

LEARNING OBJECTIVES & AGENDA

Learning Objectives:

- Map entities and relationships to real-world contexts.
- Understand cardinality & participation.
- Design and interpret entity relationship diagrams.

Agenda / Sub-Topics:

- Entities & Relationships.
- Cardinality Constraints.
- •ER Diagrams.

ENTITIES & RELATIONSHI PS

MAPPING ENTITIES & RELATIONS

- •Entities are objects whose data will be stored.
 - Tuples (rows / records) in a database's table.
 - •E.g. person, place, thing.
- •Attributes are characteristic values belonging to an entity that need to be stored.
 - Attributes / fields of a database's table.
 - •E.g. a person's name, gender, age, CNIC, etc.
- •Relationships show how entities are related to one another.
 - •E.g. a worker 'works for' employer.

ENTITIES VS ATTRIBUTES

	Attribute	Attribute	Attribute	Attribute	Attribute
Entity					
Entity			TAI		
Entity		DA	IAI	DA.	
Entity					

KEYS TO ACCESS TUPLES (RECORDS)

- •Attributes (one or more) that **uniquely** identify a tuple, should **never change**, and can **never be completely NULL**.
- •Types:
 - •Super Key: Unique & not NULL.
 - Composite Key: Multi-Attribute Key.
 - Minimal Super-key: Irreducible key.
 - Candidate Keys: Key in the set of minimal super-keys.
 - Primary Key: Default attribute(s) to be used as key.
 - Alternate Key: All candidate keys other than primary key.
 - Foreign Key: Attributes that take values from another table only.

EXAMPLE – E-COMMERCE DATABASE

Customer

Key Customer_ID

FirstName

LastName

Street

City

Zip

Key Phone

Order

PK Order_number
Customer_ID
Customer_name
To_street
To_city
To-state
To-zip
Ship_date

Product

Key Product_ID

Quantity

Product_type

Attributes

YOUR TURN

- •Identify any entities, attributes and relations in each case:
 - Author / book
 - •Business / employees / departments.
 - Doctor / patient / treatment.
 - •Bank / card owner / bank card.

CARDINALITY CONSTRAINTS

SETTING MIN / MAX LIMITS TO ENTITY RELATIONS

- •Max cardinality tells the maximum number of connected entities a single entity may have.
 - •E.g. A customer entity may have **one to many** orders.
 - •E.g. An order must be placed by **one and only one** customer.

10

SETTING MIN / MAX LIMITS TO ENTITY RELATIONS

- •Cardinality participation tells the minimum number of connected entities a single entity may have.
 - •E.g. A customer entity may have **one to many** orders.
 - •E.g. An order must be placed by **one and only** one customer.

CROW'S FOOT NOTATION

EXAMPLE – E-COMMERCE DATABASE

ER DIAGRAMS

FLOW-CHARTS TO VISUALIZE THE DATABASE SCHEMA

- •A graphical flow-chart to visualize all entities, their attributes and how they are related to each other in the data model.
- •Allows designers to **design**, **debug** and **share** schema plans.

DESIGN BEFORE IMPLEMENTING!

WHY NOT BUILD DIRECTLY?

ER DIAGRAM SYMBOLS & NOTATIONS

EXAMPLE – E-COMMERCE DATABASE

•Complete the diagram below:

YOUR TURN

- •Create ER diagrams for each of the following cases:
 - Author / book
 - •Business / employees / departments.
 - Doctor / patient / treatment.
 - •Bank / card owner / bank card.

