1.2 数集·确界原理

一、区间与邻域

- 1、集合与元素
 - 集合: 具有某种特定性质的事物的总体.
 - 元素: 组成这个集合的事物称为该集合的元素.

$$a \in M$$
, $a \notin M$.

- 有限集: $A = \{a_1, a_2, \dots, a_n\}$.
- $A \subset B$: $x \in A \Rightarrow x \in B$.

几个常用的集合:

- R----实数集
 - R⁺-----负实数集; R⁻----负实数集.
- Q----有理数集
- Z----整数集
- N----自然数集(包含 0)

$$N \subset Z \subset Q \subset R$$
.

• 空集: 不含任何元素的集合. (记作 Ø)

2、 区间

区间:介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.

半开半闭区间 [a,b),(a,b].

无限区间: $[a,+\infty)$, $(a,+\infty)$, $(-\infty,b]$, $(-\infty,b)$, $(-\infty,+\infty)$.

$$[a,+\infty)$$
: a

$$(-\infty,b)$$
:

3、 邻域

点 a 的 δ 邻域:

$$U(a;\delta) = \{x \mid |x-a| < \delta \} = (a-\delta,a+\delta).$$

a: 邻域中心; $\delta:$ 邻域半径.

点 a 的空心 δ 邻域:

$$U^{\circ}(a;\delta) = \{x | 0 < |x-a| < \delta \}.$$

另外几个常用的邻域:

- 点a的 δ 右邻域: $U_+(a;\delta)=[a,a+\delta).(U_+(a))$
- 点a的 δ 左邻域: $U_{-}(a;\delta)=(a-\delta,a].(U_{-}(a))$
- ∞ 的M邻域: $U(\infty) = \{x \mid x \mid > M\}$.
- $+\infty$ 的M邻域: $U(+\infty) = \{x \mid x > M\}$.
- $-\infty$ 的M邻域: $U(-\infty) = \{x \mid x < -M\}$.
- 数集 S 的最大值: max S.
- 数集 S 的最小值: min S.

二、有界集

设S是R的一个数集.

- S 有上界:存在数 M,使得任意 $x \in S$,有 $x \le M$.
- S 有下界: 存在数 L, 使得任意 $x \in S$, 有 $x \ge L$.
- S 有界: S 既有上界又有下界.
 - S有界 \Leftrightarrow 存在数 M > 0, 使得任意 $x \in S$, 有 $|x| \le M$.
- S 无界: 若 S 不是有界集.

例1、证明:

(1)集合 $S = \{\frac{1}{n} \mid n$ 为正整数}为有界集.

(2)集合 $S = \{\frac{1}{x} | x \in (0,1)\}$ 有下界但无上界.

三、确界

定义1: 设 $S \subset R$ 且 $S \neq \emptyset$. 若 $\eta \in R$ 满足:

- (i) 对任意 $x \in S$, 有 $x \le \eta$;
- (ii) 对任意 $\alpha < \eta$, 存在 $x_0 \in S$, 使得 $x_0 > \alpha$. 则称数 η 为数集 S 的 上确界。记为 $\eta = \sup S$.
- 注: $(ii) \Leftrightarrow$ 对任意 $\varepsilon > 0$, 存在 $x_0 \in S$, 使得 $x_0 > \eta \varepsilon$.

定义2: 设 $S \subset R$ 且 $S \neq \emptyset$. 若 $\xi \in R$ 满足:

- (i) 对任意 $x \in S$, 有 $x \ge \xi$;
- (ii) 对任意 $\beta > \xi$, 存在 $x_0 \in S$, 使得 $x_0 < \beta$.

则称数 ξ 为数集S的下确界。记为 $\xi = \inf S$.

注: $(ii) \Leftrightarrow$ 对任意 $\varepsilon > 0$, 存在 $x_0 \in S$, 使得 $x_0 < \xi + \varepsilon$.

例2、设
$$S = \{x \mid x = 1 - \frac{1}{n}, n \in \mathbb{Z}_+\}$$
.证明 $\sup S = 1$, $\inf S = 0$.

练习: 设 $S = \{\sin x | x \in (0,\pi)\}$, 求 $\sup S = \inf S$.

注: $\sup S = \inf S =$

结论:
$$\eta = \sup S \in S \Leftrightarrow \eta = \max S$$
.
$$\xi = \inf S \in S \Leftrightarrow \xi = \min S$$
.

四、确界原理

定理3:设 $S \subset R \perp S \neq \emptyset$.

- (i) 若 S 有 上界,则 S 有上确界.
- (ii) 若S有下界,则S有下确界.

定理3:设 $S \subset R \perp L S \neq \emptyset$.

(i) 若 S 有 上界,则 S 有上确界.

• 构造闭区间列:

$$\{[n.n_1n_2\cdots n_k, n.n_1n_2\cdots n_k + \frac{1}{10^k}]: k = 0,1,2,\cdots\}.$$

- ① 任意 $x \in S$, 有 $x < n.n_1 n_2 \cdots n_k + \frac{1}{10^k}$.
- ② 存在 $\beta_k \in S$, 使得 $\beta_k \geq n.n_1n_2\cdots n_k$.
- $\Leftrightarrow \eta = n.n_1n_2\cdots n_k\cdots, \text{ } \text{ } \text{ } \eta = \text{supS}.$

例3、设非空数集 A, B满足:对任意 $x \in A$ 及 $y \in B$, 有 $x \le y$.证明: $\sup A$ 与 $\inf B$ 存在且 $\sup A \le \inf B$.

例4、设A,B为非空有界数集, $S = A \cup B$.证明:

- (i) $\sup S = \max\{\sup A, \sup B\}$.
- (ii) inf $S = \min\{\inf A, \inf B\}$.

作 业

习题1-2: 1(4)、4(4)、6(1)