Friedrich-Ebert-	Mikrocontroller-Labor	Name: Rahm Datum: 15.11.2016 0_Inhalt_und_Lernziele.docx
Esslingen FES	Lernziele	0.1

1 Bit I/O (in_out.h)

1.1 Projekt: Programmierung des Mikrocontrollers mit AtmelStudio 7

- Kennenlernen der Hardware
- Verwenden des Projekt-Templates
- Erstellen eines neuen Projekts
- Kennenlernen der IDE und wichtige Elemente der Vorlage main.c
- Programmdownload (*.hex) über die debugWire-Schnittstelle

1.2 Projekt: Störungsmeldung mit blinkender LED

- Kommentare in C
- Bitausgabe (LED lowaktiv)
- Endlosschleife
- Messen eines Rechtecksignals mit Picoscope
- Funktion: delay_ms()
- #define-Anweisung (Symboldefinitionen/Präprozessor)
- Struktogramm erstellen

1.3 Projekt: Digitaler Besucherzähler für einen Messestand

- Einfache Ausgaben mit dem LC-Display
- Warten auf Tastereingabe (Taster lowaktiv)
- Variable (uint16_t)
- Inkrementieren
- Tasterprellen / Ausmessen der Prellzeit mit Picoscope
- Softwareentprellung
- Alternative Verzweigungen [if () ...; if()... else...]
- Verschachtelte Tasterabfrage

1.4 Projekt: Schalten mit Taster

- Tastendruck speichern
- Bitweise invertieren (~)
- Variablen (uint8_t)

2 Byte I/O (in_out.h)

2.1 Projekt: Lauflicht mit LED

- Byte-Ein- und Ausgabe
- In-System-Debugging
- Breakpoints
- For-Schleife
- Dekrement
- Variable (int8 t)

2.2 Projekt: Countdown-Zähler mit Siebensegment-Anzeige

- Sieben-Segment-Codierung
- Arrays
- Indexzugriff auf Array-Elemente

Friedrich-Ebert- Schule	Mikrocontroller-Labor	Name: Rahm Datum: 15.11.2016 0_Inhalt_und_Lernziele.docx
Esslingen FES	Lernziele	0.2

3 AD-Wandler / PWM (in_out.h)

3.1 Projekt: Beleuchtungssensor mit LED-Balkenanzeige

- adc_in1()
- Bereichsabfrage 0...255 mit if/else if/else

3.2 Projekt: Dimmen der Hintergrundbeleuchtung des LC-Displays

- pwm_start(); pwm_duty_cycle()
- PWM-Impulse messen mit Picoscope. Nachmessen des Tastgrades
- Helligkeitssteuerung des LC-Display mit PWM
- Parameterlose Funktion vom Typ void

3.3 Drehzahlsteuerung von DC-Motoren mit PWM

- pwm_stop()
- PWM-Ansteuerung einer H-Brücke
- Richtungsänderung

4 Timer und Interrupt (interrupt.h)

4.1 Projekt: Impulse per Interrupt zählen

- ext interrupt
- Initialisierung und Freigabe
- Interrupt-Serviceroutine (ISR)

4.2 Projekt : Inkrementaler Drehgeber

Drehrichtungserkennung mit Inkrementalsensor

4.3 Projekt: Stoppuhr mit Timer-Interrupt

• timer1ms

5 Schnittstellen (communication.h)

5.1 Projekt: Temperaturmessung mit LM75

- I²C-Busaufbau, -signale, -adressierung, -protokoll
- Richtlinienbefehle/ Abbilden eines I²C-Kommunikationsprotokolls
- Temperatursensor LM75

5.2 Serielle Schnittstelle

- Aufbau RS232-Schnittstelle, Signale, Protkolle
- Richtlinienbefehle
- Kommunikation mit Terminalprogramm
- Projekt: Schalten über RS232
- Übertragung von Temperaturwerten zum Terminal

6 Sonstiges

6.1 Projekt: Schrittmotorsteuerung

- bipolarer Schrittmotor
- Motortreiber H-Brücke
- Ansteuertabelle für Vollschritt

	Friedrich-Ebert- Schule Esslingen FES	Mikrocontroller-Labor	Name: Rahm Datum: 15.11.2016 0_Inhalt_und_Lernziele.docx
		Lernziele	0.3

6.2 Projekt: Lageregelung

- Aufbau eines Lage-Regelkreises mit Mikrocontroller (Regelgröße, Messeinrichtung, Regelalgorithmus, Stellglied, Regelstrecke)
- P-Regel-Algorithmus
- Umsetzung einer Fahrkurve

6.3 Projekt: Datenlogger

- Aufbau des Datenloggers (Controller, Sensor, RTC, EEPROM, I²C-Bus)
- Bibliotheken einbinden (rtc.h, eeprom.h, datenlogger.h)
- Serieller Interrupt (Steuerung und Konfiguration des Datenloggers)
- Bluetooth-Verbindung mit SPP (SerialPortProfile) zu PC (oder Mobile Device)
- Übertragung von Sensordaten (Darstellung/Auswertung mit Excel)

6.4 Projekt: Entfernungsmessung mit SRF04

- Ultraschallsensor
- Timer Register-Programmierung
- Zeitberechnung mit Timer
- Entfernungsberechnung

6.5 Projekt: Robotersteuerung

- Analyse eines komplexen Bewegungsschemas
- Auswertung von Sensorsignalen (If, else-if,..)
- Zweidimensionales Array
- Komplexe Steuerungsvorgänge

6.6 Projekt: Drehzahlregelung eines Gleichstrommotors

- Realisierung eines Software-PI-Reglers
- Stellungs- und Geschwindigkeitsalgorithmus
- Aufnahmen einer Sprungantwort

7.1 Projekt: Ampelsteuerung (LfB)

- Ampelphasen mit Arrays realisieren
- Timer- und Externer-Interrupt
- Komplexe Steuerungsvorgänge