task06

image classification

假设输入图片大小是固定的,如果大小不一样,我们会将所有图片都先rescale成大小一样,然后再丢到影像的辨识系统里面。

模型的目标是分类,把每一个类别表示成一个One-Hot的Vector,目标就叫做 \hat{y} 。

在这个one-hot的vector里面,假设现在类别是一个猫的话,那猫对应的dimension,它的数值就是1,其他的东西所对应的dimension数值就是0. dimension的长度决定了模型可以辨识出多少不同种类的东西。即如果向量长度为1000,则可以辨识出1000种不同的东西。

模型的输出通过softmax后,输出为y',希望y'和 \hat{y} 的cross entropy越小越好,接下来的问题是怎么把一张影像当作一个模型的输入。

对于彩色图像,可以认为是三维的Tensor(可以理解为维度大于2的矩阵就是Tensor)。

三维的Tensor,分别代表图片的宽、高、channel数目。对于彩色的图片,三个Channel代表了RGB三个颜色。

接下来把一个三维的Tensor拉直,丢到一个network里面。

如100x100x3个数字,通通排成一排,100x100+100x100+100x100,每一维里面存的数值,就是某一个pixel某一个颜色的 强度。

非常长的一个vector,假设第一个隐藏层的neuron的数目有1000个,那weight将由1000*100*100*3,即3x10的7次方。

参数越多会有什么问题呢?

虽然随着参数的增加,可以增加模型的弹性,增加它的能力,但也增加了overfitting的风险。如果模型的弹性越大,就越容易overfitting。

observation 1

对一个影像辨识的Neuron,侦测现在这张图片里面,有没有出现一些特别重要的pattern。

举例来说:

- 有一个Neuron, 它看到鸟嘴这个pattern
- 有某个Neuron又说,它看到眼睛这个pattern
- 又有某个Neuron说,它看到鸟爪这个pattern

这些pattern综合起来可能就代表,我们看到了一只鸟,类神经网络可以告诉你说,因为看到了这些pattern,所以它看到了一只鸟。

仔细想想,人类是不是也用同样的方式,来看一张图片中有没有一张鸟呢。有个鸟嘴,有个眼睛,可能认为是一个乌鸦,但 其实是一只猫。所以其实就算是人,我们在判断一个物件的时候,往往也是抓最重要的特征,然后看到这些特征以后,会很 直觉的认为你看到了某种物件,对机器来说,也许也是一个有效的判断影像中有什么物件的方法。

但现在假设我们用neuron做的事情,其实就是判断说现在有没有某种pattern出现,这样也许不需要每一个neuron都去看一张完整的图片。

Some patterns are much smaller than the whole image.

因为一些重要的pattern,比如说鸟嘴、眼睛、鸟爪,并不需要看整张完整的图片,才能够得到这些资讯。所以这些Neuron也许根本就不需要把整张图片当作输入,他们只需要把图片的一小部分当作输入。

Simplification 1

设定一个区域Receptive Field(感受野),每一个Neuron都只关心自己的Receptive Field里面发生的事情就好了。

举例来说,先定义说这个蓝色的Neuron,它的守备范围就是这一个Receptive Field,那这个感受野里面有3*3*3个数值,对蓝色的Neuron来说,只需要关心这一个小范围就好,不需要在意整张图片里面有什么东西。

要做的事情为:

- 把这3x3x3多数值拉直,变成一个长度为3x3x3也就是27维的向量,再把这27维多向量作为Neuron的输入。
- 这个Neuron会给27维的向量,每一个Dimension一个weight,这个Neuron有3x3x3,27个weight
- 再加上bias得到的输出,再送个下一层的Neuron当作输入。

所以每一个Neuron只考虑自己的Receptive field,但这个感受野怎么决定出来,就要问自己了。

- 可以说这边有个蓝色的Neuron,就看左上角的范围,这就是它的Receptive field
- 另外又有一个黄色的Neuron,看右下角的这个3x3x3的范围
- 那Receptive field彼此之间可以是重叠的,比如说画一个receptive field,这个地方是绿色的,Neuron的守备范围,它跟蓝色的跟黄色的都有一些重叠的空间。
- 那甚至可以两个不同的neuron,守备看到的范围是一样的,也许一个范围使用一个neuron来守备,没有办法侦测所有的pattern,所以同个范围可以有多个不同的neuron,同个Receptive field可以有多个

Simplification 1

- Can different neurons have different sizes of receptive field?
- · Cover only some channels?
- Not square receptive field?

- Receptive field可不可以有大有小? 因为pattern有的比较小、有的比较大,需要11x11的范围才能被侦测出来。
- Receptive field可不可以只考虑某些channel? 一般不考虑,但也存在这样子的做法。比如有些只在蓝色的channel出现。
- Receptive field通常是正方形的,也可以自己定义成长方形的

simplification 1 - typical setting

虽然可以任意设计,但也有最经典的Receptive Field的安排方式。

1. 看所有的channel, kernel size

展示了3x3的kernel size。一般同一个Receptive field不会只有一个Neuron去关照他,往往会有一组、一排Neuron去守备它。比如64个。

Each receptive field has a set of neurons (e.g., 64 neurons).

2. Stride,

把最左上角的感受野往右移一点,制造另外一个感受野,这个移动的量为stride,为超参数,由自己设定

3. Padding

超出影像的范围,可以用0补齐

4. 除了横着移动,还有垂直方向的移动

observation 2

第二个观察,同样的pattern,可能会出现在图片的不同区域里面

比如同样一个鸟嘴,可能出现在左上角,也可能出现在中间。

有个问题,是否真的需要每一个守备范围,都去放一个侦测鸟嘴的Neuron吗?

如果需要,那参数量不会太多了吗?

The same patterns appear in different regions.

simplification 2

不同receptive field的Neuron共享参数,也就是做Parameter sharing **权值共享**:即两个Neuron它们的weights完全是一样的。

- 上面这个Neuron的一个weight叫做w1,下面这个Neuron的第一个weight也是w1,它们是同一个weight,用红色来表示。
- 上面这个Neuron的第二个weight是w2,下面这个Neuron的第二个weight也是w2,都用黄色来表示

这两个Neuron守备的Receptive field不一样,但它们的参数是一摸一样的。

那它的输出会永远一样吗? 不会,因为它们的输入不一样,即使参数一摸一样,但它们照顾的范围不一样。

Simplification 2 - Typical Setting

怎么共享呢?可以完全自己决定,但存在常见的共享方法设定。

比如说64个Neuron,所以这个感受野有64个Neuron。用一样的颜色代表这两个Neuron共享一样的参数。

所以每一个receptive field都只有一组参数而已。

benefit of convolutional layer

讲了fully connected的network,它弹性最大,但有时候不需要看整张图片,只要看图片的一小部分就可以侦测出重要的pattern,所以有了receptive field的概念。

当强制一个neuron只能看到一张图片里的一个范围,它的弹性是变小的。如果是全连接,可以决定看整张图片还是只看一部分,如果只看一部分,就把许多weights设为0,所以加入receptive field,弹性是变小的。

权值共享又是如何限制弹性的呢?

每一个neuron可以各自有不同的参数,可以正好学出一摸一样的参数,也可以有不一样的参数。

但加入参数共享以后,某一些neuron参数要一摸一样,所以这又更增加了对Neuron的限制。而Receptive field加上 parameter sharing 就是convolutional layer。

有用到convolutional layer的network就叫cnn。可以看出cnn的bias比较大,model的bias比较大。

model bias大,不一定是坏事

- 小的话,model 的flexibility很高时,容易overfitting,全连接层可以做各式各样的,但可能没有办法在任何特定的任务上做好
- 而卷基层,专门为影像设计的,虽然bias很大,但在影像上不是问题。

- Some patterns are much smaller than the whole image.
- The same patterns appear in different regions.

convolutional layer

以上讲的影像用的特性为cnn的某一种介绍方式,第二种介绍方式跟刚才讲的介绍方式一模一样,知识同一个故事,用不同版本来说明。

convolutional 的layer里面有很多的filter。

observation 3

第三个常用的东西,pooling。

Subsampling the pixels will not change the object

把比较大的图片做subsampling,举例来说把偶数的column都拿掉,奇数的row都拿掉,图片变成为原来的1/4,但不会影像里面是什么东西。把一张大的图片缩小,是一只鸟,这张小的图片看起来还是一只鸟。

pooling本身没有参数,所以它不是一个layer,没有weight,没有要learn的东西。 比较像activation function,比较像是sigmoid,relu那些。就是一个operator,行为都是固定好的。

Pooling – Max Pooling

Pooling – Max Pooling

Convolutional Layers + Pooling

pooling做的事情就是把图片变小。一般convolution跟pooling交替使用。pooling会对性能造成一定伤害,最主要的理由是为了较少运算量。如果今天的运算资源足够支撑不做pooling的话,可以不用pooling。

The whole CNN

做完几次convolution以后,接下来会把pooling的output做一件事情,叫做flatten。意思就是把这个影像里面的本来排成矩阵样子的东西拉直,把所有数值拉直成一个向量,再丢进全连接层。

The whole CNN

Application: Alpha Go

第一个观察是,很多重要的 Pattern,你只需要看小范围就知道,下围棋是不是也是一样呢

第二个观察是,同样的 Pattern 可能会出现在不同的位置,在下围棋裡面是不是也是一样呢

让人想不透的地方是,在做影像的时候我们说我们都会做 Pooling,也就是一张**影像做 Subsampling 以后,并不会影响我们对影像中物件的判读**

但是棋盘是这个样子吗,你可以把棋盘上的奇数行跟偶数列拿掉,还是同一个棋局吗,听起来好像不是对不对,下围棋这麼精细的任务,你随便拿掉一个 Column 拿掉一个 Row,整个棋整个局势就不一样啦,怎麼可能拿掉一个 Row 拿掉一个 Column,还会没有问题呢

- 我们把一个棋盘,看作 19 × 19 × 48 大小的 Image
- 接下来它说它有做 Zero Padding, Padding 这件事我们有讲嘛,就是你的 Filter 如果超出影像的范围就补 0, Zero Padding 就是超出范围就补 0 的意思
- 它说它的 Filter 的大小啊, Kernel Size 就是 Filter 的大小是 5 × 5
- 然后有 k 个 Filter,k 是多少,k 是 192,这当然是试出来的啦,它也试了 128 跟 256 发现 192 最好了,好 这是第一层
- 然后 Stride=1, Stride 是什麼 我们刚才也解释过了
- 然后这边有用了 Rectifier Nonlinearity,这是什麼,这个就是 ReLU 啦,这个就是 ReLU
- 然后在第二层呢,到第 12 层都有做 Zero Padding,然后呢 这个 Kernel Size 都是 3 × 3,一样是 k 个 Filter,也就是每一层 都是 192 个 Filter,Stride 呢 一样设 1,就这样叠了很多层以后呢,因為是一个分类的问题
- 最后加上了一个 Softmax

· Subsampling the pixels will not change the object

Pooling

How to explain this???

Neural network architecture. The input to the policy network is a $\underline{19 \times 19 \times 48}$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23×23 image, then convolves \underline{k} filters of kernel size 5×5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves \underline{k} filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used $\underline{k} = 192$ filters; Fig. 2b and Extended Data Tabl Alpha Go does not use Pooling

你不要看影像上面都有用 Pooling,就觉得 Pooling 一定是好的,在下围棋的时候就是不适合用 Pooling,所以你要想清楚说,你今天用一个 Network 架构的时候,我这个 Network 的架构到底代表什麼意思,它适不适合用在我现在这个任务上,

other

CNN 并没有你想像的那麼强,那就是為什麼在做影像辨识的时候,往往都要做 Data Augmentation,所谓 Data Augmentation 的意思就是说,你把你的训练资料,每张图片都裡面截一小块出来放大,让 CNN 有看过不同大小的 Pattern,然后把图片旋转,让它有看过说,某一个物件旋转以后长什麼样子,CNN 才会做到好的结果

那你说 欸 CNN 这个不能够处理 Scaling,跟 Rotation 的问题啊,那有没有什麼 Network 架构,是可以处理这个问题呢,其实有的,有一个架构叫 **Special Transformer Layer**。