Лекции курса «Алгебра», лектор Р. С. Авдеев

 Φ КН НИУ ВШЭ, 1-й курс ОП ПМИ, 4-й модуль, 2015/2016 учебный год

Лекция 3

Конечно порождённые и свободные абелевы группы. Подгруппы свободных абелевых групп. Теорема о согласованных базисах. Алгоритм приведения целочисленной матрицы к диагональному виду.

Следующий результат связывает конструкции факторгруппы и прямого произведения.

Теорема о факторизации по сомножителям. Пусть H_1, \ldots, H_m — нормальные подгруппы в группах G_1, \ldots, G_m соответственно. Тогда $H_1 \times \ldots \times H_m$ — нормальная подгруппа в $G_1 \times \ldots \times G_m$ и имеет место изоморфизм групп

$$(G_1 \times \ldots \times G_m)/(H_1 \times \ldots \times H_m) \cong G_1/H_1 \times \ldots \times G_m/H_m.$$

Доказательство. Прямая проверка показывает, что $H_1 \times ... \times H_m$ — нормальная подгруппа в $G_1 \times ... \times G_m$. Требуемый изоморфизм устанавливается отображением

$$(g_1,\ldots,g_m)(H_1\times\ldots\times H_m)\mapsto (g_1H_1,\ldots,g_mH_m).$$

Теорема 1. Пусть n = ml - pазложение натурального числа n на два взаимно простых множителя. Тогда имеет место изоморфизм групп

$$\mathbb{Z}_n \cong \mathbb{Z}_m \times \mathbb{Z}_l$$
.

Доказательство. Рассмотрим отображение

$$\varphi \colon \mathbb{Z}_n \to \mathbb{Z}_m \times \mathbb{Z}_l, \quad k \pmod{n} \mapsto (k \pmod{m}, k \pmod{l}).$$

Поскольку m и l делят n, отображение φ определено корректно. Ясно, что φ — гомоморфизм. Далее, если k переходит в нейтральный элемент (0,0), то k делится и на m, и на l, а значит, делится на n в силу взаимной простоты m и l. Отсюда следует, что гомоморфизм φ инъективен. Поскольку множества \mathbb{Z}_n и $\mathbb{Z}_m \times \mathbb{Z}_l$ содержат одинаковое число элементов, отображение φ биективно.

Следствие 1. Пусть $n \ge 2$ — натуральное число и $n = p_1^{k_1} \dots p_s^{k_s}$ — его разложение в произведение простых множителей (где $p_i \ne p_j$ при $i \ne j$). Тогда имеет место изоморфизм групп

$$\mathbb{Z}_n \cong \mathbb{Z}_{p_1^{k_1}} \times \ldots \times \mathbb{Z}_{p_s^{k_s}}.$$

Всюду в этой и следующей лекции (A,+) — абелева группа с аддитивной формой записи операции. Для произвольного элемента $a \in A$ и целого числа s положим

$$sa = \begin{cases} \underbrace{a + \ldots + a}_{s}, & \text{если } s > 0; \\ 0, & \text{если } s = 0; \\ \underbrace{(-a) + \ldots + (-a)}_{|s|}, & \text{если } s < 0. \end{cases}$$

Определение 1. Абелева группа A называется конечно порождённой, если найдутся такие элементы $a_1, \ldots, a_n \in A$, что всякий элемент $a \in A$ представим в виде $a = s_1 a_1 + \ldots + s_n a_n$ для некоторых целых чисел s_1, \ldots, s_n . При этом элементы a_1, \ldots, a_n называются порождающими или образующими группы A.

Замечание 1. Всякая конечно порождённая группа конечна или счётна.

Замечание 2. Всякая конечная группа является конечно порождённой.

Определение 2. Конечно порождённая абелева группа A называется csobodhoŭ, если в ней существует basuc, т. е. такой набор элементов a_1, \ldots, a_n , что каждый элемент $a \in A$ единственным образом представим в виде $a = s_1a_1 + \ldots + s_na_n$, где $s_1, \ldots, s_n \in \mathbb{Z}$. При этом число n называется basuc свободной абелевой группы a и обозначается a0.

Пример 1. Абелева группа $\mathbb{Z}^n := \{(c_1, \dots, c_n) \mid c_i \in \mathbb{Z}\}$ является свободной с базисом

$$e_1 = (1, 0, \dots, 0),$$

 $e_2 = (0, 1, \dots, 0),$
 \dots
 $e_n = (0, 0, \dots, 1).$

Этот базис называется cmandapmnым. В группе \mathbb{Z}^n можно найти и много других базисов. Ниже мы все их опищем.

Предложение 1. Ранг свободной абелевой группы определён корректно, т. е. любые два её базиса содержат одинаковое число элементов.

Доказательство. Пусть a_1, \ldots, a_n и b_1, \ldots, b_m — два базиса группы A. Предположим, что n < m. Элементы b_1, \ldots, b_m однозначно разлагаются по базису a_1, \ldots, a_n , поэтому мы можем записать

$$b_1 = s_{11}a_1 + s_{12}a_2 + \dots + s_{1n}a_n,$$

$$b_2 = s_{21}a_1 + s_{22}a_2 + \dots + s_{2n}a_n,$$

$$\dots$$

$$b_m = s_{m1}a_1 + s_{m2}a_2 + \dots + s_{mn}a_n,$$

где все коэффициенты s_{ij} — целые числа. Рассмотрим прямоугольную матрицу $S=(s_{ij})$ размера $m\times n$. Так как n< m, то ранг этой матрицы не превосходит n, а значит, строки этой матрицы линейно зависимы над \mathbb{Q} . Домножая коэффициенты этой зависимости на наименьшее общее кратное их знаменателей, мы найдём такие целые s_1,\ldots,s_m , из которых не все равны нулю, что $s_1b_1+\ldots+s_mb_m=0$. Поскольку $0=0b_1+\ldots+0b_m$, это противоречит однозначной выразимости элемента 0 через базис b_1,\ldots,b_m .

Предложение 2. Всякая свободная абелева группа ранга n изоморфна группе \mathbb{Z}^n .

Доказательство. Пусть A — свободная абелева группа, и пусть a_1, \ldots, a_n — её базис. Рассмотрим отображение

$$\varphi \colon \mathbb{Z}^n \to A, \quad (s_1, \dots, s_n) \mapsto s_1 a_1 + \dots + s_n a_n.$$

Легко видеть, что φ — гомоморфизм. Так как всякий элемент $a \in A$ представим в виде $s_1a_1 + \ldots + s_na_n$, где $s_1, \ldots, s_n \in \mathbb{Z}$, то φ сюръективен. Из единственности такого представления следует инъективность φ . Значит, φ — изоморфизм.

Пусть e_1', \dots, e_n' — некоторый набор элементов из \mathbb{Z}^n . Выразив эти элементы через стандартный базис e_1, \dots, e_n , мы можем записать

$$(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)C,$$

где C — целочисленная квадратная матрица порядка n.

Предложение 3. Элементы e'_1, \ldots, e'_n составляют базис группы \mathbb{Z}^n тогда и только тогда, когда $\det C = \pm 1$.

Доказательство. Предположим сначала, что e'_1,\ldots,e'_n — базис. Тогда элементы e_1,\ldots,e_n через него выражаются, поэтому $(e_1,\ldots,e_n)=(e'_1,\ldots,e'_n)D$ для некоторой целочисленной квадратной матрицы D порядка n. Но тогда $(e_1,\ldots,e_n)=(e_1,\ldots,e_n)CD$, откуда $CD=E_n$, где E_n — единичная матрица порядка n. Значит, $(\det C)(\det D)=1$. Учитывая, что $\det C$ и $\det D$ — целые числа, мы получаем $\det C=\pm 1$.

Обратно, пусть $\det C = \pm 1$. Тогда матрица C^{-1} является целочисленной, а соотношение $(e_1,\ldots,e_n) = (e'_1,\ldots,e'_n)C^{-1}$ показывает, что элементы e_1,\ldots,e_n выражаются через e'_1,\ldots,e'_n . Но e_1,\ldots,e_n- базис, поэтому элементы e'_1,\ldots,e'_n порождают группу \mathbb{Z}^n . Осталось доказать, что всякий элемент из \mathbb{Z}^n однозначно через них выражается. Предположим, что $s'_1e'_1+\ldots+s'_ne'_n=s''_1e'_1+\ldots+s''_ne'_n$ для некоторых целых чисел $s'_1,\ldots,s'_n,s''_1,\ldots,s''_n$. Мы можем это переписать в следующем виде:

$$(e'_1, \dots, e'_n)$$
 $\begin{pmatrix} s'_1 \\ \vdots \\ s'_n \end{pmatrix}$ $= (e'_1, \dots, e'_n)$ $\begin{pmatrix} s''_1 \\ \vdots \\ s''_n \end{pmatrix}$.

Учитывая, что $(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)C$ и что e_1,\ldots,e_n — это базис, получаем

$$C\begin{pmatrix} s_1' \\ \vdots \\ s_n' \end{pmatrix} = C\begin{pmatrix} s_1'' \\ \vdots \\ s_n'' \end{pmatrix}.$$

Домножая это равенство слева на C^{-1} , окончательно получаем

$$\begin{pmatrix} s_1' \\ \vdots \\ s_n' \end{pmatrix} = \begin{pmatrix} s_1'' \\ \vdots \\ s_n'' \end{pmatrix}.$$

Теорема 2. Всякая подгруппа N свободной абелевой группы L ранга n является свободной абелевой группой ранга $\leq n$.

Доказательство. Воспользуемся индукцией по n. При n=0 доказывать нечего. Пусть n>0 и e_1,\ldots,e_n базис группы L. Рассмотрим в L подгруппу

$$L_1 = \langle e_1, \dots, e_{n-1} \rangle := \mathbb{Z}e_1 + \dots + \mathbb{Z}e_{n-1}.$$

Это свободная абелева группа ранга n-1. По предположению индукции подгруппа $N_1:=N\cap L_1\subseteq L_1$ является свободной абелевой группой ранга $m\leqslant n-1$. Зафиксируем в N_1 базис f_1,\ldots,f_m .

Рассмотрим отображение

$$\varphi \colon N \to \mathbb{Z}, \quad s_1 e_1 + \ldots + s_n e_n \mapsto s_n.$$

Легко видеть, что φ — гомоморфизм и что $\ker \varphi = N_1$. Далее, $\operatorname{Im} \varphi$ — подгруппа в \mathbb{Z} , по предложению 1 из лекции 1 она имеет вид $k\mathbb{Z}$ для некоторого целого $k\geqslant 0$. Если k=0, то $N\subseteq L_1$, откуда $N=N_1$ и всё доказано. Если k>0, то пусть f_{m+1} — какой-нибудь элемент из N, для которого $\varphi(f_{m+1})=k$. Докажем, что f_1,\ldots,f_m,f_{m+1} — базис в N. Пусть $f\in N$ — произвольный элемент, и пусть $\varphi(f)=sk$, где $s\in \mathbb{Z}$. Тогда $\varphi(f-sf_{m+1})=0$, откуда $f-sf_{m+1}\in N_1$ и, следовательно, $f-sf_{m+1}=s_1f_1+\ldots+s_mf_m$ для некоторых $s_1,\ldots,s_m\in \mathbb{Z}$. Значит, $f=s_1f_1+\ldots+s_mf_m+sf_{m+1}$ и элементы f_1,\ldots,f_m,f_{m+1} порождают группу N. Осталось доказать, что они образуют базис в N. Предположим, что

$$s_1 f_1 + \ldots + s_m f_m + s_{m+1} f_{m+1} = s'_1 f_1 + \ldots + s'_m f_m + s'_{m+1} f_{m+1}$$

для некоторых целых чисел $s_1,\dots,s_m,s_{m+1},s_1',\dots,s_m',s_{m+1}'$. Рассмотрев образ обеих частей этого равенства при гомоморфизме φ , получаем $s_{m+1}k=s_{m+1}'k$, откуда $s_{m+1}=s_{m+1}'$ и

$$s_1 f_1 + \ldots + s_m f_m = s'_1 f_1 + \ldots + s'_m f_m.$$

Но f_1, \ldots, f_m — базис в N_1 , поэтому $s_1 = s'_1, \ldots, s_m = s'_m$.

Список литературы

- [1] Э.Б. Винберг. Курс алгебры. М.: Факториал Пресс, 2002 (глава 9, § 1)
- [2] А.И. Кострикин. Введение в алгебру. Основные структуры алгебры. М.: Наука. Физматлит, 2000 (глава 2, § 3)
- [3] Сборник задач по алгебре под редакцией А.И. Кострикина. Новое издание. М.: МЦНМО, 2009 (глава $13, \S 60$)