M.Sc. Steffen Meyer M.Sc. Matthias Thiel

18. April 2018

Stochastik I

2. Übung

Aufgabe 1 (5 Punkte) Sei $\Omega \neq \emptyset$. Ein nicht-leeres Mengensystem M auf Ω heißt Präring, wenn

 $A, B \in M \Rightarrow A \setminus B$ ist endliche Vereinigung disjunkter Mengen aus M.

Zeigen Sie:

(i) Das Mengensystem

$$J := \{(a, b] : a, b \in \mathbb{R}^D\}$$

ist ein Präring.

(ii) Sei M ein nicht-leeres Mengensystem auf einer Menge Ω . Zudem sei

 $\mathcal{R}(M) := \{ A \in \Omega : A \text{ ist endliche Vereinigung disjunkter Mengen aus } M \}.$

Zeigen Sie, dass R(M) genau dann ein Ring ist, wenn M ein Präring ist.

Aufgabe 2 (6 Punkte) Es sei μ_0 ein Inhalt auf einem Ring \mathcal{R} . Wir betrachten die folgenden Aussagen:

- (a) μ_0 ist ein Prämaß.
- (b) Stetigkeit von unten: Für jede Folge $(A_n)_{n\in\mathbb{N}}\subset\mathcal{R}$ mit $A_n\subset A_{n+1}$ für alle $n\in\mathbb{N}$ und $A:=\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{R}$ gilt:

$$\lim_{n \to \infty} \mu_0(A_n) = \mu_0(A).$$

(c) Stetigkeit von oben: Für jede Folge $(A_n)_{n\in\mathbb{N}}\subset\mathcal{R}$ mit $A_n\supset A_{n+1}$ für alle $n\in\mathbb{N}$, $\mu_0(A_1)<\infty$ und $A:=\bigcap_{n\in\mathbb{N}}A_n\in\mathcal{R}$ gilt

$$\lim_{n \to \infty} \mu_0(A_n) = \mu_0(A).$$

(d) Stetigkeit von oben in \emptyset : Für jede Folge $(A_n)_{n\in\mathbb{N}}\subset\mathcal{R}$ mit $A_n\supset A_{n+1}$ für alle $n\in\mathbb{N}, \mu_0(A_1)<\infty$ und $\bigcap_{n\in\mathbb{N}}A_n=\emptyset$ gilt:

$$\lim_{n\to\infty}\mu_0(A_n)=0.$$

Zeigen Sie, dass gilt

$$(a) \Leftrightarrow (b) \Rightarrow (c) \Leftrightarrow (d).$$

Zeigen Sie weiter, dass unter der zusätzlichen Bedingung $\mu_0(A) < \infty$ für alle $A \in \mathcal{R}$ auch $(c) \Rightarrow (b)$ gilt.

Aufgabe 3 (5 Punkte) Zeigen Sie, dass ein eindeutig bestimmtes Wahrscheinlichkeitsmaß P auf $(\mathbb{R}, \mathcal{B})$ existiert mit

(a)
$$P(\{0\}) = \frac{1}{4} = P(\{2\}), P(\{1\}) = \frac{1}{2}$$

bzw. mit

(b)
$$P((a,b]) = b - a$$
 für alle $0 \le a \le b \le 1$

und geben Sie jeweils die zugehörige Verteilungsfunktion an.