Statistical analysis

Linear Algebraic Subroutine Library Vo.1 documentation

重回帰モデル multiple regression model

 $y=b_0+b_1x_1+\cdots+b_px_p+c$ 目的変数yをp個の説明変数 $x_1\cdots x_p$ で予測するモデル

観測値(教師データ)を元に $b_0 \cdots b_p$ を推定する

index	y	x_1	x_2	•••	x_p
1	y_1	x_{11}	x_{12}		x_{1p}
2	y_2	x_{21}	x_{22}		x_{2p}
:	:	÷	:		
i	y_i	x_{i1}	x_{i2}		x_{ip}
÷	÷	:	:		
n	y_n	x_{n1}	x_{n2}		x_{np}

Test

Table 3: 講義満足度と関連ある変数の観測値.

番号	\boldsymbol{y}	x_1	x_2	x_3	x_4
1	4	2	3	5	4
2	4	3	3	3	4
3	4	1	2	4	4
4	4	1	3	5	3
5	5	2	2	5	5
6	4	4	1	5	4
7	4	2	4	4	4
8	3	4	3	4	3
9	3	2	1	2	3
10	3	5	1	2	4
11	4	2	2	5	5
12	5	4	3	5	4
13	4	2	4	5	4
14	4	4		5	5
15	3	2	3 2 1	5	3
16	5	2	1	4	5
17	4	2	2	4	4

y = 授業に対する満足度

x2 = 予習復習はしたか

x1 = 履修の際, シラバスは参考にしたか

x3 = バワボの文字や図表は見やすかったか x4 = 教員の説明は分かりやすかったか F値:4.211263 > F(0.05)_3,13=[3.41]=>予測に有効であると結論できる

係数・定数項の推定(信頼幅:95.00%)

係数	標準誤差	t値	p値	下限(95.0%)	上限(95.0%)
1.0877	0.8728	1.2463	0.2364	-0.8139	2.9894
-0.0984	0.1081	-0.9105	0.3805	-0.3340	0.1371
0.0375	0.1376	0.2722	0.7901	-0.2624	0.3373
0.1653	0.1402	1.1788	0.2613	-0.1402	0.4709
0.5800	0.1855	3.1274	0.0087	0.1759	0.9841

	7 1
Pataranca	(scikit-learn)
Neielelice	SCIKIC-ICALII

	係数	標準誤差	t	P-値	下限 95%	上限 95%
切片	1.0877	0.8728	1.2463	0.2364	-0.8139	2.9894
x_1	-0.0984	0.1081	-0.9105	0.3805	-0.3340	0.1371
x_2	0.0375	0.1376	0.2722	0.7901	-0.2624	0.3373
x_3	0.1653	0.1402	1.1788	0.2613	-0.1402	0.4709
x_4	0.5800	0.1855	3.1274	0.0087	0.1759	0.9841

Test

The Boston Housing Dataset

列名の意味するところ
犯罪率
宅地の割合
非商用地の割合
チャールズ川流域かどうか
窒素酸化物濃度
平均部屋数
築年数
ビジネス地区への距離
高速道路へのアクセス指数
固定資産税
学生と教師の割合
黒人の割合
低所得者の割合
住宅価格の中央値

住宅価格中央値 = $\beta_0 + \beta_1 \times$ 犯罪率 + $\beta_2 \times$ 住宅の割合 + \cdots + $\beta_{13} \times$ 低所得者層の割合

重回帰モデルとスパースモデル

重回帰モデル

Reference (scikit-learn)

係数 22.5328063241 $[-0.92906457 \quad 1.08263896 \quad 0.14103943 \quad 0.68241438 \quad -2.05875361 \quad 2.67687661$ (intercept) -0.9290 22.5328 0.01948534 -3.10711605 2.6648522 -2.07883689 -2.06264585 -3.74733185] ボストンの住宅価格には「ビジネス地区への距離」と 「低所得者層の割合」が一番影響を与えていることがわかる・・・

自動変数選択(冗長な変数を自動的に削除)

0.85010886

スパースモデル

係数							
(intercept) 2 0.0000 0.0000	22.5328	22.5328063	241		Ref	ference (sciki t	:-learn
0.0000 0.0000 0.0000 2.7153 0.0000 0.0000 0.0000 -1.3443 0.1803 -3.5469		[-0. -0. -3.547006 ボストン	0. -0. 64] の住宅価格	-0. -0. ·には「平均i ·」が一番影響		-0. -1.34423287 \ることがわかる	2.71517992 0.18020715

スパース回帰 Sparse regression model

```
Ridge回帰 (L2正則化)
oldsymbol{b} = rg \min_{oldsymbol{b} \in R^p} (\| oldsymbol{y} - oldsymbol{X} oldsymbol{b} \|^2 + \lambda \| oldsymbol{b} \|^2)
Lasso回帰 (L1正則化)
oldsymbol{b} = rg \min_{oldsymbol{b} \in R^p} (\| oldsymbol{y} - oldsymbol{X} oldsymbol{b} \|^2 + \lambda \| oldsymbol{b} \|)
ElasticNet回帰 (L1+L2正則化)
oldsymbol{b} = rg \min_{oldsymbol{b} \in R^p} (\| oldsymbol{y} - oldsymbol{X} oldsymbol{b} \|^2 + \lambda_2 \| oldsymbol{b} \|^2 + \| oldsymbol{b} \|)
```

主成分分析

PCA: Principle Component Analysis

PCA

$$\boldsymbol{b} = \arg\min_{\boldsymbol{b} \in R^p} (\|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}\|^2), \boldsymbol{b}^T\boldsymbol{b} = \boldsymbol{I}$$

bは元のデータを再現しbは直交(bの各列ベクトルは互いに直交する。

独立成分分析

ICA: Independent Component Analysis

$$\boldsymbol{b} = \arg\min_{\boldsymbol{b} \in R^p} (\|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}\|^2) - \lambda \boldsymbol{H}(\boldsymbol{X})$$

bは元のデータを再現しH(X)が最大となるようなb。 H(X)はXのエントロピー。

$$y = Xb$$

混合シグナルyのみ観測しているとき、元シグナルXと変換マトリクスを推定する

Test

は彼は様でざいまあばもは

はじめまして、こんにちは おはようございます。 お疲れ様です。こんばんは

統計的因果探索 LiNGAM

LiNGAM(linear non-Gaussian acyclic model)モデル

$$x = Bx + e$$
$$B = I - D^{-1}P^{-1}W_{ICA}$$

データ生成過程の構造に関する背景知識がない場合に因果関係を推定

データD生成過程がA, B, Cのデータ生成原因になっている。

CLAPACK

CLAPACK (f2c'ed version of LAPACK) ビルド済みのバイナリ

http://www.netlib.org/clapack/LIB_WINDOWS/prebuilt_libraries_windows.html

重回帰モデル multiple regression model

$$y_i = b_0 + b_1 x_{i1} + \dots + b_p x_{ip} + c_i$$

index	y	x_1	x_2	***	x_p
1	y_1	x_{11}	x_{12}	***	x_{1p}
2	y_2	x_{21}	x_{22}		x_{2p}
:	:	:	ŧ	li:	:
i	y_i	x_{i1}	x_{i2}		x_{ip}
:	:	÷	Ė	;	:
n	y_n	x_{n1}	x_{n2}		x_{np}

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{pmatrix} \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} + \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$
$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{c}$$

$$\sum_{i=1}^n {c_i}^2 = c^t c = (y-Xb)^t (y-Xb)$$
 $\|c\|^2 = \|y-Xb\|^2$ ゼロには出来ないが最小にする

$$\boldsymbol{b} = \arg\min_{\boldsymbol{b} \in R^p} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}\|^2$$

重回帰モデル multiple regression model

fit とfitzの違い fit はマトリクスXがフルランクを仮定している。 fit2 は特異値分解(SVD)を使用してマトリックスはラン ク不足も考慮している。

基準化(normalization)

説明変数同士を同じ尺度で評価するためにXの各説明変数 毎に基準化(平均値o分散1)

$$x_i = \frac{x_i - \mu}{\sigma}$$

最小二乗推定に失敗する場合

正則化(regularization)→スパース回帰参照