notes on coloring cayley graphs

August 2, 2017

1 Basics

Definition 1. For a group G and $A \subseteq G$, the cayley graph of G with respect to A is the directed graph with vertex set G and an edge from x to xa for each $x \in G$ and $a \in A$. Write $\mathcal{C}(G,A)$ for this digraph.

We are concerned with coloring undirected graphs without loops, so we want A to not contain the identity element of G and $\frac{1}{A} = A$, where

$$\frac{1}{A} = \left\{ a^{-1} \mid a \in A \right\}.$$

Given this, C(G, A) has all edges directed both ways. Let G_A be the undirected graph with the structure of C(G, A). We call such G_A a standard cayley graph.

Remark. a and b are adjacent in a standard cayley graph G_A just in case $ab^{-1} \in A$.

Conjecture 1.1. Let G be an abelian group and G_A a standard cayley graph. If $\Delta(G) \geq 9$ and $\omega(G) < \Delta(G)$, then $\chi(G) < \Delta(G)$.

i am trying to make the $\Delta = 8$ example as a cayley graph of $C_5 \times C_3$, with the standard generators, its missing some edges though so need to throw more into A.

Lemma 1.2. If a and b are adjacent in a standard cayley graph G_A , then for any independent set X in G_A

$$\frac{1}{X}a \bigcap \frac{1}{X}b = \emptyset.$$

Proof. Suppose there is $c \in \frac{1}{X}a \cap \frac{1}{X}b$. Then $c = x^{-1}a$ and $c = y^{-1}b$ for some $x, y \in X$. So $yx^{-1} = ba^{-1} \in A$, so x and y are adjacent, but they can't be since both in independent set X.