ML Handbook

s.pol

Оглавление

1	Мат	ематика 6
	1.1	Случайная величина
	1.2	Распределение случайной величины
	1.3	Выборка
	1.4	Закон больших чисел
	1.5	Центральная предельная теорема
	1.6	Статистики
	1.7	Bootstrap
	1.8	Классический и байесовский подход
	1.9	Метод максимального правдоподобия
	1.10	Доверительный интервал
	1.11	Байесовский доверительный интервал
	1.12	Основные дискретные распределения
	1.13	Основные непрерывные распределения
	1.14	Матричные разложения
	1.15	К-Л дивергенция
	1.16	Энтропия
		Квантили
	1.18	Точечные оценки
	1.19	Интервальные оценки
	1.20	Проверка гипотез
	1.21	Множественная проверка гипотез
	1.22	Параметрические и непараметрические критерии, бутстреп . 9
	1.23	Ошибки I и II рода
	1.24	Достигаемый уровень значимости 9
	1.25	Мощность статистического критерия
	1.26	Основные задачи статистики
	1.27	Проверка основных гипотез
	1.28	Корреляция Пирсона
	1.29	Корреляция Спирмена
	1.30	Корреляция Метьюса
		Корреляция Крамера
	1.32	Z-тест Фишера
	1 22	Т тост Сти голонто

		Критерий Пирсона χ^2	
	1.55	точный тест Фишера	Ų
2	Ана	лиз данных 1:	1
	2.1	Типы данных	
	2.2	Предобработка данных	1
	2.3	Понижение размерности	1
3	Обп	цие вопросы	2
	3.1	Машинное обучение	2
	3.2	Основные классы задач	2
	3.3	Обнаружение аномалий	2
	3.4	Контроль качества	2
	3.5	Недообучение	3
	3.6	Переобучение	3
	3.7	Регуляризация	3
	3.8	Отбор признаков	3
	3.9	Параметры алгоритма	3
		Подбора метапараметров	
		Основные типы алгоритмов	
		Многоклассовая классификация	
		Дисбаланс классов	
		Ансамбли алгоритмов	
		Метрики классификации	
	0.10	3.15.1 Accuracy	
		3.15.2 Precision	
		3.15.3 Полнота (recall)	
		3.15.4 F1-мера	
		3.15.5 F-мера	
		3.15.6 ROC-AUC	
		3.15.7 PR-AUC	
	9 16	Метрики многоклассовой классификации	
		ROC-AUC метрика	
		Индекс Джини	
		Метрики регрессии	
		Метрики кластеризации	
		Разложение ошибки алгоритма	
		Кривые валидации	
		Кривые обучения	
		Метрические методы	
		Метод ближайших соседей	
		Линейные методы	
		Линейная регрессия	
		Логистическая регрессия	
		SVM	7
	3.30	Ядра и спрямляющие пространства	7

4	Нейросети	18
	3.34 Байесовские методы	17
	3.33 Градиентный бустинг	17
	3.32 Случайный лес	17
	3.31 Решающие деревья	17

Предисловие

В данной книге описаны основные понятия, методы и подходы, широко используемые в современном DS и ML. Обычно, свободное владение этими понятиями необходимо для правильного понимания как основных, так и продвинутых методов ML и по умолчанию предполагается от DS специалиста.

Здесь собраны разные определения, встречавшиеся автору в научных статьях по ML и на собеседованиях. Охвачены: теория вероятностей, классическая и байесовская статистика, некоторые вопросы мат. анализа.

Освещение вопросов ни в коем случае не претендует на полноту и в некоторых случаях на строгость. Основная цель книги - составить расширенный глоссарий основных понятий и подходов, встретившихся автору в процессе работы в области ML.

Обозначения

DS - наука о данных ML - машинное обучение RV - случайная величина

CDF - функция распределения случайной величины PDF - плотность распределения случайной величины

CLT - центральная предельная теорема EX - среднее случайной величины X - дисперсия случайной величины X

 $X \sim Y$ - случайные величины X и Y одинаково распределены

Математика

В этой главе описаны основные математические понятия, необходимые для правильного понимания как основных, так и продвинутых методов ML. Охвачены: теория вероятностей, классическая и байесовская статистика, некоторые вопросы мат. анализа.

1.1 Случайная величина

Случайной величиной (RV) называется числовая функция X, определенная на некотором множестве элементарных исходов Ω (обычно подмножество \mathbb{R} или \mathbb{R}^n),

$$X:\Omega\to\mathbb{R}.$$

С прикладной точки зрения на RV часто смотрят как на генераторы случайных чисел с заданным распределением.

Примеры:

- Рост людей, взятых из некоторой группы.
- Цвет фиксированного пикселя изображения, взятого из некоторого множества изображений.
- Некоторый признак из датасета ML задачи.

1.2 Распределение случайной величины

Если RV принимает дискретное множество значений $x_1, x_2, ...,$ то она полностью определяется значениями их вероятностей: $p_k = \mathbb{P}(X = x_k)$.

Если множество значений RV не дискретно, то RV может быть описана своей функцией распределения (CDF, Cumulative distribution function): $F(x) = \mathbb{P}(X < x)$.

В большинстве прикладных случаев CDF оказывается дифференцируемой функцией. Производная от CDF называется плотностью распределения случайной величины (PDF, Probability density function): f(x) = F'(x). Таким образом, по определению

$$\mathbb{P}(a < X < b) = \int_{a}^{b} f(x)dx.$$

1.3 Выборка

Выборкой объема n из генеральной совокупности X называется последовательность независимых и распределенных как X случайных величин:

$$X_1, X_2, ..., X_n, X_k \sim X$$

На практике под выборкой понимают конкретные реализации величин X_k , то есть последовательность чисел $x_1, x_2, ..., x_n$.

1.4 Закон больших чисел

Закон больших чисел утверждает, что если $X_1, X_2, ..., X_n$ - выборка объема n из генеральной совокупности X, то ее среднее с ростом n стабилизируется к среднему значению X:

$$\frac{X_1 + X_2 + \dots + X_n}{n} \approx EX, \quad n \to \infty.$$

1.5 Центральная предельная теорема

Центральная предельная теорема (СLT) является в некотором смысле уточнением закона больших чисел. В упрощенном варианте она утверждает, что если $X_1, X_2, ..., X_n$ - выборка объема n из генеральной совокупности X, то ее распределение ее среднего при больших n очень близко к нормальному,

$$\frac{X_1 + X_2 + \dots + X_n}{n} \approx N(\mu, \sigma^2/n), \quad \mu = EX, \sigma^2 = DX, \quad n \to \infty.$$

Заметим, что если совокупность распределена нормально, $X \sim N(\mu, \sigma^2)$, то предыдущая формула обращается в точное равенство при любых n.

1.6 Статистики

Пусть $X_1, X_2, ..., X_n$ - выборка объема n. Статистикой называется произвольная RV, являющаяся функцией выборки:

$$T = T(X_1, X_2, ..., X_n).$$

Часто статистикой называют конкретное значение $T(x_1, x_2, ..., x_n)$, полученное на данной реализации $x_1, x_2, ..., x_n$ выборки.

Примеры:

- ullet $ar{X} = (X_1 + X_2 + ... + X_n)/n$ выборочное среднее.
- $X_{(n)} = \max(X_1, X_2, ..., X_n)$ максимальное значение в выборке.
- медиана, перцентили.
- 1.7 Bootstrap
- 1.8 Классический и байесовский подход
- 1.9 Метод максимального правдоподобия
- 1.10 Доверительный интервал
- 1.11 Байесовский доверительный интервал
- 1.12 Основные дискретные распределения

https://medium.com/@srowen/common-probability-distributions-347e6b945ce4

- 1.13 Основные непрерывные распределения
- 1.14 Матричные разложения

...может разделить главу на части...

- 1.15 К-Л дивергенция
- 1.16 Энтропия
- 1.17 Квантили
- 1.18 Точечные оценки
- 1.19 Интервальные оценки
- 1.20 Проверка гипотез
- 1.21 Множественная проверка гипотез
- 1.22 Параметрические и непараметрические критерии, бутстреп
- 1.23 Ошибки I и II рода
- 1.24 Достигаемый уровень значимости
- 1.25 Мощность статистического критерия
- 1.26 Основные задачи статистики

^{...}из лекций новосиба курсера...

- 1.27 Проверка основных гипотез
- 1.28 Корреляция Пирсона
- 1.29 Корреляция Спирмена
- 1.30 Корреляция Метьюса
- 1.31 Корреляция Крамера
- 1.32 Z-тест Фишера
- 1.33 Т-тест Стьюдента
- 1.34 Критерий Пирсона χ^2
- 1.35 Точный тест Фишера

Анализ данных

Анализ и предобработка данных - первая задача, успешное решение которой зачастую определяет успех в решении любых задач ML. В этой главе описываются основные подходы....

- 2.1 Типы данных
- 2.2 Предобработка данных
- 2.3 Понижение размерности

Общие вопросы

В этой главе приводятся основные понятия ML и DS.

3.1 Машинное обучение

Машинное обучение (ML) - область искусственного интеллекта, изучающая самообучающиеся модели, то есть решаюшие поставленную задачу не по заранее запрограммированному алгоритму, а предварительно настраивая свое поведение согласно имеющимся данным.

Обычно методы ML содержат свободные параметры, подбор которых наилучшим (в смысле имеющихся данных) образом и составляет процесс обучения алгоритма.

- 3.2 Основные классы задач
- 3.3 Обнаружение аномалий
- 3.4 Контроль качества

...оценка обобщающей способности...

- 3.5 Недообучение
- 3.6 Переобучение
- 3.7 Регуляризация
- 3.8 Отбор признаков
- 3.9 Параметры алгоритма
- 3.10 Подбора метапараметров
- 3.11 Основные типы алгоритмов
- 3.12 Многоклассовая классификация
- 3.13 Дисбаланс классов

...чем плохо... как бороться (over/undersampling/SMOTE)... http://www.machinelearning.ru/wiki/image

3.14 Ансамбли алгоритмов

3.15 Метрики классификации

see also https://habr.com/ru/company/ods/blog/328372/

Пусть некоторый алгоритм a решает задачу бинарной классификации с классами 0 (негативный) и 1 (позитивный). Тестирование алгоритма a проводится на n объектах, ответы y на которых известны. Пусть TP и TN числа правильно классифицированных позитивных и негативных объектов соответственно. Аналогично, FP и FN - числа неправильно классифицированных позитивных и негативных объектов соответственно.

О качестве алгоритма a можно судить по матрице ошибок:

$$\begin{array}{ccc} & y{=}1 & y{=}0 \\ a{=}1 & TP & FP \\ a{=}0 & FN & TN \end{array}$$

Для оценки качества работы алгоритмов бинарной классификации обычно используются описанные далее основные метрики.

3.15.1 Accuracy

Точность (accuracy) - отношение числа правильных ответов к общему количеству,

$$accuracy = \frac{TP + TN}{n}.$$

Проста в использовании и интерпретации, но плоха для несбалансированных выборок, и потому довольно редко используемая напрямую.

3.15.2 Precision

Точность (precision) - отношение числа правильно классифицированных позитивных объектов к общему количеству позитивно классифицированных,

$$precision = \frac{TP}{TP + FP}.$$

Чем ближе значение к 1, тем меньше ложных срабатываний (FP).

3.15.3 Полнота (recall)

Полнота (recall) - вычисляется как отношение

$$recall = \frac{TP}{TP + FN}.$$

Чем ближе значение к 1, тем меньше ложных пропусков (FN).

3.15.4 Г1-мера

F1-мера - среднее гармоническое точности и полноты,

$$F = \frac{2PR}{P+R}.$$

F1-мера усредняет точность и полноту, является неплохом компромиссом между обеими метриками.

3.15.5 F-мера

Обобщенная F-мера вычисляется как

$$F = (1 + \beta^2) \frac{PR}{\beta^2 P + R}.$$

F-мера усредняет точность и полноту, является неплохом компромиссом между обеими метриками, имеет настраиваемый параметр β .

3.15.6 ROC-AUC

Большинство алгоритмов бинарной классификации дают в качестве результата не просто 0 или 1, а некоторое число из отрезка [0,1]. Окончательный ответ можно получить, задав некий порог h - число, ниже которого ответ будет считаться принадлежащим классу 0, а выше которого - классу 1.

Подбор наилучшего значения порога - отдельная задача, однако, есть метрики качества, позволяющие оценить алгоритм "в целом без привязки к конкретному значению порога. ROC-AUC - площадь под ROC кривой - одна из наиболее популярных метрик для такого рода оценки качества.

Сама ROC кривая строится следующим образом:

- 1. отрезки [0,1] по осям x и y разбиваются на #[y=0] и #[y=1] частей соответственно.
- 2. пары реальных ответов y_i упорядочиваются по убыванию соответствующих ответов алгоритма a_i
- 3. проходя по получившемуся после сортировки массиву значений y_i , строим ROC кривую, начиная от начала координат и делая шаг вправо, если $y_i = 0$ и вверх, если $y_i = 1$
- 4. важный момент: если рядом по порядку оказались несколько a_i с одинаковыми значениями, то соответствующий им участок ROC кривой будет не ступенчатым, а прямолинейным (см. пример ниже).

Пример:

ROC-AUC достаточно устойчива к дисбалансу классов, но не учитывает уверенность алгоритма в своих предсказаниях (насколько близко распределены предсказания к 0 и 1).

3.15.7 PR-AUC

Площадь под PR кривой. Хороша, когда негативных объектов гораздо больше, чем позитивных.

- 3.16 Метрики многоклассовой классификации
- 3.17 ROC-AUC метрика
- 3.18 Индекс Джини
- 3.19 Метрики регрессии
- 3.20 Метрики кластеризации
- 3.21 Разложение ошибки алгоритма
- 3.22 Кривые валидации
- 3.23 Кривые обучения
- 3.24 Метрические методы
- 3.25 Метод ближайших соседей
- 3.26 Линейные методы
- 3.27 Линейная регрессия
- 3.28 Логистическая регрессия

...отличие от линейной...

- 3.29 SVM
- 3.30 Ядра и спрямляющие пространства
- 3.31 Решаюшие деревья
- 3.32 Случайный лес

...отличие от беггинга над решающими деревьями...

- 3.33 Градиентный бустинг
- 3.34 Байесовские методы

Нейросети

 ${\bf B}$ данной главе приводится обзор основных понятий и методов, связанных с нейросетями.