

Kaonenexperimente im Wandel der Zeit

Fabian Koch **02.05.19** Fakultät Physik

Übersicht

Was sind Kaonen

Historische Kaonenexperimente

Entdeckung der Kaonen Paritätsverletzung Kaonenmischung Direkte und indirekte CP-Verletzung

F. Koch | 02.05.19 2 / 17

Inhalt

Was sind Kaonen

Historische Kaonenexperimente

Entdeckung der Kaonen
Paritätsverletzung
Kaonenmischung
Pirakta und indirekte CR Verletzung

F. Koch | 02.05.19 Was sind Kaonen 3/17

Was sind Kaonen?

Figure: Übersicht über die Kaonen

Kaonen:

- \blacksquare sind die leichtesten Teilchen mit Strangeness $S=\pm 1$
- besitzen einen ganzzahligen Spin
- sind Bosonen
- verfügen über eine relativ lange Lebensdauer

	m / MeV		$\tau/10^{-10}\mathrm{s}$	
K^{\pm} K^0_S K^0_L	493,677 497,614 497,614	± 0,016 ± 0,024 + 0,024	123,80 0,895 511,6	± 0,21 4 ± 0,0004 + 2,1
π^{\pm}	, -	$\pm 0,024$ $3 \pm 0,00035$	260,33	± 0.05

Inhalt

Was sind Kaoner

Historische Kaonenexperimente

Entdeckung der Kaonen Paritätsverletzung Kaonenmischung Direkte und indirekte CP-Verletzung

Weltkarte

Entdeckung der Kaonen

Figure: Nebelkammeraufnahme der kosmischen Höhenstrahlung von Rochester und Butler 1947

- Entdeckung des ersten (neutralen) Kaons 1947 durch George Rochester et. al
- Höhenstrahlung wurde in Nebelkammer untersucht
- Zerfall eines neutralen Teilchens in ein positives und negatives Pion

$$K^0 \rightarrow \pi^+\pi^-$$

- Entdeckung des positiv geladenen Kaons 1949 durch Powell in Kernreaktionen
- Zerfall eines positiven Kaons in zwei positive und ein negatives Pion

$$K^+ \to \pi^+ \pi^+ \pi^-$$

Seltsam lange Lebensdauer

Figure: Der achtfache Weg von Gell-Mann und Ne'eman

- Konnten sehr leicht erzeugt werden (durch starke WW)
- Zerfielen aber sehr langsam 10⁻¹⁰s (durch schwache WW)
- Durch Gell-Mann 1953 Einführung einer neuen Teilcheneigenschaft/ Quantenzahl, der 'Strangeness' (der achtfache Weg)
- \blacksquare Kaonen sind leichteste Teilchen mit $\mathbf{S}=\pm 1$ und könnten somit nicht zerfallen, wenn \mathbf{S} durch alle Kräfte erhalten wäre
- Einziger Zerfall somit über die flavourändernde schwache WW möglich
- S veranlasste Cabibo 1963 zur Postulierung des Cabibo-Winkels

Paritätsverletzung und der Cosmotron

Figure: Das Cosmotron am Brookhaven National Laboratory (1952-1966)

- Bau des damals leistungsstärksten Proton-Synchrotron mit Strahlenergien von 3,3 GeV im Jahr 1952
- Erstmals Produktion von schweren Teilchen der kosmischen Höhenstrahlung möglich
- $lue{}$ Entdeckung des K_L 1956 durch Lande in Nebelkammer
- Beobachtung der Paritätsverletzung 1956 durch T.D. Lee und C.N.Yang

$$\tau^+ \to \pi^+ \pi^+ \pi^-$$

$$\theta^+ \to \pi^+ \pi^0$$

 au^+ und au^+ tatsächlich ein Teilchen K^+ , die Zerfälle verletzen also die Paritätserhaltung

Long und short? Die Mischung neutraler Kaonen

■ Die Flavour-Eigenzustände $|K^0\rangle$, $|\overline{K^0}\rangle$ unterscheiden sich von den CP-Eigenzuständen:

$$\begin{split} & CP|K^0\rangle = |\overline{K^0}\rangle \\ & CP|\overline{K^0}\rangle = |K^0\rangle \\ \end{pmatrix} \rightarrow \begin{cases} |K_1\rangle = \frac{1}{\sqrt{2}}\left(|K^0\rangle + |\overline{K^0}\rangle\right) \\ |K_2\rangle = \frac{1}{\sqrt{2}}\left(|K^0\rangle - |\overline{K^0}\rangle\right) \end{cases} \end{split}$$

- \blacksquare Dabei ist $|K_1\rangle\approx|K_S\rangle$ und $|K_2\rangle\approx|K_L\rangle$, mit $\tau(|K_L\rangle)\approx600\times\tau(|K_S\rangle)$
- $\blacksquare \ |K_S\rangle$ hatben CP = +1 und $|K_L\rangle$ habe CP =-1
- Unterschied vor allem in Zerfallsmoden:

$$|K_S\rangle \to \pi^+\pi^-$$

$$|K_L\rangle \to \pi^+\pi^-\pi^0$$

CP-Verletzung

Fig. 9a. Set-up used to detect $K_2 \rightarrow \pi^+\pi^-$.

Figure: Das Cronin-Fitch-Experiment am Brookhaven National Laboratory (1964)

- Christenson, Cronin, Fitch und Turlay planen 1964 Experiment am Brookhaven National Laboratory
- 17 m lange Beamline in der alle $|K_S\rangle$ zerfallen sollen und nur noch $|K_L\rangle$ übrig bleiben
- \blacksquare Hauptsächlich wird der Winkel θ zwischen dem K_L^0 -Strahl und den Teilchenimpulsen gemessen.
- Treffen zwei Teilchen 'gleichzeitig' den Detektor so kann die Summe der Winkel bestimmt werden (aus Spurdetektion)
- Diese ist für einen Dreikörperzerfall mit großer Wahrscheinlichkeit ≠ 0 für Zweikörperzerfälle hingegen mit großer Wahrscheinlichkeit = 0

Ergebnis

FIG. 3. Angular distribution in three mass ranges for events with $\cos\theta > 0.9995$.

Es wurden tatsächlich Zerfälle von

$$K_L o \pi^+\pi^-$$

beobachtet.

Wie kann das sein?

- Konsequenz: $|K_S\rangle$ und $|K_L\rangle$ keine reinen CP- Zustände, also indirekte CP-Verletzung
- →In beiden Zuständen sind kleine Teile des jeweils anderen Zustands enthalten:

$$\begin{split} |K_L^0\rangle &= \frac{\epsilon \, |K_1\rangle + |K_2\rangle}{\sqrt{1+\epsilon^2}} \\ |K_S^0\rangle &= \frac{|K_1\rangle + \epsilon \, |K_2\rangle}{\sqrt{1+\epsilon^2}} \\ |\epsilon| &= (2.229 \pm 0.010) \times 10^{-3} \end{split}$$

- Die neutralen Kaonenzustände oszillieren über Box-Diagramme in einander über und zerfallen so
- Oder direkte CP-Verletzung über Pinguin- Diagramme
- Problem: Im Jahre 1964 noch keine Quarks oder der CKM-Mechanismus bekannt

Direkte CP- Verletzung

Figure: Pinguindiagramm des CP-verletzenden, neutralen Kaonenzerfalls

- Direkte CP-Verletzung würde eine CP-Verletzung innerhalb des Zerfalls ohne vorherige Mischung der Kaonen voraussetzen
- Messung der partiellen Zerfallsbreiten von:

$$\begin{split} K_L^0 &\to \pi^+\pi^- \\ K_L^0 &\to \pi^0\pi^0 \\ K_S^0 &\to \pi^+\pi^- \\ K_S^0 &\to \pi^0\pi^0 \end{split}$$

 Es muss das Verhältnis gebildet werden, da sowohl Anteile der direkten als auch der indirekten Verletzung eine Rolle spielen müssen

Was wird denn da gemessen?

$$\begin{split} \frac{A\left(K_{L}\rightarrow\pi^{0}\pi^{0}\right)}{A\left(K_{S}\rightarrow\pi^{0}\pi^{0}\right)} &=\epsilon-2\epsilon^{'}\\ \frac{A\left(K_{L}\rightarrow\pi^{+}\pi^{-}\right)}{A\left(K_{S}\rightarrow\pi^{+}\pi^{-}\right)} &=\epsilon+\epsilon^{'} \end{split}$$

$$R = \frac{A\left(K_L \to \pi^0 \pi^0\right)}{A\left(K_S \to \pi^0 \pi^0\right)} / \frac{A\left(K_L \to \pi^+ \pi^-\right)}{A\left(K_S \to \pi^+ \pi^-\right)}$$

$$\approx 1 - 6\operatorname{Re}(\epsilon'/\epsilon)$$

$$\approx 1 - 6 \operatorname{Re}(\epsilon'/\epsilon)$$

- Vorteil: Viele systematische Fehler kürzen sich raus
- Wäre $\epsilon' = 0$ so gäbe es keine direkte CP-Verletzung
- Bis in die 90er kein eindeutiges Ergebnis durch Experimente

Theoretische Überlegungen:

■ Drei Quarkfamilien (Kobayashi und Maskawa, 1973 → noch vor Entdeckung des Charm-Quarks)

Experimentelle Implikationen:

- Es sollten somit drei Generationen gemessen werden können
- Direkte CP-Verletzung sollte bei Kaonen (und in anderen Systemen → B-Mesonen) gemessen werden

Figure: Ergebnisse für $Re(\epsilon'/\epsilon)$

Wer war beteiligt?

KTeV am FermiLab