

Spring Semester 2014

Swiss Federal Institute of Technology Zurich

Prof. H.-A. Loeliger

Semester Thesis

Phase-Locked Loops

Daniel Gilgen and Fabio Marti

Advisor: Nour Zalmai

Co-Advisor: Lukas Bruderer

(Here the project description may be put in . . . page 1)

(Here the project description may be put in . . . page 2)

Abstract

Here comes the abstract \dots

(The abstract is better included by the command $\displaystyle \inf\{file\}.$)

Zusammenfassung

Das ist die Zusammenfassung \dots

(Die Zusammenfassung sollte besser mittels des Befehls $\inf\{file\}$ eingebunden werden.)

To Arwen

"Among all the conundrums in the world, the Gordian knot is the most mysterious." $\,$

A non.

Acknowledgements

I would like to thank . . .

(The chapter "Acknowledments" is better included by the command \include{file} .)

Zürich, 00 March 2013

Daniel Gilgen

Fabio Marti

Abstract

Here comes the abstract \dots

(The abstract is better included by the command $\displaystyle \inf\{file\}.$)

Zusammenfassung

Das ist die Zusammenfassung \dots

(Die Zusammenfassung sollte besser mittels des Befehls $\inf\{file\}$ eingebunden werden.)

Contents

	List of Figures	XIV
	List of Tables	$\mathbf{X}\mathbf{V}$
1	Principles of Phase-Locked Loops	2
	1.1 Introduction	3
	1.2 Blabla	3
2	Tracking of a Sinusoidal Signal	8
	2.1 Introduction	9
	2.2 Blabla	9
3	PLL for Harmonic Signals	10
	3.1 Introduction	11
	3.2 Blabla	11
4	BlaBlaBla	12
A	Proof of Upper Bound	13
	Bibliography	14

List of Figures

1.1	Some factor graph elements	4
1.2	Exemplary factor graph	5
1.3	Exemplary factor graph	5
1.4	Some factor graph elements	6
1.5	Exemplary factor graph	6
1.6	Exemplary factor graph	7

List of Tables

<<< HEAD

Chapter 1

Principles of Phase-Locked Loops

1.1 Introduction Chapter 1

1.1 Introduction

1.2 Blabla

Figure 1.1: All elements from the file factorGraph.sty.

 $\ \ \, \text{````} < \text{HEAD} =======$

1.2 Blabla Chapter 1

Figure 1.2: This factor graph has been constructed with custom-built TikZ macros.

Figure 1.3: This factor graph has been constructed with the factor graph macro from factorGraphs.sty.

Figure 1.4: All elements from the file factorGraph.sty.

Figure 1.5: This factor graph has been constructed with custom-built TikZ macros.

1.2 Blabla Chapter 1

Figure 1.6: This factor graph has been constructed with the factor graph macro from factorGraphs.sty.

Chapter 2

Tracking of a Sinusoidal Signal 2.1 Introduction Chapter 2

- 2.1 Introduction
- 2.2 Blabla

Chapter 3

PLL for Harmonic Signals

3.1 Introduction Chapter 3

- 3.1 Introduction
- 3.2 Blabla

Chapter 4

BlaBlaBla

Appendix A

Proof for the Lower Bound on the Number of Conundrums

Since we classify the Gordian knot as a conundrum, there is at least one such.

Bibliography