CANON CANOLA F-11 ABRIDGED USER GUIDE

(based on a 4-page brochure [German], plus using an actual F-11, pictured below)

NOTE: some icons in this document are quite small, but will be perfectly readable if you zoom in.

Contents

Features, Display	page 2				
Keyboard	page 3				
Functions (Math)					
 Summary of Keys Usage, examples 	page 4 page 5				
Functions (Statistical)	page 6				
Statistical calculation example page 7					
Technical Specifications page 8					

Features

1. Simple algebraic arithmetic logic

Numbers and operations are keyed in as they are read. Brackets allow expressions to be nested 3-deep and mixed fractions can be entered without memory allocation or re-keying of intermediate calculated values.

2. 10 memories

The Canola F-11 has 10 memories for storage, accumulation calculation, retrieval and summation of values, items and results.

3. Floating point, fixed point and scientific display

Floating point applies for input, fixed point for output (from 0 to 6 decimal places), floating point (F) or scientific notation (SN). Numbers greater than 10^{10} and less than 10^{-10} , are always displayed in scientific form. The dynamic range is 10^{99} to 10^{-99} .

4. Trigonometric functions

Angular functions sine, cosine, tangent and their Inverse functions are performed in degrees, grads and radians.

5. Hyperbolic functions

Hyperbolic functions sinh, cosh, tanh and their inverse functions.

6. Logarithmic functions

Base 10 and natural logarithms and their inverse functions are calculated to 10 decimal digits.

7. Functions of x.

Square, square root, reciprocal and exponentiation.

8. Constant

The constant π is available on a key. The K switch allows constant multipliers or divisors to be used.

9. Statistical functions

Statistics can be computed for 1-sample or 2-sample data. These include Mean value, Standard deviation, Sum of values and their squares and Correlation coefficient.

For 2-sample data, linear regression coefficients a (slope) and b (y intercept) can be calculated . The button is used to solve factorials, permutations, combinations and probability calculations.

10. Conversions

Degrees, minutes, seconds \leftrightarrow decimal degrees; polar coordinates \leftrightarrow rectangular coordinates . Temperature conversions (°F \leftrightarrow °C), measurements (ft \leftrightarrow m, in \leftrightarrow cm), weight conversions (lb \leftrightarrow kg) and volume Conversions (gal \leftrightarrow litres).

11. Fractional calculations

With the fraction button mixed fractions can be entered directly. Note that fractions are not preserved but converted on the fly.

e.g. To enter the mixed fraction 2 %, press

NOTE: any "leading zeros" in the fractional part of the entry will be ignored. e.g. 2.001 will be treated as if 2.1 was entered.

12. Functional keyboard

The keys are well dimensioned and logically placed. Their tactile feel and feedback makes for easy use.

NOTE: Where multiple keys are required for a particular function or action, keys are pressed sequentially. There are NO instances where more than one key is pressed at any one time.

Canola F-11 Keyboard

Memory and Clear Keys

OUT: Return stats
M+n: Add to memory *n*RMn: Recall memory *n*SMn: Save to memory *n*CMn: Clear memory *n*(*n* is 0...9)

DEL: Delete Cl: Clear last C: Clear display

Numeric Entry Keys

0-9, decimal point and sign change.

Operator Keys

SUM

i nesting
π pi (constant)
× multiply
EXP exponent entry
÷ divide

stats data entry

+ Addition/ fraction- subtraction= display result

Settings

- 1. Display: decimal places (0,1,2,3,4,9); floating point (F); scientific notation (SN)
- 2. Stats: Off, 1-variable (X), 2-variable (XY) and linear regression (LR)
- 3. Angle measure: Radians; degrees; grads
- 4. Constant operator (K)
- 5. Round off (5/4) or round down ($\frac{1}{4}$)

FUNCTIONS (Math)

1. Summary of keys

Trigonometric functions

Hyperbolic functions

Logarithmic functions

Functions of x.

- square root of x

 $\frac{1}{x}$ -reciprocal of x

a –a to the power x

Angular conversions

– conversion of degrees, minutes,
 seconds to decimal degree

Conversion of decimal degrees into degrees, minutes, seconds

Coordinate conversions

- polar form r and θ are converted to cartesian form to x and y.

- rectangular form x and y are converted to polar form r and θ .

Statistical functions

– N factorial for integers x for range $0 \le x \le 69$

1-sample and 2-sample statistics can be performed using the we key as per the legend provided above the keyboard.

Σχ1	Σx22	x3	SDX4	no
ΣУ•1	Σy²•2	<u> </u> у•з	SDy-•4	r xy-•9
£xy-•5	SDxy-•6	a•7	b•8	CMA-CM•

Linear regression

The linear regression for any twodimensional variable (x_i, y_i) stats can be determined by entering the x value and pressing x to obtain the estimate

Metric conversions

FUNCTIONS (Math)

2. Usage

Function keys operate on 1 or 2 variables as indicated in the table below. The calculation accuracy is always based on 10 digits

NOTE: Set angle switch to desired setting before using functions sin, cos, tan and their inverses. Likewise for $\rightarrow REC$ and $\rightarrow POL$.

Input	Walant Court	Key operation and display (result)						
variables	Kinds of functions	1	2	3	4	5	6	7
	$\sqrt{, a^2, 1/x, \sin, \cos, \cos, \cos, \log, 10^x, \ln, e^x, \cos, \log, 10^x, \ln, e^x}, \alpha^{\circ m}, $	variable	various function keys	result				
	arc (sin, cos, tan)	variable	arc	sin (cos tan	result			
	hyp (sin, cos, tan)	variable	HYP	sin (cos tan)	result			
	arc hyp (sin, cos, tan)	variable	arc	HYP	sin (cos tan	result		
2 variables	a^x	variable (<i>a</i>)	a^x	Variable (x)	a^{x}	result		
	→ POL	Variable (x)	→POL	variable (y)	→POL	result (r)	→POL	result (<i>O</i>)
	→ REC	variable (r)	→ REC	variable (<i>0</i>)	→ REC	result (x)	→REC	result (y)

NOTE: When an operator does not appear before an opening bracket, [], multiplication is implied.

Examples of using Functions.

Equation	Setting	Key sequence	Answer
$5e^{\frac{3}{2}\{(1.7-0.8)sin30+0.7cos60\}} + tan \ 15^{\circ}25'30'' = 16.875$	PAD DEG 74 GRAD	5 (3 ÷ 2 (1.78) × sin + .7 × 60)) e ^x + 15.253 d ² tan =	16.8765
$2 \sinh 2.5 + 3 \cosh (\frac{1}{4} \sinh^{-1} \frac{1}{\sqrt{3.5^2 - 1}})$ = 15.1085	PAD DEG TO THE TOTAL THE T	$2 \times 2.5 \text{ HYP sin} + 3 4$ $\frac{1}{x} 3.5 $	15.1085

FUNCTIONS (Statistical)

Set the statistics switch to **X** for 1-variable stats, to **XY** for 2-variable stats or **L.R.** for linear regression.

To clear all statistics registers, press

To delete data, press

To return the results of statistical calculations use the we have as per the table below.

Keys		Operation				
OUT	n	Number of values or pairs of values				
OUT 1	$\sum x$	Sum of the entered x values				
оит 2	$\sum x^2$	Sum of the squared x values				
оит	x	Mean of x				
OUT 4	S.D. <i>x</i>	Standard deviation of x				
00Т	Συ	Sum of the entered y values				
OUT 2	$\sum y^2$	Sum of squared y values				
тио	У	Mean of y				
OUT 4	S.D. <i>y</i>	Standard deviation of y				
оит 5	$\sum xy$	Sum of the products of x and y				
оит 6	S.D. <i>xy</i>	Standard deviation of x y				
оит 7	а	The constant a of the regression line $y = a + bx$				
OUT 8	b	The constant b of the regression line $r = a + bx$				
оит 9	r_{xy}	Correlation coefficient of x and y				

NOTE: The stat functions use 5 memories (5 through 9) as scratchpad; previous contents are lost.

Statistical calculation example

The following table shows the size (y) and the weight (x) of a certain group of people. We are looking for the correlation coefficient (r) and

parameters a and b of the regression straight line (y = ax + b). Then the body sizes of two people with 40 kg or 75 kg weight are estimated.

	Α	В	С	D	Е
Weight in kg(x)	55	60	50	65	68
Height in cm (y)	162	175	160	172	177

Setting:

(2-variable stats selected. Clear all memories)

Data entry: (note that entries are X and Y are entered alternately)

Setting:

One can assume:

A person weighing 40 kg is 150 cm tall.

A person weighing 75 kg is 184 cm tall.

Technical Specifications

Type: Electronic Calculator

Keyboard: 10-key system.

Display: 7-segment planar display.

11 digit mantissa (10 digits and sign) and 3-digit exponent (2 digits and sign).

Registers: 9 for arithmetic operations, 8 for statistical calculations, 1 for fractional calculation, 10 for storage (5 for statistical calculation).

Parentheses level: 13 for operands and 9 for values.

Computing capacity:

Input: $+9.999999999 \times 10^{99} \sim +1.000000000 \times 10^{-99}$ Output: $+9.9999999999 \times 10^{99} \sim +1.000000000 \times 10^{-99}$

Command system:

Input: As per keyboard input

Final results: fixed point, adjustable to 0, 1, 2, 3, 4, 6 or

Floating point (F). Scientific notation (SN)

Negative values: display with a minus symbol

Calculation method: Algebraic logic with brackets (brackets can be 3 levels deep).

Calculations:

Basic calculations:

addition, subtraction, multiplication and division, parentheses, fractions, mixed calculations.

Functions:

trigonometric, inverse trigonometric, exponential, logarithmic, hyperbolic and inverse hyperbolical, n factorial, squaring, reciprocal, exponentiation, square root.

Conversions:

Temperature (°F \leftrightarrow °C) Dimensions (ft \leftrightarrow m, inch \leftrightarrow cm) Weights (Ib \leftrightarrow kg) Volume (gal \leftrightarrow litres)

Degrees: Minutes: Seconds \leftrightarrow Decimal Degrees Polar Coordinates \leftrightarrow Rectilinear Coordinates

Statistical calculations:

Summation of individual values and Pairs of values, Mean, Standard Deviation, Correlation Coefficient, Linear Regression.

Other functions:

- a) Security devices
 - 1. Overflow lock
 - 2. Input lock for double keying
 - 3. Automatic register deletion
- b) Automatic calculation functions
 - 1. Automatic rounding up and down
 - 2. K-switch for carrying constant values
 - Angle switch for calculations in radians, in degrees and grads
 - 4. Statistics switch for individual values, value pairs and linear regression
- c) Display functions
 - 1. minus symbol
 - 2. Error lamp
 - 3. Lamp for statistical calculations

Electronics: MOS-LSI

Power supply: AC 100/115/220/240 V (-15% to + 10%),

50 W.

Temperature: 0 $^{\circ}$ C to 40 $^{\circ}$ C

Dimensions: 260 mm wide, 290 mm deep, 97 mm high.

Weight: 2.7 kg.

Subject to change