Каноническое уравнение эллипса $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1,\;a,b>0$

Вершины эллипса $(\pm a,0),\ (0,\pm b)$

Фокусное расстояние $c=\sqrt{a^2+b^2}$

 $oldsymbol{\Phi}$ окусы эллипса $F_1(-c,0), F_2(c,0)$

Фокальный радиус - для любой точки эллипса (например M) длины отрезков $|MF_1|$ и $|MF_2|$ называются фокальными радиусами точки M

 \mathbf{c} Эксцентриситет эллипса $e=rac{c}{a}$, для любого эллипса $0\leq e<1$

Директрисы эллипса прямые с уравнениями $x=\pm rac{a}{e}$

Лемма Точка M(x,y) принадлежит эллипсу \iff её фокальные радиусы равны $r_1=a-ex,\ r_2=a+ex$

Доказательство

Из уравнения эллипса получаем $y^2=b^2-rac{b^2}{a^2}x^2$

$$egin{split} r_2 &= |F_2 M| = \sqrt{(x-c)^2 + y^2} = \sqrt{x^2 - 2cx + c^2 + b^2 - rac{b^2}{a^2}x^2} = \ &= \sqrt{x^2 \left(1 - rac{b^2}{a^2}
ight) - 2cx + (c^2 + b^2)} = \sqrt{rac{c^2}{a^2}} = e^2 \end{split}$$

Аналогично для r_2

Теорема: фокальное свойство эллипса

Точка M принадлежит эллипсу $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\iff r_1+r_2=2a$

Доказательство

$$\implies r_1 + r_2 = |F_1M| + |F_2M| = (a + ex) + (a - ex) = 2a$$

 \Longleftarrow . Пусть теперь M(x,y) для которой $|MF_1|+|MF_2|=2a$.

$$\sqrt{(x-c)^2 + y^2} + \sqrt{(x+c)^2 + y^2} = 2a$$

$$\sqrt{(x-c)^2 + y^2} = 2a - \sqrt{(x+c)^2 + y^2}$$

$$x^2 - 2cx + c^2 + y^2 = 4a^2 - 4a\sqrt{(x+c)^2 + y^2} + x^2 + 2cx + c^2 + y^2$$

$$-2cx = 4a^2 - 4a\sqrt{(x+c)^2 + y^2} + 2cx$$

$$a\sqrt{(x+c)^2 + y^2} = a^2 + cx \implies$$

$$\Rightarrow a^2(x^2 + 2cx + c^2 + y^2) = a^4 + 2a^2cx + c^2x^2$$

$$x^2(a^2 - c^2) + a^2y^2 = a^4 - a^2c^2$$

$$b^2x + a^2y^2 = a^2(a^2 - c^2)$$

$$b^2x^2 + a^2y^2 = a^2b^2$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

То есть M принадлежит эллипсу.