Class15:Pertussis and the CMI-PB project

Xiaoyan Wang(A16454055)

1. Investigating pertussis cases by year

Q1. With the help of the R "addin" package datapasta assign the CDC pertussis case number data to a data frame called cdc and use ggplot to make a plot of cases numbers over time.

```
##install.packages("datapasta")
library(ggplot2)
```

Warning: package 'ggplot2' was built under R version 4.3.3

```
cdc<-data.frame(
                           Year = c(1922L,
                                     1923L,1924L,1925L,1926L,1927L,1928L,
                                     1929L, 1930L, 1931L, 1932L, 1933L, 1934L, 1935L,
                                     1936L,1937L,1938L,1939L,1940L,1941L,
                                     1942L, 1943L, 1944L, 1945L, 1946L, 1947L, 1948L,
                                     1949L,1950L,1951L,1952L,1953L,1954L,
                                     1955L,1956L,1957L,1958L,1959L,1960L,
                                     1961L, 1962L, 1963L, 1964L, 1965L, 1966L, 1967L,
                                     1968L,1969L,1970L,1971L,1972L,1973L,
                                     1974L, 1975L, 1976L, 1977L, 1978L, 1979L, 1980L,
                                     1981L,1982L,1983L,1984L,1985L,1986L,
                                     1987L, 1988L, 1989L, 1990L, 1991L, 1992L, 1993L,
                                     1994L,1995L,1996L,1997L,1998L,1999L,
                                     2000L,2001L,2002L,2003L,2004L,2005L,
                                     2006L,2007L,2008L,2009L,2010L,2011L,2012L,
                                     2013L,2014L,2015L,2016L,2017L,2018L,
                                     2019L, 2020L, 2021L, 2022L),
 No..Reported.Pertussis.Cases = c(107473,
                                     164191,165418,152003,202210,181411,
                                     161799, 197371, 166914, 172559, 215343, 179135,
```

```
265269,180518,147237,214652,227319,103188,
183866,222202,191383,191890,109873,
133792,109860,156517,74715,69479,120718,
68687,45030,37129,60886,62786,31732,28295,
32148,40005,14809,11468,17749,17135,
13005,6799,7717,9718,4810,3285,4249,
3036,3287,1759,2402,1738,1010,2177,2063,
1623,1730,1248,1895,2463,2276,3589,
4195,2823,3450,4157,4570,2719,4083,6586,
4617,5137,7796,6564,7405,7298,7867,
7580,9771,11647,25827,25616,15632,10454,
13278,16858,27550,18719,48277,28639,
32971,20762,17972,18975,15609,18617,6124,
2116,3044)
```

head(cdc)

```
baseplot<- ggplot(cdc) +
  aes(x = Year, y = No..Reported.Pertussis.Cases) +
  geom_point() +
  geom_line() +
  labs(title = "Pertussis Cases by Year(1922-2019)", y = "Number of cases")
baseplot</pre>
```

Pertussis Cases by Year(1922–2019)

2. A tale of two vaccines (wP & aP)

Q2. Using the ggplot geom_vline() function add lines to your previous plot for the 1946 introduction of the wP vaccine and the 1996 switch to aP vaccine (see example in the hint below). What do you notice?

```
baseplot+
  geom_vline(xintercept = 1946, col = "blue") +
  geom_vline(xintercept = 1996, col = "red") +
  geom_vline(xintercept = 2020, col = "grey40") +
  geom_vline(xintercept = 2007, col = "green4")
```


Q3. Describe what happened after the introduction of the aP vaccine? Do you have a possible explanation for the observed trend?

The cases start to increase. No dramatic increase in the first few years but we start to see a big increase starting 2004, ~8-10 years after switching the vaccine.

There is a ~ 10 year log from aP roll out to increase cases numbers. This holds true of other countries like Japan, UK, etc.

Key Question. Why does the aP vaccine induced immunity wane faster than that of the wP vaccine?

3. Exploring CMI-PB data

```
# Allows us to read, write and process JSON data
library(jsonlite)
```

Warning: package 'jsonlite' was built under R version 4.3.3

```
subject <- read_json("https://www.cmi-pb.org/api/subject", simplifyVector = TRUE)
head(subject, 3)</pre>
```

```
subject_id infancy_vac biological_sex
                                                       ethnicity race
1
           1
                                  Female Not Hispanic or Latino White
2
           2
                      wP
                                  Female Not Hispanic or Latino White
3
           3
                      wP
                                                         Unknown White
                                  Female
 year_of_birth date_of_boost
                                    dataset
1
     1986-01-01
                   2016-09-12 2020_dataset
2
     1968-01-01
                   2019-01-28 2020_dataset
3
     1983-01-01
                   2016-10-10 2020_dataset
```

Q4. How many aP and wP infancy vaccinated subjects are in the dataset?

table(subject\$infancy_vac)

aP wP 87 85

Q5. How many Male and Female subjects/patients are in the dataset?

table(subject\$biological_sex)

Female Male 112 60

Q6. What is the breakdown of race and biological sex (e.g. number of Asian females, White males etc...)?

table(subject\$biological_sex, subject\$race)

		/					_
	American	Indian/Alaska	a Native	Asian	Black (or African	American
Female			0	32			2
Male			1	12			3
	More Than	n One Race Nat	cive Haw	aiian (or Other	r Pacific	Islander
Female		15					1
Male		4					1
	Unknown o	or Not Reporte	ed White				
Female			l4 48				
Male			7 32				

Q: Does this do a good job of representing the US populus?

No it is not representative. There are some groups that are poorly representedd

```
library(lubridate)
```

```
Warning: package 'lubridate' was built under R version 4.3.3
```

Attaching package: 'lubridate'

The following objects are masked from 'package:base':

date, intersect, setdiff, union

Side-Note: Working with dates

```
today()
```

[1] "2024-11-25"

```
today() - ymd("2000-01-01")
```

Time difference of 9095 days

```
time_length( today() - ymd("2000-01-01"), "years")
```

[1] 24.90075

Q7. Using this approach determine (i) the average age of wP individuals, (ii) the average age of aP individuals; and (iii) are they significantly different?

```
# Use todays date to calculate age in days
subject$age <- today() - ymd(subject$year_of_birth)</pre>
```

```
library(dplyr)
```

Warning: package 'dplyr' was built under R version 4.3.3

```
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
ap <- subject %>% filter(infancy_vac == "aP")
round( summary( time_length( ap$age, "years" ) ) )
   Min. 1st Qu. Median
                           Mean 3rd Qu.
                                            Max.
     22
             26
                     27
                             27
                                     28
                                              34
# wP
wp <- subject %>% filter(infancy_vac == "wP")
round( summary( time_length( wp$age, "years" ) ) )
   Min. 1st Qu. Median
                           Mean 3rd Qu.
                                            Max.
     22
             32
                     34
                             36
                                     39
                                              57
```

Q8. Determine the age of all individuals at time of boost?

```
int <- ymd(subject$date_of_boost) - ymd(subject$year_of_birth)
age_at_boost <- time_length(int, "year")
head(age_at_boost)</pre>
```

- [1] 30.69678 51.07461 33.77413 28.65982 25.65914 28.77481
- **Q9.** With the help of a faceted boxplot or histogram (see below), do you think these two groups are significantly different?

```
ggplot(subject) +
  aes(time_length(age, "year"),
      fill=as.factor(infancy_vac)) +
  geom_histogram(show.legend=FALSE) +
  facet_wrap(vars(infancy_vac), nrow=2) +
  xlab("Age in years")
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
# Complete the API URLs...
specimen <- read_json("https://www.cmi-pb.org/api/specimen", simplifyVector = TRUE)
titer <- read_json("https://www.cmi-pb.org/api/plasma_ab_titer", simplifyVector = TRUE)
head(titer)</pre>
```

	specimen_id	isotype	is_antigen	_specific	antigen	MFI	MFI_normalised
1	1	IgE		FALSE	Total	1110.21154	2.493425
2	1	IgE		FALSE	Total	2708.91616	2.493425
3	1	${\tt IgG}$		TRUE	PT	68.56614	3.736992
4	1	${\tt IgG}$		TRUE	PRN	332.12718	2.602350
5	1	${\tt IgG}$		TRUE	FHA	1887.12263	34.050956
6	1	IgE		TRUE	ACT	0.10000	1.000000

```
unit lower_limit_of_detection
1 UG/ML 2.096133
2 IU/ML 29.170000
3 IU/ML 0.530000
4 IU/ML 6.205949
5 IU/ML 4.679535
6 IU/ML 2.816431
```

Q9. Complete the code to join specimen and subject tables to make a new merged data frame containing all specimen records along with their associated subject details:

```
meta <- inner_join(specimen, subject)</pre>
```

Joining with `by = join_by(subject_id)`

dim(meta)

[1] 1503 14

head(meta)

	specimen_id	subject_id	actual _.	_day_relative_	to_boost		
1	1	1			-3		
2	2	1			1		
3	3	1			3		
4	4	1			7		
5	5	1			11		
6	6	1			32		
	planned_day_	_relative_to	_boost	specimen_type	visit in	nfancy_vac	biological_sex
1			0	Blood	1	wP	Female
2			1	Blood	2	wP	Female
3			3	Blood	3	wP	Female
4			7	Blood	4	wP	Female
5			14	Blood	5	wP	Female
6			30	Blood	6	wP	Female
		ethnicity	race	year_of_birth	date_of_b	ooost	dataset
1	Not Hispanio	or Latino	White	1986-01-01	2016-0	9-12 2020_	dataset
2	Not Hispanio	or Latino	White	1986-01-01	2016-0	9-12 2020_	dataset
3	Not Hispanio	or Latino	White	1986-01-01	2016-0	9-12 2020_	dataset
4	Not Hispanio	or Latino	White	1986-01-01	2016-0	9-12 2020_	_dataset

Q10. Now using the same procedure join meta with titer data so we can further analyze this data in terms of time of visit aP/wP, male/female etc.

```
abdata <- inner_join(titer, meta)
```

Joining with `by = join_by(specimen_id)`

dim(abdata)

[1] 52576 21

Q11. How many specimens (i.e. entries in abdata) do we have for each isotype?

```
table(abdata$isotype)
```

```
IgE IgG IgG1 IgG2 IgG3 IgG4
6698 5389 10117 10124 10124 10124
```

Q12. What are the different \$dataset values in abdata and what do you notice about the number of rows for the most "recent" dataset?

```
table(abdata$visit)
```

```
1
        2
             3
                        5
                                   7
                                              9
                                                  10
                                                             12
                              6
                                         8
                                                        11
8280 8280 8420 6565 6565 6210 5810
                                      815
                                           735
                                                 686
                                                       105
                                                            105
```

4. Examine IgG Ab titer levels

```
igg <- abdata %>% filter(isotype == "IgG")
head(igg)
```

```
specimen_id isotype is_antigen_specific antigen
                                                             MFI MFI_normalised
1
            1
                   IgG
                                       TRUE
                                                  PT
                                                        68.56614
                                                                        3.736992
2
            1
                   IgG
                                       TRUE
                                                 PRN
                                                      332.12718
                                                                        2.602350
3
            1
                   IgG
                                       TRUE
                                                 FHA 1887.12263
                                                                       34.050956
                                                        20.11607
4
           19
                   IgG
                                       TRUE
                                                  PT
                                                                        1.096366
5
           19
                                       TRUE
                                                 PRN
                                                      976.67419
                                                                        7.652635
                   IgG
                                       TRUE
                                                 FHA
           19
                   IgG
                                                        60.76626
                                                                        1.096457
   unit lower_limit_of_detection subject_id actual_day_relative_to_boost
1 IU/ML
                         0.530000
                                             1
                                                                           -3
2 IU/ML
                                             1
                                                                           -3
                         6.205949
3 IU/ML
                                                                           -3
                         4.679535
                                             1
4 IU/ML
                         0.530000
                                             3
                                                                           -3
5 IU/ML
                                             3
                                                                           -3
                         6.205949
6 IU/ML
                         4.679535
                                             3
                                                                           -3
  planned_day_relative_to_boost specimen_type visit infancy_vac biological_sex
                                           Blood
                                                                             Female
1
                                0
                                                     1
                                                                 wP
2
                                0
                                           Blood
                                                     1
                                                                 wP
                                                                             Female
3
                                0
                                           Blood
                                                     1
                                                                 wP
                                                                             Female
4
                                0
                                           Blood
                                                     1
                                                                 wP
                                                                             Female
5
                                0
                                                                 wP
                                                                             Female
                                           Blood
                                                     1
                                0
6
                                           Blood
                                                     1
                                                                 wP
                                                                             Female
                ethnicity race year_of_birth date_of_boost
                                                                    dataset
1 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
2 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
3 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
                                    1983-01-01
4
                  Unknown White
                                                   2016-10-10 2020_dataset
5
                  Unknown White
                                    1983-01-01
                                                   2016-10-10 2020_dataset
                  Unknown White
6
                                                   2016-10-10 2020_dataset
                                    1983-01-01
         age
1 14208 days
2 14208 days
3 14208 days
4 15304 days
5 15304 days
6 15304 days
```

Q13. Complete the following code to make a summary boxplot of Ab titer levels (MFI) for all antigens:

```
ggplot(igg) +
  aes(x = MFI_normalised, y = antigen) +
  geom_boxplot() +
  xlim(0, 75) +
  facet_wrap(vars(visit), nrow = 2)
```

Warning: Removed 5 rows containing non-finite outside the scale range (`stat_boxplot()`).

Q14. What antigens show differences in the level of IgG antibody titers recognizing them over time? Why these and not others?

PT, PRN, FIM2/3 and FHA

```
ggplot(igg) +
  aes(MFI_normalised, antigen, col=infancy_vac ) +
  geom_boxplot(show.legend = FALSE) +
  facet_wrap(vars(visit), nrow=2) +
  xlim(0,75) +
  theme_bw()
```

Warning: Removed 5 rows containing non-finite outside the scale range (`stat_boxplot()`).


```
igg %>% filter(visit != 8) %>%
ggplot() +
  aes(MFI_normalised, antigen, col=infancy_vac ) +
  geom_boxplot(show.legend = FALSE) +
  xlim(0,75) +
  facet_wrap(vars(infancy_vac, visit), nrow=2)
```

Warning: Removed 5 rows containing non-finite outside the scale range (`stat_boxplot()`).

Q15. Filter to pull out only two specific antigens for analysis and create a boxplot for each. You can chose any you like. Below I picked a "control" antigen ("**OVA**", that is not in our vaccines) and a clear antigen of interest ("**PT**", Pertussis Toxin, one of the key virulence factors produced by the bacterium *B. pertussis*).

```
filter(igg, antigen=="OVA") %>%
    ggplot() +
    aes(MFI_normalised, col=infancy_vac) +
    geom_boxplot(show.legend = TRUE) +
    facet_wrap(vars(visit)) +
    theme_bw()
```



```
filter(igg, antigen=="PT") %>%
    ggplot() +
    aes(MFI_normalised, col=infancy_vac) +
    geom_boxplot(show.legend = TRUE) +
    facet_wrap(vars(visit)) +
    theme_bw()
```


Q16. What do you notice about these two antigens time courses and the PT data in particular?

PT seems to have a rise since day 4 and drops back to a very low level on week 8.

Q17. Do you see any clear difference in aP vs. wP responses?

Yes in OVA but not in PT. The wP in OVA data seems to have a smaller median compare to the aP(if consider <day10)

2021 dataset IgG PT

Dashed lines indicate day 0 (pre-boost) and 14 (apparent peak levels)

Q18. Does this trend look similar for the 2020 dataset?

```
abdata.20 <- abdata %>% filter(dataset == "2020_dataset")

abdata.20 %>%
  filter(isotype == "IgG", antigen == "PT") %>%
  ggplot() +
    aes(x=planned_day_relative_to_boost,
        y=MFI_normalised,
        col=infancy_vac,
        group=subject_id) +
    geom_point() +
    geom_point() +
    geom_vline(xintercept=0, linetype="dashed") +
    geom_vline(xintercept=14, linetype="dashed") +
    labs(title="2020 dataset IgG PT",
        subtitle = "Dashed lines indicate day 0 (pre-boost) and 14 (apparent peak levels)")
```

2020 dataset IgG PT

Dashed lines indicate day 0 (pre-boost) and 14 (apparent peak levels)

Not really. The 2020 dataset has an earlier peak of wP and a later peak of aP appearing, but for 2021 the aP and wP both have a peak at 14 days. Plus, the increase of MFI is more dramatic in 2020.

5. Obtaining CMI-PB RNASeq data

ssrna <- inner_join(rna, meta)</pre>

Joining with `by = join_by(specimen_id)`

```
url <- "https://www.cmi-pb.org/api/v2/rnaseq?versioned_ensembl_gene_id=eq.ENSG00000211896.7"
rna <- read_json(url, simplifyVector = TRUE)
#meta <- inner_join(specimen, subject)</pre>
```

Q19. Make a plot of the time course of gene expression for IGHG1 gene (i.e. a plot of visit vs. tpm).

```
ggplot(ssrna) +
  aes(x=visit, y= tpm, group=subject_id) +
  geom_point() +
  geom_line(alpha=0.2)
```


Q20.: What do you notice about the expression of this gene (i.e. when is it at it's maximum level)?

The expression of tpm raises to peak at visit 4, except a different one that raises to the peak twice, one in visit 4 and the other in visit 8. The general trend is to decrease after visit

Q21. Does this pattern in time match the trend of antibody titer data? If not, why not?

This aligns with the antibody titer data in q15. As the maximum antibody was produced in ~week 5, the gene expression have to increase prior to that to encode antibody proteins. Therefore, it is reasonable that the gene expression was first raised, and then leading to a increase in antibodies.

```
ggplot(ssrna) +
  aes(tpm, col=infancy_vac) +
  geom_boxplot() +
  facet_wrap(vars(visit))
```



```
ssrna %>%
  filter(visit==4) %>%
  ggplot() +
  aes(tpm, col=infancy_vac) + geom_density() +
  geom_rug()
```

