Heart Disease Correlation Study

Analyzing Risk Factors and Predictors

DA - 01

Heart Disease Dataset Attribute Description

S.No.	Attribute	Code given	Unit	Data type
1	age	Age	in years	Numeric
2	sex	Sex	1, 0	Binary
3	chest pain type	chest pain type	1,2,3,4	Nominal
4	resting blood pressure	resting bp s	in mm Hg	Numeric
5	serum cholesterol	cholesterol	in mg/dl	Numeric
6	fasting blood sugar	fasting blood sugar	1,0 > 120 mg/dl	Binary
7	resting electrocardiogram results	resting ecg	0,1,2	Nominal
8	maximum heart rate achieved	max heart rate	71–202	Numeric
9	exercise induced angina	exercise angina	0,1	Binary
10	oldpeak =ST	oldpeak	depression	Numeric
11	the slope of the peak exercise ST segment	ST slope	0,1,2	Nominal
12	class	target	0,1	Binary

Description of Nominal Attributes

Attribute	Description
Sex	1 = male, 0= female;
Chest Pain Type	Value 1: typical angina
	Value 2: atypical angina
	Value 3: non-anginal pain
	Value 4: asymptomatic
Fasting Blood	(fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)
sugar	
Resting	Value 0: normal
electrocardiogram	Value 1: having ST-T wave abnormality (T wave inversions
results	and/or ST elevation or depression of > 0.05 mV)
	Value 2: showing probable or definite left ventricular
	hypertrophy by Estes' criteria
Exercise induced	1 = yes; 0 = no
angina	
the slope of the	Value 1: upsloping
peak exercise ST	Value 2: flat
segment	Value 3: downsloping
class	1 = heart disease, 0 = Normal

Identifying the independent and dependent attributes

Independent Attributes

- age
- sex
- chest pain type
- resting blood pressure
- serum cholesterol
- fasting blood sugar
- resting electrocardiogram results
- maximum heart rate achieved
- exercise-induced angina
- oldpeak
- the slope of the peak exercise ST segment

Dependent Attribute (Target):

Class

Characterizing the independent attributes

A. Nominal: cramer's V correlation

- chest pain type
- 2. resting electrocardiogram results
- 3. the slope of the peak exercise ST segment

B. Categorical (Binary):

cramer's V correlation

- 1. sex
- 2. fasting blood sugar
- 3. exercise-induced angina

C. Continuous:

Point-biserial correlation

- 1. age
- 2. resting blood pressure
- 3. serum cholesterol
- 4. maximum heart rate achieved
- 5. oldpeak (ST)

Correlation coefficients in descending order:

Three most highly correlated attributes

Attributes	Correlation Coefficients
ST slope	0.570
chest pain type	0.530
exercise angina	0.481
oldpeak	0.398
sex	0.311
age	0.262
fasting blood sugar	0.217
resting ecg	0.124
resting bp s	0.121
cholesterol	-0.198
max heart rate	-0.413

The three most highly correlated independent attributes

- 1. The slope of the peak exercise ST segment
- 2. Chest Pain Type
- 3. Exercise induced angina

Other Categorical Attributes

There is no evident correlation between these attributes and Heart Disease

Other continuous attributes

There is no evident correlation between these attributes and Heart Disease

9. Maximum Heart rate (r = -0.413)

• There is clear and constant negative correlation between Max Heart Rate and Heart Disease

10. Old Peak (r = 0.398)

- Despite the abundance of data points with "old peak = 0" and "target = 0".
- A robust correlation is evident for values greater than 0, spanning the range from 0 to 6.

11. Cholesterol

- Contrary to the conventional understanding that associates higher cholesterol levels with an
 increased risk of heart disease, the dataset reveals an anomaly with a significant number of
 instances where "Cholesterol = 0" aligns with "target = 1."
- This anomaly led to an apparent negative correlation between cholesterol levels and the occurrence of heart disease.

Conclusion:

- Noteworthy correlations emerged from the dataset, with the top three being associated with: ST slope (0.570)
 Chest pain type (0.530)
 Exercise-induced angina (0.481)
- The dataset exhibited anomalies, notably with instances of "Cholesterol = 0" coinciding with "target = 1," challenging the expected correlation between higher cholesterol levels and heart disease.
- Despite anomalies, strong correlations were observed in specific ranges, such as for old peak values beyond 0, suggesting nuanced relationships between certain variables and the likelihood of heart disease.
- Further analysis and feature engineering, considering the anomalies, are recommended to enhance the accuracy and interpretability of predictive models.
- The project underscores the importance of thorough data exploration and understanding, as anomalies can significantly impact the interpretation of correlations and relationships within the dataset.

Thirupathi Yuvaraju

21BT10032

Project Code:

https://github.com/Yuvi37/Heart-Disease-Cor relation-Study

