#### **Decision Tree**

#### **Key concepts:**

Decision tree learns axes parallel decision boundaries

Top-down greedy learning of decision trees

Entropy, conditional entropy

Mutual information, information gain

Building DT with multi-nomial and continuous features

**Preventing Overfitting** 

Regression trees



- Each internal node test on an attribute x<sub>i</sub>
- Each branch from a node takes a particular value of x<sub>i</sub>
- Each leaf node predicts a class label

#### (outlook=sunny, wind=strong, humidity=normal, ?)



# DT for prediction C-section risks

Learned from medical records of 1000 women

Negative examples are C-sections [833+,167-] .83+ .17-Fetal\_Presentation = 1: [822+,116-] .88+ .12-| Previous\_Csection = 0: [767+,81-] .90+ .10-| | Primiparous = 0: [399+,13-] .97+ .03-| | Primiparous = 1: [368+,68-] .84+ .16- $| \ | \ | \ |$  Fetal\_Distress = 0: [334+,47-] .88+ .12- $| \ | \ |$  Birth\_Weight >= 3349: [133+,36.4-] .78+  $| \ | \ | \ |$  Fetal\_Distress = 1: [34+,21-] .62+ .38-| Previous\_Csection = 1: [55+,35-] .61+ .39-Fetal\_Presentation = 2: [3+,29-] .11+ .89-Fetal\_Presentation = 3: [8+,22-] .27+ .73-

#### **Characteristics of Decision Trees**

- Decision trees have many appealing properties
  - Similar to human decision process, easy to understand
  - Deal with both discrete and continuous features without the need to normalize or similar preprocessing
  - Highly flexible hypothesis space (the space of all possible solutions), decision trees can represent increasingly complex decision boundaries as we increase the depth of the tree

Computationally efficient

# DT can represent arbitrarily complex decision boundaries



If needed, the tree can keep on growing until all examples are correctly classified! Although it may not be the best idea

# How to learn decision trees?

- Possible goal: find a decision tree h that achieves minimum error on training data
  - Trivially achievable if use a large enough tree
- Another possibility: find the smallest decision tree that achieves the minimum training error
  - NP-hard

# **Greedy Learning For DT**

We will study a top-down, greedy search approach. Instead of trying to optimize the whole tree together, we try to find one test at a time.

Always conditions are based

Basic idea: (assuming discrete features, relax later)

- Choose the best attribute to test on at the root of the tree.
- 2. Create a descendant node for each possible outcome of the test
- 3. Training examples in training set S are sent to the appropriate descendent node
- Recursively apply the algorithm at each descendant node to select the best attribute to test using its associated training examples
  - If all examples in a node belong to the same class, turn it into a leaf node, label with the majority class

#### Building DT: start with an intuitive example



uncertainty, what would that be?

#### One possible question: is x < 0.5?





# Continue



This could keep on going, until all examples are correctly classified.

### How to choose the best test

Consider a (Hypothetical) data set:

25 + and 14 – examples

Consider two binary features x1 and x2 which splits the data in the following ways:



A general recipe: choose the test that maximally reduce uncertainty about class label

# **Measuring Uncertainty: Entropy**

- In information theory, entropy measures the uncertainty of a random variable
- Let y be a random variable, it's entropy is defined as follows.
  - If y is a discrete random variable:

$$H(y) = -\sum_{i=1}^{k} P(y = v_i) \log_2 P(y = v_i)$$

– If y is a continuous random variable:

$$H(y) = -\int p_{y}(v) \log_{2} p_{y}(v) dv$$

# Entropy of a Binary y

Entropy is a concave function downward



Minimum uncertainty occurs when  $p_0=0$  or 1

 A general recipe for choosing test: choose the one that maximally reduce <u>uncertainty</u> <u>about class label</u>



#### **Entropy reduction?**



At the root:

$$P(y = 1) = \frac{26}{33}, \qquad P(y = 0) = \frac{7}{33}$$

$$H(y) = -\frac{26}{33}\log_2\frac{26}{33} - \frac{7}{33}\log_2\frac{7}{33} = .7455$$

Left branch:

$$P(y = 1) = \frac{21}{24}$$
;  $P(y = 0) = \frac{3}{24}$ ;  $H(y) = -\frac{21}{24}\log_2\frac{21}{24} - \frac{3}{24}\log_2\frac{3}{24} = .5436$ 

Right branch:

$$P(y=1) = \frac{5}{9}$$
;  $P(y=0) = \frac{4}{9}$ ;  $H(y) = -\frac{5}{9}\log_2\frac{5}{9} - \frac{4}{9}\log_2\frac{4}{9} = .9911$ 

Uncertainty increase or decrease? How to combine the two branches?

# Combining the branches



What is the probability of each branch?

$$P(x_1 = T) = \frac{24}{33}$$
$$P(x_1 = F) = \frac{9}{33}$$

 The combined uncertainty is simply the weighted entropy of all branches

$$P(x_1 = T)H(y|x_1 = T) + P(x_1 = F)H(y|x_1 = F)$$

# Conditional entropy

- This is called <u>conditional entropy</u>
- More generally, conditional entropy of y given x is defined as:

$$H(y|x) = \sum_{u} P(x = u)H(y|x = u)$$

where u denote the possible values for random variable x

• Conditional entropy H(y|x) measures the remaining uncertainty of y after knowing the value of x

What is H(y|x) if x and y are independent?

#### Example: Conditional entropy $H(y|x_1)$



Original entropy:

$$H(y) = .746$$

Left branch:

$$P(x_1 = T) = \frac{24}{33}; \ H(y|x_1 = T) = .544$$

Right branch:

$$P(x_1 = F) = \frac{9}{33}; \ H(y|x_1 = F) = .991$$

Conditional entropy:

$$H(y|x_1) = \frac{24}{33} * .544 + \frac{9}{33} * .991 = .6659$$

### Mutual information

- By measuring the uncertainty with entropy, we are select the feature with the largest mutual information with the class label y
- <u>Definition</u>: the **mutual information** between two random variables *x* and *y* is defined as:

$$I(x,y) = H(y) - H(y|x)$$

If selecting any feature gives 0 Info

- Mutual information is symmetric: I(x, y) = I(y, x) and non-negative
- This is also referred to as the <u>information gain</u> criterion for decision tree learning
  - First introduced by the ID3 algorithm by Ross Quinlan in 1986

# Question time

Consider the **information gain** of a feature x for label y (defined as H(y) - H(y|x)), which of the following statements are true:

- A.Information gain can be negative B.Information gain is bounded by  $(\leq)H(y)$
- C.Information gain is bounded by  $(\leq)H(x)$
- D. The information gain on y from x is the same as the information gain on x from y

# More general measure of uncertainty reduction



#### **Choosing the Best Feature: Summary**



| Measures of Uncertainty |                                            |  |  |
|-------------------------|--------------------------------------------|--|--|
| Error                   | $\min(p_+, p)$                             |  |  |
| Entropy                 | $-p_{+}\log_{2}p_{+} - p_{-}\log_{2}p_{-}$ |  |  |
| Gini Index              | $p_+p$                                     |  |  |

# Example

| Day | Outlook                | Temperature           | Humidity              | Wind   | PlayTenr |
|-----|------------------------|-----------------------|-----------------------|--------|----------|
| D1  | Sunny                  | Hot                   | High                  | Weak   | No       |
| D2  | $\operatorname{Sunny}$ | $\operatorname{Hot}$  | $\operatorname{High}$ | Strong | No       |
| D3  | Overcast               | $\operatorname{Hot}$  | $\operatorname{High}$ | Weak   | Yes      |
| D4  | $\operatorname{Rain}$  | $\operatorname{Mild}$ | $\operatorname{High}$ | Weak   | Yes      |
| D5  | $\operatorname{Rain}$  | Cool                  | Normal                | Weak   | Yes      |
| D6  | Rain                   | Cool                  | Normal                | Strong | No       |
| D7  | Overcast               | Cool                  | Normal                | Strong | Yes      |
| D8  | Sunny                  | Mild                  | $\mathbf{High}$       | Weak   | No       |
| D9  | $\operatorname{Sunny}$ | Cool                  | Normal                | Weak   | Yes      |
| D10 | Rain                   | $\operatorname{Mild}$ | Normal                | Weak   | Yes      |
| D11 | $\operatorname{Sunny}$ | $\operatorname{Mild}$ | Normal                | Strong | Yes      |
| D12 | Overcast               | Mild                  | $\operatorname{High}$ | Strong | Yes      |
| D13 | Overcast               | $\operatorname{Hot}$  | Normal                | Weak   | Yes      |
| D14 | Rain                   | Mild                  | $\operatorname{High}$ | Strong | No       |

# Selecting the root test using information gain



$$Gain(humidity) = 0.940 - \frac{1}{2}0.985 - \frac{1}{2}0.592 = 0.151$$



$$Gain(Outlook) \\ = 0.940 - \frac{5}{14}0.971 - \frac{5}{14}0.971 = 0.2464$$

# Continue building the tree



#### **Issues with Multi-nomial Features**

- Multi-nomial features: more than 2 possible values
- Consider two features, one is binary, the other has 100 possible values, which one you expect to have higher information gain?

  Larger branches, generally more gain
- Conditional entropy of Y given the 100-valued feature will be low – why?
   But they may not have good generalization power
- This bias will prefer multinomial features to binary features Method 1: To avoid this, we can rescale the information gain:

$$\arg\max_{j} \frac{H(y) - H(y \mid x_{j})}{H(x_{i})}$$

Method 2: Test for one value versus all of the others – commonly used

Convert it to binary, outlook=sunny?

# **Dealing with Continuous Features**

- Test against a threshold
- How to compute the best threshold  $\theta_j$  for  $x_j$ ?
  - Sort the examples according to  $x_i$ .
  - Move the threshold  $\theta$  from the smallest to the largest value
  - Select  $\theta$  that gives the best information gain
  - Trick: only need to compute information gain when class label changes



 Note that continuous features can be tested for multiple times on the same path in a DT

# Considering both discrete and continuous features

- If a data set contains both types of features, do we need special handling?
- No, we simply consider all possibly splits in every step of the decision tree building process, and choose the one that gives the highest information gain
  - This include all possible (meaningful) thresholds

# **Issue of Over-fitting**

- Decision tree has a very flexible hypothesis space
- As the nodes increase, we can represent arbitrarily complex decision boundaries
- This can lead to over-fitting



Possibly just noise, but the tree is grown larger to capture these examples

# **Over-fitting**



# **Avoid Overfitting**

#### Early stop

 Stop growing the tree when data split does not offer large benefit (e.g., compare information gain to a threshold, or perform statistical testing to decide if the gain is significant)

#### Post pruning

- Separate training data into training set and validating set
- Evaluate impact on validation set when pruning each possible node
- Greedily prune the node that most improves the validation set performance

# **Effect of Pruning**



# Regression Tree

- Similar ideas can be applied for regression problems
- Prediction is computed as the <u>average of the target</u> values of all examples in the leave node
- Uncertainty is measured by sum of squared errors



Predicting the price of a car based on horsepower and wheelbase

# Summary

- Decision tree is a very flexible classifier
  - Can model arbitrarily complex decision boundaries
  - By changing the depth of the tree (or # of nodes in the tree), we can increase of decrease the model complexity
  - Handle both continuous and discrete features
  - Handle both classification and regression problems
- Learning of the decision tree
  - Greedy top-down induction
  - Not guaranteed to find an optimal decision tree
- DT can overfitting to noise and outliers
  - Can be controlled by early stopping or post pruning