

Statistics — Moments of a distribution

HARSH SINGHAL · Follow Published in Analytics Vidhya 3 min read · Jun 7, 2020

Moments in statistics are popularly used to describe the characteristic of a distribution.

1 Moment: Measure of central location

2 Moment: Measure of dispersion

3 Moment: Measure of asymmetry

4 Moment: Measure of peakedness

First moment- Mean

Measure the location of the central point.

$$\overline{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

Measure the spread of values in the distribution OR how far from the normal.

$$\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \bar{X})^2}{N}$$

 $\sigma = (Variance)^{.5}$

Small SD : Numbers are close to mean
High SD : Numbers are spread out

For normal distribution:

Within 1 SD: 68.27% values lie Within 2 SD: 95.45% values lie Within 3 SD: 99.73% values lie

Advantages over Mean Absolute Deviation(MAD):

- 1. Mathematical properties- Continuous, differentiable.
- 2. SD of a sample is more consistent estimate for a population- When drawing repeated samples from a normally distributed population, the standard deviations of samples are less spread out as compare to mean absolute deviations.

Third moment-Skewness

Measure the symmetry in the distribution.

$$Skew = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{(X_i - \bar{X})}{\sigma} \right]^3$$

Skewness=0 [Normal Distribution, Symmetric]

Other Formulas:

- 1. Skewness = (Mean-Mode)/SD
- 2. Skewness = 3*(Mean-Median)/SD

(Mode = 3*Median-2*Mean)

Transformations (to make the distribution normal):

a. Positively skewed (right): Square root, log, inverse

b. Negatively skewed (left) : Reflect and square[sqrt(constant-x)],
reflect and log, reflect and inverse

Fourth moment- Kurtosis:

Measure the amount in the tails.

$$Kurt = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{(X_i - \overline{X})}{\sigma} \right]^4$$

Kurtosis=3 [Normal Distribution]

Kurtosis<3 [Lighter tails]
Kurtosis>3 [Heavier tails]

Other Formulas:

Excess Kurtosis = Kurtosis - 3

Understanding:

Kurtosis is the average of the standardized data raised to fourth power. Any standardized values less than |1| (i.e. data within one standard deviation of the mean) will contribute petty to kurtosis. The standardized values that will contribute immensely are the outliers.

High Kurtosis alerts about attendance of outliers.

Excess Kurtosis for Distributions [Laplace (D)ouble exponential; Hyperbolic (S)ecant; (L)ogistic; (N)ormal; ©osine; (W)igner semicircle; (U)niform]

References:

SD and variance: https://www.mathsisfun.com/data/standard-deviation.html

Advantages of the mean deviation:

http://www.leeds.ac.uk/educol/documents/00003759.htm

WhatsApp Chat 🗏 — Analyze 🔍 , Visualize 📊

WhatsApp Chat 🗏 — Analyze 🔍 , Visualize 📊

WhatsApp is the most preferred messenger app in the world today and has more than 2B users worldwide. More than 65B...

medium.com