

# Forecasting: principles and practice

Rob J Hyndman

2.4 Non-seasonal ARIMA models

# **Outline**

- 1 Autoregressive models
- 2 Moving Average models
- 3 Non-seasonal ARIMA models
- 4 Estimation and order selection
- 5 ARIMA modelling in R
- 6 Lab session 15

# **Autoregressive models**

## **Autoregressive (AR) models:**

 $y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_p y_{t-p} + \varepsilon_t$ , where  $\varepsilon_t$  is white noise. This is a multiple regression with **lagged values** of  $y_t$  as predictors.





# AR(1) model

$$y_t = 2 - 0.8y_{t-1} + \varepsilon_t$$

 $\varepsilon_t \sim N(0, 1)$ , T = 100.



# AR(1) model

$$y_t = c + \phi_1 y_{t-1} + \varepsilon_t$$

- When  $\phi_1$  = 0,  $y_t$  is **equivalent to WN**
- When  $\phi_1$  = 1 and c = 0,  $y_t$  is **equivalent to a RW**
- When  $\phi_1$  = 1 and  $c \neq 0$ ,  $y_t$  is **equivalent to a RW** with drift
- When  $\phi_1$  < 0,  $y_t$  tends to oscillate between positive and negative values.

5

# AR(2) model

$$y_t = 8 + 1.3y_{t-1} - 0.7y_{t-2} + \varepsilon_t$$

 $arepsilon_t \sim$  N(0, 1),

T = 100.



# **Stationarity conditions**

We normally restrict autoregressive models to stationary data, and then some constraints on the values of the parameters are required.

## **General condition for stationarity**

Complex roots of  $1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p$  lie outside the unit circle on the complex plane.

# **Stationarity conditions**

We normally restrict autoregressive models to stationary data, and then some constraints on the values of the parameters are required.

# **General condition for stationarity**

Complex roots of  $1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p$  lie outside the unit circle on the complex plane.

- For p = 1:  $-1 < \phi_1 < 1$ .
- For p = 2:

$$-1 < \phi_2 < 1$$
  $\phi_2 + \phi_1 < 1$   $\phi_2 - \phi_1 < 1$ .

■ More complicated conditions hold for  $p \ge 3$ .

# **Outline**

- 1 Autoregressive models
- 2 Moving Average models
- 3 Non-seasonal ARIMA models
- 4 Estimation and order selection
- 5 ARIMA modelling in R
- 6 Lab session 15

# Moving Average (MA) models

# **Moving Average (MA) models:**

 $y_t = c + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \cdots + \theta_q \varepsilon_{t-q}$ , where  $\varepsilon_t$  is white noise. This is a multiple regression with **past errors** as predictors. Don't confuse this with moving average smoothing!





# MA(1) model

$$y_t = 20 + \varepsilon_t + 0.8\varepsilon_{t-1}$$

 $\varepsilon_t \sim N(0, 1)$ , T = 100.



# MA(2) model

$$y_t = \varepsilon_t - \varepsilon_{t-1} + 0.8\varepsilon_{t-2}$$

 $\varepsilon_t \sim N(0, 1)$ , T = 100.



# **Invertibility**

 Invertible models have property that distant past has negligible effect on forecasts. Requires consraints on MA parameters.

## **General condition for invertibility**

Complex roots of  $1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_q z^q$  lie outside the unit circle on the complex plane.

# **Invertibility**

 Invertible models have property that distant past has negligible effect on forecasts. Requires consraints on MA parameters.

## **General condition for invertibility**

Complex roots of  $1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_q z^q$  lie outside the unit circle on the complex plane.

- For  $q = 1: -1 < \theta_1 < 1$ .
- For q = 2:

$$-1 < \theta_2 < 1$$
  $\theta_2 + \theta_1 > -1$   $\theta_1 - \theta_2 < 1$ .

■ More complicated conditions hold for  $q \ge 3$ .

# **Outline**

- **1** Autoregressive models
- 2 Moving Average models
- 3 Non-seasonal ARIMA models
- 4 Estimation and order selection
- 5 ARIMA modelling in R
- 6 Lab session 15

## **Autoregressive Moving Average models:**

$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q} + e_t.$$

## **Autoregressive Moving Average models:**

$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + \theta_1 e_{t-1} + \dots + \theta_a e_{t-a} + e_t.$$

- Predictors include both lagged values of y<sub>t</sub> and lagged errors.
- Conditions on coefficients ensure stationarity.
- Conditions on coefficients ensure invertibility.

## **Autoregressive Moving Average models:**

$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q} + e_t.$$

- Predictors include both lagged values of y<sub>t</sub> and lagged errors.
- Conditions on coefficients ensure stationarity.
- Conditions on coefficients ensure invertibility.

# **Autoregressive Integrated Moving Average models**

- Combine ARMA model with **differencing**.
- $(1-B)^d y_t$  follows an ARMA model.

# **Autoregressive Integrated Moving Average models**

## ARIMA(p, d, q) model

- AR: p = order of the autoregressive part
  - I: d =degree of first differencing involved
- MA: q =order of the moving average part.
  - White noise model: ARIMA(0,0,0)
  - Random walk: ARIMA(0,1,0) with no constant
  - Random walk with drift: ARIMA(0,1,0) with const.
  - $\blacksquare$  AR(p): ARIMA(p,0,0)
  - $\blacksquare$  MA(q): ARIMA(0,0,q)

# **Backshift notation for ARIMA**

ARMA model:

$$\begin{aligned} \mathbf{y}_t &= \mathbf{c} + \phi_1 \mathbf{B} \mathbf{y}_t + \dots + \phi_p \mathbf{B}^p \mathbf{y}_t + \varepsilon_t + \theta_1 \mathbf{B} \varepsilon_t + \dots + \theta_q \mathbf{B}^q \varepsilon_t \\ \text{or} \quad & (1 - \phi_1 \mathbf{B} - \dots - \phi_p \mathbf{B}^p) \mathbf{y}_t = \mathbf{c} + (1 + \theta_1 \mathbf{B} + \dots + \theta_q \mathbf{B}^q) \varepsilon_t \end{aligned}$$

ARIMA(1,1,1) model:

$$(1 - \phi_1 B)$$
  $(1 - B)y_t = c + (1 + \theta_1 B)\varepsilon_t$ 
 $\uparrow$   $\uparrow$   $\uparrow$ 
AR(1) First MA(1)
difference

# **Backshift notation for ARIMA**

ARMA model:

$$\begin{aligned} \mathbf{y}_t &= \mathbf{c} + \phi_1 \mathbf{B} \mathbf{y}_t + \dots + \phi_p \mathbf{B}^p \mathbf{y}_t + \varepsilon_t + \theta_1 \mathbf{B} \varepsilon_t + \dots + \theta_q \mathbf{B}^q \varepsilon_t \\ \text{or} \quad & (\mathbf{1} - \phi_1 \mathbf{B} - \dots - \phi_p \mathbf{B}^p) \mathbf{y}_t = \mathbf{c} + (\mathbf{1} + \theta_1 \mathbf{B} + \dots + \theta_q \mathbf{B}^q) \varepsilon_t \end{aligned}$$

ARIMA(1,1,1) model:

$$(1 - \phi_1 B)$$
  $(1 - B)y_t = c + (1 + \theta_1 B)\varepsilon_t$   
 $\uparrow$   $\uparrow$   $\uparrow$   $\uparrow$   
AR(1) First MA(1)  
difference

Written out:

$$y_t = c + y_{t-1} + \phi_1 y_{t-1} - \phi_1 y_{t-2} + \theta_1 \varepsilon_{t-1} + \varepsilon_t$$

16

# R model

#### **Intercept form**

$$(1 - \phi_1 B - \dots - \phi_p B^p) y_t' = c + (1 + \theta_1 B + \dots + \theta_q B^q) \varepsilon_t$$

#### Mean form

$$(1 - \phi_1 B - \dots - \phi_p B^p)(y_t' - \mu) = (1 + \theta_1 B + \dots + \theta_q B^q)\varepsilon_t$$

- $y'_t = (1 B)^d y_t$
- $\blacksquare$   $\mu$  is the mean of  $\mathbf{y}_t'$ .
- $c = \mu(1 \phi_1 \cdots \phi_p).$
- R uses mean form.

```
autoplot(uschange[,"Consumption"]) +
  xlab("Year") + ylab("Quarterly percentage change") +
  ggtitle("US consumption")
```



## Series: uschange[, "Consumption"] ## ARIMA(2,0,2) with non-zero mean ## ## Coefficients: ## ar1 ar2 ma1 ma2 mean ## 1.391 -0.581 -1.180 0.558 0.746 ## s.e. 0.255 0.208 0.238 0.140 0.084 ## ## sigma^2 estimated as 0.351: log likelihood=-165.1 ## AIC=342.3 AICc=342.8 BIC=361.7

(fit <- auto.arima(uschange[,"Consumption"]))</pre>

```
## Series: uschange[, "Consumption"]
## ARIMA(2,0,2) with non-zero mean
##
## Coefficients:
##
         ar1 ar2 ma1 ma2
                                    mean
## 1.391 -0.581 -1.180 0.558 0.746
## s.e. 0.255 0.208 0.238 0.140 0.084
##
## sigma^2 estimated as 0.351: log likelihood=-165.1
## AIC=342.3 AICc=342.8 BIC=361.7
```

(fit <- auto.arima(uschange[,"Consumption"]))</pre>

#### ARIMA(2,0,2) model:

```
y_t = c + 1.391y_{t-1} - 0.581y_{t-2} - 1.180\varepsilon_{t-1} + 0.558\varepsilon_{t-2} + \varepsilon_t, where c = 0.746 \times (1 - 1.391 + 0.581) = 0.142 and \varepsilon_t \sim N(0, 0.351).
```





# **Understanding ARIMA models**

# **Long-term forecasts**

```
zero c = 0, d = 0

non-zero constant c = 0, d = 1 c \neq 0, d = 0

linear c = 0, d = 2 c \neq 0, d = 1

quadratic c = 0, d = 3 c \neq 0, d = 2
```

#### Forecast variance and d

- The higher the value of *d*, the more rapidly the prediction intervals increase in size.
- For d = 0, the long-term forecast standard deviation will go to the standard deviation of the historical data.

# **Understanding ARIMA models**

#### Cyclic behaviour

- For cyclic forecasts,  $p \ge 2$  and some restrictions on coefficients are required.
- If p = 2, we need  $\phi_1^2 + 4\phi_2 < 0$ . Then average cycle of length

$$(2\pi)/\left[\arccos(-\phi_1(1-\phi_2)/(4\phi_2))\right]$$
.

# **Outline**

- 1 Autoregressive models
- 2 Moving Average models
- 3 Non-seasonal ARIMA models
- 4 Estimation and order selection
- 5 ARIMA modelling in R
- 6 Lab session 15

# **Maximum likelihood estimation**

Having identified the model order, we need to estimate the parameters  $c, \phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q$ .

# Maximum likelihood estimation

Having identified the model order, we need to estimate the parameters  $c, \phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q$ .

 MLE is very similar to least squares estimation obtained by minimizing

$$\sum_{t=1}^{T} e_t^2$$

- The Arima() command allows CLS or MLE estimation.
- Non-linear optimization must be used in either case.
- Different software will give different estimates.

# **Akaike's Information Criterion (AIC):**

$$AIC = -2 \log(L) + 2(p + q + k + 1),$$

where *L* is the likelihood of the data,

$$k = 1 \text{ if } c \neq 0 \text{ and } k = 0 \text{ if } c = 0.$$

## **Akaike's Information Criterion (AIC):**

$$AIC = -2 \log(L) + 2(p + q + k + 1),$$

where L is the likelihood of the data,

$$k = 1 \text{ if } c \neq 0 \text{ and } k = 0 \text{ if } c = 0.$$

#### **Corrected AIC:**

AICc = AIC + 
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$

## **Akaike's Information Criterion (AIC):**

$$AIC = -2 \log(L) + 2(p + q + k + 1),$$

where L is the likelihood of the data,

$$k = 1 \text{ if } c \neq 0 \text{ and } k = 0 \text{ if } c = 0.$$

#### **Corrected AIC:**

AICc = AIC + 
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$

## **Bayesian Information Criterion:**

$$BIC = AIC + \log(T)(p + q + k - 1).$$

## **Akaike's Information Criterion (AIC):**

$$AIC = -2\log(L) + 2(p + q + k + 1),$$

where *L* is the likelihood of the data, k = 1 if  $c \ne 0$  and k = 0 if c = 0.

#### **Corrected AIC:**

AICc = AIC + 
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$

#### **Bayesian Information Criterion:**

$$BIC = AIC + \log(T)(p + q + k - 1).$$

Good models are obtained by minimizing either the AIC, AICc or BIC. My preference is to use the AICc.

# **Outline**

- 1 Autoregressive models
- 2 Moving Average models
- 3 Non-seasonal ARIMA models
- 4 Estimation and order selection
- 5 ARIMA modelling in R
- 6 Lab session 15

#### How does auto.arima() work?

#### A non-seasonal ARIMA process

$$\phi(B)(1-B)^d y_t = c + \theta(B)\varepsilon_t$$

Need to select appropriate orders: p, q, d

#### Hyndman and Khandakar (JSS, 2008) algorithm:

- Select no. differences d and D via KPSS test and seasonal strength measure.
- Select p, q by minimising AICc.
- Use stepwise search to traverse model space.

#### How does auto.arima() work?

**Step 1:** Select values of *d* and *D*.

**Step 2:** Select current model (with smallest AICc) from:

ARIMA(2, d, 2)

ARIMA(0, d, 0)

ARIMA(1, d, 0)

ARIMA(0, d, 1)

## How does auto.arima() work?

**Step 1:** Select values of *d* and *D*.

**Step 2:** Select current model (with smallest AICc) from:

ARIMA(2, d, 2)

ARIMA(0, d, 0)

ARIMA(1, d, 0)

ARIMA(0, d, 1)

**Step 3:** Consider variations of current model:

- vary one of p, q, from current model by  $\pm 1$ ;
- p, q both vary from current model by  $\pm 1$ ;
- Include/exclude c from current model.

Model with lowest AICc becomes current model.

Repeat Step 3 until no lower AICc can be found.

#### autoplot(internet)





```
(fit <- auto.arima(internet))</pre>
## Series: internet
## ARIMA(1,1,1)
##
## Coefficients:
##
          arl mal
       0.650 0.526
##
## s.e. 0.084 0.090
##
## sigma^2 estimated as 10:
                            log likelihood=-254.2
## ATC=514.3 ATCc=514.5
                           BTC=522.1
```

```
(fit <- auto.arima(internet, stepwise=FALSE,
    approximation=FALSE))</pre>
```

```
## Series: internet
## ARIMA(3,1,0)
##
## Coefficients:
##
          ar1 ar2 ar3
## 1.151 -0.661 0.341
## s.e. 0.095 0.135
                      0.094
##
## sigma^2 estimated as 9.66: log likelihood=-252
## ATC=512 ATCc=512.4 BTC=522.4
```

##

#### checkresiduals(fit, plot=TRUE)



#### checkresiduals(fit, plot=FALSE)

```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(3,1,0)
## Q* = 4.5, df = 7, p-value = 0.7
##
## Model df: 3. Total lags used: 10
```



#### Modelling procedure with auto.arima

- Plot the data. Identify any unusual observations.
- If necessary, transform the data (using a Box-Cox transformation) to stabilize the variance.
- Use auto.arima to select a model.
- Check the residuals from your chosen model by plotting the ACF of the residuals, and doing a portmanteau test of the residuals. If they do not look like white noise, try a modified model.
- Once the residuals look like white noise, calculate forecasts.

#### **Modelling procedure**



```
eeadj <- seasadj(stl(elecequip, s.window="periodic"
autoplot(eeadj) + xlab("Year") +
  ylab("Seasonally adjusted new orders index")</pre>
```



- Time plot shows sudden changes, particularly big drop in 2008/2009 due to global economic environment. Otherwise nothing unusual and no need for data adjustments.
- No evidence of changing variance, so no Box-Cox transformation.
- Data are clearly non-stationary, so we take first differences.



fit <- auto.arima(eeadj, stepwise=FALSE, approximation=FALSE)
summary(fit)</pre>

```
## Series: eeadj
## ARIMA(3,1,1)
##
## Coefficients:
        ar1 ar2 ar3 ma1
##
    0.004 0.092 0.370 -0.392
##
## s.e. 0.220 0.098 0.067 0.243
##
## sigma^2 estimated as 9.58: log likelihood=-492.7
  AIC=995.4 AICc=995.7 BIC=1012
##
##
  Training set error measures:
##
                   MF
                       RMSE MAE MPE MAPE MASE
## Training set 0.03288 3.055 2.357 -0.00647 2.482 0.2884
                  ACF1
##
```

ACF plot of residuals from ARIMA(3,1,1) model look like white noise.



#### checkresiduals(fit, plot=FALSE)

```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(3,1,1)
## Q* = 24, df = 20, p-value = 0.2
##
## Model df: 4. Total lags used: 24
```



#### **Prediction intervals**

- Prediction intervals increase in size with forecast horizon.
- Calculations assume residuals are uncorrelated and normally distributed.
- Prediction intervals tend to be too narrow.
  - the uncertainty in the parameter estimates has not been accounted for.
  - the ARIMA model assumes historical patterns will not change during the forecast period.
  - the ARIMA model assumes uncorrelated future errors

## **Bootstrapped prediction intervals**



No assumption of normally distributed residuals.

#### **Outline**

- 1 Autoregressive models
- 2 Moving Average models
- 3 Non-seasonal ARIMA models
- 4 Estimation and order selection
- 5 ARIMA modelling in R
- 6 Lab session 15

# **Lab Session 15**