POLITECHNIKA WARSZAWSKA

Wydział Matematyki i Nauk Informacyjnych

METODY DATA SCIENCE

Moduł pozyskiwania danych

Autorzy:

Piotr Izert Przemysław Rząd Anna Zawadzka

1 Wstęp

Niniejszy projekt ma na celu wykonanie uczącego się systemu, który na podstawie pobieranych danych po odpowiednim ich przetworzeniu przygotowuje analizę w postaci prognozowania oraz klasyfikacji.

Projekt polega na zebraniu oraz odpowiednim przetworzeniu danych zawierających informacje o wypadkach drogowych na terenie Wielkiej Brytanii, uczestniczących w nich pojazdach oraz poszkodowanych. Używane będą także informacje o prędkościach przejazdu samochodów na określonych odcinkach dróg.

Wynikiem przetworzenia danych będą prognozy o możliwych wypadkach w zależności od różnych czynników oraz lokalizacji, a także klasyfikacja na bieżąco napływających danych o wypadkach ze względu na ich skalę.

Dzięki takiej analizie i prognozowaniu możliwe będzie skoordynowanie rozmieszczenia patroli policji zgodnie z przewidywaniami, a także dzięki klasyfikacji wypadków na poważne i mniej groźne, wiadomo będzie, do którego zdarzenia należy wysłać więcej karetek pogotowia, bądź innych służb porządkowych, co może znacznie usprawnić reagowanie na takie zdarzenia.

2 Dane

Źródłem danych są zbiory udostepnione przez ministerstwo transportu rządu Wielkiej Brytanii na stronach internetowych:

- https://data.gov.uk/dataset/road-accidents-safety-data
- https://data.gov.uk/dataset/dft-eng-srn-routes-journey-times

Dane obejmują informacje na temat wypadków drogowych na terenie Wielkiej Brytanii oraz średnich prędkościach przejazdu samochodów na danych odcinkach dróg w latach 2009-2014. Przechowywane są w plikach o formacie CSV. Dane pobierane są jako zamknięty zbiór rekordów, natomiast wykorzystane będą jako dane napływające w czasie rzeczywistym.

Dane na temat wypadków zawierają 4 kategorie plików:

- Wypadki
- Poszkodowani
- Pojazdy
- Marki pojazdów

Poniższa tabela prezentuje liczbę zmiennych (wszystkich, niezależnych i zależnych) w plikach z poszczególnych kategorii:

	Wypadki	Pojazdy	Poszkodowani	Marki pojazdów
Wszystkie	32	21	14	24
Niezależne	27	21	14	23
Zależne	5	0	0	1

Pliki z danymi o wypadkach zawierają następujące zmienne zależne:

- Dzień tygodnia
- Długość geograficzna w formacie OSGR
- Szerokość geograficzna w formacie OSGR
- Dystrykt
- Władze lokalne w formacie kodu ONS

Dane zawierające informacje o pojazdach wraz z markami i modelami zawierają 9 zmiennych, w tym jedną zmienną zależną - rok, w którym doszło do wypadku z udziałem danego pojazdu. Informację tę można uzyskać bezpośrednio z indentyfikatora wypadku.

Poniższa tabela reprezentuje liczbę rekordów w plikach danych kategorii w każdym roku:

	Wypadki	Pojazdy	Poszkodowani	Marki pojazdów
2009	163555	298688	222147	182322
2010	154415	281402	208649	180368
2011	151475	276156	203951	180617
2012	145572	265878	195724	173860
2013	138661	252914	183671	171626
2014	146323	268528	194478	182354

Łączny rozmiar tych danych (po 4 pliki dla każdego roku) to 377 MB.

Dane zawierające informacje o prędkościach przejazdu na określonych odcinkach dróg podzielone są ze względu na rok i miesiąc, łącznie 72 pliki CSV. Średnio rozmiar każdego pliku to 0.8 GB, zatem rozmiar całego zestawu danych zawierających informacje o prędkościach przejazdów to 57.6 GB.

Dane te zawierają jędną zmienną zależną, jest to opis odcinka drogi (wskazanie skrzyżowań, między którymi znajduje się określony odcinek drogi).

W projekcie używane będą również tabele słownikowe, których rozmiar to 447 KB. Będą one wczytywane jednorazowo i nie będą podlegać zmianie w trakcie działania systemu.

3 Moduł pozyskiwania danych

Użyte narzędzia:

- maszyna wirtualna Hortonworks Sandbox (HDP 2.4)
- Flume
- Spark
- HDFS

Rysunek 1: Schemat modułu pozyskiwania danych

W katalogu rawData na maszynie wirtualnej umieszczone zostaną pliki w formacie CSV pięciu kategorii: wypadki, samochody, marki i modele samochodów, ofiary oraz średnie prędkości na poszczególnych odcinkach dróg. Dane o wypadkach, ofiarach, samochodach oraz ich markach i modelach pogrupowane są w pliki ze względu na rok, natomiast dla danych o prędkościach istnieją osobne pliki dla każdego miesiąca w danym roku.

Następnie za pomocą skryptu napisanego w języku Python zostaną połączone pliki z danymi o wypadkach, ofiarach, samochodach oraz ich markach i modelach dla każdego roku (za pomocą instrukcji SQL). Pliki wynikowe (osobne dla każdego roku) będą zawierać dane o wypadkach, samochodach w nich uczestniczących wraz z informacją o markach i modelach oraz ofiarach tychże wypadków.

Do każdego wypadku przyporządkowanych jest zawsze kilka samochodów, natomiast nie dla wszystkich pojazdów istnieje informacja o ofiarach (poszkodowani przyporządkowani są do konkretnego pojazdu) oraz o marce i modelu.

Nowo utworzone pliki zostaną automatycznie skopiowane do katalogu spoolDir1 ($spooling\ directory$), który jest specjalnym katalogiem monitorowanym przez Flume'a. Dane o prędkościach przejazdów będą automatycznie umieszczane w katalogu spoolDir2 bez żadnych zmian. Jeżeli w katalogach spooling pojawiają się w nim nowe pliki, Flume rozpoczyna ich przetwarzanie.

Konfiguracja Flume'a zakłada istnienie dwóch źródeł (source), którymi są spoolDir1 i spoolDir2, oraz czterech ujść (sink), po dwa dla HDFS'a i dla Spark'a, odpowiednio dla skonsolidowanych danych o wypadkach oraz dla danych o prędkościach przejazdów. Ujścia skierowane do HDFS'a odwoływać się będą do katalogów Accidents oraz Speeds, natomiast ujścia do Spark'a odwołują się do odpowiedniego Job'a, który przetworzy dane w sposób strumieniowy.

W systemie HDFS istnieje dodatkowo katalog *Dictionaries*, w którym umieszczone są pliki słownikowe, wykorzystywane w dalszych etapach projektu. Pliki w tym katalogu umieszczone będą ręcznie i jednorazowo.

Dane ze wszystkich katalogów w HDFS (*Accidents, Speeds, Dictionaries*) pobierane będą przez Job'a (Spark) w sposób wsadowy i używane do generowania prognoz.

Przetwarzanie strumieniowe także korzystać będzie z danych znajdujących się w HDFS w katalogu Dictionaries i będzie realizować zadanie klasyfikacji.

4 Zadania modułu analitycznego

Moduł analityczny zostanie zrealizowany za pomocą oprogramowania Spark i będzie korzystał z danych przygotowanych przez moduł pozyskiwania danych. Zadaniem modułu analitycznego będzie:

- generowanie okresowych prognoz liczby wypadków w danym rejonie
- przewidywanie w trybie on-line liczby ofiar i rodzaju ich obrażeń na podstawie danych o zdarzeniu drogowym

W celu generacji okresowych prognoz, dane będą przetwarzane w trybie wsadowym. Do generacji prognozy np. na konkretny tydzień zostaną użyte dane z całego wcześniejszego okresu od początku dostępności danych.

Odpowiadanie na pytanie o stopień obrażeń uczestników wypadku zrealizowane zostanie przez przetwarzanie napływających danych w symulowanym trybie strumieniowym. System będzie miał do dyspozycji informacje o analizowanym zdarzeniu drogowym z wyjątkiem liczby ofiar i ich obrażeń oraz pełną informacje o wcześniej przetworzonych zdarzeniach.