Theoretische Physik IV: Quantenmechanik (PTP4)

Universität Heidelberg Sommersemester 2021

Übungsblatt 10

Dozent: Prof. Dr. Matthias Bartelmann

Obertutor: Dr. Carsten Littek

Besprechung in den virtuellen Übungsgruppen in der Woche 21. - 25. Juni 2021 Bitte geben Sie maximal 2 Aufgaben per Übungsgruppensystem zur Korrektur an Ihre Tutorin / Ihren Tutor! Nutzen Sie dazu den Link https://uebungen.physik.uni-heidelberg.de/h/1291

1. Verständnisfragen

- a) Erläutern Sie, wieso der Hamilton-Operator für geladene Teilchen in elektromagnetischen Feldern von dem Viererpotential A^{μ} abhängt. Kann das Vektorpotential gemessen werden? Begründen Sie Ihre Antwort.
- b) Worin besteht die Dipolnäherung, und warum ist sie in vielen Fällen akzeptabel?
- c) Inwiefern geht die Eichung des elektromagnetischen Feldes in den Hamilton-Operator ein?

2. Exponentialfunktion und Leiteroperatoren

Wir wollen uns im Zusammenhang mit kohärenten Zuständen des harmonischen Oszillators (vgl. Übungsblatt 7) mit der Exponentialfunktion für Auf- und Absteigeoperatoren beschäftigen.

(a) Zeigen Sie explizit mittels der Reihendarstellung der Exponentialfunktion für Operatoren, dass

$$a e^{za^{\dagger}} = z e^{za^{\dagger}} + e^{za^{\dagger}} a$$

gilt. Hier ist $z \in \mathbb{C}$ und a, a^{\dagger} sind die Leiteroperatoren des harmonischen Oszillators.

(b) Zeigen Sie, dass sich die kohärenten Zustände, die Sie auf Übungsblatt 7 kennengelernt haben, mittels des unitären Operators $\hat{D}(z) \equiv e^{za^{\dagger}-z^*a}$ aus dem Vakuum erzeugen lassen, also dass $\hat{D}(z)|0\rangle = |z\rangle = e^{-|z|^2/2}e^{z\hat{a}^{\dagger}}|0\rangle$.

Hinweis: Benutzen Sie die Baker-Campbell-Hausdorff Formel, deren Spezialfälle Sie auf Übungsblatt 2 diskutiert haben.

3. Dreidimensionaler isotroper harmonischer Oszillator

Betrachten Sie ein Teilchen der Masse \tilde{m} im dreidimensionalen Oszillatorpotenzial

$$V(\vec{x}) = \frac{1}{2}\tilde{m}\omega^2\vec{x}^2.$$

Der Hamiltonoperator des Systems ist gegeben durch

$$\hat{H} = \sum_{i=1}^{3} \hat{H}_i \quad \text{mit} \quad \hat{H}_i = \frac{\hat{p}_i^2}{2\tilde{m}} + \frac{1}{2}\tilde{m}\omega^2\hat{x}_i^2.$$

Ist \mathcal{H}_i der Zustandsraum des Variablenpaares $\{\hat{p}_i, \hat{x}_i\}$, so ist der Zustandsraum des Gesamtsystems gegeben durch das Tensorprodukt $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_3$. Man definiert nun für jedes Variablenpaar $\{\hat{x}_i, \hat{p}_i\}$ analog zum eindimensionalen Fall Auf- und Absteigeoperatoren

$$\hat{a}_{i}^{\dagger} = \frac{1}{\sqrt{2\hbar}} \left(\sqrt{\tilde{m}\omega} \, \hat{x}_{i} - \frac{\mathrm{i}}{\sqrt{\tilde{m}\omega}} \, \hat{p}_{i} \right) \qquad \text{und} \qquad \hat{a}_{i} = \frac{1}{\sqrt{2\hbar}} \left(\sqrt{\tilde{m}\omega} \, \hat{x}_{i} + \frac{\mathrm{i}}{\sqrt{\tilde{m}\omega}} \, \hat{p}_{i} \right).$$

Diese erfüllen die Vertauschungsrelationen

$$\left[\hat{a}_{i},\hat{a}_{j}\right]=\left[\hat{a}_{i}^{\dagger},\hat{a}_{j}^{\dagger}\right]=0$$
 und $\left[\hat{a}_{i},\hat{a}_{j}^{\dagger}\right]=\delta_{ij}$.

Die zugehörigen Teilchenzahloperatoren sind gegeben durch $\hat{N}_i = \hat{a}_i^{\dagger} \hat{a}_i$. Sind $|n_i\rangle$ die Eigenvektoren des Hamiltonoperators \hat{H}_i , so bilden $|n_1 n_2 n_3\rangle = |n_1\rangle \otimes |n_2\rangle \otimes |n_3\rangle$ in \mathcal{H} ein vollständiges Orthonormalsystem. Ist $|000\rangle$ der Eigenvektor des Grundzustands, so ist

$$\hat{a}_{1} |000\rangle = \hat{a}_{2} |000\rangle = \hat{a}_{3} |000\rangle = 0,$$

$$|n_{1}n_{2}n_{3}\rangle = \frac{1}{\sqrt{n_{1}!n_{2}!n_{3}!}} \left(\hat{a}_{1}^{\dagger}\right)^{n_{1}} \left(\hat{a}_{2}^{\dagger}\right)^{n_{2}} \left(\hat{a}_{3}^{\dagger}\right)^{n_{3}} |000\rangle.$$

Aus der Vorlesung wissen Sie, dass bei einem Zentralpotenzial \hat{H} , \hat{L}^2 und \hat{L}_3 auch einen vollständigen Satz kommutierender Observabler bilden. Die gemeinsamen Eigenvektoren sind durch die Quantenzahlen n, ℓ und m gekennzeichnet mit den zugehörigen Eigenwerten E_n , $\hbar^2 \ell(\ell+1)$ und $\hbar m$. Die Zustände $|n\ell m\rangle$ ergeben sich aus den Zuständen $|n_1 n_2 n_3\rangle$ durch unitäre Transformation.

a) Drücken Sie die Operatoren \hat{L}_1 , \hat{L}_2 und \hat{L}_3 durch die Operatoren \hat{a}_i^{\dagger} und \hat{a}_i aus.

Betrachten Sie die Zustände mit der Energie $E = \hbar\omega \left(1 + \frac{3}{2}\right)$. Die zugehörigen Eigenvektoren von \hat{H} in der $|n_1n_2n_3\rangle$ Darstellung sind dann $|100\rangle$, $|010\rangle$, $|001\rangle$. Diese bilden eine Basis des Unterraumes der Eigenvektoren von \hat{H} zum Eigenwert $E = \frac{5}{2}\hbar\omega$.

- b) Geben Sie die Matrix an, die dem Operator \hat{L}_3 bezüglich dieser Basis zugeordnet ist und bestimmen Sie die zugehörigen Eigenwerte und Eigenvektoren von \hat{L}_3 als Linearkombinationen der Zustände $|100\rangle$, $|010\rangle$, $|001\rangle$.
- c) Zeigen Sie, dass die in b) konstruierten Eigenvektoren von \hat{L}_3 auch Eigenvektoren von \hat{L}^2 zum Eigenwert $2\hbar^2$ sind (d.h. also, dass $\ell=1$ ist). Drücken Sie dazu \hat{L}^2 durch \hat{a}_i^{\dagger} und \hat{a}_i aus und wenden Sie \hat{L}^2 dann direkt auf die Eigenvektoren an.
- d) Geben Sie die Ortsraumdarstellung der Zustände $|100\rangle$, $|010\rangle$ und $|001\rangle$ an und zeigen Sie, dass die in b) als Eigenvektoren von \hat{L}_3 konstruierten Linearkombinationen dieser Funktionen tatsächlich

$$\psi_{1m}(r,\vartheta,\varphi) = Cr e^{-\alpha^2 r^2/2} Y_{1m}(\vartheta,\varphi)$$

mit C = const., $m = \{0, \pm 1\}$ und $\alpha = \sqrt{\tilde{m}\omega/\hbar}$ ergeben.

4. Algebraische Herleitung des Wasserstoff-Spektrums

Das Coulomb-Potential (und damit das Wasserstoff-Problem) besitzt eine verborgene Symmetrie, die es erlaubt, das Spektrum rein algebraisch herzuleiten. Diese Herleitung wollen wir hier durchführen. Konsequenz der verborgenen Symmetrie, die nur beim Coulomb-Potential auftritt, ist die Existenz einer zusätzlichen Erhaltungsgröße, des Lenz'schen Vektors*

$$\hat{\vec{F}} = \frac{1}{2m} \left(\hat{\vec{p}} \times \hat{\vec{L}} - \hat{\vec{L}} \times \hat{\vec{p}} \right) - \frac{Ze^2}{r} \hat{\vec{x}}.$$

Dieser Vektor ist hermitesch (überzeugen Sie sich davon), vertauscht mit dem Hamilton-Operator des Coulomb-Problems und ist senkrecht zum Drehimpuls.

^{*}Wir bleiben bei der Notation von Zettel 9. Beachten Sie, dass im Vorlesungsskript der Lenz'sche Vektor als $\hat{\vec{Q}} = \hat{\vec{F}}/(Ze^2)$ in Gleichung (9.59) definitiert ist.

a) Zeigen Sie folgende Relationen:

$$\begin{split} \hat{\vec{x}} \cdot \left(\hat{\vec{p}} \times \hat{\vec{L}} \right) &= \hat{\vec{L}}^2 \\ \left(\hat{\vec{p}} \times \hat{\vec{L}} \right) \cdot \hat{\vec{x}} &= \hat{\vec{L}}^2 + 2i\hbar \hat{\vec{p}} \cdot \hat{\vec{x}} \\ \left(\hat{\vec{p}} \times \hat{\vec{L}} \right)^2 &= \hat{\vec{p}}^2 \hat{\vec{L}}^2 \\ \hat{\vec{p}} \cdot \left(\hat{\vec{p}} \times \hat{\vec{L}} \right) &= 0 \\ \left(\hat{\vec{p}} \times \hat{\vec{L}} \right) \cdot \hat{\vec{p}} &= 2i\hbar \hat{\vec{p}}^2 \end{split}$$

und nutzen Sie diese um $\hat{\vec{F}}^2$ darzustellen als

$$\hat{\vec{F}}^2 = \frac{2}{m}\hat{H}(\hat{\vec{L}}^2 + \hbar^2) + Z^2e^4.$$

Laut dieser Darstellung lassen sich die Energieeigenwerte, d.h. die Eigenwerte vom Hamilton-Operator \hat{H} , aus den Eigenwerten von $\hat{\vec{F}}^2$ berechnen.

b) Im Folgenden wollen wir zeigen, dass $\hat{\vec{L}}$ und $\hat{\vec{F}}$ eine geschlossene Algebra bilden, die \hat{H} involviert. Leiten Sie dazu folgende Kommutator-Relationen her

$$\left[\hat{F}_{i},\hat{F}_{j}\right] = -\frac{2i\hbar}{m}\epsilon_{ijk}\hat{H}\hat{L}_{k}, \qquad \left[\hat{L}_{i},\hat{F}_{j}\right] = i\hbar\epsilon_{ijk}\hat{F}_{k}$$

her.

c) In Abschnitt 9.2.4 im Vorlesungsskript finden Sie die Operatoren

$$\hat{\vec{U}} = \frac{1}{2} \left(\hat{\vec{L}} + \sqrt{-\frac{m}{2\hat{H}}} \hat{\vec{F}} \right), \qquad \hat{\vec{V}} = \frac{1}{2} \left(\hat{\vec{L}} - \sqrt{-\frac{m}{2\hat{H}}} \hat{\vec{F}} \right)$$

Zeigen Sie

$$\left[\hat{U}_i, \hat{U}_j\right] = \mathrm{i}\hbar \epsilon_{ijk} U_k, \qquad \left[\hat{V}_i, \hat{V}_j\right] = \mathrm{i}\hbar \epsilon_{ijk} \hat{V}_k, \qquad \left[\hat{U}_i, \hat{V}_j\right] = 0.$$

Diese Vertauschungsrelationen entsprechen Algebren zweier unabhängiger Drehgruppen, $SO(3) \times SO(3)$. Diese Symmetrie ist (lokal) isomorph zu O(4).

d) Argumentieren Sie, dass die möglichen Eigenwerte der Operatoren $\hat{\vec{U}}$ und $\hat{\vec{V}}$ nur die Werte $\hbar u(u+1)$ bzw $\hbar v(v+1)$ mit $u,v\in\mathbb{N}_0/2$ annehmen können. Zeigen Sie, dass

$$\hat{\vec{U}}^2 = \hat{\vec{V}}^2 = \frac{1}{4} \left(\hat{\vec{L}}^2 + \left(-\frac{m}{2\hat{H}} \right) \hat{\vec{F}}^2 \right)$$

und daher u = v gilt.

e) Wenden Sie nun $\hat{\vec{U}}^2$ auf Eigenzustände des Hamilton-Operators zum Eigenwert E an. Benutzen Sie die Relation aus Teil a), um daraus die möglichen Werte von E zu bestimmen. Bringen Sie schließlich das Ergebnis auf die bekannte Form mit der Hauptquantenzahl n.