Introduction to Scientific Computing

Author: Autar Kaw, Luke Snyder

Textbook: TEXTBOOK: NUMERICAL METHODS WITH

APPLICATIONS

Why use Numerical Methods?

To solve problems that cannot be solved exactly

Why use Numerical Methods?

- To solve problems that are intractable!
 - No efficient algorithm is available

Steps in Solving an Engineering Problem

How do we solve an engineering problem?

Example of Solving an Engineering Problem

Bascule Bridge THG

Trunnion-Hub-Girder Assembly Procedure

Step1. Trunnion immersed in dry-ice/alcohol

Step2. Trunnion warm-up in hub

Step3. Trunnion-Hub immersed in

dry-ice/alcohol

Step4. Trunnion-Hub warm-up into girder

Problem

After Cooling, the Trunnion Got Stuck in Hub

Why did it get stuck?

Magnitude of contraction needed in the trunnion was 0.015" or more. Did it contract enough?

Consultant calculations

$$\Delta D = D \times \alpha \times \Delta T$$

$$D = 12.363$$
''
$$\alpha = 6.47 \times 10^{-6} in / in / {}^{o} F$$

$$\Delta T = -108 - 80 = -188 {}^{o} F$$

$$\Delta D = (12.363)(6.47 \times 10^{-6})(-188)$$
$$= -0.01504$$
"

Is the formula used correct?

$$\Delta D = D \times \alpha \times \Delta T$$

T(°F)	α (μin/in/ºF)
-340	2.45
-300	3.07
-220	4.08
-160	4.72
-80	5.43
0	6.00
40	6.24
80	6.47

The Correct Model Would Account for Varying Thermal Expansion Coefficient

$$\Delta D = D \int_{T_a}^{T_c} \alpha(T) dT$$

Can You Roughly Estimate the Contraction?

$$\Delta D = D \int_{T_c}^{T_c} \alpha(T) dT$$
 T_a=80°F; T_c=-108°F; D=12.363"

Can You Find a Better Estimate for the Contraction?

$$\Delta D = D \int_{T_a}^{T_c} \alpha(T) dT$$

$$T_{\rm a} = 80^{\rm o} \text{F}$$

 $T_{\rm c} = -108^{\rm o} \text{F}$
 $D = 12.363''$

Estimating Contraction Accurately

Change in diameter (△D) by cooling it in dry ice/alcohol is given by

$$\Delta D = D \int_{T_a}^{T_c} \alpha(T) dT$$

$$T_{\rm a} = 80^{\rm o} {\rm F}$$

 $T_{\rm c} = -108^{\rm o} {\rm F}$
 $D = 12.363''$

$$\alpha = -1.2278 \times 10^{-5} T^2 + 6.1946 \times 10^{-3} T + 6.0150$$

$$\Delta D = -0.0137"$$

So what is the solution to the problem?

One solution is to immerse the trunnion in liquid nitrogen which has a boiling point of -321°F as opposed to the dry-ice/alcohol temperature of -108°F.

$$\Delta D = -0.0244$$
"

Revisiting steps to solve a problem

- 1) Problem Statement: Trunnion got stuck in the hub.
- 2) Modeling: Developed a new model

$$\Delta D = D \int_{T_a}^{T_c} \alpha(T) dT$$

- 3) Solution: 1) Used trapezoidal rule OR b) Used regression and integration.
- 4) Implementation: Cool the trunnion in liquid nitrogen.

19

THE END

Introduction to Numerical Methods

Mathematical Procedures

Mathematical Procedures

- Nonlinear Equations
- Simultaneous Linear Equations
- Differentiation
- Curve Fitting
 - Interpolation
 - Regression
- Integration
- Ordinary Differential Equations
- Other Advanced Mathematical Procedures:
 - Partial Differential Equations
 - Optimization
 - Fast Fourier Transforms

Nonlinear Equations

How much of the floating ball is under water?

Diameter=0.11m
Specific Gravity=0.6

$$x^3 - 0.165x^2 + 3.993 \times 10^{-4} = 0$$

Nonlinear Equations

How much of the floating ball is under the water?

$$f(x) = x^3 - 0.165x^2 + 3.993 \times 10^{-4} = 0$$

Differentiation

What is the acceleration at t=7 seconds?

$$v(t) = 2200 \ln \left(\frac{16 \times 10^4}{16 \times 10^4 - 5000t} \right) - 9.8t$$

$$a = \frac{dv}{dt}$$

Differentiation

What is the acceleration at t=7 seconds?

Time (s)	5	8	12
Vel (m/s)	106	177	600

Simultaneous Linear Equations

Find the velocity profile, given

Time (s)	5	8	12
Vel (m/s)	106	177	600

$$v(t) = at^2 + bt + c, 5 \le t \le 12$$

Three simultaneous linear equations

$$25a + 5b + c = 106$$

$$64a + 8b + c = 177$$

$$144a + 12b + c = 600$$

Interpolation

What is the velocity of the rocket at t=7 seconds?

Time (s)	5	8	12
Vel (m/s)	106	177	600

Regression

Thermal expansion coefficient data for cast steel

Regression (cont)

Integration

Finding the diametric contraction in a steel shaft when dipped in liquid nitrogen.

$$\Delta D = D \int_{T_{room}}^{T_{fluid}} \alpha \ dT$$

THE END