第二章凸函数

$\underline{\mathrm{SMaLL}}$

¹ 中国石油大学(华东) SMaLL 课题组: 梁锡军 small.sem.upc.edu.cn liangxijunsd@163.com

2023

第 2 章凸函数 (Convex Functions)

- 1. 基本性质和示例
- 2. 保持凸性的运算
- 3. 共轭函数
- 4. 次梯度与次微分
- 5. 对偶

第 2 章凸函数 (Convex Functions)

- 1. 基本性质和示例
- 2. 保持凸性的运算
- 3. 共轭函数
- 4. 次梯度与次微分
- 5. 对偶

Sec. 1 基本性质和示例

 $\mathbf{c} \mathbf{v} f: \mathbb{R}^n \to \mathbb{R}$ 是凸函数,如果 **dom** f 是凸集,且

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) \tag{1}$$

任意 $x, y \in \mathbf{dom} \ f, 0 \le \theta \le 1$ dom $f = \{x \in \mathbb{R}^n : f(x) < \infty\}$

- 如果 -f 是凸函数,那么 f 是凹函数
- 如果 dom f 是凸的并且满足以下式子,那么 f 是严格凸的

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

任意 $x, y \in \mathbf{dom} \ f, x \neq y, 0 < \theta < 1$

Statistical Machine Learning Lyce 4/35

(2)

讨论

Q. 你知道哪些函数是凸函数或凹函数?

在 ℝ 上的示例

凸函数:

- 仿射函数: ax + b 在 \mathbb{R} , 任意 $a, b \in \mathbb{R}$
- 指数函数: e^{ax} , 任意 $a \in \mathbb{R}$
- 幂函数: x^{α} on \mathbb{R}_{++} , 当 $\alpha \geq 1$ 或 $\alpha \leq 0$ 时
- 绝对值幂函数: $|x|^p$ 在 \mathbb{R} , 当 $p \ge 1$ 时
- 负熵函数: $x \log x$ 定义域为 \mathbb{R}_{++}

凹函数:

- 仿射函数: ax + b 在 \mathbb{R} , 任意 $a, b \in \mathbb{R}$
- 幂函数: x^{α} 在 \mathbb{R}_{++} , $\stackrel{.}{=}$ $0 \le \alpha \le 1$ 时
- 对数函数: $\log x$ 在 \mathbb{R}_{++} 上

在 \mathbb{R}^n 和 $\mathbb{R}^{m \times n}$ 上的示例

- * 仿射函数是凸的也是凹的:
- * 所有范数都是凸的

在 \mathbb{R}^n 上的示例

- 仿射函数 $f(x) = a^T x + b$
- 范数: $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}, p \ge 1;$ $||x||_{\infty} = \max_k |x_k|$

在 $\mathbb{R}^{m \times n} (m \times n$ 矩阵) 上的示例

• 仿射函数

$$f(X) = \mathbf{tr} (A^T X) + b = \sum_{i=1}^{m} \sum_{i=1}^{n} A_{ij} X_{ij} + b$$

• 谱(最大奇异值)范数

$$f(X) = ||X||_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

(3)

扩展值扩展

f的扩展值扩展 \tilde{f} 是

$$\tilde{f}(x) = f(x), \quad x \in \text{dom } f, \quad \tilde{f}(x) = \infty, \quad x \notin \text{dom } f$$
 (5)

经常简化记法;

示例: [凸集的指示函数]

$$I_C(x) = \begin{cases} 0, & x \in C \\ \infty, & x \notin C. \end{cases}$$
 (6)

凸函数限制在直线上

定理 $f: \mathbb{R}^n \to \mathbb{R}$ 是凸函数 \Leftrightarrow 函数 $g: \mathbb{R} \to \mathbb{R}$

$$g(t) = f(x+tv), \quad \mathbf{dom} \ g = \{t \mid x+tv \in \mathbf{dom} \ f\}$$
 (7)

是在 t 上的凸函数,对于任意 $x \in \mathbf{dom} f, v \in \mathbb{R}^n$

示例
$$f: \mathbf{S}^n \to \mathbb{R}$$
 with $f(X) = \log \det X$, $\mathbf{dom} f = \mathbf{S}_{++}^n$

$$g(t) = \log \det (X + tV) = \log \det X + \log \det \left(I + tX^{-1/2} V X^{-1/2} \right)$$

$$= \log \det X + \sum_{i=1}^n \log (1 + t\lambda_i)$$
(8)

其中 λ_i 是 $X^{-1/2}VX^{-1/2}$ 的特征值

g 在 t 上是凹的 (对于任意 $X \succ 0, V$); $\Rightarrow f$ 是凹的 Ex

一阶条件

f 是 **可微分的**,即它的梯度

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$
(9)

在每个 $x \in \text{dom} f$ 上存在,dom f 是开放的

定理 [一阶条件 **] 可微凸函数 f 满足不等式

二阶条件

f 是 二**阶可微的**即 **dom** f 是开的,且 Hessian 阵 $\nabla^2 f(x) \in \mathbf{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_i}, \quad i, j = 1, \dots, n$$
(11)

存在于每个点 $x \in \text{dom } f$

定理 [二**阶条件** **] 在凸有效域上的二次可微函数 f

ƒ是凸的,当且仅当

$$\nabla^2 f(x) \succeq 0 \quad \text{ £ $\widehat{\Xi}$ } x \in \mathbf{dom} \ f \tag{12}$$

• 如果 $\nabla^2 f(x) \succ 0$, $x \in \text{dom } f$, 那么 f 是严格凸的

示例

• 二次函数 *** $f(x) = (1/2)x^T P x + q^T x + r(P \in \mathbf{S}^n)$

$$\nabla f(x) = Px + q, \quad \nabla^2 f(x) = P \tag{13}$$

是凸函数, 当 $P \succ 0$ 时

• 最小二乘 ** $f(x) = ||Ax - b||_2^2$

$$\nabla f(x) = 2A^{T}(Ax - b), \quad \nabla^{2} f(x) = 2A^{T}A$$
 (14)

是凸函数 (对于任意 A)

• quadratic-over-linear

$$f(x,y) = x^2/y$$

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$$
(15)

是凸函数,当 y > 0 时

示例

• 对数和表达式 ** $f(x) = \log \sum_{k=1}^{n} \exp x_k$ 是凸函数

$$\nabla^2 f(x) = \frac{1}{\mathbf{1}^T z} \operatorname{diag}(z) - \frac{1}{(\mathbf{1}^T z)^2} z z^T \quad (z_k = \exp x_k)$$
 (16)

为了展示 $\nabla^2 f(x) \succeq 0$, 我们必须证明对于所有 v, $v^T \nabla^2 f(x) v \ge 0$:

$$v^{T} \nabla^{2} f(x) v = \frac{\left(\sum_{k} z_{k} v_{k}^{2}\right) \left(\sum_{k} z_{k}\right) - \left(\sum_{k} v_{k} z_{k}\right)^{2}}{\left(\sum_{k} z_{k}\right)^{2}} \ge 0 \tag{17}$$

因为 $\left(\sum_{k} v_k z_k\right)^2 \le \left(\sum_{k} z_k v_k^2\right) \left(\sum_{k} z_k\right)$ (来自柯西-施瓦兹不等式)

示例

• $f(x) = \log(e^x + e^y)$ 的图像

• **几何平均** ** $f(x) = \left(\prod_{k=1}^{n} x_{k}\right)^{1/n}$ 在 \mathbb{R}_{++}^{n} 上是凹的 (与对数和表达式的证明相似)

上图 (Epigraph)

函数 $f: \mathbb{R}^n \to \mathbb{R}$ 的 epigraph 定义为:

$$\mathbf{epi}\ f = \left\{ (x, t) \in \mathbb{R}^{n+1} \mid x \in \mathbf{dom}\ f, f(x) \le t \right\}$$
 (18)

定理 [**凸函数的** Epigraph**] f 是凸函数,当且仅当 epi f 是一个凸集.

下水平集

f的下水平集- $\alpha: \mathbb{R}^n \to \mathbb{R}:$

$$C_{\alpha} = \{ x \in \mathbf{dom} \ f \mid f(x) \le \alpha \}$$

凸函数的下水平集是凸的(反之,逆命题未必成立)

(19)

Jensen 不等式

• **基本不等式**: 如果 f 是凸函数, 那么对于 $0 \le \theta \le 1$ 有

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) \tag{20}$$

• 扩展: 如果 *f* 是凸函数, 那么

$$f(\mathbf{E}z) \le \mathbf{E}f(z) \tag{21}$$

对于任何随机变量 z

• 基本不等式是离散分布的特例

$$\operatorname{prob}(z=x) = \theta, \quad \operatorname{prob}(z=y) = 1 - \theta$$
 (22)

第 2 章凸函数 (Convex Functions)

- 1. 基本性质和示例
- 2. 保持凸性的运算
- 3. 共轭函数
- 4. 次梯度与次微分
- 5. 对偶

Sec. 2 保持凸性的运算

检验函数凸性的实用方法

- 1. 验证定义(通常通过限制到直线来简化)
- 2. 对于两次可微函数,验证 $\nabla^2 f(x) \succeq 0$
- 3. 证明 f 是通过保持凸性的运算从简单凸函数获得的
 - 非负加权求和
 - 复合仿射函数
 - 逐点最大和逐点上确界
 - 复合运算
 - 最小化
 - 透视函数 (Perspective function)

正加权和 & 复合仿射函数

- **非负倍数**: 如果 f 是凸函数, αf 是凸函数, $\alpha \geq 0$
- **求和**: 如果 f₁, f₂ 都是凸函数,f₁ + f₂ 是凸函数 (扩展到无限和、 积分)
- **复合仿射函数:** 如果 f 是凸函数, f(Ax+b) 是凸函数

示例

• 线性不等式的对数和

$$f(x) = -\sum_{i=1}^{m} \log (b_i - a_i^T x), \quad \text{dom } f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$$
(23)

• (任意) 仿射函数的范数: f(x) = ||Ax + b||

逐点最大值

定理 如果 f_1, \ldots, f_m 都是凸函数, 则 $f(x) = \max \{f_1(x), \ldots, f_m(x)\}$ 是 凸函数.

示例:

- 分段线性函数: $f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$ 是凸函数
- x 的 r 个最大分量之和 $x \in \mathbb{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$
 (24)

是凸函数 $(x_{[i]}$ 是 x) 第 i 个最大分量

• 证明:

$$f(x) = \max \{ x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n \}$$
(25)

逐点上确界← 逐点最大值

定理 如果 f(x,y) 关于 x 是凸的, 对任意 $y \in A$, 则

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y). \tag{26}$$

也是凸函数

证.
$$f_i(\theta x_1 + (1 - \theta)x_2) \le f(x_1) + (1 - \theta)f(x_2), i = 1, \dots, m, \theta \in (0, 1)$$
 不例

- 集合的支持函数 $C: S_C(x) = \sup_{y \in C} y^T x$ 是凸的
- 到集合中最远点的距离 C (洗讲):

$$f(x) = \sup_{y \in C} ||x - y|| \tag{27}$$

• 对称矩阵的最大特征值: for $X \in \mathbf{S}^n$,

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^T X y$$

(28)

标量函数组合

定理 给定函数 $g: \mathbb{R}^n \to \mathbb{R}$ 和 $h: \mathbb{R} \to \mathbb{R}$:

$$f(x) = h(g(x)) \tag{29}$$

f 是凸函数如果

- -g 是凸函数, h 是凸函数, \tilde{h} 非减;
- g 是凹函数, h 是凸函数, \tilde{h} 非减.
- 证明 (当 n = 1, 函数 g, h 可微)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$
(30)

ullet 注意: 单调性必须适用于扩展值扩展 \tilde{h}

示例:

- 如果 g 是凸函数, $\exp g(x)$ 是凸函数
- 如果 g 是凹函数且为正, 1/g(x) 是凸函数

向量组合

给定函数 $g: \mathbb{R}^n \to \mathbb{R}^k$ 和 $h: \mathbb{R}^k \to \mathbb{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$
 (31)

f 是凸函数如果

- $-g_i$ 是凸函数, h 是凸函数, \tilde{h} 在每个参数中非减
- g_i 是凹函数, h 是凸函数, \tilde{h} 在每个参数中非减

证明 (当 n=1, 函数 g,h 可微)

$$f'(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^T g''(x)$$
 (32)

示例

- 如果 g_i 是凹函数且为正,则 $\sum_{i=1}^m \log g_i(x)$ 是凹函数
- 如果 g_i 是凸函数,则 $\log \sum_{i=1}^m \exp g_i(x)$ 是凸函数

最小化

如果 f(x, y) 在 (x, y) 上是凸函数,且 C 是一个凸集,则

$$g(x) = \inf_{y \in C} f(x, y) \tag{33}$$

是凸函数

示例:

 $f(x,y) = x^T A x + 2x^T B y + y^T C y$

$$\begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \succeq 0, \quad C \succ 0 \tag{34}$$

在 y 上最小化,令 $g(x) = \inf_y f(x, y) = x^T (A - BC^{-1}B^T) x g$ 是凸函数,因此 Schur 补 $A - BC^{-1}B^T \succ 0$

• 到集合的距离: 如果 S 是凸函数,则 $\mathbf{dist}(x,S) = \inf_{y \in S} \|x - y\|$ 是凸函数

透视函数 (Perspective function)

定义 函数的 $f: \mathbb{R}^n \to \mathbb{R}$ 的 透视是函数 $g: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$

$$g(x,t) = tf(x/t), \quad \mathbf{dom}g = \{(x,t) \mid x/t \in \mathbf{dom}f, t > 0\}$$
 (35)

命题:如果f是凸函数,则g是凸函数

- $f(x) = x^T x$ 是凸函数; 那么 $g(x, t) = x^T x / t$ 是凸函数当 t > 0 时
- 负对数函数 $f(x) = -\log x$ 是凸的; 那么相对熵 $g(x,t) = t\log t t\log x$ 在 \mathbb{R}^2_{++} 上也是凸的
- 如果 f 是凸函数, 那么

$$g(x) = \left(c^T x + d\right) f\left(\left(Ax + b\right) / \left(c^T x + d\right)\right) \tag{36}$$

也是凸函数, 其中 $\{x \mid c^T x + d > 0, (Ax + b) / (c^T x + d) \in \mathbf{dom}f\}$

第 2 章凸函数 (Convex Functions)

- 1. 基本性质和示例
- 2. 保持凸性的运算
- 3. 共轭函数
- 4. 次梯度与次微分
- 5. 对偶

Sec. 3 共轭函数

定义 函数 f 的共轭函数为

$$f^*(y) = \sup_{x \in \mathbf{dom}f} (y^T x - f(x))$$
(37)

- f* 是凸的 (即使 f 不是凸的)
- 将在第5章中运用

共轭函数

示例:

• 负对数函数: $f(x) = -\log x$

$$f^{*}(y) = \sup_{x>0} (xy + \log x)$$

$$= \begin{cases} -1 - \log(-y) & y < 0\\ \infty & 其他 \end{cases}$$
(38)

• 严格凸二次型: $f(x) = (1/2)x^TQx$, $Q \in \mathbf{S}_{++}^n$

$$f^{*}(y) = \sup_{x} (y^{T}x - (1/2)x^{T}Qx)$$
$$= \frac{1}{2}y^{T}Q^{-1}y$$

(39)

第 2 章凸函数 (Convex Functions)

- 1. 基本性质和示例
- 2. 保持凸性的运算
- 3. 共轭函数
- 4. 次梯度与次微分
- 5. 对偶

次梯度

 $\mathbf{c} \mathbf{y} f: \mathbb{R}^n \to \mathbb{R}$ 是凸函数,如果 x^* 满足

$$f(z) \ge f(x) + \langle x^*, z - x \rangle \qquad \forall z \in \mathbf{R}^n$$
 (40)

则称向量 x^* 为凸函数 f 在点 x 处的次梯度

定理 设 S 是一个开凸集,函数 $f: S \to R$ 是凸函数。当且仅当对所有的 $\omega \in \mathbf{S}$,存在 z 满足

$$f(\mu) \ge f(\omega) + \langle \mu - \omega, z \rangle \qquad \forall \mu \in \mathbf{S}$$
 (41)

依据此引理,对于恰当凸函数, $f(\omega)$ 为最小值的充要条件是

 $0 \in \partial f(\omega)$, 即零向量是 f 在 ω 处的次梯度。

次微分

定义 在 x 的所有次梯度的集合称为 f 在 x 的次微分,记为 $\partial f(x)$

- $\partial f(x)$ 可以是空集,也可以只由一个向量组成,如果不为空,则称 f 在 x 处次可微。如果 f 在 ω 处是可微的,那么 $\partial f(\omega)$ 只包含一个元素,即 f 在 ω 处的梯度。
- 凸函数的次微分总是非空, 因为凸函数总是存在次梯度

第 2 章凸函数 (Convex Functions)

- 1. 基本性质和示例
- 2. 保持凸性的运算
- 3. 共轭函数
- 4. 次梯度与次微分
- 5. 对偶

对偶关系

定理 对于任意正常凸函数 f 和任意向量 x, 关于向量 x^* 的下列四个条件彼此等价:

- $x^* \in \partial f(x)$
- $z^T x^* f(z)$ 在 z = x 处取到关于 z 的上界
- $f(x) + f^*(x^*) \le x^T x^*$
- f(x) + f*(x*) = x^Tx*
 如果 (clf)(x) = f(x) , 这个相互等价条件的列表中还可以增加以下 三个条件:
- $x \in \partial f^*(x^*)$
- $x^T z^* f^*(z^*)$ 在 $z^* = x^*$ 处取到关于 z^* 中的上界
- $x^* \in \partial(\mathit{clf})(x)$

- 定义
 - 定义 1. f 是凸函数: $f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)f(y)$, $\forall x, y \in \text{dom} f, \theta \in (0, 1).$

严格凸

- • 定义2. ↑ f 是凸函数当且仅当 epi f 是一个凸集.
- Jensen 不等式。 f 是凸函数 $\Rightarrow f(\mathbb{E}\mathbf{X}) < \mathbb{E}f(\mathbf{X})$
- 凸函数的示例 ♣
 - \mathbb{R} 上的示例: ax + b, e^{ax} $(a \in \mathbb{R})$, x^{α} , x > 0, $\alpha \ge 1$, $x \log x$, $-\log x$
 - \mathbb{R}^n 上的示例: $\langle a, x \rangle + b$, $||x||_p$
 - $\mathbb{R}^{m \times n}$ 的示例: $\operatorname{tr}(A^T X) + b$, $||X||_2 = \lambda_{\max}(X^T X)^{1/2}$
 - 其他:

凸集上的指示函数: $I_C(x)$

- 性质
 - 性质. A 凸函数 f 对直线的限制: $q(t) = f(x + tv), v \in \mathbb{R}^n$ e.g. $f(X) = \log \det X$ 是凹函数

- 定理
 - 定理 (一阶条件 $^{\clubsuit\clubsuit}$) 函数 $f \in \mathcal{C}^1$ 是凸函数 $\Leftrightarrow f(y) \geq f(x) + \nabla f(x)^T (y-x), \forall x, y \in \text{dom} f$.
 - 定理 (二阶条件) 函数 $f \in \mathbb{C}^2$ 是凸函数 $\Leftrightarrow \nabla^2 f(x) \succeq 0, \forall x \in \text{dom} f$. 函数 $f \in \mathbb{C}^2$ 是 严格凸的 $\Leftarrow \nabla^2 f(x) \succ 0, \forall x \in \text{dom} f$
- 凸函数的示例

 - 最小二乘: $f(x) = ||Ax b||^2$
 - 对数和表达式: $f(x) = \log \sum_{i=1}^{n} e^{x_i}$

其他示例

- 二次超线性函数: $f(x, y) = x^2/y, y > 0$
- 几何平均: $f(x) = (\prod_{i=1}^n x_i)^{1/n}, x \in \mathbb{R}_{++}^n$
- 矩阵分数函数: $f: \mathbb{R}^n \times \mathbb{F}_{++}^n \to \mathbb{R}$, $f(x, Y) = x^\top Y^{-1} x$

• 保持凸性的运算

 f, f_1, \cdots, f_m : 凸函数 \Rightarrow 以下均是凸的:

- αf , $\alpha > 0$
- $f_1 + f_2 \rightarrow$ 无限求和
- f(Ax + b)

e.g.,
$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \ a_i^T x < b, \ i = 1, \dots, m.$$

- 逐点最大值: $f(x) = \max\{f_1(x), \dots, f_m(x)\}$ e.g., $x \perp$ 的 $r \wedge$ 最大分量求和 $\in \mathbb{R}^n$
- 逐点上确界: $g(x) \stackrel{\text{def}}{=} \sup_{y \in A} f(x, y)$ f(x, y) 是关于 x 凸的对每个 $y \in A$, e.g., 支持函数。 $\lambda_{\max}(X)$
- 最小化: $g(x) = \inf_{y \in C} f(x, y)$ f(x, y): 在 (x, y) 上凸的, C: 凸集 $e.g., \stackrel{\bullet}{\bullet} dist(x, S)$
- 复合运算: ♣ h(g(x)), g: 凸的, h: 凸的, 上升的

- 共轭函数
 - $\mathbb{E} \mathfrak{X}$. $f^*(x^*) = \sup_x (\langle x^*, x \rangle f(x))$
 - e.g., 计算以下各项的共轭函数: ***

$$f(x) = -\log x,$$

 $f(x) = \frac{1}{2}x^T Qx, \ Q \in \mathbf{S}_{++}^n,$
 $f(x) = I_C(x),$
 $f(x) = \frac{1}{2}||x||^2, ||\cdot||$ 是一个范数,

- 凸函数的次微分
 - $\mathbb{E} \mathfrak{X}$. $\partial f(x) = \{x^* | f(y) \ge f(x) + \langle x^*, y x \rangle, \forall y\}$
 - e.g., $f(x) = ||x||_1, \to \partial f(x) = ?$
- 对偶
 - 定理: 四个等价条件

• 凸集和凸函数

凸集	凸函数
epif 凸函数	f 凸函数
部分和 $\{t_1 + t_2 (x, t_1) \in \text{epi} f_1, (x$	$(x, t_2) \in \operatorname{epi}\{t_2\}$ $f = f_1 + f_2$
$\frac{\{t_1 + t_2 \mid (x, t_1) \in \text{epi}_{f_1}, (x, \frac{t}{\alpha}) \in \text{epi}_{f_2}\}}{\text{epi}_f = \mathcal{A} \text{epi}_{f_1} \mathcal{A} : (x, \frac{t}{\alpha}) \in \text{epi}_{f_2}$	
$epif = prog_x epig$	$f(x) = \inf_{y \in C} g(x, y)$
$epif = epif_1 \cap epif_2$	$f(x) = \max\{f_1(x), f_2(x)\}$
$\begin{aligned} \operatorname{epi} f &= \mathcal{A} \operatorname{epi} g \mathcal{A} : (x, \alpha) \mapsto \\ \operatorname{epi} g &= \mathcal{A}^{-1} \operatorname{epi} f \\ \mathcal{A} &: \mathbb{R}^{n+1+1} \to \mathbb{R}^{n+1} \\ \mathcal{A}(u, v, w) &= (u, w)/v \end{aligned}$	f(x) = h(g(x)) 透视函数 $g(x,t) = tf(\frac{x}{t}), \ t > 0$
$epif = epif_1 + epif_2$	卷积下确界: $f = f_1 \square f_2$ $f(x) = \inf_{x_1 + x_2 = x} f_1(x_1) + f_2(x_2)$
$\mathrm{epi} f = \lambda \mathrm{epi} f_1$	右乘法 $ (f\lambda)(x) = \lambda \cdot f(\lambda^{-1}x) $ 39/3