Real Analysis

D. Zack Garza

August 15, 2019

Contents

.1 Notions of "smallness" in $\mathbb R$	1
.2 \mathbb{R} is not small	2
ecture 2	3
	.1 Notions of "smallness" in \mathbb{R}

1 Lecture 1 (Thu 15 Aug 2019 11:04)

See Folland's Real Analysis, definitely a recommEnded reference.

Possible first day question: how can we "measure" a subset of \mathbb{R} ? We'd like bigger sets to have a higher measure, we wouldn't want removing points to increase the measure, etc. This is not quite possible, at least something that works on *all* subsets of \mathbb{R} . We'll come back to this in a few lectures.

1.1 Notions of "smallness" in $\mathbb R$

Definition 1. Let E be a set, then E is *countable* if it is in a one-to-one correspondence with $E' \subseteq \mathbb{N}$, which includes \emptyset, \mathbb{N} .

Definition 2. A set E is meager (or of 1st category) if it can be written as a countable union of nowhere dense sets.

Exercise 1. Show that any finite subset of \mathbb{R} is meager.

Intuitively, a set is *nowhere dense* if it is full of holes. Recall that a $X \subseteq Y$ is dense in Y iff the closure of X is all of Y. So we'll make the following definition:

Definition 3. A set $A \subseteq \mathbb{R}$ is nowhere dense if every interval I contains a subinterval $S \subseteq I$ such that $S \subseteq A^c$.

Note that a finite union of nowhere dense sets is also nowhere dense, which is why we're giving a name to such a countable union above. For example, \mathbb{Q} is an infinite, countable union of nowhere dense sets that is not itself nowhere dense.

Equivalently,

- A^c contains a dense, open set.
- The interior of the closure is empty.

We'd like to say something is measure zero exactly when it can be covered by intervals whose lengths sum to less than ε .

Definition 4. Definition: E is a *null set* (or has *measure zero*) if $\forall \varepsilon > 0$, there exists a sequence of intervals $\{I_j\}_{j=1}^{\infty}$ such that

$$E \subseteq \bigcup_{j=1}^{\infty} \text{ and } \sum |I_j| < \varepsilon.$$

Exercise 2. Show that a countable union of null sets is null.

We have several relationships

- \bullet Countable \implies Meager, but not the converse.
- \bullet Countable \implies Null, but not the converse.

Exercise 3. Show that the "middle third" Cantor set is not countable, but is both null and meager. Key point: the Cantor set does not contain any intervals.

Theorem 1. Every $E \subseteq \mathbb{R}$ can be written as $E = A \coprod B$ where A is null and B is meager.

This gives some information about how nullity and meagerness interact – in particular, \mathbb{R} itself is neither meager nor null. Idea: if meager \implies null, this theorem allows you to write \mathbb{R} as the union of two null sets. This is bad!

Proof. We can assume $E = \mathbb{R}$. Take an enumeration of the rationals, so $\mathbb{Q} = \{q_j\}_{j=1}^{\infty}$. Around each q_j , put an interval around it of size $1/2^{j+k}$ where we'll allow k to vary, yielding multiple intervals around q_j . To do this, define $I_{j,k} = (q_j - 1/2^{j+k}, q_j + 2^{j+k})$. Now let $G_k = \bigcup_j I_{j,k}$. Finally, let $A = \bigcap_k G_k$; we claim that A is null.

Note that $\sum_{j} |I_{j,k}| = \frac{1}{2^k}$, so just pick k such that $\frac{1}{2^k} < \varepsilon$.

Now we need to show that A^c :

B is meager. Note that G_k covers the rationals, and is a countable union of open sets, so it is dense. So G_k is an open and dense set. By one of the equivalent formulations of meagerness, this means that G_k^c is nowhere dense. But then $B = \bigcup_k G_k^c$ is meager.

1.2 \mathbb{R} is not small

Theorem 2.

- A (Cantor): \mathbb{R} is not countable.
- B (Baire): \mathbb{R} is not meager. (Baire Category Theorem)
- C (Borel): \mathbb{R} is not null.

Note that theorems B and C imply theorem A. You can also replace \mathbb{R} with any nonempty interval I = [a, b] where a < b. This is a strictly stronger statement – if any subset of \mathbb{R} is not countable, then certainly \mathbb{R} isn't, and so on.

Consider the Thomae function:

It is continuous on \mathbb{Q} , but discontinuous on $\mathbb{R} \setminus \mathbb{Q}$. Can this be switched to get some function f that is continuous on $\mathbb{R} \setminus \mathbb{Q}$ and discontinuous on \mathbb{Q} ? The answer is no. The set of discontinuities of a function is always an F_{σ} set, and $\mathbb{R} \setminus \mathbb{Q}$ is not one. Equivalently, the rationals are not a G_{δ} set. \mathbb{Q}

[Some facts:

- The pointwise limit of continuous functions has a meager set of discontinuities.
- If f is integrable, the set of discontinuities is null.
- \bullet If f is monotone, they are countable.
- There is a continuous nowhere differentiable function: let $f(x) = \sum_{n} \frac{\|10^n x\|}{10^n}$, and in fact most functions are like this.
- If f is continuous and monotone, the discontinuities are null.

Theorem 3. Let I = [a, b]. If $I \subseteq \bigcup_{i=1}^{\infty} I_i$, then $|I| \le \sum_{i=1}^{\infty} |I_i|$.

Proof. The proof is by induction. Assume $I \subseteq \bigcup_n^{N+1} I_n$, where wlog we can assume that $a < a_{N+1} < b \le b_{N+1}$, then $[a,a_{N+1}] \subset \bigcup_{n=1}^N I_n$ so the inductive hypothesis applies. But then $b-a \le b_{N+1}-a=(b_{N+1}-a_{N+1})+(a_{N+1}-a) \le \sum_{n=1}^{N+1} |I_n|$.

Note that this proves that the reals are uncountable!

2 Lecture 2