FACULDADE DE COMPUTAÇÃO E INFORMÁTICA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO ANÁLISE NUMÉRICA – Aula 05 – 2º SEMESTRE/2019 PROF. Jamil Kalil Naufal Junior

TEORIA: RESOLUÇÃO DE SISTEMAS LINEARES (III)

Nossos objetivos nesta aula são:

- Conhecer o método iterativo de Jacobi para resolver sistemas de equações lineares.
- Praticar com simulações do método iterativo de Jacobi.

Para esta semana, usamos como referência as **Seção 7.3** (**Técnicas Iterativas para Resolução de Sistemas Lineares até o Algoritmo 7.1**) do nosso livro da referência básica:

BURDEN, R.L., FAIRES, J.D. **Análise Numérica**. 10.ed. São Paulo: Cengage Learning, 2017.

Não deixem de ler esta seção depois desta aula!

MÉTODO ITERATIVO DE JACOBI

- A ideia básica dos algoritmos iterativos é escolher uma aproximação inicial e, a partir dela, calcular as próximas aproximações até que uma tolerância de erro seja atingida.
- Por exemplo, vamos considerar o seguinte sistema de equações lineares:

$$E_1: 10x_1 - x_2 + 2x_3 = 6,$$

$$E_2: -x_1+11x_2-x_3+3x_4=25,$$

$$E_3: 2x_1 - x_2 + 10x_3 - x_4 = -11$$

$$E_4$$
: $3x_2 - x_3 + 8x_4 = 15$

• A ideia do Método de Jacobi é isolar cada variável do sistema da seguinte forma:

$$x_{1} = \frac{1}{10}x_{2} - \frac{1}{5}x_{3} + \frac{3}{5},$$

$$x_{2} = \frac{1}{11}x_{1} + \frac{1}{11}x_{3} - \frac{3}{11}x_{4} + \frac{25}{11},$$

$$x_{3} = -\frac{1}{5}x_{1} + \frac{1}{10}x_{2} + \frac{1}{10}x_{4} - \frac{11}{10},$$

$$x_{4} = -\frac{3}{8}x_{2} + \frac{1}{8}x_{3} + \frac{15}{8}$$

• Se **tomarmos uma aproximação inicial** $x^{(0)} = (0, 0, 0, 0)$, podemos obter a próxima aproximação da seguinte forma:

$$x_1^{(1)} = \frac{1}{10}x_2^{(0)} - \frac{1}{5}x_3^{(0)} + \frac{3}{5} = 0.6000,$$

$$x_2^{(1)} = \frac{1}{11}x_1^{(0)} + \frac{1}{11}x_3^{(0)} - \frac{3}{11}x_4^{(0)} + \frac{25}{11} = 2.2727,$$

$$x_3^{(1)} = -\frac{1}{5}x_1^{(0)} + \frac{1}{10}x_2^{(0)} + \frac{1}{10}x_4^{(0)} - \frac{11}{10} = -1.1000,$$

$$x_4^{(1)} = -\frac{3}{8}x_2^{(0)} + \frac{1}{8}x_3^{(0)} + \frac{15}{8} = 1.8750.$$

• Continuando as aproximações pelo mesmo esquema, obtemos o seguinte quadro:

k	0	1	2	3	4	5	6	7	8	9	10
$x_1^{(k)}$	0.0000	0.6000	1.0473	0.9326	1.0152	0.9890	1.0032	0.9981	1.0006	0.9997	1.0001
$r_2^{(k)}$	0.0000	2.2727	1.7159	2.053	1.9537	2.0114	1.9922	2.0023	1.9987	2.0004	1.9998
$c_3^{(k)}$	0.0000	-1.1000	-0.8052	-1.0493	-0.9681	-1.0103	-0.9945	-1.0020	-0.9990	-1.0004	-0.9998
$\mathfrak{r}_4^{(k)}$	0.0000	1.8750	0.8852	1.1309	0.9739	1.0214	0.9944	1.0036	0.9989	1.0006	0.9998

A decisão de parar após 10 iterações baseou-se no critério a seguir, no qual 10⁻³ representa a tolerância mínima (E) permitida na aproximação:

$$\frac{\|\mathbf{x}^{(10)} - \mathbf{x}^{(9)}\|_{\infty}}{\|\mathbf{x}^{(10)}\|_{\infty}} = \frac{8.0 \times 10^{-4}}{1.9998} < 10^{-3}$$

considerando-se a norma-infinito:

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$$

2

1. Obtenha uma aproximação para o sistema linear abaixo, tomando x=(0,0) como aproximação e tolerância $\varepsilon=0.1$:

$$\begin{cases} 2x_1 + x_2 = 2\\ x_1 - 2x_2 = -2 \end{cases}$$

Resposta:

k	0	1	2	3	4	5
X 1 ^(k)	0	1	1/2	1/4	3/8	7/16
X2 ^(k)	0	1	3/2	5/4	9/8	19/16
ε	-	1	1/3	1/5	1/9	1/19

k	0	1	2	3	4	5
$\mathbf{x_1}^{(k)}$	0	1	0,5000	0,2500	0,3750	0,4375
x ₂ ^(k)	0	1	1,5000	1,2500	1,1250	1,1875
3	-	1	0,3333	0,2000	0,1111	0,0526

$$| \mid x^{(5)} - x^{(4)} \mid \mid \infty / \mid \mid x^{(5)} \mid \mid \infty = 1/19 \text{ (ou 0,0526)} < 0.1$$

Sendo o valor exato:

X ₁	2/5
X ₂	6/5

X ₁	0,4000
X ₂	1,2000

De fato,
$$| | x - x^{(5)} | | \infty = | | 2/5 - 7/16 | | \infty = 3/80$$
 (ou 0,0375)

e, || x -
$$x^{(5)}$$
|| ∞ /|| x || ∞ = 1/32 (ou 0,03125)

MÉTODO ITERATIVO DE JACOBI (Continuação)

O isolamento de cada variável no Método de Jacobi pode ser colocado da seguinte forma:

$$x_i = \sum_{\substack{j=1\\j\neq i}}^n \left(-\frac{a_{ij}x_j}{a_{ii}}\right) + \frac{b_i}{a_{ii}},$$

■ A partir deste isolamento, define-se o seguinte **processo iterativo de aproximação**:

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1 \ j \neq i}}^n \left(-a_{ij} x_j^{(k-1)} \right) + b_i \right]$$

Repetimos a iteração até que a quantidade a seguir fique menor ou igual à tolerância especificada:

$$\frac{\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|_{\infty}}{\|\mathbf{x}^{(k)}\|_{\infty}}$$

EXERCÍCIO COM DISCUSSÃO EM DUPLAS

2. Construa um algoritmo para o Método de Jacobi, tendo como entrada os coeficientes do sistema, a aproximação inicial e a tolerância.

Técnica iterativa de Jacobi

Para resolver $A\mathbf{x} = \mathbf{b}$ dada uma aproximação inicial $\mathbf{x}^{(0)}$:

ENTRADA o número de equações e incógnitas n; os elementos a_{ij} , $1 \le i, j \le n$ da matriz A; as componentes b_i , $1 \le i \le n$ de \mathbf{b} ; as componentes XO_i , $1 \le i \le n$ de $\mathbf{XO} = \mathbf{x}^{(0)}$; tolerância TOL; número máximo de iterações N.

SAÍDA a solução aproximada x_1, \ldots, x_n ou uma mensagem de que o número máximo de iterações foi excedido.

Passo 1 Faça k = 1.

Passo 2 Enquanto $(k \le N)$ execute Passos 3 a 6.

Passo 3 Para i = 1, ..., n

faça
$$x_i = \frac{1}{a_{ii}} \left[-\sum_{\substack{j=1 \ j \neq i}}^{n} (a_{ij} X O_j) + b_i \right].$$

Passo 4 Se $\|\mathbf{x} - \mathbf{XO}\| < TOL$ então SAÍDA (x_1, \dots, x_n) ;

(O procedimento foi bem-sucedido.)

Passo 5 Faca k = k + 1.

Passo 6 Para i = 1, ..., n faça $XO_i = x_i$.

Passo 7 SAÍDA ('Número máximo de iterações excedido'); (O procedimento não foi bem-sucedido.) PARE.

O passo 3 do algoritmo exige que $a_{ii} \neq 0$, para cada i = 1, 2, ..., n. Se um dos elementos a_{ii} for 0 e o sistema for não singular, um reordenamento das equações pode ser realizado de modo que $a_{ii} = 0$.

Outro possível critério de parada no Passo 4 é iterar até que

$$\frac{\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|}{\|\mathbf{x}^{(k)}\|}$$

seja menor que alguma tolerância preestabelecida. Para tal, qualquer norma conveniente pode ser utilizada, sendo o usual a norma l_x .

EXERCÍCIO DE IMPLEMENTAÇÃO – DATA DE ENTREGA: 08/09/2019

- 1) Implemente o algoritmo do Método de Jacobi com um notebook em Python.
- 2) Teste a sua implementação para exemplos (que você deve criar) de sistemas lineares com as seguintes dimensões e com as seguintes tolerâncias ϵ =0.1, ϵ =0.001 e ϵ =0.0001.
 - 2x2
 - 3x3
 - 4x4
 - 5x5

Mantenha todos os testes efetuados já calculados no seu notebook. Obtenha as medidas de tempo para cada um dos testes efetuados.

- 3) Obtenha as soluções exatas dos seus exemplos pelo Método de Eliminação de Gauss e compare com os resultados das aproximações (no próprio notebook).
- 4) Responda a seguinte questão (no próprio notebook): o que acontece com a aproximação se diminuirmos a tolerância ?

Detalhes burocráticos:

- O exercício pode ser feito individualmente ou em duplas. Identificar os seus nomes no início do notebook.
- Exercícios com cópias parciais ou totais terão nota zero.
- A entrega deve ser feita em link a ser disponibilizado no Moodle.

1. Obtenha aproximações para os sistemas abaixo, considerando-se uma tolerância de ε =0.01. A aproximação inicial fica a seu critério.

a.
$$3x_1 - x_2 + x_3 = 1$$
, $3x_1 + 6x_2 + 2x_3 = 0$, $3x_1 + 3x_2 + 7x_3 = 4$.

c.
$$10x_1 + 5x_2 = 6$$
, $5x_1 + 10x_2 - 4x_3 = 25$, $-4x_2 + 8x_3 - x_4 = -11$, $-x_3 + 5x_4 = -11$.

b.
$$10x_1 - x_2 = 9$$
, $-x_1 + 10x_2 - 2x_3 = 7$, $-2x_2 + 10x_3 = 6$.

d.
$$4x_1 + x_2 + x_3 + x_5 = 6,$$

 $-x_1 - 3x_2 + x_3 + x_4 = 6,$
 $2x_1 + x_2 + 5x_3 - x_4 - x_5 = 6,$
 $-x_1 - x_2 - x_3 + 4x_4 = 6,$
 $2x_2 - x_3 + x_4 + 4x_5 = 6.$