Question 1

The strength of these two rules is 0.66 and the resulting and the cut on μ_{C_1} will occur at the max, which is 1.

The strength of these two rules is 0.33 and the resulting and the cut on μ_{C_1} will occur at the max, which is 0.66.

In this instance we have only one maximum at 4 so the mean of maxima is 4, giving us the defuzzified output at t_1 .

When calculating for the centroid of area a slightly different answer occurs.

$$c = \frac{\int c\mu_c(c)\delta c}{\int \mu_c(c)\delta c}$$

$$= \frac{\int_1^5 \frac{x-1}{3} x \delta x + \int_5^7 0.66 x \delta x + \int_7^9 \frac{9-x}{3} x \delta x}{\int_1^5 \frac{x-1}{3} \delta x + \int_5^7 0.66 \delta x + \int_7^9 \frac{9-x}{3} \delta x}$$

$$= \frac{22.8089}{4.6533}$$

$$= 4.9016$$

The centroid of area is slightly higher because the mean of maxima disregards the values outside of its single peak. This is also why the centroid of area returns a more accurate result.

Question 2

a)

i)

Classical:

$f\backslash K$	1e + 3	1e + 4	1e + 5	5e + 5	1e + 6	5e + 6	1e + 7
100	1	0.8	0.5	0.2	0	0.2	0.8
200	1	0.8	0.5	0.2	0	0.2	0.8
500	1	0.8	0.5	0.2	0.2	0.2	0.8
800	1	0.8	0.5	0.5	0.5	0.5	0.8
1000	1	0.8	0.5	0.8	1	0.8	0.8
2000	1	0.8	0.5	0.8	0.8	0.8	0.8
5000	1	0.8	0.5	0.2	0.2	0.2	0.8

ii)

Mamdani:

$f\backslash K$	1e + 3	1e + 4	1e + 5	5e + 5	1e + 6	5e + 6	1e + 7
100	0	0	0	0	0	0	0
200	0	0	0	0	0	0	0
500	0	0.2	0.2	0.2	0.2	0.2	0.2
800	0	0.2	0.5	0.5	0.5	0.5	0.2
1000	0	0.2	0.5	0.8	1	0.8	0.2
2000	0	0.2	0.5	0.8	0.8	0.8	0.2
5000	0	0.2	0.2	0.2	0.2	0.2	0.2

iii)

Product:

$f\backslash K$	1e + 3	1e+4	1e + 5	5e + 5	1e + 6	5e + 6	1e + 7
100	0	0.0	0.0	0.0	0	0.0	0.0
200	0	0.0	0.0	0.0	0	0.0	0.0
500	0.0	0.04	0.1	0.16	0.2	0.16	0.04
800	0.0	0.1	0.25	0.4	0.5	0.4	0.1
1000	0	0.2	0.5	0.8	1	0.8	0.2
2000	0.0	0.16	0.4	0.64	0.8	0.64	0.16
5000	0.0	0.04	0.1	0.16	0.2	0.16	0.04

b)

$$R = \begin{bmatrix} 1 & 0.8 & 0.5 & 0.2 & 0 & 0.2 & 0.8 \\ 1 & 0.8 & 0.5 & 0.2 & 0 & 0.2 & 0.8 \\ 1 & 0.8 & 0.5 & 0.2 & 0.2 & 0.2 & 0.8 \\ 1 & 0.8 & 0.5 & 0.5 & 0.5 & 0.5 & 0.8 \\ 1 & 0.8 & 0.5 & 0.8 & 1 & 0.8 & 0.8 \\ 1 & 0.8 & 0.5 & 0.8 & 0.8 & 0.8 & 0.8 \\ 1 & 0.8 & 0.5 & 0.2 & 0.2 & 0.2 & 0.8 \end{bmatrix}$$

$$K' = \begin{bmatrix} 0 \\ 0.8 \\ 0.2 \end{bmatrix}$$

$$f_1 = R \circ K'$$

$$= \max_{cols} \left(\min_{cols} (K', R) \right)$$

$$\begin{bmatrix} 1 & 0.8 & 0.5 & 0.2 & 0 & 0.2 & 0.8 \\ 1 & 0.8 & 0.5 & 0.2 & 0 & 0.2 & 0.8 \\ 1 & 0.8 & 0.5 & 0.2 & 0 & 0.2 & 0.8 \\ 1 & 0.8 & 0.5 & 0.2 & 0.2 & 0.8 \\ 1 & 0.8 & 0.5 & 0.5 & 0.5 & 0.5 & 0.8 \\ 1 & 0.8 & 0.5 & 0.8 & 1 & 0.8 & 0.8 \\ 1 & 0.8 & 0.5 & 0.8 & 0.8 & 0.8 & 0.8 \\ 1 & 0.8 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 & 0.8 \end{bmatrix} \right)$$

$$= \max_{cols} \left(\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.8 & 0.8 & 0.5 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \end{bmatrix} \right)$$

$$= \begin{bmatrix} 0.8 & 0.8 & 0.5 & 0.2 & 0.2 & 0.2 & 0.8 \end{bmatrix}$$

Question 3

$$T_{300} = \left\{ \frac{0}{LW} + \frac{1}{HG} \right\}$$

$$M_{800} = \left\{ \frac{0}{SM} + \frac{1}{LG} \right\}$$

$$P_{1.3} = \left\{ \frac{0.2}{FR} + \frac{0.8}{NR} \right\}$$