Assignment Date: 21 September 2022

Student Name: Pavithra T

Student Roll Number: 611219106056

Maximum Marks: 2 Marks

▼ 1.Download the dataset from the source <u>here</u>.

About the dataset:

This dataset is all about churn modelling of a credit company. It has the details about the end user who are using credit card and also it has some variables to depicit the churn of the customer.

RowNumber - Serial number of the rows

CustomerId - Unique identification of customer

Surname - Name of the customer

CreditScore - Cipil score of the customer

Geography - Location of the bank

Gender - Sex of the customer

Age - Age of the customer

Tenure - Repayment period for the credit amount

Balance - Current balance in thier creidt card

NumOfProducts - Products owned by the customer from the company

HasCrCard - Has credit card or not (0 - no , 1 - yes)

IsactiveMember - Is a active member or not

EstimatedSalary - Salary of the customer

Exited - Churn of the customer

```
import warnings
warnings.filterwarnings("ignore")

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

2. Load the dataset

```
df = pd.read_csv("Churn_Modelling.csv")
df.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Ba
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	838
2	3	15619304	Onio	502	France	Female	42	8	1596
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	1255
4									•

df.tail()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
9995	9996	15606229	Obijiaku	771	France	Male	39	5
9996	9997	15569892	Johnstone	516	France	Male	35	10
9997	9998	15584532	Liu	709	France	Female	36	7
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3
9999	10000	15628319	Walker	792	France	Female	28	4
4								>

→ 3 a). Univariate analysis

```
credit = df['CreditScore']
credit.plot(kind="hist",figsize=(8,5))
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fa6f232c310>

geo = df['Geography'].value_counts()
geo.plot(kind="pie",figsize=(10,8))

<matplotlib.axes._subplots.AxesSubplot at 0x7fa6f1ddc190>

<matplotlib.axes._subplots.AxesSubplot at 0x7fa6f228a090>

sns.distplot(df['Age'],hist=False)

<matplotlib.axes._subplots.AxesSubplot at 0x7fa6f1d8f310>

plt.figure(figsize=(10,8))
sns.countplot(df['Tenure'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fa6f1d0e310>

product = df['NumOfProducts'].value_counts()
product.plot(kind="pie",figsize=(10,8))

<matplotlib.axes._subplots.AxesSubplot at 0x7fa6f1c70d10>

cr = df['HasCrCard'].value_counts()
cr.plot(kind="pie",figsize=(10,8))

plt.figure(figsize=(8,5))
sns.countplot(df['IsActiveMember'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fa6f1b7e590>

sns.distplot(df['EstimatedSalary'],hist=False)

<matplotlib.axes._subplots.AxesSubplot at 0x7fa6f1afe090>


```
plt.figure(figsize=(8,5))
sns.countplot(df['Exited'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fa6f1a75210>

→ 3 b). Bivariate analysis

sns.barplot(x='Gender',y='CreditScore',hue='Geography',data=df)

sns.violinplot(x='Geography',y='Balance',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fa6f1969ed0>

sns.violinplot(x='Geography',y='EstimatedSalary',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fa6f18f3450>

sns.violinplot(x='Gender',y='Balance',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fa6f186ce50>

sns.barplot(x='Exited',y='CreditScore',hue='Gender',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fa6f1849d10>

sns.barplot(x='Exited',y='CreditScore',hue='Geography',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fa6f173e6d0>

sns.barplot(x='IsActiveMember',y='EstimatedSalary',hue='Gender',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fa6f1a44390>

sns.barplot(x='Exited',y='Tenure',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fa6f1a556d0>

→ 3 c). Multivariate analysis

gp1 = df.groupby('Gender')['Geography'].value_counts()
gp1.plot(kind='pie',figsize=(10,8))
print(gp1)

Gender	Geography	
Female	France	2261
	Germany	1193
	Spain	1089
Male	France	2753
	Spain	1388
	Germany	1316

Name: Geography, dtype: int64


```
gp2 = df.groupby('Gender')['Age'].mean()
print(gp2)
```

Gender

Female 39.238389

Male 38.658237

Name: Age, dtype: float64

gp3 = df.groupby(['Gender','Geography'])['Tenure'].mean()
print(gp3)

gp4 = df.groupby(['Gender','HasCrCard','IsActiveMember'])['EstimatedSalary'].mean()
gp4.plot(kind="line",figsize=(10,8))
print(gp4)

Gender	HasCrCard	IsActiveMember	
Female	0	0	102006.080352
		1	102648.996944
	1	0	101208.014567
		1	98510.152300
Male	0	0	99756.431151
		1	99873.931251
	1	0	100353.378996
		1	98914.378703

Name: EstimatedSalary, dtype: float64


```
gp5 = df.groupby(['Gender','IsActiveMember'])['Exited'].value_counts()
gp5.plot(kind='bar',figsize=(10,8))
print(gp5)
```

Gender	IsActiveMember	Exited	
Female	0	0	1534
		1	725
	1	0	1870
		1	414
Male	0	0	2013
		1	577
	1	0	2546
		1	321

Name: Exited, dtype: int64

gp6 = df.groupby('Exited')['Balance','EstimatedSalary'].mean()
print(gp6)

	Balance	EstimatedSalary
Exited		
0	72745.296779	99738.391772
1	91108.539337	101465.677531

4. Descriptive statistics

	count	mean	std	min	25%	
RowNumber	10000.0	5.000500e+03	2886.895680	1.00	2500.75	5.000500
CustomerId	10000.0	1.569094e+07	71936.186123	15565701.00	15628528.25	1.569074
CreditScore	10000.0	6.505288e+02	96.653299	350.00	584.00	6.520000
Age	10000.0	3.892180e+01	10.487806	18.00	32.00	3.700000
Tenure	10000.0	5.012800e+00	2.892174	0.00	3.00	5.000000
Balance	10000.0	7.648589e+04	62397.405202	0.00	0.00	9.719854
NumOfProducts	10000.0	1.530200e+00	0.581654	1.00	1.00	1.000000
HasCrCard	10000.0	7.055000e-01	0.455840	0.00	0.00	1.000000
IsActiveMember	10000.0	5.151000e-01	0.499797	0.00	0.00	1.000000
EstimatedSalary	10000.0	1.000902e+05	57510.492818	11.58	51002.11	1.001939
Exited	10000.0	2.037000e-01	0.402769	0.00	0.00	0.000000
4						>

▼ 5. Handling the missing values

df.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtyne: int64	

There is no missing value in the dataset

→ 6. Finding outliers

```
def replace_outliers(df, field_name):
    Q1 = np.percentile(df[field_name],25,interpolation='midpoint')
    Q3 = np.percentile(df[field_name],75,interpolation='midpoint')
    IQR = Q3-Q1
    maxi = Q3+1.5*IQR
    mini = Q1-1.5*IQR
    df[field_name]=df[field_name].mask(df[field_name]>maxi,maxi)
    df[field_name]=df[field_name].mask(df[field_name]<mini,mini)

plt.title("Before removing outliers")
sns.boxplot(df['CreditScore'])
plt.show()
plt.title("After removing outliers")
replace_outliers(df, 'CreditScore')
sns.boxplot(df['CreditScore'])
plt.show()</pre>
```



```
plt.title("Before removing outliers")
sns.boxplot(df['Age'])
plt.show()
plt.title("After removing outliers")
replace_outliers(df, 'Age')
sns.boxplot(df['Age'])
plt.show()
```

Before removing outliers

After removing outliers

sns.boxplot(df['Balance'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fa6f07bb390>

sns.boxplot(df['EstimatedSalary'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fa6f071efd0>

Outliers from Age and Credit Score columns are removed

▼ 7. Check for categorical column and perform encoding.

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

df['Gender'] = le.fit_transform(df['Gender'])
df['Geography'] = le.fit_transform(df['Geography'])

df.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Ва
0	1	15634602	Hargrave	619.0	0	0	42.0	2	
1	2	15647311	Hill	608.0	2	0	41.0	1	838
2	3	15619304	Onio	502.0	0	0	42.0	8	1590
3	4	15701354	Boni	699.0	0	0	39.0	1	
4	5	15737888	Mitchell	850.0	2	0	43.0	2	125
4									•

Only two columns(Gender and Geography) is label encoded

Removing unwanted columns and checking for feature importance

```
df = df.drop(['RowNumber','CustomerId','Surname'],axis=1)
df.head()
```

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	619.0	0	0	42.0	2	0.00	1	1
1	608.0	2	0	41.0	1	83807.86	1	0
2	502.0	0	0	42.0	8	159660.80	3	1
3	699.0	0	0	39.0	1	0.00	2	0
4	850.0	2	0	43.0	2	125510.82	1	1
4								•

```
plt.figure(figsize=(20,10))
df_lt = df.corr(method = "pearson")
df_lt1 = df_lt.where(np.tril(np.ones(df_lt.shape)).astype(np.bool))
sns.heatmap(df_lt1,annot=True,cmap="coolwarm")
```


- 1. The Removed columns are nothing to do with model building.
- 2. Feature importance also checked using pearson correlation.

▼ 8. Data Splitting

9. Scaling the independent values

```
from sklearn.preprocessing import StandardScaler
se = StandardScaler()

data['CreditScore'] = se.fit_transform(pd.DataFrame(data['CreditScore']))
data['Age'] = se.fit_transform(pd.DataFrame(data['Age']))
data['Balance'] = se.fit_transform(pd.DataFrame(data['Balance']))
data['EstimatedSalary'] = se.fit_transform(pd.DataFrame(data['EstimatedSalary']))
data.head()
```

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrC
0	-0.326878	0	0	0.342615	2	-1.225848	1	
1	-0.440804	2	0	0.240011	1	0.117350	1	
2	-1.538636	0	0	0.342615	8	1.333053	3	
3	0.501675	0	0	0.034803	1	-1.225848	2	
4	2.065569	2	0	0.445219	2	0.785728	1	
4								>

→ 10. Train test split

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(data,target,test_size=0.25,random_state=1
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_train.shape)
```

(7500, 10) (2500, 10) (7500,) (2500,)

Colab paid products - Cancel contracts here

• X