לוגיקה - תרגול 8

גדירות - תזכורות

 Σ של מודל נקראת נסוקים בסוקים המספקת השמה הנדרה 1: השמה המספקת הנדרה לי

 $M\left(\Sigma\right)=\left\{ v\in\mathrm{Ass}\mid v\models\Sigma
ight\}$ היא הקבוצה. במודלים של המודלים של

נקראת K אחרת אות $M\left(\Sigma\right)=K$ כך ש־ Σ כך פסוקים קבוצת אם קיימת לדירה אחרת גדירה נקראת לא נקראת לדירה.

הוכחת גדירות

איך מוכיחים שקבוצת השמות K היא גדירה?

- .1 מראים בוצת פסוקים למפורשת.
- .2 מוכיחים כי $M\left(\Sigma\right)=K$ על ידי הכלה דו־כיוונית.

 K_j = $\{v\mid$ נגדיר את קבוצת לכל T נותנת $v\}$: ההשמות ההשמות גדיר את קבוצת ההשמות לכל היותר ל־ $j\in\mathbb{N}$ לכל היותר לי $j\in\mathbb{N}$ גדירה.

:2 תרגיל

 $X,Y\subseteq WFF$ תהיינה

 $M\left(X\cup Y
ight) =M\left(X
ight) \cap M\left(Y
ight)$ הוכיחו כי

משפט הקומפקטיות - תזכורת

לכל קבוצת פסוקים Σ מתקיים, Σ ספיקה אמ"מ כל תת־קבוצה סופית של ספיקה.

הוכחת אי־גדירות

איך מוכיחים שקבוצת השמות K אינה גדירה?

- $M\left(X
 ight) =K$ מניחים בשלילה ש־K גדירה ו־X גדירה ו־X מניחים בשלילה ש־ל. מניחים בשלילה ש־ל גדירה את א ניתן להניח דבר על X פרט לכך שהיא מגדירה את א.
- 2. בוחרים קבוצת פסוקים מפורשת Y שעבורה ידוע (או שניתן להוכיח בקלות) שעבורה על עבוצת עבורה ידוע (או שניתן להוכיח $Y=\{\neg p_i\mid i\in\mathbb{N}\}$, $Y=\{p_i\mid i\in\mathbb{N}\}$
- $M\left(X\cup Y
 ight)=M\left(X
 ight)\cap M\left(Y
 ight)=K\cap M\left(Y
 ight)=\emptyset$ מוכיחים ש־ $X\cup Y$ איננה ספיקה על ידי כך שמראים ש-3.
 - . מוכיחים ש־ $Y \cup Y$ ספיקה על ידי שימוש במשפט הקומפקטיות.

תהי $D\subseteq X\cup Y$ סופית.

 $D_Y = D \cap Y$ ר ו $D_X = D \cap X$ נסמן

 $v\in K$ נבנה השמה D_Y ונשלים אותה כך ש־ D_X . נתחיל בבניה ע"פ מבנה הפסוקים ב־ D_Y ונשלים אותה כך ש־ D_Y . נוכיח שהבניה מספקת את

 D_X את מספקת את מספקת את $v \Leftarrow v \in K$

 $D_X \cup D_Y = D$ מספקת את $v \Leftarrow D_Y$ ו ר D_X מספקת את מספקת ע

.5 מקבלים סתירה ולכן K אינה גדירה.

:3 תרגיל

. אינה אינה אינה אינה א K_{fin} = $\{v \in \mathrm{Ass} \mid$ שטומים של למספר T אינה אינה על הוכיחו כי

תרגיל 4:

. אינה אינה אינה א K_{inf} = $\{v \in \mathrm{Ass} \mid$ אטומים לאינסוף לאינה אינה $v\}$ נותנת כי

תרגול 8 לוגיקה

:2 תרגיל

 $X,Y\subseteq {\rm WFF}\ {\rm n...}$ תהיינה $M(X\cup Y)=M(X)\cap M(Y)$ הוכיחו כי

הוכחה:

תרגיל 3:

. אינה $K_{fin} = \{v \in \mathrm{Ass} |$ אינה אטומים למספר למספר למספר ענותנת $v\}$

הוכחה:

- .1 נניח בשלילה ש K_{fin} גדירה. 1 נניח אז קיימת קבוצת פסוקים אM(X)=Kש־ל אז קיימת קבוצת פסוקים א
- $M(Y)=\{V_T\}$ ניתן לראות כי $Y=\{p_i|i\in\mathbb{N}\}$.2
- נותנת T לאינסוף אטומים $X\cup Y$.3 אינה ספיקה: $V_T\notin K_{fin}$ ולכן ולכך . $V_T\notin K_{fin}\cap \{V_T\}=\emptyset$
 - . נוכיח בעזרת משפט הקומפקטיות ש־ $X\cup Y$ ספיקה. תריקבוצה סופית. $D\subseteq X\cup Y$ תריקבוצה סופית. נסמן: $D_Y=D\cap Y$, $D_X=D\cap X$ נסמן: $D_Y\subseteq D$ סופית אז גם $D_Y\subseteq D$ סופית. ולכן היא מהצורה: $D_Y=\{p_{i_1},p_{i_2},\ldots,p_{i_k}\}$ נסמן ב־ D_X את האינדקס המקסימלי של $D_Y=\{p_i,p_i,\dots,p_{i_k}\}$

m אם 0 = 0, מאחר ו־ D_Y סופית בהכרח קיים m = 1), מאחר ו־m = 1נגדיר השמה v באופן הבא:

$$v(p_I) = \begin{cases} T & i \le m \\ F & i > m \end{cases}$$

 $i \leq M$ כל הפסוקים ב־ D_Y הם מהצורה $t \leq M$ כאשר *

 $v \models D_Y \Leftarrow v$ ולכן מספקת אותם יולכן

(נותנת שר שופי שופי למספר (נותנת $v \in K_{fin}$ * מכיוון ש־

מספקת כל פסוק ב־X ובפרט כל $v \models X \Leftarrow v \models X \Leftrightarrow v \in M(X) \Leftarrow$

 $v \models D_X \Leftarrow D_X \subseteq X$ פסוק ב־

 $D = D_X \cup D_Y$ את בסה"כ אח ואת ואת את מספקת ע
 מספקת על כי קיבלנו כי בסה"כ בסה" הראינו שלכל תת־קבוצה סופית $D \subseteq X \cup Y$ הופית אותה המספקת שלכל הראינו הראינו היים המספקת אותה ולכן תת־קבוצה סופית היא ספיקה. ממשפט הקומפקטיות נובע $X \cup Y$ ספיקה.

.5 אינה גדירה ולכן סתירה סתירה K_{fin} אינה גדירה.

:4 תרגיל

. אינה $K_{inf} = \{v \in \mathrm{Ass} |$ אינה אינסוף אינה אינה כי $v \}$ נותנת אינסוף אינסוף אינסוף

הוכחה:

- same .1
- $M(Y)=\{V_F\}$ ניתן לראות כי $Y=\{\lnot p_i|i\in\mathbb{N}\}$.2
- ולכן: $v_f \notin K_{inf}$ ולכן: $v_f \notin K_{inf}$ ולכן: $M(X \cup Y) = M(X) \cap M(Y) = K_{inf} \cap \{V_K\} = \emptyset$

$$M(X \cup Y) = M(X) \cap M(Y) = K_{inf} \cap \{V_K\} = \emptyset$$

 $.D_Y = \{ \neg p_{i_1}, \dots, p_{i_k} \}$.4

 D_Y ב ב־ p_i את האינדקס המקסימלי של ב־mב נסמן ב

נבנה השמה
$$v(p_i) = egin{cases} F & i \leq m \\ T & i > m \end{cases}$$