Régression logistique

Michel Donnet

Régression logistique binaire: principe

Régression logistique binaire: idée

Régression logistique: fonction d'estimation

Fonction sigmoïde

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Caractérisiques:

- ► Comprise entre 0 et $1 \Rightarrow$ probabilité!
- ▶ Point d'inflexion à 0.5

Idée:

établir un seuil afin de prédire le label Y

Entraînement du modèle

But:

maximiser la probabilité P(Y = y|X) pour y la valeur d'entrainement du label.

Mais on a la descente en gradient...

- ⇒ transformer le problème en problème de minimisation !
- \Rightarrow Negative Logarithm Likelihood

Régression logistique multinomiale: principe

Généralisation de la fonction sigmoïde en fonction softmax

$$P(Y = k|X) = \frac{1}{1 + e - X\theta^{T}} \rightarrow \frac{e^{X\theta'_{k}}}{\sum_{i}^{N} e^{X\theta'_{i}}}$$

Entraînement du modèle

Même principe que pour la régression logistique binaire