圏論原論 I

Sexytant

2023年1月30日

目次

第 部	準備	5
第1章	集合	7
1.1	集合	7
1.2	二項関係・写像	7
	1.2.1 二項関係	7
	1.2.2 順序集合	8
	1.2.3 写像	8
	1.2.4 合成と結合律	8
1.3	宇宙	9
第2章	代数系	11
2.1	マグマ・半群・群	11
	2.1.1 マグマ	11
	2.1.2 半群	11
	2.1.3 群	11
2.2	環	12
2.3	体	12
第3章	Haskell の基礎	13
3.1	型	13
	3.1.1 定義済みの型	13
	3.1.2 データ構造	13
	3.1.3 データ型	13
第Ⅱ部	圏論の諸概念	15
第4章	置	17
4.1	圈	17
	4.1.1 小圏・局所小圏・大圏	18
	4.1.2 部分圏	18
	4.1.3 双対	19
	4.1.4 圏の生成	19

4 目次

第5章	関手	21
5.1	関手	
	5.1.1 反変関手	22
	5.1.2 定数関手	22
	5.1.3 忠実関手と充満関手	22
₩ c **	- np	
第6章	自然変換	23
6.1	自然変換	23
第7章	関手圏	25
7.1	関手圏	0.5
7.1		25
第8章	圈同值	27
8.1	圈同值	27

第Ⅰ部

準備

第1章

集合

1.1 集合

集合 set とは、ひとまず素朴に「ものの集まり」と定義される. 集合を構成する「もの」を元 element という.

- 記法 1.1. a が集合 S の元であることを $a \in S$ で表す.
- 記法 1.2. 集合は各元をカンマで区切り {} で囲むことで表される.
- 記法 1.3. とある条件を満たす x 全体からなる集合は $\{x \mid x \text{ についての条件}\}$ を用いて表す.
- 実例 1.4. $\{1,2,3\}$ や $\{a,b,c\}$, 自然数全体 \mathbb{N} , 整数全体 \mathbb{Z} , 実数全体 \mathbb{R} , 複素数全体 \mathbb{C} は集合である.
- **実例 1.5.** $\{2a \mid a \in \mathbb{N}\}$ や $\{a^3 \mid a \in \mathbb{N}\}$ は集合である.

集合論では、元が存在しない集合 {} の存在を認める.

- **定義 1.6.** 元が存在しない集合 {} を**空集合 emptyset** という.
- 記法 1.7. 空集合を ∅ で表す.
- 定義 1.8. 集合 A の任意の元が集合 B の元であるとき集合 A は集合 B の部分集合 subset であるという.
- 記法 1.9. 集合 A が集合 B の部分集合であることを $A \subset B$ で表す.
- 定義 1.10. 集合 S に対する $\{A \mid A \subset S\}$ を集合 S の冪集合 power set という.
- 記法 1.11. 集合 S の冪集合を PS で表す.
- 定義 1.12. 集合 A,B に対する $\{(a,b)\mid a\in A,b\in B\}$ を集合 A と集合 B の直積 direct product という.
- 記法 1.13. 集合 A と集合 B の直積を $A \times B$ で表す.

1.2 **二**項関係・写像

1.2.1 二項関係

定義 1.14. 集合 A, B の直積の部分集合を, 集合 A と集合 B の二項関係 binary relation であるという.

第 1章 集合

1.2.2 順序集合

定義 1.15. 次を満たす集合 X から X への二項関係 R を順序 order という.

- 1. 任意の $x \in X$ について $(x,x) \in \mathbb{R}$ である.
- 2. 任意の $x \in X, y \in X$ について $(x,y) \in R$ かつ $(y,x) \in R$ ならば x = y が成り立つ.
- 3. 任意の $x \in X, y \in X, z \in X$ について $(x, y) \in \mathbb{R}$ かつ $(y, z) \in \mathbb{R}$ ならば $(x, z) \in \mathbb{R}$ が成り立つ.

1.2.3 写像

定義 1.16. 集合 A, B の二項関係 f について, 任意の $a \in A$ に対して, とある $b \in B$ が一意に存在して $(a,b) \in f$ となるとき, f を集合 A から集合 B への写像 map という.

記法 1.17. 集合 A から集合 B への写像 f を $f:A \rightarrow B$ で表す.

記法 1.18. 写像 $f: A \to B$ に関して, $b \in B$ が $a \in A$ に対応することを

$$b = f(a)$$

で表す.

定義 1.19. 写像 $f: A \to B$ が, 任意の $a_1, a_2 \in A$ について

$$a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$$

を満たすとき**写像** $f: A \to B$ **は単射 injection である**という.

定義 1.20. 写像 $f: A \to B$ に関して、任意の $b \in B$ に対してとある $a \in A$ が存在して

$$b = f(a)$$

であるとき写像 f は全射 surjection であるという.

定義 1.21. 写像 $f:A\to B$ が、単射であり、かつ全射であるとき**写像** $f:A\to B$ は全単射 bijection であるという.

定義 1.22. 写像 $f:A\to B$ に対して、写像 $g:B\to A$ が存在して、任意の $a\in A$ に対して

$$f(a) = b \Leftrightarrow g(b) = a$$

が成り立つとき、写像 $g: B \to A$ は写像 $f: A \to B$ の逆写像 inverse mapping であるという.

記法 1.23. 写像 f の逆写像を f^{-1} で表す.

1.2.4 合成と結合律

定義 1.24. 二項関係 $F \subset A \times B$ と $G \subset B \times C$ に対する

$$\{(a,c) \in A \times C \mid$$
とある $b \in B$ が存在して $(a,b) \in F$ かつ $(b,c) \in G$ である $\}$

を二項関係 $F \subset A \times B$ と $G \subset B \times C$ の合成 composition という.

1.3 宇宙 9

記法 1.25. 二項関係 $F \subset A \times B$ と $G \subset B \times C$ の合成を $G \circ F$ で表す.

命題 1.26. 二項関係 $F \subset A \times B, G \subset B \times C, H \subset C \times D$ について

$$(H \circ G) \circ F = H \circ (G \circ F)$$

が成り立つ.

このことを二項関係が結合律 associative law を満たすという.

命題 1.27. 写像 $f: A \to B$ と $g: B \to C$ に対して, これらの合成を定義することができる.

定義 1.28. 写像 $f:A\to B$ と $g:B\to C$ を合成して得られる写像を写像 $f:A\to B$ と $g:B\to C$ の合成写像 composition mapping という.

記法 1.29. 写像 $f: A \to B \ \ \ g: B \to C$ の合成写像を $g \circ f$ で表す.

命題 1.30. 写像 $f: A \to B, g: B \to C, h: C \to D$ について

$$(h \circ g) \circ f = h \circ (g \circ f)$$

が成り立つ.

このことを写像が結合律を満たすという.

1.3 宇宙

定義 1.31. 集合を元とする集合 X に対して $\{Y|Y\in Z\in X\}$ を集合を元とする集合 X の合併 union という.

記法 1.32. 集合を元とする集合 X の合併を $\cup X$ で表す.

定義 1.33. 以下の性質を満たす集合 U を宇宙 universe という.

- 1. $X \in Y \land Y \in U \Rightarrow X \in U$
- 2. $X \in U \land Y \in U \Rightarrow \{X, Y\} \in U$
- $3.\ X\in U\Rightarrow \mathscr{P}X\in U\wedge \cup X\in U$
- 4. $\mathbb{N} \in U$
- 5. $f: A \to B$ が全射で、 $A \in U \land B \subset U \Rightarrow B \in U$

定義 1.34. 宇宙の元を**小集合 small set** という.

第2章

代数系

2.1 マグマ・半群・群

2.1.1 マグマ

定義 2.1. 写像 $\mu: S \times S \to S$ を集合 S 上の二項演算 binary operation という.

定義 2.2. 集合 M と集合 M 上の二項演算 μ の組 (M,μ) をマグマ magma という.

2.1.2 半群

定義 2.3. マグマ (G,μ) について, μ が結合律を満たす, すなわち任意の元 $g,h,k\in G$ に対して

$$\mu(g, \mu(h, k)) = \mu(\mu(g, h), k)$$

が成り立つとき, マグマ (G, μ) は半群 semigroup であるという.

2.1.3 群

定義 2.4. マグマ (G,μ) について、とある $e\in G$ が存在し、任意の $g\in G$ に対して

$$\mu(e, g) = \mu(g, e) = g$$

を満たすとき, e を**マグマ** (G, μ) **の**単位元 identity element という.

定義 2.5. マグマ (G,μ) について, 任意の $g \in G$ に対して, とある $h \in G$ が存在して

$$\mu(g,h) = \mu(h,g) = e$$

を満たすとき, h を**マグマ** (G,μ) **の元** g **に対する逆元 inverse element** という. ここで e はマグマ (G,μ) の単位元である.

記法 **2.6.** マグマ (G, μ) における元 $g \in G$ の逆元を g^{-1} で表す.

定義 2.7. 半群 (G,μ) が単位元をもち、かつ任意の元に対して逆元が存在するとき半群 (G,μ) は群 group であるという

定義 2.8. 群 $(G_1, \mu_1), (G_2, \mu_2)$ について、写像 $f: G_1 \to G_2$ が、任意の $g \in G, g' \in G$ について

$$f(\mu_1(g, g')) = \mu_2(f(g), f(g'))$$

12 第 2 章 代数系

を満たすとき, f を群 (G_1, μ_1) から群 (G_2, μ_2) への準同型写像 homomorphism という.

定義 2.9. 群 (G_1, μ_1) から群 (G_2, μ_2) への準同型写像 f が全単射であるとき, f を**群** (G_1, μ_1) から群 (G_2, μ_2) への同型写像 isomorphism という

定義 2.10. 群 (G, μ) について、任意の $a, b \in G$ に対して $\mu(a, b) = \mu(b, a)$ が成り立つとき、群 (G, μ) は可換群 commutative group であるという*1.

2.2 環

定義 2.11. 集合 R と R 上の二項演算 +,* が次を満たすとき, (R,+,*) は環 ring であるといい, + を加法, * を乗法という.

- 1.(R,+) が可換群である.
- 2. (R,*) が半群である.
- 3. 任意の $a,b,c \in R$ に対して

$$a * (b + c) = a * b + a * c$$

 $(a + b) * c = a * c + b * c$

が成り立つ.

定義 2.11 の第 3 の条件のことを**乗法の加法に対する分配律 distributive property** という.

2.3 体

定義 2.12. 環 (K,+,*) において, 群 (K,+) の単位元を (K,+,*) の零元という.

記法 2.13. 環 (K, +, *) における零元を 0_K で表す.

定義 2.14. 環 (K,+,*) において, 群 (K,*) の単位元を (K,+,*) の乗法単位元という.

記法 2.15. 環 (K, +, *) における乗法単位元を 1_K で表す.

定義 2.16. 環 (K, +, *) が次を満たすとき, (K, +, *) は体 field であるという.

- 1. 乗法について零元以外の元が可換群をなす, すなわち $(K \setminus \{0_K\}, *)$ が可換群である.
- 2. 零元と乗法単位元が異なる, すなわち $0_K \neq 1_K$ である.

 $^{^{*1}}$ アーベル群 abelian group ともいう

第3章

Haskell の基礎

関数型プログラミング言語 Haskell では圏論的な視点からライブラリが構築されている.

3.1 型

3.1.1 定義済みの型

Haskell には標準ライブラリに表 3.1 に示す型が定義済みである.

表 3.1 Haskell の標準ライブラリに定義済みの型

Int固定長整数Integer多倍長整数

Char 文字

Float 単精度浮動小数点数 Double 倍精度浮動小数点数

Bool ブール代数

例として, 固定長整数の変数 a は次のように宣言する.

a :: Int

3.1.2 データ構造

同じ型の値を一方向に並べ,前の要素が後の要素のポインタをもつようにしたデータ構造を**リスト**という. 一方,リストに対して,異なる型を含むことを許容するデータ構造を**タプル**という.

3.1.3 データ型

例として Red, Green, Blue からなるデータ Color の宣言は以下のように記述する.

data Color = Red | Green | Blue

第Ⅱ部

圏論の諸概念

第4章

巻

4.1 圏

定義 4.1. 集合の組 $(S_{\text{obj}}, S_{\text{mor}})$ が次の条件を満たすとき**集合の組** $(S_{\text{obj}}, S_{\text{mor}})$ は圏 category をなすという.

- 1. 任意の $f \in S_{\text{mor}}$ に対して $\text{dom}(f) \in S_{\text{obj}}, \text{cod}(f) \in S_{\text{obj}}$ がそれぞれ一意に定まる.
- $2. f \in S_{mor}, g \in S_{mor}$ について, cod(f) = dom(g) であるとき, S_{mor} 上の二項演算。が存在する.
- 3. $f \in S_{\text{mor}}, g \in S_{\text{mor}}, h \in S_{\text{mor}}$ について,

$$cod(f) = dom(g),$$

 $cod(g) = dom(h)$

であるとき

$$h \circ (q \circ f) = (h \circ q) \circ f$$

が成り立つ.

- 4. 任意の $A \in S_{obj}$ について次を満たす $1_A \in S_{mor}$ が存在する.
 - (a) $dom(1_A) = A$
 - (b) $\operatorname{cod}(1_A) = A$
 - (c) $\operatorname{dom}(f) = \operatorname{cod}(g) = A$ かつ $\operatorname{cod}(f) = \operatorname{dom}(g)$ を満たす任意の $(f,g) \in S_{\operatorname{obj}} \times S_{\operatorname{obj}}$ について $f \circ 1_A = f$ かつ $1_A \circ g = g$ が成り立つ.

定義 4.1 における $S_{\rm obj}$ の元を**対象 object**, $S_{\rm mor}$ の元を**射 morphism** という. 1 つ目の条件の ${\rm dom} f, {\rm cod} f$ はそれぞれ**射** f **の始域 domain と 終域 codomain** という. 2 つ目の条件の二項演算。は射の合成という. 3 つ目の条件で述べているのは,射の合成が結合律を満たすということである. 最後に,4 つ目の条件の 1_A を対象 A の恒等射 identity morphism という.

これらの用語を導入して、定義 4.1 を改めて記述すると次のようになる.

- 1. 圏は対象の集合と射の集合からなる.
- 2. 射は始域と終域をもち、それらはそれぞれ一意に定まる.
- 3. 射は合成可能であり、射の合成は結合律を満たす.
- 4. 任意の対象について恒等射が存在する.

注意 4.2. 恒等射 1_A は一意に定まるので, 定義に一意性を加えても問題ない.

記法 4.3. 圏 $\mathscr C$ の対象全体の集合を $\mathrm{Obj}(\mathscr C)$ で表す.

18 第 4 章 圏

記法 4.4. 圏 & の射全体の集合を Mor(&) で表す.

記法 4.5. 始域が A, 終域が B である射 f を $f: A \rightarrow B$ で表す.

記法 4.6. 集合 $\{f: A \to B \mid A \in \mathrm{Obj}(\mathscr{C}), B \in \mathrm{Obj}(\mathscr{C})\}$ を $\mathrm{Hom}_{\mathscr{C}}(A, B)$ で表す.

定義 4.7. とある圏の射 $f: A \to B$ に対して、とある射 $g: B \to A$ が存在して $g \circ f = 1_A$ かつ $f \circ g = 1_B$ となるとき、射 f は同型射 isomorphism であるという。また、このとき g を射 f の逆射という。

記法 4.8. 射 f の逆射を f^{-1} で表す.

命題 4.9. 射 f が同型射であるとき, f^{-1} は一意に定まる.

4.1.1 小圏・局所小圏・大圏

小圏

定義 4.10. 圏 $\mathscr C$ について, $\operatorname{Obj}(\mathscr C)$, $\operatorname{Mor}(\mathscr C)$ が小集合であるとき, 圏 $\mathscr C$ は小圏 small category であるという.

命題 4.11. 対象も射もない圏 **0** は小圏である.

命題 4.12. 対象が 1 つで, 恒等射のみをもつ圏 1 は小圏である.

命題 4.13. 対象が A, B の 2 つで, 恒等射と射 $f: A \rightarrow B$ のみをもつ圏 **2** は小圏である.

命題 4.14. 順序集合は小圏である.

局所小圈

定義 4.15. 圏 $\mathscr C$ について、任意の $A \in \mathrm{Obj}(\mathscr C)$, $B \in \mathrm{Obj}(\mathscr C)$ の組に対して $\mathrm{Hom}_{\mathscr C}(A,B)$ が小集合である とき,圏 $\mathscr C$ は 局所小圏 locally small category であるという.

大圏

定義 4.16. 圏 $\mathscr C$ が小圏でないとき圏 $\mathscr C$ は大圏 large category であるという.

命題 4.17. すべての小集合を対象とし、それらの間の写像を射とする圏 Set は大圏である.

命題 4.18. すべての群を対象とし、それらの間の準同型写像を射とする圏 Grp は大圏である.

命題 4.19. すべての可換群を対象とし、それらの間の準同型写像を射とする圏 Ab は大圏である.

4.1.2 部分圏

記法 **4.20.** 圏 $\mathscr C$ における射 $f,g\in\operatorname{Mor}(\mathscr C)$ の合成を $g\circ_{\mathscr C} f$ で表す.

命題 4.21. 圏 $\mathscr A$ が圏 $\mathscr B$ に対して, 以下の条件を満たすとする.

1. $Obj(\mathscr{A}) \subset Obj(\mathscr{B})$

2. $\{(X_1, X_2) \mid X_1 \in \text{Obj}(\mathscr{A}), X_2 \in \text{Obj}(\mathscr{A})\} \subset \{(X_1, X_2) \mid X_1 \in \text{Obj}(\mathscr{B}), X_2 \in \text{Obj}(\mathscr{B})\}$

4.1 圏 **19**

このとき $Mor(\mathscr{A}) \subset Mor(\mathscr{B})$ が成り立つ.

定義 4.22. 圏 \mathscr{A} が圏 \mathscr{B} に対して、以下の条件を満たすとき、圏 \mathscr{A} は圏 \mathscr{B} の部分圏であるという.

- 1. $Obj(\mathscr{A}) \subset Obj(\mathscr{B})$
- 2. $\{(X_1, X_2) \mid X_1 \in \text{Obj}(\mathscr{A}), X_2 \in \text{Obj}(\mathscr{A})\} \subset \{(X_1, X_2) \mid X_1 \in \text{Obj}(\mathscr{B}), X_2 \in \text{Obj}(\mathscr{B})\}$
- 3. 任意の $f \in \operatorname{Mor}(\mathscr{A}), g \in \operatorname{Mor}(\mathscr{A})$ について $g \circ_{\mathscr{A}} f$ が存在するならば $g \circ_{\mathscr{B}} f$ が存在し

$$g \circ_{\mathscr{A}} f = g \circ_{\mathscr{B}} f$$

が成り立つ.

4. 任意の $f \in \operatorname{Mor}(\mathscr{A}), g \in \operatorname{Mor}(\mathscr{A})$ について $g \circ_{\mathscr{B}} f$ が存在するならば $g \circ_{\mathscr{A}} f$ が存在し

$$g \circ_{\mathscr{A}} f = g \circ_{\mathscr{B}} f$$

が成り立つ.

命題 4.23. 圏 Ab は圏 Grp の部分圏である.

4.1.3 双対

定義 4.24. 圏 $\mathscr C$ に対して、対象が $\mathscr C$ と同じで、射の向きが $\mathscr C$ と反対である圏を圏 $\mathscr C$ の双対圏という.

記法 4.25. 圏 ピ の双対圏を ピ^{op} で表す.

4.1.4 圏の生成

命題 4.26. 集合 A と写像 $f: A \rightarrow A$ について, 集合の組 ($\{A\}, \{1_A, f\}$) は圏をなす.

命題 4.27. 集合 A と写像 $f:A\to A$ について,正の整数 n に対して $f^n=\underbrace{f\circ f\circ \cdots \circ f}_n$ とするとき,集合の組 $(\{A\},\{1_A,f,f^2,\ldots,\})$ は圏をなす.

命題 4.28. 集合 A,B と写像 $f:A\to B,\ g:B\to A$ について, 集合の組 $(\{A,B\},\{1_A,1_B,f,g,f\circ g\})$ は 圏をなす.

定義 4.29. 集合 S_1, \ldots, S_N に関する写像 f_1, \ldots, f_M に関して, $\{S_1, \ldots, S_N\}$ を対象とし, $1_{S_1}, \ldots, 1_{S_N}$ と f_1, \ldots, f_M およびそれらの合成のみを射とする圏 $\mathscr C$ が存在するとき, $\{f_1, \ldots, f_M\}$ を圏 $\mathscr C$ の生成系 system of generators という.

定義 4.30. 圏 \mathscr{A},\mathscr{B} の積に対して, 次の集合の組 $(S_{\mathrm{Obj}}(\mathscr{A},\mathscr{B}),S_{\mathrm{Mor}}(\mathscr{A},\mathscr{B}))$ を圏 \mathscr{A},\mathscr{B} の積という.

- $S_{\text{Obj}}(\mathscr{A}, \mathscr{B}) = \{(A, B) \mid A \in \text{Obj}(\mathscr{A}), B \in \text{Obj}(\mathscr{B})\}$
- $S_{\text{Mor}}(\mathscr{A}, \mathscr{B}) = \{ (f_A, f_B) \mid f_A \in \text{Mor}(\mathscr{A}), f_B \in \text{Mor}(\mathscr{B}) \}$

定義 4.31. 圏 \mathscr{A} , \mathscr{B} の積を $\mathscr{A} \times \mathscr{B}$ で表す.

命題 4.32. 圏の積は圏をなす.

第5章

関手

5.1 関手

定義 5.1. 写像 $f: \mathrm{Obj}(\mathscr{A}) \to \mathrm{Obj}(\mathscr{B})$ を圏 \mathscr{A} から圏 \mathscr{B} への対象関数 function on objects という.

記法 5.2. 圏 \mathscr{A} から圏 \mathscr{B} への対象関数を $F_{\mathrm{obj}}(\mathscr{A},\mathscr{B})$ で表す.

定義 5.3. 圏 ∅ の射全体の集合

$$\mathrm{Mor}(\mathscr{A}) = \{ f_{\mathscr{A}} : A_1 \to A_2 \mid A_1 \in \mathrm{Obj}(\mathscr{A}), A_2 \in \mathrm{Obj}(\mathscr{A}) \}$$

から, 対象関数 $F_{obj}(\mathscr{A},\mathscr{B})(\cdot)$ を用いて定まる, 圏 \mathscr{B} の射の集合

$$\operatorname{Mor}(\mathscr{A} \to \mathscr{B}) = \{ f_{\mathscr{B}} : F_{\operatorname{obj}}(\mathscr{A}, \mathscr{B})(A_1) \to F_{\operatorname{obj}}(\mathscr{A}, \mathscr{B})(A_2) \mid A_1 \in \operatorname{Obj}(\mathscr{A}), A_2 \in \operatorname{Obj}(\mathscr{A}) \}$$

への写像 $F_{mor}(\mathscr{A} \to \mathscr{B}): Mor(\mathscr{A}) \to Mor(\mathscr{A} \to \mathscr{B})$ が次の条件を満たすとき, これを圏 \mathscr{A} から圏 \mathscr{B} への射関数 function on morphisms という.

1. 任意の $A \in \text{Obj}(\mathscr{A})$ に対して

$$F_{\text{mor}}(\mathcal{A} \to \mathcal{B})(1_A) = 1_{F_{\text{mor}}(\mathcal{A} \to \mathcal{B})(A)}$$

が成り立つ.

2. 任意の $(A_1, A_2, A_3) \in \mathrm{Obj}(\mathscr{A})^3$ と $f_{1,2}: A_1 \to A_2, f_{2,3}: A_2 \to A_3$ に対して

$$F_{\text{Mor}}(\mathscr{A} \to \mathscr{B})(f_{2.3} \circ f_{1.2}) = F_{\text{Mor}}(f_{2.3}) \circ F_{\text{Mod}}(f_{1.2})$$

が成り立つ.

記法 5.4. 圏 \mathscr{A} から圏 \mathscr{B} への射関数を $F_{mor}(\mathscr{A} \to \mathscr{B})$ で表す.

定義 5.5. 対象関数 $F_{\mathrm{obj}}(\mathscr{A},\mathscr{B})$ と射関数 $F_{\mathrm{mor}}(\mathscr{A}\to\mathscr{B})$ の組を圏 \mathscr{A} から圏 \mathscr{B} への関手 functor という.

記法 5.6. 圏 \mathscr{A} から圏 \mathscr{B} への関手 F を $F: \mathscr{A} \to \mathscr{B}$ で表す.

定義 5.7. 圏 $\mathscr C$ から圏 $\mathscr C$ への関手を圏 $\mathscr C$ に関する恒等関手 identity functor という.

記法 5.8. 圏 $\mathscr C$ に関する恒等関手を $\mathrm{Id}(\mathscr C)$ で表す.

定義 5.9. 関手 $F: \mathcal{A} \to \mathcal{B}, G: \mathcal{B} \to \mathcal{C}$ に対して

$$F_{\text{obj}}(\mathscr{B},\mathscr{C}) \circ F_{\text{obj}}(\mathscr{A},\mathscr{B})$$

22 第 5 章 関手

を対象関数とし.

$$F_{\mathrm{mor}}(\mathscr{B} \to \mathscr{C}) \circ F_{\mathrm{mor}}(\mathscr{A} \to \mathscr{A})$$

を射関数とする関手を**関手** $F: \mathcal{A} \to \mathcal{B}, G: \mathcal{B} \to \mathcal{C}$ **の合成 composition** という.

記法 5.10. 関手 $F: \mathcal{A} \to \mathcal{B}, G: \mathcal{B} \to \mathcal{C}$ の合成を $G \circ F$ で表す.

5.1.1 反変関手

定義 5.11. 関手 $F: \mathscr{A}^{\mathrm{op}} \to \mathscr{B}$ を圏 \mathscr{A} から圏 \mathscr{B} への反変関手 contravariant functor という.

5.1.2 定数関手

定義 5.12. 任意の $A \in \mathrm{Obj}(\mathscr{A})$ を唯一の $B_0 \in \mathrm{Obj}(\mathscr{B})$ に写し、任意の射 $f \in \mathrm{Mor}(\mathscr{A})$ を恒等射 $1_{B_0} \in \mathrm{Mor}(\mathscr{B})$ に写す関手を圏 \mathscr{A} から圏 \mathscr{B} への定数関手 constant functor という

5.1.3 忠実関手と充満関手

定義 5.13. 関手 $F: \mathcal{A} \to \mathcal{B}$ に関して, 写像

 $f: \{(A_1, A_2) \mid A_1 \in \mathrm{Obj}(\mathscr{A}), A_2 \in \mathrm{Obj}(\mathscr{A})\} \to \{(F(A_1), F(A_2)) \mid A_1 \in \mathrm{Obj}(\mathscr{A}), A_2 \in \mathrm{Obj}(\mathscr{A})\}$

が単射となっているとき、関手 F は忠実 faithful であるという.

定義 5.14. 関手 $F: \mathcal{A} \to \mathcal{B}$ に関して, 写像

 $f: \{(A_1, A_2) \mid A_1 \in \mathrm{Obj}(\mathscr{A}), A_2 \in \mathrm{Obj}(\mathscr{A})\} \to \{(F(A_1), F(A_2)) \mid A_1 \in \mathrm{Obj}(\mathscr{A}), A_2 \in \mathrm{Obj}(\mathscr{A})\}$

が全射となっているとき、関手 F は充満 full であるという.

定義 5.15. 関手 F が忠実かつ充満であるとき関手 F は充満忠実 full and faithful であるという.

第6章

自然変換

6.1 自然変換

定義 6.1. 関手 $F: \mathcal{A} \to \mathcal{B}$ と関手 $G: \mathcal{A} \to \mathcal{B}$ について、

- 1. 任意の $A \in \mathrm{Obj}(\mathscr{A})$ に対して \mathscr{B} の射 $M_{\mathscr{B}}(A): F(A) \to G(A)$ が存在する.
- 2. 任意の $\mathscr A$ の射 $f:A_1\to A_2$ が

$$M_{\mathscr{B}}(A_2) \circ F(f) = G(f) \circ M_{\mathscr{B}}(A_1)$$

を満たす.

このとき $\{M_{\mathscr{B}}(A)\mid A\in \mathrm{Obj}(\mathscr{A})\}$ を関手 $F:\mathscr{A}\to\mathscr{B}$ から関手 $G:\mathscr{A}\to\mathscr{B}$ への自然変換 natural transformation という.

記法 6.2. 関手 F から関手 G への自然変換 μ を μ : $F \to G$ で表す.

第7章

関手圏

7.1 関手圏

命題 7.1. 小圏 $\mathscr A$ と局所小圏 $\mathscr B$ に対して,次の集合の組 $(S_{\mathrm{obj}},S_{\mathrm{mor}})$ は圏をなす.

$$S_{\text{obj}} = \{F : \mathscr{A} \to \mathscr{B}\}$$

$$S_{\text{mor}} = \{\alpha : F_1 \to F_2 \mid F_1 \in S_{\text{obj}}, F_2 \in S_{\text{obj}}\}$$

定義 7.2. 小圏 $\mathscr A$ と局所小圏 $\mathscr B$ に対する次の集合の組 $(S_{\mathrm{obj}},S_{\mathrm{mor}})$ からなる圏を小圏 $\mathscr A$ から局所小圏 $\mathscr B$ への関手圏 functor category という.

$$S_{\text{obj}} = \{F : \mathscr{A} \to \mathscr{B}\}$$

$$S_{\text{mor}} = \{\alpha : F_1 \to F_2 \mid F_1 \in S_{\text{obj}}, F_2 \in S_{\text{obj}}\}$$

記法 7.3. 小圏 $\mathscr A$ から局所小圏 $\mathscr B$ への関手圏を $[\mathscr A,\mathscr B]$ で表す

定義 7.4. 関手圏における同型射を自然同型 natural isomorphism という.

第8章

圏同値

8.1 圏同値

定義 8.1. 圏 \mathscr{A},\mathscr{A}' に対して,関手 $F:\mathscr{A}\to\mathscr{A}',G:\mathscr{A}\to\mathscr{A}'$ と自然同型 $\eta:\mathrm{Id}(\mathscr{A})\to G\circ F,\epsilon:F\circ G\to\mathrm{Id}(\mathscr{A}')$ が存在するとき圏 \mathscr{A},\mathscr{A}' は圏同値であるという.

命題 8.2. 圏同値は同値関係である.