Quantum Thermodynamics

Stefanopoulos

Intro

Motivations Density Matri Formalism

Theorie

- . ..

vironment assisted

Definition

Conclusion:

Statistical Mechanics from Quantum Thermodynamics

Stefanopoulos Dimitrios

Aristotle's University of Thessaloniki

Thessaloniki, July 9, 2020

Table of contents

namics

Stefanopoulos

Intro

Motivations Density Matr Formalism

Theorie

Typicality

Environment assiste invariance

Demonstration

Conclusions

- 1 Intro
 - Motivations
 - Density Matrix Formalism
 - Assumptions
- 2 Theories
 - Typicality
 - Environment assisted invariance
 - Definition
 - Demonstration
- 3 Conclusions

Need for quantum foundations of statistical mechanics

Quantum Thermodynamics

Stefanopoulos

Intro

Motivations
Density Mat
Formalism

Theorie

Typicality Environment assiste invariance

Demonstration

Conclusion

- Quantum probability amplitudes are not consistent with the axiom of a priori equal probability(at least not on first sight)
- Absence of unitarity in the evolution of thermodynamic systems
- Further applications

Density Matrix

Thermodynamics

Stefanopoulos

Intro

Density Matrix Formalism

Theorie

Typicality

invariance

Demonstration

Conclusions

The definition:

$$\rho = \sum_{j} p_{j} |\psi_{j}\rangle \langle \psi_{j}| \tag{1}$$

Quantum Randomness vs Classical Randomness:

$$\sum p_j = 1 \tag{2}$$

The canonical state:

$$\Omega_S = (1 - p)^k \sum_s \exp\left(-\frac{|s|B}{k_B T}\right) |s\rangle\langle s| \propto \exp\left(-\frac{H_S}{k_B T}\right)$$
(3)

Assumptions

Quantum Thermody namics

Stefanopoulos

Motivations Density Mate

Formalism

Assumptions

Theorie

Typicality

invariance

Demonstration

Conclusion

 ${\sf Restricted\ Subspace\ } R$

$$\mathcal{H}_R \subseteq \mathcal{H}_S \otimes \mathcal{H}_E$$

(4)

Equiprobable:

$$\mathcal{E}_R = \frac{\mathbb{I}_R}{d_R}$$

(5)

State of the system:

$$\Omega_S = \operatorname{Tr}_E \left(\mathcal{E}_R \right) \tag{6}$$

Typicality

Quantum Thermodynamics

Stefanopoulos

Int

Motivations
Density Matr
Formalism
Assumptions

Theorie

Typicality

Environment assisted invariance Definition

Demonstration

Conclusion

- We compare with a pure state of the Universe:
- Typicality is a naturally statistical equality of an observable in the two cases (i.e. pure or maximally mixed state of the universe)

$$\rho_S = \text{Tr}_E(|\psi\rangle\langle\psi|) \tag{7}$$

It has been proven that for sufficiently large dimensions of the environment(i.e. possible states):

$$||\rho_S - \Omega_S|| \approx 0 \tag{8}$$

Envariance

Quantum Thermodynamics

Stefanopoulos

Intr

Motivations Density Matrix Formalism Assumptions

Theorie

Typicality Environment assiste

Definition

Demonstration

Conclusion

- There are arguments that the symmetry of envariance can produce Born's rule and Thermal States.
- ψ_{SE} is called envariant under a unitary map $U_{\mathcal{S}} = u_S \otimes \mathbb{I}_E$ iff there exists another unitary $U_E = \mathbb{I}_E \otimes u_E$ such that:

$$U_{S} |\psi_{SE}\rangle = (u_{S} \otimes \mathbb{I}_{E}) |\psi_{SE}\rangle = |\eta_{SE}\rangle$$

$$U_{E} |\eta_{S\mathcal{E}}\rangle = (\mathbb{I}_{S} \otimes u_{E}) |\eta_{SE}\rangle = |\psi_{SE}\rangle$$
(9)

Envariance

Quantum Thermody-

Stefanopoulos

Intr

Motivations
Density Matri
Formalism

Theorie

Typicality
Environment assiste

Definition

Demonstration

To illustrate the above we state a simple example. Let \mathcal{S} and E be two level systems and assume that $|\psi_{SE}\rangle \propto |\uparrow\rangle_S \otimes |\uparrow\rangle_E + |\downarrow\rangle_S \otimes |\downarrow\rangle_E$.

$$|\uparrow\rangle_{\mathcal{S}}\otimes|\uparrow\rangle_{E}+|\downarrow\rangle_{\mathcal{S}}\otimes|\downarrow\rangle_{E}\xrightarrow{U_{\mathcal{S}}}|\downarrow\rangle_{\mathcal{S}}\otimes|\uparrow\rangle_{E}+|\uparrow\rangle_{\mathcal{S}}\otimes|\downarrow\rangle_{E}$$
(10)

$$|\downarrow\rangle_{\mathcal{S}}\otimes|\uparrow\rangle_{E}+|\uparrow\rangle_{\mathcal{S}}\otimes|\downarrow\rangle_{E}\xrightarrow{U_{E}}|\downarrow\rangle_{\mathcal{S}}\otimes|\downarrow\rangle_{E}+|\uparrow\rangle_{\mathcal{S}}\otimes|\uparrow\rangle_{E}$$
 (11)

Conclusions

Quantum Thermody-

Stefanopoulos

Intr

Motivations Density Matri Formalism Assumptions

Theorie

Typicality
Environment assisted invariance
Definition

Conclusions

- Quantum Thermodynamics promises a lot about the foundations of Statistical Mechanics
- Information Theoretic Approaches are quite convincing and the are obviously have something to do with Statistical Mechanics in general.
- Quantum Entanglement is of a vital importance in the production of Statistical Mechanics Formulas via Hilbert Spaces.

The end

Quantum Thermodynamics

Stefanopoulos

Intr

Motivations Density Mat Formalism

Theorie

Typicality

Environment assiste invariance

Demonstration

Conclusions

Thank you!!!!