La nota de la competencia transversal "Comprensión e integración" se evaluará en base a las cuestiones 1, 3 y 5

1. (1 pto) Comparativa redes cableadas e inalámbricas. Justifique las respuestas.

	Fáb a m a á	W:F: 000 44b
a) Si dos estaciones colisionan por 2ª vez, el tiempo de espera antes de volver a transmitir será ¿mayor? ¿siempre mayor? ¿menor?etc. que tras la primera colisión Cuantifique la respuesta	Ethernet	WiFi - 802.11b
b) Detección de colisiones. Cómo lo hace cada tecnología.		
	Switch	Punto de acceso
c) ¿Separan dominios de difusión y de colisión?		

3. (1 pto) Un router con la siguiente tabla de reenvío (tabla de forwarding) recibe datagramas con las siguientes direcciones de destino. Indique por dónde se reencamina (next-hop) el datagrama.

Datagramas		Tabla reenvío		
	Dir IP de destino	Debe ir		
			Destino	Ir por
		por		(next-hop)
a)	12.132.12.12		0.0.0.0 /0	Α
			0.0.0.0 /2	В
b)	12.249.132.132		12.240.0.0 / 12	С
	40.054.04.04		12.192.0.0 / 14	D
c)	12.254.64.64		12.224.0.0 /14	Е
٦١/	d) 12.253.224.240		12.240.0.0 /14	F
a)			12.252.0.0 / 14	G
e)	63.63.63.12		12.130.0.0 /15	Н
			12.252.0.0 / 15	J

Decimal	Binario
12	0000.1100
63	0011.1111
64	0100.0000
130	1000.0010
132	1000.0100
224	1110.0000
240	1111.0000
249	1111.1001
252	1111.1100
253	1111.1101
254	1111.1110

4. (1,5 ptos) Dada la red de la figura:

a) Dibuje los dominios colisión y de difusión

En el PA1 están asociadas las estaciones móviles C y D (no se ven entre ellas) y al PA2 están asociadas las estaciones móviles J y K (tampoco se ven entre ellas). Los routers están correctamente configurados y los switches conocen la ubicación de todas las máquinas. Las caches de ARP de todos los dispositivos están vacías, excepto la de los routers R1 y R2 que tienen la información necesaria.

b) Relacione las tramas que se generan en los casos siguientes hasta que se alcanza el destino indicado (para hacer referencia a la dirección física de un dispositivo, utiliza el nombre del dispositivo: R1-1, R1-2, R2-1, R2-2, A, B, PA1, ...)

i. **K** envía un datagrama IP a F

Tipo trama (Ethernet o 802.11)	MAC destino o Dir. 1	MAC. origen o Dir. 2	Dir. 3	Tipo de Paquete

ii. G envía un datagrama IP a C

Tipo trama (Ethernet o 802.11)	MAC destino o Dir . 1	MAC. origen o Dir . 2	Dir . 3	Tipo de Paquete

- 5. (1 pto) Los routers de un sistema autónomo utilizan OSPF. El router-A recibe los "link states" (LS o "estados de los enlaces") que se muestran en la tabla. Calcule la tabla de reenvío (tabla de forwarding) del **nodo-A**. Para ello...
- a) Resuelva costes mínimos por Dijkstra.
- b) Muestre claramente cómo quedaría la tabla de reenvío del nodo-A indicando:

|--|

Α	(B, 5)	(C, 1)	(D, 5)	(E, 8)
В	(A, 3)	(C, 8)	(D, 2)	(E, 1)
С	(A, 3)	(B, 3)	(D, 2)	(E, 5)
D	(A, 3)	(B, 8)	(C, 4)	(E, 4)
Е	(A, 5)	(B, 11)	(C, 4)	(D, 3)

^{6. (0,75} ptos) Dado un canal de transmisión con un ancho de banda de 34.000 Hz,

a) Calcule cuántos armónicos se enviarán al transmitir de forma periódica el carácter de 6 bits 010000 a una velocidad de 9600 bps utilizando codificación NRZ. Muestre los cálculos realizados y justifique su respuesta.

b) Indique cuál debería ser la velocidad de transmisión para que solo pasen 8 armónicos.