop
- weitere...

"Reset-Set-Flipflop"

"D-Latch"

"D-Flipflop"

RS-Flipflop: NAND- und NOR-Realisierung

/S	/R	Q	NQ	NAND
0	0	1	1	forbidden
0	1	1	0	
1	0	0	1	
1	1	Q*	NQ*	store

[Hen] Hades Webdemo: 16-flipflops/10-srff/srff

S	R	Q	NQ	NOR
0	0	Q*	NQ*	store
0	1	0	1	
0 1	0	1	0	
1	1	0	0	forbidden

RS-Flipflop: Varianten des Schaltbilds

NOR RS-Flipflop: Zustandsdiagramm und Flusstafel

ust	and
0	0
0	1
1	1
1	0

00	01	11	10
	ezust	and	$Q \overline{Q}$
11	01	00	10
01	01	00	00
00	00	00	00
10	00	00	10

Eingabe [S R]

stabiler Zustand

RS-Flipflop mit Takt

- ▶ RS-Basisflipflop mit zusätzlichem Takteingang *C*
- ▶ Änderungen nur wirksam, während *C* aktiv ist

Struktur

/	С	S	R	Q	NQ	NOR
	0	Х	Х	Q*	NQ*	store
	1	0	0	Q*	NQ*	store
	1	0	1	0	1	
	1	1	0	1	0	
	1	1	1	0	0	forbidden

[Hen] Hades Webdemo: 16-flipflops/10-srff/clocked-srff

RS-Flipflop mit Takt (cont.)

- $Q = \overline{(NQ \lor (R \land C))}$ $NQ = \overline{(Q \lor (S \land C))}$
- ► Impulsdiagramm

Pegelgesteuertes D-Flipflop (D-Latch)

- ► Takteingang *C*
- Dateneingang D
- \triangleright aktueller Zustand Q, Folgezustand Q^+

С	D	Q^+
0	0	Q
0	1	Q
1	0	0
1	1	1

- Wert am Dateneingang wird durchgeleitet, wenn das Taktsignal
 - $1 \text{ ist} \Rightarrow \textit{high}\text{-aktiv}$
 - $0 \text{ ist} \Rightarrow low-aktiv}$

Pegelgesteuertes D-Flipflop (D-Latch) (cont.)

▶ Realisierung mit getaktetem RS-Flipflop und einem Inverter

$$S = D$$
, $R = \overline{D}$

minimierte NAND-Struktur

Symbol

[Hen] Hades Webdemo: 16-flipflops/20-dlatch/dlatch

句

D-Latch: Zustandsdiagramm und Flusstafel

	Eingabe [<i>C D</i>] 00 01 11 10]
	00	01	11	10
Zustand [Q]	Folg	gezust	and	$[Q^+]$
0	0	0	1	0
1	1	1	1	0
	9	tabile	r Zus	stand

Flankengesteuertes D-Flipflop

- ► Takteingang *C*
- ▶ Dateneingang *D*
- ightharpoonup aktueller Zustand Q, Folgezustand Q^+

С	D	Q^+
0	*	Q
1	*	Q
↑	0	0
1	1	1

- Wert am Dateneingang wird gespeichert, wenn das Taktsignal sich von 0 auf 1 ändert ⇒ Vorderflankensteuerung
 "- 1 auf 0 ändert ⇒ Rückflankensteuerung
- ► Realisierung als Master-Slave Flipflop oder direkt

Master-Slave D-Flipflop

- zwei kaskadierte D-Latches
- hinteres Latch erhält invertierten Takt
- vorderes "Master"-Latch: low-aktiv (transparent bei C=0) hinteres "Slave"-Latch: high-aktiv (transparent bei C=1)
- \blacktriangleright vorderes Latch speichert bei Wechsel auf C=1
- wenig später (Gatterverzögerung im Inverter der Taktleitung)
 übernimmt das hintere "Slave"-Latch diesen Wert
- anschließend Input für das Slave-Latch stabil
- ▶ Slave-Latch speichert, sobald Takt auf C = 0 wechselt
- \Rightarrow dies entspricht effektiv einer **Flankensteuerung**: Wert an D nur relevant, kurz bevor Takt auf C=1 wechselt

Master-Slave D-Flipflop (cont.)

[Hen] Hades Webdemo: 16-flipflops/20-dlatch/dff

- zwei kaskadierte pegel-gesteuerte D-Latches
- C=0 Master aktiv (transparent) Slave hat (vorherigen) Wert gespeichert
- C=1 Master speichert Wert Slave transparent, leitet Wert von Master weiter

Vorderflanken-gesteuertes D-Flipflop

- ▶ Dateneingang *D* wird nur durch Takt-Vorderflanke ausgewertet
- Gatterlaufzeiten für Funktion essentiell
- Einhalten der Vorlauf- und Haltezeiten vor/nach der Taktflanke (s.u. Zeitbedingungen)

12.4.4 Schaltwerke - Flipflops - JK-Flipflop

JK-Flipflop

- Takteingang
- ► Steuereingänge *J* ("jump") und *K* ("kill")
- \triangleright aktueller Zustand Q, Folgezustand Q^+

С	J	Κ	Q^+	Funktion
*	*	*	Q	Wert gespeichert
↑	0	0	Q	Wert gespeichert
\uparrow	0	1	0	Rücksetzen
1	1	0	1	Setzen
↑	1	1	\overline{Q}	Invertieren

- universelles Flipflop, sehr flexibel einsetzbar
- ▶ in integrierten Schaltungen nur noch selten verwendet

JK-Flipflop: Realisierung mit D-Flipflop

[Hen] Hades Webdemo: 16-flipflops/40-jkff/jkff-prinzip

JK-Flipflop: Realisierung als Master-Slave Schaltung

[Hen] Hades Webdemo: 16-flipflops/40-jkff/jkff

Achtung: Schaltung wegen Rückkopplungen schwer zu initialisieren

JK-Flipflop: tatsächliche Schaltung im IC 7476

Flipflop-Typen: Komponenten/Symbole in Hades

[Hen] Hades Webdemo: 16-flipflops/50-ffdemo/ flipflopdemo

Flipflop-Typen: Impulsdiagramme

- pegel- und vorderflankengesteuertes Flipflop
- ▶ beide Flipflops hier mit jeweils einer Zeiteinheit Verzögerung
- ▶ am Ende undefinierte Werte wegen gleichzeitigem Wechsel von C und D (Verletzung der Zeitbedingungen)

Flipflops: Zeitbedingungen

- ► Flipflops werden entwickelt, um Schaltwerke einfacher entwerfen und betreiben zu können
- ▶ Umschalten des Zustandes durch das Taktsignal gesteuert
- ▶ aber: jedes Flipflop selbst ist ein asynchrones Schaltwerk mit kompliziertem internem Zeitverhalten
- ► Funktion kann nur garantiert werden, wenn (typ-spezifische) Zeitbedingungen eingehalten werden
- ⇒ "Vorlauf- und Haltezeiten" (setup- / hold-time)
- ⇒ Daten- und Takteingänge dürfen sich nie gleichzeitig ändern

Flipflops: Vorlauf- und Haltezeit

- ▶ t_s Vorlaufzeit (engl. setup-time): Zeitintervall, innerhalb dessen das Datensignal vor dem nächsten Takt stabil anliegen muss
- ► t_h Haltezeit (engl. hold-time): Zeitintervall, innerhalb dessen das Datensignal nach einem Takt noch stabil anliegen muss

- ⇒ Verletzung der Zeitbedingungen "falscher" Wert an Q
 - ► *t_{FF}* Ausgangsverzögerung

Zeitbedingungen: Eingangsvektor

Zeitbedingungen: Eingangsvektor (cont.)

- ightharpoonup Änderungen der Eingangswerte x werden beim Durchlaufen von δ mindestens um $au_{\delta_{\min}}$, bzw. maximal um $au_{\delta_{\max}}$ verzögert
- um die Haltezeit der Zeitglieder einzuhalten, darf x sich nach einem Taktimpuls frühestens zum Zeitpunkt ($\mathsf{t}_1 + \mathsf{t}_{hold} \tau_{\delta_{\min}}$) wieder ändern
- um die Vorlaufzeit vor dem nächsten Takt einzuhalten, muss x spätestens zum Zeitpunkt $(t_2 t_{setup} \tau_{\delta_{\max}})$ wieder stabil sein
- ⇒ Änderungen dürfen nur im grün markierten Zeitintervall erfolgen

Zeitbedingungen: interner Zustand

Zeitbedingungen: interner Zustand (cont.)

- ▶ zum Zeitpunkt t₁ wird ein Taktimpuls ausgelöst
- ▶ nach dem Taktimpuls vergeht die Zeit τ_{FF} , bis die Zeitglieder (Flipflops) ihren aktuellen Eingangswert z^+ übernommen haben und als neuen Zustand z am Ausgang bereitstellen
- ▶ die neuen Werte von z laufen durch das δ-Schaltnetz, der schnellste Pfad ist dabei $τ_{\delta_{min}}$ und der langsamste ist $τ_{\delta_{max}}$
- \Rightarrow innerhalb der Zeitintervalls $au_{FF} + au_{\delta_{\min}}$ bis $au_{f\!f} + au_{\delta_{\max}}$ ändern sich die Werte des Folgezustands z^+ grauer Bereich

Zeitbedingungen: interner Zustand (cont.)

- \blacktriangleright die Änderungen dürfen frühestens zum Zeitpunkt ($t_1 + t_{hold}$) beginnen, ansonsten würde Haltezeit verletzt ggf. muss $\tau_{\delta_{min}}$ vergrößert werden, um diese Bedingung einhalten zu können (zusätzliche Gatterverzögerungen)
- die Änderungen müssen sich spätestens bis zum Zeitpunkt (t₂ - t_{setup}) stabilisiert haben (der Vorlaufzeit der Flipflops vor dem nächsten Takt)

Maximale Taktfrequenz einer Schaltung

- aus obigen Bedingungen ergibt sich sofort die maximal zulässige Taktfrequenz einer Schaltung
- Umformen und Auflösen nach dem Zeitpunkt des nächsten Takts ergibt zwei Bedingungen

$$\Delta t \geq (au_{ extit{FF}} + au_{\delta_{ extit{max}}} + au_{ extit{setup}})$$
 und $\Delta t \geq (au_{ extit{hold}} + au_{ extit{setup}})$

► falls diese Bedingung verletzt wird ("Übertakten"), kann es (datenabhängig) zu Fehlfunktionen kommen

Taktsignal: Prinzip

- \blacktriangleright periodisches digitales Signal, Frequenz f bzw. Periode τ
- ▶ oft symmetrisch
- ► asymmetrisch für Zweiphasentakt (s.u.)

12.6 Schaltwerke - Taktschemata

Taktsignal: Varianten

- ▶ **Pegelsteuerung**: Schaltung reagiert, während das Taktsignal den Wert 1 (bzw. 0) aufweist
- ► Flankensteuerung: Schaltung reagiert nur, während das Taktsignal seinen Wert wechselt
 - ▶ Vorderflankensteuerung: Wechsel von 0 nach 1
 - ► Rückflankensteuerung: —"— von 1 nach 0
- ► Zwei- und Mehrphasentakte

Taktsignal: Varianten (cont.)

12.6 Schaltwerke - Taktschemata

Taktsignal: Prinzip und Realität

- ▶ Werteverläufe in realen Schaltungen stark gestört
- ▶ Überschwingen/Übersprechen benachbarter Signale
- ► Flankensteilheit nicht garantiert (bei starker Belastung) ggf. besondere Gatter ("Schmitt-Trigger")

12.6 Schaltwerke - Taktschemata

Problem mit Pegelsteuerung

- während des aktiven Taktpegels werden Eingangswerte direkt übernommen
- ▶ falls invertierende Rückkopplungspfade in δ vorliegen, kommt es dann zu instabilen Zuständen (Oszillationen)

- ► einzelne pegelgesteuerte Zeitglieder (D-Latches) garantieren keine stabilen Zustände
- ⇒ Verwendung von je zwei pegelgesteuerten Zeitgliedern und Einsatz von Zweiphasentakt oder
- ⇒ Verwendung flankengesteuerter D-Flipflops

12.6 Schaltwerke - Taktschemata

Zweiphasentakt

- pegelgesteuertes D-Latch ist bei aktivem Takt transparent
- rück-gekoppelte Werte werden sofort wieder durchgelassen
- Oszillation bei invertierten Rückkopplungen
- ▶ Reihenschaltung aus jeweils zwei D-Latches
- zwei separate Takte Φ₁ und Φ₂
 - bei Takt Φ₁ übernimmt vorderes Flipflop den Wert erst bei Takt Φ₂ übernimmt hinteres Flipflop
 - vergleichbar Master-Slave Prinzip bei D-FF aus Latches

12.6 Schaltwerke - Taktschemata

Zweiphasentakt (cont.)

- ▶ nicht überlappender Takt mit Phasen Φ_1 und Φ_2
- \blacktriangleright vorderes D-Latch übernimmt Eingangswert D während Φ_1 bei Φ_2 übernimmt das hintere D-Latch und liefert Q

Zweiphasentakt: Erzeugung

[Hen] Hades Webdemo: 12-gatedelay/40-tpcg/ two-phase-clock-gen

12.6 Schaltwerke - Taktschemata

Zweiphasentakt: Erzeugung (cont.)

- ► Verzögerungen geeignet wählen
- \blacktriangleright Eins-Phasen der beiden Takte c_1 und c_2 sauber getrennt
- ⇒ nicht-überlappende Taktimpulse zur Ansteuerung von Schaltungen mit 2-Phasen-Taktung

Beschreibung von Schaltwerken

- viele verschiedene Möglichkeiten
- graphisch oder textuell
- algebraische Formeln/Gleichungen
- Flusstafel und Ausgangstafel
- Zustandsdiagramm
- State-Charts (hierarchische Zustandsdiagramme)
- Programme (Hardwarebeschreibungssprachen)

Flusstafel und Ausgangstafel

- entspricht der Funktionstabelle von Schaltnetzen
- ► Flusstafel: Tabelle für die Folgezustände als Funktion des aktuellen Zustands und der Eingabewerte
- = beschreibt das δ -Schaltnetz
- ► Ausgangstafel: Tabelle für die Ausgabewerte als Funktion des aktuellen Zustands (und der Eingabewerte [Mealy-Modell])
- = beschreibt das λ -Schaltnetz

12.7 Schaltwerke - Beschreibung von Schaltwerken

Beispiel: Ampel

- ▶ vier Zustände: {rot, rot-gelb, grün, gelb}
- ▶ Codierung beispielsweise als 2-bit Vektor (z_1, z_0)
- ► Flusstafel

Zustand	Codierung		Folgezustand		
	z_1	<i>z</i> ₀	z_1^+	z_0^+	
rot	0	0	0	1	
rot-gelb	0	1	1	0	
grün	1	0	1	1	
gelb	1	1	0	0	

Beispiel: Ampel (cont.)

Ausgangstafel

Zustand	Codierung		Ausgänge		
	z_1	<i>z</i> ₀	rt	ge	gr
rot	0	0	1	0	0
rot-gelb	0	1	1	1	0
grün	1	0	0	0	1
gelb	1	1	0	1	0

- Funktionstabelle für drei Schaltfunktionen
- Minimierung z.B. mit KV-Diagrammen

12.7 Schaltwerke - Beschreibung von Schaltwerken

Zustandsdiagramm

- **Zustandsdiagramm**: Grafische Darstellung eines Schaltwerks
- ▶ je ein Knoten für jeden Zustand
- ▶ je eine Kante für jeden möglichen Übergang
- Knoten werden passend benannt
- ► Kanten werden mit den Eingabemustern gekennzeichnet, bei denen der betreffende Übergang auftritt
- ► Moore-Schaltwerke: Ausgabe wird zusammen mit dem Namen im Knoten notiert
- ▶ Mealy-Schaltwerke: Ausgabe hängt vom Input ab und wird an den Kanten notiert

Zustandsdiagramm: Moore-Automat

- Ausgangswerte hängen nur vom Zustand ab
- ▶ können also im jeweiligen Knoten notiert werden
- ▶ Übergänge werden als Pfeile mit der Eingangsbelegung notiert, die den Übergang aktiviert
- ▶ ggf. Startzustand markieren (z.B. Segment, doppelter Kreis)

Zustandsdiagramm: Mealy-Automat

- Ausgangswerte hängen nicht nur vom Zustand sondern auch von den Eingabewerten ab
- Ausgangswerte an den zugehörigen Kanten notieren
- ▶ übliche Notation: Eingangsbelegung / Ausgangswerte

"State-Charts"

- ▶ hierarchische Version von Zustandsdiagrammen
- Knoten repräsentieren entweder einen Zustand
- ▶ oder einen eigenen (Unter-) Automaten
- beliebte Spezifikation für komplexe Automaten,
 Embedded Systems, Kommunikationssysteme, etc.
- David Harel, Statecharts A visual formalism for complex systems, CS84-05, Department of Applied Mathematics, The Weizmann Institute of Science, 1984 [Har87]

www.wisdom.weizmann.ac.il/~dharel/SCANNED.PAPERS/Statecharts.pdf

"State-Charts" (cont.)

► Beispiel Digitaluhr

Hardwarebeschreibungssprachen

- Beschreibung eines Schaltwerks als Programm:
- normale Hochsprachen

C. Java

spezielle Bibliotheken für normale Sprachen

SystemC, Hades

spezielle Hardwarebeschreibungssprachen

Verilog, VHDL

- ► Hardwarebeschreibungssprachen unterstützen Modellierung paralleler Abläufe und des Zeitverhaltens einer Schaltung
- wird hier nicht vertieft
- lediglich zwei Beispiele: D-Flipflop in Verilog und VHDL

D-Flipflop in Verilog

```
module dff (clock, reset, din, dout);
input clock, reset, din;
output dout;
rea dout:
  always @(posedge clock or reset)
  beain
    if (reset)
      dout = 1'b0:
    else
      dout = din;
    end
endmodule
```

- ▶ Deklaration eines Moduls mit seinen Ein- und Ausgängen
- ► Deklaration der speichernden Elemente (,,reg")
- Aktivierung des Codes bei Signalwechseln ("posedge clock")

D-Flipflop in VHDL

Very High Speed Integrated Circuit Hardware Description Language

```
library ieee:
use ieee.std logic 1164.all:
entity DFF is
port ( CLOCK
                : in std logic:
        RESET
                : in std_logic;
        DTN
                : in std_logic;
                : out std logic):
        THOO
end entity DFF;
architecture REHAV of DEF is
begin
  DFF_P: process (RESET, CLOCK) is
  beain
    if RESET = '1' then
        DOUT <= '0';
    elsif rising_edge(CLOCK) then
        DOUT <= DIN:
    end if;
  end process DFF_P;
end architecture BEHAV:
```

Entwurf von Schaltwerken: sechs Schritte

- 1. Spezifikation (textuell oder graphisch, z.B. Zustandsdiagramm)
- 2. Aufstellen einer formalen Übergangstabelle
- 3. Reduktion der Zahl der Zustände
- 4. Wahl der Zustandscodierung und Aufstellen der Übergangstabelle
- 5. Minimierung der Schaltnetze
- 6. Überprüfung des realisierten Schaltwerks

ggf. mehrere Iterationen

Entwurf von Schaltwerken: Zustandscodierung

Vielfalt möglicher Codierungen

- binäre Codierung: minimale Anzahl der Zustände
- ► einschrittige Codes
- one-hot Codierung: ein aktives Flipflop pro Zustand
- applikationsspezifische Zwischenformen
- es gibt Entwurfsprogramme zur Automatisierung
- gemeinsame Minimierung des Realisierungsaufwands von Ausgangsfunktion, Übergangsfunktion und Speichergliedern

Entwurf von Schaltwerken: Probleme

Entwurf ausgehend von Funktionstabellen problemlos

- ▶ alle Eingangsbelegungen und Zustände werden berücksichtigt
- don't-care Terme können berücksichtigt werden

zwei typische Fehler bei Entwurf ausgehend vom Zustandsdiagramm

- ▶ mehrere aktive Übergänge bei bestimmten Eingangsbelegungen ⇒ Widerspruch
- ▶ keine Übergänge bei bestimmten Eingangsbelegungen
 - ⇒ Vollständigkeit

12.8 Schaltwerke - Entwurf von Schaltwerken

64-040 Rechnerstrukturer

Überprüfung der Vollständigkeit

p Zustände, Zustandsdiagramm mit Kanten $h_{ii}(x)$: Übergang von Zustand i nach Zustand j unter Belegung x

für jeden Zustand überprüfen: kommen alle (spezifizierten) Eingangsbelegungen auch tatsächlich in Kanten vor?

$$\forall i: \bigvee_{j=0}^{2^p-1} h_{ij}(x) = 1$$

Überprüfung der Widerspruchsfreiheit

p Zustände, Zustandsdiagramm mit Kanten $h_{ij}(x)$: Übergang von Zustand i nach Zustand j unter Belegung x

für jeden Zustand überprüfen: kommen alle (spezifizierten) Eingangsbelegungen nur einmal vor?

$$\forall i: \bigvee_{j,k=0, j\neq k}^{2^{p-1}} (h_{ij}(x) \wedge h_{ik}(x)) = 0$$

Vollständigkeit und Widerspruchsfreiheit: Beispiel

▶ Zustand A, Vollständigkeit: $x_1 \vee \overline{x_1} x_0 \vee \overline{x_1} = 1$

vollständig

Zustand A, Widerspruchsfreiheit: alle Paare testen

$$x_1 \wedge \overline{x_1} x_0 = 0$$
 ok $x_1 \wedge \overline{x_1} = 0$ ok

 $\overline{x_1}x_0 \wedge \overline{x_1} \neq 0$ für $x_1 = 0$ und $x_0 = 1$ beide Übergänge aktiv

12.9 Schaltwerke - Beispiele

Schaltwerke: Beispiele

- Verkehrsampel
 - drei Varianten mit unterschiedlicher Zustandscodierung
- Zählschaltungen
 - einfacher Zähler, Zähler mit Enable (bzw. Stop),
 - Vorwärts-Rückwärts-Zähler, Realisierung mit JK-Flipflops und **D-Flipflops**
- Digitaluhr
 - BCD-Zähler

Schaltwerksentwurf: Ampel

Beispiel Verkehrsampel:

- drei Ausgänge: {rot, gelb, grün}
- ▶ vier Zustände: {rot, rot-gelb, grün, gelb}
- zunächst kein Eingang, feste Zustandsfolge wie oben
- Aufstellen des Zustandsdiagramms
- Wahl der Zustandscodierung
- Aufstellen der Tafeln für δ und λ -Schaltnetz
- anschließend Minimierung der Schaltnetze
- Realisierung (je 1 D-Flipflop pro Zustandsbit) und Test

Schaltwerksentwurf: Ampel – Variante 1

- \triangleright vier Zustände, Codierung als 2-bit Vektor (z_1, z_0)
- ► Fluss- und Ausgangstafel für binäre Zustandscodierung

Zustand	Cod	ierung	Folge	ezustand	Aus	sgäng	e
	z_1	z_0	z_1^+	z_0^+	rt	ge	gr
rot	0	0	0	1	1	0	0
rot-gelb	0	1	1	0	1	1	0
grün	1	0	1	1	0	0	1
gelb	1	1	0	0	0	1	0

► resultierende Schaltnetze

$$z_1^+ = (z_1 \wedge \overline{z_0}) \vee (\overline{z_1} \wedge z_0) = z_1 \oplus z_0$$

$$z_0^+ = \overline{z_0}$$

$$rt = \overline{z_1}$$

$$ge = z_0$$

$$gr = (z_1 \wedge \overline{z_0})$$

Schaltwerksentwurf: Ampel – Variante 1 (cont.)

[Hen] Hades Webdemo: 18-fsm/10-trafficlight/ampel_41

gelb

Schaltwerksentwurf: Ampel – Variante 2

- \triangleright vier Zustände, Codierung als 3-bit Vektor (z_2, z_1, z_0)
- Zustandsbits korrespondieren mit den aktiven Lampen:

- benutzt 1-bit zusätzlich für die Zustände
- \triangleright dafür wird die Ausgangsfunktion λ minimal (leer)

0

Schaltwerksentwurf: Ampel – Variante 2 (cont.)

[Hen] Hades Webdemo: 18-fsm/10-trafficlight/ ampel 42

Schaltwerksentwurf: Ampel – Variante 3

- \triangleright vier Zustände, Codierung als 4-bit *one-hot* Vektor (z_3, z_2, z_1, z_0)
- Beispiel für die Zustandscodierung

Zustand	Cod	dierur	ng		Folg	ezust	and	
	z 3	z_2	z_1	z_0	z_3^+	z_2^+	z_1^+	z_0^+
rot	0	0	0	1	0	0	1	0
rot-gelb	0	0	1	0	0	1	0	0
grün	0	1	0	0	1	0	0	0
gelb	1	0	0	0	0	0	0	//1

- 4-bit statt minimal 2-bit für die Zustände
- \triangleright Übergangsfunktion δ minimal (Automat sehr schnell)
- Ausgangsfunktion λ sehr einfach

Schaltwerksentwurf: Ampel – Variante 3 (cont.)

[Hen] Hades Webdemo: 18-fsm/10-trafficlight/ampel_44

Schaltwerksentwurf: Ampel – Zusammenfassung

- viele Möglichkeiten der Zustandscodierung
- Dualcode: minimale Anzahl der Zustände
- applikations-spezifische Codierungen
- ▶ One-Hot Encoding: viele Zustände, einfache Schaltnetze
- Kosten/Performance des Schaltwerks abhängig von Codierung
- ► Heuristiken zur Suche nach (relativem) Optimum

Zählschaltungen

- diverse Beispiele für Zählschaltungen
- Zustandsdiagramme und Flusstafeln
- Schaltbilder
- n-bit Vorwärtszähler
- ▶ *n*-bit Zähler mit Stop und/oder Reset
- Vorwärts-/Rückwärtszähler
- synchrone und asynchrone Zähler
- Beispiel: Digitaluhr (BCD-Zähler)

2-bit Zähler: Zustandsdiagramm

► Zähler als "trivialer" endlicher Automat

2-bit Zähler mit Enable: Zustandsdiagramm und Flusstafel

	e	ē	
Zustand	Folg	gezustand	_
00	01	00	
01	10	01	
10	11	10	
11	00	11	

3-bit Zähler mit Enable, Vor-/Rückwärts

5-bit Zähler mit Reset: Zustandsdiagramm und Flusstafel

4-bit Binärzähler mit JK-Flipflops

[Hen] Hades Webdemo: 30-counters/30-sync/sync

- ▶ $J_0 = K_0 = 1$: Ausgang z_0 wechselt bei jedem Takt
- ▶ $J_i = K_i = (z_0 z_1 \dots z_{i-1})$: Ausgang z_i wechselt, wenn alle niedrigeren Stufen 1 sind

4-bit Binärzähler mit D-Flipflops (kaskadierbar)

[Hen] Hades Webdemo: 30-counters/30-sync/sync-dff

- ▶ $D_0 = Q_0 \oplus c_{in}$ wechselt bei Takt, wenn c_{in} aktiv ist
- ▶ $D_i = Q_i \oplus (c_{in}Q_0Q_1 \dots Q_{i-1})$ wechselt, wenn alle niedrigeren Stufen und Carry-in c_{in} 1 sind

Asynchroner *n*-bit Zähler/Teiler mit D-Flipflops

[Hen] Hades Webdemo: 30-counters/20-async/counter-dff

- ▶ $D_i = \overline{Q}_i$: jedes Flipflop wechselt bei seinem Taktimpuls
- ► Takteingang C₀ treibt nur das vorderste Flipflop
- $ightharpoonup C_i = Q_{i-1}$: Ausgang der Vorgängerstufe als Takt von Stufe i
- ▶ erstes Flipflop wechselt bei jedem Takt \Rightarrow Zählrate $C_0/2$ zweites Flipflop bei jedem zweiten Takt \Rightarrow Zählrate $C_0/4$ n-tes Flipflop bei jedem n-ten Takt \Rightarrow Zählrate $C_0/2^n$
- sehr hohe maximale Taktrate
- Achtung: Flipflops schalten nacheinander, nicht gleichzeitig

Asynchrone 4-bit Vorwärts- und Rückwärtszähler

4-bit 1:2, 1:6, 1:12-Teiler mit JK-Flipflops: IC 7492

- vier JK-Flipflops
- zwei Reseteingänge
- zwei Takteingänge
- (1:2)► Stufe 0 separat
- Stufen 1...3 kaskadiert (1:6)
- Zustandsfolge {000, 001, 010, 100, 101, 110}

4-bit Vorwärts-Rückwärtszähler mit JK-Flipflops

- nClk Eingänge: Enable Up/nDown
- Umschaltung der Carry-Chain

up:
$$J_i = K_i = (E Q_0 Q_1 \dots Q_{i-1})$$

down:
$$J_i = K_i = (E \overline{Q_0} \overline{Q_1} \dots \overline{Q_{i-1}})$$

[Hen] Hades Webdemo: 30-counters/40-updown/updown

Universität Hamburg

Digitaluhr mit BCD-Zählern

- Stunden Minuten Sekunden (hh:mm:ss)
- async. BCD-Zähler mit Takt (rechts) und Reset (links unten)
- Übertrag 1er- auf 10er-Stelle jeweils beim Übergang $9 \rightarrow 0$
- Übertrag und Reset der Zehner beim Auftreten des Wertes 6

12.9.3 Schaltwerke - Beispiele - verschiedene Beispiele

Funkgesteuerte DCF 77 Uhr

- Beispiel für eine komplexe Schaltung aus mehreren einfachen Komponenten
- mehrere gekoppelte Automaten, bzw. Zähler
- DCF 77 Zeitsignal
 - ► Langwelle 77.5 KHz
 - Sender nahe Frankfurt
 - ganz Deutschland abgedeckt
- pro Sekunde wird ein Bit übertragen
 - ▶ Puls mit abgesenktem Signalpegel: "Amplitudenmodulation"
 - ▶ Pulslänge: 100 ms entspricht Null, 200 ms entspricht Eins
 - Pulsbeginn ist Sekundenbeginn

Funkgesteuerte DCF 77 Uhr (cont.)

- pro Minute werden 59 Bits übertragen
 - Uhrzeit hh:mm (implizit Sekunden), MEZ/MESZ
 - ▶ Datum dd:mm:yy, Wochentag
 - Parität
 - ▶ fehlender 60ster Puls markiert Ende einer Minute
- Decodierung der Bits nach DCF 77 Protokoll mit entsprechend entworfenem Schaltwerk
- Beschreibung z.B.: de.wikipedia.org/wiki/DCF77

Funkgesteuerte DCF 77 Uhr: Gesamtsystem

Funkgesteuerte DCF 77 Uhr: Decoder-Schaltwerk

[Hen] Hades Webdemo: 45-misc/80-dcf77/DecoderFSM

Multiplex-Siebensegment-Anzeige

Ansteuerung mehrstelliger Siebensegment-Anzeigen?

- ▶ direkte Ansteuerung erfordert 7 · n Leitungen für n Ziffern
- und je einen Siebensegment-Decoder pro Ziffer

Zeit-Multiplex-Verfahren benötigt nur 7 + n Leitungen

- die Anzeigen werden nacheinander nur ganz kurz eingeschaltet
- ein gemeinsamer Siebensegment-Decoder
 Eingabe wird entsprechend der aktiven Ziffer umgeschaltet
- das Auge sieht die leuchtenden Segmente und "mittelt"
- ▶ ab ca. 100 Hz Frequenz erscheint die Anzeige ruhig

Multiplex-Siebensegment-Anzeige (cont.)

Hades-Beispiel: Kombination mehrerer bekannter einzelner Schaltungen zu einem komplexen Gesamtsystem

- vierstellige Anzeige
- darzustellende Werte sind im RAM (74219) gespeichert
- ► Zähler-IC (74590) erzeugt 2-bit Folge {00, 01, 10, 11}
- ▶ 3:8-Decoder-IC (74138) erzeugt daraus die Folge {1110, 1101, 1011, 0111} um nacheinander je eine Anzeige zu aktivieren (low-active)
- ► Siebensegment-Decoder-IC (7449) treibt die sieben Segmentleitungen

Universität Hamburg

Multiplex-Siebensegment-Anzeige (cont.)

7-segment decoder

[Hen] Hades Webdemo: 45-misc/50-displays/multiplexed-display

Ausblick: Asynchrone Schaltungen

- Kosten und Verzögerung pro Gatter fallen
- zentraler Takt zunehmend problematisch: Performance, Energieverbrauch, usw.
- alle Rechenwerke warten auf langsamste Komponente

Umstieg auf nicht-getaktete Schaltwerke?!

- Handshake-Protokolle zwischen Teilschaltungen
 - Berechnung startet, sobald benötigte Operanden verfügbar
 - Rechenwerke signalisieren, dass Ergebnisse bereitstehen
- + kein zentraler Takt notwendig ⇒ so schnell wie möglich
- Probleme mit Deadlocks und Initialisierung

12.10 Schaltwerke - Asynchrone Schaltungen

Asynchrone Schaltungen: Performance

- Pipelining/Path-Balancing können Verschnitt verringern
- asynchron: Operationen langsamer wegen "completion detection"

bundled data

Zwei-Phasen und Vier-Phasen Handshake

two-phase

dual rail

four-phase

	d+	d-
empty	0	0
valid "0"	0	1
valid "1"	-1	0
unused	1	1

句

"level"

Muller C-Gate

- asynchrones Schaltwerk, cg rückgekoppelt
- ► Eingänge a, b = 0: Ausgang cg wird 0 -"- = 1: -"- 1
- wird oft in asynchronen Schaltungen benutzt

[Hen] Hades Webdemo: 16-flipflops/70-cgate/muller-cgate

Muller C-Gate: 3-Eingänge

[Hen] Hades Webdemo: 16-flipflops/70-cgate/muller-cgate3

12.10 Schaltwerke - Asynchrone Schaltungen

- einfaches Modell einer generischen nicht-getakteten Schaltung
- ▶ Beispiel zum Entwurf und zur Kaskadierung
- ► Muller C-Gate als Speicherglieder
- ▶ beliebige Anzahl Stufen
- ▶ neue Datenwerte von links in die Pipeline einfüllen
- Werte laufen soweit nach rechts wie möglich
- solange bis Pipeline gefüllt ist
- ▶ Datenwerte werden nach rechts entnommen
- Pipeline signalisiert automatisch, ob Daten eingefüllt oder entnommen werden können

Micropipeline: Konzept

- ▶ lokales Handshake statt globalem Taktsignal
- Datenkapazität entspricht 2*n*-stufigem Schieberegister
- ▶ leere Latches transparent: schnelles Einfüllen
- ▶ "elastisch": enthält 0...2n Datenworte

Micropipeline: Demo mit C-Gates

卣

Literatur

- [SS04] W. Schiffmann, R. Schmitz: *Technische Informatik I Grundlagen der digitalen Elektronik*.
 - 5. Auflage, Springer-Verlag, 2004. ISBN 978-3-540-40418-7
- [Rei98] N. Reifschneider: *CAE-gestützte IC-Entwurfsmethoden*. Prentice Hall, 1998. ISBN 3–8272–9550–5
- [WE94] N.H.E. Weste, K. Eshraghian:

 Principles of CMOS VLSI design A systems perspective.

 2nd edition. Addison-Wesley, 1994. ISBN 0-201-53376-6
- [Har87] D. Harel: Statecharts: A visual formalism for complex systems. in: Sci. Comput. Program. 8 (1987), Juni, Nr. 3, S. 231–274. ISSN 0167–6423

Interaktives Lehrmaterial

[Hen] N. Hendrich: HADES — HAmburg DEsign System. Universität Hamburg, FB Informatik, Lehrmaterial. tams.informatik.uni-hamburg.de/applets/hades

[Hei05] K. von der Heide: Vorlesung: Technische Informatik 1 — interaktives Skript. Universität Hamburg, FB Informatik, 2005. tams.informatik.uni-hamburg.de/lectures/2004ws/vorlesung/t1