7. Wichtige Beispiele

Satz 7.1 (Konvergenzsatz für Wurzeln)

Sei (a_n) eine konvergente Folge, $a_n \geq 0$. Es sei $a := \lim a_n$ ($\stackrel{6.2}{\Longrightarrow} a \geq 0$) und $p \geq 2$. Dann: $\sqrt[p]{a_n} \rightarrow \sqrt[p]{a}$.

Beweis

Fall 1:
$$a = 0$$
 Sei $\varepsilon > 0$. $a_n \to 0 \implies \exists n_0 \in \mathbb{N} : a_n < \varepsilon^p \ \forall n > n_0 \implies \sqrt[5.1]{a_n} < \varepsilon \ \forall n \ge n_0 \implies \sqrt[p]{a_n} - 0 | = \sqrt[p]{a_n} < \varepsilon \ \forall n \ge n_0 \implies \sqrt[p]{a_n} \to 0$

Fall 2:
$$a > 0$$
 $|a_n - a| = |\underbrace{(\sqrt[p]{a_n})^p}_{=:x} - \underbrace{(\sqrt[p]{a_n})^p}_{=:y}| = |x^p - y^p| \stackrel{4.2}{=} |x - y| \cdot |x^{p-1} + x^{p-2}y + \dots + xy^{p-2} + y^{p-1}$

$$\geq |x-y| \cdot \underbrace{y^p - 1}_{=:c} = |x-y| \cdot c = |\sqrt[p]{a_n} - \sqrt[p]{a_n}| \cdot c \implies |\sqrt[p]{a_n} - \sqrt[p]{a_n}| \leq \underbrace{\frac{1}{c}|a_n - a|}_{=:0} \implies \sqrt[p]{a_n} \rightarrow \sqrt[p]{a_n}$$

Beispiel 7.2

Sei $x \in \mathbb{N}$ und $a_n := x^n \ (n \in \mathbb{N})$.

Fall 1: $x = 0 \implies (a_n)$ ist konvergent und $a_n \to 0$

Fall 2: $x = 1 \implies (a_n)$ ist konvergent und $a_n \to 1$

Fall 3: $x = -1 \implies (a_n)$ ist divergent.

Fall 4: |x| > 1: $\exists \delta > 0$: $|x| = 1 + \delta \implies |a_n| = |x^n| = |x|^n = (1 + \delta)^n \ge 1 + n\delta \ge n\delta \implies a_n$ ist nicht beschränkt. $6.1(2) \implies (a_n)$ ist divergent.

Fall 5: 0 < |x| < 1: Dann $\frac{1}{|x|} > 1 \implies \exists \eta > 0 : \frac{1}{|x|} = 1 + \eta \implies \frac{1}{|a_n|} = \frac{1}{|x^n|} = (\frac{1}{|x|})^n = (1 + \eta)^n \ge 1 + n\eta \ge n\eta \implies |a_n| \le \frac{1}{n\eta} \ \forall n \in \mathbb{N} \implies a_n \to 0$

Beispiel 7.3

Sei
$$x \in \mathbb{R}$$
 und $s_n := 1 + x + x^2 + \ldots + x^n = \sum_{k=0}^n x^k$

$$\S 4 \implies s_n = \begin{cases} n+1 & \text{falls } x=1\\ \frac{1-x^{n+1}}{1-x} & \text{falls } x \neq 1 \end{cases}$$

7.2 \implies (s_n) ist konvergent \iff |x| < 1. In diesem Fall: $s_n \to \frac{1}{1-x}$ $(n \to \infty)$

Satz 7.4 (Satz über $\sqrt[n]{n}$)

Es gilt: $\sqrt[n]{n} \to 1 \ (n \to \infty)$

Beweis

$$a_n := \sqrt[n]{n} - 1 \implies a_n > 0 \ \forall n \in \mathbb{N}. \text{ Zu zeigen ist: } a_n \to 0. \text{ Für } n \ge 2: \ \sqrt[n]{n} = 1 + a_n \implies n = (1 + a_n)^n = \sum_{k=0}^n \binom{n}{k} a_n^k \ge \binom{n}{2} a_n^2 = \frac{1}{2}(n)(n-1)a_n^2 \implies a_n^2 \le \frac{2}{n-1} \ \forall n \ge 2 \implies \underbrace{0}_{\to 0} < a_n < \underbrace{\frac{\sqrt{2}}{\sqrt{n-1}}}_{0} \implies a_n \to 0$$

Beispiel 7.5 (Konvergenz von Wurzeln)

Sei c > 0. Dann: $\sqrt[n]{c} \to 1 \ (n \to \infty)$.

Beweis

Fall
$$1: c \ge 1 \ \exists m \in \mathbb{N}: m \ge c \implies 1 \le c \le n \ \forall n \ge m \implies \sqrt[n]{n} \le \underbrace{\sqrt[n]{n}}_{-1} \xrightarrow{7.4} \sqrt[n]{c} \to 1$$

$$\text{Fall 2: } c < 1 \implies \frac{1}{c} > 1 \stackrel{\text{Fall 1}}{\Longrightarrow} \underbrace{\sqrt[n]{\frac{1}{c}}}_{0} \rightarrow 1 \stackrel{\text{6.2(vii)}}{\Longrightarrow} \sqrt[n]{c} \rightarrow 1$$

Satz 7.6 (Satz und Definition von e)

$$a_n := (1 + \frac{1}{n})^n \ (n \in \mathbb{N}); \ b_n := \sum_{k=0}^n \frac{1}{k!} = 1 + 1 + \frac{1}{2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n!} \ (n \in \mathbb{N}_0)$$

 (a_n) und (b_n) sind konvergent und es gilt $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$.

Definition: $e := \lim_{n \to \infty} (1 + \frac{1}{n})^n$ heißt eulersche Zahl. $(2 < e < 3, e \approx 2,718)$

Beweis

In der großen Übung wurde gezeigt: $a \le a_n < a_{n+1} < 3 \ \forall n \in \mathbb{N}$. 6.3 \Longrightarrow (a_n) ist konvergent, $a := \lim a_n$.

 $b_{n+1} = b_n + \frac{1}{(n+1)!} > b_n \implies (b_n)$ ist monoton wachsend.

$$b_n = 1 + 1 + \underbrace{\frac{1}{2}}_{\leq \frac{1}{2^1}} + \underbrace{\frac{1}{2 \cdot 3}}_{< \frac{1}{2^2}} + \underbrace{\frac{1}{2 \cdot 3 \cdot 4}}_{< \frac{1}{2^3}} + \dots + \underbrace{\frac{1}{2 \cdot 3 \cdot \dots \cdot n}}_{< \frac{1}{2^{n-1}}}$$

$$<1+(1+\frac{1}{2}+\frac{1}{2}^2+\ldots+\frac{1}{2}^{n-1})=1+\frac{1-\frac{1}{2}^n}{1-\frac{1}{2}}=1+2(1-\frac{1}{2}^n)<3$$

 $\implies (b_n)$ ist nach oben beschränkt. 6.3 $\implies (b_n)$ ist konvergent, $b := \lim b_n$

Zu zeigen: a = b.

Für $n \geq 2$:

$$a_n = (a + \frac{1}{n})^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k}$$

$$= 1 + 1 + \sum_{k=2}^n \frac{1}{k!} \underbrace{(1 - \frac{1}{n})(1 - \frac{2}{n}) \cdots (1 - \frac{k-1}{n})}_{<1}$$

$$< 1 + 1 + \sum_{k=2}^n \frac{1}{k!} = b_n$$
(*)

Also: $a_n < b_n \ \forall n \ge 2 \implies a \le b$.

Sei $j \in \mathbb{N}, j \geq 2$ (fest) und n > j. Aus (*) folgt:

$$a_n \ge 1 + 1 + \sum_{k=2}^{j} \frac{1}{k!} \underbrace{\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right)}_{\to 1(n \to \infty)} = c_n^{(j)}$$

$$\implies c_n^{(j)} \to 1 + 1 + \sum_{k=2}^{j} \frac{1}{k!} = b_j \quad (n \to \infty)$$

$$\implies a_n \ge c_n^{(j)} \xrightarrow{n \to \infty} a \ge b_j.$$

Also: $b_j \le a \ \forall j \ge 2 \xrightarrow{j \to \infty} b \le a$.