Contents 1 Problem Set 1 2 2 Problem Set 2 4 3 Problem Set 3 6 4 Problem Set 4 8 5 Problem Set 5 10 6 Problem Set 6 12

14

7 Problem Set 7

Problem Set 1

Exercise 1.1. Show the following directly from the definitions:

- (a) If G is a monoid, the identity element is unique.
- (b) If G is a group, every element has a unique inverse.

Solution

Exercise 1.2. Let G be a semigroup. Show that G is a group if and only if for all $a, b \in G$, the equations ax = b and ya = b have solutions in G.

Solution

Exercise 1.3. Let G be a group. Show that the following are equivalent:

- (i) G is abelian.
- (ii) $(ab)^2 = a^2b^2$ for all $a, b \in G$.
- (iii) $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$.
- (iv) $(ab)^n = a^n b^n$ for three consecutive integers n and for all $a, b \in G$.

Solution

Exercise 1.4. Let G be a semigroup. G is called *left cancellative* if ab = ac implies b = c (for all $a, b, c \in G$), and is called *right cancellative* if ba = ca implies b = c (again for all $a, b, c \in G$). A semigroup that is both left and right cancellative is just called *cancellative*.

- (a) Show that every finite cancellative semigroup is a group.
- (b) Give an example of an infinite cancellative semigroup that is not a group.

Solution

Exercise 1.5. Let G be a cyclic group. Show that every homomorphic image of G and every subgroup of G is also cyclic.

Solution

Exercise 1.6. Let G be an abelian group of order pq for coprime $p, q \in \mathbb{N}$. Show that if G contains elements of both order p and order q, then G must be cyclic.

Solution

Exercise 1.7. Let $f: G \to H$ be a group homomorphism. Suppose $a \in G$ such that $f(a) \in H$ has finite order. Show that if |a| is finite, then |f(a)| divides |a|.

Solution

Exercise 1.8. Show that every group with a finite number of subgroups is itself finite.

Solution

Exercise 1.9. Let H, K be subgroups of a group G. Show that HK is a subgroup if and only if HK = KH.

Solution

Exercise 2.1. Let G be a group. Show that the following are equivalent:

- (i) |G| is prime
- (ii) G has exactly two subgroups (G and the trivial subgroup).
- (iii) $G \cong \mathbb{Z}_p$ for some prime p.

Solution

Exercise 2.2. Let G be a group, and let H and K subgroups of finite index. Show that if [G:H] and [G:K] are coprime, then G=HK.

Solution

Exercise 2.3. Let H, K, and N be subgroups of a group G. Show that if H < N, then $HK \cap N = H(K \cap N)$.

Solution

Exercise 2.4. Show that every subgroup of index 2 is normal.

Solution

Exercise 2.5. Let $N = \{ \sigma \in S_4 \mid \sigma(4) = 4 \}$. Determine if N is a normal subgroup of S_4 or not.

Exercise 2.6. Let $Q = \langle i, j \mid i^4 = e, i^2 = j^2, iji = j \rangle$ (this is called the quaternion group). Show that every subgroup of Q is normal.

Exercise 3.1. If G is a group, the *center* of G is the group

$$Z(G) = \{ a \in G \mid ax = xa \text{ for all } x \in G \}.$$

Show that the center is a normal subgroup of G.

Solution

Exercise 3.2. Consider the subgroup $N = \langle (123) \rangle$ of S_3 .

- (a) Show that N is a normal subgroup.
- (b) Describe S_3/N .

Solution

Exercise 3.3. Let $f: G \to H$ be a group homomorphism, and set $N = \ker f$. Let K < G be any subgroup.

- (a) Show that $f^{-1}(f(K)) = KN$.
- (b) Show that $f^{-1}(f(K)) = K$ if and only if N < K.

Solution

Exercise 3.4. Consider the subgroups $H = \langle 7 \rangle$ and $K = \langle 42 \rangle$ of \mathbb{Z} . Note that $K \triangleleft H$; describe H/K.

Solution

Exercise 3.5. Let G be a group. Show that if G/Z(G) is cyclic, then G is abelian.

Exercise 4.1. Let $f: G \to H$ be a group homomorphism and suppose $\ker f < N < G$ for some subgroup N. Show that if H is abelian, then N must be normal.

Solution

Exercise 4.2. Consider the set $N \leq S_4$ given by

$$N = \{(1), (12)(34), (13)(24), (14)(23)\}.$$

- (a) Verify that N is a subgroup.
- (b) Show that $N \triangleleft S_4$.
- (c) Conclude that A_4 is not simple.

Solution

Exercise 4.3. Show that A_4 has no subgroup of order 6.

Solution

Exercise 4.4. Show that A_n is the only subgroup of S_n that has index 2 (*Hint: show that an index 2 subgroup must contain a 3-cycle*).

Solution

Exercise 4.5. The dihedral group D_6 and the alternating group A_4 both have 12 elements. Determine if they are isomorphic or not.

Solution

Exercise 5.1. Let G be a group with two normal subgroups, N and H. Suppose that $G = N \rtimes H$.

- (a) Show that $G = H \rtimes N$.
- (b) Show that $G = N \times H$.
- (c) Show that G is abelian if and only if N and H are abelian.

Solution

Exercise 5.2. Let G, H be finite cyclic groups. Show that $G \times H$ is cyclic if and only if |G| and |H| are relatively prime.

Solution

Exercise 5.3. Show that S_3 is **not** a direct product of any of its proper subgroups.

Solution

Exercise 5.4. Show that S_n is a semidirect product.

Solution

Exercise 5.5. Show that a free abelian group is a free group if and only if it is cyclic.

Exercise 5.6. Show that the direct sum of free abelian groups is a free abelian group (Note that this is not true for direct products).

Exercise 6.1. Determine all of the Sylow 3-subgroups of S_5 .

Solution

Exercise 6.2. Show that there is no simple group of order 200 (Hint: Look for a normal Sylow *p*-subgroup).

Solution

Exercise 6.3. Let G be a group of order p^nq for some primes p > q. Show that G contains a unique normal subgroup of index q.

Solution

Exercise 6.4. Show that every group of order p^2q for distinct primes p,q is solvable.

Solution

Exercise 6.5. Let G be a group, $K \leq G$, and $H \subseteq G$. Show that if H and K are solvable, then HK is solvable as well.

Solution

Exercise 6.6. Use the Sylow theorems to show that every group of order 72 is solvable.

Solution

Exercise 7.1. An element of a ring is called **nilpotent** if $a^n = 0$ for some natural number n. Show that the set of nilpotent elements of a commutative ring form an ideal.

Solution

Exercise 7.2. Let R be a commutative ring, and $I \subset R$ an ideal. Show that the **radical** of I, defined by

$$\sqrt{I} = \{ x \in R \mid x^n \in I \text{ for some } n \in \mathbb{N} \}$$

is an ideal.

Solution

Exercise 7.3. Let R be a commutative ring, and let $X \subset R$ be a nonempty subset. Show that the **annihilator** of X, defined by

$$Ann(X) = \{ r \in R \mid rx = 0 \text{ for all } x \in X \}$$

is an ideal.

Solution

Exercise 7.4. Let $f: R \to S$ be a ring homomorphism, and let $I \subset R$ and $J \subset S$ be ideals.

- (a) Show that $f^{-1}(J)$ is always an ideal that contains ker f.
- (b) Show that if f is surjective, then f(I) is an ideal in S.

Acknowledgements