Midterm Review

Where have we been ECE 373

Prelims

- Questions on lab, homework or class?
 - Memory types
 - PCI connections
 - Debugging tricks
 - Delays and timers

Types of OS's in the wild

- Single-user (Phones, PC's)
- Multi-user (Servers, mainframes, "cloud")
- Real-time (Stop lights, shuttle navigation)
- Embedded (Watch, routers, car engine, mp3)

Device drivers

- The software that controls specific pieces of hardware
- API in the OS allows common interfaces for drivers
- Driver takes common commands from the OS and translates into hardware-specific stuff
- Many types of device drivers

Types of drivers

Three main classes of drivers

Types of drivers

- Three main classes of drivers
 - Block drivers
 - Char drivers
 - Network drivers

Types of drivers

- Three main classes of drivers
 - Block drivers
 - Char drivers
 - Network drivers
- Driver class can apply to many types of devices
 - USB device can be char, block, or network
 - Interface cards (PCIe) can be network or block
 - Graphics typically char devices

Basic module concept

Basic module concept

- Dynamic loading (insmod/modprobe, rmmod)
- Registering init and exit
- Kernel timeline of module diagram

Bits and pieces

- Minimal callback hooks and Compile headers
 - Basic #includes
 - MODULE_LICENSE(lic) legal strings
 - init, exit
 - module init(func), module exit(func)
- Time values
 - Jiffies, HZ

Module parameters

Module parameters

- Gets info into the module
- module param(var, type, 0);
- /sys/module/<drivername>/parameters/<var>
- Kernel community typically frowns on them
- insmod <modulename> xx=11
- modinfo <modulename>

Talking to the Kernel

Talking to the Kernel

- ioctl()
 - Older method of system call
 - Usually frowned up now-a-days (why?)

Netlink

- Newer, more flexible
- Usually used with networking tools

Pseudo filesystems

- /proc lots of kernel data
- /sys mostly module information
- /dev file-based connectors for read/write access
- debugfs useful for exposing debug hooks

Character drivers

Character drivers

- Standard callbacks
 - Open, read, write, release
- Coordinate with OS
 - alloc_chrdev_region()
 - cdev
 - struct file_operations
 - Linkage into /dev

I/O Ports

•

•

•

•

I/O Ports

- Working with slow devices
- Different "address" space from system memory
- System design coordinates device address mapping
- PC architecture evolution
 - combined many little devices into fewer large devices
 - Adds complexity to use of devices

Memory Map Types

Memory Types

- Physical addresses actual memory address
- Bus addresses sort of like physical...
- Virtual addresses relocatable, flexible, swappable
- Kernel logical maps directly to physical, used for DMA/sharing with devices
- Kernel virtual relocatable kernel memory

Memory Types

- vmalloc() allocates kernel virtual memory
- kmalloc() allocates kernel logical memory

Current PCs

- . CPU
- Chipset
- Super I/O

ICH Reality

PCI

PCI

- Communication/connection method for devices
- Devices use both port mapped and memory mapped I/O (focus on MMIO only for midterm)
- BAR base address register
 - Starting address for device memory map
 - Driver uses iowrite32() and ioread32() to access
 device registers (or writel()/readl())
- Callbacks
 - Probe, remove, sleep, resume

- Find a way to reproduce the bug
 - Gather info for tracking the problem
 - Prove it is fixed

- Find a way to reproduce the bug
 - Gather info for tracking the problem
 - Prove it is fixed
- Printk
 - KERN_INFO, etc. Where do these go?
 - WARN(), BUG()

- Find a way to reproduce the bug
 - Gather info for tracking the problem
 - Prove it is fixed

Printk

- KERN_INFO, etc. Where do these go?
- WARN(), BUG()

Stack trace

- Gives idea of where things broke
- Objdump helps decode stack info

- Find a way to reproduce the bug
 - Gather info for tracking the problem
 - Prove it is fixed
- Printk
 - KERN_INFO, etc. Where do these go?
 - WARN(), BUG()
- Stack trace
 - Gives idea of where things broke
 - Objdump helps decode stack info
- /proc various kernel data for monitoring
- Kgdb useful to break into kernel
- Ethtool monitor network devices
- Bus trace tools

Delays and time keeping

- How jiffies relate to time
 - o HZ
- Delays vs. Sleeping
- Pre-emption and its impacts
- get cycles() and why use it

Time for Timer

Basics

```
- timer_setup(t_var, t_callback, t_flags)
```

- mod_timer(t_var, interval)
- del_timer_sync(t_var)

Time for Timer

Basics

- timer_setup(t_var, t_callback, t_flags)
- mod timer(t var, interval)
- del timer sync(t var)

Callback function

- Called when timer expires
- Given pointer to t_var as an argument
- timer_cb(struct timer_list *t)
- Use from_timer() to get back to private driver struct

Getting information

- Device spec sheets
- The web (LXR, etc.)
- . Books
- Kernel and driver source code

