Aufgabe 3

a.

$$w_1 + w_2 + w_3 + w_4 = \frac{9}{20} = 0.45 < \frac{1}{2}$$

 $w_6 + w_7 + w_8 + w_9 + w_10 + w_11 = 0.5 \le \frac{1}{2}$
 $\rightarrow w_5$ ist der gewichtete "Weight", d.h x_5 (100) ist der gewichtete Median

b.

- $\frac{1}{n}$ ist äquivalenz zum $\frac{1}{n}*100\%$ und das ist genauso $\frac{1}{n}*100$ Proben aus 100 Proben, und nach Definition, je nachdem, welcher x_k die mitterer Probe gehört, ist der gewichtete Median
- Für Gewichten $w_i = \frac{1}{n}, i = 1, ..., n$, d.h jede Element von A(x) hat genauso die gleiche Gewichten \rightarrow Summe ein häfte von Gewichten ist immer $\frac{1}{2}$ von dem gesamten Gewicht

Weshalb ist der Median von $x_1, x_2, ..., x_n$ der gewichtete Median $x_1, x_2, ..., x_n$ mit Gewichten $w_i = \frac{1}{n}, i = 1, ..., n$

c. Wir können der gewichtete Median durch Sortierung (zB Binary Search) die Elementen (x_i) , die die Summe von die Häfte von $\sum_{i=1}^{n} w_i$ haben. Dieses Algorithmus hat $\mathcal{O}(n \log n)$ Laufzeit

d.

- Nehmen wir, dass das Array von Elementen worst case $\mathcal{O}(n)$ QuickSort Algorithmus benutz, um das Array zum Teile/Partitions zu verteilen.
- Jetzt rechnen wir die "Weight" (also w_i) jedes Teils.
 - Falls die linke Häfte < $\frac{1}{2}$ ist, und die rechte Häfte < $\frac{1}{2}$ ist, dann ist der gewichtete Median des kleineren Teils x_i (1)
 - Ansonsten, dann muss der gewichtete Median in dem großeren Teil liegen. Addieren wir die "weight" (w_i) von dem kleineren Teil (aus (1)) zum x_i und suchen wir recursiv in dem großeren Teil

weightedMedian(A)

```
if n == 1
return a_1
else if n == 2
if w_1 \ge w_2
return a_1
else
return a_2
else
determine a_x, which is the (lower) median of A partition A around a_x
W_{low} = \sum_{a_i < a_x} w_i
W_{high} = \sum_{a_i > a_x} w_i
if W_{low} < \frac{1}{2} AND W_{high} \le \frac{1}{2}
return a_x
else if W_{low} \ge \frac{1}{2}
```

$$w_x = w_x + W_{high}$$

$$B = a_i \in A : a_i \le a_x$$
weightedMedian(B)
else
$$w_x = w_x + W_{low}$$

$$B = a_i \in A : a_i \ge a_x$$
weightedMedian(B)