A Cumulative distribution functions

Definition A.1 Let $X : (\Omega, \mathcal{A}, \mu) \longrightarrow \mathbb{R}$ be a \mathbb{R} -valued random variable. The **cumulative distribution function** of X is, by definition, the function $F_X : \mathbb{R} \longrightarrow [0, 1]$ defined as follows:

$$F_X(x) := P(X \le x) = \mu(\{\omega \in \Omega \mid X(\omega) \le x\}), \text{ for each } x \in \mathbb{R}.$$

Definition A.2 A function $f: D \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ is said to be

- non-decreasing if $f(x) \leq f(y)$, for any $x, y \in D$ with $x \leq y$.
- non-increasing if $f(x) \ge f(y)$, for any $x, y \in D$ with $x \le y$.
- monotone if f is either non-decreasing or non-increasing.

Theorem A.3 Let $f: D \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ be a monotone function. Then,

$$\lim_{x \to a^{-}} f(x) \quad \text{and} \quad \lim_{x \to a^{+}} f(x)$$

exist for every $a \in interior(D)$.

Definition A.4 Let $f: D \subseteq \mathbb{R} \longrightarrow \mathbb{R}$. A point $a \in \text{interior}(D)$ is a **jump discontinuity** of f if both

$$\lim_{x \to a^{-}} f(x)$$
 and $\lim_{x \to a^{+}} f(x)$

exist but they are unequal.

Corollary A.5 A monotone \mathbb{R} -valued function defined on an interval of \mathbb{R} can have only jump discontinuities.

Theorem A.6 A function $F : \mathbb{R} \longrightarrow [0,1]$ is a cumulative distribution function of some \mathbb{R} -valued random variable if and only if each of following four conditions holds:

- F is non-decreasing.
- \bullet F is right-continuous.
- $\lim_{x\to -\infty} F(x) = 0$.
- $\lim_{x\to+\infty} F(x) = 1$.

PROOF If $F : \mathbb{R} \longrightarrow [0,1]$ is a cumulative distribution function of some \mathbb{R} -valued random variable $X : (\Omega, \mathcal{A}, \mu) \longrightarrow \mathbb{R}$, then the four conditions follow immediately from the property of the probability measure μ . Conversely, suppose the four conditions hold. Let $\Omega := [0,1]$ and $\mathcal{B}(\Omega)$ the Borel subsets of Ω . Let μ be the Lebesgue measure on $(\Omega, \mathcal{B}(\Omega))$, i.e. μ is determined by:

$$\mu([0,\omega]) := \omega$$
, for each $\omega \in \Omega = [0,1]$.

Define the random variable $X:(\Omega,\mathcal{B}(\Omega),\mu)\longrightarrow \mathbb{R}$ by:

$$X(\omega) := \inf \{ x \in \mathbb{R} \mid \omega \le F(x) \}, \text{ for each } \omega \in \Omega = [0, 1].$$

Note that X is simply the quantile function of F.

Claim: Suppose $G : \mathbb{R} \longrightarrow [0,1]$ is non-decreasing and right-continuous. Then, for any $\omega \in [0,1]$ and $x \in \mathbb{R}$,

$$\inf \{ \xi \in \mathbb{R} \mid \omega \le G(\xi) \} \le x \iff \omega \le G(x).$$

Proof of Claim: Suppose $\omega \leq G(x)$. Then, $x \in \{\xi \in \mathbb{R} \mid \omega \leq G(\xi)\}$. Hence, inf $\{\xi \in \mathbb{R} \mid \omega \leq G(\xi)\} \leq x$. Conversely, suppose inf $\{\xi \in \mathbb{R} \mid \omega \leq G(\xi)\} \leq x$. Since G is non-decreasing and right-continuous, we have:

$$\inf \left\{ \xi \in \mathbb{R} \mid \omega \leq G(\xi) \right\} \leq x \quad \Longrightarrow \quad \text{for any } \varepsilon > 0, \ \exists \ \xi \in \mathbb{R}, \ \text{satisfying } \omega \leq G(\xi), \ \text{such that } \xi \leq x + \varepsilon \\ \Longrightarrow \quad \text{for any } \varepsilon > 0, \ \exists \ \xi \in \mathbb{R}, \ \text{satisfying } \omega \leq G(\xi) \ \text{and } G(\xi) \leq G(x + \varepsilon) \\ \Longrightarrow \quad \text{for any } \varepsilon > 0, \ \omega \leq G(x + \varepsilon) \\ \Longrightarrow \quad \omega \leq \lim_{\varepsilon \to 0^+} G(x + \varepsilon) = G(x).$$

This completes the proof of the Claim.

Noting that, by hypothesis, F is non-decreasing right-continuous, and invoking the Claim above, we see that

$$\begin{array}{lcl} P(\, X \leq x \,) & = & P(\{\, \omega \in \Omega \mid X(\omega) \leq x \,\}) & = & P(\{\, \omega \in \Omega \mid \inf \,\{\, \xi \in \mathbb{R} \mid \omega \leq F(\xi) \,\} \leq x \,\}) \\ & = & P(\{\, \omega \in \Omega \mid \omega \leq F(x) \,\}) & = & \mu(\{\, \omega \in [0,1] \mid \omega \leq F(x) \,\}) & = & \mu([0,F(x)]) \\ & = & F(x) \end{array}$$

This shows that if F satisfies the four conditions, then F is the cumulative distribution function of the random variable X constructed above. The proof of the Theorem is now complete.

Theorem A.7 (Darboux-Froda)

The set of discontinuities of a monotone \mathbb{R} -valued function defined on an interval of \mathbb{R} is at most countable.

B The O_P and o_P notations; convergence in distribution implies boundedness in probability

[1]

Definition B.1 (The Big- O_P notation)

Let $\{X_n : (\Omega_n, \mathcal{A}_n, \mu_n) \longrightarrow \mathbb{R}^k\}_{n \in \mathbb{N}}$ be a sequence of \mathbb{R}^k -valued random variables. Let $\{a_n\}_{n \in \mathbb{N}}$ be sequence of positive numbers. The notation $X_n = O_p(a_n)$ means:

For every $\varepsilon > 0$, there exist $C_{\varepsilon} > 0$ and $n_{\varepsilon} \in \mathbb{N}$ such that $P(|X_n| \leq C_{\varepsilon} \cdot a_n) > 1 - \varepsilon$, for every $n \geq n_{\varepsilon}$.

Proposition B.2 The following are equivalent:

- (a) $X_n = O_P(a_n)$.
- (b) For every $\varepsilon > 0$, there exists $C_{\varepsilon} > 0$ such that $P(|X_n| \le C_{\varepsilon} \cdot a_n) > 1 \varepsilon$, for each $n \in \mathbb{N}$.
- (c) For every $\varepsilon > 0$, there exists $C_{\varepsilon} > 0$ such that $\limsup_{n \to \infty} P(|X_n| > C_{\varepsilon} \cdot a_n) \leq \varepsilon$.
- (d) For every $\varepsilon > 0$, there exists $C_{\varepsilon} > 0$ such that $\sup_{n \in \mathbb{N}} P(|X_n| > C_{\varepsilon} \cdot a_n) \le \varepsilon$.
- (e) $\lim_{C \to \infty} \limsup_{n \to \infty} P(|X_n| > C \cdot a_n) = 0.$
- (f) $\lim_{C \to \infty} \sup_{n \in \mathbb{N}} P(|X_n| > C \cdot a_n) = 0.$

Study Notes April 26, 2015 Kenneth Chu

Proof

$$(a) \Longrightarrow (b)$$

Let $\varepsilon > 0$ be given. By (a), there exist $B_{\varepsilon} > 0$ and $n_{\varepsilon} \in \mathbb{N}$ such that $P(|X_n| \leq B_{\varepsilon} \cdot a_n) > 1 - \varepsilon$, for each $n \geq n_{\varepsilon}$.

Claim: Let Y be an \mathbb{R}^k -valued random variable. Then, for each $\varepsilon > 0$, there exists $A_{\varepsilon} > 0$ such that $P(|Y| \le A_{\varepsilon}) > 1 - \varepsilon$.

Proof of Claim: Suppose the Claim were false. Then, there exists some $\varepsilon>0$ such that $P(|Y|\leq A)\leq 1-\varepsilon$, for every A>0; equivalently, $P(|Y|>A)>\varepsilon$, for every A>0. This implies $\lim_{A\to\infty}P(|Y|>A)=\limsup_{A\to\infty}P(|Y|>A)$ and P(|Y|>A)=0. But this is a contradiction since $\lim_{A\to\infty}P(|Y|>A)=0$, for every \mathbb{R}^k -valued random variable Y. This proves the Claim.

By the Claim, for each $i=1,2,\ldots,n_{\varepsilon}-1$, there exists $B_{\varepsilon}^{(i)}>0$ such that $P\left(|X_i|\leq B_{\varepsilon}^{(i)}\cdot a_i\right)>1-\varepsilon$. Now, let $C_{\varepsilon}:=\max\left\{B_{\varepsilon}^{(1)},B_{\varepsilon}^{(1)},\ldots,B_{\varepsilon}^{(n_{\varepsilon}-1)},B_{\varepsilon}\right\}$. Then, $P(|X_n|\leq C_{\varepsilon}\cdot a_n)>1-\varepsilon$, for every $n\in\mathbb{N}$. This proves the implication (a) \Longrightarrow (b).

- (b) \Longrightarrow (a) Trivial: Suppose (b) holds. Then (a) immediately follows with $n_{\varepsilon} = 1$.
- (a) \iff (c) Let $\varepsilon > 0$ be given.
 - (a) \iff There exist $C_{\varepsilon} > 0$ and $n_{\varepsilon} \in \mathbb{N}$ such that $P(|X_n| \le C_{\varepsilon} \cdot a_n) > 1 \varepsilon$, for every $n \ge n_{\varepsilon}$.
 - \iff There exist $C_{\varepsilon} > 0$ and $n_{\varepsilon} \in \mathbb{N}$ such that $P(|X_n| > C_{\varepsilon} \cdot a_n) \leq \varepsilon$, for every $n \geq n_{\varepsilon}$.
 - \iff There exist $C_{\varepsilon} > 0$ such that $\limsup_{n \to \infty} P(|X_n| > C_{\varepsilon} \cdot a_n) \le \varepsilon \iff$ (c)
- (b) \iff (d) Let $\varepsilon > 0$ be given.
 - (b) \iff There exists $C_{\varepsilon} > 0$ such that $P(|X_n| \le C_{\varepsilon} \cdot a_n) > 1 \varepsilon$, for every $n \in \mathbb{N}$.
 - \iff There exists $C_{\varepsilon} > 0$ such that $P(|X_n| > C_{\varepsilon} \cdot a_n) \leq \varepsilon$, for every $n \in \mathbb{N}$.
 - \iff There exist $C_{\varepsilon} > 0$ such that $\sup_{n \in \mathbb{N}} P(|X_n| > C_{\varepsilon} \cdot a_n) \le \varepsilon \iff$ (d)
- $(d) \iff (f)$ Let $\varepsilon > 0$ be given. We first establish that $(f) \implies (d)$.
 - (f) \iff There exists $C_{\varepsilon} > 0$ such that $\sup_{n \in \mathbb{N}} P(|X_n| > C \cdot a_n) \le \varepsilon$, for each $C \ge C_{\varepsilon}$.
 - $\implies \text{ There exists } C_{\varepsilon} > 0 \text{ such that } \sup_{n \in \mathbb{N}} P(\,|X_n| > C_{\varepsilon} \cdot a_n\,) \leq \varepsilon \quad \Longleftrightarrow \quad (\mathrm{d})$

Conversely, suppose (d) holds and $C \geq C_{\varepsilon}$. Then, $|X_n| > C \cdot a_n \Longrightarrow |X_n| > C_{\varepsilon} \cdot a_n$. Hence, $\{|X_n| > C \cdot a_n\} \subseteq \{|X_n| > C_{\varepsilon} \cdot a_n\}$, which in turn implies $P(|X_n| > C \cdot a_n) \leq P(|X_n| > C_{\varepsilon} \cdot a_n)$. Thus, we have

$$\sup_{n \in \mathbb{N}} P(|X_n| > C \cdot a_n) \le \sup_{n \in \mathbb{N}} P(|X_n| > C_{\varepsilon} \cdot a_n) \le \varepsilon,$$

i.e. (f) holds.

- (c) \iff (e) Let $\varepsilon > 0$ be given. We first establish that (e) \implies (c).
 - (e) \iff There exists $C_{\varepsilon} > 0$ such that $\limsup_{n \to \infty} P(|X_n| > C \cdot a_n) \leq \varepsilon$, for each $C \geq C_{\varepsilon}$.
 - \implies There exists $C_{\varepsilon} > 0$ such that $\limsup_{n \to \infty} P(|X_n| > C_{\varepsilon} \cdot a_n) \le \varepsilon \iff$ (c)

Large Sample Theory for Finite Population Sampling

Study Notes April 26, 2015 Kenneth Chu

Conversely, suppose (c) holds and $C \geq C_{\varepsilon}$. Then, $|X_n| > C \cdot a_n \Longrightarrow |X_n| > C_{\varepsilon} \cdot a_n$. Hence, $\{|X_n| > C \cdot a_n\} \subseteq \{|X_n| > C_{\varepsilon} \cdot a_n\}$, which in turn implies $P(|X_n| > C \cdot a_n) \leq P(|X_n| > C_{\varepsilon} \cdot a_n)$. Thus, we have

$$\limsup_{n \to \infty} P(|X_n| > C \cdot a_n) \leq \limsup_{n \to \infty} P(|X_n| > C_{\varepsilon} \cdot a_n) \leq \varepsilon,$$

i.e. (e) holds.

This completes the proof of the Proposition.

Definition B.3 (Bounded in probability)

A sequence $\{X_n : (\Omega_n, \mathcal{A}_n, \mu_n) \longrightarrow \mathbb{R}^k\}_{n \in \mathbb{N}}$ of \mathbb{R}^k -valued random variables is said to be **bounded in probability** if $X_n = O_P(1)$.

Theorem B.4

If a sequence $\{X_n : (\Omega_n, \mathcal{A}_n, \mu_n) \longrightarrow \mathbb{R}^k\}_{n \in \mathbb{N}}$ of \mathbb{R}^k -valued random variables converges in distribution to some random variable $X : (\Omega, \mathcal{A}, \mu) \longrightarrow \mathbb{R}^k$, then the sequence $\{X_n\}$ is bounded in probability.

PROOF Let

References

[1] DEVILLE, J.-C., AND SÄRNDAL, C.-E. Calibration estimators in survey sampling. *Journal of the American Statistical Association* 87, 418 (1992), 376–382.