WHAT IS LATTICE POINT ENUMERATION UP TO THESE DAYS?

... BEING A SUBROUTINE OF BKZ

Martin R. Albrecht^a
15 June 2021, Lattice Reunion

^abased on joint work with Shi Bai, Pierre-Alain Fouque, Paul Kirchner, Jianwei Li, Joe Rowell, Damien Stehlé and Weiqiang Wen

OUTLINE

Preliminaries

Enumeration Recap

Super-exponential: $(1+c) \cdot k$

Exponential: $(\alpha \cdot \mathsf{GH}(k_{\alpha}))^{\frac{1}{k_{\alpha}-1}} \leq \mathsf{GH}(k)^{\frac{1}{k-1}}$

HEADLINE

PRELIMINARIES

LENGTH OF GRAM-SCHMIDT VECTORS

It will be useful to consider the lengths of the Gram-Schmidt vectors.

The vector \mathbf{b}_i^* is the orthogonal projection of \mathbf{b}_i to the space spanned by the vectors $\mathbf{b}_0, \dots, \mathbf{b}_{i-1}$.

Informally, this means taking out the contributions in the directions of previous vectors $\mathbf{b}_0, \dots, \mathbf{b}_{i-1}$.

LENGTH OF GRAM-SCHMIDT VECTORS

It will be useful to consider the lengths of the Gram-Schmidt vectors.

The vector \mathbf{b}_i^* is the orthogonal projection of \mathbf{b}_i to the space spanned by the vectors $\mathbf{b}_0, \dots, \mathbf{b}_{i-1}$.

Informally, this means taking out the contributions in the directions of previous vectors $\mathbf{b}_0, \dots, \mathbf{b}_{i-1}$.

EXAMPLE

```
sage: A = IntegerMatrix.random(120, "qary", k=60, bits=20)[::-1]
sage: M = GSO.Mat(A); M.update_gso()
sage: line([(i,log(r_, 2)/2) for i, r_ in enumerate(M.r())], **plot_kwds)
```


EXAMPLE - LLL

```
sage: A = LLL.reduction(A)
sage: M = GSO.Mat(A); M.update_gso()
sage: line([(i,log(r_, 2)/2) for i, r_ in enumerate(M.r())], **plot_kwds)
```



```
def bkz_tour(B, k, e):
    for i in range(0, e):
        preprocess(B[i:i+k])
        v = svp(B[i:i+k])
        insert(v, B, i)

def bkz(B, k):
    while True:
        bkz_tour(B, k, d-1)
        if nothing_changed(B):
        break
```

- Claus-Peter Schnorr. A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms. In: Theor. Comput. Sci. 53 (1987), pp. 201–224
- Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset sum problems. In: Math. Program. 66 (1994), pp. 181–199. DOI: 10.1007/BF01581144. URL: https://doi.org/10.1007/BF01581144
- Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing Blockwise Lattice Algorithms Using Dynamical Systems. In: CRYPTO 2011. Ed. by Phillip Rogaway. Vol. 6841. LNCS. Springer, Heidelberg, Aug. 2011, pp. 447–464. DOI: 10.1007/978-3-642-22792-9_25
- Jianwei Li and Phong Q. Nguyen. A Complete Analysis of the BKZ Lattice Reduction Algorithm. Cryptology ePrint Archive, Report 2020/1237. https://eprint.iacr.org/2020/1237. 2020

SD-BKZ ALGORITHM

```
def dual_bkz_tour(B, k, e):
    D = dual(B) # not actually needed
    for i in range(0, e):
        preprocess(D[i:i+k])
        v = svp(D[i:i+k])
        insert(v, D, i)
    B = dual(D)
 def sd_bkz(B, k):
    while True:
        bkz_tour(B, k, d-k)
        dual_bkz_tour(B, k, d-k)
        if nothing_changed(B):
            break
```

 Daniele Micciancio and Michael Walter. Practical, Predictable Lattice Basis Reduction. In: EUROCRYPT 2016, Part I. ed. by Marc Fischlin and Jean-Sébastien Coron. Vol. 9665. LNCS. Springer, Heidelberg, May 2016, pp. 820–849. DOI: 10.1007/978-3-662-49890-3_31

Geometric Series Assumption: The shape after lattice reduction is a line with a flatter slope as lattice reduction gets stronger.¹

¹Claus-Peter Schnorr. Lattice Reduction by Random Sampling and Birthday Methods. In: STACS 2003, 20th Annual Symposium on Theoretical Aspects of Computer Science, Berlin, Germany, February 27 - March 1, 2003, Proceedings. Ed. by Helmut Alt and Michel Habib. Vol. 2607. Lecture Notes in Computer Science. Springer, 2003, pp. 145–156. DOI: 10.1007/3-540-36494-3_14. URL: http://dx.doi.org/10.1007/3-540-36494-3_14.

HEURISTICS

Heuristic 1 The GSA holds for the first n - k vectors after SD-BKZ-k reduction. **Heuristic 2** The GSA holds.

Scope

Heuristics only used in theorems, our simulations make no heuristic assumptions. Our simulations are backed up by experimental evidence (in small-ish dimensions) from implementations.

ENUMERATION RECAP

ENUMERATION I - PICK A RADIUS

ENUMERATION II – PROJECT BASIS

ENUMERATION III - PROJECT LATTICE

ENUMERATION IV – ENUMERATE PROJECTIONS

ENUMERATION V - FOR EACH LIFT AND ENUMERATE

ENUMERATION V - FOR EACH LIFT AND ENUMERATE

ENUMERATION VI - KEEP SHORTEST

ENUMERATION COST: $k^{k/(2e)+o(k)}$ I

"We obtain a new worst-case complexity upper bound, as well as the first worst-case complexity lower bound, both of the order d of $2^{O(d)} \cdot d^{\frac{d}{2e}}$ (up to polynomial factors) bit operations, where d is the rank of the lattice."²

²Full version of Guillaume Hanrot and Damien Stehlé. Improved Analysis of Kannan's Shortest Lattice Vector Algorithm. In: CRYPTO 2007. Ed. by Alfred Menezes. Vol. 4622. LNCS. Springer, Heidelberg, Aug. 2007, pp. 170–186. DOI: 10.1007/978-3-540-74143-5_10, available at http://perso.ens-lyon.fr/damien.stehle/KANNAN_EXTENDED.html

ENUMERATION COST: $k^{k/(2e)+o(k)}$ II

Martin R. Albrecht, Shi Bai, Pierre-Alain Fouque, Paul Kirchner, Damien Stehlé, and Weiqiang Wen. Faster Enumeration-Based Lattice Reduction: Root Hermite Factor $k^{1/(2k)}$ Time $k^{k/8+o(k)}$. In: *CRYPTO 2020, Part II.* ed. by Daniele Micciancio and Thomas Ristenpart. Vol. 12171. LNCS. Springer, Heidelberg, Aug. 2020, pp. 186–212. DOI: 10.1007/978-3-030-56880-1_7

Super-exponential: $(1+c) \cdot k$

Paper

Martin R. Albrecht, Shi Bai, Pierre-Alain Fouque, Paul Kirchner, Damien Stehlé, and Weiqiang Wen. Faster Enumeration-Based Lattice Reduction: Root Hermite Factor $k^{1/(2k)}$ Time $k^{k/8+o(k)}$. In: *CRYPTO 2020, Part II.* ed. by Daniele Micciancio and Thomas Ristenpart. Vol. 12171. LNCS. Springer, Heidelberg, Aug. 2020, pp. 186–212. DOI: 10.1007/978-3-030-56880-1_7

ENUMERATION HEURISTIC BEST-CASE COMPLEXITY

"Some authors favor the hypothesis that the average behaviour of an HKZ-reduced basis is rather a geometric decrease of the $\|\mathbf{b}_i^*\|'$ s, i.e., roughly $\|\mathbf{b}_i^*\| \approx d^{\frac{j}{d}} \cdot \|\mathbf{b}_1\|$. With such a basis, solving SVP by Kannan's algorithm would have a $2^{O(d)} \cdot d^{\frac{d}{8}}$ complexity."

One Interpretation

 \approx our result immediately holds if you simply assume the GSA.

Why we can't have Nice Things

- 1. We run enumeration many times each succeeding with low probability of success and re-randomise in between: this destroys the nice GSA-line shape
 - * Thus, before enumerating a local block, we run some local preprocessing with some block size $k^\prime < k$
- 2. In the sandpile model,³ as the algorithm proceeds through the indices i, a "bump" accumulates from index i + 1 onward.

³Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing Blockwise Lattice Algorithms Using Dynamical Systems. In: *CRYPTO 2011*. Ed. by Phillip Rogaway. Vol. 6841. LNCS. Springer, Heidelberg, Aug. 2011, pp. 447–464. doi: 10.1007/978-3-642-22792-9 25.

IDEA: OVERSHOOT PREPROCESSING

Preprocessing in dimension $(1+c) \cdot k$ for enumeration in dimension k.

THEOREM

Theorem (Informal)

Under Heuristic 1 there exists an algorithm that achieves root Hermite factor $k^{\frac{1}{2k}}$ in time $k^{k/8+o(k)}$.

- Heuristic 1: The GSA holds for the first n k vectors after SD-BKZ-k reduction.
- Approach:
 - Define $k_0 = x_0 \cdot k$ with $x_0 = \frac{e}{4}(1 + o(1))$ and, for all $i \ge 1$:

$$k_i = \lceil x_i \cdot k \rceil$$
 with $x_i = x_{i-1} + \sqrt{\frac{x_{i-1}}{i}}$.

- so we start with $k_0^{k_0/(2e)} \approx k^{k/8}$
- preprocess with increasing block sizes k_i
- · enumerate over the "line" part of the shape only

PRACTICAL PERFORMANCE (SIMULATION)

Not-so-extreme Pruning

Success probability of a single enumeration in log scale.

CAN WE DO BETTER?

CAN WE DO BETTER?

Leading constant assuming free preprocessing.

PAPER

Martin R. Albrecht, Shi Bai, Jianwei Li, and Joe Rowell. Lattice Reduction with Approximate Enumeration Oracles: Practical Algorithms and Concrete Performance. Cryptology ePrint Archive, Report 2020/1260. https://eprint.iacr.org/2020/1260. 2020, to appear at CRYPTO'21.

 $\alpha \cdot GH(k) \mathbf{v} GH(k)$

Corollary

Let Λ be a full-rank lattice in \mathbb{R}^n . Let $\alpha \geq 1$ and $\rho \in (0, \frac{1}{2})$ such that $4\alpha^4 \rho(1-\rho) < 1$. Let $R = \mathsf{GH}(\Lambda)$, $R_{\alpha} = \alpha \cdot \mathsf{GH}(\Lambda)$ and f(i) be a certain pruning function.

Under Heuristic 2, the time complexity of enumeration with radius R_{α} is less than that with radius R by a multiplicative factor $\alpha^{n/2}$ (up to some polynomial factor).

Corollary of Theorem 6 in Jianwei Li and Phong Q. Nguyen. A Complete Analysis of the BKZ Lattice Reduction Algorithm. Cryptology ePrint Archive, Report 2020/1237. https://eprint.iacr.org/2020/1237. 2020.

IDEA: $(\alpha \cdot \mathsf{GH}(k_{\alpha}))^{\frac{1}{k_{\alpha}-1}} \leq \mathsf{GH}(k)^{\frac{1}{k-1}}$

 k_{α} is the smallest integer greater than k such that $GH(k)^{\frac{1}{k-1}} \geq (\alpha \cdot GH(k_{\alpha}))^{\frac{1}{k_{\alpha}-1}}$ for $\alpha \geq 1$ and $k \geq 36$.

THEOREM

Theorem (Informal)

Let $\alpha > 1$ and $\rho \in (0, \frac{1}{2})$ be constants such that $4 \alpha^4 \rho \cdot (1 - \rho) < 1$. Let f(i) be a certain pruning function. Assume Heuristic 2 holds.

Let $T(n):=n^{c_0n}\cdot 2^{c_1n}$ be the cost of enumeration. Let k a sufficiently large integer. For any real $\eta\in [\frac{2\ln k}{\ln k-\ln(2\pi e^2)},\frac{1}{2c_0})$, if $1<\alpha\le (k^{c_0}\cdot 2^{c_1})^2$, then some $(\alpha\cdot \mathrm{GH}(k_\alpha))$ -HSVP enumeration oracle in rank k_α is exponentially faster than some $\mathrm{GH}(k)$ -HSVP enumeration oracle in rank k by a multiplicative factor of at least

$$\alpha^{\left(\frac{1}{2}-c_0\eta\right)k}\cdot\left(4(1-\rho)\left(\frac{\sqrt{\alpha}}{\left(2e\right)^{c_0}2^{c_1}}\right)^{4\eta}\right)^{\frac{k\log\alpha}{4\log k}} \text{ (up to some polynomial factor)}.$$

PRACTICAL PERFORMANCE (SIMULATION)

Expected cost $t_{\alpha}(k_{\alpha})$ of the $(\alpha \cdot \mathsf{GH}(k_{\alpha}))$ -HSVP enumeration oracle in rank k_{α} for reaching RHF $\mathsf{GH}(k)^{\frac{1}{k-1}}$.

Not-so-extreme Pruning

Expected number of solutions τ per enumeration for reaching RHF GH $(k)^{\frac{1}{k-1}}$.

THANKS

