INTRO TO BIOMATERIALS	2
BIOLOGICAL PROPERTIES OF DENTAL MATERIALS	2
How Safe are Dental Materials?	a
MECHANICAL PROPERTIES	3
CHEMICAL PROPERTIES	
RHEOLOGY	
HEAT	
TARNISH AND CORROSION	
STRUCTURE OF MATTER, PRINCIPLES OF ADHESION	10
Interatomic Bonds	
Energies	
DIFFUSION	
ADHESION	11
POLYMERS AND POLYMERIZATION	12
DEFINITIONS	13
POLYMERIZATION	
Light Activation of Polymerization	14
DENTAL ADHESIVES AND BONDING	15
Adhesion Review	15
Bonding Mechanisms	
Acid Etching	
PIT AND FISSURE SEALANTS	
DENTAL ADHESIVES	
Enamel Bonding	
Dentin Bonding	
RESIN COMPOSITE	21
DENTAL RESIN COMPOSITE	21
Components	21
DENTAL CERAMICS	24
CLASSIFICATION OF DENTAL CERAMICS	24
METAL CERAMICS	
All-Ceramic Restorations	26
DENTAL CEMENTS	27
ZINC PHOSPHATE	27
Polycarboxylate	
ZINC-OXIDE EUGENOL	
RESIN MODIFIED GLASS I ONOMER	
DENTAL RESIN CEMENTS	20
BONDING TO CERAMICS	31
Techniques (Glassy Veneers)	
Technique – Lithium Disilicate based Ceramic	
Technique – Lirconia Technique – Lab-processed composites	
BLEACHING	24
Mechanism of Action.	
ENDODONTICALLY TREATED TEETH	
In Office Therapy	37
Over the Counter Bleaching	
Oral Effects of Peroxides	38
AMALGAM	38
Cunical Application	38
Alloys	
ALLOY SETTING	40

Intro to Biomaterials

- The success of any restoration is a combination of the patient, clinician and the material used. All need to work together to be successful

Classifications:

Preventative	Cement or coating to seal pits and fissures or release therapeutic agent (Fluoride) to prevent/arrest demineralization - \$\sqrt{\text{Viscosity}}, \gamma \text{wetting}\$
Restorative	Metallic, ceramic, metal-ceramic or resin based material to replace, repair, or rebuild teeth/
	esthetics
	- Metals, Ceramics, Polymers -> Composites
Intermediate	Cement or resin composite used for few days-months to temporarily replace/restore missing
	teeth.

Biological Properties of Dental Materials

Biocompatibility = Being harmonious with life and not having toxic effects on biologic function

Requirements:	Biocompatibility Depends on:
 Not harmful to live tissues 	- Chemical and physical nature of its components
2. Doesn't contain toxic substances with capacity to	 Types and locations of tissues it is exposed to
leach out causing local or systemic reactions	- Duration of exposure
3. Not allergenic	 Surface characteristics of material
4. Not carcinogenic	 Amount and nature of substances leached from
	material

** It is impossible to be completely free of all of these requirements. We must calculate risk and tolerance when choosing materials**

Adverse Reactions

- Mutagenicity/Carcinogenicity/Teratogenicity
- Allergic Reactions (immediate or delayed)
 - Metal allergies (Nickel etc)
- Irritant (Non-allergic)
 - Gingival inflammation from surface roughness
- Intolerance

There is a hate on for amalgam everywhere today. However the alternative that everyone wants (resin composite) is actually way more harmful to tissues and the environment than amalgam is. Lack of knowledge in the general public

How Safe are Dental Materials?

Regulations held by:

- ISO 14385 (international)

- FDA

- Health Canada

- FDI

- ADA

- 1. Materials have to go through rigorous pre-market testing
- 2. Once approved they receive a Medical Device License (MDL)
 - Anything without an MDL is not approved and sketchy to use (can be found on ebay from overseas)
- 3. Materials are classified based on risk assessment, invasiveness, contact duration, nature of material etc:

Class I	Not permanent in the mouth, often just instruments
	- Light curing unit
Class II	Restorative materials that are either temporary or permanent but don't resorb.
	- Resin Composite, Amalgam etc
Class III	Resorbable and absorbable materials that will be resorbed into the body
	 Resorbable sutures and hemostatic agents
Class IV	Drugs
	- Injectable or oral

Mechanical Properties

Intraorally, there are multiple stresses acting on materials -> Combinations of tests are executed to collect meaningful info about the material.

- Tests are used also to test interfacial bond strength between 2 bonded materials

Stress (σ) Strain (ε) Modulus of Elasticity (Young's Modulus)	Force per unit cross-sectional area acting on a material - Used to standardize the force on a material regardless of the geometry/thickness Fractional change in the dimension caused by the force - Expressed at a % Describes how soft/plastic or how hard/rigid a material is - Slope of the Stress/Strain Curve - Steeper curve, harder it is to deform	Force (F) Length (L_0) Length (L_1) C C C C C C C
Ultimate Strength (σu) Fracture Strength (σf)	 Highest Stress recorded Maximum point of stress = can cause deformation Not necessarily the fracture strength Stress at time of fracture 	συ = ultimate strength (highest stress recorded) συ σf σu/σf στ
Proportional Limit / AKA Elastic Limit / AKA Elastic Stress	Magnitude of elastic stress above which plastic deformation occurs: - Up to this point, stress can be removed, and the material will return to its previous shape After this point permanent deformation occurs Area Under Elastic limit = Elastic Strain Area under beyond elastic limit = Plastic Strain	Proportional Limit: magnitude of elastic stress above which plastic deformation occurs Elastic Limit: maximum stress before permanent deformation Elastic deformation recoverable Plastic deformation permanent E (%)
Yield Strength	Stress at which plastic deformation (permanent) begins. - Tough to measure because of the gradual transition in the slope - Arbitrarily measured at 0.2% Strain	Yield Strength: Stress at which plastic deformation (permanent) begins. Difficult to determine as there is often a gradual transition in the slope of the curve 0.2% E (%)

Flexibility / Resilience	Amount of elastic energy absorbed per unit volume that is sustained on loading and released upon unloading. - Area below curve at the elastic limit	Resilience: the amount of elastic energy absorper unit volume that is sustained on loading an released upon unloading the specimen calculated as the area below the curve at the elastic energy absorper unit volume that is sustained on loading an released upon unloading the specimen calculated as the area below the curve at the elastic energy absorper.
Toughness	Total amount of energy absorbed per unit volume before fracture - Total area below curve	Toughness: the total amount of energy absorbed per unit volume before fracture calculated as the total area below the curve
Ductility	Ability to elongate plastically under a tensile stress - The curve bends before fracture - Also typically tough due to ↑ area under curve	Ductility: ability to elongate plastically under a tensile stress E (%)
Malleability	Ability to sustain considerable permanent deformation without rupture under compression (hammering)	(/e)
Brittleness	Inability to sustain plastic deformation before fracture - No curve	Brittleness: relative inability to sustain plastic deformation before fracture Ceramic, amalgam and composites E (%)
Stress Relaxation	Gradual ↓ in stress when strain is kept constant	Time
Creep	Gradual ↑ in strain when stress is kept constant	B Creep

Poisson's Ratio	Ratio between transversal strain and longitudinal strain within the elastic limit - Most materials are <0.5 and are constant for each material (non-changing value)	Tronsvesso! Wo Wo
Griffith Theory of Brittle Fracture	All materials contain imperfections (porosity etc) that act as stress raisers. - If force load reaches stress raisers = can have a fracture at stress below the theoretical limit	
Fracture Toughness	Measure of the ability of materials to resist propagation of a crack	Create Flaw
Fatigue	Gradual accumulation of minute amounts of plastic strain produced with cyclical fluctuating stress - ↑ imperfections = ↑ rate of fatigue - ↓ strength over time	1950 0 1400 1200 1950 1950 1950 1950 1950 1950 1950 19
Endurance Limit	Level of stress below which the material can be subject to indefinite cycles of stress without fracture	High Strength Steel No Endurance Limit Aluminum 102 104 107 108 107 108 107 108
Hardness	Resistance of material to plastic deformation produced by indentation force - Want to aim for hardness equal to tooth. ↓ hardness will wear faster, and ↑ hardness will damage teeth in contact - Used to calculate level of curing in a material	
In Summary	Strong but not ductile materials; stretches a little fractures suddenly Brittle materials; barely deforms, fracture suddenly deforms fracture suddenly D Mostly plastics; fracture suddenly deform c materials	e materials; plastic - Sire-5 be on 129 orans.

Chemical Properties

Rheology

= study of flow and deformation (Viscosity)

Rheometer -> Used to measure viscosity

Directly related to setting time with dental materials -> VERY important for us to be familiar with

	30 40 50 60
Viscosity	Resistance of a liquid to flow
	- Depends on intermolecular attraction and molecular weight
	When liquid is placed in motion -> Shear stress is generated
	- Viscosity = sheer stress/strain rate
Diactic	Needs high stress to initiate movement (Vetchun in Heinz hettle)
Plastic Dialant	Needs high stress to initiate movement (Ketchup in Heinz bottle) Material becomes more rigid with faster stirring (Gypsum)
Newtonian	Ideal, typical of most liquids
Pseudoplastic	Material becomes thinner with faster stirring, forced through a syringe or squeezed (Alginate)
Thixotropic	Fluid becomes less viscous and more flowable with repeated stress
Material	- Energy transferred throughout gel to make it a liquid
	= 1.0.8) transfer ou amought ou mane it a riquid
	Clinical Correlate
	Fluoride Gel: Don't want it to flow everywhere when putting in in the tray, but when patient bites into it the
	energy transfer turns gel into liquid so it can flow into the cracks and fissures.
Viscoelasticity	Viscoelastic when stress-strain relationship is time dependant
•	- When stress is added, strain slowly increases over time. When stress is removed the strain rapidly drops until it
	begins to plateau at a place of permanent strain.
	Clinical Correlate:
	Alginate setting: Teeth add stress. When removed a permanent strain is seen by the impressions being retained.
	Amalgam Creep: As time ↑ stress causes permanent deformation.
	<u>Thixotropic Material</u> <u>Viscoelasticity</u>
	Plastic Instantia
1,888,1	A Processor Section Se
Shear stress, t	Dilatant Strain Control of the Contr
She	Newtonian Newtonian
	Newtonian
	Pseudoplastic Component permanent
Strai	n rate, ė
	Spendy to my to
	Time Remove

Heat

Thermal Conductivity (k)	Quantity of heat transfer through a metal -> Ability of metal to transmit heat
	- Insulators vs Conductors
	- ↑ K and ↑h = Conductor (Pure Gold)
	- ↓ K and ↓ h = Insulator (Glass Ionomer)
	Polymers < Ceramics < Metals
Thermal Diffusivity (h)	The speed at which a temperature change spreads through the material
Specific Heat (C _p)	Quantity of heat needed to raise the temp of a unit mass by 1°C

Coefficient of Thermal Expansion (α)

Change in length per unit of original length when temperature ↑ by 1°C

- ↑ value = easily changes shape when heated (Wax for example).
- Contracts w/ cold; Expands w/ Heat

Clinical Correlate:

Restorations in contact with cold temps (Ice cream etc) can contract if α is high = Pulls up on dentinal fluid out of the pulp = pain. With heat it adds pressure = pain.

- We want a material with α similar to enamel and dentin, so the expansion and contraction occurs at the same rate

h=k/C_p x Density High density and high specific heat will have low thermal diffusivity

Tarnish and Corrosion

Tarnish = Discoloration of metal surface from oxide, sulphide, and/or chloride deposition on the surface.

- NOT a deterioration of the surface and is easily removed with polishing.
- Precursor to corrosion

Corrosion = Deterioration of a metal caused by a reaction with the environment.

Always involved loss of an electron during an oxidation reaction

Dry Corrosion

- Occurs in absence of moisture (duh)
- Direct attack of chemicals on metal surface
- Slow process
- Corrosion products produced at corrosion site
- Uniform process

Wet Corrosion

- Occurs in presence of conducting medium
- Formation of electrochemical cells
- **Rapid Process**
- Corrosion occurs at anode, Rust deposited at cathode
 - Process depends on size of anodic part of metal

Electrochemical Wet Corrosion (Galvanic)

More +'ve the Electrode Potential (V) the more resistant to corrosion the metal is.

Gold is very much non-corrosive

HAVEMANY CORROSION JOKES

...Damn this joke is dry...dry corrosion get it?

Clinical Correlate:

Galvanic current can occur between 2 dissimilar metals causing sharp pain

- Biting on aluminum foil with amalgam restoration -Apply a copal varnish on resto to prevent this

Crevice Corrosion

Corrosion occurring in small crevices

- Typical with low copper amalgam alloys
- Deposition of corrosion products ↑ sealing of the margin.
- Totally a sweet feature of amalgam

Water-sorption and Solubility of Polymers

- 1. Solvent is added
- 2. Swelling of the polymer occurs
- 3. Soluble fraction loosens and is eluted out of the polymer into the environment (health risk)
- 4. Causes softening of the polymer, and scission (sick word, means cutting) of covalent bonds
- 5. Dissolution of the polymer by hydrolysis.

Water always enters the polymer at the ester linkage to hydrolyze

Evaluate the water-sorption of materials to evaluate how long they will last in the mouth:

- 1. Between M1 and M2 water is absorbed and mass ↑
 - a. Hydrophobic materials will 个 less than hydrophilic
- 2. At M2, material is placed in a desiccator to remove the absorbed water
- 3. Mass measured at M3:
 - a. An ideal material will end back at baseline. Indicating the polymers didn't solubilise and leach out during the absorption phase. If it drops below baseline, indicative that material was solubilized and leached out

Water-sorption and solubility ↓ modulus of elasticity and ↓ ultimate tensile strength

- Manufacturers will ↑ filler and ratio of hydrophobic monomer to ↓ Ws and Wsl
- Clinicians should ensure adequate polymerization and avoid internal porosity to \downarrow Ws and Wsl

Structure of Matter, Principles of Adhesion

Interatomic Bonds

	Covalent	Electron sharing
		- Makes molecules very stable
		- Strongest interatomic bond according to Dr. Carvhallo
Sp		Ex: Denture materials
Primary Bonds	Ionic	Electron Transfer
y B		- Stable Compound
nar		- Intermediate strength
rin		Ex: Brittle materials (Gypsum, Stone, Ceramics)
	Metallic	Electron Cloud
		- Weakest of primary bonds
		- Not strong
		- Excellent thermal and electric conductivity (from free movement of valence electrons)
	van der Waals	Charge variations among atomic groups inducing dipole forces that attract adjacent molecules
spi	forces	or parts of large molecules
3on		- No electron Sharing
Υ		- Weak force
Secondary Bonds	Hydrogen	Most important bonding in dentistry
cor	Bonding	- Form between -OH of a molecule with H atom of another molecule in the area
Se		- Early stages of water-sorption in composites and inter-peptide bonds of collagen
		fibrils

Energies

Lifeigles		
Bonding Energy		
	 Associated with distance between 2 neighbouring atoms (which is limited by diameter 	
	of atom and size of electrostatic field)	
	Covalent > Ionic > Metallic	
	Attraction Forces:	
	- Keeps atoms bonded	
	- As attraction ↑, interatomic distance ↓	
	As attraction 1, interatornic distance \$\psi\$	
	Denvisien Ferren	
	Repulsion Forces:	
	- Inactive until atoms approach each other	
	- Active when proximity exceeds equilibrium	
Thermal Energy	Determined by kinetic energy of atoms at a given temperature	
	- 个 Temp: 个 amplitude of atomic vibration, 个 internal energy, 个 interatomic distance	
	= Thermal Expansion! (When you heat something up it expands)	

Crystalline and Non-Crystalline Structures

Diffusion

- When internal energy becomes higher than bonding energy, atoms can move about within the lattice to other positions. Empty spaces (vacancies) act as pathways for atoms to move/diffuse.

Diffusion Coefficient: Amount of substance that diffuses across a unit area through a unit of thickness of substance in a unit of time (omg so many units)

Adhesion

Mechanical Adhesion	Penetration of adhesive into surface irregularities of the adhered
Adiresion	Micromechanical is a common bond formed in dentistry creating and using micro porosities (acid etching).
	Acid Etch:
	- Removes impurities
	- ↑ Surface Energy
	- Forms Micro-porosities for retention
Surface Energy	Atoms at the most outer layer of a solid have ↓ stability compared to inner atoms -> more prone to react
	- ↑ surface energy by removing impurities on surface (its hard to bind to dirt)
	- ↑ the surface energy = ↑ ability to bond

Wetting

Ability of a liquid to flow easily over the entire surface and adhere to the solid

- Depends on the smoothness and cleanliness of surface (why its so important for everything to be clean!)
- ↑ wetting ↑ adhesive penetration into surface porosities = stronger bond

Hybrid layer = mixture of leftovers from acid etching (non-minerals) and resin monomers. The layer creating the micro-mechanical retention

Contact angle of wetting: Angle formed between liquid surface and solid surface - Angle \downarrow (liquid spreads) when attraction of adhesive to the surface is stronger

than the cohesive force within the adhesive

- >90° = Hydrophobic
- <90° = Hydrophilic

Definitions

Adhesion = When unlike molecules adhere or are attracted

Cohesions = when alike molecules adhere or are attracted

Adhesive = The material used to produce a bond

Adhered = The material to which an adhesive is applied

Polymers and Polymerization

<u>Polymer</u> = large organic molecule formed of many smaller repeating units (monomers)

- As chain length ↑, Branching ↑ or cross linking ↑
= ↑ Rigidity, ↑ Strength, ↑ Melting Temp

Monomer: Chemical compound capable of reacting with itself to form a polymer

<u>Copolymer</u>: Polymer with <u>2+ types of monomers</u> (slight variations of a basic monomer)

Monomer Clinical Correlates:

Methyl Methacrylate (MMA)

-> Polymethyl Methacrylate (PMMA) = acrylic material used for denture bases

Bis-GMA, TEGMA, EDMA

-> all di-methacrylate monomers = Co-polymers, found in RMGIC, Fissure Sealants etc

HEMA in nature is a liquid monomer

-> when polymerised into poly-HEMA polymer = Hard plastic

Fun Facts about polymers

(seems like good Exam question fodder)

- Polymers usually absorb the solvent = swelling and softening -> Dissolution happens after its swole
- Elastomers swell easier than polymers of plastics
- Absorbed molecules (H₂O) spread apart the chains causing slippage = plasticization
- Longer the chain (个 Molecule Weight) = Slower dissolving
- \(\bullet \) Crosslinks prevents chain separation = Cannot dissolve

Definitions

<u>Term</u>	<u>Definition</u>	<u>Example</u>
Thermoplastic	Softened by heating and solidified on cooling - Repeatable process	Gutta Percha Wax Some denture bases
Thermoset	Solidifies during fabrication and CANNOT soften again on reheating	Composites Ceramics Acrylic bases Dentoforms?
Elastomers	Polymers with elastic properties of a natural rubber - Resilient, Flexible Condensation silicones - lose molecules during condensation reaction = shrinkage Addition Silicones - don't lose anything = no shrinkage	Rubber Dam Polysulfide (hydrophobic) Condensation Silicones (hydrophobic) Polyether (hydrophobic) Addition silicone (hydrophobic) Hydrophobic hype (hydrophobic)

Polymerization

Condensation Reactions Addition Reactions = Results in the elimination of a smaller molecules = No elimination of small molecules (usually H₂O) Still get shrinkage though. As monomers come together the spatial distance Causes polymerization shrinkage between molecules \downarrow = shrinkage (different from elastomers) 4 Stages: H-N-(CH₂)₄-N-H Induction (Activation + Initiation) adipic acid 1,6-diaminohexane - Source of free radicals is needed for reaction to start -> Generated by activating radical producing molecules -> BPO H₂O - Activation via mixing chemical agent, heat, or Light exposure amide amid - Initiation = conversion of unstable C=C double bonds to stable C-C single bonds by free -> Percentage of C=C to C-C conversion indicates the *degree of conversion* Typical reaction between BPO and MMA monomer Free radical is propagated at the end of the molecule as polymerization carries on

2. Propagation The new free radical formed on the monomer reacts with neighboring monomer = propagates the reaction forward 3. Chain Growth and Transfer Multiple reactions occur at the same time with all the different monomers, as the chains grow they will eventually react with each other (instead of with more monomers) 4. Termination - When 2 free radical chain ends interact

Light Activation of Polymerization

- No BPO molecule is needed or aromatic tertiary amines (Tertiary amines create a yellowing of material over time = bad)

Step 1: Activation and Initiation

<u>Camphorquinone</u> (CQ) = <u>activator</u> molecule

- Blue light (468nm) causes photo excitation of CQ puts it in an excited "Triplet" state
 - No aromatic Tertiary amine formed = no color change over time!

Initiation

- Activated CQ take a H atom away from the - CH_2 in the Monomer amine = Free radicals made of both the CQ and the initiating amine
- Free radical CQ deactivates immediately and free radical amines initiate the reaction

Step 2-4: Occurs as a usual Addition reaction (see above)

- ** No methacrylate polymerization reaches 100% Degree of Conversion.**
- As reaction progresses the molecular mobility ψ so monomers will have a harder time making it through the matrix as the polymer stiffens
- Steric Hinderance between molecules ↑
- Residual monomer can leach out -> potentially harmful!

Dental Adhesives and Bonding

Adhesion Review

- No perceptible adhesion occurs between 2 solids...need a liquid to connect them by flowing into surface irregularities -> Wetting!
 - For good wetting we need a low contact angle
 - -> Surface energy of the solid is =/> surface energy of the liquid
 - Hydrophobic surfaces have ↓ surface energy and ↑ the contact angle

Can modify the surface energy for the application you are using:

- Smear layer = low surface energy -> Non-thermal plasma treatment to remove -> ↑ Surface energy

Or sometimes you want low surface energy to make a surface more hydrophobic (bonding to ceramics)

- Acid etching ↑ the surface energy -> Add silane to make it more hydrophobic -> ↓ surface energy so hydrophobic resin cement can bind!

Acid Etching is one of our main ways to ↑ the Surface energy of our bonding surfaces.

Acid Etching Dentin:

Removing the smear layer and clearing the dentinal tubules = ↑ surface energy

4 effects when we acid etch Enamel (demineralize surface):

- 1. ↑ the roughness
- 2. ↑ Surface area,
- 3. Create microporosities (micromechanical retention)
- 4. ↑ surface energy

Bonding Mechanisms

Micromechanical bonding is MOST important bonding in dentistry

Resin Resin togs Enamel

2 Basic processes:

- 1. Removal hydroxyapatite to create microporosities (Acid Etch)
- 2. Microporosities infiltrated by resin monomers and polymerize

Acid Etching

Need to rinse for 10-15 sec. otherwise phosphate salts will remain on surface and interfere with bonding

Enamel	Etchant used: 32-37% Phosphoric Acid
	4 things bannon
	4 things happen: 1. Removal of mineral content
	2. Cleans and roughens surface
	3. ↑ Surface energy
	4. \(\gamma\) Surface area **Inneresting the transport in class (less innerestant for deptin)**
	Imperative that enamel is clean (less important for dentin)
Dentin	Etchant: 32-37% Phosphoric Acid
	Collars. layer
	What Happens:
	1. Mineral content removed
	2. ↑ Surface energy
	3. Removes smear layer and plugs -> Leaves organic collagen exposed
	for binding
	** Asid activates Matrix Metallegrateesed > Fet colleges **
	Acid activates Matrix Metalloproteases! -> Eat collagen
	Etchant: 10-15% Polyacrylic Acid (Conditioner)
	<u>What Happens:</u>
	1. Removes superficial smear layer
	2. DOESN'T remove smear plug within the tubules (This is fine, surface energy still ↑ for binding)
	3. DOESN'T remove hydroxyapatite
	4. ↑ Surface Energy
	5. Enhances wetting for GIC's
Glass	Etchant: 4-10% Hydrofluoric Acid
Ceramics	What Happens:
	Selectively dissolves glass to create a porous surface (Silica only)
	2.
	3. ↑ Surface Energy
Notinal DELIMA	4. Create Hydroxyl groups (-OH) for chemical bonding with silane coupling agents

Natural DEJ Interface

	Enamel	Dentin	DEJ
Fracture Toughness	0.7-1.3 MPa m ^{1/2}	1.0-2.0 MPa m ^{1/2}	Higher than enamel, lower
	(↓ than dentin)	(↑ than enamel = ↑ stress to	than dentin
		break)	
Hardness (Gpa)	3.5	1	↓ from enamel to dentin
	(Harder than dentin)	(Softer than enamel)	
Modulus of Elasticity	70	20	↓ from enamel to dentin
	(Stiffer than dentin)	(more flexible than enamel)	

Pit and Fissure Sealants

Low Viscosity is the most important feature. Allows penetration into tubules

1. Resin (BisGMA or UDMA) -> Monomers	
2. Diluents (TEGDMA) -> ↓ viscosity	
3. <i>Fillers</i> (Fumed Silica or inorganic glass) -> Not always present	
4. Activator-Initiator system	
Important to use dental adhesive systems with sealants	
- Hard to keep bottom of deep tubules completely dry which can	
compromise seal of hydrophobic sealants	
- Adding primer and adhesive converts the "binding surface" to a	
hydrophobic one instead of hydrophilic $H_2O = \uparrow$ retention of	
sealant	
Good Cleaning	
Good Etching	
Good Rinsing	
Good Drying	
Awful retention rate (<19%) HOWEVER:	
- After appearing lost clinically, it can still be found microscopically sealing the porosity	
and pits/fissures	
- Has shown that even if they look like they have fallen out they still sufficiently prevent	
caries.	

Glass Ionomer Cements

December 1 to disease 1			
Based on Indication			
Type I Luting Cement Luting crowns, Bridges and Ortho Brack		Luting crowns, Bridges and Ortho Brackets	
Type II	Α	Esthetic Restorative Cement	Restoratives
	В	Reinforced Restorative Cement	Core Build-up and ART
Type III		Lining Cement or Sealant	Liner and Sealant

Chemical bond to tooth structure

- Carboxyl groups of the polyacrylic acids chelated with Ca⁺⁺ in apatite of enamel and dentin
- DON'T etch Dentin (removes the essential Ca⁺⁺) but we DO etch Enamel (creates micromechanical retention, while still having sufficient Ca⁺⁺)

AL: Adsorption Layer (only found in RMGIC)

- Resin Rich, amorphous layer in between dentin bonded with RMGIC
- Involves water from hydrated dentin causing HEMA monomers of RMGIC's to swell
- Acts a stress relieving cushion to \downarrow shrinkage stresses on bond interface. \uparrow longevity of RMGIC's over GIC's

3 Bonding Strategies:

Cement Type	Requirements	Industry Examples
Non-Adhesive Cements	Requires an adhesive	Duolink, (Bisco)
		Choice 2 (Bisco)
		RelyX ARC (3M/ESPE)
Self-Etching Cements	Requires a self-etch primer	Multilink (Ivoclar)
 Primer etches the surface and you add adhesive 		GCem (GC)
after		Smartcem2 (Dentsply)
Self-Adhesive Cements	No adhesive required	BisCem (Bisco)
 2-part materials -> Require hand mixing, capsule 		RelyX Unicem (3M/ESPE)
trituration or auto-mixing dispense		SpeedCem (Ivoclar)
- Contain Acid-Functionalised Monomers (4-META,		MaxCem (Kerr)
MDP, Phenyl-P etc)		
 Achieves demineralization and bonding 		

Dental Adhesives

	Components	Notes
Primers + Solvents	<u>Primer</u> : Hydrophilic monomers with one terminus being hydrophobic (HEMA)	Monomers must have hydrophilic characteristics to allow adhesion to Dentin
	+	adhesion to Dentin
	Solvents (Ethanol, acetone, H ₂ O)	Solvents have higher ability to H-bond with collagen than
		collagen has with itself = opens interfibrillar space to 个 resin penetration
Adhesives	High molecular weight dimethacrylates (bisGMA,	Monomers with crosslink and copolymerization functions
	UDMA)	
	Low Molecular weight monomers (TEGMA)	
Self Etch Adhesives	Acidic Monomers:	The monomers etch the surface themselves, so no etching step
	Carboxylates	will be needed
	- 4-META	
	- MAC-10	
	- 4-MET	
	Phosphates	
	 10-MDP (remember this for Zirconia) 	
	- P-Phenyl	

	Goals of Adhesive Dentistry:
Adhesive	
1.	Improve bioactive characteristics
2.	Enhance degree of conversion
3.	↓ hydrolytic degradation over time
<u>Dentin</u>	
1.	Inhibit host-derived enzyme activity (MMP's)
2.	Improve collagen fibril coverage

Etch and Rinse Adhesives		
3 Step	Etch	
	Primer (Hydrophilic monomer - HEMA; Solvents - Ethanol, Acetone, H ₂ O)	
	Adhesive (Dimethacrylates-bisGMA, UDMA; Low MW Monomers – TEGDMA)	
2 Step	Etch + Primer/Adhesive	
	 Adhesive will not have an acidic monomer; primer and adhesive pre-mixed 	
	Self- Etch Adhesives	
2 Step	Etch/Primer (4-META/10MDP/Phenyl-P + HEMA + H ₂ O) -> Acidic primer monomer	
	Adhesive (Dimethacrylates-bisGMA, UDMA; Low MW Monomers – TEGDMA)	
1 Step	Etch/Primer/Adhesive	
	(sometimes in 2 bottles, mix, and apply only once in mouth)	
	Universal Adhesives	
	- Only 1 Bottle	
2 Step	Etch (Optional) + Etching Primer/Adhesive	
	- Can choose if you want to etch or not	
	- Adhesive has acidic monomer, but if using it with enamel can use an additional (个%) etch	
1 Step	Etch/Primer/Adhesive	
	- 10-MDP	
	- Bis-GMA-UDMA-TEGDMA	
	- HEMA	
	- H ₂ O	
	- Ethanol/Acetone	

Water: GIC vs Adhesives

Waters Effect on:		
GIC	Adhesives	
 Intrinsic component of GIC (a part of the ingredients) Required by GIC for chemical reaction Participates in GIC maturation Helps form Adsorption Layer for shock absorption 	 Deleterious to adhesive procedure Compromises adhesive curing Leads to adhesive deterioration 	

Enamel Bonding

Etch and Rinse Adhesives are the Gold Standard

- Good retention and sealing
- Good therapeutic Flexibility

....Not really much more to add here I guess?...

Dentin Bonding

Considerations of Dontin		
Considerations of Dentin	Naturally wet substrate	
	30-50% collagen (↓ inorganic substrate vs enamel)	
	Requires hydrophilic monomers for primer	
	Contains MMP's (Matrix metalloproteases) -> Activated by highly acidic etching	
	Morphology changes with depth	
	Changes occur with aging and caries	
	VERY technique sensitive bonding	
Moisture	Collagen is very sensitive to moisture	
	- Too Wet: Adhesive separation and poor infiltration	
	- <u>Too dry</u> : Collagen collapses = Monomer diffusion restricted and poor infiltration	
	Blot dry with micro-brushes or tissue pieces -> NO air drying, doesn't get the corners dry.	
	Solvents:	
	Ethanol Based – able to produce the strongest bond, but is fairly sensitive to moisture	
	Acetone Based – Able to produce sufficiently strong bonds over a wider range of moistures (less sensitive to moisture)	
	-> best middle ground maybe?	
	Water Based – Produces the weakest bonds of the 3 and is sensitive to moisture. (generally quite shitty)	
Hybrid Layer	Resin impregnated dentin layer. The junction where both dentin and resin are present	
,	- The goal is to completely infiltrate resin monomers into demineralized collagen however its impossible to	
	COMPLETELY displace all the H ₂ O from the collagen	
	- Primer w/solvents helps chase out H₂O and expand the fibrils for easier infiltration	
	- Hybrid layer susceptible to degradation	
Collagen Degradation	If unprotected, collagen fibrils can degrade even in absence of bacteria	
conagen Degradation	Host derived Matrix Metalloproteases (MMPs) will break down exposed collagen = compromising bond with	
	infiltrated resin	
	minuated resin	
	Chlorhexidine (CHX) digluconate (0.2%) and benzalkonium chloride (BAC) for 60 sec.	
	- Inhibits MMPs and ↑ longevity of bond.	
Issues with Simplified Adhesives	1. Presence of hydrophilic monomers -> ↑ susceptibility to hydrolytic degradation	
issues with simplified Adriesives	 Fresence of hydrophilic monomers -> susceptibility to hydrolytic degradation High Solvent and H₂O content -> Solvent and H₂O not completely removed in clinic 	
	(↓ conversion with ↑ residual solvents)	
	**Lightly Air dry and use rubbing action when applying primer to evaporate solvent and penetrate sufficiently, use micro-	
	brush to remove excess**	
	Rubbing primer in:	
	Rubbing primer in: - ↑ resin infiltration	
	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture	
	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation	
	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems	
Clinical Procedure	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid	
Clinical Procedure	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry	
Clinical Procedure	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE)	
Clinical Procedure	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE) 4. Apply Primer/Adhesive -> Rubbing	
	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE) 4. Apply Primer/Adhesive -> Rubbing 5. Evaporate solvent (30sec) and cure	
Clinical Procedure Which System do we use?	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE) 4. Apply Primer/Adhesive -> Rubbing 5. Evaporate solvent (30sec) and cure Self Etch Adhesives (2 Step):	
	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE) 4. Apply Primer/Adhesive -> Rubbing 5. Evaporate solvent (30sec) and cure Self Etch Adhesives (2 Step): - Demineralize and infiltrate surface simultaneously (as infiltrate deeper, acidic monomers are buffered by mineral	
	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE) 4. Apply Primer/Adhesive -> Rubbing 5. Evaporate solvent (30sec) and cure Self Etch Adhesives (2 Step): - Demineralize and infiltrate surface simultaneously (as infiltrate deeper, acidic monomers are buffered by mineral content of substrate). Adhesive is added in 2 nd step	
	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE) 4. Apply Primer/Adhesive -> Rubbing 5. Evaporate solvent (30sec) and cure Self Etch Adhesives (2 Step): - Demineralize and infiltrate surface simultaneously (as infiltrate deeper, acidic monomers are buffered by mineral content of substrate). Adhesive is added in 2 nd step - 1 Steps are prone to degradation. Too hydrophilic, behaves as a permeable membrane	
	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE) 4. Apply Primer/Adhesive -> Rubbing 5. Evaporate solvent (30sec) and cure Self Etch Adhesives (2 Step): - Demineralize and infiltrate surface simultaneously (as infiltrate deeper, acidic monomers are buffered by mineral content of substrate). Adhesive is added in 2 nd step - 1 Steps are prone to degradation. Too hydrophilic, behaves as a permeable membrane In Dentin:	
	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE) 4. Apply Primer/Adhesive -> Rubbing 5. Evaporate solvent (30sec) and cure Self Etch Adhesives (2 Step): - Demineralize and infiltrate surface simultaneously (as infiltrate deeper, acidic monomers are buffered by mineral content of substrate). Adhesive is added in 2 nd step - 1 Steps are prone to degradation. Too hydrophilic, behaves as a permeable membrane In Dentin: - ↓ risk of incomplete adhesive penetration	
	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE) 4. Apply Primer/Adhesive -> Rubbing 5. Evaporate solvent (30sec) and cure Self Etch Adhesives (2 Step): - Demineralize and infiltrate surface simultaneously (as infiltrate deeper, acidic monomers are buffered by mineral content of substrate). Adhesive is added in 2 nd step - 1 Steps are prone to degradation. Too hydrophilic, behaves as a permeable membrane In Dentin: - ↓ risk of incomplete adhesive penetration - ↓ subjectivity when evaluating amount of moisture on surface	
	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE) 4. Apply Primer/Adhesive -> Rubbing 5. Evaporate solvent (30sec) and cure Self Etch Adhesives (2 Step): - Demineralize and infiltrate surface simultaneously (as infiltrate deeper, acidic monomers are buffered by mineral content of substrate). Adhesive is added in 2 nd step - 1 Steps are prone to degradation. Too hydrophilic, behaves as a permeable membrane In Dentin: - ↓ risk of incomplete adhesive penetration - ↓ subjectivity when evaluating amount of moisture on surface - Less sensitive to structural alterations of dentin	
	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE) 4. Apply Primer/Adhesive -> Rubbing 5. Evaporate solvent (30sec) and cure Self Etch Adhesives (2 Step): - Demineralize and infiltrate surface simultaneously (as infiltrate deeper, acidic monomers are buffered by mineral content of substrate). Adhesive is added in 2 nd step - 1 Steps are prone to degradation. Too hydrophilic, behaves as a permeable membrane In Dentin: - ↓ risk of incomplete adhesive penetration - ↓ subjectivity when evaluating amount of moisture on surface - Less sensitive to structural alterations of dentin - Mostly micromechanical retention (but also some monomers binding to HA)	
	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE) 4. Apply Primer/Adhesive -> Rubbing 5. Evaporate solvent (30sec) and cure Self Etch Adhesives (2 Step): - Demineralize and infiltrate surface simultaneously (as infiltrate deeper, acidic monomers are buffered by mineral content of substrate). Adhesive is added in 2 nd step - 1 Steps are prone to degradation. Too hydrophilic, behaves as a permeable membrane In Dentin: - ↓ risk of incomplete adhesive penetration - ↓ subjectivity when evaluating amount of moisture on surface - Less sensitive to structural alterations of dentin - Mostly micromechanical retention (but also some monomers binding to HA) - Don't use strong self-adhesives: Ca(PO)4 wont wash away and weakens interfacial integrity	
	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE) 4. Apply Primer/Adhesive -> Rubbing 5. Evaporate solvent (30sec) and cure Self Etch Adhesives (2 Step): - Demineralize and infiltrate surface simultaneously (as infiltrate deeper, acidic monomers are buffered by mineral content of substrate). Adhesive is added in 2 nd step - 1 Steps are prone to degradation. Too hydrophilic, behaves as a permeable membrane In Dentin: - ↓ risk of incomplete adhesive penetration - ↓ subjectivity when evaluating amount of moisture on surface - Less sensitive to structural alterations of dentin - Mostly micromechanical retention (but also some monomers binding to HA) - Don't use strong self-adhesives: Ca(PO)₄ wont wash away and weakens interfacial integrity In Enamel:	
	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE) 4. Apply Primer/Adhesive -> Rubbing 5. Evaporate solvent (30sec) and cure Self Etch Adhesives (2 Step): - Demineralize and infiltrate surface simultaneously (as infiltrate deeper, acidic monomers are buffered by mineral content of substrate). Adhesive is added in 2 nd step - 1 Steps are prone to degradation. Too hydrophilic, behaves as a permeable membrane In Dentin: - ↓ risk of incomplete adhesive penetration - ↓ subjectivity when evaluating amount of moisture on surface - Less sensitive to structural alterations of dentin - Mostly micromechanical retention (but also some monomers binding to HA) - Don't use strong self-adhesives: Ca(PO)₄ wont wash away and weakens interfacial integrity In Enamel: - Poor micromechanical Retention (not enough etching)	
	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE) 4. Apply Primer/Adhesive -> Rubbing 5. Evaporate solvent (30sec) and cure Self Etch Adhesives (2 Step): - Demineralize and infiltrate surface simultaneously (as infiltrate deeper, acidic monomers are buffered by mineral content of substrate). Adhesive is added in 2 nd step - 1 Steps are prone to degradation. Too hydrophilic, behaves as a permeable membrane In Dentin: - ↓ risk of incomplete adhesive penetration - ↓ subjectivity when evaluating amount of moisture on surface - Less sensitive to structural alterations of dentin - Mostly micromechanical retention (but also some monomers binding to HA) - Don't use strong self-adhesives: Ca(PO)₄ wont wash away and weakens interfacial integrity In Enamel: - Poor micromechanical Retention (not enough etching) - Must selectively etch enamel with phosphoric acid 37% 10sec before self etch adhesive application	
	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE) 4. Apply Primer/Adhesive -> Rubbing 5. Evaporate solvent (30sec) and cure Self Etch Adhesives (2 Step): - Demineralize and infiltrate surface simultaneously (as infiltrate deeper, acidic monomers are buffered by mineral content of substrate). Adhesive is added in 2 nd step - 1 Steps are prone to degradation. Too hydrophilic, behaves as a permeable membrane In Dentin: - ↓ risk of incomplete adhesive penetration - ↓ subjectivity when evaluating amount of moisture on surface - Less sensitive to structural alterations of dentin - Mostly micromechanical retention (but also some monomers binding to HA) - Don't use strong self-adhesives: Ca(PO)₄ wont wash away and weakens interfacial integrity In Enamel: - Poor micromechanical Retention (not enough etching)	
Which System do we use?	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE) 4. Apply Primer/Adhesive -> Rubbing 5. Evaporate solvent (30sec) and cure Self Etch Adhesives (2 Step): - Demineralize and infiltrate surface simultaneously (as infiltrate deeper, acidic monomers are buffered by mineral content of substrate). Adhesive is added in 2 nd step - 1 Steps are prone to degradation. Too hydrophilic, behaves as a permeable membrane In Dentin: - ↓ risk of incomplete adhesive penetration - ↓ subjectivity when evaluating amount of moisture on surface - Less sensitive to structural alterations of dentin - Mostly micromechanical retention (but also some monomers binding to HA) - Don't use strong self-adhesives: Ca(PO)₄ wont wash away and weakens interfacial integrity In Enamel: - Poor micromechanical Retention (not enough etching) - Must selectively etch enamel with phosphoric acid 37% 10sec before self etch adhesive application	
Which System do we use?	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE) 4. Apply Primer/Adhesive -> Rubbing 5. Evaporate solvent (30sec) and cure Self Etch Adhesives (2 Step): - Demineralize and infiltrate surface simultaneously (as infiltrate deeper, acidic monomers are buffered by mineral content of substrate). Adhesive is added in 2 nd step - 1 Steps are prone to degradation. Too hydrophilic, behaves as a permeable membrane In Dentin: - ↓ risk of incomplete adhesive penetration - ↓ subjectivity when evaluating amount of moisture on surface - Less sensitive to structural alterations of dentin - Mostly micromechanical retention (but also some monomers binding to HA) - Don't use strong self-adhesives: Ca(PO)4 wont wash away and weakens interfacial integrity In Enamel: - Poor micromechanical Retention (not enough etching) - Must selectively etch enamel with phosphoric acid 37% 10sec before self etch adhesive application Radicular Dentin (cementing posts):	
Which System do we use?	Rubbing primer in:	
Which System do we use?	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE) 4. Apply Primer/Adhesive -> Rubbing 5. Evaporate solvent (30sec) and cure Self Etch Adhesives (2 Step): - Demineralize and infiltrate surface simultaneously (as infiltrate deeper, acidic monomers are buffered by mineral content of substrate). Adhesive is added in 2 nd step - 1 Steps are prone to degradation. Too hydrophilic, behaves as a permeable membrane In Dentin: - ↓ risk of incomplete adhesive penetration - ↓ subjectivity when evaluating amount of moisture on surface - Less sensitive to structural alterations of dentin - Mostly micromechanical retention (but also some monomers binding to HA) - Don't use strong self-adhesives: Ca(PO)s wont wash away and weakens interfacial integrity In Enamel: - Poor micromechanical Retention (not enough etching) - Must selectively etch enamel with phosphoric acid 37% 10sec before self etch adhesive application Radicular Dentin (cementing posts): - NaOCI used to cleanse the root canals compromises bond (DON'T USE) - Use Chlorhexidine to cleanse canal -> Better bonding	
Which System do we use?	Rubbing primer in: - ↑ resin infiltration - ↓ effects of surface moisture - Improves solvent evaporation - ↓ phase separation in simplified systems 1. Etch with Phosphoric Acid 2. Rinse 15 sec with water and airdry 3. Re-wet with CHX (2%) -> refluffs collagen, blot dry (DON'T RINSE) 4. Apply Primer/Adhesive -> Rubbing 5. Evaporate solvent (30sec) and cure Self Etch Adhesives (2 Step): - Demineralize and infiltrate surface simultaneously (as infiltrate deeper, acidic monomers are buffered by mineral content of substrate). Adhesive is added in 2 nd step - 1 Steps are prone to degradation. Too hydrophilic, behaves as a permeable membrane In Dentin: - ↓ risk of incomplete adhesive penetration - ↓ subjectivity when evaluating amount of moisture on surface - Less sensitive to structural alterations of dentin - Mostly micromechanical retention (but also some monomers binding to HA) - Don't use strong self-adhesives: Ca(PO)* wont wash away and weakens interfacial integrity In Enamel: - Poor micromechanical Retention (not enough etching) - Must selectively etch enamel with phosphoric acid 37% 10sec before self etch adhesive application Radicular Dentin (cementing posts): - NaOCI used to cleanse the root canals compromises bond (DON'T USE) - Use Chlorhexidine to cleanse canal -> Better bonding - ↑ C-factor because cannot apply in layers	

Universal Adhesives

- Can have Etch and Rinse technique or Self-Etch (Multimode)
- Still allows chemical bond between carboxylic or phosphate groups from the monomers and residual HA crystals

Enamel Bonding	Selective enamel etch and rinse recommended - achieve sufficient ↑ in surface area, surface energy, and micromechanical retention.
Dentin	Self-Etching Recommended
	- Found ↓ bond strength, ↑ leakage when Etch and Rinse used

Resin Composite

= material system comprised of 2 phases (Matrix and Dispersed) -> must be chemically dissimilar and separated by distinct interfaces.

<u>Laminar Composite</u>	Particulate Composite	<u>Fiber-Reinforced Composite</u>	
2+ layers of different materials bonded together	Composite with embedded particles	Composite of chopped or continuous fibers	

Dental Resin Composite

= Composed of organic resinous matrix, inorganic fillers, coupling agents, chemicals for curing

Trends in Composite development

Low Shrinkage	Composites with \downarrow shrinkage or lower shrinkage stress
	- Used as bases or resto's
Bulk Fill	Enhanced depth of curing (4mm increments)
	- Used for bulk fill liners and resto's
	 Similar polymerization stress to conventional composites (not a stiffer material = more stress)
	 Lower filler content, improves light transmission = ↑ shrinkage
	- Has lower elastic modulus to ↓ stress/flex more = requires a cap with a highly filled material
Self-Adhesive	Flowable cements with self-adhesive properties
Bioactive	Composites and antimicrobials and mineralizing agents

Components

Main Constituents		Side Constituents
Polymeric Matrix		Pigments
Reinforcing fillers		Antioxidants
Silane coupling agent		Inhibitors
Chemicals for polymerization reaction		
Properties Influenced by	- Monomers (influ	ence the amount of shrinkage). monomer = shrinkage
	- Filler size and co	ntent (Influences wear resistance and shrinkage)
	-> ↑ filler = ↓	monomer = ↓ shrinkage
	- Quality of bond b	petween fillers and resin
	- Quality of polym	erization

Component	<u>Description</u>	<u>Example</u>
Polymeric Matrix	One of main components by volume Changes in matrix aim to ↓ shrinkage upon polymerization - (although composites will ALWAYS shrink) Main changes = development of monomers with bulky/rigid central section and flexible ending groups	Large Molecular Weight – Low Shrinkage - Bis-GMA - UDMA Low Molecular Weight – Higher shrinkage - TEGMA - Bis-EMA - Used to ↓ viscosity of high MW monomers (allows the addition of filler while not being too thick) Self Adhesive Acidic Monomers - Phosphates (Phenyl-P, 10-MDP) - Carboxylates (MAC-10, 4-MET, 4-META) - Flowable (GPDM/Vertise Flow) -> Only one in the market
Reinforcing Fillers	Major portion by volume or weight: 1. Reinforces matrix 2. Provides adequate translucency 3. Controls shrinkage Types: Microfill	Quartz, Silica Glasses Ceramics Zirconia

	Type of composite	Size of fillers (µm)	Volume of filler	Advantages	<u>Disadvantages</u>	
	Multipurpose	0.04, 0.2-3.0	60-70	High Strength, High modulus		
	Nanofilled	0.002 – 0.075 (2-75nm)	78.5	High Polish, High strength, High modulus		
	Microfilled	0.04 (40nm)	32-50	Best polish, Best esthetics	Higher shrinkage ↓ Fracture toughness ↓ modulus ↓ flexural strength - Good if only used for esthetics	
	Packable	0.04, 0.2-20.0	59-80	Packable, Less shrinkage, Less wear		
	Flowable	0.04, 0.2-3.0	42-62	Syringe-able, Lower Modulus, Lower viscosity	High Wear	
	Laboratory	0.04, 0.2-3.0	60-70	Best anatomy at contacts, low wear	Special equipment, requires resin cement	
Silane Coupling Agent	2. ↑ me 3. Interf 4. Creat	es/bonds filler to resin echanical properties acial phase provides mes es hydrophobic enviro	nedium for s			MPTS (3-methacryloxypropyltrimethoxysilane)
Photoinitiators	tertia - Bright Traditional light of photoinitiators w - Polyw additi	osensitized by blue ligh ry amines t yellow colour -> gives uring units only emitte e need to have differen vave LED -> emission p	resto's a sli ed blue light, nt options eak around Onm for the	but with the new 460nm for CQ, and alternative co-initiators	1.5 Violet 380-420nm Blue 420-490nm 1.5 PPO	Camphoquinone Alternatives: -> Synergistic if added with CQ, ↓ amount of CQ = ↓ yellowing PPD shorter wavelength, needs violet to cure not blue Lucirin TPO -> shorter wavelength, needs violet to cure not blue Ivocerin Irgacure

Dental Ceramics

If clay is heated to $<900^{\circ}$ C it is considered <u>Earthenwear</u>. $>900^{\circ}$ C = <u>Stonewear</u> -> this was the original strong ceramic

- -> The key is in the Sintering process. Loosely bound clay particles are heated to a fusion temperature and fuse into a coherent solid.
- **Porosity will always be found in the end product, the degree of porosity will depend on how you prepare the ceramic**

Ingredients	Function
Feldspar	Fuses every component into 1 mass
	 Lowest fusion temps = melts 1st and flows during firing process
Silica (Quartz)	Contributes strength and stability during heating process by providing framework for other ingredients
	 Very high melting temp -> Remains unchanged during firing process
Kaolin (hydrated	Used as a binder
aluminosilicates)	- ↑ mold-ability of unfired porcelain
	 Gives opacity to finished product (this is how the Chinese made amazing porcelains back in the day)
Glass Modifiers	Interrupt integrity of silica network and act as flux
(K, Na, Ca Oxides)	 (√'s the melting temperature on the components)
Color Pigments	Give restoration different shades
(Fe/Ni oxide, Cu Oxide, MgO,	
TiO ₂ , Co Oxide)	
Zx, Ce, Sn Oxides and Uranium	Develops opacity
Oxide	

Processing steps for dental porcelain

- 1. **Compaction** -> Paste of porcelain powder + H₂O compacted into a die
- 2. Firing -> \uparrow temps sinter the elements together -> Results in significant shrinkage
- 3. **Glazing** -> Porous surface covered with glasses that will fuse at low temp.

Classification of Dental Ceramics

By Application		
w/ Metal	Metal-ceramic crowns	
	Fixed partial Prosthesis	
w/o Metal	All Ceramic Crowns	
	Inlays	
	Onlays	
	Veneers	
	Fixed Partial Prosthesis	
	By Fabrication Method	
Sintering	Firing compacted ceramic powder at high temps	
Slip-Casting	"Slip" = aqueous slurry of ceramic particles	
Heat-Pressed	at-Pressed External pressure at high temps to sinter and shape ceramic at same time	
CAD/CAM	M Milled from ceramic blocks	
Combination techniques	Combination techniques Self-Explanatory duh	
By Crystalline Phase		
↑/↓ Crystalline Phase	\uparrow phase = \uparrow resistance to crack propagation (\uparrow Strength), but \downarrow translucency (\downarrow Esthetics)	

Feldspathic Ceramics	Reinforced Ceramics	Polycrystalline Ceramic
↑ Translucency		↓ Translucency
个 Esthetics		↓ Esthetics
↓ Strength		↑ Strength
Very hard and Brittle		Mostly used as reinforcement substructure (like metal) that is
		veneered on top
		Ex: Zirconia

Metal Ceramics

Requirements for Metal Ceramic Crowns:

- 1. Alloy must have higher melting temp (>100°) than firing temp of the veneer
 - Don't want the metal to melt when firing the porcelain
- 2. Veneering porcelain must have relatively **low fusion temp** (during sintering)
 - Don't want metal to distort under high temps during sintering
- 3. Porcelain must wet the alloy (Contact angle <60 degrees)
- 4. Good **bonding** occurs with 2 mechanisms:
 - a. Chemical Reaction: Porcelain + Metal Oxides of the metal surface
 - b. *Mechanical*: Micromechanical interlocking by \uparrow metal surface roughness
- 5. Coefficients of thermal expansion must be compatible bywn porcelain and metal
 - a. Porcelain slightly lower than alloy

- 6. Adequate stiffness and strength of metal
- 7. High resistance to deformation at high temps
- 8. Adequate design of restoration

Feldspathic Dental Porcelains

- 1. Glassy phase (80-90%). = Gives translucency similar to enamel (esthetics)
- Leucite (10-20%) = Controls thermal expansion coefficient to match closely to that of the dental alloys

Characteristics:

- Fuse at ↓ temps than many other ceramics
- Very hard -> abrasive to opposing teeth
- Glassy phase is a lot like glass (↓ toughness and strength, but ↑ translucency)
- Glassy phase can be etched

All-Ceramic Restorations	Sintered All-Ceramics
Alumina-Based Ceramic	1 st aluminous core
(~40-50% alumina)	- ↑ Modulus of elasticity, ↑ Fracture toughness compared with
(40-50% alumina)	Feldspathic
	•
	- † sintering linear shrinkage (12-20%!!). Need to compensate with
Le d'un Desert Commission	an oversized die
Leucite-Based Ceramic	- ↑ Flexural strength and compressive strength vs Feldspathic
(up to 45% leucite)	- Thermal contraction coefficient (Expands and contracts lots with
	temp change)
	 Large mismatch in thermal contraction btwn leucite and glassy matrix
	-> acting as crack deflectors
	Heat Pressed All-Ceramics
Leucite-based	1st gen of heat-pressed ceramics
(35-55%)	- Can stain or veneer
	 2x the flexural strength over feldspathics
Lithium Disilicate-Based	4x the flexural strength of Feldspathics
(65% highly interlocking crystals)	- Extended range of applications b/c of 个 properties
	↓ Esthetics = need a veneering porcelain
	<u>Indications</u> : Inlays/Onlays/Veneers, Single unit crowns, short-span anterior
	Fixed prostheses
	Slip-Cast All-Ceramics
Alumina Based	Very Very strong (b/c high density packing of alumina particles)
(68% alumina)	-> 2x the Lithium Disilicate based Heat pressed!
Or	
Zirconia-toughened Alumina based	Listileties (high opacity) and long processing times
	Indications, Single Unit around short span fixed partial Proofbases
(34% alumina, 33% zirconia)	<u>Indications</u> : Single Unit crowns, short-span fixed partial Prostheses Machinable All-Ceramics
Hard Machining (nest sintaring)	
Hard Machining (post sintering)	Possible for:
	-Feldspar
	-Leucite
	-Lithium Disilicate
	→ Makes Crown fabrication possible in 1 visit
	→ Low to moderate strength -> Single Units only
Soft Machining followed by	Pre-sintered blocks are milled down into the crown:
Sintering	-Alumina,
	-Spinel or
	-Zirconia-toughened alumina
	Can get sintered Zirconia blocks as well but they are almost too hard
	to mill and cost \$\$\$
	Restorations are oversized to allow for shrinkage after sintering
	Have the highest flexural strength and highest fracture toughness of all
	- Problems with cracks at the interface between veneering porcelain
	and core ceramic though

Dental Cements

Cement = material that sets with an acid-base reaction

Forms a solid used as liners, bases, luting agents or Intermediate restorations

Zinc Phosphate

Components	<u>Powder</u> : Zinc oxide + 10% magnesium oxide (to ↓ reactivity)
	<u>Liquid</u> : 45-64% aqueous phosphoric acid solution
	Phosphoric acid is damaging to vital tissues -> Add coping varnish first to protect porous dentin (filtration)
	Filtration: Liquid separates from powder when pushed down onto tooth
	-> compromises reaction and allows acid to penetrate dentinal tubules (sensitivity)
Indication	Cementation of metallic crowns and porcelain-fused to metal crowns/bridges
	- Cement itself is very weak, cannot rely of the strength of the cement to make ACC
	stronger. Crowns must be strong on their own (MCC, Zirconia-reinforced)
Advantages	Easy to mix (1.5mins)
	Sharp, well-defined set -> 3.5 min setting time
	Cheap
Disadvantages	Acid can damage/irritate the pulp
	No antibacterial action
	Brittle and weak
	No/very little adhesive properties
	Relatively soluble in oral environment

Polycarboxylate

- Largely replaced by GIC's now

Components	<u>Powder</u> : Zinc Oxide + 10% Magnesium Oxide			
	Liquid: 30-40% aqueous polyacrylic acid			
	- Can change mixing ratio to accommodate the application			
	(thinner = luting, thicker = restorative)			
	- Polyacrylic acid is less acidic than phosphoric acid, ↑ molecular weight/size makes it			
	less likely to penetrate the dentinal tubules (\downarrow sensitivity)			
	- MW makes it a stronger cement			
Indication	Cementation of metallic crowns and porcelain-fused to metal crowns and bridges			
	Temporary restorations			
Advantages	Bond to enamel AND dentin AND some metallic casts			
	- Polyacrylic component forms ionic bond to dental structure (Ca ⁺⁺), still weak though			
	↓ irritancy to pulp			
	Similar strength and solubility to Zinc Phosphate cements			
	Have antibacterial properties			
Disadvantages	- Properties dependant on handling procedures			
	- Short working time but long setting time			
	- Good technique is needed to ensure bonding			
	- Binds to everything, makes cleanup challenging			
	-> Cover outside of crown with Vaseline to prevent excess from binding to it			

Zinc-Oxide Eugenol

- **Compromises the curing of resin-based materials! -> Consider not using if going to do a composite filling as the permanent resto**
 - This is temporary. After 1-2 weeks will be able to cure resin again. Replace Zinc-Oxide with a non-eugenol material for 2 weeks and then you can do the final resto in composite.

Indications

Lute crowns onto implant abutment

- Weak cement, but works b/c crown-abutment is so tight it can be hard to remove if cement is too strong Intermediate fillings/temporary

Glass-Ionomer

Components	<u>Liquid:</u>
	- Polyalkenoic Acids (Acrylic, Maleic, Tricarboxylate)
	- Tartaric Acid
	-> ↑ working time, ↓ setting time, ↑ handling properties, ↓ viscosity, ↑ shelf life
	- Water
	<u>Powder:</u>
	- Silica
	- Alumina
	- Calcium Fluoride
	-> Controls speed of the reaction
	-> Releases fluoride to remineralize teeth, and antimicrobial action
	-> Recharges F- content
Setting Reaction	Phase I -> Ion Leaching
Setting Reaction	- Polyacid extracts ions from the glass powder
	- Ca ⁺⁺ released from surface
	Mixing: Shiny, Sticky, Glossy
	ions at The
	- Use syringe to apply to avoid sticky shittiness)
	Phone II - Hadward where
	Phase II -> Hydrogel phase
	- Ions cause the formation of polyacid matrix (crosslinks glass and polyacid
	chains)
	- Very sensitive to $H_2O \uparrow / \downarrow$ = protect surface with varnish/vaseline to
	prevent premature cracking or disintegration
	Setting Rxn: 3-6mins -> Rigid and opaque
	2.00
	Phase III (polysalt gel)
	- Silica gel forms and attaches powder to matrix
	Maturation: 24hrs-1yr, forms tooth-like colour
Bonding to Dental	When polyacrylic acid attacks the glass powder to release Ca ⁺⁺ it also attacks the tooth
tissues	structure to form ionic bond with Ca ⁺⁺
	- Setting reaction and bonding reaction occurs at the same time -> Critical
	Period, do not disturb
	Takes up to 24 hours for bonding maturation to finish.
	- Delay or keep occlusal adjustments and finishing to a minimum to not disturb
	bond
	*Ionic bond strength of GIC is $\downarrow \downarrow$ than Resin Composite micromechanical bonding, but
	seal is much better*
Advantages	- Adhesiveness
Advantages	
	- Biocompatibility
	- Fluoride release -> Excellent for anti-caries and remineralization
	- Marginal sealing
	- Radiopacity
	- Coefficient of thermal expansion
	-> Closest to dental structure = longer lasting despite weak bond
	- ↑ modulus of elasticity
	-> Acts as a stress relieve layer
	- Bonds to metal!
	- Best material for a liner -> Releaves shrinkage stress along pulpal floor

Classifications of GIC

Composition			
Conventional	Typical Acid-Base reaction (Powder+liquid)		
Metal	Silver alloy incorporated		
Reinforced	- ↑ Strength		
Resin	Water-soluble methacrylate-based monomers replace some of the liquid component of GIC (acid		
Modified	chains)		
	- Allows light curing		
High Viscosity	Smaller glass particles and ↑ Powder /Liquid ratio than conventional GIC		
	- ↑ Strength, took over metal reinforced		
	- Small particles, means you can add more of them (个 ratio)		
Indication			
Type I	Luting Cement	Luting crowns, bridges, orthodontic brackets	
Type II	A: Esthetic restorative	Restorations	
		- Type II's (A and B) have ↓ F but ↑ esthetics)	
	B: Reinforced Restorative	Core build-up, ART	
Type III	Lining Cement or Sealant	Liner, Sealant	
		- 个 F ⁻ but looks like shit	

Resin Modified Glass Ionomer

Composition	<u>Powder</u> : Fluoraluminosilicate (FAS) Glass	
	- Initiator: Light and/or Chemical	
	<u>Liquid</u> : HEMA (Primer) + Polyacrylic Acid modified with Methacrylate (polymerizable Monomer)	
Curing Reaction	2 Reactions:	
	 Free-Radical Polymerization (light curing) 	
	 Traditional Acid-Base Cure (although must slower than traditional GIC) 	
Advantages	- Can control when to cure (个 working time)	
	- Fluoride Release/ Uptake	
	-> Excellent for anti-caries and remineralization/Adhesiveness	
	- Biocompatibility	
	- Radiopacity	
	(probably some of the others from GIC?)	

** True GIC's -> Acid-Base setting mechanism but provide at least 50% of expected max of structural properties after light cure**

- If not, it is not a GIC (or RMGIC) but rather a Compomer (lowsy composite, useless for anything)

Material	Compressive strength (MPa)	Diametral tensile strength (MPa)
Type II - conventional	196-251	18-26
Type II – resin modified	202-306	20-48
Cermet	176-212	19-22
High-viscosity	301	24

Dental Resin Cements

- = Low-viscosity version of restorative resin composite. Pretty much the same thing but with a \downarrow filler/monomer ratio
 - Diluted Resin Composite

** The cement of choice for all-ceramic based and composite-based indirect resto's!**

- Have the ability to bond both to the tooth structure and the restoration (Still need adhesive agent and pretreatment though)

Classifications:

	Curing Type		
Self-Cured	Sets via self-curing only -> NO Light curing needed		
	- Takes 3-5mins		
	- Limited working time, and delayed adjustments (have to wait till cured fully)		
	<u>Indications:</u>		
	- Cementing any indirect resto's (Metal, ceramic, metal-ceramic, composite)		
Hala Comad	**Can't be used in combination with some simplified, acidic hydrophilic adhesives**		
Light-Cured	Sets via light curing only		
	 No tertiary amines -> superior colour stability over time (that's why it's good for veneers, they won't yellow over time) 		
	- Comes in a variety of colours to match the veneer		
	- Comes in a variety of colours to match the veneer		
	Indications: Cementing laminate veneers		
	- (only thing thin enough for light to pass through during the curing)		
Dual Cured	Sets via both self-cure and light-cure		
- Most	- Light cure is needed for it to achieve maximum strength		
popular			
	<u>Indications</u> :		
	- All-ceramics and composite indirect restorations		
	Can't be used with some simplified acidic hydrophilic adhesives		
	Adhesion Type		
Non-Adhesive	Requires application of bonding agent (adhesive) prior to cementation		
	- Tooth substrate must be treated w/adhesive (<u>Etch & Rinse or Self-Etch</u>)		
	Calf Ftala Adhasiya		
	Self-Etch Adhesive		
Self-Adhesive	 Have to apply primer first prior to cementation (primer is a bonding agent)-> considered a non-adhesive NO bonding agent application required prior to cementation 		
Jell-Auliesive	- ↓ bond strength vs non-adhesive cements (↓ microporosities = ↓ micromechanical retention)		
	The operation of the first variety of the operation of th		
	Tooth must be cleaned of temporary cements before cementation		
	- Don't overdry, keep surface moist		
	Initial low pH of the self etching acidic monomers must be neutralized by tooth structure and filler particles before curing		
	-> Acid residue will compromise curing/polymerization		
	- Doesn't work with metals or core build up materials -> won't neutralize = ↑ hydrophilicity after curing H ₂ O will		
	compromise bond		
	Steps:		
	Clean prep -> leave surface moist, do not overdry with air!		
	2. Apply Self-adhesive resin cement		
	3. Seat crown -> do not light cure right away.		
	4. Allow 1-2 minutes to ensure acid has been neutralized sufficiently		

Why are acidic monomers not always compatible with Dual or Self-Cured Resin Cements?

- Single-Step, simplified adhesives contains acidic monomers
- The adhesive in contact with the tooth structure becomes sufficiently neutralized, but on the surface of the adhesive layer there are still acidic monomers within the uncured O₂ inhibited layer
 - These consume amines in the Resin Cement that promote the self-curing.
 - Under-cured cement at the Adhesive-Cement interface = weak bond
- Acidic monomers are also hydrophilic (attract water)
 - Water from within the dentinal tubules can penetrate the adhesive layer in order to interact with the uncured acidic monomers
 - Compromises bond further

How do solve the problem:

- Don't be a fool! Use the 3 step (Etch-Prime-Bind) or 2 Step Self Etch!
- By adding an extra layer of primer under the adhesive, it will block the water from the tubules from penetrating and compromising the bonding between the adhesive and the cement

Bonding to Ceramics

Why is bonding important for the success of ceramic restorations?

- 1. Additional Retention
 - Never rely on the bonding completely for retention though. Frictional retention from a well-designed prep is far stronger
- 2. Marginal Sealing
- 3. **Functional Support**
 - o This is the most important factor
 - Ceramic is very brittle, will break if directly sitting on a compliant/flexible tooth. Additional layer of bonding gives support and acts a stress reducing layer.

Bonding treatment will depend on the ceramic composition and structure:

Silica-containing ceramics (Feldspar/Glassy, Leucite, Lithium Disilicate) can be etched with HF acid and silanized.

- Silica is the etched component + silanization allows ↑ chemical bonding to adhesive

Non-Silica containing ceramics (like Zirconia) cannot be acid etched because no silica

 Sandblast etched instead + use MDP (acidic self-etching monomers) -> chemically bond to zirconia.

```
Feldsphatic (SiO_2 - Al_2O_3 - Na_2O - K_2O) Aluminum oxide (Al_2O_3)
Leucite (SiO_2 - Al_2O_3 - K_2O) Zirconium oxide (ZrO_2 - Y_2O_3)

Lithium disilicate (SiO_2 - Li_2O)

As you \downarrow silica content, you \downarrow esthetics but \uparrow strength
```

Strength of the crown depends on:

Turns of Coromic	Foldenathic and Classy are the weakert	
Type of Ceramic	Feldspathic and Glassy are the weakest	
	-> fine for anteriors that don't have major occlusal loads. Wouldn't use for posteriors though	
Characteristics of	Modulus of Elasticity of cement is important	
Core/supporting	- ↑ E of the luting cements = ↑ hardness -> better to ↑ success of crown.	
structure	- Self Adhesive resin cements absorb ↑ H₂O b/c of hydrophilic acidic monomer	
	-> Makes it softer and not ideal for cementing cements	
	Best cement = Non-adhesive cement with 3 step or 2 step etch and rinse	
Type of material	Quality of curing depends on crown type and curing mode	
and Thickness of	of - Metal ceramic crown won't let light through for curing	
the crown	-> Zirconia and Lithium disilicate 个 degree of monomer conversion	
	- Dual Cure cements are best	
	-> LC from all 3 surfaces (B,L,O) and let self cure take care of the rest.	
Bonding Technique	Explained below for Glassy, Lithium Disilicate, and Zirconia, Lab processed composites	

Techniques (Glassy Veneers)

1. Sandy Blasting (<10sec, 20psi)

After firing process there are residues left of the surface. -> Sandblasting cleans the surface and removes the residues, exposing the porosity within the structure

2. HF Acid Etching (9-10% HF acid, 90 sec)

Etches the silica particles only to ↑ the porosity

- It if looks like it has been <u>over etched</u> (F-salts precipitating on surface)
 - -> Ultrasonicate in ethanol for 5 mins, dry well with air. This removes the F based salt that forms on the surface as a contaminant
 - -> <u>If you can't ultrasonicate with ethanol</u> = Etch surface with phosphoric acid for 10 sec. rinse and dry (same as you would do for enamel)

3. Silanization (1-2 THIN coats of silane with microbrush, dry with warm air 60sec)

Creates a chemical bond with the tooth structure:

Condensation reaction occurs -> -OH from surface + -OH from Silane = Covalent bond (strong!) + H₂O

Use warm air to dry and evaporate the H₂O before binding the adhesive

- Surface SHOULD appear dull -> if it looks shiny = excess silane (no Bueno). Start over from sandblasting step

The 1st bond between the Si and Ceramic is one of the strongest we can get (covalent) -> the 2nd layer of Si is terrible though! = Need to remove the excess

 Can place in boiling water for 10 minutes and excess silane should come off, but its more efficient to just sandblast and etch again

Recommended to silanize as soon as you get it from the lab and try it in. Excess Si might just rub off when you try it in

After HF-etching, surface becomes highly hydrophilic.

After silanization, surface must become hydrophobic.

Silanized

Avoid contamination

To avoid contamination, its best to have it sandblasted at the lab and you do the HF and silanization yourself

	Silane Primers		
	Single Bottle System	2 Bottle System	
Pros: - Cons:	Easy to use (no mixing required)	1 Bottle is Acetic Acid Activator, the other bottle is unactivated silane	
-	Limited Shelf Life (its already activated) -> if it comes out not clear/transparent = expired	Pros: - Longer shelf life, stable because they arnt mixed yet Cons:	
		- You need to mix the 2 components	

4. Cementation

3 Step Etch and Rinse or 2 Step Self-etch priming needed to prevent H₂O contamination -> Universals wont work (same reason as we saw in resin cements)

Apply HEMA-Free (HEMA yellow's) bonding agent -> Bis-GMA based ideally

- Porosities created are small, and cement molecules are large, so you need to really ↓ the viscosity of the bonding agent the fill the pores -> Micromechanical retention

Because these are veneers we want a cement that will not change color/yellow over time

-> Light Curing, or Aromatic Amine-free dual cure resin cement

Technique – Lithium Disilicate based Ceramic

- Same as glassy except using 5% HF acid for only 20 seconds
 - Less silica = less acid for less time

Technique - Zirconia

Because there is no silica in this material neither HF etching nor silanization is possible.

Combination of mechanical and chemical treatment used.

1. Sandblast surface

Done with \downarrow pressure and time than glassy ceramics (considered a soft sandblast)

- 3M has a product called Rocatec Plus which sandblasts with silica particles to impregnate them into the surface of zirconia. -> \$\$\$\$\$ though and it doesn't ↑ the success enough to make it worth it

2. Apply Zirconia primer

MDP self etching monomer/primer will bind to zirconia to ↑ bond strength (but still no where close to glassy ceramics)

3. Apply MDP containing cement

- (Resin cements are preferred, but other cements will work)

Because we used MDP monomers for the primer we should use an MDP compatible/containing resin cement

Technique – Lab-processed composites

Indirect Composite	Supporting tooth structure	
1. Clean the surface	Cannot HF etch composites	
2. Sandblast with Aluminum oxide	 Choose total-etch, self-etch or self-adhesive 	
3. Apply Silane	systems.	

Bleaching

Mechanism of Action

Delivering Hydrogen Peroxide (the active ingredient) to discolored segments of the tooth into order to dislodge discoloring particles

Hydrogen Peroxide	Carbamide Peroxide	Sodium Perborate (NaBO₃)
(H ₂ O ₂)	(CH ₆ N ₂ O ₃)	- For endodontically treated teeth
1%, 3%, 10%	When in contact with H ₂ O will break down into	When contacts H ₂ O breaks down into
	Hydrogen Peroxide (33% + urea)	hydrogen peroxide (22-34%)
	- This means 1/3 rd of the % of Carbamide	- Only ¼ - 1/3 rd will become
	Peroxide will become Hydrogen	hydrogen Peroxide
	Peroxide	
	Ex: 21% Carbamide Peroxide = 7% Hydrogen	
	Peroxide	

So whats happening?

Step 1: Diffusion Hydrogen peroxide easily diffuses through organic matrix of the enamel and dentin b/c of - H₂O₂ Penetrates tooth its low MW structure Similar flow pattern to fluids in the inter-prismatic spaces of enamel and dentinal tubules Diffusion can be \uparrow by: ↑ Concentration **Prolonged application** 个 Temp Larger tubules (like in kids) Variation of tooth structure Free Reactive Oxygen Species attack organic molecule chromophores in order to become Step 2: Interaction - ROS Attack stable Highly pigmented carbon-ring are opened into chains Rate of decomposition depends on Temp and concentration Bleaching opens the more highly bigmented carbon-ring compound and converts them to chains that are lighter in colour R-CH=CH-CH=CH-R Step 3: Surface and Radicals disrupt organic molecules to make them simpler colour change -> Reflect less light making them appear lighter in shade - Simplifying Molecules Carbon double bonds are converted into colourless hydroxyl groups R-CH=CH-CH=CH-R The carbon double-bond compounds (yellow in colour) are converted to hydroxyl groups (colourless) R-CH-CH-CH-CH-R Step 4: Plateau This cycle continues until all the original pigment is colourless and a plateau phase is reached (no longer notice color change) Stop the bleaching at this phase, continuing will do nothing but damage the teeth. They are as white as they will get Bleaching compounds start acting in other compounds with C chains, as proteins on enamel matrix H₂O CO. The final products of the reaction is carbon dioxide and water Can start to see morphological alteration (deproteinization, demineralization, oxidation of superficial enamel layer) -> \(\gamma\) roughness and surface irregularities

Endodontically Treated Teeth

Typically, the stain will come from within the treated canal. -> Have to do internal bleaching

Before After

Supervised At-Home Therapy

Carbamide Peroxide is the main product used:

w/ Potassium Nitrate and Fluoride Desensitizing gel	w/o Desensitizing gel
- 10% (3% Hydrogen Peroxide)	- 10% (3% HP) Only
- 15% (5% HP)	
- 20% (7.5% HP)	

Technique:

<u>recnnique:</u>		
Record baseline shade - Helps monitor progress	A3 in this case	
Custom tray is made for the patients' teeth	 Apply CP gel on the vestibular (facial) surface of the tray Apply for 2-hour intervals Overnight or during the daywill only be doing something for 2hrs though 	
	With low concentrations (like 10% CP) it can be applied up to 3x a day! - ↑ concentration, ↓ applications	
Schedule Weekly follow-ups - Follow shade progression	When plateau is reached, and shade is no longer changing, stop therapy	

In Office Therapy

Solutions can be way more concentrated for in-office treatments

Hydrogen Peroxide Straight Up	Carbamide Peroxide w/ desensitizing gel (potassium nitrate and fluoride)	Carbamide Peroxide
- 35-38%	- 35% (12% HP)	- 45% (15% HP)

Ensure good rubber dam Isolation

 Traditional, or use a light cured gingival barrier resin gel (paint on dam)

High concentrations of HP will burn soft tissues, must be very careful

- -Coloured at first, but will become colorless to indicate the reaction is over
- Younger patients have more permeable teeth -> ↑ chance of developing sensitivity
- Desensitizing gels interrupt the neurosensorial response in the teeth to $\ensuremath{\checkmark}$ sensitivity

In-Office treatments are convenient (only 1x 30-60 minute appointment can achieve the results a patient wants in 1 day vs weeks

- HOWEVER, the fact that sensitivity is developed means we are pushing the boundaries with such high concentrations of HP
- It has been shown that lower HP concentrations (20%) are JUST as effective than 35-40% HP gels -> not worth it for the extra %
- It has also been shown that at home treatment is equally effective with \downarrow sensitivity (because % lower).
 - -> This method is safer, more convenient for the patient (@ home) but takes longer
- In Office treatment should be reserved for last minute urgent whitening cases. Can finish the job at home though

Over the Counter Bleaching

One Size fits all trays	↑ risk of soft tissue burning
↑ Risk of damage to teeth	No supervision of shade changing, or plateau phase
Straight up dangerous	Unregulated unsafe ↑ concentrations of HP available online

^{**}Don't inject Local anesthetic when bleaching -> Need to know if the patient is feeling sensitivity so we don't cause major damage**

Oral Effects of Peroxides

Soft Tissue	HP >15% can burn soft tissues		
	- Protect with rubber dam or well adapted custom tray		
	Using neutralizing agent (Sodium Bicarbonate) to ↓ extent of damage		
	FDA says HP is safe in concentrations up to 3% -> Many untrained amateurs dealing with higher concentrations at		
	home!		
Toxicology	Body has endogenous enzymes for battling HP:		
	- Catalase		
	- Superoxide Dismutase (SOD)		
	- Peroxidase		
Carcinogenicity	No evidence of carcinogenicity 😉		
	- 1 group in the 80's scared everyone by saying there was, they were wrong		
Enamel	Effects on Enamel:		
	↓ organic content		
	Exposure of enamel prisms		
	↓ hardness		
	↑ surface porosities		
	*Lots of bad effects, so we have to control concentration, application time and pH closely		
	- CP gels don't have a low pH (5.6-7.3) and Urea ↑ pH further -> the pores that form are not from CP but		
	from a disruption of enamel protein matrix and loss of crystalline material around this matrix		
Dentin			
	- Dentin has ↑ susceptibility to HP oxidation and acidic pH of the gels = immediate sensitivity		
Pulpal Responsiveness	ness Hypersensitivity:		
	- Varies with each patient from slight to intolerable		
	- If patient is ALREADY sensitive to temps -> MAX 10% CP 1x/day		
	-		
	HP can reach the pulp tissues leading to oxidative cell damage and local inflammation		
	- keep concentrations low		

Amalgam

= Alloy containing: Mercury, Silver, Tin, and Copper -> May also contain zinc and palladium

<u>Trituration</u> – Mechanical mixing of amalgam alloy with mercury

<u>Amalgamation</u> – Reaction of mercury with amalgam alloy to form amalgam

Clinical Application

- Used for Class I and Class II restorations (other classes would not be able to create a retentive form that would hold amalgam)

Creep	Solid material slowly deforming plastically under influence of static load		
	 Causes amalgam material to flow over the margins over time, leading to fracture, ditching. 		
	- Correlates with marginal breakdown of low-copper amalgams (Gamma-2 phase)		
Tarnish	Discolouration of amalgam, does not affect the mechanical properties		
Corrosion	Gradual destruction of material by electrochemical reaction.		
	- Negative effects on the mechanical properties, but increases marginal sealing as the corrosion creates expansion of the		
	amalgam		
	Gamma-2 phase actively corrodes -> in high copper allows corrosion is more limited		

3 mixtures:

	Fast Set	Regular Set	Slow Set
Condensing time	2.5 minutes	3 minutes	4 minutes
Carving Time	4.5 minutes	6 minutes	6 minutes
Total Time	7 minutes	9 minutes	10 minutes

Alloys

Basic Constituents: <u>Tin</u> (Sn), <u>Silver</u> (Ag), <u>Copper</u> (Cu)

Other Elements: Zinc (Zn), Palladium (Pd), Indium (In)

- If >0.01% Zn it is considered a "Zinc containing alloy"

Low-Copper Alloys				
	Silver	Tin	Copper	Zinc
Percentage	63-70%	26-28%	2-5%	0-2%
Properties	Increases Strength Increases Expansion	Decreases Expansion Decreases Strength Increases Setting Time	Reduces Gamma-2 Increases Strength Reduces corrosion Reduces Creep	* Byproduct from manufacturing process Decreases Oxidation during manufacture Delayed expansion of amalgam if present in condensation
Other Random components	Indium (In) - ↓ amount of Hg - ↓ creep and marg - ↑ Strength (in add)		Palladium (Pd) - ↑ Corrosion - ↑ Luster	

Shape	Properties	
Lathe-cut	Alloy made into ingot and filings cut off on	
	a lathe and ball-mill	
	Resists compression more	
	- Needs ↑ pressure	
	•	
	Size Ranges:	
	Length: 60-120um	
	Width: 10-70um	
	Thickness: 10-35um	
Spherical	Alloy atomized into fine drops in chamber	
PROPERTY OF THE PROPERTY OF TH	of inert gas	
	Increased plasticity, and less pressure	
	required for condensation	
	Diameter: 2-43um	
	- Smaller molecules 个 surface	
	area, need 个 Hg, harden faster	
Admixed	Combination of spherical and lathe-cut	
	Middle ground between Lathe-cut and	
	spherical	
	Need ↑ pressure to condense	
THE RESERVE OF THE PARTY OF THE		

Trituration		
Under triturated	Over triturated	
-Grainy mixture	-Softer mushy mix	
-Poor plasticity	-Sticks to capsule walls	
-Non-Uniform Hg Distribution	-Shinier surface	
-Weak Amalgam	-Short working time	
-Rough surface after carving - Higher susceptibility to tarnish Under- triturated	Over- triturated	

Alloy Setting

Low Copper Amalgam (<6%)			
Step	Visual	What is Happening	
Ag ₃ Sn + Hg -> Ag ₃ Sn + Hg + Sn + Ag	Ag-Sn alloy Ag-Sn alloy Ag-Sn alloy Sn Ag-Sn alloy Ag-Sn alloy Ag-Sn alloy Ag-Sn alloy Ag-Sn alloy	Gamma (Ag ₃ Sn) and Mercury (Hg) are present in 1:1 ratio Hg dissolves some Ag and Sn from the alloy - There is still undissolved alloy present. Forms core amalgam. What do we have: Alloy, Hg, Sn, Ag	
Ag ₃ Sn + Hg -> Ag ₃ Sn + Ag ₂ Hg ₃	Ag-Sn alloy Ag-Sn alloy Ag-Sn alloy Ag-Sn alloy Ag-Sn alloy	Ag ₂ Hg ₃ (Gamma-1) begins to precipitate out first. - Will form the "glue" that holds together the Alloy particles. What do we have: Gamma, Ag ₂ Hg ₃	
Ag ₃ Sn + Hg -> Ag ₃ Sn + Ag ₂ Hg ₃ + Sn ₈ Hg	Ag-Sn alloy Ag-Sn alloy Ag-Sn alloy Ag-Sn alloy Ag-Sn alloy Ag-Sn A	Sn ₈ Hg (Gamma-2) precipitates out second. - These are contaminants that create voids in the gamma-1 glue, decreasing the strength. - Weakest phase - Most prone for corrosion Ag ₂ Hg ₃ (Gamma-1) continues to precipitate and fill the spaces between allow particles. Ag ₃ Sn (Gamma) is the strongest phase. What do we have: Gamma, Ag ₂ Hg ₃ , Sn ₈ Hg	

High Copper Amalgam (Admixed)			
Step	Visual	What is Happening	
Ag₃Sn + AgCu + Hg	Ag-Cu Alloy Hg Ag Ag Ag Ag Ag Ag-Sn Alloy Mercury Ag-Cu Alloy Hg Ag Ag Ag Hg Ag-Sn Alloy Ag-Sn Alloy	Ratio is 2:1 Lathe-cut Ag ₃ Sn to spherical AgCu Hg dissolves Ag and Sn out of the Gamma (Ag ₃ Sn) alloy, and Ag out of the AgCu alloy	
Sn + AgCu -> Cu ₆ Sn ₅	Ag-Sn Alloy	Instead of precipitating with Hg to form Gamma-2, Sn diffuses to react with AgCu particles forming: - Cu ₆ Sn ₅ (Eta phase) - This eliminates the undesirable Gamma-2 phase	
$Ag_3Sn + AgCu + Hg -> Ag_3Sn + AgCu + Ag_2Hg_3 + Cu_6Sn_5$	Ag-Sn Alloy	Ag ₂ Hg ₃ (Gamma-1) precipitates out and forms the glue between Cu ₆ Sn ₅ (Eta), AgCu and Ag ₃ Sn (Gamma) - No Gamma-2 phase is formed creating a stronger amalgam product	
	High Copper Amalgam (Unicompositiona	ıl)	
Step	Visual	What is Happening	
Ag ₃ Sn + Hg + Cu ₃ Sn	Ag-Sn Alloy Ag-Sn Alloy Ag-Sn Alloy Mercury (Hg)	Hg dissolves Ag ₃ Sn into Ag and Sn. Ag ₃ Sn is surrounded by Cu ₃ Sn (Epsilon) coating Have to work gently to preserve epsilon coating.	
Ag ₃ Sn + Hg + Cu ₃ Sn -> Ag ₃ Sn + Cu ₃ Sn + Ag ₂ Hg ₃ + Cu ₆ Sn ₅	Ag-Sn Alloy Ag-Sn Alloy Eta crystals	Ag reacts with Hg to form Gamma- 1 (Ag ₂ Hg ₃) glue. Sn reacts with Epsilon phase (Cu ₃ Sn) to form Eta crystals (Cu ₆ Sn ₅). - Preventing Gamma-2 phase from forming Left over Gamma (Ag ₃ Sn) contributes most of the strength of the compound	

Trituration = Removal of oxide coating from alloy wets the alloy with mercury initiating the setting reaction.

Optics and Colour

Visible Light spectrum: 400nm -> 700nm

Retina in our eyes house different types of cells used to perceive light and colour:

Colour

We perceive colour based on what is reflected off of the object and back at our eyes:

- White object: Everything is reflected back
- Black Object: Everything is absorbed and nothing is reflected back
- Red Object: Every wavelength is absorbed EXCEPT the red

Colour has 3 dimensions:

Hue	The name of the colour (Red, Blue, Green, Brown, Yellow etc)	
Chroma	Describes the saturation of the colour (HOW green it is)	VALUE
Value	Increases from black to white and refers to the lightness or darkness of the hue	HUE yelde ed gran yelde ed gra

Dental Shade Guides

