VL1-Einführung

Metin Eren Heybet

14 Oktober 2024

Inhaltsverzeichnis

1	Einführung - allgemeine Informationen		2
	1.1	steigender Leitungsbedarf	2
	1.2	Moore's Law und die Entwicklung der verschiedenen Aspekten von Hardware	2
2	Multi-Core-Architekturen		2
	2.1	Vorteile von Parallelität in Programme	2
	2.2	Die Vorteile von Funktionale Programmierung	3
3	\mathbf{Art}	e von Prozessen	3

1 Einführung - allgemeine Informationen

1.1 steigender Leitungsbedarf

- Heutzutage erfordern größere Probleme immer schnellere Systeme, z.B Klimasimulationen, animierte Filme usw.
- Mit mehr Rechenleistung steigt der Appetit auf anspruchvollere Anwendungen, wobei auch Energieeffizienz wichtig ist.
- Leitungsanforderungen im Tera-/Petaflopsbereich ¹

1.2 Moore's Law und die Entwicklung der verschiedenen Aspekten von Hardware

- Die Prozessorgeschwindigkeit verdoppelte sich bis ca. 2005 alle 18 Monate.
- Memory Wall: Währenddessen die Hauptspeicherzugriffgeschwindigkeit sich nur etwas alle 10 Jahre verdoppelt hat.
- Frequency Wall: Erhöhung der Taktfrequenzen und längere Pipelines erzielen keine höhere Rechenleistung mehr.
- Deswegen steigt heutzutage die Bedeutung von Multi-Core-Architekturen

2 Multi-Core-Architekturen

Multicore-Architekturen sind allgegenwärtig sowohl im High-Performance-Computing als auch im Heimanwenderbereich.

Sie stellen eine mögliche Lösung für die Probleme der Hardware-Entwicklung dar.

Leider passiert diese kürzere Laufzeiten nicht automatisch: Man muss für mehr CPUs parallel programmieren.

2.1 Vorteile von Parallelität in Programme

- Reduktion der Bearbeitungszeit für ein Problem
- Höherer Durchsatz der Anwendungsprogramme
- Höhere Reaktionsgeschwindigkeit
- Klarere Programmstrukturen, insbesondere für Aktivitäten, die externe Geräte steuern.

¹FLOP = Floating Point Operations

2.2 Die Vorteile von Funktionale Programmierung

- Datenabhängigkeiten in dem Code erschweren die fehlerfreie Programmierung, sowohl von sequentiellem als auch parallelem Code.
- Mit funktionalen Sprachen kann man diese Komplexität für den Programmierer reduzieren.

3 Arte von Prozessen