Graph Learning SD212 7. Graph Neural Networks

Thomas Bonald, Simon Delarue

2023 - 2024

Motivation

Machine learning on enriched graphs, with node features

Outline

- 1. Background on neural networks
- 2. Graph neural networks
- 3. Variants

Supervised learning

Objective: Predict the **label** (classification) or the **value** (regression) of a sample by training.

Formally, learn some mapping $f: x \mapsto y$ minimizing:

$$\frac{1}{n}\sum_{i=1}^n \ell(y_i, f(x_i))$$

where

- $\mathbf{x} \in \mathbb{R}^d$
- ▶ $y \in \{0, 1\}, \{1, ..., K\}$ or \mathbb{R}
- $(x_1, y_1), \dots, (x_n, y_n)$ are the training examples
- \blacktriangleright ℓ is the loss function

Example

$$x \in \mathbb{R}^2$$
, $y \in \{0, 1\}$, $n = 100$

Binary classification

$$x \in \mathbb{R}^d$$
, $y \in \{0, 1\}$

Logistic regression

Probability that y = 1 for sample x:

$$p = \sigma(w^T x) \in [0, 1]$$

where $w \in \mathbb{R}^d$ is the weight vector (to be learned).

Logistic function $\sigma(u) = \frac{1}{1+e^{-u}}$

Example

$$x \in \mathbb{R}^2$$
, $y \in \{0, 1\}$

Training data

Model for w = (1,1)

Bias term

$$x \in \mathbb{R}^d$$
, $y \in \{0, 1\}$

Logistic regression

Probability that y = 1 for sample x:

$$p = \sigma(w^T x + b)$$

where $w \in \mathbb{R}^d$ is the **weight** vector and $b \in \mathbb{R}$ the **bias** term (to be learned).

Example

$$x \in \mathbb{R}^2$$
, $y \in \{0, 1\}$

Training data

Model for w = (1, 1), b = -1

Loss function

$$y \in \{0,1\}, p \in [0,1]$$

Binary cross-entropy

For one sample:

$$-y\log p - (1-y)\log(1-p)$$

Loss function

Binary cross-entropy

For *n* samples:

$$-\sum_{i=1}^{n}(y_{i}\log p_{i}+(1-y_{i})\log (1-p_{i}))$$

Problem to solve

$$x_1, \ldots, x_n \in \mathbb{R}^d, y_1, \ldots, y_n \in \{0, 1\}$$

Objective

Find w and b minimizing:

$$L = -\sum_{i=1}^{n} (y_i \log p_i + (1 - y_i) \log(1 - p_i))$$

with

$$p_1 = \sigma(w^T x_1 + b), \ldots, p_n = \sigma(w^T x_n + b)$$

Regularization

$$x_1, \ldots, x_n \in \mathbb{R}^d, y_1, \ldots, y_n \in \{0, 1\}$$

Objective

Find w and b minimizing:

$$L = -\sum_{i=1}^{n} (y_i \log p_i + (1 - y_i) \log(1 - p_i)) + \frac{\lambda}{2} (||w||^2 + b^2)$$

with

$$p_1 = \sigma(w^T x_1 + b), \ldots, p_n = \sigma(w^T x_n + b)$$

where λ is some hyper-parameter.

Gradient descent

Optimization problem:

$$\underset{w,b}{\operatorname{arg min}} L$$

Algorithm

Iterate over:

$$w \leftarrow w - \alpha \frac{\partial L}{\partial w}, \quad b \leftarrow b - \alpha \frac{\partial L}{\partial b}$$

where α is the **learning rate**

Gradient expression

For one sample

$$L = -y \log p - (1 - y) \log(1 - p)$$
$$p = \sigma(w^{T}x + b)$$

Proposition

$$\frac{\partial L}{\partial w} = (p - y)x$$
$$\frac{\partial L}{\partial b} = p - y$$

Gradient expression

For *n* samples with regularization:

$$L = -\sum_{i=1}^{n} (y_i \log p_i + (1 - y_i) \log(1 - p_i)) + \frac{\lambda}{2} (||w||^2 + b^2)$$

where

$$p_1 = \sigma(w^T x_1 + b), \ldots, p_n = \sigma(w^T x_n + b)$$

Proposition

$$\frac{\partial L}{\partial w} = \lambda w + \sum_{i=1}^{n} (p_i - y_i) x_i$$
$$\frac{\partial L}{\partial b} = \lambda b + \sum_{i=1}^{n} (p_i - y_i)$$

Multi-class extension

$$x \in \mathbb{R}^d$$
, $y \in \{1, \dots, K\}$

Softmax regression

For k = 1, ..., K, probability that y = k for sample x:

$$p(k) = \frac{e^{w_k^T x + b_k}}{e^{w_1^T x + b_1} + \ldots + e^{w_K^T x + b_K}}$$

where w_1, \ldots, w_K are the **weight** vectors and b_1, \ldots, b_K the **bias** terms (to be learned).

Logistic vs. softmax regression

Loss function

$$y \in \{1, \dots, K\}, p \in [0, 1]^K$$

Cross entropy

For one sample:

$$-\sum_{k=1}^K 1_{\{y=k\}} \log p(k)$$

with

$$p(k) \propto e^{w_k^T x + b_k}$$

Problem to solve

$$x_1, \ldots, x_n \in \mathbb{R}^d, y_1, \ldots, y_n \in \{1, \ldots, K\}$$

Objective

Find w_1, \ldots, w_K and b_1, \ldots, b_K minimizing:

$$L = -\sum_{i=1}^{n} \sum_{k=1}^{K} 1_{\{y=k\}} \log p_i(k) + \frac{\lambda}{2} \sum_{k=1}^{K} (||w_k||^2 + b_k^2)$$

with

$$p_i(k) \propto e^{w_k^T x_i + b_k}$$

where λ is some hyper-parameter.

Gradient expression

For one sample:

$$L = -\sum_{k=1}^{K} 1_{\{y=k\}} \log p(k)$$
 $p(k) \propto e^{w_k^T \times + b_k}$

Proposition

$$\frac{\partial L}{\partial w_k} = (p(k) - 1_{\{y=k\}})x$$
$$\frac{\partial L}{\partial b_k} = p(k) - 1_{\{y=k\}}$$

Gradient expression

For *n* samples with regularization:

$$L = -\sum_{i=1}^{n} \sum_{k=1}^{K} 1_{\{y_i = k\}} \log p_i(k) + \frac{\lambda}{2} \sum_{k=1}^{K} (||w_k||^2 + b_k^2)$$

Proposition

$$\frac{\partial L}{\partial w_k} = \lambda w_k + \sum_{i=1}^n (p_i(k) - 1_{\{y_i = k\}}) x_i$$
$$\frac{\partial L}{\partial b_k} = \lambda b_k + \sum_{i=1}^n (p_i(k) - 1_{\{y_i = k\}})$$

Neural network

A neural network is a **composition** of functions of the form:

$$x \mapsto \sigma(Wx + b)$$

with

- W weight matrix (to be learned)
- b bias vector (to be learned)
- $ightharpoonup \sigma$ activation function (typically non-linear)

Each such function is a **layer** of the network.

The **output** of the neural network is a **probability distribution** (for classification) or a **value** (for regression).

Activation functions

Logistic function

$$u\mapsto \frac{1}{1+e^{-u}}$$

ReLU function

$$u \mapsto \max(u, 0)$$

Single-layer networks

A neural network with 2 layers

Problem to solve

Consider a neural network with N layers

Objective

Find weight matrices W_1, \ldots, W_N and bias vectors b_1, \ldots, b_N minimizing:

$$L = -\sum_{i=1}^{n} \sum_{k=1}^{K} 1_{\{y=k\}} \log p_i(k) + \frac{\lambda}{2} \sum_{l=1}^{N} (||W_l||^2 + ||b_l||^2)$$

with

$$p_i = f_N \circ \ldots \circ f_1(x_i)$$

and

$$f_l(x) = \sigma_l(W_l x + b_l)$$

Parameters to learn

$$x \in \mathbb{R}^d$$
, $y \in \{1, \dots, K\}$

$$x \mapsto Wx + b$$

Layer	Weights <i>W</i>	Biases b
1	$d_1 imes d$	d_1
2	$d_2 imes d_1$	d_2
:	:	:
Ν	$K \times d_{n-1}$	K

Gradient: Single-layer neural network

$$x \mapsto u = Wx + b \mapsto p = \underbrace{\text{softmax}}_{\sigma}(u) \mapsto L = -\sum_{k} y_{k} \log p(k)$$

Backpropagation

Given the loss L for some sample x, compute:

1.
$$\frac{\partial L}{\partial p}$$

2. $\frac{\partial L}{\partial u} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u}$
3. $\frac{\partial L}{\partial W} = \frac{\partial L}{\partial u} \frac{\partial u}{\partial W}$

$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial u} \frac{\partial V}{\partial b}$$

$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial u} \frac{\partial u}{\partial b}$$

Gradient: A 2-layer neural network

$$x \mapsto u_1 = W_1 x + b_1 \mapsto v_1 = \sigma_1(u_1)$$

$$v_1 \mapsto u_2 = W_2 v_1 + b_2 \mapsto p = \underbrace{\text{softmax}}_{\sigma_2}(u_2) \mapsto L = -\sum_k y_k \log p(k)$$

Backpropagation

Given the loss L for some sample x, compute:

► Layer 2:

$$\frac{\partial L}{\partial p} \rightarrow \frac{\partial L}{\partial u_2} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u_2} \rightarrow \frac{\partial L}{\partial W_2}, \frac{\partial L}{\partial b_2}$$

Layer 1:

$$\frac{\partial L}{\partial v_1} = \frac{\partial L}{\partial u_2} \frac{\partial u_2}{\partial v_1} \rightarrow \frac{\partial L}{\partial u_1} = \frac{\partial L}{\partial v_1} \frac{\partial v_1}{\partial u_1} \rightarrow \frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial b_1}$$

Outline

- 1. Background on neural networks
- 2. Graph neural networks
- 3. Variants

Graph neural networks

Principle

Learn node embeddings using both:

- ▶ the **node features** → neural net
- ightharpoonup the **graph** ightharpoonup message passing (cf. diffusion)

Graph neural network

A graph neural network is a **composition** of a **diffusion step**:

$$X \mapsto U = PX$$

where $P = D^{-1}A$ is the **transition matrix** of the random walk, and X the matrix of features (dimension $n \times d$) followed by a **linear transformation**:

$$U \mapsto U' = UW^T + 1b^T$$

followed by the activation function:

$$U' \mapsto V = \sigma(U')$$

Each such function is a layer of the network.

The **output** of the graph neural network is a **probability distribution** (for classification) or a **value** (for regression).

Message passing

Vectorial representation

Let X be the matrix of features (dimension $n \times d$) Row i gives the features of node i

Graph neural network

A graph neural network is a **composition** of functions of the form:

$$X \mapsto U = PX \mapsto U' = UW^T + 1b^T \mapsto V = \sigma(U')$$

Exercise

The feature matrix X is:

$$\begin{pmatrix} 0 & -1 \\ 2 & 1 \\ -1 & 0 \\ 0 & 0 \\ -1 & 1 \end{pmatrix}$$

A neuron of the first layer has weights w = (-1, 1) and bias b = 0. What is the output of this neuron with a ReLu activation function?

Problem to solve

Consider a graph neural network with N layers Let S be the **training set**.

Objective

Find weight matrices W_1, \ldots, W_N and bias vectors b_1, \ldots, b_N minimizing:

$$L = -\sum_{i \in S} \sum_{k=1}^{K} 1_{\{y=k\}} \log p_i(k) + \frac{\lambda}{2} \sum_{l=1}^{N} (||W_l||^2 + ||b_l||^2)$$

with

$$p_i = f_N \circ \ldots \circ f_1(X)_i$$

and

$$f_l(X) = \sigma_l(PXW_l^T + 1b_l^T)$$

Training set

Parameters to learn

$$x \in \mathbb{R}^d$$
, $y \in \{1, \dots, K\}$

$$x \mapsto Wx + b$$

Layer	Weights W	Biases b
1	$d_1 imes d$	d_1
2	$d_2 \times d_1$	d_2
:	:	:
Ν	$K \times d_{n-1}$	K

Message passing in a GNN with 2 layers

Gradient: Single-layer graph neural network

$$X \mapsto U = XW^T + 1b^T \mapsto U' = PU \mapsto p = \sigma(U') \mapsto L$$

Backpropagation

Given the loss L for each sample of the training set S, compute:

1.
$$\frac{\partial L}{\partial p}$$

2.
$$\frac{\partial L}{\partial U} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial U}$$

3.
$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial U} \frac{\partial U}{\partial W}$$
$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial U} \frac{\partial U}{\partial b}$$

Gradient: A 2-layer graph neural network

$$X \mapsto U_1 = XW_1^T + 1b_1^T \mapsto U_1' = PU_1 \mapsto V_1 = \sigma_1(U_1')$$

$$V_1 \mapsto U_2 = V_1W_2^T + 1b_2^T \mapsto U_2' = PU_2 \mapsto p = \sigma_2(U_2') \mapsto L$$

Backpropagation

Given the loss L for each sample of the training set S, compute:

Layer 2:

$$\frac{\partial L}{\partial p} \rightarrow \frac{\partial L}{\partial U_2} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial U_2} \rightarrow \frac{\partial L}{\partial W_2}, \frac{\partial L}{\partial b_2}$$

Layer 1:

$$\frac{\partial L}{\partial V_1} = \frac{\partial L}{\partial U_2} \frac{\partial U_2}{\partial V_1} \rightarrow \ \frac{\partial L}{\partial U_1} = \frac{\partial L}{\partial V_1} \frac{\partial V_1}{\partial U_1} \ \rightarrow \ \frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial b_1}$$

Observations

GNN as...

- ► A **neural network** → use an **empty** graph
- ► An **embedding** technique → use the **last (hidden) layer**
- A diffusion process \rightarrow use one-hot encoding of labels + identity mapping (no training, W = I, b = 0)

Outline

- 1. Background on neural networks
- 2. Graph neural networks
- 3. Variants

Message passing

$$X \mapsto U = PX \mapsto U' = UW^T + 1b^T \mapsto V = \sigma(U')$$

Some variants

Replace the transition matrix $P = D^{-1}A$ by:

- $ightharpoonup D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ (symmetric normalization)
- \triangleright I + P (add self-embedding)
- ightharpoonup (I, P) (concatenate self-embedding) ightarrow GraphSAGE

Sampling

$$X \mapsto U = PX \mapsto U' = UW^T + 1b^T \mapsto V = \sigma(U')$$

Variant

Replace the transition matrix P by $\tilde{P} = \tilde{D}^{-1}\tilde{A}$ where:

- \tilde{A} is the adjacency matrix of a sampled graph (e.g., at most k neighbors per node)
- lacktriangle The sampling can depend on the layer ightarrow GraphSAGE

Normalization

$$X \mapsto U = PX \mapsto U' = UW^T + 1b^T \mapsto V = \sigma(U')$$

Variant

Normalize V so that each embedding lies on the **unit sphere**:

$$V\mapsto V'=rac{V}{||V||} o \mathsf{GraphSAGE}$$

Pooling

Idea: From node embedding to graph embedding

$$X \mapsto U = PX \mapsto U' = UW^T + 1b^T \mapsto V = \sigma(U') \mapsto \frac{1^T V}{n}$$

Each sample = one graph!

Source: Molecules (Javascript library)

Link Prediction

Idea: From node embedding to link prediction

$$X \mapsto U = PX \mapsto U' = UW^T + 1b^T \mapsto V = \sigma(U') \mapsto S = \sigma(VV^T)$$

Similarity

S is a similarity matrix of size $(n \times n)$.

 $S_{i,j}$ is the probability that a link exists between nodes i and j.

In practice, we show both **positive** and **negative** training examples to our model.

Summary

Graph neural networks

- ► Machine learning for **enriched** graphs
- ► Neural network boosted by message passing
- ► Many variants (diffusion, sampling, normalization, pooling)

