Machine Learning I: Supervised Methods

B. Keith lenkins

Announcements

- Homework 1 is due Friday
- Homework 2 will be posted Friday
- Discussion 3 session Friday
 - 11:00 11:50 AM, OHE 122
- Python Instruction session Friday
 - 12:00 12:50 PM, OHE 120
- To do well in this class: keep up with lectures, discussion sessions, reading, homeworks

Reading

- Reminder (for next week):
 - Bishop 5.2.4, Gradient descent
 - Note: Bishop's E is our J

Today's lecture

- Computational complexity
 - Example
 - Big-O, big-omega, big-theta
- Fundamental assumptions in supervised ML
 Augmented notation and space

Computational Complexity

Why?

- · Some datasets are very large (even huge)
- · Number of features (or input variables) can vary by a lot
 - e.g., 101 to 108
- · Sometimes algorithms are run many times
 - Model selection
 - cross validation
- · Sometimes computation hardware is limited
- · Faster hardware is more expensive
- -7 Useful to have an idea of how runtime (and memory requirements) depend on N, D, etc.

Example

How many scalar adds (A), multiplies (M), and divisions (D) do the following take, using the most common approach (algorithm)?

Compute the class sample-mean vectors for C classes Let $N_c = \# of \ data \ points \ in each class \ (N_c = N_z = \cdots = N_c)$ $D = \# of \ features$

$$\underline{\mathcal{M}}_{k} = \frac{1}{N_{c}} \underbrace{\sum_{i=1}^{N_{c}} \underline{x}_{i}^{(k)}}_{i} = F_{c} \underbrace{\sum_{i=1}^{N_{c}} \underline{x}_{i}^{(k)}}_{i=1}, \quad F_{c} = \frac{1}{N_{c}}$$

Adds: (Nc-1) DC

#Mult's: DC

#Diu's:

Total compute time = (Nc-1)DCTA + DCTM + 1.TD = T or complexity

Tp = Complexity or computation time
of one P operation (P=A, M, or D)

Time and Space Complexity

- -> Specify the algorithm and type of machine
- -> Then evaluate time and space complexity.

Time complexity

The number of operations, or total computation time, required to run the algorithm.

Operations counted: multiply, add (subtract), divide, compare, logical test (A = B?), etc.

Operations not counted: memory read, memory write, data input, data output.

(Auxiliary) Space Complexity

The number of memory storage locations required to run the algorithm.

Memory counted: any memory required within the computation

of the algorithm

Memory not counted: memory used for inputs and outputs while they aren't being used for the computation itself.

Example

1. Assume a serial machine that runs the algorithm below.

	#								
	memory	Asa	jorithm Q					Time	•
	elements	, , , , ,	_					comple	exity
Ш	2	ı	Fc= Nc						
		2	For each l	\ = \ (1			*C	עי
	á	3		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				×	D
		4		ialize x'					
	1	5							× Nc
	<u> </u>	6		each i=1, -oad xij	7	4.5	0)		
	0	7		$\chi' = \chi' +$		# X _{Sum} =	5 x(k)		T _A
				<i>/</i> _	ر در		i=1 -c		1
		8	u (k)	= Fc.	χ'				T
	·		J		•	\Rightarrow	Time complex	ityis	
	0	9	Outpu	it Mij			+ C[D(NcT		
			'	<i>,</i> 1					
	\Rightarrow s	pace	complexity	i5	(1)	$\Upsilon = C\Gamma$	NCTA+CD	Tm +TI	>
4	,	4+	5=9			Let To =	TA = T= 1		
•							= CDNe+	1+02	

2. Assume a parallel machine

that can compute Dadd's in parallel, D mult's in parallel

Dadds

We can reduce the time complexity by using Algorithm B:

Initialize
$$\frac{\chi(k)}{sum} = 0$$

5 Load
$$x^{(k)}$$

$$\frac{\chi(k)}{sum} = \frac{\chi(k)}{x} + \frac{\chi(k)}{sum}$$
 in parallel

7
$$\mu^{(k)} = F_c \cdot \frac{\chi(k)}{\chi_{sum}}$$
 3 D multiplies in parallel

We can simplify the analysis by looking at asymptotic complexity
Serial machine running Algorithm a

e.g., dependence on Nc, D as they get large. Let C = constant.

-> Y = CDNcTA + CDTM+TD (from (1) above)

Not relevant (constant)

-> 7 ~ NcDCTA+ DCTM ~ NcD+D = (Nc+1) D ~ NcD Const. of Nc, D

 $=) T = O(N_c D)$ = big-oh notation.

-> Let's be more precise about what O() means

aq(m), p(m)

Definitions - big-oh, big-omega, big-theta

Let p and q be functions of m.

- p(m) = O(q(m)) if there exists positive constants a and m_0 such that 0 ≤ p(m) ≤ aq(m) y m≥mo.
 - -> asymptotic upper bound.

Ex:
$$\gamma = 5 - 3m + 2m^2 + 1.5m^3 \leftarrow p(m)$$

$$\sqrt{\gamma} = O(m^3)$$

$$\sqrt{\gamma} = O(m^4)$$

$$\sqrt{\gamma} = O(m^2)$$

• $p(m) = \Omega(q(m))$ if there exists positive constants b and m, such that $0 \le b g(m) \le p(m) \forall m \ge m_1$

• $p(m) = \Theta(q(m))$ if there exists positive constants $a, b, and m_z$ such that $0 \le b q(m) \le p(m) \le aq(m)$ $\forall m \ge m_z$

=) asymptotic tight bound $Ex: T = 5 - 3m + 2m^2 + 1.5m^3 \leftarrow p(m)$

is $\Upsilon = \Theta(m^3)^{?}$ is $\Upsilon = \Theta(m^2)^{?}$

 $\frac{aq(m)}{bq(m)}$ $\frac{p(m)}{m}$

Comment: if $\Upsilon = \mathcal{O}(q(m))$ and $\Upsilon = \mathcal{I}(q(m))$, (some q(m))
then $\Upsilon = \mathcal{O}(q(m))$.

Revisit earlier example

Compute the class sample-mean vectors for C classes.

→ Let D, Nc, C be (potentially large) variables. ⇒ TA, TM, TD are constants of D, Nc, C.

$$\gamma = O(N_c CD + CD)$$

$$= O(CD(N_c+1))$$

$$= O(CDN_c)$$