1 Compactness

Exercise 1.1. Let $\{V_{\alpha}\}$ be an open cover of a topological space \mathcal{X} . Show that $W \subseteq \mathcal{X}$ is open iff $W \cap V_{\alpha}$ is open for any $V_{\alpha} \in \{V_{\alpha}\}$.

Proof. (\Rightarrow) is trivial.

(\Leftarrow) For any point $x \in W$, we have $x \in V_x$ since $\{V_\alpha\}$ is open cover. Consider $\bigcup_{x \in W} (W \cap V_x)$, it is a union of open sets, and it is a subset of W, and it contains all points of W, so W is open.

Theorem 1.1. Show that a space \mathcal{X} is compact iff for any collection of closed sets $\{Q_{\alpha}\}$ in \mathcal{X} such that

$$\bigcap_{\alpha} Q_{\alpha} = \varnothing$$

Then there is a finite subset of $\{Q_{\alpha}\}$ such that

$$Q_0 \cap Q_1 \cap \cdots \cap Q_n = \emptyset$$

Proof.

- (\Rightarrow) For any collection of closed set $\{Q_{\alpha}\}$ in \mathcal{X} such that $\bigcap_{\alpha} Q_{\alpha} = \emptyset$, we can see $\{\mathcal{X} \setminus Q_{\alpha}\}$ is a collection of open set and $\bigcup_{\alpha} (\mathcal{X} \setminus Q_{\alpha}) = \mathcal{X} \setminus (\bigcap_{\alpha} Q_{\alpha}) = \mathcal{X} \setminus \emptyset = \mathcal{X}$, therefore the collection of complements $\{\mathcal{X} \setminus Q_{\alpha}\}$ is an open cover of \mathcal{X} . So there is a finite subset of $\{\mathcal{X} \setminus Q_{\alpha}\}$ that also open covers \mathcal{X} . Then it is also a finite subset of $\{Q_{\alpha}\}$ since $\mathcal{X} = \bigcup_{i} (\mathcal{X} \setminus Q_{i}) = \mathcal{X} \setminus (\bigcap_{i} Q_{i})$ and $Q_{i} \subseteq \mathcal{X}$ implies $\bigcap_{i} Q_{i} = \emptyset$.
- (\Leftarrow) For any open cover $\{V_{\alpha}\}$ of \mathcal{X} , consider the collection of complements $\{\mathcal{X}\setminus V_{\alpha}\}$, we have $\bigcap_{\alpha}(\mathcal{X}\setminus V_{\alpha})=\mathcal{X}\setminus (\bigcup_{\alpha}V_{\alpha})=\varnothing$. So there is a finite subset $\{\mathcal{X}\setminus V_i\}$ such that $\varnothing=\bigcap_i(\mathcal{X}\setminus V_i)=\mathcal{X}\setminus (\bigcup_i V_i)$, therefore $\bigcup_i V_i=\mathcal{X}$, the space \mathcal{X} is compact.

Theorem 1.2. Let $Q_0 \supseteq Q_1 \supseteq \ldots$ be a nested sequence of closed nonempty sets in a compact space K. Show that there is a point $q \in K$ such that $\forall i, q \in Q_i$.

Proof. If there is no such point, we know $\bigcap_i Q_i = \emptyset$, which means there is a finite subsequence such that $\bigcap_j Q_j = \emptyset$. Since the sequence Q_i is a nested sequence of nonempty sets, so $\bigcap_j Q_j$ must equal to some "smallest" Q_j , but that means this Q_j is empty set, which contradicts to the assumption.

Theorem 1.3. Let $f: \mathcal{X} \to \mathcal{Y}$ be a continuous mapping between topological spaces and \mathcal{K} is a compact subset in \mathcal{X} . Show that $\mathcal{Q} = f(\mathcal{K})$ is also compact in \mathcal{Y} . That is, continuous mapping preserve compactness.

Proof. For any open cover $\{V_{\alpha}\}$ of $f(\mathcal{K})$, then the inverse images of $\{V_{\alpha}\}$ cover are also open since f is continous, and also an open cover of \mathcal{K} since they cover $f(\mathcal{K})$. So there is a finite subset of open cover such that covers \mathcal{K} , then map those cover by f, we get a finite subset of open cover of $\{V_{\alpha}\}$

Theorem 1.4. Any closed set in a compact space is also compact.

Proof. This proof comes from textbook.

Suppose \mathcal{X} a compact space and \mathcal{Q} a closed set in it. Consider any open cover $\{V_{\alpha}\}$ of \mathcal{Q} and the complement $\mathcal{C} = \mathcal{X} \setminus \mathcal{Q}$. Obviously, \mathcal{C} is open, and $\{\mathcal{C}\} \cup \{V_{\alpha}\}$ is an open cover of \mathcal{X} , therefore there is a finite open cover on \mathcal{X} , that open cover may or may not contains \mathcal{W} , but we can always add \mathcal{W} to it, and it is still a finite subcover. Since the finite subcover $\{\mathcal{W}, V_{\alpha_0}, \dots, V_{\alpha_n}\}$ covers \mathcal{X} , then it also covers \mathcal{Q} , and we can see that \mathcal{W} contributes nothing for \mathcal{Q} , so it is safe to remove it, and $\{V_{\alpha_i}\}$ is still a finite open cover on \mathcal{Q} .

Furthermore, the proposition can be iff, since the whole space is a closed set. If any closed set in that space is compact, then the whole space is also compact.

Definition 1.1. Let $\{V_{\alpha}\}$ and $\{W_{\beta}\}$ be two covers of a topological space \mathcal{X} . We say $\{V_{\alpha}\}$ is inscried in $\{W_{\beta}\}$ if for any α , there is β such that $V_{\alpha} \subseteq W_{\beta}$

Theorem 1.5. A space \mathcal{X} is compact iff for any cover $\{V_{\alpha}\}$ of \mathcal{X} , there is a finite cover such that inscried in $\{V_{\alpha}\}$.

Proof. (\Rightarrow) For any cover on \mathcal{X} , there is a finite subcover on \mathcal{X} , and the finite subcover is an inscried in itself.

 (\Leftarrow) For any finite subcover $\{W_{\beta}\}$ on \mathcal{X} that is inscried in $\{V_{\alpha}\}$, since for any W_{β} there is a V_{α} such that $W_{\beta} \subseteq V_{\alpha}$, we may collect these V_{α} and they form a cover on \mathcal{X} .

Theorem 1.6. Suppose \mathcal{X} and \mathcal{Y} are compact topological spaces, show that the product $\mathcal{X} \times \mathcal{Y}$ is also compact.

Proof.

Theorem 1.7. Suppose that a product space $\mathcal{X} \times \mathcal{Y}$ is nonempty and compact. Show that \mathcal{X} and \mathcal{Y} are compact.

Proof. For any open cover $\{V_{\alpha}\}_{{\alpha}\in\mathcal{I}}$ on \mathcal{X} , consider the open cover $\{V_{\alpha}\times\mathcal{Y}\}_{{\alpha}\in\mathcal{I}}$ on $\mathcal{X}\times\mathcal{Y}$, there is a finite subcover $\{V_{\alpha}\times\mathcal{Y}\}_{{\alpha}\in\mathcal{I}}$. For any $x\in\mathcal{X}$, take $y\in\mathcal{Y}$ (it is possible cause $\mathcal{X}\times\mathcal{Y}$ is nonempty), we have $(x,y)\in V_{\alpha}\times\mathcal{Y}$ for some α , so $\{V_{\alpha}\}_{{\alpha}\in\mathcal{I}}$ is a open cover on \mathcal{X} .

Definition 1.2. A topological space \mathcal{X} is called sequentially compact if any point sequence in \mathcal{X} has a converging subsequence.

Theorem 1.8. A metric space \mathcal{M} is comapct implies it is sequentially compact.

Proof. Recall that if a sequence x_n converage to some point p, then for any ϵ , $B(p,\epsilon)$ contains infinite points in x_n .

If any subsequence in x_n is not converging, then for any point $p \in \mathcal{M}$, there is ϵ such that $B(p, \epsilon)$ contains finite points in x_n . Consider the collection of $B(p, \epsilon)$ for every $p \in \mathcal{M}$ is a cover on \mathcal{M} , then we have a finite subcover on \mathcal{M} , but then the subcover contains finite points in \mathcal{M} while x_n is infinite. \square

Theorem 1.9. Show that the product of two sequentially compact spaces is sequentially compact.

Proof. TODO

Definition 1.3. A sequence x_n of points in a metric space is called Cauchy if for any $\epsilon > 0$ there is n such that $|x_i - x_j| < \epsilon$ for all i, j > n.

Theorem 1.10. Any converging sequence in a metric space is Cauchy.

Proof. For any converging sequence, the distance between points becomes smaller and smaller, so for any ϵ , there is n such that $|x_i - x_j| < \epsilon$ for all i, j > n.

Definition 1.4. A metric space \mathcal{M} is called complete if any Cauchy sequence in \mathcal{M} converge to a point in \mathcal{M} .

Theorem 1.11. Show that any compact metric space \mathcal{M} is complete.

Proof. For any Cauchy sequence x_n , suppose it is not converage, that is, for any $p \in \mathcal{M}$, there is ϵ such that $B(p, \epsilon)$ contains finite points of x_n . Consider the cover $\{B(p, \epsilon)\}$ for all $p \in \mathcal{M}$ and corresponding ϵ on \mathcal{M} , we know there is a finite subcover on \mathcal{M} since \mathcal{M} is compact. Then these finite subcover contains all points in x_n cause it covers \mathcal{M} , and it contains finite points in x_n cause each $B(p, \epsilon)$ contains finite points in x_n , therefore the sequence x_n is finite, which is unacceptible.

Definition 1.5. Let \mathcal{M} be a metric space. A subset $A \subseteq \mathcal{M}$ is called ϵ -net of \mathcal{M} if for any $p \in \mathcal{M}$, there is $a \in A$ such that $|p - a|_{\mathcal{M}} < \epsilon$ (or equivalently, $p \in B(a, \epsilon)$).

Theorem 1.12. Let \mathcal{M} be a sequentially compact metric space, then for any $\epsilon > 0$, there is a finite ϵ -net of \mathcal{M} .

Proof. This proof comes from textbook.

We may trying to construct an ϵ -net of \mathcal{M} . We pick a point in \mathcal{M} randomly, say $x_0 \in \mathcal{M}$, then we pick another point $x_1 \in \mathcal{M}$ such that $x_1 \notin B(x_0, \epsilon)$, and then we pick $x_2 \in \mathcal{M}$ such that $x_2 \notin B(x_0, \epsilon)$ and $x_2 \notin B(x_1, \epsilon)$, for any i, we pick $x_i \in \mathcal{M}$ such that $x_i \notin B(x_j, \epsilon)$ for any j < i. If at some point, we can't pick any x_i that satisfies the requirement, then $\{x_0, x_1, \ldots, x_{i-1}\}$ is an ϵ -net of \mathcal{M} . If this procedure cannot stop, then we get a sequence x_i where their distance are always greater than ϵ . Since \mathcal{M} is sequentially compact, so there is a converging subsequence, however, the distance of points in the subsequence can not below ϵ , so it can't be converging.