INTELLIGENT HEALTHCARE ASSISTANT USING IBM GRANITE

→ Project Title:
HealthAI: Intelligent Healthcare Assistant Using IBM Granite

Team Members:
1.Thunga Ashok kumar reddy
2. Akepati Narasimha Reddy
3.Ammireddy Hema sundar reddy
4. A.reddy sai
T. A. Today Sai
Phase 1 – Brainstorming & Ideation
Objectives:
Identify a real-world healthcare issue: slow or inaccessible medical consultation.
Use AI to provide fast, intelligent preliminary symptom analysis.
Key Points:
1. Project Statement:
Many people delay medical help due to inaccessibility, cost, or uncertainty. This assistant provides a basic Al-driven health check based on symptoms.
2. Project Solution:

A command-line (or web-based) Al assistant that uses IBM Granite LLM to analyze user-input symptoms and suggest possible conditions. 3. Target User: General public Rural population with limited access to doctors Students and researchers studying health-tech 4. Expected Output: A list of possible health conditions based on symptoms Timestamped report for review Disclaimer advising professional consultation Phase 2 – Requirement Analysis Objectives: Gather the necessary tools to build the assistant. Define core functionalities. Key Points: 1. Technical Requirements: Programming Language: Python LLM: IBM Granite granite-3.3-2b-instruct

Libraries: transformers, torch

(Optional) IBM Cloud or Streamlit for deployment

2. Functional Requirements:

Input: Name and symptoms

Process: Format input as prompt, send to IBM Granite, get response

Output: Display possible conditions, disclaimer, and timestamp

3. Constraints & Challenges

Limited medical accuracy – the AI does not replace doctors.

Dependency on model prompt quality – output changes if prompt isn't well-structured.

Internet access needed – for model inference (especially if using IBM Cloud).

No real-time diagnosis – only suggestion-based support.

★ Phase 3 – Project Design

Objectives:

Design a user-friendly and technically robust system structure.

Key Points:

1. System Architecture Diagram:

User Input \rightarrow Prompt Builder \rightarrow IBM Granite Model \rightarrow Output Parser \rightarrow Display Result

2. User Flow:

User opens app

Enters name and symptoms

System formats and sends prompt to model

Model responds → output shown to user

3. UI/UX Consideration:

Simple CLI (can be extended to Streamlit UI)

Minimal input steps for ease of use

Clear display of results with warnings/disclaimers

Phase 4 – Project Planning (Agile Methodologies)

Objectives:

Implement iterative development with flexibility and team collaboration.

Key Points:

1. Sprint Planning:

Sprint 1: Input/output + symptom prompt generation

Sprint 2: Model integration & testing

Sprint 3: Output formatting & basic UI

2. Task Allocation:

Member 1: Input & prompt logic

Member 2: Model integration

Member 3: UI/UX design

Member 4: Testing & documentation

3. Time & Milestones:

Week 1: Base functionality

Week 2: Model connection + UI

Week 3: Testing + fixes

Week 4: Final report and presentation

Phase 5 – Project Development

Objectives:

Build the application and integrate all components.

Key Points:

1. Technology Stack Used:

Python

Hugging Face Transformers

IBM Granite 3.3-2B Instruct

(Optional) Streamlit / IBM Cloud

2. Development Process:

Code structure set up

Tokenizer + model loaded

User input handling

Response generation and output cleanup

3. Challenges and Fixes:

Challenge: Long or irrelevant model outputs Fix: Limit tokens and improve prompt structure

Challenge: Model loading time

Fix: Use smaller test prompts during development

Phase 6 – Functional and Performance Testing

Objectives:

Ensure the app works as intended and is efficient for users.

Key Points:

1. Functional Testing:

Test valid/invalid symptom inputs

Test multiple users

Ensure proper output generation

2. Performance Testing:

Time taken for model response

Memory usage while generating outputs

3. Output Accuracy Checks:

Compare AI suggestions with verified sources

Validate	AIC A	Iaimar	1/10	hil	1 † \
validate	(115)	iaii i ei	VI.SI		II V
vanaato	aioo		* 10	~	,

✓ Phase 6 – Functional and Performance Testing

Objectives:

Ensure the assistant performs as expected under various input conditions and is stable for end users.

Key Points:

1. Test Cases Executed:

Input with common symptoms (e.g., fever, cough)

Input with rare symptoms

Input with no symptoms or empty string

Long symptom strings to test output truncation

2. Bug Fixes & Improvements:

Fixed prompt formatting issues for better model output

Limited token length (max_new_tokens=200) to avoid overload

Added clearer instructions and timestamp formatting

3. Final Validation:

Verified output relevance using known medical databases

Ensured disclaimer is always shown

Confirmed input \rightarrow prompt \rightarrow output cycle functions without crash

Final Submission

1. Project Report Based on the Templates:

Includes filled sections from Phases 1 to 6

Clear documentation of objectives, designs, code, and results

2. Demo Video:

A walkthrough showing:

Starting the app

Entering symptoms

Al response display

Conclusion with timestamp and disclaimer (Use screen recorder + voiceover or subtitles)

- 3. GitHub/Code Repository Link:
- > \(\) https://github.com/YourUsername/HealthAl-Granite (Replace with your real repo)
- 4. Presentation:

★ Slide 1: Project Overview

Title: HealthAI – AI-Powered Healthcare Assistant

Goal: Use IBM Granite LLM to assist users by analyzing symptoms and suggesting possible conditions

Type: AI + Healthcare + NLP

Platform: Python CLI (can be extended to Streamlit Web UI)

Slide 2: Problem & Solution
Problem:
Delayed medical help in remote areas
Limited early screening options
Solution:
A fast, Al-driven tool that provides possible condition suggestions based on symptoms
Helps users decide if they should consult a doctor

Slide 3: Architecture
Diagram:
$User\;Input\toPrompt\;Generator\toIBM\;Granite\;Model\toOutput\;Parser\toDisplay\;Result$
Components:
transformers, torch, AutoTokenizer, AutoModelForCausalLM
Model: ibm-granite/granite-3.3-2b-instruct

Symptom analysis

Key Features:

Real-time response using LLM

Timestamps and disclaimers
Tech Stack:
Python, Hugging Face Transformers
IBM Granite LLM
(Optional) Streamlit / IBM Cloud
Slide 5: Testing & Results
Test Cases:
Common/rare/empty symptom inputs
Bug Fixes:
Prompt optimization
Token length control
Results:
Reliable Al suggestions (non-diagnostic)
Fast inference time (~1–2s)
Slide 6: Demo Snapshot / Conclusion
Screenshots of:
Input prompt

Al-generated suggestions

Timestamp and warning

Conclusion:

HealthAl improves early health awareness

Can be scaled for multi-language, doctor-assisted apps

Future: connect with APIs for real medical advice
