Singular value decomposition (SVD) and Cholesky decomposition

Walter Mudzimbabwe

Decomposition

Singular value decomposition (SVD) and Cholesky decomposition

Walter Mudzimbabwe

Singular value decomposition (SVD)

Singular value decomposition (SVD) and Cholesky decomposition

Walter Mudzimbabwe

Decomposition

Let $A \in \mathbb{R}^{m \times n}$ then there exist orthogonal matrices

$$U = [u_1, u_2, \cdots, v_m] \in \mathbb{R}^{m \times m}$$
$$V = [v_1, v_2, \cdots, v_n] \in \mathbb{R}^{n \times n}$$

such that

$$\mathsf{U}^T\mathsf{AV} = \mathsf{diag}(\sigma_1, \sigma_2, \cdots, \sigma_p) \tag{1}$$

where $p = \min\{m, n\}$ and $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_p \ge 0$. We can write (1) as

$$A = U \operatorname{diag}(\sigma_1, \sigma_2, \cdots, \sigma_p) V^T$$

which is called the singular decomposition (SVD) of A. The σ_i 's are called singular values of A and vectors u_i and v_i are the i^{th} left and right singular vectors respectively.

Singular value decomposition (SVD)

Singular value decomposition (SVD) and Cholesky decomposition

Walter Mudzimbabwe

Decomposition

We can also verify that

$$Av_i = \sigma_i u_i$$
$$A^T u_i = \sigma_i v_i$$

To do this we need to verify that

$$A = \sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{T}$$

which implies

$$\mathsf{A}^T = \sum_{j=1}^r \sigma_j \mathsf{v}_j \mathsf{u}_j^T$$

Singular value decomposition (SVD)

Singular value decomposition (SVD) and Cholesky decomposition

Walter Mudzimbabwe

Decomposition

Therefore

$$Av_{i} = \left(\sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{T}\right) v_{i}$$

$$= \sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{T} v_{i}$$

$$= \sigma_{i} u_{i} I_{n}$$

$$= \sigma_{i} u_{i}$$

SVD Example

Singular value decomposition (SVD) and Cholesky decomposition

Verify that the SVD of

Walter

$${\sf Decomposition}$$

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}$$

comprises

$$U = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad V = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

and singular values 2 and 0.

SVD Example

Singular value decomposition (SVD) and Cholesky decomposition

Walter Mudzimbabwe

Decomposition

Solution:

1.) Verify that
$$U^TAV = diag(2,0) = \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$
.

2.) Verify that U and V are orthogonal.

Positive definite systems

Singular value decomposition (SVD) and Cholesky decomposition

Walter Mudzimbabwe

Decomposition

 $A \in \mathbb{R}^{m \times n}$ is positive definite if

$$x^T Ax > 0$$
, nonzero $x \in \mathbb{R}^n$.

Cholesky decomposition: If $A \in \mathbb{R}^{m \times n}$ is symmetric and positive definite then there exists lower triangular matrix $G \in \mathbb{R}^{n \times n}$ with positive entries such that

$$A = GG^T$$
.

Example: The matrix

$$A = \begin{bmatrix} 2 & -2 \\ -2 & 5 \end{bmatrix}$$

is positive definite and has Cholesky decomposition

$$\mathsf{G} = \begin{bmatrix} \sqrt{2} & 0 \\ -\sqrt{2} & \sqrt{3} \end{bmatrix}.$$

Exercise: Verify that A in the example is positive definite.

Construction of Cholesky decomposition

Singular value decomposition (SVD) and Cholesky decomposition

Walter Mudzimbabwe

Decomposition

We can contruct the matrix G by comparing elements in the equation $A=GG^{\mathcal{T}}.$

First note that $i \ge k$ we have

$$a_{ik} = \sum_{p=1}^{K} g_{ip}g_{kp}$$

$$= \sum_{p=1}^{k-1} g_{ip}g_{kp} + g_{ik}g_{kk},$$
 this implies,
$$g_{ik} = \left(a_{ik} - \sum_{p=1}^{k-1} g_{ip}g_{kp}\right)/g_{kk}, \qquad i > k.$$
 and for $i = k$,
$$g_{kk} = \left(a_{kk} - \sum_{p=1}^{k-1} g_{kp}^2\right)^{1/2}.$$

Cholesky decomposition Algorithm

Singular value decomposition (SVD) and Cholesky decomposition

Walter Mudzimbabwe

Decomposition

Given $A \in \mathbb{R}^{m \times n}$ is symmetric and positive definite then the following algorithm computes a lower triangular matrix $G \in \mathbb{R}^{n \times n}$ such that $A = GG^T$:

For
$$k = 1, 2..., n$$

$$g_{kk} = \left(a_{kk} - \sum_{p=1}^{k-1} g_{kp}^2\right)^{1/2}$$
 For $i = k+1, k+2..., n$
$$g_{ik} = \left(a_{ik} - \sum_{p=1}^{k-1} g_{ip}g_{kp}\right)/g_{kk}$$