## SQL: Ερωτήματα ομαδοποίησης και συνάθροισης GROUP BY, HAVING, COUNT, MIN, MAX, SUM, AVG, ROLLUP

Αθανάσιος Σταυρακούδης

http://stavrakoudis.econ.uoi.gr

Άνοιξη 2016



#### Περιεχόμενα

- Εισαγωγή, γενικές παρατηρήσεις
- Συναρτήσεις συνάθροισης
- ③ Τιμές NULL και μοναδικές τιμές
  - 4 Ομαδοποίηση εγγραφών
- Περιορισμός μετά την ομαδοποίηση
- 📵 Μερικά και ολικά αθροίσματα



#### Σκοπός του μαθήματος

#### Αν κατανοήσετε αυτό το μάθημα, θα μπορείτε να:

- Βρίσκετε πλήθος εγγραφών ή ακραίες τιμές (μέγιστα, ελάχιστα) πεδίων.
- Βρίσκετε αθροίσματα και μέσους όρους αριθμητικών πεδίων.
- Ομαδοποιείτε εγγραφές με βάση ταυτιζόμενες τιμές σε κάποια πεδία με τη φράση GROUP BY.
- Εφαρμόζετε τις συναρτήσεις συνάθροισης στις εγγραφές που προκύπτουν από την ομαδοποίηση/συνάθροιση.
- Εφαρμόζετε την επέκταση της ομαδοποίησης για να παίρνετε μερικά αθροίσματα με την επιλογή WITH ROLLUP.
- Εφαρμόζετε περιορισμό στις εγγραφές που προκύπτουν μετά την ομαδοποίηση με τη φράση **HAVING**.



#### Συναρτήσεις συνάθροισης

Υπάρχουν πέντε βασικές συναρτήσεις συνάθροισης, που υποστηρίζονται από όλα τα συστήματα SQL

- COUNT για την καταμέτρηση πλήθους
- SUM για το άθροισμα
- AVG για το μέσο όρο
- MIN για την ελάχιστη τιμή
- ΜΑΧ για την μέγιστη τιμή

Υπάρχουν αρκετές άλλες συναρτήσεις (πχ STDEV, VAR), αλλά η υποστήριξή τους ποικίλει από σύστημα σε σύστημα.



## Διάγραμμα σύνταξης των συναρτήσεων συνάθροισης



#### Ο πίνακας employees από τη βάση company

Έστω η σχέση employees με σχήμα:

employees (empid, firstname, lastname, depid, salary, hiredate)

| empid          | firstname                        | lastname    | depid | salary  | hiredate                        |
|----------------|----------------------------------|-------------|-------|---------|---------------------------------|
| 102            | Νικηφόρος                        | Διαμαντίδης | 6     | 1212.50 | 2003-06-02                      |
| 109            | Μαρία                            | Αθανασίου   | 1     | 2787.69 | 2000-01-26                      |
| 153            | Μαρία                            | Αλεβιζάτου  | 2     | 1321.92 | 2001-05-15                      |
| 172            | Χρήστος                          | Βλάσσης     | 3     | 1101.70 | 2000-07-04                      |
| 189            | Θεόδωρος                         | Αγγελίνας   | 6     | 1908.28 | 2000-06- ILANDIZ ΔΕΔΟΜΕΝΙΙ 1890 |
| <br>Δείγμα από | <br>τα δεδομένα του <sup>.</sup> | <br>πίνακα. | •••   | •••     |                                 |

Δείτε τα πλήρη περιεχόμενα εδώ:

http://stavrakoudis.econ.uoi.gr/stavrakoudis/?iid=400

#### Περιεχόμενα

- Εισαγωγή, γενικές παρατηρήσεις
- Συναρτήσεις συνάθροισης
- ③ Τιμές NULL και μοναδικές τιμές
- 🕘 Ομαδοποίηση εγγραφών
- Περιορισμός μετά την ομαδοποίηση
- Μερικά και ολικά αθροίσματα



#### Παράδειγμα αθροίσματος στήλης

Να βρεθεί το άθροισμα των μισθών όλων των υπαλλήλων

 $\mathcal{G}_{sum(salary)}(employees)$ 



### Παράδειγμα αθροίσματος στήλης

#### Να βρεθεί το άθροισμα των μισθών όλων των υπαλλήλων

```
\mathcal{G}_{sum(salary)}(employees)
```

```
SELECT SUM(salary)
FROM employees;

SUM(salary) |
|-----|
38232.03 |
```



### Παράδειγμα αθροίσματος στήλης

#### Να βρεθεί το άθροισμα των μισθών όλων των υπαλλήλων

```
\mathcal{G}_{sum(salary)}(employees)
```

```
SELECT SUM(salary)
FROM employees;

SUM(salary) |
|-----|
38232.03 |
```



#### Παράδειγμα αθροίσματος υπό συνθήκη

Να βρεθεί το άθροισμα των μισθών όλων των υπαλλήλων του τμήματος 4

 $\mathcal{G}_{sum(salary)}(\sigma_{depid=4}(employees))$ 



### Παράδειγμα αθροίσματος υπό συνθήκη

# Να βρεθεί το άθροισμα των μισθών όλων των υπαλλήλων του τμήματος 4

```
\mathcal{G}_{sum(salary)}(\sigma_{depid=4}(employees))
```



### Παράδειγμα αθροίσματος γενικευμένης προβολής

Να βρεθεί το επιπλέον ποσό που θα δοθεί σε μισθούς αν οι υπάλληλοι του τμήματος 3 πάρουν αύξηση 3%

 $\mathcal{G}_{sum(salary \times 0.03) \rightarrow sumsal3}(\sigma_{depid=3}(employees))$ 



### Παράδειγμα αθροίσματος γενικευμένης προβολής

Να βρεθεί το επιπλέον ποσό που θα δοθεί σε μισθούς αν οι υπάλληλοι του τμήματος 3 πάρουν αύξηση 3%

```
\mathcal{G}_{sum(salary \times 0.03) \rightarrow sumsal3}(\sigma_{depid=3}(employees))
```

```
SELECT SUM(salary*0.03) AS sumsal3
  FROM employees
WHERE depid = 3;
```



## Παράδειγμα αθροίσματος γενικευμένης προβολής

Να βρεθεί το επιπλέον ποσό που θα δοθεί σε μισθούς αν οι υπάλληλοι του τμήματος 3 πάρουν αύξηση 3%

```
\mathcal{G}_{sum(salary \times 0.03) \rightarrow sumsal3}(\sigma_{depid=3}(employees))
```

```
SELECT SUM(salary*0.03) AS sumsal3
FROM employees
WHERE depid = 3;
```

- Η μετονομασία του πεδίου είναι χρήσιμη αλλά προαιρετική.
- Κάντε την πράξη με λογιστικό φύλλο και αναλύστε πλεονεκτήματα/μειονεκτήματα.
- Προσέξτε πως το μόνο που δηλώνει ο χρήστης στην SQL είναι ονόματα πεδίων και πινάκων.



#### Παράδειγμα υπολογισμού μέσου όρου

#### Να βρεθεί ο μέσος μισθός όλων των υπαλλήλων

 $\mathcal{G}_{avg(salary)}(employees)$ 



#### Παράδειγμα υπολογισμού μέσου όρου

#### Να βρεθεί ο μέσος μισθός όλων των υπαλλήλων

```
\mathcal{G}_{avg(salary)}(employees)
```



### Μέσος όρος με περιορισμό εγγραφών

Να βρεθεί ο μέσος μισθός των υπαλλήλων του τμήματος 3

 $\mathcal{G}_{avg(salary)}(\sigma_{depid=3}(employees))$ 



## Μέσος όρος με περιορισμό εγγραφών

# Να βρεθεί ο μέσος μισθός των υπαλλήλων του τμήματος 3

```
\mathcal{G}_{avg(salary)}(\sigma_{depid=3}(employees))
```

```
SELECT AVG(salary)
FROM employees
WHERE depid = 3;

AVG(salary) |
HODING 1311.651250 |
```



### Ελάχιστη τιμή

Να βρεθεί ο μικρότερος μισθός των υπαλλήλων του τμήματος 3

 $\mathcal{G}_{min(salary)}\sigma_{depid=3}(employees)$ 



## Ελάχιστη τιμή

Να βρεθεί ο μικρότερος μισθός των υπαλλήλων του τμήματος 3

```
\mathcal{G}_{min(salary)}\sigma_{depid=3}(employees)
```

```
SELECT MIN(salary)
FROM employees
WHERE depid = 3;

| MIN(salary) |
------|
| 1050.96 |
```



#### Μέγιστη τιμή

```
Να βρεθεί η ημερομηνία της πιο πρόσφατης πρόσληψης
```

```
\mathcal{G}_{max(hiredate)}(employees)
```

```
SELECT MAX(hiredate)
FROM employees;

| MAX(hiredate) |
-----|
| 2004-10-05 |
```



#### Καταμέτρηση πλήθους

#### Να βρεθεί πόσοι υπάλληλοι εργάζονται στο τμήμα 4

 $\mathcal{G}_{count(empid)}(\sigma_{depid=4}(employees))$ 



#### Καταμέτρηση πλήθους

#### Να βρεθεί πόσοι υπάλληλοι εργάζονται στο τμήμα 4

```
\mathcal{G}_{count(empid)}(\sigma_{depid=4}(employees))
```

```
SELECT COUNT(empid)
FROM employees
WHERE depid = 4;

COUNT(empid) |
```



## COUNT(\*)

#### Να βρεθεί πόσοι υπάλληλοι εργάζονται στο τμήμα 4

```
SELECT COUNT(*)
FROM employees
WHERE depid = 4;

COUNT(*)

COUNT(*)

FROM employees

FROM empl
```

- **COUNT(empid)** : Καταμέτρηση εγγραφών με μη NULL τιμές στο πεδίο *empid*.
- ② COUNT(\*) : Καταμέτρηση εγγραφών



#### Δύο συναρτήσεις στο ίδιο ερώτημα

#### Να βρεθεί το εύρος το μισθών του τμήματος 4

 $\mathcal{G}_{max(salary)-min(salary)}(employees)$ 



#### Δύο συναρτήσεις στο ίδιο ερώτημα

#### Να βρεθεί το εύρος το μισθών του τμήματος 4

```
\mathcal{G}_{max(salary)-min(salary)}(employees)
```



#### Περιεχόμενα

- Εισαγωγή, γενικές παρατηρήσει
- Συναρτήσεις συνάθροισης
- 🗿 Τιμές NULL και μοναδικές τιμές
- 🛂 Ομαδοποίηση εγγραφών
- Περιορισμός μετά την ομαδοποίηση
- 📵 Μερικά και ολικά αθροίσματα



## Πλήθος μισθοδοτούμενων υπαλλήλων

#### Να βρεθεί το πλήθος καταχωρημένων μισθών

#### Να βρεθεί το πλήθος των κωδικών των υπαλλήλων

- Υπάρχουν 30 υπάλληλοι αλλά 27 μισθοί
- COUNT(salary) δεν μετράει τις τιμές NULL
- Το πεδίο empid δεν παίρνει ποτέ τιμές NULL γιατί είναι πρωτεύον κλειδί



### Τιμές NULL

# Να βρεθεί το πλήθος των υπαλλήλων χωρίς μισθό

#### Να βρεθεί το πλήθος των υπαλλήλων χωρίς μισθό

- Οι τιμές **NULL** δεν απαριθμούνται.
- Το πλήθος των εγγραφών με τιμή NULL στο πεδίο salary είναι 3.



### Καταμέτρηση μοναδικών τιμών (Λάθος)

```
Να βρεθεί το πλήθος των τμημάτων των υπαλλήλων
SELECT COUNT(depid)
FROM employees;
```

```
| COUNT(depid) |
------|
| 30 |
```



### Καταμέτρηση μοναδικών τιμών (Σωστό)

6

```
Να βρεθεί το πλήθος των τμημάτων των υπαλλήλων

SELECT COUNT(DISTINCT depid)

FROM employees;

| COUNT(DISTINCT depid) |
```



#### Περιεχόμενα

- 🕕 Εισαγωγή, γενικές παρατηρήσειο
- Συναρτήσεις συνάθροισης
- ③ Τιμές NULL και μοναδικές τιμές
- 4 Ομαδοποίηση εγγραφών
- Περιορισμός μετά την ομαδοποίηση
- Μερικά και ολικά αθροίσματα



#### Ομαδοποίηση

- Μέχρι τώρα είδαμε απλά ερωτήματα, η απάντηση των οποίων ήταν μία τιμή.
- Πολλές φορές το ζητούμενο είναι μια λίστα τιμών, μία τιμή ανά κατηγορία.
- Πχ ο μέσος μισθός ανά τμήμα, ή ο αρχαιότερος υπάλληλος ανά τμήμα
- Για αυτές τις περιπτώσεις θα χρειαστούμε μια νέα φράση:
   GROUP BY



### Πλήθος υπαλλήλων ανά τμήμα

#### Πλήθος υπαλλήλων ανά τμήμα

 $_{depid}\mathcal{G}_{count(*)}(employees)$ 



## Πλήθος υπαλλήλων ανά τμήμα

#### Πλήθος υπαλλήλων ανά τμήμα

```
_{depid}\mathcal{G}_{count(*)}(employees)
```

```
SELECT depid, COUNT(*)
  FROM employees
GROUP BY depid;
```

| depid | COUNT(*) |
|-------|----------|
| 1     | 3        |
| 2     | 4        |
| 3     | 9        |
| 4     | 5        |
| 5     | 2        |
| 6     | 7        |



## Πλήθος υπαλλήλων ανά τμήμα

#### Πλήθος υπαλλήλων ανά τμήμα

 $_{depid}\mathcal{G}_{count(*)}(employees)$ 

SELECT depid, COUNT(\*)
 FROM employees
GROUP BY depid;

| depid | COUNT(*) | Н |
|-------|----------|---|
| 1     | 3        |   |
| 2     | 4        |   |
| 3     | 9        |   |
| 4     | 5        |   |
| 5     | 2        |   |
| _     | 7        |   |

#### I <mark>SQL</mark> έχει πλεονεκτήματα:

- Δεν χρειάζεται να γνωρίζουμε το μέγεθος του πίνακα.
- Το ίδιο ακριβώς ερώτημα SQL θα χρησιμοποιηθεί έστω και αν αλλάξουν τα δεδομένα του πίνακα μετά από προσθήκη ή αφαίρεση εγγραφών.



## Μικρότερο ανά ...

#### Ο μικρότερος μισθός ανά τμήμα υπαλλήλων

 $_{depid}\mathcal{G}_{min(salary)}(employees)$ 



## Μικρότερο ανά ...

4

6

9

10

11

#### Ο μικρότερος μισθός ανά τμήμα υπαλλήλων

```
_{depid}\mathcal{G}_{min(salary)}(employees)
```

```
SELECT depid, MIN(salary)
    FROM employees
GROUP BY depid;
depid
        MIN(salary)
            1754.67
            1105.04
            1050.96
            1054.71
     5
             1051.92
```



## Περιορισμός και ομαδοποίηση

Να βρεθεί το άθροισμα των μισθών των υπαλλήλων ανά τμήμα για τους υπαλλήλους που προσλήφθηκαν μέσα στο 2004

depid $\mathcal{G}_{\mathit{sum}(\mathit{salary})}$ 

 $(\sigma_{hiredate \geq '2004-01-01' \land hiredate \leq '2004-12-31'}(employees))$ 



## Περιορισμός και ομαδοποίηση

Να βρεθεί το άθροισμα των μισθών των υπαλλήλων ανά τμήμα για τους υπαλλήλους που προσλήφθηκαν μέσα στο 2004

```
\substack{\textit{depid} \mathcal{G}_{\textit{sum}(\textit{salary})} \\ \left(\sigma_{\textit{hiredate}} \geq '2004 - 01 - 01' \land \textit{hiredate} \leq '2004 - 12 - 31'} \left(\textit{employees}\right)\right)}
```

```
SELECT depid, SUM(salary)
FROM employees
WHERE hiredate BETWEEN '2004-01-01'
AND '2004-12-31'
GROUP BY depid;
```



## Ομαδοποίηση και ταξινόμηση

Να βρεθεί το άθροισμα των μισθών των υπαλλήλων ανά τμήμα με φθίνουσα ταξινόμηση ως προς το άθροισμα των μισθών



## Ομαδοποίηση και ταξινόμηση

10

11

Να βρεθεί το άθροισμα των μισθών των υπαλλήλων

```
ανά τμήμα με φθίνουσα ταξινόμηση ως προς το
άθροισμα των μισθών
  SELECT depid, SUM(salary)
    FROM employees
 GROUP BY depid
 ORDER BY SUM(salary) DESC;
  depid | SUM(salary)
```



## Περιεχόμενα

- 🕕 Εισαγωγή, γενικές παρατηρήσειο
- 2 Συναρτήσεις συνάθροισης
  - Τιμές NULL και μοναδικές τιμές
- 4 Ομαδοποίηση εγγραφών
- Περιορισμός μετά την ομαδοποίηση
- 📵 Μερικά και ολικά αθροίσματα



## Περιορισμός μετά την ομαδοποίηση

#### Τμήματα με περισσότερους από 4 υπαλλήλους

 $\sigma_{count(depid)>4}\left(_{depid}\mathscr{G}_{count(empid)}(employees)\right)$ 



## Περιορισμός μετά την ομαδοποίηση

#### Τμήματα με περισσότερους από 4 υπαλλήλους

```
\sigma_{count(depid)} > 4 \left( _{depid} \mathcal{G}_{count(empid)}(employees) \right)
```

```
SELECT depid, COUNT(depid)
  FROM employees
GROUP BY depid
  HAVING COUNT(depid) > 4;
```



## Περιορισμός μετά την ομαδοποίηση

#### Τμήματα με περισσότερους από 4 υπαλλήλους

```
\sigma_{count(depid)>4}\left(_{depid}\mathscr{G}_{count(empid)}(employees)
ight)
```

```
SELECT depid, COUNT(depid)
FROM employees
GROUP BY depid
HAVING COUNT(depid) > 4;
```

| depid | COUNT(*) |
|-------|----------|
| 1     | 3        |
| 2     | 4        |
| 3     | 9        |
| 4     | 5        |
| 5     | 2        |
| 6     | 7        |

- Ο όρος HAVING τοποθετείται μετά τον όρο GROUP BY.
- Η σύνταξη είναι παρόμοια με αυτή του όρου WHERE.
- Ο όρος HAVING περιορίζει το αποτέλεσμα του ερωτήματος με βάση πεδία που παράγονται από τον όρο GROUP BY.



## Περιορισμός πριν και μετά την ομαδοποίηση

Να βρεθούν τα τμήματα με περισσότερους από 3 υπαλλήλους με μισθό μεγαλύτερο από  $1200 \in \sigma_{count(depid)>3}$   $\sigma_{count(depid)>3}$   $\sigma_{count(depid)>3}$ 



## Περιορισμός πριν και μετά την ομαδοποίηση

```
Να βρεθούν τα τμήματα με περισσότερους από 3
υπαλλήλους με μισθό μεγαλύτερο από 1200 €
     \sigma_{count(depid)>3} (depid \mathscr{G}_{count(empid)} (\sigma_{salary>1200} (employees)))
   SELECT depid
     FROM employees
    WHERE salary > 1200
 GROUP BY depid
   HAVING COUNT(depid) > 3:
   depid
```

## Περιεχόμενα

- Εισαγωγή, γενικές παρατηρήσεις
- ② Συναρτήσεις συνάθροισης
- ③ Τιμές NULL και μοναδικές τιμές
- 4 Ομαδοποίηση εγγραφών
- Περιορισμός μετά την ομαδοποίηση
- Μερικά και ολικά αθροίσματα



## ROLLUP (μερικά αθροίσματα)

Πλήθος των υπαλλήλων ανά τμήμα και το συνολικό πλήθος των υπαλλήλων της εταιρείας



## ROLLUP (μερικά αθροίσματα)

```
Πλήθος των υπαλλήλων ανά τμήμα και το συνολικό πλήθος των υπαλλήλων της εταιρείας
```

```
SELECT depid, COUNT(*)
  FROM employees
GROUP BY depid WITH ROLLUP;
```



## ROLLUP (μερικά αθροίσματα)

# Πλήθος των υπαλλήλων ανά τμήμα και το συνολικό πλήθος των υπαλλήλων της εταιρείας

```
SELECT depid, COUNT(*)
FROM employees
GROUP BY depid WITH ROLLUP;
```

COLLET (\*)

| aepia | COUNT(*) |
|-------|----------|
| 1     | 3        |
| 2     | 4        |
| 3     | 9        |
| 4     | 5        |
| 5     | 2        |
| 6     | 7        |
| NULL  | 30       |

 WITH ROLLUP : μετά το πεδίο που ακολουθεί τον όρο GROUP BY.

 Προσοχή την τιμή NULL στο τέλος που αντιστοιχεί στο σύνολο των εγγραφών.



## Μερικά αθροίσματα με διπλή ομαδοποίηση

Να βρεθεί ο μέσος μισθός των υπαλλήλων ανά τμήμα και έτος πρόσληψης για τμήματα με κωδικό 2 και 6

```
SELECT depid, YEAR(hiredate), AVG(salary)
    FROM employees
   WHERE depid IN (2,6)
GROUP BY depid, YEAR(hiredate) WITH ROLLUP;
```

1340.070000

1771.620000

1336.985000



```
2000 I
       1323.800000
2001 | 1213.480000
```

NULL |

2000 L



10 11

12

13

5

## Αναστροφή της λίστας πεδίων

NUI.I. I

5

10

11 12

```
Ο μέσος μισθός των υπαλλήλων ανά έτος πρόσληψης και τμήμα για
τμήματα με κωδικό 2 και 6
   SELECT YEAR(hiredate), depid, AVG(salary)
     FROM employees
    WHERE depid IN (2,6)
 GROUP BY YEAR(hiredate), depid WITH ROLLUP:
   YEAR(hiredate) | depid | AVG(salary) |
             1999 I
                         2 | 1609.520000 |
             1999 I
                    NULL 1 1609.520000
             2000 I
                         2 | 1323.800000
             2000 I
                         6 | 1771.620000 |
```

1383.100000

## Σχόλια και ερωτήσεις

## Σας ευχαριστώ για την προσοχή σας

Είμαι στη διάθεσή σας για σχόλια, απορίες και ερωτήσεις

