Characterization and complexity of Thin Strip Graphs

Abdeselam El-Haman Abdeselam Department of Computer Science Universite Libre de Bruxelles

May 7, 2014

ABSTRACT

Abstract

1 Graphs and disks

1.1 Graphs

A graph G is defined as G = (V, E), where V is the set of vertices and E the set of edges. A vertex $v \in V$ is the fundamental unit of a graph. An edge $e \in E$ is a structures that links two vertices. The vertices $vw \in V$ that $e \in E$ links are called the *endpoints*.

Definition 1 An embedding of a graph G is a representation of this graph on the plane.

Definition 2 A graph G is planar iff there is an embedding of this graph that doesn't have any crossing between the edges.

1.2 Intersection graphs

Given a geometric construction with multiple objects, an intersection graph is a graph that maps the objects into vertices and every intersection between objects is an edge between the corresponding vertices.

Definition 3 A graph G is a comparibility graph if there is a partial order... (check c-strip article, good definition).

1.2.1 Interval graphs

Definition of interval Graphs
Properties
Definition of MIXED interval graphs

1.2.2 Unit disk graphs

Definition of UID.

Definition of a realization.

2 Complexity

Problem solving is based on the complexity of a problem and not only a particular algorithm that solves it [6].

Definition 4 Let Σ be a finite alphabet, Σ^* every word derived from Σ , $L \subseteq \Sigma^*$ is a decision problem.

Definition 5 The algorithm A decides problem $L \subseteq \Sigma^*$ if for all word $w \in \Sigma^*$:

- A finishes and returns TRUE if $w \in L$.
- A finishes and returns FALSE if $w \notin L$.

Definition 6 A problem is decidable if there's an algorithm that decides it.

Definition 7 A problem is decidable if there's an algorithm that decides it.

2.1 P vs NP

Definition 8 A problem $L \in \mathcal{P}$ if L can be decided in polynomial time $\mathcal{O}(n^k)$.

Definition 9 A problem $L \in \mathcal{NP}$ if L can be verified in polynomial time $\mathcal{O}(n^k)$. Thus, $\mathcal{P} \subseteq \mathcal{NP}$.

2.2 $\exists \mathbb{R}$ complexity class

 $\exists \mathbb{R}$ is the class that describes the problems such that they can be reduced to the existential theory of the reals[1]. The existential theory of the reals

2.2.1 Problems in $\exists \mathbb{R}$

The art gallery problem is $\exists \mathbb{R}$ -complete.[2] Recognition of Unit Disk Graphs is $\exists \mathbb{R}$ -complete. (corollary of graph realizability problem)[4] Stretchability is $\exists \mathbb{R}$ -complete.

3 Geometry

4 Disk Graph studies

4.1 Stabbing disks

Definition of stabbing.
Stabbing geometric structures.[5]

4.2 Thin Strip Graphs

c-strip graphs are unit disk graphs such that the centers of the disks are delimited on the area $\{(x,y): -\infty < x < \infty, 0 < y \le c\}$ and its class noted SG(c). We can say that SG(0) = UIG and $SG(\infty) = UDG$. [3]

Definition 10 Thin strip graphs are defined as $TSG = \bigcap_{c>0} SG(c)$.

Remark 11 $SG(0) \neq TSG$. This can be seen

 $K_{1,3}$ in TSG, which is not possible for UIG. MUIG \subsetneq TSG.

Denote that there's not constant t such that SG(t) = TSG.

Unfettered unit interval graphs = UUIG

 $MUIG \subseteq TSG \subseteq UUIG$

Definition 12 Find forbidden induced graphs for TSG.

References

- [1] Existential Theory of the Reals. In Algorithms in Real Algebraic Geometry, volume 10, pages 505–532. Springer Berlin Heidelberg.
- [2] Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The Art Gallery Problem is $\star \$ mathbb{R}\$-complete.
- [3] Takashi Hayashi, Akitoshi Kawamura, Yota Otachi, Hidehiro Shinohara, and Koichi Yamazaki. Thin Strip Graphs. 216:203–210.
- [4] Marcus Schaefer. Realizability of Graphs and Linkages. In Jnos Pach, editor, *Thirty Essays on Geometric Graph Theory*, pages 461–482. Springer New York.
- [5] L.M. Schlipf. Stabbing and Covering Geometric Objects in the Plane.
- [6] Michael Sipser. Introduction to the Theory of Computation. Course Technology, second edition.