Определённый интеграл

Рассмотрим задачу о движении точки вдоль числовой оси. Пусть S(t) — её координата в момент времени t, а v(t) = S'(t) — её скорость в тот же момент времени. Предположим, что мы знаем $S(t_0)$ точки в момент времени t_0 , и пусть нам поступают данные о её скорости, и мы хотим вычислить S(t) для любого фиксированного времени $t > t_0$. Если считать скорость v(t) меняющейся непрерывно, то смещение точки за малый промежуток времени Δt можно вычислить как произведение $v(\tau) \cdot \Delta t$, где τ — произвольный момент времени.

Разобъём отрезок $[t_0;t]$, отметив некоторые моменты времени t_i , такие, что $t_0 < t_1 < \ldots < t_i < \ldots < t_n$, причём промежутки $[t_{i-1};t_i]$ малы, а $\tau \in [t_{i-1};t_i]$. Тогда будем иметь приближенное равенство:

$$S(t) - S(t_0) \approx \sum_{i=1}^{n} v(t_i) \Delta t$$

Это приближенное равенство будет уточняться, если переходить к разбиениям отрезка $[t_0;t]$ на всё более мелкие промежутки. Таким образом,в пределе, когда величина наибольшего из промежутков разбиения будет стремиться к нулю,

$$\lim_{d \to 0} \sum_{i=1}^{n} v(\tau_i) \Delta t = S(t) - S(t_0)$$

Сумма, стоящая в левой части равенства, называется интегральной суммой. Отметим, что это равенство есть не что иное, как фундаментальная формула для матанализа, называемая формулой Ньютона-Лейбница. Она позволяет, в частности, находить первообразную S(t) по её производной v(t).

Понятие интегральной суммы и её предела

Пусть функция f(x) определена и ограничена на отрезке [a;b]. Рассмотрим конечное число точек $x_1 \dots x_{n-1}$, лежащих внутри отрезка, удовлетворяющих неравенству $a < x_1 < \dots < x_{n-1} < b$. Положим $a = x_0, b = x_n$. Тогда указанные точки производят разбиение отрезка [a;b] на n частичных отрезков $[x_0;x_1], [x_1;x_2], \dots [x_{n-1};x_n]$. Длину k-го отрезка обозначим за $\Delta x_k = x_n - x_{n-1}$, возьмём на каждом k-м отрезке произвольную точку ξ_k , такую, что $x_{k-1} \le \xi_k \le x_k$ и составим для рассмотренного разбиения следующую сумму:

$$\sigma = \sigma(x_k, \xi_k) = \sum_{i=1}^n f(\xi_k) \cdot \Delta x_k$$

Эта сумма называется интегральной суммой для функции f(x) на отрезке [a;b]. Геометрический смысл σ очевиден: это сумма площадей с основаниями $\Delta x_1, \ldots, \Delta x_n$ и высотами ξ_1, \ldots, ξ_n , то есть, площадь криволинейной трапеции.

Определение. Число I называется пределом интегральных суммм при стремлении κ 0 наибольшей длины d частичных отрезков, если для произвольного $\varepsilon > 0$ найдётся соответствующее ему $\delta(\varepsilon)$, такое, что при единственном условии $d < \delta(\varepsilon)$ справедливо неравенство $\sigma - I < \varepsilon$.

$$\forall x > 0 \; \exists \; \delta(\varepsilon) \colon d < \delta(\varepsilon) \Rightarrow |\sigma - I| < \varepsilon$$