Foundations of Machine Learning

By

Dr Ravi Prakash Verma Professor

Department of CSAI

ABESIT

Glimpse

- Total Duration: 39+ Hours (13 Days)
- Mode: Hands-on coding in Python (NumPy, Pandas, Scikit-learn, Matplotlib, Seaborn).
- Target Audience: Students
- Prerequisites: Python programming, pandas, mathplot, numpy and fundamental statistics knowledge.

Objectives

- By the end of this workshop, participants will:
 - Understand theoretical concepts behind key ML models.
 - Implement models using Python and Scikit-learn.
 - Analyze real-world datasets for predictive modeling.
 - Optimize models using feature selection and hyperparameter tuning.
 - **Evaluate models using appropriate performance metrics (R², RMSE, MAE, ROC-AUC, etc.).**

Workshop Structure & Duration

Day	Topics Covered
Day 1	Introduction to ML & Data Preprocessing
Day 2	Linear Regression - Concept & Mathematics
Day 3	Linear Regression in Python
Day 4	Model Performance Metrics (R², RMSE, MAE, MSE)
Day 5	Confusion Matrix & Model Performance
Day 6	Logistic Regression - Concept & Mathematics
Day 7	Project on Logistic Regression in Python

Workshop Structure & Duration

Day 8	Decision Trees - Concept & Theory
Day 9	Project on Decision Trees in Python
Day 10	Support Vector Machines (SVM) - Linear SVM
Day 11	Support Vector Machines (SVM) - Non-Linear SVM
Day 12	Project on Linear & Non-Linear SVM in Python
Day 13	Future Learning Path (Deep Learning, NLP, etc.)

- Day 1: Introduction & Data Preprocessing (3 Hours)
- Theory:
 - Overview of Supervised vs. Unsupervised Learning
 - Importance of Feature Engineering
 - Handling missing values, outliers, and categorical variables
 - Data normalization & standardization
- Hands-on Coding:
 - Importing datasets using Pandas
 - Handling missing data using mean/median imputation
- Feature scaling using MinMaxScaler & StandardScaler

Day 2: Linear Regression - Concept & Mathematics (3 Hours)

Theory:

- Introduction to Regression Problems
- Mathematical formulation of Simple & Multiple Linear Regression
- Understanding Cost Function & Gradient Descent

- Implementing Linear Regression from scratch using NumPy
- Visualizing best-fit line using Matplotlib

- Day 3: Linear Regression in Python (3 Hours)
- Theory:
 - Feature Selection & Model Complexity
 - Handling Multicollinearity using VIF
- Hands-on Coding:
 - Using Scikit-learn's LinearRegression
- Implementing Feature Selection Techniques

- Day 4: Model Performance Metrics (R², RMSE, MAE, MSE) (3 Hours)
- Theory:
- Understanding R² (Coefficient of Determination)
- Root Mean Squared Error (RMSE) vs. Mean Absolute Error (MAE)
- Importance of Adjusted R² for multiple regression
- Hands-on Coding:
- Implementing R², RMSE, MAE, and MSE in Python
- Comparing models using different metrics
- Confusion Matrix & Model Performance
 - o True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN)
 - o Precision, Recall, and F1-Score
 - Visual Representation of Confusion Matrix
 - Code Implementation for Confusion Matrix
- ROC & AUC Score
 - Understanding ROC Curve
 - Computing AUC Score for Model Performance

- Day 5: Confusion Matrix & Model Performance
- . Confusion Matrix & Model Performance
 - True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN)
 - Precision, Recall, and F1-Score
 - Visual Representation of Confusion Matrix
 - Code Implementation for Confusion Matrix
- . ROC & AUC Score
 - . Understanding ROC Curve
 - Computing AUC Score for Model Performance

- Day 6: Logistic Regression Concept & Mathematics (3 Hours)
- Theory:
 - Difference between Regression & Classification
 - Sigmoid Function & Decision Boundary
- . Understanding Cost Function for Logistic Regression
- Hands-on Coding:
 - Implementing Sigmoid Function from scratch
 - Plotting decision boundaries for classification

- Day 7: Project on Logistic Regression in Python (3 Hours)
- Theory:
 - Confusion Matrix, Precision, Recall, F1-Score
 - Introduction to ROC & AUC for classification
- Hands-on Coding:
 - Implementing Logistic Regression using Scikit-learn
- Plotting ROC Curve & AUC Score

Day 8: Decision Trees - Concept & Theory (3 Hours)

Theory:

- Understanding Entropy, Information Gain, and Gini Impurity
- Overfitting in Decision Trees
- Pruning Techniques

- Implementing Decision Tree from scratch
- Visualizing Tree Structure using Graphviz

Day 9: Project on Decision Trees in Python (3 Hours)

Theory:

- Feature Importance in Decision Trees
- Hyperparameter Tuning using GridSearchCV

- . Implementing DecisionTreeClassifier using Scikit-learn
- Optimizing decision trees for better accuracy

Day 10: Linear SVM - Concept & Theory (3 Hours)

Theory:

- Introduction to Support Vector Machines (SVM)
- Understanding Hyperplanes & Support Vectors
- Hard Margin vs. Soft Margin SVM

- Implementing Linear SVM using Scikit-learn
- Visualizing decision boundaries in 2D classification problems

Day 11: Non-Linear SVM - Concept & Theory (3 Hours)

• Theory:

- Understanding Kernel Trick for Non-Linear Classification
- . Types of Kernels: Polynomial, Gaussian (RBF), Sigmoid
- Tuning SVM Parameters (C, Gamma, Kernel Choice)

- Implementing Non-Linear SVM using RBF Kernel
- . Visualizing Complex Decision Boundaries

 Day 12: Project on Linear & Non-Linear SVM in Python (3 Hours)

Theory:

- Comparing Linear vs. Non-Linear SVM Performance
- Choosing the Right Kernel for Different Datasets

- . Training Linear and Non-Linear SVM models
- . Hyperparameter tuning using GridSearchCV

- Day 13: Future Learning Path
- Theoretical discussion on
 - (Deep Learning, NLP, etc.)

Learning Outcomes

- By the end of this workshop, participants will:
 - Master Linear Regression, Logistic Regression, Decision Trees, and SVM.
 - Implement both Linear & Non-Linear SVM with different kernels.
 - Optimize models using feature selection & hyperparameter tuning.
 - Evaluate models using R², RMSE, MAE, ROC-AUC, and more.