Exercise – Statistical coding

In this exercise, no programming is required. The goal is to create the Huffman code and the arithmetic code of a simple source.

Let S be a source that can deliver 8 symbols a_i with the following probability laws Pr(a_i):

$\mathbf{a}_{\mathbf{i}}$	a_1	a_2	a_3	a_4	a_5	\mathbf{a}_{6}	\mathbf{a}_7	a_8
Pr(a _i)	1	1	1	1	<u>17</u>	1	1	1
	64	32	16	4	32	16	32	64

1 – Entropy of the source

Calculate the entropy H(S) of the source S.

2 – Huffman code

Build the Huffman code that corresponds to this source.

Calculate the average length of the Huffman code and compare with the entropy of the source.

3 – Arithmetic code

Let us consider that the source sends the following sequence: $\{a_5, a_7, a_1, a_7\}$. Encode this sequence by using an arithmetic code.

Compare the number of bits needed for encoding this sequence (arithmetic code) with the number needed to encode this sequence with a Huffman code.

Solution to the exercise: Statistical coding

1 - The entropy H of the source S is defined by:

$$H(S) = -\sum_{i=1}^{8} p_i \log_2(p_i) = 1.9848 \text{ bits/symbol}$$

The entropy represents the minimum mean number of bits that are necessary to encode a symbol of S.

2 – To build the Huffman code that corresponds to the source, we sort the symbols by decreasing probabilities in the column $p^{(0)}$:

Message	p ⁽⁰⁾
a ₅	17 / 32
a ₄	1 /4
a ₃	1 /16
a ₆	1 /16
a ₂	1 /32
a ₇	1 /32
a ₁	1 /64
a ₈	1 /64

The two messages with the smallest probabilities are associated by addition, then the probabilities are re-sorted in a new column $p^{(1)}$:

Message	p ⁽⁰⁾	p ⁽¹⁾
a ₅	17 / 32	17 / 32
a ₄	1 /4	1 /4
a ₃	1 /16	1 /16
a ₆	1 /16	1 /16
a ₂	1 /32	1 /32
a ₇	1 /32	1 /32
a ₁	1 /64	▼ 1 /32
a ₈	1 /64	××××××

We reiterate this operation in order to create the complete table:

Message	p ⁽⁰⁾	p ⁽¹⁾	p ⁽²⁾	p ⁽³⁾	p ⁽⁴⁾	p ⁽⁵⁾	p ⁽⁶⁾
a ₅	17 / 32						
a ₄	1 /4	1 /4	1 /4	1 /4	1 /4	1 /4	15 / 32
a ₃	1 /16	1 /16	1 /16	3 /32	√ 1 /8 }	√ 7 /32 J	
a ₆	1 /16	1 /16	1 /16	1 /16 /	3 /32 5		
a ₂	1 /32	1 /32	1 /16	1 /16			
a ₇	1 /32	1 /32	1 /32				
a ₁	1 /64	1 /32					
a ₈	1 /64 ∫						

We assign the bits '1' and '0' to the last two elements of each column:

Message	p ⁽⁰⁾	p ⁽¹⁾	p ⁽²⁾	p ⁽³⁾	p ⁽⁴⁾	p ⁽⁵⁾	p ⁽⁶⁾
a ₅	17 / 32	17 /32 1					
a ₄	1 /4	1 /4	1 /4	1 /4	1 /4	1 /4 1	15 /32 <mark>0</mark>
a ₃	1 /16	1 /16	1 /16	3 /32	1 /8 1	7 /32 0	
a ₆	1 /16	1 /16	1 /16	1 /16 1	3 /32 0		
a ₂	1 /32	1 /32	1 /16 1	1 /16 0			
a ₇	1 /32	1 /32 1	1 /32 0				
a ₁	1 /64 1	1 /32 0					
a ₈	1 /64 0						

For each symbol a_i , we go through the table from left to right and in each column we can see the associated probability $p^{(i)}$. For example, the table below shows the probabilities of the symbol a_8 (blue path) and the associated bits (red markers):

Message	p ⁽⁰⁾	p ⁽¹⁾	p ⁽²⁾	p ⁽³⁾	p ⁽⁴⁾	p ⁽⁵⁾	p ⁽⁶⁾
a ₅	17/32	17 / 32	17/32	17/32	17/32	17/32	17/32
a ₄	1/4	1/4	1/4	1/4	1/4	1/4	15/32 0
a ₃	1/16	1/16	1/16	3/32	1 /8	▼ 7/32 0	
a ₆	1/16	1/16	1/16	1/16	3/32 0		
a ₂	1/32	1/32	1/16 1	1/16			
a ₇	1/32	1/32	1/32				
a ₁	1/64	1/32 0					
a ₈	1/64 0						

The code-word is thus obtained by simply reading the marked bits from right to left. For the symbol a_8 the code-word is thus: 0-0-0-1-0-0

By following the same procedure for each symbol, we obtain:

Message	Mot-code
a ₅	1
a ₄	01
a ₃	0011
a ₆	0010
a ₂	0000
a ₇	00011
a ₁	000101
a ₈	000100

We can thus calculate the average length E(n) of the code-words:

 $E(n) = \sum_{i=1}^{s} p_i n_i$, where n_i stands for the number of bits that are necessary to encode the symbol a_i i.e. the length of the code-word associated with a_i .

Here, we obtain: E(n) = 2.

The efficiency of the Huffman code is thus:

$$= H(S) / E(n) = 1.9848 / 2 = 99.24\%$$

The code is really close to the optimal code (entropic coding).

3 – Now we want to encode the sequence of symbols $\{a_5, a_7, a_1, a_7\}$ with an arithmetic code.

First we initialize a first interval with two bounds: the lower bound $L_c=0$ and the upper bound $H_c=1$. This interval [0, 1[is subdivided into 8 subintervals [La_i, Ha_i[according to the probabilities of the symbols a_i of the source:

$$\text{La}_{\mathtt{i}} = \sum_{\mathtt{k}=1}^{\mathtt{i}-1} \mathtt{p}_{\mathtt{i}} \quad \text{and} \quad \text{Ha}_{\mathtt{i}} = \sum_{\mathtt{k}=1}^{\mathtt{i}} \mathtt{p}_{\mathtt{i}}$$

The length of the subinterval [La_i, Ha_i[is thus equal to: La_i - Ha_i = p_i . We obtain thus the following initial subdivision:

The first symbol of the sequence to encode is the symbol a_5 . We subdivide thus the half-open interval [La₅, Ha₅[= [23/64, 57/64[into 8 new subintervals [La_i, Ha_i[defined by:

$$La_i = La_5 + p_5 \times \sum_{k=1}^{i-1} p_i$$
 et $Ha_i = La_5 + p_5 \times \sum_{k=1}^{i} p_i$

We obtain the following subdivision:

By repeating this procedure for the three next symbols in the sequence, we obtain the following subdivisions (the procedure has been implemented here in Matlab):

Consequently, we can encode the sequence $\{a_5, a_7, a_1, a_7\}$ by any value in the half-open range [0.86598; 0.86599[.

We code this sequence with a binary code-word $m^{(k)}$ of k bits that is written as: $m^{(k)} = b_1 2^{-1} + b_2 2^{-2} + ... + b_k 2^{-k}$ (with $b_i = 0$ or 1) and so that $m^{(k)}$ and $m^{(k+1)}$ belong to the half-open range [0.86598; 0.86599[and $m^{(k-1)} < 0.86598$.

The value 0.865982 encodes the sequence, and its binary representation is: 110111011010001, we need 16 bits to encode this sequence.

To encode the same sequence with the Huffman code, we need 1+5+6+5=17 bits. On average, the arithmetic coding allows you to represent a sequence of symbols more efficiently than the Huffman coding. For a given alphabet, the longer the sequence is, the greater the efficiency is.