۸.۲ تمرینهای درونیابی

۱ – تابع خطا بهصورت زیر تعریف می شود

$$erf(x) = \frac{7}{\sqrt{\pi}} \int_{\circ}^{x} e^{-t^{7}} dt$$

و مقادیر این تابع به صورت جدول زیر داده شده است

(الف) $erf(\circ.14)$ را با استفاده از درونیابی خطی تخمین بزنید.

(ب) erf(0.14) را با استفاده از همهی نقاط جدول تخمین بزنید.

 x_1 و تابع $f \in C^{\Upsilon}[x_0, x_1]$ ، تابع f را در نقاط x_0 و تابع خطی $P_1(x)$ ، تابع کند. نشان دهید

$$|f(x) - P_1(x)| \le \frac{h^{\Upsilon}}{\Lambda} M$$

 $A = x_1 - x_2$ و $M = \max_{x_2 \le x \le x_1} |f''(x)|$ که

 $i = 0, 1, \dots, n$ ، $L_i(x)$ نقاط متمایز و x_n, \dots, x_n ، x_n چند جمله ایهای x_n متناظر با این نقاط باشند. ثابت کنید

$$\sum_{i=0}^{n} L_i(x) = 1, \quad \forall x$$

$$\sum_{i=n}^{n} L_i(x) x_i^k = x^k, \ \forall x, \ \forall k \le n$$

k>n رابطه ی دوم برای k>n رابطه ی دوم برای

به صورت زیر داده شده است. حساب x $f(x) = \sin x$ به صورت زیر داده شده است. حساب x

کنید مقدار تقریبی $\sin \Upsilon \Upsilon^\circ$. همچنین کوچکترین کران را برای خطای $E(\Upsilon \Upsilon^\circ)$ به دست آورید.

 x_1 تابع f(x) مفروض است. نشان دهید اگر چندجملهای P(x) تابع f(x) را در نقاط x_n x_n درونیابی کند، و چندجملهای Q(x) تابع Q(x) را در نقاط x_n درونیابی کند، آنگاه چندجملهای

$$R(x) = P(x) + \frac{x - x_1}{x_n - x_1} [Q(x) - P(x)]$$

را در نقاط x_1 ، x_1 ، x_2 ، x_3 ، در ونیابی میکند. در حالت خاص، برای f(x) تابع $f(x)=\sin x$ و نقاط $f(x)=\sin x$ و $f(x)=\sin x$ ، چندجملهای $f(x)=\sin x$ آورید.

 x_n, \ldots, x_1, x_n چندجمله ای باشد که تابع f(x) را در نقاط متمایز P(x) چندجمله ای باشد که تابع درونیابی کند ، نشان دهید

$$f(x) - P(x) = \sum_{i=0}^{n} (f(x) - f(x_i)) L_i(x)$$

که $L_i(x)$ ها چندجملهایهای لاگرانژ متناظر با نقاط x_i هستند. x_i ها چندجملهایهای لاگرانژ متناظر با نقاط x_i ترتیب جدیدی از نقاط درونیابی x_i x_i x_i x_i x_i باشد، آنگاه

$$f[z_{\circ},z_{1},\ldots,z_{n}]=f[x_{\circ},x_{1},\ldots,x_{n}]$$

 $j=\circ,1,\ldots,n$ ، $L_j(x)$ فرض کنید x_n ، x_n ، x_n نقاط متمایز باشند و x_n ، x_n ، x_n خند جمله ایهای لاگرانژ متناظر با این نقاط باشند. ثابت کنید

$$L'_{j}(x_{j}) = \sum_{i=\circ, i \neq j}^{n} \frac{1}{x_{j} - x_{i}}$$

P(x) از درجه ۴، تقریب بزنید به طوری که P(x) در نقاط P(x) جندجمله ای P(x) از درجه ۴، تقریب بزنید به طوری که مقادیر P(x) در نقاط P(x) در نقاط P(x) در نقاط P(x) را در یک صفحه مختصات رسم کنید.

 $f(x) = e^x$ جندجملهای حداکثر از درجهی n باشد که تابع P(x) را در x جندجملهای حداکثر از درجهی x باشد که تابع x با در x با نقطه متمایز که در بازه x از نقاط درونیابی x باشد. اولاً نشان دهید

$$|E(x)| = |f(x) - P(x)| \le \frac{\Upsilon^n}{(n+1)!}e , -1 \le x \le 1$$

P(x) ، $x_{\mathsf{Y}} = \frac{\sqrt{\mathsf{Y}}}{\mathsf{Y}}$ و نقاط درونیابی $x_{\mathsf{N}} = -\frac{\sqrt{\mathsf{Y}}}{\mathsf{Y}}$ و نقاط درونیابی $x_{\mathsf{N}} = -\frac{\sqrt{\mathsf{Y}}}{\mathsf{Y}}$ و $x_{\mathsf{N}} = -\frac{\sqrt{\mathsf{Y}}}{\mathsf{Y}}$ را محاسبه کنید و با مقادیر $f'(\circ)$ و $f(\circ.0)$ و $f(\circ.0)$ را محاسبه کنید.

ا ۱ - فرض کنید f(t) یک چندجملهای درجه π باشد. نشان دهید - ۱۱

$$f[x, y, z] = \frac{1}{7} f''\left(\frac{x+y+z}{7}\right)$$

که y, x و z متمایز هستند.

 x_1 ، x_0 کنید چندجملهای درجهی دوم $P_{\mathsf{Y}}(x)$ ، تابع f(x) را در نقاط متمایز x_1 ، x_0 و x_1 درونیابی کند. نشان دهید

$$\left|\begin{array}{cccc} P_{\Upsilon}(x) & & & x & x^{\Upsilon} \\ f_{\circ} & & & x_{\circ} & x^{\Upsilon}_{\circ} \\ f_{1} & & & x_{1} & x^{\Upsilon}_{1} \\ f_{\Upsilon} & & & x_{\Upsilon} & x^{\Upsilon}_{\Upsilon} \end{array}\right| = \circ$$

 $i = \circ, \land, \Upsilon$, $f_i = f(x_i)$ δ

۱۳ - فرض کنید x_0 ، x_1 ، x_n نقاط متمایز باشند و Q(x) یک چندجملهای درجه ی $k \leq n$ با ریشههای x_1 ، x_2 ، x_3 با ریشههای x_4 ، x_5 ، x_6 با ریشههای درجه ی باشد. نشان دهید

$$Q(x) = \sum_{i=k}^{n} Q(x_i)L_i(x)$$

۱۴ — تابع $f(x) = \log_{\mathsf{T}} x$ مفروض است. یک تابع قطعه خطی با استفاده از گرههای $\frac{1}{7}$ ، $\frac{1}{7}$ و ۱ برای f(x) به دست آورید.

۱۵ – آمار جمعیت کشور در ۴ دوره در جدول زیر آمده است

t	1750	1460	1500	1270
P(t)	11904000	404YY000	TTY 0 1000	49460000

بااستفاده از درونیابی :

(الف) جمعیت کشور را در سال ۱۳٦۰ بر آورد کنید.

(ب) جمعیت کشور را در سال ۱۳۷۵ بر آورد کنید.

نشان دهید اگر f در x مشتق پذیر باشد، آنگاه - ۱۲

$$f[x_{\circ}, x_{\circ}, x_{\circ}] = \frac{1}{7} f''(x_{\circ})$$

۱۷ — اگر $x^{r} = f(x) = x^{r}$ نقاط متمایز با شند، نشان دهید

$$f[x_{\circ}, x_{\uparrow}, x_{\uparrow}, x_{\uparrow}] = \uparrow$$
, $f[x_{\circ}, x_{\uparrow}, x_{\uparrow}] = x_{\circ} + x_{\uparrow} + x_{\uparrow}$

۱۸ - نشان دهید تابع زیر یک اسپلاین مکعبی نیست.

$$s(x) = \begin{cases} x^{r} + (x+1)^{r} & -1 \le x < 0 \\ (x+1)^{r} & 0 \le x \le 1 \\ (x-1)^{r} + 17(x-1) + \Lambda & 1 \le x \le \Delta \end{cases}$$

۱۹ — تابع $\sin x = \sin x$ بربازه ی $f(x) = \sin x$ مفروض است. این بازه را حداقل به چند زیر بازه با طول مساوی باید تقسیم کرد به طوری که اگر f(x) در یکی از این زیر بازه ها توسط یک تابع خطی درونیابی شود، خطای درونیابی خطی از $f(x) \times \frac{1}{7} \times 1$ بیشتر نباشد. $f(x) = \frac{1}{7} \times 1$ بیشتر نباشد.

$$s(x) = \begin{cases} x^{\Upsilon} & \circ \leq x \leq \Upsilon \\ 1 + \Upsilon(x - 1) + \Upsilon(x - 1)^{\Upsilon} & 1 \leq x \leq \Upsilon \end{cases}$$

 $f(x)=\sin(\frac{\pi x}{7})$ در $f(x)=\sin(\frac{\pi x}{7})$ در جد چندجمله ای درجه ی x=x بیابید که مقادیر آن با مقادیر تابع x=x در x=x نقاط x=x برابر باشد.

کا - فرض کنید s(x) یک اسپلاین مکعبی طبیعی با گرههای - ۲۲

$$a = x_{\circ} < x_{1} < \ldots < x_{n} = b$$

باشد به طوری که تابع $f \in C^{\mathsf{T}}[a,b]$ را در نقاط $i = \circ, 1, \ldots, n$ ، x_i را در نقاط کند. نشان دهید

$$\int_{a}^{b} (s''(x))^{\gamma} dx \le \int_{a}^{b} (f''(x))^{\gamma} dx$$

این یکی از ویژه گیهای اسپلاینهای مکعبی است و آن را خاصیت مینیمم انحنا و همچنین خاصیت مینیمم انرژی توابع اسپلاین مینامند.

۲۳ – فرض کنید f(x) یک تابع مفروض و x_0 ، . . ، x_0 ، . . ، و x_0 نقاط متمایز باشند. تعریف می کنیم

$$g(x) = f[x_{\circ}, x_{1}, \dots, x_{n}, x]$$

نشان دهید

$$g'(x) = f[x_{\circ}, x_{1}, \dots, x_{n}, x, x]$$

۲۴ – نشان دهید تابع زیریک اسپلاین مکعبی است.

$$s(x) = \begin{cases} 1 + x & \circ \le x \le \Upsilon \\ 1 + x + (x - \Upsilon)^{\Upsilon} & \Upsilon \le x \le \Upsilon \end{cases}$$

و که را طوری تعیین کنید که تابع c ، b ، a مقادیر - ۲۵

$$s(x) = \begin{cases} 7 + 7x - Ax^{7} & \circ \leq x \leq 1 \\ a + b(x - 1) + c(x - 1)^{7} + d(x - 1)^{7} & 1 \leq x \leq 7 \end{cases}$$

یک اسپلاین مکعبی با گرههای \circ ، ۱ و ۲ باشد و $\int_0^1 (s''(x))^7 dx$ مینیمم باشد. - ۲۲ به ازای چه مقادیری از k تابع زیر یک اسپلاین است +

$$s(x) = \begin{cases} x^{r} + rx^{r} + 1 & -1 \le x \le 0 \\ -x^{r} + kx^{r} + 1 & 0 \le x \le 1 \end{cases}$$

- 1, 1] و متناظر - 1, 1 و متناظر - 1, 1 و متناظر با استفاده از تعریف ، معادلات اسپلاین مکعبی متناوب را بربازه ی از - 1, 1 و متناظر با گرههای - 1, 1 و مطابق جدول زیر را درونیابی کند.

۲۸ - ضرایب تابع

$$g(x) = a_1 + a_7 \cos x + a_7 \sin x$$

را طوری تعیین کنید که نمودار g(x) از نزدیک نقاط داده شده در جدول زیر بگذرد.

. بهترین منحنی به شکل $y=c\;e^{ax}$ بیابید که داده های جدول زیر را برازش کند.

۳۰ - برای دادههای جدول زیر ، خط کمترین توانهای دوم را بهدست آورید.

٣١ – با روش خطي سازي، بهترين منحني (تابع هايپربوليک) بهصورت

$$y = \frac{a}{x} + b$$

که دادههای زیر را برازش میکند، بیابید.

بهترین منحنی بهشکل $y=ax^{\mathsf{T}}$ که دادههای زیر را برازش کند ، بهدست آورید. $y=ax^{\mathsf{T}}$

۳۳ - با استفاده از روش کمترین توانهای دوم، بهترین منحنی بهشکل

$$y = ax^{\mathsf{Y}} + b$$

که دادههای زیر را برازش کند، بهدست آورید.

۳۴ - با روش خطیسازی ، بهترین منحنی (تابع هایپربولیک) بهصورت

$$y = \frac{x}{a + bx}$$

که دادههای زیر را برازش میکند، بیابید.

$$x \mid -1 \circ \circ .0 \quad \uparrow \quad \uparrow$$

۳۵ – در جدول زیر x را که متناظر با ۳۵ ، ۳۹ ، ۱ ست ، تخمین بزنید. این فرایند، درونیابی معکوس نامیده می شود.

$$x$$
 $Y \circ$? $Y \circ$ $f(x)$ $\circ .YYY \circ Y \circ .YYAYA $\circ .A \circ \circ \circ \circ$$

اگر جدول مربوط به تابع $f(x) = \sin x$ باشد ، که در آن x برحسب درجه است ، خطای تخمین را محاسبه کنید.