华东理工大学

复变函数与积分变换作业 (第2册)

班级	学号	姓名	任课教师	
----	----	----	------	--

第三次作业

教学内容: 2.1.2 柯西一黎曼方程

- 1. 填空:
- (1) 函数 $f(z) = z \operatorname{Re} z$ 的导数 f'(z) =______
- (2) 函数 $f(z) = z^n$ 的导数 f'(z) = ______
- (3) 函数 $\frac{z-3}{(z+1)^2(z^2+1)}$ 的奇点为_____
- 2. 下列函数何处可导? 何处解析?
- (1) $f(z) = x^2 yi$;

(2)
$$f(z) = 2x^3 + 3y^3i$$
;

$$(3) f(z) = z^2 \overline{z}$$

3. 验证函数 $f(z) = \sin x \cosh y + i \cos x \sinh y$ 在复平面上解析,并求其导数。

4. 设函数 $f(z) = my^3 + nx^2y + i(x^3 + Lxy^2)$ 是复平面内解析函数, 求 L, m, n 的值。

- 5. 设函数 f(z) = u + iv 在区域 D 内解析,证明:如果 f(z) 满足下列条件之一,那么它在 D 内为常数.
 - (1) $\overline{f(z)}$ 解析;

(2) 2u + 3v = 1;

(3) |f(z)| 在 D 内是一个常数.

6. 证明: 若
$$f(z)$$
解析,则有 $(\frac{\partial}{\partial x}|f(z)|)^2 + (\frac{\partial}{\partial y}|f(z)|)^2 = |f'(z)|^2$

7. 试证下列函数在平面上任何点都不解析:

$$(1) \quad f(z) = x + 2iy$$

$$(2) \quad f(z) = x + y$$

$$(3) f(z) = \operatorname{Re} z$$

$$(4) f(z) = \frac{1}{|z|}$$

第四次作业

教学内容: 2.2 初等函数及其解析性 2.3 解析函数与调和函数的关系 (带*号题目 2 学分的同学不做)

1.填空题

(2)
$$(e^i)^i = ____;$$

(4)
$$\ln(ie) = ____;$$

(5)
$$\ln e^i =$$
_____.

- 2 求下列各式的值
- $(1) \ 3^{i};$

(2)
$$(1+i)^{i}$$
;

(3)
$$\sin(1+2i)$$
;

$$(4) \left|\cos z\right|^2$$

3. 设 $z = re^{i\theta}$ 求 Re[Ln(z-1)]

4. 解下列方程:

(1)
$$e^x - 1 - \sqrt{3}i = 0$$
;

(2)
$$\ln z = 2 - \frac{\pi}{6}i$$
;

(3) $\cos z = 0$;

- 5. 证明下列各式:
- $(1)\cos iz = \cosh z$

 $(2)\cosh^2 z - \sinh^2 z = 1;$

- 6. 由下列各已知调和函数求解析函数 f(z) = u + iv:
- (1) $u = (x y)(x^2 + 4xy + y^2);$

(2)
$$v = \arctan \frac{y}{x}, x > 0$$
;

(3)
$$v = \frac{y}{x^2 + y^2}, f(2) = 0.$$

7.设 $u(x,y) = e^{px} \sin y$,求p的值使u(x,y)为调和函数,并求出解析函数 f(z) = u + iv.

*8. 已知 $u + v = x^2 - y^2 + 2xy - 5x - 5y$, 试确定解析函数 f(z) = u + iv.

*9. 设函数 f(z) = u + iv解析,且 $u - v = (x - y)(x^2 + 4xy + y^2)$,求 f(z)

部分题目参考答案:

第三次作业

3. $f'(z) = \cos x \cosh y - i \sin x \sinh y$

4. L = -3, m = 1, n = -3

第四次作业

2. (1) $e^{-2k\pi - i \ln 3}$ $k = 0, \pm 1...$

(2)
$$e^{-(\frac{\pi}{4}+2k\pi)+i\ln\sqrt{2}}$$
 $(k=0,\pm 1...)$

(3)
$$\frac{(e^{-2}+e^2)\sin 1 - i(e^{-2}+e^2)\cos 1}{2}$$

$$(4) \cos^2 x + \sinh^2 y,$$

3.
$$\frac{1}{2}\ln(1-2r\cos\theta+r^2)$$

4. (1)
$$z = \ln 2 + i(\frac{\pi}{3} + 2k\pi)$$
 $k = 0,\pm 1...$

(2)
$$z = e^2 \left(\frac{\sqrt{3}}{2} - \frac{i}{2} \right)$$

(3)
$$z = \frac{\pi}{2} + k\pi$$
 $k = 0,\pm 1...$

6. (1)
$$f(z) = (1-i)z^3 + ic, c \in R$$

$$(2) f(z) = \ln z + c, c \in R$$

(3)
$$f(z) = \frac{1}{2} - \frac{1}{z}$$

7.
$$p = \pm 1$$

当
$$p=1$$
时,

$$f(z) = e^x \sin y + i(-e^x \cos y + C)$$

*8.
$$f(z) = z^2 - 5z + C - Ci$$
,其中C为任意常数。

*9.
$$f(z) = -iz^3 + C$$
,其中C为复常数。