Aufgabe 1. Sei (Ω, \mathscr{F}, P) ein Wahrscheinlichkeitsraum und $\mathscr{A} = \{\emptyset, \Omega\}$ die triviale σ -Algebra. Zeigen Sie $E[X|\mathscr{A}] = E[X]$ für alle $X \in L^1(\Omega, \mathscr{F}, P)$.

Zunächst einmal ist E[X] irgendeine konstante Zahl. Das Urbild davon ist also ganz Ω . Somit ist E[X] \mathscr{A} -messbar. Weiterhin gilt $\int_{\Omega} E[X] dP = E[X] \int_{\Omega} dP = E[X] \cdot 1 = \int_{\Omega} X dP$, sodass $E[X|\mathscr{A}] = E[X]$ gilt.

Aufgabe 2. Zeigen Sie die folgenden Aussagen

i) Ist $(X_i)_{i\in I}$ gleichgradig integrierbar und $(\mathcal{F}_j)_{j\in J}$ eine Familie von Unter- σ -Algebren von \mathcal{A} . Dann ist die Familie $(E[X_i, \mathcal{F}_j])_{i\in I, j\in J}$ gleichgradig integrierbar.

Da (X_i) gleichgradig integrierbar ist gibt es ein L>0, sodass für alle $i\in I$ gilt $E[|X_i|]\leq L$, wobei man sich überlegen müsste, warum genau. Zudem gilt, da (X_i) gleichgradig integrierbar ist, dass für alle $\varepsilon>0$ ein $\delta>0$ existiert, sodass für alle $i\in I$ und alle $A\in \mathcal{A}$ mit $P(A)\leq \delta$ gilt $E[|X|\mathbbm{1}_A]<\varepsilon$. Sei nun $k=L/\delta$ und $Y=E[X\mid\mathcal{G}]$ Dann gilt für alle $i\in I$ und $j\in J$ mit der Jensen'schen Ungleichung $|Y|\leq E[|X|\mid\mathcal{F}_j]$. Mit der Markov-Ungleichung kriegen wir nun

$$P(|Y| > k) \le \frac{E[|Y|]}{k} \le \frac{E[|X|]}{k} \le L/k \le \delta$$
.

Damit folgt, nach der obigen Erklärung, $E[|Y|\mathbb{1}_{|Y|>k}] \leq E[|X|\mathbb{1}_{|Y|>k}] < \varepsilon$, also ist $(E[X_i, \mathcal{F}_j])_{ij}$ gleichgradig integrierbar.

ii) Ist $X \in L^1(\Omega, \mathcal{A}, P)$, dann ist $(E[X|\mathcal{F}_j])_{j \in J}$ gleichgradig integrierbar. Für ein $k \in \mathbb{R}$ und ein $j \in J$ sei $Y = E[X|\mathcal{F}_j]$ und $Z = E[|X| \mid \mathcal{F}_j]$. Dann gilt wegen der Jensen'schen Ungleichung der bedingten Erwartung

$$E[|E[X|\mathcal{F}_j]|\mathbb{1}_{|E[X|\mathcal{F}_j]|>k}] \le E[E[|X||\mathcal{F}_j]\mathbb{1}_{E[|X||\mathcal{F}_j]>k}].$$

Folglich gilt, wobei unklar ist, warum,

$$= E[|X|\mathbb{1}_{E[|X||\mathcal{F}_i]>k}].$$

Sei nun k hinreichend groß, dass $E[|E[|X| \mid \mathcal{F}_j]|] < k\delta$. Dann gilt mit der Markov-Ungleichung $P(E[|X| \mid \mathcal{F}_j] > k) \leq \frac{E[E[|X||\mathcal{F}_j]]}{k} = \frac{E[|X|]}{k} < \delta$. Da $X \in L^1$ ist, gilt dann $E[|E[X|\mathcal{F}_j]|\mathbbm{1}_{|E[X|\mathcal{F}_j]|>k}] < \varepsilon$. Eventuell genauer zeigen, warum das gilt.