GEOMETRÍA Chapter 11

3th SECONDARY

Cuadriláteros

@ SACO OLIVEROS

MOTIVATING | STRATEGY

<u>Definición</u>: Es aquella figura que resulta de la reunión de 4 segmentos de recta unidos en sextremos de tal forma que cualquier par de ellas no es colineal.

- VÉRTICES: A; B; C y D
- LADOS: \overline{AB} ; \overline{BC} ; \overline{CD} y \overline{DA}

TEOREMAS

$$\alpha + \beta + \theta + \phi =$$

$$360^{\circ}$$

$$\omega + \gamma + \phi + \gamma =$$

$$360^{\circ}$$

Teorema

$$x = \frac{a+b}{2}$$

Teorema

$$x = \frac{a-b}{2}$$

HELICO | THEORY

Clasificación de los cuadriláteros convexos

1. TRAPEZOIDE

Es aquel cuadrilátero convexo que no tiene lados opuestos paralelos.

2. TRAPECIO

Es aquel cuadrilátero convexo que solo tiene un par de lados opuestos paralelos, llamados bases.

HELICO | THEORY

2.1.-Clasificación de trapecios

Los trapecios se clasifican de acuerdo a la longitud de sus lados no paralelos o laterales

TRAPECIO ISÓSCELES

Es aquel trapecio cuyos lados laterales son de igual longitud.

TRAPECIO ESCALENO

Es aquel trapecio cuyos lados laterales tienen diferente longitud.

HELICO | THEORY

2.2.- Teoremas

MN: Base media

AM = BM

CN = DN

$$x = \frac{a+b}{2}$$

AP = PC

BQ = DQ

$$\overline{AD} // \overline{BC} // \overline{PQ}$$

$$x = \frac{a-b}{2}$$

1. Las medidas de los ángulos internos que forman los bordes de un terreno cuadrangular son x, 3x, 90° y x. Halle la medida del menor ángulo interno del recinto.

$$x + 3x + 90^{\circ} + x = 360^{\circ}$$
 $5x + 90^{\circ} = 360^{\circ}$
 $5x = 270^{\circ}$

2. La longitud de la altura de un trapecio rectángulo es 4m y un lado no paralelo tiene longitud 5m. ¿Cuánto mide el menor ángulo interno del trapecio?

3. Si el trapecio ABCD es isósceles, halle el valor de x.

HELICO | PRACTICE

4. Halle el valor de x, si θ + ϕ = 200°.

$$2\alpha + 2\beta = \Theta + \Phi$$

$$2\alpha + 2\beta = 200^{\circ}$$

$$\alpha + \beta = 100^{\circ}$$

$$\mathbf{x} = \alpha + \beta$$

100°

$$x = 100^{\circ}$$

5. Las bases de un trapecio se diferencian en 6 y la mediana mide 8. Halle la longitud de la base menor.

Por dato

$$a-b=6$$

 $a=6+b$

• MN: Mediana

Por teorema de la mediana

$$8 = \frac{6+b+b}{2}$$

$$16 = 6 + 2b$$

$$10 = 2b$$

$$b = 5$$

6. Las bases de un trapecio se diferencian en 4. Halle la distancia entre los puntos medios de las diagonales.

- Por dato
 a b = 4
- Por Teorema

$$x = \frac{a - b}{2}$$

Reemplazando

$$x = \frac{4}{2}$$

$$x = 2$$

8. Se muestra una mesa en forma trapecial ABCD (\overline{AB} // \overline{CD}). Si las medidas de los ángulos internos A y D son 2 α y 3 α además m \sphericalangle B = α , halle la m \sphericalangle DCB.

