2016 年全国统一高考化学试卷 (新课标 I)

- 一、选择题(共7小题,每小题6分,满分42分)
- 1. (6分) 化学与生活密切相关,下列有关说法错误的是()
 - A. 用灼烧的方法可以区分蚕丝和人造纤维
 - B. 食用油反复加热会产生稠环芳香烃等有害物质
 - C. 加热能杀死流感病毒是因为蛋白质受热变性
 - D. 医用消毒酒精中乙醇的浓度为 95%
- 2. (6分)设 N_A为阿伏加德罗常数值.下列有关叙述正确的是()
 - A. 14g 乙烯和丙烯混合气体中的氢原子数为 2N_A
 - B. 1mol N₂与 4mol H₂反应生成的 NH₃分子数为 2N_A
 - C. 1mol Fe 溶于过量硝酸,电子转移数为 2N₄
 - D. 标准状况下, 2.24L CCI4含有的共价键数为 0.4NA
- 3. (6分)下列关于有机化合物的说法正确的是()
 - A. 2- 甲基丁烷也称异丁烷
 - B. 由乙烯生成乙醇属于加成反应
 - C. C₄H₉Cl 有 3 种同分异构体
 - D. 油脂和蛋白质都属于高分子化合物
- 4. (6分)下列实验操作能达到实验目的是()
 - A. 用长颈漏斗分离出乙酸与乙醇反应的产物
 - B. 用向上排空气法收集铜粉与稀硝酸反应产生的 NO
 - C. 配制氯化铁溶液时,将氯化铁溶解在较浓的盐酸中再加水稀释
 - D. 将 Cl₂与 HCl 混合气体通过饱和食盐水可得到纯净的 Cl₂
- 5. (6分) 三室式电渗析法处理含 Na₂SO₄废水的原理如图所示,采用惰性电极,ab、cd 均为离子交换膜,在直流电场的作用下,两膜中间的 Na⁺和 SO₄²⁻ 可通过离子交换膜,而两端隔室中离子被阻挡不能进入中间隔室. 下列叙述正确的是()

- A. 通电后中间隔室的 SO₄²⁻ 离子向正极迁移,正极区溶液 pH 增大
- B. 该法在处理含 Na₂SO₄ 废水时可以得到 NaOH 和 H₂SO₄产品
- C. 负极反应为 2H₂O- 4e⁻ =O₂+4H⁺, 负极区溶液 pH 降低
- D. 当电路中通过 1 mol 电子的电量时,会有 0.5 mol 的 O_2 生成
- 6. (6分) 298K 时,在 20.0mL 0.10mol•L⁻¹氨水中滴入 0.10mol•L⁻¹的盐酸,溶液的 pH 与所加盐酸的体积关系如图所示。已知 0.10mol•L⁻¹氨水的电离度为 1.32%,下列有关叙述正确的是()

- A. 该滴定过程应该选择酚酞作为指示剂
- B. M 点对应的盐酸体积为 20.0mL
- C. M 点处的溶液中 c(NH₄+)=c(Cl-)=c(H+)=c(OH-)
- D. N 点处的溶液中 pH<12
- 7. (6分)短周期元素 W、X、Y、Z的原子序数依次增加. m、p、r是由这些元素组成的二元化合物,n是元素 Z的单质,通常为黄绿色气体,q的水溶液具有漂白性,r溶液是一种常见的强酸,s通常是难溶于水的混合物.上述物质的转化关系如图所示.下列说法正确的是()

第2页(共34页)

- A. 原子半径的大小 W < X < Y
- B. 元素的非金属性 Z>X>Y
- C. Y 的氢化物常温常压下为液态
- D. X 的最高价氧化物的水化物为强酸

二、解答题(共3小题,满分43分)

- 8. (14 分)氮的氧化物(NO_x)是大气污染物之一,工业上在一定温度和催化剂条件下用 NH_3 将 NO_x 还原生成 N_2 . 某同学在实验室中对 NH_3 与 NO_2 反应进行了探究。回答下列问题:
 - (1) 氨气的制备

- ①氨气的发生装置可以选择上图中的_____,反应的化学方程式为____。
- ②欲收集一瓶干燥的氨气,选择上图中的装置,其连接顺序为:发生装置→ (按气流方向,用小写字母表示)。
- (2) 氨气与二氧化氮的反应
- 将上述收集到的 NH_3 充入注射器 X 中,硬质玻璃管 Y 中加入少量催化剂,充入 NO_2 (两端用夹子 K_1 、 K_2 夹好)。在一定温度下按图示装置进行实验。

第3页(共34页)

操作步骤	实验现象	解释原因
打开 K ₁ ,推动注射器活塞,使 X	①Y 管中	②反应的化学方程式
中的气体缓慢充入Y管中		
将注射器活塞退回原处并固定,	Y管中有少量水珠	生成的气态水凝聚
待装置恢复到室温		
打开 K ₂	3	4

- 9. (15 分)元素铬(Cr)在溶液中主要以Cr³+(蓝紫色)、Cr(OH)₄⁻(绿色)、Cr₂O₇²-(橙红色)、CrO₄²-(黄色)等形式存在,Cr(OH)₃为难溶于水的灰蓝色固体,回答:
 - (1) Cr^{3+} 与 Al^{3+} 的化学性质相似,往 Cr_2 (SO_4) $_3$ 溶液中滴入 NaOH 溶液直至过量,可观察到的现象是_____。
- (2) CrO₄²⁻和 Cr₂O₇²⁻在溶液中可相互转化。室温下,初始浓度为 1.0mol•L⁻¹
 的 Na₂CrO₄溶液中 c(Cr₂O₇²⁻)随 c(H⁺)的变化如图所示。
- ①用离子方程式表示 Na_2CrO_4 溶液中的转化反应____。
- ②由图可知,溶液酸性增强,CrO₄²⁻ 的平衡转化率_____(填"增大"减小"或"不变")。

根据 A 点数据, 计算出该转化反应的平衡常数为____。

(3) 用 K₂CrO₄ 为指示剂,以 AgNO₃ 标准液滴定溶液中的 Cl⁻ ,Ag⁺与 CrO₄²⁻ 生成 砖红色沉淀时到达滴定终点。当溶液中 Cl⁻ 恰好完全沉淀(浓度等于 1.0× 10⁻⁵mol•L⁻¹)时,溶液中 c (Ag⁺)为_____mol•L⁻¹,此时溶液中 c(CrO₄²⁻)等于____mol•L⁻¹.(K_{sp}(Ag₂CrO₄)=2.0×10⁻¹²、K_{sp}(AgCl)=2.0×10⁻¹⁰)。

第4页(共34页)

(4) +6 价铬的化合物毒性较大, 常用 NaHSO₃ 将废液中的 Cr₂O₇²⁻ 还原成 Cr³⁺,

反应的离子方程式为。

10. (14分) NaClO₂ 是一种重要的杀菌消毒剂,也常用来漂白织物等,其一种生产工艺如下:

回答下列问题:

- (1) NaClO₂ 中 Cl 的化合价为_____。
- (2) 写出"反应"步骤中生成 CIO₂ 的化学方程式。
- (3)"电解"所用食盐水由粗盐水精制而成,精制时,为除去 Mg²+和 Ca²+,要加入的试剂分别为 、 。"电解"中阴极反应的主要产物是 。
- (4) "尾气吸收"是吸收"电解"过程排出的少量 CIO₂. 此吸收反应中,氧化剂与还原剂的物质的量之比为______,该反应中氧化产物是____。
- (5) "有效氯含量"可用来衡量含氯消毒剂的消毒能力,其定义是:每克含氯消毒剂的氧化能力相当于多少克 Cl₂ 的氧化能力。NaClO₂ 的有效氯含量为。(计算结果保留两位小数)
- (二)选考题:共45分.请考生从给出的3道物理题、3道化学题、2道生物题中每科任选一题作答,并用2B铅笔在答题卡上把所选题目题号后的方框涂

第5页(共34页)

- 黑.注意所选题目的题号必须与所涂题目的题号一致,在答题卡选答区域指定位置答题.如果多做,则每学科按所做的第一题计分.[化学--选修 2: 化学与技术]
- 11. (15 分)高锰酸钾($KMnO_4$)是一种常用氧化剂,主要用于化工、防腐及制药工业等. 以软锰矿(主要成分为 MnO_2)为原料生产高锰酸钾的工艺路线如下:

回答下列问题:

- (1)原料软锰矿与氢氧化钾按 1: 1 的比例在"烘炒锅"中混配,混配前应将软锰矿粉碎,其作用是 .
- (2) "平炉"中发生的化学方程式为 .
- (3) "平炉"中需要加压,其目的是...
- (4) 将 K_2MnO_4 转化为 $KMnO_4$ 的生产有两种工艺.
- ①" CO_2 歧化法"是传统工艺,即在 K_2MnO_4 溶液中通入 CO_2 气体,使体系呈中性或弱酸性, K_2MnO_4 发生歧化反应,反应中生成 $KMnO_4$, MnO_2 和_____(写化学式).
- ②"电解法"为现代工艺,即电解 K_2MnO_4 水溶液,电解槽中阳极发生的电极反应为
- , 阴极逸出的气体是 .
- ③"电解法"和" CO_2 歧化法"中, K_2MnO_4 的理论利用率之比为 .

[化学--选修 3: 物质结构与性质]

- 12. (15分)锗(Ge)是典型的半导体元素,在电子、材料等领域应用广泛. 回答下列问题:
- (1) 基态 Ge 原子的核外电子排布式为[Ar] ,有 个未成对电子.
- (2) Ge 与 C 是同族元素,C 原子之间可以形成双键、叁键,但 Ge 原子之间难以形成双键或叁键. 从原子结构角度分析,原因是 .
- (3) 比较下列锗卤化物的熔点和沸点,分析其变化规律及原因...

	GeCl₄	GeBr₄	Gel₄
熔点/℃	- 49.5	26	146
沸点/℃	83.1	186	约 400

- (4) 光催化还原 CO_2 制备 CH_4 反应中,带状纳米 Zn_2GeO_4 是该反应的良好催化剂. Zn、Ge、O 电负性由大至小的顺序是_____.
- (5) Ge 单晶具有金刚石型结构,其中 Ge 原子的杂化方式为_____微粒之间存在的作用力是_____.
- (6) 晶胞有两个基本要素: ①原子坐标参数,表示晶胞内部各原子的相对位置,如图(1、2)为 Ge 单晶的晶胞,其中原子坐标参数 A 为(0,0,0); B 为($\frac{1}{2}$, 0, $\frac{1}{2}$); C 为($\frac{1}{2}$, $\frac{1}{2}$, 0). 则 D 原子的坐标参数为_____.
- ②晶胞参数,描述晶胞的大小和形状,已知 Ge 单晶的晶胞参数 a=565.76pm,其密度为_______g•cm $^{-3}$ (列出计算式即可).

「化学--选修 5: 有机化学基础]

13. (15 分) 秸秆(含多糖类物质)的综合利用具有重要的意义.下面是以秸 第7页(共34页) 秆为原料合成聚酯类高分子化合物

回答下列问题:

- (1) 下列关于糖类的说法正确的是 . (填标号)
- a. 糖类都有甜味,具有 C_nH_{2m}O_m的通式
- b. 麦芽糖水解生成互为同分异构体的葡萄糖和果糖
- c. 用银镜反应不能判断淀粉水解是否完全
- d. 淀粉和纤维素都属于多糖类天然高分子化合物
- (2) B 生成 C 的反应类型为 .
- (3) D中的官能团名称为_____, D生成 E的反应类型为_____.
- (4) F 的化学名称是 , 由 F 生成 G 的化学方程式为 .
- (5) 具有一种官能团的二取代芳香化合物 W 是 E 的同分异构体,0.5molW 与足量碳酸氢钠溶液反应生成 44gCO₂,W 共有______种(不含立体异构),其中核磁共振氢谱为三组峰的结构简式为 .
- (6) 参照上述合成路线,以(反,反)- 2,4- 已二烯和 C_2H_4 为原料(无机试剂任选),设计制备对苯二甲酸的合成路线 .

2016 年全国统一高考化学试卷 (新课标 I)

参考答案与试题解析

- 一、选择题(共7小题,每小题6分,满分42分)
- 1. (6分) 化学与生活密切相关,下列有关说法错误的是()
 - A. 用灼烧的方法可以区分蚕丝和人造纤维
 - B. 食用油反复加热会产生稠环芳香烃等有害物质
 - C. 加热能杀死流感病毒是因为蛋白质受热变性
 - D. 医用消毒酒精中乙醇的浓度为 95%

【考点】11: 化学的主要特点与意义; 14: 物质的组成、结构和性质的关系.

【专题】56: 化学应用.

【分析】A. 蚕丝含有蛋白质, 灼烧时具有烧焦的羽毛气味;

- B. 食用油反复加热会生成苯并芘等物质;
- C. 加热可导致蛋白质变性;
- D. 医用消毒酒精中乙醇的浓度为 75%.
- 【解答】解: A. 蚕丝含有蛋白质, 灼烧时具有烧焦的羽毛气味, 为蛋白质的特有性质, 可用于鉴别蛋白质类物质, 故 A 正确:
- B. 食用油反复加热会生成苯并芘等稠环芳香烃物质,可致癌,故 B 正确:
- C. 加热可导致蛋白质变性,一般高温可杀菌,故 C 正确;
- D. 医用消毒酒精中乙醇的浓度为 75%, 故 D 错误。

故选: D。

- 【点评】本题综合考查元素化合物知识,为高频考点,侧重于化学与生活、生产的考查,有利于培养学生良好的科学素养,提高学习的积极性,注意相关基础知识的积累,难度不大.
- 2. (6分)设 N_A为阿伏加德罗常数值.下列有关叙述正确的是()
 - A. 14g 乙烯和丙烯混合气体中的氢原子数为 2N_A

第9页(共34页)

- B. 1mol N₂与 4mol H₂反应生成的 NH₃分子数为 2N_A
- C. 1mol Fe 溶于过量硝酸, 电子转移数为 2N_A
- D. 标准状况下,2.24L CCl₄含有的共价键数为 $0.4N_A$

【考点】4F: 阿伏加德罗常数.

【专题】518: 阿伏加德罗常数和阿伏加德罗定律.

【分析】A. 乙烯和丙烯最简式 CH2, 计算 14gCH2中的氢原子数;

- B. 氮气和氢气反应生成氨气是可逆反应;
- C.1mol Fe 溶于过量硝酸生成硝酸铁,依据反应的铁计算电子转移:
- D. 标准状况下四氯化碳不是气体.
- 【解答】解: A.14g 乙烯和丙烯混合气体中含 CH_2 物质的量= $\frac{14g}{14g/mol}$ =1mol,含 氢原子数为 $2N_A$,故 A 正确;
- B.1mol N_2 与 4mol H_2 反应生成的 NH_3 ,反应为可逆反应 1mol 氮气不能全部反应 生成氨气,生成氨气分子数小于 $2N_\Delta$,故 B 错误;
- C.1mol Fe 溶于过量硝酸生成硝酸铁,电子转移为 3mol, 电子转移数为 3N_A, 故 C 错误;
- D. 标准状况下,四氯化碳不是气体,2.24L CCl₄含物质的量不是0.1mol,故 D 错误:

故选: A。

- 【点评】本题考查了阿伏伽德罗常数的分析应用,主要是物质组成、氧化还原反应、可逆反应、气体摩尔体积等知识点的应用,掌握基础是解题关键,题目较简单.
- 3. (6分)下列关于有机化合物的说法正确的是()
 - A. 2- 甲基丁烷也称异丁烷
 - B. 由乙烯生成乙醇属于加成反应
 - $C. C_4H_9CI$ 有3种同分异构体
 - D. 油脂和蛋白质都属于高分子化合物

第10页(共34页)

【考点】HD:有机物的结构和性质.

【专题】531:同系物和同分异构体.

【分析】A. 异丁烷含有 4 个 C 原子, 2- 甲基丁烷含有 5 个 C 原子;

- B. 乙烯与水在催化剂加热的条件下发生加成反应生成乙醇;
- C. 同分异构体是化合物具有相同分子式,但具有不同结构的现象:
- D. 油脂不是高分子化合物.

【解答】解: A. 异丁烷含有 4 个 C 原子, 2- 甲基丁烷含有 5 个 C 原子, 故 A 错误:

- B. 乙烯与水在催化剂加热的条件下发生加成反应生成乙醇, 故 B 正确;
- C. 同分异构体是化合物具有相同分子式,但具有不同结构的现象, C_4H_{10} 的同分异构体有: $CH_3CH_2CH_2CH_3$ 、 CH_3CH (CH_3) CH_3 2 种, $CH_3CH_2CH_2CH_3$ 分子中有 2 种化学环境不同的 H 原子,其一氯代物有 2 种, CH_3CH (CH_3) CH_3 分子中有 2 种化学环境不同的 H 原子,其一氯代物有 2 种,故 C_4H_9CI 的同分异构体共有 4 种,故 C 错误;
- D. 油脂不是高分子化合物,故 D 错误;

故选: B。

【点评】本题考查有机物的命名,有机物的反应类型,同分异构体书写及高分子 化合物等知识,为高频考点,把握官能团与性质的关系为解答的关键,注意 有机物的成分、性质及反应类型,注重基础知识的考查,题目难度不大.

- 4. (6分)下列实验操作能达到实验目的是()
 - A. 用长颈漏斗分离出乙酸与乙醇反应的产物
 - B. 用向上排空气法收集铜粉与稀硝酸反应产生的 NO
 - C. 配制氯化铁溶液时,将氯化铁溶解在较浓的盐酸中再加水稀释
 - D. 将 Cl₂与 HCl 混合气体通过饱和食盐水可得到纯净的 Cl₂

【考点】U5: 化学实验方案的评价.

【专题】542: 化学实验基本操作.

【分析】A. 互不相溶的液体采用分液方法分离,用的仪器是分液漏斗;

第11页(共34页)

- B. NO 易和空气中 O₂ 反应生成 NO₂;
- C. FeCl₃属于强酸弱碱盐, Fe³⁺易水解生成 Fe (OH)₃而产生浑浊;
- D. 将 Cl₂与 HCl 混合气体通过饱和食盐水会带出部分水蒸气。
- 【解答】解: A. 长颈漏斗不能用作分离操作, 互不相溶的液体采用分液漏斗分离, 乙酸、乙醇、乙酸乙酯互溶, 不能采取分液法分离, 应该采用蒸馏方法分离提纯, 故 A 错误;
- B. NO 易和空气中 O₂ 反应生成 NO₂,所以不能用排空气法收集,NO 不易溶于水,应该用排水法收集,故 B 错误;
- C. FeCl₃属于强酸弱碱盐,Fe ³⁺易水解生成 Fe (OH)₃而产生浑浊,为了防止氯化铁水解,应该将氯化铁溶解在较浓的盐酸中再加水稀释,故 C 正确:
- D. 将 Cl₂与 HCl 混合气体通过饱和食盐水会带出部分水蒸气,所以得不到纯净的 氯气,应该将饱和食盐水出来的气体再用浓硫酸干燥,故 D 错误; 故选: C。
- 【点评】本题考查化学实验方案评价,为高频考点,涉及物质分离提纯、气体收集、盐类水解、洗气等知识点,明确实验原理、物质性质、实验操作基本方法及仪器的用途是解本题关键,注意:从水溶液中出来的气体中含有水蒸气,为易错点。
- 5. (6分) 三室式电渗析法处理含 Na₂SO₄ 废水的原理如图所示,采用惰性电极,ab、cd 均为离子交换膜,在直流电场的作用下,两膜中间的 Na⁺和 SO₄²⁻ 可通过离子交换膜,而两端隔室中离子被阻挡不能进入中间隔室. 下列叙述正确的是()

A. 通电后中间隔室的 SO₄²⁻ 离子向正极迁移,正极区溶液 pH 增大

第12页(共34页)

- B. 该法在处理含 Na₂SO₄ 废水时可以得到 NaOH 和 H₂SO₄ 产品
- C. 负极反应为 $2H_2O-4e^-=O_2+4H^+$,负极区溶液 pH 降低
- D. 当电路中通过 1mol 电子的电量时,会有 0.5mol 的 O₂生成

【考点】DI: 电解原理.

【专题】511: 电化学专题.

【分析】A、阴离子向阳极(即正极区)移动,氢氧根离子放电 pH 减小;

- B、从两极的电极反应和溶液的电中性角度考虑;
- C、负极即为阴极,发生还原反应,氢离子放电;
- D、当电路中通过 1mol 电子的电量时,会有 0.25mol 的 O_2 生成.

【解答】解: A、阴离子向阳极(即正极区)移动,氢氧根离子放电 pH 减小,故 A 错误;

- B、直流电场的作用下,两膜中间的 Na⁺和 SO₄²⁻ 可通过离子交换膜,而两端隔室中离子被阻挡不能进入中间隔室,通电时,氢氧根离子在阳极区放电生成水和氧气,考虑电荷守恒,两膜中间的硫酸根离子会进入正极区,与氢离子结合成硫酸;氢离子在阴极得电子生成氢气,考虑电荷守恒,两膜中间的钠离子会进入负极区,与氢氧根离子结合成氢氧化钠,故可以得到 NaOH 和 H₂SO₄产品,故 B 正确:
- C、负极即为阴极,发生还原反应,氢离子得电子生成氢气,故 C 错误:
- D、每生成 1 mol 氧气转移 4 mol 电子,当电路中通过 1 mol 电子的电量时,会有 0.25 mol 的 0_2 生成,故 D 错误。

故选: B。

【点评】本题考查了电解原理的应用,明确电解池中的阴阳极以及阴阳极上离子的放电顺序是解题的关键,注意题干信息的分析应用,题目难度不大.

6. (6分) 298K 时,在 20.0mL 0.10mol•L⁻¹氨水中滴入 0.10mol•L⁻¹的盐酸,溶液的 pH 与所加盐酸的体积关系如图所示。已知 0.10mol•L⁻¹氨水的电离度为 1.32%,下列有关叙述正确的是()

第13页(共34页)

- A. 该滴定过程应该选择酚酞作为指示剂
- B. M 点对应的盐酸体积为 20.0mL
- C. M 点处的溶液中 c (NH_{Δ}^{+}) =c (Cl^{-}) =c (H^{+}) =c (OH^{-})
- D. N 点处的溶液中 pH<12

【考点】DO:酸碱混合时的定性判断及有关 ph 的计算.

【专题】51G: 电离平衡与溶液的 pH 专题.

【分析】A. 强酸弱碱相互滴定时,由于生成强酸弱碱盐使溶液显酸性,所以应选择甲基橙作指示剂;

- B. 如果 M 点盐酸体积为 20.0mL,则二者恰好完全反应生成氯化铵,溶液应该 呈酸性:
- C. M 处溶液呈中性,则存在 c (H⁺) = c (OH⁻) ,根据电荷守恒得 c (NH₄⁺) = c
 (Cl⁻) ,该点溶液中溶质为氯化铵和一水合氨,铵根离子水解而促进水电离、一水合氨抑制水电离,铵根离子水解和一水合氨电离相互抑制;
- D. N 点为氨水溶液,氨水浓度为 0.10mol•L⁻¹,该氨水电离度为 1.32%,则该溶液 中 c (OH⁻) =0.10mol/L × 1.32%=1.32 × 10^{-3} mol/L , c (H⁺) = $\frac{10^{-14}}{1.32 \times 10^{-3}}$ mol/L=7.6× 10^{-12} mol/L。
- 【解答】解: A. 强酸弱碱相互滴定时,由于生成强酸弱碱盐使溶液显酸性,所以应选择甲基橙作指示剂,所以盐酸滴定氨水需要甲基橙作指示剂,故A错误;
- B. 如果 M 点盐酸体积为 20.0mL,则二者恰好完全反应生成氯化铵,氯化铵中 铵根离子水解导致该点溶液应该呈酸性,要使溶液呈中性,则氨水应该稍微 过量,所以盐酸体积小于 20.0mL,故 B 错误;

第14页(共34页)

- C. M 处溶液呈中性,则存在 c(H⁺)=c(OH⁻),根据电荷守恒得 c(NH₄⁺)=c(Cl⁻),该点溶液中溶质为氯化铵和一水合氨,铵根离子水解而促进水电离、一水合氨抑制水电离,铵根离子水解和一水合氨电离相互抑制,水的电离程度很小,该点溶液中离子浓度大小顺序是 c(NH₄⁺)=c(Cl⁻)>c(H⁺)=c(OH⁻),故 C 错误;
- D. N 点为氨水溶液,氨水浓度为 0.10mol•L⁻¹,该氨水电离度为 1.32%,则该溶液 中 c (OH⁻) =0.10mol/L × 1.32%=1.32 × 10⁻³ mol/L , c (H⁺) $= \frac{10^{-14}}{1.32\times10^{-3}} \text{mol/L=7.6}\times10^{-12} \text{mol/L},所以该点溶液 pH<12,故 D 正确;}$

故选: D。

- 【点评】本题考查酸碱混合溶液定性判断,为高频考点,侧重考查学生实验操作、试剂选取、识图及分析判断能力,明确实验操作、盐类水解、弱电解质的电离等知识点是解本题关键,注意 B 采用逆向思维方法分析解答,知道酸碱中和滴定中指示剂的选取方法,题目难度中等。
- 7. (6分)短周期元素 W、X、Y、Z的原子序数依次增加. m、p、r是由这些元素组成的二元化合物,n是元素 Z的单质,通常为黄绿色气体,q的水溶液具有漂白性,r溶液是一种常见的强酸,s通常是难溶于水的混合物.上述物质的转化关系如图所示.下列说法正确的是()

- A. 原子半径的大小 W<X<Y
- B. 元素的非金属性 Z>X>Y
- C. Y 的氢化物常温常压下为液态

第15页(共34页)

D. X 的最高价氧化物的水化物为强酸

【考点】GS:无机物的推断.

【专题】111:无机推断.

【分析】短周期元素 W、X、Y、Z的原子序数依次增加. m、p、r 是由这些元素 组成的二元化合物,n 是元素 Z 的单质,通常为黄绿色气体,则 n 为 Cl_2 , Z 为 Cl_1 ,氯气与 p 在光照条件下生成 r 与 s,r 溶液是一种常见的强酸,则 r 为 HCl_2 , s 通常是难溶于水的混合物,则 p 为 HCl_3 ,氯气与 m 反应生成 HCl_4 ,q 的水溶液具有漂白性,则 m 为 H2O,q 为 HClO,结合原子序数可知 W 为 HClO,素,X 为 HClO,无素,Y 为 HClO,然后结合元素周期律解答.

【解答】解:短周期元素 W、X、Y、Z的原子序数依次增加。m、p、r是由这些元素组成的二元化合物,n是元素 Z 的单质,通常为黄绿色气体,则 n 为 Cl_2 , Z 为 Cl,氯气与 p 在光照条件下生成 r 与 s,r 溶液是一种常见的强酸,则 r 为 HCl,s 通常是难溶于水的混合物,则 p 为 CH_4 ,氯气与 m 反应生成 HCl 与 q,q 的水溶液具有漂白性,则 m 为 H_2O ,q 为 HClO,结合原子序数可知 W 为 H 元素,X 为 C 元素,Y 为 O 元素,

- A. 所以元素中 H 原子半径最小,同周期自左而右原子半径减小,故原子半径 W (H) <Y(O) <X(C),故 A 错误;
- B. 氯的氧化物中氧元素表现负化合价,氧元素非金属性比氯的强,高氯酸为强酸,碳酸为弱酸,氯元素非金属性比碳的强,故非金属性Y(O)>Z(CI)>X(C),故B错误;
- C. 氧元素氢化物为水或双氧水,常温下为液态,故 C 正确;
- D. X 的最高价氧化物的水化物为碳酸,碳酸属于弱酸,故 D 错误。故选: C。

【点评】本题考查无机物的推断,为高频考点,把握物质的性质、发生的反应、 元素周期律等为解答的关键,侧重分析与推断能力的考查,注意 n 为氯气及 氯气性质为推断的突破口,题目难度不大.

二、解答题(共3小题,满分43分)

第16页(共34页)

8. (14 分)氮的氧化物(NO_x)是大气污染物之一,工业上在一定温度和催化剂条件下用 NH_3 将 NO_x 还原生成 N_2 . 某同学在实验室中对 NH_3 与 NO_2 反应进行了探究。回答下列问题:

- ①氨气的发生装置可以选择上图中的<u>A</u>,反应的化学方程式为<u>Ca(OH)</u> 2+2NH₄Cl———CaCl₂+2NH₃个+2H₂O_。
- ②欲收集一瓶干燥的氨气,选择上图中的装置,其连接顺序为:发生装置→ d→c→f→e→j (按气流方向,用小写字母表示)。
- (2) 氨气与二氧化氮的反应
- 将上述收集到的 NH_3 充入注射器 X 中,硬质玻璃管 Y 中加入少量催化剂,充入 NO_2 (两端用夹子 K_1 、 K_2 夹好)。在一定温度下按图示装置进行实验。

操作步骤	实验现象	解释原因
打开 K ₁ ,推动注射器活塞,使 X	①Y 管中 <u>红棕色</u>	②反应的化学方程式
中的气体缓慢充入Y管中	气体慢慢变浅	
		<u>8NH₃+6NO₂—催化剂</u> 7N ₂
		<u>+12H₂O</u>
将注射器活塞退回原处并固定,	Y管中有少量水珠	生成的气态水凝聚
待装置恢复到室温		

第17页(共34页)

【考点】ED: 氨的实验室制法; S7: 氨的制取和性质.

【专题】547:有机实验综合.

- 【分析】(1)①实验室用加热固体氯化铵和氢氧化钙的方法制备氨气,依据反应物状态和条件选择发生装置;
- ②气体制备一般顺序为:发生装置,净化装置,收集装置,尾气处理装置,结合 氨气为碱性气体,密度小于空气密度,极易溶于水的性质解答;
 - (2) 打开 K_1 , 推动注射器活塞,使 X 中的气体缓慢充入 Y 管中,则氨气与二氧化氮发生归中反应生成无色氮气,所以看到现象为: 红棕色变浅;
- 依据 8NH₃+6NO₂=7N₂+12H₂O 以及气态水凝聚判断反应后气体分子数减少从而判断打开 K₂ 发生的现象。
- 【解答】解: (1) ①实验室用加热固体氯化铵和氢氧化钙的方法制备氨气,反应物状态为固体与固体,反应条件为加热,所以选择 A 为发生装置,反应方程式: Ca (OH) $_2$ +2NH $_4$ Cl CaCl $_2$ +2NH $_3$ 个+2H $_2$ O;
- 故答案为: A; Ca(OH)₂+2NH₄Cl———CaCl₂+2NH₃个+2H₂O;
- ②实验室用加热固体氯化铵和氢氧化钙的方法制备氨气,制备的气体中含有水蒸气,氨气为碱性气体,应选择盛有碱石灰干燥管干燥气体,氨气极易溶于水,密度小于空气密度所以应选择向下排空气法收集气体,氨气极易溶于水,尾气可以用水吸收,注意防止倒吸的发生,所以正确的连接顺序为:发生装置 →d→c→f→e→i;

故答案为: d→c→f→e→j;

(2) 打开 K₁,推动注射器活塞,使 X 中的气体缓慢充入 Y 管中,则氨气与二氧化氮发生归中反应 生成无色氮气,所以看到现象为:红棕色气体慢慢变浅;根据反应 8NH₃+6NO₂————7N₂+12H₂O 以及装置恢复至室温后气态水凝聚可判断反应后气体分子数减少,装置内压强降低,所以打开 K₂在大气压的作用

第18页(共34页)

下发生倒吸;

故答案为:

操作步骤	实验现象	解释原因
打开 K_1 ,推动注射器活塞,使 X	①红棕色气体	②反应的化学方程式
中的气体缓慢充入 Y 管中	慢慢变浅	8NH ₃ +6NO ₂ <u>催化剂</u> 7N ₂ +12H
		₂ O
将注射器活塞退回原处并固定,	Y 管中有少量水	生成的气态水凝聚
待装置恢复到室温	珠	
打开 K ₂	③Z 中 NaOH 溶	④反应后气体分子数减少, Y
	液产生倒吸	管中压强小于外压
	现象	

- 【点评】本题考查了氨气的制备和性质的检验,明确氨气的制备原理及制备气体的一般程序是解题关键,题目难度不大。
- 9. (15 分)元素铬(Cr)在溶液中主要以Cr³+(蓝紫色)、Cr(OH)₄⁻(绿色)、Cr₂Oγ²-(橙红色)、CrO₄²-(黄色)等形式存在,Cr(OH)₃为难溶于水的灰蓝色固体,回答:
 - (1) Cr^{3+} 与 Al^{3+} 的化学性质相似,往 Cr_2 (SO_4) $_3$ 溶液中滴入 NaOH 溶液直至过量,可观察到的现象是<u>溶液蓝紫色变浅,同时产生灰蓝色沉淀,然后沉淀</u>逐渐溶解形成绿色溶液。
 - (2) CrO₄²⁻和 Cr₂O¬²⁻在溶液中可相互转化。室温下,初始浓度为 1.0mol•L⁻¹ 的 Na₂CrO₄溶液中 c(Cr₂O¬²⁻)随 c(H⁺)的变化如图所示。
- ①用离子方程式表示 Na₂CrO₄ 溶液中的转化反应<u>2CrO₄²⁻ +2H⁺⇒Cr₂O₇²⁻ +H₂O</u>
- ②由图可知,溶液酸性增强,CrO₄²⁻ 的平衡转化率<u>增大</u>(填"增大"减小"或"不变")。

根据 A 点数据, 计算出该转化反应的平衡常数为<u>1.0×10¹⁴</u>。 第 19 页 (共 34 页)

- (3) 用 K_2CrO_4 为指示剂,以 $AgNO_3$ 标准液滴定溶液中的 Cl^- , Ag^+ 与 $CrO_4^{2^-}$ 生成 砖红色沉淀时到达滴定终点。当溶液中 Cl^- 恰好完全沉淀(浓度等于 1.0×10^{-5} mol· L^{-1})时,溶液中 c (Ag^+)为 2.0×10^{-5} mol· L^{-1} ,此时溶液中 c ($CrO_4^{2^-}$)等于 5.0×10^{-3} mol· L^{-1} .(K_{sp} (Ag_2CrO_4) = 2.0×10^{-12} 、 K_{sp} (AgCl) = 2.0×10^{-10})。
- (4) +6 价铬的化合物毒性较大,常用 NaHSO₃ 将废液中的 $Cr_2O_7^{2-}$ 还原成 Cr^{3+} ,反应的离子方程式为 $Cr_2O_7^{2-} + 3HSO_3^- + 5H^+ = 2Cr^{3+} + 3SO_4^{2-} + 4H_2O_$ 。

【考点】CP: 化学平衡的计算.

【专题】51E: 化学平衡专题.

- 【分析】(1)根据 Cr3+与 Al3+的化学性质相似,可知 Cr(OH)₃为两性氢氧化物
 - ,能溶解在氢氧化钠溶液中,往 Cr₂ (SO₄)₃溶液中滴入 NaOH 溶液直至过量
 - , 先生成沉淀, 沉淀再溶解;
- (2)①CrO₄²⁻和Cr₂O₇²⁻在溶液中转化的离子方程式为: 2CrO₄²⁻+2H⁺ ⇌ Cr₂O₇²⁻+H₂O;
- ②图象分析可知随氢离子浓度增大,铬酸根离子转化为重铬酸根离子;A 点 c($Cr_2O_7^{2-}$)=0.25mol/L,c(H^+)= 10^{-7} mol/L,c(CrO_4^{2-})=0.5mol/L,依据平衡常数概念计算;
- (3) 当溶液中 Cl⁻ 完全沉淀时,即 c(Cl⁻)=1.0×10^{- 5}mol/L,依据 Ksp(AgCl) 第 20 页 (共 34 页)

=2.0×10 $^{-10}$, 计算得到 c(Ag $^{+}$);再依据计算得到的银离子浓度和溶度积常数计算此时溶液中 c(CrO $_4$ 2 $^{-}$);

(4) NaHSO₃的还原性将废液中的 Cr₂O₇²⁻ 还原成 Cr³⁺, HSO₃-被氧化为 SO₄²⁻。

【解答】解:(1)Cr³+与 Al³+的化学性质相似,可知 Cr(OH)₃ 为两性氢氧化物

- ,能溶解在氢氧化钠溶液中,往 Cr₂ (SO₄)₃溶液中滴入 NaOH 溶液直至过量
- ,先生成 $Cr(OH)_3$ 灰蓝色沉淀,继续加入 NaOH 后沉淀溶解,生成绿色 $Cr(OH)_4$;

故答案为:溶液蓝紫色变浅,同时产生灰蓝色沉淀,然后沉淀逐渐溶解形成绿色溶液:

(2)①CrO₄²⁻和Cr₂O₇²⁻在溶液中转化的离子方程式为: 2CrO₄²⁻+2H⁺

Cr₂O₇²⁻+H₂O;

故答案为: 2CrO₄²⁻ +2H⁺⇌Cr₂O₇²⁻ +H₂O;

②溶液酸性增大,平衡 $2CrO_4^{2^-} + 2H^+ \Rightarrow Cr_2O_7^{2^-} + H_2O$ 正向进行, $CrO_4^{2^-}$ 的平衡转化率增大; A 点 $Cr_2O_7^{2^-}$ 的浓度为 0.25 mol/L,则消耗的 $CrO_4^{2^-}$ 的浓度为 0.5 mol/L,则溶液中的 c ($CrO_4^{2^-}$)=1.0mol/L — $0.25 mol/L \times 2 = 0.5 mol/L$, H^+ 浓度为 $1 \times 10^{-7} mol/L$,此时该转化反应的平衡常数为 $K = \frac{c(Cr_2O_7^{2^-})}{c^2(CrO_4^{2^-}) \cdot c^2(H^+)} = \frac{c(Cr_2O_7^{2^-}) \cdot c^2(H^+)}{c^2(CrO_4^{2^-}) \cdot c^2(H^+)}$

$$\frac{0.25}{(1.0^{-7})^2 \times 0.5^2} = 1.0 \times 10^{14};$$

故答案为:增大; 1.0×10¹⁴;

(3) 当溶液中 Cl^- 完全沉淀时,即 c (Cl^-) =1.0 \times 10 $^-$ 5mol/L,依据 Ksp (AgCl)

=2.0×10⁻¹⁰, 计算得到 c (Ag⁺) =
$$\frac{\text{Ksp}(\text{AgCl})}{\text{c}(\text{Cl}^-)} = \frac{2.0 \times 10^{-10}}{1.0 \times 10^{-5}} = 2.0 \times 10^{-5}$$
; 此时

溶液中 c(
$$CrO_4^{2-}$$
)= $\frac{Ksp(Ag_2CrO_4)}{c^2(Ag^+)}$ = $\frac{2.0\times10^{-12}}{(2.0\times10^{-5})^2}$ = 5.0×10^{-3} ;

故答案为: 2.0×10⁻⁵; 5.0×10⁻³;

第21页(共34页)

(4) NaHSO₃ 的还原性将废液中的 $Cr_2O_7^{2-}$ 还原成 Cr^{3+} , HSO_3^- 被氧化为 SO_4^{2-} ,反应的离子方程式为:

 $Cr_2O_7^{2-} +3HSO_3^{-} +5H^{+}=2Cr^{3+}+3SO_4^{2-} +4H_2O;$

故答案为: Cr₂O₇²⁻ +3HSO₃⁻ +5H+=2Cr³⁺+3SO₄²⁻ +4H₂O。

- 【点评】本题考查化学反应原理的分析与探究、化学平衡常数、溶度积常数的计算的知识,注意平衡常数的理解应用和两性物质的性质,题目难度中等。
- 10. (14分) NaClO₂是一种重要的杀菌消毒剂,也常用来漂白织物等,其一种 生产工艺如下:

回答下列问题:

- (1) NaClO₂ 中 Cl 的化合价为 +3 价 。
- (2) 写出"反应"步骤中生成 CIO₂ 的化学方程式 <u>2NaClO₃+SO₂+H₂SO₄=2NaHSO₄+2CIO₂</u>。
- (3) "电解"所用食盐水由粗盐水精制而成,精制时,为除去 Mg^{2+} 和 Ca^{2+} ,要加入的试剂分别为 NaOH 溶液 、 Na_2CO_3 溶液 。"电解"中阴极反应的主要产物是 CIO_2 (或 $NaCIO_2$)。
- (4) "尾气吸收"是吸收"电解"过程排出的少量 ClO₂. 此吸收反应中,氧化剂与还原剂的物质的量之比为 2: 1 ,该反应中氧化产物是 O₂ 。
- (5) "有效氯含量"可用来衡量含氯消毒剂的消毒能力,其定义是:每克含氯消毒剂的氧化能力相当于多少克 Cl₂ 的氧化能力。NaClO₂ 的有效氯含量为<u>1.57</u>。(计算结果保留两位小数)

【考点】B1: 氧化还原反应.

第22页(共34页)

【专题】546:无机实验综合.

- 【分析】(1)在 $NaClO_2$ 中 Na 为+1 价,O 为- 2 价,根据正负化合价的代数和为 0 计算得到:
- (2) NaClO₃和 SO₂在 H₂SO₄酸化条件下生成 ClO₂,其中 NaClO₂是氧化剂,还原产物为 NaCl,回收产物为 NaHSO₄,说明生成硫酸氢钠,且产生 ClO₂,根据电子守恒和原子守恒配平书写化学方程式;
- (3) 食盐溶液中混有 Mg²⁺ 和 Ca²⁺,可以利用过量 NaOH 溶液除去 Mg²⁺,利用过量 Na₂CO₃溶液除去 Ca²⁺,ClO₂氧化能力强,根据结晶干燥后的产物可知 ClO₂的还原产物为 NaClO₂;
- (4) 依据图示可知,利用含过氧化氢的氢氧化钠溶液吸收 ClO_2 ,产物为 ClO_2 ⁻,则此反应中 ClO_2 为氧化剂,还原产物为 ClO_2 ⁻,化合价从+4 价降为+3 价, H_2O_2 为还原剂,氧化产物为 O_2 ,每摩尔 H_2O_2 得到 2mol 电子,依据电子守恒可知氧化剂和还原剂的物质的量之比;
- (5) 每克 NaClO₂ 的物质的量 $\frac{1g}{90.5g/mol} = \frac{1}{90.5}$ mol,依据电子转移数目相等,可知氯气的物质的量为 $\frac{1}{90.5}$ mol×4× $\frac{1}{2} = \frac{2}{90.5}$ mol,计算得到氯气的质量。
- 【解答】解: (1) 在 NaClO₂ 中 Na 为+1 价,O 为- 2 价,根据正负化合价的代数和为 0,可得 Cl 的化合价为+3 价,

故答案为: +3;

- (2) NaClO₃和 SO₂在 H₂SO₄酸化条件下生成 ClO₂,其中 NaClO₃是氧化剂,还原产物为 ClO₂,回收产物为 NaHSO₄,说明生成硫酸氢钠,且产生 ClO₂,根据电子守恒可知,此反应的化学方程式为: 2NaClO₃+SO₂+H₂SO₄=2NaHSO₄+2ClO₂,故答案为: 2NaClO₃+SO₂+H₂SO₄=2NaHSO₄+2ClO₂;
- (3) 食盐溶液中混有 Mg^{2+} 和 Ca^{2+} ,可以利用过量 NaOH 溶液除去 Mg^{2+} ,利用过量 Na_2CO_3 溶液除去 Ca^{2+} , CIO_2 氧化能力强,根据结晶干燥后的产物可知 CIO_2 的还原产物为 $NaCIO_2$,因此电解装置中阴极 CIO_2 得电子生成 CIO_2 ,阳极 CI^- 失电子生成 CI_2 。

故答案为: NaOH 溶液; Na₂CO₃溶液; ClO₂⁻ (或 NaClO₂); 第 23 页 (共 34 页)

(4) 依据图示可知,利用含过氧化氢的氢氧化钠溶液吸收 ClO_2 ,产物为 ClO_2 一,则此反应中 ClO_2 为氧化剂,还原产物为 ClO_2 一,化合价从+4 价降为+3 价, H_2O_2 为还原剂,氧化产物为 O_2 ,每摩尔 H_2O_2 得到 2mol 电子,依据电子守恒可知氧化剂和还原剂的物质的量之比为 2: 1,

故答案为: 2: 1; O₂;

(5) $1gNaClO_2$ 的物质的量 $\frac{1g}{90.5g/mo1} = \frac{1}{90.5}$ mol,依据电子转移数目相等,NaClO₂ \sim Cl⁻ \sim 4e⁻ , Cl₂ \sim 2Cl⁻ \sim 2e⁻ , 可知氯气的物质的量为 $\frac{1}{90.5}$ mol \times 4 \times $\frac{1}{2} = \frac{2}{90.5}$ mol,则氯气的质量为 $\frac{2}{90.5}$ mol \times 71g/mol=1.57g,

故答案为: 1.57g。

- 【点评】本题考查了物质制备的实验方法分析、氧化还原反应概念分析和电子转 移的计算、注意物质性质的理解应用,题目难度中等。
- (二)选考题:共45分.请考生从给出的3道物理题、3道化学题、2道生物题中每科任选一题作答,并用2B铅笔在答题卡上把所选题目题号后的方框涂黑.注意所选题目的题号必须与所涂题目的题号一致,在答题卡选答区域指定位置答题.如果多做,则每学科按所做的第一题计分.[化学--选修2:化学与技术]
- 11. (15 分)高锰酸钾($KMnO_4$)是一种常用氧化剂,主要用于化工、防腐及制药工业等. 以软锰矿(主要成分为 MnO_2)为原料生产高锰酸钾的工艺路线如下:

回答下列问题:

- (1)原料软锰矿与氢氧化钾按 1: 1 的比例在"烘炒锅"中混配,混配前应将软锰矿粉碎,其作用是 增大反应物接触面积,加快反应速率,提高原料利用率 .
- (2) "平炉"中发生的化学方程式为 $2MnO_2+4KOH+O_2$ Δ $2K_2MnO_4+2H_2O$.

第24页(共34页)

- (3) "平炉"中需要加压,其目的是<u>提高氧气的压强,加快反应速率,增加软</u> 锰矿转化率 .
- (4)将 K₂MnO₄转化为 KMnO₄的生产有两种工艺.
- ①" CO_2 歧化法"是传统工艺,即在 K_2MnO_4 溶液中通入 CO_2 气体,使体系呈中性或弱酸性, K_2MnO_4 发生歧化反应,反应中生成 $KMnO_4$, MnO_2 和 <u>KHCO_3</u> (写化学式).
- ②"电解法"为现代工艺,即电解 K_2MnO_4 水溶液,电解槽中阳极发生的电极反应 为 $\underline{MnO_4^{2^-} e^- = MnO_4^-}$
- ,阴极逸出的气体是_H₂__.
- ③"电解法"和"CO₂ 歧化法"中,K₂MnO₄ 的理论利用率之比为__3:2__.
- (5) 高锰酸钾纯度的测定: 称取 1.0800g 样品,溶解后定容于 100mL 容量瓶中,摇匀. 取浓度为 $0.2000mol \bullet L^{-1}$ 的 $H_2C_2O_4$ 标准溶液 20.00mL,加入稀硫酸酸化
 - ,用 $KMnO_4$ 溶液平行滴定三次,平均消耗的体积为 24.48mL,该样品的纯度

为
$$_{\underline{\hspace{1cm}}}$$
 为 $_{\underline{\hspace{1cm}}}$ 20.00×10⁻³×0.2000× $\frac{2}{5}$ × $\frac{100}{24.48}$ ×158 $\underline{\hspace{1cm}}$ ×100% (列出计算式即可,

己知 2MnO₄-+5H₂C₂O₄+6H+=2Mn²⁺+10CO₂个+8H₂O).

【考点】U3:制备实验方案的设计.

【专题】546:无机实验综合.

【分析】(1)固体混合粉碎目的是增大接触面积加快反应速率;

- (2) 流程分析可知平炉中发生的反应是氢氧化钾、二氧化锰和氧气加热反应生成锰酸钾和水;
- (3) "平炉"中加压能提高氧气的压强,加快反应速率,增加软锰矿转化率;
- (4) ①在 K_2MnO_4 溶液中通入 CO_2 气体,使体系呈中性或弱酸性, K_2MnO_4 发生 歧化反应,根据元素守恒以及二氧化碳过量推测反应生成 $KMnO_4$, MnO_2 和 $KHCO_3$;
- ②"电解法"为现代工艺,即电解 K_2MnO_4 水溶液,在电解槽中阳极, MnO_4^2 失去电子,发生氧化反应,产生 MnO_4^- ; 在阴极,水电离产生的 H^+ 获得电子变为

第25页(共34页)

氢气逸出,电极反应式是: 2H₂O+2e⁻ =H₂个+2OH⁻;

- ③依据电解法方程式 $2K_2MnO_4+2H_2O$ —通电— $2KMnO_4+2H_2\Lambda+2KOH$,可知 K_2MnO_4 的 理 论 利 用 率 是 100% , 而 在 二 氧 化 碳 歧 化 法 反 应 中 $3K_2MnO_4+2CO_2=2KMnO_4+MnO_2+K_2CO_3$ 中 K_2MnO_4 的理论利用率是 $\frac{2}{3}$;
 - (5) 依据离子方程式 $2MnO_4^- + 5H_2C_2O_4 + 6H^+ = 2Mn^2 + 10CO_2 \uparrow + 8H_2O$ 可由 n($H_2C_2O_4$)计算出 n($KMnO_4$),进而计算出样品中的 n($KMnO_4$),然后可计算样品的纯度.
 - 【解答】解: (1)原料软锰矿与氢氧化钾按 1: 1 的比例在"烘炒锅"中混配,混配前应将软锰矿粉碎,其作用是增大接触面积加快反应速率,提高原料利用率.

故答案为: 增大反应物接触面积,加快反应速率,提高原料利用率;

- (2)流程分析可知平炉中发生的反应是氢氧化钾、二氧化锰和氧气加热反应生成锰酸钾和水,反应的化学方程式为: $2MnO_2+4KOH+O_2=2K_2MnO_4+2H_2O_5$ 故答案为: $2MnO_2+4KOH+O_2=2K_2MnO_4+2H_2O_5$
- (3) "平炉"中加压能提高氧气的压强,加快反应速率,增加软锰矿转化率. 故答案为:提高氧气的压强,加快反应速率,增加软锰矿转化率;
 - (4) ①在 K_2MnO_4 溶液中通入 CO_2 气体,使体系呈中性或弱酸性, K_2MnO_4 发生 歧化反应,根据元素守恒以及二氧化碳过量推测反应生成 $KMnO_4$, MnO_2 和 $KHCO_3$;

故答案为: KHCO₃;

②"电解法"为现代工艺,即电解 K_2MnO_4 水溶液,在电解槽中阳极, MnO_4^{2-} 失去电子,发生氧化反应,产生 MnO_4^{-} . 电极反应式是: MnO_4^{2-} - e^- = MnO_4^{-} ; 在 阴 极 , 水 电 离 产 生 的 H^+ 获 得 电 子 变 为 氢 气 逸 出 , 电 极 反 应 式 是: $2H_2O+2e^-$ = $H_2 \uparrow +2OH^-$; 所 以 阴 极 逸 出 的 气 体 是 H_2 ; 总 反 应 方 程 式 是: $2K_2MnO_4+2H_2O$ ———— $2KMnO_4+2H_2 \uparrow +2KOH$,

故答案为: MnO₄²⁻ - e⁻ =MnO₄⁻; H₂;

第 26 页 (共 34 页)

③依据电解法方程式 $2K_2MnO_4+2H_2O$ ———————— $2KMnO_4+2H_2\Lambda+2KOH$,可知 K_2MnO_4 的 理 论 利 用 率 是 100% , 而 在 二 氧 化 碳 歧 化 法 反 应 中 $3K_2MnO_4+2CO_2=2KMnO_4+MnO_2+K_2CO_3$ 中 K_2MnO_4 的理论利用率是 $\frac{2}{3}$,所以二者的理论利用率之比为 3: 2,

故答案为: 3: 2;

(5) 依据离子方程式 2MnO₄-+5H₂C₂O₄+6H+=2Mn²⁺+10CO₂个+8H₂O

可知 $KMnO_4$ 与草酸反应的定量关系是 $2KMnO_4 \sim 5H_2C_2O_4$,

n
$$(H_2C_2O_4)$$
 =20.00×10⁻³L×0.2000mol/L=20.00×10⁻³×0.2000mol

n (KMnO₄) =20.00×10⁻³×0.2000×
$$\frac{2}{5}$$
mol,

1.0800g 样品中 n(KMnO₄)=20.00×10⁻³×0.2000×
$$\frac{2}{5}$$
× $\frac{100}{24.48}$ mol,

1.0800g 样品中 m(KMnO₄)=20.00×10⁻³×0.2000×
$$\frac{2}{5}$$
× $\frac{100}{24.48}$ ×158g,

样品的纯度=
$$\frac{20.00\times10^{-3}\times0.2000\times\frac{2}{5}\times\frac{100}{24.48}\times158}{1.0800}\times100\%$$
.

故答案为:
$$\frac{20.00\times10^{-3}\times0.2000\times\frac{2}{5}\times\frac{100}{24.48}\times158}{1.0800}\times100\%.$$

【点评】本题考查了物质制备工艺流程的知识.制备方案的过程分析和物质性质的理解应用,特别是电解原理、滴定实验的熟练掌握和计算应用,掌握基础是解题关键,题目难度中等.

[化学--选修 3: 物质结构与性质]

- 12. (15 分)锗(Ge)是典型的半导体元素,在电子、材料等领域应用广泛. 回答下列问题:
- (1) 基态 Ge 原子的核外电子排布式为[Ar] <u>3d¹⁰4s²4p²</u>,有<u>2</u>个未成对电子.
- (2) Ge 与 C 是同族元素,C 原子之间可以形成双键、叁键,但 Ge 原子之间难以形成双键或叁键. 从原子结构角度分析,原因是<u>锗的原子半径大,原子</u>之间形成的 σ 单键较长,p- p 轨道肩并肩重叠程度很小或几乎不能重叠,难

第27页(共34页)

以形成π键_.

(3) 比较下列锗卤化物的熔点和沸点,分析其变化规律及原因 <u>GeCl₄、GeBr₄、</u> <u>Gel₄熔、沸点依次增高;原因是分子结构相似,相对分子质量依次增大,分</u>子间相互作用力逐渐增强 .

	GeCl₄	GeBr₄	Gel₄
熔点/℃	- 49.5	26	146
沸点/℃	83.1	186	约 400

- (4) 光催化还原 CO_2 制备 CH_4 反应中,带状纳米 Zn_2GeO_4 是该反应的良好催化剂. Zn、Ge、O 电负性由大至小的顺序是 O>Ge>Zn.
- (5) Ge 单晶具有金刚石型结构,其中 Ge 原子的杂化方式为<u>sp³</u>微粒之间存在的作用力是_共价键_.
- (6) 晶胞有两个基本要素: ①原子坐标参数,表示晶胞内部各原子的相对位置,如图(1、2)为 Ge 单晶的晶胞,其中原子坐标参数 A 为(0,0,0); B 为($\frac{1}{2}$,0, $\frac{1}{2}$); C 为($\frac{1}{2}$, $\frac{1}{2}$,0).则 D 原子的坐标参数为___($\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{4}$)___.
- ②晶胞参数,描述晶胞的大小和形状,已知 Ge 单晶的晶胞参数 a=565.76pm,其密度为 $_{-}$ 8×73 $_{-}$ × 10 $_{-}$ g•cm $_{-}$ 3(列出计算式即可).

- 【考点】86:原子核外电子排布;9I:晶胞的计算;9S:原子轨道杂化方式及杂化类型判断.
- 【专题】51D: 化学键与晶体结构.
- 【分析】(1) Ge 是 32 号元素,位于第四周期第 IVA 族,基态 Ge 原子核外电子排布式为[Ar] 3d¹⁰4s²4p²;

第28页(共34页)

- (2) Ge 原子半径大,难以通过"肩并肩"方式形成π键;
- (3) 锗的卤化物都是分子晶体,相对分子质量越大,分子间作用力越强,熔沸 点越高;
- (4) 元素的非金属性越强,吸引电子的能力越强,元素的电负性越大;
- (5) Ge 单晶具有金刚石型结构, Ge 原子与周围 4 个 Ge 原子形成正四面体结构, 向空间延伸的立体网状结构, 属于原子晶体;
- (6) ①D 与周围 4 个原子形成正四面体结构,D 与顶点 A 的连线处于晶胞体对角线上,过面心 B、C 及上底面面心原子的平面且平行侧面将晶胞 2 等分,同理过 D 原子的且平衡侧面的平面将半个晶胞 2 等等份可知 D 处于到各个面的 $\frac{1}{4}$ 处;
- ②根据均摊法计算晶胞中 Ge 原子数目,结合阿伏伽德罗常数表示出晶胞的质量,再根据 $\rho=\frac{m}{v}$ 计算晶胞密度.
- 【解答】解: (1) Ge 是 32 号元素,位于第四周期第 IVA 族,基态 Ge 原子核外电子排布式为 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p² 或 [Ar]3d¹⁰4s²4p²,在最外层的 4s 能级上 2 个电子为成对电子,4p 轨道中 2 个电子分别处以不同的轨道内,有 2 轨道未成对电子,

故答案为: 3d104s24p2; 2;

- (2) 虽然 Ge 与 C 是同族元素,C 原子之间可以形成双键、叁键,但考虑 Ge 的原子半径大,难以通过"肩并肩"方式形成 π 键,所以 Ge 原子之间难以形成双键或叁键,
- 故答案为: Ge 原子半径大,原子间形成的 σ 单键较长,p-p 轨道肩并肩重叠程度很小或几乎不能重叠,难以形成 π 键;
 - (3) 锗的卤化物都是分子晶体,分子间通过分子间作用力结合,对于组成与结构相似的分子晶体,相对分子质量越大,分子间作用力越强,熔沸点越高,由于相对分子质量: GeCl₄<GeBr₄<Gel₄, 故沸点: GeCl₄<GeBr₄<Gel₄,
- 故答案为: GeCl₄、GeBr₄、Gel₄的熔、沸点依次增高;原因是分子结构相似,分 子量依次增大,分子间相互作用力逐渐增强;
- (4) 元素非金属性: Zn < Ge < O, 元素的非金属性越强,吸引电子的能力越强,

第29页(共34页)

元素的电负性越大,故电负性: O>Ge>Zn,

故答案为: O>Ge>Zn:

(5) Ge 单晶具有金刚石型结构,Ge 原子与周围 4 个 Ge 原子形成正四面体结构 ,向空间延伸的立体网状结构,属于原子晶体,Ge 原子之间形成共价键,Ge 原子杂化轨道数目为 4,采取 sp³杂化,

故答案为: sp3; 共价键;

(6) ①D 与周围 4 个原子形成正四面体结构,D 与顶点 A 的连线处于晶胞体对角线上,过面心 B、C 及上底面面心原子的平面且平行侧面将晶胞 2 等分,同理过 D 原子的且平衡侧面的平面将半个晶胞再 2 等份,可知 D 处于到各个面的 $\frac{1}{4}$ 处,则 D 原子的坐标参数为($\frac{1}{4}$, $\frac{1}{4}$),

故答案为: $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$;

②晶胞中 Ge 原子数目为 $4+8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 8$,结合阿伏伽德罗常数,可知出晶胞的

质量为
$$\frac{8 \times 73 \text{ g/mol}}{6.02 \times 10^{23} \text{ mol}^{-1}}$$
,晶胞参数 a=565.76pm,

其密度为
$$\frac{8 \times 73 \text{g/mol}}{6.02 \times 10^{23} \text{mol}^{-1}}$$
÷(565.76×10⁻¹⁰cm) $^{3}=\frac{8 \times 73}{6.02 \times 565.76^{3}} \times 10^{7}$,

故答案为:
$$\frac{8 \times 73}{6.02 \times 565.76^3} \times 10^7$$
.

【点评】本题是对物质结构与性质的考查,涉及核外电子排布、化学键、晶体类型与性质、电负性、杂化方式、晶胞计算等, (6)中晶胞计算为易错点、难点,需要学生具备一定的空间想象与数学计算能力,难度较大.

「化学--选修 5: 有机化学基础]

13. (15 分) 秸秆(含多糖类物质)的综合利用具有重要的意义. 下面是以秸秆 为 原 料 合 成 聚 酯 类 高 分 子 化 合 物 的 路 线

回答下列问题:

- (1) 下列关于糖类的说法正确的是 cd . (填标号)
- a. 糖类都有甜味,具有 C_nH_{2m}O_m的通式
- b. 麦芽糖水解生成互为同分异构体的葡萄糖和果糖
- c. 用银镜反应不能判断淀粉水解是否完全
- d. 淀粉和纤维素都属于多糖类天然高分子化合物
 - (2) B 生成 C 的反应类型为 酯化反应或取代反应 .
- (3) D中的官能团名称为<u>酯基、碳碳双键</u>, D生成 E的反应类型为<u>消去</u>反应_.
- (5) 具有一种官能团的二取代芳香化合物 W 是 E 的同分异构体,0.5molW 与足量碳酸氢钠溶液反应生成 44gCO₂,W 共有 12 种(不含立体异构),其中核磁共振氢谱为三组峰的结构简式为 HOOCH₂C- CH₂COOH .
- (6) 参照上述合成路线,以(反,反)- 2, 4- 已二烯和 C_2H_4 为原料(无机试剂 任选),设计制备对苯二甲酸的合成路线

第 31 页 (共 34 页)

【考点】HC: 有机物的合成.

【专题】112: 有机推断; 32: 结构决定性质思想; 43: 演绎推理法; 534: 有机物的化学性质及推断.

【分析】(1) a. 糖类不一定有甜味,如纤维素等,组成通式不一定都是 $C_nH_{2m}O_m$ 形式,如脱氧核糖($C_6H_{10}O_4$);

- b. 麦芽糖水解生成葡萄糖;
- c. 淀粉水解生成葡萄糖,能发生银镜反应说明含有葡萄糖,说明淀粉水解了, 不能说明淀粉完全水解;
- d. 淀粉和纤维素都属于多糖类,是天然高分子化合物;
- (2) B与甲醇发生酯化反应生成 C:
- (3) 由 D 的结构简式可知,含有的官能团有酯基、碳碳双键; D 脱去 2 分子氢 气形成苯环得到 E,属于消去反应;
- (4) 己二酸与 1, 4- 丁二醇发生缩聚反应生成Ho {OC(CH₂)₄COO(CH₂)₄O}_nH;
- (5) 具有一种官能团的二取代芳香化合物 W 是 E 的同分异构体, 0.5 mol W 与足量碳酸氢钠溶液反应生成 44gCO₂, 生成二氧化碳为 1 mol, 说明 W 含有 2 个 羧基, 2 个取代基为- COOH、- CH₂CH₂COOH, 或者为- COOH、- CH (CH₃) COOH, 或者为- CH₂COOH、- CH₂COOH, 或者- CH₃、- CH (COOH)₂, 各有邻、间、对三种;

(6) (反,反) - 2,4- 己二烯与乙烯发生加成反应生成 Ċℍ, 在 Pd/C 作用

【解答】解: (1) a. 糖类不一定有甜味,如纤维素等,组成通式不一定都是 $C_nH_{2m}O_m$ 形式,如脱氧核糖($C_6H_{10}O_4$),故 a 错误;

COOH

- b. 葡萄糖与果糖互为同分异构体,但麦芽糖水解生成葡萄糖,故b错误;
- c. 淀粉水解生成葡萄糖,能发生银镜反应说明含有葡萄糖,说明淀粉水解了, 不能说明淀粉完全水解,故 c 正确;
- d. 淀粉和纤维素都属于多糖类,是天然高分子化合物,故 d 正确,故选: cd;
- (2) B 与甲醇发生酯化反应生成 C, 属于取代反应,

故答案为: 酯化反应或取代反应;

(3) 由 D 的结构简式可知,含有的官能团有酯基、碳碳双键,D 脱去 2 分子氢 气形成苯环得到 E,属于消去反应,

故答案为: 酯基、碳碳双键; 消去反应;

- (4) F 的名称为己二酸,己二酸与 1, 4- 丁二醇发生缩聚反应生成 Ho-{oc(CH₂)₄COO(CH₂)₄O}_nH, 反应方程式为: n HOOC (CH₂) ₄COOH+n HOCH₂CH₂CH₂CH₂OH 催化剂 Ho-{oc(CH₂)₄COO(CH₂)₄O}_nH+ (2n-1) H₂O,
- 故答案为: 己二酸; n HOOC (CH₂) 4COOH+n HOCH₂CH₂CH₂CH₂CH₂OH ^{催化剂}HO $\{OC(CH_2)_4COO(CH_2)_4O\}_{72}$ H+ (2n-1) H₂O:

第33页(共34页)

(6) (反,反)-2,4-己二烯与乙烯发生加成反应生成 CH, 在 Pd/C 作用 COOH 然后用酸性高锰酸钾溶液氧化生成 coon, 合成路 COOH KMnO₄/H⁺ Pd/C 加热 加热 线流程图为: COOH CH₃ COOH Pd/C 加热 CH₂ COOH 故答案为: CH₃

【点评】本题考查有机物的合成、官能团的结构与性质、有机反应类型、限制条件同分异构体书写等,是对有机化学基础基础的综合考查, (6)中注意根据题目中转化关系涉及合成路线,较好的考查学生知识迁移运用能力.