CHAPTER 1

Computer Abstraction and Technology

By Pattama Longani Collage of arts, media and Technology

Components of a Computer

Opening the Box

Chapter 1 — Computer Abstractions and Technology — 3

Inside the Processor (CPU)

There are 3 components;

- Datapath: performs operations on data
- •Control: commands datapath, memory, and I/O devices.
- Cache memory
 - •Small fast SRAM memory for immediate access to data

Technology Trends

- •Electronics technology continues to evolve
 - Increased capacity and performance
 - Reduced cost

DRAM capacity

Year	Technology	Relative performance/cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit (IC)	900
1995	Very large scale IC (VLSI)	2,400,000
2005	Ultra large scale IC	6,200,000,000

Chapter 1 — Computer Abstractions and Technology — 6

The Computer Revolution

- Progress in computer technology
 - Underpinned by Moore's Law
 - Moore's law is the observation that the number of <u>transistors</u> in a dense <u>integrated circuit</u> doubles approximately every two years.
 - http://en.wikipedia.org/wiki/Moore's_law
 - Moore's Law Inspires Intel Innovation

- **CLOCK RATE** and **POWER** are correlated
- They increased rapidly for decades, and then flattened off recently.
- we have run into the practical <u>power limit for</u> <u>cooling</u> commodity microprocessors.

A Processor

Focus on increase throughput

Use multiprocessor per chip

Inside the Processor

MULTIPROCESSOR

- •To reduce confusion between the words processor and microprocessor, companies refer to processors as "cores,"
 - "quadcore" microprocessor is a chip that contains four processors or four cores.
- •The official plan of record for many companies is to double the number of cores about every two years (Moore's Law)

- programmers need to rewrite their programs to take advantage of multiple processors = harder
 - Program need to be correct.
 - Program need to be divided, so each processor has roughly the same amount to do at the same time.
 - Scheduling
 - Load balancing
 - Time for synchronization
 - Overhead for communication

A Safe Place for Data

- Volatile main memory
 - Loses instructions and data when power off
- Non-volatile secondary memory
 - Magnetic disk
 - Flash memory
 - Optical disk (CDROM, DVD)

Anatomy of a Mouse

- Optical mouse
 - LED illuminates desktop
 - Small low-res camera
 - Basic image processor
 - Looks for x, y movement
 - Buttons & wheel
- Supersedes roller-ball mechanical mouse

Monitor


```
High-level
                      swap(int v[], int k)
                      {int temp;
language
program
                          temp = v[k]:
                          v[k] = v[k+1];
(in C)
                          v[k+1] = temp;
                         Compiler
Assembly
                      swap:
                            muli $2, $5,4
language
program
                             add
                                  $2, $4,$2
                                  $15, 0($2)
(for MIPS)
                                  $16, 4($2)
                                  $16, 0($2)
                                  $15, 4($2)
                             jr.
                                  $31
                        Assembler
```

Binary machine language program (for MIPS)

Levels of Program Code

- High-level language
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability
- Assembly language
 - Textual representation of instructions
- Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data

High-level swap(int v[], int k) { int temp; temp = v[k]; v[k] = v[k+1]; v[k+1] = temp; }

Assembly language program (for MIPS)

Binary machine language program (for MIPS)

Network

VS

Parallel Computing

Networks

- Communication and resource sharing
- Local area network (LAN): Ethernet
 - Within a building
- •Wide area network (WAN: the Internet
- Wireless network: WiFi, Bluetooth

Classes of Computers

Personal Computer

Good performance for single user

Server computers, Data Center

Usually access by network

Large Workload (computing + input-output capacity)

Embedding System Microprocessor designed for one application

The Computer Revolution

- Computer History
- Kids React to Old Computers

The Computer Revolution

- Makes novel applications feasible
 - Computers in automobiles
 - Cell phones
 - Human genome project, Medical
 - World Wide Web
 - Search Engines
 - Military
- Computers are pervasive
- The new bionics that let us run, climb and dance Chapter 1 Computer Abstractions and Technology 23

Worldwide Smart Connected Device Forecast* Market Share by Product Category, 2012-2017

http://www.forbes.com/sites/louiscolumbus/2013/09/12/idc-87-of-connected-devices-by-2017-will-be-tablets-and-smartphones/