

Fundamentos da Blockchain

Cassiano Peres

DIO Tech Education Analyst

Sobre Mim

- Analista e desenvolvedor de sistemas
- Empreendedor
- Apaixonado pela liberdade
- Fã de criptomoedas e da economia descentralizada
- Constitution cassiano-dio
- peres-cassiano

Objetivo Geral

Neste módulo vamos abordar os conceitos realacionados à base da Blockchain, desde seus aspectos teóricos até a sua implementação.

Pré-requisitos

- Conhecimento básico em JavaScript;
- Noções de redes de computadores;
- Conhecimento fundamental de criptografia e algoritmos.

Percurso

Etapa 1

O que é blockchain?

Etapa 2

O caso do bitcoin

Etapa 3

Conceitos de criptografia na Blockchain

Percurso

Etapa 4

Entendendo a criptografia SHA-256

Etapa 5

Simulando transações

Etapa 6

Sobre carteiras e endereços bitcoin

Etapa 1

O que é blockchain?

Nesta aula vamos falar sobre a blockchain, suas características, como ela funciona e como é utilizada na prática

A blockchain pode ser considerada um **livro de razão pública** que registra **transações** com o objetivo de garantir a **imutabilidade** e **confiabilidade** dos registros.

A blockchain guarda informações como, por exemplo, a transferência de criptomoedas entre carteiras ou o registro de informações em um contrato inteligente.

A história da blockchain

O conceito de uma blockchain não é novo, sendo descrita em 1991 pelos cientistas Stuart Haber e W. Scott Stornetta, com a proposta de um sistema de autenticação de documentos digitais que não pudesse ser fraudado.

Stuart Haber

A história da blockchain

Outro cientista e criptógrafo chamado Hal Finney criou um novo conceito chamando **Proof of Work (PoW)** para a validação dos novos blocos inseridos na blockchain.

Hal Finney

Como funciona a blockchain?

A blockchain é sustentada por meio de uma rede **Peer-to-Peer** (ponto a ponto) onde cada nó que compõe a rede possui sua própria cópia dos dados.

Como funciona a blockchain?

Cada bloco da blockchain possui um **identificador único** também chamado de **hash** e o hash do bloco anterior, formando assim uma cadeia de blocos sequenciais.

O que são os blocos

Os blocos são a parte fundamental da blockchain, pois carregam todos os dados registrados ao longo do tempo em uma blockchain.

O que são os blocos

Cada bloco possui uma estrutura de informações que o identificam e os dados das transações registradas.

Estrutura do bloco

- Index: o número sequencial do bloco;
- Timestamp: carimbo de data e hora de geração do bloco;
- PreviousHash: hash do bloco anterior;

Estrutura do bloco

- Hash: assinatura digital do bloco calculado com base no seu conteúdo;
- Data: os dados dos blocos (payload), como as transações.

Pilares da blockchain

- Descentralização: não há uma autoridade central para validação dos dados;
- Imutabilidade dos dados: cada nó que compõe a rede possui sua cópia dos dados, fornecendo redundância;

Pilares da blockchain

- Segurança: garantida pela criptografia;
- Registros distribuídos: a rede blockchain é composta de vários nós que compartilham o poder computacional;

Pilares da blockchain

• Consenso: a validação é feita por meio de algoritmos de consenso que comparam os dados dos nós.

Etapa 2

O caso do Bitcoin

O Bitcoin foi o primeiro caso de adoção global de uma criptomoeda baseada em blockchain.

O Bitcoin foi criado por um pseudônimo chamado Satoshi Nakamoto, que pode ser uma pessoa, empresa ou uma equipe de desenvolvedores.

Sobre a criptomoeda

- 1 BTC valia uma fração de um centavo de dólar no início de 2010;
- Em 2011, ultrapassou 1 USD;
- No final de 2017, schegou a quase 20.000,00 USD;
- Em novembro de 2021 alcançou os 68.000 USD.

Sobre a criptomoeda

No dia 22 de maio de 2010 foi realizada a primeira compra utilizando o bitcoin como forma de pagamento, onde duas pizzas no valor de US\$ 45,00 foram compradas por 10.000 bitcoins;

Sobre a criptomoeda

- Tem um supply definido em 21 milhões de unidades;
- A "taxa" de mineração (emissão) de novos bitcoins é constante e cai periodicamente (inflação controlada);
- O último bitcoin será minerado no ano de 2140.

Características do bitcoin

- Descentralizado e distribuído
- Anônimo
- Transparente
- Imutável

Os sistemas financeiros convencionais estão todos subordinados a autoridades e governos, que impõem as regras para sua utilização, sendo assim **sistemas centralizados**.

Dessa forma o sistema pode ser manipulado de acordo com o interesse e poder de pessoas, o que pode tornar desvantajoso e sem transparência.

Além disso há o problema do único ponto de falha, que pode comprometer o sistema por falta de redundância.

O bitcoin é descentralizado em todos os seus aspectos, inclusive o desenvolvimento de atualizações que são decididas em consenso pela equipe desenvolvedora.

Toda a sua arquitetura está baseada em nós descentralizados e distribuídos que possuem cópias iguais dos registros de transações, sendo validados por algoritmo de consenso.

Anonimato

Essa característica se refere ao fato de não ser necessário atrelar uma identidade de uma pessoa a uma carteira de bitcoin.

Anonimato

Transparência

Todas as transações registradas na blockchain do bitcoin são **públicas** permitindo a qualquer pessoa verificar as transações.

Geralmente é feito através de buscadores de blocos.

Transparência

Transparência

Imutabilidade

Uma transação feita no bitcoin é impossível de ser revertida.

Isso se dá por causa da replicação dos registros nos nós da rede Bitcoin.

Imutabilidade

Desafios

- Regulamentações
- Chaves perdidas
- Volatilidade do preço

Conclusão

O bitcoin foi um caso de disrupção nos sistemas de pagamento, oferecendo uma opção descentralizada, transparente, segura e confiável de transacionar valores.

Etapa 3

Conceitos de criptografia na Blockchain

Nesta etapa vamos falar de um conceito fundamental por trás de toda a tecnologia blockchain, a **criptografia**.

Criptografia é a conversão de dados de um formato legível para um formato codificado. Os dados criptografados só podem ser lidos ou processados depois de serem descriptografados.

A segurança de uma criptografia é diretamente proporcional à sua complexidade, o que exigirá mais esforço e recursos para ser quebrada, sendo mais resistente contra ataques do tipo força bruta.

Técnicas de criptografia

Existem duas técnicas mais utilizadas para a criptografia de dados, sendo a criptografia de chave simétrica e chave assimétrica.

Chave simétrica

Também conhecida como criptografia de chave privada. A chave usada para codificar é a mesma usada para decodificar, sendo a melhor opção para usuários individuais e sistemas fechados.

Chave simétrica

Caso contrário, a chave privada deve ser enviada ao destinatário, porém aumenta o risco de comprometimento se for interceptada por um terceiro.

Esse método é mais rápido do que o método assimétrico.

Chave simétrica

Chave assimétrica

Nesse método duas chaves diferentes, **uma pública e uma privada**, que são vinculadas matematicamente.

Essencialmente, as chaves são apenas grandes números emparelhados um ao outro, mas não são idênticos, daí o termo assimétrico.

Chave assimétrica

A chave privada é mantida em segredo pelo usuário, e a chave pública também é disponibilizada ao público em geral.

Essa é a criptografia utilizada para a **geração de carteiras no Bitcoin**.

Chave assimétrica

Carteiras no Bitcoin

No Bitcoin e em outras criptomoedas semelhantes existem as carteiras, que na prática são uma coleção de chaves privadas para que se possa gerar transações.

Bitcoin Address
1E1144JY6R7TCmj3BGzjpofqf9EqP9vLKJm

Private Key
6JCG34xv2a040op1BfSwPicBNUNCuk9Ht1qWMgWoMJWJpownAAi

Public Key
0798694TR67C50Z680FVRD54SX9L833137Y30K70062CCEF18L5213I9R471P0107

Carteiras no Bitcoin

Para a geração de carteiras, utiliza-se um algoritmo de dispersão criptográfica ou função hash criptográfica, onde é praticamente impossível de inverter, isto é, de recriar o valor de entrada utilizando somente o valor de dispersão.

Conclusão

O bitcoin foi um caso de disrupção nos sistemas de pagamento, oferecendo uma opção descentralizada, transparente, segura e confiável de transacionar valores.

Etapa 4

Entendendo a criptografia SHA-256

Nesta etapa vamos explorar um pouco mais do SHA-256, o algoritmo responsável pela criptografia dos blocos e das carteiras na blockchain.

Este algoritmo criptográfico foi desenvolvido pelo Agência de Segurança Nacional dos Estados Unidos (NSA) e do Instituto Nacional de Padrões e Tecnologia (NIST).

O SHA-256, do inglês "Secure Hash Algorithm", é uma função criptográfica utilizada como base do sistema de prova te trabalho do Bitcoin.

O objetivo é gerar **hashes** ou códigos exclusivos com base em um padrão com o qual documentos ou dados do computador possam ser protegidos contra qualquer agente externo que deseje modificá-los.

No caso do Bitcoin, o SHA-256 é usado para o processo de mineração (criação de bitcoins), mas também no processo de geração endereços de bitcoin. Isso se deve ao alto nível de segurança que oferece.

A função SHA-256 recebe uma entrada de **tamanho aleatório** e a converte em uma saída de **tamanho fixo de 256 bits**.

Vamos simular a conversão de alguns dados utilizando o SHA-256.

Conversor online de SHA-256

A função SHA-256 na mineração do Bitcoin se dá quando um **nó** se torna elegível a fim de colocar novos blocos dentro da blockchain.

Para ser um bloco válido o bloco deve ter os seguintes atributos:

Versão: número da versão do software Bitcoin

Hash do bloco anterior: referência ao hash do bloco anterior

Raiz de Merkle: um hash representativo das transações incluídas no bloco

Registro de data e hora: o horário em que o bloco foi criado

Target: algoritimo de prova de trabalho para o bloco

Nonce: a variável usada no processo de prova de trabalho

Conclusão

Nesta etapa nós vimos o papel da criptografia no contexto da blockchain e a sua importância fundamental.

Etapa 5

Simulando transações

Nesta aula vamos simular transações em uma blockchain semelhante à do Bitcoin.

Para isto vamos utilizar um simulador de transações disponível no seguinte <u>link</u>.

Etapa 6

Sobre carteiras e endereços bitcoin

Nesta etapa vamos falar de como podemos armazenar criptomoedas por meio de carteiras.

O que são carteiras?

Uma carteira, ou *wallet*, é uma espécie de conta bancária de bitcoin, onde por meio do **endereço público** depositamos e com a chave privada sacamos.

O que são carteiras?

No contexto de criptomoedas, carteiras se referem também à estrutura de dados usadas no gerenciamento das **chaves** do usuário.

O que são carteiras?

Existem no caso do Bitcoin, alguns tipos de carteiras:

- Não-determinística;
- Determinística;
- HD Hierarchical Deterministic;
- Mnemonic BIP 39

Carteiras não-determinísticas

A primeira versão das carteiras, onde são geradas 100 chaves privadas na inicialização, porém tal número de chaves não tem um gerenciamento muito prático.

Carteiras determinísticas

Contém as chaves privadas derivadas de uma semente – *seed* - podendo gerar inúmeros endereços.

Carteiras HD

Parecida com a determinística, possui uma hierarquia de chaves que partem de uma mesma semente – *seed*.

Mnemonic

Cria uma sequência de palavras em inglês, fáceis de escrever, armazenar e importar.

Exemplo de mnemonic:

army van defense carry jealous true garbage claim echo media make crunch

O que são endereços?

Um endereço de criptomoedas é uma espécie de "número de conta bancária" onde são depositados os fundos.

Um usuário pode criar inúmeros endereços, sem limites.

O que são endereços?

Tipos de endereços

Existem atualmente três tipos de endereços no *Bitcoin Core*:

- P2PKH
- P2SH
- bech32

P2PKH – Pay-to-Pubkey Hash

É o primeiro e mais utilizado formato de endereço, também chamado de *legacy* e sempre começa com o número **1**.

Possui as taxas de transferência mais caras pois não é compatível com os novos tipos de endereços.

1PvPOdEYstMbpqTRn8Au3m3HEg7xJbECS3

P2SH - Pay-to-Script Hash

- É um formado baseado em compatibilidade, com funcionalidades mais elaboradas que o formato legacy.
- Muito utilizado em carteiras multisig, onde mais de uma carteira assinando é necessária para autorizar uma transação.

P2SH - Pay-to-Script Hash

Começa sempre com o número 3.

3G45p1GpEZ75NNmQvaicnyyiWrnqDhDMJi

BECH32 – Segwit Nativo

- Segwit significa segregated witness, ou testemunha segregada;
- Reduziu o custo das transações e aumentou o tamanho dos blocos;
- Suporta o Lightning Network.

Tipos de carteiras

Existem diversas formas de gerenciar carteiras de criptomoedas, como hardware wallets, paper wallets, desktop e mobile wallets.

Conclusão

Chegamos ao final do nosso curso, onde pudemos explorar os fundamentos relacionados à blockchain e exploramos o caso do Bitcoin.

Desafio de Projeto

Criando e utilizando a sua carteira de criptomoedas

Dúvidas?

- > Fórum/Artigos
- > Comunidade Online (Discord)

