1

Prérequis:

- Algorithme d'Euclide étendu + Théorème de Bachet-Bézout
- Résolution d'équations diophantiennes

Cours:

Lemme de Gauss : $a, b, c \in \mathbb{N}^*$

Si
$$a|bc$$
 et pgcd $(a,b) = 1$ alors $a|c$

Petit théorème de Fermat : $a \in \mathbb{N}^*$ et p un nombre premier

Si
$$p$$
 ne divise pas a alors : $a^{p-1} \equiv_n 1$

Théorème d'Euler : $n \in \mathbb{N}^*$ et $a \in \mathbb{N}$ tel que $\operatorname{pgcd}(a,n) = 1$

$$a^{\varphi(n)} \equiv_n 1$$

Fonction $\varphi(n)$: p est premier

$$\varphi(p^{\alpha}) = p^{\alpha-1}(p-1)$$
 et $\varphi(p^{\alpha} * q^{\beta}) = \varphi(p^{\alpha}) * \varphi(q^{\beta})$

Théorème des reste chinois : $(a,b) \in \mathbb{Z}^2$ et n_1 et n_2 sont premiers entre eux $\rightarrow \exists (u,v) \in \mathbb{Z}^2$, $n_1u + n_2v = 1$

Les solutions de
$$\begin{cases} x \equiv_{n_1} a \\ x \equiv_{n_2} b \end{cases}$$
 sont :

$$x \equiv_{n_1 * n_2} n_1 u * b + n_2 v * a$$

Exemples méthodes:

- Calculer $a \equiv_p$
 - Si p est premier : $7^{126} \equiv_{11}$?
 - Appliquer le petit théorème de Fermat : $7^{10} \equiv_{11} 1$
 - Élever les nombres des deux côtés pour se rapprocher du nombre de base : $(7^{10})^{12} \equiv_{11} (1)^{12} \leftrightarrow 7^{120} \equiv_{11} 1$
 - Multiplier par des puissances de a des deux côtés pour retrouver le nombre de base : $7^{120} * 7^6 \equiv_{11} 1 * 7^6 \leftrightarrow 7^{126} \equiv_{11} 7^6$
 - Si a et p sont premiers entre eux : $2^{50} \equiv_{45}$?
 - Appliquer le théorème d'Euler : $2^{\varphi(45)} \equiv_{45} 1$
 - Calculer $\varphi(p)$: $\varphi(45) = \varphi(3^2 * 5) = \varphi(3^2) * \varphi(5) = 3^{2-1}(3-1) * (5-1) = 6 * 4 = 24$
 - Élever les nombres des deux côtés pour se rapprocher du nombre de base : $(2^{24})^2 \equiv_{45} (1)^2 \leftrightarrow 2^{48} \equiv_{45} 1$
 - Multiplier par des puissances de a des deux côtés pour retrouver le nombre de base : $2^{48} * 2^2 \equiv_{45} 1 * 2^2 \leftrightarrow 2^{50} \equiv_{45} 2^2$
 - En appliquant le théorème des restes chinois : $63^{241} \equiv_{175}$?
 - On cherche à décomposer p en produit de deux facteurs premiers entre eux: 175 = 25 * 7
 - On calcule a modulo ces deux facteurs (si nécessaire appliquer les méthodes précédentes) : $63^{241} \equiv_{25}$? et $63^{241} \equiv_{7}$?
 - On fait l'algorithme de Bachet-Bézout avec les deux facteurs :

$$2 * 25 - 7 * 7 = 1$$

• On trouve $\begin{cases} a \equiv_{f^1} b \\ a \equiv_{f^2} c \end{cases}$ puis on applique donc le théorème des restes chinois :

On a
$$\begin{cases} 63^{241} \equiv_{25} 13 \\ 63^{241} \equiv_{7} 0 \end{cases} \rightarrow 63^{241} \equiv_{25*7} 2*25*0+7*7*13 \quad \leftrightarrow \\ 63^{241} \equiv_{175} -49*13$$

- Résoudre des équations dans un anneau ($\overline{a}x=\overline{b}$ dans $\mathbb{Z}/n\mathbb{Z}$)
 - o \bar{a} est inversible dans $\mathbb{Z}/n\mathbb{Z}$ ($\operatorname{pgcd}(a,n)=1$) : $\overline{143}x=\bar{2}$ dans $\mathbb{Z}/3072\mathbb{Z}$
 - Trouver l'inverse de \bar{a}
 - Théorème de Bachet-Bézout : 3072 * (-29) + 143 * 623 = 1
 - Passer l'équation dans l'anneau : $\overline{3072}*\overline{(-29)}+\overline{143}*\overline{623}=\overline{1} \leftrightarrow \overline{0}*\overline{(-29)}+\overline{143}*\overline{623}=\overline{1} \leftrightarrow \overline{143}*\overline{623}=\overline{1}$
 - Multiplier par l'inverse des deux côtés de l'équation : $\overline{623}*\overline{143}x=\overline{2}*\overline{623}$

$$\leftrightarrow \quad x = \overline{2} * \overline{623} \quad \leftrightarrow \quad x = \overline{1246}$$