Fluxes

1 March 2016

L = energy emitted per second (erg/s)

flux F = energy received intrinsic luminosity per unit area L = energy emitted $F = L / 4\pi d^2 \text{ (erg/s/cm}^2)$ per second (erg/s)

L = energy emitted per second (erg/s) flux F = energy received per unit area F = L / 4π d² (erg/s/cm²)

$$m_1 - m_2 = -2.5 \log_{10} (F_1/F_2)$$

L = energy emitted per second (erg/s)

flux F = energy received per unit area F = L / 4π d² (erg/s/cm²)

apparent magnitude m =

measure of flux relative to chosen standard

$$m_1 - m_2 = -2.5 \log_{10} (F_1/F_2)$$

distance modulus

$$m - M = 5 \log_{10} (d/10pc)$$

absolute magnitude M = measure of flux you would see if you were 10 pc away

L = energy emitted per second (erg/s)

But remember these are all a function of wavelength!

apparent magnitude m =
measure of flux relative to
chosen standard

$$m_1 - m_2 = -2.5 \log_{10} (F_1/F_2)$$

absolute magnitude M = measure of flux you would see if you were 10 pc away

flux F = energy received per unit area F = L / 4π d² (erg/s/cm²)

flux density = flux per unit wavelength or per unit frequency

 F_{λ} = erg/s/cm²/Å F_{ν} = erg/s/cm²/Hz or Jansky (Jy) = 10^{-26} W/m²/Hz

distance modulus

 $m - M = 5 \log_{10} (d/10pc)$

L = energy emitted per second (erg/s)

Luminosity can be either in a given band or "bolometric" = covering all wavelengths

But remember these are all a function of wavelength!

apparent magnitude m =
measure of flux relative to
chosen standard

$$m_1 - m_2 = -2.5 \log_{10} (F_1/F_2)$$

absolute magnitude M = measure of flux you would see if you were 10 pc away

flux F = energy received per unit area F = L / 4π d² (erg/s/cm²)

flux density = flux per unit wavelength or per unit frequency

 F_{λ} = erg/s/cm²/Å F_{ν} = erg/s/cm²/Hz or Jansky (Jy) = 10^{-26} W/m²/Hz

distance modulus

 $m - M = 5 \log_{10} (d/10pc)$

In pairs...

 If one star is 5 magnitudes fainter than another, how much longer do you have to integrate to get the same number of counts on the fainter star as you got on the brighter star?

• Remember: $m_1 - m_2 = -2.5 \log_{10} (F_1/F_2)$

• (3 minutes)

Main magnitude systems: 1

- Vega magnitudes (Johnson System)
 - Defined so that the magnitude of Vega in any wavelength band is 0. (But better flux calibrations show it is now actually 0.03.)
 - $m_{*,Vega\ system}$ = -2.5 log_{10} (F*/F_{vega})

Flux Densities of Vega in Various Bands (in Jy=10 ⁻²⁶ W m ⁻² Hz ⁻¹)				
U	В	V	R	I
1810	4260	3640	3080	2550
J	Н	K	L	M
1520	980	620	280	153

See Bessel, M.S. 2005, ARA&A, 43, 293

Main magnitude systems: 2

- AB Magnitudes
 - Defined so that an object with constant flux *per unit* frequency (F_v in units of erg/s/cm²/Hz) has the same magnitude in all bands and therefore zero color
 - $m_{band1} m_{band2} = "band1 band2 color"$
 - $m_{AB} = -2.5 \log_{10}(F_v \text{ in erg/s/cm}^2/\text{Hz}) 48.60$

Main magnitude systems: 3

- ST Magnitudes
 - Defined so that an object with constant flux *per unit* wavelength (F_{λ} in units of erg/s/cm²/Å) has the same magnitude in all bands and therefore zero color
 - Remember, F_{λ} d $\lambda = F_{\nu}$ d ν

• $m_{ST} = -2.5 \log_{10}(F_{\lambda} \text{ in erg/s/cm}^2/\text{Å}) - 21.10$

Filter Sets

 Can be broad band (few hundred nm wide) or narrow band (<20 nm)

 There are as many filter sets as there are telescopes (practically!)

Some common optical bands

NIR bands trace atmospheric windows

Flux Densities

- Beyond the optical / near-infrared, other photometric systems use flux density instead of magnitudes (usually in Jy)
 - IRAS + Spitzer in (mid- and) far-infrared
 - Radio
 - UV
 - X-ray

In pairs...

- In the AB magnitude system, your favorite object has a K-band magnitude of 19 and a color of zero. What is its K-band magnitude in the ST system?
- Assume K-band is from 2.0-2.4 microns
 - Remember, F_{λ} d $\lambda = F_{\nu}$ d ν
 - $m_{ST} = -2.5 \log_{10}(F_{\lambda} \text{ in erg/s/cm}^2/\text{Å}) 21.10$
 - $m_{AB} = -2.5 \log_{10}(F_v \text{ in erg/s/cm}^2/\text{Hz}) 48.60$

• (5 minutes)

In pairs...

- In the AB magnitude system, your favorite object has a K-band magnitude of 19 and a color of zero. What is its K-band magnitude in the ST system?
- Assume K-band is from 2.0-2.4 microns
 - Remember, $F_{\lambda} d\lambda = F_{\nu} d\nu$
 - $m_{ST} = -2.5 \log_{10}(F_{\lambda} \text{ in erg/s/cm}^2/\text{Å}) 21.10$
 - $m_{AB} = -2.5 \log_{10}(F_v \text{ in erg/s/cm}^2/\text{Hz}) 48.60$

• (5 minutes)

Converting Flux Densities

$$F_{\lambda} d\lambda = F_{\nu} d\nu$$

$$\lambda v = c$$

$$v = c / \lambda$$

$$\lambda = c / v$$

$$d\lambda/dv = \lambda^2/c$$

$$F_{v} = F_{\lambda} \lambda^{2}/c$$

Flux Calibrating Your Data

- For the most accurate calibration you must:
 - Select (in advance) standard stars bracketing the color of your object
 - Observe them over a range of airmasses at the start and end of the night
 - Gives atmospheric extinction
 - Observe several standards each hour throughout the night
 - Measures variations in zero point (transparency of atmosphere)

Quicker version

- Select a standard star similar in color to your object
- Observe it before and after your observations
- You want your observations of the standard to be at similar airmass when you observe them to the airmass of your object when you observed it!
- If you are observing your object over a wide range of airmasses, you still have to go get standards every hour or so

When you get home...

- After reducing your data, you can calculate instrumental magnitudes
 - $m_{ins} = -2.5 \log_{10}(counts/s)$
- Final answer m = m_{std} + zeropoint + x(airmass) + y(B-V)
 - Use your instrumental magnitudes of your standard stars to calculate the zeropoint and x and y.
 - Usually you can use multiple nights of data to calculate the coefficient for the B-V term but the airmass coefficient should be done nightly.
- Most filters have a zeropoint in the manual, but it's probably only roughly accurate; you should always calibrate yourself!

Flux calibrating spectra

 Similar in theory, except now you take spectra of standard stars and correct directly to them.

Flux calibrating IR spectra

- In the IR, there are no well-calibrated spectrophotometric standards, so you have to correct directly for the telluric absorption by observing a hot star
- Hot stars (commonly AOV) are relatively featureless blackbodies except for Balmer absorption
 - Can divide out the blackbody (and remove hydrogen lines) and recover the transmission curve
 - irtfweb.ifa.hawaii.edu/cgibin/spex/find_a0v.cgi

Flux calibrating IR spectra 2

- Once you've corrected for the telluric spectrum, there
 are some flux calibrator stars that are tabulated in ~50 Å
 bands, so you can bin your spectrum to match
- Lots of IRAF and IDL (and maybe python) routines to accomplish all of these things!

Spectra

- Spectra generally contain three possible components:
 - A smooth continuum (e.g. blackbody radiation)
 - Emission lines (adding to the continuum)
 - Absorption lines (removing the continuum)

Equivalent Widths

 Instead of measuring precise fluxes of emission or absorption lines in a spectrum, we sometimes want to measure the strength of the line relative to the continuum

Which line is strongest? Strongest relative to the continuum?

Equivalent Widths

 Instead of measuring precise fluxes of emission or absorption lines in a spectrum, we sometimes want to measure the strength of the line relative to the continuum

Which line is strongest? Strongest relative to the continuum?

Equivalent Widths

- "Equivalent width" refers to the width of the continuum containing the same amount of flux as the line
- EW = F_{line} / continuum level
- Usually absorption = positive, emission = negative EW

