Title of the document

Henrik Modahl Breitenstein and Carl Petter Duedahl (Dated: September 12, 2021)

https://github.com/henrikbreitenstein/FYS3150.git

PROBLEM 1

Poisson likningen

$$-\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} = f(x)$$

Bytter f(x) med gitt funksjon

$$-\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} = 100e^{-10x}$$
$$-\mathrm{d}^2 u = 100e^{-10x} \, \mathrm{d}x^2$$

Tar integralene

$$-\iint d^2 u = \iint 100e^{-10x} dx^2$$
$$-u = \int -10e^{-10x} + c_1 dx$$
$$-u = e^{-10x} + c_1 x + c_2$$
$$u = -e^{-10x} - c_1 x - c_2$$

Bruker initialbetingelsene

$$u(0) = 0 \Rightarrow -1 - c_2 = 0 \tag{1}$$

$$u(1) = 0 \Rightarrow -e^{-10} - c1 - c2 = 0 \tag{2}$$

Med 1 og 2 får vi:

$$c2 = -1$$

$$c1 = 1 - e^{-10}$$

Ved å sette inn for c_1 og c_2 får vi:

$$u = 1 - (1 - e^{-10})x - e^{-10x}$$
(3)

PROBLEM 2

I repostory'et under FYS3150/Project1/main.cpp så har vi skrevet koden som regner ut verdiene til den eksakte løsningen, og i FYS3150/Project1/plot.py så tegnes grafen. Kan kjøre programmet 'main.cpp' med commandoen

\$ make all og kjøre 'plot.py' med

\$ python plot.py

PROBLEM 3

Vi starter med Poisson likningen:

$$-\frac{d^2u(x)}{dx^2} = f(x)$$

Vi har så via Taylor ekspansjon at:

$$u(x+h) = u(x) + u'(x)h + \frac{1}{2}u''(x)h^2 + \frac{1}{6}u'''(x)h^3 + O(h^4)$$

$$u(x - h) = u(x) - u'(x)h + \frac{1}{2}u''(x)h^2 - \frac{1}{6}u'''(x)h^3 + O(h^4)$$

Og finner så summen:

$$u(x+h) + u(x-h) = 2u(x) + f''(x)h^2 + O(h^4)$$

Som gir oss

$$u''(x) = \frac{u(x+h) - 2u(x) + u(x-h)}{h^2} + O(h^2)$$

Om vi så fjerner error-leddet:

$$v''(x) = \frac{v(x+h) - 2v(x) + v(x-h)}{h^2}$$

Som vi kan bruke til å skrive Poisson likningen:

$$-\frac{v(x+h) - 2v(x) + v(x-h)}{h^2} = f(x)$$

PROBLEM 4

Om vi skriver det om som:

$$-v(x+h) + 2v(x) - v(x-h) = h^2 f(x)$$

Om vi har x-verdier:

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Om vi så setter verdiene til v inne i:

$$\vec{v} = \begin{bmatrix} v(x_1) \\ v(x_2) \\ \vdots \\ v(x_n) \end{bmatrix}$$

Og det samme med verdiene tii f(x):

$$\vec{g} = \begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \end{bmatrix}$$

Så skriver vi likningen om:

$$-v_{i+1} + 2v_i - v_{i-1} = h^2 g_i$$

Som kan skrives:

$$\begin{bmatrix} -1\\2\\-1\end{bmatrix}\begin{bmatrix} v_{i+1}\\v_i\\v_{i-1}\end{bmatrix}=h^2g_i$$

Som vil gjelde for alle i:

$$\mathbf{A}\vec{v} = h^2\vec{g}$$

Hvor **A** må ha $\begin{bmatrix} -1\\2\\-1 \end{bmatrix}$ forskøvet for hver rad slik at de henger sammen med de riktige verdiene til v(x) i \vec{v} .

PROBLEM 5

Problem a

Siden vi gjør en matrismultiplikasjon så må bredden, n, til $\mathbf A$ være det samme som lengden m til \overrightarrow{v} og \overrightarrow{g} . Så

$$n = m$$

Problem b

Av $A\vec{v} = \vec{g}$ vil vi finne alle verdier mellom grensebetingelsene u(0) = u(1) = 0. $\vec{v*}$ er den samme som \vec{v} men vi har lagt til v_0 og v_{n+1} som er grensebetingelsene.

PROBLEM 6

 \mathbf{A}

Vi har nå en vektor

$$\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

og en $n \times n$ -matrise

$$\mathbf{A} = \begin{cases} b_1 & c_2 & 0 & 0 & \cdots & 0 & 0 \\ a_2 & b_2 & c_2 & 0 & \cdots & 0 & 0 \\ 0 & a_3 & b_3 & c_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & a_n & b_n \end{cases}$$

Matrisemultipliserer vi disse får vi

$$(III)^* \ 0 \ 0 \ b_3 - \frac{c_2 \cdot a_3}{b_2^*} \ c_3 \ g_3 - g_1 \frac{a_3}{b_2^*}$$

og vi kan igjen definere $b_3^* = b_3 - \frac{c_2 \cdot a_3}{b_2^*}$ og $g_3^* = g_3 - g_1 \frac{a_3}{b_2^*}$. Og vi kan da fortsette med dette nedover som $(k) - \frac{a_k}{b_{k-1}^*} (k-1)^*$. Så har vi fjernet a-ene så da må vi fjerne c-ene og normalisere b-ene. For å gjøre starter vi i siste ledd med

 $(n)/b_n$

 ${så}$

$$b_n = \frac{b_n}{b_n}$$

og

$$g_n^* = \frac{g_n}{b_n}$$

Da får vi at $A_n v_n = g_n$ blir satt ned til

$$v_n = \frac{g_n}{b_n}$$

Så kan vi se på leddet n-1 her har vi både en b_{n-1} og en c_{n-1} . Vi må derfor gjøre

$$(n-1) = ((n-1) - (n) \cdot c_{n-1})/b_{n-1}$$

så vi også får fjernet c_{n-1} og står kun igjen med et ettall i A matrisen som gir oss at

$$v_{n-1} = \frac{g_{n-1} - g_n \cdot c_{n-1}}{b_{n-1}}$$

og herfra kan vi generalisere til

$$v_i = \frac{g_i - v_{i+1} \cdot c_n}{b_{n-1}}$$

Så da får vi algoritmen

Algorithm 1 Radredusering av tridiagonal matrise

for i = 2, 3, ..., n do

 \triangleright Forward substitution, n-1 repetisjoner

$$t \leftarrow \frac{a_i}{b_{i-1}}$$

⊳ 1 FLOP

$$b_i \leftarrow b_i - c_{i-1} \cdot t$$

▷ 2 FLOPs

$$g_i \leftarrow g_i - g_{i-1}t$$

 \triangleright 2 FLOPs

 \triangleright Til sammen $7\cdot(n-1)$ FLOPs i loopen

$$v_n = g_n/b_n$$

⊳ 1 FLOP

for
$$j = n - 1, n - 2, ..., 1$$
 do

 \triangleright Backward Substitution, n-1 repetisjoner

$$v_j \leftarrow (g_j - v_{j+1} \cdot c_j)/b_j$$

▷ 3 FLOPs

 ${\,\vartriangleright\,}$ Til sammen $3\cdot(n-1)$ FLOPs i loopen

Så antall FLOPs i loopen blir til sammen

$$7(n-1) + 1 + 3(n-1) = \underline{10(n-1) + 1}$$

PROBLEM 7

Problem a

Sriptet 'Problem7new.cpp' og 'Problem7func.cpp' bruker den generelle algoritmen til å løse matriselikningen. For å kjøre de sammen:

\$ make pr7all

Problem b

Vi kjørte for n = 10 i 2, n = 100 i 2 og n = 1000 i 3.

Legger merker til at etter n = 100 så ser man ikke den eksakte grafen lenger, og det er vanskelig å si med det blåtte øyet om tilnærmingen blir bedre eller ikke.

PROBLEM 8

Problem a

Vi har illustrert den absolutte feilen mellom den eksakte verdien og vår tilnærming i 4.

FIG. 1. Eksakt u(x) og tilnærmingen v(x) hvor vi har brukt n=10 som antall steg.

FIG. 2. Eksakt u(x) og tilnærmingen v(x) hvor vi har brukt n=100 som antall steg.

FIG. 3. Eksakt u(x) og tilnærmingen v(x) hvor vi har brukt n=1000 som antall steg.

FIG. 4. Den absolutte feilen mellom den eksakte verdien, u(x), og vår tilnærming v(x).

problem b

Problem c

PROBLEM 9

Problem a

Algorithm 2 Spesialisert algoritme

$$a \leftarrow -1$$

$$b \leftarrow 2$$

$$c \leftarrow -1$$

$$d \leftarrow a \cdot c$$

⊳ 1 FLOP

 \triangleright Forward elemination

for
$$i = 0, 1, 2, \dots, n-1$$
 do

$$\widetilde{b}_{i+1} \leftarrow \widetilde{b}_{i+1} - \frac{d}{\widetilde{b}_i}$$

⊳ 2 FLOPs

$$\widetilde{g}_{i+1} \leftarrow g_{i+1} - \frac{a}{\widetilde{b}_i} g_i$$

⊳ 3 FLOPs

for
$$i = n - 1, n - 2, \cdots, 0$$
 do

 \triangleright Backward elemination

$$v_i \leftarrow \frac{\widetilde{g}_i - cv_{i+1}}{\widetilde{b}_i}$$

⊳ 3 FLOPs

problem b

Vi regner ut produktet $a \cdot c$ som gir oss 1 FLOP. For "Forward Elemination" loopen så har vi 5 FLOPs per iterasjoner, som gir tilsammen 5n. I loopen for "Backwards elemination" så har 3 FLOPs per iterasjon som gir oss 3n FLOPs tilsammen. Totalt ender vi da opp med 8n + 1 FLOPs.

Problem c

I filen 'problem9.cpp' har vi kodet den spesielle algoritmen. Kjøres ved kommandoen

\$ make p9all

PROBLEM 10

Kjører både den generelle og spesifikke algortimen 100 gangerfor hver n og tar så gjennomsnittet. Resultaten er vist i plottet 5.

Kan se at ved små n så er tidsbruken nesten helt lik, men når man kommer opp i større n så bruker den spesielle merkbart mindre tid enn den generelle.

FIG. 5. Tiden brukt til både den genrelle og spesifikke agoritmen for forskjellige n.

PROBLEM 11

Med LU dekomposisjon så vil man bruke i utgangspunktet N^3 FLOPs kun for dekomposisjonen og så skalerer kompleksiteten til å løse hver enkelt $\mathbf{A}\vec{v} = \vec{g}$ likning med N^2 . For kun én slik likningen kan vi se at både den generelle og spesielle algoritmen når man har en tridiagonal matrise skalerer to ordner lavere enn LU dekomposisjon.