Contents

1	Rap	ppel: Matrices et Applications Linéaires	3
	1.1	Généralité	3
		1.1.1 Somme directe des sous espaces vectoriels	3
	1.2	Applications linéaires	4
		1.2.1 Définitions et propriétés de base	4

2 CONTENTS

Chapter 1

Rappel: Matrices et Applications Linéaires

1.1 Généralité

1.1.1 Somme directe des sous espaces vectoriels

Soient E un \mathbb{K} espace vectoriel et F_1, F_2, \ldots, F_n des n sous espaces vectoriels de E.

Définition 1.1.1. On définit la partie de E, notée par $F_1 + F_2 + \ldots + F_n$, par $x \in F_1 + F_2 + \ldots + F_n$, si et seulement si, il existe $(x_1, x_2, \ldots, x_n) \in F_1 \times F_2 \times \ldots \times F_n$, tel que $x = x_1 + x_2 + \ldots + x_n$

Proposition 1.1.2. $F_1 + F_2 + \ldots + F_n$ est un sous espace vectoriel de E, appelé sous espace vectoriel somme des F_1, F_2, \ldots, F_n .

Définition 1.1.3. Somme directe

On dit que la somme $F_1 + F_2 + \ldots + F_n$ est **directe**, si pour tout $x \in F_1 + F_2 + \ldots + F_n$ il exite un **unique** $(x_1, x_2, \ldots, x_n) \in F_1 \times F_2 \times \ldots \times F_n$, tel que $x = x_1 + x_2 + \ldots + x_n$

Notation

Dans le cas ou la somme de $F_1 + F_2 + \ldots + F_n$ est directe on la note,

$$F_1 \oplus F_2 \oplus \ldots \oplus F_n$$
 ou encore $\bigoplus_{i=1}^n F_i$

Proposition 1. La somme $F_1+F_2+\ldots+F_n$ est directe, si et seulement si, pour tout $(x_1,x_2,\ldots,x_n) \in F_1 \times F_2 \times \ldots \times F_n$ on a

$$x_1 + x_2 + \dots + x_n = 0_E \Longrightarrow x_1 = x_2 = \dots = x_n = 0_E$$

Preuve. Exercice

Comme conséquence de la proposition précédente on a

Théorème 1. La somme $F_1 + F_2 + \ldots + F_n$ est directe, si et seulement si,

$$\forall i \in \{1, 2, \dots, n-1\}, \quad F_i \cap (F_{i+1} + \dots F_n) = \{0_E\}$$

Remarque 1.1.4. • La somme de deux sous espaces vectoriels F et G de E est directe, si et seulement si,

$$F \cap G = \{0_E\}$$

• La somme de trois sous espaces vectoriels F, G et H de E est directe si et seulement si,

$$F \cap (G + H) = \{0_E\}$$
 et $G \cap H = \{0_E\}$

Définition 1.1.5. Soient F et G dux sous espaces vectoriels de E. On dit que F et G sont supplémentaires dans E, si,

- (i) F + G est directe
- (ii) $E = F \oplus G$

Remarque 1.1.6. 1.

$$E = F \oplus G \iff E = F + G \text{ et } F \cap G = \{0_E\}$$

2. $Si\ dim(E)\ est\ finie\ alors$

$$E = F \oplus G \iff F + G \text{ et } F \cap G = \{0_E\}$$

$$\iff F + G \text{ et } \dim(E) = \dim(F) + \dim(G)$$

$$\iff F \cap G = \{0_E\} \text{ et } \dim(E) = \dim(F) + \dim(G)$$

- **Exemple 1.1.7.** Soit $E = \mathbb{R}^{\mathbb{R}}$ le \mathbb{R} espace vectoriel de toutes les fonction de \mathbb{R} dans \mathbb{R} . Soit F l'ensemble des fonctions $f \in E$ qui sont paires et G l'ensemble des fonctions $f \in E$ qui sont impaires. Alors F et G sont des sous espaces vectories supplémentaires de E. En effet
 - Soit $E = \mathcal{C}^m(\mathbb{R}, \mathbb{R})$ le \mathbb{R} espace vectoriel de toutes les fonctions de classe \mathcal{C}^m de \mathbb{R} dans \mathbb{R} . On pose

$$F = \{ f \in E : f(0) = f'(0) = f''(0) = \dots = f^{(m)}(0) = 0 \} \text{ et } G = \mathbb{R}_m[x]$$

Alors F et G sont supplémentaires dans E.....

• Soit $E = M_n(\mathbb{K})$ l'ensemble des matrices carrées d'ordre n à coefficients dans \mathbb{K} . On note par

$$F = \{A \in E : A = A^t\}$$
 $G = \{A \in E : A = -A^t\}$

F est l'ensemble des matrices symétriques et G celui des matrices antisymétriques. Alors F et G sont supplémentaires dans E....

Théorème 2. Soit E un \mathbb{K} -espace vectoriel quelconque. Alors tout sous-espace vectoriel de E possède au moins un supplémentaire.

1.2 Applications linéaires

1.2.1 Définitions et propriétés de base

Définition 1.2.1. Soient E et F deux \mathbb{K} -espaces vectoriels. Une application $f: E \to F$ est dite **Linéaire** si pour tout $\alpha \in \mathbb{K}$ et $x, y \in E$ on a $f(x + \alpha y) = f(x) + \alpha f(y)$. Si une application linéaire f est bijective, on dit que f est un **isomorphisme d'espaces vectoriels**.

Notation: On désigne par $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F.

Exemple 1.2.2. 1. Soit E un K-ev et F un sev de E. alors. On apple injection canonique de F dans E l'application $j: F \to E$ définie par

$$\forall x \in F; \ j(x) = x$$

Alors j est une application linéaire.

2. Soit $f: \mathbb{R}[X] \to \mathbb{R}[X]$ définie par

$$\forall p \in \mathbb{R}[X]; \ f(P) = P'$$

où P' est la dérivée du polynôme P. f est une application linéaire.

3. Soit $E = C([0,1],\mathbb{R})$ l'ensemble de fonctions continues de [0,1] vers \mathbb{R} . On pose $f: E \to \mathbb{R}$ la fonction définie par

$$\forall \varphi \in E, \ f(\varphi) = \int_0^1 \varphi(x) dx$$

 φ est une application linéaire.

Proposition 2. 1. Soient E, F et G trois \mathbb{K} espaces vectoriels. $f: E \to F$ et $g: F \to G$ deux applications linéaires. Alors $g \circ f$ est une application linéaire.

- 2. Soit $f: E \to F$ un isomorphisme d'espaces vectoriels, alors $f^{-1}: F \to E$ est aussi un isomorphisme d'espaces vectoriels.
- 3. Deux espaces vectoriels de dimension finie et de même dimension sont isomorphes.

Preuve. Exercice...

Théorème 3. (Admis)

- 1. $\mathcal{L}(E,F)$ est un \mathbb{K} -espace vectoriel.
- 2. Si E et F deux K-espaces vectoriels de dimension finie alors $\mathcal{L}(E,F)$ est de dimension finie et on a

$$dim(\mathcal{L}(E,F)) = dim(E) \times dim(F)$$

1.2.2 Noyau et Image d'une application linéaire

Proposition 3. Soient E et F deux \mathbb{K} -espaces vectoriels et $f: E \to F$ une application linéaire. Alors:

- 1. L'image par f d'un sous-espace vectoriel de E est un sous-espace vectoriel de F. En particulier, f(E) est un sous-espace vectoriel de F, appelé **image de f** et noté Im(f).
- 2. L'image réciproque par f d'un sous-espace vectoriel de F est un sous-espace vectoriel de E. En particulier, $f^{-1}(\{0_F\})$ est un sous- espace vectoriel de E, appelé **noyau de** f et noté ker(f).

Remarque 1.2.3.

$$ker(f) = \{x \in E; \ f(x) = 0_F\}$$

 $Im(f) = \{y \in F; \exists x \in E; f(x) = y\}$

Théorème 4. Soient E et F deux \mathbb{K} -espaces vectoriels et $f: E \to F$ une application linéaire

- 1. f est injective si et suelement si $ker(f) = \{0_E\}$
- 2. f est surjective si et seulement si Im(f) = F

Preuve. Exercice ...

Théorème 5 (Théorème du rang (de la dimension)). (Admis) Soit E un \mathbb{K} -espace vectoriel de dimension finie. Alors pour toute application linéaire $f: E \to F$ on a la dimension de Im(f) est finie, de plus on a

$$dim(E) = dim(ker(f)) + dim(Im(f))$$

Corollaire 1.2.4. Soient E et F deux \mathbb{K} espaces vectoriels de dimension finie et dim(E) = dim(F), alors on a les équivalences suiventes:

f est bijective \iff f est injective \iff f est surjective.

1.2.3 Endomorphismes et Automorphismes

Définition 1.2.5. Soit E un \mathbb{K} espace vectoriel.

- Une application linéaire $u: E \to E$ s'appelle un **endomorphisme** de E.
- Un endomorphime bijectif s'appelle un automorphisme de E.

Notation: On désigne $par \mathcal{L}(E)$ l'ensemble de tous les endomorphismes de E et par GL(E) l'ensemble de tous les automorphismes de E.

Remarque 1.2.6. Soient E un \mathbb{K} -espace vectoriel de dimension finie et u un endomorphisme de E. Alors d'après le théorème du rang, on sait que

$$dim(E) = dim(ker(u)) + dim(Im(u))$$

Par contre, on a pas toujours $E = ker(u) \oplus Im(u)$ comme le montre le théorème suivant :

Théorème 6. Soient E un \mathbb{K} -espace vectoriel de **dimension finie** et $u: E \to E$ un endomorphisme de E. Alors les propositions suivantes sont équivalentes:

- $E = ker(u) \oplus Im(u)$
- $Im(u) = Im(u^2)$; $avec u^2 = u \circ u$
- $ker(u) = ker(u^2)$
- $ker(u) \cap Im(u) = \{0_E\}$

Preuve. Ind. On a toujours $Im(u^2) \subset Im(u)$ et $ker(u) \subset ker(u^2)$