

Johnny Hooyberghs

Quantum Computing Deep Dive

involved

Johnny Hooyberghs

@djohnnieke

github.com/Djohnnie

www.involved-it.be

johnny.hooyberghs@involved-it.be

www.cvoantwerpen.be

Johnny Hooyberghs

What is new in .NET 5 and the future of .NET

- There are still a lot of problems that cannot be solved by computers
- CPU's have their physical limits
- Current classical computing architectures already have issues with unwanted quantum side effects because of their scale
- Why try to simulate a complex quantum world using classical computers?

Superposition and Entanglement

- Quantum mechanics describes superposition and entanglement of quantum particles
- Quantum Computing can use these phenomenon to its advantage

- Security
 - Public/private key encryption?
 - Could make current RSA encryption obsolete
 - QKD (Quantum Key Distribution)

 $3.167 \times 6.301 = 19.955.267$

- Drug development
 - It takes a quantum system to simulate a quantum system
 - Interactions between molecules
 - Gene sequencing
 - Protein folding

- Machine Learning
 - Analyze large quantities of data
 - Fast feedback
 - Emulate human mind

100110)

$$\alpha | 0 \rangle + \beta | 1 \rangle$$

$$\alpha |0\rangle + \beta |1\rangle$$

$$|\alpha|^2 + |\beta|^2 = 1$$

$$\alpha |0\rangle + \beta |1\rangle$$

$$|\alpha|^2 + |\beta|^2 = 1$$

$$\alpha = a + bi$$

$$\beta = c + di$$

$$\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$

- Classical bit 0, Quantum bit |0>
- Classical bit 1, Quantum bit |1>
- Quantum bit in superposition
- $m{lpha}|0
 angle + m{eta}|1
 angle$ where $|m{lpha}|^2 + |m{eta}|^2 = 1$
- α and β are complex numbers (ai + b)
- Value known after measurement
- Collapses to $|0\rangle$ with probability $|\alpha|^2$ or $|1\rangle$ with probability $|\beta|^2$

2 Qubit system (4 values):

$$\alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$$

3 Qubit system (8 values):

$$\alpha|000\rangle + \beta|001\rangle + \gamma|010\rangle + \delta|011\rangle + \varepsilon|100\rangle + \epsilon|110\rangle + \zeta|101\rangle + \eta|111\rangle$$

4 Qubit system (16 values):

•••

X-gate

Y-gate

$$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Z-gate

H-gate

$$\begin{pmatrix} 1 & 1 \\ \overline{\sqrt{2}} & \overline{\sqrt{2}} \\ 1 & 1 \\ \overline{\sqrt{2}} & \overline{\sqrt{2}} \end{pmatrix}$$

CNOT-gate

/1	0	0	$0 \setminus$
0	1	0	0
0	0	0	1 /
/0	0	1	0

IBM Q Experience

https://quantum-computing.ibm.com

Microsoft Q#

https://www.microsoft.com/en-us/quantum/development-kit

Entanglement

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} H \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} CNOT \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} = ?$$

Entanglement

If the product state of two qubits cannot be factored, they are entangled

$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} \otimes \begin{pmatrix} c \\ d \end{pmatrix} \rightarrow \begin{cases} ad = 0 \\ bc = 0 \\ bd = \frac{1}{\sqrt{2}} \end{cases}$$

$$bd = \frac{1}{\sqrt{2}}$$

This set of two qubits has a 50% chance of collapsing to $|00\rangle$ and a 50% chance of collapsing to $|11\rangle$

Teleportation

- Deutch (1985)
 - Is there a problem that a Quantum Computer can solve faster than a Classical Computer?
 - Deterministic!

- Deutsch–Jozsa (1992)
 - Based on Deutch (for 1 bit), but applicable for n-bits
 - Deterministic!

- Grover's algorithm (1996)
 - "Searching a database"
 - Probabilistic!

- Shor's algorithm (1994)
 - Prime factorization of integers
 - Combination of classical and quantum algorithm
 - Probabilistic!

https://github.com/Djohnnie/QuantumComputing-DotNet-DeveloperDays-2020

@DeveloperDaysPL net.developerdays.pl

Thank you, be professional, and have fun out there!

Johnny Hooyberghs

@djohnnieke

github.com/Djohnnie

www.involved-it.be

johnny.hooyberghs@involved-it.be

www.cvoantwerpen.be

Please rate this session using

Whova web portal

Event Sponsors

Demant