PCS 3225 Sistemas Digitais II

Módulo 04a – Análise de Circuitos Seqüenciais

Andrade, Marco Túlio Carvalho de

Professor Responsável

versão: Agosto de 2.018

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

Conteúdo

- Análise de Circuitos Sequenciais
 - 1. Modelo Geral de Um Circuito Seqüencial
 - 2. Análise de Circuitos Seqüenciais: Premissas Adotadas
 - 3. Modelo de Mealy/Moore
 - 3.1. Modelo de Mealy
 - 3.2. Modelo de Moore
 - 3.3. Passos do Processo de Análise
 - 4. Exemplo: Modelo de Mealy
 - 5. Exemplo: Modelo de Moore

Bibliografia

@ Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

1. Modelo Geral de Um Circuito Seqüencial

FIGURA 8.1 - MODELO GERAL DE CIRCUITO SÍNCRONO

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

2. Análise de Circuitos Seqüenciais: Premissas Adotadas

- Premissas adotadas:
 - A memória é constituída por flip-flop's sensíveis à borda.
 - As entradas podem mudar simultaneamente, mas ficam estáveis durante a borda de atuação do clock.
 - A frequência do clock é tal que os sinais internos já estão estabilizados na borda de interesse.

@ Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

3. Modelo de Mealy/Moore

- Existem dois modelos para circuitos seqüenciais síncronos:
 - $-\underline{\textit{Modelo de Mealy}}$: as saídas dependem do estado corrente y_r e das entradas x_i

$$z_i(t) = f_i(x_1(t), ..., x_n(t), y_1(t), ..., y_m(t))$$

-*Modelo de Moore*: as saídas dependem apenas do estado corrente y_r .

$$z_i(t) = f_i(y_1(t), ..., y_m(t))$$

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

3.1. Modelo de Mealy

X i CIRCUITO COMBINATÓRIO DO PRÓXIMO ESTADO CLOCK MEMÓRIA ATUAL

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II 6

2) Identificação das Variáveis e Estados

Entradas : x Saídas : z

Variáveis de excitação : D_1, D_2 Variáveis de estado : y_1, y_2

Com duas variáveis de	s	y 1	y 2
estado, obtemos 4	A	0	0
estados, designados	В	0	1
por A, B, C, D:	C	1	1
1 , , ,	D	1	0

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

3.3. Passos do Processo de Análise Diagrama Lógico Identificação Identificação das do Circuito dos Blocos Variáveis e dos Estados Tabela de Tabela de Equações Estados/Saída Excitação Diagrama de 8 Interpretação Comportamento Transição de Estados Entrada/Saída 14 © Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

3) Equações

- variáveis de excitação

$$D_1 = x.y_1.y_2 + x.y_2 + x.y_1 = x.y_1 + x.y_2$$

 $D_2 = x.y_1 + x.y_2$

- saída

$$Z = x.y_1.y_2$$

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

3.3. Passos do Processo de Análise Diagrama Lógico Identificação Identificação das do Circuito dos Blocos Variáveis e dos Estados Tabela de Tabela de Equações Excitação Estados/Saída Diagrama de 7 Comportamento 8 Interpretação Transição de Estados Entrada/Saída © Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

5) Tabela de Estados/Saída

$$y_1^{t+1} y_2^{t+1}/z^t$$

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

19

4. Exemplo – Modelo de Mealy

5) Tabela de Estados/Saída

$\begin{bmatrix} \mathbf{x}^t \\ \mathbf{s}^t \end{bmatrix}$	0	1
A	A/0	B/0
В	A/0	D/0
C	A/0	C /1
D	A/0	C/0

 s^{t+1}/z^t Modelo de Mealy

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

8) Interpretação

Adotando-se o estado A como sendo o estado inicial, o circuito realiza a detecção (aceitação) de seqüências de bits contendo quatro ou mais 1s consecutivos.

@ Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

2) Identificação das Variáveis e Estados

- entradas: x₁, x₂
- saídas: z₁, z₂, z₃
- variáveis de excitação: J₁, K₁, J₂, K₂
- variáveis de estado: y₁, y₂

Com duas variáveis de estado, obtemos 4 estados, designados por A, B, C, D:

S	y1	y2
Α	0	0
В	0	1
C	1	1
D	1	0

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

3.3. Passos do Processo de Análise Diagrama Lógico Identificação das Identificação do Circuito dos Blocos Variáveis e dos Estados Tabela de Tabela de Equações Excitação Estados/Saída Diagrama de 8 Interpretação Comportamento Transição de Estados Entrada/Saída © Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II 32

3) Equações

- Variáveis de excitação

$$J_1 = x_1 . x_2' . y_2'$$

$$\mathbf{K}_1 = 0$$

$$J_2 = x_1' . x_2 . y_1'$$

$$K_2 = 0$$

- Saída

$$z_1 = y_1' \cdot y_2', \quad z_2 = y_1, \quad z_3 = y_2$$

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

5) Tabela de Estados/Saída

$\begin{bmatrix} x_1^t x_2^t \\ y_1^t y_2^t \end{bmatrix}$	00	01	11	10
00	00/100	01/100	00/100	10/100
01	01/001	01/001	01/001	01/001
11	11/011	11/011	11/011	11/011
10	10/010	10/010	10/010	10/010

$$y_1^{t+1} y_2^{t+1}/z_1^t z_2^t z_3^t$$

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

37

5. Exemplo – Modelo de Moore

5) Tabela de Estados/Saída

S ^t X ₁ ^t X ₂ ^t	00	01	11	10	$\mathbf{Z}_1 \mathbf{Z}_2 \mathbf{Z}_3$	
A	A	В	A	D	1 0 0	
В	В	В	В	В	0 0 1	
C	C	C	C	C	0 1 1	
D	D	D	D	D	0 1 0	

 s^{t+1}

 $z_1^{\ t} z_2^{\ t} z_3^{\ t}$

Modelo de Moore

8) Interpretação

- Supondo o circuito no estado inicial A, o circuito fica neste estado enquanto x₁ = x₂ (nos instantes de borda ativa do clock). Se x₁> x₂, passa para o estado D e lá permanece. Se x₁< x₂, passa para o estado B e lá permanece.
- Se chamarmos z1 de (x1 = x2), z2 de (x1>x2) e z3 de (x1<x2), o circuito compara duas grandezas binárias seriais x1 e x2, supondo que a entrada se inicie com o bit mais significativo.</p>

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

45

Lição de Casa

- Leitura Obrigatória:
 - -Capítulo 7.0, ítem 7.3 do Livro Texto.
- Exercícios Obrigatórios:
 - -Capítulo 7.0 do Livro Texto.

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

Livro Texto

■ Wakerly, J.F.; *Digital Design* – *Principles & Practices*; Fourth Edition, ISBN: 0-13-186389-4, Pearson & Prentice-Hall, Upper Saddle, River, New Jersey, 07458, 2006.

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

47

Bibliografia Adicional Deste Assunto

- Dias, Francisco José de Oliveira; *Introdução* aos Circuitos de Chaveamento; Apostila, PEL/EPUSP, 1.980;
- Fregni, Edson; Ranzini, Edith; *Teoria da Comutação: Introdução aos Circuitos Digitais (Partes 1 e 2)*; Apostila PCS/EPUSP, Outubro de 1.999;

@ Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

Bibliografia Adicional Deste Assunto

- Hill, Frederic and Peterson, Gerald; *Introduction to Switching Theory and Logical Design*; Ed. John Wiley and Sons, 1.974;
- Ranzini, Edith; *Circuitos de Chaveamento* (notas de aula); Apostila, EPUSP, 1.983.

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

PCS 3225 Sistemas Digitais II

Módulo 04a – Análise de Circuitos Seqüenciais

Andrade, Marco Túlio Carvalho de

Professor Responsável

versão: Agosto de 2.018

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

Conteúdo

- Análise de Circuitos Sequenciais
 - 1. Modelo Geral de Um Circuito Seqüencial
 - 2. Análise de Circuitos Seqüenciais: Premissas Adotadas
 - 3. Modelo de Mealy/Moore
 - 3.1. Modelo de Mealy
 - 3.2. Modelo de Moore
 - 3.3. Passos do Processo de Análise
 - 4. Exemplo: Modelo de Mealy
 - 5. Exemplo: Modelo de Moore

Bibliografia

@ Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

1. Modelo Geral de Um Circuito Seqüencial

FIGURA 8.1 - MODELO GERAL DE CIRCUITO SÍNCRONO

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

2. Análise de Circuitos Seqüenciais: Premissas Adotadas

- Premissas adotadas:
 - A memória é constituída por flip-flop's sensíveis à borda.
 - As entradas podem mudar simultaneamente, mas ficam estáveis durante a borda de atuação do clock.
 - A frequência do clock é tal que os sinais internos já estão estabilizados na borda de interesse.

@ Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

3. Modelo de Mealy/Moore

- Existem dois modelos para circuitos seqüenciais síncronos:
 - $-\underline{\textit{Modelo de Mealy}}$: as saídas dependem do estado corrente y_r e das entradas x_i

$$z_i(t) = f_i(x_1(t), ..., x_n(t), y_1(t), ..., y_m(t))$$

-*Modelo de Moore*: as saídas dependem apenas do estado corrente y_r .

$$z_i(t) = f_i(y_1(t), ..., y_m(t))$$

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

3.1. Modelo de Mealy

X i CIRCUITO COMBINATÓRIO DO PRÓXIMO ESTADO CLOCK MEMÓRIA ATUAL

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II 6

2) Identificação das Variáveis e Estados

Entradas : x Saídas : z

Variáveis de excitação : D_1, D_2 Variáveis de estado : y_1, y_2

Com duas variáveis de	S	y 1	У 2
estado, obtemos 4	A	0	0
estados, designados	В	0	1
por A, B, C, D:	C	1	1
1 , , ,	D	1	0

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

3.3. Passos do Processo de Análise Diagrama Lógico Identificação Identificação das do Circuito dos Blocos Variáveis e dos Estados Tabela de Tabela de Equações Estados/Saída Excitação Diagrama de 8 Interpretação Comportamento Transição de Estados Entrada/Saída 14 © Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

3) Equações

- variáveis de excitação

$$D_1 = x.y_1.y_2 + x.y_2 + x.y_1 = x.y_1 + x.y_2$$

 $D_2 = x.y_1 + x.y_2$

- saída

$$Z = x.y_1.y_2$$

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

3.3. Passos do Processo de Análise Diagrama Lógico Identificação Identificação das do Circuito dos Blocos Variáveis e dos Estados Tabela de Tabela de Equações Excitação Estados/Saída Diagrama de 7 Comportamento 8 Interpretação Transição de Estados Entrada/Saída © Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

5) Tabela de Estados/Saída

$$y_1^{t+1} y_2^{t+1}/z^t$$

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

19

4. Exemplo – Modelo de Mealy

5) Tabela de Estados/Saída

$\begin{bmatrix} \mathbf{x}^t \\ \mathbf{s}^t \end{bmatrix}$	0	1
A	A/0	B/0
В	A/0	D/0
C	A/0	C /1
D	A/0	C/0

 s^{t+1}/z^t Modelo de Mealy

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

8) Interpretação

Adotando-se o estado A como sendo o estado inicial, o circuito realiza a detecção (aceitação) de seqüências de bits contendo quatro ou mais 1s consecutivos.

@ Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

2) Identificação das Variáveis e Estados

- entradas: x₁, x₂
- saídas: z₁, z₂, z₃
- variáveis de excitação: J₁, K₁, J₂, K₂
- variáveis de estado: y₁, y₂

Com duas variáveis de estado, obtemos 4 estados, designados por A, B, C, D:

S	y1	y2
Α	0	0
В	0	1
C	1	1
D	1	0

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

3.3. Passos do Processo de Análise Diagrama Lógico Identificação das Identificação do Circuito dos Blocos Variáveis e dos Estados Tabela de Tabela de Equações Excitação Estados/Saída Diagrama de 8 Interpretação Comportamento Transição de Estados Entrada/Saída © Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II 32

3) Equações

- Variáveis de excitação

$$J_1 = x_1 . x_2' . y_2'$$

$$\mathbf{K}_1 = 0$$

$$J_2 = x_1' . x_2 . y_1'$$

$$K_2 = 0$$

- Saída

$$z_1 = y_1' \cdot y_2', \quad z_2 = y_1, \quad z_3 = y_2$$

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

5) Tabela de Estados/Saída

$\begin{bmatrix} x_1^t x_2^t \\ y_1^t y_2^t \end{bmatrix}$	00	01	11	10
00	00/100	01/100	00/100	10/100
01	01/001	01/001	01/001	01/001
11	11/011	11/011	11/011	11/011
10	10/010	10/010	10/010	10/010

$$y_1^{t+1} y_2^{t+1}/z_1^t z_2^t z_3^t$$

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

37

5. Exemplo – Modelo de Moore

5) Tabela de Estados/Saída

S ^t X ₁ ^t X ₂ ^t	00	01	11	10	$\mathbf{Z}_1 \mathbf{Z}_2 \mathbf{Z}_3$	
A	A	В	A	D	1 0 0	
В	В	В	В	В	0 0 1	
C	C	C	C	C	0 1 1	
D	D	D	D	D	0 1 0	

 s^{t+1}

 $z_1^{\ t} z_2^{\ t} z_3^{\ t}$

Modelo de Moore

8) Interpretação

- Supondo o circuito no estado inicial A, o circuito fica neste estado enquanto x₁ = x₂ (nos instantes de borda ativa do clock). Se x₁> x₂, passa para o estado D e lá permanece. Se x₁< x₂, passa para o estado B e lá permanece.
- Se chamarmos z1 de (x1 = x2), z2 de (x1>x2) e z3 de (x1<x2), o circuito compara duas grandezas binárias seriais x1 e x2, supondo que a entrada se inicie com o bit mais significativo.</p>

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

45

Lição de Casa

- Leitura Obrigatória:
 - -Capítulo 7.0, ítem 7.3 do Livro Texto.
- Exercícios Obrigatórios:
 - -Capítulo 7.0 do Livro Texto.

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

Livro Texto

■ Wakerly, J.F.; *Digital Design* – *Principles & Practices*; Fourth Edition, ISBN: 0-13-186389-4, Pearson & Prentice-Hall, Upper Saddle, River, New Jersey, 07458, 2006.

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

47

Bibliografia Adicional Deste Assunto

- Dias, Francisco José de Oliveira; *Introdução* aos Circuitos de Chaveamento; Apostila, PEL/EPUSP, 1.980;
- Fregni, Edson; Ranzini, Edith; *Teoria da Comutação: Introdução aos Circuitos Digitais (Partes 1 e 2)*; Apostila PCS/EPUSP, Outubro de 1.999;

@ Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

Bibliografia Adicional Deste Assunto

- Hill, Frederic and Peterson, Gerald; *Introduction to Switching Theory and Logical Design*; Ed. John Wiley and Sons, 1.974;
- Ranzini, Edith; *Circuitos de Chaveamento* (notas de aula); Apostila, EPUSP, 1.983.

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

PCS 3225 Sistemas Digitais II

Módulo 04a – Análise de Circuitos Seqüenciais

Andrade, Marco Túlio Carvalho de

Professor Responsável

versão: Agosto de 2.018

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

Conteúdo

- Análise de Circuitos Sequenciais
 - 1. Modelo Geral de Um Circuito Seqüencial
 - 2. Análise de Circuitos Seqüenciais: Premissas Adotadas
 - 3. Modelo de Mealy/Moore
 - 3.1. Modelo de Mealy
 - 3.2. Modelo de Moore
 - 3.3. Passos do Processo de Análise
 - 4. Exemplo: Modelo de Mealy
 - 5. Exemplo: Modelo de Moore

Bibliografia

@ Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

1. Modelo Geral de Um Circuito Seqüencial

FIGURA 8.1 - MODELO GERAL DE CIRCUITO SÍNCRONO

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

2. Análise de Circuitos Seqüenciais: Premissas Adotadas

- Premissas adotadas:
 - A memória é constituída por flip-flop's sensíveis à borda.
 - As entradas podem mudar simultaneamente, mas ficam estáveis durante a borda de atuação do clock.
 - A frequência do clock é tal que os sinais internos já estão estabilizados na borda de interesse.

@ Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

3. Modelo de Mealy/Moore

- Existem dois modelos para circuitos seqüenciais síncronos:
 - $-\underline{\textit{Modelo de Mealy}}$: as saídas dependem do estado corrente y_r e das entradas x_i

$$z_i(t) = f_i(x_1(t), ..., x_n(t), y_1(t), ..., y_m(t))$$

-*Modelo de Moore*: as saídas dependem apenas do estado corrente y_r .

$$z_i(t) = f_i(y_1(t), ..., y_m(t))$$

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

3.1. Modelo de Mealy

X i CIRCUITO COMBINATÓRIO DO PRÓXIMO ESTADO CLOCK MEMÓRIA ATUAL

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II 6

2) Identificação das Variáveis e Estados

Entradas : x Saídas : z

Variáveis de excitação : D_1, D_2 Variáveis de estado : y_1, y_2

Com duas variáveis de	S	y 1	У 2
estado, obtemos 4	A	0	0
estados, designados	В	0	1
por A, B, C, D:	C	1	1
1 , , ,	D	1	0

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

3.3. Passos do Processo de Análise Diagrama Lógico Identificação Identificação das do Circuito dos Blocos Variáveis e dos Estados Tabela de Tabela de Equações Estados/Saída Excitação Diagrama de 8 Interpretação Comportamento Transição de Estados Entrada/Saída 14 © Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

3) Equações

- variáveis de excitação

$$D_1 = x.y_1.y_2 + x.y_2 + x.y_1 = x.y_1 + x.y_2$$

 $D_2 = x.y_1 + x.y_2$

- saída

$$Z = x.y_1.y_2$$

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

3.3. Passos do Processo de Análise Diagrama Lógico Identificação Identificação das do Circuito dos Blocos Variáveis e dos Estados Tabela de Tabela de Equações Excitação Estados/Saída Diagrama de 7 Comportamento 8 Interpretação Transição de Estados Entrada/Saída © Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

5) Tabela de Estados/Saída

$$y_1^{t+1} y_2^{t+1}/z^t$$

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

19

4. Exemplo – Modelo de Mealy

5) Tabela de Estados/Saída

$\begin{bmatrix} \mathbf{x}^t \\ \mathbf{s}^t \end{bmatrix}$	0	1
A	A/0	B/0
В	A/0	D/0
C	A/0	C /1
D	A/0	C/0

 s^{t+1}/z^t Modelo de Mealy

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

8) Interpretação

Adotando-se o estado A como sendo o estado inicial, o circuito realiza a detecção (aceitação) de seqüências de bits contendo quatro ou mais 1s consecutivos.

@ Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

2) Identificação das Variáveis e Estados

- entradas: x₁, x₂
- saídas: z₁, z₂, z₃
- variáveis de excitação: J₁, K₁, J₂, K₂
- variáveis de estado: y₁, y₂

Com duas variáveis de estado, obtemos 4 estados, designados por A, B, C, D:

S	y1	y2
Α	0	0
В	0	1
C	1	1
D	1	0

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

3.3. Passos do Processo de Análise Diagrama Lógico Identificação das Identificação do Circuito dos Blocos Variáveis e dos Estados Tabela de Tabela de Equações Excitação Estados/Saída Diagrama de 8 Interpretação Comportamento Transição de Estados Entrada/Saída © Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II 32

3) Equações

- Variáveis de excitação

$$J_1 = x_1 . x_2' . y_2'$$

$$\mathbf{K}_1 = 0$$

$$J_2 = x_1' . x_2 . y_1'$$

$$K_2 = 0$$

- Saída

$$z_1 = y_1' \cdot y_2', \quad z_2 = y_1, \quad z_3 = y_2$$

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

5) Tabela de Estados/Saída

$\begin{bmatrix} x_1^t x_2^t \\ y_1^t y_2^t \end{bmatrix}$	00	01	11	10
00	00/100	01/100	00/100	10/100
01	01/001	01/001	01/001	01/001
11	11/011	11/011	11/011	11/011
10	10/010	10/010	10/010	10/010

$$y_1^{t+1} y_2^{t+1}/z_1^t z_2^t z_3^t$$

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

37

5. Exemplo – Modelo de Moore

5) Tabela de Estados/Saída

S ^t X ₁ ^t X ₂ ^t	00	01	11	10	$\mathbf{Z}_1 \mathbf{Z}_2 \mathbf{Z}_3$	
A	A	В	A	D	1 0 0	
В	В	В	В	В	0 0 1	
C	C	C	C	C	0 1 1	
D	D	D	D	D	0 1 0	

 s^{t+1}

 $z_1^{\ t} z_2^{\ t} z_3^{\ t}$

Modelo de Moore

8) Interpretação

- Supondo o circuito no estado inicial A, o circuito fica neste estado enquanto x₁ = x₂ (nos instantes de borda ativa do clock). Se x₁> x₂, passa para o estado D e lá permanece. Se x₁< x₂, passa para o estado B e lá permanece.
- Se chamarmos z1 de (x1 = x2), z2 de (x1>x2) e z3 de (x1<x2), o circuito compara duas grandezas binárias seriais x1 e x2, supondo que a entrada se inicie com o bit mais significativo.</p>

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II

45

Lição de Casa

- Leitura Obrigatória:
 - -Capítulo 7.0, ítem 7.3 do Livro Texto.
- Exercícios Obrigatórios:
 - -Capítulo 7.0 do Livro Texto.

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

Livro Texto

■ Wakerly, J.F.; *Digital Design* – *Principles & Practices*; Fourth Edition, ISBN: 0-13-186389-4, Pearson & Prentice-Hall, Upper Saddle, River, New Jersey, 07458, 2006.

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

47

Bibliografia Adicional Deste Assunto

- Dias, Francisco José de Oliveira; *Introdução* aos Circuitos de Chaveamento; Apostila, PEL/EPUSP, 1.980;
- Fregni, Edson; Ranzini, Edith; *Teoria da Comutação: Introdução aos Circuitos Digitais (Partes 1 e 2)*; Apostila PCS/EPUSP, Outubro de 1.999;

@ Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc. > PCS 3225 Sistemas Digitais II

Bibliografia Adicional Deste Assunto

- Hill, Frederic and Peterson, Gerald; *Introduction to Switching Theory and Logical Design*; Ed. John Wiley and Sons, 1.974;
- Ranzini, Edith; *Circuitos de Chaveamento* (notas de aula); Apostila, EPUSP, 1.983.

© Andrade, Glauber, Midorikawa, Bruno, 2.018 < Análise Circ. Sequenc.> PCS 3225 Sistemas Digitais II