MA 6.101 Probability and Statistics

Tejas Bodas

Assistant Professor, IIIT Hyderabad

Logistics

- ► Feel free to contact me anytime at tejas.bodas@iiit.ac.in.
- Office @ A5304.
- ► TA list: Around 12 TAs, you will meet them during tutorials
- Lectures: Wednesday and Saturday 10:00 to 11:25
- ► Tutorial on Friday 8:30 to 10:00.
- Phones in pocket, laptops in bag!

Resources

- Wont be following any one particular book.
- Lecture slides will have material from variety of sources.
- Some popular books
 - 1. Introduction to probability by Bertsekas and Tsisiklis (Athena Scientific)
 - 2. Intro. to Probability and Statistics for Engineers and Scientists by Sheldon Ross (Elsevier)
 - 3. A first course in probability by Sheldon Ross (Prentice Hall)
- Some urls
 - 1. https://www.probabilitycourse.com/
 - 2. https://www.statlect.com/
 - 3. https://www.randomservices.org/

Evaluation scheme

- ➤ Quiz 1 : 15%
- ► Midsem exam: 30%.
- ▶ Quiz 2: 10%
- ► Endsem 35 %.
- ➤ Surprise Quiz 10 %

Course Outline

- Module 1 (3 Lectures)Motivation & Probability basics
- Module 2 (11 Lectures)
 All about random variables!
- Module 3 (5 Lectures)
 Conditioning, Modes of convergence, Stochastic Simulation
- Module 4 (3 Lectures)
 Random vectors, Random Processes
- Module 5 (4 lectures)
 Probability inequalities and Statistics

Prerequisites

- Set theory
- ► Limits & Continuity
- ► Differentiation & Integration
- Matrices and Determinants
- These are clickable links to relevant NCERT resources!

Where is probability & statistics useful?

- Machine Learning
- Reinforcement Learning
- Computer Systems (performance analysis)
- Finance (option pricing)
- Operations Research (Inventory management, dynamic pricing)

Random experiments and Sample space

- Random experiment : Experiment involving randomness
 - Coin toss
 - Roll a dice
 - \triangleright Pick a number at random from [0,1].
- Sample space Ω : set of all possible outcomes of the random experiment. It could be a finite or infinite set.

 - $\Omega_u = [0, 1]$
 - $ightharpoonup \Omega_{2c} = \{H, T\} \times \{H, T\} = \{(H, H), (H, T), (T, H), (T, T)\}$

Outcomes and Events

- ▶ Element $\omega \in \Omega$ is called a **sample point** or possible outcome.
- ▶ A subset $A \subseteq \Omega$ is called an **event**.
- Examples of events
 - ightharpoonup Events in the coin experiment: $C_1 = \{T\}$.
 - Events in the dice experiment: $D_1 = \{6\}, D_2 = \{1, 3, 5\}$
 - Events in U[0,1] experiment: $U_1 = \{0.5\}, U_2 = [.25, .75].$
- In this course, we are interested in probability of events.
- Probability of event A is denoted by $\mathbb{P}(A)$.
- It may not be possible to measure/assign probability for every subset A (more later).
- ▶ Any guesses for $\mathbb{P}(C_1), \mathbb{P}(D_1), \mathbb{P}(D_2), \mathbb{P}(U_1)$ and $\mathbb{P}(U_2)$?

Probability theory

{Random experiment, Sample space, Events} are the key ingredients in probability theory.

In probability theory, we are interested in **measuring** the probability of subsets of Ω (events).

Probability measure \mathbb{P} is a **set function**, i.e. it acts on sets and measures the probability of such sets.

Set theory 101

Visualizing operations on events using Venn diagram!

- Complements: A^c
- ▶ \emptyset denotes empty set. $\emptyset \subseteq A$ for all A.
- ▶ Union: $A \cup B$
- ▶ Intersections: $A \cap B$
- ightharpoonup Difference: $A \setminus B$
- Symmetric difference:
- ► Mutually exclusive or disjoint events *A* and *B*:
- ► Identity laws, Complement laws, Associative, Commutative & Distributive laws, De'Morgans law.

Set theory 101–Cardinality & Countability

- ightharpoonup Cardinality of A is denoted by |A|.
- ▶ Inclusion-exclusion principle $|A \cup B| = |A| + |B| |A \cap B|$.
- Inclusion-exclusion principle for n sets ?
- Countable sets: Set A is said to be countable if it is either finite or has 1-1 correspondence with natural numbers \mathbb{N} .
- Uncountable sets: These are sets which are not countable.

Set theory 101 – Monotone sequence of sets

▶ Increasing sequence $A_1 \subseteq A_2 \subseteq A_3 \dots$

▶ Decreasing sequence $A_1 \supseteq A_2 \supseteq A_3 \dots$

- ightharpoonup Examples from U[0,1]:
 - $I_n = [0, 1 \frac{1}{n}]$
 - $D_n = [0, \frac{1}{n}]$

Set theory 101 – Cartesian product of sets

ightharpoonup Cartesian product of sets A and B is denoted by $A \times B$.

▶ $A \times B$ is itself a set whose members are sets of the form (a, b) where $a \in A$ and $b \in B$.

► Suppose $A = \{1, 3, 5\}$ and $B = \{2, 4, 6\}$ what is $A \times B$?

▶ What is $[0,1] \times [0,1]$? unit square!

Set theory 101 – Powersets

Powerset of A is denoted by $\mathcal{P}(A)$ is a set whose members are all possible subsets of A. (\mathcal{P} and \mathbb{P} are different!)

- \blacktriangleright What is $\mathcal{P}(\Omega_c)$?
- ightharpoonup What is $\mathcal{P}(\Omega_d)$?
- ▶ What is $\mathcal{P}(\Omega_u)$?
- ▶ What is the cardinality of $\mathcal{P}(\Omega_c)$, $\mathcal{P}(\Omega_d)$, $\mathcal{P}(\Omega_u)$?
- ▶ For discrete sets Ω , often the power set is denoted by 2^{Ω} .

functions and set functions

- \blacktriangleright What are functions? Functions are rules or maps that map elements from a domain \mathcal{D} to elements in the range \mathcal{R} .
- $ightharpoonup f: \mathcal{D} \to \mathcal{R}.$
- **Example**: $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = x.
- Read more on injection, surjection, bijection!
- ightharpoonup What are set functions? these are functions that act on sets and hence domain $\mathcal D$ is a collection of sets.
- Example: length of closed segments on the real line.
- ▶ $l: \mathcal{D} \to \mathbb{R}_+$ where $\mathcal{D} = \{[a,b]: a \leq b, a, b \in \mathbb{R}\}$ and where l([c,d]) = d-c.

Back to \mathbb{P}

- Why this detour to set theory?
- ightharpoonup Recall that Probability measure $\mathbb P$ acts on sets and measures the probability of such sets.
- In set theory 101 we looked at operations on sets A and B that gave new sets like $A \cup B$, $A \setminus B$, $A \times B$, $\mathcal{P}(A)$.
- ▶ So given $\mathbb{P}(A)$ and $\mathbb{P}(B)$, can we deduce $\mathbb{P}(A \cup B)$ or $\mathbb{P}(A/B)$?
- We want to understand how the probability measure \mathbb{P} acts on sets such as $A \cup B$, $A \setminus B$, $A \times B$.

\mathbb{P} axioms

Probability measure \mathbb{P} is a **set function**.

Axiom 1: $\mathbb{P}(\emptyset) = 0, \mathbb{P}(\Omega) = 1$

Axiom 2: For a set $A \subseteq \Omega$ we have $0 \leq \mathbb{P}(A) \leq 1$.

Axiom 3: For a disjoint collection of events A_1, A_2, \ldots (where

 $A_i \subseteq \Omega$)

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

- ▶ What is in general the domain of \mathbb{P} ? Ω ?
- $\mathcal{P}(\Omega)$? Recall $\mathcal{P}(\Omega) = \{A : A \subseteq \Omega\}$. Seems like a great choice!

Towards a formal definition of \mathbb{P}

Probability measure $\mathbb P$ can be defined as a set-function

 $\mathbb{P}:\mathcal{P}(\Omega)\to [0,1]$ that satisfies the following 3 axioms.

Axiom 1: $\mathbb{P}(\emptyset) = 0, \mathbb{P}(\Omega) = 1$

Axiom 2: For a set $A \subseteq \Omega$ we have $0 \leq \mathbb{P}(A) \leq 1$.

Axiom 3: For a disjoint collection of events A_1, A_2, \ldots (where

 $A_i \subseteq \Omega$

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

- Is there a perceivable problem with this definition?
- The following counter-example will construct a set-function \mathbb{P} for which you cannot assign valid probabilities to every subsets in Ω without violating these axioms.