

5.4 Thermal Information

	1 1	LMx24, LM2902						LMx24			
THERMAL METRIC ⁽¹⁾		D (SOIC)	DB (SSOP)	N (PDIP)	NS (SO)	PW (TSSOP)	RTE (WQFN) (5)	FK (LCCC)	(CDIP)	W (CFP)	UNIT
R _{θJC(top)} (4)	Junction-to-case (top) thermal resistance	60.4	55.5	62.0	48.0	57.9	68.8	49.9	37.5	72.7	°C/W
R _{0JB}	250	57.5	56.8	57.7	49.2	80.7	40.2	49.0	72.2	146.5	
ΨЈТ		19.8	18.2	40.5	14.4	8.4	4.9	42.9	31.0	48.3	
ΨЈВ		57.0	55.8	57.1	48.8	79.8	40.0	48.9	67.3	129.2	
R ₀ JC(bot)	Junction-to-case (bottom) thermal resistance	_	_	_	_	_	23.6	7.3	18.8	10.1	°C/W

- For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.
- (2) Short circuits from outputs to VCC can cause excessive heating and eventual destruction.
- (3) Maximum power dissipation is a function of $T_{J(max)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} T_A)/R_{\theta JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- (4) Maximum power dissipation is a function of T_{J(max)}, R_{BJA}, and T_C. The maximum allowable power dissipation at any allowable case temperature is P_D = (T_{J(max)} T_C)/R_{BJC}. Operating at the absolute maximum T_J of 150°C can affect reliability.
- (5) This package is preview only.