Algorithm 1 KeyGen with NIZKPoP Prover

- 1: $v_k \stackrel{\$}{\leftarrow} \chi_q \quad \forall k \in \{1, \dots, M\}$ 2: $seed_{ij} \stackrel{\$}{\leftarrow} \{0,1\}^{256} \quad \forall (i,j) \in \{1,\ldots,N-1\} \times \{1,\ldots,\tau\}$ 3: $v_{ij} := \text{SampleUniform}(seed_{ij}) \in \mathbb{Z}_q^M \quad \forall (i,j) \in \{1,\ldots,N-1\} \times \{1,\ldots,\tau\}$ ⊳ SHAKE 4: $v_{Njk} := v_k - \sum_{i=1}^{N-1} v_{ijk} \quad \forall (j,k) \in \{1,\ldots,\tau\} \times \{1,\ldots,M\}$ 5: $h_{ij} := H(seed_{ij}) \quad \forall (i,j) \in \{1,\ldots,N-1\} \times \{1,\ldots,\tau\}$ ▶ H is instantiated with SHAKE 6: $h_k := H(v_k) \quad \forall k \in \{1, \dots, M\}$ 7: $h := H(\{h_{ij}, h_k\})$ 8: with h as input, sample $M - \sigma$ pairwise distinct indices b_k from $\{1, \dots, M\}$ ⊳ SHAKE 9: compose matrices S_{ij} , E_{ij} (each $n \times \bar{n}$) from v_{ijk} where $k \notin \{b_k\}$ \triangleright one has $S = \sum_{i=1}^{N} S_{ij} \forall j$ and $E = \sum_{i=1}^{N} E_{ij} \forall j$ 10: compose $n \times \bar{n}$ matrices S, E from v_k where $k \notin \{b_k\}$ 11: generate $n \times n$ matrix A 12: B := AS + E13: $B_{ij} := AS_{ij} + E_{ij} \quad \forall (i,j) \in \{1,\ldots,N\} \times \{1,\ldots,\tau\}$ 14: $h_{B_{ij}} := H(B_{ij}) \quad \forall (i,j) \in \{1,\ldots,N\} \times \{1,\ldots,\tau\}$ 15: $h_B := H(\{h_{B_{ij}}\})$ 16: with $h, v_{ijk}, h_B, B, A \forall (i, j, k) \in \{1, \dots, N\} \times \{1, \dots, \tau\} \times \{b_k\}$ as input, sample hidden party $r_i \in \{1, \dots, N\}$ for each $j \in \{1, \ldots, \tau\}$ 17: **return** pk = (A, B), sk = S and the proof:
 - all b_k
 - all r_i
 - h
 - h_B
 - $h_k \forall k \in \{1, \dots, M\} \setminus \{b_k\}$
 - $h_{r_i j} \forall j \in \{1, \dots, \tau\} \land r_j \neq N$
 - $v_{ijk} \forall (i, j, k) \in \{1, \dots, N\} \times \{1, \dots, \tau\} \times \{b_k\}$
 - $B_{r_ij} \forall j \in \{1, \ldots, \tau\}$
 - $S_{Nj}, E_{Nj} \forall j \in \{l : r_l \neq N\}$
 - $seed_{ij} \forall (i,j) \in (\{1,\ldots,N-1\} \times \{1,\ldots,\tau\}) \setminus \{(r_l,l) : 1 \le l \le \tau\}$

Algorithm 2 NIZKPoP Verifier

1: check if $|\sum_{i=1}^{N} v_{ij0}| \le s$ for all $j \in \{1, ..., \tau\}$ 2: check if $\sum_{i=1}^{N} v_{i0k} = \sum_{i=1}^{N} v_{ijk}$ for all $(j, k) \in \{2, ..., \tau\} \times \{b_k\}$ 3: compute S_{ij} , E_{ij} for all $i \notin \{r_j\}$ 4: compute B_{ij} for all $i \notin \{r_j\}$ 5: check if $B = \sum_{i=1}^{N} B_{ij}$ for all $j \in \{1, ..., \tau\}$ 6: check if $h_B = H(\{H(B_{ij})\})$ 7: compute $h_{ij} := H(seed_{ij})$ for all $(i, j) \in (\{1, ..., N-1\} \times \{1, ..., \tau\}) \setminus \{(r_l, l) : 1 \le l \le \tau\}$ 8: compute $h_k := H(\sum_{i=1}^{N} v_{i0k})$ for all $k \in \{b_k\}$ 9: check if $h = H(\{h_{ij}, h_k\})$ 10: sample b_k^* from h and check if equal to b_k 11: sample r_j^* from $h, v_{ijk}, h_B, B, A \forall (i, j, k) \in \{1, ..., N\} \times \{1, ..., \tau\} \times \{b_k\}$ and check if equal to r_j