Programming and Data Structures Programming Project 3: Binary Search Trees

Project Objectives

At the end of this project, students should be able to:

- 1. Implement the generic data structure for Binary Search Tree
- 2. Instantiate the generic data structures in a test program
- 3. Use the BST data structure to store a country database
- 4. Invoke different methods on the BST data structure to determine specific characteristics of the constructed BST
- 5. Determine the performance of the operations on the BST data structure

Project Description

1. Create the generic class **BST** that has the following UML diagram.

BST <e comparable<e="" extends=""></e>	Generic Binary Search Tree Class		
-root: TreeNode	Reference to the first node in the BST		
-size: int	Number of nodes in the BST		
+BST()	Creates an empty BST by initializing root		
	to null and size to 0		
+BST(ArrayList <e> list)</e>	Creates an empty BST and insert the		
	elements from list in the BST		
+size(): int	Returns the value of size		
+isEmpty(): boolean	Returns true is the BST is empty		
+clear(): void	Reset root to null and size to 0		
+search(E item): int	Returns the number of iterations to		
	determine if item is in the BST, or not		
+insert(E item): int	Returns the number of iterations to insert		
	item in the BST or find it in the BST		
+delete(E item): int	Returns the number of iterations to delete		
	item from the BST if item is found		
+leafNodes(): int	Recursive method that returns the number		
	of leaf nodes in the BST		
+height: int	Recursive method that returns the height		
	of the tree		
+isBalanced(): boolean	Recursive method that returns true if the		
	BST is balanced, or false otherwise		

+preorder(): void	Recursive method that prints the values of the nodes in the BST in preorder
+postorder(): void	Recursive method that prints the values of the nodes in the BST in postorder
+inorder(): void	Recursive method that prints the values of the nodes in the BST in inorder

- 2. Determine the time complexity of all the methods in class **BST** and insert it as a comment before the methods' header.
- 3. Create a class Country to store information about a country. The class has three data members: code (two letters), name of the country, and the area in square kilometers. Add appropriate constructors, getters, and setters for the class. The class should implement the interface Comparable for type Country and therefore you must include a definition for the method compareTo() to compare two countries based on their names.
- 4. Create a test program named **CountryDB** to do the following:
 - a. Declare, outside the main method, three static arrays of type int as follows:
 static int[][] performance_insert = new int[2][228];
 static int[][] performance_search = new int[2][10];
 static int[][] performance delete = new int[2][10];
 - b. In the main method, create an array list countryList of type Country. Fill in countryList with data loaded from the file "countries.txt". The provided text file contains the international country database maintained by the US Census Bureau.
 - c. Instantiate the class BST for the type Country and name the class instanceCountryBST.
 - d. Insert the elements from countryList into countryBST using the method insert() and save the number of iterations returned by insert(), for each element, in the array performance insert[0].

- e. Display the nodes of **countryBST** using the **inorder** traversal. Note that the list of countries is displayed with country names sorted alphabetically because the field **name** is used for the comparison in the method **compareTo()**.
- f. Display the number of leaf nodes and the height of **countryBST**. Display a message indicating if **countryBST** is balanced or not.
- g. Generate ten (10) random integers between 0 and countryList.size()-1.
 Search, in countryBST, for the ten random countries that you get at the ten random indices in countryList. Save the number of iterations returned by search(), for each country, in performance_search[0]. Delete the same ten random countries from countryBST and save the number of iterations returned by delete() in performance delete[0].
- h. Shuffle the array list countryList and clear countryBST. Insert the elements from countryList into countryBST and save the number of iterations returned by the method insert() in the array performance insert[1].
- Display the nodes of countryBST using the inorder traversal. Note that the list
 of countries is displayed with country names sorted alphabetically.
- j. Display the number of leaf nodes and the height of countryBST. Display a message indicating if countryBST is balanced or not.
- k. Repeat step g using the new countryBST. Save the number of iterations returned by search() and delete() in performance_search[1] and performance_delete[1] respectively.
- Compare the results obtained for step i to the results for step f. Discuss the results. Add your discussion as a comment after the main method.
- m. Display the content of the three arrays **performance_search**, **performance_delete**, and 10 randomly selected values from **performance_insert** as shown in the sample run of the program. Discuss the results obtained for each one of the BST operations: **insert()**, **search()**, and **delete()**. Add your discussion as a comment after the main method.

5. Submit the following files on coursesite: **Country.java**, **BST.java**, and **CountryDB.java**. Do not forget to include Javadoc comments in all your classes.

	Sample Run	
Sorted (Country List	
Code	Name	Area (sq.Km)
AF	Afghanistan	652230
AL	Albania	27398
AG	Algeria	2381741
AQ	American Samoa	198
AN	Andorra	468
Α0	Angola	1246700
AV	Anguilla	91
AC	Antigua and Barbuda	443
AR	Argentina	2736690
AM	Armenia	28203
AA	Aruba	180
AS	Australia	7682300
AU	Austria	82445
AJ BF	Azerbaijan Rabamaa Tha	82629
ВΓ	Bahamas, The	10010
•		
•		
UK	United Kingdom	241930
US	United States	9148655
UY	Uruguay	175015
UZ	Uzbekistan	425400
NH	Vanuatu	12189
VE	Venezuela	882050
VM	Vietnam	310070
VI	Virgin Islands, British	151
VQ	Virgin Islands, U.S.	348
WF	Wallis and Futuna	142
WE	West Bank	5640
WI	Western Sahara	266000
YM	Yemen	527968
ZA	Zambia	743398
ZI	Zimbabwe	386847

Number of leaf Nodes: 1 Height of the tree: 228 Is the tree balanced? false

Shuffled Country List						
Code	Name	Area (sq.Km)				
AF	Afghanistan	652230				
AL	Albania	27398				
AG	Algeria	2381741				
AQ	American Samoa	198				
AN	Andorra	468				
A0	Angola	1246700				
AV	Anguilla	91				
AC	Antigua and Barbuda	443				
AR	Argentina	2736690				
AM	Armenia	28203				
AA	Aruba	180				
AS	Australia	7682300				
AU	Austria	82445				
AJ	Azerbaijan	82629				
BF	Bahamas, The	10010				
•						
•						
·	United Kinndon	241020				
UK	United Kingdom	241930				
US	United States	9148655				
UY	Uruguay	175015				
UZ	Uzbekistan	425400				
NH	Vanuatu	12189				
VE	Venezuela	882050				
VM VI	Vietnam	310070				
	Virgin Islands, British	151				
VQ	Virgin Islands, U.S.	348				
WF	Wallis and Futuna	142				
WE	West Bank	5640				
WI	Western Sahara	266000				
YM ZA	Yemen	527968				
ZA	Zambia Zimbabyo	743398				
ZI	Zimbabwe	386847				

Number of leaf Nodes: 78 Height of the tree: 14 Is the tree balanced? false

Sorted List			Shuffled List		
Insert	Search	Delete	Insert	Search	Delete
186	24	24	11	11	11
101	77	77	7	9	9
138	175	175	7	11	11
121	150	150	8	10	10
166	27	27	9	10	10
141	181	181	10	9	9
108	79	79	10	12	12
26	8	8	5	10	10
4	134	134	2	5	5
19	164	164	3	11	11