MATH 633 HOMEWORK 3

HIDENORI SHINOHARA

Exercise. (Problem 1) A simply connected space is clearly piecewise smooth simply connected. Let Ω be piecewise smooth simply connected and $\gamma_1, \gamma_2 : [0, 1] \to \Omega$ be two continuous curves with the same end points. Since Ω is open, $\gamma_1(t)$ has an open ball around it that is contained in Ω for each $t \in [0, 1]$. Since [0, 1] is compact and γ_1 is continuous, $\gamma_1([0, 1])$ is compact. Hence, there is a finite partition $0 = t_0 < t_1 < \cdots < t_{n-1} < t_n = 1$ such that $\gamma_1([t_i, t_{i+1}])$ is contained in an open ball $\subset \Omega$ for each i. Then γ_1 is homotopic to the curve $\gamma_{1'}$ that consists of n straight lines, ith of which is the line between $\gamma_1(t_i)$ and $\gamma_1(t_{i-1})$ where $i = 1, \cdots, n$. This can be shown by the "straight-line" homotopy because $\gamma_1([t_{i-1}, t_i])$ and the ith straight line are in an open ball contained in Ω .

A similar argument can be applied to show that γ_2 is homotopic to a curve $\gamma_{2'}$ that consists of finitely many straight lines. A curve consisting of finitely many straight lines is clearly piecewise smooth.

Therefore, $\gamma_1 \sim \gamma_{1'} \sim \gamma_{2'} \sim \gamma_2$. Thus Ω is simply connected.

Exercise. (Problem 2) Define T(x,y) = x + iy.

$$\begin{split} \int_{S} f dz &= \int_{0}^{1} f(t) dt + \int_{0}^{1} f(it)(it)' dt + \int_{0}^{1} f(1+it)(1+it)' dt + \int_{0}^{1} f(t+i)(t+i)' dt \\ &= \int_{0}^{1} f(t) + f(t+i) dt + i \int_{0}^{1} f(it) + f(1+it) dt \\ &= \int_{0}^{1} f(T(x,0)) + f(T(x,1)) dx + i \int_{0}^{1} f(T(0,y)) + f(T(1,y)) dy \\ &= \int_{0}^{1} u(T(x,0)) + u(T(x,1)) dx + i \int_{0}^{1} u(T(0,y)) + u(T(1,y)) dy \\ &+ i \int_{0}^{1} v(T(x,0)) + v(T(x,1)) dx - \int_{0}^{1} v(T(0,y)) + v(T(1,y)) dy \\ &= \int_{0}^{1} u(T(x,0)) + u(T(x,1)) dx - \int_{0}^{1} v(T(0,y)) + v(T(1,y)) dy \\ &+ i (\int_{0}^{1} u(T(0,y)) + u(T(1,y)) dy + \int_{0}^{1} v(T(x,0)) + v(T(x,1)) dx) \\ &= \int_{S} u \circ T dx + \int_{S} -v \circ T dy + i (\int_{S} v \circ T dx + \int_{S} u \circ T) \\ &= \int_{\inf S} -\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} + i (\int_{\inf S} \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}) \\ &= 0 \end{split}$$

Exercise. (Problem 4)

- Ω_1 is simply connected because any two continuous curves with the same end points are joined by the straight-line homotopy.
- Ω_2 is not simply connected because Ω_2 is homeomorphic to S^1 which has a nontrivial fundamental group. In other words, $\phi: \theta \mapsto (a+b)e^{2\pi i\theta}/2$ is a continuous curve in Ω that is not homotopic to the constant curve at (a+b)/2.
- Ω_3 is simply connected because any two continuous curves with the same end points are joined by the straight-line homotopy. This is because those two curves must be both in $D_1(0)$, or they must be both in $D_1(2)$.