2. ЗАДАЧІ БАГАТОКРИТЕРІАЛЬНОЇ ОПТИМІЗАЦІЇ

🖹 План викладу матеріалу:

- 1. Метод лінійного згортання критеріїв.
- 2. Метод максимінного згортання критеріїв.
- 3. Метод головного критерію.
- 4. Виокремлення єдиного розв'язку.

- Ключові терміни розділу

∀ Невизначеність мети	∀ Лінійне згортання критеріїв
∀ Вагові коефіцієнти	∀ Лінії рівня у просторі критеріїв
▼ Максимінне згортання критеріїв	∀ Нормування вагових коефіцієнтів
∀ Порівняння методів згортання	∀ Апроксимація множини Парето
√ Апроксимація множини Слейтера	∀ Гіпотеза ранжування критеріїв
∀ Гіпотеза похибок	∀ Експертний характер гіпотез

Для великого технічного чи економічного проекту типовою є ситуація, коли необхідно задовольняти різні, часто суперечливі вимоги. Наприклад, головне бажання конструктора полягає у тому, щоб його літак був швидкісним, висотним, надійним і найдешевшим. Досягти цього одночасно неможливо в принципі! Реальна конструкція завжди буде якимось компромісом. У цьому і полягає проблема багатокритеріальності (невизначеності мети).

Задача багатокритеріальної оптимізації з множиною допустимих розв'язків $D \subset R^n$ і функцією мети $f(\bar{x}) = (f_1(\bar{x}), ..., f_m(\bar{x}))$ має вигляд $f_i(\bar{x}) \to \max_{\bar{x} \in D} i = \overline{1,m}$ (див. задачу 1.7).

Як уже було сказано, оптимальний розв'язок задачі (1.7) необхідно шукати серед взаємно недомінованих елементів множини Парето P(D) (або серед взаємно недомінованих елементів множини Слейтера S(D)), а обрання серед цих елементів оптимального вимагає дотримання певних *гіпотез* (*інженерних* методів), які не випливають з умови задачі. Ці інженерні методи ми розглянемо у пункті 2.4.

2.1. Метод лінійного згортання критеріїв

Метод лінійного згортання критеріїв дає змогу замінити векторний критерій оптимальності $f=(f_1,...,f_m)$ на скалярний $F(\overline{\alpha}, \overline{x}): D \to R$ за допомогою лінійного об'єднання усіх часткових цільових функціоналів $f_1,...,f_m$ в один:

$$F(\overline{\alpha}, \overline{x}) = \sum_{i=1}^{m} \alpha_i f_i(\overline{x}) \to \max_{\overline{x} \in D}; \ \overline{\alpha} \in A,$$
 (2.1)

де
$$A = \left\{ \overline{\alpha} = (\alpha_1, ..., \alpha_m)^T \mid \alpha_i > 0, \sum_{i=1}^m \alpha_i = 1 \right\}.$$

Вагові коефіцієнти α_i вважають показниками відносної значущості відповідних часткових цільових функціоналів f_i . Чим вагоміший критерій f_i , тим більше він впливатиме на значення суми і, відповідно, тим більше числове значення α_i він матиме. Значення коефіцієнтів α_i отримують за результатами експертного аналізу.

Теорема 2.1. Розв'язок задачі (2.1) ϵ *ефективним* вектором.

ightharpoonuprige Від супротивного. Нехай $\bar{x}_0 \in D$ є розв'язком задачі (2.1), а також $\exists \ \bar{x}_1 \in D: \ f_i(\bar{x}_1) \geq f_i(\bar{x}_0)$, а для i = s маємо $f_s(\bar{x}_1) > f_s(\bar{x}_0)$. Тоді

$$\sum\limits_{i=1}^m \alpha_i f_i(\bar{x}_1) > \sum\limits_{i=1}^m \alpha_i f_i(\bar{x}_0)$$
і, відповідно, \bar{x}_0 не максимізує функціонал

 $F(\overline{\alpha}, \overline{x})$. З отриманої суперечності випливає, що точки $\overline{x}_1 \in D$ із заданими ознаками не існує, отож \overline{x}_0 – ефективний вектор.

Ця теорема встановлює важливий факт, що $\bigcup_{\overline{\alpha}\in A} X(\overline{\alpha})\subseteq P(D)$,

де
$$X(\overline{\alpha}^*)= {
m Arg} \max_{\overline{x} \in D} F(\overline{\alpha}^*, \overline{x})$$
 — множина розв'язків (2.1) для $\overline{\alpha}^* \in A$.

Звернемось до геометричної ілюстрації лінійного згортання критеріїв для m=2: $F(\overline{\alpha}, \overline{x}) = \alpha_1 f_1(\overline{x}) + \alpha_2 f_2(\overline{x}) = \Phi(f_1, f_2)$, де фун-

кція Φ має область визначення у просторі критеріїв (f_1, f_2) . Побудуємо лінії рівня функції Φ :

$$\alpha_1 f_1 + \alpha_2 f_2 = c = \text{const.} \tag{2.2}$$

Графіки прямих (2.2) для різних констант у правій частині і різних вагомих коефіцієнтів зображено на рис. 2.1.

Рис. 2.1. Лінії рівня функції Φ

Кутовий коефіцієнт нахилу прямої L дорівнює $-\alpha_1/\alpha_2$. Під час збільшення константи c пряма переміщується вверх паралельно L, займаючи положення L'. Отож отримуємо сім'ю ліній рівня і максимум функції Φ , а також і F, що досягається у точках площини (f_1, f_2) , які відповідають точкам дотику (але не перетину) лінії рівня і дуги BC — множини $e\phi$ ективних оцінок $P(\bar{f})$. На рис. 2.1 точка B — це точка, яку визначено зазначеним методом.

Жодна із точок проміжків [A,B) і (C,D], які відповідають малоефективним, а не ефективним розв'язкам, не може бути точкою дотику $\bar{f}(D)$ і будь-якої лінії рівня функції Φ (кутовий коефіцієнт $-\alpha_1/\alpha_2$ не може дорівнювати нулю чи нескінченності). На рис. 2.1 позначено також точку Q, яка є розв'язком задачі (2.1) за іншого набору вагомих коефіцієнтів.

Ситуацію, пов'язану з існуванням ефективних розв'язків, які водночає не ϵ розв'язками задачі (2.1), зображено на рис. 2.2. Усі точки дуги BC ϵ ефективними оцінками, та жодна з них (окрім точок B, C) не може бути точкою дотику ліній рівня функції Φ до множини \bar{f} (D) за будь-якого набору коефіцієнтів $\bar{\alpha} \in A$.

Рис. 2.2. Приклад множини ефективних оцінок

Дуже часто за евристичного вибору коефіцієнтів $\overline{\alpha} \in A$ у методі лінійного згортання критеріїв намагаються одразу визначити бажану ефективну точку, виходячи із заданих оцінок часткових критеріїв за *важливістю*.

Наприклад, якщо критерій f_2 важливіший за критерій f_1 , то бажано було б єдиним розв'язком багатокритеріальної задачі отримати ефективний вектор, який відображається у точку A множини ефективних оцінок (рис. 2.3). Однак невідомо при цьому, на скільки коефіцієнт α_2 має перевищувати коефіцієнт α_1 , щоб було отримано цей вектор. На рис. 2.3 проілюстровано ситуацію, коли $\alpha_2 > \alpha_1$ і водночас у точці B значення $f_1^B > f_2^B$!

Рис. 2.3. Евристичний вибір вагомих коефіцієнтів

Наведені рисунки і графіки ϵ ілюстративними. Насправді, під час розв'язування багатокритеріальних задач графічна інформація цілком відсутня, і дослідник має справу з винятково аналітичними постановками відповідних оптимізаційних задач.

2.2. Метод максимінного згортання критеріїв

Метод максимінного згортання критеріїв дає змогу замінити векторний критерій оптимальності $f=(f_1,...,f_m)$ на скалярний $F_1(\overline{\alpha},\overline{x})\colon D\to R$ за допомогою того з часткових цільових функціоналів, якому в точці \overline{x} відповідає *найменше* значення $f_i(\overline{x})$:

$$F_1(\overline{\alpha}, \overline{x}) = \min_i \alpha_i f_i(\overline{x}) \to \max_{\overline{x} \in D}, \ \overline{\alpha} \in A$$
 (2.3)

Якщо у випадку (2.1) "погані" значення деяких $f_i(\overline{x})$ можуть компенсуватися за рахунок "добрих" значень інших цільових функціоналів, то у випадку (2.3) зроблено ставку на найгірший випадок (за значенням $F_1(\overline{\alpha}, \overline{x})$ можна визначити гарантовану нижню оцінку усіх функціоналів $f_i(\overline{x})$). Цей факт розцінюють як певну перевагу максимінного згортання критеріїв перед лінійним. Вагові коефіцієнти $\overline{\alpha} \in A$ застосовують з метою приведення у взаємну відповідність масштабів вимірювань значень окремих $f_i(\overline{x})$

Теорема 2.2. Розв'язок задачі (2.3) є *малоефективним* вектором і навпаки, якщо для деякого малоефективного вектора \overline{x}_0 виконується $f_i(\overline{x}_0) > 0$ $(i=\overline{1,m})$, то \overline{x}_0 можна отримати як розв'язок задачі (2.3) за деяких $\alpha_i' > 0$ $(i=\overline{1,m})$.

> Пряме твердження (від супротивного). Нехай $\bar{x}_0 \in D$ є розв'язком задачі (2.3), а також $\exists \, \bar{x}_1 \in D: \, f_i(\bar{x}_1) > f_i(\bar{x}_0) \quad (i=\overline{1,m})$. Тоді $\alpha_i f_i(\bar{x}_1) > \alpha_i f_i(\bar{x}_0); \, \min_i \alpha_i f_i(\bar{x}_1) > \min_i \alpha_i f_i(\bar{x}_0) \quad (i=\overline{1,m})$. Отримали нерівності, за якими \bar{x}_0 не максимізує функціонал $F_1(\overline{\alpha}, \bar{x})$. З отриманої суперечності випливає, що точки $\bar{x}_1 \in D$ із заданими ознаками не існує, отож \bar{x}_0 — малоефективний вектор.

Зворотне твердження. Нехай $\bar{x}_0 \in D$ — малоефективний вектор.

Введемо числа $\alpha'_i = 1/f_i(\bar{x}_0) > 0$ і доведемо, що

$$\max_{\bar{x} \in D} \min_{i} \alpha_{i}' f_{i}(\bar{x}) = \min_{i} \alpha_{i}' f_{i}(\bar{x}_{0}) \equiv 1.$$
 (2.4)

Виконання співвідношення (2.4) означатиме, що за вибраних коефіцієнтів $\alpha_i' > 0$ максимум по \bar{x} досягатиметься на векторі \bar{x}_0 (тим самим зворотне твердження теореми 2.2 буде доведено).

Оскільки $\overline{x}_0 \in D$ – малоефективний вектор, то не існує такого вектора $\overline{x} \in D$, щоб $\forall i \ \left(i = \overline{1,m}\right): \ f_i(\overline{x}) > f_i(\overline{x}_0)$. Отож, можна стверджувати, що у цьому випадку $\forall \ \overline{x} \in D \ \exists \ i = s: \ f_s(\overline{x}) \leq f_s(\overline{x}_0)$.

Далі отримаємо такий ланцюжок правильних тверджень:

$$\forall \ \overline{x} \in D: \ \alpha'_{s} f_{s}(\overline{x}) \leq \alpha'_{s} f_{s}(\overline{x}_{0}) \equiv 1;$$

$$\min_{1 \leq i \leq m} \alpha'_{i} f_{i}(\overline{x}) \leq 1 = \min_{1 \leq i \leq m} \alpha'_{i} f_{i}(\overline{x}_{0});$$

$$\max_{\overline{x} \in D} \min_{i} \alpha'_{i} f_{i}(\overline{x}) \leq \min_{i} \alpha'_{i} f_{i}(\overline{x}_{0}) \equiv 1.$$

Співвідношення (2.4) доведено.

Якщо малоефективний вектор \bar{x}_0 отриманий як розв'язок задачі (2.3) за деякого набору коефіцієнтів $\alpha'_1,...,\alpha'_m:\alpha'_i>0$, то цей же розв'язок досягатиметься і за набору $k\alpha'_1,...,k\alpha'_m$, де k – довільне додатне число. Отже, якщо не виконується *умова нормування*

$$\sum_{i=1}^{m} \alpha_i' = 1$$
, то замість α_i' обирають $\alpha_i = \alpha_i' \cdot \left(\sum_{i=1}^{m} \alpha_i'\right)^{-1}$.

Ця теорема встановлює важливий факт, що $\bigcup_{\overline{\alpha} \in A} X(\overline{\alpha}) \subseteq S(D)$,

де
$$X(\overline{\alpha}^*)=$$
 Arg $\max_{\overline{x}\in D}F_1(\overline{\alpha}^*,\overline{x})$ — множина розв'язків (2.3) для $\overline{\alpha}^*\in A$.

Дамо геометричну ілюстрацію для випадку двох цільових функціоналів f_1, f_2 . Маємо $F_1(\overline{\alpha}, \overline{x}) = \min \{\alpha_1 f_1(\overline{x}), \alpha_2 f_2(\overline{x})\}$. Якщо розглядати цю залежність у просторі критеріїв, то одержимо функцію $\Phi_1(f_2, f_2) = \min \{\alpha_1 f_1(\overline{x}), \alpha_2 f_2(\overline{x})\}$.

Побудуємо лінії рівня (лінії постійного значення) функції Φ_1 на площині (f_1, f_2) . Для цього розглянемо пряму L, задану рівнян-

ням $\alpha_1 f_1 = \alpha_2 f_2$ за деякого фіксованого наборі $\{\alpha_1, \alpha_2\}$. Графік прямої $f_2 = \frac{\alpha_1}{\alpha_2} f_1$ проілюстровано на рис. 2.4.

Рис. 2.4. Лінії рівня функції мінімуму Φ_1

У будь-якій точці прямої, наприклад, у точці $A=(f_1^A,f_2^A)$, матимемо $\alpha_1f_1^A=\alpha_2f_2^A$. Під час зміщення із точки A вправо паралельно осі абсцис f_1 одержимо $\alpha_1f_1>\alpha_2f_2^A$ Аналогічна ситуація спостерігається і під час зміщення вгору із точки A паралельно осі ординат $f_2\colon \alpha_2f_2>\alpha_1f_1^A$ Отож, відповідно до визначення функції Φ_1 , її лінія рівня, що відповідає значенню $\Phi_1=\alpha_1f_1^A=\alpha_2f_2^A$, збігатиметься з прямим кутом CAD.

Отже, в усіх точках відрізків [A, C] та [A, D] функція Φ_1 матиме одне і те ж значення, яке збігається з її значенням у вершині A.

Очевидно, що будь-який куm подібного типу з вершиною, розміщеною на прямій L, також буде лінією рівня, яка дорівнює деякому значенню функції Φ_1 . Під час руху вздовж прямої L від початку координат на "північний схід" отримуватимемо лінії рівня, які дорівнюватимуть усе більшим значенням Φ_1 (наприклад, на рис.2.4 зображені лінії рівня QBD, де $\Phi(B)>\Phi(F)$). Отже, обираючи різні набори вагових коефіцієнтів $\{\alpha_1, \alpha_2\}$, отримують цілу сім'ю куmo-вих ліній рівня функції Φ_1 .

Зрозуміло, що розв'язок задачі (2.3) відповідатиме найвіддаленішому від початку координат положенню *кута* (у межах множини $\bar{f}(D)$), якому відповідає максимально можливе значення функції Φ_1 , а, отже, і функціонала F_1 . На рис. 2.5 проілюстровано множину малоефективних оцінок (відрізок [C,D])). На цьому ж рисунку подано розв'язок [B,Q], отриманий за іншого набору вагомих коефіцієнтів, відповідних прямій L'.

Рис. 2.5. Розв'язки за різних наборів вагових коефіцієнтів

Обираючи різні набори вагових коефіцієнтів $\{\alpha_1, \alpha_2\}$, отримують "*північну*", "*північно-східну*" та "*східну*" частини границі множини значення $\bar{f}(D)$.

Необхідно зазначити, що задачі оптимізації (2.3) можуть налічувати декілька розв'язків. На рис. 2.5 розв'язком слугує ціла множина [C,D] малоефективних оцінок і відповідних малоефективних розв'язків початкової багатокритеріальної задачі.

Побудовані на основі методів згортання критеріїв, обчислювальні процедури задають деяку сітку у просторі вагових коефіцієнтів A. Далі для отриманої множини скінчених наборів вагових коефіцієнтів $\overline{\alpha}^1 = \left(\alpha_1^1, ..., \alpha_m^1\right), ..., \overline{\alpha}^N = \left(\alpha_1^N, ..., \alpha_m^N\right)$ розв'язується декілька однокритеріальних задач (2.1) чи (2.3). У результаті приходять до побудови необхідної апроксимації множин P(D) і S(D). Користувач відповідної програмної системи, зазвичай, має можливість впливати на заданий процес, керуючи певною мірою вибором вагових коефіцієнтів.

2.3. Метод головного критерію

У методі *головного критерію* цільовим функціоналом обирають один з часткових цільових функціоналів (наприклад f_1), який найповніше, з погляду ОУР, відображає ціль багатокритеріальної задачі ухвалення рішень. Отже, замість задачі 1.7 розв'язується така задача:

$$f_1(\bar{x}) \to \max_{\bar{x} \in D'} D' \subseteq D \subseteq R^n;$$
 (2.5)

де
$$D' = \{ \overline{x} \in D \mid f_i(\overline{x}) \ge t_i, i = \overline{2,m} \}.$$

Формально одержали однокритеріальну задачу оптимізації $f_1(\overline{x})$ на новій області допустимих розв'язків D'. Додалися обмеження виду $f_i(\overline{x}) \ge t_i \ (i=\overline{2,m})$, які для решти функціоналів задають вимогу їхньої обмеженості знизу. Важливо розуміти, що перехід від (1.4) до (2.5) зовсім не є переходом від однієї еквівалентної задачі до іншої. Відбулася істотна зміна вихідної постановки задачі, що у кожній конкретній ситуації вимагає окремого обґрунтування.

Теорема 2.3. Розв'язок задачі (2.5) є малоефективним вектором.

 $ightharpoonuprise Bid супротивного. Нехай <math>\overline{x}_0 \in D$ ϵ розв'язком задачі (2.5), а також $\exists \ \overline{x}_1 \in D \colon \ f_i(\overline{x}_1) > f_i(\overline{x}_0) \ \ (i=\overline{1,m})$. Тоді $\overline{x}_1 \notin D'$, оскільки це суперечитиме властивості, що $\forall \overline{x} \in D' \colon \ f_1(\overline{x}_0) \ge f_1(\overline{x})$.

Оскільки $\bar{x}_1 \notin D'$, то $\exists i = s: f_s(\bar{x}_1) < t_s \le f_s(\bar{x}_0)$. Отримали суперечність з припущеннями відносно \bar{x}_1 . Теорему доведено. \blacktriangleleft

Теорема 2.4. Будь-який ефективний вектор може бути розв'язком задачі (2.5) при деяких t_i ($i = \overline{2,m}$).

 \blacktriangleright Нехай $\overline{x}_0 \in P(D)$; приймемо $t_i = f_i(\overline{x}_0) \Big(i = \overline{2,m}\Big)$. Покажемо, що у цьому випадку \overline{x}_0 ϵ розв'язком (2.5). Виберемо довільний $\overline{x}_1 \in D'$. Тоді $f_i(\overline{x}_1) \geq t_i = f_i(\overline{x}_0)$ (i = 2, m). Якщо $f_1(\overline{x}_1) > f_1(\overline{x}_0)$, то це суперечитиме ефективності вектора \overline{x}_0 . Отже, $f_1(\overline{x}_1) \leq f_1(\overline{x}_0)$, що еквівалентно (2.5). Теорему доведено.

Метод головного критерію допускає просту графічну ілюстрацію. Рис. 2.6 відображає припущення, що *головним* обрано критерій f_1 , а на значення функціонала f_2 накладено обмеження $f_2 \ge t_2$. Образ множини точок D' ($\bar{f}(D')$), які задовольняють додатковому обмеженню, відповідає багатокутнику BQCDR.

Рис. 2.6. Метод головного критерію

Максимізація критерію f_1 на множині D', очевидно, спричинюватиме до побудови відрізка [C,D] на рис. 2.6. Задаючи різні значення t_2 , можна отримати апроксимацію "*північно-східної*" і "*східної*" частин границі множини $\bar{f}(D')$, куди входять усі мало-ефективні розв'язки задачі.

За вибору *головним* критерію f_2 аналогічно будують "*північну*" і "*північно-східну*" частини границі.

Нехай відомий діапазон зміни функціонала f_i :

$$f_i^H \le f_i \le f_i^B, \quad i = 2, \dots, m.$$

Тоді із доведення останньої теореми випливає, що відповідні f_i (під час роботи з критерієм f_1 як з головним) змінюватимуться у тих же межах, проходячи через обрану сітку значень (аналогічно побудові апроксимацій множини ефективних і малоефективних розв'язків у методах лінійного та максимінного згортання критеріїв).

2.4. Виокремлення єдиного розв'язку

Як випливає з попередніх параграфів, домінуючий розв'язок задачі багатокритеріальної оптимізації (1.7) у загальному випадку може налічувати понад одну альтернативу, і тоді ОУР зіштовхується з проблемою вибору одного допустимого розв'язку з деякої множини еквівалентних або не порівнюваних між собою (взаємно недомінованих) розв'язків.

Єдиний розв'язок задачі багатокритеріальної оптимізації шукають серед множини ефективних чи малоефективних розв'язків задачі (1.7) з використанням *додаткових гіпотез*, які не випливають безпосередньо з умови задачі. Розглянемо дві такі гіпотези.

Гіпотеза ранжування критеріїв полягає у тому, що скалярні цільові функції $f_i(\bar{x})$ $(i=\overline{1,m})$, у задачі векторної оптимізації (1.7) упорядковані відповідно до їхньої значущості (номер цільової функції відображає ранг (пріоритет) відповідного скалярного критерію.

Нехай P(D) / S(D) — множина визначених ефективних (або малоефективних) розв'язків задачі векторної оптимізації (1.7). Надалі використовуватимемо S(D), оскільки $P(D) \subseteq S(D)$. Процедуру вибору єдиного розв'язку із підмножини $S(D) \subseteq D$ розпочинають з використання критерію першого (найвищого за значущістю) рангу:

$$q_1 = \max_{\bar{x} \in S(D)} f_1(\bar{x}), \quad S_1 = f_1^{-1}(q_1) \cap S(D).$$

Множина S_1 містить усі малоефективні розв'язки, які максимізують у S(D) цільову функцію першого рангу. Далі переходимо до цільової функції другого рангу і позначаємо:

$$q_2 = \max_{\bar{x} \in S_1} f_2(\bar{x}), \quad S_2 = f_2^{-1}(q_2) \cap S_1.$$

Множина S_2 містить усі малоефективні розв'язки, які максимізують у S_1 цільову функцію другого рангу. Далі переходимо до цільової функції третього рангу і т.д. Для цільової функції (m-1)-го рангу маємо:

$$q_{m-1} = \max_{\overline{x} \in S_{m-2}} f_{m-1}(\overline{x}), \quad S_{m-1} = f_{m-1}^{-1}(q_{m-1}) \cap S_{m-2}.$$

Оскільки $S_{m-1} \subset S_{m-2} \subset ... \subset S_1 \subset S(D)$, то для завершення процедури розв'язування задачі (1.7) в умовах ранжування критеріїв залишилось розв'язати задачу $f_m(\bar{x}) \to \max_{\bar{x} \in S_{m-1}}$.

З наведених міркувань випливає, що для успішної реалізації запропонованої процедури підмножині S_{m-1} має відповідати підмножина малоефективних (або ефективних) розв'язків, яка складається більше ніж з одного елементу. Оскільки у загальному випадку ця умова може не виконуватися, то на практиці для виокремлення єдиного розв'язку задачі багатокритеріальної оптимізації (1.7) найчастіше використовують метод, відомий як метод компромісів.

Нехай для скалярної цільової функції $f_i(\overline{x})$ встановлено похибку $\delta_i > 0$, яка визначає допустиме відхилення значення критерію i-го рангу від його максимального значення $\rho_i = \max_{\overline{x} \in S(D)} f_i(\overline{x})$ на множині S(D). Для кожного $i = \overline{1, m-1}$ похибка δ_i визначає деяку підмножину $G(\delta_i) = \{\overline{x} \in S(D) : f_i(\overline{x}) > \rho_i - \delta_i\}$ у множині S(D). Якщо $G = \bigcap_{i=1}^{m-1} G(\delta_i) \neq \emptyset$, то для знаходження оптимального розв'язку залишилося розв'язати задачу матпрограмування $f_m(\overline{x}) \rightarrow \max_{\overline{x} \in G}$

Відзначимо, що як ранжування скалярних критеріїв, так і встановлення похибок визначають експертним шляхом.

? Запитання для самоперевірки

- 1. Опишіть постановку задачі багатокритеріальної оптимізації.
- 2. Опишіть метод лінійного згортання критеріїв.
- 3. Опишіть метод максимінного згортання критеріїв.
- 4. Опишіть метод головного критерію.
- 5. У чому полягає проблема визначення єдиного розв'язку задачі багатокритеріальної оптимізації?
- 6. Опишіть гіпотезу ранжування критеріїв.
- 7. Опишіть гіпотезу похибок.