Regularised Linear Models

Ke Chen

Reading: Sect. 6.2 [Intro Stat Learn Python]

https://www.statlearning.com/

Lecture Goal

Understanding the motivation underlying regularisation

Regularised linear models: ridge regression and the LASSO

Geometric interpretation of ridge regression and the LASSO

Variants of regularised linear models for regression

Introduction

- The <u>ultimate goal</u> of statistical learning is towards <u>inductive bias</u> and <u>generalisation</u>.
- The <u>bias-variance trade-off</u> suggests that generalisation of a learning model is determined by not only the properties of a given data set (e.g., <u>sample size</u> and "<u>quality</u>") but also <u>model complexity</u> (flexibility).
- While one can employ <u>model selection</u> methods (empirical or analytical)
 for effective learning toward the ultimate goal, <u>regularisation</u> turns out to
 be yet another generic manner to facilitate the generalisation.
- Also, regularisation might tackle other issues encountered in learning.

Motivation

• General form of regularisation: for training data $\mathcal{Z} = \{X, Y\}$, a regularisation penalty is introduced to an original loss function

$$l_R(Y, \hat{f}(X, \Theta)) = l(Y, \hat{f}(X, \Theta)) + \lambda R(\Theta)$$

- The general motivation enables both fitting, $l(Y, \hat{f}(X, \Theta))$, and model complexity, $R(\Theta)$, to be considered via a "trade-off factor", λ , during learning.
- Regularisation can also remedy some <u>ill-posed</u> problems, e.g., when the number of training examples (n) is smaller than that of features (p) for $\mathcal{Z} = \{X, y\}$ in linear regression; i.e., when n < p,

$$\widehat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T y$$
 Singular!

Motivation

- Regularised (linear/polynomial) regression models are able to not only combat the ill-posed problem but also fulfill <u>automatic</u> feature (subset) selection via "<u>shrinkage</u>" of parameters during learning.
- It constrains a learning algorithm to avoid <u>overfitting</u> hence lower <u>test</u> (<u>out-of-sample</u>) <u>error</u>, especially for <u>noisy</u> data.

Ridge Regression

- <u>Ridge regression</u> refers to a regularised linear regression model by applying <u>Tikhonov</u> regularisation to the <u>ordinary least square (OLS</u>) loss.
- The OLS loss is RSS for a linear model of parameters $\beta = (\beta_0, \beta_1, \dots, \beta_p)$ on a training data set $\mathcal{Z} = \{X, y\} = \{(x_i, y_i)\}_{i=1}^n$,

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

The ridge regression loss is defined by

$$RSS(\lambda) = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

where λ is a tuneable <u>hyper-parameter</u> (for trade-off) to be determined in advance.

Ridge Regression

- <u>Ridge regression</u> refers to a regularised regression approach by applying <u>Tikhonov</u> regularisation to the <u>ordinary least square (OLS)</u> loss.
- The OLS loss is RSS for a linear model of parameters $\beta = (\beta_0, \beta_1, \dots, \beta_p)$ on a training data set $\mathcal{Z} = \{X, y\} = \{(x_i, y_i)\}_{i=1}^n$,

$$RSS = (\boldsymbol{y} - X\boldsymbol{\beta})^T (\boldsymbol{y} - X\boldsymbol{\beta})$$

• The ridge regression loss is defined with the penalty on $\tilde{\beta} = (\beta_1, \dots, \beta_p)$ by

$$RSS(\lambda) = (\mathbf{y} - X\boldsymbol{\beta})^T (\mathbf{y} - X\boldsymbol{\beta}) + \lambda \widetilde{\boldsymbol{\beta}}^T \widetilde{\boldsymbol{\beta}} = RSS + \lambda \widetilde{\boldsymbol{\beta}}^T \widetilde{\boldsymbol{\beta}}$$

where λ is a tuneable <u>hyper-parameter</u> (for trade-off) to be determined in advance.

The effect of this loss is to add a "shrinkage" or "weight-decay" penalty of the form

$$\lambda \widetilde{\boldsymbol{\beta}}^T \widetilde{\boldsymbol{\beta}} = \lambda \sum_{j=1}^p \beta_j^2,$$

where the tuneable hyper-parameter λ always takes a <u>positive</u> value.

- This has the effect of shrinking the estimated $\tilde{\beta}$ parameters (coefficients) towards zero. It turns out that such a constraint can improve the fit, because shrinking parameters (coefficients) can significantly reduce their model complexity for variance reduction.
- Note that when $\lambda = 0$, the penalty term has no effect, and ridge regression will be the OLS estimate. Thus, selecting a proper (optimal) value for λ is critical.
- Note β_0 has been <u>left out</u> from the shrinkage penalty as it is simply an intercept at the "origin", which can be estimated separately in the ridge regression learning.

• For parameter estimate in ridge regression, the training data $\mathcal{Z} = \{X, y\} = 0$ $\{(x_i, y_i)\}_{i=1}^n$ must be <u>standardised</u> first for $i = 1, \dots, n$; $j = 1, \dots, p$

$$\tilde{x}_{ij} = \frac{x_{ij} - \bar{x}_j}{\sqrt{\frac{1}{n} \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2}}, \quad \bar{x}_j = \frac{\sum_{i=1}^n x_{ij}}{n}$$

$$\hat{\beta}_0 = \bar{y} = \frac{\sum_{i=1}^n y_i}{n}$$

$$\hat{\beta}_0 = \bar{y} = \frac{\sum_{i=1}^n y_i}{n}$$

- Parameter estimate for ridge regression is done by minimising the ridge regression loss function with respect to $\tilde{\beta} = (\beta_1, \dots, \beta_p)$.
- By setting the 1st derivative of the ridge regression loss function w.r.t. β to <u>zero</u>, an analytical solution for a pre-setting λ (λ >0) is obtained:

$$\widehat{\boldsymbol{\beta}}_{ridge} = (\widetilde{X}^T \widetilde{X} + \lambda I_p)^{-1} \widetilde{X}^T \boldsymbol{y}$$
 Non-singular!

where I_p is a $p \times p$ identity (unit) matrix.

Example: simulation with n=50 and p=30. The entries of the predictor matrix $X \in \mathbb{R}^{50 \times 30}$ are all i.i.d. N(0,1), so overall the variables have low correlation

Histogram of the true regression coefficients $\beta^* \in \mathbb{R}^{30}$:

Here 10 coefficients are large (between 0.5 and 1) and 20 coefficients are small (between 0 and 0.3)

Ridge Regression

Example: MSE vs. bias-variance error decomposition at different λ

- The bias increases as λ (amount of shrinkage) increases.
- The variance decreases as λ
 (amount of shrinkage) increases.
- A proper λ used in ridge regression (with regularisation) can lead to a lower MSE than that of linear regression without regularisation.

Example: estimate of parameters on a new synthetic dataset at different λ

- 10 red paths correspond to the true non-zero coefficients; 20 grey paths correspond to true zeros.
- The vertical dashed line at λ=15 marks the point above which the MSE of ridge regression starts losing to that of linear regression.
- An important observation is that the grey coefficient paths are not exactly zero; they are shrunken, but still nonzero.

Ridge Regression

Example: predicting credit based on 11 features, Sect. 3.3 in ISLP

MANCHESTER

Ridge Regression

- How to find out a proper (optimal) value of λ ?
 - Degree of freedom of a parameter estimate regarding λ is defined by

$$df(\lambda) = \sum_{j=1}^{p} \frac{d_j^2}{d_j^2 + \lambda}$$

where d_j is <u>singular values</u> of X obtained with <u>Singular Value Decomposition</u> (SVD) or the <u>eigen values</u> of X^TX . Thus, $df(\lambda) = p$ if $\lambda = 0$ and X^TX is non-singular.

- Simply <u>pick</u> the effective degrees of freedom that one would like associated with the fit, and <u>solve</u> for λ based on singular values of X.
- As a generic method, <u>cross-validation</u> can always be used to finding a proper λ .
- Finally, the model is re-fit with all training data and the optimal value of that tuneable hyper-parameter λ .

Example: apply cross-validation (credit) to find an optimal value of λ

- As observed in the examples, one significant problem of ridge regression is that the l_2 penalty term will never force any of the coefficients to be exactly zero.
- Thus, the final ridge regression model will <u>include all p predictors</u>, which creates a challenge in model interpretation; i.e., what subset of features are non-trivial.
- <u>Least absolute shrinkage and selection operator</u> (<u>LASSO</u>) is a more recent statistical learning alternative to ridge regression to solve the above problem.
- The LASSO works in a similar way to ridge regression, except it uses l_1 , a different penalty term, that can <u>shrink</u> some of the parameters <u>exactly to zero</u>.

• The <u>LASSO loss</u> is defined on parameters (coefficients) $\beta = (\beta_0, \beta_1, \dots, \beta_p)$ on a training data set $\mathcal{Z} = \{X, y\} = \{(x_i, y_i)\}_{i=1}^n$ as follows:

$$RSS(\lambda) = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

• The <u>vector version</u> of LASSO loss is defined with the penalty on $\tilde{\beta} = (\beta_1, \dots, \beta_p)$ by

$$RSS(\lambda) = (\boldsymbol{y} - X\boldsymbol{\beta})^T (\boldsymbol{y} - X\boldsymbol{\beta}) + \lambda ||\widetilde{\boldsymbol{\beta}}||_1 = RSS + \lambda ||\widetilde{\boldsymbol{\beta}}||_1$$

where λ is a tuneable hyper-parameter (for trade-off) to be determined in advance.

• To facilitate parameter estimate, the <u>standardisation</u> procedure (the same as used in ridge regression) must be first applied to the training data on X and deal with β_0 separately.

- Unlike ridge regression, <u>parameter estimate</u> in LASSO is quite different as there is <u>not</u> an analytical or close-form solution to <u>minimise</u> the <u>LASSO loss</u>.
- There are several <u>iteration-based</u> LASSO learning algorithms.
- The <u>forward stagewise learning</u> algorithm is the widely used one as follows:

For a given training data set, $\mathcal{Z} = \{X, y\}$, choosing a small ϵ ,

- 1) Initialise the residual ${m r}={m y}$ and ${m eta}_1={m eta}_2=\cdots={m eta}_p=0$
- 2) Find out the feature x_i $(j = 1, \dots, p)$ most correlated with r (Pearson)
- 3) Update $\beta_j \leftarrow \beta_j + \delta_j$ where $\delta_j = \epsilon \cdot \text{sign}(\mathbf{x}_j^T \mathbf{r})$
- 4) Set $r \leftarrow r \delta_i x_i$, and repeat Step 2) and 3) until a stopping condition is met.

LASSO

Example: predicting credit based on 11 features, Sect. 3.3 in ISLR

Example (Same Data in Slide 10): estimate of parameters at the optimal λ

- The red dots correspond to the true coefficients.
- Ridge regression: most of the true coefficients are shrunk but none of true zero-coefficient have been shrunk to zero.
- LASSO: all the true zerocoefficient have been shrunk to zero.

• Examples: bias-variance trade-off on different toy data sets (n=50, p=30)

MANCHESTER 1824

LASSO

- How to find out a proper (optimal) value of λ ?
 - Unlike ridge regression, there is \underline{no} analytical solution to an optimal λ .
 - Cross-validation is always used to find out a proper (optimal) λ .
 - Finally, the model is re-fit with all the training data by using all of the variable observations and the selected value of hyper-parameter λ .

LASSO

• Example: <u>apply 10-fold cross-validation to find an optimal value of λ (2 features)</u>

Data generated with 43 zero and 2 non-zero true coefficients (Sect. 6.2, ISLR)

Ridge Regression vs. LASSO

- LASSO has a major <u>advantage</u> over ridge regression; it produces simpler and more interpretable models that involved only a subset of features.
- LASSO leads to qualitatively <u>similar</u> behaviour to ridge regression, in that as λ increases, the variance decreases and the bias increases.
- LASSO often generates <u>more accurate</u> predictions compared to ridge regression but ridge regression may outperform LASSO when all features are nontrivial.
- Once again, <u>cross-validation</u> can be used for <u>model selection</u> in order to determine which one is better on a specific data set in hand.

Ridge Regression vs. LASSO

 To understand why LASSO is better than ridge regression in terms of model interpretation (feature subset selection), the <u>optimisation</u> problems in parameter estimates of LASSO and ridge regression can be <u>reformulated</u> as follows:

minimize
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
 subject to $\sum_{j=1}^{p} |\beta_j| \le s$

and

minimize
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
 subject to $\sum_{j=1}^{p} \beta_j^2 \le s$,

Ridge Regression vs. LASSO

 LASSO and ridge regression parameter estimates are given by the first point at which an ellipse contacts the constraint region.

Variant of Regularised Linear Model

- Bridge Regression (Frank & Friedman, 1993)
 - apply generic l_q penalty term for regularisation; <u>LASSO</u> if q=1, <u>ridge regression</u> if q=2
 - provide more meaningful results in data analysis both from the theoretical and empirical perspectives
- <u>Elastic Net</u> (Zou & Hastie, 2005)
 - apply both l_1 and l_2 penalty terms for regularisation with two hyperparameters λ_1 and λ_2
 - able to improve the performance of LASSO further and still produce <u>sparse</u> solutions
- Group LASSO (Yuan & Lin, 2006)
 - allow predefined groups of features to be selected into or out of a model together, so that all the members of a particular group are either included or not included

MANCHESTER

Summary

- Regularisation turns out to be yet another generic idea to facilitate statistical learning toward its ultimate goal and remedy other <u>ill-posed</u> problems.
 - Generic form: empirical loss + λ * regularisation-penalty (structural loss)
 - Two terms in a loss with regularisation are traded off via the "trade-off factor", λ .
- Ridge regression and LASSO are two popular regularised linear models.
 - l_1 and l_2 penalty terms are employed in LASSO and ridge regression.
 - for parameter estimate, an analytical solution exists for ridge regression while an iterated algorithm has to be used in LASSO.
 - turning the hyper-parameter λ is key to success and can always be done via cross-validation
 - In general, LASSO outperforms ridge regression in model interpretation.
 - The performance can be understood with the <u>bias-variance trade-off</u>; as λ increases, the variance decreases and the bias increases.
- Main variants (still an active research area in statistical learning)
 - bridge regression, elastic net, group LASSO,