2020年高考全国丙卷数学(文)试卷

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中, 只有一项是符合题目要求的。

1. (5 分)已知集合 $A = \{1,2,3,5,7,11\}$, $B = \{x \mid 3 < x < 15\}$,则 $A \cap B$ 中元素的个数为

- A. 2 B. 3 C. 4 D. 5

2. (5 分) $\overline{z}(1+i)=1-i$, 则 z=(

- - A. 1-i B. 1+i C. -i D. i

3. (5 分)设一组样本数据 $x_1, x_2, ..., x_n$ 的方差为 0.01,则数据 $10x_1, 10x_2, ..., 10x_n$ 的方差为()

- A. 0.01 B. 0.1 C. 1 D. 10

4. (5 分) Logistic 模型是常见数学模型之一,可应用于流行病学领域,有学者根据公 布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t 的单位:天)的Lo istic 模型:

 $I(t) = \frac{K}{1 + e^{-0.23(t-53)}}$, 其中 K 为最大确诊病例数, 当 $I(t^*) = 0.95 K$ 时, 标志着已初步遏制

- 疫情,则*t**约为(ln19≈3) ()
 - A. 60 B. 63 C. 66 D. 69

5. (5分) 已知 $\sin \theta + \sin(\theta + \frac{\pi}{3}) = 1$,则 $\sin(\theta + \frac{\pi}{6}) = ($

- A. $\frac{1}{2}$ B. $\frac{\sqrt{3}}{3}$ C. $\frac{2}{3}$ D. $\frac{\sqrt{2}}{2}$

6. (5分) 在平面内, A, B是两个定点, C是动点, 若 \overline{AC} . $\overline{BC}=1$, 则点C的轨迹是 -()

- A. 圆 B. 椭圆 C. 抛物线 D. 直线

7. (5分)设O为坐标原点,直 x=2与抛物线 $C: y^2 = 2px(p>0)$ 交于D, E两点,

若 $OD \perp OE$,则C的焦点坐标为()

- A. $(\frac{1}{4},0)$ B. $(\frac{1}{2},0)$ C. (1,0) D. (2,0)

8. (5 分)点(0,-1)到直线y=k(x+1)距离的最大值为()

- **A.** 1
- B. $\sqrt{2}$ C. $\sqrt{3}$ D. 2

9. (5分) 右图为某几何体的三视图,则该几何体的表面积是(

- A. $6 + 4\sqrt{2}$
- B. $4 + 4\sqrt{2}$
- c. $6 + 2\sqrt{3}$
- D. $4 + 2\sqrt{3}$

10. (5 分) 设 $a = \log_3 2$, $b = \log_5 3$, $c = \frac{2}{3}$, 则 ()

- A. a < c < b B. a < b < c C. b < c < a D. c < a < b

11. (5分) 在 $\triangle ABC$ 中, $\cos C = \frac{2}{3}$, AC = 4 , BC = 3 , 则 $\tan B = ($

- A. $\sqrt{5}$ B. $2\sqrt{5}$ C. $4\sqrt{5}$ D. $8\sqrt{5}$

12. (5 分) 已知函数 $f(x) = \sin x + \frac{1}{\sin x}$, 则

- A. f(x) 的最小值为2
- B. f(x) 的图像关于y 轴对称
- C. f(x)的图像关于直线 $x = \pi$ 对称
- D. f(x) 的图像关于直线 $x = \frac{\pi}{2}$ 对称

空题:本题共4小题,每小题5分,共20分。

14. (5 分) 设双曲线
$$C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$$
 的一条渐近线为 $y = \sqrt{2}x$,则 C 的离心率为_____.

15. (5 分) 设函数
$$f(x) = \frac{e^x}{x+a}$$
. 若 $f'(1) = \frac{e}{4}$, 则 $a =$ _____.

- 16. (5分)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积
- 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
 - (一) 必考题: 共60分。

17. (12分)

设等比数列 $\{a_n\}$ 满足 $a_1 + a_2 = 4$, $a_3 - a_1 = 8$.

- 1) 求 $\{a_n\}$ 的通项公式;
- 2) 记 S_n 为数列 $\{\log_3 a_n\}$ 的前 n 项和. 若 $S_m + S_{m+1} = S_{m+3}$, 求m.

18. (12分)

某学生兴趣小组随机调查了某市 100 天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):

锻炼人次 空气质量等级	[0,200]	(200,400]	(400,600]
1 (优)	2	16	25
2 (良)	5	10	12
3(轻度污染)	6	7	8
4(中度污染)	7	2	0

- (1) 分别估计该市一天的空气质量等级为 1, 2, 3, 4 的概率;
- (2) 求一天中到该公园锻炼的平均人次的估计值(同组中的数据用该组区间的中点值

为代表);

(3) 若某天的空气质量等级为1或2,则称这天"空气质量好":若某天的空气质量等级为3或4,则称这天"空气质量不好"。根据所给数据,完成下面的列联2×2表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?

	人次≤400	人次>400
空气质量好		
空气质量不好		

附:
$$K^2 = \frac{n(ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$

$P(K^2 \ge k)$	0.050	0.010	0.001
k	3.841	6.635	10.828

19. (12分)

如图,在长方体 $ABCD_-A_1B_1C_1D_1$ 中,点E,F分别 在棱 DD_1 , BB_1 上,且 $2DE=ED_1$, $BF=2FB_1$.证明:

- (1) 当AB = BC时, $EF \perp AC$;
- (2) 点 C₁ 在平面 AEF 内.

已知函数 $f(x) = x^3 - kx + k^2$

- (1) 讨论f(x)的单调性
- **2**) 若 f(x) 有三个零点,求 k 的取值范围.

21. (12分)

已知椭圆 $C: \frac{x^2}{25} + \frac{y^2}{m^2} = 1(0 < m < 5)$ 的离心率为 $\frac{\sqrt{15}}{4}$, A, B分别为C的左、右顶点。

- (1) 求 C 的方程;
- (2) 若点P在C上,点Q在直线x=6上,且|BP|=|BQ|, $BP\bot BQ$,求△APQ的面积.
- (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。

[选修 4-4: 坐标系与参数方程] (10 分)

- 22. 在直角坐标系 xOy 中,曲线 C 的参数方程为 $\begin{cases} x = 2 t t^2 \\ y = 2 3t + t^2 \end{cases}$ (t为参数且 $t \neq 1$), C 与坐标轴交于 A, B 两点.
 - (1) 求|AB|;
- (2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求直线 AB 的极坐标方程.

[选修 4-5: 不等式选讲] (10 分)

- 23. 没 $a,b,c \in R$, a+b+c=0, abc=1
 - (1) 证明: ab+bc+ca<0;
 - (2) 用 $max\{a,b,c$ 表示a, b, c的最大值,证明: $max\{a,b,c\} \geqslant \sqrt[3]{4}$.

2020年高考全国丙卷数学(文)答案

2020. 07

一、选择题(共7道小题,每小题6分,共42分)

题号	1	2	3	4	5	6	7	8	9	10	11	12
答案	В	D	С	С	В	Α	В	В	С	Α	С	D

- 二、填空题(本题共4小题,每小题5分,共20分)
- **13.** 7
- 14. $\sqrt{3}$
- **15.** 1
- 16. $\frac{\sqrt{2}\pi}{3}$
- 三、解答题(共70分)
- (一) 必考题 (共60分)
- 17. (1) $a_n = 3^{n-1}$
- (2) m = 6
- 18. (1)
- P(A) = 0.43
- P(B) = 0.27
- P(C) = 0.21
- P(D) = 0.09
- (2) 一天中到该公园锻炼的平均人次的估计值为350人次。
- (3)

	人次≤400	人次>400	合计
空气质量好	33	37	70
气质量不好	22	8	30

合计 55 45 100

有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关。

当AB = BC时,四边形ABCD为正方形

:: E、F 分别在 DD₁ 和 BB₁

 $∴ EF \subset$ \mp $\equiv BB_1D_1D$

::在正方形ABCD中,

BD、AC为对角线

 $\therefore AC \perp BD$

在长方体 $ABCD - A_1B_1C_1D_1$ 中,

 $DD_1 \perp \overline{m}ABCD$

 $\therefore DD_1 \perp AC$

 $AC \perp DD_1$, $AC \perp BD$, $BD \cap DD_1 = D$

 $\therefore AC \perp \overline{\boxplus} BB_1D_1D$

 $\therefore AC \perp EF$

(2) 证明:点 C_1 在平面AEF内,连接 C_1F ,

由题意可得:

在长方体 $ABCD - A_1B_1C_1D_1$ 中

 $2DE = ED_1$, $BF = 2FB_1$,

:: E, F 分别为 DD_1 和 BB_1 的三等分点

在 $\triangle ADE$ 和 $\triangle C_1B_1F$ 中

$$\begin{cases} AD / / C_1 B_1 \\ DE / / B_1 F \\ \angle ADE = \angle C_1 B_1 F \end{cases}$$

 $\therefore AE//C_1F$

 $:: A \setminus E \setminus C_1 \setminus F$ 四点共面,

综上所述,点 C_1 在平面AEF内

20. (1)
$$f(x)$$
在 $(-\infty, -\sqrt{\frac{k}{3}})$ 和 $(\sqrt{\frac{k}{3}}, +\infty)$ 上单调递增,在 $(-\sqrt{\frac{k}{3}}, \sqrt{\frac{k}{3}})$ 上单调递减

(2)
$$0 < k < \frac{4}{27}$$

21. (1)
$$C: \frac{x^2}{25} + \frac{16y^2}{25} = 1$$

$$(2) S_{\Delta APQ} = \frac{5}{2}$$

(二) 选考题(共60分)

22. (1)
$$|AB| = 4\sqrt{10}$$

(2)
$$\rho(\sin\theta - 3\cos\theta) = 12$$

23. (1) 证明: 由
$$a^2 + b^2 \ge 2ab$$
, $b^2 + c^2 \ge 2bc$, $c^2 + a^2 \ge 2ca$,

可得
$$a^2 + b^2 + c^2 \ge ab + bc + ac$$
(当且仅当 $a = b = c$ 可取等号)

$$\therefore (a+b+c)^2 \geqslant 3ab+3bc+3ca$$

$$ab + bc + ca \leq \frac{1}{3}(a+b+c)^2$$

$$a+b+c=0$$

又:
$$abc = 1$$
,则

a, b, c 不能为 0, 且a, b, c 不能取等值

$$\therefore ab + bc + ac < 0$$

(2) 证明:
$$: a+b+c=0$$
, $abc=1$

$$\therefore a$$
, b , c 三数中必有正数,则可设 $c>0$

∴
$$a+b+c=0$$
, $\iint a+b=-c$, $abc=1$ $\iint ab=\frac{1}{c}$

∴由韦达定理可得,
$$a$$
, b 为 $x^2+cx+\frac{1}{c}=0$ 的两个解

$$\Delta = c^2 - 4\frac{1}{c} \geqslant 0$$

 $c^3 \geqslant 4$

 $c \geqslant \sqrt[3]{4}$

:. 当c 为正时,a ,b 为负,此时c 为最大值即 $max\{a,b,c\} \ge \sqrt[3]{4}$.