Mechanizing Mathematics

The Prototype Verification System vs Sequent Calculus

Universidad Nacional de Colombia - Sede Manizales Facultad de Ciencias Exactas y Naturales

Thaynara Arielly de Lima (IME) UFG

Mauricio Ayala-Rincón (CIC-MAT) UnB

Funded by the Brazilian agencies CNPq, grants Universal 409003/21-2; FAPDF, grant DE 00193-00001175/2021-11 and

FAPEG, grant 202310267000223.

May 29 - June 02, 2023

Talk's Plan

- 1 The Prototype Verification System (PVS)
 - Gentzen Deductive Rules vs PVS Proof Commands

The Prototype Verification System (PVS)

PVS is a verification system, developed by the SRI International Computer Science Laboratory, which consists of

- a specification language:
 - based on higher-order logic;
 - a type system based on Church's simple theory of types augmented with subtypes and dependent types.
- 2 an interactive theorem prover:
 - based on sequent calculus; that is, goals in PVS are sequents of the form $\Gamma \vdash \Delta$, where Γ and Δ are finite sequences of formulae, with the usual Gentzen semantics.

The Prototype Verification System (PVS) — Libraries

• The prelude library

- ▶ It is a collection of basic *theories* containing specifications about:
 - * functions;
 - * sets;
 - predicates;
 - * logic; among others.
- The theories in the prelude library are visible in all PVS contexts;
- It provides the infrastructure for the PVS typechecker and prover, as well as much of the basic mathematics needed to support specification and verification of systems.

The Prototype Verification System (PVS) — Libraries

- NASA LaRC PVS library (nasalib)
 - It includes the theories
 - * structures, analysis, algebra, graphs, digraphs,
 - * real arithmetic, floating point arithmetic, groups, interval arithmetic,
 - ★ linear algebra, measure integration, metric spaces,
 - ★ orders, probability, series, sets, topology,
 - ★ term rewriting systems, unification, etc. etc.
 - ▶ The nasalib is maintaned by the NASA LaRC formal methods group;
 - ► The nasalib is result of research developed by the NASA LaRC formal methods group and the cientific comunity in general.

Sequent Calculus in PVS

A sequent of the form $\Gamma \vdash \Delta$ (or $A_1, A_2, ..., A_n \vdash B_1, B_2, ..., B_m$, since Γ and Δ are finite sequences of formulae) is:

interpreted as:

 $A_1 \wedge A_2 \wedge ... \wedge A_n \vdash B_1 \vee B_2 \vee ... \vee B_m$, that is, from the conjunction of the antecedent formulae one obtains the disjunction of the succedent formulae.

• represented in PVS as:

```
[-1] A<sub>1</sub>
:
:
[-n] A<sub>n</sub>
|------
[1] B<sub>1</sub>
:
:
[m] B<sub>m</sub>
```

Sequent Calculus in PVS

- Inference rules
 - Premises and conclusions are simultaneously constructed:

$$\frac{\Gamma \vdash \Delta}{\Gamma' \vdash \Delta'}$$

A PVS proof command corresponds to the application of an inference rule. In general:

$$\frac{\Gamma \vdash \Delta}{\Gamma_1 \vdash \Delta_1 ... \Gamma_n \vdash \Delta_n}$$
 (Rule Name)

• Goal: $\vdash \Delta$.

 Proof tree: each node is labelled by a sequent

• Structural:

Deduction rule	PVS command		
$\boxed{ \frac{\varphi, \varphi, \Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta} \ (\textit{LContraction}) }$	$\frac{\varphi,\Gamma\vdash\Delta}{\varphi,\varphi,\Gamma\vdash\Delta}\ (copy)$		

$$\begin{bmatrix} -1 \end{bmatrix} A \wedge \neg B \\ \vdots \\ \begin{bmatrix} -(i+1) \end{bmatrix} A \wedge \neg B \\ \vdots \\ \begin{vmatrix} ---- \\ \vdots \\ j \end{bmatrix} \neg C \rightarrow D \\ \vdots$$

• Structural:

Deduction rule	PVS command		
$\boxed{ \frac{\Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta} \ (LW \textit{eakening}) }$	$\frac{\varphi,\Gamma\vdash\Delta}{\Gamma\vdash\Delta}\ (hide)$		

• Propositional:

$$\begin{array}{c} |----|\\ [1] \ A \wedge B \rightarrow (C \vee D \rightarrow C \vee (A \wedge C)) \\ & \downarrow \text{(flatten)} \\ [-1] \ A \\ [-2] \ B \\ [-3] \ C \vee D \\ |-----|\\ [1] \ C \end{array}$$

Deduction rule	PVS command (flatten)			
$\begin{array}{ c c c c c }\hline \varphi, \Gamma \Rightarrow \Delta, \psi \\ \hline \Gamma \Rightarrow \Delta, \varphi \rightarrow \psi \end{array} (R_{\rightarrow})$	$\frac{\Gamma \vdash \Delta, \varphi \to \psi}{\varphi, \Gamma \vdash \Delta, \psi}$			
$ \frac{\varphi_1, \varphi_2, \Gamma \Rightarrow \Delta}{\varphi_1 \land \varphi_2, \Gamma \Rightarrow \Delta} (L_{\land}) $	$\frac{\varphi_1 \wedge \varphi_2, \Gamma \vdash \Delta}{\varphi_{i \in \{1,2\}}, \Gamma \vdash \Delta}$			
$ \frac{\Gamma \Rightarrow \Delta, \varphi_{i \in \{1,2\}}}{\Gamma \Rightarrow \Delta, \varphi_1 \vee \varphi_2} \ (R_{\vee}) $	$\frac{\Gamma \vdash \Delta, \varphi_1 \lor \varphi_2}{\Gamma \vdash \Delta, \varphi_1, \varphi_2}$			

 $[2] A \wedge C$

• Propositional:

Deduction rule	PVS command			
$\frac{\Gamma \Rightarrow \Delta, \varphi \ \psi, \Gamma \Rightarrow \Delta}{\varphi \to \psi, \Gamma \Rightarrow \Delta} \ (L_{\to})$	$\frac{\varphi \to \psi, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \varphi \ \psi, \Gamma \vdash \Delta} \ (split)$			

$$[-1]$$
 $(A o B) o A$ $|-----$ (split -1) $[1]$ A

$$[-1]$$
 A

$$[1] A \rightarrow B$$

• Propositional:

$$|----- \qquad ({\tt case "m \geq n"}) \\ [1] \ \gcd(m,n) = \gcd(n,m)$$

$$[-1] m \ge n$$

$$|-----|$$

$$[1] \gcd(m, n) = \gcd(n, m)$$

$$|-----|$$

$$[1] m \ge n$$

$$[2] \gcd(m, n) = \gcd(n, m)$$

Propositional - semantics of PVS instructions:

$$\frac{a,\Gamma|---\Delta,b}{\Gamma|---\Delta,a\to b} \text{ (flatten)} \qquad \frac{\Gamma|---\Delta,a,c}{\Gamma|---\Delta,\neg a\to c} \text{ (flatten)} \\ \frac{\Gamma|---\Delta,\text{if } a \text{ then } b \text{ else } c \text{ endif}}{\text{(split)}}$$

$$\frac{a,b,\Gamma \mid ---\Delta}{a \wedge b,\Gamma \mid ---\Delta} \text{ (flatten)} \qquad \frac{c,\Gamma \mid ---\Delta}{\neg a \wedge c,\Gamma \mid ---\Delta} \text{ (flatten)} \\ \text{if a then b else c endif,} \Gamma \mid ---\Delta \text{ (split)}$$

• Propositional (propax):

$$\frac{\Gamma, A \mid --- A, \Delta}{}$$
 (Ax)

$$\frac{\Gamma, FALSE \vdash \Delta}{}$$
 (FALSE |----)

$$\frac{\Gamma | \text{---} \ TRUE, \Delta}{} \ \textbf{(} \vdash \textbf{TRUE)}$$

Predicate:

$$\begin{array}{ll} \begin{tabular}{ll} \hline Deduction rule & PVS command \\ \hline $\varphi[x/y],\Gamma\Rightarrow\Delta$ & $(L_{\exists}), \quad y\not\in {\rm fv}(\Gamma,\Delta)$ & $\frac{\exists_x\varphi,\Gamma\vdash\Delta}{\varphi[x/y],\Gamma\vdash\Delta}$ & $(skolem), \quad y\not\in {\rm fv}(\Gamma,\Delta)$ \\ \\ \hline $\frac{\varphi[x/t],\Gamma\Rightarrow\Delta$}{\forall_x\varphi,\Gamma\Rightarrow\Delta}$ & (L_{\forall}) & $\frac{\forall_x\varphi,\Gamma\vdash\Delta}{\varphi[x/t],\Gamma\vdash\Delta}$ & $(inst)$ \\ \hline \end{array}$$

$$\begin{array}{ll} [-1] \ \forall_{x:T} : P(x) \\ \\ |--- & (\mathtt{inst-1} \ ``\mathtt{z}") & \leadsto \\ \\ [1] \ P(z) & \end{array}$$

$$\left(\begin{array}{c} [-1] \ P(z) \\ \\ |--- \\ [1] \ P(z) \end{array} \right) \ {\tt Q.E.D.}$$

Table: STRUCTURAL LEFT RULES VS PROOF COMMANDS

PVS commands			
$\frac{\varphi,\Gamma\vdash\Delta}{\Gamma\vdash\Delta}\ (hide)$			
$\frac{\varphi,\Gamma\vdash\Delta}{\varphi,\varphi,\Gamma\vdash\Delta}\ (copy)$			

Table: STRUCTURAL RIGHT RULES VS PROOF COMMANDS

Structural right rules	PVS commands			
$\frac{\Gamma\Rightarrow\Delta}{\Gamma\Rightarrow\Delta,\varphi}\ (RW {\it eakening})$	$\frac{\Gamma \vdash \Delta, \varphi}{\Gamma \vdash \Delta} \ (hide)$			
$\frac{\Gamma\Rightarrow\Delta,\varphi,\varphi}{\Gamma\Rightarrow\Delta,\varphi}\ (RC \textit{ontraction})$	$\frac{\Gamma \vdash \Delta, \varphi}{\Gamma \vdash \Delta, \varphi, \varphi} \ (copy)$			

Table: LOGICAL LEFT RULES VS PROOF COMMANDS

Left rules	PVS commands			
$\frac{\varphi_1, \varphi_2, \Gamma \Rightarrow \Delta}{\varphi_1 \land \varphi_2, \Gamma \Rightarrow \Delta} \ (L_{\wedge})$	$\frac{\varphi_1 \wedge \varphi_2, \Gamma \vdash \Delta}{\varphi_i {\in} \{1,2\}, \Gamma \vdash \Delta} \ (flatten)$			
$\frac{\varphi, \Gamma \Rightarrow \Delta \ \psi, \Gamma \Rightarrow \Delta}{\varphi \lor \psi, \Gamma \Rightarrow \Delta} \ (L_{\lor})$	$\frac{\varphi \vee \psi, \Gamma \vdash \Delta}{\varphi, \Gamma \vdash \Delta \ \psi, \Gamma \vdash \Delta} \ (split)$			
$\frac{\Gamma \Rightarrow \Delta, \varphi \ \psi, \Gamma \Rightarrow \Delta}{\varphi \to \psi, \Gamma \Rightarrow \Delta} \ (L \to)$	$\frac{\varphi \to \psi, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \varphi \ \psi, \Gamma \vdash \Delta} \ (split)$			
$\frac{\varphi[x/t], \Gamma \Rightarrow \Delta}{\forall_x \varphi, \Gamma \Rightarrow \Delta} \ (L_{\forall})$	$\frac{\forall_{x}\varphi,\Gamma\vdash\Delta}{\varphi[x/t],\Gamma\vdash\Delta}\ (inst)$			
$ \begin{array}{c c} \varphi[x/y], \Gamma \Rightarrow \Delta \\ \hline \exists_x \varphi, \Gamma \Rightarrow \Delta \end{array} \ (L_{\boxminus}), y \not \in \operatorname{fv}(\Gamma, \Delta) $	$\frac{\exists_x \varphi, \Gamma \vdash \Delta}{\varphi[x/y], \Gamma \vdash \Delta} (skolem), y \not \in fv(\Gamma, \Delta)$			

Table: LOGICAL RIGHT RULES VS PROOF COMMANDS

Right rules	PVS commands			
$\frac{\Gamma \Rightarrow \Delta, \varphi \ \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \wedge \psi} \ (R_{\wedge})$	$\frac{\Gamma \vdash \Delta, \varphi \land \psi}{\Gamma \vdash \Delta, \varphi \ \Gamma \vdash \Delta, \psi} \ (split)$			
$\frac{\Gamma\Rightarrow\Delta,\varphi_{i}{\in}\{1,2\}}{\Gamma\Rightarrow\Delta,\varphi_{1}\vee\varphi_{2}}\ (R{\vee})$	$\frac{\Gamma \vdash \Delta, \varphi_1 \vee \varphi_2}{\Gamma \vdash \Delta, \varphi_1, \varphi_2} (flatten)$			
$\frac{\varphi, \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \rightarrow \psi} \ (R \rightarrow)$	$\frac{\Gamma \vdash \Delta, \varphi \to \psi}{\varphi, \Gamma \vdash \Delta, \psi} \ (flatten)$			
$ \begin{array}{c c} \Gamma \Rightarrow \Delta, \varphi[x/y] \\ \hline \Gamma \Rightarrow \Delta, \forall_x \varphi \end{array} \ (R_{\forall}), y \not \in \operatorname{fv}(\Gamma, \Delta) \\ \end{array} $	$\frac{\Gamma \vdash \Delta, \forall_x \varphi}{\Gamma \vdash \Delta, \varphi[x/y]} \ (skolem), y \not \in \operatorname{fv}(\Gamma, \Delta)$			
$\frac{\Gamma \Rightarrow \Delta, \varphi[x/t]}{\Gamma \Rightarrow \Delta, \exists_x \varphi} (R_{\exists})$	$\frac{\Gamma \vdash \Delta, \exists_x \varphi}{\Gamma \vdash \Delta, \varphi[x/t]} (inst)$			

Summary - Completing the GC vs PVS rules

	(hide)	(copy)	(flatten)	(split)	(skolem)	(inst)	(lemma)
							(case) ×
(LW)	×						
(LC)		×					
(L _^)			×				
(L _V)				×			×
(L→)				×			
(L _∀)						×	
(L _∃)					×		
(RW)	×						
(RC)		×					
(R _∧)				×			
(R _V)			×				
(R _→)			×				
(R _∀)					×		
(R _∃)						×	
(Cut)							×