Practica 3

Raul Alejandro Meza Ibarra

26 de Marzo de 2021

1 Introduccion

Usando funciones daremos a conocer los intervalos en donde estan definidas ademas de una base de datos en base a cada funcion.

2 Funcion

Hemos propuesto algunas funciones en intervalos determinados, en ellos usamos bisecciones para una mejor visualizacion de la grafica y de los datos que arroja en el intervalo preestablecido.

2.1 Prueba 1

En esta primera funcion $f(x)=x^{**}3$, usamos un intervalo cerrado [-2,2] y se obtiene la siguiente grafica :

• De esta grafica en su intervalo, se obtienen los siguientes datos:

a	b	m	Error est.
-0.0500000	0.1000000	-0.0500000	0.0750000
-0.0500000	0.0250000	0.0250000	0.0375000
-0.0125000	0.0250000	-0.0125000	0.0187500
-0.0125000	0.0062500	0.0062500	0.0093750
-0.0031250	0.0062500	-0.0031250	0.0046875
-0.0031250	0.0015625	0.0015625	0.0023437
-0.0007812	0.0015625	-0.0007812	0.0011719
-0.0007812	0.0003906	0.0003906	0.0005859
-0.0001953	0.0003906	-0.0001953	0.0002930
-0.0001953	0.0000977	0.0000977	0.0001465
-0.0000488	0.0000977	-0.0000488	0.0000732
-0.0000488	0.0000244	0.0000244	0.0000366
-0.0000122	0.0000244	-0.0000122	0.0000183
-0.0000122	0.0000061	0.0000061	0.0000092
-0.0000031	0.0000061	-0.0000031	0.0000046
-0.0000031	0.0000015	0.0000015	0.0000023
-0.0000008	0.0000015	-0.0000008	0.0000011
-0.0000008	0.0000004	0.0000004	0.0000006

2.2 Prueba 2

En esta otra funcion tomamos un intervalo un poco mas amplio dado que la funcion es mas grande y elaborada, la funcion a utilizar es $f(x)=x^{**}5-100^*x^{**}4+3995^*x^{**}3-79700^*x^{**}2+794004^*x-3160075$, la grafica de esta funcion en un intervalo de [-150,150] seria:

• Como puede denotar la ampliacion distorsiona la grafica dado que al ser una curva muy larga se necesita de un intervalo mayor, los datos que arroja en este intervalo son:

a	b	m	Error est.
17.0000000	19.6000000	19.6000000	1.3000000
17.0000000	18.3000000	18.3000000	0.6500000
17.6500000	18.3000000	17.6500000	0.3250000
17.6500000	17.9750000	17.9750000	0.1625000
17.8125000	17.9750000	17.8125000	0.0812500
17.812500	17.8937500	17.8937500	0.0406250
17.8125000	17.8531250	17.8531250	0.0203125
17.8328125	17.8531250	17.8328125	0.0101562
17.8429687	17.8531250	17.8429687	0.0050781
17.8429687	17.8480469	17.8480469	0.0025391
17.8455078	17.8480469	17.8455078	0.0012695
17.8455078	17.8467773	17.8467773	0.0006348
17.8461426	17.8467773	17.8461426	0.0003174
17.8461426	17.8464600	17.8464600	0.0001587
17.8463013	17.8464600	17.8463013	0.0000793
17.8463013	17.8463806	17.8463806	0.0000397
17.8463409	17.8463806	17.8463409	0.0000198
17.8463608	17.8463806	17.8463608	0.0000099
17.8463608	17.8463707	17.8463707	0.0000050
17.8463608	17.8463657	17.8463657	0.0000025
17.8463633	17.8463657	17.8463633	0.0000012
17.8463645	17.8463657	17.8463645	0.0000006

2.3 Prueba 3

En esta funcion, $f(x)=x^**3-2^*x-5$, usamos un intervalo cerrado de [-2,2] denotando una curva mas formada, muy similar a nuestra primera funcion, su grafica es:

 $\bullet\,$ Apesar de ser una curva comun, la funcion arroja bastantes datos en su intervalo cerrado:

a	b	m	Error est.
2.0000000	3.5000000	3.5000000	0.7500000
2.0000000	2.7500000	2.7500000	0.3750000
2.0000000	2.3750000	2.3750000	0.1875000
2.0000000	2.1875000	2.1875000	0.0937500
2.0937500	2.1875000	2.0937500	0.0468750
2.0937500	2.1406250	2.1406250	0.0234375
2.0937500	2.1171875	2.1171875	0.0117188
2.0937500	2.1054688	2.1054688	0.0058594
2.0937500	2.0996094	2.0996094	0.0029297
2.0937500	2.0966797	2.0966797	0.0014648
2.0937500	2.0952148	2.0952148	0.0007324
2.0944824	2.0952148	2.0944824	0.0003662
2.0944824	2.0948486	2.0948486	0.0001831
2.0944824	2.0946655	2.0946655	0.0000916
2.0944824	2.0945740	2.0945740	0.0000458
2.0945282	2.0945740	2.0945282	0.0000229
2.0945511	2.0945740	2.0945511	0.0000114
2.0945511	2.0945625	2.0945625	0.0000057
2.0945511	2.0945568	2.0945568	0.0000029
2.0945511	2.0945539	2.0945539	0.0000014
2.0945511	2.0945525	2.0945525	0.0000007

3 Conclusion

Una funcion es mas que solo tazar una linea, es un conjunto de datos que nos riven para representar nuestro entorno, despues de mas de 10 compilaciones se pudieron completar las ecuaciones y con ellos las bases de datos.

References

https://github.com/Raul-Meza/Matematicas_computacionales