Programação Declarativa

Paradigmas de Programação Avançados

Programação em Lógica com Restrições

Constraint Logic
Programming

Problemas

Formulação

Integração com Prolog

Programação por Restrições

Formular problema como conjunto de relações entre variáveis.

(semelhante a sistemas de equações)

Variáveis em número finito.

Domínios das variáveis especificados:

Reais

Domínios finitos

Intervalos

Terminologia

CSP ≈ Constraint Satisfaction Problem

Um CSP P = (V, D, C)

Em que:

- V é um conjunto de variáveis { V1, V2, ... }
- D é um conjunto de domínios das variáveis correspondentes, i.e. Di representa os valores admissíveis para Vi
- **C** é um conjunto de relações sobre V*, ditas *constraints* ou restrições

Abordagem - modelação

Encontrar variáveis para descrever o estado do problema.

Caracterizar o que constitui uma solução.

Eventualmente caracterizar a qualidade duma solução.

Variável

O que constitui uma variável num sistema de restrições?

Domínio: especificação dos valores possíveis, *independentemente* das condições do problema estarem satisfeitas

Exemplos

- Inteiros,
- Reais,
- Herbrand (termos Prolog),
- Domínios finitos,
- Conjuntos,
- ...

Restrições

São as relações (booleanas) que se devem observar entre variáveis.

Chamam-se restrições ou constraints.

Exemplos de restrições (variáveis X, Y, ...):

- X ≠ Y
- X = A*Y*Y + B*Y + C
- X > 10
- 0 < X, X < 2*Y
- ...

Restrições globais (global constraints)

Chamam-se restrições globais (global constraints) a relações mais elaboradas envolvendo várias variáveis.

Exemplo: all_different

Dizemos que a constraint **all_different(V1, V2, ... Vn)** é satisfeita quando todos os Vi tomarem valores diferentes entre si.

É equivalente a termos uma série de constraints Vi ≠ Vj, só que é implementada de forma especial por cada sistema.

Ver o catálogo de constraints globais:

http://sofdem.github.io/gccat/index.html

Programação por restrições: sistemas

Há vários sistemas de constraint programming.

Extensão a linguagem (tipo DSL)

Constraint Logic Programming ≈ Prolog + constraints (CLP)

- GNU Prolog (Prolog + CLP/FD)
- Eclipse CLP
- Pacotes CLP para Prolog
- 2. Livraria (tipo conjunto de classes)

Integra-se numa linguagem, sem introduzir novos conceitos. Exemplos:

- Gecode (C++)
- Choco (Java)

CLP(FD)

Constraint Logic Programming (Finite Domains)

Aumentamos o Prolog substituindo a unificação pela satisfação de restrições.

Novo tipo de variável: constraint variable.

Tem um domínio. No caso FD são *domínios finitos*. Tem um número finito (normalmente "pequeno") de valores possíveis distintos.

As variáveis passam a ser declaradas:

- fd_domain(VARS, MIN, MAX)
- fd_domain(VARS, LISTA_VALORES)

Em que VARS pode ser uma variável ou uma lista de variáveis.

CLP(FD)

Constraints numéricas simples.

- A #= B
 - o A e B são avaliados e é imposta a igualdade
- A #\= B
 - o É imposta a desigualdade entre A e B
- A #< B, A #=< B, A #> B, A #>= B
 - Inequações entre A e B

Em todos os casos, se o goal suceder as variáveis ficam *condicionadas*, por uma restrição que as liga.

A propagação é dita **bounds consistency**, ie. só assenta no mínimo e máximo dos valores admissíveis para as variáveis intervenientes.

Versões com propagação completa: #=#, #\=#, #<#, #=<#, #>=#

CLP(FD) - constraints globais

Algumas constraints globais:

fd_all_different([V1, V2, ...])

Restringe todas as variáveis V1, V2, ... a serem diferentes entre si (i.e. não podem ter um valor repetido)

fd_element(I, [E1, E2, ...], X)

Restringe X a ser igual ao I-ésimo elemento da lista [E1, ...] (a contar de 1)

CLP(FD) - constraints globais

Mais constraints globais:

fd_atmost(N, LISTA, V)

No máximo N variáveis de LISTA podem tomar o valor V.

fd_atleast(N, LISTA, V)

No mínimo N variáveis de LISTA devem tomar o valor V.

fd_exactly(N, LISTA, V)

Exatamente N variáveis de LISTA devem tomar o valor V.

Exemplos CLP(FD)

```
| ?- fd_domain(X, 0, 20).
X = \#0(0..20)
yes
| ?- fd_domain(X, 0, 20), Y #< X.
X = _{\#0}(1..20)
Y = _{\#}19(0..19)
yes
| ?-
```

Exemplos CLP(FD)

```
| ?- fd_{domain}(X, 0, 20), Y \# < X, X \# = 10.
X = \#0(1..9:11..20)
Y = _{\#}19(0...19)
yes
| ?- fd_domain(X, 0, 20), Y #< X, X #= 2*Z.
X = \#0(2..20)
Y = _{\#}19(0...19)
Z = \#49(1..10)
yes
```

Modelos de consistência

Consistência de Arco (arc-consistency)

- Os domínios das variáveis podem ser não convexos (i.e. ter "buracos")
- Implementação mais complexa
- Mais propagação
- Operadores da forma #op#
 - Ex. 2*X #=# Y+3, Z #<# 2*X*X + 5*Y*Y

Consistência de Limites (bounds-consistency)

- Os domínios são representados por um intervalo { min .. max }
- Menos complexo de implementar
- Menos propagação (restringe menos)
- Operadores da forma #op
 - Ex. 2*X #= Y+3, Z #< 2*X*X + 5*Y*Y

Exemplos CLP(FD)

```
| ?- fd_domain(X, 0, 20), Y #< X, X #=# 2*Z.

X = _#0(2:4:6:8:10:12:14:16:18:20)

Y = _#19(0..19)

Z = _#49(1..10)
```

CLP(FD) - exemplos de uso

Exemplo: criptaritmética

SEND + MORE -----

As letras representam algarismos, que não se podem repetir.

Ideia: exprimir tudo o que sabemos como constraints.

- 1) Enumerar as variáveis: S, E, N, D, M, O, R, Y, que vão representar algarismos distintos.
- 2) Colocar a "soma" como uma constraint.
- 3) S e M não podem ser zero.

CLP(FD) - SEND+MORE=MONEY

Ficamos com:

```
fd_domain([S,E,N,D,M,O,R,Y], 0, 9),
S #> 0, M #> 0,
fd_all_different([S, E, N, D, M, O, R, Y])
```

Mas também:

Ao lançar este goal, ficamos com várias variáveis com domínios "largos", i.e. com mais dum valor possível, e algumas já só com um valor.

CLP(FD) - SEND+MORE=MONEY

```
| ?- fd_domain([S,E,N,D,M,O,R,Y], 0, 9), S #> 0, M #> 0,
     fd_all_different([S, E, N, D, M, O, R, Y]),
     D+10*(N+10*(E+10*S)) + E+10*(R+10*(O+10*M)) #=
       Y+10*(E+10*(N+10*(O+10*M))).
D = _{\#}51(2...8)
E = _{\#17(4..7)}
M = 1
N = \#34(5...8)
0 = 0
R = \#102(2...8)
S = 9
Y = _{\#}119(2..8)
yes
```

Iterar sobre as soluções implícitas - labeling

Quando o resultado incluir variáveis de constraints que não foram reduzidas (i.e. que ainda não são ground), podemos forçar o CLP(FD) a **enumerar** todas as soluções individuais.

É o predicado fd_labeling/1

O seu argumento são as variáveis de constraint que devem ser sucessivamente reduzidas a um só valor, dentro dos possíveis dado o estado atual.

O que acontece é o CLP(FD) produzir todas as soluções, disponibilizando-as em backtracking.

Iterar sobre as soluções implícitas - labeling

```
| ?- fd_domain([S,E,N,D,M,O,R,Y], 0, 9), S #> 0, M #> 0,
fd_all_different([S, E, N, D, M, O, R, Y]),
     D+10*(N+10*(E+10*S)) + E+10*(R+10*(O+10*M)) #=
       Y+10*(E+10*(N+10*(O+10*M))),
     fd_labeling([S,E,N,D,M,O,R,Y]).
D = 7
E = 5
M = 1
N = 6
0 = 0
R = 8
S = 9
Y = 2 ?
ves
```

Ajeitemos o Prolog/CLP(FD)

```
| ?- X=[S,E,N,D,M,O,R,Y],
     fd_domain(X, 0, 9), S #> 0, M #> 0,
     fd_all_different(X),
     D+10*(N+10*(E+10*S)) + E+10*(R+10*(O+10*M)) #=
       Y+10*(E+10*(N+10*(O+10*M))),
     fd_labeling(X).
D = 7
E = 5
M = 1
N = 6
0 = 0
R = 8
S = 9
Y = 2
```

Exemplo: rainhas

Tabuleiro de xadrez de NxN, com N rainhas, que não se ataquem.

O que significa "atacar-se"?

- 1. Na mesma linha
- 2. Na mesma coluna
- 3. Na mesma diagonal

R1	1	2	3	4
R2	1	2	3	4
R3	1	2	3	4
R4	1	2	3	4

Como exprimir?

- Uma variável por rainha, Ri, sendo que a rainha i está na linha i.
 É impossível (por construção) haver duas rainhas na mesma linha.
- 2. Rj ≠ Ri, ∀ j>i
- 3. Rj-Ri ≠ k, com k∈{j-i, i-j} ∀ j>i

Exemplo CLP(FD): rainhas

Como fazer N variáveis com valores de 1 a N?

```
length(R, N),
   fd_domain(R, 1, N)
Como dizer que não há conflitos?
   ok([]).
   ok([R|Rs]) :- ok(Rs, R, 1), ok(Rs).
Cada uma:
   ok([], _, _).
   ok([Rj|Rs], Ri, I) :-
     I1 is I+1,
     ok(Rs, Ri, I1),
     Ri #\= Rj, Ri #\= Rj+I, Ri+I #\= Rj.
```

Exemplo CLP(FD)

```
rainhas(N, R) :-
  length(R, N),
  fd_domain(R, 1, N),
  ok(R),
  fd_labeling(R).
```

Experimentando:

```
| ?- rainhas(4, X).
X = [2,4,1,3] ?;
X = [3,1,4,2] ?;
no
| ?- rainhas(10, X).
X = [1,3,6,8,10,5,9,2,4,7] ?;
X = [1,3,6,9,7,10,4,2,5,8] ?;
X = [1,3,6,9,7,10,4,2,8,5] ?
(1 ms) yes
| ?-
```

Terminologia

COP = Constraint Optimisation Problem

Um COP P=(P', G)

Em que:

- P' é um CSP, e P'=(V, D, C)
- G é uma função de V* para R

Pretendemos optimizar P para G, i.e. encontrar uma solução S de P' tal que G(S) seja máximo (ou mínimo)

Exemplo: TSP

Caixeiro Viajante (*Travelling Salesman Problem*, ou *TSP*)

Existem N cidades $C = \{C_1, \dots C_N\}$

A distância entre cada par de cidades C_i e C_j é dada por D_{ij}

A ideia é encontrar um caminho P=(P1, P2, ..., PN) tal que:

- Os Pi sejam cidades (i.e. Pi∈C)
- O ponto de chegada coincida com o ponto de partida (PN=P1)
- Todas as cidades figuram exatamente uma vez no percurso
 - Nenhuma cidade figura 2 vezes
 - Todas as cidades são incluídas
- O custo total (K=D12+D23+...+D(N-1)N) seja mínimo

Constraints de otimização

Duas constraints globais:

```
fd_minimize(GOAL, VAR)
fd_maximize(GOAL, VAR)
```

Ambas vão chamar GOAL, repetindo (não via backtracking), até encontrar um valor optimo para VAR.

Por exemplo, **fd_minimize/2** funciona assim:

- Da primeira vez tenta resolver GOAL e observa o valor V0 de VAR
- Da vez seguinte, acrescenta uma constraint VAR #< V0 e repete GOAL, resultando no valor V1
- Vai iterando, acrescentando sempre VAR #< Vi até que não seja possível melhorar

Programação em Lógica com Restrições

Constraint Logic Programming

Constraints Booleanas Reificadas

Constraints Disjuntivas

Restrições Booleanas

Domínio Booleano

Valores possíveis: true e false

Mapeados para 1 e 0 (inteiros)

Operações sobre Booleanos

Seja E uma expressão de restrições sobre Booleanos, E pode tomar a forma:

```
Variável domínio 0..1
0 (integer) 0 (false)
1 (integer) 1 (true)
    não E
#\ E
E1 #<=> E2 E1 equivalente a E2
E1 #\<=> E2 E1 não equivalente a E2 (i.e. E1 diferente de E2)
           E1 XOR E2 (i.e. E1 não equivalente a E2)
E1 #==> E2 E1 implica E2
E1 #\==> E2 E1 não implica E2
E1 \# \land E2 E1 E F2
E1 \# \land E2 \qquad E1 \text{ NAND } E2
```