Sistemas Multi-agente y Aplicaciones

Interacción entre agentes Lenguajes de comunicación entre agentes

Dr. Alejandro J. García

http://cs.uns.edu.ar/~ajg

Lab. de Investigación y Desarrollo en Inteligencia Artificial Dto. de Ciencias e Ingeniería de la Computación Universidad Nacional del Sur Bahía Blanca, Argentina

Interacción entre agentes

- Los agentes existen y operan en un entorno que puede ser físico o computacional.
- En este entorno pueden existir otros agentes.
- Aunque hay situaciones donde un agente realiza su tarea por si mismo, la situación más común es que un agente deba interactuar con otros agentes
- Interactuar significa que los agentes pueden verse afectados por otros agentes, a través de acciones que afecten el entorno o a través de mensajes.

- Para que esta interacción se lleve a cabo el entorno debe proveer la infraestructura computacional necesaria.
- Esta infraestructura incluirá protocolos de interacción y protocolos de comunicación.

Interacción entre agentes

Interacción entre agentes

Se asume que el agente posee:

- Conocimiento representado en forma explícita y
- Un mecanismo para realizar inferencias de este conocimiento.
- La habilidad de comunicarse. Esta habilidad es parte de su capacidad de percepción (recibir mensajes) y de capacidad de actuar (enviar mensajes).

Comunicáción entre agentes

- El estudio formal de la comunicación entre agentes involucra:
 - cómo están estructurados los símbolos de un mensaje (sintaxis)
 - qué significan dichos símbolos (semántica), y
 - cómo son interpretados por los agentes (pragmática).

Ejemplo: vuelo(bblanca, bsas, (2/11/02), 118)

El aspecto sintáctico es fácil de interpretar: vuelo(origen, destino, fecha, precio)

Interpretación de un mensaje

 Cuando un agente recibe un mensaje debe ser capaz de interpretar la intención del mismo

Por ejemplo: el agente A recibe el mensaje vuelo(bblanca, bsas, (2/11/02), 118)

- La intención del mensaje podría ser:
 - la oferta "Hay un vuelo de Bahía Blanca..."
 - la consulta "¿Hay algún vuelo?"
 - la respuesta "si, hay vuelo el 2 de noviembre..."
 - la aserción: "quiero una reserva para el vuelo..."
 - otras consultas: ¿hay lugares libres? etc.

Intención de un mensaje

- En la comunicación humana la intención de un mensaje puede estar dada por muchos factores:
 - contexto en el que se emite el mensaje
 - entonación del orador
 - gestos del orador
 - mensajes previos
- Por lo tanto, para que un mensaje sea interpretado correctamente por un agente, este debe poder conocer la intención del mismo.

Teoría de los actos del habla

 Si la intención el emisor del mensaje está claramente definida, entonces el receptor no tendrá duda sobre el tipo de mensaje recibido.

Ejemplos:

consulta: vuelo(bblanca, bsas, (2/11/02), 118)

infoma: vuelo(bblanca, bsas, (2/11/02), 118)

<u>reserva:</u> vuelo(bblanca, bsas, (2/11/02), 118)

 La restricción anterior simplifica notablemente el diseño de agentes con la capacidad de comunicarse.

- Un lenguaje de comunicación entre agentes (LCA) es un mecanismo de comunicación basado en la transmisión de mensajes,
- Su propósito es el de facilitar el intercambio de información y conocimientos entre agentes de software.
- Ese intercambio debe poder ser realizado independientemente del hardware, sistemas operativos, arquitecturas, lenguajes de programación, representación de información, y sistemas de razonamiento.

Elementos de un Mensaje

URGENTE: NOTIFICACIÓN RESERVA

vuelo aerolineas 2003 BBca a BsAs 30 de mayo 12hs

Sr. Alejandro García Universidad Nacional del Sur Bahía Blanca

Renner Turismo Bahía Blanca

Mensajes de un LCA

Los mensajes de un LCA están formados por:

Ejemplo de mensaje

KQML y FIPA ACL definen un mensaje como

Ejemplo de mensaje

KQML y FIPA ACL definen un mensaje como

- Un LCA define un conjunto de tipos de mensajes, semejantes a los actos del habla, con una sintaxis y una semántica específica.
- Toda la información necesaria para la interpretación de un mensaje está contenida en el mensaje mismo.
- El primer LCA de propósito general en aparecer fue KQML (Knowledge Query and Manipulation Language),
- Actualmente la organización FIPA, ha diseñado en base a KQML a FIPA ACL (FIPA Agent Communication Language).

- La característica más importante de un LCA es la separación que existe entre la información transmitida a través de un mensaje y la actitud expresada acerca de esa información.
- Un LCA es independiente del lenguaje en el cual está representada la información contenida en un mensaje.
- Un agente puede utilizar un LCA para comunicar información o conocimientos expresados en Prolog, SQL, KIF, o simplemente strings ASCII.

- El único requisito, es que el agente receptor de un mensaje debe ser capaz de interpretar el lenguaje de representación y tener acceso a la ontología utilizados por el agente emisor.
- Un LCA es también independiente del mecanismo de transporte.
- Los mensajes de un LCA son transportados a través de una red mediante un protocolo de bajo nivel, como por ejemplo SMTP, TCP/IP, HTTP, IIOP, etc.

FIPA (Foundation for Intelligent Physical Agents)

- Organización internacional creada en 1996 sin fines de lucro, dedicada a promover la industria de agentes de software. [http://www.fipa.org/]
- Las especificaciones FIPA poseen un estado que define su posición en el ciclo de vida: "preliminar", "experimental", "estándar", "desaprobada" y "obsoleta"
- Ninguna especificación ha alcanzado aún el estado de estándar, estando actualmente las más desarrolladas en estado experimental.
- Una de las especificaciones define un LCA llamado FIPA ACL.

FIPA ACL (Agent Comunication Language)

- La sintaxis es similar a KQML
- FIPA ACL 2001 presenta 22 primitivas predefinidas (llamados actos comunicativos)
- Se permite la incorporación de nuevas primitivas
- Un agente no necesita usar todos los predefinidos.
- Ejemplos de algunos actos comunicativos

```
query-if query-ref request
subscribe inform confirm
failure error agree
refuse propose accept-proposal ...
```

Parámetros reservados

• FIPA ACL ofrece 12 reservados, pueden incorporarse nuevos y no importa el orden en el mensaje

```
:sender
           Emisor del mensaje
           Receptor/es del mensaje
:receiver
:in-reply-toEtiqueta de una respuesta
:reply-with Etiqueta de una respuesta futura
           Nombre del lenguaje de contenido
:language
:ontology
           Nombre de la ontología asociada
           Contenido del mensaje
:content
:protocol
           Protocolo de interacción utilizado
:reply-to
           Receptor de los mensajes subsiguientes
:reply-by
           Plazo máximo para respuesta
:encoding
           Codificación del contenido
:conversation-id
                   ident de conversaciones
```

Ejemplo: Red de contrato [Denegri 2002]

Ejemplo: Red de contrato [Denegri 2002]

```
(accept-pro (cfp
         :sender
                     :sender A
         :receive
                     :receiver (B C)
         :in-reply
                     :reply-with
                                     id05
         :reply-w
                     :language SL
         :languas
                     :protocol fipa-contract-net
         :protocc
                     :ontology tickets-reservation
         :ontolog
                     :content ((action (set B C)
                                (reserve-ticket BB,BA,15-12-02)) (=< cost 100))) A,15-12-02))
         :content
                     (LI UC ///
(propose
                                              (propose
  :sender
             В
                                                 :sender C
  :receiver A
                                                 :receiver A
  :in-reply-to id05
                                                 :in-reply-to id05
  :reply-with prop03
                                                 :reply-with prop07
  :language SL
                                                 :language SL
  :protocol fipa-contract-net
                                                :protocol fipa-contract-net
  :ontology tickets-reservation
                                                :ontology tickets-reservation
  :content ((action B
                                                 :content
                                                           ((action C
               (reserve-ticket BB,BA,15-12
                                                             (reserve-ticket BB,BA,15-12-02))
               (cost 85)))
                                                             (cost 95)))
```

Llamada por propuestas de "A"

```
(cfp
 :sender A
 :receiver(B C)
 :reply-with id05
 :language SL
 :protocolfipa-contract-net
 :ontology tickets-reservation
 :content ((action (set B C)
       (reserve-ticket BB,BA,15-12-02)) (=< cost 100)))
```

Propuesta enviada por "B"

```
(propose
 :sender B
 :receiver A
 :in-reply-to id05
 :reply-with prop03
 :language
            SL
 :protocolfipa-contract-net
 :ontology tickets-reservation
 :content ((action B
        (reserve-ticket BB, BA, 15-12-02))
       (cost 85)))
```

Propuesta enviada por "C"

```
(propose
 :sender C
 :receiverA
 :in-reply-to
               id05
 :reply-with
               prop07
 :language
           SL
 :protocol fipa-contract-net
 :ontology
               tickets-reservation
 :content ((action C
        (reserve-ticket BB, BA, 15-12-02))
       (cost 95)))
```

Aceptación para "B"

```
(accept-proposal
 :sender A
 :receiver B
 :in-reply-to
                prop03
 :reply-with
                id06
 :language
                SL
 :protocol
                fipa-contract-net
 :ontology tickets-reservation
 :content ((action B (reserve-ticket BB,BA,15-12-02))
       (true)))
```

Rechazo para "C"

```
(reject-proposal
 :sender A
 :receiverC
 :in-reply-to
               prop07
 :reply-with id07
 :language
             SL
 :protocol fipa-contract-net
 :ontology tickets-reservation
 :content ((action C (reserve-ticket BB,BA,15-12-02))
       (price-too-high 95)))
```

Modelo Referencial de Arquitectura

Referencias

- [Austin, 1962] J. L. Austin. How to do things with words. Oxford University Press, 1962.
- [Denegri 2002] Denegri, Agustín Alejandro. "Comunicación en Sistemas Multi-agente". Tesis de Magíster en Ciencias de la Computación, UNS. 2002
- [Finin et al., 1995] T. Finin, Y. Labrou y J. Mayfield. **KQML as an agent communication language**. Software Agents, Bradshaw (editor), MIT Press, Cambridge, 1995.
- [Mayfield et al., 1995] J. Mayfield, Y. Labrou y T. Finin.
 Desiderata for Agent Communication Languages.
 Proceedings Spring Symposium on "Information Gathering in Distributed Environments", Marzo 1995.
- [FIPA Web Site] http://www.fipa.org/.
- [KQML Web Site] http://www.cs.umbc.edu/kse/kqml/.