Homework 2: STA 721 Fall24

Your Name

September 5, 2024; Due in one week (see Gradescope)

1. Let **P** be an orthogonal projection matrix onto \mathfrak{M} (a r-dimesional subspace of \mathbb{R}^n). Use the spectral decomposition of **P**, $\mathbf{P} = \mathbf{U}\Lambda\mathbf{U}^T$ with

$$\mathbf{U} = [u_1, \dots, u_n]$$
 $\mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$

with columns of **U** forming an orthonormal basis for \mathbb{R}^n and $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ representing the eignevalues in the following. Prove that

- (a) the eigenvalues of \mathbf{P} , λ_i , are either zero or one
- (b) the trace of \mathbf{P} is the rank of \mathbf{P}
- (c) the dimension of the subspace that **P** projects onto is the rank of **P**
- (d) the columns of $\mathbf{U}_r = [u_1, u_2, \dots u_r]$ form an ONB for the $C(\mathbf{P})$
- (e) the projection **P** has the representation $\mathbf{P} = \mathbf{U}_r \mathbf{U}_r^T = \sum_{i=1}^r u_i u_i^T$ (the sum of r rank 1 projections)
- (f) the projection $\mathbf{I}_n \mathbf{P} = \mathbf{I} \mathbf{U}_r \mathbf{U}_r^T = \mathbf{U}_{\perp} \mathbf{U}_{\perp}^T$ where $\mathbf{U}_{\perp} = [u_{r+1}, \dots u_n]$ is an orthogonal projection onto $\mathbf{N} = \mathbf{M}^{\perp}$
- 2. Show that $\mathbf{P}^- = \mathbf{P}$ for \mathbf{P} a projection matrix is a generalized inverse using the definition of generalized inverse.
- 3. Use the singular value decomposition of $\mathbf{X} \in \mathbb{R}^{n \times p}$ with rank r < p to construct a generalized inverse of \mathbf{X} based on the definition in Christensen B.36. (Suggestion: look at the Moore-Penrose generalized inverse for \mathbf{X} in the full rank case and the Moore-Penrose inverse of $\mathbf{X}^T\mathbf{X}$ in the rank r < p case)
- 4. Consider the class of linear statistical models from class: $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ with $\boldsymbol{\epsilon} \sim P$,

$$\mathcal{P}_1 = \{ P = \mathsf{N}(\mathbf{0}_n, \mathbf{I}_n) \} \tag{1}$$

$$\mathcal{P}_2 = \{ P = \mathsf{N}(\mathbf{0}_n, \sigma^2 \mathbf{I}_n), \sigma^2 > 0 \}$$
 (2)

$$\mathcal{P}_3 = \{ P = \mathsf{N}(\mathbf{0}_n, \mathbf{\Sigma}), \mathbf{\Sigma} \in \mathcal{S}^+ \}$$
 (3)

$$\mathcal{P}_4 = \{ \text{the set of distributions with } \mathsf{E}_P[\epsilon] = \mathbf{0}_n \text{ and } \mathsf{E}_P[\epsilon \epsilon^T] > 0 \}$$
 (4)

$$\mathcal{P}_5 = \{ \text{the set of distributions with } \mathsf{E}_P[\epsilon] = \mathbf{0}_n \text{ and } \mathsf{E}_P[\epsilon \epsilon^T] \ge 0 \}$$
 (5)

Find an estimator that is unbiased for $\beta \in \mathbb{R}^p$ and $P \in \mathcal{P}$ but is biased for $\beta \in \mathbb{R}^p$ and $P \in \mathcal{P}$.

5. Centering in Regression: Consider the linear model $\mathbf{Y} \sim N(\mu \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} = \mathbf{1}_n \beta_0 + \mathbf{X} \boldsymbol{\beta}$ and \mathbf{X} a full rank matrix with (column) rank p, where \mathbf{X} is linearly independent of the vector $\mathbf{1}_n$.

(a) Show that the mean function can be re-written as

$$\mu = \mathbf{1}_n \beta_0 + \mathbf{X} \boldsymbol{\beta}$$
$$= \mathbf{1}_n \alpha_0 + \mathbf{X}_c \boldsymbol{\beta}_c$$

where $\mathbf{X}_c = (\mathbf{I}_n - \mathbf{P}_1)\mathbf{X} = \mathbf{X} - \mathbf{1}_n\bar{\mathbf{x}}^T$ (which centers each column of \mathbf{X}), \mathbf{P}_1 is the orthogonal projection onto the column of ones, and $\alpha = \beta_0 + \bar{\mathbf{x}}^T\boldsymbol{\beta}$ is the intercept in the model with the centered \mathbf{X} . (Hint: add and subtract $\mathbf{P}_1\mathbf{X}\boldsymbol{\beta}$)

- (b) Show that \mathbf{X}_c and $\mathbf{1}_n$ are orthogonal.
- (c) Show that $\mathbf{P}_1 + \mathbf{P}_{\mathbf{X}_c}$ is an orthogonal projection, where $\mathbf{P}_{\mathbf{X}_c}$ is the orthogonal projection onto \mathbf{X}_c . Does $\mathbf{P}_1 + \mathbf{P}_{\mathbf{X}_c}$ project onto $C(\mathbf{1}_n, \mathbf{X})$?
- (d) Find the OLS/MLE estimates of α and β_c . What are the MLEs of β_0 , β in the original model in terms of α and β_c ?
- (e) Show that diagonal elements of $\mathbf{P}_1 + \mathbf{P}_{\mathbf{X}_c}$ are

$$h_{ii} = \frac{1}{n} + (\mathbf{x}_i - \bar{\mathbf{x}})^T \left((\mathbf{X} - \mathbf{1}_n \bar{\mathbf{x}}^T)^T (\mathbf{X} - \mathbf{1}_n \bar{\mathbf{x}}^T) \right)^{-1} (\mathbf{x}_i - \bar{\mathbf{x}})$$

(recall all vectors are column vectors). The h_{ii} are known as the leverage values.

- (f) Suppose unknown to you the response **Y** has been centered. What will be the OLS/MLEs of α and β_c ? Can you recover β_0 ? β ?
- 6. Gauss-Markov: Let $\mathsf{E}[\mathbf{Y}] = \mathbf{X}\boldsymbol{\beta}$ and $\mathsf{Cov}[\mathbf{Y}] = \sigma^2 \mathbf{I}_n$ for some known $\mathbf{X} \in \mathbb{R}^{n \times p}$ of rank r, unknown $\boldsymbol{\beta} \in \mathbb{R}^p$ and unknown $\sigma^2 > 0$.
 - (a) Let $\mathbf{a} \in \mathbb{R}^n$ and $\mathbf{b} \in C(\mathbf{X})$ be vectors such that $\mathsf{E}[\mathbf{a}^T\mathbf{Y}] = \mathsf{E}[\mathbf{b}^T\mathbf{Y}]$ for all $\boldsymbol{\beta} \in \mathbb{R}^p$. How does the space in which $\delta = \mathbf{a} \boldsymbol{\beta}$ lives relate to $C(\mathbf{X})$? Specifically, what can you say about $\delta^T \mathbf{m}$ for $\mathbf{m} \in C(\mathbf{X})$?
 - (b) Derive an expression for the variance of $\mathbf{a}^T \mathbf{Y}$ in terms of the variance of $\boldsymbol{\beta}^T \mathbf{Y}$, and determine conditions under which the latter variance is smaller. (see class slides or text)
 - (c) Does your result depend on whether X is full rank?
 - (d) Let $\lambda = \mathbf{X}^T \boldsymbol{\beta}$ for $\boldsymbol{\beta} \in \mathbf{M}$. Show that $\mathsf{E}[\lambda^T \hat{\boldsymbol{\beta}}] = \lambda^T \boldsymbol{\beta}$ for all $\boldsymbol{\beta} \in \mathbb{R}^p$ even if r < p and $\hat{\boldsymbol{\beta}}$ is not unique.
 - (e) Suppose that $\mathbf{a}^T \mathbf{Y}$ is another unbiased estimator of $\lambda^T \boldsymbol{\beta}$. Under what conditions will $\boldsymbol{\lambda}^T \hat{\boldsymbol{\beta}} = \boldsymbol{\beta}^T \mathbf{P} \mathbf{Y}$ have the smallest variance among linear unbiased estimators? (repeat proof outline from class writing $\mathbf{a}^T \mathbf{Y} = \boldsymbol{\beta}^T \mathbf{P} \mathbf{Y} + \boldsymbol{\delta}^T \mathbf{Y}$)