4

Visualizando datos de múltiples tablas

Objetivos

Tras completar esta lección seremos capaces de hacer los siguiente:

- Escribir sentencias SELECT para acceder a datos de más de una tabla usando Equal-Join y Outer-Join.
- Join de una tabla consigo misma.

Obtener datos de múltiples tables

EMP DEPT

EMPNO	ENAME	 DEPTNO
7839	KING	 10
7698	BLAKE	 30
7934	MILLER	 10

DEPTNO	DNAME	LOC
10	ACCOUNTING	NEW YORK
20	RESEARCH	DALLAS
30	SALES	CHICAGO
40	OPERATIONS	BOSTON

FMDNO	DEPTNO LOC
EMP NO	
7020	10 NEW YORK
7839	10 NEW YORK
7698	30 CHICAGO
7782	10 NEW YORK
7566	20 DALLAS
7654	30 CHICAGO
7499	30 CHICAGO
14 row	s selected.

Qué es un Join?

Se usa para consultar datos procedentes de más de una tabla.

```
SELECT
        table1.column, table2.column
        table1, table2
FROM
         table1.column1 = table2.column2:
WHERE
```

- Se escribe la condición del join en la cláusula WHERE.
- Cuando el mismo nombre de columna aparece en más de una tabla se pone el nombre de tabla delante del nombre de columna.

Producto cartesiano

- Se forma cuando:
 - Se omite la condición del JOIN.
 - La condición del JOIN es inválida.
 - Todas las filas de la primera tabla se unen con todas las filas de la segunda tabla.
- Para evitar el producto cartesiano siempre incluiremosuna condición válida de join en la cláusula WHERE.

Generacion de un producto cartesiano

EMP (14 rows)

DEPT (4 rows)

EMPNO ENAME	 DEPTNO
7839 KING	 10
7698 BLAKE	 30
7934 MILLER	 10

DEPTNO	DNAME	LOC
10	ACCOUNTING	NEW YORK
20	RESEARCH	DALLAS
30	SALES	CHICAGO
40	OPERATIONS	BOSTON

"Cartesian product: 14*4=56 rows"

ENAME DNAME
----KING ACCOUNTING
BLAKE ACCOUNTING
...
KING RESEARCH
BLAKE RESEARCH
...
56 rows selected.

Tipos de Join

Equijoin Non-equijoin Outer join Self join

Equijoin

EMP

EMPNO	ENAME	DEPTNO				
7839	KING	10				
7698	BLAKE	30				
7782	CLARK	10				
7566	JONES	20				
7654	MARTIN	30				
7499	ALLEN	30				
7844	TURNER	30				
7900	JAMES	30				
7521	WARD	30				
7902	FORD	20				
7369	SMITH	20				
		4				
14 rows selected.						

DEPT

DEPTNO	DNAME	LOC
10	ACCOUNTING	NEW YORK
30	SALES	CHICAGO
10	ACCOUNTING	NEW
YORK		
20	RESEARCH	DALLAS
30	SALES	CHICAGO
20	RESEARCH	DALLAS
· · · · · · · · · · · · · · · · · · ·	RESEARCH	DALLAS

Foreign key Primary key

Recuperación de registros con Equijoins

EMPNO ENAME	DEPTNO DEPTNO	LOC
7839 KING	10 10	NEW YORK
7698 BLAKE	30 30	CHICAGO
7782 CLARK	10 10	NEW YORK
7566 JONES	20 20	DALLAS
• • •		
14 rows selec	cted.	

Nombres ambiguos de columnas

- Se usa el nombre de tabla como prefijo para cualificar nombres de columnas que aparecen en múltiples tablas.
- Se gana eficiencia usando nombres de tabla como prefijos.
- Es conveniente distinguir columnas que tienen nombres idénticos pero que residen en diferentes tablas usando alias de columna.

Definiremos condiciones adicionales de búsqueda usando el operador AND

EMP	D	EPT	

EMPNO	ENAME	DEPTNO	Ī	DEPTNO	DNAME	LOC
7839	KING	10		10	ACCOUNTING	NEW YORK
7698	BLAKE	30		30	SALES	CHICAGO
7782	CLARK	10		10	ACCOUNTING	NEW YORK
7566	JONES	20		20	RESEARCH	DALLAS
7654	MARTIN	30		30	SALES	CHICAGO
7499	ALLEN	30		30	SALES	CHICAGO
7844	TURNER	30		30	SALES	CHICAGO
7900	JAMES	30		30	SALES	CHICAGO
7521	WARD	30		30	SALES	CHICAGO
7902	FORD	20		20	RESEARCH	DALLAS
7369	SMITH	20		20	RESEARCH	DALLAS
14 rows	s selecte	ed.	14 rows selected.			

Uso de Aliase de Tablas

Se pueden simplificar las consultas usando alias de tablas.

```
SQL> SELECT emp.empno, emp.ename, emp.deptno,
2     dept.deptno, dept.loc
3  FROM emp, dept
4  WHERE emp.deptno=dept.deptno;
```

```
SQL> SELECT e.empno, e.ename, e.deptno,
2          d.deptno, d.loc
3 FROM emp e, dept d
4 WHERE e.deptno=d.deptno;
```

Unir más de dos tablas

CUSTOMER

ORD

NAME	CUSTID		CUSTID		ORDID	
JOCKSPORTS	100		101		610	
TKB SPORT SHOP	101		102		611	
VOLLYRITE	102		104		612	
JUST TENNIS	103		106		601	
K+T SPORTS	105		102		602	ITEM
SHAPE UP	106		106	Г	ORDID	ITEMID
WOMENS SPORTS	107		106	١.	ORDID	TIEMID
					610	3
9 rows selected	i.		21 rows		611	1
					612	1
						_
					601	1
					602	1

64 rows selected.

Non-Equijoins

EMP

EMPNO	ENAME	SAL				
7839	KING	5000				
7698	BLAKE	2850				
7782	CLARK	2450				
7566	JONES	2975				
7654	MARTIN	1250				
7499	ALLEN	1600				
7844	TURNER	1500				
7900	JAMES	950				
• • •						
14 rows selected.						

SALGRADE

GRADE	LOSAL	HISAL
1	700	1200
2	1201	1400
3	1401	2000
4	2001	3000
5	3001	9999

El salario en la tabla EMP está comprendido entre LOSAL y HISAL en la tabla SALGRADE

Recuperación de Registros con Non-Equijoins

```
SQL> SELECT e.ename, e.sal, s.grade
2 FROM emp e, salgrade s
3 WHERE e.sal
4 BETWEEN s.losal AND s.hisal;
```

ENAME	SAL	GRADE		
JAMES	950	1		
SMITH	800	1		
ADAMS	1100	1		
•••				
14 rows selected.				

Outer Joins

DEPT EMP ENAME DEPTNO DEPTNO DNAME 10 KING 10 ACCOUNTING BLAKE 30 30 SALES CLARK 10 10 ACCOUNTING JONES 20 20 RESEARCH 40 **OPERATIONS**

No hay empleados en el Departamento OPERATIONS

Outer Joins

- Se pueden usar también para obtener filas que no cumplen la condición del JOIN.
- El operador Outer join es el signo (+).

```
SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column(+) = table2.column;
```

```
SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column = table2.column(+);
```

Ejemplo de Outer Joins

```
SQL> SELECT e.ename, d.deptno, d.dname
2 FROM emp e, dept d
3 WHERE e.deptno(+) = d.deptno
4 ORDER BY e.deptno;
```

```
ENAME DEPTNO DNAME

------
KING 10 ACCOUNTING
CLARK 10 ACCOUNTING
....

40 OPERATIONS
15 rows selected.
```

Self Joins

EMP (WORKER) EMP (MANAGER) MGR EMPNO ENAME EMPNO ENAME 7839 KING 7698 BLAKE 7839 7839 KING 7782 CLARK 7839 7839 KING 7566 JONES 7839 7839 KING 7654 MARTIN 7698 7698 BLAKE 7698 BLAKE 7698 **7499 ALLEN**

"MGR en la tabla WORKER es igual a EMPNO en la tabla MANAGER"

Join de una Tabla consigo misma

```
SQL> SELECT worker.ename||' works for '||manager.ename
2  FROM         emp worker, emp manager
3  WHERE         worker.mgr = manager.empno;
```

```
WORKER.ENAME||'WORKSFOR'||MANAG
-------
BLAKE works for KING
CLARK works for KING
JONES works for KING
MARTIN works for BLAKE
...
13 rows selected.
```

Resumen

SELECT table1.column, table2.column

FROM table1, table2

WHERE table1.column1 = table2.column2;

Equijoin Non-equijoin Outer join Self join

