Review of Some Literature

Contents

1	Mathematical Expression of the Problem	1
2	Assumptions and Priors	1
3	General Formula of the h-omitted-term Approximation	1
4	Analytic Result for Set A	2
5	Numeric Examination for Set A and C	4

1 Mathematical Expression of the Problem

假定可观测量 X 有级数展开式 $X = \sum c_n Q^n$, 记 k 阶截断误差为

$$\Delta_k \equiv \sum_{n=k+1}^{\infty} c_n Q^n \tag{1}$$

欲求 $\operatorname{pr}(\Delta_k|c_0,c_1,\ldots,c_k)$.

2 Assumptions and Priors

- i) c_n 可视为某个上界 \bar{c} 给定后的随机变量, c_n 彼此独立,而且服从同一个概率分布 $\operatorname{pr}(c_n|\bar{c})$.
- ii) 从不同的先验信息出发可导出 $\operatorname{pr}(c_n|\bar{c})$, $\operatorname{pr}(\bar{c})$. Table 1 已列出三种 (Set A, B, C) 用于讨论。

3 General Formula of the h-omitted-term Approximation

出发,分别计算积分式中的两项如下,

$$\operatorname{pr}(\Delta|\bar{c}, c_{0}, c_{1}, \dots, c_{k}) = \int \operatorname{pr}(\Delta|\bar{c}, c_{0}, c_{1}, \dots, c_{k}, c_{k+1}, c_{k+2}, \dots, c_{k+h}) \operatorname{pr}(c_{k+1}, c_{k+2}, \dots, c_{k+h}|\bar{c}, c_{0}, c_{1}, \dots, c_{k}) \, dc_{k+1} \, dc_{k+2} \cdots \, dc_{k+h}$$

$$\approx \int \delta(\Delta - \Delta_{k}^{(h)}) \operatorname{pr}(c_{0}, c_{1}, \dots, c_{k}|\bar{c}) \, dc_{k+1} \, dc_{k+2} \cdots \, dc_{k+h}$$

$$(3)$$

$$\operatorname{pr}(\bar{c}|c_0, c_1, \dots, c_k) = \frac{\operatorname{pr}(c_0, c_1, \dots, c_k|\bar{c})\operatorname{pr}(\bar{c})}{\operatorname{pr}(c_0, c_1, \dots, c_k)}, \quad \text{where} \quad \operatorname{pr}(c_0, c_1, \dots, c_k) = \int \operatorname{pr}(c_0, c_1, \dots, c_k|\bar{c}')\operatorname{pr}(\bar{c})' \, d\bar{c}' \quad (4)$$

Set	$\operatorname{pr}(c_n \bar{c})$	$\operatorname{pr}(ar{c})$
A	$\frac{1}{2ar{c}} heta(ar{c}- c_n)$	$rac{1}{ar{c} \ln ar{c}_>/ar{c}_<} heta(ar{c} - ar{c}_<) heta(ar{c}_> - ar{c})$
В	$rac{1}{2ar{c}} heta(ar{c}- c_n)$	$\frac{1}{\tilde{c}\sigma\sqrt{2\pi}}\exp\left[-\frac{(\ln\tilde{c})^2}{2\sigma^2}\right]$
C	$\frac{1}{\bar{c}\sqrt{2\pi}}\exp\left(-\frac{c_n^2}{2\bar{c}^2}\right)$	$rac{1}{ar{c} \ln ar{c}_{>}/ar{c}_{<}} heta(ar{c} - ar{c}_{<}) heta(ar{c}_{>} - ar{c})$

表 1: Prior pdfs.

Eq (3) 中 \approx 的出现是因为使用了近似 $\Delta \approx \Delta_k^{(h)}$,所以由此算出来的结果 $\operatorname{pr}(\Delta|c_0,c_1,\ldots,c_k)$, $\operatorname{pr}(\Delta|\bar{c})$ 相应地标记为 $\operatorname{pr}_k(\Delta|c_0,c_1,\ldots,c_k)$, $\operatorname{pr}_k(\Delta|\bar{c})$ 。 Eq (2), (3), (4) 中所有 \bar{c} 的积分区间都是 $(0,+\infty)$,而 $c_{k+1},c_{k+2},\ldots,c_{k+h}$ 的积分区间都是 $(-\infty,+\infty)$ 。有时会先将 \bar{c} 的积分区间取为 $(\epsilon,1/\epsilon)$,计算完成后再令 $\epsilon\to0^+$.

当 $k = 1, \Delta \approx \Delta_k^{(1)}$, 即使用首项近似时, Eq (3), (4) 代入 Eq (2) 得

$$\operatorname{pr}_{1}(\Delta_{k}^{(1)}|c_{0},c_{1},\ldots,c_{k}) = \frac{\int \operatorname{pr}(c_{k+1} = \Delta_{k}^{(1)}/Q^{k+1}|\tilde{c})\operatorname{pr}(c_{0},c_{1},\ldots,c_{k}|\tilde{c})\operatorname{pr}(\tilde{c})\,\mathrm{d}\tilde{c}}{Q^{k+1}\int \operatorname{pr}(c_{0},c_{1},\ldots,c_{k}|\tilde{c})\operatorname{pr}(\tilde{c})\,\mathrm{d}\tilde{c}}, \qquad \operatorname{pr}(c_{0},c_{1},\ldots,c_{k}|\tilde{c}) = \prod_{n=0}^{k} \operatorname{pr}(c_{n}|\tilde{c})$$
(5)

连乘式 $\prod \operatorname{pr}(c_n|\hat{c})$ 中的项数可能少于 k+1,因为对于某些可观测量来说,部分系数可能自动等于零,不存在是随机变量的说法。当 $\operatorname{pr}(\Delta_k|c_0,c_1,\ldots,c_k)$ 求出后,可以进一步算出 p% 置信区间 $(-d_k^{(p)},+d_k^{(p)})$,

$$p\% = \int_{-d_k^{(p)}}^{+d_k^{(p)}} \operatorname{pr}(\Delta_k | c_0, c_1, \dots, c_k) \, d\Delta_k \tag{6}$$

4 Analytic Result for Set A

给定 Set A (See 1) 中的先验概率, $\operatorname{pr}(\Delta_k^{(1)}|c_0,c_1,\ldots,c_k)$ 可由 Eq (5) 解析地求出,并且由于最后的函数形式非常简单,相应的 $d_t^{(p)}$ 也可以直接计算 Eq (6) 中的积分得出。

因为常值函数存在归一化的问题,此时 \bar{c} 的积分区间实际上取不到 $(0, +\infty)$ 。Set A 选取的区间为 (\bar{c}_c, \bar{c}_s) (表现为 $pr(\bar{c})$ 中的 θ 函数),并且假定它足够宽,

$$\bar{c}_{<} < \bar{c}_{(k)} < \bar{c}_{>}, \qquad \bar{c}_{(k)} \equiv \max\{|c_0|, |c_1|, \dots, |c_k|\}$$
 (7)

这样, Eq (5) 中分母的积分就容易算出,

$$\int_{0}^{\infty} \operatorname{pr}(c_{0}, c_{1}, \dots, c_{k} | \tilde{c}) \operatorname{pr}(\tilde{c}) d\tilde{c} = \int_{\tilde{c}_{<}}^{\tilde{c}_{>}} \frac{1}{\tilde{c} \ln \tilde{c}_{>} / \tilde{c}_{<}} \prod_{n=0}^{k} \frac{\theta(\tilde{c} - |c_{n}|)}{2\tilde{c}} d\tilde{c}$$

$$= \frac{1}{2^{k+1} \ln \tilde{c}_{>} / \tilde{c}_{>}} \int_{\tilde{c}_{(k)}}^{\tilde{c}_{>}} \frac{d\tilde{c}}{\tilde{c}^{k+2}}$$

$$= \frac{1}{k+1} \frac{1}{2^{k+1} \ln \tilde{c}_{>} / \tilde{c}_{>}} \cdot \left(\frac{1}{\tilde{c}^{k+1}}\right) \Big|_{\tilde{c}_{>}}^{\tilde{c}_{(k)}}$$
(8)

类似地, Eq (5) 中分子的积分计算如下,

$$\int_{0}^{\infty} \operatorname{pr}(c_{k+1} = \Delta_{k}^{(1)}/Q^{k+1}|\bar{c})\operatorname{pr}(c_{0}, c_{1}, \dots, c_{k}|\bar{c})\operatorname{pr}(\bar{c}) \,d\bar{c} = \int_{\bar{c}_{+}}^{\bar{c}_{+}} \frac{1}{\bar{c} \ln \bar{c}_{>}/\bar{c}_{<}} \prod_{n=0}^{k+1} \frac{\theta(\bar{c} - |c_{n}|)}{2\bar{c}} \,d\bar{c}$$

$$= \frac{\theta(\bar{c}_{>} - \bar{c}_{(k+1)})}{2^{k+2} \ln \bar{c}_{>}/\bar{c}_{>}} \int_{\max(\bar{c}_{<}, \bar{c}_{(k+1)})}^{\bar{c}_{>}} \frac{d\bar{c}}{\bar{c}^{k+3}}$$

$$= \frac{1}{k+2} \frac{\theta(\bar{c}_{>} - \bar{c}_{(k+1)})}{2^{k+2} \ln \bar{c}_{>}/\bar{c}_{>}} \cdot \left(\frac{1}{\bar{c}^{k+1}}\right)_{\bar{c}_{>}}^{\max(\bar{c}_{<}, \bar{c}_{(k+1)})}$$

$$\bar{c}_{(k+1)} \equiv \max(\bar{c}_{(k)}, |\Delta_{k}^{(1)}|/Q^{k+1})$$
(9)

这里 $\theta(\bar{c}_{>} - \bar{c}_{(k+1)})$ 与 $\max(\bar{c}_{<}, \bar{c}_{(k+1)})$ 的出现是未曾像 Eq (7) 那样假设 $\bar{c}_{<} < \bar{c}_{(k+1)} < \bar{c}_{>}$ 的结果。最后,在将 Eq (8), (9) 代入 Eq (5) 前,还需将结果中的 k+1 替换成 n_c ,因为有时 c_0, c_1, \ldots, c_k 可能并不会全部出现,所以要用 n_c 来表示这 k+1 个系数中不为零的个数。总之, Eq (5) 可以化为

$$\operatorname{pr}(\Delta_{k}^{(1)}|c_{0},c_{1},\ldots,c_{k}) = \frac{\theta(\bar{c}_{>} - \bar{c}_{(k+1)})}{2Q^{k+1}} \cdot \frac{n_{c}}{n_{c}+1} \cdot \frac{(1/\bar{c}^{n_{c}+1})|_{\bar{c}_{>}}^{\max(\bar{c}_{<},\bar{c}_{(k+1)})}}{(1/\bar{c}^{n_{c}})|_{\bar{c}_{>}}^{\bar{c}_{(k)}}}$$

$$= \frac{1}{2Q^{k+1}} \frac{n_{c}}{n_{c}+1} \times \begin{cases} \frac{\frac{1}{c^{n_{c}+1}}|_{\bar{c}_{>}}^{\bar{c}_{(k)}}}{1}, & |\Delta_{k}^{(1)}| \leq \bar{c}_{(k)}Q^{k+1} \\ \frac{1}{c^{n_{c}+1}}|_{\bar{c}_{>}}^{\bar{c}_{(k)}}, & \bar{c}_{(k)}Q^{k+1} < |\Delta_{k}^{(1)}| \leq \bar{c}_{>}Q^{k+1} \\ \frac{1}{c^{n_{c}+1}}|_{\bar{c}_{>}}^{\bar{c}_{(k)}}, & \bar{c}_{(k)}Q^{k+1} < |\Delta_{k}^{(1)}| \leq \bar{c}_{>}Q^{k+1} \\ 0, & |\Delta_{k}^{(1)}| > \bar{c}_{>}Q^{k+1} \end{cases}$$

$$(10)$$

这表明 $\operatorname{pr}(\Delta_k^{(1)}|c_0,c_1,\ldots,c_k)$ 与 $\Delta_k^{(1)}$ 的函数关系事实上非常简单:在区间 $(-\bar{c}_{(k)}Q^{k+1},+\bar{c}_{(k)}Q^{k+1})$ 里,取值为与 $\Delta_k^{(1)}$ 无关的常数;在区间 $(-\infty,-\bar{c}_>Q^{k+1})$ 和 $(+\bar{c}_>Q^{k+1},+\infty)$ 里,取值为零;在这两种区间之外,函数值与 $\Delta_k^{(1)}$ 的依赖关系也具有 $ax^{-n}+b$ 的简单形式。这使得直接计算 Eq (6) 中的积分变得简单,

$$p\% = \begin{cases} \frac{d_{k}^{(p)}}{Q^{k+1}} \frac{n_{c}}{n_{c}+1} \frac{\frac{1}{|z_{n_{c}+1}|} |\hat{c}_{c(k)}^{\hat{c}_{c}}}{\hat{c}_{(k)}^{k}}, & d_{k}^{(p)} \leq \bar{c}_{(k)} Q^{k+1} \\ 1 - \frac{1}{Q^{k+1}} \frac{n_{c}}{n_{c}+1} \frac{1}{|z_{n_{c}}|} |\hat{c}_{c}^{\hat{c}_{c}}}{\hat{c}_{(k)}} \left[\frac{Q^{(k+1)(n_{c}+1)}}{n_{c}} \left(\frac{1}{\Delta_{k}^{n_{c}}} \right) |_{\hat{c}_{c}}^{d_{k}^{(p)}} - \frac{\bar{c}_{c} Q^{k+1} - d_{k}^{(p)}}{\bar{c}_{c}^{n_{c}+1}} \right], & \bar{c}_{(k)} Q^{k+1} < d_{k}^{(p)} \leq \bar{c}_{c} Q^{k+1} \\ 1, & d_{k}^{(p)} > \bar{c}_{c} Q^{k+1} \end{cases}$$

$$(11)$$

有时判定条件 $d_k^{(p)} \le \bar{c}_{(k)} Q^{k+1}$ 会换成

$$p\% \le (p\%)_{t}, \qquad (p\%)_{t} \equiv \frac{\frac{1}{\hat{c}_{n_{c}+1}}|\hat{c}_{c_{k}}\rangle}{\frac{1}{\hat{c}_{n_{c}}}|\hat{c}_{c_{k}}\rangle} \cdot \frac{n_{c}}{n_{c}+1} \bar{c}_{(k)}$$

$$(12)$$

在 $(\bar{c}_{<},\bar{c}_{>})$ → $(0,\infty)$ 的极限情形, Eq (10), (11) 相应地化简为

$$\operatorname{pr}(\Delta_{k}^{(1)}|c_{0},c_{1},\ldots,c_{k}) = \frac{1}{2Q^{k+1}} \frac{n_{c}}{n_{c}+1} \frac{1}{\bar{c}_{(k)}} \times \begin{cases} 1, & |\Delta_{k}^{(1)}| \leq \bar{c}_{(k)}Q^{k+1} \\ \left(\frac{\bar{c}_{(k)}Q^{k+1}}{|\Delta_{k}^{(1)}|}\right)^{n_{c}+1}, & \Delta_{k}^{(1)} > \bar{c}_{(k)}Q^{k+1} \end{cases}$$

$$(13)$$

$$d_k^{(p)} = \bar{c}_{(k)} Q^{k+1} \times \begin{cases} \frac{n_c + 1}{n_c} p\%, & p \le \frac{n_c}{n_c + 1} \\ \left[\frac{1}{(n_c + 1)(1 - p\%)}\right]^{1/n_c}, & p > \frac{n_c}{n_c + 1} \end{cases}$$

$$(14)$$

	min/max	Q	k = 0	k = 1	k = 2	k = 3	k = 4
	0.001/1000		0.312	0.0408	0.00725	0.00136	0.000261
	0.25/4.0	0.20	0.219	0.0389	0.00717	0.00136	0.000261
	0.50/2.0		0.181	0.035	0.00677	0.00132	0.000257
	0.001/1000		0.515	0.111	0.0326	0.0101	0.00319
68%	0.25/4.0	0.33	0.362	0.106	0.0322	0.0101	0.00319
	0.50/2.0		0.299	0.0952	0.0304	0.00976	0.00314
_	0.001/1000		0.78	0.255	0.113	0.0531	0.0255
	0.25/4.0	0.50	0.549	0.243	0.112	0.053	0.0255
	0.50/2.0		0.453	0.219	0.106	0.0514	0.0251
	0.001/1000		1.96	0.103	0.0137	0.00226	0.000407
	0.25/4.0	0.20	0.466	0.0773	0.0129	0.00223	0.000406
	0.50/2.0		0.292	0.0558	0.0106	0.00203	0.000388
	0.001/1000		3.24	0.281	0.0615	0.0168	0.00498
95%	0.25/4.0	0.33	0.768	0.21	0.0578	0.0166	0.00497
	0.50/2.0		0.482	0.152	0.0478	0.015	0.00474
	0.001/1000		4.91	0.645	0.214	0.0884	0.0398
	0.25/4.0	0.50	1.16	0.483	0.201	0.0873	0.0397
	0.50/2.0		0.73	0.349	0.166	0.0792	0.0379

表 2: PRC2015 TABLE. II 的结果复现。 $\bar{c}_{(k)}=1$.

5 Numeric Examination for Set A and C

对于首项近似下的 Set A,应用 $d_k^{(p)}$ 的隐式表达式 Eq (11),可以得到 PRC2015 TABLE. II 的结果。这里我们使用了函数 scipy.optimize.root_scalar() 来求得 $p\% > (p\%)_t$ 时的结果 (见 tab2.py). 对于首项近似下的 Set C,可以应用公式 Eq (5) 数值计算得到 $\operatorname{pr}(\Delta_k^{(1)}|c_0,c_1,\dots,c_k)$,然后使用隐式

表达式 Eq (6) 求出 $d_k^{(p)}$ (见 tab3-1.py).

如果 Table 2 中的小数四舍五入到和 PRC2015 TABLE. III 中相应精度,那么可以发现两张表的结果是完全一致的,没有任何不同。