```
In [19]:
         import pandas as pd
         dades = {'Nom': ['Sònia', 'Laura', 'David', 'Rosa', 'Sam'],
                  'Dept' : ['PROD', 'ADMIN', 'MANT', 'ADMIN', 'PROD'],
                  'DiesV' : [32, 55, 20, 43, 30]}
         df = pd.DataFrame(dades)
         print (df)
                    Dept DiesV
              Nom
           Sònia
                    PROD
                             32
                             55
            Laura
                  ADMIN
            David
                    MANT
                             20
         3
             Rosa ADMIN
                            43
                    PROD
              Sam
                             30
In [20]: df[['Nom','DiesV']]
Out[20]:
            Nom DiesV
         0 Sònia
                    32
         1 Laura
                    55
         2 David
                    20
         3
            Rosa
                    43
             Sam
                    30
In [21]:
        df [1:3]
Out[21]:
            Nom
                   Dept DiesV
         1 Laura ADMIN
                           55
         2 David
                  MANT
                           20
         print(df[1:3][['Nom', 'Dept']])
In [22]:
         print("----")
         print(df[1:5]) #linees de 1 a 5-1
              Nom
                    Dept
         1 Laura ADMIN
         2 David
                    MANT
                   Dept DiesV
              Nom
         1 Laura ADMIN
                             55
         2 David
                    MANT
                             20
         3
             Rosa ADMIN
                             43
                    PROD
              Sam
                             30
In [23]: df[df['Nom'] == 'Rosa']
Out[23]:
                   Dept DiesV
            Nom
         3 Rosa ADMIN
                           43
```

```
In [61]: print(df[['Nom','Dept']])
              Nom
                    Dept
                    PROD
            Sònia
         1 Laura ADMIN
         2 David
                    MANT
         3
             Rosa ADMIN
              Sam
                    PROD
In [34]: | df.loc[df['Nom'] == 'Rosa']
Out[34]:
            Nom
                   Dept DiesV
         3 Rosa ADMIN
                           43
In [27]: | df['Nom'] == 'Rosa'
         #print(df)
              False
Out[27]:
              False
              False
         2
         3
              True
         4
              False
         Name: Nom, dtype: bool
In [17]:
         #amb això li dono Rosa a tots
         # df['Nom'] = 'Rosa'
         # print(df)
             Nom
                   Dept DiesV
         0 Rosa
                   PROD
                            32
         1 Rosa ADMIN
                            55
         2 Rosa
                   MANT
                            20
         3 Rosa ADMIN
                            43
         4 Rosa
                   PROD
                            30
In [30]: df[df['Dept'] == "ADMIN"]
                   Dept DiesV
Out[30]:
            Nom
         1 Laura ADMIN
                            55
         3 Rosa ADMIN
                           43
In [31]: df.sort_values(by=[ 'Dept', 'DiesV',], ascending=False)
Out[31]:
            Nom
                   Dept DiesV
         0 Sònia
                   PROD
                            32
             Sam
                   PROD
                            30
         2 David
                  MANT
                            20
            Laura ADMIN
                            55
            Rosa ADMIN
                            43
```

```
In [32]:
          df['PreuDia'] = [60, 80, 90, 100, 85]
          print (df)
                     Dept DiesV PreuDia
               Nom
             Sònia
                     PROD
          0
                               32
                                        60
                                        80
          1
             Laura
                   ADMIN
                               55
             David
                     MANT
                               20
                                        90
          3
              Rosa
                    ADMIN
                               43
                                       100
                     PROD
                                        85
               Sam
                               30
In [33]:
          df.loc[5] = ['Manel', 'MANT', 5, 90]
          print (df)
               Nom
                     Dept DiesV PreuDia
             Sònia
                     PROD
                               32
                                        60
          1
             Laura
                    ADMIN
                               55
                                        80
                                        90
          2
                               20
             David
                     MANT
          3
                               43
                                       100
                   ADMIN
              Rosa
               Sam
                     PROD
                               30
                                        85
          5 Manel
                     MANT
                                5
                                        90
          df=df.append({'Nom':'Sara', 'Dept':'VENDES', 'DiesV':8, 'PreuDia':44}, ignore_ind
In [34]:
          C:\Users\Alumne_mati1\AppData\Local\Temp\ipykernel_9796\3603459778.py:1: FutureWarn
          ing: The frame.append method is deprecated and will be removed from pandas in a fut
          ure version. Use pandas.concat instead.
            df=df.append({'Nom':'Sara' , 'Dept':'VENDES', 'DiesV':8, 'PreuDia':44} , ignore_i
          ndex=True)
          print(df)
In [35]:
               Nom
                      Dept DiesV PreuDia
             Sònia
                      PROD
                                32
                                         60
          1
                     ADMIN
                                55
                                         80
             Laura
          2
             David
                      MANT
                                20
                                         90
          3
              Rosa
                     ADMIN
                                43
                                        100
          4
               Sam
                      PROD
                                30
                                         85
          5
                                 5
                                         90
             Manel
                      MANT
              Sara VENDES
                                 8
                                         44
In [36]:
         df.describe()
Out[36]:
                            PreuDia
                    DiesV
                 7.000000
                            7.000000
          count
                27.571429
                           78.428571
          mean
            std
                18.100250
                           19.594703
                 5.000000
           min
                           44.000000
           25%
                14.000000
                           70.000000
           50%
                30.000000
                           85.000000
                37.500000
           75%
                           90.000000
           max 55.000000 100.000000
```

```
In [40]:
         import pandas as pd
         ventas = pd.DataFrame({"A":[41,32,56,18],
                                 "B":[17,54,6,78],
                                "C":[12,13,16,18] },
                              index = ["Gen", "Feb", "Mar", "Abr"])
         #si no especifiquem index doncs fa numeros incrementals
         print (ventas)
         print("SUMA")
         print(ventas.sum(axis=1))
         #axis=0 canvia el resultat
         print(ventas.describe())
               Α
                   В
                       C
              41
         Gen
                  17
                      12
         Feb
              32
                  54
                      13
         Mar
              56
                  6 16
         Abr
              18 78 18
         SUMA
                 70
         Gen
         Feb
                 99
         Mar
                 78
         Abr
                114
         dtype: int64
                                              C
         count
                 4.000000
                           4.000000
                                      4.000000
                36.750000 38.750000 14.750000
         mean
                15.945219 33.260337
         std
                                      2.753785
         min
                18.000000 6.000000 12.000000
         25%
                28.500000 14.250000 12.750000
         50%
                36.500000 35.500000 14.500000
         75%
                44.750000 60.000000 16.500000
                56.000000 78.000000 18.000000
         max
In [60]:
         # PRACTICA 01
         # Ejercicio 1: Añade al dataframe df : 1 persona para cada departamento
         # con 5, 7 y 9 días de vacaciones.
         # Muestra la lista de empleados ordenados por Dept, DiesV.
         # Ejercicio 2: Dado este diccionario crea un DataFrame :
         # notas={'Juan':9.0,'María':6.5,'Pablo':4.0,'Carmen':8.5,'Luis':5.0}
         # Calcula la nota mínima, la máxima, la media y la desviación típica.
         # Ejercicio 3: añade 3 personas al diccionario notas.
         # a- Ordena las notas de menor a mayor
         # b- Muestra solamente la nota de Juan.
         # c- Haz una selección de las personas suspendidas
         import pandas as pd
         dades = {'Nom': ['Sònia', 'Laura', 'David', 'Rosa', 'Sam'],
                   'Dept' : ['PROD', 'ADMIN', 'MANT', 'ADMIN', 'PROD'],
                   'DiesV' : [32, 55, 20, 43, 30]}
         df = pd.DataFrame(dades)
         print (df)
              Nom
                    Dept DiesV
                    PROD
         Ø Sònia
                             32
         1 Laura ADMIN
                             55
         2
            David
                    MANT
                             20
         3
             Rosa ADMIN
                             43
                   PROD
              Sam
                             30
```

```
In [61]: \#df.loc[5] = ['Manel', 'MANT', 5, 90]
          # df=df.append({'Nom':'Pere' , 'Dept':'PROD', 'DiesV':5}, ignore_index=True)
          # df=df.append({'Nom':'Marta' , 'Dept':'MANT', 'DiesV':7} , ignore_index=True)
          # df=df.append({'Nom':'Joana' , 'Dept':'ADMIN', 'DiesV':9} , ignore_index=True)
          #print(df)
          #amb aquest evitem l'error tot hi que amb error inclos el de dalt al fer print tb h
          df3 = pd.DataFrame([['Pere', 'PROD', '5'], ['Marta', 'MANT', '7'], ['Joana', 'ADMIN'
          print(pd.concat([df,df3], ignore_index=True))
              Nom
                     Dept DiesV
          0 Sònia
                     PROD
                             32
                             55
         1 Laura ADMIN
          2 David
                    MANT
                             20
         3
                             43
             Rosa ADMIN
              Sam
                    PROD
                             30
         5
             Pere
                     PROD
                             5
                              7
         6 Marta
                     MANT
         7 Joana ADMIN
In [62]: # Muestra la lista de empleados ordenados por Dept, DiesV.
          # Ejercicio 2: Dado este diccionario crea un DataFrame :
          # notas={'Juan':9.0, 'María':6.5, 'Pablo':4.0, 'Carmen':8.5, 'Luis':5.0}
          df.sort_values(by=['DiesV','Dept'], ascending=False)
Out[62]:
            Nom
                    Dept DiesV
          1 Laura ADMIN
                            55
             Rosa ADMIN
                            43
          0 Sònia
                   PROD
                            32
             Sam
                   PROD
                            30
          2 David
                   MANT
                            20
         notas = {'Juan':9.0, 'María':6.5, 'Pablo':4.0, 'Carmen':8.5, 'Luis':5.0}
In [63]:
          df3 = pd.DataFrame([[key, notas[key]] for key in notas.keys()], columns=['Nom', 'Di
          df3
Out[63]:
              Nom DiesV
          0
              Juan
                      9.0
          1
              María
                      6.5
          2
              Pablo
                      4.0
          3 Carmen
                      8.5
          4
               Luis
                      5.0
```

```
# Calcula la nota mínima, la máxima, la media y la desviación típica.
In [64]:
          df.describe()
Out[64]:
                    DiesV
                 5.000000
          count
          mean 36.000000
            std 13.397761
            min 20.000000
                30.000000
           25%
           50%
                32.000000
           75%
                43.000000
           max 55.000000
 In [ ]:
 In [ ]:
In [65]:
          import numpy as np
          import pandas as pd
          df = pd.read_csv("./dat/obser2021.csv", sep=";")
          df
Out[65]:
                                  obser ventkh component plujamm tmax tmin tmitjana
                anyy mes dia
             0 1973
                       12
                             9 TARRACO
                                            191
                                                        NO
                                                                  10 21.22 -2.45
                                                                                     11.83
                2011
                       10
                            24
                                    BCN
                                            138
                                                         Ν
                                                                   6 39.77 16.68
                                                                                     11.55
               1998
                        6
                             6
                                    VIC
                                            192
                                                        NE
                                                                   0 19.26 15.06
                                                                                     2.10
                1987
                        1
                            12 MASNOU
                                             36
                                                        NE
                                                                  10 29.64 13.40
                                                                                     8.12
                1954
                        2
                            10
                                 STACOL
                                                         S
                                                                   0 30.56
                                                                            1.87
                                                                                     14.34
                                            114
                            ...
          4994 1980
                             9
                                   BCN
                                                                      -0.79
                                                                           -8.28
                        3
                                             18
                                                         Ν
                                                                                     3.74
                                  BERGA
                                                                  10 10.22 -7.35
          4995
               1969
                            26
                                             91
                                                        SE
                                                                                     8.79
                       11
          4996 2015
                        6
                            20
                                  LLEIDA
                                            199
                                                        NE
                                                                   3 17.22 -5.55
                                                                                     11.38
          4997 2011
                                GIRONA
                                                        SO
                                                                   2 39.17 9.78
                                                                                    14.70
                       10
                           12
                                            114
          4998 1951
                           11
                                GIRONA
                                            157
                                                         S
                                                                   2 14.19 13.69
                                                                                     0.25
                       11
         4999 rows × 10 columns
```

```
In [ ]: # df[df['obser'] == 'BCN']
# df.loc[df.obser == 'BCN'].loc[df.component == 'N'].loc[df.plujamm > 8]
```

In [66]: df.describe()

tmin Out[66]: dia ventkh plujamm anyy mes tmax **count** 4999.000000 4999.000000 4999.000000 4999.000000 4999.000000 4999.000000 4999.000000 1984.016403 6.495899 15.434687 100.480896 5.039808 25.065465 5.041690 mean 19.934309 3.473148 8.731287 58.143425 3.149124 12.736527 8.670017 std 0.000000 min 1950.000000 1.000000 1.000000 0.000000 -9.500000 -9.990000 1967.000000 4.000000 8.000000 51.000000 2.000000 -2.480000 25% 16.245000 50% 1984.000000 6.000000 15.000000 99.000000 5.000000 26.040000 4.770000 2001.000000 12.755000 **75%** 10.000000 23.000000 151.000000 8.000000 35.595000 max 2018.000000 12.000000 200.000000 20.000000 30.000000 10.000000 44.990000

```
In [67]: df[df['obser'] == 'BCN']
#df.loc[df.obser == 'BCN'].loc[df.component == 'N'].loc[df.plujamm > 8]

df.loc[(df.obser == 'BCN') & (df.component == 'N') & (df.plujamm > 8)]

# df_bcn = df.loc[(df.obser == 'BCN') & (df.component == 'N') & (df.plujamm > 8)]
```

Out[67]:		anyy	mes	dia	obser	ventkh	component	plujamm	tmax	tmin	tmitjana
	35	1967	9	26	BCN	141	N	10	14.23	-8.29	11.26
	480	1998	11	26	BCN	55	N	9	25.14	1.55	11.79
	850	2012	6	20	BCN	120	N	9	22.25	-6.16	14.21
	1171	1998	9	22	BCN	63	N	10	17.51	10.07	3.72
	1253	1956	8	29	BCN	129	N	9	44.52	-4.03	24.28
	2284	2005	12	9	BCN	189	N	9	37.99	18.67	9.66
	2450	1953	10	13	BCN	45	N	9	44.00	18.52	12.74
	2789	1965	4	10	BCN	176	N	9	43.29	0.37	21.46
	4346	1992	12	27	BCN	72	N	9	14.99	-0.11	7.55
	4432	1962	1	17	BCN	172	N	9	16.38	-2.77	9.57
	4565	1990	2	20	BCN	41	N	10	19.73	-5.28	12.51
	4802	1985	3	29	BCN	70	N	9	35.35	15.34	10.01

```
In [71]: plot_data = df[df['obser'] == 'BCN']
    plot_data = plot_data.groupby('mes')['plujamm'].sum()

#aquesta part substitueix a L'altre comentada
ax = plot_data.plot(kind='bar', title='Pluges de Barcelona')
ax.set_xlabel('mes')
ax.set_ylabel('lluvia mes')

#plot_data.plot(kind='bar')
```

Out[71]: Text(0, 0.5, 'lluvia mes')


```
In [81]: df2 = df[df['anyy'] > 2016]
    df2 = df2[['anyy', 'mes', 'plujamm']]
    # df2.groupby(['anyy']).sum()
    df2.groupby(['anyy', 'mes'])["plujamm"].sum()

#print(df2)
```

Out[81]:	anyy	mes	
oucloi].	2017	1	45
		2	13
		3	37
		4	21
		5	30
		6	8
		7	39
		8	32
		9	31
		10	40
		11	31
		12	31
	2018	1	38
		2	34
		3	16
		4	31
		5	45
		6	0
		7	9
		8	53
		9	6
		10	45
		11	31
		12	36

Name: plujamm, dtype: int64

```
In [99]: # Practica P01.
# Ejercicio 1 : Carga en tu cuaderno python el siguiente fichero : obser2021.csv
import numpy as np
import pandas as pd

df = pd.read_csv(r".\dat\obser2021.csv", sep=";")
df
```

Out[99]:

	anyy	mes	dia	obser	ventkh	component	plujamm	tmax	tmin	tmitjana
0	1973	12	9	TARRACO	191	NO	10	21.22	-2.45	11.83
1	2011	10	24	BCN	138	N	6	39.77	16.68	11.55
2	1998	6	6	VIC	192	NE	0	19.26	15.06	2.10
3	1987	1	12	MASNOU	36	NE	10	29.64	13.40	8.12
4	1954	2	10	STACOL	114	S	0	30.56	1.87	14.34
•••										
4994	1980	3	9	BCN	18	N	3	-0.79	-8.28	3.74
4995	1969	11	26	BERGA	91	SE	10	10.22	-7.35	8.79
4996	2015	6	20	LLEIDA	199	NE	3	17.22	-5.55	11.38
4997	2011	10	12	GIRONA	114	SO	2	39.17	9.78	14.70
4998	1951	11	11	GIRONA	157	S	2	14.19	13.69	0.25

4999 rows × 10 columns

```
df[['dia', 'ventkh', 'component']]
In [100...
Out[100]:
                dia ventkh component
                  9
             0
                       191
                                   NO
                 24
                       138
                                    Ν
             1
              2
                  6
                       192
                                   NE
                 12
                                   NE
             3
                        36
                 10
                                    S
              4
                       114
           4994
                  9
                        18
                                    Ν
           4995 26
                        91
                                   SE
           4996
                 20
                                   NE
                       199
           4997
                12
                                   SO
                       114
           4998 11
                       157
                                    S
```

4999 rows × 3 columns

```
In [101...
          # Ejercicio 2: Que hace esta programación ?
          df2 = df[df['anyy'] > 2016]
          df2 = df2[['anyy', 'mes', 'plujamm']]
          df2.groupby(['anyy', 'mes']).sum()
```

11 de 17 13/06/2023, 12:14

Out[101]:	plujamm
-----------	---------

anyy	mes	
2017	1	45
	2	13
	3	37
	4	21
	5	30
	6	8
	7	39
	8	32
	9	31
	10	40
	11	31
	12	31
2018	1	38
	2	34
	3	16
	4	31
	5	45
	6	0
	7	9
	8	53
	9	6
	10	45
	11	31
	12	36

```
In [123... # Ejercicio 3: a) Analiza los datos de los 5 últimos años con datos.

maximo = df['anyy'].max() - 5
df5a = df [df['anyy'] > maximo ]
#print (df5a)
df5a
```

5 39.88 15.92

3 17.22 -5.55

11.98

11.38

	anyy	mes	dia	obser	ventkh	component	plujamm	tmax	tmin	\
13	2015	9	5	TARRACO	36	S0	0	32.02	3.89	
40	2018	8	6	STACOL	185	SE	9	38.81	17.64	
44	2015	8	12	LLEIDA	56	S	9	42.55	16.68	
76	2014	11	10	LLEIDA	157	S0	1	30.98	-5.63	
101	2015	4	23	MASNOU	194	S0	8	30.75	10.41	
4920	2018	8	24	BERGA	147	S	4	41.90	7.05	
4932	2014	2	7	HOSPI	107	NO	0	30.41	1.68	
4938	2017	11	8	STACOL	113	NO	1	40.15	-6.47	
4980	2015	11	23	LLEIDA	113	NO	5	39.88	15.92	
4996	2015	6	20	LLEIDA	199	NE	3	17.22	-5.55	
	tmitj	ana								
13	14	.07								
40	10	.59								
44	12	.93								
76	18	.30								
101	10	.17								
• • •		• • •								
4920	17	.43								
4932	14	.37								
4938	23	.31								
4980	11	.98								
4996	11	.38								

[354 rows x 10 columns]

Out[123]:		anyy	mes	dia	obser	ventkh	component	plujamm	tmax	tmin	tmitjana
	13	2015	9	5	TARRACO	36	SO	0	32.02	3.89	14.07
	40	2018	8	6	STACOL	185	SE	9	38.81	17.64	10.59
	44	2015	8	12	LLEIDA	56	S	9	42.55	16.68	12.93
	76	2014	11	10	LLEIDA	157	SO	1	30.98	-5.63	18.30
	101	2015	4	23	MASNOU	194	SO	8	30.75	10.41	10.17
	•••										
	4920	2018	8	24	BERGA	147	S	4	41.90	7.05	17.43
	4932	2014	2	7	HOSPI	107	NO	0	30.41	1.68	14.37
	4938	2017	11	8	STACOL	113	NO	1	40.15	-6.47	23.31

113

199

NO

NE

LLEIDA

LLEIDA

354 rows × 10 columns

11 23

6 20

4980 2015

4996 2015

```
In [169...
          # Ejercicio 3: b)
          # Localiza el observatorio con la temperatura máxima
          # df2.groupby(['anyy', 'mes']).sum()------df5a [df5a['obser'] and df5a['tm
          #df5ot = df5a.groupby(["obser", 'tmax'])
          # el meu sense filtrar------print(df5a[df5a['tmax'] == df5a['tmax'].max()])
          df5a[df5a['tmax'] == df5a['tmax'].max()]
Out[169]:
                                 obser ventkh component plujamm tmax tmin tmitjana
                anyy mes dia
          2576 2014
                       11
                          27 TARRACO
                                            8
                                                                0 44.99 17.59
                                                                                 13.7
          # Ejercicio 3: c)
In [167...
          # Localiza el observatorio con la temperatura mínima en Febrero
          dFeb =df5a[df5a['mes'] == 2]
          dFeb[dFeb['tmin'] == dFeb['tmin'].min()]
                                 obser ventkh component plujamm tmax tmin tmitjana
Out[167]:
                anyy mes dia
          2735 2017
                       2 26 TARRACO
                                           89
                                                     SO
                                                                4 14.97 -9.23
                                                                                 12.1
In [170...
          # Ejercicio 3: d)
          # Observatorio, día mes y año con el viento más fuerte
          df5a [df5a['ventkh'] == df5a['ventkh'].max()]
Out[170]:
                               obser ventkh component plujamm tmax tmin tmitjana
                anyy mes dia
                                                            10 44.35 18.56
          1266 2014
                       5
                            5 LLEIDA
                                        200
                                                   NO
                                                                              12.90
                       8 26 BERGA
          2406 2014
                                        200
                                                    SE
                                                             2 25.40 8.09
                                                                               8.65
 In [ ]: # Ejercicio 4: Queremos saber las temperaturas máximas de cada mes en los distintos
          # Cómo presentarías los datos ?
          # Que criterio utilizarías para decidir cual es el año más frío ?
 In [ ]: # Cómo presentarías Los datos ? --> DEMASIADOS DATOS DECIDIR ENTRE ANALIZAR POR OB
In [171...
          import matplotlib.pyplot as plt
          import numpy as np
          x = np.linspace(0, 2 * np.pi, 200)
          y = np.sin(x)
          fig, ax = plt.subplots()
          ax.plot(x, y)
          plt.show()
```

14 de 17 13/06/2023, 12:14

In [174... fig, df5a = plt.subplots() # Create a figure containing a single axes.
ax.plot((['anyy'], ['tmax'])) # Plot some data on the axes.

15 de 17 13/06/2023, 12:14

```
TypeError
                                          Traceback (most recent call last)
Cell In[174], line 2
      1 fig, df5a = plt.subplots() # Create a figure containing a single axes.
----> 2 ax.plot((['anyy'], ['tmax']))
File ~\anaconda3\lib\site-packages\matplotlib\axes\_axes.py:1688, in Axes.plot(sel
f, scalex, scaley, data, *args, **kwargs)
   1445 """
   1446 Plot y versus x as lines and/or markers.
   1447
   (…)
   1685 (``'green'``) or hex strings (``'#008000'``).
   1686 """
   1687 kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D)
-> 1688 lines = [*self._get_lines(*args, data=data, **kwargs)]
   1689 for line in lines:
   1690
            self.add_line(line)
File ~\anaconda3\lib\site-packages\matplotlib\axes\_base.py:311, in _process_plot_v
ar_args.__call__(self, data, *args, **kwargs)
    309 this += args[0],
            args = args[1:]
--> 311 yield from self._plot_args(
            this, kwargs, ambiguous_fmt_datakey=ambiguous_fmt_datakey)
    312
File ~\anaconda3\lib\site-packages\matplotlib\axes\_base.py:501, in _process_plot_v
ar_args._plot_args(self, tup, kwargs, return_kwargs, ambiguous_fmt_datakey)
            self.axes.xaxis.update units(x)
    500 if self.axes.yaxis is not None:
--> 501
            self.axes.yaxis.update_units(y)
    503 if x.shape[0] != y.shape[0]:
    504
            raise ValueError(f"x and y must have same first dimension, but "
    505
                             f"have shapes {x.shape} and {y.shape}")
File ~\anaconda3\lib\site-packages\matplotlib\axis.py:1670, in Axis.update_units(se
1f, data)
   1668 neednew = self.converter != converter
   1669 self.converter = converter
-> 1670 default = self.converter.default_units(data, self)
   1671 if default is not None and self.units is None:
   1672
            self.set units(default)
File ~\anaconda3\lib\site-packages\matplotlib\category.py:105, in StrCategoryConver
ter.default units(data, axis)
    103 # the conversion call stack is default_units -> axis_info -> convert
    104 if axis.units is None:
--> 105
            axis.set_units(UnitData(data))
    106 else:
    107
            axis.units.update(data)
File ~\anaconda3\lib\site-packages\matplotlib\category.py:181, in UnitData.__init__
(self, data)
    179 self._counter = itertools.count()
    180 if data is not None:
--> 181
            self.update(data)
File ~\anaconda3\lib\site-packages\matplotlib\category.py:214, in UnitData.update(s
```

16 de 17 13/06/2023, 12:14

```
elf, data)
    212 # check if convertible to number:
    213 convertible = True
--> 214 for val in OrderedDict.fromkeys(data):
    215  # OrderedDict just iterates over unique values in data.
    216    _api.check_isinstance((str, bytes), value=val)
    217    if convertible:
    218  # this will only be called so long as convertible is True.
```

TypeError: unhashable type: 'numpy.ndarray'

In []: