

COLLEGE OF ENGINEERING AND MINES DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

COURSE CODE	EE F102 F01 (CRN: 34544)			
COURSE NAME	INTRODUCTION TO ELECTRICAL AND COMPUTER ENGINEERING			
SEMESTER	SPRING			
YEAR	2022			
TYPE AND NUMBER OF SUBMISSION	HOMEWORK 4			
METHOD OF SUBMISSION	ONLINE TO: maher.albadri@alaska.edu			
DATE OF ASSIGNMENT	E OF ASSIGNMENT THURSDAY 03 FEB 2022			
DUE DATE OF SUBMISSION FRIDAY 11 F.	DUE TIME OF SUBMISSION 23:59			

MAKE THIS FORM A "COVER PAGE" FOR YOUR HOMEWORK SUBMISSION.

FOR THE TA USE ONLY				
REMARKS	 }:			
	-			

FOR THE TA USE ONLY					
PROBLEM NUMBER	MAXIMUM POINTS POSSIBLE	POINTS EARNED			
PROBLEM 1	50				
PROBLEM 2	50				
PROBLEM 3	50				
TOTAL	150				

Problem HW-4-1

For the electric circuit shown with the given information,

- (a) Determine the voltage across R₁. (10)
- (b) Determine the powers P_1 , P_2 , and P_3 , in mW, consumed in resistors R_1 , (15) R_2 , and R_3 respectively.
- (c) Determine the total power, in mW, supplied by the voltage source. (10)
- (d) Determine the values of resistors R_1 , R_2 , and R_3 , in ohms. (15)

Problem HW-4-2

Points Distribution ********

A 30 m long copper conductor has a cross-sectional area of 0.75 cm 2 and its operating temperature is 35 °C.

The temperature coefficient (α) of the copper wire is 0.00393 per °C and the resistivity is 1.723×10⁻⁸ Ω m.

- (a) Determine the total resistance of the conductor, in $m\Omega$. (25)
- (b) Determine the conductor resistance at 140 °F. (25)

*** *** ***

T₁₁=100 °C

(b)

(25)

Points Problem HW-4-3 Distribution ***** A thermistor has the following initial data: B=5500 °K R_{T0} =10.5 $k\Omega$ $T_0 = 29$ °C Determine the resistance, in $k\Omega$, of the thermistor at the following (25)temperatures: T1=-20 °C $T_2 = -15$ °C $T_3 = -10 \, ^{\circ}C$ $T_4=-5$ °C T5=0 °C $T_6=10$ °C T7=20 °C T₈=30 °C T₉=40 °C $T_{10}=50$ °C

*** ***

Plot the resistance values (y-axis) versus temperature (x-axis).