|      | Exercise 1: Fix KEN                                                                         |
|------|---------------------------------------------------------------------------------------------|
|      | 2-SUM: Find i, i                                                                            |
|      | [k-sum problem] st x; +x;=s.                                                                |
|      | input: x1,, xn EN and torget SEN                                                            |
|      | output: is it possible to find a subset $I \subseteq \{1,,n\}$                              |
|      | of size k such that $\sum_{i \in I} x_i = S$ ?                                              |
|      |                                                                                             |
|      | Note: K is fixed but n (# of xi) is not (post of the input)                                 |
|      | Q1: polynomial time algorithm For K-SUM (for any fixed K)                                   |
|      |                                                                                             |
|      | try every set IC(1,-, n) of size k and                                                      |
|      | Hen check whether $\sum x_i = S$ .                                                          |
|      |                                                                                             |
|      | complexity: $\binom{n}{k} \le n^k$ listing $I$ • Check: $O(k)$ to sum $J = O(n^k)$          |
|      | $\begin{array}{c c} (h \cdot k) & (h \cdot k) \\ \end{array}$                               |
|      | $= O(n^k)$                                                                                  |
|      | polynomial in No                                                                            |
|      | Q2: 2-Sum we have a O(n2) algorithm                                                         |
|      | , ,                                                                                         |
|      | 1) sort the x; (increasing)                                                                 |
|      | 1) sort the x; (increasing) 2) go through the x;, binory search for S-x; in the sublist     |
| O(N) | $ x_i $ $ x_i $                                                                             |
| o(n) | search spuce                                                                                |
|      | ·                                                                                           |
|      | Complexity: 1) $O(nlog n)$<br>2) repeat n times, a binary search $O(log n)$<br>= O(nlog n). |
|      | 2) repeat n times, a binary search O(log n)                                                 |
|      | = O(nlog n).                                                                                |
|      | $= 6(n\log n).$                                                                             |



Q1: given an, ..., an, compute 
$$(X-a_1)$$
...  $(X-a_n)$  in  $O(Mul(n)log n)$  operative: start with  $P_0=1$ , define  $P_{K+1}=P_K$ .  $(X-a_n)$ ,  $P_{K+1}=P_{K+1}=P_K$ .  $P_{K+1}=P_K$ .  $P_{K+1}=$ 

## better:



by (1) 
$$2 \text{Mul} \left( \frac{n}{2} \right) \in \text{Mul}(n)$$
  $\left( \frac{n_1 - n_2 - \frac{n_2}{2}}{2} \right)$   $\left( \frac{2 \text{Mul} \left( \frac{n}{2} \right) \times \text{Mul} \left( \frac{n}{2} \right)$   $\left( \frac{n_1 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n}{2} \right)$   $\left( \frac{n_1 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n}{2} \right)$   $\left( \frac{n_1 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{2}}{2} \right) \times \text{Mul} \left( \frac{n_2 + n_2 - \frac{n_2}{$ 

We can apply the 'coven more general' theorem, we are in the case where 
$$q=2=m$$

So  $T(n)=O(f(n)\log n)=O(Mul(n)\log n)$ 

Q2:  $P$  of degree  $p$ 

Compute  $P(a_1)$ , -,  $P(a_{1/2})$ 

From  $P(a_1)$ , -,  $P(a_{1/2})$ 

where  $P(a_1)$ , -,  $P(a_{1/2})$ 

where  $P(a_1)$  =  $P(a_1)$ 

```
Eval (P, an, -, an): - retorns (P(an), -, P(an)
                                                                                                    if n=1: return P(a_1)

Re-rem P/(x-a_1): (x-a_{1/2})

P(x-a_{1/2}): P(x-a_{1/2}):
                                                                                                               return Evol (R, a1,-, an/2) + Evol (R', an/2+1,-, an)

[R(an),--, R(an/2)] + [R'(an/2+1),--, R'(an)]
                                                                                                                (Q2) = [P(a_n), P(a_{n/2})] + [P(a_{n/2}+n), P(a_n)]
                                                                     complexity: remarks without loss of generality,
                                                                                                                                                             we olways have deg (P) & n
                                                                                                     why? true after one iteration because of division.
                                                                                                                                                         for the first call, true by assumption (deg(p)=n)
                                                                              T(n) = complexity of Eral (P, an, an) with deg(p) in
                                                                                    T(n) \leq 2 \operatorname{Div}(n) + 2 \operatorname{Mul}(n/2) \log(n/2) + 2 T(\frac{n}{2})
     \begin{array}{c|c}
\hline
\text{Div(n)} & \begin{array}{c}
\hline
\text{Cost division} & \\
\hline
\text{Cost division} & \begin{array}{c}
\hline
\text{Cost division} 
=0(Mol(n))
                                                                                         T(n) \leq 2T(\frac{n}{2}) + Mul(n) \log(n)
                                                                          therefore T(n) \leq O(Mul(n)\log^2 n)
                                                                      We can do better: by avoiding to recompte (X-a1) - (X-a1/2)
                                                                                                       T(n) < 2 Div(n) + (M) (n) + 2 T(2)
                                                                                                                                           T(n) = O(M \cup I(n) \log (n))
```

