10 הסקה סטטיסטית שיעור

מצגת שיעור 11

בדיקת אי-תלות בטבלאות דו-מימדיות

דוגמה: דיכאון ומצב משפחתי

בדיקה של 159 מטופלים בעלי דיכאון, מסווגים לפי רמת דיכאן (קל, בינוני, חמור) ומצב משפחתי (רווק, נשוי, גרוש):

?וראם מצב משפחתי משפיע על דיכאון

האם מצב משכותו משכ ע על די כאון: אפשר לחשב את ההתפלגות המותנית של רמת דיכאון בהינתן מצב

.expected -יהיה כמו ה- observed אם אין השפעה, נצפה שה-

משפחתי ע"י חלוקת המספר בכל תא, בסכום של העמודה:

	Ex	pected			Ob	served	
Depressic	Single Severe Mid Moderate	Married	Wid.Div	Depression	Single Woderate Severe	Married	Wid.Div
		Marital				Marital	

Marital Status Total Depression Single Married Wid/Div 16 Severe 22 19 57 Moderate 29 33 76 14 Mild 14 26 69 Total 54 36 159

Depression Marital Status Single Married Wid/Div Overall $\frac{22}{69} \approx 0.32$ $\frac{19}{36} \approx 0.53$ $\frac{57}{159} \approx 0.36$ $\frac{16}{54} \approx 0.30$ Severe $\frac{33}{69} \approx 0.48$ $\frac{14}{36} \approx 0.39$ $\frac{76}{159} \approx 0.48$ $\frac{29}{54} \approx 0.54$ Moderate $\frac{14}{69} \approx 0.20$ $\frac{3}{36} \approx 0.08$ $\frac{26}{159} \approx 0.16$ $\frac{9}{54} \approx 0.17$ Mild Column Total 1

אם המשתנה בעמודות והמשתנה בשורות כלתי תלויים, אז ההתפלגות המותנית של העמודה בהינתן שורה:

$$P(\text{column var.} \mid \text{row var.}) = \frac{\text{cell count}}{\text{row total}}$$

אמורה להיות שווה להתפלגות השולית של המשתנה בעמודה:

$$P(\text{column var.}) = \frac{\text{column total}}{\text{overall total}}$$

כלומר, הספירה המצופה של התאים תחת הנחת אי-תלות היא:

$$expected cell count = \frac{row total \times column total}{overall total}$$

אז הספירה המצופה:

Depression	Marital Status			Row
	Single	Married	Wid/Div	Total
Severe	$\frac{57 \times 54}{159} = 19.37$	100	$\frac{57 \times 36}{159} = 12.91$	57
Moderate	$\frac{76 \times 54}{159} = 25.81$	$\frac{76 \times 69}{159} = 32.98$	$\frac{76 \times 36}{159} = 17.21$	76
Mild	$\frac{26 \times 54}{159} = 8.83$	$\frac{26 \times 69}{159} = 11.28$	$\frac{26 \times 36}{159} = 5.89$	26
Column Total	54	69	36	159

בדיקת אי-תלות

ו. השערות:

.ל"ל. בת"לה והעמודות שהמשתנים של היא אים H_0 האפס השערת השערת האפס

.לא בת"ל. השערה האלטרנטיבית היא שהמשתנים של השורות האלטרנטיבית היא ההשערה האלטרנטיבית היא היא שהמשתנים של ה

2. נבנה טבלה של ספירה מצופה לפי הנוסחה:

$$expected \ cell \ count = \frac{row \ total \times column \ total}{overall \ total}$$

3. אם השערת האפס נכונה, הספירה המצופה והאמיתית אמורות להיות קרובות. נמדוד את הקרבה שלהן ע"י סטטיסטי כי-בריבוע:

$$\chi^2 = \sum_{\text{all cells}} \frac{(O-E)^2}{E}$$

- 4. ככל שהסטטיסטי גדול, זאת עדות חזקה יותר נגד השערת האפס (בעד דחייה).
 - $?H_0$ תחת χ^2 של הרגיל הרגודל הגודל 3.5

. דרגות חופש ((R-1)(C-1) עם χ^2 עם התפלגות שי χ^2 יש התפלגות לסטטיסטי

 χ^2 הערך השטח מעבר לסטטיסטי מתחת הימני בערך השטח הוא $p ext{-}value$

טבלה:

p- הערך .df = 6 עם χ^2 = 10.3 ש נניח אז לדוגמה, נניח של 8.56 ל-10.64. כלומר יהיה בין העמודה של 8.56 ל-0.1 < p < 0.2

Upper tail	0.3	0.2	0.1	0.05	0.02	0.01	0.005	0.001
df 1	1.07	1.64	2.71	3.84	5.41	6.63	7.88	10.83
2	2.41	3.22	4.61	5.99	7.82	9.21	10.60	13.82
3	3.66	4.64	6.25	7.81	9.84	11.34	12.84	16.27
4	4.88	5.99	7.78	9.49	11.67	13.28	14.86	18.47
5	6.06	7.29	9.24	11.07	13.39	15.09	16.75	20.52
6	7.23	8.56	10.64	12.59	15.03	16.81	18.55	22.46
7	8.38	9.80	12.02	14.07	16.62	18.48	20.28	24.32
8	9.52	11.03	13.36	15.51	18.17	20.09	21.95	26.12
9	10.66	12.24	14.68	16.92	19.68	21.67	23.59	27.88
10	11.78	13.44	15.99	18.31	21.16	23.21	25.19	29.59
11	12.90	14.63	17.28	19.68	22.62	24.72	26.76	31.26
:	:	:	:	:	:	:	:	:

בחזרה לדוגמה של הדיכאון:

בכל תא:

ספירה אמיתית (ספירה מצופה)

אצלנו:

$$\chi^2 = 6.83, \qquad df = 4$$

כלומר, 0.005, לא עם מובהקות 0.1 , לא נדחה את השערת האפס.

Depression	M	Marital Status			
	Single	Married	Wid/Div	Total	
Severe	16	22	19	57	
	(19.36)	(24.74)	(12.90)		
Moderate	29	33	14	76	
	(25.81)	(32.98)	(17.21)		
Mild	9	14	3	26	
	(8.83)	(11.28)	(5.89)		
Column Total	54	69	36	159	

. אם מפתיע. אז א $\chi^2=6.83$ אז אז לקבל הסתברות הסתברות 10% שבערך אם גכונה, שבערך אם אל $\chi^2=6.83$

מתי נשתמש במבחן כי-בריבוע?

- $Simple\ Random\ Samples-SRS$ כאשר הדגימות הן דגימות רנדומיות פשוטות ($Simple\ Random\ Samples-SRS$).
 - כל הספירות המצופות הן 5 או יותר.

דוגמה 1

האם שתיית אלכוהול בזמן הריון (נמדד במספר משקאות ביום) משפיעה על הסבירות לפגמים באיברי מין של התינוקות.

הטבלה הזאת לא מתאימה למבחן כי-בריבוע, כי לא כל הספירות המצופות הן לפחות 5.

	Obs	Observed		cted
Alcohol	Malfoi	Malformation		nation
Consumption	Absent	Present	Absent	Present
0	17,066	48	17,065.14	48.86
< 1	14,464	38	14,460.60	41.40
1-2	788	5	790.74	2.26
3-5	126	1	126.64	0.36
≥ 6	37	1	37.89	0.11

דוגמה 2

827 תושבי קליפורניה שנרשמו לבחירות, נשאלו את השאלה הבאה: האם אתם תומכים או מתנגדים לשאיבת נפט וגז טבעי מול חופי קליפורניה? או שאתם לא בקיאים מספיק כדי לומר? התגובות חולקו לפי האם הנשאל סיים לימודים גבוהים (מכללה) או לא.

נבנה מבחן כי-בריבוע כדי לבדוק האם יש השפעה: השערת האפס – אין השפעה.

הספירה המצופה:

	College Grad		
	Yes	No	Total
Support	154	132	286
Oppose	180	126	306
Do not know	104	131	235
Total	438	389	827

מתקיים:

$$\chi^2 \approx 11.46$$
, $df = 2$

. כלומר שבדל משמעותי. כלומר p < 0.005 כלומר כלומר כלומר

	Colleg		
	Yes	No	Total
Support	$\frac{286 \times 438}{827} = 151.47$	$\frac{286 \times 389}{827} = 134.53$	286
Oppose	$\frac{306 \times 438}{827} = 162.07$	$\frac{306 \times 389}{827} = 143.93$	306
Do not know	$\frac{235\times438}{827} = 124.46$	$\frac{235\times389}{827} = 110.54$	235
Total	438	389	827

זוגמה 3

בדיקה האם טיפול בהורמונים בתקופת עצירת וסת משפיע על הסיכוי לסרטן. השערת האפס – המשתנים בת"ל, אין השפעה.

	Cancer	No Cancer	Total
Hormone	107	8399	8506
Placebo	88	8014	8102
Total	195	16413	16608

Expecte	ed counts:		
	cancer	no cancer	total
hormone	$\frac{8506 \times 195}{16608} = 99.87$	$\frac{8506 \times 16413}{16608} = 8406.13$	8506
placebo	$\frac{8102 \times 195}{16608} = 95.13$	$\frac{8102 \times 16413}{16608} = 8006.87$	8102
total	195	16413	16608

. האפס. את השערת את כלומר לא כלומר ,p>0.3 . df=1עם את $\chi^2\approx 1.0553$ מתקיים:

לחלופין, אפשר לבצע מבחן z לשני מדגמים (אם אנחנו יודעים את השונות והמדגם גדול) או מבחן t (אם השונות לא ידועה או המדגם קטן). בגלל שהמדגם גדול נשתמש במבחן z (ונשתמש ב-z במלל שהמדגם גדול נשתמש במבחן z (ונשתמש ב-z

$$z = \frac{\widehat{p_1} - \widehat{p_2}}{\sqrt{\widehat{p}(1-\widehat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{\frac{107}{8606} - \frac{88}{8102}}{\sqrt{\frac{195}{16608}\left(1 - \frac{195}{16608}\right)\left(\frac{1}{8506} + \frac{1}{8102}\right)}} \approx 1.02728$$

. כאשר השערת השערת לסכום לסכום בין הספירה את מייצג את כאשר כל p

:הערך *p-value* הדו-צדדי הוא

$$2P(Z > 1.03) = 2(1 - 0.8485) = 0.303$$

ים: מדגמים: באופן כללי: מבחן כי-בריבוע לטבלה 2 imes 2 זהה למבחן ליחסים דו-צדדי לשני מדגמים:

	H_0	$p_1 = p_2$ v.s.	<i>H</i> _a : <i>p</i> ₁	≠ <i>p</i> ₂	
	ob	served		exp	ected
	success	failure	total	success	failure
sample 1	<i>X</i> ₁	$n_1 - X_1$	n ₁	n₁p̂	$n_1(1-\hat{p})$
sample 2	X_2	$n_2 - X_2$	n ₂	$n_2\hat{p}$	$n_2(1-\hat{p})$
total	$X_1 + X_2$	$n_1 + n_2 - X_1 - X_2$	$n_1 + n_2$	where \hat{p}	$0 = \frac{X_1 + X_2}{n_1 + n_2}$

מתקיים:

$$\chi^{2}\text{-statistic} = \sum \frac{(O-E)^{2}}{E} = \left(\frac{\widehat{p_{1}} - \widehat{p_{2}}}{\sqrt{\widehat{p}(1-\widehat{p})\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}\right)^{2} = (z\text{-statistic})^{2}$$

:כאשר

$$\widehat{p_1} = \frac{X_1}{n_1}, \qquad \widehat{p_2} = \frac{X_2}{n_2}$$

.(לא עשינו) ושני המבחנים ומייגעת p-values ושני המבחנים נותנים ערכי

תרגול

תרגיל 1

תרגיל 2

נתון:

	אישה	גבר	
קדימה	44	3	47
אמצע	56	16	72
אחורה	22	10	32
	122	29	151

:Expected טבלת

	אישה	גבר
קדימה	37.9	9.02
אמצע	58.17	13.82
אחורה	25.8	6.14

$$\chi^2 = 8.39$$
, $df = 2$

Upper tail 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001 2.71 3.84 1.07 1.64 5.41 6.63 7.88 10.83 2 10.60 2.41 3.22 4.61 5.99 7.82 9.21 13.82 רמת מובהקות $\alpha = 0.05$ הטבלה:

כלומר נדחה את השערת האפס.