Lecture 3

Technology FPGAs

Projects

- See recent posts on Piazza
 - Past projects
 - Project planning

Technology

What we can use to build digital systems

Technology Evolution

- How did we get to FPGAs?
- Drivers
 - Time to market
 - Cost
 - Power

Custom Design

- Drawing rectangles
- Mostly analogue design now

ASIC

• Standard cells

Gate Array

Address time to market

Programmable Logic

FPGA

- Field-Programmable Gate Array
 - FP program without fab
 - GA array, like old gate arrays
- Array of programmable logic cells + programmable routing
- What's a cell?

What's a LUT?

Look up Table -> Troth table

Structured ASIC

- Hybrid of gate array and FPGA
- FPGA-like gates

Structured ASIC

- Altera Hardcopy (no more!)
- Xilinx EasyPath not really an ASIC
- Cost (area), power, performance
- Many designs end up never cost-reduced
 - Vendor marketing strategy to promise a cost reduction
- Failed startups

Embedded FPGAs

- IP cores of FPGAs
- Several companies today
 - Efinix (UofT founder), Flex Logic
 - Now with an ML flavour

CGRA

Course-grain reconfigurable array

CGRA

- Samsung phones, TVs
- no other (known to me) successful commercial device
- Huawei need programmability
- Prof. Jason Anderson CGRA-ME

Technology Spectrum

CGRA Lowe Power Small Area Harles to Design hong time to Manuf.

FPGAs and Power

- Samsung Galaxy S4
 - Lattice FPGA
 - Used to reduce power!