Lab 5 实验报告

实验目的

- 1. 理解流水线CPU指令执行过程。
- 2. 理解流水线冒险处理的概念。
- 3. 理解不同流水线硬件结构对冒险处理方法的区别。

实验平台

WebRISCV: RISC_V架构 RV32/64IM 五级流水线CPU模型在线仿真平台 (RV32IM模式)。

网页链接: https://webriscv.dii.unisi.it/index.php

任务一: 测试代码1的仿真

测试代码段

1 addi x6,x6,2

2 loop: beq x6,x0,fi

3 addi x6,x6,-1

4 addi x5,x5,3

5 j loop

6 fi: add x4,x4,x5

四种模式的仿真结果

	EXECUTION TABLE																		
FULL LOOPS V		CPU Cycles																	
Instruction	1	2	3	4	5	6	7	8	9				13	14	15	16	17	18	19
addi t1, t1, 2	F	D	X	М	W														
beq t1, x0, 32		F	-	D	Χ	М	W												
addi t1, t1, -1				F	D	Χ	М	W											
addi t0, t0, 3					F	D	X	Μ	W										
jal x0, -24						F	D	Χ	М	W									
add tp, tp, t0							F												
beq t1, x0, 32								F	D	X	М	W							
addi t1, t1, -1									F	D	X	М	W						
addi t0, t0, 3										F	D	Х	М	W					
jal x0, -24											F	D	Χ	М	W				
add tp, tp, t0												F							
beq t1, x0, 32													F	D	Χ	М	W		
addi t1, t1, -1														F					
add tp, tp, t0															F	D	Χ	М	W

图1: Mode 1 - With forward with flush

	EXECUTION TABLE																			
FULL LOOPS V		CPU Cycles																		
Instruction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
addi t1, t1, 2	F	D		М																
beq t1, x0, 32		F	-	-	D	Χ	Μ	W												
addi t1, t1, -1					F	D	X	М	W											
addi t0, t0, 3						F	D	Χ	М	W										
jal x0, -24							F	D	Х	М	W									
add tp, tp, t0								F												
beq t1, x0, 32									F	D	X	М	W							
addi t1, t1, -1										F	D	X	М	W						
addi t0, t0, 3											F	D	X	М	W					
jal x0, -24												F	D	Χ	М	W				
add tp, tp, t0													F							
beq t1, x0, 32														F	D	Х	М	W		
addi t1, t1, -1															F					
add tp, tp, t0																F	D	X	М	W

图2: Mode 2 - No forward with flush

EXECUTION TABLE																			
FULL LOOPS V		CPU Cycles																	
Instruction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
addi t1, t1, 2	F	D	Χ	М	W														
beq t1, x0, 32		F	-	D	Χ	М	W												
addi t1, t1, -1				F	D	Χ	М	W											
addi t0, t0, 3					F	D	Χ	М	W										
jal x0, -24						F	D	Χ	М	W									
add tp, tp, t0							F	D	Χ	М	W								
beq t1, x0, 32								F	D	Χ	М	W							
addi t1, t1, -1									F	D	Χ	М	W						
addi t0, t0, 3										F	D	Х	M	W					
jal x0, -24											F	D	X	М	W				
add tp, tp, t0												F	D	Χ	М	W			
beq t1, x0, 32													F	D	Χ	М	W		
addi t1, t1, -1														F	D	Χ	М	W	
add tp, tp, t0															F	D	Χ	М	W

图3: Mode 3 - With forward no flush

						E	ΧE	CU	TIC	N.	TAE	BLE										
FULL LOOPS V		CPU Cycles																				
Instruction	1																					
addi t1, t1, 2	F	D	X	М	W																	
beq t1, x0, 32		F	-	-	D	Χ	M	W														
addi t1, t1, -1					F	D	Χ	М	W													
addi t0, t0, 3						F	D	Χ	М	W												
jal x0, -24							F	D	X	М	W											
add tp, tp, t0								F	-	D	X	М	W									
beq t1, x0, 32										F	D	Χ	М	W								
addi t1, t1, -1											F	D	X	М	W							
addi t0, t0, 3												F	D	X	М	W						
jal x0, -24													F	D	Χ	М	W					
add tp, tp, t0														F	-	D	X	М	W			
beq t1, x0, 32																F	D	X	М	W		
addi t1, t1, -1																	F	D	Χ	М	W	
add tp, tp, t0																		F	D	X	М	W

图4: Mode 4 - No forward no flush

填表分析仿真结果

表 1

	模式 1:	模式 2:	模式 3:	模式 4:
代码段1	with forward	no forward with	with forward	no forward
	with flush	flush	no flush	no flush
执行周期数	19	20	19	22
	addi x6,x6,2		addi x6,x6,2	
	beq x6,x0,fi		beq x6,x0,fi	
被执行 forward	执行1次		执行1次	
的指令,执行	不需要等待addi		不需要等待addi	
forward 次数和	指令将 x6 写回	/	指令将 x6 写回	/
原因	寄存器就直接		寄存器就直接	
床囚	从 ALU 将结果		从 ALU 将结果	
	前递给 beq 使		前递给 beq 使	
	用。		用。	
	j loop	j loop		
	fi: add x4,x4,x5	fi: add x4,x4,x5		
被执行 flush 操	执行3次	执行3次		
作的指令和原	默认分支不跳	默认分支不跳	/	/
因	转, 当发现分支	转, 当发现分支		
	需要跳转时清	需要跳转时清		
	除已有指令。	除已有指令。		

表 2

		11. 2		
代码段1	分析: 单周期 CP	U 架构下,执行需	(70) 个时钟)周期,
TOPPE I	执行后, x6=(0), x5= (6), x4= (6)	
实际执行仿真	模式 1:	模式 2:	模式 3:	模式 4:
情况	with forward	no forward with	with forward	no forward
月九	with flush	flush	no flush	no flush
Reg X6=	0	0	-1	-1
Reg X5=	6	6	6	6
Reg X4=	6	6	15	15
执行结果正确	正确	正确	不正确	不正确
与否	1121/用	11二7月	7下111519用	个址册
若不正确 如何修改	\	\	跳转预判每次都被轮循环都会错误 x4,x4,x5 指令(是 addi x6,x6,-1 指令 次(导致 x6 错误 一种解决方案是如在 beq 语句后	曾加冗余的指令。

修改后代码段:

```
1 addi x6,x6,2

2 loop: beq x6,x0,fi

3 addi x6, x6,0

4 addi x6,x6,-1

5 addi x5,x5,3

6 j loop

7 addi x4, x4, 0

8 fi: add x4,x4,x5
```

修改后结果正确:

4	tp	6
5	t0	6
6	t1	0

图5: 结果正确的寄存器x4, x5, x6的值

选做: 另找代码验证冒险处理

测试代码段:

```
1 addi x1, x0, 1

2 addi x4, x0, 1024

3 sw x1, 0(x4)

4 lw x2, 0(x4)

5 and x4, x1, x2
```

				-	-	. ,				
Instruction	1	2	3	4	5	6	7	8	9	10
addi ra, x0, 1	F	D	Χ	М	W					
addi tp, x0, 1024		F	D	X	М	W				
sw ra, 0(tp)			F	D	Х	М	W			
lw sp, 0(tp)				F	D	Χ	М	W		
and tp, ra, sp					F	-	D	Χ	М	W

图6: 执行情况

分析:

在取数指令后紧接着执行and操作,理论上需要停顿三个时钟周期,待取数写回寄存器x2,但由于forwarding开启,取数结果从memory前递到and指令的ALU,故只需停顿一个周期,大大提升了执行效率。

任务二: 测试代码2的仿真

测试代码段

```
1
     lui x10, 0
 2
     ori x4, x10, 1024
     addi x25, x0, 1
 3
     addi x26, x0, 2
 4
     addi x27, x0, 3
 5
     addi x28, x0, 4
 6
 7
     sw x25, 0(x4)
8
    sw x26, 4(x4)
9
    sw x27, 8(x4)
    sw x28, 12(x4)
10
11
     addi x5, x0, 4
12
     call:
13
     jal sum
     sw x12, 0(x4)
14
     lw x19, 0(x4)
15
     sub x18, x19, x12
16
17
     addi x5, x0, 3
18
     loop2:
     addi x5, x5, -1
19
20
     ori x18, x5, -1
21
     xori x18, x18, 1365
22
     addi x19, x0, -1
23
     andi x20, x19, -1
24
     or x16, x20, x19
25
    xor x18, x20, x19
     and x17, x20, x16
26
     beq x5, x0, shift
27
28
     j loop2
29
     shift:
     addi x5, x0, -1
30
31
     slli x18, x5, 15
32
     slli x18, x18, 16
33
     srai x18, x18, 16
34
     srli x18, x18, 15
     fi:
35
36
     j fi
37
     sum:
38
     add x18, x0, x0
39
     loop:
40
     lw x19, 0(x4)
41
     addi x4, x4, 4
42
     add x18, x18, x19
     addi x5, x5, -1
43
     bne x5, x0, loop
44
45
     slli x12, x18, 0
46
     jr ra
```

填表分析仿真结果

表 3

PC 值	指令	冒险的种类	执行的操作
04	ori x4, x10, 0	数据冒险	从 00 指令前递 x10 的值
30	sw x12, 0(x4)	控制冒险	flush 清除指令
8c	add x18, x18, x19	数据冒险	从 84 指令前递 x19 的值
94	bne x5, x0, loop	数据冒险	从 90 指令前递 x5 的值,并 stall 一个周期
98	slli x12, x18, 0	控制冒险	flush 清除指令
38	sub x18, x19, x12	数据冒险	从 34 指令前递 x19 的值,并 stall 一个周期
40	loop2:addi x5, x5, -1	数据冒险	从 3c 指令前递 x5 的值
44	ori x18, x5, -1	数据冒险	从 40 指令前递 x5 的值
48	xori x18, x18, 1365	数据冒险	从 44 指令前递 x18 的值
50	andi x20, x19, -1	数据冒险	从 4c 指令前递 x19 的值
54	or x16, x20, x19	数据冒险	从 50 指令前递 x20 的值
5c	and x17, x20, x16	数据冒险	从 54 指令前递 x16 的值
68	shift:addi x5, x0, -1	控制冒险	flush 清除指令
6c	slli x18, x5, 15	数据冒险	从 68 指令前递 x5 的值
70	slli x18, x18, 16	数据冒险	从 6c 指令前递 x18 的值
74	srai x18, x18, 16	数据冒险	从 70 指令前递 x18 的值
78	srli x18, x18, 15	数据冒险	从 74 指令前递 x18 的值
80	sum:add x18, x0, x0	控制冒险	flush 清除指令

选做:不同模式执行周期对比分析

模式1: With	模式2: No	模式3: With	模式4: No	单周
forward with flush	forward with flush	forward no flush	forward no flush	期
91 cycles	139 cycles	96 cycles*	142 cycles*	425 cycles

^{*}注意到 no flush 模式下错误的分支预判不会被清除,在指令 j loop2 正确执行前,其下一条指令 addi x5,

x0, -1 也被错误执行了,导致上述循环无法正确跳出,故将 68 和 6c 处的 x5 寄存器修改为 x6 ,并把 beq x5, x0, shift 指令提前以避免冲突导致的错误。

修改后的代码段:

```
1 ...
 2 loop2:
 3 beq x5, x0, shift //条件判断提前到此处
 4 addi x5, x5, -1
 5 ori x18, x5, -1
 6 xori x18, x18, 1365
 7
   addi x19, x0, -1
 8 andi x20, x19, -1
 9
    or x16, x20, x19
10 xor x18, x20, x19
11
    and x17, x20, x16
12 j loop2
    shift:
```

```
14 addi x6, x0, -1 //x5改为x6
15 slli x18, x6, 15
16 slli x18, x18, 16
17 srai x18, x18, 16
18 srli x18, x18, 15
19 ...
```

分析结果:

与任务一的执行结果类似,且符合预期。总体而言,前递和flush都会提高这段代码的执行效率,而是否支持前递是主要影响因素。由之前的分析可知,代码段2的数据冒险较多,因此通过forwarding会带来很大的性能提升(35%左右),支持flush也会带来5%左右的提升。与单周期相比,无论采取哪种模式,流水线执行都可以大幅提高效率(3~4倍)。

拓展思考

流水线分级

图7: 流水线分级划分图

分析与问题回答

其中左侧四选一MUX应该算作哪一级?右上方两个加法器可以在ID级里面实现吗?最右侧的二选一MUX是否一定要放在最后一级里面实现?如果放在EXE级里是否可以?forward操作是否可以在ID级实现?stall操作应该控制什么模块?flush操作应该控制什么模块?图中蓝色粗线代表了第一级PC寄存器位置。可类似画出后面的几级寄存器应该加在哪里。

- 1. 左侧四选一MUX应算作IF级。
- 2. 右上方两个加法器中: 计算branchpc的可以放到ID级,而计算jalpc的不能,因为后者的输入需要在EX级由ALU计算结果提供。
- 3. 最右侧的二选一MUX不能在EX实现,因为其输入需要等待ME级的存储器输出。
- 4. forward操作不能在ID级实现,因为ID级进行冒险检测后才能决定是否前递。

- 5. stall操作将ID指令清除,即RegWrite和MemWrite信号置零即可。
- 6. flush操作要将IF、ID、EX阶段的指令全部清除,将所有控制信号置零。