Question Number	Scheme				Marks			
1.	Differentiates				M1			
	to obtain: $6x + 8y \frac{dy}{dx} - 2,$				A1,			
					+(B1)			
	Substitutes $x = 1$, $y = -2$ into expression involving $\frac{dy}{dx}$, to give $\frac{dy}{dx} = -\frac{8}{10}$				$=-\frac{8}{10}$	M1, A1		
	Uses line equation with numerical 'gradient' $y - (-2) = (\text{their gradient})(x - 1)$ or finds c and uses $y = (\text{their gradient}) x + "c"$				M1			
	To give $5y+4x+6=0$ (or equivalent = 0)				A1√	[7]		
2. (a)	x	0	$\frac{\pi}{16}$	$\frac{\pi}{8}$	$\frac{3\pi}{16}$	$\frac{\pi}{4}$		
	у	1	1.01959	1.08239	1.20269	1.41421	M1 A1	
	M1 for one of	correct, A1 fo	r all correct					(2)
(b)	Integral = $\frac{1}{2} \times \frac{\pi}{16} \times \{1 + 1.4142 + 2(1.01959 + + 1.20269)\}$				M1 A1√			
	$\left(=\frac{\pi}{32} \times 9.02355\right) = 0.8859$					A1 cao	(3)	
(c)	Percentage error = $\frac{approx - 0.88137}{0.88137} \times 100 = 0.51 \%$ (allow 0.5% to 0.54% for A1)				M1 A1	(2)		
	M1 gained for (\pm) $\frac{approx - \ln(1 + \sqrt{2})}{\ln(1 + \sqrt{2})}$				[7]			

Question Number	Scheme			
3.	Uses substitution to obtain $x = f(u) \left[\frac{u^2 + 1}{2} \right]$,	M1		
	and to obtain $u \frac{du}{dx} = \text{const. or equiv.}$	M1		
	Reaches $\int \frac{3(u^2+1)}{2u} u du$ or equivalent	A1		
	Simplifies integrand to $\int \left(3u^2 + \frac{3}{2}\right) du$ or equiv.	M1		
	Integrates to $\frac{1}{2}u^3 + \frac{3}{2}u$	M1 A1√		
	A1√ dependent on all previous Ms			
	Uses new limits 3 and 1 substituting and subtracting (or returning to function of x with old limits)	M1		
	To give 16 cso	A1 [8]		
	"By Parts" Attempt at "right direction" by parts $ \begin{bmatrix} 3x \left(2x - 1\right)^{\frac{1}{2}} \right) - \left\{ \int 3 \left(2x - 1\right)^{\frac{1}{2}} dx \right\} \right] \text{M1}\{\text{M1A1}\} $			

January	7 2006 6666 Core Mathematics C4	Mark Schei	me
4.	Attempts $V = \pi \int x^2 e^{2x} dx$	M1	
	$= \pi \left[\frac{x^2 e^{2x}}{2} - \int x e^{2x} dx \right]$ (M1 needs parts in the correct direction)	M1 A1	
	$= \pi \left[\frac{x^2 e^{2x}}{2} - \left(\frac{x e^{2x}}{2} - \int \frac{e^{2x}}{2} dx \right) \right] $ (M1 needs second application of parts)	M1 A1√	
	M1A1 $\sqrt{\ }$ refers to candidates $\int x e^{2x} \mathrm{d}x$, but dependent on prev. M1		
	$= \pi \left[\frac{x^2 e^{2x}}{2} - \left(\frac{x e^{2x}}{2} - \frac{e^{2x}}{4} \right) \right]$	A1 cao	
	Substitutes limits 3 and 1 and subtracts to give [dep. on second and third Ms]	dM1	
	= $\pi \left[\frac{13}{4} e^6 - \frac{1}{4} e^2 \right]$ or any correct exact equivalent.	A1	[8]
	[Omission of π loses first and last marks only]		[0]

Question Number	Scheme	Marks
5. (a)	Considers $3x^2 + 16 = A(2+x)^2 + B(1-3x)(2+x) + C(1-3x)$ and substitutes $x = -2$, or $x = 1/3$,	M1
	or compares coefficients and solves simultaneous equations	
	To obtain A = 3, and C = 4	A1, A1
	Compares coefficients or uses simultaneous equation to show B = 0.	B1 (4)
(b)	Writes $3(1-3x)^{-1} + 4(2+x)^{-2}$	M1
	$=3(1+3x,+9x^2+27x^3+)+$	(M1, A1)
	$\frac{4}{4}\left(1 + \frac{(-2)}{1}\left(\frac{x}{2}\right) + \frac{(-2)(-3)}{1.2}\left(\frac{x}{2}\right)^2 + \frac{(-2)(-3)(-4)}{1.2.3}\left(\frac{x}{2}\right)^3 + \ldots\right)$	(M1 A1)
	$=4+8x, +27\frac{3}{4}x^2+80\frac{1}{2}x^3+\dots$	A1, A1 (7)
	Or uses $(3x^2+16)(1-3x)^{-1}(2+x)^{-2}$	M1
	$(3x^2+16)(1+3x,+9x^2+27x^3+) \times$	(M1A1)×
	$\frac{1}{4}\left(1+\frac{(-2)}{1}\left(\frac{x}{2}\right)+\frac{(-2)(-3)}{1.2}\left(\frac{x}{2}\right)^{2}+\frac{(-2)(-3)(-4)}{1.2.3}\left(\frac{x}{2}\right)^{3}\right)$	(M1A1)
	$=4+8x, +27\frac{3}{4}x^2+80\frac{1}{2}x^3+\dots$	A1, A1 (7)

6. (a)	$\lambda = -4 \rightarrow a = 18, \qquad \mu = 1 \rightarrow b = 9$	M1 A1, A1 (3)
(b)	$\begin{pmatrix} 8+\lambda \\ 12+\lambda \\ 14-\lambda \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = 0$	M1
	$\therefore 8 + \lambda + 12 + \lambda - 14 + \lambda = 0$	A1
	Solves to obtain λ ($\lambda = -2$)	dM1
	Then substitutes value for λ to give P at the point (6, 10, 16) (any form)	M1, A1 (5)
(c)	$OP = \sqrt{36 + 100 + 256}$	M1
	$(= \sqrt{392}) = 14\sqrt{2}$	A1 cao (2) [10]
7. (a)	$\frac{dV}{dr} = 4\pi r^2$	B1 (1)
(b)	Uses $\frac{dr}{dt} = \frac{dV}{dt} \cdot \frac{dr}{dV}$ in any form, $=\frac{1000}{4\pi r^2 (2t+1)^2}$	M1,A1 (2)
(c)	$V = \int 1000(2t+1)^{-2} dt \text{ and integrate to } p(2t+1)^{-1}, = -500(2t+1)^{-1}(+c)$	M1, A1
	Using V=0 when t=0 to find c , (c = 500 , or equivalent)	M1
	$\therefore V = 500(1 - \frac{1}{2t+1}) \qquad \text{(any form)}$	A1 (4)
(d)	(i) Substitute t = 5 to give V,	M1,
	then use $r = \sqrt[3]{\left(\frac{3V}{4\pi}\right)}$ to give $r_{+} = 4.77$	M1, A1 (3)
	(ii) Substitutes t = 5 and r = 'their value' into 'their' part (b)	M1
	$\frac{dr}{dt} = 0.0289 (\approx 2.90 x 10^{-2}) (\text{ cm/s}) * AG$	A1 [12]

8.	(a)	Solves $y = 0 \implies \cos t = \frac{1}{2}$ to obtain $t = \frac{\pi}{3}$ or $\frac{5\pi}{3}$	(need both for A1)
----	-----	--	--------------------

Or substitutes **both** values of t and shows that y = 0

$$\frac{dx}{dt} = 1 - 2\cos t$$

Area=
$$\int y dx = \int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} (1 - 2\cos t)(1 - 2\cos t)dt = \int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} (1 - 2\cos t)^2 dt * AG$$

(c) Area =
$$\int 1 - 4\cos t + 4\cos^2 t dt$$
 3 terms = $\int 1 - 4\cos t + 2(\cos 2t + 1) dt$ (use of correct double angle formula)

$$= \int 3 - 4\cos t + 2\cos 2t dt$$

$$= \left[3t - 4\sin t + \sin 2t\right]$$

Substitutes the two correct limits $t = \frac{5\pi}{3}$ and $\frac{\pi}{3}$ and subtracts.

$$=4\pi+3\sqrt{3}$$