
A Formally Specified Program Logic for Higher-Order Procedural Variables and non-local Jumps

arXiv:1112.1848v1 [cs.LO] 8 Dec 2011

Tristan Crolard

December 2011

TR-LACL-2011-5

Laboratory of Algorithmics, Complexity and Logic (LACL)
University Paris-Est Créteil

Technical Report **TR-LACL-2011-5**

Tristan Crolard.

A Formally Specified Program Logic for Higher-Order Procedural Variables and non-local Jumps

© Tristan Crolard, December 2011.

A Formally Specified Program Logic for Higher-Order Procedural Variables and non-local Jumps

T. Crolard

December, 2011

Abstract

We formally specified a program logic for higher-order procedural variables and non-local jumps with Ott and Twelf. Moreover, the dependent type systems and the translation are both executable specifications thanks to Twelf’s logic programming engine. In particular, relying on Filinski’s encoding of **shift/reset** using **callcc/throw** and a global meta-continuation (simulated in state passing style), we have mechanically checked the correctness of a few examples (all source files are available on request).

1 Introduction

We formally specified the formal systems described in [Cro10, CP11] with Ott [SNO⁺07] and the Twelf proof assistant [PS99]. These formal systems are:

- The functional language **F** (which is our formulation of Gödel System T) equipped with two usual type systems, a simple type system **IS** and a dependent type system **ID** which is akin to Leivant’s **M1LP** [Lei90]. In particular, dependent types include arbitrary formulas of first-order arithmetic.
- The imperative language **I** (essentially **LOOP**^ω from [CPV09]) is an extension of Meyer and Ritchie’s Loop language [MR76] with higher-order procedural variables. Language **I** is also equipped with two (unusual) type systems, a pseudo-dynamic simple type system **IS** and a dependent type system **ID**.
- A compositional translation from **I** to **F** is also defined [CPV09] in both the pseudo-dynamic and dependent frameworks.

The main difference from the description given in [CP11] comes from the fact that the dependently-typed programs contain proof annotations and are actually isomorphic to proof derivations (this is required to obtain executable proof checkers from the specification of the dependent type

systems in Twelf). As a simple example of such proof annotations, the dependently-typed imperative procedure for addition is given in Figure 1.

A second minor difference is a consequence of our encoding of first-order quantifiers using Twelf higher-order abstract syntax. Quantified variables have to be dealt with separately, and the elimination rule for the existential quantifier is thus split into a cut rule and a left introduction rule.

Moreover, the type systems and the translation are all executable specifications thanks to Twelf’s logic programming engine. In particular, the imperative counterpart of Filinski’s encoding of shift/reset [DF89, Fil94] described in [CP11] and the examples from [Wad94] have been mechanically checked. The correctness of third example (which requires the more general type system) is shown in full in Figure 2.

In Section 2, we present syntax of **I** and **F**, the functional simple type system **FS** (Section 2.1), the imperative pseudo-dynamic type system **IS** (Section 2.2) and the translation form **IS** to **FS** (Section 2.3). In Section 3, we present syntax of languages **I** and **F** extended with dependent types and proof annotations, the functional dependent type system **FS** (Section 3.1), the pseudo-dynamic imperative dependent type system **ID** (Section 3.2) and the translation form **ID** to **FD** (Section 3.3).

```
cst p_add = proc ∀n∀m[x:nat(n), y:nat(m)] out [z:nat(add(n,m))] {
  z := y :> {i/nat(i)} [add(0, m) = m];
  for l:nat(l) := 0 until x {
    inc(z);
    z := z :> {i/nat(i)} [add(succ(l),m) = succ(add(l,m))];
  }z:nat(add(l,m));
};
```

Figure 1: Dependently-typed addition

```

cst shift = proc [p:proc ([proc ∀n([nat(n), ~A] out [nat(F32(n)), ~A]), ~proc ∀n([nat(n), ~A] out [nat(F32(n)), ~A])]
out [proc ∀n([nat(n), ~A] out [nat(F32(n)), ~A]), ~proc ∀n([nat(n), ~A] out [nat(F32(n)), ~A])], mk2:~proc ∀n([nat(n), ~A] out [nat(F32(n)), ~A]))] {
mk := mk2;
cst reset = proc ∀x[p:proc ([~proc ∀x([nat(F32(x)) out [H, ~H]), mk2:~A] out [r:nat(F32(x)), mk:~A] {
mk := mk2;
k :{
cst m = mk;
mk := proc [r:nat(F32(x))] out [Z:⊥] {
jump(k, r, m)[Z:⊥];
};
var y := *;
p(mk; y, mk);
jump(mk, y)[r:nat(F32(x)), mk:~A];
}[r:nat(F32(x)), mk:~A];
};
k :{
cst q = proc ∀x[v:nat(x), mk2:~A] out [r:nat(F32(x)), mk:~A] {
mk := mk2;
cst anonym = proc [mk2:~nat(F32(x))] out [z:H, mk:~H] {
mk := mk2;
jump(k <: {u/[nat(u), ~nat(F32(u))]}{x}, v, mk)[z:H, mk:~H];
};
reset{x}(anonym, mk; r, mk);
};
var y := *;
p(q, mk; y, mk);
jump(mk, y)[r:nat(0), mk:~nat(F32(0))];
[0 ∈ ∃u[r:nat(u), mk:~nat(F32(u))]];
}∃u[r:nat(u), mk:~nat(F32(u))];?u.
[u ∈ ∃u[r:nat(u), mk:~nat(F32(u))]] ]
};
cst reset = proc [p:proc ([~proc ∀n([nat(n), ~A] out [nat(F32(n)), ~A])] out ∃v[nat(v), ~nat(v)], mk2:~A]
out [r:proc ∀n([nat(n), ~A] out [nat(F32(n)), ~A]), mk:~A] {
mk := mk2;
k :{
cst m = mk;
mk := proc [r:proc ∀n([nat(n), ~A] out [nat(F32(n)), ~A])] out [Z:⊥] {
jump(k, r, m)[Z:⊥];
};
var y := *;
p(mk; y, mk);?v.
jump(mk, y)[r:proc ∀n([nat(n), ~A] out [nat(F32(n)), ~A]), mk:~A];
}[r:proc ∀n([nat(n), ~A] out [nat(F32(n)), ~A]), mk:~A];
];
cst a = proc [mk2:~A] out [z:nat(add(3, 2)), mk:~A] {
cst p_add = proc {x}∀y[X:nat(x), Y:nat(y), mk2:~A] out [Z:nat(add(x, y)), mk:~A] {
mk := mk2;
Z := X >:{var_2/nat(var_2)}[add(x, 0) = x];
for i:nat(i):=0 until Y {
inc(Z);
(>:{var_3}[Z:nat(var_3)][add(x, succ(i)) = succ(add(x, i))]);
}[Z:nat(add(x, i))];
};
cst q = proc [mk2:~proc ∀n([nat(n), ~A] out [nat(F32(n)), ~A])] out ∃v[r:nat(v), mk:~nat(v)] {
mk := mk2;
cst p = proc [f:proc ∀n([nat(n), ~A] out [nat(F32(n)), ~A]), mk2:~proc ∀n([nat(n), ~A] out [nat(F32(n)), ~A])]
out [h:proc ∀n([nat(n), ~A] out [nat(F32(n)), ~A]), mk:~proc ∀n([nat(n), ~A] out [nat(F32(n)), ~A])] {
mk := mk2;
h := f;
};
var b := *;
shift(p, mk; b, mk);?u.
r := 3 >:{var_4/nat(var_4)}[F32(0) = 3];
for i:nat(i):=0 until b {
r := 2 >:{var_5/nat(var_5)}[F32(succ(i)) = 2];
}[r:nat(F32(i))];
[F32(u) ∈ ∃v[r:nat(v), mk:~nat(v)]] ];
};
var mk := mk2;
var g := *;
reset(q, mk; g, mk);
var x := *;
g{0}(), mk; x, mk);
var y := *;
g{1}(), mk; y, mk);
p_add{3}{2}(x >:{var_6/nat(var_6)}[3 = F32(0)], y >:{var_7/nat(var_7)}[2 = F32(1)], mk; z, mk);
};

```

Figure 2: Dependently-typed example with shift/reset (imperative version of example 3 from [Wad94])

2 Grammars and judgments for FS and IS

$ident, x, y, z$::=	variable:
		$variable$
$idents, \vec{x}, \vec{y}, \vec{z}$::=	variables:
		$\$$
		\vec{x}, x
		x
		(\vec{x})
$fenv, \Sigma$::=	Environments:
		{}
		#
		$\Sigma, x : \tau$
$terms, \vec{t}, \vec{u}$::=	Variables:
		\vec{t}, t
		t
		(\vec{t})
$term, t, u$::=	Term:
		x
		var
		0
		zero
		$t_1 t_2$
		application
		$\mathbf{fn} x : \tau \Rightarrow t$
		abstraction
		$\mathbf{fn} (\vec{x} : \vec{\tau}) \Rightarrow t$
		multi-abstraction
		$\mathbf{succ}(t)$
		successor
		$\mathbf{pred}(t)$
		predecessor
		$\mathbf{rec}(t_1, t_2, t_3)$
		recursor
		$\mathbf{let} x = t_1 \mathbf{in} t_2$
		let
		$\mathbf{let} \langle \vec{x} \rangle = t_1 \mathbf{in} t_2$
		match
		$\langle \vec{t} \rangle$
		tuple
		(t)
		S
typ, τ	::=	Type:
		\top
		unit
		\perp
		void
		nat
		nat
		$\tau \rightarrow \tau'$
		imply
		$\sim \tau$
		not
		$\langle \vec{\tau} \rangle$
		tuple
		(τ)
		S
$typs, \vec{\tau}$::=	Types:
		$\vec{\tau}, \tau$
		τ
		$(\vec{\tau})$
		S
$env, \Gamma, \Omega, \gamma, \omega$::=	Environments:
		empty environment

	$\Gamma, x : \tau$	ident declaration
	$x : \tau$	S ident declaration
	(Γ)	S
b	$::=$	block:
	$\{s\}_\omega$	block
$command, c$	$::=$	command:
	b	block
	for $y := 0$ until $e b$	for
	$y := e$	assign
	inc (y)	inc
	dec (y)	dec
	$e(\vec{e}; \vec{y})$	call
$sequence, s$	$::=$	sequence:
	ε	empty sequence
	S	empty sequence
	$c; s$	command
	cst $y = e; s$	constant
	var $y := e; s$	variable
	var $y; s$	S variable
	(s)	S
$number, q$	$::=$	number:
	0	zero
	1	S
	2	S
	3	S
	4	S
	5	S
	succ (q)	successor
$expression, e, p$	$::=$	expression:
	x	variable
	\star	star
	q	number
	proc $[\gamma]$ out $[\omega]\{s\}$	procedure
$expressions, \vec{e}$	$::=$	expressions:
	\vec{e}, e	
	e	S
	(\vec{e})	S
$prop, \tau, \sigma$	$::=$	proposition:
	\top	unit
	nat	nat
	proc $([\vec{\tau}]$ out $[\vec{\tau}'])$	proc
	(τ)	S
$props, \vec{\tau}, \vec{\sigma}$	$::=$	propositions:
	$\vec{\tau}, \tau$	
	τ	S
	$(\vec{\tau})$	S
$primitives$	$::=$	

f_typing	::=	
	$\tau = \tau'$	Formulas equality
	$t = t'$	Terms equality
	$x : \tau \in \Sigma$	Lookup
	$\Sigma \vdash t : \tau$	Type check
	$\Sigma, \vec{x} : \vec{\tau} = \Sigma'$	Append
	$\Sigma, \langle \vec{x} \rangle : \tau \vdash t : \tau'$	Type check term in extended environment
	$\Sigma \vdash (t) : (\vec{\tau})$	Type check terms
$typing$::=	
	$\tau = \tau'$	Propositions equality
	$x : \tau \in \Gamma$	Lookup ident
	$\vec{x} : \vec{\tau} \subset \Gamma$	Lookup idents
	$\Omega[x : \tau] = \Omega'$	Update
	$\Omega[\vec{x} : \vec{\tau}] = \Omega'$	Multi-update
	$\Gamma, \gamma = \Gamma'$	Append
	$\omega \subset \Omega$	Subset
	$\Omega_{ \vec{x}} = \omega$	Restriction
	$\Omega = \vec{x} : \vec{\tau}$	Split
	$\vec{x} : \vec{\tau} = \omega$	Init
	$\Gamma; \Omega \vdash e : \tau$	Typecheck expression
	$\Gamma; \Omega \vdash (\vec{e}) : (\vec{\tau})$	Typecheck expressions
	$\Gamma; \Omega \vdash s \triangleright \Omega'$	Typecheck sequence
$translation$::=	
	$(\tau)^* = \tau$	Types translation
	$(\vec{\tau})^* = (\vec{\tau})$	Types translation
	$(\vec{x})^* = \vec{t}$	Sequence translation
	$q^* = t$	Number translation
	$(e)^* = t$	Expression translation
	$(\vec{e})^* = \vec{t}$	Expressions translation
	$(s)_{ \vec{x}}^* = t$	Sequence translation
$judgement$::=	
	<i>primitives</i>	
	f_typing	
	$typing$	
	$translation$	

2.1 Functional simple type system FS

Formulas equality

$$\overline{\tau = \tau}$$

(FORM_EQ_REFL)

Terms equality

$$\overline{t = t}$$

(TERM_EQ_REFL)

Lookup

$$\overline{x : \tau \in \Sigma, x : \tau}$$

(F_LOOKUP_I)

$$\frac{x \neq y \quad x : \tau \in \Sigma}{x : \tau \in \Sigma, y : \tau'}$$

(F_LOOKUP_II)

Type check

$$\frac{}{\Sigma \vdash x : \tau}$$

(TC_VAR)

$$\overline{\Sigma \vdash 0 : \text{nat}}$$

(TC_ZERO)

$$\frac{\Sigma \vdash t : \text{nat}}{\Sigma \vdash \text{succ}(t) : \text{nat}}$$

(TC_SUCC)

$$\frac{\Sigma \vdash t : \text{nat}}{\Sigma \vdash \text{pred}(t) : \text{nat}}$$

(TC_PRED)

$$\frac{\Sigma, x : \tau \vdash t : \tau'}{\Sigma \vdash \text{fn } x : \tau \Rightarrow t : \tau \rightarrow \tau'}$$

(TC_LAM)

$$\frac{\Sigma \vdash t_1 : \tau \rightarrow \tau' \quad \Sigma \vdash t_2 : \tau}{\Sigma \vdash t_1 t_2 : \tau'}$$

(TC_APP)

$$\frac{\Sigma \vdash t_1 : \text{nat} \quad \Sigma \vdash t_2 : \tau \quad \Sigma \vdash t_3 : \text{nat} \rightarrow (\tau \rightarrow \tau)}{\Sigma \vdash \text{rec}(t_1, t_2, t_3) : \tau}$$

(TC_REC)

$$\frac{\Sigma \vdash (\vec{t}) : (\vec{\tau})}{\Sigma \vdash \langle \vec{t} \rangle : \langle \vec{\tau} \rangle}$$

(TC_TUPLE)

$$\frac{\Sigma \vdash t_1 : \tau \quad \Sigma, y : \tau \vdash t_2 : \tau'}{\Sigma \vdash \text{let } y = t_1 \text{ in } t_2 : \tau'}$$

(TC LET)

$$\frac{\Sigma \vdash t_1 : \tau \quad \Sigma, \langle \vec{x} \rangle : \tau \vdash t_2 : \tau'}{\Sigma \vdash \text{let } \langle \vec{x} \rangle = t_1 \text{ in } t_2 : \tau'}$$

(TC_MATCH)

Append

$$\overline{\Sigma, () : () = \Sigma}$$

(APP_I)

$$\frac{\Sigma, \vec{x} : \vec{\tau} = \Sigma'}{\Sigma, (\vec{x}, x) : (\vec{\tau}, \tau) = \Sigma', x : \tau}$$

(APP_II)

Type check term in extended environment

$$\overline{\Sigma, \langle \vec{x} \rangle : \tau \vdash t : \tau'}$$

$$\frac{\Sigma, \vec{x} : \vec{\tau} = \Sigma' \quad \Sigma' \vdash t : \tau'}{\Sigma, \langle \vec{x} \rangle : \langle \vec{\tau} \rangle \vdash t : \tau'} \quad (\text{TCTE_PRODUCT})$$

Type check terms

$$\boxed{\Sigma \vdash (\vec{t}) : (\vec{\tau})}$$

$$\Sigma \vdash () : ()$$

$$(\text{TCTS_EMPTY})$$

$$\frac{\Sigma \vdash t : \tau \quad \Sigma \vdash (\vec{t}) : (\vec{\tau})}{\Sigma \vdash (\vec{t}, t) : (\vec{\tau}, \tau)} \quad (\text{TCTS_CONS})$$

2.2 Imperative simple type system IS

Propositions equality

$$\overline{\tau = \tau}$$

(PROP_EQ_ID)

Lookup ident

$$\overline{x : \tau \in \Gamma, x : \tau}$$

(LOOKUP_I)

$$\frac{x \neq x' \quad x : \tau \in \Gamma}{x : \tau \in \Gamma, x' : \tau'}$$

(LOOKUP_II)

Lookup idents

$$\boxed{\vec{x} : \vec{\tau} \subset \Gamma}$$

$$\overline{() : () \subset \Gamma}$$

(LOOKUP_IDENTS_I)

$$\frac{x : \tau \in \Gamma \quad \vec{x} : \vec{\tau} \subset \Gamma}{\vec{x}, x : \vec{\tau}, \tau \subset \Gamma}$$

(LOOKUP_IDENTS_II)

Update

$$\boxed{\Omega[x : \tau] = \Omega'}$$

$$\overline{(\Omega, x : \tau')[x : \tau] = (\Omega, x : \tau)}$$

(UPDATE_I)

$$\frac{x \neq x' \quad \Omega[x : \tau] = \Omega'}{(\Omega, x' : \tau')[x : \tau] = (\Omega', x' : \tau')}$$

(UPDATE_II)

Multi-update

$$\boxed{\Omega[\vec{x} : \vec{\tau}] = \Omega'}$$

$$\overline{\Omega[() : ()] = \Omega}$$

(MULTI_UPDATE_I)

$$\frac{\Omega[\vec{x} : \vec{\tau}] = \Omega' \quad \Omega'[x : \tau] = \Omega''}{\Omega[\vec{x}, x : \vec{\tau}, \tau] = \Omega''}$$

(MULTI_UPDATE_II)

Append

$$\boxed{\Gamma, \gamma = \Gamma'}$$

$$\overline{\Gamma, () = \Gamma}$$

(APPEND_I)

$$\frac{\Gamma, \gamma = \Gamma'}{\Gamma, (\gamma, x : \tau) = \Gamma', x : \tau}$$

(APPEND_II)

Subset

$$\boxed{\omega \subset \Omega}$$

$$\overline{() \subset \Omega}$$

(TC_SUBSET_I)

$$\frac{\omega \subset \Omega \quad x : \tau \in \Omega}{(\omega, x : \tau) \subset \Omega}$$

(TC_SUBSET_II)

Restriction

$$\boxed{\Omega_{|\vec{x}} = \omega}$$

$$\overline{\Omega_{|()} = ()}$$

(TC_RESTRICT_I)

$$\frac{\Omega_{|\vec{x}} = \omega \quad y : \tau \in \Omega}{\Omega_{|\vec{x}, y} = (\omega, y : \tau)}$$

(TC_RESTRICT_II)

Split

$$\boxed{\Omega = \vec{x} : \vec{\tau}}$$

$$\overline{() = () : ()}$$

(TC_SPLIT_I)

$$\frac{\Omega = \vec{x} : \vec{\tau}}{(\Omega, x : \tau) = (\vec{x}, x) : (\vec{\tau}, \tau)}$$

(TC_SPLIT_II)

Init

$$\boxed{\vec{x} : \vec{\top} = \omega}$$

$$\overline{() : \vec{\top} = ()}$$

(TC_INIT_I)

$$\frac{\vec{x} : \vec{\top} = \omega}{(\vec{x}, y) : \vec{\top} = (\omega, y : \top)}$$

(TC_INIT_II)

Typecheck expression

$$\frac{x : \tau \in \Gamma}{\Gamma ; \Omega \vdash x : \tau}$$

(T_ENV_I)

$$\frac{x : \tau \in \Omega}{\Gamma ; \Omega \vdash x : \tau}$$

(T_ENV_II)

$$\overline{\Gamma ; \Omega \vdash \star : \top}$$

(T_UNIT)

$$\overline{\Gamma ; \Omega \vdash q : \mathbf{nat}}$$

(T_NUM)

$$\frac{\gamma = \vec{y} : \vec{\sigma} \quad \omega = \vec{z} : \vec{\tau} \quad \vec{z} : \vec{\top} = \omega' \quad \Gamma, \gamma = \Gamma' \quad \Gamma' ; \omega' \vdash s \triangleright \omega}{\Gamma ; \Omega \vdash \mathbf{proc}[\gamma] \mathbf{out}[\omega]\{s\} : \mathbf{proc}([\vec{\sigma}] \mathbf{out}[\vec{\tau}])}$$

(T_PROC)

Typecheck expressions

$$\boxed{\Gamma ; \Omega \vdash (\vec{e}) : (\vec{\tau})}$$

$$\overline{\Gamma ; \Omega \vdash () : ()}$$

(T_EXPS_I)

$$\frac{\Gamma ; \Omega \vdash (\vec{e}) : (\vec{\tau}) \quad \Gamma ; \Omega \vdash e : \tau}{\Gamma ; \Omega \vdash (\vec{e}, e) : (\vec{\tau}, \tau)}$$

(T_EXPS_II)

Typecheck sequence

$$\boxed{\Gamma ; \Omega \vdash s \triangleright \Omega'}$$

$$\overline{\Gamma ; \Omega \vdash \varepsilon \triangleright \Omega}$$

(T_EMPTY)

$$\frac{\Gamma ; \Omega \vdash e : \tau \quad \Gamma, y : \tau ; \Omega \vdash s \triangleright \Omega'}{\Gamma ; \Omega \vdash \mathbf{cst}\, y = e ; s \triangleright \Omega'}$$

(T_CST)

$$\frac{\Gamma ; \Omega \vdash e : \tau \quad \Gamma ; \Omega, y : \tau \vdash s \triangleright \Omega', y : \tau'}{\Gamma ; \Omega \vdash \mathbf{var}\, y := e ; s \triangleright \Omega'}$$

(T_VAR)

$$\frac{\omega \subset \Omega \quad \omega = \vec{x} : \vec{\sigma} \quad \Gamma ; \omega \vdash s \triangleright \omega' \quad \omega' = \vec{x} : \vec{\tau} \quad \Omega \llbracket \vec{x} : \vec{\tau} \rrbracket = \Omega' \quad \Gamma ; \Omega' \vdash s' \triangleright \Omega''}{\Gamma ; \Omega \vdash \{s\}_\omega ; s' \triangleright \Omega''}$$

(T_BLOCK)

$$\frac{y : \mathbf{nat} \in \Omega \quad \Gamma ; \Omega \vdash s \triangleright \Omega'}{\Gamma ; \Omega \vdash \mathbf{inc}\,(y) ; s \triangleright \Omega'}$$

(T_INC)

$$\frac{y : \mathbf{nat} \in \Omega \quad \Gamma; \Omega \vdash s \triangleright \Omega'}{\Gamma; \Omega \vdash \mathbf{dec}(y); s \triangleright \Omega'} \quad (\text{T_DEC})$$

$$\frac{y : \tau \in \Omega \quad \Gamma; \Omega \vdash e : \tau' \quad \Omega[y : \tau'] = \Omega' \quad \Gamma; \Omega' \vdash s \triangleright \Omega''}{\Gamma; \Omega \vdash y := e; s \triangleright \Omega''} \quad (\text{T_ASSIGN})$$

$$\frac{\omega \subset \Omega \quad \Gamma; \Omega \vdash e : \mathbf{nat} \quad \Gamma, y : \mathbf{nat}; \omega \vdash s \triangleright \omega \quad \Gamma; \Omega \vdash s' \triangleright \Omega'}{\Gamma; \Omega \vdash \mathbf{for} y := 0 \mathbf{until} e \{s\}_\omega; s' \triangleright \Omega'} \quad (\text{T_FOR})$$

$$\frac{\Gamma; \Omega \vdash p : \mathbf{proc}([\vec{\sigma}] \mathbf{out}[\vec{\tau}]) \quad \Gamma; \Omega \vdash (\vec{e}) : (\vec{\sigma}) \quad \Omega[\vec{z} : \vec{\tau}] = \Omega' \quad \Gamma; \Omega' \vdash s \triangleright \Omega''}{\Gamma; \Omega \vdash p(\vec{e}; \vec{z}); s \triangleright \Omega''} \quad (\text{T_CALL})$$

2.3 Translation from IS to FS

Types translation

$$(\tau)^* = \tau$$

$$\overline{(\text{nat})^* = \text{nat}}$$

$$(\text{TR_TYPE_1})$$

$$\overline{(\top)^* = \top}$$

$$(\text{TR_TYPE_2})$$

$$\frac{(\vec{\tau})^* = (\vec{\tau}) \quad (\vec{\tau}')^* = (\vec{\tau}')} {(\text{proc } ([\vec{\tau}] \text{ out } [\vec{\tau}']))^* = \langle \vec{\tau} \rangle \rightarrow \langle \vec{\tau}' \rangle}$$

$$(\text{TR_TYPE_3})$$

Types translation

$$(\vec{\tau})^* = (\vec{\tau})$$

$$\overline{()^* = ()}$$

$$(\text{TR_TYPES_1})$$

$$\frac{(\vec{\tau})^* = (\vec{\tau}) \quad (\tau)^* = \tau} {(\vec{\tau}, \tau)^* = (\vec{\tau}, \tau)}$$

$$(\text{TR_TYPES_2})$$

Sequence translation

$$(\vec{x})^* = \vec{t}$$

$$\overline{()^* = ()}$$

$$(\text{TR_IDENTS_1})$$

$$\frac{(\vec{x})^* = \vec{t}} {(\vec{x}, x)^* = (\vec{t}, x)}$$

$$(\text{TR_IDENTS_2})$$

Number translation

$$q^* = t$$

$$\overline{0^* = 0}$$

$$(\text{TR_NUM_1})$$

$$\frac{q^* = t} {\text{succ}(q)^* = \text{succ}(t)}$$

$$(\text{TR_NUM_2})$$

Expression translation

$$(e)^* = t$$

$$\frac{q^* = t} {(q)^* = t}$$

$$(\text{TR_EXP_1})$$

$$\overline{(x)^* = x}$$

$$(\text{TR_EXP_2})$$

$$\overline{(\star)^* = \langle \rangle}$$

$$(\text{TR_EXP_3})$$

$$\frac{\omega = \vec{z} : \vec{\tau} \quad (s)_{\vec{z}}^* = t \quad \gamma = \vec{x} : \vec{\sigma} \quad (\vec{\sigma})^* = (\vec{\tau})} {(\text{proc } [\gamma] \text{ out } [\omega] \{ s \})^* = \text{fn}(\vec{x} : \vec{\tau}) \Rightarrow t}$$

$$(\text{TR_EXP_4})$$

Expressions translation

$$(\vec{e})^* = \vec{t}$$

$$\overline{()^* = }$$

$$(\text{TR_EXPS_I})$$

$$\frac{(\vec{e})^* = \vec{t} \quad (e)^* = t} {(\vec{e}, e)^* = \vec{t}, t}$$

$$(\text{TR_EXPS_II})$$

Sequence translation

$$(s)_{\vec{x}}^* = t$$

$$\frac{(\vec{x})^* = \vec{t}}{()_{\vec{x}}^* = \langle \vec{t} \rangle} \quad (\text{TR_SEQ_1})$$

$$\frac{(e)^* = t \quad (s)_{\vec{x}}^* = t'}{(\mathbf{var}\, x := e; s)_{\vec{x}}^* = \mathbf{let}\, x = t \, \mathbf{in}\, t'} \quad (\text{TR_SEQ_2})$$

$$\frac{(e)^* = t \quad (s)_{\vec{x}}^* = t'}{(\mathbf{cst}\, x = e; s)_{\vec{x}}^* = \mathbf{let}\, x = t \, \mathbf{in}\, t'} \quad (\text{TR_SEQ_3})$$

$$\frac{(e)^* = t \quad (s)_{\vec{x}}^* = t'}{(x := e; s)_{\vec{x}}^* = \mathbf{let}\, x = t \, \mathbf{in}\, t'} \quad (\text{TR_SEQ_4})$$

$$\frac{(s)_{\vec{x}}^* = t}{(\mathbf{inc}\, (x); s)_{\vec{x}}^* = \mathbf{let}\, x = \mathbf{succ}\, (x) \, \mathbf{in}\, t} \quad (\text{TR_SEQ_5})$$

$$\frac{(s)_{\vec{x}}^* = t}{(\mathbf{dec}\, (x); s)_{\vec{x}}^* = \mathbf{let}\, x = \mathbf{pred}\, (x) \, \mathbf{in}\, t} \quad (\text{TR_SEQ_6})$$

$$\frac{(e)^* = t \quad (\vec{e})^* = \vec{u} \quad (s)_{\vec{x}}^* = t'}{(e(\vec{e}; \vec{z}); s)_{\vec{x}}^* = \mathbf{let}\, \langle \vec{z} \rangle = t \, \langle \vec{u} \rangle \, \mathbf{in}\, t'} \quad (\text{TR_SEQ_7})$$

$$\frac{\omega = \vec{z} : \vec{\sigma} \quad (s_1)_{\vec{z}}^* = t_1 \quad (s_2)_{\vec{x}}^* = t_2}{(\{s_1\}_{\omega}; s_2)_{\vec{x}}^* = \mathbf{let}\, \langle \vec{z} \rangle = t_1 \, \mathbf{in}\, t_2} \quad (\text{TR_SEQ_8})$$

$$\frac{\omega = \vec{z} : \vec{\sigma} \quad (\vec{z})^* = \vec{u} \quad (\vec{\sigma})^* = (\vec{\tau}) \quad (e)^* = t_0 \quad (s_1)_{\vec{z}}^* = t_1 \quad (s_2)_{\vec{x}}^* = t_2}{(\mathbf{for}\, y := 0 \, \mathbf{until}\, e \, \{s_1\}_{\omega}; s_2)_{\vec{x}}^* = \mathbf{let}\, \langle \vec{z} \rangle = \mathbf{rec}\, (t_0, \langle \vec{u} \rangle, \mathbf{fn}\, y : \mathbf{nat} \Rightarrow \mathbf{fn}\, (\vec{z} : \vec{\tau}) \Rightarrow t_1) \, \mathbf{in}\, t_2} \quad (\text{TR_SEQ_9})$$

3 Grammars and judgments for FD and ID

<i>ident</i> , x, y, z	::=	variable:
		<i>variable</i>
<i>idents</i> , $\vec{x}, \vec{y}, \vec{z}$::=	variables:
		\vec{x}, x
		x
		(\vec{x})
		S
<i>fenv</i> , Σ	::=	Environments:
		{}
		$\Sigma, x : \varphi$
		empty environment
		ident declaration
<i>terms</i> , \vec{t}, \vec{u}	::=	variables:
		S
		\vec{t}, t
		t_1, t_2
		(\vec{t})
		S
<i>term</i> , t, u	::=	term:
		x
		var
		0
		zero
		1
		S
		2
		S
		3
		S
		4
		S
		5
		S
		$t_1 t_2$
		application
		$\text{fn } x : \varphi \Rightarrow t$
		abstraction
		$\text{fn } (\vec{x} : \vec{\varphi}) \Rightarrow t$
		multi-abstraction
		$t[i]$
		meta-application
		$\lambda n.t$
		generalization
		$?n.t$
		any
		$t\{i\}$
		instance
		$\text{succ}(t)$
		successor
		$\text{pred}(t)$
		predecessor
		$\text{rec}(t_1, t_2, t_3)$
		recursor
		$\text{let } x = t_1 \text{ in } t_2$
		let
		$i_1 = i_2$
		axiom
		$t :> \varphi[t']$
		S
		subst
		$\langle i, t : \varphi \rangle$
		witness
		$\langle \vec{t} \rangle$
		tuple
		$\langle t \rangle$
		degenerated tuple
		$\text{let } \langle \vec{x} \rangle = t_1 \text{ in } t_2$
		match
		$\text{throw}_\varphi t_1 t_2$
		throw
		$\text{callcc } t$
		callcc
		(t)
		S
<i>form</i> , φ	::=	formula:
		x
		var
		\top
		true
		\perp
		false

	nat (<i>i</i>)	nat
	<i>i</i> = <i>i'</i>	equals
	$\varphi \rightarrow \varphi'$	imply
	$\neg \varphi$	not
	$\forall n \varphi$	forall
	$\exists n \varphi$	exists
	$\varphi[i]$	meta-application
	$\{n/\varphi\}$	meta-abstraction
	$\varphi[x = i]$	meta-substitution
	$\langle \vec{\varphi} \rangle$	tuple
	(φ)	S
<i>forms</i> , $\vec{\varphi}$::=	formulas:
		S
	φ	S
	$\vec{\varphi}, \varphi$	S
	$\vec{\varphi}[i]$	S meta-application
	$(\vec{\varphi})$	S
<i>absterm</i> , <i>t</i>	::=	Parametrized term:
	$n \mapsto t$	S
<i>absforms</i> , $\vec{\varphi}$::=	Parametrized formulas:
	$n \mapsto \vec{\varphi}$	S
<i>ind</i> , <i>i</i>	::=	individuals:
	0	zero
	1	S
	2	S
	3	S
	4	S
	5	S
	$\text{succ}(i)$	successor
	$\text{pred}(i)$	predecessor
	$\text{add}(i_1, i_2)$	addition
	$\text{sub}(i_1, i_2)$	subtraction
	$\text{mult}(i_1, i_2)$	multiplication
	$F_{32}(i)$	F32
	<i>n</i>	S variable
<i>env</i> , Γ , Ω , γ , ω	::=	Environment:
		empty environment
	$\Gamma, x : \psi$	ident declaration
	$x : \psi$	S ident declaration
	$\Gamma[i]$	S meta-application
	$\{n/\Gamma\}$	S meta-abstraction
	$\Gamma[n = i]$	S meta-substitution
	(Γ)	S
<i>absenv</i> , θ	::=	Parametrized existentially quantified environments:
	$n \mapsto \Gamma$	S
<i>qenv</i> , Θ , θ	::=	Existentially quantified environments:
	$[\Omega]$	simple
	$\exists n \Theta$	S binder
	$\Theta[i]$	S meta-application
	(Θ)	S

$absqenv, \theta$::=	$\{x/\Theta\}$	S	Parametrized existentially quantified environments:
$command, c$::=	<ul style="list-style-type: none"> $\{s\}_\theta$ $\text{for } y : \mathbf{nat} (n) := 0 \text{ until } e\{s\}[\omega]$ $\text{for } y : \mathbf{nat}(n) := 0 \text{ until } e\{s\}_\omega$ $y := e$ $\text{inc}(y)$ $\text{dec}(y)$ $e(\vec{e}; \vec{y})$ $\text{jump}(e, \vec{e})_\theta$ $y : \{s\}_\theta$ 	S S S S S S S S S	Command: block for for assign inc dec call jump label
$sequence, s$::=	<ul style="list-style-type: none"> ε $c; s$ $\text{cst } y = e; s$ $\text{var } y := e; s$ $\text{var } y; s$ $s[i]$ $?n.s$ $[i \in \theta]s$ $s :> \theta[e]$ (s) 	S S S S S S S S S	Sequence: implicit empty sequence explicit empty sequence command constant variable variable meta-application abstraction witness subst
$body, b$::=	<ul style="list-style-type: none"> $n \mapsto s$ 	S	Parametrized sequence: meta-abstraction
$number, q$::=	<ul style="list-style-type: none"> 0 1 2 3 4 5 $\mathbf{s}(q)$ 	S S S S S S	Number: zero successor
$expression, e$::=	<ul style="list-style-type: none"> x \star q $e[i]$ $e\{i\}$ $e <: \vec{\phi}\{i\}$ $e :> \vec{\psi}[e']$ $i_1 = i_2$ $\mathbf{proc } h$ 	S S S S S S S S S	Expression: variable star number meta-application procedure instance continuation instance subst axiom procedure
$header, h$::=	<ul style="list-style-type: none"> $[\gamma] \mathbf{out } \theta\{s\}$ $h[i]$ $\forall n h$ 	S S S	Header: parameters meta-application generalization
$expressions, \vec{e}$::=	<ul style="list-style-type: none"> \vec{e}, e 	S S	Expressions:

	e	S
	(\vec{e})	S
$prop, \psi, \rho$	$::=$	Dependent type: var equality true \top \perp \bot $\text{nat}(i)$ $\text{proc } \rho$ $\sim \vec{\psi}$ $\psi[i]$ (ψ)
		S true S false S nat S proc S meta-application
$absprop, \vec{\psi}$	$::=$	Parametrized dependent type: $\{n/\psi\}$
		S
$props, \vec{\psi}, \vec{\rho}$	$::=$	Dependent types: $\vec{\psi}, \psi$ ψ $\vec{\psi}[i]$ $(\vec{\psi})$
		S S S meta-application
$absprops, \vec{\psi}$	$::=$	Parametrized dependent types: $n \mapsto \vec{\psi}$
		S
$output, \phi$	$::=$	Existentially quantified dependent type: $[\vec{\psi}]$ $\exists n \phi$ $\phi[i]$ (ϕ)
		S S S meta-application
$absoutput, \vec{\phi}$	$::=$	Parametrized existentially quantified dependent type: $\{n/\phi\}$
		S
$prototype, \rho$	$::=$	Universally quantified prototype: $([\vec{\psi}] \text{ out } \phi)$ $\forall n \rho$ $\rho[i]$ $\{n/\rho\}$
		S S S meta-abstraction
$primitives$	$::=$	
$axiomes$	$::=$	Axioms $\vdash i = i'$
f_typing	$::=$	Formulas equality $x : \varphi \in \Sigma$ $\Sigma \vdash t : \varphi$ $\Sigma \vdash (\vec{t}) : (\vec{\varphi})$ $\Sigma, \vec{x} : \vec{\varphi} = \Sigma'$ $\Sigma, \langle \vec{x} \rangle : \varphi \vdash t : \varphi'$ Lookup Type check term Type check terms Append environments Type check term in extended environment

<i>typing</i>	::=	
	$\psi = \psi'$	Formula equality
	$\gamma = \gamma'$	Environment equality
	$x : \psi \in \Gamma$	Lookup ident
	$x \notin \Gamma$	Not in environment
	$y \notin \Theta$	Not in quantified environment
	$y \in \Theta$	Lookup ident
	$\vec{x} : \vec{\psi} \subset \Gamma$	Lookup idents
	$\Omega[x : \psi] = \Omega'$	Update
	$\Omega[\vec{x} : \vec{\psi}] = \Omega'$	Multi-update
	$\Gamma; \Omega[x : \psi] \vdash s \triangleright \Theta$	Type check with updated environment
	$\Gamma; \Omega[\vec{x} : \vec{\psi}] \vdash s \triangleright \Theta$	Type check with updated environment
	$\Gamma; \Omega[\omega] \vdash s \triangleright \Theta$	Type check with updated environment
	$\Gamma, \gamma = \Gamma'$	Append
	$\omega \subset \Omega$	Subset
	$\Omega_{ \vec{x}} = \omega$	Restriction
	$\Omega = \vec{x} : \vec{\psi}$	Split
	$\Theta = \vec{x} : \phi$	Split quantified environment
	$\Omega \Leftarrow \vec{x} : \vec{\psi}$	Zip
	$\Theta \Leftarrow \vec{x} : \phi$	Zip quantified environment
	$\vec{x} : \psi = \omega$	Init
	$\Gamma; \Omega \vdash e : \psi$	Typecheck expression
	$\Gamma; \Omega \vdash (\vec{e}) : (\vec{\psi})$	Typecheck expressions
	$\sim \phi = \psi$	Defined negation
	$\Gamma; \Omega \vdash s \triangleright \Theta$	Typecheck sequence
	$\Gamma; \Omega[\Theta] \vdash s \triangleright \Theta'$	Typecheck sequence with updated environment
<i>translation</i>	::=	
	$\psi^* = \varphi$	Type translation
	$(\vec{\psi})^* = (\vec{\varphi})$	Types translation
	$(\gamma)^* = (\vec{x}) : (\vec{\varphi})$	Environment translation
	$(\theta)^* = \vec{z} : \vec{\varphi}$	Parametrized environment translation
	$(\vec{\psi})^* = \varphi$	Parametrized type translation
	$(\vec{\psi})^* = (\vec{\varphi})$	Parametrized types translation
	$(\phi)^* = \varphi$	Quantified types translation
	$(\theta)^* = \langle \vec{x} \rangle : \varphi$	Quantified types translation
	$(\rho)^* = \varphi$	Prototype translation
	$(\vec{x})^* = \vec{t}$	Idents translation
	$q^* = t$	Number translation
	$(h)^* = t$	Header translation
	$(e)^* = t$	Expression translation
	$(\vec{e})^* = (\vec{t})$	Expressions translation
	$(s)_{ \vec{x}}^* = t$	Sequence translation
	$(b)_{ \vec{x}}^* = t$	Loop body translation
<i>judgement</i>	::=	
	<i>primitives</i>	
	<i>axioms</i>	
	<i>f_typing</i>	
	<i>typing</i>	
	<i>translation</i>	

Axioms

Axioms

$$\boxed{\vdash i = i'}$$

$$\overline{\vdash i = i}$$

(AX_REFL)

$$\overline{\vdash \text{pred}(0) = 0}$$

(AX_PRED_0)

$$\boxed{\vdash \text{pred}(\text{succ}(i)) = i} \quad (\text{AX_PRED_S})$$

$$\boxed{\vdash \text{add}(0, i') = i'} \quad (\text{AX_ADD_0})$$

$$\boxed{\vdash \text{add}(\text{succ}(i), i') = \text{succ}(\text{add}(i, i'))} \quad (\text{AX_ADD_S})$$

$$\boxed{\vdash \text{add}(i', 0) = i'} \quad (\text{AX_ADD2_0})$$

$$\boxed{\vdash \text{add}(i', \text{succ}(i)) = \text{succ}(\text{add}(i', i))} \quad (\text{AX_ADD2_S})$$

$$\boxed{\vdash \text{mult}(0, i') = i'} \quad (\text{AX_MULT_0})$$

$$\boxed{\vdash \text{mult}(\text{succ}(i), i') = \text{add}(\text{mult}(i, i'), i')} \quad (\text{AX_MULT_S})$$

$$\boxed{\vdash F_{32}(0) = 3} \quad (\text{AX_F32_0})$$

$$\boxed{\vdash F_{32}(\text{succ}(i)) = 2} \quad (\text{AX_F32_S})$$

3.1 Functional dependent type system FD

Formulas equality

$$\boxed{\varphi = \varphi'}$$

$$\overline{\varphi = \varphi}$$

(FORM_EQ_I)

Lookup

$$\boxed{x : \varphi \in \Sigma}$$

$$\overline{x : \varphi \in \Sigma, x : \varphi}$$

(F_LOOKUP_I)

$$\frac{x \neq y \quad x : \varphi \in \Sigma}{x : \varphi \in \Sigma, y : \varphi'}$$

(F_LOOKUP_II)

Type check term

$$\boxed{\Sigma \vdash t : \varphi}$$

$$\frac{x : \varphi \in \Sigma}{\Sigma \vdash x : \varphi}$$

(TC_VAR)

$$\overline{\Sigma \vdash 0 : \mathbf{nat}(0)}$$

(TC_ZERO)

$$\frac{\Sigma \vdash t : \mathbf{nat}(i)}{\Sigma \vdash \mathbf{succ}(t) : \mathbf{nat}(\mathit{succ}(i))}$$

(TC_SUCC)

$$\frac{\Sigma, x : \varphi \vdash t : \varphi'}{\Sigma \vdash \mathbf{fn} x : \varphi \Rightarrow t : \varphi \rightarrow \varphi'}$$

(TC_LAM)

$$\frac{\Sigma \vdash t_1 : \varphi \rightarrow \varphi' \quad \Sigma \vdash t_2 : \varphi}{\Sigma \vdash t_1 t_2 : \varphi'}$$

(TC_APP)

$$\frac{\forall I \cdot \Sigma \vdash t[I] : \varphi[I]}{\Sigma \vdash \lambda n. t[n] : \forall n \varphi[n]}$$

(TC_FORALL_I)

$$\frac{\Sigma \vdash t : \forall n \varphi[n]}{\Sigma \vdash t\{i\} : \varphi[i]}$$

(TC_FORALL_E)

$$\frac{\Sigma \vdash (\vec{t}) : (\vec{\varphi})}{\Sigma \vdash \langle \vec{t} \rangle : \langle \vec{\varphi} \rangle}$$

(TC_TUPLE)

$$\frac{\Sigma \vdash t_1 : \varphi \quad \Sigma, y : \varphi \vdash t_2 : \varphi'}{\Sigma \vdash \mathbf{let} y = t_1 \mathbf{in} t_2 : \varphi'}$$

(TC LET)

$$\frac{\Sigma \vdash t_1 : \varphi \quad \Sigma, \langle \vec{x} \rangle : \varphi \vdash t_2 : \varphi'}{\Sigma \vdash \mathbf{let} \langle \vec{x} \rangle = t_1 \mathbf{in} t_2 : \varphi'}$$

(TC_MATCH)

$$\frac{\Sigma \vdash t : \varphi[i]}{\Sigma \vdash \langle i, t : \exists n \varphi[n] \rangle : \exists n \varphi[n]}$$

(TC_EXISTS_I)

$$\frac{\Sigma \vdash t_1 : \mathbf{nat}(i) \quad \Sigma \vdash t_2 : \varphi[0] \quad \forall N \cdot \Sigma, y : \mathbf{nat}(N) \vdash t_3[N] : \varphi[N] \rightarrow \varphi[\mathit{succ}(N)]}{\Sigma \vdash \mathbf{rec}(t_1, t_2, \lambda n. \mathbf{fn} y : \mathbf{nat}(n) \Rightarrow t_3[n]) : \varphi[i]}$$

(TC_REC)

$$\frac{\vdash i_1 = i_2}{\Sigma \vdash i_1 = i_2 : i_1 = i_2}$$

(TC_AX_I)

$$\frac{\vdash i_1 = i_2}{\Sigma \vdash i_2 = i_1 : i_2 = i_1}$$

(TC_AX_II)

$$\frac{\Sigma \vdash t : \varphi[i_2] \quad \Sigma \vdash t' : i_1 = i_2}{\Sigma \vdash t := \exists n \varphi[n][t'] : \varphi[i_1]} \quad (\text{TC_EQUAL_E})$$

$$\frac{\Sigma \vdash t_1 : \neg\varphi \quad \Sigma \vdash t_2 : \varphi}{\Sigma \vdash \mathbf{throw}_{\varphi'} t_1 t_2 : \varphi'} \quad (\text{TC_THROW})$$

$$\frac{\Sigma \vdash t : \neg\varphi \rightarrow \varphi}{\Sigma \vdash \mathbf{callcc} t : \varphi} \quad (\text{TC_CALLCC})$$

Type check terms

$$\boxed{\Sigma \vdash (\vec{t}) : (\vec{\varphi})}$$

$$\Sigma \vdash () : () \quad (\text{TC_EMPTY})$$

$$\frac{\Sigma \vdash t : \varphi \quad \Sigma \vdash (\vec{t}) : (\vec{\varphi})}{\Sigma \vdash (\vec{t}, t) : (\vec{\varphi}, \varphi)} \quad (\text{TC_CONS})$$

Append environments

$$\boxed{\Sigma, \vec{x} : \vec{\varphi} = \Sigma'}$$

$$\overline{\Sigma, () : () = \Sigma} \quad (\text{APP_I})$$

$$\frac{\Sigma, \vec{x} : \vec{\varphi} = \Sigma'}{\Sigma, (\vec{x}, x) : (\vec{\varphi}, \varphi) = \Sigma', x : \varphi} \quad (\text{APP_II})$$

Type check term in extended environment

$$\boxed{\Sigma, \langle \vec{x} \rangle : \varphi \vdash t : \varphi'}$$

$$\frac{\Sigma, \vec{x} : \vec{\varphi} = \Sigma' \quad \Sigma' \vdash t : \varphi'}{\Sigma, \langle \vec{x} \rangle : \langle \vec{\varphi} \rangle \vdash t : \varphi'} \quad (\text{TC_PRODUCT})$$

$$\frac{\forall I \cdot \Sigma, \langle \vec{x} \rangle : \varphi[I] \vdash t[I] : \varphi'}{\Sigma, \langle \vec{x} \rangle : \exists n \varphi[n] \vdash ?n.t[n] : \varphi'} \quad (\text{TC_EXISTS})$$

3.2 Imperative dependent type system ID

Formula equality

$$\boxed{\psi = \psi'}$$

$$\overline{\psi = \psi}$$

$$(\text{PROP_EQ_ID})$$

Environment equality

$$\boxed{\gamma = \gamma'}$$

$$\overline{\gamma = \gamma}$$

$$(\text{ENV_EQ_ID})$$

Lookup ident

$$\boxed{x : \psi \in \Gamma}$$

$$\overline{x : \psi \in \Gamma, x : \psi}$$

$$(\text{LOOKUP_I})$$

$$\frac{x \neq x' \quad x : \psi \in \Gamma}{x : \psi \in \Gamma, x' : \psi'}$$

$$(\text{LOOKUP_II})$$

Not in environment

$$\boxed{x \notin \Gamma}$$

$$\overline{x \notin ()}$$

$$(\text{NOTIN_I})$$

$$\frac{x \neq x' \quad x \notin \Gamma}{x \notin \Gamma, x' : \psi'}$$

$$(\text{NOTIN_II})$$

Not in quantified environment

$$\boxed{y \notin \Theta}$$

$$\frac{y \notin \Gamma}{y \notin [\Gamma]}$$

$$(\text{NOTIN_QENV_I})$$

$$\frac{\forall I \cdot y \notin \Theta[I]}{y \notin \exists n \Theta[n]}$$

$$(\text{NOTIN_QENV_II})$$

Lookup ident

$$\boxed{y \in \Theta}$$

$$\frac{y : \psi \in \Gamma}{y \in [\Gamma]}$$

$$(\text{BELONGS_I})$$

$$\frac{\forall I \cdot y \in \Theta[I]}{y \in \exists n \Theta[n]}$$

$$(\text{BELONGS_II})$$

Lookup idents

$$\boxed{\vec{x} : \vec{\psi} \subset \Gamma}$$

$$\overline{() : () \subset \Gamma}$$

$$(\text{LOOKUP_IDENTS_I})$$

$$\frac{x : \psi \in \Gamma \quad \vec{x} : \vec{\psi} \subset \Gamma}{\vec{x}, x : \vec{\psi}, \psi \subset \Gamma}$$

$$(\text{LOOKUP_IDENTS_II})$$

Update

$$\boxed{\Omega[x : \psi] = \Omega'}$$

$$\overline{(\Omega, x : \psi')[x : \psi] = (\Omega, x : \psi)}$$

$$(\text{UPDATE_I})$$

$$\frac{x \neq x' \quad \Omega[x : \psi] = \Omega'}{(\Omega, x' : \psi')[x : \psi] = (\Omega', x' : \psi')}$$

$$(\text{UPDATE_II})$$

Multi-update

$$\boxed{\Omega[\vec{x} : \vec{\psi}] = \Omega'}$$

$$\overline{\Omega[\cdot] : \cdot} = \Omega$$

(MULTI_UPDATE_I)

$$\frac{\Omega[\vec{x} : \vec{\psi}] = \Omega' \quad \Omega'[x : \psi] = \Omega''}{\Omega[\vec{x}, x : \vec{\psi}, \psi] = \Omega''}$$

(MULTI_UPDATE_II)

Type check with updated environment

$$\frac{\Omega[x : \psi] = \Omega' \quad \Gamma; \Omega' \vdash s \triangleright \Theta}{\Gamma; \Omega[x : \psi] \vdash s \triangleright \Theta}$$

(PRE_UPDATE_I)

Type check with updated environment

$$\frac{\Omega[\vec{x} : \vec{\psi}] = \Omega' \quad \Gamma; \Omega' \vdash s \triangleright \Theta}{\Gamma; \Omega[\vec{x} : \vec{\psi}] \vdash s \triangleright \Theta}$$

(M_PRE_UPDATE_I)

Type check with updated environment

$$\frac{\omega = \vec{x} : \vec{\psi} \quad \Gamma; \Omega[\vec{x} : \vec{\psi}] \vdash s \triangleright \Theta}{\Gamma; \Omega[\omega] \vdash s \triangleright \Theta}$$

(M_UPDATE_SHORT_I)

Append

$$\boxed{\Gamma, \gamma = \Gamma'}$$

$$\overline{\Gamma, ()} = \overline{\Gamma}$$

(APPEND_I)

$$\frac{\Gamma, \gamma = \Gamma'}{\Gamma, (\gamma, x : \psi) = \Gamma', x : \psi}$$

(APPEND_II)

Subset

$$\boxed{\omega \subset \Omega}$$

$$\overline{() \subset \Omega}$$

(TC_SUBSET_I)

$$\frac{\omega \subset \Omega \quad x : \psi \in \Omega}{(\omega, x : \psi) \subset \Omega}$$

(TC_SUBSET_II)

Restriction

$$\boxed{\Omega_{|\vec{x}} = \omega}$$

$$\overline{\Omega_{|()}} = \overline{()}$$

(TC_RESTRICT_I)

$$\frac{\Omega_{|\vec{x}} = \omega \quad y : \psi \in \Omega}{\Omega_{|\vec{x}, y} = (\omega, y : \psi)}$$

(TC_RESTRICT_II)

Split

$$\boxed{\Omega = \vec{x} : \vec{\psi}}$$

$$\overline{() = () : ()}$$

(TC_SPLIT_I)

$$\frac{\Omega = \vec{x} : \vec{\psi}}{(\Omega, x : \psi) = (\vec{x}, x) : (\vec{\psi}, \psi)}$$

(TC_SPLIT_II)

Split quantified environment

$$\boxed{\Theta = \vec{x} : \phi}$$

$$\frac{\Omega = \vec{x} : \vec{\psi}}{[\Omega] = \vec{x} : [\vec{\psi}]}$$

(TC_QSPLIT_I)

$$\frac{\forall N \cdot (\Theta[N] = \vec{x} : \phi[N])}{\exists n \Theta[n] = \vec{x} : \exists n \phi[n]}$$

(TC_QSPLIT_II)

Zip

$$\boxed{\Omega \Leftarrow \vec{x} : \vec{\psi}}$$

$$\overline{() \Leftarrow () : ()}$$

(TC_ZIP_I)

$$\frac{\Omega \Leftarrow \vec{x} : \vec{\psi}}{(\Omega, x : \psi) \Leftarrow (\vec{x}, x) : (\vec{\psi}, \psi)}$$

(TC_ZIP_II)

Zip quantified environment

$$\boxed{\Theta \Leftarrow \vec{x} : \phi}$$

$$\frac{\Omega \Leftarrow \vec{x} : \vec{\psi}}{[\Omega] \Leftarrow \vec{x} : [\vec{\psi}]}$$

(TC_QZIP_I)

$$\frac{\Theta[I] \Leftarrow \vec{x} : \phi[I]}{\exists n \Theta[n] \Leftarrow \vec{x} : \exists n \phi[n]}$$

(TC_QZIP_II)

Init

$$\boxed{\vec{x} : \psi = \omega}$$

$$\overline{() : \psi = ()}$$

(TC_INIT_I)

$$\frac{\vec{x} : \psi = \omega}{(\vec{x}, y) : \psi = (\omega, y : \psi)}$$

(TC_INIT_II)

Typecheck expression

$$\boxed{\Gamma; \Omega \vdash e : \psi}$$

$$\frac{x : \psi \in \Gamma}{\Gamma; \Omega \vdash x : \psi}$$

(T_ENV_I)

$$\frac{x : \psi \in \Omega}{\Gamma; \Omega \vdash x : \psi}$$

(T_ENV_II)

$$\overline{\Gamma; \Omega \vdash \star : \top}$$

(T_TRUE)

$$\overline{\Gamma; \Omega \vdash 0 : \mathbf{nat}(0)}$$

(T_ZERO)

$$\frac{\Gamma; \Omega \vdash q : \mathbf{nat}(i)}{\Gamma; \Omega \vdash \mathbf{s}(q) : \mathbf{nat}(\mathit{succ}(i))}$$

(T_SUCC)

$$\frac{\vdash i_1 = i_2}{\Gamma; \Omega \vdash i_1 = i_2 : i_1 = i_2}$$

(T_AX_I)

$$\frac{\vdash i_1 = i_2}{\Gamma; \Omega \vdash i_2 = i_1 : i_2 = i_1}$$

(T_AX_II)

$$\frac{\Gamma; \Omega \vdash e : \psi[i_2] \quad \Gamma; \Omega \vdash e' : i_1 = i_2}{\Gamma; \Omega \vdash e : \{n/\psi[n]\}[e'] : \psi[i_1]}$$

(T_EQUAL_E)

$$\frac{\Gamma; \Omega \vdash e : \mathbf{proc} \forall n \rho[n]}{\Gamma; \Omega \vdash e\{i\} : \mathbf{proc} \rho[i]}$$

(T_PROC_INST)

$$\frac{\sim \exists n \phi[n] = \mathbf{proc} \forall n \rho[n] \quad \Gamma; \Omega \vdash e : \mathbf{proc} \forall n \rho[n]}{\Gamma; \Omega \vdash e <: \{n/\phi[n]\}\{i\} : \mathbf{proc} \rho[i]}$$

(T_CONT_INST)

$$\frac{\gamma = \vec{y} : \vec{\rho} \quad \theta = \vec{z} : \phi \quad \vec{z} : \top = \omega' \quad \Gamma, \gamma = \Gamma' \quad \Gamma'; \omega' \vdash s \triangleright \theta}{\Gamma; \Omega \vdash \mathbf{proc}[\gamma] \mathbf{out} \theta\{s\} : \mathbf{proc}([\vec{\rho}] \mathbf{out} \phi)}$$

(T_PROC_DECL)

$$\frac{\forall I \cdot \Gamma; \Omega \vdash \mathbf{proc} h[I] : \mathbf{proc} \rho[I]}{\Gamma; \Omega \vdash \mathbf{proc} \forall n h[n] : \mathbf{proc} \forall n \rho[n]} \quad (\text{T_PROC_ABS})$$

Typecheck expressions

$$\boxed{\Gamma; \Omega \vdash (\vec{e}) : (\vec{\psi})}$$

$$\boxed{\Gamma; \Omega \vdash () : ()} \quad (\text{T_EXPS_I})$$

$$\frac{\Gamma; \Omega \vdash (\vec{e}) : (\vec{\psi}) \quad \Gamma; \Omega \vdash e : \psi}{\Gamma; \Omega \vdash (\vec{e}, e) : (\vec{\psi}, \psi)} \quad (\text{T_EXPS_II})$$

Defined negation

$$\boxed{\sim \phi = \psi}$$

$$\boxed{\sim [\vec{\psi}] = \sim (\vec{\psi})} \quad (\text{T_NEG_DEF_I})$$

$$\frac{\forall N \cdot (\sim \phi[N] = \mathbf{proc} \rho[N])}{\sim \exists n \phi[n] = \mathbf{proc} \forall n \rho[n]} \quad (\text{T_NEG_DEF_II})$$

Typecheck sequence

$$\boxed{\Gamma; \Omega \vdash s \triangleright \Theta}$$

$$\frac{\Omega' \subset \Omega}{\Gamma; \Omega \vdash \varepsilon \triangleright [\Omega']} \quad (\text{T_EMPTY})$$

$$\frac{\Gamma; \Omega \vdash s \triangleright \Theta[i]}{\Gamma; \Omega \vdash [i \in \exists n \Theta[n]] s \triangleright \exists n \Theta[n]} \quad (\text{T_WITNESS})$$

$$\frac{\Gamma; \Omega \vdash e : i_1 = i_2 \quad \Gamma; \Omega \vdash s \triangleright \Theta[i_2]}{\Gamma; \Omega \vdash s \triangleright \exists n \Theta[n][e] \triangleright \Theta[i_1]} \quad (\text{T_SUBST})$$

$$\frac{\Gamma; \Omega \vdash e : \psi \quad \Gamma, y : \psi; \Omega \vdash s \triangleright \Theta}{\Gamma; \Omega \vdash \mathbf{cst} y = e; s \triangleright \Theta} \quad (\text{T_CST})$$

$$\frac{\Gamma; \Omega \vdash e : \psi \quad \Gamma, \Omega, y : \psi \vdash s \triangleright \Theta \quad y \notin \Theta}{\Gamma; \Omega \vdash \mathbf{var} y := e; s \triangleright \Theta} \quad (\text{T_VAR})$$

$$\frac{\Gamma; \Omega \vdash s \triangleright \theta \quad \Gamma; \Omega[\theta] \vdash s' \triangleright \Theta}{\Gamma; \Omega \vdash \{s\}_\theta; s' \triangleright \Theta} \quad (\text{T_BLOCK})$$

$$\frac{\theta = \vec{x} : \phi \quad \sim \phi = \psi \quad \Gamma, y : \psi; \Omega \vdash s \triangleright \theta \quad \Gamma; \Omega[\theta] \vdash s' \triangleright \Theta}{\Gamma; \Omega \vdash y : \{s\}_\theta; s' \triangleright \Theta} \quad (\text{T_LABEL})$$

$$\frac{\Gamma; \Omega \vdash e : \sim \vec{\psi} \quad \Gamma; \Omega \vdash (\vec{e}) : (\vec{\psi}) \quad \Gamma; \Omega[\theta] \vdash s' \triangleright \Theta}{\Gamma; \Omega \vdash \mathbf{jump} (e, \vec{e})_\theta; s' \triangleright \Theta} \quad (\text{T_JUMP})$$

$$\frac{y : \mathbf{nat}(i) \in \Omega \quad \Gamma; \Omega[y : \mathbf{nat}(\mathit{succ}(i))] \vdash s \triangleright \Theta}{\Gamma; \Omega \vdash \mathbf{inc}(y); s \triangleright \Theta} \quad (\text{T_INC})$$

$$\frac{y : \mathbf{nat}(i) \in \Omega \quad \Gamma; \Omega[y : \mathbf{nat}(\mathit{pred}(i))] \vdash s \triangleright \Theta}{\Gamma; \Omega \vdash \mathbf{dec}(y); s \triangleright \Theta} \quad (\text{T_DEC})$$

$$\frac{y : \psi \in \Omega \quad \Gamma; \Omega \vdash e : \psi' \quad \Gamma; \Omega[y : \psi'] \vdash s \triangleright \Theta}{\Gamma; \Omega \vdash y := e; s \triangleright \Theta} \quad (\text{T_ASSIGN})$$

$$\frac{\omega[0] \subset \Omega \quad \Gamma; \Omega \vdash e : \mathbf{nat}(i) \quad \forall N \cdot \Gamma, y : \mathbf{nat}(N); \omega[N] \vdash s[N] \triangleright [\omega[\mathit{succ}(N)]] \quad \Gamma; \Omega[\omega[i]] \vdash s' \triangleright \Theta}{\Gamma; \Omega \vdash \mathbf{for} y : \mathbf{nat}(n) := 0 \mathbf{until} e \{s[n]\}_{\omega[n]}; s' \triangleright \Theta} \quad (\text{T_FOR})$$

$$\frac{\Gamma; \Omega \vdash e : \mathbf{proc}([\vec{\rho}] \mathbf{out} \phi) \quad \Gamma; \Omega \vdash (\vec{e}) : (\vec{\rho}) \quad \theta \Leftarrow \vec{z} : \phi \quad \Gamma; \Omega[\theta] \vdash s \triangleright \Theta}{\Gamma; \Omega \vdash e(\vec{e}; \vec{z}); s \triangleright \Theta} \quad (\text{T_CALL})$$

Typecheck sequence with updated environment

$$\boxed{\Gamma; \Omega[\Theta] \vdash s \triangleright \Theta'} \quad (\text{TC_UPDATE_SEQ_I})$$

$$\frac{\Gamma; \Omega[\Omega'] \vdash s \triangleright \Theta'}{\Gamma; \Omega[[\Omega']] \vdash s \triangleright \Theta'} \quad (\text{TC_UPDATE_SEQ_II})$$

3.3 Translation from ID to FD

Type translation

$$\boxed{\psi^* = \varphi}$$

$$\overline{\mathbf{nat}(i)^* = \mathbf{nat}(i)} \quad (\text{TR_TYPE_NAT})$$

$$\overline{x^* = x} \quad (\text{TR_TYPE_VAR})$$

$$\overline{\top^* = \top} \quad (\text{TR_TYPE_TRUE})$$

$$\overline{\perp^* = \perp} \quad (\text{TR_TYPE_FALSE})$$

$$\overline{(i_1 = i_2)^* = i_1 = i_2} \quad (\text{TR_TYPE_EQUALS})$$

$$\frac{(\rho)^* = \varphi}{(\mathbf{proc} \rho)^* = \varphi} \quad (\text{TR_TYPE_PROC})$$

Types translation

$$\boxed{(\vec{\psi})^* = (\vec{\varphi})}$$

$$\overline{()^* = ()} \quad (\text{TR_TYPES_I})$$

$$\frac{(\vec{\psi})^* = (\vec{\varphi}) \quad \psi^* = \varphi}{(\vec{\psi}, \psi)^* = (\vec{\varphi}, \varphi)} \quad (\text{TR_TYPES_II})$$

Environment translation

$$\boxed{(\gamma)^* = (\vec{x}) : (\vec{\varphi})}$$

$$\overline{()^* = () : ()} \quad (\text{TR_ENV_I})$$

$$\frac{(\gamma)^* = (\vec{x}) : (\vec{\varphi}) \quad \psi^* = \varphi}{(\gamma, x : \psi)^* = (\vec{x}, x) : (\vec{\varphi}, \varphi)} \quad (\text{TR_ENV_II})$$

Parametrized environment translation

$$\boxed{(\theta)^* = \vec{z} : \vec{\varphi}}$$

$$\frac{\forall N \cdot (\gamma[N])^* = (\vec{z}) : (\vec{\varphi}[N])}{(n \mapsto \gamma[n])^* = \vec{z} : n \mapsto \vec{\varphi}[n]} \quad (\text{TR_ABS_ENV_I})$$

Parametrized type translation

$$\boxed{(\vec{\psi})^* = \varphi}$$

$$\frac{\forall N \cdot \psi[N]^* = \varphi[N]}{(\{n / \psi[n]\})^* = \exists n \varphi[n]} \quad (\text{TR_ABS_TYPE_I})$$

Parametrized types translation

$$\boxed{(\vec{\psi})^* = (\vec{\varphi})}$$

$$\frac{\forall N \cdot (\vec{\psi}[N])^* = (\vec{\varphi}[N])}{(n \mapsto \vec{\psi}[n])^* = (n \mapsto \vec{\varphi}[n])} \quad (\text{TR_ABS_TYPES_I})$$

Quantified types translation

$$\boxed{(\phi)^* = \varphi}$$

$$\frac{(\vec{\psi})^* = (\vec{\varphi})}{([\vec{\psi}])^* = \langle \vec{\varphi} \rangle} \quad (\text{TR_QTYPES_I})$$

$$\frac{\forall N \cdot (\phi[N])^* = \varphi[N]}{(\exists n \phi[n])^* = \exists n \varphi[n]} \quad (\text{TR_QTYPES_II})$$

Quantified types translation

$$\frac{(\gamma)^* = (\vec{x}) : (\vec{\varphi})}{([\gamma])^* = \langle \vec{x} \rangle : \langle \vec{\varphi} \rangle} \quad (\text{TR_QENV_I})$$

$$\frac{\forall N \cdot (\theta[N])^* = \langle \vec{x} \rangle : \varphi[N]}{(\exists n \theta[n])^* = \langle \vec{x} \rangle : \exists n \varphi[n]} \quad (\text{TR_QENV_II})$$

Prototype translation

$$\frac{(\vec{\psi})^* = (\vec{\varphi}) \quad (\phi)^* = \varphi'}{(([\vec{\psi}] \mathbf{out} \phi))^* = \langle \vec{\varphi} \rangle \rightarrow \varphi'} \quad (\text{TR_PROTOTYPE_I})$$

$$\frac{\forall N \cdot (\rho[N])^* = \varphi[N]}{(\forall n \rho[n])^* = \forall n \varphi[n]} \quad (\text{TR_PROTOTYPE_II})$$

Idents translation

$$\overline{()^* = ()} \quad (\text{TR_IDENTS_I})$$

$$\frac{(\vec{x})^* = \vec{t}}{(\vec{x}, x)^* = (\vec{t}, x)} \quad (\text{TR_IDENTS_II})$$

Number translation

$$\boxed{q^* = t}$$

$$\overline{0^* = 0} \quad (\text{TR_NUM_I})$$

$$\frac{q^* = t}{\mathbf{s}(q)^* = \mathbf{succ}(t)} \quad (\text{TR_NUM_II})$$

Header translation

$$\boxed{(h)^* = t}$$

$$\frac{\theta = \vec{z} : \phi \quad (s)_{\vec{z}}^* = t \quad (\gamma)^* = (\vec{x}) : (\vec{\varphi})}{([\gamma] \mathbf{out} \theta[s])^* = \mathbf{fn}(\vec{x} : \vec{\varphi}) \Rightarrow t} \quad (\text{TR_HEADER_I})$$

$$\frac{\forall N \cdot (h[N])^* = t[N]}{(\forall n h[n])^* = \lambda n. t[n]} \quad (\text{TR_HEADER_II})$$

Expression translation

$$\boxed{(e)^* = t}$$

$$\frac{q^* = t}{(q)^* = t} \quad (\text{TR_EXP_NUM})$$

$$\overline{(x)^* = x} \quad (\text{TR_EXP_VAR})$$

$$\overline{(\star)^* = \langle \rangle} \quad (\text{TR_EXP_STAR})$$

$$\overline{(i_1 = i_2)^* = i_1 = i_2} \quad (\text{TR_EXP_AXIOM})$$

$$\frac{(h)^* = t}{(\mathbf{proc} h)^* = t} \quad (\text{TR_EXP_PROC})$$

$$\frac{(e)^* = t}{(e\{i\})^* = t\{i\}} \quad (\text{TR_EXP_INST})$$

$$\frac{(e)^* = t \quad \forall N \cdot (\phi[N])^* = \varphi[N]}{(e <: \{n/\phi[n]\}\{i\})^* = \mathbf{fn} v_1 : \varphi[i] \Rightarrow (t \langle i, v_1 : \exists n \varphi[n] \rangle)} \quad (\text{TR_EXP_INST}')$$

$$\frac{(e)^* = t \quad (e')^* = t' \quad (\{n/\psi[n]\})^* = \varphi}{(e :> \{n/\psi[n]\}[e'])^* = t :> \varphi[t']} \quad (\text{TR_EXP_SUBST})$$

Expressions translation

$$\boxed{(\vec{e})^* = (\vec{t})} \quad (\text{TR_EXPS_I})$$

$$\overline{()^* = ()}$$

$$\frac{(\vec{e})^* = (\vec{t}) \quad (e)^* = t}{(\vec{e}, e)^* = (\vec{t}, t)} \quad (\text{TR_EXPS_II})$$

Sequence translation

$$\boxed{(s)_{\vec{x}}^* = t}$$

$$\frac{(\vec{x})^* = \vec{t}}{()_{\vec{x}}^* = \langle \vec{t} \rangle} \quad (\text{TR_SEQ_EMPTY})$$

$$\frac{(e)^* = t \quad (s)_{\vec{x}}^* = t'}{(\mathbf{var} x := e; s)_{\vec{x}}^* = \mathbf{let} x = t \mathbf{in} t'} \quad (\text{TR_SEQ_VAR})$$

$$\frac{(e)^* = t \quad (s)_{\vec{x}}^* = t'}{(\mathbf{cst} x = e; s)_{\vec{x}}^* = \mathbf{let} x = t \mathbf{in} t'} \quad (\text{TR_SEQ_CST})$$

$$\frac{(e)^* = t \quad (s)_{\vec{x}}^* = t'}{(x := e; s)_{\vec{x}}^* = \mathbf{let} x = t \mathbf{in} t'} \quad (\text{TR_SEQ_ASSIGN})$$

$$\frac{(s)_{\vec{x}}^* = t}{(\mathbf{inc} (x); s)_{\vec{x}}^* = \mathbf{let} x = \mathbf{succ} (x) \mathbf{in} t} \quad (\text{TR_SEQ_INC})$$

$$\frac{(s)_{\vec{x}}^* = t}{(\mathbf{dec} (x); s)_{\vec{x}}^* = \mathbf{let} x = \mathbf{pred} (x) \mathbf{in} t} \quad (\text{TR_SEQ_DEC})$$

$$\frac{(e)^* = t \quad (\vec{e})^* = (\vec{u}) \quad (s)_{\vec{x}}^* = t'}{(e(\vec{e}, \vec{z}); s)_{\vec{x}}^* = \mathbf{let} \langle \vec{z} \rangle = t \langle \vec{u} \rangle \mathbf{in} t'} \quad (\text{TR_SEQ_CALL})$$

$$\frac{\theta = \vec{z} : \phi \quad (s_1)_{\vec{z}}^* = t_1 \quad (s_2)_{\vec{x}}^* = t_2}{(\{s_1\}_\theta; s_2)_{\vec{x}}^* = \mathbf{let} \langle \vec{z} \rangle = t_1 \mathbf{in} t_2} \quad (\text{TR_SEQ_BLOCK})$$

$$\frac{(n \mapsto \omega[n])^* = \vec{z} : n \mapsto \vec{\varphi}[n] \quad (e)^* = u' \quad (\vec{z})^* = \vec{u} \quad (n \mapsto s_1[n])_{\vec{z}}^* = n \mapsto t[n] \quad (s_2)_{\vec{x}}^* = t'}{(\mathbf{for} y : \mathbf{nat}(n) := 0 \mathbf{until} e \{s_1[n]\}_{\omega[n]}; s_2)_{\vec{x}}^* = \mathbf{let} \langle \vec{z} \rangle = \mathbf{rec}(u', \langle \vec{u} \rangle, \lambda n. \mathbf{fn} y : \mathbf{nat}(n) \Rightarrow \mathbf{fn} (\vec{z} : \vec{\varphi}[n]) \Rightarrow t[n]) \mathbf{in} t'} \quad (\text{TR_SEQ_FOR})$$

$$\frac{\forall N \cdot (s[N])_{\vec{x}}^* = t[N]}{(?n.s[n])_{\vec{x}}^* = ?n.t[n]} \quad (\text{TR_SEQ_ANY})$$

$$\frac{(s)_{\vec{x}}^* = t \quad (\theta)^* = \langle \vec{z} \rangle : \varphi}{([i \in \theta]s)_{\vec{x}}^* = \langle i, t : \varphi \rangle} \quad (\text{TR_SEQ_WITNESS})$$

$$\frac{(s)_{\vec{x}}^* = t \quad (e)^* = u \quad (\theta)^* = \langle \vec{z} \rangle : \varphi}{(s :> \theta[e])_{\vec{x}}^* = t :> \varphi[u]} \quad (\text{TR_SEQ_SUBST})$$

$$\frac{(e)^* = t \quad (\vec{e})^* = (\vec{u}) \quad (s)_{\vec{x}}^* = t' \quad (\theta)^* = \langle \vec{z} \rangle : \varphi}{(\mathbf{jump} (e, \vec{e})_\theta; s)_{\vec{x}}^* = \mathbf{let} \langle \vec{z} \rangle = \mathbf{throw}_\varphi t \langle \vec{u} \rangle \mathbf{in} t'} \quad (\text{TR_SEQ_JUMP})$$

$$\frac{(\theta)^* = \langle \vec{z} \rangle : \varphi \quad (s)_{\vec{z}}^* = t \quad (s')_{\vec{x}}^* = t'}{(y : \{s\}_\theta; s')_{\vec{x}}^* = \mathbf{let} \langle \vec{z} \rangle = \mathbf{callcc} (\mathbf{fn} y : \neg \varphi \Rightarrow t) \mathbf{in} t'} \quad (\text{TR_SEQ_LABEL})$$

Loop body translation

$$(b)_{\vec{x}}^{\star} = t$$

$$\frac{\forall N \cdot (s[N])_{\vec{x}}^{\star} = t[N]}{(n \mapsto s[n])_{\vec{x}}^{\star} = n \mapsto t[n]} \quad (\text{TR_BODY_ABS})$$

References

- [CP11] T. Crolard and E. Polonowski. A program logic for higher-order procedural variables and non-local jumps. Technical Report TR-LACL-2011-4, Université Paris-Est, 2011. Chapter 3 of the first author’s Habilitation thesis, also available as [arXiv:1112.1554](https://arxiv.org/abs/1112.1554).
- [CPV09] T. Crolard, E. Polonowski, and P. Valarcher. Extending the Loop Language with Higher-Order Procedural Variables. *Special issue of ACM TOCL on Implicit Computational Complexity*, 10(4):1–37, 2009.
- [Cro10] T. Crolard. Certification de programmes impératifs d’ordre supérieur avec mécanismes de contrôle. Habilitation Thesis. LACL, Université Paris-Est, 2010.
- [DF89] O. Danvy and A. Filinski. A functional abstraction of typed contexts. Technical report, Copenhagen University, 1989.
- [Fil94] A. Filinski. Representing Monads. In *Conference Record of the Twenty-First Annual Symposium on Principles of Programming Languages*, pages 446–457, Portland, Oregon, January 1994.
- [Lei90] D. Leivant. Contracting proofs to programs. In Odifreddi, editor, *Logic and Computer Science*, pages 279–327. Academic Press, 1990.
- [MR76] A. R. Meyer and D. M. Ritchie. The complexity of loop programs. In *Proc. ACM Nat. Meeting*, 1976.
- [PS99] F. Pfenning and C. Schürmann. System Description: Twelf - A Meta-Logical Framework for Deductive Systems. In *CADE-16: Proceedings of the 16th International Conference on Automated Deduction*, pages 202–206, London, UK, 1999. Springer-Verlag.
- [SNO⁺07] P. Sewell, F. Zappa Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strniša. Ott: effective tool support for the working semanticist. *SIGPLAN Not.*, 42(9):1–12, 2007.
- [Wad94] P. Wadler. Monads and Composable Continuations. *Lisp and Symbolic Computation*, 7(1):39–55, January 1994.