

Course Outline

DC Circuits – Basics

<u>Texas Instruments</u>

Types of Materials

Types of Materials (Solids)

$$R = \frac{\rho L}{A}$$

Unit: **Ω-cm**

BASIS of CLASSIFICATION

Resistivity (Conductivity)

Energy Band Theory

CONDUCTORS

LESS:

of the order of $10^{-8} \Omega$ -cm

Conduction band and Valence band → Overlap

INSULATORS

MORE: $> 10^{10} \Omega$ -cm

Conduction band and Valence band → LARGE GAP

SEMICONDUCTORS

In Between: 10⁰ to 10³ O-cm Conduction band and Valence band → SMALL GAP

Energy band theory

- ❖ As temperature increases, resistivity decreases
- ❖ As temperature is sufficiently raised, some semiconductors can become conductors!

Conduction in semiconductors

Examples of semiconductors

Silicon

Germanium

- ➤ For conduction to occur *lattice structure* is needed
- ➤ Atoms in a lattice are held in place by covalent bonds

LATTICE STRUCTURE - structures composed of one or more repeating unit cells

Silicon lattice structure – diamond cubic

- > These bonded electrons cannot move. At room temperature, some bonds are broken and electrons get energy to move and they are called "free electrons".
- ➤ Free electrons can move from valence band to conduction band and participate in conduction or current
- Free electrons are those which constitute current in semiconductors

Conduction in semiconductors

- ✓ When an electron breaks a bond and becomes *free*, it leaves behind an empty space *hole*
- ✓ Positive charge hole

Negative charge - electron

Conduction thus occurs due to the electrons that are freed by breaking of a bond and which populate the conduction band.

Silicon

Atomic number – 14

Electrons per shell – 2, 8, 4

Doping of semiconductors

➤ Doping is the process of <u>adding impurities</u> in semiconductor with the intent of modulating (changing or controlling) its electrical properties.

Phosphorus

If more electrons are present \longrightarrow *n*-type semiconductor

If more holes are present ——— p-type semiconductor

Atomic number – 15

Electrons per shell – 2, 8, 5

Boron

Atomic number – 5

Electrons per shell – 2, 3

"p-n" Junction Diode

This device is formed by joining a p-type semiconductor with an n-type semiconductor

Will this happen till all holes come into n-type and electrons into p-type?

"p-n" Junction Diode – Working (RB)

"p-n" Junction Diode – Working (FB)

"p-n" Junction Diode - Unique feature!

REVERSE- BIASED pn junction diode,

Resists Current flow

FORWARD- BIASED pn junction diode,

Allows Current flow

Diode → acts like a switch!!!

Circuit symbol

Acknowledgements

- 1. https://sites.google.com/site/puenggphysics/home/unit-5/band-theory-in-solids
- 2. http://semiconductordevice.net/SemiconductorDiode/semiconductors-conductors-insulator
- 3. https://www.researchgate.net/publication/324687441 Ab initio modelling of interfaces in nanocomposites for high voltage insulation/figures
- 4. https://en.wikipedia.org/wiki/Diamond cubic
- 5. https://www.pveducation.org/pvcdrom/conduction-in-semiconductors
- 6. https://amitngroup.blogspot.com/2014/06/doping-in-semiconductors.html
- 7. https://favpng.com/png_view/purified-water-silicon-atomic-number-bohr-model-chemical-element-png/UPwi09PU
- 8. https://www.allaboutcircuits.com/video-tutorials/the-pn-junction-and-the-diode/