

Chunghwa Picture Tubes, Ltd. Technical Specification

To : HUI YING TUNG ELECTRONIC CO., LTD

Date: 2009.04.29

CPT TFT-LCD CLAA 216WA01

ACCEPTED BY:		

APPROVED BY	CHECKED BY	PREPARED BY
		TFT Product Planning
周廷縣	溫文良	Management General
, 4, 3, 111		Division

Prepared by: Design General Division

CHUNGHWA PICTUER TUBES, LTD.

No. 1, Huaying Rd., Sanho Tsun, Lungtan Shiang, Taoyuan, Taiwan, 325, R.O.C. TEL: +886-3-4805678 FAX: +886-3-4800589

Doc No.	CLAA216WA01-HUI YING TUNG-SPEC-20090429	Issue Date	2009/04/29
DOC. 110.	0L/1/12101//101111101111110 10110 01 L0 20030423	Ibbac Date.	2000/04/20

RECORD OF REVISIONS

Revision No.	Date	Description	Page
Ver.0	Dec.18.2008	Preliminary Specification (First Draft)	

CONTENTS

NO	Table of Content	Page
1	OVERVIEW	P.4
2	ABSOLUTE MAXIMUM RATINGS	P.5
3	ELECTRICAL CHARACTERISTICS	P.6
4	INTERFACE PIN CONNECTION	P.12
5	INTERFACE TIMING	P.14
6	BLOCK DIAGRAM	P.19
7	MECHANICAL SPECIFICATION	P.20
8	OPTICAL CHARACTERISTICS	P.22
9	RELIABILITY TEST CONDITIONS	P.25

1. OVERVIEW

CLAA216WA01 is 21.6" color TFT-LCD (Thin Film Transistor Liquid Crystal Display) module composed of LCD panel, driver ICs, control circuit and backlight. By applying 8 bit digital data, 1366×768, 16.7M-color images are displayed on the 21.6" diagonal screen. Input power voltage is 5.0V for LCD driving. Inverter for backlight is not included in this module. General specification is summarized in the following table:

ITEM	SPECIFICATION		
Display Area(mm)	477.417 (H) ×268.416(V) (21.56-inch diagonal)		
Number of Pixels	1366 (H) × 768(V)		
Pixel Pitch(mm)	0.1165 (H) × 0.1165 (V)		
Color Pixel Arrangement	RGB vertical stripe		
Display Mode	Normally white, TN		
Number of Colors	16.7M(6bits+Hi-FRC)		
Brightness(cd/m^2)	350cd/m ² (Typ.)(center, 7.5mA)		
Viewing Angle(H/V)	170/160 (Typ.)		
Surface Treatment	Anti-glare, 3H		
Power consumption(W)	28.4(Typ.) (w/o Inverter)		
Module Size(mm)	501(H)x297(V)x17.3(D) (Typ.)		
Module Weight(g)	2600 (Typ.)		
Backlight Unit	CCFL, 4 tubes(top \times 2/bottom \times 2), Edge light		

2. ABSOLUTE MAXIMUM RATINGS

ITEM	SYMBOL	MIN.	MAX.	UNIT	REMARK
Power Supply Voltage for LCD	VCC	0	6	V	
Lamp Voltage	VL	760	950	Vrms	Lamp
Lamp Current	ILO	3	8	mArms	Voltage Lamp Current
Lamp Frequency	FL	40	80	kHz	
static electricity	VESDt VESDc	-200 -8000	200 8000	V	*5)
Operation Temperature	Top	0	50	°C	*1). 2). 3). 6)
Storage Temperature	Tstg	-20	60	$^{\circ}\!\mathbb{C}$	*1). 2). 3)
Delayed Discharge Time	TD		1	sec	*8)

[Note]

- 1). The relative temperature and humidity range are as below sketch, 90%RHMax. ($Ta \le 40^{\circ}$ C).
- 2). The maximum wet bulb temperature $\leq 39^{\circ}$ C (Ta> 40° C) and without dewing.
- 3). If you use the product in an environment which over the definition of temperature and humidity too long to effect the result of eye-etching.
- 4). The life time of the lamp is related to the current of the lamp, so please according to the description of the "(b) backlight" on page 7.
- 5). Test Condition: IEC 1000-4-2 VESDt: Contact discharge to input connector; VESD_C: Contact discharge to module
- 6). If you operate the product in normal temperature range, the center surface of panel should be under 50°C.
- 7). When lamp current is out of the absolute maximum range, the life will fall rapidly or shown unusual sign.
 - IL min 2mA only for test only, but we can't guarantee the lifetime and performance.
- 8). Delay lighting testing needs the volt above start voltage Vrms. Before the procedure tube needs typical lighting for 1 minute and stay in the temperature 25±2°C for 24 hours and then testing in the same condition in dark room.

3. ELECTRICAL CHARACTERISTICS

(1).TFT-LCD Ta= 25° C

ITEM		SYMBOL	MIN	TYP	MAX	UNIT	REMARK
Power Sup	ply Voltage for LCD	VCC	4.5	5.0	5.5	V	*1)
Power Sup	ply Current for LCD	ICC	1	500	1000	mA	*2)
Permissive	Ripple Voltage for Logic	VRP	ŀ	ï	100	mVp-p	VCC=5.0V
Differentia	l Resistance	Zm	90	100	110	Ω	
	The same motion input Voltage	VCM	1.125	1.25	1.375	V	
LVDS:	Differential input Voltage	VID	250	350	450	mV	*2)
IN+ , IN-	High electric potential threshold voltage	VTH	-	ı	100	mV	*3)
	Low electric potential threshold voltage	VTL	-100	1	-	mV	
LCDInrush Current		Inrush	-	-	4	A	*4)
Power con	sumption	P	1	5	7.5	W	*2)

[Note]

Data: RGB DATA, DCLK, DENA

VCC-dip conditions:

- (1) When $3.6V \le Vcc(min) < 4.5V$: $td \le 10 \text{ ms}$
- (2) When Vcc <3.6 V, VCC-dip conditions should also follow the VCC-turn-on conditions.

- *2). The specified power supply current is under condition at VCC=5V , Ta=25±2 $^{\circ}$ C , f_v=60Hz , whereas a power dissipation check pattern is displayed.
 - a. White pattern

b. Black pattern

c. RGB Stripe pattern

3).LVDS Signal definition:

4).Irush Measurement Condition

(2).Backlight

1. Electrical specification

ITEM	SYMBOL	MIN	TYP	MAX	UNIT	REMARK
B/L Voltage	VL	702	800	902	Vrms	IL=7.5mA Ta=25°C
B/L Current	IL	7.0	7.5	8.0	mArms	*1) Ta=25°C
B/L operating current	ILO	3	7.5	8.0	mArms	*1) Ta=25°C
B/L power consumption	WL		23.4	26.6	W	IL=7.5mA Ta=25°C
Inverter Frequency	FI	40	50	60	kHz	*2) Ta=25°C
Starting Lamp Valtage	VS			1770	Vrms	Ta=0°C
Starting Lamp Voltage	VS	_		1400	Vrms	Ta=25°C

2. Lamp life time

ITE	M	ILO at 3.0 mA	ILO at 7.0 mA	ILO at 8.0 mA	UNIT	REMARK
	Delta	Min. 50,000	Min. 50,000	Min. 35,000	Hr	
	STI	Min. 50,000	Min. 50,000	Min. 35,000	111	
Rated (turn or		_	Min.100,000	_	time	*4)

[Note] Inverter vendor: Sumida, model: TWS-400-9656

1) If the waveform of light up-driving is asymmetric, the distribution of mercury inside the lamp tube will become unequally or will deplete the Ar gas in it. Then it may cause the abnormal phenomenon of lighting-up. Therefore, designers have to try their best to fulfill the conditions under the inverter designing-stage as below:

Ip: high side peak

I-p:low side peak

- A: The degrees of unbalance = $|I_p I_{-p}| / I_{ms} \times 100\%$, & $|I_p I_{-p}| / I_{cycle ms} \times 100\%$, B: The ratio of wave height = $I_p (\text{or } I_{-p}) / I_{ms}$, & $I_p (\text{or } I_{-p}) / I_{cycle ms}$,
- A:The degræs of unbalance: <10%
- B: The ratio of wave height: $<\!\!\sqrt{2}\,\pm\!10\%$

- 2) The lamp working current (I_{cyc}) of any waveform of light up-driving can not over the maximum of lamp typical current.(I_{cyc} : Cycle RMS of oscilloscope)
 - *The property of single lamp
 - *Measure system: connector current meter with low voltage end
- 3) Lamp Current measurement method (The current meter is inserted in cold line)

- 4) a. Frequency in this range can make the characteristics of electric and optics maintain in +/- 10% except color coordinates.
 - b. Frequency in 50~60kHz can make characteristics of electric and optics better.
 - c. Frequency in 45~80kHz won't damage the lifetime and reliability of lamp.
 - d. Lamp frequency of inverter may produce interference with horizontal(or vertical) synchronous frequency, and this may cause horizontal beat on the display. Therefore, please adjust lamp frequency, and keep inverter as far from module as possible or use electronic shielding between inverter and module to avoid the interference.
- 5) Definition of the lamp life time:
 - a. Luminance (L) under 50% of specification.
 - b. Starting Lamp Voltage: over130% of the initial value. Ta=25°C
- 6) The condition of Turn-on and Turn-off operation is as below:
 - a. Lamp current is 7.5mA
 - b. Frequency is 10 sec.(on)/10 sec.(off)
 - c. Repeat it for 100 thousand times
 - d. The lamp hue variation must smaller than 0.03
 - e. It should not have motion fail when starting lamp voltage is lower than 130% of the initial value.

- 7) For keeping good lighting situation, when design the inverter, it must be considered that the voltage large than starting lamp voltage.
- 8) WL=IL x VL x 4 \circ (IL=7.5mA , Ta=25 $^{\circ}$ C)
- 9) The Starting Lamp Voltage (VS) of inverter must be driven large than one second.
- 10) The output voltage of inverter (Vn) must be the same phase of between any lamps.
- 11) The difference in voltage between any lamps ($\triangle V$) must be smaller than 300V at the same time. Example : $|\triangle V| < 300V$, $\triangle V$: = V1(t)-V2(t)

$$\frac{|Vnrms - VL|}{VL} \le 15\%$$
12) , n=1 , 2... 4 , n : the number of lamp

- 13) The lamp working current (Icyc) of any cycle of lighting driving wave can't exceed maximum of lamp standard working current (IL). Therefore, the inverter design should be avoided the state.
- Note:
- 1. VL: The lamp voltage(typical) of the standard working current.
- 2. The lamp working current (Icyc) is defined the RMS of current cycle from the oscilloscope.

4. INTERFACE PIN CONNECTION

(1) CN1

Outlet connector: FI-XB30SSRL-HF16 (JAE) (or equivalent)

PIN NO.	REMARK	FUNCTION
1	N.C.	No Connection
2	N.C.	No Connection
3	N.C.	No Connection
4	GND	Ground
5	Rx0-	Data0-
6	Rx0+	Data0+
7	GND	Ground
8	Rx1-	Data1-
9	Rx1+	Data1+
10	GND	Ground
11	Rx2-	Data2-
12	Rx2+	Data2+
13	GND	Ground
14	RxCLK-	Clock-
15	RxCLK+	Clock+
16	GND	Ground
17	Rx3-	Data3-
18	Rx3+	Data3+
19	GND	Ground
20	N.C.	NC
21	LVDS Option*	Select LVDS data format *3)
22	NC	No Connection
23	GND	Ground
24	GND	Ground
25	GND	Ground
26	Vcc	Power supply input voltage(5.0 V)
27	Vcc	Power supply input voltage(5.0 V)
28	Vcc	Power supply input voltage(5.0 V)
29	Vcc	Power supply input voltage(5.0 V)
30	Vcc	Power supply input voltage(5.0 V)

^{*1)} Keep the NC Pin and don't connect it to GND or other signals.

*3)

LVDS OPTION PIN 21(DMS)					
DMS(Pin 21) LVDS format					
H/NC	VESA Data format				
L	JEIDA				

^{*2)} GND Pin must connect to the ground, don't let it be a vacant pin.

(2) CN2, 3, 4, 5 (BACKLIGHT)

CN2 · CN3 · CN4 · CN5 : BHSR-02VS-1 (JST) <Mating connector: SM02B-BHSS-1-TB (JST)>

No.	Pin	Symbol	Description
CNI	1	HV	High Voltage Output for CCFL Lamp 1
CN2	2	LV	Low Voltage Output for CCFL Lamp 1
CNI2	1	HV	High Voltage Output for CCFL Lamp 2
CN3	2	LV	Low Voltage Output for CCFL Lamp 2
CN4	1		High Voltage Output for CCFL Lamp 3
CN4	2	LV	Low Voltage Output for CCFL Lamp 3
CN5	1	HV	High Voltage Output for CCFL Lamp 4
CN5	2	LV	Low Voltage Output for CCFL Lamp 4

5. INTERFACE TIMING

(1) Timing Characteristic

		ITE	M	SYMBOL	MIN.	TYP.	MAX.	UNIT
	D	CLK	Freq.	f_{CLK}	60	76	82	MHz
	ט	CLK	Cycle	t_{CLK}	16.7	13.2	12.2	ns
			Horizontal effective time	t_{HA}	1366	1366	1366	t_{CLK}
LCD		Horizontal	Horizontal blank time	t_{HB}	76	194	570	t_{CLK}
Timing			Horizontal total time	t_{H}	1442	1560	1936	t_{CLK}
Tilling	DENA		Vertical frame Rate	Fr	57	60	63	Hz
			Vertical total time		778	806	888	t_{H}
		Vertical	Vertical effective time	t_{VA}	768	768	768	t_{H}
			Vertical blank time	$t_{ m VB}$	10	38	120	t_{H}

[Note]

- *1) DENA (data enable) usually is positive
- *2) DCLK still inputs during blanking
- *3) LVDS transmitter IC: NT71679-00024(NVT)
- *4) DE mode only
- *5) It maybe cause flicker at 50Hz.

(2) LVDS Interface: LVDS Receiver: Tcon (LVDS Rx merged)

	LVDS pin	JEIDA-DATA	Non-JEIDA-DATA
	TxIN/RxOUT0	R2	R0
	TxIN/RxOUT1	R3	R1
	TxIN/RxOUT2	R4	R2
TxOUT/RxIN0	TxIN/RxOUT3	R5	R3
	TxIN/RxOUT4	R6	R4
	TxIN/RxOUT6	R7	R5
	TxIN/RxOUT7	G2	G0
	TxIN/RxOUT8	G3	G1
	TxIN/RxOUT9	G4	G2
	TxIN/RxOUT12	G5	G3
TxOUT/RxIN1	TxIN/RxOUT13	G6	G4
	TxIN/RxOUT14	G7	G5
	TxIN/RxOUT15	B2	В0
	TxIN/RxOUT18	В3	B1
TxOUT/RxIN2	TxIN/RxOUT19	B4	B2
	TxIN/RxOUT20	B5	В3
	TxIN/RxOUT21	В6	B4

	TxIN/RxOUT22	В7	B5
	TxIN/RxOUT24	Hsync	Hsync
	TxIN/RxOUT25	Vsync	Vsync
	TxIN/RxOUT26	DENA	DENA
	TxIN/RxOUT27	R0	R6
	TxIN/RxOUT5	R1	R7
	TxIN/RxOUT10	G0	G6
TxOUT/RxIN3	TxIN/RxOUT11	G1	G7
	TxIN/RxOUT16	В0	В6
	TxIN/RxOUT17	B1	В7
	TxIN/RxOUT23	Reserved	Reserved

(3). Timing Chart

(4) LVDS DATA MAPPING

a. Non-JEIDA normal specification

b. JEIDA specification

8bit LSB:R0,G0,B0

Parallel TTL Data Inputs Mapped to LVDS Outputs

Color Data Assignment

					R D.								G D								ВD				
COLOR	INPUT DATA	R7	R6	R5	R4	R3	R2	R1			G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	В4	В3	В2	В1	В0
		MSB							LSB	MSB							LSB	MSB							LSB
	BLACK			0_	0_	0	0	0	0	0	_0_	0	0_	0_	_0_	0	0	0_	0	0	0	0_	0	0	0_
	RED(255)	1_	1	1	1_	1_	_1_	1	1	0_	_0_	0	0_	0_	_0_	0	0	0_	0	0	0	0_	0	0	0
	GREEN(255)	_ 0 _	_0_	0_	0_	0	0	0	0	1_	_1_	1	1_	1_	_1_	1	1_	0_	0	0	0	0_	0	0	0
BASIC	BLUE(255)	0	•_ <u>-</u> _	0	0	بريا	_0	1	0	0_	_0_	0	0_	0_	_0	0	0	1_	1	1	1_	1_	1	1	1_
COLOR	CYAN	_ 0 _	_0_	_0_	0_	_ 0 _	_0_	0	0	1_	_1_	1	1_	1_	_1_	1.	1_	1_	1	1	1_	1_	1	1	1_
	MAGENTA	_ 1 _	1	1_	1_	1_	_1	1	1_	0_	_0_	0	0_	0_	_0	0	0	1_	1	1	1_	1_	1	1	1_
	YELLOW	_ 1 _	1	_1_	1_	1	_1_	1_1_	1_	1_	_1_	1	1_	1_	_1_	1.	1_	0_	0	0	0	0_	0	0	0_
	WHITE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED(0)		<u></u>	_0_	: - · - :		_0	• - ~ ·	0_	0_	_0_	0	0_	0_	_0_	0	0	0_	_0_	0	0	0_	0_	0	0_
	RED(1)		0	. – – .	0_				1_	0_	_0_	0	0_	0_	_0	0	0	0_	0	0	0	0_	0	0	0_
	RED(2)	_ 0 _	0	_0_	0_	0_	_0	1_	0	0_	_0_	0	0_	0_	_0	0	0	0_	0	0	0	0_	0	0	0_
RED								; 																	
			! !	!	 !		 	! !:															L		
	RED(254)	_ 1 _	1	_1_	1_	1_	_1_	1	0_	0_	_0_	0	0_	0_	_0_	0	0_	0_	_0_	0	0	0_	0_	0	0_
	RED(255)	1	<u> </u>	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(0)		_0_	0	:	0_			0_	0_	_0_	0	0_	_0_	_0_	0	0_	0_	_0_	0	0	0_	_0_	0	0_
	GREEN(1)		_0_	:	0_				0_	0_	_0_	0	0_	_0_	_0_	0	1_	0_	_0_	0	0	0_	_0_	0	0_
	GREEN(2)	_ 0 _	0	0	0_	0	_0	0	0_	0_	_0_	0	0_	_0_	_0_	1	0	0_	_0_	0	0	0_	_0_	0	0_
GREEN					!			! !:																	
								<u>:</u> :																	
	GREEN(254)		•	'	0_			•	0_	1_	_1	_1	1_	_ 1 _	_1_	11	0_	0_	_0_	0	0_	0_	_0_	0	0_
	GREEN(255)				0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE(0)			_0_	:	_ 0 _	_0	0	0_	0_	_0_	0	0_	_ 0 _	_0_	0	0_	0_	_0_	_0	0_	0_	_0_	0	0_
	BLUE(1)		'- <u>-</u> -		0_	ىتا		·	0_	0_	_0_	0	0_	_ 0 _	_0_	0	0_	0_	_0_	0	0_	0_	_0_	0	1_
	BLUE(2)	_ 0 _	_0_	_0_	0_	_ 0 _	_0	0	0_	0_	_0_	0	0_	_ 0 _	_0_	0	0_	0_	_0_	_0	0_	0_	_0_	1	0_
BLUE														L									<u> </u>	 	
			:	!	!		 	! !:															<u></u>		
	BLUE(254)	_ 0 _		0_	0_	_ 0 _		0	0_	0_	_0_	0	0_	_ 0 _	_0_	0	0_	- 1 -	_ 1	1	1_	- 1 -	<u> 1</u> _	1	0
	BLUE(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

[Note] 1) Definition of gray scale: Color (n): n indicates gray scale level; higher n means brighter level.

2) Data: 1-High, 0-Low.

3) For odd & even data also.

6. BLOCK DIAGRAM

Lamp Uint in Backlight

7. MECHANICAL SPECIFICATION

(1) Front side (Tolerance is ± 0.5 mm unless noted)

[Unit:mm]

(2)Rear side (Tolerance is ± 0.5 mm unless noted)

[Unit: mm]

8. OPTICAL CHARACTERISTICS

 $Ta=25^{\circ}C$, VCC=5.0V

ITEM		SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT	REMARK
Contrast	(CEN)	CR	θ=ψ= 0°		(800)			*1) 2)
Luminanc	e (CEN)	L	θ=ψ= 0°	300	350		cd/m2	*1) 3)
9P Unif	ormity	ΔL	θ=ψ= 0°	75			%	*1) 3)
Respons	e Time	Tr+Tf	θ=ψ= 0°		5	8	ms	*5)
Cross	talk	CT	θ=ψ= 0°	1		1	%	*6)
View engle	Horizontal	Ψ	CD > 10	150	170		Deg.	*4)
View angle	Vertical	θ	CR≥10	140	160		Deg.	*4)
	White	X		0.255	0.285	0.315		
	Willie	y		0.263	0.293	0.323		
	Red	X		(0.614)	(0.644)	(0.674)	Color	
Color		У	θ=ψ= 0°	(0.301)	(0.331)	(0.361)	Coordin	*3)
Coordinates	Green	X	σφσ	(0.243)	(0.273)	(0.303)	ates	3)
	Green	y		(0.558)	(0.588)	(0.618)	ates	
	Blue	X		(0.121)	(0.151)	(0.181)		
Diuc		у		(0.031)	(0.061)	(0.091)		
Gan	nut	CG	θ=ψ= 0°	70	72		%	
Gamma		γ	VESA	2.0	2.2	2.4		*7)

[Note]

Color coordinate and color gamut are measured by SRUL1R, response time is measured by TRD-100, and all the other items are measured by BM-5A (TOPCON). All these items are measured under the dark room condition (no ambient light).

Measurement Condition: IL=7.5mA × 4

Inverter: Sumida, model: TWS-400-9656— , Frequency=50kHz.

Definition of these measurement items is as follows

1) Setup of Measurement Equipment

The LCD module should be turn-on to a stable luminance level to be reached. The measurement should be executed after lighting Backlight for 20 minutes and in a dark room.

2) Definition of Contrast Ratio CR=ON (White) Luminance/OFF (Black) Luminance

3) Definition of Luminance and Luminance uniformity

Central luminance: The white luminance is measured at the center position "5" on the screen, see Fig.1 below. And the measure time is 30 min after discharged.

9P Luminance (AVG): The white luminance is measured at measuring points 1 to 9, see Fig.1 below.

9P Uniformity: $\Delta L = (L_{MIN}/L_{MAX}) \times 100\%$

4). Definition of Viewing Angle (θ, ψ) :

5) Definition of Response Time:

6) Definition of crosstalk:

$$CT=\mid Y_{B}-Y_{A}\mid /Y_{A} \times 100 (\%)$$

Y_{A:} The luminance of measured position at pattern A

 $Y_{B\,:}$ The luminance of measured position at pattern B with Gray level 0

Pattern A Pattern B

7) Definition of Gamma (γ), follow VESA standard sampling every 16 gray level (0,16,32,.....224,240,255)

Gray level (LOG)

9. RELIABILITY TEST CONDITIONS

(1) Temperature and Humidity

TEST ITEMS	CONDITIONS
HIGH TEMPERATURE	50°C; 90%RH; 240h
HIGH HUMIDITY OPERATION	(No condensation)
HIGH TEMPERATURE	60°C; 90%RH; 48h
HIGH HUMIDITY STORAGE	(No condensation)
HIGH TEMPERATURE OPERATION	50°C; 240h
HIGH TEMPERATURE STORAGE	60°C; 240h
LOW TEMPERATURE OPERATION	0°C; 240h
LOW TEMPERATURE STORAGE	-20°C; 240h
THERMAL SHOCK	BETWEEN -20°C(1hr)AND 60°C(1hr); 100
I REKIVIAL SHOCK	CYCLES

2) Shock & Vibration

ITEMS	CONDITIONS
SHOCK	Shock level:980m/s^2(100G)
(NON-OPERATIO	Waveform: half sinusoidal wave, 2ms
(NON-OFERATION)	Number of shocks: one shock input in each direction of three
N)	mutually perpendicular axes for a total of six shock inputs
	Vibration level: 9.8m/s^2(1.0G) zero to peak
VIBRATION	Waveform: sinusoidal
(NON-OPERATIO	Frequency range: 5 to 500 Hz
(NON-OFERATION)	Frequency sweep rate: 0.5 octave/min
11)	Duration: one sweep from 5 to 500Hz in each of three mutually
	perpendicular axis(each x,y,z axis: 1 hour, total 3 hours)

(3) ESD

POSITION	CONDITION(MDL turn off)							
Compostor	1. 200 pF \cdot 0 Ω \cdot ±250 V							
Connector	2. contact mode for each pin							
	1. $150 \text{ pF} \cdot 330 \Omega \cdot \pm 15 \text{K V}$							
Module	2. Air mode, test 25 times for each test point							
	3. Contact mode, 25 times for each test point							

(4) Low Pressure test

TEST ITEM	CONDITION				
Low Pressure test(storage)	260HPa (30000 ft.); 24 Hr				

(5) Judgment standard

The judgment of the above test should be made as follow:

Pass: Normal display image with no obvious non-uniformity and no line defect. Partial transformation of the module parts should be ignored.

Fail: No display image, obvious non-uniformity, or line defects.