

D. Zahariev, S. Frank, A. Hakamian, A. van Hoorn

Supporting and Verifying Transient Behavior Specifications in Chaos Engineering

Transient Behavior in Chaos Engineering?

Transient Behavior in Chaos Engineering?

09.11.22

Transient Behavior in Chaos Engineering?

Method

Transient Behavior Verifier (Tool)

"specification": "always((response time medium(rt)) time scaling ex1 scaling ex2 response time If {RT > 1s} has occurred then in -> (once[0,30] (scaled up(scaling1) or scaled up(scaling2) response scaled up or (not RT > 1s) or (not response time medium(rt))))", 0 0.04 eventually holds within 30 time units. "specification type": "mtl", "future-mtl": "true", "predicates info": [Transient Behavior "predicate_name": "scaled up", **Hypothesis** "predicate logic": "equal", "predicate comparison value": "1" Verifier "predicate name": "response time medium", "predicate logic": "bigger", "predicate comparison value": "1.0" "measurement source": "csv", **Evaluation Result: False** "measurement points": [Data Source . Start: 154; End: 200; Value: Folice; Predicate 'scaled_up' is set to (1); Predicate 'response_time_medium' is set to (1,0); Input measurem "measurement name": "rt", **Description** "measurement column": "response time" [same for 'scaling ex1' and 'scaling ex2']

[1] Ulus, D. (2019, October). Timescales: A benchmark generator for MTL monitoring tools. In *International Conference on Runtime Verification* (pp. 402-412). Springer, Cham.

[2] Frank, S., Hakamian, A., Wagner, L., Kesim, D., Zorn, C., von Kistowski, J., & van Hoorn, A. (2022). Interactive Elicitation of Resilience Scenarios Based on Hazard Analysis Techniques. In *European Conference on Software Architecture* (pp. 229-253). Springer, Cham.

Evaluation

[3] Frank, S., Wagner L., Hakamian, A., Straesser, M., van Hoorn, A.: MiSim: A Simulator for Resilience Assessment of Microservice-based Architectures. QRS 2022. Accepted.

Summary & Future Work

