USSR/Organic Chemistry. Synthetic Organic Chemistry. E-2 Abs Jour : Ref Zhur - Khimiya, No. 8, 1957, 26691.

I were added to a solution of 135 g of II and 600 mlit of CH₃OH in 3 to 4 hours (at 0 to 5°). After the complete disappearance of active chlorine, Na₂SO₃ is added, all is distilled, the oil is separated and fractionated, a mixture of IIIa and IVa is received. A mixture of IIIb and IVb forming at the action of ethylhypochlorite on II was obtained under the same conditions, and the structure of IIIb and IVb was proved analogously with corresponding C₂H₅O analogues of V to X (Vb to Xb). The substances, boiling points/mm, n²OD, d₄²O are enumerated: Va = 88

to 88.5, 1.3840, 0.7546; Vb - 105 to 106, 1.3880, 0.7536; VIIa - 48 to 48.5/20, 0.9639; VIIb - 60 to 60.5/20, 1.4230, 0.9359; VIIIa -

Card 5/6

USSR/Organic Chemistry. Synthetic Organic Chemistry. E-2 Abs Jour : Ref Zhur - Khimiya, No. 8, 1957, 26691.

89 to 90, 1.4062, 0.7888; IXa - 105 to 107, 1.4535, 0.8350; IXb - 124 to 126, 1.4500, 0.8294; Xa - 52.5 to 53.5/20, 1.4220, 0.882; Xb - 76.5 to 77/20, 1.4235, 0.8564. See report LXII in RZhKhim, 1957, 22847.

Card 6/6

USSR/Organic Chemistry. Synthetic Organic Chemistry. E-2 Ref Zhur - Khimiya, No. 8, 1957, 26692. Abs Jour Author Zyryanova, T.A.; Petrov, A.A. Inst Title Research in Region of Conjugate Systems. LXIV. Action of Bensenesulfodibromoamide. on Piperylene Solutions in Methyl and Ethyl Alcohols. Orig Pub Zh. obshch. khimii, 1956, 26, No. 7, 1918 -1926. Abstract At the action of benzenesulfodibromoamide (I) on piperylene (II) solutions in methanol and ethanol, the addition of methylhypobromite, or correspondingly, of ethylhypobromite to II in the 3.4 and 1,4 positions takes place; the molar ratio of the 3.4 and 1,4 adducted matters is 2.5: 1 to 3:1. II produces considerably Card 1/6

USSR/Organic Chemistry. Synthetic Organic Chemistry. E-2
Abs Jour : Ref Zhur - Khimiya, No. 8, 1957, 26692.

more 1.4 adducted matter than the earlier investigated divinyl. On the other hand, alkylhypobromites adjoin II in the 3,4 position to a greater degree than the earlier investigated alkylhypochlorites. 40 g of a mixture (A) with the boiling point at 65 to 71°/20 mm, of 4-bromo-3-metoxypentenol-2 (III) and 1-bromo-4-metoxypentenol-2 (IV) was received from 68 g of II (70 to 75% of the transform) and 94.5 g of I in 250 mlit of CH₃OH under conditions described earlier; besides, methylpropenylketone forming obviously from III was separated. CH₃COOH and BrCH₂COOH were obtained by the ozonization of A. 56 g of A with 28 g of KOH in 180 mlit of CH₃OH was heated 9 hours. 7.5 g of 2-metoxypentadiene-1,3 (VI) (mixture of cis-trans form) (boiling

Card 2/6

USSR/Organic Chemistry. Synthetic Organic Chemistry. E~2 Abs Jour Ref Zhur - Khimiya, No. 8, 1957, 26692. point 106.5 to 107.50, n²⁰D 1.4555, d₄²⁰ 0.8350) and 1.5 g of dimethyl ester of pentene-2-diol-1,4 (VII) boiling point 53 to 560/20 mm, $n^{20}D = 1.4250$, $d_4^{20} = 0.9058$ were separated. molar ratio of VI (forming from III) and VII (forming from IV) is about 2.5 to 1. 2.1 g of V, boiling point 120 to 121°, $n^{20}D = 1.4355$, $d_{11}^{20} = 0$ 0.8654, was obtained by shaking 5 g of VI with 50 mlit of 5% H₂SO₄; 2,4-dinitrophenylhydra-zone, boiling point 157 to 1580 (from alcohol). 58 g of A in 200 mlit of CH₂OH was hydrogenated on 20 g of powdered Ni and 25 g of CaCO₃ (150,

Card 3/6

USSR/Organic Chemistry. Synthetic Organic Chemistry. E-2
Abs Jour: Ref Zhur - Khimiya, No. 8, 1957, 26692.

6 hours, initial pressure 70 at), the fractions (a) at 87 to 90° at normal pressure (5 g) and (b) at 63 to 66°/a0 mm (28 g) were separated. At the hydrogenation of (a) on colloid Pt, C H CH(OCH)CH, boiling point 88 to 88.50, n D = 1.3485, d₄ 20 = 0.7548, was

formed; (b) was hydrogenated repeatedly and after the following bromination, 1-bromo-2-metoxypentane, boiling point 63.5 to 640/20 mm,

 $n^{20}D = 1.4509$, $d_{+}^{20} = 1.2410$, was obtained;

under the action of KOH in alcohol, 1-bromo-2-metoxypentane produced C₃H₇C(OCH₃)=CH₁, boiling point 89 to 90°, n ²⁰D = 1.4062,

Card 4/6

USSR/Organic Chemistry. Synthetic Organic Chemistry.

Abs Jour : Ref Zhur - Khimiya, No. 8, 1957, 26692.

 $d\mu^{20} = 0.7917$. By a reaction between 136 g

of II (70 to 75% of the trans form) and 190 g of I in 600 mlit of C_2H_5OH , 98.7 g of a crude mixture of bromoesters (B) was produced, the major part of which was distilled at 64 to 720/10 mm. The composition of B was investigated in the same manner as A. At the interaction of B with KOH in alcohol, 2-ethoxy-pentadiene-1,3 (VIII) (mixture of cis and trans forms), boiling point 124.5 to $.25.5^{\circ}$, $n^{2\circ}D$ =

1.4490, $d_4^{20} = 0.8244$, and VII were received.

The hydrogenation of B resulted in $C_3H_7CH(OC_2H_5)$ - CH_3 , boiling point 105 to 106°, $n^2O=1.3880$,

Card 5/6

USSR/Organic Chemistry. Synthetic Organic Chemistry. E-2
Abs Jour: Ref Zhur - Khimiya, No. 8. 1957, 26692. $d_{+}^{20} = 0.7565, \text{ and } 1\text{-bromo-}2\text{-metoxypentane,}$ boiling point 58 to 590/10 mm, which produced pentene-1 after treatment with Zn dust. Pure cis forms of VI, boiling point 105 to 105.50, n D 1.4570, $d_{+}^{20} = 0.8403, \text{ and of VIII, boiling point } 124 \text{ to } 124.50, \text{ n}^{20} = 1.4530, d_{+}^{20} = 0.8294,$ were received by the introduction of pure cis-II into the reaction with I in CH₃OH and C₂H₅OH.

Card 6/6

ZYRYANOVA, T.A.; PETROV, A.A.

Research in the field of conjugate systems. Part 64. Effect of benzosulfobromamide on piperylene solutions in methyl and ethyl alcohols. Zhur.ob.khim. 26 no.7:1918-1926 JI *56.

(MIRA 9:10)

1. Leningradskiy tekhonologicheskiy institut imeni Lensoveta.

(Amides) (Piperylene)

	The state of the s
	L 39715-66 EWP(j)/EWT(m)/T IJP(c) RM/WW/GD-2
	ACC NR: AF6007964 (P) SOURCE CODE: UR/0191/66/000/003/0017/0019
	AUTHOR: Nikolevey A F. Was B. Mar B.
	AUTHOR: Nikolayev, A. F.; Wan Er-Ten; Zyryanova, T. A.; Balayev, G. A.; Lebedeva,
	ORG: none
	TITLE: Epoxy resins from derivatives of triphosphonitrile chloride
	SOURCE: Plasticheskiye massy, no. 3, 1966, 17-19
	TOPIC TAGS: epoxy plastic, organic synthetic process, heat resistance, thermoplastic
	material synthetic process, near resistance, thermoplastic
	AESTRACT: The authors studied the preparation of thermoplastics which could be made
	glycidyl hexa-m-oxyphenylenetri phography 1 10 (10 a) if an article. Hexa-
	triphosphonitrile chloride with m-dihydroxybenzene in a basic medium:
	No transfer of the North Control of the North Contr
	CI (HORO), P P(OROH),
4 2 1 1	+ 6 NaCl
	P(OROH), IT I I I I I I I I I I I I I I I I I I
	Card 1/2
	UDC: 678,85
IN THE PROPERTY OF THE PARTY OF	

ryanova, t. a. Zyryanova	maint de o	u Min H	ect of Ben ons of Pip igher Educ ical Inst or the Degr	ation US	SR. Len	Lings of	Taning	rad. 1955.	
	(Dissert	ation 10	T. CIP DOP						
No 2, 1956.	pis:			# **					
10 2, 2,000		-			de .				
					î.				
					:				
							1		'
					\$				
			1			i!			

L 43766-66 EWT(m)/T/EWP(1) LIP(c) WW/PM SOURCE CODE: UR/0413/66/000/015/0088/0088
ACC NR: AP6029919 (A) ACC NR: AP6029919 (A) T. A.: Balayev, G. A.; Voronova, N. A.;
ACC NR: AP6029919 [A) INVENTOR: Nikolayev, A. F.; Zyryanova, T. A.; Balayev, G. A.; Voronova, N. A.; [A) [A) [A) [A) [A] [A) [A) [A)
Grigor yeva, o.
ORG: none TITLE: Preparative method for phosphorus-containing epoxy resins. Class 39, No. 184443 (announced by the Leningrad Technological Institute im. Lensovet No. 184443 (announced by the Leningrad Technological Institute)
No. 104442 Wathhologicheskiy institution
Trobet prom obraz tov zn, no. 13,
material, epoxy plasta
ACT - FO HOS DECK AN AN AN AN AND AN
ABSTRACT: An Author Certificate has been issued for the chloride oligomers and the phorus-containing epoxy resins based on phosphonitrile chloride oligomers are condensed compounds in the presence of caustic soda. To improve the fire resistance of condensed compounds in the presence of caustic soda. To improve the fire resistance of condensed compounds in the presence of caustic soda. To improve the fire resistance of caustic soda. [SM]
resins and to say
SUB CODE: 11/ SUBM DATE: 09Ju164/ ATA PRESS: SEES
upc: 678.64142 678.85
Card 1/1 4/17

ZYRYANOVA, V. G., CAND MED SCI, "ON THE REACTIVITY OF TIS—

SHAR ELEMENTS OF THE SKIN IN THE FOCUS OF ASEPTIC INFLAMMA—

TION WHEN THE FORMAL HUD FROM THE EBEYTA AND ULIDZHAY LAKES

OF UMSKAYA OBLAST. [EXPERIMENTAL HISTOLOGICAL INVESTIGATION ON

WHITE RATS]." NOVOSIBIRSK, 1961. (NOVOSIBIRSK STATE MED INST).

(KL—UV, 11—61, 227).

	 an market from	kandidat								
	Efficients 10-16 l	ent turbii N '53.	e units	for	heating	and	power	plants.		th. 33 no.11: (NLHA 6:12) (Turbines)
										(1010109)
									1	
									: :	
No. of the control of	-									
					1					
							1			

- 1 +117 - 1-

AID P - 1327

Subject

: USSR/Engineering

Card 1/1

Pub. 110-a - 9/19

Authors

Zysin, V. A., Zysina-Molozhen, L. M., Kand. of Tech. Sci., Polyakov, K. S. and Shapiro, I. C., Engineers

Title

Interferometrical study of a flow around turbine bladings

at trars-and supersonic speed

Periodical

Teploenergetika, 2, 38-42, F 1955

Abstract

The results of interferometrical studies are outlined concerning the flow at trans- and supersonic speed around turbine bladings at different values of the inflow angle and of the pitch. Based on experimental data of a two-dimensional flow some considerations are presented relative to the most favorable parameters of the bladings analyzed from the point of view of blade losses. Photos,

charts, 2 Russian references (1953-1954).

Institution:

Central Scientific Research Institute of Boilers and

Turbines

Submitted

No date

IMVIN,	Mark Iosifov	ich,; ZYSIN, stvennyy reda	V.A., do	sont, nau	chnyy red	iaktor; DZH tekhnicheki	ALABEKOVA, r redaktor	·
	[Motors; fro	om the water o kolesa do a -ry M-va pros	wheel to	the atomi	le engine	Mashina-d	vigatel ¹ ; nd-vo	
		(Motors	ı)					
				į				
		•						
		•						
					:			
					4 (
					•			
		4 - 4						
					4.5	•	1.44	

 $\frac{27514}{5.3}$

PHASE I BOOK EXPLOITATION

sov/3909

Leningrad. Politekhnicheskiy institut

Energomashinostroyeniye (Power-Machinery Construction) Moscow, Mashgiz, 1960. 163 p. (Series: Its: Trudy, No. 204) Errata slip inserted. 1,600 copies printed.

Sponsoring Agency: RSFSR. Ministerstvo vysshego i srednego spetsial'-nogo obrazovaniya.

Resp. Ed.: V.S. Smirnov, Doctor of Technical Sciences, Professor; Ed.: V.I. Bulanin, Candidate of Technical Sciences, Docent; Tech. Ed.: P.S. Frumkin; Managing Ed. for Literature on the Design and Operation of Machinery (Leningrad Division, Mashgiz): F.I. Fetisov, Engineer.

PURPOSE: This book is intended for workers at scientific research institutes and factory design offices. It may also be useful to students of advanced courses and aspirants specializing in power-machinery construction.

Card 1/5

Power-Machinery Construction

sov/3909

COVERAGE: This collection of 17 articles deals with analyses of gas-turbine installations and theoretical and experimental investigations of the operation of power and transportation machinery, including turbines, compressors, and internal-combustion engines. A description is given of recent theoretical and experimental investigations undertaken by the Department of Power-Machinery Convestigations undertaken by the bepartment of rower machinery of struction, Leningradskiy politekhnicheskiy institut (Leningrad Polytechnical Institute). The investigations include analyses of parameters for insuring high economy of operation and the perfecting of methods of calculating and designing new power equipment. References follow several of the articles.

TABLE OF CONTENTS:

3

Preface

Strakhovich, K.I. Approximate Method for Calculating the Velocity Distribution at the Inlet and Outlet of a Rotor in an Axial Compressor

5

Card 2/5

2. Seleznev, K.P. On the Flow of an Ideal Gas in a Bladeless Diffuser of a Centrifugal Compressor 2. Zysin, V.A. Binary Gas- and Steam-Turbine Systems 2. Kalinin, V.F. Fundamental Characteristics of Heat Exchangers for Closed-Type Helium-Driven Turbines 3. Bulanin, V.I. Some Features of One Type of Gas-Turbine System 4. Arsen'yev, L.V. Calculation of Transition Processes in Gas- Turbine Engines 3. Seleznev, K.P. On the Question of Similarity of Temperature Fields in Turbomachinery Elements 3. Dmitrevskiy, V.A. On the Determination of the Boundaries of the Operating Regime in Shaftless Diesel-Engine Compressors	ower-	-Machinery Construction	sov/3909		
3. Zysin, V.A. Binary Gas- and Steam-Turbine Systems 4. Kalinin, V.F. Fundamental Characteristics of Heat Exchangers for Closed-Type Helium-Driven Turbines 5. Bulanin, V.I. Some Features of One Type of Gas-Turbine System 6. Arsen'yev, L.V. Calculation of Transition Processes in Gas-Turbine Engines 7. Seleznev, K.P. On the Question of Similarity of Temperature Fields in Turbomachinery Elements 8. Dmitrevskiy, V.A. On the Determination of the Boundaries of the Operating Regime in Shaftless Diesel-Engine Compressors	2 9	Selezney, K.P. On the Flow of an Ideal Gas	in a Bladele	88	24
for Closed-Type Helium-Driven Turbines 5. Bulanin, V.I. Some Features of One Type of Gas-Turbine System 6. Arsen'yev, L.V. Calculation of Transition Processes in Gas-Turbine Engines 7. Seleznev, K.P. On the Question of Similarity of Temperature Fields in Turbomachinery Elements 8. Dmitrevskiy, V.A. On the Determination of the Boundaries of the Operating Regime in Shaftless Diesel-Engine Compressors	3. 3	Zysin, V.A. Binary Gas- and Steam-Turbine	Systems		29
6. Arsen'yev, L.V. Calculation of Transition Processes in Gas- Turbine Engines 6. Seleznev, K.P. On the Question of Similarity of Temperature Fields in Turbomachinery Elements 6. Dmitrevskiy, V.A. On the Determination of the Boundaries of the Operating Regime in Shaftless Diesel-Engine Compressors	;	for Closed-Type Hellum-Driven Turbines			37
7. Seleznev, K.P. On the Question of Similarity of Temperature Fields in Turbomachinery Elements 67. Dmitrevskiy, V.A. On the Determination of the Boundaries of the Operating Regime in Shaftless Diesel-Engine Compressors	5.	Bulanin, V.I. Some Features of One Type of tem	Gas-Turbine	Sys-	43
8. Dmitrevskiy, V.A. On the Determination of the Boundaries of the Operating Regime in Shaftless Diesel-Engine Compressors 77	6.	Arsen'yev, L.V. Calculation of Transition Turbine Engines	Processes in	Gas-	61
8. Dmitrevskiy, V.A. On the Determination of the Boundaries of the Operating Regime in Shaftless Diesel-Engine Compressors 77	7.	Seleznev, K.P. On the Question of Similar Fields in Turbomachinery Elements	ity of Temper	ature	67
Card 3/5		at the personnel and the of	the Boundari ngine Compres	es of sors	77
	Card	3/5			

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002065810016-2"

302 38

S/145/60/000/002/006/020 D221/D302

26.3220

AUTHOR: Zysin, V.A., Candidate of Technical Sciences

TITIE: Power characteristics of gas turbine installation

operating with the addition of steam

PERIODICAL: Izvestiya vysshikh uchebnykh zavedeniy. Mashino-

stroyeniye, no. 2, 1960, 59 - 65

TEXT: There are two mixed thermal units utilizing both gas and steam: one uses products of combustion in steam installations, the other has a direct steam intake for gas turbines. This combination should be regarded as a method of improving power characteristics of conventional gas turbines, and was investigated by the Leningradskiy politekhnicheskiy institut (Leningrad Polytechnic Institute) in connection with high power two-shaft ship gas turbines. Calculations indicated that injection of water in the gas flow increases maximum power by 20 %, without modifying dimensions of turbine or compressors. The amount of water should not exceed 4-5 % of the weight of gas intake. In simple installations it requires

30238 S/145/60/000/002/006/020 D221/D302

Power characteristics of gas ...

the addition of a water pump only. It is assumed that the evaporated water forms a homogeneous mixture with the gas. In turbines the downstream maintains its superheated condition at relatively low partial pressure, and, therefore, it is possible to consider the mixture as following the laws of ideal gases. The T-S diagram of Fig. 2 illustrates cycle 1-2-3-4-1 of gas working medium, and curve 5-6-7-8-9-10-5 which corresponds to the Rankin cycle of steam as a working medium. The total coefficient of efficiency without regeneration is given by

 $\eta = \frac{Q_1'}{Q_1} \eta' + \frac{Q_1''}{Q_1} \eta'', \qquad (1)$

where $Q_1^{"}$ is the heat required for increase of enthalpy of steam, Q_1 is the heat produced by products of combustion, and $Q_1 = Q_1 - Q_1^{"}$ is the heat used in the gas cycle, $\eta^{"}$ and $\eta^{"}$ are efficiency coefficients in gas and Rankin cycles. In the case of regeneration,

Card 2/65

30238

S/145/60/000/002/006/020 D221/D302

Power characteristics of gas ...

$$\tau = \frac{Q_{1}^{'} - Q_{reg}^{\overline{1}}}{Q_{1}} \eta' + \frac{Q_{\overline{1}}^{"} - Q_{reg}^{"}}{Q_{1}}$$
(11)

is used, where Q_{reg} and Q_{reg} are the amounts of heat that are transferred to air and steam in the regenerators. The maximum specific work capacity of a combined gas-steam cycle is 2.6 times greater than in a gas cycle. Due to limiting factors mixed operation of a gas turbine allows a two-fold increase only. Higher initial temperature of gas as well as regeneration and afterburning result in approximately equal advantages for straight and combined operation of a gas turbine. Another method consists in realizing the after-burning and water evaporation by heat of exhaust, instead of in the gas stream in the turbine, as shown in Fig. 4. Gas and steam mixture from turbine GST is fed into boiler-utilizator BU, operating at a pressure close to that of combustion chamber CC. Steam produced is directed into the gas stream and is mixed combustion products in turbine upstream. After giving an equation for defining the amount of water evaporated by a kg of dry gas, the

30238 5/145/60/000/002/006/020 D221/D302

Power characteristics of gas ...

coefficient of efficiency of the cycle is presented in

$$\eta = \frac{A_{\ell}' + gh''}{c_{p}'(t_{1} - t_{4}) + g c_{p}''(t_{1} - t_{3})}$$
(4)

where c and c are average specific heats of gas and steam, h" is the temperature drop in steam; of the turbine: All is the specific work of the gas cycle; t₁ is the temperature of mixture in forepart of the turbine; t4 is the air temperature in the downstream of compressor; ts is the temperature in the aft of boiler. Calculations revealed that the efficiency of this arrangement is close to that of a similar gas turbine with a degree of regeneration, equal to $\mu = 0.75$. Superheated steam together with preheated feed water improve the arrangement. The boiler-utilizator has the advantage of being convertible to generate general purpose steam without an additional outlay, and its water consumption is smaller than in intermediate coolers of conventional gas turbines. Graphs of the relative air flow as well as the corresponding coefficient of effi-

Card 4/85

S/145/60/000/002/006/020 D221/D302

Power characteristics of gas ...

ciency for this installation are given. The generation of steam in the boiler-utilizator of practically saltless steam provides a possibility of using the latter as a medium for cooling the turbine There are 8 figures.

ASSOCIATION: Leningradskiy politekhnicheskiy institut im. I.M. Kalinina (Leningrad Polytechnic Institute im. M.I.

Kalinin)

December 15, 1959 SUBMITTED:

Card 5/8 5

"APPROVED FOR RELEASE: 09/01/2001 CIA-R

CIA-RDP86-00513R002065810016-2

87773

S/114/61/000/001/005/009 E194/E355

26,2124 AUTHORS:

Zysin, V.A., Candidate of Technical Sciences and

Davydov, V.S., Engineer

TITLE:

External Steam and Evaporative Cooling of Gas-

turbine Blades

PERIODICAL: Energomashinostroyeniye, 1961, No. 1, pp. 28 - 30

TEXT: Cooling of gas-turbine blades through internal ducts raises great constructional difficulties. Moreover, it is very difficult to get the heat away from the blade edges in this way. External methods of cooling gas-turbine blades do not have these defects. A long time ago Stodola considered the possibility of having gas nozzles flanked by nozzles delivering cooling air. However, the power losses were very high. The prospects of external cooling would be much improved if a flow containing suspended drops of water could be used as the cooling agent. American work has described the injection of water into the gas duct, though in this case the medium cooling the blade was steam formed by the evaporation Card 1/8

87773 S/114/61/000/001/005/009 E194/E355

External Steam and Evaporative Cooling of Gas-turbine Blades The unavoidable evaporof suspended water in the boundary layer. ation of some of the drops outside the boundary layer has some adverse influence on the cooling effect and reduces the efficiency of the cycle. Additional possibilities of using moistened flows for external cooling are provided in combined steam gas sets in which power is drawn not only from the gas but to a certain extent from steam. It is assumed that the steam is generated by using exhaust heat. In this case steam is delivered to the gas duct at a pressure close to that in the combustion chamber and there is combined expansion of gas and steam in the single gas-steam turbine. Under such conditions all or part of the steam could be applied directly to the blades without A possible version of such a mixing with the hot gases. scheme uses a waste-heat boiler on the turbine exhaust to raise steam which is delivered to the turbine along with the gas from the combustion chamber. The gas and steam are delivered to the turbine through separate groups of nozzles. Card 2/8

87773

S/114/61/000/001/005/009 E194/E355

External Steam and Evaporative Cooling of Gas-turbine Blades It may be assumed that with a small number of stages the steam and gas flows can be kept reasonably separate in the turbine. However, this is not possible in turbines with many stages where the steam and gas will mix fully, The combined ideal cycle corresponding to this case is described and discussed. This scheme is claimed to have several advantages over those in which water is injected directly into the gas duct. The water formed during the expansion of saturated steam in the turbine will contain practically no salts that might form deposits in the turbine. Eq. (3) is then derived for the ratio of the temperature difference between the gas and the blade to that between the steam and the blade. By making calculations on several variants of the proposed steam/gas turbine circuit it was found that the blades of the first ring could be cooled by 50-80 °C. In practice, there would be additional losses de In practice, there would be additional losses due to the different values of relative rates of flow of gas and steam in the working blades. In single-stage turbines these

Card 3/8

\$7773 \$/114/61/000/001/005/009 E194/E355

External Steam and Evaporative Cooling of Gas-turbine Blades

losses may be avoided by appropriately increasing the pressure in the waste-heat boiler relative to the pressure in the combustion chamber. A variant of blade cooling is then suggested in which the blades have "two storeys" with steam flowing through the parts of the blade nearer to the shaft to keep it and the blade roots cool, and gas flowing through the parts of the blade further away from the shaft. Here, the cooling action of dry steam is quite sufficient since the process of cooling of the runner blades is limited by the thermal conductivity. For schemes with partial delivery of steam and gas to the turbine the above mentioned reduction of blade temperature by 50 - 80 °C may be insufficient considering the decrease in turbine efficiency. In this case the improvement of heat exchange by wetting the steam flow becomes of particular importance. The calculation of cooling processes with external flow, over the blades, of dry steam can obviously be based on the usual procedure used for gas flows. Data of Card 4/8

CIA-RDP86-00513R002065810016-2

87773

5/114/61/000/001/005/009 E194/E355

External Steam and Evaporative Cooling of Gas-turbine Blades heat exchange in a wet steam flow are not available. Concerning cooling by water injection into a gas flow, the only published data indicate the possibility of achieving blade temperature reductions of 300 - 400 °C but there is no justification for extending these results to other conditions. The only experimental work on heat transfer with two-phase flow over a cylindrical tube was carried out by R.Z. Alimov but his test conditions were so unrelated to the cooling of turbine blades by suspended water as to be difficult to use. A systematic investigation of heat exchange in application to the problem of external cooling of blades by suspended moisture would apparently involve tests in the following sequence: study the influence of suspended water on heat exchange of a compressible flow over the outside of a single body; make experiments on blade profiles under static conditions and proceed to tests on rotating machines,

card 5/8

67773

s/114/61/000/001/005/009 E194/E355

External Steam and Evaporative Cooling of Gas-turbine Blades Some results are then given of heat-transfer investigations during the flow over a single cylinder of a compressible twophase substance. The data for cooling of this single cylinder are conveniently compared with available data for singlephase flows. Moreover, existing experimental material can indicate the rate of cooling of the leading edge of the turbine blades. Investigations of heat exchange during flow over a single cylinder were carried out with equipment illustrated schematically in Fig. 4. The rod was installed directly in front of the nozzle and heated electrically. Moisture was injected into the flow through a nozzle. Measurements were made of the flow of dry steam or air and of the water injected through the nozzle, and of the necessary temperatures, pressures and head at the nozzle. Tests were first made with superheated steam and dry air and a relationship between the Nusselt and Reynolds numbers was constructed. Agreement with

Card 6/8

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002065810016-2"

87773

S/114/61/000/001/005/009 E194/E355

External Steam and Evaporative Cooling of Gas-turbine Blades the work of previous authors was found to be good. Then the flow was moistened and further tests were made. Some of the results are plotted in Fig. 5 and the indications are that a temperature reduction of 230 - $450\,^{\circ}$ C might be expected. A number of tests were made when the steam delivered to the nozzle was dry saturated. In such cases the isoentropic expansion corresponded to a moisture droplet content at the nozzle of 3 - 7%. However, the character of the heat exchange was no different from that in a flow of dry slightly superheated steam. There is thus reason to suppose that all the moisture is apparently evaporated during retardation in the boundary layer. It is concluded that external cooling of the gasturbine blades can beeffective, particularly at the leading edges of the blades, without great structural difficulties. In addition to water injection into the gas flow, use may be made of various systems of steam cooling associated with steam

Card 7/8

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002065810016-2"

87773 S/114/61/000/001/005/009 E194/E355

External Steam and Evaporative Cooling of Gas-turbine Blades generation in combined steam gas schemes. The steam cooling system with "two-storey" blades requires no moistening of the cooling steam.

There are 5 figures and 10 references: 6 Soviet and 4 non-Soviet.

Card 8/8

MIKHAYLOVSKIY, Georgiy Andreyevich; ZYSIN, V.A., kand. tekhn. nauk, retsenzent; ARNOL'D, L.V., prof., red.; MITARGHUK, G.A., red. izd-va; FOL'SKAYA, R., tekhn. red.

[Thermodynamic analysis of processes in steam-gas mixtures]
Termodinemicheskie raschety protsessov parogasovykh smesei.
Moskva, Mashgiz, 1962. 183 p. (MIRA 15:6)

(Thermodynamics)

PALEYEV, I.I., prof.; STRAKHOVICH, K.I., prof.; AGAFONOV, Ye.A., dotsent;

ZYSIN, V.A., dotsent

"Principles of the theory of heat transfer" by V.S. Zhukovskii.

"Principles of the theory of heat transfer" by V.S. Zhukovskii.

Reviewed by I.I. Paleev and others. Izv. vys. ucheb. zav.; energ. 5
no.6:128-129 Je '62. (MIRA 15:6)

1. Leningradskiy politekhnicheskiy institut im. M.I.Kalinina.
(Heat—Transmission) (Thermodynamics)
(Zhukovskii, V.S.)

ZYSIR, V.A., kend. tekhn. nauk; ZAYTESV, S.S., inzh.; FLATORCVA, S.G., inzh.; ERLIEH, V.A., inzh.

Construction of an ejector system for a large furnace with a shaft-type impact mill. Teploenergetika 11 no.9:42-44, S '64, (MIRA 18:8)

1. Leningrudskiy politekhnicheskiy institut isteni M.I.Kalinina.

	Heat emis	iston et a Eneraces	a flow about a	cascado ei ciade. 12 no.8:40-41 h	i carrying	simper.ded
			14 **** (* : * : * : * : * : * : * : * :	See Fig. 4 Sec. 1971 (1971) and a sec. 1971	हुँ (1947) -	(MINA 18:10)
en e						
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
					• • • • • • • • • • • • • • • • • • •	
					\$ • •	

	NR: AP6029070	4. 	SOURCE CODE	UR/0413/66/	,000,014,015	· · JUJE
INV	ENTOR: Kirillov, I. I.	Zysin, V. A.;	Osherov, S. Ya	; Arsen'yev,	L. V.	
ORG	: none					34 3
[an	LE: High temperature st nounced by the Leningras ningradskiy politekhnich	l Polytechnical	Institute im.	Class 46, No.	. 184070	
	RCE: Izobret prom obraz					
TOF	IC TAGS: steam gas turl	oine, double flo	ow turbine, bla	de cooling, co	ooled blade,	
gas	turbine, turbine, turbine	e blobe				
ABS	tteem. TRACT: The proposed high	gh temperature s	steam-gas doubl	e-flow turbine	consists p	Pa
hou	TRACT: The proposed his	ipetal rotor who	eel equipped wi	th hollow, coo	oled blades	With
hou ser	TRACT: The proposed his sing containing a centri erate flow of channels	ipetal rotor who for the wet (or	eel equipped wi superheated) s	th hollow, coo	oled blades	With
hou ser to	TRACT: The proposed high sing containing a centricarate flow of channels to the ensure a maximum temperature.	ipetal rotor who for the wet (or ature gradient :	eel equipped wi superheated) s in the high tem	th hollow, coo team and the g perature range	oled blades gas. In ord e, and to	With
hou ser to	TRACT: The proposed his sing containing a centri erate flow of channels	ipetal rotor who for the wet (or ature gradient :	eel equipped wi superheated) s in the high tem	th hollow, coo team and the g perature range	oled blades gas. In ord e, and to	With
hou ser to	TRACT: The proposed high sing containing a centricarate flow of channels to the ensure a maximum temperature.	ipetal rotor who for the wet (or ature gradient :	eel equipped wi superheated) s in the high tem	th hollow, coo team and the g perature range	oled blades gas. In ord e, and to	With
hou ser to	TRACT: The proposed high sing containing a centricarate flow of channels to the ensure a maximum temperature.	ipetal rotor who for the wet (or ature gradient :	eel equipped wi superheated) s in the high tem	th hollow, coo team and the g perature range	oled blades gas. In ord e, and to	With
hou ser to	TRACT: The proposed high sing containing a centricarate flow of channels to the ensure a maximum temperature.	ipetal rotor who for the wet (or ature gradient :	eel equipped wi superheated) s in the high tem	th hollow, coo team and the g perature range	oled blades gas. In ord e, and to	With
hou ser to	TRACT: The proposed high sing containing a centriparate flow of channels and ensure a maximum temperaplify the design, the baseling the baseling and the baseli	ipetal rotor who for the wet (or ature gradient :	eel equipped wi superheated) s in the high tem	th hollow, coo team and the g perature range	oled blades gas. In ord e, and to	With

ACC NR: A97009592

SOURCE CODE: UR/0096/67/000/001/0044/0047

A CALL A LASTA OURSE A CREEKLIN TORREN HISTORICE HURBIN HISTORICE BUILD TO A STANDARD REPORTED HISTORICE PROPERTIES AND A STANDARD PROPERTIES AND A

AUTHOR: Kirillov, I. I. (Doctor of technical sciences); Zysin, V. A. (Doctor of technical sciences); Osherov, S. Ya. (Candidate of technical sciences); Arsen'yev, L. V. (Candidate of technical sciences); Petrov, Yu. ORG: none

TITLE: Selection of optimal parameters for a high temperature steam-gas installation using a plan developed by the central boiler-turbine scientific research institute and the Leningrad Polytechnical Institutute SOURCE: Teplo energetika, no. 1, 1967, 44-47
TOFIC TAGS: thermoelectric power plant, steam turbine, gas turbine, heating engineering, cooling, engine cooling system.

engineering, cooling, engine cooling system

SUB CODE: 21,10,13

ABSTRACT: The specific features of a method of calculating the parameters of a steam-gas installation are presented and some results of calculation are outlined. In its simplest variant, the steam-gas installation described provides for attainment of an efficiency of approximately 50% with a gas temperature of 1200°C. The optimal degree of gas pressure increase is 9, which considerably facilitates the problems of cooling the high temperature gas turbine and designing turbine machinery. The efficiency of the dual installation depends very little on the steam parameters. High efficiency values can be produced at a steam temperature of 540°C. With increasing initial gas temperature, the thermal effectiveness of the installation increases. In Cord 1/2

0930 11.30

	ACC NR: AP7009592			
	temperature of 1500°C.	The introduction of	intermediate heating of the	gas
	provides a further incre	ase in efficiency.	Orig. art. has: 7 figures,	
٠.	formulas and 2 tables.	/JPRS: 40,102/		
_				
			"特別的政治計畫的關係」(1	
	and the second s			
	•			
				in the second of
,				
				•
			그렇게 가지를 내는 분를 입었다.	1

	ZYSIN,	V.A					
·		Calculation profiles.	n of the varying co Trudy LPI no.221: (Turbine	onditions of 103-109 '62. s)	flow about	the cascade (MIRA 15:9)	
		4					
	٠.	$\gamma = f^{-1}$					
		•					
				1.5			

ZYSIN, V							:				!
	Highl	y mar	neuverable	turbine	systems	• Trud	y LPI	no.2	21:110 15:9)	-118	
		(Inte	rconnecte turbines)	d electr: (Elec	ic utili tric pow	ty syst er prod	ems) uction	n)			
						+ :		1 · · · · · · · · · · · · · · · · · · ·		:	
	٠.				•		1 1	la de la			
							Ì: ;				: :
									:		
											*
							: 		:		
				•			i Legan				
					1 1						

AUTHORS:

SOV/89-5-4-9/24

Antropov, G. P., Zysin, Yu. A., Kovrizhnykh, A. A., Lbov, A. A.

Reaction Cross Section U238(n,2n)U237 With Neutrons of an Ener-TITLE:

gy of 15 MeV (Secheniye reaktsii U²⁵⁸(n,2n)U²³⁷ na neytronakh

s energivey 15 Mev)

PERIODICAL:

Atomnaya energiya, 1958, Vol 5, Nr 4, pp 456-457 (USSR)

ABSTRACT:

In 1952 or was measured by the authors for $U^{238}(n,2n)U^{237}$ for $E_n = 15$ MeV as amounting to 1,5 \pm 0,2 b. As, in the meantime, new values have been published which are in contradiction to

those mentioned, measurement was repeated in 1957.

A 4π -counter was used for measuring. The value 6π , 2π was meas

ured from the activity of U^{237} and from the fission products of U^{238} , namely Mo⁹⁹, Ba¹⁴⁰, Ce¹⁴¹. A value of 0,90 \pm 0,15 b was obtained by these measurements. This is in agreement with the value given in reference 1, but in strict contradiction of the value given in reference 2. Comparison with the results given in reference 4 leads to the conclusion that the value of

0,90 b is highly probable.

Card 1/2

Reaction Cross Section $U^{238}(n,2n)U^{237}$ With Neutrons of an Energy of 15 MeV

N. P. Martynov, T. P. Timofeyeva, and N. V. Shuvanova participated in the work of chemical preparation. There are 4 references, 2 of which are Soviet.

SUBMITTED:

April 17, 1958

Card 2/2

ankaretskes i træssenet det frød skiet tild. Hilbitat frigt ette blinde hilbitat i blinde frigt i stær i stære Blinde frigt i stære i stære i det frød skiet tild. Hilbitat i frigt ette blinde i blinde frigt i stære i stær

21(7)

AUTHORS:

501/89-5-5-2/27

Lebedev, P. P., Zysin, Yu. A., Klintsov, Yu. S.,

Stsiborskiy, B. D.

TITLE:

The Neutron Yield From Inelastic Interaction of Neutrons of 14 MeV Energy With Nuclei and the Reaction Cross Sections (n,2n) (Vykhod neytronov pri neuprugom vzaimodeystvii neytronov s energiyey 14 Mev s yadrami i secheniye reaktsii

(n,2n)

PERIODICAL:

Atomnaya energiya, 1958, Vol 5, Nr 5, pp 522-525 (USSR)

ABSTRACT:

The quantities η_a and σ_{in} were measured for 10 nuclei

(natural isotope-composition). η_a is the number of neutrons produced by inelastic scattering of neutrons with a nucleus. The relative variation of the entire neutron flux and the weakening of the primary neutron flux after passage through the target is determined. Measurements were carried out in spherical geometry. The neutron source was located in the

Card 1/4

The relative weakening of the primary neutron flux was measured

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002065810016-2"

The Neutron Yield From Inelastic Interaction of Neutrons of 14 Nev Energy With Nuclei and the Reaction Cross Sections (n,2n)

by means of a copper indicator $\left[\operatorname{Cu}^{63}(n,2n)\operatorname{Cu}^{62}\right]$. The relative variation of the total neutron flux was measured by means of a boron counting-tube in the paraffin block, which is described (Ref 2). Measuring errors could not be kept below an average of +2%. The values for σ_{in} agree with previously obtained results. The values η_{a} are higher by 10-15% than those mentioned by reference 1. In a similar manner the values $\left(\sigma_{n,2n}-\sigma_{c}\right)$ differ in the same direction as η_{a} from the values mentioned (Ref 1). The following measuring results were obtained:

	Element	$\boldsymbol{\gamma}$	o _{in} , b	$(\sigma_{n,2n},\sigma_{c})$, b
	Fe	1,20+0,15	1:44 <u>+</u> 0,04	0,26+0,1
Cond 0/4	Cu	1,34+0,15	1,50+0,07	0,47 <u>+</u> 0,1
Card 2/4	Мо	1,64+0,2	1,60±0,15	1,0 +0,2

The Neutron Yield From Inelastic Interaction of Neutrons of 14 MeV Energy With Nuclei and the Reaction Cross Sections (n,2n)

Element	ŋ	σ _{in} , b	(0
Cd	1,74+0,2	1,87 <u>+</u> 0,2	$(\sigma_{n,2n}-\sigma_{c}), b$
Sn	1,81+0,2	1,83+0,2	$1,38 \pm 0,3$
Sb	1,82+0,2	1,85+0,13	$1,48 \pm 0,3$
Hg	1,86+0,2	2,46±0,1	1,52 + 0,2
Pb	1,92+0,2	2,46 <u>+</u> 0,1	2,02 ± 0,2
Bi	1,88+0,2	2,58+0,1	2,18 ± 0,2
Ū	2,8 <u>+</u> 0,25	2,91+0,14	2,18 ± 0,2
A. A Mal-	the state of the s	- 77 - 25 14	

A. A. Malinkin took part in the experiments. There are 1 figure, 1 table, and 10 references, 2 of which are Soviet.

SUBMITTED: Card 3/4

April 17, 1958

VLASOV, V.A.; ZYSIN, Yu.A.; KIRIN, I.S.; LBOV, A.A.; OSEYAYEVA, L.I.; SEL'CHENKOV, L.I.

[Yield of certain fragments in Th²³² fission by 14.3 Mev. neutrons] Vykhody nekotorykh oskolkov pri delenii Th²³² neitronami s energiei 14,3 mev. Moskva, Glav. upr. po ispol'zovaniiu atomnoi energii pri Sovete Ministrov SSSR, 1960. 11 p. (MIRA 17:4)

S/089/60/008/04/05/009 B113/B017

AUTHORS:

Zysin, Yu. A., Kovrizhnykh, A. A., LVov, A. A., Sel'chenkov, L. I.

TITLE:

Cross Section of the Reaction Th²³²(n, 2n) Th²³¹ With

PERIODICAL: Atomnaya energiya, 1960, Vol. 8, No. 4, pp. 360-361

TEXT: The cross section was determined by a method which is based on the activity of Th²³¹ and the fission fragments No⁹⁹ and Ba¹⁴⁰. The method has been described in a paper by G. P. Antropoyou et al. in Atomnaya energiya, 1958, Vol. 5, No. 4, p. 456. 14.7-Mev-neutrons were obtained by means of a low-voltage linear accelerator from the reaction D(T,n)He⁴. Mixture irradiated: Th(NO₃)₄·4 H₂O, U₃O₈. Six irradiations were made, the irradiation lasting from three to eleven hours, the total neutron emission of the individual samples was at (2 + 6)·10¹⁴n. According to a

Card 1/2

VB

Cross Section of the Reaction Th²³²(n, 2n) Th²³⁷ S/089/60/008/04/05/009 With Neutrons of the Energy 14.7 Mev B113/B017

formula given, the reaction cross section of $\text{Th}^{232}(n, 2n)$ Th^{231} with 14.7-Mev-neutrons is found to be $o_{n,2n}^{\text{Th}} = (0.65 \pm 0.15)$ barn. The authors thank K. A. Vlasov, A. S. Kovaldov, V. M. Lartsev, V. R. Nagina, N. D. Osyayev for their assistance.

SUBMITTED: October 21, 1959

VB

Card 2/2

32988

24.6600

8/641/61/000/000/015/033 B104/B102

AUTHORS:

Vlasov, V. A., Zysin, Yu. A., Kirin, I. S., Lbov, A. A., Osyayeva, L. I., Sel'chenkov, L. I.

TITLE:

Yields of some fragments in Th 232 fission by 14.3 Mev neutros

SOURCE:

Krupchitskiy, P. A., ed. Neytronnaya fizika; sbornik statey.

Moscow, 1961, 235-240

TEXT: The yields of Ga^{73} , Br^{83} , Sr^{89} , Y^{91} , Zr^{95} , Mo^{99} , Ag^{111} , Cd^{115} , Te^{129m} , and Ge^{141} fragments produced in Th^{232} fission were studied by radiochemical methods. The 14.3 Mev neutrons were obtained from D(T,n)He4 reactions, the deuterons of ~150 kev were obtained from a low-voltage linear accelerator. The specimens were irradiated with a neutron flux of approximately (0.7-2)·10⁸ neutr/cm²·sec for 5-25 hr. The hermetically sealed cylindrical containers contained up to 90 g Th(NO3)4.4H20. irradiated thorium nitrate was dissolved in water. From this solution the fission fragments were isolated by four different methods and identified by measuring their β -activity. The absolute fragment yield was determined Card 1/2 2

32988 S/641/61/000/000/015/033

B104/B102

Yields of some fragments in ...

by a method in which the sum of the relative yields of all fission fragments obtained by interpolation of their mass distribution curves was equated to 200%. In this case triple fissions are assumed to be negligible. The results are summarized in Table 2. A comparison with the results obtained by A. Turkevich (Phys. Rev., 84, 52 (1951); Phys. Rev., 89, 552 (1953)) shows that with increasing neutron energy the fragment yields in symmetrical fission increase. The authors thank K. N. Borozdina, A. S. Kovaldov, V. M. Lartsev, N. D. Osyayev, E. V. Plyusnina and R. N. Sorokina for their help with these studies. There are 1 figure, 3 tables, and 10 references: 3 Soviet and 7 non-Soviet. The four most recent references to Englishlanguage publications read as follows: Katcoff S., Nucleonics, 16, 4, 78 (1958); Steinberg E. P., Glendenin L. E., report no. 614, held at the First International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958; Strominger D., Hollander J. M., Seaborg G. T., Rev. Mod. Phys., 30, 585 (1958); Leachman R., report no. 2467, held et the Second International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958.

Table 2. Fragment yields in 14.3-Mev neutron induced Th 232 fission.

Legend: (1) isotope measured, (2) relative yield, (3) absolute yield, in %

	Atmosphere in the second secon
	ANHO27870 BOOK EXPLOITATION S/
,	Zytsin, YU. A.; Lbov, A. A.; Sel'chenkov, L. I.
	Fission yields and their mass distribution; a manual (Vy*khody* produktov deleniya i ikh raspredeleniye po massam; spravochnik). Moscow, Gosatomizdat, 63. 0117 p. illus., biblio., tables. 3,500 copies printed.
- :	TOPIC TACS: nuclear fission, fission fragments, fission fragment yield, fission fragment mass distribution, asymmetric fission, fine structure, excitation energy, fission induced by Gamma rays, fission induced by charged particles, decay chain
	experimental material on yields of fission products and the mass distribution of induced by neutrons, γ rays, charged particles of excitation energy up to 100 red. Some general consistent. The data on the fission product yields are to 100 red. Some general consistent.
	red. Some general conclusions are drawn concerning the laws governing the mass distribution of fission fragments. The book is intended for engineering-physicists, scientific workers, and engineers working in the field of nuclear engineering and nuclear physics.
	ard 1/2
1 5 1	

	<u> </u>		• 10 000 000 000 0000			
	en production of the second					
	AMILOO 2000	7	·			
	AM4027870					Ť
	TABLE OF CONTENTS	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1				
		1 3	1			
	Introduction 3					
	Absolute and relative Methods of determining	e yields of fission	m fragments -	_ 5		
	Principal laws and c	ng yields of fissi	on fragments -	- 7		
	Methods of determini Principal laws and o ments by mass - Tables of frames	-10 - F	ures of the di	stributions o	of fission f	rag-
!	TWO OF THUMBUT U	חסות מס	11			
	Principal literature Supplementary litera	TTO				
	and the second s	rote 116				
	SUB CODE: PH, NS	SUBMITTED:	01Aug63			
	OTHER: 194	. <u>1</u>		NR REF S	OV: 049	
	234	DATE ACQ:	20Mar64			
						-
C	ard . 2/2					
C	ard . 2/2					

SAKHAROV, A.D., akademik; LYUDAYEV, R.Z.; SMIRNOV, Ye.N.; PLYUSHCHEV, Yu.I.;
PAVLOVSKIY, A.I.; CHERNYSHEV, V.K.; FEORTISTOVA, Ye.A.; ZHARINOV, Ye.I.;
ZYSIN, Yu.A.

Magnetic cumulation. Dokl. AN SSSR 165 no.1:65-68 N 165.

(MIRA 18:10)

L 2085-66 _ ACC NRI AP502	.,				1	6		
of 5 x 10 ⁶ oe i using the MK-2 cylinder enclose solid cup. A h	n a volume of as the source in a coar	r imploding the of 100 cm ³ was pose of the initial ideal solution of the cunder is filled w	roduced by a c l field. The enoid. On one p holds the er	opper liner MK-2 has a end of the ce	300 mm in central concentral concentral concentral concentral cyline	diameter ductive s & der (see		
Exploding tube			Explosive	Fig. 1. device	The MK-2			•
through which a charge current explosion touch equivalent to a reaches the cur	a battery of , the expand nes the end noving a con . At this	the cup. The so capacitances is ing conical flare of the solenoid. e into the solen moment a coaxial	discharged. of the cyline The explosionid and short is formed w	At the peak ler created on's further lng its turn nose length	by the prop development s until the and inducts	ne dis- agating t is cone		
accompanied by	a correspon	tion propagates ding increase in Currents of 5 x 1 µH were obtain	current and 107 amp (occa-	field intens sionally up	ity resulti to 1 x 108	ng from	······································	
Card 2/3	· · · · · · · · · · · · · · · · · · ·					لــــــــــــــــــــــــــــــــــــــ	• • • • • • • • • • • • • • • • • • •	
	•							
· 								

	PAVLOVSKI	Y, A.I.; KU	LESHOV, G.	D.; SKL	IZKOV, G.	V.; ZYS	IN, Yu	.A.; GERA	SIMOV.	À.T.
	· He	avy-current 165.	t air-core	betatr	ons. Dokl	. An 885	SR 160	no.1:68-	70	
	1.	Submitted	November	16, 196	4.					
						* 41	!	21 21 1		
• • •										
							1	# %		
								10 10 10 10 10		
# · · · · · · · · · · · · · · · · · · ·	in the second se									
			- to -							
					4			#* *		
ti i ti i i i i i i i i i i i i i i i i										The second second

ZYSII	NA, L. (g. Ufa)					
Papera personal Palata Paris Na	At the door of a koop, 13 no.3:1	dressmaking an 9 Mr '59. (Ufs-Cloth	d tailoring	establishmen	t. Prom. (MIRA 12:4))
			in the state of the			
		1				
			$\mathcal{C}_{\mathcal{A}}}}}}}}}}$			

KUTATELADZE, Samson Semenovich. Prinimali uchastiye: LEONT'YEV,
A.I.; BORISHANSKIY, V.M.; ZYSINA, L.M., doktor takhn. nauk,
retsenzent; GORDOV, A.N., kand. fiz.-mat. nauk, red.;
ONISHCHENKO, R.N., red. izd-va; MITARCHUK, G.A., red. izd-va;
SHCHETININA, L.V., tekhn. red.

[Fundamentals of the heat transfer theory] Osnovy teorii teploobmena. Izd.2., dop. i perer. Moskva, Mashgiz, 1962. 455 p. (MIRA 15:7)

(Heat-Transmission)

ZYSINA, L. M.					PA 16/49T	46
.	e e e e e e e e e e e e e e e e e e e					
		USSR/Rogineering		May/Ju	n 4 8	<u> </u>
		Turbines - Bla Gas Flov - Mea				
		"Small Gas Dynamics Boiler and Turbine L. M. Zysina, Cand	Institute imeni	of the Centra I. I. Polzu	al nov,"	
		"Kotloturbostroye"				
		Describes arrangement blading of new turb photographs.	nts for studying ine designs. In	3 gas flow t ocludes five	hrough	
				16/4	7146	
						· · · · · · · · · · · · · · · · · · ·
				1 11 11 11 11 11		

"APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002065810016-2

Zysina-MOLOZhen, L-M

Abst Journal: Referat Zhur - Mekhanika, No 12, 1956, 8362

Author: Zysina-Molozhen, L. M.

Institution: None

Title: Certain Data on the Number of Steam-Formation Centers on Technical

Heating Surfaces

Original

Periodical: Coll: Vopr. teploobmena pri izmenenii agregatnovo sostoyaniya

veshchestva, Moscow-Leningrad, 1953, Gosenergoizdat, 168-172

Abstract: Results are given of microscopic photography of the process of bubble boiling on a horizontal plate.

> It is shown how the thermal load, pressure, and the state of the heating surface affect the number of steam-formation surface and the frequency at which the steam bubbles break away. The experiments were performed with water and with several aqueous solutions at pressures from one to 5 atm under moderate heat-flux densities.

Card 1/1

USSR/Physics - Gas dynamics

FD-998

-Control of the state of the st

Card 1/1

: Pub. 153 - 2/24

Authors

: Zysilna-Molozhen, L. M., and Shapiro, I. G.

Title

: Interferometric investigation into the circulation around cascades of

turbine sections

Periodical : Zhur. tekh. fiz., 24, No 6, 978-988, Jun 1954

Abstract

: Expound results of a comparative interferometric investigation of two cascades of flat turbine sections. Compare data of optical investigation with results of pneumometric investigations. The work was carried out on the optical bench of the gas-dynamics laboratory of Division [otdel] No. 6 of TsKTI (central Scientific Research Boiler and turbine Institute) with the assistance of VNIIM (All-Union Scientific-Research

Institute of Metrology).

Institution : -

Submitted

: July 20, 1953

,	ZYSI	NA-MO	LOZHEN,	L.M.	, kand	lidat	tekhn	ichesk	ikh n	auk			•			•	
		Calcu TSKT		of :	losses 51 '54	.		e casca turbir		of	turboma	oh i 1	ery. (MLRA	[Trudy] 8:12)		; ; ; ;	
																1	
									:						:		-
												1					
						* ·									100		
		•				٠	•										
															in in		
									•								

inzne	•					
compre	ferometric invesessor blades. [Frudy] TSKTI no.	27:134-15	1 '54. (MIRA 8:		
	(Gas flow) (In	terferometry) (C	ompressor	a)		
	0.31					
- 191						

Subject

: USSR/Engineering

.

AID P - 1327

Card 1/1

Pub. 110-a - 9/19

Authors

Zysin, V. A., Zysinz-Molozhen, L. M., Kand. of Tech. Sci., Polyakov, K. S. and Shapiro, I. C., Engineers

Title

Interferometrical study of a flow around turbine bladings

at trans-and supersonic speed

Periodical

Teplcenergetika, 2, 38-42, F 1955

Abstract

The results of interferometrical studies are outlined concerning the flow at trans- and supersonic speed around turbine bladings at different values of the inflow angle and of the pitch. Based on experimental data of a twodimensional flow some considerations are presented relative to the most favorable parameters of the bladings analyzed from the point of view of blade losses. Photos,

charts, 2 Russian references (1953-1954).

Institution:

Central Scientific Research Institute of Boilers and

Turbines

Submitted

No date

ZHUKOVSKIY, V.S., doktor tekhnicheskikh nauk, professor; ZHUKOVSKIY,
M.I., kandidat tekhnicheskikh nauk; ZYSINA-MOLCZHEN, kandidat
tekhnicheskikh nauk; MARKOV, N.M., kandidat tekhnicheskikh nauk;
SKNAR', N.A., kandidat tekhnicheskikh nauk; TYRYSHKIN, V.G.,
kandidat tekhnicheskikh nauk

M.E.Deich's book "Technical gas dynamics." Reviewed by V.S.Zhukovskii and others. Teploenergetika 2 no.1:62-64 Ja '55.

(Turbines--Fluid dynamics) (Gas flow) (Deich, M.E.)

MOLOZHEN, L.M.

Subject : USSR/Engineering AID P - 1832

Card 1/1

Pub. 110-a - 9/16

Authors

: Zysina-Molozhen, L. M., Kand. of Tech. Sci., and Shapiro, I. G., Eng.

Title

: Some data on the supersonic flow through the turbine

Periodical: Teploenergetika, 3, 34-37, Mr 1955

Abstract

The authors make an interferometric study of

supersonic velocities accompanied by the

emergence of jumps of compression and the resulting increase of losses in turbine blading. From interferograms they attempt to obtain data about ways to remove possibilities of locking compression jumps in inter-blading disk spaces. Nine photographs and

diagrams.

Institution:

Central Institute of Boilers and Turbines

Submitted : No date

Subject

USSR/Engineering

AID P - 2766

Card 1/1

Pub. 110-a - 8/14

Author

Zysina-Molozhen, L. M., Kand. Tech. Sci.

Title

Approximate method of calculating losses in blading

Periodical

Teploenerg., 9, 43-48, S 1955

Abstract

: An analysis of experimental data compared with mathematical analysis in the computation of different blade-entrance angles and their corresponding losses. Nine diagrams. Six Russian references, 1940-1954.

Institution :

Central Boiler and Turbine Institute

Submitted

No date

USSR/Physics - Aerodynamics FD-3207 Card 1/1 Pub. 153-16/28 Author : Zysina-Molozhen L. M. American analysis prominent is the original bounds of the billion of the original street is the second Title : Study of transition from laminar to turbulent flow on the boundary layer Periodical : Zhur. Tekh. Fiz., 25, No 7, 1280-1287, 1955 : Attempt is made to establish a semi-empirical evaluation of the ef-Abstract fect of the transition region on the flow in the boundary layer. This method facilitates the computing of parameters of the transitional boundary layer, similarly to purely laminar or purely turbulent flow. The comparison of plotted theoretical and experimental curves show satisfactory accuracy of semi-empirical relations of the transition region. Nine references, including 3 foreign.

Institution :

Submitted : December 2, 1954

ZYSINA-MOLOZHLIN, LIM

FD-3208

USSR/Physics - Aerodynamics

Card 1/1 Pub. 153-17/28

Title

Author : Zysina-Molozhen L. M.

ACCOUNT TO THE PROPERTY OF THE PROPERTY OF THE MANAGE PLANT OF THE PROPERTY OF

: Some quantitative characteristics of transition from laminar to turbulent

flow in the boundary layer

Periodical: Zhur. Tekh. Fiz., 25, No 7, 1288-1296, 1955

Abstract : Experimental results obtained in a special wind tunnel (L. M. Zysina-Molozhen,

Tr. TsKTI, 22, 1952) are analyzed. The boundary layer was studied along a plate surface during flow around it by a gradientless stream and a stream with longitudinal pressure gradient, or flow around a cascade profile. (L. M. Zysina-Molozhen, Tr. TsKTI, book 22, 1952) Quantitative characteristics of the extent of the transition region could be approximately established. Indebted to Drs A. A. Gukhman and L. G. Loytsyanskiy for discussions. Ten references,

including one US.

Institution: --

Submitted: December 12, 1954

: USSR/Engineering AID P - 5106

Card 1/1 Pub. 110-a - 9/18

Subject

Author : Zysina-Molozhen, L. M., Kand. Tech. Sci.

Title : Semiempirical method for calculating the parameters of

a two-dimensional boundary layer in the transition zone.

- den normalist and menter de seminarial and de la control professional de la control de la control

Periodical: Teploenergetika, 10, 41-47, 0 1956

Abstract : The above method is based on the generalization of

experimental data on velocity profiles in the transition wone of the boundary layer of a flow around a plate. The author considers the calculation of the boundary layer with a longitudinal pressure gradient. 10 diagrams.

15 references.

Institution: Central Institute for Boilers and Turbines

Submitted : No date

AUTHORS: Zysina-Molozhen, D.M. (Leningrad)

24-10-4/26

TITLE:

Approximate method of calculation of the heat transfer in blade cascades. (Priblizhennyy metod rascheta teplotdachi v reshetkakh profiley).

PERIODICAL: Izvestiya Akademii Nauk SSSR, Otdo eniyo Tekhnicheskikh Nauk, 1957, No.10, pp. 28-35 (USSR)

ABSTRACT: This paper was read at the 8th Conference on Heat Exchange in Gas Turbines convened by ENIN AN SSSR, Kiev, Oct.13, 1955. An approximate method is described of calculating the average coefficient of heat transfer which is suitable for carrying out the preliminary calculations. The author considers a lattice which is diagrammatically represented in Fig.1, p.29, and the investigation is limited to the flow through the cascade between the planes at a great distance in front of the lattice and 2 located at a great distance behind the lattice, where all the non-uniformities of the flow due to the presence of the lattice have been equalled out. The section passing through the trailing edge plane is denoted by 3 and it is assumed that at some distance from the plane of the trailing edges in the section denoted by 2 the temperature and the speed boundary layers of the trailing edges are identical, Card 1/3 which is correct only for Npt 1. With these and further

and the standard of the class o

Approximate method of calculation of the heat transfer in blade, cascades.

angles for all the Reynold number values under consideration.

There are 2 figures and 10 references, 9 of which are Slavic.

SUBMITTED: December 14, 1955.

AVAILABLE: Library of Congress.

Card 3/3

ZYSINA-MOLOZHEN, L. M., SHAPIRO, I. C. (Leningrad)

"On the Heat Transfer in Turbulent Compressible Flows."

report presented at the First All-Union Congress on Theoretical and Applied Mechanics, Moscow, 27 Jan - 3 Feb 1960.

b - 3

PHASE I BOOK EXPLOITATION

SOV/4519

- Gukasova, Yekaterina Aleksandrovna, Mikhail Isaakovich Zhukovskiy, Anatoliy Mikhaylovich Zavadovskiy, Iarisa Mikhaylovna Zysina-Molozhen, Nikolay Akimovic Sknar', and Vsevolod Georgiyevich Tyryshkin
- Aerodinamicheskoye sovershenstvovaniye lopatochnykh apparatov parovykh i gazovykh turbin (Aerodynamic Improvement of Blading in Steam and Gas Turbines) Moscow, Gosenergoizdat, 1960. 340 p. Errata slip inserted. 4,000 copies printed.
- Eds.: V.S. Zhukovskiy, Doctor of Technical Sciences, Professor, and S.S. Kutateladze, Doctor of Technical Sciences, Professor; Tech. Ed.: 0.8. Zhitnikova.
- PURPOSE: This book is intended for engineers working in turbine-construction plants, design offices, and power systems, and may also be used by aspirants and students of advanced courses in power-machinery construction at schools of higher education.
- COVERAGE: The book discusses aerodynamic methods for investigating, profiling, and improving the blading of steam and gas turbines. Methods for calculating the potential flow about airfoil cascades and for determining energy losses on the basis

Card 1/9

Aerodynamic Improvement of Blading (Cont.) **507/4519** of the boundary-layer theory are presented. Also discussed are methods for experimental study of the flow about blades in stationary cascades (with consideration of three-dimensional phenomena) and on rotating models. A special chapter (IX) treats the results of aerodynamic profiling of new blade cascades. The results presented are based on work performed at TsKTI imeni I.I. Polzunov. The authors thank Professor L.G. Loytsyanskiy for his advice. There are 124 references: 106 Soviet, 10 English, and 8 German. TABLE OF CONTENTS: Foreword 6 Ch. I. Theoretical Methods of Calculating Incompressible Flow Through Cascades of Airfoils (M.I. Zhukovskiy) 11 1. Plane rectilinear cascade 11 2. Calculating a cascade of blades according to a given velocity triangle 15 3. Solution of a direct problem based on conformal mapping of the region of incompressible fluid flow in an auxiliary plane 4. Inverse problem for a cascade of airfoils 28 5. Calculating flow over a cascade of airfoils according to a known circulation flow for an angle β , 30 6. Calculating flow in curvilinear channels 33 Card 2/9

Δ	ernd v	namic Improvement of Blading (Cont.)	80V/4519			
	, <u>1</u> 0uj	mante improvement of blearing (cont.)	201/4719			
. CI	ı. II	. Calculating Flow-Through Cascades at Subsonic Velo	cities			
		(M.I. Zhukovskiy)			39	
		Isentropic motion of a compressible fluid			39 39 45	
•	2.	Subsonic flow of a gas through a cascade of airfoils			45	
<i>~</i> 1						
ÇI	1. 11	I. Approximate Method of Calculating Profile Losses	in		1.0	1 -
	1	Cascades (L.M. Zysina-Molozhen) Comparative evaluation of the precision of some meth			48	
	٠.	calculating profile losses	logs or		48	
	2	Method of calculating the size of impulse loss at the			40	
	~ 0	edge in flow through a cascade of airfoils	ie rem		58	
	3.	Determination of the dimensions of the transition re	ofon in			
	J•.	the boundary layer of an airfoil	Pron TH		64	-
	4.	Sequence of the procedure of calculating the size of	impulse		-	
		loss at the rear edge in flow through a cascade of s			70	
	5.	Comparison of calculations with experimental values		:	•	
		in flow through impulse and reaction cascades of air	foils		76	
	6.	Comparison of calculations with experimental values				
		in flow through the cascade of airfoils of a compres	Bor		82	
-		10				
C.	urd 3	/9				

	1 7 (aut.)	70x1	l cao
Aerodyn	mamic Improvement of Blading (Cont.)	sov/	4519
Ch. IV.	Fundamentals of Modeling Aerodynamic Proc	esses in a	+ 4 · - }
	Turbine Cascade of Blades (N.A. Sknar')		87
	Principles of modeling		87
	Criteria of similitude and aerodynamic characteristics	acteristics	
	of cascades		88
3.	Characteristic features of approximate mode	ling	91
A 11. ••			
Ch. V.	Experimental Determination of Aerodynamic		100
	of Cascades of Airfoils (Ye.A. Gukasova an		100
	Basic requirements for experimental methods Preparation of the inflowing stream		100 101
	Experimental cascades		105
	Shaping the stream at the outflow from the	agrands of blades	109
	Experimental units	cancana or premen	113
	Measuring methods in the investigation of c	e an eahense	7.1.3
	compressible gas	ancada II a	116
	Methods of working out experimental data		122
• •			
Card 4/	' o	de la companya de la	
,			

	Aerodynamic Improvement of Blading (Cont.) SOV/4519		
Ch	. VI. Optical Methods of Investigating Plane Cascades of Airfoils		
•	(L.M. Zysina-Molozhen)	126	
	1. General principles of the shade method and its application		
	in investigation of flow about bodies	127	
•	2. Application of Toepler's method in investigation of flow		
	through cascades of airfoils	130	٠
	3. Principle of interference	133	
	4. Description and adjustment of an interferometer	136	
	5. Photographing the interference picture	139	
	6. Determination of the physical density of the investigated		
	medium by the combination of bands. Numeration of bands	141	
•	7. Determination of the density in the presence of uncombined		
	interference bands in the field of vision	144	
	8. Determination of density in the absence of uncombined		
	interference bands in the field of vision	145	
1.54	9. Obtaining the scalar representation of the interferogram	146	
	10. Calculation of basic gas dynamic parameters	146	
	11. Some results of interferometric investigation of flow		
	about bodies	151	
C:	rd 5/9		

herodyn	amic Improv	ement of Blading	(Cont.)	•	507/4519		
. 12.	Sample cal	culation of the coof compressor air	haracteristics foils accordin	of flow the	rough erferogram	155	
. Ch. VII	. Three-Du	mensional Flow in ukasova)	Cascades of B	lades and E	nd Losses	158	
1.	Structure of	f three-dimension f the formation of	al flow at the	ends of blu	ades.	158	
2.	Experimental banded casca	l methods for stu ades	dying three-di			176	
	parameters (f geometric chara on end losses in	banded cascade	В		181	
	in banded ca					189	
	characterist straight bar clearances	tic features of t ided cascades in	the presence of	al flow thro f overlappin	ough	193	
						493	
Card 6/	9.						
ir e e e e e e e e e e e e e e e e e e e		•				: : : :	
	2						

	Aerody	namic Improvement of Blading (Cont.)		80 V/ 4519			
	Ch. VI	II. Experimental Investigation of Plane Cascades	at Hi	gh Subsonic			
•		and Supersonic Velocities (Ye.A. Gukasova)				198	
	1.	Flow of a compressible gas in cascades of nozzle	8			198	
	2.					212	
					: :		
	Ch. IX						
		Turbine Airfoils for Subcritical Flows at TakTi	(M.L. 2	Zhukovskiy			,
	_	and N.A. Sknar')				219	
	1.	General aspects			: +	219	
	2.	4				221	
	3∙	Bucket profiles				222	ď
		Efficiency of new profiles			:	222	
	5•	Influence of the method of formation of strength	ened				
		outflow edges on the operation of cascades				224	
	ar a	Mathada and Maria I. A. Maria and A.	il Hans				
	Ch. X.	The second secon	e Stage	es in			
	1	Conditions of Rotation on Models at TaKTI (A.M. General aspects	Zavado	ovskiy)	. :	230	
	2.	Aerodynamic characteristics		1		230	
	۲.	verochamic custscellactes				238	
	Card 7	<i>l</i> 9			:		
	V 1,			•			

	Aerody	namic Improvement of Blading (Cont.)	· 	SOV/4519		
•	Ch. XI	. Losses in a Turbine Stage and Consideration of	the Poss	ibility		
		of Calculating the Basic Characteristics of the	e Stage			
		(A.M. Zavadovskiy)			245	
•		Profile and end losses	4 1		245	
		Fan losses			252	
	3•	Losses due to leakage through radial clearances :	in nonshi	bebuo		
		vanes			258	
	4 .	Losses due to leakage through axial clearances in	aegata o	with		
		shrouded vanes			266	
	5.	Losses due to leakage through gaps in contacts of	f working	; 		
	_	wheel shrouds			267	
	6.	Influence of suction and induction in a turbine	stage wit	h		
		shrouded vanes			270	
	. 7.	Losses due to the flow of the working fluid in ci	nunels o	f		
	_	a turbine stage with negative reaction			272	
	8.	Some considerations on the possibility of determination	ining bas	ic	•	
		characteristics of a turbine stage by calculation	3		276	
	_		1			
	Card 8	/9				
			11.4	•	:	