Problem 2. Product states versus entangled states.

- (a) $\frac{1}{2}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle \frac{1}{2}|11\rangle$
- (b) $\frac{1}{2} |00\rangle + \frac{1}{2} |01\rangle \frac{1}{2} |10\rangle \frac{1}{2} |11\rangle$
- (c) $\frac{1}{\sqrt{3}} |00\rangle + \frac{1}{\sqrt{3}} |01\rangle + \frac{1}{\sqrt{3}} |10\rangle$

Solution. For this problem we will use the fact that the tensor products of two general single qubit states is $\alpha_0\beta_0|00\rangle + \alpha_0\beta_1|01\rangle + \alpha_1\beta_0|10\rangle + \alpha_1\beta_1|11\rangle$.

(a) With the above formula we have the following four equations.

$$\alpha_0 \beta_0 = \frac{1}{2} \tag{2.1}$$

$$\alpha_0 \beta_1 = \frac{1}{2} \tag{2.2}$$

$$\alpha_1 \beta_0 = \frac{1}{2} \tag{2.3}$$

$$\alpha_1 \beta_1 = -\frac{1}{2} \tag{2.4}$$

Now if we divide eq. (2.1) by eq. (2.2) we get $\beta_0 = \beta_1$ which we will call β . Dividing eq. (2.3) by eq. (2.4) yields $\frac{\alpha_1\beta}{\alpha_1\beta} = \frac{1/2}{-1/2} \implies 1 = -1$. With this we can conclude this state is not a possible product state and hence an **entangled state**.

(b) The following tensor prodduct gives rise to the desired state which tells us the state is a **product state**, not an entangled state.

$$\left(\frac{1}{\sqrt{2}}\left|0\right\rangle - \frac{1}{\sqrt{2}}\left|1\right\rangle\right) \otimes \left(\frac{1}{\sqrt{2}}\left|0\right\rangle + \frac{1}{\sqrt{2}}\left|1\right\rangle\right) = \frac{1}{2}\left|00\right\rangle + \frac{1}{2}\left|01\right\rangle - \frac{1}{2}\left|10\right\rangle - \frac{1}{2}\left|11\right\rangle$$

(c) Given the $|11\rangle$ term is nonexistent, we know $\alpha_1\beta_1=0$. This implies $\alpha_1=0$ or $\beta_1=0$. If this was the case then either the $\alpha_1\beta_0\,|10\rangle$ term would be 0 or the $\alpha_0\beta_1\,|01\rangle$ term would be zero. This is not the case so we conclude this is an **entangled state**.