Network Flow

Network Flow

Flow network.

- Abstraction for material flowing through the edges.
 - E.g. traffic on highway, pipes carrying liquid, computer networks
- G = (V, E) = directed graph.
- Two distinguished nodes: s = source, t = sink.
- c(e) = capacity of edge e. $c(e) \ge 0$.

Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$

- (capacity)
- For each $v \in V \{s, t\}$: $\sum f(e) = \sum f(e)$ (conservation) e out of v

Def. The value of a flow f is: $v(f) = \sum f(e)$. e out of s

Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$

(capacity)

(conservation)

■ For each $v \in V - \{s, t\}$: $\sum f(e) = \sum f(e)$ e out of v

Def. The value of a flow f is: $v(f) = \sum f(e)$. e out of s

Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

Flow value = 0

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

Flow value = 20

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

 \searrow locally optimality \Rightarrow global optimality

Residual Graph

Original edge: $e = (u, v) \in E$.

Flow f(e), capacity c(e).

Residual edge.

- "Undo" flow sent.
- e = (u, v) and $e^{R} = (v, u)$.
- Residual capacity:

$$c_f(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E \\ f(e) & \text{if } e^R \in E \end{cases}$$

Residual graph: $G_f = (V, E_f)$.

- Residual edges with positive residual capacity.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$

Ford-Fulkerson Algorithm

Basic Algorithm:

- Identify an s-t path and augment the flow along that path
 - How to find a path? BFS or DFS
 - Bottleneck along path determines amount flow can be augmented
- Still need to include concepts of residual graph and forward/ backward edges

```
Ford-Fulkerson (G=(V,E), c, s, t)

1. Initialize flow f to 0

2. While exists augmenting path p do

3. Augment flow f along p

4. Return f
```

Ford-Fulkerson Algorithm

Complete Algorithm:

Compute residual graph including both forward and backward edges

```
Ford-Fulkerson (G=(V,E), c, s, t)
1. For every edge e let f(e)=0
2. Construct the residual graph Gf
3. While exists s-t path in G<sub>f</sub> do
4.
      Let p be an s-t path in G<sub>f</sub>
5. Let d=min<sub>e in p</sub> c<sub>f</sub>(e)
6. For every e on p do
7.
         If e is a forward edge then
8.
             f(e) +=d
9. else
10.
             f(reverse(e))-=d
11.
    Update G_f (construct new G_f)
12.Return f
```

Analysis of Ford-Fulkerson

Questions.

Does it terminate?

Assumption. Flow capacities are all integer values.

Invariant. Every flow value f(e) and every residual capacities $c_f(e)$ remains an integer throughout the algorithm. (Can be proven by induction over the iterations of the while loop)

Theorem. Let
$$C = \sum_{e \text{ out of } s} c(e)$$

Then the algorithm terminates in at most $v(f^*) \leq C$ iterations.

Pf. Each augmentation increase value by at least 1.

Analysis of Ford-Fulkerson

Questions.

What is the running time?

How much work for each iteration?

- Finding an s-t path in the residual graph G_f
 - G_f has at most 2m edges
 - Use BFS/DFS: O(m+n) = O(m) since assume G is connected
- Augment flow along the path
 - O(n) to update each edge along the path
- Update the residual graph
 - O(m) to update each edge
- Total running time for Ford-Fulkerson is: O(mC)
 - NOTE this is pseudo-polynomial (similar to Knapsack problem)
 - Running time grows exponentially with the length (number of bits)
 in the parameter C

Analysis of Ford-Fulkerson

Questions.

Does it generate the maximum flow?

To see this we will introduce the concept of a graph cut

Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$

Slides based on Kevin Wayne / Pearson-Addison Wesley

Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$

Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

Slides based on Kevin Wayne / Pearson-Addison Wesley

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$$

Pf.
$$v(f) = \sum_{e \text{ out of } s} f(e)$$
by flow conservation, all terms
$$= \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e).$$

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

Cut capacity = $30 \Rightarrow \text{Flow value} \leq 30$

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \le cap(A, B)$.

Pf.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} c(e)$$

$$\leq \cot cop(A, B)$$

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut. If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

> Value of flow = 28 Cut capacity = 28 \Rightarrow Flow value \leq 28

Max-Flow Min-Cut Theorem

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut.

The Ford-Fulkerson Algorithm generates a max flow

To prove this we exhibit an s-t cut (A,B) with capacity equal to the flow generated by the algorithm

Proof of Max-Flow Min-Cut Theorem

Proof that Ford-Fulkerson generates a maximum flow

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
- By definition of $A, s \in A$.
- By definition of f, $t \notin A$.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$= \sum_{e \text{ out of } A} c(e)$$

$$= cap(A, B) \quad \blacksquare$$

All outgoing edges from A must be used at full capacity

All incoming edges to A must be unused

original network

Choosing Good Augmenting Paths

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

- Max bottleneck capacity. (could be expensive to determine)
- Sufficiently large bottleneck capacity.
- Fewest number of edges.

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.

- Don't worry about finding exact highest bottleneck path.
- lacksquare Maintain scaling parameter Δ .
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only edges with capacity at least Δ .

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.

- Start with Δ = largest power of 2 that is smaller than C, the sum of the capacities of all edges out of s.
- Discover all s-t paths in $G_f(\Delta)$.
- Divide Δ by 2 and repeat, until finding all paths with Δ = 1.

Capacity Scaling: Correctness and Running Time

Correctness

- Assuming integer constraints for flow capacities
- When $\Delta = 1 \Rightarrow G_f(\Delta) = G_f$.
- Upon termination of Δ = 1 phase, there are no augmenting paths.

Running Time

- The scaling max-flow algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O(m^2 \log C)$ time.
 - (reducing the dependency on flow capacity to log C)

Edmonds-Karp Algorithm

General Idea: For each iteration, the shortest augmentation path is chosen.

Argument: Each time an edge is a bottleneck edge on an augmentation path, it is temporarily removed from the residual graph. By the time it returns to the residual graph and is again a critical edge, it must be part of a shortest path that is at least length 2 longer than previously.

Running Time: Each edge can be a critical edge at most n/2 times, since all shortest paths will be length n-1 or less. Every augmentation must involve at least one critical edge. Thus the total number of augmentations is O(nm), and the total running time of Edmonds-Karp is $O(nm^2)$.

Dependency on C has been completely removed.

Maximum Flow and Minimum Cut

Max flow and min cut.

- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

Nontrivial applications / reductions. (See the Kleinberg / Tardos textbook)

- Data mining.
- Open-pit mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.

- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Many many more . . .