

Enrutamiento en IPv6

Material preparado por Mariela Rocha y Guillermo Cicileo

OSPF e IS-IS

- IGPs
- Utilizan una base de datos link-state (OSPF usa LSAs e IS-IS LSPs)
- Realizan sus cálculos en base a algoritmos SPF
- Utilizan areas para conformar dos niveles de jeraquia
- Son classless y pueden sumarizar redes dentro de las areas

OSPF IPv6

- OSPF para IPv6 RFC 5340 (OSPFv3)
- OSPFv3: La version 3 de OSPF fue creada para que, a diferencia de la versión 2, pueda soportar direccionamiento IPv6.
- La mayoría de las características son las mismas en una versión que en la otra
- En OSPF para IPv6, el "routing process" no necesita ser explicitamente creado
- Habilitando OSPF para IPv6 en la interfaz, el proceso será creado.

- En OSPF para IPv6, cada interfaz debe ser habilitada con un comando en modo de configuración de interfaz.
- Esto lo diferencia de OSPFv2, donde las interfaces quedan automaticamente habilitadas con un comando de configuración global.
- Al mismo tiempo, se pueden configurar varios prefijos en una unica interfaz.

- Cuando hacemos esto, en OSPF para IPv6, todos los prefijos de la interfaz serán anunciados por OSPF.
- No se podrá elegir qué prefijos serán importados dentro del OSPF (todos o ninguno)

- Tener en cuenta antes de habilitar OSPF para IPv6 en una interfaz:
 - Planifique su red IPv6 y la estrategia del OSPF
 - ▶ Habilite el ruteo IPv6 para unicast
 - ▶ Habilite OSPF para IPv6 en las interfaces comprometidas
 - Defina el rango de prefijos que utilizará en las distintas areas, y si estos pueden ser sumarizados

- Habilitando el ruteo para IPv6:
 - Router> enable
 - Router# configure terminal
 - Router(config)# ipv6 unicast-routing
- Habilitando OSPF para IPv6
 - Router> enable
 - Router# configure terminal
 - Router(config)# interface <type> <number>
 - Router(config-if)# ipv6 ospf process-id> area <area-id>

OSPF IPv6

- Definiendo Area Range
 - Router> enable
 - Router# configure terminal
 - Router(config)# ipv6 router ospf process-id>
 - Router(config-rtr)# area <area-id> range <ipv6-prefix/prefixlength>

Ejemplo:

```
interface Ethernet7/0
ipv6 address 2001:DB8:0:7::1/64
ipv6 ospf 1 area 1
interface Ethernet8/0
ipv6 address 2001:DB8:0:8::1/64
ipv6 ospf 1 area 1
interface Ethernet9/0
ipv6 address 2001:DB8:0:9::9/64
ipv6 ospf 1 area 1
ipv6 router ospf 1
router-id 10.11.11.1
area 1 range 2001:DB8::/48
```


IS-IS IPv6

IS-IS IPv6

- Las caracteristicas de IPv6 para IS-IS permiten que se sumen a las rutas IPv4, los prefijos IPv6.
- Se crea un nuevo address family para incluir IPv6
- IS-IS IPv6 soporta tanto single-topology como multipletopology.

IS-IS Single Topology

- IS-IS tiene la particularidad de soportar múltiples protocolos de capa 3.
- Si tenemos IS-IS con otro protocolo (por ej: IPv4) configurado en una interfaz, podemos configurar también IS-IS para IPv6.
- Todas las interfaces deben ser configuradas en forma idéntica en cada address family (misma topologia), tanto para los routers L1 como los L2.

IS-IS Multi-Topology

- IS-IS multi-topology permite mantener topologias independientes dentro de un area.
- Elimina la restricción para todas las interfaces de tener idénticas topologias por cada address familiy
- Los routers construyen una topología por cada protocolo de capa 3, por lo que, pueden encontrar el camino optimo (SPF) aun si algun link soporta solo uno de estos protocolos.

Supongamos un camino de A hasta B:

Multi-topology IS-IS

Single-topology IS-IS

Comprende 2 pasos:

- Antes que nada, crear un proceso IS-IS routing process, esto independiente del protocolo.
- La segunda actividad es configurar el protocolo IS-IS en la interfaz

Pre-requisito:

Tener IPv6 unicast-routing habilitado

- Configurando el proceso IS-IS
 - Router> enable
 - Router# configure terminal
 - Router(config)# router isis <area-name>
 - Router(config-router)# net <network-entity-title>

- Configurando las interfaces:
 - Router> enable
 - Router# configure terminal
 - Router(config)# interface <type> <number>
 - Router(config-if)# ipv6 address <ipv6-prefix/prefix-length>
 - Router(config-if)# ipv6 router isis <area-name>

- IS-IS Multi-topology
 - Router> enable
 - Router# configure terminal
 - Router(config)# router isis <area-name>
 - Router(config-router)# metric-style wide [level-1 | level-2 | level-1-2]
 - Router(config-router)# address-family ipv6 [unicast | multicast]
 - Router(config-router-af)# multi-topology

Ejemplo

```
interface SerialO/1
description link RT3
ipv6 address 2001:DB8:0:3::1/64
ipv6 router isis BB
interface Serial0/2
description link to RT4
ipv6 address 2001:DB8:0:1::1/64
ipv6 router isis A1
router isis BB
net 49.0001.0000.0000.0001.00
router isis A1
net 49.0001.0000.0000.0001.00
is-type level-1
```


BGP-4

BGP versión 4

- BGP lleva sólo 3 tipos de información que es específica de IPv4:
 - □ Los NLRI en los mensajes UPDATES contienen un prefijo IPv4
 - □ El atributo NEXT_HOP en un mensaje UPDATE contiene una dirección IPv4
 - ☐ El BGP ID en el atributo AGGREGATOR

BGP Multiprotocolo

- La RFC 4760 define extensiones para BGP para soportar múltiples protocolos:
 - □ De esta forma se puede llevar información en BGP para diferentes protocolos de red
 - □ Tenemos distintas "address families": IPv4 unicast, IPv6 unicast, IPv6 multicast, VPNv4...
 - □ Nuevos atributos BGP:
 - MP_REACH_NLRI
 - MP_UNREACH_NLRI
 - □ NEXT_HOP y NLRI independientes del protocolo

BGP con IPv6

- BGP utiliza un router ID para identificar los peers BGP
- Ese router-ID es un valor de 32 bits que normalmente es una dirección IPv4
 - □ Por defecto, en Cisco se utiliza la dirección IPv4 de una interfaz loopback
- Si el proceso BGP utilizará sólo IPv6, entonces es necesario configurar manualmente el Router ID

AFI y SAFI

- AFI Address Family Identifier
 - □ 1 -> IPv4
 - □ 2 -> IPv6
- SAFI Susequent Address Family Identifier
 - □ 1 -> Network Layer Reachability Information usada para unicast forwarding
 - □ 2 -> Network Layer Reachability Information usada para multicast forwarding
 - □ 3 -> Network Layer Reachability Information usada tanto para unicast como multicast forwarding

BGP Capability Advertisement

 Un peer BGP que usa extensiones multiprotocolo debe anunciarlo al establecer la sesión ("capabilities advertisement")

```
0 7 15 23 31
+-----+
| AFI | Res. | SAFI |
+-----+
```

- ☐ AFI Address Family Identifier (16 bit)
- ☐ Res. Reserved (8 bit). Seteado en 0
- ☐ SAFI Subsequent Address Family Identifier (8 bit)
- Se deben incluir múltiples pares <AFI, SAFI> en caso de utilizar distintas address families

Configuración de BGP en IPv6

- Fuera de lo mencionado, no tiene grandes diferencias con IPv4
- Es necesario configurar dentro de cada address family las redes que se van a publicar
- Los neighbors se deben activar en cada address family
- Se pueden aplicar filtros y políticas similares a las que existen en IPv4

BGP con IPv6: configuración

Configuración de un peer:

enable
configure terminal
router bgp xxxx
neighbor ipv6-address remote-as autonomous-system-number

address-family ipv6 [unicast | multicast] neighbor *ipv6-address activate*

BGP con IPv6: prefix-list

prefix-list para Bogus Routes básica ipv6 prefix-list IPv6-BOGUS deny 2001:db8::/32 le 128 ipv6 prefix-list IPv6-BOGUS permit 2002::/16 ipv6 prefix-list IPv6-BOGUS deny 2002::/16 le 128 ipv6 prefix-list IPv6-BOGUS deny 0000::/8 le 128 ipv6 prefix-list IPv6-BOGUS deny fe00::/9 le 128 ipv6 prefix-list IPv6-BOGUS deny ff00::/8 le 128 ipv6 prefix-list IPv6-BOGUS permit 0::/0 le 48 ipv6 prefix-list IPv6-BOGUS deny 0::/0 le 128

BGP con IPv6: prefix-list

Prefix-list rationale

- □ 2001:db8::/32 IPv6 documentation prefix (RFC3849)
- □ 2002::/16 only permits the /16 no more-specifics
- □ 0000::/8 is denied (loopback, unspecified, v4-mapped)
- □ FE00::/9 and FF00::/8 multicast ranges are denied (RFC3513)
- □ 0::0/0 all the rest of the IPv6 unicat address space is permitted
- ☐ 3FFE::/16 (6bone) has special treatment according to the 6bone rules

Ejemplo

- router bgp 100
- bgp log-neighbor-changes
- no bgp default ipv4-unicast
- bgp router-id 192.168.99.70
- neighbor 2001:db8:1::10 remote-as 100
- neighbor 2001:db8:1::10 update-source Loopback0
- <u>!</u>
- address-family ipv6
- neighbor 2001:db8:1::10 activate
- no synchronization
- network 2001:db8:16:1::/64
- network 2001:db8:16:100::/64
- exit-address-family

Comandos show

- La sintaxis es ligeramente diferente en IPv6:
 - ☐ Show bgp ipv6 [unicast|multicast] summary
 - □ Show bgp ipv6 [unicast|multicast] < prefijo >
 - ☐ Show bgp ipv6 [unicast|multicast] neighbor <peer>
 - ☐ Show bgp ipv6 [unicast|multicast] neighbor <peer> advertised-routes
 - ☐ Show bgp ipv6 [unicast|multicast] neighbor <peer> routes
 - □ Show bgp ipv6 [unicast|multicast] neighbor <peer> received-routes

Referencias

- Proyecto 6deploy: www.6deploy.org
- Curso IPv6 NIC.Br: www.ipv6.br
- Curso de enrutamiento avanzado de RedCLARA
- RFC 4760
- RFC 2842

