Vision Basic

■ 이미지와 텐서의 관계

• 흑백 이미지 흑백 이미지는 2차원 tensor로 이 루어져 있음 컬러 이미지
컬러 이미지는 R,G,B 3개의 행렬이 합쳐져 있는 형태로 3차원 tensor 로 구성됨

CHW 또는 HWC 형식

2 Convolutional Neural Network(CNN)

● 순서 : (convolution layer → Pooling layer) * 반복 → FC layer

• 합성곱의 목적 : 사람이 보기에 동일한 이미지(살짝 변형되거나 찌그러진)에 대해 Fully connected layer로 이루어진 DNN으로 적합하면 기계는 동일한 이미지로 처리할 수 없다. → 이러한 공간적인 구조 정보의 유실을 막기 위해 합성곱 신경망을 사용한다.

i . Convolution layer

• 합성곱 연산을 통해 이미지의 특징을 추출한다.

2D Convolution

$$[fst g](i,j)=\sum_{p,q}f(p,q)g(i+p,j+q)$$

• 입력으로부터 커널을 사용해 합성곱 연산을 통해 나온 결과를 **특성 맵**(feature map)이라고 한다.

$$OW = \frac{W + 2P - FW}{S} + 1$$

			W											OV	1		
0	0	0	0	0	2	0						/				\	
0	2	4	9	1	4	0	x	FW			21	59	37	-19	2		
0	2	1	4	4	6	OP		1	2	3	=	30	51	66	20	43	
0	1	15	2	9	2	0		-4	7	4		-14	31	49	101	-19	
0	7	3	5	1	3	0		2	-5	1		59	15	53	-2	21	
0	2	3	4	8	5	0				49	57	64	76	10			
0	0	0	0	0	0	0		Kernel					Feature				

• OW(Output Width) : 출

• W(Width) : 입력 가로길

• P(Padding): 입력 주위이

• FW(Filter Width) : 필터

• S(Stride): filter의 보폭

☑ 3D Convolution

Image

✓ 4D Convolution

☑ 가중치와 편향

합성곱 신경망에서 가중 치는 **커널 행렬의 원소** 들이다.

합성곱 신경망에 편향을 사용한다면 커널을 적용한 뒤에 더해진다.

편향은 하나의 값에만 존재하며, 커널이 적용된 결과의 모든 원소에 더해진다.

♂ 가중치와 편향 계산이 끝난 convolution layer와 pooling layer 사이에 activation layer(relu, sigmoid, ...)비선형 함수를 사용해 모델의 layer를 깊게 가져간다.

ii. Pooling layer

• 특성 맵을 down sampling 하여 특성 맵의 크기를 줄인다.

maxpooling

stride(filter의 보폭)가 2일 때 각 필터 안에서의 최댓값을 출력 원소로 갖는다. 2x2 크기 커널로 maxpooling 연산을 했을 때 특성맵이 절반의 크기로 다운샘플링 되었다.

iii. FC layer

▼ Fully Connected layer(Dense layer)

1차원 배열의 형태로 행렬을 평탄화한 다음, 이미지를 분류한다.

♪ 참고사이트 https://wikidocs.net/62306

3 AlexNet model

3rd Maxpooling

→ iii) OW = (13 + 2*0 - 3) / 2 + 1 = 6 -> Output image : (6 x 6 x 256)

1st FC layer

2nd FC layer

3rd FC layer

