

# Modelos de Aprendizagem Supervisionada

Bernard da Silva Orientador: Rafael Parpinelli 16/11/2022



Uma sub-área da Aprendizagem de Máquina (Machine Learning)



- O que é aprendizagem?
- E por quê essa pergunta é importante?





- O que que é aprendizagem?
  - Existem várias definições, inclusive:
    - O ato de obter conhecimento.
    - "Aprendizado é qualquer processo pelo qual um sistema melhora sua performance pela experiência." (Herbert Alexander Simon).



- E por quê essa pergunta é importante?
  - Amadurecer como funcionam programas com aprendizagem supervisionada.
  - Habilidade de imitar humanos e substituí-los em certas tarefas monótonas, que exigem alguma inteligência.



 Consiste em "aprender" uma função que mapeia dados de entrada em relação a saída através de exemplos (labels ou rótulos bem estabelecidos)





- Machine Learning é fruto do avanço de várias outras áreas.
- O amadurecimento de ML vem de uma demanda por algoritmos de modelagem mais sofisticados.





O que realmente é Machine Learning?







- Então por quê se fala tanto de Machine Learning hoje em dia? Marketing
- Resultados de uma pesquisa por "Neural Network" e "Machine Learning" no Google







• Então por quê se fala tanto de Machine Learning hoje em dia? **Demanda** 













Machine Learning é a solução de todos os problemas?







Machine Learning é a solução de todos os problemas?







#### **Aplicações**





#### Qual tipo de algoritmo utilizar?





- Qual tipo de modelo treinar?
  - o DEPENDE!
  - Qual é o tipo de dado?
    - Linear
    - Não linear
  - Qual a prioridade?
    - Acurácia
    - Precisão
    - Velocidade de treino
    - Velocidade de inferência
    - Simplicidade
    - Interpretabilidade
  - Qual a finalidade?
    - Regressão
    - Classificação





Conheça seu PROBLEMA!





# **Aprendizagem Supervisionada: Tipos**

- Se divide principalmente em 2 tipos de aplicações:
- Regressão
- Classificação





#### Regressão

- Objetivo: Gerar um modelo (analítico ou não) que melhor represente a distribuição de dados contínuos.
- Realizar predições numéricas sobre algum fenômeno.





Regression



- Existem dois tipos de regressões lineares:
- Simples: refere-se quando temos somente uma variável independente (X) para fazermos a predição.
- Múltipla: refere-se a várias variáveis independentes (X)usadas para fazer a predição.







- Quando aplicar regressão linear?
- Quando há uma boa correlação linear (positiva ou negativa) entre os dados.

## 



O objetivo da regressão linear é encontrar uma reta que consiga definir bem os dados e minimizar a diferença entre o valor real e a saída calculada pelo modelo.

Simples 
$$\Rightarrow yi = \alpha + \beta xi + \epsilon$$
  
 $Múltipla \Rightarrow yi = \alpha + \beta xi1 + \beta xi2 + ... + \beta xin + \epsilon$ 

yi = Variável alvo  $\alpha$  = Intercepto (valor de y quando x for = 0)  $\beta$  = Coeficiente angular (inclinação da reta) xi = Variável desejada  $\epsilon$  = Frro

Existem diversas abordagens para se calcular os coeficientes  $\alpha$  e  $\beta$  da equação da regressão linear, as técnicas baseadas em mínimos quadrados ordinários e gradiente descendente são as mais comuns.



Método dos mínimos quadrados – método usado para definir a reta e obter  $\alpha$  e  $\beta$ 

#### Exemplo regressão linear



|      | Х  | у  | X <sup>2</sup> | y²  | ху |
|------|----|----|----------------|-----|----|
|      | 3  | 7  | 9              | 49  | 21 |
|      | 2  | 5  | 4              | 25  | 10 |
|      | -1 | -1 | 1              | 1   | 1  |
|      | 4  | 9  | 16             | 81  | 36 |
| Soma | 8  | 20 | 30             | 156 | 68 |

$$\beta = \frac{n\Sigma xi. yi - \Sigma xi. \Sigma yi}{n\Sigma xi^2 - (\Sigma xi)^2} \longrightarrow \beta = \frac{4.68 - 8.20}{4.30 - (8)^2} \longrightarrow \beta = 2$$

$$\alpha = \frac{\Sigma y - \beta. \Sigma x}{n} \longrightarrow \alpha = \frac{20 - 2.8}{4} \longrightarrow \alpha = 1$$

$$yi = \alpha + \beta xi$$

$$yi = 1 + 2xi$$



Estes dados são lineares?





Estes dados são lineares?





Estes dados são lineares?



Y é não linear em relação a X Y é linear em relação a X<sup>2</sup>



- Funções não lineares podem ser LINEARIZADAS!
- Função linear por partes (Piecewise linear function)





- Funções não lineares podem ser LINEARIZADAS!
- Transformação de dados



| х    | у       |
|------|---------|
| 3,46 | 2307,23 |
| 3,36 | 2290,87 |
| 1,37 | 23,44   |
| 3,82 | 5285,55 |
| 2,75 | 562,34  |
| 0,73 | 6,44    |
| 0,17 | 1,77    |
| 1,2  | 19,02   |
| 2,3  | 199,53  |
| 2,06 | 114,82  |
| 2,56 | 363,08  |
| 2,04 | 131,58  |
| 3,7  | 6014,25 |
| 2,5  | 316,23  |
| 1,02 | 12,57   |
| 2,11 | 128,82  |
| 3,15 | 1412,54 |
| 0,83 | 5,41    |
| 2,81 | 516,52  |
| 0,23 | 1,7     |



- Funções não lineares podem ser LINEARIZADAS!
- Transformação de dados



| X    | у       |
|------|---------|
| 3,46 | 2307,23 |
| 3,36 | 2290,87 |
| 1,37 | 23,44   |
| 3,82 | 5285,55 |
| 2,75 | 562,34  |
| 0,73 | 6,44    |
| 0,17 | 1,77    |
| 1,2  | 19,02   |
| 2,3  | 199,53  |
| 2,06 | 114,82  |
| 2,56 | 363,08  |
| 2,04 | 131,58  |
| 3,7  | 6014,25 |
| 2,5  | 316,23  |
| 1,02 | 12,57   |
| 2,11 | 128,82  |
| 3,15 | 1412,54 |
| 0,83 | 5,41    |
| 2,81 | 516,52  |
| 0,23 | 1,7     |



- Funções não lineares podem ser LINEARIZADAS!
- Transformação de dados



| 3,46 | 2307,23 |
|------|---------|
| 3,36 | 2290,87 |
| 1,37 | 23,44   |
| 3,82 | 5285,55 |
| 2,75 | 562,34  |
| 0,73 | 6,44    |
| 0,17 | 1,77    |
| 1,2  | 19,02   |
| 2,3  | 199,53  |
| 2,06 | 114,82  |
| 2,56 | 363,08  |
| 2,04 | 131,58  |
| 3,7  | 6014,25 |
| 2,5  | 316,23  |
| 1,02 | 12,57   |
| 2,11 | 128,82  |
| 3,15 | 1412,54 |
| 0,83 | 5,41    |
| 2,81 | 516,52  |
| 0,23 | 1,7     |



- Funções não lineares podem ser LINEARIZADAS!
- Transformação de dados



| X    | log(y)  |
|------|---------|
| 3,46 | 3,36309 |
| 3,36 | 3,36    |
| 1,37 | 1,36996 |
| 3,82 | 3,72309 |
| 2,75 | 2,75    |
| 0,73 | 0,80889 |
| 0,17 | 0,24797 |
| 1,2  | 1,27921 |
| 2,3  | 2,30001 |
| 2,06 | 2,06002 |
| 2,56 | 2,56    |
| 2,04 | 2,11919 |
| 3,7  | 3,77918 |
| 2,5  | 2,5     |
| 1,02 | 1,09934 |
| 2,11 | 2,10998 |
| 3,15 | 3,15    |
| 0,83 | 0,7332  |
| 2,81 | 2,71309 |
| 0,23 | 0,23045 |
|      |         |



- Funções não lineares podem ser LINEARIZADAS!
- Transformação de dados



| X                                                  | log(y)                                                            |
|----------------------------------------------------|-------------------------------------------------------------------|
| 3,46                                               | 3,36309                                                           |
| 3,36                                               | 3,36                                                              |
| 1,37                                               | 1,36996                                                           |
| 3,82                                               | 3,72309                                                           |
| 2,75                                               | 2,75                                                              |
| 0,73                                               | 0,80889                                                           |
| 0,17                                               | 0,24797                                                           |
| 1,2                                                | 1,27921                                                           |
| 2,3                                                | 2,30001                                                           |
| 2,06                                               | 2,06002                                                           |
|                                                    | _                                                                 |
| 2,56                                               | 2,56                                                              |
| 2,56<br>2,04                                       | 2,56<br>2,11919                                                   |
| •                                                  |                                                                   |
| 2,04                                               | 2,11919                                                           |
| 2,04<br>3,7                                        | 2,11919<br>3,77918                                                |
| 2,04<br>3,7<br>2,5                                 | 2,11919<br>3,77918<br>2,5                                         |
| 2,04<br>3,7<br>2,5<br>1,02                         | 2,11919<br>3,77918<br>2,5<br>1,09934                              |
| 2,04<br>3,7<br>2,5<br>1,02<br>2,11                 | 2,11919<br>3,77918<br>2,5<br>1,09934<br>2,10998                   |
| 2,04<br>3,7<br>2,5<br>1,02<br>2,11<br>3,15         | 2,11919<br>3,77918<br>2,5<br>1,09934<br>2,10998<br>3,15           |
| 2,04<br>3,7<br>2,5<br>1,02<br>2,11<br>3,15<br>0,83 | 2,11919<br>3,77918<br>2,5<br>1,09934<br>2,10998<br>3,15<br>0,7332 |





- Aprende simples decisões a partir de um conjunto de dados
- Você já jogou cara a cara?









- Círculos roxos Nós
- Linhas pretas Ramos
- Nós sem descendentes (com borda laranja) Folhas
- Primeiro nó (com borda verde) Raiz





Utiliza métodos como Entropia e Impureza de Gini para classificação.

Erro Quadrático Médio (MSE) e o Erro Médio Absoluto (MAE) para regressão.



Exemplo de árvores de regressão com diferentes profundidades



| Vantagens                                                     | Desvantagens                                                                  |
|---------------------------------------------------------------|-------------------------------------------------------------------------------|
| Fácil de entender e principalmente de interpretar.            | Muito suscetível a overfit.                                                   |
| Precisa de pouco pré processamento.                           | Bastante sensível aos dados ou parâmetros do modelo.                          |
| Boa complexidade computacional de inferência                  | Predição não é contínua, e sim linear em trechos. Péssimo para extrapolação.  |
| Capaz de lidar com múltiplas saídas (múltiplos regressores)   | Existem conceitos que não funcionam bem na forma lógica de árvore de decisão. |
| Consegue lidar tanto com variáveis numéricas como categóricas | Dados desbalanceados geram árvores tendenciosas.                              |



- É um tipo de modelo que aprende simples decisões a partir de um conjunto de dados utilizando várias árvores de decisão diferentes
- Random Forest = um Ensemble (agrupamento) de Decision Trees







Utiliza métodos como Bagging e Feature Randomness









| Vantagens                                                     | Desvantagens                                     |
|---------------------------------------------------------------|--------------------------------------------------|
| Fácil de entender.                                            | Predição lenta dependendo do tamanho da floresta |
| Precisa de pouco pré processamento.                           |                                                  |
| Boa complexidade computacional de inferência                  |                                                  |
| Capaz de lidar com múltiplas saídas (múltiplos regressores)   |                                                  |
| Consegue lidar tanto com variáveis numéricas como categóricas |                                                  |



 Objetivo: Prever a categoria de uma observação dada a partir dos dados de entrada.







- Objetivo: Prever a categoria de uma observação dada a partir dos dados de entrada.
- Modelos de classificação podem ser analíticos ou não.



Classification

- Classificações podem ser:
  - Binárias ou
  - Multi-classe
  - Multi-label / Multi-rótulo





Classificação binária

É ou não é Pertence não pertence Um ou zero Gostou não gostou Etc...





- Classificação multiclasse
- Pertence ou n\u00e3o a uma classe espec\u00edfica

- Animal marinho
- Animal voador
- Animal doméstico





- Classificação multilabel
- Pode pertencer um ou mais classes do problema





#### Resumo

- Machine Learning nada mais é que matemática e estatística;
- Entender o SEU problema é o primeiro passo;
- Machine learning n\u00e3o resolve TODOS os problemas;
- Existem 2 principais tipos de modelagem de aprendizagem supervisionada: Regressão e Classificação;
- Existem diversos métodos e ferramentas disponíveis para auxiliar na resolução do seu problema.



#### Trabalho 1

Lista de exercícios de regressão linear Data de entrega: 21/11

Dúvidas:

e-mail: bernarddss62gmail.com

