

UNIVERSITAS INDONESIA

PEERTOCP: EDITOR KODE DAN SHARED TERMINAL KOLABORATIF DALAM WAKTU NYATA BERBASIS WEBRTC

SKRIPSI

HOCKY YUDHIONO 1906285604

FAKULTAS ILMU KOMPUTER
PROGRAM STUDI ILMU KOMPUTER
DEPOK
DESEMBER 2022

UNIVERSITAS INDONESIA

PEERTOCP: EDITOR KODE DAN SHARED TERMINAL KOLABORATIF DALAM WAKTU NYATA BERBASIS WEBRTC

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Ilmu Komputer

> HOCKY YUDHIONO 1906285604

FAKULTAS ILMU KOMPUTER
PROGRAM STUDI ILMU KOMPUTER
DEPOK
DESEMBER 2022

HALAMAN PERNYATAAN ORISINALITAS

Skripsi ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

Nama : Hocky Yudhiono

NPM : 1906285604

Tanda Tangan :

Tanggal : 20 November 2022

HALAMAN PENGESAHAN

Skripsi ini diajukan oleh :

Nama : Hocky Yudhiono

NPM : 1906285604

Program Studi : Ilmu Komputer

Judul Skripsi : PeerToCP: Editor Kode dan Shared Terminal Kolabo-

ratif dalam Waktu Nyata Berbasis WebRTC

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Sarjana pada Program Studi Ilmu Komputer, Fakultas Ilmu Komputer, Universitas Indonesia.

DEWAN PENGUJI

Pembimbing 1 : Muhammad Hafizhuddin Hilman ()
S.Kom., M.Kom., Ph.D.

Penguji 1 : Penguji Pertama Anda ()

Penguji 2 : Penguji Kedua Anda ()

Ditetapkan di : Depok

Tanggal: 1 Desember 2022

KATA PENGANTAR

Puji syukur kita panjatkan ke hadirat Tuhan Yang Maha Esa, karena rahmat dan anugerah-Nya, penulis dapat menyelesaikan skripsi yang berjudul "PeerToCP: Editor Kode dan *Shared Terminal* Kolaboratif dalam Waktu Nyata Berbasis WebRTC" yang menjadi salah satu syarat kelulusan dalam menempuh pendidikan Sarjana Ilmu Komputer di Fakultas Ilmu Komputer, Universitas Indonesia. Penulis juga ingin berterima kasih kepada pihakpihak lain, khususnya kepada:

- kedua orang tua, keluarga, dan kakak-kakak penulis yang mendukung proses perkuliahan sembari menyelesaikan skripsi ini;
- Bapak Muhammad Hafizhuddin Hilman S.Kom., M.Kom., Ph.D. selaku dosen pembimbing tugas akhir yang senantiasa melakukan supervisi kepada penulis dan memberikan pengetahuan setiap pekannya;
- Ibu Dr. Putu Wuri Handayani, S.Kom., M.Sc., Ibu Dipta Tanaya, S.Kom., M.Kom., dan Ibu Dr. Eng. Laksmita Rahadianti S.Kom., M.Sc. selaku dosen yang mengarahkan penulis dalam ilmu metodologi penelitian dan penulisan ilmiah;
- seluruh dosen yang dengan sabar mengajarkan ilmunya selama menempuh studi di Fakultas Ilmu Komputer, Universitas Indonesia;
- serta teman-teman penulis: Eko, Joni, Samuel, Kak Prabowo, Pikatan, Kenta, Andre, Irfancen, Raihan, Rafi, Aimar, Lucky, Fausta, Novaryo, Kak Rey, dan temanteman lain yang tidak dapat penulis sebutkan satu per satu namanya, karena setia menemani dan memberikan dukungan mental kepada penulis.

Penulis juga menyadari bahwa masih terdapat kesalahan dan kekurangan dalam penulisan karya ilmiah ini. Penulis berharap karya tulis ini dapat memberikan manfaat dan inspirasi untuk pengembangan dan peradaban ilmu pengetahuan teknologi dan informatika dunia, terutama bangsa Indonesia.

Depok, 20 November 2022

Hocky Yudhiono

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawah ini:

Nama : Hocky Yudhiono

NPM : 1906285604

Program Studi : Ilmu Komputer
Fakultas : Ilmu Komputer

Jenis Karya : Skripsi

demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia **Hak Bebas Royalti Noneksklusif** (*Non-exclusive Royalty Free Right*) atas karya ilmiah saya yang berjudul:

PeerToCP: Editor Kode dan *Shared Terminal* Kolaboratif dalam Waktu Nyata Berbasis WebRTC

beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/formatkan, mengelola dalam bentuk pangkalan data (*database*), merawat, dan memublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di : Depok

Pada tanggal : 20 November 2022

Yang menyatakan

(Hocky Yudhiono)

ABSTRAK

Nama : Hocky Yudhiono Program Studi : Ilmu Komputer

Judul : PeerToCP: Editor Kode dan Shared Terminal Kolaboratif

dalam Waktu Nyata Berbasis WebRTC

Pembimbing : Muhammad Hafizhuddin Hilman S.Kom., M.Kom., Ph.D.

Isi abstrak.

Kata kunci:

Keyword satu, kata kunci dua

ABSTRACT

Name : Hocky Yudhiono Study Program : Computer Science

Title : PeerToCP: WebRTC Based Real-Time Collaborative Code Editor

and Shared Terminal

Counsellor : Muhammad Hafizhuddin Hilman S.Kom., M.Kom., Ph.D.

Abstract content.

Key words:

Keyword one, keyword two

DAFTAR ISI

HA	ALAN	1AN JUDUL
LE	EMBA	R PENGESAHAN
KA	ATA P	ENGANTAR ii
LE	EMBA	R PERSETUJUAN PUBLIKASI ILMIAH i
Αŀ	BSTR	AK
D/	AFTA	R ISI vi
DA	AFTA	R GAMBAR
DA	AFTA	R TABEL
DA	AFTA	R KODE PROGRAM
DA	AFTA	R LAMPIRAN
1	PEN	DAHULUAN
	1.1	Latar Belakang
	1.2	Pertanyaan Penelitian
	1.3	Batasan Penelitian
	1.4	Tujuan Penelitian
	1.5	Manfaat Penelitian
	1.6	Sistematika Penulisan
2	TIN	JAUAN PUSTAKA
	2.1	WebSocket
	2.2	WebRTC
	2.3	Editor Kode Kolaboratif
	2.4	OT (Operational Transformation)
	2.5	CRDT (Conflict-Free Replicated Data Type)
	2.6	Perbandingan Lanjut CRDT dan OT
	2.7	Penelitian Terkait
3	ME	TODOLOGI PENELITIAN 20
	3.1	Pendekatan dan Tahapan Penelitian

	3.2	Metode dan Skenario Evaluasi	21
4	DES	SAIN DAN IMPLEMENTASI	23
	4.1	Library dan Framework Terkait	23
	4.2	Desain Sistem	26
	4.3	CRDT (Conflict-Free Replicated Data Type) Berbasis Peer-To-Peer dan	
		Client-Server	27
	4.4	Metode Operational Transformation Berbasis Client-Server	29
	4.5	Desain Evaluasi	31
5	HAS	SIL DAN PEMBAHASAN	34
	5.1	Aspek Local-First dan Correctness	34
	5.2	Aspek Scalability dan Responsiveness	36
	5.3	Aspek Lightweight	42
	5.4	Evaluasi Latensi	46
	5.5	Evaluasi Performa	46
6	PEN	NUTUP	47
	6.1	Kesimpulan	47
	6.2	Saran	47
D	A FTA	R REFERENSI	18

DAFTAR GAMBAR

Gambar 2.1. Gambar 2.2.	Diagram Contoh Perubahan pada <i>Rich Text Editor</i>	13 14
Gambar 3.1.	Bagan Alur Penelitian	20
Gambar 4.1. Gambar 4.2.	Activity Diagram Alur Penggunaan Secara High Level	26
	nalling dan CRDT	28
Gambar 4.3.	Arsitektur yang Menggunakan WebSocket dan <i>CRDT</i>	28
Gambar 4.4.	Arsitektur yang Menggunakan WebSocket dan Operational Transformation	30
Gambar 5.1.	Grafik Perbandingan Jaringan pada Klien Pertama dan Klien Kedua untuk $n = 8$	35
Gambar 5.2.	Grafik Perbandingan Penerimaan Data pada Setiap Variasi Server PeerToCP	36
Gambar 5.3.	Grafik Waktu <i>Resolve</i> Operasi Lokal pada Editor Setiap Variasi Aplikasi Pengguna PeerToCP	38
Gambar 5.4.	Grafik Mean Latensi pada Operasi Nonlokal Setiap Variasi Aplikasi Pengguna PeerToCP	38
Gambar 5.5.	Diagram Ilustrasi Penumpukan <i>Update</i>	39
Gambar 5.6.	Grafik Waktu Resolve Operasi Lokal pada Shell Setiap Variasi Apli-	
C 1 5.7	kasi Pengguna PeerToCP	40
Gambar 5.7.	Grafik Mean Latensi pada Operasi Nonlokal Setiap Variasi Aplikasi Pengguna PeerToCP	41
Gambar 5.8.	Grafik Perbandingan Utilisasi CPU pada Klien Pertama dan Klien Kedua untuk $n = 8 \dots \dots \dots \dots \dots \dots \dots$	44
Gambar 5.9.	Grafik Perbandingan Penggunaan RAM pada Klien Pertama dan	44
Gamoar 5.7.	Klien Kedua untuk $n = 8$	44

DAFTAR TABEL

Tabel 5.1.	Statistik Latensi Operasi Nonlokal pada Skenario Ketiga (Teks Editor	
	Bersama) dalam ms	37
Tabel 5.2.	Statistik Latensi Operasi Nonlokal pada Skenario Keempat (Shell	
	Bersama) dalam Satuan ms	39
Tabel 5.3.	Statistik Mean Aktivitas dan Resource Aplikasi Pengguna pada Ske-	
	nario Pertama	43
Tabel 5.4.	Statistik Mean Aktivitas dan Resource Server pada Skenario Pertama .	45

DAFTAR KODE PROGRAM

DAFTAR LAMPIRAN

Lampiran 1.	CHANGELOG	55
Lampiran 2.	Judul Lampiran 2	57

BAB 1 PENDAHULUAN

Bab ini membahas latar belakang perkembangan teknologi komunikasi waktu nyata, aplikasinya di internet pada saat ini, serta tantangan dan hambatan perkembangan teknologi ini untuk dapat digunakan secara komersial bagi publik. Melalui latar belakang, disusun gagasan pengembangan dan implementasi sederhana sistem aplikasi yang memanfaatkan teknologi tersebut. Ada pula tujuan, manfaat, serta batasan penulisan untuk memberikan konteks visi, misi, dan lingkup pengembangan yang turut disampaikan pada bab ini.

1.1 Latar Belakang

Penggunaan aplikasi yang menghubungkan orang baik secara lisan maupun tulisan secara waktu nyata (*real-time*) semakin marak digunakan. Pada situasi pandemi COVID-19 semasa penelitian ini, perusahaan dan institusi pendidikan mengadakan aktivitas jarak jauh dan membutuhkan suatu media komunikasi yang dapat diandalkan. Beberapa aplikasi yang umum digunakan ialah produk-produk Google Workspace, seperti Google Docs, Google Slides, Google Meet, ataupun dari pengembang lain, yakni WhatsApp, LINE, JetBrains Code With Me, Zoom, dan masih banyak lagi. Tidak lepas pula dari permainan video multipemain yang membolehkan pemainnya berinteraksi secara langsung dengan latensi yang cenderung rendah dan terasa seperti waktu nyata.

Teknologi komunikasi waktu nyata atau RTC (*real-time communications*) merupakan sebuah istilah metode telekomunikasi untuk beberapa pengguna yang berinteraksi dengan latensi atau waktu jeda yang relatif rendah terhadap respons pengguna (Arefin, Azad, & Kabir, 2013). Teknologi RTC mulai menjadi fokus penelitian dan penggunaan sejak dikenalkannya teknologi *WebSocket* pada tahun 2008 (Fette & Melnikov, 2011; Reynolds, 2008). Penggunaan *WebSocket* dimanfaatkan untuk menurunkan latensi dan membuat komunikasi dalam waktu nyata dapat terwujud melalui implementasi yang optimal.

RTC (*real-time communications*) dengan *WebSocket* diaplikasikan pada salah satu aplikasi penyuntingan dokumen yang umum digunakan yakni Google Docs yang fiturnya dikembangkan pada tahun 2010 (Belomestnykh, 2010). Google Docs menggunakan metode khusus yaitu OT (*operational transformation*) yang mendukung berbagai kapa-

bilitas kolaborasi (Day-Richter, 2010; Harris, 2010). Teknologi ini mulai berkembang dan diteliti pada tahun 1989 (Ellis & Gibbs, 1989). Sepanjang perkembangannya, ada beberapa isu kesalahan pada metode OT yang terdeteksi dan diselesaikan secara bertahap. Implementasi dari metode ini juga memiliki banyak variasi serta keuntungan dan kerugiannya masing-masing, baik dari aspek memori maupun waktu. Salah satu pengembang aplikasi Google Wave, yang merupakan teknologi pendahulu Google Docs membutuhkan waktu sekitar dua tahun untuk menyelesaikan implementasi dari metode OT ini (Gentle, 2011). Meskipun membutuhkan waktu lama, Google Docs menjadi salah satu produk editor teks andalan dengan kolaborasi waktu nyata yang memanfaatkan arsitektur *client-server* dan masih digunakan hingga saat ini.

Seiring perkembangan teknologi, pada tahun 2011 WebRTC dikenalkan sebagai protokol dan antarmuka pemrograman aplikasi yang mendukung komunikasi waktu nyata dua arah yang bekerja secara *peer-to-peer* (Dutton et al., 2012). WebRTC menyediakan suatu protokol untuk membolehkan suatu klien untuk berkomunikasi langsung dengan klien-klien lain tanpa melalui server, setelah melakukan proses *signalling* yakni istilah untuk inisiasi koneksi melalui server (Sredojev, Samardzija, & Posarac, 2015). WebRTC dikembangkan dengan tujuan utama untuk melakukan komunikasi waktu nyata dengan data yang lebih besar, seperti media suara dan video (Dutton et al., 2012). Muatan ke server juga menjadi lebih ringan karena hanya digunakan untuk *signalling*. Hal ini cenderung meningkatkan skalabilitas dan menyediakan lebih banyak ketersediaan jaringan WebRTC terhadap klien bila dibandingkan dengan *client-server*.

WebRTC juga mulai diteliti untuk dapat digunakan dalam berbagai kasus penggunaan, salah satunya untuk penyuntingan dokumen secara berkolaborasi dan dalam waktu nyata. Metode OT yang umumnya digunakan pada arsitektur *client-server* memiliki beberapa properti khusus pada sifat konvergensi hasil akhirnya yang menyebabkan implementasinya pada arsitektur *peer-to-peer* akan lebih sulit (C. Sun, Xu, & Ng, 2017). Sesuai namanya, OT (*operational transformation*) meresolusi dengan melakukan transformasi terhadap operasi-operasi penyuntingan yang dilakukan terhadap suatu dokumen (Smith, 2012). Pada arsitektur *client-server*, metode ini mengandalkan suatu server sebagai satu sumber kebenaran data (*single source of truth*) yang akan menyelesaikan resolusi setiap operasi yang masuk dari setiap kliennya.

Perkembangan struktur data yang disebut dengan Conflict-free replicated data type (CRDT) mulai menjadi alternatif untuk metode resolusi pada arsitektur peer-to-peer.

CRDT dikenalkan pada tahun 2006 dan mulai secara formal didefinisikan pada tahun 2011 (Shapiro, Preguiça, Baquero, & Zawirski, 2011). Struktur data ini digunakan pada komputasi sistem terdistribusi dan tidak membutuhkan koneksi yang selalu tersedia setiap saatnya bagi semua pengguna. Pada CRDT, resolusi dilakukan pada *state* atau kondisi dokumen saat ini dan tidak melalui transformasi dari operasi-operasi penyuntingannya (Preguiça, 2018). CRDT dapat pula digunakan pada arsitektur *client-server*, dengan setiap resolusi diselesaikan pada server, dan perubahan akan di-*broadcast* atau disebarkan pada setiap klien (C. Sun, Sun, Agustina, & Cai, 2019).

Kedua arsitektur, yakni *client-server* dan *peer-to-peer* memiliki banyak keuntungan dan kerugian. Reliabilitas dan sumber daya yang terfokus pada server dapat menjadi terbatas, namun lebih stabil karena performanya yang dipersiapkan oleh pengembang. Di lain sisi, arsitektur peer-to-peer dipertimbangkan karena mengurangi waktu overhead dalam berkomunikasi antar setiap kliennya karena berhubungan langsung dan tidak melalui server. Jaringan peer-to-peer dapat bekerja secara optimal saat banyaknya pengguna dalam suatu jaringan kecil (Leibnitz, Hoßfeld, Wakamiya, & Murata, 2007; Maly, Mischke, Kurtansky, & Stiller, 2003). Namun sebaliknya, jumlah koneksi dalam jaringan akan meningkat dengan kompleksitas $O(N^2)$ dengan susunan mesh bila setiap klien terhubung dengan klien lainnya. Hal ini menyebabkan komunikasi data yang dilakukan oleh setiap klien akan meningkat dalam waktu linear dan tidak efisien karena transmisi untuk data yang sama dilakukan untuk semua klien. Terlepas dari kelebihan dan kekurangan yang disampaikan, beberapa aplikasi editor kode kolaboratif waktu nyata yang ada saat ini dikembangkan dengan arsitektur tertentu sesuai dengan kebutuhannya. Misalnya terdapat editor kode Atom dengan plugin Teletype, Brackets, dan JetBrains Code With Me yang berbasis *peer-to-peer*, atau pun codecollab, codeshare, dan Google Docs yang berbasis *client-server*.

Editor kode kolaboratif lebih lanjut dapat dikembangkan menjadi suatu *environment* yang membolehkan kolaborasi untuk digunakan dalam pemrograman kompetitif. Pemrograman kompetitif merupakan cabang olahraga pemrograman yang diperlombakan secara individu atau berkelompok untuk mengerjakan soal komputasional dengan batasan waktu dan memori tertentu. Pada pemrograman kompetitif, kode yang diedit umumnya bersifat sebuah berkas tunggal (*single file*), yang dapat dikompilasi atau dijalankan tersendiri. Beberapa bahasa yang umum digunakan antara lain C, C++, Python, dan Java. Penelitian ini akan membahas pengembangan sebuah aplikasi editor kode, akses kompilator, dan *shell*

kolaboratif yang mendukung fitur pemrograman bersama dalam waktu nyata untuk setiap klien dalam sebuah jaringan. Penelitian ini juga menunjukkan hasil analisis benchmarking performa PeerToCP yang menggunakan metode resolusi operational transformation berbasis client-server, struktur data CRDT berbasis arsitektur peer-to-peer, serta struktur data CRDT pula, namun berbasis client-server.

1.2 Pertanyaan Penelitian

Berdasarkan paparan latar belakang dan rumusan masalah yang disampaikan, berikut adalah pertanyaan-pertanyaan yang hendak dijawab dari penelitian.

- 1. Bagaimana implementasi dari beberapa variasi aplikasi PeerToCP yang merupakan *Local First Real-Time Collaborative Code Editor*?
- 2. Bagaimana perbandingan performanya dan metrik evaluasi apa saja yang diukur untuk berbagai macam operasi penyuntingan kode, pengajuan kompilasi, dan pemanggilan program?

1.3 Batasan Penelitian

Pertanyaan penelitian yang disampaikan pada subbab sebelumnya dibatasi oleh beberapa batasan penelitian. Pembatasan ini untuk memberikan kejelasan cakupan dan jangkauan penelitian yang disampaikan dalam karya ini. Dalam penelitian ini, *user interface* dan *user experience* dari bagian tampilan aplikasi tidak akan diuji dengan metode interaksi manusia dan komputer. PeerToCP masih menggunakan *library*, modul, dan *framework* yang sudah tersedia dengan modifikasi dan penyesuaian seperlunya dalam proses pengembangan sistem aplikasi. Untuk setiap variasi PeerToCP, terdapat beberapa perbedaan fitur dan perilaku minor (tidak signifikan terhadap operasi yang akan dievaluasi) yang diabaikan.

1.4 Tujuan Penelitian

Terlepas dari batasan dan cakupannya, penelitian ini bertujuan untuk mewujudkan potensi dari teknologi *real-time communications* yakni WebSocket dan WebRTC dalam bentuk aplikasi PeerToCP, sebuah *environment* pemrograman kompetitif kolaboratif *real-time*.

Bersama tujuan tersebut, detail implementasi akan dipaparkan secara detail untuk menerangkan hambatan dan solusi yang diambil dalam pengembangan aplikasi ini. Penelitian ini juga akan menunjukkan evaluasi perbandingan variasi implementasi dari PeerToCP dengan uji skenario berbagai operasi esensial yang dapat dilakukan.

1.5 Manfaat Penelitian

Penelitian ini diharapkan dapat memberikan gambaran umum dan bentuk prototipe dasar beberapa teknologi *real-time communication*, seperti teknologi WebRTC (*Web Real-Time Communication*) dan beberapa metode resolusi sinkronisasi replika data dalam beberapa klien dalam sebuah jaringan. Lebih lanjut, aplikasi ini berpotensi untuk dikembangkan lebih lanjut ke tahap produksi dan digunakan secara komersial. Penelitian ini juga didesain untuk menjadi acuan dalam penelitian tolok ukur lain terkait dengan performa arsitektur yang digunakan terhadap beberapa operasi komunikasi data tertentu, terutama dalam bentuk kolaborasi penyuntingan teks dan sinkronisasi data waktu nyata. Berangkat dari tujuan penelitian yang disampaikan sebelumnya pula, beberapa permasalahan dan hambatan pengembangan yang dipaparkan dapat diteliti lebih lanjut untuk membuat alternatif solusi yang lebih optimal terhadap solusi yang disampaikan pada penelitian ini.

1.6 Sistematika Penulisan

Untuk memberikan konteks penelitian yang padu dan terurut, laporan penelitian yang disampaikan dalam karya ini dibagi menjadi enam bagian, antara lain sebagai berikut.

- Bab I Pendahuluan, memberikan konteks dasar dan pendahuluan dari penelitian, termasuk latar belakang, rumusan masalah yang terdiri dari pertanyaan penelitian dan batasannya, tujuan dan manfaat penelitian, serta sistematika penulisan keseluruhan tulisan.
- 2. Bab II Tinjauan Pustaka, menyampaikan dasar-dasar studi dari pustaka yang berhubungan dengan penelitian yang dilakukan. Bab ini juga memberikan pengertian terminologi, teori, dan konsep tertulis terkait.
- 3. Bab III Metodologi Penelitian, menerangkan metodologi yang digunakan dalam penelitian ini termasuk tahapan penelitian, desain implementasi, skenario pengujian, dan metrik evaluasi.

- 4. Bab IV Implementasi, membahas detail implementasi dari aplikasi PeerToCP dengan berbagai variasinya.
- 5. Bab V Hasil dan Pembahasan, menjelaskan hasil evaluasi terhadap pengujian performa yang dilakukan.
- 6. Bab VI Penutup, memberikan kesimpulan serta saran akhir untuk perkembangan penelitian selanjutnya.

BAB 2 TINJAUAN PUSTAKA

Untuk menjawab pertanyaan penelitian yang diuraikan pada Bab 1, dibutuhkan dasar pengetahuan yang sesuai. Informasi ini berguna untuk mengetahui potensi pengembangan aplikasi dari berbagai tulisan dan penelitian sebelumnya. Secara umum, bab ini memaparkan mengenai teknologi-teknologi yang terkait dengan pengembangan aplikasi, antara lain WebRTC, CRDT *Conflict-Free Replicated Data Types*, OT (*operational transformation*), dan sifat-sifat pada sebuah editor teks, terutama untuk editor kode. Bab ini juga akan memberikan gambaran mengenai penelitian terkait dan sistem-sistem aplikasi yang sudah pernah dikembangkan sebelumnya. Dalam penelitian ini, terdapat banyak teknologi yang digunakan sebagai media transmisi data, salah satu solusinya dalam aplikasi yang berbasis *client-server* adalah teknologi *websocket*.

2.1 WebSocket

WebSocket merupakan protokol komunikasi dengan kanal dua arah, atau biasa dikenal dengan *full-duplex* yang diinisiasi melalui sebuah koneksi TCP (Fette & Melnikov, 2011). Protokol ini bersifat *stateful*, yang berarti koneksi antara klien dan server akan terus bertahan hingga salah satu pihak memutuskan hubungannya (Pimentel & Nickerson, 2012). Pada arsitektur perangkat lunak, teknologi ini dapat dimanfaatkan untuk membuat sebuah pola penerbit-pelanggan atau *publisher-subscriber design pattern* (Ganaputra & Pardamean, 2015). Pada pola ini, klien dapat melakukan permintaan berlangganan ke suatu server dan menjalin hubungan *WebSocket*. Sementara server akan senantiasa memberikan arus data terus menerus setelah adanya pembaharuan kepada setiap klien yang berlangganan. Selain itu, protokol RPC (*Remote Procedure Call*) juga dapat diterapkan di atas *WebSocket*. RPC merupakan istilah pada sistem terdistribusi yang bekerja seperti pemanggilan fungsi pada sebuah *service* atau layanan aplikasi dengan parameter tertentu (Srinivasan, 1995). Pada *WebSocket*, setiap pemanggilan *request* RPC menggunakan kanal komunikasi yang sama dan sudah tersedia, sehingga memberikan latensi yang jauh lebih optimal tanpa biaya inisiasi awal tambahan.

WebSocket merupakan teknologi yang sudah ada selama lebih dari 13 tahun saat

penelitian ini dilakukan. Berbagai protokol lain kian diteliti untuk mengoptimalkan abstraksi teknologi ini, yaitu dengan mempertahankan fiturnya dan mempercepat performanya. Secara umum, karakteristik WebSocket berbeda dari protokol HTTP atau HTTPS yang bersifat *stateless*. Namun, HTTP/3.0 memberikan potensi protokol baru yang dapat menggantikan WebSocket. Perkembangannya diawali dari HTTP/1.1 yang merupakan salah satu versi protokol HTTP yang dikenalkan pada awal tahun 1997 dan masih digunakan hingga saat ini (Fielding & Reschke, 2015; Krishnamurthy, Mogul, & Kristol, 1999). Pada protokol HTTP/1.1, koneksi TCP yang mendasarinya dapat dipertahankan (*persisted*) dan setiap permintaan atau *request* dikirimkan satu per satu secara berurutan tanpa membuat koneksi baru. Koneksi akan ditutup setelah semua *request* HTTP/1.1 selesai diterima (Fielding & Reschke, 2015).

Perkembangan HTTP dilanjutkan oleh HTTP/2.0, versi HTTP yang dipublikasikan pada tahun 2015 dan menyediakan fitur *multiplexing*. Setiap *request* pada protokol ini dapat dikirimkan secara paralel dalam suatu koneksi TCP dan membolehkan transmisi data yang lebih efektif (Belshe, Peon, & Thomson, 2015). Secara teori, WebSocket dapat digantikan oleh HTTP/2.0 yang menyediakan *stream full-duplex* (Stenberg, 2014). Namun, *multiplexing* dan persistensi koneksi pada HTTP/2.0 ditujukan bukan sebagai pengganti WebSocket (Fietze, 2017). Versi HTTP/3.0 yang secara teknis berbasis UDP menyediakan API (*application programming interface*) yang dikenal dengan *WebTransport* sebagai alternatif dari *WebSocket* yang lebih optimal (Bishop, 2022; Frindell, Kinnear, & Vasiliev, 2022). Hingga waktu penelitian ini dilakukan, protokol *WebTransport* masih dalam pengembangan dan bersifat *draft*. Penggunaannya juga bersifat eksperimental dan terbatas untuk *browser* tertentu (Frindell et al., 2022). Teknologi WebSocket digunakan pada layanan yang berbasis *client-server*. Terdapat beberapa protokol lain yang didesain untuk digunakan dalam menghubungkan klien secara langsung atau lebih dikenal dengan arsitektur *peer-to-peer*, salah satunya ialah WebRTC.

2.2 WebRTC

WebRTC merupakan sebuah teknologi web pada browser dan perangkat telepon yang membolehkan koneksi langsung berbasis *peer-to-peer* dalam transmisi datanya (Alvestrand, 2021a). WebRTC tidak hanya API (*Application Programming Interface*), namun juga termasuk protokol yang telah didefinisikan pada W3C (*World Wide Web Consortium*) dan IETF (*Internet Engineering Task Force*). WebRTC dipublikasikan sebagai teknologi

open-source oleh Google pada Mei 2011, dan API-nya secara native dikembangkan dalam bahasa JavaScript (Dutton et al., 2012). Terdapat beberapa komponen dan konsep utama dalam protokol WebRTC, salah satunya ialah komponen jaringan atau koneksinya yang disebut RTCPeerConnection.

Komponen RTCPeerConnection dalam WebRTC merupakan sebuah antarmuka yang merepresentasikan sebuah koneksi antara suatu komputer dan *peer* lainnya dalam suatu jaringan *peer-to-peer* (Alvestrand, 2021a; Jennings, Hardie, & Westerlund, 2013; Perkins, Westerlund, & Ott, 2021). Dalam sebuah jaringan WebRTC dengan skema *full mesh*, suatu komputer pada sebuah jaringan WebRTC dengan *N peers* akan memiliki (N-1) RTCPeerConnection dengan setiap komputer lainnya dalam jaringan. Terdapat pula skema-skema lain yang mengoptimisasi bentuk jaringan *peer-to-peer* ini dengan keuntungan dan kerugian tertentu.

Penggunaan WebRTC dapat digunakan untuk pertukaran media berupa arus yang didikirimkan terus menerus, sehingga WebRTC menyediakan komponen MediaStream yang merepresentasikan sebuah *stream* atau arus multimedia berupa suara atau video (Alvestrand, 2021a; Sredojev et al., 2015). Alvestrand (2021b) pada dokumen protokol IETF: *WebRTC MediaStream Identification in the Session Description Protocol* menyampaikan beberapa detail terkait MediaStream pada WebRTC. Sebuah MediaStream dapat mengandung satu atau lebih MediaStreamTrack yang merupakan *track* audio atau video. MediaStreamTrack dapat ditambahkan pada RTCPeerConnection yang nantinya dapat diterima oleh ujung lain dari koneksi tersebut. MediaStream akan menggunakan protokol UDP secara bawaan.

Salah satu komponen lain dalam WebRTC yang signifikan ialah RTCDataChannel yang dijelaskan secara detail pada IETF: *WebRTC Data Channels* (Jesup, Loreto, & Tüxen, 2021). RTCDataChannel merupakan kanal data yang digunakan untuk mentransmisikan data apa saja dalam sebuah RTCPeerConnection. Secara teknis, sebuah koneksi dapat memiliki hingga 65534 RTCDataChannel. Berbeda dengan MediaStream, RTCDataChannel dapat digunakan sebagai kanal untuk membagikan pesan teks atau biner antar klien.

API WebRTC juga menyediakan dua jenis mode pengiriman. Salah satunya ialah mode pengiriman pesan berurutan dan *reliable*, yang konsep pengirimannya sama dengan data yang ditransmisikan dengan protokol TCP (Transmission Control Protocol). Potensi penggunaannya dapat digunakan untuk pengiriman pesan atau berkas. API ini

juga menyediakan pengiriman pesan yang tidak harus berurutan dan memperbolehkan kekurangan pesan yang ekuivalen dengan UDP (User Datagram Protocol). Potensi penggunannya bisa untuk permainan, pengendalian perangkat jarak jauh, serta banyak lagi karena memngurangi biaya komputasi *overhead* untuk setiap transmisi datanya, sehingga mode ini bertransmisi dengan lebih cepat. Terakhir, API ini menyediakan pengiriman pesan *partial reliable* dengan protokol SCTP (*Stream Control Transmission Protocol*) yang dapat didefinisikan waktu maksimal *timeout* dan maksimal transmisi ulangnya, urutan dari pesan juga dapat dikonfigurasi.

Sebelum memulai sebuah koneksi antar *peer* dan transmisi media dilakukan, suatu *peer* hendaknya mengetahui informasi semua atau sebagian *peer* lain yang terdapat dalam jaringan tersebut. *Signalling server* bertindak sebagai sebuah server yang mengelola koneksi antar perangkat, namun tidak mengelola lalu lintas media transmisi data itu sendiri (Petit-Huguenin, Nandakumar, Holmberg, Keränen, & Shpount, 2021). server ini hanya sebagai perantara yang memberikan kondisi suatu jaringan dan menandakan *peer* mana saja yang masih terhubung dalam jaringan tersebut. Server akan bertanggungjawab untuk membolehkan sebuah *peer* untuk menemukan *peer* lain di dalam jaringan, mengarahkan pembuatan koneksi untuk *peer* baru yang masuk ke dalam sebuah jaringan WebRTC, serta Mengulang, mematikan, atau melakukan *reset* sebuah koneksi bila diperlukan.

Proses *signalling* ini tidak didefinisikan caranya secara langsung dan memiliki banyak metode alternatif. Terdapat beberapa protokol yang bisa digunakan untuk melakukan *signalling*, antara lain XMPP (Extensible Messaging and Presence Protocol), XHR (XML HTTP Request), dan masih banyak lagi (Sredojev et al., 2015). Salah satu yang umum digunakan lainnya adalah SIP (Session Initiation Protocol) yang memanfaatkan koneksi *WebSocket* pada setiap klien dengan *signalling server* (Adeyeye, Makitla, & Fogwill, 2013). Proses *signalling* lebih lanjut didefinisikan menggunakan suatu protokol insiasi yang dikenal dengan SDP (*Session Description Protocol*).

SDP (Session Description Protocol) pada dasarnya berisikan informasi-informasi suatu peer kepada peer lainnya. Petit-Huguenin et al. (2021) menjelaskan secara detail prosedur inisiasi jaringan WebRTC yang menggunakan SDP ini pada dokumen IETF: Session Description Protocol (SDP) Offer/Answer Procedures for Interactive Connectivity Establishment (ICE). Untuk memulai sebuah jaringan, terdapat sebuah objek informasi yang disebut Session Description Protokol yang akan ditawarkan kepada peer yang

baru masuk ke dalam jaringan WebRTC dan berisi informasi-informasi tertentu mengenai *peer* yang menawarkan tersebut. Misalnya berupa alamat URL, jenis media yang ditransmisikan, *codec*, dan masih banyak lagi. SDP akan dikirimkan kepada signalling server. Setelah *peer* yang ditawarkan menerima, maka *peer* yang ditawarkan tersebut akan memberikan SDP-nya kepada *peer* yang menawarkan, sehingga sebuah jaringan WebRTC akan terjalin. Kandidat yang dapat menerima SDP ini dideskripsikan melalui sebuah ICE Candidate, yaitu sekumpulan rute yang dapat dilalui oleh sebuah *peer* untuk dapat meraih *peer* lain secara langsung. Di dalam SDP, terdapat deskripsi ICE Candidates ini. Dalam beberapa kasus, ICE Candidates akan dikirimkan melalui *signalling server* dengan metode *trickle*, yakni terpisah dari SDP dan ditambahkan satu per satu saat ada ICE Candidate baru yang didapat dari STUN server.

Dokumen IETF yang diajukan oleh Petit-Huguenin et al. (2021) juga membahas lebih lanjut mengenai ICE dan mekanisme pencarian alamatnya. Sistem alamat di Internet kebanyakan masih menggunakan protokol IPv4 yang secara praktis tidak dapat memenuhi semua kebutuhan penetapan alamat sehingga setiap perangkat memiliki alamat IP yang berbeda. Perangkat yang digunakan pada suatu jaringan dapat berada di belakang lapisan NAT (*Network Address Translation*). Mekanisme ini memetakan alamat IP Privat menjadi IP Publik atau sebaliknya saat paket data bertransmisi dalam jaringan. NAT pada umumnya diimplementasikan pada sebuah jaringan dalam lingkup kecil, misalnya pada Wi-fi rumah atau instansi tertentu. Pada WebRTC, untuk mengetahui alamat *peer* satu sama lain dibutuhkan suatu protokol yang disebut ICE (Interactive Connectivity Establishment). Server ICE akan mengembalikan ICE Candidate yang mendeskripsikan rute dan protokol yang harus diambil untuk mencapai suatu *peer* tertentu. Terdapat dua jenis server untuk ICE, yaitu STUN (*Session Traversal Utilities for NAT*) and TURN (*Traversal Using Relays around NAT*).

Server STUN merupakan server yang mengembalikan alamat IP publik terhadap *peer* yang menghubungi server itu sendiri, jenis NAT yang digunakan, dan *port* NAT yang diasosiasikan dengan *peer* tersebut. Pengembang dapat menggunakan server STUN publik non komersial, salah satunya milik Google. Apabila koneksi langsung antar-*peer* gagal dilakukan, maka TURN server berguna sebagai server perantara atau *relay server* yang meneruskan koneksi. Hal ini bisa terjadi karena adanya *firewall* yang diletakkan pada bagian mana saja dari jaringan yang memotong hubungan langsung lalu lintas dari WebRTC. TURN merupakan sebuah protokol untuk meneruskan lalu lintas jaringan yang

tidak bisa dilakukan secara langsung tersebut. Sebuah TURN server memiliki public IP address yang dapat diakses oleh kedua *peer*, sehingga TURN Server ini dapat bertindak sebagai sebuah jembatan dalam transmisi media antara dua buah *peer* dalam sebuah jaringan WebRTC (Matthews, Rosenberg, & Mahy, 2010).

Berdasarkan paparan di atas, WebRTC merupakan suatu protokol kompleks yang penggunaannya fleksibel dan berpotensi dalam banyak kasus penggunaan. WebRTC menyediakan jaringan transmisi data secara *peer-to-peer* dengan latensi rendah. Dalam penelitian ini, WebRTC merupakan salah satu teknologi yang dimanfaatkan dalam pengembangan aplikasi. Salah satu komponen lain yang diperlukan sebagai dasar aplikasi ialah pengetahuan mengenai editor kode yang bersifat kolaboratif dan algoritma yang mewujudkannya.

2.3 Editor Kode Kolaboratif

Editor kode merupakan sebuah peralatan atau aplikasi yang digunakan oleh seorang programmer untuk mengembangkan kodenya. Fungsi-fungsi dasar editor kode yang membedakannya dengan editor biasa misalnya sorotan *syntax*, indentasi otomatis, dan penyocokan tanda kurung otomatis (IntelliJ, 2011; Kinder, 2013). Selain yang disebutkan, masih ada fungsi-fungsi lain yang tidak ada pada editor teks biasa. Dalam penelitian ini, semua operasi yang digunakan dalam editor kode dapat direduksi secara tidak langsung menjadi operasi-operasi pada editor teks biasa (*plain text editor*). Pada *plain text editor*, setiap karakter pada teks tidak mengandung informasi tambahan. Perhatikan ilustrasi pada Gambar 2.1 yang menunjukkan perubahan *styling* yang dapat dilakukan pada *rich text editor*. Operasi semacam ilustrasi tersebut diasumsikan tidak dapat dilakukan pada editor kode karena setiap karakter dianggap tidak menyimpan informasi tambahan.

Gambar 2.1: Diagram Contoh Perubahan pada Rich Text Editor

Pada editor kode atau teks yang bersifat kolaboratif setiap pengguna memiliki replika dari suatu dokumen teks yang akan berakhir sama (C. Sun & Ellis, 1998; D. Sun, Xia, Sun, & Chen, 2004). Setiap pengguna bebas melakukan penyuntingan secara bersamaan tanpa ada larangan tertentu. Operasi lokal kemudian akan diterapkan langsung pada replika lokalnya tanpa ada jeda (Attiya et al., 2016; Lv, Cui, & Li, 2015). Operasi yang dilakukan oleh seorang pengguna akan dipropagasi pada setiap pengguna lain secara langsung dengan latensi minimal, sehingga sifat kolaborasi waktu nyata dapat terwujud. Terdapat beberapa algoritma yang akan mewujudkan konsistensi *state* atau keadaan dokumen pada setiap replikanya. Setiap operasi yang dilakukan oleh setiap pengguna akan menghasilkan dokumen identik yang merupakan hasil penyatuan atau konvergensi yang memenuhi suntingan operasi-operasi tersebut (C. Sun & Ellis, 1998; C. Sun et al., 2019; D. Sun, Sun, Ng, & Cai, 2019b; D. Sun et al., 2004). Operasi yang dilakukan bersifat komutatif, yang berarti terlepas dari urutan diterapkannya operasi pada suatu dokumen, hasilnya akan tetap sama melalui algoritma yang mewujudkan konsistensi ini (C. Sun & Ellis, 1998).

2.4 OT (Operational Transformation)

Salah satu tantangan dalam menciptakan suatu sistem terdistribusi adalah untuk memiliki suatu basis atau struktur data yang nilainya konsisten untuk setiap klien dalam sistem tersebut. Salah satu struktur data yang menjadi fokus penelitian adalah dokumen *plain text*. Metode OT (*Operational Transformation*) dikembangkan dengan motivasi bagi setiap pengguna dalam suatu sistem terdistribusi dapat memiliki dokumen yang sama untuk

setiap perubahan yang terjadi (C. Sun & Ellis, 1998). Dalam algoritma dasar OT, operasi yang digunakan adalah insert(pos, c). Operasi tersebut memasukkan sebuah karakter c pada indeks pos dan setiap karakter yang posisi awalnya berada \geq pos akan digeser ke indeks selanjutnya. Ada pula operasi delete(pos) atau menghapus sebuah karakter pada indeks pos (Smith, 2012). Unit operasi seperti insert dan delete ini merupakan unit dasar dari OT (Smith, 2012).

OT dibuat untuk menyelesaikan konflik operasi yang dapat terjadi tanpa mengetahui urutan terjadi antar setiap kliennya. OT secara garis besar bekerja melalui sebuah fungsi T, yang mentransformasikan dan menyesuaikan parameter suatu operasi op yang akan dilakukan pada suatu dokumen, berdasarkan operasi-operasi sebelumnya yang telah diterapkan pada dokumen tersebut. Terdapat dua sifat yang umumnya harus dipenuhi oleh suatu algoritma OT untuk bekerja, antara lain sebagai berikut (Li & Li, 2004; Martin, 2020; Ressel, Nitsche-Ruhland, & Gunzenhäuser, 1996; Smith, 2012).

- CP1/TP1 (Convergent Property 1 atau Transformation Property 1), yaitu $op_1 \circ T(op_2, op_1) \equiv op_2 \circ T(op_1, op_2)$.
- CP2/TP2 (Convergent Property 2 atau Transformation Property 2), yaitu $T(\mathsf{op}_3, \mathsf{op}_1 \circ T(\mathsf{op}_2, \mathsf{op}_1)) = T(\mathsf{op}_3, \mathsf{op}_2 \circ T(\mathsf{op}_1, \mathsf{op}_2)).$

Gambar 2.2: Diagram Ilustrasi TP1

TP1 berarti bahwa dokumen yang diterapkan op₁, dan dilanjutkan dengan penerapan operasi tranformasi op₂ terhadap op₁ haruslah ekuivalen dengan dokumen yang diterapkan op₂ dan dilanjutkan dengan penerapan operasi transformasi op₁ terhadap op₂. TP1 diperlukan hanya jika dua operasi yang hendak diterapkan pada suatu replika diterapkan pada urutan yang berbeda. Implementasi algoritma *operational transformation* yang memenuhi properti pertama ini cukup untuk membuat sebuah sistem terdistribusi dengan

suatu sumber kebenaran yang berbasis *client-server*. Pada suatu sistem *operational trans-formation* yang tidak menggunakan TP2, salah satu syarat untuk mencapai konvergensi adalah setiap operasi hanya ditransformasikan pada satu sumber konteks yang sama (Xu & Sun, 2016). Misalnya riwayat setiap operasi-operasi yang terdapat pada server dianggap sumber operasi yang mutlak untuk setiap klien (Vidot, Cart, Ferrié, & Suleiman, 2000). Saat klien menerima pembaharuan operasi, semua operasi lokal pada klien yang belum ditambahkan pada server akan ditransformasikan berdasarkan milik server. Operasi dari klien baru bisa di-*append* ke server jika semua operasi yang terdapat pada server sudah dimiliki klien.

Properti lainnya yang harus dimiliki oleh *operational transformation* ialah TP2 yang mengimplikasikan bahwa untuk tiga operasi berbeda, suatu operasi op₃ yang ditransformasikan terhadap dua operasi yang sudah diterapkan lainnya, yaitu op₁ dan op₂ dengan sembarang urutan akan menghasilkan hasil transformasi yang sama. TP2 hanya dibutuhkan untuk sistem yang yang mengizinkan kedua operasi dijalankan pada dua *state* dokumen yang berbeda. Berbeda halnya dengan TP1, *update* secara *concurrent* dapat terjadi untuk klien yang berbeda. Karena kerumitan algoritmanya dan beberapa penelitian dibuktikan salah dalam mengimplementasikan OT yang memenuhi TP2 (Smith, 2012), CRDT dikenalkan sebagai alternatif dari OT sebagai metode untuk menjaga konsistensi dan kebenaran dari suatu dokumen atau data dalam sebuah jaringan sistem terdistribusi.

2.5 CRDT (Conflict-Free Replicated Data Type)

Sekitar awal tahun 2006, algoritma WOOT (*WithOut Operational Transformation*) yang diteliti oleh Oster, Urso, Molli, dan Imine (2005) dikenalkan sebagai sebuah algoritma non-OT pertama untuk memastikan sifat konvergen dari replika teks pada editor kolaboratif sebagai alternatif dari OT. Tidak hanya itu, konsistensi dari *intention* atau maksud dari sebuah operasi juga dapat dijaga (Li & Li, 2004). Misalnya ketika sebuah klien memasukkan sebuah karakter X di antara dua buah karakter A dan B pada sebuah *string* dengan penomoran indeks dari 0, "ABCDE". Operasi yang menjaga *intention*, memiliki makna bahwa masukkan karakter X, sehingga A mendahului X dan X mendahului B. Dengan kata lain, operasi insert yang direpresentasikan sebagai operasi insert(1, X) pada OT, direpresentasikan sebagai operasi insert(A < X < B) pada algoritma ini. Dengan A dan B merupakan suatu objek yang memiliki ID pengenal yang bersifat unik untuk setiap karakter yang ada di dalam *string*. Algoritma ini menjadi awal dari perkembangan struk-

tur data CRDT yang secara formal didefinisikan untuk tidak hanya pada *string*, namun berbagai struktur data abstrak lain pada tahun 2011 oleh Shapiro et al. (2011).

CRDT sendiri merupakan suatu tipe data abstrak untuk memelihara kecocokan dokumen pada beberapa replikanya dalam sebuah jaringan. Tipe data abstrak berarti semantiknya didefinisikan dari kumpulan nilai properti dan operasi fungsi atau prosedur. Oleh karena itu, implementasi dari CRDT untuk setiap operasinya bisa berbeda-beda, tapi menghasilkan *behavior* yang sama untuk operasi yang sudah didefinisikan. CRDT didesain untuk disimpan pada setiap node atau *peer* dalam sebuah jaringan. Oleh karena itu, implementasi CRDT yang efisien terhadap memori dan waktu juga menjadi pertimbangan dalam menggunakan struktur data ini. Struktur data ini memiliki karakteristik pada setiap replikanya yang bisa dimodifikasi tanpa berkoordinasi dengan replika lain, bila setiap replika dilakukan operasi yang sama tanpa memerhatikan urutannya, maka semuanya akan menghasilkan *state* atau keadaan akhir yang sama (Preguiça, Baquero, & Shapiro, 2018; Shapiro et al., 2011).

Salah satu dari contoh CRDT yang sederhana ialah *unordered set* atau himpunan tak berurut (Shapiro et al., 2011). Pada tipe data tersebut, setiap *peer* dapat melakukan operasi insert(v), yaitu menambahkan suatu elemen v ke dalam *set* atau himpunan. Selanjutnya, ada pula operasi erase(v) yang akan menghapus elemen v dalam himpunan bila ada. Dalam penelitian ini, tipe data CRDT digunakan dalam proses pengolahan teks, sehingga operasi-operasi yang terkait dengan CRDT yakni serupa dengan yang disampaikan dengan operasi pada bagian 2.4, yakni insert(pos, c) serta delete(pos).

Pada CRDT untuk teks biasa, setiap karakter akan memiliki ID berbeda. Saat melakukan operasi insert, data perubahan akan disertai dengan dua ID referensi karakter sebelum dan sesudahnya serta sebuah *logical clock* untuk menandai urutan pemasukan karakter, seperti ide serupa yang disampaikan pada bagian awal subbab ini (Oster et al., 2005). Terdapat beberapa cara yang umum diterapkan untuk merepresentasikan CRDT dan menangani kasus *operasi* delete. Cara pertama ialah dengan menyimpan karakter yang sudah dihapus pada suatu dokumen selamanya, dan hanya akan ditandai sebagai "terhapus" teknik ini dikenal dengan istilah *tombstone* (Molli, Urso, Imine, et al., 2006). Pendekatan yang lainnya ialah dengan memberikan ID yang sudah terurut sesuai dengan urutan posisinya. Saat melakukan operasi insert pada suatu posisi tertentu, ID-nya akan lebih besar daripada ID karakter sebelumnya dan lebih kecil daripada ID sesudahnya. ID ini hendaknya bersifat dinamis dan ukurannya dapat bertambah seiring dengan bertam-

bahnya karakter. Setiap ID disertai dengan pengenal tambahan berbeda untuk setiap kliennya yang memastikan ID-nya tidak ada yang duplikat. Saat melakukan operasi delete, node yang hendak dihapus tidak perlu disimpan pada suatu dokumen selamanya karena properti dari urutan ID ini.

Bila dibandingkan dengan OT yang hanya memanfaatkan fungsi transformasi operasi dan dokumennya direpresentasikan secara minimal sebagai *array* karakter saja, CRDT membutuhkan struktur data tambahan untuk setiap karakter pada dokumen. Karakter tersebut akan diberikan ID dan dikenalkan sebagai objek. Karakter tersebut juga akan memiliki urutan penghubung (implisit maupun eksplisit) seperti yang disampaikan pada dua pendekatan CRDT di atas yang menyatakan urutan karakter sebelum dan sesudahnya.

2.6 Perbandingan Lanjut CRDT dan OT

Industri teks editor kolaboratif waktu nyata masih didominasi oleh *operational transformation* meskipun CRDT memiliki kompleksitas dan efisiensi yang diklaim lebih optimal dibandingkan OT (D. Sun et al., 2019b). Tidak ada definisi perbedaan yang terlalu jelas untuk kapan suatu algoritma menggunakan OT dan CRDT, karena pada dasarnya keduanya merupakan transformasi untuk mencapai komutativitas dari fungsi yang direalisasikan menggunakan parameter yang berbeda. Pada CRDT, operasi diubah menjadi representasi ID atau tanda pengenal lain, kemudian dikembalikan ke bentuk posisinya lagi setelah diaplikasikan, sementara pada OT, operasi dinyatakan dengan posisi dari karakternya langsung.

Pendekatan *operational transformation* berlangsung dan terfokus pada algoritma transformasi fungsi yang mengelola dan mengendalikan operasi dari setiap kliennya yang berlangsung bersamaan. Sementara CRDT terfokus pada konten seperti urutan objek, operasi yang berbasis *identifier* atau ID pengenal, dan skema atau representasi lain dalam menyatakan operasi penyuntingan (C. Sun et al., 2019; D. Sun, Sun, Ng, & Cai, 2019a). Hal ini membuat struktur data CRDT lebih spesifik penggunaannya untuk tipe data abstrak tertentu, misalnya untuk *set*, *map*, dan teks memiliki implementasi dan algoritmanya masing-masing. Perbedaan pendekatan ini menyebabkan kompleksitas dari kedua metode ini berbeda. Pada OT, variabel kompleksitas dipengaruhi oleh banyaknya operasi yang berlangsung secara bersamaan, dan tidak ada biaya untuk merepresentasikan dan memanipulasi karakter pada teks ke dalam bentuk objek dan struktur datanya. Pada CRDT, variabel kompleksitas ini akan semakin besar dan berbanding lurus dengan ukuran doku-

men atau banyaknya konten. Selain itu, biaya *overhead* kompleksitas waktu dan memori inisialisasi untuk *peer* baru yang masuk ke dalam jaringan juga cenderung lebih besar dibandingkan OT.

Bila dilihat dari pembuktian dari kebenaran algoritmanya, CRDT memiliki kerumitan yang lebih tinggi dibandingkan OT karena adanya perlakuan khusus terhadap state kontennya (D. Sun et al., 2019a). Terdapat banyak sekali variasi algoritma dari CRDT, sehingga pembuktian sifat konvergennya cenderung lebih sulit dibandingkan OT yang kriteria kebenarannya properti-properti khusus yang sudah dibuktikan pada penelitianpenelitian sebelumnya (Oster et al., 2005; Smith, 2012; D. Sun et al., 2004). Berdasarkan penelitian D. Sun et al. (2019a), kompleksitas waktu yang diperlukan untuk sistem OT yang merupakan state-of-the-art saat ini dalam mengaplikasikan operasi remote adalah O(c) dan operasi lokal ialah O(1), dan kompleksitas memori O(c) atau $O(c \cdot m)$ dengan c adalah banyaknya banyaknya operasi bersamaan yang akan ditransformasikan (dalam praktisnya nilainya sangat kecil (c < 10) karena operasi berlangsung dalam waktu nyata) dan m adalah banyaknya pengguna dalam jaringan (umumnya $m \leq 5$). Sementara pada CRDT, definisikan C sebagai ukuran konten (tanpa tombstone) dan C_t sebagai konten seumur dokumen (dengan tombstone). Kompleksitas waktu untuk setiap operasinya dapat berkisar antara $O(C_t^2)$, $O(C_t)$, hingga O(1) untuk CRDT berbasis tombstone, dan $O(\log C)$ untuk solusi yang tidak berbasis tombstone. Sementara kompleksitas optimal memorinya bisa mencapai O(C) untuk solusi berbasis non-tombstone dan tombstone dengan garbagecollection. Nilai dari C umumnya berkisar antara $10^3 < C < 10^6$ untuk dokumen biasa pada umumnya.

2.7 Penelitian Terkait

Penelitian ini menggunakan *library* Yjs yang mengimplementasikan algoritma YATA (*Yet Another Transformation Approach*) untuk CRDT-nya. YATA menggunakan *linked-list* dalam merepresentasikan datanya dan menggunakan sistem *tombstone* dengan proses *garbage-collector* dalam mengoptimisasi objek konten yang dinyatakan terhapus. Dalam algoritma YATA yang diteliti oleh Nicolaescu, Jahns, Derntl, dan Klamma (2016), operasi insert dinyatakan sebagai menambahkan sebuah objek o(id, left, right, isDeleted, content) ke *linked-list*. Tanda pengenal *id* berisikan pasangan berurut ID *peer* dan *logical timestamp* berupa operasi ke berapa yang telah dilakukan *peer* tersebut. Properti *left* dan *right* masing-masing merupakan variabel yang menan-

dakan *id* untuk objek yang berada di sebelah kiri dan kanannya saat operasi insert. Bagi teks editor untuk mengetahui keberadaan objek tersebut, terdapat properti *isDeleted* yang merupakan nilai *boolean* yang menunjukkan sudah terhapus atau tidaknya objek tersebut, serta properti *content* yang merupakan *string* yang berisi konten data dari objek tersebut.

Optimisasi pada Yjs terdapat pada properti *content* yang dapat berupa *string* atau kumpulan karakter. Saat ada operasi insert di antara dua konten dalam objek yang sama, objek tersebut akan dibagi menjadi dua objek lain. Sehingga dalam representasinya, *logical timestamp* juga akan menyimpan informasi panjang konten di objek saat ini. Operasi penghapusan dilakukan dengan secara sederhana menandai objek tersebut menjadi terhapus. Untuk detail implementasi dan kompresi lebih lanjut disampaikan pada penelitian YATA (Nicolaescu et al., 2016).

Yjs merupakan *library* yang baru populer digunakan pada tiga tahun terakhir selama penelitian ini. Terdapat beberapa implementasi algoritma lain seperti Logoot yang menggunakan *vector clock* pada *timestamp* objeknya. *Vector clock* atau *state vector* secara sederhana merupakan sebuah vektor yang merepresentasikan versi dari setiap *peer* dalam jaringan. Dalam Logoot, operasi penghapusan dilakukan langsung dengan menghapus objek tanpa perlu menyimpan *tombstone* (Weiss, Urso, & Molli, 2009).

CRDT YATA melanjutkan ide awal dari CRDT LSeq (Linear Sequences) yang ID pengenalnya tidak menggunakan *timestamp*. Permasalahan dari algoritma ini ialah dapat terjadinya *interleaving*, yakni urutan untuk operasi insert yang dilakukan bersamaan tidak memiliki komparator lanjutan (hanya *partial order*) saat adanya konkurensi yang terjadi ketika terdapat lebih dari satu karakter memiliki penunjuk objek *left* dan *right* sama pada dua *peer* berbeda (Kleppmann, Gomes, Mulligan, & Beresford, 2019; Nédelec, Molli, Mostefaoui, & Desmontils, 2013). YATA menyelesaikan masalah ini dengan menambahkan *logical timestamp* untuk setiap kliennya.

Alternatif dari YATA, yaitu RGA (Replicated Growable Array) menyelesaikan masalah *interleaving* pada LSeq dengan menggunakan pasangan berurut ID *peer* dan *timestamp global* yang didapat dari *timestamp* selanjutnya dari *timestamp* operasi terkecil pada CRDT. Dalam praktisnya, algoritma ini memiliki berbagai optimisasi lebih terlepas dari algoritma yang disampaikan pada penelitian formalnya. Misalnya penambahan *garbage collector*, kompresi data antar jaringan, dan penyimpanan objek dalam memori yang memengaruhi performanya.

BAB 3 METODOLOGI PENELITIAN

Bab ini secara umum memaparkan tentang metodologi penelitian yang ditempuh dalam mengembangkan sistem PeerToCP yang mencakup pendekatan, rincian tahapan, serta aspek-aspek yang akan diujikan pada sistem. Pendekatan dan tahapan penelitian penting untuk memberikan penjelasan terhadap langkah-langkah saintifik yang ditempuh dalam penelitian ini.

3.1 Pendekatan dan Tahapan Penelitian

Penelitian ini dilaksanakan dengan pendekatan *experimental research*. Data kuantitatif dan kualitatif diukur untuk setiap variasi dari aplikasi PeerToCP yang memiliki implementasi *business logic* di atas UI (*user interface*) atau antarmuka pengguna yang sama. Variabel bebas dari penelitian ini difokuskan pada basis arsitektur dari jaringan PeerToCP, serta metode resolusi dan sinkronisasi data yang digunakan. Variabel terikat yang diukur dari penelitian ini disusun berdasarkan aspek-aspek sistem. Data kuantitatif didapat dari hasil *benchmarking* dan dianalisis secara deskriptif dan inferensial untuk mengetahui lebih jelas perbandingan performa antara setiap variasinya. Data kualitatif selanjutnya diperoleh melalui paparan deskriptif secara objektif terhadap sistem. Bagan berikut memberikan gambaran besar tahapan penelitian yang dilaksanakan.

Gambar 3.1: Bagan Alur Penelitian

Perumusan masalah dalam penelitian ini dilatarbelakangi oleh potensi penggunaan teknologi web berupa WebRTC dan beberapa variasi algoritma sinkronisasi data dalam suatu jaringan terdistribusi yang memiliki keuntungan dan kerugiannya masing-masing. Ide ini dikembangkan pula melalui kebutuhan sistem yang mempermudah melakukan kegiatan pemrograman kompetitif, yaitu suatu IDE (*Integrated Development Environment*) sederhana yang memungkinkan adanya pengembangan kode secara kolaboratif dalam waktu nyata dan penjalanan program yang dapat dilakukan pada suatu klien di dalam jaringan yang dapat diakses oleh setiap klien lain di dalam jaringan pula. Dari rumusan masalah tersebut, didapatkan pertanyaan-pertanyaan yang mendasari penelitian ini.

Melalui masukan pertanyaan, dilakukan studi literatur terhadap teknologi-teknologi dan penelitian terdahulu. Tahap ini menghasilkan landasan teori dan tinjauan pustaka sebagai dasar pengetahuan. Studi literatur dilakukan dengan membandingkan penelitian terkait yang serupa, dari segi performa, kerumitan implementasi, cara kerja, dan bukti kebenaran teknologi atau algoritma tertentu. Studi literatur ini berguna untuk mengetahui seberapa jauh kemajuan teknologi yang diteliti pada topik ini. Selanjutnya, penelitian dilanjutkan dengan perancangan dan implementasi sistem aplikasi PeerToCP. Terdapat tiga variasi dari sistem aplikasi PeerToCP yang diujikan, yaitu variasi dengan metode OT (operational transformation) berbasis client-server, CRDT (conflict-free replicated data types) berbasis client-server, dan CRDT berbasis peer-to-peer. Sistem yang telah dikembangkan kemudian dievaluasi secara objektif berdasarkan aspek-aspek tertentu yang merepresentasikan performa dan skalabilitas aplikasi. Poin-poin aspek yang disampaikan pada subbab 3.2 selanjutnya disampakan untuk memberikan konteks perbandingan yang jelas antara suatu implementasi dengan yang lainnya.

3.2 Metode dan Skenario Evaluasi

Dari observasi terhadap beberapa aplikasi *real-time collaborative* lain, evaluasi pada penelitian ini mengikutsertakan beberapa aspek esensial untuk setiap variasi dari aplikasi PeerToCP, antara lain sebagai berikut.

1. *Correctness*, mengindikasikan kebenaran untuk setiap variasi implementasi Peer-ToCP. Aspek ini dipilih untuk menentukan bahwa setiap replika data yang dijaga kesamaannya berakhir konvergen dan identik.

- 2. Lightweight, aplikasi berjalan dengan sumber daya atau resource minimal dan tidak mengganggu jalannya aplikasi lain pada suatu sistem operasi. Suatu aplikasi hendaknya tidak menggunakan resource yang berlebihan dalam mencapai tujuannya, hal ini dapat berdampak langsung terhadap minat penggunaan aplikasi ke depannya.
- 3. *Responsiveness*, sinkronisasi replika data pada setiap klien dilakukan dalam latensi yang rendah dan layak guna. Setiap klien yang menggunakan suatu aplikasi *real-time collaborative* seharusnya mendapatkan jeda minimal untuk memberikan pengalaman pengguna atau *user experience* waktu nyata.
- 4. *Local-First*, operasi diterapkan pada replika lokal secara langsung setelah diberikan pengguna tanpa perlu berhubungan dengan klien atau server lain di dalam jaringan.
- 5. *Scalability*, aspek ini berhubungan langsung dengan setiap aspek lain, karena penggunaan arsitektur *peer-to-peer* pada awalnya memiliki motivasi untuk meningkatkan ketersediaan layanan dengan mengurangi beban pada server. Performa dari aplikasi berpengaruh terhadap banyaknya klien atau pengguna dalam suatu jaringan, sehingga aspek ini penting untuk diperhatikan dalam sistem terdistribusi aplikasi (Leibnitz et al., 2007).

Data kuantitatif dan kualitatif yang diperoleh pada proses *benchmarking* ini dianalisis. Setelahnya, hasil analisis disimpulkan dengan memberikan kesempatan optimisasi dan pengembangan untuk penelitian-penelitian selanjutnya.

BAB 4

DESAIN DAN IMPLEMENTASI

Bab ini menjelaskan detail arsitektur dan implementasinya. Perbedaan dari performa aplikasi ini memberikan kesempatan untuk melakukan optimisasi desain sistem terdistribusi ke depannya. Detail parameter dan cara melakukan tolok ukur performa terhadap variasi aplikasi PeerToCP juga akan dipaparkan lebih lanjut dalam bab ini. Bab ini juga memberikan penjelasan singkat serta alasan pemilihan beberapa teknologi, termasuk *library* dan *modul* yang digunakan dalam implementasi aplikasi PeerToCP. Sebagai konteks, bagian awal dari bab ini menjelaskan mengenai teknologi yang digunakan untuk implementasi, diikuti dengan desain sistem serta detail sudut pandang pengguna terhadap *usecase* aplikasi.

4.1 Library dan Framework Terkait

Terdapat beberapa aplikasi dan *library* yang terkait dalam pengembangan sistem aplikasi PeerToCP yang dibahas dalam penelitian ini. Berbagai *framework*, *library*, dan sistem modul ini merupakan hasil penelitian oleh para pengembang sebelumnya. Pemilihan penggunaan untuk setiap teknologi ini dipertimbangkan dengan alasan tertentu, salah satunya adalah Electron, yang menjadi basis pengembangan aplikasi *desktop*.

Electron merupakan salah satu *framework* aplikasi *desktop* yang melibatkan HTML, CSS, dan JavaScript. Bagian belakang atau *backend* dari Electron berjalan dengan ling-kungan *runtime* Node.js (Kredpattanakul & Limpiyakorn, 2018; Miglani & Shriram, n.d.). Node.js merupakan bahasa yang menggunakan *syntax* yang serupa dengan Javascript dan dapat dikompilasi melalui kompilator yang disebut V8 engine (Tilkov & Vinoski, 2010). Bagian tampilan atau *frontend* dari Electron memanfaatkan aplikasi *Chromium* yang dapat mengolah bahasa *markup* web, seperti HTML (*HyperText Markup Language*), CSS (*Cascading Style Sheets*), serta JavaScript.

Salah satu keuntungan menggunakan Electron adalah aplikasinya yang bersifat *cross-platform* atau dapat berjalan di beragam sistem operasi, seperti Windows, GNU/Linux, atau MacOS. Keuntungan lainnya ialah karena bersifat aplikasi desktop, Electron dapat mengakses berbagai macam fungsi antar muka sistem operasi, seperti memanggil sub-

proses pada sistem dan menulis berkas. Karena *frontend*-nya yang menggunakan bahasa web pula, aplikasi yang dibuat dengan Electron cenderung lebih mudah untuk dipindahkan dan diadaptasi dengan fungsi terbatas pada web. Selain *Electron*, masih terdapat beberapa alternatif *desktop-based framework* lain seperti Qt yang berbasis C++ dan Tauri yang berbasis Rust. Pemilihan Electron dipilih karena beberapa *library operational transformation*, *CRDT*, *WebSocket*, dan *WebRTC* yang umum digunakan sudah tersedia implementasinya dalam JavaScript dan dapat digunakan melalui Node.js.

Untuk memenuhi kebutuhan komponen editor kode sebagai media interaksi pengguna dengan sistem pada *frontend*, digunakan *Codemirror*. Codemirror merupakan komponen *frontend* editor kode yang dapat diolah oleh peramban web. Codemirror menyediakan banyak ekstensi, aksesibilitas tinggi, serta dukungan untuk berbagai macam bahasa pemrograman. Codemirror berguna untuk menampilkan editor kode dan memiliki ekstensi yang menghubungkannya dengan Yjs, sebuah library CRDT dan sudah diuji oleh pengembang Codemirror.

Yjs sendiri merupakan sebuah *framework library* yang mengimplementasi CRDT yang disebut dengan YATA (*Yet Another Transformation Approach*) (Nicolaescu et al., 2016). Yjs terdiri dari beberapa bagian, yaitu YDocs yang merupakan bagian utama implementasi berbagai struktur data untuk CRDT. Dalam penelitian ini, digunakan tiga struktur data CRDT yang abstraksinya berbeda. YText merupakan variasi CRDT untuk operasi-operasi pada *text editor*, serta YMap dan YArray yang dikombinasikan untuk menyimpan *shell* dan riwayatnya. Yjs sendiri merupakan *library* yang tidak terpaku pada sebuah arsitektur. Terdapat dua *provider* jaringan yang dapat berintegrasi dengan YDocs, yaitu YWebRTC dan YWebSocket. Kedua provider ini masing-masing mengintegrasikannya dengan jaringan *full-mesh peer-to-peer* dan *client-server* secara berturut-turut. Yjs memiliki banyak pengembang aktif dari komunitas dan hingga kini masih di-*maintain* dan dikembangkan, sehingga *library* ini dipilih untuk penelitian ini.

Untuk variasi operational transformation dari PeerToCP, penelitian ini memanfaatkan ekstensi collaborative editing dari CodeMirror yaitu @codemirror/collab. Provider jaringan untuk arsitektur client-server yang dikembangkan untuk metode operational transformation ini pula menggunakan library rpc-websockets yang dimodifikasi sehingga dapat dimanfaatkan untuk melakukan broadcast, specific-messaging ke klien tertentu, serta fungsionalitas pemanggilan RPC (Remote-Procedure Call) berbentuk promise secara asynchronous dan non-blocking.

Pada variasi PeerToCP dengan metode OT, penyimpanan *shell* diimplementasi tanpa OT untuk menyederhanakan kompleksitas program. Data *shell* dapat disimpan menggunakan *array* yang bersifat *grow-only*. Operasi-operasi yang dapat dilakukan pada *shell* program berjalan merupakan *keystroke* masukan klien. Secara khusus, beberapa *keystroke* di-*treat* oleh terminal secara literal dan program sendiri lah yang harus menangani bagaimana *keystroke* tersebut akan diperlakukan. Misalnya, operasi penghapusan atau melakukan *backspace* secara bawaan pada masukan *shell* diartikan sebagai menambahkan tiga karakter "\b \b" (tanpa tanda petik) atau ekuivalen dengan memindahkan *cursor* ke kiri, memasukkan karakter *whitespace*, dan memindahkan *cursor* ke kiri lagi tanpa menghapus karakter secara harfiah. Dalam penelitian ini, aspek kolaborasi dari *shell* memperlakukan setiap klien untuk memberikan *keystroke* pada satu kanal yang sama tanpa *positional cursor* ganda seperti pada editor kode.

Untuk memenuhi komponen penjalanan program yang dapat diakses oleh setiap klien dalam jaringan, dibutuhkan suatu *library* untuk mengakses sistem operasi untuk melakukan kompilasi terhadap kode. Kompilasi merupakan proses mengonversi kode dari bahasa dengan level yang lebih tinggi dan dapat dimengerti oleh manusia menjadi kode biner yang dapat dimengerti oleh mesin (Aho, Sethi, & Ullman, 1985). Pada penelitian ini, selain editor kode yang bersifat kolaboratif, proses kompilasi kode tunggal juga hendaknya dapat dilakukan oleh salah satu pengguna. Proses kompilasi ini membutuhkan kompilator yang terpasang pada suatu sistem operasi. Pada Node.js, salah satu *library* yang dapat digunakan untuk mengaksesnya ialah Node-pty.

Node-pty merupakan *library* Node.js yang memberikan antarmuka untuk melakukan *fork* proses dengan deskriptor berkas *pseudoterminal*. Node-pty mengizinkan adanya aliran data untuk baca dan tulis dengan proses berjalan pada kernel. Node-pty berguna untuk menjalankan berkas hasil kompilasi yang bersifat CLI (*Command Line Interface*) yang tidak memiliki tampilan grafik untuk pengguna. Node-pty dipilih karena banyak digunakan dan bersifat *cross-platform* mendukung sistem operasi Windows, GNU/Linux, dan MacOS. Aplikasi ini juga membutuhkan bagian *frontend* untuk menampilkannya, dan digunakan Xterm.js. *Library* ini merupakan salah satu komponen yang menampilkan terminal melalui bahasa yang dapat diolah oleh web. Xterm.js memiliki antarmuka yang bisa menerima dan meneruskan data dari peramban (*browser*) yang dapat dihubungkan dengan sebuah proses berjalan pada sistem. Xterm.js dikembangkan tanpa memerlukan dependensi, sehingga dipilih dalam pengembangan sistem ini.

4.2 Desain Sistem

Aplikasi PeerToCP didesain sebagai sebuah aplikasi *desktop-based*, yang berarti dijalankan tidak melalui browser *web*. Pilihan ini dikonsiderasi karena untuk mempermudah akses secara *offline*, sehingga tidak dibutuhkan koneksi internet untuk mengakses aplikasi. Selain itu, fitur kompilasi pada suatu *peer* memerlukan akses *system-call* yang tidak disediakan pada API web-browser (Firefox, 2022; Google, 2022). Hal ini ditetapkan agar *script* yang dijalankan pada mesin browser tidak dapat menyerang komputer secara langsung. Berikut ialah *diagram activity* yang menunjukkan garis besar penggunaan aplikasi.

Gambar 4.1: Activity Diagram Alur Penggunaan Secara High Level

Saat pengguna membuka aplikasi, pengguna akan diarahkan untuk masuk ke ruangan

awal secara *default*. Pengguna dapat melakukan operasi-operasi penyuntingan pada dokumen dan sinkronisasi dilakukan secara terus-menerus dengan *publish-subscribe design pattern* sehingga memberikan respons tanpa perlu mengecek atau *polling* secara terus menerus saat terjadi *update* yang terjadi antarklien. *Request* atau permintaan kompilasi dapat diajukan kepada klien mana pun pada jaringan, termasuk permintaan untuk klien ini sendiri. Aplikasi PeerToCP akan mencoba mengirimkan pesan kepada klien yang ditentukan tanpa mengabari tanpa intervesi dari klien lain dalam jaringan. Apabila permintaan berhasil diterima, sistem pada klien yang diminta akan melakukan proses kompilasi dan memasukkan *shell* program berjalan dengan ID tertentu ke daftar *shell* yang dapat diakses ke setiap klien dalam jaringan. Daftar *shell* dan kontennya ini disimpan dalam bentuk *object* pada *JavaScript*.

Pada Gambar 4.1, perilaku sinkronisasi *shell-shell* program dan dokumen dilakukan tergantung dengan variasi implementasi dari program. Pada arsitektur *client-server*, sistem aplikasi pengguna A akan berhubungan dan melakukan sinkronisasi dengan server. Sementara pada arsitektur *peer-to-peer*, sistem aplikasi pengguna A akan berhubungan langsung dan melakukan sinkronisasi dengan *peer* atau klien lain. Selain itu, permintaan dan transmisi pesan hasil kompilasi dilakukan melalui pengiriman pesan secara langsung pada arsitektur *peer-to-peer*, namun harus melalui perantara server pada arsitektur *client-server*.

4.3 CRDT (Conflict-Free Replicated Data Type) Berbasis Peer-To-Peer dan Client-Server

CRDT pada dua skenario arsitektur dalam penelitian ini menggunakan library CRDT Yjs yang menggunakan algoritma YATA (Nicolaescu et al., 2016) yang dijelaskan pada subbab 2.7. Setiap *peer* atau klien memiliki replika besar yang direpresentasikan dalam tipe data YDocs. YDocs dapat terdiri dari beberapa CRDT untuk menyimpan data-data yang akan dijaga di setiap *peer* atau klien. Implementasi dari variasi *peer-to-peer* menggunakan *library* penyedia jaringan YWebRTC yang telah dimodifikasi untuk memiliki antarmuka untuk mengirim pesan ke *peer* tertentu melalui jaringan RTCDataChannel. Bagian *shell* pada aplikasi direpresentasikan sebagai sebuah CRDT *map* yang memetakan ID ke sebuah CRDT *grow-only array* yang merepresentasikan *shell* yang berjalan pada salah satu *peer host*. *Keystroke* yang diberikan oleh sebuah *peer* tertentu akan dikirim langsung pada *peer host* yang menjalankannya, kemudian *peer host* akan menambahkan hasil

keystroke pada CRDT-nya.

Gambar 4.2: Arsitektur yang Menggunakan WebRTC dengan WebSocket Signalling dan CRDT

Gambar 4.3: Arsitektur yang Menggunakan WebSocket dan CRDT

Perbedaan antara kedua implementasi arsitektur CRDT ini terdapat pada *provider* atau penyedia jaringannya. Pada arsitektur *client-server*, penelitian ini menggunakan *library* YWebSocket yang telah dimodifikasi pula untuk dapat mengirim pesan kepada klien lain

tertentu dalam sebuah jaringan melalui server. Penyedia jaringan pada dasarnya memberikan abstraksi bagi setiap *peer* atau klien dalam sebuah jaringan terdistribusi untuk berhubungan satu sama lain. Terdapat fitur tambahan bagi server pada arsitektur ini untuk dapat melakukan persistensi data. Persistensi ini mengizinkan untuk server menyimpan salah satu replika dari dokumen, sehingga dokumen masih akan tetap ada walaupun tidak ada klien yang terhubung. Selain menggunakan CRDT, arsitektur *client-server* juga dapat digunakan bersamaan dengan metode *operational transformation* untuk menjaga identitas replika dalam suatu jaringan terdistribusi. Dalam penelitian ini, variasi PeerToCP dengan *operational transformation* yang hanya memenuhi *Transformation Property 1* akan diujikan pula.

4.4 Metode Operational Transformation Berbasis Client-Server

Untuk suatu dokumen yang hanya menyimpan teks biasa (*plain text*), operasi *operational transformation* yang hanya memenuhi sifat *TP1* dapat diimplementasi dengan sederhana dalam arsitektur *client-server*. Algoritma bekerja dengan menyimpan sebuah *array* perubahan lokal yang belum diketahui oleh server. Perubahan-perubahan lokal beserta versi dokumen yang dapat disimpulkan dari banyaknya perubahan yang sudah dilakukan dari awal dokumen akan dikirimkan secara berkala dengan mekanisme RPC over WebSocket. Mekanisme ini pada dasarnya mengizinkan alur *non-blocking* dalam menunggu balasan sebelum mengirimkan percobaan pengiriman perubahan lainnya. Apabila versi dasar dari server lebih baru daripada versi lokal, maka pengiriman perubahan akan ditolak, dan server akan memberikan respons kepada klien tersebut untuk melakukan *rebase* atau menambahkan *update* yang terdapat di server terlebih dahulu sebelum dapat mengirim percobaan pengiriman lagi.

Gambar 4.4: Arsitektur yang Menggunakan WebSocket dan Operational Transformation

Perubahan *remote* yang diterima dari server akan ditransformasikan satu sama lain dengan perubahan lokal yang belum diketahui oleh server. Perubahan lokal akan ditimpa dengan perubahan yang sudah ditransformasikan dengan perubahan *remote*. Percobaan pengiriman yang dikirim selanjutnya akan mengikuti perubahan yang sudah ditransformasikan ini. *Operational transformation* hanya terjadi di lokal dan perubahan akan diperbarui secara seri, sehingga setiap dokumen dalam jaringan memiliki replika yang berujung identik dan konvergen.

Hal yang serupa diterapkan pula untuk *shell* program yang berjalan. Saat suatu klien memberikan *keystroke* pada salah satu *shell* yang aktif, *keystroke* akan dikirimkan melalui RPC yang serupa, namun akan diarahkan ke klien yang menjadi *host* atau menjalankan programnya. Selanjutnya, perubahan *shell* akan dikirimkan berkala pada server selama ada perubahan yang belum diterima atau diketahui server. Saat terjadi perubahan, server akan melakukan pengumuman untuk memberitahu kepada setiap klien untuk melakukan *pull*. Karena respons *shell* tergantung pada klien *host*, maka pembaharuan tidak perlu diterapkan fungsi transformasi seperti pada OT teks biasa. Salah satu aspek lainnya ialah *position mapping* yang tidak perlu ditangani karena kursor akan selalu berada di sebelah kanan karakter terakhir. Operasi seperti mekanisme *update* yang dilaksanakan secara serial ini diterapkan untuk mencegah terjadinya *race condition* pada saat gangguan jaringan.

Beragam arsitektur yang sudah dipaparkan pada subbab-subbab sebelummya meru-

pakan bagian *backend* dari suatu antarmuka editor yang sama, sehingga penilaian secara *end-to-end* yang akan dirasakan oleh pengguna menjadi tolok ukur yang logis dalam penelitian ini. Tolok ukur ini terdiri dari kasus yang mempertimbangkan aspek-aspek yang hendak diuji. Evaluasi dilakukan secara adil dan perlakuan kontrol yang diusahakan identik untuk dapat mencakup variabel yang hendak diukur secara kuantitatif.

4.5 Desain Evaluasi

Evaluasi sistem dilakukan dengan layanan Compute Engine Google Cloud Platform. Setiap variasi memiliki server yang di-deploy pada instance dengan zona daerah asia-southeast1-b, menggunakan mesin bertipe e2-medium yang memiliki 2 vCPUs dan memori RAM 4GiB, serta sistem operasi Debian 11. Alasan dipilihnya mesin dengan tipe ini adalah untuk menghindari proses benchmarking atau tolok ukur yang dibatasi oleh spesifikasi sistem. Dalam penelitian ini, relay server tidak disediakan untuk peer yang tidak dapat terhubung satu sama lain dalam sebuah jaringan peer-to-peer, penelitian ini mengasumsikan hal tersebut tidak terjadi. Selain itu, terdapat virtual machine yang mewakili pengguna menggunakan mesin bertipe e2-small yang memiliki 2 vCPUs, memori Ram 2GiB, dan sistem operasi Debian 11 pula. Mesin pengguna ini akan di-deploy pada zone yang berbeda-beda sesuai dengan skenario eksperimennya. Terdapat empat skenario uji yang akan dilakukan terhadap sistem aplikasi yang disusun berdasarkan aspek-aspek yang disampaikan pada bab sebelumnya.

Skenario pertama secara praktis mensimulasikan serangkaian operasi-operasi tertentu terhadap editor teks dengan jumlah *peer* sebanyak *N* yang berbeda-beda. Jumlah klien atau *peer* yang berbeda bertujuan untuk mewakilkan aspek *scalability*. Terdapat tiga macam operasi acak yang dilakukan sebanyak lima operasi per detik dalam periode uji tiga menit, yaitu:

- 1. memasukkan (insert) suatu *string* karakter ASCII acak dengan panjang antara 6 hingga 10 secara inklusif;
- 2. menghapus (delete) suatu *range* dengan panjang antara 6 hingga 10 secara inklusif;
- 3. menimpa (replace) suatu *range* dengan panjang antara 6 hingga 10 dengan *string* karakter ASCII acak dengan jangkauan yang sama.

Tes dimulai bersamaan menggunakan *timer* bawaan sistem operasi yang secara *default* sudah disinkronisasi. Galat atau *error* yang terdapat pada sinkronisasi waktu *timer*

tidak dapat dihindari. Penelitian ini akan menggunakan *instance* yang sama untuk setiap *peer* atau kliennya sehingga mengurangi bias perbedaan *timer* pada setiap klien dalam jaringan. Selain itu, akan ada operasi pemutusan jaringan (disconnect) yang akan terjadi secara acak selama 30 detik di antara satu menit setelah uji skenario dimulai hingga satu menit sebelum uji skenario berakhir. Dipastikan bahwa keadaan akhir editor teks setelah selesai akan terhubung ke server untuk melakukan sinkronisasi terakhir dengan *peer-peer* lain dari server. Selama editor teks tidak terhubung, operasi-operasi lain seperti insert, delete, dan replace masih berjalan pada editor guna menggambarkan aspek *local-first*.

Skenario pertama disusun selayaknya *stress-testing* terhadap operasi-operasi editor teks yang dapat terjadi di dunia nyata. Di akhir tes, sistem menunggu selama satu menit untuk memberikan kelonggaran sinkronisasi. Waktu terakhir *update* atau sinkronisasi akan disimpan untuk dibandingkan pada aspek *responsiveness* dan *scalability*. Nilai cacahan atau *hash* dari dokumen setelah uji skenario juga turut dicatat pada setiap klien atau *peer* serta dibandingkan satu sama lain untuk memenuhi aspek *correctness*. Selain itu, aktivitas RAM, CPU, dan transmisi jaringan pada setiap klien beserta server akan direkam menggunakan framework NetData untuk memenuhi aspek *lightweight* dan *scalability* pula.

Skenario yang kedua menggunakan *environment* sama dengan skenario sebelumnya. Skenario ini disusun untuk menguji *shell* pada setiap *N* klien berbeda, yaitu dengan menjalankan suatu program C++ yang akan mencetak 100 bilangan tak bertanda (unsigned) 64-bit acak dengan jeda acak setiap bilangannya selama 500 hinga 1500 milidetik. Selama itu, akan dilakukan operasi pemutusan jaringan (*disconnect*) yang akan terjadi secara acak selama 20 detik setelah 10 detik program berjalan. Seperti skenario sebelumnya waktu sinkronisasi terakhir, aktivitas perangkat, dan nilai cacahan dari setiap *shell* pada setiap klien akan dicatat dan dibandingkan.

Skenario ketiga dan terakhir berpusat untuk mengukur latensi dari editor teks dan *shell*. Pada skenario ketiga, *N* peer disusun serupa dengan dua skenario sebelumnya. Terdapat dua operasi yang akan dilakukan, yaitu memasukkan (insert) *timestamp* pada editor teks dan menimpa (replace) suatu *range* dengan panjang antara 6 hingga 10 dengan *timestamp*. Kemudian, setiap klien atau *peer* menangkap setiap *event* penambahan *timestamp* dan mengukur latensi perbedaan saat *timestamp* dicetak dan *timestamp* diterima pada klien lainnya. Pada skenario keempat, setiap klien akan menjalankan program C++

yang akan mencetak 100 *timestamp* dengan jeda acak selama 500 hingga 1500 milidetik. Setiap klien juga menangkap setiap *event* ini dan mengukur latensinya dengan cara serupa.

BAB 5 HASIL DAN PEMBAHASAN

Bab ini membahas mengenai hasil dan analisis dari evaluasi yang telah dilaksanakan berdasarkan skenario-skenario yang telah disusun pada bab sebelumnya. Pembahasan analisis akan dibagikan berdasarkan aspek-aspek yang telah disusun untuk memberikan gambaran yang lebih jelas mengenai performa program dan *resource* atau sumber daya yang dibutuhkan untuk mencapai performa tersebut. Selain itu, bab ini juga akan membahas pertimbangan variasi dari PeerToCP yang lebih baik digunakan dan faktor-faktor yang memengaruhi pertimbangan tersebut. Melalui pertimbangan tersebut, kelemahan dari sistem aplikasi turut disampaikan untuk perkembangan ke depannya.

5.1 Aspek Local-First dan Correctness

Kedua aspek ini tidak dapat dipisahkan satu sama lain, pada skenario pertama dan kedua, aspek *local-first* diuji dengan mensimulasikan proses pemutusan koneksi secara acak pada klien, sementara data terus diubah oleh setiap pengguna lokal. Berdasarkan eksperimen secara langsung, proses perubahan ini terjadi secara *local-first*, yang berarti perubahan lokal dapat terus dilakukan dan langsung diterapkan meskipun klien sedang tidak berada dalam jaringan, dan ketika terjadi proses masuk kembali ke jaringan, data akan diperbaharui secara sesuai dengan perubahan yang dilakukan.

Berdasarkan eksperimen yang dilakukan, setiap variasi dari PeerToCP menghasilkan nilai cacahan yang sama untuk setiap skenarionya, yang berarti setiap dokumen berada pada kondisi atau *state* akhir yang sama. Namun pada skenario pertama dengan 8 klien pada variasi Operational Transformation yang berbasis *Client-Server*, dapat terjadi pemutusan hubungan *disconnection* yang tidak dapat terhubung kembali karena *bandwidth* koneksi internet yang berada di luar batas *environment* pengujian.

Skenario dengan jumlah klien ini diulang hingga tiga kali eksperimen, dan dalam setiap eksperimen tersebut, satu hingga dua klien tidak dapat terhubung kembali. Pada eksperimen, waktu pemutusan hubungan dilakukan secara acak dalam periode durasi yang sama untuk setiap kliennya seperti yang dijelaskan pada bab sebelumnya. Hal ini ditunjukkan secara lebih detail pada grafik transmisi data yang masuk melalui jaringan pada

klien pertama dan klien kedua untuk setiap variasi aplikasi dalam skenario pertama ini.

Gambar 5.1: Grafik Perbandingan Jaringan pada Klien Pertama dan Klien Kedua untuk n=8

Pada saat operasi *update* dilakukan tepat setelah koneksi terhubung kembali, ukuran *update* cenderung lebih besar karena sudah terkumpul dari beberapa operasi yang terjadi selama klien sedang berada di luar jaringan. Ketika *update* ini dilakukan, server sedang dalam keadaan berbagai klien lain yang hendak mengirimkan *update*. Karena hal tersebut, algoritma *operational transformation* yang hanya membolehkan suatu *update* untuk dilakukan apabila versi terbaru yang sama sudah dimiliki oleh klien akan meminta klien untuk melakukan *update*. Sementara tumpukan *push update* berukuran besar terus dikirimkan hal ini akan memenuhi *bandwidth* server, yang dapat dilihat pada grafik berikut.

Gambar 5.1, menunjukkan klien pertama yang mengalami pemutusan jaringan pada detik ke-72 dan penghubungan kembali pada detik ke-102, terjadi pengiriman data yang cukup besar selama kurang lebih 20 detik. Begitu pula dengan klien kedua yang mengalami pemutusan jaringan pada sekitar detik ke-60 dan penghubungan kembali pada detik ke-90. Sesaat setelah suatu klien terhubung kembali ke suatu jaringan, akan terjadi *spike* pada jaringan yang cukup besar. Pada jumlah pengguna yang cukup banyak dalam satu dokumen, pemutusan dan penghubungan jaringan yang secara sengaja dilakukan pada waktu yang serupa dapat menyebabkan ketidakandalan pada sistem ini. Grafik untuk server ditunjukkan pada gambar berikut.

Gambar 5.2: Grafik Perbandingan Penerimaan Data pada Setiap Variasi Server PeerToCP

Lalu lintas jaringan pada server variasi *operational transformation* dengan arsitektur *client-server* dapat mencapai lebih dari 800000 *kilobits*/detik atau setara dengan 100 *megabytes*/detik, sementara untuk skenario yang serupa, transmisi data pada server dengan variasi CRDT berarsitektur *client-server* lebih hemat sekitar 950 kali. Melalui Gambar 5.2, diketahui bahwa mean transmisinya sekitar 80 kali lebih sedikit dibandingkan CRDT *peer-to-peer* serta 950 kali lebih sedikit dibandingkan CRDT *client-server*.

Pada skenario pertama ini, terlihat bahwa variasi PeerToCP yang menggunakan CRDT lebih dapat diandalkan karena paralelitas *update* yang dilakukan terhadap dokumen. Faktor-faktor lain yang memengaruhi variasi CRDT yang lebih baik juga tidak menutup kemungkinan dari segi implementasi *provider websocket* yang digunakan, teknik kompresi dan *encoding* yang diterapkan, serta efek bola salju yang ditimbulkan akibat *update* berukuran besar yang terus dikirimkan menjadi tertumpuk dan selalu terlambat dibandingkan *update* lain dan menyangkut aspek selanjutnya yang akan dibahas, yaitu *Scalability* dan *Responsiveness*.

5.2 Aspek Scalability dan Responsiveness

Latensi dari teks editor secara khusus diukur secara terus menerus pada skenario ketiga tanpa adanya pemutusan hubungan seperti pada skenario pertama dan kedua. Setiap

pengguna akan diukur waktu selisih penerimaan datanya terhadap pengguna yang bukan dirinya sendiri dan dicatat latensinya pada waktu data dokumen diterima, kemudian dilakukan rata-rata untuk n pengguna tersebut. Tabel 5.1 menunjukkan latensi PeerToCP variasi CRDT peer-to-peer memiliki latensi yang paling rendah, namun semakin besar nilai n, selisih perbedaan CRDT client-server dan CRDT peer-to-peer semakin mengecil. Sementara pada variasi OT client-server, latensinya dua kali lebih besar dari variasi CRDT client-server, dengan lonjakan latensi maksimum hingga dua detik saat n = 8.

	CRDT Peer-To-Peer			CRDT Client Server			OT Client Server		
$\mid n \mid$	Mean	Median	Max	Mean	Median	Max	Mean	Median	Max
2	23.30	21.00	76.00	39.50	38.00	134.00	87.42	84.00	168.00
4	34.00	30.00	223.00	46.10	42.00	220.00	98.84	86.00	1225.00
8	55.56	47.00	313.00	63.84	56.00	308.00	235.62	151.00	2010.00

Tabel 5.1: Statistik Latensi Operasi Nonlokal pada Skenario Ketiga (Teks Editor Bersama) dalam ms

Dari segi skalabilitasnya, dengan asumsi pengguna berada dalam jarak yang dekat, misalnya dalam kasus ini setiap *peers* berada dalam satu zona yang sama, yaitu Indonesia. Variasi *peer-to-peer* memberikan performa yang optimal dibandingkan *client-server* untuk jumlah *n* tertentu. Berdasarkan perhitungan dan proyeksi jumlah pengguna yang bertambah, variasi dari CRDT *client-server* dapat memberikan *responsiveness* yang lebih baik untuk suatu nilai *n* yang lebih tinggi atau saat *peers* berada pada daerah yang lebih jauh antara satu sama lainnya.

Perbedaan latensi ini dapat disebabkan oleh faktor jaringan dan arsitekturnya atau algoritma yang memastikan bahwa dokumen tersebut sama pada setiap replikanya. Dari analisis algoritma, variasi CRDT akan memberikan latensi melakukan penerapan operasi lokal waktu yang sama. Operasi lokal dalam konteks ini ialahoperasi pada klien tersebut sendiri yang bersifat luring serta *local-first*. dengan Dalam praktisnya, gambar 5.3 menunjukkan adanya perbedaan latensi yang tidak terlalu signifikan, yaitu dengan mean hanya sekitar 5ms. Perlu diketahui juga bahwa nilai lonjakan latensi maksimalnya yang berdekatan. Perlu diketahui bahwa skalabilitas latensi algoritma CRDT dan OT tumbuh secara berbeda. Kompleksitas waktu dari OT akan dipengaruhi oleh banyaknya *update* berbeda, sementara kompleksitas waktu CRDT akan dipengaruhi oleh banyaknya karakter atau ukuran dokumen.

Gambar 5.3: Grafik Waktu *Resolve* Operasi Lokal pada Editor Setiap Variasi Aplikasi Pengguna PeerToCP

Latensi total diperoleh dari waktu penerapan operasi lokal dan nonlokal ditambah dengan waktu transmisi jaringan pada arsitektur yang berbeda-beda. Gambar 5.4 menunjukkan perbedaan latensi yang cukup besar, serta lonjakan latensi yang terjadi beberapa kali sepanjang skenario ketiga berjalan. Hal ini dapat disebabkan oleh beberapa hal, yakni waktu *resolve* operasi nonlokal dan adanya efek penumpukan *update* yang diilustrasikan pada diagram gambar 5.5.

Gambar 5.4: Grafik Mean Latensi pada Operasi Nonlokal Setiap Variasi Aplikasi Pengguna PeerToCP

Gambar 5.5: Diagram Ilustrasi Penumpukan Update

Pada arsitektur *operational transformation* berbasis *client-server*, *update* dari suatu klien tidak akan diterima oleh server apabila klien tersebut belum memiliki versi terbaru dari server. Penumpukan *update* ini dapat terjadi karena klien tersebut semakin tidak bisa mengirimkan datanya karena semakin besar dan selalu didahului oleh klien lain yang berada dalam jaringan tersebut. Penumpukan ini dapat menyebabkan tidak dapat diperbaruinya salah satu klien dan transmisi data keluar yang besar karena pengiriman *update* besar yang dilakukan terus menerus.

Dalam praktis penggunaan realistisnya, hal ini diperkirakan tidak umum terjadi karena frekuensi pengetikan atau pemasukan karakter tidak dilakukan secara bersamaan dan tidak sebanyak skenario pertama dan kedua. Operasi salin dan tempel secara berkali-kali dapat berpotensi menyebabkan hal ini terjadi karena perubahan dokumen dalam jumlah karakter yang banyak terjadi. Namun dalam praktisnya, operasi tersebut diasumsikan hanya dilakukan dengan jeda frekuensi yang membolehkan setiap klien dalam jaringan memperbarui replikanya sebelum operasi besar lain dilakukan.

Skenario empat menguji latensi *shell* yang dapat digunakan secara bersama. Secara umum, latensi tersebut dideskripsikan pada tabel 5.2. Berbeda halnya dengan *editor teks* yang waktu penerapan operasinya berdampak sebesar 20–70ms atau lebih. Struktur data berupa *dictionary* sederhana pada *shell* tidak memberikan perbedaan yang signifikan seperti yang digambarkan pada gambar grafik 5.6.

10	CRDT Peer-To-Peer		CRDT Client Server			OT Client Server			
n	Mean	Median	Max	Mean	Median	Max	Mean	Median	Max
2	3.05	3.00	5.00	16.75	17.00	19.00	31.79	30.00	170.00
4	3.13	3.00	6.00	16.55	17.00	21.00	44.47	32.00	309.00
8	3.36	3.00	19.00	17.16	17.00	35.00	59.86	30.33	551.00

Tabel 5.2: Statistik Latensi Operasi Nonlokal pada Skenario Keempat (Shell Bersama) dalam Satuan ms

Gambar 5.6: Grafik Waktu Resolve Operasi Lokal pada Shell Setiap Variasi Aplikasi Pengguna PeerToCP

Hal ini dikarenakan operasi penerapan dari append-only array pada operational transformation memiliki kompleksitas waktu konstan secara amortized. Sehingga secara skalabilitas, hanya berpengaruh terhadap efektivitas dan performa latensi dari transmisi data, yang mengalami permasalahan sama seperti pada skenario pertama, kedua, dan ketiga seperti yang ditunjukkan pada gambar grafik 5.7. Faktor lain yang mempengaruhi alasan latensi operational transformation lebih lambat dari pada CRDT client-server ialah mekanisme komunikasinya. Implementasi CRDT Yjs dilengkapi dengan proses encoding dan decoding yang membuat transmisinya dalam jaringan untuk data yang besar dapat lebih cepat, serta tidak diperlukan adanya operasi update yang dilakukan secara berurutan. Sementara implementasi variasi operational transformation-nya masih menggunakan mekanisme update yang sama dengan editor teks-nya, hanya dengan perbedaan kompleksitas waktu update konstan shell.

Gambar 5.7: Grafik Mean Latensi pada Operasi Nonlokal Setiap Variasi Aplikasi Pengguna PeerToCP

Bila dibandingkan dengan arsitektur peer-to-peer, setiap peers dalam jaringan tersebut berada dalam jarak yang cenderung dekat. Latensinya akan lebih rendah dibandingkan kedua arsitektur client-server yang harus melewati server terlebih dahulu. Secara umum, variasi yang terbaik ialah variasi CRDT dengan arsitektur peer-to-peer sejumlah n tertentu. Dalam konteks eksperimen ini, untuk $n \leq 8$, variasi peer-to-peer masih memberikan performa terbaik dari setiap variasi lainnya dari aspek responsiveness. Diperkirakan untuk suatu nilai n > 8, atau jarak antar peers yang lebih jauh, variasi CRDT dengan arsitektur client-server dapat dipertimbangkan sebagai alternatif. Dalam beberapa kasus lainnya, CRDT peer-to-peer dengan WebRTC dapat mengalami permasalahan antar peers yang tidak dapat saling terhubung. Sehingga, alternatif berupa server penghubung, relay atau STUN dapat digunakan dan latensinya memerlukan eksperimen lebih lanjut untuk dapat dibandingkan. Variasi operational transformation juga dapat dipertimbangkan, karena secara teori operasi update-nya yang konstan dapat memberikan latensi yang lebih baik karena memanfaatkan sifat append-only array dan hanya satu peer atau klien yang bertanggung jawab untuk meneruskan data interaksinya pada suatu shell.

Untuk mendapatkan latensi yang optimal, struktur data CRDT dapat dimodifikasi dengan memanfaatkan sifat tersebut. Lebih lanjut, sistem dapat dimodifikasi untuk menentukan arsitektur optimal antara *peer-to-peer* tanpa *relay server* seperti pada eksperimen ini, *peer-to-peer* dengan *relay server* untuk menangani *peer* yang tidak dapat terhubung oleh WebRTC, atau pun *client-server* apabila banyaknya pengguna atau *peer* dalam

jaringan cukup banyak. Dari segi latensi, pertimbangan hal tersebut dapat ditentukan dengan metriks sederhana seperti *ping* antar pengguna yang dilakukan dari layar belakang aplikasi. Namun, dalam praktisnya terdapat beberapa faktor lain yang harus dipertimbangkan, yakni berupa sifat *lightweight* atau sebarapa banyak proses atau pekerjaan, serta memori yang harus disediakan oleh server dan penggunanya.

5.3 Aspek Lightweight

Aspek ini memaparkan seberapa besar *resource* komputasi yang dibutuhkan untuk setiap *peers* dan servernya. Semua metriks RAM diukur dengan melakukan normalisasi ke nol sesaat sebelum uji kasus dimulai. Pengukuran ini didasarkan untuk membandingkan perubahan pertumbuhan. Selain itu, dalam beberapa kasus dalam menjalankan klien, aplikasi elektron yang berjalan di atas Chromium memiliki sistem *garbage collection* dan *cache* (Thompson, 2015). Sehingga, pengukuran skenario yang dilakukan relatif terhadap ukuran memori sesaat sebelum tes dimulai untuk memberikan perbandingan pertumbuhan yang lebih jelas. Pada mulanya, setiap server mulai dengan RAM yang relatif rendah, yakni di bawah 20MiB. Sementara setiap peers mulai dengan RAM yang cenderung lebih tinggi, yakni sekitar 200 MiB. Aplikasi ini membutuhkan memori yang cukup besar karena menggunakan *framework* Electron yang menjalankan peramban web Chromium pada *front-end*-nya.

n		2	4	8
	CPU	39.1964893	60.13947488	62.2870496
CRDT Peer-To-Peer	RAM	16.57856816	19.24442935	21.30499303
CRD1 Feet-10-Feet	Net In	28.5230253	96.16536701	229.4788353
	Net Out	-28.03809012	-93.97903876	-223.6266535
	CPU	33.96390498	57.38616741	56.89049428
CRDT Client Server	RAM	14.92823532	19.12934751	20.94699478
CRD1 Cheft Server	Net In	19.46582482	27.68880062	30.96869733
	Net Out	-19.76281471	-21.21326889	-18.73440885
	CPU	47.79374975	73.29454876	65.25737338
OT Client Server	RAM	25.9460194	31.17265199	36.33549154
Of Cheft Server	Net In	62.24127487	99.81376692	87.42216719
	Net Out	-12962.04576	-28872.47276	-18344.14905

Tabel 5.3: Statistik Mean Aktivitas dan Resource Aplikasi Pengguna pada Skenario Pertama

Tabel ?? berturut-turut memiliki parameter yang menunjukkan aktivitas utilitasi CPU dalam satuan persen utilisasi, 100% utilisasi berarti sistem menggunakan satu *core* vCPU dengan penuh. Selanjutnya sumber daya atau resource RAM yang sudah dinormalisasi dalam satuan MiB, diikuti dengan kecepatan penerimaan dan pengiriman data dalam satuan kilobits per detik. Penggunaan RAM dan penerimaan data pada variasi CRDT *peerto-peer* cenderung lebih tinggi untuk n = 8, hal ini disebabkan karena pada variasi ini, semakin banyak *peers* pada jaringan, berarti semakin banyak pula replika dokumen yang harus disinkronisasi. Karena *signalling server* pada variasi ini tidak berperan dalam transmisi data CRDT, sehingga setiap *peers* akan bertanggung jawab untuk saling memberikan informasi satu sama lain dalam memastikan kesamaan informasi pada setiap replikanya. Dari segi banyaknya data yang masuk ke dalam aplikasi variasi CRDT memastikan bahwa data-data tersebut dapat digunakan secara langsung dan setiap data yang dikirimkan akan digunakan tanpa ada kasus penolakan *update* seperti pada variasi OT. Sehingga dari segi transmisi data keluar, variasi CRDT dianggap jauh lebih memenuhi aspek *lightweight* dibandingkan variasi OT.

Variasi aplikasi CRDT *client-server* secara relatif memberikan performa yang lebih baik untuk setiap variasi dari PeerToCP. Dari segi utilisasi CPU pada *environment* pengujian dengan dua core vCPU (utilisasi maksimal 200%), skenario pertama dengan $n \ge 4$ se-

cara rata-rata hanya menggunakan sekitar 1/3 resource dari CPU seperti yang terlihat pada grafik gambar 5.8. Metriks ini dapat dipertimbangkan dengan tambahan bahwa skenario ini memberikan muatan operasi-operasi yang relatif lebih besar dan banyak dari perkiraan aktivitas penggunaan normal. Selain itu, sistem operasi secara optimal akan menentukan proses yang harus diutamakan baik dari segi penyimpanan dan prioritas komputasi saat berjalannya aplikasi-aplikasi di atas sistem.

Gambar 5.8: Grafik Perbandingan Utilisasi CPU pada Klien Pertama dan Klien Kedua untuk n=8

Gambar 5.9: Grafik Perbandingan Penggunaan RAM pada Klien Pertama dan Klien Kedua untuk n=8

Dari segi memori, kedua variasi CRDT memberikan pertumbuhan yang lebih optimal dibandingkan variasi OT. Namun, setiap variasinya menggunakan memori yang relatif kecil terhadap kapasitas penuh perangkat *environment* pengujian, yakni sekitar 15%. Penggunaan memori sebelum dinormalisasi rata-rata dimulai dengan menggunakan sekitar 200MiB, diikuti dengan pertumbuhan penggunaan seperti yang terlihat pada grafik gambar 5.9. Sistem operasi dapat memanfaatkan CPU dan RAM yang *idle* sehingga utilisasinya dapat mendominasi proses lain pada komputer. Selama aplikasi tidak menggunakan utilisasi penuh yang mengganggu jalannya aktivitas pengguna dalam berinteraksi dengan aplikasi PeerToCP dan aplikasi lain, maka penggunaannya untuk jumlah pengguna yang terbatas dan diuji dalam eksperimen bagi pengguna setiap variasi PeerToCP dianggap memenuhi aspek *lightweight* dari segi utilisasi CPU dan RAM.

n	2	4	8	
	CPU	0.01	0.02	0.10
CRDT Peer-To-Peer	RAM	0.67	-0.03	0.40
CKD1 Feet-10-Feet	Net In	10.72	14.81	60.72
	Net Out	-10.24	-15.79	-83.11
	CPU	0.93	1.29	1.68
CRDT Client Server	RAM	5.01	6.83	9.54
CRD1 Cheft Server	Net In	73.26	176.64	324.19
	Net Out	-71.79	-193.90	-391.66
	CPU	4.85	14.18	24.33
OT Client Server	RAM	30.92	41.88	69.99
Of Cheft Server	Net In	52318.08	167768.04	308540.87
	Net Out	-26494.76	-84932.31	-156178.28

Tabel 5.4: Statistik Mean Aktivitas dan Resource Server pada Skenario Pertama

Aspek *lightweight* lainnya yang perlu dipertimbangkan ialah penggunaan *resource* atau sumber daya pada server yang dideskripsikan pada tabel 5.4. Server CRDT *peerto-peer* yang akan menyelesaikan *signalling* WebRTC menggunakan *resource* RAM dan CPU yang sangat minim, dan secara teori tidak mengalami perbedaan signifikan untuk suatu jaringan yang sedang menggunakan aplikasi ini, karena hanya menangani klien yang akan masuk dan keluar pada suatu kelompok *peer*. Berbeda halnya dengan arsitektur *client-server*, selain berperan dalam memelihara koneksi kelompok klien dalam suatu

ruangan, server juga akan memelihara kondisi replika pada setiap klien dalam jaringan. Dalam beberapa referensi implementasi, penyimpanan dokumen dapat memerlukan basis data yang lebih besar untuk dapat menampung lebih banyak data pada kelompok jaringan. Dalam eksperimen ini, basis data pada setiap variasi tidak menggunakan teknologi pihak ketiga dan hanya menggunakan struktur data bawaan sederhana pada server.

Dari data statistik tersebut, *drawback* dari transmisi minimal pada aplikasi pengguna CRDT *client-server* ialah transmisi yang lebih besar dari sisi server, dan sebaliknya pada CRDT *peer-to-peer*, transmisi data cenderung lebih kecil dibandingkan dengan variasi *peer-to-peer*nya. Variasi OT memiliki muatan paling besar dibandingkan dengan variasi lain yang juga secara tidak langsung memengaruhi utilisasi *resource*-nya menyesuaikan untuk menangani permintaan transmisi data masuk dan keluar yang cenderung lebih banyak. Dari aspek *lightweight*, arsitektur *client-server* pada OT tidak dipreferensi penggunaannya dan membutuhkan tinjauan kembali untuk dioptimisasi protokol pengiriman data atau pemanfaatan variasi algoritma OT yang lebih kompleks dan optimal untuk dapat menangani skenario muatan di atas rata-rata seperti skenario pertama.

5.4 Evaluasi Latensi

5.5 Evaluasi Performa

BAB 6

PENUTUP

Pada bab ini, Penulis akan memaparkan kesimpulan penelitian dan saran untuk penelitian berikutnya.

6.1 Kesimpulan

Berikut ini adalah kesimpulan terkait pekerjaan yang dilakukan dalam penelitian ini:

1. Poin pertama

Penjelasan poin pertama.

2. Poin kedua

Penjelasan poin kedua.

Tulis kalimat penutup di sini.

6.2 Saran

Berdasarkan hasil penelitian ini, berikut ini adalah saran untuk pengembangan penelitian berikutnya:

- 1. Saran 1.
- 2. Saran 2.

DAFTAR REFERENSI

- Adeyeye, M., Makitla, I., & Fogwill, T. (2013). Determining the signalling overhead of two common webrtc methods: Json via xmlhttprequest and sip over websocket. In 2013 africon (pp. 1–5).
- Aho, A., Sethi, R., & Ullman, J. (1985). Compilers: Principles, techniques, and tools.
- Alvestrand, H. T. (2021a, January). *Transports for WebRTC* (No. 8835). RFC 8835. RFC Editor. Diakses dari https://www.rfc-editor.org/info/rfc8835 doi: 10.17487/RFC8835
- Alvestrand, H. T. (2021b, January). WebRTC MediaStream Identification in the Session Description Protocol (No. 8830). RFC 8830. RFC Editor. Diakses dari https://www.rfc-editor.org/info/rfc8830 doi: 10.17487/RFC8830
- Arefin, S. S., Azad, I., & Kabir, H. (2013). Modified sack-tcp and some application level techniques to support real-time application. *International Journal of Electrical and Computer Engineering (IJECE)*, 6, 105–114.
- Attiya, H., Burckhardt, S., Gotsman, A., Morrison, A., Yang, H., & Zawirski, M. (2016). Specification and complexity of collaborative text editing. In *Proceedings of the 2016 acm symposium on principles of distributed computing* (pp. 259–268).
- Belomestnykh, O. (2010). *A rebuilt, more real time Google documents*. Google Developers Blog. Diakses pada tanggal 15 September 2022 pukul 14.28, dari https://drive.googleblog.com/2010/04/a-rebuilt-more-real-time-google.html
- Belshe, M., Peon, R., & Thomson, M. (2015). *Hypertext transfer protocol version 2* (http/2) (Tech. Rep.).
- Bishop, M. (2022, June). *HTTP/3* (No. 9114). RFC 9114. RFC Editor. Diakses dari https://www.rfc-editor.org/info/rfc9114 doi: 10.17487/RFC9114
- Day-Richter, J. (2010). What's different about the new google docs: Making collaboration fast. Google Developers Blog. Diakses pada tanggal 15 September 2022 pukul 15.29, dari https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs.html
- Dutton, S., et al. (2012). Getting started with webrtc. HTML5 Rocks, 23.
- Ellis, C. A., & Gibbs, S. J. (1989). Concurrency control in groupware systems. In

- Proceedings of the 1989 ACM SIGMOD international conference on management of data SIGMOD '89. ACM Press. Diakses dari https://doi.org/10.1145/67544 .66963 doi: 10.1145/67544.66963
- Fette, I., & Melnikov, A. (2011). *The websocket protocol* (Tech. Rep.).
- Fielding, R., & Reschke, J. (2015). Hypertext transfer protocol (http/1.1): Message syntax and routing, ietf rfc 7230.
- Fietze, M. (2017). *Http/2 streams: Is the future of websockets decided?* Faculty of Computer Science, TU Dresden. https://www.rn. inf. tu-dresden
- Firefox. (2022). *Spidermonkey documentation*. Firefox. Diakses dari https://firefox -source-docs.mozilla.org/js/index.html
- Frindell, A., Kinnear, E., & Vasiliev, V. (2022, July 6). *WebTransport over HTTP/3* (Internet-Draft No. draft-ietf-webtrans-http3-03). Internet Engineering Task Force. Diakses dari https://datatracker.ietf.org/doc/draft-ietf-webtrans-http3/03/ (Work in Progress)
- Ganaputra, J., & Pardamean, B. (2015). Asynchronous publish/subscribe architecture over websocket for building real-time web applications. *Internetworking Indonesia*, 7(2), 15–19.
- Gentle, J. (2011). *ShareJS Live concurrent editing in your app*. ShareJS. Diakses pada tanggal 16 September 2022 pukul 11.08, dari https://sharejs.org/
- Google. (2022). V8 documentation. Google. Diakses dari https://v8.dev/docs
- Harris, J. (2010). *What's different about the new Google Docs?* Google Developers Blog. Diakses pada tanggal 15 September 2022 pukul 15.21, dari https://drive.googleblog.com/2010/05/whats-different-about-new-google-docs.html
- IntelliJ, I. (2011). the most intelligent java ide. *JetBrains [online].[cit. 2016-02-23]. Dostupné z: https://www.jetbrains.com/idea/# chooseYourEdition.*
- Jennings, C., Hardie, T., & Westerlund, M. (2013). Real-time communications for the web. *IEEE Communications Magazine*, 51(4), 20–26.
- Jesup, R., Loreto, S., & Tüxen, M. (2021, January). *WebRTC Data Channels* (No. 8831). RFC 8831. RFC Editor. Diakses dari https://www.rfc-editor.org/info/rfc8831 doi: 10.17487/RFC8831
- Kinder, K. (2013). Sublime text: one editor to rule them all? *Linux Journal*, 2013(232), 2.
- Kleppmann, M., Gomes, V. B., Mulligan, D. P., & Beresford, A. R. (2019). Interleaving

- anomalies in collaborative text editors. In *Proceedings of the 6th workshop on principles and practice of consistency for distributed data* (pp. 1–7).
- Kredpattanakul, K., & Limpiyakorn, Y. (2018). Transforming javascript-based web application to cross-platform desktop with electron. In *International conference on information science and applications* (pp. 571–579).
- Krishnamurthy, B., Mogul, J. C., & Kristol, D. M. (1999). Key differences between http/1.0 and http/1.1. *Computer Networks*, 31(11-16), 1737–1751.
- Leibnitz, K., Hoßfeld, T., Wakamiya, N., & Murata, M. (2007). Peer-to-peer vs. client/server: Reliability and efficiency of a content distribution service. In *International teletraffic congress* (pp. 1161–1172).
- Li, D., & Li, R. (2004). Preserving operation effects relation in group editors. In *Proceedings of the 2004 ACM conference on computer supported cooperative work CSCW '04*. ACM Press. Diakses dari https://doi.org/10.1145/1031607.1031683 doi: 10.1145/1031607.1031683
- Lv, X., Cui, L., & Li, J. (2015). The research and design of real-time collaborative document management system. In *Proceedings of the 2015 3rd international conference on machinery, materials and information technology applications*. Atlantis Press. Diakses dari https://doi.org/10.2991/icmmita-15.2015.160 doi: 10.2991/icmmita-15.2015.160
- Maly, R. J., Mischke, J., Kurtansky, P., & Stiller, B. (2003). Comparison of centralized (client-server) and decentralized (peer-to-peer) networking. *Semester thesis, ETH Zurich, Zurich, Switzerland*, 1–12.
- Martin, J. L. (2020). *Conflict-free replicated data types (CRDT) for distributed JavaScript apps*. TL;DR. Diakses pada tanggal 18 September 2022 pukul 14.14, dari https://www.youtube.com/watch?v=M8-WFTjZoA0
- Matthews, P., Rosenberg, J., & Mahy, R. (2010, April). *Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN)* (No. 5766). RFC 5766. RFC Editor. Diakses dari https://www.rfc-editor.org/info/rfc5766 doi: 10.17487/RFC5766
- Miglani, S., & Shriram, S. (n.d.). Electronl build cross-platform desktop apps with javascript, html, and css.
- Molli, P., Urso, P., Imine, A., et al. (2006). Tombstone transformation functions for ensuring consistency in collaborative editing systems. In 2006 international con-

- ference on collaborative computing: Networking, applications and worksharing (pp. 1–10).
- Nédelec, B., Molli, P., Mostefaoui, A., & Desmontils, E. (2013). Lseq: an adaptive structure for sequences in distributed collaborative editing. In *Proceedings of the 2013 acm symposium on document engineering* (pp. 37–46).
- Nicolaescu, P., Jahns, K., Derntl, M., & Klamma, R. (2016, November). Near real-time peer-to-peer shared editing on extensible data types. In *Proceedings of the 19th international conference on supporting group work*. ACM. Diakses dari https://doi.org/10.1145/2957276.2957310 doi: 10.1145/2957276.2957310
- Oster, G., Urso, P., Molli, P., & Imine, A. (2005). *Real time group editors without operational transformation* (Unpublished doctoral dissertation). INRIA.
- Perkins, C., Westerlund, M., & Ott, J. (2021, January). *Media Transport and Use of RTP in WebRTC* (No. 8834). RFC 8834. RFC Editor. Diakses dari https://www.rfc-editor.org/info/rfc8834 doi: 10.17487/RFC8834
- Petit-Huguenin, M., Nandakumar, S., Holmberg, C., Keränen, A., & Shpount, R. (2021, January). Session Description Protocol (SDP) Offer/Answer Procedures for Interactive Connectivity Establishment (ICE) (No. 8839). RFC 8839. RFC Editor. Diakses dari https://www.rfc-editor.org/info/rfc8839 doi: 10.17487/RFC8839
- Pimentel, V., & Nickerson, B. G. (2012). Communicating and displaying real-time data with websocket. *IEEE Internet Computing*, *16*(4), 45–53.
- Preguiça, N. (2018). *Conflict-free replicated data types: An overview.* arXiv. Diakses dari https://arxiv.org/abs/1806.10254 doi: 10.48550/ARXIV.1806.10254
- Preguiça, N., Baquero, C., & Shapiro, M. (2018). *Conflict-free Replicated Data Types* (*CRDTs*). arXiv. Diakses dari https://arxiv.org/abs/1805.06358 doi: 10.48550/ARXIV.1805.06358
- Ressel, M., Nitsche-Ruhland, D., & Gunzenhäuser, R. (1996). An integrating, transformation-oriented approach to concurrency control and undo in group editors. In *Proceedings of the 1996 ACM conference on computer supported cooperative work CSCW '96.* ACM Press. Diakses dari https://doi.org/10.1145/240080.240305 doi: 10.1145/240080.240305
- Reynolds, F. (2008). Web 2.0-in your hand. *IEEE Pervasive Computing*, 8(1), 86–88.
- Shapiro, M., Preguiça, N., Baquero, C., & Zawirski, M. (2011). Conflict-free replicated data types. In *Lecture notes in computer science* (pp. 386–400). Springer Berlin

- Heidelberg. Diakses dari https://doi.org/10.1007/978-3-642-24550-3_29 doi: 10.1007/978-3-642-24550-3_29
- Smith, Z. (2012). *Overview of operational transformation*. University of Minnesota. Diakses pada tanggal 18 September 2022 pukul 12.32, dari https://umm-csci.github.io/senior-seminar/seminars/spring2012/Smith.pdf
- Sredojev, B., Samardzija, D., & Posarac, D. (2015). Webrtc technology overview and signaling solution design and implementation. In 2015 38th international convention on information and communication technology, electronics and microelectronics (mipro) (pp. 1006–1009).
- Srinivasan, R. (1995). *Rpc: Remote procedure call protocol specification version 2* (Tech. Rep.).
- Stenberg, D. (2014). Http2 explained (Vol. 44) (No. 3). ACM New York, NY, USA.
- Sun, C., & Ellis, C. (1998). Operational transformation in real-time group editors. In *Proceedings of the 1998 ACM conference on computer supported cooperative work CSCW '98.* ACM Press. Diakses dari https://doi.org/10.1145/289444.289469 doi: 10.1145/289444.289469
- Sun, C., Sun, D., Agustina, & Cai, W. (2019). Real differences between OT and CRDT under a general transformation framework for consistency maintenance in coeditors. arXiv. Diakses dari https://arxiv.org/abs/1905.01518 doi: 10.48550/ARXIV.1905.01518
- Sun, C., Xu, Y., & Ng, A. (2017, February). Exhaustive search and resolution of puzzles in OT systems supporting string-wise operations. In *Proceedings of the 2017 ACM conference on computer supported cooperative work and social computing*. ACM. Diakses dari https://doi.org/10.1145/2998181.2998252 doi: 10.1145/2998181.2998252
- Sun, D., Sun, C., Ng, A., & Cai, W. (2019a). Real differences between ot and crdt in correctness and complexity for consistency maintenance in co-editors. arXiv. Diakses dari https://arxiv.org/abs/1905.01302 doi: 10.48550/ARXIV.1905.01302
- Sun, D., Sun, C., Ng, A., & Cai, W. (2019b). Real differences between OT and CRDT in building co-editing systems and real world applications. arXiv. Diakses dari https://arxiv.org/abs/1905.01517 doi: 10.48550/ARXIV.1905.01517
- Sun, D., Xia, S., Sun, C., & Chen, D. (2004). Operational transformation for collaborative word processing. In *Proceedings of the 2004 ACM conference on*

- *computer supported cooperative work CSCW '04.* ACM Press. Diakses dari https://doi.org/10.1145/1031607.1031681 doi: 10.1145/1031607.1031681
- Thompson, S. (2015). Smarter garbage collection for smoother browsing and less memory usage. Chromium Developers Blog. Diakses pada tanggal 12 November 2022 pukul 16.24, dari https://blog.chromium.org/2015/12/smarter-garbage -collection-for-smoother.html
- Tilkov, S., & Vinoski, S. (2010). Node. js: Using javascript to build high-performance network programs. *IEEE Internet Computing*, *14*(6), 80–83.
- Vidot, N., Cart, M., Ferrié, J., & Suleiman, M. (2000). Copies convergence in a distributed real-time collaborative environment. In *Proceedings of the 2000 ACM conference* on computer supported cooperative work - CSCW '00. ACM Press. Diakses dari https://doi.org/10.1145/358916.358988 doi: 10.1145/358916.358988
- Weiss, S., Urso, P., & Molli, P. (2009). Logoot: A scalable optimistic replication algorithm for collaborative editing on p2p networks. In 2009 29th ieee international conference on distributed computing systems (pp. 404–412).
- Xu, Y., & Sun, C. (2016, March). Conditions and patterns for achieving convergence in OT-based co-editors. *IEEE Transactions on Parallel and Distributed Systems*, 27(3), 695–709. Diakses dari https://doi.org/10.1109/tpds.2015.2412938 doi: 10 .1109/tpds.2015.2412938

LAMPIRAN 1: CHANGELOG

@todo

Silakan hapus lampiran ini ketika Anda mulai menggunakan template.

Template versi terbaru bisa didapatkan di https://gitlab.com/ichlaffterlalu/latex-skripsi -ui-2017. Daftar perubahan pada *template* hingga versi ini:

- versi 1.0.3 (3 Desember 2010):
 - Template Skripsi/Tesis sesuai ketentuan formatting tahun 2008.
 - Bisa diakses di https://github.com/edom/uistyle.
- versi 2.0.0 (29 Januari 2020):
 - Template Skripsi/Tesis sesuai ketentuan formatting tahun 2017.
 - Menggunakan BibTeX untuk sitasi, dengan format default sitasi IEEE.
 - Template kini bisa ditambahkan kode sumber dengan code highlighting untuk bahasa pemrograman populer seperti Java atau Python.
- versi 2.0.1 (8 Mei 2020):
 - Menambahkan dan menyesuaikan tutorial dari versi 1.0.3, beserta cara kontribusi ke template.
- versi 2.0.2 (14 September 2020):
 - Versi ini merupakan hasil feedback dari peserta skripsi di lab Reliable Software Engineering (RSE) Fasilkom UI, semester genap 2019/2020.
 - BibTeX kini menggunakan format sitasi APA secara default.
 - Penambahan tutorial untuk longtable, agar tabel bisa lebih dari 1 halaman dan header muncul di setiap halaman.
 - Menambahkan tutorial terkait penggunaan BibTeX dan konfigurasi header/footer untuk pencetakan bolak-balik.

- Label "Universitas Indonesia" kini berhasil muncul di halaman pertama tiap
 bab dan di bagian abstrak daftar kode program.
- Hyphenation kini menggunakan babel Bahasa Indonesia. Aktivasi dilakukan di hype-indonesia. tex.
- Minor adjustment untuk konsistensi *license* dari template.
- versi 2.0.3 (15 September 2020):
 - Menambahkan kemampuan orientasi landscape beserta tutorialnya.
 - \captionsource telah diperbaiki agar bisa dipakai untuk longtable.
 - Daftar lampiran kini telah tersedia, lampiran sudah tidak masuk daftar isi lagi.
 - Nomor halaman pada lampiran dilanjutkan dari halaman terakhir konten (daftar referensi).
 - Kini sudah bisa menambahkan daftar isi baru untuk jenis objek tertentu (custom), seperti: "Daftar Aturan Transformasi". Sudah termasuk mekanisme captioning dan tutorialnya.
 - Perbaikan minor pada tutorial.
- versi 2.1.0 (8 September 2021):
 - Versi ini merupakan hasil feedback dari peserta skripsi dan tesis di lab Reliable
 Software Engineering (RSE) Fasilkom UI, semester genap 2020/2021.
 - Minor edit: "Lembar Pengesahan", dsb. di daftar isi menjadi all caps.
 - Experimental multi-language support (Chinese, Japanese, Korean).
 - Support untuk justifikasi dan word-wrapping pada tabel.
 - Penggunaan suffix "(sambungan)" untuk tabel lintas halaman. Tambahan support suffix untuk \captionsource.
- versi 2.1.1 (7 Februari 2022):
 - Update struktur mengikuti fork template versi 1.0.3 di https://github.com/ rkkautsar/edom/ui-thesis-template.
 - Support untuk simbol matematis amsfonts.

- Kontribusi komunitas terkait improvement GitLab CI, atribusi, dan format sitasi APA bahasa Indonesia.
- Perbaikan tutorial berdasarkan perubahan terbaru pada versi 2.1.0 dan 2.1.1.
- versi 2.1.2 (13 Agustus 2022):
 - Modifikasi penamaan beberapa berkas.
 - Perbaikan beberapa halaman depan (halaman persetujuan, halaman orisinalitas, dsb.).
 - Support untuk lembar pengesahan yang berbeda dengan format standar, seperti Laporan Kerja Praktik dan Disertasi.
 - Kontribusi komunitas terkait kesesuaian dengan format Tugas Akhir UI, kelengkapan dokumen, perbaikan format sitasi, dan *quality-of-life*.
 - Perbaikan tutorial.

LAMPIRAN 2: JUDUL LAMPIRAN 2

Lampiran hadir untuk menampung hal-hal yang dapat menunjang pemahaman terkait tugas akhir, namun akan mengganggu *flow* bacaan sekiranya dimasukkan ke dalam bacaan. Lampiran bisa saja berisi data-data tambahan, analisis tambahan, penjelasan istilah, tahapan-tahapan antara yang bukan menjadi fokus utama, atau pranala menuju halaman luar yang penting.

Subbab dari Lampiran 2

@todo

Isi subbab ini sesuai keperluan Anda. Anda bisa membuat lebih dari satu judul lampiran, dan tentunya lebih dari satu subbab.