Evaluating Model Performance for Classification

Dr. Muhammad Wasim

Evaluating Classifier Performance

The confusion matrix or contingency table

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP) ✓	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN) 🗸

• Example: If a hypothesis has learned SICK concept, and for new unseen examples, it predicts an example as SICK (positive) which is not correct, then we have a false positive.

Calculating Accuracy

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

 Problem with Accuracy: Accuracy does not perform well with imbalanced data. For example, if you have 95 negative examples and 5 positive examples, classifying all as negative given 0.95 or 95% accuracy score.

Precision and Recall

- Precision: % of predicted correct examples that are correct
- Recall: % of correct examples that are predicted correct

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP)	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN)

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

A combined measure – F Measure

• A combined measure that assesses the P/R tradeoff is F measure (weighted harmonic mean):

$$F = \frac{1}{\alpha \times \left(\frac{1}{P}\right) + (1 - \alpha) \times \frac{1}{R}}$$

• Normally, balanced F_1 is used (i.e. $\alpha = \frac{1}{2}$)

$$F_1 = \frac{2PR}{P + R}$$

Confusion Matrix for more than two classes

• Let us suppose, we have a ten documents belonging to three different categories: Politics, Sports, Crime

	Predicted Politics	Predicted Sports	Predicted Crime
Actual Politics	2	0	0
Actual Sports	1	(3)	1
Actual Crime	0	2	1

Micro vs Macro-Average

- If we have more than one class, how do we combine multiple performance measures into one quantity?
- Macro-averaging: Compute performance of each class, then average.
- Micro-averaging: Collect decisions for all classes, compute contingency table, evaluate.

Micro vs Macro Averaging

Politics	Predicted True	Predicted False	
Actual True	2	0_ /	/
Actual False	1	4 🗸	

Sports	Predicted True	Predicted False
Actual True	3	2
Actual False	2/	3

Crime	Predicted True	Predicted False
Actual True	1	2
Actual False	1	5

	Predicted Politics	Predicted Sports	Predicted Crime
Actual Politics	2	0	0
Actual Sports	1	3	
Actual Crime	0	2	

$$P_p = \frac{2}{2+1} = 0.67$$
 $P_s = \frac{3}{3+2} = 0.6$ $P_c = \frac{1}{1+1} = 0.5$

• Macro-average precision: $\frac{0.67 + 0.6 + 0.5}{3} = 0.58$

All	Predicted True	Predicted False
Actual True	[6]	4
Actual False	4	12

- Micro-average precision: $\frac{6}{6+4} = 0.6$
- The micro-average will adequately capture the class imbalance