CSE 331 Computer Organization

Final Project – Single cycle MIPS with Structural Verilog

REPORT

151044062 - MUAZ KURT

R TYPES			[31:26] = 00 0000		[5:0]
Add	add	R	R[rd] = R[rs] + R[rt]	(1)	0/20 hex: 10 0000
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		0/21 hex: 10 0001
And	and	R	R[rd] = R[rs] & R[rt]		0/24 hex: 10 0100
Nor	nor	R	$R[rd] = ^{\sim} (R[rs] R[rt])$		0/27 hex: 10 0111
Or	or	R	R[rd] = R[rs] R[rt]		0/25 hex 10 0101
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0/2a hex 10 1010
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0/2b hex 10 1011
Shift Left Logical	sll	R	R[rd] = R[rt] << shamt		0/00 hex 00 0000
Shift Right Logical	srl	R	R[rd] = R[rt] > > shamt		0/02 hex 00 0010
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0/22 hex 10 0010
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0/23 hex 10 0011
I TYPES					[31: 26]
Add Immediate	addi	I R[rt] =	R[rs] + SignExtImm	(1,2)	8 hex: 00 1000
Add Imm. Unsigned	addiu	I R[rt] =	R[rs] + SignExtImm	(2)	9 hex: 00 1001
And Immediate	andi	I R[rt] =	R[rs] & ZeroExtImm	(3)	c hex: 00 1100
Branch On Equal	beq	I if(R[rs]]==R[rt]) PC=PC+4+BranchAddr	(4)	4 hex: 00 0100
Load Word	lw	I R[rt] =	M[R[rs]+SignExtImm]	(2)	23 hex: 10 0011
Or Immediate	ori	I R[rt] =	R[rs] ZeroExtImm	(3)	d hex: 00 1101
Store Word	sw	I M[R[rs	s]+SignExtImm] = R[rt]	(2)	2b hex: 10 1011
Set Less Than Imm.	slti	I R[rt] =	(R[rs] < SignExtImm)? 1:0	(2)	a hex: 00 1010
J TYPES					
Jump	j J	PC=Jui	mpAddr	(5)	2 hex: 00 0010

CONTROL SIGNAL LIST

- 1. BRANCH ENABLE
- 2. ALU RESULT OR MEMORY RESULT
- 3. MEMORY WRITE ENABLE
- 4. MEMORY READ ENABLE
- 5. IMMEDIATE SELECT SIGNAL
- 6. SHIFT SELECT SIGNAL
- 7. RD/RT SIGNAL
- 8. REGISTER WRITE ENABLE
- 9. ZERO EXTEND SIGNAL
- 10. JUMP INSTR SIGNAL
- 11. SET LESS THAN SELECT SIGNAL
- 12. ALU CONTROL SIGNALS (3 BITS)

Same Signals:					
	0		n enable signal:	0	
	0		esult/Memory Result S:	0	
	0		ry Read Enable S:	0	
	0		ry Write Enable S:	0	
	0	Immed	liate Select Signal:	0	
	0	Rd/Rt	signal:	0	
	0	Registe	er Write enable:	1	
	0	Zero/S	ign Extend signal:	Χ	
	0	Jump I	nstr Signal:	0	
,	Separa	ate Signa	ls:		
	o Add				[5:0] → 10 0000
	0	Add Ur	nsigned		[5:0] → 10 0001
		•	ALU Control signals:	ADD = 010	
		-	Set less than signal:	0	
	0	And	-		[5:0] → 10 0100
		•	ALU Control signals:	AND = 000	
		-	Set less than signal:	0	
	0	Nor	- -		[5:0] → 10 0111
		-	ALU Control signals:	NOR = 111	
		-	Set less than signal:	0	
	0	Or	- -		[5:0] → 10 0101
		-	ALU Control signals:	OR = 001	
		-	Set less than signal:	0	
	0	Set Les	ss Than		[5:0] → 10 1010
	0	C			[5:0] → 10 1011
		-	Set less than signal:	1	
	0	o Subtract			[5:0] → 10 0010
	0				[5:0] → 10 0011
		•	ALU Control signals:	SUB = 100	
		-	Set less than signal:	0	
	0				[5:0] → 00 0000
		•	Shift Select Signal:	1	
		-	ALU Control signals:	Shift Left = 110	
		-	Set less than signal:	0	
	0	al if: al l · · · · ·			[5:0] → 00 0010
		•	Shift Select Signal:	1	
		-	ALU Control signals:	Shift Right = 101	
		-	Set less than signal:	0	
			<u> </u>		

Same	Same Signals						
0	5 1/5: 1		1				
0	Shift Select Sig	nal:	0				
0	Jump Instr Sigr		0				
0	Group 1 (Arith	metic Op	perations)				
	i. Same	signals					
	1.	Branch	enable signal:	0			
	2.	ALU Re	sult/Memory Result S:	0			
	3.	Memo	ry Read Enable S:	0			
	4.	Memo	ry Write Enable S:	0			
	5.		iate Select Signal:	1			
	6.	_	er Write enable:	1			
	ii. Separa	ate Signa					
	<u>1.</u>	Add Im	mediate:		00 1000, 00 1003		
		a.	Zero/Sign Extend signal:	1			
		b.	Set less than signal:	0			
		C.	ALU Control signals:	ADD = 010			
	2.	And Im	mediate:		00 1100		
		a.	Zero/Sign Extend signal:	0			
		b.	Set less than signal:	0			
		c.	ALU Control signals:	AND = 000			
	3.	Or Imn	nediate:		00 1101		
		a.	Zero/Sign Extend signal:	0			
		b.	Set less than signal:	0			
		c.	ALU Control signals:	OR = 001			
	4.	Set Les	s Than Immediate:		00 1010		
		a.	Zero/Sign Extend signal:	1			
		b.	Set less than signal:	1			
		c.	ALU Control signals:	SUB =100			
0	Group 2 (Mem	ory)					
	i. Same	signals					
	1.	Branch	enable signal:	0			
	2.	Immed	iate Select Signal:	1			
	3.	Zero/S	gn Extend signal:	1			
	4.		elect Signal:	0			
	5.		s than signal:	0			
	6.	ALU Co	ntrol signals:	ADD = 010			
ii. Separate Signals							
	1.	Load W	/ord:	10 0011			
		a.	ALU Result/Memory Resu	lt S: 1			
		b.	Memory Read Enable S:	1			
		c.	Memory Write Enable S:	0			
		d.	Register Write enable:	1			
	2.	Store V	Vord:	10 1011			

a.	ALU Result/Memory Result S:	Χ	
b.	Memory Read Enable S:	0	
c.	Memory Write Enable S:	1	
d.	Register Write enable:	0	

0	Branch On Equal:)
	i.	Branch enable signal:	1	
	ii.	ALU Result/Memory Result	S: X	
	iii.	Memory Read Enable S:	0	
	iv.	Memory Write Enable S:	0	
	٧.	Immediate Select Signal:	0	
	vi.	Register Write enable:	0	
	vii.	Zero/Sign Extend signal:	X	
	viii.	Set less than signal:	0	
	ix.	ALU Control signals:	SUB = 100	

J Type Instructions Signal list

1.	Jump li	00 0010	
	a.	Branch enable signal:	0
	b.	ALU Result/Memory Result S:	Χ
	c.	Memory Read Enable S:	0
	d.	Memory Write Enable S:	0
	e.	Immediate Select Signal:	Χ
	f.	Shift Select Signal:	Χ
	g.	Rd/Rt signal:	Χ
	h.	Register Write enable:	0
	i.	i. Zero/Sign Extend signal:	
	j.	Jump Instr Signal:	1
	k.	Set less than signal:	Χ
	l.	ALU Control signals:	XXX

Main control signal results. All are acting as expected.

Can access all the memory one by one. Operation aborted cause of very high time cost and unnecessary modelling. There is 32768 memory blocks.

Instruction memory is accessible. All the memory can be read by pci module.

Design Schema.

Signal generating algebra: BRANCH ENABLE !F5.!F4.!F3.F2.!F1.!F0 ALU R/MEM R : MEM READ EN : F5.!F4.!F3.!F2.F1.F0 MEM WRITE EN : F5.!F4.F3.!F2.F1.F0 IMMEDIATE SELECT: 00 1000 00 1001 00 1100 00 1101 00 1010 10 0011 10 1011

!F4.(!F5.(F3.!F1 + F3.!F2.!F0) + F5.!F2.F1.F0)

+++++++++++

```
SHIFT SELECT :
      00 0000 . 00 00X0
RD/RT
      00 1000
      00 1001
      00 1100
      00 1101
      00 1010
      00 0100
      10 0011
       10 1011
+++++++++++
       !F4.(!F5.(F2.!F1.!F0 + F3.!F1 + F3.!F2.!F0) + F5.!F2.F1.F0)
REG WRITE
      00 1000
      00 1001
      00 1100
      00 1101
      00 1010
       10 0011
+++++++++++
```

!F4.(!F5.(!F2.!F1.!F0 + F3.!F1 + F3.!F2.!F0) + F5.!F3.!F2.F1.F0)

ZERO EXTEND 10 0011 00 0100 00 1000 00 1001 00 1010 +++++++++++ JUMP !F5.!F4.!F3.!F2.F1.!F0 ALU CONTROL 2 00 0100 00 1010 +++++++++++ !F5.!F4.!F0.(!F3.F2.!F1 + F3.!F2.F1) ALU CONTROL 1 : 00 100X 10 X011 +++++++++++ !F4.(!F5.F3.!F2.F1 + F5.!F2.F1.F0) ALU CONTROL 0 : 00 1010 !F5.!F4.F3.!F2.F1.!F0

NOTE:

I CAN'T MAKE INSTRUCTIONS ONE BY ONE OR BRANCHING, BECAUSE I CANT ASSIGN THE NEXT INSTRUCTION ADDRESS TO PCI REGISTER.

I TRIED TO DO IT FOR 3 DAYS, BUT I COULDN'T MADE IT.

Thanks for reading $\ensuremath{\mathfrak{S}}$