

CURSO DE ENGENHARIA DA COMPUTAÇÃO

Disciplina: Prática em Fábrica de Software III

Amplificador Operacional

Prof. Alexandre Tannus

Objetivos

- ▶ Entender o funcionamento básico do amplificador operacional
- Listar as características dos amp-ops ideais e do amp-op 741
- Diferenciar modelos em malha aberta e malha fechada

► Compreender os principais circuitos de realimentação negativa

Malha aberta

Realimentação Positiva

Realimentação Negativa

Amplificador Inversor Amplificador Não Inversor

Amplificador Somador

- ► Amplificadores operacionais estão entre os componentes ativos mais básicos em sistemas analógicos
- Grandes aplicações em diversas áreas
 - ► Filtros
 - ► Aplicações lineares e não lineares
 - Áudio
 - ► Controle
 - Operações aritméticas

Características Fundamentais

- ▶ Ganho de tensão em malha aberta (A_{VOL})
- ► Resistência de entrada (*R*_{in})
- ► Resistência de saída (*R*_{out})
- Frequência de ganho unitário (f_{unit})
- ightharpoonup Largura de faixa (L_F)
- ightharpoonup Slew Rate (S_R)

Características dos amplificadores

► Amplificador operacional ideal

$$ightharpoonup A_{VOI} = \infty$$

$$ightharpoonup R_{in} = \infty$$

$$ightharpoonup R_{out} = 0$$

$$ightharpoonup f_{unit} = \infty$$

$$ightharpoonup L_F = \infty$$

$$ightharpoonup S_R = \infty$$

$$ightharpoonup V_{io} = 0$$

► Amplificador operacional 741

$$A_{VOI} = 100000$$

$$ightharpoonup R_{in} = 1M\Omega$$

$$ightharpoonup R_{out} = 75\Omega$$

$$ightharpoonup f_{unit} = 1MHz$$

$$ightharpoonup L_F = 8Hz$$

►
$$S_R = 0.7 V/\mu s$$

$$ightharpoonup V_{io} = 2mV$$

Modos de operação

► Malha aberta

- Malha fechada
 - ► Realimentação positiva
 - ► Realimentação negativa

Amplificador Operacional 741

Pinagem do 741

- 1. Ajuste de offset
- 2. Entrada inversora
- 3. Entrada não inversora
- 4. -V_{CC}
- 5. Ajuste de offset
- 6. Saída
- $7. + V_{CC}$
- 8. NC (não conectado)

Malha aberta

Realimentação Positiva

Realimentação Negativa

Amplificador Inversor Amplificador Não Inversor

Amplificador Somador

Definição

- ▶ Ausência de realimentação (saída conectada a uma entrada) no circuito
- Cálculo da tensão de saída

$$V_S = A_{VOL}(V_+ - V_-)$$

Saturação

▶ Situação em que o ganho de tensão será limitado pela tensão de alimentação

Malha aberta

Realimentação Positiva

Realimentação Negativa

Amplificador Inversor

Amplificador Não Inversor

Amplificador Somador

Malha aberta

Realimentação Positiva

Realimentação Negativa

Amplificador Inversor

Amplificador Não Inversor

Amplificador Somador

Bibliografia

► MALVINO, A.; BATES, D.J. **Eletrônica – Volume II**, 8. ed., Porto Alegre, AMGH, 2016.

► ALBUQUERQUE, R.O.; SEABRA, A.C. Utilizando Eletrônica com AO, SCR, TRIAC, UJT, PUT, CI 555, LDR, LED, IGBT e FET de Potência 2. ed., São Paulo: Érica, 2012