```
In []: ### Imports
    import mrmr
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import numpy as np
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.feature_selection import RFECV
    from sklearn.linear_model import LogisticRegression
In []: ### Import data
    data = pd.read_csv("train.csv")

# Get general info
    print(data.info(), "\n\n\n")
    print(data.describe(), "\n\n\n")
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1340 entries, 0 to 1339
Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype		
0	EmployeeID	1340 non-null	int64		
1	Age	1340 non-null	int64		
2	Attrition	1340 non-null	object		
3	BusinessTravel	1340 non-null	object		
4	DailyRate	1340 non-null	int64		
5	Department	1340 non-null	object		
6	DistanceFromHome	1340 non-null	int64		
7	Education	1340 non-null	int64		
8	EducationField	1340 non-null	object		
9	EmployeeCount	1340 non-null	int64		
10	EnvironmentSatisfaction	1340 non-null	int64		
11	Gender	1340 non-null	object		
12	HourlyRate	1340 non-null	int64		
13	JobInvolvement	1340 non-null	int64		
14	JobLevel	1340 non-null	int64		
15	JobRole	1340 non-null	object		
16	JobSatisfaction	1340 non-null	int64		
17	MaritalStatus	1340 non-null	object		
18	MonthlyIncome	1340 non-null	int64		
19	MonthlyRate	1340 non-null	int64		
20	NumCompaniesWorked	1340 non-null	int64		
21	0ver18	1340 non-null	object		
22	OverTime	1340 non-null	object		
23	PercentSalaryHike	1340 non-null	int64		
24	PerformanceRating	1340 non-null	int64		
25	RelationshipSatisfaction	1340 non-null	int64		
26	StandardHours	1340 non-null	int64		
27	Shift	1340 non-null	int64		
28	TotalWorkingYears	1340 non-null	int64		
29	TrainingTimesLastYear	1340 non-null	int64		
30	WorkLifeBalance	1340 non-null	int64		
31	YearsAtCompany	1340 non-null	int64		
32	YearsInCurrentRole	1340 non-null	int64		
33	YearsSinceLastPromotion	1340 non-null	int64		
34	YearsWithCurrManager	1340 non-null	int64		
dtypes: int64(26), object(9)					

dtypes: int64(26), object(9) memory usage: 366.5+ KB

None

	EmployeeID	Age	DailyRate	DistanceFromHome	Educatio
n \ count	1.340000e+03	1340.000000	1340.000000	1340.000000	1340.00000
0 mean 7	1.460265e+06	36.580597	799.197761	9.193284	2.92462
std 8	2.494821e+05	9.013072	399.333256	8.141621	1.03608
min 0	1.025177e+06	18.000000	102.000000	1.000000	1.00000

25%	1.237599e+06	30.000000	465.000000	2.00	00000	2.00000
0 50% 0	1.469862e+06	35.000000	796.000000	7.00	00000	3.00000
75% 0	1.670131e+06	42.000000	1153.000000	14.00	0000	4.00000
max 0	1.886378e+06	60.000000	1499.000000	29.00	10000	5.00000
\	EmployeeCount	Environment	Satisfaction	HourlyRate	JobIn	volvement
count	1340.0		1340.000000	1340.000000	134	40.000000
mean	1.0		2.709701	65.559701		2.717910
std	0.0		1.099961	20.335025		0.717523
min	1.0		1.000000	30.000000		1.000000
25% 50%	1.0 1.0		2.000000 3.000000	48.000000 65.000000		2.000000 3.000000
75%	1.0		4.000000	83.000000		3.000000
max	1.0		4.000000	100.000000		4.000000
max	2.0			100100000		
ft \	JobLevel	. Relation	shipSatisfact	ion Standard	Hours	Shi
count 00	1340.000000		1340.000	0000 1	1340.0	1340.0000
mean 09	2.051493	•	2.700	0000	80.0	0.8082
std 51	1.104491	•	1.079	9858	0.0	0.8562
min 00	1.000000	•	1.000	0000	80.0	0.0000
25% 00	1.000000	•	2.000	0000	80.0	0.0000
50% 00	2.000000		3.000	0000	80.0	1.0000
75% 00	3.000000	•	4.000	0000	80.0	1.0000
max 00	5.000000	•	4.000	0000	80.0	3.0000
	TotalWorkingVoa	rc Trainin	aTimoslastVoa	ar WorkLifeBa	lanco	\
count	TotalWorkingYea		1340.00000			\
mean	11.2223		2.78582		771642	
std	7.6960		1.26347		700007	
min	0.0000		0.00000		00000	
25%	6.0000		2.00000		00000	
50%	10.0000	00	3.00000	3.0	00000	
75%	15.0000	00	3.00000	00 3.0	00000	
max	40.0000	00	6.00000	00 4.0	00000	
	V = 2 m = 1 + C =	V 0 0 10 0 T 10 C 1	man+D-1- V	.maCimaal+5		. \
count	YearsAtCompany 1340.000000	YearsInCur	rentkole yea 0.000000	arsSinceLastPr 1240	omotior .000000	
count mean	7.070149		4.272388		2.175373	
std	6.039663		3.677798		3.222376	
min	0.000000		0.000000		0.00000	
25%	3.000000		2.000000		0.00000	
50%	5.000000		3.000000		.000000	

75%	10.000000	7.000000	3.000000
max	40.000000	18.000000	15.000000
	VoorshithCurrMonagor		
	YearsWithCurrManager		
count	1340.000000		
mean	4.167164		
std	3.581605		
min	0.00000		
25%	2.000000		
50%	3.000000		
75%	7.000000		
max	17.000000		

[8 rows x 26 columns]

Out[]: <seaborn.axisgrid.PairGrid at 0x2abee75b0>

EmployeeID num unique values: 1340

Age num unique values: 43

BusinessTravel num unique values: 3

DailyRate num unique values: 793

Department num unique values: 3

DistanceFromHome num unique values: 29

Education num unique values: 5

EducationField num unique values: 6

EmployeeCount num unique values: 1

EnvironmentSatisfaction num unique values: 4

Gender num unique values: 2

HourlyRate num unique values: 71

JobInvolvement num unique values: 4

JobLevel num unique values: 5

JobRole num unique values: 5

JobSatisfaction num unique values: 4

MaritalStatus num unique values: 3

MonthlyIncome num unique values: 1134

MonthlyRate num unique values: 1191

NumCompaniesWorked num unique values: 10

Over18 num unique values: 1

OverTime num unique values: 2

PercentSalaryHike num unique values: 15

PerformanceRating num unique values: 2

RelationshipSatisfaction num unique values: 4

StandardHours num unique values: 1

Shift num unique values: 4

TotalWorkingYears num unique values: 40

```
TrainingTimesLastYear num unique values: 7
WorkLifeBalance num unique values: 4
YearsAtCompany num unique values: 37
YearsInCurrentRole num unique values: 19
YearsSinceLastPromotion num unique values: 16
YearsWithCurrManager num unique values: 18
(1340, 31)
(336, 31)
```

See that there are 9 categorical columns which need to be converted to numerical.

See that there are many numerical columns which need to be binned by quantile.

Dropped columns with only 1 unique value -> can't get any information from those.

Can see that there are no null values, so we do not need to clean out rows or columns containing nulls.

```
In []: # Binning
   int_cols = []
   for c in data.columns:
        if data[c].dtype == "int64":
            print(c, len(data[c].unique()))
            print(data[c].describe(), "\n\n\n")
```

EmployeeID 1340 count 1.340000e+03 1.460265e+06 mean std 2.494821e+05 1.025177e+06 min 25% 1.237599e+06 1.469862e+06 50% 75% 1.670131e+06 1.886378e+06 max

Name: EmployeeID, dtype: float64

```
Age 43
count
         1340.000000
mean
           36.580597
std
            9.013072
min
           18.000000
25%
           30.000000
50%
           35.000000
75%
           42.000000
           60.000000
max
```

Name: Age, dtype: float64

DailyRate 793

count	1340.000000
mean	799.197761
std	399.333256
min	102.000000
25%	465.000000
50%	796.000000
75%	1153.000000
max	1499.000000

Name: DailyRate, dtype: float64

DistanceFromHome 29 count 1340.000000 mean 9.193284 std 8.141621 1.000000 min 25% 2.000000 50% 7.000000 75% 14.000000

Name: DistanceFromHome, dtype: float64

29.000000

Education 5

max

1340.000000 count mean 2.924627 1.036088 std

```
min 1.000000
25% 2.000000
50% 3.000000
75% 4.000000
max 5.000000
Name: Education, dtype: float64
```

EnvironmentSatisfaction 4 count 1340.000000 mean 2.709701 1.099961 std min 1.000000 25% 2.000000 50% 3.000000 75% 4.000000 max 4.000000

Name: EnvironmentSatisfaction, dtype: float64

```
HourlyRate 71
count 1340.000000
mean 65.559701
std 20.335025
min 30.000000
```

25% 48.000000 50% 65.000000 75% 83.000000

max 100.000000

Name: HourlyRate, dtype: float64

JobInvolvement 4

count 1340.000000 2.717910 mean std 0.717523 min 1.000000 25% 2.000000 50% 3.000000 75% 3.000000 4.000000 max

Name: JobInvolvement, dtype: float64

JobLevel 5

count	1340.000000
mean	2.051493
std	1.104491
min	1.000000
25%	1.000000
50%	2.000000
75%	3.000000

> max 5.000000

Name: JobLevel, dtype: float64

```
JobSatisfaction 4
count
         1340.000000
            2.746269
mean
std
            1.111328
min
            1.000000
25%
            2.000000
50%
            3.000000
75%
            4.000000
            4.000000
```

Name: JobSatisfaction, dtype: float64

```
MonthlyIncome 1134
count
```

max

1340.000000 mean 6433.381343 std 4687.058380 min 1051.000000 25% 2870.000000 50% 4876,500000 75% 8038.750000 19973.000000 max

Name: MonthlyIncome, dtype: float64

MonthlyRate 1191

count 1340.000000 mean 14290.377612 std 7166.995911 min 2094,000000 25% 7967.250000 50% 14288.500000 75% 20472.500000 max 26997.000000

Name: MonthlyRate, dtype: float64

NumCompaniesWorked 10

1340.000000 count mean 2,600000 std 2.472794 0.000000 min 25% 1.000000 50% 1.000000 75% 4.000000 9.000000 max

Name: NumCompaniesWorked, dtype: float64

```
PercentSalaryHike 15
count
         1340.000000
mean
           15.168657
std
            3.661956
min
           11.000000
25%
           12.000000
50%
           14.000000
75%
           18.000000
max
           25.000000
```

Name: PercentSalaryHike, dtype: float64

PerformanceRating 2 1340.000000 count mean 3.152239 std 0.359386 3.000000 min 25% 3.000000 50% 3.000000 75% 3.000000 4.000000 max

Name: PerformanceRating, dtype: float64

RelationshipSatisfaction 4

count	1340.000000
mean	2.700000
std	1.079858
min	1.000000
25%	2.000000
50%	3.000000
75%	4.000000
max	4.000000

Name: RelationshipSatisfaction, dtype: float64

Shift 4

count	1340.000000
mean	0.808209
std	0.856251
min	0.000000
25%	0.000000
50%	1.000000
75%	1.000000
max	3.000000

Name: Shift, dtype: float64

TotalWorkingYears 40 count 1340.000000 mean 11.222388

```
      std
      7.696043

      min
      0.000000

      25%
      6.000000

      50%
      10.000000

      75%
      15.000000

      max
      40.000000
```

Name: TotalWorkingYears, dtype: float64

TrainingTimesLastYear 7 count 1340.000000 mean 2.785821 std 1.263473 0.000000 min 25% 2.000000 50% 3.000000 75% 3.000000 6.000000

Name: TrainingTimesLastYear, dtype: float64

WorkLifeBalance 4

1340.000000 count 2.771642 mean 0.700007 std min 1.000000 25% 2.000000 50% 3.000000 75% 3.000000 4.000000 max

Name: WorkLifeBalance, dtype: float64

YearsAtCompany 37

1340.000000 count mean 7.070149 std 6.039663 min 0.000000 25% 3.000000 50% 5.000000 75% 10.000000 max 40.000000

Name: YearsAtCompany, dtype: float64

YearsInCurrentRole 19

count	1340.000000
mean	4.272388
std	3.677798
min	0.000000
25%	2.000000
50%	3.000000

EDA 12/9/22, 9:36 PM

```
75%
            7.000000
           18.000000
max
```

Name: YearsInCurrentRole, dtype: float64

```
YearsSinceLastPromotion 16
count
         1340.000000
            2.175373
mean
std
            3.222376
min
            0.000000
25%
            0.000000
50%
            1.000000
75%
            3.000000
max
           15.000000
Name: YearsSinceLastPromotion, dtype: float64
```

```
YearsWithCurrManager 18
         1340.000000
count
            4.167164
mean
            3.581605
std
min
            0.000000
25%
            2.000000
50%
            3.000000
75%
            7.000000
           17,000000
max
```

Name: YearsWithCurrManager, dtype: float64

```
In [ ]: # Binning
        # found manually
        cols_to_bin = ["Age", "DailyRate", "DistanceFromHome",
                       "HourlyRate", "MonthlyIncome", "MonthlyRate",
                       "PercentSalaryHike", "TotalWorkingYears",
                       "YearsAtCompany", "YearsInCurrentRole",
                       "YearsWithCurrManager", "NumCompaniesWorked",
                       "YearsSinceLastPromotion",]
        print(data.shape)
        print(submission data.shape)
        # uneven 4 groups
        for c in cols_to_bin:
                data[c+"_Even"] = pd.cut(data[c], 4, labels=False)
                submission_data[c+"_Even"] = pd.cut(submission_data[c], 4, labels=Fa
            except:
                print("failed")
                pass
```

```
print(data.shape)
        print(submission_data.shape)
        (1340, 31)
        (336, 31)
        (1340, 44)
        (336, 44)
In [ ]: # get dummies from int categorical data
        # found manually
        already_categorical = ["Education", "EnvironmentSatisfaction",
                               "JobInvolvement", "JobLevel", "JobSatisfaction",
                                "PerformanceRating", "RelationshipSatisfaction",
                                "Shift", "TrainingTimesLastYear",
                                "WorkLifeBalance"
        for c in already categorical:
            temp dummy = pd.qet dummies(data[c], prefix=c)
            data = pd.concat([data, temp_dummy], axis=1)
            sub_temp_dummy = pd.get_dummies(submission_data[c], prefix=c)
            submission_data = pd.concat([submission_data, sub_temp_dummy], axis=1)
        print(data.shape)
        print(submission_data.shape)
        (1340, 87)
        (336, 87)
In [ ]: # get dummies from obj categorical data
        for c in data.columns:
            if data[c].dtype == "object":
                if len(data[c].unique()) == 2:
                    data[c] = pd.factorize(data[c])[0]
                    submission data[c] = pd.factorize(submission data[c])[0]
                else:
                    temp_dummy = pd.get_dummies(data[c], prefix=c)
                    data = pd.concat([data, temp dummy], axis=1)
                    data[c] = pd.factorize(data[c])[0]
                    sub temp dummy = pd.get dummies(submission data[c], prefix=c)
                    submission data = pd.concat([submission data, sub temp dummy], a
                    submission_data[c] = pd.factorize(submission_data[c])[0]
        print(data.shape)
        print(submission_data.shape)
        # turn label column to binary
        labels = pd.DataFrame(pd.factorize(labels)[0], columns=["Attrition"])
        (1340, 107)
        (336, 107)
In []: # Histograms for binned data and dummmy data created
        promising_data2 = data[data.columns[31:]]
```



```
Index(['BusinessTravel', 'Department', 'DistanceFromHome', 'Education',
                 'EnvironmentSatisfaction', 'Gender', 'HourlyRate', 'JobInvolvement',
                 'JobLevel', 'JobRole', 'JobSatisfaction', 'MaritalStatus',
                 'NumCompaniesWorked', 'OverTime', 'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction', 'Shift',
                 'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance',
                 'YearsAtCompany', 'YearsInCurrentRole', 'YearsSinceLastPromotion',
                 'YearsWithCurrManager', 'Age_Even', 'DailyRate_Even', 'DistanceFromHome_Even', 'HourlyRate_Even', 'MonthlyIncome_Even',
                 'MonthlyRate Even', 'TotalWorkingYears Even', 'YearsInCurrentRole Ev
         en',
                 'YearsWithCurrManager Even', 'NumCompaniesWorked Even',
                 'EnvironmentSatisfaction_1', 'EnvironmentSatisfaction_3', 'EnvironmentSatisfaction_4', 'JobInvolvement_1', 'JobInvolvement_2',
                 'JobInvolvement 3', 'JobInvolvement 4', 'JobLevel 1', 'JobLevel 2',
                 'JobLevel 3', 'JobSatisfaction 1', 'JobSatisfaction 4',
                 'RelationshipSatisfaction_4', 'Shift_0', 'Shift_1', 'Shift_2',
                 'TrainingTimesLastYear_2', 'TrainingTimesLastYear_3',
                 'WorkLifeBalance 1', 'WorkLifeBalance 3',
                 'BusinessTravel_Travel_Frequently', 'BusinessTravel_Travel_Rarely',
                 'Department_Cardiology', 'Department_Maternity',
                 'EducationField_Marketing', 'EducationField_Medical',
                 'JobRole_Therapist', 'MaritalStatus_Divorced', 'MaritalStatus_Marrie
         d',
                 'MaritalStatus Single'],
                dtype='object')
         (1340, 65)
In []: # Eliminate redundant features
         good data = data[names]
         selected features = mrmr.mrmr classif(good data,
                                                   np.ravel(labels),
                                                    K=20)
         print(selected_features)
         uncorr data = good data[selected features]
         uncorr_sub_data = submission_data[selected_features]
         100% | 20/20 [00:00<00:00, 86.50it/s]
         ['OverTime', 'JobLevel_1', 'BusinessTravel_Travel_Rarely', 'JobInvolvemen
         t', 'Shift_0', 'WorkLifeBalance_1', 'Age_Even', 'DistanceFromHome_Even', 'E
         nvironmentSatisfaction', 'YearsInCurrentRole', 'MaritalStatus_Single', 'Tot
alWorkingYears', 'JobSatisfaction', 'JobLevel_2', 'JobInvolvement_1', 'Year
         sWithCurrManager', 'JobLevel', 'EnvironmentSatisfaction_1', 'TrainingTimesL
         astYear_2', 'MaritalStatus']
In [ ]: # Save the selected data
         fin_data = pd.concat([uncorr_data, labels], axis=1)
         fin data.to csv("uncorr20 data.csv")
         uncorr_sub_data.to_csv("uncorr20_sub_data.csv")
In [ ]: # Feature engineering by making polynomial features
         poly = PolynomialFeatures(degree=2)
         poly_data = poly.fit_transform(uncorr_data)
```

```
poly_sub = poly.fit_transform(uncorr_sub_data)

poly_names = poly.get_feature_names_out()
# print(poly_names)

# print(poly_data.shape)

poly_data = pd.DataFrame(poly_data, columns=poly_names)
poly_sub = pd.DataFrame(poly_sub, columns=poly_names)
# print(poly_data.head())
```

```
Index(['OverTime', 'YearsInCurrentRole', 'MaritalStatus_Single',
       'YearsWithCurrManager', 'OverTime^2', 'OverTime JobLevel 1',
       'OverTime YearsInCurrentRole', 'OverTime JobSatisfaction',
       'OverTime EnvironmentSatisfaction_1',
       'OverTime TrainingTimesLastYear_2', 'OverTime MaritalStatus',
       'JobLevel_1 WorkLifeBalance_1', 'JobLevel_1 Age_Even',
       'JobLevel_1 DistanceFromHome_Even', 'JobLevel_1 MaritalStatus_Singl
e',
       'JobLevel 1 EnvironmentSatisfaction 1',
       'BusinessTravel_Travel_Rarely WorkLifeBalance_1',
       'BusinessTravel_Travel_Rarely Age_Even',
       'BusinessTravel Travel Rarely DistanceFromHome Even',
       'BusinessTravel Travel Rarely JobInvolvement 1',
       'BusinessTravel Travel Rarely JobLevel',
       'BusinessTravel Travel Rarely TrainingTimesLastYear 2',
       'BusinessTravel Travel Rarely MaritalStatus',
       'JobInvolvement MaritalStatus_Single', 'JobInvolvement JobSatisfacti
on',
       'JobInvolvement JobLevel 2', 'JobInvolvement EnvironmentSatisfaction
_1',
       'JobInvolvement MaritalStatus', 'Shift_0 WorkLifeBalance_1',
       'Shift_0 DistanceFromHome_Even', 'Shift_0 EnvironmentSatisfaction',
       'Shift_0 YearsInCurrentRole', 'Shift_0 MaritalStatus_Single',
       'Shift_0 JobInvolvement_1', 'Shift_0 YearsWithCurrManager',
       'Shift_0 EnvironmentSatisfaction_1', 'Shift_0 TrainingTimesLastYear_
2',
       'Shift_0 MaritalStatus', 'WorkLifeBalance_1 DistanceFromHome_Even',
       'WorkLifeBalance 1 YearsInCurrentRole',
       'WorkLifeBalance_1 TotalWorkingYears',
       'WorkLifeBalance_1 JobSatisfaction', 'WorkLifeBalance_1 JobLevel_2',
       'WorkLifeBalance 1 YearsWithCurrManager', 'Age Even^2',
       'Age_Even EnvironmentSatisfaction', 'Age_Even YearsInCurrentRole',
       'Age_Even MaritalStatus_Single', 'Age_Even JobSatisfaction',
       'Age_Even JobLevel_2', 'Age_Even MaritalStatus',
       'DistanceFromHome Even EnvironmentSatisfaction',
       'DistanceFromHome Even JobLevel 2',
       'DistanceFromHome_Even JobInvolvement_1',
       'DistanceFromHome Even TrainingTimesLastYear 2',
       'DistanceFromHome Even MaritalStatus',
       'EnvironmentSatisfaction YearsInCurrentRole',
       'EnvironmentSatisfaction MaritalStatus Single',
       'EnvironmentSatisfaction JobInvolvement 1',
       'EnvironmentSatisfaction YearsWithCurrManager',
       'EnvironmentSatisfaction TrainingTimesLastYear 2',
       'EnvironmentSatisfaction MaritalStatus',
       'YearsInCurrentRole MaritalStatus_Single',
       'YearsInCurrentRole MaritalStatus', 'MaritalStatus_Single^2',
       'MaritalStatus Single TotalWorkingYears',
       'MaritalStatus_Single JobLevel_2',
       'MaritalStatus Single JobInvolvement 1',
       'MaritalStatus Single JobLevel',
       'MaritalStatus_Single EnvironmentSatisfaction_1',
       'MaritalStatus_Single MaritalStatus', 'JobSatisfaction JobLevel_2',
       'JobSatisfaction TrainingTimesLastYear_2',
       'JobSatisfaction MaritalStatus', 'JobLevel_2 JobInvolvement_1',
       'JobLevel 2 MaritalStatus', 'JobInvolvement 1 YearsWithCurrManager',
```

```
'JobInvolvement_1 JobLevel', 'JobInvolvement_1 TrainingTimesLastYear
        _2',
               'JobInvolvement_1 MaritalStatus', 'YearsWithCurrManager JobLevel',
               'YearsWithCurrManager EnvironmentSatisfaction 1',
               'YearsWithCurrManager MaritalStatus',
               'EnvironmentSatisfaction_1 MaritalStatus', 'TrainingTimesLastYear_2^
        2',
               'MaritalStatus^2'],
              dtype='object')
        (1340, 86)
In [ ]: # Eliminate redundant features
        good poly data = poly data[names]
        selected_features = mrmr.mrmr_classif(good_poly_data,
                                              np.ravel(labels),
                                              K=20)
        print(selected features)
        uncorr poly data = good poly data[selected features]
        uncorr_poly_sub_data = poly_sub[selected_features]
        100% | 20/20 [00:00<00:00, 50.45it/s]
        ['OverTime JobLevel_1', 'Shift_0 EnvironmentSatisfaction_1', 'DistanceFromH
        ome_Even TrainingTimesLastYear_2', 'JobInvolvement JobSatisfaction', 'OverT
        ime MaritalStatus', 'BusinessTravel_Travel_Rarely Age_Even', 'JobLevel_1 Ma
        ritalStatus_Single', 'OverTime', 'Shift_0 JobInvolvement_1', 'YearsWithCurr
        Manager', 'OverTime EnvironmentSatisfaction_1', 'JobLevel_1 WorkLifeBalance
        _1', 'OverTime^2', 'Age_Even EnvironmentSatisfaction', 'Shift_0 DistanceFro
        mHome_Even', 'JobInvolvement JobLevel_2', 'OverTime TrainingTimesLastYear_
        2', 'YearsInCurrentRole', 'MaritalStatus_Single EnvironmentSatisfaction_1',
        'OverTime JobSatisfaction']
In [ ]: # Generate histograms to check usefulness of features selected
        fin poly data = pd.concat([uncorr poly data, labels], axis=1)
        for c in fin poly data.columns:
            sns.FacetGrid(fin_poly_data,
                          hue="Attrition",
                          height= 5).map(sns.histplot,c).add_legend()
```



```
In []: # save the final poly data
    fin_poly_data = pd.concat([uncorr_poly_data, labels], axis=1)
    fin_poly_data.to_csv("uncorr20_poly_data.csv")
    uncorr_poly_sub_data.to_csv("uncorr20_poly_sub_data.csv")
```