By signing	below,	you	attest	that	you	have	neither	given	nor	received	help	of	any	kind	on	this	exam.
Signature: _							P	rinted	Nan	ne:							

Instructions: Show work to get full credit (the correct answer may NOT be enough). Do all your work on the paper provided. Write clearly! Double check your answers!

You will **not** receive full credit for using methods other than those discussed in class.

EXAM II

MATH 214 – LINEAR ALGEBRA

Problem	Available	Your
Number	Points	Points
1	16	
2	12	
3	10	
4	4	
5	20	
6	15	
7	15	
8	8	
Total	100	

1. Determine if the following sets of vectors are linearly independent or linearly dependent. Justify your answer.

(a)
$$\left\{ \begin{bmatrix} 1\\4 \end{bmatrix}, \begin{bmatrix} 5\\2 \end{bmatrix}, \begin{bmatrix} 3\\6 \end{bmatrix} \right\}$$

[4]

(b)
$$\left\{ \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \begin{bmatrix} 6\\3\\3 \end{bmatrix} \right\}$$

[4]

$$(c) \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$$

[4]

$$(d) \left\{ \begin{bmatrix} 2\\5\\4 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\10\\8 \end{bmatrix} \right\}$$

[4]

Exam II

- 2. Let $A = \begin{bmatrix} 1 & 4 & 8 & 1 \\ 0 & 2 & 1 & 3 \\ 0 & 0 & 0 & 5 \end{bmatrix}$ and let $T : \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation give by T(x) = Ax.
 - (a) Find the image of $u = \begin{bmatrix} 1 \\ 0 \\ -3 \\ 2 \end{bmatrix}$ under the transformation T. [4]

(b) Is T one-to-one? Be sure to justify your answer. [4]

(c) Is T onto? Be sure to justify your answer. [4]

3. Let
$$A = \begin{bmatrix} 1 & -4 & -2 & 0 & 3 & -5 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 which has reduced echelon form of
$$\begin{bmatrix} 1 & -4 & 0 & 0 & 0 & 5 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
.

- (a) Do the columns of A span \mathbb{R}^4 ? Explain your answer.
- (b) Write the solution set of $A\mathbf{x} = \mathbf{0}$ in parametric vector form. [5]

(c) Given that $\begin{bmatrix} 7 \\ -1 \\ 0 \\ 0 \\ 2 \\ 3 \end{bmatrix}$ is a solution to the matrix equation $A\mathbf{x} = \mathbf{b}$ where $\mathbf{b} = \begin{bmatrix} 2 \\ -3 \\ -10 \\ 0 \end{bmatrix}$ write the entire solution set of $A\mathbf{x} = \mathbf{b}$.

[2]

4. Carefully write out the definition of a linear transformation.

[4]

5. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the transformation defined by

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x - 2y \\ y \\ -2x + y \end{bmatrix}.$$

(a) Show T is a linear transformation.

[15]

(b) Find the standard matrix for T.

[5]

6. Given the following matrices, perform the indicated operation if possible. If it is not possible to perform the operation, explain why it could not be performed.

$$A = \begin{bmatrix} 2 & 4 & 0 \\ 3 & 0 & 8 \end{bmatrix}, \ B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 3 & 4 & 0 \end{bmatrix}, \ C = \begin{bmatrix} 3 & 2 \\ 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 7 & -1 & 4 \\ 0 & 9 & -2 \end{bmatrix}.$$

(a)
$$-2A + D$$
 [5]

(b)
$$CB$$
 [5]

$$(c) AB [5]$$

Exam II

7. Let
$$A = \begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix}$$
. Find A^{-1} . [15]

8. Explain why the columns of an $n \times n$ matrix A are linearly independent when A is invertible.

[8]