1 Testspezifikationen

1.1 FRAM

Funktionsname	Beschreibung	Ergebnis	Status
FRAM_init	Write Enable Latch (WEL) setzen	Status Register ist 2	Funktional
	und Status Register auslesen		
FRAM_test	FRAM initialisieren und and Ad-	Geschriebene Nachricht	Funktional
	dresse 0x0000 "Test" schreiben und	ist identisch mit gelesener	
	diese Adresse auslesen	Nachricht	
Test_FRAM (bitte	Localization structs mit Test-	struct wurde erneut mit	Funktional
umbennen)	werten initialisieren und auf dem	den selben werten befüllt	
	FRAM schreiben. Anschließend		
	wieder auslesen und in das struct		
	zurückführen		

1.2 LEDs

Funktionsname	Beschreibung	Ergebnis	Status
Test_LED	Alle Status LEDs werden über den	Alle LEDs haben sich kor-	Funktional
	Switch-Button erst an und danach	rekt verhalten(test proze-	
	ausgeschaltet	dur sollte unabhängig von	
		den buttons möglich sein)	

1.3 Buttons/Switch

Funktionsname	Beschreibung	Ergebnis	Status
Test_Button	Für jeden Button wird nacheinan-	Alle Flanken wurden	Funktional
	der eine steigende und fallende	erkannt	
	Flanke abgefragt, welche durch		
	eine Kontroll-LED repräsentiert		
	wird(Test'LED muss vorher aus-		
	geführt werden)		

1.4 Motor

Funktionsname	Beschreibung	Ergebnis	Status
Test_Motor	Zunächst Fehlerstatus auslesen.	(Speed2 noch nicht ein-	Nicht
	Über den Switch-Button werden	trainiert ablauf sollte	funktional
	mehrere Schritte eingeleitet: -	aufgeteilt werden)	
	Links-/Rechtslauf mit Speed1		
	und anschließendem Auslesen der		
	Richtung - Stufenweises Erhöhen		
	der Drehzahl bis auf Speed2 und		
	Auslesen der jeweils gemessenen		
	Drehzahl		

1.5 IFS204 (Endschalter)

Funktionsname	Beschreibung	Ergebnis	Status
Endswitch_detected	Auslesen der Endschalter Zustände	Ausgelesene Zustände	Funktional
		entsprechen den End-	
		schalter Zuständen	
Test_endswitch	Der Motor fährt die Endschalter an,	Motor ändert Richtung	Funktional
	und ändert die Richtung, sobald	bei aktivierten endschal-	
	diese aktiviert werden	ter	

1.6 OGD580 (Abstandssensor)

Funktionsname	Beschreibung	Ergebnis	Status
-	Analoger Abstandswert wird aus-	Abstandswert auf	funktional
	gelesen und mit dem Angezeigten	dem display betrug	
	Wert des Displays verglichen	14,6cm ausgerechneter	
		wert entsprach 15,4.	
		Entspricht gemessener	
		Abweichung	
-	Linearführung wird um eine gewisse	Messung der Pulse funk-	Nicht
	Distanz bewegt. Distanz sollte der	tioniert noch nicht	funktional
	Differenz aus End- und Startposi-		
	tion entsprechen		

1.7 WSWD (Windsensor)

Funktionsname	Beschreibung	Ergebnis	Status
-	Abfragen der Seriennummer über	Seriennummer wird kor-	funktional
	RS485 und Überprüfung dieser	rekt empfangen	
-	Auslesen der Windrichtung über das	Windrichtung wird aus-	funktional
	analoge Signal	gegeben allerdings wird	
		wert noch nicht richtig	
		konvertiert	
-	Auslesen der Windgeschwindigkeit	Windgeschwindigkeit wird	nicht
	über das analoge Signal	aktuell nicht über das	funktional
		Stromsignal ausgegeben -;	
		konfigurierung des Sensors	

1.8 Stromsensor

Funktionsname	Beschreibung	Ergebnis	Status
-	Auslesen des Stroms während der	ADC Wert befindet sich	Funktional
	Motor nicht in Bewegung ist. Aus-	bei ca. 2040	
	gelesene Spannung sollte der hal-		
	ben Versorgungsspannung des Sen-		
	sors entsprechen (ca. 1.6V)		
-	Motor wird über die Stromvorgabe	Motor benötigt bei max-	Nur
	angesteuert. Gemessener Strom	imaler drehzahl und	eingeschränkt
	sollte dem vorgegebenen Strom	derzeitiger Belastung	funktional
	entsprechen.	nur max 1A. Test muss	
		abgeändert werden	