Utilizei a estratégia de seleção por torneio, que é uma abordagem onde vários indivíduos são selecionados aleatoriamente da população atual, e os dois com melhor aptidão (fitness) são escolhidos como pais para a reprodução.

Algoritmo	Programação Dinâmica (PD)	GRASP	Algoritmo Genético (AG)
Tempo Médio de Execução (s)	0.8038	0.0031	0.2393
Desvio Padrão do Tempo de Execução (s)	0.6847	0.001	0.0431
Valor Médio da Mochila	57504.8	51438.5	12.8
Desvio Padrão do Valor da Mochila	0.02	0.0	0.4
Tempo Total de Execução (s)	4.0792	0.0151	2.3942

Programação Dinâmica (DP):

<u>Tempo Médio de Execução (s):</u> A média do tempo de execução para o algoritmo de Programação Dinâmica é de aproximadamente 0.8038 segundos, com um desvio padrão de 0.6847 segundos. Isso indica que o DP é um algoritmo mais lento em comparação com os outros dois.

<u>Valor Médio da Mochila:</u> O valor médio da mochila encontrado pelo DP é alto, cerca de 57504.8, indicando que ele é eficaz em encontrar soluções de alto valor.

<u>Tempo Total de Execução (s):</u> O tempo total de execução para todas as instâncias foi de 4.0792 segundos, o que é um indicativo de que o DP consome mais tempo de CPU.

GRASP (Greedy Randomized Adaptive Search Procedure):

<u>Tempo Médio de Execução (s):</u> A média do tempo de execução para o algoritmo GRASP é extremamente baixa, cerca de 0.0031 segundos, com um desvio padrão muito pequeno de 0.0010 segundos. Isso mostra que o GRASP é altamente eficiente em termos de tempo.

<u>Valor Médio da Mochila:</u> No entanto, o valor médio da mochila encontrado pelo GRASP é menor, em torno de 51438.5, em comparação com o DP, indicando que ele pode não encontrar soluções tão ótimas em termos de valor.

<u>Tempo Total de Execução (s):</u> O tempo total de execução para todas as instâncias é extremamente baixo, apenas 0.0151 segundos.

Algoritmo Genético (GA):

Tempo Médio de Execução (s): O GA possui um tempo de execução médio de cerca de 0.2393 segundos, com um desvio padrão de 0.0431 segundos. Embora seja mais rápido do que o DP, é mais lento do que o GRASP.

<u>Valor Médio da Mochila:</u> O valor médio da mochila encontrado pelo GA é significativamente menor, apenas 12.8, em comparação com os outros dois algoritmos. Isso indica que o GA pode ter dificuldade em encontrar soluções de alto valor.

<u>Desvio Padrão do Valor da Mochila:</u> O GA possui um desvio padrão de 0.4 em relação ao valor da mochila, o que sugere que suas soluções podem variar consideravelmente.

<u>Tempo Total de Execução (s):</u> O tempo total de execução para todas as instâncias é de 2.3942 segundos, o que é intermediário em relação ao DP e ao GRASP.

Em resumo, a escolha do algoritmo depende dos requisitos específicos do problema. O DP é lento, mas eficaz em encontrar soluções de alto valor. O GRASP é muito rápido, mas pode produzir soluções com um valor um pouco menor. O GA é intermediário em termos de tempo e tende a encontrar soluções de valor mais baixo. A decisão deve ser baseada na importância relativa do tempo de execução e do valor da mochila para a aplicação específica.