Ensimag 2A - Hiver 2019

TDs optimisation numérique

JÉRÔME MALICK, DMITRY GRISHCHENKO, YASSINE LAGUEL

TD 2 - CONVEXITÉ (ENSEMBLES, FONCTIONS)

Exercice 1 - Convexité et enveloppe.

- a) Vérifier qu'un ensemble $C \subset \mathbb{R}^n$ est convexe si et seulement si $\forall \kappa \in \mathbb{N}, \ \forall x_i \in C, \ \forall \alpha_i \geqslant 0$ tels que $\sum_{i=1}^{\kappa} \alpha_i = 1$, on a $\sum_{i=1}^{\kappa} \alpha_i x_i \in C$.
- **b)** L'enveloppe convexe d'un ensemble $A \subset \mathbb{R}^n$ est définie comme le plus petit ensemble convexe de \mathbb{R}^n contenant A que l'on note conv A. Montrer que

$$\operatorname{conv} A = \left\{ x \in \mathbb{R}^n : \exists \kappa \in \mathbb{N}, a_i \in A, \alpha_i \geqslant 0, \text{ tels que } x = \sum_{i=1}^{\kappa} \alpha_i \, a_i \text{ et } \sum_{i=1}^{\kappa} \alpha_i = 1 \right\}.$$

Exercice 2 – Ensembles convexes de matrices. Soit \mathcal{S}_n^{++} l'ensemble des matrices définies positives

$$\mathcal{S}_n^{++} = \{ X \in \mathcal{S}_n : w^\top X w > 0, \text{ pour tout } w \in \mathbb{R}^n, w \neq 0 \},$$

et \mathcal{S}_n^+ l'ensemble des matrices semi-définies positives

$$\mathcal{S}_n^+ = \{ X \in \mathcal{S}_n : w^\top X w \geqslant 0, \text{ pour tout } w \in \mathbb{R}^n \}.$$

- a) Montrer que \mathcal{S}_n^{++} et \mathcal{S}_n^{+} sont convexes. Montrer que \mathcal{S}_n^{+} est un cône. Qu'en est-il de \mathcal{S}_n^{++} ?
- **b)** Montrer que S_n^+ est fermé. Quelle est l'adhérence de S_n^{++} ?

Exercice 3 - Fonctions convexes. Donner le domaine où les fonctions suivantes sont convexes

- a) $f(x,y) = x + 2y + y^2$ définie sur dom $f = \mathbb{R}^2$.
- **b)** $f(x,y) = x + 2y + y^2/x$ définie sur dom $f = \{(x,y) \in \mathbb{R}^2 : x \neq 0\}.$

Exercice 4 – Fonctions supports. Soit C un sous-ensemble de \mathbb{R}^n ; on définit la fonction-support de C de la manière suivante :

$$\sigma_C(x) := \sup_{y \in C} x^{\mathsf{T}} y \quad \text{pour } x \in \mathbb{R}^n.$$

- a) Montrer que $\sigma_C \colon \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ est convexe.
- **b)** Calculer la fonction-support pour des sous-ensembles de \mathbb{R}^n suivants :
 - -C la boule euclidienne de rayon 1;
 - $C = (\mathbb{R}^+)^n$ l'orthant positif;
 - C = [a, b] le segment joinant deux points a et b dans \mathbb{R}^n .

Exercice 5 – Meilleure approximation polynômiale. Considérons N points dans le plan : $(x_i, y_i) \in \mathbb{R}^2$ pour i = 1, ..., N. On cherche un polynôme de degré au plus n qui approche le nuage de points au mieux au sens des moindres carrés ; en d'autres termes, on cherche $p(x) = a_0 + a_1x + \cdots + a_nx^n$ pour minimiser la quantité $\sum_{i=1}^{N} |p(x_i) - y_i|^2$.

a) Montrer que ce problème s'écrit

$$\min_{z \in \mathbb{R}^d} \|Vz - b\|_2^2,$$

avec une variable z dont la dimension d est à préciser. Donner explicitement V et b.

- b) Écrire les conditions d'optimalité de ce problème. Préciser si elles sont nécessaires et/ou suffisantes.
- c) On suppose que les colonnes de V sont indépendantes. Montrer qu'il existe une unique solution au problème; la donner explicitement.
- **d)** Montrer que si $N \ge n+1$ et si les x_i sont tous différents, alors les colonnes de V sont indépendantes. Que se passe-t-il si N < n+1?

Exercice 6 – Valeur propre maximale. Dans cet exercice, on retrouve la formule du quotient de Rayleigh (et on étudie ses conséquences) sans utiliser de propriétés de décomposition des matrices symtriques. Pour une matrice symétrique $A \in \mathcal{S}_n$, on considère le problème d'optimisation suivant dans \mathbb{R}^n

(P)
$$\begin{cases} \max & \frac{x^{\top} A x}{\|x\|_2^2}. \\ x \neq 0 \end{cases}$$

On rappelle qu'une matrice symétrique A a toutes ses valeurs propres réelles; on peut donc considérer la plus grande de ses valeurs propres, que l'on note $\lambda_{\max}(A)$.

- a) Ecrire la condition d'optimalité. Est-elle nécessaire et/ou suffisante? Montrer que les vecteurs propres de A sont solutions de la condition.
- **b)** Montrer que (P) est équivalent à

$$\begin{cases} \max z^{\mathsf{T}} A z \\ \|z\|_2^2 = 1. \end{cases}$$

En déduire qu'il existe une solution à (P).

- c) Montrer qu'un vecteur propre unitaire associé à la plus grande valeur propre de A est une solution optimale de (P), et que la solution optimale est $\lambda_{\max}(A)$.
- d) En déduire que la fonction $\lambda_{\max} \colon \mathcal{S}_n \to \mathbb{R}$ est une fonction convexe. En déduire aussi directement que l'ensemble des matrices semidéfinies négatives est un ensemble convexe de \mathcal{S}_n .
- **e)** Question bonus : Raffiner l'argument précédent pour montrer que la fonction $\lambda_{\max} \colon \mathcal{S}_n \to \mathbb{R}$ est en fait la fonction support d'un ensemble particulier. [Rappel : comme vu en TP, le produit scalaire matriciel naturel est $\langle A, B \rangle = \sum_{ij} A_{ij} B_{ij} = \operatorname{trace}(A^{\top}B)$].

Exercice 7 – Minimisation quadratique sans contraintes. Considérons le problème :

$$(\mathbf{P}) \left\{ \begin{array}{ll} \inf & \frac{1}{2} x^{\top} Q x + b^{\top} x + c \\ x \in \mathbb{R}^n. \end{array} \right.$$

- a) Résoudre (P) dans le cas où $Q \in \mathcal{S}_n^{++}$.
- **b)** Dans le cas général $(Q \in \mathcal{S}_n)$, montrer que (P) est « bien posé » (le inf n'est pas $-\infty$) si et seulement si $Q \in \mathcal{S}_n^+$ et $b \in \operatorname{Im} Q$.
- c) Montrer qu'alors $x^* = -Q^{\dagger}b$ est solution de (P). $(Q^{\dagger}$ est la pseudo-inverse de Q).