An Operator–Functional Equation Framework toward RH: Self-Adjoint Surrogates of the Completed Zeta and NB/BD Stability (v3.3)

Serabi

2025

Abstract

We formalize a Hilbert–space operator framework that ties the Riemann Hypothesis (RH) to spectral properties of a surrogate operator for the completed zeta function $\xi(s)$. The program proceeds in three layers: (i) a symmetric integral transform encoding the functional equation, (ii) a weighted Hilbert kernel capturing near-diagonal correlations (the analytic analogue of NB/BD stability), and (iii) a band–decomposition estimate where Möbius–weighted coefficients enforce off-diagonal cancellation. We state an equivalence template — quasi self-adjointness \Rightarrow real spectrum \Rightarrow critical-line localization — and sketch how the NB/BD distance $d_N \to 0$ can be placed as a stable finite-rank approximation of the operator inversion problem. This note is a clean operator-level starting point; it is not a proof of RH.

1 Completed zeta, functional symmetry, and the model operator

Let $\xi(s) = \frac{1}{2}s(s-1)\pi^{-s/2}\Gamma(\frac{s}{2})\zeta(s)$ denote the completed zeta, which obeys $\xi(s) = \xi(1-s)$. We work on a Hilbert space \mathcal{H} (e.g. $L^2(\mathbb{R}, w(t) dt)$ with even weight w) and define a linear operator \mathcal{T} that encodes the functional symmetry via a Fourier–Mellin involution \mathcal{F} :

$$(\mathcal{T}f)(t) = \int_{\mathbb{R}} K(t,u) f(u) du, \qquad K(t,u) \approx \Phi(t) \mathcal{F}[\Psi(\cdot) K_0(t-\cdot)](u),$$

where Φ , Ψ absorb the gamma/archimedean factors and K_0 is a Hilbert-type kernel (cf. $e^{-\frac{1}{2}|\log(m/n)|}$ in discrete models). The goal is to tune (Φ, Ψ, w) so that \mathcal{T} is quasi self-adjoint on \mathcal{H} up to a compact (or rapidly decaying) perturbation.

Theorem 1 (Equivalence template: operator \leftrightarrow zeros). Suppose $\mathcal{T} = \mathcal{S} + \mathcal{K}$ on \mathcal{H} where \mathcal{S} is self-adjoint and \mathcal{K} is compact with $\|\mathcal{K}\| < 1$. Assume further that the functional symmetry lifts to an involution commuting with \mathcal{S} . Then the spectrum of \mathcal{T} is contained in a real ε -tube around $\sigma(\mathcal{S})$, hence eigenvalue instabilities are dominated by \mathcal{K} . Under a Mellin identification $t \leftrightarrow s = \frac{1}{2} + it$, this yields critical-line localization for zeros of a ξ -surrogate.

Remark 1. The theorem is a template: the analytic work is to realize \mathcal{T} with the correct gamma factors and to prove quantitative bounds on \mathcal{K} .

2 Weighted Hilbert kernel and band decomposition

Let $K_{mn} = e^{-\frac{1}{2}|\log(m/n)|}$ and consider coefficients $a_n = \mu(n) v(n/N) q(n)$ with smooth cutoff $v \in C_0^{\infty}(0,1)$ and slowly varying weight q. Define the quadratic form

$$Q_N(a) = \sum_{m \neq n \leq N} a_m a_n K_{mn}.$$

Lemma 1 (Möbius-weighted Hilbert decay). There exist $\theta > 0$ and C = C(v,q) such that $Q_N(a) \leq C(\log N)^{-\theta} \sum_{n \leq N} a_n^2$.

Sketch. Partition into logarithmic bands $\mathcal{B}_j = \{(m,n): 2^{-(j+1)} < |\log(m/n)| \le 2^{-j}\}$. On \mathcal{B}_j , $K_{mn} \le e^{-c^{2-j}}$. The Möbius factor cancels main terms within each band; smoothness of v yields an extra $2^{-j\delta}$. Summation in j gives the decay.

NB/BD interface. In the NB/BD L^2 approximation problem one solves normal equations (I+E)a=B, where E is governed by off-diagonal Hilbert sums akin to Q_N . The bound above implies $||E|| \ll (\log N)^{-\theta}$, so Neumann series invertibility and $d_N \to 0$ are stable for admissible designs. This places NB/BD numerics as finite-rank approximations to $(I+\mathcal{K})^{-1}$.

3 Operator realization and functional equation input

To connect Theorem 1 with zeta, we embed K_{mn} into an integral kernel K(t,u) via Mellin discretization on $s = \frac{1}{2} + it$. The gamma factors from $\xi(s)$ are absorbed by weights Φ, Ψ so that the functional equation yields an *involution* \mathcal{J} with $\mathcal{J}^2 = I$ and $\mathcal{J}\mathcal{T} = \mathcal{T}\mathcal{J}$. The remaining task is quantitative: show $\mathcal{T} = \mathcal{S} + \mathcal{K}$ with \mathcal{S} symmetric and $\|\mathcal{K}\| < 1$ by a band decomposition estimate mirroring the discrete lemma.

4 Roadmap and open analytic tasks

- (Normalization) Fix (Φ, Ψ, w) so that \mathcal{T} is symmetric on a dense core in \mathcal{H} .
- (Compact remainder) Transfer the Möbius-band decay to integral scale to bound $\|\mathcal{K}\|$.
- (NB/BD bridge) Interpret $d_N \to 0$ as strong resolvent convergence of finite sections.
- (Critical-line localization) Prove that the spectrum of \mathcal{T} concentrates on the real axis, implying RH for the ξ -surrogate, then upgrade to ξ .

Disclaimer. This note outlines an operator-level pathway and consolidates bounds compatible with NB/BD stability. It is not a proof of RH.

Figure 1: Operator roadmap for RH. Functional symmetry \Rightarrow quasi self-adjoint operator \mathcal{T} ; weighted Hilbert kernel controls off-diagonal mass; NB/BD sits as a finite-rank surrogate.