Lecture 14: Asymptotic properties of the MLE

Ciaran Evans

Recap: Convergence in probability

Definition: A sequence of random variables $X_1, X_2, ...$ converges in probability to a random variable X if, for every $\varepsilon > 0$,

$$\lim_{n\to\infty} P(|X_n - X| \ge \varepsilon) = 0$$

We write $X_n \stackrel{p}{\to} X$.

Convergence in distribution

Definition: A sequence of random variables $X_1, X_2, ...$ converges in distribution to a random variable X if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$$

at all points where $F_X(x)$ is continuous. We write $X_n \stackrel{d}{\to} X$.

Convergence of the MLE

Suppose that we observe $Y_1, Y_2, Y_3, ...$ iid from a distribution with probability function $f(y|\theta)$, where $\theta \in \mathbb{R}^d$ is the parameter(s) we are trying to estimate. Let

$$\ell_n(\theta) = \sum_{i=1}^n \log f(Y_i|\theta)$$
 $\widehat{\theta}_n = \operatorname{argmax}_{\theta} \ell_n(\theta)$

$$\mathcal{I}_1(heta) = -\mathbb{E}\left[rac{\partial^2}{\partial heta^2} \log f(Y_i| heta)
ight]$$

Theorem: Under certain regularity conditions (to be discussed later),

(a)
$$\widehat{\theta}_n \stackrel{p}{\to} \theta$$

(b) $\sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{d}{\to} N(0, \mathcal{I}_1^{-1}(\theta))$

Asymptotic normality: proof approach

Let
$$\ell'_n(\theta) = \frac{\partial}{\partial \theta} \ell_n(\theta)$$
, $\ell''_n(\theta) = \frac{\partial^2}{\partial \theta^2} \ell_n(\theta)$

Begin with a Taylor expansion of ℓ'_n around θ :

$$\ell'_n(\widehat{\theta}_n) =$$

Asymptotic normality: proof approach

Using the Taylor expansion,

$$\sqrt{n}(\widehat{\theta}_n - \theta) \approx \frac{\frac{1}{\sqrt{n}}\ell'_n(\theta)}{-\frac{1}{n}\ell''_n(\theta)}$$

Next, look at limits for the numerator and denominator:

$$ightharpoonup \frac{1}{\sqrt{n}}\ell'_n(\theta)$$

$$-\frac{1}{n}\ell_n''(\theta)$$

Asymptotic normality: the numerator

Want to show: $\frac{1}{\sqrt{n}}\ell'_n(\theta) \stackrel{d}{\to} N(0, \mathcal{I}_1(\theta))$

► CLT: for iid $X_1, X_2, ...$, under mild conditions

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mathbb{E}[X_{i}]\right)\stackrel{d}{
ightarrow}N(0,Var(X_{i}))$$

$$\ell'_n(\theta) = \sum_{i=1}^n \frac{\partial}{\partial \theta} \log f(Y_i | \theta)$$

Applying CLT to $\ell'_n(\theta)$:

Asymptotic normality: the numerator

Want to show: $\frac{1}{\sqrt{n}}\ell'_n(\theta) \stackrel{d}{\to} N(0,\mathcal{I}_1(\theta))$

CLT gives

$$\sqrt{n}\left(\frac{1}{n}\ell'_n(\theta) - \mathbb{E}\left[\frac{\partial}{\partial \theta}\log f(Y_i|\theta)\right]\right) \stackrel{d}{\to} N\left(0, Var\left(\frac{\partial}{\partial \theta}\log f(Y_i|\theta)\right)\right)$$

Need to show:

- $\blacktriangleright \mathbb{E}\left[\frac{\partial}{\partial \theta}\log f(Y_i|\theta)\right] =$
- $ightharpoonup Var\left(\frac{\partial}{\partial \theta}\log f(Y_i|\theta)\right) =$

The expected score

Claim: Under regularity conditions,

$$\mathbb{E}\left[\frac{\partial}{\partial \theta}\log f(Y_i|\theta)\right]=0$$

Fisher information

Claim: Under regularity conditions,

$$Var\left(rac{\partial}{\partial heta}\log f(Y_i| heta)
ight) = -\mathbb{E}\left[rac{\partial^2}{\partial heta^2}\log f(Y_i| heta)
ight]$$

Numerator: putting everything together

Want to show: $\frac{1}{\sqrt{n}}\ell'_n(\theta) \stackrel{d}{\to} N(0, \mathcal{I}_1(\theta))$

► CLT gives
$$\sqrt{n} \left(\frac{1}{n} \ell'_n(\theta) - \mathbb{E} \left[\frac{\partial}{\partial \theta} \log f(Y_i | \theta) \right] \right) \stackrel{d}{\to} N \left(0, Var \left(\frac{\partial}{\partial \theta} \log f(Y_i | \theta) \right) \right)$$

Under regularity conditions,

$$\mathbb{E}\left[rac{\partial}{\partial heta} \log f(Y_i| heta)
ight] = 0$$

$$Var\left(\frac{\partial}{\partial t}\log f(Y;|\theta)\right) = -\mathbb{E}\left[\frac{\partial^2}{\partial t}\log f(Y;|\theta)\right]$$

$$Var\left(rac{\partial}{\partial heta}\log f(Y_i| heta)
ight) = -\mathbb{E}\left[rac{\partial^2}{\partial heta^2}\log f(Y_i| heta)
ight]$$

Now the denominator

Want to show: $-\frac{1}{n}\ell_n''(\theta) \stackrel{p}{\to} \mathcal{I}_1(\theta)$

Question: What big theorem do we have for convergence in probability?

The denominator: WLLN

Want to show: $-\frac{1}{n}\ell_n''(\theta) \stackrel{p}{\to} \mathcal{I}_1(\theta)$

 \blacktriangleright WLLN: For iid $X_1, X_2, ...,$ under mild conditions

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\stackrel{p}{\rightarrow}\mathbb{E}[X_{i}]$$

$$-\frac{1}{n}\ell_n''(\theta) = \frac{1}{n}\sum_{i=1}^n -\frac{\partial^2}{\partial\theta^2}\log f(Y_i|\theta)$$

Applying WLLN to
$$-\frac{1}{n}\ell''_n(\theta)$$
: