Section 2: Data Wrangling

To prepare our data for analysis, we need to perform data wrangling. In this section, we will learn how to clean and reformat data (e.g. renaming columns, fixing data type mismatches), restructure/reshape it, and enrich it (e.g. discretizing columns, calculating aggregations, combining data sources).

Data cleaning

In this section, we will take a look at creating, renaming, and dropping columns; type conversion; and sorting – all of which make our analysis easier. We will be working with the 2019 Yellow Taxi Trip Data provided by NYC Open Data.

In [1]:							
Out[1]:		vendorid	tpep_pickup_datetime	tpep_dropoff_datetime	passenger_count	trip_distance	rate
	0	2	2019-10- 23T16:39:42.000	2019-10- 23T17:14:10.000	1	7.93	
	1	1	2019-10- 23T16:32:08.000	2019-10- 23T16:45:26.000	1	2.00	
	2	2	2019-10- 23T16:08:44.000	2019-10- 23T16:21:11.000	1	1.36	
	3	2	2019-10- 23T16:22:44.000	2019-10- 23T16:43:26.000	1	1.00	
	4	2	2019-10- 23T16:45:11.000	2019-10- 23T16:58:49.000	1	1.96	

Source: NYC Open Data collected via SODA.

Dropping columns

Let's start by dropping the ID columns and the store_and_fwd_flag column, which we won't be using.

In [3]:

L.						
Out[3]:		tpep_pickup_datetime	tpep_dropoff_datetime	passenger_count	trip_distance	payment_type
	0	2019-10- 23T16:39:42.000	2019-10- 23T17:14:10.000	1	7.93	1
	1	2019-10- 23T16:32:08.000	2019-10- 23T16:45:26.000	1	2.00	1
	2	2019-10- 23T16:08:44.000	2019-10- 23T16:21:11.000	1	1.36	1
	3	2019-10- 23T16:22:44.000	2019-10- 23T16:43:26.000	1	1.00	1
	4	2019-10- 23T16:45:11.000	2019-10- 23T16:58:49.000	1	1.96	1

Tip: Another way to do this is to select the columns we want to keep: $taxis.loc[:,\sim mask]$.

Renaming columns

Next, let's rename the datetime columns:

In [4]:

Out[4]:	pickup		dropoff	passenger_count	trip_distance	payment_type	fare_amouı	
	0	2019-10- 23T16:39:42.000	2019-10- 23T17:14:10.000	1	7.93	1	29	
	1	2019-10- 23T16:32:08.000	2019-10- 23T16:45:26.000	1	2.00	1	10	
	2	2019-10- 23T16:08:44.000	2019-10- 23T16:21:11.000	1	1.36	1	9	
	3	2019-10- 23T16:22:44.000	2019-10- 23T16:43:26.000	1	1.00	1	13	
	4	2019-10- 23T16:45:11.000	2019-10- 23T16:58:49.000	1	1.96	1	10	

Important: This operation was performed in-place – be careful with in-place operations.

Type conversion

Notice anything off with the data types?

9/10/21, 6:29 PM 2-data_wrangling

In [5]:		
Out[5]:	pickup	object
	dropoff passenger count	object int64
	trip distance	float64
	payment_type	int64
	fare_amount	float64
	extra	float64
	mta_tax	float64
	tip_amount	float64
	tolls_amount	float64
	<pre>improvement_surcharge</pre>	float64
	total_amount	float64
	<pre>congestion_surcharge dtype: object</pre>	float64
	Both pickup and dropoff	should be stored as datetimes. Let's fix this:

```
In [6]:
```

Out[6]:	pickup	datetime64[ns]
ouc[o]:	dropoff	datetime64[ns]
	passenger_count	int64
	trip_distance	float64
	payment_type	int64
	fare_amount	float64
	extra	float64
	mta_tax	float64
	tip_amount	float64
	tolls_amount	float64
	improvement_surcharge	float64
	total_amount	float64
	congestion_surcharge	float64
	dtype: object	

Tip: There are other ways to perform type conversion. For numeric values, we can use the pd.to_numeric() function, and we will see the astype() method, which is a more generic method, a little later.

Creating new columns

Let's calculate the following for each row:

- 1. elapsed time of the trip
- 2. the tip percentage
- 3. the total taxes, tolls, fees, and surcharges
- 4. the average speed of the taxi

|--|

Our new columns get added to the right:

In [8]:

Out[8]:		pickup	dropoff	passenger_count	trip_distance	payment_type	fare_amount	extra	mta_t
		2019-	2019-						
	0	10-23	10-23	1	7.93	1	29.5	1.0	(
		16:39:42	17:14:10						
		2019-	2019-						
	1	10-23	10-23	1	2.00	1	10.5	1.0	(
		16:32:08	16:45:26						

Some things to note:

- We used lambda functions to 1) avoid typing taxis repeatedly and 2) be able to access the cost_before_tip column in the same method that we create it.
- To create a single new column, we can also use df['new_col'] = <values> .

Sorting by values

We can use the <code>sort_values()</code> method to sort based on any number of columns:

In [9]:		

Out[9]:		pickup	dropoff	passenger_count	trip_distance	payment_type	fare_amount	extra	n
	5997	2019- 10-23 15:55:19	2019- 10-23 16:08:25	6	1.58	2	10.0	1.0	
	443	2019- 10-23 15:56:59	2019- 10-23 16:04:33	6	1.46	2	7.5	1.0	
	8722	2019- 10-23 15:57:33	2019- 10-23 16:03:34	6	0.62	1	5.5	1.0	
	4198	2019- 10-23 15:57:38	2019- 10-23 16:05:07	6	1.18	1	7.0	1.0	
	8238	2019- 10-23 15:58:31	2019- 10-23 16:29:29	6	3.23	2	19.5	1.0	

To pick out the largest/smallest rows, use nlargest() / nsmallest() instead. Looking at the 3 trips with the longest elapsed time, we see some possible data integrity issues:

In [10]:		
----------	--	--

Out[10]:		pickup	dropoff	passenger_count	trip_distance	payment_type	fare_amount	extra	m
		2019-	2019-						
	7576	10-23	10-24	1	3.75	1	17.5	1.0	
		16:52:51	16:51:44						
		2019-	2019-						
	6902	10-23	10-24	1	11.19	2	39.5	1.0	
		16:51:42	16:50:22						
		2019-	2019-						
	4975	10-23	10-24	1	0.70	2	7.0	1.0	
		16:18:51	16:17:30						

Working with the index

So far, we haven't really worked with the index because it's just been a row number; however, we can change the values we have in the index to access additional features of the pandas library.

Setting and sorting the index

Currently, we have a RangeIndex, but we can switch to a DatetimeIndex by specifying a datetime column when calling set_index():

In [11]:								
Out[11]:		dropoff	passenger_count	trip_distance	payment_type	fare_amount	extra	mta_tax
	pickup							
	2019- 10-23	2019- 10-23	1	7.93	1	29.5	1.0	0.5
	16:39:42	17:14:10		7.50	'	20.0	1.0	0.0
	2019- 10-23 16:32:08	2019- 10-23 16:45:26	1	2.00	1	10.5	1.0	0.5
	2019- 10-23	2019- 10-23	1	1.36	1	9.5	1.0	0.5
	16:08:44	16:21:11	anle of the full det	anat latin cart	the index to or	der by piekur	, tima.	
In [12]:	Since we i	iave a Saii	ple of the full dat	aset, let's sort	the maex to or	аег бу ріскир	ume:	
	•	_	index(axis=1) ut the pandas lik		-		•	
	We can no		anges from our da	ata based on t	he datetime the	same way w	e did w	ith
In [13]:								

	dropoff	passenger_count	trip_distance	payment_type	fare_amount	extra	mta_tax
pickup							
2019-10-	2019-		0.07		4.5	1.0	
23 07:48:58	10-23 07:52:09	1	0.67	2	4.5	1.0	9.0
2019-10-	2019-						
2019-10-	10-24	1	8.38	1	32.0	1.0	9.0
08:02:09	07:42:32						
2019-10-	2019-	_					
23 08:18:47	10-23 08:36:05	1	2.39	2	12.5	1.0	9.0

When not specifying a range, we use loc[]:

In [14]:	

Out[14]:		dropoff	passenger_count	trip_distance	payment_type	fare_amount	extra	mta_tax
	pickup							
	2019-10-	2019-						
	23	10-24	1	8.38	1	32.0	1.0	3.0
	08:02:09	07:42:32						
	2019-10-	2019-						
	23	10-23	1	2.39	2	12.5	1.0	9.0
	08:18:47	08:36:05						

Resetting the index

Out[13]:

We will be working with time series later this section, but sometimes we want to reset our index to row numbers and restore the columns. We can make pickup a column again with the reset_index() method:

In [15]:		

5]:		pickup	dropoff	passenger_count	trip_distance	payment_type	fare_amount	extra	mta_
	0	2019- 10-23 07:05:34	2019- 10-23 08:03:16	3	14.68	1	50.0	1.0	
	1	2019- 10-23 07:48:58	2019- 10-23 07:52:09	1	0.67	2	4.5	1.0	
	2	2019- 10-23 08:02:09	2019- 10-24 07:42:32	1	8.38	1	32.0	1.0	
	3	2019- 10-23 08:18:47	2019- 10-23 08:36:05	1	2.39	2	12.5	1.0	
	4	2019- 10-23 09:27:16	2019- 10-23 09:33:13	2	1.11	2	6.0	1.0	

Reshaping data

The taxi dataset we have be working with is in a format conducive to an analysis. This isn't always the case. Let's now take a look at the TSA traveler throughput data, which compares 2021 throughput to the same day in 2020 and 2019:

In [16]:

Out [15

Out[16]:

:	Date	2021 Traveler Throughput	2020 Traveler Throughput	2019 Traveler Throughput
0	2021-05- 14	1716561.0	250467	2664549
1	2021-05- 13	1743515.0	234928	2611324
2	2021-05- 12	1424664.0	176667	2343675
3	2021-05-11	1315493.0	163205	2191387
4	2021-05- 10	1657722.0	215645	2512315

Source: TSA.gov

First, we will lowercase the column names and take the first word (e.g. 2021 for 2021 Traveler Throughput) to make this easier to work with:

In [17]:

Out[17]:		date	2021	2020	2019
	0	2021-05-14	1716561.0	250467	2664549
	1	2021-05-13	1743515.0	234928	2611324
	2	2021-05-12	1424664.0	176667	2343675
	3	2021-05-11	1315493.0	163205	2191387
	4	2021-05-10	1657722.0	215645	2512315

Now, we can work on reshaping it.

Melting

Melting helps convert our data into long format. Now, we have all the traveler throughput numbers in a single column:

In [18]:

Out[18]:

	date	year	travelers
974	2020-09-12	2019	1879822.0
435	2021-03-05	2020	2198517.0
1029	2020-07-19	2019	2727355.0
680	2020-07-03	2020	718988.0
867	2020-12-28	2019	2500396.0

To convert this into a time series of traveler throughput, we need to replace the year in the date column with the one in the year column. Otherwise, we are marking prior years' numbers with the wrong year.

In [19]:

Out[19]:		date	year	travelers
	974	2019-09-12	2019	1879822.0
	435	2020-03-05	2020	2198517.0
	1029	2019-07-19	2019	2727355.0
	680	2020-07-03	2020	718988.0
	867	2019-12-28	2019	2500396.0

This leaves us with some null values (the dates that haven't yet occurred):

In [20]:

 Out[20]:
 date
 year
 travelers

 136
 2021-12-29
 2021
 NaN

135 2021-12-30 2021

134 2021-12-31 2021 NaN

These can be dropped with the dropna() method:

NaN

In [21]:

Out [21]: date year travelers

2 2021-05-12 2021 1424664.0

1 2021-05-13 2021 1743515.0

0 2021-05-14 2021 1716561.0

Pivoting

Using the melted data, we can pivot the data to compare TSA traveler throughput on specific days across years:

In [22]:

Out[22]:	day_in_march	1	2	3	4	5	6	7	
	year								
	2019	2257920.0	1979558.0	2143619.0	2402692.0	2543689.0	2156262.0	2485430.0	
	2020	2089641.0	1736393.0	1877401.0	2130015.0	2198517.0	1844811.0	2119867.0	
	2021	1049692.0	744812.0	826924.0	1107534.0	1168734.0	992406.0	1278557.0	

Important: We aren't covering the unstack() and stack() methods, which are additional ways to pivot and melt, respectively. These come in handy when we have a multi-level index (e.g. if we ran set_index() with more than one column).

Transposing

The T attribute provides a quick way to flip rows and columns.

In [23]:				
Out[23]:	year	2019	2020	2021
	day_in_march			
	1	2257920.0	2089641.0	1049692.0
	2	1979558.0	1736393.0	744812.0
	3	2143619.0	1877401.0	826924.0
	4	2402692.0	2130015.0	1107534.0
	5	2543689.0	2198517.0	1168734.0
	6	2156262.0	1844811.0	992406.0
	7	2485430.0	2119867.0	1278557.0
	8	2378673.0	1909363.0	1119303.0
	9	2122898.0	1617220.0	825745.0
	10	2187298.0	1702686.0	974221.0

Merging

We typically observe changes in air travel around the holidays, so adding information about the dates in the TSA dataset provides more context. The holidays.csv file contains a few major holidays in the United States:

In [24]:

Out [24]: holiday

date	
2019-01-01	New Year's Day
2019-05-27	Memorial Day
2019-07-04	July 4th
2019-09-02	Labor Day
2019-11-28	Thanksgiving

Merging the holidays with the TSA traveler throughput data will provide more context for our analysis:

In [25]:

Out[25]:

'	holiday	travelers	year	date	
,	New Year's Day	2126398.0	2019	2019-01-01	863
ı	NaN	2345103.0	2019	2019-01-02	862
ĺ	NaN	2202111.0	2019	2019-01-03	861
ĺ	NaN	2150571.0	2019	2019-01-04	860
	NaN	1975947.0	2019	2019-01-05	859

Tip: There are many parameters for this method so be sure to check out the documentation. To append rows, take a look at append() and pd.concat().

We can take this a step further by marking a few days before and after each holiday as part of the holiday. This would make it easier to compare holiday travel across years and look for any uptick in travel around the holidays:

In [26]:

	date	year	travelers	holiday
899	2019-11-26	2019	1591158.0	Thanksgiving
898	2019-11-27	2019	1968137.0	Thanksgiving
897	2019-11-28	2019	2648268.0	Thanksgiving
896	2019-11-29	2019	2882915.0	Thanksgiving
873	2019-12-22	2019	1981433.0	Christmas Eve
872	2019-12-23	2019	1937235.0	Christmas Eve
871	2019-12-24	2019	2552194.0	Christmas Eve
870	2019-12-25	2019	2582580.0	Christmas Day
869	2019-12-26	2019	2470786.0	Christmas Day

Tip: Check out the documentation for the full list of functionality available with the fillna() method.

Aggregations and grouping

After reshaping and cleaning our data, we can perform aggregations to summarize it in a variety of ways. In this section, we will explore using pivot tables, crosstabs, and group by operations to aggregate the data.

Pivot tables

Out[26]:

We can build a pivot table to compare holiday travel across the years in our dataset:

In [27]:

Out[27]:	holiday	Christmas Day	Christmas Eve	July 4th	Labor Day	Memorial Day	New Year's Day	New Year's Eve	Than
	2019	5053366.0	6470862.0	9414228.0	8314811.0	9720691.0	4471501.0	6535464.0	90
	2020	1745242.0	3029810.0	2682541.0	2993653.0	1126253.0	4490388.0	3057449.0	33
	2021	NaN	NaN	NaN	NaN	NaN	1998871.0	NaN	

We can use the pct_change() method on this result to see which holiday travel periods saw the biggest change in travel:

In [28]:

Out [28]:

holiday	Christmas Day	Christmas Eve	July 4th	Labor Day	Memorial Day	New Year's Day	New Year's Eve	Thanks
year								
2019	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
2020	-0.654638	-0.531776	-0.715055	-0.639961	-0.884139	0.004224	-0.532176	-0.62
2021	0.000000	0.000000	0.000000	0.000000	0.000000	-0.554856	0.000000	0.00

Let's make one last pivot table with column and row subtotals along with some formatting improvements. First, we set a display option for all floats:

In [29]:

Next, we group together Christmas Eve and Christmas Day, likewise for New Year's Eve and New Year's Day, and create the pivot table:

In [30]:

Out[30]:

holiday	Christmas	July 4th	Labor Day	Memorial Day	New Year's	Thanksgiving	Total
year							
2019	11,524,228	9,414,228	8,314,811	9,720,691	11,006,965	9,090,478	59,071,401
2020	4,775,052	2,682,541	2,993,653	1,126,253	7,547,837	3,364,358	22,489,694
2021	NaN	NaN	NaN	NaN	1,998,871	NaN	1,998,871
Total	16 299 280	12 096 769	11 308 464	10 846 944	20 553 673	12 454 836	83 559 966

Before moving on, let's reset the display option:

In [31]:

Tip: Read more about options in the documentation here.

Crosstabs

The pd.crosstab() function provides an easy way to create a frequency table:

In [32]: Out[32]: year 2019 2020 2021 travel_volume low 0 277 54 medium 42 44 80 high 323 0 44

Tip: The pd.crosstab() function supports other aggregations provided you pass in the data to aggregate as values and specify the aggregation with aggfunc. You can also add subtotals and normalize the data. See the documentation for more information.

Group by operations

Rather than perform aggregations, like mean() or describe(), on the full dataset at once, we can perform these calculations per group by first calling groupby():

In [33]:

Out[33]:

tr

	count mean		std	min	25%	50%	75%	
year								
2019	365.0	2.309482e+06	285061.490784	1534386.0	2091116.0	2358007.0	2538384.00	288
2020	365.0	8.818674e+05	639775.194297	87534.0	507129.0	718310.0	983745.00	25(
2021	134.0	1.112632e+06	338040.673782	468933.0	807156.0	1117391.0	1409377.75	174

Groups can also be used to perform separate calculations per subset of the data. For example, we can find the highest-volume travel day per year using rank():

In [34]:

Out[34]:

	date	year	travelers	holiday	travel_volume_rank
896	2019-11-29	2019	2882915.0	Thanksgiving	1.0
456	2020-02-12	2020	2507588.0	NaN	1.0
1	2021-05-13	2021	1743515.0	NaN	1.0

The previous two examples called a single method on the grouped data, but using the agg() method we can specify any number of them:

In [35]:

travelers holiday_travelers Out[35]: non_holiday_trav std std mean mean mean year 2.309482e+06 285061.490784 2.271977e+06 303021.675751 2.312359e+06 283906.220 2019 2020 8.818674e+05 639775.194297 8.649882e+05 489938.240989 8.831619e+05 650399.77

273573.249680

1.114347e+06 339479.29

In addition, we can specify which aggregations to perform on each column:

1.112632e+06 338040.673782 9.994355e+05

In [36]:

Out [36]: holiday_travelers holiday

2021

	mean	std	nunique	count
year				
2019	2.271977e+06	303021.675751	8	26
2020	8.649882e+05	489938.240989	8	26
2021	9.994355e+05	273573.249680	1	2

We are only scratching the surface; some additional functionalities to be aware of include the following:

- We can group by multiple columns this creates a hierarchical index.
- Groups can be excluded from calculations with the filter() method.
- We can group on content in the index using the level or name parameters e.g. groupby(level=0) or groupby(name='year').
- We can group by date ranges if we use a pd.Grouper() object.

Be sure to check out the documentation for more details.

Time series

When working with time series data, pandas provides us with additional functionality to not just compare the observations in our dataset, but to use their relationship in time to analyze the data. In this section, we will see a few such operations for selecting date/time ranges, calculating changes over time, performing window calculations, and resampling the data to different date/time intervals.

Selecting based on date and time

Let's switch back to the taxis dataset, which has timestamps of pickups and dropoffs. First, we will set the dropoff column as the index and sort the data:

We saw e	earlier that	we can slice on th	e datetimes:			
]:		passenger_count	trip_distance	payment_type	fare_amount	extra
dropof						
2019-	2019-					
10-24	10-23	4	0.76	2	5.0	1.0
12:30:08	13:25:42					
2019-	2019-					
10-24	10-23	2	1.58	1	7.5	1.0
12:42:01	13:34:03					
We can a	lso represe	ent this range with	shorthand. No	ote that we mus	stuse loc[]	here:

Out[39]:		pickup	passenger_count	trip_distance	payment_type	fare_amount	extra	mta_tax
	dropoff							
	2019- 10-24 12:30:08	2019- 10-23 13:25:42	4	0.76	2	5.0	1.0	0.5

However, if we want to look at this time range across days, we need another strategy.

We can pull out the dropoffs that happened between a certain time range on *any* day with the between_time() method:

1.58

7.5

1.0

0.5

:								
		pickup	passenger_count	trip_distance	payment_type	fare_amount	extra	mta_tax
	dropoff							
	2019-	2019-						
	10-23	10-23	5	2.49	1	13.5	1.0	0.5
	12:53:49	12:35:27						
	2019-	2019-						
	10-24	10-23	4	0.76	2	5.0	1.0	0.5
	12:30:08	13:25:42						
	2019-	2019-						
	10-24	10-23	2	1.58	1	7.5	1.0	0.5
	12:42:01	13:34:03						

Tip: The at_time() method can be used to extract all entries at a given time (e.g. 12:35:27).

Finally, head() and tail() limit us to a number of rows, but we may be interested in rows within the first/last 2 hours (or any other time interval) of the data, in which case, we should use first() / last():

In [41]:	

2019-

10-24

12:42:01 13:34:03

2019-

10-23

Out[41]:	pickup	passenger_count	trip_distance	payment_type	fare_amount	extra	mta_tax
Odc[ii]i	p.o.co.p	paracongo:_coam				071110	

		• -	. –				
dropoff							
2019-10-	2019-						
23	10-23	1	0.67	2	4.5	1.0	3.0
07:52:09	07:48:58						
2019-10-	2019-						
23	10-23	3	14.68	1	50.0	1.0	9.0
08:03:16	07:05:34						
2019-10-	2019-						
23	10-23	1	2.39	2	12.5	1.0	3.0
08:36:05	08:18:47						
2019-10-	2019-						
23	10-23	2	1.11	2	6.0	1.0	9.0
09:33:13	09:27:16						
2019-10-	2019-						
23	10-23	2	0.47	2	52.0	4.5	9.0
09:49:31	09:47:25						

For the rest of this section, we will be working with the TSA traveler throughput data. Let's start by setting the index to the date column:

In [42]:		

Calculating change over time

In [43]:		

	year	travelers	holiday	one_day_change	seven_day_change
date					
2020-01-01	2020	2311732.0	New Year's Day	NaN	NaN
2020-01-02	2020	2178656.0	New Year's Day	-133076.0	NaN
2020-01-03	2020	2422272.0	NaN	243616.0	NaN
2020-01-04	2020	2210542.0	NaN	-211730.0	NaN
2020-01-05	2020	1806480.0	NaN	-404062.0	NaN
2020-01-06	2020	1815040.0	NaN	8560.0	NaN
2020-01-07	2020	2034472.0	NaN	219432.0	NaN
2020-01-08	2020	2072543.0	NaN	38071.0	-239189.0
2020-01-09	2020	1687974.0	NaN	-384569.0	-490682.0
2020-01-10	2020	2183734.0	NaN	495760.0	-238538.0

Tip: To perform operations other than subtraction, take a look at the shift() method. It also makes it possible to perform operations across columns.

Resampling

Out[43]:

We can use resampling to aggregate time series data to a new frequency:

```
In [44]: tsa_melted_holiday_travel['2019':'2021-Q1'].resample('Q').agg(['sum', 'mean',
```

Out [44]: travelers

	sum	mean	std
date			
2019-03-31	189281658.0	2.103130e+06	282239.618354
2019-06-30	221756667.0	2.436886e+06	212600.697665
2019-09-30	220819236.0	2.400209e+06	260140.242892
2019-12-31	211103512.0	2.294603e+06	260510.040655
2020-03-31	155354148.0	1.726157e+06	685094.277420
2020-06-30	25049083.0	2.752646e+05	170127.402046
2020-09-30	63937115.0	6.949686e+05	103864.705739
2020-12-31	77541248.0	8.428397e+05	170245.484185
2021-03-31	86094635.0	9.566071e+05	280399.809061

Window calculations

Window calculations are similar to group by calculations except the group over which the calculation is performed isn't static – it can move or expand. Pandas provides functionality for constructing a variety of windows, including moving/rolling windows, expanding windows (e.g. cumulative sum or mean up to the current date in a time series), and exponentially weighted moving windows (to weight closer observations higher than further ones). We will only look at rolling and expanding calculations here.

Performing a window calculation is very similar to a group by calculation: we first define the window, and then we specify the aggregation:

In [45]:		

	year	travelers	holiday	7D MA	YTD mean
date					
2020-01-01	2020	2311732.0	New Year's Day	2.311732e+06	2.311732e+06
2020-01-02	2020	2178656.0	New Year's Day	2.245194e+06	2.245194e+06
2020-01-03	2020	2422272.0	NaN	2.304220e+06	2.304220e+06
2020-01-04	2020	2210542.0	NaN	2.280800e+06	2.280800e+06
2020-01-05	2020	1806480.0	NaN	2.185936e+06	2.185936e+06
2020-01-06	2020	1815040.0	NaN	2.124120e+06	2.124120e+06
2020-01-07	2020	2034472.0	NaN	2.111313e+06	2.111313e+06
2020-01-08	2020	2072543.0	NaN	2.077144e+06	2.106467e+06
2020-01-09	2020	1687974.0	NaN	2.007046e+06	2.059968e+06
2020-01-10	2020	2183734.0	NaN	1.972969e+06	2.072344e+06

Out[45]:

To understand what's happening, it's best to visualize the original data and the result, so here's a sneak peek of plotting with pandas :

In [46]:

Out[46]: <AxesSubplot:title={'center':'2020 TSA Traveler Throughput'}, xlabel='date', y
label='travelers'>

Other types of windows:

- exponentially weighted moving: use the ewm() method
- custom: create a subclass of pandas.api.indexers.BaseIndexer or use a prebuilt one in pandas.api.indexers

Up Next: Data Visualization

Let's take a 25-minute break for some exercises to check your understanding:

- 1. Read in the meteorite data from the Meteorite_Landings.csv file.
- 2. Rename the mass (g) column to mass, and drop all the latitude and longitude columns.
- 3. Update the year column to only contain the year, and create a new column indicating if the year is unknown. Hint: Use year.str.slice() to grab a substring.
- 4. There's a data entry error in the year column. Can you find it? (Don't spend too much time on this.)
- 5. Compare summary statistics of the mass column for the meteorites that were found versus observed falling.
- 6. Create a pivot table that shows both the number of meteorites and the 95th percentile of meteorite mass for those that were found versus observed falling per year from 1990 to 2000 (inclusive).
- 7. Using the taxis data from earlier this section, resample the data to an hourly frequency based on the dropoff time. Calculate the total trip_distance, fare_amount, tolls_amount, and tip_amount, then find the 5 hours with the most tips.

Exercises

	1. Read III the meteorite data from the fieldoffice_Landings.csv file.
In []:	
	2. Rename the mass (g) column to mass, and drop all the latitude and longitude columns.
In []:	

1 Pead in the meteorite data from the Meteorite Landings csy file:

3. Update the year column to only contain the year, and create a new column indicating if the year is unknown. Hint: Use year.str.slice() to grab a substring.

In []:	
	4. There's a data entry error in the year column. Can you find it?
In []:	
	Oops! This meteorite actually was found in 2010 (more information here).
	5. Compare summary statistics of the mass column for the meteorites that were found versus observed falling.
In []:	
	6. Create a pivot table that shows both the number of meteorites and the 95th percentile of meteorite mass for those that were found versus observed falling per year from 1990 to 2000 (inclusive).
In []:	
	7. Using the taxis data from earlier this section, resample the data to an hourly frequency based on the dropoff time. Calculate the total trip_distance, fare_amount, tolls_amount, and tip_amount, then find the 5 hours with the most tips.
In []:	