Bayesian Inference

Viktor

March 18, 2018

1 Graph theory

We recap the basics of graph theory. [2, 1]

Graph. A graph G = (V, E) consistes of a set $V = \{1, ..., m\}$ of vertices and a set $E \subseteq V \times V$ of edges. So each edge consists of a pair of vertices $(s,t) \in E$. For an *undirected* graph there is no distinction between (s,t) and (t,s). In a *directed* graph the edge orientation is distinguished, which is emphasised by the notation $(s \to t) := (s,t)$.

Remark: By definition a graph does not contain self-loops as edges $(s, s) \notin E$, $\forall s \in V$ nor does it contain multiple copies of the same vertex. This may be included within the framework of multigraphs.

Subgraph. A subgraph G' = (V', E') of a given graph G = (V, E) is a graph such that $V' \subseteq V$ and $E' \subseteq E$. Given a vertex subset $V' \subseteq V$ of G = (V, E), the vertex-induced subgraph G'(V') = (V', E(V')) has the edge set $E(V') = \{(s,t) \in E | s,t \in V'\}$. Given an edge subset $E' \subseteq E$ of G = (V, E), the edge-induced subgraph G'(E') = (V(E'), E') has vertex set $V(E') = \{s \in V | (s,t) \in E'\}$

Path. A path P = (V(P), E(P)) is a graph with vertex set $V(P) = \{v_0, \ldots, v_k\}$ and edge set $V(P) = \{(v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)\}$. The path joins vertex v_0 to vertex v_k . Of special interest are paths that are subgraphs of a given Graph $G = (V, E) : V(P) \subseteq V, E(P) \subseteq E$.

Cycle. A cycle C = (V(C), E(C)) is a graph with vertex set $V(C) = \{v_0, \ldots, v_k\}$ and edge set $E(C) = \{(v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k), \ldots, (v_k, v_0)\}$. An undirected graph is acyclic if it contains no cycles.

Bipartite. A graph G = (V, E) is bipartite if its vertex set can be partitioned as a disjoint union $V = V_a \dot{\cup} V_b$ such that $(s, t) \in E \Rightarrow s \in V_a, t \in V_b$ (or vice versa).

Clique. A clique of a graph G = (V, E) is a subset of vertices $V' \subseteq V$ that are all joined by vertices, $(s,t) \in E \ \forall s,t \in V'$. A clique V' is maximal if there is no vertex $v \in V \setminus V'$ such that $V \cup \{v\}$ is a clique.

Remark: Sometimes maximal cliques are just called cliques and non-maximal cliques are calle cliques.

Chord. Given a cylce C with vertex set $V(C) = \{v_0, \dots v_k\}$ and edge set $E(C) = \{(v_0, v_1), (v_1, v_2), \dots (v_{k-1}, v_k), \dots (v_k, v_0)\}$. A chord is an edge that is not part of E(C). Given a Graph G = (V, E) and a cycle C of length four or greater. C is *chordless* if the edge set E of G contains no chords for C.

Triangulated. A graph is triangulated if it contains no chordless cycles (of length four or greater).

Connected component. A connected component of a graph G = (V, E) is a subset of vertices $V' \subseteq V$ such that $\forall s, t \in V'$, there exists a path in G joining s to t. A graph is singly connected if it consists of a single connected component.

Tree. A tree is an acyclic singly connected graph. It can be shown that a tree with m verices must have m-1 edges.

Forest. A forest is an acyclic graph consisting of one or more connected components.

Hypergraph. A hypergraph is G = (V, E) consists of a vertex set $V = \{1, 2, ..., m\}$, and a set E of hyperedges, with $E \ni h \subset V$. So, each hyperedge is a particular subset of V. In particular, an ordinary graph is a hypergraph with |h| = 2.

Factor graph. Given a hypergraph G = (V, E). A Factor graph is a bipartite graph F = (V', E') with $V' = V \cup E$ and $E' = \{(s, h) \in V \times E \mid s \in h\}$.

2 Probability distributions on graphs

In order to define a probabilistic graphical model over a graph G = (V, E), each single vertex $s \in V$ is associated with a random variabel X_s . The state space of X_s is denoted by \mathcal{X}_s It defines all possible values X_s may take. For example, in the contineous case $\mathcal{X}_s \subseteq \mathbb{R}$ and in the discrete case $\mathcal{X}_s = \{1, \ldots, r\}$. Lower case letters are used to denote an element of the state space, $x_s \in \mathcal{X}_s$. The notation $\{X_s = x_s\}$ corresponds to an event where the random variable X_s takes the specific value $x_s \in \mathcal{X}_s$ over its state space \mathcal{X}_s .

For a subset of vertices $A \subset V$, the above notations may be generalized: $X_A := (X_s, s \in A)$. The joint state space is the cartesian product of the individual state spaces, $\mathcal{X}_A := \otimes_{s \in A} \mathcal{X}_s$. A state space element $x_A \in \mathcal{X}_A$ is then given by $x_A = (x_s, s \in A)$. This can be also interpreted as the marginal pdf of |A| random variables with respect to a joint pdf of |V| random variables.

2.1 Directed graphical models

Given a directed graph G = (V, E). For an edge $(s \to t)$ s is called parent of t and s is called child of t. For a given vertex $s \in V$ denote the set of its parents $\pi(s) = \{t \in V | s \to s\}$.

- DAG
- interpretation
- not unique (bayes thm)
- plate notation
- model building
- conditional independence

Undirected graphical models

- Markov random fields
- interpretation
- conditional independence
- Moralization

2.2 Factor graphs

Junction tree

•

References

- [1] Bela Bollobas. Modern Graph Theory. Springer, 1998.
- [2] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305, 2008.