High-Performance Computing

Homework: Introduction

Anand Kamble
Department of Scientific Computing
Florida State University

1 Smartphone Analysis

For this analysis, we've chosen the Apple iPhone 14 as our focal point.

1.1 Processor Specifications

Powering the *Apple iPhone 14* is the Apple A15 Bionic processor, detailed by GSMArena [1]. With 6 cores and 6 threads, it operates at a clock speed ranging from 2.02 to 3.23 GHz. This processor is built on a 5nm architecture, with an ARM design, and includes 15800 million transistors [2].

1.2 Memory

The A15 Bionic is equipped with 6 GB of LPDDR4X main memory, complemented by 32MB of L3 and 16MB of L2 cache, as outlined by AnandTech [3].

1.3 GPU

The Graphics Processing Unit (GPU) accompanying the Apple A15 Bionic has 5 GPU cores, each running at 1.34 GHz. Significantly, it supports hardware-level decoding and encoding across various video formats, including HEVC, H.264, MPEG-4 Part 2, and ProRes [4].

1.4 CPU Performance

The CPU within the Apple iPhone 14 has a speed of 15.8 TFlops for FP16 operations, as reported in the Machine Learning Research blog. [5].

2 Performance

2.1 Comparison between computers A and B

Computer A performs 2 instructions per cycle and takes 1 ns $(10^{-9}s)$ for each cycle.

$$\frac{2\;instructions}{1\;cycle}\times\frac{1\;cycle}{10^{-9}\;seconds}=2\times10^9\;instructions/sec$$

Computer B performs 1.25 instructions per cycle and takes 600 ps $(10^{-12}s)$ for each cycle.

$$\frac{1.25\ instructions}{1\ cycle} \times \frac{1\ cycle}{600 \times 10^{-12}\ seconds} = 2.08 \times 10^9\ instructions/sec$$

Thus computer B is the fastest for this program since it performs more instructions per second.

2.2 If Computer B required 10% more instructions

Let's denote n as the number of instructions required by Computer A, and $1.1 \times n$ as the number of instructions required by Computer B. The program will take $\frac{n}{2 \times 10^9}$ seconds on Computer A and $\frac{1.1 \times n}{2.08 \times 10^9} = \frac{n}{1.89 \times 10^9}$ seconds on Computer B. Consequently, Computer A completes the program faster. [6]

3 Efficiency

3.1 GFlops/s achieved

The application attained:

$$\frac{15\;TFlops/s}{3600\;sec} = 4.17GFlops/s$$

3.2 Achieved Efficiency

The achieved efficiency is:

$$\frac{4.17~GFlops/s}{8~GFlops/s} = 52\%$$

4 Parallel Efficiency

Processors	GFlops/s		
1	4.0		
2	7.6		
4	14.9		
8	23.1		
16	35.0		

Table 1: Performance in GFlops/s for Different Numbers of Processors

4.1 Scalability

Processors	Best seq. (1)	2	4	8	16
Speedup	1	1.9	3.725	5.775	8.9
Par. Eff.	1	0.95	0.93	0.72	0.56

Table 2: Speedup and Parallel Efficiency for Different Numbers of Processors

4.2 Parallel efficiency

References

- [1] www.gsmarena.com. Apple iPhone 14, https://www.gsmarena.com/apple_iphone_14-11861.php. 2023.
- [2] www.notebookcheck.net. Apple A15 Bionic, https://www.notebookcheck.net/Apple-A15-Bionic-Processor-Benchmarks-and-Specs. 562169.0.html. 2023.
- [3] Andrei Frumusanu. The Apple A15 SoC Performance Review: Faster & More Efficient, https://www.anandtech.com/show/16983/the-apple-a15-soc-performance-review-faster-more-efficient. 2023.
- [4] Wikipedia. Apple A15, https://en.wikipedia.org/wiki/Apple_A15.2023.
- [5] Aseem Wadhwa Atila Orhon. Deploying Transformers on the Apple Neural Engine, https://machinelearning.apple.com/research/neural-engine-transformers. 2023.
- [6] Umeå University. Parallel Programming WS15, https://hpac.cs.umu.se/teaching/pp-15/material/HW2-solutions.pdf. 2023.