Since F is complete and $(f_0(x_n))$ is a Cauchy sequence in F, the sequence $(f_0(x_n))$ converges to some element of F; denote this element by f(x).

Step 2. Let us now show that f(x) does not depend on the sequence (x_n) converging to x. Suppose that (x'_n) and (x''_n) are two sequences of elements in E_0 converging to x. Then the mixed sequence

$$x'_0, x''_0, x'_1, x''_1, \ldots, x'_n, x''_n, \ldots,$$

also converges to x. It follows that the sequence

$$f_0(x'_0), f_0(x''_0), f_0(x'_1), f_0(x''_1), \ldots, f_0(x'_n), f_0(x''_n), \ldots,$$

is a Cauchy sequence in F, and since F is complete, it converges to some element of F, which implies that the sequences $(f_0(x'_n))$ and $(f_0(x''_n))$ converge to the same limit.

As a summary, we have defined a function $f: E \to F$ by

$$f(x) = \lim_{n \to \infty} f_0(x_n).$$

for any sequence (x_n) converging to x, with $x_n \in E_0$.

Step 3. The function f extends f_0 . Since every element $x \in E_0$ is the limit of the constant sequence (x_n) with $x_n = x$ for all $n \ge 0$, by definition f(x) is the limit of the sequence $(f_0(x_n))$, which is the constant sequence with value $f_0(x)$, so $f(x) = f_0(x)$; that is, f extends f_0 .

Step 4. We now prove that f is uniformly continuous. Since f_0 is uniformly continuous, for every $\epsilon > 0$, there is some $\eta > 0$ such that if $a, b \in E_0$ and $d(a, b) \leq \eta$, then $d(f_0(a), f_0(b)) \leq \epsilon$. Consider any two points $x, y \in E$ such that $d(x, y) \leq \eta/2$. We claim that $d(f(x), f(y)) \leq \epsilon$, which shows that f is uniformly continuous.

Let (x_n) be a sequence of points in E_0 converging to x, and let (y_n) be a sequence of points in E_0 converging to y. By the triangle inequality,

$$d(x_n, y_n) \le d(x_n, x) + d(x, y) + d(y, y_n) = d(x, y) + d(x_n, x) + d(y_n, y),$$

and since (x_n) converges to x and (y_n) converges to y, there is some integer p > 0 such that for all $n \ge p$, we have $d(x_n, x) \le \eta/4$ and $d(y_n, y) \le \eta/4$, and thus

$$d(x_n, y_n) \le d(x, y) + \frac{\eta}{2}.$$

Since we assumed that $d(x,y) \leq \eta/2$, we get $d(x_n,y_n) \leq \eta$ for all $n \geq p$, and by uniform continuity of f_0 , we get

$$d(f_0(x_n), f_0(y_n)) \le \epsilon$$

for all $n \geq p$. Since the distance function on F is also continuous, and since $(f_0(x_n))$ converges to f(x) and $(f_0(y_n))$ converges to f(y), we deduce that the sequence $(d(f_0(x_n), f_0(y_n)))$ converges to d(f(x), f(y)). This implies that $d(f(x), f(y)) \leq \epsilon$, as desired.