

Purpose of the Project:

• Create a dashboard with web based interactive charts, data, and maps using the database created in the previous project of ETL.

- Data Sources:
 - California department of public health
 - https://data.chhs.ca.gov/dataset/vaccine-progress-dashboard
 - World Population Review
 - https://worldpopulationreview.com/us-counties/states/ca
 - **—** Github:
 - https://github.com/codeforgermany/click_that_hood/blob/main/public/data/california-counties.geojson

- Data Extraction:
 - Web scraping
 - Downloading datafiles

```
# California Population data by county (web scrapping)
# setting up splinter
executable_path = {'executable_path': ChromeDriverManager().install()}
browser = Browser('chrome', **executable_path, headless=False)
url = 'https://worldpopulationreview.com/us-counties/states/ca'
browser.visit(url)
table = pd.read html(url)
county population = table[0]
# saving the datafile as a csv file
county_population.to_csv('./data/county_population2021_data.csv', index = False)
county_population.head()
```

- Data Processing:
 - Python Pandas

```
# California COVID-19 cases and tests by county downloaded from
# https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state

cases_data = pd.read_csv("./data/statewide_covid_19_cases_by_county.csv", encoding = 'utf8')

cases_data = cases_data.query('area !="All CA Counties"')
    cases_data = cases_data.query('area !="All CA and Non-CA Counties"')
    cases_data = cases_data.query('area !="Outside California"')
    cases_data = cases_data.query('area !="Unknown'')
    cases_data = cases_data.query('area !="California"')
    cases_data = cases_data.query('area_type =="County"')
    cases_data = cases_data.dropna()
    cases_data
```

```
's cumulative_total_tests positive_tests cumulative
# Selecting only the residence county as reported in the data (elemination method is used)
ca_vaccin_data = csv_data.query('county !="All CA Counties"')
                                                                                                                                            30087
                                                                                                                                                        65.0
ca vaccin data = ca vaccin data.query('county !="All CA and Non-CA Counties"')
ca vaccin data = ca vaccin data.query('county !="Outside California"')
                                                                                                                                            31392
                                                                                                                                                        78.0
ca_vaccin_data = ca_vaccin_data.query('county !="Unknown"')
ca_vaccin_data = ca_vaccin_data.query('county !="California"')
# getting new dataframe for total vaccination (fully, partially vaccinated) by counties
                                                                                                                                            32731
                                                                                                                                                        38.0
county_vac_data = pd.DataFrame(ca_vaccin_data, columns = ['county', 'administered_date',\
                                                      'partially vaccinated', 'fully vaccinated'])
county vac data['month'] = pd.DatetimeIndex(county vac data['administered date']).month name()
# Creating a new dataframe with months as variable to be utilized for ploting by months
county vac data cleaned = pd.DataFrame(county vac data, columns=['county', 'month','administered date','fully vaccinated','r
county_vac_data_cleaned.to_csv('./data/county_vac_data_cleaned.csv', index = False)
county vac data cleaned
```

- Creating
 Database
 (Relational):
 - ERD, SQL (Postgres, PgAdmin)

```
CA Covid database
    fips INT FK - county_fips.fips
    population FLOAT
                                                                                 county fips
    fips INT PK
                                                                                                                          county cases data
    date DATE
    area VARCHAR FK - county_fips.county
                                                                                                                                       DATE
    total_tests FLOAT
                                                                                   county_pop_fips
                                                                                                                          area
                                                                                                                                   VARCHAR
    positive_tests FLOAT
                                                                                                                                    VARCHAR
                                                                                                                          month
                                                                                                                          cases
                                                                                                                                      FLOAT
                                                                                             FLOAT
                                                                                                                          deaths
                                                                                                                                      FLOAT
    date DATE
                                                                                              FLOAT
    area VARCHAR FK - county_fips.county
    deaths FLOAT
                                                                                                                          county tests data
                                                                                    county_vac_data
                                                                                                                                        DATE
                                                                                    county
                                                                                                                                     VARCHAR
   month VARCHAR
                                                                                                 VARCHAR
                                                                                    month
                                                                                                                          total_tests
                                                                                                                                       FLOAT
    administered_date DATE
                                                                                    administered date
    fully vaccinated INT
                                                                                                                          positive_tests FLOAT
                                                                                    fully_vaccinated
                                                                                    partially_vaccinated
```

- Creating
 Database
 (Relational):
 - ERD, SQL (Postgres, PgAdmin)

- Loading Database:
 - SQLAlchemy

```
from sqlalchemy import create_engine
engine = create_engine(f'postgresql://{username}:{password}@localhost:5432/county_covid_database')
connection = engine.connect()

# Loading combined dataset (using sqL view 'county_wise_combined_data')

combined_data = pd.read_sql("SELECT * from county_wise_combined_data", connection)
combined_data.to_csv('./data/combined_data.csv', index = False)
combined_data.head()
combined_data["percentFullVax"] = round(combined_data['total_full']/combined_data['population'] *100, 2)

combined_data["percentCases"] = round(combined_data['cases']/combined_data['population'] *100, 2)

combined_data["percentDeaths"] = round(combined_data['deaths']/combined_data['population'] *100, 2)

combined_data
```

county	population	tests	positive	cases	deaths	total_full	total_partial	percentFullVax	percentCases	percentDeaths
Alameda	1680480.0	3590879.0	130133.0	107950.0	1230.0	1151524	1128245	68.52	6.42	0.07
Alpine	1209.0	2151.0	46.0	98.0	0.0	705	790	58.31	8.11	0.00
Amado	r 40446.0	149585.0	5485.0	4745.0	58.0	17826	19639	44.07	11.73	0.14
Butte	196880.0	289588.0	18739.0	17542.0	228.0	96451	100901	48.99	8.91	0.12
Calavera	46319.0	55933.0	3768.0	3270.0	65.0	20647	21932	44.58	7.06	0.14
Colusa	21805.0	23090.0	2199.0	2343.0	16.0	10478	11059	48.05	10.75	0.07
Contra Costa	1159540.0	2141866.0	102018.0	89960.0	882.0	804166	805267	69.35	7.76	0.08
Del Norte	27956.0	127754.0	3646.0	3210.0	29.0	10578	11220	37.84	11.48	0.10
El Dorado	197037.0	245215.0	14841.0	14052.0	124.0	100822	104156	51.17	7.13	0.06
Fresno	1013400.0	1605085.0	144932.0	121531.0	1857.0	477528	517126	47.12	11.99	0.18
Gleni	29245.0	31724.0	3152.0	3038.0	24.0	12613	12727	43.13	10.39	0.08
Humbold	13/1960	103705 N	8638 0	7500 O	50 N	75301	76/11	56 19	5 50	0.04

- Loading Data:
 - GeoJson

```
import json
  with open("./data/countyGeoJson.js") as f:
       geodata = json.load(f)
4 with open("./data/combined_data.js") as f:
       data = json.load(f)
1 for x in data:
       for y in geodata["features"]:
           if y["properties"]["name"] == x["county"]:
              y["properties"]["data"] = x
5 countyGeoData = geodata
6 countyGeoData
'type': 'FeatureCollection',
'features': [{'type': 'Feature',
  'properties': {'name': 'Alameda',
   'cartodb_id': 1,
  'created at': '2015-07-04T21:04:58Z',
   'updated_at': '2015-07-04T21:04:58Z',
   'data': {'county': 'Alameda',
    'population': 1680480.0,
    'tests': 3590879.0,
    'positive': 130133.0,
    'cases': 107950.0,
    'deaths': 1230.0,
    'total full': 1151524,
    'total partial': 1128245,
    'percentFullVax': 68.52,
    'percentCases': 6.42,
    'percentDeaths': 0.07}},
  'geometry': {'type': 'MultiPolygon',
    coordinates': [[[[-122.312934, 37.897333],
with open('countyGeoData.js', 'w') as fp:
       json.dump(countyGeoData, fp, sort keys=False, indent=4)
```

- Data Visualization:
 - Javascript,
 - Plotly,
 - Leaflets
 - HTML, CSS

Dashboard and Data Visualization:

- Dashboard:
 - Javascript
 - Plotly
 - Html/CSS
 - Mapping
 - Leaflets

https://tsubedy.github.io/Project_3/

Dashboard and Data Visualization:

- Dashboard:
 - Javascript
 - Plotly
 - Html/CSS
 - Mapping
 - Leaflets

Dashboard and Data Visualization:

• Dashboard:

- Javascript
- Plotly
- Html/ CSS
- Mapping
- Leaflets

Limitations:

- The project is a part of the assignments from the class of Data Analytics Bootcamp and is limited to demonstrate the technical skills learned so far in the class.
- Some of data used for this project are not up to date as they were downloaded as csv files from the source sites.
- Data analyses are not included as it is beyond the scope of this project.

Questions:

THANK YOU!!!