Solution to Exercises

Chapter 6 Introduction to Statistical Inference

Section 6.1 Point Estimation

6.1. Let X_1, X_2, \dots, X_n represent a random sample from each of the distributions having the following probability density functions:

- (a) $f(x,\theta) = \theta^x e^{-\theta} / x!$, $x = 0, 1, 2, \dots, 0 \le \theta < \infty$, zero elsewhere, where f(0,0) = 1.
- (b) $f(x, \theta) = \theta x^{\theta-1}$, $0 < x < 1, 0 < \theta < \infty$, zero elsewhere.
- (c) $f(x,\theta) = \frac{1}{\theta} e^{-x/\theta}$, $0 < x < \infty, 0 < \theta < \infty$, zero elsewhere.

In each case find the m. l. e. $\hat{\theta}$ of θ .

Solution

(a) The likelihood function of the sample is

$$L(x;\theta) = \theta^{\sum x_i} e^{-n\theta} / (x_1! x_2! \cdots x_n!)$$

Here

$$\ln L(x;\theta) = \sum x_i \ln \theta - n\theta - \sum \ln x_i!$$

So we have

$$\frac{d \ln L(\theta)}{d \theta} = \frac{\sum x_i}{\theta} - n = 0.$$

whose solution for θ is \bar{x} which is the desired m.l. e. of the unknown parameter θ .

(b) The likelihood function of the sample is

$$L(x;\theta) = \theta^{n} (x_1 x_2 \cdots x_n)^{\theta - 1}$$

Here

$$\ln L(x;\theta) = n \ln \theta + (\theta - 1)(\sum \ln x_i)$$

So we have

$$\frac{d \ln L(\theta)}{d \theta} = \frac{n}{\theta} + \sum \ln x_i = 0.$$

whose solution for θ is $-n/\sum \ln x_i$ which is the desired m. l. e. of the unknown parameter θ .

(c) The likelihood function of the sample is

$$L(x;\theta) = \frac{1}{\theta^n} e^{-\sum x_i/\theta}$$

Here

$$\ln L(x;\theta) = -n \ln \theta - \sum x_i / \theta$$

So we have

$$\frac{d \ln L(\theta)}{d \theta} = -\frac{n}{\theta} + \sum x_i / \theta^2 = 0.$$

whose solution for θ is \bar{x} which is the desired m. l. e. of the unknown parameter θ .

6.2. Let X_1, X_2, \dots, X_n be i. i. d., each with the distribution having p. d. f.

 $f(x; \theta_1, \theta_2) = (1/\theta_2)e^{-(x-\theta_1)/\theta_2}$, $\theta_1 \le x < \infty$, $-\infty < \theta_1 < \infty$, $0 < \theta_2 < \infty$, zero elsewhere. Find the m. l. e. of θ_1 and θ_2 .

Solution

Given θ_2 , it is easily verify that the first order statistic can maximize the likelihood function, so the m. l. e. of θ_1 is the first order statistic Y_1 .

The likelihood function of the sample is

$$L(x; \theta_1, \theta_2) = (1/\theta_2^n)e^{-\sum (x_i - \theta_1)/\theta_2}, \theta_1 \le x < \infty, -\infty < \theta_1 < \infty, 0 < \theta_2 < \infty$$
.

$$\ln L(x; \theta_1, \theta_2) = -n \ln \theta_2 - \sum (x_i - \theta_1) / \theta_2$$

We observe that we may maximize by differentiation. We have

$$\frac{\partial \ln L}{\partial \theta_2} = -\frac{n}{\theta_2} + \frac{\sum (x_i - \theta_1)}{\theta_2^2} = 0$$

whose solution is $\sum (X_i - Y_1)/n$ which is the m. l. e. of the unknown parameter θ_2 .

6.3. Let $Y_1 < Y_2 < \dots < Y_n$ be the order statistics of a random sample from a distribution with p. d. f. $f(x;\theta) = 1, \ \theta - \frac{1}{2} \le x \le \theta + \frac{1}{2}, \ -\infty < \theta < \infty$, zero elsewhere. Show that every statistic $u(X_1, X_2, \dots, X_n)$ such that

$$Y_n - \frac{1}{2} \le u(X_1, X_2, \dots, X_n) \le Y_n + \frac{1}{2}$$

is a m. l. e. of θ . In particular, $(4Y_1 + 2Y_n + 1)/6$, $(Y_1 + Y_n)/2$ and $(2Y_1 + 4Y_n - 1)/6$ are three such statistics. Thus the uniqueness is not in general a property of a m. l. e.

Solution

According to the definition of the order statistic, we have

$$\theta - \frac{1}{2} \le Y_1 < X_2 < \dots < Y_n$$
 $) \le \theta + \frac{1}{2}$.

From the inequality, we obtain

$$Y_n - \frac{1}{2} \le \theta \le Y_1 + \frac{1}{2}$$

which means that any statistic $u(X_1, X_2, \dots, X_n)$ such that

$$Y_n - \frac{1}{2} \le u(X_1, X_2, \dots, X_n) \le Y_1 + \frac{1}{2}$$

is a m. l. e. of θ . Particularly, the statistics $Y_n - \frac{1}{2}$ and $Y_1 + \frac{1}{2}$ are both m. l. e. of θ . Furthermore, any weighty average of the two statistics is m. l. e.

Since the statistics can be formulated as

$$(4Y_1 + 2Y_n + 1) / 6 = \frac{2}{6} (Y_n - \frac{1}{2}) + \frac{4}{6} (Y_1 + \frac{1}{2}),$$

$$(Y_1 + Y_n) / 2 = \frac{1}{2} (Y_n - \frac{1}{2}) + \frac{1}{2} (Y_1 + \frac{1}{2}),$$

$$(2Y_1 + 4Y_n - 1) / 6 = \frac{4}{6} (Y_n - \frac{1}{2}) + \frac{2}{6} (Y_1 + \frac{1}{2}).$$

So $(4Y_1 + 2Y_n + 1)/6$, $(Y_1 + Y_n)/2$ and $(2Y_1 + 4Y_n - 1)/6$ are three m. l. e. of θ .

6.4. Let X_1, X_2 and X_3 have the multinomial distribution in which n = 25, k = 4, and the unknown probabilities are θ_1, θ_2 and θ_3 , respectively. Here we can, for convenience, let $X_4 = 25 - X_1 - X_2 - X_3$ and $\theta_4 = 1 - \theta_1 - \theta_2 - \theta_3$. If the observed values of the random variables are $x_1 = 4, x_2 = 11$, and $x_3 = 7$, find the m. l. e. of θ_1, θ_2 and θ_3 .

Solution

It is easily to understand that

$$X_i \sim b(25, \theta_i), i = 1,2,3$$

So the m. l. e. of the unknown parameters is \overline{X}_1 , \overline{X}_2 , \overline{X}_3 , respectively.

Thus the m. l. e. of θ_1, θ_2 and θ_3 is $\frac{4}{25}, \frac{11}{25}, \frac{7}{25}$, respectively.

6.5. The Pareto distribution is frequently used as a model in study of incomes and has the distribution function

$$F(x; \theta_1, \theta_2) = 1 - (\theta_1 / x)^{\theta_2}, \ \theta_1 \le x, \text{ zero elsewhere,}$$

where $\theta_1 > 0$ and $\theta_2 > 0$

If X_1, X_2, \dots, X_n is a random sample from this distribution, find the m. l. e. of θ_1 and θ_2 .

Solution

The p. d. f. of the population is

$$f(x;\theta_1,\theta_2) = \frac{\theta_2 \theta_1^{\theta_2}}{x^{\theta_2+1}}, \quad \theta_1 \le x.$$

Obviously, the m. l. e. of θ_1 is the first order statistic Y_1 .

The likelihood function of the sample is

$$L(x; \theta_1, \theta_2) = \frac{\theta_2^n \theta_1^{n\theta_2}}{x_1^{\theta_2 + 1} x_2^{\theta_2 + 1} \cdots x_n^{\theta_2 + 1}}, \quad \frac{\partial \ln L}{\partial \theta_2} = \frac{n}{\theta_2} + n \ln \theta_1 - \sum \ln x_i = 0$$

Thus we obtain the m. l. e. of θ_2

$$\hat{\theta}_2 = \frac{n}{\sum \ln X_i - n \ln Y_1} \ .$$

6.6. Let Y_n be a statistic such that $\lim_{n\to\infty} E(Y_n) = \theta$ and $\lim_{n\to\infty} \sigma_{Y_n}^2 = 0$. Prove that Y_n is consistent estimator of θ .

Proof

Since

$$E[(Y_n - \theta)^2] = E[(Y_n - E(Y_n) + E(Y_n) - \theta)^2] = \sigma_{Y_n}^2 + [E(Y_n - \theta)]^2$$
,

So, in accordance with Chebyshev's inequality, we have

$$\Pr(|Y_n - \theta| \ge \varepsilon) \le \frac{E[(Y_n - \theta)^2]}{\varepsilon^2} = \frac{\sigma_{Y_n}^2 + [E(Y_n - \theta)]^2}{\varepsilon^2} \to 0, \quad \text{as } n \to \infty$$

for every $\varepsilon > 0$.

Thus according to the definition of consistent estimator, we complete the proof.

6.7. For each of the distributions in Exercise 6.1, find an estimator of θ by the method of moments and show that it is consistent.

Solution

(1) It is obvious that the population is Poisson distribution with parameter θ .

So $E(X) = \theta$. Let $\theta = \overline{X}$. We get the estimator of θ by the method of moments is the sample mean \overline{X} .

$$E(\overline{X}) = \theta, V(\overline{X}) = \frac{\theta}{n}$$
. For any $\varepsilon > 0$, we have

$$\Pr(|\overline{X} - \theta| \ge \varepsilon) \le \frac{V(\overline{X})}{\varepsilon^2} = \frac{\theta}{n\varepsilon^2} \to 0, \quad \text{as } n \to \infty$$

Thus the sample mean \overline{X} is a consistent estimator of the population mean θ .

(2) The population mean is

 $E(X) = \int_0^1 \theta x^{\theta} dx = \frac{\theta}{\theta + 1}$. In accordance with the idea of method of moments, let

$$\frac{\theta}{\theta+1} = \overline{X}$$

We have $\hat{\theta} = \frac{\overline{X}}{1 - \overline{X}}$ which is the moment estimator of θ .

(3) In fact, the population is Gamma distribution with parameters 1 and θ . So $E(X) = \theta$.

Thus the estimator of θ by method of moments is the sample mean \overline{X} . It is easily to verify that the sample \overline{X} converges in probability to the population mean θ , so \overline{X} is a consistent estimator of θ .

- **6.8.** If a random sample of size n is taken from a distribution having p. d. f. $f(x;\theta) = 2x/\theta^2$, $0 < x \le \theta$, zero elsewhere, find
- (a) The m. l. e. $\hat{\theta}$ for θ .
- (b) The constant c so that $E(c\hat{\theta}) = \theta$.
- (c) The m. l. e. for the median of the distribution.

Solution

(a) The likelihood function of the sample is

$$L(x;\theta) = 2^n x_1 x_2 \cdots x_n / \theta^{2n}.$$

It is obvious that the *n*th order statistic Y_n can maximize the likelihood function, so the m. l. e. $\hat{\theta}$ for θ is the *n*th order statistic Y_n .

b) (b) since the p. d. f. of Y_n is $f(y_n) = 2ny_n^{2n-1}/\theta^{2n}, 0 < y_n \le \theta$, thus

$$E(Y_n) = \frac{2n}{2n+1}\theta$$

So
$$c = \frac{2n+1}{2n}$$
.

(c) Since $\frac{1}{2} = \int_0^m 2x/\theta^2 dx = m^2/\theta^2$, $m = \theta/\sqrt{2}$, In accordance with the invariant property of m. l. e. we have

$$\hat{m} = Y_n / \sqrt{2} .$$

6.9. Let X_1, X_2, \dots, X_n be i. i. d., each with a distribution with p. d. f. $f(x; \theta) = (1/\theta)e^{-x/\theta}, 0 < x < \infty$, zero elsewhere. Find the m. l. e. of $Pr(X \le 2)$.

Solution

It is not difficult to find that the m. l. e. of θ is the sample mean \overline{X} .

$$\Pr(X \le 2) = \int_0^2 (1/\theta) e^{-x/\theta} dx = 1 - e^{-2/\theta}.$$

In accordance with the invariance property of m. l. e., the m. l. e. of $\Pr(X \le 2)$ is $1 - e^{-2/\bar{X}}$.

6.10. Let X have a binomial distribution with parameters n and p. The variance of X/n is p(1-p)/n; This is sometimes estimated by the m. l. e. $\frac{X}{n}(1-\frac{X}{n})/n$. Is this an unbiased estimator of p(1-p)/n? If not, can you construct one by multiplying this one by a constant?

Solution

Since

$$E\left[\frac{X}{n}(1-\frac{X}{n})/n\right] = E(X/n)/n - E(X^2)/n^3 = p/n - \{V(X) + [E(X)]^2\}/n^3 = p/n - p^2/n - pq/n^2 = \frac{(n-1)pq}{n^2}.$$

So $\frac{X}{n}(1-\frac{X}{n})/n$ multiplied by n/(n-1) becomes an unbiased estimator of p(1-p)/n.

6.11. Let the table

Х	0	1	2	3	4	5
Frequency	6	10	14	13	6	1

represent a summary of a sample of size 50 from a binomial distribution having n = 5. Find the m. l. e. of $Pr(X \ge 3)$.

Solution

Since the population $X \sim b(n, \theta)$. So the m. l. e. of $\Pr(X \ge 3)$ is (13+6+1)/50=2/5.

6.12. Let $Y_1 < Y_2 < \cdots < Y_n$ be the order statistics of a random sample of size n from the uniform distribution of the continuous type over the closed interval $[\theta - p, \theta + p]$. Find the maximum likelihood estimators of θ and p. Are these two unbiased estimators?

Solution

Since

$$\theta - p \le Y_1 < Y_2 < \dots < Y_n \le \theta + p$$

The p. d. f. of the distribution is

$$f(x;\theta,p) = \frac{1}{2p}, \theta - p \le x \le \theta + p,$$

it is obvious that $f(x; \theta, p)$ is a decreasing function of the parameter p, however,

$$Y_n - Y_1 \le 2p ,$$

so the m. l. e. of p is $(Y_n - Y_1)/2$.

On the other hand,

$$Y_n - p \le \theta \le Y_1 + p$$

Obviously, the weighty average $\frac{1}{2}(Y_n - \hat{p}) + \frac{1}{2}(Y_1 + \hat{p}) = (Y_n + Y_1)/2$ of $Y_n - \hat{p}$ and $Y_1 + p$ is a m. l. e. of the parameter θ .

It is not difficult to compute the following

$$E[(Y_n + Y_1)/2] = \theta$$
, $E[(Y_n - Y_1)/2] = p(n-1)/(n+1)$.

So $(Y_n + Y_1)/2$ is an unbiased estimator of θ while $(Y_n - Y_1)/2$ is not.

Section 6.2 Confidence Intervals for Means

6.14. Let the observed value of the mean \overline{X} of a random sample of size 20 from a distribution that is $N(\mu,80)$ be 81.2. Find a 95 percent confidence interval for μ .

Solution

Since $\overline{X} \sim N(\mu,4)$, so $\frac{\overline{X} - \mu}{2} \sim N(0,1)$. And the 97.5 percent quantile of the distribution from Table III in Appendix B is 1.96. Thus we have

$$Pr(-1.96 \le \frac{\overline{X} - \mu}{2} \le 1.96) = Pr(\overline{X} - 3.92 \le \mu \le \overline{X} + 3.92) = 0.95$$
.

If the observed value of the mean \overline{X} is 81.2, then a 95 percent confidence interval for μ is

$$(81.2-3.92, 81.2+3.92) = (77.28, 85.12)$$
.

6.15. Let \overline{X} be the mean of a random sample of size n from a distribution that is $N(\mu,9)$. Find n such that

$$\Pr(\overline{X} - 1 < \mu < \overline{X} + 1) = 0.90$$
, approximately.

Solution

Since $\overline{X} \sim N(\mu, 9/n)$, we have

$$\Pr(\overline{X} - 1 < \mu < \overline{X} + 1) = \Pr(-1 < \overline{X} - \mu < 1) = \Pr(-\frac{1}{\sqrt{9/n}} < \frac{\overline{X} - \mu}{\sqrt{9/n}} < \frac{1}{\sqrt{9/n}}) = 090.$$

From Table III in Appendix B, we have

$$\frac{1}{\sqrt{9/n}} = 1.645$$
,

Approximately, we obtain n = 24 or n = 25.

6.16. Let a random sample of size 17 from the normal distribution $N(\mu, \sigma^2)$ yield $\bar{x} = 4.7$ and $s^2 = 5.76$. Determine a 90 percent confidence interval for μ .

Solution

Since $\frac{\sqrt{n-1}(\overline{X}-\mu)}{S} \sim t(n-1)$, we get the 95 percent quantile from Table IV in Appendix A being 1.746.

The events

$$-1.746 < \frac{\sqrt{n-1}(\overline{X} - \mu)}{S} < 1.746$$

and

$$\overline{X} - 1.746S / \sqrt{n-1} < \mu < \overline{X} + 1.746S / \sqrt{n-1}$$

are equivalent to each other.

So if $\bar{x} = 4.7$ and $s^2 = 5.76$, a 90 percent confidence interval for μ is

$$(\bar{x}-1.746s/\sqrt{17-1}, \bar{x}-1.746s/\sqrt{17-1}) = (3.6524, 5.7476).$$

6.17. Let \overline{X} denote the mean of a random sample of size n from a distribution that has mean μ and variance $\sigma^2 = 10$. Find n so that the probability is approximately 0.954 that the random interval $(\overline{X} - \frac{1}{2}, \overline{X} + \frac{1}{2})$ includes μ .

Solution

In accordance with the central limit theorem, approximately, X is normally distributed with mean μ and variance 10/n.

So approximately,

$$\Pr(\overline{X} - \frac{1}{2} < \mu < \overline{X} + \frac{1}{2}) = \Pr(-\frac{1}{2\sqrt{10/n}} < \frac{\overline{X} - \mu}{\sqrt{10/n}} < \frac{1}{2\sqrt{10/n}}) = 0.954$$
.

Let $\frac{1}{2\sqrt{10/n}} = 2$, we obtain n = 160.

- **6.18.** Let X_1, X_2, \dots, X_n be a random sample of size 9 from a distribution that is $N(\mu, \sigma^2)$.
- (a) If σ is known, find the length of a 95 percent confidence interval for μ if this interval is based on the random variable $\sqrt{9}(\overline{X} \mu)/\sigma$.
- (b) If σ is unknown, find the expected value of the length of a 95 percent confidence interval for μ if this interval is based on the random variable $\sqrt{8}(\overline{X} \mu)/S$.

Solution

(a) If σ is known, the statistic $\sqrt{9}(\overline{X} - \mu)/\sigma \sim N(0,1)$, so we have

$$\Pr(-1.96 < \sqrt{9}(\overline{X} - \mu) / \sigma < 1.96) = \Pr(\overline{X} - 1.96\sigma / \sqrt{9} < \mu < \overline{X} + 1.96\sigma / \sqrt{9}) = 0.95.$$

The length of the interval is

$$(\overline{X} + 1.96\sigma / \sqrt{9}) - (\overline{X} - 1.96\sigma / \sqrt{9}) = 2 \times 1.96\sigma / 3 = 1.3\sigma$$
.

(b) If σ is unknown, the statistic $\sqrt{8}(\overline{X} - \mu)/S \sim t(8)$, so we have

$$\Pr(-2.306 < \sqrt{8}(\overline{X} - \mu) / S < 2.306) = \Pr(\overline{X} - 2.306S / \sqrt{8} < \mu < \overline{X} + 2.306S / \sqrt{8}) = 0.95.$$

The length of the interval is

$$(\overline{X} + 2.306S / \sqrt{8}) - (\overline{X} - 2.306S / \sqrt{8}) = 2 \times 2.306S / \sqrt{8} = 1.6S.$$

6.19. Let $X_1, X_2, \dots, X_n, X_{n+1}$ be a random sample of size n+1, n>1, from a distribution that is $N(\mu, \sigma^2)$.

Let
$$\overline{X} = \sum_{i=1}^{n} X_i$$
 and $S^2 = \sum_{i=1}^{n} (X_i - \overline{X}) / n$. Find the constant c so that the statistic $c(\overline{X} - X_{n+1}) / S$ has a

t-distribution. If n = 8, determine k such that $\Pr(\overline{X} - kS < X_9 < \overline{X} + kS) = 0.80$. The observed interval $(\overline{x} - ks, \overline{x} + ks)$ is often called an 80 percent *prediction interval* for X_9 .

Solution

Since
$$\overline{X} \sim N(\mu, \sigma^2 / n)$$
, $nS^2 / \sigma^2 \sim \chi^2(n)$, so $\overline{X} - X_{n+1} \sim N(0, \frac{n+1}{n}\sigma^2)$, $\frac{\overline{X} - X_{n+1}}{S\sqrt{n+1}} \sim t(n-1)$,

So $c=1/\sqrt{n+1}$.

If n = 8, $Pr(\overline{X} - 1.415 \times 3S < X_9 < \overline{X} + 1.415 \times 3S) = 0.80$, thus

$$k = 1.415 \times 3 = 4.248$$
.

6.20. Let Y be b(300, p). If the observed value of Y is y = 75, find an approximate 90 percent confidence interval for p.

Solution

In accordance with the central limit theorem, we approximately have

$$\frac{Y - np}{\sqrt{n(Y/n)(1 - Y/n)}} \sim N(0,1).$$

Thus approximately,

$$\Pr(-1.645 < \frac{Y - np}{\sqrt{n(Y/n)(1 - Y/n)}} < 1.645) = \Pr(\frac{Y - 1.645\sqrt{n(Y/n)(1 - Y/n)}}{n} < p < \frac{Y + 1.645\sqrt{n(Y/n)(1 - Y/n)}}{n}) = 0.9$$

If the observed value of Y is y = 75, an approximate 90 percent confidence interval for p is (0.2088, 0.2911).

6.24. Let \bar{x} be the observed mean of a random sample of size n from a distribution having mean μ and known variance σ^2 . Find n so that $\bar{x} - \sigma/4$ to $\bar{x} + \sigma/4$ is an approximate 95 percent confidence interval for μ .

Solution

In accordance with the central limit theorem, we approximately have

$$\frac{\sqrt{n}(\overline{X}-\mu)}{\sigma} \sim N(0,1).$$

Thus approximately,

$$\Pr(-1.96 < \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} < 1.96) = \Pr(\overline{X} - 1.96\sigma / \sqrt{n} < \mu < \overline{X} - 1.96\sigma / \sqrt{n}) = 0.95.$$

Let $1.96 / \sqrt{n} = 1/4$, we have n = 61 or n = 62.

6.25. Assume a binomial model for a certain random variable. If we desire a 90 percent confidence interval for p that is at most 0.02 in length, find p.

Solution

In accordance with the central limit theorem, we approximately have

$$\frac{Y-np}{\sqrt{n(Y/n)(1-Y/n)}} \sim N(0,1).$$

and

$$\sqrt{y/n(1-y/n)} \le \sqrt{1/2(1-1/2)} = 1/2$$
.

According to the Exercise 6.20 in the preceding,

A 90 percent confidence interval for p in length is

$$\frac{2 \times 1.645 \sqrt{n(Y/n)(1-Y/n)}}{n} \le \frac{1.645}{\sqrt{n}} ,$$

Let $\frac{1.645}{\sqrt{n}} \le 0.02$, we obtain n = 6766.

6.26. It is known that a random variable X has a Poisson distribution with parameter μ . A sample of 200 observations from this population has a mean equal to 3.4. Compute an approximate 90 percent confidence interval for μ .

Solution

- **6.27.** Let $Y_1 < Y_2 < \dots < Y_n$ denote the order statistics of a random sample of size n from a distribution that has p.d.f. $f(x) = 3x^2 / \theta^3$, $0 < x < \theta$, zero elsewhere.
- (a) Show that $Pr(c < Y_n / \theta < 1) = 1 c^{3n}$, where 0 < c < 1.
- (b) If n is 4 and if the observed value of Y_n is 2.3, what is a 95 percent confidence interval for θ ?

Solution

(a) The distribution function of the population is

$$F(x) = \int_0^x 3t^2 / \theta^3 dt = t^3 / \theta^3, \ 0 < x < \theta,$$

So the p.d.f. of the nth order statistic is

$$f(y) = n[F(y)]^{n-1} f(y) = \frac{3ny^{3n-1}}{\theta^{3n}}, \ 0 < y < \theta.$$

Thus

$$\Pr(c < Y_n / \theta < 1) = \Pr(\theta c < Y_n < \theta) = \int_{c\theta}^{\theta} \frac{3ny^{3n-1}}{\theta^{3n}} dy = 1 - c^{3n}.$$

(b) In accordance with the preceding discussion, let $1-c^{12}=0.95$, we have $c=\sqrt[12]{0.05}$, thus a 95 percent confidence interval for θ is

$$(y_4, y_4/c) = (2.3, 2.3/c)$$
.

6.28. Let X_1, X_2, \dots, X_n be a random sample from $N(\mu, \sigma^2)$, where both parameters μ and σ^2 are unknown. A *confidence interval* for σ^2 can be found as follows. We know that nS^2/σ^2 is $\chi^2(n-1)$. Thus we can find constants a and b so that $\Pr(nS^2/\sigma^2 < b) = 0.975$ and $\Pr(a < nS^2/\sigma^2 < b) = 0.95$.

- (a) Show that this second probability statement can be written as $Pr(nS^2/b < \sigma^2 < nS^2/a) = 0.95$.
- (b) If n = 9 and $S^2 = 7.63$, find a 95 percent confidence interval for σ^2 .
- (c) If μ is known, how would you modify the preceding procedure for finding a confidence interval for σ^2 ?

Solution

(a) Since the events

$$a < nS^2 / \sigma^2 < b$$
 and $nS^2 / b < \sigma^2 < nS^2 / a$

are equivalent.

So we have

$$Pr(a < nS^2 / \sigma^2 < b) = Pr(nS^2 / b^2 < \sigma^2 < nS^2 / a^2) = 0.95.$$

(b)) If n=9 and $S^2=7.63$, we can be get a=2.18, b=17.5 from the Table II in the Appendix A. Thus

According to the part (a), we have a 95 percent confidence interval for σ^2 is the interval (3.924,31.5).

6.29. Let X_1, X_2, \dots, X_n be a random sample from a gamma distribution with known parameter $\alpha = 3$ and unknown $\beta > 0$. Discuss the construction of a confidence interval for β .

Solution

It is easy to verify the sample mean $\overline{X} \sim \Gamma(3n, \beta/n)$.

Section 6.3 Confidence Intervals for differences for Means

6.30. Let two independent random samples, each of size 10, from two normal distributions $N(\mu_1, \sigma^2)$ and

 $N(\mu_2, \sigma^2)$ yield $\bar{x} = 4.8, s_1^2 = 8.64, \bar{y} = 5.6, s_2^2 = 7.88$. Find a 95 confidence interval for $\mu_1 - \mu_2$.

Solution

From the Table IV in the Appendix A we get b=2.101. And the observed value of R in the text of section 6.3 is R=1.355. Thus a 95 confidence interval for $\mu_1-\mu_2$ can be

$$(\bar{x} - \bar{y} - 2.101 \times 1.355, \bar{x} - \bar{y} + 2.101 \times 1.355) = (-3.646, 2.047)$$
.

6.31. Let two independent random variables Y_1 and Y_2 , with binomial distributions that have parameters $n_1 = n_2 = 100$, p_1 and p_2 , respectively, be observed to be equal to $y_1 = 50$ and $y_2 = 40$. Determine an approximate 90 percent confidence interval for $p_1 - p_2$.

Solution

In accordance with the central limiting theorem, we approximately have

$$\Pr(\frac{Y_1}{n_1} - \frac{Y_2}{n_2} - 1.645U < p_1 - p_2 < \frac{Y_1}{n_1} - \frac{Y_2}{n_2} + 1.645U) = 0.95.$$

From the given data, the observed value of the statistic U is

$$\sqrt{y_1/n_1(1-y_1/n_1)/n_1+y_2/n_2(1-y_2/n_2)/n_2}=0.07.$$

Thus an approximate 90 percent confidence interval for $p_1 - p_2$ is

$$(0.5-0.4-2u, 0.5-0.4+2u) = (-0.04, 0.24)$$
.

6.32. Discuss the problem of finding a confidence interval for the difference $\mu_1 - \mu_2$ between the two means of two normal distribution if the variances σ_1^2 and σ_2^2 are known but not necessarily equal.

Solution

If the variances σ_1^2 and σ_2^2 are known but not necessarily equal, the sampling theorem of the sample mean is

$$\overline{X} \sim N(\mu_1, \frac{{\sigma_1}^2}{n_1}), \ \overline{Y} \sim N(\mu_2, \frac{{\sigma_2}^2}{n_2}),$$

So we have

$$\overline{X} - \overline{Y} \sim N(\mu_1 - \mu_2, \frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2})$$
.

Thus for given confidence level α , we can obtain the number a from the Table III in the Appendix A such that

$$\Pr((\overline{X} - \overline{Y}) - b\sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}} < \mu_1 - \mu_2 < (\overline{X} - \overline{Y}) + b\sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}}) = \alpha .$$

6.33. Discuss Exercise 6.32 when it is assumed that the variances are unknown and unequal. This is a very difficult problem, and the discussion should point out exactly where the difficulty lies. If, however, the variances are unknown but their ratio σ_1^2/σ_2^2 is a known constant k, then a statistic that is a T random variable can again be used. Why?

Solution

According to the sampling theorem, we have

$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_1}}} \sim N(0,1), \text{ and } \frac{n_1 S_1^2}{{\sigma_1}^2} + \frac{n_2 S_2^2}{{\sigma_2}^2} \sim \chi^2 (n_1 + n_2 - 2)$$

and these two are independent each other, furthermore $\sigma_1^2/\sigma_2^2=k$, that is $\sigma_1^2=k\sigma_2^2$ thus we can construct the statistic

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{n_1 S_1^2 + k n_2 S_2^2}} \sqrt{\frac{k n_1 n_2 (n_1 + n_2 - 2)}{n_1 + k n_2}} \sim t(n_1 + n_2 - 2).$$

Then we can apply the static T to obtain the confidence interval of $\mu_1 - \mu_2$.

6.34. As an illustration of Exercise 6.33, one can let X_1, X_2, \dots, X_9 and Y_1, Y_2, \dots, Y_{12} represent two independent random samples from the respective normal distributions $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$. It is given that $\sigma_1^2 = 3\sigma_2^2$, but σ_2^2 is unknown. Define a random variable which has a t-distribution that can be used to find a 95 percent interval for $\mu_1 - \mu_2$.

Solution

Since

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{n_1 S_1^2 + k n_2 S_2^2}} \sqrt{\frac{k n_1 n_2 (n_1 + n_2 - 2)}{n_1 + k n_2}} \sim t(n_1 + n_2 - 2).$$

From the Table IV in the Appendix A, b = 2.093.

Thus a 95 percent interval for $\mu_1 - \mu_2$ is

$$((\overline{X}-\overline{Y})-2.093\sqrt{\frac{(n_1S_1^2kn_2S_2^2)(n_1+kn_2)}{kn_1n_2(n_1+n_2-2)}},(\overline{X}-\overline{Y})+2.093\sqrt{\frac{(n_1S_1^2kn_2S_2^2)(n_1+kn_2)}{kn_1n_2(n_1+n_2-2)}})\circ$$

6.35. Let \overline{X} and \overline{Y} be the means of two independent random samples, each of size n, from the respective distribution $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$, where the common variance is known. Find n such that

$$\Pr(\overline{X} - \overline{Y} - \sigma / 5 < \mu_1 - \mu_2 < \overline{X} - \overline{Y} + \sigma / 5) = 0.90.$$

Solution

Since

$$\Pr(\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sigma \sqrt{2/n}}) = \Pr(\overline{X} - \overline{Y} - \sigma / 5 < \mu_1 - \mu_2 < \overline{X} - \overline{Y} + \sigma / 5)$$

$$= \Pr(\overline{X} - \overline{Y} - 1.645\sigma \sqrt{2/n} < \mu_1 - \mu_2 < \overline{X} - \overline{Y} + 1.645\sigma \sqrt{2/n}) = 0.90.$$

So we have

$$1.645\sqrt{2/n} = 1/5,$$

Thus

$$n = 135$$
 or $n = 136$.

6.37. Let X_1, X_2, \dots, X_n and Y_1, Y_2, \dots, Y_m be two independent random samples from the respective normal distribution $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$, where the four parameters are unknown. To construct a *confidence interval for the ratio*, σ_1^2/σ_2^2 , of the variances, form the quotient of the two independent chi-square variables, each divided by its degrees of freedom, namely

$$F = \frac{\frac{mS_2^2}{\sigma_2^2}/(m-1)}{\frac{nS_1^2}{\sigma_1^2}/(n-1)},$$

where S_1^2 and S_2^2 are the respective sample variances.

- (a) what kind of distribution does F have?
- (b) From the appropriate table, a and b can be found so that

$$Pr(F < b) = 0.975 \text{ and } Pr(a < F < b) = 0.95.$$

(c) Rewrite the second probability statement as

$$\Pr(a\frac{nS_1^2/(n-1)}{mS_2^2/(m-1)} < \frac{\sigma_1^2}{\sigma_2^2} < b\frac{nS_1^2/(n-1)}{mS_2^2/(m-1)}) = 0.95.$$

The observed values, s_1^2 and s_2^2 , can be inserted in these inequalities to provide a 95 percent confidence interval for σ_1^2/σ_2^2 .

Solution

(a) It follows from the sampling theorem that

$$\frac{mS_2^2}{\sigma_2^2} \sim \chi^2(m-1)$$
 and $\frac{nS_1^2}{\sigma_1^2} \sim \chi^2(n-1)$,

and these two statistics are independent with each other. Thus

$$F = \frac{\frac{mS_2^2}{\sigma_2^2}/(m-1)}{\frac{nS_1^2}{\sigma_1^2}/(n-1)} \sim F(m,n).$$

- (b) For given degrees of freedom m and n, we can obtain a and b from the Table V in the Appendix A such that Pr(F < b) = 0.975 and Pr(a < F < b) = 0.95.
- (c) Since Pr(a < F < b) = 0.95, we Rewrite the probability statement as

$$\Pr(a < F < b) = \Pr(a \frac{nS_1^2/(n-1)}{mS_2^2/(m-1)} < \frac{\sigma_1^2}{\sigma_2^2} < b \frac{nS_1^2/(n-1)}{mS_2^2/(m-1)}) = 0.95,$$

It is easy to verify the formulation.

Section 6.4 Tests of Statistical Hypotheses

6.38. Let X have a p.d.f. of the form $f(x;\theta) = \theta x^{\theta-1}$, 0 < x < 1, zero elsewhere, where $\theta \in \{\theta : \theta = 1, 2\}$. To test the simple hypothesis $H_0: \theta = 1$ against the alternative simple hypothesis $H_1: \theta = 2$, use a random sample X_1, X_2 of size n = 2 and define the critical region to be $C = \{(x_1, x_2) : \frac{3}{4} \le x_1 x_2\}$. Find the power function of the test.

Solution

The joint p.d.f. of the sample X_1, X_2 is

$$f(x_1, x_2; \theta) = \theta^2(x_1x_2)^{\theta-1}, \ 0 < x_1, x_2 < 1.$$

The power function of the test is

$$k(\theta) = \Pr((X_1, X_2) \in C) = \Pr(X_1 X_2 \ge 3/4) = \int_{3/4}^1 dx_1 \int_{3/4x_1}^1 f(x_1, x_2; \theta) dx_2.$$

Thus

$$k(1) = \Pr((X_1, X_2) \in C \mid \theta = 1) = \Pr(X_1 X_2 \ge 3/4 \mid \theta = 1) = \int_{3/4}^{1} dx_1 \int_{3/4x_1}^{1} 1 \, dx_2 = \frac{1}{4} + \frac{3}{4} \ln \frac{3}{4},$$

$$k(2) = \Pr((X_1, X_2) \in C \mid \theta = 2) = \Pr(X_1 X_2 \ge 3/4 \mid \theta = 2) = \int_{3/4}^{1} dx_1 \int_{3/4x_1}^{1} 4x_1 x_2 dx_2 = \frac{7}{16} + \frac{9}{8} \ln \frac{3}{4}.$$

6.39. Let X have a binomial distribution with parameters n = 10 and $p \in \{p : p = \frac{1}{4}, \frac{1}{2}\}$. The simple hypothesis $H_0: p = \frac{1}{2}$ is rejected, and the alternative simple hypothesis $H_1: p = \frac{1}{4}$ is accepted, if the observed value of X_1 , a random sample of size 1, is less than or equal to 3. Find the power function of the test.

Solution

The power function of the test is

$$k(\theta) = \Pr(X_1 \in C) = \Pr(X_1 \le 3) = \sum_{i=0}^{3} \Pr(X_1 = i).$$

Thus

$$\begin{split} k(1/2) &= \Pr(X_1 \in C \mid 1/2) = \Pr(X_1 \leq 3 \mid 1/2) = \sum_{i=0}^{3} \Pr(X_1 = i) = \binom{10}{0} + \binom{10}{1} + \binom{10}{2} + \binom{10}{3}) \frac{1}{2^{10}} \\ &= 176/2^{10} = 0.1718. \\ k(1/4) &= \Pr(X_1 \in C \mid 1/4) = \Pr(X_1 \leq 3 \mid 1/4) = \sum_{i=0}^{3} \Pr(X_1 = i) = \binom{10}{0} (\frac{3}{4})^{10} + \binom{10}{1} (\frac{1}{4}) (\frac{3}{4})^9 + \binom{10}{2} (\frac{1}{4})^2 (\frac{3}{4})^8 + \binom{10}{3} (\frac{1}{4})^3 (\frac{3}{4})^7 = (31)3^8/4^9. \end{split}$$

6.40. Let X_1, X_2 be a random sample of size = 2 from the distribution having p.d.f. $f(x; \theta) = (1/\theta)e^{-x/\theta}$, $0 < x < \infty$, zero elsewhere. We reject $H_0: \theta = 2$ and accept $H_1: \theta = 1$ if the observed values of X_1, X_2 , say x_1, x_2 , are such that

$$\frac{f(x_1;2)f(x_2;2)}{f(x_1;1)f(x_2;1)} \le \frac{1}{2}.$$

Here $\Omega = \{\theta : \theta = 1, 2\}$. Find the significance level of the test and the power function of the test when H_0 is false.

Solution

The inequality $\frac{f(x_1;2)f(x_2;2)}{f(x_1;1)f(x_2;1)} \le \frac{1}{2}$ is equivalent to the following

$$e^{(x_1+x_2/2)} \le 2 \Leftrightarrow \frac{x_1+x_2}{2} \le \ln 2$$
.

This implies that the critical of the test is

$$C = \{(X_1, X_2) : \frac{X_1 + X_2}{2} \le \ln 2\}.$$

If H_0 is true, it follows from the sampling theorem that $X_1 + X_2$ is Chi-square distribution with 4 degrees of freedom, thus the significance level of the test is

$$\alpha = \Pr\{(X_1, X_2) \in C \mid \theta = 2\} = \Pr\{X_1 + X_2 \le 2 \ln 2\} = F(2 \ln 2),$$

where the function F denotes the distribution function of Chi-square distribution with 4 degrees of freedom. when H_0 is false, it follows from the sampling theorem that $2X_1 + 2X_2$ is Chi-square distribution with 4 degrees of freedom, thus the power function of the test when H_0 is false is

$$\beta = \Pr\{(X_1, X_2) \in C \mid \theta = 1\} = \Pr\{2X_1 + 2X_2 \le 4 \ln 2\} = F(4 \ln 2)$$

where the function *F* denotes the distribution function of Chi-square distribution with 4 degrees of freedom.

6.42. Let us assuming that the life of a tire in miles, say X, is normally distributed with mean θ and standard deviation 5000. Past experience indicates that $\theta = 30000$. The manufacturer claims that the tires made by a new process have mean $\theta > 30000$, and it is very possible that $\theta = 35000$. Let us check his claim by testing $H_0: \theta = 30000$ against $H_1: \theta > 30000$. We shall observe n independent values of X, say x_1, x_2, \dots, x_n , and we shall reject H_0 (thus accept H_1) if and only if $\bar{x} \ge c$. Determine n and c so that the power function $k(\theta)$ of the test has the values k(30000) = 0.001 and k(35000) = 0.98.

Solution

In accordance with the sampling theorem, we have that $\frac{\sqrt{n}(\overline{X}-\theta)}{\sigma}$ is standard normal distribution. If the critical region is of the form

$$C = \{(X_1, X_2, \dots, X_n) \mid \overline{X} \ge c\}$$

and k(30000) = 0.001 and k(35000) = 0.98

We have

$$\frac{\sqrt{n(c-30000)}}{5000} = 3, \quad \frac{\sqrt{n(c-35000)}}{5000} = -2.05,$$

Whose solution is n = 19 or n = 20, c = 10323 or c = 10062.

6.43. Let X have a Poisson distribution with mean θ . Consider the simple hypothesis $H_0: \theta = \frac{1}{2}$ and the alternative composite hypothesis $H_0: \theta < \frac{1}{2}$. Thus $\Omega = \{\theta: 0 < \theta \le 1/2\}$. Let X_1, X_2, \dots, X_{12} denote a random samples of size 12 from this distribution. We reject H_0 if and only if the observed value of $Y = X_1 + X_2 + \dots + X_{12} \le 2$. If $k(\theta)$ is the power function of the test, find the powers k(1/2), k(1/3), k(1/4), k(1/6) and k(1/12). What is the significance level of the test?

Solution

It follows from the definition that the power function is of the form

$$k(\theta) = \Pr(X_1 + X_2 + \dots + X_{12} \le 12)$$
.

Since $X_1 + X_2 + \cdots + X_{12}$ is Poisson distribution with mean 12θ , thus

$$k(1/2) = \Pr(X_1 + X_2 + \dots + X_{12} \le 2 \mid \theta = 1/2) = \Pr(X_1 + X_2 + \dots + X_{12} = 0 \mid \theta = 1/2) + \Pr(X_1 + X_2 + \dots + X_{12} = 1 \mid \theta = 1/2) + \Pr(X_1 + X_2 + \dots + X_{12} = 2 \mid \theta = 1/2) = 0.062,$$

$$k(1/3) = \Pr(X_1 + X_2 + \dots + X_{12} \le 2 \mid \theta = 1/3) = \Pr(X_1 + X_2 + \dots + X_{12} = 0 \mid \theta = 1/3) + \Pr(X_1 + X_2 + \dots + X_{12} = 1 \mid \theta = 1/3) + \Pr(X_1 + X_2 + \dots + X_{12} = 2 \mid \theta = 1/3) = 0.238,$$

$$k(1/4) = \Pr(X_1 + X_2 + \dots + X_{12} \le 2 \mid \theta = 1/4) = \Pr(X_1 + X_2 + \dots + X_{12} = 0 \mid \theta = 1/4) + \Pr(X_1 + X_2 + \dots + X_{12} = 1 \mid \theta = 1/4) + \Pr(X_1 + X_2 + \dots + X_{12} = 2 \mid \theta = 1/4) = 0.423,$$

$$k(1/6) = \Pr(X_1 + X_2 + \dots + X_{12} \le 2 \mid \theta = 1/6) = \Pr(X_1 + X_2 + \dots + X_{12} = 0 \mid \theta = 1/6) + \Pr(X_1 + X_2 + \dots + X_{12} = 1 \mid \theta = 1/6) + \Pr(X_1 + X_2 + \dots + X_{12} = 1 \mid \theta = 1/6) + \Pr(X_1 + X_2 + \dots + X_{12} = 2 \mid \theta = 1/6) = 0.677,$$

and

$$k(1/12) = \Pr(X_1 + X_2 + \dots + X_{12} \le 2 \mid \theta = 1/12) = \Pr(X_1 + X_2 + \dots + X_{12} = 0 \mid \theta = 1/12) + \Pr(X_1 + X_2 + \dots + X_{12} = 1 \mid \theta = 1/12) + \Pr(X_1 + X_2 + \dots + X_{12} = 2 \mid \theta = 1/12) = 0.920.$$

The significance level of the test is k(1/2) = 0.062.

6.44. Let Y have a binomial distribution with parameters n and p. We reject $H_0: p = \frac{1}{2}$ and accept $H_1: p > \frac{1}{2}$ if $Y \ge c$. Find n and c to give a power function k(p) which is such that k(1/2) = 0.10 and k(2/3) = 0.95, approximately.

Solution It follows from the sampling theorem that the sample mean $\frac{\overline{X} - np}{\sqrt{np(1-p)}}$ is approximately with mean 0

and variance 1. Thus approximately we have

$$k(p) = \Pr(Y \ge c) = \Pr(\frac{\overline{X} - np}{\sqrt{np(1-p)}} \ge \frac{c/n - np}{\sqrt{np(1-p)}}).$$

If k(1/2) = 0.10 and k(2/3) = 0.95, then we can obtain

$$\frac{2c/n-n}{\sqrt{n}} \approx 1.282, \ \frac{c/n-2n/3}{\sqrt{n \cdot \frac{2}{3} \cdot \frac{1}{3}}} = -1.645 \ ,$$

Whose solutions are

$$n \approx 73$$
, $c \approx 42$.

- **6.45.** Let $Y_1 < Y_2 < Y_3 < Y_4$ be the order statistics of a random sample of size 4 from a distribution with p.d.f. $f(x;\theta) = 1/\theta$, $0 < x < \theta$, zero elsewhere, where $0 < \theta$. The hypothesis $H_0: \theta = 1$ is rejected and $H_1: \theta > 1$ accepted if the observed $Y_4 \ge c$.
- (a) Find the constant c so that the significance level is $\alpha = 0.05$.
- (b) Determine the power function of the test.

Solution

(a) If $H_0: \theta = 1$ is true, the population is uniform distribution on the interval (0,1), so the p.d.f. of the 4th order statistic is

$$f(x;1) = 4x, 0 < x < 1$$
.

So $\alpha = \text{pr}(Y_4 \ge c) = \int_0^1 4x^3 dx = 1 - c^4 = 0.05$, thus we can get $c = \sqrt[4]{0.95}$.

(b) The power function of the test is

$$k(\theta) = \int_{c}^{1} 4x^{3} / \theta^{4} dx = 1/\theta^{4} - c^{4} / \theta^{4}.$$

Section 6.5 Additional Comments about Statistical Tests

6.46. Assume that the weight of cereal in a "10-ounce box" is $N(\mu, \sigma^2)$. To test $H_0: \mu = 10.1$ against $H_1: \mu > 10.1$, we take a random sample of size n = 16 and observe that $\bar{x} = 10.4$ and s = 0.4.

- (a) Do we accept or reject H_0 at the 5 percent significance level?
- (b) What is the approximate p value of the test?

Solution

(a) If the null hypothesis H_0 is true, \overline{X} is normal distribution with mean 10.1 and variance $\sigma^2/16$, thus We have

$$\Pr(\overline{X} \ge c) = \Pr(\frac{\sqrt{n-1}(\overline{X} - 10.1)}{S} \ge \frac{\sqrt{n-1}(c - 10.1)}{S}) = 0.05$$

From the Table IV in the Appendix A, we obtain b = 1.753, let $\frac{\sqrt{n-1}(c-10.1)}{S}$ be 1.753, we get

c = 10.28 and the observed value of the sample mean $\bar{x} = 10.4 > 10.28$, so we reject the null hypothesis H_0 at the 5 percent significance level.

(b) The p-value of the test is

$$\Pr(\overline{X} \ge 10.4) = \Pr(\frac{\sqrt{15}(\overline{X} - 10.1)}{S} \ge \frac{\sqrt{15}(10.4 - 10.1)}{0.4}) = \Pr(\frac{\sqrt{15}(\overline{X} - 10.1)}{S} \ge \frac{\sqrt{15}(10.4 - 10.1)}{0.4})$$

$$= \Pr(\frac{\sqrt{15}(\overline{X} - 10.1)}{S} \ge 2.905) \approx 1 - 0.998 = 0.002.$$

Since 0.002<0.05, so we reject the null hypothesis H_0 .

6.47. Each of 51 golfers hit three golf balls of brand X and three golf balls of brand Y in a random order. Let X_i and Y_i equal the averages of the distances traveled by the brand X and brand Y golf balls hit by the *ith* golfer, $i = 1, 2, \dots, 51$. Let $W_i = X_i - Y_i$, $i = 1, 2, \dots, 51$. Test $H_0: \mu_W = 0$ against $H_1: \mu_W > 0$, where μ_W is the mean of the differences. If $\mu_W = 2.07$ and $s_W^2 = 84.63$, would H_0 be accepted at an $\alpha = 0.05$ significance level? What is the p-value of this test?

Solution

Let W = X - Y, in fact, W is $N(\mu_W, \sigma_W^2)$. It follows from the sampling theorem that

$$\frac{\sqrt{n-1}(\overline{W}-\mu_W)}{S_W} \sim t(n-1),$$

Given the significance level $\alpha = 0.05$, we have b = 1.645, and the observed value of $\frac{\sqrt{n-1}(\overline{W} - \mu_W)}{S_W}$ is 1.591 if

 H_0 : $\mu_W = 0$ is true. Since 1.591 < 1.645, so we accept the null hypothesis.

Since the critical region of the test is of the form $\overline{W} \ge c$, then the p-value of this test is

$$\Pr(\overline{W} \ge 2.07) = \Pr(\frac{\sqrt{50W}}{S_W} \ge \frac{\sqrt{50} \cdot 2.07}{\sqrt{84.63}}) = \Pr(\frac{\sqrt{50W}}{S_W} \ge 1.591) > \Pr(\frac{\sqrt{50W}}{S_W} \ge 1.6) \approx 0.005.$$

- **6.48**. Among the data collected for the World Health Organization air quality monitoring project is a measure of suspended particles in $\mu g/m^3$. Let X and Y equal the concentration of suspended particles in $\mu g/m^3$ in the city center (commercial district) for Melbourne and Houston, respectively. Using n=13 observations of X and m=16 Observations of Y, we shall test $H_0: \mu_X = \mu_Y$ against $H_1: \mu_X < \mu_Y$.
- (a) Define the test statistic and critical region, assuming that the variances are equal. Let $\alpha = 0.05$.
- (b) If $\bar{x} = 72.9$, $s_X = 25.6$, $\bar{y} = 81.7$, and $s_Y = 28.3$, calculate the value of the test statistic and state your conclusion.

Solution

(a) It follows from the sampling theorem that

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{\sqrt{\frac{nS_X^2 + mS_Y^2}{n + m - 2}(\frac{1}{n} + \frac{1}{m})}} \sim t(m + n - 2).$$

If we shall test $H_0: \mu_X = \mu_Y$ against $H_1: \mu_X < \mu_Y$, the critical region should be of the form

$$C = \{T \le c\}.$$

(b) If $\bar{x} = 72.9$, $s_X = 25.6$, $\bar{y} = 81.7$, and $s_Y = 28.3$, the p-value of this test is

$$\Pr(T \le \frac{(\overline{x} - \overline{y})}{\sqrt{\frac{ns_X^2 + ms_Y^2}{n + m - 2}(\frac{1}{n} + \frac{1}{m})}}) = \Pr(T \le -0.838) = 1 - \Pr(T \le 0.838) > 1 - \Pr(T < 1.703) = 0.05.$$

Since the p-value of this test is no less than 0.05, so we reject the null hypothesis.

- **6.49.** Let p equal the proportion of drivers who use a seat belt in a state that does not have a mandatory seat belt law. It was claimed that p = 0.14. An advertising campaign was conducted to increase this proportion. Two months after the campaign, y = 104 out of a random sample of n = 590 drivers were wearing their seat belts. Was the campaign successful?
- (a) Defined the null and the alternative hypotheses.
- (b) Define a critical region with an $\alpha = 0.01$ significance level.
- (c) Determine the approximate p-value and state your conclusion.

Solution

- (a) $H_0: p = 0.14$ against $H_1: p > 0.14$.
- (b) The critical of this test should have the form $C = {\overline{X} \ge c}$. Approximately we have

$$\frac{\overline{X} - p}{\sqrt{\overline{X}(1 - \overline{X})/n}} \stackrel{\cdot}{\to} N(0,1),$$

In accordance with the Table III in the Appendix A, we approximately have

$$\frac{c - 0.14}{\sqrt{\overline{X}(1 - \overline{X})} / n} = 2.326 \Leftrightarrow c = 0.1765.$$

(c) The observed value of the statistic $\frac{\overline{X} - p}{\sqrt{\overline{X}(1 - \overline{X})/n}} \approx 2.312$, so the approximate p-value of the test is

$$\Pr(\frac{\overline{X} - p}{\sqrt{\overline{X}(1 - \overline{X}) / n}} \ge 2.312) \approx 1 - 0.989 = 0.011.$$

Since 0.011<0.05, so we reject the null hypothesis.

- **6.50.** A machine shop that manufactures toggle levers has both a day and a night shift. A toggle lever is defective if a standard nut cannot be screwed onto the threads. Let p_1 and p_2 be the proportion of defective levers among test the null hypothesis, H_0 ; $p_1 = p_2$ against a two-sided alternative hypothesis based on two random samples, each of 1000 levers taken from the production of the respective shifts.
- (a) Define the test statistic which has an approximate N(0,1) distribution. Sketch a standard normal p.d.f. illustrating the critical region having $\alpha = 0.05$.
- (b) If $y_1 = 37$ and $y_2 = 53$ defectives were observed for the day and night shifts, respectively, calculate the value of the statistic and the approximate p-value. Locate the calculated test statistic on your figure in part (a) and state your conclusion.

Solution

Additional Exercises

6.62. Let $Y_1 < Y_2 < \dots < Y_n$ be the order statistics of a random sample of size n from the distribution having p.d.f. $f(x) = 2x/\theta^2$, $0 < x < \theta$, zero elsewhere.

- (a) If 0 < c < 1, show that $Pr(c < Y_n / \theta < 1) = 1 c^{2n}$.
- (b) If n = 5 and if the observed value of Y_n is 1.8, find a 99 percent confidence level for θ .

Solution

(a) The distribution function of the population is

$$F(x) = \int_{0}^{x} 2t / \theta^{2} dt = x^{2} / \theta^{2}.$$

Thus the p.d.f. of the *nth* order statistic Y_n is

$$f(y) = 2ny^{2n-1} / \theta^{2n}, \ 0 < y < \theta.$$

Then if 0 < c < 1,

$$\Pr(c < Y_n / \theta < 1) = \Pr(c\theta < Y_n < \theta) \int_{c\theta}^{\theta} 2ny^{2n-1} / \theta^{2n} dy = 1 - c^{2n}.$$

- (b) In Part (a), let $1-c^{10} = 0.99$, $c = \sqrt[10]{0.01} = 0.954$. So a 99 percent confidence level for θ is (1.8, 1.885).
- **6.63.** If 0.35, 0.92, 0.56, and 0.71 are the four observed values of a random sample from a distribution having p.d.f. $f(x; \theta) = \theta x^{\theta-1}$, 0 < x < 1, zero elsewhere, find an estimate for θ .

Solution

The likelihood function of the population is

$$L(\theta) = \theta^n (x_1 x_2 \cdots x_n)^{\theta - 1}, \ 0 < x_i < 1.$$

The logarithm likelihood function is

$$\ln L(\theta) = n \ln \theta + (\theta - 1) \sum_{i=1}^{n} \ln x_i ,$$

$$\frac{d \ln L(\theta)}{d \theta} = \frac{n}{\theta} + \sum_{i=1}^{n} \ln x_i = 0.$$

So the m.l.e. of the unknown parameter θ is

$$\hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \ln x_i}.$$

If 0.35, 0.92, 0.56, and 0.71 are the four observed values of a random sample, then the m.l.e. for θ is 1.945.

6.64. Let the table

x	0	1	2	3	4	5
Frequency	6	10	14	13	6	1

represents a summary of a random sample of size 50 from a Poisson distribution. Find the maximum likelihood

estimate of Pr(X = 2).

Solution

It is easy to verify that the m.l.e. of θ is the sample mean \overline{X} .

Since the population is Poisson distribution with parameter θ , so $Pr(X = 2) = \frac{\theta^2}{2}e^{-\theta}$, it follows from the variance

property that the m.l.e. of Pr(X = 2) is $\frac{\overline{X}^2}{2}e^{-\overline{X}}$. The observed value of \overline{X} is 2.12, thus the m.l.e. of Pr(X = 2) is

$$\frac{2.12^2}{2}e^{-2.12} = 0.2697.$$

- **6.65.** Let X be $N(\mu,100)$. To test $H_0: \mu = 80$ against $H_1: \mu > 80$, let the critical region be defined by $C = \{\bar{x} \ge 83\}$, where \bar{x} is the sample mean of a random sample of size n = 25 from this distribution.
- (a) How is the power function $k(\mu)$ defined for this test?
- (b) What is the significance level of this test?
- (c) What are the values of k(80), k(83) and k(86)?
- (d) What is the p-value corresponding to $\bar{x} = 83.41$?

Solution

(a) Since the sample mean \overline{X} is $N(\mu, \sigma^2/n) = N(\mu, 4)$. Thus the power function of the test is

$$k(\mu) = \Pr(\overline{X} \ge 83) = \Pr(\frac{5(\overline{X} - \mu)}{10} \ge \frac{5(83 - \mu)}{10})$$
, for any $\mu \in R$.

(b) The significance level of the test is

$$\alpha = k(80) = 1 - \Phi(\frac{5 \cdot 3}{10}) = 1 - \Phi(1.5) = 1 - 0.933 = 0.067$$
.

- (c) $k(80) = 1 \Phi(1.5) = 0.067$, $k(83) = 1 \Phi(0) = 0.5$, and $k(86) = 1 \Phi(-1.5) = 0.933$.
- (d) The *p*-value corresponding to $\bar{x} = 83.41$ is

$$p$$
-value = 1- Φ (1.705) \approx 1-0.955 = 0.005.

6.66. Let X equal the yield of alfalfa in tons per acre per year. Assume that X is N(1.5,0.09). It is hoped that new fertilizer will increase the average yield. We shall test the null hypothesis $H_0: \mu = 1.5$ against the alternative hypothesis $H_1: \mu > 1.5$. Assume that the variance continues to equal $\sigma^2 = 0.09$ with the new fertilizer. Using \overline{X} , the mean of a random sample of size n, as the test statistic, reject H_0 if $\overline{x} \ge c$. Find n and c so that the power function $k(\mu) = \Pr(\overline{X} \ge c : \mu)$ is such that $\alpha = k(1.5) = 0.05$ and k(1.7) = 0.95.

Solution

It follows from the sampling theorem that the distribution of the sample mean is

$$\overline{X} \sim N(\mu.0.09/n)$$
.

The power function of the test is

$$k(\mu) = \Pr(\overline{X} \ge c : \mu) = \Pr(\frac{\sqrt{n(\overline{X} - \mu)}}{0.3} \ge \frac{\sqrt{n(c - \mu)}}{0.3}).$$

If $\alpha = k(1.5) = 0.05$ and k(1.7) = 0.95, then we have

$$\frac{\sqrt{n(c-1.5)}}{0.3} = 1.645, \qquad \frac{\sqrt{n(c-1.7)}}{0.3} = -1.645$$

whose solutions with respective to n and c are

$$n = 24$$
, $c = 1.6$.

6.67. A random sample of 100 observations from a Poisson distribution has a mean equal to 6.25. Construct an approximate 95 percent confidence interval for the distribution.

Solution

It follows from Slutsky's theorem that

$$\frac{\sqrt{n}(\overline{X}-\theta)}{\sqrt{\overline{X}}} \stackrel{\sim}{\sim} N(0,1).$$

And we have an approximate 95 percent confidence interval for the distribution

$$-1.96 < \frac{\sqrt{n}(\overline{X} - \theta)}{\sqrt{\overline{X}}} < 1.96,$$

Equivalently, (5.76, 6.74) when n = 100, $\bar{x} = 6.25$.

6.68. Say that a random sample of size 25 is taken from a binomial distribution with parameters n = 5 and p. These data are then lost, but we recall that the relative frequency of the value 5 was $\frac{6}{25}$. Under these conditions, how would you estimate p? Is this suggested estimate unbiased?

Solution

6.69. When 100 tacks were thrown on a table, 60 of them landed point up. Obtain a 95 percent confidence interval for the probability that a tack of this type will land point up. Assume independent.

Solution

In accordance with the central limit theorem, we approximately have

$$\frac{Y - np}{\sqrt{n(Y/n)(1 - Y/n)}} \sim N(0,1)$$
.

Approximately we have

$$-1.96 < \frac{Y - np}{\sqrt{n(Y/n)(1-Y/n)}} < 1.96$$
,

Here the observed value of Y is 60 and n = 100, so we obtain a 95 percent confidence interval for the probability (0.5, 0.696).

6.70. Let X_1, X_2, \dots, X_8 be a random sample of size n = 8 from a Poisson distribution with mean μ . Reject the

simple null hypothesis $H_0: \mu = 0.5$ and accept $H_1: \mu > 0.5$ if the observed sum $\sum_{i=1}^{8} x_i \ge 8$.

- (a) Compute the significance level α of the test.
- (b) Find the power function $k(\mu)$ of the test as a sum of Poisson probabilities.
- (c) Using the Appendix, determine k(0.75), k(1), and k(1.25).

Solution

We know that the sum of the sample $\sum_{i=1}^{8} X_i$ is Poisson distribution with mean 8μ .

(a) If the simple null hypothesis is true, $\sum_{i=1}^{8} X_i \sim P(8\mu_0) = P(4)$, thus the significance level α of the test is

$$\alpha = \Pr(\sum_{i=1}^{8} X_i \ge 8 : \mu = 0.5) = 1 - \Pr(\sum_{i=1}^{8} X_i \le 7 : \mu = 4) = 1 - 0.949 = 0.051.$$

(b) The power function of the test is

$$k(\mu) = \Pr(\sum_{i=1}^{8} X_i \ge 8 : \mu) = 1 - \Pr(\sum_{i=1}^{8} X_i \le 7 : \mu) = 1 - \sum_{i=0}^{7} \frac{\mu^i}{i!} e^{-\mu}$$
.

(c) Using the Appendix, we obtain

$$k(0.75) = 1 - 0.744 = 0.256$$
, $k(1) = 1 - 0.453 = 0.547$, $k(1.25) = 1 - 0.22 = 0.78$.

- **6.71.** Let p denote the probability that, for a particular tennis player, the first serve is good. Since p = 0.40, this player decided to take lessons in order to increase p. When the lessons are completed, the hypothesis $H_0: p = 0.40$ will be tested against $H_1: p > 0.40$ based on n = 25 trials. Let y equal the number of first serves that are good, and let the critical region be defined by $C = \{y: y \ge 13\}$.
- (a) Determine $\alpha = \Pr(Y \ge 13 : p = 0.40)$.
- (b) Find $\beta = \Pr(Y < 13)$ when p = 0.60; that is, $\beta = \Pr(Y \le 12; p = 0.60)$.

Solution

By the sampling theorem, we know that

$$Y \sim b(n, p)$$
.

- (a) If n = 25, the significance level of the test is $\alpha = \Pr(Y \ge 13 : p = 0.40)$
- **6.72.** The mean birth weight in the United States is $\mu = 3315$ grams with a standard deviation of $\sigma = 575$. Let X equal the birth weight in grams in Jerusalem. Assume that the distribution of X is $N(\mu, \sigma^2)$. We shall test the null hypothesis H_0 ; $\mu = 3315$ against the alternative hypothesis H_1 ; $\mu < 3315$ using a random sample of size n = 30.
- (a) Define a critical region that has a significance level of $\alpha = 0.05$.
- (b) If the random sample of n = 30 yields $\bar{x} = 3189$, what is your conclusion?
- (c) What is the approximate p-value of your test?

Solution

It follows from the sampling theorem that the sample mean \overline{X} is normally distributed with mean μ and variance

$$\sigma^2/n$$
, that is, $\overline{X} \sim N(\mu, \sigma^2/n)$.

(a) If we shall test the null hypothesis H_0 ; $\mu = 3315$ against the alternative hypothesis H_1 ; $\mu < 3315$, the critical region should be selected as the form

$$C = \{ \overline{X} \le c \} ,$$

Moreover, if the significance level is given $\alpha = 0.05$, that is

$$\alpha = \Pr(\overline{X} \le c) = \Pr(\frac{\sqrt{30}(\overline{X} - 3315)}{575} \le \frac{\sqrt{30}(c - 3315)}{575}) = 0.05,$$

By the Table III in the Appendix B, we have

$$\frac{\sqrt{30}(c-3315)}{575} = -1.645, \ c = 3142,$$

Thus the critical of the test is $C = {\overline{X} \le 3142}$.

- (b) If the random sample of n = 30 yields $\bar{x} = 3189$, since 3189<142, so we should reject the null hypothesis.
- (c) If the random sample of n = 30 yields $\bar{x} = 3189$, the approximate p-value of the test is

$$p-value = \Pr(\overline{X} \le 3189) = \Pr(\frac{\sqrt{30}(\overline{X}-3315)}{575} \le \frac{\sqrt{30}(3189-3315)}{575}) = \Phi(-1.2) = 1-\Phi(1.2) = 1-0.885 = 0.115.$$

6.75. Let X_1, X_2, \dots, X_n be a random sample from $N(\mu, \sigma^2)$.

- (a) If the constant b is defined by the equation $Pr(X \le b) = 0.90$, find the m.l.e. of b.
- (b) If c is given constant, find the m.l.e. of $Pr(X \le c)$.

Solution

If the parameters μ and σ^2 are unknown, then the m.l.e. of the parameters are \overline{X} and S^2 , respectively.

(a) Since
$$\Pr(X \le b) = \Pr(\frac{X - \mu}{\sigma} \le \frac{b - \mu}{\sigma}) = \Phi(\frac{b - \mu}{\sigma}) = 0.90$$
, so we have

$$\frac{b-\mu}{\sigma} = 1.282,$$

Thus we have $b = \mu + 1.282\sigma$, from the variance property of the m.l.e., we obtain the m.l.e. of b is $\hat{b} = \overline{X} = 1.282S$.

(b) Since
$$\Pr(X \le c) = \Pr(\frac{X - \mu}{\sigma} \le \frac{c - \mu}{\sigma}) = \Phi(\frac{c - \mu}{\sigma})$$
, so for the given c , the m.l.e. of c is $\hat{c} = \Phi(\frac{c - \overline{X}}{S})$.

6.76. Let $\overline{X}_1, \overline{X}_2$, and \overline{X}_3 and S^2_1, S^2_2 and S^2_3 denote the means and the variances of three independent random samples, each of size 10, from a normal distribution with mean μ and variance σ^2 . Find the constant c so that

$$\Pr(\frac{\overline{X}_1 + \overline{X}_2 - 2\overline{X}_3}{\sqrt{10S^2_1 + 10S^2_2 + 10S^2_3}} \le c) = 0.95.$$

Solution

It follows from the sampling theorem that

$$\overline{X}_1 + \overline{X}_2 - 2\overline{X}_3 \sim N(0, \frac{3}{5}\sigma^2)$$
, and $\frac{10(S_1^2 + S_2^2 + S_3^2)}{\sigma^2} \sim \chi^2(27)$,

and the statistics are independent with each other. So

$$\frac{\overline{X}_1 + \overline{X}_2 - 2\overline{X}_3}{\sqrt{10S^2_1 + 10S^2_2 + 10S^2_3}} \cdot 3\sqrt{5} \sim t(27).$$

Thus

$$\Pr(\frac{\overline{X}_1 + \overline{X}_2 - 2\overline{X}_3}{\sqrt{10S_{1}^{2} + 10S_{2}^{2} + 10S_{3}^{2}}} \le c) = \Pr(\frac{\overline{X}_1 + \overline{X}_2 - 2\overline{X}_3}{\sqrt{10S_{1}^{2} + 10S_{2}^{2} + 10S_{3}^{2}}} \cdot 3\sqrt{5} \le 3\sqrt{5} c) = 0.95,$$

We have

$$3\sqrt{5}$$
 $c = 1.703$, $c = 0.2538$.

6.77. Let Y be b(192, p). We reject $H_0: p = 0.75$ and accept $H_1: p > 0.75$ if and only if $Y \ge 152$. Use the normal approximate to determine:

(a)
$$\alpha = \Pr(Y \ge 152; p = 0.75)$$
.

(b)
$$\beta = \Pr(Y < 152)$$
 when $p = 0.80$.

Solution

It follows the sampling theorem that

$$\frac{Y-np}{\sqrt{np(1-p)}} \to N(0,1) \ \ (n\to\infty) \ .$$

Thus

(a)

$$\alpha = \Pr(Y \ge 152; p = 0.75) = \Pr(\frac{Y - np}{\sqrt{np(1 - p)}} \ge \frac{152 - np}{\sqrt{np(1 - p)}}; p = 0.75)$$

= 1 - \Phi(1.333) = 1 - 0.911 = 0.089.

(c) When p = 0.80,

$$\beta = \Pr(Y < 152; p = 0.80) = \Pr(\frac{Y - np}{\sqrt{np(1 - p)}} < \frac{152 - np}{\sqrt{np(1 - p)}}; p = 0.80)$$
$$= \Phi(-0.2886) = 1 - \Phi(0.2886) = 1 - 0.618 = 0.382.$$

Chapter 7 Sufficient Statistics

Section 7.1 Measures of Quality Estimation

Exercises

7.1. Show that the mean \overline{X} of a random sample of size n from a distribution having p.d.f. $f(x;\theta) = (1/\theta)e^{-(x/\theta)}$, $0 < x, \infty, 0 < \theta < \infty$, zero elsewhere, is an unbiased estimator of θ and has variance θ^2/n .

Solution

The expected value of the population is

$$E(X) = \int_0^\infty \frac{x}{\theta} e^{-x/\theta} dx = \theta.$$

Moreover,

$$E\overline{X} = EX = \theta$$
.

Thus the mean \overline{X} is an unbiased estimator of θ .

It is easy to verify $DX = \theta^2$, so the variance of the mean $D\overline{X} = DX / n = \theta^2 / n$. This completes the proof.

7.2. Let X_1, X_2, \dots, X_n denote a random sample from a normal distribution with mean zero and variance

$$\theta$$
, $0 < \theta < \infty$. Show that $\sum_{i=1}^{n} X_i^2 / n$ is an unbiased estimator of θ and has variance $2\theta^2 / n$.

Solution

In fact, the population is $N(0,\theta)$. Since the sample X_1,X_2,\cdots,X_n are independent and identically distributed. So

$$X_i \sim N(0, \theta), i = 1, 2, \dots, n, \text{ and } \frac{X_i}{\sqrt{\theta}} \sim N(0, 1), \frac{X_i^2}{\theta} \sim \chi^2(1), i = 1, 2, \dots, n.$$

Thus

$$\sum_{i=1}^n X_i^2 / \theta \sim \chi^2(n).$$

According to the property of the Chi-square distribution, we have

Find the variance of each of these unbiased estimators.

$$E(\sum_{i=1}^{n} X_{i}^{2} / \theta) = n, D(\sum_{i=1}^{n} X_{i}^{2} / \theta) = 2n,$$

These imply that

$$E(\sum_{i=1}^{n} X_{i}^{2}/n) = \theta, D(\sum_{i=1}^{n} X_{i}^{2}/n) = 2\theta^{2}/n.$$

7.3. Let $Y_1 < Y_2 < Y_3$ be the order statistics of a random sample of size 3 from the uniform distribution having p.d.f. $f(x;\theta) = 1/\theta, 0 < x < \theta, 0 < \theta < \infty$, zero elsewhere. Show that $4Y_1, 2Y_2$, and $\frac{4}{3}Y_3$ are all unbiased estimators of θ .

Solution

The distribution function of the population is

$$F(x) = \begin{cases} 0, & x \le 0 \\ x/\theta, & 0 < x < \theta, \\ 1, & x \ge \theta \end{cases}$$

So the p.d.f. of the *ith* order statistic is

$$f(y) = \frac{3!}{i!(3-i)!} \left(\frac{y}{\theta}\right)^{i-1} \left(1 - \frac{y}{\theta}\right)^{3-i} \frac{1}{\theta} = \frac{3!}{i!(3-i)!} \frac{1}{\theta^3} y^{i-1} (\theta - y)^{3-i}, \ 0 < y < \theta, \ i = 1, 2, 3.$$

Then

$$E(4Y_1) = \int_0^\theta 4y \cdot 3/\theta^3 y (\theta - y)^2 dy = 12\theta B(2,3) = \theta,$$

By the similar computation process, we can obtain

$$E(2Y_2) = \theta, E(\frac{4}{3}Y_3) = \theta.$$

Thus $4Y_1, 2Y_2$, and $\frac{4}{3}Y_3$ are all unbiased estimators of θ .

It is not difficult to verify that

$$D(Y_1) = \frac{3}{4.5}\theta^2 = \frac{3}{20}\theta^2$$
, $D(Y_2) = \frac{2.2}{4.5}\theta^2 = \frac{1}{5}\theta^2$, $D(Y_3) = \frac{3}{4.5}\theta^2 = \frac{3}{20}\theta^2$,

So the variance of the statistics is

$$D(4Y_1) = \frac{3 \cdot 16}{4 \cdot 5} \theta^2 = \frac{12}{5} \theta^2, \ D(2Y_2) = \frac{2 \cdot 2 \cdot 4}{4 \cdot 5} \theta^2 = \frac{4}{5} \theta^2, \ D(\frac{4}{3} Y_3) = \frac{3}{4 \cdot 5} \theta^2 \cdot \frac{16}{9} = \frac{4}{15} \theta^2.$$

7.4. Let Y_1 and Y_2 be two independent unbiased estimators of θ . Say the variance of Y_1 is twice the variance of Y_2 . Find the constants k_1 and k_2 so that $k_1Y_1 + k_2Y_2$ is an unbiased estimator with smallest possible variance for such a linear combination.

Solution

Since $D(Y_1) = 2D(Y_2)$ and, so

$$D(k_1Y_1 + k_2Y_2) = k_1^2 D(Y_1) + 2k_2^2 D(Y_1) = (k_1^2 + 2k_2^2) D(Y_1) = [k_1^2 + 2(1 - k_1)^2] D(Y_1)$$

$$= (3k_1^2 - 4k_1 + 2) D(Y_1).$$

The function $3k_1^2 - 4k_1 + 2$ can be minimized at the point $k_1 = 2/3$, thus $k_2 = 1/3$.

7.5. In Example 1of this section, take $L[\theta, \delta(Y)] = |\theta - \delta(Y)|$. Show that $R(\theta, \delta_1) = \frac{1}{5} \sqrt{2/\pi}$ and $R(\theta, \delta_2) = |\theta|$ of these two decision functions δ_1 and δ_2 , which yields the smallest maximum risk?

Solution

Since the sample mean $\overline{X} \sim N(\theta, 1/25)$, so $\overline{X} - \theta \sim N(0, 1/25)$.

$$R(\theta, \delta_1) = E(|\theta - \overline{X}|) = 2\int_0^\infty x \frac{5}{\sqrt{2\pi}} e^{-\frac{25x^2}{2}} dx = \frac{1}{5}\sqrt{2/\pi}, \ R(\theta, \delta_2) = E(|\theta|) = |\theta|,$$

This completes the proof.

The maximum risk of the function $R(\theta, \delta_1) = \frac{1}{5} \sqrt{2/\pi}$ is $\frac{1}{5} \sqrt{2/\pi}$, whereas the maximum risk of the function

 $R(\theta, \delta_2) = |\theta|$ is $+\infty$, so in these two decision functions δ_1 and δ_2 , δ_1 yields the smallest maximum risk.

7.6. Let X_1, X_2, \dots, X_n denote a random sample from a Poisson distribution with parameter θ , $0 < \theta < \infty$. Let $Y = \sum_{i=1}^n X_i$ and let $L[\theta, \delta(Y)] = (\theta - \delta(Y))^2$. If we restrict our considerations to decision functions of the form

 $\delta(y) = b + y/n$, where b does not depend upon y, show that $R(\theta, \delta) = b^2 + \theta/n$. What decision function of this form yields a uniformly smaller risk than every other decision function of this from? With this solution, say δ , and $0 < \theta < \infty$, determine $\max_{\theta} R(\theta, \delta)$ if it exists.

Solution

Since $Y = \sum_{i=1}^{n} X_i$ is Poisson distribution with parameter $n\theta$, $0 < \theta < \infty$, so if we restrict our considerations to

decision functions of the form $\delta(y) = b + y/n$, where b does not depend upon y, we have

$$R(\theta, \delta) = E(\theta - b - Y/n)^2 = b^2 + E(\theta - Y/n)^2 = b^2 + D(Y/n) = b^2 + \theta/n$$
.

It is easy to understand that when b=0, that is $\delta=Y/n$, the decision function has uniformly smaller risk. Under conditions, $\max_{\theta} R(\theta, \delta)$ does not exist.

7.7. Let X_1, X_2, \dots, X_n denote a random sample from a distribution that is $N(\mu, \theta)$, $0 < \theta < \infty$, where μ is unknown. Let $Y = \sum_{i=1}^{n} (X_i - \overline{X})/n = S^2$ and let $L[\theta, \delta(Y)] = (\theta - \delta(Y))^2$. If we consider decision functions of the

from $\delta(y) = by$, where b does not depend upon y, show that $R(\theta, \delta) = (\theta^2/n^2)[(n^2 - 1)b^2 - 2n(n - 1)b + n^2]$. Show that b = n/(n+1) yields a minimum risk for decision functions of this form. Note that nY/(n+1) is not an unbiased estimator of θ . With $\delta(y) = ny/(n+1)$ and $0 < \theta < \infty$, determine $\max_{\theta} R(\theta, \delta)$ if it exists.

Solution

It follows from the sampling distribution theorem that $\frac{nS^2}{\theta} = \frac{nY}{\theta} \sim \chi^2(n-1)$, we have

$$E(bY) = \frac{(n-1)b\theta}{n}, \ D(bY) = \frac{2(n-1)b^2\theta^2}{n^2}.$$

Thus

$$R(\theta, \delta) = E[\theta - bY]^2 = E[\theta - \frac{(n-1)b\theta}{n} + \frac{(n-1)b\theta}{n} - bY]^2 = (\theta^2 / n^2)[(n^2 - 1)b^2 - 2n(n-1)b + n^2].$$

Since the derivative of the function $(n^2-1)b^2-2n(n-1)b=2(n^2-1)-2n(n-1)$ with respective to b. Let

 $2(n^2-1)-2n(n-1)=0$, we obtain b=n/(n+1) which yields a minimum risk for decision functions of this form.

Whereas $R(\theta, \delta) = \theta^2$, $\max_{\theta} R(\theta, \delta)$ does not exist.

7.8. Let X_1, X_2, \dots, X_n denote a random sample from a distribution that is $b(1, \theta)$, $0 \le \theta \le 1$. Let $Y = \sum_{i=1}^n X_i$ and let $L[\theta, \delta(Y)] = (\theta - \delta(Y))^2$. Consider decision functions of the form $\delta(y) = by$, where b does not depend upon y. Prove that $R(\theta, \delta) = b^2 n\theta(1-\theta) + (bn-1)^2 \theta^2$. Show that

$$\max_{\theta} R(\theta, \delta) = \frac{b^4 n^2}{4[b^2 n - (bn - 1)^2]},$$

Provided that the value b is such that $b^2n \ge 2(bn-1)^2$. Prove that b=1/n does not minimize $\max_{\alpha} R(\theta, \delta)$.

Solution

In fact, $Y = \sum_{i=1}^{n} X_i$ is binomial distribution with parameters n and θ , thus $E(bY) = nb\theta$, $D(bY) = b^2 n\theta(1-\theta)$.

So

$$R(\theta, \delta) = E(\theta - bY)^{2} = E(\theta - nb\theta + nb\theta - bY)^{2} = (bn - 1)^{2}\theta^{2} + D(bY) = b^{2}n\theta(1 - \theta) + (bn - 1)^{2}\theta^{2}.$$

Since the derivative of the function $b^2 n\theta (1-\theta) + (bn-1)^2 \theta^2 = [2(bn-1)^2 - 2b^2 n]\theta + b^2 n$ with respect to θ , let

$$[2(bn-1)^2 - 2b^2n]\theta + b^2n = 0$$
 whose solution is $\theta = -\frac{b^2n}{2(bn-1)^2 - 2b^2n}$.

Thus we obtain

$$\max_{\theta} R(\theta, \delta) = \frac{b^4 n^2}{4[b^2 n - (bn - 1)^2]}.$$

It is easy to verify b=1/n does not minimize $\max_{\theta} R(\theta, \delta)$.

Section 7.2. A Sufficient Statistic for a Parameter

Exercises

7.10. Let X_1, X_2, \dots, X_n denote a random sample from the normal distribution $N(0, \theta), 0 < \theta < \infty$. Show that

$$\sum_{i=1}^{n} X_{i}^{2} \text{ is a sufficient statistic for } \theta.$$

Solution

The joint p.d.f. of the sample X_1, X_2, \dots, X_n is

$$\left(\frac{1}{\sqrt{2\pi\theta}}\right)^n e^{-\frac{\sum x_i^2}{2\theta}},$$

It follows from the factorization theorem, $\sum_{i=1}^{n} X_i^2$ is a sufficient statistic for θ .

7.11. Prove that the sum of the observation of a random sample of size n from a Poisson distribution having parameter θ , $0 < \theta$, ∞ , is a sufficient statistic for θ .

Solution

The joint p.d.f. of the sample X_1, X_2, \dots, X_n is

$$\frac{\theta^{x_1}\theta^{x_2}\cdots\theta^{x_n}}{x_1!x_2!\cdots x_n!}e^{-n\theta}=\theta^{\sum x_i}e^{-n\theta}\cdot\frac{1}{x_1!x_2!\cdots x_n!},$$

It follows from the factorization theorem, $\sum_{i=1}^{n} X_i$ is a sufficient statistic for θ .

7.12. Show that the *n*th order statistic of a random sample of size *n* from the uniform distribution having p.d.f. $f(x;\theta) = 1/\theta$, $0 < x < \theta$, $0 < \theta < \infty$, zero elsewhere, is a sufficient statistic for θ . Generalize this result by considering the p.d.f. $f(x;\theta) = Q(\theta)M(x)$, $0 < x < \theta$, $0 < \theta < \infty$, zero elsewhere. Here, of course,

$$\int_0^\theta M(x) dx = \frac{1}{O(\theta)}.$$

Solution

The joint p.d.f. of the sample X_1, X_2, \dots, X_n is

$$\prod_{i=1}^{n} f(x_i; \theta) = \begin{cases}
\frac{1}{\theta^n}, & 0 \le x_{(1)} \le x_{(n)} \le \theta \\
0, & \text{otherwise}
\end{cases} = \frac{1}{\theta^n} I_{\{x_{(n)} \le \theta\}} I_{\{x_{(1)} \ge 0\}} = k_1(T, \theta) k_2(x_1, x_2, \dots, x_n),$$

where
$$k_1(T,\theta) = \frac{1}{\theta^n} I_{\{x_{(n)} \le \theta\}}, k_2(x_1, x_2, \dots, x_n) = I_{\{x_{(10} \ge 0\}\}}.$$

It follows from the factorization theorem, Y_n is a sufficient statistic for θ .

By similar reasoning, Y_n is a sufficient statistic for θ in the p.d.f. $f(x;\theta) = Q(\theta)M(x)$, $0 < x < \theta$, $0 < \theta < \infty$.

7.13. Let X_1, X_2, \dots, X_n be a random sample of size n from a geometric distribution that has p.d.f.

$$f(x;\theta) = (1-\theta)^x \theta, x = 0, 1, 2, \dots, 0 < \theta < 1$$
, zero elsewhere. Show that $\sum_{i=1}^n X_i$ is a sufficient statistic for θ

Solution

The joint p.d.f. of the sample X_1, X_2, \dots, X_n is

$$\prod_{i=1}^{n} f(x_i; \theta) = (1-\theta)^{\sum x_i} \theta^n,$$

It follows from the factorization theorem, $\sum_{i=1}^{n} X_i$ is a sufficient statistic for θ .

7.14. Show that the sum of the observation of a random sample of size n from a gamma distribution that has p.d.f. $f(x;\theta) = (1/\theta)e^{-x/\theta}$, $0 < x < \infty$, $0 < \theta < \infty$, zero elsewhere, is a sufficient statistic for θ .

Solution

The joint p.d.f. of the sample X_1, X_2, \dots, X_n is

$$\prod_{i=1}^{n} f(x_i; \theta) = \frac{1}{\theta^n} e^{-\sum x_i/\theta},$$

It follows from the factorization theorem, $\sum_{i=1}^{n} X_i$ is a sufficient statistic for θ .

7.15. Let X_1, X_2, \dots, X_n be a random sample of size n from a beta distribution with parameters $\alpha = \theta > 0$ and $\beta = 2$. Show that the product $X_1 X_2 \dots X_n$ is a sufficient statistic for θ .

Solution

The joint p.d.f. of the sample X_1, X_2, \dots, X_n is

$$\prod_{i=1}^{n} f(x_i; \theta) = \left(\frac{\Gamma(2+\alpha)}{\Gamma(\alpha)}\right)^n (x_1 x_2 \cdots x_n)^{\theta-1} (1-x_1)(1-x_2) \cdots (1-x_n),$$

It follows from the factorization theorem, $X_1 X_2 \cdots X_n$ is a sufficient statistic for θ .

7.16. Show that the product of the sample observation is a sufficient statistic for $\theta > 0$ if the random sample is taken from a gamma distribution with parameters $\alpha = \theta$ and $\beta = 6$.

Solution

The joint p.d.f. of the sample X_1, X_2, \dots, X_n is

$$\prod_{i=1}^{n} f(x_i; \theta) = \left(\frac{1}{\Gamma(\theta)6^{\theta}}\right)^{n} (x_1 x_2 \cdots x_n)^{\theta - 1} e^{-\sum x_i / 6},$$

It follows from the factorization theorem, $X_1 X_2 \cdots X_n$ is a sufficient statistic for θ .

7.17. What is the sufficient statistic for θ if the sample arises from a beta distribution in which $\alpha = \beta = \theta > 0$? The joint p.d.f. of the sample X_1, X_2, \dots, X_n is

$$\prod_{i=1}^{n} f(x_i; \theta) = \left(\frac{\Gamma(2\theta)}{\Gamma(\theta)\Gamma(\theta)}\right)^n (x_1 x_2 \cdots x_n)^{\theta-1} ((1-x_1)(1-x_2)\cdots(1-x_n))^{\theta-1},$$

It follows from the factorization theorem, $X_1X_2\cdots X_n(1-X_1)(1-X_2)\cdots (1-X_n)$ is a sufficient statistic for θ .

Section 7.3. Properties of a Sufficient Statistics

Solutions to Exercises

7.18. In each of the Exercises 7.10., 7.11, 7.13, and 7.14, show that the m.l.e. of θ is a sufficient statistic for θ . **Solution**

In the exercises 7.10, the m.l.e. of the unknown θ is $\frac{1}{n} \sum_{i=1}^{n} X_i^2$ which is also a sufficient for θ .

In the exercises 7.11, the m.l.e. of the unknown θ is $\frac{1}{n} \sum_{i=1}^{n} X_i$ which is also a sufficient for θ .

In the exercises 7.13, the m.l.e. of the unknown θ is $\frac{n}{n+\sum_{i=1}^{n}X_{i}}$ which is also a sufficient for θ .

In the exercises 7.14, the m.l.e. of the unknown θ is $\frac{1}{n} \sum_{i=1}^{n} X_i$ which is also a sufficient for θ .

7.19. Let $Y_1 < Y_2 < Y_3 < Y_4 < Y_5$ be the order statistics of a random sample of size 5 from the uniform distribution having $f(x;\theta) = 1/\theta, 0 < x < \theta, 0 < \theta < \infty$, zero elsewhere. Show that $2Y_3$ is an unbiased estimator of θ . Determine the joint p.d.f. of Y_3 and the sufficient statistic Y_5 for θ . Find the conditional expectation $E(2Y_3 \mid y_5) = \varphi(y_5)$. Compare the variance of $2Y_3$ and $\varphi(Y_5)$.

Solution

The distribution function of the population is

$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{x}{\theta}, & 0 \le x < \theta \\ 1, & x \ge \theta \end{cases}$$

So the p.d.f. of the order statistic Y_3 is

$$f(y) = 30y^{2}(\theta - y)^{2} / \theta^{5}, 0 < y < \theta,$$

Thus the expected value of $2Y_3$ is

$$E(2Y_3) = 2\int_0^\theta y \cdot 30y^2 (\theta - y)^2 / \theta^5 dy = 60\theta \int_0^1 t^3 (1 - t)^2 dt = 60\theta B(4,3) = \theta.$$

This implies that $2Y_3$ is an unbiased estimator of θ .

The joint p.d.f. of Y_3 and the sufficient statistic Y_5 for θ is

$$f(x, y) = 60x^{2}(y-x)/\theta^{5}, 0 < x \le y < \theta$$

The conditional p.d.f. of Y_3 given $Y_5 = y$ is

$$f(x \mid y) = \frac{12x^2(y-x)}{y^4}, \ 0 < x < y < \theta,$$

So the conditional expectation $E(2Y_3 \mid y_5) = \frac{6}{5} y_5 = \varphi(y_5)$.

The variance of $2Y_3$ is

$$D(2Y_3) = 4 \cdot \frac{3 \cdot 3}{6 \cdot 6 \cdot 7} \theta^2 = \frac{1}{7} \theta^2.$$

Whereas the variance of $\varphi(Y_5)$ is

$$D(\frac{6}{5}Y_5) = \frac{36}{25} \cdot \frac{5}{6 \cdot 6 \cdot 7} \theta^2 = \frac{1}{35} \theta^2.$$

It is obvious that $D(\varphi(Y_5)) < D(2Y_3)$.

7.20. If X_1, X_2 is a random sample of size 2 from a distribution having p.d.f.

$$f(x;\theta) = (1/\theta)e^{-x/\theta}$$
, $0 < x < \infty$, $0 < \theta < \infty$, zero elsewhere,

find the joint p.d.f. of the sufficient statistic $Y_1 = X_1 + X_2$ for θ and $Y_2 = X_2$. Show that Y_2 is an unbiased estimator of θ with variance θ^2 . Find $E(Y_2 \mid y_1) = \varphi(y_1)$ and the variance of $\varphi(Y_1)$.

Solution

The joint p.d.f. of the sample X_1, X_2 is

$$f(x_1, x_2) = \frac{1}{\theta^2} e^{-(x_1 + x_2)/\theta}, \ 0 < x_1, x_2 < \infty.$$

Let $Y_1 = X_1 + X_2$, $Y_2 = X_2$, then the Jacobian of the transformation is

$$J = \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = 1,$$

So the joint of the sufficient statistic $Y_1 = X_1 + X_2$ for θ and $Y_2 = X_2$ is

$$f(y_1, y_2) = \frac{1}{\theta^2} e^{-y_1/\theta}, \ 0 < y_2 < y_1 < \infty.$$

$$E(Y_2) = E(X_2) = \theta$$
, $D(Y_2) = D(X_2) = \theta^2$.

The marginal p.d.f. of Y_1 is

$$f(y_1) = \int_0^{y_1} \frac{1}{\theta^2} e^{-y_1/\theta} dy_2 = \frac{1}{\theta^2} y_1 e^{-y_1/\theta}, \ 0 < y_1 < \infty.$$

So the conditional p.d.f. of Y_2 given $Y_1 = y_1$ is

$$f(y_2 \mid y_1) = \frac{1}{y_1}, \ 0 < y_2 < y_1 < \infty.$$

Thus

$$E(Y_2 \mid y_1) = \int_0^{y_1} \frac{y_2}{y_1} dy_2 = y_1 / 2 = \varphi(y_1).$$

The variance of $\varphi(Y_1)$ is $D(\varphi(Y_1)) = \theta^2 / 2$.

7.21. Let the random variables X and Y have the joint p.d.f.

$$f(x, y) = (2/\theta^2)e^{-(x+y)/\theta}$$
, $0 < x < y < \infty$, zero elsewhere.

- (a) Show that the mean and the variance of Y are, respectively, $3\theta/2$ and $5\theta^2/4$.
- (b) Show that $E(Y | x) = x + \theta$. In accordance with the theory, the expected value of $X + \theta$ is that of Y, namely, $3\theta/2$, and the variance of $X + \theta$ is less than that of Y. Show that the variance of $X + \theta$ is in fact $\theta^2/4$.

Solution

(a)

$$E(Y) = \iint_{R^2} yf(x, y)dxdy = \int_0^\infty dx \int_x^{+\infty} (2/\theta^2)ye^{-(x+y)/\theta}dy = 3\theta/2,$$

$$E(Y^2) = \iint_{R^2} y^2 f(x, y)dxdy = \int_0^\infty dx \int_x^{+\infty} (2/\theta^2)y^2 e^{-(x+y)/\theta}dy = 13\theta^2/4,$$

So the variance of Y is

$$D(Y) = E(Y^2) - (E(Y))^2 = 5\theta^2 / 4$$
.

(b) The marginal p.d.f. of X is

$$f(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{x}^{+\infty} (2/\theta^{2}) e^{-(x+y)/\theta} dy = \frac{2}{\theta} e^{-2x/\theta}, \ 0 < x < \infty.$$

The conditional p.d.f.of Y given X = x is

$$f(y \mid x) = \frac{1}{\theta} e^{-(y-x)/\theta}, \quad 0 < x < y < \infty,$$

Thus the conditional expected value

$$E(Y \mid x) = \int_{x}^{+\infty} y \cdot \frac{1}{\theta} e^{-(y-x)/\theta} dy = x + \theta.$$

In fact, X is exponential distribution with parameter $\theta/2$, so the expected value of $X + \theta$ is $E(X + \theta) = \theta/2 + \theta = 3\theta/2$,

And the variance of $X + \theta$ is

$$D(X+\theta) = D(X) = \theta^2/4,$$

This completes the proof.

Section 7.4. Completeness and Uniqueness

7.23. If $az^2 + bz + c = 0$ for more than two values of z, then a = b = c = 0. Use this result to show that the family $\{b(2, \theta): 0 < \theta < 1\}$ is complete.

Solution

Let X be a binomial distribution with parameters 2 and θ , that is, $X \sim b(2, \theta)$. Suppose that there is a statistic u(X) such that E(u(X)) = 0, for every $0 < \theta < 1$. Then

$$E(u(X)) = u(0) \binom{2}{0} \theta^0 (1-\theta)^2 + u(1) \binom{2}{1} \theta^1 (1-\theta)^1 + u(2) \binom{2}{2} \theta^2 (1-\theta)^0 = 0,$$

Equivalently, we have

$$(u(0)-2u(1)+u(2))\theta^2+(-2u(0)+2u(1))\theta+u(0)=0$$

The equation holds for every $0 < \theta < 1$, from the preceding discussion we know

$$u(0) = u(1) = u(2) = 0$$
,

this implies that the family $\{b(2, \theta): 0 < \theta < 1\}$ is complete.

7.24. Show that each of the following families is not complete by finding at least one nonzero function u(x) such that E(u(X)) = 0, for all $\theta > 0$.

(a)

$$f(x; \theta) = \frac{1}{2\theta}, -\theta < x < \theta, \text{ where } 0 < \theta < \infty$$

= 0, elsewhere.

(b) $N(0, \theta)$, where $0 < \theta < \infty$.

Solution

- (a) Here let u(X) = -X, it is obvious that E(u(X)) = 0, for all $\theta > 0$, but $u(x) \neq 0$, $-\theta < x < \theta$, for any $\theta > 0$.
- (b) Here let u(X) = -X, it is obvious that E(u(X)) = 0, for all $\theta > 0$, but $u(x) \neq 0$, $-\theta < x < \theta$, for any $\theta > 0$.

7.25. Let X_1, X_2, \dots, X_n represent a random sample from the discrete distribution having the probability density function

$$f(x; \theta) = \theta^x (1-\theta)^{1-x}, x = 0, 1, 0 < \theta < 1,$$

= 0, elsewhere.

Show that $Y_1 = \sum_{i=1}^n X_i$ is a complete sufficient statistic for θ . Find the unique function of Y_1 that is the unbiased

minimum variance estimator of θ .

Solution

It follows from the factorization theorem that the statistic $Y_1 = \sum_{i=1}^n X_i$ is a sufficient statistic for θ , and the statistic

 $Y_1 = \sum_{i=1}^{n} X_i$ is binomial distribution with parameters n and θ .

Suppose that there exists a statistic $u(Y_1)$ such that $E(u(Y_1)) = 0$, so we have

$$E(u(Y_1)) = \sum_{i=0}^{n} u(i) \Pr(Y_1 = i) = \sum_{i=0}^{n} u(i) \binom{n}{i} \theta^i (1-\theta)^{n-i} = u(0)(1-\theta)^n + u(1)\theta(1-\theta)^{n-1} + \dots + u(n)\theta^n = 0.$$

Obviously, the constant in the preceding equation is u(0) and every term in the equation is nonnegative, so we have u(0) = 0, thus the equation becomes the following

$$u(1)\theta(1-\theta)^{n-1} + \dots + u(n)\theta^n = 0,$$

Divide both members of the equation by $\theta \neq 0$, we obtain

$$u(1)(1-\theta)^{n-1} + \dots + u(n)\theta^{n-1} = 0$$
,

which implies that the coefficient u(1) = 0. Repeat the process n times, we can get

$$u(0) = u(1) = \cdots = u(n) = 0$$
,

This proves that the sufficient statistic $Y_1 = \sum_{i=1}^{n} X_i$ is a complete sufficient statistic for θ .

- **7.26.** Consider the family of probability density functions $\{h(z;\theta):\theta\in\Omega\}$, where $h(z;\theta)=1/\theta$, $0< x<\theta$, zero elsewhere.
- (a) Show that the family is complete provided that $\Omega = \{\theta : 0 < \theta < \infty\}$.
- (b) Show that this family is not complete if $\Omega = \{\theta : 1 < \theta < \infty\}$.

Solution

(a) Suppose that there exists a statistic u(Z) such that E(u(Z)) = 0 for all $\theta > 0$, that is,

$$E[u(Z)] = \int_0^\theta u(z) \frac{1}{\theta} dz = \frac{1}{\theta} \int_0^\theta u(z) dz = 0, \text{ for all } \theta > 0,$$

From the formulation, we have

$$\int_0^\theta u(z)dz = 0 \text{, for all } \theta > 0.$$

Note that the derivative of E(u(Z)) with respect to θ is equal to zero also, thus

$$u(\theta) = 0$$
, for all $\theta > 0$.

This implies that the family of probability density function is complete provided that $\Omega = \{\theta : 0 < \theta < \infty\}$.

(b) By the similar reasoning, we can obtain

$$\int_0^\theta u(z)dz = 0 \text{, for all } \theta > 1,$$

Since

$$\int_0^\theta u(z)dz = \int_0^1 u(z)dz + \int_1^\theta u(z)dz = 0 \text{ , for all } \theta > 1 \text{ ,}$$

We can construct the function

$$u(z) = \begin{cases} 1 - 2z, & 0 < z < 1 \\ 0, & 1 < z < \theta \end{cases}.$$

It is obvious that the function u(Z) satisfies E(u(Z)) = 0 for all $\theta > 0$, whereas $u(Z) \neq 0$ for all $\theta > 1$, this prove that the family is not complete if $\Omega = \{\theta : 1 < \theta < \infty\}$.

Section 7.5. The Exponential Class of Probability Density Functions

7.29. Write the p.d.f

$$f(x;\theta) = \frac{1}{6\theta^4} x^3 e^{-x/\theta}, 0 < x < \infty, 0 < \theta < \infty,$$

Zero elsewhere, in the exponential form. If X_1, X_2, \dots, X_n is a random sample from this distribution, find a complete sufficient statistic Y_1 for θ and the unique function $\varphi(Y_1)$ of this statistic that is the unbiased minimum variance estimator of θ . Is $\varphi(Y_1)$ itself a complete sufficient statistic?

Solution

The p.d.f. of the distribution can be converted into the following form

$$f(x;\theta) = \exp(-x/\theta + 3\ln x - \ln 6\theta^4), 0 < x < \infty, 0 < \theta < \infty,$$

So the statistic $Y_1 = \sum_{i=1}^{n} X_i$ is a complete sufficient statistic for θ .

In fact, the population is gamma distribution with parameters 4 and θ , so the expected value of the distribution is $E(X) = 4\theta$, thus

$$E(Y_1) = E(\sum_{i=1}^{n} X_i) = 4n\theta, \quad E(Y_1/4n) = \theta,$$

So we obtain the unique unbiased minimum variance estimator of $\theta \varphi(Y_1) = Y_1 / 4n$.

Here, the statistic $\varphi(Y_1)$ itself is also a complete sufficient statistic for θ .

7.30. Let X_1, X_2, \dots, X_n denote a random sample of size n > 1 from a distribution with p.d.f.

 $f(x;\theta) = \theta e^{-\theta x}$, $0 < x < \infty$, zero elsewhere, and $\theta > 0$. Then $Y = \sum_{i=1}^{n} X_i$ is a sufficient statistic for θ . Prove that

(n-1)/Y is the unbiased minimum variance estimator of θ .

Solution

Since

$$f(x,\theta) = \exp(-\theta x + \ln \theta)$$
,

Thus,

$$Y = \sum_{1}^{n} X_{i}$$

is a sufficient complete statistics of $\, heta\,$.

In fact, Y is Gamma distribution with parameters n and $\frac{1}{\theta}$, so

$$E(n-1/Y) = (n-1)E(1/Y) = (n-1)\int_0^\infty \frac{1}{y} \frac{\theta^n}{\Gamma(n)} y^{n-1} e^{-\theta y} = \theta,$$

In accordance with the Rao-Blackwell theorem, we have (n-1)/Y is the unbiased minimum variance estimator of θ .

7.31. Let X_1, X_2, \dots, X_n denote a random sample of size n from a distribution with p.d.f.

 $f(x;\theta) = \theta x^{\theta-1}$, 0 < x < 1, zero elsewhere, and $\theta > 0$.

- (a) Show that the *geometric mean* $(X_1 X_2 \cdots X_n)^{1/n}$ of the sample is a complete sufficient statistic for θ .
- (b) Find the maximum likelihood estimator of θ , and observe that it is a function of this geometric mean.

Solution

(a) Since the p.d.f. can be changed into the following formula

$$f(x; \theta) = \exp((\theta - 1) \ln x + \ln \theta), \quad 0 < x < 1,$$

So the statistic $\sum_{i=1}^{n} \ln X_i = \ln(X_1 X_2 \cdots X_n)$ is a complete sufficient statistic for θ , furthermore, the geometric mean

 $(X_1X_2\cdots X_n)^{1/n}$ of the sample which is a monotonic increasing function of $\ln(X_1X_2\cdots X_n)$ is also a complete sufficient statistic for θ .

(b) The likelihood function of the distribution is

$$L(\theta) = \theta^{n} (x_1 x_2 \cdots x_n)^{\theta-1}, \ 0 < x_i < 1, \ i = 1, 2, \dots n$$

The logarithm likelihood function is

$$\ln L(\theta) = n \ln \theta + (\theta - 1) \sum_{i=1}^{n} \ln x_i, \ 0 < x_i < 1, \ i = 1, 2, \dots n,$$

The derivative of the logarithm likelihood function with respect to θ is

$$\frac{d \ln L(\theta)}{d \theta} = \frac{n}{\theta} + \sum_{i=1}^{n} \ln x_i ,$$

Let $\frac{d \ln L(\theta)}{d\theta} = 0$ whose solution is

$$\hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \ln x_i} = -\frac{1}{\ln(x_1 x_2 \cdots x_n)^{1/n}},$$

which is a function of this geometric mean.

7.32. Let \overline{X} denote the mean of the random sample X_1, X_2, \dots, X_n from a gamma-type distribution with parameters $\alpha > 0$ and $\beta = \theta > 0$. Compute $E[X_1 \mid \overline{X}]$.

Solution

The likelihood function of the population is

$$L(\theta) = \left(\frac{1}{\Gamma(\alpha)\theta^{\alpha}}\right)^{n} (x_1 x_2 \cdots x_n)^{\alpha - 1} e^{-\sum x_i / \theta},$$

By the factorization theorem, we know that the statistic \overline{X} is a sufficient statistic for θ , and it is not difficult to prove that

$$E(\overline{X}/\alpha) = \theta$$
.

In fact, the population is gamma distribution with parameters $\alpha > 0$ and $\beta = \theta > 0$, that is, $X \sim \Gamma(\alpha, \theta)$.

So we have $E(X_1) = E(X) = \alpha\theta$, thus by the Rao and Blackwell theorem, we have

$$E[X_1 | \overline{x}] = \alpha \cdot \overline{X} / \alpha = \overline{X}$$
.

7.33. Let *X* be a random variable with a p.d.f. of a regular case of the exponential class. Show that $E[K(X)] = -q'(\theta)/p'(\theta)$, provided these derivatives exist, by differentiating both member of the equality

$$\int_{a}^{b} \exp[p(\theta)K(x) + S(x) + q(\theta)]dx = 1$$
 (1)

with respect to θ . By a second differentiation, find the variance of K(X).

Solution

By differentiating both member of the equality

$$\int_{a}^{b} \exp[p(\theta)K(x) + S(x) + q(\theta)]dx = 1$$

with respect to θ , we have

$$\int_{a}^{b} [K(x)p'(\theta) + q'(\theta)] \exp[p(\theta)K(x) + S(x) + q(\theta)] dx = 0,$$
(2)

this indicates that

$$E[K(X)p'(\theta) + q'(\theta)] = 0,$$

equivalently,

$$E[K(X)] = -q'(\theta) / p'(\theta).$$

By a second differentiation of the equality (2), we obtain

$$\int_{a}^{b} \{ [K(x)p''(\theta) + q''(\theta)] \exp[p(\theta)K(x) + S(x) + q(\theta)] + [K(x)p'(\theta) + q'(\theta)]^{2} \exp[p(\theta)K(x) + S(x) + q(\theta)] dx = 0$$
 (3)

from which we can deduce the variance of K(X).

$$D(K(X)) = \frac{p^{\prime\prime}(\theta)q^\prime(\theta) - p^\prime(\theta)q^{\prime\prime}(\theta)}{\left[p^\prime(\theta)\right]^3} \; .$$

7.34. Given that $f(x;\theta) = \exp[\theta K(x) + S(x) + q(\theta)]$, a < x < b, $\gamma < \theta < \delta$, represents a regular case of the exponential class, show that the moment-generating function M(t) of Y = K(X) is

$$M(t) = \exp[q(\theta) - q(\theta + t)], \ \gamma < \theta + t < \delta.$$

Solution

By the definition of the moment-generating function, we have

$$\begin{split} M(t) &= E(e^{tK(X)}) = \int_a^b e^{tK(x)} \exp[\theta K(x) + S(x) + q(\theta)] dx \\ &= \int_a^b \exp[(\theta + t)K(x) + S(x) + q(\theta + t) + q(\theta) - q(\theta + t)] dx \\ &= \exp[q(\theta) - q(\theta + t)], \ \gamma < \theta + t < \delta. \end{split}$$

Thus we complete the proof.

7.35. Given, in the preceding exercise, that $E(Y) = E[K(X)] = \theta$. Prove that Y is $N(\theta,1)$.

Solution

In the preceding exercise,

$$M'(t) = -q'(\theta+t) \exp[q(\theta) - q(\theta+t)],$$

Since

$$M'(0) = E(Y)$$
.

Thus we obtain the differential equation

$$-q'(\theta) = \theta$$

So we obtain

$$q(\theta) = -\theta^2 / 2,$$

Thus the moment-generating of Y = K(X) is

$$M(t) = \exp(\theta t + t^2 / 2),$$

which is exact the moment-generating of the normal distribution with mean θ and variance 1, that is $Y = K(X) \sim N(\theta, 1)$.

7.36. If X_1, X_2, \dots, X_n is a random sample from a distribution that has a p.d.f. which is a regular case of the exponential class, show that the p.d.f. of $Y_1 = \sum_{i=1}^n K(X_i)$ is of the form $g_1(y_1; \theta) = R(y_1) \exp[p(\theta)y_1 + nq(\theta)]$.

Solution

The joint p.d.f. of the sample X_1, X_2, \dots, X_n is

$$f(x_1, x_2, \dots, x_n) = \exp[p(\theta) \sum_{i=1}^n K(x_i) + \sum_{i=1}^n S(x_i) + nq(\theta)].$$

Let $Y_1 = \sum_{i=1}^n K(X_i)$ and $Y_2 = X_2, Y_3 = X_3, \dots, Y_n = X_n$, then the Jacobian of the transformation is

$$|J|=J(y_1,y_2,\cdots,y_n),$$

then the joint p.d.f. of the sample Y_1, Y_2, \dots, Y_n is

$$f(y_1, y_2, \dots, y_n) = \exp[p(\theta)y_1 + \sum_{i=1}^n S(u^{-1}(y_i)) + nq(\theta)]J(y_1, y_2, \dots, y_n),$$

The marginal p.d.f. of the statistic $Y_1 = \sum_{i=1}^{n} K(X_i)$ is

$$g_1(y_1; \theta) = \int \int \cdots \int f(y_1, y_2, \dots, y_n) \, dy_2 \cdots dy_n = R(y_1) \exp[p(\theta)y_1 + nq(\theta)].$$

7.37. Let Y denote the median and let \overline{X} denote the mean of a random sample of size n = 2k + 1 from a distribution that is $N(\mu, \sigma^2)$. Compute $E[Y | \overline{x}]$.

Solution

7.38. Let X_1, X_2, \dots, X_n be a random sample from a distribution with p. d. f.

$$f(x;\theta) = \theta^2 x e^{-\theta x}$$
, $0 < x < \infty$, where $\theta > 0$.

- (a) Argue that $Y = \sum_{i=1}^{n} X_i$ is a complete sufficient statistic for θ .
- (b) Compute E(1/Y) and find the function of Y which is the unique unbiased minimum variance estimator of θ . **Solution**

$$f(x;\theta) = \exp\{-\theta x + \ln x + 2\ln \theta\}$$

So
$$Y = \sum_{i=1}^{n} X_i$$
 is a complete sufficient statistic for θ .

(b) In fact, X_i is gamma distribution with parameters 2 and $1/\theta$, thus

 $Y = \sum_{i=1}^{n} X_i$ is also gamma distribution with parameters 2n and $1/\theta$.

$$E(1/Y) = \int_0^\infty \frac{1}{y} \frac{\theta^{2n}}{\Gamma(2n)} y^{2n-1} e^{-\theta y} dy = \frac{\theta}{2n-1}$$

Accordingly, $E((2n-1)/Y) = \theta$, $\frac{2n-1}{Y}$ is the unique unbiased minimum variance estimator of θ .

7.39. Let $X_1, X_2, \dots, X_n, n > 2$, be a random sample from the binomial distribution $b(1, \theta)$.

- (a) Show that $Y_1 = X_1 + X_2 + \dots + X_n$ is a complete sufficient statistic for θ .
- (b) Find the function $\varphi(Y_1)$ which is the unbiased minimum variance estimator of θ .
- (c) Let $Y_2 = (X_1 + X_2)/2$ and compute $E(Y_2)$.
- (d) Determine $E(Y_2 | Y_1 = y_1)$.

Solution

(a) The p.d.f. can be changed into the form

$$\theta^{x}(1-\theta)^{1-x} = \exp[x \ln \frac{\theta}{1-\theta} + \ln(1-\theta)],$$

from which we can know that the statistic $Y_1 = X_1 + X_2 + \dots + X_n$ is a complete sufficient statistic for θ .

(b) In fact, $Y_1 = X_1 + X_2 + \dots + X_n \sim b(n, \theta)$, so we have

$$E(Y_1) = n\theta$$
, $E(Y_1/n) = \theta$.

It follows the Lehmann and Scheffe theorem that

$$\varphi(Y_1) = Y_1 / n = \overline{X}$$

is the unbiased minimum variance estimator of θ .

- (c) It is very easy to verify that $E(Y_2) = \theta$.
- (d) By the Rao and Blackwell theorem, we have

$$E(Y_2 \mid Y_1 = y_1) = \varphi(y_1) = y_1 / n = \bar{x}$$
.

ADDITIONAL EXERCISES

7.68. Let X_1, X_2, \dots, X_n denote a random sample of size n > 1 from a distribution with p.d.f. $f(x; \theta) = \theta e^{-\theta x}$, $0 < x < \infty$, zero elsewhere, and $\theta > 0$.

- (a) What is the complete sufficient statistic, say Y, for θ ?
- (b) What function of Y is an unbiased estimator of θ ?

Solution

(a) Since

$$f(x; \theta) = \theta e^{-\theta x} = \exp\{-\theta x + \ln \theta\}$$

So $Y = \sum_{i=1}^{n} X_i$ is a complete sufficient estimator for θ .

(b) In fact, according to the property of gamma distribution, we have

 $Y = \sum_{i=1}^{n} X_{i}$ is gamma distribution with parameters n and $1/\theta$.

then

$$E((n-1)/Y) = \int_0^\infty \frac{n-1}{y} \frac{\theta^{\alpha}}{\Gamma(\alpha)} y^{\alpha-1} e^{-\theta y} dy = \theta$$

This indicates that (n-1)/Y is the unbiased minimum variance estimator of θ .

7.69. Let $Y_1 < Y_2 < \cdots < Y_n$ be the order statistics of a random sample of size n from a distribution with p.d.f. $f(x;\theta) = 1/\theta, 0 < x < \theta$, zero elsewhere. The statistics Y_n is a complete sufficient statistics for θ and it has p.d.f.

$$g(y_n; \theta) = \frac{ny_n^{n-1}}{\theta^n}, \ 0 < y_n < \theta,$$

and zero elsewhere.

- (a) Find the distribution function $H_n(z;\theta)$ of $Z = n(\theta Y_n)$.
- (b) Find the $\lim_{n\to\infty} H_n(z;\theta)$ and thus the limiting distribution of Z.

Solution

(a) Since $Z = n(\theta - Y_n)$, we have the p.d.f. of Z is

$$h(z;\theta) = \frac{n(n\theta - z)^{n-1}}{(n\theta)^n}, \ 0 < z < n\theta.$$

Thus the distribution function of Z is

$$H_n(z;\theta) = \int_0^z \frac{n(n\theta - t)^{n-1}}{(n\theta)^n} dt = 1 - (1 - \frac{z}{n\theta})^n, \ 0 < z < n\theta.$$

(b) $\lim_{n\to\infty} H_n(z;\theta) = \lim_{n\to\infty} 1 - (1 - \frac{z}{n\theta})^n = 1 - e^{-z/\theta}$, thus the limiting distribution of Z is

exponential distribution with mean θ .

7.71. Let X_1, X_2, \dots, X_n be a random sample of size n from a Poisson distribution with mean θ . Find the conditional expectation $E[X_1 + 2X_2 + 3X_3 \mid \sum_{i=1}^n X_i]$.

Solution

It follows from the factorization theorem that the sum of the sample $\sum_{i=1}^{n} X_i$ is a sufficient statistic for θ , and

$$\sum_{i=1}^{n} X_i \sim P(n\theta), \text{ so } E\left(\sum_{i=1}^{n} X_i\right) = n\theta, E\left(\frac{1}{n}\sum_{i=1}^{n} X_i\right) = \theta.$$

Moreover, $E[X_1 + 2X_2 + 3X_3] = 6\theta$, thus we have

$$E[X_1 + 2X_2 + 3X_3 | \sum_{i=1}^n X_i] = \frac{6}{n} \sum_{i=1}^n X_i$$
.

7.72. Let X_1, X_2, \dots, X_n be a random sample of size n from the normal distribution $N(\theta, 1)$. Find the unbiased minimum variance estimator of θ^2 .

Solution

The p.d.f. of the distribution can be changed into the following formula

$$\frac{1}{\sqrt{2\pi}}e^{-(x-\theta)^2/2} = \exp[\theta x - x^2/2 - \theta^2/2 - \ln 2\pi/2],$$

It is easy seen that the statistic $\frac{1}{n}\sum_{i=1}^{n}X_{i}$ is a complete sufficient statistic for θ^{2} .

In fact,
$$\frac{1}{n}\sum_{i=1}^{n}X_{i} \sim N(\theta, \frac{1}{n})$$
, and $E(\overline{X}) = \theta$, $D(\overline{X}) = \frac{1}{n}$, so $E(\overline{X})^{2} = D(\overline{X}) + [E(\overline{X})]^{2} = \theta^{2} + \frac{1}{n}$, thus we have

$$E[(\overline{X})^2 - \frac{1}{n}] = \theta^2,$$

So the statistic $(\overline{X})^2 - \frac{1}{n}$ is the unbiased minimum variance estimator of θ^2 .

7.73. Let X_1, X_2, \dots, X_n be a random sample of size n from a Poissonl distribution with mean θ . Find the unbiased minimum variance estimator of θ^2 .

Solution

The p.d.f. of the population can be changed into

$$\frac{\theta^x}{x!}e^{-\theta} = \exp[x\ln\theta - \ln x! - \theta],$$

So the statistic $\sum_{i=1}^{n} X_i$ is a complete sufficient statistic for θ^2 , and $\sum_{i=1}^{n} X_i$ is Poisson distribution with mean $n\theta$,

$$E(\sum_{i=1}^{n} X_i) = D(\sum_{i=1}^{n} X_i) = n\theta, \ E(\overline{X})^2 = D(\overline{X}) + [E(\overline{X})]^2 = \theta^2 + \frac{\theta}{n}.$$

So we can construct the statistic $(\overline{X})^2 - \overline{X}/n$ such that $E[(\overline{X})^2 - \overline{X}/n] = \theta^2$, so the unbiased minimum variance estimator of θ^2 is $(\overline{X})^2 - \overline{X}/n$.

7.76. Let X_1, X_2, \dots, X_n be a random sample from a distribution with p.d.f.

 $f(x; \theta) = \theta^x (1 - \theta), x = 0, 1, 2, \dots$, zero elsewhere, where $0 \le \theta \le 1$.

- (a) Find the m.l.e. $\hat{\theta}$ of θ .
- (b) Show that $\sum_{i=1}^{n} X_i$ is a complete sufficient statistic for θ .
- (c) Determine the unbiased minimum variance estimator of θ .

Solution

The likelihood function of the population is

$$L(\theta) = \theta^{\sum X_i} (1 - \theta)^n,$$

The logarithm likelihood function is

$$\ln L(\theta) = \sum_{i=1}^{n} X_{i} \cdot \ln \theta + n \ln(1-\theta),$$

Let the derivative of the function $\ln L(\theta)$ with respect to θ be equate to zero, we have

$$\sum_{i=1}^{n} X_{i} / n - \frac{n}{1 - \theta} = 0,$$

whose solution is

$$\hat{\theta} = \sum_{i=1}^{n} X_i / (n + \sum_{i=1}^{n} X_i),$$

the statistic is exact the m.l.e. of θ .

(b) The p.d.f. of the population can be changed into

$$\theta^{x}(1-\theta) = \exp[x \ln \theta + \ln(1-\theta)],$$

So the statistic $\sum_{i=1}^{n} X_i$ is a complete sufficient statistic for θ .

(b) The expected value of the population is

$$E(X) = \frac{\theta}{1 - \theta},$$

Chapter 8 More About Estimation

Section 8.1 Bayesian Estimation

8.1. Let X_1, X_2, \dots, X_n be a random sample from a distribution that is $b(1, \theta)$. Let the prior p.d.f. of Θ be a beta one with parameters α and β . Show that the posterior p.d.f. $k(\theta | x_1, x_2, \dots, x_n)$ is exactly the same as $k(\theta | y)$ given in Example 2.

Solution

The conditional p.d.f. of Θ , given $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$, is

$$k(\theta \mid x_1, x_2, \cdots, x_n) \propto \theta^{\sum x_i} (1-\theta)^{n-\sum x_i} \theta^{\alpha-1} (1-\theta)^{\beta-1} \propto \theta^{\sum x_i + \alpha-1} (1-\theta)^{n-\sum x_i + \beta-1}$$

Provided that $0 < \theta < \infty$, and is equal to zero elsewhere. This conditional p.d.f. is one of the beta type with parameters $\sum x_i + \alpha$ and $n - \sum x_i + \beta$.

We can see that the posterior p.d.f. $k(\theta | x_1, x_2, \dots, x_n)$ is exactly the same as $k(\theta | y)$ given in Example 2.

8.2. Let X_1, X_2, \dots, X_n denote a random sample from a distribution that is $N(\theta, \sigma^2)$, $-\infty < \theta < \infty$, where σ^2 is a given positive number. Let $Y = \overline{X}$, the mean of the random sample. Take the loss function to be $L[\theta, \delta(y)] = |\theta - \delta(y)|$. If θ is an observed value of the random variable Θ that is $N(\mu, \tau^2)$, where $\tau^2 > 0$ and μ are known numbers, find the Bayes' solution $\delta(y)$ for a point estimate of θ .

Solution

The sufficient statistic of θ is $Y = \overline{X}$, and $\overline{X} \sim N(\theta, \sigma^2/n)$. If the prior p.d.f. is taken as $N(\mu, \tau^2)$, then

$$k(\theta \mid y) \propto \frac{1}{\sqrt{2\pi}\sigma/\sqrt{n}} \frac{1}{\sqrt{2\pi}\mu} \exp\left[-\frac{(y-\theta)^2}{2(\sigma^2/n)} - \frac{(\theta-\mu)}{2\tau^2}\right] \propto \exp\left[-\frac{\left(\theta - \frac{y\tau^2 + \mu\sigma^2/n}{\tau^2 + \sigma^2/n}\right)^2}{\frac{2(\sigma^2/n)\tau^2}{(\tau^2 + \sigma^2/n)}}\right].$$

That is, the posterior p.d.f. of the parameter is obviluosly normal with mean $\frac{y\tau^2 + \mu\sigma^2/n}{\tau^2 + \sigma^2/n}$ and variance

 $\frac{2(\sigma^2/n)\tau^2}{(\tau^2+\sigma^2/n)}$. If we take the loss function to be $L[\theta,\delta(y)]=|\theta-\delta(y)|$, then the Bayes' solution $\delta(y)$ for a point

estimate of θ is

$$\frac{y\tau^2 + \mu\sigma^2/n}{\tau^2 + \sigma^2/n}.$$

8.3. Let X_1, X_2, \dots, X_n denote a random sample from a Poisson distribution with mean θ , $0 < \theta < \infty$. Let and take the loss function to be $L(\theta, \delta(Y)) = [\theta - \delta(Y)]^2$. Let θ be an observed value of the random variable Θ . If Θ has the p.d.f. $h(\theta) = \theta^{\alpha-1}e^{-\theta/\beta}/\Gamma(\alpha)\beta^{\alpha}$, $0 < \theta < \infty$, zero elsewhere, where $\alpha > 0$, $\beta > 0$. Find the Bayes' solution $\delta(y)$ for a point estimate of θ .

Solution

In accordance with the factorization theorem of Neyman, it is easily proved that

$$Y = \sum_{1}^{n} X_{i}$$

is a sufficient of θ .

Here $Y = \sum_{i=1}^{n} X_i$ is Poisson distribution with mean $n\theta$, this means that the p.d.f. of Y is

$$f(y;\theta) = \frac{(n\theta)^y}{y!} e^{-n\theta}, y = 0, 1, 2, \dots$$

Since the prior distribution of Θ is $h(\theta) = \theta^{\alpha-1} e^{-\theta/\beta} / \Gamma(\alpha) \beta^{\alpha}$, $0 < \theta < \infty$,

So the posterior distribution of Θ is

$$k(\theta \mid y) \propto (n\theta)^{y} \theta^{\alpha-1} e^{-n\theta} e^{-\theta/\beta} \propto \theta^{y+\alpha-1} e^{-\theta/(\frac{\beta}{n\beta+1})}$$

This explains that the posterior distribution of Θ is gamma distribution with parameters $y + \alpha$ and $\frac{\beta}{n\beta + 1}$.

If we take the loss function to be $L(\theta, \delta(Y)) = [\theta - \delta(Y)]^2$, then the Bayes' solution $\delta(y)$ is

$$\hat{\theta} = \frac{\beta(Y + \alpha)}{n\beta + 1} .$$

8.4. Let Y_n be the nth order statistic of a random sample of size n from a distribution with p.d.f. $f(x;\theta) = 1/\theta$, $0 < x < \theta$, zero elsewhere. Take the loss function to be $L(\theta, \delta(Y_n)) = [\theta - \delta(Y_n)]^2$. let Θ have p.d.f. $h(\theta) = \beta \alpha^{\beta} / \theta^{\beta+1}$, $\alpha < \theta < \infty$, with $\alpha > 0$, $\beta > 0$. Find the Bayes' solution $\delta(y_n)$ for a point estimate of θ .

Solution

In accordance with the factorization theorem of Neyman, it is easily proved that Y_n is a sufficient of θ . The p.d.f. of Y_n is

$$g(y;\theta) = \frac{ny^{n-1}}{\theta^n}, \quad 0 < y < \theta$$

Since the prior distribution of Θ is $h(\theta) = \beta \alpha^{\beta} / \theta^{\beta+1}$, $\alpha < \theta < \infty$, So the posterior distribution of Θ is

$$k(\theta \mid y) \propto \frac{1}{\theta^{n+\beta+1}}, \ y < \theta$$

This explains that the posterior distribution of Θ is $k(\theta \mid y) = (n + \beta)y^{n+\beta}/\theta^{n+\beta+1}$, $y < \theta$

If we take the loss function to be $L(\theta, \delta(Y)) = [\theta - \delta(Y)]^2$, then the Bayes' solution is

$$\hat{\theta} = E(\Theta \mid y) = \int_{y}^{\infty} (n+\beta) y^{n+\beta} / \theta^{n+\beta} d\theta = \frac{n+\beta}{n+\beta-1} Y_{n}.$$

8.5. Let Y_1 and Y_2 be statistics that have a trinomial distribution with parameters n, θ_1 , and θ_2 . Here θ_1 and

 θ_2 are observed values of the random variables Θ_1 and Θ_2 , which have a Dirichlet distribution with known parameters α_1 , α_2 , and α_3 . Show that the conditional distribution of Θ_1 and Θ_2 is Dirichlet distribution and determine the conditional means $E(\Theta_1 \mid y_1, y_2)$ and $E(\Theta_2 \mid y_1, y_2)$.

Solution

8.9. Let Y_4 be the largest order statistic of a sample of size n=4 from a distribution with uniform p.d.f. $f(x;\theta) = 1/\theta, 0 < x < \theta$, zero elsewhere. If the prior p.d.f. of the parameter is $g(\theta) = 2/\theta^3$, $1 < \theta < \infty$, zero elsewhere, find the Bayesian estimator $\delta(Y_4)$ of θ , based upon the sufficient statistic Y_4 , using the loss function $L[\theta, \delta(y)] = |\theta - \delta(y)|$.

Solution

If $y \le 1$, the posterior distribution of Θ is

$$k(\theta \mid y) \propto \frac{2}{\theta^3}, \quad 0 < y < \theta, 1 < \theta < \infty,$$

Then the distribution function of the posterior distribution is If $y \le 1$, $F(\theta) =$

If we take the loss function to be $L[\theta, \delta(y)] = |\theta - \delta(y)|$, then the Bayes' solution $\delta(y)$ is the median of the posterior distribution

.

Section 8.2 Fisher Information and the Rao-Cramer Inequality

8.11. Prove that \overline{X} , the mean of a random sample of size n from a distribution that is $N(\theta, \sigma^2)$, is, for every known $\sigma^2 > 0$, an efficient estimator of θ .

Solution

The p.d.f. of the population

$$f(x\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\theta)^2}{2\sigma^2}\right], \quad -\infty < x < \infty,$$

where $-\infty < \theta < \infty$, and

$$\ln f(x\theta) = -\frac{1}{2} \ln(2\pi\sigma^2) - \frac{(x-\theta)^2}{2\sigma^2},$$

Thus

$$\frac{\partial \ln f(x;\theta)}{\partial \theta} = \frac{x - \theta}{\sigma^2}$$

and

$$\frac{\partial^2 \ln f(x;\theta)}{\partial \theta^2} = -\frac{1}{\sigma^2}.$$

So

$$I(\theta) = -E \left[\frac{\partial^2 \ln f(x;\theta)}{\partial \theta^2} \right] = \frac{1}{\sigma^2}.$$

On one hand,

$$E(\overline{X}) = \theta$$

which indicates that \overline{X} is an unbiased estimator of θ .

On the other hand,

$$D(\overline{X}) = \frac{\sigma^2}{n} = \frac{1}{nI(\theta)}$$

This implies that the variance of \overline{X} achieves the lower bound of the Rao-Cramer inequality, so \overline{X} is an efficient estimator of θ .

8.2. Show that the mean \overline{X} of a random sample of size n from a distribution which is $b(1,\theta)$, $0 < \theta < 1$, is an efficient estimator of θ .

Solution

Firstly, we have

$$E\overline{X} = EX = \theta$$
.

Then

$$I(\theta) = -E(\frac{\partial^2 \ln f(X;\theta)}{\partial \theta^2}) = \frac{1}{\theta(1-\theta)}$$

So the Rao-Cramer lower bound is

$$\frac{1}{nI(\theta)} = \frac{\theta(1-\theta)}{n}$$

Furthermore,

$$D(\overline{X}) = \frac{D(X)}{n} = \frac{\theta(1-\theta)}{n}$$

This indicates that the variance of \overline{X} achieves the Rao-Cramer lower bound, so the mean \overline{X} of a random sample of size n is an efficient estimator of θ .

8.14. Given the p.d.f.

$$f(x;\theta) = \frac{1}{\pi[1 + (x - \theta)^2]}, -\infty < x < \infty, -\infty < \theta < \infty.$$

Show that the Rao-Cramer lower bound is 2/n, where n is the size of a random sample from Cauchy distribution.

Solution

Since

$$f(x;\theta) = \frac{1}{\pi[1 + (x - \theta)^2]}, -\infty < x < \infty, -\infty < \theta < \infty.$$

and

$$\frac{\partial \ln f(x;\theta)}{\partial \theta} = \frac{2(x-\theta)}{1+(x-\theta)^2},$$

So the Fisher information is

$$I(\theta) = E\left(\frac{\partial \ln f(x;\theta)}{\partial \theta}\right)^2 = \frac{1}{2},$$

Thus the Rao-Cramer lower bound is

$$\frac{1}{nI(\theta)} = \frac{2}{n} .$$

8.15. Let X have a gamma distribution with $\alpha = 4$ and $\beta = \theta > 0$.

- (a) Find the Fisher information $I(\theta)$.
- (b) If X_1, X_2, \dots, X_n is a random sample from this distribution, show that the m.l.e. of θ is an efficient estimator of θ .

Solution

(a)

$$f(x;\theta) = \frac{1}{6\theta^4} x^3 e^{-x/\theta}, \ x > 0,$$
$$\frac{\partial^2 \ln f(X;\theta)}{\partial \theta^2} = \frac{4}{\theta^2} - \frac{2X}{\theta^3}$$
$$I(\theta) = -E(\frac{\partial^2 \ln f(X;\theta)}{\partial \theta^2}) = \frac{4}{\theta^2}$$

(b) It is easily proved that the m.l.e. of θ is $\hat{\theta} = \frac{\sum_{i=1}^{n} X_i}{4n}$

and that

$$E(\hat{\theta}) = \theta$$

$$D(\hat{\theta}) = \frac{1}{16n} 4\theta^2 = \frac{\theta^2}{4n} = \frac{1}{nI(\theta)}$$

This indicates that the m.l.e. of θ is an efficient estimator for θ .

8.16. Let X be $N(0,\theta)$, $0 < \theta < \infty$.

- (a) Find the Fisher information $I(\theta)$.
- (b) If X_1, X_2, \dots, X_n is a random sample from this distribution ,show that the m.l.e. of θ is an efficient estimator of θ .

Solution

(a) The p.d.f. of X is

$$f(x;\theta) = \frac{1}{\sqrt{2\pi\theta}} e^{-\frac{x^2}{2\theta}}, -\infty < x < \infty, 0 < \theta < \infty$$

$$\ln f(x;\theta) = -\frac{x^2}{2\theta} - \frac{1}{2}\ln(2\pi\theta)$$

and

$$\frac{\partial \ln f(x;\theta)}{\partial \theta} = \frac{x^2}{2\theta^2} - \frac{1}{2\theta}$$
$$\frac{\partial^2 \ln f(x;\theta)}{\partial \theta^2} = \frac{-x^2}{\theta^3} + \frac{1}{2\theta^2}$$

Thus

$$I(\theta) = -E\left[\frac{\partial^2 \ln f(X;\theta)}{\partial \theta^2}\right] = E\left[\frac{X^2}{\theta^3} - \frac{1}{2\theta^2}\right]$$
$$= \frac{1}{\theta^3}E(X^2) - \frac{1}{2\theta^2} = \frac{\theta}{\theta^3} - \frac{1}{2\theta^2} = \frac{1}{2\theta^2}$$

Hence $I(\theta)$ is $\frac{1}{2\theta^2}$.

(b) since $I(\theta)$ is $\frac{1}{2\theta^2}$, then the Rao-Cramer lower bound $\frac{1}{nI(\theta)}$ is $\frac{2\theta^2}{n}$.

and X_1, X_2, \dots, X_n is a random sample from this distribution, so the likelihood function is

$$L(\theta; x_1, x_2, \dots, x_n) = f(x_1; \theta) f(x_2; \theta) \dots f(x_n; \theta)$$
$$= (2\pi\theta)^{-\frac{n}{2}} e^{-\sum_{i=1}^{n} \frac{x_i^2}{2\theta}}$$

$$\ln L(\theta; x_1, x_2, \dots, x_n) = -\frac{n}{2} \ln(2\pi\theta) - \sum_{i=1}^{n} \frac{x_i^2}{2\theta}$$

We note that $L(\theta; x_1, x_2, \dots, x_n)$ and $\ln L(\theta; x_1, x_2, \dots, x_n)$ is maximized at the value of θ so it may be easier to solve

$$\frac{d \ln L(\theta; x_1, x_2, \dots, x_n)}{d\theta} = 0$$

and we have $\frac{d \ln L(\theta; x_1, x_2, \dots, x_n)}{d \theta} = -\frac{n}{2\theta} + \frac{\sum_{i=1}^{n} x_i^2}{2\theta^2} = \frac{-n\theta + \sum_{i=1}^{n} x_i^2}{2\theta^2} = 0$, the solution of the parameter is

$$\frac{\sum_{i=1}^{n} x_{i}^{2}}{n}$$
. Thus the statistic $\hat{\theta} = \frac{\sum_{i=1}^{n} X_{i}^{2}}{n}$ is the m.l.e. of θ .

It is easily shown that $E\hat{\theta} = \frac{\sum_{i=1}^{n} E(X_i^2)}{n} = E(X_i^2) = \theta$, so $\hat{\theta} = \frac{\sum_{i=1}^{n} X_i^2}{n}$ is an unbiased estimator of θ and the variance

of $\hat{\theta}$ is

$$\operatorname{var}(\hat{\theta}) = \operatorname{var}(\frac{\sum_{i=1}^{n} X_{i}^{2}}{n}) = \frac{\operatorname{var}(X_{i}^{2})}{n} = \frac{E(X_{i}^{4}) - [E(X_{i}^{2})]^{2}}{n} = \frac{3\theta^{2} - \theta^{2}}{n} = \frac{2\theta^{2}}{n}$$

Thus

$$\operatorname{var}(\hat{\theta}) = \frac{1}{nI(\theta)}$$
.

So the m.l.e. of θ is an efficient estimator of θ .

8.3. Limiting Distribution of Maximum Likelihood Estimation

8.17. Let X_1, X_2, \dots, X_n be a random sample from each of the following distributions. In each case, find the m.l.e.

 $\hat{\theta}$, $var(\hat{\theta})$, $1/nI(\theta)$, where $I(\theta)$ is the Fisher information of a single observation X, and compare $var(\hat{\theta})$ and $1/nI(\theta)$.

- (a) $b(1, \theta), 0 \le \theta \le 1$.
- (b) $N(\theta,1), -\infty < \theta < \infty$.
- (c) $N(0,\theta)$, $0 < \theta < \infty$.
- (d) Gamma ($\alpha = 5, \beta = \theta$), $0 < \theta < \infty$.

Solution

(a),

The m.l.e. of
$$\theta$$
 is $\hat{\theta} = \overline{X}$, and $var(\hat{\theta}) = \frac{\theta(1-\theta)}{n}$, $\frac{1}{nI(\theta)} = \frac{\theta(1-\theta)}{n}$. So $var(\hat{\theta}) = \frac{1}{nI(\theta)} = \frac{\theta(1-\theta)}{n}$.

(b)

The m.l.e. of θ is

$$\hat{\theta} = \overline{X}$$
.

and $\overline{X} \sim N(\theta, 1/n)$, thus $var(\hat{\theta}) = \frac{1}{n}$, and $I(\theta) = 1$, so $var(\hat{\theta}) = \frac{1}{nI(\theta)} = \frac{1}{n}$.

(c) The m.l.e.of θ is

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i^2 ,$$

$$\operatorname{var}(\hat{\theta}) = \operatorname{var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\right) = \operatorname{var}\left(\frac{\theta}{n}\cdot\frac{1}{\theta}\sum_{i=1}^{n}X_{i}^{2}\right) = \frac{2\theta^{2}}{n}.$$

The Fisher information of a single observation X is

 $I(\theta) = \frac{1}{2\theta^2}$. So the lower bound of Rao-Cramer inequality is

$$1/nI(\theta) = \frac{2\theta^2}{n} = \text{var}(\hat{\theta}).$$

(d)

The m.l.e. of θ is

$$\hat{\theta} = \frac{1}{5n} \sum_{i=1}^{n} X_i .$$

And
$$var(\hat{\theta}) = \frac{\theta^2}{5n}$$
.

The Fisher information of X is

$$I(\theta) = \frac{5}{\theta^2}$$
,

Thus the lower bound of the Rao-Cramer inequality is

$$1/nI(\theta) = \frac{\theta^2}{5n}$$
. So $var(\hat{\theta}) = \frac{1}{nI(\theta)} = \frac{\theta^2}{5n}$.

8.18. Referring to Exercise 8.17 and using the fact that $\hat{\theta}$ has an approximate $N[\theta, 1/nI(\theta)]$, in each case construct an approximate 95 percent confidence interval for θ .

Solution

(a)

It follows from the central limiting theorem that the m.l.e. \overline{X} has a limiting distribution as following

$$\overline{X} \to N(\theta, \frac{\theta(1-\theta)}{n})$$
,

8.19. Let $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$ be a random sample from a bivariate normal distribution with unknown means θ_1 and θ_2 and with known variance and correlation coefficient, σ_1^2, σ_2^2 , and ρ , respectively. Find the maximum likelihood estimator $\hat{\theta}_1$ and θ_2 of θ_1 and θ_2 and their approximate variance-covariance matrix. In this case, does the latter provide the exact variance and covariance?

Solution

8.20. Let $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$ be a random sample from a bivariate normal distribution with means equal to zero and variances θ_1 and θ_2 , respectively and known correlation coefficient ρ . Find the maximum likelihood estimator $\hat{\theta}_1$ and θ_2 of θ_1 and θ_2 and their approximate variance-covariance matrix.

Solution

Chapter 9 Theory of statistical Tests

Section 9.1 Certain Best Tests

9.1. In Example 2 of this section, let the simple hypotheses read $H_0: \theta = \theta' = 0$ and $H_1: \theta = \theta' = -1$. Show that the best test of H_0 against H_1 may be carried out by use of the statistic \overline{X} , and that if n = 25 and $\alpha = 0.05$, the power of the test is 0.999+ when H_1 is true.

Solution

Now

$$\frac{L(\theta'; x_1, x_2, \dots, x_n)}{L(\theta''; x_1, x_2, \dots, x_n)} = \frac{(1/\sqrt{2\pi}) \exp\left[-(\sum_{i=1}^n x_i^2)/2\right]}{(1/\sqrt{2\pi}) \exp\left[-(\sum_{i=1}^n (x_i + 1)^2)/2\right]} = \exp\left[\sum_{i=1}^n x_i + \frac{n}{2}\right].$$

If k > 0, the set of all points (x_1, x_2, \dots, x_n) such that

$$\exp\left(\sum_{i=1}^{n} x_i + \frac{n}{2}\right) \le k$$

is a best critical region. This inequality holds if and only if

$$\sum_{i=1}^{n} x_i + \frac{n}{2} \le \ln k$$

or, equivalently,

$$\overline{X} \le (\ln k - \frac{n}{2}) / n = c.$$

If n = 25 and $\alpha = 0.05$, the number c = -0.329 can be found from Table III in Appendix B, so that

$$Pr(\overline{X} \leq c; H_0) = 0.05$$
.

Hence the power function of the test when H_1 is true is

$$Pr(\overline{X} \le c; H_1) = Pr(5(\overline{X} + 1) \le 3.355) = 0.999 + .$$

9.2. Let the random variable X have the p.d.f. $f(x;\theta) = (1/\theta)e^{-x/\theta}$, $0 < x < \infty$, zero elsewhere. Consider the simple hypothesis $H_0: \theta = \theta' = 2$ and the alternative hypothesis $H_1: \theta = \theta' = 4$. Let X_1, X_2 denote a random sample of size 2 from this distribution. Show that the best test of H_0 against H_1 may be carried out by use of the statistic $H_1 = 0$ and that the assertion in Example 2 of Section 6.4 is correct.

Solution

Now

$$\frac{L(\theta'; x_1, x_2, \dots, x_n)}{L(\theta''; x_1, x_2, \dots, x_n)} = \frac{\frac{1}{4}e^{-(x_1 + x_2)/2}}{\frac{1}{16}e^{-(x_1 + x_2)/4}} = 4e^{-(x_1 + x_2)/4}.$$

If k > 0, the set of all points (x_1, x_2) such that

$$4e^{-(x_1+x_2)/4} \le k$$

is a best critical region. This inequality holds if and only if

$$-(x_1 + x_2)/4 \le \ln \frac{k}{4}$$

or, equivalently,

$$x_1 + x_2 \ge 4(\ln \frac{k}{4}) = c.$$

Hence, the critical region of the test is of the form

$$C = \{(x_1, x_2) : x_1 + x_2 \ge c\}.$$

9.3. Repeat Exercise 9.2 when $H_1: \theta = \theta' = 6$. Generalize this for every $\theta'' > 2$.

Solution

Now

$$\frac{L(\theta'; x_1, x_2, \dots, x_n)}{L(\theta''; x_1, x_2, \dots, x_n)} = \frac{\frac{1}{4} e^{-(x_1 + x_2)/2}}{\frac{1}{36} e^{-(x_1 + x_2)/6}} = 9e^{-(x_1 + x_2)/3}.$$

If k > 0, the set of all points (x_1, x_2) such that

$$9e^{-(x_1+x_2)/3} \le k$$

is a best critical region. This inequality holds if and only if

$$-(x_1+x_2)/3 \le \ln\frac{k}{9}$$

or, equivalently,

$$x_1 + x_2 \ge 3(\ln\frac{k}{9}) = c.$$

Hence, the critical region of the test is of the form

$$C = \{(x_1, x_2) : x_1 + x_2 \ge c\}.$$

Similarly, for any $\theta'' > 2$, we can obtain the critical region as following $C = \{(x_1, x_2) : x_1 + x_2 \ge c\}$.

9.4. Let $X_{1j}, X_{2j}, \dots, X_{a_j j}$ represent independent random samples of sizes a_j from normal distributions with

means μ_j and variances σ^2 , $j = 1, 2, \dots, b$. Show that

$$\sum_{j=1}^{b} \sum_{i=1}^{a_j} (X_{ij} - \overline{X}_{..})^2 = \sum_{j=1}^{b} \sum_{i=1}^{a_j} (X_{ij} - \overline{X}_{.j})^2 + \sum_{j=1}^{b} a_j (\overline{X}_{.j} - \overline{X}_{..})^2, \text{ or } Q' = Q'_3 + Q'_4.$$

Here. If $\mu_1 = \mu_2 = \dots = \mu_b$, show that Q'/σ^2 and Q_3'/σ^2 have chi-square distributions.

Solution

$$\begin{split} \sum_{j=1}^{b} \sum_{i=1}^{a_{j}} (X_{ij} - \overline{X}_{..})^{2} &= \sum_{j=1}^{b} \sum_{i=1}^{a_{j}} (X_{ij} - \overline{X}_{.j} + \overline{X}_{.j} - \overline{X}_{..})^{2} \\ &= \sum_{j=1}^{b} \sum_{i=1}^{a_{j}} (X_{ij} - \overline{X}_{.j})^{2} + 2 \sum_{j=1}^{b} \sum_{i=1}^{a_{j}} (X_{ij} - \overline{X}_{.j}) (\overline{X}_{.j} - \overline{X}_{..}) + \sum_{j=1}^{b} a_{j} (\overline{X}_{.j} - \overline{X}_{..})^{2} \\ &= \sum_{i=1}^{b} \sum_{i=1}^{a_{j}} (X_{ij} - \overline{X}_{.j})^{2} + \sum_{i=1}^{b} a_{j} (\overline{X}_{.j} - \overline{X}_{..})^{2} \end{split}$$

If $\mu_1 = \mu_2 = \cdots = \mu_b$, then X_{ij} is (μ, σ^2) regardless of i and j, so

$$Q'/\sigma^2$$
 is $\chi^2(\sum_{j=1}^b a_j - 1)$

$$Q_3'/\sigma^2 = \sum a_j S_j^2/\sigma^2 \sim \chi^2(\sum (a_j-1)) = \chi^2(\sum_{i=1}^b a_j - b).$$