Потоковый анализ

(Data-flow analysis)

Потоковый анализ

Потоковый анализ (Data flow analysis)

- Статический
- Глобальный (весь CFG)
- Зависит от потока управления
- Вычисление свойств исполнения программы
- Единая формальная модель и теория

Примеры

- Reaching definitions (use-def links)
- Liveness analysis
- Constant propagation
- Constant subexpression elimination
- Dead code elimination

CFG

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- Направление анализа $D = \{\downarrow, \uparrow\}$
- Полурешетка свойств $\langle L, \wedge \rangle$
- ullet Потоковые функции $f_{v \in V}: L o L$
- ullet Начальное значение $\mathit{in}(v_{\mathit{entry}})$ или $\mathit{out}(v_{\mathit{exit}})$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D = \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$
- ullet Потоковые функции $f_{v \in V}: L o L$
- ullet Начальное значение $in(v_{entry})$ или $out(v_{exit})$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D = \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$
- ullet Потоковые функции $f_{v \in V}: L o L$
- ullet Начальное значение $in(v_{entry})$ или $out(v_{exit})$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D = \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$
- ullet Потоковые функции $f_{v \in V}: L o L$
- ullet Начальное значение $\mathit{in}(v_{\mathit{entry}})$ или $\mathit{out}(v_{\mathit{exit}})$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- Направление анализа $D = \{\downarrow, \uparrow\}$
- Полурешетка свойств $\langle L, \wedge \rangle$
- Потоковые функции $f_{v \in V} : L \to L$
- ullet Начальное значение $\mathit{in}(v_{\mathit{entry}})$ или $\mathit{out}(v_{\mathit{exit}})$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D = \{\downarrow,\uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$
- ullet Потоковые функции $f_{v \in V}: L o L$
- ullet Начальное значение $\mathit{in}(v_{\mathit{entry}})$ или $\mathit{out}(v_{\mathit{exit}})$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- Направление анализа $D = \{\downarrow, \uparrow\}$
- Полурешетка свойств $\langle L, \wedge \rangle$
- ullet Потоковые функции $f_{v \in V}: L o L$
- ullet Начальное значение $\mathit{in}(v_{\mathit{entry}})$ или $\mathit{out}(v_{\mathit{exit}})$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D = \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$
- ullet Потоковые функции $f_{v \in V}: L o L$
- ullet Начальное значение $in(v_{entry})$ или $out(v_{exit})$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D = \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$
- ullet Потоковые функции $f_{v \in V}: L o L$
- ullet Начальное значение $in(v_{entry})$ или $out(v_{exit})$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- Направление анализа $D = \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$
- ullet Потоковые функции $f_{v \in V}: L o L$
- ullet Начальное значение $\mathit{in}(v_{\mathit{entry}})$ или $\mathit{out}(v_{\mathit{exit}})$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D = \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$
- ullet Потоковые функции $f_{v \in V}: L o L$
- ullet Начальное значение $in(v_{entry})$ или $out(v_{exit})$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D=\{\downarrow,\uparrow\}$
- Полурешетка свойств $\langle L, \wedge \rangle$
- ullet Потоковые функции $f_{v \in V}: L o L$
- ullet Начальное значение $in(v_{entry})$ или $out(v_{exit})$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- Направление анализа $D = \{\downarrow, \uparrow\}$
- Полурешетка свойств $\langle L, \wedge \rangle$
- ullet Потоковые функции $f_{v \in V}: L o L$
- ullet Начальное значение $\mathit{in}(v_{\mathit{entry}})$ или $\mathit{out}(v_{\mathit{exit}})$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- Направление анализа $D = \{\downarrow, \uparrow\}$
- Полурешетка свойств $\langle L, \wedge \rangle$
- ullet Потоковые функции $f_{v \in V}: L o L$
- ullet Начальное значение $in(v_{entry})$ или $out(v_{exit})$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- ullet Направление анализа $D = \{\downarrow, \uparrow\}$
- Полурешетка свойств $\langle L, \wedge \rangle$
- ullet Потоковые функции $f_{v \in V}: L o L$
- ullet Начальное значение $in(v_{entry})$ или $out(v_{exit})$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- Направление анализа $D = \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$
- ullet Потоковые функции $f_{v \in V}: L o L$
- ullet Начальное значение $\mathit{in}(v_{\mathit{entry}})$ или $\mathit{out}(v_{\mathit{exit}})$

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- Направление анализа $D = \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$
- ullet Потоковые функции $f_{v \in V}: L o L$
- ullet Начальное значение $\mathit{in}(v_{\mathit{entry}})$ или $\mathit{out}(v_{\mathit{exit}})$

Полурешетка свойств

Бинарная операция \land (meet)

- $x \wedge x = x$ (идемпотентность)
- $x \wedge y = y \wedge x$ (коммутативность)
- $(x \land y) \land z = x \land (y \land z)$ (ассоциативность)

Частичный порядок ≤

- $x \le x$ (рефлексивность)
- $x \le y \& y \le z \Rightarrow x \le z$ (транзитивность)
- $x \le y \& y \le x \Rightarrow x = y$ (антисимметричность)

Полурешетка $\langle L, \wedge \rangle$ ¹²

- $x \le y \Leftrightarrow_{def} x \land y = x$
- $x < y \Leftrightarrow_{def} x \land y = x \& x \neq y$

 $^{^1}$ Выполняются ли свойства частичного порядка при таком определении \leq через \wedge ?

 $^{^2}$ Можно ли восстановить полурешетку $\langle L, \wedge
angle$ имея только частичный порядок $\langle L, \leq
angle$?

Полурешетка свойств

Бинарная операция \land (*meet*)

- $x \wedge x = x$ (идемпотентность)
- $x \wedge y = y \wedge x$ (коммутативность)
- $(x \land y) \land z = x \land (y \land z)$ (ассоциативность)

Частичный порядок ≤

- $x \le x$ (рефлексивность)
- $x \le y \& y \le z \Rightarrow x \le z$ (транзитивность)
- $x \le y \& y \le x \Rightarrow x = y$ (антисимметричность)

Полурешетка $\langle L, \wedge \rangle$ ^{1 2}

- $x \le y \Leftrightarrow_{def} x \land y = x$
- $x < y \Leftrightarrow_{def} x \land y = x \& x \neq y$

Свойства полурешеток

Ограниченность снизу

$$\exists \bot \in L : \forall x \in L : \bot \land x = \bot (\bot \le x)$$

Ограниченность сверху

$$\exists \top \in L : \forall x \in L : \top \land x = x \ (x \le \top)$$

Высота полурешетки

$$H_L = \max\{|x_1 > x_2 > \dots \in L|\}$$

Обрыв убывающих цепей

$$\forall x_1 > x_2 > \dots \in L : \exists k : \nexists y \in L : x_k > y$$

Произведение полурешеток

$$\langle A, \wedge_A \rangle \times \langle B, \wedge_B \rangle = \langle A \times B, \wedge \rangle,$$

$$(a, b) \wedge (a', b') = (a \wedge_A a', b \wedge_B b')$$

 $^{^{1}}$ Выполняются ли свойства частичного порядка при таком определении \leq через \wedge ?

 $^{^2}$ Можно ли восстановить полурешетку $\langle L, \wedge
angle$ имея только частичный порядок $\langle L, \leq
angle$?

• Множество подмножеств S $L = 2^S, \land = \cap (\mathsf{или} \cup)$

- Натуральные числа $L = \mathbb{N}, x \wedge y = min(x, y)$
- Константые целочисленные значения $L=\mathbb{Z}\cup\{\mathsf{T},\bot\},\bot<\mathbb{Z}<\mathsf{T}$
- Иерархия типов в программе $L = Types, x \le y = x <: y \text{ (subtype)}$

Задача потокового анализа

Окружение потокового анализа

- ullet Потоковый граф $G = \langle V, E, v_{entry}, v_{exit} \rangle$
- Направление анализа $D = \{\downarrow, \uparrow\}$
- ullet Полурешетка свойств $\langle L, \wedge
 angle$
- Потоковые функции $f_{v \in V} : L \to L$
- ullet Начальное значение $\mathit{in}(v_{\mathit{entry}})$ или $\mathit{out}(v_{\mathit{exit}})$

Потоковые функции

Монотонная функция f на $\langle L, \leq \rangle$

$$x \le y \Rightarrow f(x) \le f(y)$$

Монотонная функция f на $\langle L, \wedge \rangle$ 3

$$f(x \land y) \le f(x) \land f(y)$$

Дистрибутивная функция f на $\langle L, \wedge
angle$

$$f(x \wedge y) = f(x) \wedge f(y)$$

Система потоковых уравнений

$$\begin{split} ∈(v_{entry}) \in L & out(v_{exit}) \in L \\ ∈(v) = \bigwedge_{x \in pred_v} out(x) & \text{ } out(v) = \bigwedge_{x \in succ_v} in(x) \\ &out(v) = f_v(in(v)) & in(v) = f_v(out(v)) \end{split}$$

 $^{^3}$ Докажите эквивалентность определений монотонной функции на $\langle L, \leq
angle$ и на $\langle L, \wedge
angle$.

Решение задачи потокового анализа

- MOP
- MFP
 - $\exists MFP$
 - ∃!*MFP*
 - $MFP \leq MOP$
- Теорема Килдалла
 - ullet дистрибутивность преобразователей $\Rightarrow MFP = MOP$
- Неразрешимость

Оценка сложности

Topsort ??

