Dipolar interactions in dense ensembles of Nitrogen-Vacancy centers

Clément Pellet-Mary, Maxime Perdriat, Gabriel Hétet

Nano-optics group

Preamble: the NV center

Preamble: the 4 classes of NV centers

4 different projections of \vec{B} over the 4 possible NV axes \rightarrow 4 classes of resonances

Subject of this presentation

- Better understand the dipole-dipole interaction in dense NV ensembles
- · Exploit the PL feature for magnetometry

Outline

1 Cross-relaxation with NV centers

2 The NV-fluctuator model and experimental verification

Principle of cross-relaxation with NV centers

Example: Cross-relaxation between NV centers and VH⁻

Optical detection of paramagnetic defects in diamond grown by chemical vapor deposition

C. Pellet-Mary, P. Huillery, M. Perdriat, A. Tallaire, and G. Hétet Phys. Rev. B **103**, L100411 – Published 24 March 2021

Cross-relaxation between NV centers and NV centers

Presentation of the fluctuator model

Choi, Joonhee, et al. Physical review letters 118.9 (2017): 093601.

Predictions of the fluctuator model

- \blacksquare Γ_1 increases when classes overlap spectrally (increase in the resonant fluctuator density).
- The dipole induced depolarization has a stretched exponential profile:

$$ho_{00}(t) \propto \exp\left(-\sqrt{rac{t}{T_1}}
ight)$$

■ The Fluctuators spectral response is broadened by their decay rate γ_f (lifetime limit).

T_1 measurement protocol

Stretched exponential decay profile

Competition between stretched and exponential decay

Spectral response of the fluctuators

- Γ_1 curve broader than ODMR overlap
- Lorentzian shape

The fluctuator's spectral response (T_2^*) in broadened by γ_f

Geometry conditions for class resonances

PL mapping of the crystalline planes

Limitations of the fluctuator model

$\Gamma_1^{\mathrm{dd}}(\mathbf{B})$	Theory	Experimental
random B (1 class)	$\Gamma_0^{ m th}$	$1.53 \pm 0.04 \text{ ms}^{-1} \equiv \Gamma_0^{\text{exp}}$
$\mathbf{B} \in \{110\} \ (2 \text{ classes})$	$10.0 \Gamma_0^{\mathrm{th}}$	$5.2 \pm 0.1 \Gamma_0^{\mathrm{exp}}$
$\mathbf{B} \in \{100\} \ (2 \text{ classes})$	$7.24 \Gamma_0^{\text{th}}$	$4.2 \pm 0.1 \Gamma_0^{\rm exp}$
$\mathbf{B} \parallel \langle 111 \rangle \ (3 \text{ classes})$	$28.4 \Gamma_0^{\text{th}}$	$11.6 \pm 0.4 \Gamma_0^{exp}$
$\mathbf{B} \parallel \langle 100 \rangle \ (4 \ \mathrm{classes})$	$42.8 \Gamma_0^{\rm th}$	$14.1 \pm 0.5 \Gamma_0^{ m exp}$
$\mathbf{B} = 0 \ (4 \ \text{classes})$	$104 \Gamma_0^{ m th}$	$19.9 \pm 0.8 \; \Gamma_0^{ m exp}$

Overestimation of the relaxation rate

Exponential lifetime (still dipole-dipole limited)

Improvement of the model:

- Saturation of the fluctuators (non-Markovian)
- NV-NV spin diffusion