# Deep Learning: Lecture 5

Alexander Schönhuth

UU November 6, 2019 Reminder: Gradient Descent for Neural Networks

# GRADIENT DESCENT



- ▶ Let  $C(v_1, ..., v_n)$  be a differentiable function in n variables, here n = 2. We look for the minimum of C.
- ▶ *Idea*: At point  $v_1$ ,  $v_2$  (green ball), move into direction of steepest decline (green arrow). Do this iteratively.
- ▶ The steepest decline is given by the gradient  $\nabla_{v_1,...,v_n} C$ .

# GRADIENT DESCENT FOR NEURAL NETWORKS

#### PRACTICAL SCHEME

## Input

- ► A NN of depth *L* where parameters **w** represent both
  - weights  $\mathbf{W}^{(j)} \in \mathbb{R}^{d(l) \times d(l-1)}, j = 1, ..., L$
  - ▶ biases  $\mathbf{b}^{j}$ , j = 1, ..., L
- ▶ Let  $\mathbf{w}_0$  be appropriately chosen initial parameters
- ► Let  $\mathbf{X}^{(\text{train})} \in \mathbb{R}^{m \times n}$ ,  $\mathbf{y}^{(\text{train})} \in \mathbb{R}^m$  be m training data points  $x \in \mathbb{R}^n$
- ► Let

$$C = \frac{1}{m} \sum_{x} C_x = \frac{1}{m} \sum_{x} C(f_{\mathbf{w}}(x), y(x))$$

be a cost function.

▶ One can view  $C = C(\mathbf{w})$  as a function in the parameters  $\mathbf{w}$ .

# GRADIENT DESCENT FOR NEURAL NETWORKS

#### PRACTICAL SCHEME

• Let  $\eta$  be an appropriately chosen *learning rate*.

#### Iteration i

- 1. Compute  $\nabla_{\mathbf{w}} C(\mathbf{w}_{i-1})$ 
  - ▶ Need training data to update *C*, based on having updated **w**
- 2. Update:  $\mathbf{w^{(i)}} \leftarrow \mathbf{w^{(i-1)}} + \eta \nabla_{\mathbf{w}} C$ 
  - $\blacktriangleright w_k^{(i)} \leftarrow w_k^{(i-1)} \eta \frac{\partial C}{\partial w_k}$
  - $b_l^{(i)} \leftarrow b_l^{(i-1)} \eta \frac{\partial C}{\partial b_l}$
- 3. Stop, if appropriate

This minimizes the cost *C*, hence adjusts the NN to the training data.

# DEEP LEARNING: CHALLENGES

► The function *f* representing a neural network with *L* layers (with depth *L*) are written

$$y = f(\mathbf{x}^0) = f^{(L)}(f^{(L-1)}(...(f^{(1)}(\mathbf{x}^{(0)}))...))$$

where 
$$\mathbf{x}^{l} = f^{(l)}(\mathbf{x}^{l-1}) = \mathbf{a}^{l}(\mathbf{W}^{(l)}\mathbf{x}^{l-1} + \mathbf{b}^{l})$$

- ► Is Functions  $f_{\mathbf{w}}$  representing NN's cannot be described in closed form
- ► Hence the loss  $C(\mathbf{w}) := C(f_{\mathbf{w}}) := C(f_{\mathbf{w}}, f^*)$  cannot be described in closed form either

# **DEEP LEARNING: CHALLENGES**

► The function *f* representing a neural network with *L* layers (with depth *L*) are written

$$y = f(\mathbf{x}^0) = f^{(L)}(f^{(L-1)}(...(f^{(1)}(\mathbf{x}^{(0)}))...))$$

where 
$$\mathbf{x}^{l} = f^{(l)}(\mathbf{x}^{l-1}) = \mathbf{a}^{l}(\mathbf{W}^{(l)}\mathbf{x}^{l-1} + \mathbf{b}^{l})$$

- ► Is Functions  $f_{\mathbf{w}}$  representing NN's cannot be described in closed form
- ► Hence the loss  $C(\mathbf{w}) := C(f_{\mathbf{w}}) := C(f_{\mathbf{w}}, f^*)$  cannot be described in closed form either

How to compute gradients and perform gradient descent?

Computing Gradients: The Backpropagation Algorithm



- ▶ weight  $w_{jk}^l$  links node k in layer l-1 with node j in layer l
- $w_{jk}^l = \mathbf{W}_{jk}^{(l)}$  in the earlier notation
- ► *Reminder*: width of layer l: d(l), so  $\mathbf{W}^{(l)} \in \mathbb{R}^{d(l) \times d(l-1)}$



- ▶  $b_i^l$  is the bias of neuron j in layer l
- ▶  $a_i^l$  is the activation *value* of neuron *j* in layer *l*
- ►  $b_j^l = \mathbf{b}_j^{(l)}, a_j^l = \mathbf{x}_j^{(l)}, \mathbf{a}^l = \mathbf{x}^{(l)}$  in earlier notation

Using a sigmoid function  $\sigma$  as activation function, we obtain

$$a_{j}^{l} = \sigma(\sum_{k} w_{jk}^{l} a_{k}^{l-1} + b_{j}^{l})$$
 (1)

which can further be written

$$\mathbf{a}^{l} = \sigma(\mathbf{W}^{(l)}\mathbf{a}^{l-1} + \mathbf{b}^{l}) \tag{2}$$

Using a sigmoid function  $\sigma$  as activation function, we obtain

$$a_j^l = \sigma(\sum_k w_{jk}^l a_k^{l-1} + b_j^l) \tag{1}$$

which can further be written

$$\mathbf{a}^{l} = \sigma(\mathbf{W}^{(l)}\mathbf{a}^{l-1} + \mathbf{b}^{l}) \tag{2}$$

*Remark*: here and in the following,  $\sigma$  can be replaced by an *arbitrary activation* function that is differentiable.

Using a sigmoid function  $\sigma$  as activation function, we obtain

$$a_j^l = \sigma(\sum_k w_{jk}^l a_k^{l-1} + b_j^l) \tag{1}$$

which can further be written

$$\mathbf{a}^{l} = \sigma(\mathbf{W}^{(l)}\mathbf{a}^{l-1} + \mathbf{b}^{l}) \tag{2}$$

*Remark*: here and in the following,  $\sigma$  can be replaced by an *arbitrary activation function that is differentiable*.

We further define

$$z_j^l = \sum_k w_{jk}^l a_k^{l-1} + b_j^l \quad \text{that is} \quad a_j^l = \sigma(z_j^l)$$
 (3)

such that

$$\mathbf{z}^{l} := (z_{1}^{l}, ..., z_{d(l)}^{l})^{T} = \mathbf{W}^{(l)} \mathbf{a}^{l-1} + \mathbf{b}^{l} \quad \text{that is} \quad \mathbf{a}^{l} = \sigma(\mathbf{z}^{l})$$
 (4)

#### We further write

- y(x) for the label of a training data point x
- ► *Note*: y(x) can be identified with  $f^*(x)$  where  $f^*$  is the true function
- ▶  $\mathbf{a}^L(x)$ , the output of the last layer, represents the network function, so  $\mathbf{a}^L(x) = f(x)$  in earlier notation.

#### Goal

- ▶ We would like to compute gradient  $\nabla_{\mathbf{W},\mathbf{b}}C$
- ► Therefore, we need to compute all partial derivatives

$$\frac{\partial C}{\partial w_{jk}^l}$$
 and  $\frac{\partial C}{\partial b_j^l}$  (5)

► For further convenience, we define

$$\delta_j^l := \frac{\partial C}{\partial z_j^l} \tag{6}$$

▶ For further convience, we define

$$\delta_j^l := \frac{\partial C}{\partial z_j^l}$$

► For example, by the chain rule of differentiation:

$$\frac{\partial C}{\partial b_j^l} = \delta_j^l \frac{\partial z_j^l}{\partial b_j^l} = \delta_j^l \frac{\partial (\sum_k w_{jk}^l a_k^{l-1} + b_j^l)}{\partial b_j^l} = \delta_j^l \frac{\partial C}{\partial w_{jk^*}^l} = \delta_j^l \frac{\partial (\sum_k w_{jk}^l a_k^{l-1} + b_j^l)}{\partial w_{jk^*}^l} = \delta_j^l a_{k^*}^{l-1}$$
(7)

► *Idea*: Focus on computing  $\delta_j^l$ , derive  $\frac{\partial C}{\partial b_j^l}$  and  $\frac{\partial C}{\partial w_{jk}^l}$  by (7)

► Let *m* be the total number of training examples. Then we define *C* 

$$C(f, f^*) = C(a^L) := \frac{1}{2m} \sum_{x} ||y(x) - a^L(x)||^2$$
 (8)

as quadratic cost function (only for easier presentation!)

- ► *Note*: y resp.  $f^*(x)$  are fixed, so C varies in  $a^L$  or f only.
- ► *Important*:  $C = \frac{1}{m} \sum_{x} C_x$  where  $C_x = \frac{1}{2} ||y(x) a^L(x)||^2$  is the cost on one individual training example
- ► *Idea*: Compute  $\frac{\delta C_x}{\delta w}$ ,  $\frac{\delta C_x}{\delta b}$  for all training data x and recover  $\frac{\delta C}{\delta w}$ ,  $\frac{\delta C}{\delta b}$  by averaging over x

# **DEFINITION**

THE HADAMARD PRODUCT

#### Definition

Let  $\mathbf{s}, \mathbf{t} \in \mathbb{R}^n$  be two vectors of equal length. Then the *Hadamard* product  $\mathbf{s} \odot \mathbf{t}$  is defined by

$$(\mathbf{s} \odot \mathbf{t})_j = \mathbf{s}_j \cdot \mathbf{t}_j \quad \text{for } j = 1, ..., n$$
 (9)

START: OUTPUT LAYER – COMPUTING  $\delta^L$ 

We have  $a_j^L = \sigma(z_j^L)$ , so

$$\delta_j^L = \sum_k \frac{\partial C}{\partial a_k^L} \frac{\partial a_k^L}{\partial z_j^L} \stackrel{\partial a_k^L}{=} 0, j \neq k}{=} \frac{\partial C}{\partial a_j^L} \cdot \sigma'(z_j^L)$$
 (10)

In other words,

$$\delta^{L} = \nabla_{\mathbf{a}^{L}} C \odot \sigma'(\mathbf{z}^{L}) \tag{11}$$

START: OUTPUT LAYER – COMPUTING  $\delta^L$ 

Further

$$\sigma'(z) = \sigma(z)(1 - \sigma(z))$$

and

$$\frac{\partial C}{\partial a_j^L} = \frac{\partial (\frac{1}{2} \sum_{j'} (y_{j'} - a_{j'}^L)^2)}{\partial a_j^L} = (a_j^L - y_j),$$

so overall

$$\delta_{j}^{L} = (a_{j}^{L} - y_{j})\sigma(z_{j}^{L})(1 - \sigma(z_{j}^{L}))$$
(12)

START: OUTPUT LAYER – COMPUTING  $\delta^L$ 

$$\delta_j^L = (a_j^L - y_j)\sigma'(z_j^L)$$
 that is  $\delta^L = (\mathbf{a}^L - \mathbf{y}) \odot \sigma'(\mathbf{z}^L)$  (13)

# Interpretation

- ▶  $a_j^L y_j$  determines how far off  $a_j^L$  from  $y_j$  is
- ► The further off, the steeper the gradient, the greater the adjustment
- $\sigma'(z_j^L)$  is close to zero if  $\sigma(z_j^L)$  is either close to zero or close to one
- ► This can make sense, but can cause problems, because updates get very small (note remarks on alternative activation functions)

# EXAMPLE MNIST NETWORK



- ▶ *Truth*: One  $y_i$  is one, all others are zero
- ▶ If  $a_i^L$  is not one, updates are large: we need to make changes
- ► If  $a_j^L$  is close to one, and all others are close to zero, updates are small: no further adjustments necessary



# Propagation – Computing $\delta^l$ from $\delta^{l+1}$

We compute

$$\delta_j^l = \frac{\partial C}{\partial z_j^l} = \sum_k \frac{\partial C}{\partial z_k^{l+1}} \frac{\partial z_k^{l+1}}{\partial z_j^l} = \sum_k \frac{\partial z_k^{l+1}}{\partial z_j^l} \delta_k^{l+1}$$
(14)

We further observe

$$z_k^{l+1} = \sum_j w_{kj}^{l+1} a_j^l + b_k^{l+1} = \sum_j w_{kj}^{l+1} \sigma(z_j^l) + b_k^{l+1}$$
 (15)

which, by differentiation, leads to

$$\frac{\partial z_k^{l+1}}{\partial z_i^l} = w_{kj}^{l+1} \sigma'(z_j^l) \tag{16}$$

Propagation – Computing  $\delta^l$  from  $\delta^{l+1}$ 

Substituting (16) into (14), we obtain

$$\delta_{j}^{l} = \sum_{k} w_{kj}^{l+1} \delta_{k}^{l+1} \sigma'(z_{j}^{l})$$
 (17)

which can be overall expressed as

$$\delta^{l} = ((\mathbf{W}^{(l+1)})^{T} \delta^{l+1}) \odot \sigma'(z^{l})$$
(18)

- ► (18) "moves the error one layer backward" 🖙 backpropagation
- ▶ Applying  $\mathbf{W}^{(l+1)}$  to  $\delta^{l+1}$  moves the error from the input of neurons in layer l+1 to the outputs of neurons in layer l
- $\sigma'(z^l)$  moves the error from the output of neurons in layer l to the inputs of neurons in layer l

Computing  $\frac{\partial C}{\partial b_j^l}$  and  $\frac{\partial C}{\partial w_{jk}^l}$ 

We further see that

$$\frac{\partial C}{\partial b_i^l} = \delta_j^l \tag{19}$$

and

$$\frac{\partial C}{\partial w_{ik}^l} = a_k^{l-1} \delta_j^l \tag{20}$$

(20) explains that changes in weights are small if the input is small, or the error in the output is small:

$$\frac{\frac{\partial C}{\partial w}}{a_{\text{in}} \times \delta_{\text{out}}} = \frac{a_{\text{in}} \times \delta_{\text{out}}}{a_{\text{out}}}$$

THE EQUATIONS

# Summary: the equations of backpropagation

$$\delta^L = \nabla_a C \odot \sigma'(z^L) \tag{BP1}$$

$$\delta^{l} = ((w^{l+1})^{T} \delta^{l+1}) \odot \sigma'(z^{l})$$
 (BP2)

$$\frac{\partial C}{\partial b_j^l} = \delta_j^l \tag{BP3}$$

$$\frac{\partial C}{\partial w_{ik}^{l}} = a_k^{l-1} \delta_j^l \tag{BP4}$$

#### THE ALGORITHM

- 1. **Input** x: Set the corresponding activation  $a^1$  for the input layer.
- **2. Feedforward:** For each l = 2, 3, ..., L compute  $z^l = w^l a^{l-1} + b^l$  and  $a^l = \sigma(z^l)$ .
- 3. **Output error**  $\delta^L$ : Compute the vector  $\delta^L = \nabla_a C \odot \sigma'(z^L)$ .
- **4. Backpropagate the error:** For each l = L 1, L 2, ..., 2 compute  $\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$ .
- 5. **Output:** The gradient of the cost function is given by

$$\frac{\partial C}{\partial w_{ik}^l} = a_k^{l-1} \delta_j^l \text{ and } \frac{\partial C}{\partial b_i^l} = \delta_j^l.$$

#### STOCHASTIC GRADIENT DESCENT

- 1. Input a set of training examples
- 2. For each training example x: Set the corresponding input activation  $a^{x,1}$ , and perform the following steps:
  - **Feedforward:** For each l = 2, 3, ..., L compute  $z^{x,l} = w^l a^{x,l-1} + b^l$  and  $a^{x,l} = \sigma(z^{x,l})$ .
  - **Output error**  $\delta^{x,L}$ : Compute the vector  $\delta^{x,L} = \nabla_a C_x \odot \sigma'(z^{x,L})$ .
  - **Backpropagate the error:** For each l = L 1, L 2, ..., 2 compute  $\delta^{x,l} = ((w^{l+1})^T \delta^{x,l+1}) \odot \sigma'(z^{x,l}).$
- 3. **Gradient descent:** For each  $l = L, L 1, \ldots, 2$  update the weights according to the rule  $w^l \to w^l \frac{\eta}{m} \sum_x \delta^{x,l} (a^{x,l-1})^T$ , and the biases according to the rule  $b^l \to b^l \frac{\eta}{m} \sum_x \delta^{x,l}$ .

EXAMPLE

# **Black Board Example**

Updating parameters in network with one hidden layer

**Black Board Example** 

**Employing Regularization** 

# REGULARIZATION REVISITED

#### **MOTIVATION**



No regularization leads to overfitting

# L2-REGULARIZED CROSS ENTROPY

We add a L2 regularization term to the cost (here: cross-entropy). Thereby  $\lambda$  is the *regularization parameter*.

$$C = -\frac{1}{m} \sum_{x} \sum_{j} [y_j \log a_j^L + (1 - y_j) \log(1 - a_j^L)] + \frac{\lambda}{2m} \sum_{w} w^2$$
 (21)

Writing  $C_0 = -\frac{1}{m} \sum_x \sum_j [y_j \log a_j^L + (1 - y_j) \log(1 - a_j^L)]$  then makes

$$C = C_0 + \frac{\lambda}{m} \sum_{w} w^2 \tag{22}$$

*Remark*: This can be done with any cost function  $C_0$ .

# L2-REGULARIZED CROSS ENTROPY

This further yields the partial derivatives

$$\frac{\partial C}{\partial w} = \frac{\partial C_0}{\partial w} + \frac{\lambda}{m} w \tag{23}$$

$$\frac{\partial C}{\partial b} = \frac{\partial C_0}{\partial b} \tag{24}$$

with *update rules* (rescaling weights with  $(1 - \frac{\eta \lambda}{m})$  is called *weight decay*)

$$b \leftarrow b - \eta \frac{\partial C_0}{\partial b} \tag{25}$$

$$w \leftarrow w - \eta \frac{\partial C_0}{\partial w} - \eta \frac{\lambda}{m} w = (1 - \frac{\eta \lambda}{m}) w - \eta \frac{\partial C_0}{\partial w}$$
 (26)

Update rules for *stochastic gradient descent*, for overall m training data, batch size  $\hat{m}$ :

$$b \leftarrow b - \frac{\eta}{\hat{m}} \sum_{x} \frac{\partial C_x}{\partial b} \tag{27}$$

$$w \leftarrow (1 - \frac{\eta \lambda}{m})w - \frac{\eta}{\hat{m}} \sum_{x} \frac{\partial C_x}{\partial w}$$
 (28)

## L2 REGULARIZATION

#### **EXPLANATIONS**

- For sake of better illustration, consider
  - $ightharpoonup C_0$  to be a quadratic cost function, like mean squared loss
  - ► In general, one can consider the quadratic (second order term) approximation of *C*<sub>0</sub>
  - only one training example, that is m = 1 in the following
- ▶ Let

$$\mathbf{w}^* := \arg\min_{\mathbf{w}} C_0(\mathbf{w}) \tag{29}$$

be the true minimum (which we don't know).

► Let *k* be the length of **w** (so *k* the number of weights to be trained)

## L2 REGULARIZATION

#### **EXPLANATIONS**

- For sake of better illustration, consider
  - $ightharpoonup C_0$  to be a quadratic cost function, like mean squared loss
  - ► In general, one can consider the quadratic (second order term) approximation of *C*<sub>0</sub>
  - only one training example, that is m = 1 in the following
- ► Let

$$\mathbf{w}^* := \arg\min_{\mathbf{w}} C_0(\mathbf{w}) \tag{29}$$

be the true minimum (which we don't know).

▶ Let *k* be the length of w (so *k* the number of weights to be trained)

# L2 REGULARIZATION

#### **EXPLANATIONS**

- For sake of better illustration, consider
  - $ightharpoonup C_0$  to be a quadratic cost function, like mean squared loss
  - ► In general, one can consider the quadratic (second order term) approximation of *C*<sub>0</sub>
  - only one training example, that is m = 1 in the following
- ► Let

$$\mathbf{w}^* := \arg\min_{\mathbf{w}} C_0(\mathbf{w}) \tag{29}$$

be the true minimum (which we don't know).

► Let *k* be the length of **w** (so *k* the number of weights to be trained)

#### **EXPLANATIONS**

► Let the *Hessian matrix*  $\mathbf{H} \in \mathbb{R}^{k \times k}$  be defined by

$$\mathbf{H}_{ww'} = \frac{\partial C_0}{\partial w \partial w'} \tag{30}$$

- ▶ The gradient of  $C_0$  vanishes at  $\mathbf{w}^*$ , because  $\mathbf{w}^*$  is the minimum.
- ▶ By Taylor's approximation, because *C*<sub>0</sub> is quadratic, we know that

$$C_0(\mathbf{w}) = C_0(\mathbf{w}^*) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^*)^T \mathbf{H}(\mathbf{w} - \mathbf{w}^*)$$
(31)

▶ That means that the minimum of  $C_0$  appears where

$$\nabla_{\mathbf{w}} C_0(\mathbf{w}) = \mathbf{H}(\mathbf{w} - \mathbf{w}^*) = \mathbf{0}$$
(32)

#### **EXPLANATIONS**

► Let the *Hessian matrix*  $\mathbf{H} \in \mathbb{R}^{k \times k}$  be defined by

$$\mathbf{H}_{ww'} = \frac{\partial C_0}{\partial w \partial w'} \tag{30}$$

- ▶ The gradient of  $C_0$  vanishes at  $\mathbf{w}^*$ , because  $\mathbf{w}^*$  is the minimum.
- ▶ By Taylor's approximation, because *C*<sup>0</sup> is quadratic, we know that

$$C_0(\mathbf{w}) = C_0(\mathbf{w}^*) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^*)^T \mathbf{H}(\mathbf{w} - \mathbf{w}^*)$$
(31)

▶ That means that the minimum of  $C_0$  appears where

$$\nabla_{\mathbf{w}} C_0(\mathbf{w}) = \mathbf{H}(\mathbf{w} - \mathbf{w}^*) = \mathbf{0}$$
 (32)

#### **EXPLANATIONS**

▶ Let the *Hessian matrix*  $\mathbf{H} \in \mathbb{R}^{k \times k}$  be defined by

$$\mathbf{H}_{ww'} = \frac{\partial C_0}{\partial w \partial w'} \tag{30}$$

- ▶ The gradient of  $C_0$  vanishes at  $\mathbf{w}^*$ , because  $\mathbf{w}^*$  is the minimum.
- ► By Taylor's approximation, because *C*<sub>0</sub> is quadratic, we know that

$$C_0(\mathbf{w}) = C_0(\mathbf{w}^*) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^*)^T \mathbf{H}(\mathbf{w} - \mathbf{w}^*)$$
(31)

 $\triangleright$  That means that the minimum of  $C_0$  appears where

$$\nabla_{\mathbf{w}} C_0(\mathbf{w}) = \mathbf{H}(\mathbf{w} - \mathbf{w}^*) = \mathbf{0}$$
(32)

#### **EXPLANATIONS**

▶ Let the *Hessian matrix*  $\mathbf{H} \in \mathbb{R}^{k \times k}$  be defined by

$$\mathbf{H}_{ww'} = \frac{\partial C_0}{\partial w \partial w'} \tag{30}$$

- ▶ The gradient of  $C_0$  vanishes at  $\mathbf{w}^*$ , because  $\mathbf{w}^*$  is the minimum.
- ▶ By Taylor's approximation, because  $C_0$  is quadratic, we know that

$$C_0(\mathbf{w}) = C_0(\mathbf{w}^*) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^*)^T \mathbf{H}(\mathbf{w} - \mathbf{w}^*)$$
(31)

▶ That means that the minimum of  $C_0$  appears where

$$\nabla_{\mathbf{w}} C_0(\mathbf{w}) = \mathbf{H}(\mathbf{w} - \mathbf{w}^*) = \mathbf{0}$$
 (32)

#### EXPLANATIONS

- ► Let  $\tilde{\mathbf{w}}$  be the minimum of  $C = C_0 + \frac{1}{2}||\mathbf{w}||^2$
- ► Recalling  $\frac{\partial C}{\partial w} = \frac{\partial C_0}{\partial w} + \lambda w$  (see (23) with m = 1), we know that

$$\mathbf{H}(\tilde{\mathbf{w}} - \mathbf{w}^*) + \lambda \tilde{\mathbf{w}} = 0 \tag{33}$$

► This further leads to (I is the identity)

$$\tilde{\mathbf{w}} = (\mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{H} \mathbf{w}^* \tag{34}$$

#### **EXPLANATIONS**

- ► Let  $\tilde{\mathbf{w}}$  be the minimum of  $C = C_0 + \frac{1}{2}||\mathbf{w}||^2$
- ► Recalling  $\frac{\partial C}{\partial w} = \frac{\partial C_0}{\partial w} + \lambda w$  (see (23) with m = 1), we know that

$$\mathbf{H}(\tilde{\mathbf{w}} - \mathbf{w}^*) + \lambda \tilde{\mathbf{w}} = 0 \tag{33}$$

► This further leads to (I is the identity)

$$\tilde{\mathbf{w}} = (\mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{H} \mathbf{w}^* \tag{34}$$

#### **EXPLANATIONS**

- ► Let  $\tilde{\mathbf{w}}$  be the minimum of  $C = C_0 + \frac{1}{2}||\mathbf{w}||^2$
- ► Recalling  $\frac{\partial C}{\partial w} = \frac{\partial C_0}{\partial w} + \lambda w$  (see (23) with m = 1), we know that

$$\mathbf{H}(\tilde{\mathbf{w}} - \mathbf{w}^*) + \lambda \tilde{\mathbf{w}} = 0 \tag{33}$$

► This further leads to (I is the identity)

$$\tilde{\mathbf{w}} = (\mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{H} \mathbf{w}^* \tag{34}$$

#### **EXPLANATIONS**

- ► Let  $\tilde{\mathbf{w}}$  be the minimum of  $C = C_0 + \frac{1}{2}||\mathbf{w}||^2$
- ► Recalling  $\frac{\partial C}{\partial w} = \frac{\partial C_0}{\partial w} + \lambda w$  (see (23) with m = 1), we know that

$$\mathbf{H}(\tilde{\mathbf{w}} - \mathbf{w}^*) + \lambda \tilde{\mathbf{w}} = 0 \tag{33}$$

► This further leads to (I is the identity)

$$\tilde{\mathbf{w}} = (\mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{H} \mathbf{w}^* \tag{34}$$

#### **EXPLANATIONS**

- ▶ Let **D** be diagonal where entries  $\mathbf{D}_{ii}$  are the eigenvalues of **H**
- ► Let **Q** collect the eigenvectors of **H**
- Since H is real and symmetric, Q is orthogonal, and H can be written

$$\mathbf{H} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{T} \tag{35}$$

▶ Substituting (35) in (34), we obtain

$$\tilde{\mathbf{w}} = (\mathbf{Q}\mathbf{D}\mathbf{Q}^T + \lambda \mathbf{I})^{-1}\mathbf{Q}\mathbf{D}\mathbf{Q}^T\mathbf{w}^*$$
(36)

further yielding

$$\tilde{\mathbf{w}} = \mathbf{Q}(\mathbf{D} + \lambda \mathbf{I})^{-1} \mathbf{D} \mathbf{Q}^{\mathrm{T}} \mathbf{w}^{*}$$
(37)

#### **EXPLANATIONS**

- ▶ Let **D** be diagonal where entries  $\mathbf{D}_{ii}$  are the eigenvalues of **H**
- ► Let **Q** collect the eigenvectors of **H**
- Since H is real and symmetric, Q is orthogonal, and H can be written

$$\mathbf{H} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{T} \tag{35}$$

► Substituting (35) in (34), we obtain

$$\tilde{\mathbf{w}} = (\mathbf{Q}\mathbf{D}\mathbf{Q}^T + \lambda \mathbf{I})^{-1}\mathbf{Q}\mathbf{D}\mathbf{Q}^T\mathbf{w}^*$$
(36)

further yielding

$$\tilde{\mathbf{w}} = \mathbf{Q}(\mathbf{D} + \lambda \mathbf{I})^{-1} \mathbf{D} \mathbf{Q}^{\mathrm{T}} \mathbf{w}^{*}$$
(37)



#### **EXPLANATIONS**

- ▶ Let **D** be diagonal where entries  $\mathbf{D}_{ii}$  are the eigenvalues of **H**
- ► Let **Q** collect the eigenvectors of **H**
- Since H is real and symmetric, Q is orthogonal, and H can be written

$$\mathbf{H} = \mathbf{Q}\mathbf{D}\mathbf{Q}^T \tag{35}$$

► Substituting (35) in (34), we obtain

$$\tilde{\mathbf{w}} = (\mathbf{Q}\mathbf{D}\mathbf{Q}^T + \lambda \mathbf{I})^{-1}\mathbf{Q}\mathbf{D}\mathbf{Q}^T\mathbf{w}^*$$
(36)

further yielding

$$\tilde{\mathbf{w}} = \mathbf{Q}(\mathbf{D} + \lambda \mathbf{I})^{-1} \mathbf{D} \mathbf{Q}^T \mathbf{w}^*$$
 (37)

- ► *Interpretation*:
  - $ightharpoonup \tilde{\mathbf{w}}$  is a rescaled version of  $\mathbf{w}^*$
  - ► The component of **w**\* that aligns with the *i*-th eigenvector of **H** is rescaled by a factor of

$$\frac{\mathbf{D}_{ii}}{\mathbf{D}_{ii} + \lambda} \tag{38}$$

- ► Eigenvectors of **H** referring to large eigenvalues indicate directions where the gradient rapidly changes (increases when going away from **w**\*, where it is zero)
- ► Eigenvectors of **H** referring to small eigenvalues indicate directions where the gradient hardly changes
- ▶ The latter directions can be neglected
- ► In other words, components of weights referring to such directions can be decayed away by regularization



- ► *Interpretation*:
  - ▶ w̃ is a rescaled version of w\*
  - ► The component of **w**\* that aligns with the *i*-th eigenvector of **H** is rescaled by a factor of

$$\frac{\mathbf{D}_{ii}}{\mathbf{D}_{ii} + \lambda} \tag{38}$$

- ► Eigenvectors of **H** referring to large eigenvalues indicate directions where the gradient rapidly changes (increases when going away from **w**\*, where it is zero)
- ► Eigenvectors of **H** referring to small eigenvalues indicate directions where the gradient hardly changes
- ▶ The latter directions can be neglected
- ► In other words, components of weights referring to such directions can be decayed away by regularization



- ► *Interpretation*:
  - ▶ w̃ is a rescaled version of w\*
  - ► The component of **w**\* that aligns with the *i*-th eigenvector of **H** is rescaled by a factor of

$$\frac{\mathbf{D}_{ii}}{\mathbf{D}_{ii} + \lambda} \tag{38}$$

- ► Eigenvectors of **H** referring to large eigenvalues indicate directions where the gradient rapidly changes (increases when going away from **w**\*, where it is zero)
- ► Eigenvectors of **H** referring to small eigenvalues indicate directions where the gradient hardly changes
- ► The latter directions can be neglected
- ► In other words, components of weights referring to such directions can be decayed away by regularization



- ► *Interpretation*:
  - ▶ w̃ is a rescaled version of w\*
  - ► The component of **w**\* that aligns with the *i*-th eigenvector of **H** is rescaled by a factor of

$$\frac{\mathbf{D}_{ii}}{\mathbf{D}_{ii} + \lambda} \tag{38}$$

- ► Eigenvectors of **H** referring to large eigenvalues indicate directions where the gradient rapidly changes (increases when going away from **w**\*, where it is zero)
- Eigenvectors of H referring to small eigenvalues indicate directions where the gradient hardly changes
- ► The latter directions can be neglected
- ► In other words, components of weights referring to such directions can be decayed away by regularization



# REGULARIZATION REVISITED MOTIVATION



L2 regularization shrinks weights along eigenvectors of the Hessian

#### **MOTIVATION**



Regularization prevents overfitting

#### L1 REGULARIZATION

For L1 regularization, we modify the cost function

$$C = C_0 + \frac{\lambda}{m} \sum_{w} |w| \tag{39}$$

by adding the sum of the absolute values of the weights.

Gradient:

$$\frac{\partial C}{\partial w} = \frac{\partial C_0}{\partial w} + \frac{\lambda}{m} \operatorname{sgn}(w) \tag{40}$$

*Update:* 

$$w \leftarrow w' = w - \frac{\eta \lambda}{m} \operatorname{sgn}(w) - \eta \frac{\partial C_0}{\partial w}$$
 (41)

- ► L1 regularization does not have a similarly neat algebraic explanation like L2 regularization
- ► An approximate explanation is that components referring to small eigenvalues of the Hessian are set to zero, rather than smoothly shrunken
- ▶ Overall, a *sparse* set of weights is achieved

- ► L1 regularization does not have a similarly neat algebraic explanation like L2 regularization
- ► An approximate explanation is that components referring to small eigenvalues of the Hessian are set to zero, rather than smoothly shrunken
- ▶ Overall, a *sparse* set of weights is achieved

- ► L1 regularization does not have a similarly neat algebraic explanation like L2 regularization
- ► An approximate explanation is that components referring to small eigenvalues of the Hessian are set to zero, rather than smoothly shrunken
- ▶ Overall, a *sparse* set of weights is achieved

#### L1 VERSUS L2 REGULARIZATION

- ▶ In L1 regularization, weights shrink by a *constant* amount.
- ► In L2 regularization, weights shrink by an amount *proportionally* to w.
- ▶ L1 regularization tends to bring forward a small number of *high-importance connections*.
- ▶ L2 regularization tends to keep all weights small.

L1 VERSUS L2 REGULARIZATION

- ▶ In L1 regularization, weights shrink by a *constant* amount.
- ► In L2 regularization, weights shrink by an amount *proportionally* to w.
- ► L1 regularization tends to bring forward a small number of *high-importance connections*.
- ► L2 regularization tends to keep all weights small.

#### DROPOUT



Full network, before dropout

#### DROPOUT



Network after having dropped half of the hidden nodes

- 1. Choose a mini batch of training data of size  $\hat{m}$
- Randomly delete half of the hidden nodes, while keeping all input and output nodes
- 3. Train the resulting network using the mini batch; update all weights and biases
- 4. If validation accuracy not yet satisfying, return to 1.
- 5. After each epoch, decrease each weight by a factor of

DROPOUT

- 1. Choose a mini batch of training data of size  $\hat{m}$
- 2. Randomly delete half of the hidden nodes, while keeping all input and output nodes
- Train the resulting network using the mini batch; update all weights and biases
- 4. If validation accuracy not yet satisfying, return to 1.
- 5. After each epoch, decrease each weight by a factor of  $\frac{1}{2}$

DROPOUT

- 1. Choose a mini batch of training data of size  $\hat{m}$
- 2. Randomly delete half of the hidden nodes, while keeping all input and output nodes
- 3. Train the resulting network using the mini batch; update all weights and biases
- 4. If validation accuracy not yet satisfying, return to 1.
- 5. After each epoch, decrease each weight by a factor of  $\frac{1}{2}$

DROPOUT

- 1. Choose a mini batch of training data of size  $\hat{m}$
- 2. Randomly delete half of the hidden nodes, while keeping all input and output nodes
- 3. Train the resulting network using the mini batch; update all weights and biases
- 4. If validation accuracy not yet satisfying, return to 1.
- 5. After each epoch, decrease each weight by a factor of  $\frac{1}{2}$

- ► Dropout can be perceived as averaging over several smaller networks, where averaging over several models is generally helpful to prevent overfitting
- Dropout can be perceived as projecting points in parameter space onto the linear subspace defined by only half of the elementary basis vectors.
- Combining optima in subspaces yields a selection of parameters that are not optimal, but nearby an optimum
   experience shows that this prevents overfitting
- ▶ Dropout prevents "co-adaptation of neurons"

- ► Dropout can be perceived as averaging over several smaller networks, where averaging over several models is generally helpful to prevent overfitting
- ► Dropout can be perceived as projecting points in parameter space onto the linear subspace defined by only half of the elementary basis vectors.
- Combining optima in subspaces yields a selection of parameters that are not optimal, but nearby an optimum
   experience shows that this prevents overfitting
- Dropout prevents "co-adaptation of neurons"

- ► Dropout can be perceived as averaging over several smaller networks, where averaging over several models is generally helpful to prevent overfitting
- ► Dropout can be perceived as projecting points in parameter space onto the linear subspace defined by only half of the elementary basis vectors.
- ► Combining optima in subspaces yields a selection of parameters that are not optimal, but nearby an optimum experience shows that this prevents overfitting
- ▶ Dropout prevents "co-adaptation of neurons"

- ► Dropout can be perceived as averaging over several smaller networks, where averaging over several models is generally helpful to prevent overfitting
- ► Dropout can be perceived as projecting points in parameter space onto the linear subspace defined by only half of the elementary basis vectors.
- ► Combining optima in subspaces yields a selection of parameters that are not optimal, but nearby an optimum experience shows that this prevents overfitting
- ► Dropout prevents "co-adaptation of neurons"

# L1/2 REGULARIZATION, DROPOUT, EARLY STOPPING

## Try to find a reasonable point near the very optimum

- ► L1/2 regularization: shrink or eliminate weights that don't change much
- Dropout: Randomly project points to linear subspaces, and optimize there, and then average out
- ► *Early stopping*: Stop before reaching the optimum

#### ARTIFICIAL EXPANSION OF TRAINING DATA



More training data improves test accuracy

#### ARTIFICIAL EXPANSION OF TRAINING DATA



NN versus SVM on same training data

- ► Sometimes better training data delivers substantial improvements
- Always good to aim for methodical improvements, but:
- ▶ Don't miss "easy wins" by generating more and/or better training data



#### ARTIFICIAL EXPANSION OF TRAINING DATA



NN versus SVM on same training data

- ► Sometimes better training data delivers substantial improvements
- ► Always good to aim for methodical improvements, but:
- ▶ Don't miss "easy wins" by generating more and/or better training data



#### ARTIFICIAL EXPANSION OF TRAINING DATA



NN versus SVM on same training data

- ► Sometimes better training data delivers substantial improvements
- ► Always good to aim for methodical improvements, but:
- ► Don't miss "easy wins" by generating more and/or better training data



#### GENERATING ARTIFICIAL TRAINING DATA





Rotating 5 by 15 degrees to the left yields new training datum

### Other Techniques

- ► Translating, skewing
- ► "Elastic distortions"
- ► For more details, see [Simard, Steinkraus & Platt, 2003] https://ieeexplore.ieee.org/document/1227801



## SUMMARY / FURTHER INFORMATION

- ► Please focus on the assigment in the first place!
- ▶ Backpropagation: See http://www.deeplearningbook.org/6.5 and http://neuralnetworksanddeeplearning.com/, Chapter 2, until and including "The Backpropagation Algorithm"
- Regularization: See http://www.deeplearningbook.org/ Chapter 7, (for example 7.1, 7.8, 7.12) and http://neuralnetworksanddeeplearning.com/, Chapter 3
- ► For *further reading*, also consider:
- Read "In what sense is backpropagation a fast algorithm?" in Nielsen's book, chapter 2 (http://neuralnetworksanddeeplearning.com/chap2.html),
- ► Read "Backpropagation: the big picture" in Nielsen's book, chapter 2
- and try to make sense of what you have read.

## OUTLOOK

- ► Convolutional Neural Networks
- ▶ http://www.deeplearningbook.org/, Chapter 9
- http://neuralnetworksanddeeplearning.com/,
  "Deep Learning"

Thanks for your attention