

Jaderné palivo

- Palivo, uvnitř něhož je jadernými reakcemi přeměňována část jaderné energie na teplo
- Dnes se v energetice nejvíce používá reakce typu štěpení
 jader těžkých prvků (uran, plutonium)
- Budoucnost se však bude ubírat spíše směrem termojaderné fúze

Jaderné palivo

Dle stupně obohacení izotopem U-235 se uran rozděluje:

□ Přírodní: 0,71 %

Slabě obohacený: 1 − 5 %

Středně obohacený: 5 − 20 %

□ Silně obohacený: 20 a více %

Energetický výtěžek je následující:

Přírodní uran: 0,69 TJ/kg

■ Slabě obohacený:
3 – 8,5 TJ/kg

Palivo množivých reaktorů: až 52 TJ/kg

Nižší palivové náklady JE

- Teoreticky 1 kg uranu nahradí 3 miliony kg černého uhlí
- Prakticky 1 kg uranu nahradí 100 000 kg uhlí

Jaderné palivo

Palivové pruty a palivová tableta

- □ Pojem, jenž je používán převážně v jaderné energetice
- Zahrnuje v sobě veškeré činnosti spojené s:
 - Těžbou přírodních zdrojů
 - Jejich následným zpracováním
 - Energetickým využitím
 - Přepracování nebo meziskladováním použitého paliva

- Palivový cyklus je v podstatě rozdělován na 3 etapy:
 - □ Přední část palivového cyklu (Obr., část 1 3)
 - Střední část palivového cyklu (Obr., část 4)
 - Zadní část palivového cyklu (Obr., část 5 7)

Těžba a zpracování uranu

- Je první fází palivového cyklu
- Rozvinula se v mnoha zemích po celém světě
 - USA, Kanada, Austrálie, Rusko, Čína a africké země
 - Prakticky všechny horniny zemské kůry obsahují uran
- Vytěžený uran není možné přímo použít k výrobě jaderného paliva
- Množství uranu v přírodě je odhadováno cca na 10¹⁵ tun asi 1000 krát více než množství zlata

- Uran se dnes těží dvěma způsoby
 - Prvním je klasické mechanické dobývání rudy v hlubinných či povrchových dolech
 - Využití, je-li koncentrace uranu v hornině dostatečně vysoká (0.001-0.01%)
 - Druhým způsobem je podzemní loužení uranové rudy
 - Počátky výzkumu podzemního loužení v bývalém ČSSR

Výroba jaderného paliva

- Drcení a mletí
 - Na kousky velikosti 0,07 0,30 mm (dle způsobu následujícího loužení)
- Třídění
 - Nutnost mít přibližně stejně velké kousky kvůli efektivitě loužení
- Loužení
 - Pomocí kyseliny sírové
- Vysrážení
 - Získání koncentrátu žluté barvy ve formě oxidu uranu UO₂ ŽLUTÝ KOLÁČ

Tzv. Žlutý koláč

Konverze

- Konvertuje se na plynný hexafluorid uranu UF₆
- UF₆ je silně toxický

Separace

- Využívá se rozdílných molekulových hmotností sloučenin ²³⁵UF₆ a ²³⁸UF₆ liší se od sebe o cca 3 atomové hmostnosti
- Provádí se například pomocí difúze, plynových ultracentrifug či tryskové difúze

Obohacování

- Přírodní forma uranu obsahuje pouze 0,7 % štěpitelného ²³⁵U zbytek tvoří izotop ²³⁸U a ve velmi malé míře izotop ²³⁴U (0,004 %)
- Obohacuje se na 2 až 5 %
- Velmi složitý, energeticky nároční a enkonomicky nákladný proces
- Obohacovacích závodů je pouze několik
- Obohacený plynný hexafluorid uranu se přepravuje do závodů vyrábějících palivové články ve speciálních kontejnerech

Výroba palivových článků

- Plynný hexafluorid uranu se nejprve zpětně konvertuje na pevný oxid uraničitý UO₂
- UO₂ se následně spéká a lisuje do malých tabletek (peletek) o průměru cca
 1,5 cm a délce několika centimetrů
- Peletky se následně skládají do několik metrů dlouhých trubek vyrobených ze zirkoniové slitiny
- Vzniklé pruty pak tvoří palivové kazety či soubory tvar a velikost záleží na typu reaktoru
- K vytvoření 1 kg paliva je zapotřebí 2 4 tun původní uranové rudy

- Střední část palivového cyklu začíná vložením jaderného paliva do reaktoru s následným spuštěním štěpné reakce
- Jedná se o fázi užitečnou, neboť dochází k využití části energie v palivu obsažené k výrobě energie elektrické
- V průběhu štěpné reakce se mění vnitřní složení jaderného paliva vzniká v něm velké množství vysoce radioaktivních prvků, které nesmějí přijít do kontaktu s životním prostředím

Garantem za použité jaderné palivo a za jeho bezpečné uložení je stát, jenž za tímto účelem založil Správu úložišť radioaktivních odpadů (SÚRAO)

□ Po vyjmutí z reaktoru:

- Palivo se umisťuje do bazénů použitého paliva na několik let
- Uloženy jsou do té doby, kdy jejich radioaktivita klesne na 50%
 původní hodnoty

- Existují dvě cesty, jakými se palivo po jeho částečném vychladnutí může ubírat:
 - Převoz do skladu použitého paliva
 - Recyklace na palivo nové přepracování na palivo nové
- Otevřený
 - Once-through
 - Trvalé uložení vyhořelého paliva do hlubinného úložiště
- Uzavřený
 - Recycle
 - Opětovné využití vyhořelého paliva

Otevřený palivový cyklus

Uzavřený palivový cyklus

Schéma cyklů

Přepracování paliva

- Použité palivové soubory se rozeberou, konstrukční materiály se zpracují jako odpad a palivové proutky se dále zpracovávají
- Chemické oddělení plutonia
- Původně pro výrobu jaderných bomb
- V současnosti pro výrobu MOX paliva
 - Mixed oxide fuel
 - MOX palivo se skládá z plutonia a uranu
 - (uran může být ochuzený zbytky z obohacovacího procesu)
 - Složení MOX např.
 - 7% plutonia, 93% uranu

PUREX

- □ Plutonium URanium EXtraction
- Chemický proces založený na iontové výměně
- Palivové proutky se nasekají na malé kousky a rozpustí se v kyselině dusičné
- Pomocí tributylfosfátu se separuje uran a plutonium

- Použití v běžných reaktorech
 - Asi 30 reaktorů v Evropě používají MOX
 - Dalších 20 má provoz MOX zlicencován
 - Používají 30% 50% kazet paliva MOX, zbytek standardní UO2
- Z hlediska neutronově-fyzikálních vlastností se palivo MOX chová jinak, proto musí být reaktory přizpůsobené na provoz s tímto palivem
- V současných reaktorech je možné bez vlivu na bezpečnost provozu reaktoru použít přibližně 30 % MOX paliva v aktivní zóně

Skladování použitého jaderného paliva

- Způsoby skladování použitého jaderného paliva:
 - Suché skladování
 - Mokré skladování
- Každá metoda má přirozeně své výhody i nevýhody
- Výběr metody se řídí lokálně dle potřeb jednotlivých jaderných elektráren
- Definitivní uložení RaO v budoucnu umožní hlubinná úložiště

Mokré skladování

- Ukládání použitého jaderného paliva do vody
- Dnes nejrozšířenější způsob v jaderných elektrárnách
- Jedná se však jen o krátkodobé řešení
- Mokré skladování lze rozdělit na dva typy:
 - Skladování v bazénech umístěných přímo u reaktoru
 - Centrální mokrý sklad
- Jaderné elektrárny byly původně designovány tak, aby bylo možné
 v místě jejich výstavby skladovat jimi použité jaderné palivo
- Designéři reaktorů očekávali uložení použitého paliva v bazénech pouze na pár let s tím, že poté bude palivo uvedeno pomocí přepracování znovu do svého činného procesu

- Voda v bazénech se používá pro její dobrou stínící schopnost, čímž je zajištěna ochrana obsluhy a elektrárny před nebezpečným zářením, a pro spolehlivý odvod tepla od teplo sálajících použitých jaderných článků
- Výhodou mokrého skladování je bezesporu snadná a rychlá vizuální kontrola PJP
- Mezi nevýhody mokrého způsobu se řadí potřeba stálého chlazení a čištění vody, čímž vznikají kapalné radioaktivní odpady
- Další nevýhodou jsou provozní náklady, které jsou vyšší než u suché metody skladování
- Datováno na padesátá léta 20. století

- Naprostá většina mokrých úložišť je umístěna přímo vedle reaktorů v podobě vodních bazénů
- Centrální mokré sklady jsou rozšířeny převážně v přímořských zemích (např. Švédsko, Japonsko), kde leží v blízkosti mořského pobřeží a přebytečná tepelná energie je odváděna do moře

Suché skladování

- K suchému způsobu se sahá za předpokladu delšího intervalu uložení
- Jeho výhodou jsou výrazně nižší náklady na provoz suchých skladů
- Jako výhodu lze také považovat možnost snadné manipulace s PJP, poněvadž to už je uloženo a odstíněno v ochranných OS (obalové soubory – kontejnery)
- Suché skladování lze považovat za jakýsi druhý stupeň skladování, neboť PJP je do suchých hal či modulových sklípků umisťováno až po několika letech "odpočinku" v bazénech použitého paliva
- První zavážka suchého kontejneru již v roce 1986

- Suché skladování bývá řešeno dvěma způsoby:
 - Použité palivo je umístěno do betonových staveb (sklípků tzv. jednotlivé/modulové skladování)
 - Použité palivo je umístěno v suchých halách (skupinově v betonových či kovových kontejnerech)

Jednotlivé/modulové suché skladování

Suché halové skladování

Vývoj v oblasti skladování

- Jaderné elektrárny byly původně designovány tak, aby bylo možné
 v místě jejich výstavby skladovat jimi použité jaderné palivo
- Designéři reaktorů očekávali uložení použitého paliva v bazénech pouze na pár let s tím, že poté bude palivo uvedeno pomocí přepracování znovu do svého činného procesu
- Předpokládalo se, že závody pro přepracování separují recyklovatelné části souborů od znovu nevyužitelných, které by poté mohly být označeny za odpad
- Ke komerčnímu přepracování však ve větší míře nikdy nedošlo a vodní bazény s příměsí kyseliny borité se pomalu ale jistě začaly zaplňovat

- S postupným zaplňováním reaktorových vodních bazénů na PJP se, v raných osmdesátých letech 20. století, jednotlivé JE začaly poohlížet po řešení vzniklé situace
- Nabízela se dvě okamžitá řešení:
 - Zmenšení rozestupů mezi jednotlivými soubory
 - Vyjmutí palivových tyčí z jednotlivých souborů s cílem je uspořádat mnohem hustěji
- Dalším řešením, které nebylo ale příliš ekonomicky výhodné, bylo postavení dalšího vodního bazénu mimo reaktor
- Z důvodu vysokých nákladů jak na výstavbu, tak poté na provoz však bylo nutné najít jiné řešení, a to efektivní nejen z pohledu vynaložených nákladů ale i bezpečnosti – přistoupení k suchému způsobu skladování

Stručné rozdělení vyráběných typů kontejnerů

Тур	Odvod tepla	Kontejnment (Médium)	Stínění	Příklad
Kovové kontejnery	Kondukce stěnou či žebry kontejneru	Dojitá víka, masivní stěny (inertní plyn)	Ocelové stěny kontejnerů	CASTOR, TN, NAC- ST/STC, BGN Solutions
Železo - Betonové kontejnery/sila	Konvekce vzduchem okolo kontejneru/sila	Klasická/svařovaná víka (inertní plyn)	Železo -Betonové stěny kontejnerů	CONSTOR, HI- STORM/HI-STAR
Betonové moduly	Konvekce vzduchem okolo modulu	Tenkostěnný základní obal (inertní plyn)	Betonové stěny modulů	NUHOMS, NAC- MPC/UMS/ MAGNASTOR
Krypty	Konvekce vzduchem okolo trubic	Jednotlivé trubice (inertní plyn v trubkách)	Betonové stěny krypt	MVDS MACSTOR
Hlubinná úložiště	Kondukce skrz zem	Ocelový barel (inertní plyn)	Zem	Ještě nerealizováno

Výpočet stínění kontejneru na PJP

- Kvůli výskytu velkého množství radioaktivních prvků ve vyhořelém palivu je nutné použít patřičné stínící prostředky navržené z provedených výpočtů
- Jelikož použité jaderné palivo produkuje více druhů radiace, je nutné nalézt správnou konzistenci materiálového složení potřebného k jejich utlumení pod dovolené meze
- Norma udává závazné hodnoty 2 000 μSv/h na povrchu a 100 μSv/h ve 2 m od povrchu

Provedení kontrolního výpočtu stínění – postup

- Výběr vhodné metody a výpočetního kódu
- Získání potřebné dokumentace s veškerými materiálovými a geometrickými parametry
- Vytvoření věrného modelu analytickým způsobem v jakémkoli textovém editoru za pomoci analytické geometrie
- Výpočet kritičnosti daného systému
- Definice neutronových a fotonových zdrojů
- Výpočet samotného stínění

Děkuji za pozornost