Electronic information processing and cybernetics - An algebrasation of the synthesis problem for circuits

Günter Hotz

April 16, 2020

1 Introduction

The occasion for this work is a problem from automata theory: From a given set of building blocks an automaton, whose functionality is predetermined, shall be assembled. From the different, eventually existing solutions the cheapest shall be selected.

A building block $A \in \mathcal{U}$ is a physical, mostly electrical device with Q(A) inputs and Z(A) outputs. For each input a Set S of input signals is permitted, on which the building block reacts with output signals. We assume the following simplifications with regard to the issue, the following holds:

- 1. For each input of the elemnts of \mathcal{U} a set of signals S is prescribed, and each element of S^n is allowed as input signal for A with n = Q(A).
- 2. The set of output signals of $A \in \mathcal{U}$ lies in S^m with m = Z(A).
- 3. If at time t the input signal $s \in S^n$ is applied to A, then the output signal at time t is uniquely determined by s. (We therefore neglect the finite propagation speed of signals).

Thus, the finite automaton is completely described by its function $\phi(A): S^n \to S^m$. It is presumed that inputs and outputs of A are labeled with a fixed numbering from 1 to Q(A), and repesctively from 1 to Z(A). The i-th input (output) is assigned to the i-th component of S^n (S^m).

An element of \mathcal{U} is a circuit. If A and B are circuits with Q(A), or Q(B) inputs and Z(A), or repectively Z(B) outputs, then we build new circuits from A and B by integrating them to a new element $A \times B$ with Q(A) + Q(B) inputs and Z(A) + Z(B) outputs. We declare the i-th input of A as the i-th input of $A \times B$ and the i-th input of B as the Q(A) + i-th input of $A \times B$ (figure 1).

If Z(A) = Q(B) we get from A and B a circuit $B \circ A$ by switching the i-th output of A to the i-th input of B.

A circuit of elements of \mathcal{U} is a device, which is described inductively by the preceding explanations.

If $\phi(A)$ ($\phi(B)$) is the function of circuit A (B), then $\phi(A) \times \phi(B)$ is the function of $A \times B$, and $\phi(B) \circ \phi(A)$ for Q(B) = Z(A) is the function of $B \circ A$.

The costs for the building blocks in \mathcal{U} shall be defined by the function $L: \mathcal{U} \to N \cup 0$. We define:

Figure 1:

$$\begin{array}{rcl} L(A\times B) & = & L(A)+L(B), \\ L(A\circ B) & = & L(A)+L(B). \end{array}$$

Hereby a price is assigned to each circuit.

Now, the task is the following: Given $f: S^n \to S^m$, find a circuit A with $\phi(A) = f$ and

$$L(A) = \min_{B \in \phi^{-1}(f)} \{L(B).\}$$

If f does not fully map to S^n , but only to $R \subset S^n$, then the optimium shall be searched on $\bigcup_{g|R=f} \phi^{-1}(g)$.

The task is generalized in an obvious way, if $Q(f) = Z(F) = S^n$ and f, as it is often the case with finite automata, is determined just by a transformation of S^n ,

In order to solve this problem it appears advantageous to know relations, which allow to generate from an element $A \in \phi^{-1}(f)$ all the elements from the class $\phi^{-1}(f)$.

In the first two sections of this work a theory of interconnection of automata will be developed, as already sketched out in the description of the task.