

Report No.: EED32I00147601 Page 1 of 45

TEST REPORT

Product : BLE Adapter

Trade mark : N/A

Model/Type reference : MBLE-1 Serial Number : N/A

Report Number : EED32I00147601 FCC ID : 2AIV3-MB-BLE

Date of Issue : Jun. 29, 2016

Test Standards : 47 CFR Part 15Subpart C (2015)

Test result : PASS

Prepared for:

Beijing M&B Electronic Instruments Co., LTD
No. 27, Yongwang Road, Beijing Bioengineering and Medicine Industry
Base, Huangcun Town, Daxing district, Beijing, CHINA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

10M- Chen

Compiled by:

pproved by

Report Seal

Kevin lan (Project Engineer)

Reviewed by:

Date:

Eman-Li

Tom chen (Test Project)

Emen Li (Reviewer)

Jun. 29, 2016

07 1

Sheek Luo (Lab supervisor)

Check No.: 2447612696

Page 2 of 45

2 Version

Version No.	Date	Description	<u>(,)</u>
00	Jun. 29, 2016	Original	
			(6,1)

Report No. : EED32I00147601 Page 3 of 45

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	N/A
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp meansTemperature.

Humid: In this whole report Humid means humidity.

Press: In this whole report Press means Pressure.

N/A: In this whole report not application.

4 Content

1 (COVER PAGE	1
2 '	VERSION	2
3 .	TEST SUMMARY	3
	CONTENT	
	TEST REQUIREMENT	
)		
	5.1 Test setup	
	5.1.1 For Conducted test setup	
	5.1.2 For Radiated Emissions test setup	
	5.1.3 For Conducted Emissions test setup	
	5.3 TEST CONDITION	
_		
	GENERAL INFORMATION	
	6.1 CLIENT INFORMATION	
	6.2 GENERAL DESCRIPTION OF EUT	
	6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
	6.4 DESCRIPTION OF SUPPORT UNITS	
	6.5 TEST LOCATION	
	6.6 TEST FACILITY	
	6.7 DEVIATION FROM STANDARDS	
	6.8 ABNORMALITIES FROM STANDARD CONDITIONS	
	6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	6.10 Measurement Uncertainty(95% confidence levels, k=2)	
	EQUIPMENT LIST	
B I	RADIO TECHNICAL REQUIREMENTS SPECIFICATION	13
	Appendix A): 6dB Occupied Bandwidth	
	Appendix A): Conducted Peak Output Power	16
	Appendix C): Band-edge for RF Conducted Emissions	
	Appendix D): RF Conducted Spurious Emissions	
	Appendix E): Power Spectral Density	
	Appendix F): Antenna Requirement	
	Appendix G): Restricted bands around fundamental frequency (Radiated)	
	Appendix H): Radiated Spurious Emissions	
Ρŀ	HOTOGRAPHS OF TEST SETUP	39
	HOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	
7	HOTOGRAFIIS OF EUT CONSTRUCTIONAL DETAILS	41

Report No. : EED32I00147601 Page 5 of 45

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Antenna Tower

Antenna Tower

Ground Reference Plane

Test Receive Angeler Controller

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		
Temperature:	25°C	
Humidity:	50% RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

Test Mode	Tx	RF Channel				
Test Mode		Low(L)	Middle(M)	High(H)		
GFSK	0.400 MILL 0.400 MILL	Channel 1	Channel 20	Channel40		
	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz		
Transmitting mode:	Keep the EUT transmitted the continuous modulation test signal at the specific channel(s).					

Report No. : EED32I00147601 Page 7 of 45

6 General Information

6.1 Client Information

Applicant:	Beijing M&B Electronic Instruments Co., LTD				
Address of Applicant:	No. 27, Yongwang Road, Beijing Bioengineering and Medicine Industry Base, Huangcun Town, Daxing district, Beijing, CHINA				
Manufacturer:	Beijing M&B Electronic Instruments Co., LTD				
Address of Manufacturer:	No. 27, Yongwang Road, Beijing Bioengineering and Medicine Industry Base, Huangcun Town, Daxing district, Beijing, CHINA				
Factory:	Beijing M&B Electronic Instruments Co., LTD				
Address of Factory:	No. 27, Yongwang Road, Beijing Bioengineering and Medicine Industry Base, Huangcun Town, Daxing district, Beijing, CHINA				

6.2 General Description of EUT

Product Name:	BLE Adapter	
Model No.(EUT):	MBLE-1	-:5
Tark mark:	N/A	677
EUT Supports Radios application:	Bluetooth V4.0	
Power Supply:	Supply by USB port of MSA100: DC 3.0V	
Sample Received Date:	May 24, 2016	
Sample tested Date:	May 24, 2016 to Jun. 16, 2016	

6.3 Product Specification subjective to this standard

Operation F		2402MHz	~2480MHz		(3)		(3)	
Bluetooth \	/ersion:	4.0	(6.7)		(85)		(6,7)	
Modulation	Type:	GFSK						
Number of	Channel:	40						
Sample Typ	pe:	Portable p	roduction		2	/*>		
Test Power	· Grade:	rade: N/A(manufacturer declare)				.)		
Test Software of EUT: N/A(manufacturer declare)								
Hardware \	/ersion:	MB BLE E	MB BLE BOARD-V4(manufacturer declare)					
Software V	ersion:	V1.10(manufacturer declare)						
Antenna Ty	/pe:	Chip ante	nna		(41)			
Antenna G	ain:	1.72dBi					6	
Test Voltag	je:	Supply by USB port of MSA100: DC 3.0V						
Operation F	requency eac	h of channe		022		020		
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz	
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz	

Report No. : EED32I00147601 Page 8 of 45

5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Associa	ciated equipment name Manufacture		S/N	Supplied by
AE1	MSA100	Beijing M&B Electronic Instruments Co., LTD	PFM160416(c)	client

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd.has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International (Shenzhen) Corporation. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

Report No. : EED32I00147601 Page 9 of 45

The 10m Alternate Test Site of Centre Testing International (Shenzhen) Corporation., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards
None.

6.8 Abnormalities from Standard ConditionsNone.

6.9 Other Information Requested by the CustomerNone.

Report No. : EED32I00147601 Page 10 of 45

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nover conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB(1GHz-18GHz)
3	Dadieted Churique emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB(1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No. : EED32I00147601 Page 11 of 45

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Communication test set test set	Agilent	N4010A	MY51400230	04-01-2016	03-31-2017
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter(6- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2016	01-11-2017
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017
BT&WI-FI Automatic control	R&S	OSP120	101374	04-01-2016	03-31-2017
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2015	03-31-2016

Report No. : EED32I00147601 Page 12 of 45

	(()			12	
	3M	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-02-2013	06-01-2016
3M Chamber & Accessory Equipment	TDK	SAC-3		06-01-2016	05-31-2019
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-30-2015	06-28-2016
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016
Multi device Controller	maturo	NCD/070/10711 112		01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-30-2015	06-28-2016
LISN	schwarzbeck	NNBM8125	81251548	06-30-2015	06-28-2016
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	07- 08-2015	07-06-2016
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002	(C17)	01-12-2016	01-11-2017
High-pass filter(6- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001	(4)	01-12-2016	01-11-2017

Report No. : EED32I00147601 Page 13 of 45

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10/KDB 558074	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10/KDB 558074	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10/KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10/KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10/KDB 558074	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	N/A	N/A
Part15C Section 15.205/15.209 ANSI C63.10		Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Page 14 of 45

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6739	1.0876	PASS	(:)
BLE	MCH	0.6898	1.0860	PASS	Peak
BLE	НСН	0.6801	1.0845	PASS	detector

Report No.: EED32I00147601 Page 15 of 45

Test Graphs

Page 16 of 45

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-3.274	PASS
BLE	MCH	-3.934	PASS
BLE	HCH	-4.714	PASS

Test Graphs

Appendix C): Band-edge for RF Conducted Emissions

Result Table

0.0	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
	BLE	LCH	-3.643	-55.367	-23.64	PASS
	BLE	HCH	-5.554	-49.113	-25.55	PASS

Test Graphs

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-3.992	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-4.887	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	-5.679	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Report No. : EED32I00147601 Page 20 of 45

Report No. : EED32I00147601 Page 21 of 45

Page 22 of 45

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-15.773	8	PASS
BLE	MCH	-16.209	8	PASS
BLE	HCH	-17.820	8	PASS

Test Graphs

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.72dBi.

Report No. : EED32I00147601 Page 25 of 45

Appendix G): Restricted bands around fundamental frequency (Radiated)

	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	-0-
		Above 4011	Peak	1MHz	3MHz	Peak	-41
		Above 1GHz	Peak	1MHz	10Hz	Average	6
	Test Procedure:	Below 1GHz test proced	ure as below:				
		a. The EUT was placed at a 3 meter semi-and determine the position b. The EUT was set 3 m was mounted on the too the control of the antenna height is determine the maximum polarizations of the art of the antenna was tune table was turned from the end of the antenna was tune table was turned from the test-receiver syst bandwidth with Maximum f. Place a marker at the frequency to show combands. Save the spector lowest and highest	on the top of a rechoic camber. The choic camber. The choic camber is a ceters away from op of a variable-recho waried from one um value of the finatenna are set to mission, the EUT do to heights from 0 degrees to 360 cem was set to Penum Hold Mode, and of the restriction mpliance. Also more trum analyzer plots of the ceters of the cete	the table was adiation. the interfer neight anter to for eld strength make the nature of the degrees to degrees the ak Detect cated band one asure any	ence-receinna tower. Four meters In Both house assurement In Grant to the second to th	above the grorizontal and versit case an and the rotata maximum rearnd Specified he transmit in the restricts.	which und to ertical d then ble ding.
		g. Different between abo	ove is the test site			Anachoic Cha	
		18GHz the distance is h Test the EUT in the i. The radiation measure Transmitting mode, at j. Repeat above proced	owest channel , the comments are performed found the X axis.	le is 1.5 me the Highes ormed in X, kis position	tre). t channel Y, Z axis p ing which i	.5 metre(Abo positioning for t is worse cas	ve
)	Limit:	h Test the EUT in the i. The radiation measure Transmitting mode, as	s 1 meter and table lowest channel, sements are perfo and found the X ax	le is 1.5 me the Highes rmed in X, kis position uencies me	tre). t channel Y, Z axis p ing which i easured wa	.5 metre(Abo positioning for t is worse cas	ve
9	Limit:	h Test the EUT in the i. The radiation measure Transmitting mode, at j. Repeat above proced	s 1 meter and table lowest channel, sements are performed found the X as ures until all freq	le is 1.5 me the Highes irmed in X, xis positioni uencies me /m @3m)	tre). t channel Y, Z axis p ing which i easured wa	.5 metre(Abo positioning for t is worse cas as complete.	ve
シ 	Limit:	h Test the EUT in the i. The radiation measure Transmitting mode, at j. Repeat above proced Frequency	s 1 meter and table owest channel , sements are perfound the X average ures until all frequents (dBuV).	le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m)	tre). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe	.5 metre(Abo positioning for t is worse cas as complete. mark	ve
9	Limit:	h. Test the distance is h. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above proced Frequency 30MHz-88MHz	s 1 meter and table owest channel , sements are perfound found the X as ures until all frequents (dBuV, 40.6)	le is 1.5 me the Highest rmed in X, xis position uencies me /m @3m) 0	tre). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe	oositioning for t is worse cas as complete. mark eak Value	ve
9	Limit:	h Test the distance is h Test the EUT in the i. The radiation measure Transmitting mode, at j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	s 1 meter and table lowest channel , sements are performed found the X as ures until all frequency Limit (dBuV, 40.6 43.6	le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m) 0 5	tre). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe	oositioning for t is worse cas complete. mark eak Value eak Value	ve
9	Limit:	h. Test the distance is h. Test the EUT in the i. The radiation measure Transmitting mode, at j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	s 1 meter and table owest channel , sements are perfound found the X average ures until all frequency 40.0 40.0 46.0	le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m) 0 5	tre). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe Quasi-pe	oositioning for t is worse cas as complete. mark eak Value eak Value	ve
9	Limit:	h. Test the distance is h. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	s 1 meter and table owest channel , sements are perfound found the X as ures until all frequency Limit (dBuV, 40.0 43.5 46.0 54.0	le is 1.5 me the Highest rmed in X, xis position uencies me /m @3m) 0 5 0 0	tre). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe Average	oositioning for t is worse cas as complete. mark eak Value eak Value eak Value	ve

Page 26 of 45

Report No.: EED32I00147601

Test plot as follows:

Worse case mode: GFSK

Frequency: 2390.0MHz Test channel: Lowest Polarization: Horizontal Remark: PK

1 2390.000 32.53 4.28 34.39 44.97 47.39 74.00 -26.61 Horizontal 2 pp 2402.370 32.56 4.31 34.39 87.99 90.47 74.00 16.47 Horizontal

Report No. : EED32I00147601 Page 27 of 45

Worse case mode:	GFSK	(C)	(67)	(6,2)
Frequency: 2390.0MH	lz	Test channel: Lowest	Polarization: Horizontal	Remark: AV

	Freq			Preamp Factor					Pol/Phase	Remark
_	MHz	dB/m	dB	dB	dBuV	dBuV/m	dBuV/m	dB		
									Horizontal Horizontal	_

Report No. : EED32I00147601 Page 28 of 45

Worse case mode:	GFSK	(6,2)	(67)	(6,2,)
Frequency: 2390.0MHz		Test channel: Lowest	Polarization: Vertical	Remark: PK

Report No. : EED32I00147601 Page 29 of 45

				C.	
Worse case mode:	GFSK				
Frequency: 2390.0MI	Hz	Test channel: Lowest	Polarization: Vertical	Remark: AV	

	Freq			Preamp Factor					Pol/Phase	Remark
-	MHz	dB/m	dB	dB	dBuV	dBuV/m	dBuV/m	dB		
									Vertical Vertical	_

Worse case mode:	GFSK	(61)	(67)	(61)	
Frequency: 2483 5MF	17	Test channel: Highest	Polarization: Horizontal	Remark: PK	

Ant Cable Preamp Read Limit Over Freq Factor Loss Factor Level Level Line Limit Pol/Phase Remark MHz dB/m dB dB dB dBuV dBuV/m dBuV/m dB

1 pp 2479.841 32.71 4.50 34.41 88.87 91.67 74.00 17.67 Horizontal 2 2483.500 32.71 4.51 34.41 51.48 54.29 74.00 -19.71 Horizontal

Worse case mode:	GFSK	(67)	(62)	(6,7)
Frequency: 2483.5MH	Z	Test channel: Highest	Polarization: Horizontal	Remark: AV

Worse case mode:	GFSK				
Frequency: 2483.5MH	Ηz	Test channel: Highest	Polarization: Vertical	Remark: PK	

Frequency (MHz)

	Cable Preamp Loss Factor					Remark
MHz dB/m	dB dB	dBuV	dBu V/m	dBuV/m	dB	

1 pp 2479.863 32.71 4.50 34.41 87.54 90.34 74.00 16.34 Vertical 2 2483.500 32.71 4.51 34.41 51.24 54.05 74.00 -19.95 Vertical

Worse case mode:	GFSK	(c_j)	(6,7,)	$(C_{j,j})$
Frequency: 2483.5MHz	Z	Test channel: Highest	Polarization: Vertical	Remark: AV

Freq						Limit Line		Pol/Phase	Remark	
MHz	dB/m	dB	dB	dBuV	dBuV/m	dBuV/m	dB			
								Vertical Vertical	_	

Note:

1 2

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32I00147601 Page 34 of 45

Appendix H): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

	m	ΙŤ

Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	/°5	300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No. : EED32l00147601 Page 35 of 45

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Horizontal

		Ant	Cable	Read		Limit	Over		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
-	MU-			40.4/	4D. M/m	dD. 3//m			
	MHz	ab/m	ab	abuv	abuv/m	dBuV/m	dB		
1	50.057	15.09	1.40	5.69	22.18	40.00	-17.82	Horizontal	
2	100.581	13.15	1.57	4.84	19.56	43.50	-23.94	Horizontal	
3 рр	256.521	12.56	2.35	22.18	37.09	46.00	-8.91	Horizontal	
4	287.990	13.25	2.37	14.83	30.45	46.00	-15.55	Horizontal	
5	480.528	17.91	3.08	7.26	28.25	46.00	-17.75	Horizontal	
6	785.093	21.43	3.88	6.61	31.92	46.00	-14.08	${\it Horizontal}$	

Page 36 of 45

	Fred					Limit		Pol/Phase	Remark
_									
	MHz	dB/m	ав	dBuV	dBuV/m	dBu V/m	dB		
1	48.332	14.96	1.27	5.53	21.76	40.00	-18.24	Vertical	
2	113.316	12.12	1.57	6.19	19.88	43.50	-23.62	Vertical	
3	256.521	12.56	2.35	11.63	26.54	46.00	-19.46	Vertical	
4	383.932	15.84	2.77	5.30	23.91	46.00	-22.09	Vertical	
5	568.613	18.68	3.32	6.34	28.34	46.00	-17.66	Vertical	
6 рр	919.287	22.40	4.33	7.00	33.73	46.00	-12.27	Vertical	

Transmitter Emission above 1GHz

Worse case	mode:	GFSK		Test chani	nel:	Lowest				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1381.656	30.63	2.71	34.78	47.78	46.34	74	-27.66	Pass	Н	
3225.037	33.40	5.57	34.53	46.18	50.62	74	-23.38	Pass	€H.	
4804.000	34.69	5.11	34.35	44.90	50.35	74	-23.65	Pass	Н	
5448.410	35.48	6.17	34.30	43.50	50.85	74	-23.15	Pass	Н	
7206.000	36.42	6.66	34.90	37.28	45.46	74	-28.54	Pass	Н	
9608.000	37.88	7.73	35.08	35.42	45.95	74	-28.05	Pass	Н	
1663.803	31.17	2.97	34.54	47.80	47.40	74	-26.60	Pass	V	
3299.775	33.34	5.56	34.53	46.25	50.62	74	-23.38	Pass	V	
4804.000	34.69	5.11	34.35	45.77	51.22	74	-22.78	Pass	V	
5956.109	35.87	7.33	34.30	41.51	50.41	74	-23.59	Pass	V	
7206.000	36.42	6.66	34.90	38.53	46.71	74	-27.29	Pass	V	
9608.000	37.88	7.73	35.08	37.76	48.29	74	-25.71	Pass	V	

Worse case	Worse case mode:		GFSK		Test channel:		Middle			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1948.245	31.62	3.19	34.33	46.60	47.08	74	-26.92	Pass	Н	
3176.155	33.44	5.58	34.52	46.16	50.66	74	-23.34	Pass	ЭН	
4880.000	34.85	5.08	34.33	44.89	50.49	74	-23.51	Pass	Н	
5925.863	35.85	7.27	34.30	42.15	50.97	74	-23.03	Pass	Н	
7320.000	36.43	6.77	34.90	38.82	47.12	74	-26.88	Pass	Н	
9760.000	38.05	7.60	35.05	36.67	47.27	74	-26.73	Pass	Н	
1659.574	31.16	2.97	34.54	47.33	46.92	74	-27.08	Pass	V	
3299.775	33.34	5.56	34.53	46.44	50.81	74	-23.19	Pass	V	
4880.000	34.85	5.08	34.33	45.27	50.87	74	-23.13	Pass	V	
5718.399	35.69	6.80	34.30	42.62	50.81	74	-23.19	Pass	V	
7320.000	36.43	6.77	34.90	38.88	47.18	74	-26.82	Pass	V	
9760.000	38.05	7.60	35.05	36.49	47.09	74	-26.91	Pass	V	

Report No.: EED32I00147601 Page 38 of 45

Worse case	mode:	GFSK		Test chani	nel:	Highest				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1846.834	31.47	3.12	34.40	47.35	47.54	74	-26.46	Pass	Н	
3266.346	33.36	5.57	34.53	46.40	50.80	74	-23.20	Pass	H	
4960.000	35.02	5.05	34.31	43.43	49.19	74	-24.81	Pass	Н	
5646.079	35.63	6.63	34.30	42.66	50.62	74	-23.38	Pass	Н	
7440.000	36.45	6.88	34.90	38.19	46.62	74	-27.38	Pass	Н	
9920.000	38.22	7.47	35.02	37.35	48.02	74	-25.98	Pass	Н	
1668.044	31.18	2.98	34.54	48.32	47.94	74	-26.06	Pass	V	
3283.018	33.35	5.56	34.53	46.53	50.91	74	-23.09	Pass	V	
4960.000	35.02	5.05	34.31	44.25	50.01	74	-23.99	Pass	V	
5352.186	35.40	5.93	34.30	43.82	50.85	74	-23.15	Pass	V	
7440.000	36.45	6.88	34.90	38.11	46.54	74	-27.46	Pass	V	
9920.000	38.22	7.47	35.02	36.62	47.29	74	-26.71	Pass	V	

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No. : EED32I00147601 Page 39 of 45

PHOTOGRAPHS OF TEST SETUP

Test mode No.: MBLE-1

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup for Close up-2(Below 1GHz)

Report No. : EED32I00147601 Page 40 of 45

Radiated spurious emission Test Setup-3(Above 1GHz)

Radiated spurious emission Test Setup for Close up-4(Above 1GHz)

Page 41 of 45 Report No.: EED32I00147601

PHOTOGRAPHS OF EUT Constructional Details

Test mode No.: MBLE-1

View of Product-1

View of Product-2

Page 42 of 45

View of Product-3

Page 43 of 45

View of Product-5

Page 44 of 45 Report No.: EED32I00147601

View of Product-7

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

