

Systemtheorie für Anwender

Prof. Dr-Ing. Andreas Meisel

Zum Inhalt

- Vorbereitung: Komplexe Rechnung, Eulergleichung
- Vorbereitung: Fourierreihe
- diskrete Fouriertransformation
- Filterung im Frequenzbereich

1 Komplexe Zahlen

1.1 Einführung

Es gibt keine reelle Zahl x, die der Gleichung $x^2 = -1$ genügt. Um diese Einschränkung aufzulösen, wird die *imaginäre Einheit* j eingeführt.

$$(1) \quad j = \sqrt{-1}$$

$$j^2 = -1$$

(1) $j = \sqrt{-1}$ Aber Achtung: j ist keine reelle Zahl

<u>ÜBUNG</u>: Vereinfachen Sie

$$j^3 =$$

$$\frac{1}{i} =$$

$$j^4 =$$

$$\frac{1}{i^2} =$$

1.2 Komplexe Zahl

Komplexe Zahl = die <u>Summe</u> einer reellen Zahl x (<u>Realteil</u>) und einer imaginären Zahl y (<u>Imaginärteil</u>)

$$\underline{z} = x + jy$$
 mit der imaginären Einheit $j^2 = -1$ (2)

Eine reelle Zahl ist somit der Spezialfall einer komplexen Zahl, nämlich eine komplexe Zahl ohne Imaginärteil.

Komplexe Variablen werden mit einem Unterstrich gekennzeichnet, z.B.: z

Beispiele:
$$\underline{z} = 3 + j4$$

$$\underline{z} = 3.21 + j1.011$$

$$\underline{z} = \sqrt{3} + j\pi\sqrt{7}$$

1.3 Kartesische Darstellung

Eine komplexe Zahl x+jy ist ein Punkt in der Ebene mit den kartesischen Koordinaten (x,y). Das Rechnen mit komplexen Zahlen kann geometrisch interpretiert werden.

Der **Betrag** einer komplexen Zahl |z| ist durch folgende Beziehung gegeben:

$$|\underline{z}| = \sqrt{x^2 + y^2}$$

(3)

Ursprungsabstand

1.4 Addition/Subtraktion komplexer Zahlen

Für die Addition zweier komplexer Zahlen $\underline{z_1} = x_1 + jy_1$ und $\underline{z_2} = x_2 + jy_2$ gilt:

$$\underline{z}_1 + \underline{z}_2 = (x_1 + jy_1) + (x_2 + jy_2) = (x_1 + x_2) + j(y_1 + y_2)$$
 (4)

Beispiel:
$$\underline{z}_1 = 3 + j4$$
 und $\underline{z}_2 = 5 + j6$

$$\underline{z}_1 + \underline{z}_2 = (3+j4) + (5+j6) = 8 + j10$$

1.5 Darstellung in Polarkoordinaten

Eine andere Darstellungsweise für komplexe Zahlen ist die Darstellung in Polarkoordinaten (durch r und φ):

$$\underline{z} = x + jy = r \cdot \cos \varphi + j \cdot r \cdot \sin \varphi = r \cdot (\cos \varphi + j \sin \varphi)$$
 (5)

Beispiel:
$$\underline{z} = 3+j4$$
 $\Rightarrow r = \sqrt{3^2 + 4^2} = 5$, $\varphi = \arctan(\frac{4}{3}) = 53.13^{\circ}$
 $\underline{z} = 3+j4 = 5 \cdot [\cos(53.13^{\circ}) + j \sin(53.13^{\circ})]$

1.6 Eulersche Formel

Leonhard Euler entdeckte einen (<u>überraschenden</u>) Zusammenhang zwischen der Exponentialfunktion und den trigonometrischen Funktionen.

$$r \cdot (\cos \varphi + j \sin \varphi) = r \cdot e^{j\varphi}$$
 (6)

- kompakte Schreibweise für kompl. Zahlen
- neue (einfache) Rechenregeln

Beispiel:
$$\underline{z} = 3+j4$$
 \Rightarrow $r = \sqrt{3^2 + 4^2} = 5$, $\varphi = \arctan(\frac{4}{3}) = 53.13^{\circ}$

$$\underline{z} = 3+j4 = 5 \cdot [\cos(53.13^{\circ}) + j\sin(53.13^{\circ})] = 5 \cdot e^{j \cdot 53.13^{\circ}}$$
Kartesische Form Polarkoordinatenform Exponentialform

* Anm.: Dieser Zusammenhang folgt aus der Reihenentwicklung beider Funktionen (o.Bew.).

Grafische Interpretation der Eulersche Formel

Was bedeutet $r \cdot e^{j\varphi}$?

Da $r \cdot e^{j\varphi}$ nur eine <u>andere Beschreibungsform</u> der <u>Polarkoordinatenschreibweise</u> ist, gilt

- 1. Der Zeiger hat die Länge r
- 2. Der Zeiger zeigt in die Richtung ϕ

Fazit: Unabhängig von φ zeigt der Zeiger auf einen Punkt des Kreises mit dem Radius r.

ÜBUNG: Komplexe Zahlen

Geben Sie folgende komplexe Zahlen in Polarkoordinatenform und Exponentialschreibweise an:

$$z = -3 + j4$$

$$\underline{z} = 5 - j2$$

Formen Sie folgende komplexe Zahlen in die kartesische Form um:

$$\underline{z} = 5e^{j\frac{\pi}{2}}$$

$$\underline{z} = je^{j\pi}$$

$$\underline{z} = je^{j\pi}$$

$$\underline{z} = 2e^{j30^{\circ}}$$

1.7 Multiplikation komplexer Zahlen

Mit Hilfe der Euler-Formel wird auch die Multiplikation komplexer Zahlen sehr einfach geometrisch interpretierbar.

$$\underline{z}_1 \cdot \underline{z}_2 = (x_1 + jy_1) \cdot (x_2 + jy_2) = r_1 e^{j\varphi_1} \cdot r_2 e^{j\varphi_2} = r_1 \cdot r_2 \cdot e^{j(\varphi_1 + \varphi_2)}$$
(7)

Die Multiplikation zweier komplexer Zahlen ist eine *Drehsteckung*.

- Die Beträge der Vektoren werden multipliziert.
- Die Winkel werden addiert

1.8 Division komplexer Zahlen

$$\frac{\underline{z}_1}{\underline{z}_2} = \frac{(x_1 + jy_1)}{(x_2 + jy_2)} = \frac{r_1 e^{j\varphi_1}}{r_2 e^{j\varphi_2}} = \frac{r_1}{r_2} \cdot e^{j(\varphi_1 - \varphi_2)}$$
(8)

Die Division zweier komplexer Zahlen ist eine Drehstauchung.

- Die Beträge der Vektoren werden dividiert.
- Die Winkel werden subtrahiert.

2. Fourierreihe

2.1 Synthese periodischer Funktionen

Joseph de Fourier entdeckte 1822, das sich (alle) <u>periodischen Funktionen</u> als <u>trigonometrische Funktionenreihe</u> darstellen lassen⁽¹⁾:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\omega t + b_n \sin n\omega t)$$
 (1)

$$\omega = \frac{2\pi}{T} = 2\pi \cdot f$$

$$T$$
 Periodendauer $f=rac{1}{T}$ Frequenz

$$a_n$$
, b_n Fourierkoeffizienten (Wichtungsfaktoren der Vielfachen der Grundfrequenz)

(1) Voraussetzung (Dirichletsche Bedingung): f(x) ist in allen Teilintervallen im Bereich 0..2Pi stetig und monoton.

Beispiel: Approximation der folgenden Rechteckfunktion

Grundschwingung

$$f(t) = \sin(t)$$

$$a_0 = 0$$

$$a_1 = 0$$

$$b_1 = 1$$

$$f(t) = \sin(t) + \frac{\sin(3t)}{3}$$

$$a_0 = 0$$
 $a_1 = 0$
 $b_1 = 1$
 $a_2 = 0$
 $b_2 = 0$
 $a_3 = 0$
 $b_3 = \frac{1}{3}$

$$f(t) = \sin(t) + \frac{\sin(3t)}{3} + \frac{\sin(5t)}{5}$$

$$a_0 = 0$$
 $a_1 = 0$
 $b_1 = 1$
 $a_2 = 0$
 $b_2 = 0$
 $a_3 = 0$
 $b_3 = \frac{1}{3}$
 $a_4 = 0$
 $b_4 = 0$
 $a_5 = 0$
 $b_5 = \frac{1}{5}$

$$f(t) = \sin(t) + \frac{\sin(3t)}{3} + \frac{\sin(5t)}{5} + \frac{\sin(7t)}{7} + \frac{\sin(9t)}{9}$$

$$a_0 = 0$$
 $a_1 = 0$
 $b_1 = 1$
 $a_2 = 0$
 $b_2 = 0$
 $a_3 = 0$
 $b_3 = \frac{1}{3}$
 $a_4 = 0$
 $b_4 = 0$
 $a_5 = 0$
 $b_5 = \frac{1}{5}$
 $a_6 = 0$
 $b_7 = \frac{1}{7}$
 $a_8 = 0$
 $b_9 = \frac{1}{9}$

$$f(t) = \sin(t) + \frac{\sin(3t)}{3} + \frac{\sin(5t)}{5} + \frac{\sin(7t)}{7} + \frac{\sin(9t)}{9} + \dots + \frac{\sin(99t)}{99}$$

$$f(t) = \sin(t) + \frac{\sin(3t)}{3} + \frac{\sin(5t)}{5} + \frac{\sin(7t)}{7} + \frac{\sin(9t)}{9} + \dots + \frac{\sin(999t)}{999}$$

2.2 Analyse periodischer Funktionen

2.2.1 Fragestellung

Gegeben sei eine periodische Funktion.

Aus welchen sin-/cos-Funktionen ist diese Funktion zusammengesetzt?

oder präziser gefragt:

Wie müssen die Wichtungsfaktoren der Sinusfunktionen (b_n) und der Cosinusfunktionen (a_n) gewählt werden, damit genau diese periodische Funktion entsteht ?

$$f(t) = \frac{a_0}{2} + a_1 \cos(\omega t) + a_2 \cos(2\omega t) + a_3 \cos(3\omega t) + \dots + b_1 \sin(\omega t) + b_2 \sin(2\omega t) + b_3 \sin(3\omega t) + \dots + b_3 \sin(3\omega t) + \dots$$

2.2.2 Berechnung der Fourierkoeffizienten

Die Fourierkoeffizienten einer periodischen Funktion f(t) können wie folgt berechnet werden (o. Bew.):

$$a_0 = \frac{2}{T} \int_0^T f(t) dt$$
 (2)

$$a_n = \frac{2}{T} \int_{0}^{T} f(t) \cos(n\omega t) dt$$
 (3)

$$b_n = \frac{2}{T} \int_0^T f(t) \sin(n\omega t) dt$$
 (4)

Anm.: (2)-(4) erhält man dadurch, dass (1) mit sin(nωt) bzw. cos(nωt) multipliziert und anschließend von 0..T integriert wird.

BEISPIEL: Berechnung der Fourierkoeffizienten

Berechnen Sie die Fourierkoeffizienten und die Fourierreihe für folgende Impulsfolge mit MAPLE:

Berechnen Sie die Koeffizienten für $\tau = T/16$.

alias(sigma = Heaviside); # Def: Sprungfunktion: 0 für
$$t < 0$$
,
1 für $t > 0$

$$f := t \rightarrow \left(sigma(t) - sigma\left(t - \frac{1}{16}\right)\right);$$
 $plot(f(t), t = 0..1);$

Impuls der Breite $\frac{T}{16}$

Berechnung der Fourierkoeffizienten

$$n := 40 : T := 1 :$$

$$\begin{split} &\textit{for i from } 0 \textit{ to } n \textit{ do} \\ &a[i] := \frac{2}{T} \cdot \textit{evalf} \bigg(\textit{int} \bigg(f(t) \cdot \textit{cos} \bigg(\frac{2 \cdot \text{Pi} \cdot i \cdot t}{T} \bigg), \, t = 0 \dots T \bigg) \bigg); \\ &b[i] := \frac{2}{T} \cdot \textit{evalf} \bigg(\textit{int} \bigg(f(t) \cdot \textit{sin} \bigg(\frac{2 \cdot \text{Pi} \cdot i \cdot t}{T} \bigg), \, t = 0 \dots T \bigg) \bigg); \\ &\textit{od} : \end{split}$$

Berechnung der Integrale (2) .. (4)

eval(a); #Ausgabe der Koeffizienten

eval(b);

Berechnung der Fourierreihe

$$fr := t \to \frac{a[0]}{2} + sum(a[k] \cdot cos(2 \cdot \pi \cdot k \cdot t) + b[k] \cdot sin(2 \cdot \pi \cdot k \cdot t), \qquad k = 1..39);$$

$$fr := t \to \frac{1}{2} a_0 + \sum_{k=1}^{39} (a_k \cos(2\pi k t) + b_k \sin(2\pi k t))$$

Fourierreihe für Impulsfunktion (bis n=5)

plot(fr(t), t=0..2);

Rekonstruierte Fourierreihe für Impulsfunktion (bis n=39)

2.3 2D-Fourierreihe

Auch periodische 2D-Funktionen lassen sich als Summe von sin/cos-Funktionen darstellen.

Beispiel: periodisches Funktionsgebirge z = f(x,y)

$$f(x, y) = \sin(x) + \sin(y)$$

$$f(x,y) = \sin(x) + \sin(y) + \frac{1}{3}\sin(3x) + \frac{1}{3}\sin(3y) + \dots + \frac{1}{11}\sin(11x) + \frac{1}{11}\sin(11y)$$

2.4 Idee: Bilder als Summe von "Wellenfunktionen"

Probleme:

- 1. Die Fourierreihe setzt periodische Funktionen voraus.
 - → Ein Bild kann als eine Periode einer periodischen Funktion (in der Ebene) aufgefasst werden

2. Berechnung der Fourierkoeffizienten für abgetastete Funktionen notwendig → Diskrete Fouriertransformation

Bilder als Summe von "Wellenfunktionen"

3. Diskrete Fouriertransformation (zunächst 1-dimensional)

3.1 Problemstellung, Definition und Eigenschaften der DFT

Gegeben: eine Periode eines abgetasteten periodischen Signals s(x)

- bestehend aus M Abtastwerten und
- mit der Grundfrequenz f₀).

Zusammenhang zwischen der Periodendauer T und der Grundfrequenz f₀:

$$f_0 = \frac{1}{T}$$

Aus welchen (<u>abgetasteten</u>) sin-/cos-Schwingungen der Frequenz $u \cdot f_0$ (u=1,2,3,....) ist das Signal zusammengesetzt?

.... oder anders gefragt :

Mit welchen Wichtungen R(u) und I(u) sind (abgetastete) cos- und sin-Schwingungen der Frequenz u (u=1,2,3,...) in einem periodischen Signal s(x) enthalten?

→ diskrete Fouriertransformation

= Analyse eines abgetasteten, periodischen Signals s(x)

$$R(u) = +\frac{1}{M} \cdot \sum_{x=0}^{M-1} s(x) \cdot \cos(2\pi \frac{u}{M} \cdot x)$$
 (1) mit $u = 0, 1, 2, ..., M-1$

(1) mit
$$u = 0, 1, 2, ..., M-1$$

M:

$$I(u) = -\frac{1}{M} \cdot \sum_{x=0}^{M-1} s(x) \cdot \sin(2\pi \frac{u}{M} \cdot x)$$
 (2)

s(x): abgetastetes Signal (bei x)

Vielfache der Grundfrequenz

Anzahl der Abtastwerte

→ die DFT beschreibt die Zerlegung einer abgetasteten, periodischen Funktion in (abgetastete) sin-/cos-Funktionen (=Analyse)

<u>Diskussion</u>: M Abtastwerte der Funktion $s(x) \rightarrow M$ Koeffizienten R(u) und I(u)

ÜBUNG: Diskrete Fourier-Transformation

Geben Sie einen Algorithmus für die DFT an.

Anm.: Zusammenhang von DFT und Fourierreihe

$$\frac{a_u}{2} \stackrel{\wedge}{=} + R(u) \tag{3 a}$$

$$\frac{b_u}{2} \triangleq -I(u) \tag{3 b}$$

für
$$u = 1...(M-1)/2$$

Diskussion: Eigenschaften der Fourier-Koeffizienten

s(x) ist eine periodische Funktion

Die <u>Fouriertransformierte</u> einer abgetasteten, periodischen Funktionen ist <u>ebenfalls eine</u> <u>abgetastete</u>, <u>periodische Funktion</u> (o. Bew.).

Für die weitere Berechnung ist eine um u=0 zentrierte Darstellung günstiger.

Für reelle s(x) gilt (o. Bew):

$$\rightarrow$$
 $R(u) = R(-u)$ gerade Funktion $I(u) = -I(-u)$ ungerade Funktion

3.2 Inverse diskrete Fourier Transformation = Synthese eines periodischen abgetasteten Signals

 \rightarrow Die IDFT beschreibt die Synthese einer periodischen, abgetasteten Funktion aus gewichteten (mit R(u) und I(u)), abgetasteten cos- und sin-Funktionen.

$$s(x) = R(0) + \sum_{u=1}^{\frac{(M-1)}{2}} \left[2 \cdot R(u) \cdot \cos(2\pi \frac{x}{M} \cdot u) - 2 \cdot I(u) \cdot \sin(2\pi \frac{x}{M} \cdot u) \right]$$

mit
$$x = 0, 1, 2, ..., M-1$$
 (4)

ÜBUNG: Inverse diskrete Fourier-Transformation

Geben Sie einen Algorithmus für die IDFT an.

Fazit:

Eine reelle periodische abgetastete Funktion s(x) wird durch ihre Frequenzanteile [R(u), I(u)] ein-eindeutig beschrieben, mit u=0...(M-1)/2

Kurzschreibweise: (Korrespondenzsymbol)

$$s(x) \bigcirc \bullet [R(u), I(u)]$$

3.3 Interpretation

Beispiel: gerade Funktion Anm.: f(x)=f(-x)

Wie ist das Ergebnis der DFT zu interpretieren?

s. Gleichg. (4)

$$s(x) = \cos(2\pi \cdot 1 \cdot \frac{x}{M}) - \frac{1}{3}\cos(2\pi \cdot 3 \cdot \frac{x}{M})$$

Frequenzbereich

BEISPIEL: cos-Funktion (gerade)

$$M = 64$$

$$s(x) = \cos(2\pi \frac{x}{M})$$

BEISPIEL: cos-Funktion (gerade)

$$M = 64$$

$$s(x) = \cos(2\pi \cdot 5\frac{x}{M})$$

Beispiel: ungerade Funktion

Anm.: -f(x)=f(-x)

s. Gleichg. (4)

$$s(x) = \sin(2\pi \cdot 1 \cdot \frac{x}{M}) + \frac{1}{3}\sin(2\pi \cdot 3 \cdot \frac{x}{M})$$

Frequenzbereich

BEISPIEL: sin-Funktion (ungerade)

$$M = 64$$

$$s(x) = \sin(2\pi \frac{x}{M})$$

BEISPIEL: sin-Funktion (ungerade)

$$M = 64$$

$$s(x) = \sin(2\pi \cdot 5\frac{x}{M})$$

3.4 Zusammenfassung

Zeitbereich

Reelle Zeitfunktionen

Gerade Zeitfunktionen

Ungerade Zeitfunktionen

Frequenzbereich

 $R(u) = R(-u), \quad I(u) = -I(-u)$

I(u) = 0 (keine sin-Anteile)

R(u) = 0 (keine cos-Anteile)

R(u) wichtet die im Signal s(x) enthaltenen <u>cos-Funktionen</u>.

I(u) wichtet die im Signal s(x) enthaltenen <u>sin-Funktionen</u>.

3.5 Komplexe Darstellung der DFT

Meist fasst man R(u) und I(u) wie folgt zu komplexen Koeffizienten $\underline{S}(u)$ zusammen:

$$\underline{S}(u) = R(u) + j \cdot I(u) \tag{5}$$

Man erhält somit eine gemeinsame Darstellung für die sin- und cos-Komponenten des Signals

$$\underline{S}(u) = \frac{1}{M} \cdot \sum_{x=0}^{M-1} s(x) \cdot \cos(2\pi x \frac{u}{M}) - j \frac{1}{M} \cdot \sum_{x=0}^{M-1} s(x) \cdot \sin(2\pi x \frac{u}{M})$$

$$= \frac{1}{M} \cdot \sum_{x=0}^{M-1} s(x) \cdot \left[\cos(2\pi x \frac{u}{M}) - j \sin(2\pi x \frac{u}{M}) \right]$$

Damit gilt dann kürzer $s(x) \bigcirc - \underline{S}(u)$

3.6 Betrags- und Phasenspektrum

In vielen Fällen ist eine Darstellung von $\underline{S}(u)$ in Polarkoordinaten bequemer.

$$|\underline{S}(u)| = S(u) = \sqrt{R^2(u) + I^2(u)}$$

Betrag und Phase bei Verschiebung des Signals

Eine Verschiebung eines Signals im Zeitbereich verändert die Frequenzzusammensetzung nicht, sondern verursacht nur eine Phasenverschiebung (o. Bew.).

4. Filterung diskreter Signale (1-dimensional)

4.1 Diskrete Faltung

Die Faltung einer <u>diskreten</u>, <u>periodischen</u> Funktion s(x) (z.B. Signalfunktion) mit einer anderen diskreten, periodischen Funktion h(x) (z.B. Filterfunktion) ist wie folgt definiert (M=Periodenlänge):

$$g(x) = s(x) * h(x)$$

4.2 Impulsantwort eines Filters

Wie kann man den Faltungskern h(x) eines unbekannten Filters bestimmen?

Fazit: Die Impulsantwort eines Filters sind die Koeffizienten der Faltungsmaske!

4.3 Frequenzantwort eines Filters

Die Fouriertransformierte H(u) der Impulsantwort h(x) wird als <u>Frequenzantwort</u> H(u) des Filters bezeichnet.

Die Frequenzantwort beschreibt, wie stark die einzelnen Frequenzen u vom Filter verstärkt bzw. gedämpft werden.

4.4 Faltungstheorem der DFT

Durch Anwendung der DFT auf die Faltungsoperation g(x) = s(x) * h(x) kann man zeigen das gilt (o.Bew.):

$$g(x) = s(x) * h(x)$$
 $\bigcirc \bullet$ $G(u) = S(u) \cdot H(u)$

Die Faltung eines Signals s(x) mit dem Faltungskern h(x)

kann ersetzt werden durch

die <u>Multiplikation</u> des <u>transformierten Signals S(u)</u> mit der <u>Frequenzantwort H(u)</u>.

Statt
$$g(x) = s(x) * h(x)$$

$$G(u) = S(u) \cdot H(u)$$

- (1) Frequenzverteilung im Signal
- (2) Filtercharakteristik: Wie werden die Frequenzen verstärkt/gedämpft?
- (3) Frequenzverteilung im gefilterten Signal

Analogie: Filterung im Frequenzbereich

Filtern im Frequenzbereich : Anheben oder Absenken von Frequenzbereichen
→ math. Realisierung eines Equalizers

$$G(u) = S(u) \cdot H(u)$$

S(u): Signal im Frequenzbereich

H(u): Filter-Frequenzantwort

G(u): gefilt. Signal im Frequenzbereich

5. Diskrete Fouriertransformation (2-dimensional)

5.1 Grundlagen

5.1.1 Berechnung

Die Frequenzkomponenten S(u) einer diskreten, periodischen Funktion s(x) werden wie folgt berechnet (*diskrete Fouriertransformation*):

$$\underline{S}(u,v) = \frac{1}{M \cdot N} \cdot \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} s(x,y) \cdot e^{-j2\pi \left(u\frac{x}{M} + v\frac{y}{N}\right)} \qquad \text{mit } u = 0, 1, 2, ..., M-1$$

$$v = 0, 1, 2, ..., N-1$$

$$s(x,y) \bigcirc \bullet S(u,v)$$

Re{S(u)}

 $Im{S(u)}$

periodisch fortgesetztes Bild S(x, y)

Der rot umrandete Bereich geht in die Berechnung ein.

Die grün umrandeten Bereiche werden berechnet.

periodisch fortgesetzte FT $\underline{S}(u,v)$

<u>5.1.2 Zentrierung um (u,v) = (0,0)</u>

periodisch fortgesetztes Bild S(x, y)

 $Im\{S(u)\}$

Vorteil: Einfachere Interpretation des Ergebnisses und günstiger für Filteroperationen im Frequenzbereich.

periodisch fortgesetzte FT $\underline{S}(u, v)$

5.2 Interpretation der 2D-DFT

Im Ursprung ist die Frequenz (0,0). Nach außen werden die Frequenzen immer höher.

Bilder als Summe von gewichteten "Wellenfunktionen"

5.3 Filterung von Bildern

5.3.1 Faltung

$$g(x,y) = \sum_{m=-\frac{M-1}{2}}^{\frac{M-1}{2}} \sum_{n=\frac{N-1}{2}}^{\frac{N-1}{2}} h(m,n) \cdot s(x-m,y-n)$$

h(m,n): Faltungskern

Anwendungsbeispiele:

- Bildglättung
- Bildschärfung
- Kantenfilter

5.3.2 Impulsantwort

Wie kann man den Faltungskern h(x,y) eines unbekannten Filters bestimmen?

Bild mit "Einheitsimpuls"

	Grauwert =	0
--	------------	---

Fazit: Die Impulsantwort eines Filters ist der Faltungskern!

5.3.3 Frequenzantwort

Die Fouriertransformierte der Filter-Impulsantwort h(x,y) wird als <u>Frequenzantwort</u> H(u,v) des Filters bezeichnet.

$$h(x, y) \bigcirc \bullet \quad \underline{H}(u, v)$$

Impulsantwort des 4x4-Rechteckfilters

Frequenzantwort (Betrag) des 4x4-Rechteckfilters

Die Frequenzantwort beschreibt, wie stark die einzelnen Frequenzen (u,v) vom Filter verstärkt bzw. gedämpft werden.

5.3.4 Faltungstheorem → Filterung im Frequenzbereich

Durch Anwendung der DFT auf die Faltungsoperation kann man zeigen, daß gilt (o.Bew.):

$$g(x, y) = s(x, y) * h(x, y)$$
 $\bigcirc \bullet$ $\underline{G}(u, v) = \underline{S}(u, v) \cdot \underline{H}(u, v)$

Die Faltung eines Signals s(x,y) mit dem Faltungskern h(x,y)

kann ersetzt werden durch

die **Multiplikation** des transformierten Signals S(u,v) mit der Frequenzantwort H(u,v).

5.4 Zusammenhang von Bildstruktur und der Fouriertransformierten

5.4.1 Rechteckige Grauwertprofile

Anm.: Bilder der folgenden Seiten z.T. aus Burger u. Burge, Digitale Bildverarbeitung, Springer

Bild

Rechteckige Grauwertprofile korrespondieren

.

Schmale Bildstrukturen korrespondieren

.

Betrag der DFT (zentriert)

..... mit Si-förmigen Grauwertprofilen im Frequenzspektrum.

.... mit breiten Strukturen im Frequenzspektrum (u.u.).

5.4.2 Gaussförmige Grauwertprofile (näherungsweise wie Binomialkern)

Bild

Gaussförmige Grauwertprofile korrespondieren

.

Schmale Bildstrukturen korrespondieren

.

Betrag der DFT (zentriert)

.... mit gaussförmigen Grauwertprofilen im Frequenzspektrum.

.... mit breiten Strukturen im Frequenzspektrum (u.u.).

5.4.3 Sinusförmige Grauwertprofile

Bild

Sinusförmige Grauwertprofile korrespondieren mit

Je höher die Frequenz

..... um den Nullpunkt symm. Punktpaaren im Frequenzbereich

..... desto weiter rückt das Punktpaar nach außen.

5.4.4 Näherungsweise periodische Strukturen

Bild

Näherungsweise periodische Strukturen korrespondieren

Eine Drehung des Bildes

.... mit unscharfen Punktpaaren im Frequenzbereich

.... korrespondiert mit einer Drehung des Spektrums.

5.4.5 Abgetastete und gerasterte Strukturen

5.4.6 Weitere Beispiele

Bild

Betrag der DFT