Learning Scheduling Algorithms for Data Processing Clusters

Tejas Ravindra Dhawale

Summer term 2020

This paper gives an overview of how modern machine learning techniques can be used to solve the scheduling problem in data processing clusters.

1 Introduction

This paper proposes Decima, a general-purpose reinforcement learning(RL) and Neural Network based scheduling service for data processing jobs with a high-level goal of minimizing the average job completion time(JCT).

2 Motivation

Illustrate the challenges of using job-specific information to make scheduling decisions.

3 Design Challenges

Key challenges in the design of Decima:

1. Scalable state information processing.

This subsection describes the challenges of incorporating dynamic information to make scheduling decisions.

2. Huge space of scheduling decisions.

This subsection describes the challenges of having a large action space of scheduling decisions.

3. Training for continuous stochastic job arrivals.

This subsection describes the challenges in training with continuous job arrivals.

4 Design

This section describes the design of Decima and how it addresses the challenges mentioned in section 3.

5 Implementation

1. Spark Integration

This subsection describes how Decima is integrated with Spark.

2. Spark Simulator

This subsection describes the results of simulation in Spark.

6 Evaluation

This section compares the performance evaluation of Decima with existing baseline algorithms like Spark's default FIFO scheduling, shortest-job-first critical path heuristic(SJF-CP), simple fair scheduling, etc.

7 Discussion

This section proposes future research scope and potential applications where Decima can be implemented.

8 Conclusion

Decima demonstrates the use of reinforcement learning and neural networks to automatically learn com-

plex cluster scheduling policies.

References

- [1] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and Aditya Akella. 2014. Multi-resource Packing for Cluster Schedulers. *In Proceedings of the 2014 ACM SIGCOMM Conference (SIGCOMM)*. 455–466.
- [2] Hongzi Mao, Shaileshh Bojja Venkatakrishnan, Malte Schwarzkopf, and Mohammad Alizadeh. 2019. Variance Reduction for Reinforcement Learning in Input-Driven Environments. *Proceedings of the 7th International Conference on Learning Representations (ICLR)* (2019).
- [3] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric Tune, and John Wilkes. 2015. Large-scale cluster management at Google with Borg. *In Proceedings of the 10th European Conference on Computer Systems (EuroSys)*. Bordeaux, France.