Homework assignment 1 – Mathematical Statistics 2020 (Probability Theory and estimation)

Hand in your own solutions at the start of the tutorial on September 11. Suppose that $X, X_1, ..., X_n$ are i.i.d. (independent and identically distributed) with probability density function

$$f(x) = \begin{cases} \frac{4\theta^4}{x^5}, & \text{if } x \ge \theta \\ 0, & \text{if } x < \theta \end{cases}$$

- a) Determine the first three moments E(X), $E(X^2)$, $E(X^3)$ and var(X).
- b) Express $E(X \mu)^3$ in the first three moments in order to determine the skewness coefficient γ_1 : Is the skewness visible in the graph of f (to the left or to the right?)?
- c) Derive the density function of $Y = \sqrt{X}$ (define in parts!) and compute E(Y).
- d) Recall that $\overline{X} = \frac{X_1 + \dots + X_n}{n}$. Show that $\frac{3}{4}\overline{X}$ is an unbiased and consistent estimator of θ .
- e) Consider all estimators $T = a \cdot \overline{X}$, with real constant $a \in \mathbb{R}$. For which value of a is the mean squared error for θ minimized?

To simplify computations we will consider a small sample of only n = 2 observations.

- f) Determine the density function of $M = \min(X_1, X_2)$ and express E(M) and var(M) in θ .
- g) Which of the estimators of θ , $\frac{3}{4}\overline{X}$ in part d. or M in part f., has the smaller mean squared error?

Grading:	a	b	С	d	e	f	g	Total
	4×1/2	1/2+1	1+1/2	1/2+1	11/2	1	1	10