simulation to study strategies to handle small strata

Wei Zou

2023-12-16 16:30:39

 $code \ is \ modified \ from \ C:/Users/zouw2/aPDL1/impower010/natera/programs/sim_collapsibility4_test_strata$

prevalence 0.5, prognostic HR .63

- ## [1] "finding 100 input files when looking for r1"
- ## [1] "modification interval: 0.6 min"
- ## [1] "will add file name to the returned data"

var	n	mean	sd	min	25%	50%	75%	max
n	2000	120.000	0.000	120.000	120.000	120.000	120.000	120.000
nevent	2000	74.415	5.165	58.000	71.000	74.000	78.000	92.000
p_s	2000	0.381	0.301	0.000	0.113	0.321	0.619	1.000
$delta_p$	2000	0.004	0.067	-0.331	-0.022	0.001	0.028	0.386
$O-E_M2$	2000	2.167	3.093	-9.329	0.027	2.185	4.306	13.076
$O-E_M1$	2000	1.786	2.784	-7.244	-0.090	1.828	3.643	10.848

prevalence 0.1, prognostic HR .63

- ## [1] "finding 100 input files when looking for r1"
- ## [1] "modification interval: 1 min"
- ## [1] "will add file name to the returned data"

var	n	mean	sd	min	25%	50%	75%	max
n	2000	120.000	0.000	120.000	120.000	120.000	120.000	120.000
nevent	2000	82.581	5.039	65.000	79.000	83.000	86.000	99.000
p_s	2000	0.371	0.304	0.000	0.093	0.299	0.613	0.999
$delta_p$	2000	0.000	0.048	-0.366	-0.016	0.000	0.018	0.221
$O-E_M2$	2000	4.107	4.255	-10.150	1.184	4.154	6.953	22.443
$O-E_M1$	2000	0.315	1.235	-3.895	-0.538	0.317	1.108	3.919
delta_p O-E_M2	2000 2000	$0.000 \\ 4.107$	$0.048 \\ 4.255$	-0.366 -10.150	-0.016 1.184	$0.000 \\ 4.154$	0.01 6.95	18 53

prevalence 0.5, prognostic HR .4

- ## [1] "finding 100 input files when looking for r1"
- ## [1] "modification interval: 0.9 min"
- ## [1] "will add file name to the returned data"

var	n	mean	sd	min	25%	50%	75%	max
n	2000	120.000	0.000	120.000	120.000	120.000	120.000	120.000
nevent	2000	70.694	4.977	55.000	67.000	71.000	74.000	91.000
p_s	2000	0.387	0.299	0.000	0.108	0.336	0.629	0.999
$delta_p$	2000	0.021	0.110	-0.476	-0.029	0.013	0.071	0.577
$O-E_M2$	2000	2.277	3.158	-9.639	0.081	2.356	4.461	12.735
$O-E_M1$	2000	1.450	2.476	-6.445	-0.260	1.512	3.162	10.858

prevalence 0.1 , prognostic HR .4

- ## [1] "finding 100 input files when looking for r1"
- ## [1] "modification interval: 1.9 min"
- ## [1] "will add file name to the returned data"

var	n	mean	sd	min	25%	50%	75%	max
n	2000	120.000	0.000	120.000	120.000	120.000	120.000	120.000
nevent	2000	86.063	4.876	68.000	83.000	86.000	89.000	100.000
p_s	2000	0.365	0.302	0.000	0.092	0.287	0.605	0.999
delta_p	2000	0.009	0.066	-0.325	-0.017	0.005	0.038	0.307
$O-E_M2$	2000	4.381	4.374	-11.642	1.431	4.395	7.338	21.854
O-E_M1	2000	0.252	1.107	-3.485	-0.505	0.207	0.977	3.919