Problemario 1 Combinatoria

Por favor, responde estos ejercicios que serán de gran utilidad para la mejora de nuestro curso, e implementar otras estrategias. *Obligatorio

4. ¿Cómo se denomina el triángulo situado a la derecha? *

5 puntos

$$(a+b)^{0} = 1$$

$$(a+b)^{1} = a+b$$

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a+b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$$

$$(a+b)^{5} = a^{5} + 5a^{4}b + 10a^{3}b^{2} + 10a^{2}b^{3} + 5ab^{4} + b^{5}$$

$$(a+b)^{6} = a^{6} + 6a^{5}b + 15a^{4}b^{2} + 20a^{3}b^{3} + 15a^{3}b^{4} + 6ab^{5} + b^{6}$$

$$1 = 6 + 6a^{5}b + 15a^{4}b^{2} + 20a^{3}b^{3} + 15a^{3}b^{4} + 6ab^{5} + b^{6}$$

$$1 = 6 + 6a^{5}b + 15a^{4}b^{2} + 20a^{3}b^{3} + 15a^{3}b^{4} + 6ab^{5} + b^{6}$$

$$1 = 6 + 6a^{5}b + 15a^{4}b^{2} + 20a^{3}b^{3} + 15a^{3}b^{4} + 6ab^{5} + b^{6}$$

$$1 = 6 + 6a^{5}b + 15a^{4}b^{2} + 20a^{3}b^{3} + 15a^{3}b^{4} + 6ab^{5} + b^{6}$$

$$1 = 6 + 6a^{5}b + 15a^{4}b^{2} + 20a^{3}b^{3} + 15a^{3}b^{4} + 6ab^{5} + b^{6}$$

Marca solo un óvalo.

- X Triángulo de Pascal
- Triángulo de Pitágoras
- Triángulo Binomial
- Triángulo de Coeficientes
- 5. ¿Cuál de las siguientes es la identidad de Pascal? *

5 puntos

$$a)\binom{n+1}{k+1} = \frac{n-1}{k+1}\binom{n}{k}, \quad b)\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}, \quad c)\binom{n}{k} = \binom{n}{n-k}, \quad d)\binom{n}{k+1} = \frac{n-k}{k+1}\binom{n}{k}$$

Marca solo un óvalo.

- inciso a)
- X inciso b)
- inciso c
- o inciso d

Marca solo un óvalo.

9×9×8×7×6×5	10×9×8×7×6×5
X Opción 1	Opción 2

La respuesta obedece al hecho de que la primer posición no la puede ocupar el número cero, de modo que solo se tienen 9 posibles dígitos para colocar ahí, después en la segunda posición la posibilidades también se reducen a 9 pues no se puede repetir el dígito ya utilizado en la primer posición, etc. dando un total, (por el principio de la multiplicación) de 9x9x8x7x6x5

	<u> </u>
Otra	ONO se puede calcular

7. * 20 puntos

 ξ Cual es el coeficiente del termino x^6y^6 en la expansion de $(2x-y)^{12}$? Marca solo un óvalo.

X Otra No se puede calcular.

El coeficiente del término x^6y^6 es precisamente $C(12,6)=[12! | [6!(12-6)!]^{-1}=924$

	Marca solo un óvalo.			
	Cada una de las tres cifr tanto, por el principio de la multip			
	No se puede calcular.			
9.	Con 8 jugadores, ¿cuántos equipos de baloncesto s	e pueden formar, si cada	a jugador puede jugar en cualquier equipo? *	20 puntos
	X 56 de un conjunto total de	8 elementos, el orden	alcular todos los subconjuntos de 5 elemento no es importante y se trata precisamente de sto es $C(8,5)=[8!][5!(8-3)!]^{-1}=56$.	
10.	¿De cuántas formas se pueden colocar 6 personas	s alrededor de una mesa	circular? *	10 puntos
	Marca solo un óvalo. X 120 La respuesta obedece al cálculo 720 Otra No se puede calcular.	o de (6-1)! = 5! = (5)(4)(3)(2)(1)=120.	
11.	¿Cuántas palabras distintas se pueden formar utili. Marca solo un óvalo.	zando las letras de MISSI	SSIPPI? *	10 puntos
	34 650	11!		
	X Opción 1 Opc	ción 2		
	De hecho, se tienen 1M, 4I, 4S y 2I al hace	P de modo que al total r esto, descartamos la 4I_1I_2I_3I_4P_1P_2 Lo cual	SISSIPPI tienes 11 letras de las cuales alguna de 11! permutaciones, dividimos entre 4! do s repeticiones de las palabras tales como M y S_2S_1S_3S_4I_II_2I_3I_4P_1P_2M, of la nos da un total de (4!)(2!)]^{-1}=34 650.	os veces y entre 2!, pue
	No se puede calcular.	a		

10 puntos

8. Con los dígitos 8 y 9, forma todos los números de tres cifras que puedas. ¿cuántos son en total? *

Marca solo un óvalo.	En este ejercicio, simplemente aplicamos el principio de la suma, el cual nos dice que si un
X 7	procedimiento se puede efectuar de una primer manera o de una segunda manera, y estas a se vez, respectivamente se pueden llevar a cabo de m y n maneras, entonces el procedimiento se
12 No se puede calcular.	puede efectuar de m+n maneras. En este caso obtenemos 3+4=7 formas de cruzar el río.
Otra	

10 puntos

12. ¿De cuántas formas se puede cruzar un río, sabiendo que se dispone de 3 botes y 4 barcos?*

Este contenido no ha sido creado ni aprobado por Google.

Google Formularios