Exercise 1	submitted by: Maulik Chhetri, Mahiem Agrawal, Subigya Paudel
On Front w	
O Non de terministico	ally parhihon w a maximum of
at a maximum	ally parhihon w a maximum of of n-1 places, (w)=n)
E check whether e	each partition of belongs to A.
	e parh'h'am belong to A, accept.
The rigidal.	
6 Stage 1 implies	that we are non determinishically
	ngo with different partitions.
polynomial bine	ition membership in A is in uning a non-deterministic bring
machine since 3 Therefore A#	HENP.
Exercise 2	
- Comput in topo	
before factorizing	19, let us give a simple language mal
L= Epol nha	us a factor y.
Now, I in NY sin	ce the factor can be used as a certifico
On Front a inter	Gen C. 1

Exercise 1 On input S O Non determinishically generate the set of integers a such mat Helements of G, x 5 3, and GI 45 1 Check it all the integers are prime and the product of all inleger is s 3 It tome accept, else reject. If P=NP, then the following computation would be done in polynomial time in a determinishic single take wring machine. Exercise 3 Chiving a ventier for PARTITION Imput (w, c), c= (B, C) 1) Test whether the set B, C is of the sahs from the following condition: BUC = w and ow = n, (8/1/F/=n. E) Tent whether 256(b) = 56(c). (3) It born conditions pan, then a crept. Else reject. Determining decidez. Venettron is a decider and to hing of the 1st and and care will both terminate. VPARTIION is verifier. If we of PARTITION, men there exist subjects Band Cruch, BUC=w and {35(b)= 3,5(c) 3herefore setting C to LB, C), oo. Lug c) is a capped by the verifier VPARTITION.

E) If there exist a c such that \(\lambda \, \c) is a cuepted by the verifier, then step 1 implies that \(\text{BUC} = \omega, \) and \(\text{B1+k1} = \text{n}, \text{when } \text{lw1=n}. \)

step 2 implies that \$16) = \$56) = > partition property.

Hence, we partition.

Polynomial time.

Step 1, to text whether whether potente buc = w, and |B|+ |c|=|w|, can be done in polynomial home.

companing each value of B in w and a in w will be bounded by O Cn2), n=|w|.

Rence it is in polynomial hime.