On the Denoising of Cross-Spectral Matrices for (Aero)Acoustic Applications

A. Dinsenmeyer^{1,2}, J. Antoni¹, Q. Leclère¹ and A. Pereira²

 $\begin{array}{c} {}^{1} \text{ Laboratoire Vibrations Acoustique} \\ {}^{2} \text{ Laboratoire de Mécanique des Fluides et d'Acoustique} \\ \text{ Lyon, France} \end{array}$

March 5, 2018 - 7th BeBeC

- ► Unwanted random noise:
 - electronic, ambient, flow-induced,...
 - short correlation lengths

- Unwanted random noise:
 - electronic, ambient, flow-induced,...
 - short correlation lengths

► Existing denoising methods:

- ▶ Unwanted random noise:
 - electronic, ambient, flow-induced,...
 - short correlation lengths

- Existing denoising methods:
 - Physical removal : mic recession, porous treatment, vibrating structure filtering. . .

- ▶ Unwanted random noise:
 - electronic, ambient, flow-induced,...
 - short correlation lengths

- Existing denoising methods:
 - Physical removal : mic recession, porous treatment, vibrating structure filtering. . .
 - Use a background noise measurement, \rightarrow not always available or representative

- ▶ Unwanted random noise:
 - electronic, ambient, flow-induced,...
 - short correlation lengths

- Existing denoising methods:
 - Physical removal : mic recession, porous treatment, vibrating structure filtering. . .
 - Use a background noise measurement, \rightarrow not always available or representative
 - Wavenumber filtering

- ▶ Unwanted random noise:
 - electronic, ambient, flow-induced,...
 - short correlation lengths

- Existing denoising methods:
 - Physical removal : mic recession, porous treatment, vibrating structure filtering. . .
 - Use a background noise measurement, \rightarrow not always available or representative
 - Wavenumber filtering
 - Diagonal removal ightarrow underestimation of source level

- ▶ Unwanted random noise:
 - electronic, ambient, flow-induced,...
 - short correlation lengths

- Existing denoising methods:
 - Physical removal : mic recession, porous treatment, vibrating structure filtering. . .
 - Use a background noise measurement, \rightarrow not always available or representative
 - Wavenumber filtering
 - Diagonal removal \rightarrow underestimation of source level
 - Exploit noise/signal properties & solve an optimization problem

- ▶ Unwanted random noise:
 - electronic, ambient, flow-induced,...
 - short correlation lengths

- Existing denoising methods:
 - Physical removal : mic recession, porous treatment, vibrating structure filtering. . .
 - Use a background noise measurement, \rightarrow not always available or representative
 - Wavenumber filtering
 - Diagonal removal \rightarrow underestimation of source level
 - Exploit noise/signal properties & solve an optimization problem

$$p$$
 = a + n Gaussian noise

$$\left\langle egin{array}{c} m{p} &= m{a} &+ m{n} \ ext{Gaussian noise} \end{array}
ight
angle N_s ext{ snapshots}$$

Cross-Spectral Matrix (covariance of Fourier component):

$$oldsymbol{S}_{pp} = rac{1}{N_s} \sum_i oldsymbol{p}_i oldsymbol{p}_i^H$$

$$\left\langle \underbrace{\boldsymbol{p}}_{\text{measured spectra}} = \underbrace{\boldsymbol{a}}_{\text{source spectrum}} + \underbrace{\boldsymbol{n}}_{\text{Gaussian noise}} \right\rangle_{N_s \text{ snapshots}}$$

Cross-Spectral Matrix (covariance of Fourier component):

$$oldsymbol{S}_{pp} = rac{1}{N_s} \sum_i oldsymbol{p}_i oldsymbol{p}_i^H$$

► Hermitian (conjugate symmetric)

$$\left\langle egin{array}{c} oldsymbol{p} & = & oldsymbol{a} & + & oldsymbol{n} \\ ext{measured spectra} & ext{source spectrum} & ext{Gaussian noise}
ight
angle N_s \; ext{snapshots}$$

Cross-Spectral Matrix (covariance of Fourier component):

$$oldsymbol{S}_{pp} = rac{1}{N_s} \sum_i oldsymbol{p}_i oldsymbol{p}_i^H$$

- ► Hermitian (conjugate symmetric)
- ► Positive semidefinite (nonnegative eigenvalues)

$$\left\langle egin{array}{c} m{p} &= m{a} &+ m{n} \ _{
m Gaussian \ noise}
ight
angle_{N_s \
m snapshots}$$

Cross-Spectral Matrix (covariance of Fourier component):

$$oldsymbol{S}_{pp} = rac{1}{N_s} \sum_i oldsymbol{p}_i oldsymbol{p}_i^H$$

- ► Hermitian (conjugate symmetric)
- ► Positive semidefinite (nonnegative eigenvalues)

$$S_{pp} = S_{aa} + S_{nn} + S_{an} + S_{an} + S_{na}$$
measured CSM signal of interest unwanted noise cross-terms

• Rank of S_{aa} = number of uncorrelated monopoles

$$S_{pp} = S_{aa} + S_{nn} + S_{nn} + S_{an} + S_{na}$$

For
$$N_s \to \infty$$

$$S_{pp}$$
 = S_{aa} + S_{nn} + S_{an} + S_{an} + S_{na} + S_{an} + S_{na} cross-terms $pprox diag \left(\sigma^2 \right)$

For
$$N_s \to \infty$$

▶ Short correlation length : off-diagonal elements of $S_{nn} \rightarrow 0$

$$S_{pp} = S_{aa} + S_{nn} + S_{nn} + S_{an} + S_{na}$$
measured CSM signal of interest unwanted noise cross-terms
$$\approx \operatorname{diag}\left(\sigma^2\right) \rightarrow 0$$

For $N_s \to \infty$

- ▶ Short correlation length : off-diagonal elements of $S_{nn} \rightarrow 0$
- ▶ Independent signal/noise : cross-terms $\rightarrow 0$

Problématique

How to separate signal part from noise ? Studied existing methods:

- ▶ 3 diagonal reconstruction methods
- ► Robust Principal Component Analysis (RPCA)

Proposed method:

▶ PFA

What are there performance when noise level, Ns or the number of sources vary ?

- 1 Diagonal Reconstruction
- 2 RPCA
- 3 Probabilistic Factor Analysis
- 4 Comparison

- 1 Diagonal Reconstruction Comparison on a test case
- 2 RPCA
- 3 Probabilistic Factor Analysis
- 4 Comparison

"Remove as much noise as possible as long as denoised CSM remains positive"

Convex optimization (Hald, 2017)

maximize
$$\|\boldsymbol{\sigma}_n^2\|_1$$
 subject to $S_{pp} - \mathrm{diag}\left(\boldsymbol{\sigma}_n^2\right) \geq 0$

Problem solved with CVX Matlab toolbox.

"Remove as much noise as possible as long as denoised CSM remains positive"

Convex optimization (Hald, 2017)

maximize
$$\| {m \sigma}_n^2 \|_1$$
 subject to ${m S}_{pp} - {
m diag}\left({m \sigma}_n^2
ight) \geq 0$

Problem solved with CVX Matlab toolbox.

Linear optimization (Dougherty, 2016)

maximize
$$\|\boldsymbol{\sigma}_n^2\|_1$$
 subject to $\boldsymbol{V}_{(k-1)}^H\left(\boldsymbol{S}_{pp}-\operatorname{diag}\left(\boldsymbol{\sigma}_n^2\right)_{(k)}\right)\boldsymbol{V}_{(k-1)}\geq 0$

$$m{V}_{(k-1)}$$
: eigenvectors of $m{S}_{pp}-\mathrm{diag}\left(m{\sigma}_n^2
ight)_{(1,\ldots,k-1)}$ Solved with $\emph{linprog}$ Matlab function .

A. Dinsenmeyer, J. Antoni, Q. Leclère and A. Pereira — On the Denoising of Cross-Spectral Matrices for (Aero)Acoustic Applications

"Remove as much noise as possible as long as denoised CSM remains positive"

Convex optimization (Hald, 2017)

maximize
$$\| {m \sigma}_n^2 \|_1$$
 subject to ${m S}_{pp} - {
m diag}\left({m \sigma}_n^2
ight) \geq 0$

Problem solved with CVX Matlab toolbox.

Linear optimization (Dougherty, 2016)

maximize
$$\|\boldsymbol{\sigma}_n^2\|_1$$
 subject to $\boldsymbol{V}_{(k-1)}^H\left(\boldsymbol{S}_{pp}-\operatorname{diag}\left(\boldsymbol{\sigma}_n^2\right)_{(k)}\right)\boldsymbol{V}_{(k-1)}\geq 0$

 $V_{(k-1)}$: eigenvectors of $S_{pp}-\mathrm{diag}\left(\sigma_n^2
ight)_{(1,\dots,k-1)}$ Solved with $\mathit{linprog}$ Matlab function .

Alternating Projections (Leclère et al., 2015)

$$m{S}_{pp_{(k+1)}} := ar{m{S}}_{pp_{(0)}} + m{V}_{(k)}^H m{s}_{(k)}^{m{+}} m{V}_{(k)}$$

 $oldsymbol{V}_{(k)}^H$ and $oldsymbol{s}_{(k)}$: eigenvectors/values of $oldsymbol{S}_{pp_{(k)}}$.

Default parameters:

- 20 uncorrelated free field monopoles: ◆
- 93 receivers: o
- SNR: 10 dB
- 10^4 snapshots
- frequency: 15 kHz

Varying parameters:

- number of \bullet (rank of S_{aa}) : from 1 to 93
- SNR from -10 to 10 dB
- Number of snapshots (level of extra-diagonal terms): from 10 to $5.10^4\,$

► Error on the signal CSM:

$$\delta = \frac{\|\operatorname{diag}\left(\boldsymbol{S}_{aa}\right) - \operatorname{diag}\left(\boldsymbol{\hat{S}}_{aa}\right)\|_{2}}{\|\operatorname{diag}\left(\boldsymbol{S}_{aa}\right)\|_{2}}$$

Select Convex Optimization (DRec) for further comparison

✓ Fast, simple code

X Local optimization

✓ Better performance

X Denoises only diagonal

- 1 Diagonal Reconstruction
- 2 RPCA
- 3 Probabilistic Factor Analysis
- 4 Comparison

RPCA

"Search $oldsymbol{S}_{aa}$ as a low rank matrix and $oldsymbol{S}_{nn}$ as a sparse matrix"

minimize
$$\|m{S}_{aa}\|_* + \lambda \|m{S}_{nn}\|_1$$
 subject to $m{S}_{aa} + m{S}_{nn} = m{S}_{pp}$

- $\|\cdot\|_*$: nuclear norm (related to rank)
- $\|\cdot\|_1$: ℓ_1 -norm (related to sparsity)

Solved with a proximal gradient algorithm.

RPCA (Wright et al., 2009)

✓ Modifies the whole CSM

- X Local optimization
- **X** Choose regularization parameter:
 - L-curve criterion,
 - Generalized cross validation method,
 - Bayesian criterion, ...

 \hookrightarrow For comparison : - optimal λ (unknown on real case) - "universal" constant parameter $\lambda=M^{-\frac{1}{2}}=0.1$

- 1 Diagonal Reconstruction
- 2 RPCA
- 3 Probabilistic Factor Analysis
- 4 Comparison

Diapo d'intro aux méthodes bayésiennes ?

Probabilistic Factor Analysis

► Gibbs sampling in the Bayesian hierarchical model :

► Hyperparameters:

$$\gamma^2 \sim \mathcal{IG}(a_{\gamma}, b_{\gamma})$$
 $\alpha^2 \sim \mathcal{IG}(a_{\alpha}, b_{\alpha})$ $\sigma^2 \sim \mathcal{IG}(a_{\sigma}, b_{\sigma})$

► Signal CSM:

$$oldsymbol{\hat{S}}_{aa} = rac{1}{N_s} oldsymbol{L} \left(\sum_{i=1}^{N_s} oldsymbol{c}_i oldsymbol{c}_i^H
ight) oldsymbol{L}^H$$

PFA

✓ Global optimization

X Computationally expensive

X Here, model for uncorrelated noise \rightarrow **V** but flexible

- 1 Diagonal Reconstruction
- 2 RPCA
- 3 Probabilistic Factor Analysis
- 4 Comparison

Comparison

Comparison

- \hookrightarrow Error linearly decreases with logarithmically increasing N_s
- \hookrightarrow For $N_{src} \geq 0.75 M$: denoising problem becomes poorly conditioned

Comparison

— DRec — RPCA, λ_{opt} — RPCA, $\lambda = M^{-\frac{1}{2}}$ — PFA

► Homogeneous noise

▶ Heterogeneous noise: SNR 10 dB lower on 10 random receivers

Conclusion

- ▶ DRec: fast and simple but error at least 5 dB higher in all configurations
- ► PFA
 - performance similar to RPCA using λ_{opt}
 - PFA and RPCA more robust to heterogeneous noise
 - flexible model ightarrow to be adapted for correlated noise

RPCA PFA DRec

References

- R. Dougherty. Cross spectral matrix diagonal optimization. In 6th Berlin Beamforming Conference, 02 2016.
- J. Hald. Removal of incoherent noise from an averaged cross-spectral matrix. *The Journal of the Acoustical Society of America*, 142(2):846–854, 2017.
- Q. Leclère, N. Totaro, C. Pézerat, F. Chevillotte, and P. Souchotte. Extraction of the acoustic part of a turbulent boundary layer from wall pressure and vibration measurements. In *Novem 2015 Noise and vibration Emerging technologies*, Proceedings of Novem 2015, page 49046, Dubrovnik, Croatia, Apr. 2015.
- J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In *Advances in neural information processing systems*, pages 2080–2088, 2009.