

Matemática Discreta

Lista de Exercícios para alunos do curso de Matemática, em substituição ao Trabalho Prático.

Data: 17-01-2022

- Professor: Felipe Reis

- Aluno: [insira seu nome aqui]

Pontuação

Valor: 20 pontos

Pontuação

• Seção A: 2 pontos.

• Seção B: 4 pontos.

• Seção C: 3 pontos.

Seção D: 4 pontos.

• Seção E: 4 pontos.

• Seção F: 3 pontos.

Seção A - Lógica Proposicional

[A-01] [Gersting, 2014]

Utilize lógica proposicional para mostrar que o seguinte argumento é válido.

Não é o verdade que, se as tarifas de energia elétrica aumentarem, então o uso diminuirá. Também não é verdade que: novas usinas serão construídas ou as contas não atrasarão. Portanto, o uso não diminuirá e as contas atrasarão.

[insira sua resposta aqui]

[A-02] [Gersting, 2014]

Utilize lógica proposicional para mostrar que o seguinte argumento é válido:

Se as abelhas estão mais ativas e as flores estão florescendo, então deve ser primavera. A primavera traz um clima quente. As flores estão florescendo, mas o tempo não está quente. Portanto, as abelhas não estão mais ativas.

Seção B - Demonstrações

[B-01] [Gersting, 2014]

Considere a seguinte afirmação: Se *n* for um inteiro $2 \le n \le 4$, então temos que $n^2 \ge 2^n$.

- a) Prove ou refute a afirmação.
- b) Indique o método utilizado.

[insira sua resposta aqui]

[B-02] [Gersting, 2014]

Considere a seguinte afirmação: Se n for um inteiro $2 \le n \le 5$, então temos que e $n^2 \ge 2^n$.

- a) Prove ou refute a afirmação.
- b) Indique o método utilizado.

[insira sua resposta aqui]

[B-03] [Kolman, 1996]

Considere a seguinte afirmação: a soma de quaisquer 5 números inteiros consecutivos é divisível por 5.

- a) Prove ou refute a afirmação.
- b) Indique o método utilizado.

[insira sua resposta aqui]

[B-04] [Rosen, 2019]

Considere a afirmação: se x e y são números reais, então max(x,y) + min(x,y) = x+y.

- a) Prove ou refute a afirmação.
- b) Indique o método utilizado.

[insira sua resposta aqui]

[B-05] [Levin, 2019]

Considere a seguinte afirmação: para todos os inteiros \mathbf{a} e \mathbf{b} , se $\mathbf{a}^2 + \mathbf{b}^2$ for impar, então \mathbf{a} ou \mathbf{b} é impar.

- a) Prove ou refute a afirmação.
- b) Indique o método utilizado.

[insira sua resposta aqui]

[B-06] [Gersting, 2014]

Considere a seguinte afirmação: A soma de um inteiro e seu cubo é par.

- a) Prove ou refute a afirmação.
- b) Indique o método utilizado.

[B-07] [Rosen, 2019]

Considere a seguinte afirmação: ao menos um dos números reais a_1 , a_2 , ..., a_n é maior ou igual à média desses números.

- a) Prove ou refute a afirmação.
- b) Indique o método utilizado.

[insira sua resposta aqui]

[B-08] [Kolman, 1996]

Considere a seguinte afirmação: 3 é divisor de n^3 -n para todo inteiro positivo n.

- a) Prove ou refute a afirmação.
- b) Indique o método utilizado.

Seção C - Conjuntos

[C-01]

Responda as questões abaixo:

- I. Escreva, usando <u>construção de conjuntos</u>, o conjunto de números inteiros positivos existentes no intervalo (-5, 3].
- II. Escreva, usando <u>construção de conjuntos</u>, o conjunto de números inteiros ímpares no mesmo intervalo descrito no item I.
- III. Considere S o conjunto descrito no item I. Escreva, usando <u>listas limitadas por chaves</u>, o conjunto potência P(S).
- IV. Indique a cardinalidade conjunto gerado no item III.

[insira sua resposta aqui]

[C-02]

Prove que A \cup (A \cap B) = A (Identidade "Absorção"). [insira sua resposta aqui]

[C-03]

Prove que A ∩ (A ∪ B) = A (Identidade "Absorção"). [insira sua resposta aqui]

[C-04]

Defina (a) conjunto contável e (b) conjunto denumerável. (c) Explique como um conjunto denumerável pode ser mapeado em um conjunto contável (a explicação pode ser feita com exemplos).

[insira sua resposta aqui]

[C-05] [Rosen, 2019]

Explique por quê:

- a) $A \times B \times C \neq (A \times B) \times C$
- b) A × B ≠ B × A, quando A e B não são vazios, exceto se A=B.

[insira sua resposta aqui]

[C-06]

Sejam A= $\{p, q, r, s\}$, B= $\{r, t, v\}$ e C= $\{p, s, t, u\}$ subconjuntos de S= $\{p, q, r, s, t, u, v, w\}$. Determine.

- a) B ∩ C
- b) AUC
- c) ¬C
- d) (A ∩ B) ∩ C
- e) (A ∪ B) ∩ C

Seção D - Relações

[D-01]

Dado o dígrafo abaixo, que representa uma relação R em um conjunto {a, e, i, o}.

- (a) Transforme o dígrafo em listas limitadas por chaves.
- (b) Encontre, se necessário (e justifique, se a relação já for o próprio fecho), os seguintes fechos:
 - I. Fecho Reflexivo
 - II. Fecho Simétrico

[insira sua resposta aqui]

[D-02]

Considere a relação $R = \{(a, a), (b, b), (b, c), (b, d), (c, a), (c, c), (c, d), (d, a), (d, d)\}$ em um conjunto $\{a, b, c, d\}$. Verifique (e justifique) se a relação corresponde a uma:

- I. Ordenação Parcial
- II. Relação de Equivalência.

[insira sua resposta aqui]

[D-03] Adaptado de [Rosen, 2019]

Considere o conjunto $A = \{0, 1, 2, 3\}$. Considere a relação $R = \{(0, 1), (1, 1), (1, 2), (2, 0), (2, 2), (3, 0)\}$. Encontre os seguintes fechos:

- (a) Fecho reflexivo de R.
- (b) Fecho simétrico de R.

[insira sua resposta aqui]

[D-04] Adaptado de [Rosen, 2019]

Considere o conjunto A = $\{0, 1, 2, 3\}$. Considere a relação R = $\{(0, 1), (1, 1), (1, 2), (2, 0), (2, 2), (3, 0)\}$. Encontre o Fecho Transitivo de R (passo a passo).

[D-05] [Rosen, 2019]

Indique se as relações abaixo, no conjunto $A = \{0, 1, 2, 3\}$, são ordenações parciais. Justifique.

- (a) {(0, 0), (1, 1), (2, 2), (3, 3)}
- (b) {(0, 0), (1, 1), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)}

[insira sua resposta aqui]

[D-06]

Considere a relação $R = \{(a, a), (b, b), (b, c), (b, d), (c, a), (c, c), (c, d), (d, a), (d, d)\}$ em um conjunto $\{a, b, c, d\}$. Verifique (e justifique) se a relação corresponde a uma:

- III. Ordenação Parcial
- IV. Relação de Equivalência.

[insira sua resposta aqui]

[D-07] [Hillier, 2001]

Construa o gráfico PERT a partir da tabela de tarefas abaixo.

Tarefa	Pré-requisitos	Tempo
Α	-	2
В	-	1
С	В	2
D	A, B	2
E	A, C	3
F	Α	2
G	Α	1
Н	F, G	1
I	D, H	1
J	I	3
K	E, J	4

[insira sua resposta aqui]

[D-08] [Gersting, 2014]

Construa o gráfico PERT a partir da tabela de tarefas abaixo.

Tarefa	Pré-requisitos	Tempo
Α	G	3
В	A, J	5
С	G	7
D	F	2
E	G	5
F	-	4
G	D, H	1
Н	-	7
I	к	2
J	C, E	3
K	В	6

Seção E - Funções

[E-01] Adaptado de [Rosen, 2019]

Determine se cada uma das funções abaixo, de um conjunto {a, b, c, d} mapeada em si mesmo, são injetoras e sobrejetoras.

(a)
$$f(a) = b$$
, $f(b) = a$, $f(c) = c$, $f(d) = d$

(b)
$$f(a) = b$$
, $f(b) = b$, $f(c) = d$, $f(d) = c$

[insira sua resposta aqui]

[E-02] [Rosen, 2019]

Determine se cada uma das funções abaixo são bijeções de $\mathbb{R} \to \mathbb{R}$.

(a)
$$f(x) = 2x + 1$$

(b)
$$f(x) = x^2 + 1$$

[insira sua resposta aqui]

[E-03] [Rosen, 2019]

Estime as complexidades computacionais da função $f(n) = (n^2 + 8)(n + 1)$.

[insira sua resposta aqui]

[E-04] [Rosen, 2019]

Estime as complexidades computacionais da função $f(n) = (n \log n + n^2)(n^3 + 2)$.

[insira sua resposta aqui]

[E-05]

Verifique se a função $f(x) = 3x^3 - 7x$ é $O(x^2)$. Caso a função não seja $O(x^2)$, indique sua ordem de grandeza.

[insira sua resposta aqui]

[E-06]

Indique a ordem de grandeza da função $f(x) = x^3 + 2^x$.

[insira sua resposta aqui]

[E-07]

Indique a ordem de grandeza da função $f(x) = 3x \log x + 2$.

[insira sua resposta aqui]

[E-08]

Verifique se a função $f(x) = x! + x^3 + x^2 \in O(x^3)$. Caso a função não seja $O(x^3)$, indique sua ordem de grandeza.

Seção F - Indução

[F-01] [Gersting, 2004]

Encontre os primeiros 5 elementos da sequência:

(a)
$$S(1) = 10$$

$$S(n) = S(n-1) + 10$$
, para $n \ge 2$

(b)
$$C(1) = 5$$

$$C(n) = 2 C(n-1) + 5$$
, para $n \ge 2$

[insira sua resposta aqui]

[F-02] [Gersting, 2004]

Prove, utilizando Indução Matemática, que 1 + 5 + 9 + ... + (4n - 3) = n(2n - 1), para qualquer inteiro positivo n.

[insira sua resposta aqui]

[F-03] [Gersting, 2004]

Prove, por Indução Matemática, que: $n^2 \ge 2n + 3$, para $n \ge 3$.

[insira sua resposta aqui]

[F-04]

Resolva, usando o método Expandir, Advinhar e Verificar, a relação de recorrência:

$$Z(1) = 2$$

$$Z(n) = A(n-1) - 5$$
, para $n \ge 2$

[insira sua resposta aqui]

[F-05]

Resolva, usando o método Expandir, Advinhar e Verificar, a relação de recorrência:

$$B(1) = -2$$

$$B(n) = 2 \cdot B(n-1)$$
, para $n \ge 2$

Referências

- 1. ROSEN, Kenneth. **Matemática Discreta e suas Aplicações**, Tradução da 6a edição em inglês. 2009. Editora Mc-Graw Hill Brasil. ISBN 978-8577260362.
- 2. GERSTING, Judith. Fundamentos Matemáticos para a Ciência da Computação: Um Tratamento Moderno de Matemática Discreta. 5a edição. 2004. Editora LTC, ISBN 978-8521614227.
- 3. LEVIN, Oscar. **Discrete Mathematics An Open Introduction** 3rd edition. 2019. University of Northern Colorado. ISBN: 978-1792901690. *Disponível em:* http://discrete.openmathbooks.org/dmoi3.html.
- 4. HILLIER, Frederick, LIEBERMAN, Gerald. **Introduction to Operations Research.** 7^a edição. 2002. Editora McGraw-Hill. ISBN: 0-07-232169-5.
- 5. KOLMAN, Bernard; BUSBY, Robert C.; ROSS, Sharon Cutler. **Discrete mathematical structures** 3rd edition. 1996. Editora Prentice Hall. ISBN: 978-0135159170.