Lab Final - 1

Time: 1 Hour 20 Minutes

1. You are given a list of *n* tasks, each with a priority value and a time duration. Implement a priority queue using a pair data structure to efficiently process the tasks based on their priorities and time durations.

In the Input: There are n tasks represented as pairs. The first element of the pair is priority and the second one is duration.

Input	Output
Input the number of tasks: 5 Task 1: 3 10 Task 2: 1 5 Task 3: 2 8	Tasks processed according to their time durations: Task 2: (1, 5) Task 4: (4, 7) Task 3: (2, 8)
Task 4: 4 7 Task 5: 2 12	Task 1: (3, 10) Task 5: (2, 12)

2. You are tasked with designing a cost-effective power distribution network for a city. Implement an appropriate algorithm to determine the minimum cost of connecting all the substations while minimizing the total construction cost.

Input	Output
City map represented as a weighted graph with nodes as substations and edges as potential power lines. 5 8 1 3 2 1 4 1 1 2 3 1 5 7 2 4 1 2 3 4 3 5 5 5 4 3	Minimum cost of connecting all substations: 7 The connections: Stations: 1 and 4 Stations: 2 and 4 Stations: 1 and 3 Stations: 5 and 4