Due: Wednesday 03/25/2020 by 4 PM

Shown below are the free-body diagram and kinematics of the 2 DOF helicopter used in Project 1.

Figure 1: 2 DOF Helicopter free-body diagram.

Figure 2: 2 DOF Helicopter kinematics diagram.

The helicopter can be represented as a two input-two output state space model, where the state vector is defined as

$$x = \begin{bmatrix} \theta(t) \\ \psi(t) \\ \dot{\theta}(t) \\ \dot{\psi}(t) \end{bmatrix}$$

and the output vector is defined as

$$y = \begin{bmatrix} \theta(t) \\ \psi(t) \end{bmatrix}$$

where θ is the pitch angle and ψ is the yaw angle. The inputs are the commanded pitch and commanded yaw. The state space model of this system is represented by the matrices

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -\frac{B_p}{J_{T_p}} & 0 \\ 0 & 0 & 0 & -\frac{B_y}{J_{T_y}} \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{K_{pp}}{J_{T_p}} & \frac{K_{py}}{J_{T_p}} \\ \frac{K_{yp}}{J_{T_y}} & \frac{K_{yy}}{J_{T_y}} \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

where

$$J_{T_p} = J_{eq_p} + m_{heli} l_{cm}^2$$
$$J_{T_y} = J_{eq_y} + m_{heli} l_{cm}^2$$

for the parameters in the table below.

Parameter	Value	Units and Description
K_{pp}	0.204	[Nm/V] Thrust force constant on pitch axis from pitch propeller
K_{yy}	0.072	[Nm/V] Thrust force constant on yaw axis from yaw propeller
K_{py}	0.0068	[Nm/V] Thrust force constant on pitch axis from yaw propeller
K_{yp}	0.0219	[Nm/V] Thrust force constant on yaw axis from pitch propeller
B_p	0.800	[N/V] Equivalent viscous damping about pitch axis
B_y	0.318	[N/V] Equivalent viscous damping about yaw axis
m_{heli}	1.3872	[kg] Total moving mass of the helicopter
l_{cm}	0.186	[m] Center of mass length from pitch axis
J_{eq_p}	0.0384	[kg·m ²] Total moment of inertia about pitch axis
J_{eq_y}	0.0432	[kg·m ²] Total moment of inertia about yaw axis

Table 1: Model parameters for the 2 DOF Helicopter

In this problem, you will write MATLAB code to design a controller and simulate the system response. Start the MATLAB code with the system parameters shown in the table, and by defining the state matrices.

- (a) Calculate the eigenvalues of the open loop system using the MATLAB command eig [1 pt].
- (b) Determine if the system is controllable [1 pt].
- (c) Choose pole locations to meet the following requirements:
 - $M_p(\%) \le 5\%$
 - $T_s < 3 \text{ s}$

You will want to choose the same pole locations twice so that pitch and yaw both meet the performance criteria. In other words: $p_-cl = [p_-secorder, p_-secorder]$ [2 pts].

- (d) Use the *place* command to find the K matrix that locates closed loop poles where you want them [1 pt].
- (e) Collect the closed loop system using the ss command, making certain to be careful with dimensions for B and D [1 pt].
- (f) Find the eigenvalues of the closed loop system using the MATLAB command eig. Do these match the poles you chose in part (e) [1 pt]?
- (g) In the closed loop system, the command *initial* is the same as an input, as r = -Kx. Find the system response by using the *initial* command for an initial state of $x^T = [-10, -10, 0, 0]$ and a final time of 5 seconds. This corresponds to a 10 degree step in the pitch and yaw axes. Plot the resulting output in an appropriately labeled figure. Note that the output will be a 2715x2 matrix, so you want to plot each column separately and label them correctly [2 pts].
- (h) Does this output meet the requirements we set? Can you think of some reasons why or why not [1 pt]?