POLITECHNIKA WARSZAWSKA Wydział Elektroniki i Technik Informacyjnych	LABORATORIUM Transmisja Bezprzewodowa i Anteny
Zespół: 1. Kamil Koryciński 2. Jakub Prusiński	Ćwiczenie nr 4 Radiowy kanał propagacyjny
Ćwiczenie wykonano:	Ćwiczenie prowadził:
data: 15.04.2025	dr inż. Krzysztof Kurek

Zestaw nr: 1

Konfiguracja systemu radiolinii: PT = 6 dBW, GT = 7 dB, GR = 13 dB, d = 30 km

f = 20 GHz, B = 20 MHz, TA = 100 K, F = 3 dB

Profil terenu: 100 120 110 130 130 120 140 120 150 120 130

Odległość d1: 6.5m Odległość d2: 9.5m

1. Zapoznanie się z podstawami bilansu mocy łącza radiowego na podstawie radiolinii

1.1 Zależność parametrów odbieranego sygnału od parametrów opisujących łącze radiowe

1.1.1:

Rys. 1: Tabela i wykres zależności stosunku sygnału szum C/N od zmian odległości między antenami d

Stosunek C/N [dB] maleje wykładniczo wraz ze wzrostem odległości pomiędzy antenami.

1.1.2:

Rys. 2: Tabela i wykres zależności stosunku sygnał szum C/N od zmian częstotliwości sygnału f

Stosunek C/N [dB] maleje wykładniczo wraz ze wzrostem częstotliwości sygnału.

1.1.3:

Rys. 3: Tabela i wykres zależności stosunku sygnał szum C/N od zmian szerokości pasma przesyłanego sygnału B

Stosunek C/N [dB] maleje wykładniczo wraz ze wzrostem szerokości pasma przesyłanego sygnału.

1.1.4:

Rys. 4: Tabela i wykres zależności stosunku sygnał szum C/N od zmian współczynnika szumów odbiornika F

Stosunek C/N [dB] maleje liniowo wraz ze wzrostem współczynnika szumów odbiornika F [dB].

1.1.5:

Rys. 5: Tabela i wykres zależności stosunku sygnał szum C/N od zmian temperatury szumowej anteny odbiorczej T_A

Przy liniowym wzroście temperatury szumowej anteny odbiorczej, stosunek C/N [dB] maleje, ale nie jest to spadek logarytmiczny ani zupełnie liniowy.

1.2 Zależność wymaganej wysokości masztów dla zapewnienia bezpośredniej widoczności między antenami

Obie anteny ustawiliśmy na wysokości 55m, co zapewniło uzyskanie odpowiednich wartości parametru P w warunkach początkowych. Następnie zapisaliśmy nowe wartości dla częstotliwości o 5GHz większych i mniejszych, odległości o 5 km większych i mniejszych i współczynnika krzywizny równego ½ i 2.

f [GHz]	Р
15	4,06
20	5,67
25	6,76

d [km]	Р
25	11,75
30	5,67
35	-1,29

k	Р
0,5	-11,29
1	5,67
2	14,14

Wraz ze wzrostem częstotliwości maleje promień pierwszej strefy Fresnela, więc możliwe jest ustawienie anten na niższych wysokościach.

Wraz ze wzrostem odległości wzrasta promień pierwszej strefy Fresnela a więc anteny muszą zostać ustawione wyżej.

Współczynnik krzywizny Ziemi ma podobny wpływ na bezpośrednią widoczność anten jak częstotliwość. Wraz ze wzrostem krzywizny, większa część przeszkód znalazła się poniżej linii wzroku pomiędzy antenami – zmalała minimalna wysokość anten.

2. Badanie propagacji wielodrogowej wewnątrz budynku dla istnienia widoczności między antenami - symulacje komputerowe

2.1. Zmiany mocy odbieranego sygnału w funkcji odległości między antenami

Tabelka z wynikami odczytanymi z programu i wyznaczoną odległością między antenami (LOS)

	х	У	Z	Odległość między	Moc odbierana szerokopasmowo	Moc odbierana wąskopasmowo
				antenami		
Tx	1,5	-4	1,5	0	-	-
Rx1	1	-0,5	1,5	3,54	-2,914932	-1,851303
Rx2	1	2,5	1,5	6,52	-8,043912	-9,061528
Rx3	1	5,5	1,5	9,51	-10,79002	-18,31393
Rx4	1	8,5	1,5	12,51	-12,60352	-17,49067
Rx5	1	11,5	1,5	15,51	-13,89179	-16,27395
Rx6	1	14,5	1,5	18,51	-14,94128	-16,79436
Rx7	1	17,5	1,5	21,51	-15,82638	-18,35729
Rx8	1	20,5	1,5	24,51	-16,51187	-18,95371
Rx9	1	23,5	1,5	27,5	-17,10078	-20,00008
Rx10	1	26,5	1,5	30,5	-17,55781	-20,85791
Rx11	1	29,5	1,5	33,5	-18,04621	-22,35873
Rx12	1	32,5	1,5	36,5	-18,34623	-22,80634
Rx13	1	35,5	1,5	39,5	-18,67245	-23,96678
Rx14	1,5	-0,5	1,5	3,5	-2,841128	-4,539667
Rx15	1,5	2,5	1,5	6,5	-8,081831	-9,337753

Rx16	1,5	5,5	1,5	9,5	-10,85242	-16,06053
Rx17	1,5	8,5	1,5	12,5	-12,63819	-11,92979
Rx18	1,5	11,5	1,5	15,5	-13,94226	-13,29611
Rx19	1,5	14,5	1,5	18,5	-14,95158	-16,77563
Rx20	1,5	17,5	1,5	21,5	-15,82087	-18,95838
Rx21	1,5	20,5	1,5	24,5	-16,55985	-17,00692
Rx22	1,5	23,5	1,5	27,5	-17,10678	-17,36827
Rx23	1,5	26,5	1,5	30,5	-17,6588	-18,46599
Rx24	1,5	29,5	1,5	33,5	-17,99083	-21,69277
Rx25	1,5	32,5	1,5	36,5	-18,36907	-22,16714
Rx26	1,5	35,5	1,5	39,5	-18,73278	-22,76113
Rx27	2	-0,5	1,5	3,54	-2,913758	-1,851973
Rx28	2	2,5	1,5	6,52	-8,045373	-8,742181
Rx29	2	5,5	1,5	9,51	-10,81711	-17,65493
Rx30	2	8,5	1,5	12,51	-12,61203	-16,92979
Rx31	2	11,5	1,5	15,51	-13,90568	-15,70329
Rx32	2	14,5	1,5	18,51	-14,94778	-16,98296
Rx33	2	17,5	1,5	21,51	-15,8036	-19,35735
Rx34	2	20,5	1,5	24,51	-16,48523	-19,41294
Rx35	2	23,5	1,5	27,5	-17,0413	-20,22701
Rx36	2	26,5	1,5	30,5	-17,58507	-20,54299
Rx37	2	29,5	1,5	33,5	-18,0913	-22,06058
Rx38	2	32,5	1,5	36,5	-18,41552	-22,8597
Rx39	2	35,5	1,5	39,5	-18,68512	-23,74933

Rys. 6: Wykres zmian odbieranej mocy (szerokopasmowo) w funkcji odległości od anteny nadawczej (LOS)

Rys. 7: Wykres zmian odbieranej mocy (wąskopasmowo) w funkcji odległości od anteny nadawczej (LOS)

Moc odbierana w obu rodzajach transmisji spada wraz ze wzrostem odległości od nadajnika. W przypadku transmisji szerokopasmowej obserwujemy jednostajny spadek, natomiast w transmisji wąskopasmowej zmiany mają charakter nieregularny. Nieregularność ta wynika z wielodrogowego charakteru transmisji.

2.2 Odpowiedzi impulsowe (CIR) dla wybranej lokalizacji odbiornika:

- odbiornik w odległości d1 od anteny nadajnika

Rys. 8: Rysunek pomocniczy sytuacji propagacyjnej do wyznaczenia długości dróg propagacji zadanych składowych wielodrogowych

Obliczenia długości dróg propagacji zadanych składowych wielodrogowych na podstawie rysunku powyżej (wykorzystując oznaczenia zaznaczone na rysunku):

$$t_1 = \frac{6.5m}{c} \approx 21.7 \text{ ns}$$

$$t_2 = \frac{10.5m}{c} \approx 35.0 \text{ ns}$$

$$t_3 = \frac{81.5m}{c} \approx 271.9 \text{ ns}$$

Składowa w odpowiedzi impulsowej	Długość drogi propagacji [m]	Czas propagacji [ns]
Składowa bezpośrednia	6.5	21.7
Składowa odbita od ściany za nadajnikiem	10.5	35.0
Składowa odbita od ściany za odbiornikiem	81.5	271.9

Rys. 9: Odpowiedź impulsowa kanału dla odbiornika umieszczonego w odległości d1 od nadajnika

Zmiana odległości między antenami z d1 na d2 spowoduje wydłużenie drogi i czasu propagacji składowej bezpośredniej i składowej odbitej od ściany za odbiornikiem. Czas i droga propagacji składowej odbitej od ściany naprzeciwko odbiornika ulegną skróceniu.

2.3 Kierunki odbioru (DOA) dla wybranej lokalizacji odbiornika:

- odbiornik w odległości d1 od anteny nadajnika

Rys. 10: Rysunek pomocniczy sytuacji propagacyjnej do wyznaczenia kątów azymutu i elewacji zadanych składowych wielodrogowych

Obliczenia kątów DOA w płaszczyźnie azymutu i elewacji dla zadanych składowych wielodrogowych na podstawie rysunku powyżej (wykorzystując oznaczenia zaznaczone na rysunku):

$$\alpha = 180^{\circ}$$

$$\theta = \arcsin\left(\frac{1.25m}{\sqrt{1.25m^2 + 3.25m^2}}\right) \approx 21^{\circ}$$

$$\beta = 180^{\circ} - \theta = 159^{\circ}$$

$$\gamma = 180^{\circ} + \theta = 201^{\circ}$$

Składowa odpowi impulsowej	edzi	DOA w płaszczyźnie azymutu [°]	DOA w płaszczyźnie elewacji [°]
Składowa bezpośredni	a	180	0
Składowa odbita od ścia po lewej stronie	ny	159	0
Składowa odbita od ścia po prawej stronie	ny	201	0

Rys. 11: Kierunki odbioru (DOA) w płaszczyznach azymutu i elewacji dla odbiornika umieszczonego w odległości d1 od nadajnika

Zmiana odległości między antenami z d1 na d2 spowoduje zmianę jedynie kątów azymutu składowych odbitych od ścian, gdzie spowoduje ich zmniejszenie. Zmianie nie ulegnie kąt azymutu składowej bezpośredniej ani kąt elewacji.

3. Badanie propagacji wielodrogowej wewnątrz budynku - pomiary

3.1 Pomiary odbieranej mocy wzdłuż korytarza z krokiem 3 m (LOS)

Odległość	Pomiar1	Pomiar2	Pomiar3	Pomiar1	Pomiar2	Pomiar3	Wartość	Wartość
[m]	[dBm]	[dBm]	[dBm]	[mW]	[mW]	[mW]	średnia	średnia
							[mW]	[dBm]
3	-28	-30	-32	0,0015849	0,001	0,000631	0,001071967	-29,70
6	-31	-29	-37	0,0007943	0,001259	0,0002	0,0007511	-31,24
9	-32	-37	-38	0,000631	0,0002	0,00015849	0,00032983	-34,82
12	-37	-43	-32	0,0002	5,01e-5	0,000631	0,0002937	-35,32
15	-38	-40	-36	0,00015849	0,0001	0,00025119	0,000169893	-37,70
18	-42	-49	-50	6,31e-5	1,259e-5	1e-5	2,85633E-05	-45,44
21	-50	-48	-45	1e-5	1,5849e-5	3,1623e-5	1,91573E-05	-47,18
24	-53	-52	-49	5,012e-6	6,31e-6	1,259e-5	7,97067E-06	-50,99
27	-50	-48	-50	1e-5	1,5849e-5	1e-5	1,19497E-05	-49,23
30	-52	-51	-50	6,31e-6	7,9433e-6	1e-5	8,08443E-06	-50,92
33	-53	-53	-62	5,012e-6	5,012e-6	6,31e-7	3,55167E-06	-54,50
36	-56	-54	-57	2,5119e-6	3,981e-6	2e-6	2,83097E-06	-55,48
39	-64	-78	-60	3,981e-7	1,5849e-8	1e-6	4,71316E-07	-63,27

Rys. 12: Wykres zmian odbieranej mocy w funkcji odległości od anteny nadawczej - pomiary (LOS)

3.2 Wyznaczanie wykładnika y modelu propagacji (pomiary)

Odległość odniesienia d₀ = 3m

Rys. 13: Aproksymacja zmian odbieranej mocy w funkcji odległości między antenami (LOS)

Wartość wykładnika γ w sytuacji LOS wynosi: 2,9092 Wartość mocy Po w sytuacji LOS wynosi: -23,142 dBm

3.3 Pomiary zaników lokalnych

Wyniki pomiarów:

Odległość między antenami (LOS)						
odległość [m]	Moc sygnału odebranego [dBm]	moc unormowana do max. [dB]				
6	-33	-2				
6,3	-35	-4				
6,6	-31	0				
6,9	-37	-6				
7,2	-39	-8				
7,5	-33	-2				
7,8	-43	-12				
8,1	-40	-9				
8,4	-39	-8				
8,7	-34	-3				
9	-33	-2				

Rys. 14: Zaniki lokalne dla małej odległości między antenami (LOS)

Obserwacje/wnioski:

Największy zanik sygnału obserwujemy dla odległości 7,8m. Zgodnie ze wstępem do laboratorium, małe przesunięcia między nadajnikiem i odbiornikiem mogą powodować zaniki sygnału. Spowodowane one są diametralnie innymi odbiciami od pomieszczenia przy pozornie niewielkim przemieszczeniu odbiornika.