Metrisches TSP:

- Vollständiger Graph G = (V, E)
- Metr. Abstandsfunktion $d: E \to \mathbb{R}$

 ρ -approximative Algorithmen

z.B. Christofides ($\rho = 1, 5$)

- Lsgen: Tour τ durch ganz V
- **Ziel:** Minimiere $d(\tau)$

- Startpunkt/Depot $s \in V$
- Kapazität Q (polynomiell in Eingabe)
- Bedarfe $(q_v)_{v \in V}, q_v \in \{0, ..., Q\}$
- Lsgen: Route (σ) , die bei s beginnend alle Bedarfe erfüllt und nie mehr als Q
- **Ziel:** Minimiere $d(\sigma)$

Elemente transportiert

Heterogenes k-TSP:

- Vollständiger Graph G = (V, E)
- Metr. Abstandsfunktion $d: E \to \mathbb{R}$
- Startpunkt $s \in V$
- k Fahrzeuge mit Geschw. $(2^{\lambda_i})_{i=1}^k$
- Lsgen: Touren (τ_i) , die bei s beginnen und gemeinsem ganz V abdecken
- und gemeinsam ganz V abdecken Ziel: Minimiere $\max \frac{d(\tau_i)}{2^{\lambda_i}}$
- - $\mathcal{O}(1)$ -approximativer Algorithmus

Heterogenes k-CVRP:

 $\mathcal{O}(1)$ -approximative Algorithmus

- Vollständiger Graph G = (V, E)
- Metr. Abstandsfunktion $d: E \to \mathbb{R}$
- intoit. Hostaliasialinitoit a. E. / E
- ainhaitlicha Vanagität (
- \bullet einheitliche Kapazität Q

Startpunkt/Depot $s \in V$

- Bedarfe $(q_v)_{v \in V}, q_v \in \{0, ..., Q\}$
- k Fahrzeuge mit Geschw. $(2^{\lambda_i})_{i=1}^k$
- Lsgen: Touren (σ_i) , die bei s beginnen, gemeinsam alle Bedarfe erfüllen, wobei kein Fahrzeug jemals mehr als Q Elemente transportiert
 - **Ziel:** Minimiere max $\frac{d(\sigma_i)}{2^{\lambda_i}}$