Acid Base Equilbria Summary

Formulas:

- Recall ICE table from chemical equilibria
- Degree of ionization= $\frac{amount\ of\ molecules\ ionised\ at\ equilbirum}{initial\ amount\ of\ molecules}$

initial amount of mote

- P____ =-lg [____] for pH, pOH, pKa, pKb
- [___] = 10^{-p}— for pH, Poh
- To find pH from pOH, and vice versa

$$pH + pOH = pKw = 14 (25^{\circ}C)$$

• Acid and Base dissociation constants

$$Ka = \frac{[H+][A-]}{[HA]}$$

$$Kb = \frac{[BH+][OH-]}{[B]}$$

For conjugate acid-base pair

pKa x pKb = pKw = 14 (25°C)
Ka x Kb = Kw =
$$1.00 \times 10^{-14} \text{ mol}^2 \text{dm}^{-6}$$
 (25°C)

• To find pH or pOH, of a buffer solution with Henderson Hasselbalch Equation

pH = pKa +
$$\lg \frac{[A-]}{[HA]}$$
 for acidic buffer solution
pOH = pKb + $\lg \frac{[BH+]}{[B]}$ for alkaline buffer solution

• Maximum buffering capacity

pH = pKa for acidic buffer solution

(i.e. **amount of acid= amount of conjugate base formed from acid**, based on Henderson Hasselbalch Equation)

pOH = pKb for alkaline buffer solution

(i.e. amount of base= amount of conjugate acid formed from base, based on Henderson Hasselbalch Equation)

Note: H+ and H3O+ can be used interchangeably, select based on convenience.

Application:

Titration curves (SA-SB, WA-SB, SA-WB, WA-WB)

HCl + NH3 →NH4Cl

Illustrated with an example on $25.0cm^3$ of $0.100moldm^{-3}$ HCl titrated against $0.100moldm^{-3}$ NH3

- ✓ **Identify what is in the solution** at any given point in titration
- ✓ Calculate concentration of H+/ OH- by employing formulas

 N.B. Calculations will usually need to analyse amount of chemical species (which is the limiting reagent, which is in excess). Take note to consider changes in volume, as it'll affect concentration.

SA-SB

Straight forward as pure acid base reaction. No salt hydrolysis, no buffer. Analysis of amount of chemical species and calculating concentration will form the bulk of our answer.

WA-SB, SA-WB

Solution contains	What to do
Pure acid/ base	Consider strong or weak A/B.
	a. If strong A/B, using balanced chemical equation, determine
	concentration of H+/ OH- ions, pH can be determined.
	b. If weak A/B, use ICE table along with Ka/Kb.
Excess/ Unreacted	Only need to consider concentration of H+/OH- of the excess/ unreacted
SA/SB with salt that is	SA/SB. No need to consider the concentration of H+/OH- from salt
also acidic/ basic in	hydrolysis.
nature after hydrolysis	N.B. Reason being complete dissociation of the SA/SB will suppress salt
	hydrolysis.
Pure Salt	Consider which ion(s) hydrolyses (if any), and if they do, construct ICE
	table and use Ka/Kb,
Buffer/ maximum	Find the resultant concentration of the relevant conjugate acid-base pair
buffering capacity	species after acid-base reaction, and apply Henderson Hasselbalch
	Equation.