```
# Preliminaries
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
```

Question 1

Data Set

The file student_score.csv contains student score data from two schools: MS and GP. Each student from these schools is given a unique alphanumeric student_id. The address column either reads U or R to denote whether the student lives in an urban or a rural area. A count of absent days for each student is recorded under the column absences. Entries under columns subject_1, subject_2 and subject_3 denote the marks scored in three different subjects.

```
# Read the CSV file into a Pandas DataFrame
# https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
student_scores = pd.read_csv("student_scores.csv", index_col=False)
# Display the contents of three randomly sampled rows
student_scores.sample(3)
```

	school	student_id	sex	age	address	absences	subject_1	subject_2	subject_3	\blacksquare
42	GP	STD43	М	15	U	0	14	15	15	ılı
643	MS	STD221	F	18	R	4	7	9	10	
71	GP	STD72	М	15	U	0	11	9	10	

```
# Display the type of data in each column
```

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.dtypes.html
student_scores.dtypes

```
object
school
             object
student_id
             object
sex
              int64
age
             object
address
absences
              int64
subject_1
              int64
subject 2
               int64
subject 3
               int64
dtype: object
```

```
# Display just the unique entries under column `school`
student_scores['school'].unique()
```

```
array(['GP', 'MS'], dtype=object)
```

(a)

Consider a random experiement of randomly selecting one student from school GP. Compute the probability that the student is female (F).

```
school_GP=student_scores[student_scores['school']=='GP']
total_students_GP=len(school_GP)
female_students_GP=len(school_GP[school_GP['sex']=='F'])
probability_female_GP=female_students_GP/total_students_GP

print("Probability of selecting a female student from school GP:", probability_female_GP)

Probability of selecting a female student from school GP: 0.5602836879432624
```

(b)

Consider a random experiement of randomly selecting one student from each school. Compute the probability that neither student scored more than 12 points in subject_1.

```
school_MS=student_scores[student_scores['school']=='MS']
#already read school_GP in before cell

students_MS_less_than_12=len(school_MS[school_MS['subject_1']<=12])
students_GP_less_than_12=len(school_GP[school_GP['subject_1']<=12])

probability_neither_less_than_12=(students_MS_less_than_12/len(school_MS))*(students_GP_less_than_12/len(school_GP))
print("Probability that neither student scored more than 12 points in subject_1:",probability_neither_less_than_12)

Probability that neither student scored more than 12 points in subject_1: 0.4560346450762568</pre>
```

< (c)</pre>

Let the random variable X denote the marks received by a randomly selected student in subject_3. Is X a discrete or a continuous random variable? Plot the pmf of X. (Hint: Use the histogram method from the matplotlib module.) What can you say about X by looking at its distribution? Does X appear to follow any known distribution?

```
import matplotlib.pyplot as plt
marks_subject_3=student_scores['subject_3']

# Plot the histogram
plt.hist(marks_subject_3,bins=range(0,max(marks_subject_3)+1),density=True,alpha=0.75)
plt.xlabel('Marks in Subject_3')
plt.ylabel('Probability')
plt.title('PMF of Marks in Subject_3')
plt.grid(True)
plt.show()
```


The graph follows Central Tendency

Central Tendency: The peak of the graph represents the mode of the distribution, indicating the most common score achieved by students in subject_3. The data is clustered in center.

(d)

Let the random variable Y denote the <code>subject_3</code> marks received by a randomly selected student of school MS . We can write Y as

$$X|S = \text{"MS"}$$

where the random variable S denotes the school of a randomly selected student.

Is Y a discrete or a continuous random variable? Plot the pmf of Y. What can you say about Y by looking at its distribution? How do the distributions of X and Y compare?

```
import matplotlib.pyplot as plt
marks_subject_3_MS = school_MS['subject_3']
# Plot the histogram
plt.hist(marks_subject_3_MS, bins=range(0, max(marks_subject_3_MS) + 1), density=True, alpha=0.75)
plt.xlabel('Marks in Subject_3 for School MS')
plt.ylabel('Probability')
plt.title('PMF of Marks in Subject_3 for School MS')
plt.grid(True)
plt.show()
```


Y are having Discrete Values. The performance of students from school MS in subject_3 follows a similar pattern to that of students from both schools combined.

(e)

Compute the mean, variance, median and mode of X and Y. Can you comment of the skewness of the distributions of X and Y from these values?

```
import numpy as np
# Calculate mean, variance, median, and mode for X
mean_X=np.mean(marks_subject_3)
variance X=np.var(marks subject 3)
median X=np.median(marks subject 3)
mode_X=np.argmax(np.bincount(marks_subject_3))
# Calculate mean, variance, median, and mode for Y
mean Y=np.mean(marks subject 3 MS)
variance_Y=np.var(marks_subject_3_MS)
median_Y=np.median(marks_subject_3_MS)
mode Y=np.argmax(np.bincount(marks subject 3 MS))
print("For X (all students in subject_3):")
print("Mean:", mean_X)
print("Variance:", variance_X)
print("Median:", median_X)
print("Mode:", mode X)
print("\nFor Y (students from school MS in subject_3):")
print("Mean:", mean_Y)
print("Variance:", variance Y)
print("Median:", median Y)
print("Mode:", mode Y)
     For X (all students in subject 3):
     Mean: 11.906009244992296
     Variance: 10.421057879729629
     Median: 12.0
     Mode: 11
     For Y (students from school MS in subject 3):
     Mean: 10.650442477876107
     Variance: 14.634446706868196
     Median: 11.0
     Mode: 10
```

- -In both distributions, the mean is less than the median, indicating that the distributions are left-skewed (negative skewness). For distribution X (all students), the mode is 11, which is less than both the mean and median, further supporting the left-skewed nature.
- -Similarly, for distribution Y (students from school MS), the mode is 10, which is less than both the mean and median, indicating the left-skewed tendency.
- -The variance for distribution X (10.42) is lower than that for distribution Y (14.63), suggesting that the scores are more tightly clustered around the mean for X compared to Y.

Question 2

Derive mean and variance of binomial distribution. Write it down in following markdown cells (it's a good and useful exercise to learn writing mathematical texts in jupyter notebook),

Hint: Binomial random variable is sum of multiple Bernoulli random variable. Use formulas related to expected value and variance of sum of random variables.

#Mean of Binomial Distribution

Mean of a Binomial Distribution:

The mean of a binomial distribution with parameter \mathbf{n} (number of trials) and \mathbf{p} (probability of success on each trial) can be derived as follows:

A binomial random variable \mathbf{X} is defined as the sum of \mathbf{n} independent Bernoulli random variables, each with a probability of success \mathbf{p} . The expected value (mean) of a single Bernoulli random variable is \mathbf{p} .

Therefore, the mean of **X** is the sum of the means of the individual Bernoulli random variables:

$$\mu = np$$

Variance of a Binomial Distribution:

The variance (σ^2) of a binomial distribution with parameters n and p can be derived as follows:

The variance of a single Bernoulli random variable is p(1-p).

Since the n Bernoulli trials are independent, the variance of the sum of n such variables is the sum of their individual variances:

$$\sigma^2 = np(1-p)$$

Question 3

(a) Can two events A and B (with respective non-zero probabilities i.e. $P(A) \neq 0$ and $P(B) \neq 0$) with no intersection be independent of each other? If yes, elaborate the condition under which it is possible. Also can you intuitively justify the correctness of your answer?

Understanding Independence of Events:

Two events A and B with non-zero probabilities can be independent of each other even if they have no intersection.

For two events A and B to be independent, the condition is that the probability of the intersection of the two events $P(A \cap B)$ should be equal to the product of their individual probabilities, $P(A) \times P(B)$.

Now, if P(A) and P(B) are both non-zero and A and B have no intersection ($A \cap B = \emptyset$), then $P(A \cap B)$ is equal to 0. However, if $P(A) \times P(B) = 0$, then the condition for independence holds, as 0 = 0.

Intuitively, if A and B are two events with non-zero probabilities but no intersection, it means that the occurrence of one event does not influence the occurrence of the other event. In this case, even though $P(A \cap B) = 0$, the events can still be independent as the probability of

one event happening does not affect the probability of the other event happening.

(b) Assume P(A) = 0 and $P(B) \neq 0$. Can you comment on the depndence/independence of event A and B ? Explain the scenarios when these events will be dependent and independent respectively.

Analysis of Event Independence

Assume P(A)=0 and P(B)
eq 0. In this scenario:

- **Dependence**: Event (B) can occur independently of whether event (A) occurs or not since event (A) never occurs. Therefore, event (A) has no influence on event (B), and they are independent.
- Independence: Regardless of the probability of event (B), event (A) has zero probability of occurring. Thus, event (A) cannot influence event (B), and they are independent.

----- END -----