第八章

直接存储器存取

概述

s3c2440 支持在系统总线和外围总线之间的 4 路 DMA 控制器 。每一路 DMA 控制器可以自由的执行数据在系统总线和(或)外围总线之间的动作。换句话说,每一路可以在下列列 4 种情况下运行:

- 1.源设备和目标设备都在系统总线上
- 2.源设备在系统总线上,目标设备在外围总线上
- 3.源设备在外围总线上,目标数据在系统总线上
- 4.源设备和目标设备都在外围总线上

DMA 的主要优点是它可以不通过 CPU 直接调用数据。DMA 工执行可以软件开始,也可以从内部的外设请求或者外部的引脚请求开始。

DMA 请求源

每一路 DMA 控制器都可以从 4 种开始请求中选择一路, 如果 DCON 寄存器选择 H/W DAM 请求模式 (注意, 选择 S/W 时这个 DMA 请求源没意义)。表 8--1 列出了 4 种请求和每一路的关系:

	Source0	Source!	Source2	Source3	Source4	Source5	Source6
Ch-0	nXDREQ0	UAKT0	SDI	Timer	USB device EP1	I2SSDO	PCMIN
Ch-1	nXDREQ1	UAPTI	I2SSDI	SPI0	USB device EP2	PCMOUT	SDI
Ch-2	I2SSDO	เวรรณ	SDI	Timer	USB device EP3	PCMIN	MICIN
Ch-3	UART2	SDI	SPI1	Timer	USB device EP4	MICIN	PCMOUT

表 8-1.DMA 开始请求和每一路关系

这里 nXDREQ0 和 nXDREQ1 表示两个外部源(Extermal Devices),12SSDO 和 12SSDI 分别表示 IIS 的 传输和接收。

DMA 工作状态

DMA 应用 3 态 FSN (有限状态机), 它可以描述为以下 3 步:

- State--1. 作为起始状态, DMA 等待 DMA 请求, 一旦请求到来马上转到 State--2, 在 这个状态, DMA ACK 和 INT REQ 是 0.
- State--2. 在这个状态, DMA ACK 变为 1, 计数器(CURR_TC)从 DCON[19:0]装载。 DMA ACK 保持 1, 直到它被清 0。
- State--3. 在这个状态,控制 DMA 原子操作的子 FSM 被初始化了。子 FSM 从源地址 读取数据后把它写入目标地址。在这个操作中,数据宽度和传输大小(单次 或突发)应给与考虑。在完整服务模式中,这种操作不断重复直到计数器

9/10/2007

1

(CURR_TC) 变为 0。然而在单一模式中只进行一次,当子 FSM 完成每个原子操作时,主 FSM 对 CURR_TC 倒计时。另外,当 CURR_TC 为 0 和中断设置 DCON[29]为 1 时,主 FSM 发出 INT REQ 信号(中断请求信号)。另外,如果发生下列情况之一,DMA ACK 将被清零。

- 1) 在整体服务模式中 CURR TC 变为 0
- 2) 在单一模式中原子操作完成

注:在单一服务模式中,主 FSM 的三个状态进行然后停止,等待另外的 DMA REQ。如果 DMA REQ 到来,重复三种状态。因此,DMA ACK 被使能然后被取消后进行每一个原子操作。相反的,在整体服务模式中,主 FSM 等待在 state-3 直到 CURR_TC 变为 0。所以,在 TC 到达 0 时,DMA ACK 在传输区间被使能然后被取消。

总之, INT REQ 被使能只由 CURR_TC 是否为 0 决定,与服务模式无关(单一服务模式或整体服务模式)。

外部 DMA 请求/应答(DREQ/DACK)协议

有三种类型的外部DMA请求/应答协议(单一需求模式、单一同步交换模式和整体同步交换模式)。每一种类型定义这些协议涉及到什么样的DMA请求和应答信号。

基本 DMA 时序图

DMA服务意味着在DMA操作中执行一对读、写循环,它可以考试一个DMA操作。图8--1显示了S3C2440DMA操作中的继电器

- ——XnXDREQ和XnXDACK中的建立时同(serup)和延时时间(delay)在所有模式下都是相同的
- ——如果XnXDREQ完成遇上建立时间,那么它将同步加强为原来的两倍,这是XnXDACK 被声明了
- ——XnXDACK声明以后,DMA清求总线,如果到达总线则执行其操作,DMA操作完成后 运行XnXDACK

图8--1.基本 DMA 时序图

需求/同步交换模式比较

需求和同步交换模式都涉及到XnXDREQ和XnXDACK协议。图8--2指出了两种模式之间的不同

在操作(单一/突发操作)最后,DMA组织双同步XnXDREQ。

需求模式

— 如果XnXDREQ尚未使能,那么下一个操作马上开始。否则它一直等XnXDREQ 被设为无效。

同步交换模式

- 如果XnXDREQ无效,DMA取消XnXDACK两个周期。否怎,一直等XnXDREQ被设为无效。
- 注: XnXDREQ只在XnXDACK无效(hugh)后被使能(low)

图8-2需式模式和同步交换模式比较

传送容量

- 一 有两种不同的传输方式, unit和Burst 4
- 一 在传输大量数据时,DMA字牢占据总线,因此其他总线主控不能得到总线

Burst 4传输容量

有四组连续的读、写操作在Burst 4中分别完成

注 Unit传输型: 执行单读、写

图8--3.Burst 4传输型

举例

Unit传输容量的单一服务需求模式

每一个**Unit**传输(单一服务模式)都需要XnXDREQ使能。这个操作一直延续到XnXDREQ被使能 (需求模式),一对读、写(单一传输容量)操作被执行。

图8--4.UnitUnit传输容量的单一形务需求模式

Unit传输容量的单一服务单同步交换模式

图8-5.Unit传输容量的单一服务单同步交换模式

Unit传输容量的整体服务同步交换模式

图8--6.Unit传输容量的整体服务同步交换模式

DMA专用寄存器

每一路DMA有九个控制寄存器(4路一共有36个)。其中6个控制寄存器控制DMA传输,另外的3个监听DMA控制器状态。详细说明如下。

DMA初始源寄存器 DMA INITIAL SOURCE (DISRC) REGISTER

寄存器	地址	R/W	说明	重新赋值
DISRC0	0x4B000000	R/W	DMA 0 initial source register	0x00000000
DISRC1	0x4B000000	R/W	DMA 1 initial source register	0x00000000
DISRC2	0x4B000000	R/W	DMA 2 initial source register	0x00000000
DISRC3	0x4B000000	R/W	DMA 3 initial source register	0x0000000

DISRCn	Bit	说明	初始状态
S_ADDR	[30:0]	源数据传输基地址(起始地址)。当CURR_SRC值	0x0000000
		为0,DMA ACK值为1时,这个bir直被写入	
		CURR_SRC	

DMA初始源控制寄存器 DMA INITIAL SOURCE CONTROL (DISRCC) REGISTER

寄存器	地址	R/W	说明	重新赋值			
DISRC0	0x4B000004	R/W	DMA O initial source	0x00000000			
Diortoo	0X4B000004	1,7 1,7	control register	CACCOCCCC			
DISRC1	0v4B000044	0x4B000044	R/W	DMA 1 initial source	0x00000000		
DIOITOI		.,,	control register	0,0000000			
DISRC2	0x4B00008/4	/ R/W	DMA 2 initial source	0x00000000			
DISINOZ	0.45000004		<u> </u>			control register	0,00000000
DISRC3	0x4B0000004	R/W	DMA 3 initial source	0x00000000			
DISKUS	0x4B0000004	0x4B0000004	11/ 44	control register	0,00000000		

DISRCCn	Bit	说明	初始状态
LOC	[1]	Bit 1用来选择源位置	0
		O: 源在系统总线(AHB)上	
		1: 源在外围设备总线(APB)上	
INC	[0]	Bit 0用来选择地址增量	0
		0= 增加 1= 不变	
		如果为0,在突发和单一传出模式传输之后地址随	
		数据量增加。	
		如果为 1 ,地址在传输后不变。(在突发模式,地	
		址在传输过程中增加,但是在传输结束后恢复到初	
		始值。)	

DMA初始目的寄存器 DMA INITIAL DESTINATION (DIDST) REGISTER

寄存器	地址	R/W	说明	重新赋值
DIDST0	0x4B000008	R/W	DMA 0 initial destination	0x00000000
סופטוט	0.46000008	R/ VV	register	0x00000000
DIDST1	0x4B000048	D/W	DMA 1 initial destination	0x00000000
דופטוט	0.46000046	R/W	register	0.00000000
DIDST2	0x4B000088	R/W	DMA 2 initial	0x00000000
DIDST2	0.46000088	R/ W	destinationregister	0x00000000
DIDST3	0x4B00000B8	D /W	DMA 3 initial destination	0x00000000
פופטוט	UX460000068	R/W	register	0.00000000

DIDSTn	Bit	说明	初始状态
D_ADDR	[30:0]	目标传输基地址(起始地址)。如果CURA_DST	0x00000000
		为0,DMA ACK为1,这个bit值被写入CURR_SRC	

DMA初始目的控制寄存器 DMA INITIAL DESTINATION (DIDST) REGISTER

寄存器	地址	R/W	说明	重新赋值
DIDSTC0	0x4B00000C	R/W	DMA 0 initial destination control register	0x00000000
DIDSTC1	0x4B00004C	R/W	DMA 1 initial destination control register	0x0000000
DIDSTC2	0x4B00008¢	P/W	DMA 2 initial destination control register	0x00000000
DIDSTC3	0x4B0000000	R/W	DMA 3 initial destination control register	0x0000000

DIDSTCn	Bit	说明	初始状态
CHK_INT	[2]	在自动重装载被设置时,选择中断发生的时间。	0
		0: TC到达0时发生中断。	
		1: 自动重装载完成后发生中断。	
LOC	[1]	Bit1用来选择目标文件位置	0
		0:目标文件在系统总线上(AHB)	
		1:目标文件在外部设备总线上(APB)	
INC	[0]	Bit O用来选择地址增量	0
		0= 增加 1= 不变	
		如果为0,在所有单一和突发传输模式之后地址	
		随数据量增加。	

6

如果为1,传输之后地址不变。(在突发模式中,	
地址在传输过程中增加,但在传输之后恢复成原	
来的值。)	

DMA控制寄存器 DMA CONTROL (DCON) REGISTER

寄存器	地址	R/W	说明	重新赋值
DCON0	0x4B000010	R/W	DMA 0 source register	0x00000000
DCON1	0x4B000050	R/W	DMA1 source register	0x00000000
DCON2	0x4B000090	R/W	DMA 2 source register	0x00000000
DCON3	0x4B0000D0	R/W	DMA 3 source register	0x00000000

DCONn	Bit	说明	初始状态
DMD_HS	[31]	在需求模式和同步交换模式中选一种	0
		0: 选择需求模式	
		1. 选择同步交换模式i	
		这两种模式中,DMA控制器开始传输并通过给	
		DACK使能从而给DREQ使能。这两种模式的区	
		别在于是否等待DACK被元效与否	
		在同步交换模式,DMA产制器在开始新的传输	
		前等待DREQ被设为无效。如果发现DREQ无效,	
		马上把DACK设为无效,并等待DREQ另一次使	
		能。	
		相反的,在需求模式,DMA控制器不等待DREQ	
		被设为无效。如果DREQ使能,直接将DACK设	
		为无效并开是下一次传输。	
SYNC	[30]	DPEQ/DACY.同步选择	0
		②: LYEQ和DACK同步到达PCLK(APB 时钟).	
		1. DFEQ和DACK同步到达HCLK(APB 时钟)	
		因此,为了设置在AHB系统总线上,这位必须	
		置1,为了设置在APB系统总线上,这位需要置	
		o .	
		为了设置在外部系统总线上,使用者需要依靠	
		外部系统和AHB系统和APB系统同步来选择这	
		位	
INT	[29]	CURR_TC(数字终端)禁止和允许中断	0
		0: CURR_TC中断禁止,使用者必须寄查看存器	
		形式中的传输个数(轮巡检测)	
		1: 所有传输结束后产生中断请求(CURR_TC为	
		0)	
TSZ	[28]	选择原子操作传输类型(传输执行任一时刻	0
		DMA在释放总线之前占有总线)	
		0:执行一个unit传输	
		1:执行一个4 burst传输	

DE 0: 所有原子操作之后,DMA停止并等待另一个 DMA请求时选择单一服务模式 1: 一个请求到达原子操作并被重复直到传输个 数为0.在这个模式中额外要求是不必要的
1: 一个请求到达原子操作并被重复直到传输个
数为0.在这个模式中额外要求是不必要的
注意,在整体服务模式,所有原子操作之后DMA
释放总线,然后试着再占据总线,防止其他总
线主控得不到总线
HWSRCS [26:24] 每个DMA请求源 00
EL DCON0: 000:nXDREQ0 001:UARTO 010:SDI
011:Timer
100:USB device EP1
DCON1: 000:nXDREQ1 001:UART1 010:I2SSDI
011:SPI
100:USB device EP2
DCON2: 000:l2SSD0 00:1/2SSD1 010:SDI
011:Timer
100:USB device FP3
DCON3: 000:UART2 00:::SDI 010:SPI
011:Timer
100:USB device EP4
DCON0: 102,1255DO 110:PCMIN
DCON:: 101:PCMOUT 110:SDI
DCON2: 101:PCMIN 110:MICIN
CON'S: 101:MICIN 110:PCMOUT
这些位通过控制4-1 MUX来每个DMA请求源,只
有DCONn[23]选择H/W请求模式时这些位才有
意义
SWHW_S [23] 在软件(S/W请求模式)和硬件(H/W请求模 0
EL 式)中选择DMA源
0:通过DMASKTRIG控制寄存器的SW_TRIG位
选择 S/W 请求模式和 DMA 触发
1 : 通过[26 : 24]位触发 DMA 动作选择 DMA 源
RELOAD [22] 设置重启开关 0
0: 但前传输个数变为0自动重启(执行所有必
要传输)
1: 当当前传输个数变为O时关闭DMA通路(DMA
REQ)。通路开关位(DMASKTRIGn[1])置0(DREQ
off),防止进一步非本意开始新的DMA动作
DSZ [21:20] 数据类型转换 00
00 = Byte 01 = Half word

8

	10 = Word	11 = reserved	

TC	[19:0]	初始传输个数	00000
		传输的字节数有下列公式计算: DSZ x TSZ x TC。	
		其中DSZ,TSZ (1 or 4)和TC分别表示	
		DCONn[21:20]数据量,DCONn[28]传输量和初	
		始传输个数。只有到CURR_TC为O并且DMA ACK	
		为 1 时,这个之被写入CURR_TC	

DMA状态寄存器 DMA CONTROL (DCON) REGISTER

寄存器	地址	R/W	说明	重新赋值
DSTAT0	0x4B000014	R	DMA 0 计数寄存器	000000h
DSTAT1	0x4B000054	R	DMA1 计数寄存器	000000h
DSTAT2	0x4B000094	R	DMA 2 计数寄存器	000000h
DSTAT3	0x4B0000D4	R	DMA 3 计数寄存器	000000h

DSTATn	Bit	((学说))	初始状态
STAT	[21:20]	这个控制器的形式	00b
		00:表示DMA控制器为下一个DMA请求做准备	
		01: 表示DMA控制器正在在传输过程中	
CURR_TC	[19:0]	传输个数的当前值	00000h
		传输个数通过所有原子操作的最后一个,初始调	
		型DCO№:[19:0]寄存器的值和减少量。	

当前DMA源寄存器 DMA CURRENT SOURCE (DCSRC) REGISTER

寄存器	地址	R/W	说明	重新赋值
DCSRC0	0x4B000018	R	DMA 0 当前源寄存器	0x0000000
DCSRC1	0x4B000058	R	DMA1 当前源寄存器	0x0000000
DCSRC2	0x4B000098	R	DMA 2 当前源寄存器	0x0000000
DCSRC3	0x4B0000D8	R	DMA 3 当前源寄存器	0x00000000

DCSRCn	Bit	说明	初始状态
CURR_SRC	[30:0]	适合DMAn的当前源地址	0x00000000

当前目的寄存器 CURRENT DESTINATION (DCDST) REGISTER

寄存器	地址	R/W	说明	重新赋值
DCDST0	0x4B00001C	R	DMAO 当前目的寄存器	0x0000000
DCDST1	0x4B00005C	R	DMA1 当前目的寄存器	0x0000000
DCDST2	0x4B00009C	R	DMA 2 当前目的寄存器	0x0000000
DCDST3	0x4B0000DC	R	DMA 3 当前目的寄存器	0x0000000

DCDSTn	Bit	说明	初始状态
CURR_DST	[30:0]	适合DMAn当前目标地址	0x00000000

DMA模板触发寄存器 (DMA MASK TRIGGER (DMASKYNG) ? EGISTER)

寄存器	地址	R/W	说明	重新赋值
	0x4B000020	R	DMAC mask trigger register	000
DMASKTRIG O				
	0x4B000060	R	DMA1 mask trigger register	000
DMASKTRIG 1				
	0x4B0000A0	R	DMA 2 mask trigger register	000
DMASKTRIG 2			7	
DMASKTRIG 3	0x4B0000E0	R	DMA 3 mask trigger register	000

DMASKTRIGn	Bit	说明	初始状态
STOP	[2]	停止DMA操作	0
		1:当前原子操作结束DMA马上停止。如果当	
		前没有运行原子操作,DMA立即停止。	
		CURR_TC, CURR_SRC和CURR_DST将被置0	
		注意:由于可能发生当前原子操作,'stop'操作	
		可能循环几次。操作的完成(实际停止时间)	
		在引导位置于off同时被发现。这个停止是"实际	
		停止"。	
ON_OFF	[1]	DMA引导开关位	0
		0:关闭DMA引导(引导不理睬DMA请求)	
		1:DMA引导开启和DMA请求是可以控制的。	
		如果我们把DCONn[22]位放在"不自动重启"和	
		(或)DMASKTRIGn的STOP位在"stop",这位	
		会自动关闭。	

		当DCON[22]位是"不自动重启",这位在	
		CURR_TC为0时变为0。如果STOP是1,这位在	
		当前远在操作结束时马上变为0.	
SW_TRIG	[0]	S/W请求模式触发DMA	0
		1: 向此控制器请求DMA动作	
		这个引导在必须选择 S/W 请求模式必须和	
		ON_OFF位必须置1(导通)。当DMA开始运行,	
		这位自动清零。	

注意: 你可以修改DISRC, DIDST和TC field of DCON这些寄存器的置。这些修改只在完成当前调用(如CURR_TC变为0)后生效。另一方面,任何修改都会对其他寄存器和(或)领域产生直接影响。因此,谨慎修改这些寄存器和领域。

