Ekvivalence a blokové modelování

Mgr. Tomáš Diviák, tomas.diviak@seznam.cz Workshop "Společnost a sítě" 9. 12. 2015

Role a pozice v SNA

- Klasické sociologické pojmy v sítích zakotveny skrz pojem ekvivalence
- **Pozice = status -** "souhrn individuí *(uzlů),* která jsou podobně zakotvena v síti vztahů"
- Role "vzorce vztahů (vazeb), které se uplatňují mezi aktéry nebo mezi pozicemi" (Wasserman & Faust 1994: 348)
- -> pozice = uzly se stejnými rolemi
- X kohezivní podskupiny (e. g. kliky) podobné vazby X vzájemné propojení

Strukturní ekvivalence

- Uzly jsou SE tehdy, pokud mají vazby o stejné intenzitě ke stejným uzlům (Lorrain & White 1971; Hanneman & Riddle 2005).
- Záměnou uzlů z jedné pozice se síť nezmění.
- Striktní pojetí -> empiricky vzácná -> míry podobnosti (eukleidovské vzdálenosti, korelace)
- Např. dva učitelé ve dvou třídách nejsou SE (x socg. teorie) – u malých sítí to však nevadí.

Regulérní ekvivalence

- Uzly jsou RE tehdy, pokud mají vazby ke stejným uzlům, které jsou rovněž ve stejné pozici (Wasserman & Faust 1994: 473).
- Nemusí mít v jedné síti **jedno řešení**.
- Aplikovatelné na ohodnocené i multirelační sítě, ALE vyžaduje orientované vazby (Borgatti et al. 2013: 223).
- Např. dva učitelé v různých třídách jsou RE.

Příklad

Měření podobností

- Perfektní ekvivalence jakéhokoliv typu je vzácná.
- Využívá se měření podobnosti profilů korelace (resp. míry asociace) nebo eukleidovské vzdálenosti (Borgatti et al. 2013: 211).
- MDS nebo klastrová analýza -> shluk/podobné umístění v grafu = ekvivalenční třída/pozice
- Klastrová analýza ale nenavrhuje model rolí a
 pozic + její běžné nevýhody (homogenita souboru
 nebo vytvoření nadbytku shluků apod. Hendl
 2009: 496)

Blokové modelování

- Blok dvě pozice a všechny vazby mezi uzly do nich náležejících (Batagelj et al. 2010)
- Blokové modelování proces zjednodušení sítě jejím vyčerpávajícím rozdělením do bloků (Borgatti et al. 2013: 216)
- Image matice matice bloků
- Image graf digram vzniknuvší z image matice
- -> blokové modelování jako redukce sítě
- 1-blok a 0-blok image blok (ne)zahrnující vazby
 - různá kritéria (hustota či průměr)

Blokové modelování II.

- 2 přístupy klasické (induktivní) a generalizované (deduktivní; Batagelj et al. 2010)
- Klasickému vytýkána arbitrárnost a nedostatečná teoretická fundovanost.
- Generalizované je omezené na binární vazby a větší sítě -> závažnější.
- Aplikace (Wasserman & Faust 1994: 394):
 - Zjednodušená reprezentace sítě
 - Porovnávání strukturních vzorců napříč sítěmi
 - Teoretická interpretace a validace teorií.

Metody blokového modelování (SE)

- CONCOR binární strom dělící síť na podmnožiny vnitřně homogenních uzlů (tj. korelujících vektorů podobností; divizivní)
 - Pouze sudé počty pozic
 - Široce aplikovatelný na různé druhy vazeb
- Tabu Search optimizace stanovení průměrných profilů bloků a poté snaha o jejich co nejmenší rozptyl (k-means)
 - Teoreticky má být lepší než CONCOR

Metody blokového modelování (RE)

- REGE a CATREGE iterativní algoritmus porovnávající podobnost sousedství uzlů, z nichž vzešlé podobnosti pak klastruje
 - Vyžaduje min. jeden "přijímač" a jeden "vysílač"
- Tabu Search optimizace nestabilní řešení (více řešení RE i počátečních parametrů)

Ověřování adekvátnosti ekvivalentních tříd

- Koeficient eta korelace empirické a teoretické (0 – 1) matice
- Newmanova Girvanova modularita Q –
 poměr sedících a nesedících vazeb –
 náhodná síť (max. = 1- 1/počet pozic)
- R squared korelace blokové matice a ideální blokové matice

Srovnání různých metod (SE)

Třídy (pozice) strukturně ekvivalentních uzlů v síti kauzy Nagyová										
		Structural BM	Profile	Hierarchical						
	CONCOR	Optimization	Similarities	Clustering						
klastry	Jana Nagyová	Roman Boček	Jana Nagyová	Jana Nagyová						
	Petr Nečas	Ondrej Paleník	Petr Nečas	Petr Nečas						
	Milan Kovanda	Jan Pohůnek	Ivan Fuksa	Libor Grygárek						
	Roman Janoušek	Lubomír Poul	Marek Šnajdr	Roman Janoušek						
	Lubomír Poul	Ivo Rittig	Petr Tluchoř	Lubomír Poul						
	Ivo Rittig	Libor Grygárek	Roman Boček	Ivo Rittig						
	Tomáš Hrdlička	Václav Ryba	Milan Kovanda	Tomáš Hrdlička						
	Ivan Fuksa	Tomáš Hrdlička	Jan Pohůnek	Milan Kovanda						
	Marek Šnajdr	Jiří Toman	Ondrej Paleník	Jan Pohůnek						
	Petr Tluchoř	Jana Nagyová	Roman Janoušek	Ondrej Páleník						
	Roman Boček	Ivan Fuksa	Lubomír Poul	Marek Šnajdr						
	Jan Pohůnek	Petr Tluchoř	Ivo Rittig	Roman Boček						
	Ondrej Páleník	Marek Šnajdr	Tomáš Hrdlička	Ivan Fuksa						
	Václav Ryba	Petr Nečas	Václav Ryba	Petr Tluchoř						
	Libor Grygárek	Milan Kovanda	Libor Grygárek	Václav Ryba						
	Jiří Toman	Roman Janoušek	Jiří Toman	Jiří Toman						
∃ta	0,623	0,35	0,481	0,35						
J	0,097	0,01	0,01	-0,055						
E-I	-0,601	0,428	0,699	0,833						
32	0,363	0,759	N/A	N/A						

Příklad blokmodelu (CONCOR)

	Blokmodel procedury CONCOR se čtyřmi pozicemi																
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	Ivo Rittig			1	1	2											
2	Tomáš Hrdlička			1	1	1											
3	Petr Nečas	1	1		3	10	3	1	3	1	5	3	5	2			
4	Roman Janoušek	1	1	3		3	1				1	1	1				
5	Jana Nagyová	2	1	10	3		3	1	3	2	5	3	4	2			
6	Milan Kovanda			3	1	3			1	1	2	1	2	2			
7	Lubomír Poul			1		1											
8	Roman Boček			3		3	1			1	3	2	3	1			
9	Ondrej Páleník			1		2	1		1		1	1	1	1			
10	Ivan Fuksa			5	1	5	2		3	1		4	6	1			
11	Petr Tluchoř			3	1	3	1		2	1	4		4	1			
12	Marek Šnajdr			5	1	4	2		3	1	6	4		1			
13	Jan Pohůnek			2		2	2		1	1	1	1	1				
14	Václav Ryba																
15	Libor Grygárek																
16	Jiří Toman																

Dendrogram REGE

UCINET

Základní literatura

- Batagelj, V., P. Doreian, A. Ferligoj. 2010. Positions and Roles. pp 434 447 in P. J. Carrington, J. Scott (eds.). *Handbook of Social Network Analysis*. Thousand Oaks: SAGE
- Borgatti, S. P., M. G. Everett, L.C. Freeman. 2002. *UCINET 6 for Windows: Software for Social Network Analysis.* Harvard: Analytic Technologies
- Borgatti S. P, M. G. Everett, J. C. Johnson. 2013. Analyzing Social Networks. London: SAGE
- Doreian, P., V. Batagelj, A. Ferligoj. 2005. Generalized Blockmodeling.
 Cambridge: Cambridge University Press
- Hanneman, R. A., M. Riddle. 2005. *Introduction to Social Network Methods*. Riverside: University of California. [online] Dostupné z: http://faculty.ucr.edu/~hanneman/nettext/ [cit. k 10. 5. 2014]
- Lorrain, F., H. C. White. 1971. Structural Equivalence of Individuals in Social Networks. *Journal of Mathematical Sociology* 1: 49-80
- Wassermann, S., K. Faust. 1994. *Social Network Analysis: Methods and Applications*. Cambridge: Cambridge University Press

Díky za pozornost ©

