MTH9899 Final Project Presentation

Yigao (Hugo) Liu, Haocheng (Frank) Gu, Chenyu (Phillip) Zhao, Zichao (David) Wang

Baruch College, CUNY

May 22, 2019

Overview

Trim Data

Correlation Heatmap and Histogram Features Dominated by Random Noise Deal with Missing Values Normalization

Regression Analysis Regression

Tree Models

Default Tree & Forest Self-defined Tree & Forest

Neural Network

Aggregation

Correlation Heatmap

Figure: pairwise correlation heatmap

"sec_id" has a strong positive correlation with volatility.

Population Histogram

Figure: population histogram for each feature

- ▶ "X2" and "X5" are very likely to be pure white noise.
- "X1" seems to contain some information.

Moment Plot

One way to further investigate whether a feature "X*" is noise is that for each ticker, we plot the 1st, 2nd and 3rd moment of "X*" across the time, and see if the value varies across each ticker.

- ▶ If it does not vary, "X*" is probably noise.
- ▶ Otherwise "X*" may contain some information.

Moment Plot

Figure: 1st, 2nd and 3rd moments of "X1" across different tickers

Figure: 1st, 2nd and 3rd moments of "X2" across different tickers

Figure: 1st, 2nd and 3rd moments of "X5" across different tickers

Two Possibilities

There are two most common possibilities for missing values in a time series:

- 1. A few np.nans lie among valid data in a time series.
- 2. A big chunk of np.nans at the beginning (or in the middle) of our time period.

We can probably use some kind of moving average to fill the np.nans in case 1; but we have to treat case 2 more seriously.

np.nans in "vol"

- ▶ One way to fill np.nan is to use exponential moving average.
- We calculate the moving average using historical data in order to avoid lookahead bias.
- But there is one parameter we have to decide: the center of mass (or effective lag) of our moving average.
- ▶ Therefore, we have to do some kind of parameter tuning.

Tune with "sec id"

Figure: correlation with EMA-filled vol w.r.t. sec_id

▶ We are disappointed to see that the correlation keeps going up, and a EMA with *lag* > 15 actually does not make sense.

Tune with "X1"

Figure: correlation with EMA-filled vol w.r.t. sec_id

▶ Based on this plot, we will choose lag = 10.

Remaining np.nans in "vol"

▶ After filling in with exponential moving averages, we can find that there are still 20,887 np.nans in "vol".

Figure: number of np.nan of volatility w.r.t. date

► The most reasonable way tends to be the most naive one: just leave all np.nans unfilled.

Normalization

We set our features into four sets and treat them differently:

- sec_id, Date: we will divide each value by the sample maximum.
- 2. X2, X5: we will not normalize them because we will drop them in the end anyway.
- 3. vol: we will first add a minor positive number (10^{-4}) in order to avoid numerical error, and then take log and compute z-score. New feature will be named "log_vol".
- 4. X1, X3, X4, X6, X7: we will compute z-score of them directly. New features will be named "X*_norm".

Different Regressions

- ► Models: OLS, +/- 4MADs, OLS on the strongest signal, OLS by large and small SECID, LASSO, Ridge.
- Experiment: LightGBM.

R2 of Different Models											
Туре		Use	+/- 4MAD	OLS with Strong	L/S SEC ID	LASSO		OLS Drop Date SEC	Ridge		Light GBM
In Sample	0.08	34263%	0.096267%	0.082739%	0.081691%		0.083442%	0.082275%		0.084263%	0.311028%
Out Sample	0.11	L5843%	0.111507%	0.108627%	0.119250%		0.117673%	0.117736%		0.115867%	0.092557%

Figure: R^2 of Different Models

Prediction vs. Actual

Figure: Prediction vs Actual

LASSO

- Date and SECID reach 0 first.
- X1 last till the end.

Figure: Coefficients of Variables as Penalty Increases

Tree Models

- ▶ Default tree
- ► Default random forest
- Self-defined tree
- Self-defined forest

Default Tree

- ► Randomly split
- Cross validation on depth
- Other parameters

Figure: depth of default tree

Default Forest

- ▶ Use 3 as the best depth
- Cross validation on the numbers of trees
- Other parameters

Figure: cv and r^2

Figure: hist of output

We can see that the performance is not very good, and the predictions are just the mean.

Self-defined Tree

- ► For each feature, distinguish zero from non-zero values first
- Cross validation on the depth
- Other parameters

Figure: depth of self-defined tree

Self-defined Forest

- Use 7 as the best depth
- Cross validation on the numbers of trees
- Other parameters

Figure: cv of our tree

Figure: hist of output

We can see that the performance is better than before. Although there are still many predictions which give the mean value, we can see a fat tail in this picture. The average out-of-sample r^2 is 13 bps.

Adding More Randomness

▶ Randomly select 3 features to split on each point.

Figure: hist of output

We can see that the performance is still better than default. The shape of histogram is almost the same as before, but the average out-of-sample r^2 is 10 bps.

Neutral Network and its results

I applied different variations of Neural Networks to different variations of data set, turned out no good result benefited from deep net structure.

- ▶ NN can not capture fat-tail of return distribution, under scale of original data.
- There is no good metrics, NN behaves poor in both train and test set.
- Best test R-square is between 7 to 12 bps, when framework is very simple
- When build it deep, NN tends to predict the mean value

Histogram

Figure: Best Prediction / True results

Figure: Deep NN's Prediction

What I tried

- Structure: linear fully connected NN, up to 5 layers, 128 neurons each
- Optimizer: Adam
- Different learning rates
- Activation function: ReLU, leaky ReLU, Tanh
- Drop layer: randomly inactivate 0.5 portion of neurons in each epoch
- Batch normalization layer: normalize output after each layer
- ▶ L2 regularization: on weights of neurons

Best network

- single layer, 4 neurons
- no drop layer
- ▶ L2 regularization: 0.1
- ► leaky ReLU
- do batch normalization
- use sec_id, X1_norm, X3
- to predict fut_ret/vol

Can basically predict rise or drop. R-square between 7 and 12 bps in both test and train sets.

Aggregation

- For aggregating, firstly we trained all existing models under first 150 days. Then these models gave predictions for latter 50 days.
- Now we want to use these predictions from existing models as input for an upper-level model. This upper-level model will combine all results from existing models.
- ▶ We split these 50 days into 3:1 portion as training and test set for this upper-level model.
- Note that the training set for this upper-level is the test set from lower-level. From this point, training or test is in sense of upper-level model.

How to deal with NaN in vol

We used two different ways to deal with NaN in vol.

- First way: We fill all NaN with 0.
- Second way: We treat data with NaN vol as another group of data. We assume it has different property from other data. Under this consumption we build our two-level model only on non-NaN-vol data, and build another simple model for NaN-vol data.
- For the latter simple model we use linear regression on all other features, instead of just fill 0 in return prediction.
 Because we don't want to assume any extra things. Linear model is most explainable, so we choose it.
- Actually we model two kinds of data separately and combine them together

These two methods has close performance up to lower-level. But when we do aggregation, we found the second one has much better r-square. Though the second way maybe have data-driven suspicion, latter we will focus on this method.

Existing model

Figure: Correlations between features in train set

The existing models from lower-level are Neural Network, OLS1, OLS2, Ridge, Light GBM, Random Forest1, Random Forest2

Agg method

- Neutral Network: Even after the simplest net, the prediction is mean of data.
- OLS: Bad approach, as there is high correlation between features
- ► Lasso: very small penalty(1e-7) leads to choose only one feature. We let it choose two features.
- Ridge: Best results cannot beat Lasso.
- Random Forest: Very amazing!
- Light GBM: Not amazing.

As usual, all models' hyper parameter tuned with cross validation.

Results

\$	train 🖨	test ▼
AGG_Forest	0.013336	0.002272
AGG_Las	0.001555	0.001332
AGG_Rid	0.001586	0.001304
Regression1	0.000995	0.001214
Forest1	0.001440	0.001207
Forest2	0.000953	0.001166
GBM	0.000342	0.001105
NN	0.001097	0.001088
Regression2	0.001059	0.000960
AGG_LGBM	0.003398	0.000712
AGG_OLS	0.001893	0.000672
AGG_NN	-0.000002	-0.000038

Figure: Results(in order of test R2)

Conclusion

So aggregating did give us better result. So we choose Random Forest aggregation with 6 other models as our final choice. feature importance:

NN: 0.26931832

▶ Regression 1: 0.1825856

Random Forest 1: 0.17319282

Random Forest 2:0.14946527

Regression 2: 0.13878568

► Light GBM: 0.08665231

Under this method we can achieve 23 bps while the first fill-NA-with-zero way can achieve 13 bps.

Results

Figure: oos prediction histogram

Thanks for Listening