

TO:

DATE : Dec 3, 2002

SAMSUNG TFT-LCD

MODEL NO.: LTN106W1-L01

NOTE :
Any Modification of Spec is not allowed without SEC's permission.
PREPARED BY :
Technical Customer Service Team

SAMSUNG ELECTRONICS CO., LTD.

Application Engineering 1Group

Doc.No.	LTN106W1-L01	Rev.No	04-001-G-010925	Page	1 /24
---------	--------------	--------	-----------------	------	-------

CONTENTS

Record Of Revision	(3)
General Description	(4)
 Absolute Maximum Ratings 1.1 Absolute Ratings of Environment 1.2 Electrical Absolute Maximum Ratings 	(5)
2. Optical Characteristics	(7)
3. Electrical Characteristics3.1 TFT LCD Module3.2 Back Light Unit	(10)
4. Block Diagram4.1 TFT LCD Module4.2 Back Light Unit	(13)
 Input Terminal Pin Assignment Input Signal & Power LVDS Interface:Transmitter Back Light Unit Timing Diagrams of LVDS for Transmissio Input Signals, Basic Display Colors and Grand Signal Pixel Format 	
6. Interface Timing6.1 Timing Parameters(DE MODE)6.2 Timing Diagrams of interface Signal (DE Mode)6.3 Power ON/OFF Sequence	(20) MODE)
7. Outline Dimension	(22)
8. General Precaution	(23)

REVISION HISTORY

Preliminary

Date	Rev.No.	Page		Summary			
Feb. 23, 2001		All	LTN106WX	GA model was First issued.			
Date Feb. 23, 2001 Sept 25,2001	Rev.No. 000 001			Summary GA model was First issued. ata sheet was fixed.			
Doc.No.	LTN106	W1-L01	Rev.No	04-001-G-010925	Page	3	/24

GENERAL DESCRIPTION

DESCRIPTION

LTN106W1-L01 is a color active matrix TFT (Thin Film Transistor) liquid crystal display (LCD) that uses amorphous silicon TFT as a switching devices. This model is composed of a TFT LCD panel, a driver circuit, a back-light system. The resolution of a 10.6 " contains 1280 x 768 pixels and can display up to 262,144colors. 6 o'clock direction is the optimum viewing angle.

FEATURES

- Thin and light weight
- High contrast ratio, high aperture structure
- WXGA (1280x768 pixels) resolution
- Low power consumption
- Single CCFL
- DE(Data enable) only mode
- 3.3V LVDS Interface (1chip)

APPLICATIONS

- Notebook PC
- Display terminals for AV application products
- Monitors for Industrial machine
- If the usage of this product is not for PC application, but for others, please contact SEC

GENERAL INFORMATION

ITEM	SPECIFICATION	UNIT	NOTE
Display area	230.4(H) x 138.24(V) (10.6" diagonal)	mm	
Driver element	a-Si TFT active matrix		
Display colors	262,144		
Number of pixel	1280 x 768	pixel	
Pixel arrangement	RGB vertical stripe		
Pixel pitch	0.180(H) x 0.180(V)	mm	
Display Mode	Normally white		
Surface treatment	HAZE 25, HARD-COATING 3H		

Doc.No.	LTN106W1-L01	Rev.No	04-001-G-010925	Page	4 /24
---------	--------------	--------	-----------------	------	-------

Mechanical Information

ITEM		MIN.	TYP.	MAX.	NOTE
	Horizontal (H)	242.9	243.4	243.9	
Module size	Vertical (V)	151.5	152.0	152.5	
3126	Depth (D)	-	-	6.0	
Weight		-	260	275	

1. ABSOLUTE MAXIMUM RATINGS

1.1 ENVIRONMENTAL ABSOLUTE RATINGS

ITEM	SYMBOL	MIN.	MAX.	UNIT	NOTE
Storage temperature	T _{STG}	-25	60	°C	(1)
Operating temperature (Temperature of glass surface)	T _{OPR}	0	50	°C	(1)
Shock (non-operating)	Snop	•	220	G	(2),(4)
Vibration (non-operating)	Vnop	-	1. 5	G	(3),(4)

Note (1) Temperature and relative humidity range are shown in the figure below. 95 % RH Max. (40°C ≥ Ta) Maximum wet - bulb temperature at 39°C or less. (Ta > 40°C) No condensation.

- (2) 220G, 2ms, Half sine wave, one time for $\pm X$, $\pm Y$, $\pm Z$ axis
- (3) 10 ~ 300 ~ 10 Hz, Sweep rate 10min, 30min for X, Y,Z axis
- (4) At testing Vibration and Shock, the fixture in holding the Module to be tested have to be hard and rigid enough so that the Module would not be twisted or bent by the fixture.

Doc.No.	LTN106W1-L01	Rev.No	04-001-G-010925	Page	5 /2	24
---------	--------------	--------	-----------------	------	------	----

1.2 ELECTRICAL ABSOLUTE RATINGS

(1) TFT LCD MODULE

(Vss = GND = 0 V)

ITEM	SYMBOL	MIN.	MAX.	UNIT	NOTE
Power Supply Voltage	Vcc	Vss-0.3	4.0	V	(1)
Logic Input Voltage	Vin	Vss-0.3	Vcc + 0.3	V	(1)

NOTE (1) Within Ta ($25\pm2~^{O}C$)

(2) MTBF: (50000Hr) (except for back-light lamp)

(2) BACK-LIGHT UNIT

 $Ta = 25 \pm 2 \, ^{\circ}C$

ITEM	SYMBOL	MIN.	MAX.	UNIT.	NOTE
Lamp current	lL	3.0	6.5	mArms	(1)
Lamp frequency	FL	50	80	KHz	(1)

NOTE (1) Permanent damage to the device may occur if maximum values are exceeded.

Functional operation should be restricted to the conditions described under Normal Operating Conditions.

2. OPTICAL CHARACTERISTICS

The following items are measured under stable conditions. The optical characteristics should be measured in a dark room or equivalent state with the methods shown in Note (5). Measuring equipment: TOPCON BM-5A

* Ta = 25 ± 2 °C , VDD=3.3V, fv= 60Hz, fbclk=41MHz, IL = 5.0 mA

ITEM	I	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT	NOTE
Contrast Ratio (5 Points)		CR		150	250	-		(1), (2), (5)
Response	Rising	TR		-	10	20	msec	(1), (3)
Time at Ta	Falling	TF		-	30	50	msec	(1), (3)
Average Lui of White (5		Y L,AVE	φ = 0,	165	185	-	cd/m²	(1), (4) at 5mA
	Red	Rx	$\theta = 0$	0.570	0.600	0.630		
		Ry	Normal	0.316	0.346	0.376		
	Green	Gx	Viewing Angle	0.287	0.317	0.347		
Color Chromaticity		G _Y		0.486	0.516	0.546		(1), (5)
(CIE)	Blue	Вх		0.124	0.154	0.184		PR650
		By		0.096	0.126	0.156		
	White	Wx		0.300	0.330	0.360		
		WY		0.310	0.340	0.370		
		θ∟		45	-	-		
Viewing Angle	Hor.	θк	CR(at center point)	45	-	-		(1) (-)
Angle		фн	≥ 10	15	-	-	Degrees	(1), (5)
	Ver.	фь		30	-	-		
13 Points White Variation		δL		-	-	1.75		(6)

Doc.No.	LTN106W1-L01	Rev.No	04-001-G-010925	Page	7 /24
---------	--------------	--------	-----------------	------	-------

Note 1) Definition of Viewing Angle:

Note 2) Definition of Contrast Ratio (CR):

$$CR = \frac{CR1 + CR2 + CR3 + CR4 + CR5}{5}$$

POINTS: (4), (5), (7), (9), (10) at FIGURE OF NOTE (6)

Note 4) Definition of Average Luminance of White: measure the luminance of white at 5 points.

Average Luminance of White (Y L,AVE)

$$Y_{L,AVE} = \frac{Y_{L4} + Y_{L5} + Y_{L7} + Y_{L9} + Y_{L10}}{5}$$

POINTS: 4, 5, 7, 9, 10 at FIGURE OF NOTE 6)

Note 5) After stabilizing and leaving the panel alone at a given temperature for 30 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room.

30 minutes after lighting the back-light. This should be measured in the center of screen.

Lamp current: 5.0 mA

Environment condition : Ta = 25 ± 2 °C

Optical characteristics measurement setup

Note 6) Definition of 13 points white variation (δ_W) [1 ~ 13]

 δ L = $\frac{\text{Maximum luminance of 13 points}}{\text{Minimum luminance of 13 points}}$

Doc.No.	LTN106W1-L01	Rev.No	04-001-G-010925	Page	9 /24
---------	--------------	--------	-----------------	------	-------

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

 $Ta = 25 \pm 2$ °C

ITEM		SYMBOL	MIN	TYP	MAX	UNIT	NOTE
Voltage of Power	Supply	V _{DD}	V _{DD} 3.0 3.3 3.6 V		V		
Differential Input	High	ViH	-	-	+100	mV	(4)
Voltage for LVDS Receiver Threshold	Low	VıL	-100	-	-	mV	(1)
Vsync Frequency		fv	-	60	-	Hz	
Hsync Freque	ncy	fн	-	48.2	-	KHz	
Main Frequer	псу	fdclk	-	41	-	MHz	
Rush Curre	nt	Irush	-	-	1.5	Α	(4)
	White		-	310	-	mA	(2),(3)*a
Current of Power Supply	Mosaic	IDD	-	330	-	mA	(2),(3)*b
	Maximum current		-	360	430	mA	(2),(3)*c

Note (1) Condition: VCM=+1.2V(Common mode Voltage)

- (2) $f_V=60Hz$, $f_{DCLK}=41MHz$, Vdd=3.3V, DC Current.
- (3) Power dissipation check pattern

*c) Maximum Power pattern: 1dot Inversion

(4) Rush current measurement condition

VDD rising time is 470us

3.2 BACK-LIGHT UNIT

The backlight system is an edge - lighting type with a single CCFT (Cold Cathode Fluorescent Tube). The characteristics of a single lamp are shown in the following tables.

TEST INVERTER: SIC130T(f=60kHz)

 $Ta = 25 \pm 2^{\circ}C$

ITEM	SYMBOL	MIN	TYP	MAX	UNIT	NOTE
Lamp Current	lι	3.0	5.0	5.5	mArms	(1)
Lamp Voltage	VL	1	545	-	Vrms	I∟=5.0mA
Frequency	f∟	50	•	60	KHz	(2)
Power Consumption	PL	-	2.5	-	W	(3) l _L =5.0mA
Lamp Operating Life Time	Hr	10,000	-	-	Hour	(4)
Startup Voltage	Vs		-	1100	Vrms	25°C
Ciartap Vollage	VS	-	-	1400	Vrms	0°C
Lamp Startup Time	Vs	-	-	1	sec	(5)

Note) The waveform of the inverter output voltage must be area symmetric and the design of the inverter must have specifications for the modularized lamp.

The performance of the backlight, for example life time or brightness, is much influenced by the characteristics of the DC-AC inverter for the lamp. So all the parameters of an inverter should be carefully designed so as not to produce too much leakage current from high-voltage output of the inverter. When you design or order the inverter, please make sure that a poor lighting caused by the mismatch of the back-light and the inverter(miss lighting, flicker, etc.) never occur. When you confirm it, the module should be operated in the same condition as it is installed in your instrument.

Note (1) Lamp current is measured with a high frequency current meter as shown below.

- (2) Lamp frequency may produce interference with horizontal synchronous frequency and this may cause line flow on the display. Therefore lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible in order to avoid interference.
- (3) refer to I_L * V_L to calculate.
- (4) Life time (Hr) of a lamp can be defined as the time in which it continues to operate under the condition $Ta = 25 \pm 2^{\circ}C$ and $I_{\perp} = 5.0$ mArms until one of the following event occurs.
 - 1. When the brightness becomes 50% or lower than it's original.
 - 2. When the Effective ignition length becomes 80% or lower than it's original value. (Effective ignition length is defined as an area that has less than 70% brightness compared to the brightness in the center point.)
- (5) The voltage above this value should be applied to the lamp for more than 1 second to startup Otherwise the lamp may not be turned on.

Doc.No.	LTN106W1-L01	Rev.No	04-001-G-010925	Page	12 /24
---------	--------------	--------	-----------------	------	--------

5. INPUT TERMINAL PIN ASSIGNMENT

5.1. Input Display Signal & Power (LVDS, Connector: FI-XB30S-HF10 or compatible)

PIN NO	SYMBOL	FUNCTION	POLARITY	REMARK
1	GND1	Ground		
2	VDD	Power Supply +3.3V		
3	VDD	Power Supply +3.3V		
4	N.G	No Connection		
5	N.G	No Connection		
6	GND2	Ground		
7	GND3	Ground		
8	(Odd)RxIN0-	LVDS Differential Data Input	Negative	R0-R5
9	(Odd)RxIN0+	LVDS Differential Data Input	Positive	G0
10	GND4	Ground		
11	(Odd)RxIN1-	LVDS Differential Data Input	Negative	G1-G5
12	(Odd)RxIN1+	LVDS Differential Data Input	Positive	B0-B1
13	GND5	Ground		
14	(Odd)RxIN2-	LVDS Differential Data Input	Negative	B2-B5
15	(Odd)RxIN2+	LVDS Differential Data Input	Positive	HS,VS,DE
16	GND6	Ground		
17	(Odd)RxClkIN-	LVDS Differential Clock Input	Negative	
18	(Odd)RxClkIN+	LVDS Differential Clock Input	Positive	1
19	GND7	Ground		
20	(Even)RxIN0-	LVDS Differential Data Input	Negative	R0-R5
21	(Even)RxIN0+	LVDS Differential Data Input	Positive	G0
22	GND8	Ground		
23	(Even)RxIN1-	LVDS Differential Data Input	Negative	G1-G5
24	(Even)RxIN1+	LVDS Differential Data Input	Positive	B0-B1
25	GND9	Ground		
26	(Even)RxIN2-	LVDS Differential Data Input	Negative	B2-B5
27	(Even)RxIN2+	LVDS Differential Data Input	Positive	HS,VS,DE
28	GND10	Ground		
29	(Even)RxClkIN-	LVDS Differential Clock Input	Negative	
30	(Even)RxClkIN+	LVDS Differential Clock Input	Positive	

Doc.No. LTN106W1-L01 Rev.No 04-001	-G-010925 Page 14 /24
--	------------------------------

5.2 LVDS Interface : Transmitter DS90C363 or Compatible

LVDS For Odd Pixel

Pin No.	Name	RGB Signal	Pin No.	Name	RGB Signal
44	TxIN0	R00	12	TxIN11	G05
45	TxIN1	R01	13	TxIN12	B00
47	TxIN2	R02	15	TxIN13	B01
48	TxIN3	R03	16	TxIN14	B02
1	TxIN4	R04	18	TxIN15	B03
3	TxIN5	R05	19	TxIN16	B04
4	TxIN6	G00	20	TxIN17	B05
6	TxIN7	G01	22	TxIN18	Hsync
7	TxIN8	G02	23	TxIN19	Vsync
9	TxIN9	G03	25	TxIN20	DE
10	TxIN10	G04	26	TxCLK IN	Clock

LVDS For Even Pixel

Pin No.	Name	RGB Signal	Pin No.	Name	RGB Signal
44	TxIN0	RE0	12	TxIN11	GE5
45	TxIN1	RE1	13	TxIN12	BE0
47	TxIN2	RE2	15	TxIN13	BE1
48	TxIN3	RE3	16	TxIN14	BE2
1	TxIN4	RE4	18	TxIN15	Be3
3	TxIN5	RE5	19	TxIN16	BE4
4	TxIN6	GE0	20	TxIN17	BE5
6	TxIN7	GE1	22	TxIN18	Hsync
7	TxIN8	GE2	23	TxIN19	Vsync
9	TxIN9	GE3	25	TxIN20	DE
10	TxIN10	GE4	26	TxCLK IN	Clock

Doc.No.	LTN106W1-L01	Rev.No	04-001-G-010925	Page	15 /24
---------	--------------	--------	-----------------	------	--------

LVDS INTERFACE

5.3 BACK LIGHT UNIT

Connector: JST BHSR - 02VS -1 Mating Connector: JST SM02B-BHSS-1

Pin NO.	Symbol	Color	Function						
1	НОТ	PINK	High Voltage						
2	COLD	WHITE	Low Voltage						

5.4 Timing Diagrams of LVDS For Transmission

5.5 Input Signal, Basic Display Colors and Gray Scale of Each Colors

									DA	TA S	SIGN	NAL								GRAY
COLOR	DISPLAY			RE	D					GRE	EN					BLU	E			SCALE
		R0	R1	R2	R3	R4	R5	G0	G1	G2	G3	G4	G5	В0	В1	В2	В3	В4	В5	LEVEL
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	BLUE	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	-
	GREEN	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	-
BASIC	CYAN	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	-
COLOR	RED	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	-
	MAGENTA	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1	-
	YELLOW	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	-
	WHITE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R0
	DARK	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R1
GRAY	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R2
SCALE OF		<u>:</u>	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	R3~R60
RED	\downarrow	<u>:</u> 1	0	1	1	1	1	0	0	. 0	: 0	: 0	0	0	0	0	0	0	0	R61
	LIGHT	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	R62
	RED	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	R63
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G0
	DARK	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	G1
GRAY	DAKK ↑	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	G2
SCALE	·	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
OF		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	G3~G60
GREEN	\downarrow	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0	G61
	LIGHT	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	G62
	GREEN	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	G63
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	В0
	DARK	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	B1
GRAY	\uparrow	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	B2
SCALE		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	B3~B60
OF	1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	50 500
BLUE	↓ c⊔T	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	B61
	LIGHT	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	B62
	BLUE	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	B63

Note

(1) Definition of Gray: Rn: Red Gray, Gn: Green Gray, Bn: Blue Gray (n = Gray level)

(2) Input Signal: 0 = Low level voltage, 1 = High level voltage

Doc.No.	LTN106W1-L01	Rev.No	04-001-G-010925	Page	18 /24	
---------	--------------	--------	-----------------	------	--------	--

6. INTERFACE TIMING

6.1 Timing Parameters

Signal	Item	Symbol	MIN	TYP	MAX	Unit	Note
Frame Frequency	Cycle	T_{v}	772	806	1000	lines	
Vertical Active Display Term	Display Period	T _{VD}		768		lines	
One Line Scanning Time	Cycle	$\mathrm{T_{H}}$	670	844	875	clocks	
Horizontal Active Display Term	Display Period	$T_{ m HD}$		640		clocks	

6.2 Timing diagrams of interface signal

6.3 Power ON/OFF Sequence

: To prevent a latch-up or DC operation of the LCD module, the power on/off sequence shall be as shown below.

Power ON/OFF Sequence

T1: Vdd rising time from 10% to 90%

T2: The time from Vdd to valid data at power ON.

T3: The time from valid data off to Vdd off at power Off.

T4: Vdd off time for Windows restart

T5: The time from valid data to B/L enable at power ON.

T6: The time from valid data off to B/L disable at power Off.

NOTE.

- (1) The supply voltage of the external system for the module input should be the same as the definition of VDD.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become white.
- (3) In case of VDD = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

Doc.No.	LTN106W1-L01	Rev.No	04-001-G-010925	Page	21 /24
---------	--------------	--------	-----------------	------	--------

7. Mech	anical Outline Dim	nension		Pr	elimin	ary
[Refer to the next pag	e]				
					_	
Doc.No.	LTN106W1-L01	Rev.No	04-001-G-010925		Page	22 /24

8. GENERAL PRECAUTIONS

1. Handling

- (a) When the module is assembled, It should be attached to the system firmly using every mounting holes. Be careful not to twist and bend the modules.
- (b) Refrain from strong mechanical shock and / or any force to the module. In addition to damage, this may cause improper operation or damage to the module and CCFT back-light.
- (c) Note that polarizers are very fragile and could be easily damaged. Do not press or scratch the surface harder than a HB pencil lead.
- (d) Wipe off water droplets or oil immediately. If you leave the droplets for a long time, Staining and discoloration may occur.
- (e) If the surface of the polarizer is dirty, clean it using some absorbent cotton or soft cloth.
- (f) The desirable cleaners are water, IPA(Isoprophyl Alcohol) or Hexane.
 Do not use Keptone type materials(ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.
- (g) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, legs or clothes, it must be washed away thoroughly with soap.
- (h) Protect the module from static, it may cause damage to the C-MOS Gate Array IC.
- (i) Use fingerstalls with soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (j) Do not disassemble the module.
- (k) Do not pull or fold the lamp wire.
- (I) Do not adjust the variable resistor which is located on the back side.
- (m) Protection film for polarizer on the module shall be slowly peeled off just before use so that the electrostatic charge can be minimized.
- (n) Pins of I/F connector shall not be touched directly with bare hands.

2. STORAGE

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35 °C and relative humidity of less than 70%.
- (b) Do not store the TFT-LCD module in direct sunlight.
- (c) The module shall be stored in a dark place. It is prohibited to apply sunlight or fluorescent light during the store.

3. OPERATION

- (a) Do not connect, disconnect the module in the "Power On" condition.
- (b) Power supply should always be turned on/off by following item 6.3 "Power on/off sequence ".
- (c) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference.
- (d) The cable between the backlight connector and its inverter power supply shall be a minimized length and be connected directly. The longer cable between the backlight and the inverter may cause lower luminance of lamp(CCFT) and may require higher startup voltage(Vs).

4. OTHERS

- (a) Ultra-violet ray filter is necessary for outdoor operation.
- (b) Avoid condensation of water. It may result in improper operation or disconnection of electrode.
- (c) Do not exceed the absolute maximum rating value. (the supply voltage variation, input voltage variation, variation in part contents and environmental temperature, so on) Otherwise the module may be damaged.
- (d) If the module displays the same pattern continuously for a long period of time, it can be the situation when the image "sticks" to the screen.
- (e) This module has its circuitry PCB s on the rear side and should be handled carefully in order not to be stressed.