ADATSZERKEZETEK ÉS ALGORITMUSOK

- Sok adat esetén milyen adatszerkezetben lehet hatékonyan
 - keresni,
 - módosítani,
 - beszúrni és
 - törölni?
- A gyakorlat azt mutatja, hogy fákban és táblázatokban

- Szekvenciális keresések
 - a keresési idő n-nel arányos: $\mathcal{O}(n)$
 - rendezetlen tömbök
 - láncolt listák
- Bináris keresés
 - rendezett tömbök
 - a keresési idő $\log_2 n$ -nel arányos: $\mathcal{O}(\log_2 n)$

- Rendezett tömb létrehozása
 - elem hozzáadása megfelelő helyre

 megkeresem a pozícióját: 	$c_1 \log_2 n$	domináns
• eltolom:	c_2n	
• összesen:	$c_1 \log_2 n + c_2 n$	
vagyis:	c_2n	

- Minden elem hozzáadása a rendezett tömbhöz: O(n)
- Lehet-e a rendezett tömböt olcsóbb beszúrásokkal karbantartani?

- Szótár (dictionary) egy adatszerkezet, ha értelmezve vannak a következő műveletek:
 - Keres
 - Beszúr
 - Töröl
 - (Tól-ig)

- Prioritásos sor egy adatszerkezet, ha az előzőeken kívül értelmezve vannak a következők is
 - Minimum
 - Maximum
 - Előző
 - Rákövetkező
- Ezzel lehet rendezni

- Adatok a struktúrában
 - kulcs + mezők (rekordok)
- Lehetőségek
 - Kulcsegyezőség
 - I. minden kulcs különböző
 - II. lehetnek azonos kulcsok
 - Adatstruktúra
 - A. rekordok: $(k, m_1, m_2, ..., m_n)$
 - B. csak a kulcsokat nézzük: k
 - Mi most az I. és B.-t választjuk.

- Mennyire hatékony a bináris keresőfa?
 - Minden művelet egy útvonal bejárását jelenti a fában
 - A h magasságú fákban O(h) idő alatt hajtódnak végre
 - Ahogy elemeket beszúrunk és törlünk, változik a fa magassága és ezzel a műveletek ideje is
 - Itt ugyanis nem tudom a fa átlagos magasságát
 - Ha csak beszúrások vesszük a felépítés során, akkor könnyebben elemezhető

- Legyen adva n különböző kulcs, ebből bináris keresőfát építünk.
 - Ha itt minden sorrend egyformán valószínű, akkor a kapott fát véletlen építésű bináris keresőfának nevezzük.
- Bizonyítható, hogy egy n kulcsból **véletlen módon** épített bináris keresőfa átlagos magassága $\mathcal{O}(\log_2 n)$.

- Tegyük fel, hogy a véletlen sorrendű 1,2, ... n adatokból építjük fel a t keresőfát.
- Mennyi az átlagos csúcsmagasság?
- Ennek megválaszolása megadja a következő kérdésre is a megoldást:
 - Hány összehasonlítással lehet felépíteni a t keresőfát átlagosan?
- A meghatározáshoz vegyünk egy keresőfát

$$p = 5,2,9,3,11,1,6,10,8,7,4$$

esetén
 $\ddot{0}(p) = (1+1) + (2+2+2+2) + (3+3+3) + 4 = 23$

- Határozzuk meg ennek az átlagát!
- Először meghatározzuk a csúcsmagasság összeget.
- Jelölés:
 - f(n): n adatból hány összehasonlítással lehet keresőfát építeni
 - f(n|k): először a k érték jön (k az input sorozat első eleme)
 - Tegyük fel, hogy minden sorozat egyforma valószínűségű

$$f(n) = \frac{1}{n} \sum_{k=1}^{n} f(n|k)$$

Összehasonlítások

$$f(n) = \frac{1}{n} \sum_{k=1}^{n} (k - 1 + f(k - 1) + (n - k) + f(n - k))$$

$$f(0) = 0$$

$$f(n) = (n - 1) + \frac{2}{n} \sum_{k=1}^{n-1} f(k)$$

Belátható, hogy $f(n) < 2n * \ln n \approx 1,39n \log_2 n$ Tehát a fa csúcsmagasság összege $\approx 1,39n \log_2 n$

• Tehát a fa csúcsmagasság összege $\approx 1,39n \log_2 n$

- Ebből következik, hogy a véletlen kulcssorozatból készítette bináris keresési fa várható csúcsmagasság-átlaga $\approx 1,39 \log_2 n$
 - Ez jó eredmény, mivel 1,39 $\log_2 n = \mathcal{O}(\log_2 n)$.
 - Rosszabb, mint az optimális $h = \log_2 n$
 - Jobb, mint a h = n szélsőséges eset
- Fontos, hogy ez csak akkor érvényes, ha a kulcsok véletlen sorrendben érkeznek, ami a valóságban általában nem teljesül.

- A sorrend megőrzése fontos
 - ez a transzformáció megőrzi a keresőfa tulajdonságot

- A sorrend megőrzése fontos
 - ez a transzformáció megőrzi a keresőfa tulajdonságot

• Forgatást (jobbra) hajtottunk végre a 7 és 6 csúcsok körül

- A forgatások lehetnek bal- vagy jobb-forgatások
- Mindkét fára az inorder bejárás
 - A x B y C

- A forgatások lehetnek bal- vagy jobb-forgatások
- Mindkét fára az inorder bejárás
 - A x B y C

- Az x-y viszony megváltozásán túl a B részfa helyzete is változik
 - A x jobbgyerekéből átkerül az y balgyerekébe

AVL fa

Következő téma