

幾何学2第4回

距離空間の性質 (点列の収束)

講義のページ

野本 慶一郎 明星大学 教育学部 教育学科

2024年10月09日

スライド

今日の数学パズル

■ 1のみを並べた整数をレピユニット (Repunit) 数という:

11111111...111

■ このようなレピユニット数の中には, 1009の倍数のものが存在することを証明せよ.

前回の復習

距離空間

定義 (教科書 p.104 定義 8.6/8.7)

X を集合とする. 写像 $d: X \times X \to \mathbb{R}$ が次の性質を満たすとき, d は X 上の**距離関数**であるという.

- 1. $d(x,y) \ge 0$. さらに $d(x,y) = 0 \iff x = y$.
- **2.** d(x,y) = d(y,x).
- 3. $d(x,z) \le d(x,y) + d(y,z)$. (三角不等式)

また、このとき (X,d) を距離空間と呼ぶ (単に X を距離空間という場合もある).

- ユークリッド距離空間 $\mathbb{E}^n = (\mathbb{R}^n, d)$ は距離空間である.
- \blacksquare 以下で定義されるマンハッタン距離も \mathbb{R}^n 上の距離関数である.

$$d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, (\boldsymbol{x}, \boldsymbol{y}) \mapsto \sum_{i=1}^n |x_i - y_i|.$$

今日の内容

距離空間の点列

- 距離空間 (X,d) とは 2 点の "近さ" が考えられる空間であるため 点列 $\{x_n\}_{n\geq 1}$ の収束性を扱うことができる.
- しかし $x_n \in X$ は実数とは限らないため、その極限 $\lim_{n\to\infty} x_n$ を どのように考えればよいのかという問題に直面する.
- 例えば $X = \mathbb{R}^2$ に対して、点列 $x_n = (1/n, 1/n^2)$ の極限はどのように 定義すればよいか? さらに距離関数 d を変えたら収束性や極限点は変化するのか?
- 今日はこのような問題に答えるために、まずは実数列の収束性を深掘りする.

実数列の収束性再考

- 高校では、実数列 $\{a_n\}_{n\geq 1}$ が $\alpha\in\mathbb{R}$ に収束するというのは n を**限りなく大きく**すると a_n は α に**限りなく近づく** と説明された
- しかしこの定義だと、「限りなく」という曖昧な言葉が含まれてしまい、 収束するかしないかが個人によって変わってしまう恐れがある.
- 例えば「数列 $a_n = 1 + 1/n$ は単調減少であるため 0 に限りなく近づく」と主張する人が現れてもおかしくない.しかし実際は 1 に収束する.

「 a_n は α に限りなく近い」の言い換え

- では a_n が α に限りなく近いというとき, どれくらい近ければよいのだろうか? つまり a_n と α の間の距離 $|a_n \alpha|$ はいくつ未満であればよいのだろうか?
- 前ページでも述べたように、「限りなく」というのは主観に依る. 例えば $|a_n-\alpha|<0.1$ や $|a_n-\alpha|<0.01$ なら大抵の場合は近いと思うかもしれない. 極端な話だが、 $|a_n-\alpha|<10000$ でも近いと思う人はいるかもしれない:
- しかし**限りなく**近づくというのは, **誰から見ても**近い必要がある. つまり具体的ないくつかの基準 (上記の例で言えば 0.1, 0.01, 10000 等) に限らず, **どのような正の値** ε **に対しても** $|a_n \alpha| < \varepsilon$ である必要がある:

 $\lceil a_n$ は lpha に限りなく近い」 $=\lceil$ 任意の arepsilon>0 に対して $|a_n-lpha|<arepsilon$ 」

「n を限りなく大きくすると」の言い換え

- したがって、 $\lceil n$ を限りなく大きくすると a_n は α に限りなく近づく」 というのは任意の $\varepsilon > 0$ に対して n を限りなく大きくすれば $|a_n \alpha| < \varepsilon$ とできると言い換えることができる.
- ではn はどれくらい大きくすればよいのだろうか? 例えばn > 1000 やn > 10000 なら大抵の場合は大きいと思うかもしれない。 極端な話, n > 5 程度でも十分大きいと思う人はいるかもしれない。
- しかし一番気にするべきは $\lceil a_n$ と α の間の距離は ε 未満にできるか?」 すなわち \lceil 不等式 $\lvert a_n \alpha \rvert < \varepsilon$ が成り立つかどうか?」 なので この不等式が成り立つ程度に n が大きければ十分である. (例えば n > 5 で $\lvert a_n \alpha \rvert < \varepsilon$ が成り立てば n > 10000 とかにする必要は全くない.)

「nを限りなく大きくすると」の言い換え

- つまり, $\varepsilon > 0$ によって変化 (依存) する境界 $N_{\varepsilon} \in \mathbb{N}$ が取れて (大きさは関係ない), 境界 N_{ε} を超えた全ての n に対して $|a_n \alpha| < \varepsilon$ が成り立てばよい.
- 結局、 $\lceil n$ を限りなく大きくすると a_n は α に限りなく近づく」というのは 「任意の $\varepsilon > 0$ に対して ある $N_\varepsilon \in \mathbb{N}$ が存在して $N_\varepsilon < n$ ならば $|a_n \alpha| < \varepsilon$.」 と言い換えができる.これが εN 論法と呼ばれる収束の定義である.

収束する数列イメージ

収束しない数列イメージ

実数列の収束

定義 ($\varepsilon - N$ 論法)

実数列 $\{a_n\}_{n\geq 1}$ が実数 α に収束するとは

任意の arepsilon>0 に対して ある $N_arepsilon\in\mathbb{N}$ が存在して $N_arepsilon< n$ ならば $|a_n-lpha|<arepsilon$

が成り立つことをいう.

■ 噛み砕いて述べれば

どのような近さの基準 $\varepsilon>0$ を取っても 「ある N_ε を超えた n に対しては a_n と α の距離が ε 未満になる」 を満たす境界 $N_\varepsilon\in\mathbb{N}$ が取れる

となる.

■ よって, 実際に収束性を確かめるときにはまず任意に $\varepsilon>0$ を取るところから始まる. そして「条件を満たす $N_{\varepsilon}\in\mathbb{N}$ はこのように取れる」と主張及び実証し, 議論が終了する.

例

数列 $a_n = 1/n^2 \ (n \ge 1)$ は 0 に収束する.

■ まず $\varepsilon=0.1$ と具体的に取ってみよう. このとき $N_{\varepsilon}=3$ とすれば, $N_{\varepsilon}< n$ となる n に対して, すなわち $n \geq 4$ ならば

$$|a_n - 0| = \frac{1}{n^2} \le \frac{1}{16} < 0.1 = \varepsilon$$

が成り立つ. よってこのとき, $n \ge 4$ に対して $|a_n - 0| < \varepsilon$ が成り立つ.

 \blacksquare 次に $\varepsilon=0.01$ と具体的に取ってみよう. このとき $N_{\varepsilon}=10$ とすれば, $N_{\varepsilon}< n$ となる n に対して, すなわち $n\geq 11$ ならば

$$|a_n - 0| = \frac{1}{n^2} \le \frac{1}{121} < 0.01 = \varepsilon$$

が成り立つ. よってこのとき, $n \ge 11$ に対して $|a_n - 0| < \varepsilon$ が成り立つ.

例(続き)

 \blacksquare 次は $\varepsilon > 0$ を任意に取る. このとき $N_{\varepsilon} < n$ ならば

$$|a_n - 0| = \frac{1}{n^2} < \varepsilon$$

が成り立つような $N_{\varepsilon} \in \mathbb{N}$ を探したい.

ullet $N_{arepsilon} < n$ ならば $1/n^2 < 1/N_{arepsilon}^2$ となるので, $1/N_{arepsilon}^2 < arepsilon$ となる $N_{arepsilon}$ が取れれば

$$|a_n - 0| = \frac{1}{n^2} < \frac{1}{N_{\varepsilon}^2} < \varepsilon$$

となって目的が果たされる.

lacksquare そしてそのような $N_{arepsilon}$ は, $1/N_{arepsilon}^2<arepsilon$ を式変形することにより

$$N_{\varepsilon} > \frac{1}{\sqrt{\varepsilon}}$$

となる N_{ε} を取ればよい.

点列の収束

- 距離空間における点列 $\{x_n\}_{n\geq 1}$ の収束は, 実数列の場合とほとんど同じように定義される.
- つまり n を十分大きくすれば, x_n と極限点 α との距離 $d(x_n,\alpha)$ が十分小さくなることとして定義される.

定義 (教科書 p.108 定義 8.17)

距離空間 (X,d) の点列 $\{x_n\}_{n\geq 1}$ が点 $x\in X$ に収束するとは

任意の $\varepsilon>0$ に対して ある N_{ε} が存在して $N_{\varepsilon}< n$ ならば $d(x,x_n)<\varepsilon$

が成り立つことをいう. このとき x を $\{x_n\}_{n\geq 1}$ の極限点と呼び

$$\lim_{n\to\infty} x_n = x$$
 または $x_n \to x$ $(n\to\infty)$

と表す.

点列の収束の言い換え

- ここまでは、距離空間の点列の定義を述べただけであり、 具体的に収束性を判定する方法までは述べていない。
- 以下の命題は, 距離空間の点列の収束性を調べることと, 距離列 (実数列) の収束性を調べることと等価であることを主張している!

命題 (教科書 p.109 補題 8.20)

距離空間 (X,d) の点列 $\{x_n\}_{n\geq 1}$ が点 $x\in X$ に収束するためには, 実数列 $\{d(x,x_n)\}_{n\geq 1}$ が 0 に収束することが必要十分である. すなわち

$$\lim_{n \to \infty} x_n = x \iff \lim_{n \to \infty} d(x, x_n) = 0.$$

■証明は

$$d(x, x_n) < \varepsilon \iff |d(x, x_n) - 0| < \varepsilon$$

であることから明らかであるため省略する.

点列の収束例

例

 (\mathbb{R}^2,d) を距離空間とする. ただし, 距離関数 $d:\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}, (\boldsymbol{x},\boldsymbol{y})\mapsto\sum_{i=1}^2|x_i-y_i|$ は マンハッタン距離とする. このとき点列 $x_n=\left(\frac{1}{n},\frac{1}{n}\right)$ $(n\geq 1)$ の極限点は x=(0,0) である.

xと x_n の間のマンハッタン距離は

$$d(x, x_n) = \left| 0 - \frac{1}{n} \right| + \left| 0 - \frac{1}{n} \right| = \frac{2}{n}$$

である. したがって

$$\lim_{n \to \infty} d(x, x_n) = \lim_{n \to \infty} \frac{2}{n} = 0$$

であるから $\lim x_n = x$ を得る.

演習目標: 収束性の厳密な定義を理解する