Dynamic Prograaming for MDP: Policy and Value Iteration

Pranabendu Misra based on sildes by Madhavan Mukund

Advanced Machine Learning 2022

lacktriangle Given a policy π , compute its state value function v_{π}

- Given a policy π , compute its state value function v_{π}
- Use the Bellman equations: $v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right]$
 - For MDP with n states, n equations in n unknowns
 - Can solve to get v_{π} , but computationally infeasible for large n

- Given a policy π , compute its state value function v_{π}
- Use the Bellman equations: $v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right]$
 - For MDP with n states, n equations in n unknowns
 - Can solve to get v_{π} , but computationally infeasible for large n
- Instead, use the Bellman equations as an iterative update rule.

- Given a policy π , compute its state value function v_{π}
- Use the Bellman equations: $v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right]$
 - For MDP with n states, n equations in n unknowns
 - Can solve to get v_{π} , but computationally infeasible for large n
- Instead, use the Bellman equations as an iterative update rule.
 - Initialize $v_{\pi}^{0}(s)$: set $v_{\pi}^{0}(\text{term}) = 0$ for terminal state term, arbitrary values for other s

- Given a policy π , compute its state value function v_{π}
- Use the Bellman equations: $v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right]$
 - For MDP with n states, n equations in n unknowns
 - Can solve to get v_{π} , but computationally infeasible for large n
- Instead, use the Bellman equations as an iterative update rule.
 - Initialize $v_{\pi}^{0}(s)$: set $v_{\pi}^{0}(\text{term}) = 0$ for terminal state term, arbitrary values for other s

- Given a policy π , compute its state value function v_{π}
- Use the Bellman equations: $v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right]$
 - For MDP with n states, n equations in n unknowns
 - Can solve to get v_{π} , but computationally infeasible for large n
- Instead, use the Bellman equations as an iterative update rule.
 - Initialize $v_{\pi}^{0}(s)$: set $v_{\pi}^{0}(\text{term}) = 0$ for terminal state term, arbitrary values for other s
 - $\blacksquare \text{ Update } v_\pi^k \text{ to } v_\pi^{k+1} \text{ using: } v_\pi^{k+1}(s) = \sum_a \pi(a \mid s) \sum_{s'} \sum_r p(s', r \mid s, a) \left[r + \gamma v_\pi^k(s') \right]$
 - Stop when incremental change $\Delta = |v_{\pi}^{k+1} v_{\pi}^{k}|$ is below threshold θ

- Given a policy π , compute its state value function v_{π}
- Use the Bellman equations: $v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right]$
 - For MDP with n states, n equations in n unknowns
 - Can solve to get v_{π} , but computationally infeasible for large n
- Instead, use the Bellman equations as an iterative update rule.
 - Initialize $v_{\pi}^{0}(s)$: set $v_{\pi}^{0}(\text{term}) = 0$ for terminal state term, arbitrary values for other s
 - $\blacksquare \text{ Update } v_\pi^k \text{ to } v_\pi^{k+1} \text{ using: } v_\pi^{k+1}(s) = \sum_a \pi(a \mid s) \sum_{s'} \sum_r p(s', r \mid s, a) \left[r + \gamma v_\pi^k(s') \right]$
 - Stop when incremental change $\Delta = |v_{\pi}^{k+1} v_{\pi}^{k}|$ is below threshold θ

We have now computed v_{π} approximately

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

Input π , the policy to be evaluated

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in \mathbb{S}^+$, arbitrarily except that V(terminal) = 0

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$

Policy evaluation example

 $R_t = -1$ on all transitions

v_k for the random policy

$$k = 2$$

$$\begin{vmatrix}
0.0 & -1.7 & -2.0 & -2.0 \\
-1.7 & -2.0 & -2.0 & -2.0 \\
-2.0 & -2.0 & -2.0 & -1.7 \\
-2.0 & -2.0 & -1.7 & 0.0
\end{vmatrix}$$

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

$$k = 10$$

$$k = \infty$$

k = 0

k = 1

• Using v_{π} , can we find a better policy π' ?

- Using v_{π} , can we find a better policy π' ?
- Is there a state s where we can update $\pi(s)$ by a better action a?

- Using v_{π} , can we find a better policy π' ?
- Is there a state s where we can update $\pi(s)$ by a better action a?
- Recall the action-value function

$$q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a]$$
$$= \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s')\right]$$

- Using v_{π} , can we find a better policy π' ?
- Is there a state s where we can update $\pi(s)$ by a better action a?
- Recall the action-value function

$$q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a]$$
$$= \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s')\right]$$

lacksquare If $q_{\pi}(s,a)>v_{\pi}(s)$, modify π so that $\pi(s)=a$

- Using v_{π} , can we find a better policy π' ?
- Is there a state s where we can update $\pi(s)$ by a better action a?
- Recall the action-value function

$$q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a]$$
$$= \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s')\right]$$

- If $q_{\pi}(s, a) > v_{\pi}(s)$, modify π so that $\pi(s) = a$
- The new policy π' is strictly better

Policy Improvement Theorem

For policies π , π' :

- If $q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s)$ for all s, then $\pi' \ge \pi$,
- lacksquare If $\pi' \geq \pi$ and $q_{\pi}(s, \pi'(s)) > v_{\pi}(s)$ for some s, then $v_{\pi'}(s) > v_{\pi}(s)$.

Policy Improvement Theorem

For policies π , π' :

- If $q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s)$ for all s, then $\pi' \ge \pi$,
- \blacksquare If $\pi' \geq \pi$ and $q_{\pi}(s, \pi'(s)) > v_{\pi}(s)$ for some s, then $v_{\pi'}(s) > v_{\pi}(s)$.

Proof of the theorem is not difficult for deterministic policies

Policy Improvement Theorem

For policies π , π' :

- If $q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s)$ for all s, then $\pi' \ge \pi$,
- \blacksquare If $\pi' \geq \pi$ and $q_{\pi}(s, \pi'(s)) > v_{\pi}(s)$ for some s, then $v_{\pi'}(s) > v_{\pi}(s)$.

- Proof of the theorem is not difficult for deterministic policies
- The theorem extends to probabilistic policies also

Policy Improvement Theorem

For policies π , π' :

- If $q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s)$ for all s, then $\pi' \ge \pi$,
- \blacksquare If $\pi' \geq \pi$ and $q_{\pi}(s, \pi'(s)) > v_{\pi}(s)$ for some s, then $v_{\pi'}(s) > v_{\pi}(s)$.

- Proof of the theorem is not difficult for deterministic policies
- The theorem extends to probabilistic policies also
- Provides a basis to iteratively improve the policy

■ Start with a random policy π_0

- Start with a random policy π_0
- Use policy evaluation to compute v_{π_0}

- Start with a random policy π_0
- Use policy evaluation to compute v_{π_0}
- lacksquare Use policy improvement to construct a better policy π_1

- Start with a random policy π_0
- Use policy evaluation to compute v_{π_0}
- Use policy improvement to construct a better policy π_1
- Policy iteration: Alternate between policy evaluation and policy improvement

$$\pi_0 \xrightarrow{\text{evaluate}} v_{\pi_0} \xrightarrow{\text{improve}} \pi_1 \xrightarrow{\text{evaluate}} v_{\pi_1} \xrightarrow{\text{improve}} \pi_2 \xrightarrow{\text{evaluate}} \cdots$$

- Start with a random policy π_0
- Use policy evaluation to compute v_{π_0}
- Use policy improvement to construct a better policy π_1
- Policy iteration: Alternate between policy evaluation and policy improvement

$$\pi_0 \xrightarrow{\text{evaluate}} v_{\pi_0} \xrightarrow{\text{improve}} \pi_1 \xrightarrow{\text{evaluate}} v_{\pi_1} \xrightarrow{\text{improve}} \pi_2 \xrightarrow{\text{evaluate}} \cdots \xrightarrow{\text{improve}} \pi_* \xrightarrow{\text{evaluate}} v_{\pi_*}$$

- Finite MDPs can improve π only finitely many times,
 - Must converge to optimal policy

- Start with a random policy π_0
- Use policy evaluation to compute v_{π_0}
- Use policy improvement to construct a better policy π_1
- Policy iteration: Alternate between policy evaluation and policy improvement

$$\pi_0 \xrightarrow{\text{evaluate}} v_{\pi_0} \xrightarrow{\text{improve}} \pi_1 \xrightarrow{\text{evaluate}} v_{\pi_1} \xrightarrow{\text{improve}} \pi_2 \xrightarrow{\text{evaluate}} \cdots \xrightarrow{\text{improve}} \pi_* \xrightarrow{\text{evaluate}} v_{\pi_*}$$

- Finite MDPs can improve π only finitely many times,
 - Must converge to optimal policy
- Nested iteration each policy evaluation is itself an iteration
 - Speed up by using v_{π_i} as initial state to compute $v_{\pi_{i+1}}$

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s) V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')] \Delta \leftarrow \max(\Delta,|v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy\text{-}stable \leftarrow true$$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

8 / 11

Optimizing Policy Iteration

greedy policy w.r.t. v_k

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

	←	\leftrightarrow	\leftrightarrow
Ī	\leftrightarrow	\leftrightarrow	\Rightarrow
→	\leftrightarrow	\leftrightarrow	+
→	\leftrightarrow	\rightarrow	

	0.0	-6.1	-8.4	-9.0
	6.1	-7.7	-8.4	-8.4
-	8.4	-8.4	-7.7	-6.
	9.0	-8.4	-6.1	0.0

k	=	∞	
10			

k = 3

k = 10

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

■ Policy iteration — policy evaluation requires a nested iteration

■ Policy iteration — policy evaluation requires a nested iteration

- Policy iteration policy evaluation requires a nested iteration
- But even a single iteration in the computation of v_{π_k} is sufficient to point towards optimal actions for a state enough for policy improvement

- Policy iteration policy evaluation requires a nested iteration
- But even a single iteration in the computation of v_{π_k} is sufficient to point towards optimal actions for a state enough for policy improvement
- Combine policy improvement and one step update at each state

- Policy iteration policy evaluation requires a nested iteration
- But even a single iteration in the computation of v_{π_k} is sufficient to point towards optimal actions for a state enough for policy improvement
- Combine policy improvement and one step update at each state
- Value iteration: Do just one iteration of policy evaluation.

$$\begin{aligned} v_{\pi_{k+1}}(s) &= \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{\pi_k}(S_{t+1}) \mid S_t = s, A_t = a] \\ &= \max_{a} \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma v_{\pi_k}(s') \right] \end{aligned}$$

- Policy iteration policy evaluation requires a nested iteration
- But even a single iteration in the computation of v_{π_k} is sufficient to point towards optimal actions for a state enough for policy improvement
- Combine policy improvement and one step update at each state
- Value iteration: Do just one iteration of policy evaluation.

$$\begin{aligned} v_{\pi_{k+1}}(s) &= \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{\pi_k}(S_{t+1}) \mid S_t = s, A_t = a] \\ &= \max_{a} \sum_{s',r} p(s',r \mid s,a) \left[r + \gamma v_{\pi_k}(s')\right] \end{aligned}$$

■ Again, stop when incremental change $\Delta = |v_{\pi_{k+1}} - v_{\pi_k}|$ is below threshold θ

- Policy iteration policy evaluation requires a nested iteration
- But even a single iteration in the computation of v_{π_k} is sufficient to point towards optimal actions for a state enough for policy improvement
- Combine policy improvement and one step update at each state
- Value iteration: Do just one iteration of policy evaluation.

$$\begin{aligned} v_{\pi_{k+1}}(s) &= \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{\pi_k}(S_{t+1}) \mid S_t = s, A_t = a] \\ &= \max_{a} \sum_{s',r} p(s',r \mid s,a) \left[r + \gamma v_{\pi_k}(s')\right] \end{aligned}$$

- Again, stop when incremental change $\Delta = |v_{\pi_{k+1}} v_{\pi_k}|$ is below threshold θ
- To compute π^* from v_{π^*} , at each state s simply take the action a that maximizes $q_{\pi^*}(s,a)$.

10 / 11

 In the literature, policy iteration and value iteration are referred to as dynamic programming methods

- In the literature, policy iteration and value iteration are referred to as dynamic programming methods
- Requires knowledge of the model $p(s', r \mid s, a)$

- In the literature, policy iteration and value iteration are referred to as dynamic programming methods
- Requires knowledge of the model $p(s', r \mid s, a)$
- These algorithms are correct because of Bellman Optimality Equation, which states that if no improvements are possible then the current policy is optimal.
- How to combine policy evaluation and policy improvement is flexible
 - Value iteration is policy iteration with policy evaluation truncated to a single step
 - Generalized policy iteration simultaneously maintain and update approximations of π_* and ν_*

- In the literature, policy iteration and value iteration are referred to as dynamic programming methods
- Requires knowledge of the model $p(s', r \mid s, a)$
- These algorithms are correct because of Bellman Optimality Equation, which states that if no improvements are possible then the current policy is optimal.
- How to combine policy evaluation and policy improvement is flexible
 - Value iteration is policy iteration with policy evaluation truncated to a single step
 - Generalized policy iteration simultaneously maintain and update approximations of π_* and v_*
- Asynchronous dynamic programming for large state spaces

