Analysis of Algorithms

© 2010 Goodrich, Tamassia

Analysis of Algorithms

Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics

worst case 120 100 Running Time 2000 3000 **Input Size**

■ best case

average case

© 2010 Goodrich, Tamassia

Analysis of Algorithms

2

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like clock() to get an accurate measure of the actual running time
- Plot the results

Limitations of Experiments

- □ It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- □ In order to compare two algorithms, the same hardware and software environments must be used

Analysis of Algorithms © 2010 Goodrich, Tamassia

3

© 2010 Goodrich, Tamassia

Analysis of Algorithms

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n.
- □ Takes into account all possible inputs
- □ Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Analysis of Algorithms

Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

Algorithm arrayMax(A, n)**Input** array A of n integers **Output** maximum element of A

 $currentMax \leftarrow A[0]$ for $i \leftarrow 1$ to n-1 do if A[i] > currentMax then $currentMax \leftarrow A[i]$ return currentMax

© 2010 Goodrich, Tamassia

© 2010 Goodrich, Tamassia

Analysis of Algorithms

Pseudocode Details

Control flow

- if ... then ... [else ...]
- while ... do ...
- repeat ... until ...
- for ... do ...
- Indentation replaces braces
- Method declaration

Algorithm method (arg [, arg...])

Input ...

Output ...

Method call

var.method (arg [, arg...])

Return value

return expression

- Expressions
 - ← Assignment (like = in C++)
 - = Equality testing (like == in C++)
 - n^2 Superscripts and other mathematical formatting allowed

The Random Access Machine (RAM) Model

□ A CPU

Memory cells are numbered and accessing any cell in memory takes unit time.

Analysis of Algorithms

© 2010 Goodrich, Tamassia Analysis of Algorithms 7 © 2010 Goodrich, Tamassia

Seven Important Functions

1E+28

-Cubic

- Seven functions that often appear in algorithm 1E+30 analysis: ■ Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear $\approx n$ ■ N-Log-N $\approx n \log n$
 - Ouadratic $\approx n^2$ Cubic $\approx n^3$
- In a log-log chart, the slope of the line corresponds to the growth rate

■ Exponential $\approx 2^n$

© 2010 Goodrich, Tamassia

1E+26 Quadratic 1E+24 1E+22 -Linear 1E+20 1E+18 1E+16 1E+14 1E+12 1E+101E+8 1E+6 1E+4 1E + 21E+01E+0 1E+21E+41E+6 1E+8 1E+10Analysis of Algorithms 9

Functions Graphed Using "Normal" Scale

Slide by Matt Stallmann included with permission.

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Counting Primitive Operations

 By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

Algorithm $arrayMax(A, n)$ $currentMax \leftarrow A[0]$	# C	perations
for $i \leftarrow 1$ to $n-1$ do		2n
if $A[i] > currentMax$ then		2(n-1)
$currentMax \leftarrow A[i]$		2(n-1)
{ increment counter <i>i</i> }		2(n-1)
return currentMax		1
	Total	8n - 2

Estimating Running Time

- 12
- □ Algorithm *arrayMax* executes 8n 2 primitive operations in the worst case. Define:
 - a = Time taken by the fastest primitive operation
 - **b** = Time taken by the slowest primitive operation
- Let T(n) be worst-case time of arrayMax. Then $a (8n-2) \le T(n) \le b(8n-2)$
- \Box Hence, the running time T(n) is bounded by two linear functions

© 2010 Goodrich, Tamassia

Analysis of Algorithms

13

Growth Rate of Running Time

- Changing the hardware/ software environment
 - Affects T(n) by a constant factor, but
 - Does not alter the growth rate of *T*(*n*)
- □ The linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax

© 2010 Goodrich, Tamassia

Analysis of Algorithms

14

16

Slide by Matt Stallmann included with permission.

Why Growth Rate Matters

if runtime is	time for n + 1	time for 2 n	time for 4 n
c lg n	c lg (n + 1)	c (lg n + 1)	c(lg n + 2)
cn	c (n + 1)	2c n	4c n
c n lg n	~ c n lg n + c n	2c n lg n + 2cn	4c n lg n + 4cn
c n ²	~ c n ² + 2c n	4c n ²	16c n ²
c n³	$\sim c n^3 + 3c n^2$	8c n ³	64c n ³
c 2 ⁿ	c 2 ⁿ⁺¹	c 2 ²ⁿ	c 2 ⁴ⁿ

runtime quadruples when problem size doubles Comparison of Two Algorithms

insertion sort is

n² / 4

merge sort is
2 n lg n

sort a million items?
insertion sort takes
roughly 70 hours

while

merge sort takes roughly 40 seconds

Slide by Matt Stallmann

This is a slow machine, but if 100 x as fast then it's 40 minutes versus less than 0.5 seconds

© 2010 Stallmann Analysis of Algorithms 15 © 2010 Stallmann Analysis of Algorithms

Constant Factors

- The growth rate is not affected by
 - constant factors or
 - lower-order terms
- Examples
 - $10^2n + 10^5$ is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function

© 2010 Goodrich, Tamassia

Analysis of Algorithms

Analysis of Algorithms

17

19

Big-Oh Notation

$$f(n) \le cg(n)$$
 for $n \ge n_0$
• Example: $2n + 10$ is $O(n)$

- $2n + 10 \le cn$
- $(c-2) n \ge 10$
- $n \ge 10/(c-2)$
- Pick c = 3 and $n_0 = 10$

© 2010 Goodrich, Tamassia

Analysis of Algorithms

10

- - · 3n

-2n+10

10

18

1,000

Big-Oh Example

 $n^2 \le cn$

© 2010 Goodrich, Tamassia

- $n \le c$
- The above inequality cannot be satisfied since c must be a constant

More Big-Oh Examples

100

♦ 7n-2

7n-2 is O(n) $need\ c>0\ and\ n_0\geq 1\ such\ that\ 7n-2\leq c\bullet n\ for\ n\geq n_0$ this is true for c=7 and $n_0=1$

■ $3n^3 + 20n^2 + 5$ $3n^3 + 20n^2 + 5$ is $O(n^3)$

need c > 0 and $n_0 \ge 1$ such that $3n^3 + 20n^2 + 5 \le c \cdot n^3$ for $n \ge n_0$ this is true for c = 4 and $n_0 = 21$

■ 3 log n + 5

 $3 \log n + 5 \text{ is } O(\log n)$

need c > 0 and $n_0 \ge 1$ such that $3 \log n + 5 \le c \cdot \log n$ for $n \ge n_0$ this is true for c = 8 and $n_0 = 2$

© 2010 Goodrich, Tamassia

Analysis of Algorithms

20

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- □ The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

	f(n) is $O(g(n))$	g(n) is $O(f(n))$
g(n) grows more	Yes	No
f(n) grows more	No	Yes
Same growth	Yes	Yes

© 2010 Goodrich, Tamassia

Analysis of Algorithms

21

Big-Oh Rules

- □ If is f(n) a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - Drop lower-order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

© 2010 Goodrich, Tamassia

Analysis of Algorithms

22

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We determine that algorithm arrayMax executes at most 8n-2 primitive operations
 - We say that algorithm arrayMax "runs in O(n) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Computing Prefix Averages

- We further illustrate
 asymptotic analysis with
 two algorithms for prefix
 averages
- The *i*-th prefix average of an array *X* is average of the first (*i* + 1) elements of *X*:

$$A[i] = (X[0] + X[1] + ... + X[i])/(i+1)$$

 Computing the array A of prefix averages of another array X has applications to financial analysis

© 2010 Goodrich, Tamassia

Analysis of Algorithms

23

© 2010 Goodrich, Tamassia

Analysis of Algorithms

24

Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition

```
Algorithm prefixAverages1(X, n)
  Input array X of n integers
  Output array A of prefix averages of X
                                                 #operations
   A \leftarrow new array of n integers
                                                     n
  for i \leftarrow 0 to n-1 do
                                                     n
       s \leftarrow X[0]
        for i \leftarrow 1 to i do
                                           1+2+...+(n-1)
                s \leftarrow s + X[i]
                                            1+2+...+(n-1)
       A[i] \leftarrow s / (i+1)
  return A
```

© 2010 Goodrich, Tamassia

Analysis of Algorithms

25

Arithmetic Progression

- The running time of prefixAverages1 is O(1+2+...+n)
- \Box The sum of the first nintegers is n(n+1)/2
 - There is a simple visual proof of this fact
- Thus, algorithm prefixAverages1 runs in $O(n^2)$ time

© 2010 Goodrich, Tamassia

Analysis of Algorithms

Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by keeping a running sum

Algorithm $prefixAverages2(X, n)$ Input array X of n integers	
Output array A of prefix averages of X	#operations
$A \leftarrow$ new array of n integers	n
$s \leftarrow 0$	1
for $i \leftarrow 0$ to $n-1$ do	n
$s \leftarrow s + X[i]$	n
$A[i] \leftarrow s / (i+1)$	n
return A	1

 \bullet Algorithm *prefixAverages2* runs in O(n) time

Math you need to Review

- Summations
- Logarithms and Exponents

properties of logarithms: $log_b(xy) = log_b x + log_b y$ $log_h(x/y) = log_h x - log_h y$ $log_b xa = alog_b x$ $log_b a = log_x a / log_x b$

- Proof techniques
- Basic probability

properties of exponentials: $a^{(b+c)} = a^b a^c$ $a^{bc} = (a^b)^c$ $a^{b}/a^{c} = a^{(b-c)}$ $b = a \log_a b$ $b^c = a^{c*log_a b}$

© 2010 Goodrich, Tamassia

Analysis of Algorithms

27

© 2010 Goodrich, Tamassia

Analysis of Algorithms

Relatives of Big-Oh

big-Omega

• f(n) is $\Omega(g(n))$ if there is a constant c > 0and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

big-Theta

• f(n) is $\Theta(g(n))$ if there are constants c' > 0 and c''> 0 and an integer constant $n_0 \ge 1$ such that $c' \cdot g(n) \le f(n) \le c'' \cdot g(n)$ for $n \ge n_0$

© 2010 Goodrich, Tamassia

Analysis of Algorithms

29

Intuition for Asymptotic **Notation**

Big-Oh

• f(n) is O(g(n)) if f(n) is asymptotically less than or equal to q(n)

big-Omega

• f(n) is $\Omega(g(n))$ if f(n) is asymptotically greater than or equal to g(n)

big-Theta

• f(n) is $\Theta(g(n))$ if f(n) is asymptotically equal to q(n)

© 2010 Goodrich, Tamassia

Analysis of Algorithms

30

Example Uses of the Relatives of Big-Oh

\blacksquare 5n² is $\Omega(n^2)$

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

let c = 5 and $n_0 = 1$

\blacksquare 5n² is $\Omega(n)$

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

let c = 1 and $n_0 = 1$

\blacksquare 5n² is $\Theta(n^2)$

f(n) is $\Theta(g(n))$ if it is $\Omega(n^2)$ and $O(n^2)$. We have already seen the former, for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$

Let c = 5 and $n_0 = 1$

© 2010 Goodrich, Tamassia

Analysis of Algorithms

31