Simulation with different distances

Jiaxin Hu

May 8, 2022

We run a small scale simulation to verify the accuracy of Gaussian matrix matching algorithms with different distance statistics.

1 Introduction

The observations $A, B \in \mathbb{R}^n$ comes from the Gaussian Winger model; i.e.,

$$(\boldsymbol{A}_{ij}, \boldsymbol{B}'_{ij}) \sim \mathcal{N}\left(\boldsymbol{0}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}\right), \quad (\boldsymbol{A}_{ij}, \boldsymbol{B}'_{ij}) \perp (\boldsymbol{A}_{i'j'}, \boldsymbol{B}'_{i'j'}) \quad \text{for all } (i, j) \neq (i', j'),$$

and

$$\boldsymbol{B} = \Pi^* \boldsymbol{B}' (\Pi^*)^T,$$

where $\Pi^* \in \{0,1\}^{n \times n}$ is the permutation matrix with $\Pi_{ij}^* = \mathbb{1}\{j = \pi^*(i)\}$ and $\pi^* : [n] \mapsto [n]$ is the true permutation on [n]. Let $\sigma = \sqrt{1-\rho^2}$.

To evaluate the matching accuracy, we consider the ratio of node pair agreement between the estimated permutation $\hat{\pi}$ and true permutation

$$OV_n(\hat{\pi}, \pi^*) = \frac{1}{n} \sum_{i \in [n]} \mathbb{1}\{\hat{\pi}(i) \neq \pi^*(i)\}.$$

Consider the observations A, B comes from the Gaussian Winger model and an arbitrary pair $(a,b) \in [n]^2$. For simplicity, we rename the samples as $\{X_i\}_{i \in [n]} \coloneqq \{A_{ai}\}_{i \in [n]}$ and $\{Y_i\}_{i \in [n]} \coloneqq \{B_{bi}\}_{i \in [n]}$. Let $f_n = \frac{1}{n} \sum_{i \in [n]} \delta_{X_i}$ and $g_n = \frac{1}{n} \sum_{i \in [n]} \delta_{Y_i}$ denote the empirical PDFs, and let $\hat{F}_n(t) = \frac{1}{n} \sum_{i \in [n]} \mathbb{1}\{X_i \leq t\}$ $\hat{G}_n(t) = \frac{1}{n} \sum_{i \in [n]} \mathbb{1}\{Y_i \leq t\}$ denote the empirical CDFs. Let $B_1 = \min\{\min_{i \in [n]} \{X_i\}, \min_{i \in [n]} \{Y_i\}\}$ and $B_2 = \max\{\max_{i \in [n]} \{X_i\}, \max_{i \in [n]} \{Y_i\}\}$.

We now consider 8 distance statistics for $\{X_i\}, \{Y_i\}.$

1. Smoothed TV norm $\hat{T}V(X,Y|L)$. Analogy of the Z distance proposed in Ding et al. (2021).

$$\hat{T}V(X,Y|L) = \sum_{l \in [L]} |f_n(I_l) - g_n(I_l)|,$$

where $\{I_l\}_{l\in[L]}$ is the uniform partition over the interval [-1/2,1/2].

2. Smoothed W_1 norm $\hat{W}_1(X,Y|L)$. Consider the uniform partition $\{I_l\}_{l\in[L]}$ over the interval [-1/2,1/2]. We define

$$\hat{W}_1(X, Y|L) = \sum_{l \in [L]} |F_n(t_l) - G_n(t_l)|,$$

where t_l 's are the right boundaries of I_l 's.

- 3. Smoothed W_1 norm $\hat{W}_1(X,Y|2n)$. Defined as $\hat{W}_1(X,Y|L)$ with specified L=2n.
- 4. Smoothed W_1 norm with different partition $\tilde{W}_1(X,Y|L)$. Consider the uniform partition $\{I_l\}_{l\in[L]}$ over the interval [-L/2,L/2]. Then define

$$\tilde{W}_1(X, Y|L) = \sum_{l \in [L]} |F_n(t_l) - G_n(t_l)|,$$

where t_l 's are the right boundaries of I_l 's.

- 5. Smoothed W_1 norm with different partition $\tilde{W}_1(X,Y|2n)$. Defined as $\tilde{W}_1(X,Y|L)$ with specified L=2n.
- 6. Smoothed W_1 norm with unfixed-boundary partition $\bar{W}_1(X,Y|L)$. Consider the 2n-uniform partition $\{I_l\}_{l\in[L]}$ over the interval $[B_1,B_2]$. Then define

$$\bar{W}_1(X, Y|L) = \sum_{l \in [L]} |F_n(t_l) - G_n(t_l)|,$$

where t_l 's are the right boundaries of I_l 's.

- 7. Smoothed W_1 norm with unfixed-boundary partition $\bar{W}_1(X,Y|2n)$. Defined as $\bar{W}_1(X,Y|L)$ with specified L=2n.
- 8. **Empirical** W_1 **norm** $\hat{W}_1(X,Y)$. Let $X_{(i)}$ and $Y_{(i)}$ denote the order statistics of $\{X_i\}$ and $\{Y_i\}$. We define

$$\hat{W}_1(X,Y) = \int_{\mathbb{R}} |F_n(t) - G_n(t)| dt = \int_0^1 |F_n^{-1}(u) - G_n^{-1}(u)| du = \frac{1}{n} \sum_{i \in [n]} |X_{(i)} - Y_{(i)}|.$$

Rename the observations $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ as U_1, \ldots, U_{2n} with order statistics $U_{(i)}$. The empirical W_1 is equal to

$$\hat{W}_1(X,Y) = \sum_{k=2}^{2n} |F_n(U_{(k)}) - G_n(U_{(k)})| \cdot |U_{(k)} - U_{(k-1)}|.$$

We summarize the differences between different distances:

- 1. $\hat{T}V(X,Y|L)$ vs $\hat{W}_1(X,Y|L)$. Both distances consider L-uniform partition over [-1/2,1/2] with window size 1/L. But $\hat{T}V$ uses smoothed PDF while \hat{W}_1 uses smoothed CDF.
- 2. $\hat{W}_1(X,Y|L)$ vs $\hat{W}_1(X,Y|2n)$. The latter one has the same definition as former one with specified L=2n.

- 3. $\hat{W}_1(X,Y|L)$ vs $\tilde{W}_1(X,Y|L)$. Both consider the L-uniform partition and smoothed CDF. But the former one uses the partition over [-1/2,1/2] with window size 1/L while the latter one uses partition over [-L/2,L/2] with window size 1.
- 4. $\tilde{W}_1(X,Y|L)$ vs $\tilde{W}_1(X,Y|2n)$. The latter one has the same definition as former one with specified L=2n.
- 5. $W_1(X, Y|L)$ vs $W_1(X, Y|L)$. Both consider L-uniform partition. But former one considers partition over [-L/2, L/2] and the latter one uses partition only cover the minima and maxima of all observations, $[B_1, B_2]$.
- 6. $\bar{W}_1(X,Y|L)$ vs $\bar{W}_1(X,Y|2n)$. The latter one has the same definition as former one with specified L=2n.
- 7. $\bar{W}_1(X,Y|2n)$ vs $\hat{W}_1(X,Y)$. Both consider the 2n partition over $[B_1,B_2]$. But the former one considers the uniform partition with fixed window size $(B_2 B_1)/2n$ while the latter one considers the unfixed window size $|U_{(i+1)} U_{(i)}|$, where $U_{(i)}$'s for $i \in [2n]$ are the order statistics for the mixed observations $X_1, \ldots, X_n, Y_1, \ldots, Y_n$.

2 Simulation result

We consider the set up n=50 with varying $\sigma \in \{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6\}$. A smaller σ indicates a larger correlation between paired edges. For distances relied on L, $\hat{T}V(X,Y|L)$, $\hat{W}_1(X,Y|L)$, $\hat{W}_1(X,Y|L)$, and $\bar{W}_1(X,Y|L)$, we try L from 5 to 3n with gap 5 (i.e., $L \in \{5, 10, \ldots, 3n\}$) and pick the best result. Figure 1 shows the simulation results with 7 different methods.

Here are a few observations from Figure 1.

- 1. Empirical PDF may not work as good as empirical CDF in practice. Notice that smoothed TV norm (black solid line) is worse than all other CDF-based methods. Particularly, the smoothed W_1 (blue solid line) uses the same partition as smoothed TV and outperforms the TV norm.
- 2. The choice of L may not lead to dramatic accuracy changes. But L=2n is not always the optimal choice. Note that the smoothed W_1 with L=2n (blue, green, red dashed lines and pink solid line) are lower than that with optimal L via exhausting search (blue, green, and red solid lines).
- 3. The range of partition may be the critical factor for the accuracy. The \hat{W}_1 's with L (blue lines) using partition covers [-1/2, 1/2], the \tilde{W}_1 's with L (green lines) using partition covers [-L/2, L/2], and \bar{W}_1 , \hat{W}_1 (red lines) using partition covers $[B_1, B_2]$ which is exactly the range of the observations X_i, Y_i .
- 4. Window size of the partition may not be the critical factor. Note that the only difference between \bar{W}_1 (red lines) and \hat{W}_1 (pink solid line) is the window size. But their performances are very similar.

Figure 1: The ratio of correct agreement $OV_n(\hat{\pi}, \pi^*)$ versus the noise level σ with 7 different methods: $\hat{T}V(X,Y|L)$ ($\mathbf{TV}_{-}\mathbf{L}$), $\hat{W}_1(X,Y|L)$ ($\mathbf{W1}_{-}\mathbf{L}$), $\hat{W}_1(X,Y|2n)$ ($\mathbf{W1}_{-}\mathbf{2n}$), $\tilde{W}_1(X,Y|L)$ ($\mathbf{tW1}_{-}\mathbf{L}$), $\tilde{W}_1(X,Y|2n)$ ($\mathbf{tW1}_{-}\mathbf{2n}$), $\tilde{W}_1(X,Y|L)$ ($\mathbf{bW1}_{-}\mathbf{L}$), $\tilde{W}_1(X,Y|2n)$ ($\mathbf{bW1}_{-}\mathbf{2n}$), and $\hat{W}_1(X,Y)$ (emp_W1).

References

Ding, J., Ma, Z., Wu, Y., and Xu, J. (2021). Efficient random graph matching via degree profiles. *Probability Theory and Related Fields*, 179(1):29–115.