Алгебра

Сидоров Дмитрий

Группа БПМИ 219

June 11, 2022

$N_{2}1$

Реализуем поле \mathbb{F}_9 в виде $\mathbb{Z}_3[x]/(x^2+x+2)$. Перечислите в этой реализации все элементы данного поля, являющиеся порождающими циклической группы F_9^{\times} .

Решение:

Заметим, что мультипликативная группа \mathbb{F}_9 содержит 8 элементов, тк $\mathbb{F}_9^\times = F_9 \setminus \{0\}$, а значит множество порождающих элементов \mathbb{F}_9^\times совпадает с множеством элементов порядка 8. Таким образом, чтобы найти порождающие элементов группы \mathbb{F}_9^\times нужно рассмотреть все элементы порядка 8, тк всякая циклическая группа, порождаемая элементом x, содержит $\operatorname{ord}(x)$ элементов. Тк $\mathbb{F}_9 = \mathbb{Z}_3[x]/(x^2+x+2)$, то $\mathbb{F}_9 = \{0,1,2,\overline{x},\overline{x}+1,\overline{x}+2,2\overline{x},2\overline{x}+1,2\overline{x}+2\}$ (все многочлены над \mathbb{Z}_3 , степень которых меньше 2). Значит $\mathbb{F}_9^\times = \{1,2,\overline{x},\overline{x}+1,\overline{x}+2,2\overline{x},2\overline{x}+1,2\overline{x}+2\}$ (\mathbb{F}_9 без 0). Заметим, что выполняется $\overline{x}^2+\overline{x}+2=0 \Rightarrow \overline{x}^2=-\overline{x}-2=2\overline{x}+1$ и 3=0, тк характеристика поля равна 3. Выберем среди $\{1,2,\overline{x},\overline{x}+1,\overline{x}+2,2\overline{x},2\overline{x}+1,2\overline{x}+2\}$ те элементы, порядок которых равен 8. Для этого найдём порядок каждого элемента.

```
1 = 1 \Rightarrow \operatorname{ord}(1) = 1
2 \rightarrow 2^2 = 1 \Rightarrow \operatorname{ord}(2) = 1
\overline{x} \rightarrow \overline{x}^2 = 2\overline{x} + 1 \rightarrow 2\overline{x}^2 + \overline{x} = 2\overline{x} + 2 \rightarrow 2\overline{x}^2 + 2\overline{x} = 2 \rightarrow 2\overline{x} \rightarrow 2\overline{x}^2 = \overline{x} + 2 \rightarrow \overline{x}^2 + 2\overline{x} = \overline{x} + 1 \rightarrow \overline{x}^2 + \overline{x} = 1 \Rightarrow \operatorname{ord}(\overline{x}) = 8
\overline{x} + 1 \rightarrow \overline{x}^2 + 2\overline{x} + 1 = \overline{x} + 2 \rightarrow \overline{x}^2 + 2 = 2\overline{x} \rightarrow 2\overline{x}^2 + 2\overline{x} = 2 \rightarrow 2\overline{x} + 2 \rightarrow 2\overline{x}^2 + \overline{x} + 2 = 2\overline{x} + 1 \rightarrow 2\overline{x}^2 + 1 = \overline{x} \rightarrow 2\overline{x}^2 + 2 \rightarrow 2\overline{x}^2 + 2
```

Значит \overline{x} , $\overline{x}+1$, $2\overline{x}$, $2\overline{x}+2$ являются порождающими в \mathbb{F}_9^{\times} . Тогда, тк из преобразований выше видно, что каждый элемент из \mathbb{F}_9^{\times} может быть представлен как один из элементов \overline{x} , $\overline{x}+1$, $2\overline{x}$, $2\overline{x}+2$ в некоторой степени, то \overline{x} , $\overline{x}+1$, $2\overline{x}$, $2\overline{x}+2$ являются порождающими циклической группы \mathbb{F}_9^{\times} .

Ответ: \overline{x} , $\overline{x} + 1$, $2\overline{x}$, $2\overline{x} + 2$

№2

Проверьте, что многочлены $x^2 + 3$ и $y^2 + y + 1$ неприводимы над \mathbb{Z}_5 , и установите явно изоморфизм между полями $\mathbb{Z}_5[x]/(x^2 + 3)$ и $\mathbb{Z}_5[y]/(y^2 + y + 1)$.

Решение:

Покажем, что многочлены x^2+3 и y^2+y+1 неприводимы над \mathbb{Z}_5 . Известно, что многочлен степени 2 неприводим над полем \mathbb{Z}_5 тогда и только тогда, когда он не имеет корней в поле \mathbb{Z}_5 . Покажем, что многочлены x^2+3 и y^2+y+1 не имеют корней в \mathbb{Z}_5 , а значит они неприводимы в $\mathbb{Z}_5[x]$ и $\mathbb{Z}_5[y]$ соотв.

 $(x^2+3)(0)=3, (x^2+3)(1)=4, (x^2+3)(2)=2, (x^2+3)(3)=2, (x^2+3)(4)=4\Rightarrow x^2+3$ не имеет корней в \mathbb{Z}_5 (тк $x^2+3\neq 0$ при $0\leq x\leq 4$), а значит неприводим.

Аналогично y^2+y+1 неприводим, тк $(y^2+y+1)(0)=1$, $(y^2+y+1)(1)=3$, $(y^2+y+1)(2)=2$, $(y^2+y+1)(3)=3$, $(y^2+y+1)(4)=1$.

Таким образом, получили, что что многочлены x^2+3 и y^2+y+1 неприводимы над \mathbb{Z}_5 , а значит $\mathbb{Z}_5[x]/(x^2+3)$ и $\mathbb{Z}_5[y]/(y^2+y+1)$ - это поля. Известно, что $\exists a \in \mathbb{Z}_5/(y^2+y+1)$: $(x^2+3)(a)=0$, тогда рассмотрим гомоморфизм $\varphi: \mathbb{Z}_5[x] \to \mathbb{Z}_5[y]/(y^2+y+1), \ f \to f(a)$ (φ является гомоморфизмом, тк сохраняет сумму и произведение, тк является взятием значения многочлена в точке a).

Найдём Кег φ . По определению ядро состоит из таких многочленов f, для которых f(a)=0. Тк ядро является главным идеалом в \mathbb{Z}_5 , то $\exists g \in \mathbb{Z}_5$: Кег $\varphi=(g)$. Тогда, тк $(x^2+3)(a)=0$, то (x^2+3) делится на g, но тк (x^2+3) неприводим над \mathbb{Z}_5 , то либо g - константа, либо g пропорционален x^2+3 . Заметим, что, если выполняется 1-ый случай, то φ переводит все многочлены в 0, что невозможно $\Rightarrow g$ пропорционален x^2+3 , а значит $\ker \varphi=(x^2+3)$. Тогда по теореме о гомоморфизме колец $\mathbb{Z}_5[x]/(x^2+3)\simeq \mathrm{Im}\varphi$. При этом размерности полей $\mathbb{Z}_5[x]/(x^2+3)$ и $\mathbb{Z}_5[y]/(y^2+y+1)$ совпадают (и равны 25), а значит, тк $\mathrm{Im}\varphi\subseteq\mathbb{Z}_5[y]/(y^2+y+1)$, $\mathbb{Z}_5[y]/(y^2+y+1)=\mathrm{Im}\varphi$, а значит сущесвует изоморфизм, который каждому многочлену $f\in\mathbb{Z}_5[x]/(x^2+3)$ сопоставляет многочлен $f(a)\in\mathbb{Z}_5[y]/(y^2+y+1)$.

Найдём этот изоморфизм явно. Для этого найдём описанный выше a. Тк $a \in \mathbb{Z}_5/(y^2+y+1)$, то a можно представить в виде многочлена степени не выше 2 (тк каждый элемент $\mathbb{Z}_5/(y^2+y+1)$ представляется в виде многочлена степени не выше $2 = \deg(y^2+y+1)$), а значит a = by + c, $b, c \in \mathbb{Z}_5$. Тогда, тк $(x^2+3)(a) = 0$, а также выполняется $\overline{y}^2 = -\overline{y} - 1 = 4\overline{y} + 4$, то $a^2 + 3 = (b\overline{y} + c)^2 + 3 = b^2\overline{y}^2 + 2bc\overline{y} + c^2 + 3 = b^2(4\overline{y} + 4) + 2bc\overline{y} + c^2 + 3 = 4b^2\overline{y} + 4b^2 + 2bc\overline{y} + c^2 + 3 = \overline{y}(4b^2 + 2bc) + 3 + 4b^2 + c^2 = 0$, а тк равенство выполняется, например, при b = 2, c = 1 (тк тогда $4b^2 + 2bc = 16 + 4 = 20$ \vdots 5 и $3 + 4b^2 + c^2 = 20$ \vdots 5), то a = by + c = 2x + 1.

Таким образом, получили изоморфизм $\mathbb{Z}_5[x]/(x^2+3) \stackrel{\sim}{\to} \mathbb{Z}_5[y]/(y^2+y+1)$, который задаётся как $b\overline{x}+c \to b(2\overline{y}+1)+c$.

Other: $\mathbb{Z}_5[x]/(x^2+3) \stackrel{\sim}{\to} \mathbb{Z}_5[y]/(y^2+y+1), \ b\overline{x}+c \to b(2\overline{y}+1)+c$

№3

Перечислите все подполя поля \mathbb{F}_{262144} , в которых многочлен $x^3 + x^2 + 1$ имеет корень.

Решение:

Заметим, что $262144 = 2^{18}$, а тк $18 = 2 \cdot 9 = 2 \cdot 3^2$, то подполя \mathbb{F}_{262144} это \mathbb{F}_2 , \mathbb{F}_{2^2} , \mathbb{F}_{2^3} , \mathbb{F}_{2^6} , \mathbb{F}_{2^9} , $\mathbb{F}_{2^{18}}$. Заметим, что $(x^3 + x^2 + 1)(0) = 1$, $(x^3 + x^2 + 1)(1) = 1$ в $\mathbb{Z}_2 \Rightarrow x^3 + x^2 + 1$ не имеет корней в $\mathbb{Z}_2[x]$, а значит этот многочлен неприводим в $\mathbb{Z}_2[x]$, и тогда, тк $\deg(x^3 + x^2 + 1) = 3$ и $2^3 = 8$, то можно реализовать поле \mathbb{F}_{2^3} в виде $\mathbb{Z}_2[x]/(x^3 + x^2 + 1)$. Тогда, тк при $\overline{x}^3 + \overline{x}^2 + 1 = 0$ выполняется $\overline{x}^3 = -\overline{x}^2 - 1 = \overline{x}^2 + 1$, то $\overline{x}^3 + \overline{x}^2 + 1 = 2\overline{x}^2 + 2 = 0$, а значит в поле \mathbb{F}_{2^3} $x^3 + x^2 + 1$ имеет корень (тк \overline{x} - это элемент поля $\mathbb{Z}_2[x]/(x^3 + x^2 + 1)$). Заметим, что, тк 3 делит 6, 9, 18, то в \mathbb{F}_{2^6} , \mathbb{F}_{2^9} , $\mathbb{F}_{2^{18}}$ $x^3 + x^2 + 1$ тоже имеет корень, тк эти поля являются расширением поля \mathbb{F}_{2^3} , а значит они содержат элемент, который является корнем многочлена $x^3 + x^2 + 1$.

Теперь рассмотрим, оставшиеся поля, те \mathbb{F}_2 , \mathbb{F}_{2^2} . Для \mathbb{F}_2 заметим, что это поле содержит 2 элемента, а тк каждое поле содержит 0 и 1, то \mathbb{F}_2 содержит только 0 и 1. При этом, как было показано выше, 0 и 1 не являются корнями $x^3 + x^2 + 1$, а значит $x^3 + x^2 + 1$ не имеет корень в \mathbb{F}_2 .

Аналогично с \mathbb{F}_{2^3} реализуем поле \mathbb{F}_{2^2} в виде $\mathbb{Z}_2[x]/(x^2+x+1)$ (тк $(x^2+x+1)(0)=1, (x^2+x+1)(1)=1 \Rightarrow x^2+x+1$ неприводим в $\mathbb{Z}_2[x]$), и при этом элементы этого поля являются многочленами степени меньше 2, те это поле состоит из элементов $\{0, 1, \overline{x}, \overline{x}+1\}$. Тогда при $\overline{x}^2+\overline{x}+1=0$ выполняется $\overline{x}^2=\overline{x}+1.$ $(x^3+x^2+1)(0)=1, (x^3+x^2+1)(1)=1, (x^3+x^2+1)(\overline{x})=\overline{x}^2+\overline{x}+\overline{x}^2+1=\overline{x}+1, (x^3+x^2+1)(\overline{x}+1)=(\overline{x}+1)^3+(\overline{x}+1)^2+1=(\overline{x}+1)(\overline{x}^2+1)+(\overline{x}^2+1)+1=(\overline{x}+1)\overline{x}+\overline{x}+1=\overline{x}+1+\overline{x}+\overline{x}+1=\overline{x}.$ Таким образом, значения x^3+x^2+1 от всех элементов поля $\mathbb{Z}_2[x]/(x^2+x+1)$ не равно 0, а значит x^3+x^2+1 не имеет корней в \mathbb{F}_{2^2} .

Итого, многочлен $x^3 + x^2 + 1$ имеет корень в подполях \mathbb{F}_{2^3} , \mathbb{F}_{2^6} , \mathbb{F}_{2^9} , $\mathbb{F}_{2^{18}}$.

Ответ: \mathbb{F}_{2^3} , \mathbb{F}_{2^6} , \mathbb{F}_{2^9} , $\mathbb{F}_{2^{18}}$

№4

Пусть p - простое число, $q=p^n$ и $\alpha\in\mathbb{F}_q$. Докажите, что если многочлен $x^p-x-\alpha\in\mathbb{F}_q[x]$ имеет корень, то он разлагается на линейные множители.

Доказательство:

Рассмотрим поле \mathbb{F}_p . Заметим, что тк $q=p^n$, те q делится на p (причём единственный способом), то $\mathbb{F}_p\subseteq \mathbb{F}_q$. При этом $\forall a,b\in \mathbb{F}_q$ выполняется $(a+b)^p=a^p+b^p$, тк $\mathrm{char}\mathbb{F}_q=p$. Рассмотрим произвольный элемент $y\in \mathbb{F}_p$. Заметим, что порядок \mathbb{F}_q^\times равен p-1, те выполняется $y^{p-1}\cdot y=e\cdot y=y\Rightarrow y^p=y$. По условию $x^p-x-\alpha$ имеет корень. Обозначим его как x_0 . Тогда $x_0^p-x_0-\alpha=0$. Рассмотрим $(x^p-x-\alpha)(x_0-y)$ (значение многочлена при $x=x_0-y$): $(x^p-x-\alpha)(x_0-y)=(x_0-y)^p-(x_0-y)-\alpha=x_0^p-y^p-x_0+y-\alpha=x_0^p-y-x_0+y-\alpha=x_0^p-x_0-\alpha=0$. Таким образом, x_0 и y образуют корень многочлена $x^p-x-\alpha$. Заметим, что в \mathbb{F}_p p элементов, а тк мы брали произвольный y, то многочлен $x^p-x-\alpha$ имеет p корней, но тк его степень тоже равна p, он разлагается на линейные множители.