Universidad de Granada

Análisis Matemático II

Doble Grado de Informática y Matemáticas ${\it Curso~2016/17}$

${\rm \acute{I}ndice}$

L.	Convergencia uniforme y puntual.	2
	1.1. El espacio de funciones continuas	_

Introducción.

1. Convergencia uniforme y puntual.

De igual manera que tratamos con sucesiones de puntos de \mathbb{R}^N , podemos hacerlo con sucesiones de funciones. Dado $\emptyset \neq A \subseteq \mathbb{R}^N$, podemos tomar para cada $n \in \mathbb{N}$ una función $f_n : A \to \mathbb{R}^M$, y formar así una sucesión de funciones, que notaremos $\{f_n\}$. Normalmente estas funciones serán continuas. El conjunto de funciones de A en \mathbb{R}^M lo denotaremos por $\mathcal{F}(A, \mathbb{R}^M)$.

Definición (Convergencia punto a punto.). Diremos que una sucesión de funciones $\{f_n\}$ converge puntualmente a una función $f \in \mathcal{F}(A, \mathbb{R}^M)$ si $\forall x \in A \{f_n(x)\} \to f(x)$. Esto es, si se verifica lo siguiente:

$$\forall x \in A \ \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : n \ge n_0 \Rightarrow |f_n(x) - f(x)| < \varepsilon$$

En ocasiones denotaremos la convergencia puntual como $\{f_n\} \xrightarrow{c.p} f$.

Definición (Convergencia uniforme.). Diremos que $\{f_n\}$ converge uniformemente a una función $f \in \mathcal{F}(A, \mathbb{R}^M)$ si se verifica:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : n > n_0 \implies |f_n(x) - f(x)| < \varepsilon \ \forall x \in A$$

En ocasiones denotaremos la convergencia uniforme como $\{f_n\} \xrightarrow{c.u} f$.

Nota. Aunque ambas definiciones son muy parecidas, hay una diferencia clave. En la convergencia puntual, el valor de n_0 puede depender tanto de ε como de x. Sin embargo, en la convergencia uniforme, exigimos que n_0 sea válido para cualquier x.

Proposición. Si $\{f_n\} \to f$ uniformemente $\Longrightarrow \{f_n\} \to f$ puntualmente.

Nota. El recíproco no es cierto en general.

La necesidad del concepto de convergencia uniforme se aprecia bien en el siguiente teorema, junto con los ejemplos que aparecen a continuación.

Teorema 1.1. Sean $\emptyset \neq A \subseteq \mathbb{R}^N$, $f_n \in \mathcal{C}(A, \mathbb{R}^M) \ \forall n \in \mathbb{N}$.

$$\{f_n\} \to f \ uniformemente \implies f \ es \ continua$$

Demostración. Fijamos $a \in A$. Dado $\varepsilon > 0$, como $\{f_n\} \to f$ uniformemente,

$$\exists K > 0: \ n \ge K \implies |f_n(y) - f(y)| < \varepsilon \ \forall y \in A \implies \begin{cases} |f_n(a) - f(a)| < \frac{\varepsilon}{3} \\ |f_n(x) - f(x)| < \frac{\varepsilon}{3} \end{cases}$$

Como además f_n es continua para cada $n \in \mathbb{N}$,

$$\exists \delta > 0: \quad \begin{vmatrix} |x-a| < \delta \\ x \in A \end{vmatrix} \implies |f_n(x) - f_n(a)| < \frac{\varepsilon}{3}$$

Entonces,

$$\exists \delta > 0: \quad \begin{cases} |x - a| < \delta \\ x \in A \end{cases} \implies |f(x) - f(a)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(a)| + |f_n(a) - f(a)| < \varepsilon$$

Algunos ejemplos de sucesiones de funciones:

EJEMPLO (1):

$$f_n: [0,1] \to \mathbb{R}, \ f_n(x) = \begin{cases} 0 & \text{si } x \ge \frac{1}{n} \\ -nx + 1 & \text{si } 0 \le x < \frac{1}{n} \end{cases}$$

EJEMPLO (2):

$$f_n: [0,1] \to \mathbb{R}, \ f_n(x) = x^n$$

EJEMPLO (3):

$$f_n: [0,1] \to \mathbb{R}, \ f_n(x) = \frac{sen(nx)}{n}$$

Vamos a estudiar la convergencia puntual de la sucesión del ejemplo (1):

Primero, fijamos $x \in (0,1]$. Entonces, existe $n \in \mathbb{N}$ tal que $x \ge \frac{1}{n}$, luego $f_n(x) = 0$. Por otra parte, $f_n(0) = 1 \ \forall n \in \mathbb{N}$. Concluimos que

$$\{f_n\} \to f = \begin{cases} 1 & \text{si } x = 0\\ 0 & \text{en otro caso} \end{cases}$$

Observamos que la convergencia puntual no preserva la continuidad de las funciones. Esto implicaría que, con esta definición de convergencia, el espacio de funciones continuas en un conjunto no sería cerrado. Además, podemos comprobar que $\{f_n\}$ no converge uniformemente a f, pues en caso de hacerlo f debería ser continua, por el teorema anterior.

Ahora estudiemos la convergencia uniforme del ejemplo (3):

$$\forall \varepsilon > 0 \; \exists K > \frac{1}{\varepsilon} : \; n \ge K \implies \frac{|sen(nx)|}{n} \le \frac{1}{n} \le \frac{1}{K} < \varepsilon$$

Vemos que converge uniformemente a cero. Lo importante para esta demostración, y lo que lo será en la mayoría de los casos de convergencia uniforme, es que podemos encontrar un ε_n (en este caso $\frac{1}{n}$) tal que

$$|f_n(x) - f(x)| < \varepsilon_n$$

Proposición (Caracterización de convergencia uniforme). Sea $A \subseteq \mathbb{R}^N$, y sean $f_n : A \longrightarrow \mathbb{R}^M \ \forall n \in \mathbb{N}$. Entonces:

$$\{f_n\} \xrightarrow{c.u} f \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N}: \ m, n \geq n_0 \Rightarrow |f_n(x) - f_m(x)| < \varepsilon \ \forall x \in A$$

Demostración.

 $\implies \{f_n\} \xrightarrow{c.u} f \implies \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N}: \ n \geq n_0 \Rightarrow |f_n(x) - f(x)| < \frac{\varepsilon}{2} \ \forall x \in A.$ Entonces, dados $m, n \geq n_0$ se tiene que:

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f_m(x) - f(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

 \sqsubseteq Sea $x \in A$ fijo. Entonces, es claro que $\{f_n(x)\}\subseteq \mathbb{R}^M$ es una sucesión de Cauchy. Como \mathbb{R}^M es completo, tenemos que $\{f_n(x)\}\xrightarrow{c.p} f(x) \ \forall x \in A$. Ahora, tomando límite cuando $m \to \infty$ en la expresión de la hipótesis, y teniendo en cuenta que el último < se transforma en \le :

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : \ n \ge n_0 \implies |f_n(x) - f(x)| \le \frac{\varepsilon}{2} < \varepsilon \ \forall x \in A$$

Es decir, $\{f_n\} \xrightarrow{c.u} f$.

1.1. El espacio de funciones continuas

Ya sabemos que dado $A \subseteq \mathbb{R}^N$ compacto, el espacio $(\mathcal{C}(A,\mathbb{R}),||\cdot||_{\infty})$ es un espacio normado, donde la norma del máximo o norma uniforme se define así:

$$||f||_{\infty} := \max\{|f(x)| : x \in A\} = \max_{x \in A} |f(x)|$$

Proposición. En el espacio $C(A, \mathbb{R})$, con A compacto, la convergencia de sucesiones equivale a la convergencia uniforme, esto es:

$$\{f_n\} \to f \ en \ \mathcal{C}(A,\mathbb{R}) \iff \{f_n\} \xrightarrow{c.u} f$$

Demostración.

$$||f_n - f||_{\infty} \to 0 \iff m\acute{a}x \ |f_n(x) - f(x)| \to 0 \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : n \ge n_0 \Rightarrow m\acute{a}x \ |f_n(x) - f(x)| < \varepsilon \iff |f_n(x) - f(x)| < \varepsilon \ \forall x \in A \iff \{f_n\} \xrightarrow{c.u} f.$$

Teorema 1.2 ($\mathcal{C}(A, \mathbb{R}^M)$ es completo). En el espacio $\mathcal{C}(A, \mathbb{R})$, con A compacto, también ser sucesión de Cauchy equivale a la convergencia uniforme, esto es:

$$\{f_n\}$$
 es de Cauchy en $\mathcal{C}(A,\mathbb{R}) \iff \{f_n\} \xrightarrow{c.u} f$

Demostraci'on. El razonamiento es análogo al anterior, utilizando esta vez la caracterización de la continuidad uniforme vista anteriormente.

Es importante recalcar que estamos suponiendo que el subconjunto A es compacto. Podemos extender el resultado anterior, considerando el espacio $(\mathcal{C}_B(A,\mathbb{R}^M), \|\cdot\|_{\infty})$, donde:

$$\mathcal{C}_B(A,\mathbb{R}^M) := \{ f : A \longrightarrow \mathbb{R}^M : \text{f es continua y acotada} \}$$

$$||f||_{\infty} := \sup_{x \in A} |f(x)|$$

Proposición. El espacio $C_B(A, \mathbb{R}^M)$ es un espacio de Banach, es decir, es un espacio normado y completo.

Nota. Si A es compacto, entonces $C_B(A, \mathbb{R}^M) = (A, \mathbb{R}^M)$.

Veamos ahora dos teoremas que relacionan el concepto de convergencia uniforme con los conceptos de derivación e integración.

Teorema 1.3. Sean $f, f_n \in \mathcal{C}([a, b], \mathbb{R})$ tales que $\{f_n\} \xrightarrow{c.u} f$. Entonces,

$$\left\{ \int_{a}^{b} f_{n} \right\} \xrightarrow{c.u} \int_{a}^{b} f$$

Equivalentemente, se tiene que:

$$\lim_{n \to \infty} \int_{a}^{b} f_n = \int_{a}^{b} \lim_{n \to \infty} f_n$$

Demostración. Dado $\varepsilon > 0 \ \exists n_0 \in \mathbb{N} : n \geq n_0 \Rightarrow |f_n(x) - f(x)| < \frac{\varepsilon}{b-a} \ \forall x \in [a,b].$ Entonces,

$$\left| \int_{a}^{b} f_{n} - \int_{a}^{b} f \right| = \left| \int_{a}^{b} (f_{n} - f) \right| \le \int_{a}^{b} |f_{n} - f| < \int_{a}^{b} \frac{\varepsilon}{b - a} = \varepsilon$$

Teorema 1.4. Sea $f_n \in C^1((a,b)) \ \forall n \in \mathbb{N}$, y sean $f, g \in C((a,b)$. Supongamos que $f_n(x) \to f(x)$ $\forall x \in (a,b)$, y supongamos también que: $\{f'_n\} \xrightarrow{c.u.} g$ en (a,b). Entonces, $f \in C^1((a,b))$, y f' = g.

Demostración. Elegimos primero un $x_0 \in (a,b)$ fijo. Entonces, $\{f_n(x_0)\} \to f(x_0)$ por hipótesis. Como f'_n es continua, entonces, por el teorema fundamental del cálculo:

$$f_n(x) = f_n(x_0) + \int_{x_0}^x f'_n(t)dt$$

Entonces, como $\{f'_n\} \xrightarrow{c.u.} g$ en el intervalo cerrado de extremos x_0 y x, por el *Teorema 1.3* tenemos que $\{f_n(x)\} \to G(x) \ \forall x \in (a,b)$, donde:

$$G(x) = f(x_0) + \int_{x_0}^x g(t)dt$$

Es decir, $\{f_n(x)\}$ converge puntualmente en (a,b) a G(x). Ahora, G es de clase 1 por ser g(t) continua, y además, tenemos que $G(x_0) = f(x_0)$. Por otro lado, es claro que G' = g.

Pero también
$$\{f_n(x)\} \xrightarrow{c.p} f$$
 por hipótesis, por lo que necesariamente $\forall x \in (a, b)$
 $G(x) = f(x)$, esto es, $f \in \mathcal{C}^1((a, b))$ y $f' = G' = g$.