Class 10 DATA1220-55, Fall 2024

Sarah E. Grabinski

2024-09-20

Homework 2

- ▶ Instructions (homework2_instructions.pdf), a Quarto markdown template (homework2_template.qmd), and an example HTML output (homework2_example.html) are available for download under Chapter 2 on the Modules page in Canvas.
- ➤ Video walk-through of Homework 2 under Tutorials on the Modules page in Canvas. Make sure you're caught up on the video walk-through of homework 1.
- ▶ Upload *TWO* (2) documents to Homework 2 on the Assignments page in Canvas by Friday 9/20/2024 by 6:00pm: homework2_yourlastname.qmd and homework2_yourlastname.html

Homework Hints

- ▶ Read the instructions! Some of the issues you're having are because you did not follow them correctly.
- Please answer in complete sentences where possible! I want you to practice effectively communicating data, and life is not a multiple choice question. I will be more clear about indicating this on future homework.
- ▶ Real world distributions are harder to describe than idealized theoretical distributions. Combining visual and numeric summaries is more powerful than using either alone.

Campuswire Hints

- Turn on notifications. Your question may have already been asked and answered. Campuswire can email you when there are new posts, so you can keep up with the discussion.
- ▶ Be specific! A detailed question is more likely to get a (useful) answer than a general question.
- ► Include code & error messages. It is much easier to troubleshoot "My document won't render. I've copy-pasted the error message and the lines of code where it breaks." than "My document won't render." Click here for more info on how to ask good debugging questions.

How can I get help with homework?

- Read the textbook. Many of you are asking for additional examples. Luckily, there are tons we didn't go over in the textbook.
- ▶ Ask a question on our Campuswire class feed. I'm only one person, and I may not be able to give you a prompt answer. However, the 20+ other people in the class might be able to.

I will try to keep an eye on Campuswire posts between 4-6pm before the homework is due, but I have other things going on and might miss something.

Last time... defining probability

- **Probability:** The proportion of times that a particular outcome would occur if we observed a random process an infinite number of times (P(Event = A)).
 - Ranges from 0 to 1 or 0% to 100%
 - \triangleright 0 \le probability \le 1
 - Probability = Proportion
- Random process: you know which outcomes are possible (i.e. the sample space) but you don't know which outcome comes next

Last time... representing probability

- **Sample space:** all possible outcomes of a random process (S)
- Disjoint events: events that CANNOT occur at the same time (mutually exclusive)
- **Complement:** the complement of any event A which exists in sample space S is any outcome also in sample space S which is NOT A (A^C or A')
 - Complements are always disjoint
 - ► The probability of event A occurring OR the complement of event A occurring is always 1
- Non-disjoint events: events that CAN occur at the same time

Last time... calculating probabilities

Remember...

$$P(S) = 1$$

$$P(S) = P(A) + P(A')$$

$$P(A) + P(A') = 1$$

$$P(A') = 1 - P(A)$$

Last time... population probability

Population Probability: the theoretical "true" probability of an outcome in the population of interest, the "ground truth" (p)

$$p = \frac{\text{count}(\text{events} = \mathbf{A})}{\text{count}(\text{alleventsinsamplespace})}$$

Last time... sample probability

Sample Probability: the probability of an outcome observed in a sample of size n from a population with probability p, an estimate of the population probability (\hat{p}_n)

$$\hat{p}_n = \frac{\text{count}(\text{observation} = \mathbf{A})}{\text{count}(\text{observationsinsample})}$$

Last time... Law of Large Numbers

- How well the sample proportion \hat{p}_n represents the population proportion p depends on the size of the denominator.
- As more observations are collected, the sample proportion \hat{p}_n of a particular outcome approaches the population proportion p of that outcome.
- $\lim_{n \to \infty} \hat{p}_n = p \text{ (As }$ $n \to \infty, \ \hat{p}_n \to p \text{)}$

