

TECNICATURA UNIVERSITARIA EN INTELIGENCIA ARTIFICIAL

MATEMÁTICA 2023

PRÁCTICA: Unidad 1

- 1. Observe los vectores definidos gráficamente y nombre aquellos que:
 - a) tienen la misma dirección,
 - b) poseen el mismo sentido,
 - c) tienen el mismo módulo,
 - d) son iguales

3. Dibuje un vector paralelo a \overrightarrow{CD} , de distinto módulo.

4. Dados los puntos M(1,3), N(3,7), P(5,1) y Q(2,6), determine si los siguientes pares de vectores son iguales:

- a) \overrightarrow{MP} y \overrightarrow{NQ}
- b) \overrightarrow{MN} y \overrightarrow{PQ}
- 5. Grafique tres vectores cualesquiera, no paralelos, $\vec{u}, \, \vec{v}$ y \vec{w} y halle:
 - $a) \vec{u} + \vec{v}$

 $c) 2\vec{u}$

 $e) \frac{1}{2}\vec{w}$

b) $\vec{v} - \vec{w}$

 $d) -3\vec{v}$

- $f) \ \vec{u} + \frac{1}{3}\vec{w}$
- 6. Grafique tres vectores cualesquiera, no paralelos, \vec{u} , \vec{v} y \vec{w} . Halle $3\vec{u} \vec{w} + \frac{1}{2}\vec{v}$.
- 7. La figura dada es un paralelogramo. Exprese \vec{w} en términos de \vec{u} y \vec{v} .

8. Sabiendo que $\vec{u} = \overrightarrow{OA}$; $\vec{v} = \overrightarrow{OB}$; $\overrightarrow{AQ} = \frac{1}{3}\vec{u}$; $\overrightarrow{BR} = \vec{v}$ y que $\overrightarrow{BP} = 2\overrightarrow{BA}$, expresen los siguientes vectores en términos de \vec{u} y \vec{v} :

- $b) \overrightarrow{BP}$
- c) \overrightarrow{RQ}
- d) \overrightarrow{QA}

9. En el paralelepípedo recto de la figura se consideran los vectores que coinciden con las siguientes aristas $\vec{m} = \overrightarrow{AB}$; $\vec{n} = \overrightarrow{AD}$; $\vec{p} = \overrightarrow{AE}$. Obtenga gráficamente los vectores:

- a) $\vec{m} + \vec{n} + \vec{p}$
- b) $\vec{m} + \vec{n} \vec{p}$
- c) $\vec{m} + \vec{n} + \frac{1}{2} \cdot \vec{p}$
- $d) \frac{1}{2}.\vec{m} + \frac{1}{2}.\vec{n} + \vec{p}$
- $e) \ -\vec{m} \vec{n} + \frac{1}{2}.\vec{p}$

- 10. Analice si las siguientes afirmaciones son verdaderas o falsas:
 - a) $|\vec{v}| > |\vec{v_0}|$
 - b) Si $|\vec{v}| > |\vec{u}|$ entonces $|\vec{v_0}| > |\vec{u_0}|$
 - c) Si \vec{u} es un vector no nulo, entonces el vector $\frac{1}{|\vec{u}|}\vec{u}$ es un versor.
 - d) Cualesquiera sean \vec{u} y \vec{v} vale que $|\vec{u}+\vec{v}|=|\vec{u}|+|\vec{v}|$
- 11. Si \vec{v} y \vec{w} son vectores cualesquiera, pruebe analíticamente que $(\vec{v} \frac{1}{5}\vec{w})$ y $(\vec{w} 5\vec{v})$ son paralelos.
- 12. En base a los datos $|\vec{u}| = \sqrt{3}, \ |\vec{v}| = 2, \ (\vec{u}, \vec{v}) = \frac{\pi}{6}$, calcule:
 - $a) \vec{u} \cdot \vec{u}$
 - b) $\vec{u} \cdot \vec{v}$
 - c) $\vec{u} \cdot (-\vec{v})$
 - $d) \vec{u} \cdot \vec{v_0}$
 - $e) (3\vec{u}) \cdot (-2\vec{v})$
 - $f) \ (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v})$
 - $g) \ (\vec{u} + \vec{v}) \cdot (\vec{u} \vec{v})$
 - $h) \ (3\vec{u} + \vec{v}) \cdot (2\vec{u} \vec{v})$
- 13. Determine $|\vec{u} + \vec{v}|$ y $|\vec{u} \vec{v}|$ sabiendo que $|\vec{u}| = 3$; $|\vec{v}| = 4$ y $(\vec{u}, \vec{v}) = \frac{\pi}{2}$
- 14. Determine $|\vec{u}+\vec{v}|,$ sabiendo que $|\vec{u}|=11, \;\; |\vec{v}|=23$ y $|\vec{u}-\vec{v}|=30$

Vectores por componentes

15. Grafique los siguientes vectores de \mathbb{R}^2 en un mismo sistema de ejes coordenados:

a)
$$\vec{u} = \vec{i} - \vec{j}$$

b)
$$\vec{v} = 2\vec{i} + \vec{j}$$

c)
$$\vec{w} = \vec{j} - \vec{i}$$

d)
$$\vec{s} = -\vec{i} - 3\vec{j}$$

16. Grafique en Geogebra 3D los siguientes vectores del espacio:

a)
$$\vec{u} = 3\vec{i} + 2\vec{j} + \vec{k}$$

b)
$$\vec{v} = 3\vec{i} + 2\vec{k} + \vec{j}$$
 $c) \vec{w} = 2\vec{k} - \vec{j} + \vec{i}$

$$c) \vec{w} = 2\vec{k} - \vec{j} + \vec{i}$$

17. Dados los puntos A y B, determine las componentes del vector \overrightarrow{AB} :

a)
$$A(-4, -2)$$
 y $B(5, 1)$

b)
$$A(7,0)$$
 y $B(-5,0)$

c)
$$A(3,4,-2)$$
 y $B(5,7,8)$

$$d) A(1,-1,2) y B(-3,1,1)$$

- 18. Halle el valor de α y β para que los puntos $A(\alpha,3)$ y $B(-2,\beta)$ determinen el vector \overrightarrow{BA} = $5\vec{i} - \vec{j}$.
- 19. Determine las componentes del vector \vec{v} representado gráficamente:

b)

- 20. Dados los puntos P(-2,1,0) y Q(3,-3,1) obtenga el vector \overrightarrow{QP} y represéntelo gráficamente.
- 21. Calcule x para que los vectores dados sean iguales:

a)
$$\vec{u} = \begin{bmatrix} 2x+1\\ 9 \end{bmatrix}$$
 y $\vec{v} = 9\vec{j} - 7\vec{i}$

b)
$$\vec{u} = \frac{1}{2}\vec{i} + 5\vec{j}$$
 y $\vec{v} = \begin{bmatrix} \frac{1}{2} \\ 5 \\ 3x - 1 \end{bmatrix}$

22. Halle el módulo de los siguientes vectores:

$$a) \ \vec{a} = \begin{bmatrix} -2\\3 \end{bmatrix}$$

$$b) \ \vec{b} = \begin{bmatrix} \frac{4}{3} \\ -1 \end{bmatrix}$$

$$c) \ \vec{c} = \begin{bmatrix} 3 \\ -1 \\ \sqrt{6} \end{bmatrix}$$

$$d) \ \vec{d} = \begin{bmatrix} -\frac{1}{2} \\ 0 \\ 2 \end{bmatrix}$$

- 23. Halle en cada caso el módulo del vector \overrightarrow{PQ} sabiendo que
 - a) P(-2,0,1) y Q(3,-1,1)

b) P(2,1,-1) y Q(-1,2,1)

c) $P(-2,0) ext{ y } Q(1,3)$

d) $P(1,5) \vee Q(4,1)$

- 24. Calcule
 - a) el o los valores de m para que el módulo del vector determinado por P(4,5,m) y Q(3, -2, 1) sea $\sqrt{51}$.
 - b) el o los valores de t para que el módulo del vector determinado por los puntos A(-5,6)y B(t,3) sea $\sqrt{10}$.
 - c) el o los valores de α para que el módulo del vector $\vec{v}=\vec{i}+(1+\alpha)\vec{j}+(2+\alpha)\,\vec{k}$ sea igual a $\sqrt{14}$.
- 25. Halle el versor asociado para cada uno de los siguientes vectores. G

$$a) \ \vec{u} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

$$b) \ \vec{u} = \begin{bmatrix} 3 \\ -4 \end{bmatrix} \qquad \qquad c) \ \vec{u} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

$$c) \ \vec{u} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

26. Dados los vectores $\vec{u}=3\vec{i}+2\vec{j}; \ \vec{v}=-\vec{i}+2\vec{j}$ y $\vec{w}=2\vec{i}-\vec{j}$ en \mathbb{R}^2 , calcule:

$$a) \vec{u} - 2\vec{v}$$

b)
$$2\vec{w} - \vec{u}$$

c) el versor de
$$\vec{v} + \vec{w}$$

27. Dados los vectores $\vec{m} = 3\vec{i} + 4\vec{j} - \vec{k}$; $\vec{n} = -2\vec{i} + 5\vec{k}$ y $\vec{p} = \begin{bmatrix} 4 \\ 3 \\ -1 \end{bmatrix}$ en \mathbb{R}^3 , calcule: a) $\vec{m} + \vec{n}$ b) $\vec{m} - \vec{p}$ c) $3\vec{m}$ d) $\frac{1}{2}\vec{n}$ e) $2\vec{m} - \vec{n}$

$$a) \vec{m} + \vec{n}$$

b)
$$\vec{m} - \vec{p}$$

$$c) 3\bar{n}$$

5

$$d) \frac{1}{2} \vec{n}$$

$$e) \ 2\vec{m} - \vec{n}$$

28. Determine $\vec{u} \cdot \vec{v}$ sabiendo que

a)
$$\vec{u} = \begin{bmatrix} -3\\2 \end{bmatrix}$$
 y $\vec{v} = \begin{bmatrix} \frac{1}{2}\\-5 \end{bmatrix}$

$$b) \ \vec{u} = \begin{bmatrix} 4 \\ 0 \\ -1 \end{bmatrix} \quad y \quad \vec{v} = \begin{bmatrix} -3 \\ 2 \\ 5 \end{bmatrix}$$

- 29. Sabiendo que $\vec{u} \cdot \vec{v} = -\frac{3}{2}, \ \vec{u} = \begin{bmatrix} k \\ -3 \end{bmatrix}$ y $\vec{v} = \begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}$, calcule el valor de k.
- 30. Determine si los vectores $\vec{u}=-3\vec{i}-5\vec{j}$ y $\vec{v}=10\vec{j}+6\vec{i}$ son perpendiculares. Grafique.
- 31. Indique si los vectores $\vec{u}=-2\vec{i}+5\vec{j}+3\vec{k}$ y $\vec{v}=-6\vec{k}-10\vec{j}+4\vec{i}$ son paralelos. Grafique.
- 32. Sean los vectores $\vec{u} = 3\vec{i} + 4\vec{j}$ y $\vec{v} = \vec{i} + \alpha \vec{j}$, halle α para que resulten paralelos.
- 33. Encuentre las coordendas de un vector paralelo a $\vec{u}=2\vec{i}-3\vec{j}+\sqrt{12}\,\vec{k}$ de módulo 2, pero de sentido contrario.
- 34. Dados los vectores $\vec{u} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ y $\vec{v} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$, halle α y β para que sean paralelos y su producto escalar sea seis.
- 35. Sean los vectores $\vec{u}=-2\vec{i}+5\vec{j}$ y $\vec{v}=\alpha\vec{i}-2\vec{j}$, determine el valor de α para que los dos vectores sean perpendiculares. Grafique.
- 36. Dados los vectores $\vec{u}=3\vec{i}+\vec{k}\;\; \text{y}\;\; \vec{v}=\vec{i}-\vec{j}$ en \mathbb{R}^3 , halle un vector paralelo a $\vec{u}-\vec{v}$ de módulo tres.
- 37. Obtenga las componentes de un vector paralelo al vector $\vec{u}=5\vec{i}+12\vec{j}$ de módulo dos y de sentido opuesto.
- 38. Dado el vector $\vec{v} = 3\vec{i} + 4\vec{j}$, halle un vector paralelo a \vec{v} de igual sentido, y que mida la mitad.
- 39. Halle dos vectores perpendiculares a $\vec{w} = -\vec{i} + 3\vec{j}$. Grafique.
- 40. Halle un versor perpendicular a $\vec{u} = 6\vec{i} 3\vec{j}$. Grafique.
- 41. Calcule el ángulo que forman los vectores $\vec{u}=2\vec{i}-3\vec{j}$ y $\vec{v}=-\vec{i}+4\vec{j}$.
- 42. Dado el vector $\vec{u}=3\vec{i}+4\vec{j}$, halle el ángulo que forma con el semieje positivo de las abscisas.
- 43. Encuentre el ángulo que determinan los vectores $\vec{w}=\vec{i}-\vec{j}$ y $\vec{v}=-2\vec{i}+3\vec{j}+\vec{k}$.
- 44. Dados los vectores $\vec{u} = 5\vec{i} 2\vec{j} + 3\vec{k}$ y $\vec{v} = -4\vec{i} + \vec{k}$, halle $\overrightarrow{proy_{\vec{v}}} \cdot \vec{u}$ y $\overrightarrow{proy_{\vec{u}}} \cdot \vec{v}$.
- 45. Obtenga el valor de α sabiendo que $\left|\overrightarrow{proy_{\vec{v}}} \ \overrightarrow{u}\right| = 2, \ \vec{u} = \begin{bmatrix} \alpha \\ 2 \end{bmatrix}$ y $\vec{v} = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$

46. Calcule en cada caso el producto vectorial indicado. Utilice Geogebra 3D o algún software similar para comprobar gráficamente el resultado obtenido.

$$a) \vec{i} \times \vec{j}$$

b)
$$\vec{j} \times \vec{i}$$

c)
$$\vec{j} \times \vec{k}$$

$$d) \vec{k} \times \vec{i}$$

$$e) \vec{k} \times \vec{i}$$

$$f) \vec{i} \times \vec{k}$$

g)
$$\vec{u} \times \vec{v}$$
 donde $\vec{u} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ y $\vec{v} = \begin{bmatrix} -4 \\ 0.5 \\ -1 \end{bmatrix}$

h)
$$\vec{u} \times \vec{v}$$
 donde $\vec{u} = \begin{bmatrix} 1,5\\1\\-2 \end{bmatrix}$ y $\vec{v} = \begin{bmatrix} 5\\1\\-1 \end{bmatrix}$

i)
$$\vec{u} \times \vec{v}$$
 donde $\vec{u} = \begin{bmatrix} \sqrt{3} \\ -1 \\ 3 \end{bmatrix}$ y $\vec{v} = \begin{bmatrix} 0 \\ 2 \\ -4 \end{bmatrix}$

47. Sabiendo que
$$|\vec{u}|=2$$
 , $|\vec{v}|=\sqrt{3}$ y que $(\vec{u}\, \hat{\,\,},\, \vec{v})=\frac{\pi}{3},$ calcule $|\vec{u}\times\vec{v}|.$

48. Sabiendo que
$$|\vec{u}|=\sqrt{2}$$
, $|\vec{v}|=3$ y que $(\vec{u}\,\hat{\,\,\,},\vec{v})=\frac{\pi}{4}$, calcule $|\vec{u}\times\vec{v}|$.

49. Sabiendo que
$$|\vec{u}| = 1$$
, $|\vec{v}| = \sqrt{5}$ y que $(\vec{u}, \vec{v}) = \frac{\pi}{6}$, calcule $|\vec{u} \times \vec{v}|$.

50. Resuelva analíticamente cada uno de los siguientes items. Luego, utilice Geogebra 3D para comprobar gráficamente el resultado obtenido.

a) Encuentre un vector perpendicular a
$$\vec{u} = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}$$
 y a $\vec{v} = \begin{bmatrix} 3 \\ 1 \\ 0.25 \end{bmatrix}$.

b) Encuentre un vector perpendicular a
$$\vec{u} = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}$$
 y a $\vec{v} = \begin{bmatrix} 3 \\ 1 \\ 0.25 \end{bmatrix}$ cuyo módulo sea 1.

c) Encuentre un vector perpendicular a
$$\vec{u} = \begin{bmatrix} 2 \\ -5 \\ 1 \end{bmatrix}$$
 y a $\vec{v} = \begin{bmatrix} -4 \\ 1 \\ 5 \end{bmatrix}$.

d) Encuentre un vector perpendicular a
$$\vec{u} = \begin{bmatrix} 2 \\ -5 \\ 1 \end{bmatrix}$$
 y a $\vec{v} = \begin{bmatrix} -4 \\ 1 \\ 5 \end{bmatrix}$ cuyo módulo sea 2.

51. Calcule el área del paralelogramo determinado por los vectores
$$\vec{u} = \begin{bmatrix} 2,5 \\ 1 \\ -3 \end{bmatrix}$$
 y $\vec{v} = \begin{bmatrix} -4 \\ 0 \\ 1 \end{bmatrix}$

52. Calcule el área del paralelogramo determinado por los vectores
$$\vec{u} = \begin{bmatrix} \sqrt{2} \\ 2 \\ 1 \end{bmatrix}$$
 y $\vec{v} = \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}$

53. Calcule el producto mixto $(\vec{u} \cdot (\vec{v} \times \vec{w}))$ entre las siguientes ternas de vectores:

a)
$$\vec{u} = \vec{i} - 2\vec{j} - 3\vec{k}$$
, $\vec{v} = \begin{bmatrix} -2\\4\\1 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 2\\1\\-1 \end{bmatrix}$.

b)
$$\vec{u} = \begin{bmatrix} 2 \\ 1 \\ -6 \end{bmatrix}$$
, $\vec{v} = -2\vec{i} - 4\vec{j} + 3\vec{k}$, $\vec{w} = \begin{bmatrix} 6 \\ 3 \\ 5 \end{bmatrix}$.

c)
$$\vec{u} = \begin{bmatrix} -1\\ \frac{1}{3}\\ 2 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 3\\ 1\\ 0 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 4\\ 5\\ 11 \end{bmatrix}$.

d)
$$\vec{u} = \begin{bmatrix} 0 \\ -1 \\ 10 \end{bmatrix}$$
, $\vec{v} = \vec{k} - 2\vec{j} + 3\vec{i}$, $\vec{w} = \begin{bmatrix} 6 \\ 5 \\ 4 \end{bmatrix}$.

- 54. Determine, en cada item, cuáles de los vectores del ejercicio anterior son coplanares. Justifique adecuadamente.
- 55. Para los vectores del ejercicio 54 que no son coplanares, considere el paralelepípedo construido a partir de dichos vectores. Halle el volumen.

8

- 56. Halle el valor de x para que los vectores $\vec{u} = \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix}, \quad \vec{v} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ y $\vec{w} = \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix}$ resulten coplanares. Represente gráficamente.
- 57. Determine si los puntos $A(1,0,1),\,B(0,1,-1),\,C(2,-1,0)$ y D(-2,3,4) están en un mismo plano.