initialAnalysis.R

kavya 2019-04-22

```
# Introduction to Big Data
# Phase 3
# Data used:
      The data is from a census bureau database.
# This script file reads the data,
# visualizes the data by plotting histograms of each feature
# Finds and states outlier of every attribute
# Analyzing the dataset
# Read the data into a data frame
dataset = read.table("adult.data", header= TRUE, sep = ",")
#Checks the class of the dataset
class(dataset)
## [1] "data.frame"
# Print the feature names
colnames(dataset)
  [1] "age"
                         "workclass"
                                          "fnlwgt"
                                                            "education"
  [5] "education.num"
                         "marital.status" "occupation"
                                                            "relationship"
## [9] "race"
                         "sex"
                                          "capital.gain"
                                                            "capital.loss"
## [13] "hours.per.week" "native.country" "prediction"
# Dimensions of the raw data
dim(dataset)
## [1] 32561
head(dataset, n = 10)
##
                  workclass fnlwgt education education.num
      age
                  State-gov 77516
## 1
       39
                                    Bachelors
## 2
       50
           Self-emp-not-inc 83311
                                    Bachelors
                                                         13
## 3
       38
                    Private 215646
                                      HS-grad
                                                          9
                                                          7
## 4
       53
                    Private 234721
                                         11th
## 5
                    Private 338409 Bachelors
       28
                                                         13
## 6
       37
                    Private 284582
                                      Masters
                                                         14
## 7
       49
                    Private 160187
                                          9th
                                                          5
## 8
                                                          9
       52 Self-emp-not-inc 209642
                                      HS-grad
## 9
       31
                    Private 45781
                                      Masters
                                                          14
## 10
                    Private 159449 Bachelors
                                                         13
                                                  relationship
##
              marital.status
                                     occupation
                                                                  race
                                                                           sex
## 1
              Never-married
                                   Adm-clerical Not-in-family White
                                                                          Male
```

```
## 2
          Married-civ-spouse
                                Exec-managerial
                                                       Husband White
                                                                         Male
## 3
                    Divorced Handlers-cleaners Not-in-family
                                                                White
                                                                         Male
## 4
                                                                         Male
          Married-civ-spouse
                              Handlers-cleaners
                                                       Husband Black
## 5
                                                          Wife Black Female
          Married-civ-spouse
                                 Prof-specialty
## 6
          Married-civ-spouse
                                Exec-managerial
                                                          Wife White Female
## 7
      Married-spouse-absent
                                  Other-service Not-in-family Black Female
## 8
          Married-civ-spouse
                                Exec-managerial
                                                       Husband White
## 9
               Never-married
                                 Prof-specialty Not-in-family White Female
## 10
          Married-civ-spouse
                                Exec-managerial
                                                       Husband White
##
      capital.gain capital.loss hours.per.week native.country prediction
              2174
                              0
                                            40 United-States
## 2
                 0
                              0
                                            13 United-States
                                                                   <=50K
## 3
                 0
                              0
                                            40 United-States
                                                                   <=50K
## 4
                 0
                              0
                                            40 United-States
                                                                   <=50K
## 5
                 0
                              0
                                            40
                                                         Cuba
                                                                   <=50K
## 6
                 0
                              0
                                            40 United-States
                                                                   <=50K
## 7
                 0
                              0
                                            16
                                                      Jamaica
                                                                   <=50K
## 8
                              0
                 0
                                            45 United-States
                                                                    >50K
## 9
             14084
                              0
                                            50 United-States
                                                                    >50K
## 10
                                            40 United-States
              5178
                              0
                                                                    >50K
# Attach the database to the R search path
attach(dataset)
# Printing details of the dataset
# Print the summary of the dataset
summary(dataset)
##
                                                  fnlwgt
                                workclass
         age
          :17.00
   Min.
                     Private
                                     :22696
                                              Min.
                                                    : 12285
                                              1st Qu.: 117827
##
   1st Qu.:28.00
                     Self-emp-not-inc: 2541
   Median :37.00
                     Local-gov
                                     : 2093
                                              Median: 178356
##
  Mean
                                     : 1836
                                              Mean
          :38.58
                                                    : 189778
   3rd Qu.:48.00
                     State-gov
                                     : 1298
                                              3rd Qu.: 237051
```

```
##
   Max.
         :90.00
                     Self-emp-inc
                                     : 1116
                                              Max.
                                                    :1484705
##
                    (Other)
                                     : 981
##
            education
                          education.num
                                                         marital.status
##
    HS-grad
                 :10501
                         Min. : 1.00
                                           Divorced
                                                                 : 4443
##
     Some-college: 7291
                          1st Qu.: 9.00
                                           Married-AF-spouse
                                                                     23
##
     Bachelors
                : 5355
                          Median :10.00
                                           Married-civ-spouse
                                                                 :14976
##
     Masters
                 : 1723
                          Mean
                                :10.08
                                           Married-spouse-absent: 418
##
     Assoc-voc
                 : 1382
                          3rd Qu.:12.00
                                           Never-married
                                                                 :10683
##
     11th
                 : 1175
                          Max.
                                 :16.00
                                           Separated
                                                                 : 1025
##
    (Other)
                 : 5134
                                           Widowed
                                                                 : 993
##
               occupation
                                     relationship
##
     Prof-specialty:4140
                             Husband
                                           :13193
##
                             Not-in-family: 8305
     Craft-repair
                    :4099
##
                             Other-relative: 981
    Exec-managerial:4066
##
     Adm-clerical
                   :3770
                             Own-child
                                          : 5068
##
     Sales
                    :3650
                             Unmarried
                                           : 3446
##
     Other-service :3295
                             Wife
                                           : 1568
    (Other)
##
                    :9541
```

```
##
                                                capital.gain
                    race
                                    sex
##
    Amer-Indian-Eskimo: 311
                                Female: 10771
                                               Min. :
    Asian-Pac-Islander: 1039
                                               1st Qu.:
##
                                Male :21790
##
    Black
                      : 3124
                                               Median :
                                                           0
##
    Other
                      : 271
                                               Mean
                                                      : 1078
##
    White
                      :27816
                                               3rd Qu.:
                                                      :99999
                                               Max.
##
##
                                                            prediction
##
    capital.loss
                    hours.per.week
                                           native.country
                                     United-States:29170
## Min. :
              0.0
                    Min. : 1.00
                                                            <=50K:24720
  1st Qu.:
              0.0
                    1st Qu.:40.00
                                     Mexico
                                                  : 643
                                                            >50K : 7841
## Median:
              0.0
                    Median :40.00
                                                     583
         : 87.3
## Mean
                    Mean
                          :40.44
                                     Philippines: 198
                    3rd Qu.:45.00
## 3rd Qu.:
              0.0
                                     Germany
                                                  : 137
## Max.
          :4356.0
                           :99.00
                                     Canada
                                                  : 121
                    Max.
##
                                     (Other)
                                                  : 1709
# Display internal structure of dataset, which tells what are the different values of every attribute a
str(dataset)
## 'data.frame':
                   32561 obs. of 15 variables:
## $ age
                   : int 39 50 38 53 28 37 49 52 31 42 ...
                   : Factor w/ 9 levels " ?", " Federal-gov", ... 8 7 5 5 5 5 5 7 5 5 ...
## $ workclass
## $ fnlwgt
                   : int 77516 83311 215646 234721 338409 284582 160187 209642 45781 159449 ...
## $ education
                   : Factor w/ 16 levels " 10th", " 11th", ...: 10 10 12 2 10 13 7 12 13 10 ...
## $ education.num : int 13 13 9 7 13 14 5 9 14 13 ...
   $ marital.status: Factor w/ 7 levels " Divorced", " Married-AF-spouse",..: 5 3 1 3 3 3 4 3 5 3 ...
## $ occupation : Factor w/ 15 levels " ?"," Adm-clerical",..: 2 5 7 7 11 5 9 5 11 5 ...
## $ relationship : Factor w/ 6 levels " Husband", " Not-in-family", ...: 2 1 2 1 6 6 2 1 2 1 ...
                   : Factor w/ 5 levels " Amer-Indian-Eskimo",...: 5 5 5 3 3 5 5 5 5 ...
## $ race
## $ sex
                   : Factor w/ 2 levels " Female", " Male": 2 2 2 2 1 1 1 2 1 2 ...
## $ capital.gain : int 2174 0 0 0 0 0 0 14084 5178 ...
## $ capital.loss : int 0000000000...
## $ hours.per.week: int 40 13 40 40 40 40 16 45 50 40 ...
   $ native.country: Factor w/ 42 levels " ?"," Cambodia",..: 40 40 40 40 6 40 24 40 40 40 ...
                   : Factor w/ 2 levels " <=50K", " >50K": 1 1 1 1 1 1 1 2 2 2 ...
  $ prediction
#
# Visualization
# Our dataset includes people ranging from 17-90 years of age which seems appropriate in census dataset
summary(age)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
    17.00
           28.00
                    37.00
                            38.58
                                    48.00
                                            90.00
##
# Display histogram of feature "age" . Our dataset is concentrated
# in the 28-38 (first quartile~second quartile) year range which is expected as that would
# categorize the working age group
## Frequency table
counts <- table(age)</pre>
## The most frequent and least frequent values.
# Most frequently occuring value is of the 36year olds.
# Least frequent values for age 86 and 87.
counts[which.max(counts)]
```

Histogram for Age

Display pie chart of feature "workclass". Majority of the dataset
are employed in the private sector
pie(table(workclass))

Display histogram of feature "fnlwgt".
hist(fnlwgt, main = "Final weight Histogram", xlab = "Final weights")

Final weight Histogram

Final weights

```
#Final weight attribute consists of
# continuous values. final weight doesn't seem to be
# correlated to any of the other values.
# fnlwgt doesn't seem very relevant in this datset. And so we might choose to drop
# this attribute.

# Display table of feature "education"
educationTable <-data.frame(count=sort(table(education), decreasing=TRUE))
educationTable</pre>
```

```
##
      count.education count.Freq
## 1
              HS-grad
                            10501
## 2
         Some-college
                              7291
## 3
            Bachelors
                              5355
## 4
              Masters
                              1723
## 5
            Assoc-voc
                              1382
                              1175
## 6
                  11th
## 7
           Assoc-acdm
                              1067
## 8
                  10th
                              933
## 9
              7th-8th
                              646
                              576
## 10
          Prof-school
## 11
                   9th
                              514
## 12
                  12th
                              433
## 13
            Doctorate
                              413
## 14
              5th-6th
                               333
## 15
               1st-4th
                               168
## 16
            Preschool
                               51
```

```
#We have a hypothesis that the higher the education, the higher the income. We would emphasise this usi
under20yearsAge <- dataset[ which(age<20), ]</pre>
dim(under20yearsAge)
## [1] 1657
              15
table(under20yearsAge$education)
##
##
            10th
                          11th
                                         12th
                                                    1st-4th
                                                                   5th-6th
##
             192
                           391
                                          126
                                                          3
                                   Assoc-acdm
##
         7th-8th
                           9th
                                                  Assoc-voc
                                                                Bachelors
                            39
##
              17
                                            1
                                                          3
##
       Doctorate
                       HS-grad
                                      Masters
                                                  Preschool
                                                              Prof-school
##
                           426
               0
                                            1
                                                          1
                                                                         0
##
   Some-college
##
             448
#demonstrates the education qualification frequency of people under the age of 20
# Display table of feature "education.num"
summary(education.num)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
##
              9.00
                     10.00
                             10.08
                                     12.00
                                              16.00
table(education.num)
## education.num
                   3
                                                                          12
       1
             2
                         4
                               5
                                            7
                                                  8
                                                             10
                                                                    11
##
      51
           168
                 333
                       646
                             514
                                   933 1175
                                                433 10501 7291 1382
                                                                       1067
      13
            14
                  15
                        16
## 5355 1723
                 576
                       413
dim(educationTable)
## [1] 16 2
#the quantity education.num ranges from 1 to 16. Majority values concentrated between 9 and 12.
# Number of distinct values for education attribute is 16. There seems to be some correlation between t
# education.num seems to be certain measure of the education attribute
# Display pie chart of feature "marital.status". Majority of our dataset fall under the
# Married-civ-spouse or the never married category
pie(table(marital.status))
```


Display feature "occupation". "?" represent null values
occupationTable <-data.frame(count=sort(table(occupation), decreasing=TRUE))
occupationTable</pre>

```
##
        count.occupation count.Freq
## 1
          Prof-specialty
                                4140
## 2
            Craft-repair
                                4099
## 3
         Exec-managerial
                                4066
## 4
            Adm-clerical
                                3770
## 5
                   Sales
                                3650
## 6
           Other-service
                                3295
## 7
       Machine-op-inspct
                                2002
## 8
                                1843
## 9
        Transport-moving
                                1597
## 10 Handlers-cleaners
                                1370
         Farming-fishing
## 11
                                 994
## 12
            Tech-support
                                 928
## 13
         Protective-serv
                                 649
## 14
         Priv-house-serv
                                 149
## 15
            Armed-Forces
                                   9
```

Display pie chart of feature "relationship"
pie(table(relationship))

Display pie chart of feature "race". More than 75% of the dataset are white people. This column would pie(table(race))

Display plot of feature "sex". Almost 3/4th of the dataset are male
pie(table(sex))

husbandData <- dataset[which(sex == " Female" & relationship==" Husband"),]
dim(husbandData)</pre>

[1] 1 15

#noisy data like the above state that an entry with relationship as Husband, has sex as Female exists.
#data need to be identified

Display histogram of feature "capital.gain". Most values have value zero. Hence the column will be dro hist(capital.gain)

Histogram of capital.gain

Display histogram of feature "capital.loss". Most values have value zero. Hence the column will be dro hist(capital.loss)

Histogram of capital.loss

Display histogram of feature "hours.per.week". As the working class is expected to work 40 hours a we # appropriate

Histogram of hours.per.week

Display plot of feature "native.country". The dataset consists of values from people in the
#United States. Thus this column would be dropped
plot(table(native.country))

countries<-table(native.country)
countries[which.max(countries)]</pre>

```
United-States
##
             29170
# Display plot of feature "prediction"
plot(prediction)
15000
5000
0
                     <=50K
                                                              >50K
plot(as.integer(workclass)~as.integer(occupation))
                   0
                             0
                                        0
                                             0
                                                  0
                                                       0
                                                                                       0
                                                  0
      \infty
                   0
                             0
                                   O
                                        0
                                             0
                                                        0
                                                                  0
                                                                            0
                                                                                       0
as.integer(workclass)
                             0
                   0
                                  0
                                        0
                                             0
                                                  0
                                                        0
                                                                  0
                                                                       0
                                                                            0
                                                                                  0
                                                                                       0
      9
                             0
                   0
                                   0
                                        0
                                             0
                                                  0
                                                        0
                                                                  0
                                                                            0
                                                                                       0
                                                                       0
                                                                                  0
                   O
                             O
                                  0
                                        0
                                             O
                                                  O
                                                        O
                                                                  0
                                                                       0
                                                                            O
                                                                                  0
                                                                                       0
             0
                   O
                             О
                                   0
                                        0
                                                  0
                                                                  0
                                                                            0
                                                                                       0
                                                                                  0
      ^{\circ}
                   0
                        0
                             0
                                  0
                                        0
                                             0
                                                  0
                                                       0
                                                                  0
                                                                       0
                                                                            0
                                                                                  0
                                                                                       0
             0
                   2
                             4
                                        6
                                                  8
                                                            10
                                                                       12
                                                                                 14
                                      as.integer(occupation)
levels(workclass)
## [1] " ?"
                              " Federal-gov"
                                                   " Local-gov"
                             " Private"
## [4] " Never-worked"
                                                   " Self-emp-inc"
## [7] " Self-emp-not-inc" " State-gov"
                                                   " Without-pay"
```