Logistic Regression

Binary Classification

- X is one or more attributes
- y is in {0,1}
- Example
 - x size of tumor
 - y malignant? (yes or no)
 - \rightarrow \hat{y} predicted value of y (sometimes y')

Classifiers

- Probabilistic Classifier outputs probabilities of an instance belonging to a particular class.
- For binary classification ouput the probability p of a positive.
- Discrete classifier outputs a predicted class rather than a probability.

Probabilistic Classifier

- Logistic Regression builds a Probalistic Classifier.
- So \hat{y} (or p) is between 0 and 1.
- \rightarrow \hat{y} is the probability of a positive.
- (A positive is an event of interest, for example having a medical condition.)

Example - Two Features

Separation Line

- A value of $a_1 * x_1 + a_2 * x_2 + b < 0$ indicates an x.
- A value of $a_1 * x_1 + a_2 * x_2 + b > 0$ indicates an o.
- What we need is a value between 0 and 1.

Sigmoid Function

$$y = \frac{1}{(1 + e^{-z})}$$

- Also called the logistic function
- Maps all z values to values between 0 and 1
- Its a way to maps values between -∞ and ∞ to values between 0 and 1.

Sigmoid Function

Logistic Regression

- Want 0 <= ŷ <= 1</p>
- $z = a_1 * x_1 + ... a_n * x_n + b$

$$z = \sum_{k} a_{k} x_{k} + b$$

- z can take values between ∞ and ∞
- Apply a function g(z) to z to give values between 0 and 1.

$$\left| \hat{y} = g(z) = \frac{1}{(1 + e^{-z})} \right|$$

Interpretation

- Can now interpret ŷ as a probability of a positive value (1).
- → For example, $\hat{y} = 0.7$
 - 70% chance of tumor being malignant.
 - 30% change of it not being malignant.

Prediction/ Threshold

- In order to make a prediction
 - choose threshold (say 0.5)
 - if \hat{y} > threshold, predict y = 1.
- → [Notice that $\hat{y} = g(z) > 0.5$ when z > 0]
- Thresholds will be examined in detail in the next section.
- A threshold converts a probabilistic classifier to discrete classifier.