Assignment Date	14 November 2022
Student Name	Monisha R
Student Roll Number	412419104066

Downloaded the given dataset

In []:

import pandas as pd
import seaborn as sns
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline

Uploaded the given dataset

In []:

url = 'https://drive.google.com/file/d/160K6XcuYDyRBPGj-JsqThkyFoJhCvOWy/view?usp=sharing' path = 'https://drive.google.com/uc?export=download&id='+url.split('/')[-2] df= pd.read_csv(path)

In []:

df

Out[]:

	RowNu mber	Custo merId	Surna me	Credit Score	Geogr aphy	Gen der	A g e	Ten ure	Balan ce	NumOfPr oducts	HasCr Card	IsActiveM ember	Estimate dSalary	Exit ed
0	1	15634 602	Hargr ave	619	France	Fem ale	4	2	0.00	1	1	1	101348.8 8	1
1	2	15647 311	Hill	608	Spain	Fem ale	4	1	83807 .86	1	0	1	112542.5 8	0
2	3	15619 304	Onio	502	France	Fem ale	4 2	8	15966 0.80	3	1	0	113931.5 7	1
3	4	15701 354	Boni	699	France	Fem ale	3 9	1	0.00	2	0	0	93826.63	0
4	5	15737 888	Mitch ell	850	Spain	Fem ale	4	2	12551 0.82	1	1	1	79084.10	0

	RowNu mber	Custo merId	Surna me	Credit Score	Geogr aphy	Gen der	A g e	Ten ure	Balan ce	NumOfPr oducts	HasCr Card	IsActiveM ember	Estimate dSalary	Exit ed
99 95	9996	15606 229	Obijia ku	771	France	Mal e	3 9	5	0.00	2	1	0	96270.64	0
99 96	9997	15569 892	Johns tone	516	France	Mal e	3 5	10	57369 .61	1	1	1	101699.7 7	0
99 97	9998	15584 532	Liu	709	France	Fem ale	3 6	7	0.00	1	0	1	42085.58	1
99 98	9999	15682 355	Sabba tini	772	Germa ny	Mal e	4	3	75075 .31	2	1	0	92888.52	1
99 99	10000	15628 319	Walk er	792	France	Fem ale	2	4	13014 2.79	1	1	0	38190.78	0

10000 rows × 14 columns

perform below visualizations.

1.Univariate Analysis

sns.displot(df.Age)
Out[]:

2.Bi-Variate Analysis

In []:

df.plot.line()

3. MultiVariate Analysis

In []:

Out[]:

In []:

pip install seaborn

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/Requirement already satisfied: seaborn in /usr/local/lib/python3.7/dist-packages (0.11.2)
Requirement already satisfied: matplotlib>=2.2 in /usr/local/lib/python3.7/dist-packages (from seaborn) (3.2.2)

Requirement already satisfied: scipy>=1.0 in /usr/local/lib/python3.7/dist-packages (from seaborn) (1.7.3)

Requirement already satisfied: pandas>=0.23 in /usr/local/lib/python3.7/dist-packages (from seaborn) (1.3.5)

Requirement already satisfied: numpy>=1.15 in /usr/local/lib/python3.7/dist-packages (from seaborn) (1.21.6)

Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=2.2->seaborn) (1.4.4)

Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=2.2->seaborn) (0.11.0) Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=2.2->seaborn) (3.0.9)

Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib>=2.2->seaborn) (2.8.2)

Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (4.1.1)

Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from pandas>=0.23->seaborn) (2022.2.1) Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.1->matplotlib>=2.2->seaborn) (1.15.0)

In []:

import seaborn as sns

In []:

plt.figure(figsize=(4,4))

sns.pairplot (data=df[["Balance","CreditScore","EstimatedSalary","NumOfProducts","Tenure","Exited"]], hue="CreditScore")

Out[]:

Perform descriptive statistics on the dataset

In []:

df.describe()

Out[]:

	RowNu mber	Custome rld	CreditSc ore	Age	Tenure	Balance	NumOfPr oducts	HasCrC ard	IsActiveM ember	Estimated Salary	Exited
cou nt	10000.0 0000	1.00000 0e+04	10000.0 00000	10000.0 00000	10000.0 00000	10000.00	10000.00 0000	10000.0 0000	10000.000 000	10000.00 0000	10000.0 00000
me an	5000.50 000	1.56909 4e+07	650.528 800	38.9218 00	5.01280 0	76485.88 9288	1.530200	0.70550	0.515100	100090.2 39881	0.20370 0
std	2886.89 568	7.19361 9e+04	96.6532 99	10.4878 06	2.89217 4	62397.40 5202	0.581654	0.45584	0.499797	57510.49 2818	0.40276 9
mi n	1.00000	1.55657 0e+07	350.000 000	18.0000 00	0.00000	0.000000	1.000000	0.00000	0.000000	11.58000 0	0.00000
25 %	2500.75 000	1.56285 3e+07	584.000 000	32.0000 00	3.00000	0.000000	1.000000	0.00000	0.000000	51002.11 0000	0.00000
50 %	5000.50 000	1.56907 4e+07	652.000 000	37.0000 00	5.00000 0	97198.54 0000	1.000000	1.00000	1.000000	100193.9 15000	0.00000
75	7500.25	1.57532	718.000	44.0000	7.00000	127644.2	2.000000	1.00000	1.000000	149388.2	0.00000

	RowNu mber	Custome rld	CreditSc ore	Age	Tenure	Balance	NumOfPr oducts	HasCrC ard	IsActiveM ember	Estimated Salary	Exited
%	000	3e+07	000	00	0	40000				47500	0
ma x	10000.0 0000	1.58156 9e+07	850.000 000	92.0000 00	10.0000 00	250898.0 90000	4.000000	1.00000	1.000000	199992.4 80000	1.00000 0

Handle the missing values

In []:

url = 'https://drive.google.com/file/d/160K6XcuYDyRBPGj-JsqThkyFoJhCvOWy/view?usp=sharing'
path = 'https://drive.google.com/uc?export=download&id='+url.split('/')[-2]
df= pd.read_csv(path)
pd.isnull(df["Age"])

Out[]:

- 0 False 1 False
- 2 False3 False
- 4 False

9995 False 9996 False

9997 False9998 False

9999 False

Name: Age, Length: 10000, dtype: bool

Find the outliers and replace the outliers

In []:

df["Age"]=np.where(df["Age"]>10,np.median,df["Age"]) df["Age"]

Out[]:

0 1 2

4 . 9995

3

Name: Age, Length: 10000, dtype: object

Check for categorical columns and perform encoding.

In []:
from sklearn.preprocessing import LabelEncoder df['Gender'].unique()	
Out[]:
array(['Female', 'Male'], dtype=object) In []:
df['Gender'].value_counts()	٠1.
Out[]:
2736 1	
4076 1	
8015 1	
4068 1	
1311 1	
···	
1313 1	
5472 1	
3785 1	
4225 1	
2497 1	
Name: Gender, Length: 10000, dtype: int64	1.
In []:
encoding=LabelEncoder()	
df["Gender"]=encoding.fit_transform(df.iloc[:,1].values) df	

Out[]:

	RowNu mber	Custo merid	Surna me	Credit Score	Geogr aphy	Gen der	A g e	Ten ure	Balan ce	NumOfPr oducts	HasCr Card	IsActiveM ember	Estimate dSalary	Exit ed
0	1	15634 602	Hargr ave	619	France	273 6		2	0.00	1	1	1	101348.8 8	1
1	2	15647 311	Hill	608	Spain	325 8		1	83807 .86	1	0	1	112542.5 8	0
2	3	15619 304	Onio	502	France	210 4		8	15966 0.80	3	1	0	113931.5 7	1
3	4	15701 354	Boni	699	France	543 5		1	0.00	2	0	0	93826.63	0
4	5	15737 888	Mitch ell	850	Spain	689 9		2	12551 0.82	1	1	1	79084.10	0

	RowNu mber	Custo merId	Surna me	Credit Score	Geogr aphy	Gen der	A g e	Ten ure	Balan ce	NumOfPr oducts	HasCr Card	IsActiveM ember	Estimate dSalary	Exit ed
99 95	9996	15606 229	Obijia ku	771	France	159 9		5	0.00	2	1	0	96270.64	0
99 96	9997	15569 892	Johns tone	516	France	161		10	57369 .61	1	1	1	101699.7 7	0
99 97	9998	15584 532	Liu	709	France	717		7	0.00	1	0	1	42085.58	1
99 98	9999	15682 355	Sabba tini	772	Germa ny	465 6		3	75075 .31	2	1	0	92888.52	1
99 99	10000	15628 319	Walk er	792	France	249 7		4	13014 2.79	1	1	0	38190.78	0

10000 rows × 14 columns

Split the data into dependent and independent variables

```
In []:

x=df.iloc[:,:-2].values

print(x)

[[1 15634602 'Hargrave' ... 1 1 1]

[2 15647311 'Hill' ... 1 0 1]

[3 15619304 'Onio' ... 3 1 0]

...

[9998 15584532 'Liu' ... 1 0 1]

[9999 15682355 'Sabbatini' ... 2 1 0]

[10000 15628319 'Walker' ... 1 1 0]]

In []:

y=df.iloc[:,-1].values

print(y)

[1 0 1 ... 1 1 0]
```

Scale the independent variables

In []:

```
2
    0.0002 15619304
                       Onio
                                502 France 2104
    0.0003 15701354
3
                                699 France 5435
                       Boni
4
    0.0004 15737888 Mitchell
                                850 Spain 6899
9995 0.9996 15606229 Obijiaku
                                  771 France 1599
     0.9997 15569892 Johnstone
                                   516 France 161
9997
      0.9998 15584532
                        Liu
                                709 France 717
      0.9999 15682355 Sabbatini
                                   772 Germany 4656
9998
9999
      1.0000 15628319 Walker
                                  792 France 2497
                 Age Tenure Balance NumOfProducts \
0
          0.00
      1 83807.86
                       1
1
2
      8 159660.80
                       3
3
      1
          0.00
                    2
4
      2 125510.82
9995
        5
           0.00
                      2
       10 57369.61
9996
                         1
9997
        7
            0.00
9998
        3 75075.31
                        2
9999
        4 130142.79
                         1
  HasCrCard IsActiveMember EstimatedSalary Exited
0
      1
               1
                   101348.88
1
       0
               1
                   112542.58
                               0
2
      1
              0
                   113931.57
                               1
              0
3
      n
                   93826.63
                               0
4
                    79084.10
                    ... ...
9995
        1
                0
                     96270.64
                     101699.77
9996
        1
                1
        0
                     42085.58
9997
                1
                                1
9998
        1
                0
                     92888.52
                     38190.78
9999
```

[10000 rows x 14 columns]

Spilt the data into training and testing

```
from sklearn.model_selection import train_test_split
train_size=0.8
X=df.drop(columns=['Age']).copy()
Y=df['Age']
X_train,X_rem,Y_train,Y_rem=train_test_split(X,Y,train_size=0.8)
test_size=0.5
X\_valid, X\_test, Y\_valid, Y\_test=train\_test\_split(X\_rem, Y\_rem, test\_size=0.5)
print(X_train.shape),print(Y_train.shape)
print(X_valid.shape),print(Y_valid.shape)
print(X_test.shape),print(Y_test.shape)
(8000, 13)
(8000,)
(1000, 13)
(1000,)
(1000, 13)
(1000,)
```

Out[]:

In []:

(None, None)