Introduction of Approximation Algorithm

Jialin Zhang zhangjialin@ict.ac.cn

Institute of Computing Technology, Chinese Academy of Sciences

Dec 27, 2018

Network Flow - Application

L R

Maximum cardinality matching of a bipartite graph

Network Flow - Application

- Maximum cardinality matching of a bipartite graph
 - Based on network flow algorithm
 - Hungarian algorithm: https://en.wikipedia.org/wiki/Hungarian_algorithm
 - HopcroftKarp algorithm: https: //en.wikipedia.org/wiki/Hopcroft-Karp_algorithm

 $Introduction\ of\ Approximation\ Algorithm$

decision problem vs optimization problem

- Decision problem: YES or No answer
- Optimization problem: maximization problem or minimization problem
 - Approximation ratio

Maximum matching

- General graph G = (V, E), find the cardinality of maximum matching
- Polynomial time exact algorithm: very complicated
 - https://en.wikipedia.org/wiki/Blossom_algorithm

Maximum matching

- General graph G = (V, E), find the cardinality of maximum matching
- Polynomial time exact algorithm: very complicated
 - https://en.wikipedia.org/wiki/Blossom_algorithm
- Approximation algorithm: find a maximal matching

Maximum matching

- General graph G = (V, E), find the cardinality of maximum matching
- Polynomial time exact algorithm: very complicated
 - https://en.wikipedia.org/wiki/Blossom_algorithm
- Approximation algorithm: find a maximal matching
 - 1/2-approximation ratio
 - The analysis is tight.

Approximation Algorithm

- Min, Max problem
- Analysis of a particular approximation algorithm
 - \bullet Approximation ratio: $\frac{\mathrm{Algorithm's\ solution}}{\mathrm{Optimal\ solution}}$ in the worst case
 - Is the analysis tight?
- Hardness of Approximation

- Given graph G = (V, E), find a set $S \subseteq V$ with minimum cardinality, s.t. $\forall (i, j) \in E, i \in S$ or $j \in S$.
- NP-complete

- Given graph G = (V, E), find a set $S \subseteq V$ with minimum cardinality, s.t. $\forall (i, j) \in E, i \in S$ or $j \in S$.
- NP-complete

• Approximation algorithm 1: maximal matching

- Given graph G = (V, E), find a set $S \subseteq V$ with minimum cardinality, s.t. $\forall (i, j) \in E, i \in S$ or $j \in S$.
- NP-complete
- Approximation algorithm 1: maximal matching
 - Analysis: 2-approximation ratio, tight

- Given graph G = (V, E), find a set $S \subseteq V$ with minimum cardinality, s.t. $\forall (i, j) \in E, i \in S$ or $j \in S$.
- NP-complete
- Approximation algorithm 1: maximal matching
 - Analysis: 2-approximation ratio, tight
- Approximation algorithm 2: linear programming

weighted Vertex Cover

(weighted) Vertex Cover

weighted Vertex Cover

Algo. 3 OPTIP 3 OPTIP 3 LAGO.

• (weighted) Vertex Cover

ertex Cover
$$\min_{\substack{min \ \Sigma w(v) x_v \\ s.t \ x_i + x_j \ge 1 \\ x_i \in \{0,1\}}} \forall (i,j) \in E$$

- integer programming → linear programming
- $x_i \in \{0,1\} \rightarrow 0 \le x_i \le 1$
- Design approximation algorithm based on the optimal solution of LP opt of LP: if x; ≥ ≥ i ← ≤ x; ← 1

 if x; ← d ≥ i ← ≤ x; ← o.

 OPT LP = Zww. xw. b(yo = Zww.)·xw.

Hardness of Vertex Cover

- VC is APX-complete: cannot be approximated arbitrarily well unless P = NP.
- VC cannot be approximated within a factor of 1.3606 unless P
 NP (2005, PCP).
- VC cannot be approximated within a factor of 2ϵ if unique game conjecture is true (2008).
- Difference between tight and hardness.

Set Cover

- Given a universal set $U = \{u_1, \dots, u_n\}$, m subset $S_1, \dots, S_m \subseteq U$ and a weight function $c : \{1, \dots, m\} \to \mathbb{N}$. Find some sets which can cover all elements with minimum cost.
- Vertex cover problem is a special case of set cover problem
- Other examples: dominating set problem, edge cover problem

Set Cover

- Given a universal set $U = \{u_1, \cdots, u_n\}$, m subset $S_1, \cdots, S_m \subseteq U$ and a weight function $c : \{1, \cdots, m\} \to \mathbb{N}$. Find some sets which can cover all elements with minimum cost.
- Vertex cover problem is a special case of set cover problem
- Other examples: dominating set problem, edge cover problem
- Algorithm: greedy algorithm

Set Cover

- Given a universal set $U = \{u_1, \cdots, u_n\}$, m subset $S_1, \cdots, S_m \subseteq U$ and a weight function $c : \{1, \cdots, m\} \to \mathbb{N}$. Find some sets which can cover all elements with minimum cost.
- Vertex cover problem is a special case of set cover problem
- Other examples: dominating set problem, edge cover problem
- Algorithm: greedy algorithm
 - Analysis: $O(\log n)$ -approximation ratio, tight

Conclusion

- Min, Max problem
- Approximation algorithm design
 - Combinatorial algorithm
 - LP-based algorithm
- Analysis of a particular approximation algorithm
 - \bullet Approximation ratio: $\frac{\mathrm{Algorithm's\ solution}}{\mathrm{Optimal\ solution}}$ in the worst case
 - Is the analysis tight?
- Hardness of Approximation