Spieltheorie - WiSe 2014/15 Übungsblatt 7 - Felix Dosch

Aufgabe 7.1

Zu zeigen: Ist $u: O \to \mathbb{R}$ eine Nutzenfunktion, die \succeq repräsentiert, und $v: \mathbb{R} \to \mathbb{R}$ eine streng monoton wachsende Funktion, dann ist $v \circ u: O \to \mathbb{R}$ mit $(v \circ u)(x) = v(u(x))$ ebenfalls eine Nutzenfunktion die \succeq repräsentiert.

Beweis:

Wir benutzen die Definition streng monoton wachsender Funktionen:

 $f:A \to B$ ist streng monoton wachsend $\Leftrightarrow \forall a,b \in A: a>b \Rightarrow f(a)>f(b)$ (I) Also:

$$\forall x, y \in O : x \succsim y \Leftrightarrow u(x) \ge u(y)$$

1. Fall:
$$u(x) = u(y) \stackrel{I}{\Leftrightarrow} v(u(x)) = v(u(y)) \Rightarrow v(u(x)) \ge v(u(y)) \Leftrightarrow x \gtrsim y$$

2. Fall:
$$u(x) > u(y) \stackrel{I}{\Leftrightarrow} v(u(x)) > v(u(y)) \Rightarrow v(u(x)) \geq v(u(y)) \Leftrightarrow x \gtrsim y$$

Da $v(u(x)) \ge v(u(y)) \Leftrightarrow v(u(x)) = v(u(y)) \lor v(u(x)) > v(u(y))$ und beide Fälle zum gleichen Ergebnis führen, ist v(u(x)) ebenfalls eine Nutzenfunktion, die \succeq repräsentiert.

Aufgabe 7.2

a)

Vollständigkeit:

$$\forall x, y \in [0, 1] \times [0, 1] : x \succsim_L y \lor y \succsim_L x$$

- 1. Fall: $x_1 > y_1 \Rightarrow x \succsim_L y$
- 2. Fall: $y_1 > x_1 \Rightarrow y \succsim_L x$

- 3. Fall: $x_1 = y_1 \land x_2 \ge y_2 \Rightarrow x \succsim_L y$
- 4. Fall: $x_1 = y_1 \land y_2 > x_2 \Rightarrow y \succsim_L x$

Reflexivität:

$$\forall x \in [0,1] \times [0,1] : x \succsim_L x$$

$$x_1 = x_1 \land x_2 \ge x_2 \Rightarrow x \succsim_L x$$

Transitivität:

$$\forall x, y, z \in [0, 1] \times [0, 1] : x \succsim_L y \land y \succsim_L z \Rightarrow x \succsim_L z$$

- 1. Fall: $x_1 > y_1 \Rightarrow x_1 > y_1 \ge z_1 \Rightarrow x_1 > z_1 \Rightarrow x \succsim_L z$
- 2. Fall: $x_1 = y_1 \Rightarrow x_1 = y_1 \ge z_1$
 - Unterfall i: $x_1 = y_1 > z_1 \Rightarrow x_1 > z_1 \Rightarrow x \succeq_L z$
 - Unterfall ii: $x_1 = y_1 = z_1 \Rightarrow x_2 \ge y_2 \ge z_2 \Rightarrow x_1 = z_1 \land x_2 \ge z_2 \Rightarrow x \succsim_L z$
- b) Zu Zeigen: Es gibt keine Nutzenfunktion, die die lexikographische Sortierung \succsim_L auf $[0,1] \times [0,1]$ repräsentiert.

Beweis durch Widerspruch: Angenommen, es gäbe eine solche Nutzenfunktion f und sei I_a das Intervall [Inff(a,R), Supf(a,R)], wobei wir also bei f(a,R) die Menge von Funktionswerten meinen für festes a in der ersten Komponente und alle möglichen Werte in der zweiten Komponente.

Da [0,1] nicht leer und für jedes $(a,x) \neq (a,y)$ gilt $f(a,x) \neq f(a,y)$ ist das Intervall [Inff(a,R), Supf(a,R)] nicht degeneriert, d.h. das Intervall umfasst nicht nur eine reelle Zahl. Damit ist insbesondere $|Inff(a,R) - Supf(a,R)| \neq 0$ (I).

Ausserdem gilt für $a \neq a'$, dass $I_a \cap I_{a'} = \emptyset$, da z.B. für a > a' gilt Inff(a, R) > Supf(a', R) (alle Funktionswerte für einen Wert a > a' in der ersten Komponente liegen per Definition oberhalb der Funktionswerte für a' in der ersten Komponente).

Es kann also eine 1:1-Verbindung zwischen Werten $a \in [0,1]$ und den paarweise disjunkten Intervallen I_a hergestellt werden. Betrachten wir nun für alle a den Wert $\epsilon_a = Supf(a,R) - Inff(a,R) \neq 0$ und wählen davon das Minumum $e = min\{\epsilon_a = Supf(a,R) - Inff(a,R)\}$. Die Vereinigung der disjunkten Intervalle bildet das Intervall [Inff(0,R), Supf(1,R)], woraus wir E = Supf(1,R) - Inff(0,R) berechnen können.

Aus e und E können wir folgern, dass die Anzahl der disjunkten, abgeschlossenen Intervalle höchstens $\frac{E}{e}$ sein kann, also abzählbar viele. Da nun [0,1] überabzählbar ist, die Anzahl der Intervalle jedoch abzählbar, gibt es hier einen Widerspruch (es kann keine 1:1-Korrespondenz zwischen a und I_a geben), also existiert keine Nutzenfunktion f, welche die lexikographische Sortierung repräsentiert.

Aufgabe 7.3

\downarrow I / II \rightarrow	(A,C)	(A,D)	(B,C)	(B,D)
kaufen	$(q \cdot (6-p) + (1-$	$(q \cdot (6-p), q \cdot p)$	$((1-q)\cdot (4-q))$	$(0, 5 \cdot q)$
	$q)\cdot (4-p),p)$		$p), 5 \cdot q + (1 -$	
			$(q) \cdot p$	
nicht kaufen	$(0, 5 \cdot q)$	$(0, 5 \cdot q)$	$(0, 5 \cdot q)$	$(0, 5 \cdot q)$

Das Spiel ist also:

$$H = (N, (T_i)_{i \in \mathbb{N}}, p, S, (s_t)_{t \in \times_{i \in \mathbb{N}} T_i})$$
 mit

- $N = \{I, II\}$
- $\bullet \ T_I = \{t\}$
- $T_{II} = \{g, s\}$, wobe
ig =gutes Auto und s =schlechtes Auto

- p(t,g) = q, p(t,s) = 1 q
- \bullet S: Menge der Zustände, entspricht Zeilen-/Spaltenkombinationen der Tabelle, wobei Nutzen u den Tabelleneinträgen entspricht
- $s_t = \{s_{(t,g)}, s_{(t,s)}\}$: Die Menge der beiden Teilbäume mit Spieler II als Wurzelknoten