coursera

Q

Cost Function and Backpropagation

- Video: Cost Function 6 min
- Reading: Cost Function 4 min
- Video: Backpropagation
 Algorithm
 11 min
- Reading: Backpropagation
 Algorithm
 10 min
- Video: Backpropagation Intuition

 12 min
- Reading: Backpropagation Intuition
 4 min

Backpropagation in Practice

- Video: Implementation
 Note: Unrolling Parameters
 7 min
- Reading: Implementation
 Note: Unrolling Parameters
 3 min
- Video: Gradient Checking
 11 min
- Reading: Gradient Checking 3 min
- Video: Random Initialization 6 min
- Reading: Random Initialization 3 min

°--

Putting it Together

First, pick a network architecture; choose the layout of your neural network, including how many hidden units in each layer and how many layers in total you want to have.

- Number of input units = dimension of features $x^{(i)}$
- Number of output units = number of classes
- Number of hidden units per layer = usually more the better (must balance with cost of computation as it increases with more hidden units)
- Defaults: 1 hidden layer. If you have more than 1 hidden layer, then it is recommended that you have the same number of units in every hidden layer.

Training a Neural Network

- 1. Randomly initialize the weights
- 2. Implement forward propagation to get $h_{\Theta}(x^{(i)})$ for any $x^{(i)}$
- 3. Implement the cost function
- 4. Implement backpropagation to compute partial derivatives
- 5. Use gradient checking to confirm that your backpropagation works. Then disable gradient checking.
- 6. Use gradient descent or a built-in optimization function to minimize the cost function with the weights in theta.

When we perform forward and back propagation, we loop on every training example: