Математичні Основи Штучних Нейронних Мереж

25 листопада 2024

Вступ

Виконав: Захаров Дмитро Олегович¹ Науковий керівник: Ігнатович Світлана Юріївна²

¹Студент групи МП41 IV курсу (перший бакалаврський рівень), спеціальності 113 "Прикладна математика" освітньої програми "Прикладна математика".

 $^{^{2}}$ Доктор фіз.-мат. наук, професор кафедри прикладної математики.

План

1 Вступ: Задачі Глибокого Навчання

Багатошарова Модель Персептронів

- Приклади
- Проблема параметризації
- 2 Багатошарова Модель Персептронів
 - Теорема Цибенко (1989)
 - Універсальність апроксимації класифікатора
- 3 Мережі Колмогорова-Арнольда
 - Історична довідка: 13 проблема Гільберта
 - Мережа Колмогорова-Арнольда

Вступ

Проблема

Сучасний розвиток інструментів зводить розв'язок задач машинного навчання до вибору архітектури моделі, функції втрати та метрик якості. Часто, опускається фундаментальне питання: чому ці архітектури взагалі працюють?

Проблема

Сучасний розвиток інструментів зводить розв'язок задач машинного навчання до вибору архітектури моделі, функції втрати та метрик якості. Часто, опускається фундаментальне питання: чому ці архітектури взагалі працюють?

• На вхід подається певний набір даних \mathcal{D} . Найчастіше, це набір пар $\{(\boldsymbol{x}_n,\boldsymbol{y}_n)\}_{1\leq n\leq N}$ (supervised learning).

Проблема

Сучасний розвиток інструментів зводить розв'язок задач машинного навчання до вибору архітектури моделі, функції втрати та метрик якості. Часто, опускається фундаментальне питання: чому ці архітектури взагалі працюють?

- На вхід подається певний набір даних \mathcal{D} . Найчастіше, це набір пар $\{(\boldsymbol{x}_n,\boldsymbol{y}_n)\}_{1\leq n\leq N}$ (supervised learning).
- Ми віримо, що є певна інформація, яку ми хочемо здобути з цього набору. Ми інкапсулюємо цю інформацію у вигляді функції f(x). Це і є модель.

Проблема

Сучасний розвиток інструментів зводить розв'язок задач машинного навчання до вибору архітектури моделі, функції втрати та метрик якості. Часто, опускається фундаментальне питання: чому ці архітектури взагалі працюють?

- На вхід подається певний набір даних \mathcal{D} . Найчастіше, це набір пар $\{(\boldsymbol{x}_n,\boldsymbol{y}_n)\}_{1\leq n\leq N}$ (supervised learning).
- Ми віримо, що є певна інформація, яку ми хочемо здобути з цього набору. Ми інкапсулюємо цю інформацію у вигляді функції f(x). Це і є модель.
- Функцію f ми маємо підібрати з певного класу $\mathcal F$ так, щоб за неї досягався певний мінімум ($\hat f:=\arg\min_{f\in\mathcal F}\mathcal L(\mathcal D|f)$).

Приклади

У попередніх наших роботах [6, 3, 2] ми, зокрема, досліджували задачу кібербезпеки біометричних даних:

Робота	Рік, Журнал	Модель	Набір даних
[6]	2023, Multimedia	$f:\mathcal{I} o\{0,1\}^{128}$: Бі-	Набір зображень і
	Tools and Applicati-	нарний вектор хара-	ідентифікатор людей
	ons (Springer)	ктеристик	
[3]	2024, Computers &	$f:\mathcal{I} o\{0,1\}$: Кла-	Набір зображень і біт,
	Security (Elsevier)	сифікатор живності	чи фейкова людина
[2]	2024, Engineering	$f: \mathcal{I} ightarrow \mathcal{I}$: "Геш"	Набір зображень і
	Applications of Al	значення фотографії	ідентифікатор людей
	(Elsevier)	людини	

Табл.: Приклади наших робіт з біометрії. \mathcal{I} — множина зображень.

Приклади

У попередніх наших роботах [6, 3, 2] ми, зокрема, досліджували задачу кібербезпеки біометричних даних:

Робота	Рік, Журнал	Модель	Набір даних
[6]	2023, Multimedia	$f:\mathcal{I} o\{0,1\}^{128}$: Бі-	Набір зображень і
	Tools and Applicati-	нарний вектор хара-	ідентифікатор людей
	ons (Springer)	ктеристик	
[3]	2024, Computers &	$f:\mathcal{I} o\{0,1\}$: Кла-	Набір зображень і біт,
	Security (Elsevier)	сифікатор живності	чи фейкова людина
[2]	2024, Engineering	f : \mathcal{I} $ ightarrow$ \mathcal{I} : "Геш"	Набір зображень і
	Applications of Al	значення фотографії	ідентифікатор людей
	(Elsevier)	людини	

Табл.: Приклади наших робіт з біометрії. \mathcal{I} — множина зображень.

Проте...

Усі ці задачі містять багатовимірні дані (вимірність ≥ 100000), які важко апроксимувати класичними методами. Отже, ми використовуємо **глибоке навчання**.

Параметризація моделі

Зауваження

Як на практиці має виглядати \mathcal{F} ? Зауважимо — це не може бути щось на кшталт $L^2(\mathbb{R})$. Тому, ми **параметризуємо** модель параметрами $\theta \in \Theta \subset \mathbb{R}^n$. Записуємо це як $f(\mathbf{x}|\theta)$.

Параметризація моделі

Зауваження

Як на практиці має виглядати \mathcal{F} ? Зауважимо — це не може бути щось на кшталт $L^2(\mathbb{R})$. Тому, ми параметризуємо модель параметрами $\theta \in \Theta \subset \mathbb{R}^n$. Записуємо це як $f(\mathbf{x}|\theta)$.

Example

Якщо ми віримо, що $f:\mathbb{R} \to \mathbb{R}$ — квадратична, то шукаємо f як:

$$f(x|\theta) = \theta_2 x^2 + \theta_1 x + \theta_0, \quad \theta = (\theta_0, \theta_1, \theta_2) \in \mathbb{R}^3.$$

Параметризація моделі

Зауваження

Як на практиці має виглядати \mathcal{F} ? Зауважимо — це не може бути щось на кшталт $L^2(\mathbb{R})$. Тому, ми параметризуємо модель параметрами $\theta \in \Theta \subset \mathbb{R}^n$. Записуємо це як $f(\mathbf{x}|\theta)$.

Example

Якщо ми віримо, що $f:\mathbb{R} \to \mathbb{R}$ — квадратична, то шукаємо f як:

$$f(x|\theta) = \theta_2 x^2 + \theta_1 x + \theta_0, \quad \theta = (\theta_0, \theta_1, \theta_2) \in \mathbb{R}^3.$$

Example (Багатовимірна лінійна регресія)

Нехай $\mathcal{D} = \{(\mathbf{x}_n, y_n)\}_{1 \leq n \leq N} \subset \mathbb{R}^d \times \mathbb{R}$. Моделлю може бути наступна лінійна функція

$$f(\mathbf{x}|\boldsymbol{\theta}) = \mathbf{w}^{\top}\mathbf{x} + \beta, \quad \boldsymbol{\theta} = (\mathbf{w}, \beta) \in \mathbb{R}^{d+1}.$$

Багатошарова Модель Персептронів

Модель — це не завжди функція, що повертає скаляр/вектор. Модель може повертати і зображення/аудіо/репрезентацію тексту/ймовірністний розподіл.

Модель — це не завжди функція, що повертає скаляр/вектор. Модель може повертати і зображення/аудіо/репрезентацію тексту/ймовірністний розподіл.

Так чи інакше, ми маємо функцію втрати $\mathcal{L}(\mathcal{D}|\theta)$, що вимірює, наскільки добре модель описує дані. Правило вибору параметрів:

$$\hat{oldsymbol{ heta}} := rg \min_{oldsymbol{ heta} \in \Theta} \mathcal{L}(\mathcal{D}|oldsymbol{ heta}).$$

Модель — це не завжди функція, що повертає скаляр/вектор. Модель може повертати і зображення/аудіо/репрезентацію тексту/ймовірністний розподіл.

Так чи інакше, ми маємо функцію втрати $\mathcal{L}(\mathcal{D}|\theta)$, що вимірює, наскільки добре модель описує дані. Правило вибору параметрів:

$$\hat{oldsymbol{ heta}} := rg \min_{oldsymbol{ heta} \in \Theta} \mathcal{L}(\mathcal{D}|oldsymbol{ heta}).$$

Example (Багатовимірна лінійна регресія)

Багатошарова Модель Персептронів

Нехай $\mathcal{D} = \{(\boldsymbol{x}_n, \boldsymbol{y}_n)\}_{1 \leq n \leq N} \subset \mathbb{R}^d \times \mathbb{R}^r$. Тоді, ми можемо обирати $f(\mathbf{x}|\mathbf{W}, \mathbf{\theta}) = \mathbf{W}\mathbf{x} + \boldsymbol{\beta}$ таким чином, щоб $f(\mathbf{x}_n) \approx \mathbf{y}_n$ для всіх п. Тому, в якості функції втрати можна взяти:

Модель — це не завжди функція, що повертає скаляр/вектор. Модель може повертати і зображення/аудіо/репрезентацію тексту/ймовірністний розподіл.

Так чи інакше, ми маємо функцію втрати $\mathcal{L}(\mathcal{D}|\theta)$, що вимірює, наскільки добре модель описує дані. Правило вибору параметрів:

$$\hat{oldsymbol{ heta}} := rg \min_{oldsymbol{ heta} \in \Theta} \mathcal{L}(\mathcal{D}|oldsymbol{ heta}).$$

Example (Багатовимірна лінійна регресія)

Багатошарова Модель Персептронів

Нехай $\mathcal{D} = \{(\boldsymbol{x}_n, \boldsymbol{y}_n)\}_{1 \leq n \leq N} \subset \mathbb{R}^d \times \mathbb{R}^r$. Тоді, ми можемо обирати $f(\mathbf{x}|\mathbf{W},\theta) = \mathbf{W}\mathbf{x} + \beta$ таким чином, щоб $f(\mathbf{x}_n) \approx \mathbf{y}_n$ для всіх п. Тому, в якості функції втрати можна взяти:

$$\mathcal{L}(\mathcal{D}|\boldsymbol{W},\boldsymbol{\theta}) = \frac{1}{N} \sum_{n=1}^{N} \|f(\boldsymbol{x}_{n}|\boldsymbol{W},\boldsymbol{\theta}) - \boldsymbol{y}_{n}\|^{2}.$$

Візуалізація

Рис.: Приклад багатовимірної лінійної регресії для $\mathbf{x}_n \in \mathbb{R}^2$, $y_n \in \mathbb{R}$. Ціль підібрати площину $f(\mathbf{x}|\beta, w_1, w_2) := \beta + w_1x_1 + w_2x_2$ так, щоб втрата $\mathcal{L}(\mathcal{D}|\beta, w_1, w_2) = \frac{1}{N} \sum_{n=1}^N \|f(\mathbf{x}_n) - y_n\|^2$ була мінімальною.

Що розв'язує машинне навчання?

Машинне навчання намагається розв'язати три основні проблеми:

1. **Оптимізація**: чи можна взагалі знайти $\hat{\theta}$? Які найкращі чисельні методи для цього?

Що розв'язує машинне навчання?

Машинне навчання намагається розв'язати три основні проблеми:

- 1. **Оптимізація**: чи можна взагалі знайти $\hat{\theta}$? Які найкращі чисельні методи для цього?
- 2. Статистика: як побудувати функцію втрати \mathcal{L} , щоб вона максимально відображала наші очікування від моделі?

Що розв'язує машинне навчання?

Машинне навчання намагається розв'язати три основні проблеми:

- 1. **Оптимізація**: чи можна взагалі знайти $\hat{\theta}$? Які найкращі чисельні методи для цього?
- 2. Статистика: як побудувати функцію втрати \mathcal{L} , щоб вона максимально відображала наші очікування від моделі?
- 3. **Апроксимація**: Ми хочемо зробити $\min_{\theta} \mathcal{L}(\theta)$ як можна меншим. Отже, $f(x|\theta)$ має описувати як можна більш широкий клас функцій.

Що розв'язує машинне навчання?

Машинне навчання намагається розв'язати три основні проблеми:

- 1. **Оптимізація**: чи можна взагалі знайти $\hat{\theta}$? Які найкращі чисельні методи для цього?
- 2. **Статистика**: як побудувати функцію втрати \mathcal{L} , щоб вона максимально відображала наші очікування від моделі?
- 3. **Апроксимація**: Ми хочемо зробити $\min_{\theta} \mathcal{L}(\theta)$ як можна меншим. Отже, $f(x|\theta)$ має описувати як можна більш широкий клас функцій.

Зауваження

Сфокусуємось на третьому питанні, що і є темою нашої роботи. Отже, як побудувати влучну параметризацію?

Багатошарова Модель Персептронів

Сігмоїдальна Функція

00000000

Багатошарова Модель Персептронів

Definition

Сігмоїдальною функцією (Сігмоїдом) $\sigma: \mathbb{R} \to \mathbb{R}$ називається функція, що задовольняє двом умовам:

$$\lim_{x \to +\infty} \sigma(x) = 1, \quad \lim_{x \to -\infty} \sigma(x) = 0.$$

Сігмоїдальна Функція

Багатошарова Модель Персептронів

Definition

Сігмоїдальною функцією (Сігмоїдом) $\sigma: \mathbb{R} \to \mathbb{R}$ називається функція, що задовольняє двом умовам:

$$\lim_{x \to +\infty} \sigma(x) = 1, \quad \lim_{x \to -\infty} \sigma(x) = 0.$$

Example

Логістична функція $\sigma(x|\alpha) = 1/(1 + \exp(-\alpha x))$ є сігмоїдом.

Рис.: Логістична функція з різними параметрами α .

Робота Цибенко (1989)

Апроксимація функцій лінійною комбінацією сігмоїдів

Робота Цибенко [1] присвячена на той час відомій апроксимації функції $f:\mathbb{R}^m \to \mathbb{R}$ за допомогою наступної суми:

$$\hat{f}(\mathbf{x}) = \sum_{j=1}^{n} \alpha_{j} \sigma(\mathbf{w}_{j}^{\top} \mathbf{x} + \beta_{j}), \quad \mathbf{w}_{j} \in \mathbb{R}^{m}, \quad \alpha_{j}, \beta_{j} \in \mathbb{R}.$$

- По суті, лінійна комбінація виразів $\{\sigma(\boldsymbol{w}_i^{\top}\boldsymbol{x}+\beta_j)\}_{1\leq j\leq n}$.
- п кількість нейронів у прихованому шарі.
- Маємо рівно (m+2)n параметрів.

Робота Цибенко (1989)

Апроксимація функцій лінійною комбінацією сігмоїдів

Робота Цибенко [1] присвячена на той час відомій апроксимації функції $f:\mathbb{R}^m \to \mathbb{R}$ за допомогою наступної суми:

$$\hat{f}(\mathbf{x}) = \sum_{j=1}^{n} \alpha_{j} \sigma(\mathbf{w}_{j}^{\top} \mathbf{x} + \beta_{j}), \quad \mathbf{w}_{j} \in \mathbb{R}^{m}, \quad \alpha_{j}, \beta_{j} \in \mathbb{R}.$$

- По суті, лінійна комбінація виразів $\{\sigma(\boldsymbol{w}_i^{\top}\boldsymbol{x}+\beta_j)\}_{1\leq j\leq n}$.
- п кількість нейронів у прихованому шарі.
- Маємо рівно (m+2)n параметрів.

Питання

Який клас функцій може апроксимувати така модель?

Візуалізація Архітектури Цибенко

Зауваження

Нейрон — це просто значення у графі обчислень.

• $Q_m = [0,1]^m$ є m-вимірним одиничним гіперкубом.

- $Q_m = [0,1]^m$ є *m*-вимірним одиничним гіперкубом.
- $\mathcal{C}(\mathcal{Q}_m)$ простір неперервних функцій $f:\mathcal{Q}_m o \mathbb{R}$.

- $Q_m = [0,1]^m$ є *m*-вимірним одиничним гіперкубом.
- $\mathcal{C}(\mathcal{Q}_m)$ простір неперервних функцій $f:\mathcal{Q}_m o \mathbb{R}$.
- Норма функції f на $\mathcal{C}(\mathcal{Q}_m)$: $\|f\|_{\mathcal{Q}_m} = \sup_{\mathbf{x} \in \mathcal{Q}_m} |f(\mathbf{x})|$.

- $Q_m = [0,1]^m$ є m-вимірним одиничним гіперкубом.
- $\mathcal{C}(\mathcal{Q}_m)$ простір неперервних функцій $f:\mathcal{Q}_m o \mathbb{R}$.
- Норма функції f на $\mathcal{C}(\mathcal{Q}_m)$: $\|f\|_{\mathcal{Q}_m} = \sup_{\mathbf{x} \in \mathcal{Q}_m} |f(\mathbf{x})|$.

Theorem (Цибенко)

Нехай σ будь-яка неперервна сігмоїдальна функція. Суми вигляду $\hat{f}(\mathbf{x}) = \sum_{j=1}^n \alpha_j \sigma(\mathbf{w}_j^\top \mathbf{x} + \beta_j)$ ϵ щільними у $\mathcal{C}(\mathcal{Q}_m)$ та $L^1(\mathcal{Q}_m)$. Іншими словами, для будь-якої функції $f \in \mathcal{C}(\mathcal{Q}_m)$ та $\epsilon > 0$, існує сума $\hat{f}(\mathbf{x})$ така, що:

- 1. $|\hat{f}(\mathbf{x}) f(\mathbf{x})| < \varepsilon$ для всіх $\mathbf{x} \in \mathcal{Q}_m$.
- 2. $\int_{\mathcal{Q}_m} |\hat{f}(\mathbf{x}) f(\mathbf{x})| d\mathbf{x} < \varepsilon$.

- $Q_m = [0,1]^m \in m$ -вимірним одиничним гіперкубом.
- $\mathcal{C}(\mathcal{Q}_m)$ простір неперервних функцій $f:\mathcal{Q}_m o \mathbb{R}$.
- Норма функції f на $\mathcal{C}(\mathcal{Q}_m)$: $\|f\|_{\mathcal{Q}_m} = \sup_{\mathbf{x} \in \mathcal{Q}_m} |f(\mathbf{x})|$.

Theorem (Цибенко)

Нехай σ будь-яка неперервна сігмоїдальна функція. Суми вигляду $\hat{f}(\mathbf{x}) = \sum_{j=1}^n \alpha_j \sigma(\mathbf{w}_j^\top \mathbf{x} + \beta_j)$ ϵ щільними у $\mathcal{C}(\mathcal{Q}_m)$ та $L^1(\mathcal{Q}_m)$. Іншими словами, для будь-якої функції $f \in \mathcal{C}(\mathcal{Q}_m)$ та $\epsilon > 0$, існує сума $\hat{f}(\mathbf{x})$ така, що:

- 1. $|\hat{f}(\mathbf{x}) f(\mathbf{x})| < \varepsilon$ для всіх $\mathbf{x} \in \mathcal{Q}_m$.
- 2. $\int_{\mathcal{Q}_m} |\hat{f}(\mathbf{x}) f(\mathbf{x})| d\mathbf{x} < \varepsilon$.

Висновок

 $\sum_{j=1}^n \alpha_j \sigma(\mathbf{w}_i^{\top} \mathbf{x} + \beta_j)$ апроксимує довільну функцію на $\mathcal{C}(\mathcal{Q}_m)$.

Питання

Нехай $\mathcal{P}_0, \dots, \mathcal{P}_{C-1}$ — розбиття \mathcal{Q}_m на C підмножин (що називають *класами*).

Питання

Нехай $\mathcal{P}_0,\dots,\mathcal{P}_{C-1}$ — розбиття \mathcal{Q}_m на C підмножин (що називають *класами*).Нехай $f:\mathcal{Q}_m \to \{0,\dots,C-1\}$ задана так:

$$f(\mathbf{x}) = j \iff \mathbf{x} \in \mathcal{P}_j.$$

Питання

Нехай $\mathcal{P}_0,\dots,\mathcal{P}_{C-1}$ — розбиття \mathcal{Q}_m на C підмножин (що називають *класами*).Нехай $f:\mathcal{Q}_m \to \{0,\dots,C-1\}$ задана так:

$$f(\mathbf{x}) = j \iff \mathbf{x} \in \mathcal{P}_j.$$

Чи може $\hat{f}(\mathbf{x}) := \sum_{j=1}^n lpha_j \sigma(\mathbf{w}_j^{ op} \mathbf{x} + eta_j)$ апроксимувати f?

Питання

Нехай $\mathcal{P}_0,\dots,\mathcal{P}_{C-1}$ — розбиття \mathcal{Q}_m на C підмножин (що називають *класами*).Нехай $f:\mathcal{Q}_m \to \{0,\dots,C-1\}$ задана так:

$$f(\mathbf{x}) = j \iff \mathbf{x} \in \mathcal{P}_j.$$

Чи може $\hat{f}(\mathbf{x}) := \sum_{j=1}^n lpha_j \sigma(\mathbf{w}_j^{ op} \mathbf{x} + eta_j)$ апроксимувати f?

Theorem (Цибенко про класифікатор)

Нехай σ будь-яка неперервна сігмоїдальна функція і функція f задана як вище. Тоді для будь-якої такої функції існує \hat{f} та множина $\mathcal{D}\subseteq\mathcal{Q}_m$ така, що міра $\mu(\mathcal{D})\geq 1-\varepsilon$ та $|\hat{f}(\mathbf{x})-f(\mathbf{x})|<\varepsilon$ для всіх $\mathbf{x}\in\mathcal{D}$.

Ілюстрація

Рис.: Розбиття \mathcal{Q}_2 на три класи $\mathcal{P}_0, \mathcal{P}_1, \mathcal{P}_2$ (себто, C=3).

Практична реалізація

Додаток

У курсовій роботі ми також написали програму, що для заданого бінарного розбиття $\mathcal{P}_0, \mathcal{P}_1$, знаходить класифікатор \hat{f} .

Рис.: Правильне розбиття $\mathcal{P}_0, \mathcal{P}_1$.

Рис.: Розбиття, знайдене класифікатором \hat{f} .

1. Замість сігмоїду σ , використовуються інші **нелінійні** активаційні функції $\phi: \mathbb{R} \to \mathbb{R}$ (напр., $\phi(x) = \max\{0, x\}$).

- 1. Замість сігмоїду σ , використовуються інші нелінійні активаційні функції $\phi: \mathbb{R} \to \mathbb{R}$ (напр., $\phi(x) = \max\{0, x\}$).
- 2. Замість двох шарів, може бути довільна кількість шарів.

- 1. Замість сігмоїду σ , використовуються інші нелінійні активаційні функції $\phi: \mathbb{R} \to \mathbb{R}$ (напр., $\phi(x) = \max\{0, x\}$).
- 2. Замість двох шарів, може бути довільна кількість шарів.

Definition (Багатошарова модель персептронів (MLP))

Таким чином, узагальнена архітектура:

$$m{x}^{\langle j+1
angle} = \phi^{\langle j
angle}(m{z}^{\langle j
angle}), \quad m{z}^{\langle j
angle} = m{W}^{\langle j
angle}m{x}^{\langle j
angle} + m{eta}^{\langle j
angle}, \quad j=0,\ldots,\ell-1,$$

Таким чином, параметризація моделі є $m{ heta} = \left\{ m{W}^{\langle j
angle}, m{eta}^{\langle j
angle}
ight\}_{0 \leq j \leq \ell-1}$

Зауваження

- 1. Замість сігмоїду σ , використовуються інші нелінійні активаційні функції $\phi: \mathbb{R} \to \mathbb{R}$ (напр., $\phi(x) = \max\{0, x\}$).
- 2. Замість двох шарів, може бути довільна кількість шарів.

Definition (Багатошарова модель персептронів (MLP))

Таким чином, узагальнена архітектура:

$$\mathbf{x}^{\langle j+1 \rangle} = \phi^{\langle j \rangle}(\mathbf{z}^{\langle j \rangle}), \quad \mathbf{z}^{\langle j \rangle} = \mathbf{W}^{\langle j \rangle}\mathbf{x}^{\langle j \rangle} + \boldsymbol{\beta}^{\langle j \rangle}, \quad j = 0, \dots, \ell - 1,$$

Таким чином, параметризація моделі є
$$m{ heta} = \left\{ m{W}^{\langle j
angle}, m{eta}^{\langle j
angle}
ight\}_{0 \leq j \leq \ell-1}$$

Зауваження

У курсовій роботі, ми розглянули питання: (a) навіщо потрібно більше двох шарів, (b) які бувають узагальнення архітектури MLP та (c) навіщо інші активаційні функції.

Мережі Колмогорова-Арнольда

Питання

Чи існують справжні неперервні функції від багатьох змінних?

Питання

Чи існують справжні неперервні функції від багатьох змінних?

Перефразоване питання

Чи можна будь-яку неперервну функцію $f:\mathcal{Q}_m\to\mathbb{R}$ записати за допомогою суми та композицій $\phi_1,\ldots,\phi_N\in\mathcal{C}(\mathbb{R})$?

Питання

Чи існують справжні неперервні функції від багатьох змінних?

Перефразоване питання

Чи можна будь-яку неперервну функцію $f:\mathcal{Q}_m\to\mathbb{R}$ записати за допомогою суми та композицій $\phi_1,\ldots,\phi_N\in\mathcal{C}(\mathbb{R})$?

Example

$$f(x,y)=3x+5y$$
. Якщо $\phi_1(x)=3x$, $\phi_2=5y$, то $f(x,y)=\phi_1(x)+\phi_2(y)$.

Питання

Чи існують справжні неперервні функції від багатьох змінних?

Перефразоване питання

Чи можна будь-яку неперервну функцію $f: \mathcal{Q}_m \to \mathbb{R}$ записати за допомогою суми та композицій $\phi_1, \dots, \phi_N \in \mathcal{C}(\mathbb{R})$?

Example

$$f(x,y)=3x+5y$$
. Якщо $\phi_1(x)=3x$, $\phi_2=5y$, то $f(x,y)=\phi_1(x)+\phi_2(y)$.

Example

$$f(x,y)=xy$$
. Оскільки $xy=rac{(x+y)^2}{4}-rac{(x-y)^2}{4}$, то якщо $\phi(x)=-x,\psi_+(x)=x^2/4,\psi_-(x)=-x^2/4$, то:

$$f(x, y) = \psi_{+}(x + y) + \psi_{-}(x + \phi(y)).$$

Теорема Колмогорова-Арнольда

Основна гіпотеза 13 проблеми Гільберта

Існує неперервна функція $f: \mathcal{Q}_3 \to \mathbb{R}$, що не може бути виражена як композиція та сума неперервних функцій $\phi_1, \ldots, \phi_N \in \mathcal{C}(\mathbb{R}^2)$.

Теорема Колмогорова-Арнольда

Основна гіпотеза 13 проблеми Гільберта

Існує неперервна функція $f: \mathcal{Q}_3 \to \mathbb{R}$, що не може бути виражена як композиція та сума неперервних функцій $\phi_1, \ldots, \phi_N \in \mathcal{C}(\mathbb{R}^2)$.

Definition (Теорема Колмогорова (1957, [5]))

Для будь-якого натурального $m\geq 2$, існують неперервні функції $\phi_{p,q}\in\mathcal{C}([0,1])$ такі, що для будь-якої функції $f\in\mathcal{C}(\mathcal{Q}_m)$ знайдуться неперервні функції $\Phi_1,\ldots,\Phi_{2m+1}\in\mathcal{C}(\mathbb{R})$ такі, що

$$f(x_1,...,x_m) = \sum_{q=1}^{2m+1} \Phi_q \left(\sum_{p=1}^n \phi_{p,q}(x_p) \right)$$

Мережа Колмогорова-Арнольда(KAN)

Зауваження

До роботи 2024 року [4], ідею такої репрезентації вважали недосяжною через "поганість" функцій $\phi_{p,q}$ та Φ_q .

Мережа Колмогорова-Арнольда(KAN)

Зауваження

До роботи 2024 року [4], ідею такої репрезентації вважали недосяжною через "поганість" функцій $\phi_{p,q}$ та Φ_q .

Definition (З'єднання KAN Мережі [4])

З'єднання КА Мережі між шарами розміру n (вхід) та m (вихід) — це матриця $\mathbf{\Phi} = \{\phi_{q,p}\}_{1 \leq p \leq n, 1 \leq q \leq m}$, де кожна функція параметризована, а наступне значення активації $\mathbf{y} = \mathbf{\Phi} \circ \mathbf{x}$.

Мережа Колмогорова-Арнольда(KAN)

Зауваження

До роботи 2024 року [4], ідею такої репрезентації вважали недосяжною через "поганість" функцій $\phi_{p,q}$ та Φ_q .

Definition (З'єднання КАП Мережі [4])

Багатошарова Модель Персептронів

З'єднання КА Мережі між шарами розміру n (вхід) та m (вихід) — це матриця $\mathbf{\Phi} = \{\phi_{q,p}\}_{1 \leq p \leq n, 1 \leq q \leq m}$, де кожна функція параметризована, а наступне значення активації $\mathbf{y} = \mathbf{\Phi} \circ \mathbf{x}$.

$$\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} \phi_{1,1} & \cdots & \phi_{1,n} \\ \vdots & \ddots & \vdots \\ \phi_{m,1} & \cdots & \phi_{m,n} \end{bmatrix} \circ \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \triangleq \begin{bmatrix} \sum_{\rho=1}^n \phi_{1,\rho}(x_\rho) \\ \vdots \\ \sum_{\rho=1}^n \phi_{m,\rho}(x_\rho) \end{bmatrix}$$

Мережа Колмогорова-Арнольда(KAN), cont.

Definition (Архітектура KAN [4])

Мережа Колмогорова-Арнольда — це композиція ℓ з'єднань:

$$\hat{f}_{\mathsf{KAN}}(\mathbf{x}) = \mathbf{\Phi}^{\langle \ell-1 \rangle} \circ \cdots \circ \mathbf{\Phi}^{\langle 1 \rangle} \circ \mathbf{\Phi}^{\langle 0 \rangle} \circ \mathbf{x}.$$

Мережа Колмогорова-Арнольда(KAN), cont.

Definition (Архітектура KAN [4])

Мережа Колмогорова-Арнольда — це композиція ℓ з'єднань:

$$\hat{f}_{\mathsf{KAN}}(\mathbf{x}) = \mathbf{\Phi}^{\langle \ell-1 \rangle} \circ \cdots \circ \mathbf{\Phi}^{\langle 1 \rangle} \circ \mathbf{\Phi}^{\langle 0 \rangle} \circ \mathbf{x}.$$

Example (Формула Колмогорова)

Нехай
$$\mathbf{\Phi}^{\langle 0 \rangle} = \{\phi_{p,q}\}_{1 \leq p \leq m, 1 \leq q \leq 2m+1}, \; \mathbf{\Phi}^{\langle 1 \rangle} = \{\Phi_q\}_{1 \leq q \leq 2m+1}$$
:

$$\hat{f}_{\mathsf{KAN}}(\mathbf{x}) = \begin{bmatrix} \Phi_1, \dots, \Phi_{2m+1} \end{bmatrix} \circ \begin{bmatrix} \phi_{1,1} & \cdots & \phi_{1,m} \\ \vdots & \ddots & \vdots \\ \phi_{2m+1,1} & \cdots & \phi_{2m+1,m} \end{bmatrix} \circ \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$

$$= [\Phi_1, \dots, \Phi_{2m+1}] \circ \begin{bmatrix} \sum_{p=1}^m \phi_{1,p}(x_p) \\ \vdots \\ \sum_{p=1}^m \phi_{2m+1,p}(x_p) \end{bmatrix} = \sum_{q=1}^{2m+1} \Phi_q \left(\sum_{p=1}^m \phi_{q,p}(x_p) \right)$$

Візуалізація

Рис.: Архітектура мережі Колмогорова-Арнольда з оригінальної роботи [4].

Література I

Багатошарова Модель Персептронів

- G. Cybenko. "Approximation by superpositions of a sigmoidal [1] function". B: Mathematics of Control, Signals and Systems 2.4 (1989), c. 303—314. DOI: 10.1007/BF02551274. URL: https://doi.org/10.1007/BF02551274.
- Oleksandr Kuznetsov, Dmytro Zakharov ta Emanuele Frontoni. |2| "Deep learning-based biometric cryptographic key generation with post-quantum security". B: Multimedia Tools and Applications 83.19 (2024), c. 56909—56938. DOI: 10.1007/s11042-023-17714-7. URL: https://doi.org/10.1007/s11042-023-17714-7.

Література II

Багатошарова Модель Персептронів

- [3] Oleksandr Kuznetsov та ін. "AttackNet: Enhancing biometric security via tailored convolutional neural network architectures for liveness detection". В: Computers & Security 141 (2024), с. 103828. ISSN: 0167-4048. DOI: https://doi.org/10.1016/j.cose.2024.103828. URL: https://www.sciencedirect.com/science/article/pii/S0167404824001299.
- [4] Ziming Liu та ін. "Kan: Kolmogorov-arnold networks". В: arXiv preprint arXiv:2404.19756 (2024).
- [5] Kolmogorov A. N. "On the Representation of Continuous Functions of one Variable and Addition". B: Doklady Akademii Nauk SSSR 144 (1957), c. 679—681. URL: https://cir.nii.ac.jp/crid/1571980075616322176.

Література III

[6] Dmytro Zakharov, Oleksandr Kuznetsov τa Emanuele Frontoni. "Unrecognizable yet identifiable: Image distortion with preserved embeddings". B: Engineering Applications of Artificial Intelligence 137 (2024), c. 109164. ISSN: 0952-1976. DOI: https://doi.org/10.1016/j.engappai.2024.109164. URL: https://www.sciencedirect.com/science/article/pii/S0952197624013228.

Дякую за Вашу Увагу!

Додаткові відомості

Definition (Mipa)

Мірою μ називають невід'ємну σ -адитивну функцію множин, задана на півкільці \mathcal{H} :

- Невід'ємна: $\forall X \in \mathcal{H} : \mu(X) \geq 0$.
- σ -адитивність: $\forall \{X_n\}_{n\in\mathbb{N}}\subset \mathcal{H}$ таких, що $\{X_n\}_{n\in\mathbb{N}}$ є неперетинними та $\bigcup_{n\in\mathbb{N}}X_n\in \mathcal{H}$, справедливо:

$$\mu\left(\bigcup_{n\in\mathbb{N}}X_n\right)=\sum_{n\in\mathbb{N}}\mu(X_n).$$

Додаткові відомості

Definition (L^p προςτίρ)

 L^p простором $(p \ge 1)$ над простором з мірою $(\Omega, \mathcal{F}, \mu)$ називають множину функцій $\mathcal{L}^p(\Omega, \mu)$, на яких інтеграл Лебега в p-ому степені модуля є скінченним:

$$\mathcal{L}^p(\Omega,\mu) = \left\{ f : \mathcal{F}$$
-вимірна : $\|f\|_p = \left(\int_\Omega |f|^p d\mu \right)^{1/p} < \infty
ight\}.$

Для $p=\infty$, $\|f\|_{\infty}=\inf\{\gamma\in\mathbb{R}_{\geq0}:|f(x)|\leq\gamma$ майже для всіх $x\in\Omega\}.$