Introduction to Regression

Hypothesis Testing

Statistic	Dist	Dependent Variable	Independent Variable	
One-Sample Hypothesis	t/Z	Interval-ratio	Nominal or Ordinal (1 value, compared against population mean)	
Two-Sample Hypothesis	t/Z	Interval-ratio	Nominal or Ordinal (2 values a.k.a. binary)	
ANOVA	F	Interval-ratio	Nominal or Ordinal (3 or more values, but usually no more than 5)	
Chi-Square	χ^2	Nominal or Ordinal	Nominal or Ordinal	

Hypothesis Testing: Two Interval-Ratio Level Variables

- Regression (Linear)
- Least Squares Method

	anx(y)	siz	e(x)
5		2	
10		3	
6		4	
11		6	
12		8	
20		7	
15		10	
30		11	
25		14	
35		15	
33		17	
29		18	
32		20	
34		21	
40		24	

Data on Spider Anxiety

Scatter Plot

Spider Anxiety

Properties of this Line

- Best fit, thanks to Least-Squares (circa 1795)
- Perfectly straight

Simple Regression

- Define Dependent Variable (Y) and Independent Variable (X); both should be interval-ratio!!!
- Find the best fitting line:
 - -Y = a + bX
 - -formulae for b and a are 14.2 and 14.3 in the textbook

The Hypothesis Test

- Uses the F distribution, and Analysis of Variance
- SST = $\sum (Y_i Ybar)^2$
- SSR = $\sum (Y_i (a + bX))^2$
- SSM = SST SSR
- dfM = k
- dfR = N-k-1

The Hypothesis Test

- MSM = SSM / dfM
- MSR = SSR / dfR
- F = MSM/ MSR
- $R^2 = SSM / SST$
- $R = SQRT(R^2)$

The Hypothesis Test

- Uses the F distribution, and Analysis of Variance
- SST = Total Sum of Squares
- SSR = Residual Sum of Squares
- SSM = Model Sum of Squares
- dfM = Model degrees of freedom
- dfR = Residual degrees of freedom
- k = number of independent variables

Results

```
Analysis of Variance TableResponse: anx

Df Sum Sq Mean Sq F value Pr(>F) size

1 1671.70 1671.70 81.081 5.987e-07 ***

13 268.03 20.62
```

```
      Coefficients:
      Estimate
      Std. Error
      t value
      Pr(>|t|)

      (Intercept)
      3.7884
      2.3827
      1.590
      0.136

      size
      1.5565
      0.1729
      9.005
      5.99e-07
```

***---Multiple R-squared: 0.8618, Adjusted R-squared: 0.8512 F-statistic: 81.08 on 1 and 13 DF, p-value: 5.987e-07

PREDICTION with regression

Regression: goodness of fit

Simple Regression

Another Spider/Anxiety Scenario

Another Spider/Anxiety Scenario

Multiple Regression: 2 Predictors

