Distribuições de probabilidade conjunta e Amostras Aleatórias Variáveis aleatórias independentes Valores esperados, Covariâncias e Correlação Estatísticas e suas distribuições

Introdução às Probabilidades

tradução do Jay Davore

Distribuições de probabilidade conjunta e Amostras Aleatórias Variáveis aleatórias independentes Valores esperados, Covariâncias e Correlação Estatísticas e suas distribuições

índice

- Distribuições de probabilidade conjunta e Amostras Aleatórias
 - Variáveis aleatórias conjuntamente distribuidas
 - Função massa de probabilidade marginal
 - Função densidade de probabilidade conjunta
 - Função densidade de probabilidade marginal
- Variáveis aleatórias independentes
 - Independência
 - Função de probabilidade condicional
- Valores esperados, Covariâncias e Correlação
 - Valores esperados
 - Covariância
 - Correlação

Funções conjuntamente distribuidas

Trabalhamos até agora com funções de probabilidade de uma única v.a. Agora, definiremos para quaisquer variáveis aleatórias X e Y a função de distribuição de probabilidade cumulativa conjunta de X e Y como

$$F(a,b) = P\{X \le a, Y \le b\} \quad -\infty < a, b < \infty$$

Funções conjuntamente distribuidas

Trabalhamos até agora com funções de probabilidade de uma única v.a. Agora, definiremos para quaisquer variáveis aleatórias X e Y a função de distribuição de probabilidade cumulativa conjunta de X e Y como

$$F(a,b) = P\{X \le a, Y \le b\} \quad -\infty < a, b < \infty$$

Funções conjuntamente distribuidas

A função de distribuição de X (marginal) pode ser obtida a partir da conjunta de X e Y da seguinte forma:

$$F_X(a) = P(X \le a)$$

$$= P(X \le a, Y < \infty)$$

$$= P(\lim_{b \to \infty} \{X \le a, Y \le b\})$$

$$= F(a, \infty)$$

Estatísticas e suas distribuições

Variáveis aleatórias conjuntamente distribuidas

Função massa de probabilidade marginal Função densidade de probabilidade conjunta Função densidade de probabilidade marginal

Marginais

$$P(X > a, Y > b) = 1 - P(X > a, Y > b)^{c}$$

$$= 1 - P((X > a)^{c} \cup (Y > b)^{c})$$

$$= 1 - P((X \le a) \cup (Y \le b))$$

$$= 1 - [P(X \le a) + P(Y \le b) - P(X \le a, Y \le b)]$$

$$= 1 - F_{X}(a) - F_{Y}(b) + F(a, b)$$

Função Massa de probabilidade conjunta

Sejam X e Y duas v.a. discretas definidas no espaço amostral de um experimento. A função massa de probabilidade conjunta p(x,y) é definida para cada par de números (x,y) por

$$p(x, y) = P(X = x e Y = y)$$

Seja A o conjunto que contém os valores dos pares (x, y), então:

$$P[(X, Y) \in A] = \sum_{(x,y)\in A} \sum p(x, y)$$

Definição

A função massa de probabilidade conjunta de X e Y, denotada por $p_X(x)$ e $p_Y(y)$, são dados respectivamente por:

$$p_X(x) = \sum_y p(x, y)$$

$$p_Y(y) = \sum_x p(x, y)$$

Exemplo

Suponha que três bolas sejam sorteadas de uma urna contendo 3 bolas vermelhas, 4 bolas brancas e 5 bolas azuis. Se X e Y representam respectivamente, o número de bolas vermelhas e brancas escolhidas, então a função de probabilidade conjunta de X e Y, p(i,j) = P(X=i,Y=j) é dada por:

exemplo

$$p(0,0) = \frac{\binom{5}{3}}{\binom{12}{3}} = \frac{10}{220}$$

$$p(0,1) = \frac{\binom{4}{1}\binom{5}{2}}{\binom{12}{3}} = \frac{40}{220}$$

$$\dots = \dots$$

$$p(1,1) = \frac{\binom{3}{1}\binom{4}{1}\binom{5}{1}}{\binom{12}{3}} = \frac{60}{220}$$

.

exemplo

representação das probabilidades numa tabela de dupla entrada:

i			j		
	0	1	2	3	soma linha
0	$\frac{10}{220}$	$\frac{40}{220}$	$\frac{30}{220}$	$\frac{40}{220}$	$\frac{84}{220}$
1	$\frac{30}{220}$	$\frac{60}{220}$	$\frac{18}{220}$	ő	$\frac{108}{220}$
2	$\frac{15}{220}$	$\frac{12}{220}$	0	0	$\frac{27}{220}$
3	$\frac{1}{220}$	Ő	0	0	$\frac{1}{220}$
Soma Coluna	$\frac{56}{220}$	$\frac{112}{220}$	$\frac{48}{220}$	$\frac{4}{220}$	

Definição

Sejam X e Y v.a.contínuas. Então f(x,y) é uma função densidade de probabilidade conjunta para X e Y se para qualquer conjunto bi-dimensional A,

$$P[(X, Y) \in A] = \int_{A} \int f(x, y) dx dy$$

Se A é um retângulo bidimensional:

$$\{(x,y): a \le x \le b, c \le y \le d\},\$$

$$P[(X, Y) \in A] = \int_{a}^{b} \int_{c}^{d} f(x, y) \, dy dx$$

exemplo

$$P[(X,Y) \in A]$$

= Volúmen abaixo da superficie acima de A

Figura: Representação de uma v.a. bidimensional

Definição

A função densidade de probabilidade marginal de X e Y, denotada por $f_X(x)$ e $f_Y(y)$, são dados respectivamente por:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy \quad para - \infty < x < \infty$$
$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx \quad para - \infty < y < \infty$$

Exemplo

A função de densidade conjunta de X e Y é dada por:

$$f(x,y) = \begin{cases} 2e^{-x}e^{-2y} & 0 < x < \infty, \ 0 < y < \infty \\ 0 & \text{caso contrário} \end{cases}$$

calcule:

- **1** P(X > 1, Y < 1)
- P(X < Y)
- P(X < a)

Exemplo

Solução a):

$$\begin{split} P(X>1,\,Y<1) &= \int_0^1 \int_1^\infty 2e^{-x}e^{-2y}dxdy \\ &= \int_0^1 2e^{-2y}(-e^{-x}|_1^\infty)dy \\ &= e^{-1}(1-e^{-2}) \end{split}$$

Exemplo

Solução b)

$$\begin{split} P(X < Y) &= \int_{(x,y):x < y} \int 2e^{-x}e^{-2y} dx dy \\ &= \int_0^\infty \int_0^y 2e^{-x}e^{-2y} dx dy \\ &= \int_0^\infty 2e^{-2y} (1 - e^{-y}) dy \\ &= \int_0^\infty 2e^{-2y} dy - \int_0^\infty 2e^{-3y} dy \\ &= 1 - \frac{2}{2} = \frac{1}{2} \end{split}$$

exemplo

Solução c)

$$P(X < a) = \int_0^a \int_1^\infty 2e^{-x}e^{-2y}dydx$$
$$= \int_0^a e^{-x}dx$$
$$= 1 - e^{-a}$$

definição

Duas variáveis X e Y são independentes se para cada par de valores x e y,

$$p(x, y) = p_X(x).p_y(y)$$

Quando X e Y são discretos, ou

$$f(x,y) = f_X(x).f_Y(y)$$

quando X e Y são contínuos.

Se as condições não são satisfeitas para todo (x,y), então X e $\,Y\,$ são dependentes.

Independência
Função de probabilidade condicional

Exemplo

Um homem e uma mulher decidem se encontrar em certo lugar. Se cada um deles chega independentemente em um tempo uniformemente distribuido entre 12:00 e 13:00, determine a probabilidade de que o primeiro a chegar tenha que esperar mais de 10 minutos

exemplo

Se X e Y são os tempos de chegada (após meio-dia) do homem e da mulher, então X e Y são v.a. independentes,com distribuição uniforme no intervalo (0,60).

Queremos calcular:

$$P(X + 10 < Y) + P(Y + 10 < X)$$

o que é igual (por simetria) a
$$2P(X+10 < Y)$$

exemplo

Se X e Y são os tempos de chegada (após meio-dia) do homem e da mulher, então X e Y são v.a. independentes,com distribuição uniforme no intervalo (0,60).

Queremos calcular:

$$P(X + 10 < Y) + P(Y + 10 < X)$$

o que é igual (por simetria) a 2P(X+10 < Y)

exemplo

$$\begin{split} 2P(X+10 < Y) &= 2 \iint_{x+10 < y} f(x,y) dx dy \\ &= 2 \iint_{x+10 < y} f_X(x) f_Y(y) dx dy \quad \text{pela independência} \\ &= 2 \int_{10}^{60} \int_{0}^{y-10} \left(\frac{1}{60}\right)^2 dx dy \\ &= \frac{2}{(60)^2} \int_{10}^{60} (y-10) dy \\ &= \frac{25}{36} \end{split}$$

tradução do Jay Davore

Introdução às Probabilidades

Mais de duas variáveis

Se $X_1, X_2, ..., X_n$ são todas v.a. discretas. A f.p.conjunta das v.a. é a função:

$$p(x_1,...,x_n) = P(X_1 = x_1,...,X_n = x_n)$$

Se as variáveis são contínuas, a f.d.p. conjunta é a função tal que para qualquer dos n intervalos $[a_1,b_1],...[a_n,b_n]$

$$P(a_1 \le X_1 \le b_1, ..., a_n \le X_n \le b_n) = \int_{a_1}^{b_1} ... \int_{a_n}^{b_n} f(x_1, ..., x_n) dx_n ... dx_1$$

Independência de mais de duas v.a.

As v.a. $X_1,...,X_n$ são independentes se para cada subconjunto $X_{i_1},X_{i_2},...,X_{i_n}$ das variáveis, a f.m.p (f.p.) conjunta ou f.d.p. conjunta do subconjunto é igual ao produto das f.m.p marginais ou f.d.p. marginais.

Se a função de densidade conjunta de X e Y é

$$f(x,y) = \begin{cases} 6e^{-2x}e^{-3y} & \text{na região } 0 < x < \infty, 0 < y < \infty \\ 0 & \text{caso contrário} \end{cases}$$

verifique se as variáveis aleatórias são independentes

Exemple

Solução:

Se fizermos X e Y variáveis aleatórias exponenciais, teremos:

$$f(x) = \begin{cases} 2e^{-2x} & \text{na região } 0 < x < \infty \\ 0 & \text{caso contrário} \end{cases}$$

$$f(y) = \begin{cases} 3e^{-3y} & \text{na região } 0 < y < \infty \\ 0 & \text{caso contrário} \end{cases}$$

Definição

Sejam X e Y duas v.a. continuas com f.d.p conjunta f(x,y) e f.d.p marginal de X $f_X(x)$. Então, para qualquer valor x de X, para o qual $f_X(x) > 0$, a função densidade de probabilidade condicional (f.d.p. condicional) de Y dado X = x é:

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$
 $-\infty < y < \infty$

Se X e Y são discretos, substituindo f.d.pts por f.m.p.ts resultarão na função massa de probabilidade condicional de Y cuando X=x

Funções de uma variável aleatória

Suponha que uma v.a. X tem f.p. f (discreta) e que outra v.a. Y=r(X) é definida como função de X. Então, a f.p. g de Y pode ser derivada de f de uma forma direta como segue:

para qualquer valor possível y de Y,

$$g(y) = P(Y = y) = P(r(X) = y)$$
$$= \sum_{x:r(x)=y} f(x)$$

Funções de uma variável aleatória

Se X tem f.d.p. f (contínua), e que uma v.a. Y=r(X) é definida. a função de distribuição acumulada G(y) de Y pode ser derivado como segue:

$$G(y) = P(Y \le y) = P(r(X) \le y)$$
$$= \int_{\{x: r(x) \le y\}} f(x) dx$$

Função de uma variável aleatória

Se a v.a. Y tem uma função de distribuição contínua, sua f.d.p. g pode ser obtida da relação:

$$g(y) = \frac{dG(y)}{dy}$$

Suponha que X tem uma distribuição no intervalo (-1,1), tal que

$$f(x) = \begin{cases} 1/2 & \text{para} & -1 < x < 1\\ 0 & \text{caso contrário} \end{cases}$$

determinar a f.d.p. da v.a. $Y = X^2$

Como $Y=X^2$, então Y deve pertencer ao intervalo $0 \leq Y \leq 1$. Assim, para qualquer valor de Y tal que 0 < Y < 1, a f.de distribuição acumulada G(y) de Y é

$$G(Y) = P(Y \le y) = P(X^{2} \le y)$$

$$= P(-y^{1/2} \le X \le y^{1/2})$$

$$= \int_{-y^{1/2}}^{y^{1/2}} f(x) dx = y^{1/2}$$

Para 0 < y < 1, segue-se que a f.d.p. g(y) de Y é

$$g(y) = \frac{dG(y)}{dy} = \frac{1}{2y^{1/2}}$$

Funções de duas ou mais variáveis aleatórias

Suponha que n v.a. $X_1,...,X_n$ tem f.d.p.conjunta discreta f, e que m funções $Y_1,...,Y_m$ de estas n variáveis são definidas como segue:

$$Y_1 = r_1(X_1, ..., X_n)$$

 $Y_2 = r_2(X_1, ..., X_n)$
......
 $Y_m = r_m(X_1, ..., X_n)$

Funções de duas ou mais variáveis aleatórias

Para valores dados $y_1,...,y_m$ das m v.a. $Y_1,...,Y_m$, seja A o conjunto de todos os pontos $(x_1,...,x_n)$ tal que

$$r_1(x_1, ..., x_n) = y_1$$

 $r_2(x_1, ..., x_n) = y_2$
.....
 $r_m(x_1, ..., x_n) = y_m$

Então a f.p.conjunta g de $Y_1,...,Y_m$ é especificado no ponto $(y_1,...,y_m)$ pela relação:

$$g(y_1, ..., y_m) = \sum_{(x_1, ..., x_n) \in A} f(x_1, ..., x_n)$$

Funções de duas ou mais variáveis aleatórias

Se a função de distribuição conjunta de $X_1,...,X_n$ (continua) é $f(x_1,...,x_n)$ e se $Y=r(X_1,...,X_n)$, então a função de distribuição acumulada G(y) de Y pode ser determinada da seguinte forma: Para qualquer valor dado de y $(-\infty < y < \infty)$, seja A_y um subconjunto de R^n que contém os pontos $(x_1,...,x_n)$ tal que $r(x_1,...,x_n) \leq y$, então:

$$G(y) = P(Y \le y) = P(r(X_1, ..., X_n) \le y)$$

= $\int_{A_y} \int f(x_1, ..., x_n) dx_1 ... dx_n$

Distribuição do máximo e o mínimo em uma amostra aleatória

Suponha que as v.a. $X_1, ..., X_n$ formam uma a.a. de tamanho n de uma distribuição para a qual a f.d.p. é f e a f.de distribuição acumulada é F. Considere as v.a. Y_n e Y_1 definidas como

$$Y_n = max\{X_1, ..., X_n\}$$

e

$$Y_1 = min\{X_1, ..., X_n\}$$

determine as f.d.p. de cada uma delas.

Distribuição do máximo e o mínimo em uma amostra aleatória

Para o caso Y_n .

$$G_n(y) = P(Y_n \le y) = P(X_1 \le y, ..., X_n \le y)$$

= $P(X_1 \le y) ... P(X_n \le y)$
= $F(y) ... F(y) = [F(y)]^n$

a f.d.p de Y_n pode ser determinado derivando:

$$g_n(y) = n \left[F(y) \right]^{n-1} f(y), \quad \text{para} \quad -\infty < y < \infty$$

Distribuição do máximo e o mínimo em uma amostra aleatória

para o caso
$$Y_1$$
, para $(-\infty < y < \infty)$
$$G_1(y) = P(Y_1 \le y) = 1 - P(Y_1 > y)$$

$$= 1 - P(X_1 > y, ..., X_n > y)$$

$$= 1 - P(X_1 > y) ... P(X_n > y)$$

$$= 1 - [1 - F(y)] ... [1 - F(y)]$$

$$= 1 - [1 - F(y)]^n$$

a f.d.p de Y_1 pode ser determinado derivando:

$$g_1(y) = n [1 - F(y)]^{n-1} f(y), \text{ para } -\infty < y < \infty$$

Valor esperado

Sejam X e Y duas v.a. conjuntamente distribuidos com f.m.p conjunta p(x,y) ou f.d.p. conjunta f(x,y) dependendo em que as variáveis são discretas ou continuas. Então, o valor esperade de uma função h(X,Y) denotado por $E\left[h(X,Y)\right]$ ou $\mu_{h(X,Y)}$ é

$$E\left[h(X,\,Y)\right] = \begin{cases} \sum_x \sum_y h(x,y).p(x,y) & \text{no caso discreto} \\ \int_{-\infty}^\infty \int_{-\infty}^\infty h(x,y).f(x,y) dx dy & \text{no caso continuo} \end{cases}$$

exemplo

Considere a distribuição conjunta de X e Y:

Y	0	1	2	3	p(y)
0	1/8	2/8	1/8	0	1/2
1	0	1/8	2/8	1/8	1/2
p(x)	1/8	3/8	3/8	1/8	1

Encontre a distribuição de

- lacktriangledown a soma X+Y, o valor esperado E(X+Y)
- \odot o produto XY

Exemplo

Solução a distribuição da soma é:

	_	1	_	2	4
x + y	U	T	2	3	4
p(x+y)	1/8	2/8	2/8	2/8	1/8

O valor esperado

$$E(x + y) = 0 \times 1/8 + 1 \times 2/8 + \dots + 4 \times 1/8 = 2$$

Valores esperados Covariância Correlação

Exemplo

Solução a distribuição do produto é:

\overline{xy}	0	1	2	3
p(xy)	4/8	1/8	2/8	1/8

definição

A covariância entre duas v.a.ts
$$X$$
 e Y é
$$Cov(X,Y) = E\left[(X-\mu_X)(Y-\mu_y)\right] = \begin{cases} \sum_x \sum_y (x-\mu_X)(y-\mu_Y) p(x,y) & \text{caso discreto} \end{cases}$$

$$\begin{cases} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x-\mu_X)(y-\mu_Y) f(x,y) dx dy & \text{caso contínuo} \end{cases}$$

Valores esperados Covariância Correlação

Forma curta para o cálculo da covariância

$$Cov(X, Y) = E(X, Y) - \mu_X \cdot \mu_Y$$

definição

O coeficiente de correlação de X e Y, denotado por Corr(X,Y), $\rho_{X,Y}$, ou apenas ρ , é definida por :

$$\rho_{X,Y} = \frac{Cov(X,Y)}{\sigma_X.\sigma_Y}$$

Proposições para a Correlação

• 1. Se $a \in c$ são ambos positivos ou ambos negativos,

$$Corr(aX + b, cY + d) = Corr(X, Y)$$

• 2. Para duas v.a.'s X e Y quaisquer:

$$-1 \le Corr(X, Y) \le 1$$

Proposições para a Correlação

ullet 3. Se X e Y são independentes, então

$$\rho = 0$$

mas, $\rho = 0$ não implica independência.

• 4. $\rho = 1$ ou $\rho = -1$ se e somente se

$$Y = aX + b$$

para alguns números a e b com $a \neq 0$

Estatísticas Amostras aleatórias A distribuição da média amostral O T.L.C. Distribuição Lognormal aproximada

O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Definição

Uma estatística é qualquer quantidade cujo valor pode ser calculado dos dados amostrais (função de valores amostrais).

Antes de obter os dados (amostra), existe incerteza sobre qual será o valor de uma particular estatística

Uma estatística é uma v.a. denotada por uma letra maiúscula; uma letra minúscula representará o valor observado da estatística.

Estatísticas

Amostras aleatórias

A distribuição da média amostral O T.L.C.
Distribuição Lognormal aproximada Distribuição de uma combinação linear Valor esperado de uma combinação linear Variância de uma combinação linear Diferença entre duas v.a.
Diferença entre v.a. normais

Estatísticas comúns

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$$

$$X_{(1)} = \min\{X_1, ..., X_n\}$$

$$X_{(n)} = \max\{X_1, ..., X_n\}$$

: média amostral

: variância amostral

: mínimo da amostra

: maximo da amostra

Estatisticas
A mostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Definição de amostra aleatória

As v.a. $X_1,...,X_n$ formam uma amostra aleatória simples de tamanho n, se:

- 1. Os X_i 's são v.a. independentes.
- ullet 2. Cada X_i tem a mesma distribuição de probabilidade.

Estatísticas
A mostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Experimentos simulados

As seguintes características devem ser especificadas:

- 1. A estatística de interesse
- 2. A distribuição da população
- ullet 3. O tamanho da amostra n
- 4. O número de repetições *k*

Estatisticas
A mostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Distribuições amostrais

O propósito da inferência estatística é fazer afirmações sobre parâmetros populacionais, através de dados amostrais.

Usamos uma a.a.s. de n elementos da população, e a decisão será baseada na estatística T, que será função da amostra $(X_1,...,X_n)$, i.e.,

$$T = f(X_1, ..., X_n)$$

Estatisticas
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Distribuições amostrais

O propósito da inferência estatística é fazer afirmações sobre parâmetros populacionais, através de dados amostrais.

Usamos uma a.a.s. de n elementos da população, e a decisão será baseada na estatística T, que será função da amostra $(X_1,...,X_n)$, i.e.,

$$T = f(X_1, ..., X_n)$$

Colhida a amostra, teremos observado um valor particular de T (t_0). Baseados naquele valor é que faremos uma afirmação sobre θ .

Estatisticas
Amostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.

Diferenca entre v.a. normais

Distribuições amostrais

O propósito da inferência estatística é fazer afirmações sobre parâmetros populacionais, através de dados amostrais.

Usamos uma a.a.s. de n elementos da população, e a decisão será baseada na estatística T, que será função da amostra $(X_1,...,X_n)$, i.e.,

$$T = f(X_1, ..., X_n)$$

Colhida a amostra, teremos observado um valor particular de T (t_0). Baseados naquele valor é que faremos uma afirmação sobre θ .

Estatisticas
A mostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.

Distribuições amostrais

A distribuição amostral da estatística $\,T\,$ é obtida quando retiram-se todas as amostras da população segundo o plano amostral adotado.

Esquematicamente temos:

f 0 uma população X com parâmetro de interesse heta

Estatisticas
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Distribuições amostrais

A distribuição amostral da estatística $\,T\,$ é obtida quando retiram-se todas as amostras da população segundo o plano amostral adotado.

- f 0 uma população X com parâmetro de interesse heta
- todas as amostras retiradas da população (de acordo com o plano amostral)

Estatisticas
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.

Distribuições amostrais

A distribuição amostral da estatística $\,T\,$ é obtida quando retiram-se todas as amostras da população segundo o plano amostral adotado.

- $oldsymbol{0}$ uma população X com parâmetro de interesse heta
- todas as amostras retiradas da população (de acordo com o plano amostral)
- $oldsymbol{3}$ para cada amostra, calcula-se o valor t da estatística T

Estatisticas
A mostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Distribuições amostrais

A distribuição amostral da estatística $\,T\,$ é obtida quando retiram-se todas as amostras da população segundo o plano amostral adotado.

- $oldsymbol{0}$ uma população X com parâmetro de interesse heta
- todas as amostras retiradas da população (de acordo com o plano amostral)
- $oldsymbol{0}$ para cada amostra, calcula-se o valor t da estatística T
- ullet os valores de t formam uma nova população, cuja distribuição é a distribuição amostral de T.

Estatisticas
A mostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Distribuições amostrais

A distribuição amostral da estatística $\,T\,$ é obtida quando retiram-se todas as amostras da população segundo o plano amostral adotado.

- $oldsymbol{0}$ uma população X com parâmetro de interesse heta
- todas as amostras retiradas da população (de acordo com o plano amostral)
- $oldsymbol{\circ}$ para cada amostra, calcula-se o valor t da estatística T
- ullet os valores de t formam uma nova população, cuja distribuição é a distribuição amostral de T.

Estafísticas
Amostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.

Exemplo

Considere a população $\{1, 3, 5, 5, 7\}$

- Construa a distribuição conjunta bidimensional (X_1, X_2)
- 2 calcule a distribuição da estatística $\bar{X} = \frac{X_1 + X_2}{2}$.
- 3 calcule a distribuição da estatística $S^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}$

Estatísticas
Amostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Solução

a distribuição do par (X_1,X_2) é:

X_2	1	3	5	7	total
1	1/25	1/25	2/25	1/25	1/5
3	1/25	1/25	2/25	1/25	1/5
5	2/25	2/25	4/25	2/25	2/5
7	1/25	1/25	2/25	1/25	1/5
Total	1/5	1/5	2/5	1/5	1

Estatísticas

Amostras aleatórias

A distribuição da média amostral

O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Solução

Para cada par (X_1,X_2) , calculamos a estatística X e a distribuição será:

\bar{X}	1	2	3	4	5	6	7	total
$p(\bar{X})$	1/25	2/25	5/25	6/25	6/25	4/25	1/25	1

Estatísticas
A mostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Solução

Para cada par (X_1,X_2) , calculamos a estatística S^2 e a distribuição será:

s^2	0	2	8	18	total
$p(S^2 = s^2)$	7/25	10/25	6/25	2/25	1

Estatísticas
Amostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Usando a média amostral

Seja $X_1,...,X_n$ uma a.a. de uma distribuição com média μ e desvio padrão σ . Então:

1
$$E(\bar{X}) = \mu_{\bar{X}} = \mu$$

$$V(\bar{X}) = \sigma_{\bar{X}}^2 = \frac{\sigma^2}{n}$$

Em adição: Com $T_0 = X_1 + ... + X_n$,

$$E(T_0) = n\mu$$

$$V(T_0) = n\sigma^2, \text{ e}$$

$$\sigma_{T_0} = \sqrt{n}\sigma$$

Estatísticas
Amostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Provas

$$E(\bar{X}) = E(\frac{\sum_{i=1}^{n} X_i}{n}) = \frac{1}{n} (E(X_1) + \dots + E(X_n))$$
$$= \frac{1}{n} (\mu + \dots + \mu) = \mu$$

$$Var(\bar{X}) = Var(\frac{\sum_{i=1}^{n} X_i}{n}) = \frac{1}{n^2} \left(Var(X_1) + \dots + Var(X_n) \right)$$
$$= \frac{1}{n^2} \left(\sigma^2 + \dots + \sigma^2 \right) = \frac{\sigma^2}{n}$$

Estatísticas
Amostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Provas

$$E(\bar{X}) = E(\frac{\sum_{i=1}^{n} X_i}{n}) = \frac{1}{n} (E(X_1) + \dots + E(X_n))$$
$$= \frac{1}{n} (\mu + \dots + \mu) = \mu$$

$$Var(\bar{X}) = Var(\frac{\sum_{i=1}^{n} X_i}{n}) = \frac{1}{n^2} \left(Var(X_1) + \dots + Var(X_n) \right)$$
$$= \frac{1}{n^2} \left(\sigma^2 + \dots + \sigma^2 \right) = \frac{\sigma^2}{n}$$

Estatísticas
Amostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

O teorema central do limite.

Seja $X_1,...,X_n$ uma a.a. de uma distribuição com média μ e variância σ^2 . Então, se n é suficientemente grande, \bar{X} terá aproximadamente uma distribuição normal com $\mu_{\bar{X}}=\mu$ e $\sigma_{\bar{X}}^2=\frac{\sigma^2}{n}$, e T_0 também tem uma distribuição aproximadamente normal, com parâmetros

$$\mu_{T_0} = n\mu,$$

$$\sigma_{T_0} = n\sigma^2$$

Quanto maior for o valor de n, melhor a aproximação.

Amostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Simulação do T.L.C

Figura: O Teorema do Limite Central

Estatisticas
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Regra de Ouro

Se n > 30, o T.L.C. pode ser utilizado.

Estatísticas
Amostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferenca entre v.a. normais

Exemplo

Uma máquina enche pacotes de café, com distribuição normal com média 500 e variancia 100. Colhe-se uma amostra de n=100 pacotes, os que são pesados. Qual a probabilidade de encontrarmos a média dos 100 pacotes diferindo de 500 em menos de dois gramas.

Estatísticas
Amostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a., normais

Solução

Tomamos $X \sim N(500, 100)$,pelo T.L.C, teremos que $X \sim N(500, 100/100 = 1)$. Portanto,

$$P(|\bar{X} - 500| < 2) = P(498 < \bar{X} < 502) = P(-2 < Z < 2) \approx 95\%$$

Estatísticas
Amostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição Lognormal aproximação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

corolários

Corolário 1: Se $(X_1,...,X_n)$ é uma a.a.s. da população X com média μ e variância σ^2 finita, então:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

Corolário 2: se $e=\bar{X}-\mu$ então

$$e \sim N(0, \sigma^2/n)$$

Estatísticas
Amostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de una combinação linear
Valor esperado de una combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

corolários

Corolário 1: Se $(X_1,...,X_n)$ é uma a.a.s. da população X com média μ e variância σ^2 finita, então:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

Corolário 2: se $e=\bar{X}-\mu$ então

$$e \sim N(0, \sigma^2/n)$$

Estatísticas
Amostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre va.a. normais

Distribuição amostral da proporção

Considere uma população em que a proporção de elementos portadores de certa característica é p. A v.a X é definidaa da seguinte maneira:

$$X = \begin{cases} 1, & \text{se o indivíduo for portador da característica} \\ 0, & \text{se o indivíduo não for portador da característica} \end{cases}$$

Temos que
$$\mu = E(X) = p$$
, $\sigma^2 = Var(X) = p(1-p)$

Estatísticas
Amostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre va., normais

Distribuição amostral da proporção

Se retirarmos uma a.a.s. e indicando Y_n o total de indivíduos na amostra, portadores da característica, teremos que:

$$Y_n \sim bin(n, p)$$

Seja \hat{p} a proporção de indivíduos na amostra, portadores da característica:

$$\hat{p} = \frac{Y_n}{n}$$

Então
$$P(Y_n=k)=P(\frac{Y_n}{n}=\frac{k}{n})=P(\hat{p}=\frac{k}{n})$$

Estatísticas
Amostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Distribuição amostral da proporção (aproximação)

Seja a v.a $Y_n=X_1+X_2+...+X_n$ onde cada X_i tem distribuição Bernoulli com média $\mu=p$ e variância $\sigma^2=p(1-p)$ e são independentes entre si. Podemos escrever:

$$Y_n = n\bar{X}$$

pelo T.L.C, \bar{X} tem distribuição normal com média p e variância $\frac{p(1-p)}{n}$, ou seja:

$$\bar{X} \sim N(p, \frac{p(1-p)}{n})$$

Estatísticas
Amostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Distribuição amostral da proporção

Logo

$$Y_n = n\bar{X} \sim N(np, np(1-p))$$

observe que \bar{X} é a própria \hat{p} e, para n grande,

$$\hat{p} \sim N(p, \frac{p(1-p)}{n})$$

Estatísticas
Amostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre va., normais

Determinação do tamanho da amostra

Suponha que desejamos estimar a média μ e para tanto usamos a média amostral \bar{X} , baseada numa amostra de tamanho n. Suponha que desejamos determinar o valor de n tal que:

$$P(|\bar{X} - \mu| \le \epsilon) \ge \gamma$$

com $0<\gamma<1$ e ϵ é o erro amostral máximo permissível (ambos dados).

Estatísticas
Amostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Determinação do tamanho da amostra

Como $\bar{X} \sim N(\mu, \sigma^2/n)$, logo $\bar{X} - \mu \sim N(0, \sigma^2/n)$ e pode ser escrita como:

$$P(-\epsilon \le \bar{X} - \mu \le \epsilon) = P\left(\frac{-\sqrt{n}\epsilon}{\sigma} \le Z \le \frac{\sqrt{n}\epsilon}{\sigma}\right) \approx \gamma$$

Com $Z=(\bar X-\mu)\sqrt n/\sigma$. Dado γ , obtemos z_γ da N(0,1), tal que $P(-z_\gamma < Z < z_\gamma) = \gamma$ de modo que

$$\frac{\sqrt{n}\epsilon}{\sigma} = z_{\gamma}$$

do que se obtêm finalmente $n=\frac{\sigma^2z_\gamma^2}{\epsilon^2}$

Estatisticas
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. pormais

Definição

Seja $X_1,...,X_n$ uma a.a. de uma distribuição para a qual apenas são possíveis os valores positivos $[P(X_i>0=1].$

Então, para n suficientemente grande, o produto $Y=X_1.X_2...X_n$ tem aproximadamente uma distribuição log-normal

Estatísticas
Amostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

C.L.

Dada uma coleção de n v.a. $X_1,...,X_n$ e n constantes numéricas $a_1,...,a_n$, a v.a.

$$Y = a_1 X_1 + \dots + a_n X_n = \sum_{i=1}^{n} a_i X_i$$

Isto é chamado de combinação linear dos X_i 's

Estatísticas
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Esperança de uma C.L.

Seja $X_1,...,X_n$ com médias $\mu_1,\mu_2,...,\mu_n$ e variâncias de $\sigma_1^2,\sigma_2,2,...,\sigma_n^2$, respectivamente.

Ainda que os X_i 's não sejam independentes,

$$E(a_1X_1 + ... + a_nX_n) = a_1E(X_1) + ... + a_nE(X_n)$$

= $a_1\mu_1 + ... + a_nE(X_n)$

Estatisticas
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Variância de uma C.L.

Se $X_1, ..., X_n$ são independentes,

$$V(a_1X_1 + \dots + a_nX_n) = a_1^2 V(X_1) + \dots + a_n^2 V(X_n)$$

= $a_1^2 \sigma_1^2 + \dots + a_n^2 \sigma_n^2$

e

$$\sigma_{a_1 X_1 + \dots + a_n X_n} = \sqrt{a_1^2 \sigma_1^2 + \dots + a_n^2 \sigma_n^2}$$

Amostras aleatórias
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Variância de uma C.L.

Para qualquer $X_1, ..., X_n$,

$$V(a_1X_1 + ... + a_nX_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j Cov(X_i, X_j)$$

A distribuição da média amostral O T.L.C. Distribuição Lognormal aproximada Distribuição Lognormal aproximada Distribuição de uma combinação linear Valor esperado de uma combinação linear Variância de uma combinação linear Diferença entre duas v.a. Diferença entre v.a. normais

definição

$$E(X_1 - X_2) = E(X_1) - E(X_2)$$

e se X_1 e X_2 são independentes,

$$V(X_1 - X_2) = V(X_1) + V(X_2)$$

Estatisticas
A distribuição da média amostral
O T.L.C.
Distribuição Lognormal aproximada
Distribuição Lognormal aproximada
Distribuição de uma combinação linear
Valor esperado de uma combinação linear
Variância de uma combinação linear
Diferença entre duas v.a.
Diferença entre v.a. normais

Diferença

Se $X_1,...,X_n$ são v.a. independentes e normalmente distribuidas, então qualquer combinação linear dos X_i 's também têm uma distribuição normal.

A diferença X_1-X_2 entre duas v.a. independentes e normalmente distribuídas, é também normalmente distribuída.