1 Однослойная сеть

Для оценки точности построенной модели использовалось расстояние Хэмминга.

$$f(x,y) = \sum x_i \oplus y_i$$

Для обозначения задачи использовались следующие функции:

$$gost(x)$$
 - итерация ГОСТ 28147,

$$LE(x) = x_1$$
, где $x = x_1 || x_2$.

Рассматривались следующие частные случаи поставленной задачи:

1.
$$x = L||R$$
, где $L = 0^{32}, y = LB(gost(x)),$ где $y \in V^{32}$

2.
$$x = L||R$$
, где $R = 0^{32}, \ y = LB(gost(x)),$ где $y \in V^{32}$

3.
$$x = L||R$$
, где $R = 0^{32}$, $y = gost(x)$, где $y \in V^{64}$

4.
$$x = L||R, y = LB(gost(x)),$$
 где $y \in V^{32}$

5.
$$x = L||R, y = gost(x),$$
 где $y \in V^{64}$

6.
$$x = L||R, y = gost^2(x)$$
, где $y \in V^{64}$

7.
$$x = L||R, y = gost^3(x)$$
, где $y \in V^{64}$

Результаты:

Случай Расстояние

- 1. f(pred, real) = 0
- f(pred, real) = 7
- f(pred, real) = 7
- 4. f(pred, real) = 11
- 5. f(pred, real) = 11
- 6. f(pred, real) = 27
- 7. f(pred, real) = 31

2 Многослойная сеть

Рассматривались следующие частные случаи поставленной задачи:

1.
$$x = L||R, y = gost(x)$$
, где $y \in V^{64}$

2.
$$x = L||R, y = gost^2(x)$$
, где $y \in V^{64}$

3.
$$x = L||R, y = gost^3(x),$$
 где $y \in V^{64}$

```
Случай
        Расстояние
                             Кол-во слоев
         f(pred,real)=7\\
1.
                             1
         f(pred, real) = 4
                             2
1.
2.
         f(pred, real) = 29
                             1
2.
         f(pred, real) = 30
                             2
         f(pred, real) = 31
3.
                             1
         f(pred, real) = 31
                             2
3.
3.
         f(pred, real) = 31
```