MTH442 Assignment 4

Jiyanshu Dhaka, 220481, jiyanshud22@iitk.ac.in

$\mathbf{Q}\mathbf{1}$

1. Model Setup:

first difference process for time series is :

$$Z_t = X_t - X_{t-1},$$

(here Z_t is change between consecutive observations of X_t .)

now given that

$$\begin{aligned} \mathbf{X}_{t} &= X_{t-1} + W_{t} - \lambda W_{t-1}, \\ \mathbf{X}_{t-1} &= X_{t-2} + W_{t-1} - \lambda W_{t-2}. \\ \text{substitut in } &: X_{t} - X_{t-1} = W_{t} - \lambda W_{t-1}, \\ \text{so model is:} \end{aligned}$$

$$Z_t = W_t - \lambda W_{t-1},$$

here W_t is white noise process.

2. invertibile (express W_t in term of Z_t)

from point 1

$$Z_t = W_t - \lambda W_{t-1}$$
.

rearrange:

$$W_t = Z_t + \lambda W_{t-1}.$$

substituting recursively:

$$W_t = Z_t + \lambda W_{t-1},$$

$$W_{t} = Z_{t} + \lambda (Z_{t-1} + \lambda W_{t-2}),$$

$$W_{t} = Z_{t} + \lambda Z_{t-1} + \lambda^{2} W_{t-2}.$$

continue substituting indefinitely:

$$W_t = Z_t + \lambda Z_{t-1} + \lambda^2 W_{t-2} + \dots,$$

i did not include negative index because in Ques. it is given that $X_t = 0$, for all t < 0

$$W_t = \sum_{j=0}^{\infty} \lambda^j Z_{t-j}.$$

from classnotes invertibility condition

for series to be invertible, coefficient λ must satisfy:

$$|\lambda| < 1$$
.

it ensures infinite sum converges and process remains stable.

3. write W_t in term of X_t

from point 2

W_t =
$$\sum_{j=0}^{\infty} \lambda^{j} Z_{t-j}$$
,
as $Z_{t} = X_{t} - X_{t-1}$,
 $Z_{t-j} = X_{t-j} - X_{t-j-1}$,

$$W_t = \sum_{j=0}^{\infty} \lambda^j (X_{t-j} - X_{t-j-1}). (\text{approx for large t})$$

$$W_t = \lambda^0 (X_t - X_{t-1}) + \lambda^1 (X_{t-1} - X_{t-2}) + \lambda^2 (X_{t-2} - X_{t-3}) + \dots,$$

4. rearrange form of model

pattern in equation is:

$$W_t = (X_t - X_{t-1}) + \lambda(X_{t-1} - X_{t-2}) + \lambda^2(X_{t-2} - X_{t-3}) + \dots$$

$$\begin{aligned} \mathbf{W}_t &= X_t - X_{t-1} + \lambda X_{t-1} - \lambda X_{t-2} + \lambda^2 X_{t-2} - \lambda^2 X_{t-3} + \dots \\ \mathbf{W}_t &= X_t + (-1 + \lambda) X_{t-1} + (-\lambda + \lambda^2) X_{t-2} + (-\lambda^2 + \lambda^3) X_{t-3} + \dots \\ \mathbf{W}_t &= X_t - \lambda (1 - \lambda) X_{t-1} - \lambda^2 (1 - \lambda) X_{t-2} - \dots \end{aligned}$$

so as an approximation for large t,

$$W_t = X_t - \sum_{j=1}^{\infty} \lambda^j (1 - \lambda) X_{t-j}.$$

rearrange:

$$X_t = \sum_{j=1}^{\infty} \lambda^j (1-\lambda) X_{t-j} + W_t$$
. hence proved

Q2(a)

given ARIMA(1, 1, 0) model with drift:

$$(1 - \phi B)(1 - B)X_t = \delta + W_t,$$

here B is backward shift operator s.t. $BX_t = X_{t-1}$, δ is drift, and W_t is white noise. $Y_t = \nabla X_t = X_t - X_{t-1}$.

1. now from given

$$(1 - \phi B)(1 - B)X_t = \delta + W_t$$

$$(1 - \phi B)(X_t - X_{t-1}) = \delta + W_t$$

$$X_t - X_{t-1} - \phi(X_{t-1} - X_{t-2}) = \delta + W_t$$

as $Y_t = X_t - X_{t-1}$ put it in above eqn.

$$Y_t - \phi Y_{t-1} = \delta + W_t$$

 Y_t follows AR(1) model with drift δ so:

$$Y_t = \delta + \phi Y_{t-1} + W_t.$$

forecast of Y_{T+1} based on value at time T:

$$Y_{T+1}^T = E_T[Y_{T+1}]$$

$$Y_{T+1}^{T} = E_T[\delta + \phi Y_T + W_{T+1}]$$

$$Y_{T+1}^{T} = \delta + \phi Y_{T} + E_{T}[W_{T+1}]$$

as

$$E_T[W_{T+1}] = 0$$

$$Y_{T+1}^T = \delta + \phi Y_T$$

(basis of induction is this recursive relation)

2. now i will show by induction that for $j \geq 1$:

$$Y_{T+j}^{T} = \delta \left[1 + \phi + \ldots + \phi^{j-1} \right] + \phi^{j} Y_{T}.$$

base case of induction: j = 1

for
$$j=1$$
:
$$Y_{T+1}^T = \delta \left[1\right] + \phi^1 Y_T = \delta + \phi Y_T.$$

it is already true from point 1, so base case holds.

3. induction from point 2

for j=2:

$$Y_{T+1}^T = \delta + \phi Y_T$$

$$Y_{T+2}^T = E_T[Y_{T+2}]$$

$$Y_{T+2}^T = E_T[\delta + \phi Y_{T+1} + W_{T+2}]$$

$$Y_{T+2}^T = \delta + \phi E_T[Y_{T+1}]$$
 (as $E_T[W_{T+2}] = 0$)

$$Y_{T+2}^T = \delta + \phi Y_{T+1}^T$$

$$Y_{T+2}^T = \delta + \phi(\delta + \phi Y_T)$$

$$Y_{T+2}^T = \delta + \phi \delta + \phi^2 Y_T$$

$$Y_{T+2}^{T} = \delta(1+\phi) + \phi^{2}Y_{T}$$

for j = 3:

$$Y_{T+3}^T = \delta + \phi Y_{T+2}^T$$

substitute $Y_{T+2}^T = \delta(1+\phi) + \phi^2 Y_T$:

$$Y_{T+3}^{T} = \delta + \phi \left(\delta(1+\phi) + \phi^{2} Y_{T} \right)$$

$$Y_{T+3}^T = \delta + \phi \delta (1 + \phi) + \phi^3 Y_T$$

$$Y_{T+3}^{T} = \delta(1 + \phi + \phi^{2}) + \phi^{3}Y_{T}$$

by continuing this i can write for general j:

$$Y_{T+j}^{T} = \delta(1 + \phi + \dots + \phi^{j-1}) + \phi^{j} Y_{T}$$

or i can use induction hypothesis

4 Induction Hypothesis assume that for some j = k, following holds:

$$Y_{T+k}^{T} = \delta \left[1 + \phi + \ldots + \phi^{k-1} \right] + \phi^{k} Y_{T}.$$

5. induction step for j = k + 1prove for j = k + 1. using AR(1) forecast relation:

$$Y_{T+k+1}^T = \delta + \phi Y_{T+k}^T$$

substitute

$$Y_{T+k}^{T} = \delta \left[1 + \phi + \ldots + \phi^{k-1} \right] + \phi^{k} Y_{T}$$

into forecast equation:

$$Y_{T+k+1}^{T} = \delta + \phi \left(\delta \left[1 + \phi + \dots + \phi^{k-1} \right] + \phi^{k} Y_{T} \right)$$

 $Y_{T+k+1}^{T} = \delta \left[1 + \phi + \ldots + \phi^{k} \right] + \phi^{k+1} Y_{T}$

so eqn. holds for j = k + 1.

6. general for Y_{T+j}

so by induction, i proved for Y_{T+i}^T :

$$Y_{T+j}^{T} = \delta \left[1 + \phi + \dots + \phi^{j-1} \right] + \phi^{j} Y_{T},$$

for all $j \geq 1$. hence proved.

Q2(b)

we have to show that for m = 1, 2, ...:

$$X_{T+m}^{T} = X_{T} + \frac{\delta}{1-\phi} \left[m - \frac{\phi(1-\phi^{m})}{1-\phi} \right] + (X_{T} - X_{T-1}) \frac{\phi(1-\phi^{m})}{1-\phi}.$$

1. from Part (a)

for $j \geq 1$:

$$Y_{T+j}^{T} = \delta (1 + \phi + \dots + \phi^{j-1}) + \phi^{j} Y_{T}.$$

sum $1 + \phi + \ldots + \phi^{j-1}$ is geometric series:

$$1 + \phi + \phi^2 + \dots + \phi^{j-1} = \frac{1 - \phi^j}{1 - \phi}, \text{ for } \phi \neq 1.$$

SC

$$Y_{T+j}^T = \delta \frac{1 - \phi^j}{1 - \phi} + \phi^j Y_T.$$

2. cumulative sum

as $Y_t = X_t - X_{t-1}$, the cumulative sum over m steps is:

$$\sum_{j=1}^{m} Y_{T+j}^{T} = \sum_{j=1}^{m} \left(X_{T+j}^{T} - X_{T+j-1}^{T} \right).$$

telescoping property of sums:

$$\sum_{j=1}^{m} \left(X_{T+j}^{T} - X_{T+j-1}^{T} \right) = X_{T+m}^{T} - X_{T}.$$

now, i substitute expression for Y_{T+j}^T from point 1:

$$\sum_{j=1}^{m} Y_{T+j}^{T} = \sum_{j=1}^{m} \left(\delta \frac{1 - \phi^{j}}{1 - \phi} + \phi^{j} Y_{T} \right).$$

3. calculate the summation distribute sum:

$$\sum_{j=1}^{m} Y_{T+j}^{T} = \sum_{j=1}^{m} \frac{\delta(1-\phi^{j})}{1-\phi} + \sum_{j=1}^{m} \phi^{j} Y_{T}.$$

3.1 first sum

$$\sum_{i=1}^{m} \frac{\delta(1-\phi^{j})}{1-\phi} = \frac{\delta}{1-\phi} \sum_{i=1}^{m} (1-\phi^{j}).$$

use geometric series sum:

$$\sum_{j=1}^{m} (1 - \phi^{j}) = m - \frac{1 - \phi^{m+1}}{1 - \phi},$$

put back in:

$$\sum_{j=1}^{m} \frac{\delta(1-\phi^{j})}{1-\phi} = \frac{\delta}{1-\phi} \left(m - \frac{1-\phi^{m+1}}{1-\phi} \right).$$

3.2 second sum

$$\sum_{j=1}^{m} \phi^{j} Y_{T} = Y_{T} \sum_{j=1}^{m} \phi^{j} = Y_{T} \frac{\phi(1 - \phi^{m})}{1 - \phi}.$$

4. substituting results

i substitute both sum from point 3:

$$\sum_{j=1}^{m} Y_{T+j}^{T} = \frac{\delta}{1-\phi} \left(m - \frac{1-\phi^{m+1}}{1-\phi} \right) + Y_{T} \frac{\phi(1-\phi^{m})}{1-\phi}.$$

using telescoping property:

$$X_{T+m}^{T} - X_{T} = \frac{\delta}{1-\phi} \left(m - \frac{1-\phi^{m+1}}{1-\phi} \right) + Y_{T} \frac{\phi(1-\phi^{m})}{1-\phi}.$$

as

$$Y_T = X_T - X_{T-1}.$$

substitute in eqn:

$$X_{T+m}^T - X_T = \frac{\delta}{1 - \phi} \left(m - \frac{1 - \phi^{m+1}}{1 - \phi} \right) + (X_T - X_{T-1}) \frac{\phi(1 - \phi^m)}{1 - \phi}.$$

6. rearrange X_{T+m}^T :

$$X_{T+m}^{T} = X_{T} + \frac{\delta}{1-\phi} \left[m - \frac{\phi(1-\phi^{m})}{1-\phi} \right] + (X_{T} - X_{T-1}) \frac{\phi(1-\phi^{m})}{1-\phi}.$$
 hence prove

Q2(c)

I have to compute mean squared prediction error P_{T+m}^T for large T, using coefficients ψ_j^* :

$$P_{T+m}^T = \sigma_W^2 \sum_{i=0}^{m-1} (\psi_j^*)^2,$$

where ψ_i^* are coefficients of z^j in the expansion of:

$$\psi^*(z) = \frac{\theta(z)}{\phi(z)(1-z)^d},$$

now $\theta(z) = 1$ and $\phi(z) = 1 - \phi z$ correspond to ARIMA(1, 1, 0) model given in Ques...

1. first i expand $\psi^*(z)$ by expanding expression:

$$\psi^*(z) = \frac{1}{(1 - \phi z)(1 - z)}.$$

first expand denominator:

$$(1 - \phi z)(1 - z) = 1 - (1 + \phi)z + \phi z^{2}.$$

rewrite:

$$\psi^*(z) = \frac{1}{1 - (1 + \phi)z + \phi z^2}.$$

use geometric series expansion:

$$\frac{1}{1-u} = \sum_{n=0}^{\infty} u^n, \quad u = (1+\phi)z - \phi z^2,$$

we get:

$$\psi^*(z) = \sum_{n=0}^{\infty} \left[(1+\phi)z - \phi z^2 \right]^n.$$

$$n = 0$$
: $[(1 + \phi)z - \phi z^2]^0 = 1$

$$n = 1$$
: $[(1 + \phi)z - \phi z^2]^1 = (1 + \phi)z - \phi z^2$

$$n=2$$
: $[(1+\phi)z-\phi z^2]^2 = (1+\phi)^2 z^2 - 2\phi(1+\phi)z^3 + \phi^2 z^4$ so on ...

SO

$$\psi^*(z) = 1 + (1+\phi)z + [(1+\phi)^2 - \phi]z^2 + \dots$$

as ψ_i^* are coefficients of z^j in the expansion of $\psi^*(z)$

$$\psi^*(z)(1-\phi z)(1-z) = (1+\psi_1^*z+\psi_2^*z^2+\ldots)(1-[1+\phi]z+z^2) = 1$$

$$1 \cdot (1 - [1 + \phi]z + z^2) + \psi_1^* z \cdot (1 - [1 + \phi]z + z^2) + \psi_2^* z^2 \cdot (1 - [1 + \phi]z + z^2) + \dots = 1.$$

i compare coeffs. from both sides:

Collect terms by powers of z:

for z^0 :

$$\psi_0^* = 1.$$

for z^1 :

$$-(1+\phi) + \psi_1^* = 0 \implies \psi_1^* = 1 + \phi.$$

similarly for z^j (for $j \geq 2$):

$$\psi_j^* = \frac{1 - \phi^{j+1}}{1 - \phi}.$$

so homogeneous solution is:

$$\psi_0^* = 1, \quad \psi_j^* = \frac{1 - \phi^{j+1}}{1 - \phi} \quad \text{for} \quad j \ge 1.$$

2. mean squared prediction error mean-squared prediction error for large T is given by:

$$P_{T+m}^T = \sigma_W^2 \sum_{i=0}^{m-1} (\psi_j^*)^2.$$

i use coeffs ψ_i^* from point 1,

$$(\psi_0^*)^2 = 1, (\psi_j^*)^2 = \left(\frac{1 - \phi^{j+1}}{1 - \phi}\right)^2.$$
 for $j \ge 1$.

3. simplifying Summation

from 2 mean-squared prediction error becomes:

$$P_{T+m}^{T} = \sigma_W^2 \left[1 + \frac{1}{(1-\phi)^2} \sum_{j=1}^{m-1} (1-\phi^{j+1})^2 \right].$$

for large m, end terms in sum become small, as $(1 - \phi^{j+1})^2 \approx 1$ for large j. so expression for mean-squared prediction error for large T is approximated by:

$$P_{T+m}^{T} = \sigma_W^2 \left[1 + \frac{m-1}{(1-\phi)^2} \right].$$