NETWORK COMPRESSION

Hung-yi Lee 李宏毅

Smaller Model

Less parameters

Deploying ML models in resourceconstrained environments

Lower latency, Privacy, etc.

- Network Pruning
- Knowledge Distillation
- Parameter Quantization
- Architecture Design
- Dynamic Computation

We will not talk about hard-ware solution today.

Network Pruning

Network can be pruned

 Networks are typically over-parameterized (there is significant redundant weights or neurons)

Network Pruning

Importance of a weight:

Å

absolute values, life long ...

Importance of a neuron:

the number of times it wasn't zero on a given data set

- After pruning, the accuracy will drop (hopefully not too much)
- Fine-tuning on training data for recover
- Don't prune too much at once, or the network won't recover.

Network Pruning - Practical Issue

Weight pruning

The network architecture becomes irregular.

Hard to implement, hard to speedup

不能的的

Network Pruning - Practical Issue

Weight pruning

https://arxiv.org/pdf/1608.03665.pdf

Network Pruning - Practical Issue

Easy to implement, easy to speedup

Why Pruning?

- How about simply train a smaller network?
- It is widely known that smaller network is more difficult to learn successfully.
 - Larger network is easier to optimize?
 https://www.youtube.com/watch?v=_VuWvQU
 MQVk
- Lottery Ticket Hypothesis

https://arxiv.org/abs/1803.03635

Why Pruning?

Lottery Ticket Hypothesis

Why Pruning?
Lottery Ticket Hypothesis

Random Init weights

Trained weight

Another random Init weights

https://arxiv.org/abs/1905.01067

Why Pruning? Lottery Ticket Hypothe

Lottery Ticket Hypothesis

Different pruning strategy

"sign-ificance" of initial weights: Keeping the sign is critical

0.9, 3.1, -9.1, 8.5
$$+\alpha$$
, $+\alpha$, $-\alpha$, $+\alpha$

Pruning weights from a network with random weights

Why Pruning?

Rethinking the Value of Network Pruning

Dataset	Model	Unpruned	Pruned Model	Fine-tuned	Scratch-E	Scratch-B
CIFAR-10	VGG-16	93.63 (±0.16)	VGG-16-A	93.41 (±0.12)	93.62 (±0.11)	93.78 (±0.15)
	ResNet-56	93.14 (±0.12)	ResNet-56-A	92.97 (±0.17)	92.96 (±0.26)	93.09 (±0.14)
			ResNet-56-B	92.67 (±0.14)	92.54 (±0.19)	93.05 (±0.18)
	ResNet-110	93.14 (±0.24)	ResNet-110-A	93.14 (±0.16)	93.25 (±0.29)	93.22 (±0.22)
			ResNet-110-B	92.69 (±0.09)	92.89 (±0.43)	93.60 (±0.25)
ImageNet	ResNet-34	73.31	ResNet-34-A	72.56	72.77	73.03
			ResNet-34-B	72.29	72.55	72.91

- New random initialization, not original random initialization in "Lottery Ticket Hypothesis"
- Limitation of "Lottery Ticket Hypothesis" (small Ir, unstructured)

Knowledge Distillation
https://arxiv.org/pdf/1503.02531.pdf
Do Deep Nets Really Need to be Deep?
https://arxiv.org/pdf/1312.6184.pdf

Knowledge Distillation
https://arxiv.org/pdf/1503.02531.pdf
Do Deep Nets Really Need to be Deep?
https://arxiv.org/pdf/1312.6184.pdf

Temperature for softmax

$$y_i' = \frac{exp(y_i)}{\sum_i exp(y_i)}$$

$$T = 100$$

$$y_i' = \frac{exp(y_i/T)}{\sum_j exp(y_j/T)}$$

$$y_1 = 100$$
 $y_1' = 1$

$$y_2 = 10$$
 $y_2' \approx 0$

$$y_3 = 1$$
 $y_3' \approx 0$

$$y_1/T = 1$$
 $y_1' = 0.56$

$$y_2/T = 0.1$$
 $y_2' = 0.23$

$$y_3/T = 0.01$$
 $y_3' = 0.21$

Parameter Quantization

Parameter Quantization

- 1. Using less bits to represent a value
- 2. Weight clustering

weights in a network

0.5	1.3	4.3	-0.1
0.1	-0.2	-1.2	0.3
1.0	3.0	-0.4	0.1
-0.5	-0.1	-3.4	-5.0

Clustering

Parameter Quantization

1. Using less bits to represent a value

- 3. Represent frequent clusters by less bits, represent rare clusters by more bits
 - e.g. Huffman encoding

Binary Weights

Your weights are always +1 or -1

Binary Connect

Binary Connect:

https://arxiv.org/abs/1511.00363

Binary Network:

https://arxiv.org/abs/1602.02830

XNOR-net:

https://arxiv.org/abs/1603.05279

network with binary weights

Negative gradient (compute on binary weights)

Update direction (compute on real weights)

Binary Weights

Method	MNIST	CIFAR-10	SVHN					
No regularizer	$1.30 \pm 0.04\%$	10.64%	2.44%					
BinaryConnect (det.)	$1.29 \pm 0.08\%$	9.90%	2.30%					
BinaryConnect (stoch.)	$1.18 \pm 0.04\%$	8.27%	2.15%					
50% Dropout	$1.01 \pm 0.04\%$							
5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		4 / 4	16 (
	e and the same	137	- 30					
		- Company	1.5					
		2						
			770 300					

Architecture Design

Depthwise Separable Convolution

Review: Standard CNN

Input feature map

2 channels

 $3 \times 3 \times 2 \times 4 = 72$ parameters

Depthwise Separable Convolution

1. Depthwise Convolution

- Filter number = Input channel number
- Each filter only considers one channel.
- The filters are $k \times k$ matrices
- There is no interaction between channels.

Depthwise Separable Convolution

1. Depthwise Convolution

$$3 \times 3 \times 2 = 18$$

2. Pointwise Convolution

I: number of input channels

O: number of output channels

 $k \times k$: kernel size

$$\frac{k \times k \times I + I \times O}{k \times k \times I \times O}$$

$$= \frac{1}{O} + \frac{1}{k \times k}$$

$$k \times k \times I + I \times O$$

$$(k \times k \times I) \times O$$

Low rank approximation

To learn more

- SqueezeNet
 - https://arxiv.org/abs/1602.07360
- MobileNet
 - https://arxiv.org/abs/1704.04861
- ShuffleNet
 - https://arxiv.org/abs/1707.01083
- Xception
 - https://arxiv.org/abs/1610.02357
- GhostNet
 - https://arxiv.org/abs/1911.11907

Dynamic Computation

Dynamic Computation

The network adjusts the computation it need.

• Why don't we prepare a set of models?

Dynamic Depth

$$L = e_1 + e_2 + \dots + e_L$$

high battery

Dynamic Width

$$L = e_1 + e_2 + e_3$$

Slimmable Neural Networks https://arxiv.org/abs/1812.08928

Computation based on Sample Difficulty

- SkipNet: Learning Dynamic Routing in Convolutional Networks
- Runtime Neural Pruning
- BlockDrop: Dynamic Inference Paths in Residual Networks

Concluding Remarks

- Network Pruning
- Knowledge Distillation
- Parameter Quantization
- Architecture Design
- Dynamic Computation