DATA MINING DSAI 4102

SUCCESS PREDICTION AND
RECOMMENDATION SYSTEMS FOR
GOOGLE APPS BASED ON RATING AND
SENTIMENT DISCREPANCIES

Najla Zuhir Parvathy Premkumar Amna Mohammad Salim

SUPERVISOR: DR. MOSHIUR FARAZI

OUTLINE

- 1. Introduction
- 2. Dataset and Preprocessing
- 3. Exploratory Data Analysis (EDA)
- 4. Methodology
- 5. Results, Business Implications and Next Step
- 6. Conclusion

INTRODUCTION

THE PROBLEM

THE PROBLEM

Star ratings often don't match the sentiment in reviews and is is inconsistent with the opinion expressed in the review.

THE REASON

- 1. Users may give a star rating based on their emotional state
- 2. Reviews often focus on specific app features while star ratings are meant to represent an overall impression, leading to mismatches.
- 3. Users may misinterpret the star rating scale, assigning a score that doesn't align with their written opinion

WHY IS THE PROBLEM CRUCIAL?

- Misleading Ratings
- Trust Issues
- Fewer Downloads
- Competition Problems

Additionally, even a few misaligned reviews can significantly lower the average rating, which is especially important for little apps with a few thousand downloads.

STUDY EXAMPLE

Review	App	Actual Rating	Predicted Rating
			-
I love it. I am addicted to it.	Subway Surfers	1	5
App keeps crashing, reinstalled			
same thing happens FIX IT ASAP	Facebook	5	1
Love it! New favourite social network!	GooglePlus	1	5
I'm 74 and enjoy it. I can't get			
friends anymore. Good game	AngryBirds	1	4

Table 10: Sample of mismatched reviews across apps (Automatically identified by the DCNN model)

Aralika E, R., IBM Research, Sridhara, G., IBM Research, Gantayat, N., IBM Research, Mani, S., & IBM Research. (2018). Fault in your stars: An Analysis of Android App Reviews [Journal-article].

"Fault in Your Stars: An Analysis of Android App Reviews" by IBM Research

Reviews show discrepancies between ratings and sentiments.

PROJECT OBJECTIVE

Objectives:

- 1. Identify successful apps by Investigating ratingsentiment discrepancies.
- 2. Two Discrepancy-driven strategies:
 - App Success classification system
 - App Recommendation System

DATASET AND PREPROCESSING

DATASET

DATA PREPROCESSING

- Missing values
- Redundancies, and irrelevant attributes
- Noise, such as special characters, was removed
- Imbalance was handled using SMOTEENN
- Numerical features like Size and Price were normalized

FEATURE ENGINEERING

SENTIMENT RATING

DISCREPANCY

USER ENGAGEMENT

SUCCESS CATEGORY

FINAL DATASET

No.	Features	Description	
1	App	Name of the application.	
2	Category	The category the app belongs to (e.g., GAME, TOOLS).	
3	Rating	Overall user rating of the app (1 to 5).	
4	Reviews	Number of user reviews submitted for the app	
5	Size	Size of the app in MB.	
6	Installs	Number of users downloads or installs for the app	
7	Type	Indicates whether the app is Paid or Free	
8	Price	Cost of the app (in USD).	
9	Content_Rating	Age group the app is targeted at (e.g., Everyone, Mature 21+, Adults)	
10	Last_Updated	Date the app was last updated on the Play Store	
11	Average_Sentiment_Rating	Average sentiment score for the app based on user reviews, rescaled to align with star ratings	
12	Discrepancy	Difference between the star rating and sentiment rating, highlighting user feedback alignment.	
13	User_Engagement	Measure of user activity based on reviews and installs interaction	
14	Success Category	Categorization of app success as Successful, Moderately Successful, or Unsuccessful.	

EXPLORATORY DATA ANALYSIS (EDA)

Figure 1: Distribution of apps across different categories on the Google Play Store.

Figure 2: Type Vs Rating

Figure 3: Distribution of Content Rating

Figure 4: Distribution of Quantitative Features

Figure 5: Numeric Ratings and Sentiment Ratings Discrepancy

Figure 6: Average Ratings and Sentiment by Category

METHODOLOGY AND RESULTS

TARGET VARIABLE: SUCCESS CATEGORY

Key Features Utilized: User Engagement, Discrepancy, Last Updated

Key Insights:

- Higher user engagement leads to better ratings and app quality.
- Frequent updates reduce rating-sentiment gaps, improving app success.
- [Ahsan Mahmood]. (2019). Identifying the influence of various factors of apps on Google Play apps ratings.
 [Vijayanarayanan A]. (2023). Google Play Store Reviews Prediction Using ML and NLP.

APP SUCCESS CLASSIFICATION

Baseline: Logistic Regression

Accuracy: 61.24 F1-Score: 66.95

Medium-Complexity:

Random Forest

Accuracy: 95.64 F1-Score: 95.73

Medium-Complexity: Decision Tree

Accuracy: 96.68 F1-Score: 96.76

Highly Complex: FNN with hyper-parameters tuning

Accuracy: 80.6 F1-Score: 73.1

RECOMMENDATION SYSTEM - CONTENT BASED

Recommending top apps based on app category and discrepancy threshold

WEB INTERFACE FOR APP

WEB INTERFACE FOR APP

WEB INTERFACE FOR APP

KEY FINDINGS, BUSINESS IMPLICATIONS AND NEXT STEP

FINDINGS

Model Performance

Best Success Prediction Model

- Random Forest accuracy (95.64%) and F1 score (95.73%)
- Decision Tree accuracy (96.68%)

The "Success Category" framework aligns user engagement with sentiment feedback for structured app evaluation.

Recommendation System

- Sentiment-driven content-based filtering
- Weighted features like Ratings, Sentiment Polarity, Discrepancy, and User Engagement
- Better discovery of high-performing apps within user-defined categories

BUSINESS IMPLICATIONS & NEXT STEPS

Business Implications:

- Enhancing User Satisfaction
- Strategic Decision-Making
- Revenue Growth
- Market Competitiveness

Next Steps:

- Enhancing Research Opportunities
- Industry Application
- Developer Tools and Innovations

CONCLUSION

Problem:

- Challenges mobile app marketplace faces.
- Misalignment in app recommendations reduces user satisfaction.

Solution:

- Sentiment-driven machine learning models
- Success Category framework for improved recommendation

Highlights:

- Discrepancies: Identified how misalignment affects application success
- Model Performance: Random Forest and Decision Tree outperformed others
- Key Features: Recent updates strongly correlates to discrepancy, impacting app success
- App success categorization: Successful, Moderately successful and Unsuccessful

REFERENCES

- Intimal University. (2022). Journal of Data Science. Retrieved from http://eprints.intimal.edu.my/1575/1/jods2022_01.pdf
- Parmar, A., Patel, D., Patel, N., & Bansal, A. (2019). Sentiment analysis on user reviews of Google Play Store apps. Smart Innovations in Communication and Computational Sciences, 15–25. https://doi.org/10.1007/s42488-019-00015-w
- Google Play Store dataset. (n.d.). Retrieved from https://www.kaggle.com/lava18/google-play-store-apps
- Singh, R., Sharma, S., & Kumar, D. (2023). Google Play Store reviews prediction using ML and NLP. Journal of Scientific Computing and Engineering Research, 6(4). Retrieved from https://jscer.org/wp-content/uploads/2023-Volume%206-lssue%204/Google%20playstore%20reviews%20prediction%20using%20ML%20and%20NLP%2021.pdf
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017).
 Attention is all you need. arXiv preprint arXiv:1708.04968. Retrieved from https://arxiv.org/abs/1708.04968
- Ruder, S., & Howard, J. (2020). Transfer learning for natural language processing. arXiv preprint arXiv:2006.09739. Retrieved from https://arxiv.org/abs/2006.09739v1
- Mukherjee, D., et al. (2022). User behavior insights from app reviews: The case of Google Play Store.
 Financial Innovation Journal, 15(6). Retrieved from https://fbj.springeropen.com/articles/10.1186/s43093-022-00114-y
- IEEE Explore. (2021). Machine learning trends in app reviews. Retrieved from https://ieeexplore.ieee.org/document/9515087

THANK YOU