

Introduction

- Problem Statement:
 - Use image predict adoptability
- ♦ Value Added:
 - ♦ Resources saved
 - ♦ Frees up kennels
 - ♦ Reduce human labor
 - ♦ Euthanasia prevention

Austin Texas Animal Shelter Dataset

- One row is one dog
- ♦ Target adoption status
- ♦ Columns intake/outcome conditions

Stanford Dog Dataset

8

- One image is one dog
- ♦ 120 breeds
- Varying angles, surroundings and objects in frame
- ♦ Train, val, test (0.4, 0.2, 0.4)
- Stored on local computer

Modeling (1st half)

- Resized Images
- Matrix of image arrays
- Transfer Learning
- 4 12 Times Increase on Base Rate

Modeling (2nd half)

♦ Models:

- ★ Logreg
- ★ Random Forest
- ♦ Neural Networks
- ♦ Boosting

- future focus

- 19% improvement

- Actionable insights:
 - ⋄ Normal intake 3x more adoptable
 - Brindle coat 2x more adoptable
 - Lhasa Apso 7x less adoptable

Logistic Regression Model Coefficients

What's Next?

- Improve Image Modeling
 - ♦ Recognize Breed
 - ♦ Recognize Color
 - More Image Needed
- Optimize Boosting Models
- Check Generalizability of Model

