Analysis Qualifying Exam January 2017

Instructions: Write your name legibly on each sheet of paper. Write only on one side of of each sheet of paper. Try to answer all questions. Questions 1-8 are each worth 10 points and question 9 is worth 20 points.

Terminology: Measurability and integrability on \mathbb{R} or a measurable subset of it will always refer to the Lebesgue measure, except if otherwise specified. Lebesgue measure will be denoted by m, dx or dy depending on the context. If A is a subset of \mathbb{R} then $L_p(A)$ is considered with respect to the Lebesgue measure. You can quote without proof any of the standard theorems covered in Math 703-704, but do indicate why the relevant hypotheses hold.

Let (X,d), (Y,ρ) be metric spaces and let $f:X\to Y$. Prove that fis continuous if and only if f restricted to any compact subset of X is continuous.

Let $f: \mathbb{R} \to [0,1]$ be Lebesgue measurable. Prove that either $f = \chi_A$ a.e. for some measurable set A or there exists $\epsilon > 0$ such that

$$m(\{x \in \mathbb{R} : \epsilon < f(x) < 1 - \epsilon\}) > 0.$$

Let f_n , f be Lebesgue integrable functions on \mathbb{R} . Assume $f_n(x) \to f(x)$ a.e. on \mathbb{R} as $n \to \infty$ and

$$\int |f_n| \, dx \to \int |f| \, dx < \infty$$

as $n \to \infty$. Prove that $\int |f_n - f| dx \to 0$ as $n \to \infty$.

4. Let E_n be Lebesgue measurable subsets of [0,1] and assume

$$m\left(\bigcup_{n=1}^{\infty}E_{n}\right)\stackrel{?}{=}\sum_{n=1}^{\infty}m(E_{n}).$$
 Contradiction?

Prove that $m(E_i \cap E_j) = 0$ for all $i \neq j$.

contrapositive seems promising?

Let a < b in $\mathbb R$ and $f: [a,b] \to \mathbb R$. Assume that there exits M > 0such that the total variations $T_{a+\epsilon}^b(f) \leq M$ for all $\epsilon > 0$. Prove that fis of bounded variation on [a, b], but that not necessarily $T_a^b(f) \leq M$.

Fabsits on TOIL

does increasing sots? Nope...

6. Let $1 \leq p < \infty$ and $f_n \in L_p(\mathbb{R})$ such that

- (a) $f_n(x) \to 0$ a.e.
- (b) For all $\epsilon > 0$ there exists a measurable set E with $m(E) < \infty$ such that $\int_{E^c} |f_n|^p dx < \epsilon$ for all $n \ge 1$.
- (c) For all $\epsilon > 0$ there exists a $\delta > 0$ such that for all measurable sets E with $m(E) < \delta$ we have $\int_E |f_n|^p dx < \epsilon$ for all $n \ge 1$.

Prove that $\int |f_n|^p dx \to 0$.

Let G be bounded region and let f and g be continuous nowhere zero functions on \overline{G} , which are holomorphisms Gfunctions on \overline{G} , which are holomorphic on G. Assume that |f(z)| =|g(z)| for all $z \in \partial G$. Prove that there exists $\lambda \in \mathbb{C}$ with $|\lambda| = 1$ such that for all $z \in G$ we have $f(z) = \lambda g(z)$.

Compute

$$\int_{-\infty}^{\infty} \frac{2x^2 + x + 1}{x^4 + 5x^2 + 4} \, dx.$$

9. True or False. Prove, or give a counterexample.

a/If $A \subset \mathbb{R}$ is such that int (A) and $\partial(A)$ are compact, then A is

Let $E \subset \mathbb{R}$ be a measurable set of finite measure. Then for $\epsilon > 0$

 $= \text{ outer that } m(F \setminus E) < \epsilon.$ $= \text{ such that } f(\frac{1}{n}) = \frac{1}{n^2 - 1} \text{ for all } n \geq 2. \text{ uniqueness turm?}$ $= \text{ d. If } f_n \text{ are measurable functions on } \mathbb{R} \text{ for which there exists an integrable function } f \text{ such that } f_n \leq f \text{ for all } n, \text{ then } f_n dx \leq \int \limsup_{n \to \infty} \int_0^1 \frac{\sin(x^n)}{x^n} \, dx = 1.$ $= \lim_{n \to \infty} \int_0^1 \frac{\sin(x^n)}{x^n} \, dx = 1.$