Dérivation

1 Déterminer l'ensemble sur lequel les expressions suivantes sont dérivables et calculer leur dérivée.

- 1. $\frac{2x+1}{x-2} \frac{1}{x+4}$;
- 2. $\frac{x^2+1}{x^2+1}$;
- 3. $x^2 2x + \frac{3}{r}$;
- 4. $(x^3 2x + 1)^3$;
- 5. $\sqrt{x^3 + x^2 + 5x}$:
- 6. $\sqrt{\frac{x-1}{x+3}}$;
- 7. $\sin(3x^2)$;
- 8. $sh(2 \operatorname{argsh} x) + 2 \operatorname{argsh} x$;

- 9. $\sinh^2 \sqrt{x}$;
- 10. ch $(x\sqrt{1-2x-x^2})$;
- 11. $\sinh \left(\ln \left(x + \sqrt{x^2 + 1} \right) \right)$;
- 12. ch $(\ln(x+\sqrt{x^2-1}))$;
- 13. $\arcsin(x + \sqrt{x^2 1})$;
- 14. $\exp(x^2)$;
- 15. $\exp(x^{x^2})$;
- 16. x^x ;
- 17. $\ln(\cos e^x)$;
- 18. $\sqrt{\sqrt{\exp x}}$.

2

- 1. Où la fonction $x \mapsto \frac{1-\cos x}{x}$ est-elle définie? Où est-elle continue? Où est-elle prolongeable par continuité? Où son prolongement est-il dérivable?
- 2. La fonction $x \mapsto \cos \sqrt{x}$ est-elle de classe \mathscr{C}^1 sur \mathbb{R} ?

3 Soit $n \in \mathbb{N}^*$. Calculer les dérivées n-èmes des fonctions suivantes :

- $1. x \longrightarrow x^p \cos px \quad p \in \mathbb{N}$ $5. x \longrightarrow \frac{1-x}{1+x}$
- 2. $x \mapsto x^{n-1} \ln(1+x)$ 6. $x \mapsto x^{n-1} e^{1/x}$
- 3. $x \mapsto (x^2 + x)e^x$ 7. $x \mapsto \ln(1 2x\cos\alpha + x^2)$
- $4. x \longmapsto \frac{x^2 + 1}{(x+1)^3} \qquad 8. x \longmapsto e^{x\cos\alpha}\cos(x\sin\alpha)$

 $\boxed{\mathbf{4}}$ Soit f l'application de \mathbb{R} dans lui-même, définie par

$$\forall x \in \mathbb{R} \qquad f(x) = \begin{cases} 0 & \text{si } x = 0 \\ e^{-1/x^2} & \text{si } x \neq 0 \end{cases}$$

Montrer que f est infiniment dérivable sur \mathbb{R} .

5 Soient $n \in \mathbb{N}^*$ et f une application n fois dérivable sur \mathbb{R}^* . On pose

$$\forall x \in \mathbb{R}^{\star}$$
 $g(x) = x^{n-1} f\left(\frac{1}{x}\right)$

Montrer que

$$\forall x \in \mathbb{R}^{\star} \qquad g^{(n)}(x) = \frac{(-1)^n}{x^{n+1}} f^{(n)}\left(\frac{1}{x}\right)$$

6 Soit P un polynôme de degré $n \ge 2$ à coefficients réels, scindé sur \mathbb{R} . Montrer que P' est scindé sur \mathbb{R} .

7 Soit *n* un entier. On note *f* la dérivée *n*-ème de la fonction $x \mapsto (x^2 - 1)^n$. Montrer que \overline{f} s'annule exactement n fois dans]-1; 1[. Calculer f(1) et f(-1).

8 Soit f dérivable sur \mathbb{R} . On suppose que f a une limite (finie ou infinie) en $+\infty$ et $-\infty$, et que ces limites sont égales. Montrer qu'il existe $c \in \mathbb{R}$ tel que f'(c) = 0.

9 On pose

$$\forall k \in \mathbb{N}$$
 $P_k = \sum_{n=0}^{k} (-1)^n \frac{X^{2n+1}}{(2n+1)!}$

1. Prouver que

$$\forall x \in \mathbb{R} \qquad |\sin x - P_0(x)| \leqslant \frac{|x|^3}{6}$$

2. Prouver que

$$\forall x \in [0; \frac{\pi}{2}] \qquad 0 \leqslant \sin x - P_3(x) \leqslant \frac{x^9}{9!}$$

3. Trouver un $\alpha > 0$ tel que

$$\forall x \in [0; \alpha]$$
 $|\sin x - P_3(x)| \le 10^{-10}$

4. Trouver un entier *k* tel que

$$\forall x \in [0; 1]$$
 $|\sin x - P_k(x)| \le 10^{-20}$

10 Montrer que pour chaque t > 0, assez petit, il existe un unique $c(t) \in]0$; 1[tel que

$$\sin t = t - \frac{t^3}{6}\cos(tc(t))$$

Étudier l'existence d'une limite pour c en 0.

11 | Soient f et g continues sur [a; b], dérivables sur [a; b]. On suppose que g' ne s'annule pas au voisinage de a et que $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ existe et vaut $\ell \in \mathbb{R}$. Montrer que $\lim_{x\to a} \frac{f(x)-f(a)}{g(x)-g(a)}$ existe et vaut ℓ . Proposer une généralisation au cas où l'intervalle est de la forme $[b; +\infty[$. **12** Soient f et g dérivables sur]a;b[, ayant une limite infinie en a et telles que g' ne s'annule pas au voisinage de a. On suppose que $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ existe et vaut $\ell\in\overline{\mathbb{R}}$. Montrer que $\lim_{x\to a} \frac{f(x)}{g(x)}$ existe et vaut ℓ . Proposer une généralisation au cas où l'intervalle est de la forme $[b;+\infty[$.

13 Soit f dérivable sur [a; b], telle que $f'(a) \leq f'(b)$. Montrer que si $\gamma \in [f'(a); f'(b)]$, il existe $c \in [a; b]$ tel que $f'(c) = \gamma$.

Indication : On pourra considérer les fonctions $x \longmapsto \frac{f(x) - f(a)}{x - a}$ et $x \longmapsto \frac{f(x) - f(b)}{x - b}$.

Trouver une équation différentielle d'ordre 2 satisfaite par la fonction arcsin. En déduire $\arcsin^{(n)}(0)$ pour tout entier n.

15 Soient $f \in \mathcal{C}^2([a;b])$ et $x \in]a; b[$. Montrer qu'il existe $c \in]a; b[$, tel que

$$f(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a) + \frac{(x - a)(x - b)}{2}f''(c)$$

Indication : On pourra considérer $t \mapsto f(t) - f(a) - \frac{f(b) - f(a)}{b - a} (t - a) - \frac{(t - a)(t - b)}{2}$ A, où A est un réel astucieusement choisi.

Soit f une fonction n fois dérivable sur un intervalle I. On suppose que f s'annule en $x_1 < ... < x_n$. Soit $a \in]x_1; x_n[$. Montrer qu'il existe $c \in]x_1; x_n[$, tel que

$$f(a) = \frac{f^{(n)}(c)}{n!} \prod_{k=1}^{n} (a - x_i)$$

17 Soit f deux fois dérivable sur \mathbb{R} , telle que f et f'' sont bornées. On note

$$M_0 = \sup_{\mathbb{R}} |f|$$
 $M_2 = \sup_{\mathbb{R}} |f''|$

Montrer que f' est bornée sur \mathbb{R} et que

$$\sup_{\mathbb{R}} |f'| \leqslant \sqrt{2M_0 M_2}$$

Indication : Si $x \in \mathbb{R}$ et h > 0, utiliser le théorème de Taylor en x + h et en x - h.

Démontrer un résultat similaire dans le cas où f est trois fois dérivable, avec f et $f^{(3)}$ bornées.

Soient $n \in \mathbb{N}$ et f de classe \mathcal{C}^{n+1} sur \mathbb{R} telle que f(0) = 0. On définit

$$g: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} \frac{f(x)}{x} & \text{si } x \neq 0 \\ ?? & \text{si } x = 0 \end{cases}$$

Quelle valeur faut-il donner à g(0) pour que g soit continue? Montrer alors que g est \mathcal{C}^n sur \mathbb{R} .