Transportni sloj

Prof. dr Slavko Gajin

Transportni sloj

- Transportni sloj (Layer 4)
 - Po horizontali komunikacija s-kraja-na-kraj između dva uređaja
 - Po vertikali veza između aplikacija i mreže
- Zadatak
 - Održavanje višestrukih komunikacija između aplikacija na obe strane

Osnovne funkcije

- Transport aplikativnih podataka
 - Enkapsulacija i dekapsulacija dodavanje i uklanjanje zaglavlja 4. nivoa
- Dve vrste prenosa
 - Byte-stream segmentacija niza bajtova proizvoljne dužine
 - Message-stream prenos i enkapsulacija celokupnih poruka

Osnovne funkcije

- Multipleksiranje i demultipleksiranje aplikativnih podataka
 - Na strani pošiljaoca
 - Obeležavanje aplikacije prilikom preuzimanja podataka
 - Na strani primaoca
 - Prepoznavanje označene aplikacije i prosleđivanje podataka

Port – identifikacija aplikacije na uređaju

- Multipleksiranje i demultipleksiranje komunikacija
 - polje Type u zaglavlju na 2. nivou identifikuje protokole 3. nivoa
 - polje Protocol u zaglavlju na 3. nivou identifikuje protokole 4. nivoa
- Port identifikacija aplikacija na jednom uređaju
 - polje Port u zaglavlju na 4. nivou identifikuje aplikaciju (ili njen deo)

Port – identifikacija aplikacije na uređaju

- IANA dodeljuje fiksne portove za pojedinačne aplikacije
- Vrste portova (opsezi brojeva za portove različitih namene)
 - Well-known Ports: 0-1023 samo za serverske aplikacije
 - Registered Ports: 1024-49151

 za klijentske i serverske aplikacije
 - Private (Dynamic) Ports: 49152-65535 samo za klijentske aplikacije
- Primeri:
 - TCP
 - 21 FTP (File Trasport Protocol)
 - 22 SSH
 - 23 Telnet
 - 25 SMTP (Simple Mail Transport Protocol slanje email-a)
 - 110 POP3 (prijem email-a)
 - 80 HTTP (web)
 - 443 HTTPS (secure HTTP) ...
 - UDP
 - 53 DNS (Domain Name System)
 - 69 TFTP (*Trivial File Trasport Protocol*)
 - 161 SNMP (Simple Network Management Protocol)
 - 5004 RTP (Real Time Protocol) ...

Soket – identifikacija aplikacije na mreži

- Socket (soket)
 - Jednoznačno identifikovanje aplikaciju na mreži (ili deo aplikacije koji ostvaruje komunikaciju)
 - Identifikacija "ulaza" u aplikaciju pri komunikaciji
 - Sadrži:
 - IP adresu
 - Identifikaciju transportnog protokola (TCP ili UDP)
 - Broj porta

Klijent-Server komunikacija

- Serverske aplikacije
 - Aplikacije dostupne (otvorene) za pristup od strane proizvoljnih korisnika
 - Soket: unapred poznata IP adresa i poznat TCP ili UDP port
- Klijentske aplikacije
 - Aplikacije na strani korisnika koje iniciraju komunikaciju sa serverskim aplikacijama
 - Soket: proizvoljna IP adresa i dinamički dodeljen TCP ili UDP port
- Dvosmerna komunikacija između klijentskih i serverskih soketa
 - Zahtev od klijenta prema serveru
 - Odgovor servera prema klijentu

Dodatne funkcije

- Uspostavljanje veze Connection oriented
 - Uspostavljanje i održavanje komunikacione sesije
- Pouzdan prenos Reliable delivery
 - Garantuje se pouzdan prenos svih aplikativnih podatak u celini
 - Izgubljeni ili oštećeni segmenti se detektuju i ponovo šalju
- Održavanje redosleda segmenata –
 Ordered data reconstruction
 - Po različitim putevima segmenti mogu stići u promenjenom redosledu, ali prijemna strana rekonstruiše originalni redosled
- Kontrola toka Flow control
 - Dinamičko povećanje i smanjenje protoka podataka
 - Upravljanje prenosom podataka u zavisnosti od mogućnosti i trenutnog opterećenja mreže (smanjenje brzine u slučaju zagušenja)
- Dodatne funkcije su korisne za većinu aplikacija, ali dodatno opterećuju i usporavaju prenos podataka

TCP vs. UDP

Dve osnovne vrste transportnog protokola u TCP/IP modelu

- UDP User Datagram Protocol
 - Obezbeđuje samo osnovne funkcije
 - Connectionless protokol
 - Jednostavan, nema garancije pouzdanosti prenosa i redosleda
 - Malo posla malo opterećenja uređaja

TCP – Transmission Control Protocol

- Obezbeđuje i osnovne i dodatne funkcije
- Connection oriented protokol
 - Uspostavljanje veze
 - Pouzdan prenos
 - Održavanje redosleda prijema podataka
 - Kontrola toka
- Više posla veće opterećenje uređaja

TCF

UDP

Nešto treće?

Ne koriste protokol transportnog nivoa.

UDP protokol

- UDP User Datagram Protocol, RFC 768
- Connectionless message-stream protokol
 - Prenose se celokupne poruke koja se dobijaju od aplikacije datagram
 - Enkapsulacija, obeležavanje porta i prenos bez uspostavljanja veze
 - Nezavistan prenos svakog paketa
 - Nepouzdan, ali jednostavan i brz

Zaglavlje UDP paketa

- Source port, Destination port izvorišni i odredišni port
 - Po 2 bajta, vrednosti od 0 do 65535
 - IP adresa se prenosi u zaglavlju IP paketa
- Length dužina podataka uključujući i zaglavlje
 - Maksimalna dužina podataka: 65535-8-20= 65507 B
 - Umanjeno za 8B UDP zaglavlja i 20B IP zaglavlja
- Checksum provera greške, 2 bajta
 - Prvi komplement sume UDP zaglavlja, podataka i pseudo-hedera
 - Pseudo-header izvorišna i odredišna IP adresa, identifikacija UDP protokola (17) i dužina UDP paketa (*Length*)
 - Provera ispravnosti izvorišne IP adrese
 - Donekle se krši princip razdvajanja slojeva

1. bajt	2. bajt	3. bajt	4. bajt	
Source Port		Destination port		
Length		Checksum		
Data				

Primena UDP protokola

- Jednostavne aplikacije, periodična komunikacija, kada nije bitna pouzdanost
- Real-time aplikacije (IPTV, IP telefonije, video konferencije...)
 - Bitan je kontinuitet pristizanja poruka, čak iako se ne neka poruka izgubi
 - Malo kašnjenje (*delay*) do 200 ms za interaktivan razgovor
 - Mala varijacija kašnjenja džiter (*jitter*) +/- 30 ms
- Kada je potreban brodkast ili multikast
- Složenije funkcije se prepuštaju aplikaciji, samostalno ili korišćenjem podslojeva
 - RTP Real-time Transport Protocol
 - Dodatna polja: timestamp, sequence number...
 - Serijalizacija, baferovanje, kontrola džitera...

TCP protokol

- TCP Transsmision Control Protocol, RFC 761 (793, 7805)
- Connection-oriented byte-stream protokol
 - Inicijalno uspostavljanje veze sa odredištem
 - Segmentacija niza bajtova koji se dobijaju od aplikacije
 - Enkapsulacija, obeležavanje porta
 - Pouzdan prenosa podataka, nezavisno u oba smera

Osobine

- Point-to-Point
 - Unikast komunikacija uvek između dva uređaja (ne podržava se brodkast ili multikast)
- Full-Duplex
 - Nezavisna komunikaciju o dva smera
 - Čak i kada se aplikativni podaci prenose samo u jednom smeru, u drugom smeru se prenose kontrolni podaci

Byte-stream prenos podataka

- Segmentacija (segmentation) na strani pošiljaoca
 - Aplikativni sloj predaje niz bajtova, podeljeno u proizvoljne delove
 - Segmentacija podela većih celina (ili spajanje manjih) u tzv. segmente
 - MMS Maximum Segment Size
 - Difoltna vrednost 536 B, definiše se pri uspostavljanju veze
- Objedinjavanje (reassembling)
 - Na strani primaoca
 - Rekonstrukcija originalnog niza bajtova aplikativnih podataka

TCP format zaglavlja

- Source port, Destination port, Checksum
 - Kao kod UDP protokola
- HLEN (Header Length) 4 bita
 - Dužina zaglavlja u jedinicama od 4 B (32 bita)
- Window Size ukupan broj bajtova koji se mogu poslati pre nego što se čeka na potvrdu
- Options različite opcije, varijabilna dužina

1. b	ajt	2. bajt	3. bajt	4. bajt
Source Port		Destination port		
Sequence Number				
Acknowledgement Number				
HLEN	Reserved	Flags	Windo	w Size
Checksum		Urgent Pointer		
Options				
Data				
•••				

Numeracija bajtova i segmenta

1. bajt

HLEN

2. bajt

Flags

Sequence Number
Acknowledgement Number

Options Data

Source Port

Reserved

Checksum

3. bajt

Destination port

Window Size
Urgent Pointer

4. bait

- Sequence Number (SEQ)
 - Inicijalna vrednost slučajno izabran broj u fazi uspostavljanja veze
 - Svaki pojedinačni bajt u nizu aplikativnih podataka ima svoj redni broj relativno u odnosu na inicijalni SEQ
 - Relativna numeracija bajtova
 - Obezbeđuje identifikaciju segmenata:
 - Održavanje redosleda segmenata na prijemu
 - Pouzdan prenos segmenata – potvrda prijema segmenta – Acknowledgement

Potvrda uspešnog prijema

- Acknowledgement Number (ACK)
 - Potvrda prijema kontinualnog niza bajtova
 - Predstavlja relativni redni broj (SEQ) sledećeg bajta koji se očekuje za prijem
 - Značenje
 - "Ovo je pozicija sledećeg bajta koji se očekuje za prijem, a svi prethodni su uspešno primljeni"

Kontrolni flegovi

Flags

 Kontrolni flegovi koji opisuju značenje paketa i drugih polja u zaglavlju

1. bajt		2. bajt	3. bajt	4. bajt
	Source Port		Destination port	
	Sequence Number			
	Acknowledgement Number			
HLEN	Reserve	ed Flags	Windo	w Size
Checksum		Urgent Pointer		
Options				
Data				

Vrste flegova:

- SYN
 - Inicijalizacija Sequence Number vrednosti (Synchronization)
- ACK
 - Polje Acknowledgment Number je validno (Acknowledgment)
- FIN
 - Poslednji segment, završetak konekcije u jednom smeru (Finish)
- PSH
 - Zahteva se momentalna predaja segmenta aplikaciji na prijemu, bez baferovanja i čekanja ostalih segmenata (*Push*)
- URG
 - Polje Urgent Pointer je validno (Urgent)
- RST
 - Resetovanje konekcije (Reset)

- TCP dvosmerna komunikacija (full-duplex)
 - Dve odvojene komunikacione sesije, u oba smera po jedna
 - Dva nezavisna para Sequence Number i Acknowledgement Number
 - Uspostavljanje, održavanje i raskidanje obe komunikacione sesije
- Uspostavljanje TCP sesije nezavisno u oba smera
 - Zahtev Postavljanje slučajne SEQ vrednosti, postavljanje SYN flega
 - Odgovor
 - Potvrda prijema (ACK=SEQ+1), postavljen ACK fleg (bez podataka, 0 bajtova)
 - Odbijanje zahteva, postavljen RST fleg (npr. ne postoji aplikacija sa naznačenim portom)

 Uspostavljanje TCP sesije u oba smera – u 3 koraka (Three-way handshake)

1. korak

- Zahtev za otvaranje sesije u jednom smeru, tzv. "sinhronizacija" (od klijenta do servera)
 - Slanje inicijalne vrednosti SEQ
 - Postavljan SYN fleg
- Active Open stanje

 Uspostavljanje TCP sesije u oba smera – u 3 koraka (Three-way handshake)

2. korak

- Potvrda otvaranja sesije u prvom smeru (od klijenta do servera)
 - ACK vrednost za jedan veća od SEQ vrednosti
 - Postavljan ACK fleg
- Zahtev za otvaranje sesije u drugom smeru, tzv. "sinhronizacija" (od servera do klijenta)
 - Slanje inicijalne vrednosti SEQ
 - Postavljan SYN fleg
- Established stanje –
 Uspostavljena sesija
 u smeru
 od klijenta do servera

23

 Uspostavljanje TCP sesije u oba smera – u 3 koraka (Three-way handshake)

3. korak

- Potvrda otvaranja sesije u drugom smeru (od PC-2 do PC-1)
 - ACK vrednost za jedan veća od SEQ vrednosti
 - Postavljan ACK fleg
 - PC-1 šalje podatke koji počinju od SEQ=1235
- Uspostavljena sesija u oba smera
- TCP soket ulaz u aplikaciju samo za uparenu stranu
 - Može se posmatrati i kao 5-torka: (srcIP, srcPort, dstIP, dstPort, TCP)

Raskidanje sesije

- Raskidanje TCP sesije u jednom smeru u 2 koraka (Two-way handshake)
 - 1. korak
 - Kada jedna strana nema više podataka za slanje, šalje se FIN fleg
 - 2. korak
 - Druga strana potvrđuje prijem poslednjeg paketa slanjem ACK za taj paket
 - Sesija u tom smeru je zatvorena

Raskidanje sesije

- Raskidanje TCP sesije u oba smera u 4 koraka (2x Two-way handshake)
 - 1. i 2. korak
 - Raskidanje sesije u jednom smeru
 - Ako druga strana ima još podataka za slanje, oni se šalju u dugom smeru
 - 3. korak
 - Kada nema više podataka za slanje, šalje se FIN fleg
 - 4. korak
 - Potvrđuje se prijem poslednjeg paketa slanjem ACK

Raskidanje sesije

- Raskidanje TCP sesije u oba smera u 3 koraka
 - 1. korak
 - Kada jedna strana nema više podataka za slanje, šalje se FIN fleg
 - 2. korak
 - Druga strana potvrđuje prijem poslednjeg segmenta slanjem ACK
 - Ako druga strana nema podataka za slanje ili ih može poslati u poslednjem paketu, šalje se FIN fleg
 - 3. korak
 - Potvrđuje se prijem poslednjeg paketa slanjem ACK

Pouzdan prenos

- Pouzdan prenos svakog segmenta (Reliability)
 - Potvrda primljenih podataka (SEQ-ACK)
- Nezavisno u oba smera
 - Različiti SEQ u oba smera
 - Prenos podataka i SEQ u jednom smeru, zajedno sa ACK za potvrdu prenosa u drugom smeru
 - SEQcs+DATAcs=ACKsc
 - SEQsc+DATAsc=ACKcs

Pouzdan prenos

- Šta ako se izgubi paket koji prenosi potvrdu?
 - Čeka se određeno vreme za svaki poslati segment timeout
- Koliko se čeka?
 - Vreme tajmera treba da bude veće od RTT (Round Trip Time)
 - RTT varira tokom vremena
- Kako proceniti RTT za pristizanje potvrda?

Pouzdan prenos - oporavak od greške

- Dinamičko određivanje vremena čekanja procena RTT
 - RTT za poslednji poslati i potvrđeni segment RTTnew
 - Pamti se prethodna procena RTTold
 - Procena RTT za naredni segment

```
RTT = a*RTTold + (1-a)*RTTnew
```

- a faktor od 0 do 1 (veća vrednost veći uticaj RTTold, sporije promene)
- Timeout = b * RTT
 - b faktor uvećanja (tipično b=2)
- Retransmisija segmenta za koji je prošao timeout period

Pouzdan prenos - oporavak od greške

- Oporavak od greške (Error Recovery)
 - Na osnovu SEQ vrednosti, zna se gde se nalaze podaci
 - ACK se šalje samo kada pristigne neki segment
 - ACK se šalje samo za poslednji ispravni segment u nizu
- Višestruki ACK:
 - Označava da je jedan segment izgubljen, ali su drugi segmenti uspešno pristigli

Rekonstrukcija redosleda segmenata

- Rekonstrukcija redosleda segmenata (segments reordering)
 - Različiti segmenti mogu da stignu različitim putanjama
 - Može da dođe do promene redosleda prijema segmenata
 - Prijemna strana će da rekonstruiše originalni redosled na osnovu SEQ vrednosti primljenih segmenata

Kontrola toka

Kontrola toka (Flow control) – mehanizam prozora (Window)

- Na strani koja šalje podatke
- Označava ukupan broj bajtova koji se mogu poslati pre nego što se čeka na potvrdu
- Sprovodi se nezavisno u oba smera
- Prozor obuhvata deo podataka u baferu podataka koji se šalju
 - Pre prozora
 - Poslati podaci (segmenti) za koje je primljen ACK
 - U prozoru
 - Poslati podaci (segmenti) čeka se ACK
 - Podaci koji se mogu poslati spremno za slanje
 - Posle prozora
 - Podaci koji se ne mogu poslati

Kontrola toka

- Prozor se pomera kada se dobije ACK na segment na početku prozora – Sliding Window
- Kada se popuni prozor
 - Obustavlja se sa slanjem novih segmenata
 - Čeka se potvrda prethodnih segmenata sa početka prozora
 - Potvrđeni segmenti se oslobađaju, prozor se pomera i oslobađa se prostor u prozoru za slanje novih segmenata na kraju prozora
- Kontrola toka se uspostavlja veličinom prozora
 - Manji prozor sporije slanje, veći prozor brže slanje

Kontrola toka

- Dinamičko uspostavljanje veličine prozora Dynamic Window
 - Inicijalno se obe strane dogovore o veličini prozora kod uspostave veze
 - U slučaju opterećenja prijemne strane ili gubitka paketa
 - Od pošiljaoca može da se zahteva smanjenje trenutne veličine prozora
 - Usporavanje slanja novih segmenata
 - Ako nema grešaka, veličina prozor može da se postepeno povećava

35

Kontrola zagušenja

- Kontrola zagušenja TCP Congestion Control, RFC 5681
- Pošiljalac se dinamički prilagođava trenutnom opterećenju
- Algoritmi kontrole zagušenja:
 - Slow Start
 - Congestion Avoidance
 - Fast Retransmit
 - Fast Recovery

Slow Start

- Advertised Window (AW)
 - Inicijalna vrednost prozora postavljeno pri uspostavljanju veze
 - Postavlja primalac kontroliše brzinu prijema segmenata
- Congestion Window (CW)
 - Da bi se izbeglo zagušenje, pošiljalac postepeno povećava stvarnu veličinu prozora (brzinu slanja) do maksimalne vrednosti (AD)
 - Inicijalna vrednost za CW je 1 segment
 - CW se povećava sa svakim ACK
 - Ako se potvrđuje svaki segment,
 CW se u svakom koraku povećava za 2
 - 1, 2, 4, 8 eksponencijalno
 - Tipično jedan ACK šalje za 2 segmenta, ali je rast i dalje eksponencijalan

Slow Start

- Slow Start
 - Početak slanja sa CW=1
 - Eksponencijalno povećanje CW do maksimalne vrednosti
- Cilj
 - Krenuti oprezno sa malom brzinom prenosa
 - Ubrzo dostići maksimalnu brzinu, ako mreža može da podnese
- Ako nastane timeout gubitak segmenta
 - Novi Slow Start

Congestion Avoidance

- Congestion Avoidance Izbegavanje zagušenja
 - Linearno povećanje prozora, umesto eksponencijalnog
- Slow Start Threshold Size ssthresh
 - Veličina prozora dokle traje eksponencijalni rast u slow start fazi
- Ako ne stigne ACK za neki segment
 - polovinu poslednje vrednosti _{CW}
 cwnd < ssthresh _{AW}
 slow start (eksponencijalno)

ssthresh se smanjuje na

cwnd > ssthresh
 congestion avoidance (linearno)

ssthresh1
ssthresh2

Fast Retransmit

- Dupli (višestruki) ACK
 - Određeni segment je izgubljen (ili je došlo do promene redosleda)
 - Naredni segmenti su uspešno primljeni
 - 1 ili 2 dupla ACK možda segment nije izgubljen, možda je došlo do promene redosleda
 - 3 dupla ACK segment je ipak izgubljen, treba ga što pre poslati ponovo

 Fast Retransmit – ponovno slanje segmenta, pre isteka timeout intervala

Fast recovery

- Fast Retransmit
 - Jedan segment je uništen, ali najmanje 3 segmenta su uspešno stigla
 - Nema potrebe za drastičnim usporenje slanja podataka
- Fast Recovery
 - Nakon Fast Retransmit
 - Ide su direktno u Congestion Avoidance, bez Slow Start faze

Kontrola zagušanja

- Algoritmi kontrole zagušenja:
 - Slow Start
 - Početak od najmanja veličine prozora, uz eksponencijalni rast
 - Na početku ili u slučaju gubitka segmenta uz timeout
 - Congestion Avoidance
 - Linearni rast, kada se dostigne polovina prethodne veličine prozora
 - Fast Retransmit
 - Slanje segmenta nakon 3 dupla ACK
 - Fast Recovery
 - Smanjenje veličine prozora na polovinu
 - Ulazak u direkno
 Congestion Avoidance
 bez Slow Start

Alati za proveru TCP konekcija

netstat

 prikaz otvorenih
 TCP konekcija na lokalnom uređaju

nmap

Prikaz otvorenih
 TCP portova
 na udaljenom uređaju

C:\Users\user>netstat -n

Active Connections

```
Foreign Address
Proto Local Address
                                                        State
       147.91.15.32:49509
                                74.125.133.188:5228
TCP
                                                        ESTABLISHED
       147.91.15.32:49709
                                13.92.229.58:443
TCP
                                                        ESTABLISHED
       147.91.15.32:53532
                                23.6.112.112:80
TCP
                                                        TIME WAIT
                                92.123.16.209:80
TCP
       147.91.15.32:53544
                                                        TIME WAIT
TCP
       147.91.15.32:53695
                                62.67.193.75:443
                                                        TIME WAIT
TCP
       147.91.15.32:53701
                                104.17.58.239:443
                                                        ESTABLISHED
       147.91.15.32:53712
                                64.68.120.41:443
TCP
                                                        ESTABLISHED
       147.91.15.32:53715
                                162.247.242.20:443
TCP
                                                        ESTABLISHED
TCP
       147.91.15.32:53722
                                13.57.4.17:443
                                                        ESTABLISHED
       147.91.15.32:53723
                                172.217.23.206:443
TCP
                                                        ESTABLISHED
TCP
       147.91.15.32:53725
                                23.7.203.117:80
                                                        TIME WAIT
```

[root@user~]# nmap 147.91.111.222

Interesting ports on xxx.bg.ac.rs (147.91.111.222):

```
PORT
         STATE SERVICE
21/tcp
         open ftp
22/tcp
         open
               ssh
80/tcp
         open
              http
443/tcp
        open https
514/tcp
        open shell
3306/tcp open mysql
8009/tcp open ajp13
```

. . .

UDP vs. TCP

TCP	UDP	
Conncetion oriented	Connectionless	
Prenos kontinualnog niza bajtova	Prenos nezavisnih poruka	
Pouzdan prenos (oporavak od grešaka, gubitka paketa, promene redosleda)	Nema garancije prenosa	
Kontrola toka – prilagođava se uslovima u mreži	Nema kontrole toka	
Zaglavlja 20 bajtova	Zaglavlje 8 bajtova	
Sporiji, složeniji	Brz, jednostavan	
Primena: Kada je bitna pouzdanost: - veb, mejl, prenosa fajlova, poslovne aplikacije, baze podataka	Primena: Kada nije bitna pouzdanost: - jednostavne aplikacije - Periodična komunikacija Kada je bitna brzina, malo kašnjenje: - real-time saobraćaj (IPTV, IP telefonija, video konferencije)	

QUIC protokol

- Specifičnosti veb saobraćaja
 - Sigurnost TLS Transport Layer Security
 - Koriste ga aplikacije za šifrovanje saobraćaja
 - Oslanja se na TCP
 - QUIC Google-ov protokol za sigurnu veb komunikaciju
 - Umesto sadašnje kombinacije TCP+TLS (HTTPS)
 - Objedinjuje funkcionalnost TCP i TLS, korišćenjem UDP, port 443

QUIC protokol

Osobine

- Brzo uspostavljanje veza, bolji subjektivni osećaj korisnika
- Moguće multipleksiranje više tokova preko jedne veze (sve veb sesije)
- Efikasniji i fleksibilniji mehanizmi kontrole toka
- Mogućnost zadržavanja QUIC veze i prilikom promene IP adrese klijenta
 - Značajno za mobilnost npr. sa WLAN na 4G/5G
- Tendencija porasta (10-20%) najviše google, youtube

Literatura

 Wendell Odom "CCNA - Cisco official exam certification guide" Cisco Press

- James Kurose, Keith Ross
 "Computer Network A Top-Down Approach"
- James Kurose, Keith Ross "Umrežavanje računara: Od vrha ka dnu" prevod 7. izdanja CET

