Multivariable Calculus (Lecture-14)

Department of Mathematics Bennett University India

28th November, 2018

Triple Integration
of
(Scalar Valued Function of Vector Variable)
(Scalar Field)

 $F:R\subseteq\mathbb{R}^3\to\mathbb{R}$

Learning Outcome of this lecture

In this lecture, we learn triple integral over closed and bounded region \mathcal{R} in \mathbb{R}^3 .

- Triple integral of $f : \mathcal{R} \subset \mathbb{R}^3 \to \mathbb{R}$ where \mathcal{R} is a closed and bounded region in \mathbb{R}^3 .
- Fubini's Theorem for triple integrals
- Change of Variables: Spherical coordinates, Cylindrical coordinates

Partition of a rectangular cube in \mathbb{R}^3

Let \mathcal{R} be a parallelpiped(rectangular cube) in \mathbb{R}^3 such that

$$\mathcal{R} = [a,b] \times [c,d] \times [p,q]$$

= $\{(x,y,z) \in \mathbb{R}^3 : a \le x \le b, c \le y \le d, p \le z \le q\}.$

Consider a partition P_x of [a, b] given by

$$P_x: a = x_0 < x_1 < x_2 < \cdots < x_{m-1} < x_m = b.$$

Consider a partition P_y of [c, d] given by

$$P_y: c = y_0 < y_1 < y_2 < \cdots < y_{n-1} < y_n = d.$$

Consider a partition P_z of [p, q] given by

$$P_z: p = z_0 < z_1 < z_2 < \cdots < z_{s-1} < z_s = q.$$

Picture: Partition of a rectangular cube

Norm of the partition of a rectangular cube

Then $\mathcal{P} = (P_x, P_y, P_z)$ partitions \mathcal{R} into *mns* subrectanglular cubes as follows. Set for $1 \le i \le m$, $1 \le j \le n$ and $1 \le k \le s$,

$$R_{ijk} = \{(x, y, z) \in \mathcal{R} : x_{i-1} \le x \le x_i, y_{j-1} \le y \le y_j, z_{k-1} \le z \le z_k\}.$$

$$\mathcal{P} = \{R_{ijk} : 1 \le i \le m \ 1 \le j \le n \ \text{and} \ 1 \le k \le s\}.$$

Then *P* is a partition of the rectangular cube \mathcal{R} .

• Volume of the subrectangular cube R_{ijk} is

$$|R_{ijk}| = (x_i - x_{i-1})(y_j - y_{j-1})(z_k - z_{k-1}).$$

 \bullet norm of the partition \mathcal{P} is

$$\|\mathcal{P}\| = \max\{|R_{iik}| : 1 \le i \le m, 1 \le j \le n, 1 \le k \le s\}.$$

Reimann triple integral

Let \mathcal{R} be rectangular cube in \mathbb{R}^3 and $f: \mathcal{R} \to \mathbb{R}$ be bounded. Let

$$\|\mathcal{P}\| = \max\{|R_{ijk}| : 1 \le i \le m, 1 \le j \le n, 1 \le k \le s\}$$

be a partition of \mathcal{R} . Let $(x_i, y_j, z_k) \in R_{ijk}$. Then

Riemann sum:

$$S(\mathcal{P},f) = \sum_{k=1}^{s} \sum_{i=1}^{n} \sum_{i=1}^{m} f(x_i, y_j, z_k) |R_{ijk}|$$

Riemann triple integral:

$$\iiint_{\mathcal{R}} f(x, y, z) dV = \iiint_{\mathcal{R}} f = \lim_{\|\mathcal{P}\| \to 0} S(\mathcal{P}, f).$$

If $\iiint_{\mathcal{R}}$ is finite then f is called Riemann integrable or integrable over \mathbb{R} .

Fubini's theorem for triple integrals

Theorem

Let $f: \mathbb{R} \subset \mathbb{R}^3 \to \mathbb{R}$ be continuous. Then

$$\iiint_{\mathcal{R}} f(x, y, z) dV = \int_{x=a}^{b} \int_{y=c}^{d} \int_{z=p}^{q} f(x, y, z) dz dy dx.$$

 $\iiint_{\mathcal{R}} f$ is independent of the order of the integration between x, y and z.

Triple Integral of f over closed and bounded region(non rectangular cube) \mathcal{D}

Let \mathcal{D} be a closed and bounded region in \mathbb{R}^3 .

Let f be a bounded, real valued function on \mathcal{D} .

Take a rectangular cube \mathcal{R} such that $\mathcal{D} \subset \mathcal{R}$.

Define a function $\tilde{f}: \mathcal{R} \to \mathbb{R}$ by

$$\tilde{f}(x, y, z) = \begin{cases} f(x, y, z) & \text{if } (x, y, z) \in \mathcal{D}, \\ 0 & \text{if } (x, y, z) \in \mathcal{R} \setminus \mathcal{D} \end{cases}$$

If the triple integral of \hat{f} over the rectangular cube \mathcal{R} exists then the triple integral of f over the region \mathcal{D} is defined by

$$\iiint_{\mathcal{D}} f(x, y, z) dV = \iiint_{\mathcal{R}} \tilde{f}(x, y, z) dV.$$

Example 1: Evaluating the triple Integrals

Find the volume of the region \mathcal{D} enclosed by the surface $z = x^2 + 3y^2$ and $z = 8 - x^2 - y^2$.

The volume is

$$V = \iiint_{\mathcal{D}} dz \, dy \, dx,$$

the integral of F(x, y, z) = 1 over \mathcal{D} .

How to evaluate this integral?

How to find the limits of integration?

Limits of integration

$$I = \iiint_{\mathcal{D}} f(x, y, z) dz \, dy \, dx$$

- Draw a sketch of the region \mathcal{D} and its shadow (vertical projection) \mathcal{R} of \mathcal{D} in the *xy*-plane.
- Draw a line parallel to z-axis that passes through the point (x, y) of \mathcal{R} .
- z-limit: Identify the lower surface $z = f_1(x, y)$ and upper surface $z = f_2(x, y)$ through which this line passes at most once.
- This gives the following integration

$$\iiint_{\mathcal{D}} f(x, y, z) dz dy dx = \iint_{\mathcal{R}} \left(\int_{z=f_1(x,y)}^{z=f_2(x,y)} f(x, y, z) dz \right) dy dx.$$

This can be solved by using idea of double integration over region \mathcal{R} in xy-plane.

Find the volume of the region \mathcal{D} enclosed by the surface $z = x^2 + 3y^2$ and $z = 8 - x^2 - y^2$.

$$V = \iiint_{\mathcal{D}} f(x, y, z) dz dy dx = \iint_{\mathcal{R}} \left(\int_{z=x^2+3y^2}^{z=8-x^2-y^2} dz \right) dy dx$$
, where \mathcal{R} is an ellipse in the *xy*-plane with the equation $x^2 + 2y^2 = 4$.

Find the volume of the region \mathcal{D} bounded below by the disk $\mathcal{R}: x^2 + y^2 \leq 4$ in the plane z = 0 and above by the paraboloid $z = 4 - x^2 - y^2$.

$$V = \iiint_{\mathcal{D}} dV = \iint_{\mathcal{R}} \left(\int_{z=0}^{z=4-x^2-y^2} dz \right) dx dy.$$

Change of Variables in

Triple Integrals

Transforming Triple Integrals from One System to Another System

Change of Variables $(x, y, z) \rightarrow (u, v, w)$

Suppose that a region \mathcal{R}^* in the *uvw*-space transformed one-to-one into the region \mathcal{D} in the *xyz*-space by equations

$$x = X(u, v, w), \quad y = Y(u, v, w) \quad \text{and} \quad z = Z(u, v, w).$$

Then f(x, y, z) defined on \mathcal{D} can be thought of as a function f(X(u, v, w), Y(u, v, w), Z(u, v, w)) on \mathcal{R}^*

Question: How is the integral of f(x, y, z) over \mathcal{D} related to the integral of f(X(u, v, w), Y(u, v, w), Z(u, v, w)) over \mathcal{R}^* ?

Continuation of previous slide

Question: How is the integral of f(x, y, z) over \mathcal{D} related to the integral of f(X(u, v, w), Y(u, v, w), Z(u, v, w)) over \mathcal{R}^* ?

Answer: If X, Y, Z, and f have continuous partial derivative and the "Jacobian" J(u, v, w) is not zero for all $(u, v, w) \in \mathbb{R}^*$, where

$$J(u,v,w) = \frac{\partial(X,Y,Z)}{\partial(u,v,w)} = \begin{vmatrix} \frac{\partial X}{\partial u} & \frac{\partial X}{\partial v} & \frac{\partial X}{\partial w} \\ \frac{\partial Y}{\partial u} & \frac{\partial Y}{\partial v} & \frac{\partial X}{\partial w} \\ \frac{\partial Z}{\partial u} & \frac{\partial Z}{\partial v} & \frac{\partial Z}{\partial w} \end{vmatrix}.$$

Then the formula for transforming triple integrals over the region \mathcal{D} into triple integrals over the region \mathcal{R}^* can be written as

$$\iiint_{\mathcal{D}} f(x, y, z) dV = \iiint_{\mathcal{R}^*} f(X(u, v, w), Y(u, v, w), Z(u, v, w)) \cdot |J(u, v, w)| dV,$$

Triple integral in cylindrical coordinates

xyz – Cartesian coordinates $\rightarrow r\theta z$ – Cylindrical coordinates

In cylindrical coordinates,

$$x = X(r, \theta, z) = r \cos \theta$$
 $y = Y(r, \theta, z) = r \sin \theta$ $z = Z(r, \theta, z) = z$

$$J = \frac{\partial(X, Y, Z)}{\partial(r, \theta, z)} = \begin{vmatrix} \frac{\partial X}{\partial r} & \frac{\partial X}{\partial \theta} & \frac{\partial X}{\partial z} \\ \frac{\partial Y}{\partial r} & \frac{\partial Y}{\partial \theta} & \frac{\partial Z}{\partial z} \\ \frac{\partial Z}{\partial r} & \frac{\partial Z}{\partial \theta} & \frac{\partial Z}{\partial z} \end{vmatrix} = r.$$

Then

$$\iint_{\mathcal{R}} f(x, y, z) dxdydz = \iint_{\mathcal{R}^*} f(r\cos\theta, r\sin\theta, z))dz \, r \, dr \, d\theta.$$

Find the volume of the region \mathcal{D} bounded below by the plane z = 0, laterally by the circular cylinder $x^2 + (y - 1)^2 = 1$, and bounded above by the paraboloid $z = x^2 + y^2$.

$$\iiint_{\mathcal{D}} dz dx dy = \int_{\theta=0}^{\theta=\pi} \int_{r=0}^{r=2\sin\theta} \int_{z=0}^{z=r^2} dz \, r \, dr \, d\theta.$$

Note: Thomas Calculus Book (12 Edition): Refer Example 1 of Section 15.7 on Page Nos. 876 – 877.

Find the volume of the region \mathcal{D} enclosed by the cylinder $x^2 + y^2 = 4$, bounded above by the paraboloid $z = x^2 + y^2$ and below by the xy-plane.

$$\iiint_{\mathcal{D}} dz dx dy = \int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=2} \int_{z=0}^{z=r^2} dz \, r \, dr \, d\theta.$$

