DIC L2: Introduction (2)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

1.3. MOS transistors (6)

PMOS

- Similar, but doping and voltages are reversed.
- Body is tied to V_{DD} .
- V_{GS} is negative.

Fig. 1.9(b)

1.3. MOS transistors (7)

- Power supply voltageMOS
 - In 1980's, V_{DD} was 5 V.
- IEDM(or VLSI) papers
 - 130nm: 2000
 - 90nm: 2003
 - 65nm: 2004
 - 45nm: 2007
 - 32nm: 2008
 - 22nm: 2012
 - 14nm (or 16nm): 2014

Source: P. Packan (Intel), 2007 IEDM Short Course

1.3. MOS transistors (8)

- Transistors as switches
 - V_G controls path from source to drain.

pMOS g⊸| ∫

d ↓ ON d OFF

Fig. 1.10

1.4. CMOS logic (1)

CMOS inverter

- When the input A is 0,
 the NMOS transistor is OFF and
 the PMOS transistor is ON.
- Thus, the output Y is pulled up to 1.

A	Y = NOT A
0	1
1	0

Fig. 1.11(a)

GND

1.4. CMOS logic (2)

CMOS NAND

 If either input A or B is 0, at least one of the NMOSFETs will be OFF, breaking the path from Y to GND.

A	В	Y
		= A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

1.4. CMOS logic (3)

- Complementary CMOS gates
- Pull-down and pull-up networks
 - NMOS pull-down
 - PMOS pull-up

	Pull-up OFF	Pull-up ON
Pull-down OFF	Z	1
Pull-down ON	0	Crowbarred (X)

1.4. CMOS logic (4)

CMOS NOR

Sketch a 3-input CMOS NOR gate.

- Example 1.2
 - Sketch a static CMOS gate computing

$$Y = \overline{(A + B + C) \cdot D}$$

1.5. CMOS fabrication (1)

Inverter cross-section

1.5. CMOS fabrication (2)

Well and substrate taps

1.5. CMOS fabrication (3)

Semiconductor process steps

1.5. **CMOS** layout (1)

Inverter cross-section

1.5. CMOS layout (2)

Detailed mask views

Fig. 1.35(b)-(g)

GIST Lecture on September 17, 2019

1.5. CMOS layout (3)

Design rules in the textbook

Fig. 1.39

1.5. **CMOS** layout (4)

Inverter layout

Fig. 1.40

GIST Lecture on September 17, 2019