A Convex Program for Binary Tomography

Ajinkya Kadu

Utrecht University, Netherlands

joint work with Tristan van Leeuwen

Applied Math Seminar, Utrecht University

November 21, 2019

Motivation

Consider a simple form of ${\bf nonogram}$

Example 1

Motivation

Consider a simple form of **nonogram**

Example 2

Motivation

Consider a simple form of nonogram

Goal: find a *binary* solution from the projection data (*e.g.*, row and column sums).

Outline

Binary tomography

Convex formulation

Small-scale experiments

X-Ray tomography experiments

Conclusions

Rubicon Proposal

The Problem

► recover binary images from a few of their projections

find
$$\mathbf{x} \in \mathcal{U}^n$$
 subject to $\mathbf{A}\mathbf{x} = \mathbf{y}$

- discrete set, $\mathcal{U} = \{u_0, u_1\}$
- tomographic projection matrix, $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $m \ll n$
- tomographic data, $\mathbf{y} \in \mathbb{R}^m$, (e.g., row and column sums)

constrained least-squares formulation

$$\mathbf{x}^* = \underset{\mathbf{x} \in \mathcal{U}^n}{\operatorname{argmin}} \quad \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|^2$$

ļ

Challenges

$$\mathbf{x}^* = \underset{\mathbf{x} \in \mathcal{U}^n}{\operatorname{argmin}} \quad \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|^2$$

- ightharpoonup constraints are non-convex (\mathcal{U} is a discrete set)
- ► Large null-space of A ($m \ll n$)
- lacktriangle solving constrained-LS exactly (*i.e.*, getting \mathbf{x}^{\star}) is not trivial
- ► Noise in y affects x*
- ▶ considered as NP-hard (for $m \ge 3, n > 2$)

Current state-of-the-art

- Algebraic methods
 (iterative algorithms similar to Kaczmarz method)
- ► Stochastic sampling methods (based on sampling the *pdf* on the space of discrete images)
- Relaxation methods
 - Convex relaxations (e.g., TV regularization)
 - Non-convex relaxations (e.g., level-set method, non-convex regularizers)
- ► Heuristic algorithms (practical methods, e.g., DART)

Outline

Binary tomography

Convex formulation

Small-scale experiments

X-Ray tomography experiments

Conclusions

Rubicon Proposal

Invertible A

$$\min_{\mathbf{x}, \, \phi} \quad \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|^2 \quad \text{subject to} \quad \mathbf{x} = \mathbf{sign} \, \phi$$

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\phi}, \boldsymbol{\nu}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|^2 + \boldsymbol{\nu}^T (\mathbf{x} - \mathbf{sign}\,\boldsymbol{\phi})$$

$$g(\boldsymbol{\nu}) = \inf_{\mathbf{x}} \left\{ \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|^2 + \boldsymbol{\nu}^T \mathbf{x} \right\} + \inf_{\boldsymbol{\phi}} \left\{ -\boldsymbol{\nu}^T \operatorname{sign} \boldsymbol{\phi} \right\}$$
$$= \left(-\frac{1}{2} \|\mathbf{A}^T \mathbf{y} - \boldsymbol{\nu}\|_{(\mathbf{A}^T \mathbf{A})^{-1}}^2 + \frac{1}{2} \mathbf{y}^T \mathbf{y} \right) - \|\boldsymbol{\nu}\|_1$$

$$\min_{\boldsymbol{\nu}} \quad \frac{1}{2} \|\boldsymbol{\nu} - \mathbf{A}^T \mathbf{y}\|_{(\mathbf{A}^T \mathbf{A})^{-1}}^2 + \|\boldsymbol{\nu}\|_1$$

Dual Problem

$$\begin{array}{ll} \text{(Primal)} & \min_{\mathbf{x},\phi} & \frac{1}{2}\|\mathbf{A}\mathbf{x}-\mathbf{y}\|^2 \quad \text{subject to} \quad \mathbf{x} = \mathbf{sign}\,\phi \\ \\ \text{(Dual)} & \min_{\mathbf{z}} & \frac{1}{2}\|\boldsymbol{\nu}-\mathbf{A}^T\mathbf{y}\|_{(\mathbf{A}^T\mathbf{A})^{-1}}^2 + \|\boldsymbol{\nu}\|_1 \end{array}$$

- ▶ a LASSO (ℓ_1 -regularized least-squares) problem
- ► Convex program. But can have multiple solutions.
- ▶ Many existing techniques available to solve the problem numerically.

a primal **solution** is retrieved using
$$\mathbf{x}^\star = \mathbf{sign}\left(\phi^\star\right) = \mathbf{sign}\left(
u^\star\right)$$

9

General A

Dual Problem for rank-deficient A

The dual objective for general $\mathbf{A} \in \mathbb{R}^{m \times n}$ is given by

$$g(\boldsymbol{\nu}) = \begin{cases} -\frac{1}{2} \|\boldsymbol{\nu} - \mathbf{A}^T \mathbf{y}\|_{(\mathbf{A}^T \mathbf{A})^{\dagger}}^2 - \|\boldsymbol{\nu}\|_1 + \frac{1}{2} \mathbf{y}^T \mathbf{y} & \boldsymbol{\nu} \in \mathcal{R}_{\mathbf{A}^T}, \\ -\infty & \text{otherwise} \end{cases}$$

This leads to an optimization problem: $\min_{\boldsymbol{\nu} \in \mathcal{R}_{\mathbf{A},T}} \quad \frac{1}{2} \| \boldsymbol{\nu} - \mathbf{A}^T \mathbf{y} \|_{(\mathbf{A}^T \mathbf{A})^\dagger}^2 + \| \boldsymbol{\nu} \|_1.$

Limited Tomography ($m \ll n$)

If rank(A) = m then the dual problem takes the following form:

$$\min_{oldsymbol{\mu} \in \mathbb{R}^m} \quad \frac{1}{2} \|oldsymbol{\mu} - \mathbf{y}\|^2 + \|\mathbf{A}^T oldsymbol{\mu}\|_1.$$

The primal solution is retrieved using $\mathbf{x}^{\star} = \mathbf{sign}\left(\mathbf{A}^T \boldsymbol{\mu}^{\star}\right)$

Natural Extensions

Binary Tomography with grey levels

The dual problem for a binary tomography problem with grey levels $u_0 < u_1$ is given by:

$$\min_{\boldsymbol{\nu} \in \mathcal{R}_{\mathbf{A}^T}} \quad \tfrac{1}{2} \| \boldsymbol{\nu} - \mathbf{A}^T \mathbf{y} \|_{(\mathbf{A}^T \mathbf{A})^\dagger}^2 + p(\boldsymbol{\nu}),$$

where $p(\mathbf{v}) = \sum_{i} |u_0| \max(-\nu_i, 0) + |u_1| \max(\nu_i, 0)$ is an asymmetric one-norm.

Poisson Noise

In case of Poisson noise, BT problem takes constrained weighted least-squares form:

$$\min_{\mathbf{x}, \, \phi} \quad \frac{1}{2} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_{\mathbf{\Lambda}}^2 \quad \text{subject to} \quad \mathbf{x} = \mathbf{sign}(\phi),$$

The (dual) optimization problem is
$$\min_{\boldsymbol{\nu} \in \mathcal{R}_{\boldsymbol{\Lambda}T}} \quad \frac{1}{2} \|\boldsymbol{\nu} - \mathbf{A}^T \boldsymbol{\Lambda} \mathbf{y}\|_{(\mathbf{A}^T \boldsymbol{\Lambda} \mathbf{A})^\dagger}^2 + \|\boldsymbol{\nu}\|_1.$$

Solving the dual problem

► exact solution (generally a bit slow)

Convert LASSO to a SDP, solve it using interior point method. Implemented in CVX toolbox.

- ► approximate solution (iterative methods)
 - Approximate the ℓ₁ norm (solve resulting problem using gradient-based method)
 - Proximal gradient method (e.g., ISTA, FISTA)
 - Splitting methods (e.g., ADMM, Primal-Dual)

ADMM

$$\min_{\boldsymbol{\nu}} \quad \frac{1}{2} \|\boldsymbol{\nu} - \mathbf{A}^T \mathbf{y}\|_{\mathbf{K}}^2 + \|\boldsymbol{\nu}\|_1$$

Augmented Lagrangian
$$\mathcal{L}_{\rho}(\boldsymbol{\nu}, \boldsymbol{\lambda}, \mathbf{p}) = \frac{1}{2} \|\boldsymbol{\nu} - \mathbf{A}^T \mathbf{y}\|_{\mathbf{K}}^2 + \|\boldsymbol{\lambda}\|_1 + \frac{\rho}{2} \|\boldsymbol{\nu} - \boldsymbol{\lambda} + \mathbf{p}\|^2$$

Iterations $(t = 0, \dots, T)$:
$$\boldsymbol{\nu}^{t+1} \triangleq \operatorname{argmin} \left\{ \frac{1}{2} \|\boldsymbol{\nu} - \mathbf{A}^T \mathbf{y}\|_{\mathbf{K}}^2 + \frac{\rho}{2} \|\boldsymbol{\nu} - \boldsymbol{\lambda}^t + \mathbf{p}^t\|^2 \right\}$$

$$\boldsymbol{\lambda}^{t+1} \triangleq \operatorname{argmin} \left\{ \|\boldsymbol{\lambda}\|_1 + \frac{\rho}{2} \|\boldsymbol{\lambda} - \boldsymbol{\nu}^{t+1} - \mathbf{p}^t\|^2 \right\} = S_{1/\rho} \left(\boldsymbol{\nu}^{t+1} - \mathbf{p}^t\right)$$

$$\mathbf{p}^{t+1} \triangleq \mathbf{p}^t + \boldsymbol{\nu}^{t+1} - \boldsymbol{\lambda}^{t+1}$$

Outline

Binary tomography

Convex formulation

Small-scale experiments

X-Ray tomography experiments

Conclusions

Rubicon Proposal

Unique solution

► Example I

► Example II

Multiple solutions

Experiments

	\boldsymbol{n}	total	unique	multiple
m = 2	2×2	16	14/14	2/2
	3×3	512	230/230	282/282
	4×4	65536	6902/6902	58541/58634*
m = 3	2×2	16	16/16	0/0
	3×3	512	496/496	16/16
	4×4	65536	54272/54272	10813/11264*
= 4	2×2	16	16/16	0/0
	3×3	512	512/512	0/0
u	4×4	65536	65024/65024	512/512

n denotes the length of image. m=2 - row and column sums, m=3 - row, column and diagonal sums, m=4 - row, column, diagonal and off-diagonal sums. Results shows the success times of the dual approach vs total possibilities. * denotes issues with CVX.

Main Result

Conjecture: Recovery of Solution

- ▶ If the problem has a **unique** solution then the dual approach **retrieves** it.
- ▶ If the problem has **multiple** solutions then the dual approach retrieves the **intersection** of all solutions.

There is a *subclass* of the described binary tomography problem that is not **NP-hard**.

Outline

Binary tomography

Convex formulation

Small-scale experiments

X-Ray tomography experiments

Conclusions

Rubicon Proposal

Sparse Projection Test

(10 projection angles from 0° to 180°)

Limited Angle Test

(10 projection angles from 0° to 90°)

X-Ray Cheese Dataset [FIPS]

Outline

Binary tomography

Convex formulation

Small-scale experiments

X-Ray tomography experiments

Conclusions

Rubicon Proposal

To summarize

- ► We propose a **convex program** to retrieve *binary* solution from its tomographic projections.
- ► From small-scale experiments, we conjecture that
 - 1. If a unique solution then the dual approach retrieves it.
 - 2. If multiple solutions then the dual approach retrieves the intersection of all solutions.
- ightharpoonup The proposed method compares *favorably* to existing approaches (*e.g.*, TV and DART).

Open Questions:

- ▶ Does the strong *duality* hold?
- ► Proving the conjecture
- ► Extension to discrete tomography (more than 2 grey levels)

Thanks!

Read:

► A. Kadu, T. van Leeuwen A convex formulation for Binary Tomography. *IEEE Transactions on Computational Imaging* 2019 [arXiv:1807.09196]

Email:

► a.a.kadu@uu.nl

Web:

► https://ajinkyakadu125.github.io

► https://github.com/ajinkyakadu125/ (code will be available soon)

Special Thanks to:

Nick Luiken, K. Joost Batenburg

Outline

Binary tomography

Convex formulation

Small-scale experiments

X-Ray tomography experiments

Conclusions

Rubicon Proposal

Signal Representation - Binary Coding

Aim: reduce the signal x(t) to the sum of atoms $d_i(t)$

27

Binary Matrix

a matrix with entries from the Boolean domain $\mathcal{B} = \{0,1\}$

Friendship

Jazz collaboration

Senate Joint Press

Examples:

- ► Gene Expressions
- ► Document Clustering
- ▶ web click-stream data
- ► Market basket data

http://moreno.ss.uci.edu/data.html

Matrix Factorization

decompose binary matrix ${\bf X}$ into product of two binary matrices

find
$$\mathbf{U} \in \mathcal{B}^{m \times k}$$
, $\mathbf{V} \in \mathcal{B}^{n \times k}$ subject to $\mathbf{X} = \mathbf{U} \circ \mathbf{V}^T$

$$\begin{bmatrix} x_{11} & \dots & x_{1n} \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ x_{m1} & \dots & x_{mn} \end{bmatrix} = \begin{bmatrix} | & & | \\ \mathbf{u}_1 & \dots & \mathbf{u}_k \\ | & & | \end{bmatrix} \circ \begin{bmatrix} | & & | \\ \mathbf{v}_1 & \dots & \mathbf{v}_k \\ | & & | \end{bmatrix}^T$$

- ▶ Low-rank factorization: $k \ll \min(m, n)$
- ► Operation ∘ : Linear or Boolean or Modulo-2

Neural Networks

$$\text{define} \quad g_i(\mathbf{x}) = h(\mathbf{W}_i\mathbf{x} + \mathbf{b}_i) \qquad \qquad i = 1, \dots, k$$

$$\text{find} \quad (\mathbf{W}_i, \mathbf{b}_i)_1^k \quad \text{such that} \quad y^{(j)} \approx g_k \circ g_{k-1} \circ \dots \circ g_1\left(\mathbf{x}^{(j)}\right) \qquad j = 1, \dots, N$$

Binary Networks

networks with weights restricted to $\{0,1\}$

Advantages

▶ **Storage**: need to store in a bit (0 or 1) instead of single precision - 32 bits

► Computation: bit-wise computations are faster (Logic gates)

► Robust: may avoid over-fitting

▶ Inference: quick inference due to small number of operations

Table 1: Comparison of different methods on ImageNet dataset. The compression rate (denoted as Comp. rate in the table) considers the overall parameters of the network. Both top-5 and top-1 accuracies are presented in the last column.

Methods	Model size	Comp. rate	Accuracy(%)
AlexNet	$232~\mathrm{MB^1}$	$1 \times$	80.2/56.6
BNN	22.6 MB	$10.3 \times$	50.4/27.9
XNOR-net	22.6 MB	$10.3 \times$	69.2/44.2
DoReFa-net	22.6 MB	$10.3 \times$	$-/49.8^{2}$
Our Method	$1.23~\mathrm{MB}$	$23.6 \times$	75.6/51.4

Proposal Summary

► Signal Representation

- find $\mathbf{w} \in \{0,1\}^m$ such that $x(t) \approx \sum_{i=1}^m w_i d_i(t)$.
- **Blind representation**: given a set of point $\{x_i\}$, find a dictionary D and corresponding binary weights matrix W.

Matrix Decomposition

- given a binary matrix \mathbf{X} , decompose into binary matrices \mathbf{U} and \mathbf{V} such that $\mathbf{X} \approx \mathbf{U}\mathbf{V}^T$.
- $Matrix\ completion$: fill up a binary matrix X with assumption of low-rank structure.

Deep Networks

- A network can be compressed using quantized weights.
- find a suitable **training** procedure for quantized weights without sacrificing the accuracy.

▶ Some Applications:

- Wireless Communications
- Unsupervised learning
- Light-weight Nets