Ex	ercis	e e	6.9														
				$\in \mathbb{R}$													
		ž (cont.	at		€ R											
<u>.</u>	<i>1</i> ⇒ ≤	Thow	<u> </u>	8 >	0	s.t	f	(7) >	0	for	eac	h a	€ (c-8	, C+	S)	
Pror	£:																
	/	u .	E>0	5.7	. f	(X) 6	= (-	f(c).	ε,	fcc) + E) .	ı¥	$x \in$	(c-8	, C+	S)
		9		o . i	,								/				
		· ·											= (0,2	f(c))	٤ (١	, <i>∞</i>)
Zi	1 p a			77													
	,			,						,							

Exercise 22						
f: (0,1	$) \rightarrow \mathbb{R}$	defined by	f(x) = x	$sin(\frac{1}{x})$	is U.C	2. ?
				RecaU: Thm If	X is comp	vact.
				and	$f: X \to \mathbb{R}$	is cont.
[V, V, [2			f is <u>u</u>	
<u>Strategy</u> :	Extend this	f to a co	ontinuous fu	nction g (Vx	: [0,1] − ∈ (0,1), f	→ TR (a) = g(a))
			sin ($\frac{1}{4}$) $\leftarrow 1$		
Now to defin	Y					ts U.C.
g(x) {	f(x)	$x \in (0,1)$ $x = 0$				e extended sly to [a.b]
	sin (1)					
This $g(x)$ is			(Exercis	se prove	this)	
	,1] is comp en. g(x) is		p, 1]			
	us. $f(x)$ is			0.1)		

Exercise 6.13 $f: R \rightarrow R$	$f(x) = \begin{cases} f(x) = 0 \end{cases}$	if a≥0 if if < 0	$\frac{7hm}{f: X \to R} is con$	nt. at ceX
Show that	fin) is not i	ont at 0.	\Leftrightarrow For any seq. with $x_n \to c$	(An) in X
yn =	$\frac{1}{n} \rightarrow 0 \qquad fo$ $\frac{1}{n} \rightarrow 0 \qquad fo$	$y_n) = 0 \rightarrow 0$	$f(x_n) \to f(c)$	
IMS FEX	ts not cont.	at x=0		

