Homework 7

Due: March 12, 2021

1. Consider the inverted pendulum dynamics:

$$y'' + (\delta + \epsilon \cos \omega t) \sin y = 0$$

- (a) Perform a Floquet analysis (computationally) of the pendulum with continuous forcing $\cos \omega t$.
- (b) Evaluate for what values of δ , ϵ and ω the pendulum is stabilized.

Solution.

(a) We perform a Floquet analysis for both the downward pendulum and inverted pendulum. Consider the linear approximations

$$y \approx 0$$
 $\sin(y) \approx y - \frac{y^3}{3!} + \cdots$
 $y \approx \pi$ $\sin(y + \pi) = -\sin(y) \approx -y + \frac{y^3}{3!} + \cdots$

Plugging into the differential equation and shifting t by $\frac{\pi}{2}$, we get Eq. 612-613 in Kutz

Downward, linear
$$y'' + (\delta + \epsilon \sin(\omega t))y = 0$$

Downward, nonlinear $y'' + (\delta + \epsilon \sin(\omega t))\sin y = 0$
Inverted, linear $y'' - (\delta + \epsilon \sin(\omega t))y = 0$
Inverted, nonlinear $y'' - (\delta + \epsilon \sin(\omega t))\sin y = 0$

By imposing the initial conditions

$$y_1(0) = 1, \quad y'_1(0) = 0$$

 $y_2(0) = 0, \quad y'_2(0) = 1$

We can solve for y_1 and y_2 , which are linearly-independent fundamental solutions of the differential equation. The Floquet discriminant is then computed as

$$\Gamma = y_1(T) + y_2'(T), \quad T = \frac{2\pi}{\omega}$$

These equations are solved numerically for various δ , ϵ and ω , with ode45 in MATLAB.

(b) See Figure 1. The top four figures show the cases of $\delta > \epsilon$ ($\delta = 0.01, \epsilon = 0.001$) and bottom four figures show the cases of $\delta < \epsilon$ ($\delta = 0.001, \epsilon = 0.01$). For $\delta > \epsilon$, the down pendulum is always stabilized and the inverted pendulum can be stabilized for high frequencies. For $\delta < \epsilon$, both pendulums can be destabilized for low frequencies, while they are both stabilized for high frequencies.

Figure 1: Floquet analysis for the inverted pendulum equations. The dashed lines mark the stablity range ($\Gamma = \pm 2$).

floquet takes a function, δ and ϵ as inputs and computes the Floquet discriminant F.

```
1 function [T,F]=floquet(fun, Δ, epsilon)
2 T=linspace(0.01*2*pi,10*2*pi,100);
3 tspan=T;
4 bc_x1=[1;0];
5 bc_x2=[0;1];
6 F=zeros(length(T),1);
7 for i=1:length(T)
8  [¬,y] = ode45(@(t,y) fun(t,y,Δ, epsilon, 2*pi/T(i)), tspan, bc_x1);
9  x1=y(i,1);
10  [¬,y] = ode45(@(t,y) fun(t,y,Δ, epsilon, 2*pi/T(i)), tspan, bc_x2);
11 dx2=y(i,2);
12 F(i)=x1+dx2;
13 end
```

For instance, the linear inverted pendulum equation