Dinámica Molecular regida por el Paso Temporal Oscilador puntual y osciladores acoplados

Grupo 4:

Nicolás Matías Margenat Juan Burda Bruno Enzo Baumgart

72.25 - Simulación de Sistemas

14 de octubre, 2024 Instituto Tecnológico de Buenos Aires

Introducción

Osciladores

Sistema Solar

$$F_i = -k(y_i - y_{i+1}) - k(y_i - y_{i-1})$$

Implementación

Implementación


```
partículas ← generarPartículas(parametros)
estadoSimulación ← generarEstadoSimulación(parámetros, partículas)
while tiempo < maxTiempo:</pre>
      quardarEstado(estadoSimulación)
      Verlet.correrIteración(estadoSimulación)
end
```

Simulaciones

Parámetros Fijos

•
$$m = 0.001 \text{ kg} • A = 10^{-2} m$$

•
$$l_0 = 10^{-3} \ m$$
 • $N = 100$

•
$$\Delta t = \min\left(10^{-3}, \frac{1}{100 * \omega}\right) s$$

Condiciones de contorno

- $y_N = A\sin(\omega t)$
- $y_0 = 0$

Parámetros Variables

- $k \in [100; 10000] \text{ kg/s}^2$
- $\omega \in [8; 101] \text{ s}^{-1}$

• $y_M = \max(\max(|y_i(t)|)) \text{ con } i \in [0; N]$

•
$$\omega_0 = \omega / y_M(\omega) \ge y_M(\omega'), \forall \omega'$$

$$k = 100 \text{ kg/s}^2$$
$$\omega = 9.9 \text{ s}^{-1}$$

https://youtu.be/mXduEEfSMLg

Amplitud del sistema

$$k = 100 \text{ kg/s}^2$$
$$\omega = 9.9 \text{ s}^{-1}$$

Frecuencia óptima

$$k = 100 \text{ kg/s}^2$$

 $\omega_0 = 9.9 \text{ s}^{-1}$

$$k = 10000 \text{ kg/s}^2$$

 $\omega = 99.3 \text{ s}^{-1}$

https://youtu.be/U9vksk5QX4g

Frecuencia óptima

$$k = 10000 \text{ kg/s}^2$$

 $\omega_0 = 99.3 \text{ s}^{-1}$

Análisis entre ω_0 y k

Relación entre ω_0 y k

 $k \in [100; 10000] \text{ kg/s}^2$ $\omega \in [9.9; 99.3] \text{ s}^{-1}$

Relación entre ω_0 y k

Conclusiones

Conclusiones

• $\omega_0 \sim \sqrt{k}$

• Mayor $k \Rightarrow$ mayor amplitud si ambos sistemas están en su frecuencia de resonancia.

¡Gracias por su atención!